Domande (capziose e artificiali) per verificare la comprensione del significato di errori del II tipo e di potenza.

N.B. Spesso le domande contengono informazioni irrilevanti.

Quesito 1. Preleviamo un campione di rango n=4 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=5$. La media μ invece potrebbe avere uno qualsiasi dei tre valori 2, 6, o 9.

Vogliamo testare $H_0: \mu = 6$ contro $H_A: \mu \in \{2,9\}$. Fissiamo come significatività $\alpha = 0.02$ otteniamo che l'intervallo critico è per uno z-test a due code è [3.43, 8.57].

Nel caso valga H_A qual'è la probabilità β di non rigettare l'ipotesi nulla? Si scelga la risposta corretta ta le seguenti

- a. $\beta = \dots$ (specificare)
- b. $\beta \leq \dots$ (specificare)
- c. $\beta \geq \dots$ (specificare)
- d. Non ci sono sufficienti informazioni per stimare β .

Risposta

Il caso più sfavorevole si ottiene quando $\mu = 2$. Sia $\bar{X} \sim N(2, \sigma^2/n)$

$$\beta \leq \Pr\left(3.43 \leq \bar{X} \leq 8.57\right) = \Pr\left(\frac{1.43}{\sigma/\sqrt{n}} \leq \frac{\bar{X} - 2}{\sigma/\sqrt{n}} \leq \frac{6.57}{\sigma/\sqrt{n}}\right) = \Pr\left(0.572 \leq Z \leq 2.628\right)$$

 $\beta \leq \operatorname{norm.cdf}(2.628) - \operatorname{norm.cdf}(0.572) = 0.2794$

Risposta b