Problem H. Srednji

Time limit 1000 ms **Mem limit** 1048576 kB

OS Linux

Consider a sequence A of integers, containing N integers between 1 and N. Each integer appears exactly once in the sequence.

A subsequence of A is a sequence obtained by removing some (possibly none) numbers from the beginning of A, and then from the end of A.

Calculate how many different subsequences of A of **odd** length have their median equal to B. The median of a sequence is the element in the middle of the sequence after it is sorted. For example, the median of the sequence (5,1,3) is 3.

Input

The first line contains two integers, N ($1 \le N \le 100\,000$) and B ($1 \le B \le N$).

The second line contains N integers separated by spaces, the elements of sequence A.

Output

Output the number of subsequences of A whose median is B.

Explanation of Sample Input

In Sample Input 3, the four subsequences of A with median 4 are (4), (7, 2, 4), (5, 7, 2, 4, 3) and (5, 7, 2, 4, 3, 1, 6).

Sample 1

Input	Output
5 4 1 2 3 4 5	2

Sample 2

Input	Output
6 3 1 2 4 5 6 3	1

Sample 3

Input	Output
7 4 5 7 2 4 3 1 6	4