NAVER DATA SCIENCE COMPETITION

WISCONSIN DIAGNOSTIC BREAST CANCER DATA SET

팀장: 이재융(19931001)

메일: jaeyung1001@naver.com

팀 구성원: 이재융(19931001) / 박해주(19940225)

"현생 인류의 영원한 숙제"

암이란 인류가 가장 무서워하고 가까이 있는 질병이다. 현재 암에 의한 사망 수는 타 질병들과 비교해 봐도 상위권이고 현대인의 환경 역시 암이 생기기 쉬운 상황이라 계속 증가추세에 있다. 또한 발생하고 조기발견 및 치료가 이루어지지 않으면 병기가 진행되면서 전이와 함께 사망률이 크게 증가하는 반면 비교적 완만히 죽어간다는 것이다. 하지만 암은 불치병이 아니다, 조기에 발견했을시 암을 이겨낼수 있으며 약 70%이상이 완치가 가능하다. 하지만 모든 일반인들이 의사가 아니기때문에 암을 발견하기가 쉽지가 않다. 따라서 우리는 유방 암에대한 여러가지 특징점들과 기계학습을 이용하여 일반인들도 쉽게 암을 진단할 수가 있는 솔루션을 제안한다.

DATA SET EXPLAINATION

- 데이터 출저 : <u>https://www.kaggle.com/uciml/breast-cancer-wisconsin-data#data.csv</u>

- 악성 암 환자 수: 212명, 양성 암 환자 수: 357명의 유방암에 관한 데이터
- 총 33 가지 feature data set

Feature Name	Explaination
Id	Patient id
Diagnosis	Whether Patient's cancer is malignant or benign
Radius	Distances from center to points on the perimeter
Texture	Standard deviation of gray-scale values
Perimeter	Size of the core tumor
Area	Cancer area
Smoothness	Local variation in radius lengths
Compactness	Perimeter^2 / area - 1.0
Concavity	Severity of concave portions of the contour
Concave points	Number of concave portions of the contour
Symmetry	Same as data name
[]_mean	Data value mean
[]_se	Data value standard error
[]_worst	Three max value mean from data
Fractal_dimension	Mean for "coastline approximation" - 1
Unnamed: 32	Nothing

ENVIRONMENT

개발환경은 다음과 같다

OS: Windows 10Language: Python

- Github URL: https://github.com/jaeyung1001/naver_competition

DATA ANALYSIS

저희는 주어진 csv 파일에 대해서 안에 어떤 데이터가 들어있고 또 어떠한 데이터형식으로 저장되어있는지확인해보았다. 결과는 다음 그림 1 과 같다.

```
In [2]:
           1 data = pd.read_csv('data.csv')
             data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 569 entries, 0 to 568
        Data columns (total 33 columns):
                                    569 non-null int64
        diagnosis
                                    569 non-null object
        radius_mean
                                    569 non-null float64
                                    569 non-null float64
        texture_mean
                                    569 non-null float64
        perimeter_mean
                                    569 non-null float64
        area_mean
                                    569 non-null float64
        smoothness_mean
                                    569 non-null float64
        compactness_mean
        concavity_mean
                                    569 non-null float64
        concave points_mean
                                    569 non-null float64
        symmetry_mean
                                    569 non-null float64
        fractal_dimension_mean
                                    569 non-null float64
                                    569 non-null float64
        radius_se
                                    569 non-null float64
        texture_se
                                    569 non-null float64
        perimeter_se
                                    569 non-null float64
        area_se
        smoothness_se
                                    569 non-null float64
                                    569 non-null float64
        compactness_se
        concavity_se
                                    569 non-null float64
        concave points_se
                                    569 non-null float64
                                    569 non-null float64
        symmetry_se
                                    569 non-null float64
        fractal_dimension_se
                                    569 non-null float64
        radius_worst
                                    569 non-null float64
        texture_worst
                                    569 non-null float64
        perimeter_worst
        area_worst
                                    569 non-null float64
                                    569 non-null float64
        smoothness_worst
        compactness_worst
                                    569 non-null float64
        concavity_worst
                                    569 non-null float64
        concave points_worst
                                    569 non-null float64
                                    569 non-null float64
        symmetry_worst
        fractal_dimension_worst
                                    569 non-null float64
                                    O non-null float64
        Unnamed: 32
        dtypes: float64(31), int64(1), object(1)
        memory usage: 146.8+ KB
```

Figure 1. Data description

Id 와 diagnosis 를 제외한 모든 데이터들이 float64 형식으로 저장되어있었고 총 569 줄의 데이터가 저장되어 있었다. 그림 2 와 같이 569 개의 데이터 중 악성 유방암 환자 데이터 수는 212 개, 양성 유방암 환자 데이터 수는 357 개가 있다.

암환자 데이터 수는: 212개, 정상환자 데이터 수는 357개

Figure 2. Count M/B cancer data

또한 저희는 그림 3 과 같이 각 데이터들의 boxplot 을 그리고 조사를 진행해 보았다.

Figure 3.Each data set boxplot

그림 3 의 boxplot 을 조사하면, 악성과 양성 암환자 데이터에 별로 차이가 없는 데이터그림을 볼수가 있다(ex. Symmetry_se, Texture_se, fractal_dimension_se 등). 우리는 이러한 데이터가 악성 암 판단 알고리즘에 불필요한 정보(정확도에 영향을 주는 데이터)라고 가정을 하고 악성&양성 암 판별과 다른 데이터 셋들의 pearson correlation coefficient 값들을 구해보았다. 결과는 다음과 같다.

Figure 4. Correlation

모든 데이터의 상관계수 값이 중요하지만 이번 분석에서 중요하게 봐야할것은 M 열에 있는 수치 값이다. M 열에 있는 수치 값을 살펴서 상관계수가 낮은 데이터를 삭제한다. 우리는 진행 당시 texture_se, texture_mean, texture_worst, symmetry_se, smoothness_se 데이터 값을 삭제하고 기계학습 알고리즘에 학습 시켰다.

TRAINING MODEL

악성 유방암 판단 여부 알고리즘은 총 세가지를 썻고, 딥러닝 알고리즘은 한가지를 적용해보았다.

- 기계학습 알고리즘
 - Logistic Regression
 - Decision Tree
 - Random Forest
- 딥러닝 알고리즘
 - Deep Neural Network

그림 5 는 우리가 적용한 기계학습 알고리즘중 하나인 Decision Tree 의 그래프를 그려본것이다.

Figure 5.Decision Tree graph

또, 다음과 같은 간단한 MLP 네트워크로도 성능을 확인해 보았다.

기존 머신러닝 알고리즘과 달리 MLP 에서는 제외되는 feature 없이 모든 feature 들을 다 사용 하여 예측을 했고 각 layer 의 parameter 들은 아래와 같다.

Input Layer: 30

Hidden Layer: 100

Activation function = Relu

Dropout rate = 0.1

Drop out 과 batch normalization 는 FC-layer 에 적용 되었다.

EXPERIMENTAL RESULTS

결과적으로 네 가지 알고리즘의 결과는 다음 표와 같다. 우리는 학습데이터와 평가데이터를 랜덤으로 0.66:0.33 로 나누어 평가를 하였고, 정확도는 아래 표와 같다.

```
In [78]: 1 print("LogisticRegression accuracy: {}%".format((precision_score(Y_test, predicted_Ir) * 100)))
2 print("DecisionTree accuracy: {}%".format((precision_score(Y_test, predicted_dt) * 100)))
3 print("RandomForest accuracy: {}%".format((precision_score(Y_test, predicted_rf) * 100)))
```

LogisticRegression accuracy: 91.80327868852459% DecisionTree accuracy: 90.32258064516128% RandomForest accuracy: 98.18181818181819

Algorithm	Accuracy
LogisticRegression	92%
Decision Tree	88%~90%
Random Forest	92%~98%
Deep Neural Network	96%~98%

가장 높은정확도를 보여준 Random Forest 과 DNN 알고리즘은 98%의 정확도를 보여주었으며, Decision Tree 의 정확도가 제일 낮게 나왔다.

우리는 분석 도중 다음과 같은 생각이 들었다. "이 정도면 엄청 높은 정확도인데 왜 그럼에도 불구하고 많은 사람들이 암으로 죽어 나갈까?" 여기엔 여러 가지 요인이 있을 수 있는데 그 중 하나는 데이터에 있었다. "실생활의 데이터도 과연 악성 암과 양성 암의 데이터가 5:5 비율로 존재를 할까?" 즉 실 생활의 데이터의 비율은 5:5 가 아닌 한쪽 편에 치우쳐져 있을 것이란 것이다. 이를 데이터 불균형 (Data imbalance) 문제라고 하며 현재 데이터 사이언스가 접목된 많은 분야에서 관심을 받고 있다. 우리는 이문제를 살펴보기 위해 다음과 같은 간단한 실험을 해보았다.

- 악성 암데이터 : 양성 암데이터 비율 → 6:4
 악성 암데이터 : 양성 암데이터 비율 → 7:3
- 다음과 같이 데이터 중 양성과 악성의 비율을 조절하여 detection 실험을 진행해 보았으며 결과는 다음과 같다.

Decision Tree 알고리즘 그렇게 큰 변화를 보여주지 않았고, Logistic Regresson 과 Random Forest 알고리즘은 악성 양성 데이터의 비율에 따라서 정확도가 떨어지는 것을 확인 할 수가 있었고 이는데이터 균형이 머신러닝 알고리즘의 결과에 영향을 미친 다는 것을 의미한다.