Documentation

I-Introduction:

Estimating sediment discharge using machine learning models, including PyTorch-based models. The goal is to predict the total sediment load based on various input features such as channel width, flow velocity, and slope.

II-Data Loading and Preprocessing:

EDA:

- Although the data is nominal but it was saved as objects.
- The Data has some Duplicates so I dropped it.
- Data Describe for statical info.
- Removed the outliers.
- the data was not normaly distibuted and had high skewness. So, we did some transformation such as (logs, boxcox, sqrt).

III -Modeling:

- Ensamble learning:

It was a right choise as we use multiple models and choose by majority voting the best model.

-First, the Random Forest also used Hyperparameter tunning "bayes search" to get the best parameters that will give us the best fit for our model

```
Parameters like:
params = {
    'n_estimators': Integer(10, 500),
    'max_depth': Integer(1, 50),
    'min_samples_split': Integer(2, 20),
    'min_samples_leaf': Integer(1, 20)
}
```

And the result as follows:

The evaluation metrics	R ² score	MSE	RMSE
Result	0.9121435983524147	6.059913613326676	2.461689178862083

- the second model is Stacking as it works sequentially and train final model based on the best model

And the chosen models was:

- 1-Adaboost "as it is also ensamble learning model".
- 2-Gradientboost "this one also as previous one"
- 3-RandomFores.
- 4-And the final model is linear Regression.

Also used Hyperparameter Tuning "Bayes search".

And the result as follows:

The evaluation metrics	R ² score	MSE	RMSE
Result	0.9121435983524147	6.969239698761439	2.6399317602471166

- Deeplearning models

First, TensorFlow
Used two Dense hidden layers, adam optimizer, 250 epochs.

Evaluation metrics	Test loss	R ² score
Result	9.260442733764648	0.8657424483055332

Secondly, pytorch:

I made an initial model and than made another enhanced model.

That model with more hidden layers, activation functions, adam optimizer and used 1000 epochs.

Evaluation metrics	Test loss	R ² score	Mean Squared Error
Result	9.0105	0.8694	9.0105

