SỞ GDĐT ĐỒNG NAI TRƯỜNG THPT XUÂN THO

KIỂM TRA 45 PHÚT GIẢI TÍCH LỚP 12 Chương II: Hàm số lũy thừa, Hàm số mũ và Hàm số lôgarit

* Ma trận nhận thức

Các chủ đề cần đánh giá	Tầm quan trọng	Mức độ nhận thức cao nhất	Tổng điểm	Quy về thang điểm 10
1- Khái niệm lũy thừa, lôgarit	15	2	30	1,0
2- Tìm tập xác định và tính đạo hàm, giá trị lớn nhất, nhỏ nhất	25	3	75	2,0
3- Phương trình, BPT mũ và lôgarit	60	4	240	7,0
	100%		345	10,0

❖ Ma trận đề kiểm tra

, ,	Mức đ	Tống ¸số câu				
Các chủ đề cần đánh giá	1	2	3	4	hỏi, tổng số	
	TL	TL	TL	TL	điểm	
	Câu 1				1	
1- Khái niệm lũy thừa, lôgarit						
	1,0				1,0	
2- Tìm tập xác định và tính đạo		Câu 2a	Câu 2b		2	
hàm, giá trị lớn nhất, nhỏ nhất						
TRAIT, GR. LI, RIT THREE, THE THREE		1,0	1,0		2,0	
3- Phương trình, BPT mũ và	Câu 3a	Câu 3b	Câu 3c	Câu 4	4	
lôgarit						
	2,0	2,0	2,0	1,0	7,0	
Tỉ lệ %	30%	30%	4	0%	10,0	

* Mô tả nội dung trong mỗi ô

Câu 1: Rút gọn biểu thức lũy thừa

<u>Câu 2a:</u> Tính đạo hàm của hàm số là tích của một hàm đa thức bậc 2 và hàm mũ e^x

 $\overline{\text{Câu 2b:}}$ Tìm GTLN, NN của hàm số là tích của một hàm đa thức bậc 2 và hàm $\ln x$.

Câu 3a: Giải phương trình mũ đơn giản bằng cách đặt ẩn phụ để đưa về phương trình bậc hai.

<u>Câu 3b:</u> Giải phương trình mũ bằng cách chia hai vế cho a^x , rồi đặt ẩn phụ.

<u>Câu 4</u>: Chứng minh bất đẳng thức chứa hàm mũ hoặc giải một phương trình mũ và lôgarit bằng cách đánh giá hai vế.

ĐỀ KIỂM TRA

Câu 1: (1đ) Cho a, b là những số thực dương. Rút gọn biểu thức : $A = \frac{a^{\frac{1}{4}} - a^{\frac{9}{4}}}{a^{\frac{1}{4}} - a^{\frac{5}{4}}} - \frac{b^{-\frac{1}{2}} - b^{\frac{3}{2}}}{b^{\frac{1}{2}} + b^{-\frac{1}{2}}}$

<u>Câu 2</u>: (2đ)

- a) Tính đạo hàm của hàm số: $y = (x^2 2x)e^x$
- b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = x^2 \ln x$ trên đoạn $\left[\frac{1}{2};1\right]$

Câu 3: (6đ) Giải các phương trình và bất phương trình sau:

a)
$$4.4^x - 12.2^x + 8 = 0$$

b)
$$3.4^x - 2.6^x = 9^x$$

c)
$$4\log_4 x - 5\log_x 4 + 1 \le 0$$

Câu 4: Học sinh chọn một trong hai câu a) hoặc b)

- a) (1đ) Cho a+b=c, với a>0, b>0. Chứng minh rằng : $a^m+b^m< c^m$, nếu m>1.
- b) (1đ) Giải phương trình : $2^{x+1} + 2^{3-x} = \frac{8}{\log_2(x^2 2x + 3)}$

Gợi ý giải:

$$\underline{\mathbf{C\hat{a}u}\;\mathbf{1}}:(1\,\mathbb{d})\quad A = \frac{a^{\frac{1}{4}} - a^{\frac{9}{4}}}{a^{\frac{1}{4}} - a^{\frac{5}{4}}} - \frac{b^{-\frac{1}{2}} - b^{\frac{3}{2}}}{b^{\frac{1}{2}} + b^{-\frac{1}{2}}} = \frac{a^{\frac{1}{4}}(1-a^2)}{a^{\frac{1}{4}}(1-a)} - \frac{b^{-\frac{1}{2}}(1-b^2)}{b^{-\frac{1}{2}}(b+1)} = 1 + a - (1-b) = a + b$$

Câu 2: (2đ)

a)
$$y = (x^2 - 2x)e^x$$
; $y' = (2x - 2)e^x + (x^2 - 2x)e^x = (x^2 - 2)e^x$

b) Hàm số
$$y = x^2 \ln x$$
 liên tục trên đoạn $\left[\frac{1}{2};1\right]$

$$y' = 2x \cdot \ln x + x = x(2 \ln x + 1) = 0$$
. Trên đoạn $\left[\frac{1}{2}; 1\right]$ $y' = 0 \Leftrightarrow \ln x = -\frac{1}{2} \Leftrightarrow x = \frac{1}{\sqrt{e}}$

Ta có:
$$y\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2e} < y\left(\frac{1}{2}\right) = \frac{1}{4}\ln\frac{1}{2} < y(1) = 0$$
. Suy ra: $\min_{\left[\frac{1}{2}:1\right]} y = -\frac{1}{2e}$; $\max_{\left[\frac{1}{2}:1\right]} y = 0$

Câu 3: (6đ)

a)
$$4.4^{x} - 12.2^{x} + 8 = 0 \Leftrightarrow 4.2^{2x} - 12.2^{x} + 8 = 0 \Leftrightarrow \begin{vmatrix} 2^{x} = 1 \\ 2^{x} = 2 \end{vmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{vmatrix}$$

b)
$$3.4^{x} - 2.6^{x} = 9^{x} \Leftrightarrow 3.\left(\frac{2}{3}\right)^{2x} - 2.\left(\frac{2}{3}\right)^{x} - 1 = 0 \Leftrightarrow \begin{vmatrix} \left(\frac{2}{3}\right)^{x} = 1\\ \left(\frac{2}{3}\right)^{x} = -\frac{1}{3}(VN) \end{vmatrix} \Leftrightarrow x = 0$$

c)
$$4\log_4 x - 5\log_x 4 + 1 \le 0$$
. $E(x) > 0; x \ne 1$

Với điều kiện đó, BPT $\Leftrightarrow 4\log_4 x - \frac{5}{\log_4 x} + 1 \le 0$. Đặt $t = \log_4 x \ (t \ne 0)$, BPT trở thành :

$$4t - \frac{5}{t} + 1 \le 0 \Leftrightarrow \frac{4t^2 + t - 5}{t} \le 0 \Leftrightarrow \begin{bmatrix} t \le -\frac{5}{4} & \Leftrightarrow \\ 0 < t \le 1 \end{bmatrix} \begin{bmatrix} \log_4 x \le -\frac{5}{4} & \Leftrightarrow \\ 0 < \log_4 x \le 1 \end{bmatrix} \begin{bmatrix} x \le \frac{\sqrt{2}}{8} \\ 1 < x \le 4 \end{bmatrix}$$

Kết hợp điều kiện, nghiệm của bất phương trình là : $0 < x \le \frac{\sqrt{2}}{8}$, $1 < x \le 4$

Câu 4:

Ta có:
$$a^m + b^m < c^m \Leftrightarrow \left(\frac{a}{c}\right)^m + \left(\frac{b}{c}\right)^m < 1$$

Do:
$$\frac{a}{c} < 1$$
, $\frac{b}{c} < 1$ nên: $m > 1 \Rightarrow \left(\frac{a}{c}\right)^m < \left(\frac{a}{c}\right)^1 = \frac{a}{c}$ và $\left(\frac{b}{c}\right)^m < \frac{b}{c}$

Suy ra:
$$\left(\frac{a}{c}\right)^m + \left(\frac{b}{c}\right)^m < \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} = 1$$
 (dpcm)

b) (1đ) Xét phương trình :
$$2^{x+1} + 2^{3-x} = \frac{8}{\log_2(x^2 - 2x + 3)}$$
 (1)

Ta có:
$$2^{x+1} + 2^{3-x} = 2.2^x + \frac{8}{2^x} \ge 2\sqrt{16} = 8$$
 (Cô-si) $\Leftrightarrow VT(1) \ge 8, \forall x \in \square$

$$v\grave{a}: \quad x^2-2x+3=(x-1)^2+2\geq 2 \Rightarrow \log_2(x^2-2x+3)\geq 1 \Leftrightarrow \frac{8}{\log_2(x^2-2x+3)}\leq 8 \Leftrightarrow VP(1)\leq 8, \ \forall x\in \square$$

Từ đó: (1)
$$\Leftrightarrow$$
 $\begin{cases} VT(1) = 8 \\ VP(1) = 8 \end{cases} \Leftrightarrow \begin{cases} x+1=3-x \\ x-1=0 \end{cases} \Leftrightarrow x=1$

Vậy : x=1 là nghiệm duy nhất của phương trình (1).