| CS 124 Lecture 22                    | Monday, April 20, 2020 |
|--------------------------------------|------------------------|
| Redultions                           |                        |
| $A \leq_{\mathbf{r}} \mathcal{B}$    |                        |
| NPC problems: solve on, you can so   | Ive them all lin poly  |
| Joining NPC:                         | time)                  |
| ( approximation                      |                        |
| (2) randomind algorithms             |                        |
| randomized polynomial time (+ voi)   | n Mips)                |
| 3 Restrict the input                 |                        |
| YX: 2SAT, Horn Formulae              |                        |
| @ Small instances?                   |                        |
| 6 Hemistics                          |                        |
| possible approximation algorithms we | cannot prove anything  |
| about                                |                        |
|                                      |                        |
| Local Scarch                         |                        |
| spall of possible solutions          |                        |
| each solution has "neighbors"        |                        |
| some sort of eart function           |                        |
| Minimi71:                            |                        |
| 1. pick starting point x             |                        |
| 2. While - a better unighbor         | y canuse = in          |
| S.t. fly) < f(x), go to y            | practice but           |
| 3. VERVEN final solution             | check for cycling      |



example: Max 3 SAT

satisfy as many clauses as possible

Solvtion: any truth assignment (2° vertices)

neighbor: I change of variable

Lor satisfy a given Clarke

## - 1xampn: traveling saltsperson problem

solution: ording of cities

heighbor: swap two lities

mon generally, change k edges



## Simplex minimire

1. PILK a Stavning point x

2. While - a better meighbor y s.t. fly) < flx),

go to y

3. return final solution

| Programming Assignment                                                        |
|-------------------------------------------------------------------------------|
| collection of #s ANP-complete                                                 |
| Split into two sets A,B DP-solution: O(nB)                                    |
| min /ZxeA n - ZyeB y   # of biggest                                           |
| Solution: two sets of numbers   local search Neighbors: Sway between two sets |
| random movu                                                                   |
| · probability of pick I and move from A to B                                  |
| · pob 1-p pick I move from B to A                                             |
|                                                                               |
| Karmarkar-Kung                                                                |
| 10 i 7 6 5                                                                    |
| $\frac{2}{2}$ $\frac{1}{3}$ $\frac{3}{2}$ $\frac{3}{2}$ residue               |
| 10 and 8 in dittuent sin = chemint of sin 2                                   |
|                                                                               |
| Solution: pre-partitioning                                                    |
| 5 g 15 7 Karmarkar                                                            |
| groups 12234 Sarmarkar -> residue                                             |
| Hill Climbing                                                                 |
| Hill Climbing Pick random neighbor                                            |
| move mere it beme                                                             |

## Metropolis Alg · PILL different neighbor · it better -> go tome if norm - go truck ul prob & how worse it is Simuland Anmaling Timpiratur - made more worse sport at the beginning As time that goes on - "reduce temperature" and become like hill climbing Tabu Starch Penalty to prevent opening ( solvations that 100k like other solutions? PAVAILII SCARCH (GO W/ Mu WINNERS) Synchronize - check current solutions Remove poor pertormers Clone good ones Genetic Algorithms "population" of solutions Bad solvtions dir off bood solution procreate"

## Reprand Grady (Bubblescarch) Set Cover · normally: pick set ul greatest uncovered coverings · Introduce randomness: post ul prop p 2nd past set ul prop 2 Approximations provable gravanters multiplicative gramme (approximation ratio) · Within atacror of X from optimal · (1+E) of oppimal VIVAX COVEY · Special case of set cover · D(logn) approx (For sat lover) briedy is Ollogn) approx for VC · 2 - Approx For VC pilk an edge put both in VC Vemove all adjulant edges Vntil done