Tanzanian Well Data Analysis Notebook

The following code will attempt to find correlations between the available data to help determine well funcionality in the nation of Tanzania. Several methods are recommended to do this successfully, to most accurately acheive results. Since this is quite literally a life or death data problem, careful analysis should be used throughout the process.

```
In [405]: #Import the relevant libraries
          import pandas as pd
          from __future__ import print function, division
          import pandas as pd
          import numpy as np
          import os
          from sklearn.metrics import accuracy score
          %matplotlib inline
          import matplotlib.pyplot as plt
          from sklearn.datasets import make classification
          from sklearn.metrics import accuracy score, classification report
          from sklearn.linear_model import LogisticRegression
          import warnings
          from sklearn.exceptions import DataConversionWarning
          from sklearn.model_selection import train_test_split
          from sklearn.linear model import LogisticRegression
          from sklearn.preprocessing import LabelEncoder
          from sklearn.model selection import train test split
          from sklearn.linear model import LogisticRegression
          from sklearn.preprocessing import StandardScaler
          from sklearn.pipeline import make pipeline
          from sklearn import tree
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import accuracy score
          from scipy.cluster import hierarchy as ho
```

OSEMN-Obtain

Here is where we will import the data into our notebook as csv files, generously provided to us by Taarifa, and he Tanzanian Ministry of Water

```
In [299]: #import the data as csv files
submission_format = pd.read_csv('SubmissionFormat.csv')
test = pd.read_csv('702ddfc5-68cd-4d1d-a0de-f5f566f76d91.csv')
labels = pd.read_csv('0bf8bc6e-30d0-4c50-956a-603fc693d966.csv')
train = pd.read_csv('4910797b-ee55-40a7-8668-10efd5c1b960.csv')
```

Out[300]:		id	status_group
	0	69572	functional
	1	8776	functional
	2	34310	functional
	3	67743	non functional
	4	19728	functional

OSEMN-Explore

Now that we have the data in our notebook, we can start executing functions to explore the size, shape, and types of data we will be working with.

```
In [301]: print("Train data labels:",len(labels))
          print("Train data rows, columns:",train.shape)
          print("Test data rows, columns:", test.shape)
          Train data labels: 59400
          Train data rows, columns: (59400, 40)
          Test data rows, columns: (14850, 40)
In [302]: labels.status group.value counts()
Out[302]: functional
                                      32259
          non functional
                                      22824
          functional needs repair
                                       4317
          Name: status_group, dtype: int64
In [303]: labels.status_group.value_counts(normalize=True)
Out[303]: functional
                                      0.543081
          non functional
                                      0.384242
          functional needs repair
                                      0.072677
          Name: status_group, dtype: float64
In [304]: |majority = labels['status group'].mode()[0]
          y pred = np.full(shape=labels['status group'].shape, fill value=majority)
In [306]: all(y pred==majority)
Out[306]: True
```

```
In [307]: plt.figure(figsize = (16,8))
    plt.title("Water Pumps Status",fontsize=20)
    sns.countplot(x = labels['status_group'], data = labels, palette="BuPu");
```


OSEMN-Scrub

A quick look at the data shows us there are quite a few wells in need of repair, removal or relocation. Let's go a little further by removing missing values and changing some of our data types so we can have a clearer picture of wha we'll be dealing with, and make a little less work for our model later on!

```
In [308]: df = train.merge(labels, on = train.index)
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 59400 entries, 0 to 59399
Data columns (total 43 columns):

	columns (total 43 columns)		
#	Column	Non-Null Count	. Dtype
0	lear 0	59400 non-null	 int64
1	key_0 id x	59400 non-null	
2	-	59400 non-null	
3	amount_tsh		
3 4	date_recorded	59400 non-null	-
5	funder	55765 non-null	-
	<pre>gps_height installer</pre>	59400 non-null	
6		55745 non-null	-
7	longitude	59400 non-null	
8	latitude	59400 non-null	
9 10	wpt_name	59400 non-null	•
	num_private	59400 non-null	
11	basin	59400 non-null	-
12	subvillage	59029 non-null	-
13	region	59400 non-null	
14	region_code	59400 non-null	
15	district_code	59400 non-null	
16	lga	59400 non-null	_
17	ward	59400 non-null	_
18	population	59400 non-null	
19	public_meeting	56066 non-null	_
20	recorded_by	59400 non-null	-
21	scheme_management	55523 non-null	-
22	scheme_name	31234 non-null	•
23	permit	56344 non-null	-
24	construction_year	59400 non-null	
25	extraction_type	59400 non-null	-
26	extraction_type_group	59400 non-null	-
27	extraction_type_class	59400 non-null	-
28	management	59400 non-null	_
29	management_group	59400 non-null	_
30	payment	59400 non-null	-
31	payment_type	59400 non-null	_
	water_quality	59400 non-null	
33	quality_group	59400 non-null	•
34	quantity	59400 non-null	-
35	quantity_group	59400 non-null	-
36	source	59400 non-null	•
37	source_type	59400 non-null	. object
38	source_class	59400 non-null	. object
39	waterpoint_type	59400 non-null	object
40	waterpoint_type_group	59400 non-null	object
41	id_y	59400 non-null	int64
42	status_group	59400 non-null	object
dtype	es: float64(3), int64(9), object(31)	
memoi	ry usage: 19.9+ MB		

localhost:8888/notebooks/Phase 3 Final Notebook.ipynb#

In [309]: !pip install category encoders !pip install geopandas import geopandas

Requirement already satisfied: category encoders in ./opt/anaconda3/envs/ learn-env/lib/python3.8/site-packages (2.2.2) Requirement already satisfied: pandas>=0.21.1 in ./opt/anaconda3/envs/lea rn-env/lib/python3.8/site-packages (from category encoders) (1.1.3) Requirement already satisfied: statsmodels>=0.9.0 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from category encoders) (0.12.0) Requirement already satisfied: scipy>=1.0.0 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from category encoders) (1.5.2) Requirement already satisfied: patsy>=0.5.1 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from category encoders) (0.5.1) Requirement already satisfied: numpy>=1.14.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from category encoders) (1.18.5) Requirement already satisfied: scikit-learn>=0.20.0 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from category encoders) (0.23. 2) Requirement already satisfied: python-dateutil>=2.7.3 in ./opt/anaconda3/ envs/learn-env/lib/python3.8/site-packages (from pandas>=0.21.1->category encoders) (2.8.1) Requirement already satisfied: pytz>=2017.2 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from pandas>=0.21.1->category encoders) Requirement already satisfied: six in ./opt/anaconda3/envs/learn-env/lib/ python3.8/site-packages (from patsy>=0.5.1->category encoders) (1.15.0) Requirement already satisfied: joblib>=0.11 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from scikit-learn>=0.20.0->category enc oders) (0.17.0) Requirement already satisfied: threadpoolctl>=2.0.0 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from scikit-learn>=0.20.0->cate gory encoders) (2.1.0) Requirement already satisfied: geopandas in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (0.8.2) Requirement already satisfied: fiona in ./opt/anaconda3/envs/learn-env/li b/python3.8/site-packages (from geopandas) (1.8.18) Requirement already satisfied: shapely in ./opt/anaconda3/envs/learn-env/ lib/python3.8/site-packages (from geopandas) (1.7.1) Requirement already satisfied: pandas>=0.23.0 in ./opt/anaconda3/envs/lea rn-env/lib/python3.8/site-packages (from geopandas) (1.1.3) Requirement already satisfied: pyproj>=2.2.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from geopandas) (3.0.0.post1) Requirement already satisfied: cligj>=0.5 in ./opt/anaconda3/envs/learn-e nv/lib/python3.8/site-packages (from fiona->geopandas) (0.7.1) Requirement already satisfied: munch in ./opt/anaconda3/envs/learn-env/li b/python3.8/site-packages (from fiona->geopandas) (2.5.0) Requirement already satisfied: attrs>=17 in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (from fiona->geopandas) (20.2.0) Requirement already satisfied: click-plugins>=1.0 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from fiona->geopandas) (1.1.1) Requirement already satisfied: click<8,>=4.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from fiona->geopandas) (7.1.2) Requirement already satisfied: six>=1.7 in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (from fiona->geopandas) (1.15.0)

Requirement already satisfied: certifi in ./opt/anaconda3/envs/learn-env/

```
lib/python3.8/site-packages (from fiona->geopandas) (2020.6.20)
Requirement already satisfied: python-dateutil>=2.7.3 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (2020.1)
Requirement already satisfied: numpy>=1.15.4 in ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from pandas>=0.23.0->geopandas) (1.18.5)
```

```
In [314]: train.head(10)
```

Out[314]:		id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_
	0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	
	1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zał
	2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	Ма
	3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Zahan Nany
	4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	SI
	5	9944	20.0	2011-03-13	Mkinga Distric Coun	0	DWE	39.172796	-4.765587	
	6	19816	0.0	2012-10-01	Dwsp	0	DWSP	33.362410	-3.766365	Ng
	7	54551	0.0	2012-10-09	Rwssp	0	DWE	32.620617	-4.226198	Tushir
	8	53934	0.0	2012-11-03	Wateraid	0	Water Aid	32.711100	-5.146712	Rama
	9	46144	0.0	2011-08-03	Isingiro Ho	0	Artisan	30.626991	-1.257051	Kw

10 rows × 42 columns

OSEMN-Model

The model below is a rough scatterplot to showcase the different locations and functionoalities of the wells geographically, it also pints a much more interesting picture of how certain locations are not having their needs met, which would certainly be something worth exploring in future work.

We will also be trying our hand at some logistic regression, and tree classification later on, but first le's fit our data to better serve our purpose.

In [321]: !pip install descartes

Requirement already satisfied: descartes in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (1.1.0)

Requirement already satisfied: matplotlib in ./opt/anaconda3/envs/learn-e nv/lib/python3.8/site-packages (from descartes) (3.3.1)

Requirement already satisfied: kiwisolver>=1.0.1 in ./opt/anaconda3/envs/ learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (1.2. 0)

Requirement already satisfied: python-dateutil>=2.1 in ./opt/anaconda3/en vs/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (2. 8.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 i n ./opt/anaconda3/envs/learn-env/lib/python3.8/site-packages (from matplo tlib->descartes) (2.4.7)

Requirement already satisfied: pillow>=6.2.0 in ./opt/anaconda3/envs/lear n-env/lib/python3.8/site-packages (from matplotlib->descartes) (7.2.0) Requirement already satisfied: numpy>=1.15 in ./opt/anaconda3/envs/learnenv/lib/python3.8/site-packages (from matplotlib->descartes) (1.18.5) Requirement already satisfied: cycler>=0.10 in ./opt/anaconda3/envs/learn -env/lib/python3.8/site-packages (from matplotlib->descartes) (0.10.0) Requirement already satisfied: certifi>=2020.06.20 in ./opt/anaconda3/env s/learn-env/lib/python3.8/site-packages (from matplotlib->descartes) (202

Requirement already satisfied: six>=1.5 in ./opt/anaconda3/envs/learn-en v/lib/python3.8/site-packages (from python-dateutil>=2.1->matplotlib->des cartes) (1.15.0)

```
In [322]: gdf = geopandas.GeoDataFrame(
              df, geometry=geopandas.points_from_xy(df.longitude, df.latitude))
          functional = gdf.where(labels['status_group'] == 'functional')
          repair = gdf.where(labels['status_group'] == 'functional needs repair')
          broken = gdf.where(labels['status_group'] == 'non functional')
          world = geopandas.read file(geopandas.datasets.get path('naturalearth lowre
          ax = world[world.continent == 'Africa'].plot(
              color='grey', edgecolor='black')
          ax.scatter(functional['longitude'], functional['latitude'],
                     c='blue',alpha=.75, s=10)
          ax.scatter(repair['longitude'], repair['latitude'],
                     c='yellow', alpha=1, s=10)
          ax.scatter(broken['longitude'], broken['latitude'],
                     c='red', alpha=.5, s=10)
          plt.ylim(-12, 0)
          plt.xlim(28,41)
          plt.show()
          #blue is functional, yellow needs repair, red is broken
```



```
In [324]: full_df = pd.concat([train, test])
full_df.shape
#59400 + 14358
```

Out[324]: (74250, 43)

```
In [325]: full_df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 74250 entries, 0 to 14849
Data columns (total 43 columns):

	Column		D±rrno					
#	Column	Non-Null Count	Dtype					
		74050						
0	id	74250 non-null	int64					
1	amount_tsh	74250 non-null	float64					
2	date_recorded	74250 non-null	object					
3	funder	69746 non-null	object					
4	gps_height	74250 non-null	int64					
5	installer	69718 non-null	object					
6	longitude	74250 non-null	float64					
7	latitude	74250 non-null	float64					
8	wpt_name	74250 non-null	object					
9	num_private	74250 non-null	int64					
10	basin	74250 non-null	object					
11	subvillage	73780 non-null	object					
12	region	74250 non-null	object					
13	region_code	74250 non-null	int64					
14	district code	74250 non-null	int64					
15	lga	74250 non-null	object					
16	ward	74250 non-null	object					
17	population	74250 non-null	int64					
18	public meeting	70095 non-null	object					
19	recorded_by	74250 non-null	object					
	- -		-					
20	scheme_management	69404 non-null	object					
21	scheme_name	38992 non-null	object					
22	permit	70457 non-null	object					
23	construction_year	74250 non-null	int64					
24	extraction_type	74250 non-null	object					
25	extraction_type_group	74250 non-null	object					
26	extraction_type_class	74250 non-null	object					
27	management	74250 non-null	object					
28	management_group	74250 non-null	object					
29	payment	74250 non-null	object					
30	payment_type	74250 non-null	object					
31	water_quality	74250 non-null	object					
32	quality_group	74250 non-null	object					
33	quantity	74250 non-null	object					
34	quantity_group	74250 non-null	object					
35	source	74250 non-null	object					
36	source_type	74250 non-null	object					
37	source class	74250 non-null	object					
38	waterpoint_type	74250 non-null	object					
39	waterpoint_type_group		object					
40	age	74250 non-null	int64					
41	pop/year	74250 non-null	float64					
42	water_/_person	74250 non-null	float64					
	es: float64(5), int64(8		110004					
	ry usage: 24.9+ MB	,, object(30)						
memo.	memory usage. 24.91 Fib							

localhost:8888/notebooks/Phase 3 Final Notebook.ipynb#

```
In [326]: for column in full_df.columns:
               full df[column].fillna(full df[column].mode()[0], inplace=True)
In [327]: full df.isna().sum()
Out[327]: id
                                     0
                                     0
          amount_tsh
          date_recorded
                                     0
          funder
                                     0
          gps height
                                     0
          installer
                                     0
          longitude
                                     0
          latitude
                                     0
          wpt name
                                     0
          num private
                                     0
          basin
                                     0
          subvillage
                                     0
          region
                                     0
          region code
                                     0
          district_code
                                     0
          lga
                                     0
          ward
                                     0
          population
                                     0
          public_meeting
          recorded by
                                     0
                                     0
          scheme management
          scheme name
                                     0
                                     0
          permit
          construction year
                                     0
          extraction_type
                                     0
          extraction type group
          extraction_type_class
                                     0
          management
                                     0
          management group
                                     0
          payment
                                     0
                                     0
          payment_type
          water quality
                                     0
                                     0
          quality group
          quantity
                                     0
                                     0
          quantity group
          source
                                     0
          source_type
                                     0
          source class
          waterpoint type
          waterpoint_type_group
                                     0
                                     0
          age
                                     0
          pop/year
          water_/_person
          dtype: int64
In [254]: | test = (test.drop(['date_recorded'], axis = 1),
          test.drop(['construction year'], axis = 1))
```

```
In [256]: labels.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 59400 entries, 0 to 59399
          Data columns (total 2 columns):
               Column
                             Non-Null Count Dtype
           0
               id
                             59400 non-null
                                              int64
           1
               status_group 59400 non-null object
          dtypes: int64(1), object(1)
          memory usage: 928.2+ KB
In [259]: X_matrix, y_vector = train, labels['status_group']
In [260]: majority_class = y_vector.mode()
          y_vector.value_counts(normalize=True)
Out[260]: functional
                                      0.543081
          non functional
                                      0.384242
          functional needs repair
                                      0.072677
          Name: status_group, dtype: float64
In [261]: majority prediction = [majority class] * len(y vector)
          accuracy score(y vector, majority prediction)
Out[261]: 0.543080808080808
In [265]: X cleaned = full df[:-14358]
          X test cleaned = full df[-14358:]
          y = labels['status group']
In [266]: X cleaned.shape, X test cleaned.shape, y.shape
Out[266]: ((59892, 43), (14358, 43), (59400,))
In [270]: X matrix.head()
          y vector.head()
Out[270]: 0
                   functional
          1
                   functional
          2
                   functional
          3
               non functional
                   functional
          Name: status group, dtype: object
```

```
In [271]: X_matrix.dtypes
Out[271]: id
                                       int64
                                     float64
          amount_tsh
          date_recorded
                                      object
           funder
                                      object
                                       int64
          gps height
           installer
                                      object
           longitude
                                     float64
          latitude
                                     float64
          wpt_name
                                      object
                                       int64
          num private
          basin
                                      object
          subvillage
                                      object
          region
                                      object
          region_code
                                       int64
          district code
                                       int64
          lga
                                      object
          ward
                                      object
                                       int64
          population
          public_meeting
                                      object
          recorded by
                                      object
           scheme management
                                      object
           scheme name
                                      object
          permit
                                      object
                                       int64
          construction_year
                                      object
          extraction_type
          extraction type group
                                      object
          extraction_type_class
                                      object
          management
                                      object
          management group
                                      object
                                      object
          payment
          payment_type
                                      object
          water quality
                                      object
          quality_group
                                      object
          quantity
                                      object
          quantity group
                                      object
                                      object
          source
          source_type
                                      object
          source_class
                                      object
          waterpoint_type
                                      object
                                      object
          waterpoint_type_group
          age
                                       int64
                                     float64
          pop/year
          water_/_person
                                     float64
          dtype: object
In [377]: len(y_vector)
Out[377]: 14850
In [275]: X train numeric = X matrix.select dtypes(np.number)
          X test numeric = X test.select dtypes(np.number)
```

```
In [281]: train.head()
```

Out[281]:		id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_na
	0	69572	6000.0	2011-03-14	Roman	1390	Roman	34.938093	-9.856322	r
	1	8776	0.0	2013-03-06	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zaha
	2	34310	25.0	2013-02-25	Lottery Club	686	World vision	37.460664	-3.821329	Mah
	3	67743	0.0	2013-01-28	Unicef	263	UNICEF	38.486161	-11.155298	Zaha Nanyui
	4	19728	0.0	2011-07-13	Action In A	0	Artisan	31.130847	-1.825359	Shı
	5 r	ows × 4	3 columns							
In [328]:	ma	jority	_class = 1	abels['sta	tus_gro	up'].mode	()[0]			
	У_	pred =	np.full(s	hape = lab	els['st	atus_grou	p'].shap	e, fill_	value = m	ajorit
In [329]:	ac	curacy	_score(lab	els[' <mark>stat</mark> u	s_group	'], y_pre	d)			
Out[329]:	0.	543080	808080808							
In [332]:	_		assificati at could lo				roup'],	y_pred))		
				pre	cision	recall	f1-sco	re sup	port	
			funct	ional	0.54	1.00	0.	70 3	2259	
	fu	nction	nal needs r	_	0.00	0.00	0.	00	4317	
			non funct	ional	0.00	0.00	0.	00 2	2824	
			acc	uracy			0.	54 5	9400	
				o avg	0.18	0.33			9400	
			weighte	d avg	0.29	0.54	0.	38 5	9400	
In [369]:	le	n(X_tr	ain_numeri	c)						
Out[369]:	59	400								
In [370]:	X_:	matrix	x, X_train_	numeric, y	, y_vec	tor = tra	in_test_	split(X_	train_num	eric,

```
In [398]: clf = tree.DecisionTreeClassifier()
                clf.fit(X = X matrix, y = y)
                clf.feature_importances_
                clf.score(X = X_test_numeric, y = y_vector)
Out[398]: 0.44195286195286193
In [423]: def correlation heatmap(labels):
                       ax=plt.subplots(figsize=(15,10))
                       colormap=sns.diverging_palette(220,10,as_cmap=True)
                       sns.heatmap(full_df.corr(),annot=True,cmap=colormap)
                correlation_heatmap(labels)
                                                                                                                                     1.00
                                         -0.0071 -0.0032 -0.0017 0.0033 -0.0045 -0.0019 -0.0026 -0.0054 0.0033 -0.0018 -0.0033 0.0039 -0.007 -0.00076
                           amount_tsh --0.0071
                                                0.08 0.023 -0.056 0.0054 -0.027 -0.024 0.018 0.016 0.024 0.035 -0.036 0.013
                                                                                                                                     -0.75
                            gps_height --0.0032 0.08
                                                     0.15 -0.038 0.008 -0.18
                                                                          -0.17 0.13 0.036 0.093
                                                                                                 0.26
                                                                                                       -0.24
                                                                                                            0.038
                                                0.15
                                                                0.025 0.032
                             longitude --0.0017 0.023
                                                                               0.087 0.018
                                                                                                      -0.17 0.055
                                                                                                                                     -0.50
                              latitude - 0.0033 -0.056 -0.038 -0.43
                                                               0.0061 -0.22
                                                                           -0.2
                                                                               -0.023 0.0088 0.068 -0.073 0.088
                                                                                                           -0.01
                                                                                                                 -0.12
                           num private --0.0045 0.0054 0.008 0.025 0.0061
                                                                      -0.021 -0.0053 0.0034 0.0093 0.01 0.0074 -0.0089 0.0032 0.0047
                                                                                                                                     -0.25
                           region_code --0.0019 -0.027 -0.18 0.032
                                                          -0.22 -0.021
                                                                                0.095 -0.016 -0.035 0.0062 0.008 0.071 -0.033
                          district_code --0.0026 -0.024
                                                -0.17
                                                     0.15
                                                           -0.2 -0.0053
                                                                                0.063 0.01 -0.081 0.028 -0.028
                                                                                                           0.07 -0.041
                                                                                                                                     -0.00
                                                0.13 0.087 -0.023 0.0034 0.095 0.063
                                                                                      0.0032 -0.036
                                                                                                 0.13
                                                                                                      -0.12
                                                                                                                 -0.045
                            population -- 0.0054 0.018
                         0.035 -0.037 -0.004 0.028
                                                                                            0.12
                                                                                                                                     -0.25
                               permit -- 0.0018 0.024 0.093
                                                      0.1
                                                               0.01 -0.035 -0.081 -0.036
                                                     0.17 -0.073 0.0074 0.0062 0.028 0.13 0.035 -0.0057
                       construction_year --0.0033 0.035
                                                0.26
                                                                                                            0.22
                                                                                                                0.015
                                                                                                                                      -0.50
                                                -0.24
                                                     -0.17
                                                          0.088 -0.0089 0.008 -0.028
                                                                                -0.12 -0.037 0.0085
                                                                                                            -0.22
                                                                                                                 -0.016
                             pop/year - -0.007 0.013 0.038 0.055
                                                          -0.01 0.0032 0.071 0.07
                                                                                      -0.004 -0.036
                                                                                                 0.22
                                                                                                                 -0.021
                                                                                                                                      -0.75
                                                0.1 0.028 -0.12 0.0047 -0.033 -0.041 -0.045 0.028 0.012 0.015 -0.016 -0.021
                         water / person <0.00076 0.23
                 construction_year_missing
                                                                 um_private
                                                                                                                  water / person
                #new df = pd.concat([train, labels])
In [426]:
```

new df = pd.merge(train, labels, on = 'id')

```
localhost:8888/notebooks/Phase 3 Final Notebook.ipynb#
```

```
In [421]: new_df.head()
```

Out[421]:

ıe	num_private	 quantity_group	source	source_type	source_class	waterpoint_type	waterpoint
те	0	 enough	spring	spring	groundwater	communal standpipe	commu
ati	0	 insufficient	rainwater harvesting	rainwater harvesting	surface	communal standpipe	commu
/a di	0	 enough	dam	dam	surface	communal standpipe multiple	commu
ati /a ou	0	 dry	machine dbh	borehole	groundwater	communal standpipe multiple	commu
ni	0	 seasonal	rainwater harvesting	rainwater harvesting	surface	communal standpipe	commu

```
In [349]: y.shape, X_matrix.shape
Out[349]: ((59400,), (59400, 42))
In [396]: len(y_vector)
Out[396]: 14850
```

OSEMN-Interpret

Our model didn't exactly live up to our expectations, 44% would be worse than flipping a coin, especially considering that over 50% of the wells in Tanzania are currently operational. We did however get to take a look at geographic distributions, and took an opportunity to experiment with logistic regression and classification.

Unfortunately, the interpretation of this data would be more speculative than most any analysts would be comfortable with. The interpretation of this data could be most accurately described as needing further work, if we want to achieve actionable results. However, this will provide opportunities to practice ternary classification and predictive modeling, which can help solve future problems.

```
In [ ]:
```