Коллоквиум 1

Ilya Yaroshevskiy

21 апреля 2021 г.

Содержание

1	Топ	ология	2
	1.1	Топологическое пространство, открытое и замкнутое множество	2
	1.2	Внутренность и замыкание множества	2
	1.3	Топология стрелки	2
	1.4	Дискретная топология	2
	1.5	Топология на частично упорядоченном множестве	3
	1.6	Индуцированная топология	3
	1.7	Связность	3
9	Mar		3
2	2.1	исление высказываний Метапеременные, пропозициональные переменные, Высказывания	3
	2.1	2.1.1 Язык	3
		2.1.2 Мета и предметные	3
	2.2	Схемы аксиом, доказуемость	3
		2.2.1 Теория доказательств	3
	2.3	Правило Modus Ponens, доказательство, вывод из гипотез	4
	2.0	2.3.1 Правило Modus Ponens и доказательство	4
	2.4	Множество истинностных значений, модель (оценка перменных), Оценка высказывания	4
	2.1	2.4.1 Теория моделей	4
	2.5	Общезначимость	4
	2.6	Выполнимость	5
	2.7	Невыполнимость	5
	2.8	Следование	5
	2.9	Корректность	5
	2.10	Полнота	5
		Противоречивость	5
		Теорема о дедукции	5
		Теорема о корректности	5
		Теорема о полноте ИВ	5
3	Инт	уиционистское исчисление высказываний	5
Ü	3.1	Закон исключенного третьего	5
	3.2	Закон снятия двойного отрицания	5
	3.3	Закон Пирса	5
	3.4	ВНК-интерпретация логических связок	5
	0.1	3.4.1 Интуиционистская логика	5
	3.5	Теорема Гливенко	6
	3.6	Решетка	6
	3.7	Дистрибутивная решетка	6
	3.8	Импликативная решетка	6
	3.9	Алгебра Гейтинга	6
		Булева алгебра	6
		Геделева алгебра	6
		Операция $\Gamma(A)$	6
		Алгебра Линденбаума	7
		Свойство дизъюнктивности ИИВ	7
		Свойство нетабличности ИИВ	7
		Молель Крипке Вынужленность	7

4	Исч	иление предикатов	7
	4.1	Предикатные и функциональные символы	7
		4.1.1 Исчисление предикатов	7
	4.2	Константы и пропозициональные переменные	8
	4.3	Свободные и связанные вхождения предметных переменных в формулу	8
		4.3.1 Вхождение	8
		4.3.2 Свободные подстановки	8
	4.4	Свобода для подстановки, Правила вывода для кванторов, аксиомы исчисления пре-	
		дикатов для кванторов, оценки и модели в исчислении предикатов	9
		4.4.1 Теория доказательств	9
	4.5	Теорема о дедукции для исчисления предикатов	9
	4.6	Теорема о корректности для исчисления предикатов	9
	4.7	Полное множество (бескванторных) формул	9
	4.8	Модель для формулы	10
		4.8.1 Теория моделей	10
	4.9	Теорема Гёделя о полноте исчисления предикатов	10
	4.10	Следствие из теоремы Гёделя о полноте исчисления предикатов	11
	4.11	Неразрешимость	11
	4.12	Исчисления предикатов (формулировка, что такое неразрешимость)	11
5	Ари	ифметика и теории первого порядка	11
	5.1	Теория первого порядка	11
	5.2	Модели и структуры теорий первого порядка	11
	5.3	Аксиоматика Пеано	11
	5.4	Определение операций (сложение, умножение, возведение в степень)	11
	5.5	Формальная арифметика (язык, схема аксиом индукции и общая характеристика	
		остальных аксиом).	11
		5.5.1 Формальная арифметика	11

1 Топология

1.1 Топологическое пространство, открытое и замкнутое множество

Определение. Рассмотрим множество X — **носитель**. Рассмотрим $\Omega \subseteq 2^X$ — подмножество подмножеств X — **топология**.

- 1. $\bigcup X_i \in \Omega$, где $X_i \in \Omega$
- 2. $X_1 \cap \cdots \cap X_n \in \Omega$, если $X_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

1.2 Внутренность и замыкание множества

Определение.

$$(X)^{\circ} = \text{наиб.}\{w | w \subseteq X, w - \text{откр.}\}$$

1.3 Топология стрелки

1.4 Дискретная топология

 $\mathit{Пример}.$ Дискретная топология: $\Omega=2^X$ — любое множество открыто. Тогда $\langle \Omega, \leq \rangle$ — булева алгебра

- 1.5 Топология на частично упорядоченном множестве
- 1.6 Индуцированная топология
- 1.7 Связность

2 Исчисление высказываний

2.1 Метапеременные, пропозициональные переменные, Высказывания

2.1.1 Язык

- 1. Пропозициональные переменные A_i' большая буква начала латинского алфавита
- Связки

$$lpha$$
 , eta — высказывания

Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания

2.1.2 Мета и предметные

- $\alpha, \beta, \gamma, \dots, \varphi, \psi, \dots$ метапеременные для выражений
- $\bullet X, Y, Z$ метапеременные для предметные переменные

Метавыражение: $\alpha \to \beta$

Предметное выражение: $A \to (A \to A)$ (заменили α на $A,\,\beta$ на $(A \to A)$)

Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

2.2 Схемы аксиом, доказуемость

2.2.1 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными α, β, \dots

Определение. Аксиома — высказывания:

1.
$$\alpha \to (\beta \to \alpha)$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \& \beta$$

4.
$$\alpha \& \beta \rightarrow \alpha$$

5.
$$\alpha \& \beta \to \beta$$

6.
$$\alpha \to \alpha \lor \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

2.3 Правило Modus Ponens, доказательство, вывод из гипотез

2.3.1 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) — последовательность высказываний α_1,\dots,α_n , где α_i :

- аксиома
- существует k, l < i, что $\alpha_k = \alpha_l \rightarrow \alpha$

$$\frac{A,\ A\to B}{B}$$

 Π ример. $\vdash A \to A$

Определение. Доказательством высказывания β — список высказываний $\alpha_1, \dots, \alpha_n$

- $\alpha_1, \ldots, \alpha_n$ доказательство
- $\alpha_n \equiv \beta$

2.4 Множество истинностных значений, модель (оценка перменных), Оценка высказывания

2.4.1 Теория моделей

- ullet \mathcal{P} множество предметных переменных
- $\llbracket \cdot \rrbracket : \mathcal{T} \to V$, где \mathcal{T} множество высказываний, $V = \{ \Pi, \Pi \}$ множество истиностных значений
- 1. $[\![x]\!]: \mathcal{P} \to V$ задается при оценке $[\![\!]]^{A:=v_1,B:=v_2}$:
 - $\mathcal{P} = v_1$
 - $\bullet \mathcal{P} = v_2$

Пример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\mathsf{JI}} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{JI}} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\mathsf{JI}} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$[\![A \to A]\!]^{A:=\mathsf{U},B:=\varPi} = f_\to([\![A]\!]^{A:=\mathsf{U},B:=\varPi},[\![A]\!]^{A:=\mathsf{U},B:=\varPi}) = f_\to(\mathsf{U},\mathsf{U}) = \mathsf{U}$$

, где $f_{
ightarrow}$ определена так:

4

2.5 Общезначимость

 $\Pi pumep. \models \alpha - \alpha$ общезначимо

- 2.6 Выполнимость
- 2.7 Невыполнимость
- 2.8 Следование

Определение. Следование: $\Gamma \vDash \alpha$, если

- $\Gamma = \gamma_1, \ldots, \gamma_n$
- Всегда когда все $[\![\gamma_i]\!] = \mathcal{U}$, то $[\![\alpha]\!] = \mathcal{U}$

2.9 Корректность

Определение. Теория Исчисление высказываний корректна, если при любом α из $\vdash \alpha$ следует $\vDash \alpha$

2.10 Полнота

Определение. Исчисление полно, если при любом α из $\models \alpha$ следует $\vdash \alpha$

2.11 Противоречивость

2.12 Теорема о дедукции

Теорема 2.1 (о дедукции). $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$

2.13 Теорема о корректности

Теорема 2.2 (о корректности). Пусть $\vdash \alpha$ Тогда $\models \alpha$

2.14 Теорема о полноте ИВ

Теорема 2.3 (о полноте). Пусть $\models \alpha$, тогда $\vdash \alpha$

3 Интуиционистское исчисление высказываний

- 3.1 Закон исключенного третьего
- 3.2 Закон снятия двойного отрицания
- 3.3 Закон Пирса
- 3.4 ВНК-интерпретация логических связок

3.4.1 Интуиционистская логика

 $A \vee B$ — плохо

Пример. Докажем: существует a,b, что $a,b\in\mathbb{R}\setminus\mathbb{Q},$ но $a^b\in\mathbb{Q}$ Пусть $a=b=\sqrt{2}.$ Рассмотрим $\sqrt{2}^{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q}$

- Если да, то ОК
- ullet Если нет, то возьмем $a=\sqrt{2}^{\sqrt{2}}, b=\sqrt{2}, \, a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^2=2$

ВНК-интерпретация. α, β

- $\alpha \& \beta$ есть α, β
- $\alpha \lor \beta$ есть α либо β и мы знаем какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \bot конструкция без построения $\neg \alpha \equiv \alpha \rightarrow \bot$

3.5 Теорема Гливенко

3.6 Решетка

Определение. Фиксируем A

Частичный порядок — антисимметричное, транзитивное, рефлексивное отношение Линейный — сравнимы любые 2 элемента

- $a \le b \lor b \le a$
- ullet Наименьший элемент S- такой $k\in S,$ что если $x\in S,$ то $k\leq x$
- Минимальный элемент S такой $k \in S$, что нет $x \in S$, что $x \le k$

Определение.

- Множество верхних граней a и b: $\{x | a \le x \& b \le x\}$
- Множество нижних граней a и b: $\{x | x \le a \& x \le b\}$

Определение.

- \bullet a+b нименьший элемент множества верхних граней
- \bullet $a \cdot b$ наибольший элемент множества нижних граней

Определение. Решетка = $\langle A, \leq \rangle$ — структура, где для каждых a,b есть как a+b, так и $a\cdot b$, т.е. $a\in A,b\in B\implies a+b\in A$ и $a\cdot b\in A$

3.7 Дистрибутивная решетка

Определение. Дистрибутивная решетка если всегда $a\cdot(b+c)=ab+a\cdot c$

3.8 Импликативная решетка

Определение. Импликативная решетка — решетка, где для любых a,b есть $a \to b$

3.9 Алгебра Гейтинга

Определение. Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0

3.10 Булева алгебра

Определение. Булева алгебра — псевдобулева алгебра, такая что $a + (a \to 0) = 1$

3.11 Геделева алгебра

Определение. Гёделева алгебра — алгебра Гейтинга, такая что из $\alpha+\beta=1$ следует что $\alpha=1$ или $\beta=1$

3.12 Операция $\Gamma(A)$

Определение. Пусть $\mathfrak A$ — алгебра Гейтинга, тогда:

Γ(A)

Добавим новый элемент $1_{\Gamma(\mathfrak{A})}$ перенеименуем $1_{\mathfrak{A}}$ в ω

3.13 Алгебра Линденбаума

3.14 Свойство дизъюнктивности ИИВ

Определение. Дизъюнктивность ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

3.15 Свойство нетабличности ИИВ

3.16 Модель Крипке, Вынужденность

- 1. $W = \{W_i\}$ множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности: $W_j \Vdash p_i$ (\Vdash) $\subseteq W \times \P$ При этом, если $W_i \Vdash p_i$ и $W_i \preceq W_k$, то $W_i \Vdash p_i$

4 Исчиление предикатов

4.1 Предикатные и функциональные символы

4.1.1 Исчисление предикатов

Определение. Язык исчисление предикатов

- логические выражения "предикаты"/"формулы"
- предметные выражния "термы"

 Θ — метаперменные для термов Термы:

- Атомы:
 - $-a,b,c,d,\ldots$ предметные переменные
 - -x,y,z метапеременные для предметных перменных
- Функциональные Символы
 - -f,g,h Функциональные символы (метапереминые)
 - $-f(\Theta_1,\dots\Theta_n)$ применение функциональных символов
- Логические выражения:

Если n = 0, будем писать f, g — без скобок

- P метаперменные для предикатных символов
- -A, B, C предикатный символ
- $-P(\Theta_1,...,\Theta_n)$ применение предикатных символов
- &, \vee , \neg , \rightarrow Связки
- $\forall x. \varphi$ и $\exists x. \varphi$ кванторы "<квантор> <переменная>.<выражение>"
- 1. Сокращение записи И.В + жадность \forall , \exists Метавыражение:

$$\forall x.(P(x)\&(\forall y.P(y)))$$

Квантор съедает все что дают, т.е. имеет минимальный приоритет. Правильный вариант(настоящее выражние):

$$\forall a.B(A)\&\forall b.B(b)$$

4.2 Константы и пропозициональные переменные

4.3 Свободные и связанные вхождения предметных переменных в формулу

4.3.1 Вхождение

Пример.

$$(P(\underset{1}{x}) \lor Q(\underset{2}{x})) \to (R(\underset{3}{x}) \& (\underbrace{\forall x. P_1(\underset{5}{x})}_{4})))$$

1, 2, 3 — свободные, 5 — связанное, по пермененной 4

Пример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ по } x}$$

Здесь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

Определение. Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x=0) \rightarrow (x=0)$$
 — не доказано

$$\alpha_2'$$
 ($\exists t.x = 0$) \rightarrow ($x = 0$) — (правило \exists)

 $\Pi puмep.$

$$(n) \ x = 0 \to y = 0$$
 — откуда то

$$(n+1) \ (\exists x.x = 0) \to (y = 0) - (\text{правило } \exists)$$

4.3.2 Свободные подстановки

Определение. Θ свободен для подстановки вместо x в φ , если никакая свободная перменная в Θ не станет связанной в $\varphi[x:=\Theta]$

Определение. $\varphi[x:=\Theta]$ — "Заменить все свободные вхождения х в φ на Θ "

 Πp имep.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

 Π ример.

$$P(x) \lor \forall x. P(x) \ [x := y] \equiv P(y) \lor \forall x. P(y)$$

Пример.

$$(\forall y.x = y) [x := \underbrace{y}_{=\Theta}] \equiv \forall y.y = y$$

 $FV(\Theta) = \{y\}$ — свободные перменные в Θ . Вхождение y с номером 1 стало связанным $\Pi pumep$.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

4.4 Свобода для подстановки, Правила вывода для кванторов, аксиомы исчисления предикатов для кванторов, оценки и модели в исчислении предикатов

4.4.1 Теория доказательств

Все аксимомы И.В + M.Р.

(схема 11)
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(схема 12)
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Если Θ свободен для подстановки вместо x в φ .

Определение. Свободен для подстановки — никакое свободное вхождение x в Θ не станет связанным

 Π ример.

```
int y;
int f(int x) {
    x = y;
    4 }
```

Заменим у := х. Код сломается, т.к. у нас нет свобод для подстановки

(Правило ∀)

$$\frac{\varphi \to \psi}{\varphi \to \forall x.\psi}$$

(Правило ∃)

$$\frac{\psi \to \varphi}{\exists x. \psi \to \varphi}$$

В обоих правилах x не входит свободно в φ

Пример.

$$\frac{x=5 \to x^2 = 25}{x-5 \to \forall x \ x^2 = 25}$$

Между x и x^2 была связь, мы ее разрушили. Нарушено ограничение $\Pi pumep$.

$$\exists y.x = y$$

$$\forall x. \exists y. x = y \rightarrow \exists y. y + 1 = y$$

Делаем замену $\mathbf{x}:=\mathbf{y}+\mathbf{1}$. Нарушено требование свобод для подстановки. y входит в область действия квантора \exists и поэтому свободная переменная x стала связанная.

4.5 Теорема о дедукции для исчисления предикатов

Теорема 4.1. Пусть задана $\Gamma, \ \alpha, \beta$

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$, при условии, если b в доказательстве $\Gamma, \alpha \to \beta$ не применялись правила для \forall, \exists по перменным, входящим свободно в α
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$

4.6 Теорема о корректности для исчисления предикатов

4.7 Полное множество (бескванторных) формул

Определение. Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ ни при каком α

Определение. Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы α : либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$

4.8 Модель для формулы

4.8.1 Теория моделей

Оценка формулы в исчислении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму $f_i(x_1,\ldots,x_n)$ сопоставим функцию $D^n\to D$
- 3. Каждому $P_j(x_1,\ldots,x_m)$ сопоставим функцию(предикат) $D^2 \to V$
- 4. Каждой x_i сопоставим элемент из D

Пример.

$$\forall x. \forall y. \ E(x,y)$$

Чтобы определить формулу сначала определим $D=\mathbb{N}$

$$E(x,y) = \begin{cases} \Pi & , x = y \\ \Pi & , x \neq y \end{cases}$$

- $\bullet \|x\| = f_{x_i}$
- $\llbracket \alpha \star \beta \rrbracket$ смотри ИИВ
- $\llbracket P_i(\Theta_1, \dots, \Theta_n) \rrbracket = f_{P_i}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$
- $\llbracket f_i(\Theta_1, \dots, \Theta_n) \rrbracket = f_{f_i}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$

•

$$[\![orall x. arphi]\!] = egin{cases} \Pi &, ext{если } [\![arphi]\!]^{f_x=k} = \Pi \text{ при всех } k \in D \end{cases}$$
 Л , иначе

•

$$[\![\exists x.\varphi]\!] = egin{cases} \mathbb{M} &, \text{если } [\![\varphi]\!]^{f_x=k} = \mathbb{M} \text{ при некотором } k \in D \\ \mathbb{J} &, \text{иначе} \end{cases}$$

$$\llbracket \forall x. \forall y. E(x,y) \rrbracket = \Pi$$

т.к. $[E(x,y)]^{x:=1, y:=2} = Л$

Пример.

$$\forall \left[arepsilon > 0
ight] \exists N \ \forall \left[\left[\left[\mathbf{a}_n - a \right] \right] < \left[arepsilon \right]$$

Синим отмечены функциональные конструкции(термы), зеленым предикатные

$$\forall \varepsilon. (\varepsilon > 0) \to \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

Обозначим:

- (>)(a,b) = G(a,b) предикат
- $\bullet \mid \bullet \mid (a) = m_{\downarrow}(a)$
- $(-)(a,b) = m_{-}(a,b)$
- $0() = m_0$
- $a_{\bullet}(n) = m_a(n)$

$$\forall e. \boxed{G(e, m_0)} \rightarrow \exists n_0. \forall n. \boxed{G(n, n_0)} \rightarrow \boxed{G(e, m_1(m_a(n), a))}$$

4.9 Теорема Гёделя о полноте исчисления предикатов

Теорема 4.2 (Геделя о полноте). Если Γ — полное неротиворечивое множество замкнутых(не бескванторных) фомул, то оно имеет модель

4.10 Следствие из теоремы Гёделя о полноте исчисления предикатов

Следствие 4.2.1. Пусть $\models \alpha$, тогда $\vdash \alpha$

4.11 Неразрешимость

4.12 Исчисления предикатов (формулировка, что такое неразрешимость).

Теорема 4.3. ИП неразрешимо

5 Арифметика и теории первого порядка

5.1 Теория первого порядка

Определение. Теория I порядка — Исчесление предикатов + нелогические функции + предикатные символы + нелогические (математические) аксиомы.

5.2 Модели и структуры теорий первого порядка

5.3 Аксиоматика Пеано

Определение. Будем говорить, что N соответсвует аксиоматике Пеано если:

- \bullet задан (') : $N \to N$ инъективная функция (для разных элементов, разные значения)
- задан $0 \in N$: нет $a \in N$, что a' = 0
- если P(x) некоторое утверждение, зависящее от $x \in N$, такое, что P(0) и всегда, когда P(x), также и P(x'). Тогда P(x)

5.4 Определение операций (сложение, умножение, возведение в степень) Определение.

$$a+b = \begin{cases} a & b=0\\ (a+c)' & b=c' \end{cases}$$

Определение.

$$a \cdot b = \begin{cases} 0 & b = 0\\ (a \cdot c) + a & b = c' \end{cases}$$

Определение.

$$a^b = \begin{cases} 1 & b = 0\\ (a^c) \cdot a & b = c' \end{cases}$$

5.5 Формальная арифметика (язык, схема аксиом индукции и общая характеристика остальных аксиом).

5.5.1 Формальная арифметика

Определение. Исчесление предикатов:

- Функциональные символы:
 - -0-0-местный
 - (') 1-местный
 - $-(\cdot)-2$ -местный
 - -(+)-2-местный
- (=) 2-местный предикатный символ

Аксимомы:

1.
$$a = b \to a' = b'$$

$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \rightarrow a = b$$

4.
$$\neg a' = 0$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a \cdot 0 = 0$$

8.
$$a \cdot b' = a \cdot b + a$$

9. Схема аксиом индукции:

$$(\psi[x := 0])\&(\forall x.\psi \to (\psi[x := x'])) \to \psi$$

x входит свободно в ψ

Свойство 1.

$$((a+0=a) \to (a+0=a) \to (a=a))$$

Доказательство.

$$\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow \forall b. \forall c. (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$$

$$\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$$

$$(\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c) \rightarrow \forall c. (a + 0 = a \rightarrow a + 0 = c \rightarrow a = c)$$

$$\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$$

$$(\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c) \rightarrow a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a$$

$$a + 0 = a$$

$$a + 0 = a \rightarrow a = a$$

$$bb. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0)$$

$$(\forall b. \forall c. a = b \rightarrow a = c \ tob = c) \rightarrow (0 = 0 \rightarrow 0 = 0) \rightarrow \phi$$

Исправить

Определение. $\exists !x.\varphi(x)\equiv (\exists x.\varphi(x))\&\forall p.\forall q.\varphi(p)\&\varphi(q)\to p=q$ Можно также записать $\exists !x.\neg\exists s.s'=x$ или $(\forall q.(\exists x.x'=q)\vee q=0)$

Определение. $a \le b$ — сокращение для $\exists n.a + n = b$

Определение.

$$0^{(n)} = \begin{cases} 0 & n = 0\\ 0^{(n-1)'} & n > 0 \end{cases}$$

Определение. $W \subseteq \mathbb{N}_0^n$. W — выразимое в формальной арифметике. отношение, если существует формула ω со свободными переменными x_1, \ldots, x_n . Пусть $k_1, \ldots, k_n \in \mathbb{N}$

•
$$(k_1,\ldots,k_n)\in W$$
, тогда $\vdash \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$

•
$$(k_1,\ldots,k_n) \notin W$$
, тогда $\vdash \neg \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$

$$\omega[x_1 := \Theta_1, \dots, x_n := \Theta_n] \equiv \omega(\Theta_1, \dots, \Theta_n)$$

Определение. $f:\mathbb{N}^n\to\mathbb{N}$ — представим в формальной арифметике, если найдется φ — фомула с n+1 свободными переменными $k_1,\dots,k_{n+1}\in\mathbb{N}$

•
$$f(k_1,\ldots,k_n)=k_{n+1}, \text{ to } \vdash \varphi(\overline{k_1},\ldots,\overline{k_{n+1}})$$

$$\bullet \vdash \exists ! x. \varphi(\overline{k_1}, \dots, \overline{k_n}, x)$$