

Anfängerpraktikum 2015/2016

Der Millikan-Öltröpfchenversuch

Durchführung: 10.05.16

Clara RITTMANN 1 Anja Beck 2

Betreuer: Rigo Bause

 $^{^{1}} clara.rittmann@tu-dortmund.de\\$

 $^{^2{\}rm anja.beck@tu\hbox{-}dortmund.de}$

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	2
3	Aufbau und Ablauf des Experiments	3
4	Auswertung4.1 Auswahl der Tröpfchen	4 4 6 8
5	Diskussion	10

Versuch V503 Einleitung

1 Einleitung

Der Millikan-Öltröpfchenversuch erlaubte es in Jahr 1910 erstmalig, die Elementarladung e_0 mit großer Genauigkeit zu bestimmen. Dazu wird die Fallgeschwindigkeit von Öltröpfchen – ungehindert und mit angelegtem elektrischen Feld - bestimmt. Aus der Abweichung ergibt sich die Landung der Öltröpfchen. Sie ist eine ganzzahlige Vielfache der Elementarladung.

2 Theorie

Die fallenden Öltröpfchen sind so leicht, dass sie einen hohen Luftwiderstand erfahren und sich in Folge dessen mit einer konstanter Grenzgeschwindigkeit v_0 bewegen, anstatt stetig zu beschleunigen. Die Gewichtskraft F_g ausgrerückt über die Dichte der Luft ρ_L , der Dichte des Tropfens ρ_{Oel} und den Tropfenradius r

$$F_g = mg = V\rho_{eff}g = \frac{4}{3}\pi r^3(\rho_{Oel} - \rho_L)g \tag{1}$$

und die Stokesche Kraft F_s sind im Geleichgewicht

$$F_g = F_s \Rightarrow \frac{4}{3}\pi r^3 (\rho_{Oel} - \rho_L)g = 6\pi \eta_L r v_0 \quad . \tag{2}$$

Wobei η_L die Viskosität der Luft ist.

Ein von außen angelegtes elektrisches Feld soll gerade so stark sein, dass die Teilchen sich mit einer Geschwindigkeit v_{auf} nach oben bewegen, wenn die Kraft des Feldes dem Gravitationsfeld entgegen gerichtet ist. Bei einer Umpolung des Feldes sinkt das Teilchen mit der Geschwindigkeit v_{ab} .

$$\frac{4}{3}\pi r^3(\rho_{Oel} - \rho_L) - 6\pi \eta_L r v_{ab} = -qE \tag{3}$$

$$\frac{4}{3}\pi r^3(\rho_{Oel} + \rho_L) + 6\pi \eta_L r v_{auf} = qE \tag{4}$$

Unter Vernachlässigung der Dichte der Luft ($\rho_L \ll \rho_{Oel}$) folgen aus Gleichung (3) und (4) Formeln für die Radius r und die Ladung q der Öltröpfchen.

$$r = \sqrt{\frac{9\eta_L(v_{ab} - v_{auf})}{4g\rho_{Oel}}}\tag{5}$$

$$q = 3\pi \eta_L \sqrt{\frac{9\eta_L(v_{ab} - v_{auf})}{4g\rho_{Oel}}} \frac{v_{ab} + v_{auf}}{E}$$
(6)

In diesem Versuch muss noch ein zusätzlicher Korrekturterm eingeführt werden, da die Öltröpfchen kleiner als die freie Weglänge der Luft sind. Die Modifizierung ist abhängig vom Radius r, dem Luftdruck P und der Konstanten B

$$q^{2/3} = q_0^{2/3} (1 + \frac{B}{pr}) \quad , \tag{7}$$

mit

$$B = 6.17 \cdot 10^{-3} \,\text{Torr cm} = 8.2 \cdot 10^{-3} \,\text{Pa m}$$
 (8)

Aus den Radien, die durch Gleichung (2) und (5) für das Öltröpfehen berechnet werden können, folgt die zudem Beziehung

$$2v_0 = v_{ab} - v_{auf} \quad . \tag{9}$$

3 Aufbau und Ablauf des Experiments

Abbildung 1: Versuchsaufbau Millikan-Öltröpfchenversuch [V503]

Das zentrale Element des Millikan-Versuchs (siehe Abbildung 1) ist ein waagerechter Plattenkondensator in der sogenannten Millikan Kammer ③. Der Plattenabstand beträgt (7.6259 ± 0.0051) mm. In die Millikan Kammer werden mit Hilfe eines Zerstäubers kleine Öltröpfchen gegeben, die angestrahlt ⑧ und durch ein Mikroskop ⑤ am Bildschirm beobachtet werden. Eine Längenskala ⑥ erlaubt es, die von den Tropfen zurückgelegte Strecke genau zu bestimmen. Zusätzlich wird die Zeit mit einer Stoppuhr gemessen, sodass die Geschwindigkeit der Tropfen berechnet werden kann. Für jeden ausgewählten Tropfen wird eine Geschwindigkeit ohne angelegte Spannung und jeweils mehrereFall-/Steigeschwindigkeiten pro negativer/positiver Kondensatorspannung gemessen. Die Kondensatorspannung kann variiert werden ①, sollte jedoch 500 V nicht überschreiten. Falls die Tröpfchen zu wenige Ladungen tragen, können sie kurzzeitig mit einem radioaktiven Präparat ④ bestrahlt werden.

Aus den Messungen kann die Ladung und der Radius der Öltröpfchen berechnet werden und die Elementarladung als größte gemeinsame Vielfache der gemessenen Ladungen identifiziert werden. Des weiteren muss die Temperatur in der Kammer überprüft werden ②, um sicherzustellen, dass die Viskosität sich während der Messung nicht zu sehr ändert. ①

Versuch V503 Auswertung

4 Auswertung

Alle Berechnungen werden mit Python 3.5.1 durchgeführt.

4.1 Auswahl der Tröpfchen

Für jedes Elektron werden die Zeiten $t_{\text{auf}}, t_{\text{ab}}$ gemittelt (siehe Tabelle 1).

	t_0	$t_{ m auf}$	$\Delta t_{ m auf}$	$t_{ m ab}$	$\Delta t_{ m ab}$
Anton	23.15	13.5	0.5	9.20	0.19
Berta	54.53	6.9	0.1	5.13	0.12
Cäsar	14.06	8.4	0.2	4.28	0.61
Dora	27.27	8.7	0.1	6.47	0.11
Emil	36.67	5.8	0.6	3.52	0.10
Friedrich	17.16	10.0	0.2	4.364	0.063
Gustav	15.60	3.52	0.08	2.483	0.080
Heinrich	25.52	2.39	0.05	2.027	0.065
Ida	18.38	6.0	0.1	3.384	0.061
Julius	24.50	2.77	0.05	2.026	0.068
Kaufmann	32.18	3.8	0.2	2.75	0.12
Ludwig	13.21	8.8	0.2	4.004	0.088
Martha	21.87	4.10	0.06	2.94	0.13
Nordpol	21.20	3.70	0.09	3.207	0.053

Tabelle 1: Gemittelte und für die Rechnungen verwendeten Zeiten, alle Werte in s

Die während dieser Zeit zurückgelegte Strecke ist

$$s = 2.5 \cdot 10^{-3} \,\mathrm{m} \ . \tag{10}$$

Damit werden die Geschwindigkeiten $v_0, v_{\text{auf}}, v_{\text{ab}}$ in Tabelle 2 berechnet.

	v_0	v_{auf}	Δv_{auf}	$v_{ m ab}$	$\Delta v_{ m ab}$	a
Anton	0.11	0.185	0.007	0.272	0.006	0.60
Berta	0.05	0.361	0.007	0.49	0.01	-0.38
Cäsar	0.18	0.297	0.006	0.58	0.08	0.19
Dora	0.09	0.287	0.005	0.386	0.007	0.46
Emil	0.07	0.43	0.05	0.71	0.02	-1.04
Friedrich	0.15	0.251	0.005	0.573	0.008	-0.10
Gustav	0.16	0.71	0.02	1.01	0.03	0.07
Heinrich	0.10	1.04	0.02	1.23	0.04	0.03
Ida	0.14	0.415	0.007	0.74	0.01	-0.19
Julius	0.10	0.90	0.02	1.23	0.04	-0.62
Kaufmann	0.08	0.65	0.04	0.91	0.04	-0.65
Ludwig	0.19	0.283	0.006	0.62	0.01	0.10
Martha	0.11	0.610	0.009	0.85	0.04	-0.06
Nordpol	0.12	0.68	0.02	0.78	0.01	0.56

Tabelle 2: Geschwindigkeiten der Elektronen in 10^{-3} m/s und Abweichung a

Um die Richtigkeit der nachfolgenden Rechnungen zu gewährleisten wird Gleichung (9) überprüft. Dafür wird

$$v_{0,\text{exp}} = \frac{1}{2}(v_{\text{ab}} - v_{\text{auf}})$$
 (11)

berechnet und die Abweichung

$$a = \frac{v_0 - v_{0,\text{exp}}}{v_0} \tag{12}$$

bestimmt (siehe Tabelle 2). Die Elektronen, für die gilt

$$|a| \le 0.5 (13)$$

können zur weiteren Auswertung verwendet werden. Daher werden Anton, Emil, Julius, Kaufmann und Nordpol nicht mehr berücksichtigt.

4.2 Berechnung der Gesamtladung

Für die Berechnung der Ladungen (6) bzw. der Radien (5) werden verschiedene Größen gebraucht. Sie sind in Tabelle 3 aufgetragen. Die Spannungen werden direkt gemessen und ergeben zusammen mit dem Kondensator-Durchmesser d die, für die Ladung benötigte, Feldstärke

$$E = \frac{U}{d} \ . \tag{14}$$

Die Viskosität wird mit Hilfe der gemessenen Widerstände und Abbildung 3 bestimmt. Zunächst werden die Widerstände mit der Thermistor-Tabelle 2 in Temperaturen "übersetzt". Damit kann dann die Viskosität aus dem Diagramm abgelesen werden. Um Ablesefehler zu minimieren wird eine Geradengleichung durch die beiden gut lesbaren Punkte (17,1.82), (32,1.88) gelegt, mit der die Viskosität ausgerechnet wird:

$$\eta_{\rm L} = 4.7 \cdot 10^{-8} \, \frac{\rm N \, s}{\rm m^2 \, {}^{\circ} \rm C} (T - 273.15 \, {}^{\circ} \rm C) + 1.7 \cdot 10^{-5} \, \frac{\rm N \, s}{\rm m^2} \,.$$
 (15)

	U in V	T in K	$\eta_{\rm L}$ in $10^{-6}{ m Pas}$
Berta	250	305.15	18.800
Cäsar	250	305.15	18.800
Dora	250	306.15	18.847
Friedrich	280	307.65	18.917
Gustav	280	307.65	18.917
Heinrich	280	307.65	18.917
Ida	290	307.15	18.893
Ludwig	300	307.15	18.893
Martha	300	307.15	18.893

Tabelle 3: Viskosität von Luft η_L , am Kondensator angelegte Spannungen U

$\mathbf{T}[^{\circ}\mathbf{C}]$	$\mathbf{R} [\mathbf{M}\Omega]$	$T[^{\circ}C]$	$R [M\Omega]$	$T[^{\circ}C]$	$R [M\Omega]$
10	3.239	20	2.300	30	1.774
11	3.118	21	2.233	31	1.736
12	3.004	22	2.169	32	1.700
13	2.897	23	2.110	33	1.666
14	2.795	24	2.053	34	1.634
15	2.700	25	2.000	35	1.603
16	2.610	26	1.950	36	1.574
17	2.526	27	1.902	37	1.547
18	2.446	28	1.857	38	1.521
19	2.371	29	1.815	39	1.496

Abbildung 2: Thermistor-Widerstandstabelle [V503]

Eingesetzt in die Gleichungen (5) und (6) kann so der Radius und die Ladung jedes Öltröpfchens berechnet werden (siehe Tabelle 4). Wird nun die nötige Korrektur (7) beachtet, sind die Ladungen der Öltröpfchen fertig bestimmt (siehe Tabelle 5). Diese Werte werden in Abbildung 4 dargestellt.

 ${\bf Abbildung~3:}$ Viskosität der Luft als Funktion der Temperatur ${\bf [V503]}$

	r in μm	Δr in $\mu \mathrm{m}$	$q \text{ in } 10^{-18} \mathrm{C}$	Δq in $10^{-18}\mathrm{C}$
Berta	0.79	0.04	0.54	0.09
Cäsar	1.2	0.2	1.8	0.8
Dora	0.69	0.03	0.37	0.05
Friedrich	1.26	0.02	1.96	0.09
Gustav	1.21	0.07	1.7	0.3
Heinrich	1.0	0.1	0.9	0.3
Ida	1.26	0.03	1.9	0.1
Ludwig	1.29	0.03	2.0	0.1
Martha	1.09	0.08	1.2	0.3

Tabelle 4: Radius und unkorrigierte Ladung

	$q \text{ in } 10^{-18} \mathrm{C}$	Δq in 10^{-18} C
Berta	0.62	0.09
Cäsar	2.0	0.8
Dora	0.44	0.05
Friedrich	2.2	0.1
Gustav	1.9	0.3
Heinrich	1.0	0.3
Ida	2.1	0.1
Ludwig	2.2	0.1
Martha	1.3	0.3

Tabelle 5: Korrigierte Ladungen

4.3 Bestimmung der Elementarladung

Zur Bestimmung der Elementarladung wird der erste Wert

$$q_1 = q(r_{\min}) = (4.4 \pm 0.5) \cdot 10^{-19} \,\mathrm{C}$$
 (16)

als fest angenommen, das sein Fehler sehr klein ist. Im ersten Schritt wird angenommen, dass $q_1=e_0$. Die dicken Hilfslinien im Plot werden mit diesem Abstand aufgetragen, sodass eine Ladung nahe der fünften Linie dem fünffachen der angenommenen Elementarladung q_1 entspricht. Dabei sind die Datenpunkte allerdings sehr weit von den Linien entfernt. In jedem nächsten Schritt wird angenommen, dass $q_1=ne_0$. Die Hilfslinien sind demnach n-Mal so nah beieinander. Jedes Mal wird optisch überprüft, ob die Daten zufriedenstellend nahe an den Linien liegen. Natürlich gilt, dass die Linien beliebig nah an die Punkte gebracht werden können, wenn e_0 nur klein genug gewählt wird. Da aber ein endliches e_0 gesucht wird, muss das größtmögliche n bzw. e_0 gewählt werden. Bei n=3 ist die Nähe zwischen Daten und Linien zufriedenstellend. Dieser Plot ist in Abbildung 4 zu sehen.

Die Elementarladung kann nun berechnet werden, indem für jeden Datenpunkt überprüft wird, welcher dicken Linie er am nächsten liegt. Die Gesamtladung des Öltröpfchens wird dann durch die Nummer dieser Linie geteilt. Werden diese Ergebnisse gemittelt ergibt sich schließlich die Elementarladung

$$e_0 = (1.6 \pm 0.2) \cdot 10^{-19} \,\mathrm{C} \ .$$
 (17)

Abbildung 4: Zu sehen sind die Ladung der Öltröpfehen aufgetragen gegen ihren Radius. Die breiten schwarzen Hilfslinien sind das ein-, zwei-, drei-, etc. fache der vermuteten Elementarladung. Die schwachen grauen Linien sind die normalen Koordinatenlinien, die den Wert der Ladung anzeigen.

Versuch V503 Diskussion

5 Diskussion

Der berechnete Wert für die Elementarladung weicht nur 1.11 % vom Literaturwert [Walcher] ab. Das ist ein sehr zufriedenstellendes Ergebnis. Allerdings muss zugegeben werden, dass die verwendete Methode eher bestätigenden Charakter hat, da auch die Wahl $q_1 = 4e_0$ oder $q_1 = 5e_0$ graphisch schöne Lösungen sind. Um die Elementarladung tatsächlich bestimmen zu können, müssten mehr Elektronen und diese noch häufiger gemessen werden. Dann wären vermutlich eindeutige Ansammlungen von Datenpunkten bei bestimmten Werten zu sehen.

Die systematischen Fehler bei diesem Versuch beschränken sich auf den menschlichen Faktor bei der Zeitmessung, welcher allerdings durch wiederholte Messungen eingeschränkt wird.

Abbildungsverzeichnis

1 2 3 4	Versuchsaufbau Millikan-Öltröpfchenversuch [V503]	3 6 7	
	Elementarladung. Die schwachen grauen Linien sind die normalen Koordinatenlinien, die den Wert der Ladung anzeigen.	9	
	on, the den were der Eddung anzeigen.	Ü	
Γab	ellenverzeichnis		
1	Gemittelte und für die Rechnungen verwendeten Zeiten, alle Werte in s	4	
2	Geschwindigkeiten der Elektronen in 10^{-3} m/s und Abweichung $a \dots \dots \dots$	4	
3	Viskosität von Luft η_L , am Kondensator angelegte Spannungen U	6	
4	Radius und unkorrigierte Ladung	7	
5	Korrigierte Ladungen	7	
6	Messwerte	12	

Name	t_0	$t_{ m auf}$	$t_{ m ab}$	U	R					
Anton	23.15	12.04	9.41	250						
		12.96	8.92							
		13.12	9.93							
		15.38	8.70			Ida	18.38	6.30	3.29	290
		14.12	9.04					6.16	3.66	
Berta	54.53	7.27	5.41	250				5.58	3.10	
		7.06	5.20					5.61	3.38	
		6.52	5.15					6.06	3.47	
		6.86	4.75					6.30	3.33	
Cäsar	14.06	8.13	5.50	250				6.12	3.46	
		8.84	4.41			Julius	24.50	2.83	1.92	290
		8.32	2.94					2.70	2.00	
Dora	27.27	9.23	6.40	250				2.83	2.12	
		8.50	6.00					2.50	2.32	
		9.27	6.84					2.69	1.69	
		8.30	5.84					2.89	2.09	
		8.44	6.50					2.92	2.04	
		8.20	7.06			Kaufmann	32.18	2.95	2.73	290
		9.32	6.61					3.18	2.46	
		8.23	6.23					3.64	2.38	
		8.46	6.47					3.64	2.58	
		9.03	6.80					4.56	3.26	
Emil	36.67	5.30	3.64	280				4.52	2.70	
		4.66	3.68					4.32	3.13	
		5.33	3.58			Ludwig	13.21	9.10	4.06	300
		7.88	3.18					8.00	4.01	
Friedrich	17.16	11.15	4.03	280				9.52	4.04	
		9.67	4.41					8.50	4.07	
		9.73	4.43					9.01	4.40	
		9.10	4.40					9.72	3.49	
		8.95	4.55					8.23	4.16	
		10.15	4.21					8.56	3.80	
		10.56	4.72			Martha	21.87	3.81	3.01	300
		10.01	4.23					3.83	2.61	
		10.32	4.30					3.87	2.93	
Gustav	15.60	3.47	2.55	280				3.20	2.78	
		3.52	2.46					3.73	2.73	
		3.46	2.58					3.78	3.56	
		3.43	2.21			Nordpol	21.20	4.30	3.04	300
		3.92	2.29					3.83	3.32	
		3.32	2.81					4.07	3.03	
Heinrich	25.52	2.46	1.83	280				4.04	3.32	
		2.36	2.27					4.10	3.20	
		2.25	1.76					4.27	3.33	
		2.35	2.00							
		2.35	2.09							
		2.33	2.04							
		2.66	2.20							

Tabelle 6: Messwerte