БИЛЕТ 1

Матрицей A размера mxn называется прямоугольная таблица из m строк и n столбцов, состоящих из чисел или иных математических выражений.

Матрица записывается в виде:
$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right)$$

Пример матрицы:
$$A = \begin{bmatrix} 4 & 1 & -7 \\ -1 & 0 & 2 \end{bmatrix}$$

Произведение m на n (число строк на число столбцов) называется размерностью матрицы (mxn).

Матрицы обозначаются большими заглавными буквами, а ее элементы - строчными буквами.

 a_{ij} — элемент матрицы, где i — номер строки, а j — номер столбца.

Виды матриц

1) Матрицей-столбцом длины m называется матрица, состоящая из одного столбца, размера mx1.

2) Матрицей-строкой длины n называется матрица, состоящая из одной строки, размера 1xn.

3) Нулевой матрицей называют матрицу, все элементы которой равны 0.

$$\left[\begin{array}{ccc}0&0&0\\0&0&0\end{array}\right]$$

4) Квадратной матрицей называют матрицу, где кол-во строк равно колву столбцов.

$$\left[egin{array}{cccc} 4 & 1 & -7 \\ -1 & 0 & 2 \\ 4 & 6 & 7 \end{array} \right]$$
 - квадратная матрица размера $3{ imes}3$

5) Квадратная матрица, у которой все элементы, стоящие вне главной диагонали равны нулю, называется диагональной.

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 - не диагональные элементы равны нулю

6) Диагональная матрица, у которой на главной диагонали расположены одинаковые элементы, называется скалярной.

7) Диагональная матрица, у которой все элементы главной диагонали равны 1, называется единичной и обозначается буквой Е.

$$\mathbf{E} = \left(egin{array}{c|ccc} 1 & \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array} \right)$$
 - диагональные элементы равны 1

8) Треугольная матрица – квадратная матрица, у которой все элементы ниже (выше) главной диагонали или побочной диагонали равны 0.

- 9) Ступенчатой называется матрица, удовлетворяющая следующим условиям:
 - если матрица содержит нулевую строку, то все строки, расположенные под нею, также нулевые;
 - если первый не нулевой элемент некоторой строки расположен в столбце с номером ј, и следующая строка не нулевая, то первый ненулевой элемент следующей строки должен находиться в столбце с номером большим, чем і.

Примеры ступенчатых матриц:

$$\left(\begin{array}{cccc}
7 & 0 & 8 & 8 & 8 \\
0 & 0 & 1 & 3 & 5 \\
0 & 0 & 0 & -3 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

Если симметричные элементы относительно главной диагонали 10) равны, то это симметричная (симметрическая матрица) ($a_{ii} = a_{ii}$).

11) Кососимметрической называется квадратная матрица, у которой элементы, расположенные симметрично относительно главной диагонали, равны по абсолютной величине и противоположны по знаку и на главной диагонали расположены нулевые элементы (а;; = $=-a_{ii}$).

Операции над матрицами Линейные

1. Умножение матрицы на число

Определение. Произведением матрицы **A** на число **k** называется матрица **B**, элементы которой равны произведению собственных чисел элементов матрицы А на число k, т е $b_{i,i} = k \cdot a_{i,i}$.

Обозначают: k · **A,** k**A**.

Частный случай: противоположная матрица -1(A).

2. Сложение матриц

Определение. Суммой двух матриц A и B одинаковой размерности называется матрица С, все элементы которой будут равны сумме элементов матриц А и В, то есть каждый элемент матрицы **С** равен: $C_{ii} = a_{ii} + b_{ii}$.

Частный случай - разность матриц (А-В, А+(-В))

Свойства линейных операций:

- 1. Коммутативность A + B = B + A
- 2. Ассоциативность (A + B) + C = A + (B + C)
- 3. $A + \Theta = \Theta + A$, где Θ нулевая матрица соответствующего размера.
- 4. $A-A=\Theta$ 5. Дистрибутивность умножения на матрицу относительно сложения чисел $\lambda(A+B) = \lambda A + \lambda B$

- 6. Дистрибутивность умножения на число относительно сложения матриц $(\lambda + \mu)A = \lambda A + \mu A$
- 7. Ассоциативность относительно умножения чисел $(\lambda\mu)A=\lambda(\mu A)$

Нелинейные

1. Умножение

Умножение матриц А и В определено, когда кол-во столбцов матрицы А равно кол-ву строк матрицы В. Такие матрицы называются согласованными.

Определение. Произведением матрицы $A_{m imes n}$ на матрицу $B_{n imes k}$ называется матрица $C_{m imes k}$ такая, что каждый ее элемент $^{c_{ij}}$ является произведением i-ой строки матрицы A на $\hat{\jmath}$ -ый столбец матрицы B .

Свойства произведения матриц:

- 1. EA=AE=A, A0=0A=0
- 2. Ассоциативность $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- 3. Дистрибутивность $A \cdot (B+C) = A \cdot B + A \cdot C$, $(A+B) \cdot C = A \cdot C + B \cdot C$

Замечание 1: из существования произведения А на В следует существование произведения В на А. Если произведения существуют, то, как правило, А*В не равно В*А.

Если А*В=В*А, то матрицы называются перестановочными, или коммутирующими.

Замечание 1: если при произведении двух матриц получается нулевая матрица, то это не означает, что А=0 или В=0.

2. Транспонирование

Определение. Матрица размера mxn, полученная из матрицы A заменой каждой ее строки столбцом с тем же номером, называется транспонированной к А и обозначается А'.

Свойства операции транспонирования матриц:

1.
$$(A^T)^T = A$$

$$(\lambda \cdot A)^T = \lambda \cdot A^T$$

2.
$$(A \cdot A)^T = A \cdot A^T$$

3. $(A + B)^T = A^T + B^T$
4. $(A \cdot B)^T = B^T \cdot A^T$

$$(A \cdot B)^T = B^T \cdot A^T$$

- 5. Для симметричных матриц: $A^T = A$ 6. Для кососимметричных матриц: $A^T = -A$

3. Возведение в степень

Определение. Целой положительной степенью A^m (m>1) квадратной матрицы А называется произведение т матриц, равных А.

$$A^0 = E$$

$$(A^n)^m = A^{nm}$$

 $A^n*A^m = A^{n+m}$