

2015 — 2016 学年第一学期

考试统一用答题册

题号	 <u> </u>	四四	五	六	七	总分
成绩						
阅卷人	117					

考试课程_		复变函数与积分变换 B					
班	级	学 号					
加 土	夕	成绩					

2016 年 1 月 13 日

(试题共5页)

	选择题(每题3分,	世 20 公
_,	匹俘逖(母逖 3 分,	光30 77

1.
$$\exists z = \frac{1+i}{1-i}$$
 时, $/z^{100}$ /等于(

- (A) 2^{100}
- (B) 0
- (C) 1
- (D) 2^{50}

2. 设
$$f(z) = \cos z$$
,则下列命题中,不正确的是(

- (A) f(z) 在复平面上处处解析
- (B) f(z)以 2π 为周期

(C)
$$f(z) = \frac{e^{iz} + e^{-iz}}{2}$$

(D) |f(z)| 是有界的

3. 满足不等式
$$\left| \frac{z-i}{z+i} \right| < 2$$
 的所有点 z 构成的集合是 (

- (A) 有界单连通区域
- (B) 有界多连通区域 (D) 无界多连通区域
- (C) 无界单连通区域

4. 设
$$c_1:|z|=1$$
为负向, $c_2:|z|=3$ 正向,则 $\int_{c=c_1+c_2} \frac{\sin z}{z^2} dz =$ ()

- (B) 0 (C) 2ni
- (D) $4\pi i$

5. 设
$$C$$
 为椭圆 $x^2 + 3y^2 = 1$ 正向,则积分 $\int_C \frac{1}{z} dz = ($)

(A) 设 v_1, v_2 在区域D内均为u的共轭调和函数,则必有 $v_1 = v_2$

- (C) 若 f(z) = u + iv 在区域 D 内解析,则 $\frac{\partial u}{\partial x}$ 为 D 内的调和函数

(D) 以调和函数为实部与虚部的函数是解析函数

7. 下列级数中,条件收敛的级数为(

(A)
$$\sum_{n=1}^{\infty} (\frac{1+3i}{2})^n$$

(B)
$$\sum_{n=1}^{\infty} \frac{(3+4i)^n}{n!}$$

(C)
$$\sum_{n=1}^{\infty} \frac{i^n}{n}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n + i}{\sqrt{n+1}}$$

- 8. 级数 $\frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots$ 的收敛域是(

- (A) |z| < 1 (B) 0 < |z| < 1 (C) $1 < |z| < +\infty$ (D) 不存在的
- 9. 设 $f(t) = \sin 2t$, 则 f(t) 的傅立叶变换为 (
- (A) $i\pi[\delta(\omega+2)+\delta(\omega-2)]$ (B) $i\pi[\delta(\omega+2)-\delta(\omega-2)]$
- (C) $i\pi[\delta(\omega-2)-\delta(\omega+2)]$ (D) $\pi[\delta(\omega+2)-\delta(\omega-2)]$
- 10. 函数 $f(t) = \int_0^t e^{-3t} \sin t \, dt$ 的拉普拉斯变换为(
- (A) $\frac{1}{s} \frac{1}{(s-3)^2 + 1}$ (B) $\frac{1}{s} \frac{1}{(s+3)^2 + 1}$
- (C) $-\frac{1}{s} \frac{1}{(s+3)^2+1}$ (D) $-\frac{1}{s} \frac{1}{(s-3)^2+1}$
- 二、填空题(每题3分,共27分)
- 1. 对于映射 $\omega = \frac{2}{z}$, 圆周 $x^2 + (y-1)^2 = 1$ 的像曲线为_
- 2. 函数 $f(z) = 2i\sin z + iz^2$ 在 z = i 处的导数为_____

- 7. 积分 $\int_{|z|=1} z^3 e^{\frac{1}{z}} dz =$ _______.
- 9. 函数 $F(s) = \frac{1}{s^2 + 1}e^{-2s}$ 的拉普拉斯逆变换为______

三、(10 分) 计算积分 $\int_{c} \frac{\sin z}{z(i-z)^2} dz$, 其中 c 为不经过 0,i 的简单闭曲线.

四、 $(8 \, f(z)) = \frac{1}{(z+1)(z-i)}$ 在适当的圆环域内展成以i 为心的幂级数。

五、(9 分) 求函数 $f(t) = \begin{cases} e^{\beta}, t < 0 \\ 0, t \ge 0 \end{cases}$ 的傅立叶变换和傅立叶积分, 并计算

$$\int_0^{+\infty} \frac{\beta \cos \omega t - \omega \sin \omega t}{\beta^2 + \omega^2} d\omega.$$

$$\begin{cases} x'(t) = 2x(t) + y(t) \\ y'(t) = -x(t) + 4y(t) \end{cases}$$

满足初始条件
$$\begin{cases} x(0) = 0 \\ y(0) = 1 \end{cases}$$

七、(6分)证明刘维尔定理: 在有限复平面上有界且解析的函数是常值函数。

