SUPPLY CHAIN MANAGEMENT

Prepared
By
M.ABINAYA

TABLE OF CONTENTS

1.1	INTRODUCTION OF BUSINESS PROBLEM	06
	❖ Project Importance	06
	❖ Project Objective	06
	❖ Instant Noodles Market – Growth & its Size	07
1.2	EDA	08
	❖ Data Dictionary	08
	 Univariate & Bi variate & Multi variate Analysis 	11
	❖ Analysis	20
1.3	DATA CLEANING & DATA PRE-PROCESSING	22
	❖ Missing value treatment	22
	❖ Outlier treatment	23
	❖ Variable Transformation	24
	❖ Removal of unwanted variable	25
	 Addition of New variable 	25
	Clustering	27
1.4	MODEL BUILDING	29
	Decision Tree	31
	❖ Naïve bayes	32
	* KNN	33
	* SVC	34
1.5	MODEL TUNING	35
	❖ Random Forest Classifier	35
	* Bagging	36
	❖ Gradient Boosting	37
	 Efforts to improve model performance 	38
1.6	MODEL VALIDATION	39
1.7	RECOMMENDATION	40

LIST OF FIGURES

1.1 Instant Noodles Market size	08
1.2 Unique WH & Manager ID	13
1.3 Location & capacity of WH	14
1.4 Region & Zone wise count of WH	15
1.5 Avg Transport issues & no. of Retail shops	16
1.6 Electric supply & Flood impacted WH	17
1.7 Refill zones	18
1.8 No. of WH in each Regional zones	19
1.9 Transport issues	19
1.10 No. of WH in Rural & urban areas	19
1.11 Flood proof zones	20
1.12 Competitors in Market	20
1.13 Avg. product wg	20
1.14 Cluster map	22
1.15 Pairplot	23
1.16 Clustering Segmentation	31
1.17 Warehouse clusters	42

LIST OF TABLES

1.1 Performance metrics	38
1.2 Warehouse clusters	41

PROBLEM: PRODUCT WEIGHT SHIPMENT

A FMCG company has entered into the instant noodles business two years back. Their higher management has notices that there is a miss match in the demand and supply. Where the demand is high, supply is pretty low and where the demand is low, supply is pretty high. In both the ways it is an inventory cost loss to the company; hence, the higher management wants to optimize the supply quantity in each and every warehouse in entire country.

1.1 INTRODUCTION:

The management of the FMCG company provide few datas to look after the ways to reduce inventory loss to the company because there is a mismatch between Demand and Supply. And also they wanted to optimize the supply quantity in each and every warehouse in the entire country.

PROJECT IMPORTANCE:

The product shipment project helps the company to analysis the demand pattern in different pockets of the country so management can drive the advertisement campaign particular in those pockets to increase its sales.

*** PROJECT OBJECTIVE:**

To build a model, using historical data that will determine an optimum weight of the product to be shipped each time to the warehouse.

❖ INSTANT NOODLES MARKET - GROWTH & ITS SIZE :

- ➤ The global instant noodles market was valued at USD 52.16 billion in 2021 and is expected to grow at a CAGR of 5.91% during the forecast period (2022 2023).
- ➤ The outbreak of COVID-19 and the resultant measures imposed by the government have resulted in the strict closure of market to implement social distancing. Consumers preferred home cooked food and instant foods.

- ➤ It is essential to understand the trends and opportunities that lie ahead for the Food industry. The increased demand for quick-to-prepare foods like instant noodles is fueled by increasing urbanization, a growing middle class, and an increase in working women.
- ➤ The expansion of the organized food retail sector is anticipated to boost sales of instant noodles because there are more department stores, hypermarkets, supermarkets everywhere. During the predicted period, there will likely be a noticeable increase in the demand for instant noodles worldwide.

1.1 Instant noodles market size

1.2 EDA:

*** DATA COLLECTION:**

- > The company has entered into the instant noodles business two years back andso they shared only limited information.
- > The data given by the company is Location based whether the warehouse present in Rural or Urban areas.
- ➤ We have to find out the mismatch between Demand and Supply in various parts of the country and then focus on product weight in each warehouse to increase the supply.

*** DATA SUMMARY:**

- ➤ The given dataset has 25000 entries with 24 variables.
- ➤ Initially It has 8 Categorical and 16 Numerical variables.
- Product_wg_ton Target variable.

HEAD:

	Ware_house_ID	WH_Manager_ID	Location_type	WH_capacity_size	zone	WH_regional_zone	num_refill_req_l3m	transport_issue_l1y	Competitor_in_mkt	re
0	WH_100000	EID_50000	Urban	Small	West	Zone 6	3	1	2	
1	WH_100001	EID_50001	Rural	Large	North	Zone 5	0	0	4	
2	WH_100002	EID_50002	Rural	Mid	South	Zone 2	1	0	4	
3	WH_100003	EID_50003	Rural	Mid	North	Zone 3	7	4	2	
4	WH 100004	EID_50004	Rural	Large	North	Zone 5	3	1	2	

TAIL:

	Ware_house_ID	WH_Manager_ID	Location_type	WH_capacity_size	zone	WH_regional_zone	num_refill_req_l3m	transport_issue_l1y	Competitor_in_mkt
24995	WH_124995	EID_74995	Rural	Small	North	Zone 1	3	0	4
24996	WH_124996	EID_74996	Rural	Mid	West	Zone 2	6	0	4
24997	WH_124997	EID_74997	Urban	Large	South	Zone 5	7	0	2
24998	WH_124998	EID_74998	Rural	Small	North	Zone 1	1	0	2
24999	WH_124999	EID_74999	Rural	Mid	West	Zone 4	8	2	4
5 rows × 24 columns									
4									+

Data Dictionary:

Variable	Business Definition							
Ware_house_ID	Product warehouse ID							
WH_Manager_ID	Employee ID of warehouse manager							
Location_type	Location of warehouse like in city or village							
WH_capacity_size	Storage capacity size of the warehouse							
zone	Zone of the warehouse							
WH_regional_zone Regional zone of the warehouse under each zone								
num_refill_req_13m	Number of times refilling has been done in last 3 months							
transport_issue_11y	Any transport issue like accident or goods stolen reported in last one year							
Competitor_in_mkt	Number of instant noodles competitor in the market							
retail_shop_num	Number of retails shop who sell the product under the warehouse area							
wh_owner_type	Company is owning the warehouse or they have get the warehouse on rent							
distributor_num	Number of distributer works in between warehouse and retail shops							
flood_impacted	Warehouse is in the Flood impacted area indicator							
flood_proof	Warehouse is flood proof indicators. Like storage is at some height not directly on the ground							
electric_supply	Warehouse have electric back up like generator, so they can run the warehouse in load shedding							
dist_from_hub	Distance between warehouse to the production hub in Kms							
workers_num	Number of workers working in the warehouse							
wh_est_year	Warehouse established year							
storage issue reported 13m	Warehouse reported storage issue to corporate office in last 3 months. Like rat, fungus because of moisture etc.							
temp_reg_mach	Warehouse have temperature regulating machine indicator Activate							

approved wh govt certificate	What kind of standard certificate has been issued to the warehouse from government regulatory body
wh breakdown 13m	Number of time warehouse face a breakdown in last 3 months. Like strike from worker, flood, or electrical failure
govt_check_l3m	Number of time government Officers have been visited the warehouse to check the quality and expire of stored food in last 3 months
product wg ton	Product has been shipped in last 3 months. Weight is in tons

SHAPE: (25000, 24)

INFO:

```
<class 'pandas.core.frame.DataFrame'</pre>
RangeIndex: 25000 entries, 0 to
Data columns (total 24 columns):
# Column
                                                                                      Non-Null Count Dtype
          column
------
Ware_house_ID
WH_Manager_ID
Location_type
WH_capacity_size
zone
WH_regional_zone
num_refill_req_lam
transport_issue_lly
competitor_in_mkt
retail_shop_num
wh_owner_type
distributor_num
flood_impacted
flood_proof
electric_supply
                                                                                      25000 non-null
25000 non-null
25000 non-null
                                                                                                                              object
                                                                                      25000 non-null
                                                                                      25000 non-null
25000 non-null
                                                                                    25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
25000 non-null
         wh_owner_type
distributor_num
flood_impacted
flood_proof
electric_supply
dist_from_hub
workers_num
                                                                                                                               int64
                                                                                      25000 non-null
25000 non-null
                                                                                                                               int64
                                                                                                                               int64
          23 product_wg_ton 25000
dtypes: float64(2), int64(14), object(8)
memory usage: 4.6+ MB
                                                                                       25000 non-null int64
```

> 8 variables can be converted from Numerical into Categorical (since they are predefined) so finally we got 16 Categorical and only 8 Numerical variables.

No Duplicates present in the given dataset.

DATA DESCRIPTION:

	retail_shop_num	distributor_num	dist_from_hub	workers_num	wh_est_year	storage_issue_reported_I3m	govt_check_l3m	product_wg_ton
count	25000.000000	25000.000000	25000.000000	24010.000000	13119.000000	25000.000000	25000.000000	25000.000000
mean	4985.711560	42.418120	163.537320	28.944398	2009.383185	17.130440	18.812280	22102.632920
std	.1052.825252	16.064329	62.718609	7.872534	7.528230	9.161108	8.632382	11607.755077
min	1821.000000	15.000000	55.000000	10.000000	1996.000000	0.000000	1.000000	2085.000000
25%	4313.000000	29.000000	109.000000	24.000000	2003.000000	10.000000	11.000000	13059.000000
50%	4859.000000	42.000000	164.000000	28.000000	2009.000000	18.000000	21.000000	22101.000000
75%	5500.000000	56.000000	218.000000	33.000000	2016.000000	24.000000	26.000000	30103.000000
max	11008.000000	70.000000	271.000000	98.000000	2023.000000	39.000000	32.000000	55151.000000

UNIVARIATE ANALYSIS:

Univariate Analysis done using TABLEAU Tool.

- ➤ Presence of 22957 Warehouse in Rural areas(91.8%) and 2043 Warehouse in Urban areas(8.2%).
- > So we can say that majority of warehouses are present in Rural areas.
- ➤ North zone in both Rural and Urban areas has 41% and 43% of warehouses respectively.
- Large sized warehouse are more followed by Mid and Small.

1.4 Region & Zone wise count of WH

- Presence of more Warehouses in North zone followed by South , West and East.
- ➤ Also more number of warehouse present in Zone 6 and least in Zone 1.

1.5 Avg transport issues & No. of Retail shops

- > Average number of Transport issues reported more in Urban than Rural areas in last 1 year.
- > On an average , Rural area warehouses supplied more to the retail shops nearby.
- ➤ More number of competitors available for Urban warehouses than Rural Warehouses.

1.6 Electric supply & Flood impacted WH

- > Among the 25000 warehouse, only 13578 was maintained by Company itself.
- ➤ Only 16422 warehouses having alternate electric supply.
- > 2454 Warehouses are Flood impacted.(9.8%)
- ➤ Only 7582 warehouses have Temparature Regulatory Mechanism.(3.03%)
- ➤ No storage issues reported only in 908 Warehouses and highest number of storage issues reported in 156 Warehouses.

More number of warehouses got C Govt certificate (22%)

BIVARIATE ANALYSIS:

Done using TABLEAU Tool.

1.11 Flood proof zones

1.12 Competitors in mkt

- ➤ Most number of times i.e) 8 times refill occurred in Zone 6 of Rural areas and Urban areas.
- Most number of warehouses present in Zone 6 of North in both Rural (4126) and Urban areas (393).
- > On an Average, more number of Transport issues reported in East zone for past 1 year.
- > On an avg, more number of competitors present in zone 4 in both Rural and Urban areas.
- > More number of Warehouses in North zone (10.25%)in Rural and East zone (11.76%) in Urban are flood impacted zones.
- Maximum of West zone (5.55%) in Rural and East zone (11.76%) in Urban are flood proof zones.
- ➤ On an avarage , more amount of products sold in Rural East zone 4 and Urban East zone 6.
- ➤ Warehouse having more storage issues ,have frequent shipping of products in last 3 months due of lack of proper storage facilities. This causes unwanted loss of products and increase transport charges.

MULTI-VARIATE ANALYSIS:

CORELATION:

PAIRPLOT:

1.15 Pairplot

ANALYSIS:

- ➤ Warehouse having more storage issues ,have frequent shipping of products in last 3 months due of lack of proper storage facilities. This causes unwanted loss of products and increase transportation charges.
- More number of products sold in Rural East zone 4 and Urban East zone 6
- ➤ Warehouse WH_101568 present in zone 6 of East zone in Rural areas had highest number (12) of competitors in the market and also it had a maximum of 8 times refilled in the last 3 months. But it is a small sized warehouse so it is better if we have to change it to Large sized to avoid transportation charges.
- Urban East zone more prone to flood
- On an avg, product_wg_ton supplied more in Zone 6 of East region in Urban areas.
- ➤ If number of storage issues increased , product_wg_ton of the respective warehouse also increases.
- ➤ From the map we can say that the wh_capacity_size and wh_regional_zone are correlated with each other.
 - Zone 1 has only SMALL sized warehouse
 - Zone 2 , zone 3, zone 4 has MID sized warehouse

- Zone 5 has LARGE sized warehouse
- Zone 6 has both LARGE and SMALL sized warehouse.
- ➤ There is no zone 2 in the East region.
- ➤ On an average , Urban WH are highly prone to flood especially East zone(11.7%).
- Zone 4 in both Rural & Urban has more competitors.
- ➤ 15095 (65.75%) of Rural WH and 1327 (64.95%) of Urban WH have alternate electric supply.
- More number of Storage issues reported from Urban areas.
- > Maximum of WH are C type Government certified.
- 2970 warehouse had a maximum of 8 times refilled in the last 3 months.
 - Rural : 2701 warehouse (11.7%)
 - Urban : 269 warehouse (13.16%)

Among the 2970, 544 WH are Small and 2426 WH are Mid so we can convert them to Large sized to reduce transportation cost.

❖ 2912 warehouse had 0 times refilled.

Among them

- Rural 533 WH
- Urban 41 WH are small sized but 0 refill in last 3 months so we can reduce the quantity of products shipped there.

1.3 DATA CLEANING & DATA PRE-PROCESSING:

MISSING VALUE TREATMENT:

- Presence of missing values in 2 columns
 - Workers_num: 990 (3.9%)
 - Approved_wh_govt_certificate : 908 (3.6%)
 - wh_est_year :11881 (47.5%)
- > Due to negligible amount of missing values, we can impute them.
- wh_est_year having 47.5 % missing value , so we have to drop the column.
- Workers_num is a Numerical column so we have to replace missing values using MEDIAN.
- Approved_wh_govt_certificate is a Categorical column so we have to replace missing values using MODE.

Before treatment

Ware_house_ID WH_Manager_ID Location_type WH_capacity_size Zone WH_refill_req_l3m tomprefill_req_l3m tomprefill_red_l3m tomprefill_red_l3m tomprefill_red_l3m tomprefill_red_l3m etail_shop_num wh_owmer_type wh_owmer_type distributor_num ellood_impacted elood_impacted elood_proof electric_supply dist_from_hub workers_num storage_issue_reported_l3m etapproved_wh_govt_certificate wh_breakdown_l3m eyovt_check_l3m eyovt_check

After treatment

```
Ware_house_ID

WH_Manager_ID

Location_type

WH_capacity_size

ZONE

WH_regional_zone

NUM_regional_zone

NUM_regional_zone

NUM_regional_in

Competitor_in_mkt

Competitor_in_mkt

Output

Competitor_in_mkt

Output

Competitor_in_mkt

Output

Competitor_in_mkt

Output

O
```

OUTLIER TREATMENT:

- > Presence of outliers in 2 columns
 - Retail_shop_num
 - Workers_num
- > To improve accuracy and better visualization, We have to remove them using BOXPLOT Method.

Before treatment

After treatment

VARIABLE TRANSFORMATION:

➤ 3 variables can be converted from Numerical into Categorical (since they are predefined) so finally we got 11 Categorical and only 13 Numerical variables.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 24 columns):
# Column
                               Non-Null Count Dtype
--- -----
                                -----
0
   Ware_house_ID
                                25000 non-null object
1
   WH_Manager_ID
                               25000 non-null object
2 Location_type
                               25000 non-null object
3 WH_capacity_size
                              25000 non-null object
4
   zone
                               25000 non-null object
5
    WH_regional_zone
                               25000 non-null object
25000 non-null int64
6
    num_refill_req_l3m
                              25000 non-null int64
    transport_issue_l1y
7
                              25000 non-null int64
  Competitor_in_mkt
                              25000 non-null int64
9 retail_shop_num
                              25000 non-null object
10 wh_owner_type
                              25000 non-null int64
25000 non-null category
11 distributor_num
12 flood_impacted
                              25000 non-null category
13 flood proof
14 electric_supply
                              25000 non-null category
15 dist_from_hub
                              25000 non-null int64
16 workers_num
                                24010 non-null float64
                               13119 non-null float64
17 wh_est_year
18 storage_issue_reported_13m 25000 non-null int64
19 temp_reg_mach
                               25000 non-null int64
20 approved_wh_govt_certificate 24092 non-null object
21 wh_breakdown_13m
                                25000 non-null int64
22 govt_check_13m
                                25000 non-null int64
                                25000 non-null int64
23 product_wg_ton
dtypes: category(3), float64(2), int64(11), object(8)
memory usage: 4.1+ MB
```

Skewness and kurtosis:

REMOVAL OF UNWANTED VARIABLES:

- Presence of 11881 missing values in wh_est_year i.e) 47.5% so imputation doesnot give perfect results so we can remove the column using drop() function.
- ➤ Finally we have only 25000 rows and 23 columns to proceed the model building.

25000 rows × 23 columns

ADDITION OF NEW VARIABLES:

- Encoding removes redundancies from data, size of the files will be a lot smaller. This results in faster input speed when data is saved.
- Since encoded data is smaller in size, we should be able to save space on storage devices. This is ideal if you have large amounts of data that need to be archived.
- > Here I used USER DEFINED ENCODING.

- Addition of new variables such as
 - WH_capacity_size_UDF

Large':3,'Mid':2,'Small':1

zone_UDF

East':1,'West':2,'North':3,'South':4

WH_regional_zone_UDF

Zone 1':1,'Zone 2':2,'Zone 3':3,

'Zone 4':4,'Zone 5':5,'Zone 6':6

- wh_owner_type_rent Company Owned':0,'Rented':1
- approved_wh_govt_certificate_UDF

'<box>bound method Series.mode</br>

of 01':0,'A+':1,'A':2,'B+':3,'B':4,'C':5

Location_type_urban Urban':1,'Rural':0

Finally we got 29 columns with 25000 rows.

CLUSTERING:

- Here we have to use K-Means clustering. K-means clustering is now widely used in machine learning to partition data points into K clusters based on their similarity.
- ➤ The goal is to minimize the sum of squared distances between the data points and their corresponding cluster centroids, resulting in clusters that are internally homogeneous and distinct from each other.

Here we have to take k=7 and adding a column as Demand labels. At the output , we have 7 clusters.

Taking median of product wg_ton for respective Demand labels.

	Qty_needed
Demand_labels	
0	22093.0
1	30092.0
2	30095.0
3	7146.0
4	21114.0
5	17061.0
6	25076.0

_ton	Location_type_urban	WH_capacity_size_UDF	zone_UDF	WH_regional_zone_UDF	wh_owner_type_rented	approved_wh_govt_certificate_UDF	Demand_labels
7115	1	1	2	6	1	2	6
5074	0	3	3	5	0	2	3
3137	0	2	4	2	0	2	4
2115	0	2	3	3	1	1	5
1071	0	3	3	5	0	5	2

TABLEAU LINK FOR EDA:

https://public.tableau.com/app/profile/abinaya.m8348/v iz/capstone 1 16965341987370/Sheet16

MODEL BUILDING

BUILD VARIOUS MODELS:

num_refill_req_l3m	int64
transport_issue_l1y	int64
Competitor_in_mkt	int64
retail_shop_num	float64
distributor_num	int64
dist_from_hub	int64
workers_num	float64
storage_issue_reported_13m	int64
temp_reg_mach	int64
wh_breakdown_13m	int64
govt_check_13m	int64
product_wg_ton	int64
Location_type_urban	int64
WH_capacity_size_UDF	int64
zone_UDF	int64
WH_regional_zone_UDF	int64
wh_owner_type_rented	int64
Demand_labels	int32
dtype: object	

Test Train split:

We have to split the train and test dataset in 70:30 ratio.

```
: x_train,x_test , y_train, y_test = train_test_split(x,y,test_size = .30 ,random_state = 0)
```

This is a multi classification model so we can use $\mbox{Na\"{i}ve Bayes}$, KNN , Decision Tree, SVC Models.

✓ DECISION TREE CLASSIFIER:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)

|: print(dTree.score(x_train, y_train))
    print(dTree.score(x_test, y_test))

1.0
    0.9192
```

The decision tree score will be overfitting so here we have to choose Gini criterion, maximum depth = 7 to limit the branches to get good accuracy.

TRAIN DATASET TEST DATASET [[660 47 98 57 [[1473 110 276 156 134 20 25 1033 0 59 14 0] 61 2396 0 110 26 13 0 1296 39 0] 232 0 3038 63 73 17 66 13 75 1228 27 7 [135 26 180 2914 70 14 0] 0] [14 50 117 87 804 32 0] [34 97 240 202 2000 86 38 16 47 20 10 664 1] [70 32 125 47 25 1634 0] 0 0 663]] 8 0 [0 0 0 0 0 01371]] 0 precision recall f1-score support precision recall f1-score 0.74 0.72 0.73 918 0 0.73 0.68 0.71 0.90 1135 0.90 0.92 0.91 2606 2 0.79 0.88 0.84 1468 2 0.79 0.89 0.83 3423 3 0.87 0.85 1416 0.82 0.83 0.87 0.85 3339 0.86 0.73 0.79 0.86 0.75 0.80 2659 5 0.83 0.91 0.87 796 0.92 0.85 0.88 1933 5 1.00 1.00 1.00 663 1.00 1.00 1.00 1371 accuracy 0.85 7500 accuracy 0.85 17500 0.86 0.85 macro avg 0.86 macro avg 0.85 0.85 17500 0.85 weighted avg 0.85 0.85 0.85 7500 weighted avg 0.85 0.85 17500 ROC-AUC SCORE FOR TRAIN: 0.9708318196049958 ROC-AUC SCORE FOR Test: 0.9694609072078721

Here we got 85 % accuracy for both Test and Train dataset while using Decision Tree Classifier and we got good F1 score (above 70%).

NAÏVE BAYES:

```
nb=GaussianNB()
nb.fit(x_train,y_train)
GaussianNB()
```

Confusion Matrix & Classification report:

	TRAIN D	ATA						Т	EST	ΓDA	TA	
[[21 354 1697 [0 2606 0 0 [0 0 3423 [0 689 1278 1 [0 538 1679 [0 590 733 :	44 398 0 136 140 333	4] 0] 0] 0] 0] 1]]]]]]]	0 0 0	135	715 0 1468 543 705 270 0	41 0 0 564 19 59	3 0 0 1 159 53 0	0 0 0 0 170	1] 0] 0] 0] 0] 3]	
prec		1 f1-score	support	-			pre	cisio	on	recal:	l f1-score	suppor
0 1 2 3 4 5 6	1.00 0.0 0.55 1.0 0.39 1.0 0.84 0.0 0.72 0.0 0.99 0.0	00 0.71 00 0.56 0.55 0.25 0.29 00 1.00	2169 2606 3423 3339 2659 1933 1371		асси	•		1.6 0.5 0.4 0.8 0.7 0.9	55 40 33 74 99	0.00 1.00 1.00 0.44 0.14 0.22 1.00	0 0.71 0 0.57 0 0.54 4 0.24 1 0.35 0 1.00	91 113 146 141 116 79 66
macro avg weighted avg	0.78 0.1 0.74 0.1		17500 17500	we:	macro ighted			0.7		0.5		750 750
ROC-AUC SCI	DRE FOR TR	AIN: 0.960	9613010552591									

Here the accuracy will be 54 % for train & 56% test data Roc- Auc will be 0.9609 and 0.9610 for train and test data.

✓ KNN Model:

```
knn = KNeighborsClassifier(n_neighbors = 7)
knn = knn.fit(x_train,y_train)
```

Confusion Matrix & Classification report:

TRAIN DATA											T	ES7	ΓDA	ΤА	
[1575 141 [14 2533	210	100	109	30 11	4] 0]		ננ	587	70	128	66	49	17	1]	
	3132 104 3	17	85 62	12 11	0] 0]]	13 93		0 1313	9 18	9 37	7 7	0] 0]	
32 61 50 77	74	59 2 120	2423	10 1548	0] 1]]	51 19		61 48	1225 40	28 945		0] 0]	
[0 0	0	0 isior	0	0 1	371]] f1-score	support	j 1	36 0		43 0	69 0	32 0		3] 663]]	
	·									pre	ecisio	n		f1-score	
0 1		0.82		0.73 0.97		2169 2606				9	0.7		0.64		
2		0.88		0.91 0.91		3423 3339				1 2	0.8 0.8		0.97 0.89		
4		0.87	7	0.91	0.89	2659				3 4	0.8 0.8		0.87 0.86		
5 6		0.99 1.00		0.80 1.00		1933 1371			!	5 6	0.9	1	0.71	0.80	
accuracy					0.89	17500		20	curac	v				0.85	
macro avg eighted avg	•	0.96 0.89		0.89 0.89		17500 17500	we:	mac	ro av ed av	g	0.8 0.8		0.85 0.85	0.85	

ROC-AUC SCORE FOR TRAIN: 0.992233716668591

ROC-AUC SCORE FOR Test: 0.9788979685106006

Here the accuracy will be 89 % for train and 85 % for test data and Roc-Auc score will be 0.9922 and 0.9788 for train and test dataset. It has good accuracy and F1 score so we can say this would be a better model.

✓ SVC:

```
svc
svc(kernel='linear', random_state=0)
```

Confusion Matrix & Classification report:

TRAIN DATA									TEST	`D	ATA	1	
5 9 1	2 0 0 3385	15 7 8 3299 2 2		9 3 8 7 3 1918 0 13	4] 0] 0] 0] 0] 1]		[4 111 [6 ([2 ([5 (10 7 0 7 .55 2 3 1393 8 2 16 2 4 0 0	5 1 0 7 081 5	7 5 778	1] 0] 0] 0] 0] 3]	
	pre	cision	()	recall	f1-score	support			precision		recall	f1-score	
	0	0.98		0.97	0.98	2169		0	0.98		0.96		
	1	0.99		0.99	0.99	2606		1	0.99		0.98		
	2	0.99		0.99	0.99	3423		2	0.98		0.99	0.99	
	3	0.99		0.99	0.99	3339		3	0.98		0.98		
	4	0.99		0.99	0.99	2659		4	0.98		0.98		
	5	0.98		0.99	0.99	1933		5	0.96		0.98		
	6	1.00		1.00	1.00	1371		6	0.99		1.00	1.00	
accura	icv				0.99	17500	accura	су				0.98	
macro a	•	0.99		0.99	0.99	17500	macro a	٧g	0.98		0.98	0.98	
eighted a	vg	0.99		0.99	0.99	17500	weighted a	٧g	0.98		0.98	0.98	

The SVC model gave accuracy of train and test data will be 99 % and 98 %. The Roc – Auc score will be 0.99 and 0.99 for both the dataset. This would be a overfitting model.

INTERPRETATION:

From the above discussed model, we can say that **KNN model** will give better accuracy and F1 score.

MODEL TUNNING:

✓ ENSEMBLE TECHNIQUE:

*** RANDOM FOREST CASSIFIER:**

```
rfcl = RandomForestClassifier(n_estimators = 100, random_state=0,max_features=12)
rfcl = rfcl.fit(x_train, y_train)
```

Confusion Matrix & Classification report:

TRAIN DATA						TEST DATA							
[[2169 0 [0 2606 [0 0 0 [0 0 [0 0	0 0 0 0 3423 0 0 3339 0 0 26! 0 0	0 1933	0] 0] 0] 0] 0] 0]		[[]] [[]] [] [] [] [] [] []	795 8 22 13 11 11	20 1097 0 10 16 5	26 0 1412 20 28 12	42 13 7 1354 16 8	13 8 20 13 1025 10	21 9 7 6 8 747 0	1] 0] 0] 0] 0] 3]	
	precision		f1-score	support	L			_	ecisio			663]] f1-score	support
0 1 2 3 4 5	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	2169 2606 3423 3339 2659 1933 1371			6 1 2 3 4 5	1	0.9 0.9 0.9 0.9	96 94 94 94 94	0.87 0.97 0.96 0.96 0.93 0.94	0.96 0.95 0.95 0.93	1135 1468 1416 1104 796
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	17500 17500 17500		macr	uracy o avg d avg	3	0.9 0.9		0.95 0.95		7500

ROC-AUC SCORE FOR TRAIN: 1.0

ROC-AUC SCORE FOR Test: 0.997831071803252

Because of 100% and 95% accuracy, we can say this model is overfiting. So we have to neglect it.

*** BAGGING:**

```
bgcl = BaggingClassifier(base_estimator=dtR, n_estimators=100,random_state=0)
bgcl = bgcl.fit(x_train, y_train)
```

Confusion Matrix & Classification report:

TEST DATA

[[21	168	0	1	0	0	0	0]	
]	0	2606	0	0	0	0	0]	
[0	0	3423	0	0	0	0]	
[0	0	0	3339	0	0	0]	
	1	0	0	0 2	658	0	0]	
]	0	0	0	0	0	1933	0]	
[0	0	0	0	0	0 13	71]]	
			pre	ecision	1	recall	f1-score	support
		(3	1.00)	1.00	1.00	2169
			1	1.00)	1.00	1.00	2606
			2	1.00)	1.00	1.00	3423
			3	1.00)	1.00	1.00	3339
		4	4	1.00)	1.00	1.00	2659
			5	1.00)	1.00	1.00	1933
		(5	1.00)	1.00	1.00	1371
	acc	urac	/				1.00	17500
n	nacı	o av	3	1.00)	1.00	1.00	17500
unic	ahte	ed av	7	1.00		1.00	1.00	17500

]]	790	26	28	39	13	21	1]		
[8	1103	0	11	10	3	0]		
[36	0	1397	6	21	8	0]		
[23	10	14	1344	20	5	0]		
[12	24	36	16	1008	8	0]		
[15	9	10	8	11	741	2]		
[0	0	0	0	0	0	663]]	
			pr	ecisi(on	recal	1 f1	-score	support
		(3	0.8	89	0.8	6	0.88	918
		1	1	0.9	94	0.9	7	0.96	1135
		- 2	2	0.9	94	0.9	5	0.95	1468
			3	0.9	94	0.9	5	0.95	1416
		4	4	0.9	93	0.9	1	0.92	1104
			5	0.9	94	0.9	3	0.94	796
		(5	1.0	80	1.0	99	1.00	663
	acc	uracy	/					0.94	7500
	macr	o av	3	0.9	94	0.9	14	0.94	7500
we:	ighte	d avg	2	0.9	94	0.9	14	0.94	7500

ROC-AUC SCORE FOR TRAIN: 0.9999999847265554

ROC-AUC SCORE FOR Test: 0.9957198851316391

The accuracy for Train and Test will be 100% and 94% for bagging model and so we considered this as Overfitting model. So we neglect it.

*** GRADIENT BOOSTING:**

```
gbcl = GradientBoostingClassifier(n_estimators = 50,random_state=0)
gbcl = gbcl.fit(x_train, y_train)
```

Confusion Matrix & Classification report:

[2039	18	54	25	18	15	0]		
1 2	2586	8	7	9	3	0]		
[17	0	3367	7	23	9	0]		
[11	4	25	3263	17	19	0]		
[3	22	44	27	2546	17	0]		
[8	5	6	12	7	1895	0]		
[0	0	8	0	0	0 1	371]]		
		pre	ecisio	on	recal]	f1-	score	support
	e	,	0.9	98	0.94	1	0.96	2169
	1		0.9	98	0.99	9	0.99	2606
	2		0.9	96	0.98	3	0.97	3423
	3	:	0.9	98	0.98	3	0.98	3339
	4	1	0.9	97	0.96	5	0.96	2659
	5		0.9	97	0.98	3	0.97	1933
	6		1.0	90	1.00	,	1.00	1371
accı	uracy	r					0.98	17500
macro	o avg		0.9	98	0.98	3	0.98	17500
eighte	d avg		0.9	98	0.98	3	0.98	17500

TRAIN DATA

11	841	12	28	18	5	13	1]		
11		1111	- 0	-8	6		01		
ī	7	0	1436	4	16	5	Θĺ		
]]]	9	2	14	1375	11	5	0]		
Ī	2	11	27	13	1041	10	0]		
Ī	9	4	4	5	4	767	3]		
[0	0	0	0	0	0	663]]		
			pre	ecisio	on	recal:	l f1-	score	support
		6	3	0.9	96	0.92	2	0.94	918
		1	1	0.9	97	0.98	3	0.98	1135
		- 2	2	0.9	95	0.98	3	0.96	1468
			3	0.9	97	0.97	7	0.97	1416
		4	4	0.9	96	0.94	1	0.95	1104
			5	0.9	95	0.96	5	0.96	796
		6	5	0.9	99	1.00	3	1.00	663
	acc	curacy	/					0.96	7500
	macı	no avg	3	0.9	97	0.96	5	0.97	7500
wei	ighte	ed ave	7	0.9	96	0.96	5	0.96	7500

TEST DATA

ROC-AUC SCORE FOR TRAIN: 0.9995696405247659

ROC-AUC SCORE FOR Test: 0.9990860784133605

In Model Tuning , the Gradient boosting gives better accuracy i.e) 98% Train and 96 % Test Accuracy and better F1 score.

MODELS USED:

MODELS	TRAIN D	ATA	TEST DA	ATA
1100223	ACCURACY	ROC-AUC	ACCURACY	ROC-AUC
DECISION TREE	0.85	0.97	0.85	0.96
SVC	0.99	0.99	0.98	0.99
KNN	0.89	0.99	0.85	0.98
NB	0.54	0.96	0.56	0.96
RFC	1.00	1.00	0.95	0.997
BG	1.00	0.99	0.94	0.995
GB	0.98	0.995	0.96	0.999

1.1 Performance metrics

From the above model , we have to choose Gradient Boosting because it has good accuracy (96%) and good Roc –Auc score (99%).

EFFORTS TO IMPROVE MODEL PERFORMANCE:

- ➤ Perform Scaling (Min-Max scaling) and remove outliers.
- > Taken only Numerical variables and find out multi-collinearity among them.
- Perform User defined encoding to make categorical into numerical variable.
- ➤ Using Ensemble technique (Gradient Boosting) to improve accuracy.

MODEL VALIDATION:

- ➤ Initially KNN model will be a better one because it has 85% accuracy on Test data.
- > To improve its performance we have to use Model tuning (Ensemble Technique).
- Among Ensemble technique, Gradient Boosting will be a better one. It provides 96 % Accuracy and good Roc-Auc score.
- > Gradient boosting:
 - From confusion matrics , it shows 7234 out of 7500
 True positive results.
 - Accuracy 96 %
 - F1 score above 94%
 - Recall above 92%
 - Precision above 95%

So we choose this would be a better model when compared

to others.

RECOMMENDATIONS:

❖ Less number of warehouse present in zone 6 of East region in Urban areas

(2) but sales is higher in those region so we can open few warehouse there

to increase sales and make them as flood proof.

❖ 2912 warehouse had 0 times refilled.

Among them

Rural - 533 WH

Urban – 41 WH are small sized but 0 refill in last 3 months so

reduce the quantity of products shipped there. we can

To increase sales in those region we can provide offers to attract

people.

❖ 2970 warehouse had a maximum of 8 times refilled in the last 3 months.

Rural: 2701 warehouse (11.7%)

Urban: 269 warehouse (13.16%)

Among the 2970, 544 WH are Small and 2426 WH are Mid so we can

convert them into Large sized to reduce transportation cost.

❖ WH 101568 present in Rural East zone 6 has more competitors and 8 times

refill but of small sized so we can convert them into Large or Mid sized to

reduce transportation cost.

40

- More amount of loss during storage and transportation occurred in Urban areas, this cause unwanted loss of products. So we have to reduce them to reduce inventory loss.
- More number of warehouses in Urban areas are prone to flood so we can make it flood proof to reduce wastage of products.
- ❖ More sales occurred in Urban areas so we can open warehouses there to increase sales
- * Maximum breakdown occurred in Urban west zone so this can be reduced.

Demand label	Location	Capacity	Zone	Regional zone	Qty needed (in thousands)
0	Rural, Urban	Large,Mid,Small	N,E,W,S	1 to 6	22093
1	Rural	Large,Mid,Small	N,E,W,S	1 to 6	30092
2	Rural	Large,Mid,Small	N,E,W,S	1 to 6	30095
3	Rural	Large,Mid,Small	N,E,W,S	1 to 6	7145
4	Rural	Mid,Small	N,E,W,S	1 to 4,6	21114
5	Rural, Urban	Large,Mid,Small	N,E,W,S	1 to 6	17061
6	Urban	Large,Mid,Small	N,E,W,S	1 to 6	25076

1.2 Warehouse clusters

1.17 Warehouse clusters

THANK YOU