Unbounded Operator With Trivial Relative Commutant

Wenming Wu(CQNU) Wei Yuan(AMSS)

Dartmouth College

Nov.2 2013

• a: finite von Neumann algebra

- 1: finite von Neumann algebra
- An unbounded operator T with domain $\mathfrak{D}(T)$ is said to be closed if its graph $G(T)=\{(\xi,T\xi):\xi\in\mathfrak{D}(T)\}$ is closed.

- A: finite von Neumann algebra
- An unbounded operator T with domain $\mathfrak{D}(T)$ is said to be closed if its graph $G(T) = \{(\xi, T\xi) : \xi \in \mathfrak{D}(T)\}$ is closed.
- A closed densely defined operator T is affliated with a von Neumann algebra \mathfrak{A} , and write $T\eta\mathfrak{A}$, when

$$U^*TU = T$$

for each unitary U in \mathfrak{A}' .

- A: finite von Neumann algebra
- An unbounded operator T with domain $\mathfrak{D}(T)$ is said to be closed if its graph $G(T) = \{(\xi, T\xi) : \xi \in \mathfrak{D}(T)\}$ is closed.
- A closed densely defined operator T is affliated with a von Neumann algebra \mathfrak{A} , and write $T\eta\mathfrak{A}$, when

$$U^*TU = T$$

for each unitary U in \mathfrak{A}' .

$$U\mathfrak{D}(T) = \mathfrak{D}(T)$$

Lemma 16.4.4. Let X_1, X_2, \cdots be a (finite or infinite) sequence of linear, closed operators, each one having an everywhere dense domain. Assume that all $X_i \eta M$. Let $p(x_1, y_1, x_2, y_2, \cdots)$, $q(x_1, y_1, x_2, y_2, \cdots)$, $r(x_1, y_1, x_2, y_2, \cdots)$ be (non-commutative) polynomials of the symbolic variables x_i, y_i corresponding to $X_i, i = 1, 2, \cdots$

Then we have

- (i) $[p(X_1, X_1^*, X_2, X_2^*, \cdots)]$ can be formed, it is linear, closed, has an everywhere dense domain, and it is n **M** too.
- (ii) If $({}^{(r)}p(x_1, y_1, x_2, y_2, \dots) = ({}^{(r)}q(x_1, y_1, x_2, y_2, \dots) \text{ then } [p(X_1, X_1^*, X_2, X_2^*, \dots)] = [q(X_1, X_1^*, X_2, X_2^*, \dots)]; \text{ that is } [p(X_1, X_1^*, X_2, X_2^*, \dots)] \text{ depends on } ({}^{(r)}p(x_1, y_1, x_2, y_2, \dots) \text{ only.}$
- (iii) If $p(x_1, y_1, x_2, y_2, \cdots)^+ = q(x_1, y_1, x_2, y_2, \cdots)$ then $[p(X_1, X_1^*, X_2, X_2^*, \cdots)]^* = [q(X_1, X_1^*, X_2, X_2^*, \cdots)]$.
- (iv) If $ap(x_1, y_1, x_2, y_2, \dots) = q(x_1, y_1, x_2, y_2, \dots)$ then $[a[p(X_1, X_1^*, X_2, X_2^*, \dots)]] = [q(X_1, X_1^*, X_2, X_2^*, \dots)].$ (If $a \succeq 0$ then the first [] is obviously unnecessary).
- (v) If $p(x_1, y_1, x_2, y_2, \dots) + q(x_1, y_1, x_2, y_2, \dots) = r(x_1, y_1, x_2, y_2, \dots)$ then $[[p(X_1, X_1^*, X_2, X_2^*, \dots)] + [q(X_1, X_1^*, X_2, X_2^*, \dots)]] = [r(X_1, X_1^*, X_2, X_2^*, \dots)].$ (vi) If $p(x_1, y_1, x_2, y_2, \dots) \cdot q(x_1, y_1, x_2, y_2, \dots) = r(x_1, y_1, x_2, y_2, \dots)$ then $[[p(X_1, X_1^*, X_2, X_2^*, \dots)] \cdot [q(X_1, X_1^*, X_2, X_2^*, \dots)]] = [r(X_1, X_1^*, X_2, X_2^*, \dots)].$

Figure: On Rings of Operators(1936)

Questions

The family of operators affiliated with a finite von Neumann algebra is a * algebra (with unit I).

Questions

The family of operators affiliated with a finite von Neumann algebra is a * algebra (with unit I).

Is there a $T\eta\mathfrak{A}$ such that $T'\cap\mathfrak{A}=\{\mathbb{C}I\}$?

Questions

The family of operators affiliated with a finite von Neumann algebra is a * algebra (with unit I).

• Is there a $T\eta\mathfrak{A}$ such that T does not commute with any non trivial normal operator in \mathfrak{A} ?

Fuglede-Putnam Theorem

If T is a bounded operator and if M and N are (closed) normal operators, then

Fuglede-Putnam Theorem

If T is a bounded operator and if M and N are (closed) normal operators, then

$$TN \subset MT$$

Fuglede-Putnam Theorem

If T is a bounded operator and if M and N are (closed) normal operators, then

$$TN \subset MT$$

$$\Rightarrow TN^* \subset M^*T$$

Preliminary Fuglede-Putnam Theorem A Humble Example

Lemma

Let $\mathfrak A$ be a finite von Neumann algebra. If N is a normal operator and P is a projection such that (I-P)NP=0, then PN=NP.

Preliminary Fuglede-Putnam Theorem A Humble Example

Lemma

Let $\mathfrak A$ be a finite von Neumann algebra, and H is a closed positive operator affiliated with $\mathfrak A$. If M and N are normal operators in $\mathfrak A$ and NH=HM, then NH=HN, MH=HM and $M^*H=HN^*$.

We assume that $Ker(H) = \{0\}$ and

$$H = \int_0^\infty \lambda dE_\lambda$$

$$\begin{split} P = E_{\lambda} &= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \quad H = \begin{pmatrix} H_1 & 0 \\ 0 & H_2 \end{pmatrix} \\ N &= \begin{pmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{pmatrix}, \quad M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \\ H_1 &= HE_{\lambda}, \, \|H_1\| \leq \lambda \text{ and } H_2 = H(I - E_{\lambda}), \, \|H_2^{-1}\| \leq \frac{1}{\lambda} \end{split}$$

$$H_1=HE_\lambda,\,\|H_1\|\leq\lambda ext{ and } H_2=H(I-E_\lambda),\,\|H_2^{-1}\|\leqrac{1}{\lambda}$$
 $NH=HM$

$$\begin{split} H_1 &= HE_{\lambda}, \, \|H_1\| \leq \lambda \text{ and } H_2 = H(I-E_{\lambda}), \, \|H_2^{-1}\| \leq \frac{1}{\lambda} \\ NH &= HM \\ &\Rightarrow \begin{pmatrix} H_1^{-1}N_{11}H_1 & H_1^{-1}N_{12}H_2 \\ H_2^{-1}N_{21}H_1 & H_2^{-1}N_{22}H_2 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \end{split}$$

$$\begin{split} H_1 &= HE_{\lambda}, \, \|H_1\| \leq \lambda \text{ and } H_2 = H(I-E_{\lambda}), \, \|H_2^{-1}\| \leq \frac{1}{\lambda} \\ &\qquad NH = HM \\ \\ &\Rightarrow \begin{pmatrix} H_1^{-1}N_{11}H_1 & H_1^{-1}N_{12}H_2 \\ H_2^{-1}N_{21}H_1 & H_2^{-1}N_{22}H_2 \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \\ \\ &\Rightarrow \tau|_{PMP}(H_1N_{21}^*H_2^{-2}N_{21}H_1) = \tau|_{PMP}(H_1^{-1}N_{12}H_2^2N_{12}^*H_1^{-1}) \end{split}$$

$$H_1=HE_{\lambda},$$
 $\|H_1\|\leq \lambda$ and $H_2=H(I-E_{\lambda}),$ $\|H_2^{-1}\|\leq rac{1}{\lambda}$

$$\tau\left(\begin{pmatrix} H_1 N_{21}^* H_2^{-2} N_{21} H_1 & 0\\ 0 & 0 \end{pmatrix}\right) \le \frac{1}{\lambda^2} \tau\left(\begin{pmatrix} H_1 N_{21}^* N_{21} H_1 & 0\\ 0 & 0 \end{pmatrix}\right)$$

$$\begin{split} H_1 &= HE_{\lambda}, \, \|H_1\| \leq \lambda \text{ and } H_2 = H(I-E_{\lambda}), \, \|H_2^{-1}\| \leq \frac{1}{\lambda} \\ \tau\left(\begin{pmatrix} H_1N_{21}^*H_2^{-2}N_{21}H_1 & 0 \\ 0 & 0 \end{pmatrix}\right) \leq \frac{1}{\lambda^2}\tau\left(\begin{pmatrix} H_1N_{21}^*N_{21}H_1 & 0 \\ 0 & 0 \end{pmatrix}\right) \\ &= \frac{1}{\lambda^2}\tau\left(\begin{pmatrix} 0 & H_1N_{21}^* \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ N_{21}H_1 & 0 \end{pmatrix}\right) \end{split}$$

$$\begin{split} H_1 &= HE_{\lambda}, \, \|H_1\| \leq \lambda \text{ and } H_2 = H(I-E_{\lambda}), \, \|H_2^{-1}\| \leq \frac{1}{\lambda} \\ \tau\left(\begin{pmatrix} H_1N_{21}^*H_2^{-2}N_{21}H_1 & 0 \\ 0 & 0 \end{pmatrix}\right) \leq \frac{1}{\lambda^2}\tau\left(\begin{pmatrix} H_1N_{21}^*N_{21}H_1 & 0 \\ 0 & 0 \end{pmatrix}\right) \\ &= \frac{1}{\lambda^2}\tau\left(\begin{pmatrix} 0 & H_1N_{21}^* \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ N_{21}H_1 & 0 \end{pmatrix}\right) \\ &= \frac{1}{\lambda^2}\tau\left(\begin{pmatrix} 0 & 0 \\ 0 & N_{21}H_1^2N_{21}^* \end{pmatrix}\right) \end{split}$$

$$\begin{split} H_1 &= HE_{\lambda}, \|H_1\| \leq \lambda \text{ and } H_2 = H(I-E_{\lambda}), \|H_2^{-1}\| \leq \frac{1}{\lambda} \\ \tau \left(\begin{pmatrix} H_1 N_{21}^* H_2^{-2} N_{21} H_1 & 0 \\ 0 & 0 \end{pmatrix} \right) \leq \frac{1}{\lambda^2} \tau \left(\begin{pmatrix} H_1 N_{21}^* N_{21} H_1 & 0 \\ 0 & 0 \end{pmatrix} \right) \\ &= \frac{1}{\lambda^2} \tau \left(\begin{pmatrix} 0 & H_1 N_{21}^* \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ N_{21} H_1 & 0 \end{pmatrix} \right) \\ &= \frac{1}{\lambda^2} \tau \left(\begin{pmatrix} 0 & 0 \\ 0 & N_{21} H_1^2 N_{21}^* \\ 0 & 0 \end{pmatrix} \right) \\ &\leq \tau \left(\begin{pmatrix} N_{21}^* N_{21} & 0 \\ 0 & 0 \end{pmatrix} \right) \end{split}$$

$$\tau \left(\begin{pmatrix} H_1 N_{21}^* H_2^{-2} N_{21} H_1 & 0 \\ 0 & 0 \end{pmatrix} \right) \le \tau \left(\begin{pmatrix} N_{21}^* N_{21} & 0 \\ 0 & 0 \end{pmatrix} \right)$$

$$\tau \left(\begin{pmatrix} H_1 N_{21}^* H_2^{-2} N_{21} H_1 & 0 \\ 0 & 0 \end{pmatrix} \right) \le \tau \left(\begin{pmatrix} N_{21}^* N_{21} & 0 \\ 0 & 0 \end{pmatrix} \right)$$

Let $Q = E_{\beta} - E_{\lambda}$, $\beta > \lambda$

$$\frac{\beta^{2}}{\lambda^{2}} \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^{*} & 0\\ 0 & 0 \end{pmatrix} \right) + \tau \left(\begin{pmatrix} N_{12}QN_{12}^{*} & 0\\ 0 & 0 \end{pmatrix} \right) \\
\leq \tau \left(\begin{pmatrix} H_{1}^{-1}N_{12}H_{2}^{2}N_{12}^{*}H^{-1} & 0\\ 0 & 0 \end{pmatrix} \right)$$

$$\tau\left(\begin{pmatrix}H_1N_{21}^*H_2^{-2}N_{21}H_1 & 0\\0&0\end{pmatrix}\right)\leq\tau\left(\begin{pmatrix}N_{21}^*N_{21} & 0\\0&0\end{pmatrix}\right)$$

Let $Q = E_{\beta} - E_{\lambda}$, $\beta > \lambda$

$$\begin{split} \frac{\beta^2}{\lambda^2} \tau \left(\begin{pmatrix} N_{12} (I-Q) N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) + \tau \left(\begin{pmatrix} N_{12} Q N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) \\ & \leq \tau \left(\begin{pmatrix} H_1^{-1} N_{12} H_2^2 N_{12}^* H^{-1} & 0 \\ 0 & 0 \end{pmatrix} \right) \end{split}$$

$$\tau\left(\begin{pmatrix}N_{12}N_{12}^* & 0\\ 0 & 0\end{pmatrix}\right) = \tau\left(\begin{pmatrix}N_{21}^*N_{21} & 0\\ 0 & 0\end{pmatrix}\right)$$

$$\tau\left(\begin{pmatrix}H_1N_{21}^*H_2^{-2}N_{21}H_1 & 0\\0&0\end{pmatrix}\right)\leq\tau\left(\begin{pmatrix}N_{21}^*N_{21} & 0\\0&0\end{pmatrix}\right)$$

Let $Q = E_{\beta} - E_{\lambda}$, $\beta > \lambda$

$$\frac{\beta^{2}}{\lambda^{2}} \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^{*} & 0\\ 0 & 0 \end{pmatrix} \right) + \tau \left(\begin{pmatrix} N_{12}QN_{12}^{*} & 0\\ 0 & 0 \end{pmatrix} \right) \\
\leq \tau \left(\begin{pmatrix} H_{1}^{-1}N_{12}H_{2}^{2}N_{12}^{*}H^{-1} & 0\\ 0 & 0 \end{pmatrix} \right)$$

$$\frac{\beta^2}{\lambda^2} \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) \le \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right)$$

$$\frac{\beta^2}{\lambda^2} \tau \left(\begin{pmatrix} N_{12}(I - Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) \le \tau \left(\begin{pmatrix} N_{12}(I - Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right)$$

$$\frac{\beta^2}{\lambda^2} \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0\\ 0 & 0 \end{pmatrix} \right) \le \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0\\ 0 & 0 \end{pmatrix} \right)$$

$$\frac{\beta^2}{\lambda^2} \tau \begin{pmatrix} \begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0\\ 0 & 0 \end{pmatrix} \end{pmatrix} \leq \tau \begin{pmatrix} \begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0\\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$N_{12}N_{12}^* = 0$$

$$\downarrow \downarrow$$

$$\begin{split} \frac{\beta^2}{\lambda^2} \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) &\leq \tau \left(\begin{pmatrix} N_{12}(I-Q)N_{12}^* & 0 \\ 0 & 0 \end{pmatrix} \right) \\ & \downarrow \\ N_{12}N_{12}^* &= 0 \\ & \downarrow \\ E_{\lambda}N &= NE_{\lambda} \text{ and } NH = HN \end{split}$$

L

Preliminary Fuglede-Putnam Theorem A Humble Example

Theorem

Let $\mathfrak A$ be a finite von Neumann algebra, and T a closed operator affiliated with $\mathfrak A$. If N is a normal operator in $\mathfrak A$ and NT=TN, then $N^*T=TN^*$.

Theorem

Let $\mathfrak A$ be a finite von Neumann algebra, and T a closed operator affiliated with $\mathfrak A$. If N is a normal operator in $\mathfrak A$ and NT=TN, then $N^*T=TN^*$.

Corollary

Let $\mathfrak A$ be a finite von Neumann algebra, and T is a closed operator affiliated with $\mathfrak A$. If N and M are normal operators affiliated with $\mathfrak A$ and MT=TN, then $M^*T=TN^*$.

Theorem

Let $\mathfrak A$ be a finite von Neumann algebra, and T a closed operator affiliated with $\mathfrak A$. If N is a normal operator in $\mathfrak A$ and NT=TN, then $N^*T=TN^*$.

Corollary

If $\mathfrak A$ be a separable II_1 factor, then there exists a closed operator T affiliated with $\mathfrak A$ such that $NT \neq NT$ for any nontrivial normal operator affiliated with $\mathfrak A$.

Preliminary Fuglede-Putnam Theorem A Humble Example

Is there a $T\eta\mathfrak{A}$ such that $T'\cap\mathfrak{A}=\{\mathbb{C}I\}$?

$$\mathbb{Z} \curvearrowright (\mathbb{T},\mu):\alpha(n)e^{2\pi i\theta}=e^{2\pi i(n\alpha+\theta)}\;\alpha$$
 is irrational

$$\mathbb{Z} \curvearrowright (\mathbb{T}, \mu) : \alpha(n)e^{2\pi i\theta} = e^{2\pi i(n\alpha + \theta)} \ \alpha$$
 is irrational

measure preserving

$$\mathbb{Z} \curvearrowright (\mathbb{T}, \mu) : \alpha(n)e^{2\pi i\theta} = e^{2\pi i(n\alpha + \theta)} \alpha$$
 is irrational

- measure preserving
- ergodic, i.e. $X\subset \mathbb{T}$ and $\mu(\alpha(n)(X)\setminus X)=0$ $\Rightarrow \mu(X)=0$ or $\mu(\mathbb{T}\setminus X)=0$.

$$\mathbb{Z} \curvearrowright (\mathbb{T}, \mu) : \alpha(n)e^{2\pi i\theta} = e^{2\pi i(n\alpha + \theta)} \alpha$$
 is irrational

- measure preserving
- ergodic, i.e. $X\subset \mathbb{T}$ and $\mu(\alpha(n)(X)\setminus X)=0$ $\Rightarrow \mu(X)=0$ or $\mu(\mathbb{T}\setminus X)=0.$

$$\mathbb{Z} \curvearrowright (\mathbb{T}, \mu) : \alpha(n)e^{2\pi i\theta} = e^{2\pi i(n\alpha+\theta)} \alpha$$
 is irrational

- measure preserving
- ergodic, i.e. $X\subset \mathbb{T}$ and $\mu(\alpha(n)(X)\setminus X)=0$ $\Rightarrow \mu(X)=0$ or $\mu(\mathbb{T}\setminus X)=0.$

$$\Downarrow$$

$$L^\infty(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z} (\subset \mathcal{B}(L^2(\mathbb{T}) \otimes l^2(\mathbb{Z}))$$
 is the hyperfinite II_1 factor \mathcal{R}

$$\mathbb{Z} \curvearrowright (\mathbb{T}, \mu) : \alpha(n)e^{2\pi i\theta} = e^{2\pi i(n\alpha+\theta)} \ \alpha$$
 is irrational

- measure preserving
- ergodic, i.e. $X\subset \mathbb{T}$ and $\mu(\alpha(n)(X)\setminus X)=0$ $\Rightarrow \mu(X)=0$ or $\mu(\mathbb{T}\setminus X)=0$.

$$L^{\infty}(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z}(\subset \mathcal{B}(L^{2}(\mathbb{T}) \otimes l^{2}(\mathbb{Z})) \text{ is the hyperfinite } \mathbb{I}_{1} \text{ factor } \mathcal{R}$$

 $\sum_{n} \alpha(-n)(h) \otimes E_{n}, \quad I \otimes l_{n} \quad h \in L^{\infty}(\mathbb{T})$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$
$$T = \sum_{n} \alpha(-n)(h) \otimes E_{n}l_{1}$$

$$h(\theta) = \frac{e^{2\pi i \theta} + 1}{e^{2\pi i \theta} - 1}$$
$$T = \sum_{n} \alpha(-n)(h) \otimes E_{n} l_{1}$$

T is a densely defined closed operator affiliated with \mathcal{R}

$$h(\theta) = \frac{e^{2\pi i \theta} + 1}{e^{2\pi i \theta} - 1}$$
$$T = \sum_{n} \alpha(-n)(h) \otimes E_{n} l_{1}$$

T is a densely defined closed operator affiliated with ${\cal R}$

$$AT \neq TA$$
 for each $A \in \mathcal{R} \setminus \{\mathbb{C}I\}$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$
$$A = \sum_{m} \sum_{n} \alpha(-n)(f_n) \otimes E_n l_m$$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$
$$A = \sum_{m} \sum_{n} \alpha(-n)(f_n) \otimes E_n l_m$$
$$AT = TA$$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$
$$A = \sum_{m} \sum_{n} \alpha(-n)(f_n) \otimes E_n l_m$$
$$AT = TA$$
$$\downarrow \downarrow$$

$$h(\theta) = \frac{e^{2\pi i\theta} + 1}{e^{2\pi i\theta} - 1}$$

$$A = \sum_{m} \sum_{n} \alpha(-n)(f_n) \otimes E_n l_m$$

$$AT = TA$$

$$\downarrow \downarrow$$

$$\frac{\alpha(1)(f_n)}{f_n} = \frac{\alpha(n)(h)}{h}$$

$$k_m = \begin{cases} h\alpha(1)(h)\cdots\alpha(m-1)(h) & \text{if } m > 0\\ 1 & \text{if } m = 0\\ \alpha(-1)(\frac{1}{h})\alpha(-2)(\frac{1}{h})\cdots\alpha(m)(\frac{1}{h}) & \text{if } m < 0 \end{cases}$$

$$k_m = \begin{cases} h\alpha(1)(h)\cdots\alpha(m-1)(h) & \text{if } m > 0\\ 1 & \text{if } m = 0\\ \alpha(-1)(\frac{1}{h})\alpha(-2)(\frac{1}{h})\cdots\alpha(m)(\frac{1}{h}) & \text{if } m < 0 \end{cases}$$

$$k_m = \begin{cases} h\alpha(1)(h)\cdots\alpha(m-1)(h) & \text{if } m > 0\\ 1 & \text{if } m = 0\\ \alpha(-1)(\frac{1}{h})\alpha(-2)(\frac{1}{h})\cdots\alpha(m)(\frac{1}{h}) & \text{if } m < 0 \end{cases}$$

$$\alpha(\frac{f_m}{k_m}) = \frac{f_m}{k_m}$$

$$k_m = \begin{cases} h\alpha(1)(h)\cdots\alpha(m-1)(h) & \text{if } m > 0\\ 1 & \text{if } m = 0\\ \alpha(-1)(\frac{1}{h})\alpha(-2)(\frac{1}{h})\cdots\alpha(m)(\frac{1}{h}) & \text{if } m < 0 \end{cases}$$

$$\alpha(\frac{f_m}{k_m}) = \frac{f_m}{k_m} \\
\Downarrow \\
f_m = \lambda k_m$$

Preliminary Fuglede-Putnam Theorem A Humble Example

THANK YOU!