Семинар 5. ГРУППЫ. РЕШЕНИЕ УРАВНЕНИЙ В ГРУППАХ

1. Группы

Определение 5.1. Элемент y множества G называется левым (правым) обратным к элементу x относительно данной операции, если y*x=1 (x*y=1). Элемент y , который является одновременно левым и правым обратным, называется просто обратным к x относительно данной операции.

Определение 5.2. Моноид называется **группой**, если в нем для каждого элемента существует обратный.

Теорема 1. В любой группе $\mathcal{G} = (\mathcal{G}, \cdot)$ для каждого элемента $a \in G$ элемент, обратный к a , единственный.

Чтобы проверить, что алгебра (G,*) является группой, нужно

- 1) проверить ассоциативность операции * на множестве G;
- 2) найти элемент 1 множества G нейтральный элемент (единицу) относительно операции *;
- 3) убедиться, что для каждого элемента из G существует обратный.

Группа называется коммутативной (абелевой), если ее операция коммутативна.

Пример 1. Рассмотрим алгебру $(2^A, \triangle, \varnothing)$.

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$) ;
- 2) для любого $X \subseteq A$ $X \triangle \varnothing = X$, т.е. \varnothing нейтральный элемент относительно данной операции;
- 3) $X \triangle Y = \varnothing$ тогда и только тогда, когда X = Y , т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна

$$A \triangle B = B \triangle A$$
,

то данная алгебра является абелевой группой.

Задача 6.1. Какие из указанных множеств с операциями являются группами:

- (a) $(\mathbb{N} \cup \{0\}, +)$;
- (\mathfrak{G}) (\mathbb{Q} , +);
- (B) $(\mathbb{R} \setminus \{0\}, \cdot)$.

- **Задача 6.2.** Какие из указанных множеств квадратных вещественных матриц образуют группу:
- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?
- (в) множество диагональных матриц одного порядка (включая нулевую) относительно сложения?
- (г) множество диагональных матриц одного порядка, исключая нулевую, относительно умножения?
- **Задача 6.3.** Пусть M некоторое множество. Является ли группой алгебра $(2^M, \cap)$?

2. Решение уравнений в группах

Теорема 2. В любой группе \mathcal{G} любое уравнение вида $a \cdot x = b$ или $x \cdot a = b$ имеет единственное решение.

Решение имеет вид:

$$x = a^{-1} \cdot b$$
 или $x = b \cdot a^{-1}$.

Пример 2.

В группе S_3 решим уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Умножим уравнение слева на

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим:

$$X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right).$$

Далее, умножая полученное уравнение справа на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$$

окончательно получим

$$X = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (23).$$

First
Prev
Next
Last
Go Back
Full Screen
Close
Quit

Задача 6.4. Решить уравнение в группе S_4 :

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1 \ 2);$$

Задача 6.5. В аддитивной группе вычетов по модулю 5 \mathbb{Z}_5^{\oplus} решить уравнение $4 \oplus_5 x = 1$.

Таблица Кэли для группы $(\{0,1,2,3,4\},\oplus_5)$:

\oplus_5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Задача 6.6. В мультипликативной группе вычетов по модулю 5 \mathbb{Z}_5^{\odot} решить уравнение $4\odot_5 x=3$. Таблица Кэли для группы $(\{1,2,3,4\},\odot_5)$:

\odot_5	1	2	3	4
$\boxed{1}$	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Домашнее задание

Задача Д**5.1.** Пусть $A = \{x,y,z\}$ — множество букв, а A^* — множество всех слов, которые можно составить из этих букв с повторениями. Конкатенацией двух слов называется слово, полученное их "склеиванием", например: xxy + yzxx = xxyyzxx. Пустое слово обозначают λ . Показать, что $(A^*, +)$ — моноид.

Задача Д**5.2** Пусть M — некоторое множество. Является ли алгебра $(2^M, \cup)$ моноидом? группой?

Задача Д**5.3.** Решить уравнение в группе S_4 :

$$(1\ 2)(3\ 4)X(1\ 3) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}.$$

Задача Д5.4.

Выписать таблицу Кэли для множества подстановок $\{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ с операцией композиции подстановок.

Задача Д5.5. В аддитивной группе вычетов по модулю 7 \mathbb{Z}_7^{\oplus} решить уравнение $4 \oplus_7 x = 2$.

Задача Д**5.6** В мультипликативной группе вычетов по модулю 7 \mathbb{Z}_7^{\odot} решить уравнение $6 \odot_5 x = 5$.

Задача Д**5.7** В мультипликативной группе вычетов по модулю 31 \mathbb{Z}_{31}^{\odot} решить уравнение $4\odot_{31}x=5$.