PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

DO PORTO						
Ano Letivo: 2014/2015		Data: 10/05/2014	Prova: MATEMÁ	ATICA	-	da Prova: <u>2h</u> a: <u>15 min</u>
	Escola onde realiza est	ta prova: ESEIG E	STGF [] ISCAP	□ISEP		Rubrica de Docente em Vigilância
ato	Nome do Candidato: _					
preencher pelo candidato	Documento de Identificação apresentado: BI C.Cid. Pas. C.Cond. Outro					Classificação Final
er pelc	Número do Document	o de Identificação:				
eenche	Escola(s) a que se cano	didata: ESEIG EST	GF ISCAP	☐ ISEP		(0-200) Rubrica de Docente
Apr	Curso(s) a que se cand	idata:				(Júri de Prova)
	Número de <u>folhas extr</u>	ra entregues pelo Candidato:				
É obrigatória a apresentação de documento de identificação com fotografia ao docente encarregado da vigilância						

Material admitido:

- Material de escrita.
- Máquina de calcular elementar ou máquina de calcular científica (não gráfica).

Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, exceto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser primeiramente elaborados a lápis, sendo, a seguir, passados a tinta.

Não é permitido o uso de corretor. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

A prova é constituída por dois grupos, I e II.

- O Grupo I inclui 7 questões de escolha múltipla.
 - Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
 - Responda na página fornecida para o efeito, respeitando as regras nela indicadas. Só serão consideradas as respostas dadas nessa página.
- O Grupo II inclui 9 questões de resposta aberta, algumas delas subdivididas em alíneas, num total de 14.
 - Nas questões deste grupo apresente de forma clara o seu raciocínio, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.
 - Quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exato.
 - o Cada questão deve ser respondida na própria folha do enunciado.
 - Devem ser pedidas folhas adicionais caso a resposta à pergunta não caiba na folha respetiva.

A prova tem 18 páginas e termina com a palavra FIM.

Na página 17 é indicada a cotação de cada pergunta.

Na página 18 é disponibilizado um formulário.

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

Nº Respostas CERTAS:

Classificação Grupo I:

Rubrica de Docente Corretor

FOLHA DE RESPOSTAS DO GRUPO I

Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a resposta for ilegível. Não apresente cálculos, nem justificações.

Assinalar resposta correta:	(A) (2	S © (D	
Anular a resposta:	(A)	o (D	
Assinalar de novo resposta anulada:	A)	(C)	D	
1	A	B	C	D
2	A	B	C	D
3	A	B	C	D
4	A	B	C	D
5	A	B	C	D
6	A	B	C	D

7

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Nome do Candidato:

Número do Documento de Identificação:

Escola(s) a que se candidata:

ESEIG ESTGF ISCAP ISEP

Curso(s) a que se candidata:

GRUPO I — RESPONDA NA PÁGINA FORNECIDA PARA O EFEITO

1. A regra de Young é usada para calcular a dose de um medicamento a administrar a uma criança da qual se sabe apenas a idade, a partir da dose, do mesmo medicamento, prescrita para um adulto. Se k for a dose recomendada para um adulto, em miligramas, e t a idade da criança em anos completos, então a dose para a criança é dada por $D(t) = \frac{kt}{t+12}$.

Uma enfermeira aplicou uma dose de 40 mg de um medicamento a uma criança. Se a correspondente dose para adulto desse fármaco é 100 mg então a idade da criança, em anos completos, é:

(C) 8

(D) 7

2. Na figura está representada parte do gráfico de uma função polinomial g, do $3^{\rm o}$ grau, que possui apenas dois zeros: -1 e 1. Seja h a função definida por $h(x) = 3 + \sqrt{g(x)}$. Então, o domínio da função h é:

(A)
$$[-1, 1]$$

(c)
$$]-1,+\infty[\setminus\{1\}]$$

(D)
$$[-1, +\infty[$$

3. O conjunto dos números reais que são soluções da inequação $\log_3(2-x) \leq 1$ é:

(A)
$$\left[-1,+\infty\right[$$

(c)
$$]-\infty,-1]$$

(B)
$$[-1,2[$$

(D)
$$[-2, 1[$$

4. Indique, qual das seguintes expressões é, para qualquer número real positivo a, igual a $6^{2+\log_6(a+1)}$:

(A)
$$36a + 36$$

(c)
$$36 + \log_6(a+1)$$

(B)
$$36+a+1$$

(D)
$$2(a+1)$$

5. Na figura ao lado estão representados, num referencial ortonormado xOy, o círculo trigonométrico e o triângulo ABC.

Sendo $\hat{ACB} = 60^{\circ}$, indique o valor da área do triângulo $\begin{bmatrix} ABC \end{bmatrix}$.

(A) $\frac{2}{\sqrt{3}}$

(c) $\frac{1+\sqrt{3}}{2}$

(B) $\frac{\sqrt{3}}{2}$

(D) $\frac{1}{2}$

- **6.** Seja f uma função real de variável real e s a reta tangente ao gráfico da função f no ponto de abcissa 2. Sabendo que a reta de equação $y=-\frac{1}{3}x+4$ é perpendicular à reta s, nesse mesmo ponto de abcissa 2, podemos afirmar que o valor de $\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$ é:
 - **(A)** 3

(c) $-\frac{1}{3}$

(B) -3

- **(D)** 2
- 7. Na figura ao lado encontra-se parte da representação geométrica do gráfico de uma função real de variável real f. Com base na informação transmitida pela imagem, o gráfico representativo da função derivada desta função pode ser dado por:

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE	23 ANOS	
pelo o	Nome do Candidato	D:	GII Q1.	GII Q2.
	Número do Documo	ento de Identificação:	Clas. Parc	ial Q1+Q2
g ,	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP		e Docente retor
∢	Curso(s) a que se ca	ındidata:		

GRUPO II

1. Numa determinada proposta de trabalho, que tem como objetivo a venda de um determinado modelo de computadores com um preço unitário de 600 euros, o salário base oferecido é de 200 euros mensais (fixos). Para além deste valor, o trabalhador recebe ainda, por cada computador que vender, 12% do seu preço. Determine o número mínimo de computadores que o trabalhador terá de vender, num mês, para conseguir obter um rendimento superior a 1500 euros mensais, mantendo-se o preço dos computadores em questão. Apresente todos os cálculos que efetuar.

2. Calcule o valor da seguinte expressão numérica utilizando, sempre que possível, as regras das operações com potências: $\frac{\left(7^4 \times 7^{-4} \div 5^4\right)^{-2}}{5^3 \div \left(-1\right)^3 \times \left(-5\right)^7}$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE	23 ANOS	
pelo	Nome do Candidato	D:	GII Q3.	GII Q4.
	Número do Docum	ento de Identificação:	Clas. Pard	cial Q3+Q4
g ,	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP		e Docente retor
⋖	Curso(s) a que se ca	andidata:		

3. Determine todos os valores $\underline{\text{inteiros}}$ de x que verificam simultaneamente as seguintes condições:

$$|x-1| < 5$$
 e $x^2 - 2 \le x(x-1)$

4. Mostre que:
$$\frac{\left[\cos(x) + \sin(x)\right]^2 - 1}{\left[\cos(x) + \sin(x)\right] \cdot \left[\cos(x) - \sin(x)\right]} = \operatorname{tg}(2x)$$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS	
0	Nome do Candidato	D:	GII Q5.1	
eencher pelo candidato	Número do Documo	ento de Identificação:	GII Q5.2 Clas. Parcia	GII Q5
A preer can	Escola(s) a que se ca		Rubrica de I Corret	

- **5.** O valor V (euros) de uma viatura é dado pela função $V(t) = k e^{-\lambda t}$, sendo t o número de anos da viatura. Sabendo que o preço da viatura nova foi de 21 500 euros e que passado um ano era de 20 000 euros, determine:
 - **5.1.** O valor de k e de λ (valores aproximados às centésimas):
 - **5.2.** O valor aproximado, em euros, desta viatura com três anos.

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS	
pelo	Nome do Candidato	o:	GII Q6.	GII Q7.
ner dat	Número do Docum	ento de Identificação:	Clas. Parc	ial Q6+Q7
<u>a</u>	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP		e Docente etor
⋖	Curso(s) a que se ca	andidata:		

6. Determine uma expressão para a função derivada da função real de variável real definida por: $g(x) = \text{sen}(e^{1+2x}) + 6$

7. Dada a função real de variável real definida por:

$$f(x) = \frac{x^2 + 2}{x + 1} - 4\ln(\sqrt{x + 1})$$

mostre que uma expressão analítica para a derivada desta função pode ser dada por:

$$f'(x) = \frac{x^2 - 4}{(x+1)^2}$$

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

preencher pelo candidato

Nome do Candidato:	GII Q8.1	
Número do Documento de Identificação:	GII Q8.2 Clas. Parcial (GII Q8
Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Do Correto	

- 8. Na Jericho Turnpike, em Jericho, Nova York existe um edifício designado "One & Two Jericho Plaza" com a forma trapezoidal (ver figura 1). A parede vertical mostrada na figura é um trapézio retângulo. Supondo que as dimensões desta parede lateral do edifício são as ilustradas na figura 2, determine:
 - **8.1.** A medida do comprimento da parte superior desta parede lateral (x).
 - **8.2.** O valor da área retangular <u>espelhada</u> da parede oblíqua mostrada na figura 1, sabendo que a base do edifício é quadrada.

POLITÉCNICO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS **DO PORTO** GII Q9.1 GII Q9.2 Nome do Candidato: A preencher pelo GII Q9.3 candidato GII Q9.4

Clas. Parcial GII Q9 Número do Documento de Identificação: Rubrica de Docente ☐ ESTGF ☐ ISCAP ☐ ISEP Escola(s) a que se candidata: ESEIG Corretor Curso(s) a que se candidata: _

9. Às 3:00 horas de um dia de verão os bombeiros iniciaram o combate a um incêndio que tinha deflagrado há algumas horas numa floresta. Passado algum tempo, como não conseguiam controlar as chamas, pediram o reforço de meios aéreos. Duas horas depois dos meios aéreos entrarem em ação começou a verificar-se uma diminuição na velocidade de propagação do

incêndio. No rescaldo, o chefe dos bombeiros locais declarou que a área ardida variou segundo uma velocidade descrita pelo modelo matemático, $f(t) = \frac{1}{14}(-t^2 + 12t + 28)$, em hectares/hora, onde t = 0refere-se ao início do combate ao incêndio.

- 9.1. Determine a velocidade a que área florestal ardia às 3:00.
- **9.2.** Indique, justificando, quanto tempo decorreu desde que o incêndio deflagrou até ser extinto.
- 9.3. Determine a velocidade máxima a que se propagou o incêndio.
- **9.4.** Diga, justificando, a que horas os meios aéreos iniciaram o combate ao incêndio.

COTAÇÕES

Grupo I		84 pontos
Cada resposta certa	12 pontos	
Cada questão errada, não respondida ou anulada	0 pontos	
Grupo II		116 pontos
1	10 pontos	
2	10 pontos	
3	14 pontos	
4	15 pontos	
5	13 pontos	
5.1. 10 pontos 5.2. 03 pontos		
6	05 pontos	
7	15 pontos	
8	14 pontos	
8.1. 08 pontos		
8.2. 06 pontos		
9	20 pontos	
9.1.		
9.2. 06 pontos		
9.3. 08 pontos		
9.4. 04 pontos		

FORMULÁRIO

Relações trigonométricas de ângulos agudos

	$sen(\alpha)$	$\cos(\alpha)$	$\operatorname{tg}(lpha)$
$\alpha = 0^{\circ}$	0	1	0
$\alpha = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\alpha = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\alpha = 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\alpha = 90^{\circ}$	1	0	-

Trigonometria

•
$$\operatorname{sen}^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

•
$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cdot \cos(\beta) + \operatorname{sen}(\beta) \cdot \cos(\alpha)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

•
$$\operatorname{tg}(\alpha) = \frac{\operatorname{sen}(\alpha)}{\cos(\alpha)}$$

Regras de derivação

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(\cos(u))' = -u' \cdot \sin(u)$$