Rapport de TP 4MMAOD : Génération de patch optimal "Question 1 : Modélisation par PLNE"

GOUTTEFARDE Léo (groupe 5) PIELLARD Jérémie (groupe 2)

2 octobre 2015

Modélisation du problème restreint sous forme de PLNE

Données

On note $F_1(i)$, la ligne i du fichier 1 et $F_2(i)$ la ligne i du fichier 2. On définit $L(F_i(j))$ comme le nombre de caractères de la ligne $F_i(j)$ (incluant le caractère de fin de ligne).

Variables

On introduit les variables de coût suivantes :

- $c_s(i,j)$: modélise le coût de substitution de la ligne $F_1(i)$ par la ligne $F_2(j)$, nul si $F_1(i) = F_2(i)$ et égal à $c_s(i,j) = 10 + L(F_2(j))$ sinon.
- $c_a(i,j) = 10 + L(F_2(j))$: modélise le coût d'ajout de la ligne $F_2(j)$ après la ligne $F_1(i)$
- $c_d(i) = 10$: modélise le coût de destruction de la ligne $F_1(i)$ (identique pour tout i, peu utile donc)

On introduit les variables binaires (de valeur 1 ou 0) suivantes :

- s(i,j) : modélise la substitution (ou non) de la ligne $F_1(i)$ par la ligne $F_2(j)$
- d(i): modélise la destruction (ou non) de la ligne $F_1(i)$
- a(i,j): modélise l'ajout (ou non) de la ligne $F_2(j)$ après la ligne $F_1(i)$

Objectif à minimiser

On obtient la fonction objectif suivante :

$$\min_{s,d,a} \sum_{i,j} c_s(i,j) \cdot s(i,j) + \sum_{i,j} c_a(i,j) \cdot a(i,j) + 10 \sum_i d(i)$$

Contraintes

Pour l'ajout et la destruction, on peut d'abord distinguer plusieurs cas :

Cas 1 : Nombre minimal de destructions (n > m)

Si n > m, on aura minimum n - m destructions à effectuer, soit un coût minimal de 10(n - m).

Cas 2 : Nombre minimal d'ajouts (n < m)

Si n < m, on aura minimum m-n ajouts à effectuer, soit un coût minimal de $10 (m-n) + \sum\limits_{j=0}^m a(j) \cdot L(F_2(j))$.

Cas 3 : Même nombre de lignes dans chaque fichier (n=m)

Si n=m, il n'y a pas forcément d'ajout ni de destruction de ligne.

Finalement, il ne peut pas y avoir à la fois une substitution et une destruction sur une même ligne i de F_1 .