סיבוכיות- תרגול 2

 $|y| \le p(|x|)$ מתקיים (x,y) $\in R$ יחס $p(\cdot)$ בדרה: אם קיים פולינומית אם קיים פולינום מתקיים (x,y) בדרה:

בעיות חיפוש הניתנות לפתרון פולינומי

:עבור יחס $R \in PF$ עבור יחס

- חסום פולינומית. R
- .2 פזה. x סיים אלגוריתם פולינומי כך שבהנתן x מחזיר y כך ש-x או x אם לא קיים y כזה.

בעיות חיפוש הניתנות לבדיקה פולינומית

:עבור יחס $R \in PC$ אם, נאמר כי

- חסום פולינומית. R
- $(x,y) \in R$ מחזיר 1 אם"ם (x,y) מחזיר 2.

בעיות הכרעה הניתנות לפתרון פולינומי

 $x \in S$ עבור קבוצה x, נאמר כי $S \in P$ אם קיים אלגוריתם פולינומי כך שבהנתן S מחזיר אם"ם

בעיות הכרעה בעלות מערכת הוכחה פולינומית

V המקיים: $p(\cdot)$ אם קיים פולינומי אם המקיים: $S \in NP$ עבור קבוצה

- V(x,y) = 1ו- $|y| \le p(|x|)$ ו- $x \in S$ 1.
 - V(x,y) = 0 ולכל $x \notin S$ ולכל 2.

 $S_R = \{x \mid \exists y, (x,y) \in R\}$ הגדרה: עבור יחס R, נגדיר את הקבוצה המתאימה

תרגיל: הוכיחו או הפריכו:

- $S_R \in NP \Longleftarrow R \in PC$ א. לכל יחס R מתקיים
- $R \in PC \Longleftarrow S_R \in NP$ ב. לכל יחס R חסום פולינומית מתקיים

פתרון:

- A(x,y)=א. הוכחה: $R\in PC$ ולכן קיים פולינום $p(\cdot)$ החוסם את R וקיים אלגוריתם פולינומי $R\in PC$ א. בים לב כי:
- A(x,y)=1 לפי הגדרת הקבוצה קיים y, $|y|\leq p(|x|)$, כך ש $x\in S_R$.1 A(x,y)=0 לפי מתקיים $y\neq x\in S_R$.2
- $R=\{(x,y)\mid (x\in\Sigma^*\wedge y=0)\lor (x\in A_{TM}\wedge y=1)\}$ ב. הפרכה: נגדיר את היחס $R\notin PC$ אבל $S_R=\Sigma^*\in NP$ מכיוון שעבור קלטים מהצורה $S_R=\Sigma^*\in NP$

תר את בעיה A בהנתן קופסה A בהנתן קופסה מדוקצית קוק: רדוקצית קוק מבעיה A לבעיה B הינה אלגוריתם פולינומי הפותר את בעיה B.

בזמן f הניתנת הכרעה S' הינה פגעית הכרעה S' בעית הכרעה בזמן קארפ מבעית קארפ מבעית הכרעה $x \in S \Leftrightarrow f(x) \in S'$ פולינומי ומקיימת

תרגיל: הוכיחו או הפריכו: לכל שתי בעיות הכרעה S,S' אם קיימת רדוקצית קוק מ-S ל-S', אז קיימת רדוקצית קוק מ-S' ל-S'.

פתרון: נגדיר $S=\emptyset,S'=\Sigma^*$. קיימת רדוקצית קוק ע"י האלגוריתם שמחזיר 0 לכל קלט (אינו משתמש כלל $S=\emptyset$. אבל לא קיימת רדוקצית קארפ מ-S ל-S.

.S' בעיה $S' \in NP$ קיימת קארפ מ-S' ל-S, נאמר כי S היא NP היא אם לכל בעיה אם בעית הכרעה, גאמר כי $S' \in NP$ היא NP שלמה אם בנוסף מתקיים $S' \in NP$.

יכו: תחת ההנחה כי $P \neq NP$, הוכיחו או הפריכו:

- $S' \in NPC$ אזי $S \subseteq S'$ אזי $S \in NPC$ א. תהי
 - ב. המחלקה NPC סגורה תחת איחוד.
- .BIG-CLIQUE \in NPC מתקיים כי .BIG-CLIQUE = $\{G \mid G \ contains \ a \ clique \ of \ size \ n-4\}$ ג. נגדיר את

פתרון:

- .CNF ו-'S א. הפרכה: S = SAT היה כל הנוסחאות בצורת
- $S_2 = \{(\phi, k) \mid \phi \in SAT \lor k \text{ is even}\}, S_1 = \{(\phi, k) \mid \phi \in SAT \lor k \text{ is odd}\}$ ב. הפרכה: נגדיר
 - n-4 ע"י בדיקת כל קבוצות הקודקודים בגודל BIG-CLIQUE \in P ג. הפרכה: ניתן להראות כי