

Our country, our future

525/1

S6 CHEMISTRY

Exam 5

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709.

Instructions to candidates:

- Attempt all questions in section A and any six from section B
- All questions are to be answered in the spaces provided
- A periodic table with relevant atomic masses is supplied at the end of the paper.

						F	ORE	XAM	IINE	R'S	USE	ONI	Y				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

. (a) Define the term enthalpy of formation	on.	(1 mark)
(b) Calculate the enthalpy of formation	sodium chloride from	the following data.
	ΔH^{θ} (kJmol ⁻¹)	(3 marks)
$Na(s) \longrightarrow Na(g)$	+109	
$Cl2(g) \longrightarrow 2Cl(g)$	+242	
$Na+(g) + Cl^{-}(g) \longrightarrow NaCl(s)$	- 771	
$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$	-364	
		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •
(c) Comment on the stability of sodium	chloride. Give a reaso	on for your answer.
		(1 mark)
. Complete the following reactions and in	a anch casa surita tha 1	IIDAC names of th

major organic product.

More exams? browse: digitaltears.co.ug

(1 ½ marks each)

(a))	$CH_3 \underline{MnO_4^- \mid \overline{O}H(ag)}$ heat	
(b) 	BrCH	I ₂ CHCH ₂ CH ₂ Br <u>EtOH EtOH EtOH Heat CH₃ </u>	
(c)	CH ₃ CH ₃	$CHC \equiv CH + H_2 \qquad \underline{Lindlar's \ catalyst} \Rightarrow$	
	02M r) Write	methylamine solution is 4% ionized at 25°C.	
	(i)	an equation for the ionization of methylamine in water.	(1 mark)
	(ii)	an expression for the base ionization constant K_b for met	hylamine. (1 mark)
 (b)) Calc (i)	culate the pH of the methylamine solution ($K_w = 1.0 \ x \ 10^{-14} \ mol^2 \ d$	lm ^{- 6})
•••	• • • • • • • • •		•••••

3.

		•••••	
	(ii) base ionization co	onstant; Kb for methylamine	$(1 \frac{1}{2} \text{ marks})$
	•••••	•••••	•••••
	•••••	•••••	•••••
	•••••		•••••
	•••••	•••••	•••••
	•••••		•••••
1	(a) White the fermion is a fall of	. 14.: 4	
4.		e hydrides of sodium and sul	pnur, in each case state the (2 marks)
	type of bonds present in the	e compounds.	(2 marks)
	Elements	Formula of hydride	Type of bond
-	Sodium		
-	Sulphur		
L			I
	(b) Write equations to show	v how the hydrides react with	h water. (3 marks)
5	(a) Define the term Osmoti	c nressure	(1 mark)
٠.			(1 11mm)

	(b) A polysaccharide has the formula $(C_{12}H_{12}O_{11})n$. A solution containing						
	5.00 gdm ⁻³ of the sugar has an osmotic pressure of 7.12×10^2 Nm ⁻² at 20° C. Find						
	the value of n.	(3 ½ marks)					
	(c) State any two assumptions made in (b) above. (1 mark)					
6.	A powdered element T was investigated a	as shown in the table below					
	Experiment	Results					
	(a) A mixture of T and lead (IV) oxide	A colourless gas with a chocking smell					
	was heated	and turned acidified potassium					
		dichromate from orange to green was					
		evolved.					
	(b) Concentrated nitric acid is added to	T dissolved in nitric acid with					

(i) Identify T (1 mark)

(b) Concentrated nitric acid is added to heated T, the products were diluted

and barium nitrate solution added.

More exams? browse: digitaltears.co.ug

effervescence of a brown gas. On

white precipitate was formed

addition of barium nitrate solution a

	(ii) Write equations for the reactions in experiments (a	a) and (b) (4 marks)
7.	 (a) 20cm³ of hydrocarbon Q with general formula CnH_{2n} 100cm³ of oxygen. The mixture was ignited and the residence room temperature bubbled through concentrated potassius solution. The final volume was found to be 20cm³. (i) Calculate the value of n in Q. 	lual gaseous product at
	(ii) Deduce the molecular formula of Q.	(½ mark)
wi	(b) Q has two isomers X and Y. X decolourises bromine with ammoniacal silver nitrate solution. Y forms a white preliver nitrate solution.	
	Identify isomers X and Y	(1 mark
(ii) Write an equation for the reaction between	(1 mark

Y aı	nd ammoniacal silver nitrate sol	ution.	(1 mark
com (a) I	ne the reagent(s) that can be use appounds. State what would be obtained and KCl(aq) Reagent(s)	_	_
(b)	Observations COONa and		
	Reagent(s) Observations		

	Observations	
9.	The electrode potentials of $S_2O_8{}^2$ (aq) $\mid SO_4{}^2$ (aq) and $^+0.54V$ respectively.	d $I_2(aq) \mid I^-(aq)$ are $^+2.01 V$
	(a) Write an equation for the reaction that occurs at the	·· ,
	(i) anode	(1 mark)
	(ii) cathode	(1 mark)
	(b) Write the;	(1 mark)
	(i) Cathode	
	(ii) Overall cell reaction	(1 mark)
	(c) (i) calculate the e.m.f of the cell generated from the	cell reaction in b(ii) above.
	(ii) State whether the above cell reaction is feasible	
	your answer	(1 mark)

SECTION B: (54 MARKS)
Answer only six questions from thi	is section
10. Write equations to show how the following conversions Indicate all reagents and conditions necessary for each re	
(a) 1 – methylcyclobutene to 2 – methyl cyclobutanol.	(3 marks)
(b) C-NH-CH₃ From benzene and bro	omomethane (4 marks)
(c) Butane -2 , $-$ diol to $2,3$ –butane dionedioxime.	(2 marks)

	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	•••••	
M (OH) (1 (OII) 1 D	(OID at	1 1 11	C. H
riefly describe	how the hydro		vith;	of group II (2 marks)
chloric acid so	olution			(2 marks)
en below	hydroxides of			
en below Be(OH) ₂	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH) ₂
en below				
	riefly describe m hydroxide s	-	riefly describe how the hydroxides react was mydroxide solution	

(ii) Different masses of solid Ca(OH) ₂ and Ba(OH) ₂ containing	ng the same
number of moles were separately shaken with the same v	olume of water at
25°C. Identify the solution with higher pH value. Give a r	reason for your
answer	
	$(1 \frac{1}{2} \text{ marks})$
12. (a) The partition coefficient of ammonia between water and t	trichloromethane at
25°C is 25.0,	
(i) Define the term partition coefficient.	$(1 \frac{1}{2} \text{ marks})$
(ii) State two conditions under which the partition coefficient	$(K_D = 25.0)$ is valid
other than constant temperature.	(1 mark)

(b) 25cm³ of 0.0056M nickel (II) sulphate solution were added to an**equal** volume of ammonia solution at 25°C. The mixture was shaken with 50cm³ of

trichloromethane and allowed to stand until equilibrium was established. The trichloromethane layer required 32cm^3 of 0.0025M hydrochloric acid for complete neutralization. 7.060cm^3 of the aqueous layer required 20cm^3 of 0.02M hydrochloric acid. Nickel (II) ions react with ammonia according to the equation; $\text{Ni}^{2+}(\text{aq}) + \text{nNH}_3(\text{aq}) \longrightarrow [\text{Ni}(\text{NH}_3)_n]^{2+(\text{aq})}$

Ca	lculate
(i)	Molar concentration of the free ammonia in the aqueous layer.(2 1/2marks)
(ii)	Molar concentration of ammonia that reacted with nickel (II) ions (2 marks)
(iii	i) Use your answer b (II) above to determine the value of n in $[Ni(NH_3)_n]^{2+}$

CH ₃ CH ₂ CHO	(2 marks)
	• • • • • • • • • • • • • • • • • • • •
(b) Compound Z can be synthesized by the reaction between X below	and Y as shown
CH ₃ CH ₂ CHO Step I X Step III CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₄ COCH ₂ CH ₂ CH ₃ CH ₂ CH ₄ CH ₅	
CH_3COCH_3 Step II Y	
(i) Identify compounds X and Y	
(1) Identify compounds II and I	
(i) Tuentify compounds IT und I	
	(1 mark)
(ii) Name the type of reaction that occurs in steps I and I Identify the reagents and state the conditions necessary for the step I	(1 mark)
(ii) Name the type of reaction that occurs in steps I and I Identify the reagents and state the conditions necessary for the step I	(1 mark) reaction in (1 mark)
(ii) Name the type of reaction that occurs in steps I and I Identify the reagents and state the conditions necessary for the step I	(1 mark) reaction in (1 mark)

14	4.Explain each of the following observations.	
	(a) An aqueous solution sodium sulphite when mixed w	ith ammonium chloride
	produce a colourless gas that forms dense white fumes v	
	hydrochloric acid on warming.	(3 marks)
	(b) The said dissociation constant (Ka) of chloric (1) so	id is lower than the Ke for
	(b) The acid dissociation constant (Ka) of chloric (1) ac chloric (VII) acid at 25°C,	(2 marks)
	cinone (vii) acid at 25 C,	, , ,
		•••••
	(d) When refluxed with aqueous potassium hydroxide for	<u>-</u>
	nitrate solution. Chloroethane forms a white precipi	
	gives no observable change.	(4 mark)

••••		
••••		
••••		
15. HF,H0	Cl, HBr and HI are hydrides of group VII elements	
	plain the variation in boiling points of the hydrides.	(3 marks)
• • • •		
••••		
• • • •		
••••		
••••		•••••
••••		
••••		•••••
(b) Aaı	neous solutions of the hydrides of the same concentrat	
_	perature have different ph values.	ion at constant
(i) 	Identify the hydride whose solution in water has th	e lowest pH (1 mark)
(ii)	Give a reason for your answer in b(i) above.	(2 marks)

(i)	The hydride of fluorine and excess silicon (IV) oxide	(1 mark)
(ii)	Potassium manganate (VII) solution and the hydride of chlo	rine.
		(1 mark)
(iii)	Concentrated sulphuric acid and the hydride of bromine. `	(1 mark)
	I) iodide is a sparingly soluble salt.	
		(1 mark)
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water	(1 mark)
) Write) The per 1 State	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water concentration of a saturated solution of lead (I) iodide at 40°C 00cm ³ of solution whether a mixture of 50cm ³ of 0.01M lead (II) nitrate and 50	(1 mark) 2 is 0.122g cm ³ of
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water concentration of a saturated solution of lead (I) iodide at 40°C 00cm³ of solution whether a mixture of 50cm³ of 0.01M lead (II) nitrate and 50 1M potassium iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (III) iodide (II) iodide (II) iodide (II) iodide (III) iodide (II) iodide (II) iodide (III) iodide (IIII) iodide (IIII) iodide (IIII) iodide (IIIIII) iodide (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(1 mark) 2 is 0.122g cm ³ of
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water concentration of a saturated solution of lead (I) iodide at 40°C 00cm³ of solution whether a mixture of 50cm³ of 0.01M lead (II) nitrate and 50 1M potassium iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide in water	(1 mark) Lis 0.122g cm ³ of dide or not.
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water concentration of a saturated solution of lead (I) iodide at 40°C 00cm³ of solution whether a mixture of 50cm³ of 0.01M lead (II) nitrate and 50 1M potassium iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide in water	(1 mark) Lis 0.122g cm ³ of dide or not.
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water concentration of a saturated solution of lead (I) iodide at 40°C 00cm³ of solution whether a mixture of 50cm³ of 0.01M lead (II) nitrate and 50 1M potassium iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide forms a yellow precipitate of lead (II) iodide (II) iodide in water	(1 mark) Lis 0.122g cm ³ of dide or not.

				•••••		
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
					• • • • • • • • • • • • • • • • • • • •	•••••
(c) The	saturated solution o	f lead (II) i	odide of c	oncentration	n 0.122g pei	100cm^3
of s	olution was heated to	o 60°C in a	closed sy	stem		
(i)	State whether the	solution re	emains satu	urated at 60°	$^{\circ}C$ ($\frac{1}{2}$)	mark)
	(ii) Give a reason for your answer. (1½ marks) mixture of methanol and water at 50°C is an ideal solution. The partial vapour essure of methanol in the vapour above the solution varies according to Raoult's					
(ii)	Give a reason for	your answ	er.		$(1 \frac{1}{2})$	marks)
••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••		•••••
••••			• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
			• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
					•	-
-		-	ove the so.	lution varies	s according	to Raoult's
law as	shown in the table b	elow.				
D4: -1		40.0	100.0	200.0	260.0	220.0
	vapour pressure of nol (mmHg)	40.0	100.0	200.0	260.0	320.0
	raction of methanol	0.10	0.25	0.50	0.65	0.80
in solu						
(a) (i) l	Define the term ideal	solution.				(1 mark)
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	

(ii) S	State Raoul's law	action of
•••••		
(b) O n 1	the same axes, plot a graph of;	
(i)	Vapour pressure of methanol	
(ii)	Total vapour pressure above the solution against mole fremethanol.	raction of
	(The composition of methanol in the vapour is 50% who fraction in solution is 0.19)	en its mole
(c) Use	your graphs in (b) above to determine the	
(i)	Saturated vapour pressure of methanol at 50°C.	(1 mark)
(ii)		
······		
(d) Coi ansv	mpare the volatility of methanol and water at 50°C. Give a wer.	reason for your (1 mark)

END

THE PERIODIC TABLE

1	2	1							411000			3	4	5	6	7	8
1 H	- ,-				*				**								2 He 4.0
3 Li 6.9	4 Be 9.0						e .				1	5 B	6 C 12.0	7 N 14.0	8 O 16.0		10 Ne 20.2
11 Na 13.0	12 Mg 24.3									***		13 AI 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45,8	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9		29 Cu 63.5		31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 H£ 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 T1 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr (223)	88 Ra (226)	89 Ac (227)			Andrew -												1
1-			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Li
			89 Ac (227	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 25	Rs	100 Fm (257	101 Mv (256	102 No (254	L

^{1.} H - indicates Atomic number.

END.

^{2.} $\frac{H}{1.0}$ - indicates relative Atomic number.