Entropy, Information Gain, Decision Trees & Accuracy

Exercise III

פיתוח: ד"ר יהונתן שלר משה פרידמן

עצי החלטה – משמעות וקריאת עץ החלטה

<u>עץ החלטה</u>: סדרת השאלות שמביאה אותנו להחלטה

צומת שורש: השאלה הראשונה בעץ ההחלטה

> צמתי ביניים: שאלות המשך

> צמתי עלים: ההחלטה המתקבלת

categorical categorical

לאחר שלב האימון, של ה- trainset הנתון (מימין),

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	high	No
2	No	Married	high	No
3	No	Single	low	No
4	Yes	Married	high	No
5	No	Divorced	high	Yes
6	No	Married	low	No
7	Yes	Divorced	high	No
8	No	Single	high	Yes
9	No	Married	low	No
10	No	Single	high	Yes

מהו הסיווג של דוגמת ה-test הבאה?

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	low	?

עץ החלטה: כיצד נבחר את התכונה הבאה

העיקרון הבסיסי

- ענסה לייצר את "המסלול" הקצר ביותר
- * הרעיון: בכל רמה בעץ ננסה לשאול את השאלה שתשפר לנו בצורה הטובה ביותר את רמת הוודאות בחיזוי

נתרגל 2 פונקציות לבחירת מאפיין לצומת:

- אנטרופיה
- Information gain •

entropy - אנטרופיה

* נתבונן במקרה הכללי בו נתונות לנו הסתברויות:

$$P(X=\alpha 1) = p1, P(X=\alpha 2) = p2, \dots P(X=\alpha n) = pn$$

(Entropy) X כאנטרופיה של H(X) נגדיר (Entropy)

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_n \log_2 p_n$$

$$= -\sum_{j=1}^{n} p_j \log_2 p_j$$

אנטרופיה גבוהה, משמעותה, שההתפלגות יותר דומה לאחידה.

אנטרופיה נמוכה ואנטרופיה גבוהה

אנטרופיה גבוהה

- התפלגות דומה לאחידה
 - ♦ קשה לחזות
 - אי וודאות 🌣
 - ♦ רמת אי סדר גבוהה

אנטרופיה נמוכה

- 🎄 התפלגות מגוונת (בעלת צורה של גבעות ועמקים)
 - יותר קל לחזות *
 - ♦ רמת וודאות גבוהה
 - ♦ רמת אי סדר נמוכה

דוגמה 2א - חישוב אנטרופיה

X	Υ
"גיל"	עובד"
	בקורונה"
צעיר	"cן"
צעיר	"cl"
בינוני	"cן"
צעיר	"לא"
בינוני	"cן"
זקן	"לא"
צעיר	"לא"
זקן	"לא"
בינוני צעיר בינוני זקן צעיר	"כן" "לא" "כן" "לא"

Y -1 X תרגיל: חשבו את האנטרופיות של

נתונה הטבלה הבאה:

$$P(Y = z) = 0.5$$

 $P(Y = x) = 0.5$
 $P(Y = x) = 0.5$
 $P(Y = x) = 0.5$
 $P(Y = x) = 0.5$

$$P(X=9)=0.5$$
 $P(X=9)=0.25$ $P(X=9)=0.25$

$$H(Y) = 1, \quad H(X) = 1.5$$

אנטרופיה מותנית

האנטרופיה מותנית (Y|X| הינה ממוצע H(Y|X) משוקלל של האנטרופיות ה"ספציפיות" של Y

$$H(Y \mid X) = \sum_{j} P(X = \alpha_{j}) H(Y \mid X = \alpha_{j})$$

דוגמה 2ב - אנטרופיה מותנית מסוימת – Specific Conditional Entropy

"אנטרופיה מותנית מסוימת" נגדיר

X	Υ
"גיל"	עובד"
	בקורונה"
צעיר	"cl"
צעיר	"cן"
בינוני	"cן"
צעיר	"לא"
בינוני	"cן"
זקן	"לא"
צעיר	"לא"
זקן	"לא"

(Specific Conditional Entropy)

$$H(Y|X=\alpha)$$
 כאנטרופיה של Y בין כל אותם הרשומות שבהן α מקבל את הערך X

$$H(Y|X=$$
חשבו (צעיר

$$P(Y=|X|=1) = 0.5$$

 $P(Y=|X|=1) = 0.5$
 $P(Y=|X|=1) = 0.5$
 $P(Y=|X|=1) = 0.5 \log 0.5 = 0.5 \log 0.5 = 1$

– אנטרופיה מותנית מסוימת Specific Conditional Entropy

חשבו את שאר האנטרופיות המותנות המסוימות

X "גיל"	ץ עובד" בקורונה "
צעיר	"כן"
צעיר	"cן"
בינוני	"cן"
צעיר	"לא"
בינוני	"cן"
זקן	"לא"
צעיר	"לא"
זקן	"לא"

$$P(Y = | S | X = C)$$
 (בינוני $| X = C | S$) $= 1$ (בינוני $| X = C | S$) $= 0$ $= -1 \log 1 = 0$

$$P(Y = |\mathcal{X}| | X = |\mathcal{X}|) = 0$$
 $P(Y = |\mathcal{X}| | X = |\mathcal{X}|) = 1$
 $P(Y = |\mathcal{X}| | X = |\mathcal{X}|) = -1 \log 1 = 0$

$$P(Y=1) = 0.5$$
 (צעיר $X=1$) כן $X=0.5$ (צעיר $X=1$) $= 0.5$ $= 0.5$ (צעיר $X=1$) $= 0.5 + 0.5$ $= 0.5 + 0.5$

$$H(Y|X=1)=1$$

$$H(Y|X=0)=0$$

$$H(Y|X=|$$
7 ס = 0

TILIAN – אנטרופיה מותנית – Conditional Entropy

X	Υ
"גיל"	עובד"
	בקורונה"
צעיר	"cl"
צעיר	"cן"
בינוני	"cן"
צעיר	"לא"
בינוני	"cן"
זקן	"לא"
צעיר	"לא"
זקן	"לא"

האנטרופיה המותנית H(Y|X) הינה ממוצע משוקלל של האנטרופיות ה"ספציפיות" של Y

$$H(Y \mid X) = \sum_{j} P(X = \alpha_{j}) H(Y \mid X = \alpha_{j})$$

$$H(Y|X=1) = 1$$
 $P(X=1) = 0.5$

$$H(Y|X=0) = 0$$
 $P(X=0.25)$

$$H(Y|X=|\tau|) = 0$$
 $P(X=|\tau|) = 0.25$

$$H(Y|X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5$$

Information Gain

עפ"י עפ"י Gain(Y | X) הינה ההפחתה הצפויה באנטרופיה של Y בגלל מיון עפ"י הכונה X

$$Gain(Y \mid X) = H(Y) - H(Y \mid X)$$

וG(wealth|relation) תרגיל 3 – חשבו את

נתונה הטבלה הבאה:

וG(wealth | relation) חשבו את

– IG(wealth | relation) תרגיל 3 – חשבו את

נחשב את ההסתברויות ...

ראשית נחשב את הסתברויות ...

total poor =
$$10870 + 11307 + 1454 + 7470 + 4816 + 1238 = 37, 155$$

total rich = $8846 + 1276 + 52 + 111 + 309 + 1093 = 11, 687$
total = $11,687 + 37,155 = 48,842$
p(wealth = $poor$) = $\frac{37,155}{48,842} = 0.761$ p(wealth = $poor$) = $\frac{11,687}{48,842} = 0.239$

$$p(relation = husband) = \frac{10870 + 8846}{48842} = 0.403$$

$$p(relation = not_in_family) = \frac{11307 + 1276}{48842} = 0.257$$

$$p(relation = other_relative) = \frac{1454 + 52}{48842} = 0.030$$

p(relation = own_child) =
$$\frac{7470 + 111}{48842}$$
 = **0.155**
p(relation = unmarried) = $\frac{4816 + 309}{48842}$ = **0.104**
p(relation = wife) = $\frac{1238 + 1093}{48842}$ = **0.047**

H(wealth) בעת נחשב – IG(wealth|relation) תרגיל – חשבו את

תזכורת - אנטרופיה של המחלקה (עבור 2 מחלקות אפשריות)

- אות S א הינה קבוצה של דוגמאות
- הינו החלק היחסי של הדוגמאות החיוביות ${
 m P}^+$ \Leftrightarrow בקבוצה
- הינו החלק היחסי של הדוגמאות השליליות P- \diamond בקבוצה
 - אנטרופיה של S: אנטרופיה של

$$H(S) = -p^{+} \log_{2} p^{+} - p^{-} \log_{2} p^{-}$$

– IG(wealth|relation) תרגיל 3 – חשבו את נעת נחשב (H(wealth)

$$p(\text{wealth} = poor) = 0.761$$

p(wealth = poor) = 0.239

$$H(\text{wealth}) = -\frac{37,155}{48,842} \cdot \log_2 \left(\frac{37,155}{48,842} \right) - \frac{11,687}{48,842} \cdot \log_2 \left(\frac{11,687}{48,842} \right) =$$

$$-0.761 \cdot \log_2(0.761) - 0.239 \cdot \log_2(0.239) =$$

$$-0.761 \cdot -0.394 - 0.239 \cdot -2.063 = 0.3 + 0.494 = \mathbf{0.794}$$

תרגיל 3 – חשבו את (IG(wealth|relation – כעת נחשב (wealth|relation) תזכורת - אנטרופיה מותנית

אנטרופיה מותנית (Y|X| הינה ממוצע משוקלל של האנטרופיות המותנות "ספציפיות" של Y

$$H(Y \mid X) = \sum_{j} P(X = \alpha_{j}) H(Y \mid X = \alpha_{j})$$

H(wealth|relation) תרגיל 3 – חשבו את (G(wealth|relation – נחשב – IG(wealth|relation

נחשב קודם את האנטרופיות המותנות המסוימות

Relation		
Poor	Rich	
10,870	8,846	
total	10,870+8,846 = 19,716	
P(Poor relation = husband) = 10,870/19,716 = 0.551	P(Rich relation = husband) = 8,846/19,716 = 0.448	
log ₁₀ (0.551)=-0.258	log ₁₀ (0.448)=-0.348	
log ₁₀ (2)=0.301	log ₁₀ (2)=0.301	
log ₂ (0.551)=-0.258/0.301 = -0.857	log ₂ (0.551)=-0.348/0.301 = -1.156	
$H(wealth relation = husband) = -0.551 \cdot -0.857 - 0.448 \cdot -1.156 = 0.99$		

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

$$\log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)}$$

H(wealth|relation) תרגיל 3 – חשבו את (G(wealth|relation – נחשב – IG(wealth|relation)

כעת, נחשב את <u>שאר האנטרופיות המותנות המסוימות</u>

number of examples	Poor	Rich	total
relation=husband	8846	10870	19716
relation=not_in_family	1276	11307	12583
relation=other_relative	52	1454	1506
relation=own_child	111	7470	7581
relation=unmarried	309	4816	5125
relation=wife	1093	238	1331

conditional probabilities	pr(wealth=poor)	pr(wealth=rich)
relation=husband	0.44867113	0.55132887
relation=not_in_family	0.10140666	0.89859334
relation=other_relative	0.034528552	0.965471448
relation=own_child	0.014641868	0.985358132
relation=unmarried	0.060292683	0.939707317
relation=wife	0.821187077	0.178812923

specific conditional entropy	H(wealth)
H(wealth relation=husband)	0.99238459
H(wealth relation=not_in_family)	0.47343881
H(wealth relation=other_relative)	0.21661703
H(wealth relation=own_child)	0.11019232
H(wealth relation=unmarried)	0.32860567
H(wealth relation=wife)	0.67747326

תרגיל 3 – חשבו את (IG(wealth|relation) –נחשב (H(wealth|relation) בעת, נחשב האנטרופיה המותנת (H(wealth|relation)

כבר חישבנו:

p(relation = husband) = 0.403

 $p(relation = not_in_family) = 0.257$

 $p(relation = other_relative) = 0.03$

$$p(relation = own_child) = 0.155$$

p(relation = unmarried) = 0.104

p(relation = wife) = 0.047

<u>EURING SECTION בעת נוכל לחשב את האנטרופיה המותנית</u>

 $0.403 \times 0.99 + 0.257 \times 0.473 + 0.03 \times 0.216 + 0.155 \times 0.11 \times +0.104 \times 0.328 + 0.047 \times 0.677 =$ **0.559**

specific conditional entropy	H(wealth)
H(wealth relation=husband)	0.99238459
H(wealth relation=not_in_family)	0.47343881
H(wealth relation=other_relative)	0.21661703
H(wealth relation=own_child)	0.11019232
H(wealth relation=unmarried)	0.32860567
H(wealth relation=wife)	0.67747326

H(wealth) – כעת נחשב – IG(wealth|relation) – רגיל 3 – חשבו את (Information Gain – מזכורת

Information Gain(Y|X)

א מיון עפ"י תכונה Y באנטרופיה של Y בגלל מיון עפ"י תכונה

$$Gain(Y|X) = H(Y) - H(Y|X)$$

H(wealth|relation) בחשב – והרגיל 3 – חשבו את (IG(wealth|relation – נחשב – ווG(wealth|relation) – נחשב את (IG(wealth|relation)

H(wealth) = 0.794

H(wealth | relation) = 0.559

כבר חישבנו:

$$Gain(Y \mid X) = H(Y) - H(Y \mid X)$$

<u>IG(wealth | relation) בעת נוכל לחשב את</u>

H(wealth) - H(wealth|relation) = 0.794 - 0.559 = 0.235

תרגיל 4 – חיזוי מוצלח

? הטלת קוביה? במשחק חזרתי של הטלת מטבע אור הטלת קוביה? האפשרות המועדפת

זריקת קוביה האנטרופיה $6 \cdot (-\frac{1}{6} \cdot \log_2 \frac{1}{6}) = 2.58$

הטלת מטבע האנטרופיה $2 \cdot (-0.5 \cdot \log_2 0.5) = 1$

ב. והיכן תעדיפו לשחק? במשחק חזרתי של חיזוי תוצאת סכום של שתי הטלות קוביה

בחירת מס' מבין 9 אפשרויות בהסתברות שווה

תרגיל 4ב - סכום 2 הטלות או בחירה בין 9 אפשרויות

prob	sum
1/36	2
2/36	3
3/36	4
4/36	5
5/36	6
6/36	7
5/36	8
4/36	9
3/36	10
2/36	11
1/36	12

סכום 2 הטלות:

$$-2 \times \frac{1}{36} \log_2 \frac{1}{36} - 2 \times \frac{2}{36} \log_2 \frac{2}{36}$$
$$-2 \times \frac{3}{36} \log_2 \frac{3}{36} - 2 \times \frac{4}{36} \log_2 \frac{4}{36}$$
$$-2 \times \frac{5}{36} \log_2 \frac{5}{36} - \frac{6}{36} \log_2 \frac{6}{36} = 3.2$$

$\frac{2}{9}$ בחירה בין 9 אפשרויות $9 \times (-\frac{1}{9}\log_2 \frac{1}{9}) = 3.17$

האפשרות המועדפת (מדוע?)

בניית עצי החלטה (אלגוריתם ID3)

לולאה:

- את המאפיין הטוב ביותר Xi שים אותו בצומת.
- שור ממנה Xi צור אפשרות וצומת היוצאת ממנה 💠
- (מהשלב הקודם) לצמתים החדשים (מהשלב הקודם * train-set
- ⇒ אם שילוב המאפיין והערך שלו, מוביל להחלטה טובה מספיק, צומת זה הוא עלה ומייצג החלטה.
 - אם לא נוכל לקבל "החלטה טובה", נשאיר צומת זה כעלה
 - אחרת, בצע את אותו תהליך עבור הצומת הזה

תרגיל 5 - בחירת התכונה לצומת

צבע	גיל גדול מ-30	סיווג
שחור	כן	YES
לבן	לא	NO
צהוב	לא	NO
שחור	כן	YES
צהוב	כן	YES
לבן	כן	YES
צהוב	כן	YES
שחור	לא	NO
שחור	לא	NO
לבן	כן	YES
לבן	כן	YES
שחור	לא	NO
צהוב	בן	YES
שחור	לא	NO
צהוב	כן	YES
שחור	לא	NO
צהוב	כן	YES
לבן	כן	YES
לבן	כן	YES
צהוב	לא	NO
צהוב	לא	NO

נתון ה-train-set הבא,
עם <u>2 מאפיינים</u>:
<u>צבע</u> (שחור/לבן/צהוב)
<u>גיל</u> (גדול מ-30/קטן או
שווה ל-30)
<u>וקטגוריה</u>: סיווג
(Yes/No)

תרגיל 5 - בחירת התכונה לצומת

- 🎄 נתונה קבוצת האימון בה 12 דוגמאות מסווגות כחיובי ו-9 דוגמאות כשלילי.
 - : מייצגת "גיל") לה שני פיצולים אפשריים 🎄
- אם גדול מ-30" הסיווג הוא YES, "אם קטן/שווה ל-30" הסיווג הוא ↔
 - (12+, 0-)-ו (0+,9-) א נסמן זאת (+9-) ו-(-12+
 - בתונה תכונה B ("צבע") לה שלושה פיצולים אפשריים:
 - אם שחור אנו נשארים עם קבוצה של 2חיוביים וחמישה שליליים", ₪
 - "אם לבן נשארים עם קבוצה של 5 חיוביים ואחד שלילי" 🎄
 - "אם צהוב נשארים עם קבוצה של חמישה חיוביים ושלושה שליליים" 🧇
 - (5+, 3-)-1 (5+,1-),(2+,5-) *

?איזו תכונה עדיפה כצומת הבא בעץ

תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת IG

נחשב את ההסתברויות ...

$$p(a) = Yes | age \le 30) = \frac{0}{9} = 0$$
 $p(a) = No | age \le 30) = \frac{9}{9} = 1$
 $p(a) = Yes | age > 30) = \frac{12}{12} = 1$
 $p(a) = No | age > 30) = \frac{0}{12} = 0$

ראשית נחשב הסתברויות ...

$$p(\alpha) = Yes = \frac{12}{21} \approx 0.57$$
 $p(\alpha) = No) = \frac{9}{21} \approx 0.43$

וG תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת

נחשב את האנטרופיה של המחלקה ...

$$p($$
סיווג $) \approx 0.57$

חישבנו:

$$p(v) = No) \approx 0.43$$

נחשב את האנטרופיה של המחלקה ...

$$H(Y) \approx -0.57 \cdot \log_2(0.57) - 0.43 \cdot \log_2(0.43) =$$

= $-0.57 \cdot (-0.807) - 0.43 \cdot (-1.22) = 0.4611 + 0.5228 = 0.98$

וG תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת

p(a) פיווג $= Yes|age \le 30) = 0$ p(a) פיווג $= No|age \le 30) = 1$ p(a) = Yes|age > 30) = 1p(a) = No|age > 30) = 0

 $H(Y|B) \approx 0.333 \cdot 1.002 + 0.286 \cdot 0.645 + 0.381 \cdot 0.954 \approx 0.882$

$$p(a) = No|color = white) \approx 0.166$$
 $p(a) = No|color = yellow) = 0.625$
 $p(a) = No|color = yellow) = 0.375$

$$p(\alpha | S | Color = black) \approx 0.286$$
 $p(\alpha | S | Color = black) \approx 0.714$
 $p(\alpha | S | Color = black) \approx 0.714$
 $p(\alpha | S | Color = black) \approx 0.833$

חישבנו:

$\dots H(Y|B)$ נחשב את האנטרופיה המותנת

$$H(Y|B = black) \approx -0.286 \cdot \log_2(0.286) - 0.714 \cdot \log_2(0.714) \approx 1.002$$
 $H(Y|B = white) \approx -0.833 \cdot \log_2(0.833) - 0.166 \cdot \log_2(0.166) \approx 0.645$
 $H(Y|B = yellow) \approx -0.625 \cdot \log_2(0.625) - 0.375 \cdot \log_2(0.375) \approx 0.954$
 $P(B = black) = \frac{7}{21} \approx 0.333 \quad P(B = white) = \frac{6}{21} \approx 0.286 \quad P(B = yellow) = \frac{8}{21} \approx 0.381$

$\dots H(Y|A)$ נחשב את האנטרופיה המותנת

$$H(Y|A > 30) = -1 \cdot \log_2(1) - 0 \cdot \log_2(0) = 0$$
 $H(Y|A <= 30) = -0 \cdot \log_2(0) - 1 \cdot \log_2(1) = 0$
 $H(Y|A) = p(A <= 30) \cdot 0 + p(A > 30) \cdot 0 = 0$

וG תרגיל 5 - בחירת התכונה לצומת – פתרון בעזרת

$$H(Y|A)=0$$

חישבנו:

$$H(Y|B) \approx 0.882$$

$$H(Y) = 0.98$$

... IG(Y|B) נחשב את האנטרופיה המותנת

 $IG(Y|B) = H(Y) - H(Y|B) \approx 0.98 - 0.882 = 0.098$

 $\dots IG(Y|A)$ נחשב את האנטרופיה המותנת

$$IG(Y|A) = H(Y) - H(Y|A) = 0.98$$

ולכן <u>נבחר ב-A</u> כתכונה בצומת הבא

שיערוך

Confusion matrix:

Predicted Yes		Predicted No	
Actual Yes	True Positive (TP)	False Negative (FN)	
Actual No	False Positive (FP)	True Negative (TN)	

$$accuracy = \frac{\#correct\ predictions = \#TP + \#TN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

Error (rate) = 1- accuracy =
$$\frac{\#incorrect\ predictions = \#FP + \#FN}{\#test\ instances = \#TP + \#TN + \#FP + \#FN}$$

תרגיל 6 - שיערוך – קורונה

בדיקה חדשה לגילוי קורונה נוסתה על 500 איש. מתוכם 400 בריאים ו 100 חולים – והתקבלו הנתונים הבאים:

Calculate the accuracy ...

	סווג	סווג כלא
	כחולה	חולה
חולה		
בפועל	95	5
-bb		
לא חולה		
בפועל	15	385

תרגיל 6 - שיערוך – קורונה

בדיקה חדשה לגילוי קורונה נוסתה על 500 איש. מתוכם 400 בריאים ו 100 חולים – והתקבלו הנתונים הבאים:

Calculate the accuracy ...

$$\frac{(95+385)}{(95+5+15+385)} = \frac{480}{(500)} \sim 0.96$$

	סווג	סווג כלא
	כחולה	חולה
חולה		
בפועל	95	5
לא חולה		
לא ווולוו בפועל	15	385

The Titanic dataset – שיערוך – 7

Titanic - British passenger liner that sank in the North Atlantic Ocean in 1912 after striking an iceberg

Dataset - used to predict passenger survival status.

Calculate the accuracy ...

	סווג	סווג כלא
	כשרד	שרד
שרד		
בפועל	150	30
_		
לא שרד		
בפועל	15	300

The Titanic dataset – שיערוך – 7

Titanic - British passenger liner that sank in the North Atlantic Ocean in 1912 after striking an iceberg

Dataset - used to predict passenger survival status.

$$\frac{(150+300)}{(150+300+30+15)} = \frac{450}{(495)} \sim 0.91$$

	סווג	סווג כלא
	כשרד	שרד
שרד		
בפועל	150	30
_		
לא שרד		
בפועל	15	300

שאלות?

פתראה בשבוע הבא