



## SEQUENCE LISTING

<110> TOOLGEN, Inc.

<120> Regulatory Zinc Finger Proteins

<130> Q88285

<140> US 10/538,041

<141> 2005-06-08

<150> US 60/431,892

<151> 2002-12-09

<160> 129

<170> PatentIn version 3.2

<210> 1

<211> 23

<212> PRT

<213> Homo sapiens

<400> 1

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu  
1 5 10 15

Arg Arg His Gly Arg Thr His  
20

<210> 2

<211> 23

<212> PRT

<213> Homo sapiens

<400> 2

Tyr Ser Cys Gly Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys  
1 5 10 15

Arg Arg His Cys Ile Leu His  
20

<210> 3

<211> 23

<212> PRT

<213> Homo sapiens

<400> 3

Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu  
1 5 10 15

Asn Arg His Arg Arg Thr His  
20

<210> 4  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 4

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His  
20

<210> 5  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 5

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His  
20

<210> 6  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 6

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu  
1 5 10 15

Thr Arg His Lys Lys Ser His  
20

<210> 7  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 7

Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln Ser Ser Asn Leu  
1 5 10 15

Thr Val His Gln Lys Ile His  
20

<210> 8

<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 8

Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu  
1 5 10 15  
Ile Arg His Gln Arg Thr His  
20

<210> 9  
<211> 25  
<212> PRT  
<213> Homo sapiens

<400> 9

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp  
1 5 10 15  
Glu Leu Asn Arg His Lys Lys Arg His  
20 25

<210> 10  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 10

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu  
1 5 10 15  
Lys Thr His Thr Arg Thr His  
20

<210> 11  
<211> 23  
<212> PRT  
<213> Homo sapiens

<400> 11

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15  
Thr Arg His Gln Arg Ile His  
20

<210> 12  
<211> 23  
<212> PRT

<213> Homo sapiens

<400> 12

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His  
20

<210> 13

<211> 23

<212> PRT

<213> Homo sapiens

<400> 13

Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu  
1 5 10 15

Asn Val His Arg Arg Ile His  
20

<210> 14

<211> 23

<212> PRT

<213> Homo sapiens

<400> 14

Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Ser Leu  
1 5 10 15

Arg Arg His Glu Thr Thr His  
20

<210> 15

<211> 23

<212> PRT

<213> Homo sapiens

<400> 15

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu  
1 5 10 15

Ile Arg His Gln Arg Ile His  
20

<210> 16

<211> 23

<212> PRT

<213> Homo sapiens

<400> 16

Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu  
1 5 10 15

Thr Arg His Lys Arg Ile His  
20

<210> 17

<211> 23

<212> PRT

<213> Homo sapiens

<400> 17

Tyr Glu Cys Asp His Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu  
1 5 10 15

Asn Val His Lys Arg Thr His  
20

<210> 18

<211> 23

<212> PRT

<213> Homo sapiens

<400> 18

Phe Leu Cys Gln Tyr Cys Ala Gln Arg Phe Gly Arg Lys Asp His Leu  
1 5 10 15

Thr Arg His Met Lys Lys Ser  
20

<210> 19

<211> 24

<212> PRT

<213> Artificial

<220>

<223> Artificial zinc finger domain

<400> 19

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu  
1 5 10 15

Gln Arg His Val Arg Asn Ile His  
20

<210> 20

<211> 83

<212> PRT

<213> Artificial

<220>  
<223> artificial zinc finger protein  
<400> 20

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg  
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr  
65 70 75 80

Gly Glu Lys

<210> 21  
<211> 83  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
<400> 21

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys

<210> 22  
<211> 83  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
  
<400> 22

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys

<210> 23  
<211> 83  
<212> PRT  
<213> Artificial  
  
<220>  
<223> artificial zinc finger protein  
  
<400> 23

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys  
50 55 60

Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr  
65 70 75 80

Gly Glu Lys  
<210> 24  
<211> 84  
<212> PRT  
<213> Artificial  
  
<220>  
<223> artificial zinc finger protein  
  
<400> 24

Tyr Glu Cys Asp His Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu  
1 5 10 15

Asn Val His Lys Arg Thr His Thr Gly Glu Lys Pro Phe Leu Cys Gln  
20 25 30

Tyr Cys Ala Gln Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met  
35 40 45

Lys Lys Ser His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln  
50 55 60

Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His  
65 70 75 80

Thr Gly Glu Lys

<210> 25

<211> 83

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 25

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys

<210> 26

<211> 84

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 26

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu  
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Leu Cys Gln Tyr Cys Ala Gln  
50 55 60

Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met Lys Lys Ser His  
65 70 75 80

Thr Gly Glu Lys

<210> 27

<211> 83

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 27

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu  
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys

<210> 28

<211> 85

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 28

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu  
1 5 10 15

Gln Arg His Val Arg Asn Ile His Thr Gly Glu Lys Pro Tyr Arg Cys  
20 25 30

Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His  
35 40 45

Lys Arg Ile His Thr Gly Glu Lys Pro Phe Leu Cys Gln Tyr Cys Ala  
50 55 60

Gln Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met Lys Lys Ser  
65 70 75 80

His Thr Gly Glu Lys  
85

<210> 29  
<211> 84  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
  
<400> 29

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu  
1 5 10 15

Gln Arg His Val Arg Asn Ile His Thr Gly Glu Lys Pro Tyr Arg Cys  
20 25 30

Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His  
35 40 45

Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly  
50 55 60

Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His  
65 70 75 80

Thr Gly Glu Lys

<210> 30  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
  
<400> 30

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Ser | Cys | Gly | Ile | Cys | Gly | Lys | Ser | Phe | Ser | Asp | Ser | Ser | Ala | Lys |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     |     | 15  |
| Arg | Arg | His | Cys | Ile | Leu | His | Thr | Gly | Glu | Lys | Pro | Tyr | Ile | Cys | Arg |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     |     |     |     | 30  |
| Lys | Cys | Gly | Arg | Gly | Phe | Ser | Arg | Lys | Ser | Asn | Leu | Ile | Arg | His | Gln |
|     |     |     |     |     |     | 35  |     | 40  |     |     |     |     |     |     | 45  |
| Arg | Thr | His | Thr | Gly | Glu | Lys | Pro | Phe | Gln | Cys | Lys | Thr | Cys | Gln | Arg |
|     |     |     |     |     |     | 50  |     | 55  |     |     |     | 60  |     |     |     |
| Lys | Phe | Ser | Arg | Ser | Asp | His | Leu | Lys | Thr | His | Thr | Arg | Thr | His | Thr |
|     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     |     | 80  |
| Gly | Glu | Lys | Pro | Tyr | Thr | Cys | Lys | Gln | Cys | Gly | Lys | Ala | Phe | Ser | Val |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     |     |     |     | 95  |
| Ser | Ser | Ser | Leu | Arg | Arg | His | Glu | Thr | Thr | His | Thr | Gly | Glu | Lys |     |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     |     |     |     | 110 |

<210> 31  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 31

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Lys | Cys | Glu | Glu | Cys | Gly | Lys | Ala | Phe | Arg | Gln | Ser | Ser | His | Leu |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     |     |     | 15  |
| Thr | Thr | His | Lys | Ile | Ile | His | Thr | Gly | Glu | Lys | Pro | Tyr | Ser | Cys | Gly |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     |     |     |     | 30  |
| Ile | Cys | Gly | Lys | Ser | Phe | Ser | Asp | Ser | Ser | Ala | Lys | Arg | Arg | His | Cys |
|     |     |     |     |     |     | 35  |     | 40  |     |     |     | 45  |     |     |     |
| Ile | Leu | His | Thr | Gly | Glu | Lys | Pro | Tyr | Ile | Cys | Arg | Lys | Cys | Gly | Arg |
|     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |     |     |
| Gly | Phe | Ser | Arg | Lys | Ser | Asn | Leu | Ile | Arg | His | Gln | Arg | Thr | His | Thr |
|     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     |     | 80  |
| Gly | Glu | Lys | Pro | Phe | Gln | Cys | Lys | Thr | Cys | Gln | Arg | Lys | Phe | Ser | Arg |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     |     |     |     | 95  |
| Ser | Asp | His | Leu | Lys | Thr | His | Thr | Arg | Thr | His | Thr | Gly | Glu | Lys |     |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     |     |     |     | 110 |

<210> 32  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
<400> 32

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu  
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp  
20 25 30

His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys  
50 55 60

Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Ser Cys Gly Ile Cys Gly Lys Ser Phe Ser Asp  
85 90 95

Ser Ser Ala Lys Arg Arg His Cys Ile Leu His Thr Gly Glu Lys  
100 105 110

<210> 33  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
<400> 33

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser  
20 25 30

Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys  
50 55 60

Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp  
85 90 95

Lys Ser Cys Leu Asn Arg His Arg Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 34  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 34

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu  
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Gly  
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln  
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg  
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 35  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 35

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu  
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg  
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 36  
<211> 113  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 36

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys  
35 40 45

Ile Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe  
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu  
100 105 110

Lys

<210> 37  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 37

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu  
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Asp Cys Gly Lys  
50 55 60

Ser Phe Ser Gln Ser Ser Leu Ile Arg His Gln Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 38

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 38

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser  
20 25 30

Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys  
85 90 95

Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 39

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 39

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp  
85 90 95

Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 40

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 40

Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu  
1 5 10 15

Asn Val His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys  
50 55 60

Thr Trp Lys Phe Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg  
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe  
85 90 95

Thr Gln Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu  
100 105 110

Lys

<210> 41

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 41

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 42

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 42

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg  
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys

100

105

110

<210> 43  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 43

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly  
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln  
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 44  
<211> 113  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 44

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp  
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu Lys Pro Tyr Lys  
20 25 30

Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Ile Arg  
35 40 45

His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys  
50 55 60

Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile  
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe  
85 90 95

Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu  
100 105 110

Lys

<210> 45  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 45

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys  
50 55 60

Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln  
85 90 95

Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr Gly Glu Lys  
100 105 110

<210> 46  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 46

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Cys | Gly | Lys | Ala | Phe | Asn | Arg | Arg | Ser | His | Leu | Thr | Arg | His | Gln |
| 35  |     |     |     |     | 40  |     |     |     |     |     |     | 45  |     |     |     |
| Arg | Ile | His | Thr | Gly | Glu | Lys | Pro | Tyr | Arg | Cys | Glu | Glu | Cys | Gly | Lys |
| 50  |     |     |     |     | 55  |     |     |     |     |     | 60  |     |     |     |     |
| Ala | Phe | Arg | Trp | Pro | Ser | Asn | Leu | Thr | Arg | His | Lys | Arg | Ile | His | Thr |
| 65  |     |     |     |     | 70  |     |     |     |     | 75  |     |     |     | 80  |     |
| Gly | Glu | Lys | Pro | Tyr | Lys | Cys | Met | Glu | Cys | Gly | Lys | Ala | Phe | Asn | Arg |
|     | 85  |     |     |     |     |     | 90  |     |     |     |     |     |     | 95  |     |
| Arg | Ser | His | Leu | Thr | Arg | His | Gln | Arg | Ile | His | Thr | Gly | Glu | Lys |     |
|     | 100 |     |     |     |     |     | 105 |     |     |     |     | 110 |     |     |     |

<210> 47  
<211> 113  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein  
<400> 47

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Val | Cys | Asp | Val | Glu | Gly | Cys | Thr | Trp | Lys | Phe | Ala | Arg | Ser | Asp |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| Glu | Leu | Asn | Arg | His | Lys | Lys | Arg | His | Thr | Gly | Glu | Lys | Pro | Tyr | Lys |
|     | 20  |     |     |     |     |     | 25  |     |     |     |     | 30  |     |     |     |
| Cys | Met | Glu | Cys | Gly | Lys | Ala | Phe | Asn | Arg | Arg | Ser | His | Leu | Thr | Arg |
|     | 35  |     |     |     |     | 40  |     |     |     |     | 45  |     |     |     |     |
| His | Gln | Arg | Ile | His | Thr | Gly | Glu | Lys | Pro | Tyr | Thr | Cys | Ser | Asp | Cys |
|     | 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |
| Gly | Lys | Ala | Phe | Arg | Asp | Lys | Ser | Cys | Leu | Asn | Arg | His | Arg | Arg | Thr |
|     | 65  |     |     |     | 70  |     |     |     |     | 75  |     |     |     | 80  |     |
| His | Thr | Gly | Glu | Lys | Pro | Tyr | Lys | Cys | Glu | Glu | Cys | Gly | Lys | Ala | Phe |
|     |     | 85  |     |     |     | 90  |     |     |     |     |     |     | 95  |     |     |
| Arg | Gln | Ser | Ser | His | Leu | Thr | Thr | His | Lys | Ile | Ile | His | Thr | Gly | Glu |
|     |     | 100 |     |     |     |     |     |     | 105 |     |     |     | 110 |     |     |

Lys

<210> 48  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 48

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn  
20 25 30

Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu Ile Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys  
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr  
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg  
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 49

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 49

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg  
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys  
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe  
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu  
100 105 110

Lys

<210> 50  
<211> 113  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 50

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu  
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe  
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu  
100 105 110

Lys

<210> 51  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 51

Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Ser Leu  
1 5 10 15

Arg Arg His Glu Thr Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg  
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val  
85 90 95

Ser Ser Ser Leu Arg Arg His Glu Thr Thr His Thr Gly Glu Lys  
100 105 110

<210> 52

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 52

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Lys  
20 25 30

Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Leu Arg Arg His Glu  
35 40 45

Thr Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys  
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg  
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 53

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 53

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp  
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu Lys Pro Tyr Lys  
20 25 30

Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg

35

40

45

His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Lys Gln Cys  
50 55 60

Gly Lys Ala Phe Ser Val Ser Ser Ser Leu Arg Arg His Glu Thr Thr  
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe  
85 90 95

Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu  
100 105 110

Lys

<210> 54  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 54

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Gly  
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln  
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln  
85 90 95

Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu Lys  
100 105 110

<210> 55  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 55

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg  
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly Gln Cys Gly Lys  
50 55 60

Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln Lys Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg  
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 56

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 56

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu  
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg  
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp  
85 90 95

Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 57

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 57

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu  
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys  
50 55 60

Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg  
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 58

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 58

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys  
20 25 30

Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys  
85 90 95

Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr Gly Glu Lys

100

105

110

<210> 59  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 59

Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly  
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln  
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg  
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg  
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 60  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 60

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu  
1 5 10 15

Ile Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys  
35 40 45

Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys  
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 61  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 61

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu  
1 5 10 15

Ile Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu  
20 25 30

Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys  
35 40 45

Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys  
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln  
85 90 95

Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr Gly Glu Lys  
100 105 110

<210> 62  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 62

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu  
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys  
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val  
85 90 95

Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 63

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 63

Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu  
1 5 10 15

Asn Arg His Arg Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys  
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Tyr Cys Gly Lys  
50 55 60

Thr Phe Ser Val Ser Ser Thr Leu Ile Arg His Gln Arg Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe  
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu  
100 105 110

Lys

<210> 64

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 64

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu

1 5 10 15  
Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser  
20 25 30  
Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg  
35 40 45  
Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg  
50 55 60  
Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr  
65 70 75 80  
Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95  
Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 65  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 65

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys  
50 55 60

Ala Phe Thr Gln Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln  
85 90 95

Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu Lys  
100 105 110

<210> 66  
<211> 113  
<212> PRT  
<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 66

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu  
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Thr Cys Lys  
20 25 30

Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Ser Leu Arg Arg His Glu  
35 40 45

Thr Thr His Thr Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys  
50 55 60

Thr Trp Lys Phe Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg  
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe  
85 90 95

Ser Gln Ser Ser Ser Leu Ile Arg His Gln Arg Thr His Thr Gly Glu  
100 105 110

Lys

<210> 67

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 67

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro  
20 25 30

Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Ile Arg His Gln  
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys  
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 68  
 <211> 111  
 <212> PRT  
 <213> Artificial  
  
 <220>  
 <223> artificial zinc finger protein  
  
 <400> 68  
  
 Tyr Ile Cys Arg Lys Cys Gly Arg Gly Ser Arg Lys Ser Asn Leu  
 1 5 10 15  
  
 Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Ser Cys Gly  
 20 25 30  
  
 Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys Arg Arg His Cys  
 35 40 45  
  
 Ile Leu His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys  
 50 55 60  
  
 Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr  
 65 70 75 80  
  
 Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln  
 85 90 95  
  
 Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr Gly Glu Lys  
 100 105 110

<210> 69  
 <211> 111  
 <212> PRT  
 <213> Artificial  
  
 <220>  
 <223> artificial zinc finger protein  
  
 <400> 69  
  
 Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu  
 1 5 10 15  
  
 Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys  
 20 25 30  
  
 Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly  
 35 40 45  
  
 Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys  
 50 55 60  
  
 Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr  
 65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg  
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys  
100 105 110

<210> 70  
<211> 111  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 70

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu  
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu  
20 25 30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys  
35 40 45

Ile Ile His Thr Gly Glu Lys Pro Tyr Ser Cys Gly Ile Cys Gly Lys  
50 55 60

Ser Phe Ser Asp Ser Ser Ala Lys Arg Arg His Cys Ile Leu His Thr  
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg  
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys  
100 105 110

<210> 71  
<211> 113  
<212> PRT  
<213> Artificial

<220>  
<223> artificial zinc finger protein

<400> 71

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu  
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met  
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln  
35 40 45

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ile | His | Thr | Gly | Glu | Lys | Pro | Tyr | Val | Cys | Asp | Val | Glu | Gly | Cys |
| 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |     |
| Thr | Trp | Lys | Phe | Ala | Arg | Ser | Asp | Glu | Leu | Asn | Arg | His | Lys | Lys | Arg |
| 65  |     |     |     |     | 70  |     |     |     | 75  |     |     |     | 80  |     |     |
| His | Thr | Gly | Glu | Lys | Pro | Tyr | Lys | Cys | Met | Glu | Cys | Gly | Lys | Ala | Phe |
|     |     |     |     | 85  |     |     |     | 90  |     |     |     | 95  |     |     |     |
| Asn | Arg | Arg | Ser | His | Leu | Thr | Arg | His | Gln | Arg | Ile | His | Thr | Gly | Glu |
|     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |     |

Lys

|       |              |
|-------|--------------|
| <210> | 72           |
| <211> | 96           |
| <212> | PRT          |
| <213> | Homo sapiens |

<400> 72

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Ala | Lys | Ser | Leu | Thr | Ala | Trp | Ser | Arg | Thr | Leu | Val | Thr | Phe | Lys |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     |     | 15  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Asp | Val | Phe | Val | Asp | Phe | Thr | Arg | Glu | Glu | Trp | Lys | Leu | Asp | Thr |  |
|     |     |     | 20  |     |     | 25  |     |     |     |     |     | 30  |     |     |  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Gln | Gln | Ile | Val | Tyr | Arg | Asn | Val | Met | Leu | Glu | Asn | Tyr | Lys | Asn |
|     |     |     | 35  |     |     | 40  |     |     |     |     | 45  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Val | Ser | Leu | Gly | Tyr | Gln | Leu | Thr | Lys | Pro | Asp | Val | Ile | Leu | Arg |
|     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Glu | Lys | Gly | Glu | Glu | Pro | Trp | Leu | Val | Glu | Arg | Glu | Ile | His | Gln |
| 65  |     |     |     | 70  |     |     |     | 75  |     |     | 80  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Thr | His | Pro | Asp | Ser | Glu | Thr | Ala | Phe | Glu | Ile | Lys | Ser | Ser | Val |
|     |     |     |     | 85  |     |     |     | 90  |     |     | 95  |     |     |     |     |

|       |              |
|-------|--------------|
| <210> | 73           |
| <211> | 260          |
| <212> | PRT          |
| <213> | Homo sapiens |

<400> 73

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Leu | Pro | Asp | Thr | Asp | Asp | Arg | His | Arg | Ile | Glu | Glu | Lys | Arg | Lys |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Thr | Tyr | Glu | Thr | Phe | Lys | Ser | Ile | Met | Lys | Lys | Ser | Pro | Phe | Ser |
|     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Pro | Thr | Asp | Pro | Arg | Pro | Pro | Pro | Arg | Arg | Ile | Ala | Val | Pro | Ser |
|     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ser | Ser | Ala | Ser | Val | Pro | Lys | Pro | Ala | Pro | Gln | Pro | Tyr | Pro | Phe |
| 50  |     |     |     |     | 55  |     |     |     |     |     | 60  |     |     |     |     |
| Thr | Ser | Ser | Leu | Ser | Thr | Ile | Asn | Tyr | Asp | Glu | Phe | Pro | Thr | Met | Val |
| 65  |     |     |     |     | 70  |     |     |     |     | 75  |     |     |     | 80  |     |
| Phe | Pro | Ser | Gly | Gln | Ile | Ser | Gln | Ala | Ser | Ala | Leu | Ala | Pro | Ala | Pro |
|     |     |     |     |     | 85  |     |     |     | 90  |     |     |     | 95  |     |     |
| Pro | Gln | Val | Leu | Pro | Gln | Ala | Pro | Ala | Pro | Ala | Pro | Ala | Pro | Ala | Met |
|     |     |     |     |     | 100 |     |     | 105 |     |     |     | 110 |     |     |     |
| Val | Ser | Ala | Leu | Ala | Gln | Ala | Pro | Ala | Pro | Val | Pro | Val | Leu | Ala | Pro |
|     |     |     |     |     | 115 |     |     | 120 |     |     |     | 125 |     |     |     |
| Gly | Pro | Pro | Gln | Ala | Val | Ala | Pro | Pro | Ala | Pro | Lys | Pro | Thr | Gln | Ala |
|     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |     |
| Gly | Glu | Gly | Thr | Leu | Ser | Glu | Ala | Leu | Leu | Gln | Leu | Gln | Phe | Asp | Asp |
|     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     |     | 160 |     |
| Glu | Asp | Leu | Gly | Ala | Leu | Leu | Gly | Asn | Ser | Thr | Asp | Pro | Ala | Val | Phe |
|     |     |     |     |     | 165 |     |     | 170 |     |     |     | 175 |     |     |     |
| Thr | Asp | Leu | Ala | Ser | Val | Asp | Asn | Ser | Glu | Phe | Gln | Gln | Leu | Leu | Asn |
|     |     |     |     |     | 180 |     |     | 185 |     |     |     | 190 |     |     |     |
| Gln | Gly | Ile | Pro | Val | Ala | Pro | His | Thr | Thr | Glu | Pro | Met | Leu | Met | Glu |
|     |     |     |     |     | 195 |     |     | 200 |     |     |     | 205 |     |     |     |
| Tyr | Pro | Glu | Ala | Ile | Thr | Arg | Leu | Val | Thr | Ala | Gln | Arg | Pro | Pro | Asp |
|     |     |     |     |     | 210 |     |     | 215 |     |     | 220 |     |     |     |     |
| Pro | Ala | Pro | Ala | Pro | Leu | Gly | Ala | Pro | Gly | Leu | Pro | Asn | Gly | Leu | Leu |
|     |     |     |     |     | 225 |     |     | 230 |     |     | 235 |     |     | 240 |     |
| Ser | Gly | Asp | Glu | Asp | Phe | Ser | Ser | Ile | Ala | Asp | Met | Asp | Phe | Ser | Ala |
|     |     |     |     |     | 245 |     |     | 250 |     |     |     | 255 |     |     |     |
| Leu | Leu | Ser | Gln |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     | 260 |     |     |     |     |     |     |     |     |     |     |     |     |

<210> 74  
 <211> 127  
 <212> PRT  
 <213> *Sacharromyces cerevisiae*

<400> 74

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Phe | Asn | Gln | Ser | Gly | Asn | Ile | Ala | Asp | Ser | Ser | Leu | Ser | Phe | Thr |
| 1   |     |     |     |     |     |     | 5   |     |     | 10  |     |     | 15  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Thr | Asn | Ser | Ser | Asn | Gly | Pro | Asn | Leu | Ile | Thr | Thr | Gln | Thr | Asn |
|     |     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Gln | Ala | Leu | Ser | Gln | Pro | Ile | Ala | Ser | Ser | Asn | Val | His | Asp | Asn |
|     |     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |

Phe Met Asn Asn Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn  
50 55 60

Ser Lys Pro Leu Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala  
65 70 75 80

Phe Gly Ile Thr Thr Gly Met Phe Asn Thr Thr Met Asp Asp Val  
85 90 95

Tyr Asn Tyr Leu Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys  
100 105 110

Glu Ile Ser Met Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser  
115 120 125

<210> 75

<211> 63

<212> PRT

<213> Homo sapiens

<400> 75

Val Ser Val Thr Phe Glu Asp Val Ala Val Leu Phe Thr Arg Asp Glu  
1 5 10 15

Trp Lys Lys Leu Asp Leu Ser Gln Arg Ser Leu Tyr Arg Glu Val Met  
20 25 30

Leu Glu Asn Tyr Ser Asn Leu Ala Ser Met Ala Gly Phe Leu Phe Thr  
35 40 45

Lys Pro Lys Val Ile Ser Leu Leu Gln Gln Gly Glu Asp Pro Trp  
50 55 60

<210> 76

<211> 12

<212> DNA

<213> Homo sapiens

<400> 76

gtttgggagg tc

12

<210> 77

<211> 12

<212> DNA

<213> Homo sapiens

<400> 77

tgggaggtca ga

12

<210> 78

<211> 12

<212> DNA

<213> Homo sapiens

|                    |    |
|--------------------|----|
| <400> 78           |    |
| gtcagaaata gg      | 12 |
|                    |    |
| <210> 79           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 79           |    |
| gccagagccg gg      | 12 |
|                    |    |
| <210> 80           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 80           |    |
| gagcggggag aa      | 12 |
|                    |    |
| <210> 81           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 81           |    |
| ggggagaggg ac      | 12 |
|                    |    |
| <210> 82           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 82           |    |
| gtgggagag gg       | 12 |
|                    |    |
| <210> 83           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 83           |    |
| ggggcagggg aa      | 12 |
|                    |    |
| <210> 84           |    |
| <211> 12           |    |
| <212> DNA          |    |
| <213> Homo sapiens |    |
|                    |    |
| <400> 84           |    |
| gacagggct ga       | 12 |

<210> 85  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 85  
ggtgggggtc ga 12

<210> 86  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 86  
caagtgggga at 12

<210> 87  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 87  
gggtgggggg ag 12

<210> 88  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 88  
aggggggtggg gg 12

<210> 89  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 89  
gggtggggag ag 12

<210> 90  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 90  
gagcgagcag cg 12

<210> 91  
<211> 12  
<212> DNA  
<213> Homo sapiens

|                     |    |
|---------------------|----|
| <400> 91            |    |
| agaaaataggg gg      | 12 |
|                     |    |
| <210> 92            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens  |    |
|                     |    |
| <400> 92            |    |
| gggggtgggg gg       | 12 |
|                     |    |
| <210> 93            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens  |    |
|                     |    |
| <400> 93            |    |
| agagccgggg tg       | 12 |
|                     |    |
| <210> 94            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens. |    |
|                     |    |
| <400> 94            |    |
| agggaagctg gg       | 12 |
|                     |    |
| <210> 95            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens  |    |
|                     |    |
| <400> 95            |    |
| gtgggtgagt ga       | 12 |
|                     |    |
| <210> 96            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens  |    |
|                     |    |
| <400> 96            |    |
| gtgtgggtt ga        | 12 |
|                     |    |
| <210> 97            |    |
| <211> 12            |    |
| <212> DNA           |    |
| <213> Homo sapiens  |    |
|                     |    |
| <400> 97            |    |
| gttgagggtg tt       | 12 |

<210> 98  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 98  
gagggtgttg ga 12

<210> 99  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 99  
ggtgttggag cg 12

<210> 100  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 100  
ggggagaggg ac 12

<210> 101  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 101  
tggggagagg ga 12

<210> 102  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 102  
ggtggggaga gg 12

<210> 103  
<211> 12  
<212> DNA  
<213> Homo sapiens

<400> 103  
agggacgggt gg 12

<210> 104  
<211> 12  
<212> DNA  
<213> Homo sapiens

|                    |  |    |
|--------------------|--|----|
| <400> 104          |  |    |
| gacagggacg gg      |  | 12 |
| <210> 105          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 105          |  |    |
| gaggagggag ca      |  | 12 |
| <210> 106          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 106          |  |    |
| gggggtcgag ct      |  | 12 |
| <210> 107          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 107          |  |    |
| gaaggggaag ct      |  | 12 |
| <210> 108          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 108          |  |    |
| aatgaagggg aa      |  | 12 |
| <210> 109          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 109          |  |    |
| gcggctcggg cc      |  | 12 |
| <210> 110          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <400> 110          |  |    |
| gggcgggccg gg      |  | 12 |

|                    |  |    |
|--------------------|--|----|
| <210> 111          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 111          |  |    |
| aaaaaaaggggg gg    |  | 12 |
| <br>               |  |    |
| <210> 112          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 112          |  |    |
| gcagcggta gg       |  | 12 |
| <br>               |  |    |
| <210> 113          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 113          |  |    |
| ggggaagtat ag      |  | 12 |
| <br>               |  |    |
| <210> 114          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 114          |  |    |
| agagaagtcg ag      |  | 12 |
| <br>               |  |    |
| <210> 115          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 115          |  |    |
| gagagagacg gg      |  | 12 |
| <br>               |  |    |
| <210> 116          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |
| <br>               |  |    |
| <400> 116          |  |    |
| ggggtcagag ag      |  | 12 |
| <br>               |  |    |
| <210> 117          |  |    |
| <211> 12           |  |    |
| <212> DNA          |  |    |
| <213> Homo sapiens |  |    |

<400> 117  
 ggggtggggg ga

<210> 118  
 <211> 12  
 <212> DNA  
 <213> Homo sapiens

<400> 118  
 caagggggag gg

<210> 119  
 <211> 90  
 <212> PRT  
 <213> Saccharomyces cerevisiae

<400> 119

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Asn | Ser | Ala | Ser | Ser | Ser | Thr | Lys | Leu | Asp | Asp | Asp | Leu | Gly | Thr | Ala |    |
| 1   |     |     |     |     |     |     |     |     | 5   |     |     | 10  |     |     |     | 15 |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Ala | Val | Leu | Ser | Asn | Met | Arg | Ser | Ser | Pro | Tyr | Arg | Thr | His | Asp |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Pro | Ile | Ser | Asn | Val | Asn | Asp | Met | Asn | Asn | Thr | Asn | Ala | Leu | Gly |
|     |     |     |     |     |     | 35  |     | 40  |     |     |     | 45  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Pro | Ala | Ser | Arg | Pro | His | Ser | Ser | Ser | Phe | Pro | Ser | Lys | Gly | Val |
|     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Arg | Pro | Ile | Leu | Leu | Arg | Ile | His | Asn | Ser | Glu | Gln | Gln | Pro | Ile |
|     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     | 80  |     |

|     |     |     |     |     |     |     |     |     |     |  |  |  |  |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|
| Phe | Glu | Ser | Asn | Asn | Ser | Thr | Ala | Cys | Ile |  |  |  |  |  |  |
|     |     |     |     |     |     | 85  |     | 90  |     |  |  |  |  |  |  |

<210> 120  
 <211> 3480  
 <212> DNA  
 <213> Homo sapiens

<220>  
 <221> misc\_RNA  
 <222> (2363)..(2363)  
 <223> mRNA start site

<220>  
 <221> misc\_signal  
 <222> (3401)..(3403)  
 <223> translation start site

<400> 120  
 gaattctgtg ccctcactcc cctggatccc tgggcaaagc cccagaggga aacacaaaca

ggttgttgta acacaccttg ctgggtacca ccatggagga cagttggctt atgggggtgg

|             |             |             |             |             |             |            |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------------|------|
| gggtgcctg   | ggccacgga   | gtgactggtg  | atggctatcc  | ctccttggaa  | cccctccagc  | 180        |      |
| ctcctcttag  | cttcagattt  | gtttatttgt  | tttttactaa  | gacctgctct  | ttcaggtctg  | 240        |      |
| ttggctctt   | tagggctga   | agaaggccga  | gttgagaagg  | gatgcaaggg  | agggggccag  | 300        |      |
| aatgagccct  | tagggctcag  | agcctccatc  | ctgccccaaag | atgtctacag  | cttgcgtcc   | 360        |      |
| tgggtgcta   | gaggcgacaca | aggagggaaag | ttagtggctt  | cccttccata  | tcccgttcat  | 420        |      |
| cagcctagag  | catggagccc  | aggtgaggag  | gcctgcctgg  | gagggggccc  | tgagccagga  | 480        |      |
| aataaacatt  | tactaactgt  | acaaagacct  | tgtccctgct  | gctggggagc  | ctgccaagtg  | 540        |      |
| gtggagacag  | gactagtgca  | cgaatgatgg  | aaagggaggg  | ttgggggtggg | tggagccag   | 600        |      |
| ccctttcct   | cataagggcc  | ttaggacacc  | ataccgatgg  | aactgggggt  | actggggagg  | 660        |      |
| taacctagca  | cctccaccaa  | accacagcaa  | catgtgctga  | ggatggggct  | gactaggtaa  | 720        |      |
| gctccctgga  | gcgttttgtt  | taaattgagg  | gaaattgctg  | cattcccatt  | ctcagtccat  | 780        |      |
| gcctccacag  | aggctatgcc  | agctgttaggc | cagaccctgg  | caagatctgg  | gtggataatc  | 840        |      |
| agactgactg  | gcctcagagc  | cccaactttg  | ttccctgggg  | cagcctggaa  | atagccaggt  | 900        |      |
| cagaaaccag  | ccaggaattt  | ttccaagctg  | cttcctatat  | gcaagaatgg  | gatggggggcc | 960        |      |
| tttgggagca  | cttaggaaag  | atgtggagag  | ttggaggaaa  | agggggcttg  | gaggttaaggg | 1020       |      |
| aggggactgg  | gggaaggata  | ggggagaagc  | tgtgagcctg  | gagaagtagc  | caagggatcc  | 1080       |      |
| tgagggaatg  | ggggagctga  | gacgaaaccc  | ccatttctat  | tcagaagatg  | agctatgagt  | 1140       |      |
| ctgggcttgg  | gctgatagaa  | gccttggccc  | ctggcctggt  | ggagctctg   | ggcagctggc  | 1200       |      |
| ctacagacgt  | tccttagtgc  | tggcggttag  | gtttgaatca  | tcacgcaggc  | cctggcctcc  | 1260       |      |
| acccggcccc  | accagccccc  | tggcctcagt  | tccctggcaa  | catctggggt  | tgggggggca  | 1320       |      |
| gcaggaacaa  | gggcctctgt  | ctgcccagct  | gcctccccct  | ttgggttttg  | ccagactcca  | 1380       |      |
| cagtgcatac  | gtgggctcca  | acaggtcctc  | ttccctccca  | gtcactgact  | aacccggaa   | 1440       |      |
| ccacacagct  | tcccgttctc  | agctccacaa  | acttggtgcc  | aaattcttct  | cccctggaa   | 1500       |      |
| gcatccctgg  | acacttccca  | aaggacccca  | gtcactccag  | cctgttgct   | gccgctact   | 1560       |      |
| ttgatgtctg  | caggccagat  | gagggctcca  | gatggcacat  | tgtcagaggg  | acacactgtg  | 1620       |      |
| ccccctgtgc  | ccagccctgg  | gctctctgta  | catgaagcaa  | ctccagtc    | aaatatgtag  | 1680       |      |
| ctgtttggga  | ggtcagaaat  | agggggtcca  | ggagcaaact  | ccccccaccc  | cctttccaaa  | 1740       |      |
| gcccattcccc | tcttagcca   | gagccgggggt | gtgcagacgg  | cagtcactag  | ggggcgctcg  | 1800       |      |
| gccaccacag  | ggaagctggg  | tgaatggagc  | gagcagcg    | tc          | ttcgagagtg  | aggacgtgtg | 1860 |

|             |              |              |             |               |             |      |
|-------------|--------------|--------------|-------------|---------------|-------------|------|
| tgtctgtgtg  | ggtgagttag   | tgtgtgcgtg   | tggggtttag  | ggtgttggag    | cggggagaag  | 1920 |
| gccaggggtc  | actccaggat   | tccaaacagat  | ctgtgtgtcc  | ctctccccac    | ccgtccctgt  | 1980 |
| ccggctctcc  | gccttcccct   | gccccc ttca  | atattcctag  | caaagaggga    | acggctctca  | 2040 |
| ggccctgtcc  | gcacgtaacc   | tcactttcct   | gctccctcct  | cgc caatgcc   | ccgcgggcgc  | 2100 |
| gtgtctctgg  | acagagttc    | cggggcgga    | tggtaattt   | tcaggctgtg    | aaccttggtg  | 2160 |
| ggggtcgagc  | ttccc ttca   | ttgcggcg gg  | ctgcgggcca  | ggcttca ctg   | ggcgtccgca  | 2220 |
| gagcccgggc  | ccgagccg c   | tgtggagggg   | ctgaggctcg  | cctgtccccg    | ccccccgggg  | 2280 |
| cgggccgggg  | gcggggtccc   | ggcggggcgg   | agccatgcgc  | cccccccttt    | ttttttaaa   | 2340 |
| agtcggctgg  | tagcggggag   | gatgcggag    | gcttggggca  | gccgggtagc    | tcggaggtcg  | 2400 |
| tggcgctggg  | ggctagcacc   | agcgctctgt   | cgggaggcgc  | agcggttagg    | tggaccggc   | 2460 |
| agcggactca  | ccggccaggg   | cgctcggtgc   | tgg aatttga | tattcattga    | tccggg tttt | 2520 |
| atccctcttc  | tttttctta    | aacat tttt   | tttaaaactg  | tattgttct     | cgttttaatt  | 2580 |
| tat ttttgc  | tgc cat tccc | cacttgaatc   | gggccc acgg | cttggggaga    | ttgctctact  | 2640 |
| tccccaaatc  | actgtggatt   | ttgaaacca    | gcagaaagag  | gaaagaggta    | gcaagagctc  | 2700 |
| cagagagaag  | tcgaggaaga   | gagagacggg   | gtcagagaga  | g cgc g cgggc | gtgcgagcag  | 2760 |
| cgaaagc gac | aggggcaaaag  | tgagt gac ct | gttttgggg   | gtgaccgccg    | gagcgcggcg  | 2820 |
| tgagccctcc  | cccttgggat   | cccg cagctg  | acc agtgcgc | ctgacggaca    | gacagacaga  | 2880 |
| caccggcccc  | agccccagct   | accac ctct   | ccccggccgg  | cggcggacag    | tggacgcggc  | 2940 |
| ggcgagccgc  | gggcaggggc   | cggagccgc    | gcccggaggc  | gggttggagg    | gggtcggggc  | 3000 |
| tcgcggcgtc  | gcactgaaac   | tttcgtcca    | acttctggc   | tgttctcgct    | tcggaggagc  | 3060 |
| cgttgtccgc  | gcgggggaag   | ccgagccgag   | cggagccgc   | agaagtgc ta   | gctcggccg   | 3120 |
| ggaggagccg  | cagccggagg   | agggggagga   | ggaagaagag  | aaggaagagg    | agagggggcc  | 3180 |
| gcagttggcga | ctcggcgctc   | ggaagccggg   | ctcatggacg  | ggtgaggcgg    | cggtgtgcgc  | 3240 |
| agacagt gct | ccagccgcgc   | gcgc tccccca | ggccctggcc  | cggcctcgg     | gccggggagg  | 3300 |
| aagagtagct  | cggccaggcg   | ccgaggagag   | cggccgccc   | cacagccga     | gccggagagg  | 3360 |
| gagcgcgagc  | cgc gccggcc  | ccggtcgggc   | ctccgaaacc  | atgaactt c    | tgctgtctt g | 3420 |
| ggtgcattgg  | agccttgct    | tgctgctcta   | cctccaccat  | gccaaggtaa    | gcggtcgtgc  | 3480 |

<210> 121  
<211> 8024  
<212> DNA

<213> Homo sapiens

<220>  
<221> misc\_feature  
<222> (3731)..(3731)  
<223> mRNA start site

<220>  
<221> misc\_feature  
<222> (3959)..(3961)  
<223> ATG

<400> 121  
ccgggcttag ctcagtcatt ttgcccttag gactataagt ggactattat gcagcacttt 60  
cttttttatt attattacta ttaagccaag taagttctta acagctaaca cctgagctgg 120  
tggctcttag aaggccttttc actccttac gggagacggg accattcaca tgaagatcct 180  
acattgttgtt ttttttttt ttggaggtcg aaaaaggta ctgttaggag gctttctggg 240  
cctttgtcc tctccctcaa tttattaccc ctccagtgcc tgatgacgta cagggagact 300  
tccacccgat aatgacatgg ctttgttat ttcacaaatt cccagcattt actgttaatc 360  
agaccagtt tgaaccaccc ccaaggggct tgcaagtctaa acagctcact ttgctcagcc 420  
tcttccttag gtcaggcact gtcttgctaa ggccgacatc agctcatgcc cattttacag 480  
atggggaaac tgagaatgt aagaagtcaa atagcgtaag gttatacaac taacagggag 540  
acagcctaaa cttgaaccca accggaagcc caacatggcc ccaaggccttc ctcgaacccc 600  
aggacttggc aaagcgggcg tcctgggta aagcatggca gaaggcctt gggtccaagc 660  
taagttaggg tcctgtttct agatcacctg gccaggtgca gtggctcatg cctgtaatcc 720  
cagcactttg ggaggcttag gcgggaggat tgcttgagct caaaagttt agtccagccc 780  
gggcaataca gcgagaccc tcctctacta aaaaagaaaa caaaaaattha gctgagtgtg 840  
tagtcccagc tactcaggag actgaggctg gaggattgct taagcctgga agtttaggc 900  
tgttagagcta tgatagagcc actgcacttt agcctggca atggagcaag atactatctc 960  
aaaaaaaaaa aaatatataat ataggtcccc ttgtccctct gctgagaagt aaccagatct 1020  
ggaaaaagatt tagtcacctt ggtccaaacta tttcttcac ataaagaaaa aaaaaggcaa 1080  
tgcaaacctt cccatggggc cagctctgcc tgaggcctt gcaggtacct ctgtttgtct 1140  
gccccggggc acagtggcag attggcagg gcagttgca gtgaggattg ctgatggatg 1200  
agtccttagt gtacctagcc agccatttac tcacaaacag ctattgagca cctactatgt 1260  
gcccagcact ggaggtacaa ctggcaacaa cacaatccg ggcttgctcc atggaggtga 1320  
caatctaaat gcgggtggagg gtcagctaac aagtgcagaa ggttctctta agagctaaa 1380

|                                                                     |      |
|---------------------------------------------------------------------|------|
| gaagctccaa ccagaaggac tgggcagggg atccagaagg catccccag tggctactcc    | 1440 |
| aatggagtgg cttctccatt caggcaaacc tgaatggat aagtcatgg caggaagatc     | 1500 |
| tggggccggg ggtcatccag tgggaagggg agagatgacg cggtcagcat ggcgggaaca   | 1560 |
| caggagcaga aaggaagcag gtgggaagcc aggtcaaggg ccaggggcac ggaaagggt    | 1620 |
| cagatgcaga taagtgagtg ctccctggtg catccttcat ccgcaattca tccttacctg   | 1680 |
| tgctttgtt gcctccattt cacagctgag gaggccaggg cctgcggagg ttgagagtgt    | 1740 |
| gctcaggagc ccccccggagc aaagtggaaag ccagattcca gatcagttct gctgggaatt | 1800 |
| cccagctccc aaaagccctg ctggctgtca gtccccagtc accacaagca cctatcctgt   | 1860 |
| gtgggtgggc ctgcagttct gggagatata tcagctgcct gcagcgtcct ttgctgaact   | 1920 |
| cacagcaaat aggagagaca gggaggggtc ctgggaagc cctaaattga gcttgctgtg    | 1980 |
| ggagtcctgg gaagaaagga gcctcatcct atcaaaagcc ggggggaaga catcagagtc   | 2040 |
| cctctgctca ggtcagctgg cacaggtggg tctccaggcc tgggtctcac ttccccagag   | 2100 |
| ggtgttgcg ggtggccca ggctgagggg ggaaagccca cctccatgt catttgcaa       | 2160 |
| atggggagtc agggacctag agatggaaag acaacacagc aagtgagggg tgggttctag   | 2220 |
| gtccccctgca ccctgcaccc tgccacctgg ccaacgatgt ctattggca ccagatctgc   | 2280 |
| aggctcatct gggggacccc aggacccaga ggcagccggg ttgcattctcg aagctgtgag  | 2340 |
| ctgcagccca ggaaggtcca ggtctgggtg ggcgtccca agcaggctgc aggcccaagg    | 2400 |
| aggaacaaag atcctctcaa ggggtgcgga gctgaggttc cggtcctgcc aaagccactt   | 2460 |
| gatgacccccc aagtgcaccc ctttctgcac ctcagagaag agccctcaag cctccaggt   | 2520 |
| cccctccagg ggcacgaata agccccagca gggttctgaa ggggtcccag gaatctccct   | 2580 |
| gtggggatgc ggtggaggtg gaggaggctg cggtgccctg gggacatctc tggtcacagg   | 2640 |
| tgctgggtgt atgagagatg gggtaggcac caagccccct gcagctgtgg ctaggcggc    | 2700 |
| ctgcaggaag ggcaggcag gtcctcagg gaccacaaag aacaggggtt ttcacaccta     | 2760 |
| ggtgtggcctg catctagcta ggcagatccc catcaggcca taatgggcac agtgggaggt  | 2820 |
| agaaccatga gtgagagagg ggaggcttcc agaggcctgg cctgggtccc tgctagattg   | 2880 |
| agggctctgg ctatggtaca tggatatttc tgctgtggaa tcaaaggagc agggatgct    | 2940 |
| gaatatcccc tctggcccta tgccctgcta cctgtcctt cacggaaggg tgtgtgtga     | 3000 |
| gggggtgcag gaccaggcct ccctgggtgc atctctgcca cttggccctt tggctcaggt   | 3060 |
| ggacctccac caggtattca gaactccagc ccagaaacgc gccaagcctg tggggccaag   | 3120 |

|             |            |            |            |            |             |      |
|-------------|------------|------------|------------|------------|-------------|------|
| accttaggggg | tgggggtggc | ctccctcccg | cctgtagcca | aagggtcctc | ccttgcccag  | 3180 |
| ccaggccccg  | gtgtcgctta | ctgctttat  | ccaccctcc  | ttcccaggcc | ggtcctcaag  | 3240 |
| gccccagcaa  | aggaaccaag | ttcccgttag | cctccgaaag | gcgaaggga  | ggcagcagcc  | 3300 |
| gctggttct   | gcccacta   | ggagcttcgg | atgcccagt  | tagggctg   | ccaaggcggc  | 3360 |
| cgagcagag   | agggagacgg | ggacggggac | aggcagggac | aaagtgc    | aggcaaaaact | 3420 |
| ggctaaaaag  | cagaagtgt  | ggagccgcca | aggggcggg  | cgaacagg   | cgtggccgg   | 3480 |
| gcggagccaa  | gggtggggc  | cgggtccct  | ccaggtgg   | ctcgccgc   | tagtccccag  | 3540 |
| cctcctccct  | tccccggcc  | ctgattgg   | ggcggcctgc | gaccagcc   | gaacgccaca  | 3600 |
| gcgcgggg    | cgcaggag   | aacgcgaac  | gcgcggcg   | ggagcggcg  | agttaggagg  | 3660 |
| ggcgccggc   | tatatatata | gcggctcg   | ctcggcg    | cctggcg    | aggaggcg    | 3720 |
| gcactgctcc  | tcaagtc    | agctccag   | gcgcgtt    | cgcggcg    | gccgctccat  | 3780 |
| gcagccggg   | tagagccgg  | cgcgggggg  | ccccgtcg   | tgcccccgc  | acctcctcg   | 3840 |
| ttgcgcactc  | ccgcccgg   | tcggccgt   | gctcccg    | gccgccac   | gcgcagct    | 3900 |
| gcgcgggg    | ttcccg     | cactgacc   | ctgacc     | cacggcc    | ggccgggat   | 3960 |
| gtcgcccc    | gggacggcg  | cggtagcg   | gctcccg    | gtcctg     | cctgctgg    | 4020 |
| gccctggcg   | ggccgagg   | gcgcgc     | acccact    | ccaaacgg   | cgctggagg   | 4080 |
| cgagctggag  | cgcgtcg    | agagcctg   | ggcgct     | ttggcg     | tgccgg      | 4140 |
| agcgcagccc  | aaggaggcg  | ccgtccag   | cggccgg    | gactac     | tggcat      | 4200 |
| gcggctg     | cggtctact  | gcaacgt    | catcg      | cac        | ctccagg     | 4260 |
| cggccgc     | ggcggcg    | acggac     | ccgc       | gacagt     | gagtgg      | 4320 |
| aaggggcg    | ggcgggggg  | aacggcc    | ggcca      | acctac     | actctg      | 4380 |
| cctcg       | cac        | gtcg       | ggggccc    | gaaccgg    | ggactcg     | 4440 |
| tctgac      | ggctggg    | gcagac     | ttggct     | cagcc      | caac        | 4500 |
| gtcg        | cgcc       | cttca      | tcgg       | agcgc      | aat         | 4560 |
| tcgg        | gggtccc    | cacagg     | cgccgt     | ccacagg    | ccc         | 4620 |
| ctggccc     | ctggga     | gctgggt    | ggctcg     | tgaagg     | tcc         | 4680 |
| cggcc       | gggtccc    | cacagg     | cta        | atctg      | act         | 4740 |
| ggaggcc     | gagggcag   | ttggct     | aggcc      | ttgg       | ggcggct     | 4800 |
| ctggcc      | ttt        | atcccc     | acc        | ccaccc     | aatagg      | 4860 |
| atcccc      | aacc       | ccaccc     | aaga       | aatagg     | tcc         |      |
| ccaccc      | aaga       | aatagg     | tcc        | ccggagg    | gca         |      |
| aatagg      | tcc        | ccggagg    | gca        | acaagg     | ccag        |      |

|                                                                           |      |
|---------------------------------------------------------------------------|------|
| gggcggagtg ggccaggat cacctgcccc gcaatgacct gcgcggcgcc cccaggcctg          | 4920 |
| ctggagctct cgcccggtga gcggggcggtg gtgagcatct tcggcggtgc cagccggttc        | 4980 |
| ttcgtggcca tgagcagcaa gggcaagctc tatggctcgg tgagtaccgc aggggtctgg         | 5040 |
| ctaggcacct agttggaaac agcggacatg gctagcaggc tcgtggcttc tccagcccc          | 5100 |
| cctgtgcctg ggtcttggag gggggcagg gtcaccaggt cacgggaccc gcaggcctcc          | 5160 |
| ccagacaaag gaagcagccc caaggcagga acaatgaggt tcctgccatc cctgagtggg         | 5220 |
| cccctccag accgagggaaa gggcgctatt gagagccctt cccttctcta gtccagaggg         | 5280 |
| gtaggtctca gtgttggaaac tgcgggcttg aggctggaca cgcaggaaat gaattctctg        | 5340 |
| gctgcttagt gcagggcagg tggtgagagc accagctgtt gtgggctggc catgtcccct         | 5400 |
| tctcaccctg tgtgggtctt gacaccaaacta ctgctcagca gagacatctc agcccagggt       | 5460 |
| gggggggtggg acagaagggg gttctgaccc ctggcttcag gctgggtacc ttgccccaga        | 5520 |
| ggtgccccag ccctgacact gccctgcttt gctgcagccc ttcttcaccg atgagtgcac         | 5580 |
| gttcaaggag atttccttc ccaacaacta caacgcctac gagtcctaca agtaccccg           | 5640 |
| catgttcatc gccctgagca agaatggaa gaccaagaag gggAACCGAG tgcggccac           | 5700 |
| catgaaggta acccacttcc tccccaggct gtgaccctcc agaggaccct tgcctcagcc         | 5760 |
| tcgggaagcc cctgggaggg cagtgccgag ggtcaccttgcgtcactttc ttccggatgaa         | 5820 |
| <br>gagtttaatg caagagttagg tgtaagatat ttAAATTAAAT tattttaaatg tgtatataatt | 5880 |
| gccaccaaat tattttatgt tctgcgggtg tgTTTTTAA TTTCTGGGG ggaaaaaaaag          | 5940 |
| acaaaaacaaa aaaccaactc tgactttct ggtcaacag tggagaatct taccattgga          | 6000 |
| tttcttaac ttgtcaaaag ttgtcacgag tgcgtgcta ttctgtgttt taaaaaaaaagg         | 6060 |
| tgacattgga ttccgatgtc atccccgtta gtatggcggt gacatctct gtctggaaag          | 6120 |
| ccccccctga ggcttggca gccagttcag ggagctccc ggcttggctc tcggctagca           | 6180 |
| tcctcagagg cccactccct ttgtgccctg ttgttattaa tcgggacata tcggtttact         | 6240 |
| tcgggtacag aaagtgcggt gttgaagtcc tgcgtgccac tctgtttta gatctgcca           | 6300 |
| gactgacctt tgaactttcc tgcgtcaat ctccctcgat ctaccagatg ggagagaccc          | 6360 |
| ttggacaact ttataaactc ctgtttgcct ttTTTGGATC agcgacagcc cccatcgctg         | 6420 |
| tgactattgg ggaaaaagacg aagctcttcc ataaattcca tggagagggaa tcaatatccc       | 6480 |
| actggaaaggc tagaaatgga caagatagtg tatttgcattt cacaacaaa accctagtga        | 6540 |
| tgaaaaataa ttgtgatgg cagatgcctc tgcgtgtg atagaatatg ttttgaaaa             | 6600 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| caaaccatcg aaccccccgc cccaccccca aaacgggctt ccctgtgttt agggagcttt   | 6660 |
| gggctagaac tagctacgat ttttaggtga aatgtccttg taattgtaca aagcacttgg   | 6720 |
| tgcagtgttt gcgtggagca gcctgctgct ttctgatgca ttccctgttt aagtgcgttt   | 6780 |
| aacatctacc tcacaagccc tgaaacccca ggcaaaaccc acagaaaagct catacccggt  | 6840 |
| gcaggagttt gccatcccaa gtggctttt ttccatatgt agccaaaaag gattgcagat    | 6900 |
| agcgtcggtg cgtcccattc gaaccttgtc acgttttagc tatcttacc ctgtgattta    | 6960 |
| ctttagtaa gggtgatcat ggtgaaaata tttgcagaca gctgttacag tacactata     | 7020 |
| ggtcaccaag taaccttata ttttcttta tatattttac aaatgttaacc cctgtcattt   | 7080 |
| aagcaaccgt ggaagaggca gggtcggtga tgttaaaaaa aagttccgag gtgatggcaa   | 7140 |
| acatttaatt ttaatgaatg actttttaga gtttatacaa aatgacctt gcttgctacc    | 7200 |
| agaaatgctc cgaatgttcc gtcaagactt taatactctc ctaggatgtt tctgaactgt   | 7260 |
| ctccccgaatt aactttatgg gagtctacag acagcaagac tggaaaatct gattggagtt  | 7320 |
| tttgtcttcc acattccttt tgaaaactct ttgttcaaat gcaaatcatc gactttaaaat  | 7380 |
| actattctta accaaggcct ggaagaaaaga agacacttgc aaagccgcta agacaggacc  | 7440 |
| acacatctta aactgctgtt cctaccatgc actaaactgt ttttaagttt taaaccacac   | 7500 |
| cctaggctcc aggagtgttc aggaaagatg gtgtttgttag gtctccatgc tgttggcgt   | 7560 |
| tgggggggtgt ggagggatca tccgtcgact ttctgaattt taatgttattc acttagtaac | 7620 |
| aaaccatgt tgtcttaaat gccttaaattt attatgagat ttcttgcctc agagccaaat   | 7680 |
| cagattgtca ggaattaaca tgtgttaggt ttgatcaccc ttgaccactt cttatagata   | 7740 |
| tttcttcaac aaatcatgtg tgatgcctgt aggaacacaa ctgtacctt aaaatattgt    | 7800 |
| tttcatattt ctgtgatggg gattcgaggt tcctgtatgt gccactgttt tcagaatctg   | 7860 |
| tagtttata caggtgccga ccctcggtgt gatgtatgtc ctgtgcacat tgacatgctg    | 7920 |
| accgacaatg ataagcgttt atcgtgtata aaaagacacc actggactgg atgtacacaa   | 7980 |
| ctggaaagg aattaaaagc tattaaaatt gtgccttgaa atgc                     | 8024 |

<210> 122  
 <211> 7000  
 <212> DNA  
 <213> Homo sapiens

<220>  
 <221> misc\_feature  
 <222> (4389)..(4389)

<223> mRNA start site

<220>

<221> misc\_feature

<222> (4454)..(4456)

<223> ATG

<400> 122

|                                                                      |      |
|----------------------------------------------------------------------|------|
| aatggtatta taggtaatg agtatccatc tagtatttaa gtatcacat aaattgcagt      | 60   |
| acttaaagta atctcttac aagttatTTT atcaaaaact tttcagacac aatttttgg      | 120  |
| ggatttattc aaactgttta acacttaaga agtactggct taccttggag atactgctcg    | 180  |
| tttggttca gaccactgtg atcaagcaaa aatcgcaata aagcaagtta catgaatttt     | 240  |
| tttttcgttt cccagtgcattt ataaaaagtta cacagcagac tattaagtgt gcaacagcat | 300  |
| tatgtttaaa aatgtccata ccttaactta aaaatacttt attgttaaaa aatgctaacg    | 360  |
| atcatataag ctttcagcga gtgataatct ttttgctgat ggagggtctt gcttgatgtt    | 420  |
| cagagccttg ctgtggctt ggcttaaggc ttaagggaat attgcagctg gtttgatctt     | 480  |
| ctatctagac tgctcaaatt ttctgcataat cagcaataag gctgctctgc tctttatca    | 540  |
| tttgtgtgtt cactggagta gcacttctaa cttgcttcaa gaactttct tttgcatttg     | 600  |
| caactcggat aactggtgca agaggactgg ctttgacct aactcatctt tggcatgcc      | 660  |
| tttccccaaa agcttaattt atttctagct tttgatttca aggaagagac gcgcaactct    | 720  |
| tcctttcaact tgagtactta gaggtcattt caggctatc aattggccta atttcaataa    | 780  |
| tgttgtgttt taggaaatag agaagcctga ggggagggag agagacgggt gaacagctcg    | 840  |
| tcagtgaggat agtcagaata cacacatgaa tggattaaat ttgggttggat gtttgggtg   | 900  |
| cccaaaacaa ttatggcagt aacatcaaag atcactgatc acagatcatc atgtaaaata    | 960  |
| ataaggaaat atttggaaata ttgcaagaat taccaaaatg tgacacggag acacaaagtg   | 1020 |
| agcacatgct gtgggaaaaa cggcaccaac agacttgctc aattcgagga caccacaaaa    | 1080 |
| cttaatttgt aaaaacacat tatctgtgaa gtacaataaa gtgaagggca ataaaatgat    | 1140 |
| gtatgcctat gtaaggcaat cagtagatga tggaaaaaaa acattgcatg atttagaaaa    | 1200 |
| aacaaagaga atatgttac aaaatgacta aactaatagc ataattagaa tttcatttga     | 1260 |
| gtatttcttt atagtttga gagattaaa attatgtatt attttataaa ttattatgga      | 1320 |
| ggatcccta tataccagt ctcagactta tttgggtatcatactctgg aacatgtgat        | 1380 |
| tcttcctcgtt gttgggttaa aaaaatttat accatccat ggggtatgac taatctgaat    | 1440 |
| ctcacacttgc aatattactt tggatctta ggcaagttat ttaagaataa aaataactta    | 1500 |

|                                                                        |      |
|------------------------------------------------------------------------|------|
| ctatgttcc tcaactataa aatgagaatt ttaataatct taaaacttact gtaaggatga      | 1560 |
| aataatttc aatagtatgt aatatgatgc ttagcataca ttaagatctc agtgttatatt      | 1620 |
| agcaacaatt tcagtaaaga aagaccaaatt aattttgtc aagaaatatg aatatataaa      | 1680 |
| ttatataggc tttaagttgt atttaccata tttaatgtga cagaaaaaaa agtcacgaaa      | 1740 |
| atgtgtgacc taataagttt attcagttt ctaatgcct gaacccctta tctcagatgg        | 1800 |
| atttgctcc aaacctataa caataattt caaccctgac tctagtttt tttctgaga          | 1860 |
| aaaaaaaaata aatagaaaca ctgttcttt tcttcctta cctacaggaa tttacttaca       | 1920 |
| aaaaaatcta acttctttt aaaaacagcct taatcccttgg tggggccaag ggaaaacttt     | 1980 |
| tccattgttc tctgaagggt tgctaaaaaa aaaattactg tcaagaggca gatcaataga      | 2040 |
| agaaaaaggca tacacattt tttgatcata atttacaca acccgagagc ctttagaaca       | 2100 |
| aagaccaaaa gttacaaaag aaattgtcca ttttatgct taggttcaac aaagtgtggg       | 2160 |
| caggtgtgga gaaatacaac tggacaaaag gaatatgatc tcatgctaagc agactgagtg     | 2220 |
| gggacgcctg gcaaggtgag attcttcctg gtatctctgt gcagttactca ttccctctgg     | 2280 |
| gtatggggca ggaccttctt tggaatgggg tcttatgagc tacgtcaaa caaggttaggt      | 2340 |
| cagataatgt ctttatggcc agatttcaca cagaaagttg aggtgttaga gtgatatgct      | 2400 |
| taggtttat ggctggtttgg gaaaaaagggtt ctctggggc taggagccac cttggaaag      | 2460 |
| agggattcttta gtttctatgc ctcgccttgg gggagaatga agggccggag actggagagc    | 2520 |
| aggagaaggtt cagagagagc tgattctgag gtcttcattt ggggtatcat tttctgagc      | 2580 |
| ccctacaccc taataaaagca caagagatgc agtggagcaa ttccagggtca cggtcaggct    | 2640 |
| atgcattgaa ctgagatttc ccaaaaagtc tactgaacag taaaaagaaa gtaaaaatggaa    | 2700 |
| tcctggggac accagacaga ggctgacaaa tgattttaa gtaaggagaa aatgataaaa       | 2760 |
| gagaaggattt agcaatagaa acgggtcata taaaatagat ccctcaaaag gaattcttt      | 2820 |
| aatcccttagt ttctcttagat atcccacaac ctcaggact tatcaggcag gttgttttc      | 2880 |
| cctgaaagtgc ggggtaaagggtt agctggagga caaatgaagg tggtatgtgg agggaaaggct | 2940 |
| gttctgtgga tgagtttaat tcagccccac aatcacttct gtacagctac ccaccgctct      | 3000 |
| agtcatcccc acatttggcc tgcttctttt tcctctgtgg acaggggcac tgttctctac      | 3060 |
| taatatccat ctcagagaga tacagggggca agtacccctc agcatccatt agaaataaaag    | 3120 |
| caggctcttgc cttaaagtta ccagagcatc cacctctggg tgcaaagaca aattctgt       | 3180 |
| atcaagtgc gggctgtggc aatgatctca caaggatttg ataccttagga gtcggccat       | 3240 |
| gcccatacaa gctcctcatac tttccactta cactttggga agctggctgt cgtgtacagg     | 3300 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| cagatgaagc tggaaaagag aggcatattc agtactcacg aattcaaaca gcttgaggga   | 3360 |
| tttccggta aagtcagtcc taaccagtgt atacgtacat acacaccaac atgtgtgaat    | 3420 |
| gtgttgtgtg cacgtgtgtg cctgtacaag tccacatggc atatttacct gtcagggaca   | 3480 |
| ggctatggac aatgactgtt tcttggactt tctctaaaaa agtcagatca gacaagttt    | 3540 |
| ttttgtatac tttgggtaaa tgtgtggtat ttcgtgagtt tggcagttt tgaaaaaaaaaa  | 3600 |
| aaaaaaaaaa aaaaaaaaaa aaagctgcct gctctgagcc catggggcag gggcaattt    | 3660 |
| ttcatctgac aatctgcgtg ctttgtttt gcttgcttat tttggccccca caataccaca   | 3720 |
| ccctttctt aactaacctc tttctacctg ggctggacgt gcctgggctc tcctccctgg    | 3780 |
| ccccgctccc acctctccca ggtctctaaa cccctagaga acctgtgtca gtgtttgaa    | 3840 |
| tccctcagtt gctctagcag gaaaactaga cagattagga gctggggcac atttggctga   | 3900 |
| aagacagctc ttgcgtttct tcttatgctg cttcccttc ctctttccc aaatagatat     | 3960 |
| ataaacacat gtattttcct gttaaattt agcgaattgg tcccctgcct gtgccttgat    | 4020 |
| ttagccattt ggctcagcct tgctcctccc ttccttactc ggataggagc cactgggatc   | 4080 |
| tggagctcca gcttccaaat tgaagctggc ctcaggccag gtgaccttt ctttgttaagt   | 4140 |
| ttctttccta agcgtgggt tggggggagg cggggaatgg ggggggttgc agggatctgt    | 4200 |
| ttggtgctgt tgaagggggg gcgagtgagg aaaggagggg gctggaagag agtaaaggc    | 4260 |
| tgttgttaaa cagtttctta ccgtaagagg gagttcagac ctagatctt ccagttaatc    | 4320 |
| acacaacaaa cttagctcat cgcaataaaa agcagctcag agccgactgg ctcttttagg   | 4380 |
| cactgactcc gaacaggatt cttcaccca ggcatctcct ccagaggat ccgccagccc     | 4440 |
| gtccagcagc accatgtggg tgaccaaact cctgccagcc ctgctgctgc agcatgtcct   | 4500 |
| cctgcatctc ctctgctcc ccacgtccat cccctatgca gtttagttcc cttttcttc     | 4560 |
| ttcattatta gtattagttat ttaactctcc tgctaaccctt ccctattcct tttaacaccc | 4620 |
| tcttttacc ctattccag catccttctt gaactcagta tgttagtata tagttctaaaa    | 4680 |
| gctctcatta tgctttttt gacattctt tttgttgtg tttgaatagc atttaaaatg      | 4740 |
| ataatctaact ttccctcaac tcccctccac ctccaaacca agccccgtcc cacttagcct  | 4800 |
| aatagttgtg gattatgaga tagggaggaa gtgctaatac tggctgaact tggctgcttt   | 4860 |
| ggacaagttt aaagctaaag agagggtctg gtctgaagag gcaagagtga tggctagtc    | 4920 |
| ggcaggaagt catcctttc cagagaacaa ttttcatga taatgcacta ctccacatca     | 4980 |
| ccttagtcaac atttggagcc aaattacgac tttgtacagg tttcatttt gaggaggcag   | 5040 |

|              |               |             |             |             |             |      |
|--------------|---------------|-------------|-------------|-------------|-------------|------|
| aataaaactct  | gagtatttgc    | atatcataaaa | aatgaaagag  | aaagccttt   | tttaaagatc  | 5100 |
| ttattcttc    | tgggtacgga    | tgcctgccct  | ttgaaactgc  | agtgcacgga  | gactttgatt  | 5160 |
| aaagctgcag   | aactgcccatt   | ctctgtctcc  | cactttctcc  | cttggatttg  | ccgtttgggg  | 5220 |
| aggagttgct   | tgaaagttca    | tattgcttgg  | agattttagag | atctcgtttgc | ctgctctggg  | 5280 |
| aagtttctct   | tgttatcagg    | gcaagaggaa  | acatctgtat  | tttggttgtat | cattgttagag | 5340 |
| gctgaggtgc   | caacgggaga    | aggcagtcaa  | tatcaagggt  | aggcgcaggg  | gaataaaaaga | 5400 |
| gtggaaacaa   | atgcccagat    | ggagacatgg  | ccttttaca   | atataaaaaaa | gagaactggc  | 5460 |
| tgtatcttt    | gagatggtaa    | atatgacatt  | tatcagacact | ttgatctagt  | ttttgatatg  | 5520 |
| gtacaagggt   | taaaaaactc    | aagaattttc  | taaatgc当地   | ggaaaatcat  | tcaacccacc  | 5580 |
| tggtttctt    | ttatTTTGT     | aagtggcccg  | tttggaaaat  | gacactgttt  | ggaaagggtc  | 5640 |
| actctgaaag   | catttagta     | agatttctga  | agaagtgaaa  | aagcagttag  | ttcaaatcaa  | 5700 |
| gcaggttatac  | atgcttgaca    | tgtgtcatgt  | taaaatcgct  | tcacagggtc  | gggtgcggtg  | 5760 |
| gctcacgcct   | gtaatcccag    | cactttggga  | ggccgaggcg  | ggcagatcac  | gaggtcagga  | 5820 |
| gattgagacc   | atcctagcta    | acaaggtgaa  | accctgtctc  | tactaaaaat  | acaaaaaatt  | 5880 |
| agccaggcgt   | ggtggcaggc    | acctgttagtc | ccacctactt  | gggaggctga  | ggcaggagac  | 5940 |
| tctcttgaac   | ctgggaggtg    | ggggttgcag  | tgagccgaga  | ttgtgtcacc  | gcacttcagc  | 6000 |
| ctggggAACG   | gagcaagact    | ccatctcaag  | aagaagaaga  | aaaaaatgct  | tcacagatga  | 6060 |
| ctgctggttt   | aggggatttt    | gagcttaat   | tgaaataatg  | gctaataat   | tgagggtttt  | 6120 |
| cattttaaa    | gattaaaatg    | tcactgttct  | taagttagaat | ctggttacact | gaattcatct  | 6180 |
| gtgctaacgc   | aagggaaacg    | cagtgtggaa  | aacccaaaca  | gtagatcaac  | cgtaggcagt  | 6240 |
| gtctatttgt   | ttcggcatg     | cattatgaac  | tttggcagg   | agacatacat  | ttgttaattat | 6300 |
| atttcacttt   | gcctaataatgta | gaaatgactg  | tgtttcctga  | gtacaggcag  | aatgcagccc  | 6360 |
| aagagtgcgt   | gcaggcaagg    | agagtccagt  | tggaaattac  | aaatatgc当地  | tgaataattc  | 6420 |
| ctgaagtggaa  | taattctaaa    | attgtcatca  | aaggagggtg  | cgcctttgtt  | tagatggcca  | 6480 |
| gtttgatagt   | tttttttaat    | aacctttaaa  | ataaaaaata  | tggtagcct   | cttagaacac  | 6540 |
| acaaagtttgc  | ttctttttaa    | aatgacattt  | aatattgact  | attagaggt   | ttcttttgc当地 | 6600 |
| gttacttagct  | ttgattataa    | ttatTTTATT  | tatgaattt   | tattgtatg   | tattgtaaaa  | 6660 |
| taacacatttgc | ttaggaaaga    | agtatatact  | gtaagttgac  | aaccagttat  | caacagaata  | 6720 |
| cactatggag   | atactttttt    | aaaagcttaa  | gaaatattca  | atataatgg   | ccccggccat  | 6780 |

ctttgttagga gttagcctat atagaattac cctctattca ctcccaccta catggaaac 6840  
aaatatccaa tcctctgtaa taaaagaagc attaaatgag cacctaataat tcaagagtat 6900  
gtggggatg taaagatgaa caaataagaa aggaacttaa atttgttgag caactgatat 6960  
gaaccaagta gtaaagtaca tctcacttaa ttctaaataag 7000

<210> 123  
<211> 21  
<212> PRT  
<213> Artificial

<220>  
<223> zinc finger consensus

<220>  
<221> MISC\_FEATURE  
<222> (2)...(2)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (3)...(3)  
<223> between 1 and 4 amino acids of any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (5)...(5)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (6)...(6)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (7)...(7)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (8)...(8)  
<223> any amino acid, often aromatic

<220>  
<221> MISC\_FEATURE  
<222> (9)...(9)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE  
<222> (10)...(10)  
<223> any amino acid

<220>  
<221> MISC\_FEATURE

```

<222> (11)..(11)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> any amino acid, often hydrophobic

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> between one and three residues of any amino acid

<400> 123

Cys Xaa Xaa Cys Xaa Xaa
1 5 10 15

His Xaa Xaa Xaa His
20

<210> 124
<211> 21
<212> PRT
<213> Artificial

<220>
<223> RDER Motif for a zinc finger domain

```

```

<220>
<221> misc_feature
<222> (2)..(2)
<223> any amino acid

<220>
<221> misc_feature
<222> (3)..(3)
<223> between 1 to 4 residues of any amino acid

<220>
<221> misc_feature
<222> (5)..(7)
<223> any amino acid

<220>
<221> misc_feature
<222> (8)..(8)
<223> any amino acid, frequently aromatic

<220>
<221> misc_feature
<222> (9)..(9)
<223> any amino acid

<220>
<221> misc_feature
<222> (11)..(11)
<223> any amino acid

<220>
<221> misc_feature
<222> (14)..(14)
<223> any amino acid, typically hydrophobic

<220>
<221> misc_feature
<222> (15)..(15)
<223> any amino acid

<220>
<221> misc_feature
<222> (18)..(18)
<223> any amino acid

<220>
<221> misc_feature
<222> (19)..(19)
<223> any amino acid

<220>
<221> misc_feature
<222> (20)..(20)
<223> between 1 and 3 residues of any amino acid

<400> 124

Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Arg Xaa Asp Glu Xaa Xaa Arg

```

1 5 10 15

His Xaa Xaa Xaa His  
20

<210> 125  
<211> 6  
<212> PRT  
<213> Artificial

<220>  
<223> exemplary linker consensus

<220>  
<221> misc\_feature  
<222> (3)...(3)  
<223> Glu or Gln

<220>  
<221> misc\_feature  
<222> (4)...(4)  
<223> Arg or Lys

<220>  
<221> misc\_feature  
<222> (6)...(6)  
<223> Tyr or Phe

<400> 125

Thr Gly Xaa Xaa Pro Xaa  
1 5

<210> 126  
<211> 30  
<212> PRT  
<213> Artificial

<220>  
<223> Exemplary N-terminal sequences

<400> 126

Met Val Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Glu Leu Pro Pro Lys  
1 5 10 15

Lys Lys Arg Lys Val Gly Ile Arg Ile Pro Gly Glu Lys Pro  
20 25 30

<210> 127  
<211> 30  
<212> DNA  
<213> Artificial

<220>

<223> primer sequence

<400> 127

cgggttaccc cctcccagtc actgactaac

30

<210> 128

<211> 30

<212> DNA

<213> Artificial

<220>

<223> primer sequence

<400> 128

ccgctcgagt ccggcggtca cccccaaaag

30

<210> 129

<211> 89

<212> PRT

<213> Homo sapiens

<400> 129

Glu Arg Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser  
1 5 10 15

Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys  
20 25 30

Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His  
35 40 45

Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys  
50 55 60

Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His  
65 70 75 80

Thr Lys Ile His Leu Arg Gln Lys Asp  
85