Trailing edge noise prediction for rotating serrated blades

Samuel Sinayoko¹ Mahdi Azarpeyvand² Benshuai Lyu³

¹University of Southampton, UK ²University of Bristol, UK ³University of Cambridge, UK

AVIATION 2014 20th AIAA/CEAS Aeroacoustics conference Atlanta, 20 June 2014

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- 6 Conclusions

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- Conclusions

Introduction

Motivation

- Wind turbines (Oerlemans et al 2007)
- Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et al AIAA-2014-2745)

Introduction

Motivation

- Wind turbines (Oerlemans et al 2007)
- Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et al AIAA-2014-2745)

Experiments

- Gruber et al (AIAA-2012)
- Moreau and Doolan (AIAA J. 2013)

Introduction

Motivation

- Wind turbines (Oerlemans et al 2007)
- Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et al AIAA-2014-2745)

Experiments

- Gruber et al (AIAA-2012)
- Moreau and Doolan (AIAA J. 2013)

Numerical

- Jones and Sandberg (JFM 2012)
- Sanjose et al (AIAA-2014-2324)

Turbulent boundary layer trailing edge noise (TEN)

A subtle process

- Hydrodynamic gust convecting past the trailing edge
- Scattered into acoustics at the trailing edge
- Acoustic field induces a distribution of dipoles near the TE
- The dipoles radiate efficiently (M^5) to the far field

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- Conclusions

TEN modelling for isolated airfoils

Howe's serrated edge model

Howe (1991) & Azarpeyvand (2012)

$$S_{pp} = A D \Phi$$

Assumptions

- High frequency (kC > 1)
- Frozen turbulence
- Sharp edge
- Full Kutta condition ($\Delta P_{TE} = 0$)
- Low Mach number (M < 0.2)

TEN modelling for isolated airfoils

Serration profiles

Edge spectra for serrated edges

Rewriting of Howe (1991) & Azarpeyvand et al. (2013)

$$\Phi = \psi(K_1\delta)$$

$$\psi(\rho) = \frac{\rho^2}{[\rho^2 + 1.33^2]^2}$$

Edge spectra for serrated edges

Rewriting of Howe (1991) & Azarpeyvand et al. (2013)

$$\Phi = \sum_{\mathfrak{n}} \; \alpha_{\mathfrak{n}}(K_1 h) \; \psi(\rho_{\mathfrak{n}} \delta)$$

$$\psi(\rho) = \frac{\rho^2}{[\rho^2 + 1.33^2]^2} \qquad \qquad \rho_n = \sqrt{K_1^2 + n^2 k_s^2}$$

Edge spectra for serrated edges

Modal amplitudes a_n , $K_1h_s=25$

TEN for Rotating Airfoils

TEN for Rotating Airfoils

Time averaged PSD vs Instantaneous PSD

$$\overline{S}_{pp}(\omega) = \frac{1}{T} \int_0^T S_{pp}(\omega, t) dt$$

Amiet's model for rotating airfoils

$$\overline{S}_{pp}(\omega) = \frac{1}{T} \int_0^T \left(\frac{\omega'}{\omega}\right)^2 S'_{pp}(\omega', \tau) d\tau$$

Main steps:

- Ignore acceleration effects ($\omega \gg \Omega$)
- Power conservation: $S_{pp}(\omega, t)\Delta\omega = S'_{pp}(\omega', \tau)\Delta\omega'$
- Change of variable: $\frac{\partial t}{\partial \tau} = \frac{\omega'}{\omega}$

Doppler shift:

$$\frac{\omega'}{\omega} = \frac{\omega_{S}}{\omega_{O}} = 1 - \frac{M_{SO} \cdot \hat{e}}{1 + M_{FO} \cdot \hat{e}}$$

References:

Schlinker and Amiet (1981)

Sinayoko, Kingan and Agarwal (2013)

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- 6 Conclusions

Wind turbine blade element

Wind turbine blade element:

• Pitch angle: 10 deg

Chord: 2m

Span: 7.25m

• Rotational speed $\Omega = 2.6 \text{rad/s}$ (RPM=25)

Angle of attack: 0 deg

M_{blade} = 0.165

M_{chord} = 0.167

Effect of serration height

Effect of serration height

Effect of serration height

Effect of serration height

Effect of serration height

Effect of serration height

Effect of rotation on PSD

Doppler factor

WT: wind turbine

PTO: propeller take-off

CF: cooling fan

PC: propeller cruise

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- 6 Conclusions

Generalized Amiet model for serrated edges Theory

- Inspired by Roger et al (AIAA-2013-2108)
- Fourier series in spanwise direction.
- Pressure formulation and scattering approach
- Discretize the solution using n Fourier modes

$$\begin{split} \mathcal{L}\mathbf{P} &= \mathbf{D}\mathbf{P} + \mathbf{C}\frac{\partial \mathbf{P}}{\partial y_1} \\ \mathcal{L} &= \left\{ \left(\beta^2 + \sigma^2\right) \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} + 2ikM\frac{\partial}{\partial y_1} \right\}. \end{split}$$

Generalized Amiet model for serrated edges

Iterative solution

Refine the solution iteratively

$$P=\lim_{n\to+\infty}P_n$$

② Decoupled solution (order 0)

$$\mathcal{L}P_0 = \mathbf{D}P_0$$

Coupled solution (order 1)

$$\mathcal{L}\mathbf{P}_1 = \mathbf{D}\mathbf{P}_1 + \mathbf{C}\frac{\partial \mathbf{P}_0}{\partial \mathbf{y}_1}.$$

Generalized Amiet model for serrated edges

Results

Isolated sawtooth blade, M=0.1, $l_s/\delta=1$, $h_s/l_s=3.75$.

Outline

- Introduction
- 2 Theory
- Results
- Generalized Amiet model for isolated serrated edges
- 6 Conclusions

Conclusions

- Rotation effect can be incorporated easily using Amiet's approach
- Rotation has little effect (< 1dB) for low speed fans</p>
- Rotation has significant effect (up to 5dB) on high speed fans
- Preliminary results for new model improves significantly on Howe's theory

Acknowledgements

Acknowledgements

The Royal Academy of Engineering

Further information

http://www.sinayoko.com

http://bitbucket.org/sinayoko

s.sinayoko@soton.ac.uk

@sinayoko

Acknowledgements

Further information

http://www.sinayoko.com

http://bitbucket.org/sinayoko

s.sinayoko@soton.ac.uk

@sinayoko

Thank you!