

مدولاسيون

روشهای ارسال سیگنال

- روشهای ارسال سیگنال به **نوع سیگنال** بستگی دارند:
 - آنالوگ
 - ارسال اطلاعات به صورت دامنههای آنالوگ پیوسته در زمان
 - نمونهبرداری
- و دامنه آنالوگ (تا حدودی در درس سیگنالها و سیستمها معرفی شد. قضیه نایکوئیست برای بازیابی یکتای سیگنال)
 - دامنه دیجیتال (بحث کوانتیزاسیون)
 - دیجیتال
 - ایجاد شده توسط منبع دیجیتال

بنابراین داده دیجیتال یا منبع دیجیتال دارد و یا از نمونهبرداری و کوانتیزاسیون سیگنال آنالوگ حاصل شدهاست.

مفهوم حامل (Carrier)

مفهوم حامل (Carrier) (۲)

- فرض کنید میخواهید از اردبیل به تهران سفر کنید.
- پای پیاده: ۶۰۰ کیلومتر تقسیم بر ۵ کیلومتر بر ساعت معادل ۱۲۰ ساعت معادل ۵ شبانه روز
 - اتوبوس بین شهری: ۶۰۰ کیلومتر تقسیم بر ۸۰ کیلومتر بر ساعت معادل ۷ ساعت و نیم
 - ماشین شخصی: ۶۰۰ کیلومتر تقسیم بر ۱۰۰ کیلومتر بر ساعت معادل ۶ ساعت
 - هواپیما: ۶۰۰ کیلومتر تقسیم بر ۳۰۰ کیلومتر بر ساعت معادل ۲ ساعت
- امواج الکترومغناطیسی: ۶۰۰ کیلومتر تقسیم بر ۳۰۰ هزار کیلومتر در ثانیه معادل ۲ میلی ثانیه

نتیجه اخلاقی: وسیله انتقال مهم است مدولاسیون نیز پیام را بر روی سیگنال حامل سوار می کند. انتخاب سیگنال حامل و نحوه سوار کردن سیگنال پیام بر روی سیگنال حامل مهم است.

مزاياي مدولاسيون

• تطبیق سیگنالهای ارسالی با مشخصات کانال و غلبه بر نویز و تداخل

- برای مثال پهنای باند سیگنال باید با پهنای باند کانال مطابقت داشته باشد.
- سیگنال حاصل از مدولاسیون باید نسبت به اختلالات کانال اعم از نویز، تضعیف و تداخل، مقاوم باشد.

• سهولت ارسال و افزایش برد فرستندگی

- بدون مدولاسیون تضعیف سیگنال زیاد است. مثال: صدای انسان نهایتاً چند کوچه
- به دلیل فرکانس پایین بودن صوت، طول موج آن بزرگ است. در نتیجه برای ارسال صوت به آنتن با طول بزرگتری نیاز است.

• غلبه بر محدودیتهای سختافزاری

- طبق تجربه، هزینه و پیچیدگی سختافزار زمانی کاهش خواهد یافت که پارامتری به نام پهنای باند کسری(پهنای باند توسط باند تقسیم بر فرکانس کاریر) بین ۱ تا ۱۰ درصد باشد. به عبارتی سیگنالهای با پهنای باند بزرگتر باید توسط حاملهای با فرکانس بالاتری مدوله شوند.
 - مالتی پلکسینگ (Multiplexing)

مدولاسيون

- مدولاسیون: نگاشت دنباله بیت به سیگنالها برای ارسال بر روی کانال مخابراتی را مدولاسیون دیجیتال مینامند. به عبارت دیگر سیگنالها نماینده بیتها هستند.
- مدولاسیونها می توانند با حافظه و یا بدون حافظه باشند. مدولاسیونهایی که در این درس آشنا خواهید شد، بدون حافظه هستند.

"The process of mapping a digital sequence to signals for transmission over a communication channel is called digital modulation or digital signaling."

J. G. Proakis, M. Salehi

انواع مدولاسيون

- مدولاسيون باند پايه
- طرحهایی که مستقیماً بیتها را به سیگنال تبدیل میکنند. کاربرد در انتقال با سیم
 - مدولاسيون باند مياني
- طرحهایی که با تغییر دامنه، فرکانس و فاز سیگنال حامل، مدولاسیون را انجام میدهند. مناسب برای انتقال بیسیم و انتقال نوری

یک مدولاسیون ساده باند پایه

- ولتاژ بالا (V+) را نماینده یک و ولتاژ پایین (V-) را نماینده صفر در نظر می گیریم.
 - این مدولاسیون Non-Return to Zero) NRZ) نامیده می شود.

طرحهاي مدولاسيون كاربردي

- طرحهای کاربردی توسط ملاحظات مهندسی پیش میروند.
 - کارآیی پهنای باند
 - بازیابی کلاک
 - DC Balance -

کارآیی پهنای باند

• اگر نرخ بیت R باشد، برای ارسال بدون حضور نویز نیاز به پهنای باندی معادل R/2 است. (قضیه نرخ نایکوئیست)

maximum data rate = $2B \log_2 V$ bits/sec

• برای کارآیی بهتر پهنای باند، میتوان از سطح سیگنالهای بیشتری استفاده کرد. به عنوان مثال : ۴سطح، ۲ بیت در هر سمبل است.

در این حالت هر سیگنال نماینده هر سمبل است.

در نتیجه از پهنای باند موجود به صورت کارآمد استفاده شده است.

بازیابی کلاک

- سیگنال ارسالی چند صفر پشت سر هم دارد؟
- گیرنده برای رمزگشایی بیتها نیاز به گذر سیگنال مکرر (frequent signal transition) دارد.

1000000000...0

- طرحهای زیادی امکانپذیر است.
- ارسال جداگانه کلاک که کارآمد نیست.
- وجود گذار از صفر به یک و برعکس با عدد ۱ و عدم وجود گذار با عدد ۰ (NRZI)
 - روش کدگذاری منچستر (Manchester Coding)
 - در همریختن بیتها (Scrambling)

بازیابی کلاک

- (a) Bit stream
- (b) Non-Return to Zero (NRZ)
- (c) NRZ Invert (NRZI)

(d) Manchester

(Clock that is XORed with bits)

(e) Bipolar encoding (also Alternate Mark Inversion, AMI)

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0
	A 0 0	A B 0 0 1

4B/5B - کلاک

Data (4B)	Codeword (5B)	Data (4B)	Codeword (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

• هر ۴ بیت داده را به ۵ بیت کد نگاشت میکنیم. این کدها به گونهای ایجاد شدهاند که دنباله طولانی از صفر تولید نکنند.

- در هر Δ بیت حداکثر می توان Υ صفر داشت.

- همچنین می توان با **معکوس کردن سطح سیگنال** با هر بار رسیدن به ۱ دنباله طولانی از ۱ ها را از بین برد.

بازیابی کلاک - 4B/5B (۳)

• کد 4B/5B به عنوان مرجع:

$$-0000
ightarrow 11110,\,0001
ightarrow 01001,\,1110
ightarrow 11100,\,\dots\,1111
ightarrow 11101$$
 بیتھای پیام:

• بیتهای کدشده:

• سیگنال:

در همریختن بیتها Scrambling

• برای اجتناب از صفرها و یکهای طولانی، درهم ریختن بیتها به منظور ایجاد randomness و با استفاده از شیفت رجیسترها صورت می گیرد.

Balanced Signals

- سیگنالهای Balanced، سیگنالهایی هستند که تعداد سطوح ولتاژ مثبت و منفی یکسانی دارند. به عبارتی میانگین آنها برابر صفر است و مولفه DC ندارند.
- دلیل اینکه دوست نداریم سیگنال مولفه DC داشته باشد این است که برخی از کانالهای انتقال مانند کابل کواکسیال و یا خطوطی که از ترانسفورماتور استفاده می کنند، مولفه DC را به شدت تضعیف می کنند.
 - همچنین کوپلاژ خازنی گیرنده فقط بخش AC سیگنال را انتقال میدهد.

Bipolar Encoding or Alternate Mark Inversion

• راه ساده برای ایجاد یک سیگنال کدشده Balanced استفاده از دو سطح ولتاژ برای نمایش بیت V = V و ولتاژ صفر نیز برای نمایش بیت صفر.

Bit stream

Bipolar encoding (also Alternate Mark Inversion, AMI)

• کدینگ دوقطبی با افزودن سطح ولتاژ، مولفه DC را حذف میکند. کدهای دیگری مانند BF/10B وجود دارد.

مدولاسيون باند مياني (Passband Modulation)

- تاكنون مدولاسيون باند پايه را براى محيط انتقال سيمي بررسي كرديم.
 - سیگنال مستقیماً روی یک سیم ارسال میشد.
- این سیگنالها بر روی فیبر نوری و محیط انتقال بیسیم به خوبی منتشر نمیشوند.
 - نیاز به ارسال در فرکانسهای بالاتر است.
 - مدولاسیون باند میانی یک سیگنال را توسط مدوله کردن یک حامل انتقال میدهد.

مدولاسيون باند مياني (Passband Modulation) مدولاسيون باند

• حامل یک سیگنال ساده است که در فرکانس دلخواه ما نوسان میکند.

- مىتوان آن را با تغيير دادن موارد زير مدوله كنيم:
 - دامنه، فاز، فركانس

مدولاسیون باند میانی (Passband Modulation) مدولاسیون باند

NRZ signal of bits

Amplitude shift keying

ASK
$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary } 1\\ 0 & \text{binary } 0 \end{cases}$$

Frequency shift keying

BFSK
$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary } 1\\ A\cos(2\pi f_2 t) & \text{binary } 0 \end{cases}$$

Phase shift keying

BPSK
$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases} = \begin{cases} A\cos(2\pi f_c t) \\ -A\cos(2\pi f_c t) \end{cases}$$

مدولاسیون باند میانی (Passband Modulation) مدولاسیون باند

(a) QPSK. (b) QAM-16. (c) QAM-64.

مدولاسیون باند میانی (Passband Modulation) مدولاسیون باند

(a) V.32 for 9600 bps. (b) V.32 bis for 14,400 bps.

