Back to darts

Darts were thrown according to a bivariate normal distribution:

$$(X,Y) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \qquad \begin{array}{c} \boldsymbol{\mu} = (450,600) & \begin{array}{c} \boldsymbol{\Sigma} & \boldsymbol{\Sigma} \\ \boldsymbol{\Sigma} \end{array} \\ \boldsymbol{\Sigma} = \begin{bmatrix} 900^2/4 & 0 \\ 0 & 900^2/25 \end{bmatrix} \end{array}$$

A diagonal covariance matrix

Let $X = (X_1, X_2)$ follow a bivariate normal distribution $X \sim \mathcal{N}(\mu, \Sigma)$, where

$$\mu = (\mu_1, \mu_2), \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
 Still case Cov $(X_1, X_2)^{-\nu}$

Are X_1 and X_2 independent?

$$f(x_{1},x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left(\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x_{1}-\mu_{1})(x_{2}-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}}\right)}$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}}e^{-\frac{1}{2}\left(\frac{(x_{1}-\mu_{1})^{2}}{\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{\sigma_{2}^{2}}\right)}$$

$$= \frac{1}{\sigma_{1}\sqrt{2\pi}}e^{-(x_{1}-\mu_{1})^{2}/2\sigma_{1}^{2}} \frac{1}{\sigma_{2}\sqrt{2\pi}}e^{-(x_{2}-\mu_{2})^{2}/2\sigma_{2}^{2}}$$
(Note covariance: $\rho\sigma_{1}\sigma_{2} = 0$)
$$X_{1} \text{ and } X_{2} \text{ are independent with marginal distributions}$$

$$X_{1} \sim \mathcal{N}(\mu_{1}\sigma_{1}^{2}), X_{2} \sim \mathcal{N}(\mu_{2}\sigma_{2}^{2})$$
(Stanford University 33)

Why are joint PDFs useful?

Independence
2-D support
Joint PDF
Joint CDF
Marginal PDF
(Friday) Conditional PDF

- How 2 continuous RVs vary with each other
- How continuous RV is distributed given evidence (more on Friday)
- How a continuous RV can be decomposed into 2 RVs (or vice versa)

P(X < Y), Cov(X, Y), $\rho(X, Y)$

Given Y = y, the distribution of X

Distribution of Z = X + Y(which is a <u>1-D</u> RV!)

09, Winter 2023 Stanford University 36

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Sum of Independent Gaussians

Sum of independent Gaussians

Z = [0,20]

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2),$$

 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 $X, Y \text{ independent}$ $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

(proof left to Wikipedia)

Holds in general case:

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$X_i \text{ independent for } i = 1, \dots, n$$

$$\sum_{i=1}^n X_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Stanford University 38

Back for another playoffs game

What is the probability that the Warriors win? How do you model zero-sum games?

$$P(A_W > A_B)$$

This is a probability of an event involving two random variables!

We will compute:

$$P(A_W - A_B > 0)$$

A sum of Normals! Stanford University 39

Motivating idea: Zero sum games

Want: $P(\text{Warriors win}) = P(A_W - A_B > 0)$

Assume A_W , A_B are independent.

Let
$$D = A_W - A_B$$
.

What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

B.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$$

C.
$$D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$$

D.
$$D \sim \mathcal{N}(1657 + 1470, 200^2)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Motivating idea: Zero sum games

Want: $P(Warriors win) = P(A_W - A_R > 0)$

Assume
$$A_W$$
, A_B are independent.
Let $D = A_W - A_B$. The second $A_W + (-A_B)$ $-A_B \sim N(-1470 - (-1)^2 200^2)$
What is the distribution of D ?

What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

(B.)
$$D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$$

C.
$$D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$$

D.
$$D \sim \mathcal{N}(1657 + 1470, 200^2)$$

1500

1500

Opponents
$$A_B \sim \mathcal{N}(S = 1470, 200^2)$$
 0.0025
 0.002
 0.0015
 0.0005

If
$$X \sim \mathcal{N}(\mu_1, \sigma^2)$$
,
then $(-X) \sim \mathcal{N}(-\mu, (-1)^2 \sigma^2 = \sigma^2)$.

2000

2000

2500

Motivating idea: Zero sum games

Want: $P(Warriors win) = P(A_W - A_R > 0)$

Assume A_W , A_B are independent.

Let
$$D = A_W - A_B$$
.

$$D \sim \mathcal{N} (1657 - 1470, 200^2 + 200^2)$$

 $\sim \mathcal{N} (187, 2 \cdot 200^2) \quad \sigma \approx 282.842$

$$P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{282.842}\right)$$

 ≈ 0.74574

Compare with 0.7488, calculated by sampling!

>>> from scipy.stats import norm >>> 1 - norm(187, 80000 ** 0.5).cdf(0) >>> 1 - norm(0, 1).cdf(-187 / (80000 ** 0.5))

Stanford University 42

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Virus infections

Suppose you are working with the WHO to initiate a response to the onset of a virus. There are two exposed groups:

- G1: 20000 people, each independently infected with $p_1=0.1$
- G2: 10000 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 6100)$? An approximation is okay.

Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(20000,0.1)$ B = # infected in G2. $B \sim Bin(10000,0.4)$

Want: $P(A + B \ge 6100)$

Strategy:

A. Sum of independent Binomials

B. Sum of independent Poissons Sum of independent Gaussians] אוויישאָן

D. Sum of independent Exponentials

mean and stden of Bar very different Stanford University 43

Virus infections

Suppose you are working with the WHO to initiate a response to the onset of a virus. There are two exposed groups:

- G1: 20000 people, each independently infected with $p_1 = 0.1$
- G2: 10000 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 6100)$? An approximation is okay.

- 1. Define RVs & state goal
- Let A = # infected in G1. $A \sim Bin(20000,0.1)$ B = # infected in G2. $B \sim Bin(10000,0.4)$
- 2. Approximate as sum of Gaussians

 $A \approx X \sim \mathcal{N}(2000, 1800) B \approx Y \sim \mathcal{N}(4000, 2400)$ $P(A + B \ge 6100) \approx P(X + Y \ge 6099.5) \frac{\text{continuity}}{\text{correction}}$ 3. Solve

Want: $P(A + B \ge 6100)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Stanford University 44

Virus infections

>>> 1 - norm(6000, 4200 ** 0.5).cdf(6099.5)
0.06235282662988528
>>> 1 - norm(0, 1).cdf((6099.5 - 6000)/(4200 ** 0.5))
0.06235282662988528

Suppose you are working with the WHO to initiate a response to the onset of a virus. There are two exposed groups:

- G1: 20000 people, each independently infected with $p_1=0.1$
- G2: 10000 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 6100)$? An approximation is okay.

- Define RVs
 & state goal
 - Let A = # infected in G1. $A \sim \text{Bin}(20000,0.1)$ B = # infected in G2. $B \sim \text{Bin}(10000,0.4)$

Want: $P(A + B \ge 6100)$

2. Approximate as sum of Gaussians

 $A \approx X \sim \mathcal{N}(2000, 1800) B \approx Y \sim \mathcal{N}(4000, 2400)$ $P(A + B \ge 6100) \approx P(X + Y \ge 6099.5)$ continuity correction

3. Solve

Let
$$W = X + Y \sim \mathcal{N}(6000, 4200)$$

 $P(W \ge 6099.5) = 1 - \Phi\left(\frac{6099.5 - 6000}{\sqrt{4200}}\right)$
 $\approx 1 - \Phi(1.53531) \approx 0.06235$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Stanford University 45

Sum of independent Gaussians

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2),$$
 $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ X_1, X_2 independent

Is this related to linear transformations of Gaussians?

Recall:

If
$$Y = \underline{a}X + \underline{b}$$
, then $Y \sim \mathcal{N}(\underline{a}\mu_X + \underline{b}, \underline{a}^2\sigma_X^2)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2023

Stanford University 46

Linear transforms vs. independence

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = X + X. What is the distribution of Y? Are both approaches valid?

Independent RVs approach

Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then $Y = X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

$$Y = X + X$$
 independent $X + X \sim \mathcal{N}(\mu + \mu, \sigma^2 + \sigma^2)$? of $X!$ $Y \sim \mathcal{N}(2\mu, 2\sigma^2)$?

Linear transform approach

Let
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
.
If $Y = aX + b$,
then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

$$Y = 2X$$
$$Y \sim \mathcal{N}(2\mu, 4\sigma^2)$$

For independent
$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2),$$

 $aX_1 + bX_2 + c \sim \mathcal{N}(a\mu_1 + b\mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$