MODELI RAČUNARSTVA - JEZIČNI PROCESORI 1 Siniša Srbljić, Sveučilište u Zagrebu

- 1. UVOD
- 2. REGULARNI JEZICI
- 3. KONTEKSTNO NEOVISNI JEZICI
- 4. REKURZIVNO PREBROJIVI JEZICI
- 5. KONTEKSTNO OVISNI JEZICI
- 6. RAZREDBA (TAKSONOMIJA) JEZIKA, AUTOMATA I GRAMATIKA

2. REGULARNI JEZICI

2.1. KONAČNI AUTOMATI

2.2. REGULARNI IZRAZI

2.3. SVOJSTVA REGULARNIH IZRAZA

2.4. GRAMATIKA

2. REGULARNI JEZICI

REGULARNI JEZIK I KONAČNI AUTOMAT

- jezik je regularan ako postoji konačni automat koji ga prihvaća
- time je definirana istovjetnost konačnih automata i regularnih jezika

REGULARNI JEZICI

jednostavni, prihvaćaju ih konačni automati

2.2. Regularni izrazi

REGULARNI IZRAZI

- koriste se za opis regularnih jezika
- na osnovu definicije regularnih izraza
- i na osnovu algoritma konstrukcije konačnog automata za jezik zadan regularnim izrazom
- konstruiramo DKA generatorom automata

REGULARNI JEZIK I REGULARNI IZRAZ

- ako je jezik moguće opisati regularnim izrazima onda je regularan!
- označava se L(r)
- moguće je izgraditi DKA M tako da je L(M)=L(r)
- npr. wcw^R, w \in {aa,ab,ba,bb} **je** regularan
- npr. wcw^R, w proizvoljan nije regularan
- skup regularnih jezika je pravi podskup svih jezika
- za neregularne jezike nije moguće izgraditi DKA

ALGORITAM SINTEZE DKA

- Regularni jezik K
- Opis jezika K regularnim izrazima r: L(r)=K
- Izgraditi ε-NKA M za koji vrijedi: L(M)=L(r)
- Izgraditi NKA M' za koji vrijedi: L(M')=L(M)
- Izgraditi DKA M'' za koji vrijedi: L(M'')=L(M')
- Izgraditi minimalni DKA M''' za koji vrijedi:
 L(M''')=L(M'')=L(M)=L(r)=K

REKURZIVNA PRAVILA ZA RI

- $-\emptyset$ jest RI i označava jezik $L(\emptyset)=\{\}$
- ε jest RI i označava jezik $L(ε) = {ε}$
- ∀a∈Σ, a jest RI i označava jezik L(a)={a}
 (ista iznaka "a" znači znak, niz i RI)
- ako su r i s RI koji označavaju L(r) i L(s) vrijedi:
 - (r) \vee (s) jest RI i označava jezik L((r) \vee (s))= L(r) \cup L(s) (operator \vee nekad se označava sa + ili |)
 - (r)(s) jest RI i označava jezik L((r) (s))= L(r)L(s)
 - (r)* jest RI i označava jezik $L((r)^*)=(L(r))^*$

- Pravila asocijativnosti i prednosti
 - unarni operator * je lijevo asocijativan i najveće prednosti
 - binarni operator nadovezivanja je lijevo asocijativan i veće je prednosti od operatora v (ili + ili |)
 - binarni operator v je lijevo asocijativan i najniže je prednosti

PRIMJER RI

```
- RI 01 definira L(01) = \{01\}
```

- RI $0 \lor 1$ definira $L(0 \lor 1) = \{0,1\}$
- $RI (0 \lor 1)(0 \lor 1) definira L(0 \lor 1)(0 \lor 1) = \{00,01,10,11\}$
- RI 1* definira $L(1*) = \{\varepsilon, 1, 11, 111, ..., 111111111,\}$
- RI $(0\lor1)^*$ definira $L((0\lor1)^*) = L(0\lor1)^* =$ = $\{\varepsilon,0,1,00,01,10,11,000,001,...,111,...,1110100111,....\}$
- $RI (0 \lor 1)*00(0 \lor 1)* definira L(0 \lor 1)* 00(0 \lor 1)* =$ $= \{00,000,001,100,0000,0100,1000,1100,0001,0010,...\}$
- RI 0*1* definira L(0*1*) = = $\{\varepsilon,0,1,00,01,000,001,011,111,...,000000111,....\}$

ISTOVJETNOST RI

- RI r i s su istovjetni ako definiraju iste jezike: definira L(r) = L(s)
- piše se r = s
- npr. (a) \vee ((b)*(c) = a \vee b*c;
- $L(a \lor b*c) = \{a,c,bc,bbc,bbbc,...\}$

SVOJSTVA RI

$$- r \lor s = s \lor r$$

$$- r \lor (s \lor t) = (r \lor s) \lor t$$

$$- r(st) = (rs)t$$

$$- r(s \lor t) = rs \lor rt$$

$$-\epsilon r = r\epsilon$$

$$- r^* = (r \lor \epsilon)^*$$

$$- r^{**} = r^{*}$$

nadovezivanje jest asocijativno

distributivnost nadovezivanja nad V

ε je neutralni element nadovezivanja

relacija između * i v

idempotentnost

2.2.2. Konstrukcija ε-NKA iz RI

- KONSTRUKCIJA ε-NKA iz RI za "Ø"
 - za bilo koji regularni izraz R moguće je izgraditi
 ε-NKA M tako da vrijedi L(M)=L(r)
 - **p1.** za RI \emptyset koji označava jezik L(\emptyset)={} izgradimo: ε-NKA M=({i,f}, Σ, {}, i, {f})
 - ne prihvaća ni jedan niz

• KONSTRUKCIJA ε-NKA iz RI za "ε"

p2. za RI ε koji označava jezik L(ε)={ε} izgradimo: ε-NKA M=({i,f},
$$\Sigma$$
, {δ(i,ε)=f}, i, {f})

prihvaća prazni niz ε

• KONSTRUKCIJA ε-NKA iz RI za "a"

p3. za RI a koji označava jezik L(a)={a} izgradimo: ε-NKA M=({i,f},
$$\Sigma$$
, {δ(i,a)=f}, i, {f})

− prihvaća niz a, ne prihvaća ε niti b od b∈ Σ

- KONSTRUKCIJA ε-NKA iz RI za r₁∨r₂
 - **p4.** za RI $r_1 \lor r_2$ koji označava jezik $L(r_1 \lor r_2) = L(r_1) \cup L(r_2)$ izgradimo ε-NKA M postupkom:
 - izgradimo ε -NKA $M_1 = (Q_1, \Sigma_1, \delta_1, i_1, \{f_1\})$ da je $L(M_1) = L(r_1)$
 - izgradimo ε -NKA $M_2 = (Q_2, \Sigma_2, \delta_2, i_2, \{f_2\})$ da je $L(M_2) = L(r_2)$
 - f_1 i f_2 nemaju prijelaza, $tj. \ \forall a \in (\Sigma_1 \cup \{\epsilon\}) : \delta_1(f_1, a) = \emptyset$ i $\forall b \in (\Sigma_2 \cup \{\epsilon\}) : \delta_2(f_2, b) = \emptyset$
 - stanja iz Q_1 i Q_2 imenujemo tako da je $Q_1 \cap Q_2 = \emptyset$
 - izgradimo ε -NKA M =($Q_1 \cup Q_2 \cup \{i,f\}, \Sigma_1 \cup \Sigma_2, \delta, i, \{f\})$
 - f je novo prihvatljivo stanje, a f₁ i f₂ više nisu prihvatljiva

- KONSTRUKCIJA ε-NKA iz RI za r₁∨r₂
 - konstruiramo δ:
 - $\delta(i, \varepsilon) = \{i_1, i_2\}$
 - $\delta(q, a) = \delta_1(q, a) \quad \forall q \in (Q_1 \setminus \{f_1\}) \quad i \quad \forall a \in (\Sigma_1 \cup \{\epsilon\})$
 - $\delta(q, b) = \delta_2(q, b) \quad \forall q \in (Q_2 \setminus \{f_2\}) \quad i \quad \forall b \in (\Sigma_2 \cup \{\epsilon\})$
 - $\delta(f_1, \varepsilon) = \delta(f_2, \varepsilon) = \{f\}$

- KONSTRUKCIJA ε-NKA iz RI za r₁r₂
 - **p5.** za RI r_1r_2 koji označava jezik $L(r_1r_2) = L(r_1)L(r_2)$ izgradimo ε-NKA M postupkom:
 - izgradimo ε -NKA $M_1 = (Q_1, \Sigma_1, \delta_1, i_1, \{f_1\})$ da je $L(M_1) = L(r_1)$
 - izgradimo ϵ -NKA $M_2 = (Q_2, \Sigma_2, \delta_2, i_2, \{f_2\})$ da je $L(M_2) = L(r_2)$
 - f_1 i f_2 nemaju prijelaza, $tj. \ \forall a \in (\Sigma_1 \cup \{\epsilon\}) : \delta_1(f_1, a) = \emptyset$ i $\forall b \in (\Sigma_2 \cup \{\epsilon\}) : \delta_2(f_2, b) = \emptyset$
 - stanja iz Q_1 i Q_2 imenujemo tako da je $Q_1 \cap Q_2 = \emptyset$
 - izgradimo ε -NKA M =($Q_1 \cup Q_2 \cup \{i,f\}, \Sigma_1 \cup \Sigma_2, \delta, i_1, \{f_2\})$
 - i₁ je novo početno stanje, a f₁ više nije prihvatljivo
 - i₂ više nije početno stanje, a f₂ je novo prihvatljivo stanje

- KONSTRUKCIJA ε-NKA iz RI za r₁r₂
 - konstruiramo δ:
 - $\delta(q, a) = \delta_1(q, a) \quad \forall q \in (Q_1 \setminus \{f_1\}) \quad i \quad \forall a \in (\Sigma_1 \cup \{\epsilon\})$
 - $\delta(q, b) = \delta_2(q, b) \quad \forall q \in (Q_2 \setminus \{f_2\}) \quad i \quad \forall b \in (\Sigma_2 \cup \{\epsilon\})$
 - $\delta(f_1, \varepsilon) = \{i_2\}$

- KONSTRUKCIJA ε-NKA iz RI za r₁*
 - **p6.** za RI r_1 * koji označava jezik $L(r_1^*) = L(r_1)^*$ izgradimo ε-NKA M postupkom:
 - izgradimo ε -NKA $M_1 = (Q_1, \Sigma_1, \delta_1, i_1, \{f_1\})$ da je $L(M_1) = L(r_1)$
 - f_1 nema prijelaza, $tj. \quad \forall a \in \Sigma_1: \delta_1(f_1, a) = \emptyset$
 - izgradimo ε -NKA M =(Q₁ \cup {i,f}, Σ ₁, δ , i, {f})
 - i₁ više nije početno stanje, a f₁ više nije prihvatljivo

- KONSTRUKCIJA ε-NKA iz RI za r₁*
 - konstruiramo δ:
 - $\delta(i, \varepsilon) = \delta(f_1, \varepsilon) = \{i_1, f\}$
 - $\delta(q, a) = \delta_1(q, a) \quad \forall q \in (Q_1 \setminus \{f_1\}) \quad i \quad \forall a \in (\Sigma_1 \cup \varepsilon)$

• KONSTRUKCIJA ε-NKA iz RI za r₁*

p7. za RI (r) koji označava jezik L((r)) = L(r)

- izgradimo ε-NKA M za RI (r)
- tako da uzmemo ε-NKA M₁ za RI r
- jer je $L(M_1) = L(M) = L(r) = L((r))$

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI $r = 01* \vee 1$
 - RI r rastavimo na $r = r_1 \lor r_2$; $r_1 = 01* i r_2 = 1$
 - za $r_2 = 1$ izgradimo ε -NKA:

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI $r = 01* \lor 1$ nadalje
 - $r_1 = 01^*$ rastavimo na $r_1 = r_3 r_4$; $r_3 = 0$ i $r_4 = 1^*$
 - za $r_3 = 0$ izgradimo ε -NKA:

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI r = $01* \lor 1$ nadalje
 - $r_4 = 1^*$ rastavimo na $r_4 = r_5^*$; $r_5 = 1$
 - za $r_5 = 1$ izgradimo ε -NKA:

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI $r = 01* \lor 1$ nadalje
 - za $r_4 = 1*$ izgradimo ε -NKA prema pravilu p6:

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI $r = 01* \lor 1$ nadalje
 - za $r_1 = r_3 r_4$ izgradimo ε -NKA prema pravilu p5:

- KONSTRUKCIJA ε-NKA iz RI PRIMJER
 - za RI $r = 01* \lor 1$ nadalje
 - za $r = r_1 \lor r_2$ izgradimo ε -NKA prema pravilu p4:

• KONSTRUKCIJA ε-NKA iz RI - SVOJSTVA

- ε-NKA konstruiran iz RI ima svojstva
 - broj stanja ε-NKA nikad nije veći od 2|r| jer se u pojedinim koracima konstrukcije nikad ne stvara više od 2 nova stanja
 - ε -NKA M = (Q, Σ , δ , i, {f}) ima samo jedno završno stanje f za koje vrijedi δ (f,a)= \emptyset \forall a \in (Σ \cup { ε }), odnosno nema prijelaza iz f
 - skup δ(q,a) sadrži najviše jedno stanje za ulazni znak a skup δ(q, ε) sadrži najviše dva stanja za ulazni znak ε; ima li čvor dvije grane obje su označene sa ε

2.2.3. Generator konačnog automata

GENRATOR KA

- KA gradi se za jezik zadan RI
- generator ostvaruje dio ili cjelokupnu pretvorbu RI u DKA

Generator konačnog automata

SIMULATOR KA

- ovisno o željenom KA izgradi se program simulator
- simulator radi na upisanoj tablici prijelaza
 (izravni način zapisa stanja, samo mijenjamo tablice)
- simulator čita znakove ulaza iz ulaznog spremnika
 i računa prijelaz u stanje na osnovu tablice prijelaza

Generator konačnog automata

GENRATOR KA

- gradi tablicu prijelaza na temelju RI
- tablica prijelaza ugradi se u program simulator

2.3. Svojstva regularnih jezika

SKUP SVIH JEZIKA

- jezici wcw^R i 0^{i²}
 nisu regularni jer nije moguće izgraditi DKA
- neka je 2^{Σ^*} označava skup svih jezika nad abecedom Σ, svaki jezik L⊆Σ* je član tog skupa L∈ 2^{Σ^*}
- regularni jezici su u skupu RJ $⊂2^{\Sigma^*}$

2.3.1. Svojstva zatvorenosti regularnih jezika

ZATVORENOST KLASE JEZIKA

- definira se obzirom na operacije nad jezicima
- klasa je zatvorena ako primjenom operacije dobijemo jezik u istoj klasi
- regularni jezici zatvoreni su obzirom na više operacija
- npr. za L,N∈RJ, L \cup N ∈RJ jer postoji M: L(M) = L \cup N
- za opis svojstava RJ koristimo istovjetnost RJ, KA i RI

Svojstva zatvorenosti regularnih jezika

- UNIJA, NADOVEZIVANJE, KLEENE
 - RJ su zatvoreni obzirom na
 - uniju,
 - nadovezivanje i
 - Kleeneov operator
 - zatvorenost slijedi iz definicije regularnih izraza

Svojstva zatvorenosti regularnih jezika

KOMPLEMENT

- regularni jezici zatvoreni su obzirom na komplement
- neka DKA M = $(Q, \Sigma, \delta, q_0, F)$ prihvaća L $(M) \in RJ$
- za komplement jezika L(M)^c izgradimo: DKA M' = (Q, Σ , δ , q_0 , Q\F)
- koji prihvaća jezik:

$$L(M') = \{ w | \delta(q_0, w) \in Q \setminus F \} = \{ w | \delta(q_0, w) \notin F \} =$$

$$= \Sigma^* \setminus \{ w | \delta(q_0, w) \in F \} = \Sigma^* \setminus L(M) = L(M)^c$$

 $-L(M)^{c} \in RJ$

Svojstva zatvorenosti regularnih jezika

PRESJEK

- regularni jezici zatvoreni su obzirom na presjek
- koristimo zatvorenost unije i komplementa, te DeMorganovo pravilo L∩N = $((L \cap N)^c)^c = (L^c \cup N^c)^c$
- neka DKA $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, F_1)$ prihvaća $L(M_1) \in RJ$
- neka DKA $M_2 = (Q_2, \Sigma_2, \delta_2, p_1, F_2)$ prihvaća $L(M_2) \in RJ$
- tada DKA $M = (Q, \Sigma, \delta, q_0, F)$ za $L(M) = L(M_1) \cap L(M_2)$ gradimo po pravilima:
 - $Q = Q_1 \times Q_2$; $[q, p] \in Q$; $q \in Q_1$, $p \in Q_2$
 - $q_0 = [q_1, p_1]$
 - $F = F_1 \times F_2$; $[q, p] \in F$; $q \in F_1$, $p \in F_2$
 - $\delta([q, p], a) = [\delta_1(q, a), \delta_2(p, a)] \forall q \in Q_1, \forall p \in Q_2, \forall a \in \Sigma$

Svojstva zatvorenosti regularnih jezika

PRESJEK - PRIMJER

Svojstva zatvorenosti regularnih jezika

SUPSTITUCIJA

- regularni jezici zatvoreni su obzirom na supstituciju
- neka je R⊆ Σ *; R∈RJ
- pridružimo znaku $a \in \Sigma$ RJ $R_a \subseteq \Delta^*$ tako da niz $a_1 a_2 ... a_n$ zamijenimo nizom $w_1 w_2 ... w_n$
- dobiveni jezik f(R) je regularan
- dovoljno je R i R_a opisati regularnim izrazima
- svojstvo supstitucije (zamjene) omogućava pojednostavljeno zapisivanje regularnih definicija

Svojstva zatvorenosti regularnih jezika

SUPSTITUCIJA - PRIMJER

- neka je R∈RJ zadan s r = $0*(0 \lor 1)1*$
- pridružimo znaku 0 jezik f(0)=a, a znaku 1 f(1)=b*
- f(R) je zadan regularnim izrazom:

$$f(R) = f(0*(0 \lor 1)1^*) = (f(0))*((f(0)) \lor (f(1)))(f(1))^*) =$$

$$= a*(a \lor b*)(b*)* = a*(a \lor b*)b* = (a*a \lor a*b*)b* =$$

$$= a*ab* \lor a*b*b* = a*ab* \lor a*b* = a+b* \lor a*b* =$$

$$= (a+\lor a*)b* = a*b*$$

 $- f(R) \in RJ$

2.3.2. Regularne definicije

REGULARNE DEFINICIJE

- imenima dodjeljujemo RI, odnosno zamjenjujemo s RI
- oblik regularnih definicija je:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

 $d_n \rightarrow r_n$

- d_i su znakovi imena, a r_i su RI nad $\Sigma \cup \{d_i\}$
- r_i je moguće napisati nad Σ
 ako sve znakove d_i zamijene s RI

Regularne definicije

REGULARNE DEFINICIJE - PRIMJER

- programske varijable definiramo nad $\Sigma = \{a,b,...z,A,B,...Z,0,1,...9\}$
- korištenjem definicija pišemo:
 - (i) $\underline{slovo} \rightarrow A \lor B \lor ... \lor Z \lor a \lor b \lor ... \lor z$
 - (ii) $\underline{\text{brojka}} \rightarrow 0 \lor 1 \lor ... \lor 9$
 - (iii) $varijabla \rightarrow slovo (slovo \lor brojka)*$
- RI <u>varijabla</u> zadan je nad $\Sigma \cup \{$ <u>slovo</u>, <u>brojka</u> $\}$
- RI <u>varijabla</u> moguće je napisati korištenjem isključivo Σ ako se umjesto <u>slovo</u>, <u>brojka</u> uvrste izrazi (i) i (ii) <u>varijabla</u> \rightarrow (A∨B∨... ∨z) ((A∨B∨... ∨z)∨(0∨1∨...∨9))*

Regularne definicije

REGULARNE DEFINICIJE - PRIMJER

- konstante bez predznaka definiramo nad $\Sigma = \{0,1,2,3,4,5,6,7,8,9,E,..+,-\}$
- korištenjem definicija pišemo:

```
<u>broj</u> → 0∨1∨2∨3∨4∨5∨6∨7 ∨8∨9

<u>brojke</u> → <u>broj</u> <u>broj</u>*

<u>decimale</u> → . <u>brojke</u> ∨ ε

<u>eksponent</u> → (E(+ ∨ - ∨ ε) <u>brojke</u>) ∨ ε

<u>konstanta</u> → <u>brojke</u> <u>decimale</u> <u>eksponent</u>
```

2.3.3. Svojstvo napuhavanja

- SVOJSTVO NAPUHAVANJA (Pumping lemma)
 - koristi se za
 - dokazivanje neregularnosti nekih jezika
 - dokazivanje algoritama nepraznosti RJ
 - beskonačnost RJ itd.
 - za RJ postoji DKA M= M = (Q, Σ , δ , q₀, F)
 - neka M ima n stanja
 - promatrajmo a₁a₂...a_m niz duljine m>n
 - za i=1,2,...,m neka vrijedi $\delta(q_0, a_1 a_2 ... a_i) = q_i$
 - kako je n<m, nije moguće da sva stanja u nizu
 q₀,q₂,q₃,...,q_n budu različita, barem jedno se **ponavlja**

PONAVLJANJE STANJA

- za neka dva indeksa j i k stanja u nizu vrijedi
 0≤j<k≤n i q_i=q_k
- za niz z= $a_1a_2...a_m$ vrijedi $1 \le |a_{j+1}a_{j+2}...a_k| \le n$
- pišemo: z = uvw, gdje je
 - podniz $u = a_1 a_2 ... a_i$
 - podniz $v = a_{j+1}a_{j+2}...a_k$
 - podniz $u = a_{k+1}ak + 2_2...a_m$

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots q_{j-1} \xrightarrow{a_j} q_j = q_k \xrightarrow{a_{k+1}} q_{k+1} \xrightarrow{a_{k+2}} \cdots q_{m-1} \xrightarrow{a_m} q_m$$

$$\downarrow q_{j+1} \xrightarrow{a_{j+2}} q_{j+2} \xrightarrow{a_{j+3}} q_{j+3} \xrightarrow{a_{j+4}} \cdots q_{k-2} \xrightarrow{a_{k-1}} q_{k-1} \longrightarrow$$

PONAVLJANJE STANJA

- ako je q_m∈F, uvw se prihvaća, kao i uw
- kako je $q_i = q_k$ postoji slijed prijelaza iz q_0 u q_m $\delta(q_0, uw) = \delta(\delta(q_0, u), w) = \delta(q_i, w) = \delta(q_k, w) = q_m$
- prihvaća se niz uvvw

$$\delta(q_0, uvvw) = \delta(\delta(q_0, u), vvw) = \delta(q_j, vvw) =$$

$$=\delta(\delta(q_i, v), vw) = \delta(q_k, vw) = \delta(q_i, vw) =$$

$$= \delta(\delta(q_i, v), w) = \delta(q_k, w) = q_m$$

prihvaćaju se svi nizovi uvⁱw, i≥0

NAPUHAVANJE

- bilo koji dovoljno dugački niz z∈L(M)
 može se rastaviti na podnizove: z=uvw
- podniz v moguće je proizvoljan broj puta ponoviti (napuhati), jer je uvⁱw∈L(M), a M odgovarajući DKA
- ako RJ sadrži dovoljno dugačak niz z=uvw,
 onda taj jezik sadrži beskonačni skup nizova uvⁱw
- broj ponavljanja i ne mora biti velik

DOKAZIVANJE NEREGULARNOSTI

- (i) ako je L regularan, postoji n takav da je moguće
 - bilo koji niz z∈L gdje je |z|>n rastaviti na podnizove z=uvw tako da je:

$$|uv| \le n$$
 i $1 \le |v|$

- za bilo koji i≥0 niz uvⁱw∈L
- pokazuje se da n nije veći od broja stanja minimalnog DKA koji prihvaća jezik L

DOKAZIVANJE NEREGULARNOSTI PRIMJER

– jezik
$$K = \{0^{\ell^2} | \ell \in \mathbb{N}; \ell \ge 1\}$$
 nije regularan

- pretpostavi se da je L regularan jezik
- neka **n** odgovara (i) i neka je $z = 0^{n^2}$ niz jezika L: $|z| = n^2$, |z| > n
- prema (i) niz **z** rastavlja se na podnizove uvw; $1 \le |v| \le |uv| \le n$
- treba utvrditi da li je niz uvⁱw element jezika L za bilo koji i
- ako je **i**=2 onda i $|v| \le |uv| \le n$ onda je $|uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)$
- budući da je $(n^2+n) < (n+1)^2$ vrijedi: $n^2 < |uv^2w| < (n+1)^2$ tj. $|uv^2w|$ nije kvadrat cijelog broja
- bez obzira na n i na podjelu uvw, uv²w nije član jezika posljedično L je neregularan

ALGORITMI ODLUČIVANJA

- nepraznost regularnog jezika
 - L(M) je neprazan ako DKA M prihvaća niz duljine |z|<n; n je broj stanja DKA M
 - ako je u skupu dohvatljivih stanja jedno prihvatljivo, L(M) je neprazan
- beskonačnost regularnog jezika
 - L(M) je beskonačan ako DKA M prihvaća niz duljine n≤|z|<2n;
 n je broj stanja DKA M
 - promatra se graf DKA M i dobije se DKA M' tako da se izuzmu neprihvatljiva stanja za koje ne postoji staza u prihvatljivo
 - L(M) je beskonačan ako graf DKA M' ima barem jednu zatvorenu petlju

2.4. Gramatika

REGULARNA GRAMATIKA

- regularna gramatika generira regularne jezike
- gramatiku formalno definiramo na svojstvima kontekstno neovisnih gramatika
- definiraju se svojstva regularne gramatike
- oblik produkcija ograničen je tako da se jamči generiranje regularnih jezika

2.4.1. Formalna gramatika

FORMALNA GRAMATIKA

- koristi se u analizi i generiranju nizova znakova formalnog jezika
- npr. promatrajmo gramatiku koja generira 16 rečenica
- s nezavršnim elementima označenim <>:
 - < Rečenica >,<Subjektni skup>,<Predikat>,
 < Objektni skup>,<Subjekt>,<Objekt>,<Atribut>
- i sa završnim elementima šest riječi:
 - djevojke, mačke, gledaju, zbunjene, uplašene, . (točka)

FORMALNA GRAMATIKA

- gramatika gradi rečenice primjenom pravila produkcija
 - (1) <Rečenica>→<Subjektni skup><Predikat><Objektni skup>.
 - (2) <Subjektni skup>→<Atribut><Subjekt>
 - (3) <Objektni skup>→<Atribut><Objekt>
 - (4) <Predikat>→gledaju
 - (5) < Subjekt > \rightarrow djevojke
 - (6) <Subjekt>→mačke
 - (7) <Atribut>→zbunjene
 - (8) <Atribut>→uplašene
 - (9) <Objekt>→djevojke
 - (10) <Objekt>→mačke

PRIMJENA PRODUKCIJA

- pravila koristimo kod zamjene nezavršnih dok ne dobijemo samo završne znakove:
 - <Rečenica>
 - <Subjektni skup><Predikat><Objektni skup>.
 - <Atribut><Subjekt><Predikat><Objektni skup>.
 - <Atribut><Subjekt><Predikat><Atribut><Objekt>.
 - <Atribut><Subjekt>**gledaju**<Atribut><Objekt>.
 - <Atribut>djevojke gledaju<Atribut> mačke.
 - zbunjene djevojke gledaju uplašene mačke.

PRIMJENA PRODUKCIJA

- relacijom ⇒ označimo primjenu jednog pravila:
 - <Rečenica>
 - ⇒<Subjektni skup><Predikat><Objektni skup>.
 - ⇒<Atribut><Subjekt><Predikat><Objektni skup>.
 - ⇒<Atribut><Subjekt><Predikat><Atribut><Objekt>.
 - ⇒<Atribut><Subjekt>**gledaju**<Atribut><Objekt>.
 - ⇒<Atribut>djevojke gledaju<Atribut><Objekt>.
 - ⇒<Atribut>djevojke gledaju<Atribut> mačke.
 - ⇒zbunjene djevojke gledaju <Atribut> mačke.
 - ⇒zbunjene djevojke gledaju uplašene mačke.

PRIMJENA PRODUKCIJA

itd.

```
    relacijom ⇒* ili ⇒ označimo primjenu više pravila:

    <Rečenica>
    ⇒*<Atribut><Subjekt><Predikat><Atribut><Objekt>.
    ⇒*zbunjene djevojke gledaju uplašene mačke.
- ili:
    <Rečenica>
    ⇒* uplašene djevojke gledaju zbunjene mačke.
    <Rečenica>
    ⇒* uplašene mačke gledaju zbunjene djevojke .
```


KONTEKSTNO NEOVISNA GRAMATIKA

– je uređena četvorka:

$$G = (V, T, P, S)$$

- V konačni skup nezavršnih znakova
- T konačni skup završnih znakova V∩T=∅
- P konačni skup produkcija oblika $A \rightarrow \alpha$;
 - A ∈ V
 - α je niz: $\alpha \in (V \cup T)^*$, uključuje prazni niz ϵ
- S početni nezavršni znak
- koristi se u definiranju sintakse programskih jezika
- produkcije su najčešće u BNF (Backus-Naur Form)

OZNAKE U FORMALNOJ GRAMATICI

- 1) A,B,C...S su nezavršni znakovi gramatike
- 2) a,b,c...0,1,2,..., mačke su završni znakovi gramatike
- 3) X,Y,Z su završni ili nezavršni znakovi
- 4) u, v, w, x, y i z označavaju nizove završnih znakova
- 5) α, β, γ označavaju nizove završnih i nezavršnih znakova
- ima li više produkcija za isti nezavršni znak koristimo |,
 npr. A→a i A→b piše se A→a|b

FORMALNA GRAMATIKA PRIMJER

$$G = (\{E\}, \{a, *, +, (,)\}, \{E \rightarrow E + E | E * E | (E) | a\}, E)$$

- generira nizove završnih znakova nizovima produkcija
 - 1) $E \Rightarrow a$
 - 2) $E \Rightarrow E + E \Rightarrow *a + a$
 - 3) $E \Rightarrow E^*E \Rightarrow a^*a$
 - 4) $E \Rightarrow E^*E \Rightarrow (E)^*E \Rightarrow (E+E)^*E \Rightarrow^* (a+a)^*a$
- ako a označava konstantu ili varijablu, G generira aritmetičke izraze programskog jezika

FORMALNA GRAMATIKA OZNAKE

- za G = (V, T, P, S) definira se relacija ⇒_G nad nizovima iz skupa (V \cup T)*
- ako je A → β iz P, ako su α, i γ iz (V∪T)*, tada vrijedi: α Aγ ⇒_G α βγ
- definiramo relaciju \Rightarrow_G^* tako da vrijedi: $\alpha_1 \Rightarrow_G \alpha_2 \Rightarrow_G \alpha_3 \dots \alpha_{m-1} \Rightarrow_G \alpha_m = \alpha_1 \Rightarrow_G^* \alpha_m$
- $\Rightarrow_{G} *$ je refleksivno i tranizitivno okruženje \Rightarrow_{G}
- znade li se G, skraćeno se piše ⇒ i ⇒*
- za i produkcija piše se $\alpha \Rightarrow^i \beta$

FORMALNA GRAMATIKA I JEZICI

- G = (V, T, P, S) generira jezik

$$L(G) = \{w|w \in T^*; S \Rightarrow_G^* w\}$$

- niz je u jeziku L(G) ako vrijedi
 - u nizu su isključivo završni znakovi w∈T*;
 - niz je moguće generirati iz početno nezavršnog znaka S
- $-G_1$ i G_2 su istovjetne ako vrijedi $L(G_1) = L(G_2)$

KONTEKSTNO NEOVISNI JEZICI

- kontekstno neovisna gramatika generira kontekstno neovisne jezike
- klasa kontekstno neovisnih jezika sadrži jezike koji nisu regularni, npr. N={wcw^R}je neregularan
- gramatika: $G = (\{S\}, \{a, b, c\}, \{S \rightarrow aSa|bSb|c\}, S)$
- generira jezik

$$S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbSbbaa \Rightarrow ...$$

ili
$$S \Rightarrow^* wSw^R$$

konačno: $S \Rightarrow^* wSw^R \Rightarrow wcw^R$; $L(G)=\{wcw^R\}=N$

KONTEKSTNO NEOVISNI JEZICI

- može se pokazati da za regularni jezik postoji kontekstno neovisna gramatika
- regularni jezik je dio skupa kontekstno neovisnih jezika
- klasa kontekstno neovisnih jezika je skup jezika širi od skupa regularnih jezika jer je N={wcw^R} neregularan

Skup kontekstno neovisnih jezika KNJ

Regularni jezici RJCKNJ

GENERATIVNO STABLO

- za G = (V, T, P, S) stablo je generativno ako
 - 1) čvorove označimo znakovima $V \cup T \cup \{\epsilon\}$
 - 2) korijen stabla označen je početnim nezavršnim znakom S
 - 3) unutrašnji čvorovi označeni su nezavršnim A ∈ V
 - 4) za čvor A i djecu $X_1, X_2,...X_n$ vrijedi produkcija iz P $A \rightarrow X_1 X_2 ... X_n$
 - 5) znakom ε označava se isključivo list stabla; taj list je jedino dijete svog roditelja
 - 6) listovi stabla označeni su znakovima skupa T∪{ε}
 čitani slijeva na desno čine generirani niz jezika L(G)
- $-S \Rightarrow_G^*$ w vrijedi samo ako postoji generativno stablo

• GENERATIVNO STABLO PRIMJER

2.4.2. Regularna gramatika

REGULARNA GRAMATIKA

- ujedno je i kontekstno neovisna gramatika
- konstruirajmo gramatiku za regularni jezik zadan DKA
- time dokazujemo da je gramatika regularna

KONSTRUKCIJA GRAMATIKE PREMA DKA

- za regularni jezik zadan s DKA $M = (Q, \Sigma, \delta, q_0, F)$ gradi se kontekstno neovisna gramatika G = (V, T, P, S) tako da je L(M) = L(G)
- primjenjujemo pravila:
 - $T = \Sigma$; završni znakovi gramatike su ulazni znakovi automata
 - V = Q; nezavršni znakovi su stanja automata
 - $S = q_0$; početno stanje je početni nezavršni znak
 - na temelju prijelaza DKA $\delta(A, a) = B$ gradimo produkciju $A \rightarrow aB$
 - za prihvatljiva stanja A∈F gradimo produkcije A→ε

KONSTRUKCIJA G iz DKA PRIMJER

za DKA

$$M = (\{S,A,B\}, \{a,b\}, \delta, S, \{S,B\})$$

gradi se kontekstno neovisna gramatika
 $G = (\{S,A,B\}, \{a,b\}, P, S)$

tako da je L(M) = L(G), pri čemu su δ i P:

	a	b	上			
S	A	В	1	S→aA	S→bB	S → ε
A	В	А	O	А→аВ	A→bA	
В	S	А	1	B→aS	B→bA	B →ε

KONSTRUKCIJA G iz DKA PRIMJER

za niz aba postoji slijedeći niz prijelaza:

$$S \xrightarrow{a} A \xrightarrow{b} A \xrightarrow{a} B$$
; $B \in F$

gramatika generira niz aba:

$$S \Rightarrow aA \Rightarrow abA \Rightarrow abaB \Rightarrow aba$$

KONSTRUKCIJA G iz DKA PRIMJER

drugi primjeri nizova su:

$$\epsilon: S \xrightarrow{\epsilon} S; B \in F S \Rightarrow \epsilon$$

a:
$$S \xrightarrow{a} A$$
; $A \notin F$ $S \Rightarrow aA \Rightarrow$

aa:
$$S \xrightarrow{a} A \xrightarrow{a} B$$
; $B \in F$ $S \Rightarrow aA \Rightarrow aaB \Rightarrow aa$

$$bbb: S \rightarrow B \rightarrow A \rightarrow A; \qquad A \notin F \qquad S \Rightarrow bB \Rightarrow bbA \Rightarrow bbbA \Rightarrow$$

bbba:
$$S \xrightarrow{b} B \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{a} B$$
; $B \in F$ $S \Rightarrow bB \Rightarrow bbA \Rightarrow bbbA \Rightarrow bbba \Rightarrow bbba$

ISTOVJETNOST G i DKA

- prihvaća li DKA isti jezik koji generira G,
 DKA i G su istovjetni: L(DKA) = L(G)
- na temelju pravila vrijedi:
 - (i) $A \Rightarrow^* wB$ ako je $\delta(A, w) = B$
- neka je $C = \delta(q_0, v)$ prihvatljivo stanje, prihvaća se niz v
- na temelju (i) vrijedi: q_0 ⇒* vC
- ako je C prihvatljivo postoji produkcija C→ε
- vrijedi: $q_0 \Rightarrow^* vC \Rightarrow v$ ako DKA prihvaća v, tada ga G generira!

ISTOVJETNOST G i DKA

- neka G generira v, tada je q_0 ⇒* vC ⇒ v
- pošto je na temelju (i) δ (q₀, v) = C i postoji C→ε tada je C prihvatljivo
- ako G generira v, tada ga DKA prihvaća!

KONSTRUKCIJA NKA ZA JEDNOSTAVNI G

koristimo gramatiku s produkcijama oblika
 A→aB i C→ε

- to su upravo oblici koji nastaju konstrukcijom gramatike na osnovu DKA; pravila su:
 - $\Sigma = T$; završni znakovi gramatike su ulazni znakovi automata
 - Q = V; nezavršni znakovi su stanja automata
 - $q_0 = S$; početno stanje je početni nezavršni znak
 - na temelju produkcije A \rightarrow aB gradi se prijelaz DKA $\delta(A, a) = \delta(A, a) \cup B$ jer su moguće višestruke produkcije iz A,a
 - ako postoji produkcija A→ε, stanje A je prihvatljivo; A∈F

KONSTRUKCIJA NKA PRIMJER

- jezik G generira programske varijable $G = (\{V,B\}, \{s,b\}, \{V \rightarrow sB, B \rightarrow bB | sB | \epsilon\}, V)$
- nizovi započinju slovom i nastavljaju se proizvoljnom kombinacijom brojki i slova
- gradimo NKA M = ({V,B}, {s,b}, δ , V, {B}); δ = {} A \rightarrow aB i C \rightarrow ϵ

DESNO LINEARNA GRAMATIKA

- desno linearna gramatika:
 - ima najviše jedan nezavršni znak na desnoj strani
 - $A \rightarrow wB$ ili $A \rightarrow w$
 - $A,B \in V; w \in T^*$

LIJEVO LINEARNA GRAMATIKA

- lijevo linearna gramatika:
 - ima najviše jedan nezavršni znak na lijevoj strani
 - $A \rightarrow Bw$ ili $A \rightarrow w$
- lijevo i desno linearne gramatike su regularne!

KONSTRUKCIJA NKA IZ LINEARNIH G

- L je regularan ako postoji desno linearna algebra G_D $L = L(G_D)$
- L je regularan ako postoji lijevo linearna algebra G_L $L = L(G_I)$
- za bilo koju G_D ili G_L moguće je izgraditi DKA M L(M) = L(G)
- složene produkcije moguće je preurediti na jednostavne
- primijene se pravila za konstrukciju NKA

KONSTRUKCIJA NKA IZ DLG

Složenu produkciju

$$A \rightarrow abbS$$

– rastavimo na jednostavne:

$$A \rightarrow a[bbS]$$

 $[bbS] \rightarrow b[bS]$
 $[bS] \rightarrow bS$

generirali smo nove nezavršne znakove

nove tri produkcije generiraju isti međuniz

KONSTRUKCIJA NKA IZ DESNO LIN. G

Složenu produkciju

$$S \rightarrow bc$$

– rastavimo na jednostavne:

$$S \to bc[\varepsilon]$$

$$[\varepsilon] \to \varepsilon$$

$$S \to b[c\varepsilon]$$

$$[c\varepsilon] \to c[\varepsilon]$$

generirali smo nove nezavršne znakove

$$[\varepsilon]$$
 i $[c\varepsilon]$

nove produkcije generiraju isti međuniz

KONSTRUKCIJA NKA IZ DESNO LIN. G

Složenu produkciju

$$S \rightarrow A$$

– rastavimo na jednostavne:

 $S \rightarrow$ desne strane svih produkcija od A

- ako postoje produkcije $A \rightarrow cA$ i $A \rightarrow \epsilon$ bit će

$$S \rightarrow cA$$

$$S \rightarrow \epsilon$$

jer S preko A generira sve međunizove od A

KONSTRUKCIJA NKA IZ DESNO LIN. G

Za primjer gramatike

$$S \rightarrow aA$$
 $A \rightarrow abbS$
 $S \rightarrow bc$ $A \rightarrow cA$
 $S \rightarrow A$ $A \rightarrow \epsilon$

– dobije se:

$$S \rightarrow aA$$
 $S \rightarrow a[bbS]$ $[bbS] \rightarrow b[bS]$
 $S \rightarrow b[c\epsilon]$ $S \rightarrow cA$ $[bS] \rightarrow bS$
 $[c\epsilon] \rightarrow c[\epsilon]$ $S \rightarrow \epsilon$ $A \rightarrow cA$
 $[\epsilon] \rightarrow \epsilon$ $A \rightarrow a[bbS]$ $A \rightarrow \epsilon$

- KONSTRUKCIJA NKA IZ DESNO LIN. G
 - dobijemo automat:

	a	b	С	Τ
S	A, [bbS]	[3]	A	1
[ce]	Ø	Ø	[3]	0
[3]	Ø	Ø	Ø	1
A	[bbS]	Ø	A	1
[bbS]	Ø	[bS]	Ø	0
[bS]	Ø	S	Ø	0

- KONSTRUKCIJA ε-NKA IZ LIJEVO LIN. G
 - neka je G = (V, T, P, S) lijevo linearna gramatika
 - ε-NKA M': L(M')=L(G) konstruira se
 - 1) izgradi se desno linearna gramatika G' = (V, T, P', S)

$$P' = \{A \rightarrow \alpha^R \mid A \rightarrow \alpha \in P\}$$

G' generira obrnute nizove $L(G')=L(G)^R$

2) na temelju DLG G' konstruira se NKA M:

$$L(M) = L(G') = L(G)^R$$

3) na temelju NKA M izgradi se ε-NKA M':

$$L(M') = L(M)^{R} = L(G')^{R} = L(G)^{RR} = L(G)$$

• KONSTRUKCIJA ε-NKA IZ LIJEVO LIN. G

- ε-NKA M' izgradi se postupkom:
 - preuredi se NKA M da ima samo jedno prihvatljivo stanje
 - ako ih ima više, generira se novo, stara više nisu prihvatljiva, a stara se s novim povežu ε-prijelazima
 - početno stanje ε-NKA M' je prihvatljivo stanje NKA M
 - prihvatljivo stanje ε-NKA M' je početno stanje NKA M
 - funkcija prijelaza ε-NKA M' gradi se zamjenom smjera usmjerenih grana u dijagramu stanja NKA M
- izgrađeni ε-NKA M' prihvaća jezik L(M')
- u L(M') su nizovi obrnutog redoslijeda od L(M)

PRIMJER KONSTRUKCIJE ε-NKA IZ LLG

- zadana je LLG G = ({S}, {0,1}, P, S) P = {S \rightarrow S10 | 0}
- G generira jezik 0(10)* s desna na lijevo
- izgradimo DLG G': P' = $\{S \rightarrow 01S \mid 0\}$
- G' generira jezik (01)*0 s lijeva na desno
- za DLG G' konstruiramo NKA M koji prihvaća (01)*0
- iz NKA M konstruiramo ε-NKA M'
 - zamjenom prihvatljivog i početnog stanja
 - okretanjem smjera prijelaza

- PRIMJER KONSTRUKCIJE ε-NKA IZ LLG
 - dobiveni M i M' su:

• KONSTRUKCIJE LLG IZ ε-NKA

- LLG gramatiku G konstruiramo postupkom:
 - zada se jezik L
 - konstruira se ε -NKA M koji prihvaća $L(M) = L^R$
 - na temelju ε -NKA M konstruira se DLG G koja generira $L(G) = L(M) = L^R$
 - desne strane produkcija napišu se obrnutim redoslijedom
- izgrađena G' je LLG: $L(G') = L(G)^R = L(M)^R = L$