

Sequence Modeling

Week #4 - 2 Oct '24 NLP Lab

NLP Lab Project : Build your own GPT

Text Processing and Bag of Words Mode1

Theory of Word Embeddings: Word2Vec, GloVe

Transformer Model, Advanced Transformers: GPT, BERT

Custom Language Model using Prompt Engineering, RAG

N-grams and

TF-IDF

RNNs: LSTM, GRU; Attention Mechanisms

Fine-Tuning, SFT, Continued Pretraining

1. Language Models Recap

1.1 Language Models

- Models that assign a probability to each possible next word.
- Language models can also assign a probability to an entire sentence, telling us that the following sequence has a much higher probability of appearing in a text.

• Goal: Compute the probability of a sentence or sequence of words.

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

1.2 Discriminative vs Generative Models

• Discriminative model: a model that calculates the probability of a latent trait given the data.

Generative model: a model that calculates the probability of the input data itself.

• Discriminative language models are designed to directly learn the boundary between different classes or outputs, typically in tasks involving classification or structured prediction.

1.3 Autoregressive Language Models

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Token Context

The big problem : How do we predict

$$P(x_i | x_i, x_2, ..., x_{i-1})$$

1.4 Examples of Language Models

- Count-based Language Model
 - Independence assumption: Count-based maximum-likelihood estimation:

$$P(x_i|x_1,\ldots,x_{i-1})\approx P(x_i)$$

o Count-based maximum-likelihood estimation.

$$P_{\text{MLE}}(x_i) = \frac{c_{\text{train}}(x_i)}{\sum_{\tilde{x}} c_{\text{train}}(\tilde{x})}$$

Higher-order n-gram Models

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

Featurized Log-Linear Models

1.5 Problems & Solutions

Cannot share strength among similar words

```
she bought a car she bought a bicycle she purchased a car she purchased a bicycle
```

- → solution: class based language models
- Cannot condition on context with intervening words

```
Dr. Jane Smith Dr. Gertrude Smith
```

- → solution: skip-gram language models
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ solution: cache, trigger, topic, syntactic models, etc.

2. Sequence Modeling

2.1 NLP and Sequential Data

- NLP is full of sequential data :
 - Characters in words
 - Words in sentences
 - Sentences in discourse
 - 0

2.2 Long-distance Dependencies in Language

Agreement in number, gender, etc.

He does not have very much confidence in **himself**.

She does not have very much confidence in **herself**.

Selectional preference.

The **reign** has lasted as long as the life of the **queen**.

The rain has lasted as long as the life of the clouds.

2.3 Can be Complicated!

What is the referent of "it"?

The trophy would not fit in the brown suitcase because it was too big.

Trophy

The trophy would not fit in the brown suitcase because it was too small.

Suitcase

2.4 Types of Sequential Prediction

Unconditioned vs Conditioned

• **Unconditioned Prediction:** Predict the probability of a single variable P(X).

• Conditioned Prediction: Predict the probability of an output variable given an input $P(Y \mid X)$.

2.4 Types of Unconditioned Prediction

2.4 Types of Conditioned Prediction

Autoregressive Conditioned Prediction

$$P(Y|X) = \prod_{i=1}^{|Y|} P(y_i|X, y_1, \dots, y_{i-1})$$

(e.g. seq2seq model)

Non-autoregressive Conditioned Prediction

$$P(Y|X) = \prod_{i=1}^{|Y|} P(y_i|X)$$

(e.g. sequence labeling, non-autoregressive MT)

2.5 Three Major Types of Sequence Models

• **Recurrence**: Condition representations on an encoding of the history.

• **Convolution**: Condition representations on local context.

Attention: Condition representations on a weighted average of all tokens

3. Recurrent Neural Networks

3.1 Recurrent Neural Networks

• Tools to "remember" information.

3.2 Unrolling in Time

function FORWARDRNN(x, network) returns output sequence y

$$\begin{array}{l} \mathbf{h_0} \!\leftarrow\! 0 \\ \mathbf{for} \ i \!\leftarrow\! 1 \ \mathbf{to} \ \mathsf{LENGTH}(\mathbf{x}) \ \ \mathbf{do} \\ \mathbf{h}_i \!\leftarrow\! g(\mathbf{U} \mathbf{h}_{i-1} \ + \ \mathbf{W} \mathbf{x}_i) \\ \mathbf{y}_i \!\leftarrow\! f(\mathbf{V} \mathbf{h}_i) \\ \mathbf{return} \ y \end{array}$$

3.3 Training RNN Language Model

- **Self-Supervision**: the natural sequence of words is its own supervision!
- **Teacher Forcing**: model is always given the correct history sequence to predict the next word (rather than feeding the model its best case from the previous time step).

Source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

3.4 Generation with RNN-Based Language Models

- Autoregressive Generation: Sampling words conditioned on previous choices until a predetermined length is reached, or an end of sequence token is generated.
- The key to these approaches is to prime the generation component with an appropriate context. That is, instead of simply using <s> to get things started we can provide a richer task-appropriate context.

3.5 Vanishing Gradient

Gradients decrease as they get pushed back.

Why? "Squashed" by non-linearities or small weights in matrices.

4. Long Short Term Memory

4.1 Basic Idea of LSTM

- Basic idea: make additive connections between time steps.
- Gates control the flow of the information and the gradients.

Source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

4.1 Equations of Gates in LSTM

- $oldsymbol{\mathsf{f}}_t = oldsymbol{\sigma}(oldsymbol{\mathsf{U}}_foldsymbol{\mathsf{h}}_{t-1} + oldsymbol{\mathsf{W}}_foldsymbol{\mathsf{x}}_t)$
- Update Gate: $\mathbf{g}_t = \tanh(\mathbf{U}_g \mathbf{h}_{t-1} + \mathbf{W}_g \mathbf{x}_t)$
- ullet Input/Add Gate : $oldsymbol{\mathsf{i}}_t \ = \ oldsymbol{\sigma}(oldsymbol{\mathsf{U}}_ioldsymbol{\mathsf{h}}_{t-1} + oldsymbol{\mathsf{W}}_ioldsymbol{\mathsf{x}}_t)$
- $oldsymbol{ ext{o}}_t = oldsymbol{\sigma}(oldsymbol{ ext{U}}_ooldsymbol{ ext{h}}_{t-1} + oldsymbol{ ext{W}}_ooldsymbol{ ext{x}}_t)$

5. Gated Recurrent Unit

4.1 GRU Architecture

-0.3

 x_t

Gates:

$$o_t = \sigma(W_o s_{t-1} + U_o x_t + b_o)$$
$$i_t = \sigma(W_i s_{t-1} + U_i x_t + b_i)$$

States:

$$\tilde{s}_t = \sigma(W(o_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = (1 - i_t) \odot s_{t-1} + i_t \odot \tilde{s}_t$$

6. Encoder-Decoder

6.1 What is Encoder-Decoder?

- Encoder-decoder networks, sometimes called sequence-to-sequence networks, encoder-decoder are models capable of generating contextually appropriate, arbitrary length, output sequences given an input sequence.
- The key idea underlying these networks is the use of an encoder network that takes an input sequence and creates a contextualized representation of it, often called the context.
- This representation is then passed to a decoder which generates a taskspecific output sequence.

Source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

6.2 Encoder-Decoder Models with RNN

7. Attention

7.1 Basic Idea of Attention

- A mechanism that helps models focus on relevant parts of the input when making predictions.
- Overcomes limitations of traditional sequence models (like RNNs) that struggle with long dependencies.
- Two main types of Attention :
 - Cross-Attention
 - Self-Attention

7.2 Cross Attention

• Each element in a sequence attends to elements of another sequence.

7.3 Cross Attention: Bahdanau et al. 2015

- Encoder-Decoder Model:
 - The encoder processes the input sequence and generates hidden states.
 - The attention mechanism computes a weighted sum of these hidden states to form a context vector.
- Key Components:
 - o Encoder Hidden States (h₁, h₂, ..., h□): Represent the input sequence.
 - Decoder Hidden State (s□): Represents the decoder's state at time step t.
 - Alignment Score (e□_i): Measures the relevance between the decoder state at time t and the encoder hidden state h_i.
- Attention Weights (α□i):
 - Computed using the alignment scores.
 - Determine how much "attention" should be paid to each input word.

7.3 Bahdanau Attention : Step-by-Step

- Alignment Scores:
 - Compute alignment scores between the current decoder hidden state and each encoder hidden state.
 - The alignment model is parametrized as a feedforward neural network and jointly trained with the remaining system components.

$$e_{ti} = v^T anh(W_1 s_{t-1} + W_2 h_i)$$

- Softmax Over Alignment Scores:
 - These attention weights tell how much the model should focus on each encoder hidden state.
- Context Vector (c□):
 - Compute a weighted sum of the encoder hidden states based on the attention weights

$$c_t = \sum_{i=1}^n \alpha_{ti} h_i$$

7.4 Luong Attention Mechanism

- Encoder Hidden States (h₁, h₂, ..., h□): Represent the input sequence.
- Decoder Hidden State (s□): Represents the decoder's state at time step t.
- Alignment Scores:
 - \circ Compute alignment scores by taking the dot product of the decoder hidden state $s\square$ and each encoder hidden state h_i .

$$e_{ti} = s_t \cdot h_i$$

- Attention Weights (α□_i):
 - Apply softmax to the alignment scores to get attention weights
- Context Vector (c□):
 - Compute a weighted sum of the encoder hidden states based on the attention weights.

$$c_t = \sum_{i=1}^n lpha_{ti} h_i$$

Test you knowledge!

