ÁLGEBRA LINEAL Y ESTRUCTURAS MATEMÁTICAS

Convocatoria Febrero 2012

Alumno:	DNI:
	(07/02/2012)

Ejercicio 1. Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. El cardinal del conjunto $\mathcal{P}(A \times B)$ es:

- (a) 2^{12} .
- (b) 2^7 .
- (c) 7^2 .
- (d) 12^2 .

Ejercicio 2. ¿Cuál de las siguientes reglas define una aplicación $f : \mathbb{N} \to \mathbb{N}$?

- (a) $f(n) = n^2 1$.
- (b) $f(n) = n^2 60n + 800$.
- (c) $f(n) = \frac{n^3 + 6n^2 + 8n}{3}$.
- (d) $f(n) = \frac{n^3 + 5n^2 + 6n}{6}$.

Ejercicio 3. En \mathbb{Z}_{12} definimos la relación de equivalencia xRy si $x^2=y^2$. Entonces el cardinal del conjunto cociente vale:

- (a) 1
- (b) 4
- (c) 6
- (d) 12

Ejercicio 4. Disponemos de 45 billetes de 20 euros, y 18 billetes de 50 euros. ¿De cuántas formas distintas podemos conseguir 1110 euros?

- (a) 7.
- (b) 11.
- (c) 9.
- (d) 5.

Ejercicio 5. ¿Para que valor de m no es verdad que $3^6 \equiv 9 \mod m$?

- (a) m = 8.
- (b) m = 10.
- (c) m = 12.
- (d) m = 14.

Ejercicio 6. Dado el sistema de congruencias

$$22x \equiv 26 \mod 36$$

$$13x \equiv 38 \mod 51$$

- (a) No tiene solución pues 51 y 36 no son primos relativos.
- (b) No tiene solución pues 22 no tiene inverso módulo 36.
- (c) Tiene una única solución comprendida entre 1000 y 2000.
- (d) Tiene cuatro soluciones comprendidas entre 1000 y 2000.

Ejercicio 7. Sea
$$A = \mathbb{Z}_5[x]_{x^4+3x^3+3x^2+x+2}$$
, y sea $p(x) = x^2 + 1 \in A$. Entonces:

- (a) p(x) no tiene inverso en A pues $x^4 + 3x^3 + 3x^2 + x + 2$ tiene a x = 1 como raíz.
- (b) p(x) no tiene inverso en A pues $x^2 + 1$ no es irreducible.
- (c) p(x) tiene inverso en A y vale $2x^3 + x^2 + 4x + 1$.
- (d) p(x) tiene inverso en A y vale $x^3 + x^2 + 4x + 2$.

Ejercicio 8. De los siguientes anillos, indica cuál es un cuerpo con 125 elementos:

- (a) $\mathbb{Z}_5[x]_{x^3+x+1}$.
- (b) $\mathbb{Z}_3[x]_{x^5+x^2+2}$.
- (c) $\mathbb{Z}_5[x]_{x^3+x^2+4}$.
- (d) $\{a(x) \in \mathbb{Z}_5[x] : gr(a(x)) \le 124\}.$

Ejercicio 9. El resto de dividir 5514¹⁸³⁸ entre 7 es:

- (a) 6.
- (b) 1.
- (c) 4.
- (d) 3.

Ejercicio 10. Dado el sistema de ecuaciones con coeficientes en Q

- (a) El sistema es siempre compatible indeterminado.
- (b) Si a = b = 1 el sistema es incompatible.
- (c) Existen valores de a y b para los que el sistema es compatible determinado.
- (d) El sistema es compatible indeterminado si, y sólo si, $a \cdot b = 1$.

Ejercicio 11. Sea
$$A = \begin{pmatrix} 2 & 4 & 0 & 1 \\ 3 & 2 & 1 & 6 \\ 5 & 0 & 2 & 3 \\ 2 & 5 & 0 & 6 \end{pmatrix} \in M_4(\mathbb{Z}_7)$$
. Entonces el determinante de A vale:

- (a) 3.
- (b) 4.
- (c) 1.
- (d) 0.

Ejercicio 12. ¿Para cuál de los siguientes cuerpos el polinomio $p(x) = x^6 - 1$ verifica que $mcd(p(x), p'(x)) \neq 1$?

- (a) $K = \mathbb{Q}$.
- (b) $K = \mathbb{Z}_3$.
- (c) $K = \mathbb{Z}_5$.
- (d) $K = \mathbb{Z}_7$.

Ejercicio 13. Dado el conjunto $S = \{u_1, u_2, u_3\}$ donde $u_1 = (3, 1, 5, 2), u_2 = (4, 2, 1, 6)$ y $u_3 = (6, 1, 1, 6)$ son tres vectores de $(\mathbb{Z}_7)^4$.

- (a) S puede ser ampliado a una base añadiéndole el vector (1, 1, 1, 1).
- (b) S no puede ser ampliado a una base pues los vectores de S son linealmente dependientes.
- (c) Los vectores $\{u_1, u_2, u_3, u_1 + u_2 + u_3\}$ forman una base de $(\mathbb{Z}_7)^4$.
- (d) Los vectores de S son linealmente independientes.

Ejercicio 14. Sea U_1 el subespacio de $(\mathbb{Z}_7)^4$ generado por $\{(1,2,0,2);\ (0,1,4,0)\}$ y U_2 el subespacio de $(\mathbb{Z}_7)^4$ de ecuaciones $\left\{\begin{array}{cccc} x & + & 2y & + & 3z & + & 5t & = & 0\\ 3x & & & + & t & = & 0 \end{array}\right.$. Una base de $U_1 + U_2$ es

- (a) $\{(1,2,3,1); (2,0,2,5); (1,0,0,4)\}.$
- (b) $\{(1,2,3,1); (2,0,2,5)\}.$
- (c) $\{(1,0,0,0); (0,1,0,0); (0,0,1,0); (0,0,0,1)\}.$
- (d) $\{(1,0,0,4); (0,1,0,6); (1,1,0,3)\}.$

Ejercicio 15. Sean A y B dos matrices cuadradas 2×2 con coeficientes reales tales que

$$A + B = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}; \qquad A - B = \begin{pmatrix} 0 & -1 \\ 4 & -1 \end{pmatrix}$$

Entonces:

(a)
$$A^2 - B^2 = \begin{pmatrix} -2 & -2 \\ 10 & -5 \end{pmatrix}$$
.

(b)
$$A^2 - B^2 = \begin{pmatrix} -4 & -1 \\ 12 & -3 \end{pmatrix}$$
.

(c) No existen matrices con las condiciones que nos da el enunciado.

(d)
$$A^2 - B^2 = \begin{pmatrix} 0 & -3 \\ 8 & -7 \end{pmatrix}$$
.

Ejercicio 16. Sea $V = (\mathbb{Z}_{11})_2[x]$, es decir, el espacio de los polinomios de grado menor o igual que 2 con coeficientes en \mathbb{Z}_{11} , y sea $D: V \to V$ la aplicación derivada. Entonces:

- (a) $\{7\}$ es una base del núcleo de D y $\{6+3x, 9+10x\}$ una base de la imagen.
- (b) $\{1\}$ es una base del núcleo de D y $\{1, x\}$ una base de la imagen.
- (c) $\{0\}$ es una base del núcleo de D y $\{1, x, x^2\}$ una base de la imagen.
- (d) $\{x\}$ es una base del núcleo de D y $\{1, x^2\}$ una base de la imagen.

Ejercicio 17. Sea
$$A = \begin{pmatrix} 3 & 2 & 3 \\ 1 & 2 & 0 \\ 3 & 4 & 3 \end{pmatrix} \in M_3(\mathbb{Z}_5).$$

Entonces:

(a) A tiene tres valores propios distintos, y por tanto es diagonalizable.

7 de Febrero de 2012 (3)

- (b) A tiene dos valores propios distintos, y no es diagonalizable.
- (c) A tiene dos valores propios distintos, y es diagonalizable.
- (d) A tiene un único valor propio.

Ejercicio 18. Dada la aplicación lineal $f: \mathbb{Q}^3 \to \mathbb{Q}^2$ definida por f(x, y, z) = (2x + 3y, 7x + z)

- (a) Una base de la imagen es $\{(1,0); (0,1)\}$.
- (b) f es inyectiva.
- (c) f no es sobreyectiva.
- (d) El núcleo de f tiene dimensión 2.

Ejercicio 19. Sea $A=\left(\begin{array}{cc} 3 & 2 \\ 3 & 3 \end{array}\right)\in M_2(\mathbb{Z}_5).$ Entonces A^{105} vale

(a)
$$\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$$

- (c) A.
- (d) La matriz identidad.

Ejercicio 20. Sea U el subespacio vectorial de $(\mathbb{Z}_5)^4$ generado por los vectores (1,0,1,2); (0,4,1,1). Las ecuaciones cartesianas de U son:

(a)
$$\{ 4x + 2y + 3z + 4t = 0 .$$

(b)
$$\begin{cases} x + 4y + 4z & = 0 \\ 3x + 3y + 4z + 4t = 0 \end{cases}.$$

(c)
$$\begin{cases} x & + z + 4t = 0 \\ 2x + 4y & + 4t = 0 \\ 3x + 4y + 2z + 3t = 0 \end{cases}$$

7 de Febrero de 2012