Improving the robustness of implicit schemes using homotopy-based algorithms

MFront Users Meeting

(1) CEA, DES, IRESNE, DEC, SESC, LMPC, Cadarache, France

T. Helfer⁽¹⁾, Maxence Wangermez⁽¹⁾ (and many others!)

Outline

Homotopy methods to enhance the robustness of implicit schemes

Studied algorithms

First test case

Second test case

Conclusions

Homotopy methods to enhance the robustness of implicit schemes

Notations

- t denotes the time at the beginning of the time step.
- \blacksquare θ denotes a numerical parameter between 0 and 1.
- \vec{Y} denotes the value of the state variables at the beginning of the time step.
- $\vec{Y}\Big|_{t+\theta \ \Delta \ t}$ denotes the value of the state variables at an intermediate time $t+\theta \ \Delta \ t$:

$$\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \theta \Delta \vec{Y}$$

 $\vec{Y}\Big|_{t+\Delta t}$ denotes the value of the state variables at the end of the time step:

$$\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \Delta \vec{Y}$$

Residual

For time dependent behaviours, the evolution of the state variables \vec{Y} is given by a system of ordinary differential equations:

$$\vec{\dot{Y}} = G(\vec{Y}, \vec{Z})$$

where \vec{Z} denotes a set of external state variables.

Using the generalised mid-point rule, this equation can be discretised as:

$$\Delta \vec{Y} - G(\vec{Y}|_t + \theta \Delta \vec{Y}) \Delta t = \vec{0}$$

or

$$\vec{F}\left(\Delta \vec{Y}\right) = \vec{0}$$
 with $\vec{F}\left(\Delta \vec{Y}\right) = \Delta \vec{Y} - G\left(\vec{Y}\Big|_t + \theta \Delta \vec{Y}\right) \Delta t$

- \vec{F} is called the residual of the implicit system.
- For time independent behavious, the residual ensures that the material is on the yield surface(s) at the end of the time step.

Newton algorithm

Let $\Delta \vec{Y}^{(n)}$ be the estimation at the n^{th} iteration of the Newton algorithm. $\Delta \vec{Y}^{(n+1)}$ is then given by:

$$\Delta \; \vec{Y}^{(n+1)} = \Delta \; \vec{Y}^{(n)} + \delta \; \Delta \; \vec{Y}^{(n)} \quad \text{with} \quad \delta \; \Delta \; \vec{Y}^{(n)} = -J^{-1} \left(\Delta \; \vec{Y}^{(n)}\right) \; \vec{F} \left(\Delta \; \vec{Y}^{(n)}\right)$$

where J is the jacobian matrix given by:

$$J\left(\Delta \vec{Y}^{(n)}\right) = \frac{\partial \vec{F}}{\partial \Delta \vec{Y}} \left(\Delta \vec{Y}^{(n)}\right)$$

In MFront, the jacobian matrix can be computed analytically or evaluated numerically using a centered finite difference scheme.

M M

Globalization

w Will

- The greatest shortcoming of the Newton algorithm is that the initial estimation $\vec{Y}^{(0)}$ of the solution must be close enough from the solution:
 - This condition can be difficult to met in pratice.
- Some globalization algorithms are already available (see below):
 - Levenberg-Marquardt.
 - Powell's dog leg.
 - Hand-crafted line-search.
- The aim of this talk is to study two homotopy-inspired algorithms
- Note: in all cases, the consistent tangent operator can still be computed and its expression is unchanged.

■ The idea of homotopy algorithm is to introduce:

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$

- The idea of homotopy algorithm is to introduce:
 - lacksquare an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:
 - $\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:
 - $\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$
 - \vec{F}_0 is trivial to solve.

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$
- Two main ingredients must be choosen:

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$
- Two main ingredients must be choosen:
 - The expression of \vec{F}_{μ}

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$
- Two main ingredients must be choosen:
 - The expression of \vec{F}_{μ}
 - How to make μ evolve from 0 to 1.

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$
- Two main ingredients must be choosen:
 - The expression of \vec{F}_{μ}
 - How to make μ evolve from 0 to 1.
- By virtue of the implicit function theorem, one have:

$$\frac{\partial \Delta \vec{Y}_{\mu}}{\partial \mu} = -\left(\frac{\partial F}{\partial \Delta \vec{Y}}\right)^{-1} \frac{\partial \vec{F}_{\mu}}{\partial \mu} = -J^{-1} \frac{\partial \vec{F}_{\mu}}{\partial \mu}$$

- The idea of homotopy algorithm is to introduce:
 - an homotopy parameter $\mu \in [0, 1]$
 - lacksquare a modified residual \vec{F}_{μ} such that:

$$\blacksquare \vec{F}_1 \left(\Delta \vec{Y} \right) = \vec{F} \left(\Delta \vec{Y} \right)$$

- \blacksquare \vec{F}_0 is trivial to solve.
- Homotopy algorithms thus introduced a continuous mapping $\Delta \vec{Y}_{\mu}$ which transforms $\Delta \vec{Y}_{0}$ (supposed trivial to compute) to a searched solution $\Delta \vec{Y}$
- Two main ingredients must be choosen:
 - The expression of \vec{F}_{μ}
 - How to make μ evolve from 0 to 1.
- By virtue of the implicit function theorem, one have:

$$\frac{\partial \Delta \vec{Y}_{\mu}}{\partial \mu} = -\left(\frac{\partial F}{\partial \Delta \vec{Y}}\right)^{-1} \frac{\partial \vec{F}_{\mu}}{\partial \mu} = -J^{-1} \frac{\partial \vec{F}_{\mu}}{\partial \mu}$$

Hence, an explicit solution exists:

$$\Delta \vec{Y} = \Delta \vec{Y}(0) - \int_0^1 J^{-1} \frac{\partial \vec{F}_{\mu}}{\partial \mu} d\mu$$

Outline

Homotopy methods to enhance the robustness of implicit schemes

Studied algorithms

First test case

Second test case

Conclusions

Studied algorithms

■ The θ parameter can be considered as the homotopy parameter:

$$\vec{F}\left(\Delta \vec{Y}(\theta), \theta\right) = 0$$

■ The θ parameter can be considered as the homotopy parameter:

$$\vec{F}\left(\Delta \vec{Y}(\theta),\theta\right)=0$$

For time dependent materials, $\Delta \vec{Y}_0$ is given by the explicit Euler approximation:

$$\Delta \vec{Y}_0 = G(\vec{Y}\Big|_t) \Delta t$$

The θ parameter can be considered as the homotopy parameter:

$$\vec{F}\left(\Delta \vec{Y}(\theta),\theta\right)=0$$

For time dependent materials, $\Delta \vec{Y}_0$ is given by the explicit Euler approximation:

$$\Delta \vec{Y}_0 = G(\vec{Y}|_t) \Delta t$$

Plasticity is a problem. For instance, if one consider an isotropic behaviour with linear hardening (see https://thelfer.github.io/ tfel/web/IsotropicLinearHardeningPlasticity.html for details), the residual:

$$f_{p} = \frac{\left.\sigma_{eq}^{tr}\right|_{t+\theta \Delta t} - \sigma_{0} - R \left.\rho\right|_{t}}{\left(3 \left.\mu\right|_{t+\theta \Delta t} + R\right) \left.\theta\right.}$$

does not depend on the increments of the state variables for $\theta=0$, i.e. the jacobian matrix is singular.

 $rac{\partial ec{F}}{\partial heta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).

- $rac{\partial ec{F}}{\partial heta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:

- $\frac{\partial \vec{F}}{\partial \theta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:
 - If the implicit algorithm does not converge, decrease θ and increase it after convergence. The key idea here is that $\Delta \vec{Y}_{\theta^{(n)}}$ is a good approximation for $\Delta \vec{Y}_{\theta^{(n+1)}}$

- $\frac{\partial \vec{F}}{\partial \theta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:
 - If the implicit algorithm does not converge, decrease θ and increase it after convergence. The key idea here is that $\Delta \vec{Y}_{\theta^{(n)}}$ is a good approximation for $\Delta \vec{Y}_{\theta^{(n+1)}}$
 - This fall-back mechanism is:

- $\frac{\partial \vec{F}}{\partial \theta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:
 - If the implicit algorithm does not converge, decrease θ and increase it after convergence. The key idea here is that $\Delta \vec{Y}_{\theta^{(n)}}$ is a good approximation for $\Delta \vec{Y}_{\theta^{(n+1)}}$
 - This fall-back mechanism is:
 - trivial to implement.

- $\frac{\partial \vec{F}}{\partial \theta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:
 - If the implicit algorithm does not converge, decrease θ and increase it after convergence. The key idea here is that $\Delta \vec{Y}_{\theta^{(n)}}$ is a good approximation for $\Delta \vec{Y}_{\theta^{(n+1)}}$
 - This fall-back mechanism is:
 - trivial to implement.
 - does not require any user defined extension.

- $\frac{\partial \vec{F}}{\partial \theta}$ is not trivial to compute and would require developments on the user side (i.e. one can not simply swith from one algorithm to the other).
- It is very simple to code a fall-back mechanism in case of non convergence:
 - If the implicit algorithm does not converge, decrease θ and increase it after convergence. The key idea here is that $\Delta \vec{Y}_{\theta^{(n)}}$ is a good approximation for $\Delta \vec{Y}_{\theta^{(n+1)}}$
 - This fall-back mechanism is:
 - trivial to implement.
 - does not require any user defined extension.
 - has almost zero cost when unused.


```
@AdditionalConvergenceChecks {
  if ((!converged) && (iter == iterMax)) {
   ++numberOfHomotopySubSteps;
    if (numberOfHomotopySubSteps != maximumNumberOfHomotopySubSteps) {
     zeros = lastZeros;
     dTheta /= 2:
     theta -= dTheta:
     numberOfHomotopySubSteps *= 2;
     iter = 0:
  if (converged) {
   --numberOfHomotopySubSteps:
    if (numberOfHomotopySubSteps != 0) {
     theta += dTheta:
     lastZeros = zeros:
     iter = 0:
     converged = false;
```

■ Implementation using the @AdditionalConvergenceCheck block.

We consider the following modified residual:

$$ec{F}_{\mu}\left(\Delta\ ec{Y}
ight) = \left(1-\mu
ight)\ ec{F}_{0}\left(\Delta\ ec{Y}
ight) + \mu\ ec{F}\left(\Delta\ ec{Y}
ight)$$

where \vec{F}_0 is the residual associated with a purely elastic material:

$$ec{\mathcal{F}}_0 = egin{pmatrix} \Delta \, \underline{\epsilon}^{el} - \Delta \, \underline{\epsilon}^{to} \ dots \ \Delta \, y_{n_y} \end{pmatrix}$$

- Comments:
 - $\blacksquare \frac{\partial \vec{F}_{\mu}}{\partial \mu} = \vec{F} \left(\Delta \vec{Y} \right) \vec{F}_{0} \left(\Delta \vec{Y} \right)$
 - The implementation does not require any user extensions, at least if the StandardElasticity brick is used (or the StandardElastoViscoPlasticity brick)
 - One can use a Runge-Kutta method to determine $\Delta \vec{Y}_{\mu}$ and a final Newton resolution for accuracy.

Plasticity is a problem. Consider the perfect plastic case:

$$f_{p,\mu} = (1 - \mu) \Delta p + \frac{\mu}{E} (\sigma_{eq} - R_0)$$

$$= \frac{\mu}{E} \left(\sigma_{eq} - R_0 + \frac{(1 - \mu)}{\mu} \Delta p \right)$$

Plasticity is a problem. Consider the perfect plastic case:

$$f_{p,\mu} = (1 - \mu) \Delta p + \frac{\mu}{E} (\sigma_{eq} - R_0)$$

= $\frac{\mu}{E} \left(\sigma_{eq} - R_0 + \frac{(1 - \mu)}{\mu} \Delta p \right)$

■ There is a value μ_c such that the solution must satisfy $\sigma_{eq} = 0$. In this case, the normal is not defined, leading a divergence of $\Delta p(\mu)$:

$$\Delta p(\mu) \underset{\theta \to \pm \mu_0}{\rightarrow} \pm \infty$$

m m

Plasticity is a problem. Consider the perfect plastic case:

$$f_{p,\mu} = (1 - \mu) \Delta p + \frac{\mu}{E} (\sigma_{eq} - R_0)$$

$$= \frac{\mu}{E} \left(\sigma_{eq} - R_0 + \frac{(1 - \mu)}{\mu} \Delta p \right)$$

■ There is a value μ_c such that the solution must satisfy $\sigma_{eq} = 0$. In this case, the normal is not defined, leading a divergence of $\Delta p(\mu)$:

$$\Delta p(\mu) \underset{\theta \to \pm \mu_0}{\rightarrow} \pm \infty$$

Complementary functions allows to overcome this problem:

$$f_{p,\mu} = (1 - \mu) \Delta p + \mu \Phi_{\varepsilon} \left(-\frac{\sigma_{eq} - R_0}{E}, \Delta p \right)$$

where Φ_{ε} is the regularized Fisher-Burmeister complementary function.

W W

Plasticity is a problem. Consider the perfect plastic case:

$$f_{p,\mu} = (1 - \mu) \Delta p + \frac{\mu}{E} (\sigma_{eq} - R_0)$$

$$= \frac{\mu}{E} \left(\sigma_{eq} - R_0 + \frac{(1 - \mu)}{\mu} \Delta p \right)$$

■ There is a value μ_c such that the solution must satisfy $\sigma_{eq} = 0$. In this case, the normal is not defined, leading a divergence of $\Delta p(\mu)$:

$$\Delta p(\mu) \underset{\theta \to \pm \mu_c}{\rightarrow} \pm \infty$$

Complementary functions allows to overcome this problem:

$$f_{p,\mu} = (1 - \mu) \Delta p + \mu \Phi_{\varepsilon} \left(-\frac{\sigma_{eq} - R_0}{E}, \Delta p \right)$$

where Φ_{ε} is the regularized Fisher-Burmeister complementary function.

See https: //thelfer.github.io/tfel/web/FischerBurmeister.html for details.

M MA

Outline

Homotopy methods to enhance the robustness of implicit schemes

Studied algorithms

First test case

Second test case

Conclusions

Pirst test case

Analysis of an integration failure

- This test is based on a MTest file generated by the Alcyone fuel performance code.
- The viscoplastic strain rate is given by:

$$\dot{\underline{\epsilon}}^{vis} = \dot{p} \, \underline{\mathbf{n}} \quad \text{with} \quad \dot{p} = \dot{\varepsilon}_0 \, \sinh \left(\frac{\sigma_{eq}}{\sigma_0} \right)$$

where:

- p is the equivalent viscoplastic strain;
- σ_{eq} is the Hill stress:

$$\sigma_{ extit{eq}} = \sqrt{\underline{\sigma}: \underline{\underline{\mathbf{H}}}: \underline{\sigma}}$$

- $\underline{\mathbf{n}} = \frac{\partial \sigma_{eq}}{\partial \sigma}$ is flow direction given by the normal to the Hill stress;
- \bullet $\dot{\varepsilon}_0$ and $\overline{\sigma}_0$ are material parameters.

Evolution of the residual with the Newton method

Homotopy algorithms

w Will

- The first algorithm, used as a fall-back, allows to convergence.
 - Only on homotopy substep is required.
- The second algorithm can be very effective.
 - We have implemented various strategies:
 - Direct determination of the solution with a Runge-Kutta algorithm with corrector/predictor and adaptative time steps.
 - Estimation of the solution with an RK4 algorithm and then a standard Newton.
 - Only 24 evalutations of the residual and jacobian are required in some cases.

Outline

Homotopy methods to enhance the robustness of implicit schemes

Studied algorithms

First test case

Second test case

Conclusions

3_Second test case

Scherzinger's test: description

- Scherzinger, W. M. 2017. "A Return Mapping Algorithm for Isotropic and Anisotropic Plasticity Models Using a Line Search Method."
 Computer Methods in Applied Mechanics and Engineering 317 (April): 526–53. https://doi.org/10.1016/j.cma.2016.11.026.
- From the null stress state, impose loading increment up to 30 times the yield stress in each direction of the π -plane
- Applied to a perfect plastic behaviour following the Hosford criterion:

$$\sigma_{eq}^{H} = \sqrt[a]{\frac{1}{2}\left(\left|\sigma_{1} - \sigma_{2}\right|^{a} + \left|\sigma_{1} - \sigma_{3}\right|^{a} + \left|\sigma_{2} - \sigma_{3}\right|^{a}\right)}$$

- The behaviour becomes harder to integrate as a grows.
- Pratical exponents are 6 and 8.
- For an exponent of 100, the yield surface is very close to TRESCA'

Scherzinger's test: implementation

```
from math import pi.cos.sin
import tfel .math as tmath
import tfel .material as tmaterial
import mtest
nmax = 1000
nmax2 = 1000
E = 150e9
nu = 0.3
s0 = 150e6
for a in [pi *(-1.+(2.* i) /(nmax-1)) for i in range(0,nmax)]:
    for x in [1+(29.*i)/(nmax2-1) for i in range(0.nmax2)]:
        nbiter=0
             = tmath.makeStensor3D(tmaterial.buildFromPiPlane(cos(a),sin(a)))
        seg = tmaterial.computeHosfordStress(s.100.1.e-12);
        s *= x*(s0/seq)
        e0 = (s[0]-nu*(s[1]+s[2]))/E
        e1 = (s[1]-nu*(s[0]+s[2]))/E
        e2 = (s[2]-nu*(s[0]+s[1]))/E
        m = mtest_MTest()
        mtest.setVerboseMode(mtest.VerboseLevel.VERBOSE QUIET)
        m.setModellingHypothesis('Tridimensional')
        m.setMaximumNumberOfSubSteps(1)
        m.setBehaviour('abagus','src/libABAQUSBEHAVIOUR.so',
        m.setExternalStateVariable("Temperature",293,15)
        m.setImposedStrain('EXX',{0:0,1:e0})
        m setImposedStrain('FYY' (0:0 1:e1))
        m.setImposedStrain('EZZ'.{0:0.1:e2})
        m.setImposedStrain('EXY',0)
        m.setImposedStrain('EXZ'.0)
        m.setImposedStrain('EYZ',0)
        s = mtest.MTestCurrentState()
        wk = mtest.MTestWorkSpace()
        m. completeInitialisation ()
        m. initializeCurrentState (s)
        m.initializeWorkSpace(wk)
           m.execute(s.wk.0.1)
            nbiter=s.getInternalStateVariableValue("NumberOfIterations")
            nbiter=100
        print ( str ((x/seq)*cos(a))+" "+str ((x/seq)*sin(a))+" "+str (nbiter))
    print ()
```

Scherzinger's test: results (a = 6)

Newton algorithm: Results are consistent with Scherzinger's ones

Scherzinger's test: results (a = 6)

The first homotopy algorithm indeed increases the robustness of the implicit resolution, without special treatment of plasticity.

m MARK

■ Results with higher Hosford exponents (for instance 100) are mixed:

- Results with higher Hosford exponents (for instance 100) are mixed:
 - Homotopy algorithms only slightly increase the robustness compared to the standard Newton algorithm. The Levenberg-Marquart algorithm is fare more effective.

- Results with higher Hosford exponents (for instance 100) are mixed:
 - Homotopy algorithms only slightly increase the robustness compared to the standard Newton algorithm. The Levenberg-Marquart algorithm is fare more effective.
 - The second algorithm is fairly sensible to a the numerical parameters used:

- Results with higher Hosford exponents (for instance 100) are mixed:
 - Homotopy algorithms only slightly increase the robustness compared to the standard Newton algorithm. The Levenberg-Marquart algorithm is fare more effective.
 - The second algorithm is fairly sensible to a the numerical parameters used:
 - Convergence criteria of the Runge-Kutta algorithm with adaptative time steps.

- Results with higher Hosford exponents (for instance 100) are mixed:
 - Homotopy algorithms only slightly increase the robustness compared to the standard Newton algorithm. The Levenberg-Marquart algorithm is fare more effective.
 - The second algorithm is fairly sensible to a the numerical parameters used:
 - Convergence criteria of the Runge-Kutta algorithm with adaptative time steps.
 - Value used to regularized the Fischer-Burmeister function.

27

Outline

Homotopy methods to enhance the robustness of implicit schemes

Studied algorithms

First test case

Second test case

Conclusions

3_Conclusions

- Only preliminary results were presented.
- Some results are very encouraging, but challenges remain:
 - Choice of the role of the homotopy algorithm. Three possible roles were highlighted in this talk:
 - Direct determination of the solution.
 - 2 Fall-back mechanism.
 - 3 Estimation of the solution.
 - Choice of the strategy to update the homotopy parameter:
 - Depends on the role of the homotopy algorithm.
 - Time independent behaviours remain a problem.

Outline

Homotopy methods at structural scale

Homotopy methods at structural scale

■ Mechanical equilibrium: find \(\Delta\vec{U}\) such as:

$$\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \vec{\mathbb{O}} \quad \text{ with } \quad \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \left. \vec{\mathbb{F}}_i \left(\Delta \vec{\mathbb{U}} \right) \right|_{t + \Delta \, t} - \left. \vec{\mathbb{F}}_e \right|_{t + \Delta \, t}$$

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \vec{\mathbb{O}} \quad \text{ with } \quad \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \left. \vec{\mathbb{F}}_{\textit{i}} \left(\Delta \vec{\mathbb{U}} \right) \right|_{t + \Delta \, t} - \left. \vec{\mathbb{F}}_{\textit{e}} \right|_{t + \Delta \, t}$$

element contribution to inner forces:

$$\begin{split} \vec{\mathbb{F}}_{i}^{e} &= \int_{V^{e}} \underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to}, \Delta t \right) : \underline{\mathbf{B}} \, \mathrm{d}V \\ &= \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to} \left(\vec{\eta}_{i} \right), \Delta t \right) : \underline{\underline{\mathbf{B}}} \left(\vec{\eta}_{i} \right) \right) w_{i} \end{split}$$

where $\underline{\mathbf{B}}$ gives the relationship between $\Delta \underline{\epsilon}^{to}$ and $\Delta \vec{\mathbb{U}}$

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \vec{\mathbb{O}} \quad \text{ with } \quad \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \left. \vec{\mathbb{F}}_i \left(\Delta \vec{\mathbb{U}} \right) \right|_{t + \Delta \, t} - \left. \vec{\mathbb{F}}_e \right|_{t + \Delta \, t}$$

element contribution to inner forces:

$$\vec{\mathbb{F}}_{i}^{e} = \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to} \left(\vec{\eta}_{i} \right), \Delta t \right) : \underline{\underline{\mathbf{B}}} \left(\vec{\eta}_{i} \right) \right) \mathbf{\textit{W}}_{i}$$

Resolution using the Newton-Raphson algorithm:

$$\Delta \vec{\mathbb{U}}^{n+1} = \Delta \vec{\mathbb{U}}^n - \left(\left. \frac{\partial \vec{\mathbb{R}}}{\partial \Delta \vec{\mathbb{U}}} \right|_{\Delta \vec{\mathbb{U}}^n} \right)^{-1} . \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n \right) = \Delta \vec{\mathbb{U}}^n - \underline{\underline{\mathbb{K}}}^{-1} . \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n \right)$$

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \vec{\mathbb{O}} \quad \text{ with } \quad \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}} \right) = \left. \vec{\mathbb{F}}_{\textit{i}} \left(\Delta \vec{\mathbb{U}} \right) \right|_{\textit{t} + \Delta \, \textit{t}} - \left. \vec{\mathbb{F}}_{\textit{e}} \right|_{\textit{t} + \Delta \, \textit{t}}$$

element contribution to inner forces:

$$\vec{\mathbb{F}}_{i}^{e} = \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta t} \left(\underline{\Delta}_{\underline{\epsilon}}^{to} \left(\vec{\eta}_{i} \right), \Delta t \right) : \underline{\underline{\mathbf{B}}} \left(\vec{\eta}_{i} \right) \right) \mathbf{w}_{i}$$

Resolution using the Newton-Raphson algorithm:

$$\Delta \vec{\mathbb{U}}^{n+1} = \Delta \vec{\mathbb{U}}^n - \underline{\underline{\mathbb{K}}}^{-1}.\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n\right)$$

element contribution to the stiffness:

$$\underline{\underline{\mathbb{K}}}^{e} = \sum_{i=1}^{N^{G}} {}^{t}\underline{\underline{\mathbf{B}}}(\vec{\eta}_{i}) : \frac{\partial \underline{\Delta}\underline{\sigma}}{\partial \underline{\Delta}\underline{\epsilon}^{to}}(\vec{\eta}_{i}) : \underline{\underline{\mathbf{B}}}(\vec{\eta}_{i}) w_{i}$$

 $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \epsilon^{lo}}$ is the consistent tangent operator

w M

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}} \Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{\textit{t}+\Delta \, \textit{t}} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{\textit{t}}$$

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}}\,\Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{\textit{t}+\Delta\,\textit{t}} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{\textit{t}}$$

This auxiliary problem is often used to provide a first estimate of the solution.

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}}\Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{t+\Delta t} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{t}$$

- This auxiliary problem is often used to provide a first estimate of the solution.
- Let define the residual $\vec{\mathbb{R}}^{\chi}$ as:

$$\vec{\mathbb{R}}^{\chi}\left(\Delta\vec{\mathbb{U}}\left(\chi\right),\chi\right)=\chi\,\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)+\left(1-\chi\right)\,\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)$$
 with $\chi\in\left[0,1\right]$.

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}}\Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{t+\Delta t} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{t}$$

- This auxiliary problem is often used to provide a first estimate of the solution.
- Let define the residual \mathbb{R}^{χ} as:

$$\vec{\mathbb{R}}^{\chi}\left(\Delta\vec{\mathbb{U}}\left(\chi\right),\chi\right)=\chi\,\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)+\left(1-\chi\right)\,\vec{\mathbb{R}}^{el}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)$$

with
$$\chi \in [0, 1]$$
.

• χ defines an homotopy between the (trivial) incremental elastic solution $\Delta \vec{\mathbb{U}}$ (0) and the solution of the initial non linear problem $\Delta \vec{\mathbb{U}}$ (1)

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}}\Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{t+\Delta t} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{t}$$

- This auxiliary problem is often used to provide a first estimate of the solution.
- Let define the residual \mathbb{R}^{χ} as:

$$\vec{\mathbb{R}}^{\chi}\left(\Delta\vec{\mathbb{U}}\left(\chi\right),\chi\right)=\chi\,\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)+\left(1-\chi\right)\,\vec{\mathbb{R}}^{el}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)$$

with $\chi \in [0, 1]$.

- χ defines an homotopy between the (trivial) incremental elastic solution $\Delta \vec{\mathbb{U}}$ (0) and the solution of the initial non linear problem $\Delta \vec{\mathbb{U}}$ (1)
- At fixed χ , the jacobian is:

$$\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}} = \chi \underline{\underline{\mathbb{K}}}^{el} + (1 - \chi) \underline{\underline{\mathbb{K}}}$$

m M

The residual of an incremental elastic resolution is:

$$\vec{\mathbb{R}}^{\textit{el}}\left(\Delta\vec{\mathbb{U}}\right) = \underline{\underline{\mathbb{K}}}^{\textit{el}}\Delta\vec{\mathbb{U}} - \left.\vec{\mathbb{F}}_{\textit{e}}\right|_{t+\Delta t} + \left.\vec{\mathbb{F}}_{\textit{i}}\right|_{t}$$

- This auxiliary problem is often used to provide a first estimate of the solution.
- Let define the residual \mathbb{R}^{χ} as:

$$\vec{\mathbb{R}}^{\chi}\left(\Delta\vec{\mathbb{U}}\left(\chi\right),\chi\right)=\chi\,\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)+\left(1-\chi\right)\,\vec{\mathbb{R}}^{el}\left(\Delta\vec{\mathbb{U}}\left(\chi\right)\right)$$

with $\chi \in [0, 1]$.

- χ defines an homotopy between the (trivial) incremental elastic solution $\Delta \vec{\mathbb{U}}$ (0) and the solution of the initial non linear problem $\Delta \vec{\mathbb{U}}$ (1)
- At fixed χ , the jacobian is:

$$\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}} = \chi \underline{\underline{\mathbb{K}}}^{el} + (1 - \chi) \underline{\underline{\mathbb{K}}}$$

The elastic stiffness can stabilize the real consistent tangent operator in many cases, i.e.

$$\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}} = \chi \underline{\underline{\mathbb{K}}}^{el} + (1 - \chi) \underline{\underline{\mathbb{K}}}$$

M M

■ By virtue of the implicit function theorem, assuming that $\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}$ is invertible:

$$\begin{split} \frac{\partial \Delta \vec{\mathbb{U}}}{\partial \chi} &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \chi} \\ &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{i}\right|_{t+\Delta t} \left(\Delta \vec{\mathbb{U}}\left(\chi\right)\right) - \left.\vec{\mathbb{F}}_{i}\right|_{t} - \underline{\underline{\mathbb{K}}}^{el} \Delta \vec{\mathbb{U}}\left(\chi\right)\right] \end{split}$$

■ By virtue of the implicit function theorem, assuming that $\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}$ is invertible:

$$\begin{split} \frac{\partial \Delta \vec{\mathbb{U}}}{\partial \chi} &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \chi} \\ &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{i}\right|_{t+\Delta t} \left(\Delta \vec{\mathbb{U}}\left(\chi\right)\right) - \left.\vec{\mathbb{F}}_{i}\right|_{t} - \underline{\underline{\mathbb{E}}}^{el} \Delta \vec{\mathbb{U}}\left(\chi\right)\right] \end{split}$$

This can be solved by a RK method with automatic χ-stepping with the initial value:

$$\Delta ec{\mathbb{U}} \left(0
ight) = \left(\underline{\underline{\mathbb{K}}}^{el}
ight)^{-1} \left[\left. ec{\mathbb{F}}_{e}
ight|_{t+\Delta \, t} - \left. ec{\mathbb{F}}_{i}
ight|_{t}
ight]$$

■ By virtue of the implicit function theorem, assuming that $\frac{\partial \vec{\mathbb{R}}^\chi}{\partial \Delta \vec{\mathbb{U}}}$ is invertible:

$$\begin{split} \frac{\partial \Delta \vec{\mathbb{U}}}{\partial \chi} &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \chi} \\ &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{i}\right|_{t+\Delta t} \left(\Delta \vec{\mathbb{U}}\left(\chi\right)\right) - \left.\vec{\mathbb{F}}_{i}\right|_{t} - \underline{\underline{\mathbb{E}}}^{el} \Delta \vec{\mathbb{U}}\left(\chi\right)\right] \end{split}$$

■ This can be solved by a RK method with automatic χ -stepping with the initial value:

$$\Delta \vec{\mathbb{U}}\left(0\right) = \left(\underline{\underline{\mathbb{K}}}^{el}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{e}\right|_{t+\Delta t} - \left.\vec{\mathbb{F}}_{i}\right|_{t}\right]$$

■ This provides an estimate of the solution $\Delta \vec{\mathbb{U}}$ (1) that can initialize the Newton resolution.

■ By virtue of the implicit function theorem, assuming that $\frac{\partial \mathbb{R}^{x}}{\partial \Delta \vec{\mathbb{U}}}$ is invertible:

$$\begin{split} \frac{\partial \Delta \vec{\mathbb{U}}}{\partial \chi} &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \chi} \\ &= -\left(\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{i}\right|_{t+\Delta t} \left(\Delta \vec{\mathbb{U}}\left(\chi\right)\right) - \left.\vec{\mathbb{F}}_{i}\right|_{t} - \underline{\underline{\mathbb{E}}}^{el} \Delta \vec{\mathbb{U}}\left(\chi\right)\right] \end{split}$$

■ This can be solved by a RK method with automatic χ -stepping with the initial value:

$$\Delta \vec{\mathbb{U}}\left(0\right) = \left(\underline{\underline{\mathbb{K}}}^{el}\right)^{-1} \left[\left.\vec{\mathbb{F}}_{e}\right|_{t+\Delta t} - \left.\vec{\mathbb{F}}_{i}\right|_{t}\right]$$

- This provides an estimate of the solution $\Delta \vec{\mathbb{U}}$ (1) that can initialize the Newton resolution.
- Assuming that $\frac{\partial \vec{\mathbb{R}}^{\chi}}{\partial \Delta \vec{\mathbb{U}}}$ is invertible, this method has strong convergence guarantees.

■ The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.

- The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.
- Performances depends on:

- The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.
- Performances depends on:
 - the order of the RK method.

- The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.
- Performances depends on:
 - the order of the RK method.
 - the criteria value used to accept RK steps:

- The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.
- Performances depends on:
 - the order of the RK method.
 - the criteria value used to accept RK steps:
 - a loose value may provide a poor estimate

- The implicit system is not solved directly, we "only" ensure that $\frac{d\vec{\mathbb{R}}^{\chi}}{d\chi}$ is null. This is why a final Newton resolution is required. This final Newton resolution may be limited to one evaluation of the residual.
- Performances depends on:
 - the order of the RK method.
 - the criteria value used to accept RK steps:
 - a loose value may provide a poor estimate
 - a strigent value is not required: accuracy is provided by the final Newton resolution.

