Introduction to Audio Content Analysis

Module 8.2: Music Similarity

alexander lerch

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 156-157)

lecture content

- music similarity and its relation to musical genre
- clustering and visualization of feature space

learning objectives

- describe potential issues with algorithms for measuring music similarity
- implement a simple k-Means algorithm

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 156-157)

lecture content

- music similarity and its relation to musical genre
- clustering and visualization of feature space

learning objectives

- describe potential issues with algorithms for measuring music similarity
- implement a simple k-Means algorithm

music similarity

- genre classification is just a grouping by specific interpretation of similarity
 - similar set of features
 - ambiguous 'ground truth'
 - unclear value/impact of low level and high level features
- differences to genre classification
 - similarity: distance measure instead of categorizing into classes

music similarity

- genre classification is just a grouping by specific interpretation of similarity
 - similar set of features
 - ambiguous 'ground truth'
 - unclear value/impact of low level and high level features
- differences to genre classification
 - similarity: distance measure instead of categorizing into classes

- perception of music similarity
 - multi-dimensional (melodic, rhythmic, sound quality, ...)
 - user dependent
 - associative, may also depend on editorial data
 - may be context dependent
- genres are clusters of musical similarity
- ⇒ genre classification is a special case of audio similarity measures
- instead of assigning (genre) labels, the similarity/distance between (pairs) of files is measured

- perception of music similarity
 - multi-dimensional (melodic, rhythmic, sound quality, ...)
 - user dependent
 - associative, may also depend on editorial data
 - may be context dependent
- genres are clusters of musical similarity
- ⇒ genre classification is a *special case* of audio similarity measures
- instead of assigning (genre) labels, the similarity/distance between (pairs) of files is measured

- perception of music similarity
 - multi-dimensional (melodic, rhythmic, sound quality, . . .)
 - user dependent
 - associative, may also depend on editorial data
 - may be context dependent
- genres are clusters of musical similarity
- ⇒ genre classification is a *special case* of audio similarity measures
- instead of assigning (genre) labels, the similarity/distance between (pairs) of files is measured

Georgia Center for Music Tech College of Design

- K-Means clustering example
 - simple k-means example
 - goal: minimize intra-cluster variance
 - distance: Euclidean
 - procedure:
 - initialization: randomly select K points in the feature space as initialization.
 - assignment: assign each observation to the cluster with the mean/centroid of the closest cluster
 - update: compute mean/centroid for each cluster.
 - iteration: go to step 2 until the clusters converge.

Georgia Center for Music Tech Technology

- K-Means clustering example
 - simple k-means example
 - goal: minimize intra-cluster variance
 - distance: Euclidean
 - procedure:
 - initialization: randomly select K points in the feature space as initialization.
 - assignment: assign each observation to the cluster with the mean/centroid of the closest cluster.
 - update: compute mean/centroid for each cluster
 - iteration: go to step 2 until the clusters converge.

Georgia Center for Music Tech Tech College of Design

- K-Means clustering example
 - simple k-means example
 - goal: minimize intra-cluster variance
 - distance: Euclidean
 - procedure:
 - initialization: randomly select K points in the feature space as initialization.
 - assignment: assign each observation to the cluster with the mean/centroid of the closest cluster.
 - update: compute mean/centroid for each cluster.
 - iteration: go to step 2 until the clusters converge.

Georgia Center for Music Tech College of Design

K-Means clustering example

- simple k-means example
 - goal: minimize intra-cluster variance
 - distance: Euclidean
 - procedure:
 - initialization: randomly select K points in the feature space as initialization.
 - assignment: assign each observation to the cluster with the mean/centroid of the closest cluster.
 - update: compute mean/centroid for each cluster.
 - iteration: go to step 2 until the clusters converge.

K-Means clustering example

Georgia Center for M Tech Technology **Center for Music** College of Design

- data points

K-Means clustering example

Georgia Center for M Tech Technology **Center for Music** College of Design

- data points
- init randomly

- data points
- init randomly
- iteration
 - assign data points to closest centroid
 - update centroids
- terminate when convergence

matlab source: matlab/displayKMeans.m

- data points
- init randomly
- iteration
 - assign data points to closest centroid
 - update centroids
- terminate when convergence

matlab source: matlab/displayKMeans.m

- data points
- init randomly
- iteration
 - assign data points to closest centroid
 - update centroids
- terminate when convergence

data points

K-Means clustering example

- init randomly
- iteration
 - assign data points to closest centroid
 - update centroids

Georgia

K-Means clustering example

- data points
- init randomly
- iteration
 - assign data points to closest centroid
 - update centroids
- terminate when convergence

audio similarity visualization in a 2D space

- problem
 - feature space is high-dimensional
 - → cannot be visualized
- find mapping to 2D "preserving" (high-dimensional) distance metrics example:
 - Self-Organizing Maps

audio similarity visualization in a 2D space

- problem
 - feature space is high-dimensional
 - → cannot be visualized
- find **mapping** to 2D "preserving" (high-dimensional) distance metrics example:
 - Self-Organizing Maps

Georgia Center for Music Tech Technology

- visualization example: SOM 1/2
 - create a map with 'neurons'
 - train
 - for each training sample find BMU (best matching unit)
 - adapt BMU and neighbors toward training sample

$$W_{v}(t+1) = W_{v}(t) + \theta(u,v,t)\alpha(t)(D(t) - W_{v}(t))$$

- $\theta(u, v, t)$: depends on neighborhood distance from BMU
- $\alpha(t)$: learning restraint
- D(t) training sample

audio similarity SOM 2/2

 from^1

¹pampalk islands 2001.

lecture content

- music similarity
 - even less clearly defined than music genre
- processing steps
 - extract features
 - define some distance metric in feature space
- clustering algorithms
 - work to a certain degree with traditional features

