Name: Shuo Wu wustl key: wushuo Student ID: 452666

HW₃

Qn1,

Theorem Optimal substructure of A-S problem:

Let Sij be the set of activities that start after activity ai finishes and that finish before activity aj starts. Let A be the optimal solution set for the set Sij.

Let k be the one activity (anyone) in A.

We define that: $A_{ik} = A_{ij} \cap S_{ik}$, which mean A_{jk} contains the activities in A_{ij} that finish before k starts. And $A_{kj} = Ai_j \cap S_{kj}$, which means A_{kj} contains the activities in A_{ij} that start after k finishes.

- 1, A_{ik} is the optimal solution for sub-problem S_{ik}
- 2, A_{kj} is the optimal solution for sub-problem S_{kj}

Proof:

1,

if A_{jk} is not the optimal solution for sub-problem S_{ik} , then that means we could find a set A'_{ik} of mutually compatible activities in S_{ik} where $\mid A'_{ik} \mid > \mid A_{jk} \mid$, then we could use A'_{ik} , rather than A_{jk} , in the solution to the sub-problem for S_{ij} , we would have constructed a set of $\mid A'_{jk} \mid + \mid A_{kj} \mid + 1 > \mid A_{ik} \mid + \mid A_{kj} \mid + 1 = \mid A \mid$ mutually compatible activiries, which contradicts the assumption that A is an optimal solution.

A symmetric argument applies to the activities in S_{kj}