UD5 – SISTEMES INFORMÀTICS EN XARXA-II

1º DAW - CFGS

Prof. Manuel Enguidanos menguidanos@fpmislata.com

5.3.5. SUBNETTING

- 5.3.5. Subnetting
 - Consisteix en la divisió d'una xarxa en subxarxes.
- Ho aconseguim "robant" bits a la part de host.
- Per a calcular el nombre de bits necessaris per a representar subxarxes apliquem la fórmula: 2^{bits robats de la part de}
 host -2 >= nombre de subxarxes
- Per a calcular el número de hosts màxim apliquem la fórmula:
 2bits restants en la part de host
 -2 >= número de hosts possibles

5.3.5. Subnetting

1º Identificar la clase de la red

- 5.3. Direccionamiento
- 5.3.5. Subnetting

2º Identificar que se requiere

- ☐ Subredes ??
- ☐ Hosts/Equipo ???

5.3.5. Subnetting

- Un bit puede tomar 2 valores 1
- Se pueden enumerar 2^x elementos con X bits.

Por ejemplo, con 3 bits:

X = 3 podemos enumerar 2^3 elementos. Es decir 8 elementos.

PC 1: 000 PC 5: 100
PC 2: 001 PC 6: 101
PC 3: 010 PC 7: 110
PC 4: 011 PC 8: 111

Identificar de forma única

Cálculo de subredes

Cómo calcular el nº de bits de Subred necesarios para dimensionar una red?

Ejemplo: Cuantos bits de subred necesitamos para tener 90 subredes distintas?

Se pueden enumerar 2x elementos con X bits.

Con 6 bits, podremos identificar las 90 subredes? $2^6 = 64$

Con 7 bits, podremos identificar las 90 subredes? $2^7 = 128$

Sill

Para Subredes

 $subredes = 2^x$

Cálculo de subredes

2NºBits	2	4	8	16	32	64	128	256	512	1024
NºBits	1	2	3	4	5	6	7	8	9	10

Ejemplo: Cuantos bits necesitamos para tener 7 subredes?

Con 3 bits podremos dar cabida a 8 subredes

Para Subredes

N° subredes = 2^x

Calcular hosts

5.3.5. Subnetting

Cómo calcular el nº de bits de Host necesarios para dimensionar una red?

Ejemplo: Cuantos bits de host necesitamos para tener 180 IPs de Host?

Se pueden enumerar 2x elementos con X bits.

Con 7 bits, podremos identificar las 180 IPs? $2^7 = 128$

Faltan IPs!!

Con 8 bits, podremos identificar las 180 IPs?

 $2^8 = 256$

■ 5.3.5. Subnetting

Cómo calcular el nº de bits de Host necesarios para dimensionar una red?

Ejemplo: Cuantos bits de host necesitamos para tener 180 IPs de Host?

Para direcciones IP de host, el número de direcciones IPs válidas será 2x-2

5.3.5. Subnetting

Para direcciones IP de host, el número de direcciones IPs válidas será 2x-2

Calcular hosts

1	1024	512	256	128	64	32	16	8	4	2	2N
1	10	9	8	7	6	5	4	3	2	1	Nº

2^{N°Bits} N°Bits

Ejemplo: Cuantos bits necesitamos para tener 255 hosts?

Con 9 bits podremos dar cabida a 512-2 = 510 hosts

5.3.5. Subnetting

IPV4 - SUBNETTING

DISEÑO

- **5.3.** Direccionamiento
- 5.3.5. Subnetting
 - DISEÑO DE LA SOLUCIÓN

 Escojer la red o redes que se utilizaran.

 Escojer la máscara de red/subred que se utilizará.

Realizar una lista con: Redes / Máscaras / Rango IPs válido / IP Broadcast

5.3.5. Subnetting

2 DISEÑO DE LA SOLUCIÓN

IPV4 - SUBNETTING.

→ Realizar una lista con: Redes / Máscaras / Rango IPs válido / IP Broadcast

ID de Subred	Rango de IPs Host	IP de Broadcast	Máscara
172.20.0.0	172.20.0.1 - 172.20.0.254	172.20.0.255	255.255.255.0
172.20.1.0	172.20.1.1 - 172.20.1.254	172.20.1.255	255.255.255.0
172.20.2.0	172.20.2.1 - 172.20.2.254	172.20.2.255	255.255.255.0
172.20.3.0	172.20.3.1 – 172.20.3.254	172.20.3.255	255.255.255.0
172.20.4.0	172.20.4.1 - 172.20.4.254	172.20.4.255	255.255.255.0
***	***		255.255.255.0
172.20.254.0	172.20.254.1 - 172.20.254.254	172.20.254.255	255.255.255.0
72.20.255.0	172.20.255.1 - 172.20.255.254	172.20.255.255	255.255.255.0

Dada la dirección 200.200.100.0 encontrar 6 subredes

- Paso 1: Identificar la clase IP Clase C
- Paso 2: Identificar la máscara de red 255.255.255.0
- Paso 3: Aplicar la fórmula 2ⁿ >= 6; 2³ = 8; n =3
- Paso 5: Número Mágico (salto)
 256 224= 32

5.3.5. Subnetting

Dada la dirección 200.200.100.0 encontrar 6 subredes

Dirección Subred	Rango IP's	Broadcast
200.200.100.0	200.200.100.1 - 200.200.100.30	200.200.100.31
200.200.100.32	200.200.100.33 - 200.200.100.62	200.200.100.63
200.200.100.64	200.200.100.65 - 200.200.100.94	200.200.100.95
200.200.100.96	200.200.100.97 - 200.200.100.126	200.200.100.127
200.200.100.128	200.200.100.129 - 200.200.100.158	200.200.100.159
200.200.100.160	200.200.100.161 - 200.200.100.190	200.200.100.191
200.200.100.192	200.200.100.193 - 200.200.100.222	200.200.100.223
200.200.100.224	200.200.100.225 - 200.200.100.254	200.200.100.255

5.3.5. Subnetting

Dada la dirección 192.168.0.0 encontrar 14 subredes

- Paso 1: Identificar la clase IP Clase C
- Paso 2: Identificar la máscara de red 255.255.255.0
- Paso 3: Aplicar la fórmula
 2ⁿ >= 14; 2⁴ = 16; n = 4
- Paso 5: Número Mágico (salto)
 256 240= 16

5.3.5. Subnetting

Dada la dirección 192.168.0.0 encontrar 14 subredes

Dirección Subred	Rango IP's	Broadcast
192.168.0.0	192.168.0.1-192.168.0.14	192.168.0.15
192.168.0.16	192.168.0.17-192.168.0.30	192.168.0.31
192.168.0.32	192.168.0.33-192.168.0.46	192.168.0.47
192.168.0.48	192.168.0.49-192.168.0.62	192.168.0.63
192.168.0.64	192.168.0.65-192.168.0.78	192.168.0.79
192.168.0.80	192.168.0.81-192.168.0.94	192.168.0.95
192.168.0.96	192.168.0.97-192.168.0.110	192.168.0.111
192.168.0.112	192.168.0.113-192.168.0.126	192.168.0.127
192.168.0.128	192.168.0.129-192.168.0.142	192.168.0.143
192.168.0.144	192.168.0.145-192.168.0.158	192.168.0.159
192.168.0.160	192.168.0.161-192.168.0.174	192.168.0.175
192.168.0.176	192.168.0.177-192.168.0.190	192.168.0.191
192.168.0.192	192.168.0.193-192.168.0.206	192.168.0.207
192.168.0.208	192.168.0.209-192.168.0.224	192.168.0.225
192.168.0.226	192.168.0.227-192.168.0.238	192.168.0.239
192.168.0.240	192.168.0.241-192.168.0.254	192.168.0.255

Realitzar Actividades Subnetting

UD5 – SISTEMES INFORMÀTICS EN XARXA-I

1º DAW - CFGS

Prof. Manuel Enguidanos menguidanos@fpmislata.com