

Dispositivos de redes são os meios físicos necessários para a comunicação entre os componentes participantes de uma **rede**.

Dispositivos de redes são os meios físicos necessários para a comunicação entre os componentes participantes de uma **rede**. Os dispositivos podem ser divididos em dois grupos:

Passivos – Não necessitam de alimentação elétrica e não realizam nenhum "trabalho" mais aprimorado representado elementos responsáveis pelo transporte dos dados (antenas, cabos, conectores, racks, etc)

Ativos - responsáveis pela entre comunicação entre sistemas finais, esses equipamentos analisam e encaminham informações atravessam o equipamento. Dentre os quais podemos citar Hubs, Switchs, Bridges, Roteadores, Repetidores, etc

Network Interface Card (NIC) "Placa de rede"

Placa de rede

Funciona como uma interface entre o computador e a rede, basicamente a NIC tem como função transformar os dados para da memória (RAM) em sinal para trafegar através do enlace, assim como controlar o fluxo de dados no enlace.

Modem

Modem

A maioria da informações não podem ser enviadas através dos canais de transmissão da maneira como são geradas. A **modulação** é o processo através do qual uma informação (voz, dados, etc) "inteligível" é adicionado às ondas de rádio produzidas por um transmissor.

Modem vem da junção das palavras **MODulador** e **DEModulador**. É um dispositivo eletrônico que modula e "demodula" um sinal.

Modem

Modulação é o processo de variar uma ou mais *propriedades* de uma forma de *onda periódica*, chamada *sinal de portadora*, com um *sinal modulador* que normalmente contém informações a serem transmitidas;

Repetidores

Repetidores

Dispositivos de camada física função de reconstituir (regenerar) e retransmitir os sinais elétricos do meio físico entre dois segmentos de redes. O uso de repetidores permite que uma rede alcance uma área maior do que aquela que seria possível sem o uso do aparelho.

Repetidores

Dispositivos de camada física função de reconstituir (regenerar) e retransmitir os sinais elétricos do meio físico entre dois segmentos de redes. O uso de repetidores permite que uma rede alcance uma área maior do que aquela que seria possível sem o uso do aparelho.

Repetidores

Função: regenerar e repetir o sinal entre dois segmentos de redes.

- ✓ Eles são necessários para fornecer corrente e para controlar cabos longos.
- ✓ Permitem interconectar dois segmentos de redes locais de mesma tecnologia;
- ✓ É possível aumentar a extensão de uma rede local, de forma que o conjunto de segmentos interconectados se comporte como um único segmento.
- ✓ Compensa problemas de atenuação de sinal.

Bridges

Bridges

•A bridge (ponte) é um repetidor inteligente. As pontes permitem converter padrões assim como combinar duas redes locais admitindo que estações de uma rede local acessem recursos de outra rede local.

Bridges

Os Bridges diferem dos repetidores porque manipulam pacotes ao invés de sinais elétricos

Não retransmitem ruídos ou erros, por isso não retransmitem quadros mal formados

Filtrar as mensagens -somente as mensagens endereçadas para ela são tratadas.

Dispositivos de redes são os meios físicos necessários para a comunicação entre os componentes participantes de uma **rede**. Os dispositivos podem ser divididos em dois grupos:

Passivos – Não necessitam de alimentação elétrica e não realizam nenhum "trabalho" mais aprimorado representado elementos responsáveis pelo transporte dos dados (antenas, cabos, conectores, racks, etc)

Ativos - responsáveis pela entre comunicação entre sistemas finais, esses equipamentos analisam e encaminham informações atravessam o equipamento. Dentre os quais podemos citar **Hubs**, **Switchs**, Bridges, **roteadores**, KVM, etc

Transporte

Internet

Enlace

Física

Hubs

Hub's

Responsável por fazer uma conexão física entre diversos computadores com a topologia estrela.

- ... Repetidores da camada física ("Burros"):
 - Todos os nós conectados ao hub podem colidir uns com os outros
 - Sem buffering de quadros

Encaminhamento de pacotes

Hubs

... Repetidores da camada física ("Burros"):

- Todos os nós conectados ao hub podem colidir uns com os outros
- Sem buffering de quadros
- Sem CSMA/CD no hub: NICs do hospedeiro detectam colisões
- Bits chegando a um enlace saem em todos os outros enlaces na mesma velocidade
- Ao receber um pacote ele trabalha com FLOOD;

Switches

Switches

Dispositivo da camada de enlace, mais inteligente que os hubs também proporciona conexão de computadores em redes.

- Armazenam e repassam quadros Ethernet
- Examinam endereço MAC do quadro que chega, repassam seletivamente o quadro para um ou mais enlaces de saída quando o quadro deve ser repassado no segmento, usa *CSMA/CD* para acessar segmento

Transparente

- Hosps. não sabem da presença de comutadores
- Plug-and-play, autodidata
 - Comutadores não precisam ser configurados

Switches

- Hosps. têm conexão dedicada, direta com comutador
- Comutadores mantêm pacotes
- Protocolo Ethernet usado em cada enlace de chegada, mas sem colisões; full duplex
 - Cada enlace é seu próprio domínio de colisão
- Comutação: A para A' e B para B' simultaneamente, sem colisões
 - não é possível com hub burro

Comutador: permite múltiplas transmissões simultâneas

Switches

 Como o comutador sabe que A' se encontra na interface 4, B' se encontra na interface 5?

show	mac	add	ress-	-tab]	e	dynamic
Mac /	Addre	255	Table	2		

vlan	Mac Address	Туре	Ports
10	000d.9dd2.b5a5	DYNAMIC	Fa0/1
10	000e.3834.b638	DYNAMIC	Fa0/21
10	000e. 3834. b954	DYNAMIC	Fa0/19
10	000e. 3888. d251	DYNAMIC	Fa0/1
10	000e.3892.ddd1	DYNAMIC	Fa0/4
10	0012.8053.f49c	DYNAMIC	Fa0/15
10	0012.8053.f6e4	DYNAMIC	Fa0/12
10	0012.8053.f76f	DYNAMIC	Fa0/9
10	0012.8053.f77b	DYNAMIC	Fa0/10
10	0012.8055.becf	DYNAMIC	Fa0/22
10	0012.8055.c076	DYNAMIC	Fa0/7
10	0012.8055.cc42	DYNAMIC	Fa0/20
10	0012.8081.e07c	DYNAMIC	Po1
10	0012.80b5.a124	DYNAMIC	Fa0/23
10	0012.80bb.e3d4	DYNAMIC	Fa0/3
10	0012.80bb.e3d5	DYNAMIC	Fa0/8
10	0012.80bb.e457	DYNAMIC	Fa0/13
10	0012. da8a. c496	DYNAMIC	Fa0/6

comutador com 6 interfaces (1,2,3,4,5,6)

Switches

Tabela de comutação - autodidata

- Comutador descobre quais nós podem ser alcançados por quais interfaces
 - Quando quadro recebido, comutador "aprende"
 local do emissor: segmento de LAN de chegada
 - Registra par emissor/local na tabela de comutação

end. MAC	interface	TTL
A:xx	1	60

Tabela comutação (inicialmente vazia)

Switches

Tabela de comutação - autodidata

✓ Destino do quadro desconhecido: inunda (flood)

✓ Local de destino A conhecido: envio seletivo

end. MAC	interface	TTL
Α	1	60
A'	4	60

Roteadores

Roteadores

Roteador é um dispositivo que encaminha pacotes de dados entre redes de computadores. Também conhecido como dispositivo de camada 3, o roteador utiliza os endereço IP para realizar o encaminhamento dos pacotes

Roteadores

Roteador é um dispositivo que encaminha pacotes de dados entre redes de computadores. Também conhecido como dispositivo de camada 3, o roteador utiliza os endereço IP para realizar o encaminhamento dos pacotes

✓ São responsáveis por escolher o melhor caminho para os Datagrama chegar ao destino

Roteadores

Roteador é um dispositivo que encaminha pacotes de dados entre redes de computadores. Também conhecido como dispositivo de camada 3, o roteador utiliza os endereço IP para realizar o encaminhamento dos pacotes

✓ São capazes de fragmentar os datagramas recebidos interligando redes de arquiteturas diferentes

Independência de Meios físicos

Os pacotes IP podem viajar através de meios físicos diferentes.

Roteadores

Roteador é um dispositivo que encaminha pacotes de dados entre redes de computadores. Também conhecido como dispositivo de camada 3, o roteador utiliza os endereço IP para realizar o encaminhamento dos pacotes

Fragmentação possibilita que um datagrama seja dividido em pedaços com tamanho suficiente para poder ser transmitido por uma conexão com o MTU menor que o datagrama original

O que é o Roteador

CPU e SO do Roteador

Semelhante a todos os computadores, tablets, consoles para jogos e dispositivos inteligentes, os roteadores exigem uma CPU para executar instruções do *sistema operacional*, como inicialização do sistema e funções de roteamento e de switching.

Firmware baseado em Linux

Cisco iOS

Memória do Roteador

Um roteador tem acesso a armazenamento de *memória volátil* e *não volátil*. A memória volátil requer corrente elétrica para manter suas informações. Quando o roteador é desligado ou reiniciado, o conteúdo é apagado e perdido. A memória não volátil retém as informações mesmo quando um dispositivo é reiniciado.

Imagem: CCNA R&S: Introduction to Networks- Cisco Networking Academy

Roteadores

Roteador é um dispositivo que encaminha pacotes de dados entre redes de computadores. Também conhecido como dispositivo de camada 3, o roteador utiliza os endereço IP para realizar o encaminhamento dos pacotes

✓ Para que ocorra o encaminhamento de mensagens, algoritmos/protocolo de roteamento são executados no roteador(RIP, OSPF, BGP)

Comutadores *versus* roteadores

Comutadores versus roteadores

- Ambos dispositivos de armazenamento e repasse
 - Roteadores: dispositivos da camada de rede (examinam cabeçalhos da camada de rede)
 - Comutadores são dispositivos da camada de enlace
- Roteadores mantêm tabelas de roteamento, implementam algoritmos de roteamento
- Switches mantêm tabelas de comutação, implementam filtragem, algoritmos de aprendizagem

Domínio de broadcast E Domínio de colisão

Domínio de broadcast é um segmento lógico de uma rede um sistema final é capaz de se comunicar com outro sem a necessidade de utilizar um dispositivo de roteamento.

Domínio de broadcast é um segmento lógico de uma rede um sistema final é capaz de se comunicar com outro sem a necessidade de utilizar um dispositivo de roteamento.

Domínio de broadcast é um segmento lógico de uma rede um sistema final é capaz de se comunicar com outro sem a necessidade de utilizar um dispositivo de roteamento.

Domínio de colisão é uma área lógica **onde os pacotes podem colidir uns contra os outros**, em particular no protocolo Ethernet. Quanto mais colisões ocorrem menor é a eficiência da rede.

Domínio de colisão é uma área lógica **onde os pacotes podem colidir uns contra os outros**, em particular no protocolo Ethernet. Quanto mais colisões ocorrem menor é a eficiência da rede.

Obrigado!

O que há no roteador

Capitulo 4 - Páginas de 235 à 244

Comutadores da Camada de Enlace

Capitulo 5 – Páginas de 352 à 357

A camada física

Capitulo 2 – Página 115

A camada de Enlace de dados

Capitulo 3 – Páginas de 180 a 182 e 208 à 218

A camada de redes

Capitulo 4 – Página 222 e 226 a 244

COMER, D. E. **Redes de computadores e internet.** 6. ed. Porto Alegre: Bookman, 2016.

The Internet Engineering Task Force (IETF®) - https://www.ietf.org/

Apostilas Cert Br https://cartilha.cert.br/downloads/

Notas de curso - Cisco Routing & Switching

Obrigado!

O que há no roteador

Capitulo 4 - Páginas de 235 à 244

Comutadores da Camada de Enlace

Capitulo 5 – Páginas de 352 à 357

A camada física

Capitulo 2 – Página 115

A camada de Enlace de dados

Capitulo 3 – Páginas de 180 a 182 e 208 à 218

A camada de redes

Capitulo 4 – Página 222 e 226 a 244

COMER, D. E. **Redes de computadores e internet.** 6. ed. Porto Alegre: Bookman, 2016.

The Internet Engineering Task Force (IETF®) - https://www.ietf.org/

Apostilas Cert Br https://cartilha.cert.br/downloads/

Notas de curso - Cisco Routing & Switching

Notas de Aulas - Ana Cristina Benso da Silva

Obrigado!

