1. u appartient à L(G) si et seulement si t[n][0][0]. 2. t[0][d][i] est vrai si et seulement si i = 0, d = 0 et $S \to \varepsilon$. 3. t[1][d][i] est vrai si et seulement si $X_i \to u_d$ est une règle de G. 4.

$$t[l][d][i] = \bigvee_{X_i \to X_j X_k} \bigvee_{p=1}^{l-1} t[p][d][j] \wedge t[l-p] \underbrace{[d+m]}_{\text{si }d+p < n}[k]$$

$$X_i \rightarrow X_j X_k \ p=1$$
 si $d+p < n$

Algorithme CYK

Entrée : Une grammaire
$$G = (\Sigma, V, R, S)$$
 et un mot $u = u_0...u_{n-1}$
Sortie : true si $u \in L(G)$, false sinon $t \longleftarrow$ tableau de taille $(n+1) \times n \times k$ initialisé à false, où $k = |V|$

Si $S \to \varepsilon \in R$: $t[0][0][0] \leftarrow$ true

Pour
$$X_i \rightarrow a \in R$$
:

Pour $d = 0$ à $n - 1$:

Si $a = u_d$:

 $t[1][d][i] \longleftarrow \texttt{true}$

Renvoyer t[n][0][0]