Higher-Order Model Checking: Part 1 or 2

Luke Ong

University of Oxford http://www.cs.ox.ac.uk/people/luke.ong/personal/ http://mjolnir.cs.ox.ac.uk

LATA, Bilbao, 3 April 2013

Model checking and computer-aided verification

Beginning in the 80s, the computer-aided algorithmic verification (especially model checking) of finite-state systems has been a great success story in computer science.

Focus of past decade: transfer of these techniques to software verification.

What is (software) model checking?

A Verification Problem: Given a system *Sys* (e.g. an OS), and a correctness property *Spec* (e.g. deadlock freedom), does *Sys* satisfy *Spec*?

The model checking approach:

- Find an abstract model \mathcal{M} of the system Sys.
- 2 Describe property Spec as a formula φ of a decidable logic.
- **3** Exhaustively check if φ is violated by \mathcal{M} .

Huge strides made in verification of first-order imperative programs (e.g. C).

Verification of higher-order programs

Two standard methods

- Static analysis, often type-based: sound, scalable but often imprecise E.g. kCFA, type and effect systems (region-based memory management), refinement types, resource usage (sized types), etc.
- Theorem proving and dependent types: accurate, typically requires human intervention; does not scale well E.g. Coq, Agda, etc.

A relatively recent approach:

Higher-Order Model Checking (HOMC) is the model checking of infinite structures (such as trees) that are defined by recursion schemes and related families of "higher-order" generators, with a view to formally analysing higher-order computation.

Aims of the lectures

- We introduce a systematic approach to the algorithmics of infinite structures generated by families of higher-order generators.
- We present an approach to verifying higher-order functional programs by reduction to the model checking of recursion schemes.

Outline: four parts

- Relating families of generators of infinite structures
- Recursion schemes (and collapsible pushdown automata) and their algorithmics
- Reducing model checking to type inference
- Application: verification of higher-order functional programs

A reminder: simple types

Types
$$A ::= o \mid (A \rightarrow B)$$

Every type can be written uniquely as

$$A_1 \rightarrow (A_2 \cdots \rightarrow (A_n \rightarrow \circ) \cdots), \quad n \geq 0$$

often abbreviated to $A_1 \rightarrow A_2 \cdots \rightarrow A_n \rightarrow o$.

Order of a type: measures "nestedness" on LHS of \rightarrow .

$$\operatorname{order}(o) = 0$$

 $\operatorname{order}(A \to B) = \max(\operatorname{order}(A) + 1, \operatorname{order}(B))$

Examples. $\mathbb{N} \to \mathbb{N}$ and $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ both have order 1; $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ has order 2.

Notation. e: A means "expression e has type A".

Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in order-n fragment of simply-typed λ -calculus with recursion and uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix a ranked alphabet $\Sigma = \{ f : 2, g : 1, a : 0 \}$.

$$G : \left\{ \begin{array}{ccc} S & \to & F a \\ F x & \to & f x (F (g x)) \end{array} \right.$$

Unfolding from the start symbol *S*:

$$S \rightarrow Fa$$

$$\rightarrow fa(F(ga))$$

$$\rightarrow fa(f(ga)(F(g(ga))))$$

$$\rightarrow \cdots$$

The term-tree thus generated, $\llbracket G \rrbracket$, is $f a(f(g a)(f(g(g a))(\cdots)))$.

Representing the term-tree $\llbracket G \rrbracket$ as a Σ -labelled tree

$$\llbracket G \rrbracket = f \ a (f (g \ a) (f (g (g \ a))(\cdots)))$$
 is the term-tree

We view the infinite term $\llbracket G \rrbracket$ as a Σ -labelled tree, formally, a map $T \longrightarrow \Sigma$, where T is a prefix-closed subset of $\{1, \cdots, m\}^*$, and m is the maximal arity of symbols in Σ .

Term-trees such as $\llbracket G \rrbracket$ are ranked and ordered.

Think of $\llbracket G \rrbracket$ as the Böhm tree of G.

An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (encoded in unary) of the Fibonacci sequence appearing in turn as a left branch from the spine.

Terminals: b:2, u:1, z:0

Non-terminals: Write Ch as a shorthand for (o o o) o o o o

Zero : Ch

Show : $Ch \rightarrow Ch \rightarrow o$

Add: $Ch \rightarrow Ch \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o$

$$\label{eq:show_zero} \text{fib} \left\{ \begin{array}{ccc} S & \rightarrow & \textit{Show Zero Unit} \\ \textit{Zero } \varphi \: x & \rightarrow & x \\ \textit{Unit } \varphi \: x & \rightarrow & \varphi \: x \\ \textit{Show } n_1 \: n_2 & \rightarrow & b \: (n_1 \: s \: z) \: (\textit{Show } n_2 \: (\textit{Add } n_1 \: n_2)) \\ \textit{Add } n_1 \: n_2 \: \varphi \: x & \rightarrow & n_1 \: \varphi \: (n_2 \: \varphi \: x) \end{array} \right.$$

Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word "abc" (say) as the applicative term a(b(ce)), viewing a,b and c as symbols of arity 1, where e is the arity-0 end-of-word marker.

Fix an input alphabet Σ . We can use a (non-deterministic) recursion scheme to generate finite-word languages, with ranked alphabet

$$\overline{\Sigma} := \{ a : 1 \mid a \in \Sigma \} \cup \{ e : 0 \}.$$

- A word language is regular iff it is generated by an order-0 recursion scheme.
- ② A word language is context-free iff it is generated by an order-1 recursion scheme.

What class of word languages do order-2 recursion schemes define?

Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata

A 1-stack is an ordinary stack. A 2-stack (resp. n+1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s_i ranges over 1-stacks.

Idea extends to all finite orders: an order-n PDA has an order-n stack, and has $push_i$ and pop_i for each $1 \le i \le n$.

Example: $L := \{ a^n b^n c^n : n \ge 0 \}$ is recognisable by an order-2 PDA

L is not context free—thanks to the "uvwxy Lemma".

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

$$q_{1} \text{ [[]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]]} \xrightarrow{a} q_{1} \text{ [[]} \text{ [}z\text{]} \text{ [}zz\text{]]}$$

$$\downarrow b$$

$$q_{2} \text{ [[]} \text{ [}z\text{]} \text{ [}z\text{]]}$$

$$\downarrow b$$

$$q_{3} \text{ [[]]} \leftarrow_{c} q_{3} \text{ [[]} \text{ [}z\text{]]} \leftarrow_{c} q_{2} \text{ [[]} \text{ [}z\text{]]}$$

Some Properties of the Maslov Hierarchy of Word Languages

(Maslov 74, 76)

- 4 HOPDA define an infinite hierarchy of word languages.
- ② Low orders are well-known: orders 0, 1 and 2 are the regular, context free, and indexed languages (Aho 68). Higher-order languages are poorly understood.
- **③** For each $n \ge 0$, the order-n languages form an abstract family of languages (closed under $+, \cdot, (-)^*$, intersection with regular languages, homomorphism and inverse homo.)
- **4** For each $n \ge 0$, the emptiness problem for order-n PDA is decidable.

A recent breakthrough

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.

Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each $n \ge 0$, the three formalisms

- order-n pushdown automata (Maslov 76)
- ② order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)
- order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (More anon.)

Two Families of Generators of Infinite Structures

HOPDA can be used as recognising/generating device for

- **1** finite-word languages (Maslov 74) and ω -word languages
- possibly-infinite ranked trees (KNU01) and, more generally, languages of such trees
- possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03), qua configuration graphs of these pushdown systems

HORS (higher-order recursion schemes) can also be used to generate word languages, potentially-infinite trees (and languages there of) and graphs.

The two families are closely related.

A challenge problem in higher-order verification

Example: Consider $\llbracket G \rrbracket$ on the right

- $\bullet \ \varphi_1 = \text{``Infinitely many } \textit{f}\text{-nodes are reachable''}\,.$
- φ_2 = "Only finitely many g-nodes are reachable".

Every node on the tree satisfies $\varphi_1 \vee \varphi_2$.

Monadic second-order (MSO)

logic can describe properties such as $\Phi_1 \vee \Phi_2$.

Is the "MSO Model-Checking Problem for Recursion Schemes" decidable?

- ullet INSTANCE: An order-n recursion scheme G, and an MSO formula arphi
- QUESTION: Does the Σ -labelled tree $\llbracket G \rrbracket$ satisfy φ ?

A (selective) survey of MSO-decidable structures: up to 2002

- Rabin 1969: Infinite binary trees and regular trees. "Mother of all decidability results in algorithmic verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognisable graphs (ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): **PushdownTree**_n $\Sigma =$ Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n $\Sigma =$ Trees generated by order-*n* safe rec. schemes.
- Subsuming all the above: Caucal (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$; and they have decidable MSO theories.

What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

- P is order 1
- P occurs in an operand position (i.e. as 2nd argument of application)
- P contains an order-0 parameter.

Consequence: An order-*i* subterm of a safe term can only have free variables of order at least *i*.

Example (unsafe rule).

$$F:(o \rightarrow o) \rightarrow o \rightarrow o \rightarrow o, f:o^2 \rightarrow o, x,y:o.$$

$$F \varphi x y = f(F(F \varphi y) y(\varphi x)) a$$

The subterm $F \varphi y$ has order 1, but the free variable y has order 0.

What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence β -red.) in safe λ -calculus can be safely implemented without renaming bound variables! Hence no fresh names needed.

Theorem

- (Schwichtenberg 76) The numeric functions representable by simply-typed λ -terms are multivariate polynomials with conditional.
- ② (Blum + O. LMCS 09) The numeric functions representable by simply-typed safe λ -terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)

Infinite structures generated by recursion schemes: key questions

- MSO decidability: Is safety a genuine constraint for decidability?
 I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- Machine characterisation: Find a hierarchy of automata that characterise the expressive power of recursion schemes.
 I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - Model-checking properties: What are the decidable theories of the graph families?

Q1. Do trees in RecSchTree_n Σ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For $n \ge 0$, the modal mu-calculus model-checking problem for $\mathbf{RecSchTree}_n\Sigma$ (i.e. trees generated by order-n recursion schemes) is n-EXPTIME complete. Thus these trees have decidable MSO theories.

Proof Idea. Two key ingredients:

Generated tree $\llbracket G \rrbracket$ satisfies MSO formula φ

- $\iff \ \ \{ \ \, \mathsf{Emerson} \, + \, \mathsf{Jutla} \, \, \mathsf{1991} \}$
 - APT \mathcal{B}_{arphi} has accepting run-tree over generated tree $\llbracket \ G \
 rbracket$
- $\iff \{ \text{ I. Transference Principle: Traversal-Path Correspondence} \} \\ \text{APT } \mathcal{B}_{\varphi} \text{ has accepting traversal-tree over computation tree } \lambda(G)$
- \iff { II. Simulation of traversals by paths } APT \mathcal{C}_{φ} has an accepting run-tree over computation tree $\lambda(G)$ which is decidable because $\lambda(G)$ is regular.

Four different proofs of the MSO decidability result

- Game semantics and traversals (O. LICS06)

 A profile of (2.1.6)
 - variable profiles. E.g. a profile of $(o \rightarrow o) \rightarrow o$ is $(\{(\{q\},q),(\{q,q'\},q')\},q)$
- Collapsible pushdown automata (Hague, Murawski, O. & Serre LICS08)
 - equi-expressivity theorem + rank aware automata
- 3 Type-theoretic characterisation of APT (Kobayashi & O. LICS09)
 - intersection types. E.g. $(q \rightarrow q) \land (q \land q' \rightarrow q') \rightarrow q$
- Krivine machines (Salvati & Walukiewicz ICALP11)
 - residuals

A common pattern

- 1 Decision problem equivalent to solving an infinite parity game.
- 2 Simulate the infinite parity game by a finite parity game.
- Wey ingredient of the game: variable profiles / automaton control-states / intersection types / residuals.

Q2: Machine characterisation: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially the same as 2PDA with links [AdMO 05] and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack "remembers" the stack content at the point it was first created (i.e. $push_1$ ed onto the stack), by way of a pointer to some 1-stack underneath it (if there is one such).

Two new stack operations: $a \in \Gamma$ (stack alphabet)

- push₁ a: pushes a onto the top of the top 1-stack, together with a pointer to the 1-stack immediately below the top 1-stack.
- collapse (= panic) collapses the 2-stack down to the prefix pointed to by the top_1 -element of the 2-stack.

Note that the pointer-relation is preserved by push₂.

Example: Urzyczyn's Language U over alphabet $\{(,),*\}$

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A *U*-word has 3 segments:

$$\underbrace{(\cdots(\cdots)}_{A}\underbrace{(\cdots)\cdots(\cdots)}_{B}\underbrace{*\cdots*}_{C}$$

- Segment A is a prefix of a well-bracketed word that ends in (, and the opening (is not matched in the entire word.
- Segment B is a well-bracketed word.
- Segment C has length equal to the number of (in segment A.

Examples

- **1** (()(()(()) * * * is a *U*-word
- ② For each $n \ge 0$, we have $((^n)^n (*^{n+2} \text{ is a } U\text{-word.}$ Hence by "uvwxy Lemma", U is not context-free.

Recognising U by a (det.) 2CPDA. E.g. (()) (()* ** $\in U$ (Ignoring control states for simplicity)

Do
push ₂ ; push ₁ a
pop ₁ collapse
collapse
pop_2

```
[[]]
[[][a]]
[[][a<sup>'</sup>][a a ]]
[[][a][a]]
[[ ][ a ][ a^{\dagger}][ a a ]]
[[][a][a][a][a]a]
                  a ] [ a a ] ] Collapse!
  ][a][a]]
[[][a]]
[[]]
```

Is order-*n* CPDA strictly more expressive than order-*n* PDA?

Equivalently, does the collapse operation add any expressive power?

Lemma (AdMO FoSSaCS05): Urzyczyn's language U is quite telling!

- $oldsymbol{0}$ *U* is *not* recognised by any 1PDA.
- ② *U* is recognised by a non-deterministic 2PDA.
- \bullet *U* is recognised by a deterministic 2CPDA.

Question

- Is U recognisable by a deterministic 2PDA?
- More generally, is U recognisable by a deterministic nPDA for any n?

(If true, there is an associated tree that is generated by an order-2 recursion scheme, but not by any order-2 safe recursion scheme.)

Q2: Machine characterization: order-n RS = order-n CPDA

Theorem (Equi-expressivity [Hague, Murawski, O. & Serre LICS08])

For each $n \ge 0$, order-n collapsible PDA and order-n recursion schemes are equi-expressive for Σ -labelled trees.

Proof idea

- From recursion scheme to CPDA: Use game semantics.
 Code traversals as n-stacks.
 - **Invariant:** The top 1-stack is the P-view of the encoded traversal. For a direct proof (without game semantics) see [Carayol & Serre LICS12].
- From CPDA to recursion scheme: Code configuration c as Σ -term M_c , so that $c \to c'$ implies M_c rewrites to $M_{c'}$.

CPDA are a machine characterization of simply-typed lambda calculus with recursions.

Q3: Is safety a genuine constraint on expressivity?

Question (Safety, KNW FoSSaCS02)

Are there inherently unsafe word languages / trees / graphs?

Word languages? Yes

Theorem (Parys STACS11, LICS12)

There is a language (similar to U) recognised by a deterministic 2CPDA but not by any deterministic nPDA for all $n \ge 0$.

Proof uses a powerful pumping lemma for HOPDA.

(Another pumping lemma for nCPDA is used to prove a hierarchy theorem for collapsible graphs and trees [Kartzow & Parys, MFCS12])

Trees? Yes

Theorem (Parys STACS11, LICS12)

There is a tree generated by an order-2 recursion scheme but not by any safe HORS.

Graphs? Yes.

Theorem (Hague, Murawski, O and Serre LICS08)

- Solvability of parity games over order-n CPDA graphs is n-EXPTIME complete.
- There is an 2CPDA configuration graph with an undecidable MSO theory.

Corollary

There is a 2CPDA whose configuration graph (semi-infinite grid) is not that of any nPDA, for any n.

A safety question for non-determinacy

Question (Safety non-determinacy)

Is there a word language recognised by a order-n CPDA which is not recognisable by any non-deterministic higher-order PDA?

For order 2, the answer is no.

Theorem (Aehlig, de Miranda and O. FoSSaCS 2005)

For every order-2 recursion scheme, there is a safe non-deterministic order-2 recursion scheme that generates the same word language.