Transport of macromolecules into and out of the cell nucleus

Figure 12-1 Molecular Biology of the Cell 6e (© Garland Science 2015)

NPC structure

Rothballer and Kutay (2012) Cell SnapShot

- -> Permeability barrier between nucleoplasm and cytoplasm
- -> Transport receptor-mediated translocation of macromolecules

Patel et al. (2007) Cell

- octagonal symmetry, 100 MDa
- composed of about 30 different nucleoporins (nups)

FG repeat domain nups:

- 1. binding sites for nuclear transport receptors
- 2. define permeability characteristics of NPC

Diffusion limit of NPCs

diffusion limit: ≈ 40 kDa, 9 nm

size of molecules that enter nucleus by free diffusion

size of macromolecules that enter nucleus by active transport

Transport Substrates

Import of proteins

- DNA replication, e.g. histones
- transcription, mRNA-processing
- ribosomal proteins

Import of snRNPs

- pre mRNA-splicing

Export of RNA

- tRNAs
- microRNAs

Export of RNPs

- snRNAs
- mRNAs
- ribosomal subunits

Export of proteins

- e.g. many regulatory proteins

Identification of nuclear localization signals (NLSs)

Identification of nuclear localization signals

(A) LOCALIZATION OF T-ANTIGEN CONTAINING ITS NORMAL NUCLEAR IMPORT SIGNAL

(B) LOCALIZATION OF T-ANTIGEN CONTAINING A MUTATED NUCLEAR IMPORT SIGNAL

Figure 12-9 Molecular Biology of the Cell 6e (© Garland Science 2015)

There are different types of import and export signals

NLS Nulcear Localization Signal

NES Nuclear Export Signal

 Φ^{1} -(x)₂₋₃- Φ^{2} -(x)₂₋₃- Φ^{3} -x- Φ^{4}

Nuclear Export Signal	HIV Rev, PKI	L-X ₂₋₃ -(L,I,M,F,M)-X ₂₋₃ -L-X-(L,I,V)
RS domain	SR proteins	Phosphorylated RS domains
BIB domain	rpL23a	HKKKKIRTSPTFRRPKTLRLRRQPKYP RKSAPRRNKL
M9 domain (PY-NLS)	hnRNPA1	NQSSNFGPMKGGNFGGRSSGPY
Classical bipartite NLS	nucleoplasmin	KRPAATKKAGQAKKKKL
Classical monopartite NLS	SV40 T antigen	PKKKRKVE
Transport signal	Example	Features

Shuttling nuclear transport receptors – Importins and Exportins

- Nuclear transport receptors recognize import or export signals
- Allow for translocation of cargo through the NPC

Shuttling nuclear transport receptors – Importins and Exportins

How is transport compartment-specific cargo binding and dissociation achieved (directionality of transport)?

The RanGTPase system

Ran GTPase Activating Protein
Ran Guanyl Nucleotide Exchange Factor

asymmetric distribution of RanGTP in the cell

nucleus: RanGTP concentration high

cytoplasm: RanGTP concentration low

The GTPase Ran – the conformational switch

RanGTP and RanGDP possess different conformations

RanGTP binding to importins causes import substrate dissociation

Cytoplasm: low [RanGTP] maintained by RanGAP

import substrate binding

import substrate dissociation

Nucleus: high [RanGTP] maintained byRanGEF

RanGTP stimulates binding of export substrates to exportins

Cytoplasm: low [RanGTP] maintained by RanGAP

export substrate dissociation

export substrate binding

Nucleus: high [RanGTP] maintained byRanGEF

The RanGTPase system imposes directionality to nuclear transport

Cytoplasm: low [RanGTP] maintained by RanGAP

import substrate binding

RanGDP

import substrate dissociation

export substrate dissociation

Exportins:

- low affinity for RanGTP
- RanGTP and export substrate bind cooperatively to exportin

Nucleus: high [RanGTP] maintained byRanGEF

nuclear transport receptors:

Importins:

- high affinity for RanGTP

substrate from importins

- RanGTP dissociates import

- shuttle continuously between nucleus and cytoplasm
- interact with NPC (FG repeat nups) and can drive their own import and export
- RanGTP-binding controls transport substrate association
- protein superfamily

Nuclear import and export by shuttling transport receptors

Figure 12-13 Molecular Biology of the Cell 6e (© Garland Science 2015)

Different types of transport receptors bind different types of transport signals

A full transport cycle (example NLS protein import)

How is RanGTP dissociated from nuclear transport receptors?

Dissociation of RanGTP from nuclear transport receptors (TR)

The Ran-binding protein family (RanBP1, RanBP2)

Cytoplasmic RanBP1-family members help to dissociate RanGTP from transport receptors (TR) and present RanGTP to RanGAP for conversion into RanGDP

Dissociation of RanGTP from nuclear transport receptors (TR)

The Ran-binding protein family (RanBP1, RanBP2)

RanBP1 23 kDa

RBD

- cytoplasmic

RanBP2 358 kDa

- nucleoporin

RBD

 $7n^{2+}$

RBD

RBD

RBD

FxFG

RanBD (RBD)- Ran binding domain

Dissociation of RanGTP from nuclear transport receptors (TR)

Cytoplasm: low [RanGTP] maintained by RanGAP

With each round of transport at least one molecule of RanGTP is exported from the nucleus

Nucleus: high [RanGTP] maintained byRanGEF

How is Ran replenished to the cell nucleus?

With each round of transport at least one molecule of RanGTP is exported from the nucleus

Figure 12-12 Molecular Biology of the Cell 6e (© Garland Science 2015)

Import of RanGTP into the nucleus by NTF2 (nuclear transport factor 2)

- NTF2 does not belong to the importin/exportin family
- nuclear export of NTF2 does not take along a RanGTP molecule

Components of the RanGTPase system

Factor	Interaction RanGTP/ GDP	Localization	Function
Ran	n.a.	Nuc/Cyt	Directionality of nuclear transport
Transport receptor superfamily	RanGTP	Nuc/ NPC/ Cyt	Translocation of macromolecules through the NPC
RanGAP	RanGTP	Cyt/ NPC	Stimulation of GTP hydrolysis on Ran
RanGEF (RCC1)	nucleotide-free form of Ran	Nuc	Nucleotide exchange
RanBP- family: RanBP1 RanBP2	RanGTP	Cyt NPC (cyt. side)	Export complex dissociation Export complex dissociation
NTF2	RanGDP	Cyt/ NPC	Nuclear import of Ran

EduApp Question 1

EduApp Question 2

Transport through NPCs is very fast

assume 100 molecules/NPC/second (can be up to 1000 molecules/sec!)

≈ 3000-4000 NPC/nucleus

=> 300000-400000 molecules/nucleus/sec

city of Zürich: 400 000 inhabitants:

Translocation through the NPC is by facilitated diffusion (energy-independent)

Single round import is not linked to energy consumption Multiple round import requires energy (GTP hydrolysis on Ran)

Translocation through the NPC is by facilitated diffusion (energy-independent)

Single round import is not linked to energy consumption

Coupling of the transport reaction to the RanGTP gradient allows for accumulation of cargo against a concentration gradient

Multiple round import requires energy (GTP hydrolysis on Ran)

Summary - Translocation through the NPC

- facilitated diffusion, energy-independent
- RanGTP gradient determines directionality
- single round transport is energy-independent
- RanGTP hydrolysis provides energy for transport against a gradient of chemical activity

Nuclear transport can be regulated by controlling access to the transport machinery

Figure 12-15 Molecular Biology of the Cell 6e (© Garland Science 2015)

Nuclear transport can be regulated

Regulated nuclear import of NF-AT

