计算机控制系统

第2章信号转换与 % 变换

信息学院·谭树彬 tanshubin@ise.neu.edu.cn

2019年3月

2.7 扩展 z 变换

2.7.1 扩展z变换定义

通常称信号 f(t) 延迟 λT 后的 $f(t-\lambda T)$ ($\lambda < 1$) 的z变换 $Z[f(t-\lambda T)]$ (将 $m=1-\lambda$ 作为参变数) 为信号 f(t) 的扩展 z 变换。

$$F(z,m) = Z_m[f(t)] = Z[f(t-\lambda T)], \quad 0 < \lambda \le 1$$

如果需要z变换能够反映 f(t) 在采样时刻之间的变化情况,可以人为地 使连续信号 f(t) 延迟 $\lambda T(\lambda < 1)$ 后再作z变换

图2.22 信号右移扩展z变换

扩展z变换的应用:

- (1) 用来计算计算机控制系统连续输出在采样时刻之间的任意时刻的数值;
- (2) 可以用来处理被控对象带有非采样周期整数 倍的延迟;
- (3) 非同步采样和多速率采样的计算机控制系统的有关分析问题。

扩展**z**变换常用符号 $Z_m[\cdot]$ 作为变换算子符,用F(z, m) 表示变换后的表示式。连续信务(t) 的扩展z变换定义为

$$F(z,m) = Z_m[f(t)] = Z[f(t-\lambda T)], \quad 0 < \lambda \le 1$$

$$F(z,m) = Z_m [f(t)] = z^{-1} Z [f(kT + mT)] = z^{-1} \sum_{k=0}^{\infty} f(kT + mT) z^{-k} \quad m = 1 - \lambda$$

对于用 F(s)表示的连续函数, 其扩展z变换为

$$F(z,m) = Z_m [F(s)] = Z [F(s)e^{-\lambda Ts}]$$
$$= Z [F(s)e^{-Ts + (T - \lambda T)s}] = z^{-1}Z [F(s)e^{mTs}]$$

2.7.2 几种典型函数的扩展z变换

(1) 单位阶跃函数

$$f(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

$$F(z,m) = Z_m [f(t)] = z^{-1} \sum_{k=0}^{\infty} f(kT + mT) z^{-k}$$

$$= z^{-1} [f(mT) + f(T + mT) z^{-1} + f(2T + mT) z^{-2} + \cdots]$$

$$= z^{-1} [1 + z^{-1} + z^{-2} + \cdots] = \frac{z^{-1}}{1 - z^{-1}} = \frac{1}{z - 1}$$

单位阶跃函数的扩展z变换与参数m无关。

(2) 单位斜坡函数

$$f(t) = \begin{cases} 0, & t < 0 \\ t, & t \ge 0 \end{cases}$$

$$F(z, m) = z^{-1} \sum_{k=0}^{\infty} f(kT + mT) z^{-k}$$

$$= z^{-1} \Big[f(mT) + f(T + mT) z^{-1} + f(2T + mT) z^{-2} + \cdots \Big]$$

$$= z^{-1} \Big[mT + (T + mT) z^{-1} + (2T + mT) z^{-2} + \cdots \Big]$$

$$= z^{-1} \Big[mT + mTz^{-1} + mTz^{-2} + \cdots + Tz^{-1} + 2Tz^{-2} + \cdots \Big]$$

$$= z^{-1} \Big[\frac{mT}{1 - z^{-1}} + \frac{Tz^{-1}}{(1 - z^{-1})^2} \Big]$$

$$= \frac{mTz^{-1}}{1 - z^{-1}} + \frac{Tz^{-2}}{(1 - z^{-1})^2} = \frac{mT(z - 1) + T}{(z - 1)^2}$$

(3) 指数函数

$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-at}, & t \ge 0 \end{cases}$$

$$F(z, m) = z^{-1} \sum_{k=0}^{\infty} f(kT + mT) z^{-k} = z^{-1} \sum_{k=0}^{\infty} e^{-a(kT + mT)} z^{-k}$$

$$= z^{-1} \left[e^{-amT} + e^{-amT - aT} z^{-1} + e^{-amT - 2aT} z^{-2} + \cdots \right]$$

$$= z^{-1} \left[e^{-amT} (1 + e^{-aT} z^{-1} + e^{-2aT} z^{-2} + \cdots) \right]$$

$$= \frac{e^{-amT} z^{-1}}{1 - e^{-aT} z^{-1}} = \frac{e^{-amT}}{z - e^{-aT}}$$

超前扩展z变换形式:

$$F(z,\Delta) = Z[F(s,\Delta)] = Z[F(s)e^{\Delta Ts}] = Z[f(t+\Delta T)] = \sum_{k=0}^{\infty} f(kT + \Delta T)z^{-k} \quad 0 < \Delta < 1$$

图2.23 z变换的超前和滞后

例2.21 已知 F(s) = 1/(s+a) ,求F(s) 的广义z变换 $F(z,\Delta), F(z,m)$

$$F(z,\Delta) = Z[F(s)e^{\Delta Ts}] = Z[\frac{1}{s+a}e^{\Delta Ts}]$$

$$= Z[e^{-a(t+\Delta T)}] = e^{-a\Delta T}Z[e^{-at}] = \frac{ze^{-a\Delta T}}{z-e^{-aT}}$$

$$F(z,m) = z^{-1}Z[F(s)e^{mTs}] = z^{-1}Z[\frac{1}{s+a}e^{mTs}] = z^{-1}Z[e^{-a(t+mT)}]$$

$$= z^{-1}e^{-amT}Z[e^{-at}] = z^{-1}e^{-amT}\frac{z}{z-e^{-aT}} = \frac{e^{-amT}}{z-e^{-aT}}$$

