Info Assertions Update MPI Forum P2P WG December, 2015 Mission Peak, 12.9.15

Info Assertions Big Picture

- Goal: Allow application to provide guarantees about behavior
 - Guarantees about behavior should not be propagated
 - MPI library can ignore them, but application cannot
- MPI runtime can optimize using knowledge about application's behavior
- Examples of assertions on communicators:
 - No wildcards optimize message matching
 - No message ordering use adaptive routing
 - No underflow optimize rendezvous protocol

Info Keys and Assertions Gotchas

- MPI 3.1, Section 6.4.4:
 - "Hints specified via info (see Chapter 9) allow a user to provide information to direct optimization. Providing hints may enable an implementation to deliver increased performance or minimize use of system resources. <u>However, hints do not</u> <u>change the semantics of any MPI interfaces.</u>"
 - Forum opinion was that this text means both application and MPI must be able to ignore info hints
- MPI_COMM_DUP also propagates info hints
 - Propagation was added in MPI 3.0
 - Could break libraries if they don't follow application's assertions
 - E.g. if a library is passed a communicator with no_any_source set, duplicates it, then uses MPI_ANY_SOURCE

History of the Proposal

- For a while, disagreement within the Forum
 - P2P WG was asked to develop alternative proposals
 - All options were pretty unappealing
 - Separate assertions API, MPI_T Cvars hack, ...
- Several RMA info keys already change MPI behavior
 - RMA: no_locks, accumulate_ordering, accumulate_ops, alloc_shared_noncontig
 - Spawn: soft, appnum
- Primary issue is propagation
 - Forum guidance: Removing propagation in MPI_Comm_dup poses little risk of breaking backward compatibility

Proposed Info Changes

- Update info semantics
 - Allow hints to convey application behavior
- Update to communicators
 - Remove propagation in MPI_Comm_dup/idup
 - Add idup_with_info to allow propagation in nonblocking API
- Add communicator info assertions:
 - mpi_assert_no_any_source
 - mpi_assert_no_any_tag
 - mpi_assert_exact_length
 - mpi_assert_allow_overtaking

Can Apps Use These Assertions?

(Simple grep of CORAL, NPB, and Sequoia benchmarks)

		MPI ANY SOURCE	MPI ANY TAG	MPI Get count
CORAL				
Datacentric	BigSort-20130808	N	N	N
Datacentric	kmi hash	Υ	N	Υ
Micro	HACCmk	4	4	Ц
Micro	MILCmk v1	И	N.	U
Micro	UMTmk1.2	4	4	Ц
Micro	amgmk-v1.0	И	И	Ц
Micro	nekbone_kernel 2.0	И	H	н
Micro	stassuij	И	И	Ц
Science	HACC	Υ	N	Υ
Science	LSMS_3_rev237	Υ	Υ	N
Science	nekbone-2.3.4	Υ	N	Υ
Science	qball_r140	N	N	N
	ALCF_MPI_Benchmark_v1			
Skeleton	.01.BGQ	N	N	N
Skeleton	HACC_IO_KERNEL	N	N	N
Skeleton	IOR	N	N	N
Skeleton	LCALS-v1.0.1_Benchmark	N	N	N
Skeleton	MADNESS	Υ	N	Υ
Skeleton	STRIDE_v1.1	N	N	N
Skeleton	XSBench	N	N	N
Skeleton	clomp_v1.2	N	N	N
Skeleton	ftqV110	N	N	N
Skeleton	pynamic-1.3	Υ	Υ	Υ
Throughput	AMG2013	PROBE	N	Υ
Throughput	UMT2013	N	N	N
Throughput	homme1_3_6	Υ	Υ	N
Throughput	lulesh	N	N	N
Throughput	mcb-20130723	N	N	N
Throughput	miniFE_openmp-2.0-rc3	N	N	N
	qmcpack-coral	Υ	N	Υ
Throughput	snap-v1.04	N	N	N

		1		
		MPI_ANY_SOURCE	MPI_ANY_TAG	MPI_Get_count
NPB	BT	N	N	N
	CG	N	N	N
	DT	N	N	N
	EP	N	N	N
	FT	N	N	N
	IS	N	N	N
	LU	N	N	N
	MG	N	N	N
	SP	N	N	N
Sequioa	AMG2006	Υ	Υ	Υ
	AMGmk_v1.0	N	N	N
	CrystalMk_v1.0	N	N	N
	IOR-2.10.1_sequoia-1.0	Υ	Υ	N
	IRSmk_v1.0	N	N	N
	STRIDE_v1.1	N	N	N
	UMT_v1.1	N	N	N
	UMTmk_1.1	N	N	N
	clomp_v1.0	N	N	N
	irs.1.0	N	N	N
	lammps-22Jun07	Υ	N	Υ
	phloem-1.0.0	N	Υ	N
	pynamic_v1.0	Υ	Υ	Υ
	sphot_v1.0	Υ	Υ	N

*Note: Did not look at libraries, CORAL apps use FFTW, HDF5, MKL

Can Implementations Use Assertions?

- No wildcards (mpi_assert_no_any_source, mpi_assert_no_any_tag)
 - The process will not use MPI_ANY_TAG/SOURCE on the given communicator
 - Enables message matching optimizations
 - Use hash tables for posted receive and unexpected message queues
 - Reduce overheads from managing MPI_ANY_SOURCE operations when separate shared memory / network queues are used
- No message ordering (mpi_assert_allow_overtaking)
 - Point-to-point comm. does not require operations to match in the order posted
 - Enables network ordering optimizations
 - Use adaptive routing for networks that use ordered mode for envelope info
 - Reduce overheads for networks that do receiver-side reordering prior to matching
- No underflow (mpi_assert_exact_length)
 - Lengths of messages received equal lengths of the receive buffers
 - With underflow, receiver does not know if sender will use eager or rdzv.
 - Allows receiver to know ahead of time and optimize xfer protocols
 - Can handle eager/rendezvous through separate mechanisms

Logistics

- Used old-style markup to generate color PDF
 - PR contains the markup
 - If reading is successful, WG will generate a clean
 PR prior to voting

Without further ado ...