Chapitre 28

Matrice d'une application linéaire

28	Matrice d'une application linéaire	1
	28.5 Interprétation vectorielle de l'inversibilité, cas des familles de vecteurs	2
	28.6 Exemple	2
	28.9 Caractérisation des matrices inversibles au moyeu de leur lignes et colonnes	3
	28.13Exemple	3
	28.15Exemple	3

28.5 Interprétation vectorielle de l'inversibilité, cas des familles de vecteurs

Théorème 28.5

Soit E un \mathbb{K} -ev de dimension finie $n \neq 0$, \mathcal{B} une base de E, \mathcal{F} une famille de n vecteurs de E. Alors \mathcal{F} est une base de E si et seulement si $Mat_{\mathcal{B}}(\mathcal{F})$ est inversible.

Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille de vecteurs et $\mathcal{B} = (b_1, \dots, b_n)$ une base de E. On note $M = Mat_{\mathcal{B}}(\mathcal{F}) = (m_{ij})_{1 \leq i,j \leq n}$. Ainsi :

$$\forall j \in [1, n], x_j = \sum_{i=1}^n m_{ij} b_i$$

 $\mathcal F$ est une base de E si et seulement si $\mathcal F$ est libre (car $|\mathcal F|=\dim E$), si et seulement si :

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \sum_{j=1}^n \lambda_j x_j = 0 \Rightarrow \forall j \in [1, n], \lambda_j = 0$$

Or pour $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$:

$$\sum_{j=1}^{n} \lambda_j x_j = \sum_{j=1}^{n} \lambda_j \sum_{i=1}^{n} m_{ij} b_i$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} m_{ij} \lambda_j \right) b_i$$
$$= \sum_{i=1}^{n} \left[M \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \right]_i b_i$$

Ainsi:

$$\sum_{j=1}^{n} \lambda_{j} x_{j} = 0 \Leftrightarrow \left[\forall i \in [1, n], \left[M \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix} \right]_{i} = 0 \right]$$

$$\Leftrightarrow M \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix} \in \ker M$$

En conclusion, \mathcal{F} est une base si et seulement si ker $M = \{0\}$, si et seulement si M est inversible.

28.6 Exemple

Exemple 28.6

Montrer que la famille $(X^2 + 3X + 1, 2X^2 + X, x^2)$ de $\mathbb{R}[X]$ est libre.

On note $\mathcal{B} = (1, X, X^2)$.

 $Mat_{\mathcal{B}}(\mathcal{F}) = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$ est triangulaire inférieure avec une diagonale ne contenant aucun 0: elle est donc inversible. Donc \mathcal{F} est une base de $\mathbb{R}_2[X]$, donc libre.

28.9 Caractérisation des matrices inversibles au moyeu de leur lignes et colonnes

Théorème 28.9

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- A est inversible
- la famille des colonnes de A est une base de \mathbb{K}^n (ce qui revient à dire qu'elle est libre ou génératrice)
- la famille des lignes de A est une base de \mathbb{K}^n (ce qui revient à dire qu'elle est libre ou génératrice)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note C_1, \ldots, C_n les colonnes de A, L_1, \ldots, L_n les lignes de A, \mathcal{B}_n la base canonique de \mathbb{K}^n .

A est inersible si et seulement si $Mat_{\mathcal{B}_n}(C_1,\ldots,C_n)$ est inversible (28.8).

Si et seulement si (C_1, \ldots, C_n) est une base de \mathbb{K}^n (28.5).

Si et seulement si ${}^{t}A$ est inversible (11.42).

Si et seulement si (L_1, \ldots, L_n) est une base de \mathbb{K}^n .

28.13 Exemple

Exemple 28.13

On note T l'endomorphisme $P \mapsto X^2 P'' + P(1)$ de $\mathbb{R}_3[X]$ et \mathcal{B}_3 la base canonique de $\mathbb{R}_3[X]$. Déterminer $Mat_{\mathcal{B}_3}(T)$.

$$\mathcal{B} = (1, X, X^2, X^3)$$

$$T(1) = 1$$

$$T(X) = 1$$

$$T(X^2) = 2X^2 + 1$$

$$T(X^3) = 6X^2 + 1$$

$$Mat_{\mathcal{B}}(T) = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 6 \end{pmatrix}$$

28.15 Exemple

Exemple 28.15

Déterminer l'application canoniquement associée à $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$.

$$\hat{A}:\mathbb{R}^3\to\mathbb{R}^2; (x,y,z)\mapsto (x+z,2x+y)\text{-}$$