

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО АККРЕДИТАЦИИ

№ 0007346

АТТЕСТАТ АККРЕДИТАЦИИ

№ RA.RU.311764 выдан 17 августа 2016 г.

Федеральному государственному унитарному предприятию Настоящий аттестат вылан «Всероссийский научно-исследовательский институт расходометрии»; ИНН: 1660007420 420088, РОССИЯ, Респ.Татарстан, г. Казань, ул. Азинская 2-я, 7 "А"

и удостоверяет, что Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

420088, РОССИЯ, Респ. Татарстан, г. Казань, ул. Азинская 2-я, 7 "а"

ГОСТ ИСО/МЭК 17025-2009 соответствует требованиям

в области обеспечения единства измерения для выполнения работ и (или) оказания услуг по калибровке средств измерений аккредитован(о) в соответствии с областью аккредитации, область аккредитации определена в приложении к настоящему аттестату и является неотъемлемой частью аттестата.

Дата внесения сведений в реестр аккредитованных лиц 28 июля 2016 г.

Руководитель (заместитель Руководителя) Федеральной службы по аккредитации

Н.С. Султанов

Руководитель (Заместитель руководителя) М.П. Федеральной службы по аккредитации

Федеральной службы по аккредитации

Приложение

к аттестату аккредитации

№ RA.RU.311764

от «28» июля 2016 г. на 4 листах, лист 1

ОБЛАСТЬ АККРЕДИТАЦИИ

Федеральное государственное унитарное предприятие

«Всероссийский научно-исследовательский институт расходометрии»

наименование юридического лица

Россия, Республика Татарстан, 420088, город Казань, улица 2-я Азинская, дом 7 «а»

адрес места осуществления деятельности

Калибровка средств измерений

PBP

шифр калибровочного клейма

No	Измерения, тип (группа)	Метрологические требования		Примечание	
п/п	средств измерений	диапазон измерений	неопределенность*		
		-	(погрешность, класс,		
			разряд)		
1	2	3	4	5	
	Измерения параметров потока, расхода, уровня и объема веществ				
1	Установки поверочные		$U_p = 0.0380 \%$		
	объемного расхода и объема	$(0,001-2500) \text{ M}^3/\text{ч}$	$\Pi\Gamma \pm (0.045 - 0.055) \%$		
	жидкости	$(0.001 - 4500) \text{ m}^3/\text{ч}$	$\Pi\Gamma \pm (0.06 - 1.0) \%$		
2	Установки поверочные		$U_p = 0.0361 \%$		
	трубопоршневые, компакт-	$(0.01 - 4500) \text{ m}^3/\text{ч}$	$\Pi\Gamma \pm (0.05 - 0.1) \%$		
	пруверы				
3	Установки поверочные		$U_p = 0.0370 \%$		
	массового расхода и массы	(0,001 - 2500) т/ч	$\Pi\Gamma \pm (0.04 - 0.05) \%$		
	жидкости	(0,001-4500) T/4	$\Pi\Gamma \pm (0,06-1,0)\%$		
4	Установки поверочные		$U_p = 0.216 \text{ MM}$		
	уровнемерные	(0.01 - 20) M	$\Pi\Gamma \pm (0,3-1)$ MM	1	
5	Установки поверочные	Массовый расход			
	массового расхода жидкости	жидкой смеси в	e e		
	в составе газожидкостных	составе ГЖС:	$U_p = 0.08 \%$		
	смесей (ГЖС) и объемного	(0,1-500) т/ч	$\Pi\Gamma \pm (0,5-2,0) \%$		
	расхода газа, приведенного к	Объемный расход			
	стандартным условиям, в	газа, приведенный к			
	составе ГЖС	стандартным			
		условиям, в составе			
		ГЖС:	$U_p = 0.38 \%$		
		$(0,1-16000)$ м 3 /ч	$\Pi\Gamma \pm (1,0-5,0) \%$		

1	2	3	4	5
6	Установки измерительные массового расхода жидкости в составе ГЖС и объемного расхода газа, приведенного к стандартным условиям, в составе ГЖС	Массовый расход жидкой смеси в составе ГЖС: (0,1 – 1000) т/ч Объемный расход газа, приведенный к стандартным	$U_p = 0.08 \%$ $\Pi\Gamma \pm (1.5 - 2.5) \%$	>
		условиям, в составе ГЖС: (0,1 – 70000) м ³ /ч	$U_p = 0.38 \%$ $\Pi\Gamma \pm (4.0 - 5.0) \%$	6
7	Установки поверочные объемного расхода газа	(3·10 ⁻⁴ – 72000) м ³ /ч	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.2 - 0.5) \%$	
8	Установки поверочные массового расхода газа	(3,6·10 ⁻⁴ − 6,3·10 ⁶) кг/ч	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.2 - 0.5) \%$	
9	Преобразователи расхода, расходомеры и счетчики жидкости объемные	$(0.01 - 500) \text{ m}^3/\text{ч}$ $(0.3 - 2100) \text{ m}^3/\text{ч}^{**}$	$\begin{array}{c} U_p = 0.0365 \ \% \\ \Pi\Gamma \pm (0.07 - 5.0) \ \% \\ \Pi\Gamma \pm (0.07 - 5.0) \ \% \end{array}$	
10	Преобразователи расхода, расходомеры и счетчики жидкости массовые	(0,01 – 500) т/ч (0,3 – 2100) т/ч**	$\begin{array}{c} U_p = 0.0360 \ \% \\ \Pi\Gamma \pm (0.05 - 5.0) \ \% \\ \Pi\Gamma \pm (0.05 - 5.0) \ \% \end{array}$	
11	Расходомеры-счетчики газожидкостных смесей	Массовый расход жидкой смеси в составе ГЖС: (0,1 – 1000) т/ч Объемный расход газа, приведенный к	$U_p = 0.08 \%$ $\Pi\Gamma \pm (2.0 - 2.5) \%$	
		стандартным условиям, в составе ГЖС: (0,1 – 70000) м ³ /ч	$U_p = 0.38 \%$ $\Pi\Gamma \pm (4.0 - 5.0) \%$	
12	Поточные анализаторы фракционного состава нефти и нефтепродуктов	Процентное содержание объема воды в объеме жидкой смеси (объемная доля): (0,01 – 99,99)% Процентное	$U_p = 0.26 \%$ $\Pi\Gamma \pm 5.0 \%$	
		содержание объема нефти в объеме жидкой смеси (объемная доля): (0,01 – 99,99)% Процентное содержание объема газа в объеме ГЖС (объемная доля)	$U_p = 0.26 \%$ $\Pi\Gamma \pm 5.0 \%$ $U_p = 0.51 \%$ $\Pi\Gamma \pm 5.0 \%$	
13	Сопла критические	(0,01 – 99,99)% (3·10 ⁻⁴ – 2000) м ³ /ч	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.15 - 0.5) \%$	

1	2	3	4	5
14	Преобразователи расхода, расходомеры, счетчики объемного расхода газа, ротаметры, реометры	$(3\cdot10^{-4}-1.6\cdot10^{4}) \text{ m}^{3}/\text{q}$ $(1.6\cdot10^{4}-1.8\cdot10^{5}) \text{ m}^{3}/\text{q}^{**}$	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.2 - 5.0) \%$ $\Pi\Gamma \pm (0.3 - 5.0) \%$	
15	Преобразователи расхода, расходомеры, счетчики газа массовые	(3,6·10 ⁻⁴ — 1,92·10 ⁴) кг/ч (1,92·10 ⁴ — 2,88·10 ⁴) кг/ч ^{**}	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.3 - 5.0) \%$ $\Pi\Gamma \pm (0.3 - 5.0) \%$	
16	Преобразователи скорости потока	(0,1 − 60) м/c	$U_p = 0.18 \%$ $\Pi\Gamma \pm (0.5 - 15) \%$	
17	Мерники металлические эталонные 1-го разряда	(2 – 1000) дм ³	$U_p = 0,006 \%$ $\Pi\Gamma \pm 0,02 \%$	
18	Мерники металлические эталонные 2-го разряда	(2 – 5000) дм ³	$U_{p} = 0.02 \%$ $\Pi\Gamma \pm (0.05 - 0.1) \%$	
19	Мерники металлические технические 1-го класса	(5 — 10000) дм ³	$U_{p} = 0.02 \%$ $\Pi\Gamma \pm 0.2 \%$	
20	Уровнемеры и преобразователи уровня	(0.01 - 20) M	$U_{p} = 0.216 \text{ mm}$ $\Pi\Gamma \pm (0.5 - 16) \text{ mm}$ $U_{p} = 4 \text{ mm}$ $\Pi\Gamma \pm (6 - 20) \text{ mm}$	
21	Резервуары горизонтальные цилиндрические	(20 – 100) m (3 – 1000) m ³	$U_{p} = 0.07 \%$ $\Pi\Gamma \pm (0.2 - 0.25) \%$	
22	Резервуары вертикальные цилиндрические металлические	$(100 - 3000) \text{ m}^3$ $(3000 - 5000) \text{ m}^3$ $(5000 - 160000) \text{ m}^3$	$\begin{array}{c} U_p = 0.07~\% \\ \Pi\Gamma \pm 0.2~\% \\ U_p = 0.05~\% \\ \Pi\Gamma \pm 0.15~\% \\ U_p = 0.03~\% \\ \Pi\Gamma \pm 0.1~\% \end{array}$	
23	Резервуары вертикальные цилиндрические железобетонные	$(100 - 3000) \text{ m}^3$ $(3000 - 5000) \text{ m}^3$ $(5000 - 100000) \text{ m}^3$	$\begin{array}{c} U_p = 0.07~\% \\ \Pi\Gamma \pm 0.2~\% \\ U_p = 0.05~\% \\ \Pi\Gamma \pm 0.15~\% \\ U_p = 0.03~\% \\ \Pi\Gamma \pm 0.1~\% \end{array}$	
24	Резервуары прямоугольные	$(3-3000) \text{ m}^3$	$U_p = 0.07 \%$ $\Pi\Gamma \pm (0.2 - 0.25) \%$	
25	Резервуары шаровые	$(100 - 3000) \text{ M}^3$	$U_p = 0.07 \%$ $\Pi\Gamma \pm (0.2 - 0.25) \%$	
26	Резервуары траншейные заглубленные стальные	(500 – 10000) m ³	$U_p = 0.07 \%$ $\Pi\Gamma \pm (0.2 - 0.25) \%$	
27	Танки наливных судов	$(100 - 100000) \text{ M}^3$	$U_p = 0.07 \%$ $\Pi\Gamma \pm (0.2 - 0.5) \%$	
28	Автоцистерны для жидких нефтепродуктов	до 50 м ³	$U_p = 0.13 \%$ $\Pi\Gamma \pm 0.4 \%$	
29	Цистерны железнодорожные	до 160 м ³	$U_p = 0.1 \%$ $\Pi\Gamma \pm (0.3 - 0.5) \%$	
30	Сигнализаторы уровня	(0,01 – 20) м	$U_{\rm p} = 0.216 \; {\rm MM}$ ПГ $\pm (0.5 - 16) \; {\rm MM}$	

			,	_
1	2	3	4	5
	*	ико-химического состав		
31	Влагомеры нефти и	(0,01-0,1)%	$U_p = 3.5 \cdot 10^{-3} \%$	
	нефтепродуктов и установки	(0,1-10)%	$U_p = 1,2 \cdot 10^{-2} \%$	
	поверочные - рабочие	(10-60)%	$U_p = 2.8 \cdot 10^{-2} \%$	
	эталоны 1-го разряда	(60 - 99,9) %	$U_p = 5.6 \cdot 10^{-2} \%$	
			$\Pi\Gamma \pm (0,01-0,1)\%$	
32	Влагомеры нефти и	(0,01-0,1)%	$U_p = 3.5 \cdot 10^{-3} \%$	
	нефтепродуктов и установки	(0,1-10)%	$U_p = 1,2 \cdot 10^{-2} \%$	
	поверочные - рабочие	(10-60)%	$U_p = 2.8 \cdot 10^{-2} \%$	
	эталоны 2-го разряда	(60 - 99,9) %	$U_p = 5.6 \cdot 10^{-2} \%$	
			$\Pi\Gamma \pm (0.02 - 0.5) \%$	
33	Влагомеры нефти и	(0,01-0,1)%	$U_p = 3.5 \cdot 10^{-3} \%$	
33	нефтепродуктов	(0,1-10)%	$U_p = 1, 2 \cdot 10^{-2} \%$	
	(рабочие СИ)	(10-60)%	$U_p = 2.8 \cdot 10^{-2} \%$	
	(page me err)	(60 - 99,9)%	$U_p = 5.6 \cdot 10^{-2} \%$	=
2.1	T	$(500 - 3000) \text{ kg/m}^3$	$\Pi\Gamma \pm (0,05-2,5) \%$ $U_p = 0,03 \text{ K}\Gamma/\text{M}^3$	
34	Преобразователи плотности	$(300 - 3000) \text{ k}17\text{M}^2$	$\Pi\Gamma \pm (0,1-10) \text{ K}\Gamma/\text{M}^3$	
	жидкости поточные			
35	Рабочие эталоны плотности	(500 - 1600) кг/м ³	$U_p = 0.03 \text{ kg/m}^3$	
	1-го разряда (пикнометры,		$\Pi\Gamma \pm (0,1-0,2) \ \kappa \Gamma/M^3$	
	установки			
	пикнометрические,			
	автоматические поточные			
26	плотномеры)	$(0.5 - 350) \text{ KF/M}^3$	$U_p = 0.03 \%$	
36	Преобразователи плотности	(0,3-330) KI/M	$\Pi\Gamma \pm (0.01 - 1.0) \text{ K}\Gamma/\text{M}^3$	
	газа	96	$\Pi\Gamma \pm (0,01-1,0) \text{ KeVM}$ $\Pi\Gamma \pm (0,1-1) \%$	
37	Руссиони стру для пофти и	$(0.5 - 2000) \text{ mm}^2/\text{c}$	$U_p = 0.2 \%$	
31	Вискозиметры для нефти и	(0,3-2000) MM 70	$\Pi\Gamma \pm (0,3-1)\%$	
	нефтепродуктов поточные	зические и температурн		
38	Преобразователи	зические и температурп	$U_{\rm p} = 0.069 ^{\circ}{\rm C}$	
30	температуры	[(-40) – 155] °C	$\Pi\Gamma \pm (0,1-5,0)$ °C	
		200		L
20		пементы измерительных		
39	Измерительные	Постоянный ток	$U_p = 0.001 \%$	
	преобразователи, каналы	(0 – 100) mA	$\Pi\Gamma \pm (0.08 - 4)\%$	
	измерительных систем,	Напряжение	$U_p = 0.5 \cdot 10^{-4} \%$	
	вторичные приборы	$\pm (0 - 30) B$	$\Pi\Gamma \pm (0.08 - 5)\%$	
		Электрическое	Постоянный ток	
		сопротивление	$U_p = 0.002 \%$	
			Переменный ток	
		(0. 4000) 0	$U_p = 0.05 \%$	
		(0 – 4000) Ом	$\Pi\Gamma \pm (0.06 - 5)\%$	
		Частота	$U_p = 1,0.10^{-12} \Gamma \mu$	
		(0 – 15000) Гц	$\Pi\Gamma \pm (0,002-0,5)\%$	

^{*} Расширенная неопределённость (U_p) приведена при коэффициенте охвата k=2 и доверительной вероятности 0,95.

**Используются национальные эталоны зарубежных стран в рамках соглашения СІРМ MRA.

Первый заместитель директора

по научной работе -

Заместитель директора по качеству

В.А. Фафурин