

Ayudantía 1

20 de marzo de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

Considere la siguiente definición recursiva de fórmulas proposicionales:

- $\bullet \varphi_0 := (p \to q)$
- $\varphi_{i+1} := (\varphi_i \to p)$, para $i \ge 0$.

¿Para qué valores de i la fórmula φ_i es una tautología?

Pregunta 2

Sean α y β fórmulas proposicionales y $\Sigma = \{\varphi_1, ..., \varphi_n\}$ un conjunto de fórmulas proposicionales. Demuestre o dé un contraejemplo para las siguientes afirmaciones:

- 1. Si $\alpha \not\equiv \beta$, entonces $\alpha \equiv \neg \beta$.
- 2. Si $\Sigma \models \alpha$, entonces $\neg \alpha \models \neg \varphi_i$ para cualquier fórmula φ_i en Σ .
- 3. Si $\{\varphi_1, ..., \varphi_n\} \models \alpha \land \beta$, entonces $\{\varphi_1, ..., \varphi_n, \alpha\} \models \beta$.
- 4. Si $\{\varphi_1, ..., \varphi_n, \alpha\} \models \beta$, entonces $\{\varphi_1, ..., \varphi_n\} \models \alpha \wedge \beta$.

Pregunta 3

Sean $\alpha_1,...,\alpha_n$ fórmulas proposicionales. Demuestre que si $\{\alpha_1,...,\alpha_n\} \models \alpha$, entonces:

$$\alpha_1 \to (\alpha_2 \to (\cdots (\alpha_n \to \alpha) \cdots))$$

es una tautología.

Pregunta 4

Sea Σ un conjunto de conectivos lógicos. Se dice que Σ es funcionalmente completo si toda tabla de verdad puede ser definida usando solamente los operadores de Σ (en clases se demostró que $\{\neg, \lor, \land\}$ es funcionalmente completo). Demuestre que el conectivo lógico NOR definido a continuación es funcionalmente completo.

p	q	$p \; \mathtt{NOR} \; q$
0	0	1
0	1	0
1	0	0
1	1	0

Pregunta 5 (P3-I1-2019)

Sea $\Sigma = \{\varphi_1, \dots, \varphi_n\}$ un conjunto de formulas proposicionales y φ una formula proposicional. Decimos que φ es consecuencia lógica débil de Σ , que denotamos como $\Sigma \vdash \varphi$, si para toda valuación \bar{v} , si existe algún $i \leq n$ tal que $\varphi_i(\bar{v}) = 1$, entonces $\varphi(\bar{v}) = 1$. En otras palabras, para toda valuación que hace verdadera alguna formula de Σ , entonces debe hacer verdadera φ .

Para las siguientes preguntas sobre consecuencia lógica débil, debe responder si es verdadero o falso. En caso de responder verdadero, demuestrelo, y en caso de responder falso, de un contra ejemplo.

- 1. ¿Es cierto que si $\{\varphi_1, \dots, \varphi_n, \psi\} \vdash \varphi$, entonces $\{\varphi_1, \dots, \varphi_n\} \vdash \varphi$?
- 2. ¿Es cierto que $\{\varphi_1,\ldots,\varphi_n\} \vdash \varphi$ si, y solo si, $\{\varphi_1,\ldots,\varphi_n,\neg\varphi\}$ no es satisfacible?