Pareto distribution (type 1)

November 12, 2023

The Pareto distribution (type 1) is defined via two parameters:

- 1. a > 0: the shape.
- 2. m > 0: the scale.

The probability density function $f_{a,m}$ of the Pareto distribution (type 1) with shape a and scale m is defined via, for all $x \geq m$,

$$f_{a,m}(x) = \frac{am^a}{x^{a+1}}$$

Given a sample $(x_i)_{1 \leq i \leq n}$, $n \in \mathbb{N}^*$ of independent and identically distributed variables following the Pareto distribution (type 1) with shape a and scale m, the maximum likelihood estimators of a and m are given by \hat{a} and \hat{m} defined by

$$\hat{m} = \min\{x_i, 1 \le i \le n\}$$

$$\hat{a} = \frac{n}{\sum_{i=1}^{n} \ln(x_i) - n \ln(\hat{m})}$$

It can be shown that \hat{a} is a biased estimator of a, and that the adjusted estimator $\bar{a} = \frac{n-1}{n}\hat{a}$ is an unbiased estimator of a.