

W-Massenmessung

Julia Sobolewski

9. Juni 2019

Fakultät Physik

Inhaltsverzeichnis I

Einleitung

Was sind W-Bosonen?

Entdeckung des W-Bosons

Motivation

Theoretische Grundlagen

Tevatron

Allgemeines

Beschleuniger-Kette

Detektoren

CDF

D0

Messstrategie

Event Generation

Track Momentum Calibration

Calorimeter Energy Calibration

Hadronic Recoil Measurement and Simulation

Backgrounds

Mass Fit and Systematics

Julia Sobolewski | 9. Juni 2019

Inhaltsverzeichnis II

Literatur

Julia Sobolewski | 9. Juni 2019

Was sind W-Bosonen?

Abbildung: Standardmodell der Teilchenphysik [4]

- Fichhoson →Flementarteilchen
- vermittelt in der elektroschwachen Theorie die geladenen Ströme
- Ladung: q = ±e
- Spin: s = 1
- mittlere Lebensdauer: 3 · 10⁻²⁵ s
- Masse: m_W = (80,379 ± 0,012) GeV

Entdeckung des W-Bosons

Abbildung: Feynman-Diagramm niedrigster Ordnung zur Erzeugung von W-Bosonen [6]

- 1983 am Super Proton Synchrotron (SPS)
- Im naiven Partonmodell entsteht das W-Boson bei Kollision eines Valenzquarks des Protons (u,d) mit einem Valenzantiquark des Antiprotons (\bar{u},\bar{d})

- Valenzquark und -antiquark tragen je einen Impulsanteil von $x_{1,2} \approx 0.2$ des (Anti-)Protons
- Um ein W-Boson zu erzeugen, wird eine Parton-Parton-Schwerpunktsenergie von $\sqrt{\hat{s}}$ = 80 GeV und somit eine $p\bar{p}$ -Schwerpunktsenergie von \sqrt{s} = $\sqrt{\frac{\hat{s}}{x_1x_2}}$ ≈ 400 GeV benötigt
- Solche Schwerpunktsenergien waren zuerst am SPS vorhanden (\sqrt{s} = 540 GeV)

Motivation

- W- und Z-Masse bestimmen zusammen den schwachen Mischungswinkel
- durch genaue Kenntnis der W- und t-Masse lässt sich die Masse des Higgs-Bosons eingrenzen

Theoretische Grundlagen

- Im Gegensatz zum Z-Nachweis im Zerfall Z → ℓ*ℓ⁻ über die invariante Masse des Leptonpaares kann man hier die Vierervektoren der Zerfallsprodukte nicht vollstandig bestimmen
- lacktriangler longitudinaler Impuls ho_z des Schwerpunktsystems der Kollision ist, weil das System geboostet ist, nicht bekannt
- → Lösung: Verwendung transversaler Größen

- im Zerfall $W \to \ell v$ insbesondere die Transversalimpulse des Leptons p_T^ℓ und des Neutrinos p_T^ν von besonderem Interesse
- lacktriangledown Der Transversalimpuls des Neutrinos kann nur indirekt über "fehlende transversale Energie" E_T bestimmt werden
- Wenn man annimmt, dass das Neutrino das einzige Teilchen ist, das undetektiert dem Detektor entkommt, kann man uber die Erhaltung des Transversalimpulses $\sum \vec{p}_T$ die transversale Flugrichtung und Energie des Neutrinos bestimmen.

 \blacksquare eine weitere Observable ist die "transversale Masse" $m_{ au}$

$$m_T = 2p_T^{\ell} p_T^{\nu} \left(1 - \cos \left(\varphi^{\ell} - \varphi^{\nu} \right) \right)$$

 $p_T^{\nu} = \mathbb{Z}_{\tau}, \varphi^{\ell} - \varphi^{\nu}$ $\hat{=}$ Öffnungswinkel zwischen den Transversalimpulsen des Leptons und des Neutrinos

Im Ruhesystem des W-Bosons und unter Annahme einer verschwindenden Zerfallsbreite Γ_W ist $p_T = \frac{m_W}{2} \sin(\theta)$, und somit

$$m_T = m_W \sin(\theta)$$

Der differenzielle Wirkungsquerschnitt als Funktion von m_T wird durch eine Variablentransformation $\mu = \frac{m_T}{m_W} = \sin(\theta)$ im Wirkungsquerschnitt gewonnen

$$\frac{d\sigma}{d\mu} = \frac{d\sigma}{d\cos\theta} \left| \frac{d\cos(\theta)}{d\mu} \right|$$

Abbildung: Darstellung der Jacobi-Kante in idealisierter Form und im Experiment [5].

 Man erhält für die Jacobi-Determinante dieser Variablentransformation

$$\frac{d\cos(\theta)}{d\mu} = \frac{d}{d\mu}\sqrt{1-\mu^2} = -\frac{\mu}{\sqrt{1-\mu^2}}$$

 Der differenzielle Wirkungsquerschnitt als Funktion von m_T besitzt damit einen scharfen Knick bei m_T = m_W, den man als "Jacobi-Kante" bezeichnet

- Eine Jacobi-Kante tritt analog auch im differenziellen Wirkungsquerschnitt $\frac{d\sigma}{d\rho_T}$ bei einem Transversalimpuls von $\rho_T = \frac{m_\pi}{2}$ auf
- Im Experiment ist Jacobi-Kante verschmiert
 - → W-Boson wird i.A. nicht in Ruhe erzeugt
 - → W-Boson besitzt endliche Zerfallsbreite
 - → Detektorauflösung
 - → Unsicherheiten in der Rekonstruktion

Allgemeines

- Betrieb durch das Fermilab (Batavia, Illinois)
- Proton-Antiproton-Beschleuniger
- der sträkste Beschleuniger nach dem LHC am CERN
- Umfang: 6 km
- Schwerpunktsenergie: 1,96 TeV
- 1994-1995: integrierte Luminosität von 100 pb⁻¹
- stillgelegt seit 29.09.2011

FERMILAB'S ACCELERATOR CHAIN

Abbildung: Beschleuniger-Kette am Fermilab [1].

CDF

Abbildung: Schematischer Aufbau des CDF-Detektors [2]

D₀

Abbildung: Schematischer Aufbau des D0-Detektors [3]

Zusammenfassung

Sytematic Uncertainty	Electrons (Run 1B ⁹)	Muons (Run 1B <mark>9</mark>)
Production and Decay Model	30 (30)	30 (30)
Lepton E Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25)
Statistics	45 (65)	50 (100)
Total	105 (110)	85 (140)

Abbildung: Unsicherheiten der W-Massenmessung in $\frac{\text{MeV}}{c^2}$ bei der Nutzung von 0,2 fb⁻¹ von CDF Run 2 Daten. In Klammern sind die Unsicherheiten aus CDF Run 1B.

Literatur

URL: https://mu2e.fnal.gov/images v2/00-0635D.jpg (besucht am 19.05.2019).

CDF Collaboration. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector. URL: http://inspirehep.net/record/1211048 (besucht am 05.06.2019).

High Energy Physics Division, URL: http://hepd.pnpi.spb.ru/hepd/images/d0.jpg (besucht am 05.06.2019).

Dr. Gebhard Greiter. Das Standardmodell der Elementarteilchen. URL:

http://greiterweb.de/spw/Standardmodell-Elementarteilchen.htm (besucht am 03.06.2019).

Dr. Ulrich Husemann. Experimentelle Elementarteilchenphysik (P23.1.1). URL: https://www-zeuthen.desy.de/~husemann/teaching/2009_ss/exp_teilchenphysik/skript/exp_teilchenphysik_folien.pdf (besucht am 04.06.2019).

Dr. Ulrich Husemann. Physik der W-Bosonen. url: https://www-

zeuthen.desy.de/~husemann/teaching/2009_ss/exp_teilchenphysik/skript/skript_04.pdf (besucht am
04.06.2019).