Cross Validation wrt Hydrolyzed Polyacrylamide Research Paper

Vladislav Trifonov, MSc 2nd year Mkhitar Ovsepian, MSc 2nd year

Polymer Flooding (HPAM) for EOR

• Mobility control: the displacing fluid mobility should be equal to or less than the (minimum) total mobility of displaced multiphase fluids.

$$M = rac{\lambda_{water}}{\lambda_{oil}} = rac{rac{k_{water}}{\mu_{water}}}{rac{k_{oil}}{\mu_{oil}}}$$

How it can be done:

increasing the viscosity of aqueous phase

<u>HPAM flooding efficiency depends</u> <u>on:</u>

- a) polymer type
- b) concentration
- c) salinity
- d) pH
- e) hydrolysis degree
- f) rock type
- g) crude oil compositions

Fig 1. A simplified presentation of the difference between water (a) and polymer (b) flooding.

HPAM

Models describing rheology:

$$\tau = Ky^n$$

 $\tau = Ky^n$ - Ostwald-de Waele law

$$\tau = y \left(\eta_{\infty} + \frac{\eta_0 - \eta_{\infty}}{(1 + (\lambda y)^a)^{\frac{1-n}{a}}} \right)$$
 - Carreau - Yasuda model

 If >40% - viscosity reduction resulted from sever compression and distortion of the flexible chains of the polymer

Fig 2. Molecular structure of a partially hydrolyzed polyacrylamide

Salt influence

$$I = \frac{1}{2} \sum m_i z_i^2 - Ionic strength$$

m is the molar concentration of ion i, z is the charge number of that ion.

Fig 3. Influence of each salt addition on the original viscosity of the fluid (1250 ppm HPAM).

Alkalinity influence

Fig 4. Influence of adding alkalines

Skoltech

Machine Learning Outline

- Problem setting
- Cross validation wrt to paper
- General ML approach
- Dimensionality reduction

skoltech

Problem Setting. Dataset

Effects of salts and temperature on rheological and viscoelastic behavior of low molecular weight HPAM solutions

Fabián Andrés Tapias Hernandez*; Juan Carlos Lizcano Niño; Rosângela Barros Zanoni Lopes Moreno.

School of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil

*E-mail: fabian.tapias@hotmail.com

Features: 11

Samples: 1010

Rheology and Polymer Flooding Characteristics of Partially Hydrolyze Polyacrylamide for Enhanced Heavy Oil Recovery

Jae Chul Jung, 1 Ke Zhang, 2 Bo Hyun Chon, 1 Hyoung Jin Choi 2

¹Department of Energy Resources Engineering, Inha University, Incheon 402-751, Korea

²Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea

Correspondence to: B. H. Chon (E-mail: bochon@inha.ac.kr) or H. J. Choi (E-mail: hjchoi@inha.ac.kr)

Features: 6 Samples: 147

Rheological Evaluation of HPAM fluids for EOR Applications

L. F. Lopes, B. M.O. Silveira, R. B. Z. L. Moreno - State University of Campinas

Features: 6

Samples: 350

Rheology of diluted and semi-diluted partially hydrolyzed polyacrylamide solutions under shear: Experimental studies

Rui Zhang b, Xianru He a, *, Shuwei Cai a, Kun Liu c

- ^a State Key Laboratory of Oil and Gas Reservoir Geology & Exploitation, College of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, PR China
- b Institut f\(\tilde{t}\) Physik, Universit\(\tilde{a}\) Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany
 ^c Geological Research Institute of Shengli Oil Field, Sinopec. Ltd Corp., Dongying 257015, PR China

Features: 5 Samples: 406

Problem Setting. Data Exploration

Target: Viscosity

Mutual features: Shear_Rate, Molecular_Weight,

Polymer_Concentration, Temperature, Salinity

New features: NaCl_only, paper

Use only general Ionic Strength/Salt Concentration

Problem Setting. Models

Linear model: Ridge, Ridge with polynomial features

Tree models: Tree regression, XGBoost regression

KNN Regression

Metric: r² score

Target: Viscosity Mutual features: Shear_Rate, Molecular_Weight,

Polymer_Concentration, Temperature, Salinity

r2_train	r2_test
0.999366	-2512.544995
0.999557	-3.872665
0.930532	0.003470
0.859104	-0.482914
	0.999366 0.999557 0.930532

XGB. All features

	r2_train	r2_test
hernandes	0.409036	-329.343886
jung	0.149665	0.108821
lopes	0.176401	-0.007027
zhang	0.167513	-0.327928

KNN. Shear rate only

	r2_train	r2_test
hernandes	0.999975	-747.689690
jung	0.999994	0.603260
lopes	0.992848	-0.704386
zhang	0.996622	-0.628992

Tree. All features + poly

	r2_train	r2_test
hernandes	0.153243	-51.532936
jung	0.073928	0.175766
lopes	0.423256	-0.038115
zhang	0.423280	-24915.173580

Ridge. All features + poly

Target: Viscosity Mutual features: Shear_Rate, Molecular_Weight,

Polymer_Concentration, Temperature, Salinity

r2_train	r2_test
0.999366	-2512.544995
0.999557	-3.872665
0.930532	0.003470
0.859104	-0.482914
	0.999366 0.999557 0.930532

XGB. All features

	r2_train	r2_test
hernandes	0.409036	-329.343886
jung	0.149665	0.108821
lopes	0.176401	-0.007027
zhang	0.167513	-0.327928

KNN. Shear rate only

	r2_train	r2_test
hernandes	0.999975	-747.689690
jung	0.999994	0.603260
lopes	0.992848	-0.704386
zhang	0.996622	-0.628992

Tree. All features + poly

	r2_train	r2_test
hernandes	0.153243	-51.532936
jung	0.073928	0.175766
lopes	0.423256	-0.038115
zhang	0.423280	-24915.173580

Ridge. All features + poly

Target: Viscosity Mutual features: Shear_Rate, Molecular_Weight,

Polymer_Concentration, Temperature, Salinity

r2 train	r2 test
rz_train	12_test
0.999366	-2512.544995
0.999557	-3.872665
0.930532	0.003470
0.859104	-0.482914
	0.999557 0.930532

XGB. All features

	r2_train	r2_test
hernandes	0.999975	-747.689690
jung	0.999994	0.603260
lopes	0.992848	-0.704386
zhang	0.996622	-0.628992

Tree. All features + poly

	r2_train	r2_test
hernandes	0.409036	-329.343886
jung	0.149665	0.108821
lopes	0.176401	-0.007027
zhang	0.167513	-0.327928

KNN. Shear rate only

	r2_train	r2_test
hernandes	0.153243	-51.532936
jung	0.073928	0.175766
lopes	0.423256	-0.038115
zhang	0.423280	-24915.173580

Ridge. All features + poly

Target: Viscosity

Mutual features: Shear_Rate,

Molecular_Weight,

Polymer_Concentration,

Temperature, Salinity

Skoltech

General ML approach

Target: Viscosity

Mutual features: Shear_Rate,

Molecular_Weight,

Polymer_Concentration,

Temperature, Salinity

New Features: paper, NaCl_only

Target: Viscosity

Mutual features: Shear_Rate,

Molecular_Weight,

Polymer_Concentration,

Temperature, Salinity

New Features: paper, NaCl_only

Train r² score: ~1.0

Test r² score: 0.85-0.88

Train r² score: ~1.0

Test r² score: 0.85-0.88

KNN Regression:

Train r² score: 1.0

Test r² score: 0.8733

n_neighbor: 1

p: 1

weights: uniform

General ML approach. Polynomial Features

Tree Regression:

Train r² score: ~1.0

Test r^2 **score**: 0.9402

max_depth: 18

criterion: mae

Dimensionality Reduction

