

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Geometria Plana — Avaliação P1

1	
2	
3	
4	
5	
Total	

Obs: Justifique todas as suas respostas, indicando quais conceitos e técnicas foram utilizadas. Respostas sem justificativa não serão consideradas.

- (1) Prove ou dê um contra-exemplo:
 - (a) Quaisquer que sejam os pontos A e B, se A é distinto de B, então existe uma reta r tal que $A \in r$ e $B \in r$.
 - (b) Se duas retas distintas têm um ponto comum, então elas possuem um único ponto comum.
 - (c) Todos os triângulos retângulos isósceles são congruentes.
- (2) Dois ângulos retos, $A\hat{O}B$ e $C\hat{O}D$, têm em comum o ângulo $B\hat{O}C$. Mostre que os ângulos $A\hat{O}C$ e $B\hat{O}D$ são congruentes e que os ângulos $A\hat{O}D$ e $B\hat{O}C$ são suplementares.
- (3) No triângulo isósceles \overline{ABC} abaixo, a bissetriz do ângulo \hat{B} intercepta o lado oposto em D. E é um ponto da base \overline{AB} tal que ED = EA. \overline{DF} bisseca o ângulo $A\hat{D}E$. Demonstre que $E\hat{D}F = C\hat{B}D$.

- (4) Num triângulo ABC, AC > AB. Mostre que se D é um ponto qualquer entre B e C, então AD < AC.
- (5) Se DC = BC e DE = BE, demonstre que AD = AB, sabendo-se que os pontos A, E e C são colineares.

