ADVANCED BAYESIAN MODELING

Rat Growth Data Example: JAGS Analysis

$$y_{ij}=$$
 weight of rat j at age x_i (days) $i=1,\ldots,5$ $j=1,\ldots,30$
$$x_1=8 \qquad x_2=15 \qquad x_3=22 \qquad x_4=29 \qquad x_5=36$$

To aid computation, use centered ages:

$$x_i^{\mathsf{cent}} = x_i - \bar{x}$$

> ratgrowth <- read.csv("ratgrowth.csv", header=TRUE)</pre>

> head(ratgrowth)

	day8	day15	day22	day29	day36
1	151	199	246	283	320
2	145	199	249	293	354
3	147	214	263	312	328
4	155	200	237	272	297
5	135	188	230	280	323
6	159	210	252	298	331

Note: Index j corresponds to rows, index i to columns.

We fit normal-theory model

$$y_{ij} \mid \beta^{(j)}, \sigma_y^2, x_i \sim \text{indep. N}(\beta_1^{(j)} + \beta_2^{(j)} x_i^{\text{cent}}, \sigma_y^2)$$

$$\beta^{(j)} \mid \mu_\beta, \Sigma_\beta \sim \text{iid N}(\mu_\beta, \Sigma_\beta)$$

$$\mu_{eta} = \begin{pmatrix} \mu_{eta_1} \\ \mu_{eta_2} \end{pmatrix} \qquad \qquad \Sigma_{eta} = \begin{pmatrix} \sigma_{eta_1}^2 &
ho \, \sigma_{eta_1} \sigma_{eta_2} \\
ho \, \sigma_{eta_1} \sigma_{eta_2} & \sigma_{eta_2}^2 \end{pmatrix}$$

Parameters of interest include σ_y^2 , μ_{β_1} , μ_{β_2} , $\sigma_{\beta_1}^2$, $\sigma_{\beta_2}^2$, and ρ .

Using centered predictors implies that the intercept $\beta_1^{(j)}$ represents predicted weight at the average age ($\bar{x}=22$).

Simple least squares analyses can guide choice of priors and initialization:

We need to choose proper priors:

$$\sigma_y^2 \sim \text{Inv-gamma}(0.0001, 0.0001)$$

$$\mu_\beta \sim \text{N}(0, 1000^2 I)$$

$$\Sigma_\beta^{-1} \sim \text{Wishart}_2(\Sigma_0^{-1}/2)$$

To ensure scaling is not grossly incorrect, let

$$\Sigma_0 = \begin{pmatrix} 100 & 0 \\ 0 & 0.1 \end{pmatrix}$$

based on preliminary least squares results.

```
data {
  dimY <- dim(weight)</pre>
  agecent <- age - mean(age)
model {
  for (j in 1:dimY[1]) {
    for (i in 1:dimY[2]) {
      weight[j,i] ~ dnorm(beta[1,j] + beta[2,j]*agecent[i], sigmasqvinv)
    beta[1:2,j] ~ dmnorm(mubeta, Sigmabetainv)
  mubeta ~ dmnorm(mubeta0, Sigmamubetainv)
  Sigmabetainv ~ dwish(2*Sigma0, 2)
  sigmasqyinv ~ dgamma(0.0001, 0.0001)
  Sigmabeta <- inverse(Sigmabetainv)</pre>
  rho <- Sigmabeta[1,2] / sqrt(Sigmabeta[1,1] * Sigmabeta[2,2])</pre>
  sigmasqy <- 1/sigmasqyinv
```

Note:

- ► Age centering performed in data block
- ► Explicit row range in beta[1:2, j] needed for JAGS to determine dimension
- ▶ inverse computes matrix inverse

Set up data and constants:

Set up initializations (extreme relative to data) for 4 chains:

```
inits1 <- list(list(sigmasqvinv = 10, mubeta = c(1000, 1000),
                   Sigmabetainv = rbind(c(100, 0),
                                        c(0, 100))
               list(sigmasqvinv = 0.001, mubeta = c(-1000, 1000),
                    Sigmabetainv = rbind(c(100, 0),
                                         c(0.100)).
               list(sigmasqyinv = 10, mubeta = c(1000, -1000),
                   Sigmabetainv = rbind(c(0.001, 0),
                                         c(0, 0.001)),
               list(sigmasqvinv = 0.001, mubeta = c(-1000, -1000),
                    Sigmabetainv = rbind(c(0.001, 0),
                                         c(0, 0.001)))
```

Note: Only top-level nodes are initialized.

Note: Monitoring the full matrix Sigmabeta (including both off-diagonal elements)

> gelman.diag(x1, autoburnin=FALSE, multivariate=FALSE)
Potential scale reduction factors:

	Point est.	Upper C.I.
Sigmabeta[1,1]	1.31	2.03
Sigmabeta[2,1]	1.30	1.67
Sigmabeta[1,2]	1.30	1.67
Sigmabeta[2,2]	1.31	2.09
mubeta[1]	2.39	12.94
mubeta[2]	31.95	199.76
sigmasqy	7.92	48.96

Clearly requires more burn-in.

Remark: multivariate=FALSE because of a singularity issue

Chains eventually appear to converge by 31000 iterations (not shown).

Now compute the iterations to be used for inference:

```
> x1 <- coda.samples(m1, c("beta", "mubeta", "Sigmabeta", "sigmasqy", "rho"),</pre>
                   n.iter=2000)
  I **************** 100%
> effectiveSize(x1[,c("mubeta[1]","mubeta[2]","Sigmabeta[1,1]","Sigmabeta[1,2]",
                    "Sigmabeta[2,2]", "sigmasqy", "rho")])
+
    mubeta[1]
                  mubeta[2] Sigmabeta[1.1] Sigmabeta[1.2] Sigmabeta[2.2]
     7528.876
                   5263.405
                                6756.783 4983.577
                                                           3174,161
     sigmasqy
                       rho
     2809.634
                  3059.025
```

Iterations = 31001:33000
Thinning interval = 1
Number of chains = 4
Sample size per chain = 2000

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

	Mean	SD	Naive SE	Time-series SE
mubeta[1]	242.6663	2.74148	0.030651	0.031593
mubeta[2]	6.1867	0.10715	0.001198	0.001478
Sigmabeta[1,1]	217.3919	61.70650	0.689900	0.751189
Sigmabeta[1,2]	4.9700	1.96815	0.022005	0.027941
Sigmabeta[2,2]	0.2694	0.09612	0.001075	0.001707
sigmasqy	37.6433	5.87822	0.065720	0.111669
rho	0.6478	0.13426	0.001501	0.002431

2. Quantiles for each variable:

	2.5%	25%	50%	75%	97.5%
mubeta[1]	237.2535	240.8789	242.6421	244.4544	248.0520
mubeta[2]	5.9758	6.1160	6.1865	6.2576	6.3993
Sigmabeta[1,1]	127.9961	173.6677	207.4945	250.1384	365.0139
Sigmabeta[1,2]	1.9920	3.6102	4.6657	6.0064	9.6293
Sigmabeta[2,2]	0.1276	0.2025	0.2550	0.3186	0.5031
sigmasqy	28.0428	33.4059	37.0914	41.1130	50.5589
rho	0.3369	0.5699	0.6658	0.7464	0.8567

Note: ρ is almost certainly positive.

Plot estimates of marginal posterior densities:

Density of Sigmabeta[2,2]

Density of sigmasqy

Density of rho

44

Compute JAGS version of DIC:

Mean deviance: 967.7

penalty 51.68

Penalized deviance: 1019

Effective number of parameters: about 52

Actual number of parameters: 60 $(\beta^{(j)}s) + 1 (\sigma_y^2) + 2 (\mu_\beta) + 3 (\Sigma_\beta)$

Alternative JAGS model using a scaled inverse Wishart:

```
data {
  dimY <- dim(weight)</pre>
  agecent <- age - mean(age)
model {
  for (j in 1:dimY[1]) {
    for (i in 1:dimY[2]) {
      weight[j,i] ~ dnorm(beta[1,j] + beta[2,j]*agecent[i], sigmasqyinv)
    beta[1:2,j] \leftarrow mubeta + xi * eta[,j]
    eta[1:2,j] ~ dmnorm(zeros2, Sigmaetainv)
  xi[1] ~ dunif(0,1000)
  xi[2] ~ dunif(0,1000)
```

(continued...)

```
mubeta ~ dmnorm(mubeta0, Sigmamubetainv)
Sigmaetainv ~ dwish(identity2x2, 3)
sigmasqyinv ~ dgamma(0.0001, 0.0001)
Sigmaeta <- inverse(Sigmaetainv)
sigmasqbeta[1] <- xi[1]^2 * Sigmaeta[1,1]
sigmasqbeta[2] <- xi[2]^2 * Sigmaeta[2,2]
rho <- Sigmaeta[1,2] / sqrt(Sigmaeta[1,1] * Sigmaeta[2,2])
sigmasqy <- 1/sigmasqyinv</pre>
```

Constants zeros2 and identity2x2 are specified with the data.

Remark: Convergence requires more iterations.