PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-148853

(43) Date of publication of application: 02.06.1998

(51)Int.Cl.

G02F 1/17 G02F 1/35

(21)Application number : 08-306707

(71)Applicant: DAINICHISEIKA COLOR & CHEM

MFG CO LTD

VICTOR CO OF JAPAN LTD

(22)Date of filing:

18.11.1996

(72)Inventor: TANAKA NORIO

TAKARADA SHIGERU

YANAGIMOTO HIROMITSU

TSUJITA KOJI **UENO ICHIRO**

(54) LIGHT-CONTROLLING METHOD AND LIGHT-CONTROLLING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain

photoresponsiveness with enough large intensity and good reproducibility by constituting an optical element of a photoresponding compsn. containing one kind of specified pericondensed polycyclic aromatic compd. SOLUTION: Optical paths of control light and signal light are arranged in such a manner that the control light and signal light are independently converged to irradiate an optical element and that the area near the focus having the highest photon density of each light overlaps each other in the optical element. The optical element consists of a photoresponding compsn. containing one kind of pericondensed polycylic aromatic compd. expressed by formulae I to VIII. In formulae, RN1 to RN6 are

independently hydrogen atoms, hydroxyl groups, univalent substituents derived from compds. of group IV elements (C, Si, Ge, Sn, Pd), RC1 to RC48 are hydrogen atoms, compds. of group IV elements, compds. of group V elements (N, P, As, Sb, Bi), compds. of groups. of

Searching PAJ Page 2 of 2

groups Vi elements (O, S, Se, Te, Po) or univalent substituents derived from group VII elements (F, Cl, Br, I), Z1 to Z10 are residues each of which is bonded to two nitrogen atoms to form a condensed heteroring.

LEGAL STATUS

[Date of request for examination]

29.11.2002

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

3471181

[Date of registration]

12.09.2003

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号

特開平10-148853

(43)公開日 平成10年(1998)6月2日

(51) Int.CL ⁶		織別紀号	ΡI		
G02F	1/17		G02F	1/17	
	1/35	504		1/35	504

審査請求 未請求 請求項の数17 OL (全 50 頁)

(21)山蘇番号	特顯平3-306707	(71)出顧人 000002820
		大日精化工業株式会社
(22)出顧日	平成8年(1996)11月18日	京京都中央区日本機馬喰町1丁目7番6号
		(71)出廢人 000004329
		日本ビクター株式会社
		神奈川県横浜市特奈川区守屋町 3 丁目12番
		地
		(72)発明者 田中 教雄
		京京都足立区堀之内1丁目9番4号 大日
		特化工業株式会社東京製造事業所内
		(74)代理人 弁理士 育田 研二 (外2名)
		最終質に続く

(54) 【発明の名称】 光制御方法および光制御装置

(57)【要約】

【目的】 充分な大きさおよび速度の光応答を再現性良く光応答性の光学素子から引き出すような光制御方法もよび光制御装置を提供する。

【構成】 光源1から制御光が、光源2から信号光が射出する。制御光および信号光は集光レンズ7で収束され、光学素子8に照射される。受光レンズ9および波長選択透過フィルター20を経て光検出器22で信号光のみが検出される。制御光のON、OFFにより信号光の透過率が可逆的に増減し、信号光の強度変調が実現する。受光レンズの関口数を集光レンズの関口数よりも実質的に小さく設定することにより、充分な大きさおよび速度の光応答をペリ縮台多項芳香族化合物を含有する光応答性の光学素子から引き出すことが可能となる。

特闘平10-148853

(2)

【特許請求の範囲】

【請求項1】 光応答性組成物から成る光学素子に、前記光学素子が感応する波長の制御光を照射し、制御光とは異なる波長帯域にある信号光の透過率および/または屈折率を可逆的に変化させることにより前記光学素子を透過する前記信号光の強度変調および/または光東密度変調を行う光制御方法において、

1

前記制御光および前記信号光を各々収束させて前記光学 素子へ照射し、かつ、前記制御光および前記信号光のそれぞれの焦点近傍の光子密度が最も高い領域が前記光学 素子中において互いに重なり合うように、前記制御光および前記信号光の光路をそれぞれ配置した光制御方法であり。

見に、前記光学素子が、下記の式[1]から[8]のいずれかで表されるペリ縮合多環芳香族化合物の少なくとも1種類を含有する光応答性組成物から成ることを特徴とする光制御方法。

[(t1)

Z 2 N Z 1 ... [2]

(式[2] 中において、

2 および 2 は、各々、2 つの 窒素原子と結合して縮合 複素原を形成する残基を表し、これらの残基が置換基を 有する場合を含み、 ※ R^{**}ないしR^{**}は、式[1]におけるR^{**}ないしR^{**}と 同義である。)【化3】

Z:4 N C3 W C3 W C3

(式[3] 中において、

2¹およびZ¹は、各々、式 [2] における2¹またはZ¹ と同義であり、 R**ないしR***は、式[1]におけるR**ないしR** と同義である。) 【化4】

* (式[1] 中において、

R***およびR***は、各々、水素原子、水酸基、アミノ基、面換アミノ基、第1V族元素(C、Sェ, Ge, Sn、Pb)の化合物から導かれる1価の置換基を表し、R**ないしR***は、各々、水素原子、第1V族元素(C、Sェ, Ge, Sn、Pb)の化合物、第V族元素(N、P, As、Sb, Bi)の化合物、第VI族元素(O、S, Se、Te, Po)の化合物、または、第ViI族元素(F、Cl, Br, I)から導かれる1価の置換基を表し、これらの置換基は互いに相異なる場合、また、隣接する2個の置換基が互いに結合して環を形成する場合を含む。)【化2】

4/21/2005

特開平10-148853

(式[8] 中において、

210は、式[2]における21または21と同義であり、 R**な、式[1]におけるR**またはR**と同義であ

R***ないしR***は、式[1]におけるR**ないしR** と同義である。)

【請求項2】 請求項1記載の光制御方法において、 前記制御光および前記信号光を前記光学素子中において **箕賀的に同一光路で伝搬させることを特徴とする光制御** 方法。

【請求項3】 請求項1または2記載の光制御方法にお いて

前記光学素子を透過した後、発散していく信号光光線束 のうち、前記強度変調および/または光束密度変調を強 く受けた領域の信号光光線束を分別して取り出すことを 特徴とする光制御方法。

【請求項4】 請求項1または2記載の光制御方法にお しって、

前記光学素子を透過した後、発散していく信号光光線束 を、前記信号光光線束の発散角度よりも小さい角度範囲 《開口角》で取り出すことによって、前記強度変調およ び/または光東密度変調を強く受けた領域の信号光光線 東を分別して取り出すことを特徴とする光制御方法。

【請求項5】 請求項1から4のいずれか記載の光制御 方法において、

前記制御光および前記信号光のそれぞれの焦点位置と前 記光学素子との位置関係を変化させることにより、

前記制御光の照射によって、前記光学素子を透過した前 記信号光の見かけの強度が減少する方向の光応答と、前 記信号光の見かけの強度が増大する光応答との、どちら か一方を選択して取り出すことを特徴とする光制御方 法。

【請求項6】 請求項1から5のいずれか記載の光制御 方法において、

前記光応答性組成物が液体であり、かつ、前記液状光応 答性組成物を充填した光学セルを前記光学素子として用 いることを特徴とする光制御方法。

【韻求項7】 請求項6記載の光制御方法であって、 前記液状光応答性組成物が揮発性溶剤を含有することを 特徴とする光制御方法。

【請求項8】 光応答性組成物から成る光学素子に、前

は異なる波長帯域にある信号光の透過率および/または 屈折率を可逆的に増減させることにより前記光学素子を 透過する前記信号光の強度変調および/または光束密度 変調を行う光制御方法に用いられる光制御装置であっ

前記制御光および前記信号光を各々収束させる収束手段 を有し、収束された前記制御光ねよび前記信号光のそれ ぞれの焦点近傍の光子密度が最も高い領域が互いに重な り合うように、前記制御光および前記信号光の光路をそ れぞれ配置し、かつ、前記光学素子は、収束された前記 制御光ねよび前記信号光のそれぞれの焦点近傍の光子密 20 度が最も高い領域が互いに重なり合う位置に配置され、 夏に、前記光学素子が、前記の式[1]から[8]のい ずれかで表されるペリ縮合多端芳香族化合物の少なくと も1種類を含有する光応答性組成物から成ることを特徴 とする光制御装置。

【請求項9】 請求項8記載の光制御装置において、 更に、前記制御光ねよび前記信号光が前記光学素子中に おいて実質的に同一光路で伝鐵するような光路配置を有 することを特徴とする光副御装置。

【請求項】() 】 請求項8または9記載の光制御装置 30 GJ&UT

前記光学素子を透過した後、発散していく信号光光線束 のうち、前記強度変調および/または光束密度変調を強 く受けた領域の信号光光線束を分別して取り出す手段を 有することを特徴とする光副御装置。

【請求項11】 請求項1)記載の光制御装置におい

前記強度変調および/または光束密度変調を強く受けた 領域の信号光光線束を分別して取り出す手段として、 前記光学素子へ前記信号光を収束させて入射させる際に 用いた収束手段の関口数よりも小さい開口数の収束手段 を用いることを特徴とする光制御装置。

【請求項12】 請求項10記載の光制御装置におい

前記強度変調および/または光束密度変調を強く受けた 領域の信号光光線束を分別して取り出す手段として、 絞りを用いることを特徴とする光制御装置。

【請求項13】 請求項8から12のいずれか記載の光 制御装置において、

前記制御光ねよび前記信号光のそれぞれの焦点位置と前 記光学素子が感応する波長の制御光を照射し、制御光と 50 記光学素子との位置関係を変化させる移動手段を有し、

(5)

前記移動手段を用いることによって、前記制御光および 前記信号光のそれぞれの魚点位置と前記光学素子との位 置関係を変化させることにより、前記制御光の照射によって前記光学素子を透過した前記信号光の見かけの強度 が減少する方向の光応答と、前記信号光の見かけの強度 が増大する光応答との、どちらか一方を選択して取り出 すことを特徴とする光制御装置。

7

【請求項14】 請求項8から13のいずれか記載の光 制御装置において、

前記光学素子を透過してきた信号光と制御光の混合光 を、信号光と制御光とに分離する手段を有することを特 欲とする光制御装置。

【請求項15】 請求項8から14のいずれか記載の光 制御終置において、

前記光応答性組成物が液体であり、かつ、前記液状の光 応答性組成物を充填した光学セルを前記光学素子として 用いることを特徴とする光制御装置。

【請求項16】 請求項15記載の光副御装置において

前記波状光応答性組成物が揮発性溶剤を含有することを 20 特徴とする光詞御装置。

【請求項17】 請求項8から16のいずれか記載の光制御鉄置において、前記制御光および前記信号光を各々収束させる前記収束手段。および/または、前記光学素子中の前記光応答性組成物を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段、および/または、前記光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段が、前記光学素子に組み込まれた構造を有することを特徴とする光制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば光通信、光情報 処理などの光エレクトロニクスおよびフォトニクスの分 野において有用な、光応答性組成物から成る光学素子を 用いる光制御方法および光制御装置に関するものであ ス

[0002]

調を行うための「空間光変調器」が極めて重要であり、 ことへも光・光詞御方法の適用が期待される。

【00003】光・光制御方法への応用が期待される現象としては可飽和吸収、非線形屈折、フォトリフラクティブ効果などの非線形光学効果、およびフォトクロミック現象が広く注目を集めている。

【①①①4】一方、第一の波長帯域の光で励起された分 子が、分子構造の変化を伴わずに、第一の波長帯域とは 異なる第二の波長帯域において新たに光吸収を起こす現 16 象も知られており、これを「励起状態吸収」または「誘 導吸収」、あるいは「過渡吸収」と呼ぶことができる。 【①①①5】励起状態吸収の応用を試みた例としては、 例えば、特闘昭53-137884号公報にはポルフィ リン系化合物と電子受容体を含んだ溶液または固体に対 して波長の異なる少なくとも2種類の光線を照射し、こ の照射により一方の波長の光線が有する情報を他方の光 **級の被長に移すような光変換方法が開示されている。ま** た。特開昭55-100503号公報および特開昭55 -108603号公報にはポルフィリン誘導体などの有 機化合物の基底状態と励起状態の間の分光スペクトルの 差を利用し、励起光の時間的な変化に対応して伝搬光を 選択するような機能性の液体コア型光ファイバーが関示 されている。また、特開昭63-89805号公報には 光によって励起された三重項状態から更に上位の三重項 状態への遷移に対応する吸収を有するポルフィリン誘導 体などの有機化合物をコア中に含有しているプラスチッ ク光ファイバーが関示されている。また、特闘昭63-236013号公報にはクリプトシアニンなどのシアニ ン色素の結晶に第一の波長の光を照射して分子を光励起 した後、第一の波長とは異なる第二の波長の光を前記分 子に照射し、第一の波長の光による光励起状態によって 第二の波長の光の透過または反射をスイッチングするよ うな光機能素子が開示されている。また、特開昭64-73326号公報にはボルフィリン誘導体などの光誘起 電子移動物質をマトリックス材料中に分散した光変調媒 体に第一および第二の波長の光を照射して、分子の励起 状態と基底状態の間の吸収スペクトルの差を利用して光 変調するような光信号変調媒体が関示されている。

【0006】とれら従来技術で用いられている光学装置 の構成としては、特開昭55-100503号公報、特 開昭55-108603号公報、および特開昭63-8 9805号公報には伝搬光の伝播する光ファイバーを励起光の光源(例えばフラッシュランプ)の周囲に巻きつけるような装置構成が開示されており、特開昭53-137884号公報および特開昭64-73326号公報には光応答性光学素子内部の信号光に相当する光の伝播している部分全体に信号光の光路とは別の方向から制御光に相当する光を収束させることなくむしろ投射レンズなどの手段によって発散させて照射するような装置構成 50 が開示されている

4/21/2005

(5)

[0007]

【発明が解決しようとする課題】しかしながら、以上のような従来技術においては、実用に足りる大きさの透過率変化または屈折率変化(光応答)を引き起こすためには非常に高密度の光パワーを必要としたり、光照射に対する応答が遅かったり、光応答材料の耐久性が低かったりするため、実用に至るものは未だ得られていないのが現状である。

【0008】本出類人は、上記従来技術の有する課題を 解消し、できる限り低い光パワーで充分な大きさおよび 10 速度の光応答を光応答性の光学素子から引き出すような 光副加方法および光制御鉄圏に関する特許(特願平7 -25618、8-151133、8-239314)お よび光応答性付斜に関する特許(特願平7 - 5841 3、7-58414)を出願した。

【0009】本発明は、上記課題を解決し、光応答を充分な大きさで再現性良く得るための光制御方法および光制御続置を提供することを目的とする。

[0010]

【課題を解決するための手段】上記目的を達成するため 20 に、本願の請求項1記載の発明に係る光制御方法は、光 応答性組成物から成る光学素子に、前記光学素子が感応する被長の制御光を照射し、制御光とは異なる被長帯域にある信号光の透過率および/または屈折率を可避的に変化させることにより前記光学素子を透過する前記信号光の強度変調および/または光泉密度変調を行う光制御方法において、前記制御光および前記信号光を各々収泉させて前記光学素子へ照射し、かつ、前記制御光および前記信号光のそれぞれの怠点近傍の光子密度が最も高い*

19

* 領域が前記光学素子中において互いに重なり合うよう に、前記制御光および前記信号光の光路をそれぞれ配置 した光制御方法であり、更に、前記光学素子が、下記の 式[1]から[8]のいずれかで表されるペリ稿合多環 芳香族化合物の少なくとも1種類を含有する光応答性組 成物から成ることを特徴とする。

[0011]

(式 [1] 中において、R**およびR**は、各々、水素原子、水融基、アミノ基、置換アミノ基、第 | V族元素(C、Si, Ge, Sn、Ph)の化合物から導かれる 1 価の置換基を表し、R**ないしR**は、各々、水素原子、第 | V族元素(C, Si, Ge、Sn, Ph)の化合物、第 V | K東元素(N, P、As, Sh, Bi)の化合物、第 V | K東元素(P, C1, Br、I)から導かれる 1 価の置換基を表し、これらの置換基は互いに相異なる場合、また、隣接する 2 個の置換基が互いに結合して環を形成する場合を含む。)

[(k10]

(式[3] 中において、Z'およびZ'は、各々、式 R^{c1}は、式[1]におけるR^{c1}ないしR^{c1}と同義であ[2]におけるZ¹または2¹と同義であり、R^{c2}ないし 50 る。)

(7)

特闘平10-148853

12

【化12】

(式[4] 中において、R**およびR**は、各々、式 19*である。)

[1] におけるR***またはR***と同義であり、R***な 【化13】

r E. w

いしR^{cco}は、式[1]におけるR^{cc}ないしR^{cc}と同義 *

11

(式[5]中において、Z'および2°は、各ヶ、式 [2]におけるZ'または2'と同義であり、R'''ない

※ある。} 【化14】

UR***は、式[1]におけるR**ないUR**と同義で※

Z 8 N C33 RC34 RC35 RC36 N ... [6]

(式[6]中において、2"および2"は、各々、式

★ある。}

[2]におけるZ¹またはZ¹と同義であり、R°゚゚ない

【化15】

しR***は、式[1]におけるR**ないしR**と同義で★

Z⁹ N R^{C38} R^{C40} O ... [7]

(式[7]中において、2"は、式[2]における2"ま

[1]におけるR**ないしR**と同義である。)

たは乙゚と同義であり、R"゚は、式[1]におけるR"゚

[ft16]

またはR***と同義であり、R***ないしR****は、式

(式[8] 中において、Z¹⁰は、式[2]における2³ または2*と同義であり、R**は、式[1]におけるR ***またはRN2と同義であり、R***ないしR***は、式 [1]におけるR⁽¹ないしR⁽¹と同義である。) 前記の式[1]ないし[8]において、第17族元素 (C. Si, Ge, Sn. Ph) の化合物から導かれる 1価の置換基 (R**ないしR**、R**ないしR***)の 具体例は、例えば、メチル蟇、エチル蟇、プロビル基、 イソプロピル蟇」シクロプロピル基。n-ブチル基、s e c - ブチル基、 t e r t - ブチル基、n - ペンチル 基。シクロペンチル基、ネオペンチル基、シクロヘキシ ル基。n-ヘキシル基。n-ヘブチル基。n-オクチル「20」トキシ基。n-ブトキシ基。n-ペントキシ基。n-ヘ 基。イソオクチル基、n-ノニル基。n-デシル基、n -ウンデシル基、n-ドデシル基、n-オクタデシル 基。ビニル基。2-プロペニル基、ベンジル基。フェニ ル墓」ピフェニル基、ナフチル基、アントリル墓。2, 4-ジメトキシフェニル蟇」ピリジル蟇、メトキシ基、 エトキシ基、n-ブトキシ基、n-ベントキシ基、n-ヘキシルオキシ蟇、n-ヘプトキシ蟇、n-オクチルオ キシ蟇、n-ノニルオキシ蟇、n-デシルオキシ蟇、n ウンデシルオキシ基、n-ドデシルオキシ基、n-オ クタデシルオキシ基、ベンジルオキシ基、フェノキシ 基。アセチル蟇。メトキシカルボニル蟇、ベンゾイル 基。カルボキシル基(-COO目)。カルバモイル基 (-CON目2)、シアノ基、トリメチルシリル基、ジ メチルフェニルシリル基。トリメチルシロキシ墓。トリ メチルゲルミル墓、メチルジフェニルゲルミル墓。トリ メチル銀基、トリエチル鉛基などの他、芳香族炭化水素 または複素環化合物から導かれる1個の基などである。 これらのうち、カルボキシル基は金属塩を形成していて も良く、更に、他の金属塩と錯体を形成しても良い。 【0012】前記の式[1]ないし[8]において、第 V族元素 (N. P. As. Sb. Bi) の化合物から導 かれる1価の置換基 (R^{c1}ないしR^{c10}) の具体例は、 例えば、アミノ墓、メチルアミノ基、エチルアミノ基、 プロビルアミノ墓、ブチルアミノ基。ベンジルアミノ 基。フェニルアミノ基、4-フェニルアゾフェニルアミ ノ蟇、ジメチルアミノ基、ジエチルアミノ基、メチルブ ロビルアミノ墓、ジフェニルアミノ墓、ジベンジルアミ ノ蟇、エチルフェニルアミノ基、4-(ジメチルアミ ノ) ブチル基。6- (ジエチルアミノ) ヘキシルオキシ

ルアセチルアミノ基、シクロヘキシルアミノ基。p-ト - ルエンスルポニルアミノ蟇。ベンゼンスルポニルアミノ 基」ビリジル基」ピペリジフ基、ピペリジル基」モルホ リノ幕、ジフェニルフォスフィニル墓、ジフェニルアル シニル基、ジフェニルスチビニル基。ジフェニルビスム チェル基などである。これらのうち、置換および非置換 のアミノ基は酸と塩を形成していても良い。 【0013】前記の式[1]ないし[8]において、第

V I 族元素 (O.S.Se.Te.Po) の化合物から 導かれる! 価の置換基(R**ないしR***)の具体例 は、例えば、水酸基(ヒドロキシ基)、メトキシ蟇、エ キシルオキシ蟇、nーヘブトキシ基、nーオクチルオキ シ墓。n-ノニルオキシ墓。n-ヂシルオキシ墓。n-ウンデシルオキシ基、n-ドデシルオキシ基、n-オク タデシルオキシ幕、ベンジルオキシ幕、フェノキシ基、 メルカプト基。メチルチオ基、エチルチオ基、フェニル チオ墓、ベンジルチオ基、2-フリル墓、2-チオフェ ニル墓、2-セレノフェニル基、2-テルロフェニル 基、ベンジルスルフィニル墓(C。H。CH。SO-)、 フェニルスルフォニル基 (CaHaSOz-)、スルフェ 30 ン酸蟇(-SOH)、スルフィン酸蟇(-SOzH). スルホン酸基(-SO。H)、セレノン酸基(-SeO。 目)などである。これらのうち、フェノール性水酸基や 酸の残基は金属塩を形成していても良く、更に、他の金 **属塩と錯体を形成しても良い。また、酸の残基はアミン** 塩またはアンモニウム塩を形成しても良い。

【0014】前記の式[1]、[4]、[7]または [8]において、1価の置換基R"*ないしR"*が置換ア ミノ墓の場合。その具体例は、例えば、メチルアミノ 基。エチルアミノ基、プロビルアミノ基、ブチルアミノ - 40 - 基」ベンジルアミノ基、フェニルアミノ基、4 - フェニ ルアゾフェニルアミノ基。ジメチルアミノ基、ジエチル アミノ基、メチルプロピルアミノ基。ジフェニルアミノ 基。ジベンジルアミノ基。エチルフェニルアミノ基、ア セチルアミノ墓。ペンゾイルアミノ墓。N-メチルアセ チルアミノ基。シクロヘキシルアミノ基、pートルエン スルホニルアミノ基、ベンゼンスルホニルアミノ基、な どである。

【0015】前記の式[2]、[3]、[5]ないし [8]において、残基21ないし210が各々、2つの窒 基、アセチルアミノ基、ベンゾイルアミノ基、N – メチー 50 素原子と結合して形成する縮合複素頭部分構造(モイエ

ティ)の具体例は、例えば、イミダゾール環、イミダゾ リン (ジヒドロイミダゾール) 躁、ベンズイミダゾール 環。ビリミジン環、テトラヒドロピリミジン環。ベリミ ジン環、などである。

15

【①①16】また、上記目的を達成するため、本願の請 求項2記載の発明に係る光制御方法は、請求項1記載の 光制御方法において、前記制御光および前記信号光を前 記光学素子中において実質的に同一光路で伝鐵させるこ とを特徴とする。

【0017】また、上記目的を達成するため、本願の請 求項3記載の発明に係る光制御方法は、請求項1または 2記載の光制御方法において、前記光学素子を透過した 後、発散していく信号光光線束のうち、前記強度変調お よび/または光束密度変調を強く受けた領域の信号光光 **級束を分別して取り出すことを特徴とする。**

【()()18】との場合、通常、信号光光線束の中心部分 が特に変調を受けやすいので、発散する信号光光線束を 収束するために受光レンズを用いるときには信号光光線 東の中心軸に受光レンズの中心軸を一致させることが好

【①①19】また、上記目的を達成するため、本願の請 | 永順4記載の発明に係る光制御方法は、請求項1または 2記載の光制御方法において、前記光学素子を透過した 後、発散していく信号光光線束を、前記信号光光線束の 発散角度よりも小さい角度範囲(関口角)で取り出すこ とによって、前記強度変調および/または光東密度変調 を強く受けた領域の信号光光線束を分別して取り出する とを特徴とする。

【0020】また、上記目的を達成するため、本願の請 のいずれか記載の光制御方法において、前記制御光およ び前記信号光のそれぞれの焦点位置と前記光学素子との 位置関係を変化させることにより、前記制御光の照射に よって、前記光学素子を透過した前記信号光の見かけの 強度が減少する方向の光応答と、前記信号光の見かけの 強度が増大する光応答との、どちらか一方を選択して取 り出すことを特徴とする。

【0021】また、上記目的を達成するため、本願の請 **求項6記載の発明に係る光制御方法は、請求項1から5** のいずれか記載の光制御方法において、前記光応答性組 成物が液体であり、かつ。前記液状光応答性組成物を充 鎖した光学セルを前記光学素子として用いることを特徴

【0022】また、上記目的を達成するため、本願の請 求項7記載の発明に係る光制御方法は、請求項6記載の 光副御方法であって、前記液状光応答性組成物が揮発性 溶剤を含有することを特徴とする。

【りり23】また、上記目的を達成するため、本願の請 求項8記載の発明に係る光副御装置は、光応答性組成物 から成る光学素子に、前記光学素子が感応する波長の制 50 光応答との、どちらか一方を選択して取り出すことを特

御光を照射し、副御光とは異なる波長帯域にある信号光 の透過率および/または屈折率を可逆的に増減させるこ とにより前記光学素子を透過する前記信号光の強度変調 および/または光泉密度変調を行う光制御方法に用いる れる光制御装置であって、前記制御光および前記信号光 を蓄々収束させる収束手段を有し、収束された前記制御 光および前記信号光のそれぞれの焦点近傍の光子密度が 最も高い領域が互いに重なり合うように、前記副御光ね よび前記信号光の光路をそれぞれ配置し、かつ、前記光 学素子は、収束された前記制御光および前記信号光のそ れぞれの焦点近傍の光子密度が最も高い領域が互いに重 なり合う位置に配置され、更に、前記光学素子が、前記 の式[1]から[8]の少なくとも1種類を含有する光 応答性組成物から成ることを特徴とする。

【0024】また、上記目的を達成するため、本願の請 求項9記載の発明に係る光制御装置は、請求項8記載の 光制御装置において、更に「前記制御光および前記信号 光が前記光学素子中において真質的に同一光路で伝搬す るような光路配置を有することを特徴とする。

20 【0025】また、上記目的を達成するため、本願の請 求項10記載の発明に係る光制御装置は、請求項8また は9記載の光制御装置において、前記光学素子を透過し た後、発散していく信号光光線束のうち、前記強度変調 および/または光束密度変調を強く受けた領域の信号光 光線束を分別して取り出す手段を有することを特徴とす

【0026】また、上記目的を達成するため、本願の請 求項11記載の発明に係る光制御装置は、請求項10記 戯の光制御装置において、前記強度変調および/または 求項5記載の発明に係る光制御方法は、請求項1から4 30 光東密度変調を強く受けた領域の信号光光線束を分別し て取り出す手段として、前記光学素子へ前記信号光を収 束させて入射させる際に用いた収束手段の関口数よりも 小さい関口数の収束手段を用いることを特徴とする。

> 【10027】また、上記目的を達成するため、本願の請 求項12記載の発明に係る光制御装置は、請求項10記 載の光制御装置において、前記強度変調および/または 光束密度変調を強く受けた領域の信号光光線束を分別し て取り出す手段として、絞りを用いることを特徴とす

【①028】また、上記目的を達成するため、本願の請 求項13記載の発明に係る光制御装置は、請求項8から 12のいずれか記載の光制御装置において、前記制御光 および前記信号光のそれぞれの焦点位置と前記光学素子 との位置関係を変化させる移動手段を有し、前記移動手 段を用いることによって、前記制御光および前記信号光 のそれぞれの焦点位置と前記光学素子との位置関係を変 化させることにより、前記制御光の照射によって前記光 学素子を透過した前記信号光の見かけの強度が減少する 方向の光応答と 前記信号光の見かけの強度が増大する

(10)

<u>1</u>7

徴とする。

【①①29】また、上記目的を達成するため、本願の請求項14記載の発明に係る光制御装置は、請求項8から13のいずれか記載の光制御装置において、前記光学素子を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段を有することを特徴とする。

【① 0 3 0】また、上記目的を達成するため、本願の請求項 1 5 記載の発明に係る光制御装置は、請求項 8 から 1 4 のいずれか記載の光制御装置において、前記光応答性組成物が液体であり、かつ、前記液状の光応答性組成物を充填した光学セルを前記光学素子として用いることを特徴とする。

【① 0 3 1】また、上記目的を達成するため、本願の請求項16記載の発明に係る光制御装置は、請求項15記載の光制御装置において、前記液状光応答性組成物が揮発性溶剤を含有することを特徴とする。

【10032】また、上記目的を達成するため、本願の請求項17記載の発明に係る光制御装置は、請求項8から16のいずれか記載の光制御装置において、前記制御光および前記信号光を各々収束させる前記収束手段。および/または、前記光学素子中の前記光応答性組成物を透過した後、発散していく信号光光線束のうち、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段。および/または、前記光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段が、前記光学素子に組み込まれた構造を有することを特徴とする。

【① 0 3 3 】 [光応答性組成物、信号光の波長帯域、および制御光の波長帯域の組み合わせ]本発明の光制御方 30 法で利用される光応答性組成物、信号光の波長帯域、および制御光の波長帯域は、これらの組み合わせとして、使用目的に応じて適切な組み合わせを選定し用いることができる。

【① 0 3 4 】具体的な設定手順としては、例えば、まず、使用目的に応じて信号光の波長ないし波長帯域を決定し、これを副御するのに最適な光応答性組成物と制御光の波長の組み合わせを選定すれば良い。または、使用目的に応じて信号光と制御光の波長の組み合わせを決定してから、この組み合わせに適した光応答性組成物を選定すれば良い。

【①①35】本発明で用いられる光応答性組成物の組縮合多環芳を成れなび前記光応答性組成物から成る光学素子中を伝持する信号光および制御光の光路長については、これらいし19に、の組み合わせとして、光学素子を透過する制御光および信号光の透過率を基準にして設定することができる。例えば、まず、光応答性組成物の組成のうち、少なくとも制御光あるいは信号光を吸収する成分の濃度を決定し、次いで、光学素子を透過する制御光および信号光の透過率が特定の値になるよう光学素子中を任措する信号光も50で例示する。

よび制御光の光路長を設定することができる。または、まず、例えば装置設計上の必要に応じて、光路長を特定の値に設定した後、光学素子を透過する制御光および信号光の透過率が特定の値になるよう光応答性組成物の組成を調整することができる。

【0036】本発明は、できる限り低い光パワーで充分な大きさおよび速度の光応答を光応答性の光学素子から引き出すような光制御方法および光制御装置を提供することを目的としているが、この目的を達成するために最適な、光学素子を透過する副御光および信号光の透過率の値は、それぞれ、次に示す通りである。

【①①37】本発明の光副御方法および光制御装置では、光学素子を任揺する副御光の透過率が多くとも90%以下になるよう光応答性組成物中の光吸収成分の濃度および存在状態の制御、光路長の設定を行うことが推奨される。

【①①38】とこで、制御光の照射によって信号光の透 求項17記載の発明に係る光制御装置は、請求項8から 16のいずれか記載の光副御装置において、前記副御光 および前記信号光を各々収束させる前記収束手段、およ び/または、前記光学素子中の前記光応答性組成物を透 過した後、発散していく信号光光線束のうち、前記強度

【①①39】【ペリ縮合多環芳香族化合物】本発明で用いられる光学素子は、前記の式 [1]ないし [8]で表されるペリ縮合多環芳香族化合物をマトリックス特料中に溶解または分散させた光定答性組成物から成る。なお、「ペリ(peri)」とは、ナフタレン骨格の1,8-位(または4,5-位)を意味する。

【① 0 4 0】前記の式 [1] ないし [8] で表されるペリ福合多環芳香族化合物は、色素、蛍光色素、有機エレクトロルミネッセンス色素、あるいは有機光導電材料として公知のものを使用することができる。

【①①41】ペリ縮合多環芳香族化合物の具体例を化学 式として図1から図30に例示する。すなわち、式 [1]で表されるペリ縮合多環芳香族化合物(ナフタレ ン-1、4、5、8-テトラカルボン酸ジイミド誘導 体)の具体例を図1および2に、式[2]で表されるべ リ縮合多環芳香族化合物(cis‐ベリノン系化合物) の具体例を図3ないし6に、式[3]で表されるべり縮 台多環芳香族化合物(trans‐ベリノン系化合物) の具体例を図?ないし10に、式[4]で表されるペリ 縮合多環芳香族化合物(ヘリレンー3、4、9、10-テトラカルボン酸ジイミド誘導体)の具体例を図11な いし19に、式〔5〕で表されるペリ縮合多環芳香族化 台物の具体例を図20ないし23に、式[6]で表され るべり縮台多環芳香族化合物の具体例を図24ないし2 7に、式[7]で衰されるペリ縮台多環芳香族化合物の 具体例を図28に、式[8]で表されるペリ縮合多環芳 香族化合物の具体例を図29および30に、化学式とし

【0042】本発明では、これらのペリ縮合多環芳香族 化合物を単独で、または、2種類以上を混合して使用す るととができる。

【①043】[光応答性組成物]本発明では、前記光応 答性組成物として、使用温度領域において、固体、ガラ ス状態ないしゴム状態のもの、および、液体状態のもの を使用することができる。

【①①44】なお、本発明で用いられる光応答性組成物 は、その機能に支障をきたさない範囲において、加工性 を向上させたり、光学素子としての安定性・耐久性を向 上させるため、副成分として公知の酸化防止剤、繁外線 吸収剤、一重項酸素クエンチャー、分散助剤などを含有 しても良い。

【0045】【固体、ガラス状態ないしゴム状態の光応 答性組成物] 本発明では、固体、ガラス状態ないしゴム 状態の光応答性組成物として、前記のペリ縮合多環芳香 族化合物を、固体、ガラス状態ないしゴム状態のマトリ ックス材料中に溶解または分散したものを用いることが できる。

状態ないしゴム状態のマトリックス材料は、(1)本発 明の光制御方式で用いられる光の波長領域で透過率が高 いこと、(2)本発明で用いられるペリ縮台多環芳香族 化合物を安定性良く溶解または分散できること。(3) 光学素子としての形態を安定性良く保つことができるこ と、という条件を満足するものであれば任意のものを使 用することができる。

【0047】無機系のマトリックス村斜としては、例え は、いわゆるゾルゲル法で作成される低融点ガラス材料 などを使用することができる。

【0048】また、有機系のマトリックス材料として は、種々の有機高分子材料を使用することができる。そ の具体例としては、ポリスチレン、ポリ(αーメチルス チレン〉、ポリインデン、ポリ(4-メチル-1-ペン テン)、ポリビニルビリジン、ポリビニルホルマール、 ポリビニルアセタール、ポリビニルブチラール、ポリ酢 酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポ り塩化ビニリデン、ポリビニルメチルエーテル。ポリビ ニルエチルエーテル、ポリビニルベンジルエーテル、ポ リビニルメチルケトン、ポリ(Nービニルカルバゾー ル) ポリ(N-ピニルピロリドン) ポリアクリル酸 メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリ アクリロニトリル、ポリメタクリル酸メチル、ポリメタ クリル酸エチル。ポリメタクリル酸プチル、ポリメタク リル酸ペンジル。ポリメタクリル酸シクロヘキシル、ポ リメタクリル酸。ポリメタクリル酸アミド、ポリメタク リロニトリル、ポリアセトアルデヒド、ポリクロラー。 ル、ポリエチレンオキシド、ポリプロピレンオキシド、 ポリエチレンテレフタレート、ポリプチレンテレフタレ ート、ポリカーボネイト類(ビスフェノール類+炭

酸) ポリ (ジエチレングリコール・ピスアリルカーボ ネイト) 頻、6-ナイロン、6,6-ナイロン、12-ナイロン、6、12-ナイロン、ポリアスパラギン酸エ チル、ポリグルタミン酸エチル、ポリリジン、ポリプロ リン、ポリ (ァーベンジルーLーグルタメート)、メチ ルセルロース。エチルセルロース、ベンジルセルロー ス、ヒドロキシエチルセルロース、ヒドロキシプロピル セルロース、アセチルセルロース、セルローストリアセ テート、セルローストリプチレート、アルキド樹脂(魚 水フタル酸+グリセリン) 脂肪酸変性アルキド樹脂 (脂肪酸+魚水フタル酸+グリセリン)、不飽和ポリエ ステル樹脂 (無水マレイン酸+無水フタル酸+プロピレ ングリコール)。エポキシ樹脂(ビスフェノール類+エ ピクロルヒドリン)、ポリウレタン樹脂、フェノール樹 脂、尿素樹脂、メラミン樹脂、キシレン樹脂、トルエン **樹脂」グアナミン樹脂などの樹脂、ポリ(フェニルメチ** ルシラン)などの有機ポリシラン、有機ポリゲルマンお よびこれらの共重台・共重縮合体が挙げられる。また、 二輪化炭素、四フッ化炭素。エチルベンゼン、バーフル 【① 0.4.6】本発明で用いることのできる固体。ガラス 20 オロベンゼン、パーフルオロシクロヘキサンまたはトリ メチルクロロシラン等、通常では重合性のない化合物を プラズマ重合して得た高分子化合物などを使用すること ができる。

> 【①①49】更に、これらの有機高分子化合物に前記べ リ福合多環芳香族化合物の残基をモノマー単位の側鎖と して、もしくは架橋基として、共宣合モノマー単位とし て、または宣合開始末端として結合させたものをマトリ ックス材料として使用することもできる。

【0050】とれらのマトリックス材料中へペリ縮合多 30 環芳香族化合物を溶解または分散させるには公知の方法 を用いることができる。例えば、ペリ縮合多環芳香族化 台物とマトリックス材料を共通の溶媒中へ溶解して混合 した後、密媒を蒸発させて除去する方法、ゾルゲル法で 製造する無機系マトリックス材料の原料溶液へへり縮合 多環芳香族化合物を溶解または分散させてからマトリッ クス材料を形成する方法。 有機高分子系マトリックス材 料のモノマー中へ、必要に応じて溶媒を用いて、べり縮 台多項芳香族化合物を溶解または分散させてから該モノ マーを重合ないし重縮合させてマトリックス材料を形成 40 する方法、ペリ縮合多環芳香族化合物と有機高分子系マ トリックス材料を共通の溶媒中に溶解した溶液を、ペリ 縮合多環芳香族化合物および熱可塑性の有機高分子系マ トリックス材料の両方が不溶の溶剤中へ適下し、生じた 沈殿を濾別し乾燥してから加熱・溶融加工する方法、化 学的気相成長法。スパッタリング法などを好適に用いる ことができる。一般に、色素とマトリックス材料の組み 台わせおよび加工方法を工夫することで、色素分子を経 集させ、「日会合体」や「J会合体」などと呼ばれる特 殊な会合体を形成させることができることが知られてい 50 るが、マトリックス材料中のペリ縮合多環芳香族化合物

分子をこのような凝集状態もしくは会合状態を形成する 条件で使用しても良い。

【0051】「液状の光応答性組成物」本発明では、液 状の光応答性組成物として、前記のペリ縮合多環芳香族 化合物を、液状のマトリックス材料中に溶解またはコロ イド分散したものを用いることができる。

【0052】本発明で用いることのできる液状のマトリ ックス材料は、(1)使用温度および/または圧力領域 において液体であること。(2)本発明の光制御方式で 用いられる光の波長領域で透過率が高いこと、(3)本 10 発明で用いられるペリ縮合多環芳香族化合物などを安定 性良く溶解またはコロイド分散できること、(4)光応 答性組成物としての組成を安定性良く保つことができる こと、という条件を満足するものであれば任意のものを 使用することができる。

【①①53】無機系の液状マトリックス材料としては、 例えば、水、水ガラス(アルカリケイ酸塩の濃厚水溶 液)。アンモニア水、水酸化ナトリウム水溶液、水酸化 カリウム水溶液、塩酸、鞣酸、硝酸、王水、クロルスル ホン酸、メタンスルホン酸。トリフルオロメタンスルホー26 ン酸、ポリリン酸などを使用することができる。

【0054】また、有機系の液状マトリックス材料とし ては、各種有機溶剤、および、液状の有機高分子材料を 使用することができる。

【①①55】揮発性の有機溶剤としては、具体的には、 ヌタノール、エタノール、イソプロビルアルコール、n ープタノール、アミルアルコール、シクロヘキサノー ル。ベンジルアルコールなどのアルコール類、エチレン グリコール、ジエチレングリコール、グリセリンなどの 多価アルコール類、酢酸エチル、酢酸 n - ブチル、酢酸 30 殊な会合体を形成させることができることが知られてい アミル、酢酸イソプロピルなどのエステル類、アセト ン、メチルエチルケトン、メチルイソプチルケトン、シ クロヘキサノンなどのケトン類、ジエタルエーテル、ジ ブチルエーテル、メトキシエタノール、エトキシエタノ ール、ブトキシエタノール、カルビトールなどのエーテ ル類。テトラヒドロフラン、1、4-ジオキザン、1、 3-ジオキソラン、などの環状エーテル類、ジクロロメ タン、クロロホルム、四塩化炭素、1、2-ジクロロエ タン、1、1、2-トリクロロエタン、トリクレン、ブ ロモホルム、シブロモメタン、シヨードメタン」などの 46 発明の光制御装置の構成に応じて、薄膜、厚膜 板状、 ハロゲン化炭化水素額、ベンゼン、トルエン、キシレ ン. クロロベンゼン、 o - ジクロロベンゼン、ニトロベ ンゼン、アニソール、α-クロロナフタレンなどの芳香 族炭化水素類。 n ーペンタン、 n ーヘキサン、 n ーヘブ タン、シクロヘキサンなどの脂肪族炭化水素類、N,N ージメチルホルムアミド、N, Nージメチルアセトアミ ド、ヘキサメチルホスホリックトリアミドなどのアミド 類。N-メチルピロリドンなどの環状アミド類。テトラ メチル尿素、1、3ージメチルー2ーイミダゾリジノン

ホキシド類、炭酸エチレン 炭酸プロビレンなどの炭酸 エステル類、アセトニトリル、プロピオニトリル、ベン ゾニトリルなどのニトリル類、ピリジン、キノリンなど の含窒素複素環化合物類。トリエチルアミン、トリエタ ノールアミン。ジエチルアミノアルコール、アニリンな どのアミン類。クロル酢酸、トリクロル酢酸、トリフル オロ酢酸、酢酸などの有機酸の他、ニトロメタン、二硫 化炭素、スルホランなどの溶剤を用いることができる。 【10056】とれらの溶剤は、また、複数の種類のもの を混合して用いても良い。

【0057】これらの液状のマトリックス材料中へペリ 縮合多環芳香族化合物を溶解またはコロイド分散させる には公知の方法を用いることができる。例えば、ペリ縮 台多環芳香族化合物を有機溶剤や水ガラスに溶解する方 法。ヘリ縮合多項芳香族化合物と不揮発性で液状のマト リックス材料を共通の揮発性溶媒中へ溶解して混合した 後、溶媒を蒸発させて除去する方法、液状の有機高分子 系マトリックス材料の原料モノマー中へ、必要に応じて 溶媒を用いて、ペリ縮合多環芳香族化合物を溶解または コロイド分散させてから該モノマーを重合ないし重縮合 させて液状のマトリックス材料を形成する方法。ペリ縮 台多環芳香族化合物の超微粒子を液状のマトリックス材 料中で形成させる方法、化学的気相成長法、スパッタリ ング法、不活性ガス中蒸発法などの気相法で製造した超 微粒子を、必要に応じて分散剤を用いて、液状のマトリ ックス材料中へ捕集する方法などを好適に用いることが できる。一般に、色素と液状のマトリックス材料の組み 台わせおよび加工方法を工夫することで、色素分子を疑 集させ、「自会合体」や「J会合体」などと呼ばれる特 るが、液状のマトリックス材料中のヘリ縮合多環芳香族 化合物分子をこのような凝集状態もしくは会合状態を形 成する条件で使用しても良い。

【10058】[光学素子]本発明において、固体、ガラ ス状態ないしゴム状態の光応答性組成物は、適当な形態 の光学素子に加工され、使用される。その際、光学ガラ ス。石英ガラス。有機ガラスなどの光学材料と組み合わ せて使用しても良い。

【①①59】本発明で用いられる光学素子の形態は、本 ブロック状、円柱状、半円柱状、四角柱状、三角柱状、 凸レンズ状、凹レンズ状。マイクロレンズアレイ状、フ ァイバー状、マイクロチャンネルアレイ状、および光導 波路型などの中から適宜選択することができる。本発明 で用いられる光学素子の作成方法は、光学素子の形態も よび使用する光応答性組成物の種類に応じて任意に選定 され、公知の方法を用いることができる。

【①060】例えば、薄膜状の光学素子を例えば固体、 ガラス状態ないしゴム状態の光応答性組成物から製造す などの尿素誘導体質、ジメチルスルホキシドなどのスル 50 る場合、ペリ縮合多環芳香族化合物および固体。ガラス

状態ないしゴム状態のマトリックス材料を溶解した溶液 を倒えばガラス板上に塗布法、ブレードコート法。ロー ルコート法、スピンコート法、ディッピング法。スプレ 一法などの金工法で金工するか、あるいは、平販、凸 版、凹版、孔版、スクリーン、転写などの印刷法で印刷 すれば良い。この場合、ゾルゲル法による無機系マトリ ックス材料作成方法を利用することもできる。

23

【0061】例えば、用いる有機高分子系マトリックス 材料が熱可塑性の場合、ホットプレス法(特関平4-9 9609号公報)や延伸法を用いても薄膜ないし厚膜状 10 の膜型光学素子を作成することができる。

【0062】板状、ブロック状、円柱状、半円柱状、四 角柱状、三角柱状、凸レンズ状、凹レンズ状、マイクロ レンズアレイ状の光学素子を作成する場合は、例えば有 機高分子系マトリックス材料の原料モノマーにベリ縮台 多環芳香族化合物を溶解または分散させたものを用いて キャスティング法やリアクション・インジェクション・ モールド法で成形することができる。また、熱可塑性の 有機高分子系マトリックス材料を用いる場合、ペリ縮合 多環芳香族化合物を溶解または分散したペレットまたは 20 る。 粉末を加熱溶融させてから射出成形法で加工しても良

【0063】ファイバー状の光学素子は、例えば、ガラ スキャピラリー管の中に有機高分子系マトリックス材料 の原料モノマーにペリ縮合多環芳香族化合物を溶解また は分散させたものを流し込むか、または、毛管現象で吸 い上げたものを重合させる方法、または、ペリ縮合多環 芳香族化合物を溶解または分散させた熱可塑性の有機高 分子系マトリックス材料の円柱、いわゆるプリフォーム をガラス転移温度よりも高い温度まで加熱、糸状に延伸 30 してから、冷却する方法などで作成することができる。 【0064】上記のようにして作成したファイバー状の 光学素子を多数束ねて接着ないし融着処理してから薄片 状ないし板状にスライスすることによりマイクロチャン

【①065】導波路型の光学素子は、例えば、墓板上に 作成した漢の中に有機高分子系マトリックス材料の原料 モノマーにペリ福合多環芳香族化合物を溶解または分散 させたものを流し込んでから重合させる方法、または、 基板上に形成した薄膜状光学素子をエッチングして「コ 40 ア」バターンを形成し、次いで、ペリ縮合多環芳香族化 台物を含まないマトリックス材料で「クラッド」を形成 する方法によって作成することができる。

ネルアレイ型の光学素子を作成することもできる。

【①066】本発明では、前記制御光および前記信号光 を収束させるための収束手段、および/または、前記光 学素子中の前記光応答性組成物を透過した後、発散して いく信号光光線束のうち、前記強度変調および/または 光東密度変調を強く受けた領域の信号光光線束を分別し て取り出す手段、および/または、前記光学素子中の前 光を信号光と副御光とに分離する手段を、前記光学素子 に組み込んだ一体構造の光学素子を用いることができ る.

【0067】[光学セル]本発明において、前記光応答 性組成物が液体の場合、前記液状光応器性組成物を充填 した光学セルを前記光学素子として使用する。

【①068】本発明で用いられる光学セルは、液状の光 応答性組成物を保持する機能、および液状の光応答性組 成物に寒効的に形態を付与する機能を有し、更に、収束 されて照射される信号光および制御光を受光して前記光 応答性組成物へ前記信号光および前記制御光を伝搬させ る機能、および前記光応答性組成物を透過した後、発散 していく前記信号光を伝搬させて出射する機能を有する ものである。

【①069】本発明で用いられる光学セルの形態は外部 形態と内部形態に大別される。

【①①70】光学セルの外部形態は、本発明の光制御装 置の構成に応じて、板状、直方体状、円柱状、半円柱 状、四角柱状、三角柱状、などの形状のものが用いられ

【①①71】光学セルの内部形態とは、すなわち、光応 答性組成物を充填するための空洞の形態であり、液状の 光応答性組成物に、実効的に形態を付与するものであ る。本発明の光副御装置の構成に応じて、光学セルの内 部形態は具体的には、例えば、薄膜、厚膜、板状、直方 体状、円柱状、半円柱状、四角柱状、三角柱状、凸レン ズ状、凹レンズ状、などの中から適宜選択することがで きる。

【①①72】光学セルの構成および特質は、下記の要件 を満たすものであれば任意のものを使用することができ

【0073】(1)上記のような外部形態および内部形 態を使用条件において精密に維持できること。

【10074】(2)光応答性組成物に対して不活性であ るとと。

【①①75】(3)光応答性組成物を構成する諸成分の 放散・透過・浸透による組成変化を防止できること。

【0076】(4)光応答性組成物が、酸素や水など使 用環境に存在する化合物と反応することによって劣化す ることを妨げることができること。

【りり77】なお、上記要件のうち、光応答性組成物の 組成変化や劣化を防止する機能は、光学素子としての設 計寿命の範囲内に限り発揮できれば良い。

[0078]

【発明の実施の形態】以下、図面に基づき本発明の実施 形態について説明する。

【①079】〔実施形態1〕図31には本実施形態の光 制御装置の概略構成が示されている。とのような光学装 置構成および配置は、図31に例示するように膜型光学 記光応答性組成物を透過してきた信号光と制御光の混合 50 素子 8 を用いる場合の他。ファイバー型光学素子(図示

せず)を用いる場合、光導液路型(図示せず)。マイクロチャンネルアレイ型(図示せず)などの光学素子を用いる場合、および、液状の光応答性組成物を充填した光学セルを用いる場合(実施形態3参照)にも好適に用いることができる。

25

【0080】ととで、膜型光学素子8は例えば以下の手*

*順で作成するととができる。すなわち、下記の式 [9] で表されるペリ宿台多環芳香族化台物 (2, 9 - ジ (2, 5 - ジ - tert - ブチルフェニル) アントラ [2, 1, 9 - def: 6, 5, 10 - def: fi] ジイソキノリン - 1, 3, 8, 10 - テトラオン) 【化 17】

(14)

:13.00mgおよびポリメタクリル酸ベンジル:1987.0mgをテトラヒドロフラン:200m1に溶解し、水:1000m1中へかき復ぜながら加えて析出した沈殿(ペリ福合多環芳香族化合物[9]およびポリマーの復合物)を流則し、水で洗浄してから減圧下乾燥し、紛砕した。得られたペリ縮合多環芳香族化合物

し、物解した。借われたへり相台多項方容族に合物 [9] およびポリマーの混合粉末を10つ Pa未満の超 高真空下、40℃で2日間頽熱を続け、残図窓媒等の揮 20 発成分を完全に除去して、光応答性組成物の粉末を得 た。この粉末20mgをスライドガラス(25mm×76mm×厚さ1、150mm)およびカバーガラス(1 8mm×18mm×厚さ0、150mm)の間に飲み、 真空下150℃に加熱し、2枚のガラス板を圧着する方 法(真空ホットプレス法)を用いてスライドガラス/カ バーガラス間にへり縮合多環芳香族化合物 [9] /ポリ マーの膜(膜厚50μm)を作成した。なお、ペリ縮合 多環芳香族化合物 [9] /ポリマー膜中のペリ縮合多環 芳香族化合物 [9] の濃度は、ペリ縮合多環芳香族

[9] 化合物/ポリマー混合物の密度を1. 18として 計算すると、1.00×10⁻¹ mol/1である。

【0081】以上のようにして作成した膜型光学素子の 透過率スペクトルを図45に示す。この膜の透過率は制 御光の波長(514.5nm)で1.8%、信号光の波 長(780nm)で93%であった。

【0082】図31に概要を例示する本発明の光制御装置は、制御光の光源1、信号光の光源2、NDフィルター3、シャッター4、半透過鏡5、光混合器6、集光レンズ7、膜型光学素子8、光光レンズ9、波長透択透過フィルター20、絞り19、光検出器11および22、およびオシロスコーブ100から構成される。これらの光学素子ないし光学部品のうち、制御光の光源1、信号光の光源2、光混合器6、集光レンズ7、膜型光学素子8、光光レンズ9、および、波長選択透過フィルター2のは、図31の装置構成で本発明の光制御方法を実施するために必須の装置構成要素である。なお、NDフィルター3、シャッター4、半透過鏡5、および絞り19は必要に応じて設けるものであり、また、光検出器11および22、およびオシロスコーブ100は、本発明の光

制御方法を実施するためには必要ないが光制御の動作を確認するための電子装置として、必要に応じて用いられる。

【①①83】次に、個々の構成要素の特徴ならびに動作 について説明する。

【①①84】副御光の光源』にはレーザー装置が好適に 用いられる。その発振波長および出力は、本発明の光制 御方法が対象とする信号光の波長および使用する光応答 性組成物の応答特性に応じて適宜選択される。レーザー 発振の方式については特に制限はなく、発振波長帯域、 出力、および経済性などに応じて任意の形式のものを用 いることができる。また、レーザー光源の光を非線形光 学素子によって液長変換してから使用しても良い。具体 的には例えば、アルゴンガスレーザー(発振波長45 7. 9ないし514. 5 nm)、ヘリウム・ネオンレー ザー(633mm)などの気体レーザー、ルビーレーザ ーやNd:YAGレーザーなどの固体レーザー、色素レ 30 ーザー、半導体レーザーなどを好適に使用することがで きる、信号光の光源2にはレーザー光源からのコヒーレ ント光だけではなく非コヒーレント光を使用することも できる。また、レーザー装置、発光ダイオード、ネオン 放電管など、単色光を与える光源の他。タングステン電 球、メタルハライドランプ、キセノン放電管などからの 連続スペクトル光を光フィルターやモノクロメーターで 波長選択して用いても良い。

【① 0 8 5 】本発明の光制御方法で利用される光定答性 組成物、信号光の波長帯域、および副御光の波長帯域 は、これらの組み合わせとして、使用目的に応じて適切 な組み合わせが適定され、用いられる。以下、信号光の 光源2として半導体レーザー(発振波長780 n m、連 統発振出力6 m W、ビーム整形後の直径約8 m m の ガウ スピーム)、副御光の光源1としてアルゴンガスレーザー(発振波長5 1 4 5 n m、直径1 m m の ガウスビーム)、および前記の光応答性組成物から成る膜型光学素 子8の組み合わせを用いた場合について実施形態を説明 する。

必要に応じて設けるものであり、また。光検出器118 【0086】NDフィルター3は必ずしも必要ではないよび22、およびオシロスコープ100は、本発明の光 50 が、装置を構成する光学部品や光学素子へ必要以上に高

4/21/2005

いパワーのレーザー光が入射することを避けるため、ま た。本発明で用いられる光学素子の光応答性能を試験す るにあたり、制御光の光強度を増減するために有用であ る。この実施形態では後者の目的で教種類のNDフィル ターを交換して使用した。

27

【①①87】シャッター4は、制御光として連続発振レ ーザーを用いた場合に、これをパルス状に明滅させるた めに用いられるものであり、本発明の光制御方法を実施 する上で必須の装置機成要素ではない。すなわち、制御 ス幅および発振間隔を制御できる形式の光源である場合 や、適当な手段であらかじめバルス変調されたレーザー 光を光源1として用いる場合は、シャッター4を設けな くても良い。

【0088】シャッター4を使用する場合、その形式と しては任意のものを使用することができ、例えば、オブ ティカルチョッパ、メカニカルシャッター、液晶シャッ ター、光カー効果シャッター、ボッケルセル、音響光学 (AO) 変調器などを、シャッター自体の作動速度を勘 案して適時選択して使用することができる。

【0089】半透過鏡5は、この実施形態において、本 発明の光制御方法の作用を試験するにあたり、制御光の 光強度を寫時見積もるために用いるものであり、光分割 比は任意に設定可能である。

【0090】光検出器11および22は、本発明の光・ 光制御による光強度の変化の様子を電気的に検出して検 証するため、また、本発明の光学素子の機能を試験する ために用いられる。光検出器!」および22の形式は任 意であり、検出器自体の応答速度を勘案して適時選択し て使用することができ、例えば、光電子増倍管やフォト 30 ダイオード、フォトトランジスターなどを使用すること ができる。

【0091】前記光検出器11および22の受光信号は オシロスコープ 100などの他、AD変換器とコンピュ ーターの組み合わせ(図示せず)によってモニターする ことができる。

【0092】光混合器6は、前記光学素子中を任緒して いく制御光ねよび信号光の光路を調節するために用いる ものであり、本発明の光制御方法および光制御装置を実 施するにあたり重要な装置構成要素の一つである。 偏光 40 る。 ビームスプリッター、非偏光ビームスプリッター。また はダイクロイックミラーのいずれも使用することがで き、光分割比についても任意に設定可能である。

【0093】集光レンズ7は、信号光および制御光に共 通の収束手段として、光路が同一になるように調節され た信号光および副御光を収束させて前記光学素子へ照射 するためのものであり、本発明の光制御方法および光制 御装置の実施に必須な装置構成要素の一つである。集光 レンズの焦点距離、関口数、F値、レンズ機成。レンズ 表面コートなどの仕様については任意のものを適宜使用 50 において光学素子8への光ビーム照射位置における光強

することができる。 【10094】との実施形態では集光レンズ?として、倍 率40倍、焦点距離5mm、関口数0.65の顕微鏡用

対物レンズを用いた。

【0095】受光レンズ9は、収束されて光学素子8へ 照射され、透過してきた信号光および制御光を平行およ び/または収束ビームに戻すための手段であるが、本実 施形態に示すように、前記集光レンズ?の関口敷より小 さい開口数のレンズを用いることによって、充分な大き 光の光瀬1がパルス発振するレーザーであり、そのパル 10 さで強度変調および/または光束密度変調された信号光 を再現性良く分別して取り出すことができる。本実施形 騰では受光レンズ9として、例えば、倍率20倍、関口 数()、4の顕微鏡レンズを用いた。すなわち、集光レン ズ7の関ロ数より受光レンズ9の関ロ数を小さくするこ とにより、信号光の光束のうち、強度変調および/また は光束密度変調を強く受けた領域の光束を分別して取り 出すことが可能となり、充分な大きさで変調を受けた信 号光を再現性良く検出できるようになる。もちろん、レ ンズ開口数が大きくても、絞り19を入れたり、光検出 20 器22に光泉の中心部分のみ入射させて実質的に開口数 を小さくしても良いことはいうまでもない。また、後で 述べるように、集光レンズ? および受光レンズ9の代わ りに凹面鏡を用いることも可能である(実施形態4巻 照)。

【0096】波長選択透過フィルター20は、図31の 装置構成で本発明の光制御方法を実施するために必須の 装置構成要素の一つであり、前記光学素子中の同一の光 路を圧摺してきた信号光と副御光の混合光から信号光の みを取り出すための手段の一つとして用いられる。

【①①97】波長の異なる信号光と副御光とを分離する ための手段としては他に、プリズム、回折格子、ダイク ロイックミラーなどを使用することができる。

【①098】図31の装置構成で用いられる波長選択透 過フィルター20としては、制御光の波長帯域の光を完 全に遮断し、一方、信号光の波長帯域の光を効率良く透 過することのできるような波長選択透過フィルターであ れば、公知の任意のものを使用することができる。例え は、色素で着色したプラスチックやガラス、表面に誘電 体多層蒸者膜を設けたガラスなどを用いることができ

【0099】以上のような構成要素から成る図31の光 学装置において、光源!から出射された制御光の光ビー ムは、透過率を削減することによって透過光強度を調節 するためのNDフィルター3を通過し、次いで調御光を パルス状に明滅するためのシャッター4を通過して、半 透過鏡5によって分割される。

【0100】半透過鏡5によって分割された制御光の一 部は光検出器11によって受光される。ここで、光源2 を消灯、光源1を点灯し、シャッター4を開放した状態

度と光検出器11の信号強度との関係をあらかじめ測定して検査線を作成しておけば、光検出器11の信号強度から、光学素子8に入射する制御光の光強度を常時見積もることが可能になる。この実施形態では、NDフィルター3によって、膜型光学素子8へ入射する制御光のパワーを0.5mWの範囲で調節した。

29

【①101】半遠過鏡5で分割・反射された制御光は、 光混合器6および禁光レンズ7を通って、光学素子8に 収束されて照射される。 膜型光学素子8を通過した制御 光の光ビームは、受光レンズ9を通過した後、液長選択 10 透過フィルター20によって通断される。

【0102】光源2から出射された信号光の光ビームは、前記光複合器6によって、制御光と同一光路を伝播するよう複合され、集光レンズ7を経由して、戦型光学素子8に収泉・照射され、素子を通過した光は受光レンズ9および波長遷択透過フィルター20を透過した後、必要に応じて設けられる絞り19を通過した後、光検出器22にて受光される。

【①103】図31の光学装置を用いて本発明の光制御方法を実施し、図32および図33に示すような光強度 20変化を観測した。図32および図33において、111は光検出器11の受光信号、222および223は光検出器22の受光信号である。光検出器22の受光信号222の得られる場合と223の得られる場合の違いは、以下の通りである。

【0104】図31の装置配置においては膜型光学素子8に制御光と信号光とを収束して入射させているが、収泉ビーム径が最小となる位置(焦点Fc)を膜型光学素子8の集光レンズ7に近い所(光の入射側)に設定すると、前記光学素子8を透過した前記信号光の見かけの強度が減少する方向の光応答222が観察される。一方、収束ビーム径が最小となる位置(焦点Fc)を膜型光学素子8の受光レンズ9に近い所(光の出射側)に設定すると、前記光学素子8を透過した前記信号光の見かけの強度が増大する方向の光応答223が観察される。

【0105】とのような光応答が生じる機構の詳細については未解明であり、現在、鋭意検討中であるが、制御光の照射により光応答性組成物の透過率や屈折率等が変化することに起因するものと推測される。

【①106】ととで、同一の光路で収束された副御光と信号光の焦点位置と光学素子の位置関係を変化させる方法としては、例えば精密ネジによる激動機構を設けた架台、圧電素子アクチュエータを設けた架台などの上に膜型光学素子8を取り付けて上記のように移動させる他、集光レンズ7の材質に非線形屈折率効果の大きいものを用いて制御光パルスのパワー密度を変えて焦点位置を変化させる方法、最光レンズ7の材質に熱膨張係数の大きいものを用いて加熱装置で温度を変えて焦点位置を変化させる方法などを用いることができる。

【①107】図31の光学装置を用いて本発明の光制御方法を実施し、図32および図33に示すような光強度変化を観測した。その詳細は以下に述べる通りである。【①108】まず、制御光の光ビームと信号光の光ビームとが、膜型光学素子8内部または近傍の同一領域で焦点Fcを結ぶように、それぞれの光額からの光路、光視台器6、および景光レンズ7を調節した。なお、前記膜型光学素子8のカバーガラス側から信号光および制御光が入射し、スライドガラス基板側から出射するような向きに光学素子を配置した。次いで、波長選択透過フィルター20の機能を点検した。すなわち、光額2を消灯した状態で、光源1を点灯し、シャッター4を開閉した場合には光検出器22に応答が全く生じないことを確認した。

【0109】なお、収束ビーム径長小位置(焦点Fc)と襲型光学素子8の位置関係を変化させるにあたっては、以下に示す方法を用いた。すなわち、集光レンズ7 および受光レンズ9の間隔(d,,+d,+)を固定したまま、結密ネジによる微動機構を設けた架台に取り付けた膜型光学素子8の位置を光軸方向に移動し、膜型光学素子8と集光レンズ7の距離を変化させ、同一の光路で収束された制御光および信号光の焦点位置と膜型光学素子8との位置関係を変化させた。

【0110】まず前記焦点Fcを機型光学素子8の集光レンズ7側に設置した場合について述べる。この場合の、制御光の波形111に対する信号光の応答波形222を図32に示す。

東ビーム径が最小となる位置(焦点Fで)を購型光学素 【① 1.1.1】シャッター4を閉じた状態で制御光の光源子8の集光レンズ?に近い所(光の入射側)に設定する 1を点灯し、次いで、時刻も、において光源2を点灯しと、前記光学素子8を透過した前記信号光の見かけの強 30 光学素子8へ信号光を照射すると、光鏡出器22の信号度が減少する方向の光応答222が観察される。一方、 強度はレベルCからレベルAへ増加した。

【①112】時刻 t 、においてシャッター4を開放し、 光学素子8内部の信号光が任播しているのと同一の光路 へ副御光を収束・照射すると光検出器22の信号強度は レベルAからレベルBへ減少した。すなわち、信号光の 見かけの強度が減少する方向の光応答が観察された。こ の変化の応答時間は2マイクロ秒未満であった。

【0113】時刻も、においてシャッター4を閉じ、光学素子8への制御光照射を止めると光鏡出器22の信号強度はレベルBからレベルAへ復帰した。この変化の応答時間は3マイクロ秒未満であった。

【①114】時刻 t 。においてシャッター4を開放し、次いで、時刻 t 。において閉じると、光検出器22の信号強度はレベルAからレベルBへ減少し、次いでレベルAへ復帰した。

【①115】時刻も。において光瀬2を消灯すると光検 出器22の出力は低下し、レベルCへ戻った。

【0116】次いで、前記怠点Fcを膜型光学素子8の 受光レンズ9側に設置した場合について述べる。この場 50 合の 制御光の波形111に対する信号光の応答波形2 23を図33に示す。

【①117】シャッター4を閉じた状態で制御光の光源 1を点灯し、次いで、時刻も、において光源2を点灯し 光学素子8へ信号光を照射すると、光検出器22の信号

31

強度はレベルCからレベルAへ増加した。

【0118】時刻も、においてシャッター4を開放し、 光学素子8内部の信号光が伝播しているのと同一の光路 へ副御光を収束・照射すると光検出器22の信号強度は レベルAからレベルDへ増加した。すなわち、信号光の 見かけの強度が増大する方向の光応答が観察された。こ 10 の変化の応答時間は2マイクロ秒未満であった。

【0119】時刻も』においてシャッター4を閉じ、光 学素子8への副御光照射を止めると光鏡出器22の信号 強度はレベルDからレベルAへ復帰した。この変化の応 答時間は3マイクロ秒未満であった。

【0120】時刻も、においてシャッター4を開放し、 次いで、時刻も、において閉じると、光検出器22の信 号強度はレベルAからレベルDへ増加し、次いでレベル Aへ復帰した。

【0121】時刻t。において光源2を消灯すると光検 20 出器22の出力は低下し、レベルCへ戻った。

【①122】以上まとめると、膜型光学素子8へ、制御 光を図32または図33の111に示すような波形で表 される光強度の時間変化を与えて照射したところ、信号 光の光強度をモニターして示す光検出器22の出力波形 は図32の222または図33の223に示すように、 制御光の光強度の時間変化に対応して可逆的に変化し た。すなわち、副御光の光強度の増減または断続により 信号光の透過を副御すること、すなわち光で光を副御す ること(光・光制御)、または、光で光を変調すること 30 (光・光変調)ができることが確認された。

【0123】なお、制御の光の断続に対応する信号光の 光強度の変化の程度は、前記の光検出器22の出力レベ ルA、BおよびCを用いて次に定義される値 AT【単 位%]または、A、CおよびDを用いて次に定義される 値 △丁'〔単位%〕

【數1】 $\Delta T = 100[(A-B)/(A-C)]$ $\Delta T' = 100 [(D-A) / (A-C)]$

によって定置的に比較することができる。ここで、Aは 制御光を遮断した状態で信号光の光源2を点灯した場合 40 の光検出器22の出力レベル、BおよびDは信号光と制 御光を同時に瞬射した場合の光検出器22の出力レベ ル. Cは信号光の光源2を消灯した状態の光検出器22

の出力レベルである。

【0124】上の例において、制御光の入射パワーを2 OmWとし、膜型光学素子8を移動して信号光の光応答 の向きと大きさを調べたところ、信号光強度が減少する 向きの応答の大きさ△丁の最大値は87%、見かけの信 号光強度が増加する向きの応答の大きさムT の最大値 は39%であった。

【0125】上記のように収束ビーム径が最小となる位 置(魚点Fc)と膜型光学素子8の位置関係を変えるC とによって、信号光の光応答の向きを逆転させ、信号光 の見かけの強度が減少する方向、または、増加する方向

の応答を得ることができる。

【() 126】とのような光応答変化の生じる機構を調べ るため、光制御を行った場合に起こる信号光ビーム断面 における光強度分布の変化の測定を行った。すなわち、 図31の装置において、受光レンズ9を集光レンズ7の 関口数(本実施形態の場合は()、65)よりも大きな関 口数(例えばり、75)のものに変更し、絞り19を取 り外し、光検出器22の代わりに光強度分布測定器(図 34)を設置し、膜型光学素子8を透過した光線束のす べてを受光レンズ9で受光・収束させて前記光強度分布 測定器の受光部31(有効直径4mm)へ入射させ、信 号光光線泉断面の光強度分布を測定した。測定結果を図 35.36および37に示す。ここで、光強度分布測定 器は、図34に示すように、受光部31(有効直径4m m) に対して幅1mmの第一のスリット32を設け、第 一のスリットの長さ方向。すなわち図34において点X から点Υの向きに、幅25μμの第二のスリット33を 一定速度で移動させて、2枚のスリットが作る1mm× 25 µmの長方形の窓を通過した光の強度を、前記窓の 移動位置に対応させて測定する装置である。前記窓の移 動位置に対応させて光強度を測定するには、例えば、第 二のスリット33の移動速度に同期させたストレージオ シロスコープ上に、前記窓を通過した光を受光した検出 器の出力を記録すれば良い。図35、36および37 は、以上のようにして、ストレージオシロスコープ上に 記録された信号光の光ビーム断面についての光強度分布 を示すものであり、微輔 (光ビーム断面内の位置) は図 34の点Xから点Yの方向の位置に対応し、縦軸は光強 度を表す。

【0127】図35は、膜型光学素子8に制御光が入射 せず、信号光のみが入射した場合の前記信号光ビーム断 面の光強度分布である。との場合の光強度分布は、中心 部分の強度が強く、周辺に行くに従い強度が弱まる分布 (おおむね「ガウス分布」) である。

【0128】図36は、収束ビーム径が最小となる位置 (魚点Fc) を膜型光学素子8の集光レンズ?に近い所 (光の入射側) に設定し、副御光を照射したとき見かけ の信号光強度が減少する向きの光応答222が観察され る条件において、制御光を照射したときの信号光ビーム 断面の光強度分布である。この場合の光強度分布は、中 心部分の光強度が弱く、周辺で光強度が増大する分布に なっている。信号光ビーム断面の中心部の光強度は、制 御光強度および膜型光学素子8と焦点の位置関係に依存 して減少し、副御光強度が増すに従い。ゼロに近づいて いく。したがって、この場合、信号光ビームの中心部分 50 だけを取り出して、見かけの信号光強度を測定すると、

制御光の断続に対応して、信号光の強度が減少する向き の光応答222を、充分な大きさで取り出すことができ る.

33

【0129】図37は、収束ビーム径が最小となる位置 (魚点Fc) を順型光学素子8の受光レンズ9に近い所 (光の出射側) に設定し、副御光を照射したとき見かけ の信号光強度が増大する向きの光応答223が観察され る条件において、制御光を照射したときの信号光ビーム 断面の光強度分布である。この場合は、中心部分の光強 度が、制御光を照射しない場合の中心部分の光強度(図 10 35) より強くなっている。この場合、信号光ビーム断 面の中心部の光強度は、副御光強度および膜型光学素子 8を焦点位置の関係に依存するが、副御光非照射時の数 倍にも達する。したがって、この場合、信号光ビームの 中心部分だけを取り出して、見かけの信号光強度を測定 すると、制御光の断続に対応して、信号光の強度が増大 する向きの光応答223を充分な大きさで取り出すこと ができる。

【() 13() 】以上の実験から、制御光の筋続による信号 光の光強度変調(光応答)は、信号光ビーム(光束)断 20 面の中心部で、特に大きく起きていることが判る。した がって、本発明の主旨とは逆に、受光レンズ9の開口数 を集光レンズ?の関口数よりも大きくして、光学素子8 を遠過した信号光をすべて補足し、光検出器で受光した 場合、検出される光応答は、本発明の場合に比べて著し く小さくなってしまう。また、光検出器に、制御光によ る光変調を受けた部分以外のノイズ成分が取り込まれて しまい、S/N比が著しく思くなってしまう。

【0131】 (比較例1) 前記の式 [9] で表されるべ リ縮合多環芳香族化合物を用いずにポリメタクリル酸ベ 30 合。 ンジルのみを用いた他は実施形態1と同様にしてマトリ ックス材料単独の薄膜(鰻厚5 () μm) を作成し、この 薄膜について実施形態!と同様にして光応答の評価試験 を行ったが、副御光(波長514.5nm)の光を断続 しても信号光(波長780mm)の光強度は全く変化し なかった。すなわち、マトリックス材料単独では光応答 は全く観測されないことが確認された。したがって、実 施形態」で観察された光応答は、前記光学素子中に存在 する前記ペリ縮合多環芳香族化合物に起因することは明 らかである。

【0132】 (実施形態2) 本発明の光制御方法および 光制御装置において光応答を大きくするためには前記制 御光および前記信号光を各々収束させて前記光学素子へ 照射し、かつ、前記制御光および前記信号光のそれぞれ の焦点の近傍の光子密度が最も高い領域が前記光学素子 中において互いに重なり合うように前記制御光および前 記信号光の光路をそれぞれ配置すれば良いが、そのため には信号光および制御光を実質的に同一光路で伝播させ ることが好ましい。なお、前記制御光および前記信号光 の電場の振幅分布がガウス分布となっているガウスピー 50 合うように前記制御光および前記信号光の光路がそれぞ

ムの場合、集光レンズ 7 などで、関き角 2θ で収束させ たときの焦点Fc近傍における光線東および波面30の 機子を図38に示す。ことで、波長λのガウスビームの 直径200。が最小になる位置、すなわちピームウエスト の半径ω。は次の式で表される。

[0133]

【数2】ω_e = $\lambda/(\pi \cdot \theta)$

例えば、実施形態1で用いた集光レンズ(焦点距離5 m m. 開口数(). 65) で波長514. 5 nm、ビーム直 径1mmの制御光を収束したときのビームウエストの半 径ω。は1.643 μm. 同様にして波長780 nm. ビーム直径8mmの信号光を収束したときのビームウエ ストの半径ω。は(). 368 μm (ほぼ回折限界) と計 算される。

【0134】図39に示すように、信号光および制御光 が「実質的に同一光路」とみなすことができるのは次の ような場合である:

- 1) 副御光と信号光の光軸が互いに平行であって、制御 光の光路、例えば断面し。」(半径 г。)の中に信号光の 光路、例えば断面し、、、し。、、またはし、、(半径 r、 ; $r_1 \le r_2$) が重なって伝搬する場合。
- 2) 副御光と信号光の光軸が互いに平行であって、信号 光の光路、例えば断面し。」(半径 г 、)の中に制御光の 光路、例えば断面し、、、し。、、またはし、、(半径ェ、: r , ≦ r ,) が重なって伝搬する場合。
- 3) 副御光と信号光の光軸が互いに平行(光軸間の距離 !...!..、または!.,+1...) であって、制御光の光 路が断面し、 し。、 またはし、のいずれか、信号光の 光路も断面し、 しょ、またはし、のいずれかである場

【0135】表1のデータは、一例として、実施形態1 の装置において、集光レンズ7として、関口数0.65 の顕微鏡用対物レンズを用い、受光レンズ9として、関 口数(). 4の顕微鏡用レンズを用い、収束ビーム径が最 小となる位置(焦点)を膜型光学素子8の集光レンズ? に近い所(光の入射側)に設定し、前記光学素子を透過 した前記信号光が減少する方向の光応答222が観察さ れる条件下、信号光の光路を断面し。」(直径8 mm) に 固定し、断面し.,、し。, またはし., (直径1mm)の 40 制御光の光路(光軸)を光軸間の距離1.1または1.1と してま1.2mm平行移動した場合の、信号光・光応答 の大きさ△下の変化を示したものである。信号光および 制御光の光輪が完全に一致している場合の光応答が最大 であるが、光軸間の距離1.,または1.,が±0.6mm 程度ずれても、光応答の大きさ△丁は8ポイントほど変 化するにすぎない。

【0136】すなわち、収束された信号光および制御光 のそれぞれの焦点の近傍の光子密度が最も高い領域(ビ ームウェスト) が前記光学素子中において互いに重なり

(19)

35

* 充分大きな光応答が得られることが判った。

れ配置され、とれらの領域の重なり合いが最大になった とき、すなわち、前記制御光および前記信号光の光輪が 完全に一致したとき前記光応答は最大になること。前記 制御光および前記信号光の光路が実質的に同一のとき、*

[0137] 【表1】

制御光 (514.5nm) の平行移動距離 /mm	信号光(780nm)の 光応答 ΔT/%
-1.2	3 1
-0. 9	6 9
-0. 6	80
-0.3	8 4
0. 0	8 7
+0.3	8.4
+0 6	79
+0. 9	6 1
+1.2	3 2

[実施形態3] 図3]に概略構成を示すような実施形態 1の光制御装置において、実施形態 1 における膜型の光 学素子8の代わりに、内部形態が薄膜型の光学セル8() ①または810に液状の光応答性組成物を充填して用い。 光学装置構成および配置は、内部形態が薄膜型の光学セ ルを用いる場合の他、外部および内部形態が板状、直方 体状、円柱状、半円柱状、四角柱状などの光学セルを用 いる場合にも好酒に用いることができる。

【0138】とこで、内部形態が薄膜型の光学セルは例 えば以下のような構成のものである。(1)光学ガラス または石英ガラス製セル800(図40)。

【0139】(2)2枚の板ガラスをスペーサーおよび ゴムバッキンを挟んで重ね合わせ、固定用の金属枠で保 持した構成の組立式光学セル81()(図41)。

【0140】図40に示すような光学ガラスまたは石英 ガラス製セル800は入射・出射面ガラス801および 802、側面ガラス803および804、および、底面 ガラス805によって、液状光応答性組成物充填部80 8を形成したものである。ガラス材質としては石英ガラ スのほか、ソーダガラス、ホウケイ酸ガラスなどの光学 ガラスを使用することができ、公知のガラス加工技術に よって製造することができる。光学セルとしての精度を 獲得するためには、ガラス加工時に、入射・出射面ガラ

持する必要がある。液状の光応答性組成物は導入口80 7から導入管806を通じて充填される。導入口807 に例えばポリ四フッ化エチレン製栓(図示せず)を挿入 すること、あるいは、導入口807をガラス加工で封じ る場合について以下に説明する。なお、図31のような 30 るととによって、充填した液状光応答性組成物を光学セ ル中に封臼し、前記の光学セルの機能要件を満たすこと ができる。光学ガラスまたは石英ガラス製セル800 は、ガラスを腐食する溶液、例えば強アルカリ性の液 体。フッ化水素酸、またはホウフッ化水素酸などを用い る場合を除き、大多数の有機および無機マトリックス材 料を用いた液状光応答性組成物を充填する際に、広く使 用することができる。特に、マトリックス材料として、 塩酸、硫酸、硝酸、王水、クロルスルホン酸、メタンス ルボン酸、トリフルオロメタンスルボン酸、クロル酢 40 酸、トリクロル酢酸、トリフルオロ酢酸、酢酸などの酸 を用いる場合に有用である。

> 【0141】図40に示すガラス製光学セル800と同 じような形態を、ポリスタクリル酸メチル、ポリスチレ ン、ポリカーボネイトなどの透明プラスチック(有機ガ ラス)で製造し、光学セルとして使用することもでき る。ただし、との場合は、マトリックス材料が該プラス チックを溶解したり侵したりしないよう、材料選択・組 み合わせに図意する必要がある。

【0142】図41に示すような組立式光学セル810 ス801および802の平面性および平行度を高度に維 50 は、液状光応答性組成物充填部818を設けたスペーサ

37 -814を2枚の板状の入射·出射面ガラス813およ び815で挟み、これをゴムパッキン812および81 6を介して固定枠811および817で挟み、固定ネジ 穴824および825にネジ(図示せず)を用いて固定 するものである。固定枠817に取り付けた導入管82 2 および823は、固定枠817に設けた導入孔82 1. ゴムパッキン816に設けた導入孔820. 次いで 入射・出射面ガラス815に設けた導入孔819に運じ ており、これらの導入経路を通して液状の光応答性組成 物を充填部818へ導入することができる。充填部81 8の厚さ、すなわち、信号光ねよび/または制御光が垂 直に入射したとき光応答性組成物中を伝播する光路長 は、組立時のスペーサー818の厚さによって決定され る。スペーサー814、入射・出射面ガラス813およ び815、ゴムバッキン812および815、および、 固定枠811および817は、すべて液状の光応答性組 成物に接触するので、液状のマトリックス材料の溶解 性、浸透性、透過性、および/または腐食性に耐える材 質である必要がある。具体的には、スペーサー814の 材質は光学ガラス、石英ガラス、ポリ四フッ化エチレ ン、プチルゴム、シリコンゴム、エチレン・プロビレン ゴムなどが好ましい。特に 前記光路長の精度維持と液 のシール性維持を両立させるためには、ポリ四フッ化エ チレンなどのファ素系高分子材料が好適に用いられる。 入射・出射面ガラス813および815としては、石英 ガラスのほか、合成サファイア、ソーダガラス、ホウケ イ酸ガラスなどの光学ガラスを使用することができる。 また。前記マトリックス材料が無機ガラスを腐食する液 体の場合、ポリメタクリル酸メチル、ポリスチレン、ポ リカーボネイトなどの有機ガラスを用いることもでき る。ゴムパッキン812および816の材質としては、 ブチルゴム、シリコンゴム、エチレン・プロピレンゴ ム、放射線照射架橋したフッ素樹脂系ゴムなどを用いる ことができる。固定枠811および817はステンレ ス、金メッキした真鍮などの金属製のものを好適に用い ることができる。

【0143】以下、光学素子8として、液状光応答性組成物の膜厚(垂直入射した場合の光路長)が100μmになるように調製された石英ガラス製セル800に前記の式[9]で表されるペリ縮合多環芳香族化合物のジクロロメタン溶液(濃度1.00×10㎡mol/1)を液状の光応答性組成物として充填したものを用いた場合について説明する。この場合の光学素子8の透過率は制御光の液長(514.5nm)で0.06%、信号光の液長(780nm)で93%であった。

【①144】との光学素子8(薄膜型光学セル800) を実施形態1の場合と同様な光制御鉄置(図31)に取り付け、制御光および信号光の収束ビーム径が最小となる位置(焦点Fc)と勝型光学素子8の位置関係を変え ながら、制御光の断続に対応した信号光の光応答の向き および大きさを実施形態1の場合と同様にして調べた。 すなわち、信号光の光源2として半導体レーザー(発振 波長780 nm. 連続発振出力6 mW. ビーム整形後の 直径約8 mmのガウスビーム)を、副御光の光源1としてアルゴンガスレーザー(発振波長514.5 nm.1 mmのガウスビーム)を、編光レンズ7として倍率20 倍. 開口数0.4の顕微鏡用レンズを、受光レンズ9として倍率10倍、関口数0.3の顕微鏡用対物レンズを 用い、集光レンズ7 および受光レンズ9の間隔(d,,+ d,,)を固定したまま、光学素子8としての光学セル8 00と集光レンズ7の距離を変化させ、同一の光路で収 束された制御光および信号光の焦点位置と薄膜型光学セル8 00との位置関係を変化させて実施した。

強度が減少する向きの応答の大きさムTの最大値は91%、見かけの信号光強度が増加する向きの応答の大きさムT の最大値は33%であった。なお、制御光の焦点位置を光学セル内の光応答性組成物の入射側近傍に置き、制御光を1ミリ秒よりも長いバルス幅で照射した場合、制御光のバワーを10mWよりも大きくすると、制御光の焦点位置において、溶剤のジクロロメタンが沸騰を始めた。溶剤の沸騰は極めて局部的に起こるため、光学セル内部の圧力上昇は極めて軽微であった。また、制御光を運断すると、直ちに沸騰は停止した。

【0145】副御光の入射パワー6mWのとき、信号光

【0146】 [比較例2] 従来の技術に基づく比較実験 を行うため、特開昭53-137884号公報、特開昭 63-231424号公報、および特開昭64-733 26号公報の記述に従い、図42に概要を示すような構 成の装置を用い、光制御を試みた。すなわち、光路長1 cmの石英製溶液セル27に絞り19を通した信号光の 光源2からの半導体レーザー光(波長780 nm)を照 射し、透過した光を波長選択透過フィルター20を経由 して光検出器22で受光し、一方、溶液セル27を透過 する信号光の光路全体に 信号光に直交する方向から制 御光を、投射レンズ26を用いて拡散させて照射した。 図42の装置構成において、信号光の光源1(波長51 4.5nm)、NDフィルター3、シャッター4、半透 過鏡5、および、光検出器11の役割および仕様は実施 形態1または3の場合と同様である。なお、波長遷択透 過フィルター20は溶液セル27から散乱してくる制御 光が光検出器22に入射するのを防ぐものであり、実施 形態1または3で用いたのと同様のものを用いることが できる。

【①147】色素としては実施形態3と同様に前記の式 [9]で表されるペリ縮合多環芳香族化合物を用い、ジ クロロメタン溶液を溶液セル27に充填して試験した。 濃度については、光路長の钼造、すなわち実施形態3の 場合の光路長100μmに対して100倍の光路長1c 50 mであることを勘案し、実施形態3の場合の100分の

1の過度(1.00×101mo!/1)に設定し、実 効的な透過率が実施形態3の場合と同等になるよう調節 した。実施形態3の場合と同様に、NDフィルター3に よって、光学素子(溶液セル27)へ入射する副御光の パワーをO.5mWないし25mWの範囲で調節し、制 御光をシャッター4を用いて明誠させた。しかしなが ら、制御光のパワーを最大にしても光検出器22へ入射 する信号光の強度は全く変化しないという結果が得られ た。すなわち、副御光のパワーを()、5m♥ないし25 mWの範囲で調節した限りでは、図42の装置構成・装 10 置配置において光・光制御は冥現できなかった。

39

【1)148】 (実施形態4)図43には本実施形態の光 制御装置の概略構成が示されている。このような光学装 置構成および配置は、図43に例示するような膜型光学 素子8の他に、ファイバー型、光導液路型、マイクロチ ャンネルアレイ型などの光学素子を用いる場合。およ び、液状の光応答性組成物を充填した光学セルを用いる 場合にも好適に用いることができる。

【0149】光源1および2、NDフィルター3、シャ ッター4、光鏡出器11および22. 験型光学素子8、 波長週択透過フィルター20、およびオシロスコープ1 (1)については実施形態1(図31)と同様のものを同 様にして用いた。

【0150】図43に示すような配置でダイクロイック ミラー21を用いることで、制御光を分割して、その光 強度を光検出器11でモニターすると同時に、副御光と 信号光の光路を重ね合わせることができ、図31の配置 で必要な光浪合器6を省略することができる。ただし、 図43の配置においては、ダイクロイックミラー21の 波長遷択透過および反射を補完するために、信号光を完 35 から光応答性光学素子へ照射させているのに比較して、 全に遮断し制御光だけを透過させるような波長選択透過 フィルター10を光検出器11の前に設けることが好ま しい。また、信号光および/または副御光が光源1およ び2へ戻り、光源装置に悪影響を与えるのを避けるた め、必要に応じて、光アイソレーター13および14 を、それぞれ光源1および2の前に設けても良い。

【1) 151】光路を一致させた信号光および制御光を一 緒に収束させて機型光学素子8へ照射する際の光収束手 段として、集光レンズ7および受光レンズ9の代わり に、図43のような配置において凹面鏡15および16 40 を用いることができる。信号光と制御光に共通の収束手 段としてレンズを用いる場合、厳密には波長によって焦 点距離が異なるという問題が生じるが、凹面鏡ではその 心配がない。

【0152】図43に例示するような、本発明の光制御 装置において前記光学素子を透過した後、発散していく 信号光光線束のうち、前記強度変調および/または光束 密度変調を強く受けた領域の信号光光線束を分別して取 り出すには、次のような方法を採用することができる。

ける方法。

【0154】(2) 照射側の凹面鏡15の関口角よりも 受光側の凹面鏡16の関口角を小さくする方法。

【0155】(3)照射側の凹面鏡15の関口角よりも 受光側の凹面鏡16の関口角を小さくし、更に、光検出 器22の季前に絞り19を設ける方法。

【①156】図43に例示するような、本発明の光制御 装置において必須の装置構成要素は光源1および2、ダ イクロイックミラー21. 波長選択透過フィルター2 ① 四面鏡 15.16、および膜型光学素子8である。 なお、図43におけるダイクロイックミラー21の代わ りに偏光または非偏光のビームスプリッターを用いるこ ともできる。

【0157】本発明の光制御方法を図43に示すような 装置で行う場合の手順として、まず、制御光(光源1) と信号光(光源2)の光路が一致し、共通の焦点Fc (ビームウエスト)位置に光学素子8が配置されるよう 調節を行い、次いで、ダイクロイックミラー21ならび に波長選択透過フィルター10 および20の機能を点検 20 するため、光源1と2を交互に点灯し、光源1のみ点灯 (シャッター4開放)したとき光検出器22に応答がな いこと、および光源2のみを点灯したとき光検出器11 に応答がないととを確認した。

【0158】以下、箕施形態1の場合と同様にして、前 記購型光学素子8を用いた光・光制御方法を実施し、実 施形態1の場合と同等の実験結果を得た。

【①159】 (実施形態5)図44には本実施形態の光 制御装置の機略構成が示されている。 図31 および図4 3に例示した装置模成では、信号光と副御光を同じ方向 図44では信号光と制御光を反対方向から、光軸を一致 させて同一の魚点で収束するように照射している点に特 徴がある。

【0160】とのような光学装置模成および配置は、図 4.4に例示するような膜型光学素子8の他に、ファイバ 一型、光導波路型、マイクロチャンネルアレイ型などの 光学素子を用いる場合、および、液状の光応答性組成物 を充填した光学セルを用いる場合にも好適に用いること ができる。

【1)161】図44に例示する装置構成において光源1 および2、NDフィルター3、シャッター4、集光レン ズ7、膜型光学素子8、波長選択透過フィルター10お よび20、光鏡出器11および22.光アイソレーター 13および14、およびオシロスコープ100について は実施形態1(図31)および/または実施形態4(図 43) の場合と同様のものを同様にして用いることがで

【0162】図44に示すような配置で2枚のダイクロ イックミラー(23および24)を用いることで、信号 【0153】(1)光検出器22の手前に絞り19を設 50 光と制御光を反対方向から、光輪を一致させて同一の焦

点で収束するように照射することができる。なお、2つの最光レンズ?は、光学素子を透過してきた制御光および信号光をそれぞれ平行ビームへ戻すための受光レンズ9としての役割を兼ねている。

【0163】図44に例示するような、本発明の光制御 装置において必須の装置構成要素は光源1および2、2 枚のダイクロイックミラー(23および24)、液長選 択退器フィルター1(および20、2つの集光レンズ 7、および膜型光学素子8である。

【①164】なお、図44におけるダイクロイックミラ 10 ー(23および24)の代わりに偏光または非偏光ビー ムスプリッターを用いることもできる。

【①165】本発明の光副御方法を図44に示すような装置で行う場合の手順として、まず、副御光(光源1)と信号光(光源2)の光路が一致し、共通の焦点位置に光学素子8が配置されるよう調節を行い、次いで、波長選択透過フィルター10および20の機能を点鏡するため、光源1と2を交互に点灯し、光源1のみ点灯(シャッター4開放)したとき光検出器22に応答がないこと、および光源2のみを点灯したとき光検出器11に応 20答がないことを確認した。

【①166】以下、実施形態1の場合と同様にして、前 記購型光学素子8を用いた光・光制御方法を実施し、実 施形態1の場合と同等の実験結果を得た。

[0167]

【発明の効果】以上、詳細に説明したように、本発明の 光制的方法および光制御装置によれば、例えば、可視領域にあるレーザー光を制御光として、近赤外線領域にある信号光を効率良く変調することが、極めて単純な光学 装置によって、電子回路などを一切用いることなく、実 30 用上充分な応答速度において実現可能になる。

【①168】また、本発明の光制御方法および光制御装置を用いた可視光線レーザーによる近赤外線レーザーの直接変調は、例えば、プラスチック光ファイバー中を伝搬させるのに適した可視光線レーザーによって、空気中を伝搬させるのに適した近赤外線レーザーを直接変調するような用途において極めて有用である。また。例えば光コンピューティングの分野において新しい光凛算方式を開発する上で役立つと期待される。

【①169】更に、本発明の光制御方法および光制御装 40 置によれば、光学素子としてベリ縮合多環芳香族化合物 をマトリックス材料中に溶解または分散させた光応答性 組成物から成る光学素子を用いることができ、前記光学 素子に用いられる材料の遊訳範囲を広げ、かつ光学素子 への加工を容易にし、産業界への利用の道を広く拓くことができる。

【①170】更に、液状の光応答性組成物を光学素子に 充填して使用することにより、光学散乱を小さくすることができ、できる限り小さいパワーで大きな光応答を示 オ光学基礎を提供することができる。また、光学素子由 の光応答性組成物の交換を、簡便に実施することができる。また、光応答性組成物中に照射された制御光の焦点近傍の色素が劣化しても、拡散による物質移動によって、光応答性組成物が液状でない場合に比べて長期間、 機能を発揮させることができる。

【①171】更に、揮発性の溶剤を用いて液状光度答性 組成物を作成することによって、過大パワーの制剤光が 入射した場合は、前記溶剤が沸騰して泡を発生し、その 結果制御光を遮断し、光学素子が損傷を受けることを防 ぐようにすることができる。

【①172】光学素子に制御光および信号光を各々収束させる前記収束手段、および/または、光学素子中の光応答性組成物を透過した後、発散していく信号光光線束のうち、強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出す手段。および/または、光学素子中の前記光応答性組成物を透過してきた信号光と制御光の混合光を、信号光と制御光とに分離する手段を組み込むことによって、極めてシンブルかつコンパクトな光制御装置を提供することができる。

【図面の簡単な説明】

【図1】 本発明に用いられるペリ福合多環芳香族化合物の構造を例示した図である。

【図2】 本発明に用いられるペリ福合多環芳香族化台 物の構造を例示した図である。

【図3】 本発明に用いられるペリ福合多環芳香族化合物の構造を例示した図である。

【図4】 本発明に用いられるペリ礑合多環芳香族化合物の構造を例示した図である。

【図5】 本発明に用いられるペリ福合多環芳香族化合物の構造を例示した図である。

【図6】 本発明に用いられるペリ福合多環芳香族化合。 物の構造を例示した図である。

【図?】 本発明に用いられるペリ縮合多環芳香族化合物の構造を例示した図である。

【図8】 本発明に用いられるペリ宿合多環芳香族化合物の構造を例示した図である。

【図9】 本発明に用いられるペリ福合多環芳香族化合物の構造を例示した図である。

【図10】 本発明に用いられるペリ宿台多環芳香族化 合物の構造を例示した図である。

【図11】 本発明に用いられるペリ縮台多環芳香族化 合物の構造を例示した図である。

【図12】 本発明に用いられるペリ稿合多環芳香族化 合物の構造を例示した図である。

【図13】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図14】 本発明に用いられるペリ宿台多環芳香族化 合物の構造を例示した図である。

とができ、できる限り小さいパワーで大きな光応答を示 【図15】 本発明に用いられるペリ稿合多環芳香族化 す光学装置を提供することができる。また、光学素子中 50 合物の構造を例示した図である。

【図16】 本発明に用いられるペリ稿合多環芳香族化 合物の標準を例示した図である。

【図17】 本発明に用いられるペリ稿合多環芳香族化合物の構造を例示した図である。

【図18】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図19】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図20】 本発明に用いられるペリ稿合多環芳香族化 合物の構造を例示した図である。

【図21】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図22】 本発明に用いられるペリ縮合多環芳香族化合物の構造を例示した図である。

【図23】 本発明に用いられるペリ磁台多端芳香族化合物の構造を例示した図である。

【図24】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図25】 本発明に用いられるペリ縮合多環芳香族化合物の構造を例示した図である。

【図26】 本発明に用いられるペリ稿合多環芳香族化 合物の構造を例示した図である。

【図27】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図28】 本発明に用いられるペリ福合多環芳香族化 合物の構造を例示した図である。

【図29】 本発明に用いられるペリ縮合多環芳香族化 合物の構造を例示した図である。

【図30】 本発明に用いられるペリ稿合多環芳香族化合物の構造を例示した図である。

【図31】 本発明を実施する際に用いられる装置構成を例示した実施形態1の構成図である。

【図32】 副御光ねよび信号光の光強度時間変化を例示した図である。

【図33】 副御光および信号光の光強度時間変化を例示した図である。

【図34】 光強度分布測定に用いたスリットと光ビームとの関係を示す図である。

【図35】 信号光のビーム断面の光強度分布を表した図である。

【図36】 信号光のビーム断面の光強度分布を表した図である。

【図37】 信号光のビーム断面の光強度分布を表した図である。

【図39】 副御光および信号光の光路(および光軸)の関係を例示した図である。

【図40】 光学ガラスまたは石英ガラス製光学セルを 例示した模式図である。 【図41】 組立式光学セルの構成部品を例示した模式 図である。

【図42】 従来技術で用いられている装置機成を例示 した構成図である。

【図43】 本発明を実施する際に用いられる鉄置機成を例示した実施形態4の構成図である。

【図44】 本発明を実施する際に用いられる装置機成を例示した実施形態5の構成図である。

【図45】 実施形態1の模型光学素子の透過率スペク 10 トルである。

【図46】 実施形態3の機型光学素子(薄膜型光学セル)の透過率スペクトルである。

【符号の説明】 1 副御光の光源、2 信号光の光源、3 NDフィル ター、4、シャッター、5、半透過鏡、6、光混合器、 7 集光レンズ 8 光応答性組成物から成る光学素 子、9 受光レンズ、10 波長選択透過フィルター (信号光遮断用)、11 光検出器 13 光アイソレ ーター(制御光用)、14 光アイソレーター(信号光 20 用), 15 凹面鏡、16 凹面鏡、19 紋り、20 波長選択透過フィルター(制御光遮断用)、21 ダ イクロイックミラー、22 光検出器(信号光の光強度 検出用)、23 ダイクロイックミラー、24 ダイク ロイックミラー、26 役射レンズ、27 石英製溶液 セル(光路長1cm)、30波面、31 光強度分布測 定器の受光部(有効直径4 mm)、32 第一のスリッ ト(帽1mm), 33 第二のスリット(幅25 µ m) 100 オシロスコープ、111 光検出器11 からの信号(副御光の光強度時間変化曲線)、222ね 30 よび223 光検出器22からの信号(信号光の光強度 時間変化曲線) 800 ガラス製光学セル、801 入射・出射面ガラス、802 入射・出射面ガラス、8 03 側面ガラス、804 側面ガラス、805 底面 ガラス、806 導入管、807 導入口、808 光 応答性組成物充填部、810 組立式光学セル、811 固定枠、812 ゴムバッキン、813 入射・出射 面ガラス、814 スペーサー、815 入射・出射面 ガラス(導入孔付)、816ゴムパッキン(導入孔 付)、817 固定枠(導入管付)、818 光応答性 40 組成物充填部, 819 導入孔、820 導入孔, 82 1 導入孔、822 導入管、823 導入管、824 固定ネジ穴、825 固定ネジ穴、A 制御光を運断 した状態で信号光の光源を点灯した場合の光検出器22 の出力レベル、B焦点Fcが光学素子8の集光レンズ側 に設定された場合で、かつ信号光の光源を点灯した状態 で制御光を照射した場合の光検出器22の出力レベル、 C 信号光を消灯した状態の光検出器22の出力レベ ル、D 焦点Fcが光学素子8の受光レンズ側に設定さ れた場合で、かつ信号光の光源を点灯した状態で副御光

50 を照射した場合の光検出器22の出力レベル、dy。 集

光レンズ7と光学素子8の距離、d。 光学素子8と受光レンズ9の距離、Fc 焦点 Lei、L., L.およびし。」信号光または制御光の光ビーム断面、1., および1., 信号光または制御光の光暗の平行移動距離、r、信号光または制御光の光ビーム断面し。」L.またはし、の半径 r, 信号光または制御光の光ビーム断面し。」の半径 t,信号光の光源を点灯した時刻、t。制御光を遮断していたシャッターを開放した時刻、t。料御光を遮断していたシャッターを開放した時刻、t。

* 制御光をシャッターで再び遮断した時刻. t. 制御光を遮断したシャッターを開放した時刻. t. 制御光をシャッターで再び遮断した時刻、t。信号光の光源を消灯した時刻、 θ 集光レンズで収束させた光ビームの外国部が光軸となす角度、 ω。 集光レンズで収束させたガウスビームのビームウエスト(焦点位置におけるビーム半径)。

[図4] [図1]

(24)

特闘平10-148853

(25)

[図2]

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl? N0000=21&N0400=image/gif&N0401=/...

→ 特闘平10-148853

4/21/2005

特闘平10-148853

(27)

特闘平10-148853

(28)

特開平10-148853

特闘平10-148853

(30)

4/21/2005

特闘平10-148853

(31)

特闘平10−148853

(32)

特別平10-148853

(33)

(34)

特関平10-148853

[2013]

[図37]

CH₁COOCH₂CH₂-N N-CH₂CH₂OCOCH₃

[38]

(35)

特闘平10-148853

(36)

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/...

(38)

(39)

(40)

特開平10-148853

[図21]

(42)

(43)

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl? N0000=21&N0400=image/gif&N0401=/...

(44)

(45)

- 特関平10-148853

(45)

(48)

特関平10-148853

[<u>12</u>29]

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/...

(50)

特関平10-148853

【図45】

[246]

フロントページの続き

(72)発明者 宝田 茂

東京都足立区堀之内1丁目9番4号 大日 **精化工类株式会社東京製造享業所內**

(72)発明者 柳本 宏光

東京都足立区堀之内1丁目9番4号 大日 **铈化工类株式会社亰京製造亭業所內**

神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内

(72)発明者 上野 一郎

神奈川県衛浜市神奈川区守屋町3丁目12番

地 日本ビクター株式会社内