Please check the examination details below	w before entering your candidate information		
Candidate surname	Other names		
Centre Number Candidate Nur	mber		
Pearson Edexcel Intern	Pearson Edexcel International Advanced Level		
Tuesday 15 October	2024		
Morning (Time: 1 hour 30 minutes)	Paper reference WMA12/01		
Mathematics			
International Advanced Sul Pure Mathematics P2	bsidiary/Advanced Level		
You must have: Mathematical Formulae and Statistical	Tables (Yellow), calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 11 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

P76187RA
©2024 Pearson Education Ltd.
V:1/1/1/1/1/

1. A continuous curve has equation y = f(x).

A table of values of x and y for y = f(x) is shown below.

x	0.5	1.75	3	4.25	5.5
y	3.479	6.101	7.448	6.823	5.182

Using the trapezium rule with all the values of y in the given table,

(a) find an estimate for

$$\int_{0.5}^{5.5} f(x) dx$$

giving your answer to one decimal place.

(3)

(b) Using your answer to part (a) and making your method clear, estimate

$$\int_{0.5}^{5.5} \left(f\left(x\right) + 4x \right) dx$$

(2)

Question 1 continued	
	(Total for Question 1 is 5 marks)

2. A sequence of numbers u_1, u_2, u_3, \dots is defined by

$$u_1 = 7$$

$$u_{n+1} = (-1)^n u_n + k$$

where k is a constant.

(a) Show that $u_5 = 7$

(3)

Given that $\sum_{r=1}^{4} u_r = 30$

(b) find the value of k.

(2)

(c) Hence find the value of $\sum_{r=1}^{150} u_r$

(2)

Question 2 continued	
	_
	_
	_
	_
	_
	_
	-
	-
	-
	-
	-
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	-
(Total for Question 2 is 7 marks)	-

3. $f(x) = 2x^3 - x^2 + Ax + B$

where A and B are integers.

Given that when f(x) is divided by (x + 3) the remainder is 55

(a) show that

$$3A - B = -118$$

(2)

Given also that (2x - 5) is a factor of f(x),

(b) find the value of A and the value of B.

(3)

(c) Hence find the quotient when f(x) is divided by (x - 7)

(2)

Question 3 continued

Question 3 continued	

Question 3 continued	
/Tr	tal for Question 2 is 7 marks)
(10)	tal for Question 3 is 7 marks)

4. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The curve C has equation

$$y = 4x^{\frac{1}{2}} + 9x^{-\frac{1}{2}} + 3 \qquad x > 0$$

(a) Find $\frac{dy}{dx}$ giving each term in simplest form.

(2)

(b) Hence find the x coordinate of the stationary point of C.

(2)

- (c) (i) Find $\frac{d^2y}{dx^2}$ giving each term in simplest form.
 - (ii) Hence determine the nature of the stationary point of C, giving a reason for your answer.
- **(2)**

(d) State the range of values of x for which y is decreasing.

(1)

Question 4 continued	
(Total for Question 4 is 7 mar	rks)
(10th) for Question 4 is / mai	

5. (a) Find, in terms of a, the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(2 + ax)^6$$

where a is a non-zero constant. Give each term in simplest form.

(3)

$$f(x) = \left(3 + \frac{1}{x}\right)^2 \left(2 + ax\right)^6$$

Given that the constant term in the expansion of f(x) is 576

(b) find the value of a.

(4)

Question 5 continued	
(Total for Question	5 is 7 marks)
<u> </u>	

6.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	Using the laws of logarithms, solve	
	$\log_4(12 - 2x) = 2 + 2\log_4(x+1)$	
	$\log_4(12-2x)-2+2\log_4(x+1)$	(5)
		(6)

Question 6 continued
(Total for Question 6 is 5 marks)
(Total for Question o is 5 marks)

7. Jem pays money into a savings scheme, A, over a period of 300 months.

Jem pays £20 into scheme A in month 1, £20.50 in month 2, £21 in month 3 and so on, so that the amounts Jem pays each month form an arithmetic sequence.

(a) Show that Jem pays £69.50 into scheme A in month 100

(1)

(b) Find the **total** amount that Jem pays into scheme A over the period of 300 months.

(2)

Kim pays money into a different savings scheme, B, over the same period of 300 months.

In a model, the amounts Kim pays into scheme *B* increase by the same percentage each month, so that the amounts Kim pays each month form a geometric sequence.

Given that Kim pays

- £20 into scheme *B* in month 1
- £250 into scheme B in month 300
- (c) use the model to calculate, to the nearest £10, the difference between the total amount paid into scheme A and the total amount paid into scheme B over the period of 300 months.

(3)

1	(

Question 7 continued

Question 7 continued

Question 7 continued
(Total for Question 7 is 6 marks)

8. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Figure 1

Figure 1 shows a sketch of part of the curve C_1 with equation

$$y = x^2 + 3 \qquad x > 0$$

and part of the curve C_2 with equation

$$y = 13 - \frac{9}{x^2}$$
 $x > 0$

The curves C_1 and C_2 intersect at the points P and Q as shown in Figure 1.

(a) Use algebra to find the x coordinate of P and the x coordinate of Q.

(4)

The finite region R, shown shaded in Figure 1, is bounded by $C_{\scriptscriptstyle 1}$ and $C_{\scriptscriptstyle 2}$

(b) Use algebraic integration to find the exact area of R.

(4)

Question 8 continued

Question 8 continued

Question 8 continued	
	Total for Question 8 is 8 marks)

9. In this question you must show detailed reasoning.

Solutions relying entirely on calculator technology are not acceptable.

(a) Show that the equation

$$2 \tan \theta = 3 \cos \theta$$

can be written as

$$3\sin^2\theta + 2\sin\theta - 3 = 0$$

(3)

(b) Hence solve, for $-\pi < x < \pi$, the equation

$$2\tan\left(2x + \frac{\pi}{3}\right) = 3\cos\left(2x + \frac{\pi}{3}\right)$$

giving your answers to 3 significant figures.

(4)

Question 9 continued	
ſ	Total for Question 9 is 7 marks)
	Zumi ivi Zuconvii / is / mai ksj

10. The circle C has equation

$$x^2 + y^2 + 4x - 30y + 209 = 0$$

- (a) Find
 - (i) the coordinates of the centre of C,
 - (ii) the exact value of the radius of C.

(3)

The line L has equation y = mx + 1, where m is a constant.

Given that L is the tangent to C at the point P,

(b) show that

$$2m^2 - 7m - 22 = 0$$

(3)

(c) Hence find the possible pairs of coordinates of P.

(4)

Question 10 continued

Question 10 continued

Question 10 continued	
	Total for Question 10 is 10 marks)

11. (i) Prove by counter example that the statement	
"If <i>n</i> is a prime number then $3^n + 2$ is also a prime number."	
is false.	(2)
(ii) Use proof by exhaustion to prove that if <i>m</i> is an integer that is not divisible by 3, then	(2)
m^2-1	
is divisible by 3	(4)

Question 11 continued

Question 11 continued
/T-4.10 O 4 11 C 1 \
(Total for Question 11 is 6 marks)
TOTAL FOR PAPER IS 75 MARKS

