Report on the FCC Testing of the

Domo Tactical Communications (DTC) Ltd. Digital Video Transceiver,

Model: SOL8SDR CONCEALMENT MODULE -

SOL8SDR-C-234091

In accordance with FCC 47 CFR Part 90 and FCC 47 CFR Part 2

Prepared for: Domo Tactical Communications (DTC) Ltd.

Solent, Fusion 2 1100 Parkway

Solent Business Park Whiteley, Fareham Hampshire, PO15 7AB

United Kingdom

FCC ID: XRFSOL8SDRC234091

COMMERCIAL-IN-CONFIDENCE

Document Number: 75942063-05 | Issue: 05

Add value.

Inspire trust.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Natalie Bennett	12 April 2019	Bores
Authorised Signatory	Simon Bennett	12 April 2019	Menry

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 90 and FCC 47 CFR Part 2. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Matthew Russell	12 April 2019	Taxsell
Testing	Nandhini Mathivanan	12 April 2019	ph.d
Testing	Graeme Lawler	12 April 2019	GMander.

FCC Accreditation

90987 Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 90: 2017 and FCC 47 CFR Part 2: 2017.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2019 TÜV SÜD.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	
1.1	Report Modification Record	
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Application Form	
1.5	Product Information	
1.6	Deviations from the Standard	
1.7	EUT Modification Record	
1.8	Test Location	7
2	Test Details	8
2.1	Maximum Conducted Output Power	8
2.2	Types of Emissions	
2.3	Bandwidth Limitations	
2.4	Spurious Emissions at Antenna Terminals	
2.5	Radiated Spurious Emissions	
2.6	Frequency Stability	
3	Measurement Uncertainty	64

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	23 August 2018
2	To amend the FCC ID.	14 December 2018
3	To amend the application form.	07 January 2019
4	To amend the FCC ID	21 January 2019
5	To amend the application form.	12 April 2019

1.2 Introduction

Applicant Domo Tactical Communications (DTC) Ltd

Manufacturer Domo Tactical Communications (DTC) Ltd

Model Number(s) SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-

234091

Serial Number(s) 108939

Hardware Version(s) 4

Software Version(s) 4.02

Number of Samples Tested 1

Test Specification/Issue/Date FCC 47 CFR Part 90: 2017

FCC 47 CFR Part 2: 2017

Order Number PO-047375-1 Date PO-047375-1 26-February-2018

Date of Receipt of EUT 04-May-2018
Start of Test 14-May-2018
Finish of Test 10-June-2018

Name of Engineer(s) Matthew Russell, Nandhini Mathivanan and Graeme Lawler

Related Document(s) ANSI C63.26: 2015

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 90 and FCC 47 CFR Part 2 is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
	Part 90	Part 2			
Configuratio	n and Mode:	2.4 GHz - Tr	ansmit		
2.1	90.205	2.1046	Maximum Conducted Output Power	Pass	
2.2	90.207	2.1047	Types of Emissions	Declaration	
2.3	90.209	2.1049	Bandwidth Limitations	Pass	
2.4	90.210	2.1051	Spurious Emissions at Antenna Terminals	Pass	
2.5	90.210	2.1051	Radiated Spurious Emissions	Pass	
2.6	90.210	2.1055	Frequency Stability	Pass	

Table 1

COMMERCIAL-IN-CONFIDENCE Page 3 of 64

1.4 Application Form

	E	QUIPMENT DESCRIPTION
Model Name/Number	SOL8SDR	CONCEALMENT MODULE- SOL8SDR-C-234091
Part Number	SOL8SDR	-C-234091 (MODULE)
Hardware Version	4	
Software Version	4.0.2	
FCC ID (if applicable)		XRFSOL8SDRC234091
Industry Canada ID (if applicable)		8638A-SOL8SDR-C
Technical Description (Please providescription of the intended use of the equ		SOL8 software defined radio is an ultra-miniature COFDM digital video transceiver. The Concealment -C is an ultra-miniature package ideal for integration into small concealment solutions. Capable of Video and IP transmission providing greater than 25 mb/s over a s electable bandwidth of between 2.5-10 MHz

	INTENTIONAL RADIATORS								
Technology	Conducted Declared	Antenna	Supported Bandwidth(s)	Modulation	ITU Emission	Test	Channels (I	innels (MHz)	
Teermology	Output Power (dBm)	Gain (dBi)	(MHz)	Scheme(s)	Designator	Bottom	Middle	Тор	
COFDM	20	2	2.5	16QAM-BPSK	2M50D7W	2451.25	2466.75	2482.25	
COFDM	20	2	3	16QAM-BPSK	3M00D7W	2451.50	2466.75	2482.00	
COFDM	20	2	3.5	16QAM-BPSK	3M50D7W	2451.75	2466.75	2481.75	
COFDM	20	2	5	16QAM-BPSK	5M00D7W	2452.50	2466.75	2481.00	
COFDM	20	2	6	16QAM-BPSK	6M00D7W	2453.00	2466.75	2480.50	
COFDM	20	2	7	16QAM-BPSK	7M00D7W	2453.50	2466.75	2480.00	
COFDM	20	2	8	16QAM-BPSK	8M00D7W	2454.00	2466.75	2479.50	
COFDM	20	2	10	16QAM-BPSK	10M0D7W	2455.00	2466.75	2478.50	

UN-INTENTIONAL RADIATOR				
Highest frequency generated or used in the device or on which the device operates or tunes	2600.00 MHz			
Lowest frequency generated or used in the device or on which the device operates or tunes 2451.25 MHz				
Class A Digital Device (Use in commercial, industrial or business environment) Class B Digital Device (Use in residential environment only) □				

	Power Source						
AC		Single Phase	Three F	Three Phase		Nominal Voltage	
AC							
Evto	rnal DC	Nominal '	Voltage		Maxim	um Current	
Exter	mai DC	12\	V			1.5A	
Batte	om/	Nominal '	Voltage	Batte	ry Operatir	ng End Point \	/oltage
Dalle	ыу	12\	V			9V	
Can	EUT transmit	whilst being charged?		Yes ☐ No 🏻			
			EXTREME CONDI	TIONS			
Maxi	mum tempera	ture +60 °C	C Minir	num temperature		-10	°C
			Ancillaries				
Pleas	se list all anci	llaries which will be used wi	th the device.				
12v l	LEAD AND R	J 45					
	ANTENNA CHARACTERISTICS						
\boxtimes	Antenna cor	nector	S	State impedance	50	Ohm	
	Temporary a	antenna connector	S	State impedance		Ohm	
	Integral ante	nna Type					
\boxtimes	External ant	enna Type					

I hereby declare that the information supplied is correct and complete.

Name: Rob Garth

Position held: Product Director Date: 09/04/2019

1.5 Product Information

1.5.1 Technical Description

SOL8 software defined radio is an ultra-miniature COFDM digital video transceiver. The Concealment -C is an ultra-miniature package ideal for integration into small concealment solutions. Capable of Video and IP transmission providing greater than 25 Mb/s over a selectable bandwidth of between 2.5-10 MHz.

1.5.2 Test Channels

The following centre frequencies were used as the test channels depending on the bandwidth of the transmitter.

Channel Bandwidth (MHz)	Bottom Channel (MHz)	Middle Channel (MHz)	Top Channel (MHz)
2.5	2451.25	2466.75	2482.25
3	2451.50	2466.75	2482.00
3.5	2451.75	2466.75	2481.75
5	2452.50	2466.75	2481.00
6	2453.00	2466.75	2480.50
7	2453.50	2466.75	2480.00
8	2454.00	2466.75	2479.50
10	2455.00	2466.75	2478.50

Table 2

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Modification State Description of Modification still fitted to EUT Modification Fitted By		Date Modification Fitted			
Serial Number: 108	Serial Number: 108939					
0	As supplied by the customer	Not Applicable	Not Applicable			

Table 3

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: 2.4 GHz - Transmit		
Maximum Conducted Output Power	Nandhini Mathivanan	UKAS
Types of Emissions	Matthew Russell	UKAS
Bandwidth Limitations	Nandhini Mathivanan	UKAS
Spurious Emissions at Antenna Terminals	Nandhini Mathivanan	UKAS
Radiated Spurious Emissions	Graeme Lawler	UKAS
Frequency Stability	Matthew Russell	UKAS

Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.205 FCC 47 CFR Part 2, Clause 2.1046

2.1.2 Equipment Under Test and Modification State

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091, S/N: 108939 - Modification State 0

2.1.3 Date of Test

14-May-2018

2.1.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.2.4.4.1.

The EUT did not transmit continuously therefore a gated trigger was implemented and measurements were only made during the transmitter on time.

Total Power measurements were calculated using the procedure in KDB 662911 D01, E(2)(b).

2.1.5 Environmental Conditions

Ambient Temperature 23.6 °C Relative Humidity 40.8 %

2.1.6 Test Results

2.4 GHz - Transmit

Description	Bottom Channel		Middle (Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	
Port A	19.47	88.51	19.61	91.41	19.45	88.10	
Port B	19.76	94.62	19.71	93.54	19.25	84.14	
Total Power	22.63	183.13	22.67	184.95	22.36	172.24	

Table 5 – Maximum Conducted Output Power – 2.5 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	19.83	96.16	19.80	95.50	19.61	91.41
Port B	19.71	93.54	19.87	97.05	19.62	91.62
Total Power	22.78	189.70	22.85	192.55	22.63	183.03

Table 6 - Maximum Conducted Output Power - 3 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	19.76	94.62	19.97	99.31	19.77	94.84
Port B	19.98	99.54	20.10	102.33	19.86	96.83
Total Power	22.88	194.16	23.05	201.64	22.83	191.67

Table 7 - Maximum Conducted Output Power - 3.5 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	20.05	101.16	20.27	106.41	20.05	101.16
Port B	20.28	106.66	20.37	108.89	20.10	102.33
Total Power	23.18	207.82	23.33	215.31	23.09	203.49

Table 8 – Maximum Conducted Output Power – 5 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm) Result (mW)		Result (dBm)	Result (mW)
Port A	22.03	159.59	22.19	165.58	22.06	160.69
Port B	22.37	172.58	22.25	167.88	22.09	161.81
Total Power	25.21	332.17	25.23	333.46	25.09	322.50

Table 9 - Maximum Conducted Output Power - 6 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	21.74	149.28	21.88	154.17	21.76	149.97
Port B	22.05	160.32	21.96	157.04	21.80	151.36
Total Power	24.91	309.60	24.93	311.21	24.79	301.32

Table 10 – Maximum Conducted Output Power – 7 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	21.48	140.60	21.63	145.55	21.52	141.91
Port B	21.86	153.46	21.73	148.94	21.58	143.88
Total Power	24.68	294.07	24.69	294.48	24.56	285.79

Table 11 - Maximum Conducted Output Power - 8 MHz Bandwidth

Description	Bottom Channel		Middle Channel		Top Channel	
	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)	Result (dBm)	Result (mW)
Port A	21.21	132.13	21.36	136.77	21.27	133.97
Port B	21.60	144.54	21.51	141.58	21.37	137.09
Total Power	24.42	276.67	24.45	278.35	24.33	271.06

Table 12 – Maximum Conducted Output Power – 10 MHz Bandwidth

FCC 47 CFR Part 90, Limit Clause 90.205(o)

2450-2483.5 MHz: The maximum transmitter power is 5 watts.

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Attenuator (10dB, 1W)	Sealectro	60-674-1010-89	1224	12	30-Jun-2018
Multimeter	Iso-tech	IDM101	2419	12	23-Nov-2018
Attenuator (30dB/50W)	Aeroflex / Weinschel	47-30-34	3164	12	11-Jul-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	02-Oct-2018
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2019
1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4- KMS	4520	12	13-Feb-2019
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	05-Feb-2019
Attenuator (20dB, 100W)	Weinschel	48-20-43	4869	12	11-Jul-2018
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon

Table 13

O/P Mon – Output Monitored using calibrated equipment

2.2 Types of Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.207 FCC 47 CFR Part 2, Clause 2.1047

2.2.2 Equipment Under Test

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091

2.2.3 Test Method

The following information was provided by the manufacturer.

2.2.4 Test Results

2.4 GHz - Transmit

The class of emission has been declared by the manufacturer as D1W. This emission class is to be considered for use on a case-by-case basis as stated in FCC 47 CFR Part 90.207(n).

The modulation scheme used is BPSK and 16-QAM with authorised bandwidths of 2.5, 3, 3.5, 5, 6, 7, 8 and 10 MHz.

The device is intended primarily for the transmission of digital video information. The video input signal goes through an ADC before the information is modulated within the given bandwidth.

FCC 47 CFR Part 90, Limit Clause 90.207

As per FCC Part 90.207(n).

FCC 47 CFR Part 2, Limit Clause 2.1047(d)

Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

2.3 Bandwidth Limitations

2.3.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.209 FCC 47 CFR Part 2, Clause 2.1049

2.3.2 Equipment Under Test and Modification State

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091, S/N: 108939 - Modification State 0

2.3.3 Date of Test

14-May-2018 to 15-May-2018

2.3.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.4.4. Occupied Bandwidth Power Bandwidth (99%) measurement procedure.

2.3.5 Environmental Conditions

Ambient Temperature 23.6 °C Relative Humidity 40.8 %

2.3.6 Test Results

2.4 GHz - Transmit

Description		Occupied Bandwidth (MHz)				
	Bottom Channel	Middle Channel	Top Channel			
2.5 MHz Bandwidth, Port A	2.312	2.313	2.315			
3 MHz Bandwidth, Port A	2.778	2.778	2.773			
3.5 MHz Bandwidth, Port A	3.241	3.241	3.241			
5 MHz Bandwidth, Port A	4.620	4.617	4.615			
6 MHz Bandwidth, Port A	5.542	5.538	5.536			
7 MHz Bandwidth, Port A	6.472	6.473	6.475			
8 MHz Bandwidth, Port A	7.386	7.391	8.484			
10 MHz Bandwidth, Port A	9.242	9.225	9.228			

Table 14 - Occupied Bandwidth Results

Figure 1 - Bottom Channel - Occupied Bandwidth - 2.5 MHz Bandwidth, Port A

Figure 2 - Bottom Channel - Occupied Bandwidth - 3 MHz Bandwidth, Port A

Figure 3 - Bottom Channel - Occupied Bandwidth - 3.5 MHz Bandwidth, Port A

Figure 4 - Bottom Channel - Occupied Bandwidth - 5 MHz Bandwidth, Port A

Figure 5 - Bottom Channel - Occupied Bandwidth - 6 MHz Bandwidth, Port A

Figure 6 - Bottom Channel - Occupied Bandwidth - 7 MHz Bandwidth, Port A

Figure 7 - Bottom Channel - Occupied Bandwidth - 8 MHz Bandwidth, Port A

Figure 8 - Bottom Channel - Occupied Bandwidth - 10 MHz Bandwidth, Port A

Figure 9 - Middle Channel - Occupied Bandwidth - 2.5 MHz Bandwidth, Port A

Figure 10 - Middle Channel - Occupied Bandwidth - 3 MHz Bandwidth, Port A

Figure 11 - Middle Channel - Occupied Bandwidth - 3.5 MHz Bandwidth, Port A

Figure 12 - Middle Channel - Occupied Bandwidth - 5 MHz Bandwidth, Port A

Figure 13 - Middle Channel - Occupied Bandwidth - 6 MHz Bandwidth, Port A

Figure 14 - Middle Channel - Occupied Bandwidth - 7 MHz Bandwidth, Port A

Figure 15 - Middle Channel - Occupied Bandwidth - 8 MHz Bandwidth, Port A

Figure 16 - Middle Channel - Occupied Bandwidth - 10 MHz Bandwidth, Port A

Figure 17 - Top Channel - Occupied Bandwidth - 2.5 MHz Bandwidth, Port A

Figure 18 - Top Channel - Occupied Bandwidth - 3 MHz Bandwidth, Port A

Figure 19 - Top Channel - Occupied Bandwidth - 3.5 MHz Bandwidth, Port A

Figure 20 - Top Channel - Occupied Bandwidth - 5 MHz Bandwidth, Port A

Figure 21 - Top Channel - Occupied Bandwidth - 6 MHz Bandwidth, Port A

Figure 22 - Top Channel - Occupied Bandwidth - 7 MHz Bandwidth, Port A

Figure 23 - Top Channel - Occupied Bandwidth - 8 MHz Bandwidth, Port A

Figure 24 - Top Channel - Occupied Bandwidth - 10 MHz Bandwidth, Port A

FCC 47 CFR Part 90, Limit Clause

None Specified.

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Attenuator (10dB, 1W)	Sealectro	60-674-1010-89	1224	12	30-Jun-2018
Multimeter	Iso-tech	IDM101	2419	12	23-Nov-2018
Attenuator (30dB/50W)	Aeroflex / Weinschel	47-30-34	3164	12	11-Jul-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	14-Mar-2019
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	02-Oct-2018
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2019
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	05-Feb-2019
Attenuator (20dB, 100W)	Weinschel	48-20-43	4869	12	11-Jul-2018
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon

Table 15

O/P Mon – Output Monitored using calibrated equipment

2.4 Spurious Emissions at Antenna Terminals

2.4.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.210 FCC 47 CFR Part 2, Clause 2.1051

2.4.2 Equipment Under Test and Modification State

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091, S/N: 108939 - Modification State 0

2.4.3 Date of Test

15-May-2018 to 16-May-2018

2.4.4 Test Method

This test was performed in accordance with FCC Part 90, Clause 90.210 Emission Mask B and ANSI C63.26, Clause 5.7, 5,7,1, 5.7.2.

For emissions removed > 250% of the authorised bandwidth from the centre frequency, the limit shall be reduced 3 dB for MIMO operation when N=2 and N is the number of transmitters simultaneously operating.

3 dB = 10*LOG(2).

This level shall be equivalent to -16 dBm for all frequencies removed by more than 250% of the authorised bandwidth.

2.4.5 Environmental Conditions

Ambient Temperature 23.6 - 23.8 °C

Relative Humidity 40.8 %

2.4.6 Test Results

2.4 GHz - Transmit

Figure 25 - Bottom Channel - Transmitter Mask - 2.5 MHz Bandwidth, Port A

Figure 26 - Bottom Channel - Transmitter Mask - 3 MHz Bandwidth, Port A

Figure 27 - Bottom Channel - Transmitter Mask - 3.5 MHz Bandwidth, Port A

Figure 28 - Bottom Channel - Transmitter Mask - 5 MHz Bandwidth, Port A

Figure 29 - Bottom Channel - Transmitter Mask - 6 MHz Bandwidth, Port A

Figure 30 - Bottom Channel - Transmitter Mask - 7 MHz Bandwidth, Port A

Figure 31 - Bottom Channel - Transmitter Mask - 8 MHz Bandwidth, Port A

Figure 32 - Bottom Channel - Transmitter Mask - 10 MHz Bandwidth, Port A

Figure 33 - Middle Channel - Transmitter Mask - 2.5 MHz Bandwidth, Port A

Figure 34 - Middle Channel - Transmitter Mask - 3 MHz Bandwidth, Port A

Figure 35 - Middle Channel - Transmitter Mask - 3.5 MHz Bandwidth, Port A

Figure 36 - Middle Channel - Transmitter Mask - 5 MHz Bandwidth, Port A

Figure 37 - Middle Channel - Transmitter Mask - 6 MHz Bandwidth, Port A

Figure 38 - Middle Channel - Transmitter Mask - 7 MHz Bandwidth, Port A

Figure 39 - Middle Channel - Transmitter Mask - 8 MHz Bandwidth, Port A

Figure 40 - Middle Channel - Transmitter Mask - 10 MHz Bandwidth, Port A

Figure 41 - Top Channel - Transmitter Mask - 2.5 MHz Bandwidth, Port A

Figure 42 - Top Channel - Transmitter Mask - 3 MHz Bandwidth, Port A

Figure 43 - Top Channel - Transmitter Mask - 3.5 MHz Bandwidth, Port A

Figure 44 - Top Channel - Transmitter Mask - 5 MHz Bandwidth, Port A

Figure 45 - Top Channel - Transmitter Mask - 6 MHz Bandwidth, Port A

Figure 46 - Top Channel - Transmitter Mask - 7 MHz Bandwidth, Port A

Figure 47 - Top Channel - Transmitter Mask - 8 MHz Bandwidth, Port A

Figure 48 - Top Channel - Transmitter Mask - 10 MHz Bandwidth, Port A

FCC 47 CFR Part 90, Limit Clause 90.210

The EUT shall comply with emission mask B as per FCC 47 CFR Part 90.210.

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Attenuator (10dB, 1W)	Sealectro	60-674-1010-89	1224	12	30-Jun-2018
Multimeter	Iso-tech	IDM101	2419	12	23-Nov-2018
Attenuator (30dB/50W)	Aeroflex / Weinschel	47-30-34	3164	12	11-Jul-2018
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	02-Oct-2018
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2019
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	05-Feb-2019
Attenuator (20dB, 100W)	Weinschel	48-20-43	4869	12	11-Jul-2018
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon

Table 16

O/P Mon – Output Monitored using calibrated equipment

2.5 Radiated Spurious Emissions

2.5.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.210 FCC 47 CFR Part 2, Clause 2.1051

2.5.2 Equipment Under Test and Modification State

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091, S/N: 108939 - Modification State 0

2.5.3 Date of Test

21-May-2018 to 10-June-2018

2.5.4 Test Method

Testing was performed in accordance with ANSI C63.26, clause 5.5.4.

The limit line used on the plots was calculated from equation c) in clause 5.2.7

E (dB μ V/m) = EIRP (dBm) – 20log(D) + 104.8; where D is the measurement distance (in the far field region) in m.

 $-13 \text{ dBm} - 20 \text{Log}(3) + 104.8 = 82.26 \text{ dB}\mu\text{V/m} \text{ at 3m}.$

2.5.5 Environmental Conditions

Ambient Temperature 22.5 °C Relative Humidity 50.2 %

2.5.6 Test Results

2.4 GHz - Transmit

Frequency (MHz)	Level (dBm)
*	

Table 17 - Bottom Channel - 30 MHz to 1 GHz - Emissions Results

Figure 49 - Bottom Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation X

Figure 50 - Bottom Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation X

Figure 51 - Bottom Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Y

Figure 52 - Bottom Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Y

Figure 53 - Bottom Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Z

Figure 54 - Bottom Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Z

Frequency (MHz)	Level (dBm)
*	

Table 18 - Middle Channel Bottom Channel - 30 MHz to 1 GHz - Emissions Results

Figure 55 - Middle Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation X

Figure 56 - Middle Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation X

Figure 57 - Middle Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Y

Figure 58 - Middle Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Y

Figure 59 - Middle Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Z

Figure 60 - Middle Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Z

Frequency (MHz)	Level (dBm)
*	

Table 19 - Top Channel - 30 MHz to 1 GHz - Emissions Results

Figure 61 - Top Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation X

Figure 62 - Top Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation X

Figure 63 - Top Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Y

Figure 64 - Top Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Y

Figure 65 - Top Channel - 30 MHz to 1 GHz - Horizontal, EUT Orientation Z

Figure 66 - Top Channel - 30 MHz to 1 GHz - Vertical, EUT Orientation Z

Frequency (MHz)	Level (dBm)
*	

Table 20 - Bottom Channel - 1 GHz to 25 GHz - Emissions Results

Figure 67 - Bottom Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation X

Figure 68 - Bottom Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation X

Figure 69 - Bottom Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Y

Figure 70 - Bottom Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Y

Figure 71 - Bottom Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Z

Figure 72 - Bottom Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Z

Frequency (MHz)	Level (dBm)
*	

Table 21 - Middle Channel - 1 GHz to 40 GHz - Emissions Results

Figure 73 – Middle Channel – 1 GHz to 25 GHz – Horizontal, EUT Orientation X

Figure 74 - Middle Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation X

Figure 75 - Middle Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Y

Figure 76 - Middle Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Y

Figure 77 - Middle Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Z

Figure 78 - Middle Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Z

Frequency (MHz)	Level (dBm)
*	

Table 22 - Top Channel - 1 GHz to 40 GHz - Emissions Results

Figure 79 - Top Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation X

Figure 80 - Top Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation X

Figure 81 - Top Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Y

Figure 82 - Top Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Y

Figure 83 - Top Channel - 1 GHz to 25 GHz - Horizontal, EUT Orientation Z

Figure 84 - Top Channel - 1 GHz to 25 GHz - Vertical, EUT Orientation Z

FCC 47 CFR Part 90, Limit Clause 90.210

The EUT shall comply with the requirements of 90.210(b)(3) as per FCC 47 CFR Part 90.210.

2.5.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Dual Power Supply Unit	Thurlby	PL320	288	-	TU
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	1002	12	20-Oct-2018
Antenna 18-40GHz (Double Ridge Guide)	Q-Par Angus Ltd	QSH 180K	1511	24	07-Dec-2018
Pre-Amplifier	Phase One	PS04-0086	1533	12	12-Jan-2019
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	02-Feb-2019
Screened Room (5)	Rainford	Rainford	1545	36	09-Jun-2018
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Cable (3m, N(m) - N(m))	Reynolds	269-0088-3000	2412	-	O/P Mon
Multimeter	Iso-tech	IDM101	2417	12	02-Oct-2018
Power Supply Unit	Farnell	LT30-2	2659	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	08-Aug-2019
Antenna (DRG Horn)	ETS-Lindgren	3115	3125	12	21-Jul-2018
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	22-Nov-2018
Termination (50ohm)	Meca	405-1	3512	12	01-Nov-2018
Termination (50ohm)	Meca	405-1	3516	12	01-Nov-2018
1501A 4.0M Km Km Cable	Rhophase	KPS-1501A-4000- KPS	4301	12	19-Feb-2019
Suspended Substrate Highpass Filter	Advance Power Components	11SH10- 3000/X18000-O/O	4412	12	24-Apr-2018
Cable (Rx, Nm-Nm, 7m)	Scott Cables	SLU18-NMNM- 07.00M	4498	6	19-Jun-2018
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	02-Jul-2018
Cable (Rx, SMAm-SMAm 0.5m)	Scott Cables	SLSLL18-SMSM- 00.50M	4528	6	15-Aug-2018
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	01-Mar-2019
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	12-Feb-2019
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon
Hygrometer	Rotronic	HP21	4989	12	26-Apr-2019

Table 23

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment

2.6 Frequency Stability

2.6.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.213 FCC 47 CFR Part 2, Clause 2.1055

2.6.2 Equipment Under Test and Modification State

SOL8SDR CONCEALMENT MODULE - SOL8SDR-C-234091, S/N: 108939 - Modification State 0

2.6.3 Date of Test

21-May-2018 to 23-May-2018

2.6.4 Test Method

Testing was performed in accordance with FCC Part 2, Clause 2.1055.

In accordance with 2.1055, the temperature was varied from -30°C to +50° in 10° steps at both minimum and maximum voltage extremes. At 20°C the nominal voltage 12V, minimum voltage 10.2 V and maximum voltage 13.8 V was performed. The peak value was determined using the marker peak function and the frequency of the points -20 dBc relative to the peak were recorded as f1 and f2.

To find out the frequency error, two marker method was used. $f_c = (f_1 + f_2) / 2$. The frequency error is the difference between the declared transmitted frequency and calculated carrier frequency declared frequency.

2.6.5 Environmental Conditions

Ambient Temperature 23.4 °C Relative Humidity 43.7 %

2.6.6 Test Results

2.4 GHz - Transmit

Voltage	Frequency Error (ppm)		
	Bottom Channel	Middle Channel	Top Channel
10.2 V DC	3.05	10.13	8.07
13.8 V DC	9.16	-2.03	5.04

Table 24 - Frequency Stability Under Voltage Variations

Temperature	Frequency Error (ppm)		
	Bottom Channel	Middle Channel	Top Channel
+50.0 °C	-6.11	-5.07	2.02
+40.0 °C	9.16	4.05	8.07
+30.0 °C	9.16	4.05	8.07
+20.0 °C	-3.05	10.13	8.07
+10.0 °C	6.11	10.13	8.07
0 ℃	3.05	4.05	11.09
-10.0 °C	9.16	1.01	17.15
-20.0 °C	9.16	13.18	23.20
-30.0 °C	30.55	32.45	23.20

Table 25 - Frequency Stability Under Voltage Variations

FCC 47 CFR Part 90, Limit Clause 90.213

To be specified in the station authorisation.

2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Signal Generator	Hewlett Packard	ESG4000A	61	12	14-Jul-2018
Climatic Chamber	Votsch	VT4002	161	-	O/P Mon
Attenuator (10dB, 1W)	Sealectro	60-674-1010-89	1224	12	30-Jun-2018
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	20-Oct-2018
Attenuator (30dB/50W)	Aeroflex / Weinschel	47-30-34	3164	12	11-Jul-2018
Thermocouple Thermometer	Fluke	51	3174	12	09-Jan-2019
Hygrometer	Rotronic	I-1000	3220	12	30-Aug-2018
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	20-Oct-2018
1 metre K-Type Cable	Florida Labs	KMS-180SP-39.4- KMS	4520	12	13-Feb-2019
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	05-Feb-2019
Attenuator (20dB, 100W)	Weinschel	48-20-43	4869	12	11-Jul-2018
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon

Table 26

O/P Mon – Output Monitored using calibrated equipment

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Maximum Conducted Output Power	± 3.2 dB
Types of Emissions	-
Bandwidth Limitations	± 58.05 Hz
Spurious Emissions at Antenna Terminals	± 3.45 dB
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 18 GHz: ± 6.3 dB
Frequency Stability	± 11 Hz

Table 27