

Computer Graphics (Graphische Datenverarbeitung)

- Spline and Subdivision Surfaces -

Hendrik Lensch

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

B-Splines

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

B-Splines

- Goal
 - Spline curve with local control and high continuity
- Given

- Degree: n

- Control points: $P_0, ..., P_m$ (Control polygon, $m \ge n+1$)

- Knots: $t_0, ..., t_{m+n+1}$ (Knot vector, weakly monotonic)

- The knot vector defines the parametric locations where segments join

B-Spline Curve

$$\underline{P}(t) = \sum_{i=0}^{m} N_i^n(t) \underline{P}_i$$

- Continuity:
 - C_{n-1} at simple knots
 - C_{n-k} at knot with multiplicity k

Recursive Definition

$$\begin{split} N_i^0(t) &= \begin{cases} 1 & \text{i } \mathbf{f} t_i < t < t_{i+1} \\ 0 & \text{o } \mathbf{t} \mathbf{h} \mathbf{e} \mathbf{r} \mathbf{w} \mathbf{i} \mathbf{s} \mathbf{e} \end{cases} \\ N_i^n(t) &= \frac{t - t_i}{t_{i+n} - t_i} N_i^{n-1}(t) - \frac{t - t_{i+n+1}}{t_{i+n+1} - t_{i+1}} N_{i+1}^{n-1}(t) \\ &= \frac{\mathbf{N_0^0} \quad \mathbf{N_1^0} \quad \mathbf{N_2^0} \quad \mathbf{N_3^0} \quad \mathbf{N_4^0}}{\mathbf{N_4^0}} \end{split}$$

B-Splines

$$N_{i,0}(t) = \begin{cases} 1, & t_i \le t < t_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

$$N_{0,0}(t) = 1, \quad 0 \le t < 1$$
 $N_{2,0}(t) = 1, \quad 2 \le t < 3$
 $N_{4,0}(t) = 1, \quad 4 \le t < 5$

$$N_{1,0}(t) = 1, \quad 1 \le t < 2$$
 $N_{3,0}(t) = 1, \quad 3 \le t < 4$

Knot vector = $\{0,1,2,3,4,5\}$, k = 0

[A. Benton, Cambridge]

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k} - t_i} N_{i,k-1}(t) + \frac{t_{i+k+1} - t}{t_{i+k+1} - t_{i+1}} N_{i+1,k-1}(t)$$

Knot vector = $\{0,1,2,3,4,5\}$, k = 1

[A. Benton, Cambridge] UNIVERSITAT

B-Splines

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k} - t_i} N_{i,k-1}(t) + \frac{t_{i+k+1} - t}{t_{i+k+1} - t_{i+1}} N_{i+1,k-1}(t)$$

$$N_{0,2}(t) = \frac{t-0}{2-0} N_{0,1}(t) + \frac{3-t}{3-1} N_{1,1}(t) = \begin{cases} (t/2)(t) & 0 \le t < 1 \\ (t/2)(2-t) + ((3-t)/2)(t-1) & 1 \le t < 2 \\ ((3-t)/2)(3-t) & 2 \le t < 3 \end{cases}$$

$$N_{1,2}(t) = \frac{t-1}{3-1}N_{1,1}(t) + \frac{4-t}{4-2}N_{2,1}(t) = \begin{cases} ((t-1)/2)(t-1) & 1 \le t < 2\\ ((t-1)/2)(3-t) + ((4-t)/2)(t-2) & 2 \le t < 3\\ ((4-t)/2)(4-t) & 3 \le t < 4 \end{cases}$$

$$N_{1,2}(t) = \frac{t-2}{4-2} N_{2,1}(t) + \frac{5-t}{5-3} N_{3,1}(t) = \begin{cases} ((t-2)/2)(t-2) & 2 \le t < 3 \\ ((t-2)/2)(4-t) + ((5-t)/2)(t-3) & 3 \le t < 4 \\ ((5-t)/2)(5-t) & 4 \le t < 5 \end{cases}$$

Knot vector = $\{0,1,2,3,4,5\}$, k = 2

- Recursive Definition
 - Degree increases in every step
 - Support increases by one knot interval

- Uniform Knot Vector
 - All knots at integer locations
 - UBS: Uniform B-Spline
 - Example: cubic B-Splines

- Local Support = Localized Changes
 - Basis functions affect only (n+1) Spline segments
 - Changes are localized

- Convex Hull Property
 - Spline segment lies in convex Hull of (n+1) control points

- (n+1) control points lie on a straight line → curve touches this line
- n control points coincide → curve interpolates this point and is tangential to the control polygon (e.g. beginning and end)

Examples: Cubic B-Splines

Knots and Points

multiplicity = n at beginning and end

[00012345678999]

strictly monotonous knot vector

[0123456789]

knots or points replicated

Control by Knot Vector

- The knot vector gives a user control over interpolation and continuity
- If the first knot is repeated three times, the curve will interpolate the control point for that knot
 - Repeated knot example: (-3,-3,-3, -2, -1, 0, ...)
 - If a knot is repeated, so is the corresponding control point
- If an interior knot is repeated,
 continuity at that point goes down by 1
- Interior points can be interpolated by repeating interior knots
- A deep investigation of B-splines is beyond the scope of this class

Normalized Basis Functions

- Basis Functions on an Interval
- $\sum_{i} N_i^n(t) = 1$

- Partition of unity:
- Knots at beginning and end with multiplicity
- Interpolation of end points and their tangents
- Conversion to Bézier segments via knot insertion

deBoor-Algorithm

- Evaluating the B-Spline
- Recursive Definition of Control Points
 - Evaluation at t: $t_{i} < t < t_{i+1}$: $i \in \{l-n, ..., l\}$
 - Due to local support only affected by (n+1) control points

$$\underline{P}_{i}^{r}(t) = \left(1 - \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}}\right) \underline{P}_{i}^{r-1}(t) - \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}} \underline{P}_{i+1}^{r-1}(t)$$

$$\underline{P}_i^0(t) = \underline{P}_i$$

- Properties
 - Affine invariance
 - Stable numerical evaluation
 - All coefficients > 0

$$d_{1-n}^{n} \qquad P_{i}^{n}(t) = d_{i}^{n}$$

- Algorithm similar to deBoor
 - Given a new knot t

•
$$t_1 \le t < t_{l+1}$$
: $i \in \{l-n, ..., l\}$

- $T^* = T \cup \{t\}$
- New representation of the same curve over T*

$$\underline{P}^{*}(t) = \sum_{i=0}^{m+1} N_{i}^{n}(t) \underline{P}_{i}^{*}$$

$$P_{i}^{*} = (1 - a_{i}) P_{i-1} + a_{i} P_{i}$$

$$a_{i} = \begin{cases}
0 & i \leq l - n \\
\frac{t - t_{i}}{t_{i+n} - t_{i}} & l - n + 1 \leq i \leq l \\
0 & i \geq l + 1
\end{cases}$$

- Applications
 - Refinement of curve, display

Consecutive insertion of three knots at t=3 into a cubic B-Spline First and last knot have multiplicity n T=(0,0,0,0,1,2,4,5,6,6,6,6), l=5

- Algorithm similar to deBoor
 - Given a new knot t

•
$$t_1 \le t < t_{l+1}$$
: $i \in \{l-n, ..., l\}$

- $T^* = T \cup \{t\}$
- New representation of the same curve over T*

$$\underline{P}^{*}(t) = \sum_{i=0}^{m+1} N_{i}^{n}(t) \underline{P}_{i}^{*}$$

$$P_{i}^{*} = (1 - a_{i}) P_{i-1} + a_{i} P_{i}$$

$$a_{i} = \begin{cases}
0 & i \leq l - n \\
t - t_{i} & l - n + 1 \leq i \leq l \\
t_{i+n} - t_{i} & i \geq l + 1
\end{cases}$$

- Applications
 - Refinement of curve, display

Consecutive insertion of three knots at t=3 into a cubic B-Spline
First and last knot have multiplicity n
T=(0,0,0,0,1,2,4,5,6,6,6,6), l=5

- Algorithm similar to deBoor
 - Given a new knot t

•
$$t_1 \le t < t_{l+1}$$
: $i \in \{l-n, ..., l\}$

- $T^* = T \cup \{t\}$
- New representation of the same curve over T*

$$\underline{P}^{*}(t) = \sum_{i=0}^{m+1} N_{i}^{n}(t) \underline{P}_{i}^{*}$$

$$P_{i}^{*} = (1 - a_{i}) P_{i-1} + a_{i} P_{i}$$

$$a_{i} = \begin{cases}
0 & i \leq l - n \\
t - t_{i} & l - n + 1 \leq i \leq l \\
t_{i+n} - t_{i} & i \geq l + 1
\end{cases}$$

- Applications
 - Refinement of curve, display

Consecutive insertion of three knots at t=3 into a cubic B-Spline
First and last knot have multiplicity n
T=(0,0,0,0,1,2,4,5,6,6,6,6), l=5

- Algorithm similar to deBoor
 - Given a new knot t

•
$$t_1 \le t < t_{l+1}$$
: $i \in \{l-n, ..., l\}$

- $T^* = T \cup \{t\}$
- New representation of the same curve over T*

$$\underline{P}^{*}(t) = \sum_{i=0}^{m+1} N_{i}^{n}(t) \underline{P}_{i}^{*}$$

$$P_{i}^{*} = (1 - a_{i}) P_{i-1} + a_{i} P_{i}$$

$$a_{i} = \begin{cases}
0 & i \leq l - n \\
t - t_{i} & l - n + 1 \leq i \leq l \\
t_{i+n} - t_{i} & i \geq l + 1
\end{cases}$$

- Applications
 - Refinement of curve, display

Consecutive insertion of three knots at t=3 into a cubic B-Spline
First and last knot have multiplicity n
T=(0,0,0,0,1,2,4,5,6,6,6,6), l=5

Conversion to Bézier Spline

- B-Spline to Bézier Representation
 - Remember:
 - Curve interpolates point and is tangential at knots of multiplicity n
 - In more detail: If two consecutive knots have multiplicity n
 - The corresponding spline segment is in Bézier form
 - The (n+1) corresponding control polygon form the Bézier control points

NURBS

- Non-uniform Rational B-Splines
 - Homogeneous control points: now with weight wi
 - $\bullet \underline{P}_i' = (w_i x_i, w_i y_i, w_i z_i, w_i) = w_i \underline{P}_i$

$$\underline{P}' t) = \sum_{i=0}^{m} N_i^n(t) \underline{P}_i'$$

$$\underline{P} = \frac{\sum_{i=0}^{m} N_i^n(t) \underline{P}_i w_i}{\sum_{i=0}^{m} N_i^n(t) w_i} = \sum_{i=0}^{m} R_i^n(t) \underline{P}_i \quad , \quad \mathbf{m} \quad R_i^n(t) = \frac{N_i^n(t) w_i}{\sum_{i=0}^{m} N_i^n(t) w_i}$$

Circle p2n6

Parameter t is normalized

```
p2n6 form: degree = 2 (order k = 3)

n = 6 (no. of control points = 7)

m = n + k = 9 (no. of knots = 10)
```

Knot vector = [0 0 0 0.25 0.5 0.5 0.75 1 1 1] (nonperiodic, nonuniform)

Control points: (0,0); (0,25); (50,25); (50,0); (50,-25); (0,-25); (0,0)

Weights: $w_i = [1 \ 0.5 \ 0.5 \ 1 \ 0.5 \ 0.5 \ 1]$

Circle p2n6

Construction of basis functions

N(j,2) Only four internal knots

Total 7 single rational B-splines

Circle p2n6

Computer Graphics 1NUNDS CITCLE 26

NURBS

- Properties
 - Piecewise rational functions
 - Weights
 - High (relative) weight attract curve towards the point
 - Low weights repel curve from a point
 - Negative weights should be avoided (may introduce singularity)
 - Invariant under projective transformations
 - Variation-Diminishing-Property (in functional setting)
 - Curve cuts a straight line no more than the control polygon does

Spline Surfaces

Parametric Surfaces

- Same Idea as with Curves
 - \underline{P} : $R^2 \rightarrow R^3$
 - $P(u,v) = (x(u,v), y(u,v), z(u,v))^T \in R^3 \text{ (also } P(R^4))$
- Different Approaches
 - Triangular Splines
 - Single polynomial in (u,v) via barycentric coordinates with respect to a reference triangle (e.g. B-Patches)
 - Tensor Product Surfaces
 - Separation into polynomials in u and in v
 - Subdivision Surfaces
 - Start with a triangular mesh in R³
 - Subdivide mesh by inserting new vertices
 - Depending on local neighborhood
 - Only piecewise parameterization (in each triangle)

- Idea
 - Create a "curve of curves"
- Simplest case: Bilinear Patch
 - Two lines in space

$$\underline{P}^{1}(v) = (1-v)\underline{P}_{0} + v\underline{P}_{1}$$

$$\underline{P}^{2}(v) = (1-v)\underline{P}_{0} + v\underline{P}_{1}$$

- Connected by lines

$$\underline{P}(u,v) = (1-u)\underline{P}^{1}(v) + u\underline{P}^{2}(v) =$$

$$(1-u) \ 1-v)\underline{P}_{0} \ (+v\underline{P}_{1}) + u(1-v)\underline{P}_{0} \ +v\underline{P}_{1})$$

- Bézier representation (symmetric in u and v)

$$\underline{P}(u,v) = \sum_{i,j=0}^{1} B_i^1(u) B_j^1(v) \underline{P}_{i,j}$$

- Control mesh P_{ij}

- General Case
 - Arbitrary basis functions in u and v
 - Tensor Product of the function space in u and v
 - Commonly same basis functions and same degree in u and v

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) P_{ij}$$

- Interpretation
 - Curve defined by curves

$$P(u, v) = \sum_{i=0}^{m} B_i(u) \sum_{j=0}^{n} B_j(v) P_{ij}$$

- Symmetric in u and v

$$P_i(v)$$

Matrix Representation

- Similar to Curves
 - Geometry now in a "tensor" (m x n x 3)

$$P(u,v) = UGV^{T} = \begin{bmatrix} u^{m} & \cdots & u & 1 \end{bmatrix} \begin{bmatrix} G_{mn} & \cdots & G_{m0} \\ \vdots & \ddots & \vdots \\ G_{0n} & \cdots & G_{00} \end{bmatrix} \begin{bmatrix} v^{n} \\ \vdots \\ v \\ 1 \end{bmatrix}$$
$$= UB_{U}G_{UV}B_{V}^{T}V^{T}$$

- Degree

u:

m

V:

n

- Along the diagonal (u=v): m+n
 - Not nice → "Triangular Splines"

- Properties Derived Directly From Curves
- Bézier Surface:
 - Surface interpolates corner vertices of mesh
 - Vertices at edges of mesh define boundary curves
 - Convex hull property holds
 - Simple computation of derivatives
 - Direct neighbors of corners vertices define tangent plane
- Similar for Other Basis Functions

Modifying a Bézier Surface

- Representing the Utah Teapot as a set continuous Bézier patches
 - http://www.holmes3d.net/graphics/teapot/

Representation by BVH

Reyes in Pixar's RenderMan

- free form surfaces
- diced into displaced sub-pixel-sized micro-polygons
- massive amount: 1000s of patches with 100s x 100s micro-polygons each
- so far only limited lighting simulation possible

Two-Level Modeling Paradigm

- top level
 - collection of patches
 - irregular topology

- bottom level
 - displaced micro-polygonsregular topology
 - - two-dimensional array

Higher Dimensions

- Volumes
 - Spline: $R^3 \rightarrow R$
 - Volume density
 - Rarely used
 - Spline: $R^3 \rightarrow R^3$
 - Modifications of points in 3D
 - Displacement mapping
 - Free Form Deformations (FFD)

Surface Representations

Modeling

- How do we ...
 - Represent 3D objects in a computer?
 - Construct such representations quickly and/or automatically with a computer?
 - Manipulate 3D objects with a computer?
- 3D Representations provide the foundations for
 - Computer Graphics
 - Computer-Aided Geometric Design
 - Visualization
 - Robotics, ...
- Different methods for different object representations

3D Object Representations

- Raw data
 - Range image
 - Point cloud
 - Polygon soup
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG

- Neural Representations
 - Deep Signed Distance Fields
 - Neural Reflectance Fields
 - Instant Neural Graphics Primitives

Range Image

- Range image
 - Acquired from range scanner
 - E.g. laser range scanner, structured light, phase shift approach
 - Structured point cloud
 - Grid of depth values with calibrated camera
 - 2-1/2D: 2D plus depth

Point Cloud

- Unstructured set of 3D point samples
 - Often constructed from many range images

Polygon Soup

Unstructured set of polygons

Mesh

• Connected set of polygons (usually triangles)

Parametric Surface

- Tensor product spline patches
 - Careful constraints to maintain continuity

FvDFH Figure 11.44

Subdivision Surface

- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Polygonal Model

Implicit Model

Voxels

- Uniform grid of volumetric samples
 - Acquired from CAT, MRI, etc.
- Octrees

BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations

CSG – Constructive Solid Geometry

• Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9

Instant Neural Graphics Primitive

Link: https://nvlabs.github.io/instant-ngp/

Subdivision Surfaces

Motivation

- Splines
 - Traditionally spline patches (NURBS) have been used in production for character animation.
- Difficult to stitch together
 - Maintaining continuity is hard
- Difficult to model objects with complex topology

Subdivision in Character Animation Tony DeRose, Michael Kass, Tien Troung (SIGGRAPH '98)

(Geri's Game, Pixar 1998)

Motivation

- Splines (Bézier, NURBS, ...)
 - Easy and commonly used in CAD systems
 - Most surfaces are not made of quadrilateral patches
 - Need to trim surface: Cut of parts
 - Trimming NURBS is expensive and often has numerical errors
 - Very difficult to stich together separate surfaces
 - Very hard to hide seams

Why Subdivision Surfaces?

- Subdivision methods have a series of interesting properties:
 - Applicable to meshes of arbitrary topology (non-manifold meshes).
 - No trimming needed
 - Scalability, level-of-detail.
 - Numerical stability.
 - Simple implementation.
 - Compact support.
 - Affine invariance.
 - Continuity
 - Still less tools in CAD systems (but improving quickly)

Types of Subdivision

- Interpolating Schemes
 - Limit Surfaces/Curve will pass through original set of data points.
- Approximating Schemes
 - Limit Surface will not necessarily pass through the original set of data points.

Example: Geri's Game

- Subdivision surfaces are used for:
 - Geri's hands and head
 - Clothes: Jacket, Pants, Shirt
 - Tie and Shoes

(Geri's Game, Pixar 1998)

Subdivision

- Construct a surface from an arbitrary polyhedron
 - Subdivide each face of the polyhedron
- The limit will be a smooth surface

Subdivision Curves and Surfaces

77

- Subdivision curves
 - The basic concepts of subdivision.
- Subdivision surfaces
 - Important known methods.
 - Discussion: subdivision vs. parametric surfaces.

Curves: Corner Cutting

The 4-Point Scheme

The 4-Point Scheme

Subdivision Curves

Basic Concepts of Subdivision

- Definition
 - A subdivision curve is generated by repeatedly applying a subdivision operator to a given polygon (called the control polygon).
- The central theoretical questions:
 - Convergence:
 - Given a subdivision operator and a control polygon, does the subdivision process converge?
 - Smoothness:

Does the subdivision process converge to a smooth curve?

Surfaces Subdivision Schemes

- A control net consists of vertices, edges, and faces.
- Refinement
 - In each iteration, the subdivision operator refines the control net, increasing the number of vertices (approximately) by a factor of 4.
- Limit Surface
 - In the limit the vertices of the control net converge to a limit surface.
- Topology and Geometry
 - Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices.

Subdivision Schemes

- There are different subdivision schemes
 - Different methods for refining topology
- Different rules for positioning vertices
 Interpolating versus approximating

Triangular Subdivision

• For control nets whose faces are triangular.

Every face is replaced by 4 new triangular faces.

The are two kinds of new vertices:

- Green vertices are associated with old edges
- Red vertices are associated with old vertices.

Loop Subdivision Scheme

- Works on triangular meshes
- Is an Approximating Scheme
- Guaranteed to be smooth everywhere except at extraordinary vertices.

Loop's Scheme

- Location of New Vertices
 - Every new vertex is a weighted average of the old vertices. The list of weights is called the subdivision mask or the stencil

A rule for new red vertices

$$\alpha_n = \frac{1}{6} \left(\frac{4}{4} - \left(0.3 + 2 \operatorname{c} - \left(\frac{2\pi}{n} \right) \right)^2 \right) \qquad \alpha_n = \begin{cases} \frac{3}{8} & n > 3 \\ \frac{3}{16} & n = 3 \end{cases}$$

Original

A rule for new green vertices

n - the vertex valence

Warren

Loop Subdivision Boundaries

Subdivision Mask for Boundary Conditions

Subdivision as Matrices

- Subdivision can be expressed as a matrix Smask of weights w.
 - Smask is very sparse
 - Never implement it this way!
 - Allows for analysis
 - Curvature
 - Limit Surface

$$S_{mask}P = \hat{P}$$

$$\begin{bmatrix} w_{00} & w_{01} & \cdots \\ w_{10} & w_{11} & \cdots \\ \vdots & \vdots & \ddots \\ & & & \\ S_{mask} \text{ Weights} \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ \vdots \\ p_j \end{bmatrix} = \begin{bmatrix} p_0 \\ \hat{p}_1 \\ \vdots \\ \hat{p}_p \end{bmatrix}$$

$$\begin{matrix} \uparrow \\ S_{mask} \text{ Weights} \end{matrix}$$

$$\begin{matrix} \uparrow \\ Old \\ Control \\ Points \end{matrix}$$

The Original Control Net

After 1st Iteration

After 2nd Iteration

The Limit Surface

The limit surfaces of Loop's subdivision have continuous curvature almost everywhere

Quadrilateral Subdivision

- Works for control nets of arbitrary topology
 - After one iteration, all the faces are quadrilateral.

Every face is replaced by quadrilateral faces. The are three kinds of new vertices:

- Yellow vertices are associated with old faces
- Green vertices are associated with old edges
- Red vertices are associated with old vertices.

Catmull Clark's Scheme

Step 1

First, all the yellow vertices are calculated

Step 2

Then the green vertices are calculated using the values of the yellow vertices

Step 3

Finally, the red vertices are calculated using the values of the yellow vertices

n - the vertex valence

$$w_n = n(n-2)$$

The Original Control Net

After 1st Iteration

After 2nd Iteration

After 3rd Iteration

The Limit Surface

The limit surfaces of Catmull-Clarks's subdivision have continuous curvature almost everywhere

Edges and Creases

- Most surface are not smooth everywhere
 - Edges & creases
 - Can be marked in model
 - Weighting is changed to preserve edge or crease
- Generalization to semi-sharp creases (Pixar)
 - Controllable sharpness
 - Sharpness (s) = 0, smooth
 - Sharpness (s) = inf, sharp
 - Achievable through hybrid subdivision step
 - Subdivision iff s==0
 - Otherwise parameter is decremented

Edges and Creases

Increasing sharpness of edges

Edges and Creases

• Can be changed on a edge by edge basis

Adaptive Subdivision

- Not all regions of a model need to be subdivided.
- Idea: Use some criteria and adaptively subdivide mesh where needed.
 - Curvature
 - Screen size
 - Make triangles < size of pixel</p>
 - View dependence
 - Distance from viewer
 - Silhouettes
 - In view frustum
 - Careful!
 - Must avoid "cracks"

Texture mapping

- Solid color painting is easy, already defined
- Texturing is not so easy
 - Using polygonal methods can result in distortion
- Solution
 - Assign texture coordinates to each original vertex
 - Subdivide them just like geometric coordinates
- · Introduces a smooth scalar field
 - Used for texturing in Geri's jacket, ears, nostrils

Advanced Topics

- Hierarchical Modeling
 - Store offsets to vertices at different levels
 - Offsets performed in normal direction
 - Can change shape at different resolutions while rest stays the same
- Surface Smoothing
 - Can perform filtering operations on meshes
 - E.g. (Weigthed) averaging of neighbors
- Level-of-Detail
 - Can easily adjust maximum depth for rendering

Wrapup: Subdivision Surfaces

- Advantages
 - Simple method for describing complex surfaces
 - Relatively easy to implement
 - Arbitrary topology
 - Local support
 - Guaranteed continuity
 - Multi-resolution
- Difficulties
 - Intuitive specification
 - Parameterization
 - Intersections