1

IF672ec Algoritmos e Estr. de Dados 2023.1

Prof. Paulo Fonseca

Primeira Prova — 03 de Agosto de 2023

■ **QUESTÃO** 1 (2,0pt)

Considere o algoritmo a seguir

Algorithm whatdoido

Input *head* ptr. para cabeça de uma lista com sentinela

Output ??? $1 chg \leftarrow T$

13 return head

```
1 chg \leftarrow True
 2 while chg do
           chg \leftarrow False
           cur \leftarrow head
 4
 5
           while cur \rightarrow next \rightarrow next \neq \bot do
 6
                 ncur \leftarrow cur \rightarrow next
                 if ncur \rightarrow val > ncur \rightarrow next \rightarrow val
 7
                 then
 8
                       cur \rightarrow next \leftarrow ncur \rightarrow next
                       ncur \rightarrow next \leftarrow ncur \rightarrow next \rightarrow
 9
                       cur \rightarrow next \rightarrow next \leftarrow ncur
10
11
                       chg \leftarrow True
12
                 cur \leftarrow cur \rightarrow next
```

a) Ilustre a execução sobre a entrada

$$\backslash \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 1 \rightarrow \bot$$

exibindo a lista ao final de cada iteração do loop externo (linhas 2–15).

- b) Descreva brevemente *o que* o algoritmo faz, ou seja, que resultado produz a partir da entrada.
- c) Qual a complexidade assintótica do *pior caso*? Justifique sucintamente.

■ **QUESTÃO 2** (2,0pt)

Dados um vetor de inteiros $V = (v_0, ..., v_{n-1})$ e um inteiro S, queremos encontrar dois elementos v_i e v_j de V tais que

 $v_i + v_j = S$. Esse problema pode ser resolvido com auxílio de uma tabela de dispersão (*Hashtable*) da seguinte maneira. Inicie com uma hashtable H vazia. Para cada i = 0, ..., n-1, procure $d = S - v_i$ em H. Caso encontre, retorne (d, v_i) . Caso não encontre, insira v_i em H e continue. Se, após haver inserido todos os elementos de V, ainda não tiver encontrado um par de soma S, é porque tal par não existe, e nesse caso retorne \bot .

Considere uma hashtable *aberta* de tamanho inicial m=3 com função de dispersão $h(k)=k \mod m$. Nesta tabela, imediatamente antes de cada inserção, se o *fator de carga* for maior que o limite $\alpha_{max}=0.5$, executa-se o *rehashing*, atualizando o tamanho da tabela para 2m+1.

Ilustre a execução do algoritmo sobre a entrada

$$V = (28, 54, 25, 60, 14, 44, 45)$$
 $S = 70,$

exibindo a tabela após cada inserção realizada. Indique o que o algoritmo retorna neste caso.

QUESTÃO 3 (2,0pt)

Num vetor de inteiros $V = (v_0, \ldots, v_{n-1})$, temos uma *inversão* quando um valor maior está à esquerda de um valor menor, isto é quando um par (i,j) é tal que i < j e $v_i > v_j$. Podemos contar a quantidade de inversões de um array com uma variação do *Mergesort*, como explicado a seguir.

A função *merge* combina dois segmentos adjacentes ordenados $V[l:m]=(v_l,\ldots,v_{m-1})$ e $V[m:r]=(v_m,\ldots,v_{r-1})$. Se, ao comparar um elemento v_i do primeiro

segmento com um elemento v_j do segundo segmento, tivermos $v_j < v_i$, então v_j está invertido com relação a v_i e todos os demais elementos do primeiro segmento à direita da posição i, ou seja, devemos contabilizar mais m-i inversões.

Ilustre a execução deste *Mergesort* modificado sobre o vetor de entrada

$$V = (4, 0, 6, 2, 7, 3, 1, 5)$$

exibindo o vetor *V* imediatamente após cada execução da função *merge*, juntamente com o número de inversões contabilizadas até então.

QUESTÃO 4 (2,0pt)

- a) Desenhe uma AVL com 8 nós de valores 10,20,30,...,80, cuja soma dos *fatores de balanço* dos nós é *máxima*.
- b) Ilustre a inserção da chave 45 nessa árvore, representando as rotações necessárias.

■ **QUESTÃO** 5 (2,0pt)

Suponha que queiramos amarrar progressivamente n cordas de comprimentos $L=(l_0,\ldots,l_{n-1})$ de maneira a formar uma única corda. Cada vez que unimos as extremidades de duas cordas com um nó, transformamos essas duas cordas numa só, e portanto a quantidade de cordas diminui em uma unidade. Desta forma, após

n-1 nós, teremos uma única corda. Suponha adicionalmente que queiramos realizar a sequência de nós com menor custo total, sendo que o custo de um nó é igual à soma dos comprimentos das duas cordas unidas.

Por exemplo, se tivermos n=3 cordas de comprimentos L=(1,2,3), podemos unir as cordas de comprimentos 1 e 2, com um nó de custo $c_0=1+2=3$, e então teremos duas cordas de comprimentos (3,3). Para uní-las, precisaremos de um nó de custo $c_1=3+3=6$, e portanto o custo total da operação será $C=c_0+c_1=3+6=9$. De fato, este é o custo mínimo. Se, por exemplo, houvéssemos unido primeiro as cordas de comprimentos 2 e 3, teríamos $c_0=5$ e $c_1=6$, e portanto o custo total seria C=11.

Esse problema pode ser resolvido com o auxílio de uma *min-heap* da seguinte forma:

- 1. Transforme *L* numa min-heap
- 2. Inicialize $C \leftarrow 0$
- 3. Enquanto $heap_size(L) > 1$:
 - $3.1 \ x \leftarrow heap_extract(L)$
 - 3.2 $y \leftarrow heap_extract(L)$
 - $3.3 \ s \leftarrow x + y$
 - $3.4 \ heap_insert(L,s)$
 - $3.5 \ C \leftarrow C + s$

Considerando a execução do algoritmo acima sobre a entrada

$$L = (4, 3, 2, 6, 1)$$

- a) Ilustre a construção *offline* da minh-heap do passo 1.
- b) Ilustre a execução do laço do passo 3, exibindo a min-heap na forma de árvore após cada passo 3.1, 3.2 e 3.4.