Problem 1. Let

$$S = \{A \in M_n(\mathbb{R}) | \det(A) = 7^k \text{ for some integer } k\}.$$

- (a) Use Corollary 4.2.2 to prove that $S \leq GL(n, \mathbb{R})$.
- (b) Use Corollary 4.2.3 to prove that $S \leq GL(n, \mathbb{R})$.
- (a) Proof. S is a nonempty set because when k=0, the identity matrix, $I \in S$ because $\det(I)=1=7^0$ and $I^{-1}=I$. S is closed under multiplication in $GL(n,\mathbb{R})$ because matrix multiplication is known to be closed and since $\det(AB) = \det(A)\det(B) = \det(7^a)\det(7^b) = \det(7^{a+b})$, $a,b \in \mathbb{Z}$, $B \in S$ and $7^{a+b} \neq 0$, it follows that AB is invertible and has a determinant in the form 7^k which means $AB \in S$. To show that an inverse exists $\forall A \in S$, I use the fact that $A \in GL(n,\mathbb{R})$, so A is invertible and $\det(A^{-1}) = \frac{1}{\det(A)}$. It follows that since $A \in S$, $\det(A) = 7^n$, and that $\det(A^{-1}) = \frac{1}{7^n} = 7^{-n}$. Since A^{-1} exists and has a determinant in the form of 7^k , $A^{-1} \in S$. Since S is closed under matrix multiplication and $\forall a \in S$, $a^{-1} \in S$, by Corollary 4.2.2, S is a subset of GL(n,R).
- (b) Proof. S is a nonempty set because when k=0, the identity matrix, $I \in S$ because $\det(I)=1=7^0$ and $I^{-1}=I$. Since $\det(A)=7^k$ and $\det(B^{-1})=\frac{1}{7^n}=7^{-n}$ where $B\in S$ and $\det(B)=7^n$, then $\det(AB^{-1})=\det(A)\det(B^{-1})=7^k7^{-n}=7^{k-n}$. Since $\det(AB^{-1})=7^{k-n}$, AB^{-1} is invertible and takes the form 7^k . Therefore $AB^{-1}\in S$. Since $AB^{-1}\in S$, $\forall A,B\in S$, this satisfies all of the conditions for Corollary 4.2.3 and therefore S is a subgroup of $GH(n,\mathbb{R})$.

Problem 2. Recall that

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \middle| k \in \mathbb{Z}_{120} \right\}$$

forms a group under multiplication. Prove, in the easiest way, that

$$T = \left\{ \begin{bmatrix} 1 & 0 \\ 3k & 1 \end{bmatrix} \middle| k \in \mathbb{Z}_{120} \right\}$$

is a subgroup of S.

Since $\forall a,b \in T, ab \in T$ because $\begin{bmatrix} 1 & 0 \\ 3k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3n & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3(k+n) & 1 \end{bmatrix}$ and since ab takes the form $\begin{bmatrix} 1 & 0 \\ 3k & 1 \end{bmatrix}, k \in \mathbb{Z}_{120}$, this means $ab \in T$. It is also true that $\forall a \in T, a^{-1}$ exists. To show that a^{-1} exists, I show that there is an element a^{-1} such that $aa^{-1} = I$. If I let $n = -k, \begin{bmatrix} 1 & 0 \\ 3k & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3n & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3(k+-k) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3(0) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3k & 1 \end{bmatrix}$. Since T is closed under S's binary operation and $\forall a \in T, a^{-1}$ exists, by Corollary 4.2.2, T is a subgroup of S.

Problem 3. Consider D_{12} , the dihedral group of degree 12.

- (a) List its elements using the notation we used in class.
- (b) Use the geometric interpretation of the rigid transformations to explain why

$$R_{180}F_1R_{180} = F_1.$$

- (c) Is it true that $R_{180}F_iF_{180} = F_i$ for any i? Explain.
- (d) Is it true that $R_{180}E_iF_{180} = E_i$ for any i? Explain.

(a) $D_{12} = R_0, R_{30}, R_{60}, R_{90}, R_{120}, R_{150}, R_{180}, R_{210}, R_{240}, R_{270}, R_{300}, R_{330}, R_{360}, F_1, F_2, F_3, F_4, F_5, F_6, E_1, E_2, E_3, E_4, E_5, E_6$

(b)

- (c) Yes because rotating 180 degrees clockwise and flipping just makes the next rotation be counterclockwise. This cancels undoes the other rotation just leaving F_i
- (d) Same reasoning as (c), because rotating 180 degrees clockwise and flipping just makes the next rotation be counterclockwise. This cancels undoes the other rotation just leaving E_i

Problem 4. Prove that an abelian group G with two elements a and b of order 2 must have a subgroup H of order 4.

If G is an abelian group with 2 elements a, b with order 2, then $a^2, b^2 = e$. Since a*a = e and b*b = e, $a^{-1} = a$ and $b^{-1} = b$. It follows that a*b*a*b = a*a*b*b = e*e = e so $a*b^{-1} = a*b$ and $e^{-1} = e$. If I let $H = \langle \{e, a, b, a*b\}, *\rangle$, every element in H has an inverse and H is closed. I can show H is closed by showing all operations by left multiplication because it is an abelian group, commutativity holds. They are e*e = e, e*a = a, e*b = b, e*(a*b) = a*a = e, a*b = a*b, a*(a*b) = e*b = b, b*b = e, b*(a*b) = b*b*a = a. This shows H is closed. Since H is closed under the binary operation of G and for all $a \in H$, a^{-1} exists, by Corollary 4.2.2 H is a subgroup of G.

Problem 5. Consider U_{18} , the group of all the 18th roots of unity.

- (a) List the elements of U_{18} in the form of ω^k for some fixed complex number ω . What should be your choice for ω ? In other words, which complex number should ω be?
- (b) Let $S = \{1, \omega^3, \omega^6, \omega^9, \omega^{12}, \omega^{15}\}$. Show that $S \leq U_{18}$.
- (c) Let $T = \{1, \omega^6, \omega^{12}\}$. Show that $T \leq S$.

(a)
$$U_{18} = \{1, \omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega^6, \omega^7, \omega^8, \omega^9, \omega^{10}, \omega^{11}, \omega^{12}, \omega^{13}, \omega^{14}, \omega^{15}, \omega^{16}, \omega^{17}\}$$
, and $\omega = \operatorname{cis}(\frac{360}{18}) = \operatorname{cis}(20)$

(b)

*	1	ω^3	ω^6	l	ω^{12}	ω^{15}
1	1	ω^3	ω^6	ω^9	ω^{12}	ω^{15}
ω^3	ω^3	ω^6	ω^9	ω^{12}	ω^{15}	1
ω^6	ω^6	ω^9	ω^{12}	ω^{15}	1	ω^3
ω^9	ω^9	ω^{12}	ω^{15}	1	ω^3	ω^6
ω^{12}	ω^{12}	ω^{15}	1	ω^3	ω^6	ω^9
ω^{15}	ω^{15}	1	ω^3	ω^6	ω^9	ω^{12}

Since $\forall a, b \in S$, $a * b \in S$ as shown above, is closed. Now to show $\forall a \in S, a^{-1} \in S$, I show there is an a^{-1} such that $a * a^{-1} = e$. This is when $a^{-1} = \omega^{18-k}$ where $a = \omega^k$. Using Corollary 4.2.2, this proves $S \leq U_{18}$

Since $\forall a, b \in T$, $a * b \in T$ is closed. Now to show $\forall a \in T, a^{-1} \in T$, I show there is an a^{-1} such that $a * a^{-1} = e$. This is when $a^{-1} = \omega^{18-k}$ where $a = \omega^k$. Using Corollary 4.2.2, this proves $T \leq U_{18}$

Problem 6. Let $H = \{a + bi \mid a, b \in \mathbb{R} \text{ and } a^2 + b^2 = 1\}$. Describe the elements of H geometrically. Prove or disprove that H is a subgroup of \mathbb{C}^* under multiplication.

H represents the unit complex circle. H is a subgroup of \mathbb{C}^* under multiplication because it satasfies all requirements of Corollary 4.2.3. First, $\forall a,b \in \mathbb{C}^*$, b^{-1} exists because I can find an element b^{-1} such that $bb^{-1}=1+1i$. If b=c+di, $b^{-1}=\frac{1}{c}+\frac{1}{d}i$ and if I let $e=\frac{1}{c}$ and $f=\frac{1}{d}$, then $b^{-1}=e+fi$. To show that $ab^{-1} \in H$, I will multiply them out and show that the real part squared plus the coefficient of the imaginary part squared is equal to one. That is, if a=(x+yi) and $b^{-1}=e+fi$ then,

$$ab^{-1} = (x + yi)(e + fi) = -xe - xfi - yei + yf = -xe + yf + (-xf - ye)i$$

and to show

$$(-xe + yf)^2 + (-xfi - yei)^2 = 1$$

I simplify further to find

$$(-xe + yf)^2 = (xe)^2 - 2xeyf + (yf)^2$$

and

$$(-xfi - yei)^2 = (xf)^2 + 2xfye + (ye)^2$$

adding these two together I get

$$(xe)^2 + (xf)^2 + (yf)^2 + (ye)^2 = x^2(e^2 + f^2) + y^2(e^2 + f^2) = x^2(1) + y^2(1) = x^2 + y^2 = 1$$

This shows that $ab^{-1} \in H$. Since $ab^{-1} \in H$ and H is nonempty because ab^{-1} exists, by Corollary 4.2.3, H is a subgroup of \mathbb{C}^* under multiplication.

Problem 7. Prove that if G is an abelian group with identity e, then all elements x of G satisfying the equation $x^2 = e$ form a subgroup of G. Be sure to show all the steps in your argument.

I want to show that $H = \{x \in G \mid x^2 = e\} \le G$. To do this I will use Corollary 4.2.3. H is nonempty because it contains e. $b^{-1} = b$ because $b^2 = b*b = e$. Then, $a*b^{-1} \in H$ because $(a*b^{-1})^2 = (a*b)^2 = a*a*b*b = e*e = e$ which also means $(a*b)^{-1} = a*b$. Since H is nonempty and ab^{-1} exists for all $a, b \in H$, then by Corollary 4.2.3, H is a subgroup of G.

Problem 8. Let p and q be distinct primes. Suppose $H < \mathbb{Z}$ and H contains exactly three of the five elements $p, p + q, pq, p^q$, and q^p . Determine which of the following are these three elements.

The answer is (iii) p, p + q, pq

Problem 9. List the elements of $\langle \frac{1}{2} \rangle$ in $\langle \mathbb{Q}, + \rangle$ and in $\langle \mathbb{Q}^*, \cdot \rangle$.

The elements that $\langle Q, + \rangle$ and $\langle Q^*, \cdot \rangle$ share is equal to $\{2^n \mid n \geq -1 \ , n \in \mathbb{Z}\}$

Problem 10. Recall that $U(20) = \mathbb{Z}_{20}^*$. What are its elements? How can you check whether U(20) is cyclic?

The elements are

$$U(20) = \{7, 9, 11, 13, 17, 19\}$$

I could check to see whether U(20) is cyclic by checking if there is a generator in U(20) that generates U(20). If there is, it is cyclic, but if there isn't it is not.

Problem 11. The group U(15) has six cyclic subgroups. List them.

The cyclic subgroups of U(15) are

$$\langle 1 \rangle = \{1\}$$

$$\langle 2 \rangle = \{2, 4, 8, 1\}$$

$$\langle 4 \rangle = \{4,1\}$$

$$\langle 7 \rangle = \{7, 4, 13, 1\}$$

$$\langle 11 \rangle = \{11,1\}$$

$$\langle 14 \rangle = \{14, 1\}$$