Deloitte.

Classifying Amazon Reviews

Conclusion and Next Steps 01**Overview** Analysis Q&A () A Modelling

Overview

Goals

How can Classification help?

Find patterns in user reviews to define their favorite skills Predict whether a Find the most common comment is positive or problems/ issues that negative based on its users have had with their devices content

Classification

Classification is a supervised machine learning method where the model tries to predict the correct label of a given input data.

Classifying Amazon Reviews

Reviews

Amazon Reviews Data Set

3150 Amazon customers reviews for Alexa Echo, Firestick, Echo Dot etc.

Rating	Date	Variation	Verified Reviews	Feedbac			
5	31-Juli-18	Charcoal Fabric	Love my Echo!	1		Feedback = Labels	
2	31-Jul-18	Walnut Finish	Without having a cellphone, I cannot use many of her features	0		ve Review ive Review	
		Rating:		_			
	 ★ ★ ★ ★ ★ ★ 5 ★ ★ ★ ★ ★ 4 ★ ★ ★ ★ 2 ★ ★ 1 				Variation: haracteristic differing the models of the product.		

Analysis

Numeric Data Analysis

The number of positive reviews keeps constant while the negative reviews have increased in the last analyzed period.

The number of variations (sources from which users have uploaded their reviews) has increased. Resulting in an increase in both positive and negative reviews

Text Data Analysis

NLP Cleaning and Preprocessing

Removing and transforming certain parts of the text so that it becomes more easily understandable for NLP models that are learning the text.

Modelling and Evaluation

Modeling Steps

Developed different models to compare its efficiency

Decision Tree Classification

	Transform Data	Split data in training and test sets	Create Model	Observe Predictions
Model #1	TF-IDF	Train: 60% data Test: 40% data	Criterion = Entropy	Accuracy Score, Confusion Matrix
Model #2	Count Vectorizer	Train: 60% data Test: 40% data	Criterion = Entropy	Accuracy Score, Confusion Matrix
Model #3	TF-IDF	Train: 60% data Test: 40% data	Criterion = Gini	Accuracy Score, Confusion Matrix
Model #4	Count Vectorizer	Train: 60% data Test: 40% data	Criterion = Gini	Accuracy Score, Confusion Matrix
Model #5	Count Vectorizer	Train: 60% data Test: 40% data	Splitter = Random	Accuracy Score, Confusion Matrix

Criterion: Function to measure the quality of a split. *Splitter*: Strategy used to choose the split at each node

Model 3

	precision	recall	f1-score	support
positive_feedback	0.78	0.19	0.31	72
negative_feedback	0.92	0.99	0.95	659
accuracy			0.92	731
macro avg	0.85	0.59	0.63	731
weighted avg	0.90	0.92	0.89	731

Conclusion

Q&A