Conjugations

Disruete systems: Let g: M -> M and g: N -> N. They are topologically conjugate if I h: M -> N homeomorphism s.t.

40 g = goh

Continuoses syntams: Let x=X(x), x'=Y(x) defined on open sets M, V of R respt. Note: hof= goh & hof= 50h, Anzo. If gard 8 are invertible we also have hof=80h They are conjugate of the M - V homeomorphism s.t. Let (1,x), +(t,x) be the corresponding flows If h is a C'- differ we may that fig are C' Conjugate $h(\chi(t,x)) = \chi(t,h(x))$ $\chi \in \mathcal{U}$ $\chi \in (\mu_{-}(x), \mu_{+}(x))$

Classification: being conjugate is an equilibrate relation If h is a C' duffer we say the systems (C' - conjugate

let x'= X (x) and y=h (x) be a change of Jan-eble (differentiable)

The transformed equation is

y'= Dh(mx'=Dh(mX(x)= Dh(h1(y)) X(h1(y)) =: Y(y)

and if x(t) is a robustion of x= x(x), then y(t)= k(x(t)) is a robustion of y= Y(y).

On the other hand if h is a conjugateor from x'=X(x) to y'=Y(x)

h (((t, x)) = 4 (t, h (x))

If his differentiable, Dh(e(t,x)e'(t,x) = +'(t,h(x))

Dh(@ 4,0) X(@4,x) - Y(+4, h(0))

 $D_{k}(x) \times (x) = y(k(x))$

Y (x) = Dh (h-1/21) X (h-1/21)

Let A: R" --- R"

We decompose the space as R"= E & E & E & E

where E'= sum of eigenspaces associated to eigenvalues

of modulus less than 1

E = idem E" dem

equal to 1 bosger than 1

ダンナ respect to this decomposition

$$A = \begin{pmatrix} A^{S} & O & O \\ O & A^{C} & O \end{pmatrix}$$

Spec A CIXEC 1 INC1} Spec A" Chreal INIDAS Spec A Chreck IN =1}

I norms in Es, E, E" s.t.

 $||A^{S}|| \leq \max_{|\lambda| < 1} \langle |\lambda| \rangle + \varepsilon =: \delta < 1$

3+1 > 12

erghuralnes

A useful room in R" is

11x11 = max {11x511, 11x611, 11x611} if x= x5 + x6 + x6

AEL (R", R") is hyperbolic of Spec A NAX | |X|=15=p. If x #0

かから

RM = ES & Em and

Dee

In this case we have

Frog Let 8, 8 be C' differs Let p= f(p), 9=8(4), and ha c'a conjugation from of to 8 much that Dh (p) \$ & (p) = D& (p) Dh (p) 4 = (9) ×

lonsequeme :

Spec D&(1) = Spec D&(4)

Even more, Jordan form of D&(P) = Jordan form of D&(f)

Taking derivatives in h (8(x)) = 8(h(x))

Proof

Dh(&(x)) D&(m = Dg(h(m) Dh(x)

Example &(x) = 2x, &(x) = 3x are not (1 - conjugate

Are they top. conjugate? We look for h(x) = x a

 $h(2x) = 3h(x) \rightarrow (2x)^d = 3x^d$ > 2 = 3 -> a = log 3 > 1

 $ke h(x) = \begin{cases} x \frac{\log 3}{\log 2}, & x > 0 \\ -1-x | \frac{\log 3}{\log 2}, & x < 0 \end{cases}$

It is cr and h(0)=0 => It is not diffeo in a mbh of o XNO

h'(x) = { x log 2/log 3 \ \ (-1-x) log 2/log 3

Prop Let A EL (R", IR") be hyperbolic V Then it is topologically conjugate to one of the following eight linear maps and invertible

Prop Two linear maps A,BEL(IR, IR) are C'arjugate (A,B are unjugate ナン

Brid If there exist hear s.t. h(Ax)=Bhos DLAMA = BDh(m) - Dh(o) A = BDh(o) Corversely, of there exist CELLR", R"), det C +0, s.t.

h 15 x Cx is the descreed (linear, and hence (1) conjugation CA-BC

Results on conjugations of vedor fields. Let X, Y be vedor fields of class C1 Trop Let h be a C^-conjugation from X to Y Th(x) X(x) = Y[h(x)]

Prog

1 Already done

 $\widehat{\mathbb{M}}$

6:16 x e ll let

x(+) = h(x(+,x),

BH= 4(+, h(0)

d'(h = Dh(e(+, α) e'(+, α = Dh(e(+, α)) X (e(+, α)) = Y(h(e(+, α))) = Y(~(t)) x (0) = h(x(0,0) = h(x)

(B(0) = Y(0, h(0) = h(x) β(t) = + 1(1, h(x) - y(+(+, h(x))) = y(β(t))

Proposition Then, of h is c (1- conjugation from X to Y such that h (p) = \$ Let X, Y rector fields of class C1, and x=X(x, x=Y(x) Let Pix be much that X(p) =0, Y(1) >0 Dr(P) DX(P) - DY(A) Dh(P)

7000 let elt, s, +(t, 5) I'm solutions of x=X(s), X1 > Y(s)

Taking derivatives with respect to x: By det. of conjugation

h(e(t, x) = ♥(t, h(x))

Dh[k (x,x)) Dx k(xx) = Dx 4(+, h(x)) Dh (x)

Dx4 [0, p) = Id.

メルト

Dh(r) Dxe(+,p) - Dx+(+,4) Dh(r)

only fie the v.E. (Dxe(+,p)) = DX(e(+,p)) Dxe(+,p),

Dx 6 H, B)

Dx 4(+, p) = exp (DX(p) t) . In the same wants

(414) = exp (5)(4) b)

Then Dh(p) 0 DX(p) = e DY(q) t Dh(p).

Taking derivative wirit ti DK(p) DX(p) e DX(p) t = DY(a) e DY(a) t Dh(p). Put to o.

(1t,x) = e-tx,

4 (t, x) = e-2t x

7 31661

h(e-tx) = e-2t h(x)

-> Dhie-twe-t= e-it Dhia

(x=0) -> Dh(0) e-t = e-ut Dh(0)

1 to - Dh(0) = -2 Dh(0) - Dh(0) = 0

1-1(x) = { Vx, × V ΥΛC

日 h (x), x>0

× × × 0

If x>0

) h (e-tx) = e-itx2 1 e-2+ 1 x = e-2+ x2

If x<0 ...

Linear hyperbolic vector field: x'=Ax o.t spec A 1 / 1) Rex=05= & 5 = index of stability = number of eigenvalues at. Re> < 0 (counting multiplications)

theorem Two hyperbolic linear vector fields are topologically conjugate They have the same index of stability

Theorem x'=Ax, x'=Bx are c' conjugate of A, B are conjugate matrices

Proof 1- Let h be a conjugation, of dows (1: h (eAtx) = e h(x) Taking durivative w. r.t. x > Dh(eAtx) eAt = eBt Dh(x)

-> Dh(o) eAt = e Bt Dh(o)

If a C s.t. CA=BC Taking derivative w.r.t. t -> Dh(0) AeAt = BeBt Dh(0) -> Dh(0) A=BDh(0) Puting x > 0 y (3) = Cx is a conjugation (linear and therefore (1)