Home ► Electrical Engineering ► Engr 17 F16 Tatro ► Homework ► Homework 13 - Chap 9

Started on Tuesday, 15 November 2016, 3:18 PM

State Finished

Completed on Tuesday, 15 November 2016, 3:18 PM

Time taken 5 secs

Grade 90.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P9.29_6ed

Given:

$$v_g = 150 \cos(8,000 \pi t + 20^\circ) V$$

$$i_g = 30 \sin(8,000 \pi t + 38^\circ) A$$

a) What is the impedance seen by the source?

$$Z_{circuit} = Mag \left[5 \right]$$
 with Angle $\left[72 \right]$ (Ohm)

b) By how many microseconds is the current out of phase with the voltage?

$$t_{\text{phase}} = 50$$
 $\checkmark \mu s \text{ (micro sec)}$

Correct

Correct

Mark 10.00 out of 10.00

P9.46_7ed

The frequency of operation is 400 rad/sec.

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

$$Z_{Th} = \begin{bmatrix} 30000 \\ \checkmark + j \end{bmatrix} -2500$$
 $\checkmark \Omega \text{ (Ohm)}$

Correct

Marks for this submission: 10.00/10.00.

${\tt Question}\, {\tt 3}$

Correct

Mark 10.00 out of 10.00

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

The frequency of operation is 100 krad/sec (kilo rad/sec).

$$Z_{\text{Th}} = \begin{bmatrix} 20 & \downarrow \\ & \end{bmatrix} + j \begin{bmatrix} -15 & \downarrow \\ & \end{bmatrix} \Omega \text{ (Ohm)}$$

Correct

Correct

Mark 10.00 out of 10.00

AP9.11_9ed

Find the Thévenin equivalent with respect to terminals a,b.

$$Z_{Th} = Magnitude | 7.07$$
 with Angle | -45 | \checkmark (Degrees) Ω (Ohm)

Correct

Marks for this submission: 10.00/10.00.

Question 5

Correct

Mark 10.00 out of 10.00

P9.49_6ed

Given:

$$v_{g1} = 10 \cos(5,000 t + 53.13^{\circ}) V$$

 $v_{g1} = 8 \sin(5,000 t) V$

$$v_{g2} = 8 \sin(5,000 t) V$$

Find the steady-state time domain expression for v_0 (t) of this circuit.

$$v_0(t) = \begin{bmatrix} 12 & \checkmark \cos(5,000t + \begin{bmatrix} 0 & \checkmark \end{bmatrix}) \text{ (Degrees) Volts}$$

Correct

Correct

Mark 10.00 out of 10.00

P9.54_10ed

Use the node-voltage method to find V_0 .

$$V_0 = Magnitude \left[188.43 \right]$$
 with Angle $\left[-42.88 \right]$ (Degrees) Volts

Correct

Marks for this submission: 10.00/10.00.

${\tt Question}~7$

Incorrect

Mark 0.00 out of 10.00

P9.72_6ed

The operational amplifier is ideal.

Given $v_g(t) = 2 \cos(100,000 t) V$

a) Find the steady-state output $v_0(t)$.

$$v_0(t) = 16$$
 $\times \cos(100,000 t + -15)$ $\times^{\circ}) \text{ Volts}$

b) How large can the amplitude of $\boldsymbol{v}_g(t)$ be before the amplifier saturates?

$$|v_0(t)_{\text{max}}| \le 5$$
 \times Volts (less than or equal to)

Incorrect

Correct

Mark 10.00 out of 10.00

P9.62_7ed

Use the Mesh method and find the following currents:

$$I_a = Magnitude$$
 5 with Angle 0 \checkmark (Degrees) Amps
$$I_b = Magnitude$$
 11.18 \checkmark with Angle 63.43 \checkmark (Degrees) Amps

$$I_c = Magnitude \left[7.07 \right]$$
 with Angle $\left[45 \right]$ $^{\circ}$ (Degrees) Amps

Correct

Correct

Mark 10.00 out of 10.00

Copyright ©2015 Pearson Education, All Rights Reserved

P9.60 10ed

Use the mesh-current method to find $\mathbf{I_g}$.

$$I_g = \boxed{4} + j \boxed{-2}$$

Correct

Marks for this submission: 10.00/10.00.

Question 10

Correct

Mark 10.00 out of 10.00

P9.61_10ed

Given: $v_{g1} = 25 \sin (400 t + 143.12^{\circ}) V$ and $v_{g2} = 18.03 \cos (400 t + 33.69^{\circ}) V$

Use the mesh-current method to find the steady-state voltage of $v_0(t)$.

$$v_0(t) = 15$$
 $\checkmark \cos(400 t + 0)$ (Degrees) V

Correc