

TEST REPORT

성적서 번호: EST-2021-000056

신청자 0 회 사 명 : 서울과학기술대학교 산학협력단

0 주 소 : 서울 노원구 공릉로 232, 테크노큐브동 2층 203호(공릉동, 서울과학기술대학교)

0 대표자명 : 권용재

시험성적서의 용도: 제출용

시험대상품목 : 로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0

모델 / 정격 : -

시험기간: 2021년 08월 09일 ~ 2021년 08월 23일

시험방법: 소프트웨어 의뢰시험 의뢰자 제시기준/규격

시험결과 : 시험결과 참조

비 고: 1. 이 성적서는 의뢰자가 제시한 시료 및 시료명으로 시험한 결과로써 전체 제품에 대한 품질을 보증하지 않으며,

성적서의 진위확인은 홈페이지(www.ktr.or.kr) 또는 QR code로 확인 가능합니다.

2. 이 성적서는 홍보, 선전, 광고 및 소송용 등으로 사용될 수 없으며, 용도 이외의 사용을 금합니다.

3. 이 성적서는 원본(재발행 포함)만 유효하며, 사본 및 전자 인쇄본/파일본은 결과치 참고용입니다.

川州场

작성자 : 이유정

Tel: 02-2092-3748

五似豆

기술책임자 : 조성호

Tel: 1577-0091

2021 년 08 월 23 일

위변조 확인용 QR 코드

KTR-QI-Y10053-F09(00)

A4(210 X 297)

시험결과

1. 시험개요

1.1 시험기준 및 방법

• 의뢰자 제시 기준/규격

- 제출일 : 2021. 07. 22.

- 제출문서 명 : 소프트웨어 의뢰시험 의뢰자 제시 기준/규격서

1.2 시험장소

• 서울시 노원구 (서울과학기술대학교 전산고체역학연구실)

2. 시험대상 제품

2.1 제품명

제품명	모델명	제조사	용도
로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0	_	서울과학기술대학교	대변형 및 접촉을 포함한 비선형 문제의 실시간 유한요소 해석 프로그램

2.2 제품구성

구성요소 명	용도
snapconnector v1.0	스냅 커넥터의 변형과 응력 실시간 유한요소 해석 모듈
wire v1.0	유연케이블의 변형과 응력 실시간 유한요소 해석 모듈
gripper v1.0	소프트그리퍼의 변형과 응력 실시간 유한요소 해석 모듈
dome v1.0	반구형 돔의 변형과 응력 실시간 유한요소 해석 모듈
dome_cdd v1.0	반구형 돔의 변형과 응력 실시간 유한요소 해석 실시간성 개선 모듈

시험결과

3. 시험도구

No.	도구 명	용도
1	validating.m	모듈의 FEM 해석 실시간성과 정확도를 확인하는 도구

4. 시험구성 및 시험환경

4.1 시험구성

1) 시험구성 1

- 1) 로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0은 사용자용 PC에 탑재되며, 단일 PC에서 실행된다.
- 2) 로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0은 'snapconnector v1.0', 'wire v1.0', 'gripper v1.0', 'dome v1.0', 'dome_cdd v1.0' 총 5개의 모듈로 구성되어 있다.

시험결과

4.2 시험환경 (하드웨어 및 소프트웨어)

1) 사용자용 PC (로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0)

	사양
CPU	Intel(R) Xeon(R) W-2123 3.60 GHz
RAM	32 GB
HDD	1 TB
OS	Linux Ubuntu 20.04
네트워크 통신	TCP/IP

2) 시험용 PC

	사양		
CPU	Intel(R) Core(TM) i7 CPU 1.80 GHz		
RAM	16 GB		
HDD	500 GB		
OS	Windows 10 Home		
웹 브라우저	해당 없음		
기타 S/W	MATLAB R2021a Update 3 Abaqus 6.14		
네트워크 통신	TCP/IP		

시험결과

5. 종합 시험 결과

시험항목 명	시험결과			적합 / 부적합 (세부시험결과 참조)
	스냅커넥터 모듈의 성능이 다음 기준을 만족함			
	성능명	기준	결과	
스냅커넥터	평균 계산 속도 (speed)	60 Hz 이상	1726.93 Hz	적합
모듈	변위 RMSE 상대오차 (L2 relative error)	20 % 이하	1.21 %	(시험항목 1)
	응력 RMSE 상대오차 (L2 relative error)	20 % 이하	3.53 %	
***	유연케이블 모듈의 성능이	다음 기준을 당	반족함	
	성능명	기준	결과	
유연케이블	평균 계산 속도 (speed)	60 Hz 이상	79.39 Hz	적합
모듈	변위 RMSE 상대오차 (L2 relative error)	20 % 이하	0.36 %	(시험항목 2)
	응력 RMSE 상대오차 (L2 relative error)	20 % 이하	15.52 %	
	소프트그리퍼 모듈의 성능이 다음 기준을 만족함			
	성능명	기준	결과	
소프트그리퍼	평균 계산 속도 (speed)	60 Hz 이상	291.33 Hz	적합
모듈	변위 RMSE 상대오차 (L2 relative error)	20 % 이하	0.84 %	(시험항목 3)
	응력 RMSE 상대오차 (L2 relative error)	20 % 이하	2.23 %	
반구형 돔 모듈	반구형 돔 모듈의 성능이 성능명 평균 계산 속도 증감	다음 기준을 만 기준 20 % 이상	족함 결과 417.18 %	적합 (시험항목 4)

※ 자세한 시험결과는 '세부시험결과'를 참조

A4(210 X 297)

시 험 결 과

세부 시험 결과 (종합 시험 결과에 대한 세부 결과 내용)

A4(210 X 297)

Page : 6 of 14

시험결과

시험항목 1 | 스냅커넥터 모듈

1. 시험기준 : 스냅커넥터 모듈의 성능이 다음 기준을 만족하는지 확인

- FEM 해석 실시간성
- · 평균 계산 속도 (Average Speed): 60 Hz 이상
- 실시간 FEM 해석 정확도
 - · 변위 RMSE 상대오차 (L2 Relative Error) : 20 % 이하
 - · 응력 RMSE 상대오차 (L2 Relative Error) : 20 % 이하

※ FEM (Finite Element Method, 유한요소법): FEM 해석 실시간성은 평균 계산 속도를 통해확인하며, 실시간 FEM 해석 정확도는 변위 RMSE 상대오차와 응력 RMSE 상대오차를 통해확인함(변위 RMSE 상대오차 및 응력 RMSE 상대오차는 L2 Relative Error를 통해확인 가능)

※ 평균 계산 속도

$$Average\,Speed\,[Hz] = rac{1}{N_T} \sum_{i=1}^{N_T} \left[f^{code}(i)
ight]$$

- N_T : 전체 시험 데이터의 개수 (예: 30회 반복 수행 $\rightarrow N_T = 30$)
- f^{code}(i) : i-번째 시험의 계산속도 [Hz]

※ RMSE 상대오차 (L2 Relative Error, L2RE)

$$L2 \ \ Relative \ \ Error\left[\%\right] = \frac{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i) - u^{code}(i)\right]^2}}{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i)\right]^2}} \times 100$$

- N: 전체 자유도의 수 (The total number of degrees of freedom)
- u^{Abaqus}(i) : i-번째 자유도의 상용 Abaqus 해석 S/W 결과 (변위 또는 응력)
- $-u^{code}(i)$: i-번째 자유도의 프로그램 (로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 $\mathrm{Vl.0}$) 결과 (변위 또는 응력)
- 2. 시험구성: 시험구성 1
- 3. 시험도구 : 시험도구 1
- 4. 사전조건
 - 30 회의 입력 파라미터가 validating.m에 작성되어 있음
 - 사전에 동일한 입력 파라미터로 Abaqus에서 획득한 결과가 저장되어 있음

시험결과

- 5. 시험데이터 : N/A
- 6. 시험절차 및 방법
 - 1) MATLAB 실행
 - 2) snapconnector v1.0 모듈 폴더의 validating.m을 호출
 - 3) 30 회의 입력 파라미터 확인
 - 4) 30 회 순차 실행
 - 5) 결과 확인
- 7. 시험결과 : 스냅커넥터 모듈의 성능이 다음 기준을 만족함

성능명	기준	결과
평균 계산 속도 (speed)	60 Hz 이상	1726.93 Hz
변위 RMSE 상대오차 (L2 relative error)	20 % 이하	1.21 %
응력 RMSE 상대오차 (L2 relative error)	20 % 이하	3.53 %

시험결과

시험항목 2 유연케이블 모듈

1. 시험기준 : 유연케이블 모듈의 성능이 다음 기준을 만족하는지 확인

- FEM 해석 실시간성
- · 평균 계산 속도 (Average Speed) : 60 Hz 이상
- 실시간 FEM 해석 정확도
 - · 변위 RMSE 상대오차 (L2 Relative Error) : 20 % 이하
 - · 응력 RMSE 상대오차 (L2 Relative Error) : 20 % 이하
- ※ FEM (Finite Element Method, 유한요소법): FEM 해석 실시간성은 평균 계산 속도를 통해 확인하며, 실시간 FEM 해석 정확도는 변위 RMSE 상대오차와 응력 RMSE 상대오차를 통해 확인함(변위 RMSE 상대오차 및 응력 RMSE 상대오차는 L2 Relative Error를 통해 확인 가능)
- ※ 평균 계산 속도

$$Average\,Speed\,[Hz] = \frac{1}{N_T} \sum_{i=1}^{N_T} \left[f^{code}(i) \right]$$

- N_T : 전체 시험 데이터의 개수 (예: 30회 반복 수행 $\rightarrow N_T = 30$)
- f^{code}(i) : i-번째 시험의 계산속도 [Hz]
- ※ RMSE 상대오차 (L2 Relative Error, L2RE)

$$L2 \ \ Relative \ \ Error\left[\%\right] = \frac{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i) - u^{code}(i)\right]^2}}{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i)\right]^2}} \times 100$$

- N : 전체 자유도의 수 (The total number of degrees of freedom)
- u^{Abaqus}(i) : i-번째 자유도의 상용 Abaqus 해석 S/W 결과 (변위 또는 응력)
- $-u^{code}(i)$: i-번째 자유도의 프로그램 (로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0) 결과 (변위 또는 응력)
- 2. 시험구성 : 시험구성 1
- 3. 시험도구 : 시험도구 1
- 4. 사전조건
 - 30 회의 입력 파라미터가 validating.m에 작성되어 있음
 - 사전에 동일한 입력 파라미터로 Abaqus에서 획득한 결과가 저장되어 있음

시험결과

- 5. 시험데이터 : N/A
- 6. 시험절차 및 방법
 - 1) MATLAB 실행
 - 2) wire v1.0 모듈 폴더의 validating.m을 호출
 - 3) 30 회의 입력 파라미터 확인
 - 4) 30 회 순차 실행
 - 5) 결과 확인
- 7. 시험결과 : 유연케이블 모듈의 성능이 다음 기준을 만족함

성능명	기준	결과
평균 계산 속도 (speed)	60 Hz 이상	79.39 Hz
변위 RMSE 상대오차 (L2 relative error)	20 % 이하	0.36 %
응력 RMSE 상대오차 (L2 relative error)	20 % 이하	15.52 %

시험결과

시험항목 3 소프트그리퍼 모듈

1. 시험기준 : 소프트그리퍼 모듈의 성능이 다음 기준을 만족하는지 확인

- FEM 해석 실시간성
- · 평균 계산 속도 (Average Speed) : 60 Hz 이상
- 실시간 FEM 해석 정확도
 - · 변위 RMSE 상대오차 (L2 Relative Error) : 20 % 이하
 - · 응력 RMSE 상대오차 (L2 Relative Error) : 20 % 이하
- ※ FEM (Finite Element Method, 유한요소법): FEM 해석 실시간성은 평균 계산 속도를 통해확인하며, 실시간 FEM 해석 정확도는 변위 RMSE 상대오차와 응력 RMSE 상대오차를 통해확인함(변위 RMSE 상대오차 및 응력 RMSE 상대오차는 L2 Relative Error를 통해확인 가능)
- ※ 평균 계산 속도

$$Average\,Speed\,[Hz] = \frac{1}{N_T} \sum_{i=1}^{N_T} \left[f^{code}(i) \right]$$

- N_T : 전체 시험 데이터의 개수 (예: 30회 반복 수행 $\rightarrow N_T = 30$)
- f^{code}(i) : i-번째 시험의 계산속도 [Hz]
- ※ RMSE 상대오차 (L2 Relative Error, L2RE)

$$L2 \ \ Relative \ \ Error\left[\%\right] = \frac{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i) - u^{code}(i)\right]^2}}{\sqrt{\sum\limits_{i=1}^{N}\left[u^{Abaqus}(i)\right]^2}} \times 100$$

- N : 전체 자유도의 수 (The total number of degrees of freedom)
- u^{Abaqus}(i) : i-번째 자유도의 상용 Abaqus 해석 S/W 결과 (변위 또는 응력)
- $-u^{code}(i)$: i-번째 자유도의 프로그램 (로봇 시뮬레이터를 위한 실시간 유한요소 해석 프로그램 V1.0) 결과 (변위 또는 응력)
- 2. 시험구성: 시험구성 1
- 3. 시험도구 : 시험도구 1
- 4. 사전조건
 - 30 회의 입력 파라미터가 validating.m에 작성되어 있음
 - 사전에 동일한 입력 파라미터로 Abaqus에서 획득한 결과가 저장되어 있음

시험결과

- 5. 시험데이터 : N/A
- 6. 시험절차 및 방법
 - 1) MATLAB 실행
 - 2) gripper v1.0 모듈 폴더의 validating.m을 호출
 - 3) 30 회의 입력 파라미터 확인
 - 4) 30 회 순차 실행
 - 5) 결과 확인
- 7. 시험결과 : 소프트그리퍼 모듈의 성능이 다음 기준을 만족함

성능명	기준	결과
평균 계산 속도 (speed)	60 Hz 이상	291.33 Hz
변위 RMSE 상대오차 (L2 relative error)	20 % 이하	0.84 %
응력 RMSE 상대오차 (L2 relative error)	20 % 이하	2.23 %

시험결과

시험항목 4 반구형 돔 모듈

1. 시험기준 : 반구형 돔 모듈의 성능이 다음 기준을 만족하는지 확인

- 실시간성 향상
- 평균 계산 속도 증감 : 20 % 이상
- ※ 실시간성 향상은 기본 모듈(dome 모듈)과 실시간성 향상 모듈(dome_cdd 모듈)의 계산 속도를 비교하여 계산 속도 증감을 통해 확인함
 - ·dome 모듈 : 반구형 돔의 실시간 FEM 해석 기본 모듈
 - ·dome_cdd 모듈 : 반구형 돔의 실시간 FEM 해석 기본 모듈에서 실시간성 향상을 위해 실 시간성 개선 모듈
- ※ 평균 계산 속도 증감

평균계산속도증감 [%] =
$$\frac{1}{N_T} \sum_{i=1}^{N_T} \left[\frac{\parallel f^{dome}(i) - f^{dome_cdd}(i) \parallel}{f^{dome}(i)} \times 100 \right]$$

- N_T : 전체 시험 데이터의 개수 (예: 30회 반복 수행 $\rightarrow N_T = 30$)
- $f^{dome}(i)$: 반구형 돔 기본 모듈의 i-번째 시험의 계산속도 [Hz]
- $f^{dome_cdd}(i)$: 반구형 돔 실시간성 개선 모듈 i-번째 시험의 계산속도 [HZ]
- 2. 시험구성: 시험구성 1
- 3. 시험도구 : 시험도구 1
- 4. 사전조건
 - 30 회의 입력 파라미터가 validating.m에 작성되어 있음
- 5. 시험데이터 : N/A
- 6. 시험절차 및 방법
 - 1) MATLAB 실행
 - 2) dome v1.0 모듈 폴더의 validating.m을 호출
 - 3) 30 회의 입력 파라미터 확인
 - 4) 30 회 순차 실행
 - 5) 결과 확인
 - 6) dome_cdd v1.0 모듈 폴더의 validating.m을 호출
 - 7) 30 회의 입력 파라미터 확인

시험결과

- 8) 30 회 순차 실행
- 9) 결과 확인
- 10) 평균 계산 속도 증감 계산
- 7. 시험결과 : 반구형 돔 모듈의 성능이 다음 기준을 만족함

성능명	기준	결과
평균 계산 속도 증감	20 % 이상	417.18 %

KTR-QI-Y10053-F09(00)

A4(210 X 297)

Page : 14 of 14