ERRATA

Technical Report No. 1 (USWB Contract Cwb-10704)
REGRESSION ESTIMATION OF EVENT PROBABILITIES

April 1964

- Page 4 Line 4 The word "divided" should be "dividing."
- Page 6 Title for Experiment 8 should read "Combination of Selected Predictors from a Network and Single-Station Booleans."

 Note: This would also change the title on Page 129.
- Page 26 Line 12 Insert "City" after Atlantic.
- Page 69 Line 4 The word "of" should be "by."
 - Line 7 (from the bottom) The word "dependent" should be

U.S. Weather Bureau Contract Cwb-10704 Technical Report No. 1

REGRESSION ESTIMATION OF EVENT PROBABILITIES

Robert G. Miller

April 1964 7411-121

This report, prepared by The Travelers Research Center, Inc., does not necessarily reflect official policy or views of the sponsoring agency.

THE TRAVELERS RESEARCH CENTER, INC. 250 Constitution Plaza Hartford, Connecticut 06103

ABSTRACT

MDA (multiple discriminant analysis) has been found useful in predicting the probability of operationally critical airfield ceiling and visibility conditions. One part of the discriminant procedure requires at the outset a rather lengthy computation by machine to estimate these probabilities. While the operational use of the method takes much less effort, the time needed initially on a large scale computer may be inordinate when many elements, time periods, and geographical locations are being considered. This technical report discusses a prediction technique, REEP (regression estimation of event probabilities), which resulted from attempts to make MDA more efficient. Comparative studies between REEP and MDA are included as well as other experimentations performed using the REEP procedure. Recommendations for future work on the technique are also given.

TABLE OF CONTENTS

		Page
1.0	Introduction	1
2.0	The REEP Procedure	2
3.0	REEP Predictor Selection	5
4.0	Experimentation	6
5.0	Discussion	145
6.0	Future Work	150
7.0	Acknowledgements	152
8.0	Bibliography	153

V

1.0 INTRODUCTION

The objective of this task was to develop, in the MDA (multiple discriminant analysis) framework, a method which would produce medium range ceiling and visibility forecasts efficiently. The original plan was to investigate the use of a multivariate statistical procedure called canonical correlation—discriminant analysis being a special case of canonical correlation. By incorporating a feature which screened predictors in canonical correlation, it was expected that more than one predictand could be processed simultaneously with a resulting saving in computer time.

Work on screening canonical correlation was proceeding satisfactorily until it was found that a technique subsequently called REEP (regression estimation of event probabilities) possessed even more desirable computational features. It was later discovered that the REEP technique had appeared in the literature in 1955, Lund [1], (see also Lund [2]). In addition, work related to this approach has been published by Cox [3, 4] and by Warner [5].

This technical report consists of 1) a discussion of the REEP technique, 2) the results of a comparative study between REEP and MDA, 3) the results from a series of experiments investigating various aspects of the REEP procedure, 4) the results from experiments performed to study the effect of modifying the form of the predictor variables by means of Boolean expressions, and 5) discussion and recommendations for future study.

2.0 THE REEP PROCEDURE

Consider the problem of estimating the probability distribution over a set of G mutually exclusive and exhaustive groups where the groups are defined for a specific predictand. The statistical technique of discriminant analysis may be used to estimate probability distributions of this type [6]. The suggested approach for estimating the group probabilities, when the underlying density functions are unknown, is that of Fix and Hodges. This approach requires the computation of "distances" in the discriminant space between a new observation and each observation of the developmental sample. The set of k close neighbors is then used to estimate the group probabilities.

The REEP procedure may be thought of as an alternative to the Fix-Hodges method employed in MDA. Or, more appropriately, it can be viewed as a self-contained statistical prediction method. The following is a description of the REEP procedure:

Perform a series of multiple regressions on G zero-one dependent variables, Y_1, \ldots, Y_G , where each dependent variable is associated with one of G predictand groups. The independent variables, X_1, \ldots, X_r , are taken to be the same throughout each of the G regressions. The object of this series of regressions is to obtain the least squares estimate of the A's in the following equations:

$$E(Y_1 | \underline{X}) = \sum_{s=0}^{r} A_{1s} X_s$$

$$E(Y_2 | \underline{X}) = \sum_{s=0}^{r} A_{2s} X_s$$

$$\vdots$$

$$E(Y_{G}|\underline{X}) = \sum_{s=0}^{r} A_{Gs}X_{s}$$

where $X_0 = 1$

All of the conditional distributions, $f(Y_g | X)$, g=1,...,G, are Bernoulli distributions (zero-one) and on a single trial the expectation is equal to the probability that $Y_g = 1$. Thus the regression functions give least squares estimates of the group probabilities, \hat{P}_g (g=1,...,G).

These estimates possess certain desirable and certain undesirable properties:

Desirable

- 1) The estimates add to unity, i.e., $\sum_{g=1}^{G} P_g = 1$.
- 2) The estimates essentially minimize the Brier-Allen \overline{P} score,

i.e.,
$$\sum_{i=1}^{N} \sum_{g=1}^{G} (Y_{ig} - \hat{P}_{ig})^2$$
.

Undesirable

1) The estimates are not bounded by 0 and 1.

An intuitively reasonable approach and the one used to remedy this undesirable property is to renormalize the estimates by: a) setting all negatives equal to zero, b) setting all estimates greater than one equal to one, and c) divided each by the resulting overall sum.

3.0 REEP PREDICTOR SELECTION

A predictor selection procedure has been incorporated into the REEP procedure similar to that used in regression and MDA [6], namely:

Out of a set of P possible predictors $X^{(1)}$ is selected such that in the developmental sample it contributes most significantly with regard to one of the G predictands. That is, out of the G possible F distribution statistics the predictor $X^{(1)}$ has one of these computed statistics larger than any one of the G computed for the remaining P-1 predictors.

In a similar manner, a second predictor $X^{(2)}$ is selected from the P-: remaining predictors when considered in conjunction with $X^{(1)}$. Selection continues until r predictors $X^{(1)}$, $X^{(2)}$, ..., $X^{(r)}$ have been chosen; r is determined such that $X^{(r+1)}$ is not satisfactorily significant. The significance criterion has been designed similar to that used in screening regression and MDA (see page 13, reference [6]). Namely, compare the G possible computed F statistics, at any of the r selection stages, with a critical value of F_{∞} , where the size ∞ of the test is $\frac{1}{20 \left[P - (S-1)\right]}$. The value S denotes the selection stage number or equivalently the

value S denotes the selection stage number or equivalently the number of predictors thus far selected. Tests must still be performed to confirm its applicability, however.

e La Maria

4.0 EXPERIMENTATION

A number of experiments were performed to test certain aspects of the REEP procedure. The complete list of experiment titles is given below.

		<u>Title</u>	Page
Experiment 1	-	Comparison Between MDA and REEP (Atlantic City Airport).	7
Experiment 1A	••	Comparison Between MDA and REEP (Offutt AFB, Nebraska).	25
Experiment 2	••	Standard Dummies versus Cumulative Dummies	44
Experiment 3	~	Nullifying the Effect of High Ceilings in Predictor Selection.	69
Experiment 4	-	Ceiling Prediction Using Persistence with One and Two Hour Lagged Persistence.	78
Experiment 5	-	Multiple Predictands Processed Simultaneously.	89
Experiment 6	-	Effect of Restricting Selection to Predictors with Certain Minimum Occurrence Frequencies.	96
Experiment 7	-	Single-Station Predictors: Raw Dummies and Boolean Combinations.	106
Experiment 8	-	Combination of Selected Predictors from Net- work and Single-Station Boolean.	129

EXPERIMENT 1. Comparison Between MDA and REEP (Atlantic City Airport)

Purpose

To compare the results of short range ceiling and visibility predictions using the MDA technique and the REEP technique. In the event REEP compares favorably with MDA it might, because of its computational efficiency, be used in place of MDA for forecasting ceiling and visibilities. Procedure

A test of the REEP technique was made by comparing <u>independent</u> sample predictions of ceiling and visibility using REEP and MDA. Each technique was allowed to select predictors and generate probability forecasts independently. Predictions were made for two stations, Atlantic City Airport, New Jersey and Offutt AFB, Nebraska. (See Experiment 1A for Offutt.)

Predictands

The five operationally significant categories of ceiling and visibility at Atlantic City Airport, New Jersey for the forecast intervals of three and seven hours define the four predictands for which the techniques are compared (see Table 1-1). The specifications for each predictand are given in Table 1-2.

Predictors

Seven meteorological elements at 13 predictor stations (see Figure 1-1) plus the time of day (TOD) and day of year (DOY) variables were transformed into dummy (zero-one) variables (see Tables 1-3 and 1-4). This set of 423 dummy predictors was used as possible predictors for all four predictands.

Data Sample

Standard hourly airways surface observations covering the 10 year period, 1 January 1949 to 31 December 1958, furnished the data for this study. There are 87,672 hours in the 10 years from 1949 through 1958. This is too many to use efficiently; besides not all hours are needed because of the serial correlation present in meteorological variables. The amount of data was reduced by a three-stage process:

- (a) Any variable not observed for a substantial portion of the 87,672 hours was eliminated. A variable was also eliminated if the frequency distribution of its error vector exhibited a bias with regard to hour of day or onth of year.
- (b) Those hours were eliminated for which any one of the variables was missing or failed to pass a gross-error check.
- (c) A random selection of the remaining hours was made to select 10,000 cases.

Results

The four sets of predictors selected by MDA and REEP respectively are given in Tables 1-5a to 1-5d as well as the REEP regression equation coefficients for each group of the predictand. Contingency tables (see Tables 1-6a to 1-6d) show the forecast-versus-observed frequencies for persistence, MDA, and REEP. The number of correct forecasts (hits) and the Brier and Allen \overline{P} scores as well as the individual group contributions to the overall \overline{P} score are given below each contingency table. The number of hits and the overall \overline{P} scores are summarized in Table 1-7 by predictand.

Conclusions

See Experiment 1A.

Table 1-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number	<u>Cei</u>	<u>ı</u> :	ing Inter	V&	<u>LB</u>	
1	0 ft ≤	•	Ceiling	<	200	ft
2	200 ft <		Ceiling	<	500	st
3	500 ft ≤		Ceiling	<	1000	rt
4	1000 ft <	<u> </u>	Ceiling	<	3000	ft
5	3000 ft <	_	Ceiling			

Group <u>Number</u>	<u>v</u>	si	bility Inter	val	<u>.8</u>	
1	O mi	<u> </u>	Visibility	<	1/2	mi
2	1/2 mi	≤	Visibility	<	1	mi
3	1 mi	≤	Visibility	<	2	mi
4	2 mi	≤	Visibility	<	3	mi
5	3 mi	≤	Visibility			

Table 1-2

Specification of Predictands
Atlantic City Municipal Airport

		Predictand						
	1	2	3	4				
Predictand variable	CIG	CIG	VIS	VIS				
Forecast intervalhours (H)	3	7	3	7				
Number of Groups (G)	5	5	5	5				
Observations in Group 1 (n ₁)	100	135	153	167				
Observations in Group 2 (n ₂)	281	272	125	130				
Observations in Group 3 (n3)	385	420	200	230				
Observations in Group 4 (n4)	660	619	286	283				
Observations in Group 5 (n ₅)	6530	6510	7192	7146				
Total dependent sample size (N)	7956	7956	7956	7956				
Number of independent observations in the dependent sample (n)	2652	2652	2652	2652				
Total independent sample size (M)	2044	2044	2044	2044				
Number of available predictors (P)	423	423	423	423				

Figure 1-1. Thirteen Station Network for Atlantic City Airport

Table 1-3

Number of Possible Predictors for the 3- and 7-hr Ceiling and Visibility at ACY

Station														
Elen.	ACY	NEL	PHL	SBY	MOT	DCA	ORF	PSB	BCM	SWP	RIC	IDL	DSM	Total
TOD	5	•	-	•	•	•	413	-	. *QF\$Y		-	-	-	5
DOY	1	-	-	-	-	-	-	•	-	-	-	-	-	1
CIG	15	5	5	5	5	5	5	5	5	5	5	5	-	70
VIS	15	۶	5	5	5	5	5	5	5	5	5	5	-	? 0.
WMD	5	5	5	5	5	5	5	5	5	5	5	5	5	65
RIH	3	3	3	3	3	3	3	3	3	3	3	3	3	39
TCA	2	2	2	2	2	2	2	2	2	2	2	2	2	26
WEA	12	12	12	12	12	12	-	12	12	12	12	12	12	144
SCL	3	-	•	-	-	-	•••	-	-	-	-	-	-	_3
												Tota	ì	423

<u>Table 1-4</u>
Specifications and Limits of the Zero-One (Dummy) Variables

Meteorological Element	Number of Dummies	Limits of Each Category
		Time of Day:
TOD	5	1. From 0130 EST to 1330 EST
		2. From 0130 EST to 0730 EST
		3. From 0730 EST to 1330 EST
		4. From 1330 EST to 1930 EST
		5. From 1930 EST to 0130 EST
		Day of Year:
DOY	1	1. From 151 (31 May) to 300 (27 Oct)
		Wind:
WND	5	1. Calm to 3 Knots, any direction
		2. From 23° to 67°, 3 Knots < Speed
		3. From 68° to 202°, 3 Knots < Speed
		4. From 203° to 247°, 3 Knots < Speed
		5. From 248° to 22°, 3 Knots < Speed
		Relative Humidity:
RIH	3	1. From 75 per cent to 85 per cent
		2. From 86 per cent to 93 per cent
		3. From 94 per cent to 100 per cent
		Total Cloud Amount:
TCA	2	1. From 5/10 to 9/10 (incl.)
		2. More than 9/10
•		Ceiling Height, ft:
CIG	5	$0 \leq CIG < 200$
		2. 200 ≤ CIG < 500
		3. 500 ≤ CIG < 1000
		4. 1000 ≤ CIG < 3000
		5. 3000 ≤ CIG

Table 1-4 - Continued

Meteorological Element	Number of Dummies	Limi	ts of Each Category								
			Ceiling Height*, ft:								
CIG	10	(1)	CIG = 100								
		(2)	CIG = 200								
		(3)	CIG = 400								
		(4)	CIG = 500								
		(5)	CIG = 900								
		(6)	1500 ≤ CIG < 2000								
		(7)	2500 < CIG < 3000								
		(8)	3000 ≤ CIG < 5000								
		(9)	$5000 \le CIG < 10,000$								
		(10)	CIG = Unlimited								
	Visibility, mi:										
VIS	5	1.	$0 \le VIS < 1/2$								
		2.	$1/2 \leq VIS < 1$								
		3.	1 < VIS < 2								
		4.	2 < VIS < 3								
		5.	$3 \leq VIS$								
			Visibility*, mi:								
VIS	10	(1)	$1/4 \leq VIS < 1/2$								
		(2)	$1/2 \leq VIS < 3/4$								
		(3)	$3/4 \leq VIS < 1$								
		(4)	$1 \leq VIS < 1-1/2$								
		(5)	$1-1/2 \leq VIS < 2$								
•		(6)	2 < VIS < 3								
		(7)	3 < VIS < 4								
		(8)	4 < VIS < 5								
		(9)	5 < VIS < 6								
		(10)	15 ≤ VIS								

^{*}Parentheses are used here to help distinguish the two forms of ceiling and visibility dummies.

Table 1-4 - Continued

Meteorological Element	Number of Dummies	<u>Lim</u>	its of Each Category	
			Weather Element:	Teletype Code:
WEA	12	1.	No Weather	
		2.	Rain	R-, R, R+
		3.	Rain Showers	RW-, RW, RW+
		4.	Drizzle or Freezing Drizzle	L-, L, L+ ZL-, ZL, ZL+
		5•	Snow Snow Pellets Snow Grains Ice Crystals	S-, S, S+ SP-, SP, SP+ SG-, SG, SG+ IC-, IC, IC+
		6.	Snow Showers Snow Squalls	SW-, SW, SW+ SQ-, SQ, SQ+
		7.	Tornado Thunderstorm Squalls Hail Hail Pellets	Tornado T, T+ Q-, Q, Q+ A-, A, A+ AP-, AP, AP+
		8.	Freezing Rain Sleet Sleet Showers	ZR-, ZR, ZR+ E-, E, E+ Ew-, Ew, Ew+
		9.	Fog, Ice Fog	F, IF
		10.	Ground Fog	GF
		11.	Blowing Snow Blowing Sand Blowing Dust	BS BN BD
		12.	Smoke, Haze, Dust	К, Н, D
COT	2	4	Sky Condition, Lower:	x
SCL	3		Sky obscured Thin broken clouds Thin overcast	- (0) - ()
		3.	Scattered clouds Dark scattered clouds	Ф + Ф

.....

Selected Predictors and REEP Equations Atlantic City 3-hr Ceiling

A)	45	.251	1%	.213	076	043	.119	110	072	670	034	970	140	.010	075		071	026	110	023	.256
s of the	A.	218	359	135	289	211	054	008	050.	003	052	029	870	104	•027	670	0. 8	036	.173	048	.429
oefficients of REEP Equations	γ3	025	025	067	002	188	051	036	.014	010	8.	060.	073	026	.019	007	.022	037	039	.083	.185
The Coefficients of the REEP Equations	A2	002	.192	021	.318	290.	021	061	700	.011	.072	900*-	•062	078	.019	.078	.021	.011	014	.015	.089
Ē.	A,	006	.3%	600	.049	000-	.007	**************************************	.005	047	.013	009	177	010	.010	009	600.	.087	010	027	.042
																					Additive constant
1	Dummy	٠,	-	5	8	m	'n	w	8	٠ ح	٣	6	Ξ	4	7	8	٣	8	9)	8	. •
Predictors	Selected by KEEP	CIG	CIG	CIG	CIG	CIG	CIG	CIG	TCA	VIS	RLH	CIG	CIG	CIG	WW	WEA	DIL	VIS	CIG	WEA	٠.
Pre	Station	ACT	ACT	PHL	ACY	YCI	DCA	SBI	MEL	ACT	DCA	NEL	ACT	SHI	in Di	SBI	SWP	SBI	ACI	KET	
	Dummy	٧.	ν.	4	٣	₹		8	8	2	7	~	3	ૡ	\$	7	Ξ	m			
tors	Element	CIG	CIG	CIG	CIG	CIG	CIG	WEA	TCA	CIG	CIG	MAN	RIH	MAN	VIS	WEA	OIG	CIG			
Predictors	Station Elemen	ACY	PHL	ACT	ACY	DCA	ACY	SHI	NEL	SBI	SBI	SMF	DC V	in	ACY	NET	ACT	i			
	Order	-	7	е,	4	٧.	••	7	∞	6	0	=	12	13	7,	5	16	17	8	19	

.256

Table 1-5b

Selected Predictors and REEP Equations Atlantic City 7-hr Ceiling

<u>o</u>	V 2	3	.135	.144	132	127	-,082	.014	1.139	- 099	110	.035	.028	-,064	043	104	021	172	.533
ts of the lons	At	087	073	061	.045	.039	670.		_			•		.041	670*-	.031	070	063	.223
Coefficients o REEP Equations	A3	051	051	038	.037	*0°	.027	041	.126	060*-	.061	•005	600°-	* 05	600.	.014	037	.029	.137
The Coefficients of REEP Equations	A2	032	±.008	030	.023	.033	.002	043	.057	.253	.016	.093	018	007	780	.047	.092	.237	.076
	A1	.002	003	015	.027	8	.003	.104	008	023	.024	.012	026	.007	001	.013	.007	031	.031
	·																		Additive constant
<u>e</u>	Dummy	8	~	٧	٣	~	8	-	7	∞	6	8	1	<u>س</u>	3	6	,- -	7	•
Predictors Selected by REED	Element	CIG	CIG	CIG	OK.	MAND	TCA	SCI	WEA	WEA	WEA	CIG	OT.	RIA	CIG	WEA	cIG	WEA	
Pre	Station	PHL	P C A	ACT	PHL	TOT	ACT	ACY	DCA	ISB	NEL	YCI	YCI	PSB	DCA	SBT	PSB	PHL	
	Dummy	٧.	5	3	7	~	m	4	7	6	-	~	~	6	-	80	8		
tors	Element	CIG	CIG	cIG	WEA	ON.	QI.M.	CIG	(ICA	WEA	TQD C	MEA		WEA	ट्टि	WEA	WEA		
Predictors Selected by MD	Station	PHIL	DCA DCA	ACY	DCA	IOI	PHL	ACY	MD.T	NEL	ACT	TOX	PHL	SBI	ACI	PSB	RIC		
	Order	***	8	m	4	٠,	9	7	₩	6	5	Ξ	12	1 3	17	. 5	16	17	

Table 1-5c

Selected Predictors and REEP Equations Atlantic City 3-hr Visibility

•	A 5	185	-130	80.	- 20%	-101	115	-106	9,0	- 030	016	90	-,086	623
is of th	A4	054	156	.021	076	670			045	780-	.033	700	025	.165
The Coefficients of the REEP Equations	Å3	067	017	.029	010	.037			011	079	027	.005	116	109
The Coe:	A2	023	.038	.018	.178	.012	021	017	005	.018	015	010	050	.051
•	Α1	041	.274	.023	.113	.002	*200*-	.017	007	.183	057	070	025	.052
														Additive constant
<u>e</u>	Duman	ν.	•	٣	7	6	٠	6	-		~	n	~	70
Predictors Selected by REEP	Element	VIS	VIS	RIH	VIS	WEA	VIS	WEA	WEA	CIG	WEA	RLH	VIS	
Pr	Station	ACT	ACY	ACT	ACT	DCA	SBY	NET	ACY	띪	NET	ORP	MOT	
	Dummy	5	-	٣	8	6	<u>ر</u>	6	-	-	7		٣	
ctors	Element	VIS	VIS	RLH	VIS	WEA	RIH	WEA	WEA	CIG	WEA	CIG	RLH	
Predictors Selected by MD	Station Elemen	ACY	ACY	ACY	ACY	DC A	SBY	NEL	ACT	PHL	NET	SBI	OR.P.	
	Order	-	7	٣	4	ι.	9	7	0 0	6	0	=	12	

able 1-5d

Selected Predictors and REEP Equations Atlantic City 7-hr Visibility

v	A 5	12k	173	109	.055	.07	950-	070	115	101	.055	.581
Coefficients of the REEP Equations	A ₄	.005	067	027	018		.012	.012	037	.076	026	.156
Coefficients of REEP Equations	A3	0.050	034	026	020	036	038	.021	015	.062	010	.113
The Coef	A2	.020	032		700-	019	-00	•020	660.	016	009	.075
Ħ	A-	.052	070-	037	015	010	.087	.018	690°	022	011	•076
												Additive constant
Q.	Dumay	6	~	-	-	ν.	m	М	8	.01	_	
Predictors Selected by REED	Element	WEA	VIS	100 100	WEA	CIG	VIS	AND THE	VIS	WEA	WEA	
Pr	Station	ACY	DCA	ACT	黑	THI	IOI	꿆	ACY	DCA.	NEL	
	Dummy	6	2	-	2	~	-	5	ĸ			
Predictors Selected by MDA	Element	WEA	CIG	1 0	VIS	WEA	WEA	VIS	CINIM			
Predi Selecte	Order Station Element	ACY	PHL	ACY	DCA	DCA	NET	ACY	PHL			•
	Order	-	Ο.	m	4	٠. ۱	9	7	œ	6	0	

Table 1-6a

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

3-hr Ceiling (Independent Sample)

				Actual			
	Group	1	2	3	4	5_	Total
PERSISTENCE	1 2 3 4 5	21 13 2 1 7	8 33 14 8 10	4 25 50 21 27	0 10 21 68 66	5 9 21 70 1 530	38 90 108 168 1640
	Total	44	?3	127	165	1635	2044
٠,		Н	its = 17	02 P	= 0.238	15	
	Pg	0.0156	0.0284	0.0462	0.0636	0.0847	
	_						
	_	4	•	Actual		-	M - A - 3
	Group	1	22	3	<u>4</u>		Total
	1	13	5	2	o	4	24
MDA	2	14 1	29 13	24 41	6 15	1 6	74 76
MDA	3		14	24	53	36	130
	4 5	3 13	12	36	91	1588	1740
	Total	44	. 73	127	165	1635	2044
		H	its = 17	'24 F	= 0.213	35	
••	$\overline{\mathtt{P}}_{\mathtt{g}}$	0.0161	0.0279	0.0424	0.0601	0.0669	
	C	1	2	Actual 2	,	E	Total
	Group				4		IUVAI
	1	6	4	1	0	1	12
neen	2 3 4 5	19	34	25	8	4 5	90 70
REEP	3 1.	0 1	11 6	42 19	14 41	20	72 87
	5	18	18	40	102	1605	1783
•	Total	44	73	127	165	1635	2044
		H	lits = 17	728 F	= 0.213	35	
	\overline{P}_{σ}	0.0163	0.0277	7 0.0423	0.0605	0.0666	

Table 1-6b

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

7-hr Ceiling (Independent Sample)

				Actual			
	Group	1	2	3	4	5	Total
PERSISTENCE	1 2 3 4 5	8 12 7 2 12	12 22 9 12 24	8 19 38 33 49	4 19 26 37 72	6 18 28 84 1483	38 90 108 168 1640
	Total	41	79	147	158	1619	2044
		H	lits = 15	588 T	= 0.289	99	
	Pg	0.0183	0.0342	0.0598	0.0671	0.1105	
	Group	1	2	Actual 3	4	5	Total.
	1	0	0	0	0		
	2	6	9	10	0 4	0 0	0 29
MDA	3	9	29	42	15	12	107
	4 5	2 24	5 26	9	13	12	41
	•		36	86	126	1595	1867
	Total	41	79	147	158	1619	2044
			lits = 16				
	Pg	0.0181	0.0321	0.0539	0.0653	0.0894	
				<u>Actual</u>			
	Group	1	2	3	4	5_	Total
REEP	1 2 3	0 3 7 8	0 9 19	0 9	0 1 12	0 2 9	0 24 81
	4	ខំ	7	34 22	20	6	63
	5	23	44	82	125	1602	1876
	Total	41	79	147	158	1619	2044
		Н	its = 16	65 P	= 0.260	0	
	$\overline{P}_{\mathbf{g}}$	0.0180	0.0323	0.0540	0.0666	0.0891	

Table 1-6c

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

3-hr Visibility	(Independent	Sample)
-----------------	--------------	---------

	Group	1	22	Actual 3	4		<u>Total</u>
PERSISTENCE	1 2 3 4 5	17 4 4 3	10 8 11 6	7 9 21 13	1 1 11 23	6 16 31 45	41 38 78 90
	5 Total	14 42	11 46	28 78	57 93	1 <i>6</i> 87 1785	1797 2044
		Н	its = 17	756 P	= 0.191	0	
	Pg				0.0413		
				Actual			
	Group	1	2	3	4		Total
HDA	1 2 3	16 2 0 0	10 4 0 0	6 3 0 0	1 0 0	5 5 0	38 14 0 0
	4 5	24	32	69	92	1775	1992
	Total	42	46	78	93	1785	2044
		н			= 0.179		
	Pg				0.0391		
				Actual			
	Group	1	2	3	4		Total
, ,	1 2	13 2 0	9 5	5 4 0	1 0	4	32 20 2 7
REEP	2 3 4 5	0	5 2 0	0 3	0 4	0 0	2
	3	27	30	6 6	88	1772	
	Total	42	46	78	93	1785	2044
		Н	its = 17	94 P	= 0.180	0	
	Pg				0.0395		

Table 1-6d

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence, MDA, and REEP

7-hr Visibility (Independent Sample)

	Group	1	2	Actual	4	5_	<u>Total</u>
	1	6	4	6	7	18	41
	2	3	3	4	4	24	38
PERSISTENCE	3	4	8	17	9	40	78 00
	3 4 5	7 23	2 21	15 48	11 68	55 1637	90 1797
	Total	43	38	90	99	1774	2044
	1002		its = 13	_	_		
	\overline{P}_g		0.0180	-			
				Actual			
	Group	1	2	3	4	5	Total
	1	0	0	0	0	O	0
		ŏ	Ö	Ö	ŏ	Õ	Ö
MDA	2 3	Ö	ŏ	Ŏ	Ö	Ö	Ō
	4	0	0	0	0	0	0
	5	43	38	90	99	1774	2044
	Total	43	38	90	99	1774	2044
		H	its = 17	74 P	= 0,212	: 0	
	$\overline{\mathtt{P}}_{\mathbf{g}}$	0.0191	0.0178	0.0391	0.0448	0.0912	
				Actual			
	Group	_1	2	3	4	5_	Total
	1	0	0	1	0	1	2
•	2	Ö	ŏ	Ö	Ö	ò	2 0
REEP	2 3	ŏ	ŏ	ŏ	Ŏ	Ŏ	Ö
	Ĺ	Ö	Ö	Ö	Ō	Ö	Ó
	4 5	43	38	89	99	1773	2042
	Total	43	38	90	99	1774	2044
		H	its = 17	73 P	= 0.215	ю	
	\overline{P}_{σ}	0.0196	0.0178	0.0394	0.0446	0.0936	

Table 1-7

1..

Comparison Between Persistence, MDA, and REEP

(Independent Sample - 2044 Observations)

Atlantic City, Ceiling 3 Hours in Advance

Hits	Persistence MDA REEP	1702 1724 1728*
P Score	Persistence MDA PREP	.2385 .2135*

Atlantic City, Ceiling 7 Hours in Advance

MDA	1659
REEP	1665*
Persistence	•2899
MDA	•2589*
	Persistence

Atlantic City, Visibility 3 Hours in Advance

Hits	Persistence MDA REEP	1756 1795 * 1 7 94
P Score	Persistence MDA RWEP	.1910 .1795*

Atlantic City, Visibility 7 Hours in Advance

Hits	Persistence MDA REEP	1674 1774* 1773
P Score	Persistence MDA REEP	.2270 .2120* .2150

Asterisks are used to denote superiority.

EXPERIMENT 1A. Comparison Between MDA and REEP (Offutt AFB, Nebraska)

The Purpose and the Procedure are the same as those in Experiment No. 1.

Predictands

Visibility at Offutt AFB was divided into four and ceiling into five operationally significant categories (see Table 1A-1) for the following four predictands: CIG + 3 hours, CIG + 7 hours, VIS + 3 hours, and VIS + 7 hours. The specifications of the predictands are tabulated in Table 1A-2.

Predictors

As in Experiment 1, seven meteorological elements at the 13 predictor stations constituted the Offutt AFB network (see Figure 1A-1), plus the time of day and day of year variables. These were then transformed into 423 dummy variables (see Tables 1A-3 and 1A-4).

Data Sample

A data sample containing 10,000 observations was selected at random from the ten year period, 1 January 1949 to 31 December 1958. The developmental sample from the first eight years contained 7668 observations, and the verification sample from the last two years contained 2332 observations.

Results

The four sets of predictors selected by MDA and REEP are shown in Tables 1A-5a to 1A-5d in addition to the REEP regression coefficients for each group of the predictand. The contingency tables (see Tables 1A-6a to 1A-6d) give the forecast-versus-observed frequencies for

persistence, MDA, and REFP. The number of hits, the \overline{P} scores, and the individual group contributions to the \overline{P} score are also shown. Table 1A-7 summarizes the number of correct forecasts and the overall \overline{P} scores.

Conclusions

18

1) In the Atlantic City experiment (Experiment 1) the selected predictors for REEP and MDA are both alike in numbers and in kind. However, in the Offutt experiment (Experiment 1A) this is not the case. There are many more predictors selected as significant in REEP. This is the to two adjustable factors introduced into the REEP computer program for the Offutt experiment but not for the Atlantic experiment.

The first of these is that in REEP each group can be assigned its own effective degrees of freedom determinable from a runs test, whereas MDA must use an average number (from previous studies determined empirically to be at about one-third the developmental sample size or roughly crediting only one observation a day as independent). Most of these additional selected predictors explain a significant amount of variability in the low ceiling and visibility categories.

Another adjustable factor is that of minimum frequency in the number of observations for a possible predictor (in our terminology "bit count"). In order for a predictor to be selected it must have been observed at least a minimum number of times in the developmental sample. This is an adjustable input parameter to the program*. A more detailed discussion on its effects is given in a subsequent experiment. Suffice it to say that for larger values it selects more stable predictors with a tendency toward predictor selection to favor higher ceiling and visibility categories. An additional effect is that for larger values it would select fewer predictors thus offsetting some of the effects due to the degrees of freedom factor.

2) A summary of the results shows MDA with ten asterisks in its favor while REEP has eight. In almost every instance where an individual P score or the number of hits differ this difference is very small. We conclude that for all practical purposes MDA and REEP produce comparable results.

^{*}The present MDA program now has this as an input parameter. At the time of the Atlantic City and Offutt comparisons it was not available.

Table 1A-1

Definition of Predictard Croups for Offutt AFB, Nebraska

Group Number	,	Ceil	ing Inter	vals
1	0 ft	<u> </u>	Ceiling	< 300 ft
2	300 ft	≤	Ceiling	< 1000 ft
3	1000 ft	<u> </u>	Ceiling	< 1500 ft
4	1500 ft	≤	Ceiling	< 5000 ft
5	5000 ft	≤	Ceiling	

Group <u>Number</u>	Visibility Intervals
1	0 mi ≤ Visibility < 1 mi
2	1 mi ≤ Visibility < 3 mi
3	3 mi ≤ Visibility < 5 mi
4	5 mi ≤ Visibility

Table 1A-2
Specification of Predictands - Offutt AFB, Nebraska

	1	Predi 2	ictand 3	4
Predictand variable	CIG	CIG	VIS	VIS
Forecast intervalhours (H)	3	7	3	7
Number of Groups (G)	5	5	4	4
Observations in Group 1 (n ₁)	49	63	94	106
Observations in Group 2 (n ₂)	373	379	212	213
Observations in Group 3 (n ₃)	236	259	250	223
Observations in Group 4 (n)	959	920	7112	7126
Observations in Group 5 (n ₅)	6051	6047	-	-
Total dependent sample size (N)	7668	7668	7668	7668
Number of independent observations in the dependent sample (n)	2256	2256	2256	2256
Degrees of Freedom Group 1 for each group n Group 2 (g=1,,G) Group 3 Group 4 Group 5	5400 4600 5800 5200 3500	5400 4600 5800 5200 3500	5500 5800 6300 4400	5500 5800 6300 4400
Total independent sample size (M)	2332	2332	2332	2332
Number of available predictors (P)	423	423	423	423

Figure 1A-1. Thirteen Station Network for Offutt AFB, Nebraska

Table 1A-3

Number of Possible Predictors for the 3- and 7-hr Ceiling and Visibility at OFF

Station Station														
Elem.	OFF	GRI	SUX	DSM	MKC	SSH	LBF	HON	MSP	LNK	CBI	SGF	DCA	Total
TOD	5	••	•	-	-	-	-	-	-	-	-	-	-	5
DOY	1	-	-	-	-	-	-	-	-	-	-	-	-	1
CIG	15	5	5	5	5	5	5	5	5	5	5	5	-	70
VIS	14	4	4,	4	4	4	4	4	4	4	4	4	•	58
WND	5	5	5	5	5	5	5	5	5	5	5	5	5	65
RLH	3	3	3	3	3	3	3	3	3	3	3	3	3	39
TCA	2	2	2	2	2	2	2	2	2	2	2	2	2	26
WEA	12	12	12	12	12	12	12	12	12	12	12	12	12	156
SCL	3	-	-	-	-	-	-	65	-	-	-	-	-	_3
												To	tal	423

Table 1A-4
Specifications and Limits of the Zero-One (Dummy) Variables for Offutt AFB, Nebraska

Meteorological Element	Number of Dummies	I,imits of Each Category
		Time of Day:
TOD	5	(Same as for ACY - see Table 1-4)
		Day of Year:
DOY	1	(Same as for ACY - see Table 1-4)
		Wind:
WND	5	(Same as for ACY - see Table 1-4)
		Relative Humidity:
RLH	3	(Same as for ACY - see Table 1-4)
		Total Cloud Amount:
TCA	2	(Same as for ACY - see Table 1-4)
		Ceiling Height, ft:
CIG	5	1. 0 ≤ CIG < 300
		2. 300 < CIG < 1000
		3. 1000 ≤ CIG < 1500
		4. 1500 < CIG < 5000
		5. 5000 ≤ CIG
		Ceiling Height*, ft:
CIG	10	$(1) \qquad \qquad \text{CIG} = 100$
		(2) CIG = 200
		$(3) \qquad \qquad \text{CIG} = 400$
		(4) CIG = 500
		$(5) \qquad \text{CIG} = 900$

^{*}Parentheses are used here to help distinguish the two forms of ceiling and visibility dummies.

Table 1A-4 - Continued

Meteorological Element	Number of Dummies	Limi	ts of Each Category
			Ceiling Height*, ft:
		(6)	1500 < CIG < 2000
		(7)	2500 ≤ CIG < 3000
		(8)	3000 ≤ CIG < 5000
		(9)	5000 ≤ CIG < 10,000
		(10)	CIG = Unlimited
			Visibility, mi:
VIS	4	1.	0 <u><</u> VIS < 1
		2.	$1 \leq VIS < 3$
		3.	$3 \leq VIS < 5$
		4.	5 ≤ VIS
			Visibility*, mi:
VIS	10	(1)	$1/4 \leq VIS < 1/2$
		(2)	$1/2 \leq VIS < 3/4$
		(3)	$3/4 \leq VIS < 1$
		(4)	$1 \leq VIS < 1-1/2$
		(5)	$1-1/2 \leq VIS < 2$
		(6)	2 < VIS < 3
		(7)	3 < VIS < 4
		(8)	4 ≤ VIS < 5
		(9)	$5 \leq VIS < 6$
		(10)	15 ≤ VIS
			Weather Element:
· WEA	12	(Sam	ne as for ACY - see Table 1-4)
			Sky Condition, Lower:
SCL	3	(Sam	e as for ACY - see Table 1-4)

^{*}Parentheses are used here to help distinguish the two forms of ceiling and visibility dummies.

Table 1A-5a

Selected Predictors and HEEP Equations Offutt AFB, Nebraska 3-hr Ceiling

A 5	356	3 5	- 54	7.00	227	000	.036	065	014	.028	.056	.143	038	033	019	047	072	055	.035	079	.033	045	016	700	110	033	.043	013	020	}
of the ons	.135	3	6	104	05%	077	018	005	770.	.260	.455	056	9	.043	8	.057	.041	.065	•065	018	-,065	013	026	089	070	057	056	800.	102	1
Coefficients of the REEP Equations $A_2 \qquad A_3 \qquad A_4$	5 70	000	.055	050	057	.095	8	.237	.088	198	970.	025	037	670	121.	.073	.016	900*-	027	.019	670	.018	600.	.057	790.	•065	.015	011	001)) •
The Coeff REEP A2	123	192	17.5	00	-118	260	.024	.105	.144	065	141	056	103	600.	098	091	.015	*00° -	-,068	760.	.091	.052	7 0•	002	032	.026	005	970.	.012	}
T. A	-:413	- 388	260	018	.00	270	.021	273	262	421	-,416	- .006	.002	.030	•.08	88.	8	8	900	016	010	.011	•020	.038	•019	8	8	030	88	* * * *
o i																														
P Dummy	2	~	2		٠,	~	6	٣	7	~	-4	٧	7	~	ا ر	7	~	4	*	~	_	~	6	-	6	9	2	∾;	8) 6	
Predictors Selected by REEP tion Element D	CIG	CIG	CIG	VIS	CIG	CIG	WEA	CIG	CIG	cIG	CIG	CIG	CIG	VIS	WEA	VIS	TCA	CIG	CIG	WEA	CIG	CIC	WEA	VIS	WEA	CIG	OIC	WEA	CIG WEA	
Prec Selecte Station B	OFF	CFF	LNK	OFF	SUX	LNK	OFF	LNK	LNX	OFF	OFF	I E	SUX	DSM 	OF P	LINK	LIN	DSM		LNK	100 C	MSG S	WSC	I E	HON	OFF	LBF	DSM	SSH	
Duming	5	7	-	ς,	Ŋ	7	7	بر ،	 (N -	7	7	2 (m.	4 (ر م	S,	, \	^											
tors by MDA Element	CIC	CIG	CIG	CIG	CIG	CIG	OIC	CIG	o to	5 . 1.	WEA	o To	4 :	¥ 5	• • • • • • • • • • • • • • • • • • •	WEA	210	or o	9											
Predictor Selected by Station Ele	OFF	OFF	OFF	SUX	LNK	OFF	Sux	1	TNA	Y N	E CO	3 2	Y A	T MY	LNA LNA	E CO	110	HOO.	FCC											
Order	-	~	~	7	v,	φï	~ (x o c	٠ ٢	2 :		3 5	<u>,</u> =	+ +	7	5 5	- 0	0 0	, ç	3 5	; c	3 %	3 %	‡ K	3 %	2 6	a V	၃ ၃	36	

.107

.247 -.107 .082

.671

Additive Constant:

Table 1A-5b

Selected Predictors and REEP Equations Offutt AFB, Nebraska 7-hr Celling

The Coefficients of the REEP Equations $A_1 \qquad A_2 \qquad A_3 \qquad A_4 \qquad A_5$.013021036045090025090034065034025090034065034023024016007025136097016007025135199034037006001006012047003002019014014014019019014014016019019013110021019019029021028019019029021028019019029021039002004004039003077009031003016059004011019056009019003016001019029016001019029016001019029016014010019029015001019031016019002016017019019031017019019031019019019031019019019031019019019031	- /00:- 700: 600:
Predictors Selected by REEP Station Element Dummy	LINK CIG 5 OFF SGL 1 HON TGA 9 CBI NEA 9 CIG 6 4 CRI CIG 7 CRI CIG 7 CRI CIG 7 MEA 9 OFF TGD 3 LINK WEA 2 LINK WEA 2 CIG 3 LINK WEA 2 CIG 6 MKC CIG 3 LINK WEA 2 CIG 7 CIG 7 MKC NEA 9 OFF CIG 3 LINK WEA 2 CIG 3 CIG 6 CIG 7 MKC NEA 9 OFF CIG 3 CIG 7 CIG	
Predictors Selected by MDA Order Station Element Dummy	1 LNK CIG 2 SUX CIG 3 LNK WEA 99 4 GRI CIG 5 OFF CIG 10 OFF CIG 11 GRI CIG 12 SSH CIG 14 OFF CIG 15 HON CIG 20 21 CFF TOD 3 22 23 24 25 26 27 28	

Table 14-5b - Continued

•\	A 5	.024	-,063	097	.053	770	005	072	.047	900
of the	A ₄	.013	5,0	.012	8.	050	079	014	8	205
Coefficients of the REEP Equations	77	000	•058	8.	70.	90.	012	.022	008	166
e Coeffi REEP	A2	0 <u>4</u> 1	005	•014	• 003	700	•095	.055	•005	
The	¥-	.003	0,0	290.	-,062	7	• 905	8	044	12.1 5.11
	Jumny		~	~	(8)	-	. ~	m		Addition Constant.
Predictors Selected by REEP	Element I	WEA	VIS	VIS	VIS	WEA	VIS	RLH	OIG	**************************************
Pre	Station	CBI	LNX	OFF	OFF	MSP	æi	DSM	CBI	
	Cumux									
tors by MDA										
Predictors Selected by A	Station Element									
	rder	59	9	₹	32	33	34	35	36	

Selected Predictors and REEP Equations Offutt AFB, Nebraska 3-hr Visibility

f the A_{4}	č		20.1	3 6	2 6	1,032	-132	058	080 C80	.018	056	016	.025	067	138	090	790-	070	.067	048	.029	059	970	040	.019	032	011	028	034	.417
cefficients of REEP Equations A ₂ A ₃	8 CC =	170	035	50	0.1	163	.126	.034	.025	003	019	033	03	.015	.042	.02	80.	•076	007	013	011	•03	.081	8	013	028	.021	057	.027	.322
Coefficients of REEP Equations A ₂ A ₃	700	2 2	0.1	-,075	0.00	179	•019	069	•039	135	960.	007	.032	<u>\$</u>	.067	÷.003	.021	•017	014	•029	600° -	918	052	.045	048	.067	.025	790.	\$00.	.235
The A	5005	226	10.	700	015	0.5	013	.093	•016	.119	023	•056	054	.052	.029	090	.043	020	970	5	09	8	.017	006	.042	007	035	.021	•005	•026
EP Dumny	4	t		. 7		· (2)	(6)		6	-	~	6	8	6	٠,	2	8	8	ν.	~	~	6	~	~	8	Ф	٠,	_	8	Additive Constant:
Predictors Selected by REEP tion Element D	VIS	VTS	YES.	VIS	VIS	VIS	VIS	VIS	WEA	SCL	VIS	WEA	CIG	WEA	WEA	WEA	WEA	CIG	MEA	RIH	13 13	WEA	WEA	RIH	VIS	VIS	WEA	SEC.	RLH	Additiv
Pr Selec Station	OFF	OFF	LNK	SUX	æ	OFF	OFF	E.	MKC	P. C	LNK	OFF	OFF.	ZOX.	E.	X1X	CBI	LNK	OFF	SSH	P.P.	MSP	INK	IN	DSM	LEG	DSM	SGF	OFF	
Dumny	-4	-	7	7	М	-	-	, ,	- (x ((<u>6</u>)) ه	(S)	 1	v.	<u> </u>	E	φ.	-											
Predictors Selected by MDA tation Element	VIS	CIG	VIS	VIS	VIS	OIC	Ā.	STA	۲۲.	WEA	त्र <u>।</u>	WEA	VIS	9 13 13	WEA	VIS	SIA	MEA	ST.											
Predictors Selected by Station Elem	OFF	OFF	Œ	SUX	OFF	SSH	IN .	LNA	# 15 O	u de	or r	TRO		Wood of	I (Y E	CHI											
Order	-	~	m	7	∽.	9 1	~ 0	o c	٠, ٢	2 =	= \$	7 5	<u>_</u> ;	* •	<u>^</u>	ō ţ	~ 0	<u>o</u> ç	2 6	3 5	- c	3 6	े द	† *	(9 5	700	0 6	63	

.417

Table 14-5d

Selected Predictors and REEP Equations Offutt AFB, Nebraska 7-hr Visibility

the		7	•	7	.163	.082	0.0	30	113	12	2,0	025	010	.03	0.0	200	051	056	057	0.076	093	038	680	039	075	030	028
Oefficient of PFEP Fountions	que caon	1	2	450		034	0.0	067	005	.028	.014	.015	.026	013	007	018	.022	035	057	00.	.073	013	070	.00	.017	005	021
The Coefficient of the REMP Equations	A,	7	750	700	.083	047	.012	025	990	.082	019	031	0	010	070	016	990.	.050	•020	029	016	050	.033	8	.043	011	.010
The	A,	-	450 =		20:	8	.052	980.	.042	.010	081	-041	007	770	600	600	037	070	8.	048	•036	.024	.016	070	018	013	•039
									_																		
4	P. C. C.	1	7	1 ~	† •	,-	6		2	6	m	6	8	o;	7	m	7	m	~	7	œ	m	72	~	~	7	N
Predictors	Selected by REEP tion Flement D		VIS	VTS	3	MEA	WEA	SCL	WEA	WEA	VIS	WEA	TCA	CIG	VIS	TOD TOD	CIG	RLH	RIH	HEA	VIS	RLH	HEA	WEA	CIG	AND WAND	VIS
P	Station		OFF	3		Ync	DSM	OFF	LBF	SUX	GRI	MKC	LNK	MSP	SGF	OFF	LNK	SSH	SSH	DSM.	SUX	SUX	DSM	LNK	LBF	LNK	CBI
	Dummy	1	-7	7	· -	- (6	_	ν.	~ ~	6	7															
ors he MOA		l	VIS	VIS	LIFA	Yan.	WEA	VIS	WEA	CIG	WEA	H			•	•											
Predictors	Station Element		OFF	GRI	SIL	400	WCC.	LINK	LBF	5 5	SUX	NO.												-			
	Order		-	64	~	١.	† u	^ `	0 0	~ (x 0 c	~ ç	≥:	- :	¥ :	<u>.</u> :	4 4	7 7	2 0	- 6	0 0	· (3 5		7 6	<u>ئ</u> د	3

.577

.106

.212

. 2

Additive Constant:

Table 1A-6a

Contingency Tables Showing Predicted-Versus-Actual Groups
for Persistence, MDA, and REEP

OFF 3-hr Ceiling (Independent Sample)

	Group	_1	2	Actual 3	4	5_	<u>Total</u>
PERSISTENCE	1 2 3 4 5	9 4 3 0	6 64 20	0 22 18	0 19 21	3 8 8	18 117 70
	4 5	0 1	21 11	16 16	199 1 <i>2</i> 2	119 16 2 2	355 1772
	Total	17	122	72	361		2332
		I	lits = 19	912 F	= .266	14	
	Pg	.0053	.0338	.0270	.1000	.1003	
	_			Actual			_
	Group	1	2	3	4		Total
	1	9 5 0	7	0	0	3 7	19
MDA	3	0	75 7	32 7	21 7	2	140 23
	2 3 4 5	0	22 11	15 18	183 150	70 1678	290 1860
	Total	17	122	72	361	1760	2332
		ŀ	lits = 19	952 P	= .236	9	. •
	Pg	.0054	.0310	.0271	.0888	.0845	
	O		•	Actual	•	r	M-A-3
	Group		2		4	2_	<u>Total</u>
REEP	1 2 3	6 5 0	5 74 6	0 30 5	0 22 3	2 5 1	13 136 15
TCHA T	2 3 4 5	0 6	23 14	5 16 21	177 159	62	278 1890
	Total	17	122	72	361	1760	2332
		H	lits = 19	52 P	= .236	8	
	\overline{P}_{g}	.0057	.0304	.0265	.0897	.0845	

Table 1A-6b

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

OFF 7-hr Ceiling (Independent Sample)

PERSISTENCE	Group 1 2 3 4 5 Total	1 4 3 3 0 6 16	2 7 45 16 26 23 117 Hits = 17	Actual 3 0 20 10 21 25 76 741 1		1769 9	Total 18 117 70 355 1772 2332
	g		· • • • • • • • • • • • • • • • • • • •	••	••••	•.510	
				Actual			
	Group	_1	2	3	4	5	Total
	1	1	2	0	0	1	4
MDA	2 3	7	57 0	28 1	41 1	20 1	153 4
MUR	2 3 4 5	ò	27	17	94	53	191
	5	7	31	30	218	1694	1980
	Total	16	117	76	354	1769	2332
		I	lits = 18	347]	290	6	
	\overline{P}_{g}	.0065	•0369	.0298	.1090	.1084	
				Actual			
	Group	_1	2	3	4	5_	Total
	1	1	0	0	1	2	4
			50	19	28	11	114
REEP	3	6 0 1	2 29	1	0	0	3
	2 3 4 5	8	29 36	20 36	8 2 243	44 1712	176 2035
	Total.	16	117			1769	
	- :		lits = 18				
	Pg		.0352				

Table 1A-6c

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

OFF 3-hr Visibility (Independent Sample)

	Group	_1	2	3	4	Total
	1	24	11	7	6	48
	2	12	18	16	17	63
PERSISTENCE	3	4	14	18	32	68
	4	6	20	39	2088	2153
	Total	46	63	80	2143	2332
		H	iits = 21	48	P = .1093	
	\overline{P}_{g}	.0140	.0227	.0300	.0425	

			Act	ual		
	Group	_1	2	3	4	Total
MDA	1 2 3 4	13 15 3 15	5 23 7 28	3 14 6 57	3 8 8 2124	24 6 0 24 2224
	Total	46	63	80	2143	2332
		I	Hits = 21	66 ī	P = .0996	
	\overline{P}_{g}	.0138	.0214	.0286	.0358	

			Act	ual		
	Group		2	3	4	Tctal
	1	17	9	5	3	34
•	2	9	17	11	4	41 20
REEP	3	2	5	7	6	20
	4	18	32	57	2130	2237
	Total.	46	63	80	2143	2332
			Hits = 21	71	$\overline{P} = .1007$	
	P _g	.0141	.0216	.0287	•0363	

Table 1A-6d

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, MDA, and REEP

OFF 7-hr Visibility (Independent Sample)

				Actual	•	•
	Group	_1	2	3	4_	Total
PERSISTENCE	1 2 3 4	14 8 6 20	8 8 9 40	5 13 17 60	21 34 36 2033	48 63 68 2153
	Total	48	65	95	2124	2332
		j	Hits = 20	72	$\overline{P} = .1504$	
	\overline{P}_{g}	.0183	.0261	.0374	.0686	

				Actual		
	Group	1	2	3	4	Total
	;	5	3	4	3	15 29
	2	6	5	9	9	29
MDA	3	0	Ö	Ó	O	0
	4	37	57	82	2112	2288
	Total	48	65	95	2124	2332
		H	lits = 21	22	$\bar{P} = .1411$	
	\overline{P}_{g}	.0184	.0256	.0372	.0600	

	Group	_1_	2	3_	4	Total
	1	2	1	1	5	9
	2	7	4	5	4	20
REEP	3	Ò	Ò	Ó	Ó	0
	4	39	60	89	2115	2303
	Total	48	65	95	2124	2332
			Hits = 2	121	$\overline{P} = .1402$	
	Pg	.0181	.0255	.0368	.0598	

Table 1A-7

Comparison Between Persistence, MDA, and REEP (Independent Sample - 2332 Observations)

Offutt	AFB.	Ceiling	3	Hours	in	Advance
	_		-			

Hits	Persistence MDA REEP	1912 1952* 1952*
P Score	Persistence MDA REEP	.2664 .2369 .2368*

Offutt AFB, Ceiling 7 Hours in Advance

Hits	Persistence MDA REEP	1741 1847* 1846
P Score	Persistence MDA REEP	.3319 .2906 .2890*

Offutt AFB, Visibility 3 Hours in Advance

	Persistance	2148
Hits	MDA	2166
	REEP	2171*
_	Persistence	.1093
P Score	MDA	•0996*
	REEP	.1007

Offutt AFB, Visibility 7 Hours in Advance

	Persistence	2072
Hits	MDA	2122*
	REEP	2121
_	Persistence	.1504
P Score	MDA	.1411
	REEP	.1402*

Asterisks are used to denote superiority.

Purpose

A test to compare the results obtained when the predictor variables are in raw dummy form to those obtained when the predictor dummies are in cumulative form.

Predictands

Predictands used in this experiment were the Atlantic City ceilings for periods of 2, 5, and 7 hours in advance. These three predictands were divided into five intervals according to the operationally significant categories of ceiling, as shown in Table 2-1. Specifications for each predictand are shown in Table 2-2.

Predictors

Seven meteorological elements at ten predictor stations (see Figure 2-1) plus the time of day (TOD) and day of year (DOY) variables were transformed into dummy variables by dividing each predictor element into a number of intervals or categories (Table 2-3).

Data Sample

The data used for this experiment is the same as was used for Experiment No. 1, consisting of 10,000 observations selected randomly from the ten-year period from 1 January 1949 to 31 December 1958. The developmental sample consists of 7956 observations from the first eight years and the verification or independent sample contains 2044 observations from the last two years.

The set of 450 standard form dummy predictors are shown in Table 2-3. Table 2-4 tabulates the cumulative dummy predictors. Table 2-5 gives the specifications and limits of the dummy variables when used in the standard form and Table 2-6 gives similar information when the predictors are in the cumulative dummy form. Predictions using REEP were made for Atlantic City ceiling at 2, 5, and 7 hours in advance using the standard dummies and the cumulative dummies separately.

Results

The dummy predictors selected by REEP are shown in Tables 2-7a to 2-7f, as well as the REEP regression equation coefficients for each group of the predictand. Results of the forecasts using the two sets of predictors are shown in the contingency tables (Tables 2-8a to 2-8c) for the independent sample. Also shown are the results using persistence. The number of correct forecasts (hits), the Brier and Allen P scores, and the individual group contributions to the overall P score are given below each contingency table. The number of hits and overall P scores are summarized in Table 2-9. Conclusions

From these limited results there does not appear to be any reason to prefer one form of dummy variables over the other.

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number						
1	0 ft	<u>≤</u>	Ceiling	<	200	ft
2	200 ft	≤	Ceiling	<	500	ft
3	500 ft	<u> </u>	Ceiling	<	1000	ft
4	1000 ft	<u>≤</u>	Ceiling	<	3000	ft
5	3000 ft	<	Ceiling			

Table 2-2

Specification of Predictands
Atlantic City Municipal Airport

	1	Predicta 2	na 3'
Disable of management	CTC		and the second s
Predictand variable	CIG	CIG	CIG
Forecast interval hours (H)	2	5	7
Number of Groups (G)	5	5	5
Observations in Group 1 (n ₁)	116	128	135
Observations in Group 2 (n ₂)	263	259	272
Observations in Group 3 (n ₃)	395	426	420
Observations in Group 4 (n ₄)	656	631	619
Observations in Group 5 (n ₅)	6526	6512	6510
Total dependent sample size (N)	7956	7956	7956
Number of independent observations in the dependent sample (n)	2652	2652	2652
Total independent sample size (M)	2044	2044	2044
Number of available predictors (P)	378	378	378

Figure 2-1. Ten Station Network for Atlantic City Municipal Airport

Table 2-3

Number of Possible Predictors When Used in Standard Form

					Stat	ion	•				
Elem.	ACY	NEL	PHL	SBY	MDT	DCA	PSB	BGM	RIC	IDL	Total
TOD	1	•	_	-	_	~	-	-	_	-	1
DOY	1	_	-	-	-	-	-	-	-	-	1
CIG	24	5	5	5	5	5	5	5	5	5	69
VIS	24	5	5	5	5	5	5	5	5	5	69
UWC	5	5	5	5	5	5	5	5	5	5	50
VWC	5	5	5	5	5	5	5	5	5	5	50
RLH	5	5	5	5	5	5	5	5	5	5	50
TCA	4	4	4	4	4	4	4	4	4	4	40
WEA	12	12	12	12	12	12	12	12	12	12	120
										Total	450

Table 2-4

Number of Possible Predictors When Used in Cumulative Form

	Station										
Elem.	ACY	NEL	PHL	SBY	MOT	DCA	PSB	BGM	RIC	IDL	Total
TOD	1	-	-	-		-	-	••	-	-	1
DOY	1	•	-	-	-	-		***	-	-	1
CIG	22	4	4	4	4	4	4	4	4	4	58
VIS	22	4	4	4	4	4	4	4	4	4	58
UWC	4	4	4	4	4	4	4	4	4	4	40
VWC	4	4	L;	4	4	4	4	4	4	4	40
RLH	4	4	4	14	4	4	4	4	4	4	40
TCA	3	3	3	3	3	3	3	3	3	3	30
WEA	11	11	11	11	11	11	11	11	11	11	110
									Total		378

Table 2-5

Specifications and Limits of the Zero-One (Dummy) Variables

Used in the Standard Dummy Form

Meteorological Element	Number of Dummies	Lim	its of E	ach	Cate	gor	Ā	
			Time of	Da	<u>γ</u> :			
TOD	1	1.	0130 ES	T to	0 133	O E	ST	
			Day of	Yea	r:			
DOY	1	1.				y)	to 300	(27 Oct)
			Ceiling	He	ight.	ft	:	
CIG*	5	1.			CIG		200	
020		2.	200			<	500	
		3.	500			<	1000	
		4.	1000	<u> </u>	CIG	<	3000	
		5.	3000	<u><</u>	CIG			
	19	(1)			CIG	æ	0	
		(2)			CIG	=	100	
		(3)			CIG	=	200	
		(4)			CIG	22	300	
		(5)			CIG	=	400	
		(6)			CIG	*	500	
		(7)			CIG	=	600	
		(6)			CIG	=	700	
		(9)			CIG	=	800	
		(10))		CIG	=	900	
		(11)		<	CIG	<	1500	
•		(12)		_ ≤		<	2000	
		(13)				<	2500	
		(14)		<u>-</u>		<	3000	
		(15)			CIG	<	5000	
		(16)				<	10,000	

^{*}The predictand station (ACY) has ceiling and visibility dummied in two ways. Parentheses are used to identify the second set of dummies.

Table 2-5 - Continued

Meteorological Element	Number of Dummies	Limits	of Eac	ch (Catego	ory	
			Ceilin	g He	eight	f	<u>t</u> :
		(17)	10,000	≤	CIG	<	20,000
		(18)	20,000	<u> </u>	CIG	<	Unlimited
		(19)			CIG	=	Unlimited
			Visibi:	lit	y, mi	:	
VIS*	5	1.	0	<u><</u>	VIS	<	1/2
		2.	1/2	≤	VIS	<	1
		3.	1	≤	VIS	<	2
		4.	2	≤	VIS	<	3
		5.	3	≤	VIS		
	19	(1)	0	<u> </u>	VIS	<	1/16
		(2)	1/16	<u> </u>	VIS	<	1/8
		(3)	1/8	≤	VIS	<	1/4
		(4)	1/4	<u> </u>	VIS	<	1/2
		(5)	1/2	<u> </u>	VIS	<	3/4
		(6)	3/4	<u> </u>	VIS	<	1
		(7)	1	<u>≤</u>	VIS	<	1-1/2
		(8)	1-1/2	<u> </u>	VIS	<	2
		(9)	2	≤	VIS	<	3
		(10)	3	≤	VIS	<	4
		(11)	4	<u><</u>	VIS	<	5
		(12)	5	<u>≤</u>	VIS	<	6
		(13)	6	<u> </u>	VIS	<	7
•		(14)	7	<u> </u>	VIS	ζ.	8
		(15)		_	VIS		9
		(16)	9	≤	VIS	<	10
		(17)	10	≤	VIS	<	11

^{*}The predictand station (ACY) has ceiling and visibility dummies in two ways. Parentheses are used to identify the second set of dummies.

Table 2-5 - Continued

Meteorological Element	Number of Dummies	Limit	ts of Each Category
			Visibility, mi:
		(18)	11 < VIS < 15
		(19)	15 ≤ VIS
			"U" Wind Component (East-West Comp.):
UWC	5	1.	UWC ≤ -15
		2.	$-15 < UWC \leq -5$
		3.	- 5 < UWC ≤ 5
		4.	5 < UWC ≤ 15
		5•	15 < UWC
			"V" Wind Component (North-South Comp.):
VWC	5	1.	VWC ≤ -15
		2.	$-15 < VWC \le -5$
		3.	$-5 < VWC \le 5$
		4.	5 < VWC ≤ 15
		5.	15 < VWC
			Relative Humidity, per cent:
RLH	5	1.	RLH ≤ 50
		2.	50 < RLH ≤ 75
		3.	75 < RLH ≤ 90
		4.	90 < RLH ≤ 99
		5.	99 < RIH
			Total Cloud Amount:
TCA	4	1.	
•		2.	$1/10 \leq TCA \leq 5/10$
		3.	$5/10 < TCA \leq 9/10$
			9/10 < TCA

Table 2-5 - Continued

Meteorological <u>Llement</u>	Number of Dummies	Limi	its of Each Category	
			Weather Element:	Teletype Code:
WEA	12	1.	No Weather	
		2.	Rain	R-, R, R+
		3.	Rain Showers	RW-, RW, RW+
		4•	Drizzle or Freezing Drizzle	L-, L, I+ ZL-, ZL, ZL+
		5.	Snow Snow Pellets Snow Grains Ice Crystals	S-, S, S+ SP-, SP, SP+ SG-, SG, SG+ IC-, IC, IC+
		6.	Snow Showers Snow Squalls	SW-, SW, SW+ SQ-, SQ, SQ+
		7.	Tornado Thunderstorm Squalls Hail Hail Pellets	Tornado T, T+ Q-, Q, Q+ A-, A, A÷ AP-, AP, AP+
		8.	Freezing Rain Sleet Sleet Showers	ZR-, ZR, ZR+ E-, E, E+ EW-, EW, EW+
		9.	Fog, Ice Fog	F, IF
		10.	Ground Fog	GF
		11.	Blowing Snow Blowing Sand Blowing Dust	BS BN BD
		12.	Smoke, Haze, Dust	К, Н, D

Table 2-6
Specifications and Limits of the Zero-One (Dummy) Variables
Used in the Cumulative Dummy Form

Meteorological Element	Number of Dummies	Limit	s of	Eac	h Category
			Time	of	Day
TOD	1	1.	0130	EST	to 1330 EST
			Day	of Y	ear
DOY	1	1.	From	1 51	(31 May) to 300 (27 Oct)
			Ceil	ing	Height, ft:
CIG*	4	1.	CIG	<	200
		2.	CIG	<	500
		3•	CIG	<	1000
		4.	CIG	<	3000
	18	(1)	CIG	25	0
		(2)	CIG	≤	100
		(3)	CIG	≤	200
		(4)	CIG	≤	300
		(5)	CIG	≤	400
		(6)	CIG	≤	500
		(7)	CIG	≤	600
		(8)	CIG	≤	700
		(9)	CIG	≤	800
		(10)	CIG	≤	900
		(11)	CIG	<	1500
		(12)	CIG	<	2000
		(13)	CIG	<	2500
		(14)	CIG	<	3000
		(15)	CIG	<	5000

*The predictand station (ACY) has ceiling and visibility dummied in two ways. Parentheses are used to identify the second set of dummies.

Table 2-6 - Continued

Meteorological Element	Number of Dummies	Limi	ts of	Ea	ch Category
			Ceil	ing	Height, ft:
		(16)	CIG	<	10,000
		(17)	CIG	<	20,000
		(18)	CIG	<	Unlimited
			Visi	bil	ity, mi:
vis*	4	1.	VIS	<	1/2
		2.	VIS	<	1
		3.	VIS	<	2
		4.	VIS	<	3
	18	(1)	VIS	<	1/16
		(2)	VIS	<	1/8
		(3)	VIS	<	1/4
		(4)	VIS	<	1/2
		(5)	VIS	<	3/4
		(6)	VIS	<	1
		(7)	VIS	<	1-1/2
		(8)	VIS	<	2
		(9)	VIS	<	3
		(10)	VIS	<	4
		(11)	VIS	<	5
		(12)	VIS	<	6
		(13)	VIS	<	7
		(14)	VIS	<	8
		(15)	VIS	<	9
		(16)	VIS	<	10
		(17)	VIS	<	11
		(18)	VIS	<	15

*The predictand station (ACY) has ceiling and visibility dummied in two ways. Parentheses are used to identify the second set of dummies.

Table 2-6 - Continued

Meteorological Element	Number of Dummies	Limi	its o	f E	ach Category
			ուՈս	Win	d Component (East-West Comp.):
UWC	4	1.	UWC	<u><</u>	- 15
		2.	UWC	<u> </u>	- 5
		3.	UWC	≤	5
		4.	UWC	<u><</u>	15
			"V"	Win	nd Component (North-South Comp.):
VWC	4	1.	VWC	≤	-1 5
		2.	VWC	≤	- 5
		3.	VWC	≤	5
		4.	VWC	≤	15
			Rela	tiv	ve Humidity, per cent:
RLH	4	1.	RLH	<	50
		2.	RLH	≤	75
		3.	RLH	<u>≤</u>	90
		4.	RLH	<u>≤</u>	99
			Tota	1 C	Cloud Amount:
TCA	3	1.	TCA	<	1/10
		2.	TCA	≤	5/10
		3.	TCA	≤	9/10

Table 2-6 - Continued

Meteorological Element	Number of <u>Punmies</u>	Lim	its of Each Category	
			Weather Element:	Teletype Code
WEA	11	1.	No Weather	
		2.	Rain	
		3•	Rain, Rain Showers	(See Table 2-5)
		4.	Rain, Rain Showers Freezing Rain, Sleet Sleet Showers	(266 INDIE 2-7)
		5.	Drizzle Freezing Drizzle	
		6.	Snow Snow Pellets Snow Grains Ice Crystals	
		7.	Snow Snow Pellets Snow Grains Ice Crystals Snow Showers Snow Squalls	
		8.	Tornado Thunderstorm Squalls Hail Hail Pellets	
		9.	Fog, Ice Fog	
		10.	Fog, Ice Fog Ground Fog	
		11.	Smoke, Haze, Dust	

Table 2-7a

Selected Predictors and REEF Equations
ACY 2-hr Ceiling - Standard Dummies*

	Selected	Predictor	· g					quations
Order	Station	Element	Dummy*	A ₁	A ₂ _	A ₃	A ₄	<u>A</u> 5
1	ACY	CIG	5	006	.013	016	349	.358
2	ACY	CIG	1	•294	.267	089	415	057
3	ACY	CIG	2	.027	•402	•001	395	035
4	PHL	CIG	5	.012	026	071	112	.198
5	ACY	CIG	3	•G02	.081	.283	347	019
6	SBY	CIG	5	.000	069	053	.001	.121
7	NEL	TCA	4	•000	•001	.010	•044	055
8	ACY	CIG	(1)	.240	147	001	.008	100
9	NEL	CIG	3	064	050	.092	•044	022
10	ACY	VIS	5	036	011	023	.030	.041
11	DCA	CIG	2	.095	004	088	.029	032
12	NE.L	CIG	4	058	048	024	.144	013
13	NEL	CIG	5	063	038	036	.063	.074
14	DCA	CIG	5	•006	015	024	039	.071
15	EGM	WEA	8	.146	104	056	024	.038
16	PHL	WEA	2	023	•063	•046	003	083
17	DCA	VIS	1	.148	072	051	022	·~•003
18	SBY	CIG	4	00?	068	058	.108	.025
19	PHL	UWC	2	000	.021	.016	.026	064
20	ACY	VIS	(5)	.103	035	011	055	002
		Additive	Constant	089	.143	.221	•413	.134

^{*}Refer to Table 2-5.

Table 2-7b

Sclected Predictors and REEP Equations
ACY 2-hr Ceiling - Cumulative Dummies*

	Salected	Predictor	· S				REEP Eq	uations
Order	_	Element	Dummy*	A ₁	^A 2	A ₃	A ₄ _	Å5_
1	ACY	CIG	4	•009	012	005	•301	292
2	ACY	CIG	1	•232	109	072	036	···015
3	ACY	CIG	2	.036	.313	272	051	026
4	PHL	CIG	4	011	.024	.073	.125	211
5	ACY	CIG	3	•010	.083	.269	401	.038
6	SBY	CIG	4	008	.001	006	.111	- :098
7	ACY	VIS	(5)	.098	104	003	.024	015
8	NEL	TCA	3	002	.001	008	053	.063
9	DCA	CIG	2	.103	033	074	.006	002
10	ACY	CIG	(1)	.208	129	.008	•009	097
11	NEL	CIG	3	000	007	.117	067	044
12	IDL	UWC	2	•009	.009	.028	.014	059
13	SBY	CIG	3	•000	.069	.075	115	029
14	ACY	CIG	(12)	002	006	•038	.127	157
15	ACY	RIH	4	•009	064	OC1	.060	003
16	DCA	CIG	4	007	.017	.023	。042	076
17	NEL	CIG	2	.057	.057	079	037	.002
18	SBY	VIS	2	.056	.017	075	.002	001
19	PHL	WEA	4	006	.032	•035	.017	078
		Additive	Constant:	006	.061	.007	•001	.937

*Refer to Table 2-6.

Table 2-7c

Selected Predictors and REFP Equations
ACY 5-hr Ceiling - Standard Dummies*

Selected Predictors			·s					quations
Order	Station			_A ₁	^A 2	A ₃	A ₄	A ₅
1	ACï	CIG	5	003	002	006	154	.166
2	DCA	CIG	5	026	107	032	.018	.147
3	PHL	CIG	5	.001	024	045	070	.139
4	ACY	CIG	1	.183	.078	.092	229	124
5	PHL	UWC	2	000	•044	.043	.032	119
6	ACY	CIG	2	•045	. 168	.048	266	.005
7	MDT	TCA	4	003	.013	.016	.052	078
8	SBY	CIG	5	004	.010	031	075	.100
9	DCA	CIG	4	028	102	.011	.105	•014
10	MDT	WEA	2	011	.042	.101	027	105
11	ACY	TOD	1	027	014	.002	.032	.007
12	ACY	CIG	3	•008	•055	.108	143	028
13	ACY	VIS	5	050	.017	005	018	.056
14	IDL	CIG	5	012	009	030	035	.086
15	SBY	WEA	9	.002	.068	.046	022	094
16	IDL	UWC	2	•005	.008	.040	•026	080
		Additive	Constant:	.111	.117	.143	•330	.298

^{*}Refer to Table 2-5.

Table 2-7d

Selected Predictors and REEP Equations
ACY 5-hr Ceiling - Cumulative Dummies*

	C-34-d	Predictor	_	Coeffic	cients	of the	REEP Eq	uations
Order	Station		Dummy*	_A ₁	A ₂	A ₃	A ₄	A ₅
1	ACY	CIG	(13)	.002	.004	.021	.156	182
2	DCA	CIG	4	002	•004	.040	.089	131
3	PHL	CIG	4	•000	.025	.044	.075	144
4	ACY	CIG	(3)	.122	110	.010	.003	025
5	PHL	UWC	2	000	.040	.051	.029	120
6	ACY	CIG	2	.024	.137	049	109	004
7	MDT	TCA	3	•004	014	015	051	.075
8	SBY	CIG	4	•005	012	.027	.079	100
9	IDL	RLH	2	012	004	020	034	.070
10	DCA	CIG	· 3	.026	.105	009	103	019
11	MDT	WEA	2	012	.038	•095	032	089
12	ACY	TOD	1	026	014	•003	•032	.005
13	ACY	CIG	3	•010	.053	.102	11,8	018
14	SBY	WEA	9	.001	.068	.044	026	087
15	IDL	UWC	2	•006	.013	.037	.025	081
16	ACY	VIS	4	.045	013	.002	•011	044
		Additive	Constant:	.022	.018	.024	.074	.862

^{*}Refer to Table 2-6.

Table 2-7e

Selected Predictors and REEP Equations
ACY 7-hr Ceiling - Standard Dummies*

0		Predictor		Coeffi A ₁	cients A ₂	of the	REEP Eq	uations A ₅
Order	Station	Element	Dunmy*		<u> </u>		4	
1	PHL	CIG	5	.004	035	046	078	.155
2	DCA	CIG	5	010	012	040	061	.122
3	ACY	CIG	5	017	030	042	076	.165
4	PHL	UWC	2	• 0 03	.025	.057	.042	132
5	MDT	TCA	4	001	.013	.020	.051	084
6	DCA	WEA	2	003	.056	.125	~.038	139
7	ACY	VIS	5	0.44	001	.007	•020	.019
8	PSB	WEA	8	020	.248	095	047	086
9	ACY	TOD	1	028	019	009	.024	.031
10	RIC	RLH	4	005	.014	.032	•040	081
11	NEL	WEA	9	.018	.019	•062	013ء	112
12	IDL	UWC	2	.011	.017	.035	.020	082
13	ACY	CIG	2	.025	.101	•003	132	.003
14	ACY	CIG	(1)	.155	010	015	•006	135
15	DCA	CIG	3	004	•093	•007	051	045
16	NEL	UWC	4	(05	010	011	028	•054
		Additive	Constant:	.087	.087	.124	.212	•491

*Refer to Table 2-5.

Table 2-7f

Selected Predictors and REEP Equations
ACY 7-hr Ceiling - Cumulative Dummies*

	Selected	Predictor	•e	Coeffi		of the	REEP Eq	uations '
Order	Station		Dummy*	A ₁	A ₂	A ₃	A ₄	A ₅
1,	PHL	CIG	4	004	•025	.047	•082	151
2	DCA	CIG	4	.001	002	•039	•084	123
3	ACY	CIG	(13)	•008	.018	•014	.097	137
4	PHI,	UWC	2	.007	•033	.063	•032	135
5	MDT	TCA	3	000	010	014	049	.073
6	ACY	VIS	2	.091	040	052	.032	030
7	DCA	WEA	4	017	.022	•094	020	079
8	IDL	RLH	2	008	.000	017	040	.066
9	DCA	CIG	3	•016	.098	.004	093	025
10	ACY	TOD	1	027	018	004	.027	.023
11	NEL	UWC	3	•006	.008	.012	.030	057
12	SBY	WEA	9	.010	.044	.019	.039	113
13	ACY	CIG	(9)	.037	•064	.072	134	038
14	IDL	UWC	2	.011	.017	•030	.020	078
15	PHL	WEA	4	000	.056	.029	027	057
		Additive	Constant:	.021	.011	.021	•069	.878

^{*}Refer to Table 2-6.

Table 2-8a

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, REEP with Standard Dummies, and REEP with Cumulative Dummies

2-hr Ceiling (Independent Sample)

	Group	1	2	Actual	L	5	Total
DED C TOMENOR	1	26 8	4 48	3 22	0 6	5 6	38 90
PERSISTENCE	2 3 4 5		10	57	24	13	108
	4	4 2	4	24	72	66	168
	•	4	9	16	55	1556	1640
	Total	44	75	122	157	1646	2044
		ŀ	lits = 17	759 T	= .206	3	
	\overline{P}_{g}	.0128	.0241	.0407	.0590	.0696	
				Actual			
	Group	1	2	3	4		Total
	1	19	2	2	0	4	27
REEP with	2	11	46	21	5	2	85
Standard	3	3	8	52	21	10	94
Dummies	3 4 5	3 2 9	4 15	21 26	58 73	31 1599	116 1722
	Total	44	75	122	157	1646	2044
	10001			774 Ē			~~~~
	=						
	Pg	.0138	.0237	.0369	.0558	.0575	
			_	Actual		_	
	Group	_1	2	3			Total
	1	25	.3	3	ō	4	35
REEP with Cumulative	2 3 4 5	6 3 1 9	46 8	21 5 2	5 19	2 10	80 92
Dummies	4	1	4	24	56	26	111
	5	9	14	22	77	1604	1726
	Total	44	75	122	157	1646	2044
		3	ilts = 17	783 Ī	= .188	4	
	P _g	.0134	.0236	.0367	.0571	.0576	

Table 2-8b

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, REEP with Standard Dummies, and REEP with Cumulative Dummies

5-hr Ceiling (Independent Sample)

	Group	_1_	22	Actual 3	4_	5_	<u>Total</u>
	1	11	11	6	2	8	38
DED OT OFFICE	2 3	7	34 12	18 38	15 28	16 26	90 108
PERSISTENCE	<i>3</i>	3 2 9	13 11	29	28 47	26 79	168
	5	9	15	31	82	1503	1640
	Total	32	84	122		1632	2044
		ŀ	iits = 16	533 i	ē = .268	9	
	\overline{P}_{g}	.0138	.0326	.0489	.0723	.1013	
				, 4 . 1			
	Group	1	2	Actual 3	4	5	Total
	1	1	1	1	0	0	3
REEP with	2 3	3 7	24	7	6	2	42
Standard Dummies	3	7	20 10	32 24	17 23	8 11	84 68
Duminos	4 5	21	29	58	128	1611	1847
	Total	3 2	84	122	174	1632	2044
		ŀ	lits = 16	591 1	= .237	5	
	Pg	.0136	.0310	.0460	.0687	.0782	
	Group	_1	2	Actual 3	4	5	<u>Total</u>
•	1	0	0	0	4	0	1
REEP with	2	1	19	8	4		
Cumulative	2 3	9	23	31	17	3 5	35 85
Dummies	4 5	0 22	9 33	21 62	18 134	9 1615	57 1866
	Total.	32	84	122	174		2044
			iits = 16				• •
	P		.0310				

Table 2-8c

Contingency Tables Showing Predicted-Versus-Actual Groups for Persistence, REEP with Standard Dummies, and REEP with Cumulative Dummies

7-hr Ceiling (Independent Sample)

PERSISTENCE	Group 1 2 3 4 5 Total	1 8 12 7 2 12 41		Actual 8 19 38 33 49 147 588 .0598		9	Total 38 90 108 168 1640 2044
	[*] g	•0.07	••54~	00770	••••	••••	
	Group	_1	2	Actual 3	4	5	<u>Total</u>
REEP with Standard Dummies	1 2 3 4 5	0 1 9 7 24	1 8 22 6 42	0 5 32 18 92	0 9 12 137	0 3 7 5 1604	1 17 79 48 1899
	Total	41	79	147	158	1619	2044
		I	iits = 16	556 Ī	= .261	7	
	$\overline{P}_{\mathbf{g}}$.0184	.0322	.0547	.0668	.0896	
				Actual			
	Group	_1	2	3	4		Total
REEP with Cumulative Dummies	1 2 3 4 5	0 5 7 4 25	0 9 19 7 44	0 6 28 21 92	0 1 10 10	0 0 4 9 1606	0 21 68 51 1904
	Total	41	77 79	147	137 158		2044
	10 /01			553 .			e-co-tat
	Pg	.0182		.0556		•0885	

Table 2-9

Comparison Between Persistence, REEP with Standard Dummies, and REEP with Cumulative Dummies for the Independent Sample (2044 Observations)

	2-hr Ceiling	
Hits	Persistence Standard Cumulative	1759 1774 1783*
P Score	Persistence Standard Cumulative	.2063 .1878* .1884
	5-hr Ceiling	
Hits	Persistence Standard Cumulative	1633 1691* 1683
P Score	Persistence Standard Cumulative	.2689 .2375 .236 7 *
	7-hr Ceiling	
Hits	Persistence Standard Cumulative	1588 1656 * 1653
P Score	Persistence Standard Cumulative	.2899 .2617* .2621

Asterisks are used to denote superiority.

EXPERIMENT 3. Nullifying the Effect of High Ceilings in Predictor Selection.

Purpose

To determine the effect on the forecast of assuming a zero degree of freedom for category 5 of the ceiling predictand.

Procedure

Forecasts were made for ceiling at Atlantic City 3 hours and 7 hours in advance. The degrees of freedom specified for categories 1 through 4 of the ceiling predictand was specified as 2652, the number normally used for the Atlantic City developmental sample size of 7956, or one-third of the total developmental sample. The degrees of freedom for category 5 of the ceiling predictand was specified as zero. This in effect eliminated the possibility of having category 5 affect the selection of any predictor.

Data Sample

The ten years of data from 1 January 1949 to 31 December 1958, consisting of 10,000 observations selected at random was used in this experiment. The developmental sample consisted of 7956 observations from the first eight years and the verification or dependent sample of 2044 was from the last two years of the data sample.

Predictands

The ceiling at time intervals of 3 and 7 hours in advance were the predictands for this experiment. The operationally significant categories for which the forecasts were made are shown in Table 3-1. The specifications are shown in Table 3-2.

Predictors

The set of 423 dummy predictors used in Experiment No. 1 for the 13-station Atlantic City network was used for this experiment (see Figure 1-1 and Tables 1-3 and 1-4).

Results

The predictors selected by REEP for each of the predictands are given in Tables 3-3a and 3-3b, as well as the coefficients in the REEP regression equation for each group of the predictand. Contingency tables showing the forecast-versus-observed frequencies for REEP with zero degree of freedom in category 5 and for persistence are shown in Tables 3-4a and 3-4b. The number of correct forecasts (hits), the Brier and Allen P scores, and the individual group contributions to the overall P score are shown.

Table 3-5 summarizes the hits and P scores and compares them with the results using the regular degree of freedom for all categories of the predictand as determined by Experiment No. 1.

Conclusions

The results in this experiment are the same or slightly worse than those using the regular degrees of freedom, both with regard to \overline{P} score and hits as well as with regard to better predicting the low categories. It is therefore concluded that modifying the degrees of freedom within the higher categories does not appreciably change the results from those obtained using the regular degrees of freedom. The lack of success in this effort to force the selection of predictors which contribute to improving the forecasts of low ceiling conditions suggests that the regular selection method is performing this function satisfactorily.

Table 3-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number	Ceiling Intervals									
1	0 ft	<u><</u>	Ceiling	<	200	ft				
2	200 ft	<u><</u>	Ceiling	<	500	ft				
3	500 ft	<u> </u>	Ceiling	<	1000	ft				
4	1000 ft	<u><</u>	Ceiling	<	3000	ft				
5	3000 ft	<u><</u>	Ceiling							

Table 3-2

Specification of Predictands
Atlantic City Municipal Airport

	Predi	ctand 2
Predictand variable	CIG	CIG
Forecast intervalhours (H)	3	7
Number of Groups (G)	5	5
Observations in Group 1 (n ₁)	100	135
Observations in Group 2 (n ₂)	281	272
Observations in Group 3 (n ₃)	385	420
Observations in Group 4 (n ₄)	660	619
Observations in Group 5 (n ₅)	6530	6510
Total dependent sample size (N)	7956	7956
Number of independent observations in the dependent sample (n)		
Group 1	2652	2652
Group 2	2652	2652
Group 3	2652	2652
Group 4	2652	2652
Group 5	0	0
Total independent sample size (M)	2044	2044
Number of available predictors (P)	423	423

Table 3-3a

Selected Predictors and REEP Equations
Atlantic City 3-hr Ceiling Forecast

(Zero Degrees Freedom, Category 5)

P	redictors	Selected						quations
Order	Station	Element	Dummy	A ₁		A ₃ _	A ₄	A ₅
1	ACY	CIG	2	.057	•329	.025	075	336
2	ACY	CIG	1	•396	.202	.001	146	453
3	ACY	CIG	4	.008	.016	.027	.199	250
4	ACY	CIG	3	.007	.082	.214	013	291
5	PHL	CIG	5	.008	036	082	143	•253
6	DCA	RLH	3	.012	.079	.0:7	033	075
7	SBY	CIG	4	009	079	033	•089	•032
8	SBY	WEA	2	009	.084	002	.053	124
9	NEL	CIG	3	008	010	.098	.008	088
10	ACY	VIS	5	047	.013	006	001	.041
11	ACY.	CIG	(1)	176	.064	069	•049	.132
12	NEL	WEA	2	025	.021	.087	046	036
13	ACY	TCA	2	•004	008	.016	.054	066
14	SBY	CIG	5	004	071	052	023	.150
15	SBY	VIS	2	.085	.007	037	031	024
16	ACY	CIG	(6)	009	012	041	.164	102
17	NEL	CIG	4	003	017	.012	.082	074
		Additive	Constant:	.045	•094	.141	.180	•539

Table 3-3b

Selected Predictors and REEP Equations
Atlantic City 7-hr Ceiling Forecast

(Zero Degrees Freedom, Category 5)

P Order	redictor Station	s Selected Element		Coeffi ^A 1	cients	of the	REEP E	quations
Older	DUBULUM	Triement	Dunny				4	
1	PHL	CIG	5	009	048	060	079	.195
2	DCA	WEA	2	003	•055	.126	041	136
3	ACY	SCL	1	.112	025	016	•006	077
4	ACY	CIG	2	.017	.103	.019	124	016
5	SBY	CIG	5	010	000	036	077	.123
6	DCA	CIG	3	.005	.102	.055	.025	187
7	PHL	TCA	2	003	.013	•023	•055	087
8	PSB	WEA	8	024	.243	085	030	105
9	ACY	TOD	1	026	019	009	.024	•030
10	NEL	WND	2	~.005	.038	.064	.025	122
11	NEL	WEA	9	.028	.021	.071	.015	135
12	DCA	CIG	4	.000	.012	.047	.085	145
13	PSB	CIG	1	.014	.098	017	023	072
14	BGM	RLH	3	004	028	.008	.065	041
15	PHL	W.YD	3	•029	.022	.037	.042	130
16	IDL	CIG	3	.010	.072	004	015	063
	i	idditive C	onstant:	•037	.056	.097	.157	.654

Table 3-4a

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence and REEP Forecast With Eero Degree of Freedom in Category 5

3-hr Ceiling (Verification Sample)

				Actual			
	Group	1	2	3_	4	5	<u>Total</u>
Persistence	1 2 3 4	21 13 2 1	8 33 14 8	4 25 50 21	0 10 21 68 66	5 9 21 70	38 90 108 168 1640
	Total	44	10 73 lits = 1	27 - 127 702	165 P = .:	1530 1635	2044
	P _g	.0156	.0284	.0462		.0847	

				Actual			
	Group	_1	2	3	4	5_	Total
REEP With Zero Degree of	1	7	4	1	0	1	13
	2	18	34	24	8	7	91
	3	0	10	40	15	7	72
Freedom In	4	1	7	19	42	18	87
Category 5	5	18	18	43	100	1602	1781
	Total	44	73	127	165	1635	2044
		Н	Hits = 1725 \overline{P} = .2131				
	Pg	.0163	.0275	.0429	.0591	.0673	

Table 3-4b

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence and REEP Forecast with Zero Degree of Freedom in Category 5

7-hr Ceiling (Verification Sample)

				Actual	Į.		
	Group	1_	2	3_	lı		Total
	1	8	12	8	4	6	38
	2	12	22	19	19	18	90
Persistence	3	7	9	38	26	28	108
	4.	2	12	33	3?	84	168
	5	12	24	49	72	1483	1640
	Total	41	79	147	158	1619	2044
		Hits = 1588			$\overline{P} = .$	2899	•
•	Pg	.0183	.0342	.0598	.0671	.1105	

	Group	_1	2	Actual 3	. 4	5_	Total
REEP With Zero Degree of Freedom in Category 5	1 2 3 4 5	0 3 5 5 28	0 11 18 5 45	0 12 28 21 86	0 3 10 13 132	0 4 6 8 1601	0 33 67 52 1892
	Total P	41 H .0181	79 lits = 1 .0325	147 653 .0546	158 $\overline{P} = .3$.0667	1619 2638 •0920	2044

Table 3-5

Comparison Between Persistence, REEP with Zero Degrees of Freedom in Category 5, REEP with the Regular Degrees of Freedom in All Categories (See Experiment No. 1)

Atlantic City - Independent Sample

	Ceiling: 3-hr Forecast	
	Persistence	1702
Hits	REEP - Zero degrees freedom in Category 5	1725
	REEP - Regular degrees freedom in all categories	1728*
	Persistence REEP - Zero degrees freedom	•2385
P Score	in Category 5 REEP - Regular degrees freedom	.2131*
	in all categories	•2135
	Ceiling: 7-hr Forecast	
	Persistence REEP - Zero degrees freedom	1588
Hits	in Category 5	1653
	REEP - Regular degrees freedom in all categories	1665*
	Persistence	-2899
P Score	REEP - Zero degrees freedom in Category 5	.2638
	REEP - Regular degrees freedom in all categories	.2600*

^{*}Asterisks are used to denote superiority.

EXPERIMENT 4. Ceiling Prediction Using Persistence with One and Two Hour Lagged Persistence.

Purpose

A test on the predictability of persistence when time variations in persistence are made available.

Predictands

Predictands chosen for this experiment were ceilings at 1, 2, and 3 hours in advance. The operationally significant categories for which the forecasts were made are shown in Table 4-1. The specifications for the predictands are shown in Table 4-2.

Predictors

All the possible combinations of the five categories of ceiling for Atlantic City at the three time periods: 1) time of observation,

2) time of observation minus one hour, and 3) time of observation

minus two hours, were used in combinations of logical "ANDS" and logical

"ORS" to form 400 predictors. These 400 predictors plus the 15 ceiling dummies for the three different time periods gave a total of 475 predictors, made up only of ceiling dummies for only one station—Atlantic City. The intervals for the five categories of ceiling used as predictors are the same as those for the predictands shown in Table 4-7.

Data Sample

Standard hourly airways surface observations covering the ten year period, 1 January 1949 to 31 December 1958, furnished the data for this study. The developmental sample of 7956 observations is a random selection from the first eight years and the verification sample of 2044 observations is a random selection from the last two years. Note: This sample is not the same as in previous experiments because lagged predictors were involved.

Results

The predictors selected by REEP for each of the three predictands are given in Tables 4-3a to 4-3c. Also shown are the REEP regression equation coefficients for each group of the predictand.

Contingency tables showing the forecast-versus-observed frequencies for each of the three forecasts, and comparing the results using REEP to the results using persistence (without lags) is shown in Tables 4-4a to 4-4c. The number of correct forecasts (hits) and the Brier and Allen \overline{P} scores as well as the individual group contributions to the overall \overline{P} score are shown below each contingency table. The number of hits and the everall \overline{P} scores are summarized in Table 4-5.

Conclusions

The 415 possible predictors exhaust the ways in which persistence with lags could improve the forecast. Contrary to common belief the results of this experiment show there is little improvement over persistence when lagged persistence is made available for selection.

Table 4-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number	Ceiling Intervals									
1	0 ft ≤	Ceiling	< 200 ft							
2	200 ft ≤	Ceiling	< 500 ft							
3	500 ft ≤	Ceiling	< 1000 ft							
4	1000 ft ≤	Ceiling	< 3000 ft							
5	3000 ft ≤	Ceiling								

Table 4-2
Specifications of Predictands
Atlantic City Municipal Airport

	Predictand			
	1	2	3	
Predictard variable	CIG	CIG	CIG	
Forecast interval-hours (H)	1	2	3	
Number of Groups (G)	5	5	5	
Observations in Group 1 (n ₁)	125	128	133	
Observations in Group 2 (n ₂)	273	259	272	
Observations in Group 3 (n ₃)	403	426	418	
Observations in Group 4 (n4)	655	631	620	
Observations in Group 5 (n ₅)	6500	6512	6513	
Total dependent sample size (N)	7956	7956	7956	
Number of independent observations in the dependent sample (n)	2652	2652	2652	
Total independent sample size (M)	2044	2044	2044	
Number of available predictors (P)	415	415	415	

Selected Predictors and REEP Equations
Atlantic City 1-hr Ceiling Forecast (Experiment 4)

F	redict	or Selec	ted (56 €	not	<u>æ)</u>						
<u>Order</u>	Sta.	Elem.		ego			ling ime: t-2	Coeffi A ₁	cients	of the	REEP Eq	uations
1	ACY	CIG	5					.005	011	084	544	•634
2	ACY	CIG	1					.767	.120	073	630	184
3	ACY	CIG	2					.124	•526	•049	588	110
4	ACY	CIG	3					•009	.115	•460	478	106
5	ACY	CIG			ڻ.	*	5	~.0 05	008	013	094	,120
6	ACY	CIG	2	*	2	*	2.	235	•352	154	.010	.027
7	ACY	CIG			.3	*	2	125	.156	.025	047	009
8	ACY	CIG	2			*	2	.186	165	•065	031	054
9	ACY	CIG	2			+	3	008	012	.086	017	049
			A	ddi	tive	e Co	nstant:	.003	.021	.102	.657	.217

Note: to means at time of observation.

See Table 4-1 for limits of each category (group).

 $[\]mathbf{t}_{-1}$ means one hour before time of observation.

 $[\]mathbf{t}_{-2}$ means two hours before time of observation.

^{*} means logical "AND"

⁺ means logical "OR"

Table 4-3b

Selected Predictors and REEP Equations Atlantic City 2-hr Ceiling Forecast (Experiment 4)

<u>F</u>	redict	or Selec	Pre	dic	tor	Cei	ling	0 001	•		NEED 50	
<u>Order</u>	Sta.	Elem.	t _o		ry a t_1		ime:	A ₁	.cients	or the	A ₄	uations
1	ACY	CIG	5					.001	024	071	380	.475
2	ACY	CIG	1					•545	.189	110	471	153
3	ACY	CIG	2					.117	•349	.168	411	223
4	ACY	CIG	3					.045	.013	.321	238	141
5	ACY	CIG			5	*	5	006	016	032	138	.192
6	ACY	CIG	1	*	1	*	2	•334	058	099	05%	127
7	ACY	CIG	5	*	.5			•339	134	037	074	094
8	ACY	CIG	3	+	2			013	.118	011	086	008
9	ACY	CIG	4	*	5	*	2	008	044	.185	356	.223
10	ACY	CIG	1	+	3	+	1	021	- 042	•097	019	015
			A	ddi	ti ve	Co	nstant:	•008	.044	.111	.542	-295

Note: t_0 means at time of observation

See Table 4-1 for limits of each category (group).

 $[\]mathbf{t_{-1}}$ means one hour before time of observation

 $[\]mathbf{t}_{-2}$ means two hours before time of observation

^{*} means logical "AND"

⁺ means logical "GR"

Selected Predictors and REEP Equations
Atlantic City 3-hr Ceiling Forecast (Experiment 4)

E	redict	or Selec	Pred	ee not ictor (Cei	_	Coefficients of the REEP Equation								
<u>Order</u>	Sta.	Elem.	t _o	t_1		t_2	A ₁	A ₂	A ₃	A ₄	A ₅				
1	ACY	CIG	5				•004	018	074	285	.374				
2	ACY	CIG	1				.389	.173	006	338	217				
3	ACY	CIG	2				.111	•346	.167	320	304				
4	ACY	CIG	3				.008	.105	.308	203	219				
5	ACY	CIG		5	*	5	016	032	049	099	.196				
6	ACY	CIG	2		₩.	1	033	246	.045	.186	.048				
7	ACY	CIG		.1	*	2	.175	•026	082	066	054				
			Ad	ditive	Co	nstant:	.016	.056	.132	.415	•381				

Note: t_0 means at time of observation

t_, means one hour before time of observation

 \mathbf{t}_{-2} means two hours before time of observation

* means logical "AND"

+ means logical "OR"

See Table 4-1 for limits of each category (group).

Table 4-4a

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence and REEP Forecast Using Persistence with One and Two-Hour Lagged Persistence of Ceiling

Atlantic City 1-hr Ceiling (Verification Sample)

	Actual									
	Group	1	2	3	4		Total			
	1	32	7	2	Q	3	44			
	2	2	51	14	2	4	73			
Persistence	3	1	15	80	22	9	127			
	4	0	2	15	113	35	165			
	5	3	5	8	33	1586	1635			
	Total	38	80	119	170	1637	2044			
		Hi	.ts = 18	362	$\overline{P} = .$	1469				
	$^{\mathtt{P}}_{\mathtt{g}}$.0073	.0204	.0316	.0433	.0442				

				Actua]	L	-	
	Group	1	2	3_	<u> </u>	5_	Total
	1	32	7	2	0	3	44
REEP With	2	2	51	14	2	4	73
Lagged Persistence	3	1	15	80	22	9	127
	4	0	2	15	113	35	165
	5	3	5	8	33	1586	1635
	Total	38	80	119	170	1637	20k4
	•	H:	its = 18	362	$\overline{P} = .1$	458	
	P _g .	0075	.0207	.0318	.0427	.0432	

Table 4-4b

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence and REEP Forecast Using Persistence With One and Two-Hour Lagged Persistence of Ceiling

Atlantic City 2-hr Ceiling (Verification Sample)

	Actual										
	Group	1	2	3_	4		Total				
	1	24	12	4	1	3	44				
	2	2	41	18	4	8	73				
Persistence	3	2	24.	57	33	11	127				
	4	1	0	21	89	54	165				
	5	3	7	22	47	1556	16 <u>5</u> 1635				
	Total	32	84	122	174	1632	2044				
		H1	ts = 1°	767	$\overline{P} = .$	2016					
	P _g •	.0095	.0267	.0436	.0571	.0647					

				Actua	L		
	Group	1	2	3_	4	5_	Total
	1	24	12	4	1	3	44
REEP With	2	2	32	13	3	5	55
Lagged Persistence	3	2	33	62	34	14	145
	4	1	0	14	70	41	126
	<u> </u>	3	7	29	66	1569	1674
	Total	32	84	122	174	1632	2044
	•	Hi	ts = 1	757	$\overline{P} = .$	2009	
	Pg .	0102	.0267	.0429	.0572	•0639	

Table 4-4c

Contingency Tables Showing Predictand-Versus-Actual Groups for Persistence and REEP Forecast Using Persistence With One and Two-Hour Lagged Persistence of Ceiling

Atlantic City 3-hr Ceiling (Verification Sample)

				Actual			
	Group	_1_	2	3	4_		Total
	1	20	13	5	1	5	44
	2	6	31	20	5	11	73
Persistence	3	4	26	5 3	32	12	127
	4	1	2	28	64	70	165
	5	5	11	32	61	1526	1635
	Total	36	83	138	163	1624	2044;
		H	its = 1	694	$\overline{P} = .2$	2392	
	$^{ extsf{P}_{ extsf{g}}}$.0130	.0301	.0514	.0626	.0822	

				Actua	1		
	Group	_1_	2	3	4	5_	Total
	1	20	13	5	î	5	44
REEP With	2	5	26	16	5	11	63
Lagged Persistence	3	5	31	57	32	12	137
	4	1	2	22	53	56	134
•	5	5	11	38	72	1540	1666
· • • • • • • • • • • • • • • • • • • •	Total	36	83	138	163	1624	2044
•	•	H	its = 16	696	$\overline{P} = .2$	2375	
·	Pg.	.0132	•0306	.0512	.0623	.0802	

Table 4-5

Comparison Between Persistence and REEP with Lagged Fersistence of Ceiling

	Ceiling: 1-hr Forecast	
Hits	Persistence	1862
11200	REEP with Lagged Persistence of Ceiling	1862
P Score	Persistence	.1469
r swie	REEP with Lagged Persistence of Ceiling	.1458*
	Ceiling: 2-hr Forecast	
Hits	Persistence	1767*
nics	REEP with Lagged Persistence of Ceiling	1757
P Score	Persistence	.2016
1 00010	REEP with Lagged Persistence of Ceiling	.2009*
	Ceiling: 3-hr Forecast	
Hits	Persistence	1694
	REEP with Lagged Persistence of Ceiling	1696*
F Score	Persistence	•2392
. =5010	REEP with Lagged Persistence of Ceiling	.2375*

Asterisks are used to denote superiority.

EXPERIMENT 5. Multiple Predictands Processed Simultaneously.

Purpose

To investigate the selection of predictors for more than one predictand at a time in an attempt to reduce the number of analysis runs ordinarily required.

Procedure

Four REEP selection runs were performed using the following pairs of predictands as the predictand:

- 1) Ceiling plus 3 hours and visibility plus 3 hours
- 2) Ceiling plus 3 hours and ceiling plus 7 hours
- 3) Visibility plus 3 hours and visibility plus 7 hours
- 4) Ceiling plus 7 hours and visibility plus 7 hours

Predictors consisted of dummy (zero-one) variables of seven meteorological elements from a thirteen-station network (see Figure 1-1). The predictors selected from those runs were compared with those selected when the predictands were run singly. This comparison is shown in Table 5-1. The predictors selected when the predictands were run singly are indicated by an x under the appropriate ceiling or visibility predictand.

Predictands

The five operationally significant categories of ceiling and visibility for the predictands are shown in Table 5-2. The specifications of the predictands are listed in Table 5-3.

Predictors

The 423 predictors used in this experiment are the same as those used in Experiment No. 1 (see Tables 1-3 and 1-4).

Data Sample

Conclusions

Standard hourly airways surface observations covering the ten year period, 1 January 1949 to 31 December 1958, constituted the data used in this study. The developmental sample of 7956 observations is a random selection from the first eight years and the verification sample of 2044 observations is a random selection from the last two years.

Results

Contingency tables (Tables 5-4a and 5-4b) were formed to show the forecast-versus-observed frequencies for the 3-hr predictions of ceiling and visibility using the predictors selected by REEP when the predictand was a single predictand and also when the predictand was a pair of predictands. The number of correct forecasts (hits) and the Brier and Allen P scores as well as the individual group contributions to the overall P score are given below each contingency table.

There is sufficient redundancy in the predictands such that selection of predictors may be made on more than one predictand at a time. This applies even though they differ with regard to meteorological element or with regard to time leads. These conclusions were drawn from the fact that the predictors selected, when the predictands were processed singly, are all essentially among those selected when they are considered jointly. The one direct comparison for which results on independent data were obtained (Ceiling 3 hrs and Visibility 3 hrs) confirms this surmise.

Table 5-1

Predictors Selected When the Predictand is a Set

(Columns at left of each list show those predictors also selected when selection was run singly for the indicated predictand.)

01	7 7 Predictors		X X PHI. CIG5	X TICA CTC. 5	V 210 W	A ACL CALC	A A PHL WND-3	V 13-5	A ACY TOD (02-13)	A LUL WND-2	ACY WEA-1	X X DCA WEA-2	X ACY SCL-1	MDT TCA-2	Y PSB WEA	TO TO ANY	Z-570 TOW W	A NET WEA-9	X SBY WEA-9	X IDL VIS-3	PHI WID-2	NET. WEA = 12	•							
$\frac{\text{VIS-3, VIS-7}}{\text{VIS}}$	3 3 Predictors		X ACY VIS-5				Y PHI CTG. K											C-CIA 19-2	_		X ORF RIH-3	NEL WEA-12								
CIG-3, CIG-7	3 7 Predictors						X X DCA CIG-5				X WHT TC4-2	7-VOI 7000 A	A SBI CIG-5	I DCA WEA-2	X ACY VIS-5	X PSB WEA-8	X SHV CIC.	X 400 (00 40)	A AU 100 (02-13)	A ACI CIG(1)	1		X SBY VIS-2							
IG VIS-3	3 3 Predictors	3 ULU AUY					X ACY CIG-2				SBY RLH-3	Y ANA VIE	X-CTA TOV W	A MEL ICA-Z	SBI	X ACY WEA-1	X DCA RIH-3	X NET CIG-3	X NET LEFT O	C VERY TON	A THE ACK	E!	A SWP WND-3	ACY	ia	X ACY CIG(6)	SBY	ORY	X X NET MEA-2	

Table 5-2

Definition of Predictand Groups for Atlantic City Municipal Airport

Group <u>Number</u>	Ceiling Intervals												
1	0 ft ≤ Ceiling < 200 ft												
2	200 ft \leq Geiling $<$ 500 ft												
3	500 ft ≤ Ceiling < 1000 ft												
4	1000 ft \leq Ceiling $<$ 3000 ft												
5	3000 ft ≤ Ceiling												

Group Number	<u>Vi</u>	si	bility Inter	val	S
1	O mi	<	Visibility	<	1/2 mi
2	1/2 mi	<	Visibility	<	1 mi
3	1 mi	<	Visibility	<	2 mi
4	2 mi	<	Visibility	<	3 mi
5	3 mi	<	Visibility		

Table 5-3

Specification of Predictands
Atlantic City Municipal Airport

	Predi-	ctand 2
Predictand variable	CIG	VIS
Forecast intervalhours (H)	3	3
Number of Groups (G)	5	5
Observations in Group 1 (n ₁)	100	153
Observations in Group 2 (n ₂)	281	125
Observations in Group 3 (n ₃)	385	200
Observations in Group 4 (n ₄)	660	286
Observations in Group 5 (n ₅)	6530	7192
Total dependent sample size (N)	7956	7956
Number of independent observations in the dependent sample (n)	2652	2652
Total independent sample size (M)	2044	2044
Number of available predictors (P)	423	423

Table 5-4a

Contingency Tables Showing Predicted-Versus-Actual Groups
Using Predictors Selected when the Predictand was a Single
Predictand and Using Predictors Selected when the Predictand
was a Pair of Predictands

Atlantic City 3-hr Ceiling (Independent Sample)

				Actual	_		
	Group	1_	2	3_	4_	5_	Total
	1	6	4	1	0	1	12
	2	19	34	25	8	4	90
Using Predictors Selected	3	0	11	42	14	5	72
When Predictand was Single	4	1	6	19	41	20	87
	5	18	18	40	102	1605	1783
	Total	44	73	127	165	1635	2044
		Hits = 1728 \overline{P} = .2135					
	$^{\mathtt{P}}_{\mathtt{g}}$.0163	.0277	.0423	•0605	•0666	

	Actual						
	Group	_1_	2	3	4	5_	Total
	1	6	3	1	0	2	12
Using Predictors Selected	2	19	35	25	8	4	91
When Predictand was a Pair	3	0	13	40	14	5	72
	4	1	7	19	41	22	90
·	5	18	15	42	102	1602	1779
	Total	44	73	127	165	1635	2044
		Hits = 1724 $\overline{P} = .2133$					
	Pg	.0165	.0279	.0421	.0605	•0663	

Table 5-4b

Contingency Tables Showing Predicted-Versus-Actual Groups
Using Predictors Selected when the Predictand was a Single
Predictand and Using Predictors Selected when the Predictand
was a Pair of Predictands

Atlantic City 3-hr Visibility (Independent Sample)

	Actual						
	Group	_1	2	3	4_	5_	Tot.1
	1	13	9	5	1	4	32
Using Predictors Selected	2	2	5	4	0	9	20
When Predictand was Single	3	0	2	0	0	0	2
_	4	0	0	3	4	0	7
	5	27	30	66	88	1772	1983
	Total	42	46	78	93	1785	2044
		Hi	ts = 17	94	$\overline{P} = .$	1800	
	Pg.	0169	.0199	.0331	•0395	.0707	

				Actual	L		
	Group	1_	2	3	4	5_	Total
	1	10	7	4	0	3	21
Using Predictors Selected	2	3	4	4	0	6	17
When Predictand was a Pair	3	0	3	0	0	0	3
	4	Ü	Ō	0	2	1	3
	5	29	32	70	91	1775	1997
	Total	42	46	78	93	1785	2044
		H <u>1</u>	.ts = 17	91	$\overline{P} = .$	1803	
	Pg	0167	.0199	.0334	•0395	.0708	

est

EXPERIMENT 6. Effect of Restricting Selection to Predictors with Certain Minimum Occurrence Frequencies.

Furpose

This experiment was conducted to determine in a general way if there was any optimum limit to the number of occurrences to be permitted in a predictor before REEP would be allowed to include that predictor among those selected.

Procedure

Atlantic City Airport. Three different minimum number of occurrences of the predictors were specified in the separate runs, except for ceiling three hours in advance, which was tested for only two. The number of occurrences of the predictors specified were 10, 50, and 100. In the first case any predictor must have occurred at least ten times before it could be considered by REEP for selection, and similarly for the cases of 50 and 100. The forecasts made using the predictors selected by REEP in each case were then compared to determine the most favorable minimum occurrence frequency, comparing the P score and the number of correct forecasts in each case.

Data Sample

The developmental sample of 7956 observations is a random selection of hourly surface observations from the eight year period from 1 January 1949 to 31 December 1956. The verification sample of 2044 observations is a random selection from the two year period from 1 January 1957 to 31 December 1958. Observations are included in this sample for the 13 stations comprising this Atlantic City Airport network (Figure 1-1).

Predictands

Table 6-1 shows the five operationally significant categories of ceiling and visibility for the predictands used in this experiment. The specifications of the predictands are shown in Table 6-2.

Predictors

The 423 original dummy predictors used in this experiment are the same as those used in Experiment No. 1 (see Tables 1-3 and 1-4). The predictors with number of occurrences less than 100 are listed in Table 6-3. There are 90 such dummy predictors out of a total of 423. The number of observations in the developmental sample, as noted previously, is 7956.

Results

Contingency tables (Tables 6-4a to 6-4d) were formed to show the forecast-versus-observed frequencies for the 3-hr and 7-hr predictions of ceiling and visibility using the predictors selected by REEP when the conditions of 10, 50, and 100 occurrence minimum were applied to the selection procedure. The number of correct forecasts (hits) and the Brier and Allen \overline{P} scores as well as the individual group contributions to the overall P score are given below each contingency table. The number of hits and the overall P scores are summarized in Table 6-5.

Conclusions

The results suggest that, when selection is restricted to predictors with a larger number of occurrences, the predictors are as good or better than those when restricted by fewer number of occurrences. In addition, there is no apparent deterioration in the ability to forecast low conditions by this restriction.

Table 6-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number	Ceiling Intervals	
1	0 ft < Ceiling < 200 ft	,
2	200 ft \leq Ceiling $<$ 500 ft	,
3	500 ft \leq Ceiling $<$ 1000 ft	,
· 4	1000 ft \leq Ceiling $<$ 3000 ft	,
5	3000 ft ≤ Ceiling	
Group <u>Number</u>	Visíbility Intervals	
1	0 mi \leq Visibility $< i/2$ m	t

1/2 mi ≤ Visibility <

1 mi ≤ Visibility <

2 mi \leq Visibility <

3 mi ≤ Visibility

2

3

4

5

Table 6-2

Specification of Predictands
Atlantic City Municipal Airport

	1	Predi 2	ctand 3	4
Predictand variable	CIG	CIG	VIS	VIS
Forecast intervalhours (E)	3	7	3	7
Number of Groups (G)	5	5	5	5
Observations in Group 1 (n ₁)	100	135	153	167
Observations in Group 2 (n ₂)	281	272	125	130
Observations in Group 3 (n ₃)	385	420	200	230
Observations in Group 4 (n _L)	660	619	286	283
Observations in Group 5 (n ₅)	6530	6510	7192	7146
Total dependent sample size (N)	7956	7956	7956	7956
Number of independent observations in the dependent sample (n)				
Group 1 Group 2 Group 3 Group 4 Group 5	5500 5500 5500 5500 3000	5500 5500 5500 5500 3000	5500 5500 5500 5500 3000	5500 5500 5500 5500 3000
Total independent sample size (M)	2044	2044	2044	2044
Number of available predictors (P)	(423)	(423)	(423)	(423)
10 Occurrence Criteria 50 Occurrence Criteria 100 Occurrence Criteria	403 371 333	403 371 333	403 371 333	403 371 333

Table 6-3

Predictors in Developmental Sample (7956 Observations)
with Number of Occurrences Less Than 100

Predictors in dummy (zero-one) form

Predictor	Number of Occurrences	Predictor	Number of Occurrences	Predictor	Number of Occurrences
NEL WEA 5	46	ACY CIG (1)	53	BGM VIS 2	97
NEL WEA 6	11	ACY CIG (2)	64	BGM WEA 4	84
NEL WEA 7	43	ACY CIG (3)	98	BGM WEA 7	58
NEL WEA 8	2	ACY CIG (4)	62	BGM WEA 8	37
NEL WEA 11	5	ACY VIS (1)	46	BGM WEA 11	52
	•	ACY VIS (2)	52		
PHL CIG 1	42	ACY VIS (3)	63	SWF CIG 1	81
PHL VIS 1	68	ACY VIS (5)	99	SWF WEA 6	21
PHL VIS 2	59	ACY WEA 5	42	SWF WEA 7	56
PHL WEA 4	41	acy wea 6	3	SWF WEA 8	26
PHL WEA 5	46	ACY WEA 7	36	SWF WEA 11	8
PHL WEA 6	7	ACY WEA 8	3 5		
PHL WEA 7	25	ACY WEA 11	5	RIC CIG 1	74
PHL WEA 8	5			RIC VIS 1	91
PHL WEA 11	1	DCA CIG 1	19	RIC VIS 2	66
		DCA CIG 2	81	RIC WEA 5	38
SBY CIG 1	71	DCA VIS 1	29	RIC WEA 6	5
SBY VIS 2	91	DCA VIS 2	16	RIC WEA 7	52
SBY WEA 5	36	DCA WEA 4	77	RIC WEA 8	8
SBY WEA 6	3	DCA WEA 5	45	RIC WEA 11	0
SBY WEA 7	60	DCA WEA 6	7		
SBY WEA 8	5	DCA WEA 7	50	IDL CIG 1	76
SBY WEA 11	1	DCA WEA 8	. 11	IDL VIS 1	90
422		DCA WEA 11	0	IDL VIS 2	69
MOT CIG 1	51			IDL WEA 5	64
MOT CIG 2	90	ORF CIG 1	47	IDL WEA 6	11
MOT VIS 1	74	ORF VIS 1	67	IDL WEA 7	37
MOT WEA &	72	ORF VIS 2	41	IDL WEA 8	9
MOT WEA 5	80			IDL WEA 11	6
NOT WEA 6	17	PSB WEA 7	67		
MOT WEA 7	28	PSB WEA 8	43	DSM WEA 4	99
MOT WEA 8	13	PSB WEA 11	45	DSM WEA 6	40
MOT WEA 11	2			DSM WEA 8	23
				DSM WEA 10	70
				DSM WEA 11	24

Table 6-4a

Contingency Tables Showing Predicted-Versus-Actual Groups
When Selection of Predictors is Limited to Those With A
Specified Minimum Occurrence Frequency

Atlantic City 3-hour Ceiling (Independent Sample)

	C		2	Actual	L ,	•	M-4-3
	Group		2	3	4		<u>Total</u>
	1	5	4	2	0	2	13
REEP with Selection	2 3	19	33	23	6	3	84
of Predictors Limited	3	1	11	39	12	9	72
to 10-Occurrence Minimum	4	0	7	22	43	21	93
	5	19	18	41	104	1600	1782
	Total	44	73	127	165	1635	2044
		H	its = !'	720	$\overline{P} = .2$	131	
	$^{\mathtt{P}}_{\mathtt{g}}$	•0165	.0278	.0433	.0592	.0663	
				Actual			
	Group	_1_	2	3	4.		Total
REEP with Selection of Predictors Limited to 50-Occurrence Minimum	1 2 3		(Predic	ction r	ot made	for	
	4 3-hr Ceiling) 5						
	Total						
		Hi	ts =		<u>P</u> =		
	Pg						
				Actual			
	Group	1_	2	3	4	5_	Total
	1	10	5	2	0	3	20
REEP with Selection	2 3	18	30	25	6	3 2	81
of Predictors Limited	3	0	13	41	12	8	74
to 100-Occurrence Minimum	4	0	7	20	46	18	91
	5	16	18	39	101	1604	1778
	Total	44	73	127	165	1635	2044
		Hi	.ts = 17	731	$\overline{P} = .2$	110	
	Pg	•0161	.0272	.0429	.0592	.0656	

Table 6-4b

Contingency Tables Showing Predicted-Versus-Actual Groups When Selection of Predictors is Limited to Those With A Specified Minimum Occurrence Frequency

Atlantic City 7-hour Ceiling (Independent Sample)

		4		Actual			
	Group		2	3	4		Total
	1	0	0	0	0	0	0
REEP with Selection	2		17	7	3	2 6	38
of Predictors Limited	2 3 4	9 3 5	15	32	10	6	6 6
to 10-Occurrence Minimum			8	19	16	7	55 1005
	5	24	39	89		1604	1885
	Total	41	79	147	158	1619	2044
		H	Lts = 16	669	$\overline{P} = .2$	567	
	Pg	.0177	.0325	.0539	•0658	•0868	
				Actual			
	Group	_1_	2	3	4	5_	Total
	1	0	0	0	0	0	0
REEP with Selection		7	17	8	3	3	38
of Predictors Limited	2 3 4	7 6	16	34	11	3 7	74
to 50-Occurrence Minimum		5	6	18	13	8	50
	5	23	40	87	131	1601	1882
	Total	41	79	147	158	1619	2044
		Hi	ts = 16	66 5	$\overline{P} = .2$	567	
	$^{\mathtt{P}}_{\mathtt{g}}$. 0 17 7	•0325	•0540	•0660	.0866	
				Actual			
	Group	_1_	2	3	4_	5_	Total
	1	0	0	0	0	0	0
REEP with Selection	2		16	10	5	2	42
of Predictors Limited	2 3	9 5	16	33	10	6	7 0
to 100-Occurrence Minimum	4	5	5	19		6	51
	5	22	42	85	127	1605	1881
	Total	. 41	79	147	158	1619	2044
		Hi	its = 16	570	$\overline{P} = .2$	572	
	Pg	.0178	.0326	•0538	.0662	.0868	

Table 6-4c

Contingency Tables Showing Predicted-Versus-Actual Groups
When Selection of Predictors is Limited to Those With A
Specified Minimum Occurrence Frequency

Atlantic City 3-hour Visibility (Independent Sample)

	Group	_1_	. 2	Actual	4		Total	
REEP with Selection	1 2	11	6 6 3	3 7	0	5 5 3	25 21	
of Predictors Limited	2 3 4 5	0	3	0 0	0 6	3 1	7 7	
to 10-Occurrence Minimum	5	27	31	68	87	1771	1984	
	Total	42	46	78	93	1785	2044	
		H:	its = 17	794	$\overline{P} = .1$	$\bar{P} = .1799$		
	Pg	. 0166	.0197	.0328	•0393	.0715		
				Actual				
	Group	_1_	2	3	4	5	<u>Total</u>	
	1	11	8	5	0	3	27	
REEP with Selection	2 3 4	1	4	5 5 0	0	6	16	
of Predictors Limited	3	1	0	1	0 6	i 1	5 9	
to 50-Occurrence Minimum	5	28	31	67	87	1774	1987	
	Total	42	46	78	93	1785	2044	
		H:	its = 1'	795	$\bar{P} = .1793$			
	$^{\mathrm{P}}_{\mathbf{g}}$.0168						
	C							
				Actual		_		
	Group	_1_	2	3	4		Total	
	1	19	11	7	0		43	
REEP with Selection	2 3	1	4	1	0	7	13	
of Predictors Limited	3	0	1	0	0	0	1	
to 100-Occurrence Minimum	4	1	0	0	6	0	1000	
	5	21	30	70	87	1772	1980	
	Total	42	46	78	93	1785	2044	
		H	its = 18	301	$\overline{P} = .1$	7 9 9		
	Pg	.0169	.0201	.0332	•0393	.0705		

Table 6-4d

Contingency Tables Showing Predicted-Versus-Actual Groups When Selection of Predictors is Limited to Those With A Specified Minimum Occurrence Frequency

Atlantic City 7-hour Visibility (Independent Sample)

	Group	1	2	Actual 3	44	5_	<u>Total</u>
REEP with Selection of Predictors Limited to 19-Occurrence Minimum	1 2 3 4	0 1 1 0	0 0 0	0 0 0	1 0 0	1 0 0	2 1 1 0
	5 Total	41 43	38 38	90 90	98 99	1773 1774	2040 2044
		H	its = 1'	773	$\overline{P} = .2$	161	
	Pg	.0195			.0447		
				Actual			
	Group	1	2	3_	4		Total
REEP with Selection of Predictors Limited	1 2 3	0 1 1	0 0 0	0 0 0	1 0 0	1 0 0	2 1 1
to 50-Occurrence Minimum	4 5	0 41	0 38	0 90	0 98	0 1773	0 2040
	Total	-	38	90	99	1774	2044
		H	its = 1'	773	$\overline{P} = .2$		
	$P_{\mathbf{g}}$	•0195	.0180	.0404	. 0447	•0935	
				Actual			
	Group	1	2	3	4	5_	Total
REEP with Selection of Predictors Limited	1 2 3	0 0 0	0 0	1 0 0	0 0	1 0 0	2 0 0
to 100-Occurrence Minimum	4 5	0 43	0 38	0 89	0 99	0 1773	0 2042
	Tot-al		38	90	99	1774	2044
		Н	Lts = 1'	773	P = .2		
	P ₈	.0193		.0401		•0923	

Table 6-5

Comparison Between Predictions Hade When Selection of Predictors is Limited to a Minimum Occurrence Frequency of 10, 50, and 100.

Α.	CY Ceiling - 3-hr Forecast	
A	of certific - j-m rorecase	
	10 Occurrence Minimum	1720
Hits	50 Occurrence Minimum	
	100 Occurrence Minimum	1731*
= .	10 Occurrence Minimum	.2131
P Score	50 Occurrence Minimum 100 Occurrence Minimum	.2110*
	100 Occurrence Minimum	.2110*
<u>A</u>	CY Ceiling - 7-hr Forecast	
	10 Occuments Minimum	1440
Hits	10 Occurrence Minimum 50 Occurrence Minimum	1669 1665
UTCB	100 Occurrence Minimum	1670*
	W Occurrence minimum	1010
	10 Occurrence Minimum	.2567*
P S∞re	50 Occurrence Minimum	.2567*
	100 Occurrence Minimum	.2572
AC	Y Visibility - 3-hr Foreca	st.
	10 Occurrence Minimum	1794
Hits	50 Occurrence Minimum	1795
	100 Occurrence Minimum	1801*
	10 Ocean none a Windows	1700
P Score	10 Occurrence Minimum 50 Occurrence Minimum	.1799 .1793*
1 DCOTE	100 Occurrence Minimum	.1799
	, oo oodd i chee iiriinada	• 1 7 7
AC	Y Visibility - 7-hr Foreca	<u>st</u>
	10 Occurrence Minimum	1773
Hits	50 Occurrence Minimum	1773
	100 Occurrence Minimum	1773
	10 Occurrence Minimum	.2161
P Score	50 Occurrence Minimum	.2162

Asterisks are used to denote superiority.

100 Occurrence Minimum

.2144*

EXPERIMENT 7. Single-Station Predictors: Raw Dummies and Boolean Combinations.

Purpose

To investigate the accuracy of forecasts using only single-station predictors. In the event the accuracy is sufficiently competitive, a generalized operator might be developed where spacial analyses of network parameters would not be required.

Procedure

From the 423 predictors used in the Atlantic City network of 13 stations (see Table 1-3), the 55 predictors for only Atlantic City predictors (not including TOD and DOY) were extracted. Selections and predictions were first made for ACY ceiling and visibility for three and seven hours using the 55 dummy predictors alone.

Next, those dummy predictors with 400 or more occurrences were then formed into all possible combinations of pairs joined by a logical "AND" including the combination of each predictor with itself. An exception to this procedure was made in figuring the number of occurrences under the Weather Element heading. In this case the weather dummies from 2 to 8 (precipitation) were grouped together to represent a precipitation predictor. Combining the dummy predictors in this way resulted in the formation of 467 new predictors. Selections and predictions were again made for ACY ceiling and visibility at three and seven hours in advance using the 467 Boolean-paired predictors. The results were compared with those from the prediction runs with the raw dummy predictors, as well as with the results using all the network predictors (Experiment No. 1).

Predictands

The predictands, as used in the earlier experiments, are subdivided into five operationally significant intervals of ceiling and visibility as shown in Table 7-1. The specifications of the predictands are shown in Tables 7-2a and 7-2b.

Predictors

As noted previously the predictors used in this experiment were extracted from the 423 predictors used in the Atlantic City network of 13 stations. The 55 dummy predictors used in the first prediction runs are shown in Table 7-3 together with the number of occurrences of each in the developmental sample of 7956 observations. Table 7-3 also lists the specifications and limits of the dummy variables. Those predictors with 400 occurrences or more, plus the time of day (TOD) and day of year (DOY), were formed into all possible pairs joined by a logical "AND" resulting in 467 Boolean-paired predictors.

Data Sample

As in the earlier experiments the 10,000 observations used in this experiment were randomly selected from the ten year period 1 January 1949 to 31 December 1958. The developmental sample has 7956 observations from the first eight years of the ten year period, and the verification sample has 2044 observations from the last two years.

Results

The four sets of predictors selected by REEP, using the 55 predictors for ACY are listed in Tables 7-4a to 7-4d. The predictors selected using the 467 Boolean-paired predictors are shown in Tables 7-5a to 7-5d. Also shown in each of these tables are coefficients in the REEP

regression equation for each group of the predictand. Contingency tables (Tables 7-6a to 7-6d) show the forecast-versus-observed frequencies for the 3-hr and 7-hr predictions of ceiling and visibility using the 55 dummy predictors for ACY listed in Table 7-3 and also using the 467 Boolean combination of predictors previously described. The number of correct forecasts (hits) and the Brier and Allen \overline{P} scores as well as the individual group contributions to the overall \overline{P} score are given below each contingency table. Tables 7-7a and 7-7b summarize the hits and \overline{P} scores for this experiment. In addition, these tables show how the results of this experiment compare with those of Experiment No. 1, in which all the dummy predictors for the 13 station Atlantic City network were used, and with the results of a straight persistence forecast.

Conclusions

4.

- 1) The single-station raw dummy predictors give results which are better than persistence.
- 2) The single-station Boolean predictors are as good or better than the raw predictors except for the P score in predicting 3-hr ceiling. Low conditions are forecast more often and more accurately with Boolean predictors.
- 3) Although the selected network predictors are quite a bit better than either single-station set of predictors, the Boolean set is consistently better than the network in predicting visibility.
- 4) The results are sufficiently encouraging to suggest that more work be done. In addition, it seems worth attempting to combine the set of network and Boolean predictors in a separate experiment (see Experiment No. 8).

Table 7-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group Number	<u>Ce</u>	eil	ing Inter	va]	<u>.8</u>	
1	0 ft	<u> </u>	Ceiling	<	200	ft
2	200 ft	<u>≤</u>	Ceiling	<	500	ft
3	500 ft	≤	Ceiling	<	1000	ſŧ
4,	1000 ft	<u>≤</u>	Ceiling	<	3000	ft
5	3000 ft	<	Cailing			

Group Number	Visibility Intervals								
1	0 mi <	Visibility < 1/2 mi							
2	1/2 mi ≤	Visibility < 1 mi							
3	1 mi ≤	Visitility < 2 mi							
4	2 mi ≤	Visibility < 3 mi							
5	3 mi ≤	Visibility							

<u>Table 7-2a</u>

Specification of Predictands - Atlantic City Municipal Airport

(As used in prediction runs using raw predictors)

	Predictand 1 2 3			4
Predictand variable	CIG	CIG	VIS	VIS
Forecast intervalhours (H)	3	7	3	7
Number of Groups (G)	5	5	5	5
Observations in Group : (n ₁)	100	135	153	167
Observations in Group 2 (n ₂)	281	272	125	130
Observations in Group 3 (n ₃)	385	420	200	230
Observations in Group 4 (n _L)	660	619	286	283
Observations in Group 5 (n ₅)	6530	6510	7192	7146
Total dependent sample size (N)	7956	7956	7956	7956
Number of independent observations in the dependent sample (n)	7956	7956	7956	7956
Total independent sample size (M)	2044	2044	2044	2044
Number of available predictors (P)	55	55	55	55

Table 7-2b

Specification of Predictands - Atlantic City Municipal Airport

(As used in prediction runs using Boolean predictors)

	Predictand			
	1	2	3	4
Predictand variable	CIG	CIG	VIS	VIS
Forecast intervalhours (H)	3	7	3	7
Number of Groups (G)	5	5	5	5
Observations in Group 1 (n ₁)	100	135	153	167
Observations in Group 2 (n2)	281	272	125	130
Observations in Group 3 (n ₃)	385	420	200	230
Observations in Group 4 (n ₄)	660	619	286	283
Observations in Group 5 (n ₅)	6530	6510	7192	7146
Total dependent sample size (N)	7956	7956	7956	7956
Number of independent observations in the dependent sample (n)	2652	2652	2652	2652
Total independent sample size (M)	2044	2044	2044	2044
Number of available predictors (P)	467	467	467	467

Table 7-2b

Specification of Predictands - Atlantic City Municipal Airport

(As used in prediction runs using Boolean predictors)

	Predictand 1 2 3			4
Predictand variable	cig	CIG	VIS	VIS
Forecast intervalhours (H)	3	7	3	7
Number of Groups (G)	5	5	5	5
Observations in Group 1 (n ₁)	100	135	153	167
Observations in Group 2 (n ₂)	281	272	125	130
Observations in Group 3 (n ₃)	385	420	200	230
Observations in Group 4 (n4)	660	619	286	283
Observations in Group 5 (n ₅)	6530	6510	7192	7146
Total dependent sample size (N)	7956	7956	7956	7956
Number of independent observations in the dependent sample (n)	2652	2652	2652	2652
Total independent sample size (M)	2044	2044	2044	2044
Number of available predictors (P)	467	467	467	467

Table 7-3

Predictors Available for Single-Station Predictions
Using Dummy Predictors for the Forecast Station (ACY)

Element	No. of Dummies	Dummy No.	Specifications and Limits	Number of Occurrences
			Ceiling Height*, ft:	
CIG	5	1.	O ≤ CIG < 200	109
		2.	200 ≤ CIG < 500	263
		3.	500 ≤ CIG < 1000	410
		4.	1000 ≤ CIG < 3000	661
		5.	3000 ≤ CIG	6513
	10	(1)	CIG = 100	53
		(2)	CIG = 200	64
		(3)	CIG = 400	98
		(4)	CIG = 500	108
		(5)	CIG = 900	62
		(6)	1500 ≤ CIG < 2000	146
		(7)	2500 ≤ CIG < 3000	123
		(8)	3000 ≤ CIG < 5000	596
		(9)	$5000 \le CIG < 10,000$	722
		(10)	CIG = Unlimited	4039
			Visibility*, mi:	
VIS	5	1.	$0 \le VIS < 1/2$	139
		2.	$1/2 \leq VIS < 1$	115
		3.	$1 \leq VIS < 2$	213
		4.	2 < VIS < 3	274
		5.	$3 \leq VIS$	7215
	10	(1)	$1/4 \leq VIS < 1/2$	46
		(2)	$1/2 \leq VIS < 3/4$	52
		(3)	$3/4 \leq VIS < 1$	63
		(4)	$1 \leq VIS < 1-1/2$	114
		(5)	$1-1/2 \leq VIS < 2$	99

Parentheses () used to help distinguish the two forms of dummies.

<u>Table 7-3</u> - Continued

T-3	No. of	Dummy	Cura Alaski sum and Yimik s	Number of
Element	Dummies	NO.	Spec_fications and Limits	Occurrences
			Visibility*. mi:	
		(6)	$2 \leq VIS < 3$	274
		(7)	$3 \leq VIS < 4$	334
		(8)	4 ≤ VI S < 5	282
		(9)	$5 \leq \text{VIS} < 6$	370
		(10)	15 ≤ VI S	1575
			Wind:	
WND	5	1.	Calm to 3 Knots, any direction	723
		2.	23° to 67°, 3 Knots < Speed	854
		3.	68° to 202° , 3 Knots < Speed	1727
		4.	203° to 247°, 3 Knots < Speed	1656
		5.	248° to 22°, 3 Knots < Speed	2976
			Relative Humidity:	
RLH	3	1.	75 per cent to 85 per cent	1387
		2.	86 per cent to 93 per cent	1418
		3.	94 per cent to 100 per cent	1262
			Total Cloud Amount:	
TCA	2	1.	5/10 to 9/10 (incl.)	2026
		2.	More than 9/10	2633
			Weather Element**:	
WEA	12	1.	No Weather	5701
FUIA	12	2.	Rain	5721
		3.	Rain Showers	395
		-		144
		4. 5.	Drizzle Snow	106
		6.	Snow Showers	42
				3
		7.	Thunderstorm, Hail	36

^{*}Parentheses () used to help distinguish the two forms of dummies.

See Table !-4 for a complete list of Weather Elements.

Table 7-3 - Continued

Element	No. of Dummies	Dummy No.	Specifications and Limits	Number of Occurrences
			Weather Elements**:	
		8.	Freezing Rain, Sleet	3
		9•	Fog	689
		10.	Ground Fog	439
		11.	Blowing Snow, Blowing Sand	5
		12.	Smoke, Haze, Dust	816
			Sky Condition, Lower:	
SCL	3	1.	Sky obscured	209
		2.	Thin broken clouds Thin overcast	380
		3.	Scattered clouds Dark scattered clouds	2267

^{**}See Table 1-4 for a complete list of Weather Elements.

<u>Table 7-4a</u>

Selected Predictors and REEP Equations Using Single-Station Predictors in Raw Dummy Form Atlantic City 3-hr Ceiling

S	elected :	Predictor	5		cients			quations
Order		Element		A ₁	A ₂	^A 3	A ₄	A ₅
1	ACY	CIG	5	001	020	106	360	.487
2	ACY	CIG	1	.365	.278	.022	477	
3	ACY	CIG	2	•035	.331	.017	301	
4	ACY	CIG	3 2	006	.090	.175	208	
5 6	ACY	TCA	2	.002	005	.023	.050	070
6	ACY	WEA	2	025	.083	.063	.018	140
7	ACY	VIS	2 5 5	061	.026	.041	040	•035
8	ACY	WND		006	026	032	022	.086
9	ACY	CIG	(1)	187	•050	106	.079	.164
10	ACY	CIG	(7)	.004	.012	086	129	•500
11	ACY	WND	4	007	028	033	013	.081
12	ACY	VIS	(1)	•099	024	.001	.040	116
13	ACY	WEA	9	.004	.055	001	•001	059
14	ACY	VIS	(4)	~.055	025	.161	049	032
15	ACY	WEA	7	014	035	077	180	. 306
16	ACY	CIG	(8)	.001	002	.014	.082	095
17	ACY	VIS	4	038	.018	.028	026	.018
18	ACY	RLH	2	•005	.013	.026	•038	082
19	ACY	CIG	(6)	008	016	~.076	.142	042
20	ACY	WND	1	•006	021	042	014	.071
21	ACY	RLH	3	.013	.028	•038	.002	082
22	ACY	RLH	1	001	001	.011	.039	049
23	ACY	CIG	(4)	•904	004	.109	109	001
24	ACY	CIG	(5)	001ء۔	100	018	.041	.075
25	ACY	WEA	4	006	.009	.082	.028	112
26	ACY	SCL	3 2	.000	.001	.008	.019	028
27	ACY	VIS		.035	.022	.097	066	088
28	ACY	SCL	1	.002	073	036	.042	.065
29	ACY	CIG	(2)	.012	.084	054	042	~.000
30	ACY	CIG	(9)	001	.001	002	•035	
		Additive	Constant:	.066	•014	.083	•409	.428

Table 7-4b

Selected Predictors and REEP Equations Using Single-Station Predictors in Raw Dummy Form

Atlantic City 7-hr Ceiling

	-Toolog Y			Coeffi		cf the	REEP E	uations
		Predictors		A ₁	A ₂	A ₃	Å ₄	A ₅
Order	Station	Element	Dummy				4	2
1	ACT	CIG	5	010	110	137	079	•336
2	ACY	TCA	2	.000	.011	.037	.060	108
3	ACY	WND	5	025	047	052	039	.163
	ACY	WND	4	022	044	053	035	.155
4 5 6	ACY	RLH	3	.010	000	•046	.086	142
6	ACY	CIG	3 2	.006	.090	016	090	.011
7	ACY	SCL	1	.047	074	057	019	.103
8	ACY	RIH	2	•009	.018	•033	.050	110
9	ACY	WEA	2	.001	079ء	.075	037	117
10	ÁCY	WND	1	011	032	047	021	.111
11	ACY	CIG	4	008	048	088	.060	.085
12	ACY	RLH	1	.007	.008	-019	•032	066
13	ACY	WEA	9	.025	.004	•010	000	039
14	ACY	VIS	(3)	.054	.008	•090	135	017
15	ACY	WEA	4	.046	.044	.070	016	143
16	ACY	CIG	(8)	.004	.005	.012	•039	060
17	ACY	WEA	7	.010	.002	130	109	.228
18	ACY	CIG	1	.127	.035	004	.025	184
19	ACY	CIG	(1)	122	010	.042	094	.184
20	ACY	VIS	2	•039	.047	099	.119	106
21	ACT	VIS	4	.029	.014	.007	045	005
22	ACY	CIG	(5)	048	079	033	.116	· O444
23	ACY	CIG	(7)	.026	073	005	034	.086
24	ACY	CIG	(6)	.011	063	020	.070	.002
25	ACY	WEA	3	001	020	.063	-019	061
Additive Constant:				.029	.146	.174	.115	•536

Table 7-4c

Selected Predictors and REEP Equations Using Single-Station Predictors in Raw Dummy Form

Atlantic City 3-hr Visibility

S	elected F	Predictors	3	Coeffi	cienus		REEP E	puations
		Element		A	A ₂	A3	A4	A ₅

1	ACY	VIS	5	025	014	067	098	.204
2	ACY	VIS	1	.285	.041	087	150	089
3	ACY	RLH	3	•034	.026	.040	.035	134
4	ACY	VIS	3 2	.156	.189	016		245
5	ACY	WEA	1	036	.002	.006	040	.069
6	ACY	WEA	9	.000	.018	.042	.047	106
7	ACY	RLH	2	.011	.006	.018	.027	
8	ACY	CIG	1	.217	.017	.119	.041	395
9	ACY	CIG	(1)	138	056	086	065	.344
10	ACY	WEA	2	062	013	•032	.026	.017
11	ACY	WEA	5	~.060	.088	.154	0' 7	135
12	ACY	CIG	(2)	027	007	.119	.036	122
13	ACY	VIS	3	.053	.041	053	005	036
14	ACY	SCL	1	071	•030	031	026	.098
15	ACY	VIS	(1)	052	.022	.140	062	048
16	ACY	VIS	(8)	012	.017	•005	.055	064
17	ACY	WEA	4	056	.025	.067	.006	044
18	ACY	WEA	7	081	010	058	036	184
19	ACY	WND	5	005	010	007	014	.038
20	ACY	WND	4	004	010	016	005	.035
21	ACY	VIS	(4)	.030	017	.082	103	.008
22	ACY	WEA	12	029	•006	.018	014	.019
23	ACY	CIG	3	029	012	.011	.018	.012
		Additive	Constant:	•0લ્મ	.021	•069	.149	.697

Table 7-4d

Selected Predictors and REEP Equations Using Single-Station Predictors in Raw Dummy Form

Atlantic City 7-hr Visibility

S	elected 1	Predictor	.	Coeffi	cients	of the	REEP I	Equations
Order		Element		A ₁	A ₂	A ₃	A ₄	A ₅
								
1	ACY	WEA	9	.012	•001	.044	•009	066
2	ACY	WEA	1	011	002	011	028	.052
3	ACY	WND	5	013	020	018	027	
4	ACY	WND	4	003	017	015	020	.055
5 6	ACY	CIG	2	.014	.037	.053	.011	115
	ACY	VIS	5	048	011	.002	.011	.046
7	ACY	RLH	2	.014	.012	.022	.021	
8	ACY	CIG	3	.005	.004	.046	.007	7062
9	ACY	VIS	2	029	.092	041	010	012
10	ACY	TCA	2	009	.001	.014	.022	2 -,028
11	ACY	CIG	1	.121	070	.072	•063	186
12	ACY	CIG	(1)	128	023	040	.065	.126
13	ACY	VIS	(3)	.129	020	.080	036	153
14	ACY	SCL	1	.019	.068	054	032	2002
15	ACY	WND	3	.021	.000	.000	003	018
16	ACY	WEA	4	.005	.051	006	.008	058
17	ACY	RLH	3	.015	.005	.010	.010	040
18	ACY	WEA	5 2	055	.01.6	.034	010	014
19	ACT	WEA	2	016	,000	.030	•038	052
		Additive	Constant:	.069	.031	026ء	.045	.829

Table 7-5a

Selected Predictors and REEP Equations Using Single-Station Predictors in Boolean Pairs

Atlantic City 3-hr Ceiling

	Selected Pr	edict.ors		Coeff		of the	REEP E	quations
Order	_	Element	Dummy	A ₁	A ₂	A ₃	A ₄	A ₅
1	ACY	CIG	5	.063	029	064	•	.318
2	ACY	CIG	1	•414	.215	•009		260
3	ACY	CIG	2	.068	.304	.039		151
4	ACY	CIG	3	•005	•059	.221	209	076
5	ACY	TOD 19	30E-0130E	4774	010	400	040	001
7	and ACY	WEA	9	.171	.010	103	082	•004
6	ACY	TCA	2	005	021	010	•063	027
7	and ACY	WEA	2-8	- 020	100	OL E	01.6	066
ř	ACY	WEA	9	039	.108	.045	046	068
8	ACY	WND	2	041	250	045	004	40/
•	and ACY	TCA	2	.014	. ≎59	.085	.038	196
9	and ACY	WND	3 2	01.5	055	0/0	007	400
7	ACY	TCA	2	•015	.055	•009	007	132
10	ACY	CIG	5	0/7	004	01.4	01.4	441
10	and ACY	VIS	5	067	021	048	048	.18/4
11	ACY	CIG	(1)	197	.040	058	•075	.139
12	ACY	WEA	2	010	.079	.039	.028	136
13	A CY	CIG	(7)	.006	.010	073	171	.227
4.	, ACY	CIG	(8)					
14	and ACY	TCA	2	.001	•004	.024	.103	132
4 -	, ACY	TOD 07	30E-1330E	205	-11			
15	and ACY	CIG	4	007	061	035	.1 50	047
4.6	ACY	WEA	2-8	011		-57/	241	
16	and ACY	DOY	151-300	004	090	.076	016	.035
		Addit	ive Constant:	•005	.054	.116	•353	.472

Table 7-5b

Selected Predictors and REEP Equations Using Single-Station Predictors in Boolean Pairs

Atlantic City 7-hr Ceiling

					Coeffic	cients	of the	REEP Equ	ations
	Selec	cted Pr	edictor	5	_ A ₁	A ₂	A ₂	A ₄	A ₅
Order	51	tation	Elekan	t Dummy				9	
•		. (100	CIG	5	005	•049	069	129	•252
1		ACY	TCA	2	.025	.076	.123	.113	336
2		ACY			10/07	40,0			
•		ACY	TOD	1930E-0130E	.175	.024	031	095	074
3	and	ACY	WEA	9	,	••••		•	
	_	ACY	WID	<u>ş</u>	037	104	109	063	•313
4	and	ACY	TCA	2	0)1			100)	
		ACY	WND	4	001	. 000	115	050	.292
5	and	ACY	TCA	2	034	072		000	•~ /~
_					.023	.054	.006	.045	128
6		ACY	RLH	3 2	006	.105	.007	•	016
7		ACY	CIG		.009	.023	.034	-	095
8		ACY	RIH	2		.064	.O44		085
9		ACY	WEA	2	005	.004	• Out	-,010	••••
	_	ACY	TOD	1330E-1930E	101	002	- 077	053	.027
10	and	ACY	WEA	9	•144	-,002	-1011		00.01
		ACY	WND	1	000	060	094	018	.183
11	and	ACY	TCA	2	008	063	074	-,010	•10)
			WAID	2					4 5 0
12	and	ACY	TCA	3 1	.020	.014	.028	.050	113
		ACI		•					
13	and	ACY	DOY	151-300	015	069	.100	.021	037
(1)	Œ13v	-VCI	RLH	3					
		ACY	WEA	2-8	007	.025	.132	059	091
14	arx	ACY	WEA	9	001	•UL)			
15		ACY	SCL	1	.072	026	012	026	007
• •				01.20E-0720E					A 2 ##
16	am	ACY		0130E-0730E 151-300	015	015	023	.071	017
_		ACY	DOY	171-700					
			A	dditive Constant	.008	.051	.069	.140	.732
			**						

<u>Table 7-5c</u>

Selected Predictors and REEP Equations Using Single-Station Predictors in Boolean Pairs

Atlantic City 3-hr Visibility

	Selected Predictors		.s Coefficie			of the	REEP E	•	
<u>Order</u>				t Dummy	A ₁	A ₂	A ₃	A_4_	A ₅
1		ACY	VIS	5	039	029	076	082	.227
2 3		ACY	VIS	1	.290	.042	008	134	190
3		ACY	RIH	3 2	.042	.036	.054	.056	187
4		ACY	VIS	2	.114	.179	007	062	224
5	and	ACY ACY	cig Wea	5 1	002	008	013	042	.064
6	and	ACY ACY	TOD WEA	1930E-0130E 9	.133	.064	.044	006	236
7	and	ACY ACY	TOD WEA	1930E-0130E 10	.121	008	.012	038	087
8		ACY	RLH	2	.007	.005	.019	.033	065
9	and	ACY ACY	WND RLH	4 3	013	037	081	016	.147
10	and	ACY ACY	WEA RLH	2-8 2	068	017	.028	•008	.048
11	and	ACY ACY	WEA TOD (2-8 0130 E- 0730E	.011	.003	•053	.087	153
			Ado	ditive Constant:	-041	.038	.090	.126	.706

<u>Table 7-5d</u>

Selected Predictors and REEP Equations Using Single-Station Predictors in Boolean Pairs

Atlantic City 7-hr Visibility

	8-1-	atad Du	edictors	-	Coeffi	.cients	of the	REEP Eq	uations
Order			Element		A ₁	A ₂	A ₃	A	A ₅
فال بالنصوبال اله						ما بر در این در ۱ ۳ بر ما ک			,
1	and	ACY	CIG	5 5	027	022	057	043	.148
		ACI	VIS	כ					•
2	and	ACY		930E-0130E	•092	.021	.053	-040	205
_		ACY	RLH	3	••/~	••••	••//	******	•~0)
3	and	ACY	TCA	2	.059	.044	•059	0.0	201
,	CM AM	ACY	WEA	9	•0)7	•044	40)7	·oto	201
4	and	ACY	TOD 1	930E-0130E	•026	000	01.5	050	410
4	WILL	ACY	RLH	2	•020	.020	-045	.072	143
5	and	ACY	TOD 1	330E~1930E	01.0	204	008	0.0	450
7	STEE	ACY	WEA	12	•043	.028	.037	•U42	150
6		ACY	WND	5	018	019	018	~.028	.083
6 7 8		ACY	WAID	4	013	•	017		.067
8		ACY	VIS	2	.067	.095	030	042	090
•		ACY	TOD (130E-0730E	0/0	055	224	248	4/8
9	and	ACY	WEA	9	068	055	028	017	.167
40	•	ACY	CIG	4	201	222	•••	•••	
10	and	ACY	VIS	4 5	026	020	039	026	.111
					01.5				en 1 ee
			Add	litive Constant:	.042	.040	.077	.077	.765

St

٤

122

Table 7-6a

Atlantic City 3-hour Ceiling (Independent Sample)

	Actual						
	Group	1_	2	3	4_	5	Total
	1	9	4	2	0	3	18
REEP Single	2	20	36	27	10	10	103
Station Predictors in	3	1	11	45	14	12	83
Raw Dummy Form	4	1	9	20	47	28	105
·	5	13	13	33	94	1582	1735
	Total	44	73	127	165	1635	2044
		Hi	ts = 1′	719	P = .	2246	
	Pg	.0163	.0275	.0440	•061	.0755	

	Actual						
	Group	1	2	3_	4		Total
	1	12	3	1	0	1	17
REEP Single	2	19	38	27	10	10	104
Station Predictors in	3	0	9	42	10	6	67
Boolean Form (Pairs)	4	1	7	16	40	29	93
•	5	12	16	41	105	1589	1763
	Total	44	73	127	165	1635	2044
		Hi	ts = 1'	721	P = .	2275	
	$^{\mathtt{P}}_{\mathtt{g}}$	•0158	•0277	•9442	.062	6 .0772	

Table 7-6b

Atlantic City 7-hour Ceiling (Independent Sample)

				Actual	L		
	Group	1	2	3	4	5_	Total
	1	0	0	1	t	0	2
DEED Cinele	2	3	9	9	5	4	30
REEP Single Station Predictors in	3	8	11	24	12	8	63
Raw Dummy Form	4	2	5	5	3	4	19
	5	28	54	108	137	1603	1930
	Total	41	79	147	158	1619	2044
		H <u>1</u> :	ts = 10	639	$\overline{P} = .$	2678	
	P _g .	0187	•0336	•0564	.065	8 .0932	

•				Actual	L		
	Group	_1_	2	3_		5_	Total
	1	2	1	0	2	3	8
	2	6	11	9	5	3	34
REEP Single	3	6	12	26	9	5	58
Station Predictors in	4	4	7	13	8	6	38
Boolean Form (Pairs)	5	23	48	99	134	1602	1906
	Total	41	7 9	147	158	1619	2044
•		Hi	ts = 16	649	$\widehat{P} = .$	2676	
	Pg.	.0184	.0326	.0567	.066 0	.0939	

Table 7-6c

Atlantic City 3-hour Visibility (Independent Sample)

	Actual						
	Group	1	2	3	4_	5_	Total
	1	8	6	3	0	3	20
REEP Single	2	0	2	6	0	5	13
Station Predictor3 in	3	1	3	0	0	0	4
Raw Dummy Form	4	0	0	0	0	0	0
•	5	33	35	69	93	1777	2007
	Total	42	46	78	93	1785	2044
		H1	ts = 17	187	$\overline{P} = .$	1796	
	Pg.	.0167	.0197	.0326	.0 392	.0713	

				Actual	L		
	Group	1	2_	3	4	5_	Total
	1	16	9	7	1	4	37
REEP Single	2	0	1	0	0	3	4
Station Predictors in	3	0	0	0	0	0	0
Boolean Form (Pairs)	4	0	0	0	0	0	0
,	5	26	36	71	92	1778	2003
	Total	42	46	78	93	1785	2044
		H	its = 17	795	$\overline{P} = .1$	1788	
	P _g	.0165	.0201	.0327	.0389	•0705	

Table 7-6d

Atlantic City 7-hour Visibility (Independent Sample)

				Actual	Ļ		
	Group	1_	2	3_	4_	5	Total
	1	o	0	0	O	0	0
REEP Single	2	0	0	0	O	C	0
Station Predictors in	3	0	0	0	0	0	Q
Raw Dummy Form	4	0	0	0	0	0	0
•	5	43	38	90	99	1774	2044
	Total	43	38	90	99	1774	2044
		Hi	ts= 177	4	$\overline{P} = .$	2 17 0	
	Pg.	0200	.0180	.0401	•0444	•0945	

	Group	1	2_	Actual	L 4_		Total
	1	0	0	0	0	0	0
REEP Single	2	0	0	0	0	0	0
Station Predictors in	3	0	0	0	0	0	0
Boolean Form (Pairs)	4	0	0	0	0	0	0
	5	43	38	90	99	1774	2044
	Total	43	38	90	99	1774	2044
		Hi	ts = 17	74	$\overline{P} = .$	2140	
	$P_{\mathbf{g}}$.	.0196	.0178	.0398	.0443	.0924	

Table 7=7a

Comparison Between REEP Forecasts Using Single-Station Predictors in Raw Dummy Form, Single-Station Predictors in Boolean Pairs, All the Dummy Predictors from the 13-Station Network*, and Persistence*.

ACY Ceiling, 3-hr Forecast (Independent Sample)

		•
Hits	Single-Station Dummies	1719
	Single-Station Boolean Pairs	1721
	Network Dummies	1728**
	Persistence	1702
P Score	Single-Station Dummies	.2246
	Single-Station Boolean Pairs	.2275
	Network Dummies	.2135**
	Persistence	.2385
		-

ACY Ceiling, 7-hr Forecast (Independent Sample)

Hits	Single-Station Dummies Single-Station Boolean Pairs Network Dummies Persistence	1639 1649 1665** 1588
P Score	Single-Station Dummies Single-Station Boolean Pairs Network Dummies Persistence	.2678 .2676 .2600** .2899

^{*}See Experiment No. 1.

^{**}Asterisks are used to denote superiority.

Table 7-7b

Comparison Between REEP Forecasts Using Single-Station Predictors in Raw Dummy Form, Single-Station Predictors in Boolean Pairs, All the Dummy Predictors from the 13-Station Network*, and Persistence*.

ACI VISID	lity, 3-hr forecast (independent	Sample
Hits	Single-Station Dummies Single-Station Boolean Fairs Network Dummies Persistence	1787 1795** 1794 1756
P Score	Single-Station Dummies Single-Station Boolean Pairs Network Dummies Persistence	.1796 .1788** .1800 .1910

ACY Visibi	lity, 7-hr Forecast (Independent	Sample)
Hits	Single-Station Dummies Single-Station Boolean Pairs Network Dummies Persistence	1774** 1774** 1773 1674
P Score	Single-Station Dummies Single-Station Boolean Pairs Network Dummies Persistence	.2170 .2140** .2150 .2270

^{*}See Experiment No. 1.

^{**}Asterisks are used to denote superiority.

EXPERIMENT 8. Combination of Selected Predictors from Network and Single-Station Boolean.

Purpose

To determine the extent of the improvement in the forecast when using the combined predictors selected by two separate methods.

Procedure

The 58 predictors selected by REEP in the four selection runs (CIG + 3 hrs, CIG + 7 hrs, VIS + 3 hrs, VIS + 7 hrs) using all the dummy predictors of the 13-station Atlantic City network (see Experiment No. 1) were combined with the 53 single-station predictors selected using the Boolean-paired predictors of the forecast station (see Experiment No. 7). Eliminating the duplication of predictors selected in these two ways resulted in 78 predictors, which were used in this experiment (Table 8-3). Four prediction runs were made and the results compared with the results using the network predictors (Experiment No. 1) and the Boolean-paired predictors (Experiment No. 7).

Predictands

As before, the predictands are divided into five operationally significant intervals of ceiling and visibility (Table 8-1). The specifications of the predictands are listed in Table 8-2.

Predictors

The 78 predictors used in this experiment are shown in Table 8-3, with the number of occurrences of each in the developmental sample of 7956 observations also shown. The specifications and limits of the dummy variables are as previously indicated in Table 1-4.

Data Sample

The data sample consists of 10,000 observations selected at random from the ten-year period, 1 January 1949 to 31 December 1958. The developmental sample consists of 7955 observations from the first eight years of the data sample and the verification sample consists of 2044 observations from the last two years of the ten-year period.

Results

The predictors selected by REEP for the four selection runs are shown in Tables 8-4a to 8-4d. The REEP regression equation coefficients for each group of the predictand is also shown. Contingency tables (Tables 8-5a to 8-5d) show the forecast-versus-observed frequencies for the 3-hour and 7-hour predictions of ceiling and visibility using the combined predictors as previously described. The number of correct forecasts (hits), the Brier and Allen P scores, and the individual group contributions to the overall P score are given. The comparison of the hits and the P scores achieved by these combined predictors with the hits and P scores of the network predictors alone, and the Boolean-paired single station predictors alone, is shown in Table 8-6.

The results of this combined study are a decided improvement over either the network or the single station Boolean predictors taken separately. This suggests that Boolean predictors generated between network variables might even improve upon the results obtained in the present combination.

Table 8-1

Definition of Predictand Groups for Atlantic City Municipal Airport

Group <u>Number</u>	<u>Cei</u>	ling Intervals
1	0 ft ≤	Ceiling < 200 ft
2	200 ft <	Ceiling < 500 ft
3	500 ft ≤	Ceiling < 1000 ft
4	1000 ft ≤	Ceiling < 3000 ft
5	3000 ft <	Ceiling

Group Number	Visibility Intervals					
1	. 0 mi ≤	Visibility	< 1/2 mi			
2	1/2 mi ≤	Visibility	< 1 mi			
3	1 mi ≤	Visibility	< 2 mi			
4	2 mi ≤	Visibility	< 3 mi			
5	3 mi ≤	Visibility				

Table 8-2
Specification of Predictands - Atlantic City Municipal Airport

		Predictand		
	1	2	3	4
Predictand variable	CIG	CIG	VIS	VIS
Forecast intervalhours (H)	3	7	3	7
Number of Groups (G)	5	5	5	5
Observations in Group 1 (n ₁)	100	135	153	167
Observations in Group 2 (n ₂)	281	272	125	130
Observations in Group 3 (n ₃)	385	420	200	230
Observations in Group 4 (n ₄)	660	619	286	283
Observations in Group 5 (n ₅)	6530	6510	7192	7146
Total dependent sample size (N)	7956	7956	7956	7956
Number of independent observations in the dependent sample (n)	2652	2652	2652	2652
Total independent sample size (M)	2044	2044	2044	2044
Number of available predictors (P)	78	78	78	78

Table 8-3

The 78 Dummy Predictors Used in Experiment 8

(See Table 1-4 for limits and specifications of each dummy)

Predictor Number	Station	Element	Durany	Number of Occurrences
1	ACY	TOD	1	3994
2	NEL	CIG	3	411
3	NEL	TCA	3 2	2671
	NEL	WEA	1	5042
4 5 6	NEL	WEA	2	423
6	NEL	WEA	9	845
7	PHL	CIG	1	42
8	PHL	CIG	5	6726
9	PHL	WND	5 3 1	1192
10	PHL	WEA		4760
11	PHL	WEA	7	25
12	SBY	CIG	4	654
13	SBY	CIG		6678
14	SBY	VIS	5 2	91
15	SBY	VIS	5	7438
16	SBY	WEA	.5	319
17	SBY	WEA	9	751
18	MDT	VIS	2	107
19	ACY	CIG	1	109
20	ACY	CIG	2	263
21	ACY	CIG		410
22	ACY	CIG	3 4 5	661
23	ACY	CIG	Š	6513
24	ACY	CIG	(1)	53
25	ACY	CIG	(6)	146
26	ACY	VIS	1	139
27	ACY	VIS	2	115
28	ACY	VIS	3	213
29	ACY	VIS	4	274
30	ACY	VIS	Š	7215
31	ACY	RLH		1262
32	ACT	SCL	1	209
33	ACY	TCA	2	2633
34	ACY	WEA	1	5721
35	ACY	WEA	9	689
36	DCA	CIG	š	283
37	DCA	CIG	5	6943
38	DCA	VIS	5	7568
39	DCA	RLH	ž	526
40	DCA	WEA	3 1 2 1 9 3 5 5 3 2	423

Table 8-3 - Continued

Predictor Number	Station	Element	Dummy	Number of Occurrences
41	DCA	WEA	9	512
42	ORF	RLH	9 3	791
43	PSB	CIG	1	206
44	PSB	RLH	3	1595
45	PSB	WEA	3 8 3 2	43
46	SWF	WND	3	1007
47	IDL	VIS	3	174
48	IDL	WND		1025
49	ACY	CIG	(7)	123
50	ACY	WND	4	1676
51	ACY	WND	5 2 2	2976 1418
52 50	ACY	RIH	2	•
53	ACY	WEA		395
54	and ACY	TOD DOY	1 1	841
55	and ACY	TOD	2	258
	ACY	WEA	9	•
F/	ACY	TOD	3	21.2
56	and ACY	CIG	4	243
	, ACY	TOD	4	***
57	and ACY	WEA	9	118
***	ACY	TOD	4	000
58	and ACY	WEA	12	2 9 0
	ACY	TOD	z	
59	and ACY	RLH	5 2	505
60	and ACY	TOD	5 3	425
	ACY ACY	RLH	3	
4	ACY	TOD	5	160
61	and ACY	WEA	5 9	100
_	ACY	TCO	5	
62	and ACY	WEA	10	105
63	and ACY	DOY	1	578
	ACY	RLH	3	-
41	ACY	CIG	3 2	202
64	and ACY	TCA	2	383
• -	ACY	CIG	5	1-1.
65	and ACY	VIS	5 5	6264
66	and ACY	CIG	5 1	5277
	ACY ACY	WEA	1	

Table 8-3 - Continued

Predictor Number	Station	Element	Dummy	Number of Occurrences
67	and ACY	CIG TCA	(8) 2	332
68	and ACY	WND TCA	1 2	233
69	and ACY	WND TCA	2 2	496
7 0	and ACY	WND TCA	3 1	538
71	and ACY	WND TCA	3 2	754
72	and ACY	WND RLH	4 3	236
73	and ACY	wnd TCA	4 2	492
74	and ACY	WND TCA	5 2	658
75	and ACY	WEA TOD	(1-8) 2	182
76	and ACY	WEA DOY	(1-8) 1	215
7 7	and ACY	wea rlh	(1 - 8) 3	424
78	and ACY	wea Wea	(1 -8) 9	273

Table 8-4a

Selected Predictors and REEP Equations

(Combined Network and Single Station Boolean Predictors)

Atlantic City 3-hr Ceiling

	Sele	cted I	Predictors			cients			quations
Order			Element	Dummy	A ₁	A ₂	A ₃	A ₄	A ₅
1		ACY	CIG	5	•044	014	008	168	.146
2		ACY	CIG	í	.264	.215	.003	295	188
3		PHL	ÇIG	5	.008	021	066	129	.208
4		ACY	CIG	2	.062	.262	•009	216	118
5		ACY	TCD	5	161	01.5	000	057	010
,	and	ACY	WEA	9	.164	•015	082	057	040
6	and	ACY	CIG	3 2	.006	.038	.188	157	075
•		ACY	TCA	2	***************************************	•0)0	•100	•• > 1	•017
7		DCA	CIG	5	•004	021	050	050	.117
8		SBY	CIG	5	-,014	057	034	006	.110
9		NEL	TCA	2	•003	.007	.010	.042	062
10		ACY	CIG	5	٥٢٥	004	005	000	447
10	and	ACY	VIS	5	053	008	035	020	.115
11		DCA	RIH	3 3	.011	.067	.000	048	030
12		NEL	CIG	3	008	010	.085	023	044
13	and	ACT	WEA	(1-8)	026	000	ഹാ	054	
כי	gin	ACY	WEA	9	- •038	•099	003	051	007
14		IDL	WND	2	•009	.018	.016	•030	074
15		SBY	· CIG	4	016	073	026	.098	.017
16		SWF	WND	3	.007	.023	.021	•019	071
17		ACY	CIG	(6)	007	016	041	.171	108
18		SBY	WEA	2	006	.070	009	.054	109
19		NEL	WEA	2	018	.003	.072	037	020
20		ACY	CIG	2	004	073	.075	009	.012
21	4	ACY	CIG	(8)	000	01.5	000	045	
21	and	ACY	TCA	2	.002	015	.002	.087	077
22		ACY	VIS	1	•069	052	063	•035	.011
23	924	ACY	TOD	3	000	01.4	024	44 5	004
4)	and	ACY	CIG	4	003	040	031	.115	036
			Additive C	onstant:	,009	.116	.190	.381	•305

Table 8-4b

Selected Predictors and REEP Equations

(Combined Network and Single Station Boolean Predictors)

Atlantic City 7-hr Ceiling

Selected Predictors					Coeffi	cients	of the	RREP Equations	
Order			Element	Dumy	A	A ₂	A ₃	A ₄	A ₅
1		PHL	CIG	5	.003	038	045	084	.164
2		DCA	CIG	5	001	001	040	074	
3	and	ACY	TOD WEA	5 9	.174	•033	006	100	101
4	•	ACY	TCA	2	007	020	.000	.052	026
5		IDL	WND	2	002	3022	.040	.035	096
5 6		PHL	WND	3	.023	.012	.025		
7		ACY	CIG	3 5	006	022	029	070	
1 8		DCA	WEA	2	016	.052	.117	026	127
9		NEL	WEA	9	.014	.019	.056	.011	100
	_	ACY	WND	2					
10	and	ACY	TCA	2	•020	.067	.093	.012	192
11	and	ACY	WND TCA	3 2	.025	.063	.055	000	142
12	and	ACT	TOD	9	.104	.017	029	076	017
13	and	ACY	TOD	1	017	022	032	.066	.006
14	and	ACY ·	DOY RLH	1 - 3	005	~•038	.082	.029	068
15		DCA	CIG	3	.000	.088	003	053	032
16		ACY	CIG	2	008	.087	002	127	.051
17		ACY	SCL	1	.073	041	037	022	.027
18		SBY	WEA	9	.011	.046	.002	.030	088
19		PSB	RLH	3	.011	.004	.019	.022	056
20	and	ACY ACY	HEA TOD	(1-8) 2	014	.010	.106	035	067
21		PSB	CIG	1	.002	.076	~.037	025	016
			Additivo	Constant:	.007	.064	.111	.237	.581

Table 8-4c

Selected Predictors and REEP Equations

(Combined Network and Single Station Boolean Predictors)

Atlantic City 3-hr Visibility

Selected Predictors									quations
Order		-	Element	Dummy	_A ₁	A ₂	A ₃	A ₄	A ₅
1		ACY	VIS	5	034	017	056	053	.161
2		ACY	VIS	1	•229	.037	023	158	085
3		ACY	RLH	3 2	.027	.027	.036	.023	114
4 5 6		ACY	VIS	2	•089	.173	019	077	166
5		DCA	WEA	9 5	•009	.010	.029	.047	095
6		SBY	VIS	5	001	020	026	060	.107
~	,	ACY	TOD	5	400	0//			24.2
7	and	ACY	WEA	9	.122	•066	.043	019	212
_		ACY	TOD	5	_				
8	and	ACY	WEA	10	.131	001	•028	030	127
9		NEL	WEA	9	.008	•011	.020	.052	091
10		ACY	WEA	(1-8)	068	000	01.5	000	045
10	and	ACY	RLH	3	000	023	.015	009	•085
11		ACY	WEA	1	001	003	008	045	.056
12		MDT	VIS	2 3	019	.021	.119	027	095
13		ORF	RLH	3	.035	•009	•004	•005	~. 053
4.		ACY	WND	4	005	001	000	200	401
14	and	ACY	RIH	3	005	031	072	•003	.104
15		ACY	CIG	1	.102	008	.001	017	078
16	4	ACY	WEA	(1-8)	00/	201	0.00	071	410
10	and	ACY	TOD	2	•006	.006	.053	.078	143
17	and	ACY	TOD	4	വാർ	01.0	01.0	022	- 1/4
• •	GIM	ACY	WEA	9	.028	.048	.042	•023	141
	Additive Constant:			.034	.042	•093	.164	.667	

Table 8-4d

Selected Predictors and REEP Equations

(Combined Network and Single Station Boolean Predictors)

Atlantic City 7-hr Visibility

Selected Predictors					_	cients			uations
Order			Element	Dummy	A	A ₂	A3_	A_4	A ₅
1	and	ACY ACY	CIG VIS	5 5	010	005	019	012	.046
2	and	ACY ACY	TOD RLH	5 3	.083	.017	.046	•035	180
3		DCA	VIS	5	040	033	035	071	.179
4		ACY	TCD	1	019	009	011	013	.052
5		PHL	WEA	1	009	004	018	022	.054
5 6 7		ACY	WEA	9 2 3 3	.063	•030	.058	.022	173
7		DCA	WEA	2	026	018	.062	.078	096
8		IDL	VIS	3	-085	003	037	.017	062
9		PHL	WND	3	.013	.020	.020	.013	067
10		ACY	VIS	2	•061	.087	023	036	089
11	and	ACY ACY	TOD WEA	2 9	070	054	033	011	.168
12	and	ACY ACY	TOD RLH	5 2	.017	•016	.036	•042	111
13	and	ACY ACY	TOD WEA	12	.028	.024	.032	.034	118
14		ACY	CIG	2	001	•061	.019	020	059
15	and	ACY ACY	WND TCA	2 2	003	•019	.035	•034	086
			Additive	Constant:	.069	.049	.076	.117	-689

Table 8-5a

Atlantic City 3-hr Ceiling (Verification Sample)

	Group	11	2	Actual	L 4_	5	<u>Total</u>
REEP Using Combined Predictors	1 2 3	14 14 0 0	1 35 10	2 25 40	0 7 14	3 2 6	20 83 70
COMMISSION FIGURE COLD	4 5	16	6 21	19 41	44 100	21 1603	90 1781
	Total	44	73	127	165	1635	2044
		Н	its = 1	736	$\overline{P} = .2$	2114	
1	${\mathtt P}_{{\mathtt g}}$.0155	.0276	•0422	•0600	.0660	
				Actual	L		
	Group	_1	2	3	4		Total
REEP Using	1 2	6 19	4 34	1 25	0 8	1 4	12 90
Network Predictors	2 3	0	11	42	14	5	72
(See Experiment No. 1)	4 5	1 18	6 18	19 40	41 102	20 1605	87 1783
	Total	44	7>	127	165	1635	2044
		H	its = 1	728	$\overline{P} = .2$	2135	
·	Pg	.0163	.0277	.0423	.0605	.0666	
				Actual	: -		
	Group	_1	2	3_		5	Total
REEP Using Single-Station Boolean Predictors	1 2 3	12 19 0	3 3 8 9	1 27 42	0 10 10	1 10 6	17 104 . 67
	3 4 5	1	7	16	40	29	93
(See Experiment No. 7)	•	12	16	41	105	1589	1763
	Total	لبل	73	127	165	1635	2044
			its = 1		$\bar{\mathbf{F}} = .2$		
	Pg	.0158	.0277	-0442	.0626	.0772	

Table 8-5b

Atlantic City 7-hr Ceiling (Verification Sample)

	Group	_1_	2	Actual	r	5_	Total
	1	0	2	1	2	1	6
	2	7	12	6	0	2	27
RKEP Using	3	2	18	39	14	9	82
Combined Predictors	4 5	5	4	14	13	4	40
	כ	27	43	87	129	1603	1889
	Total	41	79	147	158	1619	2044
		I	iits = 1	667	$\overline{P} = .$	2576	
r	Pg	.0184	.0320	.0531	.0661	.0879	
				Actual	L .		
	Group	_1_	2	3	4	5_	Total
	4	•	_		_		
REEP Using	1	0	. 0	0	0	0	0
Network Predictors	2 3	3 7	9 19	9 34	1 12	2 9	24 81
	4	ខំ	7	22	20	6	63
(See Experiment No. 1)	5	23	44	82	125	1602	1876
	Total	41	79	147	158	1619	2044
		H	iits = 1	665	$\overline{P} = .2$	-	
	$^{\mathrm{P}}_{\mathbf{g}}$.0180	.0323	.0540	.0666		
				Actual			
	Group	1	2	3	4	5	Total
REEP Using	1	2	1	^	2	•	A
Single-Station	2	6	11	0 9	2 5	3 3	8
Boolean Predictors	3	6	12	26	ģ	5	34 58
	4	4	7	13	á	6	38
(See Experiment No. 7)	5	23	48	99	134	1602	1906
	Total	41	79	147	158	1619	2044
		H	ita = 10				
	Pg		.0326				

Table 8-5c

Atlantic City 3-hr Visibility (Verification Sample)

	Group	1	2	Actual	4	5_	<u>Total</u>
REEP Using Combined Predictors	1 2 3 4 5	16 2 0 0 24	9 2 3 1 31	3 3 0 4 68	0 0 1 3 89	2 5 1 0 1777	30 12 5 8 1989
	Total	42	46	78	93	1785	2044
	Pg	.0162	.0200	.0330	$\overline{P} = .1$		
				Actual			
	Group	1	2	3_	4	5_	Total
REEP Using Network Predictors	1 2 3 4	13 2 0 0	9 5 2 0	5 4 0 3	1 0 0 4	4 9 0 0	32 20 2 7
(See Experiment No. 1)	5	27	30	66	88	1772	1983
	Total	42	46	78	93	1785	2044
		Н	its = 1	794	$\overline{P} = .1$	800	
	$^{\mathrm{P}}_{\mathbf{g}}$.0169	•0199	•0331	•0395		
	Group	_1	2	Actual	4		<u>Total</u>
REEP Using Single-Station Boolean Predictors	1 2 3 4	16 0 0	9 1 · 0	7 0 0 0	1 0 0 0	4 3 0 0	37 4 0 0
(See Experiment No. 7)	4 5	26	36	71	92	1778	2003
	Total	42	46	78	93	1785	2044
		Hits = 1795					
	Pg	.0165	.0201	•0327	•0389	.0705	

Table 8-5d

Atlantic City 7-hr Visibility (Verification Sample)

	Group	1	2	Actual	4	5_	Total
REEP Using Combined Predictors	1 2 3 4 5 Total	1 0 0 0 42 43	0 0 0 0 38 38	1 0 0 0 0 89 90	1 0 0 0 98 99	1 0 0 0 1773 1774	4 0 0 0 2040 2044
	Pg	.0193	its = 1 .0179	.0?97	$\overline{P} = .2$		
	Group	_1	2	Actual	4	5_	<u>Total</u>
REEP Using Network Predictors (See Experiment No. 1)	1 2 3 4 5	0 0 0 43	0 0 0 0 38	1 0 0 0 89	0 0 0 0 99	1 0 0 0 1773	2 0 0 0 2042
	Total	43 38 90 99 Hits = 1773 $\overline{P} =$				1774 2150	2044
	Pg	.0196	.0178	.0394	.0446		
	Group	1	2	Actual 3	. 4		Total
REEP Using Single-Station Boolean Predictors	1 2 3 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
(See Experiment No. 7)	5	43	38	90	99	1774	2044
	Total	43 H	38 its = 1	90 774	99 P = 2	1 <i>7</i> 74 2140	2044
	$P_{\mathbf{g}}$.0178				

Table 8-6

Comparison Between (1) Combined Predictors Selected from Network and Single-Station Boolean, (2) Network Predictors Alone*, and (3) Single-Station Boolean Predictors Alone**.

(Verification Sample)

<u>A</u> (CY Ceiling, 3-hour Forecast	
	Combined Predictors	1736#
Hits	Network Predictors	1728
	Single-Station Predictors	1721
_	Combined Predictors	.2114#
P Score	Network Predictors	.2135
	Single-Station Predictors	.2275
<u>A</u> (CY Ceiling, 7-hour Forecast	
	Combined Predictors	1667#
Hits	Network Predictors	1665
	Single-Station Predictors	1649
	Combined Predictors	.2576#
P Score	Network Predictors	.2600
	Single-Station Predictors	.2676
ACY	Visibility, 3-hour Forecast	
	Combined Predictors	1798#
Hits	Network Predictors	1794
	Single-Station Predictors	1795
-	Combined Predictors	.1772#
P Score	Network Predictors	.1800
	Single-Station Predictors	.1788
ı me		

ACY Visibility, 7-hour Forecast

Hits	Combined Predictors Network Predictors Single-Station Predictors	1774# 1773 1774#
P Score	Combined Predictors Network Predictors Single-Station Predictors	.2141 .2150 .2140#

^{*}See Experiment No. 1. **See Experiment No. 7. #Denotes superiority.

5.0 DISCUSSION

The REEP procedure has the following features to recommend its use over MDA:

Feature 1: The series of G regressions in REEP need not be restricted to mutually exclusive or exhaustive events as in MDA. Thus, any combination of conditions may be done simultaneously.

For example, the following series of predictand elements might be considered in a single REEP analysis, where G = 15.

$$Y_1$$
 = equal to unity if 0 ft \leq ceiling < 200 ft

 Y_2 = equal to unity if 200 ft \leq ceiling < 500 ft

 Y_3 = equal to unity if 500 ft \leq ceiling < 1000 ft

 Y_4 = equal to unity if 1000 ft \leq ceiling < 1500 ft

 Y_5 = equal to unity if 1500 ft \leq ceiling

 Y_6 = equal to unity if 0 mi \leq visibility < 1/2 mi

 Y_7 = equal to unity if 1/2 mi \leq visibility < 1 mi

 Y_8 = equal to unity if 1 mi \leq visibility < 2 mi

 Y_9 = equal to unity if 2 mi \leq visibility < 3 mi

 Y_{10} = equal to unity if 3 mi \leq visibility

 Y_{11} = equal to unity if 0 ft \leq ceiling < 200 ft or 0 mi \leq visibility < 1/2 mi

 Y_{12} = equal to unity if 200 ft \leq ceiling < 500 ft or 1/2 mi \leq visibility < 1 mi

 Y_{13} = equal to unity if 500 ft \leq ceiling < 500 ft or 1/2 mi \leq visibility < 2 mi

٠٠.٠.

 Y_{14} = equal to unity if Y_{14} = equal to unity if Y_{15} or Y_{14} = equal to unity if Y_{15} or Y_{15} or Y

This feature has been made use of in Experiment 5.

Feature 2: Predictor selection in REEP is not biased by the group frequencies as is the case in MDA predictor selection. This is because each predictand variable (e.g., Y_1, Y_2, \dots, Y_G) is considered separately and distinctly during selection. Most importantly, at the time of termination of selection, the significance test says there is no predictor able to provide a significant contribution to any one of the G predictand variables. For example, if the series of predictand variables is the usual five ceiling categories then predictors able to discriminate category 1 (ceiling < 100 ft) are being considered on an equal basis with those able to discriminate category 5 (ceiling \geq 1500 ft). Another important feature in REEP selection is that the effective degrees of freedom, after account is taken of serial correlation, may be determined for each predictand variable separately and distinctly. For example, high ceiling conditions have a very high serial correlation (low effective degrees of freedom for nearly consecutive observations) whereas low ceiling conditions have a low serial correlation (high

effective degrees of freedom for consecutive observations).

The facility to avoid the use of an average, as is unfortunately required in MDA, aids somewhat in selecting predictors having discriminatory information regarding the low conditions.

Feature 3: The mode of calculation in the REEP procedure has an additive structure in place of the multiplicative structure in MDA.

That is, for both development and operational use REEP needs only the logical and arithmetic operations of addition which are faster relative to the arithmetic operations of multiplication required in the distance neighborhood portion of MDA. This has a decided effect on the speed with which both the statistical development and operational forecasting may be performed using the two techniques. The factor is in favor of REEP over MDA by about four to one (confirmed) in development and by 300 to one (estimated) in making operational forecasts.

Feature 4: It appears that REEP permits physical and synoptic interpretation of the selected predictors and the effect each has on the probability of the event being forecast. For example, in Experiment 1 (Table 1-5c) it can be seen that if the 9th predictor is a one (condition PHL ceiling < 200 ft is being observed) then .183 is added to the probability that the visibility condition three hours hence will be < 1/2 mile, whereas the other visibility categories add or subtract the following probability amounts: .018, -.079, -.084, and

-.039. However, the danger still exists for misinterpretation as a result of intercorrelation among predictors.

Feature 5: In operational forecasting, the REEP procedure can deal more efficiently than MDA with the problem of missing data or with previously unobserved weather combinations. The reason for this is that the output from REEP is a set of IBM cards containing a series of regression equations and a matrix and vector of crossproducts. If the value of a predictor variable is unavailable for making an operational forecast, a new equation omitting the missing predictor value may be generated from the output information. This operation takes very little time on a computer even when more than one predictor value is missing. MDA on the other hand has to have a matrix diagonalization performed to account for the missing predictor or predictors. In addition, discriminant functions must be calculated for the entire developmental sample of data. In REEP there is obviously no difficulty in making a prediction when the combination of predictors is not observed in the developmental sample. However, in MDA the output (on magnetic tape) is a table within which all predictor combinations observed in the developmental sample are given with the corresponding probability forecasts. When a new combination of events arises probabilities must be determined using distance neighborhood. The frequency of occurrence is about one out of every ten operational forecasts. This requirement is very

time consuming making it much less efficient than REEP in those instances.

6.0 FUTURE WORK

The most profitable single item for future effort is the modification of the prediction model so as to introduce some form of nonlinear capability. A suitable approach to this problem has already been suggested by J. G. Bryan. The model consists of a linear exponential function which restricts the probability estimates to the interval (0,1). An additional feature of this model is that it uses the present REEP selection method to obtain a set of selected predictors and the REEP procedure to form a first estimate of the required coefficients. It therefore does not require an extended developmental period before it can be tested.

Another area for possible future work is a study of the selection criterion employed by REFP. The MDA criterion has been the subject of extensive research. Several possible alternatives are available and some have been looked into but none have been subjected to a fair comparison with the present method.

A combination of MDA and REEP to form a somewhat different forecast system should also be considered. This consists of applying the REEP method to the points enclosed in the Fix-Hodges neighborhood used by MDA. The purpose of this approach would be to replace the relative frequencies, now used as probabilities within the neighborhood, by the REEP estimates. While a detailed discussion of this method cannot be included here, it can be reported that this has been done for some selected cases with results which are quite encouraging.

Bryan, J. G., 1963: Parametric estimation of probabilities in multiple group classification. Unpublished manuscript. The Travelers Research Center, Inc., 13 pp.

The matter of transforming continuous predictors to dummy predictors needs further investigation. Considerations include: means for introducing as much synoptic and/or dynamic information as possible into the dummies; experimentation with different logical combinations of the dummies; the effect of suppressing the within class variance of the continuous predictors which is an integral part of the dummying process; and the forcing of a complete set of dummies onto the selection program whenever one of the sets is selected.

In the area of application of the technique many experiments remain to be carried out to determine its characteristics on different predictands and different data. The possibility of selecting a single set of predictors applicable to several predictands distributed either in space or in time has not been thoroughly explored. Several more parameters remain to be tested for both prediction and specification. Attempts to make predictions of continuous variables by increasing the number of predictand groups is also worth investigating. In summary, a great deal of work remains to be done in the application area.

7.0 ACKNOWLEDGEMENTS

Development of the REEP procedure was substantially aided by the efforts of Mr. Thomas G. Johnson. Programming of REEP for the IBM-7090 was performed by Mr. Johnson, Miss Edna L. Sorenson, and Miss Katherine Fogarty. Mr. Karl A. Abrahamson assisted in the preparation of the report. The manuscript was typed by Mrs. Edward Miller. The author is grateful to all of these individuals.

8.0 BIBLIOGRAPHY

- 1. Lund, Iver A., 1955: "Estimating the Probability of a Future Event from Dichotomously Classified Predictors." <u>Bulletin of the American Meteorological Society</u>, Vol. 36, No. 7, pp. 325-328.
- 2. , 1961: "Some Application of the Method of Least Squares to Estimating the Probability of a Future Event." CAD Research Notes, No. 51. Geophysics Research Directorate, Air Force Cambridge Research Laboratories, Bedford, Massachusetts, 13 pp.

art

- 3. Cox, D. R., 1958: "Two Further Applications of a Model for Binary Regression." <u>Biometrika</u>, Vol. 45, pp. 562-565.
- Journal of the Royal Statistical Society, Series B, Vol. 20 pp. 215-242.
- 5. Warner, Stanley L., 1963: "Multivariate Regression of Dummy Variates Under Normality Assumptions." <u>Journal of the American Statistical Association</u>, Vol. 58, No. 304, pp. 1054-1063.
- 6. Miller, Robert G., 1962: "Statistical Frediction by Discriminant Analysis." Meteorological Monographs, Vol. 4, No. 25, American Meteorological Society, Boston, 54 pp.