Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 15

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 069F_{(16)}, \quad CX = A0B8_{(16)}, \quad DX = C9D6_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& \mathtt{CX} \wedge (\mathtt{BX} - 86) \\ \mathtt{VAR2} &=& 61 \vee (\mathtt{DX} + (55 - \mathtt{CX})) \\ \mathtt{VAR3} &=& \mathtt{BX} \vee (45 + \mathtt{DX}) \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin DX. Psh. nëse është variabla VAR2 atëherë në regjistrin DX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 10 dhe numrit 32 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin CX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $93_{(16)} + DC_{(16)}$
- b) $FA_{(16)} \vee E2_{(16)}$
- c) $68_{(16)} \wedge 35_{(16)}$
- d) $E0_{(16)} 30_{(16)}$
- e) $0E_{(16)} 32_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 512 bajtëshe. Cache memoria L1 ka kapacitet prej 256KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 4-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$E9D8D079_{(16)}, 721451DD_{(16)}, F3110D98_{(16)}$$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 4-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku

DHOKU	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	2A	65	A2	D4	05	EA	43	81
B_1	1E	DC	53	34	AF	35	DO	AA
B_2	2B	DB	04	D8	36	14	95	В7
B_3	80	04	35	F3	63	87	E9	66
B_4	C8	6C	F1	4D	76	84	77	94
B_5	42	CA	2D	94	7D	2B	5E	29
B_6	70	DC	77	E1	8F	73	7C	45
B_7	01	62	5B	15	F6	64	A5	30
B_8	61	69	E5	89	09	7F	8C	45
B_9	CE	9E	1B	BO	81	EA	BA	D5
B_A	DE	6A	B4	1A	FC	FF	AA	E1
B_B	9D	45	C7	9F	C4	41	85	В7
B_C	BF	6E	D2	B5	94	FO	87	F9
B_D	CC	D4	5E	32	6C	86	0E	9D
B_E	22	E5	ΟE	21	13	A9	36	87
B_F	EB	68	06	90	14	5B	64	32

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?