Lecture 4: Programming with Interrupts

Jan Vitek

ECE568/CS590/ECE495/CS490 Spring 2011

Reading List

- Mandatory Reading
- Chapter 4 of ESP textbook
- Optional Reading
 N/A

Event processing with interrupts

```
Consider a program that
sends 9600 characters
per second on a
universal asynchronous
receiver/transmitter
```

9600 baud

With interrupts: 0.1%CPU load

//UART Receive Interrupt
#pragma vector=UART_VECTOR
__interrupt void rx() {
 TXBUF0 = RXBUF0;
}

UART

Interrupts

- Embedded system must respond to external events in a timely fashion
 Example: data received, timeout
- Interrupts provide a way to react to happenings flagged by the hardware
- Interrupts are often used as building blocks for higher-level abstractions
- Interrupts obviate the need for polling
- Programming with interrupts is tricky and error prone
- They introduce most of the dangers of concurrent programming in a sequential context

Interrupt lifecycle

- The processor detects a signal on Interrupt Request (IRQ) pin.
- Typically multiple pins attached to hardware components such as serial ports and network interfaces
- Save context.
- The processor stops what it was doing and saves enough information to be able to return to the task at hand after the interrupt has been handled
- Locate and jump to an Interrupt Service Routine (ISR).
- There can be multiple ISRs and multiple pending interrupts. The processor will select the interrupt with the highest priority, and identify the ISR corresponding to the IRQ
- · Restore context.
- Upon a RETURN from an ISR, the processor will recover the saved context and resume execution

Contexts

- When an interrupt is detected and the corresponding ISR is executed, the state of the processor will be changed as a side effect of executing the ISP
- In particular, the program counter, the stack pointer, and all the other registers can possibly be modified
- Saving the context:
- the process of pushing original values of registers on the stack before modifying them
- Restoring the context:
- the process of popping values from the stack into registers to restore the state of the system

Disabling Interrupts

- Most microprocessors support disabling all interrupts in one atomic step as well as disabling selected interrupt signals
- nonmaskable interrupt:
- an interrupt pin which can not be disabled
- · Some microprocessor support disabling interrupt priority ranges

Sharing Data

- ISRs often must communicate with
- the rest of the system
- This is achieved by sharing mutable memory location between the ISR and the rest of the system
- Such sharing can endanger consistency of the data if proper care is not taken when manipulating it
- Consider the following example:
 What is the invariant?
 How can it be broken?
- static int T[2];

 void interrupt i(){
 T[0] = ...
 T[1] = -T[0];
 }
- void main() { int i,j;
 while(1){
 i=T(0]; j=T[1];
 if(i+j) ERROR();
 }

Sharing Data

```
• Is this a fix?
```

```
static int T[2];
void interrupt i(){
    T[0] = ...
    T[1] = -T[0];
void main() {
while(1)
  if(T[0]+T[1])
    ERROR();
```

Critical sections

```
• A critical section is a
 appear to execute
atomically
• It may be preempted if
there is no way for the
program to observe that it
was preempted
```

```
sequence of code that must static int secs, mins, hrs;
                    void interrupt time(){
                      if(++secs>=60) {
                        secs=0;
                        if(++mins>=60) {
                          mins=0;
                          if(++hrs>=24) hrs=0;
                   } } }
```

```
long secFromMidnight() {
return((hrs*60)+mins)*60+secs;
```

Critical sections

· A correct solution must preserve interrupt state

```
long secFromMidnight() {
 long retVal;
 unsigned state=__disable_interrupt();
 retVal =((hrs*60)+mins)*60+secs;
 if(state) __enable_interrupt();
 return retVal;
```

volatile

 Compilers try to generate efficient code, for this they recognize certain patterns and replace them with more equivalent (under certain assumptions) code

```
static int secs, mins, hrs;
void interrupt time(){
 if(++secs>=60) {
    secs=0;
    if(++mins>=60) {
     mins=0;
      if(++hrs>=24) hrs=0;
} } }
```

```
long notZero() {
int retVal=secs;
while(!retVal)retVal=secs;
return retVal;
```

volatile

 Are the following two programs equivalent?

```
x=1;
x=1;
```

x=1;

volatile

 Are the following two programs equivalent?

```
x=y;
x=y;
```

х=у;

volatile

 Are the following two programs equivalent?

```
long notZero() {
int retVal=secs;
while(!retVal)retVal=secs;
return retVal;
```

```
long notZero() {
int retVal=secs;
while(!retVal);
return retVal;
```

Interrupt Latency

- The latency of an interrupt is measured as the time between an event E being signaled and the corresponding ISR returning
- Interrupt latency is a function of:
- the longest time interrupts can be disabled
 the time it takes to execute all ISRs of higher priority than E
- 3. the time it takes stop executing, save the context, and start executing an ISR
- 4. the time it take to execute the ISR corresponding to E

Interrupt Latency

· Consider a task that must:

- disable interrupts for 125us to read temperature
 disable interrupts for 250us to update the time
- respond to an interrupt within 625us the ISR takes 300us

MSP430

· A quick overview of some features of the MSP430 will help making some of the discussion more concrete

MSP430 Memory organization

- The general layout of the address space: • 0x0000-0x0007
- Processor special function registers (interrupt control regs)
- 0x0008-0x00FF - 8-bit peripherals. Acc
- 0x0100-0x01FF
- 16-bit peripherals. Acessed using 16-bit loads and stores.
 0x0200-0x09FF
- Up to 2048 bytes of RAM.
- ▶ 0x0C00-0x0FFF
- 1024 bytes of bootstrap loader ROM
- 0x1000-0x10FF - 256 bytes of data flash ROM
- 0x1100-0x38FF
- Extended RAM on models with more than 2048 bytes of RAM
- ▶ 0x1100-0xFFFF
- Up to 60 kilobytes of ROM. Smaller ROMs start at higher addresses. The last 16 or 32 bytes are interrupt vectors

		MSP430F5438 MSP430F5437
Memory (flash) Main: interrupt vector Main: code memory	Total Size Flash Flash	255 KB 00FFFFh-00FFB0 045BFFh-005000
Main: code memory	Bank 3	64 KB 03FFFFh-030000
	Bank 2	64 KB 02FFFFh-020000
	Bank 1	64 KB 01FFFFb-010000
	Bank 0	64 KB 045EFFb-040000 00FFFFb-005000
	Size	16 KB
RAM	Sector 3	4 KB 005BFFh-004C00
	Sector 2	4 KB 004BFFh-003C00
	Sector 1	4 KB 000BFFh-002C00
	Sector 0	4 KB 002BFFh-001C00
Information memory (fash)	A olni	128 B 0019FFh-001980
	Info B	128 B 00197Fh-001900
	Info C	128 B 0018FFh-001880
	Info D	128 B 00187Fh-001800
Boolstrap loader (BSL) ⁽¹⁾ memory (Bash)	BGL 3	512 B 0017FFh-001600
	BSL 2	512 B 0015FFh-001400
	BSL 1	512 B 0013FFh-001200
	BSL 0	512 B 0011FFh-001000
Peripherals	Size	4K2 000FFFh-000000

MSP430 Memory organization

- 16-bit RISC CPU
- · Single-cycle register file
- 4 special purpose registers
- R0 program counter
 R1 stack pointer
- R2 status register R3 constant generator (-1,0,1,2,4,8)

- R15 Expression register, argument pointer.
- Callee saved Caller saved Caller saved
- R3 constant general (+1.01,1.24.e)

 **P12 general purpose registers
 R4-R10 Expression register
 R11 Expression register
 R12 Expression register, argument pointer, return register
 R13 Expression register, argument pointer, return register
 R14 Expression register, argument pointer Caller saved Caller saved
- Caller saved

Status Register

	15 9 8	7			_	_	_	_	0		
	Reserved V	SCG1	SCG0	OSC OFF	OFF	GIE	N	z	С		
		<u></u>		_					_		
Bit	Description	w-0									
Reserved	Reserved										
V	Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range.										
	ADD(.B), ADDX(.B,.A), ADDC(.B), ADDCX(.B.A), Set when: ADDA ADDA ADDA ADDA(.B,.A), ADDC(.B), ADDCX(.B.A), Set when: ngasive - negative - n										
	SUB(.B), SUBX(.B,.A), SUBC(.B),SU SUBA, CMP(.B), CMPX(.B,.A), CMPA	BCX(.B	,.A),	pos		nega – pos	itive		egative ositive		
SCG1	System clock generator 1. This bit, when set, turns off the DCO dc generator if DCOCLK is not used for MCLK or SMCLK.										
SCG0	System clock generator 0. This bit, when set, turns off the FLL+ loop control.										
OSCOFF	FF Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or SMCLK.										
CPUOFF	CPU off. This bit, when set, turns off the CPU.										
GIE	General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are disabled.										
N	Negative. This bit is set when the result of an operation is negative and cleared when the result is positive.										
Z	Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0.										
С	Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.										

Calling conventions

```
; Called function entry point
func:
  PUSH.W r10
                  ; Save SOE registers
  PUSH.W r9
  SUB.W #2,SP
                  ; Allocate the frame
                  ; Body of function
  ADD.W #2, SP
                  ; Deallocate the frame
  POP r9
  POPr10
                  ; Restore SOE registers
  RET
                  ; Return
```

Interrupt Vector

▶ The interrupt vectors are located in the address range OFFFFh to OFF80h.

The vector contains the 16-bit address of the appropriate interrupthandler instruction sequences.

	the second second second second				
INTERRUPT SOURCE	INTERRUPT FLAG SYSTEM INTERRUPT		WORD ADDRESS	PRIORITY	
System Reset Power-Up Enemal Reset Watchdog Timeout, Password Wolation Flash Memory Password Violation PMM Password Violation	WOTEG, KEYV (SYSRETNY) ^{(1) (R)}	Reset	offfeh	63, highest	
System NMI Platel Vacant Memory Access JTAG Malbox	SVALIFO, SVAHIFO, DLYLIFO, DLYHFO, VLFLIFO, YLFHIFO, VMAIFO, JABOUTIFO, JABOUTIFO (SYSSAW) ⁽¹⁾	(Norimaskable	OFFFCh	62	
User NMI NMI Oscilator Fault Flash Memory Access Violation	NMIFG, OFFG, ACCVIFG (\$YSUNIV) ^{(1) (6)}	(Non/maskable	OFFFAN	41	
TRO	TROORS COIFGS ^(R)	Maskable	OFFFRIN	60	
TRO	TBCOR1 CCIFG1 TBCOR6 CCIFG6, TBIFG (TBIV) ^{(1) (B)}	Maskable	OFFFIIN	59	
Watchdog Timer A Interval Timer Mode	WDTIFG Maskable		OFFFeb	Sile	
USCI_A0 Receive/Transmit	UCABROFG, UCABTOFG (UCABN) ^{(4) (3)}	Maskable	OFFF2h	57	
USCI_90 Receive/Transmit	UCBORNIFG, UCBOTNIFG (UCABON) (1) PI	Maskable	OFFFOR	56	
ADC12_A	ADC12FG0 ADC12FG15 (ADC12N) (1) (3)	Maskable	0000005	13	
TAO	TAGOORG COIFGG ⁽³⁾	Maskable	OFFECh	54	
TAO	TABOORI COIFGI TABOORI COIFGI, TABIFG (TABIV) ⁽¹⁾ (3)	Maskable	OFFEAN	53	
USCI_A2 Receive/Transmit	UCASRNIFG, UCASTNIFG (UCASN/*) (R)	Maskable	offean	52	
USCI_R2 Receive/Transmit	UCREPHIFG, UCRETHIFG (UCREW) ^{(1) (3)}	Maskable	OFFERN	\$1	
DMA	DMADEG, DMATEG, DMAZIEG (DMAT/)10 (B)	Maskable	OFFE-61	SO	
TA1	TA100R0 COIFGO ^(R)	Maskable	OFFE2h	49	
TA1	TA1CORI COIFGI TA1CORI COIFGI, TA1FG (TA1N) ^{(1) (2)}	Maskable	OFFEIN	49	
IIO Port P1	P18FQ.0 to P18FQ.7 (P1N/ ⁽¹⁾ ⁽²⁾	Maskable	OFFDEN	47	
USCI_A1 Receive/Transmit	UCA1RKIPG, UCA1TKIPG (UCA1M) ^{(1) (B)}	Maskable	OFFDCh	45	
USCI_B1 Receive/Transmit	UCB1RKIFG, UCB1TKIFG (UCB1M) ^{(1) (B)}	Maskable	OFFDAN	45	
USCI_A3 Receive/Transmit	UCASROFG, UCASTOFG (UCASIV) ^{(1) (b)}	Maskable	offoen	- 44	
USCI_R3 Receive/Transmit	UCRORNIFG, UCROTHIFG (UCROM) ^{(1) (b)}	Maskable	offoen	43	
I/O Port P2	P26FG.0 to P26FG.7 (P26V)*** (R)	Maskable	offoet	42	
RTC_A	RTCROVEG, RTCTEVEG, RTCAFG, RTDPSIFG, RT1PSIFG (RTCN) ⁽¹⁾	Maskable	OFFDON	41	
			offoon	40	
Reserved	Reserved (R)			- 1	
			OFFRON	0, lowest	

Disabling / Enabling Interrupts

- Intrinsic functions
- unsigned _EINT()
 enables global interrupts by setting the GIE bit in the status register.

- unsigned _DINT() or __disable_interrupt()
 disables global interrupts by clearing the GIE bit in the status register.
 returns the value of the status register before the GIE bit is cleared
- __bis_SR_register(GIE)
 enable all the interrupts by setting the GIE (Global Interrupt Enable) bit in the Status Register

Interrupt Processing

• Prior to Interrupt Service Routine (ISR)	val1 val2 ← SP
• ISR hardware (automatically)	
PC pushed SR pushed Interrupt vector moved to PC GIE (general interrupt enable), CPUOFF, OSCOFF and SCG1 cleared, IFG flag cleared on single	val1 val2 PC SR ← SP
source flags • reti (automatically)	val1 val2 ← SP
SR popped	

Summary

- interrupts are used to respond to events
 interrupts can be disabled
 data sharing must be done carefully
 volatile variables are needed to prevent optimizations
 interrupt latency can minimized by careful design of the software