EMC TEST REPORT

Report No.: FCC2012-8049

Product: ATA

Model No.: HT701

Brand Name: Grandstream

Applicant: Grandstream Networks, INC

FCC ID: YZZHT701V21

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzhen, 518055, P. R. China

This test report consists of 30 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T-I (00) Page 1 of 30

Test Report

Product:	ATA
Model No	HT701
Applicant:	Grandstream Networks, INC
Applicant Address	5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park,
Manufacturer:	Shenzhen, China Grandstream Networks, INC
Manufacturer Address:	5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park Shenzhen, China
Test Standards:	FCC PART 15 Subpart B 《RADIO FREQUENCY DEVICES》
Test Result	PASS
Tested by:	
	Zhn Qi Dec. 11, 2012 Signature, Date
Reviewed by:	
	Shvarguen Zheng Dec. 11, 2012
Approved by:	Signature, Date Signature, Date Dec. 11, 2912

Signature, Date

Table of Contents

1 General Information	
1.2 Auxiliary Equipment	4
2 Test Facilities and Configuration	
2.2 Measurement Uncertainty	5
2.3 Measurement Equipments Used	6
3 Summary of Test Results4 Emission Test	
4.1 EUT Setup and Operation	7
4.2 Conducted Disturbance at Mains Terminals	8
4.2.1 Limits	8
4.2.3 Test Result	9
4.3 Radiated Disturbance Measurement	13
4.3.1 Limits of Radiated Disturbance	13
4.3.2 Test Procedure	13
Appendix I: Photographs of the EUT	

1 General Information

1.1 Description of EUT

Product: ATA

Model No.: HT701

Brand Name: Grandstream

Rating: DC 12V 0.5A

I/O Ports: LAN, PHONE, POWER

Accessories: Adaptor:

1#

Model:SDF1200050E1BB,SDF1200050A1BB,SDF1200050I1BA

Input: AC 100-240V, 50/60Hz, 0.18A

Output: DC 12V 0.5A

2#

Model:UE06L8-120050SPAU, UE06L8-120050SPAV

Input: AC 100-240V, 50/60Hz, 0.2A

Output: DC 12V 0.5A

Note:

 Adaptor 1# has three models, SDF1200050E1BB, SDF1200050A1BB and SDF1200050I1BA. The models are identical except for plug. Unless otherwise specified, all tests are performed on SDF1200050A1BB to represent other models. Adaptor 2# has two models, UE06L8-120050SPAU and UE06L8-120050SPAV. The models are identical except for plug. Unless otherwise specified, all tests are performed on UE06L8-120050SPAV to represent other models.

1.2 Auxiliary Equipment

Equipment Name	Manufacturer	Model name	FCC ID/DoC
Computer	IBM	T43	DoC
Phone	DEX	HCD129TSDL	/

CCIC-SET/T-I (00) Page 4 of 30

2 Test Facilities and Configuration

2.1 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35°CHumidity: 30-60 %

- Atmospheric pressure: 86-106 kPa

2.2 Measurement Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- Uncertainty of Conducted Emission, Uc = ±1.8dB

- Uncertainty of Radiated Emission, Uc = ±5.0dB

2.3 Test Facility

CCIC Southern Electronic Product Testing (Shenzhen) CO., Ltd.(CCIC-SET) is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659.

The EMC chamber site No.1 (EMC12.8×6.8×6.4(m)), and the radiated and conducted Emission test equipments of CCIC--SET are constructed and calibrated to meet the FCC requirements ANSI C63.4and CISPR 22/EN 55022. The FCC Registration Number is 406086.

CCIC-SET/T-I (00) Page 5 of 30

2.3 Measurement Equipments Used

Description	Manufacturer	Model No.	Calibration Date	Serial No.
Test Receiver	ROHDE&SCHWARZ	ESCS30	Jun.10, 2012	A0304260
LISN	ROHDE&SCHWARZ	ESH2-Z5	Jun.10, 2012	A0304221
Shield Room	Nanbo Tech	RF-2 10.5×5×3.2 (m)	Jan 17, 2012	A0301188
Ultra-Broadband Ant.	SCHWARZBECK	VULB 09160	Jun.10, 2012	A0805560
Horn Antenna	ROHDE&SCHWARZ	HF906	Jun.10, 2012	1
Test Receiver	ROHDE&SCHWARZ	ESU8	Jun.10, 2012	A0805559
Semi-Anechoic Chamber	Albatross	SAC-10MAC19. 6*11.8*8.55m	Jun.10, 2012	A0802520

NOTE: Equipments above have been calibrated and are in the period of validation.

3 Summary of Test Results

The EUT has been tested according to the following specifications:

EMISSION					
Standard Test Type R					
FCC PART 15, Class B	Conducted Disturbance at Mains Terminals	PASS			
recrari 13, class b	Radiated disturbance	PASS			

CCIC-SET/T-I (00) Page 6 of 30

4 Emission Test

4.1 EUT Setup and Operation

No.	Power supply	
Mode 1	DC 12V(Adaptor 1#)	
Mode 2	DC 12V(Adaptor 2#)	

The EUT and cables, and operation modes were configured to produce the maximum level of emissions for each test.

CCIC-SET/T-I (00) Page 7 of 30

4.2 Conducted Disturbance at Mains Terminals

4.2.1 Limits

According to FCC §15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Frequency range	Limits (dB	V), Class B ITE
(MHz)	Quasi-peak	Average
0.15 - 0.50	66~56	56~46
0.50 – 5	56	46
5-30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.
- 3. If the quasi-peak value is lower than Average Limits, it is no necessary to conduct the average measurement.

4.2.2 Test Procedure

- a. The EUT was placed 0.4 meters from the conducting wall of shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu H$ of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. The receiver was set to CISPR Quasi-Peak detector and average detector
- e. The resolution bandwidth of the receiver was comparable to the emission bandwidth. VBW=RBW=9kHz

CCIC-SET/T-I (00) Page 8 of 30

4.2.3 Test Result

1, Conducted Disturbance at Mains Terminals

	Conducted Disturbance at Mains Terminals						
	Mode 1 L Test Data						
	(QP				AV	
Freque ncy (MHz)	Limits (dBμV)	Measure ment Value (dΒμV)	Margin (dB)	Freque ncy (MHz)	Limits (dBμV)	Measure ment Value (dB _µ V)	Margin (dB)
0.4065	57.7	41.70	16.00	0.4065	47.7	Note(2)	1
2.4855	56	41.00	15.00	2.4855	46	Note(2)	1
2.9490	56	42.60	13.40	2.9490	46	Note(2)	1
3.8760	56	43.50	12.50	3.8760	46	Note(2)	1
4.2900	56	43.30	12.70	4.2900	46	Note(2)	/
6.5445	60	44.80	15.20	6.5445	50	Note(2)	/

L Test Curve

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. If the emission levels measured with QP detector are lower than AV limits, there is unnecessary to measure with AV detector.

CCIC-SET/T-I (00) Page 9 of 30

	Conducted Disturbance at Mains Terminals							
	Mode 1 N Test Data							
		QP			1	AV		
Freque ncy (MHz)	Limits (dBμV)	Measurem ent Value (dBμV)	Margin (dB)	Freque ncy (MHz)	Limits (dBμV)	Measure ment Value (dBμV)	Margin (dB)	
0.4110	57.6	38.40	18.90	0.4110	47.6	Note(2)	/	
3.4080	56	41.50	14.50	3.4080	46	Note(2)	/	
3.8715	56	41.80	14.20	3.8715	46	Note(2)	1	
4.3035	56	41.90	14.10	4.3035	46	Note(2)	/	
4.7490	56	41.40	14.60	4.7490	46	Note(2)	/	
6.5760	60	43.50	16.50	6.5760	50	Note(2)	/	
			N Test	Curve				

NOTE:

- The lower limit shall apply at the transition frequencies.
- If the emission levels measured with QP detector are lower than AV limits, there is unnecessary to measure with AV detector.

CCIC-SET/T-I (00) Page 10 of 30

Mode 2 L Test Data							
	Q	P				AV	
Frequenc y (MHz)	Limits (dBμV)	Measure ment Value (dΒμV)	Margin (dB)	Frequen cy (MHz)	Limits (dBμV)	Measure ment Value (dB _µ V)	Margin (dB)
0.3435	59.1	33.95	25.15	0.3435	49.1	Note(2)	1
1.2795	56	25.23	30.77	1.2795	46	Note(2)	1
1.5360	56	25.10	30.90	1.5360	46	Note(2)	1
1.8105	56	25.10	30.90	1.8105	46	Note(2)	1
3.2235	56	26.16	29.84	3.2235	46	Note(2)	1
19.7160	60	28.82	31.18	19.7160	50	Note(2)	/
			I Tost	Curvo			

Conducted Disturbance at Mains Terminals

L Test Curve

NOTE:

- 1 The lower limit shall apply at the transition frequencies.
- 2 If the emission levels measured with QP detector are lower than AV limits, there is unnecessary to measure with AV detector.

CCIC-SET/T-I (00) Page 11 of 30

			N	lode 2 N	Test Data			
			QP			Α\	V	
n	que cy Hz)	Limits (dBμV)	Measurem ent Value (dBμV)	Margin (dB)	Frequen cy (MHz)	Limits (dBμV)	Measur ement Value (dB _µ V)	Margin (dB)
0.3	480	59	38.80	20.20	0.3480	49	Note(2)	1
0.6	990	56	28.42	27.58	0.6990	46	Note(2)	/
1.0	185	56	28.10	27.90	1.0185	46	Note(2)	/
1.2	975	56	28.30	27.70	1.2975	46	Note(2)	1
1.5	765	56	28.50	27.50	1.5765	46	Note(2)	/
23.1	1360	60	29.40	30.60	23.1360	50	Note(2)	/
dBu∨	Company: Equipment	:	2#		eport No.: perator: ZK		29.9.2012 10:53	
120 110 100 90 80 70 60							M 2: FCC M 3:	C P15 CLB QP C P15 CLB AV CKLW-qp.dat
40 30 20 10 0 -10								
-20	0.1 Start: Stop: Step A:	0.2 0.3 0.1500 MHz 29.9999 MHz 0.1000 kHz	0.5 1 Detector: IF-Att.: IF-BW.:	2 CISPR QP LN/20dB NORM	3 5 Autorange: Input: Track. Gen	15 dB P 0 PROTECT	1 1 20 30 MHz	

NOTE:

- 1 The lower limit shall apply at the transition frequencies.
- 2. If the emission levels measured with QP detector are lower than AV limits, there is unnecessary to measure with AV detector.

CCIC-SET/T-I (00) Page 12 of 30

4.3 Radiated Disturbance Measurement

4.3.1 Limits of Radiated Disturbance

According to FCC §15.109, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)
30 - 88	100	40
88 -216	150	43.5
216 - 960	200	46
Above 960	500	54

NOTE:

- 1. Field Strength $(dB\mu V/m)=20log$ Field Strength $(\mu V/m)$.
- 2. In the emission tables above, the tighter limit applies at the band edges.
- 3. On frequency below or equal to 1000MHz, the limits are based on CISPR quasi-peak detector, on frequency above 1000MHz, the limits are based on average detector. When average radiated emission limits are applied, there is also a limit on a peak level of radiated emissions. The limit of peak detector is 20dB above the average detector.

4.3.2 Test Procedure

- a. The EUT was placed on the top of an insulating table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- **b.** The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from 1 to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- **d.** For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the heights from 1 to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.

CCIC-SET/T-I (00) Page 13 of 30

e.	For Radiated Emission test below 1GHz, rhe test-receiver was set to Peak Detector Function and VBW=RBW=120kHz with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emission that did not have 10dB margin would be retested one by one using the quasi-peak method and the RBW and VBW was also set to 120kHz.
f.	For Radiated Emission test above 1GHz, rhe test-receiver was set to Peak Detector
	Function and Average Detector Function, VBW=RBW=1MHz.

CCIC-SET/T-I (00) Page 14 of 30

4.3.3 Test Result

1. Radiated Emission Test data Mode 1

No.	Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	QP Limits (dBμV/m)	Emission Level (dBµV/m)
1	32.28	Н	150	0	40	25.18
2	120.95	Н	150	0	43.5	28.47
3	622.11	Н	150	0	46	32.43
4	34.65	V	100	0	40	33.32
5	94.39	V	100	0	43.5	33.14
6	622.11	V	100	0	46	39.26

No.	Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	Limit Value (dB _µ V)		Emission Level (dB _µ V)	
					PK	AV	PK	AV
1	1000-6000	Н	100-400	0-360	74	54	<60	<45
2	1000-6000	V	100-400	0-360	74	54	<60	<45

CCIC-SET/T-I (00) Page 15 of 30

-Horizontal

CCIC-SET/T-I (00) Page 16 of 30

-Vertical

CCIC-SET/T-I (00) Page 17 of 30

Mode 2

No.	Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	QP Limits (dB _μ V/m)	Emission Level (dB _µ V/m)
1	106.71	Н	150	0	43.5	24.09
2	119.12	Н	150	0	43.5	23.57
3	414.75	Н	150	0	46	32.36
4	34.65	V	100	0	40	38.33
5	47.81	V	100	0	40	32.56
6	933.13	V	100	0	46	43.49

No.	Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	Limit Value (dBμV)		Emission Level (dB _µ V)	
					PK	AV	PK	AV
1	1000-6000	Н	100-400	0-360	74	54	<60	<45
2	1000-6000	V	100-400	0-360	74	54	<60	<45

CCIC-SET/T-I (00) Page 18 of 30

-Horizontal

CCIC-SET/T-I (00) Page 19 of 30

CCIC-SET/T-I (00) Page 20 of 30