- A.3) (a) Given a set $A \subseteq B$, we know that for each element $a \in A$, its the case that $a \in f^{-1}(f(a))$. Since $f^{-1}(f(A)) = \bigcup_{a \in A} f^{-1}(f(a))$, it holds that $A \subseteq f^{-1}(f(A))$.
 - (b) If f is injective, then for every $a \in A$ it holds that $f^{-1}(f(a)) = a$. Thus it must also hold that $f^{-1}(f(a)) \in A$ for arbitrary a. This implies that $f^{-1}(f(A)) \subseteq A$ and we have equality.

Likewise, if the equality $A = f^{-1}(f(A))$ holds for every $A \subseteq S$, then f must be injective. If not, then pick some non-empty set, A, containing two distinct elements, a and b, for which f(a) = f(b). Then we can create a new set $A' = A \setminus \{a\}$ for which f(A') = f(A). But this implies that $A' = f^{-1}(f(A')) = f^{-1}(f(A)) = A$ which gives us a contradiction \Longrightarrow .

B.2) It is a basic property of sets that countable unions of countable sets are countable. We can represents the set of dyadic rationals, D, as:

$$D = \bigcup_{n \in \mathbb{N}} \{ \frac{k}{2^n} | k \in \mathbb{Z} \}$$

Since \mathbb{N} is countable, if $\{\frac{k}{2^n}|k\in\mathbb{Z}\}$ is countable then D is as well.

Note that $\{\frac{k}{2^n}|k\in\mathbb{Z}\}\cong\mathbb{Z}$. Furthermore $\mathbb{Z}=\mathbb{N}\cup\{0\}\cup\{-n|n\in\mathbb{N}\}$, meaning that \mathbb{Z} (being a countable union of countable sets) is countable. This means that every $\{\frac{k}{2^n}|k\in\mathbb{Z}\}$ is countable and we're done.

C.1) We're given that $E \subset \mathbb{R}$ and $E \neq \emptyset$.

Let $\inf E = \sup E = \gamma$ and assume that E is not a singleton such that it contains at least two unique elements a and b. As $\mathbb R$ has a linear ordering, also assume a < b without loss of generality. Since γ is the supremum of E we have that $a < b \le \gamma$. But, γ is also the infimum such that $\gamma \le a < b$. This leads to a contradiction as we now have that $a < b \le a < b$. And so E must be a singleton.

Likewise if we assume that E is a singleton, then it's sole element, $e \in E$, is it's own least upper bound. Assume there is some other $\gamma \in \mathbb{R}$ such that sup $E = \gamma \neq e$. Then, since $e < \gamma$, we can always find $\delta \in \mathbb{R}$ such that $e < \delta < \gamma$, implying that γ is not actually the supremum. The element, e, is also it's own greatest lower bound by analogous reasoning about its greatest upper bound. Thus inf $E = \sup E = e$.

- C.5) Just take the subsets A=(0,1) and B=(1,2). Their closures are $\bar{A}=[0,1]$ and $\bar{B}=[1,2]$ with interesection $\bar{A}\cap\bar{B}=[0,1]\cap[1,2]=\{1\}\neq\emptyset$.
- C.6) Let S be the set of interior points of E as defined in the problem statement. If $x \in S$ then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(x) \subseteq E$. This ball is an open set and E° is the union of all open sets contained in E. Thus $x \in B_{\epsilon}(x) \subseteq E^{\circ}$ and so $S \subseteq E^{\circ}$.

Likewise, E° is an open set and so by definition, for any $y \in E^{\circ}$, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(y) \subseteq E^{\circ}$. This immediately implies that every element of E° is an interior point and so $E^{\circ} \subseteq S$. This, combined with the previous inclusion implies that $S = E^{\circ}$.

D.3) We have from the problem statement that every subsequence $\{x_{n_m}\}$ of $\{x_n\}$ has a futher subsequence $\{x_{n_{m_k}}\}$ which converges to x. Now assume that there is a subsequence $\{x_{n_m}\}$ which does not converge to x. We know that this subsequence contains at least one subsubsequence

which converges to x. Call S the set of all such subsubsequeces in $\{x_{n_m}\}$. This set can be partially ordered by inclusion. Also note that any union of subsubsequences that converge to x also converges to x and so must be contained in S.

Every linearly ordered subset of S has an upper bound of X. Thus, by Zorn's Lemma, S has a maximal element, let's call it the subsubsequence $\{x_{n_{m'_k}}\}$. As this is the maximal subsubsequence of $\{x_{n_m}\}$, it must be the case that $\{x_{n'_m}\} = \{x_{n_m}\} - \{x_{n_{m'_k}}\}$ does not contain a convergent subsubsequence. This contradicts or initial assumption. Thus it must hold that every subsequence $\{x_{n_m}\}$ converges to x. But if this is the case, then it must also hold that $\{x_n\} \to x$.

- E.4) (a) Given that f is continuous and f(0) > 0, we can find a positive real, γ , such that $f(0) > \gamma > 0$ and use it to find an open set $U = [f(0) \gamma, f(0) + \gamma]$ containing f(0). By the continuity of f, we have that $V = f^{-1}(U)$ is also open. It's also the case that $0 \in V$, since $f^{-1}(0) \subseteq V$.
 - V being open, we can find an open interval $(-a, a) \subset V$ containing 0. This interval is completely contained in V so that $f((-a, a)) \subset U$. Now, we constructed U to be a set of positive real numbers. Thus f(x) > 0 for all $x \in (-a, a)$.
 - (b) Given $f(x) \ge 0$ for all rational x, assume there is some real (and necessarily irrational) x', such that f(x') < 0. Then by an analogous argument to that in part a), there must exist a nonempty interval $(x' \gamma, x' + \gamma)$ where f(x) < 0 for all x in said interval. But we know that \mathbb{Q} is dense in \mathbb{R} and that if such an interval exists it must contain a rational number. Thus we have a contradiction.
 - Now, if we're only given that f(x) > 0 for all $x \in \mathbb{Q}$, it is possible to construct a function such that f(x) = 0 for some $x \in \mathbb{R}$ that's not rational. For example, take $f(x) = (x \sqrt{2})^2$. In this case, $f(x) > 0 \ \forall \ x \in \{x | x \neq \sqrt{2}, \ x \in \mathbb{R}\}$ and $f(\sqrt{2}) = 0$.
- E.5) By the definition of continutity, $f^{-1}(U)$ is open for any open set $U \subseteq X'$. This in turn implies that if U is closed, it's inverse is also closed.

Let's assume that f is continuous. Pick any $x \in \overline{E}$, then by proposition 0.22 in Folland, there exists a sequence $\{x_n\}$ contained in E that converges to x. As such, the sequence $\{f(x_n)\}$ is contained in f(E) and we know that $f(x) \in X'$. We can show that $\{f(x_n)\}$ converges to f(x) by noting that for any open ball $B_{\epsilon}(f(x))$ in X', there exists an open region $U = f^{-1}(B_{\epsilon}(x))$ in X which itself contains a ball $B_{\delta}(x) \subseteq U$ containing x. Given that $\{x_n\}$ converges to x, we know that $\exists N$ such that $x_n \in B_{\delta}(x) \, \forall n > N$. This then implies that $f(x_n) \in B_{\epsilon}(f(x)) \, \forall n > N$. Since our initial selection of $\epsilon > 0$ was arbitrary, we see that $\{f(x_n)\}$ must converge to f(x). This in turn means that $f(x) \in \overline{f(E)}$ and thus $f(\overline{E}) \subseteq \overline{f(E)}$.

Now assume that $f(\overline{E}) \subseteq \overline{f(E)}$ for all $E \subseteq X$. Let's also assume that f is not continuous, i.e. there exists some closed set $V \subseteq X'$ such that $U = f^{-1}(V)$ is not also closed. Then $U \subset \overline{U}$ and $f(\overline{U}) \supseteq f(U) = \overline{f(U)}$ since f(U) = V is closed. This contradicts our first assumption, thus f must be continuous.