Online Learning and Online Convex Optimization

Shai Shalev-Shwartz

Online Convex Optimization (OCO)

Algorithm

```
Input: A convex set S For t = 1, 2, ...
```

- ▶ Predict a vector $w_t \in S$
- ▶ Receive a convex loss function $f_t : S \to \mathbb{R}$
- ▶ Suffer loss $f_t(w_t)$

Regret Definition

Regret of the Algorithm:

Regret_T(u) =
$$\sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u)$$
. (1)

Regret relative to a set of vectors U:

$$Regret_{\mathcal{T}}(U) = \max_{u \in U} Regret_{\mathcal{T}}(u). \tag{2}$$

Follow-the-Leader Algorithm

FTL Strategy

At round t, select:

$$w_t = \operatorname{argmin}_{w \in S} \sum_{i=1}^{t-1} f_i(w)$$

- Natural approach: Choose best performer on past data
- ► Simple but can be unstable
- Requires solving optimization problem each round

FTL Regret Analysis

Theorem (Lemma 2.1)

For any $u \in S$:

$$Regret_{T}(u) \leq \sum_{t=1}^{I} [f_{t}(w_{t}) - f_{t}(w_{t+1})]$$

Complete Proof.

By induction on T:

- ▶ Base case: T = 1 trivial as $f_1(w_1) f_1(u) \le 0$
- ▶ Inductive step: Assume holds for T-1, then

$$\sum_{t=1}^{T} [f_t(w_t) - f_t(u)]$$

$$= \sum_{t=1}^{T-1} [f_t(w_t) - f_t(u)] + [f_T(w_T) - f_T(u)]$$

Quadratic Optimization Example

Example (Quadratic Loss)

For
$$f_t(w) = \frac{1}{2} ||w - z_t||_2^2$$
:

- FTL update: $w_t = \frac{1}{t-1} \sum_{i=1}^{t-1} z_i$
- ► Regret bound: $O(\log T)$

Regret Calculation.

Regret_T(u)
$$\leq \sum_{t=1}^{T} \frac{1}{t} ||w_t - z_t||^2$$

 $\leq \sum_{t=1}^{T} \frac{(2L)^2}{t} = 4L^2(\log T + 1)$

where
$$L = \max_{t} \|z_{t}\|$$

FTRL Regret Bound

Theorem (Theorem 2.4)

For linear
$$f_t(w) = \langle w, z_t \rangle$$
 and $R(w) = \frac{1}{2\eta} ||w||_2^2$:

$$Regret_T(U) \le \frac{B^2}{2\eta} + \eta TL^2$$

Proof.

Using lemma 3.3 and strong convexity:

$$\sum_{t=1}^{T} \langle w_t - u, z_t \rangle \le \frac{1}{2\eta} ||u||^2 + \eta \sum_{t=1}^{T} ||z_t||^2$$
$$\le \frac{B^2}{2\eta} + \eta T L^2$$

Minimizing over η gives $O(\sqrt{T})$ bound

Online Gradient Descent Example

Example (OGD from FTRL)

Update rule:

$$w_{t+1} = w_t - \eta z_t$$

Special case of FTRL with $R(w) = \frac{1}{2\eta} ||w||_2^2$

Regret Bound.

From FTRL theorem:

$$\operatorname{Regret} \leq \frac{\|u\|^2}{2\eta} + \eta \sum_{t=1}^{T} \|z_t\|^2$$

$$\leq \frac{B^2}{2\eta} + \eta T L^2$$

Practical Considerations

Doubling Trick

- Removes need to know time horizon T
- ▶ Divide time into epochs 2^m , $2^{m+1} 1$
- ► Regret increases by constant factor:

$$\sum_{m=0}^{\log T} \sqrt{2^m} = O(\sqrt{T})$$

Example (Optimal
$$\eta$$
)
Setting $\eta = \frac{B}{L} \sqrt{\frac{2}{T}}$ gives:

$$BL\sqrt{2T}$$