Advanced Machine Learning

MCMC

 $\mathcal{D} = \{4, 4, 6, 4, 2, 2, 5, 9, 5, 4, 3, 2, 5, 4, 4, 11, 6, 2, 3, 11\}$

Monte Carlo methods, MCMC, Variational Methods

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Bayesian Inference Gets Hard

- We saw that in some cases if we had a simple likelihood (normal, binomial, Poisson, multinomial) you can choose a conjugate prior (gamma-normal/Wishart, beta, gamma, Dirchlet) so that the posterior has the same form as the prior
- Very often we are working with more complex models where no conjugate prior exists!
- The posterior is not described by a known distribution
- We have to work a lot harder—particularly with multivariate distributions

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Histograms, Samples and Means

- We could represent our posterior as a histogram, although for multivariate distributions (i.e. when we are modelling more than one variable) a histogram can be unwieldy
- A sample from the posterior distribution is often sufficient e.g. in our topic models (LDA) a typical set of topics is what we are after
- However, when samples vary a lot, often the most useful quantities are expectation, e.g.

$$\begin{split} \mathbb{E}[\Theta] \\ \mathbb{E}[\Theta_i \Theta_j] - \mathbb{E}[\Theta_i] \mathbb{E}[\Theta_j] \end{split}$$

$$\begin{split} \mathbb{E}\left[\Theta_i^2\right] - \mathbb{E}\left[\Theta_i\right]^2 \\ \mathbb{E}\left[\boldsymbol{\Theta}\boldsymbol{\Theta}^\mathsf{T}\right] - \mathbb{E}\left[\boldsymbol{\Theta}\right]\mathbb{E}\left[\boldsymbol{\Theta}\right]^\mathsf{T} \mathbf{I} \end{split}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

1. Sampling

2. Random Number Generation

3. MCMC

Outline

- 1. Sampling
- 2. Random Number Generation
- 3. MCMC

Adam Prügel-Bennett

OMP6208 Advanced Machine Learning

Bayesian Inference

- ullet Recall our problem is that we are given some data \mathcal{D}
- Our posterior is given by

$$\mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})} \qquad \text{or} \qquad f(\boldsymbol{\theta}|\mathcal{D}) = \frac{f(\mathcal{D}|\boldsymbol{\theta})\,f(\boldsymbol{\theta})}{f(\mathcal{D})}$$

- ullet Where heta are the parameters we are trying to infer
- But our likelihood (and/or prior) might be quite complicated
- Typically we don't have a closed form representation for our posterior distibution

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Sample Estimation

 If we can draw independent deviates (aka variates), Θ_i, from our posterior distribution then we can obtain an estimate of our expectation

$$\mathbb{E}[g(\mathbf{\Theta})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{\Theta}_i) \mathbf{I}$$

• Provided our posterior distribution is well behaved the relative error in our estimate will drop off as $1/\sqrt{n}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Drawing Random Samples

- Drawing (pseudo) random variables from a distribution is known as Monte Carlo
- For some very simple distributions we can use the transformation methods to transform a uniform distribution.

Rejection Method

- The transformation method only works when we can easily compute the inverse *cumulative distribution function* (CDF)
- A more general technique is the **rejection method** where we generate deviates from $g_Y(y)$ such that $cg_Y(x) \ge f_X(x)$
- ullet To draw deviates from $f_X(x)$ we draw a deviate $Y\sim g_Y$ and then accept the deviate with probability $f_X(Y)/(cg_Y(Y))$
- The expected rejection rate is c-1
- Need to choose a good distribution $g_Y(y)$

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Problems with Rejection

- The rejection method is very general and often the method of choice (although for normal deviates there is a clever transformation method which is faster)
- However, for complicated probability distributions it can be difficult to find a good proposal distribution $g_Y(y)$
- This is particular true for multivariate distributions
- If the proposal distribution is poor c might be very high and the number of rejections is stupidly high!

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Detailed Balance

- Suppose we have a set of states $\mathcal S$ and want to draw sample from a probability distribution $\pi = (\pi_i|i\in\mathcal S)$
- \bullet We invent a dynamical system with a transition probability M_{ij} from state j to state i such that

$$M_{ij}\pi_j = M_{ji}\pi_i$$

- This is known as detailed balance
- ullet Summing both sides over j

$$\sum_{j} M_{ij} \pi_j = \sum_{j} M_{ji} \pi_i \mathbf{I} = \pi_i \mathbf{I}$$

 $M\pi = \pi$

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Metropolis Algorithm

- ullet A very easy way to achieve detailed balance is starting from state j choose a "neighbouring" state, i with equal probability.
- We accept the move if either
 - $\star \pi_i > \pi_i$ or

Adam Prügel-Bennett

- \star we make the move with a probability π_i/π_i
- If $\pi_i > \pi_j$ then $M_{ij} = 1$ and $M_{ji} = \pi_j/\pi_i$. Thus

$$M_{ij}\pi_j=\pi_j$$

$$M_{ji}\pi_i=\frac{\pi_j}{\pi_i}\pi_i$$
 $=\pi_j$

 \bullet Note that we require the state i to have the same number of neighbours as state j so that detailed balance is satisfied.

Drawing Normal Deviates

Adam Prügel-Bennett

OMP6208 Advanced Machine Learning

Outline

- 1. Sampling
- 2. Random Number Generation
- 3. MCMC

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Convergence of MCMC

- Suppose we start from a state $x(0) = \sum_i c_i v^{(i)}$ where the $v^{(i)}$'s are an eigenvectors of the transition matrix M with eigenvalues λ_i
- It I apply M many times then

$$\boldsymbol{x}(t) = \mathbf{M}^t \boldsymbol{x}(0) \mathbf{I} = \mathbf{M}^t \sum_i c_i \boldsymbol{v}^{(i)} \mathbf{I} = \sum_i \lambda_i^t c_i \boldsymbol{v}^{(i)} \mathbf{I}$$

- \bullet And $\lim_{t\to\infty} x(t) = v^*$ where v^* is the eigenvector with the maximum eigenvalue!
- Now $\|\mathbf{M}v\|_1 \leq \|\mathbf{M}\|_1 \|v\|_1 = \|v\|_1$ so the maximum eigenvalue is 1 with eigenvector π (\mathbf{M} is known as a **stochastic matrix**)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

14

Continuous Variables

• If we are working with continuous variables θ then the equation for detailed balance for the transition probability $W(\theta \to \theta')$ is

$$W(\boldsymbol{\theta} \to \boldsymbol{\theta}')\pi(\boldsymbol{\theta}) = W(\boldsymbol{\theta}' \to \boldsymbol{\theta})\pi(\boldsymbol{\theta}')$$

- ullet where $\pi(oldsymbol{ heta})$ is the probability distribution we wish to sample from
- The update rule is to choose a nearby value heta', compute $r=\pi(heta')/\pi(heta)$ and accept the update with probability $\min(1,r)$
- ullet We require that the probability of choosing $oldsymbol{ heta}$ from $oldsymbol{ heta}'$ is the same as the reverse

Adam Prügel-Bennett

What Makes MCMC Nice

- Because we are free to choose where we move (and choose close by neighbours) $\pi(\theta') \approx \pi(\theta)$ so that moves are not too infrequent
- Also very importantly the updates depend only on the ratio $\pi(\theta')/\pi(\theta)$
- We only need to know our probabilities up to a multiplicative scaling factor
- $\bullet \ \, \text{For sampling from the posterior we only need to know the likelihood and prior} \, \mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})\mathbb{I}(\text{or}\,\,f(\mathcal{D}|\boldsymbol{\theta})f(\boldsymbol{\theta}))\mathbb{I}$
- ullet We don't need to know $\mathbb{P}(\mathcal{D})$ which we generally don't know

Adam Priigel-Bennet

COMP6208 Advanced Machine Learning

Burn-In

Adam Prügel-Bennet

OMP6208 Advanced Machine Learning

Traffic Rate

• Consider monitoring the flow of traffic where we have data

$$\mathcal{D} = (N_1, N_2, \dots, N_n)$$

where N_i is the number of car that past on day i^{\blacksquare}

- We assume $N_i \sim \operatorname{Poi}(\mu)$ and want to infer μ
- The Poisson distribution has a beta conjugate prior
- We don't have any prior knowledge on μ so we use a non-informative prior $\mathrm{Gam}(\mu|0,0)=1/\mu\mathbb{I}$
- Note that we can solve this problem exactly—however, lets compare with MCMCI

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

MCMC in Practice

 $\mathcal{D} = \{4,4,6,4,2,2,5,9,5,4,3,2,5,4,4,11,6,2,3,11\}$

COMP6208 Advanced Machine Learning

What Makes MCMC Nasty

- It can take a long time until our states occur with the probability π (i.e. we have forgotten our initial state)
- We don't even know how long we have to wait!
- Even when we have reached this equilibration time each sample is correlated with the previous sample!
- To get a good approximation to the posterior expectation requires running for many times the equilibration time.
- Note, if we are just finding sample averages then we can use all samples after equilibrating even if they are not independent

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Proposals and Metropolis-Hastings

- We have some freedom in choosing a new proposal θ' from our current position θ —a good choice can increase the acceptance rate making the MCMC more efficient
- ullet We define the proposal distribution $p(oldsymbol{ heta}'|oldsymbol{ heta})$
- \bullet For the standard Metropolis algorithm to work we require $p(\pmb{\theta}'|\pmb{\theta}) = p(\pmb{\theta}|\pmb{\theta}') \mathbb{I}$
- In some cases (e.g when $\theta_i \geq 0$) this can be hard to achieve
- We can modify our update rule to accept a move with probability

$$\min \left(1, \frac{p(\boldsymbol{\theta}|\boldsymbol{\theta}') f(\mathcal{D}|\boldsymbol{\theta}') f(\boldsymbol{\theta}')}{p(\boldsymbol{\theta}'|\boldsymbol{\theta}) f(\mathcal{D}|\boldsymbol{\theta}) f(\boldsymbol{\theta})}\right) \blacksquare$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Proposal Distribution

- If we can choose our proposal distribution $p(\mu'|\mu)$ to be close to the posterior distribution then our acceptance rate would be close to 1
- We choose $p(\mu'|\mu) = \mathrm{Gam}(\mu'|\mu,\mu^2)$ which has $\mathbb{E}[\mu'] = \mu$ and variance 1
- ullet We update with probability $\min(1,r)$ where

$$\begin{split} r &= \frac{\operatorname{Gam}(\mu|\mu'^2, \mu') \frac{1}{\mu'} \prod_{i=1}^n \operatorname{Poi}(N_i|\mu')}{\operatorname{Gam}(\mu'|\mu^2, \mu) \frac{1}{\mu} \prod_{i=1}^n \operatorname{Poi}(N_i|\mu)} \\ &= \frac{\mu \operatorname{Gam}(\mu|\mu'^2, \mu')}{\mu' \operatorname{Gam}(\mu'|\mu^2, \mu)} \mathrm{e}^{-n(\mu'-\mu) + \sum\limits_{i=1}^n N_i \log \left(\frac{\mu'}{\mu}\right)} \blacksquare \end{split}$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

2:

MCMC Details

- To compute correct histograms you need to count samples where no move is made multiple times!
- On modern computers its quite quick to compute millions of samples
- The code is not very difficult to write (although care is need to get everything correct)
- This can be used on complicated problems such as topic models (LDA) with thousands of parameters
- The accuracy of MCMC is slow if it takes a long time to sample the posterior distribution.

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

The MCMC Industry

- MCMC provides a means to accurately sample from very complex models
- There have been many advanced techniques developed to improve MCMC performance
- E.g. hybrid MCMC simulates a dynamics to find good proposals with similar probability far from the starting point
- Often it seems that MCMC is complicated because there are so many optimisations, but often simple implementations are sufficient

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

Conclusions

- As soon as we use complex models we are no longer able to compute the posterior in closed form
- Monte Carlo techniques and particularly MCMC are a very general method for computing samples from the posterior
- These techniques have been highly developed, but very frequently even simple implementations are sufficient to do good inference!
- Variational methods provide an approximate closed form solution to problems with complex likelihoods
- Variational methods are mathematically challenging, but are potentially far faster to compute than MCMCI

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning
