Fields

A field is a non-empty set \mathbb{F} with two binary operations satisfying some properties. We usually call the elements of the set 'numbers', but the set could be a set of e.g. furniture. The binary operations we usually call 'addition' and 'multiplication' but they could be any well-defined binary operation. We also usually use a + b and $a \cdot b$ to indicate these operations. In fact instead of $a \cdot b$ we often write ab. Now actually let's define a field:

Definition

A **Field** \mathbb{F} is a non-empty set together with two binary operations, called addition (+) and multiplication (·) such that

- (a) For any $a, b \in \mathbb{F}$ we have $a + b \in \mathbb{F}$, and
- (b) For any $a, b \in \mathbb{F}$ we have $a \cdot b \in \mathbb{F}$ and such that the following properties hold:
- (1) For all $a, b \in \mathbb{F}$ we have a + b = b + a
- (2) For all $a, b, c \in \mathbb{F}$ we have a + (b + c) = (a + b) + c
- (3) There exists a $0 \in \mathbb{F}$ such that for all $a \in \mathbb{F}$ we have a + 0 = a
- (4) For each $a \in \mathbb{F}$ there exists an element $-a \in \mathbb{F}$ such that a + (-a) = 0
- (5) For all $a, b \in \mathbb{F}$ we have $a \cdot b = b \cdot a$
- (6) For all $a, b, c \in \mathbb{F}$ we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (7) There exists a $1 \in \mathbb{F}$, $1 \neq 0$, such that $1 \cdot a = a$ for all $a \in \mathbb{F}$
- (8) For each $a \in \mathbb{F}$, $a \neq 0$, there exists an $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$
- (9) For all $a, b, c \in \mathbb{F}$ we have $a \cdot (b+c) = a \cdot b + a \cdot c$

(+ is closed)

 $(\cdot \text{ is closed})$

(+ is commutative)

(+ is associative)

(zero)

(additive inverses/opposites)

 $(\cdot \text{ is commutative})$

 $(\cdot \text{ is associative})$

(one, identity)

(multiplicative inverses/ reciprocals)

(distributive property)

Example 1

The Rational Numbers

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0 \right\} \text{ with the usual } + \text{ and } \cdot$$

Example 2

The Real Numbers

 \mathbb{R} with the usual + and \cdot

Example 3

The Complex Numbers

Let $\mathbb{C} = \{ a + b \mathbf{i} \mid a, b \in \mathbb{R} \}$, and

(a)
$$(a + b i) + (c + d i) = (a + c) + (b + d) i$$

(b)
$$(a+b i) \cdot (c+d i) = (ac-bd) + (ad+bc) i$$

With these two operations \mathbb{C} is a field.

We usually write:

*
$$0+0 i=0$$

*
$$1+0 i = 1$$

*
$$a + 0$$
 $\mathbf{i} = a$ [This way: $\mathbb{R} \subseteq \mathbb{C}$]

*
$$0+1 i = 0 + i = i$$

*
$$0 + b \mathbf{i} = b \mathbf{i}$$

*
$$a+1$$
 $\boldsymbol{i}=a+\boldsymbol{i}$

*
$$a + (-b) \mathbf{i} = a - b \mathbf{i}$$

Note that
$$\mathbf{i}^2 = \mathbf{i} \cdot \mathbf{i} = (0 + \mathbf{i}) \cdot (0 + \mathbf{i}) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)\mathbf{i} = -1 + 0\mathbf{i} = -1$$

*
$$-(a+b\,\mathbf{i}) = (-a) + (-b)\,\mathbf{i} = -a-b\,\mathbf{i}$$

*
$$(a+b\mathbf{i})^{-1} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\mathbf{i}$$

Example 4

The Field with 2 elements (The smallest possible field)

Let $\mathbb{F}_2 = \{0, 1\}$ with the following addition and multiplication

Example 5

The Field with 4 elements

Let $\mathbb{F}_4 = \{0, 1, a, b\}$ with the following

addition and multiplication

Example 6

The Field with 7 elements

Let $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ with the following addition and multiplication

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
	3	4	5	6	0	1	2
1	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
;	6	0	1	2	3	4	5

Note that these operation are just addition and multiplication modulo 7

Example 7

The Field with 9 elements

$$\mathbb{F}_9 = \{0, 1, 1 + \mathbf{i}, -\mathbf{i}, -1 - \mathbf{i}, -1, -1 - \mathbf{i}, \mathbf{i}, -1 + \mathbf{i}\}, \qquad \begin{array}{c} -1 + \mathbf{i} & \mathbf{i} & 1 + \mathbf{i} \\ -1 & 0 & 1 \\ -1 - \mathbf{i} & -\mathbf{i} & 1 - \mathbf{i} \end{array}$$

Multiplication and addition can be computed using the usual complex multiplication where the real and imaginary parts are 0 or $\pm 1 \pmod 3$:

$$(a+b\mathbf{i}) + (c+d\mathbf{i}) = \underbrace{(a+c)}_{0,\pm 1 \pmod{3}} + \underbrace{(c+d)}_{0,\pm 1 \pmod{3}} \mathbf{i}$$

and

$$(a+b\boldsymbol{i})(c+d\boldsymbol{i}) = \underbrace{(ac-db)}_{0,\pm 1 \pmod{3}} + \underbrace{(ad+bc)}_{0,\pm 1 \pmod{3}} \boldsymbol{i}$$

Example

$$(1+i) + (-1+i) = 0 + 2i = -i$$

and

$$(1-i)(-1+i) = 0+2i = -i$$

Note that the additive inverses are the usual opposites: -z

and the multiplicative inverses are:

Here are the complete tables of addition:

+	0	1	$1+\boldsymbol{i}$	$-m{i}$	1 - i	-1	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$
0	0	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	$1-\boldsymbol{i}$	-1	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$
1	1	-1	$-1+\boldsymbol{i}$	1 - i	-1 - i	0	$-oldsymbol{i}$	$1+\boldsymbol{i}$	$oldsymbol{i}$
$1+\boldsymbol{i}$	1 + i	$-1+\boldsymbol{i}$	-1 - i	1	-1	$oldsymbol{i}$	0	$1-\boldsymbol{i}$	$-oldsymbol{i}$
$-oldsymbol{i}$	$-m{i}$	1 - i	1	$oldsymbol{i}$	$1+\boldsymbol{i}$	-1 - i	$-1+\boldsymbol{i}$	0	-1
$1-\boldsymbol{i}$	1 - i	-1 - i	-1	$1+\boldsymbol{i}$	$-1+\boldsymbol{i}$	$-\boldsymbol{i}$	$oldsymbol{i}$	1	0
-1	-1	0	$oldsymbol{i}$	-1 - i	$-oldsymbol{i}$	1	$1-\boldsymbol{i}$	$-1+\boldsymbol{i}$	$1+\boldsymbol{i}$
$-1 - {\it i}$	-1 - i	$-oldsymbol{i}$	0	$-1+\boldsymbol{i}$	$oldsymbol{i}$	1 - i	$1+\boldsymbol{i}$	-1	1
$oldsymbol{i}$	$oldsymbol{i}$	$1+\boldsymbol{i}$	$1-\boldsymbol{i}$	0	1	$-1+\boldsymbol{i}$	-1	$-oldsymbol{i}$	$-1-\boldsymbol{i}$
$-1+\boldsymbol{i}$	$-1+\boldsymbol{i}$	$m{i}$	$-\boldsymbol{i}$	-1	0	$1+\boldsymbol{i}$	1	-1 - i	$1-\boldsymbol{i}$

and multiplication:

•	0	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	1 - i	-1	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$
0	0	0	0	0	0	0	0	0	0
1	0	1	$1+\boldsymbol{i}$	$-\boldsymbol{i}$	$1-\boldsymbol{i}$	-1	-1 - i	$m{i}$	$-1+\boldsymbol{i}$
$1+\boldsymbol{i}$	0	$1+\boldsymbol{i}$	$-oldsymbol{i}$	$1-\boldsymbol{i}$	-1	$-1-\boldsymbol{i}$	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1
$-oldsymbol{i}$	0	$-oldsymbol{i}$	$1-\boldsymbol{i}$	-1	$-1-\boldsymbol{i}$	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$
$1-\boldsymbol{i}$	0	$1-\boldsymbol{i}$	-1	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$	$-m{i}$
-1	0	-1	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	$1-\boldsymbol{i}$
-1 - i	0	-1 - i	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	$1-\boldsymbol{i}$	-1
$oldsymbol{i}$	0	$oldsymbol{i}$	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	1 - i	-1	$-1-\boldsymbol{i}$
$-1+\boldsymbol{i}$	0	$-1+\boldsymbol{i}$	1	$1+\boldsymbol{i}$	$-oldsymbol{i}$	1 - i	-1	-1 - i	$oldsymbol{i}$