

尹慧琳, <u>yinhuilin@tongji.edu.cn</u> 同济大学 电子与信息工程学院

▶ 搜索:寻求问题最优解的一种迭代方法

	经典的搜索方法	超越经典的优化搜索
问题	可观察、确定、已知	问题的复杂度和不确定性更高——优化
方法	系统地探索问题空间	局部搜索、迭代趋优

- 对抗搜索(Adversarial Search)/博弈(Game)
 - 两个或多个智能主体,按照预定的规则和各自的策略,从中取得 有利于己方的结果或收益的行为

多Agent环境; 每个Agent的目标之间是有冲突的

- 5.1 博弈问题
- 5.2 博弈问题的类型
- 5.3 博弈问题的求解
- 5.4 博弈中的优化决策
- 5.5 博弈中的实时决策

5.1 博弈问题

- ▶ 博弈问题三要素:
 - 局中人(玩家):局中人集合 I={1,2,...,n}
 - 有权决定自己行动方案的博弈对策参加者
 - ▶ 假定是理智的、聪明的
 - ▶ 策略集
 - ▶ 策略:可供局中人选择的一个实际可行的完整的行动方案
 - \blacksquare 策略集 S_i : 局中人 i 的所有行动方案的集合
 - 局势S: 一局对策中,各局中人选定的策略形成的策略组 $S=(S_1, S_2, ..., S_n)$
 - ▶ 赢得函数/收益: 局人可得到的赢得值
- ▶ 挑战性:
 - ▶ 复杂且不确定环境下的最优决策
 - ▶ 在有限的时间内进行决策

5.1 博弈问题

▶ 举例: 人工智能研究的常见游戏类博弈问题

	井字棋 (Tic-tac-toe)
#A选出 (Board games)	西洋跳棋 (Checkers)
棋盘游戏 (Board games)	国际象棋 (Chess)
	围棋 (Go)
纸牌游戏 (Card games)	德州扑克 (Texas Hold'em)
织(TAILU Gailles)	桥牌 (Bridge)
骰子游戏 (Dice games)	僵尸骰子 (Zombie Dice)
棋牌游戏 (Tile games)	麻将 (Mahjong)
猜拳游戏 (Hand games)	石头剪子布(Rock-paper-scissors)

5.1 博弈问题

■ 举例: 囚徒困境 (Prisoner's dilemma)

两个犯罪分子被分别监禁,无法沟通。每个囚徒只有二选一的机会: 揭发对方并证明其犯罪,或者保持沉默。可能的选项如下:

- 1) 若囚徒A和B彼此揭发对方,则每个囚徒被监禁7年;
- 2) 若A揭发B、而B保持沉默,则A被释放而B被监禁9年,反之亦然;
- 3) 若A和B都保持沉默,则他们仅被监禁1年。

/ A ###	p.##==/	囚徒A		
(A获罪, B获罪)		坦白	不坦白	
囚徒B	坦白	(-7, -7)	(-9,	0)
	不坦白	(0, -9)	(-1,	-1)

5.1 博弈问题

- ➡ 最后通牒博弈 (Ultimatum game, UG)
 - 两人分一笔钱,一人是提议者(proposer),另一人是响应者 (responder)。提议者提出分钱方案,响应者可以选择同意与否
 - ▶ 若响应者同意,就按提议者的方案来分;若不同意,则两人都将一无所得。
- 海盗分金难题 (Pirate Puzzle)

5个海盗抢得100枚金币,约定按顺序每人提出一个金币分配方案,然后大家表决。规则如下:

- 提案若超过半数同意,分配金币后散伙;
- 若是票数相等,则提案人有决定权;
- ▶ 若这两种情况都未成立,则提案人将被扔入大海
- ▶ 依此类推,重复上述规则。

- 5.1 博弈问题
- 5.2 博弈问题的类型
- 5.3 博弈问题的求解
- 5.4 博弈中的优化决策
- 5.5 博弈中的实时决策

- 合作博弈 vs 非合作博弈
 - 合作性博弈 (Cooperative game)
 参与者之间达成协议或形成联盟,其结果对各方均有利。
 - 非合作性博弈 (Non-cooperative game)
 参与者无法形成约束性协议或联盟,因而选择对抗性的行为。
- → 零和博弈 vs 非零和博弈
 - 零和博弈 (Zero-sum game)
 - 一方的收益是另一方的损失,或者双方的结果是平局。博弈中各方 的收益和损失之和永远为零。
 - 非零和博弈 (Non-zero-sum game) 各方的收益总和小于或大于零,即非零。三种情况:win-win, double-win, lose-lose。

- 完美信息博弈 vs 不完美信息博弈
 - 完美信息 (Perfect information) 博弈 每个参与者在博弈过程中完全了解所有的信息。大多数棋盘游戏, 例如国际象棋、围棋等都属于完美信息博弈。
 - ▶ 不完美信息 (Imperfect information) 博弈
 反之。例如: 扑克和桥牌之类的纸牌游戏、麻将等棋牌游戏等。

计算机超过人类	计算机与顶级人类玩家媲美
国际象棋Chess: IBM深蓝1997年	桥牌
围棋Go: 谷歌AlphaGo2016年	西洋双陆棋

- 完美信息博弈 vs 不完美信息博弈
 - ► 完美信息 (Perfect information) 博弈 每个参与者在博弈过程中完全了解所有的信息。大多数棋盘游戏, 例如国际象棋、围棋等都属于完美信息博弈。
 - ▶ 不完美信息 (Imperfect information) 博弈 反之。例如: 扑克和桥牌之类的纸牌游戏、麻将等棋牌游戏等。
- **⇒** 完全信息 vs 与不完全信息博弈
 - 完全信息 (Complete information) 指的是每个参与者都具有该博弈所需要的完整知识,例如规则、效用、收益、策略等。
 - 典型的具有不完美信息但具有完全信息的博弈,包括扑克、桥牌、以及麻将等

- 对称博弈 vs 非对称博弈
 - 对称博弈 (Symmetric games):参与者在博弈中采取与对手相同的策略时能得到同样的收益。例如: "囚徒困境"
 - 非对称博弈 (Asymmetric games) : 反之。例如:"最后通牒"
- → 随机博弈 vs 非随机博弈
 - 随机博弈 (Stochastic game) : 具有概率变迁 (Probabilistic transitions) 性质的动态游戏。例如: 单人的老虎机、多人的掷骰子游戏
- 同步博弈 vs 顺序博弈
 - 同步博弈 (Simultaneous game) : 所有的博弈者同时选择自己的动作。
 - 顺序博弈 (Sequential game) : 博弈者轮流、交替动作的博弈。后动作 博弈者可对先动作博弈者的行为有所了解,但未必能得到的完美信息。

- 5.1 博弈问题
- 5.2 博弈问题的类型
- 5.3 博弈问题的求解
- 5.4 博弈中的优化决策
- 5.5 博弈中的实时决策

- 5.3 博弈问题的求解: 博弈的复杂性
- 问题空间巨大
 - ▶ 约翰 麦卡锡曾说:国际象棋的角色就像是人工智能的果蝇
 - ▶ 围棋是棋盘类游戏中最为复杂的

棋类	棋盘格子数	树的分支数	树的深度	可能走子数	可能棋局数
国际象棋	64	≈ 35	≈ 80	3580	10120
围棋	361	≈ 250	≈ 150	250150	10170

- 决策时间有限

- 对于现实世界的博弈,即使在无法计算出最优决策的情况下,也需要 能够给出某种决策的能力
- ▶ 现实问题中,对决策的时间也有所要求

- 5.3 博弈问题的求解:对抗搜索
- 对抗搜索 (Adversarial search) 是博弈问题求解的一个重要方法

	经典搜索	对抗搜索
环 境	单智能主体	多智能主体
搜索方式	启发式搜索	对抗式搜索
优 化	用启发式方法可找到最优解	因时间受限而被迫执行近似解
评价函数	路径的代价估计	博弈策略和局势评估

▶ 问题形式化

以2个玩家、 确定性、完美 信息博弈为例 So 初始状态,规定博弈开始时的设定

Player(s) 定义此时由哪个玩家采取行动

Actions(s) 返回此状态下的合法动作集合

Result(s, a) 转换模型,定义一步动作的结果

Terminal-Test(s) 终止测试, 博弈结束时为 true, 否则为 false

Utility(s, p) 效用/收益函数,定义玩家 p在状态 s下的值

5.3 博弈问题的求解:对抗搜索

- 5.1 博弈问题
- 5.2 博弈问题的类型
- 5.3 博弈问题的求解
- 5.4 博弈中的优化决策
- 5.5 博弈中的实时决策

5.4 博弈中的优化决策: 最小最大策略

- 举例
 - 局中人: MAX, MIN (零和博弈)
 - MAX的策略集: a₁, a₂, a₃
 - MIN的策略集: {b₁, b₂, b₃}, ...

→ 最小最大策略 (Minimax strategy)

当存在两种相互冲突的策略时, 己方应采取的策略是:

- 最小收益最大化
- 最大损失最小化

- 5.4 博弈中的优化决策: 最小最大策略
- ➡ 最小最大定理 (Minimax theorem)

对于两个玩家和有限多个策略的零和博弈,每个玩家存在一个值V和一个混合策略,使得:

- (a)给定玩家2的策略,则玩家1可能的最好收益是V,
- (b)给定玩家1的策略,则玩家2可能的最好收益是-V。

■最小最大算法

假定在对手执行最佳动作的前提下,最小化己方损失;或者在各种获得最小收益的策略中选择有最大收益的策略(又可称为最大最小算法)

- ▶ 基于最小最大定理实现的博弈算法
- ▶ 以放弃最优策略为代价的保守方法
- ▶ 适用于零和博弈问题

MAX

MIN

MAX

MIN

9

第5讲 博弈问题求解

- 5.4 博弈中的优化决策: 最小最大策略
- ▶ 举例: 2个玩家4层(二步)博弈树

5.4 博弈中的优化决策:多人博弈时的最优决策

- 效用值向量 (v_g, v_b, v_c) , 每位选手的决策依据相对应的效用值
- ▶ 选手之间有可能出现正式或非正式联盟。随着游戏的进行,联盟不断 建立或者解散。
- 多人博弈可能同时涉及对抗和合作;决策亦可能同时涉及直接和间接 利益的权衡

- 5.4 博弈中的优化决策: α-β剪枝
- α为MAX方的最小得分,β为MIN方的最大得分。
- 在对子节点进行搜索时,子节点是否需要进一步展开搜索受到其兄弟节点值的影响。

(矩形为MAX节点,圆形为MIN节点)

5.4 博弈中的优化决策: α - β 剪枝

- 5.4 博弈中的优化决策: α - β 剪枝
- ▶ 过程伪代码(下页)

function ALPHA-BETA-SEARCH(state) returns an action

 $v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)$

return the action in ACTIONS(*state*) with value v

function MAX-VALUE(state, α , β) **returns** a *utility value*

if TERMINAL-TEST(*state*) then return UTILITY(*state*)

$$v \leftarrow -\infty$$

for each a in ACTIONS(state) do

 $v \leftarrow \text{MAX}(v, \text{MIN} - \text{VALUE}(\text{Result}(s, \alpha), \alpha, \beta))$

 $\alpha \leftarrow MAX(\alpha, v)$

if $\alpha \geq \beta$ **then** β -pruning

return v

function MIN-VALUE(state, α , β) **returns** a *utility value*

if TERMINAL-TEST(*state*) then return UTILITY(*state*)

$$v \leftarrow +\infty$$

for each a in ACTIONS(state) do

 $v \leftarrow \text{MIN}(v, \text{MAX} - \text{VALUE}(\text{Result}(s, \alpha), \alpha, \beta))$

 $\beta \leftarrow MIN(\beta, v)$

if $\beta \leq \alpha$ **then** α -pruning

return v

查询次数: A_9^4

查询次数: A_n

m: 给定搜索深度

n: 初始解空间规模

运算成本巨大

α-β Pruning

: Max Layer

: Min Layer

: Max Layer

: Min Layer

: Max Layer

: Min Layer

Max Layer

- 5.4 博弈中的优化决策: α - β 剪枝
- Alpha-Beta剪枝是最小最大方法的优化
- ▶ 两种方法产生的结果相同
- Alpha-Beta剪枝运行效率高

- 5.4 博弈中的优化决策:蒙特卡罗树搜索
- 蒙特卡罗方法

以概率统计理论为基础,通过重复随机采样来获得数值结果。

- 用蒙特卡罗方法求圆周率
 - 用蒙特卡罗方法模拟某一过程,需要产生各种概率分布的随机变量 (如在正方形内散落小圆珠)
 - 再用统计方法把变量的数值特征估计出来,从而得到实际问题的数值解(如统计圆弧内和正方形内小圆珠的数量,并依此计算圆周率)

5.4 博弈中的优化决策: 蒙特卡罗树搜索

- ▶ 图(a) 选择(Selection):从根节点出发,按照某种策略,选择一个给定节点的子节点。
- 图(b) 扩展(Expansion): 在搜索树中创建一个新的节点 N_n 作为N的一个新的子节点。
- 图(c) 模拟(Simulation): 进行蒙特卡罗模拟,直到得到一个结果,作为 N_n 的初始评分。
- 图(d) 反向传播(Backpropagation): 更新 N_n 的父节点N及反向传播路径上每个节点的状态。

随机模拟+搜索树

5.4 博弈中的优化决策:蒙特卡罗树搜索

AlphaGo中的蒙特卡罗树搜索: 对经典的蒙特卡罗树搜索进行了改进,

将第三步改为评估(Evaluation)、将第四步称为回溯(Backup)。

- 5.1 博弈问题
- 5.2 博弈问题的类型
- 5.3 博弈问题的求解
- 5.4 博弈中的优化决策
- 5.5 博弈中的实时决策

5.5 博弈中的实时决策:

- 博弈中的优化决策
 - ▶ 最小最大算法生成整个博弈搜索空间
 - α-β剪枝算法允许剪裁掉其中的一部分,但仍然需要搜索抵达终端状态的所有途径,至少是搜索空间中的一部分
 - ——这样的搜索深度通常难以满足在合理时间内完成的要求!
- 博弈中的实时决策

在博弈搜索中对状态应用<mark>启发式评估</mark>函数,有效地将非终端节点转 换为终端叶节点——

- 用启发式评估函数 (EVAL) 取代效用函数 (UTILITY)
- 用截断测试 (CUTOFF-TEST) 取代终止测试 (TERMINAL-TEST)

- 5.5 博弈中的实时决策:评估函数
- ► 评估函数EVAL: 一个启发式函数,用于估计状态的期望效用值
- 评估函数的需求
 - ▶ 对终止状态的排序应该和真实的效用函数的排序结果一致
 - ▶ 计算的时间一定不能太长
 - ▶ 对于非终止状态,评估函数应该和取胜几率密切相关
- 评估函数的设计
 - 考虑状态的不同特征参数 (features)
 - 以期望值 (expected value) 形式表达的状态的合理评价

- 5.5 博弈中的实时决策:评估函数
- 评估函数设计举例: 一种加权线性函数

$$EVAL(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s) = \sum_{i=1}^n w_i f_i(s)$$

其中

- w_i: 权重(棋子的单位价值)
- $f_i : 棋局的某个特征(棋子的数目)。$

对于国际象棋

- $w_i : 每种棋子的单位价值。如 "兵" 为1, "象" 为3, "车" 为5, 等$
- f_i: 棋盘上每种棋子的数目

- 5.5 博弈中的实时决策: 截断搜索
- 截断测试:
 - 用来代替终止测试
 - 确定何时应用EVAL函数

其中,s为状态,d为最大深度(与计算时间相关)

作业

已知底层节点值的博弈树如下,方框表示MAX,圆圈表示MIN

- 1. 用最小最大博弈算法决策A的走步选择
- 2. /用alpha-beta剪枝,哪些节点不再需要检查

