Presenting: 'Cryptographic primitives based on hard learning problems: Blum, Furst, Kearns, Lipton'

Vishvas Vasuki

April 19, 2009

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- Conclusion

What to look out for?

What to look out for?

• A new definition for hardness of learning.

What to look out for?

- A new definition for hardness of learning.
- A pseudorandom bit generator using hard to learn class of functions.

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- Conclusion

 Teach the computer difference between male face and female face by giving examples.

• Teach the computer difference between male face and female face by giving examples.

• Ask computer: Is female face

 Teach the computer difference between male face and female face by giving examples.

Conclusion

- Ask computer: Is define face?
- Computer wins if it succeeds with good probability.

Hardness of learning as a cryptographic assumption Pseudorandom generator from Hard to learn set of functions Conclusion

The binary classification problem formalized

• Known set of n features. Eg: Hairstyle, facial hair, moustache

• Known set of n features. Eg: Hairstyle, facial hair, moustache

Unknown classification function (concept)

$$c:\{0,1\}^n o \{M,F\}.$$
 Eg:

• Known set of n features. Eg: Hairstyle, facial hair, moustache

Unknown classification function (concept)

$$c: \{0,1\}^n \to \{M,F\}$$
. Eg:

 \bullet c belongs to a known set of functions, C_n . Eg: Polynomial sized DNF over n variables, Halfspaces etc..

Conclusion

• Known set of n features. Eg: Hairstyle, facial hair, moustache

Unknown classification function (concept)

$$c: \{0,1\}^n \to \{M,F\}$$
. Eg:

- c belongs to a known set of functions, C_n . Eg: Polynomial sized DNF over n variables, Halfspaces etc..
- See m(n) examples: $\{(s_1, c(s_1)), (s_2, c(s_2))..\} = (S, c(S)).$

Pseudorandom generator from Hard to learn set of functions Conclusion

• Known set of n features. Eg: Hairstyle, facial hair, moustache

The binary classification problem formalized

Unknown classification function (concept)

$$c: \{0,1\}^n \to \{M,F\}$$
. Eg:

- c belongs to a known set of functions, C_n . Eg: Polynomial sized DNF over n variables, Halfspaces etc..
- See m(n) examples: $\{(s_1, c(s_1)), (s_2, c(s_2))..\} = (S, c(S)).$
- Now, classify test set: $\{s'_1, s'_2, ...\}$.

• C_n : a set of classification functions $\{0,1\}^n \to \{0,1\}$. Their ensemble $C = \{C_n\}$.

- C_n : a set of classifiction functions $\{0,1\}^n \to \{0,1\}$. Their ensemble $C = \{C_n\}$.
- D_n : A distribution over inputs: $\{0,1\}^n$. Their ensemble: $D = \{D_i\}.$

Hardness of learning as a cryptographic assumption Pseudorandom generator from Hard to learn set of functions Conclusion

- Alg L, upon studying (S, c(S)) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $\leq \epsilon$ error rate.

•

• Alg L, upon studying (S, c(S)) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $< \epsilon$ error rate.

$$Pr_{S \sim D_n^{m(n)}, x \sim D_n}(L(S, c(S), x) = c(x)) \ge 1 - \epsilon$$

in time $poly(n, \frac{1}{\epsilon})$.

•

 $Pr_{S \sim D_n^{m(n)}, x \sim D_n}(L(S, c(S), x) = c(x)) \ge 1 - \epsilon$

• L learns C if you can say this $\forall c \in C_n, D_n, \forall n$.

•

- Alg L, upon studying (S, c(S)) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $< \epsilon$ error rate.
 - $Pr_{S \sim D_n^{m(n)}, x \sim D_n}(L(S, c(S), x) = c(x)) \ge 1 \epsilon$

in time
$$poly(n, \frac{1}{\epsilon})$$
.

- L learns C if you can say this $\forall c \in C_n, D_n, \forall n$.
- Else hard to learn.

Hardness of learning as a cryptographic assumption Pseudorandom generator from Hard to learn set of functions Conclusion

About computational learning theory

About computational learning theory

• Can you learn it in polynomial time?

Hardness of learning as a cryptographic assumption
Pseudorandom generator from Hard to learn set of functions
Conclusion

About computational learning theory

- Can you learn it in polynomial time?
- Is it hard to learn it in polynomial time?

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- Pseudorandom generator from Hard to learn set of functions
- Conclusion

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- 5 Conclusion

What do we really mean? A problem in hardness definition A new definition for hardness of learning

Some notation

• C_n : a set of classifiction functions $\{0,1\}^n \to \{0,1\}$.

- C_n : a set of classifiction functions $\{0,1\}^n \to \{0,1\}$.
- P_n : A distribution over C_n . Their ensemble: $P = \{P_n\}$.

- C_n : a set of classifiction functions $\{0,1\}^n \to \{0,1\}$.
- P_n : A distribution over C_n . Their ensemble: $P = \{P_n\}$.

• D_n : A distribution over inputs: $\{0,1\}^n$. Their ensemble: $D = \{D_i\}$.

Hardness of learning as a cryptographic assumption

Hardness of learning as a cryptographic assumption

• Want 'C is hard to learn' to be a cryptographic assumption.

Hardness of learning as a cryptographic assumption

- Want 'C is hard to learn' to be a cryptographic assumption.
- Any alg L should learn C only with negligible probability.

Hardness of learning as a cryptographic assumption

- Want 'C is hard to learn' to be a cryptographic assumption.
- Any alg L should learn C only with negligible probability.
- Take (P_n, D_n) . Pick classifier c using P_n . Pick many examples using D_n . Your alg cannot match c(x) with non negligible

probability.

Outline

- Outline
- 2 Introduction to Learning Theory
- Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- 5 Conclusion

Problem in hardness definition

Problem in hardness definition

 Even if you have efficient alg L to learn all but a tiny scattered subset of C, it is no good. C is 'hard to learn'.

Problem in hardness definition

 Even if you have efficient alg L to learn all but a tiny scattered subset of C, it is no good. C is 'hard to learn'.

 If 'Learning C is hard' were a cryptographic assumption, any proof of security built on this assumption would be worthless.
 L is strong enough to break this assumption, by cryptographic standards.

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- 5 Conclusion

 So, weaken hardness of learning defn or strengthen learnability defn.

- So, weaken hardness of learning defn or strengthen learnability defn.
- Pick $D_n \in D, P_n \in P, c \in P_n$.

- So, weaken hardness of learning defn or strengthen learnability defn.
- Pick $D_n \in D, P_n \in P, c \in P_n$.

• Alg L, upon studying S, c(S) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $\leq \epsilon$ error rate.

- So, weaken hardness of learning defn or strengthen learnability defn.
- Pick $D_n \in D, P_n \in P, c \in P_n$.

• Alg L, upon studying S, c(S) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $\leq \epsilon$ error rate.

 $Pr_{S \sim D_n^{m(n)}, x \sim D_n, c \in P_n}(L(S, c(S), x) = c(x)) \ge 1 - \epsilon$

- So, weaken hardness of learning defn or strengthen learnability defn.
- Pick $D_n \in D, P_n \in P, c \in P_n$.

• Alg L, upon studying S, c(S) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $\leq \epsilon$ error rate.

$$Pr_{S \sim D_n^{m(n)}, x \sim D_n, c \in P_n}(L(S, c(S), x) = c(x)) \ge 1 - \epsilon$$

• L learns C if you can say this $\forall P_n, D_n$.

- So, weaken hardness of learning defn or strengthen learnability defn.
- Pick $D_n \in D$, $P_n \in P$, $c \in P_n$.

• Alg L, upon studying S, c(S) in time $poly(n, \frac{1}{\epsilon})$, classifies new examples with $\leq \epsilon$ error rate.

$$Pr_{S \sim D_n^{m(n)}, x \sim D_n, c \in P_n}(L(S, c(S), x) = c(x)) \ge 1 - \epsilon$$

- L learns C if you can say this $\forall P_n, D_n$.
- Else hard to learn.

The new defintion, pictorially

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- Conclusion

• G_n takes n bits input, makes g(n) > n bits output.

- G_n takes n bits input, makes g(n) > n bits output.
- Any polynomial time alg T does not behave noticably differently on $y \sim U(\{0,1\}^{g(n)})$ and $g(x)|x \sim U(\{0,1\}^n)$.

- G_n takes n bits input, makes g(n) > n bits output.
- Any polynomial time alg T does not behave noticably differently on $y \sim U(\{0,1\}^{g(n)})$ and $g(x)|x \sim U(\{0,1\}^n)$.
- $G = \{G_n\}.$

- G_n takes n bits input, makes g(n) > n bits output.
- Any polynomial time alg T does not behave noticably differently on $y \sim U(\{0,1\}^{g(n)})$ and $g(x)|x \sim U(\{0,1\}^n)$.
- $G = \{G_n\}.$
- Now, construct a PRBG.

Construct PRBG from hard to learn P_n over C_n

Construct PRBG from hard to learn P_n over C_n

- Proof by contradiction: If you could break this PRBG, C_n not hard to learn wrt $(P_n, U(\{0,1\}^n))$.
- 1110011100111100001011001... 'Can I predict the next bit?'

Outline

- Outline
- 2 Introduction to Learning Theory
- 3 Hardness of learning as a cryptographic assumption
 - What do we really mean?
 - A problem in hardness definition
 - A new definition for hardness of learning
- 4 Pseudorandom generator from Hard to learn set of functions
- 5 Conclusion

 Things you can make from hard to learn set of functions: One way functions, A private key cryptosystem.

- Things you can make from hard to learn set of functions: One way functions, A private key cryptosystem.
- A pseudo random generator based on hardness of learning parity functions in the presence of noise.

- Things you can make from hard to learn set of functions: One way functions, A private key cryptosystem.
- A pseudo random generator based on hardness of learning parity functions in the presence of noise.
- They take more pains to relate the circuit size and depth required to evaluate functions in hard to learn C_n with the circuit depth and size of the primitives generated.

The take home message

The take home message

• Can use hardness of learning, properly defined, as a cryptographic assumption.

The take home message

- Can use hardness of learning, properly defined, as a cryptographic assumption.
- Can generically make pseudorandom bit generator from hard to learn but easy to evaluate classes of functions.

Bye!

