ALGEBRAIC GEOMETRY 1

PROBLEM SET 13

Keywords: Grassmannian, Zariski tangent space

Problem 1

Let $G(2,4) \subset \mathbb{P}^5$ be the Grassmannian of lines in \mathbb{P}^3 . We denote the homogeneous Plücker coordinates of G(2,4) in \mathbb{P}^5 by $x_{i,j}$ for $1 \leq i < j \leq 4$. Show:

$$G(2,4) = V(x_{1,2}x_{3,4} - x_{1,3}x_{2,4} + x_{1,4}x_{2,3}).$$

Problem 2

Let $L \subset \mathbb{P}^3$ be a fixed line. Let $H_L \subset G(2,4)$ be the locus of lines which meet L. Consider the incidence correspondence

$$I = \{(p, l) \in \mathbb{P}^3 \times G(2, 4) : p \in l\} \subset \mathbb{P}^3 \times G(2, 4).$$

Show that I is a closed subvariety of $\mathbb{P}^3 \times G(2,4)$. Conclude that H_L is a closed subvariety of G(2,4).

Problem 3

Prove that the Zariski tangent space at the point $L \in G(k,n)$ is canonically isomorphic to $L^* \otimes K^n/L$ (or equivalently to $\text{Hom}(L,K^n/L)$).