Chapter # 5: Arithmetic Circuits

Contemporary Logic Design

Randy H. Katz University of California, Berkeley

June 1993

Motivation

Arithmetic circuits are excellent examples of comb. logic design

Time vs. Space Trade-offs
 Doing things fast requires more logic and thus more space

Example: carry lookahead logic

• Arithmetic Logic Units

Critical component of processor datapath

Inner-most "loop" of most computer instructions

Chapter Overview

- Binary Number Representation
 Sign & Magnitude, Ones Complement, Twos Complement
- Binary Addition
 Full Adder Revisited
- ALU Design
- BCD Circuits
- Combinational Multiplier Circuit
- Design Case Study: 8 Bit Multiplier

Representation of Negative Numbers

Representation of positive numbers same in most systems

Major differences are in how negative numbers are represented

Three major schemes:

sign and magnitude ones complement twos complement

Assumptions:

we'll assume a 4 bit machine word

16 different values can be represented
roughly half are positive, half are negative

Special Powers of 2

- 2¹⁰ (1024) is Kilo, denoted "K"
- 2²⁰ (1,048,576) is Mega, denoted "M"
- 2³⁰ (1,073, 741,824)is Giga, denoted "G"

http://myweb.utaipei.edu.tw/~cyang/class/Digital_System/ch_01.pdf

Sign and Magnitude Representation

High order bit is sign: 0 = positive (or zero), 1 = negative

Three low order bits is the magnitude: 0 (000) thru 7 (111)

Number range for n bits = +/-2 -1

Representations for 0

Sign and Magnitude

Cumbersome addition/subtraction

Must compare magnitudes to determine sign of result

Ones Complement

N is positive number, then N is its negative 1's complement

$$\begin{array}{c} \color{red} - \color{black} n \\ \color{red} N = (2 - 1) - N \end{array}$$

Example: 1's complement of 7

$$-1 = 00001$$

1111

simply compute bit wise complement

0111 -> 1000

Shortcut method:

Ones Complement

Subtraction implemented by addition & 1's complement

Still two representations of 0: This causes some problems

Some complexities in addition

Number Representations

Twos Complement

like 1's comp except shifted one position clockwise

1 100 = -4

Only one representation for 0

One more negative number than positive number

Twos Complement Numbers

$$N^* = 2^n - N$$

Example: Twos complement of 7

Example: Twos complement of -7

sub
$$-7 = 1001$$

Shortcut method:

Twos complement = bitwise complement + 1

0111 -> **1000** + **1** -> **1001** (representation of **-7**)

1001 -> **0110** + **1** -> **0111** (representation of **7**)

Number Representations

Addition and Subtraction of Numbers

Sign and Magnitude

Addition and Subtraction of Numbers Ones Complement Calculations

4 0100 -4 1011
$$+3$$
 0011 $+(-3)$ 1100
7 0111 -7 10111
End around carry 1000

Addition and Subtraction of Binary Numbers

Ones Complement Calculations

Why does end-around carry work?

Its equivalent to subtracting 2 and adding 1

$$M - N = M + \overline{N} = M + (2^{n} - 1 - N) = (M - N) + 2^{n} - 1$$

$$-M + (-N) = M + N = (2^{n} - M - 1) + (2^{n} - N - 1)$$

$$= 2^{n} + [2^{n} - 1 - (M + N)] - 1$$

M + N < 2

after end around carry:

$$= 2^{n} - 1 - (M + N)$$

this is the correct form for representing -(M + N) in 1's comp!

Addition and Subtraction of Binary Numbers Twos Complement Calculations

If carry-in to sign = carry-out then ignore carry

if carry-in differs from carry-out then overflow

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Addition and Subtraction of Binary Numbers

Twos Complement Calculations

Why can the carry-out be ignored?

-M + N when N > M:

$$M* + N = (2^n - M) + N = 2^n + (N - M)$$

Ignoring carry-out is just like subtracting 2 n

-M + -N where N + M
$$\leq$$
 or = 2^{n-1}

$$-M + (-N) = M* + N* = (2^n - M) + (2^n - N)$$

$$= 2^n - (M + N) + 2^n$$

After ignoring the carry, this is just the right twos compl. representation for -(M + N)!

Overflow Conditions

Add two positive numbers to get a negative number or two negative numbers to get a positive number

1000

1001

<u> 1100</u>

Number Systems

Overflow Conditions

5	0111 0101	-7
3	0011	<u>-2</u>

Overflow Overflow

No overflow No overflow

Overflow when carry in to sign does not equal carry out

RADIX OR BASE:-

The radix or base of a number system is defined as the number of different digits which can occur in each position in the number system.

RADIX POINT:

The generalized form of a decimal point is known as radix point. In any positional number system the radix point divides the integer and fractional part.

N_r = [Integer part • Fractional part]

- http://astorissa.in/Docs/Study_Materials/Electrical/4th_Semester/DIGITAL_ELECTRONICS.pdf
- General form of base-r system

$$a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + \dots + a_2 \cdot r^2 + a_1 \cdot r^1 + a_0 + a_{-1} \cdot r^{-1} + a_{-2} \cdot r^{-2} + \dots + a_{-m} \cdot r^{-m}$$

Coefficient: $a_j = 0$ to r - 1

Example: Base-2 number

$$(11010.11)_2 = (26.75)_{10}$$

$$=1\times2^{4}+1\times2^{3}+0\times2^{2}+1\times2^{1}+0\times2^{0}+1\times2^{-1}+1\times2^{-2}$$

Example: Base-5 number

$$(4021.2)_5$$

$$= 4 \times 5^{3} + 0 \times 5^{2} + 2 \times 5^{1} + 1 \times 5^{0} + 2 \times 5^{-1} = (511.5)_{10}$$

Example: Base-8 number

$$(127.4)_{8}$$

$$= 1 \times 8^{3} + 2 \times 8^{2} + 1 \times 8^{1} + 7 \times 8^{0} + 4 \times 8^{-1} = (87.5)_{10}$$

Example: Base-16 number

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

http://myweb.utaipei.edu.tw/~cyang/class/Digital_System/ch_01.pdf

Half Adder

With twos complement numbers, addition is sufficient

	Ai	Bi	Sum	Carry
-	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

Ai Bi	0	1
0	0	1
1	1	0

Half-adder Schematic

Full Adder

Cascaded Multi-bit Adder

usually interested in adding more than two bits this motivates the need for the full adder

Full Adder

_ A _	В	CI	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	(A B				
C	1/	00	01	11	10
S	0	0	1	0	1
3	1	1	0	1	0

S = CI xor A xor B

$$\textbf{CO} = \textbf{B} \ \textbf{CI} \ + \ \textbf{A} \ \textbf{CI} \ + \ \textbf{A} \ \textbf{B} = \textbf{CI} \ (\textbf{A} + \textbf{B}) + \textbf{A} \ \textbf{B}$$

Full Adder/Half Adder

Standard Approach: 6 Gates

Alternative Implementation: 5 Gates

Adder/Subtractor

$$A - B = A + (-B) = A + \overline{B} + 1$$

Overflow

Carry Lookahead Circuits

Critical delay: the propagation of carry from low to high order stages

n R.H. Katz Transparency No. 5-26

Carry Lookahead Circuits

Critical delay: the propagation of carry from low to high order stages

T0: Inputs to the adder are valid

T2: Stage 0 carry out (C1)

T4: Stage 1 carry out (C2)

T6: Stage 2 carry out (C3)

T8: Stage 3 carry out (C4)

2 delays to compute sum

but last carry not ready until 6 delays later

Carry Lookahead Logic

Carry Generate Gi = Ai Bi

must generate carry when A = B = 1

Carry Propagate Pi = Ai xor Bi carry in will equal carry out here

Sum and Carry can be reexpressed in terms of generate/propagate:

Si = Ai xor Bi xor Ci = Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)

= Ai Bi + Ci (Ai xor Bi)

= Gi + Ci Pi

Carry Lookahead Logic

Reexpress the carry logic as follows:

$$C1 = G0 + P0 \ C0$$

Each of the carry equations can be implemented in a two-level logic network

Variables are the adder inputs and carry in to stage 0:

Carry Lookahead Implementation

Adder with Propagate and Generate Outputs

Increasingly complex logic

Carry Lookahead Logic

Cascaded Carry Lookahead

Carry lookahead logic generates individual carries

sums computed much faster

Carry Lookahead Logic

Cascaded Carry Lookahead

4 bit adders with internal carry lookahead

second level carry lookahead unit, extends lookahead to 16 bits

ahead logic. Each 4-bit adder computes its own "group" carry propagate and generate: the group propagate is the AND of P_3 , P_2 , P_1 , P_0 , while the group generate is the expression $G_3 + G_2P_3 + G_1P_3P_2 + G_0P_3P_2P_1$.

Calculating C1-4, C5-8, C9-12 etc. in each block

How each block computes 'group' G and P, case

by case.

ahead logic. Each 4-bit adder computes its own "group" carry propagate and generate: the group propagate is the AND of P_3 , P_2 , P_1 , P_0 , while the group generate is the expression $G_3 + G_2P_3 + G_1P_3P_2 + G_0P_3P_2P_1$.

Carry-lookahead adder with cascaded carry-lookahead logic

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0Carry-lookahead adder P = P3 P2 P1 P04 four-bit adders with internal carry lookahead second level carry lookahead unit extends lookahead to 16 bits A[15-12B[15-12]] A[11-8] B[11-8] B[7-4] A[3-0] B[3-0] A[7-4] 4-bit Adder 4-bit Adder 4-bit Adder 4-bit Adder S[7-4] S[11-8] S[15-12] S[3-0]@4 **@**2 **@**3 **a**2 **@**3 **@**2 **6**3 **a**2 **@**3 **@**5 **6**5 **@**4 P3 G3 G2 G1 G0 Lookahead Carry Unit P3-0 G3-0 @3@5 C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0V - Combinational Logic Case Studies © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Counting delays

Carry Lookahead Logic Cascaded Carry Lookahead

→ S₀@2

→ S₁@⁴

→ S₂@4

→ S₃ @4

→ Ç₄ @3

C₁@3

C₂@3

 $C_3@3$

Networks for Binary Addition

Carry Select Adder

Redundant hardware to make carry calculation go faster

compute the high order sums in parallel

one addition assumes carry in = 0

the other assumes carry in = 1

Sample ALU

M = 0, Logical Bitwise Operations

S1	S0	Function	Comment
0	0	Fi = Ai	Input Ai transferred to output
0	1	Fi = not Ai	Complement of Ai transferred to output
1	0	Fi = Ai xor Bi	Compute XOR of Ai, Bi
1	1	Fi = Ai xnor Bi	Compute XNOR of Ai, Bi
M =	= 1, C	0 = 0, Arithmetic Operation	ns
0	0	F = A	Input A passed to output
0	1	F = not A	Complement of A passed to output
1	0	F = A plus B	Sum of A and B
1	1	F = (not A) plus B	Sum of B and complement of A
M =	: 1, C	0 = 1, Arithmetic Operation	าร
0	0	F = A plus 1	Increment A
0	1	F = (not A) plus 1	Twos complement of A
1	0	F = A plus B plus 1	Increment sum of A and B
1	1	F = (not A) plus B plus 1	B minus A

Logical and Arithmetic Operations

Not all operations appear useful, but "fall out" of internal logic

Arithmetic Lo	Arithmetic Logic Unit Design				Contemporary Log Arithmetic Circuit					
Sample ALU			<u>S1</u>	S0	Ci	Ai	Bi	Fi	Ci+1	_
			0	0	X	0	X	0	X	
•					_ <u>X</u> _	1	<u>X</u>	.	. <u>. X</u>	- •
Traditions	al Design Approach		0	1	X	0	X	1	X	
Haditiona	ii besigii Appioacii				X	1	X	┨ <u>0</u>	<u>X</u> _	-
			1	0	X	0	0	0		
Truth T	able & Espresso				X	0	1	1 1	X	
math it	abic & Espicsso				X	1	0	1	X	
					X	1 _	1	9-	<u>X</u>	
	<u>:</u>		1	1	X	0	0		X	
	.i 6 .o 2				X	0	1		X X	
00	ilb m s1 s0 ci ai bi				X	1	0	0		
23 product terms:	ob fi co	1	0	0	0	<u> </u>	X	0	<u>х</u> х	
	.p 23	1	U	U	0	4	_ X	4	_ X	
	111101 10		0	1	<u>v</u> -	0	<u>^</u>	 -	^	•
	110111 10		U	•	0	1	X	١ ۵	<u> </u>	
Equivalent to	1-010010			0	<u>v</u> -	0	<u>^</u>	┨╴╴┇╴	-^- -	
25 gates	1-1110 10		•	U	0	0	1	1	0	
20 gatos	10010-10				0	1	'n	;	0	
	10111-10				0	1	1	ا أ	1	
	-1000110		1	<u>-</u>		0	0			
	010-0110 -1101110		•	•	0	0	1	ا أ	1	
	011-1110				0	1	0	0	0	
	100010				0	1	1	1	0	
	0-1-0010	1	0	0	1	0	X	1	0	
	0010 10				1	1	_ X	0	1	
	0-0-10 10		0	1	1	0	X	T - 0 -	1	
	-0100-10				1	1	X	1	0	
	001-0-10		1	0	1	0	0	 	0	
	-0001-10				1	0	1	0	1	
	000-1-10				1	1	0	0	1	
	-1-1-1 01 1-01 01				_ 1	1	_ 1	1 _ 1 _	1_	
	0-11 01	-	1	1	1	0	0	0	1	
	110-01				1	0	1	1	1	
	011-01				1	1	0	1	0	
	.e				1_	11	1	<u>0</u> _	1_	
					R.H. Ka	atz Tra	nspare	hcy No.	5-40	
							-	-		

Sample ALU

Multilevel Implementation

```
.model alu.espresso
inputs m s1 s0 ci ai bi
outputs fi co
names m ci co [30][33][35]fi
110---1
-1-11-1
--01-11
--00-01
names m ci [30][33]co
-1-11
--111
111-1
names s0 ai [30]
011
101
names m s1 bi [33]
1111
names s1 bi [35]
0 - 1
-01
end
```


12 Gates

Sample ALU

Clever Multi-level Logic Implementation

8 Gates (but 3 are XOR)

S1 = 0 blocks Bi Happens when operations involve Ai only

Same is true for Ci when M = 0

Addition happens when M = 1

Bi, Ci to Xor gates X2, X3

S0 = 0, X1 passes A

S0 = 1, X1 passes A

Arithmetic Mode:

Or gate inputs are Ai Ci and Bi (Ai xor Ci)

Logic Mode:

Cascaded XORs form output from Ai and Bi

Arithmetic Logic Unit Design	Contemporary Logic Design Arithmetic Circuits							esign
	M	S1	S0	Ci	Ai	Bi	Fi Ci+1	_ /
	0	0	0	X	0	Х	0 X	\
				<u>X</u> .	1 -	. <u>X</u>	<u>1</u> <u>X</u>	
		0	1	X	0	X	1 X	
first-level gates		1	0	<u>X</u>	<u>L</u> -	<u>X</u>	<u>0</u> <u>X</u>	
use S0 to complement Ai		l '	Ů	X	0	1		
S0 = 0 causes gate X1 to pass Ai				X	1	0	1 X 1 X	
S0 = 0 causes gate X1 to pass Ai'				χ	1	1	1 X -	
use S1 to block Bi		1	1	X	0	0	1 X	
	c 0			X	0	1	0 X 0 X	
				X	1	0	0 X	
(don't want Bi for operations with just A	/		0	0 0	<u>1</u> 0	1 X	1 X 0 X	
S1 = 1 causes gate A1 to pass Bi	-	0	0	0	1	X	$\begin{bmatrix} 0 & \hat{X} \\ -1 & \hat{X} \end{bmatrix}$	
use M to block Ci		0	 1	9	' 0	.	1 - 1 X	•
M = 0 causes gate A2 to make Ci go forward a	SU	ŭ	i i	0	1	X	0 X	
(don't want Ci for logical operations)		1	0	0	0	0]	
M = 1 causes gate A2 to pass Ci				0	0	1	1 0	
.,				0	1	0	1 0	
other gates				0	1	1	01_	
for M=0 (logical operations, Ci is ignored)		1	1	0	0	0		
Fi = S1 Bi xor (S0 xor Ai)				0	0	1	0 1	
= S1'S0' (Ai) + S1'S0 (Ai') +				0	1	1	1 0	
S1 S0' (Ai Bi' + Ai' Bi) + S1 S0 (Ai' Bi' + Ai Bi)	1	0	0	1	0	X	1 0	
for M=1 (arithmetic operations)		ŭ	ŭ	1	1	X	0 1	
Fi = S1 Bi xor ((S0 xor Ai) xor Ci) =		0	1	1	0	X	0 1	
Ci+1 = Ci (S0 xor Ai) + S1 Bi ((S0 xor Ai) xor Ci) =				1_	1	X	1 0	
		1	0	1	0	0	1 0	
just a full adder with inputs S0 xor Ai, S1 Bi, and Ci				1	0	1	0 1	
				1	1	0		
		- <u>-</u>	 1	1	1	1	1 1 1 -	
		l '	'	1	0	U 1		
				1	1	0	1 0	
				1	1	1	0 1	
			ณ โ	t.н. ка	tz Tra	nspare	ncy No. 5-43	

Contemporary Logic Design

Sample ALU – clever multi-level implement: Sample ALU – clever multi-level implement

M = 0, Logical Bitwise Operations

 S1
 S0
 Function
 Comment

 0
 0
 Fi = Ai
 Input Ai transferred to output

 0
 1
 Fi = not Ai
 Complement of Ai transferred to output

 1
 0
 Fi = Ai xor Bi
 Compute XOR of Ai, Bi

 1
 1
 Fi = Ai xnor Bi
 Compute XNOR of Ai, Bi

M = 1, C0 = 0, Arithmetic Operations

0 F = A Input A passed to output
1 F = not A Complement of A passed to output

0 F = A plus B Sum of A and B
1 F = (not A) plus B Sum of B and complement of A

M = 1, C0 = 1, Arithmetic Operations

Increment A
Twos complement of A
Increment sum of A and B

0 F = A plus B plus 1 Increment 1 F = (not A) plus B plus 1 B minus A

first-level gates

use S0 to complement Ai

S0 = 0 causes gate X1 to pass Ai

S0 = 1 causes gate X1 to pass Ai'

use S1 to block Bi

S1 = 0 causes gate A1 to make Bi go forward as 0 (don't want Bi for operations with just A)

S1 = 1 causes gate A1 to pass Bi

use M to block Ci

M = 0 causes gate A2 to make Ci go forward as 0

(don't want Ci for logical operations)

M = 1 causes gate A2 to pass Ci

other gates

for M=0 (logical operations, Ci is ignored)

Fi = S1 Bi xor (S0 xor Ai)

= S1'S0' (Ai) + S1'S0 (Ai') +

S1 S0' (Ai Bi' + Ai' Bi) + S1 S0 (Ai' Bi' + Ai Bi)

for M=1 (arithmetic operations)

Fi = S1 Bi xor ((S0 xor Ai) xor Ci) =

Ci+1 = Ci (S0 xor Ai) + S1 Bi ((S0 xor Ai) xor Ci) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

ր R.H. Katz Transparency No. 5-44

74181 TTL ALU

Selection			n	M = 1	M = 0, Arithmetic Functions			
S3	S2	S1	S0	Logic Function	Cn = 0	Cn = 1		
0	0	0	0	F = not A	F = A minus 1	F = A		
0	0	0	1	F = A nand B	F = A B minus 1	F = A B		
0	0	1	0	F = (not A) + B	F = A (not B) minus 1	F = A (not B)		
0	0	1	1	F = 1	F = minus 1	F = zero		
0	1	0	0	F = A nor B	F = A plus (A + not B)	F = A plus (A + not B) plus 1		
0	1	0	1	F = not B	F = A B plus (A + not B)	F = A B plus (A + not B) plus 1		
0	1	1	0	F = A xnor B	F = A minus B minus 1	F = (A + not B) plus 1		
0	1	1	1	F = A + not B	F = A + not B	F = A minus B		
1	0	0	0	F = (not A) B	F = A plus (A + B)	F = (A + not B) plus 1		
1	0	0	1	F = A xor B	F = A plus B	F = A plus (A + B) plus 1		
1	0	1	0	F = B	F = A (not B) plus (A + B)	F = A (not B) plus (A + B) plus 1		
1	0	1	1	F = A + B	F = (A + B)	F = (A + B) plus 1		
1	1	0	0	F = 0	F = A	F = A plus A plus 1		
1	1	0	1	F = A (not B)	F = A B plus A	F = AB plus A plus 1		
1	1	1	0	F = A B	F= A (not B) plus A	F = A (not B) plus A plus 1		
1	1	1	1	F = A	F = A	F = A plus 1		

74181 TTL ALU

Note that the sense of the carry in and out are OPPOSITE from the input bits

Fortunately, carry lookahead generator maintains the correct sense of the signals

16-bit ALU with Carry Lookahead

BCD Addition

BCD Number Representation

Decimal digits 0 thru 9 represented as 0000 thru 1001 in binary

Addition:

$$5 = 0101$$

$$1000 = 8$$

Solution: add 6 (0110) if sum exceeds 9!

$$5 = 0101$$

$$8 = 1000$$

1101

10000 = 16 in binary

$$6\,=\,0110$$

$$6 = 0110$$

$$10011 = 13 \text{ in BCD}$$

BCD Addition

Adder Design

Add 0110 to sum whenever it exceeds 1001 (11XX or 1X1X)

Basic Concept

product of 24-bit numbers is an 8-bit number

[⊦] Contemporary ∣	Logic	Desi	ign
Arithmetic Circ	uits		

Partial Product Accumulation

				A 3	A2	A 1	A 0
			_	В3	B2	B1	В0
				A3 B0	A2 B0	A1 B0	A0 B0
			A3 B1	A2 B1	A1 B1	A0 B1	
		A3 B2	A2 B2	A1 B2	A0 B2		
	A3 B3	A2 B3	A1 B3	A0 B3			
S7	S6	S 5	S4	S 3	S2	S 1	S0

Partial Product Accumulation

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates:

Contemporary Logic Design Arithmetic Circuits

Another Representation of the Circuit

Building block: full adder + and

Partial Product Accumulation

				А3	A2	A 1	A0
			_	В3	B2	B1	В0
				A2 B0	A2 B0	A1 B0	A0 B0
			A3 B1	A2 B1	A1 B1	A0 B1	
		A3 B2	A2 B2	A1 B2	A0 B2		
	A3 B3	A2 B3	A1 B3	A0 B3			
S7	S6	S 5	S4	S3	S2	S 1	SO

4 x 4 array of building blocks

ր R.H. Katz Transparency No. 5-53

Contemporary Logic Design Arithmetic Circuits Partial Product Accumulation

(a) Basic building block

TTL Multipliers

Two chip implementation of 4 x 4 multipler

Problem Decomposition

How to implement 8 \times 8 multiply in terms of 4 \times 4 multiplies?

8 bit products

P15-12

P3-0

$$P3-0 = PP0 \ 3-0$$

$$P11-8 = PP1_{7-4}^{+} PP2_{7-4}^{+} PP3_{3-0}^{+} + Carry-in$$

1000 0100 0101 1000

1111 0010

PP3

Calculation of Partial Products

Three-At-A-Time Adder

Clever use of the Carry Inputs

Sum A[3-0], B[3-0], C[3-0]:

Two Level Full Adder Circuit

Note: Carry lookahead schemes also possible:

Three-At-A-Time Adder with TTL Components

Full Adders (2 per package)

Standard ALU configured as 4-bit cascaded adder (with internal carry lookahead)

Note the off-set in the outputs

Package Count and Performance

474284/74285 pairs = 8 packages 474183, 374181, 174182 = 8 packages 16 packages total

Partial product calculation (74284/285) = 40 ns typ, 60 ns max Intermediate sums (74183) = 9 ns/20ns = 15 ns average, 33 ns max Second stage sums w/carry lookahead

74LS181: carry **G** and **P** = **20** ns typ, **30** ns max

74182: second level carries = 13 ns typ, 22 ns max

74LS181: formations of sums = 15 ns typ, 26 ns max

103 ns typ, 171 ns max

Chapter Review

We have covered:

- Binary Number Representation
 positive numbers the same
 difference is in how negative numbers are represented
 twos complement easiest to handle:
 one representation for zero, slightly
 complicated complementation, simple addition
- Binary Networks for Additions basic HA, FA carry lookahead logic
- ALU Design specification and implementation
- BCD Adders
 Simple extension of binary adders
- Multipliers
 4 x 4 multiplier: partial product accumulation extension to 8 x 8 case