Thermoelectric Properties in the TiO₂/SnO₂ System

F. Dynys, A. Sayir, NASA Glenn Research Center, USA; A. Sehirlioglu*, Case Western Reserve University, USA; M. Berger, Ecole des Mines, France

Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 °C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 \[\forall V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

Thermoelectric Properties in the TiO₂/SnO₂ System

Fred Dynys, Ali Sayir, Marie-Hélène Berger Alp Sehirlioglu, NASA-Glenn USA NASA-Glenn USA

Mines-Paris France
CWRU USA

NASA-IVHM

AFOSR (EOARD Grant # 073031)

NASA-Hypersonics (NNX08AB34A)

Heat to Electric Power Generation

Active Cooling System Aluminum Outer Cooling Tubes Pressure Heat Source General Purpose Gas Management Relief Device Support Heat Source (GPHS) Assembly Midspan Heat RTG Mounting Source Support

(Si-Ge) Unicouple

GPHS-RTG

Objective: High Conversion Efficiency

• Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power

Waste Heat is a under utilized energy resource

Multi-Foil

Insulation

Flange

- U.S.-energy consumption ~29 tera-kWh (10¹²) Barrels of Oil – 170 giga-barrels (10^9)
- World-energy consumption \sim 120 tera- kWh (10¹²)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission
- High temperature

- Oxidizing environment -Low cost

-Low mass

Nanotechnology

Figure of Merit

(Michigan

State)

Skutterudites (Fleurial)

Dresselhaus

Superlattices

(RTI)

Bi₂Te₃ alloy

FIGURE OF MERIT (ZT)max

0.5

S - Seebeck coefficient

- σ electrical conductivity
- **κ**− thermal conductivity

Phonon Scattering:

- Atom disorder
- Alloying
- •Anharmonic vibrations
- Superlattices
- Crystal Structures
- •Nano-technology

Fleurial/Chen – JPL/MIT

■ PbTe alloy

Si_{0.8}Ge_{0.2} alloy

Spinodal Decomposition

Desired Features

- •~50 nm grains
- •High Temperature Stability
- •Wide Composition Range
- •Large ∆ Mass

Transparent Conducting Oxides

Insulator/Semiconductor/Conductor

- •Large Bandgap 2.4-3.8 ev
- •N-type –Degenerate Semiconductor

Fig. 10. TEM image of $(Ti_{0.5}/Sn_{0.5})O_2$ ceramics annealed for 48 h.

Shultz & Stubican, JACS, 53, 1970

Electrical Conductivity

тсо	σ (S/m) @ RT		
ITO	8x10 ⁵		
In_2O_3	1x10 ⁶		
SnO ₂	2.5x10 ⁵		
ZnO	8.3x10 ⁵		
ZnO:Al	7.7x10 ⁴		
CdSnO ₂	7.7x10 ⁵		
CdO:In	1.7x10 ⁶		

ZnO:Al ZT~0.6 @ 1000 °C

Experimental

 SnO_2

Purity: 99.9%

APS: 50 nm SSA: $14.2 \text{ m}^2/\text{g}$

TiO₂ Rutile Purity: 99.99 %

APS: 20 nm,

 $SSA: > 30 \text{ m}^2/\text{g}$

Dopants CoO,MnO₂ Ta_2O_5 In_2O_3

 TiO_2/SnO_2 50/50 mol % 75/25 mol % 25/75 mol %

Powder Mixing Compaction Die Press

Reactive Sintering 1250-1550 °C

Anneal 72 Hrs

Thermal Conductivity

- Laser Flash Method- Thermal Diffusivity
- Standard
- Specific Heat- C_p Laser Flash
- •Thermal Conductivity ($K = \alpha \rho C_p$)

Seebeck/Resistivity

ΔT 0-50 °C/Furnace RT-1000 °C

Sintering

50/50 TiO₂/SnO₂

 $75/25 \text{ TiO}_2/\text{SnO}_2$

SnO₂ Sintering-Inhibited

- •Surface Diffusion <1100 °C
- •Evaporation >1100 °C $SnO_2 \rightarrow SnO + \frac{1}{2}O_{2(g)}$

Sintering Aids-SnO₂

•MnO, CoO, CuO, ZnO

$$CoO \rightarrow Co_{Ti.Sn}^{"} + V_O^{\bullet \bullet}$$

50/50 TiO₂/SnO₂

 $Ta_2O_5 \& In_2O_3$ Ineffective Sintering Aids

$$Ta_2O_5 \rightarrow 2Ta_{Ti,Sn}^{\bullet} + 2e' + \frac{1}{2}O_2$$

 $In_2O_3 \rightarrow 2In_{Ti,Sn}' + 2V_O^{\bullet}$

Thermal Conductivity

Compositions

1% MnO-50 TiO₂
1% CoO-50 TiO₂
1% MnO-75 TiO₂
1% CoO-75 TiO₂
1% MnO-25 TiO₂
1% CoO-25TiO₂
1%Ta₂O₅/0.5%
CoO-25 TiO₂

- •Compositions exhibit low $\kappa 1.7$ to 6.8 W/mK
- •Observe no dependence on composition or post treatments
- •Spinodal Decomposition κ reduction?
- •Best ZT ~ 0.05

Electrical Conductivity

75/25 TiO₂/SnO₂

- •Ta₂O₅ & Nb₂O₅ Increases σ $M_2O_5 = 2M_{Ti,Sn}^{\bullet} + 2e' + \frac{1}{2}O_2 + 4O_0^{X}$
- •No further σ increase above 2% dopant.
- •In₂O₃, MnO & CoO No σ increase

Activation Energy

0.0		2.4 2.0	Undoped	0.97 ev	1% Nb ₂ O ₅	0.25 ev
1000/T (K ⁻¹)		0.5% Ta ₂ O ₅	0.49 ev	4% Nb ₂ O ₅	0.20 ev	
$T = \frac{S^2 \sigma}{\kappa} T$ σ to low	1% Ta ₂ O ₅	0.22 ev	1% In ₂ O ₃	0.99 ev		
	2% Ta ₂ O ₅	0.30 ev	1% CoO	1.6 ev		
		4% Ta ₂ O ₅	0.26 ev	1% MnO	7.9 ev	

Seebeck Coefficient

 $75/25 \text{ TiO}_2/\text{SnO}_2$

- •N-type
- •Large Seebeck coefficients at low σ
- •Increase Ta₂O₅ conc. reduces Seebeck coefficient
- •Nb₂O₅ doping most effective in Seebeck reduction

Semiconductor

•Improve electrical conductivity by forming oxygen deficient material (Ti_xSn_{1-x})O_{2-y}

•Control the oxygen stoichiometry to increase σ and maintain a good Seebeck coefficient?

Effects of reducing conditions

Mechanical Robustness

Undoped – 800 °C

4% Ta doped − 900 °C

NASA

Power Factor and Thermal conductivity

$$PF = S^2 \sigma$$

In Summary

- •TiO₂/SnO₂ compositions exhibit low thermal conductivity. Nanostructured phases are observed.
- •Improved electrical conductivity is observed for Ta₂O₅ doped (Ti_{0.75}Sn_{0.25})O_{2-x} reduced at 800 °C.
- Reduction of doped samples retained a low thermal conductivity ($\approx 2W/mK$).
- •800 °C reduction increases the power factor by 1.69 2.76 for 4% Ta₂O₅ doping. However, ZT is <0.1.

Dense specimens with Sn-rich compositions need to be evaluated

Acknowledgements
Thomas Sabo
Raymond Babuder

Electrical Conductivity

- •≥800 °C treatment is Required to enhance σ .
- 4% Ta₂O₅ produces the highest σ .
- Significant effect on low temperature σ .