

Team undefined

Machine Learning - Coding Challenge - Spring 2022

Ruben Octavio Gonzalez Avilés, Alexander Lontke, Nora Choukrani

The Team

Nora Choukrani Strong Background in Finance

Ruben GonzalezWorking in Quantitative Risk Modelling

Alexander Lontke
Worked as a Machine Learning Engineer

Pre-processing and normalizing the data

Training set sample

Submission set sample

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Training set sample

Submission set sample

Pre-processing and normalizing the data

- **Step 1**: exclude the 10th band of the training samples to only keep 12 bands as in the testing sample
- **Step 2**: move band 9 of submission data to last index to conform to training set
- **Step 3**: normalize all bands of the training data set to a mean of 0 and a standard deviation of 1
- **Step 4**: normalize all bands of the submission data set to a mean of 0 and a standard deviation of 1

The Model

Training Epochs e, vs. Classification Error LCE 1.4 epoch train. loss epoch val. loss 1.2 epoch val. accuracy [Classification Error \mathcal{L}^{CE}] 1.0 0.8 Submission accuracy heuristic 0.6 0.2 0.0 10 20 30 50 [training epoch e_i]

Training and Evaluation

Setup:

- Cross Entropy Loss
- Stochastic gradient descent (LR=0.001)

For experimental research:

- Training: 20'000 samples
- Validation: 7'000 samples
- Up to 200 epochs

For submission:

- Training 27'000 samples
- No Validation set
- 20 epochs

Validation Set - Report

Class	Precision	Recall	F1-Score
AnnualCrop	0.92	0.95	0.94
Forest	0.98	0.99	0.99
HerbaceousVegetation	0.96	0.91	0.94
Highway	0.82	0.86	0.84
Industrial	0.91	0.95	0.93
Pasture	0.92	0.93	0.93
PermanentCrop	0.92	0.89	0.91
Residential	0.98	0.92	0.95
River	0.94	0.96	0.95
SeaLake	1.00	0.99	0.99
Weighted avg	0.94	0.94	0.94

Validation Set - Confusion Matrix

Validation Set - Visualization

Submission Predictions

Class	Predictions Count
SeaLake	1'012
PermanentCrop	714
Highway	572
River	408
AnnualCrop	393
HerbaceousVegetation	365
Pasture	335
Industrial	180
Forest	149
Residential	104
Total	4'232

Additional Approaches

Reflection and Outlook

- Pre-processing of Sentinel Level-1C submission samples to Sentinel Level-2A
 - Would require original Sentinel data products
- Submission set seems unbalanced
 - Different normalization method might be more suitable
- Normalization approach considers bands independent from each other
 - Different normalization method might be more suitable
- We could try more variations of our CNN model architecture

Questions?