Problem Set 5

Sarah Bass

"if k =0

(a)
$$E[U_{\pm}] = E[E_{\pm}E_{\pm}] = E[E_{\pm}] = E[E_{\pm}] = 0$$

 $E[W_{\pm}] = E[E_{\pm}E_{0}] = E[E_{\pm}] = E[E_{0}] = 0$

$$E[V_{\pm}] = E[e_{b}^{2}] E[e_{b-1}] = E[e_{b}^{2}] E[e_{b-1}] = b^{2} \cdot 0 = 0$$

$$C(v) = (var(u)) = E[u^{2}] \cdot E[e^{2}e^{2} \cdot 1 = E[e^{2}] \cdot E[e^{2} \cdot 1 = e^{4}]$$

$$Y_{N}(k) = \begin{cases} var(N_{+}) = E[N_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}] = E[E_{+}^{2}] = E[E_{+}^{2}] = E^{4} & \text{if } k = 0 \\ cov(N_{+}, N_{+}) = E[N_{+}, N_{+}, N_{+}] = E[E_{+}^{2}E_{+}, E_{+}, E_{+}] = 0 & \text{if } k \ge 1 \\ cov(N_{+}, N_{+}, N_{+}) = E[N_{+}, N_{+}, N_{+}] = E[E_{+}^{2}E_{+}, E_{+}, E_{+}, E_{+}, E_{+}, E_{+}] = 0 & \text{if } k \ge 1 \end{cases}$$

$$Y_{N}(k) = \begin{cases} var(N_{+}) = E[N_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}E_{+}] = E[E_{+}^{2}E_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}] = 0 & \text{if } k \ge 1 \\ e^{2} = E[E_{+}^{2}E_{+}, E_{+}, E_{+}, E_{+}] = 0 & \text{if } k \ge 1 \end{cases}$$

$$Y_{N}(k) = \begin{cases} var(N_{+}) = E[N_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}E_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}E_{+}^{2}] = 0 & \text{if } k \ge 1 \\ e^{2} = E[E_{+}^{2}E_{+}^{2}E_{+}^{2}] = E[E_{+}^{2}E_{+}^{2}E_{+}^{2}] = 0 & \text{if } k \ge 1 \end{cases}$$

$$Y_{V}(k) = \begin{cases} V_{QV}(V_{+}) = E[V_{+}^{2}] = E[E_{+}^{4}E_{+-1}] = \sigma^{2}E[E_{+}^{4}] & \text{if } k=0 \\ COV(V_{+}|V_{+H}) = E[V_{+}V_{+H}] = E[E_{+}^{2}E_{+-1}E_{+}^{2}|E_{+}] = E[E_{+}^{3}E_{+}^{2}|E_{+-1}] = 0 & \text{if } k=1 \\ COV(V_{+}|V_{+H}) = E[V_{+}V_{+H}] = E[E_{+}^{2}E_{+-1}E_{+}^{2}|E_{+}] = 0 & \text{if } k=1 \end{cases}$$

$$Var(\overline{0}) = Var\left(\frac{1}{T}\sum_{t=1}^{T}U_{t}\right) = \frac{1}{T^{2}}\sum_{t=1}^{T} VarU_{t} = \frac{T\sigma^{4}}{T^{2}} = \frac{\sigma^{4}}{T} \rightarrow 0$$

$$Var(\overline{W}) = Var\left(\frac{1}{T}\sum_{t=1}^{T}W_{t}\right) = \frac{1}{T^{2}}\sum_{t=1}^{T}VarW_{t} = \frac{T\sigma^{4}}{T^{2}} = \frac{\sigma^{4}}{T} \rightarrow 0$$

$$Var(\overline{W}) = Var\left(\frac{1}{T}\sum_{t=1}^{T}W_{t}\right) = \frac{1}{T^{2}}\sum_{t=1}^{T}VarW_{t} = \frac{T\sigma^{4}}{T^{2}} = \frac{\sigma^{4}}{T} \rightarrow 0$$

$$Var(\overline{V}) = Var\left(\frac{1}{T}\sum_{t=1}^{T}V_{t}\right) = \frac{1}{T^{2}}\sum_{t=1}^{T}VarV_{t} = \frac{T\sigma^{2}E\left[\varepsilon_{t}^{4}\right]}{T^{2}} \rightarrow 0$$

Thus U-PECULI, W-PECWEI, V-PECVEI

$$|C| \quad \forall \text{Ar} \hat{Y}_{u}(0) = \forall \text{Ar} \frac{1}{T} \sum_{t=1}^{T} u_{t}^{2} = \frac{1}{T^{2}} \forall \text{Ar} \nabla \sum_{t=1}^{T} u_{t}^{2}$$

$$= \frac{1}{T^{2}} \sum_{t=1}^{T} \forall \text{Ar} (\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}) = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{2} \mathcal{E}_{t}^{1}\right]^{2}}_{T}$$

$$= \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{2} \mathcal{E}_{t}^{1}\right]^{2}}_{T} = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E}^{8}}_{T}$$

$$= \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{2} \mathcal{E}_{t}^{1}\right]^{2}}_{T} = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E}^{8}}_{T} \forall \mathsf{Ar} \mathsf{Ar} \mathsf{Ar}^{1}$$

$$= \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{2} \mathcal{E}_{t}^{2}\right]}_{T} = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E}^{8}}_{T}$$

$$= \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{2} \mathcal{E}_{t}^{2}\right]^{2}}_{T} = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{1}\right] - \mathsf{E}^{8}}_{T} \forall \mathsf{Ar} \mathsf{Ar}^{1}$$

$$\to \mathsf{D}$$

$$\forall \mathsf{Ar} \hat{\mathsf{Y}}_{V}(0) = \mathsf{Var} \underbrace{\mathsf{I}}_{T} \underbrace{\mathsf{I}}_{t=1}^{1} \mathsf{V}_{t}^{2} = \underbrace{\mathsf{I}}_{T}^{1} \mathsf{Var} \underbrace{\mathsf{I}}_{T}^{1} \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2}}_{T} - \mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right]^{2}}_{T}$$

$$= \underbrace{\mathsf{I}}_{T} \underbrace{\mathsf{I}}_{T} \mathsf{Var} \left(\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}, \mathcal{E}_{t}^{2}\right) = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right]^{2}}_{T} - \mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right]^{2}}_{T}$$

$$= \underbrace{\mathsf{I}}_{T} \underbrace{\mathsf{I}}_{T} \mathsf{Var} \left(\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}, \mathcal{E}_{t}^{2}\right) = \underbrace{\mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right] - \mathsf{E} \left[\mathcal{E}_{t}^{1} \mathcal{E}_{t}^{2}\right]^{2}}_{T}}_{T} + \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2} \mathsf{I}_{T}^{2}}_{T} + \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2} \mathsf{I}_{T}^{2}}_{T} + \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2} \mathsf{I}_{T}^{2}}_{T} + \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2}}_{T} + \underbrace{\mathsf{I}}_{T}^{2} \underbrace{\mathsf{I}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2} + \underbrace{\mathsf{I}}_{T}^{2}$$

However $\hat{Y}_{w}(0) = \frac{1}{T} \sum_{t=1}^{T} w_{t}^{2} = \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} \epsilon_{0}^{2} = \frac{\epsilon_{0}^{2}}{T} \sum_{t=1}^{T} \epsilon_{t}^{2} \rightarrow \rho \epsilon_{0}^{2} \sigma^{2}$ Which $\neq E[\hat{Y}_{w}(0)] = \sigma^{4}$ So $\hat{Y}_{w}(0)$ and $\hat{Y}_{v}(0)$ converge to their expectations and $\hat{Y}_{w}(0)$

-> 0

does not.

= E[28] =[24] - E[24] E[24] = E[28] =[24] - r'E[24]

ld) Note Eutst=1 has i) strictly stationary ii) finite second moment iii) convergence in probin 2nd moment Purther, E[U+|U+-1,..., U,] = E[E[E+E+-1/E+-1,..., E+] | U+-1,..., U,] = E[8+1 (0) | U+-11 ..., K1] Thus, IT U -> d N(0,04) Note EV +3+=1 has i) strictly stationary ii) finite second moment iii) convergence in probin 2nd moment Let V= VT-++1 E[v+|v+-1,...,v,] = E[E[e]-+,(E_-+,[E_+,...,E_++,]|v+-1,...,v,] = E[=7-4+1 (0) | V+1, ..., V,] Thus ITV → N(0, 0° E[E24]) Now consider ATW. Since W doesn't converge in probability to its expectation, we can't use the Maringale CLT. FW = I I W = 1 I Ex Ex = E Z Ex

but Eo is random, so IT is nor normal

Note, I & Ex is a normal distribution,

2) Mattab code uploaded with Problem Set.

Table 1. Results from 1 simulation

	\hat{lpha}_0	$\hat{\alpha}_0$ LB	$\hat{\alpha}_0$ UB	$\hat{\delta}_0$	$\hat{\delta}_0 \mathrm{LB}$	$\hat{\delta}_0 \text{ UB}$	$\hat{ ho}_1$	$\hat{\rho}_1 \text{ LB}$	$\hat{\rho}_1$ UB
$T = 50, \rho_1 = 0.7$	99.5014	98.8981	100.1046	99.9725	99.7261	100.2188	0.70056	0.69883	0.7023
$(T = 50, \rho_1 = 0.9)$	99.6527	99.0847	100.2207	99.9278	99.7333	100.1222	0.90053	0.8997	0.90136
$(T = 50, \rho_1 = 0.95)$	100.2789	99.6205	100.9373	99.9902	99.7056	100.2749	0.95004	0.94939	0.9507
$(T=150, \rho_1=0.7)$	99.7756	99.4228	100.1285	99.9557	99.8214	100.0901	0.69949	0.69876	0.70022
$(T=150, \rho_1=0.9)$	99.7666	99.3321	100.201	100.0665	99.9176	100.2154	0.90025	0.89977	0.90074
$(T = 150, \rho_1 = 0.95)$	99.7825	99.2821	100.2829	99.9612	99.8216	100.1008	0.95018	0.94985	0.95052
$(T=250, \rho_1=0.7)$	100.0539	99.7334	100.3744	100.0554	99.9342	100.1766	0.69941	0.6987	0.70013
$(T=250, \rho_1=0.9)$	99.764	99.4382	100.0899	100.0244	99.9134	100.1354	0.90049	0.90011	0.90087
$(T = 250, \rho_1 = 0.95)$	99.9335	99.5769	100.2901	99.9669	99.8477	100.0861	0.94996	0.9496	0.95032

Table 2. Results from 10,000 simulations

	$\hat{\alpha}_0$ Mean	$\hat{\alpha}_0$ Coverage	$\hat{\delta}_0$ Mean	$\hat{\delta}_0$ Coverage	$\hat{\rho}_1$ Mean	$\hat{\rho}_1$ Coverage
$T = 50, \rho_1 = 0.7$	99.9957	0.9209	100.001	0.9166	0.70001	0.9197
$(T=50, \rho_1=0.9)$	99.998	0.9123	99.9973	0.9215	0.89999	0.9172
$(T = 50, \rho_1 = 0.95)$	100.004	0.9219	100.0025	0.9174	0.95	0.9204
$(T=150, \rho_1=0.7)$	99.9968	0.9395	100.0001	0.9386	0.7	0.9421
$(T=150, \rho_1=0.9)$	100.0042	0.9399	100	0.9387	0.9	0.9421
$(T = 150, \rho_1 = 0.95)$	100.0005	0.9339	99.9993	0.9384	0.95	0.9387
$(T=250, \rho_1=0.7)$	99.9994	0.9413	99.9999	0.9469	0.7	0.9456
$(T=250, \rho_1=0.9)$	100.0005	0.9426	100.0004	0.9374	0.9	0.9439
$(T = 250, \rho_1 = 0.95)$	99.9995	0.9392	100.0001	0.9486	0.95	0.9397

We can see that the OLS coefficients are closer to the true value and howe higher coverage as T increases. As the the degree of persistence in Yt approaches 1, the coverage percentages fall slightly, which may indicate more biased OLS estimates.