Different programming languages support different styles of programming (called programming paradigms). By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. There are many approaches to the Software development process. Code-breaking algorithms have also existed for centuries. Different programming languages support different styles of programming (called programming paradigms). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Programmable devices have existed for centuries. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm.