AI-Driven Exploration and Prediction of Company Registration Trends with Registrar of Companies (RoC)

TEAM LEADER

510521104304:EZHUMALAI P

PHASE-1:DOCUMENT SUBMISSION

OBJECTIVIE:

The problem is to perform an AI-driven exploration and predictive analysis on the master details of companies registered with the Registrar of Companies (RoC). The objective is to uncover hidden patterns, gain insights into the company landscape, and forecast future registration trends.

PHASE-1: Problem Definition and Design Thinking

Data Source: Utilize the dataset containing information about registered companies, including columns like company name, status, class, category, registration date, authorized capital, paid-up capital, and more.

Dataset Link: https://tn.data.gov.in/resource/company-master-data-tamil-nadu-upto-28th-february-2019

1.Data Source;

							Tamil	
F00643	HOCHTIEFF AG,	NAEF	NA	NA	NA	########	Nadu	0
	SUMITOMO CORPORATION							
	(SUMITOMO SHOJI KAISHA						Tamil	
F00721	LIMITED)	ACTV	NA	NA	NA	NA	Nadu	0
							Tamil	
F00892	SRILANKAN AIRLINES LIMITED	ACTV	NA	NA	NA	1/3/1982	Nadu	0
							Tamil	
F01208	CALTEX INDIA LIMITED	NAEF	NA	NA	NA	NA	Nadu	0
	GE HEALTHCARE BIO-SCIENCES						Tamil	
F01218	LIMITED	ACTV	NA	NA	NA	NA	Nadu	0
	CAIRN ENERGY INDIA PTY.						Tamil	
F01265	LIMITED	NAEF	NA	NA	NA	NA	Nadu	0
							Tamil	
F01269	TORIELLI S.R.L	ACTV	NA	NA	NA	5/9/1995	Nadu	0
	HARDY EXPLORATION &						Tamil	
F01311	PRODUCTION (INDIA) INC	ACTV	NA	NA	NA	NA	Nadu	0
	HOCHTIOF AKTIENGESELLSHARFF						Tamil	
F01314	VORM GFBR HELFMANN	ACTV	NA	NA	NA	########	Nadu	0
						25-04-	Tamil	
F01412	EPSON SINGAPORE PVT LTD	ACTV	NA	NA	NA	1997	Nadu	0
	CARGOLUX AIRLINES						Tamil	
F01426	INTERNATIONAL S A	ACTV	NA	NA	NA	########	Nadu	0
	CHO HEUNG ELECTRIC						Tamil	
F01468	INDUSTRIAL COMPANY LIMITED	NAEF	NA	NA	NA	NA	Nadu	0
	NYCOMED ASIA PACIFIC PTE					27-10-	Tamil	
F01543	LIMITED	ACTV	NA	NA	NA	1998	Nadu	0
							Tamil	
F01544	CHERRINGTON ASIA LTD	ACTV	NA	NA	NA	1/5/2000	Nadu	0
	SHIMADZU ASIA PACIFIC PTE						Tamil	
F01563	LIMITED	NAEF	NA	NA	NA	NA	Nadu	0

							Tamil	
F01565	CORK INTERNATIONAL PTY LIMITED	ACTV	NA	NA	NA	NA	Nadu	0
							Tamil	
F01566	ERBIS ENGG COMPANY LIMITED	ACTV	NA	NA	NA	NA	Nadu	0
							Tamil	
F01589	RALF SCHNEIDER HOLDING GMBH	NAEF	NA	NA	NA	NA	Nadu	0
	MITRAJAYA TRADING PRIVATE						Tamil	
F01593	LIMITED	ACTV	NA	NA	NA	NA	Nadu	0
						13-07-	Tamil	
F01618	HEAT AND CONTROL PTY LIMITED	ACTV	NA	NA	NA	1999	Nadu	0
							Tamil	
F01628	DIREX SYSTEMS LIMITED	ACTV	NA	NA	NA	NA	Nadu	0
							Tamil	
F01641	NMB-MINEBEA THAI LIMITED	NAEF	NA	NA	NA	NA	Nadu	0

					I		T 1	
504.6.42	ADDOMENTEDNIATIONIAL INC	A CTV					Tamil	
F01643	ARROW INTERNATIONAL INC	ACTV	NA	NA	NA	########	Nadu	0
504504	CANADDO CUINA LED	A CT1 /	١			14-06-	Tamil	
F01694	GAMBRO CHINA LTD	ACTV	NA	NA	NA	2000	Nadu	0
							_	
						17-07-	Tamil	
F01703	OBARA CORPORATION	NAEF	NA	NA	NA	2000	Nadu	0
	CIPTA WAWASON MAJU					24-01-	Tamil	
F01752	ENGINEERING SDM BHD	ACTV	NA	NA	NA	2001	Nadu	0
							Tamil	
F01753	AUCHAN INTERNATIONAL S.A.	ACTV	NA	NA	NA	NA	Nadu	0
	TOSHIBA PLANT SYSTEMS AND						Tamil	
F01767	SERVICES CORPORATION	NAEF	NA	NA	NA	8/3/2001	Nadu	0
							Tamil	
F01768	YAMAZEN CORPORATION	NAEF	NA	NA	NA	NA	Nadu	0
						22-03-	Tamil	
F01770	OWL INTERNATIONAL PTE LTD	ACTV	NA	NA	NA	2001	Nadu	0
	LEXMARK INTERNATIONAL					16-08-	Tamil	
F01826	(SINGAPORE) PTE LIMITED	ACTV	NA	NA	NA	2001	Nadu	0
101010	(entern enter i i i i i i i i i i i i i i i i i i i	7.0.7		107	,	2001	Tamil	
F01830	FLUID ENERGY CONTROLS INC.	ACTV	NA	NA	NA	NA	Nadu	0
101030	WATCH GUARD TECHNOLOGIES	ACIV	IVA	IVA	INA	21-11-	Tamil	
F01861	INC	ACTV	NA	NA	NA	2001	Nadu	0
101901	INC	ACTV	INA	INA	INA	1		
F04.070	CINIAD IEDIJIJI CDN DIJD	A CTV		N. A		24-12-	Tamil	0
F01878	SINAR JERUIH SDN BHD	ACTV	NA	NA	NA	2001	Nadu	0
504040		A CT1 /	١			23-09-	Tamil	•
F01918	SIPLEC INTERNATIONAL LIMITED	ACTV	NA	NA	NA	1995	Nadu	0
	INTELSAT GLOBAL SERVICES					20-05-	Tamil	
F01935	CORPORATION	ACTV	NA	NA	NA	2005	Nadu	0
						27-05-	Tamil	
F01940	PGS GEOPHYSICAL A.S	ACTV	NA	NA	NA	2002	Nadu	0
						29-08-	Tamil	
F01987	SEVERN GLOCON LIMITED	ACTV	NA	NA	NA	2002	Nadu	0
						24-10-	Tamil	
F02028	LAGERWEY WINDTURBINE B V	ACTV	NA	NA	NA	2002	Nadu	0
	SOCAM MANAGEMENT SERVICES						Tamil	
F02061	SINGAPORE PTELIMITED	NAEF	NA	NA	NA	NA	Nadu	0
							Tamil	
F02098	JAN DE NUL NV	ACTV	NA	NA	NA	NA	Nadu	0
	BUCKMAN LABORATORIES (ASIA)						Tamil	
F02104	PTE. LIMITED	ACTV	NA	NA	NA	5/2/2003	Nadu	0
		1.2.0		1	1	=,=,=000		
						13-02-	Tamil	
F02110	ZWICK ASIA PTE LIMITED	ACTV	NA	NA	NA	2002	Nadu	0
102110	ZVVICK/IGI/(TTE EIIVITTED	7.017	11/	13/7	14/1	2002	Tamil	
F02122	INVE THAILAND LIMITED	NAEE	NA	NA	NA	NA		Λ
FUZIZZ	INVE I MAILAND LIMITED	NAEF	INA	NA	INA	NA	Nadu	0

	SUNLEY FASHIONS FAR EAST						Tamil	
F02126	LIMITED	ACTV	NA	NA	NA	########	Nadu	0
							Tamil	
F02143	ROTHE ERDE GMBH	NAEF	NA	NA	NA	NA	Nadu	0
	RANGASWAMY AND ASSOCIATES						Tamil	
F02157	INC	ACTV	NA	NA	NA	NA	Nadu	0
						18-08-	Tamil	
F02189	EASTMAN FILMS INC	ACTV	NA	NA	NA	2003	Nadu	0
							Tamil	
F02222	XAMBALA INCORPORATED	NAEF	NA	NA	NA	NA	Nadu	0
							Tamil	
F02235	DAINTEE LIMITED	ACTV	NA	NA	NA	########	Nadu	0
	COLLINABIA CRORTCIA/FAR						T	
F022F2	COLUMBIA SPORTSWEAR	A CTV				NI A	Tamil	0
F02253	COMPANY	ACTV	NA	NA	NA	NA	Nadu	0
	KISTLER INSTRUMENTS PTE						Tamil	
F02261	LIMITED	NAEF	NA	NA	NA	NA	Nadu	0
102201	LIMITED	INALI	IVA	IVA	INA	21-01-	Tamil	
F02262	AJINOMOTO CO INC	NAEF	NA	NA	NA	2004	Nadu	0
102202	761101010101010	IVA	14/1	14/ (14/ (15-04-	Tamil	
F02297	DANKOTUWA PROCELAIN LIMITED	ACTV	NA	NA	NA	2004	Nadu	0
		7.0.1				26-07-	Tamil	
F02337	PUNCAK NAGA HOLDINGS BERHAD	ACTV	NA	NA	NA	2004	Nadu	0
							Tamil	
F02339	SIGMA CORPORATION	NAEF	NA	NA	NA	NA	Nadu	0
	CARGO COMMUNITY NETWORK						Tamil	
F02372	PTE LTD	ACTV	NA	NA	NA	NA	Nadu	0
	HETTIGODA DISTRIBUTORS					17-09-	Tamil	
F02378	PRIVATE LIMITED	ACTV	NA	NA	NA	2004	Nadu	0
							Tamil	
F02394	PROPLUS SYSTEMS INC	ACTV	NA	NA	NA	NA	Nadu	0
	DEUTSCHE WOOLWORTH						Tamil	
F02418	SOURCING HK LIMITED	ACTV	NA	NA	NA	NA	Nadu	0

2.Data Preprocessing:

Cleaning and preprocessing data is a crucial step in the data preparation process before you can use it for machine learning or analysis. Below are the steps you can follow to clean and preprocess your data, including handling missing values and converting categorical features into numerical representations.

1. Import Libraries

Start by importing the necessary Python libraries for data manipulation and preprocessing, such as Pandas, NumPy, and Scikit-Learn.

python
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.impute import SimpleImputer

2. Load Your Dataset Load your dataset into a Pandas DataFrame. Replace 'your_data.csv' with the actual file path or URL of your dataset.

```
python
data = pd.read_csv('your_data.csv')
```

- **3. Handling Missing Values** Deal with missing values in your dataset. Depending on the nature of the data, you can choose one of the following methods:
 - Imputation with Mean/Median/Mode: Fill missing values with the mean, median, or mode of the respective column.

```
python
imputer = SimpleImputer(strategy='mean') # You can also use 'median'
or 'most_frequent'
data['column_name'] = imputer.fit_transform(data[['column_name']])
```

• **Dropping Rows**: Remove rows with missing values if the number of missing values is small and doesn't significantly affect your dataset.

```
python
data.dropna(inplace=True)
```

4. Handling Categorical Features

If your dataset contains categorical features, you need to convert them into numerical representations. This can be done in several ways:

• **Label Encoding**: Use label encoding to convert categorical variables into ordinal integers. This is suitable when there is an ordinal relationship between categories.

```
python
label_encoder = LabelEncoder()
data['categorical_column'] =
label_encoder.fit_transform(data['categorical_column'])
```

• **One-Hot Encoding**: Use one-hot encoding to convert categorical variables into binary columns. Each category becomes a new binary column with 0s and 1s.

```
python
one_hot_encoder = OneHotEncoder()
encoded_categories =
one_hot_encoder.fit_transform(data[['categorical_column']]).toarray()
encoded_df = pd.DataFrame(encoded_categories,
columns=one_hot_encoder.get_feature_names(['categorical_column']))
data = pd.concat([data, encoded_df], axis=1)
data.drop(['categorical_column'], axis=1, inplace=True)
```

5. Standardization or Normalization (if necessary)

Depending on your machine learning algorithm, you might want to standardize or normalize your numerical features to have a consistent scale. You can use techniques like Min-Max scaling or StandardScaler from Scikit-Learn.

python

from sklearn.preprocessing import StandardScaler, MinMaxScaler

```
scaler = StandardScaler() # or MinMaxScaler
data[['numerical_column1', 'numerical_column2']] =
scaler.fit transform(data[['numerical_column1', 'numerical_column2']])
```

6. Save Processed Data (Optional)

If you want to save your cleaned and preprocessed data for future use, you can use the to_csv method in Pandas or other appropriate file formats.

```
python
data.to_csv('preprocessed_data.csv', index=False)
```

By following these steps, you can clean and preprocess your data, handle missing values, and convert categorical features into numerical representations suitable for machine learning or analysis. Make sure to customize these steps according to your specific dataset and requirements.

3. Exploratory Data Analysis:

Exploratory Data Analysis (EDA) is a crucial step in understanding your data and extracting valuable insights from it. In this example, we'll assume you have a dataset containing information about registered companies. Here's how you can perform EDA to understand the distribution, relationships, and unique characteristics of these companies:

1. Import Libraries Start by importing the necessary Python libraries for data analysis and visualization.

python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

2. Load Your Dataset Load your dataset into a Pandas DataFrame if you haven't already (you can reuse the data DataFrame from the previous example).

```
python
data = pd.read_csv('your_data.csv')
```

3. Basic Data Exploration

• **Preview Data**: Use data.head() to display the first few rows of your dataset to get an initial sense of the data's structure.

```
python
print(data.head())
```

• **Summary Statistics**: Get summary statistics for numerical columns to understand central tendencies and spreads.

python

print(data.describe())

4. Data Visualization

• **Histograms**: Create histograms to visualize the distribution of numerical variables.

```
python
data['numerical_column'].plot(kind='hist', bins=20, edgecolor='k')
plt.xlabel('Numerical Column')
plt.ylabel('Frequency')
plt.title('Histogram of Numerical Column')
plt.show()
```

• **Box Plots**: Use box plots to identify outliers and understand the distribution of numerical variables.

```
python

sns.boxplot(x='categorical_column', y='numerical_column', data=data)

plt.xlabel('Categorical Column')

plt.ylabel('Numerical Column')

plt.title('Box Plot of Numerical Column by Category')

plt.xticks(rotation=90)

plt.show()
```

• **Count Plots**: Create count plots to visualize the distribution of categorical variables.

```
python

sns.countplot(x='categorical_column', data=data)

plt.xlabel('Categorical Column')

plt.ylabel('Count')

plt.title('Count Plot of Categorical Column')

plt.xticks(rotation=90)

plt.show()
```

5. Relationships and Correlations

• **Correlation Matrix**: Compute and visualize the correlation between numerical variables.

```
python
correlation_matrix = data.corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
linewidths=0.5)
plt.title('Correlation Matrix')
plt.show()
```

• **Pairplots**: Create pairplots to visualize pairwise relationships between numerical variables.

```
python
sns.pairplot(data, hue='categorical_column')
plt.suptitle('Pairplot of Numerical Variables')
plt.show()
```

6. Unique Characteristics

• Unique Values: Explore the unique values in categorical columns to identify unique characteristics.

```
python
unique_values = data['categorical_column'].unique()
print("Unique Values in Categorical Column:", unique_values)
```

• Value Counts: Get the count of each unique value in a categorical column.

```
python
value_counts = data['categorical_column'].value_counts()
print("Value Counts:\n", value_counts)
```

These are some common EDA techniques to get a better understanding of your data. You can customize and expand your analysis based on the specific questions you want to answer and the characteristics of your

4. Feature engineering:

Feature engineering involves creating new features or transforming existing ones to improve the performance of predictive models. The goal is to provide the model with more relevant and informative input data. Here are some techniques and examples for feature engineering:

1. Encoding Categorical Variables:

• We've discussed this in the data preprocessing section. You can use techniques like one-hot encoding or label encoding to convert categorical variables into numerical representations.

2. Date and Time Features:

• Extract meaningful information from date and time variables such as year, month, day, day of the week, or time of day. These can be useful in timeseries analysis or when time-related patterns matter.

```
python
data['year'] = data['date'].dt.year
data['month'] = data['date'].dt.month
data['day_of_week'] = data['date'].dt.dayofweek
```

3. Aggregation and Summary Statistics:

• Create new features by aggregating or summarizing existing ones. For example, calculate the mean, sum, or standard deviation of numerical variables for each category in a categorical column.

```
python
# Calculate the mean of a numerical column for each category in a categorical
column
mean_by_category =
data.groupby('categorical_column')['numerical_column'].mean()
data['mean_numerical_by_category'] =
data['categorical_column'].map(mean_by_category)
```

4. Interaction Features:

• Create new features by combining existing ones to capture interactions or relationships between them. This can be useful in cases where the interaction has predictive power.

```
python
data['interaction_feature'] = data['feature1'] * data['feature2']
```

5. Polynomial Features:

• Create polynomial features to capture non-linear relationships in the data. This is particularly useful in polynomial regression or when you suspect that higher-order terms are significant.

```
python
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
X_poly = poly
```

5.Predictive Modelling:

To develop predictive models for future company registrations, you can follow these steps:

1. Data Preparation:

- **Ensure your dataset is** cleaned, preprocessed, and contains the relevant features as discussed earlier.
- Split your data into training and testing sets to evaluate the model's performance.

```
```python
from sklearn.model_selection import train_test_split

X = data.drop('target_variable', axis=1)
y = data['target_variable']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

#### 2. Model Selection:\*\*

- Choose appropriate machine learning algorithms based on the nature of your problem. Common choices for predictive modeling include:
- \*\*Linear Regression\*\*: For regression tasks when the target variable is continuous.
  - \*\*Logistic Regression\*\*: For binary classification tasks.
- \*\*Random Forest\*\*, \*\*Gradient Boosting\*\*, \*\*XGBoost\*\*: For both regression and classification tasks, and they often perform well.

- \*\*Neural Networks\*\*: For complex problems with large datasets.
- \*\*Support Vector Machines (SVM)\*\*: For classification and regression tasks, especially when dealing with high-dimensional data.

#### \*\*3. Model Training:\*\*

- Train your chosen machine learning models using the training data.

#### ```python

from sklearn.ensemble import RandomForestClassifier # Replace with the appropriate model

```
model = RandomForestClassifier() # Initialize the model
model.fit(X_train, y_train) # Train the model
```

#### \*\*4. Model Evaluation:\*\*

- Assess the model's performance using appropriate evaluation metrics. For classification, common metrics include accuracy, precision, recall, F1-score, and ROC-AUC. For regression, you can use metrics like mean squared error (MSE), R-squared, and mean absolute error (MAE).

```
```python
```

from sklearn.metrics import accuracy_score, classification_report, mean_squared_error

```
# For classification
y_pred = model.predict(X_test)
```

```
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
# For regression
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
**5. Hyperparameter Tuning:**
 - Optimize your model's hyperparameters to improve its performance. You can
use techniques like Grid Search or Random Search.
```python
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20]}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
```

## **6.Model evaluation:**

Model evaluation is a crucial step in assessing the performance of your predictive models. The choice of evaluation metrics depends on the nature of the problem you are trying to solve (classification, regression, etc.). Below, I'll provide examples of how to evaluate predictive models using common metrics for classification and regression tasks:

#### **Classification Metrics:**

python

1. **Accuracy:** It measures the proportion of correctly predicted instances out of the total instances.

```
from sklearn.metrics import accuracy_score

y_true = [0, 1, 1, 0, 1]

y_pred = [0, 1, 0, 0, 1]

accuracy = accuracy_score(y_true, y_pred)

print("Accuracy:", accuracy)
```

2. **Precision:** It measures the proportion of true positive predictions among all positive predictions.

```
python
from sklearn.metrics import precision_score
precision = precision_score(y_true, y_pred)
print("Precision:", precision)
```

3. **Recall (Sensitivity or True Positive Rate):** It measures the proportion of true positives correctly predicted among all actual positives.

```
python
from sklearn.metrics import recall_score
recall = recall_score(y_true, y_pred)
print("Recall:", recall)
```

4. **F1-Score:** It is the harmonic mean of precision and recall and is useful when you want to balance precision and recall.

```
python
from sklearn.metrics import f1_score
f1 = f1_score(y_true, y_pred)
print("F1-Score:", f1)
```

5. **Confusion Matrix:** It provides a detailed breakdown of the model's predictions, including true positives, true negatives, false positives, and false negatives.

```
python
from sklearn.metrics import confusion_matrix

conf_matrix = confusion_matrix(y_true, y_pred)
print("Confusion Matrix:\n", conf_matrix)
```

6. Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC): Useful for binary classification problems with a probability score.

```
python
from sklearn.metrics import roc_curve, roc_auc_score

y_probs = model.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_true, y_probs)
roc_auc = roc_auc_score(y_true, y_probs)

Plot ROC Curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label='ROC curve (area = {:.2f})'.format(roc_auc))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC)')
plt.legend(loc='lower right')
```

plt.show()

#### **Regression Metrics:**

1. **Mean Absolute Error (MAE):** It measures the average absolute difference between predicted and actual values.

# python

from sklearn.metrics import mean\_absolute\_error

```
y_true = [3.0, 4.5, 2.0, 5.1, 6.3]
y_pred = [2.8, 4.2, 2.2, 5.0, 6.0]
mae = mean_absolute_error(y_true, y_pred)
print("MAE:", mae)
```

2. **Mean Squared Error (MSE):** It measures the average of the squared differences between predicted and actual values.

#### python

from sklearn.metrics import mean\_squared\_error

```
mse = mean_squared_error(y_true, y_pred)
print("MSE:", mse)
```

3. **Root Mean Squared Error (RMSE):** It is the square root of MSE and provides the error in the same units as the target variable.

```
python
import numpy as np

rmse = np.sqrt(mse)
print("RMSE:", rmse)
```

4. **R-squared** (**R2**): It measures the proportion of the variance in the dependent variable that is predictable from the independent variables.

#### python

from sklearn.metrics import r2\_score

```
r2 = r2_score(y_true, y_pred)
print("R-squared:", r2)
```

When evaluating predictive models, choose the evaluation metrics that are most relevant to your specific problem and consider the trade-offs between them. It's often a good practice to use a combination of metrics to get a comprehensive view of the model's performance.