(10 points)

Laquelle des équations suivantes est celle du plan tangent à la surface $x^3 + y^2 + (x+1)z^2 = 2$ au point (0, -1, 1)?

(a)
$$-x + 2y - 2z + 1 = 0$$
. (c) $y - z + 2 = 0$.

(c)
$$y - z + 2 = 0$$
.

(e)
$$y - xz + 1 = 0$$
.

(b)
$$x - 2y + 2z = 4$$
.

(d)
$$2x + y + 1 = 0$$
.

Question 2 (10 points)

Soit $f(x,y) = 6xy - 3x^2 - y^3$. Lequel des énoncés suivants est **VRAI**?

- (a) f possède exactement un maximum local et un point de selle, mais aucun minimum local.
- (b) f possède exactement un minimum local et un point de selle, mais aucun maximum local.
- (c) f possède exactement un maximum local et un minimum local, mais aucun point de selle.
- (d) f possède exactement deux points de selle, mais aucun maximum local ni minimum local.
- (e) Les énoncés (a), (b), (c) et (d) sont FAUX.

Question 3 (10 points)

Parmi les polynômes suivants, lequel correspond au polynôme de Taylor de degré 2 de f(x,y) = $x^2y^3 + 3xy^2$ au voisinage du point (0,1)?

(a)
$$-3x + 6xy + x^2$$
.

(c)
$$0$$
.

(e)
$$3y^2$$
.

(b)
$$3x + 6xy + x^2$$
.

(d)
$$3xy(x+y) - 2x^2$$
.

(10 points)

À partir du point $P_0 = (1, 2)$, on se dirige en ligne droite vers le point $P_1 = (4, -2)$. Quel est alors le taux instantané de variation de $f(x,y) = x^2 + 2xy^2 - 3y$ au point P_0 ?

(a) 2.

(b) 10.

(c) $\frac{15}{2}$. (d) $\frac{51}{5}$.

(e) $5\sqrt{5}$.

Question 5

(10 points)

On mesure a=2 avec une erreur relative maximale de 3% et b=1 avec une erreur relative maximale de 2%. Alors l'erreur relative maximale sur $c = a^2 - b^3$ est de

(a) 2%.

(b) 3%.

(c) 6%.

(d) 10%.

(e) 12%.

Question 6 (10 points)

On cherche à maximiser la fonction $f(x,y) = x^2y$ sur l'ellipse $x^2 + 2y^2 = 6$. La méthode de Lagrange associe à ce problème un système d'équations dont les solutions fournissent une liste de points (x,y)à considérer. Quelle est cette liste?

(a) $(0, \pm \sqrt{3}), (2, \pm 1), (-2, \pm 1).$

(d) $(\pm\sqrt{6},0)$, $(0,\pm\sqrt{3})$, $(\pm2,1)$.

(b) $(2,\pm 1), (-2,\pm 1), (\pm \sqrt{6}, 0).$

(e) $(\pm 2, 1), (0, \pm \sqrt{3}).$

(c) $(0, \pm \sqrt{3}), (\pm \sqrt{6}, 0).$

Question 7

(5 points)

On suppose que f = f(x, y, t), x = x(u, v), y = y(u, v), u = u(t) et v = v(t) sont des fonctions dérivables. On définit g(t) = f(x(u(t), v(t)), y(u(t), v(t)), t). Que vaut g'(t)?

(a) $\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial t}\right) \left(\frac{\partial y}{\partial u} + \frac{\partial y}{\partial v}\right) \left(\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t}\right)$.

(d) f_t .

(b) $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial t} + \frac{\partial y}{\partial u} + \frac{\partial y}{\partial v} + \frac{du}{dt} + \frac{dv}{dt}$.

(e) $f_x x_u u' + f_x x_v v' + f_y y_u u' + f_y y_v v'$.

(c) $(f_x x_u + f_y y_u) u' + (f_x x_v + f_y y_v) v' + \frac{\partial f}{\partial t}$

(5 points)

Soit $f(x,y) = \frac{\sqrt{1-x^2-y^2}}{x-y}$. Lequel des énoncés suivants est **VRAI**?

- (a) Le domaine de f est $\{(x,y) \in \mathbb{R}^2 : y \neq x\}$.
- (b) Le domaine de f est $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.
- (c) L'image de f est $\mathbb{R} \setminus \{0\}$.
- (d) L'image de f est $(0, \infty)$.
- (e) Les énoncés (a), (b), (c) et (d) sont FAUX.

Question 9

(5 points)

Si $f(x,y) = x^3y - y^2$, alors $\frac{\partial f}{\partial x}(2,1)$ vaut

- (a) 18.
- (b) 6.
- (c) -3.
- (d) 12.
- (e) 7.

Question 10

(5 points)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction dérivable et soit $P:=(x_0,y_0)$. Lequel des énoncés suivants est **FAUX**.

- (a) Si P est un point critique de f, alors le plan tangent à z = f(x, y) au point $(x_0, y_0, f(P))$ est horizontal.
- (b) Si P est un point critique de f, alors $D_{\vec{u}}f(P)=0$ pour tout vecteur unitaire \vec{u} .
- (c) Si \vec{u} est un vecteur tangent à la courbe de niveau f(P) de f, alors $\vec{u} \cdot \nabla f(P) = 0$.
- (d) Si P est un maximum global de f dans le disque $x^2 + y^2 \le 1$, alors $\nabla f(P) = 0$.
- (e) Si P est un maximum local de f, alors $\nabla f(P) = 0$.

(5 points)

La courbe de niveau 2 de $f(x,y) = 2x^2 + y^2 - x^2y - y$ est

- (a) l'union d'une droite et d'une parabole.
- (d) une hyperbole.

(b) l'union de deux droites.

(e) une ellipse.

(c) l'union de deux paraboles.

Question 12 (5 points)

La direction dans laquelle $f(x,y)=x^2+xy$ diminue le plus rapidement au point (3,-2) est donnée par le vecteur unitaire

- (a) $(\frac{4}{5}, \frac{3}{5})$. (b) $(-\frac{4}{5}, -\frac{3}{5})$. (c) $(\frac{3}{5}, -\frac{4}{5})$. (d) $(-\frac{3}{5}, \frac{4}{5})$. (e) (-1, 0).

Question 13 (5 points)

Lequel des vecteurs suivants est parallèle au plan tangent à la surface $zx^3 + xy^3 + yz^3 = 2$ au point P = (0, 2, 1)?

- (a) (8, 1, 6).
- (b) (-1, 8, -6). (c) (0, 1, 0). (d) (2, 2, -3). (e) (0, 2, 1).

Question 14 (5 points)

L'équation $9x^2+xz+z^3=1+y^3$ définit implictement une fonction z=z(x,y) au voisinage du point (-1,2,1). Que vaut $\frac{\partial z}{\partial y}(-1,2)$?

- (a) $\frac{2}{17}$. (b) $\frac{17}{2}$.
- (c) 0.
- (d) -6.
- (e) 6.