Haverford Problem Solving Group November 3, 2021

Problem 3. Find the 2000th digit in the square root of N = 11...1, where N contains 1998 digits, all of them 1's.

Problem 6. Can the portion of any parabola inside a circle of radius 1 have a length greater than 4?

Problem 10. Suppose that a polygon has integer coordinates for all of its vertices. Let i be the number of integer points that are interior to the polygon, and let b be the number of integer points on its boundary (including vertices as well as points along the sides of the polygon). Then the area of this polygon is

$$i + \frac{b}{2} - 1.$$

Problem 11. Determine whether there exist non-constant polynomials P(x) and Q(x) with real coefficients satisfying

$$P(x)^{10} + P(x)^{9} = Q(x)^{21} + Q(x)^{20}$$
.

Problem 12. Ann and Bob play a game on an infinite checkered plane making moves in turn. A move consists in orienting any unit grid-segment that has not been oriented before. If at some stage some oriented segments form an oriented cycle, Bob wins.

- (a) Bob makes the first move. Does Bob have a strategy that guarantees him to win?
- (b) Ann makes the first move. Does Bob have a strategy that guarantees him to win?

Problem 14. Suppose that f is a function on the interval [1,3] such that $-1 \le f(x) \le 1$ for all x and $\int_1^3 f(x) dx = 0$. How large can $\int_1^3 \frac{f(x)}{x} dx$ be?

Problem 15. Let $a_0 = 5/2$ and $a_k = a_{k-1}^2 - 2$ for $k \ge 1$. Compute

$$\prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k} \right)$$

in closed form.

If you are not in our Discord server, you should definitely join. We will post there handouts, resources, solutions, room/time changes, and (most important of all) pictures whatever food we will have in the meeting. Point your phone camera to the QR code to join it.

