NTIN071 A&G: Tutorial 5 – Regular expressions (bonus: 2-way automata)

Teaching goals: The student is able to

- define regular expressions and the matching languages
- construct a regular expression for a language given in set notation
- convert a regular expression to a finite automaton
- convert a finite automaton to a regular expression

IN-CLASS PROBLEMS

Problem 1 (Constructing regular expressions). Find regular expressions representing the following languages over $\Sigma = \{a, b\}$ consisting of words that:

(a) start with 'abba',

- (d) do not contain 'aa' as a subword,
- (b) start with 'ab' and end with 'ba',
- (e) contain an even number of a's,
- (c) contain 'abba' or 'bab' as a subword,
- (f) the first letter is the same as the last.

Problem 2 (Regex to automaton). Construct NFAs recognizing the languages described by the following regular expressions:

(a)
$$a^2 + b^2 + ab$$

(b)
$$a + b^*$$

(c)
$$(ab + c)^*$$

Problem 3 (Automaton to regex). Construct regular expressions for languages recognized by the following automata.

Problem 4 (Complement of a Regular Expression). Consider the following regular expression over the alphabet $\Sigma = \{a, b\}$ and let L = L(R).

$$R = ((a+b)(a+b))^*ab$$

- (a) Construct a nondeterministic finite automaton A (as small as possible) recognizing L.
- (b) Use the subset construction to convert A to a deterministic finite automaton B.
- (c) From the automaton B, construct a DFA C recognizing the complement of L.

EXTRA PRACTICE AND THINKING

Problem 5 (Regex to automaton). Construct finite automata accepting languages described by the following regular expressions:

(a) ab + ba

(c) $((ab+c)^*a(bc)^*+b)^*$

(b) $((ab+c)+a(bc)^*+b)^*$

(d) $(01^* + 101)^*0^*1$

Problem 6 (Automaton to regex). Construct regular expressions for languages accepted by the following automata.

Problem 7 (Testing equivalence of regular expressions). Describe an algorithm to test equivalence of two regular expressions. Apply it to $(a+b)(a+b)^*$ and $a(a+b)^* + b(a+b)^*$.

Problem 8 (Are regular expressions regular?). Fix a finite alphabet Σ . Is the language consisting of all regular expressions over Σ a regular language?

Bonus: Two-way automata

Problem 9 (Convert a 2-way automaton). Consider the following two-way DFA.

it recognizes.

(a) Determine the language (c) Convert it to an equivalent one-way automaton.

(b) Determine the functions f_w and the congruence \sim for all w of length ≤ 4 .

a, 1

Problem 10 (Without 2-way automata this is hard). Given a DFA A, design an NFA recognizing the language $L' = \{ \#w \# \mid ww^R \in L(A) \}$. ((Do not use two-way DFAs.)

Problem 11 (Constructing 2-way automata). Let L be a regular language over Σ and $\# \notin \Sigma$. Construct a two-way finite automaton accepting the given language:

(a)
$$L' = \{ \#w\# \mid ww^R \in L \}$$

(b)
$$L' = \{ \#w \# \mid (\exists u \in \Sigma^*) (wu \in L \land |w| = |u|) \}$$