Lemma. Given a poset
$$\langle \mathbf{P}, \leq_{\mathbf{P}} \rangle$$
, $\langle \mathcal{A}\mathbf{P}, \leq_{\mathcal{A}\mathbf{P}} \rangle$ is a poset with

 $A \leq_{\mathbf{IP}} B$ if and only if $\uparrow A \supseteq \uparrow B$.

Furthermore, it is bounded by the top $T_{AP} = \emptyset$ and the bottom $\bot_{AP} = \{\bot_{P}\}$.