

#### **Description**

# 

#### **Package Marking and Ordering Information**

| Device Marking | Device  | OUTLINE | Device Package | Reel Size | Reel<br>(PCS) | Per Carton<br>(PCS) |
|----------------|---------|---------|----------------|-----------|---------------|---------------------|
| VSM9N65-T2     | VSM9N65 | TAPING  | TO-252         | 13inch    | 2500          | 25000               |

#### **Absolute Maximum Ratings** (Tc=25℃ unless otherwise specified)

| Symbol                            | Parameter                               |                        | Max.        | Units        |
|-----------------------------------|-----------------------------------------|------------------------|-------------|--------------|
| $V_{DSS}$                         | Drain-Source Voltage                    |                        | 650         | V            |
| $V_{GSS}$                         | Gate-Source Voltage                     |                        | ±30         | V            |
| $I_D$                             | Continuous Drain Current                | T <sub>C</sub> = 25°C  | 9           | Α            |
|                                   |                                         | T <sub>C</sub> = 100°C | 5.8         | Α            |
| I <sub>DM</sub>                   | Pulsed Drain Current note1              |                        | 36          | Α            |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy note2    |                        | 211         | mJ           |
| P <sub>D</sub>                    | Power Dissipation                       | T <sub>C</sub> = 25°C  | 31          | W            |
| Rejc                              | Thermal Resistance, Junction to Case    |                        | 4           | °C/W         |
| R <sub>θJA</sub>                  | Thermal Resistance, Junction to Ambient |                        | 62.5        | °C/W         |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range |                        | -55 to +150 | $^{\circ}$ C |



## **Electrical Characteristics** (T<sub>J</sub>=25°C unless otherwise specified)

| Symbol               | Parameter                                                | Test Condition                                                      | Min. | Тур. | Max. | Units |  |  |
|----------------------|----------------------------------------------------------|---------------------------------------------------------------------|------|------|------|-------|--|--|
| Off Characteristic   |                                                          |                                                                     |      |      |      |       |  |  |
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown Voltage                           | V <sub>GS</sub> =0V, I <sub>D</sub> =250µA                          | 650  | -    | -    | V     |  |  |
| I <sub>DSS</sub>     | Zero Gate Voltage Drain Current                          | V <sub>DS</sub> =650V, V <sub>GS</sub> =0V,<br>T <sub>J</sub> =25°C | -    | -    | 1    | μA    |  |  |
| I <sub>GSS</sub>     | Gate to Body Leakage Current                             | V <sub>DS</sub> =0V, V <sub>GS</sub> = ±30V                         | -    | -    | ±100 | nA    |  |  |
| On Charac            | cteristics                                               |                                                                     |      |      |      |       |  |  |
| $V_{GS(th)}$         | Gate Threshold Voltage                                   | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                  | 2    | 3    | 4    | V     |  |  |
| R <sub>DS(on)</sub>  | Static Drain-Source on-Resistance                        | V <sub>GS</sub> =10V, I <sub>D</sub> =4.5A                          | -    | 0.9  | 1.08 | Ω     |  |  |
| Dynamic (            | Characteristics                                          |                                                                     |      |      |      |       |  |  |
| C <sub>iss</sub>     | Input Capacitance                                        | \\ -25\\ \\ -0\\                                                    | -    | 1400 | -    | pF    |  |  |
| Coss                 | Output Capacitance                                       | V <sub>DS</sub> =25V, V <sub>GS</sub> =0V,                          | -    | 114  | -    | pF    |  |  |
| C <sub>rss</sub>     | Reverse Transfer Capacitance                             | f=1.0MHz                                                            | -    | 26   | -    | pF    |  |  |
| Qg                   | Total Gate Charge                                        | \/ =F20\/   =0.4                                                    | -    | 32   | -    | nC    |  |  |
| $Q_{gs}$             | Gate-Source Charge                                       | $ V_{DD}$ =520V, $I_{D}$ =9A, $V_{GS}$ =10V                         | -    | 5    | -    | nC    |  |  |
| $Q_gd$               | Gate-Drain("Miller") Charge                              | VGS-10V                                                             | -    | 16   | -    | nC    |  |  |
| Switching            | Characteristics                                          |                                                                     |      |      |      |       |  |  |
| t <sub>d(on)</sub>   | Turn-on Delay Time                                       |                                                                     | -    | 23   | -    | ns    |  |  |
| t <sub>r</sub>       | Turn-on Rise Time                                        | V <sub>DD</sub> =325V, I <sub>D</sub> =9A,                          | -    | 15   | -    | ns    |  |  |
| t <sub>d(off)</sub>  | Turn-off Delay Time                                      | R <sub>G</sub> =25Ω                                                 | -    | 90   | -    | ns    |  |  |
| t <sub>f</sub>       | Turn-off Fall Time                                       |                                                                     | -    | 30   | -    | ns    |  |  |
| Drain-Sou            | rce Diode Characteristics and Maxin                      | num Ratings                                                         |      |      |      |       |  |  |
| Is                   | Maximum Continuous Drain to Source Diode Forward Current |                                                                     |      | -    | 9    | Α     |  |  |
| I <sub>SM</sub>      | Maximum Pulsed Drain to Source Diode Forward Current     |                                                                     |      | -    | 36   | Α     |  |  |
| $V_{SD}$             | Drain to Source Diode Forward Voltage                    | V <sub>GS</sub> =0V, I <sub>SD</sub> =9A                            | -    | -    | 1.4  | ٧     |  |  |
| t <sub>rr</sub>      | Reverse Recovery Time                                    | V <sub>GS</sub> =0V, I <sub>S</sub> =9A,                            | -    | 310  | -    | ns    |  |  |
| Q <sub>rr</sub>      | Reverse Recovery Charge                                  | di/dt=100A/µs                                                       | -    | 4.1  | -    | μC    |  |  |

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition:  $T_J$  = 25°C,  $V_{DD}$  = 50V,  $V_G$  = 10V, L= 10mH,  $I_{AS}$  = 6.5A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤1%



### **Typical Performance Characteristics**

Figure1: Output Characteristics



Figure 3:On-resistance vs. Drain Current



Figure 5: Gate Charge Characteristics



Figure 2: Typical Transfer Characteristics



Figure 4: Body Diode Characteristics



Figure 6: Capacitance Characteristics





**Figure 7:** Normalized Breakdown Voltage vs. Junction Temperature



Figure 9: Maximum Safe Operating Area



**Figure.11:** Maximum Effective Transient Thermal Impedance, Junction-to-Case



**Figure 8:** Normalized on Resistance vs. Junction Temperature



**Figure 10:** Maximum Continuous Drain Current vs. Case Temperature





#### **Test Circuit**



Figure1:Gate Charge Test Circuit & Waveform



Figure 2: Resistive Switching Test Circuit & Waveforms



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms