CSI - 3105 Design & Analysis of Algorithms Fall 2019

Assignment #3

Deadline: Tuesday, November 19, 2019 before 10:00 AM (to be delivered in my hands)

In class, we studied the [0,1]-knapsack problem. In this assignment you have to explain how to solve the $\{0,1\}$ -knapsack problem using dynamic programming.

You are given n objects which cannot be broken into smaller pieces. Moreover, you have only one copy of each object. Each object i (where $1 \le i \le n$) has weight $w_i > 0$ and value $v_i > 0$. You have a knapsack that can carry a total weight not exceeding W. Your goal is to fill the knapsack in a way that maximizes the total value of the included objects, while respecting the capacity constraint. For each object i (where $1 \le i \le n$), either you bring it or not.

- 1. (10 marks) Write a recursion for the optimal solution and explain why it is correct. Make sure you define the notation you are using.
- 2. (10 marks) Consider the following input and fill the table corresponding to the recursion you found in #1: n = 6, $w_1 = 2$, $w_2 = 3$, $w_3 = 2$, $w_4 = 9$, $w_5 = 3$, $w_6 = 2$, $v_1 = 7$, $v_2 = 1$, $v_3 = 6$, $v_4 = 18$, $v_5 = 22$, $v_6 = 28$ and W = 11. Moreover, give all optimal solutions.