See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263940350

Reactivity of "Ligand-Free" Au+: C-H and C-C Activation versus π Coordination

ARTICLE in ORGANOMETALLICS · DECEMBER 2011

Impact Factor: 4.13 · DOI: 10.1021/om201035v

CITATIONS

2

READS

19

5 AUTHORS, INCLUDING:

Nicky Savjani

The University of Manchester

13 PUBLICATIONS 85 CITATIONS

SEE PROFILE

Simon J. Lancaster

University of East Anglia

68 PUBLICATIONS 2,539 CITATIONS

SEE PROFILE

Sean P Bew

University of East Anglia

57 PUBLICATIONS **474** CITATIONS

SEE PROFILE

Manfred Bochmann

University of East Anglia

302 PUBLICATIONS 8,943 CITATIONS

SEE PROFILE

pubs.acs.org/Organometallics

Reactivity of "Ligand-Free" Au⁺: C-H and C-C Activation versus π Coordination

Nicky Savjani, Sean P. Bew, David L. Hughes, Simon J. Lancaster, and Manfred Bochmann*

Wolfson Materials and Catalysis Centre, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.

Supporting Information

ABSTRACT: [(Me₂S)Au]⁺ cations, generated from (Me₂S)-AuCl and AgSbF₆ in dichloromethane at 0-20 °C, serve as sources of solvated Au⁺ (alongside unreactive [Au(SMe₂)₂]⁺), which reacts with the methyl-substituted arenes $C_6Me_{6-n}H_n$ (n = 0-2) with C-H bond cleavage to give the sulfonium salts $[C_6Me_{5-n}H_nCH_2SMe_2]^+$. There was no evidence for arene π coordination to Au⁺ or for the formation of σ-bonded Aubenzyl species. Surprisingly, the reaction of Au⁺ with CH₂Ar₂ leads to C-C bond cleavage (Ar = 2,4,6-C₆H₂Me₃). The reactions are highly selective for benzylic C-H and C-C bonds, whereas metalation of the arene ring is not observed.

$$\mathsf{Au}^{\oplus} \xrightarrow{\mathsf{CH}_2\mathsf{Cl}_2} \mathsf{RT} \xrightarrow{\mathsf{Me}_2\mathsf{S}} \overset{\oplus}{\mathsf{SMe}_2}$$

he complexation of arenes by coinage and related heavy metals has a long tradition. For example, benzene coordination to silver ions in aqueous solutions led to the suggestion of half-sandwich (L-Ag+) and inverse sandwich (Ag+-L-Ag+) bonding concepts long before the discovery of metallocenes. Since then, numerous Ag(I) complexes with η^{1} and η^2 -coordinated arenes have been characterized.² Arene coordination to electrophilic zinc³ and mercury(II)⁴ metal centers is also well established. Following our recent isolation of a series of mono-, bis-, and tris-arene complexes of thallium stabilized by very weakly coordinating anions, 5,6 we wished to explore whether the same synthetic strategy, i.e. partnering heavy-metal cations with weakly coordinating anions in nondonor solvents, could be extended to a missing link in this compound family: namely, gold(I).

The coordination chemistry of gold with π ligands such as alkenes, alkynes, and arenes is comparatively unexplored.⁷ For example, whereas Stone's synthesis of Pt(C2H4)3 and Pt-(COD)₂ dates back more than 30 years (COD = 1,5cyclooctadiene),8 the analogous homoleptic olefin complexes of Au⁺ have only been reported in the past few years. Solable π -arene complexes of gold are known only if stabilized by strong donor ligands. 10

Earlier work had shown that the most stable zinc and thallium arene complexes were obtained with methylsubstituted benzenes.^{3,5,6} We report here that the interaction of such arenes with "ligand-free" Au⁺ ions follows a distinctly different route, where C-H and C-C activations are preferred over arene π coordination.

The reaction of equimolar amounts of (Me₂S)AuCl, AgSbF₆, and hexamethylbenzene in dichloromethane in the absence of light at room temperature was found to lead cleanly to the functionalization of a benzylic C-H bond, to give [C₆Me₅CH₂SMe₂][SbF₆] (1), alongside colloidal gold. The

originally anticipated π -coordination of C₆Me₆ to Au(I) was not observed, and there was no evidence for conventional C-H activation by an electrophilic metal center and formation of an Au-C σ -bond (Scheme 1).

Scheme 1

Monitoring the process by ¹H NMR spectroscopy showed that the reaction was accompanied by the formation of $[Au(SMe_2)_2][SbF_6]$ (2). In the solid state, 2 contains two independent binuclear cations $[L_2Au\cdots AuL_2]^{2+}$ held together by aurophilic interactions: Au(1)-Au(2) = 3.139(2) Å and $Au(3)-Au(3') = 3.087(2) \text{ Å.}^{12}$

There was no reaction with hexamethylbenzene of either (Me₂S)AuCl or AgSbF₆ alone. The introduction of 1 equiv or more of free dimethyl sulfide prior to addition of (Me₂S)AuCl

Special Issue: F. Gordon A. Stone Commemorative Issue

Received: October 25, 2011 Published: December 2, 2011 Organometallics Communication

and AgSbF₆ gave only unreactive [Au(SMe₂)₂][SbF₆] in quantitative yield, without arene ring activation.

Formation of 1 was also observed using $AuBr_3(SMe_2)/3AgSbF_6$, while (THT)AuCl (THT = tetrahydrothiophene) gives the corresponding THT–sulfonium cation 3 (Table 1).

Table 1. C-H Activation of C₆Me₆ by Gold Complexes^a

entry	Au complex	activator	product	yield b
1	(Me ₂ S)AuCl	AgSbF ₆	[Me5C6CH2SMe2][SbF6] (1)	33
2	(Me ₂ S)AuCl			0
3		$AgSbF_6$		0
4	$(Me_2S)AuBr_3$	3 AgSbF_6	[Me5C6CH2SMe2][SbF6] (1)	33
5	(THT)AuCl	$AgSbF_6$	[Me5C6CH2THT][SbF6] (3)	30
6	(Me ₂ S)AuCl	$AgBF_4$	$[Me_5C_6CH_2SMe_2][BF_4]$ (4)	33
7	(Me ₂ S)AuCl	AgOTf	[Me5C6CH2SMe2][OTf] (5)	32
8	(Me ₂ S)AuCl	ⁱ Pr ₃ SiOTf		0

^aReaction conditions: C_6Me_6 (0.5 mmol), LAuCl (0.5 mmol), AgX (0.5 mmol), CH_2Cl_2 (15 mL), N_2 atmosphere, 20 °C, 1 h. ^bYields (%) determined by ¹H NMR spectroscopy, relative to initial C_6Me_6 concentration.

No reaction occurred with $(Ph_3P)AuCl$, $(C_5H_5N)AuCl$, and ligand-free AuCl (presumably due to the last species' insolubility). Thioether ligands are particularly suitable here, since they not only help to solubilize the gold chloride precursors but are also sufficiently labile to undergo the ligand exchange reactions required to generate the active species. On the other hand, using $(But_2^tS)AuCl/AgSbF_6$ led only to reduction to metallic gold, without C-H activation. The nature of the silver activator is not critical, whereas $NaBF_4$ and Patrix Patrix

The reaction follows the stoichiometry given in eq 1.

$$Ar-CH_3 + 3[Au(SR_2)]^+$$

 $\rightarrow [Ar-CH_2SR_2]^+ + [Au(SR_2)_2]^+ + 2Au(0)$
 $+ H^+$ (1)

For most arene substrates tested, an arene to gold molar ratio of 1:1 was employed and kept constant for comparison. The maximum achievable conversion of Ar–CH $_3$ was therefore 33% (Table 1). In agreement with eq 1, employing a C_6Me_6 to Au ratio of 1:3 gave near-quantitative hydrocarbon conversion. There was, however, no reaction between C_6Me_6 and $[Au(SMe_2)_2][SbF_6]$, confirming that the $[Au(SMe_2)_2]^+$ ion is an unreactive side product.

Surveying a range of aromatic substrates revealed that the C–H activation is highly selective and *exclusively involves the CH*₃ *groups*, never the C–H bonds of the arene ring (Table 2). This selectivity is in contrast with the reactions of most electrophilic late transition metals, where ring metalation is strongly favored. ¹⁴ This selectivity also differs from the reaction of arenes with AuCl₃, which readily proceed under ring metalation to give [(aryl)AuCl₂]₂. ¹⁵

While hexamethylbenzene and 1,2,4,5-tetramethylbenzene (durene) react at 20–30 °C, pentamethylbenzene required cooling to 0 °C for clean C–H activation to take place, giving a mixture of ortho, meta, and para regioisomers in the ratio 51:29:20. No reaction was observed with mesitylene, 1,2,4-trimethylbenzene, o- and p-xylene, or toluene.

The relative reactivity of methyl-substituted arenes was probed by competition experiments, using equimolar mixtures of (i) hexamethyl- and pentamethylbenzene (0 °C, 2 h) and (ii) hexamethyl- and 1,2,4,5-tetramethylbenzene in dichloromethane (room temperature, 1 h), in the presence of (Me₂S)AuCl/AgSbF₆. In each case the activation of C_6Me_6 was strongly favored (29.8% and 1.5% conversion for reaction i and 28.8% and 3.0% for reaction ii); the combined yield was close to the expected value of 33%.

The reaction of dimesitylmethane takes a rather different and unexpected path: exposure to Au^+ in the presence of SMe_2 led predominantly to $\mathrm{C-C}$ bond cleavage (Scheme 2). The major product is [2,4,6-Me₃H₂C₆CH₂SMe₂][SbF₆] (8), accompanied by a small amount of a component derived from C–H activation of the methylene bridge (9). Signals consistent with the formation of $[\mathrm{Au}(\mathrm{mesityl})]_5^{16}$ were also observed in the $^1\mathrm{H}$ NMR spectrum of a reaction conducted at -10 °C over a 5 h period.

The kinetics of reaction 1 can be conveniently monitored by $^1\mathrm{H}$ NMR spectroscopy. Since each C–H bond activation is accompanied by formation of H⁺, the reaction can also be independently monitored by pH measurements (Figure 1); the rate constants obtained by either method are in very close agreement. The kinetic isotope effect, $k_\mathrm{H}/k_\mathrm{D} \approx 3.5$, is consistent with the breaking of a C–H bond in the rate-limiting step.

There was no evidence for the formation of gold π complexes or benzylgold species. Monitoring the reaction by EPR spectroscopy failed to detect any involvement of radicals. The most plausible reaction path, in our view, is the two-electron oxidation of the arenes to the corresponding resonance-stabilized carbocations, which are then scavenged by thioethers (Scheme 3). The required solvated Au^+ cations are generated by the ligand exchange equilibrium $2[\mathrm{LAu}]^+ \rightleftharpoons \mathrm{Au}^+ + [\mathrm{AuL}_2]^+$. This proposal gains some support from the reaction of Au^+ ions with benzene in the gas phase, which has been

Table 2. C-H Activation of Methyl-Substituted Arenes^a

Entry	MeArCH ₃	$[MeArCH_2SMe_2]^+$	Yield (%) ^b
1 ^c	\searrow	$[o-C_6Me_4CH_2SMe_2]^+ \mathbf{6a}$	16.8
	<u></u>	$[m-C_6Me_4CH_2SMe_2]^+$ 6b	9.6
		$[p-C_6Me_4CH_2SMe_2]^+$ 6c	6.7
2	XX	$\left[Me_{3}H_{2}C_{6}CH_{2}SMe_{2}\right]^{+}\textbf{7}$	33

^aReaction conditions: ArCH₃ (0.5 mmol), (Me₂S)AuCl (0.5 mmol), AgSbF₆ (0.5 mmol) in CH₂Cl₂ (15 mL), 1 h. ^bYields determined by ¹H NMR spectroscopy, relative to initial ArCH₃. ^cConditions: 0 °C, 3 h.

Organometallics Communication

Scheme 2

Figure 1. C–H activation of C_6Me_6 (CH₂Cl₂, 30 °C) determined from the pH change: $k = 0.0013 \text{ s}^{-1}$.

shown to proceed both to $\mathrm{Au}(\eta\text{-}\mathrm{C}_6\mathrm{H}_6)^+$ and to Au^0 + $[\mathrm{C}_6\mathrm{H}_6]^{\bullet+}.^{18}$ The oxidation potentials of arenes to their respective radical cations¹⁹ suggest that durene and 1,2,3,5-tetramethylbenzene may be susceptible to oxidative activation by Au^+ , while p-xylene, mesitylene, and toluene are not, as has been borne out by our observations.²⁰

In summary, in situ generated Au^+ ions in weakly coordinating solvents react with benzylic C–H and C–C bonds under remarkably mild (0–20 °C), nonacidic, nonaqueous conditions. The reactions proved highly selective for –CH₃ rather than ring CH activation. Gold(I) cations differ in this respect from other electrophilic heavy-metal ions such as Ag^+ , Tl^+ , and Hg^{2+} , which readily form arene π complexes, and from $AuCl_3$, which metalates arenes to give $[(aryl)AuCl_2]_2$. The observations are consistent with the formation of carbocationic intermediates, which are quenched by thioethers. Efforts to convert these stoichiometric reactions into productive catalytic systems are continuing.

ASSOCIATED CONTENT

S Supporting Information

Text, tables, figures, and CIF files giving experimental and spectroscopic details and crystal data for 1–3, 8, and 9. This material is available free of charge via the Internet at http://pubs.acs.org. CCDC Nos. 818512–818516 also contain the

supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

AUTHOR INFORMATION

Corresponding Author

*E-mail: m.bochmann@uea.ac.uk.

ACKNOWLEDGMENTS

This work was supported by Johnson Matthey plc. N.S. thanks the University of East Anglia for a studentship.

DEDICATION

This contribution is dedicated to the memory of Gordon Stone, with gratitude for his inspiration and support.

REFERENCES

(1) Andrews, L. J.; Keefer, R. M. J. Am. Chem. Soc. 1949, 71, 3644.

(2) (a) Smith, H. G.; Rundle, R. E. J. Am. Chem. Soc. 1958, 80, 5075. (b) Griffith, E. A. H.; Amma, E. L. J. Am. Chem. Soc. 1974, 96, 743. (c) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5955. (d) Ogawa, K.; Kitagawa, T.; Ishida, S.; Komatsu, K. Organometallics 2005, 24, 4842.

(3) Guerrero, A.; Martin, E.; Hughes, D. L.; Kaltsoyannis, N.; Bochmann, M. *Organometallics* **2006**, 25, 3311.

(4) (a) Dean, P. A. W.; Ibbott, D. G.; Stothers, J. B. J. Chem. Soc., Chem. Commun. 1973, 626. (b) Damude, L. C.; Dean, P. A. W.; Sefcik, M. D.; Schaefer, J. J. Organomet. Chem. 1982, 226, 105. (c) Lau, W.; Kochi, J. K. J. Org. Chem. 1986, 51, 1801. (d) Borovik, A. S.; Bott, S. G.; Barron, A. R. Angew. Chem., Int. Ed. 2000, 39, 4117. (e) Borovik, A. S.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 2001, 123, 11219.

(5) (a) Bochmann, M. Coord. Chem. Rev. 2009, 253, 2000.(b) Schmidbaur, H.; Schier, A. Organometallics 2008, 27, 2361.

(6) (a) Sarazin, Y.; Hughes, D. L.; Kaltsoyannis, N.; Wright, J. A.; Bochmann, M. J. Am. Chem. Soc. 2007, 129, 881 and references cited therein. (b) Sarazin, Y.; Kaltsoyannis, N.; Wright, J. A.; Bochmann, M. Organometallics 2007, 26, 1811.

(7) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2.

(8) (a) Green, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1975, 3. (b) Green, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1977, 271.

(9) Dias, H. V. R.; Fianchini, M.; Cundari, T. R.; Campana, C. F. Angew. Chem., Int. Ed. 2008, 47, 556. (b) Fianchini, M.; Dai, H.; Dias, H. V. R. Chem. Commun. 2009, 6373. (c) Hooper, T. N.; Butts, C. P.; Green, M.; Haddow, M. F.; McGrady, J. E.; Russell, C. A. Chem. Eur. J. 2009, 15, 12196.

Scheme 3

Organometallics Communication

(10) (a) Herrero-Gomez, E.; Nieto-Oberhuber, C.; López, S.; Benet-Buchholz, J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 5455. (b) Lavallo, V.; Frey, G. D.; Konsar, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569. (c) Zheng, X.; Frey, G. D.; Konsar, S.; Bertrand, G. Chem. Eur. J. 2009, 15, 3056.

- (11) The term "ligand-free" refers here to ions stabilized only by weak anion interactions and weakly coordinating solvents such as dichloromethane.
- (12) For the crystallographic characterization details, see the Supporting Information.
- (13) As indicated by the formation of Au(0) in this reaction, Au(III) is reduced under these conditions and therefore exhibits the same reaction pattern as outlined for Au(I) precursors.
- (14) For example, in the Pd(IV)-mediated chlorination of methylated arenes, ring-chlorination \gg benzylic chlorination: McCall, A. S.; Wang, H.; Desper, J. M.; Kraft, S. J. Am. Chem. Soc. 2011, 133, 1832. (15) (a) Kharasch, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1931, 53, 3053. (b) Liddle, K. S.; Parkin, C. J. Chem. Soc., Chem. Commun. 1972,
- 3053. (b) Liddle, K. S.; Parkin, C. J. Chem. Soc., Chem. Commun. 1972, 26. (c) de Graf, P. W. J.; Boersma, J.; van der Klerk, G. J. M. J. Organomet. Chem. 1976, 105, 399. (d) Fuchita, Y.; Utsunomiya, Y.; Yasutake, M. Dalton Trans. 2001, 2330.
- (16) (a) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *J. Chem. Soc., Chem. Commun.* 1983, 1304. (b) Usón, R.; Laguna, A.; Fernández, E. J.; Ruiz-Romero, M. E.; Jones, P. G.; Lautner, J. *J. Chem. Soc., Dalton Trans.* 1989, 2127.
- (17) In principle there is the possibility that Au^+ disproportionates: $3Au^+ \rightarrow 2Au^0 + Au^{3+}$, to give Au^{3+} as the active species. Such an ion would, however, react preferentially with SMe_2 and, as is known for Au(III), lead to ring metalation; none of these products are observed.
- (18) Schröder, D.; Brown, R.; Schwerdtfeger, P.; Schwarz, H. Int. J. Mass Spectrom. 2000, 203, 155.
- (19) (a) Merkel, P. B.; Luo, P.; Dinnocenzo, J. P.; Farid, S. J. Org. Chem. 2009, 74, 5163. (b) Amatore, C.; Lefrou, C. J. Electroanal. Chem. 1992, 325, 239.
- (20) Precise values for the ${\rm Au}^+/{\rm Au}^0$ couple in dichloromethane solvent are lacking. The standard potential for ${\rm Au}^+/{\rm Au}$ of +1.83 V (vs standard hydrogen electrode) compares with those of hexamethylbenzene (1.58 V), pentamethylbenzene (1.69 V), and tetramethylated arenes (1.75–1.82 V) in acetonitrile vs the standard calomel electrode (SCE). The SCE/SHE correction is +0.241 V. 19
- (21) For examples of metal-mediated benzylic oxidation in hot aqueous solution see: (a) Labinger, J. A.; Herring, A. M.; Bercaw, J. E. *J. Am. Chem. Soc.* **1990**, *112*, 5628. (b) Chen, G. S.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2009**, *28*, 4899.