Выпуклые функции

Определение 1. Функция $f: I \to \mathbb{R}$ называется *выпуклой вниз* на промежутке I, если для каждого отрезка $[x_1; x_2] \subseteq I$ выполнено: в каждой точке этого отрезка $f(x) \leqslant L(x)$, где L — прямая, соединнющая точки $(x_1; f(x_1))$ и $(x_2; f(x_2))$. Если всегда (кроме концов отрезков) верно строгое неравенство f(x) < L(x), говорят о *строгой* выпуклости вниз. Аналогично вводится понятие (строгой) выпуклости вверх.

Задача 1. Пусть функция f определена на интервале (a,b). Докажите, что f выпукла вниз на (a,b) тогда и только тогда, когда выполнено любое из следующих условий:

- а) надграфик f на (a; b), то есть $\{(x, y) \in \mathbb{R}^2 \mid x \in (a, b), y \geqslant f(x)\}$ выпуклое множество;
- **б)** $\alpha \cdot f(x) + (1-\alpha) \cdot f(y) \geqslant f(\alpha \cdot x + (1-\alpha) \cdot y)$ для любых $x,y \in (a,b)$ и любого $\alpha \in [0,1]$;
- в) (неравенство Йенсена) $\frac{\alpha_1 f(x_1) + \dots + \alpha_n f(x_n)}{\alpha_1 + \dots + \alpha_n} \geqslant f\left(\frac{\alpha_1 x_1 + \dots + \alpha_n x_n}{\alpha_1 + \dots + \alpha_n}\right)$ для любых чисел $x_1, \dots, x_n \in (a, b)$ и любых положительных чисел $\alpha_1, \dots, \alpha_n$.

Задача 2. Пусть f положительна и выпукла вниз на [a;b]. Обязательно ли 1/f выпукла вверх на [a;b]?

Задача 3. Докажите, что если функция f выпукла вниз на (a,b), то $\frac{f(x)-f(x_1)}{x-x_1}\leqslant \frac{f(x_2)-f(x)}{x_2-x}$ при любых $x_1< x< x_2$, где $x,x_1,x_2\in (a,b)$.

Задача 4. Пусть функция f дважды дифференцируема (f и f' дифференцируемы) на интервале (a,b). Докажите, что f выпукла вниз на (a,b) если и только если выполнено любое из следующих условий:

- а) f' монотонно неубывает на интервале (a,b); б) $f''(x) \ge 0$ для любого $x \in (a,b)$;
- в) любая касательная l к графику f расположена не выше его: $f(x) \ge l(x)$ при всех $x \in (a,b)$.

Задача 5. Найдите промежутки выпуклости вверх и выпуклости вниз следующих функций:

- a) $\sin x$; 6) x^2 ; B) x^3 ; r) x^4 ; Д) $\sqrt{|x|}$; e) $5x^4 + 7x^3$; ж) $\sin x + \cos x$; 3) $(x(x-1))^{-1}$; И) $x^2 + \frac{1}{x}$.
- **Задача 6.** Докажите, что **a)** $\left(\frac{x_1+\cdots+x_n}{n}\right)^2\leqslant \frac{x_1^2+\cdots+x_n^2}{n};$ **б)** $(x_1y_1+\cdots+x_ny_n)^2\leqslant (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$

Задача 7. Докажите для положительных x_1, \ldots, x_n неравенство Коши: $\frac{x_1 + \ldots + x_n}{n} \geqslant \sqrt[n]{x_1 \ldots x_n}$.

Указание: вам поможет функция ln.

Задача 8. Что больше: $\sqrt[3]{60}$ или $2 + \sqrt[3]{7}$?

Задача 9*. Пусть f выпукла (вниз или вверх) на (a,b). **а)** Докажите, что f(x) непрерывна на (a,b).

- **б)** Верно ли, что f имеет в каждой точке из (a,b) правую и левую касательные?
- в) Докажите, что f дифференцируема на (a,b) везде кроме счётного числа точек.

Точки перегиба

Определение 2. Точка x_0 называется *точкой перегиба* функции f, если существует $\varepsilon > 0$ такое, что f строго выпукла вниз на $(x_0 - \varepsilon, x_0)$ и строго выпукла вверх на $(x_0, x_0 + \varepsilon)$ (или наоборот).

Задача 10. Пусть f дважды дифференцируема в некой окрестности точки x_0 .

- а) Пусть x_0 точка перегиба функции f. Верно ли, что $f''(x_0) = 0$? Верно ли обратное?
- **б)** Докажите, что x_0 точка перегиба f если и только если f'' меняет знак в точке x_0 .

Задача 11. Нарисуйте графики функций из задачи 5 и найдите точки перегиба этих функций.

Задача 12. Пусть f дважды дифференцируема в некоторой окрестности точки x_0 , причём $f'(x_0) = 0$ и

а) $f''(x_0) > 0$; б) $f''(x_0) < 0$. Имеет ли f в x_0 локальный экстремум, и если да, то какого типа?

Задача 13. Сколько перегибов у графика $y = (x+1)/(x^2+1)$? Лежат ли они на одной прямой?

Асимптоты

Определение 3. Прямая y = kx + b называется асимптотой графика функции y = f(x), если $f(x) - (kx + b) \to 0$ при $x \to +\infty$ или $x \to -\infty$. Прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x), если $f(x) \to \infty$ при $x \to x_0$ (справа или слева).

Задача 14. Пусть y=f(x) имеет асимптоту y=kx+b при $x\to +\infty$. Найдите $\lim_{x\to +\infty}\frac{f(x)}{x}$ и $\lim_{x\to +\infty}(f(x)-kx)$.

Задача 15. Пусть существует $\lim_{x\to +\infty} \frac{f(x)}{x} = 1$. Обязательно ли тогда функция f(x) имеет асимптоту?

1 a	1 6	1 B	2	3	4 a	4 6	4 B	5 a	5 6	5 B	5 Г	5 д	5 e	5 ж	5 3	5 и	6 a	6	7	8	9 a	9 6	9 B	10 a	10 6	11	12 a	12 6	13	14	15