1 Definition of LP and General LP LPMS Note

1.1 Definition of LP

Linear Programming (LP): Let x_i : Decision Variables a_{ij}, b_i, c_i : parameters f: Objective Function Constraints: subject f in Reference f: Objective Function f: Objective Function

LP problem can be written as:

$$\begin{array}{ll} \text{maximize} & f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ \\ \text{subject to} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ \\ \vdots & \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

We can also write the LP problem in matrix form:

maximize $f = \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \le \mathbf{b} \quad \mathbf{x} \ge 0$

At this time, we have the following definitions:

- 1. **Feasible Solution**: 可行解,满足所有约束条件的解. (i.e. $Ax \le b$)
- 2. Optimal Solution: 最优解 (可多个)
- 3. Feasible Region: 可行域, 所有可行解的集合.

Find Optimal Solution: Graphical Method or Simplex Method

1.2 General LP Problem

Slack Variables: 对每个不等式约束,各引入 (Slack Variables) x_i (i > n) 来将其转化为等式约束. (i.e. $A\mathbf{x} \leq \mathbf{b} \Rightarrow \overline{A}\mathbf{x} = \mathbf{b}$)

LP problem can be written as: ps: $x_i \ge 0$ (i > n).

maximize
$$f = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + x_{n+1} = b_1$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + x_{n+2} = b_2$
 \vdots
 $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + x_{n+m} = b_m$
 $x_1 \ge 0, x_2 \ge 0, \dots, x_{n+m} \ge 0$

We can also write the LP problem in matrix form:

$$\overline{A} = [A \ I_m], \mathbf{b} = \mathbf{b}, \overline{\mathbf{c}} = \begin{pmatrix} \mathbf{c} \\ \mathbf{0}_{m \times 1} \end{pmatrix}, \mathbf{x} = \begin{pmatrix} \mathbf{x} \\ \vdots \\ \mathbf{x}_{n+m} \end{pmatrix}$$

maximize $f = \overline{\mathbf{c}}^T \mathbf{x}$

subject to $\overline{A}\mathbf{x} = \mathbf{b} \quad \mathbf{x} \ge 0$

At this time, we have the following definitions:

- 1. **Basic Solution**: Solution of $\overline{A}\mathbf{x} = \mathbf{b}$. \rightarrow 得到: \mathbf{x}_B , $\mathbf{x}_N = \mathbf{0}$ (要求) 【不一定 $\mathbf{x} \geq \mathbf{0}$, \mathbf{x}_B 不一定 $\geq \mathbf{0}$) ps: 只有把某一组 m 个线性无关列选为基,令其余变量固定为 $\mathbf{0}$ 后求得的那一个唯一向量才叫 Basic Solution
- 2. **Basic Feasible Solution (BFS)**: If a Basic Solution \mathbf{x}_B , $\mathbf{x}_N = \mathbf{0}$ have: $\mathbf{x}_B \ge 0$, then \mathbf{x} is a Basic Feasible Solution.
- 3. Basic Variables: \mathbf{x}_B Nonbasic Variables: \mathbf{x}_N Basic Matrix: B Nonbasic Matrix: N Basic Index: \mathcal{D} Nonbasic Index: \mathcal

For the LP problem, we consider the following:

- 1. **Convex Set**: Set *K* is convex if, for any two points $\mathbf{x}, \mathbf{x}' \in K$, the line segment $\mathbf{x}_{\theta} = \theta \mathbf{x} + (1 \theta)\mathbf{x}'$ for $\theta \in [0, 1]$ is also in *K*.
- 2. **Vertex of a Convex Set**: A vertex of a convex set K is a point $\mathbf{x} \in K$ such that it does not lie strictly within any line segment joining two points in K. (ps: there are $\frac{(m+n)!}{m!n!}$ vertices for LP problem)
- 3. **Theorem I**: If LP has a unique optimal solution, then it is a vertex. (optimal \leftrightarrow vertex)
- 4. **Theorem II**: If LP has a non-unique solution, ∃ optimal solution at vertex. (optimal ↔ vertex)

Remark: BFS and Vertices are NOT 1-1 (与它是否是唯一 optimal solution 无关!)

* Happened if one of basic variables of optimal solution is zero. \rightarrow Referred as **degenerate**.

2 Simplex Method

2.1 Some Definitions

For LP problem: $\max f = \mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \le \mathbf{b}$ $\mathbf{x} \ge 0$

By adding slack variables, we can write it as: $\max f = \overline{\mathbf{c}}^T \mathbf{x}$ s.t. $\overline{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$

- 1. We can define Index: \mathcal{B} , \mathcal{N}
- 2. **Basic Matrix**: B (整个 \overline{A} 中在 index \overline{B} 中的列) **Nonbasic Matrix**: N (整个 \overline{A} 中在 index \overline{N} 中的列) $\overline{A} \to [B \ N]$
- 3. Basic Variables: \mathbf{x}_B (对应 B 列因有的变量) Nonbasic Variables: \mathbf{x}_N (对应 N 列因有的变量) $\mathbf{x} \to \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix}$
- 4. Matrix Cost: c_B (f 中对应 B 变量的系数) Nonbasic Cost: c_N (f 中对应 N 变量的系数) $\overline{c} \rightarrow \begin{pmatrix} c_B \\ c_N \end{pmatrix}$
- 5. Other: $\overline{A}\mathbf{x} = \mathbf{b} \Leftrightarrow B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b}$ || Let $\hat{\mathbf{b}} = B^{-1}\mathbf{b}$ $\widehat{N} = B^{-1}N$ || Thus $\mathbf{x}_B = \hat{\mathbf{b}} \widehat{N}\mathbf{x}_N$
- 6. Objective Value: $f = \overline{\mathbf{c}}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N = \widehat{f} + \widehat{c}_N^T \mathbf{x}_N$ where $\widehat{f} = \mathbf{c}_B^T \widehat{b}$ $\widehat{\mathbf{c}}_N = \mathbf{c}_N \widehat{N} \mathbf{c}_B = \mathbf{c}_N N^T B^{-T} \mathbf{c}_B$
- * **Remark**: For *Basic Solution*, we let $\mathbf{x}_B = \hat{\mathbf{b}}$ and $\mathbf{x}_N = \mathbf{0}$. **Remark**: If basic Solution have $\hat{\mathbf{b}} \ge 0$, it is a **Basic Feasible Solution (BFS)**.
- **★ Theorem**: If BFS have: $\hat{\mathbf{c}}_N \leq 0$, it is an **Optimal Solution**

2.2 Simplex Algorithm

An Initial BFS: Try $\mathcal{B} = \{n+1,...,n+m\}$ and $\mathcal{N} = \{1,...,n\} \Rightarrow B = I, N = A$, $\mathbf{x}_B = \hat{\mathbf{b}} = \mathbf{b}$, $\mathbf{x}_N = \mathbf{0}$, $\mathbf{c}_B = \mathbf{0}$, $\mathbf{c}_N = \mathbf{c}$ Corollary: If $\hat{\mathbf{b}} = \mathbf{b} \geq 0$, it's a BFS.

Simplex Algorithm:

- 1. If **An Initial BFS** is BFS \rightarrow 2 || If we have an BFS \rightarrow 2 || Else: Go to **Phase I Problem**
- 2. If $\hat{\mathbf{c}}_N \leq 0$. \Rightarrow Optimal Solution || Else: Go to 3
- 3. Let $q \in (\text{local index in } N)$; $q' \in \mathcal{N}$ (global index) || $\hat{c}_i := \hat{\mathbf{c}}_N$ 中第 i 个分量 ($\hat{c}_i := \hat{\mathbf{c}}_N^T \mathbf{e}_i$) || such that:

 $\hat{c}_q = \hat{\mathbf{c}}_N$ 中最大的正的分量 ($c_q = \arg\max_{i=1,\dots,n} c_i > 0$ \hat{c}_i) ; q' is the index corresponding to q in \mathcal{N} (对应的在 \mathcal{N} 的 index(global index))

Thus, we find q, q' Go to 4

4. Let $p \in (\text{local index in } B)$; $p' \in \mathcal{B}$ (global index) || $\mathbf{a}_q := N$ 中的第 \mathbf{q} 列 ($\mathbf{a}_q = N\mathbf{e}_q$) || Let $\widehat{\mathbf{a}_q} = B^{-1}\mathbf{a}_q$:

If $\widehat{\mathbf{a}_q} \le 0 \implies \text{LP}$ is unbounded. || Else: LP is bounded $\rightarrow 5$

5. Let $p = \arg\min_{i=1,\dots,m}$; $\widehat{a}_{iq} > 0$ $\frac{\widehat{b_i}}{\widehat{a}_{iq}}$ p 是对应的 local index,not value, * 用 $\overline{a} = \frac{\widehat{b_p}}{a_{pq}}$ 代表值 $\widehat{b_i}$ 代表 \widehat{b} 的第 i 个分量; \widehat{a}_{iq} 代表 $\widehat{a_q}$ 的第 i 个分量

Let p' be (global) index corresponding to p.

Thus, we find p, p' Go to 6

- 6. Exchange p' and q' between \mathcal{B} and $\mathcal{N} \Rightarrow \mathsf{Update}\,\mathcal{B}, \mathcal{N}, B, N, \widehat{\mathbf{b}}, \dots$ ps: New $B := B + (a_q Be_p)e_p^T$
- 7. Calculate $\hat{\mathbf{c}}_N$. Go to 2

Remark: If we consider using $\mathbf{x} + \alpha \mathbf{d}$ where $\mathbf{d} \to [\mathbf{d}_B \ \mathbf{d}_N]^T$; $\mathbf{d}_N = \mathbf{e}_q \ \mathbf{d}_B = -\hat{\mathbf{a}}_q$, then:

We have: $\begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}} \\ \mathbf{0} \end{pmatrix} + \alpha \begin{pmatrix} -\hat{\mathbf{a}}_q \\ \mathbf{e}_q \end{pmatrix}$ and $f = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N = \mathbf{c}_B^T (\hat{\mathbf{b}} - \alpha \hat{\mathbf{a}}_q) + \mathbf{c}_N^T (\alpha \mathbf{e}_q) = \hat{f} - \alpha (\mathbf{c}_N^T \mathbf{e}_q - \mathbf{c}_B^T B^{-1} N \mathbf{e}_q) = \hat{f} + \alpha \hat{\mathbf{c}}_N \mathbf{e}_q = \hat{f} + \alpha \hat{\mathbf{c}}_q + \alpha \hat{\mathbf{c}$

Phase I Problem: (If $b \ge 0 \& \text{No BFS}$)

1. Subtract **artificial variables** x_{n+m+1} , ..., $x_{n+m+m} \ge 0$ and change objective function f to:

2. Let $b_i := \mathbf{b}$ 的第 i 个分量. (i.e. $b_i = \mathbf{b}^T \mathbf{e}_i$)

Case I: $b_i \ge 0$: $x_{n+i} = b_i$ is a Basic Variables. and $x_{n+m+i} = 0$ is a Nonbasic Variables.

Case II: $b_i < 0$: $x_{n+m+i} = -b_i$ is a Basic Variables. and $x_{n+i} = 0$ is a Nonbasic Variables.

Other: We put $x_1, ..., x_n$ as Nonbasic Variables.

Thus we can find \mathcal{B} , \mathcal{N} , B, N, $\mathbf{x}_B = \hat{\mathbf{b}} = B^{-1}\mathbf{b} = |\mathbf{b}|$, $\mathbf{x}_N = \mathbf{0}$, \mathbf{c}_B , \mathbf{c}_N

- 3. Let Size of Infeasibility: is $\sum_{i=1}^{m} x_{n+m+i}$ $f = -\sum_{i=1}^{m} x_{n+m+i} \le 0$
- 4. Consider this modified LP problem, by using Simplex Algorithm, we can find an optimal solution \mathbf{x} and the value of f. ps: 使用刚刚我们选好的 \mathcal{B} , \mathcal{N} 作为初始的 BFS.
- 5. Case I: If f = 0 (等价于 artificial variables 都是 Nonbasic Variables), \mathbf{x} is a BFS for the original LP problem. (去除 artificial variables, 并回到原问题 (也叫 Phase II Problem))

Case II: If f < 0: LP is infeasible (等价于存在 artificial variables 是 Basic Variables).

3 Degeneracy | Termination | Cycling | Sparsity

3.1 Degeneracy & Termination

Degeneracy: If $\hat{\mathbf{b}}$ has any zero component, then \mathbf{x} is a degenerate vertex. (等价于 $\hat{\mathbf{b}} > 0$)

- 1. If a point is *degenerate*, then there may be multiple *BFS* at that point.
- 2. \star If $\hat{b}_p = 0$, then $\overline{\alpha} = 0$, simplex algorithm may not terminate.

ps: 对于 simplex algorithm 我们依靠 $\hat{\mathbf{a}}_q$ 中大于 $\mathbf{0}$ 的元素来决定下一个要交换的变量, 但是如果 $\hat{\mathbf{b}}_p = \mathbf{0}$, 那么 $\overline{\alpha} = \mathbf{0}$, 可能会导致我们在这个点上循环

Termination of Simplex Algorithm in the absence of degeneracy: If no degenerate situation, then Simplex Algorithm will terminate in a finite number of steps.

Examples: 1.The worst case of Simplex Algorithm. 2. Cyclic case of Simplex Algorithm.

- 1. **Klee-Minty Problem**: $\max f = \sum_{j=1}^{n} 10^{j-1} x_j$; s.t. $x_i + 2 \sum_{j=i+1}^{n} 10^{j-i} x_j \le 100^{n-i}$ for i = 1, ..., n; $x_i \ge 0$ has 2^n vertices. **Worst Case**: $2^n 1$ iterations.
- 2. **Hall-McKinnon Problem**: $\max f = x_1 5.5x_2 + 0.75x_3 5.75x_4$; s.t. $2.5x 19.5x_2 3.5x_3 + 19.5x_4 + x_5 = 0; 0.5x_1 3.5x_2 0.5x_3 + 3.5x_4 + x_6 = 0; x_i \ge 0$

3.2 Sparsity LP Problem

Implementation: 计算/编程中的计算化简 Consider: $\hat{\mathbf{b}} = B^{-1}\mathbf{b}$ $\hat{\mathbf{c}}_N = \mathbf{c}_N - N^T B^{-T} \mathbf{c}_B$ $\hat{\mathbf{a}}_q = B^{-1} \mathbf{a}_q$

- 1. Solve: $B\hat{\mathbf{b}} = \mathbf{b}$ to get: $\hat{\mathbf{b}} = B^{-1}\mathbf{b}$
- 2. Solve: $B^T \pi = \mathbf{c}_B$ to get: $\pi = B^{-T} \mathbf{c}_B$
- 3. Solve: $\hat{\mathbf{c}}_N = \mathbf{c}_N N^T \pi$ to get: $\hat{\mathbf{c}}_N = c_N N^T B^{-T} \mathbf{c}_B$
- 4. Solve: $B^T \hat{\mathbf{a}}_q = \mathbf{a}_q$ to get: $\hat{\mathbf{a}}_q = B^{-T} \mathbf{a}_q$
- 5. Matrix B is **sparse** and **invertible**. And in Simplex Algorithm, the next matrix B obtained by $B := B + (a_q Be_p)e_p^T$

Sparse LP Problem: For LP problem: max $f = \mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$

It is **sparse** if the matrix *A* is sparse. (i.e. Most of the elements of *A* are zero)

Find Inverse of *B*: Decomposition *B* into *LU* where *L* is lower triangular and *U* is upper triangular.

Then we can solve $B\mathbf{x} = \mathbf{b}$ by solving $^1 L\mathbf{y} = \mathbf{b}$ and $^2 U\mathbf{x} = \mathbf{y}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} & l_{21}u_{14} + u_{24} \\ l_{21}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} & l_{31}u_{14} + l_{32}u_{24} + u_{34} \\ l_{41}u_{11} & l_{41}u_{12} + l_{42}u_{22} & l_{41}u_{13} + l_{42}u_{23} + l_{43}u_{33} & l_{41}u_{14} + l_{42}u_{24} + l_{43}u_{34} + u_{44} \end{bmatrix}$$

By Solving $\blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare \rightarrow \blacksquare$

4 Sensitive Analysis

4.1 RHS Sensitivity Consider $b_i \rightarrow b_i + \delta$

RHS Sensitivity: max $f = \mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0 \implies \max f = \overline{\mathbf{c}}^T \mathbf{x}$ s.t. $\overline{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$

ps: Assume $\mathcal{B}, \mathcal{N}, B, N$ yield an optimal solution, with $\mathbf{x}_B = \hat{\mathbf{b}}, \mathbf{x}_N = \mathbf{0}$

Then, the new optimal values is: $\mathbf{x}_B = B^{-1}(\mathbf{b} + \delta \mathbf{e}_i) = \hat{\mathbf{b}} + \delta B^{-1}\mathbf{e}_i \text{ if } \mathbf{x}_B \ge 0$ With range of $\delta \in [\underline{\delta}, \overline{\delta}]$ $\underline{\delta} = \max_{[B^{-1}]_{ij} > 0} -\frac{\hat{b}_j}{[B^{-1}]_{ij}} \overline{\delta} = \min_{[B^{-1}]_{ij} < 0} -\frac{\hat{b}_j}{[B^{-1}]_{ij}}$

Fair Prices: The objective function: $f = \mathbf{c}_R^T \mathbf{x}_B = \mathbf{c}_R^T (\hat{\mathbf{b}} + \delta B^{-1} \mathbf{e}_i) = \hat{f} + \delta \pi_i$ where $\hat{f} = \mathbf{c}_R^T \hat{\mathbf{b}}$ $\pi_i = \mathbf{c}_R^T B^{-1} \mathbf{e}_i$ (fair price)

- 1. **If price of unit amount** $> \pi_i$: Buying more of the resource is *unattractive*.
- 2. **If price of unit amount** $< \pi_i$: Buying more of the resource is *attractive*.
- 3. **For Basic Slack**: If $n+i \in \mathcal{B}$ (slack variable $x_{n+i} \not\equiv \text{basic slack}$) $\rightarrow \pi_i = 0$ (Proof: $\pi_i = (B^{-T}c_B)^T e_i = c_B^T B^{-1} e_i = 0$)
- 4. **For Nonbasic Slack**: If $n+i \in \mathcal{N}$ (slack variable x_{n+i} 是 nonbasic slack) $\rightarrow \pi_i = -\widehat{c_i}$ (Proof: Assume $n+i \in \mathcal{N}$ 任 N 中的 (local) index 为 j. Since $\widehat{c_j} = [\mathbf{c_N}]_j [N]_j^T \pi_i [\mathbf{c_N}]_j = 0$, $[N]_j^T = \mathbf{e_i}$; we have: $\pi_i = -\widehat{c_i}$)
- * Range of δ is *lower*/*upper bound Sensitivity*
- * Feasible Region increases when δ increases and δ decreases.

4.2 Cost and Coefficient Sensitivity Consider $c_i \rightarrow c_i + \delta \& a_{ij} \rightarrow a_{ij} + \delta$

Cost Sensitivity: $\square c_i \rightarrow c_i + \delta$. $\max f = \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$

- 1. 小范围的变化不会改变最优解. (If an LP cost coefficient is changed by a small amount, the optimal solution will not change.)
- 2. 如果 $c_i \rightarrow c_i + \delta$ 对应的 i 变量在 B 中 (basic variables), 那么 all reduced costs will change.
- 3. 如果 $c_i \rightarrow c_i + \delta$ 对应的 i 变量在 \mathcal{N} 中 (nonbasic variables), 那么 only the reduced cost of *that* variables will change.

Coefficient Sensitivity: $\mbox{II} \ a_{ij} \rightarrow a_{ij} + \delta$. $\max f = \mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$

- 1. 如果影响的变量在 B 中 (basic variables): B may become singular, the optimal solution may change, etc.
- 2. 如果影响的变量在 \mathcal{N} 中 (nonbasic variables): One *reduced cost* will change, N will change.

5 Duality

Duality: For LP problem: max $f = \mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \le \mathbf{b}$, $\mathbf{x} \ge 0$ **Primal** problem (P)

The **dual** problem is: min $f = \mathbf{b}^T \mathbf{y}$ s.t. $A^T \mathbf{y} \ge \mathbf{c}$, $\mathbf{y} \ge \mathbf{0}$ **Dual** problem (D)

- It is equivalence to: $\max f = -\mathbf{b}^T \mathbf{y}$ s.t. $-A^T \mathbf{y} \le -\mathbf{c}$, $\mathbf{y} \ge 0$

The **dual** of (D) is: min $f = -\mathbf{c}^T \mathbf{z}$ s.t. $(-A^T)^T \mathbf{z} \ge (-\mathbf{b})$, (i.e. $-A\mathbf{z} \ge -\mathbf{b}$), $\mathbf{z} \ge 0$

- It is *equivalence* to: $\max f = \mathbf{c}^T \mathbf{z}$ s.t. $A\mathbf{z} \le \mathbf{b}$, $\mathbf{z} \ge 0$, which is the **Primal** problem (*P*).

Weak Duality Theorem: If **x** is feasible for (*P*) and **y** is feasible for (*D*), then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$.

Corollary: If (P) is unbounded \Rightarrow (D) is infeasible. || If (D) is unbounded \Rightarrow (P) is infeasible.

Strong Duality Theorem: If \mathbf{x}^* is optimal (basic) solution for (P), then:

 $\mathbf{y}^* = \pi = B^{-T} \mathbf{c}_B$ is optimal solution for (D), and $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$.

Application: If LP problem: $\max f = \mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq 0$ (P) is changed to a **tightening** LP problem: $\max f = \mathbf{c}^T \mathbf{x}$ s.t. $\begin{bmatrix} A \\ \mathbf{a}^T \end{bmatrix} \mathbf{x} \leq \begin{bmatrix} \mathbf{b} \\ b \end{bmatrix}$, $\mathbf{x} \geq 0$ (P') Then, the **relaxation dual** problem is: $\min f = \mathbf{b}^T \mathbf{y} + b\mathbf{y}$ s.t. $A^T \mathbf{y} + a\mathbf{y} \geq \mathbf{c}$, $\mathbf{y} \geq 0$, $\mathbf{y} \geq 0$ (D') - It is *equivalence* to: $\max f = -\mathbf{b}^T \mathbf{y} - b\mathbf{y}$ s.t. $-A^T \mathbf{y} - a\mathbf{y} \leq -\mathbf{c}$, $\mathbf{y} \geq 0$, $\mathbf{y} \geq 0$ 此时,计算 (P') 的最优解可以通过计算 (D') 的最优解来得到. (通过 **dual simplex method** 计算或 equivalence to 一般的计算)

6 Example of format written in LP

Example| 构建 LP 问题模板:

Defining decision variables:

Let x_1 be the number of 1kg packets of Breakfast Blend made each day.

Let x_2 be the number of 1kg packets of Dinner Blend made each day.

Total income is: $f_I = 1.16x_1 + 1.42x_2$.

Total cost is: $f_C = 0.18x_1 + 0.36x_2 + 0.28x_1 + 0.16x_2 = 0.46x_1 + 0.52x_2$.

Thus, total profit is: $f_I - f_C = 1.16x_1 + 1.42x_2 - 0.46x_1 - 0.52x_2 = 0.7x_1 + 0.9x_2$.

The objective is to maximize total profit $f = 0.7x_1 + 0.9x_2$

Constraints:

- 1. The number of kilos of arabica used, $0.3x_1 + 0.6x_2$, must not exceed the supply of 1200kg.
- 2. The number of kilos of robusta used, $0.7x_1 + 0.4x_2$, must not exceed the supply of 1500kg.
- 3. The total number of kilos of coffee made, $x_1 + x_2$, must not exceed the capacity of 2400kg.

Thus, the LP Problem to be solved is:

 $\begin{array}{ll} \text{maximize} & f = 0.7x_1 + 0.9x_2, \\ \text{subject to} & 0.3x_1 + 0.6x_2 \leq 1200, \\ & 0.7x_1 + 0.4x_2 \leq 1500, \\ & x_1 + x_2 \leq 2400, \\ & x_1, x_2 \geq 0. \end{array}$

Introducing Slack Variables:

 $\begin{array}{ll} \text{maximize} & f = 0.7x_1 + 0.9x_2, \\ \text{subject to} & 0.3x_1 + 0.6x_2 + x_3 = 1200, \\ & 0.7x_1 + 0.4x_2 + x_4 = 1500, \\ & x_1 + x_2 + x_5 = 2400, \\ & x_1, x_2, x_3, x_4, x_5 \geq 0. \end{array}$

Example | Iteration in Simplex Method | No Phase I,II:

The RHS $\mathbf{b} = \begin{bmatrix} 100 \\ 1 \end{bmatrix}$ is positive, so the "all-slack" basis $\mathcal{B} = \{3, 4\}$ and $\mathcal{N} = \{1, 2\}$ yields a basic feasible solution. **Iteration 1**:

- For $\mathcal{B} = \{3,4\}$ and $\mathcal{N} = \{1,2\}$, B = I, $N = \begin{bmatrix} 1 & 20 \\ 0 & 1 \end{bmatrix}$, $\mathbf{c}_B = \mathbf{0}$ and $\mathbf{c}_N = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$, giving $\hat{\mathbf{b}} = B^{-1}\mathbf{b} = \begin{bmatrix} 100 \\ 1 \end{bmatrix}$, and $\hat{\mathbf{c}}_N = \mathbf{c}_N N^T B^{-T} \mathbf{c}_B = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$.
- Choose q=2 since $\hat{c}_q=10$, and hence q'=2
- Thus $\mathbf{a}_q = \begin{bmatrix} 20 \\ 0 \end{bmatrix}$. Form $\hat{\mathbf{a}}_q = B^{-1}\mathbf{a}_q = \begin{bmatrix} 20 \\ 1 \end{bmatrix}$. Since $\hat{\mathbf{a}}_q$ is positive, the LP is bounded
- Choose $p = \operatorname{argmin} \left\{ \frac{100}{(i=1)'} \begin{pmatrix} \frac{1}{20} \\ i = 1 \end{pmatrix}' = 2 \text{ and hence } p' = 4 \right\}$

Iteration 2: … **Iteration 4**: 第一行一样, + … Since $\hat{\mathbf{c}}_N \leq \mathbf{0}$, the optimal solution is $\mathbf{x} = \cdots$, where values of x_i , … = 0 since $\mathcal{N} = \cdots$

7 Additional Proofs

If BFS has $\hat{\mathbf{c}}_N \leq 0$, it is an Optimal Solution | Show that $f = \hat{f} + \hat{\mathbf{c}}_N^T \mathbf{x}_N$

Proof: As $\mathbf{x}_B = \hat{b} - \hat{N}\mathbf{x}_N$, we have $f = \mathbf{c}_B^T\mathbf{x}_B + \mathbf{c}_N^T\mathbf{x}_N = \mathbf{c}_B^T(\hat{b} - \hat{N}\mathbf{x}_N) + \mathbf{c}_N^T\mathbf{x}_N = \dots = \hat{f} + \hat{\mathbf{c}}_N^T\mathbf{x}_N$. Since $\hat{\mathbf{c}}_N \le 0$, we have $f \le \hat{f}$, so it is an Optimal Solution.

Why is the LP unbounded if $\hat{a}_q \le 0$? | What is \hat{a}_q ?

Proof: At \mathbf{x} , the most positive reduced cost is \hat{c}_q . Now we construct a direction vector \mathbf{d} , such that $\mathbf{d} \Leftrightarrow \begin{pmatrix} \mathbf{d}_B \\ \mathbf{d}_N \end{pmatrix}$ where $\mathbf{d}_B = -B^{-1}N\mathbf{e}_q = -\hat{\mathbf{a}}_q$ and $\mathbf{d}_N = \mathbf{e}_q$. Then, we have $\mathbf{x} + \alpha \mathbf{d}$ can be partitioned as $\begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}} \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -\hat{\mathbf{a}}_q \\ \mathbf{e}_q \end{pmatrix}$ We can see that the objective function is $f = \hat{f} + \alpha \hat{c}_q$ increasing strictly if $\hat{c}_q > 0$.

Thus, the LP is unbounded.

(Cont.) What is $p = \arg\min_{i=1,\dots,m} \frac{\widehat{b_i}}{\widehat{a}_{iq}}$?

Proof: (Cont.) As $\begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}} \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -\hat{\mathbf{a}}_q \\ \mathbf{e}_q \end{pmatrix}$, we can see that, for the component of $\hat{\mathbf{a}}_q$, if $\hat{\alpha}_{iq} > 0$, then $\hat{b}_i - \alpha \hat{a}_{iq} \ge 0$, objective function is strictly increasing; if $\hat{a}_{iq} < 0$, then $\hat{b}_i - \alpha \hat{a}_{iq} \le 0$, objective function is strictly decreasing; if $\hat{a}_{iq} = 0$, then $\hat{b}_i - \alpha \hat{a}_{iq} = \hat{b}_i$, objective function is constant. Thus, we can see that, the most negative component of $\hat{\mathbf{b}}$ is \hat{b}_p and the most positive component of $\hat{\mathbf{a}}_q$ is \hat{a}_{pq} , so we have $p = \arg\min_{i=1,\dots,m}, \hat{a}_{iq} > 0$, $\frac{\hat{b}_i}{\hat{a}_{iq}}$.

Why in the Simplex Algorithm, we exchange p' and q' can get a new BFS?

Proof: 1. It's clear that new index $\mathcal B$ and $\mathcal M$ form a partition of $\{1,2,...,n+m\}$. 2. Only $x_{q'}$ is increased from 0 and q' leaves $\mathcal M$, and $x_{p'}$ is decreased to 0. So that they can be consider as new nonbasic variables and basic variables. 3. The new basis B is nonsingular (invertible): New Basic matrix is $B_{New} = B + (\mathbf a_q - B\mathbf e_p)e_p^T = BE$ where $E = I + (\hat{\mathbf a}_q - B\mathbf e_p)e_p^T$; $B\hat{\mathbf a}_q = \mathbf a_q$ Thus B_{New} is nonsingular if and only if E is nonsingular. By Sherman-Morrison Formula, E is nonsingular iff $\hat{\alpha}_{pq}$ is nonzero. But we have $\hat{\alpha}_{pq} > 0$ so that B_{New} is nonsingular.

Termination of Simplex Algorithm in the absence of degeneracy

Proof: If no degenerate situation, $\hat{\mathbf{b}} > 0$. Thus $\hat{\alpha} = \frac{\hat{b}_p}{a_{pq}} > 0$, and hence the objective function is strictly increasing. (By $\bar{\alpha}\hat{c}_q > 0$) So the algorithm cannot return to a basic feasible solution previously visited. Thus the algorithm will terminate in a finite number of steps. (As it's bounded)