

TRANSISTORES DE EFEITO DE CAMPO

FETs

■ O MOSFET (<u>Metal-Oxide Semiconductor Field-Effect Transistor</u>)

- Dispositivo controlado por tensão
- Pode funcionar como amplificador ou como comutador electrónico
- Impedância de entrada extremamente elevada (terminal de controlo isolado)
- Mais simples de construir e ocupa menos espaço que o transístor bipolar
- Disponível como componente discreto e em circuitos integrados
- Mais de 90% dos IC´s digitais utilizam esta tecnologia
- Existem dois tipos de MOSFETS : O MOSFET de intensificação e o de depleção. Qualquer deles pode ter canal N ou P.

■ O MOSFET – estrutura

Estrutura física de um transístor NMOS do tipo intensificação

MOSFET

Símbolos do MOSFET do tipo intensificação: (a) NMOS; (b) PMOS

Transístores de Efeito de Campo-com V_{GS}>0

В

- 1) O potencial positivo na gate cria um campo elétrico fazendo com que as lacunas se afastem da zona por baixo da gate.
- 2) Essas lacunas ao serem em "empurradas" para o interior do substrato, deixam uma zona sem cargas livres dita de depleção.
 - 3) Essa zona vai ser ocupada pelos eletrões das zonas n+.
 - 4) O potencial positivo da gate atrai esses eletrões até que se cria um canal que une o dreno à source constituído por eletrões. daí este tipo de MOSFET ser do tipo NMOS.

Transístor NMOS do tipo intensificação: com $v_{\rm GS} > V_{\rm t}$ (tensão limiar) um canal n é induzido no topo do substrato (junto à gate)

depleção

4) O valor de v_{gs} a partir do qual o número de eletrões móveis acumulados na região do canal é suficiente para formar uma região condutora é chamada de "tensão de *threshold*," (ou tensão limiar de condução) denotada V_t . Para um MOSFET de canal n, V_t é positiva. O seu valor é controlado pelo processo de fabrico e tipicamente varia de 1 V a 5 V.

Transístores de Efeito de Campo-com V_{GS}>0

Característica i_D - v_{DS} do MOSFET de intensificação para pequenos valores de v_{DS} : o dispositivo comporta-se como uma resistência linear controlada pela tensão v_{GS} .

Transístores de Efeito de Campo quando V_{DS} Aumenta

MOSFET de intensificação: corrente de dreno i_D versus v_{DS} para v_{GS} .> V_t

■ Característica i_D - v_{DS} do MOSFET de intensificação

Funcionamento como tríodo

$$i_{D} = k'_{n} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

Para valores de V_{DS} pequenos,

$$\rightarrow i_D \approx k_n' \frac{W}{L} (v_{GS} - V_t) v_{DS}$$

Saturação

$$i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_T)^2$$

 $k'_n = \mu_n C_{ox} \rightarrow$ depende tecnologia do processo utilizado no fabrico (Constante de transcondutância do processo)

■ Característica *i*_D-*i*_{DS} do MOSFET de intensificação

Mobilidade do electrão:	μ_n =580 cm ² /Vs				
Espessura do óxido:	$t_{\rm ox}$ = 0.02 a 0.1 µm				
Cte. dieléctrica do óxido:	$\epsilon_{\rm ox}$ = 3.97 $\epsilon_{\rm 0}$ = 3.5x10 ⁻¹³ F/cm				
Capacitância do óxido:	$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = 1.75 \ fF/\mu m^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
	= 0.35 $fF/\mu m^2$ (para $t_{ox} = 0.1 \mu m$)				
Constante de transcondutância: $k'_n = \mu_n C_{ox}$					
	$\approx 100 \ \mu\text{A/V}^2 \ \ (\text{para} \ t_{ox} = 0.02 \ \mu\text{m})$				
$\approx 20 \ \mu\text{A/V}^2 \ \ (\text{para}\ t_{ox} = 0.1 \mu\text{m})$					

Parâmetros relativos ao processo/tecnologia de fabrico que afectam a característica i_D - i_{DS}

■ Característica *i*_D-*i*_{DS} do MOSFET de intensificação

Característica i_D - v_{DS} de um n-MOSFET de intensificação com V_t = 1 V

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$

Característica i_D - i_{GS} de um n-MOSFET de intensificação com V_P = 1 V

■ Polarização do MOSFET de intensificação (exemplo)

- Funcionamento do MOSFET como amplificador
 - O MOSFET deve ser polarizado na zona de saturação, onde:

$$\begin{cases} i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_t)^2 \\ V_{DD} = R_D i_D + V_{DS} \end{cases}$$

 Para garantir o funcionamento na zona de saturação deve ser:

$$V_{\rm DS} \ge V_{\rm GS} - V_{\rm t}$$

Circuito utilizado pala estudar o funcionamento do MOSFET como amplificador

■ Funcionamento do MOSFET como amplificador

Transcondutância do

MOSFET:

$$g_m = \frac{\partial i_D}{\partial V_{GS}} \bigg|_{V_{GS} = V_{GS}}$$

■ Funcionamento do MOSFET como amplificador

Ganho em tensão do MOSFET:

$$V_{DS} = V_{DD} - R_D i_D$$

$$V_{DS} + V_{ds} = V_{DD} - R_D (I_D + i_d)$$

$$= \underbrace{V_{DD} - R_D I_D}_{V_{DS}} - R_D i_d$$

$$v_{ds}$$

Para pequenos sinais:

$$V_{ds} = -R_D i_d = -g_m R_D V_{gs}$$

$$\rightarrow \frac{V_{ds}}{V_{gs}} = -g_m R_D$$

Diversos circuitos para polarização do MOSFET de intensificação

■ Funcionamento do MOSFET como amplificador

Amplificadores com 'n-MOSFET's – configurações básicas: (a) fonte comum; (b) dreno comum (ou seguidor de fonte); (c) gate comum

Transístores de Efeito de Campo - interruptor

■ Funcionamento do MOSFET como dispositivo digital (interruptor)

Funcionamento para um nível de tensão de entrada (v_{GS}) baixo: (a) circuito com v_{GS} < V_{t} (0 lógico); (b) circuito equivalente

circuito com $v_{GS} < v_t$ (o logico), (b) circuito equivalente

■ Funcionamento do MOSFET como dispositivo digital (interruptor)

Funcionamento um nível de tensão de entrada (v_{GS}) elevado: (a) circuito com $v_{GS} > v_{DS} + V_t$ (1 lógico); (b) circuito equivalente

Comparação entre transístores bipolares e Mosfet de intensificação - resumo

Comportamento como interruptor aberto

- Bipolar Reg. Corte -> V_{BE}<0,7V e I_C= I_B= I_E=0A
- Mosfet Reg. Corte -> V_{GS} < V_t e I_D = 0A

Comportamento interruptor fechado

- Bipolar Reg. Saturação -> V_{CE}<0,2V e I_C= I_{C satu}
- Mosfet Reg. Tríodo -> $V_{DS} \le V_{GS} V_t$ e $I_D \cong K (V_{GS} V_t) V_{DS}$ (evitar zona não linear)

Comportamento como amplificador (fonte de corrente)

- Bipolar Reg. ativa -> V_{CE} >0,2V e I_{C} = βI_{B} , I_{E} = $(\beta+1)I_{B}$
- Mosfet Reg. Saturação -> V_{DS}≥ V_{GS} V_t e I_D ≅ 1/2 K (V_{GS} V_t)²

Transístores de Efeito de Campo - CMOS

■ Transístores CMOS

(a) Inversor CMOS; (b) circuito simplificado

Transístores de Efeito de Campo - CMOS

■ Transístores CMOS

Funcionamento do inversor CMOS para v_i elevado: (a) circuito com $v_i = V_{DD}$ (1 lógico); (b) circuito equivalente

Transístores de Efeito de Campo - CMOS

■ Transístores CMOS

Funcionamento do inversor CMOS para v_i baixo: (a) circuito com v_i = 0 V (0 lógico); (b) circuito equivalente

Característica de transferência do inversor CMOS

CMOS

Estrutura de um par de transístores CMOS

■ MOSFET de depleção

Transístor NMOS do tipo depleção: (a) estrutura física; (b) símbolo; (c) símbolo simplificado admitindo que o terminal do corpo está ligado à fonte

■ Característica *i*_D-*v*_{GS} do MOSFET de depleção

Característica i_D - i_{GS} de um n-MOSFET de depleção com V_t = -4V

■ Característica i_D-v_{GS} do MOSFET de depleção

$$i_{D} = \frac{1}{2} k'_{n} \frac{W}{L} (V_{GS} - V_{t})^{2} = \frac{1}{2} k'_{n} \frac{W}{L} V_{t}^{2} \left(1 - \frac{V_{GS}}{V_{t}}\right)^{2}$$

$$I_{DSS}$$

$$\rightarrow i_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_t} \right)^2$$

$$\left(I_{DSS} = \frac{1}{2} k'_n \frac{W}{L} V_t^2 \right)$$

Característica i_D - i_{GS} de um n-MOSFET de depleção com V_t = -4V

■ Característica *i*_D-*i*_{DS} do MOSFET de depleção

Característica i_D - i_{DS} de um n-MOSFET de depleção

■ O JFET (<u>Junction Field-Effect Transistor</u>)

- Dispositivo controlado por tensão
- Corrente de entrada desprezável (da ordem do pA ou inferior)
- Pode funcionar como amplificador ou como comutador electrónico

O JFET

JFET canal-n: (a) Estrutura básica (b) símbolo para o JFET canal-n; símbolo para o JFET canal-p

- Analogia para o mecanismo de controle do JFET:
 - Fonte: Pressão de água comparada a tensão aplicada entre o dreno e a fonte (V_{DS});
 - Fluxo de água = fluxo de elétrons a partir da fonte em direção ao dreno;
 - Porta controla o fluxo de elétrons por meio de um sinal de controle (V_{GS}) para o dreno.

O JFET

Princípio de funcionamento do JFET canal-n: (a) pequenos valores de v_{DS}

O JFET

Princípio de funcionamento do JFET canal-n: (b) valores crescentes de v_{DS}

O JFET

Características de saída de um JFET canal-n

Tabela Resumo

	Intensificação	Depleção	JFET canal N	Intensificação	Depleção	JFET canal P		
	NMOS S	NMOS s	G S	PMOS D	PMOS GOLL	G S		
Vt	+	-	-	-	+	+		
ON	$V_{GS} > V_t$			$V_{GS} < V_t$				
	$V_{DS} < V_{GS} - V_t$			$V_{DS} > V_{GS} - V_t$				
Tríodo	$I_D \approx K'_n \frac{W}{L} (V_{GS} - V_t) V_{DS}$							
	$V_{DS} > V_{GS} - V_t$		$V_{DS} < V_{GS} - V_t$					
Saturação	$I_D \approx \frac{1}{2} K'_n \frac{W}{L} (V_{GS} - V_t)^2$							