Surfing: Iterative Optimization Over Incrementally Trained Deep Networks

Ganlin Song, Zhou Fan, John Lafferty Yale University

Motivation

We minimize

$$f_{\theta}(x) = \frac{1}{2} ||AG_{\theta}(x) - Ay||^2$$

 $A \in \mathbb{R}^{m \times n}$ matrix, $y \in \mathbb{R}^n$ the true signal $(m \ll n)$, G_{θ} generative network.

Goal: Find the minimizer \hat{x} and recover y by $G_{\theta}(\hat{x})$.

PROBLEM: $f_{\theta}(x)$ is usually non-convex; gradient descent cannot find global minimum.

OUR RESULTS:

- Propose a novel algorithm that outperforms gradient descent
- Theoretical analysis that ensures convergence under certain conditions

Surfing Algorithm

Landscape of $f_{\theta}(x)$ is "nice" at initilization and slowly becomes nonconvex and "wavy" as weights θ of G_{θ} are trained

Main idea: Use intermediate networks from training process and track the global optimum

Algorithm:

Given a sequence of networks G_0, G_1, \ldots, G_T , write

$$f_t(x) = \frac{1}{2} ||AG_t(x) - Ay||^2, \quad \forall t \in [T].$$

Optimize f_0 to obtain the minimizer x_0 , then apply gradient descent on f_t for t = 1, 2, ..., T iteratively, initializing at the minimizer x_{t-1} .

Theoretical Results

Consider G with ReLU activation,

$$G(x,\theta) = V\sigma(W_d \dots \sigma(W_2\sigma(W_1x+b_1)+b_2)\dots+b_d).$$

1. If θ_0 is Gaussian and G is sufficiently expansive, then all critical points of $f_0(x)$ belong to a small neighborhood around 0 (with high probability). Builds on Hand and Voroninski (2017).

Proof technique:

- G is piecewise linear, gradient of f_0 has explicit expression
- Concentration bounds give $\nabla f_0(x) = 2^{-d}x + O(\varepsilon(1+||x||))$
- Find descent direction v such that $D_v f_0(x) < 0$ for all $||x|| > O(\varepsilon)$
- 2. Consider a network flow $G^s(x) = G(x, \theta(s))$ for $s \in [0, S]$ and corresponding objective $f^s(x) = f(x, \theta(s))$. If the weights of G^s are bounded and the global minimizer of f^s is unique and Lipschitz-continuous, then the projected-gradient surfing can keep track of the minimizer with a small time discretization step δ of G^s .

Projected-gradient surfing:

- Identify all the linear pieces $\{P_1,...,P_l\}$ for current G_t that could contain global minimizer of f_t
- Apply projected gradient descent $x \leftarrow \operatorname{Proj}_{P}(x \eta \nabla f_{t}(x))$ for each P_{i}

Experiments

1. Inverting the generator: $f(x) = \frac{1}{2} ||G(x) - G(x_*)||^2$

Compared with regular gradient descent (ADAM), surfing has

- Higher success rate
- Comparable computational cost

Figure 1: Distribution of distance between solution \hat{x} and the truth x_*

Input dimension		5	10	20	5	10	20	5	10	20
	Model	DCGAN			WGAN			WGAN-GP		
% successful	Regular Adam	48.3	68.7	80.0	56.0	84.3	90.3	47.0	64.7	64.7
	Surfing	78.3	98.7	96.3	81.7	97.3	99.3	83.7	95.7	97.3
# iterations	Regular Adam	618	4560	18937	464	1227	3702	463	1915	15445
	Surfing	741	6514	33294	547	1450	4986	564	2394	25991

Table 1: Percentages of solutions \hat{x} satisfying $||\hat{x} - x_*|| < 0.01$

2. Compressed sensing, y in the range of G: $f(x) = \frac{1}{2} ||AG(x) - AG(x_*)||^2$ See Bora, Jalal, Price, & Dimakis (2017)

Surfing finds global optimum more consistently than direct GD

Figure 2: Compressed sensing setting for exact recovery

3. Compressed sensing, y from test data: $f(x) = \frac{1}{2} ||AG(x) - Ay||^2$ Surfing gives favorable reconstruction of signal y

Figure 3: Compressed sensing setting for approximation (rate-distortion)

The reconstruction error is $\sqrt{\frac{1}{n}||G(\hat{x}) - y||^2}$.

Future Work

- 1. Bridging gap between practice and theory—we use projected-gradient surfing only in our analysis.
- 2. Objective function with trained network often does have a nice land-scape. Why?
- 3. Can we constrain or regularize the training process of *G* so that simple gradient descent is guaranteed to succeed?
- 4. Can the idea behind surfing be applied to other optimization problems in machine learning?