Stochastische Prozesse

Inhaltsverzeichnis

1.	Verf	einerung des Zentralen Grenzwertsatzes	2
	1.1.	Definiton (Dreiecksschema)	2
	1.2.	Satz von Lindeberg	2
	1.3.	Zentraler Grenwertsatz für Martingale	3
	1.4.	Lemma (Esseensche Ungleichung)	3
	1.5.	Satz von Berry-Esseen 1. Version	4
	1.6.	Satz von Berry-Esseen 2. Version	4
	1.7.	Defintion(Gitterverteilung)	4
	1.8.		4
		1.8.1. Lemmas	5
	1.9.	Lokaler Grenzwertsatz-Nichtgitterversion	5
2	Mar	kovprozesse	6
		Definition(Markovprozess)	6
		2.1.1. Lemma	6
	2.2.	Defintion(Kern)	6
		Definition(Erwartungskern)	7
		Definition(Übergangskern)	7
		Definition(Operation von Kernen)	7
		2.5.1. Lemma	7
		2.5.2. Anmerkung	7
		2.5.3. Lemma	8
	2.6.	Satz von Ionescu-Tulcea	8
	2.7.	Endliche Markovketten	8
	2.8.	Stochastische Matrix	8
		Definition(Rechtsoperation)	9
		Definition(Linksoperation)	9
		2.10.1. Lemma	9
	2.11.	Definition(Stationäres Maß)	9
	_,,,,	2.11.1. Lemma	9
	2.12.	Definition(Harmonische Funktion)	9
	,,,		10
2	Die	starke Markoveigenschaft	10
٠.		<u> </u>	10
		• • • •	10^{10}
	3.3.	-	$10 \\ 10$
	3.4.		$10 \\ 10$
	3. 4 .		າ 0 1 N

	3.6.	Satz(Reflexionsprinzip für einfache Irrfahrt)	10				
4.	Rekurrenz und Transienz 11						
	4.1.	Notation	11				
	4.2.	Satz(Eintrittszeit)	11				
	4.3.	Definition(Rückkehrzeiten)	11				
	4.4.	Definition(Rekurrenter Punkt)	11				
	4.5.	Definition(Positiv rekurrent)	11				
		4.5.1. Lemma	11				
	4.6.	Definition(Erreichbarkeit)	11				
		4.6.1. Lemma	12				
		4.6.2. Lemma	12				
	4.7.	Satz	12				
	4.8.	Definition(Irreduzible Markovkette)	12				
	4.9.	Satz	12				
5.	Kon	vergenz von Markovketten 1	L 3				
		-	13				
			13				
			13				
	5.2.	· ·	13				
			13				
			14				
6	Pois	sonprozess 1	L 4				
		•	14				
			14				
			14				
	6.3.		14				
	6.4.	F	14				
	6.5.		 15				
			15				
		i ,	15				
	6.6.	` ' '	15				
	0.0.		15				
			16				
	6.7.		16				
	J.,,	,	16				
	6.8.		16				
	0.0.		16				
		·	16				

7.	Brownsche Bewegung			
	7.1.	Definition(Brownsche Bewegung)	17	
		7.1.1. Lemma	17	
	7.2.	Satz(Skalierungseigenschaft der Brownschen Bewegung)	17	

1. Verfeinerung des Zentralen Grenzwertsatzes

1.1. Definiton (Dreiecksschema)

Es sei $(m_n)_{n\in\mathbb{N}}$ eine Folge natürlicher Zahlen, $(\Omega_n,A_n,P_n)_{n\in\mathbb{N},\;l=1,2,...m_n}$ eine Folge von W'räumen und $X=(X_{n,l})_{n\in\mathbb{N},\;l=1,2,...m_n}$ eine Familie von reellen Zufallsvariablen mit $X_{n,l}:\Omega_n\to\mathbb{R}$. X heißt Dreiecksschema wenn für alle $n\in\mathbb{N}$ die Zufallsvariablen $(X_{n,l})_{n\in\mathbb{N},\;l=1,2,...m_n}$ unabhängig bzgl. P_n sind.

X heißt standardisiertes Dreiecksschema, wenn zusätzlich für alle $n \in \mathbb{N}$ und für alle $l = 1, ..., m_n$ gilt:

$$\mathbb{E}_{p_n}[X_{n,l}] = 0, \sum_{l=1}^{m_n} \mathbb{V}ar_{P_n}(X_{n,l}) = 1$$

Eine standardisiertes Dreiecksschema erfüllt die Lindeberg-Bedingung, wenn $\forall \epsilon > 0$ gilt:

$$\sum_{l=1}^{m_n} \mathbb{E}_{p_n}[X_{n,l}^2 \mathbf{1}_{\{|X_{n,l}| > \epsilon\}}] \xrightarrow{n \to \infty} 0$$

1.2. Satz von Lindeberg

Erfüllt ein standardisiertes Dreiecksschema die Lindeberg-Bedingung, so gilt:

$$\mathscr{L}(\sum_{l=1}^{m_n} X_{n,l}) \xrightarrow[n\to\infty]{\omega} \mathscr{N}(0,1)$$

1.3. Zentraler Grenwertsatz für Martingale

Für jedes $n \in \mathbb{N}$ sei gegeben:

- ein W'raum (Ω_n, A_n, P_n)
- eine Filtration $\mathscr{F}_n = (\mathscr{F}_{n,l})_{l \in \mathbb{N}_0}$ mit $\mathscr{F}_{n,0} = \{\emptyset, \Omega_n\}$
- ullet ein Martingal $(X_{n,l})_{l\in\mathbb{N}_0}$ bzgl. \mathscr{F}_n mit $X_{n,l}\in\mathscr{L}^2(\Omega_n,A_n,P_n)$ und $X_{n,0}=0$

Die Zuwächse der Martingale bezeichnen wir mit

$$Z_{n,l} = X_{n,l} - X_{n,l-1}$$

 $Z_{n,l} = X_{n,l} - X_{n,l-1}$ ihre bedingten Varianzen mit

$$\sigma_{n,l}^2 = \mathbb{V}\mathrm{ar}_{p_n}(Z_{n,l}|\mathscr{F}_{n,l-1}) \text{ und } \Sigma_n^2 = \sum_{l=1}^\infty \sigma_{n,l}^2$$

- 1. Für alle $n \in \mathbb{N}$ konvergiert $X_{n,l} \xrightarrow{l \to \infty} X_{n,\infty} P_n f.s.$
- 2. Für alle $n \in \mathbb{N}$ sei $\Sigma_n^2 P_n f.s.$ endlich
- 3. $\Sigma_n^2 \xrightarrow{n \to \infty} 1$ in W'keit
- 4. Lindeberg Bedinung: $\forall \epsilon > 0 : \sum_{l=1}^{\infty} \mathbb{E}_p[Z_{n,l}^2 \mathbf{1}_{\{|Z_{n,l}| > \epsilon\}}] \xrightarrow{n \to \infty} 0$

Dann gilt:

$$\mathscr{L}_{p_n}(X_{n,\infty}) \xrightarrow[n \to \infty]{\omega} \mathscr{N}(0,1)$$

1.4. Lemma (Esseensche Ungleichung)

Es seien μ, ν W'maße auf $(\mathbb{R}, B(\mathbb{R}))$ mit Verteilungsfunktionen F_{μ} bzw. F_{ν} und Fouriertranformierten $\hat{\mu}$ bzw. $\hat{\nu}$. $(\hat{\mu}(k) = \int_{\mathbb{R}} e^{ikx} d\mu(x))$.

Das Maß ν besitze eine beschränkte Dichte $\frac{d\nu}{d\lambda} \leq M, M \in \mathbb{R}^+$. Dann gilt $\forall x \in \mathbb{R}$ und $\forall T > 0: |F_{\mu}(x) - F_{\nu}(x)| \le \frac{24M}{\pi T} + \frac{1}{\pi} \int_{-T}^{T} |\frac{\hat{\mu}(k) - \hat{\nu}(k)}{k}| dk$

1.5. Satz von Berry-Esseen 1. Version

Es seien $(X_n)_{n\in\mathbb{N}}$ i.i.d. Zufallsvariablen in $\mathscr{L}^3(\Omega,\mathscr{A},P)$ mit $\mathbb{E}[X_1]=0$, $\mathbb{V}\mathrm{ar}(X_1)=1$ und $\Delta=\mathbb{E}[|X_1|^3]$. Weiter sei $S_n=\sum\limits_{l=1}^n X_l$. Dann gilt für den Abstand zwischen der Verteilungsfunktion $F_{\frac{S_n}{\sqrt{n}}}$ von $\frac{S_n}{\sqrt{n}}$ und der Verteilungsfunktion $\Phi=F_{\mathscr{N}(0,1)}$ der Standardnormalverteilung:

$$||F_{\frac{S_n}{\sqrt{n}}} - \Phi||_{\infty} \leq \frac{c(\Delta, n)}{\sqrt{n}} \quad \text{für } n \geq 2$$

$$\begin{split} \text{wobei } c(\Delta,n) &\leq \tfrac{12}{\pi^{\frac{3}{2}}}\Delta + \tfrac{3}{2\sqrt{\pi}}\Delta(\tfrac{n}{n-1})^{\frac{3}{2}} + \tfrac{2}{\pi}\tfrac{1}{\sqrt{n}}\Delta(\tfrac{n}{n-1})^2.\\ c(\Delta,n) \text{ f\"allt monoton in } n \text{ und es gilt:} \\ c(\Delta,n) &\leq 3\Delta \quad \text{f\"ur } n \geq 7 \end{split}$$

1.6. Satz von Berry-Esseen 2. Version

Es seien $(X_n)_{n\in\mathbb{N}}$ i.i.d. Zufallsvariablen in $\mathscr{L}^3(\Omega,\mathscr{A},P)$ mit $m=\mathbb{E}[X_1],\,\sigma^2=\mathbb{V}\mathrm{ar}(X_1)>0$ und $\Delta=\frac{\mathbb{E}[|X_1-m|^3]}{\sigma^3}$. Dann gilt für alle $t\in\mathbb{R}$ und $n\in\mathbb{N}$:

$$|P(\sum_{l=1}^{n} X_{l} \le m \cdot n + t\sigma\sqrt{n}) - \Phi(t)| \le \frac{3\Delta}{\sqrt{n}}$$

1.7. Defintion(Gitterverteilung)

Wir sagen X hat eine Gitterverteilung mit Gitterwerte $\alpha>0$, wenn es ein $\beta\in\mathbb{R}$ gibt mit $P(X\in\alpha\mathbb{Z}+\beta)=1$ gilt, aber für alle $\widetilde{\alpha}>\alpha$ und $\widetilde{\beta}\in\mathbb{R}$ gilt: $P(X\in\widetilde{\alpha}\mathbb{Z}+\widetilde{\beta})<1$.

1.8. Lokaler zentraler Grenzwertsatz für Zufallsvariablen mit Gitterverteilung

Es seinen $(X_n)_{n\in\mathbb{N}}$ i.i.d. Zufallsvariablen mit einer Gitterverteilung mit Gitterwert $\alpha>0$. Es gelte $X_1\in\mathscr{L}^2(\Omega,A,P)$, $m=\mathbb{E}[X_1]$ und $\sigma^2=\mathbb{V}\mathrm{ar}(X_1)$. Dann gilt für $S_n=\sum\limits_{l=1}^nX_l$:

$$\sup_{x \in \alpha \mathbb{Z} + n\beta} \sqrt{n} \left| P(S_n = x) - \frac{\alpha}{\sqrt{2\pi\sigma^2 n}} e^{-\frac{1}{2} \frac{(x - mn)^2}{n\sigma^2}} \right| \xrightarrow{n \to \infty} 0$$

Anmerkung

Es seinen $(X_n)_{n\in\mathbb{N}}$ i.i.d. Zufallsvariablen in \mathscr{L}^2 mit einer Gitterverteilung mit Gitterwert $\alpha>0$ und $(Z_n)_{n\in\mathbb{N}}$ normalverteilt mit $\mathbb{E}[Z_n]=\mathbb{E}[S_n]$ und $\mathbb{V}\mathrm{ar}[Z_n]=\mathbb{V}\mathrm{ar}[S_n]$. Dann gilt:

$$\sup_{x\in\mathbb{R}}|P(S_n\in[x,x+\alpha[)-P(Z_n\in[x,x+\alpha[)|=o(\frac{1}{\sqrt{n}})\quad\text{für }n\to\infty$$

1.8.1. Lemmas

Ist X eine Zufallsvariable mit Werten in \mathbb{Z} und φ_x ihre Fouriertransformierte, so gilt für alle $m \in \mathbb{Z}$:

$$P(X=m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-imk} \varphi_x(k) dk$$

Besitzt X eine Gitterverteilung mit Gitterwert $\alpha>0$, so ist φ_x periodisch mit der Periode $\frac{2\pi}{\alpha}$. Ist X eine nicht P-f.s. konstante Zufallsvariable, die keine Gitterverteilung besitzt, so gilt für alle $k\in\mathbb{R}\setminus\{0\}: \ |\varphi_x(k)|<1$.

Es sei $X \in \mathcal{L}^2(\Omega, A, P)$ eine nicht P - f.s. konstante Zufallsvariable, die keine Gitterverteilung besitzt. Dann gibt es für jedes T > 0 ein $\gamma > 0$, so dass für alle $k \in [-T, T]$ gilt: $|\varphi_x(k)| \le e^{-\gamma k}$.

1.9. Lokaler Grenzwertsatz-Nichtgitterversion

Es seien $(X_n)_{n \in \mathbb{N}}$ i.i.d. Zufallsvariablen, die keine Gitterverteilung besitzen mit $\mathbb{E}[X_1] = 0$, $\mathbb{V}\mathrm{ar}(X_1) = 1$ und $S_n = \sum_{l=1}^n X_l$. Dann gilt für alle $a,b \in \mathbb{R}$, a < b, alle $y \in \mathbb{R}$ und alle Folgen y_n mit $\frac{y_n}{\sqrt{n}} \to y$:

$$\sqrt{n}P(a \le S_n - y_n \le b) \xrightarrow{n \to \infty} \frac{b-a}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$$

2. Markovprozesse

2.1. Definition(Markovprozess)

Es sei (Ω, \mathscr{A}, P) ein Wahrscheinlichkeitsraum, $I \subseteq \mathbb{R}$, $\mathscr{F} = (\mathscr{F}_t)_{t \in I}$ eine Filtration auf (Ω, \mathscr{A}) und $X = (X_t)_{t \in I}$ eine an \mathscr{F} adaptierte Familie von Zufallsvariablen mit Werten in einem Ereignisraum (S, Σ) . (statt Familie von Zufallsvariablen sagt man auch stochastischer Prozess) X heißt Markovprozess (bzgl. \mathscr{F}) wenn für alle $t, s \in I$ mit $t \leq s$ und alle $A \in \Sigma$ gilt:

$$P(X_s \in A|\mathscr{F}_t) = P(X_s \in A|X_t)$$

Der Ereignisraum (S,Σ) heißt dann Zustandsraum des Markovprozesses X. Markovprozesse mit $I=N_0$ heißen Markovketten.

2.1.1. Lemma

Es sein $X = (X_t)_{t \in I}$ eine an die Filtration $\mathscr{F} = (\mathscr{F}_t)_{t \in I}$ adaptierte Familie von Zufallsvariablen mit Werten in (S, Σ) . Dann sind äquivalent:

- 1. X ist ein Markovprozess bzgl. \mathscr{F}
- 2. Für alle $n \in \mathbb{N}, t_1 \leq ... \leq t_n$ in I und alle meßbaren Funktionen $f: (S^n, \Sigma^{\otimes^n}) \to (\mathbb{R} \cup \{\pm \infty\}, \mathscr{B}(\mathbb{R} \cup \{\pm \infty\}))$ für die $\mathbb{E}[f(X_{t_1}, ..., X_{t_n})]$ existiert, gilt:

$$\mathbb{E}[f(X_{t_1},...,X_{t_n})|\mathscr{F}_{t_1}] = \mathbb{E}[f(X_{t_1},...,X_{t_n})|X_{t_1}]$$
 P-f.s.

3. Für alle $t \in I$ und $\sigma(X_s : s \in I, s \ge t)$ - messbaren Zufallsvariablen F, für die $\mathbb{E}[F]$ existiert, gilt:

$$\mathbb{E}[F|\mathscr{F}_t] = \mathbb{E}[F|X_t]$$
 P-f.s.

Ist $I = N_0$, so ist auch äquivalent:

4. Für alle $t \in \mathbb{N}_0$ und alle $A \in \Sigma$ gilt:

$$P(X_{t+1} \in A|F_t) = P(X_{t+1} \in A|X_t)$$

2.2. Defintion(Kern)

Es seien (Ω, \mathscr{A}) und (Ω', \mathscr{A}') Ereignisräume. Ein Kern von (Ω, \mathscr{A}) nach (Ω', \mathscr{A}') ist eine Abbildung $K : \Omega \times \mathscr{A}' \to [0, \infty]$ mit:

Für alle $A' \in \mathscr{A}'$ ist $K(\cdot, A') : \Omega \to [0, \infty]$ bzgl. \mathscr{A} messbar.

Für alle $\omega \in \Omega$ ist $K(\omega, \cdot) : \mathscr{A}' \to [0, \infty]$ ein Maß.

Gilt zusätzlich: Für alle $\omega \in \Omega$: $K(\omega, \Omega') = 1$, so heißt K ein stochastischer Kern.

2.3. Definition (Erwartungskern)

Ist (Ω, \mathscr{A}, P) ein Wahrscheinlichkeitsraum, $\mathscr{F} \subseteq$ eine Unter- σ -Algebra und $X:(\Omega,\mathscr{A}) \to (\Omega',\mathscr{A}')$ eine Zufallsvariable, so heißt ein stochastischer Kern K von (Ω,\mathscr{A}) nach (Ω',\mathscr{A}') eine bedingte Verteilung oder Erwartungskern von X gegeben \mathscr{F} wenn für alle $A' \in \mathscr{A}'$ gilt:

$$K(\cdot, A') = P(X \in A' | \mathscr{F})$$
 P-f.s.

Ist \mathscr{F} von der Form $\mathscr{F}=\sigma(Y)$ mit einer Zufallsvariable $Y:(\Sigma,\mathscr{A})\to(\Sigma'',\mathscr{A}'')$, so heißt die Abbildung $\widetilde{K}:\Omega''\times\mathscr{A}'\to[0,1]$ eine faktorisierte bedingte Verteilung oder faktorisierter Erwartungskern, wenn K ein stochastischer Kern von (Ω'',\mathscr{A}'') nach (Ω',\mathscr{A}') ist und $K:\Omega\times\mathscr{A}'\to[0,1], K(\omega,\mathscr{A}')=\widetilde{K}(Y(\omega),A')$ eine bedingte Verteilung von X gegeben $\sigma(Y)$ ist.

Ist $f:(\Omega',\mathscr{A}')\to (\mathbb{R}^+_0,\mathscr{B}(\mathbb{R}^+_0))$ messbar und K ein Erwartungskern von X gegeben \mathscr{F} , so gilt:

$$\mathbb{E}[f(X)|\mathscr{F}](\omega) = \int_{\Omega'} f(\omega')K(\omega,d\omega')$$
 für P-f.s. alle $\omega \in \Omega$

2.4. Definition(Übergangskern)

Ist X ein Markovprozess bzgl. einer Filtration $\mathscr F$ mit Werten in (S,Σ) sowie $t,s\in I,\,t\leq s$, so heißt ein stochastischer Kern $K_{t,s}$ von (S,Σ) nach (S,Σ) Übergangskern oder Übergangsverteilung von Zeit t nach s wenn $\Omega\times\Sigma\ni(\omega,A)\mapsto K_{t,s}(X_t(\omega),A)$ eine bedingte Verteilung von X_s gegeben F_t ist.

Im Fall $I = \mathbb{N}_0$ oder $I = \mathbb{R}_0^+$ heißt X homogen, wenn sie für alle $t \leq s$ in I Übergangskerne von t nach s besitzt, die nur vom Zeitabstand s - t abhängen.

2.5. Definition(Operation von Kernen)

Ist K ein Kern von (Ω, \mathscr{A}) nach (Ω', \mathscr{A}') und L ein Kern von (Ω', \mathscr{A}') nach $(\Omega'', \mathscr{A}'')$, so definieren wir $KL: \Omega \times \mathscr{A}'' \to [0, \infty], KL(\omega, A'') = \int\limits_{\Omega} L(\omega', A'')K(\omega, d\omega')$. Diese Operation ist assotiativ und KL ist ein Kern von (Ω, \mathscr{A}) nach $(\Omega'', \mathscr{A}'')$.

2.5.1. Lemma

Ist X ein Markovprozess bzgl. \mathscr{F} mit Werten in (S, Σ) und sind $K_{t,s}$, $K_{s,r}$ Übergangskerne zu den Zeiten $t \leq s$ bzw. $s \leq r$ in I so ist $K_{t,s}K_{s,r}$ ein Übergangskern von Zeit t zu Zeit r.

2.5.2. Anmerkung

$$K_{t,t}(\omega,A) = \mathbf{1}_A(\omega)$$

2.5.3. Lemma

Es sei X ein Markovprozess bzgl. F mit Werten in (S, Σ) und Übergangskern $(K_{t,s})_{t \le s}$. Seien $t_o \leq ... \leq t_n$ Zeiten in I und $\mu_{t_0} = \mathscr{L}(X_{t_0})$. Dann gilt für alle $\Sigma^{\otimes^{n+1}}$ -messbaren $f: S^{n+1} \to \mathbb{R}$

$$\mathbb{E}[f(X_{t_0},...,X_{t-n})] = \int_S ... \int_S f(x_0,...,x_n) K_{t_{n-1},t_n}(x_{n-1},dx_n) ... K_{t_0,t_1}(x_0,dx_1) \mu_{t_0}(dx_0)$$

2.6. Satz von Ionescu-Tulcea

Es seien (S, Σ) ein messbarer Raum, μ ein Wahrscheinlichkeitsmaß auf (S, Σ) und $(K_n)_{n \in \mathbb{N}_0}$ eine Folge von stochastischen Kernen von (S, Σ) nach (S, Σ) . Dann gibt es genau ein Wahrscheinlichkeitsmaß P auf $(\Omega, \mathscr{A}) = (S^{\mathbb{N}_0}, \Sigma^{\otimes^{\mathbb{N}_0}})$, so dass die Folge der Projektionen $X_n : S^{\mathbb{N}_0} \to S$, $X_n(\omega) = \omega_n$ eine Markovkette mit der Startverteilung $\mathscr{L}_P(X_0) = \mu$ und den Übergangsverteilungen K_n von Zeit n nach Zeit n+1 bilden.

2.7. Endliche Markovketten

Ist S endlich, $\Sigma = \mathcal{P}(S)$, so kann man eine Markovkette auf Matrixoperationen beschränken. Sei $S = \{1,...N\}$. Ein stochastischer Kern von S nach S wird durch die Übergangsmatrix $\pi \in [0,1]^{N \times N}$ definiert: $K(i,A) = \sum_{j=1}^{N} \pi_{i,j} \delta_j(A)$ also $K(i,\{j\}) = \pi_{i,j}, A \subseteq \{1,...,N\},$ i = 1, ..., N

2.8. Stochastische Matrix

Eine Matrix $\pi \in [0,1]^{N \times N}$ heißt stochastische Matrix wenn ihre Zeilensummen gleich 1 sind. Ebenso kodieren wir die Startverteilung $\mu = \sum_{i=1}^{N} p_i \delta_i$ in einen Zeilenvektor $p = (p_1, ..., p_N) \in$

 $[0,1]^N$ mit Summe $\sum_{i=1}^N p_i = 1$. Ist nun X eine homogene Markovkette mit Startverteilung p und Übergangsmatrix π , so beschreibt $p\pi^n$ die Zähldichteverteilung von X_n .

$$(p \mapsto p\pi \text{ entspricht } \mathscr{L}(X_n) \mapsto \mathscr{L}(X_{n+1}))$$

Sei $f:S\to\mathbb{R}$ eine Abbildung, aufgefasst als Spaltenvektor $f=\begin{pmatrix}f_1\\\vdots\\f_N\end{pmatrix}$. Dann gilt für alle

$$n \in \mathbb{N}$$
 und $i \in S$ mit $P(X_n = i) > 0$:

$$\mathbb{E}_p[f_{x_{n+1}}|X_n = i] = \sum_{j=1}^N P(X_{n+1} = j|X_n = i)f_j = (\pi f)_i$$

$$(f \mapsto \pi f \text{ entspricht } f_{X_{n+1}} \mapsto \mathbb{E}_P[f_{X_{n+1}}|X_n])$$

2.9. Definition(Rechtsoperation)

Es sei K ein Kern von (S, Σ) nach (S', Σ') . Ist μ ein Maß auf (S, Σ) so wird durch $\mu \otimes K : \Sigma \otimes \Sigma' \to \mathbb{R}^+_0$, $(\mu \otimes K)(A) = \int\limits_S \int\limits_{S'} \mathbf{1}_A(x,y) K(x,dy) \mu(dx)$ ein Maß auf $(S \times S', \Sigma \otimes \Sigma')$ definiert.

Ist μ ein Wahrscheinlichkeitsmaß und K ein stochastischer Kern, so ist $\mu \otimes K$ ein Wahrscheinlichkeitsmaß mit erster Randverteilung μ und seine zweite Randverteilung $\mu K: \Sigma' \to \mathbb{R}_0^+$, $\mu K(B) = \int\limits_S K(x,B)\mu(dx)$ heißt Rechtsoperation von K auf μ .

2.10. Definition(Linksoperation)

Es sei K ein Kern von (S, Σ) nach (S', Σ') . Ist $f: S' \to \mathbb{R}$ eine nichtnegative oder beschränkte messbare Funktion, so heißt $Kf: S \to \mathbb{R} \cup \{\infty\}$, $Kf(x) = \int\limits_{S'} f(y)K(x,dy)$ Linksoperation von K auf f.

2.10.1. Lemma

Ist X eine Markovkette bzgl. der Filtration $\mathscr F$ auf (S,Σ) mit Übergangskern K, so gilt: $\mathscr L(X_{n+1})=\mathscr L(X_n)K$ Ist $f:S\to\mathbb R$ messbar und $f(X_{n+1})$ integrierbar, so gilt: $\mathbb E[f(X_{n+1})|\mathscr F_n]=(Kf)(X_n)$ P-f.s. Durch Iteration erhält man: $\mathscr L(X_n)=\mathscr L(X_0)K^n$ und für $f(X_n)\in\mathscr L^1(\Omega,\mathscr F_n,P)$: $\mathbb E[f(X_n)|\mathscr F_m]=(K^{n-m}f)(X_m)$ P-f.s. Insbesonders bildet $((K^{n-m}f)(X_m))_{m=0,\dots,n}$ ein Matringal bgzl. $(\mathscr F_m)_{m=0,\dots,n}$.

2.11. Definition(Stationäres Maß)

Es sei K ein stochastischer Kern von (S, Σ) nach (S, Σ) . Ein Maß μ heißt (K-) stationär wenn $\mu K = \mu$.

2.11.1. Lemma

Ist X eine homogene Markovkette bzgl. $\mathscr F$ mit Zustandsraum (S,Σ) auf $(\Omega,\mathscr A,P)$ mit Übergangskern K und Startverteilung μ , so gilt:

Ist μ K-stationär, so hat X_n für alle $n \in \mathbb{N}_0$ die gleiche Verteilung, d.h. X_n ist stationär.

2.12. Definition(Harmonische Funktion)

Eine messbare Funktion $f: s \to \mathbb{R}$ heißt (K-) harmonisch wenn Kf definiert ist und Kf = f. f heißt (K-) subharmonisch wenn $Kf \ge f$ und (K-) superharmonisch wenn $Kf \le f$.

2.12.1. Lemma

Ist X eine homogene Markovkette bzgl. \mathscr{F} mit Zustandsraum (S, Σ) auf (Ω, \mathscr{A}, P) mit Übergangskern K und Startverteilung μ , so gilt:

Ist $f: S \to \mathbb{R}$ K-harmonisch und $f(X_n)$ integrierbar, so ist $(f(X_n))_{n \in \mathbb{N}_0}$ ein Martingal bzgl. \mathscr{F} . Bei sub- bzw. superharmonischen Funktionen erhält man Sub- bzw. Supermartingale.

3. Die starke Markoveigenschaft

3.1. Definition(Stoppzeit)

T heißt Stoppzeit bzgl. \mathscr{F} wenn für alle $n \in \mathbb{N}_0$ gilt: $\{T = n\} \in \mathscr{F}_n$. Die zu einer Stoppzeit beobachtbare σ -Algebra wird durch $\mathscr{F}_T = \{A \in \mathscr{A} | \forall n \in \mathbb{N} : A \cap \{T = n\} \in \mathscr{F}_n\}$ definiert.

3.2. Satz(Starke Markoveigenschaft)

Ist T eine Stoppzeit mit $P(T < \infty) > 0$, so ist $(X_{T+n})_{n \in \mathbb{N}_0}$ bedingt auf $\{T < \infty\}$ wieder eine homogene Markovkette auf (S, Σ) mit dem gleichen Übergangskern K bzgl. der Filtration $(F_{T+n})_{n \in \mathbb{N}_0}$.

3.3. Notation(Startverteilung)

Gegeben sei eine Startverteilung μ auf (S,Σ) und ein Übergangskern K von (S,Σ) nach (S,Σ) bezeichnet man mit P_{μ} die Verteilung auf $(S^{\mathbb{N}_0},\Sigma^{\otimes^{\mathbb{N}_0}})$, die die kanonische Projektion $X_n:S^{\mathbb{N}_0}\to S,\ \omega\mapsto\omega_n$ zu einer homogenen Markovkette X mit Startverteilung μ und Übergangskern K macht. Im Spezialfall $\mu=\delta_x, x\in S$, so schreibt man P_x statt P_{δ_x} .

3.4. Satz(Starke Markoveigenschaft)

Ist T eine Stoppzeit so gilt für nicht negative oder beschränkte $\mathscr{F}_T \otimes \Sigma^{\otimes^{\mathbb{N}_0}}$ -messbaren $f: S^{\mathbb{N}_0} \times S^{\mathbb{N}_0} \to \mathbb{R} \cup \{\infty\}$: $\mathbb{E}_{\mu}[f(X, (X_{T+n})_{n \in \mathbb{N}_0}) | \mathscr{F}_T](\omega) = \mathbb{E}_{X_T(\omega)}[f(X(\omega), X)]$ für P_{μ} fast alle $\omega \in S^{\mathbb{N}_0}$ auf dem Ereignis $\{T < \infty\}$.

3.5. Satz(Eintrittszeit)

Ist $A \subseteq S$ messbar, $T_A = \inf\{t \in \mathbb{N}_0 : X_t \in A\}$ Eintrittszeit in A und $f: A \to \mathbb{R}$ messbar und beschränkt. $g: S \to \mathbb{R}$, $g(x) = \mathbb{E}_x[f(X_{T_A}), T_A < \infty]$ ist harmonisch auf $S \setminus A$ mit den Randbedingungen $g|_A = f$.

3.6. Satz(Reflexionsprinzip für einfache Irrfahrt)

Sei X die einfache Irrfahrt auf \mathbb{Z} . Dann gilt für alle $a\in\mathbb{N}_0$ und $t\in\mathbb{N}_0$: $P(T_a\leq t)=2P(X_t>a)+P(X_t=a)$

4. Rekurrenz und Transienz

4.1 Notation

Für $x \in S$ ist $R_x = \inf\{n \in \mathbb{N} : X_n = x\} > 0$ die erste Eintrittszeit in x. R_x ist eine Stoppzeit.

4.2. Satz(Eintrittszeit)

Folgende Aussagen sind äquivalent:

- 1. $P_x(R_x < \infty) = 1$
- 2. $P_x(X_n = x \text{ für unendlich viele } n) = 1$
- 3. $P_x(X_n = x \text{ für unendlich viele } n) > 0$

4.
$$\mathbb{E}_x\left[\sum_{n\in\mathbb{N}_0}\mathbf{1}_{\{X_n=x\}}\right]=\infty$$

5.
$$\sum_{n \in \mathbb{N}_0} P_x(X_n = x) = \infty$$

4.3. Definition(Rückkehrzeiten)

$$R_x^{(0)} = 0, R_x^{(k+1)} = \inf\{n > R_x^{(k)} : X_n = x\}$$

4.4. Definition(Rekurrenter Punkt)

Ein Punkt $x \in S$ (oder die zugehörige Markovkette mit Start in x) heißt rekurrent, falls $P_x(R_x < \infty) = 1$. Sonst heißt x transient.

4.5. Definition(Positiv rekurrent)

Eine homogene Markovkette X mit Start in $x\in S$ heißt positiv rekurrent, falls gilt: $\mathbb{E}_x[R_x]<\infty$. Sie heißt nullrekurrent, falls $R_x<\infty$ P_x -f.s. und $\mathbb{E}_x[R_x]=\infty$

4.5.1. Lemma

Eine rekurrente homogene Markovkette X mit Start in $x \in S$ ist nullrekurrent, wenn: $P(X_n = x) \xrightarrow{n \to \infty} 0$.

4.6. Definition(Erreichbarkeit)

Ein Punkt $y \in S$ heißt erreichbar von $x \in S$ wenn $P_x(R_y < \infty) > 0$.

4.6.1. Lemma

Für $x, y \in S$, x rekurrent sind äquivalent:

- 1. $P_x(R_y < \infty) > 0$
- 2. $P_x(R_y \le R_x) > 0$
- 3. $P_x(R_y < \infty) = 1$

4.6.2. Lemma

Auf der Menge $R \subseteq S$ der rekurrenten Zustände ist die Erreichbarkeitsrelation eine Äquivalenzrelation.

4.7. Satz

Ist S abzählbar, $\Sigma = \mathscr{P}(S)$, X eine homogene Markovkette auf S und $x \in S$ rekurrent, so ist das Maß μ auf S definiert durch

$$\begin{array}{l} \mu(A) &= \mathbb{E}_x[\text{Anzahl der Besuche in } A \text{ vor Rückkehr zu } x] \\ &= \mathbb{E}_x[\sum_{n \in \mathbb{N}_0} \mathbf{1}_{\{X_n \in A, R_X > n\}}] \\ &= \sum_{n \in \mathbb{N}_0} P_x(X_n \in A, R_x > n) \\ \text{station\"{a}r und besitzt eine endliche Z\"{a}hldichte}. \end{array}$$

4.8. Definition(Irreduzible Markovkette)

Eine homogene Markovkette X mit abzählbaren Zustandsraum S heißt irreduzibel, wenn jeder Zustand $y \in S$ von jedem Zustand $x \in S$ aus erreichbar ist: $\forall x, y \in S$: $P_x(R_y < \infty) > 0$.

4.9. Satz

Sei X eine irreduzible Markovkette auf S und $x \in S$. Dann sind äquivalent:

- 1. x ist positiv rekurrent
- 2. Es gibt ein stationäres Wahrscheinlichkeitsmaß ν
- 3. Das Maß $\mu:\mathscr{P}(S)\to [0,\infty],$ $\mu(A)=\sum_{n\in\mathbb{N}_0}P_x(X_n\in A,R_x>n)$ ist endlich.

 ν ist eindeutig bestimmt durch $\nu = \sum\limits_{x \in S} \frac{1}{\mathbb{E}_x[R_x]}$

5. Konvergenz von Markovketten

5.1. Definition(Aperiodisch)

Sei X eine homogene, irreduzible Markovkette auf einem abzählbaren Raum S mit Übergangsmatrix π . Für $x \in S$ sei $M_x = \{n \in \mathbb{N}_0 : P_x(X_n = x) > 0\} = \{n \in \mathbb{N}_0 : \pi^n(x, x) > 0\}$ die Menge der möglichen Rückkehrzeiten nach x. Die stochastische Matrix π (bzw. der Prozess X) heißt aperiodisch, wenn gilt $ggTM_x = 1 \ \forall x \in S$.

5.1.1. Lemma

Es sei $M \subseteq \mathbb{N}_0$ eine unter + abgeschlossene Menge mit $0 \in M$. Dann sind äquivalent:

- 1. ggTM = 1
- 2. $M M = \{m n : m, n \in M\} = \mathbb{Z}$
- 3. $\mathbb{N}_0 \setminus M$ ist endlich
- 4. Es gilt $n \in M$ mit $n + 1 \in M$

5.1.2. Bemerkung

Für $x, y \in S$ gilt: $ggTM_x = 1 \Leftrightarrow ggTM_y = 1$.

5.2. **S**atz

Sei X eine positiv rekurrente, irreduzible, aperiodische Markovkette auf dem abzählbaren Zustandsraum S mit Übergangsmatrix π und stationärer Verteilung μ . Dann gilt:

- Für alle $x, y \in S: \pi^n(x, y) \xrightarrow{n \to \infty} \mu(\{y\})$
- Für alle Startverteilungen ν auf S gilt: $\sup_{A\subseteq S}|P_{\nu}(X_n\in A)-\mu(A)|\xrightarrow{n\to\infty}0$
- Für alle Startverteilungen ν auf S gilt:

Für alle Startverteilungen
$$\nu$$
 auf S gilt:
$$\sup_{f:S^{\mathbb{N}_0} \to [0,1]} |\mathbb{E}_{\nu}[f((X_{n+k})_{k \in \mathbb{N}_0})] - \mathbb{E}_{\mu}[f(X)]| \xrightarrow{n \to \infty} 0$$

• Für alle Startverteilungen ν , ν' auf S gilt:

$$\sup_{f:S^{\mathbb{N}_0}\to[0,1]} |\mathbb{E}_{\nu}[f((X_{n+k})_{k\in\mathbb{N}_0})] - \mathbb{E}_{\nu'}[f((X_{n+k})_{k\in\mathbb{N}_0})]| \xrightarrow{n\to\infty} 0$$

5.2.1. Lemma

Ist π irreduzibel und aperiodisch, so ist auch die Produktübergangsmatrix $\hat{\pi}$ irreduzibel. Insbesonders ist die Diagonale $\{(x, x) \in S \times S\}$ von jedem Punkt $(x, y) \in S \times S$ erreichbar.

5.2.2. Lemma

Die Markovkette mit Übergangsmatrix $\hat{\pi}$ auf $S \times S$ ist positiv rekurrent.

6. Poissonprozess

6.1. Definition(Poissonverteilung)

Die Poissonverteilung zum Parameter $\alpha \geq 0$ ist folgende Verteilung auf $(\mathbb{N}_0, \mathscr{P}(\mathbb{N}_0))$: $Poisson(\alpha) = \sum_{n \in \mathbb{N}_0} e^{-\alpha} \frac{\alpha^n}{n!} \delta_n$ mit $Poisson(0) = \delta_0$.

Sie besitzt die Faltungseigenschaft: $Poisson(\alpha) * Poisson(\beta) = Poisson(\alpha + \beta)$ und die Fouriertransformierte: $Poisson(\alpha)^{\wedge}(k) = \exp(\alpha(e^{ik} - 1))$

6.2. Definition(Poissonprozess)

Ein (homogener) Poissonprozess mit Intensität $\lambda > 0$ ist ein stochastischer Prozess $(N_t)_{t \geq 0}$ in kontinuierlicher Zeit über einem Wahrscheinlichkeitsraum (Ω, \mathscr{A}, P) mit Werten in $(\mathbb{N}_0, P(\mathbb{N}_0))$ mit:

- 1. $N_0 = 0$
- 2. Alle Pfade $(N_t(\omega))_{t\geq 0}$, $\omega\in\Omega$ sind monoton steigend und rechtsseitig stetig.
- 3. Für alle $s > t \ge 0$ ist der Zuwachs $N_s N_t$ poissonverteilt mit dem Parameter $\lambda(s-t)$
- 4. Für alle $k \in \mathbb{N}$ und alle $0 \le t_0 < ... < t_k$ gilt: Die Zuwächse $(N_{t_i} N_{t_{i-1}})_{i=1,...,k}$ sind stochastisch unabhängig.

6.2.1. Bemerkung

Die Forderung 3. kann durch folgende Forderung ersetzt werden:

Für alle s>t>0 hängt die Verteilung N_s-N_t nur von s-t ab und $P(N_t=1)=\lambda t+o(t)$ und $P(N_t\geq 2)=o(t)$ für $t\to\infty$.

6.3. Satz(Gedächtnislosigkeit der Exponentialverteilung)

Ist T exponentialverteilt mit dem Parameter $\lambda > 0$, so ist für alle $a \geq 0$ T - a bedingt auf $\{T > a\}$ ebenfalls exponentialverteilt zum Parameter λ .

6.4. Satz(Gedächtnislosigkeit der Exponentialverteilung - bedingte Version)

Sind $T \sim Exp(\lambda)$, X eine von T unabhängige Zufallsvariable und S eine $\sigma(X)$ -messbare Zufallsvariable, so gilt: Bedingt auf das Ereignis $\{T>a\}$ ist T-S ebenfalls $Exp(\lambda)$ -verteilt und unabhängig von X.

Für alle messbaren $A \subseteq \mathbb{R}^+$ und $B \in \Omega'$ gilt:

$$P(T - S \in A, X \in B | T - S > 0) = P(T \in A)P(X \in B | T - S > 0)$$

6.5. Definition (Poisson-Punktprozesse)

Sei (Ω, \mathscr{A}, P) ein Wahrscheinlichkeitsraum, (X, \mathscr{X}) ein messbarer Raum und λ ein σ -endliches Maß auf (X, \mathscr{X}) . Ein Poisson-Punktprozess über (X, \mathscr{X}) mit dem Intensitätsmaß λ ist eine Familie von Zufallsvariablen $(N_A)_{A \in \mathscr{X}}$ mit Werten in $\mathbb{N}_0 \cup \{\infty\}$ mit:

- 1. $N: \Omega \times \mathscr{X} \to \mathbb{N}_0 \cup \{\infty\}, (\omega, A) \mapsto N_A(\omega)$ ist ein Kern
- 2. Für alle $A \in \mathscr{X}$ ist N_A poissonverteilt mit dem Parameter $\lambda(A)$. (Dabei ist $Poisson(\infty) = \delta_{\infty}$)
- 3. Sind $A_1,...,A_n\in \mathscr{X}$ paarweise disjunkt und $n\in \mathbb{N}$ so sind $N_{A_1},...,N_{A_n}$ unabhängig

6.5.1. Satz(Abbilden von Poisson-Punktprozesse)

Ist N ein Poisson-Punktprozesse über $(X, \mathscr{X}, \lambda)$ auf (Ω, \mathscr{A}, P) und $(X', \mathscr{X}', \lambda')$ ein weiterer σ -endlicher Maßraum, $F: (X, \mathscr{X}) \to (X', \mathscr{X}')$ eine meßbare Abbildung mit Bildmaß $F(\lambda) = \lambda'$, so ist $\hat{N}: \Omega \times \mathscr{X}' \to N_0 \cup \{\infty\}$, $\hat{N}_{A'}(\omega) = N_{F^{-1}(A')}(\omega)$ ebenfalls ein Poisson-Punktprozess über $(X', \mathscr{X}', \lambda')$.

6.5.2. Satz(Erzeugendes Funktional eines Poisson-Punktprozess)

Es sei N ein Poisson-Punktprozess über $(X, \mathcal{X}, \lambda)$ auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Ist $f: X \to \mathbb{R}$ messbar und $\int\limits_X (e^f - 1) d\lambda < \infty$, so ist $\mathcal{L}_N(f) = \mathbb{E}[\exp(\int\limits_X f(x) N(dx))]$ wohldefiniert und es gilt $\mathcal{L}_N(f) = \exp(\int\limits_X (e^f - 1) d\lambda)$. Gilt $\int\limits_X (|f| \wedge 1) d\lambda < \infty$, dann ist $\int\limits_X [\exp(i\int\limits_X f(x) N(dx))] = \exp(\int\limits_X (e^{if} - 1) d\lambda)$

Gilt
$$\int\limits_X (|f| \wedge 1) d\lambda < \infty$$
, dann ist $\mathbb{E}[\exp(i \int\limits_X f(x) N(dx))] = exp(\int\limits_X (e^{if} - 1) d\lambda)$

6.6. Definition(Zusammengesetzte Poissonverteilungen)

Es sei μ ein Maß auf $\mathbb R$ mit $\int\limits_{\mathbb R} (|x| \wedge 1) \mu(dx) < \infty$ und N ein Poisson-Punktprozess über $(X,\mathscr X,\lambda)$ auf einem Wahrscheinlichkeitsraum $(\Omega,\mathscr A,P)$. Die zusammengesetzte Poissonverteilungen mit dem Intensitätsmaß μ ist die Verteilung von $\int\limits_{\mathbb R} x N(dx)$. Man bezeichnet sie mit $CPoi(\mu)$.

6.6.1. Bemerkung

Für die Fouriertransformierte gilt:

 $CPoi(\mu)^{\wedge}(k)=\mathbb{E}[\exp(ik\int\limits_{\mathbb{R}}xN(dx))]=\exp(\int\limits_{\mathbb{R}}(e^{ikx}-1)\mu(dx))$ Ist μ ein endliches Maß, so gilt:

so gilt:
$$CPoi(\mu)=e^{-\mu(\mathbb{R})}e^{*\mu} \text{ wobei } e^{*\mu}=\sum_{n=0}^{\infty}\frac{\mu^{*n}}{n!}$$

6.6.2. Lemma (Faltungseigenschaft der zusammengesetzten Poissonverteilung)

Sind μ , ν Maße auf $(\mathbb{R}, B(\mathbb{R}))$ mit $\int\limits_{\mathbb{R}} (|x| \wedge 1) \mu(dx) < \infty$ und $\int\limits_{\mathbb{R}} (|x| \wedge 1) \nu(dx) < \infty$, so gilt $CPoi(\mu) * CPoi(\nu) = CPoi(\mu + \nu)$. Vor allem gilt: $CPoi(\mu) = CPoi(\frac{1}{n}\mu)^{*n}$ für alle $n \in \mathbb{N}$.

6.7. Definition(Unbegrenzte Teilbarkeit)

Ein Wahrscheinlichkeitsmaß P auf \mathbb{R} heißt unbegrenzt teilbar, wenn es für jedes $n \in \mathbb{N}$ ein Wahrscheinlichkeitsmaß Q_n auf \mathbb{R} gibt mit $Q_n^{*n} = P$.

6.7.1. Lemma

Sind P,Q Wahrscheinlichkeitsmaße auf \mathbb{R}^+_0 mit $P^{*n}=Q^{*n}$, so ist P=Q.

6.8. Definition(Levy-Prozess)

Ein stochastischer Prozess $(X_t)_{t\geq 0}$ mit Werten in \mathbb{R} heißt Levy-Prozess wenn gilt:

- 1. $X_0 = 0$
- 2. Die Verteilung der Zuwächse $X_s X_t$, $s > t \ge 0$ hängt nur von s t ab.
- 3. Für alle $n \in \mathbb{N}$ und $0 \le t_0 < \ldots < t_n$ sind die Zuwächse $(X_{t_i} X_{t_{i-1}})_{i=1,\ldots,n}$ unabhängig.
- 4. Alle Pfade von X sind rechtsstetig und besitzen linksseitige Limiten.

Gilt zusätzlich:

5. $\mathscr{L}(X_t) = CPoi(t\mu)$ für alle $t \geq 0$ mit einem Maß μ auf \mathbb{R} mit $\int\limits_{\mathbb{R}} (|x| \wedge 1) \mu(dx) < \infty$, so heißt X reiner Levy-Sprungprozess mit Levy Maß μ .

6.8.1. Satz(Darstellung von Levy-Prozessen)

Jeder Levy-Prozess X mit monoton steigenden Pfaden lässt sich auch als Summe einer deterministischen linearen Prozesses $(at)_{t\geq 0}$ mit $a\geq 0$ und eines reinen Levy-Sprungprozess Y_t darstellen:

$$X_t = at + Y_t$$

Vor allem gilt die Levy-Kinchin-Formel für monoton steigende Levy-Prozesse:

$$\mathbb{E}[e^{-sXt}] = \exp(-sat + t \int_{0}^{\infty} (e^{-sx} - 1)\mu(dx)) \text{ mit } s \in \mathbb{C}, Re(s) \ge 0$$

6.8.2. Satz

Ist P ein unbegrenzt teilbares Wahrscheinlichkeitsmaß auf \mathbb{R}^+_0 , so kann P eindeutig in der Form $P=\delta_a*CPoi(\mu)$ mit $a\geq 0$ und einem Maß μ auf \mathbb{R}^+ mit $\int\limits_0^\infty (x\wedge 1)\mu(dx)<\infty$ geschrieben werden.

7. Brownsche Bewegung

7.1. Definition(Brownsche Bewegung)

Ein Levy-Prozess B mit stetigen Pfaden, so dass für alle t > 0 B_t $\mathcal{N}(0,t)$ -verteilt ist, wird Brownsche Bewegung genannt.

Andere Formulierung der Bedingung:

Für $0=t_0 < t_1 < ...t_n, n \in \mathbb{N}$ sollen die Zuwächse $(B_t-B_{t-1})_{i=1,...n}$ unabhängig und $\mathcal{N}(0,t_i-t_{t-1})$ verteilt sein. Das bedeutet $(B_{t_i}-B_{t_{t-1}})_{i=1,...n}$ sind gemeinsam n-dimensional normalverteilt mit Erwartung 0 und Kovarianzmatrix mit Diagonaleinträgen $(t_i-t_{i-1})_{i=1,...,n}$.

7.1.1. Lemma

Ein Prozess B mit stetigen Pfaden und $B_0=0$ ist genau dann eine Brownsche Bewegung, wenn die endlich dimensionale Randverteilung $\mathscr{L}(B_{t_i}:i=1,...,n)$ mit $n\in\mathbb{N},\,0=t_0< t_1<...< t_n$ multidimensional normalverteilt ist mit Erwartung 0 und Kovarianzen $Cov(B_{t_i},B_{t_j})=t_i\wedge t_j$

7.2. Satz(Skalierungseigenschaft der Brownschen Bewegung)

Ist B eine Brownsche Bewegung und ist a>0, so ist auch $\hat{B}=(\hat{B}_t=aB_{\frac{t}{a^2}})_{t>0}$ eine Brownsche Bewegung.