

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05227164 A

(43) Date of publication of application: 03.09.93

(51) Int. CI

H04L 12/28 H04B 3/36

(21) Application number: 04028322

(22) Date of filing: 14.02.92

(71) Applicant:

NIPPON TELEGR & TELEPH

CORP <NTT>

(72) Inventor:

SHOMURA YOSHIYUKI

IWAMA MITSUO HORIMA TOSHIHIKO

(54) REPEATING CONTROL SYSTEM

(57) Abstract:

PURPOSE: To shorten the retrieval time of repeating processing by deciding and informing a repeating path where the traffic is not concentrated based on the path information obtained from each search telegraph.

CONSTITUTION: A path analysis section 19 deciding a path without traffic concentration between repeaters 1112 and 11(n-1)n stores its content in a path storage section 18, tracing back the path of the information telegraph from a path management device 12 through a transmitter-receiver 17 at its transmission to the repeater 11(n-1)n The repeater 11(n-1)n sets the address value of the repeater 1112 to the destination address section of the information telegraph, sets the address value of the repeater at the transmission source address section, sets the path registered in a storage section 15 to a path information section, sets the address value of the communication equipments $61_{n-1}61_{nm}$ to be housed in the communication system 60n to the, transmitting them to information section, communication system capable of passing along the path. The repeater 11 performs repeating only when there is a mark of passing the self repeater on the path

information section, and neglects the information telegraph if there is not.

COPYRIGHT: (C)1993,JPO&Japio

いのかの教え いながれ 国際議論のものをいると

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-227164

(43)公開日 平成5年(1993)9月3日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	F I	技術表示箇所
H 0 4 L H 0 4 B		9199-5K 8948-5K	H 0 4 L 11/00	310 C

審査請求 未請求 請求項の数1(全 8 頁)

(21)出願番号	特願平4-28322	(71)出願人 000004226	
		日本電信電話株式会社	
(22)出願日	平成 4 年(1992) 2 月14日	東京都千代田区内幸町一丁目1番6号	
(,, -		(72)発明者 庄村 佳之	
		東京都千代田区内幸町1丁目1番6号 日	3
		本電信電話株式会社内	
		(72)発明者 岩間 光夫	
	•	東京都千代田区内幸町1丁目1番6号 日	Ξ
		本電信電話株式会社内	
		(72)発明者 堀間 利彦	
		東京都千代田区内幸町1丁目1番6号	3
		本電信電話株式会社内	
		(74)代理人 弁理士 古谷 史旺	
	•		

(54)【発明の名称】 中継制御方式

(57) 【要約】

【目的】 通信装置を収容する伝送系と中継のみを実行する伝送系から構成される通信システムの結合点に設置される中継装置における中継制御方式に関し、中継処理に係わる検索の処理時間を短縮して中継処理能力の向上を図る。

【構成】 各通信システムの通信装置のアドレス情報を登録する記憶手段と、探索電文を送出し、到達した各探索電文から得られる経路情報を経路管理手段に送信し、ここで決定された経路を受けて登録し、その経路情報、アドレス情報を探索電文の発出元に返信し、返信された各情報を登録する経路探索手段と、各探索電文から得られる経路情報を取り込み、トラヒック集中がない中継路を決定して経路探索手段に通知する経路管理手段と、各中継点で探索電文に経路情報として各中継点固有の印を付して送出し、経路情報に基づいて中継される電文のうちそれぞれ固有の印を有する電文のみを通過させる結合手段とを備える。

【請求項1】 各通信システムに収容される通信装置のアドレス情報を登録する記憶手段と、

前記アドレス情報を他の通信システムに送信する最短経路を見つけるための探索電文を送出し、到達した各探索電文から得られる経路情報を経路管理手段に送信し、ここで決定された経路を受けて登録するとともに、その経路情報およびその通信システムに収容される通信装置のアドレス情報を探索電文の発出元に返信し、また返信された経路情報およびアドレス情報を登録する経路探索手段と、

前記各探索電文から得られる経路情報を取り込み、トラ ヒック集中がない中継経路を決定して前記経路探索手段 に通知する経路管理手段と、

前記探索電文が通過する各中継点でその探索電文に経路 情報として、各中継点固有の印を付して送出し、また前 記経路情報に基づいて中継される電文のうちそれぞれ固 有の印を有する電文のみを通過させる結合手段とを備え たことを特徴とする中継制御方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、通信装置を収容する伝送系と中継のみを実行する伝送系から構成される通信システムの結合点に設置される中継装置における中継制御方式に関する。

[0002]

【従来の技術】図5は、従来の通信システムの全体構成を示すブロック図である。図において、個々の通信システム601, …, 60n は、それぞれ通信装置6111~611m, …, 61n1~61nmを収容し、各通信システムは中継装置6212, …, 62(n-1)nを介して接続される。なお、通信装置6111~611mは通信システム601に収容されるm個の通信装置を示し、中継装置6212は通信システム601と通信システム602との間の接合点に置かれることを示す。その他の通信装置および中継装置の表記についても同様である。各中継装置62は、結合する両側の通信システムとの送受信処理を行う送受信部63,64と、すべての通信装置のアドレス値を入出力側に分けて登録する記憶部65とにより構成される。

【0003】以下、通信システム601に収容される通信装置61mから、通信システム60mに収容される通信装置61mmへの通信における中継動作について説明する。通信装置61mから発出した電文は、通信システム60mに収容されるその他の通信装置61m2~61mmおよび中継装置62m2に到達する。ここで、電文の宛先が通信システム60m以外の通信システムに収容される通信装置61mmを示しているので、中継装置62m2の記憶部65の入力側には登録されていない。そのとき、中継装置62m2では記憶部65の出力側を調査し、通信装置

 61_{nm} を示すアドレス値がある場合に、その電文を送受信部 64 を介して次の通信システム 602 の伝送系に送出する。このようにして次々に中継された電文は、最後に中継装置 61_{nm} に到達する。

[0004]

【発明が解決しようとする課題】ところで、各中継装置62の記憶部65は、それぞれ全通信システムに収容される通信装置のアドレス値を登録する必要があるために、通信システム規模に応じて大きな容量が必要となっていた。また、中継処理ごとに各中継装置62の記憶部65で電文の宛先を照合することになるので、通信システム全体の照合回数は最大でそれに属する全通信装置数となり、伝送遅延を発生させる大きな要因になっていた。

【0005】また、これは中継処理性能の問題であるばかりでなく、中継装置をいかに最適に配置するかという通信システム全体の設計の優劣にも影響を与えていた。したがって、通信システムの設計および工事に当たって は熟練者に頼らざるを得ず、通信システムの建設費用や変更時の費用が増大する問題点となっていた。

【0006】本発明は、通信装置を収容する通信システムに接続して他の通信システムとの中継処理を行う中継装置を含む通信システム全体において、中継処理に係わる検索の処理時間を短縮して中継処理能力の向上を図ることができる中継制御方式を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明は、各通信システ ムに収容される通信装置のアドレス情報を登録する記憶 手段と、前記アドレス情報を他の通信システムに送信す る最短経路を見つけるための探索電文を送出し、到達し た各探索電文から得られる経路情報を経路管理手段に送 信し、ここで決定された経路を受けて登録するととも に、その経路情報およびその通信システムに収容される 通信装置のアドレス情報を探索電文の発出元に返信し、 また返信された経路情報およびアドレス情報を登録する 経路探索手段と、前記各探索電文から得られる経路情報 を取り込み、トラヒック集中がない中継経路を決定して 前記経路探索手段に通知する経路管理手段と、前記探索 電文が通過する各中継点でその探索電文に経路情報とし て、各中継点固有の印を付して送出し、また前記経路情 報に基づいて中継される電文のうちそれぞれ固有の印を 有する電文のみを通過させる結合手段とを備えたことを 特徴とする。

[0008]

【作用】本発明は、中継装置の経路探索手段が各通信システムの中継装置宛に探索電文を送出し、その探索電文が各結合手段を介して目的の通信システムの中継装置に到達したときに、そこまでの経路情報を記憶するように

しておく。ここで、経路管理手段は、すべての探索電文 の経路情報をみて不都合となる中継装置が発生しないよ うに中継経路の決定を行うので、中継装置での経路決定 の負荷を軽減できるとともに、通信システム全体におい ても経路決定に係わる負荷の上昇を抑え、各中継装置の 処理性能を最大限に引き出すことができる。なお、この 経路管理手段で決められた経路情報は各中継装置に送ら れて登録される。

【0009】その後、各中継装置では受信した電文の宛 ではその経路情報に応じた処理を行うことにより、経路 情報に沿って電文の中継を行うことができる。

[0010]

【実施例】図1は、本発明の中継制御方式が適用される 通信システム全体の一実施例構成を示すプロック図であ る。

【0011】図において、個々の通信システム601, ···, 60n は、それぞれ通信装置 6111~611m, ···, 61n1~61nmを収容し、各通信システムは中継装置1 112, …, 11(n-1)nを介して接続される。また、所定 20 の通信システム60;には、中継経路の決定に関与する. 経路管理装置12が接続される。なお、通信装置6111 ~ 6 l 1 m は通信システム 6 0 1 に収容される m 個の通信 装置を示し、中継装置1112は通信システム601 と通 信システム 6 02 との間の接合点に置かれることを示 す。その他の通信装置および中継装置の表記についても 同様である。

【0012】各中継装置11は、結合する両側の通信シ ステムとの送受信処理を行う送受信部13,14と、本 発明の中継処理に必要な情報(詳しくは後述する)を登 30 録する記憶部15と、受信した探索電文に対して通過し たことを示す印をつけるとともに、その印がついてる情 報電文に対して中継判定を行う判定部16とにより構成 される。経路管理装置12は、所定の通信システム60 ; との送受信処理を行う送受信部17と、経路記憶部1 8および経路解析部19とにより構成される。

【0013】ここで、本発明の中継制御方式で使用する 探索電文20、中継装置間での情報交換に使用する情報 電文30、中継装置と通信装置との間で使用する一般の 通信電文40の各フレーム構成について、それぞれ図 2, 図3, 図4を参照して説明する。

【0014】図2において、探索電文20のフレーム は、ヘッダ部21、宛先アドレス部22、発出元アドレ ス部23、経路情報部24、必要に応じて付加される情 報部25およびチェック部26で構成される。

【0015】図3において、情報電文30のフレーム は、ヘッダ部31、宛先アドレス部32、発出元アドレ ス部33、経路情報部34、実際の通信情報を含む情報 部35およびチェック部36で構成される。

【0016】図4において、通信電文40のフレーム

は、ヘッダ部41、宛先アドレス部42、発出元アドレ ス部43、実際の通信情報を含む情報部45およびチェ ック部46で構成される。

【0017】以下、通信システム601 に収容される通 信装置6111から、通信システム60m に収容される通 信装置61nmへの通信に際して、本発明による中継動作 について説明する。ただし、その前提として、中継装置 1 112の記憶部 1 5 には、通信システム 6 01 に収容さ れる通信装置6111~611mのアドレス値が記憶され、 先に対応する経路情報を取り出し、各中継点の結合手段 10 それ以外の通信システムに収容される通信装置のアドレ ス値は、探索電文20で決定された中継装置間で用いら れる情報電文30の経路情報部34に書き込まれるもの と同一のもので、かつ各情報単位に記憶される。また、 中継装置11を通過したときに探索電文20の経路情報 部24に付加される印は、通信システム全体において唯 一のものとする。

> 【0018】まず、通信システム601に収容される通 信装置 6 1 11 ~ 6 1 1mのアドレス値を中継装置 1 1 12の 記憶部15へ記憶する手順について説明する。通信装置 6111~611mは、通信システム601 に参入するとき に送出する通信電文40の宛先アドレス部42に中継装 置1112のアドレス値を設定し、発出元アドレス部43 にその通信装置のアドレス値を設定する。中継装置11 12では、通信電文40が届いたときにその宛先アドレス 部42に自身のアドレス値が書き込まれていれば、当然 その記憶部15には発出元のアドレス値がないので発出 元アドレス部43にあるアドレス値の登録を行う。な お、その通信電文40はアドレス値登録のためのもので あるので、同一の通信システム内の通信と同様に中継処 理は実行されない。

【0019】このように、新規に参入する通信装置のア ドレス値は、通信電文40の発出元アドレス部43のア ドレス値を受信することにより、中継装置1112の記憶 部15にその通信システム内の通信装置として登録され

【0020】次に、通信システム601 に収容される通 信装置6111~611mのアドレス値を登録した中継装置 1112において、中継経路の探索と、経路に対応するア ドレス値の登録処理について説明する。中継装置1112 では、あらかじめ設定された時間間隔あるいは通信シス テム601 に収容される通信装置に変化がある都度、中 継装置間の経路を設定するために探索電文20を送受信 部14を介して、通信システム601 を除く通信システ ム602 その他に送出する。この動作は、中継装置の組 み合わせ数だけ繰り返し行われる。

【0021】ここでは、中継装置1112が中継装置11 (n-1)nとの間の経路を設定するために、探索電文20の 宛先アドレス部22に中継装置11(n-1)nのアドレス値 を設定し、発出元アドレス部23にぞの中継装置のアド 50 レス値を設定し、通信システム601以外の通信システ

ムに送出する。この探索電文20が中継装置11pqを通過するときには、その判定部16で探索電文20の経路情報部24を調査し、そこに以前この結合装置を通過したことを示す印がなければ、入力側の通信システム60pの識別子p、中継装置11pqを通過したことを示す全通信システム唯一の印ェ、および出力側の通信システム60pの識別子qを書き込んで通信システム60pに送出する。また、中継装置11pqの判定部16で探索電文20の経路情報部24を調査したときに、以前この結合装置を通過したことを示す印ェがあれば経路がループを指いていることを示すので、その探索電文20を廃棄する。

【0022】このような動作により探索電文20は、いずれ目的とする中継装置11(n-1)nに到達することになるが、中継装置11(n-1)nに到達する探索電文20が複数になることがある。これは、中継装置等によって異なる複数の経路をとることが可能であることを示している。

【0023】次に、このような状況を含めて、中継装置 1112と中継装置 11(n-1)nとの間の通信経路の決定法 20 について説明する。中継装置 11(n-1)nでは、中継装置 1112から送出されたすべての探索電文20の受信を待ち、情報電文30の宛先アドレス部32に経路管理装置 12宛のアドレス値を設定し、発出元アドレス部33に中継装置 11(n-1)nのアドレス値を設定し、経路情報部34に予め設定される中継装置 11(n-1)nと経路管理装置 12との経路情報を設定し、情報部35に中継装置 1112と中継装置 11(n-1)nとの間で取り得る経路であり、かつ受信したすべての探索電文20の経路情報部24の内容を設定し、経路管理装置 12との経路に割り当 30 てられる送受信部 13から送出する。

【0024】なお、この場合には、中継装置11(n-1)n と経路管理装置12との経路は、少なくとも通信システムに中継装置11(n-1)nが組み入れられるときには決定されている。すなわち、この場合の経路探索は、中継装置間の経路を決定するのと同様に、または経路管理装置12が探索電文20を発出するのを契機として同様に行われる。

【0025】この情報電文30は、経路情報部34の内容に基づいて中継され、最終目標である経路管理装置1402の送受信部17に到達する。送受信部17は、その情報電文30の情報部35の内容を経路解析部19に送る。経路解析部19では、各経路内容の1つ1つに対して経路記録部18に蓄積されている情報を参照して評価する。ここでの評価は、例えばその経路を選択することによりトラヒックが集中する中継装置の発生の可能性や、中継装置間通信の優先順位その他を加味して行われる。なお、送られてきた経路情報のいずれも評価点に耐えない結果のときには、経路解析部19で独自の経路解析を行って評価点以上となる経路を設計するか、いくつ50

かの通信装置を直接収容する起点となる中継装置に再度 経路の探索の指示を行って最適な経路を決定する。

【0026】このようにして、中継装置1112と中継装置11(n-1)nとの間の経路を決定した経路解析部19は、その内容を経路記憶部18に格納するとともに、送受信部17を介して経路管理装置12から情報電文30が送られてきた経路を逆に辿って中継装置11(n-1)nに送出する。中継装置11(n-1)nでは、到着する情報電文30の情報部35の内容を記憶部15に登録する。

【0027】続いて、中継装置11(n-1)nでは、先の探 索電文20の応答として情報電文30の宛先アドレス部 32に中継装置1112のアドレス値を設定し、発出元ア ドレス部33にその中継装置のアドレス値を設定し、さ らに経路情報部34に記憶部15に登録した経路を設定 し、情報部35に通信システム60mに収容される通信 装置61n1~61nmのアドレス値を設定し、経路情報部 34に記録した経路に沿って流すことができる通信シス テムに送出する。この情報電文30は、探索電文20と 同様に中継装置11を経由することになるが、中継装置 11は経路情報部34に自中継装置を通過したことを示 す印がある場合にのみ中継し、ない場合にはその情報電 文30を無視する。この動作により、情報電文30は中 継装置 1 1 (n-1)nに登録された経路上を流れて目的の中 継装置1112に到達する。なお、この場合には、探索電 文20の場合と異なって中継装置1112に到達するもの は1つである。

【0028】中継装置1112では、受信した情報電文30の発出元アドレス部33の内容(最終中継装置のアドレス値)、経路情報部34の内容(最短経路情報)および情報部35の内容(最終中継装置に収容される通信装置のアドレス値)を記憶部15に記憶する。さらに、中継装置11(n-1)nが行ったのと同様に、折り返しの情報電文30の情報部35に通信システム601に収容される通信装置6111~611mのアドレス値を設定し、経路情報部34に記録した経路に沿って流すことができる通信システムに送出する。これにより、中継装置11(n-1)nでも通信システム601に収容される通信装置6111~611mのアドレス値を登録することができる。

【0029】以上の動作によって中継装置間の経路が決定され、各中継装置にその経路が登録される。この処理を経た後に、実際の通信電文40の中継処理が開始される。通信装置61nmのアドレス値を設定し、発出元アドレス部43にそのアドレス値を設定し、情報部45に通信する電文内容を設定して通信システム601に送出する。中継装置1112は、この通信電文40を受信すると、記憶部15でこの通信電文40の宛先となっている通信装置61nmのアドレス値を調査し、記憶部15に登録されている情報によってその通信電文40の中継経路を決定する。中継装置1112は、ここで新たに情報電文

30の宛先アドレス部32に通信装置61nmのアドレス 値を設定し、発出元アドレス部33に通信装置61nmの アドレス値を設定し、経路情報部34に決定された経路 情報を設定し、情報部35に通信電文40の情報部45 の内容を設定し、その経路情報に沿った通信システム6 02 側に送受信部14を介して送出する。

【0030】この情報電文30の途中経路に中継装置11がある場合には、その中継装置の判定部16で情報電文30の経路情報部34を調査し、その中継装置を示す印がある場合にのみ、経路情報部34が示す通信システム側にその通信電文30を送出する。このようにして情報電文30は、最終目標である通信装置61nmを収容する通信システム60nに接続される中継装置11(n-1)nに到達する。中継装置11(n-1)nでは、その情報電文30に対しては最終中継地となるので、再び通信電文40の宛先アドレス部42に通信装置61nmのアドレス値を設定し、発出元アドレス部43に通信装置61nmのアドレス値を設定し、特報部45に情報電文30の情報部35の内容を設定して通信システム60n側に送出することにより、この通信電文40は目的とする通信装置61nmに到達する。

【0031】このように、本発明の中継制御方式では、目的とする通信システムまでの中継経路が予めかつ自動的に決定されるので、通信システム全体では中継処理に係わる時間を大幅に短縮することができ、処理能力の向上を図ることができる。さらに、本発明の中継制御方式では、経路管理装置が不都合となる中継装置が発生しないように中継経路の決定を行うことができるので、中継装置での経路決定の負荷を軽減できるとともに、通信システム全体の経路決定に係わる負荷の上昇を抑え、各中30継装置の処理性能を最大限に引き出すことができる。

[0032]

【発明の効果】以上説明したように本発明は、中継装置間の中継経路が経路管理装置で通信システム全体を見て決定されるので、経路探索に使用する電文の送出を低く抑えて効率よく経路決定を行うことができる。すなわち、一般の通信電文の伝送効率を高め、かつ中継装置の処理能力を最大限に引き出すことができ、常に最高の効率で運用できる通信システムを構築することができる。

また、中継装置では経路情報に応じてルーチングが行われるので、中継処理時間を大幅に短縮することができる。

【0033】したがって、通信システム全体の中継経路の管理および設定が自動的に行うことができるとともに、設計において中継経路等の検討が不要となり、大規模かつ高トラヒックに柔軟に対応することができる通信システムを安価に構築することができる。

【図面の簡単な説明】

【図1】本発明の中継制御方式が適用される通信システム全体の一実施例構成を示すブロック図である。

【図2】探索電文20のフレーム構成を示す図である。

【図3】情報電文30のフレーム構成を示す図である。

【図4】 通信電文40のフレーム構成を示す図である。

【図5】従来の通信システムの全体構成を示すブロック 図である。

【符号の説明】

- 11 中継装置
- 12 経路管理装置
- 20 13, 14 送受信部
 - 15 記憶部
 - 16 判定部
 - 17 送受信部
 - 18 経路記憶部
 - 19 経路解析部
 - 20 探索電文
 - 3 0 情報電文
 - 40 通信電文
 - 21,31,41 ヘッダ部
- 30 22, 32, 42 宛先アドレス部
 - 23,33,43 発出元アドレス部
 - 24,34 経路情報部
 - 25.35,45 情報部
 - 26, 36, 46 チェック部
 - 60 通信システム
 - 61 通信装置
 - 62 中継装置
 - 63.64 送受信部
 - 6.5 記憶部

【図2】

探索電文20のフレーム構成

2 1رے	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 3	3 (24	2.5	26
ヘッダ部	宛先	発出元	経路情報部	情報部	チェック部
	アドレス部	アドレス部	RELIGIO PARILE	ПТКИР	

【図1】 本発明の一実施例構成

【図3】

情報電文30のフレーム構成

	ζ3 1	32	3 3	3 4	3 5	36
	ヘッダ部	宛先	発出元	経路情報部	情報部	チェック部
		アドレス部	アドレス部	を	IBTROP	, 2, , ,

【図4】

通信電文40のフレーム構成

(4)	4 2	4 3	4.5	5 \ \ 4 6
ヘッダ部	宛先	発出元	情報部	チェック部
	アドレス部	アドレス部	IATROP)

【図5】 従来の通信システムの全体構成

Publication Number: 05-227164

Title of Invention:

REPEATING CONTROL SYSTEM

Applicant: NIPPON TELEGR. & TELEPH. CORP.

Date of Filing: 14.02.1992

[Claims],

. P. S. - 18 S. W. W. S. S. - 18 S. S.

京日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日の日本のである。 12日本のである。 12日本のでは、12日本のである。 12日本のでは、12日本ので

1. A repeating control system comprising:

a storage means for storing the address information of communication equipment in each communication system;

a path searching means for sending out a searching telegraph to find a shortest path through which address information is transmitted to another communication system, transmitting path information obtained from each of the received searching telegraphs to a path management means, receiving and storing a path determined by said path management means, transmitting information about a path determined at said path management means and the address information of communication equipment in its communication system to the sources of the received searching telegraphs, and storing transmitted path information and address information;

said path management means for determining a repeating path without traffic concentration based on said path information transmitted to said path management means, and transmitting the repeating path to said path searching means; and

a coupling means provided at each repeating point through which said searching telegraph passes, for attaching a mark unique to the repeating point to said searching telegraph as path information to sending out said searching telegraph, and allowing only the searching telegraphs having an unique mark to pass through of searching telegraphs which are repeated according to path information.