Aprendizagem 2023 Homework IV – Group 090 (ist1103335, ist1103573)

I. Pen-and-paper [11v]

Given the following observations,

$$\left\{ \begin{pmatrix} 1\\0.6\\0.1 \end{pmatrix}, \begin{pmatrix} 0\\-0.4\\0.8 \end{pmatrix}, \begin{pmatrix} 0\\0.2\\0.5 \end{pmatrix}, \begin{pmatrix} 1\\0.4\\-0.1 \end{pmatrix} \right\}.$$

Consider a Bayesian clustering that assumes $\{y_1\} \perp \{y_2, y_3\}$, two clusters following a Bernoulli distribution on y_1 (p_1 and p_2), a multivariate Gaussian on $\{y_2, y_3\}$ (N_1 and N_2), and the following initial mixture:

$$\pi_{1} = 0.5, \pi_{2} = 0.5$$

$$p_{1} = P(y_{1} = 1) = 0.3, p_{2} = P(y_{1} = 1) = 0.7$$

$$\mathcal{N}_{1}(\boldsymbol{\mu}_{1} = \begin{pmatrix} 1\\1 \end{pmatrix}, \boldsymbol{\Sigma}_{1} = \begin{pmatrix} 2 & 0.5\\0.5 & 2 \end{pmatrix})$$

$$\mathcal{N}_{2}(\boldsymbol{\mu}_{2} = \begin{pmatrix} 0\\0 \end{pmatrix}, \boldsymbol{\Sigma}_{2} = \begin{pmatrix} 1.5 & 1\\1 & 1.5 \end{pmatrix})$$

Note: you can solve this exercise by neglecting y_1 and still scoring up to 70

1) [6v] Perform one epoch of the EM clustering algorithm and determine the new parameters.

Hint: we suggest you to use numpy and scipy, however disclose the intermediary results step by step.

To perform one epoch of the EM clustering algorithm, we need to update the priors π_1 , π_2 , the means μ_1 μ_2 , the covariance matrices Σ_1 and Σ_2 and the probabilities p_1 and p_2

Expectation Step: For this we compute the probability $P(c_k|x_i)$ for each observation x_i e cluster c_k :

$$\gamma_{ki} = P\left(c_{k}|x_{i}\right) = \frac{P\left(x_{i}|c_{k}\right) \cdot P\left(c_{k}\right)}{P\left(x_{i}\right)} = \frac{\pi_{k} \cdot \mathcal{N}_{k}\left(x_{i[y_{2},y_{3}]}|\mu_{k}, \Sigma_{k}\right) \cdot Bernoulli\left(x_{i[y_{1}]}|p_{k}\right)}{\sum_{k}\left(\pi_{k} \cdot \mathcal{N}_{k}\left(x_{i[y_{2},y_{3}]}|\mu_{k}, \Sigma_{k}\right) \cdot Bernoulli\left(x_{i[y_{1}]}|p_{k}\right)\right)}$$

As $P(x_i)$ is invariant across components, we can simply calculate:

$$P\left(c_{k}, x_{i}\right) = P\left(x_{i} | c_{k}\right) \cdot P\left(c_{k}\right) = \pi_{k} \cdot \mathcal{N}_{k}\left(x_{i[y_{2}, y_{3}]} | \mu_{k}, \Sigma_{k}\right) \cdot Bernoulli\left(x_{i[y_{1}]} | p_{k}\right)$$

and then we **normalize** it:

$$\gamma_{ki} = P\left(c_k|x_i\right) = \frac{P\left(c_k, x_i\right)}{\sum_{j} P\left(c_j, x_i\right)}$$

Then assuming
$$x_1 = \begin{pmatrix} 1 \\ 0.6 \\ 0.1 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ -0.4 \\ 0.8 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 0.2 \\ 0.5 \end{pmatrix}, x_4 = \begin{pmatrix} 1 \\ 0.4 \\ -0.1 \end{pmatrix}$$
:
$$P(c_1, x_1) = \pi_1 \cdot \mathcal{N}_1 \left(x_{1[y_2, y_3]} | \mu_1, \Sigma_1 \right) \cdot Bernoulli \left(x_{1[y_1]} | p_1 \right)$$

$$= 0.5 \cdot 0.06658 \cdot 0.3$$

$$= 0.009986$$

$$P(c_1, x_1) = 0.009986, \ P(c_1, x_2) = 0.017517, \ P(c_1, x_3) = 0.023931, P(c_1, x_4) = 0.008857$$

 $P(c_2, x_1) = 0.041866, \ P(c_2, x_2) = 0.010228, \ P(c_2, x_3) = 0.019437, P(c_2, x_4) = 0.043575$

Then we normalize the values to compute the γ_{ik} :

$$\gamma_{11} = \frac{P(c_1, x_1)}{P(c_1, x_1) + P(c_2, x_1)}$$
$$= \frac{0.009986}{0.009986 + 0.041866}$$
$$= 0.192590$$

$$\gamma_{11} = 0.192590, \ \gamma_{21} = 0.631345, \ \gamma_{31} = 0.551811, \ \gamma_{41} = 0.168924$$

$$\gamma_{12} = 0.807410, \ \gamma_{22} = 0.368655, \ \gamma_{32} = 0.448189, \ \gamma_{42} = 0.831076$$

Where γ_{21} represents the probability of the observation 2 belonging to cluster 1.

Maximization Step: Update the parameters for each cluster k:

$$N_k = \sum_{\eta=1}^N \gamma_{\eta k}$$

$$\mu_k = \frac{1}{N_k} \cdot \sum_{\eta=1}^N \gamma_{\eta k} \cdot \mathbf{x}_{\eta[y_2, y_3]}$$

$$\Sigma_k = \frac{1}{N_k} \cdot \sum_{\eta=1}^N \gamma_{\eta k} \cdot \left(\mathbf{x}_{\eta[y_2, y_3]} - \mu_k \right) \cdot \left(\mathbf{x}_{\eta[y_2, y_3]} - \mu_k \right)^T$$

$$p_k = \frac{1}{N_k} \cdot \sum_{\eta=1}^N \gamma_{\eta k} \cdot \mathbf{x}_{\eta[y_1]}$$

$$\pi_k = p\left(c_k = 1\right) = \frac{N_k}{N}$$

Now we calculate the updated parameters using these formulas:

• N_k:

$$N_1 = \sum_{i=1}^{4} \gamma_{\eta 1} = 0.192590 + 0.631345 + 0.551811 + 0.168924$$

= **1.544670**
 $N_2 = \mathbf{2.455330}$

• $\mu_{\mathbf{k}}$:

$$\begin{split} \mu_1' &= \frac{1}{N_1} \cdot \sum_{\eta=1}^4 \gamma_{\eta 1} \cdot \mathbf{x}_{\eta[y_2,y_3]} \\ &= \frac{0.192590 \cdot \begin{bmatrix} 0.6 \\ 0.1 \end{bmatrix} + 0.631345 \cdot \begin{bmatrix} -0.4 \\ 0.8 \end{bmatrix} + 0.551811 \cdot \begin{bmatrix} 0.2 \\ 0.5 \end{bmatrix} + 0.168924 \cdot \begin{bmatrix} 0.4 \\ -0.1 \end{bmatrix}}{1.544670} \\ &= \begin{bmatrix} 0.026509 \\ 0.507130 \end{bmatrix} \\ \mu_2' &= \begin{bmatrix} 0.309145 \\ 0.210420 \end{bmatrix} \end{split}$$

• $\Sigma_{\mathbf{k}}$:

$$\Sigma_{1}' = \frac{1}{N_{1}} \cdot \sum_{\eta=1}^{4} \gamma_{\eta 1} \cdot \left(\mathbf{x}_{\eta[y_{2},y_{3}]} - \mu_{1}\right) \cdot \left(\mathbf{x}_{\eta[y_{2},y_{3}]} - \mu_{1}\right)^{T}$$

$$= \left(0.192590 \cdot \begin{bmatrix} 0.573491 \\ -0.40713 \end{bmatrix} \begin{bmatrix} 0.573491 \\ -0.40713 \end{bmatrix}^{T} + 0.631345 \cdot \begin{bmatrix} -0.426509 \\ 0.29287 \end{bmatrix} \begin{bmatrix} -0.426509 \\ 0.29287 \end{bmatrix}^{T}$$

$$+0.551811 \cdot \begin{bmatrix} 0.173491 \\ -0.00713 \end{bmatrix} \begin{bmatrix} 0.173491 \\ -0.00713 \end{bmatrix}^{T} + 0.168924 \cdot \begin{bmatrix} 0.375938 \\ -0.60713 \end{bmatrix} \begin{bmatrix} 0.375938 \\ -0.60713 \end{bmatrix}^{T} \right)$$

$$= \begin{bmatrix} 0.141365 & -0.105405 \\ -0.105405 & 0.096053 \end{bmatrix}$$

$$\Sigma_{2}' = \begin{bmatrix} 0.108293 & -0.088652 \\ -0.088652 & 0.104123 \end{bmatrix}$$

$$(1)$$

• p_k :

$$\begin{aligned} p_1' &= \frac{1}{N_1} \cdot \sum_{\eta=1}^4 \gamma_{\eta 1} \cdot \mathbf{x}_{\eta[y_1]} \\ &= \frac{0.192590 \cdot \left[1\right] + 0.631345 \cdot \left[0\right] + 0.551811 \cdot \left[0\right] + 0.168924 \cdot \left[1\right]}{1.544670} \\ &= \mathbf{0.234039} \\ p_2' &= \mathbf{0.667318} \end{aligned}$$

• $\pi_{\mathbf{k}}$:

$$\begin{split} \pi_1' &= \frac{N_1}{N_1 + N_2} = \frac{1.544670}{1.544670 + 2.455330} \\ &= \mathbf{0.386168} \\ \pi_2' &= \mathbf{0.613832} \end{split}$$

2) [2v] Given the new observation, $x_{\text{new}} = \begin{pmatrix} 1 \\ 0.3 \\ 0.7 \end{pmatrix}$, determine the cluster memberships (posteriors).

$$P(c_{1}, x_{new}) = \pi_{1} \cdot \mathcal{N}_{1} \left(x_{new[y_{2}, y_{3}]} | \mu_{1}, \Sigma_{1} \right) \cdot Bernoulli \left(x_{new[y_{1}]} | p_{1} \right)$$

$$= 0.386168 \cdot 0.027076 \cdot 0.234039$$

$$= 0.080290$$

$$P(c_{2}, x_{new}) = 0.919710$$

The posteriors are then calculated by:

$$\gamma_{new1} = \frac{P(c_1, x_{new})}{P(c_1, x_{new}) + P(c_2, x_{new})}$$

$$= \frac{0.080290}{0.080290 + 0.919710}$$

$$= \mathbf{0.002447}$$

$$\gamma_{new2} = \mathbf{0.028031}$$

3) [2.5v] Performing a hard assignment of observations to clusters under a ML assumption, identify the silhouette for the both clusters under a Manhattan distance.

The observations are:

$$x_1 = \begin{pmatrix} 1 \\ 0.6 \\ 0.1 \end{pmatrix}, \ x_2 = \begin{pmatrix} 0 \\ -0.4 \\ 0.8 \end{pmatrix}, \ x_3 = \begin{pmatrix} 0 \\ 0.2 \\ 0.5 \end{pmatrix}, \ x_4 = \begin{pmatrix} 1 \\ 0.4 \\ -0.1 \end{pmatrix}$$

The likelihood for each x_i is determined by:

$$P\left(x_{i}|c_{k}\right) = \mathcal{N}_{1}\left(x_{i[y_{2},y_{3}]}|\mu_{k},\Sigma_{k}\right) \cdot Bernoulli\left(x_{new[i]}|p_{k}\right)$$

So we calculate the likelihoods:

- 1. For x_1 in c_1 : 0.23147434 For x_1 in c_2 : 0.94954252 So x_1 belongs to c_2
- 2. For x_2 in c_1 : 1.26633248 For x_2 in c_2 : 0.08873672 So x_2 belongs to c_1
- 3. For x_3 in c_1 : 1.4381104 For x_3 in c_2 : 0.4541745 So x_3 belongs to c_1

4. For x_4 in c_1 : 0.02076523 For x_4 in c_2 : 0.72331198 So x_4 belongs to c_2

Therefore we have the clusters:

$$c_1 = \{x_2, x_3\}$$
 and $c_2 = \{x_1, x_4\}$

Preserving the Manhattan distance assumption, let us compute the silhouette of c_1 :

The silhouette is $s_i = \frac{b-a}{\max\{a,b\}}$

- a is the average distance of point i to the others in same cluster $a(i) = \frac{1}{|C_i|-1} \sum_{\substack{j \in C_i \\ j \neq i}} d(i,j)$
- b is the minimum of the average distances of point i to the points in each other cluster $b(i) = \min_{j \neq i} \left(\frac{1}{|C_j|} \sum_{k \in C_j} d(i, k) \right)$

First, we calculate a and b for x_2 :

$$a = |0 - 0| + |-0.4 - 0.2| + |0.8 - 0.5| = 0.9$$

$$b = \frac{|0 - 1| + |-0.4 - 0.6| + |0.8 - 0.1| + |0 - 1| + |-0.4 - 0.4| + |0.8 + 0.1|}{2} = 2.7$$

Therefore the silhouette for x_2 is $s(x_2) = \frac{2.7 - 0.9}{2.7} = 0,6(6)$ Then we do the same for the x_3 and we obtain a silhouette of 0.50.

Therefore the average silhouette for cluster 1 is $s(c_1) = \mathbf{0.58}$ (3). We do the same steps for c_2 and we determined that the average silhouette for cluster 2 is $s(c_2) = \mathbf{0.8(2)}$

4) [0.5v] Knowing the purity of the clustering solution is 0.75, identify the number of possible classes (ground truth).

Purity is an external measure that assesses how many of the clusters contain only a single class or label. The formula for purity is:

purity(C, L) =
$$\frac{1}{N} \sum_{k=1}^{K} \max_{j} (|c_k \cap l_j|)$$

Where,

- \bullet N is the total number of observations
- \bullet K is the number of clusters
- C_k is the set of points in cluster
- L_i is the set of points in the true class j

We want to identify the number of possible classes for a purity of 0.75 knowing from the previous question that N is 4, K is 2 and we have c_1 and c_2 :

$$c_1 = \left\{ \begin{pmatrix} 0 \\ -0.4 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0.2 \\ 0.5 \end{pmatrix} \right\}, c_2 = \left\{ \begin{pmatrix} 1 \\ 0.6 \\ 0.1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0.4 \\ -0.1 \end{pmatrix} \right\}$$

For this value of purity we have 2 possibilities. The first **possible number of classes is 2**. Let's imagine we have:

$$l_1 = \left\{ \begin{pmatrix} 0 \\ -0.4 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0.2 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 1 \\ 0.6 \\ 0.1 \end{pmatrix} \right\} \text{ and } l_2 = \left\{ \begin{pmatrix} 1 \\ 0.4 \\ -0.1 \end{pmatrix} \right\}$$

Therefore:

$$purity(C, L) = \frac{1}{4} \left(\max\{|c_1 \cap l_1|, |c_1 \cap l_2|\} + \max\{|c_2 \cap l_1|, |c_2 \cap l_2|\} \right)$$

$$= \frac{1}{4} \left(\max\{2, 0\} + \max\{1, 1\} \right) = \frac{1}{4} (2 + 1)$$

$$= \frac{1}{4} (3) = \frac{3}{4} = 0.75$$

The other **possible number of classes is 3**. Let's imagine we have:

$$l_1 = \left\{ \begin{pmatrix} 0 \\ -0.4 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 0 \\ 0.2 \\ 0.5 \end{pmatrix} \right\}, \ l_2 = \left\{ \begin{pmatrix} 1 \\ 0.4 \\ -0.1 \end{pmatrix} \right\} \text{ and } l_3 = \left\{ \begin{pmatrix} 1 \\ 0.6 \\ 0.1 \end{pmatrix} \right\}$$

Therefore:

$$purity(C, L) = \frac{1}{4} \left(\max\{|c_1 \cap l_1|, |c_1 \cap l_2|, |c_1 \cap l_3|\} + \max\{|c_2 \cap l_1|, |c_2 \cap l_2|, |c_2 \cap l_3|\} \right)$$

$$= \frac{1}{4} \left(\max\{2, 0, 0\} + \max\{0, 1, 1\} \right) = \frac{1}{4} \left(2 + 1 \right)$$

$$= \frac{1}{4} \left(3 \right) = \frac{3}{4} = 0.75$$

We can't have only 1 class because the Purity would be 1 and we can't have 4 classes because the purity would be 0.5.

II. Programming and critical analysis [9v]

Recall the column_diagnosis.arff dataset from previous homeworks. For the following exercises, normalize the data using sklearn's MinMaxScaler.

1) [4v] Using sklearn, apply k-means clustering fully unsupervisedly on the normalized data with $k \in \{2, 3, 4, 5\}$ (random=0 and remaining parameters as default). Assess the silhouette and purity of the produced solutions.

```
from sklearn import datasets, metrics, cluster, mixture
from sklearn.preprocessing import MinMaxScaler

k = [2, 3, 4, 5]

def purity_score(y_true, y_pred):
    contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
    return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)

X, y = df.drop('class', axis=1), df['class']
X_scaled = MinMaxScaler().fit_transform(X)

for i in k:
    kmeans = cluster.KMeans(n_clusters=i, random_state=0).fit(X_scaled)
    print("K-Means with k = " + str(i))
    print("Silhouette Score: " + str(metrics.silhouette_score(X_scaled, kmeans.labels_)))
    print("Purity Score: " + str(purity_score(y, kmeans.labels_)))
    print("\n")
```

K-Means Clustering with k = 2

Silhouette Score: 0.36044124340441114 Purity Score: 0.632258064516129

K-Means Clustering with k = 3

Silhouette Score: 0.29579055730002257 Purity Score: 0.667741935483871

K-Means Clustering with k = 4

Silhouette Score: 0.27442402122340176 Purity Score: 0.6612903225806451

K-Means Clustering with k = 5

Silhouette Score: 0.23823928397844843 Purity Score: 0.6774193548387096

- 2) [2v] Consider the application of PCA after the data normalization:
 - 1. Identify the variability explained by the top two principal components.
 - 2. For each one of these two components, sort the input variables by relevance by inspecting the absolute weights of the linear projection.

i.

```
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# Fit PCA to the normalized data
pca = PCA(svd_solver='full')
pca = pca.fit(X_scaled)

# 2i. Variability explained by the top two principal components
explained_variance_ratio = pca.explained_variance_ratio_
print("Variability explained by the top two principal components: {:.2f}%".format(sum(explained_variance_ratio[:2]) * 100))
```

Variability explained by the top two principal components: 77.14%

ii.

```
# 2ii. Sort input variables by relevance in the top two components
sorted_variables_pc1 = np.argsort(np.abs(pca.components_[0]))[::-1]
sorted_variables_pc2 = np.argsort(np.abs(pca.components_[1]))[::-1]

# List the variables by relevance in the top two components
print("Top variables for PC1:")
for i, var_index in enumerate(sorted_variables_pc1):
    print(f"{i+1}. {df.columns[var_index]}")

print("\nTop variables for PC2:")
for i, var_index in enumerate(sorted_variables_pc2):
    print(f"{i+1}. {df.columns[var_index]}")
```

Top variables for PC1:

- 1. pelvic_incidence
- 2. lumbar_lordosis_angle
- 3. pelvic tilt
- 4. sacral_slope
- 5. degree_spondylolisthesis
- 6. pelvic radius

Top variables for PC2:

- 1. pelvic_tilt
- 2. pelvic_radius
- 3. sacral_slope
- 4. pelvic_incidence
- 5. lumbar lordosi0s angle
- 6. degree spondylolisthesis

3) [2v] Visualize side-by-side the data using: i) the ground diagnoses, and ii) the previously learned k=3 clustering solution. To this end, project the normalized data onto a 2-dimensional data space using PCA and then color observations using the reference and cluster annotations.

```
import matplotlib.pyplot as plt

kmeans = cluster.KMeans(n_clusters=3, random_state=0).fit(X_scaled)
#PCA
pca = PCA(n_components=2)
X_2d = pca.fit_transform(X_scaled)

plt.figure(figsize=(14, 5))
plt.subplot(1, 2, 1)
num = [0 if x == 'Hernia' else 1 if x == 'Spondylolisthesis' else 2 for x in y]
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=num, cmap='viridis')
plt.title("Original Data (Diagnoses)")
plt.colorbar()

plt.subplot(1, 2, 2)
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=kmeans.labels_, cmap='viridis')
plt.title("K-Means Clustering")
plt.colorbar()

plt.show()
```


4) [1v] Considering the results from questions (1) and (3), identify two ways on how clustering can be used to characterize the population of ill and healthy individuals.

Clustering can be used to characterize the population of ill and healthy individuals in two ways:

Identifying Subgroups: Clustering helps identify different subgroups within the ill or healthy populations based on common characteristics. This can help identify the characteristics that are most closely associated with the illness.

Risk Assessment: Clustering can also be used to assess the risk of developing an illness. For example, if a person is in a cluster with many ill people, they may be at higher risk of developing the illness than someone in a cluster with few ill people.