

Mitigating catastrophic interference in models of bilingual lexical acquisition

James S. Magnuson^{1,2,3}, Marian Simarro González¹, Thomas Hannagan³, Nils Beck⁴, & Manuel Carreiras^{1,2,5}

BCBL: Basque Center on Cognition Brain and Language; ²Ikerbasque: Basque Foundation for Science; ²University of Connecticut; ⁴ University of Stuttgart; ⁵ University of the Basque Country (UPV/EHU)

INTRODUCTION

- Catastrophic interference (CI)¹ is the (partial or complete) overwriting of previously learned information when learning new information in a
- Complementary Systems^{2,3} Learning proposes a division of labor between neocortical and hippocampal pathways that could provide a
 - Long-term memories are stored in cortex
 - · New learning relies heavily on the hippocampus, and is influenced by prior learning without disrupting it
 - · Gradual consolidation allows new learning to integrate with long-term memory
- · CLS has not been formally applied to late second language acquisition (to our knowledge)
- · This project simulated learning of L1 (English) and later acquisition of L2 (French) using a simplified approximation of CLS

METHODS

- · Feedforward networks trained to activate the phonological form of a word given phonological features or semantic features as input (phonological 'autoencoding' is meant to emulate generating heard patterns)
- ullet Two hidden layers ($Hidden_c$ and $Hidden_h$, meant to emulate cortical and hippocampal pathways respectively), each with 30 nodes, allow exploration of weight reservation (see below)

Phonetic representations

- 16 slots, each with 28 features (so each slot = 1 phoneme)slot-based, each phoneme represented
- Allows words up to 16 phonemes long (16 · 28 = 448 total inputs)
- · Inputs are aligned to random initial positions on each training trial to prevent learning of positionspecific representations

Semantic representations

· 300 features based on WordNet, plus 'language' and grammatical gender (303 total)

Lexicon: ~300 words

Training

- · Within a language, model is first trained on phonological inputs and then semantic inputs (with phono and sem training alternating)
- 1 epoch = 1 pass through all words at random alignments (never using test alignments)
- Testing: 1 token of each word at an alignment never used in training; a trial is scored as accurate if the output vector is closer to the target vector than any other word vector

Weight reservation as an approximation of CLS

- · Base model uses both hidden layers all the time
- · Weight reservation models divide the hidden layer into a pseudo-cortical pathway (Hidden,) and a pseudo-hippocampal pathway (Hidden $_{\scriptscriptstyle h}$), with all H pathways reserved (Sim 2) or only subsets (Sims 3-5) Then we combine the best reservation model with
- interleaving to emulate consolidation (Sim 6)
- · Aims: determine whether weight reservation is feasible, and which pathways are critical

HYPOTHESES

- Weight reservation should significantly mitigate catastrophic interference (without strong predictions for which architecture will be best)
- · An additional CLS assumption of interleaving (which could happen in-the-moment or during sleep-based consolidation) should further mitigate catastrophic

REFERENCES

 McCloskey, Michael; Cohen, Neal J. (1989). Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. Psychology of Learning and Motivation. Vol. 24. pp. 109–165. doi:10.1016/S0079-7421(08)60536-8. ISBN 978-0-12-543374.2
[2] McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological

102(3), 419.
marin, D., Hassabés, D., & McClelland, J. L. (2016). What Learning Systems do Intelligent Agents Need? Comparan, D., Hassabés, D., & McClelland, J. L. (2016). What Learning Systems Theory Updated. Trends in Cognitive Sciences, 20(7), 512-334. https://doi.org/10.1016/j.tics.2016.05.004

SIMULATIONS

Simulation 1: Base model. 2 hidden layers function like a single hidden layer, since all connections operate feedforward and all connections are trained for both L1 and L2.

Simulations 2-5: weight reservation. Only pathway(s) drawn in red were trained during FR training. We start with 'maximal' reservation and then assess which pathways are critical by reserving one at a time.

Simulation 2: Maximal reservation

Simulation 3: Phono(input)-Hidden_h reservation

Simulation 4: Semantic-Hidden_h reservation

Simulation 5: Hidden_h-Output reservation

Simulation 6: Emulating consolidation. A formal CLS approach would explicitly model (sleep-based) consolidation. Here, we emulate this by simple interleaving of the 2 languages. Rapid interleaving (alternating epochs; not shown) avoids catastrophic interference altogether, but is implausible (e.g., for immersion in L2). When weight reservation (Semantics-Hidden) is combined with interleaving, slightly larger 'runs' of each language (here, 2 epochs each) are possible. A formal CLS approach is likely needed.

CONCLUSIONS

- Our approximation of CLS significantly mitigated catastrophic interference in late L2 lexical acquisition
- Which weights are reserved matters: weak mitigation from Phono-Hiddenh or Hiddenh-Output; Semantic- $Hidden_h$ is where weight reservation provides the most mitigation (better than 'maximal reservation')
- · Weight reservation provides a minimal separation that, when combined with interleaving, robustly mitigates catastrophic interference
- · Next steps: extend to a formal CLS model for understanding late second language acquisition