Data Science in Techn-Socio-Economic Systems

EpidemicDatathon Team MAE

Stefan Lionar*, Dharma Pranata**, Brigitta Rachel**

Approach

- Assumptions:
 - Dataset: JHU CSSE COVID-19
- Observations:
 - Confirmed cases, deaths, recovery have trend with shapes similar to sigmoid function

- Adjusted linear regression model:
 - Apply the same model for:
 - Confirmed cases
 - Deaths
 - Recovery

Linear regression with dynamic windows (2-7 days)

- Less robust towards fluctuation
- More sensitive towards gradient change

- More robust towards fluctuation
- Less sensitive towards gradient change

Window selection method:

- Window selection = [2,3,4,5,6,7]
- For every country:
 - Set groundtruth from today's data
 - For window in window selection:
 - Fit past window data with linear regression
 - Collect each prediction from window
 - O Select window with the minimum Mean Absolute Error

Adjust linear regression coefficient based on trend

Adjusting linear regression coefficient


```
diff_ratio = % * (D1 + D2 + D3) / D0
multiplier = mul_coeff * diff_ratio**exp_coef

Fitted line:
Y = multiplier * coeff * X + intercept
```

- Use past 5 days data
- mul_coeff and exp_coeff is tuned empirically using past global cases as ground truth

```
OLS: y = case (confirmed case / deaths / recover)
X = time
Y = coeff *x + intercept
```

- Similar approach to 7-day prediction
- Use 10 days past data with 2 days interval vs 5 days

Results (21-27 June 2020)

2-day prediction

7-day prediction

SCORE	TEAM	SCORE	TEAM
1532.1693099016484	C.F.R.S.S.	1381.6749105327967	stayhome
1251.7598831290466	stayhome	1226.3876952896655	C.F.R.S.S.
1062.4765106657846	MAE	984.3016250930384	MAE
1033.2791237644647	ToBeAnMa	718.4953536723917	GNTM_team
572.5187119146683	Quaranteed Success	609.3661843714984	ToBeAnMa
79.86191816073888	GNTM_team	135.96096510224532	Quaranteed Success
40.347492886920755	PandeML	31.382075292487194	PandeML
3.9020598929059975	ValenciaSpain	4.997855656973526	#SeifenBoss
3.6922487557465598	#SeifenBoss	3.779748820904161	ValenciaSpain
0.4837068243452888	Quaranteam	0.8338339454827546	Quaranteam

Conclusions

- We built models:
 - Linear regression with ability to adapt with gradient changes
 - Time series prediction for monotically increasing number of cases
- JHU CSSE COVID-19 as groundtruth:
 - Many unreported cases
 - Ability to estimate the actual cases is questionable