Global Encoding for Abstractive Summarization

Kefan Xu

School of Electronics Engineering and Computer Science Peking University

Advisor: Baobao Chang(PKU)

Outline

- Motivaton
- CNN Gate Unit
- Global Attention Unit
- Final Result

I. Motivation — Difficulty

Disadvantages:

- (1)repetition
- (2)semantic irrelevance
- Cause:

Focusing on the local information too much

Our solution:

Proposed an seq-to-seq model with dealing with global information

Text: the mainstream fatah movement on monday officially chose mahmoud abbas, chairman of the palestine liberation organization (plo), as its candidate to run for the presidential election due on jan. #, ####, the official wafa news agency reported.

seq2seq: fatah officially officially elects abbas as candidate for candidate.

Gold: fatah officially elects abbas as candidate for presidential election

Motivation — original model

 The encoder-decoder model is widely used to finish the machine abstractive summarizing or translating tasks.

Encoder :

- (1) Extract the meaning of the input
- (2) Generate a context vector.

Decoder:

 Generate the summarization or the translation based on the the context information produced by the Encoder.

II. Global Attention model

One of the serious problem of the encoder-decoder:

- While generating the different outputs, the decoder using the same context
- the model may likely focus on similar aspects of the context information and produce the outputs similar with others.

Solution:

- Attention model means provide different context information while dealing with various outputs.
- Help decoder focus on the more related context information.

$$egin{aligned} P_{vocab} &= softmax(g([c_t;s_t])) \ s_t &= LSTM(y_{t-1},s_{t-1},C_{t-1}) \ c_t &= \sum_{i=1}^n lpha_{t,i}h_i \ lpha_{t,i} &= rac{exp(e_{t,i})}{\sum_{j=1}^n exp(e_{t,j})} \ e_{t,i} &= s_{t-1}^ op W_a h_i \end{aligned}$$

III. CNN Gate Unit

- Attention model alleviate the influence of the repetition
- But it don't help address the problem of the semantic irrelevance.

Solution:

- Provided a gate unit above the output of the attention model.
- Used serval CNN with different size of kernels and concat the final outputs
- Help the model learn about n-gram information, and perform the outputs with reasonable structure.

IV. Result

Model	R-1	R-2	R-L
RNN	21.5	8.9	18.6
RNN-context	29.9	17.4	27.2
CopyNet	34.4	21.6	31.3
SRB	33.3	20.0	30.1
DRGD	37.0	24.2	34.2
seq2seq (Our impl.)	33.8	23.1	32.5
+CGU	39.4	26.9	36.5

Table 2: F-Score of ROUGE on LCSTS.

Model	R-1	R-2	R-L
ABS	29.6	11.3	26.4
ABS+	29.8	11.9	27.0
Feats	32.7	15.6	30.6
RAS-LSTM	32.6	14.7	30.0
RAS-Elman	33.8	16.0	31.2
SEASS	36.2	17.5	33.6
DRGD	36.3	17.6	33.6
seq2seq (Our impl.)	33.6	16.3	31.3
+CGU	36.3	18.0	33.8

Table 3: F-Score of ROUGE on Gigaword.