PYL100: Electromagnetic Waves and Quantum Mechanics (II Semester, 2016-17)

Exercise Sheet No. 6

Part 2: QM basics -- Wave function, Probability, Schrödinger Eq., Uncertainty principle

1. The wave function of a particle at t =0 is given by: $\psi(x) = Ce^{-\alpha^2 x^2} (-\infty < x < \infty)$ where C and α are constants. Calculate the probability of finding the particle in the region $(0 < x < \infty)$.

[**Ans.** 1/2]

2. The wave function of the particle at a certain instant is given as

$$\psi(x) = A \exp\left(-\frac{x^2}{a^2} + ikx\right)$$

If P_1 and P_2 denote the probability densities of finding the particle in the range a to a+da and 2a to 2a+da respectively. Find the ratio $P_1:P_2$. [Ans. e^6]

- 3. Check whether the following functions represents acceptable wave function of a particle in the range $(-\infty < x < \infty)$ or not?
 - (a) $\Psi(x) = 3 \sin \pi x$ (b) $\Psi(x) = 4 |x|$
 - (c) $\Psi(x) = x^2$ (d) $\Psi(x) = 7 \tan x$

[Ans. Only (a)]

4. An one-dimensional wave function of a particle is given as

$$\psi(x) = Ae^{-x^2/a^2 + ikx}$$
 (A is the normalization constant)

Calculate the expectation value of position and momentum of the particle.

[**Ans.** (a) 0, (b) $\hbar k$]

5. Consider a system whose state is given in terms of an orthonormal set of three wave functions: $\Phi_1(x)$, $\Phi_2(x)$, $\Phi_3(x)$ as:

$$\Psi(\mathbf{x}) = \frac{\sqrt{3}}{3}\Phi_1 + \frac{2}{3}\Phi_2 + \frac{\sqrt{2}}{3}\Phi_3.$$

- (a) Verify that Ψ is normalized.
- (b) Calculate the probability of finding the system in any one of the states Φ_1 , Φ_2 , Φ_3 . Verify that the total probability is equal to one.
- (c) Consider now an ensemble of 810 identical systems, each one of them in the state Ψ . If measurements are done on all of them, how many systems will be found in each of the states Φ_1 ,

$$\Phi_2$$
, Φ_3 ? [Ans. (b) $P_1 = \frac{1}{3}$, $P_2 = \frac{4}{9}$, $P_1 = \frac{2}{9}$; (c) $N_1 = 270$, $N_2 = 360$, $N_3 = 180$]

6. The wave function corresponding to a particle is given by:

$$\psi(x) = \frac{1}{\sqrt{a}} \exp\left(-\frac{|x|}{a}\right)$$

- (a) Calculate the probability of finding the particle in the region -a < x < a.
- (b) Find the value of 'b' such that probability of finding the particle between -b < x < b is 0.5.

[Ans. (a)
$$1 - \frac{1}{e^2}$$
, (b) $\frac{a \ln 2}{2}$]

7. In a region of space, a particle with mass m and with zero energy has a time-independent wave function given by

$$\psi(x) = Ae^{-x^2/L^2}$$

where A and L are constants. Determine the potential energy U(x) of the particle.

Ans:
$$U(x) = \frac{2\hbar^2}{mL^4} (x^2 - \frac{3L^2}{2})$$

8. An electron is described by the wave function

$$\psi(x) = \begin{cases} Ce^{-x}(1 - e^{-x}); x > 0 \\ 0; x < 0 \end{cases}$$

where x is in nm and C is a constant.

- (a) Determine the value of C that normalizes $\psi(x)$. [Ans: $2\sqrt{3}$ nm^{-1/2}]
- (b) Where is the electron most likely to be found? That is, for what value of x is the probability of finding the electron the largest? [Ans: 0.693 nm]
- (c) Calculate the average position $\langle x \rangle$ for the electron. [Ans: 1.083 nm]