WHAT IS CLAIMED IS:

1		1.	A mechanical pump for use in a medical device comprising:		
2		an elo	ngate hollow, flexible inner tube having a proximal end, a distal end,		
3	and a central lumen; and				
4		a first	coiled rotor element having a distal end and a proximal end disposed		
5	over an outer	surface	of the inner tube; and		
6		a jack	et securing the coiled rotor element to the outer surface of the inner		
7	tube.				
1		2.	A mechanical pump as in claim 1, wherein the inner tube has an		
2	outer diameter in the range from 0.5 mm to 5 mm, and the coiled rotor has a pitch in the				
3	range from 1 to 50 turns/cm.				
1		3.	A mechanical pump as in claim 1, further comprising a second		
2	coiled rotor element disposed over an inner surface of the central lumen of the inner tube.				
1	-	4.	A mechanical pump as in claim 3, wherein the first and second		
2	coiled rotors are counterwound.				
1		5.	A mechanical pump as in claim 3, wherein the first and second		
2	coiled rotors	are co-v	vound.		
1		6.	A mechanical pump as in claim 5, wherein a distal portion of the		
2	coiled rotor is unattached to the inner tube to provide a whip element as the pump is				
3	rotated.				
1		7.	A mechanical pump as in claim 1, wherein the inner tube		
2	comprises a b	raided t	tube, a mesh tube, a coil, a stacked coil, or a coil-reinforced polymer		
3	tube.				
1		8.	A mechanical pump as in claim 7, wherein the coiled rotor element		
2	comprises a single filament, a multi-filar, stacked filaments, or multiple filament cable.				
1		9.	A mechanical pump as in claim 8, wherein the filaments comprise		

a round wire, a ribbon wire, or a wire having an irregular cross-section.

2

1	10. A method of making a mechanical pump for use in a medical					
2	device said method comprising:					
3	providing a hollow flexible tube;					
4	placing a resilient coiled rotor over an outer surface of said tube; and					
5	forming a jacket over at least a portion of the outer surface of said tube and					
6	said coiled rotor, whereby the coiled rotor is secured to the outer surface of the flexible					
7	tube.					
1	11. A method as in claim 10, wherein placing the coil comprises					
2	winding said coil over the surface.					
_	whiching said con over the surface.					
1	12. A method as in claim 10, wherein placing the coil comprises					
2	unwinding the coil to increase its diameter and allowing the coil to rewind over the					
3	surface to provide an interference fit.					
1	13. A method as in claim 10, wherein the jacket comprises a heat					
2	shrinkable polymer, wherein forming the jacket comprises heat shrinking the jacket over					
3	the inner tube and the coiled rotor.					
_						
1	14. A method as in claim 10, wherein forming the jacket comprises					
2	dipping the inner tube and rotor into a resin coating and curing the resin to form the					
3	jacket.					
1	15. A method as in claim 10, wherein forming the jacket comprises					
2	bonding the coiled rotor to the inner tube.					
1	16. A method as in claim 10, wherein forming the jacket comprises					
2	heating the coiled rotor and embedding it into the inner tube.					
1	17. A method as in claim 10, wherein the inner tube comprises a					
2	braided tube, a mesh tube, a coil, a stacked coil, or a coil-reinforced polymer tube.					
1	18. A method as in claim 17, wherein the coiled rotor element					
2	comprises a single filament, a multi-filar, a stacked coil, or a multiple filament cable.					
1	19. A method as in claim 17, wherein said filaments comprise a round					
2	wire, a ribbon wire, or a wire having an irregular cross-section.					

1		20.	A method as in claim 17, wherein the flexible tube and the jacket			
2	both comprise	polymo	ers and wherein the method comprises bonding the tube to the			
3	jacket.					
1		21.	A method as in claim 17, wherein forming the jacket comprises			
2	spraying a polymer over the inner tube and coiled rotor.					
1		22.	A method of making a mechanical pump for use in a medical			
2	device, said m	d method comprising:				
3		providing a hollow flexible tube; and				
4		forming a helical channel in an outer surface of the tube.				
1		23.	A circulation catheter comprising:			
2		a cathe	eter body having a proximal end, a distal end, and a lumen			
3	therebetween, the lumen forming a distal opening at the distal end of the catheter body;					
4		an imp	eller rotatably disposed in the lumen of the catheter body to aspirate			
5	materials from the distal end to the proximal end of the catheter body; and					
6		a clear	ing element disposed at the distal opening of the catheter body to			
7 `	prevent the materials from accumulating at the distal opening.					
1		24 .	A circulation catheter as in claim 23, further comprising a material			
2	capture device	dispos	ed at the distal end of the catheter body.			
	•	•	·			
1		25.	A circulation catheter as in claim 24, wherein the material capture			
2	device compri	ses a m	acerator.			
1		26.	A circulation catheter as in claim 25, further comprising an			
2	expansible cage surrounding the macerator.					
1		27.	A circulation catheter as in claim 26, wherein the macerator is			
2	configured to	engage	at least a portion of the expansible cage.			
	Ü					
1		28.	A circulation catheter as in claim 25, the impeller comprising a			
2	helical rotor ha	aving a	distal end and a proximal end extending at least partially over an			
3	outer surface of a shaft, wherein a distal portion of the shaft extends beyond the distal					
4	opening of the catheter body.					

1	29. A circulation catheter as in claim 28, wherein the macerator					
2	comprises a distal end and a proximal end, and wherein the distal end of the macerator is					
3	fixed to the distal end of the shaft, and wherein the proximal end of the macerator extends					
4	into the distal opening of the catheter body to form the clearing element.					
1	30. A circulation catheter as in claim 28, wherein the rotor comprises a					
1	•					
2	helical coil, and wherein the distal end of the helical coil is unattached to the shaft to form					
3	the clearing element.					
1	31. A circulation catheter as in claim 28, wherein the clearing element					
2	comprises a cutting member coupled to the impeller at or near the distal opening.					
1	32. A circulation catheter as in claim 31, wherein the cutting member					
2	is attached to the macerator.					
2	is attached to the macerator.					
1	33. A circulation catheter as in claim 31, wherein the cutting member					
2	is attached to the shaft.					
1	34. A circulation catheter as in claim 31, wherein the cutting member					
2	is attached to the helical rotor.					
1	35. A circulation catheter as in any of claims 29-31, wherein the shaft					
2	is rotated to induce aspiration through the catheter body lumen, and wherein the clearing					
3	element spins relative to the catheter body to clear the distal opening of the catheter body					
4	as the shaft is rotated.					
1	36. A method for transporting materials between a target site in a body					
2	lumen, and a location external to the patient, said method comprising:					
3	introducing a distal end of a catheter to the target site;					
4	rotating an impeller within a lumen of the catheter to aspirate material					
5	from the target site; and					
6	clearing an opening of the lumen at the distal end of the catheter body to					
7	prevent the material from accumulating at the opening.					

rotating a clearing element inside the distal opening of the catheter body.

A method as in claim 36, wherein clearing the opening comprises

1

2

37.

- 38. A method as in claim 37, the impeller further comprising a shaft and a helical rotor, wherein rotating the impeller further comprises rotating a macerator attached at a distal end of the impeller shaft.
- 39. A method as in claim 38, wherein clearing the opening of the lumen comprises spinning a proximal end of the macerator inside the distal opening of the catheter body.
- 1 40. A method as in claim 38, wherein the clearing element is coupled 2 to the impeller, and wherein clearing the opening of the lumen comprises spinning the 3 clearing element inside the distal opening of catheter body as the impeller is rotated.
- 1 41. A method as in claim 40, wherein the clearing element comprises a cutting disk attached to the shaft of the impeller.
- 1 42. A method as in claim 40, wherein the clearing element comprises a cutting disk attached to the rotor of the impeller.
- 1 43. A method as in claim 40, wherein the clearing element comprises a cutting disk attached to the proximal end of the macerator.