L3_3 LC-2KISA https://powcoder.com

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- Recognize the set of instructions for LC-2K Architecture (ISA) and be able to describe the operations and operands for each instruction
- Ability to create simple and branching.

 https://powcoder.com
- Understand and be able to replicate the encoding (translation from assembly to machine code) of that the encoding (translation from program

- 32-bit processor
 - Instructions are 32 bits
 - Integer registers are 32 bits Assignment Project Exam Help 4

always Tegtt

always

Contains

1

- 8 registers
- supports 65536 words of them dry (well essable space) ?
- 8 instructions in the following common categories:
 - Arithmetic: add
 - Logical: nor
 - Data transfer: lw, sw
 - Conditional branch: beq
 - Unconditional branch (jump) and link: jalr
 - Other: halt, noop

Instruction Encoding

 The Instruction Set Architecture (aka Architecture) defines the mapping of assembly instructions to machine code

Instruction Formats – R-type, I-type

- Tells you which bit fields correspond to which part of an assembly instruction
- R-type (register) add (signate by) i (Fig. 1)

31-25 24-22 21-19 https://spowcoder.com/-0

unused	opcode	regA	A de Bwe Chate dow de ster	
--------	--------	------	----------------------------	--

• I-type (immediate) - lw (opcode 010), sw (opcode 011), beq (opcode 100)

31-25 24-22 21-19

18-16

15-0

unused opcode regA regB offset

Instruction Formats – J-type, O-type

• J-type (jump) - jalr (opcode 101

• O-type (???) - halt (opcode 1140) Chaopo (opcde 111)

31-25	24-22	21-0
unused	opcode	unused

Instruction Formats

 The Instruction Set Architecture (aka Architecture) defines the mapping of assembly instructions to machine code

Instruction Type	Instruction	Bits 31-25 ASS1gnm	Bits 24-22 nent Proje	Bits 21-19 ect Exam	Bits 18-16 1 Help	Bits 15-3	Bits 2-0
R-type	add	unused http	opcode S://powco	reg A Oder.com	reg B l	unused	destReg
	nor						
I-type	lw	Ado	d WeChat	powcod	ler	offsetField 16-bit, 2's complement number range:[-32768, 32767]	
	SW						
	beq						
J-type	jalr					unused	
O-type	halt			unused			
	noop						

Unused: all unused bits should always be 0

Bit Encodings

- Opcode binary encodings:
 - add (000), nor (001), lw (010), sw (011), beq (100), jalr (101), halt (110)gnnon Kroject Exam Help

https://powcoder.com

- Register operands
 - Binary encoding of register hwhitehat spowereder = 010
- Immediate values
 - Binary encoding using 2's complement values
 - Give all available bits a value do not forget sign extension!

Encoding Example #1 - nor

Add WeChat powcoder

Encoding Example #1 - nor

opcode no = 001

Encoding Example #1 - nor

Convert to Hex \rightarrow 0x005C0007 Convert to Dec \rightarrow 6029319

Encoding Example #2 - 1w

Add WeChat powcoder

Encoding Example #2 - 1w

$$1 \text{ W } 5 \text{ 2} -8 \text{ (r2 = M[r5 + -8])}$$

$$31-25 \text{ 24-22} \text{ 21-19} \text{ Assignment Project Exam Help}$$

$$unused \text{ opcode } \text{ regA} \text{ regB} \text{ offset } \text{ 0-comf.}$$

$$Add \text{ WeChat powcoder.com}$$

$$Add \text{ WeChat powcoder.}$$

$$-8 \text{ (r2 = M[r5 + -8])}$$

$$2 = 0.00$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9 = 2.27$$

$$-9$$

Encoding Example #2 - 1w

Convert to Hex \rightarrow 0x00AAFFF8 Convert to Dec \rightarrow 11206648

Encoding Example #3 - add

Compute the encoding in Hex for:

```
add 3 7 3 (r3 = r3 + r7) (add = 000)

Assignment Project Exam Help
```

https://powcoder.com

Add WeChat powcoder

Encoding Example #3 - add

Compute the encoding in Hex for:

```
add 3 7 3 (r3 = r3 + r7) (add = 000)

Assignment Project Exam Help
```

https://powcoder.com

Add WeChat powcoder

Encoding Example #3 - add

add 000 3 011

Compute the encoding in Hex for:

Convert to Hex \rightarrow 0x001F0003 Convert to Dec \rightarrow 2031619

Encoding Example #4 - sw

Compute the encoding in Hex for:

```
sw 1 5 67 (M[r1+67] = r5) (sw = 011)

Assignment Project Exam Help
```

https://powcoder.com

Add WeChat powcoder

Encoding Example #4 - sw

• Compute the encoding in Hex for:

sw 1 5 67 (M[r1+67] = r5) (sw = 011)

Assignment Project Exam Help , 6

https://powcoder.com

Add We Chappowcoder 20/0000/1

ケル:多の11

Encoding Example #4 - sw

Compute the encoding in Hex for:

0000000 011 001 101 000000001000011

Convert to Hex \rightarrow 0x00CD0043 Convert to Dec \rightarrow 13434947

Assembler, aka, P1a

- Each line of assembly code corresponds to a number
 - "add 0 0 0" is just 0.
 - "lw 5 2 -8" is 1120664 nment Project Exam Help
- Assembly code is how people write instructions for an ISA
 - We only use assembly because it's easier to read.

Add WeChat powcoder

 Assembly code must be assembled (instructions encoded) to machine code for execution

Assembler Directive - .fill

- You might want a number to be, well, a number.
 - Data for lw, sw instructions will be added to LC-2K assembly code file
- .fill tells the assembler to pure humber instead of an instruction https://powcoder.com
- The syntax (to have a value of 7) is just woodefill 7
- Question:
 - What do .fill 7 and add 0 0 7 have in common?

Assembler Directive - .fill

- You might want a number to be, well, a number.
 - Data for lw, sw instructions will be added to LC-2K assembly code file
- .fill tells the assembler to pure humber instead of an instruction https://powcoder.com
- The syntax (to have a value of 7 is just woodefill 7
- Question:
 - What do .fill 7 and add 0 0 7 have in common?

Labels in LC-2K

- Labels are used in lw/sw instructions or beq instruction
- Assignment Project Exam Help
 For lw or sw instructions, the assembler should compute offsetField to be equal to the address of the wabser.com
 - i.e. offsetField = address of the label Add WeChat powcoder
- For beq instructions, the assembler should translate the label into the numeric offsetField needed to branch to that label
 - i.e. PC+1+ offsetField = address of the label

Labels in LC-2K – Example #1

Labels are a way of referring to a line in an assembly-language program

Labels in LC-2K — Example #1

Labels are a way of referring to a line in an assembly-language program

```
loop beq 3 Assignment Project Exam Help noop beq 1 3 https://powcoder.com end halt Add WeChat powcoder
```

Labels in LC-2K — Example #1

Labels are a way of referring to a line in an assembly-language program

```
loop beq 3 4 end.
noop
beq 1 3 loophttps://powerlecing.use of labels with values
end halt

Add WeChat powcoder
instructions
```

loop is address 0 end is address 3

Program in LC-2K — Example

1. Encode program instructions 2. What does this program do?

```
loop lw 0 1 one add 1 1 1 Assignment Project Exam Help sw 0 1 one https://powcoder.com halt one .fill 1 Add WeChat powcoder
```

Program in LC-2K — Example

1. Encode program instructions 2. What does this program do?

```
add 1 1 1 Assignment Project Exam Help sw 0 1 one https://powcoder.com/halt Add WeChat powcoder
```

Program in LC-2K – Example

1. Encode program instructions 2. What does this program do?

```
test.as

loop lw 0 1 Assignment Project Exam Help add 1 1 1 https://powcode5&9&25

sw 0 1 one 12648452
halt 1 1 1 test.mc
```

Logistics

- This is the final of 3 videos for lecture 3
 - L3 1 ISAs Instructions and Memory
 - L2_2 Two's Complexignment Project Exam Help
 - L2 3 LC-2K ISA

- https://powcoder.com
 There are two worksheets for lecture 3
 - 1. Addressing and 2's complement powcoder
 - 2. LC-2K program encoding
- Complete the participation quiz for lecture 3 on Canvas
 - Due by 9/13 at 11:59 pm