Cryptography: digital signatures

Markulf Kohlweiss & Myrto Arapinis School of Informatics University of Edinburgh

February 6, 2021

Goal

Data integrity and origin authenticity in the public-key setting

- **\rightarrow** key generation algorithm: $G: \to \mathcal{K} \times \mathcal{K}$
- ightharpoonup signing algorithm $S:~\mathcal{K} imes \mathcal{M} o \mathcal{S}$
- ▶ verification algorithm $V: \mathcal{K} \times \mathcal{M} \times \mathcal{S} \rightarrow \{\top, \bot\}$
- ▶ s.t. $\forall (sk, vk) \in G$, and $\forall m \in M$, $V(vk, m, S(sk, m)) = \top$

Advantages of digital signatures over MACs

MACs

- are not publicly verifiable (and so not transferable) No one else, except Bob, can verify t.
- do not provide non-repudiation t is not bound to Alice's identity only. Alice could later claim she didn't compute t herself. It could very well have been Bob since he also knows the key k.

Advantages of digital signatures over MACs

Digital signatures

- ▶ are publicly verifiable anyone can verify a signature
- are tansferable due to public verifiability
- provide non-repudiation if Alice signs a document with her secret key, she cannot deny it later

Security

A good digital signature schemes should satisfy existential unforgeabitliy.

Existential unforgeability

- ▶ Given $(m_1, S(sk, m_1)), \ldots, (m_n, S(sk, m_n))$ (where m_1, \ldots, m_n chosen by the adversary)
- ▶ It should be hard to compute a valid pair (m, S(sk, m)) without knowing sk for any $m \notin \{m_1, \ldots, m_n\}$

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d) and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

$$\qquad \qquad \mathsf{G}_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

 $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$

$$\qquad \qquad \mathsf{G}_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- ► Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)

▶
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$ and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$ where sk = (N, d)

▶
$$G_{RSA}() = (pk, sk)$$
 where $pk = (N, e)$ and $sk = (N, d)$ and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$ where sk = (N, d)
- ▶ st $\forall (pk, sk) = G_{RSA}(), \forall x, V_{RSA}(pk, x, S_{RSA}(sk, x)) = \top$

- ▶ $G_{RSA}() = (pk, sk)$ where pk = (N, e) and sk = (N, d) and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$
- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- Signing: $S_{RSA}(sk, x) = (x, x^d \pmod{N})$ where pk = (N, e)
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } m = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$ where sk = (N, d)
- ▶ st $\forall (pk, sk) = G_{RSA}(), \forall x, V_{RSA}(pk, x, S_{RSA}(sk, x)) = \top$ <u>Proof:</u> exactly as proof of consistency of RSA encryption/decryption

Problems with "textbook RSA signatures"

Textbook RSA signatures are not secure

The "textbook RSA sinature" scheme does not provide existential unforgeabitlity

- Suppose Eve has two valid signatures $\sigma_1 = M_1^d \mod n$ and $\sigma_2 = M_2^d \mod n$ from Bob, on messages M_1 and M_2 .
- ► Then Eve can exploit the homomorphic properties of RSA and produce a new signaure

Problems with "textbook RSA signatures"

Textbook RSA signatures are not secure

The "textbook RSA sinature" scheme does not provide existential unforgeabitlity

- Suppose Eve has two valid signatures $\sigma_1 = M_1^d \mod n$ and $\sigma_2 = M_2^d \mod n$ from Bob, on messages M_1 and M_2 .
- ► Then Eve can exploit the homomorphic properties of RSA and produce a new signaure

$$\sigma = \sigma_1 \cdot \sigma_2 \mod n = M_1^d \cdot M_2^d \mod n = (M_1 \cdot M_2)^d \mod n$$

which is a valid signature from Bob on message $M_1 \cdot M_2$.

How to use RSA for signatures

Solution

Before computing the RSA function, apply a hash function H.

► Signing: $S_{RSA}(sk, x) = (x, H(x)^d \pmod{N})$

How to use RSA for signatures

Solution

Before computing the RSA function, apply a hash function H.

- ► Signing: $S_{RSA}(sk, x) = (x, H(x)^d \pmod{N})$
- ► Verifying: $V_{RSA}(pk, m, x) = \begin{cases} \top & \text{if } H(m) = x^e \pmod{N} \\ \bot & \text{otherwise} \end{cases}$