| DGA | 05                                                              |
|-----|-----------------------------------------------------------------|
| 1)  | Algorithm (A, K) {                                              |
|     | n:= A. length; C[O,, k] news Davenfeld;                         |
|     |                                                                 |
|     | for i=0,, k {                                                   |
|     | C[i]=0,                                                         |
|     |                                                                 |
|     | for i=0,,n{                                                     |
|     | C[A[i]] +=1;                                                    |
|     | 3                                                               |
|     | for i=1,, k{                                                    |
|     | CE;J+=CE:-1J;                                                   |
|     | 7                                                               |
| 2   |                                                                 |
| S   |                                                                 |
|     | In nun die Anzahl der Elemente, die in [a, 6] hiegen zu ahallen |
| 4   | vertet man einfach C[b]-C[a-1] aus                              |
|     | #{x \in A: x \le 6} #{\in x \in a}                              |
|     |                                                                 |
|     | # {xeA: a < x < 6} = # {xeA: x < 6} - # {xeA: x < a}            |
| (   | Fan CO, 6] ndarlich CC6].)                                      |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |
|     |                                                                 |

DAA US 2) n gante Zahlen zwischen 1 und n3-1 ges: Styprithmus, der die Zahlen in O(1) sortiet Radix Sort n 3-skellige Zahlen mit jedn Stelle in 80,..., n3 => Lemperit 0(3(n+n)) = 0(6 n) = 0(n) Algorithm (A) § n:= A. length; for i=0,1.3 { BE1,..., n], C[O,...n] nene Datafelder; for j=0,..,n { C[]=0! for j=1, ... n? C[A[j][i]] +=1; // A[j][i] ist die i-te Stelle da j-ten Zahl for j=1,...,n{ C[i]+=C[i-1]; for j=n,...,1{ BECEAC; JE: JJ] = AE; ]; CTAT; JC; JJ-=M copy B to A; veturn A;

DGA US ges: Bedenking von Ak 3) a) A... Adjazenzmalix A gill an welche Knoten über k wiele Kanten verbunden sind.  $\begin{array}{c|c}
A = \begin{pmatrix} 0 & 1 & 0 \\
1 & 0 & 1 \end{pmatrix} & A^2 = \begin{pmatrix} 1 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2 \end{pmatrix} & 0
\end{array}$ Die 2 bedentes, es gibt 2 unerschiedliche Verbindungen de Kanlen (2. B. 6 > a > 6 1 6 > c > 6). Beweis: Vallständige Suduktion nach k: k=1: klar AKE;, j] = Z AK-1Ei, l]·A[l, j] Nach Suchaktions vorransselving gill Ak- [i, I] an wie Viele verschiedene k-1-lange Verbindungen is zwischen i und l gibt. Falls AIl, j] = 1 gibt es also eine k-lange Vabindung zwischen i und j. Falls All, j J=0 gibt es keine => Z Ak- [i, l] A [l, j] Summint die Anzahl am k-langen Verbindungen zwielen i und j b) G... ungerichtete Graph, ohne Schlingen und Mehrfachkanten A. Adjizenzmanix von 9 ges: Anzahl Zyklen der Länge 3 ZA[l, l], da A' angibl wie viele Kanlenfolge der Länge 3 2w. je zwei Knoten existieren. Dannit es Zyklan der Lange 3 sind muss der Anjangsknoten - Endkarten sein, also interessient ung nur die Diagonale. Um die insgesamte Anzahl zu erhalten Summieren wir it ber die Diagonale von A3.



| 5) DFS (G, s, d=0) {             |                                       | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|----------------------------------|---------------------------------------|-----------------------------------------|
| c(s) = SCHWARZ;                  |                                       |                                         |
| if (d > max_d) {                 |                                       |                                         |
| max_node = s; max_d=d;           | 1 Sei x die max node no               | ach dem ersten DFS und                  |
| <b>1</b>                         | y die max mode nach                   | helen zweiten DFS.                      |
| for v∈ Adj(s) {                  | Angenommen der Du                     |                                         |
| if c(v)=WEISS{                   | mit U+x+V 1. U+y                      |                                         |
| DFS(Q, v, d+1);                  | @                                     |                                         |
| 3                                | (i)                                   |                                         |
| 3                                | <b>.</b>                              |                                         |
| 2                                | Sei ab die Lange 20                   | vischen a und b.                        |
|                                  | Da y am weitesten en                  | Henry voux ist                          |
| find-diameter (G,s) {            | => xp+py> xp+x                        | ou => py>pu                             |
| max_d=-1; max_node= NULL;        | xp+py > xp+p                          |                                         |
| for veV { c(v)=WE155; }          | Da cler Durchwerser                   |                                         |
| DFS(G,s);                        |                                       |                                         |
| max_d=-1;                        | => up+pv > up+px                      |                                         |
| for ver {clv)=wEiss;}            | up+pv > up+p;                         |                                         |
| DFS (G, max_node);               | Widerspruch (py>x                     |                                         |
| return max_d;                    | => x-y it der Durc                    | u mexer                                 |
| 3                                |                                       |                                         |
| Aufward DFS: (VI+1EI)            |                                       |                                         |
| Aufward finel-diameter: O(1V1)+0 | ( + E  ) + O(  V  ) + O(  V  + E  ) : | = 0(4  V  +21E1)=0(IV                   |
|                                  |                                       |                                         |
|                                  |                                       |                                         |
|                                  |                                       |                                         |
|                                  |                                       |                                         |