COMS30030 Image Processing and Computer Vision

Stereo – 3-D Reconstruction

Andrew Calway

andrew@cs.bris.ac.uk

Stereo Coordinate Systems

previous lecture

left camera coordinate system

coordinate system

R defines rotation to be applied to right camera coordinate system to align it with left coordinate system

right camera

$$P'_{L} = H_{WL}P'_{W}$$

$$P'_{R} = H_{WR}P'_{W}$$

$$P'_{L} = H_{WL}H_{WR}^{-1}P'_{R}$$

$$P'_{L} = H_{RL}P'_{R}$$

$$H_{RL} = \begin{bmatrix} R^T & T \\ \mathbf{0} & 1 \end{bmatrix}$$

$$P_L = R^T P_R + T$$

$$P_R = R(P_L - T)$$

Epipolar Geometry

previous lecture

Epipolar Lines

$$\mathbf{p}_{R}^{T} E \mathbf{p}_{L} = 0$$

Let
$$\mathbf{u}_{L} = E \mathbf{p}_{L} = \begin{bmatrix} u_{L1} \\ u_{L2} \\ u_{L3} \end{bmatrix}$$

$$\mathbf{p}_{R}^{T}E\ \mathbf{p}_{L} = \mathbf{p}_{R}^{T}\mathbf{u}_{L} = x_{R}\ u_{L1} + y_{R}\ u_{L2} + f\ u_{L3} = 0$$

Equation of epipolar line in right image

Image Points and Pixels

- Pixel values represent light intensity within small region of image plane, e.g. of size $S_x \times S_y$
- Pixel coordinates: (\hat{x}, \hat{y})
- Image coordinates:

$$x = s_x(\hat{x} - \hat{o}_x)$$
$$y = s_y(\hat{y} - \hat{o}_y)$$

Example:
$$s_x = s_y = 2$$

 $x = 2(2 - 3.5) = -3$
 $y = 2(4 - 3.5) = 1$

Principal point

Fundamental Matrix

$$x = s_{x}(\hat{x} - \hat{o}_{x}) \\ y = s_{y}(\hat{y} - \hat{o}_{y}) \implies \mathbf{p}_{L} = \begin{bmatrix} x_{L} \\ y_{L} \\ f \end{bmatrix} = M_{L} \begin{bmatrix} \hat{x}_{L} \\ \hat{y}_{L} \\ f \end{bmatrix} = M_{L} \hat{\mathbf{p}}_{L}$$

$$\mathbf{p}_R^T E \mathbf{p}_L = 0 \quad \Longrightarrow \quad \widehat{\mathbf{p}}_R^T M_R^T E M_L \widehat{\mathbf{p}}_L = 0$$

$$\Rightarrow \widehat{\mathbf{p}}_R^T F \widehat{\mathbf{p}}_L = 0 \qquad F = M_R^T E M_L$$

The fundamental matrix

Epipolar Lines - Example

$$\hat{p}_{L1}$$

$$\hat{p}_{L2}$$

$$\widehat{\mathbf{p}}_{R1}^T F \widehat{\mathbf{p}}_{L1} = 0 \qquad \widehat{\mathbf{p}}_{R2}^T F \widehat{\mathbf{p}}_{L2} = 0$$

$$\widehat{\mathbf{p}}_{R2}^T F \widehat{\mathbf{p}}_{L2} = 0$$

F from Correspondences

• Given set of correspondences, i = 1...N, we can also estimate the fundamental matrix :

$$\widehat{\mathbf{p}}_{Ri}^T F \widehat{\mathbf{p}}_{Li} = 0 \quad i = 1..N$$

$$\Rightarrow A\mathbf{v} = 0$$

Nx9 matrix defined by correspondence vectors $\hat{\mathbf{p}}_{Li}$ and $\hat{\mathbf{p}}_{Ri}$ Components of *F*

Solve for **v** using Singular Value Decomposition

find a,b,c s.t: $a\mathbf{p}_L - bR^T\mathbf{p}_R - \mathbf{T} - c(\mathbf{p}_L \otimes R^T\mathbf{p}_R) = 0$

find
$$a,b,c$$
 s.t: $\left(a \mathbf{p}_{L}-b R^{T} \mathbf{p}_{R}-\mathbf{T}-c \left(\mathbf{p}_{L} \otimes R^{T} \mathbf{p}_{R}\right)=0\right)$

Given corresponding points, we know : $\mathbf{p}_L, \mathbf{p}_R$

Given calibrated views, we know : R, T

$$\begin{bmatrix} \bullet \\ \mathbf{p}_L \\ \bullet \end{bmatrix} - b \begin{bmatrix} R^T \mathbf{p}_R \\ 3x1 \end{bmatrix} - c \begin{bmatrix} \mathbf{p}_L \otimes R^T \mathbf{p}_R \\ 3x1 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \\ 3x1 \end{bmatrix}$$

$$a \begin{bmatrix} \bullet \\ \mathbf{p}_L \\ \bullet \end{bmatrix} - b \begin{bmatrix} R^T \mathbf{p}_R \\ 3x1 \end{bmatrix} - c \begin{bmatrix} \mathbf{p}_L \otimes R^T \mathbf{p}_R \\ 3x1 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \\ 3x1 \end{bmatrix}$$

$$H \begin{bmatrix} a \\ b \end{bmatrix} = T \qquad \begin{bmatrix} a \\ b \end{bmatrix} = H^{-1} T$$

$$\qquad \qquad \qquad \bigcirc$$

$$\hat{\mathbf{P}} = (a \mathbf{p}_L + b R^T \mathbf{p}_R + \mathbf{T})/2$$