A Change Point Model for Housing Values

Xiaofei (Susan) Wang

Lecturer/Research Scholar Department of Statistics Yale University

JSM 2016

Joint work with Jay Emerson.

Two Houses in New Haven

638 Prospect St.

308 Shelton Ave.

Photos from Google Street View.

Two Houses in New Haven

638 Prospect St.

308 Shelton Ave.

638 Prospect	308 Shelton
0.11 acres	0.12 acres
1440 sq.ft.	3295 sq.ft.
2	4
1	2
	0.11 acres 1440 sq.ft. 2

Two Houses in New Haven

Actual assessed values (2011):

638 Prospect St.

308 Shelton Ave.

Property	638 Prospect	308 Shelton	
lot size	0.11 acres	0.12 acres	
living area	1440 sq.ft.	3295 sq.ft.	
# bedrooms	2	4	
# bathrooms	1	2	
assessed value	\$219,100	\$191,310	

More Houses

n = 244 houses in New Haven, CT

Goal: To model 2011 assessed values using available information.

More Houses

n = 244 houses in New Haven, CT

Goal: To model 2011 assessed values using available information.

Red circles indicate locations of two houses previously considered.

A Naive Approach

Model 1: Linear Regression

 $\label{eq:lm(log(assessed value)} $$ \sim $ lot size + sqrt(living area) + $$ $$ $$ \# bedrooms)$

	Estimate	Std. Error	t value	p value
(Intercept)	10.5	0.067	155.7	<2e-16
$\sqrt{\text{living area}}$	0.028	0.0022	12.89	<2e-16
beds	-0.036	0.012	-3.13	0.0020
size	1.53	0.11	14.15	<2e-16

Residual standard error: 0.200 on 240 degrees of freedom

Multiple R-squared: 0.82

Model 1 Residuals

What are change points?

• Observations: y_1, \ldots, y_{100}

What are change points?

- Observations: y_1, \ldots, y_{100}
- Partition: $\rho = (S_1, S_2)$ $S_1 = \{1, \dots, 50\}$ $S_2 = \{51, \dots, 100\}$
- $y_{i:i \in S_1} \sim N(0,1)$ $y_{i:i \in S_2} \sim N(3,1)$
- Change point at location 50.

What are change points?

- Observations: y_1, \ldots, y_{100}
- Partition: $\rho = (S_1, S_2)$ $S_1 = \{1, \dots, 50\}$ $S_2 = \{51, \dots, 100\}$
- $y_{i:i \in S_1} \sim N(0,1)$ $y_{i:i \in S_2} \sim N(3,1)$
- Change point at location 50.

Change points partition observations into blocks. Within each block, observations share a common distribution.

Related Work

- Barry and Hartigan (1993, 1994), Erdman and Emerson (2007, 2008)
 univariate, Bayesian (library(bcp))
- Bai and Perron (2003), Zeileis, et al. (2001) regression (library(strucchange))
- Muggeo (2003) regression (library(segmented))
- Olshen, et al. (2004) univariate, using circular binary segmentation
- Fearnhead (2005), Loschi, et al. (2010) regression, Bayesian
- Killick and Eckley (2011) univariate mean/variance (library(changepoint))
- Matteson and James (2013) multivariate (library(ecp))
- ... and others

Classical Bayesian Change Point Analysis

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma^2)$

Classical Bayesian Change Point Analysis

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma^2)$

Partition
$$\rho = (S_1, \dots, S_b)$$

Prior on the partition:

$$\pi(
ho) \propto \int_0^{
ho_0}
ho^{b-1} (1-
ho)^{n-b} d
ho$$

Classical Bayesian Change Point Analysis

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma^2)$

Partition
$$\rho = (S_1, \ldots, S_b)$$

Prior on the partition:

$$\pi(
ho) \propto \int_0^{
ho_0} p^{b-1} (1-p)^{n-b} dp$$

Likelihood:

$$y_{i:i\in S}|\theta_S,\sigma^2\sim N(\theta_S,\sigma^2)$$

$$\theta_S | \mu_0, \sigma_0^2 \sim N\left(\mu_0, \frac{\sigma_0^2}{n_S}\right)$$

$$\mu_0 \sim U(-\infty, \infty)$$

$$\pi(\sigma^2) \propto \frac{1}{\sigma^2} \quad \sigma^2 \in (0, \infty)$$

$$\pi(w) = \frac{1}{w'_0}$$
 $w \in (0, w'_0)$

where
$$w = \sigma^2/(\sigma_0^2 + \sigma^2)$$

Example

Example

Barry and Hartigan's approach implemented by Erdman and Emerson (2007, 2008) in library(bcp):

Extensions to Linear Regression

Wang and Emerson (2016):

- Observations: $\{(\mathbf{x_i}, y_i)\}_{i=1}^n$
- y_i is scalar response at location i
- x_i is k-dimensional vector of predictors

Extensions to Linear Regression

Wang and Emerson (2016):

- Observations: $\{(x_i, y_i)\}_{i=1}^n$
- y_i is scalar response at location i
- x; is k-dimensional vector of predictors

Prior on the partition:

Prior on the intercept:

$$\pi(
ho) \propto \int_0^{
ho_0}
ho^{b-1} (1-
ho)^{n-b} d
ho$$

 $eta_{\mathsf{S0}} | \mu_{\mathsf{0}}, \sigma_{\mathsf{0}}^2 \sim \mathcal{N}\left(\mu_{\mathsf{0}}, \frac{\sigma_{\mathsf{0}}^2}{n_{\mathsf{c}}}\right)$

Likelihood:

$$y_{i:i\in\mathcal{S}}|\mathbf{x}_i,\beta_{\mathcal{S}},\sigma^2\sim N(\widetilde{\mathbf{x}_i^{\mathbf{S}}}\boldsymbol{\beta_{\mathbf{S}}},\sigma^2)$$

$$\begin{split} & \left(\beta_{Sj} \middle| \tau_S = 0\right) = 0 & \quad \text{w.p. 1} \\ & \left(\beta_{Sj} \middle| \tau_S = 1, \sigma_j^2\right) \sim \textit{N}\left(0, \frac{\sigma_j^2}{\sum_{i \in S} (x_{ij} - \bar{x}_{.j}^S)^2}\right) \end{split}$$

Extensions to Linear Regression

Other priors:

$$P(\tau_{S} = 0) = \frac{d}{n_{S} + d} \mathbb{1}\{n_{S} \ge 2k\} + \mathbb{1}\{n_{S} < 2k\}$$

$$P(\tau_{S} = 1) = \frac{n_{S}}{n_{S} + d} \mathbb{1}\{n_{S} \ge 2k\}$$

$$\mu_{0} \sim U(-\infty, \infty)$$

$$\pi(\sigma^{2}) \propto \frac{1}{\sigma^{2}} \quad \sigma^{2} \in (0, \infty)$$

$$\pi(w_{j}) = \frac{1}{w_{j}} \quad w \in (0, w'_{j})$$

where $w_j = \sigma^2/(\sigma_j^2 + \sigma^2)$

Extensions to Connected Graphs

Before: (serial data, residing on **path graph**)

$$f(\rho) \propto \int_0^{p_0} p^{b-1} (1-p)^{n-b} dp$$

Now: (general graph)

$$f(\rho) \propto \alpha^{l(\rho)}$$

where 0 < α < 1 and $I(\rho)$ is a measure of boundary length

Housing Data Revisited

We need a graph structure to carry out change point analysis. Using a **minimum spanning tree**, we get:

BCP: Posterior Boundary Probabilities

BCP: Modal Partition

Model Comparison

Model 1: Regression residual SE: 0.200

Model 2: BCP SD("residuals"): 0.092

Model Comparison

Model 1: Regression residual SE: 0.200

Model 2: BCP SD("residuals"): 0.092

Summary

Extension of Bayesian change point framework supports:

- regressions within blocks, if predicting variables are available
- data residing on nodes of a connected graph
- multivariate/univariate change point analysis

Thank You!

Preprint of article submitted to JASA:

 Under revision: Wang and Emerson (2016). "Bayesian Change Point Analysis of Linear Models on Graphs."
 http://arxiv.org/abs/1509.00817.

R package bcp is available on R CRAN:

https://cran.r-project.org/web/packages/bcp/index.html.