Applied Text Analytics & Natural Language Processing

with Dr. Mahdi Roozbahani & Wafa Louhichi

Learning Objectives

In this lesson, you will learn another linear text classifier

- Binary classification
- Linear separability
- Perceptron algorithm

Binary Classification

Given training data (x_i, y_i) for i = 1...N, with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier f(x) such that

$$f(x_i) \begin{cases} \geq 0 & +1 & \text{Non-spam document} \\ < 0 & -1 & \text{Spam document} \end{cases}$$

i.e. $y_i f(x_i) > 0$ for a correct classification

Linear Separability

linearly separable

not linearly separable

Linear Classifier

A linear classifier has the form

- In 2D, the discriminant is a line
- θ is the normal to the line, θ_0 and is the bias term
- θ is known as the model parameters or the weight vector

Linear Classifier (higher dimension)

A linear classifier has the form

$$f(x) = x\theta + \theta_0$$

$$f(x) = x\theta + \theta_0$$

In 3D the discriminant is a plane, and in nD it is a hyperplane

The Perceptron Classifier

Considering x is linearly separable and y has two labels of $\{-1,1\}$

$$f(x_i) = x_i \theta$$
 Bias is inside θ now

How can we separate datapoints with label 1 from datapoints with label -1 using a line?

Perceptron Algorithm:

- Initialize $\theta = 0$
- Go through each datapoint $\{x_i, y_i\}$
 - If x_i is misclassified, then $\theta^{t+1} \leftarrow \theta^t + \alpha y_i x_i$
- Until all datapoints are correctly classified

Perception Algorithm

- Initialize $\theta = 0$
- Go through each datapoint $\{x_i, y_i\}$
 - If x_i is misclassified, then $\theta^{t+1} \leftarrow \theta^t + \alpha y_i x_i$
- Until all datapoints are correctly classified

$$f(x) = x\theta + \theta_0$$

$$= \sum_{i=0}^{d} x_i \theta_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

$$\downarrow \qquad \qquad +1$$

$$\vdots \qquad \qquad \downarrow \qquad \rightarrow 1$$

$$\vdots \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

Advantages and Disadvantages of Perceptron

- Advantages:
 - Very simple algorithm
 - It is fast and does not require many parameters
 - Quick training to optimize parameters
- Disadvantages:
 - It just works for linearly separable data
 - It will not provide a unique decision boundary

Summary

- We know what it means by a data to be linearly separable
- We learned about perceptron

