Fine-tuning giant neural networks on commodity hardware with automatic pipeline model parallelism

Saar Eliad, Ido Hakimi, Alon De Jager, Mark Silberstein, Assaf Schuster

USENIX ATC21

Presented by Saar Eliad

Background and Motivation

- Fine-tuning is becoming more prevalent
- DNNs are getting larger
- Huge memory demands

No framework for efficient fine-tuning of giant DNNs on commodity GPUs

Memory reduction methods have high overheads

- Swapping or Sharding
- Fine-tuning scenario: even higher overheads
- Small batch size => harder to hide the overheads

Example from T5 (Colin et al.)

	Pre-training	Fine-tuning		
Minibatch size	2048	8 (most tasks), 128		

Pipeline model parallelism is promising!

- Splits models layer by layer across GPUs
- Low communication volume for giant models
- Enables communication-computation overlap

Example of network I/O for T5-3B:

- Data-parallel: 12GB per worker.
- Pipeline-parallel: 458MB *total*. (and full overlap)

(minibatch 4, full-precision)

State-of-the-art pipeline frameworks

GPipe: synchronous

Parallelization across Micro-batches (bubbles)

Checkpointing/Recomputation allows Memory reduction

PipeDream: asynchronous

Staleness example: parameter versions for minibatch 1.

Weight stashing staleness mitigation

Problem: load imbalance in complex DNNs

Root cause for imbalance: topological constraints

Example: NLP model partitioning across 3 GPUs
If each GPU may run only consequent layers, there is **no balanced partition**

Topological partitioning is limited!

Mixed-Pipe: Balanced solution

 Mixed-Pipe: A general partitioning scheme that significantly improves memory and compute load balancing while hiding communication overheads.

Memory

FTPipe system

Input: model, dataset, hardware configuration, and training configuration{batch size, optimizer, ...}

create a pipeline:

Run

(optional: staleness mitigation during runtime)

FTPipe partitioning

- Seq pipe (exhaustive) (Problem: may take too long)
- Seq pipe (greedy)
- Mixed-pipe
- Run what is feasible, take the best.

Mixed-Pipe Hierarchical graph partitioning

Hierarchical graph partitioning is a general problem:
 Given a Graph G(V={compute demands, memory demands}
 ,E=communication demands) find a balanced partition to P processors while minimizing communication cost

- The general problem does not capture the staleness of asynchronous pipelines
- The general problem ignores communication overlapping (inaccurate objective)

Mixed-pipe high level partitioning algorithm

Input: a graph with compute, memory, and I/O requirements

- 1. Coarsening: Create L pipeline stages. (L is also chosen to limit staleness).
- 2. Initial Assignment: Assign stages to P GPUs (s.t. memory constraint hold) while optimizing load balance.
- **3. Uncoarsening, Refinement**: shift blocks across adjacent stages while improving throughput objective or I/O

Outcome: balanced partitions with low I/O requirements allowing compute-I/O overlap

Mixed-Pipe: coarsening

- create L > P pipeline stages from N nodes.
 (typically thousands of nodes to small L,
 e.g., L = 2P, 3P)
 - Our main experiments: P=8, L=16, N=4000
- We do so by coarsening the graph merging nodes by edge contraction
 - Merge zero weight nodes and optionally outlier edges
 - CCO property "computation overlaps with communication". Starting from smallest node, merge until CCO.
 - Coarsen by type
 - Coarsen around centers

$$T_{comm_{fwd}}^i - C_i \le 0, \qquad T_{comm_{bwd}}^i - C_i \le 0$$

Example: coarsening by type

Recorded at model tracing:

'T5ForConditionalGeneration/T5Stack[encoder]/T5Block[23]/T5LayerSelfAttention[0]/T5Attention[SelfAttention]/Linear[q]'
'T5ForConditionalGeneration/T5Stack[encoder]/T5Block[23]/T5LayerSelfAttention[0]/T5LayerNorm[layer_norm]'
'T5ForConditionalGeneration/T5Stack[decoder]/T5Block[23]/T5LayerFF[2]/T5DenseReluDense[DenseReluDense]/Linear[wo]'

- common prefixes:
 - o **T5Block** will merge all 3,
 - T5LayerSelfAttention will merge first 2

FTPipe asynchronous pipeline

Generalized pipeline: dataflow-graph We allow weight sharing, concurrent stages, smart data-loading and data propagation.

Results Evaluation: All improvements:

Model	Size	Task	Dataset	Accuracy	Partitioning	Pipeline	Speedup over GPipe Seq-pipe	
							Epoch time	TTA
T5 3		WSD WiC	W:C	74.92%	mixed	Async	2.48×	³ 11.54×
			WIC			Sync	1.19×	1.19×
		NII DTE	RTE	90.97%	mixed	Async	$2.71 \times$	4.1×
	2D	NLI	KIE			Sync	$1.2 \times$	1.2×
	3B	QA BoolQ	89.05%	mixed	Async	2.13×	2.88×	
					Sync	$1.08 \times$	1.08×	
		OA MultiDa	MultiRC	85.6 F1, 59.3 EM	mixed	Async	$3.32 \times$	3.32×
		QA	A MUNIC			Sync	1.11×	1.11×
GPT2	1.5B	LM	WikiText2	12.02 perplexity	sequential	Async	1.6×	1.6×
Bert	340M	QA	Squad	93.3 F1, 87.2 EM	sequential	Async	2.04×	2.04×

FTPipe achieved faster training without accuracy loss compared to GPipe

Mixed-Pipe vs Seq-Pipe (T5-3B)

Mixed-Pipe is useful for both sync and async pipelines Mixed-Pipe Improved load balance, no accuracy loss

FTPipe Summary

- A system for fine-tuning giant DNNs with limited resources.
- Mixed-Pipe overcomes topology constraints
 - Better load balance no accuracy loss!
- Asynchronous fine-tuning: Staleness was not a problem when fine-tuning.
- Up to 3x faster fine-tuning of giant Transformers with billions of parameters

Contact:

saareliad@gmail.com

"Fine-tuning giant neural networks on commodity hardware with automatic pipeline model parallelism"

- Mixed-Pipe partitioning achieves better load balance by relaxing topology constraints
- Staleness causes no accuracy loss in finetuning tasks

Thank You!

Saar Eliad, Ido Hakimi, Alon De Jager, Mark Silberstein, Assaf Schuster

saareliad@gmail.com

https://github.com/saareliad/FTPipe

https://www.linkedin.com/in/saar-eliad-314668151/