קומבינטוריקה – תרגיל 5

- V' אם G את תת-גרף של G'=(V',E') הוא תת-גרף של G=(V,E) נתון, נאמר כי G'=(V',E') הוא תת-קבוצה של G' בעצמו צריך להיות גרף. G' תת-קבוצה של G' בעצמו צריך להיות גרף G' יקרא למשל אם G' צלע ב- G' אזי לא יתכן ש-G' אינו קודקוד ב-G', אם הם מחוברים ב-G' מושרה אם מתקיים התנאי הבא: לכל שני קודקודים G', אם הם מחוברים ב-G', למשל, בדף המצורף, G' הוא תת-גרף מושרה של G', כי הקודקודים G' בו-G' ואינם מחוברים ב-G'
- א. כמה תת-גרפים יש ל-G בדף המצורף ? כמה מהם מושרים ? (שימו לב, אנו מבחינים בין הקודקודים של G. למשל, $G_{\scriptscriptstyle 2}$ ו- $G_{\scriptscriptstyle 2}$ יספרו כשני תת-גרפים שונים, למרות שהם איזומורפיים).
 - ב. הוכיחו שבעץ כל תת-גרף קשיר הוא מושרה.
- 2. יהי T עץ ויהיו $t_1,...,t_n$ תת-עצים של T (כלומר תת-גרפים של T שהם בעצמם בעצמם עצים). נתון ש- $t_1,...,t_n$ נחתכים בזוגות, כלומר לכל שנים מתוכם יש לפחות קודקוד משותף אחד. הוכיחו שיש קודקוד המשותף לכל $t_1,...,t_n$.

רמז: מומלץ להוכיח באינדוקציה על $\bf n$. מומלץ להיעזר במשפטים שהוכחו בכיתה. בכיתה הוכחה הטענה שבשאלה עבור $\bf n=3$. כמו-כן הוכח שחיתוך שני עצים הוא עץ בעצמו (בתנאי שאינו ריק).

- X_1, X_2, X_3 כל שני ילדים (מאותה קבוצה או מקבוצות X_1, X_2, X_3 הידים יקראו להכיר שונות) יכולים להכיר זה את זה או לא להכיר זה את זה את זה ואין להם מכר משותף. נתון:
 - 1. בכל קבוצה יש לפחות ילד אחד.
 - . בכל איחוד ($i \neq j$ יש שני ילדים רחוקים. $X_i \cup X_j$
- לאו מהם חוקים שכל שנים ילדים שלושה אלושה $X_1 \cup X_2 \cup X_3$.3 דווקא מקבוצות שונות),

הוכיחו שיש שלושה ילדים, $x_1 \in X_1, x_2 \in X_2, x_3 \in X_3$ שלא מכירים הוכיחו שיש שלושה ילדים, את זה (לאו דווקא רחוקים).

רמז: מומלץ להשתמש בלמה של שפרנר ובגרף ${f S}$ שבדף המצורף.

