Rank-362 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_1^2 X_2 = 0$$

(1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 26294

General information

Number of lines	2
Number of points	25
Number of singular points	0
Number of Eckardt points	0
Number of double points	0
Number of single points	10
Number of points off lines	15
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{2}
Type of lines on points	$1^{10}, 0^{15}$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & \omega^2 & 0 \\ 0 & 1 & 1 & \omega^2 \end{bmatrix}_{76} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix}_{76} = \mathbf{Pl}(2, 3, 2, 0, 1, 1)_{184}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 1 & \omega \end{bmatrix}_{51} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{51} = \mathbf{Pl}(3, 2, 3, 0, 1, 1)_{188}$$

Rank of lines: (76, 51)

Rank of points on Klein quadric: (184, 188)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 10 single points:

The single points on the surface are:

 $0: P_9 = (2,0,1,0)$ lies on line ℓ_0

1: $P_{10} = (3, 0, 1, 0)$ lies on line ℓ_1

2: $P_{33} = (3, 2, 0, 1)$ lies on line ℓ_0

 $3: P_{36} = (2,3,0,1)$ lies on line ℓ_1

4: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_0

5: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 15 points not on any line:

The points on the surface but not on lines are:

 $0: P_8 = (1, 0, 1, 0)$

 $1: P_{16} = (1, 2, 1, 0)$

 $2: P_{20} = (1, 3, 1, 0)$

 $3: P_{26} = (0, 1, 0, 1)$

 $4: P_{30} = (0, 2, 0, 1)$

 $5: P_{34} = (0, 3, 0, 1)$

 $6: P_{38} = (0, 0, 1, 1)$

7: $P_{39} = (1, 0, 1, 1)$

 $8: P_{42} = (0, 1, 1, 1)$

6: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_0

7: $P_{68} = (3, 3, 2, 1)$ lies on line ℓ_1

8: $P_{79} = (2, 2, 3, 1)$ lies on line ℓ_0

9: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_1

9: $P_{53} = (0, 0, 2, 1)$

10: $P_{54} = (1, 0, 2, 1)$

11: $P_{64} = (3, 2, 2, 1)$

 $12: P_{69} = (0, 0, 3, 1)$

13: $P_{70} = (1, 0, 3, 1)$

 $14: P_{83} = (2, 3, 3, 1)$

Line Intersection Graph

0.1000 $1 \mid 0 \mid 0$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

Line 1 intersects

Line in point

The surface has 25 points: The points on the surface are:

$0: P_8 = (1,0,1,0)$	$9: P_{36} = (2, 3, 0, 1)$	18: $P_{64} = (3, 2, 2, 1)$
$1: P_9 = (2,0,1,0)$	$10: P_{38} = (0,0,1,1)$	$19: P_{68} = (3, 3, 2, 1)$
$2: P_{10} = (3, 0, 1, 0)$	11: $P_{39} = (1, 0, 1, 1)$	$20: P_{69} = (0, 0, 3, 1)$
$3: P_{16} = (1, 2, 1, 0)$	$12: P_{42} = (0, 1, 1, 1)$	$21: P_{70} = (1,0,3,1)$
$4: P_{20} = (1,3,1,0)$	13: $P_{46} = (1, 2, 1, 1)$	$22: P_{79} = (2, 2, 3, 1)$
$5: P_{26} = (0, 1, 0, 1)$	$14: P_{50} = (1, 3, 1, 1)$	$23: P_{81} = (0, 3, 3, 1)$
$6: P_{30} = (0, 2, 0, 1)$	15: $P_{53} = (0, 0, 2, 1)$	$24: P_{83} = (2,3,3,1)$
$7: P_{33} = (3, 2, 0, 1)$	16: $P_{54} = (1, 0, 2, 1)$	
$8: P_{34} = (0, 3, 0, 1)$	$17: P_{61} = (0, 2, 2, 1)$	