This list contains exercises of the type you will find in an exam for the course Natuurlijke Taalmodellen en Interfaces.

Contents

1	Random variables and rules of probabilities	2
2	Categorical distributions	3

Points

Question:	1	2	3	4	Total
Points:	1	1	3	1	6

Random variables and rules of probabilities 1

1. (1 point) Let X be a random variable whose sample space is the English vocabulary Σ and whose mapping to \mathbb{R} is realised by an arbitrary enumeration of Σ . Given the partial definitions of X below, mark those that are definitely **invalid**?

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 2 & \text{if } \omega = \{\text{the}\} \\ 3 & \text{if } \omega = \{\text{cat}\} \\ 4 & \text{if } \omega = \{\text{dog}\} \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 1 & \text{if } \omega = \{\text{a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the, a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 1 & \text{if } \omega = \{\text{a}\} \\ 2 & \text{if } \omega = \{\text{cat}\} \\ 3 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

$$\bigcirc X(\omega) = \begin{cases} 1 & \text{if } \omega = \{\text{the}\} \\ 2 & \text{if } \omega = \{\text{a}\} \\ 4 & \text{if } \omega = \{\text{dog}\} \\ \dots \end{cases}$$

2. (1 point) Number the identities on the right according to the concepts on the left.

$$P_{A|B}(a|b) = \frac{P_{AB}(a,b)}{P_{B}(b)}$$

$$(\underline{}) P_A(a) = \sum_{b \in \mathcal{B}} P_{AB}(a, b)$$

_____)
$$P_{AB}(a,b) = P_B(b)P_{A|B}(a|b)$$

$$\begin{array}{ll} (\underline{\hspace{1cm}}) & P_{A|B}(a|b) = \frac{P_{AB}(a,b)}{P_{B}(b)} \\ (\underline{\hspace{1cm}}) & P_{A}(a) = \sum_{b \in \mathcal{B}} P_{AB}(a,b) \\ (\underline{\hspace{1cm}}) & P_{AB}(a,b) = P_{B}(b) P_{A|B}(a|b) \\ (\underline{\hspace{1cm}}) & P_{B|A}(b|a) = \frac{P_{B}(b) P_{A|B}(a|b)}{P_{A}(a)} \end{array}$$

2 Categorical distributions

et .	X be a Categorical random variable:
	$X \sim \operatorname{Cat}(heta_1, \dots, heta_v)$
(a)	(½ point) What is the support \mathcal{X} of the random variable?
(b)	(½ point) What is the value of $P_X(x)$?
(c)	(1 point) What conditions apply to valid parameters $\langle \theta_1, \dots, \theta_v \rangle$?
(d)	(1 point) Given a data set of n i.i.d. observations, what is the maximum likelihood estimate of θ_x ?
	Total for Ques
	oint) Select, out of the list below, vector(s) that constitute(s) valid categorical parameters a categorical random variable that may take on one out of 7 classes.
	$\bigcirc \langle 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.3 \rangle$
	$\bigcirc \langle 0.1, 0.1, 0.1, 0.1, 0.1, 0.5 \rangle$
	$\bigcirc \langle 0.2, 0.2, 0.1, 0.1, 0.1, 0.2, 0.2 \rangle$

Assessment

Question	Points	Score
1	1	
2	1	
3	3	
4	1	
Total:	6	