Precalculus 5.2 Key Points

Logarithms:

Logarithms (often shortened to "logs") are similar to exponents.

If
$$log_a(b) = c$$
, then $a^c = b$

For the logarithm above: a is the <u>base</u>, b is the <u>argument</u>, c is the <u>result</u> For example, if $2^3 = 8$, then $If \log_2(8) = 3$. This is saying that, to raise 2 to the power of some number to get 8, it needs to be raised to the power of 3. If a logarithm is written without a base, such as log(5), then it can be assumed that the base is 10. So, $log(5) = log_{10}(5)$

If a logarithm has a base of e, then it can be written as ln, which is called the "natural log." So, $ln(8) = log_{_{\it o}}(8)$

Logarithm Properties:

Logarithin Properties:	
<u>Property</u>	<u>Example</u>
Inverse Property $log_b(b) = 1$	$\log_2(2) = 1$
Addition/Product Property $log_b(xy) = log_b(x) + log_b(y)$	$\log_4(11 \bullet y) = \log_4(11) + \log_4(y)$
Subtraction/Quotient Property $log_b(\frac{x}{y}) = log_b(x) - log_b(y)$	$\log_{4}(\frac{x}{14}) = \log_{4}(x) - \log_{4}(14)$
Power Property $log_b(x^n) = n \cdot log_b(x)$	$\log_5(x^8) = 8 \bullet \log_5(x)$
Change of Base Formula $log_b(a) = \frac{log_c(a)}{log_c(b)}$	$log_{17}(23) = \frac{log_{10}(23)}{log_{10}(17)}$ (This is especially useful if your calculator only has base-10 logs)

Precalculus 5.2 Key Points

Graphing Logarithms:

Here is the parent graph for a logarithm, log(x). Notice the vertical asymptote at x=0

To graph logarithms, begin by identifying the vertical asymptote. This will be the value that causes the input into the logarithm to equal 0. For example, y = log(3x - 2) will have a vertical asymptote when 3x - 2 = 0, or when $x = \frac{2}{3}$

Afterwards, use transformations or plug in a few points to graph. There are multiple ways to graph logarithms.

Example:

$$y = -\log_6(x - 2) + 7$$

The vertical asymptote will be when x-2=0, which is when x=2 Next, plug in a few values into the equation. Some easy values are those that cause the logarithmic input to equal 1, the base of the logarithm, and the square of the logarithm.

When x = 3 and the logarithmic input equals 1, then $log_6(1) = 0$, so y = 7

When x = 8 and the logarithmic input equals 6, then $log_6(6) = 1$, so y = 6

When x = 38 and the logarithmic input equals 36, then $log_6(36) = 2$, so

$$y = 5$$

Precalculus 5.2 Key Points

Now, just connect the points to graph the function

Another approach to graphing this logarithm would be to graph $y=\log_6(x)$, and then use transformations to shift the graph into $y=-\log_6(x-2)+7$

In this case, this would mean shifting $\log_6(x)$ right two units and up seven units and flipping the graph because of the negative out front