מבוא לתא

מגמת רפואה היברידית איתן שמשוביץ

נושאים במצגת

- תפקידו של התא ותאוריית התא
 - שומנים וקרום התא
 - חלבונים ואנזימים
 - סוכרים והפקת אנרגיה
 - גרעין התא וייצור חלבונים

להכנס את התא

סרקו את הקוד, צפו בסרטון וענו על השאלות

שומנים וקרום (ממברנה) התא

תפקידי הממברנה

- הפרדה בין הסביבה הפנימית לחיצונית
 - קישור בין הסביבה הפנימית לחיצונית
 - זיהוי התא •
 - הגנה על חלבוני התא

"אבות המזון" בקרום התא

איך להנדס הבופת לים התא?

- תרכובת אורגנית הידרופובית
 - אינה קוטבית
 - מרכיב מרכזי בקרום
- מקור לבניית מולקולות אורגניות
 - מקור ליצירת אנרגיה
 - אבן הבניין היא חומצת שומן

פוספוליפידים

הליפידים העיקריים המרכיבים את קרום התא

• מבנה:

- ראש הידרופילי
- גליצרול לקישור •
- זנב הידרופובי המורכבמשני חומצות שומן

פוספוליפידים במבנה הממברנה

- בונים את שלד הממברנה בצורה דו שכבתית
- צדדים הידרופיליים כלפי המים בסביבה הפנימית והחיצונית
 ושכבת הידרופובית כפולה באמצע

• מבצעים את תפקידי ההגנה והחציצה

החלבונים בממברנה

- על גבי הממברנה •
- בתוך מבנה הממברנה (חוצי ממברנה)
 - תפקידים:
 - טרנספורטרים (מעבירים חומרים)
 - אנזימים (מזרזים פעולות ביוכימיות)
- קולטנים (תקשורת עם הסביבה החיצונית)

אנזימי ממברנה

מעבר חומרים דרך הקרום

- הקרום משמש כגבול בין הסביבה התוך תאית לסביבה החוץ תאית
- עקרון ההומיאוסטזיס: שמירה על סביבה פנימית יציבה וקבועה, גם כאשר חלים שינויים בסביבה החיצונית
- ללא פעילות הקרום הסביבות ישתוו על ידי דיפוזיה ואוסמוזה
 - לכן הקרום הוא בעל חדירות בררנית •

כוח הדיפוזיה

• מעבר חומר ממקום בו ריכוזו גבוה למקום בו ריכוזו נמוך, ללא השקעת אנרגיה, עד להשוואת ריכוזים.

גורמים המשפיעים על קצב הדיפוזיה

- תכונות הממברנה (עובי, מטען...)
- תכונות המולקולה (גודל, מטען...)
- גודל מפל הריכוזים (=הפרש בין הצדדים)
- שטח הממברנה (יחס שטח הפנים לנפח)

אי שם בריאות

Alveoli with emphysema

Microscopic view of normal alveoli

*ADAM.

(לחץ אוסמוטי)

 מעבר של ממס (מים) ממקום בו ריכוזם גבוה (ריכוז מומס נמוך) למקום בו ריכוזם נמוך (ריכוז מומסים גבוה), דרך קרום בררני, ללא השקעת אנרגיה, עד להשוואת ריכוזים.

אוסמוזה וסוגי תמיסות

אז איך עוברים את זה? בלי להשקיע אנרגיה

העברה ישירה דרך הקרום השומני

- העברה סבילה בדיפוזיה על פי מפל הריכוזים
 - תכונות המולקולות
 - מולקולות קטנות
 - חסרות מטען חשמלי
 - מסיסות בשומן

חלבוני הובלה - תעלות

- חלבונים טרנסממברנליים (חוצים את הממברנה לארכה)
 - מקשרות בין הסביבה הפנימית לחיצונית
 - מאפשרות מעבר מהיר של חומרים
 - :בוררים על ידי
 - גודל פתח התעלה
 - מטען חשמלי שלה •
 - מעבירות בעיקר מים ויונים
 - ישנם מנגנוני פתיחה / סגירה
 - חשמליים, מכני, כימי

חלבוני הובלה - נשאים

- חלבונים טרנסממברנליים (חוצים את הממברנה לארכה)
 - אין קשר ישיר בין הסביבה הפנימית לחיצונית

Glucose transporter

אז איך עוברים את זה? לפעמים צריך להשקיע אנרגיה

משאבות ספציפיות (מעבר ראשוני)

"תופסי טרמפ" (מעבר שניוני)

PASSIVE ACTIVE TRANSPORT TRANSPORT DIFFUSION **FACILITATED DIFFUSION High Concentration High Concentration** Low/High Concentration Gradient Gradient Gradient Low Concentration Low Concentration High/Low Concentration

סיכום מעברים

אנדוציטוזה ואקסוציטוזה

פריסת שני תכנים עם SmartArt

'קבוצה א

- משימה •
- 2 משימה •

'קבוצה ב

- 1 משימה
- 2 משימה •

'קבוצה ג

1 משימה •

- נקודת התבליט הראשונה כאן
 - נקודת התבליט השניה כאן
- נקודת התבליט השלישית כאן

חלבונים ואנזימים

H Carboxyl Amino H_2O group group Peptide linkage N terminus C terminus

חלבונים מהם?

 חלבונים הם שרשרת של חומצות אמיניות המחוברות זו לזו בקשר פפטידי

$$\begin{matrix} & COO^- \\ H_3 \overset{\scriptscriptstyle{+}}{N} & \stackrel{\scriptstyle{C}}{-} H \\ & & \\ R \end{matrix}$$

© 2001 Sinauer Associates, Inc.

מבנה החלבונים

בעיקר קשרי מימן

מבנה ראשוני:

- רצף חומצות האמינו
- יש 20 חומצות אמינו מהם ניתן ליצור אינס חלבונים
 - מבנה שניוני:
 - סידור מרחבי של קטעים בשרשרת
 - ם סליל •
 - β קפלי
 - מבנה שלישוני:
 - סידור מרחבי של כל המקטעים
 - מבנה רביעוני:
- סידור מרחבי של חלבונים הבנויים ממספר שרשרות

תפקידי החלבונים

- אנזימים זרזים ביולוגיים רוב התגובות הכימיות המתרחשות במערכות ביולוגיות מזורזות על ידי אנזימים שהינם חלבונים.
 - **חלבונים מבניים** חלבונים הממלאים תפקידים מבניים בתא.
 - **חלבונים מווסתים** חלבונים בעלי פעילות בקרה על ביטויים של גנים.
- **חלבוני הובלה (transporters)** חלבונים המסיעים בהעברת חומרים ממקום למקום (הובלה בכלי דם, הובלת חומרים מחוץ לתא ולתוך התא...).
- נוגדנים חלבונים המסייעים למערכת החיסון להתגונן בפני פולשים זרים כגון, חיידקים וירוסים.
 - **שליחים** חלבונים המעורבים בתקשורת בין תאים או בין יצורים חיים שונים. למשל, הורמונים ופרומונים.
 - קולטנים חלבונים המצויים על פני קרום התא ומתפקדים כ"אנטנות".

תנאים לפעילות חלבונים

- לרוב ההתאמה המרחבית היא המפתח לפעילותו של החלבון
 - לפני...
 - **:אחרי**
- גורמים אשר ישפיעו על הקשרים הכימיים בחלבון וייגרמו לשינוי צורתו יהרסו את החלבון
 - תהליך זה נקרא דנטורציה
 - לעיתים תהליך זה הוא בלתי הפיך!
 - : גורמים לדוגמא:
 - pH, ריכוז מלחים וטמפרטורה
 - איבוד צורה = איבוד פעילות

דוגמה - המוגלובין

שינוי בחומצה אמינית אחת...

תוספת של אוריאה (שתנו) ודטרגנט

אנזימים – זרזים של תגובות כימיות

- האנזימים הם חלבונים (לעיתים עם תוספת של ויטמינים או יוני מתכת = קופקטור)
 - תפקידם זירוז התגובה הכימית על ידי הורדת האנרגיה הנדרשת לביצוע התגובה
- האנזים נקשר *למצע (סובסטרט)* שהוא המגיב וקישור זה מזרז אותו להפוך את המגיב לתוצר
- לכן פעילותם תלויה במבנה המרחבים שלהם המצאות של אתר קישור = אתר פעיל

פעילות האנזים

- התגובה הכימית
- פירוק התצמיד ויציאת התוצר

השפעה על פעילות האנזים - עיכוב

- קשירה של חומר לאתר הקישור (הפעיל) של האנזים
 - אין אפשרות למגיב (מצע) להקשר
 - האנזים מנוטרל

השפעה על קצב פעילות האנזים

- ריכוז האנזים
- ריכוז הסובסטרט
- ככל שהריכוז של אחד מהם יעלה, קצב התגובה יעלה אף הוא עד למצב רוויה

השפעה על קצב פעילות האנזים

- טמפרטורה
- חומציות (רמת pH)
- משתנה על פי אזורי הפעילות של האנזים (בגוף / בבית הגידול)

בקרה על פעילות אנזימתית

- ייצור האנזימים
 - מקום
 - זמן •
 - כמות
- פעילות האנזימים
 - משוב שלילי
 - משוב חיובי

פחמימות ואנרגיה בתא

מהי אנרגיה? (קצת פיזיקה מה יש?)

- הגדרה כוללנית היכולת לבצע עבודה
 - יחידות מידה:
- קלוריה האנרגיה הדרושה לחימום 1 גרם מים במעלת צלזיוס אחת בתנאים של 1 אטמוספרה
 - :באופן גס
 - (גדולות) ארם חלבון 4 = 4 קלוריות (גדולות)
 - (גדולות) קלוריות 9 = 9 קלוריות (גדולות)
 - (גדולות (גדולות 4 = 4 קלוריות (גדולות) 1 •
- ג'אול הפעלת 1 ניוטון (יח' כוח) למטר = האנרגיה הדרושה להרים 102 גרם לגובה מטר על פני כדור הארץ

(המשך)

- חוק שימור אנרגיה סך האנרגיה במערכת סגורה נשארת קבועה, אך יכולה לשנות את צורתה / מיקומה
 - : צורות אנרגיה
 - אנרגיה קינטית אנרגיה עקב תנועה של גוף
 - אנרגית חום אנרגיה עקב תנועת המולקולות בחומר
- אנרגיה כימית אנרגיה חשמלית שאצורה בקשרים הכימיים בין
 האטומים והמולקולות.
 - י ועוד.. ועוד.. י ועוד.. ועוד.. ועוד..
 - בתהליכים בהם משתחררת אנרגיה, חלק ממנה נפלט לסביבה כאנרגיית חום

למה צריך אנרגיה?

- פעילויות רבות המתרחשות בתא צורכות אנרגיה:
- מטבוליזם הרכבת חומרים מורכבים מפשוטים (ח' אמינו לחלבון) ופירוק חומרים מורכבים לפשוטים (להיפך)
 - העברת חומרים מ/אל/בתוך התא
 - העברת מסרים כימיים
 - ...ד.וו •

הפחמימות (סוכרים)

- מקור האנרגיה העיקרי
- כ- 80% ממשקל החומר היבש בצמחים
 - מרכיב חשוב במבנה תאים ומולקולות
 - חלוקת הסוכרים:
 - חד סוכר (מולקולה אחת)
 - דו סוכר (שתי מולקולות)
 - רב סוכר (יותר משתי מולקולות)
- נוצרים בפוטוסינתזה על ידי יצרנים מפד"ח ומים בעזרת אנרגיית השמש

חד סוכר

- מורכבים משרשרת פחמנים בתוספת מימנים וחמצנים
 - $C_nH_{2n}O_n$ היחס בין המרכיבים הוא •
- השוני בין הסוגים השונים מתבטא בכמות האטומים השונה ובסידור שונה שלהם
 - חד הסוכר הנפוץ ביותר הוא הגלוקוז
 - $C_6H_{12}O_6 גלוקוז$
 - מולקולה אוסמוטית

דו סוכר

- חיבור של שתי מולקולות חד סוכר תוך כדי שחרור מולקולת מים
 - הנפוץ ביותר סוכרוז שמקורו בצמחים כגון סלק סוכר וקנה סוכר
 - לקטוז הוא סוכר החלב
 - פירוק הלקטוז נעשה בקיבה ולאנשים אשר יש פגם גנטי
 אינם מסוגלים לפרקו ונמנעים מאכילת חלב

מי מפרק אותו? ?כיצד הוא נקרא

רב סוכר

- מאגר לחומרי בניין ואנרגיה
 - תופסים מקום מועט בתא
- לא משפיעים על מאזן תמיסות התא (לא אוסמוטיים) •
- עמילן (צמחים) וגליקוגן (בעלי חיים) מצויים כגרגירים לא מסיסים בתאים
- בזמן שיש בהם צורך נעשית הידרוליזה (פירוק על ידי מים) אנזימתית והתוצרים (חד סוכר) עוברים אל חלקי התא בדיפוזיה

גליקוגן

- מצוי כחומר תשמורת בבעלי חיים בעיקר בכבד (מאגר לכל הגוף) ובשריר (מאגר עצמאי)
 - וויסות שיווי המשקל בינו ובין הגלוקוז הזמין לתאים נעשה על ידי בקרה הורמונלית
 - הורמוני רעב (גלוקגון, אדרנלין) פירוק גליקוגן לגלוקוז
 - הורמוני שובע (אינסולין) אגירת גלוקוז לגליקוגן

הקשר בין המסלולים המטבוליים השונים בתא **GLYCOLYSIS** Lipids Glucose Poly-Some saccharides + amino acids Glycerol Pyruvate **PYRUVATE** OXIDATION Fatty acids Acetyl CoA **Purines Pyrimidines** CITRIC ACID Some Some תהליך CYCLE amino acids amino acids הפקת **ELECTRON TRANSPORT** האנרגיה CHAIN Proteins LIFE 8e, Figure 7.16 LIFE: THE SCIENCE OF BIOLOGY, Eighth Edition: @ 2007 Sinauer Associates, Inc. and W. H. Freeman & Co.

ATP

- מטבע האנרגיה של הגוף •
- הדרך להוביל את האנרגיה ממקום היווצרה למקום בו יש בה צורך
- ATP = אדנין (תרכובת של חנקן) עם שלושהזרחנים שביניהם מולקולת סוכר (ריבוז)

Energycontaining nutrients

Carbohydrates Fats Proteins

Energydepleted end products

 $\begin{array}{c} \mathrm{CO_2} \\ \mathrm{H_2O} \\ \mathrm{NH_3} \end{array}$

ולא רק ATP

Cell macromolecules

Proteins
Polysaccharides
Lipids
Nucleic acids

Anabolism

Precursor molecules

Amino acids Sugars Fatty acids Nitrogenous bases

יצירת אנרגיה מפירוק פחמימות – הנשימה התאית

שלב א' גליקוליזה

<u>תוצרים:</u> 2 מולקולות פירובט C₃H₄O₃

אנזימים

<u>דו"ח אנרגיה:</u> עלות – ATP 2 – עלות רווח – ATP 4 – רווח *בווח נקי* – ATP 2 <u>מגיבים:</u> 1.גלוקוז ADP .2 Pi שלב ב'1 נשימה אירובית מגיבים: 1. פירובט

<u>דו"ח אנרגיה:</u> ATP 28 – רווח נקי

חמצן ADP.2 Pi תוצרים: H₂O CO2 **ATP**

נשימה התאית – אווירנית -אירובית שלב ב'2 נשימה אנאירובית

<u>דו"ח אנרגיה:</u> רווח נקי – ATP 0 פירובט גנוני <u>תוצרים:</u> חומצה (חלב/כוהל) CO₂

מגיבים:

נשימה תאית אל – אווירנית – אנאירובית -תסיסה

המיטוכונדריה (מיטוכונדריון)

- אברון גלילי תוך תאי
 - קרומים:
 - קרום חיצוני
 - קרום פנימי מפותל
 - חללים:
 - בין קרומי
 - תוך קרום פנימי

סיכום

:<u>הפקת אנרגיה</u>

- פירוק גלוקוז לשתי חומצות פירוביות בציטופלזמה (2 מולקולות ATP)
- אפשרות א': מעבר למיטוכונדריה עם חמצן (28)ויצירת מים (ATP)
- ויצירת (ATP 0) אפשרות ב': בציטופלזמה בלי חמצן (BTP 0) ויצירת פד"ח וחומצה