

JUNE 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9701/2

CHEMISTRY (STRUCTURED QUESTIONS (AS))

Page 1	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
(a)(i)	The six elections of to bun. I some reference to charge. The electristatic attraction from the oppositely charged purious.	_
(111)	The uncleus (give eredit if answered in (ii).	[3]
(i) (d)	2 p _x 2 p ₃ (i) 2 p _x 2 p ₃ (i)	[2]
(i;)	Spherical	
,	s keth porkitals	印
(m)	A A A	[I]
(1.0)	30	
	explanation in terms of election repulsion within doubly occupied privited half-filled of synnetry of their provides of eingle occupancy (1)	[2]
(e)(i	$\frac{NOT}{N^3}$ and $0^{2^{-1}}$ between (1)	l
(6)		[2]
	or I.E values too large for stability of cations (1)	(11)

Not electronyative.

Page 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
1(a)	C2H4 + H2C CLHS+H	
1	-141\$ - 1367	
: 	64 = (2 44 Per Jan) -1	2]
(b) (i)	* AH when I not of a substance is completely combasted (1)	
(ii)	Under standard acciditions Hoos C2H50H are Lights (1)	
<i>G</i> n]	$C_2H_5GH + 30_L \longrightarrow 2Co_2 + 3H_2O (i)$	4
(c)	C2H5 - OHFTHERE & C2H5-OF- Aipole (1) Aipole (1)	
	C2H5 - O H Each or C2H5 - OF- Aipole (1) H bend (2) H bend (2)	2
	[Total 8]	
	* Some energy reference reprived.	
		i i

Page 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
3 (a)	constite (nentiered à Syllabur), banxite	[1]
(b)(i)	Steel (1) autten or electrolyte of A120s/ayolite cathode (tank) Steel (1) Steel (1) Authorite anodes electrolyte of A120s/ayolite (1) diagram (1) aluminium (1) alt bettom 6 nack points => nax	[s]
(n)		[2]
(iii)	ande 202 - 4e - > 02 andes burn / cez or ce formed / fz also formed fly ore	[]
(4)	Has low density / lighter therefore saves fuel does not correde / is protected by exide film or root Anythis [Total:1]	[2]

Page 4	Mark Scheme	Syllabus	Paper
	AS Level Examinations - June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
(4) ⁴ (;)	$S + O_2 \longrightarrow SO_2$ (1)	
(ii)	Air/oxygen) required for Centact sotage (1)	[2]
(A)	vanadium oxide (1) or V205	[1]
(2)67	le Chatelier: to jovent RHS side of equilm (1)	
(s)	Reaction exothermic is reason why contadyst grets hot (1) of exothermic reaction - bedont-lies: high temp factors LHS (1)	:
(33)	Catalysts are easily poisoned (1) damage to contalyst.	[3]
(A)	SOZ daneges buildings - metals, linestone etc (1) danages living this - drimals, trees etc. (1) acid rain (1) acid rain (1)	{{z}}
(e) (i)	hydrogen chloride / HCR gas (1) allow HCR Nack + H2564 -> NaH564 + HCR or 2Nack + H2564 -> Na2504 + 2HCR (1)	
(0)	sadine (1)	[3]
	[Total:17]	

Page 5	Mark Scheme	Syllabus	Paper
	AŞ Level Examinations – June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
(asti)	CzHs&r allow any brominated ethane.	
(i)	- CH2-CH(CH3)-	
(;;;)	CH2CH CHOH CH3	
(iv)	By Comments of the Comments of	
(•)	Co2H Co2H	S
(b) (d)	<24€ + 31 02 → 2002 + 3H20	
(u)	C3HE CHCH3 + H2C -> CH3CHEHCH3 ON CH3CH2CH2EH	
(ii)		3
(i)	There is a greater demand for the gasoline fraction / about Cy Then for the heavier gasoile/diesel (1) The introduction of the altere group gives here reactive products (1) OR gives ethane Balanced equation (1) It products are labelled alkers give the (i) mark [Total:11]	3

		<u> </u>	<u>aayqai</u>
Page 6	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
6 (a)(i)	Two of anaestratics, refrigerants, feare retardants, plantics. (cocionts) (fine extensuisless) solvents	
	Clemical inertness acrossis loss b.p/relat.lity	ı
(b)[) c-ce ()	1
(;;)	U.V light breaks bonds and gives (free) vadiculo (1)	
	ture lead to chain reactions (1) which danages ozone layer Anytwo point	
(c)	C H CL F 17.8 1.5 52.6 28.1	
	12 1 35.5 19	
	= 1.48 = 1.5 1.48 = 1.48	
]	: CHCLF (1) mass = 67.5 (1) et mac of 135	_
	: Mortania formula is C2H2Cl2F2 (1)	3
	[Jetst : R]	