General Physics 2 | 3rd Quarter

WW3: Series & Parallel Connection

February 3 2022

A. Series Connection

Given:

- $V_T = 12V$
- $R_1 = 5\Omega$
- $R_2 = 10 \Omega$
- $R_3 = 4\Omega$
- $R_{A}=2\Omega$

Find:

- \bullet R_T
- \bullet I_T
- I_1, \dots, I_4
- V_1, \dots, V_4

Solution:

- $R_T = 5\Omega + 10\Omega + 4\Omega + 2\Omega$
- $R_T = 21\Omega$
- $I_T = \frac{12V}{21\Omega}$
- $I_T = \frac{4}{7}A$
- $I_1, \dots, I_4 = \frac{4}{7}A$
- $V_1 = \frac{4}{7} A \cdot 5 \Omega = \frac{20}{7} V$
- $V_2 = \frac{4}{7} A \cdot 10 \Omega = \frac{40}{7} V$
- $V_3 = \frac{4}{7} A \cdot 4\Omega = \frac{16}{7} V$
- $V_4 = \frac{4}{7} A \cdot 2 \Omega = \frac{8}{7} V$

B. Parallel Connection

Given:

•
$$V_T = 24V$$

•
$$R_1 = 3\Omega$$

•
$$R_2 = 5\Omega$$

•
$$R_3 = 8 \Omega$$

• $R_4 = 4 \Omega$

•
$$R_4 = 4\Omega$$

Find:

•
$$R_{1}$$

•
$$I_1, \dots, I_\Delta$$

$$\begin{array}{ccc} \bullet & R_T \\ \bullet & I_T \\ \bullet & I_1, \cdots, I_4 \\ \bullet & V_1, \cdots, V_4 \end{array}$$

Solution:

•
$$\frac{1}{R_T} = \frac{1}{3\Omega} + \frac{1}{5\Omega} + \frac{1}{8\Omega} + \frac{1}{4\Omega} = \frac{109}{120}\Omega$$

•
$$R_T = \frac{120}{109} \Omega$$

•
$$I_T = \frac{24 V}{\frac{120}{109} \Omega} = 24 V \cdot \frac{109}{120} \Omega$$

•
$$I_T = \frac{109}{5}A$$

$$I_1 = \frac{24V}{3\Omega} = 8A$$

•
$$I_2 = \frac{24 V}{5 \Omega} = \frac{24}{5} A$$

•
$$I_3 = \frac{24 \text{ V}}{8\Omega} = 3 A$$

$$\bullet I_4 = \frac{24V}{4\Omega} = 4A$$

•
$$V_1, \dots, V_4 = 24 V$$