IM107R05

Wastewater Pumps Dewatering, Effluent and Sewage

INSTALLATION, OPERATION AND MAINTENANCE INSTRUCTIONS

TABLE OF CONTENTS

SUBJECT	PAGE
Safety Instructions	3
Pre-Installation Checks	3
Lifting of Pump	3
Optional Guide Rail or Lift-Out System	3
Piping	4
Wiring and Grounding	4
Selecting and Wiring Pump Control Panels and Switches	4-5
Installation	5
Operation	5-6
Float Switch and Panel Chart	6
Three Phase Power Unbalance	7
Insulation Resistance Readings	7
Engineering Data	8
Troubleshooting	9
Typical Installations	10
Limited Warranty	

Owner's Information

Pump Model Nur	nber:			
Pump Serial Num	ber:			
Control Model N				
Dealer:				
Dealer Phone No	•			
Date of Purchase:Installation:				
Current Readings at Startup: 1Ø 3Ø L1-2 L2-3 L3-1				
Amps:	Amps:	:		
V-1	Volto.			

SAFETY INSTRUCTIONS

TO AVOID SERIOUS OR FATAL PERSONAL **INJURY OR MAJOR PROPERTY DAMAGE, READ** AND FOLLOW ALL SAFETY INSTRUCTIONS IN MANUAL AND ON PUMP.

THIS MANUAL IS INTENDED TO ASSIST IN THE **INSTALLATION AND OPERATION OF THIS UNIT** AND MUST BE KEPT WITH THE PUMP.

This is a SAFETY ALERT SYMBOL. When you see this symbol on the pump or in the manual, look for one of the following signal words and be alert to the potential for personal injury or property damage.

↑ DANGER

Warns of hazards that WILL cause serious personal injury, death or major property damage.

▲ WARNING

Warns of hazards that CAN cause serious personal injury, death or major property damage.

▲ CAUTION

Warns of hazards that CAN cause personal injury or property damage.

NOTICE: INDICATES SPECIAL INSTRUCTIONS WHICH ARE VERY IMPORTANT AND MUST BE FOLLOWED.

THOROUGHLY REVIEW ALL INSTRUCTIONS AND WARNINGS PRIOR TO PERFORMING ANY WORK ON THIS PUMP.

MAINTAIN ALL SAFETY DECALS.

A WARNING All electrical work must be performed by a qualified technician. Always follow the National Electrical Code (NEC), or the Canadian Electrical Code, as well as all local, state and provincial codes. Code questions should be directed to your local electrical inspector. Failure to follow electrical codes and OSHA safety standards may result in personal injury or equipment damage. Failure to follow manufacturer's installation instructions may result in electrical shock, fire hazard, personal injury or death, damaged equipment, provide unsatisfactory performance, and may void manufacturer's warranty.

▲ WARNING | Standard units are not designed for use in swimming pools, open bodies of water, hazardous liquids, or where flammable gases exist. These fluids and gases may be present in containment areas. Tank or wetwell must be vented per local codes.

Only pumps specifically Listed for Class 1, Division 1 are allowable in hazardous liquids and where flammable gases may exist. See specific pump catalog bulletins or pump nameplate for all agency Listings.

▲ WARNING

Disconnect and lockout electrical power before installing or servicing any electrical equipment. Many pumps are equipped

with automatic thermal overload protection which may allow an overheated pump to restart unexpectedly.

All three phase (3Ø) control panels for submersible pumps must provide Class 10, quick-trip, overload protec-

tion.

PRE-INSTALLATION CHECKS

Open all cartons and inspect for shipping damage. Report any damage to your supplier or shipping carrier immediately.

Important: Always verify that the pump nameplate Amps, Voltage, Phase and HP ratings match your control panel and power supply.

Many of our sewage pumps are oil-filled. If there are any signs of oil leakage or if the unit has been stored for an extended period check the oil level in the motor dome and the seal housing, if so equipped.

Check the motor cover oil level through the pipe plug on top of the unit. The motor chamber oil should just cover the motor. Do not overfill, leave room for expansion!

To check the seal housing oil level, where used, lay the unit on its side with the fill plug at 12 o'clock. Remove the plug. The oil should be within ½" (13mm) of the top. If low, refill with an ASTM 150 turbine oil. Replace the plug.

You can source oil locally at motor repair shops. Typical oil brands are: Shell Turbo 32, Sunoco Sunvis 932, Texaco Regal R&O 32, Exxon Nuto 32 and Mobil DTE

Check the strain relief nut on power cable strain assemblies. Power cables should be torqued to 75 in. lbs. for #16 cables and 80 in. lbs. for all other cable assemblies. Seal/heat sensor cables, where used, should be torqued to 75 in. lbs.

Warranty does not cover damage caused by connecting pumps and controls to an incorrect power source (voltage/phase supply).

Record the model numbers and serial numbers from the pumps and control panel on the front of this instruction manual for future reference. Give it to the owner or affix it to the control panel when finished with the installation.

LIFTING OF PUMP

DO NOT LIFT, CARRY OR HANG PUMP BY THE ELECTRICAL CABLES. DAMAGE TO THE **ELECTRICAL CABLES CAN CAUSE** SHOCK, BURNS OR DEATH.

Lift the pump with an adequately sized chain or cable attached to the lifting eye bolt. DO NOT damage electrical and sensor cables while raising and lowering unit.

OPTIONAL GUIDE RAIL OR LIFT-OUT SYSTEM

In many effluent and sewage basins or lift stations it is advisable to install the pump on a guide rail system or on a lift-out adapter to facilitate installation and removal for inspection and/or service. Most codes do not allow personnel to enter a wetwell without the correct protective equipment and training. Guide rails are designed to allow easy removal of the pump without the need for entry into the wetwell or need to disturb piping. The guide rail or liftout adapter should locate the pump opposite the influent opening preventing stagnate areas where solids can settle. The basin or pit must be capable of supporting the weight of the pump and guide rail. The pit floor must be flat.

NOTICE: FOLLOW THE INSTRUCTIONS THAT ARE PROVIDED WITH THE GUIDE RAIL ASSEMBLY.

PIPING

Discharge piping should be no smaller than the pump discharge diameter and kept as short as possible, avoiding unnecessary fittings to minimize friction losses.

Install an adequately sized check valve matched to the solids handling capability of the pump to prevent fluid backflow. Backflow can allow the pump to spin backwards and may cause premature seal, bearing, shaft wear. If the pump is turning backwards when it is called on to start the increased torque may cause damage to the pump motor and/or motor shaft.

Install an adequately sized gate valve AFTER the check valve for pump, plumbing and check valve maintenance.

Important – Before pump installation. Drill a ³/₁₆" (4.8mm) relief hole in the discharge pipe. It should be located within the wetwell, 2" (51mm) above the pump discharge but below the check valve. The relief hole allows any air to escape from the casing. Allowing liquid into the casing will insure that the pump can start when the liquid level rises. Unless a relief hole is provided, a bottom intake pump could "air lock" and will not pump water even though the impeller turns.

All piping must be adequately supported, so as not to impart any piping strain or loads on the pump.

The pit access cover must be of sufficient size to allow for inspection, maintenance and crane or hoist service.

WIRING AND GROUNDING

Important notice: Read Safety Instructions before proceeding with any wiring.

Use only stranded copper wire to pump/motor and ground. The ground wire must be at least as large as the power supply wires. Wires should be color coded for ease of maintenance and troubleshooting.

Install wire and ground according to the National Electrical Code (NEC), or the Canadian Electrical Code, as well as all local, state and provincial codes.

Install an all leg disconnect switch where required by code.

Disconnect and lockout electrical power before performing any service or installation.

The electrical supply voltage and phase must match all equipment requirements. Incorrect voltage or phase can cause fire, motor and control damage, and voids the warranty.

All splices must be waterproof. If using splice kits follow manufacturer's instructions.

Select the correct type and NEMA grade junction box for the application and location. The junction box must insure dry, safe wiring connections.

WARNING

Seal all controls from gases present which may damage electrical components.

▲WARNING

Hazardous voltage

FAILURE TO PERMANENTLY GROUND THE PUMP, MOTOR AND **CONTROLS BEFORE CONNECTING** TO POWER CAN CAUSE SHOCK, BURNS OR DEATH.

SELECTING AND WIRING PUMP CONTROL PANELS AND SWITCHES

FLOAT SWITCH TYPES

There are two basic float switch designs; single-action and wide-angle. Single-action switches operate over a range of 15° so they open and close quickly. Wide-angle floats operate over a 90° swing with the tether length between the float body and the pivot point controlling the On-Off range. The design determines how many floats are required with different systems or controls.

Floats may be normally open (NO) for pump down applications or to empty a tank. Normally closed (NC) switches are used to pump up or to fill a tank.

A single-action control switch may be used only with a control panel, never direct connected to a pump.

The wide-angle, pump down switches may be used as direct connected pump switches or as control switches.

SETTING THE FLOAT SWITCHES

There are no absolute rules for where to set the float switches, it varies from job to job.

Suggested Rules to Follow:

All floats should be set below the Inlet pipe!

Off Float: Best: set so free hanging the water level is always above the top of the pump (motor dome). Next Best: set so the water level is not more than 6" below the top of the pump.

On Float: set so the volume of water between the On and Off floats allows pumps of 1½ HP and under to operate for 1 minute minimum. Two (2) HP and larger pumps should run a minimum of 2 minutes. Basin technical brochure states the gallons of storage per inch of basin height.

Lag/Alarm Float(s): should be staggered above the Off and On floats. Try to use most of the available storage provided by the basin, save some space for reserve storage capacity. Exact reserve may be called out by local codes. See Diagrams and Charts in Float Switch Chart Section.

PANEL WIRING DIAGRAMS

Our control panels are shipped with instructions and wiring diagrams. Use those instructions in conjunction with this IOM. Electrical installation should be performed only by qualified technicians. Any problem or questions pertaining to another brand control must be referred to that control supplier or manufacturer.

ALARMS

We recommend the installation of an alarm on all Wastewater pump installations. Many standard control panels come equipped with alarm circuits. If a control panel is not used, a stand alone high liquid level alarm is available. The alarm alerts the owner of a high liquid level in the basin so they can contact the appropriate service personnel to investigate the situation.

SINGLE PHASE PUMPS

Single phase (1Ø) pumps may be operated using a piggy-

back or in conjunction with, or a Simplex or Duplex control panel. *See Figures 1*, 2 and 5.

Most $^{1}/_{3}$ and $^{1}/_{2}$ HP, 115 or 230 volt pumps, and some $^{3}/_{4}$ and 1 HP pumps, are supplied with plug style power cords. They may be plugged into piggyback float switches for simple installations. It is allowable to remove the plugs in order to hardwire or connect to a Simplex or Duplex controller. Removing the plug neither voids the warranty nor violates the agency Listings. *See Figure 5*.

PLUG-CONNECTED UNITS MUST BE CONNECTED TO A PROPERLY GROUNDED, GROUNDING TYPE RECEPTACLE.

ON NON-PLUG UNITS, DO NOT REMOVE CORD AND STRAIN RELIEF. DO NOT CONNECT CONDUIT TO PUMP.

Pumps with bare lead power cords can be hard-wired to a float switch, wired to a 1Ø contactor, a Simplex controller or a Duplex controller. Always verify that the float switch is rated for the maximum run amperage, maximum starting amperage, and the HP rating on the pump. Single-phase wastewater pumps contain on-winding overloads, unless noted on the pump nameplate. *See Figures 1 and 2*.

THREE PHASE PUMPS:

As a Minimum a 3Ø pump requires a 3 pole circuit breaker/fused circuit, an across the line magnetic starter rated for the pump HP, and ambient compensated Quick Trip Class 10 overloads.

SINGLE AND THREE PHASE CONTROL PANELS:

Control panels are available as Simplex (controls 1 pump) or Duplex (controls 2 pumps). Our standard SES Series Panels are available with many standard features and can be built with our most popular options. We also custom build panels which offer many more design options. Custom control panels are available in many different configurations. Custom panel quote requests may be forwarded to Customer Service through any authorized distributor.

Our duplex panels feature a solid-state printed circuit board design with standard high level alarm circuits. Other standard features are: an auxiliary dry alarm contact for signaling a remote alarm and float switch position indicator lights. Our 3Ø panels have built-in, adjustable, Class 10 overloads. The adjustable overloads on all our 3Ø panels mean less labor for the installer and no need to order specific overloads. Most panels are in stock for immediate delivery without options.

Heat Sensor and Seal Failure Circuit - Some Pumps are equipped with a seal failure circuit and a Heat sensor. On standard product the seal failure circuit, if supplied without Heat sensor will have an extra lead from the motor with two conductors. These leads will be Black and White and should be connected to the seal failure terminals in a panel supplied with this option. If a seal failure circuit and Heat sensor are supplied with the pump there will be a separate lead with four conductors. For these leads the connection for seal failure will be Black and Green and the Heat sensor will be Red and White. The model 1GD/12GDS can be ordered with an optional seal failure circuit, but most dual seal pumps come with the seal failure circuit as a standard.

Models with a 4NS/4DWC/4XD/4XWS have a standard configuration with seal failure and heat sensor. The leads are in a separate jacket with 5 leads. Black (tagged P1) and

White (tagged P2) should be connected to seal failure circuit terminals. The heat sensor leads are Red (tagged W1) and Orange (tagged W2) and should be connected to the heat sensor terminals. The additional lead is Green and should be connected to Ground. Panels will come equipped with a wiring diagram designating your connections. Panels must be ordered with the options for seal failure circuits and heat sensor circuits, since these panels can also be used on pumps without the option for these connections they do not come as standard on most panels.

One additional style of seal failure and heat sensor circuits is our product sold with models GA(X) / 15GDS(X) / 20GDS(X); 2, 3, 4GV(X); 2, 3, 4MV(X); 2, 3, 4, 6MK(X). These units come with a single lead for power and controls. The conductor will come with 7 leads (previous to January 2013). Leads For seal failure and heat sensor will be Orange and Blue. Since these units use a different style sensor in the pump as well as a different option in the panel the connections require only two leads. After January 2013 the lead colors on the pumps were changed to two (2) white leads for the seal failure and heat sensor.

Be careful to choose the correct options in the panel selection for each style pump. Always follow wiring schematic of the panel. Failure to wire the seal failure and heat sensor leads correctly may prevent the pump from running or cause nuisance tripping.

INSTALLATION

Connect the pump(s) to the guide rail pump adapters or to the discharge piping. Slide rail bases should be anchored to the wetwell floor.

Complete all wiring per the control panel wiring diagrams and NEC, Canadian, state, provincial and/or local codes. This a good time to check for proper rotation of the motors/impellers.

DO NOT PLACE HANDS IN PUMP SUCTION WHILE CHECKING MOTOR ROTATION. TO DO SO WILL CAUSE SEVERE PERSONAL INJURY.

Always verify correct rotation. Correct rotation is indicated on the pump casing. Three phase motors are reversible. It is allowable to bump or jog the motor for a few seconds to check impeller rotation. It is

easier to check rotation before installing the pump. Switch any two power leads to reverse rotation.

Lower the pump(s) into the wetwell.

Check to insure that the floats will operate freely and not contact the piping.

OPERATION

Once the piping connections are made and checked you can run the pumps.

Piggyback Switch Operation – Plug the piggyback switch into a dedicated grounded outlet and then plug the pump into the switch. Test the pump by filling the wetwell until the pump goes On. If the pumps run but fail to pump, they are probably air locked, drill the relief holes per the instructions in the Piping Section.

Check the operating range to insure a minimum one minute run time and that the pump goes Off in the correct position.

Control Panel Operation – Fill the wetwell with clear water.

Use the pump H-O-A (Hand-Off-Automatic) switches in Hand to test the pumps. If they operate well in Hand proceed to test Automatic operation. If the pumps run but fail to pump, they are probably air locked, drill the relief holes per the instructions in the Piping Section.

Place Control Panel switch(es) in Automatic position and thoroughly test the operation of the ON, OFF, and Alarm floats by filling the wetwell with clear water. Important: Failure to provide a Neutral from the power supply to a 1Ø, 230 volt Control Panel will not allow the panel control circuit to operate. The Neutral is necessary to complete the 115 volt control circuit.

Check voltage and amperage and record the data on the front of this manual for future reference. Compare the amperage readings to the pump nameplate maximum amperage. If higher than nameplate amperage investigate cause.

Operating the pump off the curve, i.e. with too little head or with high or low voltage will increase amperage. The motor will operate properly with voltage not more than 10% above or below pump nameplate ratings. Performance within this range will not necessarily be the same as the published performance at the exact rated nameplate frequency and voltage. Correct the problem before proceeding. Three phase unbalance is also a possible cause. See Three Phase Power Unbalance and follow the instructions.

Reset the Alarm circuit, place pump switch(es) in the Automatic position and Control Switch in ON position. The system is now ready for automatic operation.

Explain the operation of the pumps, controls and alarms to the end user. Leave the paperwork with the owner or at the control panel if in a dry, secure location.

FLOAT SWITCH AND PANEL CHART

The purpose of this chart is to show the required switch quantities and the function of each switch in a typical wastewater system. The quantities required vary depending on the switch type, single-action or wide-angle. Switch quantities also vary by panel type: simplex with and without alarms, and duplex with alarms.

Duplex Panels using single-action switches:

Three Float Panel Wiring

SW1	Bottom	Pumps Off
SW2	Middle	1st Pump On

SW3 Top 2nd Pump & Alarm On

Four Float Panel Wiring 2

SW1	Bottom	Pumps Off
SW2	2nd	1st Pump On
SW3	3rd	2nd Pump On
SW4	Top	Alarm On

Duplex Panels using wide-angle switches:

Three Float Panel Wiring

SW1	Bottom	1st Pump On/Both Off
SW2	Top	2nd Pump & Alarm On

Four Float Panel Wiring

SW1	Bottom	1st Pump On/Both Off
SW2	Middle	2nd Pump On

SW3 Top Alarm On

Simplex Panel using single-action switches:

Simplex Panel with Alarm ①

SW1	Bottom	Pump Off
SW2	Middle	Pump On
SW3	Top	Alarm On/Off

Simplex Panel with No Alarm

SW1	Bottom	Pump Off
SW2	Top	Pump On

Simplex Panel using wide-angle switches:

Simplex Panel with Alarm

SW1 Bottom Pump On/Off SW2 Top Alarm On/Off

Simplex Panel with No Alarm

SW1 Pump On/Off

A full three phase supply consisting of three individual transformers or one three phase transformer is recommended. "Open" delta or wye connections using only two transformers can be used, but are more likely to cause poor performance, overload tripping or early motor failure due to current unbalance.

Check the current in each of the three motor leads and calculate the current unbalance as explained below.

If the current unbalance is 2% or less, leave the leads as connected.

If the current unbalance is more than 2%, current readings should be checked on each leg using each of the three possible hook-ups. Roll the motor leads across the starter in the same direction to prevent motor reversal.

To calculate percent of current unbalance:

A. Add the three line amp values together.

- B. Divide the sum by three, yielding average current.
- C. Pick the amp value which is furthest from the average current (either high or low).
- D. Determine the difference between this amp value (furthest from average) and the average.
- E. Divide the difference by the average. Multiply the result by 100 to determine percent of unbalance.

Current unbalance should not exceed 5% at service factor load or 10% at rated input load. If the unbalance cannot be corrected by rolling leads, the source of the unbalance must be located and corrected. If, on the three possible hookups, the leg farthest from the average stays on the same power lead, most of the unbalance is coming from the power source.

Contact your local power company to resolve the imbalance.

	1	Hookup	1	ŀ	Hookup :	2		Hookup (3
Starter Termina	ls L1	L2	L3	L1	L2	L3	L1	L2	L3
	\perp	T T	T T	<u> </u>	\perp	<u></u>	_ T	T T	⊥ T
Motor Leads	R	В	W	W	R	В	В	W	R
	T3	T1	T2	T2	Т3	T1	T1	T2	Т3
Example:									
T3-R = 51 amps			T2-\	V = 50 a	mps	T1-	B = 50 ar	mps	
T1-B = 46 amps			Т3-	R = 48 a	mps	T2-\	N = 49 ar	mps	
T2-W = <u>53</u> amps			T1-B = <u>52</u> amps		T3-R = <u>51</u> amps				
Total = 150 amps			Total = 150 amps		Total = 150 amps		mps		
$\div 3 = 50 \text{ amps}$			\div 3 = 50 amps		÷ 3 = 50 amps		mps		
- 46 = 4 amps			- 48 = 2 amps		-	49 = 1 ar	mps		
$4 \div 50 = .08 \text{ or } 8\%$			$2 \div 50$	0 = .04	r 4%	1 ÷ 50	0 = .02 or	- 2%	

INSULATION RESISTANCE READINGS

Normal Ohm and Megohm Values between all leads and ground

Condition of Motor and Leads	Ohm Value	Megohm Value
A new motor (without drop cable).	20,000,000 (or more)	20 (or more)
A used motor which can be reinstalled in well.	10,000,000 (or more)	10 (or more)
Motor in well. Readings are for drop cable plus		
New motor.	2,000,000 (or more)	2 (or more)
Motor in good condition.	500,000 - 2,000,000	.5 - 2
Insulation damage, locate and repair.	Less than 500,000	Less than .5

Insulation resistance varies very little with rating. Motors of all HP, voltage and phase ratings have similar values of insulation resistance.

Insulation resistance values above are based on readings taken with a megohmmeter with a 500V DC output. Readings may vary using a lower voltage ohmmeter, consult factory if readings are in question.

Engineering data for specific models may be found in your catalog and on our website (address is on the cover).

Control panel wiring diagrams are shipped with the control panels. Please use the control panel drawings in conjunction with this instruction manual to complete the wiring.

	PUMP C
Minir	num Submergence
Continuous Duty	Fully Submerged
Intermittent Duty	6" Below Top of Motor

OPERATION				
	Maximu	ım Fluid Temperature		
	Continuous Operation	104° F 40° C		
	Intermittent Operation	140° F 60° C		

NOT RECOMMENDED

Pumpmaster and Pumpmaster Plus -Hard Wired

Figure 1

NOT RECOMMENDED

Double Float - Hard Wired

Figure 2

Wide-Angle Float Switch

Figure 5

Determining Pumping Range

Figure 3

Three Phase Connection Diagram

Standard without seal failure and heat sensor for powering pump.

Figure 6

Figure 8

AWARNING

Hazardous voltage FAILURE TO DISCONNECT AND LOCKOUT ELECTRICAL POWER BEFORE ATTEMPTING ANY SERVICE CAN CAUSE SHOCK, BURNS OR DEATH.

SYMPTOM	PROBABLE CAUSE	RECOMMENDED ACTION		
MOTOR NOT RUNNING NOTE: If circuit breaker	Motor thermal protector tripped.	Allow motor to cool. Insure minimum pump submergence. Clear debris from casing and impeller.		
"OPENS" repeatedly,	Open circuit breaker or blown fuse.	Determine cause, call a qualified electrician.		
DO NOT reset. Call qualified electrician.	Pump impeller binding or jammed.	Check motor amp draw. If two or more times higher than listed on pump nameplate, impeller is locked,		
a) Manual operation	Power cable is damaged.	motor bearings or shaft is damaged. Clear		
	Inadequate electrical connection in control panel.	debris from casing and impeller, consult with dealer.		
b) Automatic operation	No neutral wire connected to control panel.	Resistance between power leads and ground should read infinity. If any reading is incorrect, call a qualified electrician.		
	Inadequate electrical connection in control panel.	Inspect control panel wiring. Call a qualified electrician.		
NOTE: Check the pump in manual mode first to confirm operation. If pump	Defective liquid level switch.	With switch disconnected, check continuity while activating liquid level switch. Replace switch, as required.		
operates, the automatic control or wiring is at fault. If pump does not operate,	Insufficient liquid level to activate controls.	Allow liquid level to rise 3" to 4" (76 mm - 101 mm) above turn-on level.		
see above.	Liquid level cords tangled.	Untangle cords and insure free operation.		
PUMP WILL NOT TURN OFF	Liquid level cords tangled.	Untangle cords and insure free operation.		
	Pump is air locked.	Shut off pump for approximately one minute, then restart. Repeat until air lock clears. If air locking persists in a system with a check valve, a $\frac{3}{16}$ " (4.8 mm) hole may be drilled in the discharge pipe approximately 2" (51 mm) above the discharge connection.		
	Influent flow is matching pump's discharge capacity.	Larger pump may be required.		
LITTLE OR NO LIQUID DELIVERED BY PUMP	Check valve installed backwards, plugged or stuck closed.	Check flow arrow on valve and check valve operation.		
	Excessive system head.	Consult with dealer.		
	Pump inlet plugged.	Inspect and clear as required.		
	Improper voltage or wired incorrectly.	Check pump rotation, voltage and wiring. Consult with qualified electrician.		
	Pump is air locked.	See recommended action, above.		
	Impeller is worn or damaged.	Inspect impeller, replace as required.		
	Liquid level controls defective or improperly positioned.	Inspect, readjust or replace as required.		
PUMP CYCLES	Discharge check valve inoperative.	Inspect, repair or replace as required.		
CONSTANTLY	Sewage containment area too small.	Consult with dealer.		
	Liquid level controls defective or improperly positioned.	Inspect, readjust or replace as required.		
	Influent excessive for this size pump.	Consult with dealer.		

GOULDS WATER TECHNOLOGY LIMITED WARRANTY

This warranty applies to all water systems pumps manufactured by Goulds Water Technology.

Any part or parts found to be defective within the warranty period shall be replaced at no charge to the dealer during the warranty period. The warranty period shall exist for a period of twelve (12) months from date of installation or eighteen (18) months from date of manufacture, whichever period is shorter.

A dealer who believes that a warranty claim exists must contact the authorized Goulds Water Technology distributor from whom the pump was purchased and furnish complete details regarding the claim. The distributor is authorized to adjust any warranty claims utilizing the Goulds Water Technology Customer Service Department.

The warranty excludes:

- (a) Labor, transportation and related costs incurred by the dealer;
- (b) Reinstallation costs of repaired equipment;
- (c) Reinstallation costs of replacement equipment;
- (d) Consequential damages of any kind; and,
- (e) Reimbursement for loss caused by interruption of service.

For purposes of this warranty, the following terms have these definitions:

- (1) "Distributor" means any individual, partnership, corporation, association, or other legal relationship that stands between Goulds Water Technology and the dealer in purchases, consignments or contracts for sale of the subject pumps.
- (2) "Dealer" means any individual, partnership, corporation, association, or other legal relationship which engages in the business of selling or leasing pumps to customers.
- (3) "Customer" means any entity who buys or leases the subject pumps from a dealer. The "customer" may mean an individual, partnership, corporation, limited liability company, association or other legal entity which may engage in any type of business.

THIS WARRANTY EXTENDS TO THE DEALER ONLY.

Xylem Inc.

2881 East Bayard Street Ext., Suite A

Seneca Falls, NY 13148 Phone: (866) 325-4210 Fax: (888) 322-5877

www.gouldswatertechnology.com

Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license. © 2012 Xylem Inc. IM107 Revision Number 5 February 2014

Bombas para aguas residuales, para extracción de agua, para efluente y para alcantarillado

INSTRUCCIONES DE INSTALACIÓN, FUNCIONAMIENTO Y MANTENIMIENTO

ÍNDICE

TEMA	PÁGINA
Instrucciones de seguridad	14
Verificaciones preliminares a la instalación	14
Levantamiento de la bomba	14
Riel corredizo o sistema de levantamiento opcional	15
Tuberías	15
Cableado y conexión a tierra	15
Selección y cableado de los interruptores y paneles de control de la bomba	15-16
Instalación	17
Operación	17
Tabla del panel e interruptores de flotador	18
Desbalance de potencia trifásica	19
Lecturas de resistencia de aislamiento	
Datos de ingeniería	20
Instalaciones típicas	21
Identificación y resolución de problemas	22
Garantía limitada	23

Información del propietario

Número de modelo de la bomba:						
Número de serie	Número de serie de la bomba:					
Número de mode	lo del cont	rol:				
Agente:						
No. telefónico de	l agente:					
Fecha de compra:		Insta	lación:			
Lecturas actuales	Lecturas actuales en el momento de la puesta en marcha:					
1Ø 3Ø L1-2 L2-3 L3-1						
Amperios:	Amperios:					
Voltios:	Voltios:					

INSTRUCCIONES DE SEGURIDAD

PARA EVITAR LESIONES PERSONALES GRAVES O AÚN FATALES Y SERIOS DAÑOS MATERIALES, LEA Y SIGA TODAS LAS INSTRUCCIONES DE SE-GURIDAD EN EL MANUAL Y EN LA BOMBA.

ESTE MANUAL HA SIDO CREADO COMO UNA GUÍA PARA LA INSTALACIÓN Y OPERACIÓN DE ESTA UNIDAD Y SE DEBE CONSERVAR JUNTO A LA BOMBA.

Éste es un SÍMBOLO DE ALERTA DE SEGURIDAD. Cuando vea este símbolo en la bomba o en el manual, busque una de las siguientes palabras de señal y esté alerta a la probabilidad de lesiones personales o daños materiales.

▲ PELIGRO

Advierte los peligros que CAUSARÁN graves lesiones personales, la muerte o daños materiales mayores.

ADVERTENCIA

Advierte los peligros que PUEDEN causar graves lesiones personales, la muerte o daños materiales mayores.

A PRECAUCIÓN

Advierte los peligros que PUEDEN causar lesiones personales o daños materiales.

AVISO: INDICA INSTRUCCIONES ESPECIALES QUE SON MUY IMPORTANTES Y QUE SE DEBEN SEGUIR.

EXAMINE BIEN TODAS LAS INSTRUCCIONES Y ADVERTENCIAS ANTES DE REALIZAR CUALQUIER TRABAJO EN ESTA BOMBA.

MANTENGA TODAS LAS CALCOMANÍAS DE SEGURIDAD.

Todo el trabajo eléctrico debe ser realizado por un técnico calificado. Siempre siga el Código Eléctrico de EE.UU. (NEC) o el Código Eléctrico Canadiense, además de todos los códigos locales, estatales y provinciales. Las preguntas acerca del código deben ser dirigidas al inspector eléctrico local. Si se hace caso omiso a los códigos eléctricos y normas de seguridad de OSHA, se pueden producir lesiones personales o daños al equipo. Si se hace caso omiso a las instrucciones de instalación del fabricante, se puede producir electrochoque, peligro de incendio, lesiones personales o aún la muerte, daños al equipo, rendimiento insatisfactorio y podría anularse la garantía del fabricante.

Las unidades estándar no están diseñadas para usarse en albercas, masas abiertas de agua, líquidos peligrosos o donde existan gases inflamables. Estos fluidos y gases podrían estar presentes en áreas de contención. El tanque o pozo debe ser ventilado de acuerdo con los códigos locales.

En lugares con líquidos inflamables o donde pudiese haber gases inflamables sólo deben usarse bombas específicamente clasificadas para áreas de Clase 1, División 1. Consulte los boletines de catálogos de bombas específicas o la placa de identificación de la bomba con respecto a las listas de agencias.

Desconecte y bloquee la corriente eléctrica antes de instalar o dar servicio a cualquier equipo eléctrico. Muchas bombas están equipadas con protección automática contra la sobrecarga térmica, la cual podría permitir que una bomba demasiado caliente rearranque inesperadamente.

Todos los paneles de control trifásicos (3Ø) para bombas sumergibles deben incluir pro-

tección contra sobrecarga de Clase 10, de disparo rápido.

VERIFICACIONES PRELIMINARES A LA INSTALACIÓN

Abra todas las cajas e inspeccione el equipo para determinar si se ocasionaron daños durante el envío. Notifique cualquier daño a su proveedor o a la compañía de transporte de inmediato.

Importante: Siempre verifique que las clasificaciones de corriente, tensión, fase y potencia en la placa de identificación de la bomba correspondan con las del panel de control y fuente de alimentación.

Muchas de nuestras bombas para alcantarillado están llenas con aceite. Si hay alguna señal de fuga de aceite o si la unidad estuvo almacenada durante largo tiempo, verifique el nivel de aceite en la cúpula del motor y la caja del sello, en caso de haberla.

Verifique el nivel de aceite de la cubierta del motor a través del tapón de la tubería en el extremo superior de la unidad. El aceite en la cámara del motor debe cubrir apenas el motor. iNo llene en exceso, deje espacio para expansión!

Para verificar el nivel de aceite de la caja del sello, en caso que se use, coloque la unidad de lado con el tapón de llenado en la posición de las 12:00 horas. Retire el tapón. El aceite debe estar a menos de ½ pulg. (13 mm) del borde superior. Si el nivel está bajo, agregue aceite para turbinas ASTM 150. Reinstale el tapón.

Puede obtener aceite a nivel local en talleres de reparación de motores. Las marcas típicas de aceite son: Shell Turbo 32, Sunoco Sunvis 932, Texaco Regal R&O 32, Exxon Nuto 32 y Mobil DTE Light.

Inspeccione la tuerca de alivio de tensión en los conjuntos de protección contra tirones de los cables de alimentación. Torsión de los cables de alimentación: 75 pulg.-lbs. para cables #16 y 80 pulg.-lbs. para todos los otros tipos de cable. La torsión de los cables de sensores de sello/calor, cuando se usen, debe ser de 75 pulg.-lbs.

La garantía no cubre daños causados por conectar bombas y controles a la fuente de energía incorrecta (fuente de tensión/fase).

Anote los números de modelos y números de serie de las bombas y del panel de control en la sección delantera de este manual de instrucciones para referencia futura. Entregue el manual al propietario o adjúntelo al panel de control una vez finalizada la instalación.

LEVANTAMIENTO DE LA BOMBA

NO LEVANTE NI TRANSPORTE NI CUELGUE LA BOMBA DE LOS CABLES ELÉCTRICOS. EL DAÑO A LOS CABLES ELÉCTRICOS PUEDE PRODUCIR ELECTROCHOQUE, QUEMADURAS O AÚN LA MUERTE.

Levante la bomba con una cadena o cable de tamaño adecuado conectado al perno de ojo de levantamiento. NO dañe los cables eléctricos o de los sensores al subir y bajar la unidad.

RIEL CORREDIZO O SISTEMA DE LEVANTAMIENTO OPCIONAL

En muchos estanques de efluente y aguas negras o estaciones de levantamiento se recomienda instalar la bomba en un sistema de riel corredizo o sobre un adaptador de levantamiento para facilitar la instalación y retiro para inspección y/o servicio. La mayoría de los códigos no permiten que el personal entre al pozo sumidero sin el equipo de protección y la capacitación correctos. Los rieles corredizos están diseñados para facilitar el retiro de la bomba sin necesidad de entrar al pozo o perturbar la tubería. El riel corredizo o el adaptador de levantamiento debe situar la bomba opuesta a la abertura para el líquido de entrada, evitando las áreas estancadas donde pudiesen asentarse sólidos. El estanque o fosa debe ser capaz de soportar el peso de la bomba y del riel de deslizamiento. El piso de la fosa debe ser plano.

AVISO: SIGA LAS INSTRUCCIONES INCLUIDAS CON EL CONJUNTO DEL RIEL CORREDIZO.

TUBERÍAS

La tubería de descarga no debe ser más pequeña que el diámetro de descarga de la bomba y debe mantenerse lo más corta posible, evitando los accesorios innecesarios para reducir al mínimo las pérdidas por fricción.

Instale una válvula de retención de tamaño adecuado que corresponda con la capacidad de manejo de sólidos de la bomba para evitar el contraflujo de fluido. El contraflujo puede hacer que la bomba vuelta en dirección inversa, produciendo un desgaste prematuro del sello, del cojinete, del eje. Si la bomba gira en sentido inverso al arrancar, el aumento de torsión puede dañar el motor y/o el eje del motor.

Instale una válvula de compuerta de tamaño adecuado **DESPUÉS** de la válvula de retención para facilitar el mantenimiento de la bomba, las tuberías y la válvula de retención.

Importante – antes de instalar la bomba. Perfore un orificio de alivio de ³/₁₆ pulg. (4.8 mm) en la tubería de descarga. Debe situarse dentro del pozo, a 2 pulg. (51 mm) sobre la descarga de la bomba, pero debajo de la válvula de retención. El orificio de alivio permite el escape de aire de la carcasa. Al permitir que entre líquido a la carcasa se asegura que la bomba pueda arrancar cuando el nivel de líquido aumente. A menos que se proporcione un orificio de alivio, una bomba de toma inferior podría "obstruirse con aire" y no bombear agua, a pesar de que el impulsor gire.

Todas las tuberías deben estar apoyadas correctamente, de modo que no se apliquen esfuerzos o cargas de las tuberías a la bomba.

La cubierta de acceso a la fosa debe ser de tamaño suficiente para permitir realizar el servicio de inspección, mantenimiento y levantamiento con grúa o montacargas.

CABLEADO Y CONEXIÓN A TIERRA

Aviso importante: Lea las instrucciones de seguridad antes de proseguir con el cableado.

Use únicamente alambre trenzado de cobre para la bomba/motor y la conexión a tierra. El alambre de conexión a tierra debe ser al menos del mismo tamaño que los alambres de la fuente de alimentación. Los alambres deben codificarse con colores para facilitar el mantenimiento y la identificación y resolución de problemas.

Instale los cables y la conexión a tierra de acuerdo con el Código Eléctrico de EE.UU. (NEC) o el Código Eléctrico Canadiense, además de los códigos locales, estatales y provinciales.

Instale un desconectador de todos los circuitos donde el código lo requiera.

Desconecte y bloquee la corriente eléctrica antes de instalar o dar servicio.

La tensión y fase de la fuente de alimentación debe corresponder con todos los requerimientos del equipo. La tensión o fase incorrecta puede producir incendio, daño al motor o a los controles y anula la garantía.

Todos los empalmes debe ser impermeables. Si utiliza juegos de empalme, siga las instrucciones del fabricante.

Seleccione una caja de conexiones NEMA del tipo correcto para la aplicación y ubicación. La caja de conexiones debe garantizar conexiones de cableado seguras y secas.

Selle todos los controles de los gases presentes que pudiesen dañar los componentes eléctricos.

Tensión peligrosa

LA FALLA DE CONECTAR A TIERRA PERMANENTEMENTE LA BOMBA, EL MOTOR Y LOS CONTROLES, ANTES DE CONECTAR LA CORRI-ENTE ELÉCTRICA, PUEDE CAUSAR ELECTROCHOQUE, QUEMADURAS O LA MUERTE.

SELECCIÓN Y CABLEADO DE LOS INTERRUPTORES Y PANELES DE CONTROL DE LA BOMBA

TIPOS DE INTERRUPTORES DE FLOTADOR

Hay dos tipos de diseños de interruptor de flotador: de acción simple y de ángulo amplio. Los interruptores de acción simple funcionan en un rango de 15°, de manera que pueden abrirse y cerrarse con rapidez. Los flotadores de ángulo amplio funcionan con un giro de 90° con el largo de la traba entre el cuerpo del flotador y el punto de pivote controlando al rango de encendido-apagado. El diseño determina cuántos flotadores se requieren con los diferentes sistemas o controles.

Los flotadores pueden estar normalmente abiertos (NO) para aplicaciones de reducción de nivel o para vaciar un tanque. Los interruptores normalmente cerrados (NC) se utilizan para aumentar el nivel o para llenar un tanque.

Un interruptor de control de acción simple sólo puede usarse con un panel de control, pero nunca directamente conectado a una bomba.

Los interruptores de ángulo ancho de reducción de nivel pueden usarse como interruptores directamente conectados a la bomba o como interruptores de control.

INSTALACIÓN DE LOS INTERRUPTORES DE FLOTADOR

No hay reglas absolutas acerca de dónde instalar los interruptores de flotador, varía de trabajo a trabajo.

Reglas sugeridas a seguir:

¡Todos los flotadores deben instalarse debajo de la tubería de entrada!

Flotador de apagado: Primera preferencia: instálelo de manera que cuelga tan libremente el nivel del agua quede

siempre sobre el extremo superior de la bomba (cúpula del motor). Segunda preferencia: instálelo de manera que el nivel del agua quede a no más de 6 pulg. por debajo del extremo superior de la bomba.

Flotador de encendido: instálelo de manera que el volumen de agua entre los flotadores de encendido y apagado permita bombas de 1½ HP y menores funcionar al menos 1 minuto. Las bombas de dos (2) HP y mayores deben funcionar al menos 2 minutos. El folleto técnico sobre estanques establece los galones de almacenaje por pulgada de altura del estanque.

Flotador(es) de retardo/alarma: deben escalonarse sobre los flotadores de apagado y encendido. Trate de utilizar la mayoría del almacenaje disponible ofrecido por el estanque, ahorre espacio para la capacidad de almacenaje de reserva. La reserva exacta se puede decir en voz alta por códigos locales. Consulte los diagramas y tablas en la Sección de Tablas de Interruptores de Flotador.

DIAGRAMAS DE CABLEADO DEL PANEL

Nuestros paneles de control se envían con instrucciones y diagramas de cableado. Utilice dichas instrucciones en conjunto con este manual de instrucciones (IOM). La instalación eléctrica debe ser realizada por técnicos calificados únicamente. Cualquier problema o preguntas con respecto al control de otras marcas debe dirigirse a ese proveedor o al fabricante del control.

ALARMAS

Recomendamos la instalación de una alarma en todas las bombas para aguas residuales. Muchos paneles de control estándar vienen equipados con circuitos de alarma. Si no se usa un panel de control, se ofrece una alarma por alto nivel de líquido independiente. La alarma alerta al propietario acerca de una situación de alto nivel de líquido en el sistema, de manera que pueda comunicarse con el personal de servicio apropiado para que investigue la situación.

BOMBAS MONOFÁSICAS

Las bombas monofásicas (1 \varnothing) pueden operarse utilizando transporte por ferrocarril o conjuntamente con o un panel de control simple o doble. *Ver las Figuras 1,2 y 5*.

La mayoría las bombas de ¼3 y ½ HP, de 115 ó 230 voltios y algunas bombas de ¾4 y de 1 HP están equipadas con cables de alimentación estilo enchufe. Pueden enchufarse a interruptores de flotador en tándem para instalaciones sencillas. Se permite quitar los enchufes para conectar directamente o conectar a un controlador simple o doble. El retiro del enchufe no anula la garantía ni viola las aprobaciones de las agencias. *Ver la figura 5*.

LAS UNIDADES CON ENCHUFE DEBEN CONECTARSE A UN TOMA-CORRIENTES TIPO TIERRA CO-NECTADO CORRECTAMENTE A TIERRA.

EN EL CASO DE UNIDADES SIN ENCHUFE, NO QUITE EL CABLE NI EL PROTECTOR CONTRA TIRONES. NO CONECTE EL TUBO-CONDUC-TO A LA BOMBA.

Las bombas con cables de alimentación con conductores desnudos pueden conectarse directamente a un interruptor de flotador, cablearse a un contactador de 1 fase, a un controlador simple o doble. Siempre verifique que

el interruptor de flotador esté clasificado para el amperaje de funcionamiento máximo, amperaje de arranque máximo y la capacidad nominal de potencia de la bomba. Las bombas monofásicas para aguas residuales contienen sobrecargas de devanado de encendido, a menos que se especifique lo contrario en la placa de identificación de la bomba. *Ver las Figuras 1 y 2*.

BOMBAS TRIFÁSICAS:

Como mínimo, una bomba trifásica requiere un cortacircuitos/circuito con fusible trifásico, un arrancador magnético en la línea clasificado para la potencia de la bomba y sobrecargas Clase 10, de disparo rápido y compensación ambiental.

PANELES DE CONTROL MONOFÁSICOS Y TRIFÁSICOS:

Los paneles de control pueden ser simples (controlan 1 bomba) o dobles (controlan 2 bombas). Nuestros paneles Serie SES se ofrecen con muchas características estándar y pueden construirse con nuestras opciones más populares. También construimos paneles de acuerdo con las especificaciones del cliente, los cuales ofrecen muchas más opciones. Los paneles de control construidos de acuerdo con las especificaciones del cliente se ofrecen en muchas configuraciones diferentes. Las solicitudes de cotizaciones para paneles a la medida pueden enviarse a Servicio a los Clientes mediante nuestro distribuidor autorizado.

Nuestros paneles dobles presentan un diseño de tablero de circuito impreso de estado sólido con circuitos de alarmas de alto nivel estándar. Otras características estándar son: un contacto de alarma seco auxiliar para señalizar una alarma remota y luces indicadoras de posición del interruptor de flotador. Nuestros paneles trifásicos tienen sobrecargas Clase 10 incorporadas y ajustables. Las sobrecargas ajustables en todos nuestros paneles trifásicos significa menos trabajo para el instalador y la eliminación de la necesidad de ordenar sobrecargas específicas. La mayoría de los paneles se mantienen en inventario para entrega inmediata sin opciones.

Sensor térmico y circuito de falla de sellado - Algunas bombas están equipadas con un circuito de falla de sellado y un sensor térmico. En el producto estándar, el circuito de falla de sellado, si se provee sin sensor térmico, tendrá una derivación adicional del motor con dos conductores. Estas derivaciones serán blancas y negras y deben conectarse a los terminales de falla de sellado en un panel provisto con esta opción. Si se proveen un circuito de falla de sellado y sensor térmico con la bomba, habrá una derivación separada con cuatro conductores. Para estas derivaciones, la conexión de falla de sellado será negra y verde y el sensor térmico será rojo y blanco. Se puede pedir el modelo 1GD/12GDS con un circuito de falla de sellado opcional, pero la mayoría de las bombas con sellado doble vienen estándar con el circuito de falla de sellado.

Los modelos con 4NS/4DWC/4XD/4XWS tienen una configuración estándar con falla de sellado y sensor térmico. Las derivaciones están en una camisa separada con 5 derivaciones. La negra (rotulada P1) y la blanca (rotulada P2) deben conectarse a las terminales de circuito de falla de sellado. Las derivaciones de sensor térmico son rojas (rotulada W1) y naranja (rotulada W2) y deben conectarse a los terminales de sensor térmico. La derivación adicional es verde y debe conectarse a la conexión a tierra. Los paneles vienen equipados con un diagrama de cableado que indica las conexiones. Se deben pedir los paneles con las opciones de circuitos de falla de sellado y circuitos de sensor térmico;

debido a que estos paneles también pueden usarse en bombas sin la opción de estas conexiones, no vienen estándar en la mayoría de los paneles.

Un estilo adicional de circuitos de falla de sellado y sensor térmicos es nuestro producto vendido con los modelos GA(X)/15GDS(X)/20GDS(X), 2,3,4GV(X), 2,3,4MV(X), 2,3,4,6MK(X). Estas unidades vienen con una única derivación para energía y controles. El conductor viene con 7 derivaciones (antes de enero de 2013). Las derivaciones para falla de sellado y sensor térmico serán naranja y azul (antes de 2013). Debido a que estas unidades usan un sensor de estilo diferente en las bombas así como una opción diferente en el panel, las conexiones solo requieren dos derivaciones. A partir de enero de 2013, los colores de derivaciones en las bombas cambiaron a dos (2) derivaciones blancas para la falla de sellado y sensor térmico. El cable más nuevo para estas unidades ahora tiene 7 derivaciones con (2) derivaciones blancas; estas derivaciones son tanto para la falla de sellado como el dispositivo de sensor térmico.

Tenga cuidado de elegir las opciones correctas en la selección de panel para cada estilo de bomba. Siempre siga el diagrama de cableado del panel. Si no se cablean las derivaciones de falla de sellado y sensor térmico correctamente, la bomba puede no funcionar o causar disyunción molesta.

INSTALACIÓN

Conecte la(s) bomba(s) a los adaptadores de riel corredizo o a la tubería de descarga. Las bases del riel corredizo deben anclarse al piso del pozo.

Todas las conexiones deben realizarse de acuerdo con los diagramas de cableado del panel de control, el código eléctrico de EE.UU., el código canadiense y los códigos estatales, provinciales y/o locales. Éste es un buen momento para verificar la rotación apropiada de los motores/impulsores.

NO COLOQUE LAS MANOS EN LA SUCCIÓN DE LA BOMBA MIEN-TRAS VERIFICA LA ROTACIÓN DEL MOTOR. EL HACERLO PRODUCIRÁ GRAVES LESIONES PERSONALES.

Siempre verifique la rotación correcta. La rotación correcta se indica en la carcasa de la bomba. Los motores trifásicos son reversibles. Se permite arrancar brevemente o en marcha lenta el motor durante unos segundos para verificar la rotación del impulsor. Es más fácil verificar la rotación antes de instalar la bomba. Intercambie dos de los conductores de potencia cualquiera para invertir la rotación.

Baje la(s) bomba(s) al pozo sumidero.

Inspeccione para verificar que los flotadores funcionen libremente y que no hagan contacto con la tubería.

OPERACIÓN

Una vez que se hayan hecho y verificado las conexiones de las tuberías, se pueden poner en funcionamiento las bombas.

Operación de interruptor en tándem – Enchufe el interruptor en tándem a un tomacorrientes dedicado conectado a tierra y luego enchufe la bomba al interruptor. Pruebe la bomba llenando el pozo hasta que la bomba se active. Si las bombas funcionan pero no bombean, probablemente estén obstruidas con aire; perfore los orificios de alivio de acuerdo con las instrucciones en la Sección de Tuberías.

Verifique el intervalo de operación para asegurar un tiempo de funcionamiento mínimo de un minuto y que la bomba se apague en la posición correcta.

Operación del panel de control – Llene el pozo con agua limpia.

Utilice los interruptores H-O-A (manual – apagado – automático) de la bomba en la posición manual para probar las bombas. Si funcionan bien en la posición manual, pruebe la posición automática. Si las bombas funcionan pero no bombean, probablemente estén obstruidas con aire; perfore los orificios de alivio de acuerdo con las instrucciones en la Sección de Tuberías.

Coloque el (los) interruptor(es) del panel de control en la posición automática y pruebe minuciosamente el funcionamiento de los flotadores de ENCENDIDO, APAGADO y alarma llenando el pozo con agua limpia. Importante: Si no se proporciona un neutro desde la fuente de alimentación a un panel de control monofásico de 230 voltios, el circuito de control del panel no operará. Es necesario el neutro para completar el circuito de control de 115 voltios.

Verifique la tensión y la corriente y anote los datos en la sección delantera de este manual para referencia futura. Compare las lecturas de amperaje con el amperaje máximo indicado en la placa de identificación de la bomba. Si es más alto que el amperaje de la placa de identificación, investigue la causa. Si la bomba se hace funcionar fuera de la curva; es decir, con demasiado poca carga o con tensión alta o baja, aumentará el amperaje. El motor funcionará correctamente con tensión no más de un 10% por encima o por debajo de las clasificaciones en la placa de identificación de la bomba. El rendimiento dentro de este rango no será necesariamente igual al rendimiento publicado a la frecuencia y tensión exactas indicadas en la placa de identificación. Corrija el problema antes de continuar. También es posible que la causa sea un desbalance trifásico. Consulte la sección de Desbalance de potencia trifásica y siga las instrucciones.

Reposicione el circuito de alarma, coloque el (los) interruptor(es) de la bomba en posición automática y el interruptor de control en la posición de encendido. Ahora la unidad está lista para la operación automática.

Explique la operación de las bombas, controles y alarmas al usuario final. Entregue la documentación al propietario o déjela en un lugar seco y seguro en el panel de control.

TABLA DEL PANEL E INTERRUPTORES DE FLOTADOR

El propósito de esta tabla es mostrar las cantidades de interruptores requeridas y la función de cada interruptor en un sistema de aguas residuales típicas. Las cantidades requeridas varían dependiendo del tipo de interruptor: de acción simple o de ángulo amplio. Las cantidades de interruptores varían también de acuerdo con el tipo de panel: simple con y sin alarmas y doble con alarmas.

Paneles dobles utilizando interruptores de acción simple:

Cableado del panel de tres flotadores

	•	
SW1	Fondo	Bombas apagadas
SW2	Medio	Primera bomba del
		medio encendida
SW3	Extremo	Segunda bomba y alarma
	superior	encendidas

Cableado del panel de cuatro flotadores 2

SW1	Fondo	Bombas apagadas
SW2	Segundo	Primera bomba encendida
SW3	Tercero	Segunda bomba encendida
SW4	Extremo	Alarma encendida
	superior	

Paneles dobles utilizando interruptores de ángulo amplio:

Cableado del panel de tres flotadores

SW1	Fondo	Primera bomba encendida/
		ambas apagadas
SW2	Extremo	Segunda bomba y
	superior	alarma encendidas

Cableado del panel de cuatro flotadores

SW1	Fondo	Primera bomba encendida/
		ambas apagadas
SW2	Medio	Segunda bomba encendida
SW3	Extremo	Alarma encendida
	superior	

Paneles simples utilizando interruptores de acción simple:

Panel simple con alarma ①

SW1	Fondo	Bomba apagada
SW2	Medio	Bomba encendida
SW3	Extremo	Alarma encendida/apagada
	superior	

Panel simple sin alarma

SW1	Fondo	Bomba apagada
SW2	Extremo	Bomba encendida
	superior	

Paneles simples utilizando interruptores de ángulo amplio:

Panel simple con alarma

SW1	Fondo	Bomba encendida/apagada
SW2	Extremo	
	superior	Alarma encendida/anagada

Panel simple sin alarma

SW1 Bomba encendida/apagada

Se recomienda un suministro trifásico completo incluyendo tres transformadores individuales o un transformador trifásico. Se pueden usar conexiones en estrella o en triángulo "abierto" empleando sólo dos transformadores, pero hay más posibilidad de que produzcan un rendimiento inadecuado, disparo por sobrecarga o falla prematura del motor debido al desbalance de corriente.

Mida la corriente en cada uno de los tres conductores del motor y calcule el desbalance de corriente en la forma que se explica abajo.

Si el desbalance de corriente es del 2% o menos, deje los conductores tal como están conectados. Si el desbalance de corriente es de más del 2%, hay que verificar las lecturas de corriente en cada derivación empleando cada una de las tres conexiones posibles. Enrolle los conductores del motor en el arrancador en la misma dirección para evitar una inversión del motor.

Para calcular el porcentaje de desbalance de corriente: A. Sume los tres valores de corriente de línea.

- B. Divida la suma por tres, con lo cual se obtiene la corriente promedio.
- C. Seleccione el valor de corriente más alejado de la corriente promedio (ya sea alto o bajo).
- D. Determine la diferencia entre este valor de corriente (más alejado del promedio) y el promedio.
- E. Divida la diferencia por el promedio. Multiplique el resultado por 100 para determinar el porcentaje de desbalance.

El desbalance de corriente no debe exceder el 5% con la carga del factor de servicio o el 10% con la carga de entrada nominal. Si el desbalance no puede corregirse enrollando los conductores, la causa del desbalance debe determinarse y corregirse. Si, en las tres conexiones posibles, la derivación más alejada del promedio está en el mismo conductor de potencia, entonces la mayoría del desbalance proviene de la fuente de potencia.

Contacte a la compañía de electricidad local para solucionar el desbalance.

	Conexión 1		C	Conexión 2			Conexión 3		
Terminales del	L1	L2	L3	L1	L2	L3	L1	L2	L3
arrancador	T T	T T	T T	<u> </u>	$\frac{\perp}{\top}$	$\frac{\perp}{\top}$	<u> </u>	T T	T T
Conductores	R	В	W	W	R	В	В	W	R
del motor	Т3	T1	T2	T2	Т3	T1	T1	T2	Т3
Ejemplo:	T3-R = 51 amps T1-B = 46 amps T2-W = <u>53</u> amps Total = 150 amps ÷ 3 = 50 amps		T2-W = 50 amps T3-R = 48 amps T1-B = <u>52</u> amps Total = 150 amps ÷ 3 = 50 amps		T2-\ T3- Total	B = 50 aı N = 49 aı R = <u>51</u> aı I = 150 aı 3 = 50 aı	mps mps mps		
	-46 = 4 amps $4 \div 50 = .08 \text{ or } 8\%$			48 = 2 a) = .04 o			49 = 1 aı) = .02 or		

LECTURAS DE RESISTENCIA DEL AISLAMIENTO

Valores normales en ohmios y megaohmios entre todos los conductores y tierra

Condición del motor y los conductores	Valor en ohmios	Valor en Megaohmios
Un motor nuevo (sin cable de bajada).	20,000,000 (o más)	20 (o más)
Un motor usado que puede reinstalarse en el pozo.	10,000,000 (o más)	10 (o más)
Motor en el pozo. Las lecturas son para el cable de bajada más		
Motor nuevo.	2,000,000 (o más)	2 (o más)
El motor está en buenas condiciones.	500,000 - 2,000,000	.5 - 2
Daño de aislamiento, localícelo y repárelo.	Menos de 500,000	Menos de 0.5

La resistencia del aislamiento varía muy poco con la clasificación. Los motores de todas las clasificaciones de potencia, tensión y fase tienen valores similares de resistencia de aislamiento.

Los valores de resistencia de aislamiento anteriores están basados en lecturas obtenidas con un megaohmiómetro con salida de 500 V CC. Las lecturas pueden variar utilizando un ohmiómetro de tensión más baja; consulte con la fábrica si tiene dudas acerca de las lecturas.

Los datos de ingeniería para modelos específicos pueden encontrarse en su catálogo y en nuestro sitio Web (dirección en la cubierta).

Los diagramas de cableado del panel de control se envían con los paneles de control. Utilice los dibujos del panel de control junto con este manual de instrucciones para completar el cableado.

	OPERACIÓN	
Sumersión mínima		
Servicio continuo	Sumergida totalmente	
Servicio intermitente	6 pulg. por debajo del extremo superior del motor	

V	I DE LA BOMBA		
		Tempera	tura máxima del fluido
		Operación continua	104°F 40°C
		Operación intermitente	140°F 60°C

NO RECOMENDADO Pumpmaster y Pumpmaster Plus Cableado directo

Figura 1

Interruptor de flotador de acción simple Instalación "típica"

NO RECOMENDADOFlotador doble - de cableado directo

Figura 2

Interruptor de flotador de ángulo amplio

Figura 5

Determinación del rango de bombeo

Figura 3

Diagrama de conexión trifásica

Estándar sin el sensor del incidente y del calor del sello para la bomba que acciona.

Figura 6

Figura 8

Ningún sensor del calor disponible

ADVERTENCIA Tensión

peligrosa

LA FALLA DE DESCONECTAR Y BLOQUEAR LA CORRIENTE ELÉCTRICA ANTES DE INTENTAR CUALQUIER SERVICIO, PUEDE CAUSAR ELECTROCHOQUE, QUEMADURAS O LA MUERTE.

EL MOTOR NO ESTÁ FUNCIONANDO NOTA: Si el cortacircuitos se "ABRE" repetidamente, NO lo reposicione. Llame a un	CAUSA PROBABLE Se disparó el protector rérmico del motor	ACCIÓN RECOMENDADA Deje que se enfríe el motor. Asegure la sumersión
"ABRE" repetidamente, NO lo reposicione. Llame a un		mínima de la bomba. Limpie los residuos de la
lo reposicione. Llame a un II	Cortacircuitos abierto o fusible quemado.	carcasa y el impulsor. Determine la causa, llame a un electricista calificado.
(Impulsor de la bomba rozando o atascado. El cable de alimentación está dañado. Conexiones eléctricas inadecuadas en el panel de control.	Determine la catasa, name a un electricista camineado. Determine el consumo de corriente del motor. Si es dos veces más alto que el indicado en la placa de identificación de la bomba, el impulsor está trabado, los cojinetes del motor o el eje está dañado. Limpie los residuos de la carcasa y el impulsor, consulte con el agente
	No hay alambre neutro conectado al panel de control.	La resistencia entre los conductores de alimentación y tierra debe indicar infinito. Si alguna lectura es incorrecta, llame a un electricista calificado.
	Conexiones eléctricas inadecuadas en el panel de control.	Inspeccione las conexiones del panel de control. Llame a un electricista calificado.
primero para confirmar el funcionamiento. Si la bomba	Interruptor de nivel de líquido defectuoso para activar los controles.	Con el interruptor desconectado, verifique la continuidad mientras activa el interruptor de nivel de líquido. Reemplace el interruptor, según se requiera.
funciona, el control automático o el cableado está	Nivel de líquido insuficiente para activar los controles.	Deje que el nivel de líquido aumente de 3 a 4 pulgadas (76 mm –101 mm) sobre el nivel de activación.
	Cordones de los sensores de nivel de líquido enredados.	Desenrede los cordones y asegure el funcionamiento libre.
	Cordones de los sensores de nivel de líquido enredados.	Desenrede los cordones y asegure el funcionamiento libre.
I	La bomba está atascada con aire.	Apague la bomba durante aproximadamente un minuto y arránquela nuevamente. Repita hasta que se despeje la obstrucción de aire. Si la obstrucción de aire persiste en un sistema con tubo con válvula de retención, puede perforarse un agujero de 3/16 pulg. (4.8 mm) en el tubo de descarga aproximadamente a 2 pulgadas (51 mm) de la conexión de descarga.
	El flujo de líquido entrante coincide con la capacidad de descarga de la bomba.	Podría requerirse una bomba más grande.
POCO O NADA in	La válvula de retención está instalada invertida, está obstruida o atascada en posición cerrada.	Verifique la flecha de flujo en la válvula y verifique el funcionamiento de ésta.
(Carga excesiva del sistema.	Consulte con el agente.
F	Entrada a la bomba obstruida.	Inspeccione y despeje, según sea requerido.
	Tensión incorrecta, o conectada incorrectamente.	Verifique la rotación, la tensión y las conexiones de la bomba. Consulte con un electricista calificado.
I	La bomba está atascada con aire.	Consulte la acción recomendada, arriba.
E	El impulsor está gastado o dañado.	Inspeccione el impulsor, reemplácelo según sea necesario.
	Los controles de nivel de líquido están defectuosos o instalados incorrectamente.	Inspeccione, reajuste o reemplace, según sea requerido.
	La válvula de retención de la descarga no funciona.	Inspeccione, repare o reemplace, según sea requerido.
	El área de contención de aguas negras es demasiado pequeña.	Consulte con el agente.
	Los controles de nivel de líquido están defectuosos o instalados incorrectamente.	Inspeccione, reajuste o reemplace, según sea requerido.
	Cantidad excesiva de líquido entrante para una bomba de este tamaño.	Consulte con el agente.

GARANTÍA LIMITADA DE GOULDS WATER TECHNOLOGY

Esta garantía es aplicable a todas las bombas para sistemas de agua fabricadas por Goulds Water Technology.

Toda parte o partes que resulten defectuosas dentro del período de garantía serán reemplazadas sin cargo para el comerciante durante dicho período de garantía. Tal período de garantía se extiende por doce (12) meses a partir de la fecha de instalación, o dieciocho (18) meses a partir de la fecha de fabricación, cualquiera se cumpla primero.

Todo comerciante que considere que existe lugar a un reclamo de garantía deberá ponerse en contacto con el distribuidor autorizado de Goulds Water Technology del cual adquiriera la bomba, y ofrecer información detallada con respecto al reclamo. El distribuidor está autorizado a liquidar todos los reclamos por garantía a través del Departamento de Servicios a Clientes de Goulds Water Technology.

La presente garantía excluye:

- (a) La mano de obra, el transporte y los costos relacionados en los que incurra el comerciante;
- (b) los costos de reinstalación del equipo reparado;
- (c) los costos de reinstalación del equipo reemplazado;
- (d) daños emergentes de cualquier naturaleza; y
- (e) el reembolso de cualquier pérdida causada por la interrupción del servicio.

A los fines de esta garantía, los términos "Distribuidor", "Comerciante" y "Cliente" se definen como sigue:

- (1) "Distribuidor" es aquel individuo, sociedad, corporación, asociación u otra entidad jurídica que opera entre Goulds Water Technology y el comerciante para la compra, consignación o contratos de venta de las bombas en cuestión.
- (2) "Comerciante" es todo individuo, sociedad, corporación, asociación u otra entidad jurídica que realiza negocios de venta o alquiler-venta (leasing) de bombas a clientes.
- (3) "Cliente" es toda entidad que compra o que adquiere bajo la modalidad de leasing las bombas en cuestión de un comerciante. El término "cliente" puede significar un individuo, una sociedad, una corporación, una sociedad de responsabilidad limitada, una asociación o cualquier otra entidad jurídica con actividades en cualquier tipo de negocios.

LA PRESENTE GARANTÍA SE EXTIENDE AL COMERCIANTE <u>ÚNICAMENTE</u>

Xylem Inc. 2881 East Bayard Street Ext., Suite A

Seneca Falls, NY 13148 Teléfono: (866) 325-4210

Fax: (888) 322-5877

www.gouldswatertechnology.com

Goulds es una marca registrada de Goulds Pumps, Inc. y se utiliza bajo licencia. © 2012 Xylem Inc. IM107 Revisión Número 5 Febrero 2014

Pompes à eaux usées Assèchement, effluents et eaux d'égout

DIRECTIVES D'INSTALLATION, D'UTILISATION ET D'ENTRETIEN

TABLE DES MATIÈRES

SUJET	PAGE
Consignes de sécurité	26
Vérifications avant installation	26
Levage de la pompe	27
Système de levage optionnel à rail de guidage ou à adaptateur coulissant	27
Tuyauterie	27
Câblage et mise à la terre	27
Sélection et câblage des contacteurs et des tableaux de commande	27
Installation	29
Mise en marche	29
Tableaux de commande et fonction des contacteurs à flotteur	30
Déséquilibre du courant triphasé	31
Valeurs de résistance d'isolement du moteur	31
Données techniques	32
Installations types	33
Diagnostic des anomalies	34
Garantie limitée	

Informations pour le propriétaire

		*		_
Numéro de modèle de la pompe :				
Numéro de série	de la po	mpe :		
Nº de modèle du	tableau	de comma	nde :	
Détaillant :				
Nº de téléphone du détaillant :				
Date d'achat : d'installation :				
Courant mesuré au démarrage :				
1 Ø	3 Ø	L1-2	L2-3	L3-1
A:				
V.	\mathbf{v} .			

CONSIGNES DE SÉCURITÉ

AFIN DE PRÉVENIR LES BLESSURES GRAVES OU MORTELLES ET LES DOMMAGES MATÉRI-ELS IMPORTANTS, LIRE ET SUIVRE TOUTES LES CONSIGNES DE SÉCURITÉ FIGURANT DANS LE MANUEL ET SUR LA POMPE.

LE PRÉSENT MANUEL A POUR BUT DE FACI-LITER L'INSTALLATION ET L'UTILISATION DE LA POMPE ET DOIT ÊTRE CONSERVÉ PRÈS DE CELLE-CI.

Le symbole ci-contre est un SYMBOLE DE SÉCURITÉ employé pour signaler les mots-indicateurs dont on trouvera la description ci-dessous. Sa présence sert à attirer l'attention afin d'éviter les blessures et les dommages matériels.

⚠ DANGER

Prévient des risques qui VONT causer des blessures graves, la mort ou des dommages matériels importants.

AVERTISSEMENT

Prévient des risques qui **PEUVENT** causer des blessures graves, la mort ou des dommages matériels importants.

A ATTENTION

Prévient des risques qui PEUVENT causer des blessures ou des dommages matériels.

AVIS : SERT À ÉNONCER LES DIRECTIVES SPÉ-CIALES DE GRANDE IMPORTANCE QUE L'ON DOIT SUIVRE.

LIRE SOIGNEUSEMENT CHAQUE DIRECTIVE ET AVERTISSEMENT AVANT D'EFFECTUER TOUT TRAVAIL SUR LA POMPE.

N'ENLEVER AUCUNE DÉCALCOMANIE DE SÉCURITÉ.

L'installation électrique doit être entièrement effectuée par un technicien qualifié.

Il faut toujours suivre les prescriptions du code provincial ou national de l'électricité et les règlements locaux. Adresser toute question relative au code à un inspecteur en électricité. Le non-respect du code et des politiques de santé et de sécurité au travail peut entraîner des blessures et des dommages matériels. L'inobservation des directives d'installation fournies par le fabricant peut se traduire par un choc électrique, un incendie, des blessures ou la mort, ainsi que par des dommages matériels, des performances non satisfaisantes et l'annulation de la garantie du fabricant.

Les pompes standard ne sont pas conçues pour les piscines, l'eau libre, les liquides dangereux ni les endroits pouvant contenir des gaz inflammables. Ces fluides peuvent être présents dans les installations de confinement (puits collecteurs, réservoirs ou fosses humides). On doit aérer ces installations suivant les codes locaux.

Seules les pompes de classe 1, division 1, peuvent servir dans les liquides dangereux et les endroits pouvant contenir des gaz inflammables. Le nom des organismes de normalisation pertinents figure sur la plaque signalétique de la pompe ou dans les feuillets du catalogue décrivant les pompes en question.

Verrouiller la source de courant en position ouverte avant de procéder à

l'installation ou à l'entretien de tout dispositif électrique. Le protecteur thermique de certains moteurs de pompe coupe le courant lorsqu'il y a surcharge thermique et le rétablit automatiquement, redémarrant ainsi la pompe inopinément.

Chaque tableau de commande triphasé pour pompe submersible doit assurer une protection rapide de classe 10 contre la surcharge.

VÉRIFICATIONS AVANT INSTALLATION

Ouvrir tous les cartons et vérifier si le matériel est endommagé. Signaler immédiatement tout dommage au fournisseur ou au transporteur.

Important: on doit toujours vérifier si les valeurs nominales inscrites sur la plaque signalétique (intensité, tension, puissance et nombre de phases) conviennent au tableau de commande et à la source de courant.

Le compartiment moteur d'un bon nombre de nos pompes à eaux d'égout est rempli d'huile isolante. S'il y a des traces d'huile sur la pompe ou si cette dernière a été entreposée longtemps, vérifier le niveau d'huile du compartiment et, si la pompe en est dotée, du logement de garniture.

Enlever le bouchon de l'orifice de remplissage du compartiment moteur (sur le dessus de celui-ci), puis vérifier le niveau d'huile par l'orifice. L'huile devrait seulement recouvrir le moteur. Ne pas trop en mettre pour que l'huile puisse se dilater!

Pour vérifier le niveau d'huile du logement de garniture, mettre la pompe sur le côté, le bouchon de remplissage en haut, puis enlever le bouchon. Le niveau de l'huile devrait être à tout au plus 13 mm (½ po) du haut. Au besoin, utiliser de l'huile pour turbines ASTM 150, puis remettre le bouchon.

On peut en acheter chez un réparateur de moteurs électriques. Les marques d'huiles types sont : Shell Turbo 32, Sunoco Sunvis 932, Texaco Regal R&O 32, Exxon Nuto 32 et Mobil DTE Light.

Vérifier si l'écrou presse-garniture du serre-câble d'alimentation est suffisamment serré. Le couple de serrage est de 75 lbf·po pour les câbles de calibre 16 et de 80 lbf·po pour tout autre câble. Il est cependant de 75 lbf·po pour les câbles de capteur de chaleur ou d'humidité.

La garantie ne couvre pas les dommages dus au branchement de la pompe et du tableau de commande à une source de courant dont la tension ou le nombre de phases sont inappropriés.

Inscrire à titre documentaire les numéros de modèle et de série de la pompe ainsi que le numéro de modèle du tableau de commande dans les Informations pour le propriétaire. Une fois l'installation achevée, remettre le manuel au propriétaire ou l'attacher au tableau de commande.

LEVAGE DE LA POMPE

NE PAS LEVER, TRANSPORTER NI SUSPENDRE LA POMPE PAR LE CÂBLE D'ALIMENTATION: L'ENDOMMAGEMENT DU CÂBLE POURRAIT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

Lever la pompe par son boulon à œil ou sa poignée avec un filin ou une chaîne de grosseur appropriée. NE PAS endommager le câble d'alimentation ni celui des capteurs durant la manutention de la pompe.

SYSTÈME DE LEVAGE OPTIONNEL À RAIL DE GUIDAGE OU À ADAPTATEUR COULISSANT

Dans le cas de bon nombre de cuves à effluents et de postes de relèvement d'eaux d'égout, il est conseillé de monter la pompe sur un rail de guidage ou avec un adaptateur coulissant pour pouvoir descendre, retirer, inspecter et entretenir celle-ci plus facilement. La plupart des codes n'autorisent pas le personnel à entrer dans une fosse humide sans la formation ni l'équipement protecteur appropriés. Le rail et l'adaptateur sont conçus pour faciliter la mise en place et la sortie de la pompe, et ce, sans disjoindre la tuyauterie. Le rail et l'adaptateur devraient être placés de façon à ce que la pompe soit face à l'orifice d'arrivée de l'influent pour empêcher la formation de zones de stagnation et, ainsi, de dépôts. Le fond du puits collecteur ou de la cuve doit être plat et suffisamment résistant pour supporter le poids de la pompe et du rail de guidage.

AVIS: SUIVRE LES DIRECTIVES FOURNIES AVEC LE RAIL DE GUIDAGE.

TUYAUTERIE

Afin de réduire les pertes de charge (par frottement) au minimum, la tuyauterie de refoulement devrait être aussi courte que possible et dépourvue d'accessoires et de raccords superflus. Son diamètre devrait être au moins égal à celui de l'orifice de refoulement de la pompe.

Prévenir le retour du liquide: poser sur le tuyau de refoulement un clapet de non-retour de calibre convenant à la grosseur des solides que la pompe peut laisser passer. Le retour du liquide peut faire tourner la pompe en sens inverse, l'arrière et peut entraîner le joint prématuré, roulement, usure d'axe. S'il y a rotation au moment du démarrage, le couple accru produit peut abîmer le moteur ou l'arbre de pompe, ou les deux.

Poser EN AVAL (après) du clapet de non-retour un robinet-vanne de calibre approprié pour permettre l'entretien de la pompe, de la tuyauterie et du clapet.

Important: avant d'installer la pompe et afin de prévenir la formation de poches d'air dans celle-ci, percer un trou-purgeur d'air de 4,8 mm (3/16 po) dans le tuyau de refoulement, à environ 51 mm (2 po) au-dessus de l'orifice de refoulement de la pompe, mais avant le clapet de non-retour et à l'intérieur de la fosse humide. On permettra ainsi au liquide d'entrer dans la pompe par gravité, surtout si l'orifice d'aspiration est situé en dessous, et préviendra la formation de poches d'air qui empêcheraient le pompage du liquide même si la roue de la pompe tourne.

La tuyauterie doit être supportée correctement pour n'appliquer sur la pompe aucune charge pouvant la déformer.

Couvercles et trappes de visite doivent être assez grands pour permettre l'inspection et l'entretien de la pompe ainsi que l'emploi d'un dispositif de levage.

CÂBLAGE ET MISE À LA TERRE

Avis important : lire les Consignes de sécurité avant de procéder au câblage.

N'utiliser que du fil torsadé en cuivre pour la mise à la terre et l'alimentation du moteur. Le calibre du fil de terre doit être au moins égal à celui des fils d'alimentation du moteur, et les fils devraient tous être chromocodés pour faciliter l'entretien et le diagnostic des anomalies.

Poser le fil de terre et les autres fils suivant les prescriptions du code provincial ou national de l'électricité.

Installer un sectionneur tout conducteur si le code l'exige.

Verrouiller la source de courant en position ouverte avant de procéder à l'installation ou à l'entretien de la pompe.

Le nombre de phases et la tension d'alimentation doivent convenir à tout l'équipement. Un nombre de phases et une tension inappropriés annulent la garantie et peuvent causer un incendie et des dommages au moteur et au tableau de commande.

Chaque jonction de fils doit être étanche. Si l'on emploie un nécessaire de jonction (« kit »), suivre les directives du fabricant.

AVERTISSEMENT

Choisir la boîte de jonction du type et de la classe NEMA convenant au type et au lieu d'utilisation. La boîte doit assurer une jonction de fils sûre et étanche.

Étancher les commandes afin d'empêcher les gaz d'en détériorer les composants.

AVERTISSEMENT

AVERTISSEMENT Tension dangereuse

OMETTRE LA MISE À LA TERRE PERMANENTE DE LA POMPE, DU **MOTEUR ET DES COMMANDES** AVANT LE BRANCHEMENT À LA SOURCE DE COURANT PEUT CAUS-ER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

SÉLECTION ET CÂBLAGE DES CONTACTEURS ET DES TABLEAUX DE COMMANDE

TYPES DE CONTACTEURS À FLOTTEUR

Deux types de contacteurs à flotteur sont normalement utilisés: à simple effet ou à grand déplacement angulaire. Le type détermine le nombre de contacteurs requis avec les différents systèmes et tableaux de commande. Les contacteurs à simple effet fonctionnent dans un angle de 15° et s'ouvrent et se ferment donc rapidement. La longueur du câble (la distance entre le point pivot du câble et le boîtier du contacteur) des contacteurs à grand déplacement angulaire (90°) régit les niveaux démarragearrêt de la pompe.

27

Les contacteurs à flotteur peuvent être du type normalement ouvert (NO) pour le vidage (fosses ou réservoirs) et du type normalement fermé (NF) pour le remplissage.

Les contacteurs à simple effet doivent être connectés seulement aux tableaux de commande, jamais directement aux pompes.

Les contacteurs à grand déplacement angulaire pour le vidage peuvent être branchés aux pompes comme aux tableaux de commande.

RÉGLAGE DES CONTACTEURS À FLOTTEUR

Il n'existe pas de règle absolue pour le réglage des contacteurs à flotteur, lequel peut varier d'une installation à l'autre.

Règles suggérées:

Tous les contacteurs à flotteur devraient être placés sous l'orifice d'arrivée de l'influent!

Contacteur d'arrêt: (1er choix) — le régler pour que librement le niveau du liquide soit toujours au-dessus du compartiment moteur. (2e choix) — le régler pour que le niveau du liquide ne puisse être à plus de 6 po sous le dessus du compartiment moteur.

Contacteur de démarrage: le régler pour que la plage de pompage permette aux pompes de 1½ hp ou moins de fonctionner pendant au moins une (1) minute. Les pompes de 2 hp et plus devraient fonctionner durant au moins deux (2) minutes. Le brochure technique donne la capacité de chaque cuve en gallons US par pouce de hauteur.

Contacteur(s) de pompe secondaire et d'alarme: s'il n'y en a qu'un, le placer plus haut que les contacteurs d'arrêt et de démarrage, et, s'il y en a deux, on devrait en outre les décaler (v. les illustrations dans la section *Tableaux de commande et fonction des contacteurs à flotteur*). Essayer d'utiliser tout l'espace de stockage disponible de la cuve, mais prévoir un espace de réserve. La réserve exacte peut être exigée par des codes locaux.

SCHÉMAS DE CÂBLAGE DES TABLEAUX DE COMMANDE

Des directives et des schémas de câblage sont fournis avec nos tableaux de commande. Utiliser les directives en question conjointement avec celles du présent manuel. L'installation électrique ne doit être effectuée que par des techniciens qualifiés. Adresser toute question relative aux autres marques de tableau de commande au fournisseur ou au fabricant de ces marques.

DISPOSITIFS D'ALARME

Il est recommandé de poser un dispositif d'alarme dans toute installation à pompe(s) à eaux usées. De nombreux tableaux de commande standard en sont munis. S'il n'y a pas de tableau de commande, on peut employer un dispositif d'alarme niveau haut, autonome, qui se déclenchera si le liquide atteint un niveau trop élevé, avertissant ainsi le personnel d'entretien, qui apportera alors les correctifs appropriés.

POMPES MONOPHASÉES

Les pompes monophasées peuvent être utilisées avec un ferroutage ou en même temps que, ou avec un tableau de commande pour pompe simple ou double. *Voir les fig. 1*, 2 et 5.

Les la plupart les pompes de $\frac{1}{3}$ et de $\frac{1}{2}$ hp (115 ou 230 V), ainsi que certaines pompes de $\frac{3}{4}$ et de 1 hp,

sont munies d'un cordon d'alimentation à fiche pouvant être branchée sur la fiche-prise du contacteur à flotteur s'il s'agit d'une installation à pompe simple. On peut enlever la fiche du cordon d'alimentation et connecter celui-ci par raccordement fixe à un tableau de commande pour pompe simple ou double. L'enlèvement de la fiche n'annulera pas la garantie ni l'enregistrement auprès des organismes de normalisation pertinents. *Voir la fig. 5*.

LES POMPES CONNECTÉES PAR FICHE DOIVENT L'ÊTRE À UNE PRISE AVEC TERRE MISE À LA TERRE CORRECTEMENT.

S'IL S'AGIT D'UNE POMPE SANS FICHE, NE PAS ENLEVER LE COR-DON D'ALIMENTATION NI SON SERRE-CÂBLE NI CONNECTER UN CONDUIT À LA POMPE.

Les pompes dont le bout des fils du cordon d'alimentation est dénudé peuvent être branchées par raccordement fixe à un contacteur à flotteur, à un contacteur ordinaire monophasé ou à un tableau de commande pour pompe simple ou double. On doit toujours s'assurer que le contacteur à flotteur convient à l'intensité de marche, à l'intensité maximale au démarrage et à la puissance nominales de la pompe. Sauf indication contraire sur la plaque signalétique, les pompes monophasées pour eaux usées sont munies d'une protection d'enroulement contre les surcharges. *Voir les fig. 1 et 2*.

POMPES TRIPHASÉES

Les pompes triphasées nécessitent au moins un démarreur magnétique à branchement direct convenant à la puissance nominale de la pompe, un circuit à fusible(s) ou à disjoncteur tripolaire, ainsi que des limiteurs de surcharge rapides de classe 10 compensés en fonction des conditions ambiantes.

TABLEAUX DE COMMANDE MONOPHASÉS ET TRIPHASÉS

Les tableaux de commande viennent en deux versions : pour pompe simple ou pour pompe double. Nos tableaux de la série SES offrent de nombreuses fonctions standard auxquelles on peut ajouter nos options les plus populaires. En outre, nous fournissons des tableaux sur demande dont les fonctions sont beaucoup plus nombreuses. Les tableaux faits sur demande sont offerts en versions variées. On peut adresser toute demande de prix pour ce type de tableau au service à la clientèle (*Customer Service*) par l'entremise d'un distributeur agréé.

Nos tableaux de commande pour pompe double de la série possèdent un circuit imprimé muni d'un circuit d'alarme niveau haut standard. Il existe d'autres accessoires standard: contacts d'alarme secs auxiliaires signalant les alarmes à distance et voyants indicateurs de position pour contacteurs à flotteur. Des limiteurs de surcharge réglables de classe 10 sont intégrés dans nos tableaux de commande triphasés, éliminant ainsi du travail pour l'installateur et l'obligation de commander des limiteurs particuliers. La plupart des tableaux de la série sont en stock et prêts à livrer sans options.

Capteur de chaleur et circuit de panne de joint - Certaines pompes sont pourvues d'un circuit de panne de joint et d'un capteur de chaleur. Sur un produit régulier, le circuit de panne de joint est livré sans capteur de chaleur et sera doté d'un câble supplémentaire du moteur avec deux conducteurs. Ces câbles seront noir et blanc; ils doivent

être connectés aux bornes de panne de joint sur un panneau fourni avec cette option. Si un circuit de panne de joint et un capteur de chaleur sont fournis avec la pompe, il y aura un câble séparé avec quatre conducteurs. Pour ces câbles, la connexion pour panne de joint sera noire et verte et le capteur de chaleur sera rouge et blanche. Le modèle 1GD/12GDS peut être commandé avec un circuit de panne de joint en option, mais la plupart des pompes à joint double sont livrées avec un circuit de panne de joint.

Les modèles avec un 4NS/4DWC/4XD/4XWS ont une configuration normale avec un circuit de panne de joint et un capteur de chaleur. Les câbles sont dans une enveloppe séparées avec 5 fils. Noir (étiqueté P1) et Blanc (étiqueté P2) doivent être connectés aux bornes du circuit de panne de joint. Les câbles de capteurs de chaleur sont rouge (étiqueté W1) et orange (étiqueté W2); ils doivent être connectés aux terminaux de capteur de chaleur. Le câble en plus est vert et il doit être connecté à la masse. Les panneaux sont livrés avec un schéma de câblage conçu pour vos connexions. Les panneaux doivent être commandés avec les options pour circuits de panne de joint et circuits de capteur de chaleur, puisque ces panneaux peuvent aussi être utilisés sur des pompes sans ces options qui ne sont pas automatiquement sur ces panneaux.

Un style supplémentaire de circuits de panne de joint et capteur de chaleur est notre produit vendu avec les modèles GA(X)/15GDS(X)/20GDS(X), 2,3,4GV(X), 2,3,4MV(X),2,3,4,6MK(X). Ces unités sont livrées avec un seul câble pour l'alimentation et les contrôles. Le conducteur sera livré avec 7 câbles (avant janvier 2013). Les câbles pour panne de joint et capteur de chaleur sera orange et bleu (avant 2013). Puisque ces unités utilisent un capteur de style différent dans la pompe ainsi qu'une option différente dans le panneau, les connexions nécessitent seulement deux câbles. Après janvier 2013, les couleurs des câbles sur les pompes ont été modifiées à deux (2) câbles blancs pour la panne de joint et le capteur de chaleur. Le cordon le plus récent pour ces unités comporte maintenant 7 câbles avec 2 câbles blancs, ces câbles sont destinés au dispositif de panne de joint et capteur de chaleur.

Faire attention de choisir les bonnes options en choisissant le panneau pour chaque style de pompe. Il faut toujours suivre le schéma de câblage du panneau. Le défaut de câbler correctement les câbles de panne de joint et le capteur de chaleur peut empêcher la pompe de fonctionner ou causer des déclenchements de nuisance.

INSTALLATION

Fixer à la ou aux pompes le raccord rapide pour le rail de guidage, l'adaptateur coulissant ou la tuyauterie de refoulement. Le pied d'assise du rail devrait être assujetti au fond de la fosse humide par des boulons d'ancrage.

Effectuer le câblage selon les schémas de câblage des tableaux de commande, les prescriptions du code provincial ou national de l'électricité et les règlements locaux. À ce stade-ci, il est suggéré de vérifier le sens de rotation de l'arbre de moteur ou de la roue.

quipements dangereux

ÉVITER LES BLESSURES GRAVES: NE PAS S'INTRODUIRE LES DOIGTS DANS L'ORIFICE D'ASPIRATION DE LA POMPE PENDANT LA VÉRIFICA-TION DU SENS DE ROTATION.

On doit toujours vérifier si la pompe tourne dans le sens indiqué sur le corps de pompe, ce qui est plus facile à faire avant l'installation de la pompe. Les moteurs triphasés peuvent tourner dans les deux sens. Il est donc permis de les mettre en marche, puis de les arrêter immédiatement tout en en observant le sens de rotation. Pour inverser celui-ci, intervertir deux des fils d'alimentation du moteur.

Descendre la ou les pompes dans la fosse humide.

S'assurer que les contacteurs à flotteur peuvent bouger librement, mais sans pouvoir atteindre la tuyauterie.

MISE EN MARCHE

Une fois le raccordement de la tuyauterie achevé et vérifié, on peut mettre la ou les pompes en marche.

Vérification du fonctionnement des contacteurs à flotteur à fiche-prise — brancher d'abord la fiche-prise du contacteur sur une prise de courant indépendante mise à la terre, puis la prise de la pompe sur la fiche-prise du contacteur. Essayer la pompe en remplissant d'eau la fosse humide jusqu'à ce que la pompe démarre. Si le débit de la pompe est faible ou nul, c'est qu'il y a probablement présence d'air dans la pompe. Percer alors un trou-purgeur d'air selon les indications de la section Tuyauterie.

Vérifier la durée de fonctionnement de la pompe pour s'assurer qu'elle est d'au moins une minute et que la plage de pompage est correcte.

Vérification du fonctionnement du tableau de commande — remplir d'eau la fosse humide.

Essayer d'abord la pompe en mode manuel en plaçant le commutateur «*Hand-Off-Auto*» (manuel-arrêt-automatique) du tableau de commande à *Hand*. Si la pompe fonctionne bien, l'essayer en mode automatique. Si le débit de la pompe est faible ou nul, c'est qu'il y a probablement présence d'air dans la pompe. Percer alors un trou-purgeur d'air selon les indications de la section Tuyauterie.

Faire fonctionner la pompe en mode automatique (*Auto*) et vérifier minutieusement le fonctionnement des contacteurs de démarrage, d'arrêt et d'alarme en remplissant d'eau la fosse humide. **Important:** omettre de brancher le fil neutre de la source de courant à tout tableau de commande alimenté en courant monophasé de 230 V empêchera le circuit de commande du tableau de fonctionner. Le neutre est nécessaire pour alimenter (115 V) le circuit de commande.

Mesurer l'intensité et la tension du courant au démarrage et les inscrire à titre documentaire dans les Informations pour le propriétaire. Comparer l'intensité mesurée à l'intensité maximale indiquée sur la plaque signalétique de la pompe. Si l'intensité mesurée est supérieure, en chercher la cause. L'utilisation de la pompe hors de sa courbe de performances, c.-à-d. à une hauteur de charge trop faible ou à une tension trop basse ou trop haute, augmentera l'intensité du courant. Le moteur fonctionnera correctement si sa tension d'alimentation se situe dans les limites suivantes : tension nominale (plaque signalétique) $\pm 10\%$. Les performances obtenues dans ces limites ne seront pas forcément identiques à celles de la courbe de performances correspondant aux valeurs de courant nominales inscrites sur la plaque signalétique. Apporter les correctifs nécessaires avant de continuer. Le déséquilibre du courant triphasé peut en outre altérer les performances. Si c'est le cas, suivre les directives de la section Déséquilibre du courant triphasé.

Réarmer le dispositif d'alarme, puis mettre la pompe en mode automatique (*Auto*) et le circuit de commande du tableau sous tension (interrupteur «*Control On-Off*» à *On*). Le système est maintenant prêt à fonctionner automatiquement.

Expliquer le fonctionnement de la pompe et des dispositifs de commande et d'alarme à l'utilisateur, puis lui laisser la documentation ou l'attacher au tableau de commande s'il est installé dans un endroit sec, fermé.

TABLEAUX DE COMMANDE ET FONCTION DES CONTACTEURS À FLOTTEUR

L'objet de la présente section est d'indiquer le nombre de contacteurs à flotteur requis et le rôle de chacun dans les systèmes d'évacuation des eaux usées types. Le nombre varie selon le type de contacteur: à simple effet ou à grand déplacement angulaire, mais aussi selon le type de tableau de commande: pour pompe simple avec ou sans alarme ou pour pompe double avec alarme.

Tableaux de commande pour pompe double à contacteurs à simple effet:

Trois contacteurs à flotteur

SW1	Inférieur	Pompes hors fonction
SW2	Intermédiaire	1 ^{re} pompe en fonction
SW3	Supérieur	2 ^e pompe et alarme en fonction
		en fonction

Quatre contacteurs à flotteur 2

SW1	Inférieur	Pompes hors fonction
SW2	Deuxième	1 ^{re} pompe en fonction
	(du bas)	
SW3	Troisième	2 ^e pompe en fonction
	(du bas)	
SW4	Supérieur	Alarme en fonction

Tableaux de commande pour pompe double à contacteurs à grand déplacement angulaire :

Trois contacteurs à flotteur

SW1	Inférieur	1 ^{re} pompe en fonction ou
		les deux hors fonction
SW2	Supérieur	2e pompe et alarme en
		fonction

Quatre contacteurs à flotteur

SW1	Inférieur	1 ^{re} pompe en fonction ou les deux hors fonction
SW2	Intermédiaire	2 ^e pompe en fonction
SW3	Supérieur	Alarme en fonction

Tableaux de commande pour pompe simple à contacteurs à simple effet:

Trois contacteurs à flotteur avec alarme ①

SW1	Inférieur	Pompe hors fonction
SW2	Intermédiaire	Pompe en fonction
SW3	Supérieur	Alarme en fonction ou
	_	hors fonction

Deux contacteurs à flotteur sans alarme

SW1	Inférieur	Pompe hors fonction
SW2	Supérieur	Pompe en fonction

Tableaux de commande pour pompe simple à contacteurs à grand déplacement angulaire:

Deux contacteurs à flotteur avec alarme

SW1	Inférieur	Pompe en fonction ou
SW2	Supérieur	hors fonction Alarme en fonction ou

Un contacteur à flotteur sans alarme

SW1 Pompe en fonction ou hors fonction

Système à pompe double ②

DÉSÉQUILIBRE DU COURANT TRIPHASÉ

Un circuit d'alimentation électrique entièrement triphasé est recommandé. Il peut être constitué de trois transformateurs distincts ou d'un transformateur triphasé. On peut aussi utiliser deux transformateurs montés en étoile ou en triangle «ouverts», mais il est possible qu'un tel montage crée un déséquilibre de courant se traduisant par des performances médiocres, le déclenchement intempestif du limiteur de surcharge et la défaillance prématurée du moteur.

Vérifier l'intensité du courant sur chacun des trois fils de moteur, puis calculer le déséquilibre du courant.

Si le déséquilibre est de 2 % ou moins, ne pas changer la connexion des fils.

S'il dépasse 2%, on devrait vérifier l'intensité du courant sur chaque conducteur, dans les trois montages possibles ci-dessous. Afin de maintenir le sens de rotation du moteur, suivre l'ordre numérique indiqué dans chaque montage pour la connexion des fils de moteur.

Pour calculer le pourcentage de déséquilibre du courant : A. Faire l'addition des trois intensités de courant de ligne

mesurées.

- B. Diviser le total par 3 pour obtenir l'intensité moyenne.
- C. Prendre l'écart d'intensité le plus grand par rapport à la moyenne.
- D. Soustraire cet écart de la moyenne.
- E. Diviser la différence par la moyenne, puis multiplier le résultat par 100 pour obtenir le pourcentage de déséquilibre.

Le déséquilibre de courant ne devrait pas excéder 5 % en charge avec facteur de surcharge et 10 % en charge d'entrée nominale. Si l'on ne peut éliminer le déséquilibre en connectant les fils de moteur dans l'ordre numérique indiqué, on doit en trouver la cause et la rectifier. Si, dans les trois montages, l'écart d'intensité le plus grand par rapport à la moyenne est toujours sur le même conducteur, la cause du déséquilibre vient surtout de la source de courant.

On s'adressera alors à la société d'électricité pour rectifier le déséquilibre de courant.

mesarees.	1	l ^{er} monta	ge	2	e montaç	ge	3	e montag	je
Bornes de	L1	L2	L3	L1	L2	L3	L1	L2	L3
démarreur	\perp	<u> </u>	<u> </u>	<u></u>	T T	<u> </u>	<u> </u>	T T	\perp
Fils de moteur	R	В	W	W	R	В	В	W	R
	Т3	T1	T2	T2	T3	T1	T1	T2	Т3
Exemples:									
		T3-R =	51 A		T2-W =	50 A		T1-B = 5	50 A
		T1-B = 4	46 A		T3-R =	48 A		T2-W = 4	19 A
		T2-W=	<u>53 A</u>		T1-B =	<u>52 A</u>		T3-R = 5	51 A
		Total = 1	50 A	-	Total = 1	50 A	-	Total = 15	50 A
		$\div 3 = 3$	50 A		÷ 3 =	50 A		$\div 3 = 5$	50 A
		- 46 A =	4 A		- 48 A =	= 2 A		- 49 A =	1 A
	4 ÷ 50 =	= 0,08 ou	8 %	2 ÷ 50 =	0,04 ou	4 %	1 ÷ 50 =	0,02 ou	2 %

VALEURS DE RÉSISTANCE D'ISOLEMENT DU MOTEUR

Valeurs normalement mesurées en ohms et en mégohms entre chaque fil et le fil de terre

État du moteur et des fils	Valeurs en ohms	Valeurs en mégohms	
Moteur neuf sans câble d'alimentation	20 000 000 (et plus)	20 (et plus)	
Moteur usagé réutilisable en fosse	10 000 000 (et plus)	10 (et plus)	
Moteur en fosse – valeurs mesurées : câble d'alimentation plus moteur			
Moteur neuf	2 000 000 (et plus)	2 (et plus)	
Moteur en bon état	500 000 à 2 000 000	0,5 à 2	
Isolation endommagée (la réparer)	Moins de 500 000	Moins de 0,5	

La valeur de résistance d'isolement varie très peu d'un moteur à l'autre, peu importent la puissance, la tension d'alimentation et le nombre de phases du moteur.

Les valeurs de résistance d'isolement ci-dessus sont tirées de mesures prises avec un mégohmmètre et une tension de sortie de 500 V c.c. Les valeurs mesurées peuvent varier si l'on utilise un ohmmètre avec une tension moindre. Communiquer avec le personnel technique de l'usine en pareil cas.

On trouvera les données techniques sur des modèles particuliers dans le catalogue et à l'adresse du site Web inscrite au bas de la première page.

Les schémas de câblage des tableaux de commande sont fournis avec ces derniers. S'en servir conjointement avec les directives du présent manuel pour effectuer le câblage.

SERVICE DE LA POMPI			A POMPE
Hauteur	d'immersion minimale		Temp
Service continu	Immersion totale		Service cont
Service intermittent	6 po sous le dessus du compartiment moteur		Service interm

Température maximale du liquide				
Service continu	40 °C (104 °F)			
Service intermittent	60 °C (140 °F)			

NON RECOMMANDÉ

Raccordement fixe des contacteurs à flotteur Pumpmaster et Pumpmaster Plus

Figure 1

NON RECOMMANDÉ

Raccordement fixe pour contacteur à flotteur double

Figure 2

Contacteur à flotteur à grand déplacement angulaire

Figure 5

Détermination de la plage de pompage

Figure 3

Schéma de câblage triphasé

Norme sans capteur de panne et de chaleur de joint pour la pompe actionnante.

Figure 6

Aucun capteur de la chaleur disponible

Blanc

Figure 8

Tension dangereuse

OMETTRE DE VERROUILLER LA SOURCE DE COURANT EN POSITION OUVERTE AVANT D'EFFECTUER TOUT TRAVAIL D'ENTRETIEN SUR LA POMPE PEUT CAUSER UN CHOC ÉLECTRIQUE, DES BRÛLURES OU LA MORT.

ANOMALIES	CAUSES PROBABLES	CORRECTIFS RECOMMANDÉS		
NON-FONCTIONNEMENT DU MOTEUR	Protecteur thermique du moteur déclenché	Laisser le moteur refroidir. Vérifier si la hauteur d'immersion est suffisante. Enlever les débris du corps de pompe et de la roue.		
NOTA : si le disjoncteur ne cesse de s'«OUVRIR»,	Disjoncteur ouvert ou fusible sauté	En déterminer la cause et s'adresser à un électricien.		
NE PLUS le réarmer. S'adresser à un électricien.	Roue bloquée ou grippée	Mesurer le courant (A) consommé par le moteur. Si l'intensité est au moins deux fois plus élevée que celle qui figure sur la plaque		
a) Mode manuel	Câble d'alimentation endommagé	signalétique de la pompe, la roue est grippée, ou bien les		
	Mauvaise connexion dans le tableau de commande	roulements ou l'arbre du moteur sont endommagés. Enlever les débris du corps de pompe et de la roue. Consulter le détaillant.		
b) Mode automatique	Fil neutre non connecté au tableau de commande	La valeur de résistance mesurée entre les fils d'alimentation et le fil de terre devrait être infinie. Si elle n'est pas appropriée, appeler un électricien.		
	Mauvaise connexion dans le tableau de commande	Inspecter le câblage du tableau de commande. Appeler un électricien.		
NOTA : vérifier si la pompe peut fonctionner en mode	Contacteur à flotteur défectueux	Débrancher le contacteur à flotteur et en vérifier la continuité en l'actionnant. Le remplacer au besoin.		
manuel d'abord. Si oui, la commande automatique ou le câblage sont défectueux.	Liquide trop bas pour actionner les commandes	Laisser le liquide monter de 76 à 101 mm (3 à 4 po) au-dessus du niveau de démarrage.		
Dans la négative, voir les indications ci-dessus.	Câbles de contacteur à flotteur enchevêtrés	Démêler les câbles de contacteur à flotteur et s'assurer que les contacteurs peuvent bouger librement.		
NON-ARRÊT DE LA POMPE	Câbles de contacteur à flotteur enchevêtrés	Démêler les câbles de contacteur à flotteur et s'assurer que les contacteurs peuvent bouger librement.		
	Poche d'air dans la pompe	Arrêter la pompe pendant environ une minute, puis la remettre en marche. Répéter l'opération jusqu'à ce que la poche d'air s'élimine. Si le problème persiste et que le tuyau de refoulement comporte un clapet de non-retour, on peut percer un trou-purgeur d'air de 4,8 mm (3/16 po) de diamètre dans le tuyau à environ 51 mm (2 po) en aval de l'orifice de refoulement de la pompe.		
	Débit de l'influent égal à celui de la pompe	Il faut peut-être une pompe plus puissante.		
DÉBIT DE REFOULEMENT FAIBLE OU NUL	Clapet de non-retour posé à l'envers, obstrué ou coincé en position fermée	Vérifier l'orientation de la flèche sur le clapet de non- retour et le fonctionnement de ce dernier.		
	Hauteur de charge trop élevée du système	Consulter le détaillant.		
	Entrée de pompe obstruée	Inspecter et dégager l'entrée au besoin.		
	Connexions ou tension inappropriées	Vérifier le sens de rotation de la pompe, la tension et le câblage. Consulter un électricien.		
	Poche d'air dans la pompe	Voir le correctif recommandé pertinent ci-dessus.		
	Roue usée ou endommagée	Inspecter la roue et la remplacer au besoin.		
	Contacteurs à flotteur défectueux ou mal placés	Inspecter, régler ou remplacer les contacteurs au besoin.		
CYCLE DE	Clapet de non-retour défectueux	Inspecter, réparer ou remplacer le clapet au besoin.		
FONCTIONNEMENT RÉPÉTÉ SANS ARRÊT	Installation de confinement des eaux d'égout trop petite	Consulter le détaillant.		
	Contacteurs à flotteur défectueux ou mal placés	Inspecter, régler ou remplacer les contacteurs au besoin.		
	Débit de l'influent supérieur à celui de la pompe	Consulter le détaillant.		

GARANTIE LIMITÉE DE GOULDS WATER TECHNOLOGY

La présente garantie s'applique à chaque pompe de système d'alimentation en eau fabriquée par Goulds Water Technology.

Toute pièce se révélant défectueuse durant la période de garantie sera remplacée sans frais pour le détaillant durant ladite période, qui dure douze (12) mois à compter de la date d'installation ou dix-huit (18) mois à partir de la date de fabrication, soit la période qui expirera la première.

Le détaillant qui, aux termes de cette garantie, désire effectuer une demande de règlement doit s'adresser au distributeur Goulds Water Technology agréé chez lequel la pompe a été achetée et fournir tous les détails à l'appui de sa demande. Le distributeur est autorisé à régler toute demande par le biais du service à la clientèle de Goulds Water Technology.

La garantie ne couvre pas :

- a) les frais de main-d'oeuvre ou de transport ni les frais connexes encourus par le détaillant ;
- b) les frais de réinstallation de l'équipement réparé;
- c) les frais de réinstallation de l'équipement de remplacement ;
- d) les dommages indirects de quelque nature que ce soit ;
- e) ni les pertes découlant de la panne.

Aux fins de la présente garantie, les termes ci-dessous sont définis comme suit :

- 1) "Distributeur" signifie une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique servant d'intermédiaire entre Goulds Water Technology et le détaillant pour les achats, les consignations ou les contrats de vente des pompes en question.
- 2) "Détaillant" veut dire une personne, une société de personnes, une société de capitaux, une association ou autre entité juridique dont les activités commerciales sont la vente ou la location de pompes à des clients.
- 3) "Client" signifie une entité qui achète ou loue les pompes en question chez un détaillant. Un "client" peut être une personne, une société de personnes, une société de capitaux, une société à responsabilité limitée, une association ou autre entité juridique se livrant à quelque activité que ce soit.

CETTE GARANTIE SE RAPPORTE AU DÉTAILLANT SEULEMENT.

Xylem Inc. 2881 East Bayard Street Ext., Suite A Seneca Falls, NY 13148 Téléphone: (866) 325-4210 Télécopie: (888) 322-5877

www.goulds water technology.com

Goulds est une marque déposée de Goulds Pumps, Inc. et est utilisé sous le permis. © 2012, Xylem Inc. IM107 Révision numéro 5 Février 2014