simulacro 2016

APELLIDOS		
NOMBRE	GRUPO	

Problema 1. [1 punto] Considera la sucesión:

$$\alpha_1=1\,,\quad \alpha_{n+1}=\frac{1}{1+\alpha_n}\,,\quad n\geq 1\,.$$

- En el supuesto de que (a_n) fuese convergente ¿cuáles son sus posibles límites?
- \blacksquare Usando inducción matemática, demuestra que $\frac{1}{100} < \alpha_n < 10$ para todo $n \in \mathbb{N}.$
- \blacksquare ¿Es $(\mathfrak{a}_\mathfrak{n})$ monótona? Con los resultados que has obtenido ¿puedes garantizar su convergencia?

Problema 2. [1 punto] Encuentra todos los valores del parámetro p > 0 para los la serie

$$\sum_{n=1}^{\infty} \frac{\log n}{n^p}$$

es convergente.

Problema 3. [1 punto] Encuentra una serie de Taylor centrada en $x_0 = 0$, indicando su radio de convergencia, cuya suma sea

$$\frac{1}{1+x^2}.$$

Usando el resultado anterior, calcula la suma de la serie

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

Problema 4. [1 punto] Sea f una función derivable. Sabiendo que

$$\lim_{x \to 0} \frac{f(2x^3)}{5x^3} = 1,$$

justifica que f(0) = 0, demuestra que f'(0) = 5/2 y calcula

$$\lim_{x\to 0}\frac{f(f(2x))}{3f^{-1}(x)}.$$