

Bescheinigung

Die Firma Ugichem in Hallbergmoos/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Neue PNA-Monomere, daraus resultierende PNA-Oligomere und deren Verwendung"

am 3. März 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig das Symbol C 07 K 5/06 der Internationalen Patentklassifikation erhalten.

Aktenzeichen: 199 09 373.3

München, den 10. Mai 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Weihmay

Neue PNA-Monomere, daraus resultierende PNA-Oligomere und deren Verwendung

die Speicherung, Weitergabe und Expression der Damit genetischen Information gewährleistet werden kann, ist die Basenpaarung von Nukleinsäuren die wichtigste molekulare Erkennung in der Natur. Als erkannt wurde, (PNAs) mit höherer Affinität Peptidnukleinsäuren an komplementäre Nukleinsäuren (DNA oder RNA) als ihre natürlichen Vorbilder binden können (M. Egholm, O. Buchardt, Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, P.E. Nielsen, Nature, 1993, 365, 566-568), var die Möglichkeit gegeben, wirtschaftlich hochinteressante Diagnostika bzw. Therapeutika auf der Grundlage von PNAs zu entwickeln (O. Buchardt, M. Egholm, R.H. Berg, P.E. Nielsen, Trends Biotechnol., 1993, 11, 384-386. P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Anti-Cancer Drug Des., 1993, 8, 53-63. B. Hyrup, P.E. Nielsen, *Bioorg.Med.Chem.*, 1996, 4, 5-23. C. 104, 1039-1041, Meier, J.W. Engels, Angew. Chem., 1992, Angew. Chem. Int. Ed. Engl., 1992, 31, 1008-1010).

$$\begin{array}{c|c} & NB & \\ & & \\$$

Bild 1: PNA-Oligomer mit N-(2-Aminoethyl) glycin-Backbone. Der Substituent NB stellt eine Nukleobase dar.

PNAs können als Oligomere von N-acylierten-N-alkylierten Aminosäure-Bausteinen (PNA-Monomere) aufgefaßt werden.

Bislang sind für die PNA-Monomere unterschiedliche und mehrstufige Synthesen beschrieben worden (E. Uhlmann, A. Peyman, G. Breipohl, D.W. Will, Angew.Chem, 1998, 110, 2954-2983).

Als einen Schlüsselschritt in diesen Synthesen muß eine minosäure oder deren Ester eingesetzt werden. Dieser Schlüsselschritt stellt gleichzeitig aufgrund der Verfügbarkeit bzw. dem Aufwand für die Synthese einer nichtproteinogenenoder nichtnatürlichen Aminosäure einen limitierenden Faktor dar.

Diese Einschränkungen können mit Hilfe der Ugi-Reaktion beseitigt werden. N-Acylierte-N-alkylierte Aminosäureamide sind Produkte einer einstufigen Ugi-4-Komponenten-Reaktion (U-4CR).

Ein weiterer Reaktionsschritt führt zu N-acylierten-N-alkylierten Aminosäuren und N-alkylierten Aminosäuren bzw. deren Ester. Diese Produkte sind entweder selbst N-acylierte-N-alkylierte Aminosäure-Bausteine oder können leicht zu PNA-Monomeren und PNA-Oligomeren weiterverarbeitet werden.

Die in der U-4CR eingesetzte Oxokomponente (Aldehyd oder Keton) stellt im U-4CR-Produkt die Seitenkette des N-acylierten und N-alkylierten α -Aminosäureamids dar. Damit können vor allem

solche PNA-Monomere schnell und einfach hergestellt werden, deren Seitenketten nicht denen von natürlichen Aminosäuren entsprechen. Die Verwendung einer bestimmten Isocyanidkomponente ermöglicht die Weiterverarbeitung der α -Aminosäureamide zu Aminosäuren bzw. deren Ester (Patentanmeldung PCT/EP 98/04622).

1

Mit Hilfe der U-4CR können PNA-Monomere bzw. deren Vorstufen mit deutlich geringerem Syntheseaufwand als bisher hergestellt werden.

Damit ist ein einfacher, schneller und kostengünstiger Zugang zu neuen PNA-Monomeren entdeckt worden, die auf proteinogenen, nichtproteinogenen und nichtnatürlichen Aminosäuren basieren.

Daraus können neue PNA-Oligomere mit bisher unbekannten chemischen und pharmakologischen Eigenschaften hergestellt werden, die von großem wirtschaftlich Interesse sind.

Die bislang bekannten PNA-Oligomeren haben folgende Nachteile:

- 1. Für eine effektive therapeutische Anwendung von PNA-Oligomeren ist deren schlechte Zellgängigkeit das Haupthindernis.
- 2. Der praktische Nutzen der bislang bekannten PNA-Oligomere ist wegen deren schlechter Löslichkeit eingeschränkt.

Durch die einfache Einführung von bestimmten Seitenketten in die PNA-Oligomere mit Hilfe der Ugi-Reaktion können diese Einschränkungen jetzt beseitigt werden.

Die neuen U-4CR-Produkte sind durch die folgenden Eigenschaften gekennzeichnet.

• Die Aminosäureamide an der Amin-Funktion können der Aminosäure formyliert, acyliert bzw. durch α -substituierte Essigsäure-Komponenten acyliert sein. Die lpha-Substituenten PNA-Basenpaarbildung z.B. DNA-, RNA- oder können zur entsprechend den Watson-Crick- bzw. Hoogsteen-Regeln fähig Falls nötig können diese Substituenten durch eine sein.

- Schutzgruppe substituiert sein. Damit kann man eine Nebenreaktion in der U-4CR ausschließen bzw. den Einsatz der in dieser Erfindung beanspruchten Produkte zum Aufbau von PNA-Oligomeren ermöglichen.
- Die N-Acyl-Gruppe (mit Ausnahme der zur Watson-Crick- bzw. Hoogsteen-Basenpaarung befähigten, oder geschützten ungeschutzten α -substituierten Essigsäure-Komponenten) N-Formyl-Gruppe der Aminosäureamide Generierung einer freien sekundären Aminfunktion abspaltbar ohne daß gleichzeitig die Amidfunktion bei dieser Spaltung zerstört wird. Die so entstandene Aminfunktion kann jetzt zur Bildung einer tertiären Amidbindung mit einer zur DNA-, RNA- oder PNA- Basenpaarbildung, z.B. entsprechend den Watson-Crickbzw. Hoogsteen-Regeln befähigten αsubstituierten Essigsäure-Komponente zur Verfügung stehen.
- Die Aminosäureamide sind zudem durch einen Ethylen-Spacer N-alkyliert. Der Ethylen-Spacer am C-Terminus ist wiederum durch eine Amin-Funktion substituiert, die darüber hinaus mit einer aus der Schutzgruppentechnik für Amine bekannten Schutzgruppe (Th. W. Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, 1981) mono-substituiert ist.
- Die Seitenketten der N-formylierten-N-alkylierten Aminosäureamide bzw. N-acylierten-N-alkylierten Aminosäureamide sind in ihrer Vielfalt nur durch die elektronischen Restriktionen in der U-4CR eingeschränkt (I. Ugi, S. Lohberger, R. Karl in: Comprehensive Organic Synthesis: Selectivity for Synthetic Efficiency, Vol 2, Ed.: B. M. Trost).
- Die in der Aminosäure C-terminale Amidfunktion erfüllt die Funktion einer Carboxyl-Schutzgruppe. Durch Einsatz einer bestimmten Isocyanidkomponente in der Ugi-Reaktion kann diese abspaltbare Amidfunktion generiert werden (Patentanmeldung PCT/EP 98/04622). Diese kann unter milden basischen Reaktionsbedingungen in einen Carbonsäureester oder eine Carbonsäure bzw. deren konjugierten Base überführt werden, ohne weitere Schutzgruppen oder Substituenten vollständig

abzuspalten. Als Ausnahme gilt, daß die N-Formyl-Gruppe der N-formylierten-N-alkylierten Aminosäureamide unter diesen Reaktionsbedingungen gleichzeitig mit abgespalten kann. Auch die N-Acyl-Gruppe der N-acylierten-N-alkylierten diesen Reaktionsbedingungen Aminosäureamide kann unter abgespalten werden, sofern sie keinen zur Watson-Crick- bzw. Hoogsteen-Basenpaarung befähigten, geschützten ungeschützten α -substituierte Essigsäure-Komponenten besitzt. Auf diesem Weg stellt die U-4CR die Möglichkeit bereit auch solche PNA-Monomere zu genieren, deren N-Acyl-Substituenten erst zu einem späteren Zeitpunkt eingeführt werden sollen. Darüber hinaus kann diese Amidschutzgruppe die Möglichkeit einer Anbindung der U-4CR-Produkte an eine sogenannte "Feste Phase" (E. Atherton, R.C. Sheppard in Solid Phase Synthesis a Practical Approach; IRL Press: Oxford, 1989) eröffnen.

5

3

• Die Überführung der C-terminalen Amidfunktion zu Carbonsäuren bzw. Carbonsäureestern eröffnet die Möglichkeit sowohl bereits bekannte, als auch völlig neue, zum Aufbau von PNA-Oligomeren geeignete PNA-Monomere herzustellen.

ist daher Aufgabe der vorliegenden Erfindung neue Nformylierte-N-alkylierteund N-acylierte-N-alkylierte Aminosäureamide über die U-4CR bereitzustellen. Diese können in N-formylierte-N-alkylierte-, N-alkylierte- und N-acylierte-Nalkylierte Aminosäuren bzw. deren Ester überführt werden, welche PNA-Monomere bzw. deren Vorstufen sind. Diese weisen wirtschaftlich und pharmakologisch interessante Eigenschaften auf. dieser Es ist eine weitere Aufgabe Erfindung, die neuen PNA-Monomere in neue PNA-Oligomere zu überführen, die zur Basenpaarung mit RNA- oder DNA-Strängen fähig sind.

Diese Aufgaben werden durch die Verbindungen der allgemeinen Formel I gelöst,

worin A eine Gruppe der Formel,

B eine Gruppe der Formel,

D ein H-Atom oder eine Gruppe der Formel,

$$\begin{array}{c|c} O & O & O & \\ C & O & C & \\ R^{14} & C & O \\ \end{array} \quad \text{oder} \quad \begin{array}{c|c} R^{15} & O \\ E & C & C \\ \hline R_{16} & C & \\ \end{array}$$

ist.

20 C-Atome Rest R⁷ umfaßt maximal und kann ein Der mit einem oder mehreren Heteroatomen gegebenenfalls (Heteroatome sind N, O, S, Si, P, B, Hal) substituierter oder unsubstituierter Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclischer Rest, heteroalicyclischer oder Heteroarylrest mit bis zu 4 Heteroatomen [Heteroatome sind O, N, S], ein Allyl-, Benzyl, Ethyl-, Methyl-, 2,2,2vorzugweise lpha-Chloro-2,2,2-Trichlorethyl-, Trichlor-tert.butyl-, (trifluormethyl)benzyl-, 2-(p-Toluolsulfonyl)ethyl-, Diphenylmethyl-, 2-(Trimethylsilyl)ethyl-, Methoxymethyl-, (2-Trimethylsilyl)ethoxymethyl-, Benzyloxymethyl- oder ein (2-Methoxy) ethyloxymethyl-Rest sein.

Der Rest R⁷ kann an eine feste Phase gebunden sein. Als Festphasenharze eignen sich alle konventionellen Harze, die in der organischen Festphasensynthese angewendet werden, bevorzugt werden Polystyrol-divinylbenzol-, Polyethylenglycol- oder Polyethylen-glycol-polystyrol-Harze.

Die Reste R^3 bis R^6 , bzw. R^6 und R^9 sowie R^{10} bis R^{13} und R^{15} bis R¹⁶ umfassen jeweils maximal 20 C-Atome und können unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclische Reste, heteroalicyclische oder Heteroarylreste mit bis zu 4 Heteroatomen [Heteroatome sind 0, , S] sein, und optional können jeweils zwei der Reste R³ bis R^6 und gegebenenfalls R^8 und R^9 sowie R^{10} bis R^{13} und R^{15} bis R^{16} , die durch bis zu zwei Kohlenstoffatome voneinander getrennt sind, Bestandteile eines gemeinsamen Ringsystems sein, wobei das Ringsystem einen substituierten oder unsubstituierten alicyclischen Monocyclus (5-8 Ringatome), heteroalicyclischen Monocyclus (5-8 Ringatome mit bis zu 2 Heteroatomen [O, N, S]), einen alicyclischen Bicyclus (7-14 Ringatome), oder einen heteroalicyclischen Bicyclus (7-14 Ringatome mit bis zu 4 Heteroatomen [O, N, S]) umfassen kann. Stärker bevorzugt sind die Reste R^{10} bis R^{13} sowie R^{15} bis R^{16} unabhängig voneinander H-Atome, mit einem oder mehreren Bor-Atomen oder Carbaboranen substituierte oder unsubstituierte C_1 -C20 Alkyl- oder Arylreste, und optional sind jeweils zwei der Reste R^{10} bis R^{13} sowie R^{15} bis R^{16} , die durch bis zu zwei Kohlenstoffatome voneinander getrennt sind, Bestandteile eines gemeinsamen Ringsystems, wobei dieses Ringsystem einen Phenyl-, Cyclohexyl- oder Cyclopentyl-Ring umfaßt.

Am stärksten bevorzugt ist A eine Gruppe der Formel $-C(R^3,R^4)-C(R^5,R^6)$ -, wobei die Reste R^3 bis R^6 unabhängig voneinander H-Atome oder Methylreste sind.

Die Wahl der Reste R³ bis R6, bzw. R8 und R9 ist nicht wesentlich für die Eignung der Verbindung I zur Bereitstellung Aminosäureamide bzw. N-acylierten-N-alkylierten der und formylierten-N-alkylierten Aminosäureamide anschließenden Spaltung in die entsprechenden N-acylierten-N-N-formylierten-N-alkylierten Aminosäuren, alkylierten Aminosäuren bzw. deren Ester. Sie können aber z.B. dazu dienen, N-acylierten-N-alkylierten Löslichkeitsverhalten der das N-formylierten-N-alkylierten Aminosäureamide sowie der Spaltung entstehenden Aminosäureamide bzw. der bei cyclischen Urethane zu steuern.

÷.

Der Rest R^{14} kann Gruppe der Formel CH_nX_{3-n} (n = 0 bis 3, X = Mal), Phenyl oder para-Methoxyphenyl sein.

Durch den Rest R14 erhält die N-Acyl-Gruppe den Nin acylierten-N-alkylierten Aminosäureamiden eine basenlabile unter den Eigenschaft, die dazu ausgenutzt werden kann, C-terminale die unter denen basischen Bedingungen, Amidschutzgruppe entfernt wird gleichzeitig auch die N-Acyl-Gruppe zu entfernen, so daß N-alkylierte Aminosäuren bzw. deren Ester entstehen.

E kann eine natürliche oder nichtnatürliche gegebenenfalls mit Schutzgruppen substituierte, zur Watson-Crick- oder Hoogsteen-Basenpaarung fähige Nukleobase sein, bevorzugt ist E eine Gruppe der folgenden Formeln:

★ Substitutionsposition

worin X¹ bis X⁴ unabhängig voneinander H-Atome oder die aus der Schutzgruppentechnik für Nukleinbasen bekannten, folgenden Substituenten sein können:

X¹, X², X⁴: Acetyl (Ac), Isobutyryl (iBu-CO), Benzyloxycarbonyl (Cbz), (4-Methoxyphenyl)-diphenylmethyl (Mmt),

Benzhydryloxycarbonyl (Bhoc), Anisoyl (An), 4-tert.-Butylbenzoyl (tBuBz).

 X^3 : Benzyl (Bn), Diphenylcarbamoyl (Dpc).

Am stärksten bevorzugt wird E ausgewählt aus:

 N^2 -Ac-Guanyl-, N^2 -iBu-CO-Guanyl-, N^2 -Cbz-Guanyl-, N^2 -Mmt-Guanyl-, N^2 -Bhoc-Guanyl-, N^6 -Cbz-Adenyl-, N^6 -Mmt-Adenyl-, N^6 -An-Adenyl-, N^6 -Bhoc-Adenyl-, O^6 -Benzylguanyl- (X^1 =H), N^2 -Ac- O^6 -Dpc-Guanyl-, N^2 -iBu- O^6 -Dpc-Guanyl-, N^2 -Cbz- O^6 -Dpc-Guanyl-, N^2 -Mmt- O^6 -Dpc-Guanyl-, N^4 -Cbz-Cytosyl-, N^4 -Mmt-Cytosyl-, N^4 -tBuBz-Cytosyl-, N^4 -Bhoc-Cytosyl-, N^2 -Cbz-Pseudoisocytosyl-, N^2 -TBuBz-Pseudoisocytosyl-, N^2 -Bhoc-Pseudoisocytosyl-Substituent.

P bezeichnet eine Aminschutzgruppe. Aminschutzgruppen sind dem Fachmann bekannt (Th. W. Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, 1981).

٠,

Vorzugsweise ist P eine Oxocarbamat- oder Thiocarbamat-Schutzgruppe, am stärksten bevorzugt ist P eine 9-Fluorenylmethyloxycarbonyl (Fmoc), tert.Butyloxycarbonyl-(Boc), Cbz-, Mmt- oder Bhoc-Schutzgruppe.

Die Reste R¹ und R² umfassen jeweils maximal 40 C-Atome und können unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, substituierte oder unsubstituierte Alkyl-, Alkenyl-, alicyclische Alkaryl-, Aryl-, Reste, lkinyl-, eteroalicyclische oder Heteroarylreste mit bis Heteroatomen [Heteroatome sind O, N, S] sein, und optional Bestandteile eines gemeinsamen Ringsystems sein, wobei das Ringsystem 1-6 Arylringe, Cycloalkylringe, Cycloalkylringe mit Heteroatomen oder Arylringe mit Heteroatomen [O, N, S] umfassen kann.

Vorzugsweise umfassen die Reste R¹ und R² jeweils maximal 20 C-Atome und sind unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Boroatomen oder Carbaboranen oder tert.Amino-, Carbonsäureester-, Carbonsäure-, Sulfonsäure-, Sulfonsäure-, Sulfonsäure-, Sulfonsäure-, Sulfonsäure-, Sulfonsäure-, Harnstoff-Funktionen substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclische Reste, heteroalicyclische oder Heteroarylreste mit bis zu 4 Heteroatomen (Heteroatome sind O, N, S) und optional Bestandteile eines gemeinsamen Ringsystems, wobei das Ringsystem 1-3 Arylringe oder Cycloalkylringe umfaßt.

Allgemein können die Reste R¹ und R² mit allen funktionellen Gruppen substituiert sein, die nicht oder nur sehr langsam mit den funktionellen Gruppen der Isocyanid-MCR-Komponenten reagieren. So können z.B. Aldehydketone in der U-4CR eingesetzt werden, wobei bei äquimolaren Einsatz aller Komponenten nur die Aldehydfunktion aufgrund ihrer höheren Reaktivität in der U-4CR reagiert.

Ugi-Vier-Komponenten-Reaktion (U-4CR)

In der U-4CR werden durch den Einsatz einer Säurekomponente, einer Oxokomponente (Aldehyd bzw. Keton), einer primären Aminkomponente und einer Isocyanidkomponente z.B. N-formylierte-N-alkylierte Aminosäureamide bzw. N-acylierte-N-alkylierte Aminosäureamide hergestellt.

Die U-4CR gehört zur Klasse der Multikomponentenreaktionen (MCR).

Unter einer Multikomponentenreaktion versteht man eine Reaktion, bei der das Produkt aus mindestens drei verschiedenen dukten gebildet wird und wesentliche Teile dieser Edukte enthält.

Die thermodynamische Triebkraft der Isocyanid-MCRs resultiert daraus, daß das zweibindige C-Atom der Isocyanidfunktion im Reaktionsverlauf unter Freisetzung von Energie und irreversibel in ein vierbindigen C-Atom einer sekundären Amidfunktion überführt wird. Diese Triebkraft führt dazu, daß durch intramolekulare Umlagerung, unabhängig vom sterischen Anspruch der jeweiligen Substituenten die entsprechenden MCR-Produkte nach folgendem Schema erhalten werden.

$$R^{P}-NH_{2} + R^{Q} \downarrow R^{R} \qquad \qquad R^{P} \downarrow R^{P} \qquad R^{P} \downarrow R^{P} \qquad \qquad R^{P} \downarrow R^{P} \qquad$$

Daraus ergibt sich eine enorme Bandbreite bezüglich der einsetzbaren Säure-, Carbonyl-, Isocyanid-, und gegebenenfalls der Aminkomponenten in den Isocyanid-MCRs.

In der Literatur sind eine große Anzahl verschiedener U-4CR-Produkte hergestellt und beschrieben worden [I. Ugi, S. Lohberger, R. Karl in: Comprehensive Organic Synthesis: Selectivity for Synthetic Efficiency, Band II, B. M. Trost, C.H. Heathcock, Pergamon Press, Oxford, 1991; I. Ugi, Angew. Chem. 1962, 74, 9].

Die Komponenten werden vorzugsweise äquimolar eingesetzt. Es können aber auch einzelne Komponenten im Überschuß eingesetzt werden, da die entstehenden MCR-Produkte in der Regel nicht weiter mit den eingesetzten Komponenten reagieren.

Die MCR-Produkte können immer dann mit den eingesetzten Komponenten weiter reagieren, wenn bifunktionelle Komponenten eingesetzt werden. Bifunktionelle Komponenten sind dadurch gekennzeichnet, daß z.B. die Aldehydkomponente mit einer Ketofunktion oder die Säurekomponente mit einer primären Aminfunktion in einem Molekül vereinigt ist.

Aufgrund der größeren Reaktivität gegenüber der Ketofunktion kann die Aldehydfunktion selektiv zur Reaktion gebracht werden. Die Ketofunktion bleibt dabei erhalten und nimmt nicht an der Reaktion teil (Thomas Schömig, Dissertation Technische Universität München, 1997).

Aus den gleichen Gründen kann eine aliphatische Aminfunktion selektiv neben einer aromatischen Aminfunktion zur Reaktion gebracht werden.

Eine weitere Möglichkeit der Reaktionssteuerung bei Verwendung von bifunktionellen Komponenten besteht darin, daß man eine Vorkondensation zum Imin (Entzug von Reaktionswasser z.B. durch azeotrope Destillation oder Molsieb) durchführt, bevor die Säure- und Isocyanidkomponente zugefügt werden.

Ist z.B. in der Säurekomponente eine Aminfunktion vorhanden (z.B. wie in Guanyl-essigsäure) wird durch Vorkondensation zum Imin gewährleistet, daß die Aminfunktion der Guanyl-essigsäure nur in einer untergeordneten Nebenreaktion an der MCR

teilnimmt, da die Säurefunktion hauptsächlich mit dem vorkondensierten Imin abreagiert.

Herstellung von N-formylierten-N-alkylierten Aminosäureamiden oder N-acylierten-N-alkylierten Aminosäureamiden der allgemeinen Formel IV mittels U-4CR

Entsprechend des Mechanismus aus Schema 1 ergibt sich zur Herstellung von Produkten der allgemeinen Formel <u>IV</u> folgendes Reaktionsschema:

$$L = H, R^{14}, -C = E$$

$$R^{10} R^{11}$$

$$R^{12} R^{13}$$

$$R^{15} IV$$

$$R^{14}, -C = E$$

$$R^{14}, -C = E$$

$$R^{11} R^{10} R^{11}$$

$$R^{12} R^{1} R^{2} H$$

$$R^{13} R^{12} R^{1} R^{2} H$$

$$R^{14} R^{15} R^{10} R^{10} R^{10} R^{10}$$

$$R^{11} R^{10} R^{10} R^{10} R^{10}$$

$$R^{11} R^{10} R^{10} R^{10} R^{10}$$

$$R^{11} R^{10} R^{10} R^{10}$$

Herstellung der Nukleinbasen-Essigsäure-Komponenten der allgemeinen Formel III mit $L = E-C(R^{15}R^{16})$ -

Die Nukleinbasen-Essigsäure-Komponenten E-C(R¹⁵R¹⁶)-COOH (die Substituenten X¹ bis X⁴ sind kein H-Atom; sonst sind die Reste wie vorstehend definiert) werden wie in der Literatur beschrieben durchgeführt (D.W. Will, G. Breipohl, D. Langner, J. Knolle, E. Uhlmann, Tetrahedron, 1995, 51, 12069-12082. S.A. Thomson, J.A. Josey, R. Cadilla, M.D. Gaul, C.F. Hassman, M.J. Luzzio, A.J. Pipe, K.L. Reed, D.J. Ricca, R.W. Wiethe, S.A. Noble, Tetrahedron, 1995, 51, 6179-6194. G. Breipohl, J.

Knolle, D. Langner, G. O'Malley, E. Uhlmann, Bioorg. Med. Chem. Lett., 1996, 6, 665-670. K.L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H.F. Hansen, T. Vulpius, K.H. Petersen, R.H. Berg, P.E. Nielsen, O. Buchardt, J. Org. Chem., 1994,59, 5767-5773. G. Breipohl, D.W. Will, A. Peyman, E. Uhlmann, Tetrahedron, 1997, 53, 14671-14686. Zou, M.J. Robins, Can. J. Chem., 1987, 65, 1436-1437. K.L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H.F. Hansen, T. Vulpius, K.H. Petersen, R.H. Berg, P.E. Nielsen, O. Buchardt, J. Org. Chem., 1994,59, 5767-5773. M. Egholm, L. Christensen, K.L. Dueholm, O. Buchardt, J. Coull, P.E. Nielsen, Nucleic Acids Res., 1995, 23, 217-222.

Follen die Nukleinbasen-Essigsäure-Komponenten ungeschützt (die Substituenten X^1 bis X^4 sind ein H-Atom) eingesetzt werden, werden die geschützten Nukleinbasen-Essigsäure-Komponenten E-C($R^{15}R^{16}$)-COOH entsprechend den in der Literatur beschriebenen Spaltungsbedingungen (Th. W. Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, 1981) für die einzelnen Schutzgruppen entfernt.

Herstellung der Aminkomponente der allgemeinen Formel IV

Alle Aminkomponenten der allg. Formel \underline{IV} werden entsprechend der Methode von Krapcko hergestellt (A.P. Krapcko, C.S. Kuile, Synthetic Communications, 1990, 20(16), 2559-2564), wobei Boc-NH-C($R^{10}R^{11}$)-C($R^{12}R^{13}$)-NH₂ aus tert.-Butyloxycarbonylanhydrid (Boc₂O) hergestellt wird. Alle anderen Aminkomponenten der allg. Formel \underline{IV} werden aus den entsprechenden Chlorameisensäureester oder Azidoameisensäureester bei sonst gleichen Reaktionsbedingungen hergestellt.

Herstellung der Isocyanidkomponente der allgemeinen Formel V

Die Isocyanidkomponenten der allg. Formel $\underline{\mathbf{v}}$ können nach einem der in Patentanmeldung PCT/EP 98/04622 offenbarten Verfahren hergestellt werden.

Die Verfahren eignen sich sowohl für harzgebundene Isocyanidkomponenten als auch für nicht harzgebundene Isocyanidkomponenten.

Herstellung der U-4CR-Produkte der allgemeinen Formel I

a) Herstellung von N-formylierten-N-alkylierten Aminosäureamiden der allgemeinen Formel VI

Der Substituent L ist ein H-Atom oder R^{14} ; sonst sind die Reste wie vorstehend definiert.

Die Säurekomponente wird mit einer Oxokomponente R^1 -CO- R^2 , einer Aminkomponente $H_2N-C(R^{12}R^{13})-C(R^{10}R^{11})-NH-P$ und einer Isocyanidkomponente CN-A-O-CO-O- R^7 in einer U-4CR umgesetzt. Die Durchführung kann beispielsweise wie in der Literatur beschrieben erfolgen (I. Ugi et al., Chem. Ber., 1961, 94, 2802.). Nach Beendigung der Reaktion wird das Lösungsmittel entfernt und das Reaktionsprodukt, wenn nötig, gereinigt.

b) Herstellung von N-acylierten-N-alkylierten Aminosäureamiden der allgemeinen Formel VI

Der Substituent L ist gleich dem Substituenten $-C(R^{15}R^{16})-E$, wobei der Substituent E wie vorstehend definiert ist und die Substituenten X^1 bis X^4 keine H-Atome sind; sonst sind die Reste wie vorstehend definiert.

Eine Carbonsäure E-C($R^{15}R^{16}$)-COOH wird mit einer Oxokomponente R^1 -CO- R^2 , einer Aminkomponente H_2N -C($R^{12}R^{13}$)-C($R^{10}R^{11}$)-NH-P und einer Isocyanidkomponente CN-A-O-CO-O- R^7 in einer U-4CR umgesetzt. Die Durchführung kann beispielsweise wie in der Literatur beschrieben erfolgen (I. Ugi et al., Chem. Ber., 1961, 94, 2802.). Nach Beendigung der Reaktion wird das Lösungsmittel entfernt und das Reaktionsprodukt, wenn nötig, gereinigt.

c) Herstellung von N-acylierten-N-alkylierten Aminosäureamiden der Formel VI

•:

Der Substituent L ist gleich dem Substituenten $-C(R^{15}R^{16})-E$, wobei der Substituent E wie vorstehend definiert ist und die Substituenten X^1 bis X^4 H-Atome sind; sonst sind die Reste wie vorstehend definiert.

Aminkomponente $H_2N-C(R^{12}R^{13})-C(R^{10}R^{11})-NH-P$ Eine und eine Oxokomponente R^1 -CO- R^2 werden bei Raumtemperatur in einem die Iminbildung begünstigenden Lösungsmittel (z.B. Methylenchlorid) über Molsieb 24 Stunden vorkondensiert. Anschließend wird das Molsieb durch Filtration über Cellite entfernt, danach das Lösungsmittel entfernt. Das vorkondensierte Imin wird in einem ie U-4CR begünstigenden Lösungsmittel (z.B. Methanol oder 2,2,2-Trifluorethanol) gelöst und die Isocyanidkomponente CN-A-O-CO-O-R⁷ bei Raumtemperatur zugesetzt. Anschließend wird eine 1 molare Lösung aus der Carbonsäure E-C(R¹³R¹⁶)-COOH und einem geeigneten Lösungsmittel (z.B. DMSO, DMF, Acetonitril) schnell Gelingt es nicht die Carbonsäurekomponente vollständig in Lösung zu bringen, wird die Carbonsäure als Feststoff in der Reaktionslösung suspendiert. Diese Art der Reaktionsführung führt neben dem gewünschten Reaktionsprodukt zu weiteren U-4CR-Produkten. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt und das Reaktionsprodukt, wenn pötig, gereinigt.

PNA-Monomere

Stellt die Schutzgruppe P eine basenstabile Schutzgruppe dar, können mit Hilfe der U-4CR und anschließender Abspaltung der sekundären Amidfunktion PNA-Monomere durch ein neues und einfacheres Verfahren hergestellt werden. Besonders gut geeignet ist dieses Verfahren zur Generierung von neuartigen PNA-Monomeren, deren Seitenketten denen nichtnatürlicher Aminosäuren entsprechen. Bei den bisher bekannten Methoden muß dazu die nichtnatürliche Aminosäure erst aufwendig hergestellt werden.

Durch die neuen PNA-Monomere der allgemeinen Formel <u>II</u> können in die aus ihnen resultierenden PNA-Oligomere bislang unbekannte chemische und pharmakologische Eigenschaften eingeführt werden, die von großem wirtschaftlichen Interesse sind.

worin

B eine Gruppe der Formel,

D eine Gruppe der Formel,

ist.

Der Rest R^{17} kann ein H-Atom oder R^{7} sein, wobei R^{7} wie vorstehend definiert ist.

E sowie die Reste R^{10} bis R^{13} und R^{15} bis R^{16} sind wie vorstehend definiert.

P kann ein H-Atom oder eine in Gegenwart der Nukleobasen-Schutzgruppen X¹ bis X⁴ selektiv abspaltbare Aminschutzgruppe sein. Vorzugsweise ist P ein H-Atom oder eine Oxocarbamat- oder eine Thiocarbamat-Schutzgruppe, am stärksten bevorzugt ein H-Atom oder eine Fmoc-, Boc-, Cbz-, Mmt- oder eine Bhoc-Schutzgruppe.

vorzugsweise Die Reste R^1 und R^2 sind wie vorstehend definiert, mit der Maßgabe, daß R^1 und R^2 nicht gleichzeitig H-Atome sind oder icht Substituenten sind, die zusammen dem Substitutionsmuster einer natürlichen Aminosäure entsprechen.

a) Verfahren zur Abspaltung der C-terminalen Amidschutzgruppe und Überführung in Carbonsäuren, deren konjugierte Basen oder Carbonsäureester.

Das Verfahren ist dadurch gekennzeichnet, daß durch Umsetzung eine Verbindung der allg. Formel I mit einer Base das sekundäre Amidproton am C-Terminus der N-formylierten-N-alkylierten- und N-acylierten-N-alkylierten Aminosäureamide abstrahiert wird. wird das sekundäre Amidstickstoffatom ukleophile Funktion überführt, die durch intramolekularen Ringschluß ein cyclisches N-Acyl-Urethan bildet. Als Basen eignen sich z.B. milde, nicht nukleophile Basen wie z.B. Kalium-tert.Butanolat, Alkalihydrid oder Stickstoffbasen wie Lithiumamid, Lithiumdiisopropylamin oder 1,5-Diazabicyclo[4.3.0]non-5-en beispielsweise in einem aprotischen Lösungsmittel wie z.B. THF oder Diethylether. Die Umsetzung kann bei Temperaturen von -80 °C bis +80 °C erfolgen. Durch den intramolekularen Ringschluß werden beispielhaft nach folgendem Schema zunächst primäre Spaltungsprodukte der allg. Formel VII erzeugt. In den Verbindungen der allg. Formel $\overline{ ext{VII}}$ sind die Reste R^1 , R^2 , sowie A, B, D und P wie vorstehend definiert, mit

der Einschränkung, daß P eine basenstabile Schutzgruppe sein muß.

Das Alkoholat Anion O-R ist aufgrund seiner geringen Basizität nicht in der Lage ein sekundäre Amidproton zu abstrahieren.

Der weitere Reaktionsverlauf ist von der Struktur von R⁷ abhängig. Ist R⁷ ein Rest, der die Nukleophilie der Alkoholat-Funktion herabsetzt (z.B. ein elektronenziehender Rest, wie z.B. Phenylrest), so ist <u>VII</u> isolierbar. Handelt es sich bei R⁷ um einen Rest, der die Nukleophilie der Sauerstoffunktion erhöht (z.B. ein elektronenschiebender Rest, wie z.B. Alkylrest), so ist <u>VII</u> nicht isolierbar. <u>VII</u> setzt sich in situ mit dem durch den intramolekularen Ringschluß gebildeten Alkoholat zum entsprechenden Ester der allg. Formel <u>VIII</u> beispielhaft nach folgendem Schema um.

In den Verbindungen der allg. Formel $\overline{\text{VIII}}$ sind die Reste R^1 , R^2 , R^7 , sowie B, D und P wie vorstehend definiert, mit der

Einschränkung, daß P eine basenstabile Schutzgruppe sein muß. In der Verbindung der allgemeinen Formel \underline{IX} ist A wie vorstehend definiert.

Auf diese Weise ist es möglich, die sek. Amidbindung Verbindungen der allgemeinen Formel I, direkt entsprechenden Ester der allg. Formel VIII zu überführen. Es können so z.B. durch die Wahl des entsprechenden Restes R7 in den Isocyanoalkylkohlensäurederivaten in einer Eintopfsynthese, die aus der Literatur bekannten Carboxylschutzgruppen Haslam, Tetrahedron 1980, 36, 2409] direkt eingeführt werden. Handelt es sich bei R7 um einen Rest wie z.B. einen phenylischen Rest, der die Nukleophilie der Alkoholatfunktion perabsetzt, so sind die Verbindungen der allg. Formel VII isolierbar. Aufgrund seiner verringerten Nukleophilie, bedingt durch die aromatische Mesomerie, ist z.B. das Phenolat nicht in der Lage, VII nukleophil anzugreifen und so den Phenylester zu bilden. Damit eröffnet sich die Möglichkeit, das entsprechende primäre Spaltungsprodukt VII zu isolieren. Dieses anschließend mit Hydroxyl-Anion zu der entsprechenden Carbonsäuren der allg. Formel $\underline{\mathbf{x}}$ beispielhaft nach folgendem Schema umgesetzt werden.

X

In den Verbindungen der allg. Formel X sind die Reste R1, R2, und P wie vorstehend definiert, Einschränkung, daß P eine basenstabile Schutzgruppe sein muß. Das sek. Amidproton stellt dabei in den Verbindungen der allg. Formel I das acideste H-Atom dar. Insbesondere weisen alle an ein Carbamat-Stickstoff-Atom gebundenen H-Atome eine geringere Acidität auf, so daß nur das sekundäre Amidproton durch die Base abstrahiert wird. Darüber hinaus ist der intramolekulare Ringschluß gegenüber intermolekularen nukleophilen Reaktionen entropisch begünstigt und verläuft sehr viel schneller als intermolekulare Reaktionen. Die cyclische Urethanfunktion in des intramolekularen Ringschlusses sich Verlauf pildenden N-Acyl-Urethan-Funktion, ist eine in der Literatur beschriebene (D. A. Evans, Bartoli, Tetrahedron Lett. 1982, 23, 807-810), sehr gute Abgangsgruppe. Sie ist zur Herstellung einer Carbonsäurefunktion bzw. deren konjugierten Base oder einer Carbonsäureesterfunktion gut geeignet. Die Urethan-Funktion stellt das bevorzugte Elektrophil in der nukleophilen Substitution durch das Alkoholatanion O-R7 dar. Die Verbindungen der allg. Formel IX weisen aufgrund der im folgenden Schema dargestellten Mesomerie eine deutlich verringerte Basizität auf.

 \mathbf{IX}

Aufgrund dieser verringerten Basizität sind Verbindungen der allg. Formel <u>IX</u> nicht mehr in der Lage, sekundäre Amidprotonen zu abstrahieren.

Durch die verringerte Nukleophilie von <u>IX</u> erhält das Verfahren zur Abspaltung der C-terminalen Amidschutzgruppe außerdem einen irreversiblen Charakter.

Herstellung von Verbindungen der allgemeinen Formel VII

Eine Verbindung der allg. Formel I (wobei R^7 ein Substituent ist, dessen Alkoholatanion O-R7, bedingt durch die aromatische Mesomerie, keine ausreichende Nukleophilie besitzt cyclisches N-Acyl-urethan in ein N-Acylester und ein cyclisches Urethan zu Überführen, wie z.B. Phenyl) wird in einem inerten, aprotischen Lösungsmittel wie z.B. Tetrahydrofuran gelöst. Eine Base, beispielsweise eine äquimolaren Kalium-Menge tert.Butanolat, wird zugegeben. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt, und das Reaktionsprodukt gereinigt.

Herstellung von Verbindungen der allgemeinen Formel VIII

Eine Verbindung der Formel I (wobei R⁷ ein Substituent ist, dessen Alkoholatanion O-R eine ausreichende Nukleophilie besitzt ein cyclisches N-Acyl-urethan in ein N-Acylester und ein cyclisches Urethan zu Überführen, wie z.B. Methyl) wird in einem inerten, aprotischen Lösungsmittel wie z.B. Tetrahydrofuran gelöst. Eine Base, beispielsweise eine äquimolaren Menge Kalium-tert.Butanolat, wird zugegeben. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt, und das Reaktionsprodukt gereinigt.

Weiterhin ist es möglich, eine basenstabile, wie vorstehend definierte Schutzgruppe P (z.B. Boc) in den Verbindungen der allg. Formeln VIII und X durch gängige Methoden zu entfernen. Da die Nukleobasen-Schutzgruppen X¹ bis X⁴ bei der Abspaltung von P erhalten bleiben sollen, muß P so ausgewählt werden, daß P selektiv abgespalten werden kann. Danach kann an der entstandenen primären Aminfunktion eine neue, in Gegenwart der Nukleobasen-Schutzgruppen X¹ bis X⁴ selektiv abspaltbare Schutzgruppe (z.B. Fmoc) eingeführt werden. Dadurch werden die Verbindungen der allgemeinen Formel II erhalten, in denen die Reste R¹, R², R¹², sowie B, D und P wie vorstehend definiert sind.

PNA-Oligomere

den PNA-Monomeren der allgemeinen Formel ΙI neuartige PNA-Oligomere der allgemeinen Formel XI hergestellt verden, wobei die Reste R1, R2, R17, sowie B, D und P wie in den Verbindungen der allgemeinen Formel II definiert sind. Die Reste $R^{1,n}$, $R^{2,n}$, $R^{1,n+1}$ und $R^{2,n+1}$ (n ist eine ganze Zahl zwischen 0 und 60) in den Verbindungen der allgemeinen Formel XI sind unabhängig voneinander wie die Reste R^1 und R^2 in den Verbindungen der allgemeinen Formel II definiert. R1 und R2 bezeichnen in den Verbindungen der allgemeinen Formel XI die Reste des ersten PNA-Monomers (Start-Monomer), von dem aus das PNA-Oligomer aufgebaut wird. Dementsprechend bezeichnet in den Verbindungen der allgemeinen Formel XI der Rest R^{1,n} einen Rest des Monomers der allgemeinen Formel II, das in n-ter Position nach dem Start-Monomer in das PNA-Oligomer eingeführt worden ist. Gleiches gilt für die Gruppen B bzw. B^1 bis B^{n+1} und D bzw. D^1 bis D^{n+1} .

Die Gruppen B^1 bis B^{n+1} sind unabhängig voneinander wie die Gruppen B^1 in den Verbindungen der allgemeinen Formel II definiert.

Die Gruppen D^1 bis D^{n+1} sind unabhängig voneinander wie die Gruppen D in den Verbindungen der allgemeinen Formel \underline{II} definiert.

Diese PNA-Oligomere lassen sich beispielsweise mittels in der Literatur beschriebenen Methoden (z.B. L. Christensen, Fitzpatrick, B. Gildea, K.H. Petersen, H.F. Hansen, T. Koch, M. Egholm, O. Buchaedt, P.E. Nielsen, J. Coull, R.H. Berg, 1995, 1, J. Pept. Sci. 175-183. Т. H.F. Koch, Hansen, Andersen, T. Larsen, H.G. Batz, K. Otteson, Örum, J. Pept. Res. 1997, 49, 80-88. F. Bergmann, W. Bannwarth, S. Tam,

Tetrahedron Lett. 1995, 36, 6823-6826) nach folgendem Schema aufbauen:

Das Verfahren zur Herstellung der Verbindungen der allgemeinen Formel XI ist dadurch gekennzeichnet, daß von einer Verbindung der allgemeinen Formel II im ersten Schritt die Schutzgruppe am N-Terminus entfernt wird. In einem zweiten Schritt wird eine entschützte Verbindung der allgemeinen Formel II am N-Terminus mit dem C-Terminus einer weiteren N-terminal geschützten Verbindung der allgemeinen Formel II gekuppelt. Im dritten Schritt werden nicht gekuppelte, entschützte Verbindungen der allgemeinen Formel II durch Capping aus dem Synthesezyklus entfernt. Durch Wiederholen der Schritte eins bis drei wird dadurch ein PNA-Oligomer der allgemeinen Formel XI aufgebaut. Im abschließenden Schritt, werden gegebenenfalls alle Schutzgruppen entfernt.

Diese Verfahren ist nicht darauf beschränkt, daß jeweils nur ein PNA-Monomer der allgemeinen Formel \underline{II} an das jeweilige PNA-Oligomer gekuppelt wird. Vielmehr können auch entsprechend geschützte PNA-Oligomere der allgemeinen Formel \underline{XI} aneinander gekuppelt werden.

Bevorzugte Kupplungsmethoden sind dabei:

-(Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-hexafluoro-(HBTU), Diethylcyclohexylamin in Dimethylformamid (DMF)/Pyridin, wenn P eine Boc-Schutzgruppe ist. Azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium-hexafluoro-(HATU), Diisopropyl-ethylen-amin (DIPEA) phosphat N-Methylpyrrolidon (NMP)/Pyridin, wenn P eine Boc-Schutzgruppe ist. Pentafluorphenyl-Aktivester wenn P eine Fmoc-Schutzgruppe Benzotriazolyl-1-oxy-tris(pyrrolidino)phosphoniumhexafluorophosphat (PyBOP), N-Ethylmorpholin (NEM) in DMF, wenn P eine Fmoc-Schutzgruppe ist. HATU, DIPEA in DMF, wenn P eine Fmoc-Schutzgruppe ist. PyBOP, DIPEA in DMF, wenn P eine Mmt-Schutzgruppe ist. HATU, NEM in DMF wenn P eine Mmt-Schutzgruppe ist.

Bevorzugte Capping-Methoden sind:

 N^1 -Benzyloxycarbonyl- N^3 -methylimidazoltriflat, Acetanhydrid/NMP/Pyridin bzw. Piperidin, wenn P eine Boc-Schutzgruppe ist. Acetanhydrid/DIEA in NMP, wenn P eine Fmoc-Schutzgruppe ist. Acetanhydrid/Lutidin/N-Methylimidazol in THF, wenn P eine Mmt-Schutzgruppe ist.

Bevorzugte Entschützungsmethoden sind:

Trifluoressigsäure (TFA)/Trifluormethansulfonsäure (TFMSA), wenn P eine Boc-Schutzgruppe ist. Fluorwasserstoff/Anisol oder 95%ige TFA oder Ammoniak/Wasser oder Ammoniak/Ethanol oder Morpholin wenn P eine Fmoc-Schutzgruppe ist. Ammoniak/Wasser wenn P eine Mmt-Schutzgruppe ist.

Die neuen PNA-Oligomere besitzen bislang unbekannte chemische pharmakologische Eigenschaften, und die von großem wirtschaftlichen Interesse sind. Sind in einer Verbindung der allg. Formel XI z.B. einer oder mehrere Reste R^1 , $R^{1,n}$, $R^{1,n+1}$ bzw. R^2 , $R^{2,n}$, $R^{2,n+1}$ mit einem oder mehreren Bor-Atomen oder Carbaboranen substituiert, eignen sich diese für den Einsatz in der Bor-Neutronen-Einfang-Therapie (BNCT) zur Bekämpfung von Tumoren (M.F. Hawthorne, Angew. Chem. 1993, 105, 997-1033.). In die PNA-Oligomere der allg. Formel $\underline{\mathbf{XI}}$ können z.B. über einen pder mehrere der Reste R^1 , $R^{1,n}$, $R^{1,n+1}$ bzw. R^2 , $R^{2,n}$, $R^{2,n+1}$ lipophile Gruppen (z.B. langkettige Alkyle oder Steroide) oder hydrophile Gruppen (z.B. Sulfonsäuren oder Carbonsäuren) eingeführt werden. Damit können PNA-Oligomere aufgebaut werden, die verbesserte Löslichkeits- und Zellgängigkeitseigenschaften gegenüber den bislang bekannten PNA-Oligomeren zeigen.

Beispiele:

Beispiel 1: Herstellung von

Jeweils 5 mmol (N^6 -Cbz-Adenyl)essigsäure, Laurinaldehyd, N-Bocethylendiamin, 2-Isocyano-ethyl-kohlensäuremethylester werden in 50 ml Trifluorethanol suspendiert und bei 40 °C gerührt. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt und das Reaktionsprodukt durch Säulenchromatographie gereinigt. Man erhält das Reaktionsprodukt in 90%iger Ausbeute.

Beispiel 2: Herstellung von

2 mmol Reaktionsprodukt aus Beispiel 1 werden in 10 ml absolutem THF suspendiert und bei 25 $^{\circ}\text{C}$ 2 mmol Kalium-

tert.Butanolat zugegeben. Nach Beendigung der Reaktion wird das Reaktionsgemisch über eine kurze Kieselgelsäule filtriert. Das Lösungsmittel wird entfernt und das Reaktionsprodukt durch Säulenchromatographie gereinigt. Man erhält das Reaktionsprodukt in 85%iger Ausbeute.

Beispiel 3: Herstellung von

Jeweils 5 mmol Thyminylessigsäure, 9-(1,2-Dicarba-closo-dodecaboran)-nonanal, N-Boc-ethylendiamin und 2-Isocyano-ethyl-kohlensäuremethylester werden in 50 ml Trifluorethanol gelöst and bei 25 °C gerührt. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt.

Das Reaktionsgemisch wird durch Säulenchromatographie gereinigt. Man erhält das Reaktionsprodukt in 70%-iger Ausbeute.

Beispiel 4: Herstellung von

2 mmol Reaktionsprodukt aus Beispiel 3 werden in 10 ml 25 °C 2 mmol Natriumhydrid absolutem THF gelöst und bei zugegeben. Nach Beendigung der Reaktion wird Reaktionsgemisch über eine kurze Kieselgelsäule filtriert. Das Lösungsmittel wird entfernt und das Reaktionsprodukt durch Säulenchromatographie gereinigt. Man erhält das Reaktionsprodukt in 70%iger Ausbeute.

Beispiel 5: Herstellung von

Jeweils 5 mmol , (N⁴-Cbz-Cytosyl)essigsäure, Laurinaldehyd, N-2-Isocyano-ethyl-Boc-ethylendiamin und 50 kohlensäuremethylpolystyrolharz-ester in ml werden Trifluorethanol suspendiert und bei 25 °C gerührt. Beendigung der Reaktion wird das Lösungsmittel über eine Fritte Reaktionsgemisch mehrmals mit Methanol, entfernt und das eingestellten Methylenchlorid, einer auf Нq Natriumhydrogencarbonat-Lösung und Wasser gewaschen.

Man erhält das Reaktionsprodukt in 80%-iger Ausbeute (ermittelt durch bromometrische Bestimmung von nicht umgesetztem Isocyanid-Harz).

Beispiel 6: Herstellung von

mmol Reaktionsprodukt aus Beispiel 10 ml 5 werden in absolutem THF suspendiert und bei 25 °C 2 mmol Kaliumtert.Butanolat zugegeben. Nach Beendigung der Reaktion wird das Fritte entfernt und das Lösungsmittel über eine Reaktionsgemisch mehrmals mit Methanol, Methylenchlorid, einer auf pH = 9 eingestellten Natriumhydrogencarbonat-Lösung und Wasser gewaschen.

Man erhält das Reaktionsprodukt in 60%iger Ausbeute.

Beispiel 7: Herstellung von

Jeweils 5 mmol (N4-Cbz-Cytosyl)essigsäure, Laurinaldehyd, Boc-ethylendiamin und 2-Isocyano-ethyl-kohlensäurephenylylester werden in 50 ml Trifluorethanol gelöst und bei 25 °C gerührt. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt. Reaktionsgemisch wird durch Säulenchromatographie Das 80%-iger gereinigt. Reaktionsprodukt in Man erhält das Ausbeute.

Beispiel 8: Herstellung von

2 mmol Reaktionsprodukt aus Beispiel 7 werden in 10 ml absolutem THF gelöst und bei 25 $^{\circ}$ C 2 mmol Kalium-tert.Butanolat

Beendigung Reaktion wird das der Nach zugegeben. Reaktionsgemisch mit einer wäßrigen 1 molaren Kaliumhydroxid-Lösung versetzt und gerührt bis sich kein Reaktionsumsatz mehr feststellen läßt. Die Reaktionslösung wird neutralisiert und das Lösungsmittel entfernt. Das Reaktionsprodukt wird durch gereinigt. Man das Säulenchromatographie auf das Reaktionsprodukt in 70%iger Ausbeute bezogen Reaktionsprodukt aus Beispiel 7.

Beispiel 9: Herstellung von

1 mmol des Reaktionsproduktes aus Beispiel 6 werden in 10 ml absolutem Methylenchlorid suspendiert. Nach einer Quellzeit von Trifluoressigsäure und werden 5 mlMinuten Nach Beendigung der Trifluormethansulfonsäure zugefügt. Reaktion wird das Lösungsmittel über eine Fritte entfernt, das Reaktionszwischenprodukt mehrmals mit einer 20%-igen Lösung aus Methylenchlorid, N-Methylmorpholin, Dimethylsulfoxid in gewaschen und getrocknet. Methanol und Wasser in absolutem Reaktionszwischenprodukt wird 10 ml Methylenchlorid und 1 mmol Diisopropylethylamin suspendiert. Nach einer Quellzeit von 30 Minuten wird eine Lösung von 1 mmol N-(9-Flourenylmethoxycarbonyloxy) succinimid in 5 mlMethylenchlorid. Nach Beendigung der Reaktion wird das Reaktionsprodukt mehrmals mit Methylenchlorid, Methanol und Wasser gewaschen. Man erhält das Reaktionsprodukt in 96%-iger Ausbeute.

Beispiel 10: Herstellung von

1 mmol des Reaktionsproduktes aus Beispiel 8 werden in 10 ml Methylenchlorid suspendiert. Es werden absolutem Thiophenol zugefügt. und 1 mmolTrifluoressigsäure, Beendigung der Reaktion wird 2 ml rauchender Salzsäure zugefügt und anschließend das Lösungsmittel entfernt. Der Rückstand wird mehrmals mit Methylenchlorid und suspendiert Wasser extrahiert. Die wäßrige Phase wird eingeengt und getrocknet. wird in absolutem Reaktionszwischenprodukt suspendiert. Das Reaktionszwischenprodukt wird abfiltriert, getrocknet und anschließend in 10 ml absolutem Methylenchlorid und 1 mmol Diisopropylethylamin suspendiert. Es wird eine Lösung von 1 mmol N-(9-Flourenylmethoxycarbonyloxy) succinimid in 5 ml Methylenchlorid zugegeben. Nach Beendigung der Reaktion wird das Lösungsmittel entfernt und das Reaktionsprodukt durch erhält das Säulenchromatographie gereinigt. Man das auf 96%-iger Ausbeute bezogen Reaktionsprodukt in Reaktionsprodukt aus Beispiel 8.

Beispiel 11: Herstellung von

$$\begin{array}{c|c}
H-N & O \\
H & N \\
O & F \\
F \\
CH_{3} & F
\end{array}$$

Zu einer Suspension von 1 mmol des Reaktionsproduktes aus Beispiel 10 in 5 ml wasserfreien DMF werden 150 μ l Piperidin und 200 μ l Pentafluorophenyltrifluoroacetat zugefügt. Nach Beendigung der Reaktion wird der resultierende Niederschlag abfiltriert, mit Wasser und Ether gewaschen und getrocknet. Man erhält das Reaktionsprodukt in 80%-iger Ausbeute.

Beispiel 12: Herstellung von

Syntheseprotokoll:

Schritt 1: 100 mg Reaktionsprodukt aus Beispiel 6 werden in Methylenchlorid 12 h vorgequellt.

36

Schritt 2: tert.Butyloxycarbonyl-Entschützung am Peptidsyntheziser mit einer 50%-igen Lösung aus Trifluoressigsäure in Methylenchlorid (1:1 v/v, 2 ml, 1 x 2 Minuten, 1 x 30 min).

Schritt 3: Waschen mit Methylenchlorid (2 ml, 4 x 20 Sekunden). Schritt 4: Neutralisation mit DIPEA/Methylenchlorid (1:19 v/v,

2 ml, 2 x 3 min). Schritt 5: Waschen mit Methylenchlorid (2 ml, 2 x 20 Sekunden),

waschen mit DMF (2 ml, 3 x 20 Sekunden). Schritt 6: Zufügen von 4 Aquivalenten HBTU und Diethylcyclohexylamin in DMF/Pyridin (1:1 v/v) und 4 Aquivalenten Reaktionsprodukt aus Beispiel 8.

Schritt 7: Waschen mit DMF (2 ml, 3 x 20 Sekunden) und Methylenchlorid (3 ml, 3 x 20 Sekunden).

Schritt 8: Capping mit einer Lösung aus 0,5 M Essigsaureanhydrid/0,5 M DMF

Schritt 9: Waschen mit DMF (2 ml, 3 x 20 Sekunden) und Methylenchlorid (3 ml, 3 x 20 Sekunden).

Schritt 8: Wiederholen des Synthesezyklus ab Schritt 2.

Schritt 9: Trocknen im Stickstoffstrom.

Man erhält das Reaktionsprodukt in 97%-iger Ausbeute

Beispiel 12: Herstellung von

Syntheseprotokoll:

Schritt 1: 50 μ mol Reaktionsprodukt aus Beispiel 9 werden in einer Lösung aus 20% DMSO in NMP 12 h vorgequellt.

Schritt 2: Fmoc-Entschützung am Peptidsyntheziser mit einer Lösung aus Piperidin (30%/v) und DMSO (20%/v) in NMP $(3 \times 5 \text{ Minuten})$.

Schritt 3: Waschen mit 20% DMSO in NMP.

Schritt 4: 0,1 mmol Reaktionsprodukt aus Beispiel 11 gelöst in 20% DMSO in NMP werden zugeführt (1 \times 30 min).

Schritt 5: Waschen mit 20% DMSO in NMP.

Schritt 6: Capping mit einer Lösung aus 0,5 M Essigsäureanhydrid und 0,5 M DIEA in NMP (1,5 ml).

Schritt 7: Waschen mit 20% DMSO in NMP.

schritt 8: Wiederholung der Schritte 2 bis 7.

Schritt 9: Waschen mit 20% DMSO in NMP, Methylenchlorid.

Schritt 10: Trocknen im Stickstoffstrom.

Man erhält das Reaktionsprodukt in 95%-iger Ausbeute

Patentansprüche

1. Verbindungen der allgemeinen Formel II

worin B'eine Gruppe der Formel,

D eine Gruppe der Formel,

ist,

die Reste R^{10} bis R^{13} und R^{15} bis R^{16} jeweils maximal 20 C-Atome umfassen und unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkaryl-, Aryl-, alicyclische Reste, Alkinyl-, heteroalicyclische oder Heteroarylreste mit bis Heteroatomen [Heteroatome sind O, N, S] sind, und optional jeweils zwei der Reste \mathbb{R}^{10} bis \mathbb{R}^{13} und \mathbb{R}^{15} bis \mathbb{R}^{16} , die durch bis Kohlenstoffatome voneinander getrennt zwei Bestandteile eines gemeinsamen Ringsystems sind, wobei das oder unsubstituierten Ringsystem einen substituierten alicyclischen Monocyclus (5-8 Ringatome), einen

heteroalicyclischen Monocyclus (5-8 Ringatome mit bis zu 2 Heteroatomen [O, N, S]), einen alicyclischen Bicyclus (7-14 Ringatome), oder einen heteroalicyclischen Bicyclus (7-14 Ringatome mit bis zu 4 Heteroatomen [O, N, S]) umfaßt,

E eine natürliche oder nichtnatürliche gegebenenfalls mit Schutzgruppen substituierte, zur Watson-Crick- oder Hoogsteen-Basenpaarung fähige Nukleobase ist,

P ein H-Atom oder, eine in Gegenwart der Nukleobasen-Schutzgruppen X^1 bis X^4 selektiv abspaltbare Schutzgruppe ist,

der Rest R¹⁷ ein H-Atom ist oder maximal 20 C-Atome umfaßt und ein gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierter oder unsubstituierter Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclischer Rest, heteroalicyclischer oder Heteroarylrest mit bis zu 4 Heteroatomen [Heteroatome sind O, N, S] ist,

die Reste R1 und R2 jeweils maximal 40 C-Atome umfassen und unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclische Reste, heteroalicyclische oder Heteroarylreste mit bis zu 4 Heteroatomen [Heteroatome sind O, S] sind, und optional Bestandteile eines gemeinsamen Ringsystems sind, wobei das Ringsystem 1-6 Arylringe, Cycloalkylringe, Cycloalkylringe mit Heteroatomen Arylringe mit Heteroatomen [O, N, S] umfaßt.

2. Verbindungen der allgemeinen Formel \underline{II} nach Anspruch 1, dadurch gekennzeichnet, daß die Reste R^{10} bis R^{13} unabhängig voneinander H-Atome, mit einem oder mehreren Bor-Atomen oder Carbaboranen substituierte oder unsubstituierte C_1 - C_{20} Alkyl-

oder Arylreste sind, und optional jeweils zwei der Reste R^{10} bis R^{13} , die durch bis zu zwei Kohlenstoffatome voneinander getrennt sind, Bestandteile eines gemeinsamen Ringsystems sind, wobei dieses Ringsystem ein Phenyl-, Cyclohexyl- oder ein Cyclopentyl-Ring ist.

- 3. Verbindungen der allgemeinen Formel \underline{II} nach Anspruch 1, dadurch gekennzeichnet, daß die Reste R^{15} bis R^{16} unabhängig voneinander H-Atome, mit einem oder mehreren Bor-Atomen oder Carbaboranen substituierte oder unsubstituierte C_1 - C_{20} Alkyloder Arylreste sind, und optional jeweils zwei der Reste R^{15} bis R^{16} , die durch bis zu zwei Kohlenstoffatome voneinander getrennt sind, Bestandteile eines gemeinsamen Ringsystems sind, wobei dieses Ringsystem ein Phenyl-, Cyclohexyl- oder ein Cyclopentyl-Ring ist.
- 4. Verbindungen der allgemeinen Formel II nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rest E N^2 -Acetyl-Guanyl-, N^2 -Isobutyryl-Guanyl-, Benzyloxycarbonyl-Guanyl-, N2-(4-Methoxyphenyl)-diphenylmethyl-Guanyl-, N2-Benzhydryloxycarbonyl-Guanyl-, ${\tt Benzyloxycarbonyl-Adenyl-,\ N^{6}-(4-Methoxyphenyl)-diphenylmethyl-}$ Adenyl-, N⁶-Anisoyl-Adenyl-, N⁶-Benzhydryloxycarbonyl-Adenyl-, $(X^1$ ist ein H-Atom), N²-Acetyl-O⁶-O⁵-Benzylguanyldiphenylcarbamoyl-Guanyl-, N2-Isobutyryl-O9-diphenylcarbamoyl-Guanyl-, N^2 -Benzyloxycarbonyl- O^6 -diphenylcarbamoyl-Guanyl-, N^2 -(4-Methoxyphenyl) -diphenylmethyl-O'-diphenylcarbamoyl-Guanyl-, N^2 -Benzhydryloxycarbonyl- O^6 -diphenylcarbamoyl-Guanyl-, Benzyloxycarbonyl-Cytosyl-, N^4 -(4-Methoxyphenyl)diphenylmethyl-Cytosyl-, N^4 -4-tert.Butylbenzoyl-Cytosyl-, Benzhydryloxycarbonyl-Cytosyl-, N²-Benzyloxycarbonyl-Pseudoisocytosyl-, N^2 -(4-Methoxyphenyl)-diphenylmethyl-Pseudoisocytosyl-, N²-4-tert.-Butylbenzoyl-Pseudoisocytosyl-, N^2 -Benzhydryloxycarbonyl-Pseudoisocytosyl-Rest ist,
- 5. Verbindungen der allgemeinen Formel <u>II</u> nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß P ein H-

Atom, eine 9-Fluorenylmethyloxycarbonyl, tert.Butyloxycarbonyl, Benzyloxycarbonyl-, (4-Methoxyphenyl)-diphenylmethyl-, Benzhydryloxycarbonyl-Schutzgruppe ist.

- 6. Verbindungen der allgemeinen Formel <u>II</u> nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rest R^{17} ein H-Atom, Allyl-, Benzyl, Ethyl-, Methyl-, 2,2,2-Trichlor-tert.butyl-, 2,2,2-Trichlorethyl-, α -Chloro-(trifluormethyl)benzyl-, 2-(p-Toluolsulfonyl)ethyl-, Diphenyl-methyl-, 2-(Trimethylsilyl)ethyl-, Methoxymethyl-, (2-Trimethylsilyl)ethoxymethyl-, Benzyloxymethyl- oder ein (2-Methoxy)ethyloxymethyl-Rest ist.
- 7. Verbindungen der allgemeinen Formel \underline{II} nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rest R^{17} an ein konventionelles, in der organischen Festphasensynthese angewendeten Festphasenharz gebunden ist.
- 8. Verbindungen der allgemeinen Formel $\overline{\textbf{II}}$ nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rest R^{17} an ein Polystyrol-divinylbenzol-, Polyethylenglycol-, Polyethylenglycol-polystyrol-Harz gebunden ist.
- 9. Verbindungen der allgemeinen Formel <u>II</u> nach einem der orstehenden Ansprüche, dadurch gekennzeichnet, daß die Reste R¹ und R² unabhängig voneinander H-Atome sind oder jeweils maximal 20 C-Atome umfassen und gegebenenfalls mit einem oder mehreren Boroatomen oder Carbaboranen substituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl- oder alicyclische Reste sind, und optional Bestandteile eines gemeinsamen Ringsystems sind, wobei das Ringsystem 1-3 Arylringe oder Cycloalkylringe umfaßt.
 - 10. Verbindungen der allgemeinen Formel \underline{II} nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Reste R^1 und R^2 unabhängig voneinander H-Atome sind oder jeweils

maximal 20 C-Atome umfassen und unsubstituierte Alkyl-, Alkenyl-, Alkinyl- oder alicyclische Reste sind.

11. Verbindungen der allgemeinen Formel <u>II</u> nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Reste R¹ und R² unabhängig voneinander H-Atome sind oder jeweils maximal 20 C-Atome umfassen und mit einer tert.Amino-, Carbonsäureester-, Carbonsäure-, Sulfonsäure-, Sulfonsäure-, Sulfonsäure-, Harnstoff-Funktion substituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclische Reste, heteroalicyclische oder Heteroarylreste mit bis zu 4 Heteroatomen (Heteroatome sind O, N, S) sind.

12. Verbindungen der allgemeinen Formel \underline{XI}

 \mathbf{XI}

worin

n eine ganze Zahl zwischen 0 und 60,

 B^{1} bzw. B^{1} bis B^{n+1} unabhängig voneinander eine Gruppe der Formel,

D bzw. D^1 bis D^{n+1} unabhängig voneinander eine Gruppe der Formel,

ist,

die Reste R^{10} bis R^{13} , R^{15} bis R^{16} , R^{17} , P und E wie in Anspruch 1 definiert sind, und die Reste R^{1} , R^{2} , $R^{1,1}$ bis $R^{1,n+1}$ bzw. $R^{2,1}$ bis $R^{2,n+1}$ unabhängig

die Reste R', R', R'' bis R''''' bis R'''''' unabhängig voneinander wie die Reste R^1 und R^2 aus Anspruch 1 definiert sind.

- 13. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß die Reste R^{10} bis R^{13} innerhalb jeder Gruppe B bzw. B^1 bis B^{n+1} unabhängig voneinander wie die Reste R^{10} bis R^{13} aus Anspruch 2 definiert sind.
 - 14. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß die Reste R^{15} bis R^{16} innerhalb jeder Gruppe D bzw. D^1 bis D^{n+1} unabhängig voneinander wie die Reste R^{15} bis R^{16} aus Anspruch 3 definiert sind.
- 15. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß der Rest E innerhalb jeder Gruppe D bzw. D^1 bis D^{n+1} unabhängig voneinander wie der Rest E aus Anspruch 4 definiert ist.
 - 16. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß der Rest P wie in Anspruch 5 definiert ist.
 - 17. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß der Rest \mathbb{R}^{17} wie in Anspruch 6 definiert ist.

- 18. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß der Rest R^{17} wie in "Anspruch 7 definiert ist.
- 19. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß der Rest R^{17} wie in Anspruch 8 definiert ist.
- 20. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß die Reste R^1 , R^2 , $R^{1,1}$ bis $R^{1,n+1}$ bzw. $R^{2,1}$ bis $R^{2,n+1}$ unabhängig voneinander wie die Reste R^1 und R^2 aus Anspruch 9 definiert sind.
- 21. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß die Reste R^1 , R^2 , $R^{1,1}$ bis $R^{1,n+1}$ bzw. $R^{2,1}$ bis $R^{2,n+1}$ unabhängig voneinander wie die Reste R^1 und R^2 aus Anspruch 10 definiert sind.
- 22. Verbindungen der allgemeinen Formel \underline{XI} nach Anspruch 12, dadurch gekennzeichnet, daß die Reste R^1 , R^2 , $R^{1,1}$ bis $R^{1,n+1}$ bzw. $R^{2,1}$ bis $R^{2,n+1}$ unabhängig voneinander wie die Reste R^1 und R^2 aus Anspruch 11 definiert sind.
- 23. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel XI, dadurch gekennzeichnet, daß von einer Verbindung der allgemeinen Formel II im ersten Schritt die Schutzgruppe am N-Terminus entfernt wird, in einem zweiten Schritt eine entschützte Verbindung der allgemeinen Formel II am N-Terminus mit dem C-Terminus einer weiteren N-terminal geschützten Verbindung der allgemeinen Formel II gekuppelt wird, im dritten Schritt nicht gekuppelte, entschützte Verbindungen allgemeinen Formel ${f II}$ durch Capping aus dem Synthesezyklus entfernt werden, durch Wiederholen der Schritte eins bis drei ein PNA-Oligomer der allgemeinen Formel XI aufgebaut wird und im abschließenden Schritt gegebenenfalls alle Schutzgruppen entfernt werden.

- 24. Vorgang, dadurch gekennzeichnet, daß Verbindungen der allgemeinen Formel XI nach einem der vorstehenden Ansprüche aufgrund ihrer Zellgängigkeits- bzw. Löslichkeitseigenschaften Membrane von Zellen oder Viren durchdringen und im Inneren an ein Polynukleotid binden.
- 25. Vorgang, dadurch gekennzeichnet, daß Verbindungen der allgemeinen Formel XI nach einem der vorstehenden Ansprüche wasserlöslich sind.
- 26. Vorgang, dadurch gekennzeichnet, daß Verbindungen der allgemeinen Formel XI nach einem der vorstehenden Ansprüche, die mit einem oder mehreren Bor-Atomen oder Carbaboranen substituiert sind innerhalb einer Zelle oder eines Virus an ein Polynukleotid binden und durch Bor-Neutronen-Einfang-Therapie die Zelle oder das Virus zerstören.

Zusammenfassung

Die vorliegende Erfindung betrifft PNA-Monmere der allgemeinen Formel $\underline{\text{II}}$ und daraus resultierende PNA-Oligomere der allgemeinen Formel XI

 \mathbf{XI}

worin

B eine Gruppe der Formel,

D eine Gruppe der Formel,

ist,

die Reste R^{10} bis R^{13} und R^{15} bis R^{15} jeweils maximal 20 C-Atome umfassen und unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkaryl-, Aryl-, alicyclische Alkinyl-, heteroalicyclische oder Heteroarylreste bis mit zu 4 Heteroatomen [Heteroatome sind O, N, S] sind, und optional jeweils zwei der Reste R10 bis R13 und R15 bis R16, die durch bis Kohlenstoffatome voneinander getrennt zu zwei

Bestandteile eines gemeinsamen Ringsystems sind, wobei das Ringsystem einen substituierten oder unsubstituierten alicyclischen Monocyclus (5-8 Ringatome), einen heteroalicyclischen Monocyclus (5-8 Ringatome mit bis zu 2 Heteroatomen [O, N, S]), einen alicyclischen Bicyclus (7-14 Ringatome), oder einen heteroalicyclischen Bicyclus (7-14 Ringatome mit bis zu 4 Heteroatomen [O, N, S]) umfaßt,

E eine natürliche oder nichtnatürliche gegebenenfalls mit Schutzgruppen substituierte, zur Watson-Crick- oder Hoogsteen-Basenpaarung fähige Nukleobase ist,

P ein H-Atom oder, eine in Gegenwart der Nukleobasen-Ichutzgruppen X^1 bis X^4 selektiv abspaltbare Schutzgruppe ist,

der Rest R¹⁷ ein H-Atom ist oder maximal 20 C-Atome umfaßt und ein gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierter oder unsubstituierter Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclischer Rest, heteroalicyclischer oder Heteroarylrest mit bis zu 4 Heteroatomen [Heteroatome sind O, N, S] ist,

die Reste R¹ und R² jeweils maximal 40 C-Atome umfassen und unabhängig voneinander H-Atome, gegebenenfalls mit einem oder mehreren Heteroatomen (Heteroatome sind N, O, S, Si, P, B, Hal) substituierte oder unsubstituierte Alkyl-, Alkenyl-, Alkinyl-, Alkaryl-, Aryl-, alicyclische Reste, heteroalicyclische oder Heteroarylreste mit bis zu 4 Heteroatomen (Heteroatome sind O, N, S) sind, und optional Bestandteile eines gemeinsamen Ringsystems sind, wobei das Ringsystem 1-6 Arylringe, Cycloalkylringe, Cycloalkylringe mit Heteroatomen oder Arylringe mit Heteroatomen [O, N, S] umfaßt, mit der Maßgabe, daß R¹ und R² nicht gleichzeitig H-Atome sind oder nicht Substituenten sind, die zusammen dem Substitutionsmuster einer natürlichen Aminosäure entsprechen und die Reste R¹, R², R^{1,1} bis R^{1,n+1} bzw. R^{2,1} bis R^{2,n-1} unabhängig voneinander wie die Reste R¹ und R² definiert sind.