

# Capstone Project On Coronavirus Tweet Sentiment Analysis By

**Premanand Gaikwad** 





#### **CONTENT**

Following is the Standard Operating Procedure to tackle the Sentiment Analysis kind of project. We will be going through this procedure to predict what we supposed to predict!

- 1. Problem Statement
- 2. Data Summary
- 3. Exploratory Data Analysis (EDA)
- 4. Text Pre-processing
- 5. Classification Analysis
- **6.** Models Performance Metrics
- 7. Conclusion



#### **Problem Statement**

Sentiment Analysis is the process of computationally identifying and categorizing opinions expressed in a piece of text, especially in order to determine whether the writer's attitude towards a particular topic is Positive, Negative, or Neutral. The given challenge is to build a classification model to predict the sentiment of Covid-19 tweets. The tweets have been pulled from Twitter and manual tagging has been done.



#### **Data Summary**

- ➤ The original dataset has 6 columns and 41157 rows. In order to analyze various sentiments, from this 6 feature 2 features are unusable so will ignore them
  - 1. Location = location (country) from where tweet is posted
  - 2. Tweet At = Date on which tweet is posted
  - 3. Original Tweet = Context of tweet
  - 4. Label = Type of sentiments
- ➤ We require just two columns named Original Tweet and Sentiment. There are five types of sentiments- Extremely Negative, Negative, Neutral, Positive, and Extremely Positive.



## Exploratory Data Analysis (EDA)



#### **Percentage wise sentiments**



When we try to explore the 'Sentiment' pie chart, we came to know that:

- ✓ Most of the peoples about 27.8% are having positive sentiments about various issues shows us their optimism during pandemic times.
- ✓ Very few people about 13.3% are having extremely negatives thoughts about Covid-19.



#### Top 10 location based on the no. of tweet



There are some null values in the location column but we don't need to deal with them as I am just going to use two columns i.e. "Sentiment" and "Original Tweet". Maximum tweets came from London(11.7%) location as evident from the above graph.



#### Top 10 highest number of tweet days



✓ From above graph it is seen that maximum number of tweets are posted in march and in march highest no. of tweet post are on the date 20th



#### **Text Pre-Processing**

Text pre-processing of the text data is an essential step as it makes the raw text ready for mining and making it suitable for a machine learning model. The objective of this step is to clean noise those are less relevant to find the sentiment of tweets such as:

✓ Url links (HTTPS: / HTTP:)
 ✓ Username/tweeter handle (@Xyz)
 ✓ Punctuation (.,?," etc.),
 ✓ Special characters (@,%,&,\$, etc.),
 ✓ Numbers (1,2,3, etc.)

AlmaBetter @AlmaBetter · 22 Jul ...
1 In this blog, we walk you through the top 5 Web Development trends in 2022. Read here: loom.ly/cZQfgww
Numbers (1,2,3, etc.)

Terms which don't carry much weightage in context to the text are:

• **Stop words** are those words in natural language that have very little meaning, such as "is", "an", "the", etc. To remove stop words from a sentence, divide your text into words and then remove the word if it exists in the list of stop words provided by NLTK



- **Stemming** is a rule-based process of stripping the suffixes ("ing", "ly", "es", "ed", "s" etc) from a word. It normalize the word. For example "play", "player", "played", "plays" and "playing" are the different variations of the word "play".
- **Tokenization** is essentially splitting a phrase, sentence, paragraph, or an entire text document into smaller units, such as individual words or terms. Each of these smaller units are called tokens.
- **Encode the Sentiments** to produce binary integers of 0 and 1 to encode our categorical features, because categorical features that are in string format cannot be understood by the machine and needs to be converted to numerical format.
  - 0 = Neutral sentiments
  - 1 = Positive and extremely positive sentiments
  - -1 = Negative and extremely negative sentiments



#### Vectorization

TFIDF, short for term frequency-inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus. Vectorization is a step in feature extraction, the idea is to get some distinct features out of the text for the model to train on, by converting text to numerical vectors

| Color  |   | Red | Yellow | Green |
|--------|---|-----|--------|-------|
| Red    |   |     |        |       |
| Red    |   | 1   | 0      | 0     |
| Yellow |   | 1   | 0      | 0     |
| Green  |   | 0   | 1      | 0     |
| Yellow |   | 0   | 0      | 1     |
|        | • |     |        |       |



#### Classification Analysis



#### **Building Classification Models**

The given problem is Ordinal Multiclass classification. We had five types of sentiments and we converted them into three type, We have trained our models on different classification models are:

- 1. Logistic Regression
- 2. Ridge Classifier
- 3. K-Nearest Neighbors (KNN)
- 4. XGBoost
- 5. Gradient Boosting Classifier (GBC)
- 6. Random Forest

#### **Models Performance Metrics**



|   | Model_Name                      | Accuracy | Precision | Recall | F1 score |
|---|---------------------------------|----------|-----------|--------|----------|
| 0 | Logistic Regression             | 0.78     | 0.78      | 0.78   | 0.78     |
| 1 | Ridge Classifier                | 0.77     | 0.76      | 0.77   | 0.76     |
| 2 | Random Forest Classifier        | 0.74     | 0.74      | 0.74   | 0.74     |
| 3 | Gradient Boosting Machine (GBM) | 0.67     | 0.67      | 0.67   | 0.66     |
| 4 | XGBoost Classifier              | 0.65     | 0.65      | 0.65   | 0.64     |
| 5 | K-Nearest Neighbors (KNN)       | 0.28     | 0.63      | 0.28   | 0.25     |







#### Conclusion

- ✓ K-Nearest Neighbors (KNN) doesn't work well with a large dataset and with a high number of dimensions. It didn't classify the sentiments efficiently and ended up affecting the evaluation metrics and giving worse results than all the other implemented models.
- ✓ The Ridge classifier decreases the complexity of a model, and in the Random Forest classifier, the large number of trees makes the algorithm too slow. Both these models gave a moderate result of about 0.76 and 0.74 F1-score, respectively. The Gradient Boosting classifier (GBM) and XGBoost classifier gave almost identical results of 0.66 and 0.64 F1-score, respectively.
- ✓ Logistic regression gives the highest result of about 0.78 F1-score of all the implemented models, so I can use the logistic regression model for further classification.
- ✓ As I have seen above, while selecting a model, it should have good explainability and less complexibility. As per the result, I have all three models with higher accuracy and less error, which is good explainable so that our final model can be the logistic regression.



### Thank You