Pen-Based Recognition of Handwritten Digits

Leopold Hillah Tuesday, September 30th, 2014

DATA SOURCE

This training data set was made available by the UCI Machine Learning Repository at the following location: http://archive.ics.uci.edu/ml/machine-learning-databases/pendigits/pendigits.tra. The data is stored in csv format.

ANALYSIS

1. DATA LOADING & PRE-PROCESSING

The data load assumes that the csv file is downloaded and stored in the current working directory, whose value can be obtained by the <code>getwd()</code> R command. The data is then loaded into the dfmovies data frame using the <code>read.csv</code> R command.

Setting global options

```
# set global chunk options: images will be 24x10 inches
knitr::opts_chunk$set(cache=TRUE, echo=TRUE, message=FALSE, fig.width=24, fig.height=10)
```

Setting up the R environment

```
# Clearing the cache
rm(list = ls())

# Loading required libraries
if ((!require(ggplot2)) | (!require(dplyr)) | (!require(reshape2))) install.packages('ggplot2', 'dplyr')
```

Loading and preprocessing the data

```
# Set working directoy here for csv file loading
filepath <- getwd()

# Load csv data data frames

dfpen <- read.csv(paste(filepath, "pendigits.tra", sep="/"), header = FALSE, quote="", comment="", strigstr(dfpen)</pre>
```

```
7494 obs. of 17 variables:
##
   $ V1 : int
               47 0 0 0 0 100 0 0 13 57 ...
##
   $ V2 : int
                100 89 57 100 67 100 100 39 89 100 ...
##
        : int
                27 27 31 7 49 88 3 2 12 22 ...
   $ V3
##
         : int
                81 100 68 92 83 99 72 62 50 72 ...
   $ V5 : int
               57 42 72 5 100 49 26 11 72 0 ...
##
                37 75 90 68 100 74 35 5 38 31 ...
     V6: int
##
     V7 : int
                26 29 100 19 81 17 85 63 56 25 ...
##
    $ V8 : int
                0 45 100 45 80 47 35 0 0 0 ...
##
   $ V9 : int
                0 15 76 86 60 0 100 100 4 75 ...
##
   $ V10: int
                23 15 75 34 60 16 71 43 17 13 ...
                56 37 50 100 40 37 73 89 0 100 ...
##
   $ V11: int
##
   $ V12: int
                53 0 51 45 40 0 97 99 61 50 ...
                100 69 28 74 33 73 65 36 32 75 ...
##
   $ V13: int
##
   $ V14: int
                90 2 25 23 20 16 49 100 94 87 ...
##
   $ V15: int
                40 100 16 67 47 20 66 0 100 26 ...
                98 6 0 0 0 20 0 57 100 85 ...
##
   $ V16: int
   $ V17: int
                8 2 1 4 1 6 4 0 5 0 ...
```

head(dfpen)

```
##
           V2 V3
                   ۷4
                       V5
                            ۷6
                                ۷7
                                     V8 V9 V10 V11 V12 V13 V14 V15 V16 V17
                                 26
## 1
      47 100 27
                   81
                       57
                            37
                                      0
                                          0
                                             23
                                                  56
                                                      53 100
                                                               90
                                                                    40
                                                                              8
##
        0
           89 27 100
                       42
                            75
                                 29
                                     45 15
                                             15
                                                  37
                                                       0
                                                           69
                                                                 2 100
                                                                          6
                                                                              2
## 3
                       72
        0
           57 31
                   68
                            90 100 100 76
                                             75
                                                  50
                                                      51
                                                           28
                                                               25
                                                                    16
                                                                          0
                                                                              1
##
        0 100
               7
                   92
                        5
                            68
                                19
                                     45 86
                                             34 100
                                                      45
                                                           74
                                                               23
                                                                    67
                                                                          0
                                                                              4
## 5
           67 49
                   83 100 100
                                 81
                                     80 60
                                             60
                                                  40
                                                      40
                                                           33
                                                                20
                                                                    47
                                                                          0
                                                                              1
## 6 100 100 88
                   99
                       49
                            74
                                17
                                     47
                                         0
                                             16
                                                  37
                                                           73
                                                               16
                                                                    20
                                                                         20
                                                                              6
                                                        0
```

Once the data is loaded, an initial exploration shows that the first 16 variables are input features and the 17th variable is the class.

All variables are integer variables.

null values per column

We can look at the number of null values in each column of the data set:

```
dfnulls <- colSums(is.na(dfpen))
print(dfnulls)
```

0

V9 V10 V11 V12 V13 V14 V15 V16 V17

0

۷6

0

۷7

V8

0

There is no null values in the data set.

۷4

0

Graph class distribution

VЗ

0

We can next look at the distribution of class values among the entire data set using a histogram:

```
# Graph class distribution
dfclass <- summarise (group_by(dfpen, V17), count = n())</pre>
print(dfclass)
## Source: local data frame [10 x 2]
##
##
      V17 count
            780
## 1
        0
## 2
        1
            779
            780
## 3
        2
            719
## 4
        3
## 5
            780
## 6
        5
            720
## 7
        6
            720
## 8
        7
            778
            719
## 9
## 10
        9
            719
p1 <- ggplot(dfpen, aes(x=V17)) +
  geom_histogram(binwidth=0.5, colour="darkblue", fill="white")+
  xlab("Class")+
  ylab("Count")+
  scale_x_continuous(breaks=seq(0, 17, 1))+
```


theme(text = element_text(size=20),axis.text.x = element_text(angle=30, vjust=1))

Class value distribution are almost uniform.

Correlation among variables

print(p1)

We next look at the correlation among variables (except class or V17):

Highly correlated variables (70% or more) are : - V4 and V12, - V6 and V8, - V6 and V14, - V8 and V14, - V14 and V16

Correlation among variables

[1] "14:16:0.857142926283263"