

PAPER CODE	EXAMINER	DEPARTMENT	\mathbf{TEL}
CSE304		Computer Science and Software Engineering	

 2^{nd} SEMESTER 2017/2018 - Final Examination BACHELOR DEGREE - Year 4 MULTIAGENT SYSTEMS TIME ALLOWED: 2 Hours

INSTRUCTIONS

- 1. The examination paper has five questions.
- 2. You need to answer ALL questions.
- 3. To obtain full marks for each question, relevant and clear steps should be included in the answers.
- 4. Partial marks may be awarded depending on the degree of completeness and clarity of your answers.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM.

Question 1. [20 marks]

(a) Explain what you understand by a *hybrid agent architecture*. With the aid of an example, briefly describe the characteristics of the hybrid agent architecture including the overall operations and its layer interactions.

[7 marks]

(b) Give two examples to show how to cheat in Sealed-Bid Auctions?

[3 marks]

(c) Consider a 4-by-4 cell Vacuum World as follows:

	0	1	2	3
3		*	Н	
2			*	
1	Н			
0		R	*	

where "R" represents a robot, "H" represents a hole and "*" represents dirt.

- 1. Develop a set of rules (including predicates and actions) that can be used to describe the above 4-by-4 cell Vacuum World.
- 2. Use these rules to instruct the robot to clean up all the dirt starting from (0,1) while avoiding falling into any hole.

[10 marks]

Question 2. [20 marks]

(a) What is a Practical Reasoning?

[3 marks]

The following pseudo-code defines a control loop for a practical reasoning ("DBI: Beliefs-Desires-Intentions") agent:

```
1. B := B_0;
2. I := I_0;
3. while true do
      get next percept \rho;
4.
      B := brf(B, \rho);
5.
      D := options(B, I);
6.
      I := filter(B, D, I);
7.
      \pi := plan(B, I, Ac);
8.
      while true do
9.
10.
         \alpha := head(\pi);
11.
         execute(\alpha);
12.
         \pi := tail(\pi);
13.
         get\ next\ percept\ 
ho;
14.
         B := brf(B, \rho);
15.
         if reconsider(I, B) then
16.
           D := options(B, I);
17.
           I := filter(B, D, I);
18.
         end - if
19.
         if not sound(\pi, I, B) then
20.
           \pi := plan(B, I, Ac);
         end-if
21.
22.
        end - while
23. end - while
```

- (b) With reference to the above code, answer the following four questions:
 - 1. Discuss the commitment strategie(s) used in this code.
 - 2. What should be modified in this code if the commitment protocol "Single-minded commitment" is used?
 - 3. What should be modified in this code if the commitment protocol "Overcommitted" is used?
 - 4. What should be modified in this code if the commitment protocol "Opened-minded commitment" is used?

[8 marks]

PAPER CODE: CS304/17-18/S2/Final

Figure 1: Initial configuration

Figure 2: Goal configuration

- (c) Blocks World: Consider the initial configuration in Figure 1 and the goal configuration in Figure 2.
 - 1. Define a set (should be as small as possible) of predicates to describe the above configurations.
 - 2. Design a plan (which consists of a list of actions with "pre-condition list", "delete list" and "add list") that can be used to achieve the goal configuration, starting from the initial configuration.

[9 marks]

Question 3. [20 marks]

(a) Explain the main principles of a "subsumption architecture".

[3 marks]

(b) Design a subsumption architecture for the 4-by-4 cell Vacuum World shown in Question 1.(c) and use inhibition to coordinate the behaviors.

[7 marks]

(c) Explain what is meant by a $Contract\ Net\ Protocol\ (CNP)$ and briefly describe the five main stages of CNP. Also, give a practical example of a CNP.

[10 marks]

Question 4. [15 marks]

- (a) In the context of coalitional games, answer the following two questions:
 - 1. The core is always nonempty. If you think the statement is correct, then justify it. Otherwise, give a counterexample.
 - 2. Is the core always unique? If your answer is yes, then justify it. Otherwise, give a counterexample.

[4 marks]

(b) Consider the following weighted subgraph representation of a characteristic function:

Let ν be the characteristic function defined by the above subgraph. Give the values of $\nu(\{x\})$, $\nu(\{y\})$, $\nu(\{z\})$, $\nu(\{x,y\})$, $\nu(\{x,z\})$, and $\nu(\{x,y,z\})$.

[5 marks]

(c) Consider the coalitional game with agents $Ag = \{x, y, z\}$, characteristic function ν as defined in Question 4.(b), and $\nu(\varnothing) = 0$. Compute the Shapley values for the agents x, y, and z. You are required to show the relevant steps in your answers about how you have obtained the values.

[6 marks]

Question 5. [25 marks]

(a) Give an example to explain why " $a\ Pareto\ efficient\ outcome\ might\ not\ be\ good".$

[3 marks]

(b) Tom can play with strategies $\{A, B\}$; and Peter can play with strategies $\{C, D\}$. Consider the following *payoff* matrix:

	Tom A	Tom B
Peter C	(3,2)	(2,3)
Peter D	(2,0)	(0,2)

Answer the following three questions:

- 1. Determine if either Tom or Peter has any dominant strategy and justify your answer.
- 2. Identify all (pure strategy) Nash Equilibria and justify your answer (justification should consider all combinations of strategies applied from both Tom and Peter).
- Identify with justification, if any, the pairs that maximise the social welfare.

[8 marks]

(c) Some CSE304 tennis club members are asked by the club manager to vote among five coaches: Adam, Bob, Chuck, David and Evan. The preference is shown below:

Number of Voters	20	12	10	8	4
1^{st} choice	Adam	Bob	Bob	Chuck	David
2^{nd} choice	Chuck	David	Chuck	Adam	Chuck
3 rd choice	Bob	Chuck	Adam	David	Bob
4 th choice	David	Adam	David	Bob	Adam
5 th choice	Evan	Evan	Evan	Evan	Evan

With reference to the above preference, answer the following four questions with justifications:

- 1. How many votes are needed to obtain a majority?
- 2. Who is the elected coach if the club manager uses the plurality method to count the votes?
- 3. Is there a Condorcet candidate in the above election?

PAPER CODE: CS304/17-18/S2/Final

4. Calculate the winner using a sequential pairwise voting with the agenda: Adam, Bob, Chuck, Evan.

[9 marks]

(d) The same election is to be decided by the *Borda count method* with 250 CSE304 tennis club members/voters. If Adams gets 442 points, Bob gets 1210 points, Chucks gets 1888 points, and Evan gets 10 points, how many points does David obtain? Who wins the election?

[3 marks]

(e) Explain why a Condorcet candidate is also a majority candidate.

[2 marks]

END OF PAPER

PAPER CODE: CS304/17-18/S2/Final

Page 8 of 8