Congratulations! You passed!

Grade received 100% **To pass** 80% or higher

Go to next item

Principal Component Analysis

Latest Submission Grade 100%

1. Consider the following 2D dataset:

1/1 point

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

~

The maximal variance is along the y = x line, so this option is correct.

2.	Which of the following is a reasonable way to select the number of principal components k ? (Recall that n is the dimensionality of the input data and m is the number of input examples.)	1/1 point
	,	
	lacktriangledown Choose k to be the smallest value so that at least 99% of the variance is retained.	
	\bigcirc Choose k to be 99% of m (i.e., $k=0.99*m$, rounded to the nearest integer).	
	\bigcirc Choose k to be the largest value so that at least 99% of the variance is retained	
	O Use the elbow method.	
	○ Correct This is correct, as it maintains the structure of the data while maximally reducing its dimension.	
3.	Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?	1/1 point
	$igcolumn{ & rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}\ ^2}{rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}-\mathbf{z}_{\mathrm{approx}}^{(i)}\ ^2} \leq 0.95 \ \end{array}$	
	$igcolumn{ & rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}\ ^2 \ rac{1}{m}\sum_{i=1}^{m}\ x^{(i)}-x_{ ext{approx}}^{ ext{fi}}\ ^2 \geq 0.05 \ \end{array}$	
	$\bigcirc \ \tfrac{\frac{1}{m}\sum_{i=1}^m \ x^{(i)}\ ^2}{\frac{1}{m}\sum_{i=1}^m \ x^{(i)} - \mathbf{z}_{\text{approx}}^{(i)}\ ^2} \leq 0.05$	
	✓ Correct This is the correct formula.	
4.	Which of the following statements are true? Check all that apply.	1/1 point
	If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.	
	✓ Correct Feature scaling prevents one feature dimension from becoming a strong principal component only because of the large magnitude of the feature values (as opposed to large variance on that dimension).	
	Feature scaling is not useful for PCA, since the eigenvector calculation (such as using Octave's svd(Sigma) routine) takes care of this automatically.	
	PCA can be used only to reduce the dimensionality of data by 1 (such as 3D to 2D, or 2D to 1D).	
	$igspace$ Given an input $x\in\mathbb{R}^n$, PCA compresses it to a lower-dimensional vector $z\in\mathbb{R}^k$.	
	 ✓ Correct PCA compresses it to a lower dimensional vector by projecting it onto the learned principal components. 	
5.	Which of the following are recommended applications of PCA? Select all that apply.	1/1 point
	Data visualization: Reduce data to 2D (or 3D) so that it can be plotted.	

This is a good use of PCA, as it can give you intuition about your data that would otherwise be impossible to

lacksquare Data compression: Reduce the dimension of your input data $x^{(i)}$, which will be used in a supervised learning

algorithm (i.e., use PCA so that your supervised learning algorithm runs faster).

If your learning algorithm is too slow because the input dimension is too high, then using PCA to speed it up is a reasonable choice.
To get more features to feed into a learning algorithm.
Clustering: To automatically group examples into coherent groups.