2008 Arkansas Mathematics Competition Solutions

1. A function of two integers.

It is 3783. By an easy induction we have f(m,n)=f(m+k,n-k) for all m,n, and k, so

$$f(2008, 1776) = f(2008 + 1775, 1776 - 1775) = f(3783, 1) = 3783.$$

2. A real product.

They are the complex numbers of the form z = x - (2x + 2)i; i.e., x + yi; i.e., z = -2x - 2. We are looking for the complex numbers z = x + yi such that z = z + yi. We calculate

$$\Im(z+1)(\overline{z}-2i) = \Im(z\overline{z}+\overline{z}-2iz-2i) = \Im(x^2+y^2+x-yi-2i(x+yi)-2i) = -y-2x-2,$$

which is zero if and only if y = -2x - 2.

3. Difference of two terms.

 $a_{2008} - a_{2006} = 1/2$. Let d be the common difference $a_2 - a_1$. We have

$$S = \frac{1}{2}(a_1 + a_{2008})(2008) = 1004(a_1 + a_{2008})$$

and

$$2T = 1004(a_2 + a_{2008}) = 1004(a_1 + d + a_{2008}) = S + 1004d.$$

Then 251 = 2T - S = 1004d, so d = 1/4, and $a_{2008} - a_{2006} = 2d = 1/2$.

4. A multiple of 7.

As
$$2008 = 7 \cdot 286 + 6$$
,

$$2008^{8002} \equiv 6^{8002} \equiv (-1)^{8002} \equiv 1 \pmod{7}.$$

Similarly, $8002 = 7 \cdot 1143 + 1$, so

$$8002^{2008} \equiv 1^{2008} \equiv 1 \pmod{7},$$

and therefore

$$2008^{8002} - 8002^{2008} \equiv 0 \pmod{7}.$$

5. A global minimum.

The minimum value is $\sqrt[3]{49}$. Because the cube root is a strictly increasing function, f(x) takes its minimum value where $g(x) = f(x)^3$ does. Now,

$$g(x) = (3\sin x - 10)^2 - (4\cos x)^2$$

= $9\sin^2 x - 60\sin x + 100 - 16(1 - \sin^2 x)$
= $25\sin^2 x - 60\sin x + 84$
= $(5\sin x - 6)^2 + 48$.

Because $5 \sin x \le 5$, we have $(5 \sin x - 6)^2 \ge 1$, so $g(x) \ge 49$, and when $\sin x = 1$, g(x) = 49. Thus, the minimum value of g(x) is 49, and the minimum value of f(x) is $\sqrt[3]{49}$.

(The minimum value can also be found using the derivative, but this is a less tidy computation than the above.)

6. Probability of one white and one black.

The probability of one white and one black is 1/3. More generally, if there are n+1 urns numbered 0 to n with the k-th having exactly k black and n-k white marbles, the probability that one black and one white are drawn is 1/3. Let A_k be the event that the urn containing exactly k black balls is drawn and then one black and one white marble are drawn, and let $A = \bigcup_{k=0}^{n} A_k$ be the event that one black marble and one white are drawn. Then

$$P(A_k) = \frac{1}{n+1} \frac{\binom{k}{1} \binom{n-k}{1}}{\binom{n}{2}} = \frac{2k(n-k)}{(n+1)(n)(n-1)}.$$

The events A_k are mutually exclusive and their union is A, so

$$P(A) = \sum_{k=0}^{n} P(A_k) = \frac{2}{(n+1)(n)(n-1)} \left(n \sum_{k=0}^{n} k - \sum_{k=0}^{n} k^2 \right)$$

$$= \frac{2}{(n+1)(n)(n-1)} \left(\frac{n^2(n+1)}{2} - \frac{n(n+1)(2n+1)}{6} \right)$$

$$= \frac{2}{n-1} \left(\frac{n}{2} - \frac{2n+1}{6} \right) = \frac{2}{n-1} \cdot \frac{n-1}{6} = \frac{1}{3}.$$

7. Limit of a quotient.

The limit is r - as, for

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = \lim_{x \to a} \frac{xf(a) - af(a) + af(a) - af(x)}{x - a}$$

$$= \lim_{x \to a} \frac{(x - a)f(a) - a(f(x) - f(a))}{x - a}$$

$$= \lim_{x \to a} f(a) - a \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= f(a) - af'(a) = r - as.$$

8. Tangent of x + y.

We will show that $\tan(x+y) = 2008$. We have

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{1004}{1 - \tan x \tan y}.$$

Also,

$$2008 = \cot x + \cot y = \frac{1}{\tan x} + \frac{1}{\tan y} = \frac{\tan x + \tan y}{\tan x \tan y} = \frac{1004}{\tan x \tan y},$$

so $\tan x \tan y = 1/2$. Then

$$\tan(x+y) = \frac{1004}{1-1/2} = 2008.$$

9. Distance from the fourth corner.

The length $DP = \sqrt{145}$. Place the rectangle on a coordinate system with A at (0,0), B at (b,0) and D at (0,d). Let the coordinates of P be (x,y). Then

$$x^{2} + y^{2} = 64$$
, $(b-x)^{2} + y^{2} = 144$, and $(b-x)^{2} + (d-y)^{2} = 225$.

Note also that $DP^2 = x^2 + (d - y)^2$. Adding the first and third equations above and subtracting the second, we obtain

$$x^2 + (d - y)^2 = 145,$$

so
$$DP = \sqrt{145}$$
.

2008 Arkansas Mathematics Competition Solutions, p. 4 of 4

10. No real roots.

Let $P(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x = x(x-1)(x^4 + x^2 + 1)$. If $x \le 0$ or $x \ge 1$ then $P(x) \ge 0$ so $P(x) + \frac{3}{4} > 0$. Note that $x(x-1) = (x - \frac{1}{2})^2 - \frac{1}{4}$, so for 0 < x < 1 we have $-\frac{1}{4} \le x(x-1) < 0$, and $1 < x^4 + x^2 + 1 < 3$. It follows that

$$-\frac{3}{4} < x(x-1)(x^4 + x^2 + 1) < 0,$$

and therefore that $P(x) + \frac{3}{4} > 0$ again. Thus $P(x) + \frac{3}{4} > 0$ for all real x.