5 Register Mapping

This chapter gives an overview of the complete register set. Some of the registers bundling a number of single bits are detailed in extra tables. The functional practical application of the settings is detailed in dedicated chapters.

Note

- All registers become reset to 0 upon power up, unless otherwise noted.
- Add 0x80 to the address Addr for write accesses!

NOTATION OF HEXADECIMAL AND BINARY NUMBERS				
0x	precedes a hexadecimal number, e.g. 0x04			
%	precedes a multi-bit binary number, e.g. %100			

NOTATION OF R/W FIELD			
R	Read only		
W	Write only		
R/W	Read- and writable register		
R+C	Clear upon read		

OVERVIEW REGISTER MAPPING

REGISTER	DESCRIPTION
General Configuration Registers	These registers contain - global configuration - global status flags - interface configuration - and I/O signal configuration
Velocity Dependent Driver Feature Control Register Set	This register set offers registers for - driver current control - setting thresholds for coolStep operation - setting thresholds for different chopper modes - setting thresholds for dcStep operation
Motor Driver Register Set	This register set offers registers for - setting / reading out microstep table and counter - chopper and driver configuration - coolStep and stallGuard2 configuration - dcStep configuration - reading out stallGuard2 values and driver error flags

5.1 General Configuration Registers

R/W	Addr	n	Register	Descri	ption / bit names
	71001		i negiotei	Bit	GCONF - Global configuration flags
				1	recalibrate 1: Zero crossing recalibration during driver disable (via ENN or via TOFF setting) faststandstill Timeout for step execution until standstill detection: 1: Short time: 2^18 clocks 0: Normal time: 2^20 clocks
				2	en_pwm_mode 1: stealthChop voltage PWM mode enabled (depending on velocity thresholds). Switch from off to on state while in stand-still and at IHOLD= nominal IRUN current, only.
				3	multistep_filt 1: Enable step input filtering for stealthChop optimization with external step source (default=1)
				4	shaft 1: Inverse motor direction
				5	diag0_error
					 Enable DIAGO active on driver errors: Over temperature (ot), short to GND (s2g), undervoltage chargepump (uv_cp) DIAGO always shows the reset-status, i.e. is active low during reset condition.
RW	0x00	17	GCONF	6	diag0_otpw 1: Enable DIAG0 active on driver over temperature prewarning (otpw)
				7	diag0_stall 1: Enable DIAGO active on motor stall (set TCOOLTHRS before using this feature)
				8	diag1_stall 1: Enable DIAG1 active on motor stall (set TCOOLTHRS before using this feature)
				9	diag1_index1: Enable DIAG1 active on index position (microstep look up table position 0)
				10	diag1_onstate 1: Enable DIAG1 active when chopper is on (for the coil which is in the second half of the fullstep)
				11	diag1_steps_skipped 1: Enable output toggle when steps are skipped in dcStep mode (increment of LOST_STEPS). Do not enable in conjunction with other DIAG1 options.
				12	diag0_int_pushpull 0: DIAG0 is open collector output (active low) 1: Enable DIAG0 push pull output (active high)
				13	diag1_pushpull0: DIAG1 is open collector output (active low)1: Enable DIAG1 push pull output (active high)

R/W	Addr	n	Register	Descri	ption / bit names
	71001		i negiotei	14	small_hysteresis
					0: Hysteresis for step frequency comparison is 1/16
					1: Hysteresis for step frequency comparison is 1/32
				15	stop_enable
					0: Normal operation
					1: Emergency stop: ENCA_DCIN stops the sequencer
					when tied high (no steps become executed by
					the sequencer, motor goes to standstill state).
				16	direct_mode
					0: Normal operation
					1: Motor coil currents and polarity directly
					programmed via serial interface: Register XDIRECT
					(0x2D) specifies signed coil A current (bits 80)
					and coil B current (bits 2416). In this mode, the
					current is scaled by IHOLD setting. Velocity based
					current regulation of stealthChop is not available
					in this mode. The automatic stealthChop current
					regulation will work only for low stepper motor
					velocities.
				17	test_mode
					0: Normal operation
					1: Enable analog test output on pin DCO.
					IHOLD[10] selects the function of DCO:
					02: T120, DAC, VDDH
				Bit	Hint: Not for user, set to 0 for normal operation!
				DIT	GSTAT - Global status flags (Re-Write with '1' bit to clear respective flags)
				0	reset
					1: Indicates that the IC has been reset. All registers
					have been cleared to reset values.
				1	drv_err
_				_	1: Indicates, that the driver has been shut down
R+	0x01	3	GSTAT		due to overtemperature or short circuit detection.
WC					Read DRV_STATUS for details. The flag can only
					be cleared when the temperature is below the
					limit again.
				2	uv_cp
					1: Indicates an undervoltage on the charge pump.
					The driver is disabled during undervoltage. This
					flag is latched for information.
				Bit	INPUT
					Reads the state of all input pins available
				0	STEP
				1	DIR
		8		2	DCEN_CFG4
R	0x04	+	IOIN	3	DCIN_CFG5
		8		4	DRV_ENN
				5	DCO_CFG6
				6	1
				7	unused
				31	VERSION: 0x30=first version of the IC
141	0.04		OTD DOGG	24	Identical numbers mean full digital compatibility.
W	0x06		OTP_PROG	Bit	OTP_PROGRAM – OTP programming

R/W	Addr	n	Register	Descri	ption I bit names
1222	71001		g.sss		Write access programs OTP memory (one bit at a time), Read access refreshes read data from OTP after a write
				20	OTPBIT Selection of OTP bit to be programmed to the selected byte location (n=07: programs bit n to a logic 1)
				54	OTPBYTE Set to 00
				158	OTPMAGIC Set to 0xbd to enable programming. A programming time of minimum 10ms per bit is recommended (check
					by reading OTP_READ).
R	0x07		OTP_READ	Bit	OTP_READ (Access to OTP memory result and update) See separate table!
				70	OTPO byte 0 read data
RW	0x08			40	FCLKTRIM (Reset default: OTP) 031: Lowest to highest clock frequency. Check at charge pump output. The frequency span is not
		5	FACTORY_ CONF		guaranteed, but it is tested, that tuning to 12MHz internal clock is possible. The devices come preset to 12MHz clock frequency by OTP programming.
					(Reset Default: OTP)
				Bit	SHORT_CONF
		9 19		30	S2VS_LEVEL: Short to VS detector level for lowside FETs. Checks for voltage drop in LS MOSFET and sense resistor. 4 (highest sensitivity) 15 (lowest sensitivity) Hint: Settings from 1 to 3 will trigger during normal operation due to voltage drop on sense resistor.
				11 0	(Reset Default: OTP 6 or 12) S2G LEVEL:
W	0x09		19 SHORT_CONF	118	Stort to GND detector level for highside FETs. Checks for voltage drop on high side MOSFET 2 (highest sensitivity) 15 (lowest sensitivity) Attention: Settings below 6 not recommended at >52V operation - false detection might result (Reset Default: OTP 6 or 12) SHORTFILTER:
				1710	Spike filtering bandwidth for short detection 0 (lowest, 100ns), 1 (1µs), 2 (2µs) 3 (3µs) Hint: A good PCB layout will allow using setting 0 Increase value, if erroneous short detection occurs. (Reset Default = %01)
				18	shortdelay: Short detection delay 0=750ns: normal, 1=1500ns: high The short detection delay shall cover the bridge switching time. 0 will work for most applications. (Reset Default = 0)
	0x0A	22	DRV CONF	Bit	DRV_CONF

R/W	Addr	n	Register	Descrip	otion / bit names
				40	BBMTIME:
					Break-Before make delay
					0=shortest (100ns) 16 (200ns) 24=longest (375ns)
					>24 not recommended, use BBMCLKS instead
					Hint: Choose the lowest setting safely covering the
					switching event in order to avoid bridge cross
					conduction. Add roughly 30% of reserve.
					(Reset Default = 0)
				118	BBMCLKS:
					015: Digital BBM time in clock cycles (typ. 83ns).
					The longer setting rules (BBMTIME vs. BBMCLKS).
					(Reset Default: OTP 4 or 2)
				1716	OTSELECT:
					Selection of over temperature level for bridge disable
					switch on after cool down to 120°C / OTPW level.
					00: 150°C
					01: 143°C
					10: 136°C (not recommended when VSA > 24V)
					11: 120°C (not recommended, no hysteresis)
					Hint: Adapt overtemperature threshold as required to
					protect the MOSFETs or other components on the PCB.
					(Reset Default = %00)
				1918	DRVSTRENGTH:
					Selection of gate driver current. Adapts the gate drive
					current to the gate charge of the external MOSFETs.
					00: weak
					01: weak+TC (medium above OTPW level)
					10: medium
					11: strong
					Hint: Choose the lowest setting giving slopes <100ns.
				21 20	(Reset Default = %10)
				2120	FILT_ISENSE:
					Filter time constant of sense amplifier to suppres ringing and coupling from second coil operation
					00: low – 100ns
					01: - 200ns
					10: - 300ns
					11: high- 400ns
					Hint: Increase setting if motor chopper noise occur
					due to cross-coupling of both coils.
			1		(Reset Default = %00)

GENERA	GENERAL CONFIGURATION REGISTERS (0x000x0F)				
R/W	Addr	n	Register	er Description I bit names	
W	0x0B	8	GLOBAL SCALER	70	Global scaling of Motor current. This value is multiplied to the current scaling in order to adapt a drive to a certain motor type. This value should be chosen before tuning other settings, because it also influences chopper hysteresis. O: Full Scale (or write 256) 1 31: Not allowed for operation 32 255: 32/256 255/256 of maximum current. Hint: Values >128 recommended for best results (Reset Default = 0)
R	0x0C	16	OFFSET_	158	Offset calibration result phase A (signed)
I.V.	UXUC	16	READ	70	Offset calibration result phase B (signed)

5.1.1 OTP_READ - OTP configuration memory

The OTP memory holds power up defaults for certain registers. All OTP memory bits are cleared to 0 by default. Programming only can set bits, clearing bits is not possible. Factory tuning of the clock frequency affects otp0.0 to otp0.4. The state of these bits therefore may differ between individual ICs.

0x07	: OTP_READ	- OTP MEMORY MAP	
Bit	Name	Function	Comment
7	otp0.7	otp_TBL	Reset default for TBL:
			0: TBL=%10 (-3µs)
			1: TBL=%01 (-2µs)
6	otp0.6	otp_BBM	Reset default for DRVCONF.BBMCLKS
			0: BBMCLKS=4
			1: BBMCLKS=2
5	otp0.5	otp_S2_LEVEL	Reset default for Short detection Levels:
			0: S2G_LEVEL = S2VS_LEVEL = 6
			1: S2G_LEVEL = S2VS_LEVEL = 12
4	otp0.4	OTP_FCLKTRIM	Reset default for FCLKTRIM
3	otp0.3		0: lowest frequency setting
2	otp0.2		31: highest frequency setting
1	otp0.1		Attention: This value is pre-programmed by factory clock
0	otp0.0		trimming to the default clock frequency of 12MHz and
	_		differs between individual ICs! It should not be altered.

5.2 Velocity Dependent Driver Feature Control Register Set

R/W	Addr	n	Register	Description / bit names	
			_	Bit IHOLD_IRUN - Driver current control	
W	0x10	5 + 5 + 4	IHOLD_IRUN	40 IHOLD Standstill current (0=1/3231=32/32) In combination with stealthChop mode, setting IHOLD=0 allows to choose freewheeling or coil short circuit for motor stand still. 128 IRUN Motor run current (0=1/3231=32/32) Hint: Choose sense resistors in a way, that normal IRUN is 16 to 31 for best microstep performance. 1916 IHOLDDELAY Controls the number of clock cycles for motor	
				power down after a motion as soon as standstill is detected (stst=1) and TPOWERDOWN has expired. The smooth transition avoids a motor jerk upon power down. 0: instant power down 115: Delay per current reduction step in multiple of 2^18 clocks	
W	0x11	8	TPOWER DOWN	TPOWERDOWN sets the delay time after stand still (stst) of the motor to motor current power down. Time range is about 0 to 4 seconds. Attention: A minimum setting of 2 is required to allow automatic tuning of stealthChop PWM_OFFS_AUTO. Reset Default = 10 0((2^8)-1) * 2^18 t _{CLK}	
R	0x12	20	TSTEP	Actual measured time between two 1/256 microsteps derived from the step input frequency in units of 1/fCLK. Measured value is (2^20)-1 in case of overflow or stand still. All TSTEP related thresholds use a hysteresis of 1/16 of the compare value to compensate for jitter in the clock or the step frequency. The flag small_hysteresis modifies the hysteresis to a smaller value of 1/32. (Txxx*15/16)-1 or (Txxx*31/32)-1 is used as a second compare value for each comparison value. This means, that the lower switching velocity equals the calculated setting, but the upper switching velocity is higher as defined by the hysteresis setting. In dcStep mode TSTEP will not show the mean velocity of the motor, but the velocities for each microstep, which may not be stable and thus does not represent the real motor velocity in case it runs slower than the target velocity.	
W	0x13	20	TPWMTHRS	This is the upper velocity for stealthChop voltage PWM mode. TSTEP ≥ TPWMTHRS - stealthChop PWM mode is enabled, if configured - dcStep is disabled	

R/W	Addr	n	Register	Description I bit names
				This is the lower threshold velocity for switching on smart energy coolStep and stallGuard feature. (unsigned)
W	0x14	20	TCOOLTHRS	Set this parameter to disable coolStep at low speeds, where it cannot work reliably. The stop on stall function (enable with sg_stop when using internal motion controller) and the stall output signal become enabled when exceeding this velocity. In non-dcStep mode, it becomes disabled again once the velocity falls below this threshold.
				TCOOLTHRS ≥ TSTEP ≥ THIGH: - coolStep is enabled, if configured - stealthChop voltage PWM mode is disabled
				TCOOLTHRS ≥ TSTEP - Stop on stall is enabled, if configured - Stall output signal (DIAGO/1) is enabled, if configured
				This velocity setting allows velocity dependent switching into a different chopper mode and fullstepping to maximize torque. (unsigned) The stall detection feature becomes switched off for 2-3 electrical periods whenever passing <i>THIGH</i> threshold to compensate for the effect of switching modes.
W	0x15	20	THIGH	 TSTEP ≤ THIGH: coolStep is disabled (motor runs with normal current scale) stealthChop voltage PWM mode is disabled If vhighchm is set, the chopper switches to chm=1 with TFD=0 (constant off time with slow decay, only). If vhighfs is set, the motor operates in fullstep mode and the stall detection becomes switched over to dcStep stall detection.
RW	0x2D	9+9	XDIRECT	This register is used in direct coil current mode, only (direct_mode = 1). It bypasses the internal sequencer. Specifies signed coil A current (bits 80) and coil B current (bits 2416). In this mode, the current is scaled by IHOLD setting. Velocity based current regulation of stealthChop is not available in this mode. The automatic stealthChop current regulation will work only for low stepper

Microstep velocity time reference t for velocities: TSTEP = f_{CLK} / f_{STEP}

5.2.1 dcStep Miniumum Velocity Register

DCSTEP	DCSTEP MINIMUM VELOCITY REGISTER (0x33)					
R/W	Addr	n	Register	Description I bit names		
w	0x33	23	VDCMIN	Automatic commutation dcStep minimum velocity. Enable dcStep by DCEN pin. In this mode, the actual position is determined by the sensorless motor commutation and becomes fed back to the external motion controller. In case the motor becomes heavily loaded, VDCMIN is used as the minimum step velocity. Hint: Also set DCCTRL parameters in order to operate dcStep. (Only bits 22 8 are used for value and for comparison)		

Time reference t for *VDCMIN*: $t = 2^24 / f_{CLK}$

5.3 Motor Driver Registers

MICRO	STEPPING	CONTI	ROL REGISTER SE	т (0х600х6В)	
R/W	Addr	n	Register	Description I bit names	Range [Unit]
W	0x60	32	microstep table entries 031	Each bit gives the difference between entry x and entry x+1 when combined with the corresponding MSLUTSEL W bits: 0: W= %00: -1	32x 0 or 1 reset default= sine wave table
W	0x61 0x67	7 x 32	MSLUT[17] microstep table entries 32255	7x 32x 0 or 1 1: W= %00: +0	
W	0x68	32	This register defines four segments within 0 <x1<x each quarter MSLUT wave. Four 2 bit entries reset of</x1<x 		0 <x1<x2<x3 reset default= sine wave table</x1<x2<x3
W	0x69	8 + 8	MSLUTSTART	bit 7 0: START_SIN bit 23 16: START_SIN90 START_SIN gives the absolute current at microstep table entry 0. START_SIN gives the absolute current at microstep table entry 0.	
R	0x6A	10	MSCNT	Microstep counter. Indicates actual position in the microstep table for CUR_A. CUR_B uses an offset of 256 (2 phase motor). Hint: Move to a position where MSCNT is zero before re-initializing MSLUTSTART or MSLUT and MSLUTSEL.	
R	0x6B	9 + 9	MSCURACT	bit 8 0: CUR_A (signed): Actual microstep current for motor phase A as read from MSLUT (not scaled by current) bit 24 16: CUR_B (signed): Actual microstep current for motor phase B as read from MSLUT (not scaled by current)	+/-0255

DRIVE	DRIVER REGISTER SET (0x6C0x7F)				
R/W	Addr	n	Register	Description I bit names	Range [Unit]
RW	0x6C	32	CHOPCONF	chopper and driver configuration See separate table!	reset default= 0x10410150
W	0x6D	25	DCCTRL	coolStep smart current control register and stallGuard2 configuration See separate table! dcStep (DC) automatic commutation configuration register (enable via pin DCEN or via VDCMIN): bit 9 0: DC_TIME: Upper PWM on time limit for commutation (DC_TIME * 1/fc_lk). Set slightly above effective blank time TBL. bit 23 16: DC_SG: Max. PWM on time for step loss detection using dcStep stallGuard2 in dcStep mode. (DC_SG * 16/fc_lk) Set slightly higher than DC_TIME/16 0=disable Hint: Using a higher microstep resolution or interpolated operation, dcStep delivers a better stallGuard signal. DC_SG is also available above VHIGH if vhighfs is activated. For best result also set	
R	0x6F	32	DRV_ STATUS	vhighchm. stallGuard2 value and driver error flags See separate table!	
W	0x70	22	PWMCONF	Voltage PWM mode chopper configuration See separate table!	reset default= 0xC40C001E
R	0x71	9+8	PWM_SCALE	Results of stealthChop amplitude regulator. These values can be used to monitor automatic PWM amplitude scaling (255=max. voltage). bit 7 0 PWM_SCALE_SUM: Actual PWM duty cycle. This value is used for scaling the values CUR_A and CUR_B read from the sine wave table. bit 24 16 PWM_SCALE_AUTO: 9 Bit signed offset added to the calculated PWM duty cycle. This is the result of the automatic amplitude regulation based on current measurement.	0255 signed -255+255
R	0x72	8+8	PWM_AUTO	These automatically generated values can be read out in order to determine a default / power up setting for PWM_GRAD and PWM_OFS. bit 7 0 PWM_OFS_AUTO: Automatically determined offset value	0255

DRIVE	DRIVER REGISTER SET (0x6C0x7F)					
R/W	Addr	n	Register	Description / bit names Range [Unit]		
				bit 23 16 PWM_GRAD_AUTO: Automatically determined gradient value	0255	
R	0x73	20	LOST_STEPS	Number of input steps skipped due to higher load in dcStep operation, if step input does not stop when DC_OUT is low. This counter wraps around after 2^20 steps. Counts up of down depending on direction. Only with SDMODE=1.		

MICROSTEP TABLE CALCULATION FOR A SINE WAVE EQUIVALENT TO THE POWER ON DEFAULT

$$round \left(248 * sin\left(2 * PI * \frac{i}{1024} + \frac{PI}{1024}\right)\right) - 1$$

- *i*:[0... 255] is the table index
- The amplitude of the wave is 248. The resulting maximum positive value is 247 and the maximum negative value is -248.
- The round function rounds values from 0.5 to 1.4999 to 1

5.3.1 MSLUTSEL - Look up Table Segmentation Definition

0x68	0x68: MSLUTSEL - LOOK UP TABLE SEGMENTATION DEFINITION				
Bit	Name	Function	Comment		
31 30 29 28	Х3	LUT segment 3 start	The sine wave look up table can be divided into up to four segments using an individual step width control entry Wx. The segment borders are selected by X1, X2 and X3.		
27 26 25 24			Segment 0 goes from 0 to X1-1. Segment 1 goes from X1 to X2-1. Segment 2 goes from X2 to X3-1.		
23 22 21	X2	LUT segment 2 start	Segment 3 goes from X3 to 255. For defined response the values shall satisfy:		
20 19 18 17 16			0 <x1<x2<x3< td=""></x1<x2<x3<>		
15 14 13 12 11 10 9	X1	LUT segment 1 start			
7	W3	LUT width select from ofs(X3) to ofs255	Width control bit coding W0W3: %00: MSLUT entry 0, 1 select: -1, +0		
5 4	W2	LUT width select from ofs(X2) to ofs(X3-1)	%01: MSLUT entry 0, 1 select: +0, +1 %10: MSLUT entry 0, 1 select: +1, +2		
3	W1	LUT width select from ofs(X1) to ofs(X2-1)	%11: MSLUT entry 0, 1 select: +2, +3		
0	W0	LUT width select from ofs00 to ofs(X1-1)			

5.3.2 CHOPCONF - Chopper Configuration

0x6C: CHOPCONF – CHOPPER CONFIGURATION					
Bit	Name	Function	Comment		
31	diss2vs	short to supply	0: Short to VS protection is on		
	0.100_10	protection disable	1: Short to VS protection is disabled		
30	diss2g	short to GND	0: Short to GND protection is on		
	g	protection disable	1: Short to GND protection is disabled		
29	dedge	enable double edge	1: Enable step impulse at each step edge to reduce step		
	J	step pulses	frequency requirement.		
28	intpol	interpolation to 256 microsteps	1: The actual microstep resolution (MRES) becomes extrapolated to 256 microsteps for smoothest motor operation (useful for STEP/DIR operation, only)		
27	mres3	MRES	%0000:		
26	mres2	micro step resolution	Native 256 microstep setting. Normally use this setting		
25	mres1		with the internal motion controller.		
24	mres0		%0001 %1000: 128, 64, 32, 16, 8, 4, 2, FULLSTEP Reduced microstep resolution esp. for STEP/DIR operation. The resolution gives the number of microstep entries per sine quarter wave. The driver automatically uses microstep positions which result in a symmetrical wave, when choosing a lower microstep resolution. step width=2^MRES [microsteps]		
23	tpfd3	TPFD	TPFD allows dampening of motor mid-range resonances.		
22	tpfd2	passive fast decay time	Passive fast decay time setting controls duration of the		
21	tpdf1	,	fast decay phase inserted after bridge polarity change		
20	tpfd0		N _{CLK} = 128* <i>TPFD</i> %0000: Disable %0001 %1111: 1 15		
19	vhighchm	high velocity chopper mode	This bit enables switching to <i>chm</i> =1 and <i>fd</i> =0, when <i>VHIGH</i> is exceeded. This way, a higher velocity can be achieved. Can be combined with <i>vhighfs</i> =1. If set, the <i>TOFF</i> setting automatically becomes doubled during high velocity operation in order to avoid doubling of the chopper frequency.		
18	vhighfs	high velocity fullstep selection	This bit enables switching to fullstep, when VHIGH is exceeded. Switching takes place only at 45° position. The fullstep target current uses the current value from the microstep table at the 45° position.		
17	-	reserved	reserved, set to 0		
16	tbl1	TBL	%00 %11:		
15	tbl0	blank time select	Set comparator blank time to 16, 24, 36 or 54 clocks Hint: %01 or %10 is recommended for most applications		
14	chm	chopper mode	O Standard mode (spreadCycle) Constant off time with fast decay time. Fast decay time is also terminated when the negative nominal current is reached. Fast decay is after on time.		
13	-	reserved	Reserved, set to 0		
12	disfdcc	fast decay mode	<pre>chm=1: disfdcc=1 disables current comparator usage for termi- nation of the fast decay cycle</pre>		
11	fd3	TFD [3]	chm=1: MSB of fast decay time setting <i>TFD</i>		

0x60	0x6C: CHOPCONF – CHOPPER CONFIGURATION			
Bit	Name	Function	Comment	
10	hend3	HEND	chm=0	%0000 %1111:
9	hend2	hysteresis low value		Hysteresis is -3, -2, -1, 0, 1,, 12
8	hend1	OFFSET		(1/512 of this setting adds to current setting)
7	hend0	sine wave offset		This is the hysteresis value which becomes used for the hysteresis chopper.
			chm=1	%0000 %1111: Offset is -3, -2, -1, 0, 1,, 12 This is the sine wave offset and 1/512 of the value becomes added to the absolute value of each sine wave entry.
6	hstrt2	HSTRT	chm=0	%000 %111:
5	hstrt1	hysteresis start value		Add 1, 2,, 8 to hysteresis low value HEND
4	hstrt0	added to <i>HEND</i>		(1/512 of this setting adds to current setting) Attention: Effective HEND+HSTRT ≤ 16. Hint: Hysteresis decrement is done each 16 clocks
		TFD [20] fast decay time setting	chm=1	Fast decay time setting (MSB: fd3): %0000 %1111: Fast decay time setting TFD with NCLK= 32*TFD (%0000: slow decay only)
3	toff3	TOFF off time	Off time s	etting controls duration of slow decay phase
2	toff2	and driver enable	N_{CLK} = 12 +	32*TOFF
1	toff1		%0000: Dr	iver disable, all bridges off
0	toff0			– use only with <i>TBL</i> ≥ 2 %1111: 2 15

5.3.3 COOLCONF - Smart Energy Control coolStep and stallGuard2

0x6[0x6D: COOLCONF - SMART ENERGY CONTROL COOLSTEP AND STALLGUARD2			
Bit	Name	Function	Comment	
	-	reserved	set to 0	
24	sfilt	stallGuard2 filter enable	O Standard mode, high time resolution for stallGuard2	
			1 Filtered mode, stallGuard2 signal updated for each four fullsteps (resp. six fullsteps for 3 phase motor) only to compensate for motor pole tolerances	
23	-	reserved	set to 0	
22	sgt6	stallGuard2 threshold	This signed value controls stallGuard2 level for stall	
21	sgt5	value	output and sets the optimum measurement range for	
20	sgt4		readout. A lower value gives a higher sensitivity. Zero is	
19	sgt3		the starting value working with most motors.	
18	sgt2		-64 to +63: A higher value makes stallGuard2 less	
17	sgt1		sensitive and requires more torque to	
16	sgt0		indicate a stall.	
15	seimin	minimum current for	0: 1/2 of current setting (IRUN)	
		smart current control	1: 1/4 of current setting (IRUN)	
14	sedn1	current down step	%00: For each 32 stallGuard2 values decrease by one	
13	sedn0	speed	%01: For each 8 stallGuard2 values decrease by one	
			%10: For each 2 stallGuard2 values decrease by one	
			%11: For each stallGuard2 value decrease by one	
12	-	reserved	set to 0	
11	semax3	stallGuard2 hysteresis	If the stallGuard2 result is equal to or above	
10	semax2	value for smart current	(SEMIN+SEMAX+1)*32, the motor current becomes	
9	semax1	control	decreased to save energy.	
8	semax0		%0000 %1111: 0 15	
7	-	reserved	set to 0	
6	seup1	current up step width	Current increment steps per measured stallGuard2 value	
5	seup0		%00 %11: 1, 2, 4, 8	
4	-	reserved	set to 0	
3	semin3	minimum stallGuard2	If the stallGuard2 result falls below SEMIN*32, the motor	
2	semin2	value for smart current	current becomes increased to reduce motor load angle.	
1	semin1	control and	%0000: smart current control coolStep off	
0	semin0	smart current enable	%0001 %1111: 1 15	

5.3.4 PWMCONF - Voltage PWM Mode stealthChop

0x70	0x70: PWMCONF - VOLTAGE MODE PWM STEALTHCHOP			
Bit	Name	Function	Comment	
31 30 29 28	PWM_LIM	PWM automatic scale amplitude limit when switching on	Limit for <i>PWM_SCALE_AUTO</i> when switching back from spreadCycle to stealthChop. This value defines the upper limit for bits 7 to 4 of the automatic current control when switching back. It can be set to reduce the current jerk during mode change back to stealthChop. It does not limit <i>PWM_GRAD</i> or <i>PWM_GRAD_AUTO</i> offset. (Default = 12)	
27 26 25 24	PWM_REG	Regulation loop gradient	User defined maximum PWM amplitude change per half wave when using pwm_autoscale=1. (115): 1: 0.5 increments (slowest regulation) 2: 1 increment 3: 1.5 increments 4: 2 increments (Reset default)) 8: 4 increments 15: 7.5 increments (fastest regulation)	
23	-	reserved	set to 0	
22	-	reserved	set to 0	
21 20	freewheel1 freewheel0	Allows different standstill modes	Stand still option when motor current setting is zero (I_HOLD=0). %00: Normal operation %01: Freewheeling %10: Coil shorted using LS drivers %11: Coil shorted using HS drivers	
19	pwm_ autograd	PWM automatic gradient adaptation	O Fixed value for PWM_GRAD (PWM_GRAD_AUTO = PWM_GRAD) 1 Automatic tuning (only with pwm_autoscale=1) (Reset default) PWM_GRAD_AUTO is initialized with PWM_GRAD while pwm_autograd=0 and becomes optimized automatically during motion. Preconditions 1. PWM_OFS_AUTO has been automatically initialized. This requires standstill at IRUN for >130ms in order to a) detect standstill b) wait > 128 chopper cycles at IRUN and c) regulate PWM_OFS_AUTO so that -1 < PWM_SCALE_AUTO < 1 2. Motor running and 1.5 * PWM_OFS_AUTO < PWM_SCALE_SUM < 4* PWM_OFS_AUTO and PWM_SCALE_SUM < 255. Time required for tuning PWM_GRAD_AUTO About 8 fullsteps per change of +/-1. Also enables use of reduced chopper frequency for tuning PWM_OFS_AUTO.	
18	pwm_ autoscale	PWM automatic amplitude scaling	User defined feed forward PWM amplitude. The current settings IRUN and IHOLD have no influence! The resulting PWM amplitude (limited to 0255) is: PWM_OFS * ((CS_ACTUAL+1) / 32) + PWM_GRAD * 256 / TSTEP 1 Enable automatic current control (Reset default)	

0x70	: PWMCONF	- VOLTAGE MODE PWM S	теаltнСнор
Bit	Name	Function	Comment
17	pwm_freq1	PWM frequency	%00: f _{PWM} =2/1024 f _{CLK} (Reset default)
16	pwm_freq0	selection	%01: f _{PWM} =2/683 f _{CLK}
			%10: f _{PWM} =2/512 f _{CLK}
			%11: f _{PWM} =2/410 f _{CLK}
15	PWM_	User defined amplitude	Velocity dependent gradient for PWM amplitude:
14	GRAD	gradient	PWM_GRAD * 256 / TSTEP
13			This value is added to <i>PWM_OFS</i> to compensate for the
12			velocity-dependent motor back-EMF.
11			Has DIAMA CDAD as initial makes for automotic assling to
10			Use PWM_GRAD as initial value for automatic scaling to
9			speed up the automatic tuning process. To do this, set <i>PWM_GRAD</i> to the determined, application specific value,
8			with pwm_autoscale=0. Only afterwards, set
			pwm_autoscale=1. Enable stealthChop when finished.
			pwin_uutoscute-1. Enuble steattifeffop when missied.
			Hint:
			After initial tuning, the required initial value can be read
			out from PWM_GRAD_AUTO.
7	PWM	User defined amplitude	User defined PWM amplitude offset (0-255) related to full
6	OFS _	(offset)	motor current (CS_ACTUAL=31) in stand still.
5			(Reset default=30)
4			
3			Use PWM_OFS as initial value for automatic scaling to
2			speed up the automatic tuning process. To do this, set
1			PWM_OFS to the determined, application specific value,
0			with <pre>pwm_autoscale=0.</pre> Only afterwards, set
			<pre>pwm_autoscale=1. Enable stealthChop when finished.</pre>
			BIAMA 056 0 :II I: II I: I
			PWM_OFS = 0 will disable scaling down motor current
			below a motor specific lower measurement threshold. This setting should only be used under certain
			,
			conditions, i.e. when the power supply voltage can vary up and down by a factor of two or more. It prevents
			the motor going out of regulation, but it also prevents
			power down below the regulation limit.
			power down below the regulation time.
			PWM_OFS > 0 allows automatic scaling to low PWM duty
			cycles even below the lower regulation threshold. This
			allows low (standstill) current settings based on the
			actual (hold) current scale (register IHOLD_IRUN).

5.3.5 DRV_STATUS - stallGuard2 Value and Driver Error Flags

0x6F: DRV_STATUS - STALLGUARD2 VALUE AND DRIVER ERROR FLAGS			
Bit	Name	Function	Comment
31	stst	standstill indicator	This flag indicates motor stand still in each operation mode. This occurs 2^20 clocks after the last step pulse.
30	olb	open load indicator phase B	1: Open load detected on phase A or B. Hint: This is just an informative flag. The driver takes no action
29	ola	open load indicator phase A	upon it. False detection may occur in fast motion and standstill. Check during slow motion, only.
28	s2gb	short to ground indicator phase B	1: Short to GND detected on phase A or B. The driver becomes disabled. The flags stay active, until the driver is disabled by
27	s2ga	short to ground indicator phase A	software (TOFF=0) or by the ENN input.
26	otpw	overtemperature pre- warning flag	1: Overtemperature pre-warning threshold is exceeded. The overtemperature pre-warning flag is common for both bridges.
25	ot	overtemperature flag	1: Overtemperature limit has been reached. Drivers become disabled until <i>otpw</i> is also cleared due to cooling down of the IC.
24	stallGuard	stallGuard2 status	The overtemperature flag is common for both bridges. 1: Motor stall detected (SG_RESULT=0) or dcStep stall in dcStep mode.
23 22 21	-	reserved	Ignore these bits
20 19 18 17 16	CS ACTUAL	actual motor current / smart energy current	Actual current control scaling, for monitoring smart energy current scaling controlled via settings in register COOLCONF, or for monitoring the function of the automatic current scaling.
15	fsactive	full step active indicator	1: Indicates that the driver has switched to fullstep as defined by chopper mode settings and velocity thresholds.
14	stealth	stealthChop indicator	1: Driver operates in stealthChop mode
13	s2vsb	short to supply indicator phase B	1: Short to supply detected on phase A or B. The driver becomes disabled. The flags stay active, until the driver is
12	s2vsa	short to supply indicator phase A	disabled by software (<i>TOFF</i> =0) or by the ENN input. Sense resistor voltage drop is included in the measurement!
11	-	reserved	Ignore this bit
10	-	reserved	Ignore this bit
9	SG_	stallGuard2 result	Mechanical load measurement:
8	RESULT	respectively PWM on	The stallGuard2 result gives a means to measure mechanical motor load. A higher value means lower mechanical load. A
7		time for coil A in stand	value of 0 signals highest load. With optimum SGT setting,
6		still for motor	this is an indicator for a motor stall. The stall detection
5		temperature detection	compares SG_RESULT to 0 in order to detect a stall. SG_RESULT
4			is used as a base for coolStep operation, by comparing it to a
3			programmable upper and a lower limit. It is not applicable in stealthChop mode.
1			stallGuard2 works best with microstep operation or dcStep.
0			Temperature measurement: In standstill, no stallGuard2 result can be obtained. SG_RESULT shows the chopper on-time for motor coil A instead. Move the motor to a determined microstep position at a certain current setting to get a rough estimation of motor temperature by a reading the chopper on-time. As the motor heats up, its coil