M4P33 Algebraic Geometry

Lectured by Dr Genival Da Silva Jr Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	Introduction	3
1	Affine varieties	4
2	Projective varieties	8

0 Introduction

I will not follow a particular book, but everything I am going to say will be contained in one of the following books.

Lecture 1 Friday 11/01/19

- I Shafarevich, Basic algebraic geometry, 1974
- R Hartshorne, Algebraic geometry, 1977
- J Harris, Algebraic geometry: a first course, 1922

1 Affine varieties

Notation 1.1.

- R is a commutative ring with unity.
- \bullet K is a field.
- $K[x_1, \ldots, x_n]$ is the ring of polynomials in n variables.
- \mathbb{A}^n is K^n as a set.

Definition 1.2. Let $S \subseteq K[x_1, \ldots, x_n]$ then

$$Z(S) = \{x \in \mathbb{A}^n \mid \forall f \in S, \ f(x) = 0\}$$

is called the **zero locus** of S. Subsets of \mathbb{A}^n that are of this form are called **affine varieties**.

Remark 1.3. Some authors call algebraic set the object Z(S). We will not follow this notation.

Example 1.4.

• Single points $p = (p_1, \ldots, p_n)$. p = Z(S) where

$$S = \{x_1 - p_1, \dots, x_n - p_n\}.$$

- $\bullet \ \mathbb{A}^n = Z(0).$
- $\emptyset = Z(1)$.
- Subspaces of $\mathbb{A}^n = K^n$.
- If $X = Z(f_1, \ldots, f_n) \subseteq \mathbb{A}^n$ and $Y = Z(g_1, \ldots, g_m) \subseteq \mathbb{A}^n$ are affine varieties then

$$X \times Y = Z(f_1, \dots, f_n, g_1, \dots, g_m) \subseteq \mathbb{A}^{n+m}$$

is a variety.

Remark 1.5. If $S \subseteq K[x_1, ..., x_n]$ and $I = \langle S \rangle$ then Z(S) = Z(I).

Theorem 1.6 (Hilbert's basis theorem). If R is Noetherian then R[x] is Noetherian.

Corollary 1.7. Every ideal in $K[x_1, ..., x_n]$ is finitely generated.

Definition 1.8. Let $X \subseteq \mathbb{A}^n$ then

$$I(X) = \{ f \in K [x_1, ..., x_n] \mid \forall x \in X, \ f(x) = 0 \}.$$

Example 1.9.
$$I(p) = I((p_1, ..., p_n)) = \langle x_1 - p_1, ..., x_n - p_n \rangle$$
.

Goal is

Z(I(X)) = X but $I(Z(J)) \supseteq J$.

Example 1.10. $J = \langle x^2 + 1 \rangle \subseteq \mathbb{R}[x] = I(\emptyset) = I(Z(x^2 + 1)).$

Proposition 1.11.

- If $X \subseteq Y$ then $I(Y) \subseteq I(X)$. If $I \subseteq J$ then $Z(J) \subseteq Z(I)$.
- $X \subseteq Z(I(X))$ and $S \subseteq I(Z(S))$.

• If X is affine then Z(J(X)) = X. If X = Z(S) then take Z of $S \subseteq I(Z(S))$.

Example 1.12. Let $J \subseteq \mathbb{C}[x]$. $J = \langle f \rangle$, where $f = (x - x_1)^{k_1} \dots (x - x_n)^{k_n}$.

Definition 1.13. Let $I \subseteq K[x_1, \ldots, x_n]$ be an ideal.

$$I \subseteq \sqrt{I} = \{ f \in K [x_1, \dots, x_n] \mid \exists n \in \mathbb{N}, \ f^n \in I \}.$$

If $\sqrt{I} = I$, we say I is a **radical ideal**.

(Exercise: \sqrt{I} is an ideal, $I \subseteq \sqrt{I}$, and $\sqrt{I} = \bigcap_{p \text{ prime}} p$)

Theorem 1.14 (Hilbert's Nullstellensatz). $I(Z(J)) = \sqrt{J}$. If $\sqrt{J} = J$ then

$$\begin{array}{ccc} \{\textit{affine varieties}\} & \leftrightarrow & \{\textit{radical ideals}\} \\ & X & \mapsto & I\left(X\right) \\ & Z\left(J\right) & \leftrightarrow & J \end{array}$$

Proposition 1.15.

- 1. $Z(S) \cup Z(T) = Z(ST)$.
- 2. $\bigcap_i Z(S_i) = Z(\bigcup_i S_i)$.
- 3. $Z(0) = \mathbb{A}^n$ and $Z(1) = \emptyset$.

Proof.

1. If $p \in Z(S) \cup Z(T)$, then f(p) = 0 for $f \in S$ or $f \in T$, so f(x) = 0 for $f \in ST$, where

$$ST = \left\{ \sum_{i \in I, \ I \ \text{finite}} s_i t_i \right\} \subseteq S \cap T,$$

with equality if S + T = R. If $p \in Z(ST)$, there exists f such that f(p) = 0 for $f \in S$ or f(p) = 0 for $f \in T$, so $p \in Z(S) \cup Z(T)$.

Definition 1.16. The **Zariski topology** on \mathbb{A}^n is the topology generated by closed sets of the form Z(S). By the above proposition this is a topology.

Example 1.17. \mathbb{A}^1 is not Hausdorff.

Definition 1.18. A topological space X is **irreducible** if it cannot be expressed as a union $X = A \cup B$, where A and B are proper and closed subsets. \emptyset is not considered irreducible.

Example 1.19. \mathbb{A}^1 .

Example 1.20. Any non-empty open set of irreducible X is dense and irreducible. Suppose A is open then $X = A^c \cup \overline{A}$. Since X is irreducible then $A^c = X$, a contradiction, or $\overline{A} = X$. Suppose A is reducible. Let $A = (A \cap B) \cup (A \cap C)$, where B and C are closed. Then $X = A^c \cup (B \cup C)$. $A^c = X$ or $B \cup C = X$, which are contradictions.

Example 1.21. If A is irreducible then \overline{A} is also irreducible. Suppose \overline{A} is not irreducible. $\overline{A} = (\overline{A} \cap B) \cup (\overline{A} \cap C)$. Take $\bigcap A$, $A = (A \cap B) \cup (A \cap C)$, a contradiction.

Definition 1.22. An affine variety is **irreducible** if it is irreducible as a topological space.

Remark 1.23. A quasi-affine variety is an open set of an affine variety.

Proposition 1.24.

Lecture 2 Monday 14/01/19

1. $I(X \cup Y) = I(X) \cap I(Y)$.

2.
$$Z(I(X)) = \overline{X}$$
 for any $X \subseteq \mathbb{A}^n$.

Proof.

- 1. If $f \in I(X \cup Y)$ then f(p) = 0 for all $p \in X \cup Y$, so $f \in I(X)$ and $f \in I(Y)$.
- 2. We know that $X \subseteq Z(I(X))$ hence $\overline{X} \subseteq Z(I(X))$. Now, let Y be a closed set containing X, that is $X \subseteq Y$. Then

$$I(Y) \subset I(X) \implies Z(I(X)) \subset Z(I(X)) = Y,$$

so any closed set containing Y contains Z(I(X)).

Proposition 1.25. X is irreducible if and only if I(X) is prime.

Proof.

 \implies Let $f, g \in I(X)$.

$$X\subseteq Z\left(fg
ight)=Z\left(f
ight)\cup Z\left(g
ight) \qquad\Longrightarrow\qquad X=\left(X\cap Z\left(f
ight)
ight)\cup\left(X\cap Z\left(g
ight)
ight).$$

$$Z(f) \subseteq X$$
, so $f \in I(X)$, or $Z(g) \subseteq X$, so $g \in I(X)$.

 \iff Exercise.

Example 1.26. \mathbb{A}^n .

Definition 1.27. If $X \subseteq \mathbb{A}^n$, the coordinate ring of X is

$$A(X) = \frac{K[x_1, \dots, x_n]}{I(X)}.$$

Lecture 3 Tuesday 15/01/19

Example 1.28. Let $f \in K[x_1, ..., x_n]$ be irreducible. If n = 3, Z(f) is a surface. If n = 2, Z(f) is a curve.

Example 1.29. Let $y - x^2 \in K[x, y]$. Then

$$A(X) = \frac{K[x,y]}{\langle y - x^2 \rangle} \cong K[x,x^2] \rightarrow K[x]$$
$$\sum_{i,j} a_{ij} x^i x^{2j} = \sum_{i,j} a_{ij} x^{2j+i} \mapsto \sum_n b_n x^n.$$

Example 1.30. Let $xy - 1 \in K[x, y]$. Then

$$A\left(X\right) = \frac{K\left[x,y\right]}{\left\langle xy - 1\right\rangle} \cong K\left[x,\frac{1}{x}\right].$$

A(X) cannot be K[x].

Definition 1.31. A **Noetherian** topological space X is a topological space such that if

$$C_1 \supseteq C_2 \supseteq \dots$$

is a decreasing chain of closed sets then there is a k such that $C_k = C_{k+1} = \dots$

Example 1.32. \mathbb{A}^n . Recall that if $A \subset B$ then $I(B) \subset I(A)$. So using the definition above,

$$I(C_1) \subseteq I(C_2) \subseteq \dots$$

Since $K[x_1, ..., x_n]$ is Noetherian then $I(C_i)$ stabilises. So $I(C_k) = I(C_{k+1}) = ...$, but taking Z, we recover C_k so C_k stabilises as well.

Theorem 1.33. If X is Noetherian then any non-empty closed subset can be expressed as a finite union of irreducible closed sets $X = Y_1 \cup \cdots \cup Y_n$. Moreover, if we require that $Y_i \subseteq Y_i$ then this expression is unique.

Proof. Let C be the collection of closed sets that do not satisfy that property. Let Y be a minimum closed inside C, in particular Y is reducible, so $Y = Y' \cup Y''$, for Y', Y'' closed. Hence $Y', Y'' \not\subset C$, so they can be expressed as a finite union of irreducibles, a contradiction. If $Y_i \not\subset Y_j$, then suppose

$$Y_1 \cup \cdots \cup Y_n = X_1 \cup \cdots \cup X_n$$
.

Then $Y_1 \subset X_1 \cup X_n$, in particular $Y_1 = \bigcup_j (Y_1 \cap X_j)$, so there is a j such that $Y_1 \cap X_j = Y_1$, so $Y_1 \subset X_j$. We can assume j = 1 and repeat the same argument to find that $Y_1 = X_1$, so consider $\overline{Y \setminus Y_1} = Y_2 \cup \cdots \cup Y_n$. But

$$Y_2 \cup \cdots \cup Y_n = X_2 \cup \cdots \cup X_n$$

and the result follows by induction.

Corollary 1.34. Any affine variety in \mathbb{A}^n can be expressed equally as a union of irreducible algebraic varieties.

Definition 1.35. The dimension of a topological space is the supremum of n where

$$Y_0 \subset \cdots \subset Y_n$$

is a sequence of irreducible closed sets.

Example 1.36. Dimension of \mathbb{A}^1 is one.

Definition 1.37. Let A be a ring and \mathfrak{p} be a prime ideal, then the **height** of \mathfrak{p} is the supremum of n where

$$\mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n \subset \mathfrak{p},$$

where \mathfrak{p}_i are prime. The **Krull dimension** of A is

$$\sup_{\mathfrak{p} \text{ prime}} height(\mathfrak{p}).$$

Proposition 1.38. If Y is affine then $\dim(Y) = \dim(A(Y))$.

Proof. Let C be a closed and irreducible set $C \subset Y$, then $I(C) \supset I(Y)$, then I(C) is prime.

Proposition 1.39. Let K be a field and B be an integral domain which is a finitely generated algebra, then

- $\dim(B)$ is the transcendence degree of K(B) over K, and
- if $\mathfrak{p} \subseteq B$ is prime, then

$$height(\mathfrak{p}) + \dim\left(\frac{B}{\mathfrak{p}}\right) = \dim(B).$$

Proof. Atiyah Macdonald chapter 11.

Proposition 1.40 (Krull Hauptidealsatz). Let A be a Noetherian ring and $f \in A$ not a zero divisor and not a unit. Then every prime ideal containing f has height one.

Proof. Atiyah Macdonald page 122.

Lecture 4 Friday 18/01/19

Proposition 1.41. A Noetherian integral domain A is a UFD if and only if every prime ideal I of height one is principal.

Theorem 1.42. An irreducible variety $Y \subseteq \mathbb{A}^n$ has dimension n-1 if and only if Y = Z(f) where f is an irreducible polynomial in $K[x_1, \ldots, x_n]$.

Proof.

- \implies If Y has dimension n-1 then I(Y) has height one, by the above proposition $I(Y) = \langle f \rangle$, so Y = Z(f).
- \Leftarrow Let I = I(Y) then I is prime, by the Krull Hauptidealsatz we have that I has height one, so dim (Y) = n 1.

2 Projective varieties

Definition 2.1. The projective space \mathbb{P}^n is defined as

$$\mathbb{P}^n = \frac{\mathbb{A}^{n+1} \setminus \{0\}}{\{x \sim \lambda x \mid \lambda \in K^*\}}.$$

A point in \mathbb{P}^n is written as $[a_0 : \cdots : a_n] = \overline{(a_0, \ldots, a_n)}$.

Definition 2.2. A graded ring R is a ring together with a decomposition

$$R = \bigoplus_{d>0} R_d,$$

where R_d are abelian groups and $R_k \cdot R_t \subseteq R_{k+t}$.

Example 2.3. $K[x_0,\ldots,x_n]$ is a graded ring, where R_d are monomials of degree d.

Notation 2.4. Let A be $K[x_0,\ldots,x_n]$ without the grading and S be $K[x_0,\ldots,x_n]$ as a graded ring.

Definition 2.5. An ideal $I \subseteq S$ is homogeneous if

$$I = \bigoplus_{d>0} (I \cap S_d).$$

If $f = f_0 + \cdots + f_d$, then $f_i \in I$.

Remark 2.6. I is homogeneous if and only if $I = \langle f_0, \dots, f_n \rangle$, where f_i are homogeneous.

Lemma 2.7. If I, J are homogeneous then

- 1. I + J is homogeneous,
- 2. IJ is homogeneous,
- 3. $I \cap J$ is homogeneous, and
- 4. \sqrt{I} is homogeneous.

Proof.

4. Let $f = f_0 + \cdots + f_d \in \sqrt{I}$ then

$$f^n = (f_0 + \dots + f_d)^n = f_d^n + \dots \in I \qquad \Longrightarrow \qquad f_d^n \in I \qquad \Longrightarrow \qquad f_d \in \sqrt{I},$$

so $f - f_d \in \sqrt{I}$, by induction $f_i \in \sqrt{I}$.

Definition 2.8. If f is homogeneous of degree k then $f(\lambda \cdot x) = \lambda^k \cdot f(x)$, in particular f(x) = 0 if and only if $f(\lambda \cdot x) = 0$, so it makes sense to define

$$Z(f) = \{x \in \mathbb{P}^n \mid f(x) = 0\}.$$

More generally, if $I \subseteq S$ is a homogeneous ideal then

$$Z(I) = \{x \in \mathbb{P}^n \mid f \in I \text{ homogeneous}, f(x) = 0\}.$$

Definition 2.9. A subset $X \subseteq \mathbb{P}^n$ is called a **projective variety** if X = Z(T) for some homogeneous ideal T.

Proposition 2.10.

Lecture 5 Monday

21/01/19

- $Z(S) \cup Z(T) = Z(ST)$.
- $\bigcap_{\alpha} Z(S_{\alpha}) = Z(\bigcup_{\alpha} S_{\alpha}).$
- $Z(0) = \mathbb{P}^n$ and $Z(1) = \emptyset$.

Definition 2.11. We define the **Zariski topology** on \mathbb{P}^n by taking closed sets to be Z(T) for some T.

Definition 2.12.

- A projective variety is **irreducible** if it is an irreducible topological space.
- An open subset of a projective variety is called a quasi-projective variety.
- The **dimension** of a projective variety is its dimension as a topological space.
- If $T \subseteq S$ then

$$I(T) = \langle f \in S \mid f \text{ homogeneous}, \forall p \in T, f(p) = 0 \rangle.$$

Definition 2.13. If X is a projective variety the homogeneous coordinate ring is

$$S\left(X\right) = \frac{S}{I\left(X\right)}.$$

Definition 2.14. If $f \in S$ is linear and homogeneous, we call Z(f) a hyperplane.

Proposition 2.15.

$$\phi_i: \quad U_i = \frac{\mathbb{P}^n}{Z(x_i)} \quad \to \quad \mathbb{A}^n$$
$$[x_0: \dots: x_n] \quad \mapsto \quad \left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

is a homeomorphism in the Zariski topology.

Proof. Let $\phi = \phi_0$ and $U = U_0$, let $C \subseteq \mathbb{A}^n$ be a closed set then we claim that $\phi^{-1}(C)$ is closed. Indeed, let C = Z(S), then $\phi^{-1}(C) = Z(S') \cup U$ where

$$S' = \left\{ x_0^d \cdot f\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right) \mid f \in S \right\}.$$

Similarly, let $A \subseteq U$ is closed, we claim that $\phi(A)$ is closed. Let \overline{A} be its closure in \mathbb{P}^n , then $\overline{A} = Z(B)$, so $\phi(A) = Z(B')$ where

$$B' = \{ f(1, x_1, \dots, x_n) \mid f \in B \}.$$

So we conclude that ϕ is a homeomorphism.

Note that $\langle 1 \rangle = S$ and $\langle x_0, \dots, x_n \rangle \subsetneq S$ map to \emptyset under Z. So in order to have a one-to-one correspondence we need the following.

- $Z(I) = \emptyset$ if and only if $\sqrt{I} \supseteq \langle x_0, \dots, x_n \rangle$. If we consider Z(I) in \mathbb{A}^{n+1} , note that $x \in Z(I)$ if and only if $\lambda x \in Z(I)$. So $Z(I) = \emptyset$ if and only if $Z(I) \subseteq \{0\}$. So $\sqrt{I} \supseteq \langle x_0, \dots, x_n \rangle$.
- $I(Z(J)) = \sqrt{J}$ if $Z(J) \neq \emptyset$, since $I(Z(J)) = I(Z_a(J)) = \sqrt{J}$.

Corollary 2.16.

$$\{ \text{ projective varieties } \iff \{ \text{ homogeneous radical ideals not } \langle x_0, \dots, x_n \rangle \},$$
 $\{ \text{ irreducible projective varieties } \} \iff \{ \text{ homogeneous radical prime ideals } \}.$

Example 2.17. \mathbb{P}^n is irreducible.

Proposition 2.18.

- \mathbb{P}^n is Noetherian, that is satisfies the descending chain condition.
- Every projective variety can be written as a unique union of irreducible projective varieties. We call irreducible components the irreducible varieties in that decomposition.

Theorem 2.19. Let $Y \subseteq \mathbb{P}^n$ be an irreducible projective variety. Then

$$\dim (S(Y)) = \dim (Y) + 1.$$

Proof. Let

$$\phi_i: Z(x_i) \to \mathbb{A}^n$$

$$[x_0:\dots:x_n] \mapsto \left(\frac{x_0}{x_i},\dots,\frac{x_n}{x_i}\right),$$

and $Y_i = \phi(Y \cap U_i)$. Let

$$K[x_1, \dots, x_n] \rightarrow (S_{x_i})_0$$

$$f(x_1, \dots, x_n) \mapsto \frac{x_i^{\partial f} f\left(\frac{x_1}{x_i}, \dots, \frac{x_n}{x_i}\right)}{x_i^{\partial f}},$$

then

$$A(Y_i) = \frac{K[x_1, \dots, x_n]}{I(Y_i)} \cong (S_{x_i})_0,$$

moreover $S(Y)_{x_i} \cong A(Y_i)[x_i, x_i^{-1}]$. So

$$\dim (S(Y)) = \dim (S(Y)_{x_i}) = \dim (A(Y_i) [x_i, x_i^{-1}]) = tra(K(Y_i) (x_i)) = \dim (Y_i) + 1.$$

Therefore if $Y_i \neq \emptyset$, dim $(Y_i) = \dim(S(Y)) - 1$ for all i, but since U_i cover Y we have dim $(Y) = \max \{\dim(Y_i)\}$. (Exercise: if $\{U_n\}_n$ is a finite cover of a topological space Y then dim $(Y) = \max \{\dim(Y_i)\}$) Since dim (Y_i) are the same if $Y_i \neq \emptyset$, we conclude that dim $(Y) = \dim(Y_d)$ for some d.