T0-Theory: Unified Calculator Results Masses and Physical Constants from Geometric Principles

September 23, 2025

Contents

1	Introduction	2
2	Fundamental Input Parameters 2.1 Geometric Derivation of ξ	2
3	Particle Mass Calculations 3.1 Statistical Analysis of Mass Results	2
4	Physical Constants4.1 Level 1: Primary Derivations	3 3 3
5	Summary 5.1 Key Results	4
6	Conclusion	4

1 Introduction

The T0-Theory presents a revolutionary approach where all physical constants and particle masses are derived from only three fundamental geometric parameters. This work presents the complete results of the unified T0 calculator.

2 Fundamental Input Parameters

The entire T0-Theory is based on only three input values:

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.33333333e - 04 \text{ (geometric constant)}$$
 (1)

$$\ell_{\rm P} = 1.616000e - 35 \text{ m (Planck length)}$$
 (2)

$$E_0 = 7.398 \text{ MeV (characteristic energy)}$$
 (3)

$$v = 246.0 \text{ GeV} \text{ (Higgs VEV, derived from } \xi)$$
 (4)

2.1 Geometric Derivation of ξ

The geometric constant ξ arises from the fundamental field equation:

$$\nabla^2 m(x,t) = 4\pi G \rho(x,t) \cdot m(x,t) \tag{5}$$

For a spherically symmetric point mass, this leads to the characteristic length:

$$r_0 = 2Gm \quad \text{and} \quad \xi = \frac{r_0}{\ell_P}$$
 (6)

3 Particle Mass Calculations

The T0-Theory calculates all particle masses using the Yukawa method:

$$m = r \times \xi^p \times v \tag{7}$$

where r and p are particle-specific parameters from the geometric structure.

Table 1: T0 Mass Predictions with Exact Fraction Parameters

Particle	r	p	T0 Mass [MeV]	Exp. Mass [MeV]	Error [%]
Electron	$\frac{4}{3}$	$\frac{3}{2}$	0.5	0.5	1.18
Muon	$\frac{16}{5}$	$\overline{1}$	105.0	105.7	0.66
Tau	$\frac{\frac{4}{3}}{\frac{16}{5}}$	$\frac{2}{3}$	1712.1	1776.9	3.64
Up	6	2 333 233 2	2.3	2.3	0.11
Down	$\frac{25}{2} \\ \frac{26}{9}$	$\frac{\overline{3}}{2}$	4.7	4.7	0.30
Strange	$\frac{26}{9}$	$\bar{1}$	94.8	93.4	1.45
Charm	2	$\frac{2}{3}$	1284.1	1270.0	1.11
Bottom	$\frac{3}{2}$	$\frac{1}{2}$	4260.8	4180.0	1.93
Top	$\frac{\bar{1}}{28}$	$\frac{-1}{3}$	171974.5	172760.0	0.45

3.1 Statistical Analysis of Mass Results

The T0-Theory achieves remarkable accuracy in predicting particle masses:

• Number of calculated particles: 9

• Average error: 1.20%

• Best prediction: up (0.11% error)

• All masses calculated from only 3 parameters

4 Physical Constants

The T0-Theory systematically derives all fundamental physical constants in an 8-level hierarchy:

4.1 Level 1: Primary Derivations

$$\alpha = \xi \left(\frac{E_0}{1 \text{ MeV}}\right)^2 = 7.297387e - 03$$
 (8)

$$m_{\text{char}} = \frac{\xi}{2} = 6.666667e - 05 \tag{9}$$

4.2 Level 2: Gravitational Constant

The gravitational constant is directly derived from ξ :

$$G_{\text{nat}} = \frac{\xi^2}{4m_{\text{char}}} = \frac{\xi}{2} = 6.666667e - 05 \text{ (dimensionless)}$$
 (10)

$$G = G_{\text{nat}} \times \frac{\ell_{\text{P}}^2 c^3}{\hbar} = 6.672194e - 11 \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$$
 (11)

4.3 Overview of All Calculated Constants

Table 2: T0 Constant Calculations by Hierarchy Level

Level	Constant	T0 Value	Reference Value	Error [%]
1	α	7.297387×10^{-3}	7.297353×10^{-3}	0.0005
1	$m_{ m char}$	6.666667×10^{-5}	T0-derived	-
2	G	6.672194×10^{-11}	6.674300×10^{-11}	0.0316
2	$G_{ m nat}$	6.666667×10^{-5}	T0-derived	-
2	$G_{\text{conversion factor}}$	6.672194×10^{-11}	T0-derived	-
3	c	2.997925×10^8	2.997925×10^8	0.0000
3	\hbar	1.054572×10^{-34}	1.054572×10^{-34}	0.0000
3	$m_{ m P}$	2.176778×10^{-8}	2.176434×10^{-8}	0.0158
3	$t_{ m P}$	5.390396×10^{-44}	5.391247×10^{-44}	0.0158
3	$T_{ m P}$	1.417008×10^{32}	1.416784×10^{32}	0.0158
3	$E_{ m P}$	1.956390×10^9	1.956082×10^9	0.0158
3	$F_{ m P}$	1.210638×10^{44}	1.210256×10^{44}	0.0315
3	$P_{ m P}$	3.629400×10^{52}	3.628255×10^{52}	0.0316
4	μ_0	1.256637×10^{-6}	1.256637×10^{-6}	0.0000
4	ϵ_0	8.854188×10^{-12}	8.854188×10^{-12}	0.0000
4	e	1.602180×10^{-19}	1.602177×10^{-19}	0.0002
4	Z_0	3.767303×10^2	3.767303×10^2	0.0000
4	$k_{ m e}$	8.987552×10^9	8.987552×10^9	0.0000
5	$\sigma_{ m SB}$	5.670374×10^{-8}	5.670374×10^{-8}	0.0000
5	$b_{ m Wien}$	2.897839×10^{-3}		0.0023
5	h	6.626070×10^{-34}	6.626070×10^{-34}	0.0000

Continuation on next page

Table 2 – Continuation from previous page

Level	Constant	T0 Value	Reference Value	Error [%]
6	a_0	5.291747×10^{-11}	5.291772×10^{-11}	0.0005
6	R_{∞}	1.097384×10^7	1.097373×10^7	0.0009
6	$\mu_{ m B}$	9.274032×10^{-24}	9.274010×10^{-24}	0.0002
6	$\mu_{ m N}$	5.050796×10^{-27}	5.050784×10^{-27}	0.0002
6	$E_{ m h}$	4.359786×10^{-18}	4.359745×10^{-18}	0.0009
6	$\lambda_{ m C}$	2.426310×10^{-12}	2.426310×10^{-12}	0.0000
6	$r_{ m e}$	2.817954×10^{-15}	2.817940×10^{-15}	0.0005
7	F	9.648556×10^4	9.648533×10^4	0.0002
7	$R_{ m K}$	2.581268×10^4	2.581281×10^4	0.0005
7	$K_{ m J}$	$4.835990 imes 10^{14}$	4.835978×10^{14}	0.0002
7	Φ_0	2.067829×10^{-15}	2.067834×10^{-15}	0.0002
7	$R_{\rm gas}$	8.314463	8.314463	0.0000
8	H_0	2.196000×10^{-18}	T0-derived	-
8	Λ	1.609698×10^{-52}	T0-derived	-
8	$t_{ m universe}$	4.553734×10^{17}	T0-derived	-
8	$ ho_{ m crit}$	8.627350×10^{-27}	T0-derived	-
8	$l_{ m Hubble}$	1.365175×10^{26}	T0-derived	-

5 Summary

5.1 Key Results

The T0-Theory achieves a remarkable unification of physics:

- 1. Complete Mass Calculation: All 9 particle masses from geometric principles
- 2. Constant Hierarchy: 39 physical constants derived in 8 levels
- 3. **High Precision**: Average mass error only 1.2 %
- 4. Minimal Input: Only 3 fundamental parameters required
- 5. Open Source: All documents and source code are available at https://github.com/jpascher/T0-Time-Mass-Duality under the MIT License.

6 Conclusion

The T0 Unified Calculator demonstrates that geometric principles can lead to astonishingly accurate predictions in particle physics. The numerical accuracy warrants scientific attention.