A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 6EB

Bookmark

Show all steps: ON

Problem

Let G be a group. The symbol $H \subset G$ is commonly used as an abbreviation of "H is a *normal*" subgroup of G." A normal series of G is a finite sequence $H_0, H_1, ..., H_n$ of subgroups of G such

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$$

Such a series is called a *solvable series* if each quotient group H_{i+1}/Hi is abelian. G is called a solvable group if it has a solvable series.

In S_4 , let A_4 be the group of all the even permutations, and let

$$B = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$$

Show that $\{\varepsilon\} \subseteq B \subseteq A_4 \subseteq S_4$ is a solvable series for S_4 . Conclude that S_4 and all its subgroups are solvable.

The next three sets of exercises are devoted to proving the converse of Theorem 3: If the Galois group of a(x) is solvable, then a(x) is solvable by radicals.

Step-by-step solution

Step 1 of 4

Here, objective is to prove that $\{\varepsilon\}\subseteq B\subseteq A_4\subseteq S_4$ is a solvable series for S_4 .

Comment

Step 2 of 4

A group *G* is solvable, if there exist a finite chain of successive subgroups.

Abelian groups are solvable.

Step 3 of 4

Alternating group A_4 is the group of even permutations of four elements.

Symmetric group S_4 is the group of all permutations of four elements.

Consider in $\ensuremath{S_4}$, $\ensuremath{A_4}$ be the group of all even permutations.

Then,

$$A_4 \subseteq S_4$$

Comment

Step 4 of 4

Consider $B = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$, then B has order four.

 A_4 has the normal subgroup of $B = \{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ of order four.

So,

$$B \subseteq A_4$$

Then,

$$\{\varepsilon\}\subseteq B\subseteq A_4\subseteq S_4$$

Is a subnormal sequence with Abelian quotient.

So,

$$\{\varepsilon\}\subseteq B\subseteq A_4\subseteq S_4$$
 is a solvable series for S_4 .

Therefore, all of its groups are solvable.

Hence, proved

Comment