问题

判别式模型和生成式模型是机器学习中很重要的两个概念,也是笔试面试中很可能出现的问题,这里整理一遍是为了让自己更好地理解和区分这两者之间的不同。

概念

假设可观测到的变量集合为X,其他变量集合为Z,需要预测的变量集合为Y,则:

判别式模型: 是指在给定X情况下,直接对条件概率分布P(Y,Z|X)进行建模来预测 Y。

$$P(Y|X) = \sum_{Z} P(Y, Z|X) \tag{1}$$

生成式模型: 是指先对**联合概率分布P(X, Y, Z)**进行建模,然后在给定X的情况下,通过计算边缘分布来 预测 Y。

$$P(Y|X) = \frac{P(X,Y)}{P(X)} = \frac{\sum_{Z} P(X,Y,Z)}{\sum_{Y,Z} P(X,Y,Z)}$$
(2)

比较

参考了一篇博客,总结自 Andrew Ng 在NIPS 2001年一篇关于判别式模型和生成式模型的比较的文章

On Discrimitive vs. Generative classifiers: A comparision of logistic regression and naive Bayes

类别	判别式模型(Discriminative Model)	生成式模型(Generative Model)
特点	寻找不同类别之间的最优分类面, 反映的是 异类数据之间的差异	对后验概率建模,从统计的角度表示数据的分布 情况,能够反映 同类数据本身的相似度
联系	由生成式模型可以得到判别式模 型,	但由判别式模型得不到生成式模型
本质区别	对 条件概率分布P(Y X) 建模	对 联合概率分布P(X,Y) 建模
常见模型	Linear Regression Logistic Regression SVM KNN 神经网络 线性判别分析(LDA) 最大熵模型 条件随机场(CRF)	贝叶斯网络 朴素贝叶斯 隐马尔科夫模型(HMM) 高斯混合模型(GMM) 文档主题生成模型(LDA) pLSA
优点	①性能相对于生成式更简单,更容易学习 ②适用较多类别的识别 ③能清晰分辨出多类或一类与其他 类之间的差异特征	①能用于数据不完整的情况 ②研究单类问题比判别式灵活 ③实际上带的东西要比判别式更丰富 ④模型可以通过增量学习得到
缺点	不能反映数据本身的特性	学习和计算过程比较复杂
性能	较好(原因是利用了训练数据的类 别标识信息)	较差
主要应用	①图像和文本分类 Image and document classification ②生物序列分析 Biosequence analysis ③时间序列预测 Time series prediction	①NLP ②医学诊断(Medical Diagnosis)

补充1

摘取另一个博主的观点: 判别式模型与生成式模型

类别	判别式模型(Discriminative Model)	生成式模型(Generative Model)
模型错误率	较低	更高
检测异常值	不能	能(因为模型学习了所有的分布)
利用无标签数据	不能	能(如DBN网络)

摘取自《统计学习方法》

判别式模型的特点:判别方法直接学习的是条件概率 P(Y|X) 或决策函数 f(X) , <u>直接面对预测,往往学习的准确率更高</u>;由于直接学习 P(Y|X) 或决策函数 f(X) ,可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。

生成式模型的特点:生成式方法可以还原出联合概率分布 P(X,Y) ,而判别式不能;生成式学习方法 <u>收敛速度更快</u>,即当样本容量增加的时候,学到的模型可以更快收敛于真实模型(对此我的理解是在增加样本之前,模型已经学得数据的整体分布,因此当新样本进来后,很容易确定新样本所属的类别);当存在隐变量时,仍可以使用生成式模型,但是判别式模型不可使用

参考资料

Generative Model 与 Discriminative Model 判別式模型与生成式模型