Distance-Regular Graphs

Chih-wen Weng

Department of Applied Mathematics, National Yang Ming Chiao Tung University

Algebraic Graph Theory (2024 Fall)

Outline

Distance-Regular Graphs

Distance-Regular Graphs

Notations

We always assume $\Gamma = (V, E)$ is a connected graph with diameter D. For $x \in X$,

$$\Gamma_i(x) := \{ y \in X \mid \partial(x, y) = i \}.$$

Distance-regular graphs

 $\Gamma = (V, E)$ is **distance-regular** if and only if for $i \leq D$,

$$\mathbf{c_i} := |\Gamma_1(x) \cap \Gamma_{i-1}(y)|,$$

$$\mathbf{a_i} := |\Gamma_1(x) \cap \Gamma_i(y)|,$$

$$\mathbf{b_i} := |\Gamma_1(x) \cap \Gamma_{i+1}(y)|$$

are **constants** subject to all vertices x, y with $\partial(x, y) = i$.

 $\begin{pmatrix} c_i \end{pmatrix} \begin{pmatrix} c_i \end{pmatrix} \begin{pmatrix} b_i \end{pmatrix}$

Note that $a_i + b_i + c_i = b_0$ and $k := b_0$ is the valency of Γ .

Example

The Petersen graph below is a distance-regular with diameter D=2 and

$$b_0 = 3, c_1 = 1, a_1 = 0, b_1 = 2, c_2 = 1, a_2 = 2, b_2 = 0.$$

Remark

If Γ is distance-regular with diameter D and fix a vertex $x \in V\Gamma$, then according to the partition

$$\Gamma_0(x) \cup \Gamma_1(x) \cup \cdots \cup D_D(x)$$

the adjacency matrix of Γ has equitable quotient matrix in the following tridiagonal form

$$\begin{pmatrix} a_0 & b_0 & & & 0 \\ c_1 & a_1 & b_1 & & & \\ & \ddots & \ddots & \ddots & \\ & & c_{D-1} & a_{D-1} & b_{D-1} \\ 0 & & & c_D & a_D \end{pmatrix}$$

Questions

From now on, we assume $\Gamma=(V,E)$ is a distance-regular graph with diameter D. For any two vertices $x,y\in X$ with distance $\partial(x,y)=k$, can you compute the **intersection numbers**

$$p_{ij}^k(x,y) := |\Gamma_i(x) \cap \Gamma_j(y)|?$$

Does the numbers $p_{ij}^k(x, y)$ depend on the choice of vertices x, y?

Remarks on $p_{ii}^k(x, y)$

- **1** $p_{ij}^k(x, y) = 0$ if |i + j| < k or |i j| > k.
- $\mathbf{p}_{1i-1}^{i} = c_i, \ p_{1i}^{i} = a_i, \ \text{and} \ p_{1i+1}^{i} = b_i.$

3

$$1 = c_1 \le c_2 \le \cdots \le c_D,$$

and

$$b_0 > b_1 \ge b_2 \ge \cdots \ge b_{D-1} > b_D = 0.$$

Compute on $p_{ii}^0(x,y) = |\Gamma_i(x)|$

 $\overset{\bigcirc}{x}$

• In this case x = y. Computing the pair (u, v) of vertices $u \in \Gamma_{i-1}(x)$, $v \in \Gamma_i(x)$ with $uv \in R$ in different order, we have

$$p_{i-1}^0$$
{i-1} $(x, y)b{i-1} = p_{i}^0$ _i $(x, y)c_i$.

Induction on i we have

$$p_{ii}^0 = \frac{b_0 b_1 \cdots b_{i-1}}{c_1 c_2 \cdots c_i},$$

independent of the choice of x.

Distance matrices

The matrices we are concerned are square matrices with rows and columns indexed by the vertex set $V\Gamma$.

• For each i let A_i be a 01-matrix with entries

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x, y) = i; \\ 0, & \text{else.} \end{cases}$$

- A_i is called *i*-th distance matrix, and $A = A_1$ is also called the adjacency matrix of Γ .
- Note $A_0 = I$ and $A_{-1} = A_{D+1} = 0$.

Theorem

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$$
 $0 \le i \le D$,

where $c_{D+1} := 1$.

Proof.

$$(AA_i)_{xy} = \left\{ \begin{array}{ll} b_{i-1}, & \text{if } \partial(x,y) = i-1; \\ a_i, & \text{if } \partial(x,y) = i; \\ c_{i+1}, & \text{if } \partial(x,y) = i+1. \end{array} \right.$$

Distance polynomials

In last page we show

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \qquad 0 \le i \le D.$$

- Consider polynomials $f_0(x) := 1$, $f_1(x) := x$ and
- $f_i(x)$ is defined recursively using

$$xf_i(x) = b_{i-1}f_{i-1}(x) + a_if_i(x) + c_{i+1}f_{i+1}(x)$$
 $2 \le i \le D$.

- Note that $A_i = f_i(A)$, $f_{D+1}(A) = A_{D+1} = 0$ (using $c_{D+1} := 1$), and $f_i(x)$ has degree i.
- A has D+1 distinct eigenvalues, which are the roots of $f_{D+1}(x)$.
- $f_0(x)$, $f_1(x)$, ..., $f_D(x)$ are called distance polynomials.
- Distance polynomials are orthogonal in a kind of inner product to be mentioned later.

Proposition

Let Γ be a distance-regular graph with diameter D. If Γ has d+1distinct eigenvalues then d = D.

Proof.

Since the adjacency matrix $A = A(\Gamma)$ is symmetric, the minimal polynomial of $A(\Gamma)$ has degree d+1, where d>D has been proved in the first Section. As $f_{D+1}(A) = 0$ in the last page, we also have $D \ge d$. Hence D = d

Algebra

An algebra $\mathcal A$ over $\mathbb C$ is a vector space together with a multiplication $\cdot:\mathcal A\times\mathcal A\to\mathcal A$ such that

(i)

$$\left\{ \begin{array}{l} \alpha(a \cdot b) = (\alpha a) \cdot b = a \cdot (\alpha b), \\ a \cdot (b + c) = a \cdot b + a \cdot c, \\ (b + c) \cdot a = b \cdot a + b \cdot a, \end{array} \right.$$
 (The map \cdot is binear);

(ii) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (The product is associative);

(iii)
$$\exists 1 \in \mathcal{A}, \ a \cdot 1 = 1 \cdot a = a;$$

where $a, b, c \in A$ and $\alpha \in \mathbb{C}$.

If the is no confusion, we will omit the multiplication symbol \cdot .

Example

The set $\operatorname{Mat}_n(\mathbb{C})$ of all $n \times n$ matrices over \mathbb{C} is an algebra under usual addition, scalar multiplication, and multiplication of matrices.

Bose-Mesner Algebra

Let Γ be a distance-regular graph with diameter D.

- Consider the algebra $\mathcal{M}=\langle A \rangle$ generated by the adjacency matrix A of Γ .
- Then the set

$$\{I = A_0, A = A_1, A_2 = f_2(A), \dots, A_D = f_D(A)\}$$

is a basis of \mathcal{M} .

• \mathcal{M} is called the **Bose-Mesner Algebra** of Γ .

Theorem

$$p_{ij}^k(x,y)=p_{ij}^k,$$

independent the choice x, y.

Proof.

Note that $A_iA_j \in \mathcal{M}$. Hence

$$A_i A_j = \sum_{k=0}^D p_{ij}^k A_k$$

for some constant $p_{ij}^k \in \mathbb{R}$. For $x,y \in X$ with $\partial(x,y) = k$ consider the xy entry of both sides of the above equality, we find $p_{ij}^k(x,y) = p_{ij}^k$, independent the choice x,y.

Strongly regular graphs

A distance-regular graph of diameter 2 is called a **strongly regular graph**.

Strongly regular graphs are studied earlier than the study of distance-regular graphs. They have relations to designs, finite geometries, graph eigenvalues, etc.

Distance-transitive graphs

Let $\Gamma = (V, E)$ be a graph.

ullet A map $\phi:V o V$ is an **automorphism** of Γ if ϕ is bijection and

$$uv \in E \Leftrightarrow \phi(u)\phi(v) \in E$$
.

- Γ is **vertex-transitive** (VT) if for any two vertices u, v there exists an automorphism ϕ of Γ such that $\phi(u) = (v)$.
- Γ is **distance-transitive (DT)** if for any two pairs (u, v), (x, y) of vertices with $\partial(u, v) = \partial(x, y)$, there exists an automorphism ϕ of Γ such that $x = \phi(u)$ and $y = \phi(v)$.
- Note that a distance transitive graph is distance-regular.

Recall the Hamming graphs H(D, q)

• Let X be a finite field of q elements, $V = X^D$, and

$$E = \{uv \mid u, v \in V \text{ differ in exact one coordinate}\}.$$

- $\Gamma = (V, E)$ is called the **Hamming graph** H(D, q).
- Note that $H(1,q) = K_q$, H(2,2) is a square and H(3,2) is a cube.
- For vertices x and y in H(D,q), $\partial(x,y)=i$ if and only if x and y differ in exactly i coordinates.
- Hence H(D,q) is D(q-1)-regular with order q^D and diameter D.

Theorem

The Hamming graph H(D,q) is distance-regular with intersection numbers

$$a_i = i(q-2), \quad b_i = (D-i)(q-1), \quad c_i = i.$$

Proof.

For two vertices x and y in H(D,q) at distance $\partial(x,y)=i$, x and y differ at exactly i coordinates. Hence for $z\in\Gamma_i(x)\cap\Gamma_1(y)$, the unique coordinate that y and z differ is in one of the above i coordinates and at this coordinate z has one of the q-2 values which also differs to that of both x and y. This proves $a_i=i(q-2)$. The proof of c_i is similar. Use $a_i+b_i+c_i=b_0=D(q-1)$ to find b_i .

Coding Theory

In H(D,2) for each positive integer c find $C\subseteq X$ with |C|=c to maximize $\min\{\partial(x,y)\mid x,y\in C,x\neq y\}.$

P. Delsarte studied coding theory in any distance-regular graphs in his 1973 PH. D. thesis "An Algebraic Approach to the Association Schemes of Coding Theory".

Two cospectral graphs

The 4-cube.

The Hoffman graph.

Copy from http://en.wikipedia.org/wiki/Hoffman_graph

In the Hoffman graph, every vertex has distance at most 3 to the southwestern vertex. So Hoffman graph is not distance-transtive.

Another drawing of Hoffman graph

Example (Johnson graphs J(n, D), $2D \le n$)

• Set $[n] = \{1, 2, \dots, n\},\$

$$V = {[n] \choose D}, \quad E = \{uv \mid u, v \in V, \ |u \cap v| = D - 1\}.$$

- Then $\Gamma = (V, E)$ is called the **Johnson graph** J(n, D).
- J(n, D) is a distance-regular graph with diameter D (Exercise).

Design theory

- A t- (n, D, λ) design is a pair (P, \mathcal{B}) , where P = [n] and \mathcal{B} is a family of D-subsets of P such that any t elements in P are contained in exactly λ D-subsets in \mathcal{B} .
- Note that with P=[n] and $\mathcal{B}=\binom{[n]}{D}$, we have a t- $(n,D,\binom{n-t}{D-t})$ design.
- Any t- (n, D, λ) (P, \mathcal{B}) for $2D \le n$ can be viewed as a subgraph of J(n, D) induced on \mathcal{B} with some nice properties to be specified (a design on J(n, D)).

Question

What is the related design on arbitrary distance-regular graph. (P. Delsarte's thesis)

Grassmann graph $J_q(n, D)$, $2D \le n$

• Let F_q be a finite field of q elements and $V = \binom{F_q^n}{D}$ be the set of D-dimensional subspaces of F_q^n , and

$$E = \{uv \mid u, v \in V, \dim(u \cap v) = D - 1\}.$$

- Then $\Gamma = (V, E)$ is called the **Grassmann graph** $J_q(n, D)$, or the *q*-analog of Johnson graph.
- $J_q(n, D)$ is a distance-regular graph with diameter D (Exercise).

A class of non-VT DRG

Invent. math. 162, 189-193 (2005) DOI: 10.1007/s00222-005-0442-3

Inventiones mathematicae

A new family of distance-regular graphs with unbounded diameter

E.R. van Dam1,*, J.H. Koolen2,**

- Tilburg University, Dept. Econometrics and O.R., PO Box 90153, 5000 LE Tilburg, The Netherlands (e-mail: Edwin.vanDam@uvt.nl)
- POSTECH, Dept. Mathematics, Pohang 790-784, South Korea (e-mail: koolen@postech.ac.kr)

Oblatum 18-XI-2004 & 2-II-2005 Published online: 7 April 2005 – © Springer-Verlag 2005

Abstract. We construct distance-regular graphs with the same – classical – parameters as the Grassmann graphs on the e-dimensional subspaces of a (2e+1)-dimensional space over an arbitrary finite field. This provides the first known family of non-vertex-transitive distance-regular graphs with unbounded diameter.

