Obdelava biomedicinskih signalov in slik **Detekcija kompleksa QRS**

Jakob Maležič

9. januar 2022

Povzetek

Pri vajah smo spoznali kompleks QRS in njegovo uporabo pri različnih napravah. V tej nalogi je predstavljen algoritem za klasifikacijo kompleksa QRS na vnaprej posnetih signalih. Slednje smo pridobili iz baze MIT-BIH¹. Algoritem smo razvili v programskem okolju Matlab.

1 Uvod

Klasifikacija kompleksa QRS se uporablja kot osnova za zaznavanje in določanje bolezni srca in ožilja [1]. Oblika kompleksa se spreminja s časom in je odvisna od fizikalnih sprememb kot tudi napak zaradi šuma, zato je potrebno signal pred detekcijo primerno obdelati.

Slika 1: Primerjava kompleksov QRS.

2 Metode

Algoritem, ki ga bomo opisali, je implementacija preprostega računanja odstopanja od povprečja. Sestavljen je iz štirih delov: računanje povprečnega signala, filtriranje signala, računanje odstopanja vzorčnega signala od povprečnega in klasifikacija.

https://physionet.org/content/mitdb/1.0.0/

2.1 Računanje povprečnega signala

V posnetkih pridobljenih iz baze MIT-BIH so signali označeni z različnimi tipi. V tej seminarski nalogi pa smo označevali samo normalne in ventrikularne signale. Zato smo iz posnetkov najprej izluščili vse normalne in ventrikularne zapise. To smo naredili s skripto create_fatr.sh, ki z uporabo orodji rdann in wrann, izlušči zapise iz vseh posnetkov.

Za računanje povprečnega signala posameznega tipa smo vzeli prvih 5 minut posnetka in za vsak detekiran signal vzeli 15 meritev pred in 25 meritev za detektiranim signalom. Slednje smo naredili s skripto create_sigavg.sh, ki z orodjem sigavg, izračuna povprečna signala normalnega in ventrikularnega utripa vseh posnetkov.

2.2 Filtriranje signala

Celoten posnetek smo nato filtrirali z visoko prepustnim filtrom, ki smo ga predstavili na vajah.

Slika 2: Primerjava signalov.

2.3 Računanje odstopanja od povprečja

Za vsak detekiran signal smo odstopanje od povprečja izračunali z dvema metodama:

$$d_1 = \frac{1}{N}(|x_1 - y_2| + |x_2 - y_2| + \dots + |x_N - y_N|)$$
(1)

$$d_{max} = max(|x_1 - y_2|, |x_2 - y_2|, \dots, |x_N - y_N|)$$
(2)

Pri čemer x predstavlja signal, ki ga želimo klasificirati in y povprečen signal normalnega tipa. Primerjavo signalov lahko vidimo na sliki 2.3, kjer modra črta predstavlja povprečni signal in oranžna črta predstavlja signal, ki ga želimo klasificirati.

2.4 Klasifikacija signala

Pridobljene vrednosti nato uporabimo za klasifikacijo signala, z vnaprej določeno pragovno funkcijo:

$$f(x) = \begin{cases} normalen, & \text{\'e } max_1 < 1.0 \text{ in } max_2 < 1.0 \text{ in } d_1 < 0.9 \\ ventrikularen, & druga\'e \end{cases}$$

Pri čemer max_1 in max_2 predstavljata vrednost funkcije glede na stolpec v signalu.

Slika 3: Primerjava signalov za klasifikacijo.

3 Rezultati

Algoritem smo evalvirali na posnetkih celotne baze MIT-BIH, ki vsebujejo vsaj kakšen normalen kompleks QRS. Za slednje smo uporabili skripto napisano v jeziku bash, ki celoten postopek izvede avtomatsko.

Senzitivnost	Specifičnost	Pozitivna napoved	Negativna napoved
86.9	78.4	97.8	35.2

Tabela 1: Rezultati.

4 Diskusija

V predstavljenem delu smo opisali kako s preprostim algoritmom lahko precej dobro klasificiramo signal QRS. Takšen algoritem lahko zelo pripomore zdravnikom pri določanju in zdravljenju bolezni srca in ožilja. Klasifikacijo bi lahko še izboljšali z določitvijo boljšega praga.

Literatura

[1] Barhatte, A., Ghongade, R. & Thakare, A. QRS complex detection and arrhythmia classification using SVM. 2015 Communication, Control And Intelligent Systems (CCIS). pp. 239-243 (2015)

Dodatek: GitHub

Implementacija je na voljo na: https://github.com/Blarc/heart-beat-classification.