Listing of Claims

1-38. Canceled

39. (Currently amended) A collection of compounds all of which are represented by formula II:

$$H \xrightarrow{\Gamma} X' = Y \xrightarrow{A} A \xrightarrow{R_0} N \xrightarrow{N} H \xrightarrow{C1} (II)$$

$$R_7 \xrightarrow{R_0} Q \xrightarrow{C2} R_2$$

$$R_7 \xrightarrow{R_0} N \xrightarrow{R_0} R_3$$

$$R_7 \xrightarrow{R_0} Q \xrightarrow{R_0} Q \xrightarrow{C2} R_2$$

$$R_7 \xrightarrow{R_0} Q \xrightarrow{R_0}$$

wherein:

A is O. S. NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 $R_{\theta},\,R_{7},$ and R_{θ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₈Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1: and

n is a positive integer from 1 to 16.

- 40. (Currently amended) A collection of compounds according to claim 39 wherein R and HY are independently selected from lower alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms, or an aryl group[[,]] of up to 12 carbon atoms, optionally substituted by one or more halo, hydroxy, amino, or nitro groups.
- 41. (Previously presented) A collection of compounds according to claim 39, wherein R and HY are independently selected from lower alkyl groups having 1 to 10 carbon atoms optionally substituted by one or more halo, hydroxy, amino, or nitro groups.
- 42. (Previously presented) A collection of compounds according to claim 39, wherein R or HY are independently selected from unsubstituted straight or branched chain alkyl groups, having 1 to 10 carbon atoms.
- (Previously presented) A collection of compounds according to claim 39 wherein R₇ is an electron donating group.
- 44. (Previously presented) A collection of compounds according to claim 39 wherein R_{θ} and R_{θ} are H.
- 45. (Previously presented) A collection of compounds according to claim 39, wherein R_2 and R_3 of are H.
- 46. (Previously presented) A collection of compounds according to claim 45, wherein R_7 is an alkoxy group.
- (Previously presented) A collection of compounds according to claim 39 wherein there is no double bond between C2 and C3.
- (Previously presented) A collection of compounds according to claim 39, wherein -Y-A- is an alkoxy chain.
- (Previously presented) A collection of compounds according to claim 39, wherein X' is either CO or NH.

- 50. Canceled.
- 51. (Currently amended) A collection of compounds all of which are represented by formula VIII:

$$R_{g}$$
 R_{g}
 R_{g

$$R_9$$
 R_7
 R_7

A is O, S, NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =0, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 $R_{\theta},R_{7},$ and R_{θ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R:

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is

greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X'; and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R_2 , R_3 , R_6 , R_7 , R_6 , T, T', T' and values of n and m are independently selected.

52. (Currently amended) A collection of compounds all of which are represented by formula XII:

$$R_{0} \xrightarrow{C1} C3$$

$$R_{0} \xrightarrow{R_{0}} R_{0}$$

A is O, S, NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3;

 $R_6,\,R_7,$ and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn:

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16;

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1:

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X': and

p is a positive integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R₂, R₃, R₆, R₇, R₆, T, T', T' and values of n and m are independently selected; and

 $X'', Y', A', R'_7, R'_2, R'_3, R'_6, R'_9$ are selected from the same possibilities as $X', Y, A, R_7, R_2, R_3, R_6$, and R_9 respectively.

(Currently amended) A collection of compounds all of which are represented by formula XVI:

$$\begin{array}{c} H = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{array}{c|c} & & & & & & & & \\ \hline \begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein:

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_6,R_7,$ and R_6 are independently selected from H, R, OH, OR, halo, nitro, amino, Me_3Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO, NH, S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1:

n is a positive integer from 1 to 16:

m is a positive integer from 1 to 16;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X': and

p is a positive-integer from 1 to 16, where if p is greater than 1, for each repeating unit the meaning of X', Y, A, R₂, R₆, R₅, R₆, T, T', T' and values of n and m are independently selected: and

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, the meanings of T, T', T", T" and values of n, m and q may be independently selected.

 (Currently amended) A collection of compounds all of which are represented by formula III:

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & &$$

-9-

A is O, S, NH, or a single bond;

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 R_{δ} , R_{7} , and R_{δ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn; where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or

Y is a divalent group such that HY = R;

X' is CO. NH. S or O:

be, a functional group;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

n is a positive integer from 1 to 16:

L is a linking group, or a single bond; and

is a solid support.

55. (Currently amended) A collection of compounds all of which are represented by formula VI:

$$R_9$$
 R_9
 R_7
 R_7

A is O, S, NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_{\theta}, R_{7},$ and R_{θ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₉Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R:

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X': and

p is a positive integer from 1-to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_2 , R_3 , R_6 , R_2 , R_9 , T, T', T' and the values of n and m are independently selected.

56. (Currently amended) A collection of compounds all of which are represented by formula X:

$$R_{0}$$

A is O, S, NH, or a single bond;

R₂ and R₃ are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_{\theta}, R_{7},$ and R_{θ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO. NH. S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

is a solid support:

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1-to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R₂, R₆, R₆, R₇, R₆, T, T', T' and the values of n and m are independently selected: and

X'', Y', A', R'_2 , R'_3 , R'_6 , R'_7 and R'_9 are selected from the same possibilities as X', Y, A, R_2 , R_3 , R_6 , R_7 and R_9 .

57. (Currently amended) A collection of compounds all of which are represented by formula XIV:

$$\begin{array}{c|c}
 & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & \\
\hline
 & & & &$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein:

A is O, S, NH, or a single bond;

 R_6, R_7 , and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn;

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO, NH, S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1:

- L is a linking group, or a single bond;
- is a solid support;

n and m are positive integers from 1 to 16, or one of them may be zero:

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1:

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X':

p is a positive integer from 1-to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R₂, R₃, R₅, R₂, R₆, T, T', T' and the values of n and m are independently selected; and

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, for each repeating unit the meaning of T, T', T", T" and the values of n, m and q may be independently selected.

58. (Currently amended) A collection of compounds all of which are represented by formula IV:

A is O, S, NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-CO₂R, C-SO₂R, CO₂R, CO₂R, CO₃ and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_{6},R_{7},$ and R_{9} are independently selected from H, R, OH, OR, halo, nitro, amino, Me $\!s$ n:

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[,]] of up to 12 carbon atoms[[,]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[,]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R:

X' is CO, NH, S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

L is a linking group, or a single bond:

is a solid support;

n is a positive integer from 1 to 16;

R₁₁ is either H or R:

Q is S, O or NH; and

R₁₀ is a nitrogen protecting group.

59. (Previously presented) A collection of compounds according to claim 58, wherein R₁₀ has a carbamate functionality where it binds to the nitrogen atom at the 10 position of a PBD ring structure.

- 60. (Previously presented) A collection of compounds according to claim 58, wherein Q is O, and/or R₁₁ is H.
- 61. (Currently amended) A collection of compounds all of which are represented by formula VII:

$$R_{11}Q$$
 R_{10}
 R_{10}

$$R_{11}Q$$
 R_{10}
 R_{10}

A is O, S, NH, or a single bond:

 R_2 and R_3 are independently selected from: H, R, OH, OR, =0, =CH-R, =CH $_2$, CH $_2$ -CO $_2$ R, CH $_2$ -CO $_2$ H, CH $_2$ -SO $_2$ R, O-SO $_2$ R, CO $_2$ R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_{\theta},\,R_{7},$ and R_{θ} are independently selected from H, R, OH, OR, halo, nitro, amino, Me₃Sn:

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R:

X' is CO, NH, S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

is a solid support:

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X':

p is a positive integer from 1 to 16;

R₁₁ is either H or R;

Q is S, O or NH;

R₁₀ is a nitrogen protecting group; and

where if p is greater than 1, for each repeating unit the meanings of X', Y, A, $R_{ar}R_{ar}$, $R_{ar}R_{ar}$, R_{ar}

62. (Currently amended) A collection of compounds all of which are represented by formula XI:

$$R_{11} \xrightarrow{C_1} \xrightarrow{C_2} R_3$$

$$R_{10} \xrightarrow{R_1} \xrightarrow{R_1} X \xrightarrow{R_2} Y \xrightarrow{R_1} X \xrightarrow{R_1} Y \xrightarrow{R_2} X \xrightarrow{R_1} X \xrightarrow{R_2} X \xrightarrow{R_2$$

A is O, S, NH, or a single bond;

R₂ and R₃ are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_6, R_7,$ and R_9 are independently selected from H, R, OH, OR, halo, nitro, amino, Me $_3\!Sn;$

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group:

Y is a divalent group such that HY = R;

X' is CO, NH, S or O:

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

L is a linking group, or a single bond;

is a solid support:

n and m are positive integers from 1 to 16, or one of them may be zero;

T' is an amino acid residue combinatorial unit, where each T' may be different if m is greater than 1;

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X';

p is a positive integer from 1 to 16:

R11 is either H or R;

Q is S. O or NH:

R₁₀ is a nitrogen protecting group; and

Q', R'₁₀, R'₁₁, have the same definitions as Q, R₁₀, R₁₁, respectively, and where if p is greater than 1, for each repeating unit the meanings of X', Y, A, R₂, R₃, R₆, R₇, R₆, T, T', T'', Q, R₁₀, R₁₁, and the values of n and m are independently selected.

(Currently amended) A collection of compounds all of which are represented by the formula XV:

A is O, S, NH, or a single bond;

R₂ and R₃ are independently selected from: H, R, OH, OR, =O, =CH-R, =CH₂, CH₂-CO₂R, CH₂-CO₂H, CH₂-SO₂R, O-SO₂R, CO₂R, COR, CN and there is optionally a double bond between C1 and C2 or C2 and C3:

 $R_6,\,R_7,\,\text{and}\,\,R_9$ are independently selected from H, R, OH, OR, halo, nitro, amino, Me_xSn:

where R is an alkyl group having 1 to 10 carbon atoms, or an aralkyl group[[.]] of up to 12 carbon atoms[[.]] whereof the alkyl group optionally contains one or more carbon-carbon double or triple bonds, which may form part of a conjugated system, or an aryl group[[.]] of up to 12 carbon atoms; and is optionally substituted by one or more halo, hydroxy, amino, or nitro groups, and optionally contains one or more hetero atoms which may form part of, or be, a functional group;

Y is a divalent group such that HY = R:

X' is CO, NH, S or O;

T is an amino acid residue combinatorial unit, where each T may be different if n is greater than 1;

is a solid support:

n and m are positive integers from 1 to 16, or one of them may be zero;

 Γ' is an amino acid residue combinatorial unit, where each Γ' may be different if m is greater than 1:

T" is an amino acid residue combinatorial unit which provides a site for the attachment of X':

p is a positive integer from 1-to 16, where if p is greater than 1, for each repeating unit, the meaning of X', Y, A, R_a , R_a , R

T" and q are selected from the same possibilities as T and n respectively, and where if p is greater than 1, for each repeating unit the meaning of T, T', T", T" and the values of n, m and q may be independently selected;

R₁₁ is either H or R;

Q is S, O or NH;

R₁₀ is a nitrogen protecting group;

64. Canceled.