Chapter 8

Low Density Codes and Message Passing Decoding

8.1 Coding for Erasure Channels

Erasure channel

- Model packet loss in networks (e.g. Internet, wireless networks)
- Capacity: 1ε symbol per use
- Solutions:
 - Retransmission
 - Forward error correction

Retransmission

- Example: TCP, 802.11 MAC, cellular networks
- Achieve capacity
- Require feedbacks
- Not good for many scenarios
 - 1. wireless transmissions
 - 2. deep-space (satellite), underwater communications
 - 3. multicast transmissions

Forward error correction

- Capacity achieving without feedbacks
- Reed-Solomon code (n, k, n-k+1)
 - Encoding and decoding complexity: $O((n-k)\log n)$ per symbol.
- Can we have better solutions?
 - -O(1) complexity (per symbol).
 - Adaptive for different erasure rates/patterns.

What are fountain codes?

- Transmit a file of k packets: $\mathbf{B} = [b_1, b_2, \dots, b_k]$ where $b_i \in \mathbb{F}_q^T$
- Encoder generates potentially an infinite number of coded packets
- The file can be recovered from any set of n coded packets, where n is slightly larger than k.
- Also known as rateless codes

8.2 Rateless Random Linear Codes

Rateless random linear codes

- Encoding: x_j = ∑_{i=1}^k α_{j,i}b_i.
 Decode from any k coded packets with linearly independent coding vectors.
- Work for any erasure patterns universal.

Error Probability as a block code of length n

- When n packets are transmitted, the number of received packets N is $B(n, 1 \epsilon)$.
- The received packets $\mathbf{Y} = [y_1, y_2, \dots y_N]$ is given by $\mathbf{Y} = \mathbf{B}\mathbf{A}$.
- The decoding is correct iff $rank(\mathbf{A}) = k$.
- Error probability

$$P_{e} = 1 - \Pr\{\operatorname{rank}(\mathbf{A}) = k\}$$

$$= 1 - \sum_{j=k}^{n} \binom{n}{j} \epsilon^{n-j} (1 - \epsilon)^{j} \Pr\{\operatorname{rank}(\mathbf{A}) = k | N = j\}$$

$$= 1 - \sum_{j=k}^{n} \binom{n}{j} \epsilon^{n-j} (1 - \epsilon)^{j} \zeta_{k}^{j},$$

where ζ_k^j is the probability that a $k \times j$ totally random matrix has rank k. Note that $\zeta_k^j = (1-q^{-j})(1-q^{-j+1})\cdots(1-q^{-j+k-1})$ when $0 < k \le j$.

Coding overhead (as a rateless code)

- \bullet Coding overhead is the number of packets received minus k when decoding.
- Expected coding overhead:

$$CO = \sum_{i=1}^{\infty} i \Pr\{E_i \cap E'_{i-1}\} = \sum_{i=1}^{\infty} i \zeta_{k-1}^{k,k+i-1} (1 - q^{-1}),$$

where

- E_i : the first k+i received packets have rank k.

 $-\zeta_r^{m,n}$: the probability that an $m \times n$ tatally random matrix has rank r.

Note that

$$\zeta_r^{m,n} = \frac{\zeta_r^m \zeta_r^n}{\zeta_r^n q^{(m-r)(n-r)}}.$$

8.3 LT codes [Luby 98]

LT codes

- Sparse encoding
 - 1. pick a degree d by sampling a degree distribution $\Psi = (\Psi_1, \Psi_2, \dots, \Psi_K)$.
 - 2. uniformly at random pick d input packets.
 - 3. generate a coded packet by linearly combinate of the d input packets.
 - 4. repeat 1 3.
- Belief propogation decoding
 - 1. find a coded packet with degree one, which recovers the corresponding input packet.
 - 2. substitute the recovered input packet into the other coded packets that it involves.
 - 3. repeat 1 2 until there is no coded packets with degree one.
- Encoding/decoding complexity: $O(\log K)$ per packet, determined by the average degree $\mathbb{E}[\Psi]$.

Tanner graph of LT codes

A bound on degree distribution

Theorem 8.1 For an LT code with k input packets and n coded packets, if there exists a decoding algorithm with $P_e \leq k^{-c}$, then $\mathbb{E}[\Psi] \geq c' \frac{k}{n} \ln k$.

- So when n is close to k, $\mathbb{E}[\Psi] \geq c' \ln k$.
- Luby showed that there exists a degree distribution such that
 - 1. $\mathbb{E}[\Psi] = O(\log(k)),$
 - 2. the BP decoding succeeds with vanishing error probability for n coded packets with $\frac{n-k}{k} \to 0$.

Degree distribution of LT codes

• Ideal Soliton distribution:

$$\rho_1 = 1/k$$

$$\rho_i = \frac{1}{i(i-1)}, \forall i = 2, 3, \dots, k.$$

• Robust Soliton distribution:

8.4 Raptor codes

Raptor codes [Shokrollahi 2000]

- The trick: precode
- Encoding/decoding complexity O(1) per packet

Degree distribution of Raptor codes

- BP decoding recovers at least $1-\eta$ fraction of the (intermediate) input packets.
- The maximum degree $D \leq 1/\eta$. So $\mathbb{E}[\Psi] = O(1)$.
- The gap $\frac{n-k}{k}$ can be any positive value but is not vanishing for a fixed degree distribution when $k \to \infty$.

Performance analysis

- Asymptotic analysis: performance when $k \to \infty$.
 - Tree analysis [LMS98]
 - Differential equation approach (see [Wor99])
- \bullet Finite-length analysis: performance when k is relative small.
 - Iterative formula for the distribution of the decoder status [KLS04]

[LMS98] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, "Analysis of Random Processes via And-Or Tree Evaluation", in Proc. SODA, 1998, pp. 364-373.
 [Wor99] N. C. Wormald, "The differential equation method for random graph processes and greedy algorithms," Karonsky and Proemel, eds., Lectures on Approximation and Randomized Algorithms PWN, Warsaw, pp. 73-155, 1999.
 [KLS04] R. Karp, M. Luby, and A. Shokrollahi, "Finite length analysis of LT- codes," in Proc. IEEE ISIT'04, 2004.

8.5 Tree based analysis

Random Bipartite Graph

- Consider a sequence of random bipartite graph with n check nodes and K = nR variable
 - A check node has degree d with probability Ψ_d .
 - A check node with degree d connects to d variable nodes chosen uniformly at random.
- BP decoding of the bipartite graph has multiple iterations. In each iteration,
 - All variable nodes adjacent to a check node of degree one are recovered.
 - All edges adjacent to recovered variable nodes are removed.

Outline of Tree based Analysis

- Analyze the decoding process on a random And-OR tree.
- Show that the neighbor-hood of a variable node in the random bipartite graph is similar to a random tree in probability.
- Determine a proper degree distribution.

Random Tree

- Random tree T_l has l+1 levels.
- ullet The root is a variable node at level 0 and the leaf nodes are at level l.
- Each variable node has i-1 children (check nodes) with probability α_i .
- Each check node has i-1 children (variable nodes) with probability β_i .

And-OR Tree Analysis

- Let x_l be the probability that the root of T_{2l-1} can be recovered by the BP decoding of LT codes.
- Let y_l be the probability that a children of the root of T_{2l-1} has all its children recovered.
- We have

$$x_l = 1 - \sum_{i=1}^{\infty} \alpha_i (1 - y_l)^{i-1}$$
 $y_l = \sum_{i=1}^{\infty} \beta_i x_{l-1}^{i-1}$

• We have $x_l = f(x_{l-1})$, where

$$f(x) = 1 - \sum_{i=1}^{\infty} \alpha_i \left(1 - \sum_{i=1}^{\infty} \beta_i x^{i-1} \right)^{i-1}$$

- Note that $f(0) \ge 0$, f(1) = 1 and f(x) is non-decreasing.
- x_l tends to the first $x \in [0,1)$ such that f(x) = x.

Variable node degree distribution

• The variable node degree distribution converges to a Poisson distribution

$$\Lambda_k = \frac{\lambda^k e^{-\lambda}}{k!},$$

where $\lambda = \frac{\mathbb{E}\Psi}{R}$.

Computation graph

- Computation graph G_l : Choose a variable node v and G_l is the subgraph induced by v and all neighbors of v within distance l.
- Random tree T_l with

$$\alpha_k = \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!}, \quad k = 1, \dots,$$
$$\beta_k = \frac{k\Psi_k}{\sum_i i\Psi_i}, \quad k = 1, \dots, D,$$

where k_{max} is a fixed integer and α_k is the truncated Poisson distribution.

• Convergence to Tree: for a fixed tree T of level at most l+1 with the maximum variable node degree k_{max} ,

$$\Pr\{G_l = \mathbf{T}\} \to \Pr\{T_l = \mathbf{T}\}.$$

We prove the above convergence by induction. Both T_l and G_l has only one variable node, the convergence holds for l=0. Assume that the convergence holds for certain $l\geq 0$. For a tree T of at most l+2 levels, let T' be its subgraph of the first l+1 levels. We have $\Pr\{G_{l+1}=\mathrm{T}\}=0$

 $\Pr\{G_l = \mathrm{T}'\} \Pr\{G_{l+1} = \mathrm{T}|G_l = \mathrm{T}'\}$, where the first term converges by the induction hypothesis, and we only need to study the second term.

Suppose that T' has N leaf nodes. Let $G_l^0 = G_l$. For i = 1, ..., N, let G_l^i be the subgraph of G_{l+1} formed by the first l+1 levels and the children of the first i nodes at level l. Under the condition that $G_l = T'$, $G_{l+1} = G_l^N$. We can write

$$\Pr\{G_{l+1} = T | G_l = T'\} = \prod_{i=1}^{N} \Pr\{G_l^i = T^i | G_l^{i-1} = T^{i-1}\},$$

where $T^0 = T$ and for i = 1, ..., N, T^i is the subgraph of T that includes the first l + 1 levels and the children of the first i nodes at level l.

To characterize $\Pr\{G_l^i = \mathbf{T}^i | G_l^{i-1} = \mathbf{T}^{i-1}\}$, suppose that the *i*th node *u* at level *l* of T has s-1 children. Consider two cases:

- When l is even, u is a variable node. Similar to the study of the variable node degree distribution, we have $\Pr\{G_l^i = \mathbf{T}^i | G_l^{i-1} = \mathbf{T}^{i-1}\} \to \alpha_s$.
- When l is odd, u is a check node. Let v be the parent of u in T. We have

$$\begin{split} \Pr\{G_l^i = \mathbf{T}^i | G_l^{i-1} = \mathbf{T}^{i-1}\} &= \frac{\Pr\{G_l^i = \mathbf{T}^i\}}{\Pr\{G_l^{i-1} = \mathbf{T}^{i-1}\}} \\ &= \frac{\Pr\{u \text{ has degree } s \text{ and connects to } v | E\}}{\Pr\{u \text{ connects to } v | E\}} \\ &\rightarrow \frac{s\Psi_s}{\mathbb{E}\Psi} = \beta_s \end{split}$$

where E is the event that $G_l^{i-1} \setminus \{u\}$ is given.

Note that the above analysis depends on that the maximum variable node degree is bounded by a constant k_{max} . The probability that T_{2l-1} has the maximum variable node degree k_{max} is at least $(\sum_{i=1}^{k_{\text{max}}} \Lambda_i)^{k_{\text{max}}^l}D^l$, which tends to 1 as k_{max} tends to infinity. For any $\epsilon > 0$, we can find a sufficiently large k_{max} to show that a variable node can be recovered by l iterations of the BP decoding with probability at least $x_l - \epsilon/2$.

To complete the proof, we can use a martingale argument to show that the total number of variable node recovered by the BP decoding is at least $(x_l - \epsilon)K$ with high probability.

Sufficient condition

• Substituting α_i and β_i , we get

$$f(x) = 1 - \exp\left(-\frac{\Psi'(x)}{R}\right).$$

• To guarantee the success of decoding with high probability, we can require

$$x < 1 - \exp\left(-\frac{\Psi'(x)}{R}\right)$$
, for $x \in [0, 1 - \eta]$,

which implies

$$\Psi'(x) + R \ln(1-x) > 0$$
, for $x \in [0, 1-\eta]$.

• Let $D = |1/\eta| - 1$. For any R < 1, let

$$\Psi(x) = R\left((1/R - 1)x + \sum_{i=2}^{D-1} \frac{x^i}{(i-1)i} + \frac{x^D}{D-1}\right).$$

8.6 LDPC Codes

A brief history

- Invented by Robert G. Gallager in his Ph.D. thesis (1960)
- Reinvented several times for the next 30 years
- Factor graph, message passing algorithm
- Very hot research topic since around 2000

8.6 LDPC Codes 63

LDPC code from sparse bipartite graph

LDPC code from sparse parity check matrix

- A bipartite graph with n variable (left) nodes and r (right) check nodes.
- \bullet Let H be a binary adjacency matrix of the graph.
- The LDPC code is the set of vectors $\mathbf{c} = (c_1, \dots, c_n)$ such that $H\mathbf{c}^{\top} = 0$.
- Design rate of the LDPC code is 1 r/n.
- How to define sparsity?

LDPC Ensemble

- (d_v, d_c) -regular LDPC code: every variable node has degree d_v and every check node has degree d_c .
- Let Λ_i (P_i) be the number of variable (check) nodes of degree i.
- LDPC ensemble: a set of sparse graphs with constraint (Λ, P) associated with a distribution.
- Let λ_i (ρ_i) be the fraction of edges that connect to variable (check) nodes of degree i.
- Let $\rho(x) = \sum_{i} \rho_i x^{i-1}$.

As the numbers of edges counted from the variable nodes and the check nodes should be the same, we have

$$\sum_{i} i\Lambda_{i} = \sum_{i} iP_{i}.$$

The block length of the ensemble is $n = \sum_{i} \Lambda_{i}$, and the design rate of the ensemble is $1 - \frac{\sum_{i} P_{i}}{n}$.

Moreover,

$$\lambda_i = \frac{i\Lambda_i}{\sum_i i\Lambda_i}$$

and

$$\rho_i = \frac{iP_i}{\sum_i iP_i}.$$

General message passing decoding rule

- In each round of the algorithm,
 - 1. messages are passed from variable nodes to check nodes, and
 - 2. from check nodes back to variable nodes.
- The messages from variable nodes to check nodes are computed based on
 - 1. the observed value of the variable node, and
 - 2. some of the messages passed from the neighboring check nodes.
- The message sent from a variable node v to a check node c does not take into account the message previously send from c to v.

8.7 Binary Erasure Channel

Message passing decoding

- 1. In the first round, a variable node just sends the value received from the channel.
- 2. For other other rounds, a variable node sends "erasure" to check node c if its received message is erasure and all the incoming messages other than from c are erasures. Otherwise, it sends its received message or the non-erasure incoming message.
- 3. A check node sends "erasure" to node v if any of the incoming message from nodes other than v is an erasure. Otherwise, it sends the mod-2 sum of the incoming messages other than from v.

Compute Graph and Tree

- Computation graph G_l :
 - uniformly at random pick an edge e and denote the variable node v of this edge as the root
 - G_l is the subgraph of the Tanner graph deleting e that contains the nodes with distance at most l to v
 - $-G_0$ includes v only.
- Random tree T_l :
 - $-T_l$ has l+1 levels. The root, at level 0, is a variable node.
 - A variable node has i-1 children (check nodes) with probability λ_i .
 - A check node has i-1 children (variable nodes) with probability ρ_i .
- The decoding performance of G_l converges to that of T_l when $n \to \infty$.

l	r	rate	$\epsilon^{ m Shannon}$	$\epsilon^{ m BP}$
3	6	1/2	0.5	0.4294
4	8	1/2	0.5	0.3834
3	5	2/5	0.6	0.5176
4	6	1/3	0.667	0.5061
3	4	1/4	0.75	0.6474

Density evolution

- Suppose the variable nodes are transmitted through BEC(ϵ).
- Let x_l be the probability that the root of \mathcal{T}_{2l} is "erasure" after BP decoding.
- Let $f_{\epsilon}(x) = \epsilon \lambda (1 \rho(1 x))$.
- $x_0 = \epsilon$ and for l > 1,

$$x_{l} = f_{\epsilon}(x_{l-1}) = \epsilon \lambda (1 - \rho(1 - x_{l-1})).$$

• To have the erasure probability converging to zero, we require

$$x > \epsilon \lambda (1 - \rho(1 - x)), \quad x \in (0, 1).$$

or

$$\lambda^{-1}(x/\epsilon) > 1 - \rho(1-x), \quad x \in (0,1).$$

Threshold

Define

$$\epsilon^{\mathrm{BP}}(\lambda, \rho) = \sup\{\epsilon : x_l(\epsilon) \stackrel{l \to \infty}{\longrightarrow} 0\}.$$

Fixed point characterization of threshold

Theorem 8.2 1. $\epsilon^{\mathrm{BP}}(\lambda,\rho) = \sup\{\epsilon: x = f_{\epsilon}(x) \text{ has no solution in } (0,1]\}.$ 2. $\epsilon^{\mathrm{BP}}(\lambda,\rho) = \inf\{\epsilon: x = f_{\epsilon}(x) \text{ has a solution in } (0,1]\}.$

8.8 Binary Memoryless Symmetric Channel

Binary Memoryless Symmetric Channel

Gallager algorithm A

- In round 0, the variable nodes send their received values to all their neighboring check nodes.
- \bullet In the following rounds, a variable node sends to the neighboring check node c:
 - send value b if all the incoming messages from check nodes other than c are the same value b,
 - its received value otherwise.
- A check node sends to the neighboring variable node v the addition of the incoming messages from incident variable nodes other than v.

Asymptotic analysis

- All-zero codeword is transmitted
- Converge to tree.

Asymptotic analysis

- Let x_l be the error probability of the root of T_{2l} .
- For l > 1

$$x_{l} = \epsilon \left(1 - \lambda \left(1 - z_{l-1}\right)\right) + \left(1 - \epsilon\right)\lambda \left(z_{l-1}\right)$$

$$z_{l} = \frac{1 - \rho(1 - 2x_{l})}{2},$$

where $x_0 = \epsilon$. M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, "Analysis of low density codes and improved designs using irregular graphs," IEEE Trans. Inform. Theory, vol. 47, pp. 585–598, 2001. [LMSS01]

Example: (3,6)-LDPC code

- Expect that x_l is monotonically decreasing
- A sufficient condition:

$$\epsilon \left(1 - \lambda \left(\frac{1 + \rho(1 - 2x)}{2}\right)\right) + (1 - \epsilon)\lambda \left(\frac{1 - \rho(1 - 2x)}{2}\right) > x$$

for $x \in (0, \epsilon]$.

- Rate of the code is 1/2
- $\lambda(x) = x^2$ and $\rho(x) = x^5$
- Maximum ϵ is around 0.039

8.9 Bit-wise MAP Decoding

Bit-wise MAP Decoding

- A binary code word (x_1, \ldots, x_n) is transmitted through a memoryless channel p(y|x).
- The rule for bit-wise Maximum a posteriori decoder:

$$\begin{split} \hat{x}_i^{\text{MAP}} &= \underset{x_i}{\operatorname{argmax}} \, p_{X_i|Y^n}(x_i|y^n) \\ &= \underset{x_i}{\operatorname{argmax}} \sum_{\sim x_i} p_{X^n|Y^n}(x^n|y^n) \\ &= \underset{x_i}{\operatorname{argmax}} \sum_{\sim x_i} p_{Y^n|X^n}(y^n|x^n) p(x^n) \\ &= \underset{x_i}{\operatorname{argmax}} \sum_{\sim x_i} \prod_j p(y_j|x_j) \mathbf{1}_{x^n \in C} \end{split}$$

Note that for LDPC codes, the indicator function $\mathbf{1}_{x^n \in C}$ can be written as

$$\mathbf{1}_{x^n \in C} = \prod_{i=1}^r \mathbf{1}_{\langle h_i, x^n \rangle = 0},$$

where h_i is the *i*th row of H.

Let $f(x_1, \ldots, x_n) = \prod_i p(y_i|x_i) \mathbf{1}_{x^n \in C}$, which is the production of n+r functions of x_1, \ldots, x_n . The bit-wise MAP decoding is just the marginalization of this function for each variables x_i . The message passing algorithm enables simple and parallel computation of marginalizations, when the factor graph of f is a tree topology.

 \bullet Fix a tree T.

- Each variable node i at round t has a message $(\mu_i^t(0), \mu_i^t(1))$ such that $\frac{\mu_i^t(0)}{\mu_i^t(1)} = \frac{p_{X_i|\tilde{Y}_i^t}(0|y)}{p_{X_i|\tilde{Y}_i^t}(1|y)}$, where \tilde{Y}_i^t is the vector of received symbols corresponding to the variable nodes in the subtree rooted in variable node i with depth 2t + 1.
- $\mu_i^0(a) = p(y_i|a)$ for i = 1, 3, 4, 5, 6, 7.
- Each check node i at round t has a message $(\tilde{\mu}_i^t(0), \tilde{\mu}_i^t(1))$.

Since

$$\begin{array}{lcl} \mu_4^1(a) & \propto & p_{X_4|\tilde{Y}_4^1}(a|y_4y_6y_7) \\ & = & \sum_{x_6,x_7} p_{\tilde{X}_4^1|\tilde{Y}_4^1}(ax_6x_7|y_4y_6y_7) \\ & \propto & \sum_{x_6,x_7} p_{\tilde{Y}_4^1|\tilde{X}_4^1}(y_4y_6y_7|ax_6x_7)p_{\tilde{X}_4^1}(ax_6x_7) \\ & \propto & \mu_4^0(a) \sum_{x_6,x_7} \mu_6^0(x_6)\mu_7^0(x_7)1_{x_6+x_7=a} \end{array}$$

We can write

$$\begin{array}{lcl} \tilde{\mu}_{3}^{0}(a) & = & \displaystyle\sum_{x_{6},x_{7}:x_{6}+x_{7}=a} \mu_{6}^{0}(x_{6})\mu_{7}^{0}(x_{7}) \\ \\ \mu_{4}^{1}(a) & = & \mu_{4}^{0}(a)\tilde{\mu}_{3}^{0}(a) \end{array}$$

 $\begin{array}{l} \bullet \ \ \tilde{\mu}_1^1(a) = \sum_{x_3, x_4: x_3 + x_4 = a} \mu_3^1(x_3) \mu_4^1(x_4) \\ \bullet \ \ \tilde{\mu}_2^1(a) = \sum_{x: x = a} \mu_5^1(x) \\ \bullet \ \ \mu_1^2(a) = \mu_1^0(a) \tilde{\mu}_2^1(a) \tilde{\mu}_1^1(a). \\ \text{We can check that } \ \mu_1^2(a) \propto p_{X_1 | \tilde{Y}_1^2}(a | y_3^7). \end{array}$

Bit-wise MAP message passing rule

- For each variable v with a set of children (check nodes) C, $\mu_v^t(a) = \mu_v^0(a) \prod_{c \in C} \tilde{\mu}_c^{t-1}(a)$.
- For each check node c with a set of children (variable nodes) V, $\tilde{\mu}_c^t(a) = \sum_{x_v: v \in V: \sum_{v \in V} x_v = a} \prod_{v \in V} \mu_v^t(x_v)$.
- Since we only care about the ratio of $\mu_v(0)$ and $\mu_v(1)$, the message passing rule can be
 - Let $L_v^t = \ln \frac{\mu_v^t(0)}{\mu_v^t(1)}$ and $\tilde{L}_c^t = \ln \frac{\tilde{\mu}_c^t(0)}{\tilde{\mu}_c^t(1)}$. Define $\tanh(x) = \frac{e^{2x} 1}{e^{2x} + 1}$. Then, $\tilde{L}_c^t = 2 \tanh^{-1}(\prod_{v \in V} \tanh(L_v^t/2)) \\ L_v^t = L_v^0 + \sum_{c \in C} \tilde{L}_c^{t-1}.$

References

[Sho03] A. Shokrolianhi, "LDPC Codes: An Introduction".[RU09] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge, 2009.