Why Deep Learning?

李宏毅 Hung-yi Lee

魚與熊掌可以兼得嗎?
$$h^{all} = arg \min_{h \in \mathcal{H}} L(h, \mathcal{D}_{all})$$
Small (fewer candidates)

Review: Why Hidden Layer?

Piecewise Linear https://youtu.be/bHcJCp2Fyxs

We can have good approximation with sufficient pieces.

Piecewise linear = constant + sum of a set of

How to represent this function?

Hard Sigmoid

Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}}$$

 $= c sigmoid(b + wx_1)$

 x_1

Piecewise linear = constant + sum of a set of

Hard Sigmoid → ReLU

How to represent this function?

 $\sim \lambda_1$

Rectified Linear Unit (ReLU)

 $c \max(0, b + wx_1)$

 $c' \max(0, b' + w'x_1)$

Why we want "Deep" network, not "Fat" network?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Seide Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)	
1 X 2k	24.2			
2 X 2k	20.4	\//	Why?	
3 X 2k	18.4	vviiy:		
4 X 2k	17.8			
5 X 2k	17.2	1 X 3772	22.5	
7 X 2k	17.1	→ 1 X 4634	22.6	
		1 X 16k	22.1	

Seide Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why we need deep?

Why we need deep?

Yes, one hidden layer can represent any function.

However, using deep structure is more effective.

Analogy – Logic Circuits

• E.g., parity check

With multiple layers, we need only O(d) gates.

Analogy — Programming

Don't put everything in your main function.

http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

More Analogy

比較有效率

剪很多刀

•以下三頁投影片上課時的數字有誤,已經將修改部的分套上紅色,感謝同學指出錯誤

Deep

Shallow

 2^K pieces

Thinks more

 Deep networks outperforms shallow ones when the required functions are <u>complex and regular</u>.
 Image, speech, etc. have this characteristics.

• Deep is exponentially better than shallow even when $y=x^2$.

深度學習是一個讓魚與熊掌可以兼得的方法

$$h^{all} = arg \min_{h \in \mathcal{H}} L(h, \mathcal{D}_{all})$$
 Small (fewer candidates)