Preparation

Please go to https://github.com/ray-project/tutorial

And click on the "Binder" link and wait a couple minutes.

Try Ray on Binder (Experimental)

Try the Ray tutorials online on Binder.

Binder not working? Backup:

- run locally with "pip install ray[rllib] tensorflow jupyterlab"
- sign in to Google CoLab and import the tutorial notebooks

Scaling Al Applications with Ray

A general-purpose system for parallel and distributed Python https://github.com/ray-project/ray

Richard Liaw

Al Researcher, RISELab at UC Berkeley

The Big Picture

Distributed System

Distributed Training

Horovod,
Distributed TF,
Parameter
Server

Distributed System

Model Serving

Clipper,
TensorFlow
Serving

Distributed System

Streaming

Flink, many others

Distributed System

Distributed RL

Baselines, RLlab, ELF, Coach, TensorForce, ChainerRL

Distributed System

Data Processing

MapReduce, Hadoop, Spark

Distributed System

Hyperparameter Search

Vizier, many internal systems at companies

Libraries

Distributed Training

Model Serving

Streaming

Distributed RL

Data Processing

Hyperparameter Search

Distributed System (Ray)

A Growing Number of Use Cases

facebook J.P.Morgan

Morgan Stanley :: PRIMER | Microsoft

Agenda

Part 1 (2:00-2:30): Ray as a unifying distributed system for machine learning

- Ray API, Architecture
- Exercises

Part 2 (2:30-3:00): Model Tuning/Training

- Overview of Tune
- Tune Exercise

Part 3 (3:00-3:30): Applied Reinforcement Learning

- Overview of RLlib
- RLlib Exercise

Functions -> Tasks

```
def read_array(file):
    # read array "a" from "file"
    return a

def add(a, b):
    return np.add(a, b)
```

Functions -> Tasks

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)
```

Functions -> Tasks

```
@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
```

Functions -> Tasks

id3 = add.remote(id1, id2)

```
@ray.remote
                                    read_array
                                                     read_array
def read_array(file):
    # read array "a" from "file"
                                         id1
                                                       id2
    return a
@ray.remote
                                                add
def add(a, b):
    return np.add(a, b)
                                                id3
id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
```

©2017 RISELab

Functions -> Tasks

ray.get(id3)

```
@ray.remote
                                      read_array
                                                       read_array
def read array(file):
    # read array "a" from "file"
                                          id1
                                                         id2
    return a
@ray.remote
                                                 add
def add(a, b):
    return np.add(a, b)
                                                  id3
id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
                                   ©2017 RISELab
```

Functions -> Tasks

```
@ray.remote
def read_array(file):
    # read array "a" from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote([5, 5])
id2 = read_array.remote([5, 5])
id3 = add.remote(id1, id2)
                                  ©2017 RISELab
ray.get(id3)
```

Classes -> Actors

Functions -> Tasks @ray.remote def read array(file): # read array "a" from "file" return a @ray.remote def add(a, b): return np.add(a, b) id1 = read_array.remote([5, 5]) id2 = read_array.remote([5, 5])

id3 = add.remote(id1, id2)

ray.get(id3)

Classes -> Actors

```
@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

©2017 RISELab

Functions -> Tasks

@ray.remote def read array(file): # read array "a" from "file" return a @ray.remote def add(a, b): return np.add(a, b) id1 = read_array.remote([5, 5]) id2 = read_array.remote([5, 5]) id3 = add.remote(id1, id2) ray.get(id3)

Classes -> Actors

```
@ray.remote
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
ray.get([id4, id5])
```


Node 1 Node 2 Node 3

Exercises

Content available at github.com/ray-project/tutorial/.

Part 1: Ray as a unifying distributed system for machine learning

- exercises/ - 1, 2, (3 optional)

Click on the "Binder" link and wait a couple minutes.

Binder not working? Backup:

- run locally with "pip install ray[FIIIID] tensorflow jupyterlab"

Distributed Hyperparameter Search on Ray

What is Tune?

Distributed Data Model Hyperparameter **Ray Libraries** Distributed RL Streaming Search Training Processing Serving Ray API Tasks Actors Ray backend Dynamic Task Graphs Distributed System (Ray)

Hyperparameters?

©2017 RISELab

23

Are hyperparameters actually that important?

Why a framework for tuning hyperparameters?

We want the best model

Resources are expensive

Model training is time-consuming

Tune is built with Deep Learning as a priority.

Simple API for new algorithms

class TrialScheduler:
 def on_result(self, trial, result): ...
 def choose_trial_to_run(self): ...

Tune is simple to use.

```
# Function-based API
def train():
    for _ in range(N):
        reporter(...)
# Class-based API
class MyModel(Trainable):
    def _setup(); def _train();
    def _save(); def _restore();
Two simple APIs
for model training
```


Exercises

Content available at github.com/ray-project/tutorial/.

Part 2: Hyperparameter Tuning with Tune

- tune_exercises/ - Tutorial.ipynb

Click on the "Binder" link and wait a couple minutes.

Binder not working? Backup:

- run locally with "pip install ray[rllib] tensorflow jupyterlab"

What is RLlib?

Background: What is reinforcement learning?

Supervised Learning

observation + reward

Reinforcement Learning

Growing number of RL applications

Robotics

Industrial Control

Advertising

System Optimization

Finance

RL applications

A scalable, unified library for reinforcement learning

Reference Algorithms

High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)

Gradient-based

- Advantage Actor-Critic (A2C, A3C)
- Deep Deterministic Policy Gradients (DDPG, TD3)
- Deep Q Networks (DQN, Rainbow)
- Policy Gradients
- Proximal Policy Optimization (PPO)

Derivative-free

- Augmented Random Search (ARS)
- Evolution Strategies

UNIVERSITY OF CALIFORNIA, BERKELEY

Community Contributions

Performance

Distributed PPO (vs OpenMPI)

Evolution
Strategies
(vs Redis-based)

Ape-X Distributed DQN, DDPG

Amazon SageMaker RL Reinforcement learning for every developer and data scientist

Amazon SageMaker RL

Customer BYO

SageMaker supported

Exercises

Content available at github.com/ray-project/tutorial/.

Part 3: Applied Reinforcement Learning

- rllib_exercises/ - exercise01, exercise02

Click on the "Binder" link and wait a couple minutes.

Binder not working? Backup:

- run locally with "pip install ray[rllib] tensorflow jupyterlab"

Accelerate your Pandas workflows by changing a single line of code

What is Modin?

Modin: Pandas on Ray

Accelerate your pandas workloads by changing one line of code

Modin: Pandas on Ray

Accelerate your pandas workloads by changing one line of code

To use Modin, replace the pandas import:

```
# import pandas as pd
import modin.pandas as pd
```

Installation

Modin can be installed from PyPI:

pip install modin

Why Modin?

- Faster pandas, even on your laptop
 - Up to 4x speed improvement over pandas on 4 physical cores
- Cluster support -- experimental!
- A DataFrame library aimed at bridging the gap between MB-scale and TB-scale data

- 1 Modin exposes an API that is identical to pandas.
- The Query Compiler layer will compose the query and perform some optimizations based on the format of the data in memory.
- The Partition Manager layer effectively manages partitioning, serialization, and data distribution. It ships the optimized queries to the data.
- 4 Each partition maintains a part of the entire dataset.

Executes on Ray

Performance

Performance

Conclusion

- Ray is an open source project for distributed computing
- special-purpose distributed systems -> general-purpose distributed system
- Support for the full ML lifecycle (data collection, training, simulation, serving)

