

PROPIEDADES GLOBALES DE CURVAS PLANAS

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 10) 09.FEBRERO.2023

Intersecciones entre curvas y rectas

Definición

Sea $\alpha:I\to\mathbb{R}^2$ una curva regular plana, y sea ℓ una recta en \mathbb{R}^2 . La **multiplicidad** de ℓ es el número de intersecciones $|\alpha\cap\ell|$.

Intersecciones entre curvas y rectas

Asociamos una medida a un subconjunto de rectas del plano. Primero, observemos que toda recta ℓ en \mathbb{R}^2 está determinada por la menor distancia de ℓ al origen O, denotada $p \geq 0$, y por el ángulo $\theta \in [0, 2\pi)$ que la recta normal a ℓ hace con el eje Ox.

La ecuación de la recta ℓ está dada por $x \cos \theta + v \sin \theta = p$.

Intersecciones entre curvas y rectas

Identificamos el conjunto de rectas en el plano por el conjunto

$$\mathcal{L} = \{(p, \theta) \in \mathbb{R}^2 : p \geq 0, 0 \leq \theta < 2\pi\} = [0, \infty) \times S^1.$$

Recordemos que el área de un subconjunto $S \subseteq \mathbb{R}^2$ como

$$A(S) = \int_{S} d\omega = \int_{S} dx \, dy,$$

donde $\omega = dx \wedge dy$ es la 2-forma diferencial del elemento de área.

Objetivo 1: Mostrar que a menos de multiplicación por constantes, $\omega = dx \, dy$ es la única 2-forma invariante por movimientos rígidos del plano.

Áreas

Definición

Un conjunto $S \subseteq \mathbb{R}^2$ es **mesurable** (o **medible**), si la integral

$$\int_{S} dx \, dy$$

existe (puede ser finita o no).

Equivalentemente, S es mesurable si, y sólo si, la función indicadora

$$\mathbf{1}_{S}(\mathbf{x}) = \begin{cases} 1, & \text{si } \mathbf{x} \in S; \\ 0, & \text{si } \mathbf{x} \notin S. \end{cases}$$

es mesurable.

En ese caso, el valor de la integral $A(S) = \int_S dx \, dy$ es el área de S.

Áreas

Teorema (Cambio de variable)

Sean A y B subconjuntos abiertos y con volumen de \mathbb{R}^n , y sea $g: A \to B$ un difeomorfismo clase C^1 . Entonces, para toda función integrable $f: B \to \mathbb{R}$, la función $f \circ g: A \to \mathbb{R}$ es integrable en A, y vale

$$\int_{B}f=\int_{A}(f\circ g)\;\mathrm{det}\, Dg.$$

En particular, para \mathbb{R}^2 , usando una notación más común

$$\iint_{g(A)} f(x,y) \, dx \, dy = \iint_A f\big(g(\tilde{x},\tilde{y})\big) \, \det Dg(\tilde{x},\tilde{y}) \, d\tilde{x} \, d\tilde{y}.$$

Aquí, $x = g_1(\tilde{x}, \tilde{y})$, $y = g_2(\tilde{x}, \tilde{y})$ son las funciones componentes de g.

Invarianza del área

Propiedad

El área es una función invariante por movimientos rígidos.

Prueba:

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ movimiento rígido. Entonces T es difeomorfismo ($T(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$ es diferenciable, con inversa $T^{-1}(\mathbf{x}) = A^{-1}(\mathbf{x} - \mathbf{v})$, también diferenciable). Además, $DT = A \Rightarrow \det DT = \det A = 1$, ya que $A \in O(2)$.

Si $S\subseteq \mathbb{R}^2$ es mesurable, entonces $\tilde{S}=T(S)$ es mesurable. Del teorema del cambio de variable, con f=1, g=T y $f\circ T=1$:

$$A(\tilde{S}) = \int_{\tilde{S}} dx \, dy = \int_{T(S)} dx \, dy = \int_{S} \det T \, d\tilde{x} \, d\tilde{y} = \int_{S} d\tilde{x} \, d\tilde{y} = A(S). \, \square$$

Invarianza del área

Propiedad

Sea $f:\mathbb{R}^2 \to \mathbb{R}$ una función continua. Para cualquier subconjunto mesurable $S\subseteq \mathbb{R}^2$ definamos la función

$$F(S) = \int_{S} f(x, y) \, dx \, dy.$$

Si F es invariante por movimientos rígidos, esto es, para todo $T:\mathbb{R}^2\to\mathbb{R}^2$ mov. rígido, y para todo S, $\tilde{S}=T(S)$ vale

$$F(\tilde{S}) = \int_{\tilde{S}} f(\tilde{x}, \tilde{y}) d\tilde{x} d\tilde{y} = \int_{S} f(x, y) dx dy = F(S),$$

entonces f es constante.

Invarianza del área

Prueba:

Del teorema del cambio de variable

$$\int_{g(S)} f = \int_{S} (f \circ g) \det Dg.$$

En particular, para $g=T:\mathbb{R}^2 o \mathbb{R}^2$ movimiento rígido, tenemos det DT=1, de modo que

$$\int_{T(S)} f(x,y) \, dx \, dy = \int_{S} f(\tilde{x},\tilde{y}) \, d\tilde{x} \, d\tilde{y}.$$

Como esto vale para todo subconjunto mesurable $S \subseteq \mathbb{R}^2$, entonces $f(\tilde{y}(x,y), \tilde{y}(x,y)) = f(x,y), \forall x,y$

 $f(\tilde{\mathbf{x}}(\mathbf{x},\mathbf{y}),\tilde{\mathbf{y}}(\mathbf{x},\mathbf{y}))=f(\mathbf{x},\mathbf{y}),\,\forall\mathbf{x},\mathbf{y}.$

Ahora, para todo par de puntos (x,y) y (\tilde{x},\tilde{y}) en \mathbb{R}^2 , existe un movimiento rígido T_0 tal que $T_0(x,y)=(\tilde{x},\tilde{y})$. Luego

$$f(\tilde{\mathbf{x}},\tilde{\mathbf{y}})=f\big(\mathsf{T}_{\mathsf{O}}(\mathbf{x},\mathbf{y})\big)=(f\circ\mathsf{T}_{\mathsf{O}})(\mathbf{x},\mathbf{y})=f(\mathbf{x},\mathbf{y}).$$

Como esto vale para todo movimiento rígido T, entonces f es constante. \Box

El espacio de rectas en \mathbb{R}^2

Recordemos nuestra espacio de rectas en el plano:

$$\mathcal{L} = \{(p, \theta) \in \mathbb{R}^2 : p \geq 0, 0 \leq \theta < 2\pi\} = [0, \infty) \times S^1.$$

Sea
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 un movimiento rígido, con $T(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$. Como $A \in O(2)$, podemos escribir
$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \end{pmatrix},$$

para algún $\varphi \in [0, 2\pi)$, $a, b \in \mathbb{R}$. Entonces T induce la transformación de coordenadas $\begin{array}{ccc} \mathbf{x} & = & a + \tilde{\mathbf{x}}\cos\varphi - \tilde{\mathbf{y}}\sin\varphi, \\ \mathbf{y} & = & b + \tilde{\mathbf{x}}\sin\varphi + \tilde{\mathbf{y}}\cos\varphi. \end{array}$

Este cambio de coordenadas induce una transformación en \mathcal{L} .

El espacio de rectas en \mathbb{R}^2

Aplicando T a la ecuación de la recta $\ell: x \cos \theta + y \sin \theta = p$, obtenemos

$$\begin{aligned} x\cos\theta + y\sin\theta &= p\\ (a + \tilde{x}\cos\varphi - \tilde{y}\sin\varphi)\cos\theta + (b + \tilde{x}\sin\varphi + \tilde{y}\cos\varphi)\sin\theta &= p\\ a\cos\theta + b\sin\theta + \tilde{x}(\cos\varphi\cos\theta + \sin\varphi\sin\theta) + \tilde{y}(\cos\varphi\sin\theta - \sin\varphi\cos\theta) &= p\\ a\cos\theta + b\sin\theta + \tilde{x}\cos(\theta - \varphi) + \tilde{y}\sin(\theta - \varphi) &= p. \end{aligned}$$
 En particular, $\tilde{x}\cos(\theta - \varphi) + \tilde{y}\sin(\theta - \varphi) = p - a\cos\theta - b\sin\theta.$

Haciendo
$$\tilde{\theta}=\theta-\varphi$$
, y $\tilde{p}=p-a\cos\theta-b\sin\theta$, la nueva ecuación de la recta $T(\ell)$ es $\tilde{x}\cos\tilde{\theta}+\tilde{y}\sin\tilde{\theta}=\tilde{p}$.

El espacio de rectas en \mathbb{R}^2

Entonces, T induce una transformación en el espacio coordenado (p, θ) :

$$\tilde{p} = p - a \cos \theta - b \sin \theta,$$
 $\tilde{\theta} = \theta - \varphi,$

cuyo determinante jacobiano está dado por

$$\det DT(p,\theta) = \det \begin{vmatrix} \frac{\partial \tilde{p}}{\partial p} & \frac{\partial \tilde{p}}{\partial \theta} \\ \frac{\partial \tilde{\theta}}{\partial p} & \frac{\partial \tilde{\theta}}{\partial \theta} \end{vmatrix} = \det \begin{pmatrix} 1 & a\sin\theta - b\cos\theta \\ 0 & 1 \end{pmatrix} = 1.$$

Obs!: $T:(p,\theta)\to (\tilde{p},\tilde{\theta})$ de alguna forma define también una transformación que preserva áreas en el espacio de rectas \mathcal{L} .

Definición

Sea $S \subseteq \mathcal{L}$. Definimos la **medida** o **"área"** de S por

$$A(S) = \iint_{S} dp \, d\theta.$$

Teorema (Fórmula de Cauchy-Crofton)

Sea $\alpha: I \to \mathbb{R}^2$ una curva plana regular, de longitud L. La medida del conjunto de rectas en el plano, que intersectan a α , contadas con multiplicidad, es 2L.

Esquema de prueba:

Caso 1: Segmentos.

Supongamos que α es un segmento de recta de longitud L. Como la medida es invariante por movimientos rígidos, podemos mover el origen O está en el punto medio de α , y el eje Ox es paralelo a .

La medida del conjunto S de rectas que intersecan a α (n=1) es

$$\iint_{S} n \, dp \, d\theta = \int_{Q}^{2\pi} \int_{Q}^{\frac{1}{2}L|\cos\theta|} dp \, d\theta = \int_{Q}^{2\pi} \frac{L}{2}|\cos\theta| \, d\theta.$$

Luego,

$$\iint_{S} n \, dp \, d\theta = \int_{0}^{2\pi} \frac{L}{2} |\cos \theta| \, d\theta = \frac{L}{2} \left(\int_{0}^{\pi} \cos \theta \, d\theta - \int_{\pi}^{2\pi} \cos \theta \, d\theta \right)$$
$$= 4 \cdot \frac{L}{2} \int_{0}^{\pi/2} \cos \theta \, d\theta = 2L \sin \theta \Big|_{0}^{\pi/2}$$
$$= 2L.$$

y el resultado vale para segmentos de recta.

Caso 2: Poligonales.

Sea ahora α es una curva poligonal, esto es $\alpha = \bigcup_{i=1}^k \alpha_i$ es la unión de un número finito de segmentos α_i , cada uno de longitud L_i , $i = 1, \ldots, k$, con $L = \sum_{i=1}^k L_i$.

Del caso anterior, el área del conjunto de rectas que intersecan a segmento α_i es

$$A(S_i) = \int_{S_i} n \, dp \, d\theta = 2L_i, \quad i = 1, 2, \dots, k.$$

Haciendo la suma para cada segmento, tenemos que la medida del total de rectas que intersecan *alpha* es

$$A(S) = \int_{S} n \, dp \, d\theta = \int_{S_1 \cup \ldots \cup S_k} n \, dp \, d\theta = \sum_{i=1}^k \int_{S_i} n \, dp \, d\theta = \sum_{i=1}^k 2L_i = 2L.$$

Caso 3: Caso general.

Sea $\alpha: [a,b] \to \mathbb{R}^2$ una curva plana diferenciable y regular (clase C^1). A nivel local, α puede aproximarse por una poligonal $P_0P_1\dots P_k$, tomando una partición $P: a=t_0 < t_1 < t_2 < \dots < t_k = b$ del intervalo [a,b], con $P_i=\alpha(t_i)$, de modo que la poligonal $\tilde{\alpha}=P_0P_1\dots P_k$ tiene longitud L, y satiface

$$\Big|\int_{S(\alpha)} n \, dp \, d\theta - \int_{S(\tilde{\alpha})} n \, dp \, d\theta \Big| < \varepsilon.$$

Tomando el límite cuando $\Delta P \rightarrow$ o, resulta

$$\int_{\mathsf{S}(lpha)}\mathsf{n}\,\mathsf{d}\mathsf{p}\,\mathsf{d}\theta=\int_{\mathsf{S}(\widetilde{lpha})}\mathsf{n}\,\mathsf{d}\mathsf{p}\,\mathsf{d}\theta=\mathsf{2L}.$$

Portanto, la propiedad requerida vale para curvas C^1 .

Caso 4: Curvas C¹ por partes.

Finalmente, de la igualdad en el caso anterior, es posible extender el resultado del teorema a curvas C^1 por partes, descomponiendo $\alpha = \bigcup_{i=1}^r \alpha_i$ como unión finita de curvas α_i , todas de clase C^1 .

$$A(S) = \int_{S} dp \, d\theta = \int_{S_1 \cup \ldots \cup S_r} dp \, d\theta = \sum_{i=1}^r \int_{S_i} dp \, d\theta = \sum_{i=1}^r 2L_i = 2L. \, \square$$

Aplicación

El teorema de Cauchy-Crofton puede utilizarse para obtener una forma eficiente de estimar longitudes de curvas.

De hecho, una buena aproximación para la integral $\iint_S n \, dp \, d\theta$ se da de la siguiente manera:

- Considere una familia de líneas rectas paralelas tal que dos líneas consecutivas están a una distancia r. Gire esta familia por ángulos de θ (e.g. $\theta = \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}$) para obtener cuatro familias de líneas rectas.
- Sea n el número de puntos de intersección de una curva α con todas estas líneas.
- Entonces

$$L = \frac{1}{2} \iint_{S} n \, dp \, d\theta \approx \frac{1}{2} n r \frac{\pi}{4}.$$

Aplicación

