Static analysis and software verification

Lecture 2 - Mathematical background

• "A set is a collection of well defined and distinct objects, considered as an object in its own right"

• "A set is a collection of well defined and distinct objects, considered as an object in its own right"

• "A set is a collection of well defined and distinct objects, considered as an object in its own right"

• Given a set S

- "A set is a collection of well defined and distinct objects, considered as an object in its own right"
- Given a set S
 - $s \in S$

- "A set is a collection of well defined and distinct objects, considered as an object in its own right"
- Given a set S
 - $s \in S$
 - $S_1 \subseteq S_2 \stackrel{\Delta}{=} \forall s \in S_1 \implies s \in S_2$

- "A set is a collection of well defined and distinct objects, considered as an object in its own right"
- Given a set S
 - $s \in S$
 - $S_1 \subseteq S_2 \stackrel{\Delta}{=} \forall s \in S_1 \implies s \in S_2$
 - $S_1 \cup S_2 = \{s \mid s \in S_1 \lor s \in S_2\}$

- "A set is a collection of well defined and distinct objects, considered as an object in its own right"
- Given a set S
 - $s \in S$
 - $S_1 \subseteq S_2 \stackrel{\Delta}{=} \forall s \in S_1 \implies s \in S_2$
 - $S_1 \cup S_2 = \{s \mid s \in S_1 \lor s \in S_2\}$
 - $S_1 \cap S_2 = \{s \mid s \in S_1 \land s \in S_2\}$

- "A set is a collection of well defined and distinct objects, considered as an object in its own right"
- Given a set S
 - $s \in S$
 - $S_1 \subseteq S_2 \stackrel{\Delta}{=} \forall s \in S_1 \implies s \in S_2$
 - $S_1 \cup S_2 = \{s \mid s \in S_1 \lor s \in S_2\}$
 - $S_1 \cap S_2 = \{s \mid s \in S_1 \land s \in S_2\}$

- Set \approx Logics
 - subset \approx implication
 - union \approx disjunction (or)
 - intersection \approx conjunction (and)

• A partial order \sqsubseteq on a set X is a relation that is

- A partial order \sqsubseteq on a set X is a relation that is
 - Reflexive: $\forall x \in X \implies x \sqsubseteq x$

- A partial order \sqsubseteq on a set X is a relation that is
 - Reflexive: $\forall x \in X \implies x \sqsubseteq x$
 - Anti-symmetric: $\forall x, y \in X . x \sqsubseteq y \land y \sqsubseteq x \implies x = y$

- A partial order \sqsubseteq on a set X is a relation that is
 - Reflexive: $\forall x \in X \implies x \sqsubseteq x$
 - Anti-symmetric: $\forall x, y \in X . x \sqsubseteq y \land y \sqsubseteq x \implies x = y$
 - Transitive: $\forall x, y, z \in X . x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z$

- A partial order \sqsubseteq on a set X is a relation that is
 - Reflexive: $\forall x \in X \implies x \sqsubseteq x$
 - Anti-symmetric: $\forall x, y \in X . x \sqsubseteq y \land y \sqsubseteq x \implies x = y$
 - Transitive: $\forall x, y, z \in X . x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z$
- Example: \leq in \mathbb{Z} (informally)
 - Any integer is equal to itself, therefore it is less or equal
 - If an integer i_1 is less or equal than i_2 , and i_2 is less or equal than i_1 , then i_1 and i_2 are the same
 - i_1 is less or equal than i_2 , i_2 is less or equal than i_3 , then i_1 is less or equal than i_3

• The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:
 - $\mathcal{D}(\emptyset) = {\emptyset}$ (that it's not \emptyset)

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:
 - $\mathcal{D}(\emptyset) = \{\emptyset\}$ (that it's not \emptyset)
 - $\wp(\mathbb{Z}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}, ..., \mathbb{Z}\}$

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:
 - $\mathcal{D}(\emptyset) = \{\emptyset\}$ (that it's not \emptyset)
 - $\mathcal{D}(\mathbb{Z}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}, ..., \mathbb{Z}\}$
- $|X| = n \implies |\mathcal{D}(X)| = 2^n$

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:
 - $\mathcal{D}(\emptyset) = \{\emptyset\}$ (that it's not \emptyset)
 - $\mathcal{D}(\mathbb{Z}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}, ..., \mathbb{Z}\}$
- $|X| = n \implies |\mathcal{D}(X)| = 2^n$
 - $|\wp(\emptyset)| = 1$

- The powerset of S is the set containing all the subsets of X, denoted with $\wp(X)$
- Examples:
 - $\wp(\emptyset) = {\emptyset}$ (that it's not \emptyset)
 - $\mathcal{D}(\mathbb{Z}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}, ..., \mathbb{Z}\}$
- $|X| = n \implies |\mathcal{D}(X)| = 2^n$
 - $|\wp(\emptyset)| = 1$
 - $|\wp(\{0,1\})| = 4$

 \subseteq on $\mathcal{D}(X)$ is a partial order

• \subseteq is reflexive: $\forall X_1 \in \wp(X) . X_1 \subseteq X_1$

- \subseteq is reflexive: $\forall X_1 \in \wp(X) . X_1 \subseteq X_1$
- \subseteq is anti-symmetric: $\forall X_1, X_2 \in \wp(X)$. $X_1 \subseteq X_2 \land X_2 \subseteq X_1 \Rightarrow X_1 = X_2$

- \subseteq is reflexive: $\forall X_1 \in \wp(X)$. $X_1 \subseteq X_1$
- \subseteq is anti-symmetric: $\forall X_1, X_2 \in \wp(X)$. $X_1 \subseteq X_2 \land X_2 \subseteq X_1 \Rightarrow X_1 = X_2$
- \subseteq is transitive: $\forall X_1, X_2, X_3 \in \wp(X)$. $X_1 \subseteq X_2 \land X_2 \subseteq X_3 \Rightarrow X_1 \subseteq X_3$

- \subseteq is reflexive: $\forall X_1 \in \wp(X) . X_1 \subseteq X_1$
- \subseteq is anti-symmetric: $\forall X_1, X_2 \in \wp(X)$. $X_1 \subseteq X_2 \land X_2 \subseteq X_1 \Rightarrow X_1 = X_2$
- \subseteq is transitive: $\forall X_1, X_2, X_3 \in \wp(X)$. $X_1 \subseteq X_2 \land X_2 \subseteq X_3 \Rightarrow X_1 \subseteq X_3$
- A set X equipped with a partial order \sqsubseteq is a poset, denoted with $\langle X, \sqsubseteq \rangle$

Exercise

Exercise

The inverse of a partial order is a partial order?

Exercise

Other examples of posets?

• Just a graphic representation of posets

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that
 - $x \sqsubset y$

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that
 - $x \sqsubset y$
 - $\exists z \in X . x \Box z \Box y$

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that
 - $x \sqsubset y$
 - $\exists z \in X . x \sqsubset z \sqsubset y$
- Upper \Longrightarrow greater

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that
 - $x \sqsubset y$
 - $\exists z \in X . x \sqsubset z \sqsubset y$
- Upper \Longrightarrow greater
 - I level upper ==> "immediately" greater

- Just a graphic representation of posets
- Given $\langle X, \sqsubseteq \rangle$, a line connecting x and y means that
 - $x \sqsubset y$
 - $\exists z \in X . x \sqsubset z \sqsubset y$
- Upper \Longrightarrow greater
 - I level upper ==> "immediately" greater
- Inverse poset: 180° rotation

Examples

• Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB \cdot s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

- Given a poset $\langle X, \sqsubseteq \rangle$, let $S \subseteq X$
 - $s \in X$ is an upper bound of S if $\forall s' \in S$. $s \supseteq s'$
 - is the least upper bound of $\forall s' \in UB$. $s \sqsubseteq s'$
 - $s \in X$ is a lower bound of S if $\forall s' \in S$. $s \sqsubseteq s'$
 - is the greatest lower bound of $\forall s' \in LB$. $s' \sqsubseteq s$

Exercise

- Given $\langle \wp(X), \subseteq \rangle$, let $S_1, S_2 \in \wp(X)$. Is $S_1 \cup S_2$ the lub of $\{S_1, S_2\}$?
- Given $\langle \wp(X), \subseteq \rangle$, let $S_1, S_2 \in \wp(X)$. Is $S_1 \cap S_2$ the glb of $\{S_1, S_2\}$?

- Supremum, top, maximum of S
 - $x \in S$. x is the lub
- Infimum, bottom, minimum of S
 - $x \in S$. x is the glb

- Supremum, top, maximum of S
 - $x \in S$. x is the lub
- ullet Infimum, bottom, minimum of S
 - $x \in S$. x is the glb

top?

- Supremum, top, maximum of S
 - $x \in S$. x is the lub
- ullet Infimum, bottom, minimum of S
 - $x \in S$. x is the glb

top?

- Supremum, top, maximum of S
 - $x \in S$. x is the lub
- ullet Infimum, bottom, minimum of S
 - $x \in S$. x is the glb

bottom?

- ullet Supremum, top, maximum of S
 - $x \in S$. x is the lub
- Infimum, bottom, minimum of S
 - $x \in S$. x is the glb

bottom?

• Given a poset $\langle X, \sqsubseteq \rangle$

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)
- $\sqcap X$ exists iff X has a bottom element \bot ($\sqcap X = \bot$)

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)
- $\sqcap X$ exists iff X has a bottom element \bot ($\sqcap X = \bot$)

$$e \sqcup g$$
?

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)
- $\sqcap X$ exists iff X has a bottom element \bot ($\sqcap X = \bot$)

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)
- $\sqcap X$ exists iff X has a bottom element \bot ($\sqcap X = \bot$)

- Given a poset $\langle X, \sqsubseteq \rangle$
- \sqcup is the lub over X
- \sqcap is the glb over X
- If □/□ exists it is unique
- $\sqcup X$ exists iff X has a top element \top ($\sqcup X = \top$)
- $\sqcap X$ exists iff X has a bottom element \bot ($\sqcap X = \bot$)

Lattice

Lattice

• A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$
- The partial order induces the lub and glb

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$
- The partial order induces the lub and glb

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$
- The partial order induces the lub and glb

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X$. $x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$
- The partial order induces the lub and glb

- A poset $\langle X, \sqsubseteq \rangle$ is a lattice iff
 - $\forall x, y \in X . x \sqcup y$ exists (join semi lattice)
 - $\forall x, y \in X . x \sqcap y$ exists (meet semi lattice)
- In a lattice we have that $x \sqsubseteq y$ iff
 - $x \sqcup y = y$
 - $x \sqcap y = x$
- The partial order induces the lub and glb

• Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩
 - top X, bottom \emptyset

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩
 - top X, bottom \emptyset
- ullet If X is finite, then the lattice has finite height

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩
 - top X, bottom \emptyset
- If X is finite, then the lattice has finite height
- Note that a lattice does not have necessarily a top and bottom

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩
 - top X, bottom \emptyset
- If X is finite, then the lattice has finite height
- Note that a lattice does not have necessarily a top and bottom
 - $\langle \mathbb{Z}, \leq, max, min \rangle$

- Set operators form a lattice, denoted by $\langle \wp(X), \subseteq, \cup, \cap \rangle$
 - Poset $\langle \wp(X), \subseteq \rangle$
 - lub ∪, glb ∩
 - top X, bottom \emptyset
- If X is finite, then the lattice has finite height
- Note that a lattice does not have necessarily a top and bottom
 - $\langle \mathbb{Z}, \leq, max, min \rangle$

$$\langle \wp(\{-1,0,1\}),\subseteq \rangle$$

$$\{-1,0,1\}$$
 $\{-1,0\} \{0,1\} \{-1,1\}$
 $\{-1\} \{0\} \{1\}$

• $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if

- $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if
 - any subset of X has a lub in X

- $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if
 - any subset of X has a lub in X
 - it has a bottom element

- $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if
 - any subset of X has a lub in X
 - it has a bottom element
- $\langle \mathbb{Z}, \leq, max, min \rangle$ is a lattice but it is not complete

- $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if
 - any subset of X has a lub in X
 - it has a bottom element
- $\langle \mathbb{Z}, \leq, max, min \rangle$ is a lattice but it is not complete
- $\langle \mathbb{Z} \cup \{-\infty, +\infty\}, \leq , max, min \rangle$ is a complete lattice

- $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ is complete if
 - any subset of X has a lub in X
 - it has a bottom element
- $\langle \mathbb{Z}, \leq, max, min \rangle$ is a lattice but it is not complete
- $\langle \mathbb{Z} \cup \{-\infty, +\infty\}, \leq , max, min \rangle$ is a complete lattice

Properties

• A complete lattice $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ has bottom element \bot , a top element \top and it is denoted by $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$

- A complete lattice $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ has bottom element \bot , a top element \top and it is denoted by $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$
- Finite lattices are also complete

- A complete lattice $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ has bottom element \bot , a top element \top and it is denoted by $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$
- Finite lattices are also complete
- \sqcup induces \sqcap : $\sqcap S = \sqcup \{y \mid \forall x \in S . y \sqsubseteq x\}$

- A complete lattice $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ has bottom element \bot , a top element \top and it is denoted by $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$
- Finite lattices are also complete
- \sqcup induces \sqcap : $\sqcap S = \sqcup \{y \mid \forall x \in S . y \sqsubseteq x\}$
- \sqcap induces \sqcup : $\sqcup S = \sqcap \{y \mid \forall x \in S . x \sqsubseteq y\}$

- A complete lattice $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ has bottom element \bot , a top element \top and it is denoted by $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$
- Finite lattices are also complete
- \sqcup induces \sqcap : $\sqcap S = \sqcup \{y \mid \forall x \in S . y \sqsubseteq x\}$
- \sqcap induces \sqcup : $\sqcup S = \sqcap \{y \mid \forall x \in S . x \sqsubseteq y\}$

• Cartesian product: $X \times Y = \{(x, y) | x \in X \land y \in Y\}$

- Cartesian product: $X \times Y = \{(x, y) | x \in X \land y \in Y\}$
- A relation $R \subseteq X \times Y$

- Cartesian product: $X \times Y = \{(x, y) | x \in X \land y \in Y\}$
- A relation $R \subseteq X \times Y$
- Common notation: x r y to denote $(x, y) \in r$

Relations

- Cartesian product: $X \times Y = \{(x, y) | x \in X \land y \in Y\}$
- A relation $R \subseteq X \times Y$
- Common notation: x r y to denote $(x, y) \in r$
- Partial ordering is a relation

Relations

- Cartesian product: $X \times Y = \{(x, y) | x \in X \land y \in Y\}$
- A relation $R \subseteq X \times Y$
- Common notation: x r y to denote $(x, y) \in r$
- Partial ordering is a relation

• Functions are a particular type of relation

- Functions are a particular type of relation
 - $\forall (x, y) \in r$. $\exists (x', y') . x = x' \land y \neq y'$

- Functions are a particular type of relation
 - $\forall (x, y) \in r$. $\exists (x', y') . x = x' \land y \neq y'$
 - Definite at most once on a input

- Functions are a particular type of relation
 - $\forall (x, y) \in r$. $\exists (x', y') . x = x' \land y \neq y'$
 - Definite at most once on a input
 - Common notation: r(x) = y to denote $(x, y) \in r$

- Functions are a particular type of relation
 - $\forall (x, y) \in r$. $\exists (x', y') . x = x' \land y \neq y'$
 - Definite at most once on a input
 - Common notation: r(x) = y to denote $(x, y) \in r$
- Partial order is not a function

- Functions are a particular type of relation
 - $\forall (x, y) \in r$. $\exists (x', y') . x = x' \land y \neq y'$
 - Definite at most once on a input
 - Common notation: r(x) = y to denote $(x, y) \in r$
- Partial order is not a function
- A circle in the Cartesian plan is not a function

Notation

• $f: X \to Y: X$ is the domain, Y is the co-domain

- $f: X \to Y: X$ is the domain, Y is the co-domain
- $[x_0 \mapsto y_0, x_1 \mapsto y_1, \dots, x_i \mapsto y_i,] \approx \{(x_0, y_0), \dots (x_i, y_i)\}$

Notation

• $f: X \to Y: X$ is the domain, Y is the co-domain

•
$$[x_0 \mapsto y_0, x_1 \mapsto y_1, \dots, x_i \mapsto y_i,] \approx \{(x_0, y_0), \dots (x_i, y_i)\}$$

$$f[x_n \mapsto y_n](x_j) = \begin{cases} y_n & \text{if } x_j = x_n \\ f(x_j) & \text{otherwise} \end{cases}$$

- $f: X \to Y: X$ is the domain, Y is the co-domain
- $[x_0 \mapsto y_0, x_1 \mapsto y_1, \dots, x_i \mapsto y_i,] \approx \{(x_0, y_0), \dots (x_i, y_i)\}$

$$f[x_n \mapsto y_n](x_j) = \begin{cases} y_n & \text{if } x_j = x_n \\ f(x_j) & \text{otherwise} \end{cases}$$

•
$$dom([x_0 \mapsto y_0, ..., x_i \mapsto y_i,]) = \{x_0, ..., x_i\}$$

- $f: X \to Y: X$ is the domain, Y is the co-domain
- $[x_0 \mapsto y_0, x_1 \mapsto y_1, \dots, x_i \mapsto y_i,] \approx \{(x_0, y_0), \dots (x_i, y_i)\}$

$$f[x_n \mapsto y_n](x_j) = \begin{cases} y_n & \text{if } x_j = x_n \\ f(x_j) & \text{otherwise} \end{cases}$$

- $dom([x_0 \mapsto y_0, ..., x_i \mapsto y_i,]) = \{x_0, ..., x_i\}$
- $\lambda x. f(x) \equiv f$

- $f: X \to Y: X$ is the domain, Y is the co-domain
- $[x_0 \mapsto y_0, x_1 \mapsto y_1, \dots, x_i \mapsto y_i,] \approx \{(x_0, y_0), \dots (x_i, y_i)\}$

•
$$f[x_n \mapsto y_n](x_j) = \begin{cases} y_n & \text{if } x_j = x_n \\ f(x_j) & \text{otherwise} \end{cases}$$

- $dom([x_0 \mapsto y_0, ..., x_i \mapsto y_i,]) = \{x_0, ..., x_i\}$
- $\lambda x. f(x) \equiv f$

```
f:\mathbb{Z}\to\mathbb{N}
f = [-1 \mapsto 1, 1 \mapsto 1]
=\{(-1,1),(1,1)\}
f' = f[2 \mapsto 2]
= \{(-1,1), (1,1), (2,2)\}
f'' = f'[1 \mapsto 2]
= \{(-1,1), (1,2), (2,2)\}
dom(f) = \{-1, 1\}
dom(f') = dom(f'')
= \{-1, 1, 2\}
\lambda x. |x| = \{(i, |i|)\}
```

• Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an order embedding if: $x_1 \sqsubseteq_X x_2 \iff f(x_1) \sqsubseteq_Y f(x_2)$

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an order embedding if: $x_1 \sqsubseteq_X x_2 \iff f(x_1) \sqsubseteq_Y f(x_2)$
 - \bullet f is an isomorphism if it is

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an order embedding if: $x_1 \sqsubseteq_X x_2 \iff f(x_1) \sqsubseteq_Y f(x_2)$
 - \bullet f is an isomorphism if it is
 - an order embedding

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an order embedding if: $x_1 \sqsubseteq_X x_2 \iff f(x_1) \sqsubseteq_Y f(x_2)$
 - \bullet f is an isomorphism if it is
 - an order embedding
 - surjective: $\forall y \in Y, \exists x \in X. f(x) = y$

- Let $\langle X, \sqsubseteq_X \rangle$ and $\langle Y, \sqsubseteq_Y \rangle$ be two posets and $f: X \to Y$ be a functions
 - f is monotone if: $x_1 \sqsubseteq_X x_2 \implies f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an order embedding if: $x_1 \sqsubseteq_X x_2 \iff f(x_1) \sqsubseteq_Y f(x_2)$
 - f is an isomorphism if it is
 - an order embedding
 - surjective: $\forall y \in Y, \exists x \in X. f(x) = y$

Example

• $f: \langle \mathbb{Z}, \leq \rangle \to \langle \mathbb{Z}, \leq \rangle$

- $f: \langle \mathbb{Z}, \leq \rangle \to \langle \mathbb{Z}, \leq \rangle$
 - f(x) = x + 1, monotone, order embedding, surjective

- $f: \langle \mathbb{Z}, \leq \rangle \to \langle \mathbb{Z}, \leq \rangle$
 - f(x) = x + 1, monotone, order embedding, surjective
- $f: \langle \wp(\mathbb{Z}), \subseteq \rangle \to \langle \mathbb{Z}, \leq \rangle$

- $f: \langle \mathbb{Z}, \leq \rangle \to \langle \mathbb{Z}, \leq \rangle$
 - f(x) = x + 1, monotone, order embedding, surjective
- $f: \langle \wp(\mathbb{Z}), \subseteq \rangle \to \langle \mathbb{Z}, \leq \rangle$
 - $f(X) = \max(X)$, monotone, but not an embedding

• Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- ullet f is join preserving if

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- \bullet f is join preserving if
 - $f(x_1 \sqcup_X x_2) = f(x_1) \sqcup_Y f(x_2)$

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- ullet f is join preserving if
 - $f(x_1 \sqcup_X x_2) = f(x_1) \sqcup_Y f(x_2)$
- f is meet preserving if

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- ullet f is join preserving if
 - $f(x_1 \sqcup_X x_2) = f(x_1) \sqcup_Y f(x_2)$
- ullet f is meet preserving if
 - $f(x_1 \sqcap_X x_2) = f(x_1) \sqcap_Y f(x_2)$

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- \bullet f is join preserving if
 - $f(x_1 \sqcup_X x_2) = f(x_1) \sqcup_Y f(x_2)$
- ullet f is meet preserving if
 - $f(x_1 \sqcap_X x_2) = f(x_1) \sqcap_Y f(x_2)$
- A join or meet preserving function is monotone, but the opposite does not necessarily hold

• Let $\langle X, \sqsubseteq \rangle$ be a poset

- Let $\langle X, \sqsubseteq \rangle$ be a poset
- S is a chain iff $\forall x, y \in S$. $x \sqsubseteq y \lor y \sqsubseteq x$ (all elements are totally ordered)

- Let $\langle X, \sqsubseteq \rangle$ be a poset
- S is a chain iff $\forall x, y \in S$. $x \sqsubseteq y \lor y \sqsubseteq x$ (all elements are totally ordered)
- Ascending chain: sequence of $(l_n)_{n\in\mathbb{N}}$ s.t. $i\leq j\implies l_i\sqsubseteq l_j$

- Let $\langle X, \sqsubseteq \rangle$ be a poset
- S is a chain iff $\forall x, y \in S$. $x \sqsubseteq y \lor y \sqsubseteq x$ (all elements are totally ordered)
- Ascending chain: sequence of $(l_n)_{n\in\mathbb{N}}$ s.t. $i\leq j\implies l_i\sqsubseteq l_j$

• Examples of chains: $\{\emptyset\}$, $\{\{\emptyset\}, \{0,1\}\}$, $\{\{0\}, \{-1,0,1\}\}$

• Any infinite ascending chain in a poset is not strictly increasing

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not
- $\langle \mathbb{Z}, \leq \rangle$ does not

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not
- $\langle \mathbb{Z}, \leq \rangle$ does not
- $\langle \mathbb{N}, \leq \rangle$ does not

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not
- $\langle \mathbb{Z}, \leq \rangle$ does not
- $\langle \mathbb{N}, \leq \rangle$ does not
- $\langle \mathbb{N}, \geq \rangle$ does

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not
- $\langle \mathbb{Z}, \leq \rangle$ does not
- $\langle \mathbb{N}, \leq \rangle$ does not
- $\langle \mathbb{N}, \geq \rangle$ does
- All finite posets are ACC

- Any infinite ascending chain in a poset is not strictly increasing
 - $\exists k \geq 0. \ \forall j \geq k. \ l_k = l_j$ (i.e., stabilizes after some steps)
- $\langle \wp(X), \subseteq \rangle$, if X is finite then satisfies the ACC, otherwise it does not
- $\langle \mathbb{Z}, \leq \rangle$ does not
- $\langle \mathbb{N}, \leq \rangle$ does not
- $\langle \mathbb{N}, \geq \rangle$ does
- All finite posets are ACC
- Some infinite posets are ACC

• Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- f is continuous if for all chains $C \subseteq X$ s.t. $\sqcup_X C$ exists, then

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- f is continuous if for all chains $C \subseteq X$ s.t. $\sqcup_X C$ exists, then
 - $\sqcup_Y f(C)$ exists

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- f is continuous if for all chains $C \subseteq X$ s.t. $\sqcup_X C$ exists, then
 - $\sqcup_Y f(C)$ exists
 - $\bullet \quad \sqcup_Y f(C) = f(\sqcup_X C)$

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- f is continuous if for all chains $C \subseteq X$ s.t. $\sqcup_X C$ exists, then
 - $\sqcup_Y f(C)$ exists
 - $\bullet \quad \sqcup_Y f(C) = f(\sqcup_X C)$
- Useful to prove properties on the existence of fixpoints

- Let $\langle X, \sqsubseteq_X, \sqcup_X, \sqcap_X \rangle$, $\langle Y, \sqsubseteq_Y, \sqcup_Y, \sqcap_Y \rangle$, and $f: X \to Y$
- f is continuous if for all **chains** $C \subseteq X$ s.t. $\sqcup_X C$ exists, then
 - $\sqcup_Y f(C)$ exists
 - $\bullet \quad \sqcup_Y f(C) = f(\sqcup_X C)$
- Useful to prove properties on the existence of fixpoints

• Let $f: X \to X$, x is a fixpoint of f if f(x) = x

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f
- Given $\langle X, \sqsubseteq \rangle$

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f
- Given $\langle X, \sqsubseteq \rangle$
 - $x \in Fix(f)$ is the least fixpoint (lfp) if $\forall y \in Fix(f)$. $x \sqsubseteq y$

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f
- Given $\langle X, \sqsubseteq \rangle$
 - $x \in Fix(f)$ is the least fixpoint (lfp) if $\forall y \in Fix(f)$. $x \sqsubseteq y$
 - $x \in Fix(f)$ is the greatest fixpoint (gfp) if $\forall y \in Fix(f) . x \supseteq y$

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f
- Given $\langle X, \sqsubseteq \rangle$

$$f(X) = \begin{cases} X \setminus \{1\} & \text{if } 1 \in X \\ X \cup \{-1\} & \text{otherwise} \end{cases}$$

- $x \in Fix(f)$ is the least fixpoint (lfp) if $\forall y \in Fix(f)$. $x \sqsubseteq y$
- $x \in Fix(f)$ is the greatest fixpoint (gfp) if $\forall y \in Fix(f)$. $x \supseteq y$

- Let $f: X \to X$, x is a fixpoint of f if f(x) = x
- $Fix(f) = \{x | f(x) = x\}$ is the set of all the fixpoints of f
- Given $\langle X, \sqsubseteq \rangle$

$$f(X) = \begin{cases} X \setminus \{1\} & \text{if } 1 \in X \\ X \cup \{-1\} & \text{otherwise} \end{cases}$$

- $x \in Fix(f)$ is the least fixpoint (lfp) if $\forall y \in Fix(f)$. $x \sqsubseteq y$
- $x \in Fix(f)$ is the greatest fixpoint (gfp) if $\forall y \in Fix(f) . x \supseteq y$

• Let $f: X \to X$

- Let $f: X \to X$
- The iterates of f from $x \in X$ are defined as

- Let $f: X \to X$
- The iterates of f from $x \in X$ are defined as
 - $\bullet \ f^0(x) = x$

- Let $f: X \to X$
- The iterates of f from $x \in X$ are defined as
 - $\bullet \ f^0(x) = x$
 - $\bullet \ f^{n+1}(x) = f(f^n(x))$

- Let $f: X \to X$
- The iterates of f from $x \in X$ are defined as
 - $\bullet \ f^0(x) = x$
 - $\bullet f^{n+1}(x) = f(f^n(x))$
- If X is finite, $\forall k > |X|$. $\exists n \le |X|$. $f^k(x) = f^n(x)$ (fixpoint or loop)

- Let $f: X \to X$
- The iterates of f from $x \in X$ are defined as
 - $\bullet \ f^0(x) = x$
 - $\bullet f^{n+1}(x) = f(f^n(x))$
- If X is finite, $\forall k > |X|$. $\exists n \le |X|$. $f^k(x) = f^n(x)$ (fixpoint or loop)
- ullet If X is infinite, the iterations could be infinite

• Let $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a monotone function

- Let $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a monotone function
- $\langle Fix(f), \sqsubseteq, \sqcup, \sqcap \rangle$ is a complete lattice

- Let $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a monotone function
- $\langle Fix(f), \sqsubseteq, \sqcup, \sqcap \rangle$ is a complete lattice
- Ifp $(f) = \sqcap \{l \mid l \supseteq f(l)\}$

- Let $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a monotone function
- $\langle Fix(f), \sqsubseteq, \sqcup, \sqcap \rangle$ is a complete lattice
- Ifp $(f) = \sqcap \{l \mid l \supseteq f(l)\}$
- $gfp(f) = \sqcup \{l \mid l \supseteq f(l)\}$

- Let $\langle X, \sqsubseteq, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a monotone function
- $\langle \text{Fix}(f), \sqsubseteq, \sqcup, \sqcap \rangle$ is a complete lattice
- Ifp $(f) = \sqcap \{l \mid l \sqsubseteq f(l)\}$
- $gfp(f) = \sqcup \{l \mid l \sqsubseteq f(l)\}$

Kleene fixpoint theorem

• Let $\langle X, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ be a lattice, let $f: X \to X$ be a continuous function. f has a fixpoint and can be computed as $\sqcup_{n>0} f^n(\bot)$