Chapter 2: Motion Along A Single Line

Rylan Polster

September 18, 2020

General

Quantities

x = position

 $\Delta x = \text{displacement}$

t = time

 $\Delta t = \text{change in time}$

 $v_{\text{avg}} = \text{average velocity}$

v = instantaneous velocity

 $s_{\text{avg}} = \text{average speed}$

 $a_{\text{avg}} = \text{average acceleration}$

a =instantaneous acceleration

g = magnitude of free-fall acceleration

Constants

$$g = 9.8 \text{ m/s}^2$$

1 Position, Displacement, and Average Velocity

Displacement

$$\Delta x = x_2 - x_1 \tag{1}$$

Average Velocity

$$v_{\text{avg}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \tag{2}$$

Average Speed

$$s_{\text{avg}} = \frac{\text{total distance}}{\Delta t} \tag{3}$$

2 Instantaneous Velocity and Speed

Instantaneous Velocity

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} \tag{4}$$

3 Acceleration

Average Acceleration

$$a_{\text{avg}} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1} \tag{5}$$

Instantaneous Acceleration

$$a = \frac{dv}{dt} \tag{6}$$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2} \tag{7}$$

4 Constant Acceleration

$$v = v_0 + at \tag{8}$$

$$x - x_0 = v_0 t + \frac{1}{2} a t^2 \tag{9}$$

$$v^2 = v_0^2 + 2a(x - x_0) (10)$$

$$x - x_0 = \frac{1}{2} (v_0 + v) t \tag{11}$$

$$x - x_0 = vt - \frac{1}{2}at^2 (12)$$

5 Free-fall Acceleration

The free-fall acceleration near Earth's surface is $a=-g=-9.8~\mathrm{m/s^2}$, and the magnitude of the acceleration is $g=9.8~\mathrm{m/s^2}$. Do not substitute $-9.8~\mathrm{m/s^2}$ for g.

6 Graphical Integration In Motion Analysis

Integrating Acceleration

$$v_1 - v_0 = \int_{t_0}^{t_1} a \, dt \tag{13}$$

Integrating Velocity

$$x_1 - x_0 = \int_{t_0}^{t_1} v \, dt \tag{14}$$