Frühjahr 12 Themennummer 1 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei
$$U:=\{z\in\mathbb{C}:|z|<\frac{1}{2}\}$$
. Zeigen Sie, dass es eine holomorphe Funktion $h:U\to\mathbb{C}$ mit
$$e^{h(z)}=1+z^5+z^{10}$$

für alle $z \in U$ gibt.

Lösungsvorschlag:

Wir betrachten den Hauptzweig des komplexen Logarithmus Log : $\mathbb{C}\setminus(-\infty,0]\to\mathbb{C}$. Für $|z|<\frac{1}{2}$ ist $|1+z^5+z^{10}-1|<\frac{33}{1024}<1$, also $1+z^5+z^{10}\notin(-\infty,0]$. Wir können also $h(z)=\text{Log}(1+z^5+z^{10})$ wählen. Diese ist holomorph als Verkettung holomorpher Funktionen und erfüllt $e^{h(z)}=1+z^5+z^{10}$ per Definition des Logarithmus.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$