Implement the Marr-Hildreth edge detection procedure for the image attached with n=25 and $\sigma=4$.

The Marr-Hildreth edge detection procedure is described as follows:

The output image is denoted

$$g(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$$

Where f(x,y) is the input image and \star denotes convolution. The $\nabla^2[.]$ is the Laplacian operator. The G(x,y) is defined as

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$
 for $x = 0 ... 24$ and $y = 0 ... 24$

The steps are as follows:

- 1. Filter the input image with an $n \times n$ Gaussian lowpass kernel obtained by sampling G(x, y) for $x = 0 \dots 24$ and $y = 0 \dots 24$.
- 2. Compute the Laplacian of the image resulting from Step 1 using, for example, the 3×3 Laplacian kernel.
- 3. Find the zero crossings of the image from Step 2

One approach for finding the zero crossings at any pixel p, of the filtered image g(x,y), is to use a 3×3 neighborhood centered at p. A zero crossing at p implies that the signs of at least two of its opposing neighboring pixels must differ. There are four cases to test: left/right, up/down, and the two diagonals.