Chapter 5 Internal Memory

Part One

Semiconductor Memory

- RAM (Random Access Memory)
 - Misnamed as all semiconductor mem. are random access
 - Read/Write
 - Volatile
 - Temporary storage
 - Static or dynamic
- ROM (Read only memory)
 - Permanent storage
 - Read only

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory (static RAM would be too expensive)

Dynamic RAM

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache (here the faster the better)

Read Only Memory (ROM)

- Permanent storage
- Microprogramming (see later)
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV (it can take up to 20 minuts)
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - a single byte can be erased
 - Flash memory
 - Erase memory electrically "block-at-a-time"

Physical Characteristics

- Decay (refresh time)
- Volatility (needs power source)
- Erasable
- Power consumption

Organisation

- Physical arrangement of bits into words
- Not always obvious
 - e.g. interleaved

Basic Organization (1)

- Basic element: memory cell
 - has 2 stable states: one represent 0, the other 1
 - can be written at least once
 - can be read

Basic Organization (2)

Basic organization of a 512x512 bits chip

Module Organisation

- Basic organization of a 256KB chip
- 8 times a 512x512 bits chip

 ...For a 1 MB chip replicate 4 times this organization...

Module Organisation (1 MByte)

Organisation for larger sizes

- The larger the size the higher the number of address pins
- For 2^k words, k pins are needed
- A solution to reduce the number of address pins
 - Multiplex row address and column address
 - k/2 pins to address 2^k Bytes
 - Adding one more pin doubles range of values so x4 capacity

Typical 16 Mb DRAM (4M x 4)

Refreshing (Dynamic RAM)

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Packaging

Error Correction

- Hard Failure
 - Permanent defect
- Soft Error
 - Random, non-destructive
 - No permanent damage to memory
- Detected using Hamming error correcting code
 - it is able to detect and correct 1-bit errors

Error Correcting Code Function

A simple example of correction (1)

- Correcting errors in 4 bits words
- 3 control groups

• In each control group add 1 parity bit

A simple example of correction (2)

• One of the bits change value

• Using control bit the right value is restored

Compare Circuit

- it takes two K-length binary strings X, Y as input
 - $X=X_K...X_1$
 - Y=Y_K...Y₁
- it returns a K-length binary string Z (syndrome)
 - $Z=Z_K...Z_1$
 - $Z_i=X_i \oplus Y_i$ for each i=1,...,K
- Z=0...0 means no error

Relation between M and K

- Z may assume 2^K values
- the value Z=0...0 means no error
- the error may be in any bit among the M+K bits
- it must be

$$2K-1 \ge$$

Data bits (M)	Control Bits (K)	Additional Memory (%)		
4	3	75		
8	4	50		
16	5	31,25		
32	6	18,75		
64	7	10,94		
128	8	6,25		
256	9	3,52		

How to arrange the M+K bits

- the M+K bits are arranged so that
 - if Z contains a single bit equal to 1
 - error occured in the corresponding control bit
 - if Z contains more than one bit equal to 1
 - error occured in the i-th bit where i is the value (in binary) of Z

The case M=4

bit position	7	6	5	4	3	2	1
position number	111	110	101	100	011	010	001
data bits	D4	D3	D2		D1		
control bits				C4		C2	C1

Exercise

- Design a Hamming error correcting code for 8-bit words
- See the textbook for the solution