```
import os
os.chdir('/home/nemesis/DatasetsI0')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
train=pd.read csv('train.csv')
test=pd.read csv('test.csv')
Exploratory Data Analysis
print('Shape of train dataset is {}'.format(train.shape))
print('Shape of test dataset is {}'.format(test.shape))
Shape of train dataset is (9557, 143)
Shape of test dataset is (23856, 142)
#Finding the target variable
for i in train.columns:
    if i not in test.columns:
        print("Our Target variable is {}".format(i))
Our Target variable is Target
#Understanding the type of data preent in the dataset
print(train.dtypes.value counts())
int64
           130
float64
             8
             5
object
dtype: int64
print(train.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 143 entries, Id to Target
dtypes: float64(8), int64(130), object(5)
memory usage: 10.4+ MB
None
From the above information we can see that the dataset contain mixed datatype.
for i in train.columns:
    a=train[i].dtype
    if a == 'object':
        print(i)
```

```
Id
idhogar
dependency
edjefe
edjefa
```

Data dictionary:

- 1. ID = Unique ID
- 2. idhogar, Household level identifier
- 3. dependency, Dependency rate, calculated = (number of members of the household younger than 19 or older than 64)/(number of member of household between 19 and 64)
- 4. edjefe, years of education of male head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0
- 5. edjefa, years of education of female head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0

```
#We can now drop the id variables
train.drop(['Id','idhogar'],axis=1,inplace=True)
```

train['dependency'].value_counts()

```
.2857143
                8
1.6666666
                8
.60000002
                7
6
.16666667
                7
Name: dependency, dtype: int64
Now we need to convert object variables
def map(i):
    if i=='yes':
        return(float(1))
    elif i=='no':
        return(float(0))
    else:
        return(float(i))
train['dependency']=train['dependency'].apply(map)
for i in train.columns:
    a=train[i].dtype
    if a == 'object':
        print(i)
edjefe
edjefa
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 141 entries, v2al to Target
dtypes: float64(9), int64(130), object(2)
memory usage: 10.3+ MB
train['edjefe']=train['edjefe'].apply(map)
train['edjefa']=train['edjefa'].apply(map)
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 141 entries, v2a1 to Target
dtypes: float64(11), int64(130)
memory usage: 10.3 MB
Now all the data is in numerical form.
```

Lets identify the variable with 0 variance

```
var_df=pd.DataFrame(np.var(train,0),columns=['variance'])
var_df.sort_values(by='variance').head(15)
print('Below are columns with variance 0.')
col=list((var_df[var_df['variance']==0]).index)
print(col)

Below are columns with variance 0.
['elimbasu5']
```

elimbasu5 : 1 if rubbish disposal mainly by throwing in river, creek or sea.

Interpretation : From above it is shown that all values of elimbasu5 is same so there is no variablity in dataset therefor we will drop this variable

Checking for biases in the given dataset:

```
contingency tab=pd.crosstab(train['r4t3'],train['hogar total'])
Observed Values=contingency tab.values
import scipy.stats
b=scipy.stats.chi2 contingency(contingency tab)
Expected Values = b[3]
no of rows=len(contingency tab.iloc[0:2,0])
no of columns=len(contingency tab.iloc[0,0:2])
df=(no of rows-1)*(no of columns-1)
print("Degree of Freedom:-",df)
from scipy.stats import chi2
chi square=sum([(o-e)**2./e for o,e in
zip(Observed_Values,Expected Values)])
chi square statistic=chi square[0]+chi square[1]
print("chi-square statistic:-",chi square statistic)
alpha=0.05
critical value=chi2.ppf(q=1-alpha,df=df)
print('critical value:',critical value)
p value=1-chi2.cdf(x=chi square statistic,df=df)
print('p-value:',p_value)
print('Significance level: ',alpha)
print('Degree of Freedom: ',df)
print('chi-square statistic:',chi_square_statistic)
print('critical value:',critical value)
print('p-value: ,p_value)
if chi square statistic>=critical value:
    print("Reject H0, There is a relationship between 2 categorical
variables")
else:
    print("Retain H0, There is no relationship between 2 categorical
variables")
if p value<=alpha:</pre>
    print("Reject H0, There is a relationship between 2 categorical
```

```
variables")
else:
    print("Retain H0, There is no relationship between 2 categorical
variables")
Degree of Freedom: - 1
chi-square statistic:- 17022.072400560897
critical value: 3.841458820694124
p-value: 0.0
Significance level: 0.05
Degree of Freedom: 1
chi-square statistic: 17022.072400560897
critical value: 3.841458820694124
p-value: 0.0
Reject H0, There is a relationship between 2 categorical variables
Reject H0, There is a relationship between 2 categorical variables
The variables, r4t3, hogar_total have relationship between them and hence we can use any
one of them for good results.
contingency tab=pd.crosstab(train['tipovivi3'],train['v2a1'])
Observed Values=contingency tab.values
import scipv.stats
b=scipy.stats.chi2 contingency(contingency tab)
Expected Values = b[3]
no of rows=len(contingency tab.iloc[0:2,0])
no of columns=len(contingency tab.iloc[0,0:2])
df=(no of rows-1)*(no of columns-1)
print("Degree of Freedom:-",df)
from scipy.stats import chi2
chi square=sum([(o-e)**2./e for o,e in
zip(Observed Values, Expected Values)])
chi_square_statistic=chi_square[0]+chi square[1]
print("chi-square statistic:-",chi_square_statistic)
alpha=0.05
critical value=chi2.ppf(q=1-alpha,df=df)
print('critical_value:',critical_value)
p value=1-chi2.cdf(x=chi square statistic,df=df)
print('p-value:',p value)
print('Significance level: ',alpha)
print('Degree of Freedom: ',df)
print('chi-square statistic:',chi_square_statistic)
print('critical_value:',critical value)
print('p-value:',p_value)
if chi_square_statistic>=critical value:
    print("Reject H0, There is a relationship between 2 categorical
variables")
    print("Retain H0, There is no relationship between 2 categorical
variables")
```

```
if p value<=alpha:</pre>
    print("Reject H0, There is a relationship between 2 categorical
variables")
else:
    print("Retain H0, There is no relationship between 2 categorical
variables")
Degree of Freedom: - 1
chi-square statistic: - 54.04781105990782
critical value: 3.841458820694124
p-value: 1.9562129693895258e-13
Significance level: 0.05
Degree of Freedom: 1
chi-square statistic: 54.04781105990782
critical value: 3.841458820694124
p-value: 1.9562129693895258e-13
Reject H0, There is a relationship between 2 categorical variables
Reject H0, There is a relationship between 2 categorical variables
The variables, tipovivi3, v2a1 have relationship between them and hence we can use any
one of them for good results.
contingency tab=pd.crosstab(train['v18g'],train['v18g1'])
Observed Values=contingency tab.values
import scipy.stats
b=scipy.stats.chi2 contingency(contingency tab)
Expected Values = b[3]
no_of_rows=len(contingency_tab.iloc[0:2,0])
no of columns=len(contingency tab.iloc[0,0:2])
df=(no of rows-1)*(no of columns-1)
print("Degree of Freedom:-",df)
from scipy.stats import chi2
chi square=sum([(o-e)**2./e for o,e in
zip(Observed Values, Expected Values)])
chi_square_statistic=chi_square[0]+chi square[1]
print("chi-square statistic:-",chi square statistic)
alpha=0.05
critical value=chi2.ppf(g=1-alpha,df=df)
print('critical value:',critical value)
p value=1-chi2.cdf(x=chi square statistic,df=df)
print('p-value:',p value)
print('Significance level: ',alpha)
print('Degree of Freedom: ',df)
print('chi-square statistic:',chi square statistic)
print('critical value:',critical value)
print('p-value:',p_value)
if chi square statistic>=critical value:
    print("Reject H0, There is a relationship between 2 categorical
variables")
else:
    print("Retain H0, There is no relationship between 2 categorical
```

```
variables")
if p value<=alpha:</pre>
    print("Reject H0, There is a relationship between 2 categorical
variables")
else:
    print("Retain H0, There is no relationship between 2 categorical
variables")
Degree of Freedom: - 0
chi-square statistic:- 0.0
critical_value: nan
p-value: nan
Significance level: 0.05
Degree of Freedom: 0
chi-square statistic: 0.0
critical value: nan
p-value: nan
Retain H0, There is no relationship between 2 categorical variables
Retain H0, There is no relationship between 2 categorical variables
The variables, v18q, v18q1 have relationship between them and hence we can use any one
of them for good results.
Conclusion: Therefore biases exist.
train.drop('r4t3',axis=1,inplace=True)
#Now we check if there is a house with no family head
"parentesco1" =1 if household head
train.parentesco1.value counts()
0
     6584
     2973
1
Name: parentescol, dtype: int64
pd.crosstab(train['edjefa'],train['edjefe'])
                            3.0
                                        5.0
                                               6.0
                                                     7.0
                                                            8.0
ediefe 0.0
               1.0
                     2.0
                                  4.0
9.0
      . . .
           12.0 \
edjefa
0.0
         435
                123
                      194
                             307
                                   137
                                          222
                                               1845
                                                       234
                                                             257
486
           113
    . . .
                        0
                                     0
                                                               0
1.0
          69
                  0
                               0
                                            0
                                                  0
                                                         0
0 ...
           0
2.0
          84
                  0
                        0
                               0
                                     0
                                            0
                                                  0
                                                         0
                                                               0
0 ...
           0
3.0
         152
                  0
                        0
                               0
                                     0
                                            0
                                                  0
                                                         0
                                                               0
0 ...
```

4.0	136	0	0	Θ	Θ	Θ	0	0	0	
0 5.0	0 176	0	Θ	Θ	Θ	Θ	Θ	Θ	0	
0 6.0	947	0	Θ	Θ	Θ	Θ	Θ	Θ	0	
0 7.0	0 179	0	0	0	0	0	0	0	0	
0 8.0	0 217 0	0	0	0	0	0	0	0	0	
9.0	237 0	0	Θ	Θ	Θ	Θ	Θ	Θ	0	
0 10.0 0	96 0	Θ	0	Θ	0	Θ	0	0	0	
11.0	399 0	0	0	0	0	0	0	0	Θ	
12.0	72 0	0	0	0	0	0	0	0	0	
13.0	52 0	0	0	0	0	0	0	0	0	
14.0	120 0	0	0	0	0	0	0	0	0	
15.0	188 0	0	0	0	0	0	0	0	0	
16.0	113 0	0	0	0	0	0	0	0	0	
17.0	76 0	0	0	0	0	0	0	0	0	
18.0 0	3	0	0	0	0	0	0	0	0	
19.0 0	4	0	0	0	0	0	0	0	0	
20.0 0	2 0	0	Θ	Θ	Θ	Θ	Θ	Θ	0	
21.0 0	5 0	0	0	0	0	0	0	0	0	
edjefe edjefa	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	
0.0 1.0	103 0	208	285	134	202	19	14	7	43	
2.0	0	0 0								
3.0	0	0	0	0	0	0	0	0	0	
4.0	0	0	0	0	0	0	0	0	0	
5.0	0	0	0	0	0	0	0	0	0	
6.0 7.0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
8.0	0	0	0	0	0	0	0	0	0	
9.0	0	Ö	0	0	0	0	0	0	0	
10.0	0	0	0	0	0	0	0	0	0	

```
11.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
12.0
              0
                                                                    0
                                                                            0
                      0
                             0
                                     0
                                             0
                                                    0
                                                            0
13.0
              0
                      0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
14.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
                             0
15.0
              0
                     0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
16.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
17.0
              0
                      0
                             0
                                     0
                                             0
                                                            0
                                                                    0
                                                                            0
                                                    0
18.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
19.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
20.0
              0
                     0
                             0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
21.0
              0
                     0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
```

```
[22 rows x 22 columns]
```

Conclusion: From the above table we can see that there are 0 male heads and 0 female heads, therefore there are 435 families with 0 heads.

```
#Checking for null values
train.isna().sum().value_counts()

0     135
5     2
6860     1
7342     1
7928     1
dtype: int64
train['Target'].isna().sum()
0
```

Conclusion : There is no null values present in target and henceforth we can now fill null values of other variables if they are present.

```
float col=[]
for i in train.columns:
    a=train[i].dtype
    if a == 'float64':
        float_col.append(i)
print(float col)
['v2a1', 'v18q1', 'rez_esc', 'dependency', 'edjefe', 'edjefa',
'meaneduc', 'overcrowding', 'SQBovercrowding', 'SQBdependency',
'SQBmeaned']
train[float col].isna().sum()
                   6860
v2a1
v18q1
                   7342
                   7928
rez esc
dependency
                      0
                      0
edjefe
```

```
ediefa
                       0
meaneduc
                       5
                       0
overcrowding
SQBovercrowding
                       0
SQBdependency
                       0
SQBmeaned
                       5
dtype: int64
train['v18q1'].value_counts()
1.0
       1586
2.0
        444
3.0
        129
4.0
         37
5.0
         13
6.0
          6
Name: v18q1, dtype: int64
pd.crosstab(train['tipovivil'],train['v2a1'])
v2a1
           0.0
                       12000.0
                                   13000.0
                                              14000.0
                                                          15000.0
16000.0
tipovivi1
                               3
0
                   29
                                           4
                                                      3
                                                                  3
2
           17000.0
v2a1
                       20000.0
                                  23000.0
                                              25000.0
                                                               570540.0
\
tipovivi1
0
                    4
                              22
                                           5
                                                     21
                                                                      25
                                                          . . .
                       620000.0
                                              700000.0
v2a1
           600000.0
                                  684648.0
                                                          770229.0
800000.0
tipovivi1
0
                   11
                               3
                                           3
                                                      7
                                                                  3
4
v2a1
           855810.0
                       1000000.0 2353477.0
tipovivi1
                   11
                               7
                                           2
[1 rows x 157 columns]
pd.crosstab(train['v18q1'],train['v18q'])
v18q
          1
v18q1
```

```
1.0 1586
2.0 444
3.0 129
4.0 37
5.0 13
6.0 6
```

Conclusion and the action that should follow: 'v2a1', 'v18q1', and'rez_esc' all have greater than 50% null values because, in the case of 'v18q1', some families may own their own homes and, in such case, would not be required to pay rent; similarly, some families may own '0' tablets.

We can also drop tipovivi3,v18q 1. tipovivi3, =1 rented 2. v18q, owns a tablet as v2a1 is enough to show both as the variable v18q1 can show that if respondent owns a tablet or not

```
train['v2a1'].fillna(0,inplace=True)
train['v18q1'].fillna(0,inplace=True)
train.drop(['tipovivi3',
'v18q','rez esc','elimbasu5'],axis=1,inplace=True)
train['meaneduc'].fillna(np.mean(train['meaneduc']),inplace=True)
train['SQBmeaned'].fillna(np.mean(train['SQBmeaned']),inplace=True)
print(train.isna().sum().value counts())
        136
dtype: int64
int col=[]
for i in train.columns:
      a=train[i].dtype
      if a == 'int64':
             int col.append(i)
print(int col)
['hacdor', 'rooms', 'hacapo', 'v14a', 'refrig', 'r4h1', 'r4h2',
'r4h3', 'r4m1', 'r4m2', 'r4m3', 'r4t1', 'r4t2', 'tamhog', 'tamviv',
'escolari', 'hhsize', 'paredblolad', 'paredzocalo', 'paredpreb',
'pareddes', 'paredmad', 'paredzinc', 'paredfibras', 'paredother',
'pisomoscer', 'pisocemento', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera', 'techozinc', 'techoentrepiso', 'techocane', 'techootro', 'cielorazo', 'abastaguadentro', 'abastaguafuera', 'abastaguano', 'public', 'planpri', 'noelec', 'coopele', 'sanitario1', 'sanitario2',
'sanitario3', 'sanitario5', 'sanitario6', 'energcocinar1',
'energcocinar2', 'energcocinar3', 'energcocinar4', 'elimbasu1',
'elimbasu2', 'elimbasu3', 'elimbasu4', 'elimbasu6', 'epared1',
'epared2', 'epared3', 'etecho1', 'etecho2', 'etecho3', 'eviv1', 'eviv2', 'eviv3', 'dis', 'male', 'female', 'estadocivil1', 'estadocivil2', 'estadocivil3', 'estadocivil4', 'estadocivil5', 'estadocivil6', 'estadocivil7', 'parentesco1', 'parentesco2',
```

```
'parentesco3', 'parentesco4', 'parentesco5', 'parentesco6', 'parentesco7', 'parentesco8', 'parentesco9', 'parentesco10', 'parentesco11', 'parentesco12', 'hogar_nin', 'hogar_adul', 'hogar_mayor', 'hogar_total', 'instlevel1', 'instlevel2',
'instlevel3', 'instlevel4', 'instlevel5', 'instlevel6', 'instlevel7', 'instlevel8', 'instlevel9', 'bedrooms', 'tipovivi1', 'tipovivi2', 'tipovivi4', 'tipovivi5', 'computer', 'television', 'mobilephone', 'qmobilephone', 'lugar1', 'lugar2', 'lugar3', 'lugar4', 'lugar5', 'lugar6', 'area1', 'area2', 'age', 'SQBescolari', 'SQBage',
'SQBhogar total', 'SQBedjefe', 'SQBhogar nin', 'agesq', 'Target']
train[int col].isna().sum().value counts()
0
          126
dtype: int64
Conclusion: No null values present.
train.Target.value counts()
4
          5996
2
          1597
3
          1209
1
            755
Name: Target, dtype: int64
Setting poverty level for the members as well as the head same.
```

Now, those living below the poverty line may pay a lower rent and not buy a home. Additionally, whether a house is in an urban or rural area affects the answer.

```
Poverty level=train[train['v2a1'] !=0]
Poverty level.shape
(2668, 136)
poverty level=Poverty level.groupby('area1')['v2a1'].apply(np.median)
poverty level
area1
      80000.0
0
     140000.0
1
Name: v2a1, dtype: float64
```

- Note:
 - If renters in rural areas pay less than 80000 per month, they are considered to be living in poverty.
 - If renters in urban areas pay less than 140000 per month, they are considered to be 2. living in poverty.

```
def povert(x):
    if x<80000:
        return('Below poverty level')
    elif x>140000:
        return('Above poverty level')
    elif x<140000:
        return('Below poverty level: Ur-ban; Above poverty level:
Rural ')
c=Poverty level['v2a1'].apply(povert)
c.shape
(2668,)
pd.crosstab(c,Poverty level['areal'])
                                                               1
area1
                                                         0
v2a1
Above poverty level
                                                      139
                                                            1103
Below poverty level
                                                      208
                                                             418
Below poverty level: Ur-ban ; Above poverty lev...
                                                       98
                                                             663
 1. Rural: Above poverty level: 139 Below poverty level: 208
     Urban: Above poverty level: 1103 Below poverty level: 663
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import train test split
X data=train.drop('Target',axis=1)
Y data=train.Target
X data col=X data.columns
Applying standard scaling
from sklearn.preprocessing import StandardScaler
SS=StandardScaler()
X data 1=SS.fit transform(X data)
X data 1=pd.DataFrame(X data 1,columns=X data col)
Model fitting phase
X_train,X_test,Y_train,Y_test=train_test_split(X_data_1,Y_data,test_si
ze=0.25,stratify=Y data,random state=0)
Idfentification of best parameters using GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.model selection import GridSearchCV
rfc=RandomForestClassifier(random state=0)
parameters={'n_estimators':[10,50,100,300],'max_depth':[3,5,10,15]}
```

```
grid=zip([rfc],[parameters])
best =None
for i, j in grid:
    a=GridSearchCV(i,param grid=j,cv=3,n jobs=1)
    a.fit(X_train,Y_train)
    if best is None:
        best = a
    elif a.best score >best .best score :
        best =a
print ("Best CV Score", best .best score )
print ("Model Parameters", best .best params )
print("Best Estimator", best .best estimator )
Best CV Score 0.8507046183898423
Model Parameters {'max depth': 15, 'n estimators': 300}
Best Estimator RandomForestClassifier(max depth=15, n estimators=300,
random state=0)
RFC=best .best estimator
Model=RF\overline{C}.fit(\overline{X}_train, Y_{\overline{t}}rain)
pred=Model.predict(X test)
print('Model Score of train data :
{}'.format(Model.score(X train, Y train)))
print('Model Score of test data :
{}'.format(Model.score(X test,Y test)))
Model Score of train data: 0.9831170643225896
Model Score of test data: 0.8824267782426778
Important_features=pd.DataFrame(Model.feature importances ,X data col,
columns=['feature importance'])
Top50Features=Important features.sort values(by='feature importance',a
scending=False).head(50).index
Top50Features
Index(['SQBmeaned', 'meaneduc', 'SQBdependency', 'dependency',
'overcrowding',
       'SQBovercrowding', 'qmobilephone', 'SQBhogar nin', 'SQBedjefe',
       'edjefe', 'hogar nin', 'rooms', 'cielorazo', 'r4t1', 'v2a1',
'edjefa',
       'agesg', 'r4m3', 'r4h2', 'SQBage', 'age', 'escolari', 'r4t2',
'r4h3',
       'hogar_adul', 'SQBescolari', 'eviv3', 'bedrooms', 'r4m1',
'epared3',
       'r4m2', 'tamviv', 'paredblolad', 'v18g1', 'SOBhogar total',
```

```
'tamhog',
       'hhsize', 'hogar total', 'pisomoscer', 'etecho3', 'r4h1',
'lugar1',
       'eviv2', 'tipovivi1', 'energcocinar2', 'energcocinar3',
'epared2',
       'television', 'area2', 'area1'],
      dtype='object')
for i in Top50Features:
    if i not in X data col:
        print(i)
X data Top50=X data[Top50Features]
X train, X test, Y train, Y test=train test split(X data Top50, Y data, tes
t size=0.25, stratify=Y data, random state=0)
Model_1=RFC.fit(X_train,Y_train)
pred=Model 1.predict(X test)
from sklearn.metrics import confusion matrix,fl score,accuracy score
confusion matrix(Y test,pred)
array([[ 143, 17,
                            291,
                            63],
       [ 8, 324,
                     4,
           1, 12, 214, 75],
                     3, 1485]])
                10.
f1 score(Y test,pred,average='weighted')
0.9026906492316511
accuracy score(Y test,pred)
0.906276150627615
#Now we will clean test data and apply prediction after that and we
will also drop the Id variables
test.drop('r4t3',axis=1,inplace=True)
test.drop(['Id','idhogar'],axis=1,inplace=True)
test['dependency']=test['dependency'].apply(map)
test['edjefe']=test['edjefe'].apply(map)
test['edjefa']=test['edjefa'].apply(map)
test['v2a1'].fillna(0,inplace=True)
test['v18g1'].fillna(0,inplace=True)
test.drop(['tipovivi3',
'v18q','rez esc','elimbasu5'],axis=1,inplace=True)
train['meaneduc'].fillna(np.mean(train['meaneduc']),inplace=True)
train['SQBmeaned'].fillna(np.mean(train['SQBmeaned']),inplace=True)
```

```
test data=test[Top50Features]
test data.isna().sum().value counts()
      48
31
       2
dtype: int64
test data.SQBmeaned.fillna(np.mean(test data['SQBmeaned']),inplace=Tru
e)
/tmp/ipykernel 11915/1933955761.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
test data.SQBmeaned.fillna(np.mean(test data['SQBmeaned']),inplace=Tru
e)
test data.meaneduc.fillna(np.mean(test data['meaneduc']),inplace=True)
/tmp/ipykernel 11915/1212364859.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
test data.meaneduc.fillna(np.mean(test data['meaneduc']),inplace=True)
Test data 1=SS.fit transform(test data)
X data 1=pd.DataFrame(Test data 1)
test prediction=Model 1.predict(test data)
test prediction
array([4, 4, 4, ..., 4, 4, 4])
Conclusion: Above is the prediction for the test data.
```

Conclusion: With random forest we can predict the test data with an accuracy of 90%(approx.)