Voice Conversion using Deep Learning

Albert Aparicio Isarn

Advisors: Antonio Bonafonte and Santiago Pascual

Degree's Thesis Presentation, 23 May 2017

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- 2 Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Main Objective

Map features of source speaker to target speaker

 $\textbf{Action figures credit:} \ \texttt{freedesignfile.com/62581-action-figures-icons-vector-2}, \ \textbf{CC-BY 3.0}$

Main Challenges

- Naturality
 - Make voice sound like a human
- Similarity
 - Make voice sound like the target speaker

Main Challenges

- Naturality
 - Make voice sound like a human
- Similarity
 - Make voice sound like the target speaker

- Classic Techniques
 - Gaussian Mixture Model (GMM)
 - Frequency Warping
- Deep Learning Techniques
- These techniques require aligned data
 - Solution: Sequence-to-Sequence learning

- Classic Techniques
 - Gaussian Mixture Model (GMM)
 - Frequency Warping
- Deep Learning Techniques
- These techniques require aligned data
 - Solution: Sequence-to-Sequence learning

- Classic Techniques
 - Gaussian Mixture Model (GMM)
 - Frequency Warping
- Deep Learning Techniques
- These techniques require aligned data
 - Solution: Sequence-to-Sequence learning

- Classic Techniques
 - Gaussian Mixture Model (GMM)
 - Frequency Warping
- Deep Learning Techniques
- These techniques require aligned data
 - Solution: Sequence-to-Sequence learning

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Deep Learning

"A class of machine learning techniques that exploit many layers of non-linear information processing for supervised or unsupervised feature extraction and transformation, and for pattern analysis and classification" ¹

Main Strength - Ability to model complex non-linear mapping functions

Li Deng and Dong Yu. Deep Learning: Methods and Applications. Tech Report MSR-TR-2014-21, NOW Publishers, Boston - Delft, May 2014. Pages 199-200

Feed-Forward Neural Network

- Input $\mathbf{x} \in \mathbb{R}^K$
- Output $y \in \mathbb{R}^L$
- W Weight matrix
- b Bias vector

•
$$\mathbf{y} = f(\mathbf{W} \times \mathbf{x} + \mathbf{b})$$

- f → Activation function Allows DNN to model non-linearities
- Weights and biases trained with Back-propagation

Recurrent Neural Network

- $h_t = f(W_{xh} x_t + W_{hh} h_{t-1} + b_h)$

- RNNs model temporal evolutions
- Problems Vanishing and exploding gradients (training) and volatile memory (prediction)
 - Solution LSTM, GRU or PLSTM cells

Recurrent Neural Network

- $h_t = f(W_{xh} x_t + W_{hh} h_{t-1} + b_h)$

- RNNs model temporal evolutions
- Problems Vanishing and exploding gradients (training) and volatile memory (prediction)
 - Solution LSTM, GRU or PLSTM cells

Recurrent Neural Network

- $h_t = f(W_{xh} x_t + W_{hh} h_{t-1} + b_h)$

- RNNs model temporal evolutions
- Problems Vanishing and exploding gradients (training) and volatile memory (prediction)
 - Solution LSTM, GRU or PLSTM cells

Long Short-Term Memory

$$\bullet \ \mathbf{i}_t = \sigma \left(\mathbf{W}_i \mathbf{x}_t + \mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{b}_i \right)$$

$$oldsymbol{\hat{C}}_t = anh\left(oldsymbol{W}_c oldsymbol{x}_t + oldsymbol{U}_c oldsymbol{h}_{t-1} + oldsymbol{b}_c
ight)$$

$$\bullet \ \mathbf{f}_t = \sigma \left(\mathbf{W}_f \mathbf{x}_t + \mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{b}_f \right)$$

$$\bullet \ \boldsymbol{C}_t = \boldsymbol{i}_t \odot \hat{\boldsymbol{C}}_t + \boldsymbol{f}_t \odot \boldsymbol{C}_{t-1}$$

•
$$o_t = \sigma (W_o x_t + U_o h_{t-1} + b_o)$$

•
$$\boldsymbol{h}_t = \boldsymbol{o}_t \odot \tanh (\boldsymbol{C}_t)$$

Figure credit: Graves, A., Supervised sequence labelling. Springer Berlin Heidelberg, 2012

From RNN to LSTM

Figure credit: Olah, C., Understanding LSTM Networks, Accessed 22-05-2017, colah.github.io/posts/2015-08-Understanding-LSTMs

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Data preparation

- Datasets
 - Voice Conversion Challenge 2016
 - 10 speakers
 - 9 min/speaker
 - TC-STAR Dataset
 - 2 of the total speakers
 - 1.5h/speaker
- Data encoded with vocoder (Ahocoder)
 - Parameters
 - 40 Mel Cepstrum (MCP)
 - 1 log-Pitch (log f₀)
 - 1 Maximum Voiced Frequency (MVF)

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- 2 Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Baseline Model

- Based off of the Interspeech 2016 proposal by Chen et al.
- Multiple Neural Networks
 - GRU-RNN Mel Cepstrum parameters (MCP)
 - LSTM-RNN log-Pitch (If0)
 - DNN Maximum Voiced Frequency (MVF)
- Training data from Voice Conversion Challenge (VCC) 2016

Alignment Problem

- Data usually aligned with Dynamic Time Warping (DTW) algorithm
- Needed by training to align frames with same speech
- Problem Frame replication changes data statistics
 - Solution Sequence-to-Sequence architecture

Alignment Problem

- Data usually aligned with Dynamic Time Warping (DTW) algorithm
- Needed by training to align frames with same speech
- Problem Frame replication changes data statistics
 - Solution Sequence-to-Sequence architecture

Alignment Problem

- Data usually aligned with Dynamic Time Warping (DTW) algorithm
- Needed by training to align frames with same speech
- Problem Frame replication changes data statistics
 - Solution Sequence-to-Sequence architecture

Baseline

Sequence-to-Sequence Learning Sequence-to-Sequence Models

Alignment - Toy Example

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Sequence-to-Sequence Learning

- Proposed by Sutskever et al. in 2014
- Can work with sequences of different lengths
- Alignment is intrinsic to the model

Sequence to Sequence Learning

- Encoder-Decoder architecture
- Feedback connection in each decoder timestep

- Proposed by Bahdanau et al. in 2014
- Improvement over Seq2Seq
- Each sequence timestep uses a different context vector

Context vector is no longer constant

- $c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$
- h_j → annotation from the encoder at timestep j
- $\bullet \ \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_X} \exp(e_{ik})}$
- $ullet e_{ij} = a\left(s_{i-1},h_{j}
 ight)
 ightarrow ext{alignment model}$

 Allows the decoder to select the relevant elements from the input sequence

Context vector is no longer constant

•
$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

• $h_j \rightarrow$ annotation from the encoder at timestep j

$$\bullet \ \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_X} \exp(e_{ik})}$$

$$ullet$$
 $e_{ij}=a\left(s_{i-1},h_{j}
ight)
ightarrow alignment model$

 Allows the decoder to select the relevant elements from the input sequence

Context vector is no longer constant

•
$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

• $h_j \rightarrow$ annotation from the encoder at timestep j

$$\bullet \ \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_X} \exp(e_{ik})}$$

ullet $e_{ij}=a\left(s_{i-1},h_{j}
ight)
ightarrow$ alignment model

 Allows the decoder to select the relevant elements from the input sequence

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

First implementations

We have implemented multiple Seq2Seq implementations

- Keras "Vanilla" Seq2Seq
- Keras Seq2Seq with Feedback and Multiple Inputs and Outputs
 - Pretraining as autoencoder

Attention Seq2Seq Model

- Implementation from both TensorFlow and PyTorch
- LSTM Encoder LSTM Decoder with Attention Mechanism
- Trained with speakers 75 and 76 from TC-STAR dataset

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Baseline Results

Intelligible speech, although unnatural:

Source audio

SF1 200005

SF1 200012

Stop

Target audio

TF1 200005

TF1 200012

Converted audio

SF1 → TF1 200005

SF1 → TF1 200012

Second Sequence-to-Sequence Results

Highly distorted signal. Does not sound like speech:

Source audio

SF1 200005

Stop

Target audio

TF1 200005

TF1 200012

Converted audio

SF1 → TF1 200005

 $\mathsf{SF1} \to \mathsf{SF1} \ \mathsf{200012}$

SF1 → TF1 200012

Second Sequence-to-Sequence Pretraining

Ground truth data fed into the feedback loop gives Intelligible speech. Proves the problem is either the encoder or the feedback loop

Source audio

72 (SF1) 110167 72 (SF1) 200104

Stop

Autoencoded audio

72 (SF1) 110167

72 (SF1) 200104

Attention Sequence-to-Sequence

(a) Predicted data

(b) Target data

Low variability of the predicted signal

Attention Sequence-to-Sequence

Ground truth cepstrum with predicted pitch and MVF

Source audio

e audio la

Stop

Target audio

Converted audio

 $75 \text{ (SF2)} \rightarrow 76 \text{ (SF3)} 330159$

Attention Sequence-to-Sequence

Attention graph from PyTorch model

Bad alignment with the Attention Mechanism

"One problem is that attention tends to get stuck for many frames before moving forward" [Tacotron authors, 2017]

Outline

- Background
 - Voice Conversion
 - Deep Learning
 - Data preparation
- Proposed Models
 - Baseline
 - Sequence-to-Sequence Learning
 - Sequence-to-Sequence Models
- Results/Contribution
 - Main Results
 - Future Work

Future Work

- Investigate hypothesis of the poor results
 - Encoder is uncapable of mapping inputs to annotations
 - Attention Mechanism is not powerful enough to align data
- Efficient method for encoding long sequences

Summary

- First approach to solving unaligned voice conversion
- Contribution of new code to the Deep Learning community
 - github.com/albertaparicio/tfg-voice-conversion
 - github.com/albertaparicio/tfglib

For Further Reading I

- Chen, L., Liu, L., Ling, Z., Jiang, Y., Dai, L The USTC System for Voice Conversion Challenge 2016: Neural Network Based Approaches for Spectrum, Aperiodicity and F₀ Conversion Proc. Interspeech 2016, 1642–1646, 2016.
- Sutskever, I., Vinyals, O., Le, Q.V.
 Sequence to Sequence Learning with Neural Networks
 arXiv:1409.3215, 2014
- Bahdanau, D., Cho, K., Bengio, Y.
 Neural Machine Translation by Jointly Learning to Align and
 Translate

arXiv:1409.0473, 2014

For Further Reading II

Wang, Y., Skerry-Ryan, R. J., Stanton, D., Wu, Y., Weiss, R.J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R., Saurous, R.A.. Tacotron: Towards End-to-End Speech Synthesis

arXiv:1703.10135, 2017