Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject		- SEMESTER– VI (NEW) EXAMINATION – WINTER 2021 e:2160704 Date:30/1	1/2021
•		ne:Theory of Computation	1/2021
U		AM TO 01:00 PM Total Mar	ks: 70
Instruction 1.		mpt all questions.	
2.	Mak	te suitable assumptions wherever necessary.	
3. 4.	_	res to the right indicate full marks. Die and non-programmable scientific calculators are allowed.	
Q.1	(a)	Explain on to, one to one, and Bijection Function with suitable	03
		example.	
	(b)	Explain reflexivity, symmetry, and transitivity properties of	04
		relations.	
	(c)	What is PMI? Prove $7+13+19++(6n+1)=n(3n+4)$ using PMI.	07
Q.2	(a)	Find regular expression for following	03
		I. Language of all strings containing exactly two 0's.	
		II. Language of all strings that begins or ends with 00 or 11.	
	(b)	Compare FA, NFA and NFA-^.	04
	(c)	Draw Finite Automata (FA) for following languages:	07
		$L1 = \{x / 00 \text{ is not a substring of } x \}$	
		$L2 = \{x / x \text{ ends with } 01 \}$	
		Find FA accepting languages (i) L1 \cap L2 and (ii) L2 – L1	
		OR	
	(c)	Define NFA – Λ . Explain how to convert NFA – Λ into NFA and	07
		FA with suitable example.	
Q.3	(a)	Draw FA for each of the following RE.	03
		(a+b)*baaa	
	(b)	Define pumping lemma and its application.	04
	(c)	For the following CFG, Find Chomsky normal form	07
		$S \rightarrow AACD$	
		$A \rightarrow aAb _{\Lambda}$	
		$C \rightarrow aC a$	
		$D \rightarrow aDa bDb A$	
		OR	
Q.3	(a)	Consider the grammar:	03
		$S\rightarrow aAS \mid a$	

		Derive left most and right most derivation of string aabbaa using	
		given grammar.	
	(b)	Define CFG. Create CFG for (011+1)*(01)*	04
	(c)	Design a TM for accepting Palindromes for odd and even length.	07
Q.4	(a)	What is Turing Machine? Write advantages of TM over FSM.	03
	(b)	Explain Ambiguous Grammar and remove ambiguity with suitable	04
		example.	
	(c)	Design PDA for L= $\{x \in x^r/x \in \{a,b\}^*\}$. The string in L are odd	07
		length palindromes over {a,b}.	
		OR	
Q.4	(a)	Define Constant functions, Successor functions and Projection	03
		function.	
	(b)	Write a note on DPDA and NPDA	04
	(c)	Design a deterministic PDA Accepting "Balance string of	07
		brackets".	
Q.5	(a)	Enlist limitations of Turing machines.	03
	(b)	Explain moore machine and mealy machine.	04
	(c)	Discuss Universal Turing Machine with suitable example.	07
		OR	
Q.5	(a)	Write Short note on Church-Turing Thesis.	03
	(b)	Define P, NP, NP-Hard and NP-Complete problem?	04

 $A \rightarrow SbA \mid SS \mid ba$

Explain Halting Problem with suitable example.

(c)

07