Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальн	ных информационных технологий
«Сжатие графической инфор	№1 по курсу «МРЗвИС» на тему: рмации линейной рециркуляционной сетью» Вариант 13
Выполнил студент группы 121702:	Пилат М.Д.
Проверил:	Ивашенко В.П.

1. Цель:

Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

2. Постановка задачи:

Реализовать модель линейной рециркуляционной сети с ненормированными весами.

3. Описание модели:

В лабораторной работе выполняется сжатие изображений формата ВМР размером 256х256 пикселей.

Входные данные:

n – высота прямоугольника;

т – ширина прямоугольника;

р – количество нейронов на втором слое;

$$p \le 2/3*m*n$$

е – максимально-допустимая ошибка.

$$0 < e \le 0.1*p$$

$$0 < e < 0.6*m*n$$

learningRate - коэффициент обучения. От него зависит то, на сколько быстро и точно будет обучаться рециркуляционная сеть.

Выходные данные:

Z – коэффициент сжатия изображения;

L – количество разбиваемых прямоугольников;

Е – суммарная ошибка для обучающей выборки;

$$E = \sum E(q)$$
, где $1 \le q \le L$,

где q – итератор числа прямоугольника.

$$E = \sum \Delta X(q)_i * \Delta X(q)_{i,}$$

гле
$$1 \le i \le N$$
.

iteration – количество итераций.

Количество прямоугольников считается таким образом, чтобы все прямоугольники полностью покрыли исходное изображение. Если прямоугольник выходит за границы изображения, то значение цветов пикселей, не входящих в изображение, принимается равными 0.

Функция f — это правило, которое каждому элементу $x \in X$ ставит в соответствие единственный элемент $y \in Y$, где X — область определения функции, а Y — множество её значений.

4. Результат

1) График зависимости количества итераций от коэффициента сжатия (для фиксированного изображения и параметров).

Для получения данных были выделены следующие входные параметры:

- подавалось изображение размером h*w = 256*256;
- размер прямоугольника m*n = 8x8;
- коэффициент обучения 0.0004;
- максимальная допустимая ошибка е = 3000.

р	Z	Количество итераций
18	8.98081	125
36	4.49081	102
72	2.24556	92

2) Зависимость количества итераций от изображения (для фиксированных параметров и коэффициента сжатия).

Для получения данных были выделены следующие входные параметры:

- 3 различных изображения размером h*w = 256*256;
- размер прямоугольника m*n = 8*8;
- коэффициент обучения 0.0004;
- количество нейронов на втором слое p = 32;

• максимальная допустимая ошибка е = 3000.

Изображение	Высота и ширина изображения	Размер изображения, кБ	Количество итераций
TECT	256*256	262	107
TECT 2	256*256	262	113
Tect 3	256*256	262	121

3) График зависимости числа итераций от значения максимальной допустимой ошибки (остальные параметры фиксированные).

Для получения данных были выделены следующие входные параметры:

- изображение размером h*w = 256x256;
- размер прямоугольника m*n = 8x8;
- коэффициент обучения 0.0003;
- количество нейронов на втором слое р = 48.

Максимальная допустимая ошибка (е)	Количество итераций
3000	159
4000	124
5000	96

4) График зависимости числа итераций от коэффициента обучения (остальные параметры фиксированные).

Для получения данных были выделены следующие входные параметры:

- изображение размером h*w = 256x256;
- размер прямоугольника m*n = 8x8;
- количество нейронов на втором слое р = 16;
- максимальная допустимая ошибка е = 2000.

Learning rate	Количество итераций
0.0001	289
0.0003	180
0.0004	140

7. Выводы.

В ходе лабораторной работы была реализована модель линейной рециркуляционной сети с ненормированными весами.

Была установлена зависимость количества итераций обучения от следующих параметров:

- Коэффициент обучения: при увеличении коэффициента обучения количество итераций уменьшается;
- Максимальная допустимая ошибка: при увеличении максимальной допустимой ошибки количество итераций уменьшается;
- Коэффициент сжатия: при увеличении коэффициента сжатия количество итераций увеличивается.

Использованные источники:

1. Функция [Электронный ресурс]. Режим доступа: https://matan.math.msu.su/media/uploads/2020/03/V.A.Zorich-Kniga-I-10-izdan ie-Corr.pdf (дата обращения 23.12.2024).