Информационные технологии и безопасность АЛГОРИТМЫ ХЭШИРОВАНИЯ

Інфармацыйныя тэхналогіі і бяспека АЛГАРЫТМЫ ХЭШАВАННЯ

УДК MKC 35.240.40 KП 05

Ключевые слова: криптографический алгоритм, контроль целостности, хэширование

Предисловие

Цели, основные принципы, положения по государственному регулированию и управлению в области технического нормирования и стандартизации установлены Законом Республики Беларусь «О техническом нормировании и стандартизации».

1 РАЗРАБОТАН учреждением Белорусского государственного университета «Научно-исследовательский институт прикладных проблем математики и информатики»

ВНЕСЕН Оперативно-аналитическим центром при Президенте Республики Беларусь 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 12 августа 2016 г. № 62

3 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения						
2	Нор	Нормативные ссылки					
3	Тері	Термины и определения и сокращения					
4	Обозначения						
	4.1	Список обозначений	2				
	4.2	Пояснения к обозначениям	3				
	4.3	Запись перечислений	4				
5	Обп	Общие положения					
	5.1	Назначение	4				
	5.2	Шаговая функция	5				
	5.3	Уровень стойкости	5				
	5.4	Хэш-значение	6				
6	Вспо	омогательные алгоритмы	6				
	6.1	Алгоритм bash-s	6				
	6.2	Алгоритм bash-f	6				
7	Алго	оритмы хэширования	7				
	7.1	Входные и выходные данные	7				
	7.2	Вспомогательные преобразования и переменные	7				
	7.3	Шаги алгоритма	7				
Пр	Приложение А (справочное) Проверочные примеры						
Пр	Приложение Б (рекомендуемое) Модуль АСН.1						
Би	іблио	рграфия	13				

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

Информационные технологии и безопасность АЛГОРИТМЫ ХЭШИРОВАНИЯ

Інфармацыйныя тэхналогіі і бяспека АЛГАРЫТМЫ ХЭШАВАННЯ

Information technology and security
Hashing algorithms

Дата введения 2016-10-01

1 Область применения

Настоящий стандарт устанавливает семейство криптографических алгоритмов хэширования, которые используются для контроля целостности и других способов защиты информации при ее хранении, передаче и обработке.

Настоящий стандарт применяется при разработке средств криптографической защиты информации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие технические нормативные правовые акты в области технического нормирования и стандартизации (далее — ТНПА):

СТБ 34.101.31-2011 Информационные технологии и безопасность. Защита информации. Криптографические алгоритмы шифрования и контроля целостности

СТБ 34.101.45-2013 Информационные технологии и безопасность. Алгоритмы электронной цифровой подписи и транспорта ключа на основе эллиптических кривых

ГОСТ 34.973-91 (ИСО 8824-87) Информационная технология. Взаимосвязь открытых систем. Спецификация абстрактно-синтаксической нотации версии 1 (АСН.1)

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ТНПА по каталогу, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году.

Если ссылочные ТНПА заменены (изменены), то при пользовании настоящим стандартом следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения и сокращения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

- 3.1 сообщение: Двоичное слово конечной длины.
- **3.2 хэш-значение**: Двоичное слово фиксированной длины, которое определяется по сообщению без использования ключа и служит для контроля целостности сообщения и для представления сообщения в (необратимо) сжатой форме.

- 3.3 хэширование: Выработка хэш-значений.
- **3.4 целостность**: Гарантия того, что сообщение не изменено при хранении или передаче.

В настоящем стандарте применяют следующее сокращение:

ЭЦП — электронная цифровая подпись.

4 Обозначения

4.1 Список обозначений

```
\{0,1\}^n множество всех слов длины n в алфавите \{0,1\};
```

 $\{0,1\}^*$ множество всех слов конечной длины в алфавите $\{0,1\}$ (включая пустое слово длины 0);

|u| длина слова $u \in \{0,1\}^*$;

 $\{0,1\}^{n*}$ множество всех слов из $\{0,1\}^*$, длина которых кратна n;

 α^n слово длины n из одинаковых символов $\alpha \in \{0, 1\};$

Lo_m(u) слово из первых m символов слова $u, m \leq |u|$;

 $u \parallel v$ конкатенация $u_1 u_2 \dots u_n v_1 v_2 \dots v_m$ слов $u = u_1 u_2 \dots u_n$ и $v = v_1 v_2 \dots v_m$;

01234...₁₆ представление $u \in \{0,1\}^{4*}$ шестнадцатеричным словом, при котором последовательным четырем символам u соответствует один шестнадцатеричный символ (например, $10100010 = \mathbb{A}2_{16}$);

 $U \mod m$ для целого U и натурального m остаток от деления U на m;

 $u \oplus v$ для $u = u_1 u_2 \dots u_n \in \{0,1\}^n$ и $v = v_1 v_2 \dots v_n \in \{0,1\}^n$ слово $w = w_1 w_2 \dots w_n \in \{0,1\}^n$ из символов $w_i = (u_i + v_i) \bmod 2$ (посимвольное исключающее ИЛИ);

```
\neg u для u \in \{0,1\}^n слово u \oplus 1^n (посимвольное HE);
```

 $u \wedge v$ для $u = u_1 u_2 \dots u_n \in \{0,1\}^n$ и $v = v_1 v_2 \dots v_n \in \{0,1\}^n$ слово $w = w_1 w_2 \dots w_n \in \{0,1\}^n$ из символов $w_i = u_i * v_i$ (посимвольное И);

 $u \lor v$ для $u = u_1 u_2 \dots u_n \in \{0,1\}^n$ и $v = v_1 v_2 \dots v_n \in \{0,1\}^n$ слово $w = w_1 w_2 \dots w_n \in \{0,1\}^n$ из символов $w_i = (u_i * v_i + u_i + v_i) \bmod 2$ (посимвольное ИЛИ);

 $ar{u}$ а) для $u=u_1u_2\dots u_8\in\{0,1\}^8$ число $2^7u_1+2^6u_2+\dots+u_8$ и б) для $u=u_1\parallel u_2\parallel\dots\parallel u_n,\,u_i\in\{0,1\}^8,$ число $ar{u}_1+2^8ar{u}_2+\dots+2^{8(n-1)}ar{u}_n;$

 $\langle U \rangle_{8n}$ для целого U слово $u \in \{0,1\}^{8n}$ такое, что $\bar{u} = U \bmod 2^{8n};$

ShLo(u) для $u \in \{0,1\}^{8n}$ слово $\langle \lfloor \bar{u}/2 \rfloor \rangle_{8n}$;

ShHi(u) для $u \in \{0,1\}^{8n}$ слово $\langle 2\bar{u} \rangle_{8n}$;

 $\varphi^r(u)$ для слова u и преобразования φ результат r-кратного действия φ на u (например, ShLo $^r(u)$ — результат r-кратного действия ShLo);

RotHi
$$(u)$$
 для $u \in \{0,1\}^{8n}$ слово ShHi $(u) \oplus$ ShLo $^{8n-1}(u)$; $a \leftarrow u$ присвоение переменной a значения u .

4.2 Пояснения к обозначениям

4.2.1 Слова

Входными и выходными данными алгоритмов настоящего стандарта являются двоичные слова — последовательности символов алфавита $\{0,1\}$. Символы нумеруются слева направо от единицы. В настоящем подразделе в качестве примера рассматривается слово

В этом слове первые семь символов нулевые, восьмой — 1, девятый — 0, . . . , последний — 1. Слова разбиваются на тетрады из четверок последовательных двоичных символов. Тетрады кодируются шестнадцатеричными символами по правилам, приведенным в таблице 1.

Таблица 1 — Шестнадцатеричные символы

тетрада	символ	тетрада	символ	тетрада	символ	тетрада	символ
0000	0 ₁₆	0001	1 ₁₆	0010	2 ₁₆	0011	3 ₁₆
0100	4_{16}	0101	5 ₁₆	0110	6 ₁₆	0111	7 ₁₆
1000	8 ₁₆	1001	9 ₁₆	1010	\mathtt{A}_{16}	1011	B ₁₆
1100	C ₁₆	1101	D_{16}	1110	E_{16}	1111	F ₁₆

Например, слово w кодируется следующим образом:

0123456789ABCDEF₁₆.

Пары последовательных тетрад образуют октеты. Последовательные октеты слова w имеют вид:

$$00000001 = 01_{16}, \ 00100011 = 23_{16}, \ 01000101 = 45_{16}, \ 01100111 = 67_{16},$$

 $10001001 = 89_{16}, \ 10101011 = AB_{16}, \ 11001101 = CD_{16}, \ 11101111 = EF_{16}.$

4.2.2 Слова как числа

Октету $u=u_1u_2\dots u_8$ ставится в соответствие байт — число $\bar u=2^7u_1+2^6u_2+\dots+u_8$. Например, октетам w соответствуют байты

1,
$$35 = 2^5 + 2^1 + 1$$
, $69 = 2^6 + 2^2 + 1$, $103 = 2^6 + 2^5 + 2^2 + 2^1 + 1$, $137 = 2^7 + 2^3 + 1$, $171 = 2^7 + 2^5 + 2^3 + 2^1 + 1$, $205 = 2^7 + 2^6 + 2^3 + 2^2 + 1$, $239 = 2^7 + 2^6 + 2^5 + 2^3 + 2^2 + 2^1 + 1$.

Число ставится в соответствие не только октету, но и любому другому двоичному слову, длина которого кратна 8. При этом используется распространенное для многих современных процессоров соглашение «от младших к старшим» (little-endian): считается,

что первый байт является младшим, последний — старшим. Например, слову w соответствует число

$$\bar{w} = 1 + 2^8 \cdot 35 + 2^{16} \cdot 69 + 2^{24} \cdot 103 + 2^{32} \cdot 137 + 2^{40} \cdot 171 + 2^{48} \cdot 205 + 2^{56} \cdot 239 = 17279655951921914625.$$

При отождествлении слов с числами удобно представить себе гипотетический регистр, разрядность которого совпадает с длиной слова. В самый правый октет регистра загружается первый октет слова, во второй справа октет регистра — второй октет слова и т. д., пока, наконец, в самый левый октет регистра не загружается последний октет слова. Например, для w содержимое регистра имеет вид:

$$\mathtt{EFCDAB8967452301}_{16} = 1110111111100\dots001100000001.$$

При таком представлении операции ShLo, ShHi, RotHi состоят в сдвигах содержимого регистра: ShLo — вправо (в сторону младших разрядов), ShHi — влево (в сторону старших разрядов) и RotHi — циклически влево, причем при сдвигах ShLo и ShHi в освободившиеся разряды регистров записываются нули. Например, предыдущий регистр изменяется при сдвигах следующим образом:

$$\begin{split} \text{ShLo}: & \ 77\text{E}6\text{D}5\text{C}4\text{B}3\text{A}29180_{16} = 01110111\dots 10000000, \\ \text{ShHi}: & \ \text{D}F9\text{B}5712\text{C}E8\text{A}4602_{16} = 11011111\dots 00000010, \\ \text{RotHi}: & \ \text{D}F9\text{B}5712\text{C}E8\text{A}4603_{16} = 11011111\dots 00000011. \end{split}$$

Выгружая из регистра октеты слева направо, получаем следующие результаты:

 ${
m ShLo}(w) = 8091{
m A}2{
m B}3{
m C}4{
m D}5{
m E}677_{16}, \ {
m ShHi}(w) = 02468{
m A}{
m C}{
m E}12579{
m B}{
m D}{
m F}_{16}, \ {
m RotHi}(w) = 03468{
m A}{
m C}{
m E}12579{
m B}{
m D}{
m F}_{16}.$

Перестановки октетов при загрузке слова в регистр и при выгрузке из регистра в современных процессорах выполняются неявно.

4.3 Запись перечислений

При записи разбиения $X=X_1\parallel X_2\parallel \ldots \parallel X_n$ допускается, что n=1. В этом случае X состоит из единственного блока $X_1.$

Аналогично, при n=1 цикл «для $i=1,2,\ldots,n$ » выполняется один раз.

5 Общие положения

5.1 Назначение

Настоящий стандарт определяет семейство криптографических алгоритмов хэширования, предназначенных для контроля целостности и необратимого сжатия данных. Обрабатываемыми данными являются двоичные слова (сообщения).

Алгоритм хэширования по сообщению произвольной длины строит хэш-значение — слово фиксированной длины. Стороны могут организовать контроль целостности сообщений путем сравнения их хэш-значений с достоверными контрольными хэш-значениями.

Изменение сообщения с высокой вероятностью приводит к изменению соответствующего хэш-значения, и поэтому хэш-значения могут использоваться вместо самих сообщений, например в системах ЭЦП.

Алгоритмы хэширования могут дополнительно использоваться при построении систем имитозащиты, генераторов случайных и псевдослучайных чисел, протоколов аутентификации, доказательств вычислительной работы и др.

Примечание — Алгоритм хэширования установлен также в СТБ 34.101.31. Переход от алгоритма СТБ 34.101.31 к алгоритмам настоящего стандарта позволит увеличить скорость хэширования по крайней мере на паритетном уровне стойкости и на 64-разрядных аппаратных платформах. Кроме этого, алгоритмы хэширования настоящего стандарта поддерживают все три уровня стойкости алгоритмов ЭЦП, определенных в СТБ 34.101.45, в то время как алгоритм СТБ 34.101.31 поддерживает только первый уровень.

Примеры выполнения алгоритмов стандарта приведены в приложении А. Примеры можно использовать для проверки корректности реализаций алгоритмов.

Модуль абстрактно-синтаксической нотации версии 1 (ACH.1), определенной в ГОСТ 34.973, приведен в приложении Б. Модуль задает идентификаторы алгоритмов стандарта, в том числе в их связках с алгоритмами СТБ 34.101.45. Рекомендуется использовать модуль при встраивании алгоритмов в информационные системы, в которых также используется АСН.1.

5.2 Шаговая функция

Алгоритмы хэширования построены по схеме sponge (губка), описанной в [1]. Ядром схемы является шаговая функция, которая определяет сложное биективное преобразование слов большой длины.

В настоящем стандарте шаговая функция действует на слова длины 1536. Действие задается алгоритмом bash-f, определенным в 6.2.

Шаговая функция bash-f имеет самостоятельное значение и может использоваться за пределами настоящего стандарта для построения других криптографических алгоритмов.

5.3 Уровень стойкости

Алгоритмы хэширования настоящего стандарта отличаются уровнем стойкости l. Это натуральное число, кратное 16 и не превосходящее 256. Алгоритм уровня l вычисляет хэш-значения длины 2l, обрабатывая входные слова блоками длины 1536-4l. Уровни $l=128,\ l=192$ и l=256 являются стандартными, им следует отдавать предпочтение.

При выборе l следует учитывать, что для определения сообщения с заданным хэшзначением требуется выполнить порядка 2^{2l} операций, а для определения двух различных сообщений с одинаковыми хэш-значениями требуется выполнить порядка 2^l операций.

Следует учитывать также, что с ростом l, кроме повышения стойкости, снижается быстродействие алгоритмов. В частности, хэширование на уровне l=256 выполняется примерно в 2 раза медленнее, чем на уровне l=128.

5.4 Хэш-значение

Длина хэш-значения регулируется уровнем стойкости l. Если при фиксированном l требуются не все, а n < 2l символов хэш-значения, то должны использоваться первые n символов.

6 Вспомогательные алгоритмы

6.1 Алгоритм bash-s

6.1.1 Входные и выходные данные

Входными данными алгоритма bash-s являются слова $W_0, W_1, W_2 \in \{0, 1\}^{64}$ и числа $m_1, n_1, m_2, n_2 \in \{1, 2, \dots, 63\}$.

Выходными данными являются преобразованные слова W_0, W_1, W_2 .

6.1.2 Переменные

Используются переменные $T_0, T_1, T_2 \in \{0, 1\}^{64}$.

6.1.3 Шаги алгоритма

Преобразование слов W_0, W_1, W_2 состоит в выполнении следующих шагов:

- $1 T_0 \leftarrow \text{RotHi}^{m_1}(W_0).$
- $2 W_0 \leftarrow W_0 \oplus W_1 \oplus W_2$.
- $T_1 \leftarrow W_1 \oplus \text{RotHi}^{n_1}(W_0).$
- $4 W_1 \leftarrow T_0 \oplus T_1$.
- $5 \ W_2 \leftarrow W_2 \oplus \mathtt{RotHi}^{m_2}(W_2) \oplus \mathtt{RotHi}^{n_2}(T_1).$
- $6 T_0 \leftarrow \neg W_2$.
- $T_1 \leftarrow W_0 \vee W_2$.
- 8 $T_2 \leftarrow W_0 \wedge W_1$.
- 9 $T_0 \leftarrow T_0 \vee W_1$.
- 10 $W_1 \leftarrow W_1 \oplus T_1$.
- 11 $W_2 \leftarrow W_2 \oplus T_2$.
- 12 $W_0 \leftarrow W_0 \oplus T_0$.
- 13 Возвратить (W_0, W_1, W_2) .

6.2 Алгоритм bash-f

6.2.1 Входные и выходные данные

Входными данными алгоритма bash-f является слово $S \in \{0,1\}^{1536}$.

Выходными данными является преобразованное слово S.

Слово S записывается в виде $S = S_0 \parallel S_1 \parallel \ldots \parallel S_{23}, S_i \in \{0, 1\}^{64}$.

6.2.2 Переменные

Используются переменные $C \in \{0,1\}^{64}$ и $m_1, n_1, m_2, n_2 \in \{1,2,\ldots,63\}$.

6.2.3 Шаги алгоритма

Преобразование слова S состоит в выполнении следующих шагов:

1 $C \leftarrow \text{B194BAC80A08F53B}_{16}$.

- 2 Для i = 1, 2, ..., 24 выполнить:
 - 1) $(m_1, n_1, m_2, n_2) \leftarrow (8, 53, 14, 1);$
 - 2) для $j = 0, 1, \dots, 7$:
 - (a) $(S_i, S_{8+i}, S_{16+i}) \leftarrow \text{bash-s}(S_i, S_{8+i}, S_{16+i}, m_1, n_1, m_2, n_2);$
 - (b) $(m_1, n_1, m_2, n_2) \leftarrow (7 m_1 \mod 64, 7 n_1 \mod 64, 7 m_2 \mod 64, 7 n_2 \mod 64);$
 - 3) $S \leftarrow S_{15} \parallel S_{10} \parallel S_9 \parallel S_{12} \parallel S_{11} \parallel S_{14} \parallel S_{13} \parallel S_8 \parallel S_{17} \parallel S_{16} \parallel S_{19} \parallel S_{18} \parallel S_{21} \parallel S_{20} \parallel S_{23} \parallel S_{22} \parallel S_6 \parallel S_3 \parallel S_0 \parallel S_5 \parallel S_2 \parallel S_7 \parallel S_4 \parallel S_1;$
 - 4) $S_{23} \leftarrow S_{23} \oplus C$;
 - 5) если \bar{C} четное, то $C \leftarrow \mathtt{ShLo}(C)$; иначе $C \leftarrow \mathtt{ShLo}(C) \oplus \mathtt{AED8E07F99E12BDC}_{16}$.
- 3 Возвратить S.

7 Алгоритмы хэширования

7.1 Входные и выходные данные

Входными данными алгоритма хэширования уровня стойкости l является сообщение $X \in \{0,1\}^*$.

Выходными данными является слово $Y \in \{0,1\}^{2l}$ — хэш-значение сообщения X.

7.2 Вспомогательные преобразования и переменные

Используются алгоритм bash-f, определенный в 6.2, и переменная $S \in \{0,1\}^{1536}$.

7.3 Шаги алгоритма

Хэширование сообщения X на уровне стойкости l состоит в выполнении следующих шагов:

- 1 Дописать к X сначала слово 01, а затем t символов 0, где t минимальное неотрицательное целое, для которого |X|+2+t кратно 1536-4l.
 - 2 Полученное слово $X \parallel 01 \parallel 0^t$ записать в виде $X_1 \parallel X_2 \parallel \ldots \parallel X_n, X_i \in \{0,1\}^{1536-4l}$.
 - $3 S \leftarrow 0^{1472} \| \langle l/4 \rangle_{64}.$
 - 4 Для $i=1,2,\ldots,n$ выполнить:
 - 1) $\text{Lo}_{1536-4l}(S) \leftarrow X_i;$
 - $2) \ S \leftarrow \mathtt{bash-f}(S).$
 - $5 Y \leftarrow \text{Lo}_{2l}(S).$
 - 6 Возвратить Y.

Приложение А

(справочное)

Проверочные примеры

A.1 Алгоритм bash-s

В таблице А.1 представлен пример выполнения алгоритма bash-s с входными параметрами $(m_1, n_1, m_2, n_2) = (8, 53, 14, 1)$.

 $ext{Таблица } A.1 - A$ лгоритм bash-s

Шаг	Слово	Вычисляется как	Значение
	W_0		B194BAC80A08F53B ₁₆
	W_1		E12BDC1AE28257EC ₁₆
	W_2		E9DEE72C8F0C0FA6 ₁₆
1	T_0	$ extsf{RotHi}^{m_1}(W_0)$	3BB194BAC80A08F5 ₁₆
2	W_0	$W_0 \oplus W_1 \oplus W_2$	B96181FE6786AD71 ₁₆
3	T_1	$W_1 \oplus exttt{RotHi}^{n_1}(W_0)$	CDFB23D652B779DB ₁₆
4	W_1	$T_0 \oplus T_1$	F64AB76C9ABD712E ₁₆
5	W_2	$W_2 \oplus \mathtt{Rot}\mathtt{Hi}^{m_2}(W_2) \oplus \mathtt{Rot}\mathtt{Hi}^{n_2}(T_1)$	F1401A7713A9DFD3 ₁₆
6	T_0	$\neg W_2$	0EBFE588EC56202C ₁₆
7	T_1	$W_0 \lor W_2$	F9619BFF77AFFFF3 $_{16}$
8	T_2	$W_0 \wedge W_1$	B040816C02842120 ₁₆
9	T_0	$T_0 \vee W_1$	FEFFF7ECFEFF712E ₁₆
10	W_1	$W_1 \oplus T_1$	0F2B2C93ED128EDD ₁₆
11	W_2	$W_2 \oplus T_2$	41009B1B112DFEF3 ₁₆
12	W_0	$W_0 \oplus T_0$	479E76129979DC5F ₁₆

А.2 Шаговая функция

В таблице A.2 представлен пример выполнения алгоритма bash-f. Приводится результат выполнения i=1,2,3 итераций шага 2 алгоритма, а также окончательное выходное значение.

Таблица А.2 — Шаговая функция

S	B194BAC80A08F53B	366D008E584A5DE4	8504FA9D1BB6C7AC	252E72C2O2FDCEOD
	5BE3D61217B96181	FE6786AD716B890B	5CB0C0FF33C356B8	35C405AED8E07F99
	E12BDC1AE28257EC	703FCCF095EE8DF1	C1AB76389FE678CA	F7C6F860D5BB9C4F
	F33C657B637C306A	DD4EA7799EB23D31	3E98B56E27D3BCCF	591E181F4C5AB793
	E9DEE72C8F0C0FA6	2DDB49F46F739647	06075316ED247A37	39CBA38303A98BF6
	92BD9B1CE5D14101	5445FBC95E4D0EF2	682080AA227D642F	2687F93490405511 ₁₆
S(i=1)	E2B6A7F6F035D3F2	39480309210BEE8D	DED2F39B17FE7C73	4ECA319DCCB1FF76
	7BC40A127CF4877A	E7FB536FE9390C54	99F34A34D10940B3	OF2B2C93ED128EDD
	EEB12106DC4F0DFD	41009B1B112DFEF3	BC6D797961DEC912	60E31EF060BE55EB
	C45AFC52E748DC91	2CAFCA63316F4885	51293EE80CC2D263	22368797C4123CC4
	D7C509C309827DE3	2C98DECE4BC4A759	479E76129979DC5F	08C16DF28F6305A6
	9D17224CB6817E27	F5823D9AFB05B086	C917D78B6ECAA711	EB72E1BF436E40E7 ₁₆
S(i=2)	BA9659361A0C4CEE	4E3D7DBEA2105A0F	CO13BAF75AOD25A7	B75E9FD11911F45D
	FC69D759AECDE7C3	03EF0B29E992C6F8	8B9DE3850D8DFE0C	1BDDCE12F8D6FA9A
	AF72F482DF11C7CD	E5BF7296886D1FAB	4752419560C91DB8	5FB21DB9B8FDE868
	C6DC94B8011B4EA1	AE7B7EAD5C8259EA	22DAD6B09B827CD1	D93F3E3D9AB7A83D
	FF1D5681C46C4A06	9D57FC71FC5A5544	25A032DE52434699	43B5DBE9DDA545A8
	94EE1EB7B0B6DEC9	1B02E5748F9141C1	7B2C3572CAC28A7B	DDAFB4BA42799C9C ₁₆
S (i=3)	DFCF8BEE927CFE37	5D9C4D5CAF40D3CB	B9D88D53C69035BB	5731D745CC819EBA
	E2997B65309B248A	84D02D7449D95208	0B501107F1758917	D088BB8CB4CC72C1
	EB04E3084DA79297	E636CC72732EFD58	1F31744F59995332	28C3061400E0C34B
	9EAE60469BB4F1B6	1E37FA5B319F90FF	D4B7D3F007592688	6EBB6B818BB9BAC4
	2904D6B8AAABE559	56B7D63B932FA660	D5068CCACE824E9A	43696F09544AA03A
	559E325797384232	3435388ADDBF17C4	479570E8E01E18EE	1BE353ABA3EA17EC ₁₆
bash-f(S)	8FE727775EA7F140	B95BB6A200CBB28C	7F0809C0C0BC68B7	DC5AEDC841BD94E4
	03630C301FC255DF	5B67DB53EF65E376	E8A4D797A6172F22	71BA48093173D329
	C3502AC946767326	A2891971392D3F70	89959F5D61621238	655975E00E2132A0
	D5018CEEDB17731C	CD88FC50151D37C0	D4A3359506AEDC2E	6109511E7703AFBB
	014642348D8568AA	1A5D9868C4C7E6DF	A756B1690C7C2608	A2DC136F5997AB8F
	BB3F4D9F033C87CA	6070E117F099C409	4972ACD9D976214B	7CED8E3F8B6E058E ₁₆

А.3 Хэширование

В таблице А.3 представлены примеры хэширования. В таблице для различных уровней стойкости l приводятся хэш-значения сообщения $\mathrm{Lo}_{8n}(X)$, где X — слово из таблицы А.2.

Таблица А.3 — Хэширование

n	Хэш-значение						
	l = 128						
0	114C3DFAE373D9BC	BC3602D6386F2D6A	2059BA1BF9048DBA	A5146A6CB775709D ₁₆			
127	3D7F4EFA00E9BA33	FEED259986567DCF	5C6D12D51057A968	F14F06CC0F905961 ₁₆			
128	D7F428311254B8B2	D00F7F9EEFBD8F30	25FA87C4BABD1BDD	BE87E35B7AC80DD6 ₁₆			
135	1393FA1B65172F2D	18946AEAE576FA1C	F54FDD354A0CB297	$\mathtt{4A997DC4865D3100}_{16}$			
		l = 19	92				
95	64334AF830D33F63	E9ACDFA184E32522	103FFF5C6860110A	2CD369EDBC04387C			
	501D8F92F749AE4D	E15A8305C353D64D ₁	1.6				
96	D06EFBC16FD6C088	OCBFC6A4E3D65AB1	01FA82826934190F	AABEBFBFFEDE93B2			
	2B85EA72A7FB3147	A133A5A8FEBD8320	6				
108	FF763296571E2377	E71A1538070CCODE	88888606F32EEE6B	082788D246686B00			
	FC05A17405C55176	99DA44B7EF5F55AB ₁	1.6				
		l=25	56				
63	2A66C87C189C12E2	55239406123BDEDB	F19955EAF0808B2A	D705E249220845E2			
	0F4786FB6765D0B5	C48984B1B16556EF	19EA8192B985E423	${\tt 3D9C09508D6339E7}_{16}$			
64	07ABBF8580E7E5A3	21E9B940F667AE20	9E2952CEF557978A	E743DB086BAB4885			
	B708233C3F5541DF	8AAFC3611482FDE4	98E58B3379A6622D	$\mathtt{AC2664C9C118A162}_{16}$			
127	526073918F97928E	9D15508385F42F03	ADE3211A23900A30	131F8A1E3E1EE21C			
	C09D13CFF6981101	235D895746A4643F	OAA62BOA7BC98A26	$\tt 9E4507A257F0D4EE_{16}$			
192	872 <mark>4C7FF8A2A83F2</mark>	2E38CB9763777B96	A70ABA3444F214C7	63D93CD6D19FCFDE			
	6C3D3931857C4FF6	CCCD49BD99852FE9	EAA7495ECCDD96B5	$71 {\tt EOEDCF47F89768}_{16}$			

Приложение Б

(рекомендуемое)

Модуль АСН.1

В модуле АСН.1 определяются идентификаторы следующих алгоритмов:

bash256	алгоритм хэширования уровня стойкости $l = 128;$
bash384	алгоритм хэширования уровня стойкости $l = 192;$
bash512	алгоритм хэширования уровня стойкости $l=256;$
bash-f	алгоритм вычисления значений шаговой функции (пункт 6.2).

Алгоритм хэширования уровня l определяет функцию хэширования $h: \{0,1\}^* \to \{0,1\}^{2l}$. Эта функция может использоваться в алгоритмах ЭЦП СТБ 34.101.45, уточняя их. Правила использования h определены в СТБ 34.101.45 (пункт 5.5). Уточненным алгоритмам ЭЦП присваиваются следующие идентификаторы:

```
bign-with-bash256
                       алгоритмы ЭЦП СТБ 34.101.45 (пункт 7.1) с функцией хэши-
                       рования, заданной алгоритмом bash256;
                       алгоритмы ЭЦП СТБ 34.101.45 с функцией хэширования, за-
bign-with-bash384
                      данной алгоритмом bash384;
                       алгоритмы ЭЦП СТБ 34.101.45 с функцией хэширования, за-
bign-with-bash512
                      данной алгоритмом bash512;
bign-ibs-with-bash256 алгоритмы идентификационной ЭЦП СТБ 34.101.45 (прило-
                       жение В, пункт В.1) с функцией хэширования, заданной ал-
                      горитмом bash256;
bign-ibs-with-bash384 алгоритмы идентификационной ЭЦП СТБ 34.101.45 с функ-
                       цией хэширования, заданной алгоритмом bash384;
bign-ibs-with-bash512 алгоритмы идентификационной ЭЦП СТБ 34.101.45 с функ-
                       цией хэширования, заданной алгоритмом bash512.
```

Модуль АСН.1 имеет следующий вид:

СТБ 34.101.77-2016

```
bash512 OBJECT IDENTIFIER ::= {bash 13}
bash-f OBJECT IDENTIFIER ::= {bash 101}

bign-with-bash256 OBJECT IDENTIFIER ::= {bign 13}
bign-with-bash384 OBJECT IDENTIFIER ::= {bign 14}
bign-with-bash512 OBJECT IDENTIFIER ::= {bign 15}
bign-ibs-with-bash256 OBJECT IDENTIFIER ::= {bign 73}
bign-ibs-with-bash384 OBJECT IDENTIFIER ::= {bign 74}
bign-ibs-with-bash512 OBJECT IDENTIFIER ::= {bign 75}
END
```

Библиография

[1] Bertoni G., Daemen J., Peeters M., Van Assche G. Cryptographic sponge functions Avail. at http://sponge.noekeon.org/CSF-0.1.pdf, 2011 (Бертони Г., Дэмен Дж., Питерс М., ван Аш Г. Криптографические sponge-функции)