Neural Networks

Holberton

Why Neural Networks

Why Neural Networks

pattern recognition

automatic translation

stock market prediction

image recognition

computer vision

recommendation

Introduction to (Artificial) Neural Networks

The biological brain network

- process complex information
- the neuron is the most crucial unit

connected neurons

Introduction to (Artificial) Neural Networks

The artificial network

- process complex information
- the neuron is the most crucial unit

connected neurons

Feed-forward Neural Networks

Fundamentals of Artificial Neural Networks

Information is processed only in forward direction

network as a stack of layers

— weights → connection strength

bias → adjustments within neurons

Fundamentals of Artificial Neural Networks

Perceptron: the most basic ANN architecture

- binary input values
- connection weights & bias
- activation function

Fundamentals of Artificial Neural Networks

Perceptron example: will you go to the movies?

Neural Network Architecture

The Neuron

fundamental unit of artificial network

receives input and transforms it

activation function decides
 importance of neuron in the network

Weighted Sum | Activation

The Layers

core building blocks of neural network

three types: input, hidden, output

receive transform and output data

Neural Network Layers

The Model

The model

combine layers into a network

Neural Network

Loss and optimization

measure learning and adjust

Provide feedback

The Activation Functions

 define how inputs will be transformed to outputs

- several activation functions
 - step function
 - logistic function
 - hyperbolic tangent function
 - rectified linear unit function

Training Neural Networks

How to train a neural network

Map features to target

Train and test

Adjust and repeat

How to estimate training effectiveness

How good is our feed-forward neural network → cost functions

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - x_i|$$

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \overline{y}_i)^2$$

$$H(x) = \sum_{i=1}^{n} p(x) \cdot \log q(x)$$

The Backpropagation Algorithm

 Backpropagation → the essence of neural network training

fine-tune network parameters
 based on error terms

 propagates the errors from output to input nodes

The Backpropagation Algorithm

Forward pass: make prediction given data

data model

prediction - Company - C

 Backward pass: adjust weights according to measured error

The Backpropagation Algorithm

Calculate error

The Gradient Descent Algorithm

- Optimization technique for a wide range of problems
- Train a neural network by tweaking parameters until cost is minimized

The Gradient Descent Algorithm

Optimization strategy to train a neural network

1. Initialize random weights

2. Calculate gradient

3. Update weights

4. Repeat until cost is minimized

The Gradient Descent Algorithm

Goal: minimize cost function

The Gradient Descent Algorithm: Pitfalls

 challenges when cost function is not regular

 gradient might become stuck or stagnant

difficult to converge to global minimum

Any questions?

