Homework #8

Chapter V, Sec. 1, ex. 7; Sec. 2, ex. 3, 8, 9; Sec. 3, ex. 1b, 1e, 1i

Chapter V, Sec. 1, Ex. 7:

Suppose $\sum a_k$ converges

This means the sequence of partial sums, $\{S_k\}$ converges

and that $a_k o 0$ as $k o \infty$

The sequence of partial sums is a sequence of complex numbers

and convergent sequence of complex numbers are Cauchy Sequences

so, as
$$m,n o\infty$$
 , $|S_n-S_m| o 0$

$$|S_n - S_m| = |a_0 + \ldots + a_n - (a_0 + \ldots + a_m)| = |a_{m+1} + \ldots + a_n|$$

and so for any $\epsilon>0$, $\exists~N_1\geq 1$ s.t. if $m,n\geq N_1$, $|S_n-S_m|<\epsilon/2$

and also, $\exists N_2 \geq 1$ s.t. if $m \geq N_2$, $|a_m| < \epsilon/2$

so taking $N = \max(N_1, N_2)$, if $m, n > N_1$

$$|S_n - S_m + a_m| = |a_m + \ldots + a_n| \le |a_m| + |a_{m+1} + \ldots + a_n| < \epsilon/2 + \epsilon/2 = \epsilon$$

this means that $a_m+\ldots+a_n \to 0 \equiv \sum_{k=m}^{k=n} a_k$ converges to 0 as $m,n\to\infty$

Now suppose $\sum_{k=m}^{k=n} a_k o 0$ as $m,n o \infty$

this means $a_m+\ldots+a_n\to 0$ as $m,n\to\infty$

so for any $\epsilon > 0$, $\exists N \geq 1$ s.t. $|a_m + \ldots + a_n| < \epsilon$ for all $m, n \geq N$

and $|a_{m+1}+\ldots+a_n|\leq |a_m+a_{m+1}+\ldots+a_n|<\epsilon$ for all $m,n\geq N$

 $\implies |S_n - S_m| < \epsilon$ for all $m, n \geq N$ (ϵ was arbitrary)

so $\{S_k\}$ is a cauchy sequence \implies it is a convergent sequence

which means $\sum a_k$ converges

Chapter V, Sec. 2, Ex. 3

- 1. $\frac{z^k}{k}$ converges uniformly for |z| < 1, $E = \{z: |z| < 1\}$
 - 1. I will show $\{f_k\}$ converges to 0 uniformly as $k \to \infty$
 - 2. $|z^j|=|z|^j$ and |z|<1, so $|z|^j<1^j=1$ for all $j\in\mathbb{N}$
 - 3. so for all $z \in E$, $j \in \mathbb{N}$:
 - 4. $|f_j(z)|=|rac{z^j}{j}|<rac{1}{j}$ and as $j o\infty$, $rac{1}{j} o0$,

- 5. which means $|f_j(z)-0|\leq rac{1}{i}$, and $rac{1}{i} o 0$, for all $z\in E$
- 6. so $\{f_k\}$ converges to 0 uniformly.
- 2. $f_k'(z)$ doesn't converge uniformly for |z|<1
 - 1. Suppose $f_k^\prime(z)$ does converge uniformly to g(z) for |z|<1
 - 2. so let z be any point in E . $f_k(z)$ is analytic everywhere assuming, $k \ge 1$, so $f_k'(z)$ is analytic by the corollary on page 115 (E is a domain) and E is a star-shaped domain so:
 - 3. $f_k(z)=\int_0^z f_k'(\zeta)d\zeta$, where the integral can be taken over any path from 0 to z

1. since
$$z^k/k - 0^k/k = \int_0^z \zeta^{k-1} d\zeta$$

- 4. let γ be a broken line segment contained in E (which is possible since E is a domain and starshaped with respect to 0) that goes from 0 to z, $z \in E$
- 5. and since f_k' is analytic on E, it is continuous over E
- 6. and $\gamma \in E$, so f_k' is continuous on γ
- 7. and assuming $\{f'_k\}$ converges uniformly to g(z) on E (and therefore γ)
- 8. $\int_{\gamma} f_k'(z)dz = \int_0^z f_k'(\zeta)d\zeta = f_k(z) \rightarrow \int_{\gamma} g(z)dz$
- 9. and since $\{f_k'\}$ is a sequence of analytic functions, g is analytic (on E)
- 10. and $\int_{\gamma} g(z)dz = \int_{0}^{z} g(\zeta)d\zeta = G(z) G(0)$
 - 1. where G is a primitive for g
- 11. so $\{f_k\}$ converges uniformly to G(z)-G(0), but it also converges to 0
- 12. so G(z) G(0) = 0
- 13. which means G(z)=G(0) for any $z\in E$, so G(z) is constant over E
- 14. which means G'(z) = g(z) = 0
- 15. so $f_k' o 0$
- 16. but for every $j\geq 1$, $|f_j'|=|z^{j-1}|\leq 1=\epsilon_j$, so ϵ_j does not converge to 0 as $j\to\infty$, which is a contradiction: f_k' does not converge uniformly for |z|<1
- 3. However, using the theorem on page 136
 - 1. since $f_k(z)$ is analytic for $|z| \leq R$ for each R < 1 and converges uniformly to 0 for $|z| \leq R$
 - 2. For each r < R < 1, $\{f_k'(z)\}$ converges uniformly to 0 for $|z| \le r$
 - 1. for any $\epsilon > 0$, taking $R = 1 \epsilon/2$, we have that the above is true for $r = 1 \epsilon$

Chapter V, Sec. 2, Ex. 8:

Show that $\sum rac{z^k}{k^2}$ converges uniformly for |z| < 1

define
$$g_k(z) = \frac{z^k}{k^2}$$

Let
$$M_k = \frac{1}{k^2} \geq 0$$

for all z such that $\left|z\right|<1$,

$$|g_k(z)| \leq |rac{z^k}{k^2}| = rac{|z|^k}{k^2} < rac{1}{k^2} = M_k$$

so $\sum g_k(z)$ converges uniformly for |z| < 1

Chapter V, Sec. 2, Ex. 9:

Show that $\sum rac{z^k}{k}$ does not converge uniformly for $|z| < 1 \sum_{k=1}^\infty rac{1}{k}$ diverges

and the terms $\frac{z^k}{k} \to \frac{1}{k}$ as $z \to 1$ from the left side (and in this case, z is increasing towards 1 along the positive real axis)

so letting z o 1 as above, $\sum rac{z^k}{k} o \sum rac{1}{k} o \infty$

Chapter V, Sec. 3, Ex 1b.

$$\sum_{k=0}^{\infty} \frac{k}{6^k} z^k$$

define $w = \frac{z}{6}$

so
$$w^k=rac{z^k}{6^k}$$

$$\sum_{k=0}^{\infty} kw^k$$

from the example on page 142,

the ratio test gives the radius of convergence R=1 for $\sum_{k=0}^{\infty} kw^k$

so
$$|w|=|rac{z}{6}|<1\equiv |z|<6$$

so
$$R=6$$

Chapter V, Sec. 3, Ex 1e

$$\sum_{k=1}^{\infty} \frac{2^k z^{2k}}{k^2 + k}$$

$$w = 2z^2$$

$$\sum_{k=1}^{\infty} \frac{w^k}{k^2 + k}$$

so
$$a_k=rac{1}{k^2+k}$$

$$|a_k/a_{k+1}|=rac{(k+1)^2+k+1}{k^2+k}=rac{k^2+2k+1+k+1}{k^2+k}=rac{k^2+3k+2}{k^2+k}=rac{1+3/k+2/k^2}{1+1/k}
ightarrow 1$$
 as $k
ightarrow \infty$

so
$$|2z^2| < 1 \equiv |z| < 1/\sqrt{2}$$
, so $R = rac{1}{\sqrt{2}}$

Chapter V, Sec. 3, Ex 1i

$$\sum_{k=1}^{\infty} \frac{k! z^k}{k^k}$$

using ratio test:

$$|a_k/a_{k+1}| = rac{k!/k^k}{(k+1)!/(k+1)^{k+1}} = rac{k!(k+1)^{k+1}}{(k+1)k!k^k}$$

$$R=\lim_{k o\infty}rac{(k+1)^k}{k^k}=e$$

Extra Problems: https://math.berkeley.edu/~art/data/F18-185/HW8.pdf

1. Give an example of a power series (centered at $z_0=0$) with radius of convergence R=1 which converges at z=i and diverges at z=-i. Justify your answer

$$\sum a_k z^k$$

where $\sum a_k(i)^k$ converges but $\sum a_k(-i)^k$ diverges

so consider the series $\sum_{k=1}^{\infty} \frac{i^k}{k} z^k$

at z=i, we obtain $\sum_{k=1}^{\infty} rac{(-1)^k}{k}$, which converges (conditionally)

at z=-i, we obtain $\sum_{k=1}^{\infty} rac{1}{k}$, which diverges.

2.

$$f'(z) = \sum_{k=1}^{\infty} k a_k z^{k-1}$$

$$f''(z) = \sum_{k=2}^{\infty} k(k-1)a_k z^{k-2}$$

taking the differential equation:

$$z^2 f''(z) + z f'(z) + (z^2 - 1) f(z) = 0$$

and substituting each $f^{(m)}(z)$ with the corresponding series:

$$\sum_{k=2}^{\infty} k(k-1)a_k z^k + \sum_{k=1}^{\infty} ka_k z^k + \sum_{k=0}^{\infty} a_k z^{k+2} - \sum_{k=0}^{\infty} a_k z^k = 0$$

Letting
$$\sum_{k=2}^{\infty} k(k-1) a_k z^k = \sum_{k=0}^{\infty} (k+2)(k+1) a_{k+2} z^{k+2}$$

$$\sum_{k=1}^{\infty} k a_k z^k = \sum_{k=0}^{\infty} (k+1) a_{k+1} z^{k+1}$$

$$\sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2}z^{k+2} + \sum_{k=0}^{\infty} (k+1)a_{k+1}z^{k+1} + \sum_{k=0}^{\infty} a_kz^{k+2} - \sum_{k=0}^{\infty} a_kz^k = 0$$

$$-a_0-a_1z+a_1z+\sum_{k=0}^{\infty}(k+2)(k+1)a_{k+2}z^{k+2}+\sum_{k=1}^{\infty}(k+1)a_{k+1}z^{k+1}+\sum_{k=0}^{\infty}a_kz^{k+2}-\sum_{k=2}^{\infty}a_kz^k=0$$

Letting:

$$\sum_{k=1}^{\infty} (k+1)a_{k+1}z^{k+1} = \sum_{k=0}^{\infty} (k+2)a_{k+2}z^{k+2}$$

$$\sum_{k=2}^{\infty} a_k z^k = \sum_{k=0}^{\infty} a_{k+2} z^{k+2}$$

then substituting and simplifying:

$$\sum_{k=0}^{\infty} [(k+2)(k+1)a_{k+2} + (k+2)a_{k+2} + a_k - a_{k+2}]z^{k+2} = a_0$$

$$(k+2)(k+1)a_{k+2} + (k+2)a_{k+2} + a_k - a_{k+2} = (k+3)(k+1)a_{k+2} + a_k$$

so
$$\sum_{k=0}^{\infty}[(k+3)(k+1)a_{k+2}+a_k]z^{k+2}=a_0$$

plugging in z = 0 to the differential equation:

$$(0-1)f(0) = 0 \implies -f(0) = 0 \implies f(0) = 0 = a_0$$

$$(k+3)(k+1)a_{k+2} = -a_k$$

$$a_{k+2} = -rac{a_k}{(k+3)(k+2)}$$

$$k=1$$
: $a_3=-\frac{1/2}{4*3}=-\frac{1}{24}$

$$k=3: a_5=-\frac{a_3}{6*5}=\frac{-1}{24}*\frac{-1}{30}=\frac{1}{720}$$