Circular Separable Convolution Lens Blur

GPU COMPUTE SHADER IMPLEMENTATION IN UNITY USING HLSL AND C#

Unity's Universal Rendering Pipeline (URP)

Unity's Universal Rendering Pipeline (URP)

Interrupted this part of the render pipeline.

Convolutional Image Processing

Modelling the circle of confusion using real and imaginary components.

$$F(x) = e^{-ax^2}(\cos(bx^2) + i\sin(bx^2))$$

$$Color(x) = A * F_{real}(x) + B * F_{imaginary}(x)$$

Brute Force vs Separable Convolution

More Components = Better Precision = Bokeh Bokeh

Image Convolution and Combine Example

Reference Of Lens Blur & Bokeh To Measure Success

Boris Effects (BCC Lens Blur)

Unreal Engine 4

Reference Of Lens Blur & Bokeh To Measure Success

Real Life Photography (Silicon Studios)

Results Implementation MATLAB

ICCS 311: FUNCTIONAL AND PARALLEL PROGRAMMING | STUDENT PROJECT | AUSTIN J. MADDISON 6481268

Test Scene

Gaussian

CscLb (2 components)

Gaussian

CscLb (2 Components)

CscLb

Low precision artifacts due to small component count.

I consider this a success.