

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «П	рограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №1 по курсу «Моделирование»

на тему: «Генерация псевдослучайных чисел»

гудент ИУ7-73Б		Лысцев Н. Д.
(Группа)	(Подпись, дата)	(И. О. Фамилия)
реподаватель		Рудаков И. В.
	(Подпись, дата)	(И. О. Фамилия)

СОДЕРЖАНИЕ

1	Техническое задание	į
2	Критерий случайности	4

1 Техническое задание

Необходимо сгенерировать одно-, двух- и трёхразрядные числа двумя различными способами: табличным (с использованием таблицы случайных чисел) и алгоритмическим (с применением генератора псевдослучайных чисел). Для каждого способа генерации и каждой разрядности следует сформировать отдельный столбец, в результате чего получится три столбца с числовыми последовательностями. После этого пользователь должен иметь возможность ввести 10 произвольных чисел, а под каждым из столбцов требуется вычислить количественный критерий, характеризующий степень случайности соответствующей последовательности.

2 Критерий случайности

Для последовательности (a_1, a_2, \ldots, a_n) вычисляется среднее арифметическое четных чисел (Avg_{even}) и нечетных чисел (Avg_{odd}) , которое вычисляется по формуле 2.1:

$$R_{avg} = \begin{cases} rac{Avg_{odd}}{Avg_{even}}, & \text{если } Avg_{odd} \leq Avg_{even}, \\ rac{Avg_{even}}{Avg_{odd}}, & \text{иначе.} \end{cases}$$
 (2.1)

Далее для последовательности (a_1, a_2, \ldots, a_n) вычисляется отношения количество пар, где значение возрастает $(a_i < a_{i+1}, N_{\text{poct}})$ к количеству пар, где значение убывает $(a_i > a_{i+1}, N_{\text{poct}})$ по формуле 2.2:

$$R_{pair} = \begin{cases} \frac{N_{\text{рост}}}{N_{\text{падение}}}, & \text{если } N_{\text{рост}} \leq N_{\text{падение}}, \\ \frac{N_{\text{падение}}}{N_{\text{рост}}}, & \text{иначе.} \end{cases}$$
 (2.2)

Критерием случайности последовательности (a_1, a_2, \ldots, a_n) будет являться минимальное из R_{avg} и R_{pair} , определяющееся по формуле 2.3:

$$R = \min(R_{avg}, R_{pair}) \tag{2.3}$$

Чем ближе значение R к 1, тем последовательность считается более случайной.