単語埋め込みの決定的縮約

<u>仲村 祐希</u>¹ 鈴木 潤^{1,2} 高橋 諒^{1,2} 乾 健太郎^{1,2} 東北大学¹ 理化学研究所²

背景:単語埋め込みは自然言語処理で 必須要素

- 自然言語処理では単語埋め込みが必要不可欠
 - 離散的な記号である単語と連続的な数値の橋渡し

- 単語埋め込みのパラメータ数は膨大
 - 単語埋め込みは語彙数 x 次元数の行列
 - GloVeの例:語彙数400000×次元数300 = 1億2000万パラメータ

| 既存研究:代表的な単語埋め込みの | 圧縮手法

単語埋め込みを基底番号のリスト(離散符号)と基底ベクトル (コードブック)で表現

- 似た単語は似た単語埋め込みをしている
- ▶似た単語同士で部分的に同じパラメータを共有することで圧縮

既存研究:深層学習による圧縮手法は 乱数のシード値によって異なる

- 深層ニューラルネットワーク(DNN)による手法
 - Compressing Word Embeddings via Deep Compositional Code Learning [Shu+,ICLR'18]
- DNNによる手法はランダム性があり、乱数のシードによって 離散符号が異なる
 - ▶ ランダム性がない離散符号の獲得手法を考案

実行結果が**決定的**であることの**メリット**

- 再現性や信頼性の観点で優れる
- 実応用上、コストの低下につながる

提案手法の圧縮方法の概要

提案手法は「離散符号の獲得」と「基底ベクトルの学習」 から構成される

提案手法の圧縮方法の概要

提案手法は「離散符号の獲得」と「基底ベクトルの学習」 から構成される

提案手法:決定的アルゴリズムによる 離散符号の獲得手法の概要

1次元のK-means法は最適解が多項式時間で求まり決定的

提案手法:決定的アルゴリズムによる 離散符号の獲得手法の概要

1次元のK-means法は最適解が多項式時間で求まり決定的

- 提案手法:主成分分析を用いて1次元の 軸へ射影
- 単語埋め込みを1次元の軸上に射影するために**主成分分析** を使用
 - 主成分分析は決定的
 - 第M主成分までを用いることで、M個の離散符号を獲得

提案手法:決定的アルゴリズムによる 離散符号の獲得手法の概要

1次元のK-means法は最適解が多項式時間で求まり決定的

提案手法:1次元K-means法は最適解が 多項式時間で計算可能

- 1次元K-means法は最適解を $O(V \log V + VK)$ で計算可能
 - *V*: 語彙数 *K*: クラス数
- 似た単語には似たクラス番号が割り振られることが期待
 - クラスタリングしたクラス番号(離散符号)は順序関係を保持

実験設定:単語埋め込みの内的評価タスク

提案手法が単語埋め込みの情報を保持しているか調べるために, 単語埋め込みを圧縮したときのスコアの変化を測定

- 実験タスク:
 - 単語類推タスク(Analogy)
 - 評価指標:正答率 (acc)
 - 文穴埋めタスク(SentComp)
 - 評価指標:正答率 (acc)
 - 単語類似性判定タスク(Similarity)
 - 評価指標:スピアマンの順位相関係数 (ρ)
- 単語埋め込み:
 - GloVe.6B.300d (語彙数400000,次元数300)

実験結果:単語埋め込みの内的評価タスクの実験結果

Code: 離散符号 Real: 離散符号に対応する基底ベクトルの和

実験結果:単語埋め込みの内的評価タスクの実験結果

Code: 離散符号 Real: 離散符号に対応する基底ベクトルの和

- 提案手法は離散符号は軸上の単語埋め込みの順序関係を保持
 - ➤ 離散符号の数値の計算が意味がある

実験結果:提案手法は乱数によらず 再現性に優れている

DNNの方法で乱数のシード値を変えて10回測定

	最小値	最大値	差
Analogy (acc)	63.79	65.05	1.29
SentComp (acc)	29.81	31.63	1.82
Similarity (ho)	0.58	0.60	0.2

X乱数によってスコアが大きく変化

✓一方、提案手法の離散符号の結果は乱数によらないため 再現性に優れる

実験設定:機械翻訳タスク

深層学習モデルの単語埋め込み層を圧縮したときのBLEUと 圧縮比を測定

- 実験タスク:
 - WMT 2016 英独翻訳タスク
- モデル:
 - 双方向LSTM, Transformer
- 単語埋め込み:
 - 学習後の埋め込み層

実験結果:提案手法の方が圧縮比に 対するBLEUの値が高い

- ✓提案手法の方が圧縮比に対するBLEUが高い
- ✓LSTMとTransformerではLSTMの方が圧縮比に対する スコアの低下が小さい

まとめ

・単語埋め込みから乱数によらない**再現性に優れた**離散符号 の獲得手法を考案

・提案手法により獲得した離散符号は単語埋め込みの情報を 十分に保持していることを実験で確認

Appendix

Appendix:手法によるサイズの違い

• 既存手法 [Shu+,ICLR'18]

$$VM \log_2 K + 4MKH$$
 [Byte] 離散符号 コードブック

M:離散符号の数

K:離散符号の種類数

H:単語埋め込みの次元数

V:語彙数

• 提案手法

$$\frac{VM \log_2 K + 4MH + 4MK}{\min$$
 [Byte]