SMART INDIA HACKATHON 2025

TITLE PAGE

- Problem Statement ID SIH25082
- Problem Statement Title- Mobile Travel Website for Capturing Trip Information
- Theme- Travel and tourism
- PS Category- Software
- Team ID-
- Team Name (Registered on portal)- Byte Breakers

Mobile Travel App for Capturing Trip_ Information

Problem Addressed:

Manual household surveys are slow, costly, and cover a limited population — leading to inadequate data for transportation planning.

Proposed solution:

A Web Application that captures trip-related data (origin, destination, time, mode, companions) to build accurate travel activity chains.

Innovation & Uniqueness:

Combines automatic detection (GPS, sensors) with user nudges for consent and missing info. Enables real-time, scalable data collection for NATPAC scientists.

TECHNICAL APPROACH

Technologies to be used:

•Frontend: React Native

Backend: Node.js, Express.js

Database: MongoDB (real-time sync, scalable)

•APIs: Location, motion sensors, user authentication

Methodology and process for implementation :

- Agile development with iterative sprints
- •User flowchart: Trip detection → User prompt → Consent → Data sync
- Modular architecture for easy updates and feature expansion

FEASIBILITY AND VIABILITY

Analysis of the feasibility:

- Proven tech stack (React Native + MongoDB) ensures scalability and cross-device compatibility
- Real-time data sync supports large-scale deployment

❖ Potential challenges and risks :

- Ensuring secure data transmission
- Balancing auto-detection with user privacy

Strategies for overcoming these challenges:

- End-to-end encryption for sensitive data
- •Modular APIs for flexible data capture and consent management.

IMPACT AND BENEFITS

❖ Potential impact on the target audience :

- NATPAC Scientists: Access to richer, real-time travel data
- Citizens: Less intrusive surveys, better transport planning
- Policy Makers: Data-driven infrastructure decisions

Benefits of the solution :

- •Social: Inclusive data from diverse demographics
- •Economic: Reduced survey costs, efficient resource allocation
- •Environmental: Supports sustainable transport planning via accurate modal data

PROJECT FLOW CHART

RESEARCH AND REFERENCES

Details / Links of the Reference and Research Work:

Benchmark Apps:

- Google Mobility Reports Aggregated mobility trends during COVID-19
- MIT Senseable City Lab Urban sensing and mobility research
- Moves App (archived): https://en.wikipedia.org/wiki/Moves_(app) (still relevant for historical context)

UI/UX Studies:

- Nielsen Norman Group (Mobile Usability): https://www.nngroup.com/articles/mobile-usability/
- Material Design Guidelines: https://m3.material.io/

❖ APIs & Tech Docs:

Browser Geolocation API: https://developer.mozilla.org/en-US/docs/Web/API/GeolocationAPI

Firebase Realtime Database: https://firebase.google.com/docs/database