262,144-word × 16-bit / 524,288-word × 8-bit CMOS Programmable Mask ROM

HITACHI

Rev. 2.0 September 12, 1995

The HN62434 is a 4-Mbit CMOS Programmable Mask ROM organized either as 262,144 words by 16 bits or as 524,288 words by 8 bits. Realizing low power consumption, this memory is allowed for battery operation.

Features

• Single +5 V power supply

• Access time: 120/150 ns (max)

Low power consumption: 100 mW (typ) active
5 μW (typ) standby

- Byte-wide or word-wide data organization with BHE
- Wired OR is permitted for the output in three status
- · TTL compatible

Ordering Information

Type No.	Access time	Package		
HN62434P-12 HN62434P-15	120 ns 150 ns	600 mil 40-pin plastic DIP (DP-40)		
HN62434F-12 HN62434F-15	120 ns 150 ns	48-pin plastic SOP (FP-48DA)		
HN62434FA-12 HN62434FA-15	120 ns 150 ns	40-pin plastic SOP (FP-40D)		
HN62434TT-12 HN62434TT-15	120 ns 150 ns	44-pin plastic TSOP II (TTP-44D)		

Pin Arrangement

Pin Arrangement (cont.)

Pin Description

Pin name	Function
A0 to A17	Address input
D0 to D14	Data out
D15/A-1	Data out/address input
ŌĒ	Output enable
CE	Chip enable
BHE	Byte/word select
NC	No connection
V _{CC}	Power (+5 V)
V _{SS}	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Note	
Supply voltage	V _{CC}	-0.3 to +7.0	٧	1	
All input and output voltage	Vin, Vout	-0.3 to V _{CC} + 0.3	V	1	
Operating temperature range	Topr	0 to +70	°C		
Storage temperature range	Tstg	-55 to +125	°C		
Temperature under bias	Tbias	-20 to +85	°C		

Note: 1. With respect to V_{SS}.

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
	V _{SS}	0	0	0	٧
Input voltage	V _{IH}	2.2	_	V _{CC} + 0.3	٧
	V _{IL}	-0.3	_	0.8	٧

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter		Symbol	Min	Max	Unit	Test conditions
Supply current	Active	Icc		50	mA	$V_{CC} = 5.5 \text{ V}, \text{ IDout} = 0 \text{ mA},$ $t_{RC} = \text{Min}$
	Standby	I _{SB1}		30	μΑ	$V_{CC} = 5.5 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V}$
		I _{SB2}	_	3	mA	V _{CC} = 5.5 V, CE ≥ 2.2 V
input leakage cu	urrent	IILI	_	10	μA	Vin = 0 to V _{CC}
Output leakage	current	ll _L Ol	_	10	μA	CE = 2.2 V, Vout = 0 to V _{CC}
Output voltage		V _{OH}	2.4		٧	I _{OH} = -205 μA
		V _{OL}		0.4	V	I _{OL} = 1.6 mA

Capacitance ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = +25^{\circ}\text{C}$, Vin = 0 V, f = 1 MHz)

Parameter	Symbol	Min	Max	Unit
Input capacitance*1	Cin	_	15	pF
Output capacitance*1	Cout	_	15	pF

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, Ta = 0 to +70 °C)

Test Condition

• Output load: 1 TTL gate + C_L = 100 pF (including jig)

• Input pulse level: 0.8 to 2.4 V

• Input and output timing reference level: 1.5 V

• Input rise and fall time: 10 ns

		HN62434-12		HN62434-15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Note
Read cycle time	t _{RC}	120	_	150	_	ns	
Address access time	taa	_	120	_	150	ns	
CE access time	tACE	_	120	_	150	ns	
OE access time	toe		60	_	70	ns	
BHE access time	t _{BHE}	_	120		150	ns	
Output hold time from address change	t _{DHA}	0	_	0	_	ns	
Output hold time from CE	t _{DHC}	0		0	_	ns	
Output hold time from OE	t _{DHO}	0	_	0	_	ns	
Output hold time from BHE	t _{DHB}	0	_	0	_	ns	
CE to output in high Z	tcHZ	_	60	_	70	ns	1
OE to output in high Z	t _{OHZ}	****	60	_	70	ns	1
BHE to output in high Z	t _{BHZ}	_	60	_	70	ns	1
CE to output in low Z	t _{CLZ}	5	_	10		ns	
OE to output in low Z	toLZ	5		10		ns	
BHE to output in low Z	t _{BLZ}	5		10		ns	

Note: 1. t_{CHZ}, t_{OHZ} and t_{BHZ} are defined as the time at which the output achieves the open circuit conditions and are not referred to output voltage levels.

Timing Waveform

Word Mode (BHE = ' V_{IH} ') or Byte Mode (BHE = ' V_{IL} ')

Word Mode, Byte Mode Switch

Package Dimensions

HN62434P Series (DP-40)

Unit: mm

HN62434F Series (FP-48DA)

Unit: mm

Package Dimensions (cont.)

HN62434FA Series (FP-40D)

Unit: mm

HN62434TT Series (TTP-44D)

Unit: mm

