Nome:	Cognome:		Matricola:	
-------	----------	--	------------	--

PRIMO ESONERO FISICA II - AA 2019/2020 - 31/10/2019

- Chi svolge tutto lo scritto ha due ore per svolgere gli esercizi
- Scrivete nome, cognome, matricola e ID del compito sui fogli che consegnate
- Chi si vuole ritirare può farlo ma deve consegnare questo foglio (che non verrà corretto)
- Sono vietati i telefoni: chiunque venga trovato ad utilizzare il telefono dovrà abbandonare l'aula

Primo esercizio

Un sistema è formato da tre cariche fisse $q_1=10^{-9}$ C, $q_2=-2\times 10^{-9}$ C, $q_3=10^{-9}$ C, e da una carica di prova $q_0=\pm 10^{-9}$ C. Le cariche sono disposte come in figura, con a=10 cm.

- 1. Determinare il campo elettrostatico generato dalle tre cariche fisse nel punto in cui si trova q_0 (6 punti).
 - Definiamo asse x quello che passa per q_0 e q_2 (orientato verso q_0) e asse y quello che passa per le tre cariche fisse (con verso che va da q_1 a q_3). Sicuramente $E_y = 0$, perché i contributi di q_1 e q_3 si equivalgono e l'interazione tra q_2 e q_0 è tutta lungo \hat{x} . L'interazione dovuta a q_2 si può scrivere direttamente:

$$E_x^{q_2} = \frac{q_2}{4\pi\epsilon_0} \frac{1}{4a^2}.$$

L'interazione dovuta alle altre due cariche è semplicemente due volte quella dovuta ad una carica sola, che vale (considerando che in questo caso $r = \sqrt{5}a$ e cos $\theta = 2/\sqrt{5}$):

$$E_x^{q_1} = \frac{q_1}{4\pi\epsilon_0} \frac{2}{5\sqrt{5}a^2}.$$

Il campo totale vale quindi:

$$\vec{E} = \frac{1}{4\pi\epsilon_0 a^2} \left(\frac{q_2}{4} + \frac{4q_1}{5\sqrt{5}} \right) \hat{x}.$$

- 2. Determinare la forza agente sulla carica q_0 (6 punti).
 - La forza è data dal campo moltiplicato per q_0 (vedi punto sopra).
- 3. Determinare il lavoro esterno da compiere per rimuovere q_0 dal sistema (6 punti).
 - Poiché si parla di forze esterne, $W_{\text{ext}} = \Delta U_e$. Poiché si muove solo q_0 , la differenza di energia potenziale ha un solo contributo. Inoltre, l'energia potenziale finale di q_0 è zero, quindi W_{ext} è

dato semplicemente dall'energia potenziale iniziale di q_0 presa col segno meno, cioè da

$$W_{\text{ext}} = -\frac{q_0}{4\pi\epsilon_0 a} \left(\frac{q_2}{2} + \frac{2q_1}{\sqrt{5}}\right) = \pm 10^{-10} \,\text{J}$$

dove il segno è determinato dal segno di q_0 .

- 4. Determinare il lavoro che le forze elettrostatiche debbono compiere per rimuovere q_0 dal sistema (6 punti).
 - Il lavoro delle forze interne è uguale al lavoro delle forze esterne cambiato di segno, quindi

$$W = -W_{\text{ext}} = \frac{q_0}{4\pi\epsilon_0 a} \left(\frac{q_2}{2} + \frac{2q_1}{\sqrt{5}}\right) = \mp 10^{-10} \,\text{J}$$

dove il segno è di nuovo determinato dal segno di q_0 (ma al contrario).

- 5. Vi è la possibilità di variare i valori delle cariche fisse. Trovare una combinazione di valori di q_1 , q_2 e q_3 per cui almeno una delle tre cariche è diversa da zero e la carica q_0 rimane ferma se lasciata libera di muoversi (4 punti).
 - Per rispondere basta imporre che il campo (o la forza) calcolati all'inizio siano 0. Così facendo si ottiene

$$q_2 = -\frac{16q_1}{5\sqrt{5}}$$

Secondo esercizio

Un condensatore piano di superficie $\Sigma=100~{\rm cm^2}$ e altezza $h=10~{\rm mm}$ è riempito parzialmente da una lastra conduttrice di spessore $s=2~{\rm mm}$ (in nero) e da un dielettrico di spessore a=(h-s)/2 e $\kappa=4$ (in grigio), disposti come in figura. Le due resistenze valgono $R_1=10~\Omega$ e $R_2=5~\Omega$. L'interruttore è inizialmente aperto.

- 1. Disegnare il circuito equivalente, calcolando esplicitamente i valori degli elementi equivalenti (7 punti).
 - A seconda che le due resistenze siano in parallelo o in serie si trova $R_{eq} = R_1 R_2/(R_1 + R_2)$ o $R_{eq} = R_1 + R_2$. La capacità equivalente si può calcolare considerando il condensatore come l'equivalente di due condensatori in parallelo oppure utilizzando direttamente la definizione. Scegliamo questa seconda via e calcoliamo la d.d.p. tra le armature:

$$\Delta V = \frac{qa}{\epsilon_0 \Sigma} + \frac{qa}{\kappa \epsilon_0 \Sigma}$$

e quindi

$$C_{\rm } = {\rm q} = \frac{\epsilon_0 \Sigma \kappa}{a} \frac{1}{1+\kappa} = 1.77 \times 10^{-11} \, {\rm F}$$

- 2. Tra le due armature vi è una d.d.p. $\Delta V = 100$ V. Calcolare la carica immagazzinata dal condensatore (3 punti).
 - Utilizzando la relazione che lega le quantità in gioco troviamo

$$q = C_{eq}\Delta V = 1.77 \times 10^{-9} \,\mathrm{C}$$

- 3. La carica immagazzinata nel condensatore è $q=10^{-9}$ C. Calcolare la d.d.p. tra le due armature. (3 punti).
 - Utilizzando la relazione che lega le quantità in gioco troviamo

$$\Delta V = \frac{q}{C_\text{eq}} = 56.5\,\text{V}$$

- 4. Si chiude l'interruttore e si aspetta che non scorra più alcuna corrente nel circuito. Calcolare tutta l'energia dissipata sulla resistenza equivalente (6 punti). *Nota Bene:* non è necessario studiare il processo di scarica per risolvere questo punto.
 - L'energia dissipata non può essere che quella contenuta nel condensatore, che vale

$$U_e = \frac{1}{2}q\Delta V$$

il cui valore numerico varia a seconda che il compito chiedesse di calcolare q avendo ΔV o viceversa nel punto precedente.