Mensuration - Formulas of Different 3D & 2D Figures

Formulae of Areas of Different Triangles

Scalene triangle: →

Area = $\frac{1}{2}$ × base × height

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Where $S = \frac{a+b+c}{2}$

Where
$$S = \frac{a+b+c}{2}$$

Area = $\frac{1}{2}$ × a × c sin B

$$= \frac{1}{2} \times a \times b \times \sin C$$
$$= \frac{1}{2} \times b \times c \times \sin A$$

$$= \frac{1}{2} \times b \times c \times \sin A$$

Isosceles triangle: →

Height (h) = $\frac{1}{2}\sqrt{4a^2 - b^2}$

Area =
$$\frac{1}{2}$$
 × base × height

Area =
$$\frac{1}{2}$$
 b $\sqrt{4a^2 - b^2}$

Equilateral triangle: →

Area =
$$\frac{\sqrt{3}}{4}a^2$$

h = $\frac{\sqrt{3}}{2}a$

Right angled triangle: →

Side of the maximum size square inscribed in a right angle Δ =

$$a = \frac{P \times b}{P + B}$$

Formulae of Surface Area & Volume of Different 3D Figures

1. Cuboid→

- Volume of cuboid = $1 \times b \times h$
- ➤ Lateral surface Area = Perimeter of Base × Height Base = $2(1 + b) \times h$
- ➤ Total surface area = Lateral surface Area + 2 \times Area of base = 2 (lh + bh + lb)
- ightharpoonup Diagonal = $\sqrt{l^2 + b^2 + h^2}$
- \triangleright V = $\sqrt{A_1 \times A_2 \times A_3}$
 - $A_1 \Longrightarrow Area of base or top = lb$
 - $A_2 \Rightarrow$ Area of one side face = bh
 - $A_3 \Rightarrow$ Area of another side face = hl
- To find the total surface area of a cuboid if the sum of all three sides and diagonals are given.
 - Total surface area = $(sum of all three side)^2$ -(Diagonal)²
- For painting the surface area of a box or to know how much tin sheet is required, we will use, Total surface area.
- To find the length of the longest pole to be placed is a room, we will calculate diagonal i.e. $\sqrt{l^2 + b^2 + h^2}$

- Volume = $(side)^3 = a^3$
- Lateral surface area = $4a^2$

- Total surface area = $6a^2$
- ightharpoonup Diagonal of the cube = $\sqrt{3} a$
- Face diagonal of the cube = $\sqrt{2}a$
- Volume of cube = $\left(\sqrt{\frac{total\ surface\ area}{6}}\right)$
- In Radius of cube = $\frac{a}{2}$
- Circumradius of cube = $\frac{\sqrt{3}}{2}$ a

3. Right circular cone→

- Slant height, $1 = \sqrt{r^2 + h^2}$
- Volume = $\frac{1}{3}$ × area of base × height = $\frac{1}{3} \pi r^2 h$
- \triangleright Curved surface area = $\frac{1}{2}$ (Perimeter of base) × slant height

=
$$\frac{1}{2} \times 2\pi r \times l = \pi r l = \pi r \sqrt{r^2 + h^2}$$

> Total surface area = C.S.A + Area of base

- $= \pi r l + \pi r^2 = \pi r (l+r)$
- ➤ If cone is formed by sector of a circle, then.
- (a) Slant height = radius of circle
- (b) circumference of base of cone = length of arc of sector
- Radius of maximum size sphere in a cone

$$= \frac{h \times r}{l + r} \qquad \begin{bmatrix} r \to radius \ of \ cone \\ l \to slant \ height \ of \ cone \\ h \to height \ of \ cone \end{bmatrix}$$

➤ If cone is cut parallel to its base and ratio of heights, radius or slant height of both parts is given as $\rightarrow x : y$.

Then Ratio of their volume = $x^3 : y^3$

4. Frustum of a right Circular cone \rightarrow

Slant height

AC = 1, AB = h, BC = R - r

Applying Pythagorean theorem in ΔABC $L = \sqrt{h^2 + (R - r^2)}$

- \triangleright volume of frustrum = $\frac{1}{3}\pi(R^2 + r^2 + Rr)h$
- Curved surface area = $\pi(R + r)l$
- \triangleright Total surface area, T.S.A = $\pi(R+r)l$ + $\pi(R^2 + r^2)$

5. Prism \rightarrow

- ➤ A prism is a solid object with:
 - (a) Identical Ends
 - (b) Flat faces

- ➤ Volume of Prism = Area of base × height
- ➤ Lateral surface area of prism = perimeter of base × height
- > Total surface area of = Perimeter of base × height $+ 2 \times$ area of base

6. Pyramids→

- Volume = $\frac{1}{3}$ (area of base) × height
- Curved surface area $\frac{1}{2}$ × (perimeter of base) × slant height
- ➤ Total surface area = curved surface area + area of the base
- ➤ Whenever in a question, If we want to find Slant height or height, then we will use inradius of the base not the Radius or side of the base.

7. Hollow Cylinder \rightarrow

- \triangleright Volume = $\pi (R^2 r^2)h$
- \triangleright Curved Surface Area = $2\pi(R+r)h$
- ightharpoonup Total surface area = $2\pi (R+r)h + 2\pi (R^2 r^2)$

8. Tetrahedron→

- ightharpoonup Height = $\sqrt{\frac{2}{3}}a$

- ➤ Lateral surface area = $\frac{3\sqrt{3}}{4}a^2$ ➤ Total surface area = $\sqrt{3}a^2$
- Slaut height = $\frac{\sqrt{3}}{2}$ a
- ➤ Slaut Edge = a

9. Swimming Pool:

➤ Volume of swimming Pool = $\frac{1}{2}$ [Sum of depth of both sides] × length × Breadth