Uniqueness of Measure Extensions

Uniqueness of Extensions when Target Space is Hausdorff

Proposition 0.1. Let X be a topological space and let $f: A \to Y$ be a continuous function from a dense subspace A of X to a Hausdorff space Y. If there exists a continuous extension of f to all of X, then it must be unique. In other words, suppose $\widetilde{f}_1: X \to Y$ and $\widetilde{f}_2: X \to Y$ are continuous functions such that

$$\widetilde{f}_1|_A = f = \widetilde{f}_2|_A.$$

Then $\widetilde{f}_1 = \widetilde{f}_2$.

Proof. To prove uniqueness, assume for a contradiction that $\widetilde{f}_1\colon X\to Y$ and $\widetilde{f}_2\colon X\to Y$ are two continuous extensions of f such that $\widetilde{f}_1\neq\widetilde{f}_2$. Choose $x\in X$ such that $\widetilde{f}_1(x)\neq\widetilde{f}_2(x)$. Since Y is Hausdorff, we may choose open neighborhoods V_1 and V_2 of $\widetilde{f}_1(x)$ and $\widetilde{f}_2(x)$ respectively such that $V_1\cap V_2=\emptyset$. Then $\widetilde{f}_1^{-1}(V_1)\cap\widetilde{f}_2^{-1}(V_2)$ is an open neighborhood of x, and so it must have a nonempty intersection with A. Choose $a\in A\cap\widetilde{f}_1^{-1}(V_1)\cap\widetilde{f}_2^{-1}(V_2)$. Then

$$f(a) = \widetilde{f}_1(a) \\ \in V_1.$$

Similarly,

$$f(a) = \widetilde{f}_2(a) \\ \in V_2.$$

Thus $f(a) \in V_1 \cap V_2$, which is a contradiction since V_1 and V_2 were chosen to disjoint from one another.

Continuity of Finite Measure

Lemma 0.1. Let A be an algebra and let μ be a measure on $\sigma(A)$. Then

$$(\mu|_{\mathcal{A}})^*(A) \ge \mu(A)$$

for all $A \in \sigma(A)$.

Proof. Let $A \in \sigma(A)$. Then

$$(\mu|_{\mathcal{A}})^*(A) = \inf \left\{ \sum_{n=1}^{\infty} (\mu|_{\mathcal{A}})(E_n) \mid (E_n) \text{ is a sequence in } \mathcal{A} \text{ such that } A \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$$

$$= \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) \mid (E_n) \text{ is a sequence in } \mathcal{A} \text{ such that } A \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$$

$$\geq \inf \left\{ \mu \left(\bigcup_{n=1}^{\infty} E_n \right) \mid (E_n) \text{ is a sequence in } \mathcal{A} \text{ such that } A \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$$

$$\geq \mu(A),$$

where we used countable subadditivity of μ to get from the second line to the third line, and where we used monotonicity of μ to get from the third line to the fourth line.

Proposition o.2. Let A be an algebra and let μ be a finite measure on $\sigma(A)$. Then μ is Lipschitz continuous with respect to $d_{\mu|_A}$.

Proof. Let $A, B \in \sigma(A)$. Assume without loss of generality that $\mu(A) \geq \mu(B)$. Then

$$\mu(A) - \mu(B) \le \mu(A \setminus B)$$

$$\le \mu((A \setminus B) \cup (B \setminus A))$$

$$= \mu(A \Delta B)$$

$$\le (\mu|_{\mathcal{A}})^* (A \Delta B)$$

$$= d_{\mu|_{\mathcal{A}}}(A, B),$$

where we used the fact that μ is finite in the first line.

Uniqueness of Extension for Measures

Proposition 0.3. Let μ and ν be two finite measures defined on $\sigma(A)$ which coincide on A. Then $\mu = \nu$.

Proof. We first note that $d_{\mu|_{\mathcal{A}}} = d_{\nu|_{\mathcal{A}}}$ since μ and ν agree on \mathcal{A} . Indeed, let $A, B \in \sigma(\mathcal{A})$. Then we have

$$d_{\mu|_{\mathcal{A}}}(A,B) = (\mu|_{\mathcal{A}})^*(A\Delta B)$$

$$= \inf \left\{ \sum_{n=1}^{\infty} (\mu|_{\mathcal{A}})(E_n) \mid (E_n) \text{ is a sequence in } \mathcal{A} \text{ such that } A\Delta B \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$$

$$= \inf \left\{ \sum_{n=1}^{\infty} (\nu|_{\mathcal{A}})(E_n) \mid (E_n) \text{ is a sequence in } \mathcal{A} \text{ such that } A\Delta B \subseteq \bigcup_{n=1}^{\infty} E_n \right\}$$

$$= (\nu|_{\mathcal{A}})^*(A\Delta B)$$

$$= d_{\nu|_{\mathcal{A}}}(A,B).$$

Therefore $d_{\mu|_{\mathcal{A}}}$ and $d_{\nu|_{\mathcal{A}}}$ induce a common topology on $\sigma(\mathcal{A})$. Both $\mu \colon \sigma(\mathcal{A}) \to [0, \infty]$ and $\nu \colon \sigma(\mathcal{A}) \to [0, \infty]$ are continuous extensions of $\mu|_{\mathcal{A}} = \nu|_{\mathcal{A}}$ with respect to this common topology by Proposition (0.2). Since $[0, \infty]$ is Hausdorff and since \mathcal{A} is dense in $\sigma(\mathcal{A})$ with respect to this common topology, it follows from Proposition (0.1) that $\mu = \nu$.