Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher Retake the assignment in **24h 57m**

Go to next item

Which notation would you use to denote the 4th layer's activations when the input is the 7th examp mini-batch?	ole from the 3rd 1/1 point
a ^[4] (3)(7)	
$\bigcirc a^{[3]\{7\}\{4)}$	
$\bigcirc a^{[7]\{3\}(4)}$	
∠ [™] Expand	
\odot Correct Yes. In general $a^{[l]\{t\}(k)}$ denotes the activation of the layer l when the input is the example k mini-batch t .	from the
. Which of these statements about mini-batch gradient descent do you agree with?	1 / 1 point
 When the mini-batch size is the same as the training size, mini-batch gradient descent is equivalent to batch gradient descent. 	
 Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. 	
 You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches so that the algorithm processes all mini-batches at the same time (vectorization). 	
∠ [™] Expand	
Correct Correct. Batch gradient descent uses all the examples at each iteration, this is equivalent to hone mini-batch of the size of the complete training set in mini-batch gradient descent.	aving only
Which of the following is true about batch gradient descent?	1/1 point
It is the same as stochastic gradient descent, but we don't use random elements.	
 It is the same as the mini-batch gradient descent when the mini-batch size is the same as the size of the training set. 	
It has as many mini-batches as examples in the training set.	
∠ ⁷ Expand	
 Correct Correct. When using batch gradient descent there is only one mini-batch thus it is equivalent gradient descent. 	to batch
Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks li	ke this: 1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5); and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

∠ⁿ Expand

⊘ Correct

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

1/1 point

⊘ Correct