Corrigé de l'examen

mercredi 1er juin

Durée: 2 heures

1 Ensembles et applications

Solution de l'exercice 1.

Les réponses sont dans le cours.

Solution de l'exercice 2.

- **1.** Supposons que $A \cup B = B$ et montrons que $A \subseteq B$. Soit $a \in A$. On a alors que $a \in A \cup B = B$, donc $a \in B$. On a bien montré que $A \subseteq B$.
- Supposons que $A \subseteq B$ et montrons que $A \cup B = B$. Il est clair que $B \subseteq A \cup B$. De plus, $A \cup B \subseteq B$. En effet, pour tout $x \in A \cup B$, on a que $x \in B$ ou $x \in A \subseteq B$. Par double inclusion, on a $A \cup B = B$.
- **2.** Supposons que $A \cap B = B$ et montrons que $B \subseteq A$. Soit $b \in B$. On a alors que $b \in B = A \cap B$, donc $b \in A$. On a bien montré que $B \subseteq A$.

Supposons que $B \subseteq A$ et montrons que $A \cap B = B$. Il est clair que $A \cap B \subseteq B$. De plus, $B \subseteq A \cap B$. En effet, pour tout $x \in B$, on a aussi $x \in B \subseteq A$, donc $x \in A \cap B$. Par double inclusion, on a $A \cap B = B$.

Solution de l'exercice 3.

- **1.(a)** On suppose que $A \subseteq B$. Montrons que $E \setminus B \subseteq E \setminus A$. Soit $x \in E \setminus B$, i.e. $x \notin B$. Si par l'absurde $x \in A$, alors $x \in B$ car $A \subseteq B$. Ainsi, on a $x \notin A$, i.e $x \in E \setminus A$.
- **1.(b)** On procède par double inclusion. Montrons tout d'abord que $E \setminus (E \setminus A) \subseteq A$. Soit $x \in E \setminus (E \setminus A)$, i.e. $x \notin E \setminus A$. Si par l'absurde $x \notin A$, alors $x \in E \setminus A$, absurde, c'est donc que $x \in A$.

Montrons désormais que $A \subseteq E \setminus (E \setminus A)$. Si $x \in A$, alors $x \notin E \setminus A$ (par l'absurde, $x \in E \setminus A$ serait équivalent à $x \notin A$). Or, ceci équivaut à $x \in E \setminus (E \setminus A)$.

1.(c) On peut utiliser la question 1.(a): comme $A \subseteq A \cup B$, alors $E \setminus (A \cup B) \subseteq E \setminus A$ et également $B \subseteq A \cup B$ donc $E \setminus (A \cup B) \subseteq E \setminus B$. Ainsi, on a bien $E \setminus (A \cup B) \subseteq E \setminus A \cap E \setminus B$.

^{1.} En fait, il suffit de prendre la contraposée de la phrase $si\ x\in A\ alors\ x\in B$ pour obtenir que $si\ x\not\in B$, $alors\ x\not\in A$, on obtient alors une démonstration plus élégante. Cependant, nous n'avons pas travaillé le passage d'une proposition à sa contraposée, ce n'était donc pas exigible ici, et j'écris la correction en conséquence.

Sinon, on pouvait procéder par double inclusion. Soit $x \in E \setminus (A \cup B)$, i.e. $x \notin A \cup B$. Montrons tout d'abord que $x \in E \setminus A$, i.e. $x \notin A$. Si par l'absurde $x \in A$, alors $x \in A \cup B$, absurde. De même, on montre que $x \in E \setminus B$. Ainsi, $x \in E \setminus A$ et $x \in E \setminus B$, i.e. $x \in (E \setminus A) \cap (E \setminus B)$.

Soit $x \in (E \setminus A) \cap (E \setminus B)$. On a alors $x \notin A$ et $x \notin B$. Si par l'absurde $x \in A \cup B$, alors $x \in A$ ou $x \in B$, absurde. Donc $x \notin A \cup B$, i.e. $x \in E \setminus (A \cup B)$.

- **2.(a).i.** Par définition, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $A \neq A'$, on a $f(A) \neq f(A')$, i.e. $E \setminus A \neq E \setminus A'$.
- **2.(a).ii.** En prenant la contraposée, f est injective si pour toutes parties $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$, on a A = A'.
- **2.(a).iii.** Montrons que f est injective. Soient $A \in \mathcal{P}(E)$ et $A' \in \mathcal{P}(E)$ telles que $E \setminus A = E \setminus A'$. Montrons qu'alors A = A' par double inclusion. Montrons donc que $A \subseteq A'$. On a que $E \setminus A \subseteq E \setminus A'$ puisque ces deux ensembles sont égaux par hypothèse, donc $E \setminus (E \setminus A) \subseteq E \setminus (E \setminus A')$ par la question 1.(a), i.e. $A \subseteq A'$ par 1.(b). Le cas $A' \subseteq A$ est symétrique.
- **2.(b).i.** Par définition, f est surjective si pour tout $B \in \mathcal{P}(E)$, il existe $A \in \mathcal{P}(E)$ telle que f(A) = B, i.e. $E \setminus A = B$.
- **2.(b).ii.** Montrons que f est surjective. Soit $B \in \mathcal{P}(E)$. On pose $A = E \setminus B$. On a alors par 1.(b) que $f(A) = E \setminus A = E \setminus (E \setminus B)$ et donc f(A) = B par 1.(c).

2 Suites et limites

Solution de l'exercice 4.

Les réponses sont dans le cours.

Solution de l'exercice 5.

1.

$$u: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & n \end{array}$$

2.

$$v: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & -1 + \frac{(-1)^n}{n+1} \end{array}$$

3.

$$w: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & -1 + \frac{1}{n+1} \end{array}$$

5.

$$y: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & 0 \end{array}$$

On pose M=0. On a alors que pour tout $n \in \mathbb{N}$, $y_n=0 \ge 0=M$, i.e. y est minorée par 0.

6.

$$z: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & -n \end{array}$$

Soit M<0. Comme $\mathbb R$ est archimédien et -M>0 et 1>0, il existe $n\in\mathbb N$ tel que -M< n, i.e. $M>-n=z_n$. On a donc bien montré que z n'était pas minorée.

7.

$$a: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & \frac{1}{n+1} \end{array}$$

La suite a n'est pas constante car $a_0 = 1 \neq 1/2 = a_1$. De plus, elle tend vers 0, la preuve figure dans le corrigé de la feuille 2 de TD.

3 Probabilités

Solution de l'exercice 6.

Les réponses sont dans le cours.

Solution de l'exercice 7.

1. On modélise l'expérience par l'univers fini $\Omega = \{1, \dots, 60\}$ muni de la loi de probabilité uniforme. L'évènement A ="tirer un multiple de 5" est alors

$$A = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60\},\$$

de cardinal 12. On a donc :

$$\mathbb{P}(A) = \frac{12}{60} = \frac{1}{5}.$$

2.(a) On peut calculer l'espérance de X:

$$\mathbb{E}[X] = 0 \times \mathbb{P}(X = 0) + 2 \times \mathbb{P}(X = 2) + 4 \times \mathbb{P}(X = 4) + 6 \times \mathbb{P}(X = 6),$$

= 2 \times 0.5 + 4 \times 0.1 + 6 \times 0.1,
= 2.

2.(b) On a alors $Y(\Omega) = \{0, 4, 16\}.$

2.(c) On a les égalités suivantes :

$$\{Y = 0\} = \{X = 2\}$$
$$\{Y = 4\} = \{X = 4\} \cup \{X = 0\}$$
$$\{Y = 16\} = \{X = 6\}.$$

On peut donc calculer en utilisant le fait que $\{X=2\} \cap \{X=0\} = \emptyset$,

$$\mathbb{P}(Y = 0) = 0.5,$$

 $\mathbb{P}(Y = 4) = 0.1 + 0.3 = 0.4,$
 $\mathbb{P}(Y = 16) = 0.1.$

2.(d) On peut donc calculer

$$\begin{split} \mathbb{V}(X) &= \mathbb{E}[Y] \\ &= 0 \times \mathbb{P}(Y = 0) + 4 \times \mathbb{P}(Y = 4) + 16 \times \mathbb{P}(Y = 16), \\ &= 0 + 1.6 + 1.6, \\ &= 3.2. \end{split}$$

Solution de l'exercice 8.

1. La variable aléatoire Y a pour univers image $\{0,1\}$ et l'on a de plus $\mathbb{P}(Y=1) = \mathbb{P}(X=0) = 1 - \mathbb{P}(X=1) = 1 - p$. La variable aléatoire Y est donc une variable de Bernoulli de paramètre 1 - p.

2. Les variables X et Y ne sont pas indépendantes, en effet :

$$\mathbb{P}(X=0\cap Y=0)=\mathbb{P}(\emptyset)=0,$$

mais

$$\mathbb{P}(X=0) \times \mathbb{P}(Y=0) = (1-p)p \neq 0,$$

 $car \ 0$

3. L'univers image de XZ est $XZ(\Omega) = \{0,1\}$. De plus,

$$\mathbb{P}(XZ = 1) = \mathbb{P}(\{X = 1\} \cap \{Z = 1\}),$$

car si X = 0 ou Z = 0 alors XZ = 0. Donc, par indépendance de X et Z,

$$\mathbb{P}(XZ = 1) = \mathbb{P}(X = 1 \cap Z = 1) = \mathbb{P}(X = 1)\mathbb{P}(Z = 1) = pq.$$

La variable XZ est donc bien une variable de Bernoulli de paramètre pq.

Solution de l'exercice 9.

Soit X une VAR sur un univers fini Ω .

- 1. Montrer la formule de König-Huygens : $\mathbb{V}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$. On rappelle que $(a+b)^2 = a^2 + 2ab + b^2$.
- 2. Montrer que $\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$.

Solution de l'exercice 10.

Soit X une VAR sur un univers fini Ω .

- 1. On va montrer la formule de König-Huygens : $\mathbb{V}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
 - (a) Montrer que pour tout nombres réels a et b, on a $(a+b)^2 = a^2 + 2ab + b^2$.
 - (b) En déduire que $(X \mathbb{E}[X])^2 = X^2 2 \times \mathbb{E}[X] \times X + \mathbb{E}[X]^2$.
 - (c) Si Y est une variable aléatoire constante égale à une valeur $C \in \mathbb{R}$. Quelle est l'espérance de Y? Le démontrer.
 - (d) Déduire des questions précédentes que $\mathbb{V}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- 2. Montrer l'inégalité de Cauchy-Schwartz : $\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$.

Solution de l'exercice 11.

- **1.(a)** Soient a et b deux nombres réels. On peut calculer $(a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$.
- **1.(b)** On utilise la question précédente pour montrer que pour tout $\omega \in \Omega$, on a

$$(X - \mathbb{E}[X])^{2}(\omega) = (X(\omega) - \mathbb{E}[X])^{2}$$
$$= X(\omega)^{2} - 2 \times X(\omega) \times \mathbb{E}[X] + \mathbb{E}[X]^{2}.$$

Ainsi, on $a(X - \mathbb{E}[X])^2 = X^2 - 2 \times X \times \mathbb{E}[X] + \mathbb{E}[X]^2$.

- 1.(c) La réponse est dans le cours.
- 1.(d) On peut alors utiliser la linéarité de l'espérance et on développe le carré.

$$\begin{split} \mathbb{V}\left(X\right) &= \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \mathbb{E}\left[X^2 - 2 \cdot \mathbb{E}\left[X\right] \cdot X + \mathbb{E}\left[X\right]^2\right] \\ &= \mathbb{E}\left[X^2\right] - 2 \cdot \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[X\right] + \mathbb{E}\left[\mathbb{E}\left[X\right]^2\right] \\ &= \mathbb{E}\left[X^2\right] - 2 \cdot \mathbb{E}\left[X\right]^2 + \mathbb{E}\left[X\right]^2 \\ &= \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 \,. \end{split}$$

A la deuxième ligne, on utilise la linéarité de l'espérance sortir la somme de l'espérance et pour sortir $2 \cdot \mathbb{E}[X]$ de l'espérance du milieu. A la troisième ligne, on utilise le fait que, puisque $\mathbb{E}[X]^2$ est un nombre réel constant, $\mathbb{E}\left[\mathbb{E}[X]^2\right] = \mathbb{E}[X]^2$.

2. Par positivité de la variance, on a $\mathbb{V}(X) \geq 0$. Par la formule de König-Huygens, on a donc $\mathbb{E}[X^2] - \mathbb{E}[X]^2 \geq 0$ et donc $\mathbb{E}[X^2] \geq \mathbb{E}[X]^2$.