- Motivation: we know that we can decompose a symmetric matrix into $A = QDQ^T$ using eigenvalue and eigenvector analysis.
- As it turns out, we can also decompose any $m \times n$ matrix $A = U \Sigma V^T$
 - \circ $A = U\Sigma V^T$ is the singular value decomposition.
 - \circ *U* is an $m \times m$ orthogonal matrix and *V* is an $n \times n$ orthogonal matrix.
 - o Σ is an $m \times n$ block matrix with the form $\Sigma = \begin{pmatrix} D & O \\ O & O \end{pmatrix}$, where D is a diagonal.
 - \circ The column vectors of U are the **left-singular vectors** and the column vectors of V are the **right-singular vectors**.
- For any $m \times n$ matrix A, consider $A^T A$.
 - $\circ A^{T} A \text{ is symmetric} \qquad (A^{T} A)^{T} = A^{T} A^{T^{T}} = A^{T} A$
 - \circ The **singular values** of *A* are the eigenvalues of A^TA . All eigenvalues of A^TA are real and non-negative.
 - O Note the utility of A^TA . It can be used to determine whether or not a matrix has linearly independent column vectors.
- Finding the singular value decomposition.
 - Note that $A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma \Sigma^T V^T$. $\Sigma \Sigma^T$ is just an $m \times m$ diagonal matrix with the diagonal entries as the singular values squared.
 - Note that $AV = U\Sigma$, so $A\vec{v}_i = \vec{u}_i \sigma_i$.
 - o Step 1: Compute $A^T A$.
 - O Step 2: Compute the singular values of A by taking the square roots of the eigenvalues of $A^{T}A$.
 - o Step 3: Compute the right-singular vectors in V by finding the normalized eigenvectors of $A^T A$.
 - Step 4: Compute the left-singular vectors in U by using $\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i$.
 - Alternatively, you can find the normalized eigenvectors of AA^T .