A Auxiliary Lemmas

In this section, we introduce auxiliary lemmas used in our analysis. The first one is Hoeffding's inequality.

Lemma A (Hoeffding's inequality). Let Z_1, \ldots, Z_s be i.i.d. random variables to [-a, a] for a > 0. Denote by A_s the sample average $\sum_{i=1}^s Z_i/s$. Then, for any $\epsilon > 0$, we get

$$\mathbb{P}[A_s + \epsilon \le \mathbb{E}[A_s]] \le \exp\left(-\frac{\epsilon^2 s}{2a^2}\right).$$

Note that this statement can be reinterpreted as follows: it follows that for $\delta \in (0,1)$ with probability at least $1-\delta$

$$A_s + a\sqrt{\frac{2}{s}\log\frac{1}{\delta}} \ge \mathbb{E}[A_s].$$

We next introduce the uniform bound by Rademacher complexity. For a set \mathcal{G} of functions from \mathcal{Z} to [-a,a] and a dataset $S = \{z_i\}_{i=1}^s \subset \mathcal{Z}$, we denote empirical Rademacher complexity by $\Re_S(\mathcal{G})$ and denote Rademacher complexity by $\Re_S(\mathcal{G})$; let $\sigma = (\sigma_i)_{i=1}^s$ be i.i.d random variables taking -1 or 1 with equal probability and let S be distributed according to a distribution μ^s ,

$$\hat{\Re}_S(\mathcal{G}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \frac{1}{s} \sum_{i=1}^s \sigma_i f(x_i) \right], \ \Re_s(\mathcal{G}) = \mathbb{E}_{\mu^s} [\hat{\Re}_S(\mathcal{G})].$$

Lemma B. Let Z_1, \ldots, Z_s be i.i.d random variables to \mathcal{Z} . Denote by $A_s(f)$ the sample average $\sum_{i=1}^s f(Z_i)/s$. Then, for any $\delta \in (0,1)$, we get with probability at least $1-\delta$ over the choice of S,

$$\sup_{f \in \mathcal{G}} |A_s(f) - \mathbb{E}[A_s(f)]| \le 2\Re_s(\mathcal{G}) + a\sqrt{\frac{2}{s}\log\frac{2}{\delta}}.$$

When a function class is VC-class (for the definite see [vdVW96]), its Rademacher complexity is uniformly bounded as in the following lemma which can be easily shown by Dudley's integral bound [Dud99] and the bound on the covering number by VC-dimension (pseudo-dimension) [vdVW96].

Lemma C. Let \mathcal{G} be VC-class. Then, there exists positive value M depending on \mathcal{G} such that $\Re_s(\mathcal{G}) \leq M/\sqrt{m}$.

The following lemma is useful in estimating Rademacher complexity.

Lemma D. (i) Let $h_i : \mathbb{R} \to \mathbb{R}$ $(i \in \{1, ..., s\})$ be L-Lipschitz functions. Then it follows that

$$\mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{s} \sigma_{i} h_{i} \circ f(x_{i}) \right] \leq L \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{s} \sigma_{i} \circ f(x_{i}) \right].$$

(ii) We denote by $\operatorname{conv}(\mathcal{G})$ the convex hull of \mathcal{G} . Then, we have $\hat{\Re}_S(\operatorname{conv}(\mathcal{G})) = \hat{\Re}_S(\mathcal{G})$.

The following lemma gives the generalization bound by the margin distribution, which is originally derived by [KP02]. Let \mathcal{G} be the set of predictors; $\mathcal{G} \subset \{f : \mathcal{X} \to \mathbb{R}^c\}$ and denote $\Pi \mathcal{G} = \{f_y(\cdot) : \mathcal{X} \to | f \in \mathcal{G}, y \in \mathcal{Y}\}$, then the following holds.

Lemma E. Fix $\delta > 0$. Then, for $\forall \rho > 0$, with probability at least $1 - \rho$ over the random choice of S from ν^n , we have $\forall f \in \mathcal{G}$,

$$\mathbb{P}_{\nu}[m_f(X,Y) \le 0] \le \mathbb{P}_{\nu_n}[m_f(X,Y) \le \delta] + \frac{2c^2}{\delta} \Re_n(\Pi \mathcal{G}) + \sqrt{\frac{1}{2n} \log \frac{1}{\rho}}.$$

B Proofs

In this section, we provide missing proofs in the paper.

B. 1 Proofs of Section 3 and 4

We first prove Proposition 1 that states Lipschitz smoothness of the risk function.

Proof of Proposition I. Because l(z,y,w) is \mathcal{C}^2 -function with respect to z,w, there exist semi-positive definite matrices $A_{x,y}^{\phi,\psi}, B_{x,y}^{\phi,\psi}$ such that

$$l(\psi(x), y, w_{\phi}) = l(\phi(x), y, w_{\phi}) + \partial_{z}l(\phi(x), y, w_{\phi})^{\top}(\psi(x) - \phi(x)) + \frac{1}{2}(\psi(x) - \phi(x))^{\top} A_{x,y}^{\phi,\psi}(\psi(x) - \phi(x)),$$

$$l(\psi(x), y, w_{\phi}) + \frac{\lambda}{2} \|w_{\phi}\|_{2}^{2} = l(\psi(x), y, w_{\psi}) + \frac{\lambda}{2} \|w_{\psi}\|_{2}^{2} + (\partial_{w}l(\psi(x), y, w_{\psi}) + \lambda w_{\psi})^{\top}(w_{\phi} - w_{\psi}) + \frac{1}{2}(w_{\phi} - w_{\psi})^{\top} B_{x,y}^{\phi,\psi}(w_{\phi} - w_{\psi}).$$

$$(2)$$

By Assumption 1, we find spectral norms of $A_{x,y}^{\phi,\psi}$ is uniformly bounded with respect to x,y,ϕ,ψ , hence eigen-values are also uniformly bounded. In particular, since $\frac{\lambda}{2}\|w_\phi\|_2^2 \leq \mathcal{R}(\phi,w_\phi) \leq \mathcal{R}(\phi,0) \leq l_0$, we see $-A_{c_\lambda}I \leq A_{x,y}^{\phi,\psi} \leq A_{c_\lambda}I$. By taking the expectation \mathbb{E}_{ν} of the equality (1), we get

$$\mathcal{R}(\psi, w_{\phi}) = \mathcal{R}(\phi, w_{\phi}) + \langle \nabla_{\phi} \mathcal{R}(\phi), \psi - \phi \rangle_{L_{2}^{d}(\nu_{X})} + \frac{1}{2} \mathbb{E}_{\nu} [(\psi(x) - \phi(x))^{\top} A_{x,y}^{\phi, \psi}(\psi(x) - \phi(x))]$$
(3)

and by taking the expectation \mathbb{E}_{ν} of the equality (2), we get

$$\mathcal{R}(\psi, w_{\phi}) = \mathcal{R}(\psi, w_{\psi}) + \frac{1}{2} (w_{\phi} - w_{\psi})^{\mathsf{T}} \mathbb{E}_{\nu} [B_{x,y}^{\phi, \psi}] (w_{\phi} - w_{\psi}), \tag{4}$$

where we used $\partial_w \mathcal{R}(\psi, w_\psi) = 0$. By combining equalities (3) and (4), we have

$$\mathcal{R}(\psi) = \mathcal{R}(\phi) + \langle \nabla_{\phi} \mathcal{R}(\phi), \psi - \phi \rangle_{L_{2}^{d}(\nu_{X})} + H_{\phi}(\psi),$$

where

$$H_{\phi}(\psi) = \frac{1}{2} \mathbb{E}_{\nu} [(\psi(x) - \phi(x))^{\top} A_{x,y}^{\phi,\psi}(\psi(x) - \phi(x))] - \frac{1}{2} (w_{\phi} - w_{\psi})^{\top} \mathbb{E}_{\nu} [B_{x,y}^{\phi,\psi}](w_{\phi} - w_{\psi}).$$

By the uniformly boundedness of $A_{x,y}^{\phi,\psi}$ and the semi-positivity of $B_{x,y}^{\phi,\psi}$, we find $H_{\phi}(\psi) \leq \frac{A_{c_{\lambda}}}{2} \|\phi - \psi\|_{L_{2}^{d}(\nu_{X})}^{2}$. The other cases can be shown in the same manner, thus, we finish the proof.

We next show the consistency of functional gradient norms.

Proof of Proposition 2. We now prove the first inequality. Note that the integrand of y'-th element of $\nabla_f \mathcal{L}(f)(x)$ for multiclass logistic loss can be written as

$$\partial_{\zeta_{y'}}l(f(x),y) = -\mathbf{1}[y=y'] + \frac{\exp(f_{y'}(x))}{\sum_{\overline{y}\in\mathcal{Y}}\exp(f_{\overline{y}}(x))}$$

Therefore, we get

$$\begin{split} \|\nabla_{f}\mathcal{L}(f)\|_{L_{1}^{c}(\nu_{X})} &= \mathbb{E}_{\nu_{X}} \|\nabla_{f}\mathcal{L}(f)(X)\|_{2} \\ &= \mathbb{E}_{\nu_{X}} \|\mathbb{E}_{\nu(Y|X)}[\partial_{\zeta}(f(X),Y)]\|_{2} \\ &= \mathbb{E}_{\nu_{X}} \left[\sqrt{\sum_{y' \in \mathcal{Y}} (\mathbb{E}_{\nu(Y|X)}[\partial_{\zeta_{y'}}(f(X),Y)])^{2}} \right] \\ &\geq \frac{1}{\sqrt{c}} \sum_{y' \in \mathcal{Y}} \mathbb{E}_{\nu_{X}} \left[\left| \mathbb{E}_{\nu(Y|X)}[\partial_{\zeta_{y'}}(f(X),Y)] \right| \right] \end{split}$$

$$\begin{split} &= \frac{1}{\sqrt{c}} \sum_{y' \in \mathcal{Y}} \mathbb{E}_{\nu_X} \left[\left| \nu(y'|X) \left(-1 + \frac{\exp(f_{y'}(X))}{\sum_{\overline{y} \in \mathcal{Y}} \exp(f_{\overline{y}}(X))} \right) + \sum_{y \neq y'} \nu(y|X) \frac{\exp(f_{y'}(X))}{\sum_{\overline{y} \in \mathcal{Y}} \exp(f_{\overline{y}}(X))} \right] \right] \\ &= \frac{1}{\sqrt{c}} \sum_{y' \in \mathcal{Y}} \mathbb{E}_{\nu_X} \left[\left| \nu(y'|X) \left(-1 + \frac{\exp(f_{y'}(X))}{\sum_{\overline{y} \in \mathcal{Y}} \exp(f_{\overline{y}}(X))} \right) + (1 - \nu(y'|X)) \frac{\exp(f_{y'}(X))}{\sum_{\overline{y} \in \mathcal{Y}} \exp(f_{\overline{y}}(X))} \right] \right] \\ &= \frac{1}{\sqrt{c}} \sum_{y' \in \mathcal{Y}} \mathbb{E}_{\nu_X} \left[\left| -\nu(y'|X) + \frac{\exp(f_{y'}(X))}{\sum_{\overline{y} \in \mathcal{Y}} \exp(f_{\overline{y}}(X))} \right| \right] \\ &= \frac{1}{\sqrt{c}} \sum_{y' \in \mathcal{Y}} \| -\nu(y'|\cdot) + p_f(y'|\cdot) \|_{L_1(\nu_X)}, \end{split}$$

where for the first inequality we used $(\sum_{i=1}^{c} a_i)^2 \le c \sum_{i=1}^{c} a_i^2$. Noting that the second inequality in Proposition 2 can be shown in the same way by replacing ν by ν_n , we finish the proof.

We here give the proof of the following inequality concerning choice of embedding introduced in section 4.

$$||T_{k_t,n}\partial_{\phi}\mathcal{R}_n(\phi_t, w_{t+1})||_{k_t}^2 \ge \frac{1}{d}||\partial_{\phi}\mathcal{R}_n(\phi_t, w_{t+1})||_{L_1^d(\nu_{n,X})}^2$$
(5)

Proof of (5). For notational simplicity, we denote by $G_t = \partial_{\phi} \mathcal{R}_n(\phi_t, w_{t+1})(\cdot)$ and by G_t^i the *i*-the element of G_t . Then, we get

$$\begin{split} \|T_{k_{t},n}(G_{t}/\|G_{t}(\cdot)\|_{2})\|_{k_{t}}^{2} &= \langle G_{t}, T_{k_{t},n}(G_{t}/\|G_{t}(\cdot)\|_{2}) \rangle_{L_{2}^{d}(\nu_{n,X})} \\ &= \mathbb{E}_{(X,X') \sim \nu_{n,X}^{2}} [G_{t}(X)^{\top} G_{t}(X') G_{t}(X')^{\top} G_{t}(X)/(\|G_{t}(X)\|_{2} \|G_{t}(X')\|_{2})] \\ &= \sum_{i,j=1}^{d} (\mathbb{E}_{\nu_{n,X}} [G_{t}^{i}(X) G_{t}^{j}(X)/\|G_{t}(X)\|_{2}])^{2} \\ &\geq \sum_{i=1}^{d} (\mathbb{E}_{\nu_{n,X}} [G_{t}^{i}(X)^{2}]/\|G_{t}(X)\|_{2})^{2} \\ &\geq \frac{1}{d} \mathbb{E}_{\nu_{n,X}} [\|G_{t}(X)\|_{2}]^{2} = \frac{1}{d} \|G_{t}\|_{L_{1}^{d}(\nu_{n,X})}^{2}, \end{split}$$

where we used $(\sum_{i=1}^{c} a_i)^2 \le c \sum_{i=1}^{c} a_i^2$.

B. 2 Empirical risk minimization and generalization bound

In this section, we give the proof of convergence of Algorithm 1 for the empirical risk minimization. We here briefly introduce the kernel function that provides useful bound in our analysis. A kernel function k is a symmetric function $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that for arbitrary $s \in \mathbb{N}$ and points $\forall (x_i)_{i=1}^s$, a matrix $(k(x_i, x_j))_{i,j=1}^s$ is positive semi-definite. This kernel defines a reproducing kernel Hilbert space \mathcal{H}_k of functions on \mathcal{X} , which has two characteristic properties: (i) for $\forall x \in \mathcal{X}$, a function $k(x,\cdot): \mathcal{X} \to \mathbb{R}$ is an element of \mathcal{H}_k , (ii) for $\forall f \in \mathcal{H}_k$ and $\forall x \in \mathcal{X}$, $f(x) = \langle f, k(x,\cdot) \rangle_{\mathcal{H}_k}$, where $\langle , \rangle_{\mathcal{H}_k}$ is the inner-product in \mathcal{H}_k . These properties are very important and the latter one is called reproducing property. We extend the inner-product into the product space \mathcal{H}_k^d in a straightforward way, i.e., $\langle f, g \rangle_{\mathcal{H}_k^d} = \sum_{i=1}^d \langle f^i, g^i \rangle_{\mathcal{H}_k}$.

The following proposition is useful in our analysis. The first property mean that the notation $\|T_{k_t,n}\nabla\mathcal{R}_n(\phi_t)\|_{k_t}$ provided in the paper is nothing but the norm of $T_{k_t,n}\nabla\mathcal{R}_n(\phi_t)$ by the inner-product $\langle , \rangle_{\mathcal{H}^d_t}$.

Proposition A. For a kernel function k, the following hold.

- $\langle f,g\rangle_{L_2(\nu_X)} = \langle T_kf,g\rangle_{\mathcal{H}_k^d}$ for $f \in L_2^d(\nu_X), \ g \in \mathcal{H}_k^d$ where $T_kf = \mathbb{E}_{\nu_X}[f(X)k(X,\cdot)],$ $\langle f,g\rangle_{L_2(\nu_{n,X})} = \langle T_{k,n}f,g\rangle_{\mathcal{H}_k^d}$ for $f \in L_2^d(\nu_{n,X}), \ g \in \mathcal{H}_k^d$ where $T_{k,n}f = \mathbb{E}_{\nu_{n,X}}[f(X)k(X,\cdot)],$
- $||f||_{L_2(\nu_X)}^2 \le \mathbb{E}_{\nu_X}[k(X,X)]||f||_{\mathcal{H}_k^d}^2$ for $f \in \mathcal{H}_k^d$, $||f||_{L_2(\nu_{n,X})}^2 \le \mathbb{E}_{\nu_{n,X}}[k(X,X)]||f||_{\mathcal{H}_k^d}^2$ for $f \in \mathcal{H}_k^d$.

Proof. We show only the case of ν_X because we can prove the other case in the same manner. For $f \in L_2(\nu_X), g \in \mathcal{H}_k^d$, we get the first property by using reproducing property,

$$\langle f, g \rangle_{L_2(\nu_X)} = \mathbb{E}_{\nu_X}[f(X) \top \langle g, k(X, \cdot) \rangle_{\mathcal{H}_{\nu}^d}] = \langle g, T_k f \rangle_{\mathcal{H}_{\nu}^d}.$$

We next show the second property as follows. For $\forall f \in \mathcal{H}_k^d$, we get

$$\begin{split} \|f\|_{L_{2}(\nu_{X})}^{2} &= \mathbb{E}_{\nu_{X}} \|f(X)\|_{2}^{2} \\ &= \mathbb{E}_{\nu_{X}} \|\langle f(\cdot), k(X, \cdot) \rangle_{\mathcal{H}_{k}^{d}} \|_{2}^{2} \\ &\leq \mathbb{E}_{\nu_{X}} \|k(X, \cdot)\|_{\mathcal{H}_{k}}^{2} \|f\|_{\mathcal{H}_{k}^{d}}^{2} \\ &= \mathbb{E}_{\nu_{X}} [k(X, X)] \|f\|_{\mathcal{H}_{k}^{d}}^{2}. \end{split}$$

We give the proof of Theorem 1 concerning the convergence of functional gradient norms.

Proof of Theorem 1 . When $\eta \leq \frac{1}{A_{c_\lambda}K}$, we have from Proposition 1 and Proposition A,

$$\mathcal{R}_n(\phi_{t+1}, w_{t+2}) \le \mathcal{R}_n(\phi_t, w_{t+1}) - \frac{\eta}{2} ||T_{k_t, n} \partial_{\phi} \mathcal{R}_n(\phi_t, w_{t+1})||_{k_t}^2.$$

By Summing this inequality over $t \in \{0, \dots, T-1\}$ and dividing by T, we get

$$\frac{1}{T} \sum_{t=0}^{T-1} \| T_{k_t,n} \partial_{\phi} \mathcal{R}_n(\phi_t, w_{t+1}) \|_{k_t}^2 \le \frac{2}{\eta T} \mathcal{R}_n(\phi_0, w_0), \tag{6}$$

where we used $\mathcal{R}_n \geq 0$ and $\mathcal{R}_n(\phi_0, w_1) \leq \mathcal{R}_n(\phi_0, w_0)$. On the other hand, since $\partial_z l(z, y, w) = \partial_z l(w^\top z, y) = w \partial_\zeta l(w^\top z, y)$, it follows that

$$\begin{split} \partial_{\phi} \mathcal{R}(\phi, w)(x) &= \mathbb{E}_{\nu(Y|x)} [\partial_z l(\phi(x), y, w)] \\ &= \mathbb{E}_{\nu(Y|x)} [w \partial_{\zeta} l(w^{\top} \phi(x), y)] \\ &= w \nabla_f \mathcal{L}(w^{\top} \phi)(x). \end{split}$$

Thus, by the assumption on $(w_t^\top w_t)_{t=0}^{T_0}$, we get for $t \in \{0, \dots, T-1\}$

$$\|\partial_{\phi} \mathcal{R}(\phi_{t}, w_{t+1})\|_{L_{2}^{d}(\nu_{X})}^{2} = \mathbb{E}_{\nu_{X}}[\|\nabla_{f} \mathcal{L}(w_{t+1}^{\top} \phi_{t})(X)^{\top} w_{t+1}^{\top} w_{t+1} \nabla_{f} \mathcal{L}(w_{t+1}^{\top} \phi_{t})(X)\|_{2}^{2}]$$

$$\geq \sigma^{2} \mathbb{E}_{\nu_{X}}[\|\nabla_{f} \mathcal{L}(w_{t+1}^{\top} \phi_{t})(X)\|_{2}^{2}]$$

$$= \sigma^{2} \|\nabla_{f} \mathcal{L}(w_{t+1}^{\top} \phi_{t})\|_{L_{2}^{c}(\nu_{X})}^{2}.$$
(7)

Combining inequalities (6) (7) and Assumption 2, we get

$$\min_{t \in [T]} \|\nabla_f \mathcal{L}(w_{t+1}^\top \phi_t)\|_{L_p^c(\nu_X)}^q \le \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla_f \mathcal{L}(w_{t+1}^\top \phi_t)\|_{L_p^c(\nu_X)}^q \le \frac{2}{\eta \gamma \sigma^q T} \mathcal{R}_n(\phi_0, w_0) + \frac{\epsilon}{\sigma^q}.$$

Since $p \geq 1$, we observe $\|\nabla_f \mathcal{L}(w_{t+1}^\top \phi_t)\|_{L_1^c(\nu_X)} \leq \|\nabla_f \mathcal{L}(w_{t+1}^\top \phi_t)\|_{L_p^c(\nu_X)}$ and we finish the proof.

We next show Theorem 2 that gives the generalization bound by the margin distribution. To do that, we give an upper-bound on the margin distribution by the functional gradient norm.

Proposition B. For $\forall \delta > 0$, the following bound holds.

$$\mathbb{P}_{\nu_n}[m_f(X,Y) \leq \delta] \leq \left(1 + \frac{1}{\exp(-\delta)}\right) \sqrt{c} \|\nabla_f \mathcal{L}_n(f)\|_{L_1^c(\nu_{n,X})}$$

Proof. If $m_f(x,y) \leq \delta$, then, we see

$$\sum_{y' \neq y} \exp(f_{y'}(x) - f_y(x)) \ge \exp\left(\max_{y' \neq y} f_{y'}(x) - f_y(x)\right) = \exp(-m_f(x, y)) \ge \exp(-\delta).$$

This implies,

$$p_f(y|x) = \frac{1}{1 + \sum_{y' \neq y} \exp(f_{y'}(x) - f_y(x))} \le \frac{1}{1 + \exp(-\delta)}.$$

Thus, we get by Markov inequality and Proposition 2,

$$\begin{split} \mathbb{P}_{\nu_n}[m_f(X,Y) \leq \delta] &\leq \mathbb{P}_{\nu_n} \left[p_f(Y|X) \leq \frac{1}{1 + \exp(-\delta)} \right] \\ &= \mathbb{P}_{\nu_n} \left[1 - p_f(Y|X) \geq \frac{\exp(-\delta)}{1 + \exp(-\delta)} \right] \\ &\leq \left(1 + \frac{1}{\exp(-\delta)} \right) \mathbb{E}_{\nu_n}[1 - p_f(Y|X)] \\ &\leq \left(1 + \frac{1}{\exp(-\delta)} \right) \mathbb{E}_{\nu_n}[\nu_n(Y|X) - p_f(Y|X)] \\ &= \left(1 + \frac{1}{\exp(-\delta)} \right) \sum_{y \in \mathcal{Y}} \|\nu_n(y|\cdot) - p_f(y|\cdot)] \|_{L_1(\nu_{n,X})} \\ &\leq \left(1 + \frac{1}{\exp(-\delta)} \right) \sqrt{c} \|\nabla_f \mathcal{L}_n(f)\|_{L_1^c(\nu_{n,X})}. \end{split}$$

We prove here Theorem 2.

Proof of Theorem 2. To proof the theorem, we give the network structure. Note that the connection at the t-th layer is as follows.

$$\phi_{t+1}(x) = \phi_t(x) - \eta D_t \sigma(C_t \phi_t(x)).$$

We define recursively the family of functions \mathcal{H}_t and $\hat{\mathcal{H}}_t$ where each neuron belong: We denote by $P_j \in \mathbb{R}^d$ the projection vector to j-th coordinate.

$$\mathcal{H}_{0} \stackrel{def}{=} \{P_{j}: \mathcal{X} \to \mathbb{R} \mid j \in \{1, \dots, d\}\},$$

$$\hat{\mathcal{H}}_{t} \stackrel{def}{=} \{\sigma(c_{t}^{\top} \phi_{t}): \mathcal{X} \to \mathbb{R} \mid \phi_{t} \in \mathcal{H}_{t}^{d}, c_{t-1} \in \mathbb{R}^{d}, \|c_{t-1}\|_{1} \leq \Lambda\},$$

$$\mathcal{H}_{t+1} \stackrel{def}{=} \{\phi_{t}^{j} - \eta d_{t}^{\top} \psi_{t}: \mathcal{X} \to \mathbb{R} \mid \phi_{t}^{j} \in \mathcal{H}_{t}, \psi_{t} \in \hat{\mathcal{H}}_{t}^{d}, d_{t} \in \mathbb{R}^{d}, \|d_{t}\|_{1} \leq \Lambda'\}.$$

Then, the family of predictors of $y \in \mathcal{Y}$ can be written as

$$\mathcal{G}_{T-1,y} \stackrel{def}{=} \{ w_y^\top \phi_{T-1} : \mathcal{X} \to \mathbb{R} \mid \phi \in \mathcal{H}_{T-1}^d, w_y \in \mathbb{R}^d, ||w_y||_1 \le \Lambda_w \}.$$

Note that $\mathcal{G}_{T-1} = \{(f_y)_{y \in \mathcal{Y}} \mid f_y \in \mathcal{G}_{T-1,y}, y \in \mathcal{Y}\}.$

From these relationships and Lemma D, we get

$$\hat{\Re}_{S}(\mathcal{H}_{t}) \leq \hat{\Re}_{S}(\mathcal{H}_{t-1}) + \eta \Lambda' \hat{\Re}_{S}(\hat{\mathcal{H}}_{t-1})$$

$$\leq (1 + \eta \Lambda' \Lambda L_{\sigma}) \hat{\Re}_{S}(\mathcal{H}_{t-1}),$$

$$\hat{\Re}_{S}(\mathcal{G}_{T-1,y}) \leq \Lambda_{w} \hat{\Re}_{S}(\mathcal{H}_{T-1}).$$

The Rademacher complexity of \mathcal{H}_0 is obtained as follows. Since $||P_j||_2 = 1$, we have

$$\hat{\Re}_S(\mathcal{H}_0) = \frac{1}{n} \mathbb{E}_{(\sigma_i)_{i=1}^n} \left[\sup_{j \in \{1, \dots, d\}} \sum_{i=1}^n \sigma_i P_j x_i \right]$$

$$\leq \frac{1}{n} \mathbb{E}_{(\sigma_i)_{i=1}^n} \left[\sup_{j \in \{1, \dots, d\}} \|P_j\|_2 \left\| \sum_{i=1}^n \sigma_i x_i \right\|_2 \right]$$

$$= \frac{1}{n} \mathbb{E}_{(\sigma_i)_{i=1}^n} \left[\left\| \sum_{i=1}^n \sigma_i x_i \right\|_2 \right]$$

$$\leq \frac{1}{n} \left(\mathbb{E}_{(\sigma_i)_{i=1}^n} \left[\left\| \sum_{i=1}^n \sigma_i x_i \right\|_2^2 \right] \right)^{\frac{1}{2}}$$

$$= \frac{1}{n} \left(\sum_{i=1}^n \|x_i\|_2^2 \right)^{\frac{1}{2}} \leq \frac{\Lambda_\infty}{\sqrt{n}},$$

where we used the independence of σ_i when taking the expectation.

We set
$$\Pi \mathcal{G}_{T-1} = \{ f_y(\cdot) : \mathcal{X} \to | f \in \mathcal{G}_{T-1}, y \in \mathcal{Y} \}$$
. Noting that $\hat{\Re}_S(\Pi \mathcal{G}_{T-1}) \leq \sum_{y \in \mathcal{Y}} \hat{\Re}_S(\mathcal{G}_{T-1,y})$, we get

$$\hat{\Re}_S(\Pi \mathcal{G}_{T-1}) \le c\Lambda_w \Lambda_\infty (1 + \eta \Lambda \Lambda' L_\sigma)^{T-1} / \sqrt{n}.$$

Thus, we can finish the proof by applying Proposition B and Lemma E.

B. 3 Sample-splitting technique

In this subsection, we provide proofs for the convergence analysis of the sample-splitting variant of the method for the expected risk minimization. We first give the statistical error bound on the gap between the empirical and expected functional gradients.

Proof of Proposition 3 . For the probability measure ν , we denote by $\phi_{\sharp}\nu$ the push-forward measure $(\phi,id)_{\sharp}\nu$, namely, $(\phi,id)_{\sharp}\nu$ is the measure that the random variable $(\phi(X),Y)$ follows. We also define $\phi_{\sharp}\nu_m$ in the same manner. Then, we get

$$\|T_{k}\partial_{\phi}\mathcal{R}(\phi,w_{0}) - T_{k,m}\partial_{\phi}\mathcal{R}_{m}(\phi,w_{0})\|_{L_{2}^{d}(\mu)}$$

$$= \sqrt{\mathbb{E}_{X'\sim\mu}\|\mathbb{E}_{\nu}[\partial_{z}l(\phi(X),Y,w_{0})k(X,X')] - \mathbb{E}_{\nu_{m}}[\partial_{z}l(\phi(X),Y,w_{0})k(X,X')]\|_{2}^{2}}.$$

$$= \sqrt{\sum_{j=1}^{d}\mathbb{E}_{X'\sim\mu}\|(\mathbb{E}_{\nu}[\partial_{z_{j}}l(\phi(X),Y,w_{0})\iota(\phi(X)))] - \mathbb{E}_{\nu_{m}}[\partial_{z_{j}}l(\phi(X),Y,w_{0})\iota(\phi(X))])^{\top}\iota(\phi(X'))\|^{2}}.$$

$$\leq \sqrt{K\sum_{j=1}^{d}\|\mathbb{E}_{\nu}[\partial_{z_{j}}l(\phi(X),Y,w_{0})\iota(\phi(X)))] - \mathbb{E}_{\nu_{m}}[\partial_{z_{j}}l(\phi(X),Y,w_{0})\iota(\phi(X))]\|_{2}^{2}}$$

$$\leq \sqrt{K\sum_{j=1}^{d}\sum_{i=1}^{D}\|\mathbb{E}_{\phi_{\sharp}\nu}[\partial_{z_{j}}l(X,Y,w_{0})\iota^{i}(X))] - \mathbb{E}_{\phi_{\sharp}\nu_{m}}[\partial_{z_{j}}l(X,Y,w_{0})\iota^{i}(X)]\|^{2}}.$$

$$(8)$$

To derive an uniform bound on (8), we estimate Rademacher complexity of

$$\mathcal{G}_{ij} \stackrel{def}{=} \{ \partial_{z_j} l(x, y, w_0) \iota^i(x) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \mid \iota^i \in \mathcal{F}^i \}.$$

For $(x_l,y_l)_{l=1}^m\subset\mathcal{X}\times\mathcal{Y}$, we set $h_l(r)=r\partial_{z_j}l(x_l,y_l,w_0)$. Since, $|\partial_{z_j}l(x_l,y_l,w_0)|\leq \beta_{\|w_0\|_2}$ by Assumption 3, h_l is $\beta_{\|w_0\|_2}$ -Lipschitz continuous. Thus, from Lemma C and Lemma D, there exists M such that for all $i\in\{1,\ldots,D\},\ j\in\{1,\ldots,d\}$,

$$\hat{\Re}_{m}(\mathcal{G}_{ij}) = \mathbb{E}_{\sigma} \left[\sup_{\iota^{i} \in \mathcal{F}^{i}} \sum_{l=1}^{m} \sigma_{l} h_{l}(\iota^{i}(x_{l})) \right]$$

$$\leq \beta_{\|w_0\|_2} \mathbb{E}_{\sigma} \left[\sup_{\iota^i \in \mathcal{F}^i} \sum_{l=1}^m \sigma_l \iota^i(x_l) \right]$$

$$\leq \beta_{\|w_0\|_2} \frac{M}{\sqrt{m}}.$$

Therefore, by applying Lemma B with $\delta = \frac{\rho}{dD}$ for $\forall i,j$ simultaneously, it follows that with probability at least $1 - \rho$ for $\forall i,j$

$$\sup_{\iota^i \in \mathcal{F}^i} \left| \mathbb{E}_{\phi_{\sharp}\nu} [\partial_{z_j} l(X, Y, w_0) \iota^i(X)) \right| - \mathbb{E}_{\phi_{\sharp}\nu_m} [\partial_{z_j} l(X, Y, w_0) \iota^i(X)] \right| \le \frac{\beta_{\parallel w_0 \parallel_2}}{\sqrt{m}} \left(2M + \sqrt{2K \log \frac{2dD}{\rho}} \right). \tag{9}$$

Putting (9) int (8), we get with probability at least $1 - \rho$

$$\sup_{\iota \in \mathcal{F}} \|T_k \partial_{\phi} \mathcal{R}(\phi, w_0) - T_{k,m} \partial_{\phi} \mathcal{R}_m(\phi, w_0)\|_{L_2^d(\mu)} \le \beta_{\|w_0\|_2} \sqrt{\frac{KdD}{m}} \left(2M + \sqrt{2K \log \frac{2dD}{\rho}} \right).$$

We here prove Theorem 3 by using statistical guarantees of empirical functional gradients.

Proof of Theorem 3. For notational simplicity, we set $m \leftarrow \lfloor n/T \rfloor$ and $\delta \leftarrow \rho/T$. We first note that

$$\begin{split} \langle \partial_{\phi} \mathcal{R}(\phi_t, w_0), T_{k_t, m} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0) \rangle_{L_2^d(\nu_X)} &= \frac{1}{m} \sum_{j=1}^m \mathbb{E}_{\nu_X} [\partial_{\phi} \mathcal{R}(\phi_t, w_0)(X)^{\top} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0)(x_j) k_t(X, x_j)] \\ &= \frac{1}{m} \sum_{j=1}^m T_{k_t} \partial_{\phi} \mathcal{R}(\phi_t, w_0)(x_j)^{\top} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0)(x_j) \\ &= \langle T_{k_t} \partial_{\phi} \mathcal{R}(\phi_t, w_0), \partial_{\phi} \mathcal{R}_m(\phi_t, w_0) \rangle_{L_2^d(\nu_{m, X})} \,. \end{split}$$

Noting that $\|\partial_z l(\phi_t(x_j),y_j,w_0)\|_2 \leq \beta_{\|w_0\|_2}$ by Assumption 1, and applying Proposition 3 for all $t\in\{0,\ldots,T-1\}$ independently, it follows that with probability at least $1-T\delta$ (i.e., $1-\rho$) for $\forall t\in\{0,\ldots,T-1\}$

$$\left| \langle \partial_{\phi} \mathcal{R}(\phi_{t}, w_{0}), T_{k_{t},m} \partial_{\phi} \mathcal{R}_{m}(\phi_{t}, w_{0}) \rangle_{L_{2}^{d}(\nu_{X})} - \langle T_{k_{t},m} \partial_{\phi} \mathcal{R}_{m}(\phi_{t}, w_{0}), \partial_{\phi} \mathcal{R}_{m}(\phi_{t}, w_{0}) \rangle_{L_{2}^{d}(\nu_{m,X})} \right|
\leq \| T_{k_{t}} \partial_{\phi} \mathcal{R}(\phi_{t}, w_{0}) - T_{k_{t},m} \partial_{\phi} \mathcal{R}_{m}(\phi_{t}, w_{0}) \|_{L_{2}^{d}(\nu_{m,X})} \| \partial_{\phi} \mathcal{R}_{m}(\phi_{t}, w_{0}) \|_{L_{2}^{d}(\nu_{m,X})}
\leq \beta_{\|w_{0}\|_{2}} \epsilon(m, \delta).$$
(10)

We next give the following bound.

$$||T_{k_t}\partial_{\phi}\mathcal{R}_m(\phi_t, w_0)||_{L_2^d(\nu_X)}^2 = \mathbb{E}_{\nu_X} \left\| \frac{1}{m} \sum_{j=1}^m \partial_z l(\phi_t(x_i), y_i, w_0) k_t(x_i, X) \right\|_2^2 \le \beta_{\|w_0\|_2}^2 K^2.$$
 (11)

On the other hand, we get by Proposition 1

$$\mathcal{R}(\phi_{t+1}, w_0) \leq \mathcal{R}(\phi_{t+1}, w_0) - \eta \left\langle \partial_{\phi} \mathcal{R}(\phi_t, w_0), T_{k_t, m} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0) \right\rangle_{L_2^d(\nu_X)} + \frac{\eta^2 A_{\|w_0\|_2}}{2} \|T_{k_t} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0)\|_{L_2^d(\nu_X)}^2. \tag{12}$$

Combining inequalities (10), (11), and (12), we have with probability at least $1 - T\delta$ for $t \in \{0, \dots, T - 1\}$,

$$\mathcal{R}(\phi_{t+1}, w_0) \leq \mathcal{R}(\phi_{t+1}, w_0) - \eta \|T_{k_t, m} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0)\|_{k_t}^2 + \eta \beta_{\|w_0\|_2} \epsilon(m, \delta) + \frac{\eta^2 \beta_{\|w_0\|_2}^2 K^2 A_{\|w_0\|_2}}{2}.$$

By Summing this inequality over $t \in \{0, \dots, T-1\}$ and dividing by T, we get with probability $1-T\delta$

$$\frac{1}{T} \sum_{t=0}^{T-1} \|T_{k_t,m} \partial_{\phi} \mathcal{R}_m(\phi_t, w_0)\|_{k_t}^2 \le \frac{\mathcal{R}(\phi_0, w_0)}{\eta T} + \beta_{\|w_0\|_2} \epsilon(m, \delta) + \frac{\eta \beta_{\|w_0\|_2}^2 K^2 A_{\|w_0\|_2}}{2}.$$

Thus by Assumption 2 and the assumption on $w_0^{\top}w_0$, we get

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla_f \mathcal{L}_m(w_0^\top \phi_t)\|_{L_p^d(\nu_{m,X})}^q \le \frac{1}{\gamma \sigma^q} \left\{ \frac{\mathcal{R}(\phi_0, w_0)}{\eta T} + \beta_{\|w_0\|_2} \epsilon(m, \delta) + \frac{\eta \beta_{\|w_0\|_2}^2 K^2 A_{\|w_0\|_2}}{2} + \gamma \epsilon \right\}.$$
(13)

To clarify the relationship between $\|\nabla_f \mathcal{L}_m(f)\|_{L^c_1(\nu_{m,X})}$ and $\|\nabla_f \mathcal{L}(f)\|_{L^c_1(\nu_X)}$, we take an expectation of the former term with respect to samples $(X_j,Y_j)_{j=1}^m \sim \nu^m$. Since $\|\partial_\zeta l(\zeta,y)\|_2 \leq B$, we obtain

$$\begin{split} \mathbb{E}_{(X_{j},Y_{j})_{j=1}^{m} \sim \nu^{m}} \|\nabla_{f} \mathcal{L}_{m}(f)\|_{L_{1}^{c}(\nu_{m,X})} &= \mathbb{E}_{(X,Y) \sim \nu_{m}} \|\partial_{\zeta} l(f(X),Y)\|_{2} \\ &\geq \frac{1}{B} \mathbb{E}_{(X,Y) \sim \nu_{m}} \|\partial_{\zeta} l(f(X),Y)\|_{2}^{2} \\ &\geq \frac{1}{B} \mathbb{E}_{\nu_{m,X}} \|\mathbb{E}_{\nu(Y|X)} [\partial_{\zeta} l(f(X),Y)]\|_{2}^{2} \\ &= \frac{1}{B} \mathbb{E}_{\nu_{m,X}} \|\nabla_{f} \mathcal{L}(f)(X)\|_{2}^{2} \\ &= \frac{1}{B} \|\nabla_{f} \mathcal{L}(f)\|_{L_{2}^{c}(\nu_{X})}^{2}. \end{split}$$

Hence, applying Hoeffding's inequality with $\delta \leftarrow \rho/T$ to $\mathbb{E}_{(X_j,Y_j)_{j=1}^m \sim \nu^m} \|\nabla_f \mathcal{L}_m(w_0^\top \phi_t)\|_{L_1^c(\nu_{m,X})}$ for all $t \in \{0,\ldots,T-1\}$ independently, we find that with probability $1-T\delta$ for $\forall t \in \{0,\ldots,T-1\}$,

$$\|\nabla_{f} \mathcal{L}_{m}(w_{0}^{\top} \phi_{t})\|_{L_{1}^{c}(\nu_{m,X})} + B\sqrt{\frac{2}{m} \log \frac{1}{\delta}} \ge \mathbb{E}_{\sim \nu^{m}} \|\nabla_{f} \mathcal{L}_{m}(w_{0}^{\top} \phi_{t})\|_{L_{1}^{c}(\nu_{m,X})} \ge \frac{1}{B} \|\nabla_{f} \mathcal{L}(w_{0}^{\top} \phi_{t})\|_{L_{1}^{c}(\nu_{X})}^{2}, \quad (14)$$

where we used for the last inequality $\|\cdot\|_{L^{c}_{2}(\nu_{X})}^{2} \geq \|\cdot\|_{L^{c}_{1}(\nu_{X})}^{2}$.

We set $t_* = \arg\min_{t \in \{0, \dots, T-1\}} \|\nabla_f \mathcal{L}_m(w_0^\top \phi_t)\|_{L_p^d(\nu_{m,X})}$. Combining inequalities (13) and (14) and noting $p \geq 1$, we get with probability at least $1 - 2T\delta$,

$$\frac{1}{B} \|\nabla_f \mathcal{L}(w_0^\top \phi_{t_*})\|_{L_1^c(\nu_X)}^2 \leq B \sqrt{\frac{2}{m} \log \frac{1}{\delta}} + \frac{1}{\gamma^{1/q} \sigma} \left\{ \frac{\mathcal{R}(\phi_0, w_0)}{\eta T} + \beta_{\|w_0\|_2} \epsilon(m, \delta) + \frac{\eta \beta_{\|w_0\|_2}^2 K^2 A_{\|w_0\|_2}}{2} + \gamma \epsilon \right\}^{\frac{1}{q}}.$$

Noting that $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ for a, b > 0, we finally obtain

$$\|\nabla_f \mathcal{L}(w_0^\top \phi_{t_*})\|_{L_1^c(\nu_X)} \leq B\left(\frac{2}{m}\log\frac{1}{\delta}\right)^{\frac{1}{4}} + \sqrt{\frac{B}{\gamma^{1/q}\sigma}} \left\{ \frac{\mathcal{R}(\phi_0, w_0)}{\eta T} + \beta_{\|w_0\|_2} \epsilon(m, \delta) + \frac{\eta \beta_{\|w_0\|_2}^2 K^2 A_{\|w_0\|_2}}{2} + \gamma \epsilon \right\}^{\frac{1}{2q}}.$$

Recalling that $m \leftarrow \lfloor n/T \rfloor$ and $\delta \leftarrow \rho/T$, the proof is finished.

References

[Dud99] Richard M Dudley. *Uniform Central Limit Theorems*. Cambridge University Press, 1999.

[KP02] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. *The Annals of Statistics*, 30(1):1–50, 2002.

[vdVW96] AW van der Vaart and Jon Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, 1996.