Последнее обновление: 29.12.12

Часть 1. Качественные задачи.

- 1.1. Чем обусловлена способность теплового излучения находится в равновесии с излучающими телами?
- 1.2. Объясните появление резкой границы излучения в области малых длин волн в спектре тормозного рентгеновского излучения.
- 1.3. Чем обусловлено появление одновременно смещённой и несмещённой компонент в спектре рассеяния рентгеновского излучения веществом (эффект Комптона)?
- 1.4. Как зависит интенсивность смещённой и несмещённой компонент в спектре рассеяния рентгеновского излучения веществом (эффект Комптона) от атомного номера рассеивающего вещества?
- 1.5. Почему спектральная плотность энергетической светимости в области рентгеновских лучей уменьшается до нуля?
- 1.6. Объясните, почему солнечным днём окна домов со стороны улицы кажутся чёрными?
- 1.7. Фарфоровая чашка, имеющая на светлом фоне тёмный рисунок, нагревается в печи до высокой температуры. Объясните, почему при рассмотрении чашки в темноте наблюдается светлый рисунок на тёмном фоне?
- 1.8. Имеются два одинаковых чайника, в которых до одинаковой температуры нагрели одинаковое количество воды. Один чайник закопчён, другой чистый. Объясните, какой из чайников остынет быстрее и почему?
- 1.9. Поясните экспериментальный результат: если в спектре излучения атомарного водорода наблюдается серия Лаймана, то наблюдаются и все прочие спектральные серии: Бальмера, Пашена и пр. Напротив, в спектре поглощения несветящегося атомарного водорода наблюдается только серия Лаймана, а все прочие серии не наблюдаются.
- 1.10. Объясните, почему спектр атома водорода не обрывается на границе серии, а продолжается в сторону более коротких волн, где он становится сплошным?
- 1.11. Чем обусловлено изотопическое смещение спектральных линий?
- 1.12. Освещая поочерёдно фотокатод двумя разными монохроматическими источниками, находящихся на одинаковом расстояниях от катода, получили две зависимости фототока от напряжения между катодом и анодом (рис. 1). Объясните, в чём отличие этих источников.
- 1.13. На рисунке 2 схематически представлены вольт-амперные характеристики (кривые 1, 2 и 3) фотоэффекта для одного и того же металла. Объясните причину отличия этих кривых.
- 1.14. Проявляются ли волновые свойства фотонов в явлениях фотоэффекта?
- 1.15. При эффекте Комптона длина волны смещённой компоненты увеличивается. А возможно ли обратное (уменьшение длины волны)?

- 1.16. Как меняется интенсивность смещённой и несмещённой компонент в эффекте Комптона при изменении угла рассеяния?
- 1.17. Как изменится график зависимости спектральной плотности энергетической зависимости абсолютно чёрного тела при изменении температуры?

Часть 2. Тепловое излучение.

2.1. На поверхность с поглощательной способностью $\alpha=0.5$, находящуюся в равновесии с излучением, падает поток лучистой энергии Φ . Какой поток Φ распространяется от поверхности по всем направлениям в пределах телесного угла 2π ? За счёт чего образуется этот поток?

2.2. При переходе от температуры T_1 к температуре T_2 площадь, ограниченная графиком функции распределения плотности энергии равновесного излучения по длинам волн, увеличивается в 16 раз. Как изменяется при этом длина волны λ_m , на которую приходится максимум испускательной способности абсолютно чёрного тела? Решение: 2.3. Энергетическая светимость абсолютно чёрного тела $R^* = 250 \text{ кBt/m}^2$. На какую длину волны λ_m приходится максимум испускательной способности этого тела? *Решение*:

- 2.4. Найти среднюю энергию $\langle \varepsilon \rangle$ квантового осциллятора при температуре T. Частота осциллятора равна ω . Вычислить среднюю энергию $\langle \varepsilon \rangle$ квантового осциллятора для:
 - а) частоты ω_1 , отвечающей условию $\hbar\omega_1=kT$;
 - б) частоты $\omega_2 = 0.1 \, \omega_1;$
 - в) частоты $\omega_3 = 10 \, \omega_1$.

Выразить $\langle \varepsilon \rangle$ через kT. Сравнить найденные значения со средней энергией $\langle \varepsilon \rangle_{\kappa n}$ классического осциллятора.

2.5. Найти:

- а) температурную зависимость частоты ω_m , на которую приходится максимум функции $f(\omega,T)$ определяющей испускательную способность абсолютно чёрного тела;
- б) значение произведения $\lambda_m \omega_m$, где λ_m длина волны, отвечающая максимуму функции $\varphi(\omega,T)$. Сравнить это значение с $2\pi c$.

- 2.6. Поверхность Солнца близка по своим свойствам к абсолютно чёрному телу. Максимум испускательной способности приходится на длину волны $\lambda_m=0.50$ мкм (в излучении Солнца, прошедшем через атмосферу и достигшем поверхности Земли, максимум приходится на $\lambda=0.55$ мкм). Определить:
 - а) температуру T солнечной поверхности;
 - б) энергию E, излучаемую Солнцем за 1 секунду за счёт излучения;
 - в) массу m, теряемую Солнцем в 1 секунду за счёт излучения;
 - г) примерное время τ , за которое масса Солнца уменьшилась бы за счёт излучения на 1%, если бы температура Солнца оставалась постоянной.

2.7. Полагая, что Солнце обладает свойствами абсолютно чёрного тела, определить интенсивность I солнечного излучения вблизи Земли за пределами её атмосферы (эта интенсивность называется солнечной постоянной). Температура солнечной поверхности $T=5785~{\rm K}.$

2.8. На корпусе космической лаборатории, летящей вокруг Солнца по круговой орбите, радиус которой R равен среднему расстоянию от Земли до Солнца, установлено устройство, моделирующее абсолютно чёрное тело. Наружная поверхность оболочки этого устройства является идеально отражающей. Отверстие в оболочке всё время обращено к Солнцу. Пренебрегая теплообменом через крепление устройства к корпусу лаборатории, определить равновесную температуру T, которая установится внутри устройства. Температуру солнечной поверхности T_C принять равной $5800~{\rm K}.$

2.9. Начальная температура теплового излучения T=2000 К. На сколько кельвинов изменилась эта температура, если наиболее вероятная длина волны в его спектре увеличилась на $\Delta\lambda=0.25$ мкм?

2.10.	Найти наиболее	вероятную	длину	волны	В	спектре	теплового	излучения	c	энергети	1-
	ческой светимостью $M=5.7~{ m Bt/cm}^2.$										

- 2.11. Зная, что давление теплового излучения p=u/3, где u плотность энергии излучения найти:
 - а) давление теплового излучения во внутренних областях Солнца, где температура $T\approx 1,6\cdot 10^7~{
 m K};$
 - б) температуру полностью ионизированной водородной плазмы плотностью $\rho=0.10~{\rm г/cm}^3$, при которой давление излучения равно кинетическому давлению частиц плазмы (при высоких температурах вещества подчиняются уравнению состояния для идеальных газов).

2.12. Медный шарик радиусом r=10,0 мм с абсолютно черной поверхностью поместили в откачанный сосуд, температура стенок которого поддерживается близкой к абсолютному нулю. Начальная температура шарика $T_0=300~{\rm K}$. Через сколько времени его температура уменьшится в $n=1,50~{\rm pasa}$? Удельная теплоёмкость меди $c=0,38~{\rm Дж/(r\cdot K)}$.

2.13. Вычислить с помощью формулы Планка мощность излучения единицы поверхности абсолютно черного тела в интервале длин волн, отличающихся не более чем на $\eta=0.50\%$ от наиболее вероятной длины волны при $T=2000~{
m K}$.

2.14. Имеется два абсолютно чёрных источника теплового излучения. Температура одного из них $T_1=2500~{
m K}$. Найти температуру другого источника, если длина волны, отвечающая максимуму его испускательной способности, на $\Delta\lambda=0.50~{
m mkm}$ больше длины волны, соответствующей максимуму испускательной способности первого источника.

2.15. Температура поверхности Солнца $T_0=5500~{
m K}$. Считая, что поглощательная способность Солнца и Земли равна единице и что Земля находится в состоянии теплового равновесия, оценить её температуру.

- 2.16. Полость объёмом V=1,0 л заполнена тепловым излучением при температуре $T=1000~{
 m K}.$ Найти:
 - а) теплоёмкость C_V ;
 - б) энтропию S этого излучения.

2.17. Найти уравнение адиабатического процесса (в переменных $V,\,T$), проводимого с тепловым излучением, имея в виду, что между давлением и плотностью энергии теплового излучения существует связь p=u/3.

Часть 3. Корпускулярные свойства электромагнитного излучения.

3.1. Короткий импульс света энергией E=7.5 Дж падает узким пучком на зеркальную пластинку с коэффициентом отражения ho=0.60. Угол падения $\vartheta=30^\circ$. Найти импульс, переданный пластинке.

3.2. Найти с помощью корпускулярных представлений силу светового давления, которую оказывает плоский световой поток с интенсивностью I=1,0 Вт/см 2 на плоскую зеркальную поверхность, если угол падения $\vartheta=30^\circ$ и площадь освещаемой поверхности S=10 см 2 .

3.3. Плоский световой поток интенсивностью I Вт/см 2 , освещает одну половину шара с зеркальной поверхностью. Радиус шара R. Найти с помощью корпускулярных представлений силу светового давления, испытываемую шаром.

3.4. Над центром круглой абсолютно зеркальной пластинки радиусом R находится точечный источник света мощностью P. Расстояние между источником и пластинкой l. Найти с помощью корпускулярных представлений силу светового давления, которую испытывает пластинка. Рассмотреть также случаи $R \ll l$ и $R \gg l$.

3.5. Найти длину волны коротковолновой границы сплошного рентгеновского спектра, если известно ,что после увеличения напряжения на рентгеновской трубке в $\eta=2,0$ раза эта длина волны изменилась на $\Delta\lambda=50$ пм.

3.6. Вычислить скорость электронов, подлетающих к антикатоду рентгеновской трубки, если длина волны коротковолновой границы сплошного рентгеновского спектра $\lambda_{min}=157~\mathrm{nm}$.

3.7. Найти работу выхода с поверхности некоторого металла, если при поочерёдном освещении его электромагнитным излучением с длинами волн $\lambda_1=0.35$ мкм и $\lambda_2=0.54$ мкм максимальные скорости фотоэлектронов отличаются в $\eta=2.0$ раза. Решение: 3.8. Медный шарик, отделённый от других тел, облучают электромагнитным излучением с длиной волны $\lambda=0{,}200\,$ мкм. До какого максимального потенциала зарядится шарик?

3.9. Фотон с длиной волны $\lambda=17.0$ пм вырывает из покоящегося атома электрон, энергия связи которого E=69.3 кэВ. Найти импульс, переданный атому в результате этого процесса, если электрон вылетел под прямым углом к направлению налетающего фотона.

3.10. Показать, что свободный электрон не может излучить световой квант, так как если предположить, что электрон излучает световой квант, то не будут выполняться одновременно закон сохранения импульса и закон сохранения энергии.

- 3.11. Фотон с длиной волны $\lambda=3.64$ пм рассеялся на покоящемся свободном электроне так, что кинетическая энергия электрона отдачи составила $\eta=25\%$ от энергии налетевшего фотона. Найти:
 - а) комптоновское смещение длины волны рассеянного фотона;
 - б) угол ϑ , под которым рассеялся фотон.

3.12. Фотон испытал рассеяние на покоящемся свободном электроне. Найти импульс налетевшего фотона, если энергия рассеянного фотона равна кинетической энергии электрона отдачи при угле 90° между направлениями их разлета.

3.13. В результате столкновения фотона с покоящимся свободным электроном углы, под которыми рассеялся фотон и отлетел электрон отдачи, оказались одинаковыми и угол между направлениями их движения $\vartheta=100^\circ$. Найти длину волны фотона до столкновения.

3.14. Фотон с энергией $\hbar\omega$ испытал столкновение с электроном, который двигался ему на встречу. В результате столкновения направление движения фотона изменилось на противоположное, а его энергия осталась прежней. Найти скорость электрона до и после столкновения.

3.15. Средняя длина волны излучения лампочки накаливания с металлической спиралью равна 1200 нм. Найти число фотонов, испускаемых 200-ваттной лампочкой в единицу времени.

3.16. Во сколько раз изменение длины волны фотона при комптоновском рассеянии на свободном электроне превосходит аналогичное изменение при рассеянии на свободном протоне при одинаковых углах рассеяния?

3.17. Фотон с длиной волны $\lambda=0{,}0024$ нм после рассеяния на электроне движется в прямо противоположном направлении. С какой скоростью v должен двигаться электрон, чтобы частота фотона при рассеянии не изменилась?

Часть 4. Рассеяние частиц. Формула Резерфорда.

- 4.1. Исходя из томпсоновской модели атома, определить:
 - а) радиус атома водорода, энергия ионизации которого 13,6 эВ;
 - б) частоту колебаний электрона, если радиус атома водорода равен r. При каком значении r длина волны испускаемого света равна 0.6 мкм?

Решение:

Согласно томпсоновской модели атом представляет собой непрерывно положительно заряженный шар, внутри которого находятся электроны, колеблющиеся около своих положений равновесия.

a)

$$E_1 = kr\frac{e}{R^3}, \quad E_2 = k\frac{e^2}{r^2};$$

$$E_{uoh} = \int\limits_0^R E_1 e \, dr + \int\limits_R^\infty E_2 e \, dr = \int\limits_0^R kr\frac{e^2}{R^3} + \int\limits_R^\infty kr\frac{e^2}{r^2} = \frac{ke^2}{2R} + \frac{ke^2}{R} = \frac{3ke^2}{2R}.$$

Откуда: $R = \frac{3ke^2}{2E_{you}}$.

б)

$$E_{\rm shym} = kr \frac{e}{R^3}, \quad F = -e \cdot E = -kr \frac{e^2}{R^3}.$$

По второму закону Ньютона $F = ma = m\ddot{r}$, получаем:

$$\ddot{r} + \frac{ke^2}{mR^3}r = 0$$

Обозначим $\omega^2=rac{ke^2}{mR^3}$ – частота колебаний.

- 4.2. На какое минимальное расстояние приблизится α -частица с кинетической энергией T=40 кэВ (при лобовом соударении):
 - а) к покоящемуся ядру атома свинца;
 - б) к первоначально покоящемуся ядру $^{7}{\rm Li}$?

Так как α -частица и ядро атома свинца положительные частицы, то энергия их взаимодействия будет иметь вид, представленный на рисунке.

Таким образом для приближения α -частицы к ядру существует потенциальный барьер.

Условие отражения α -частиц от ядра атома свинца будет иметь вид:

$$T_{\alpha} \leqslant U_{max} \approx \frac{3}{2} \frac{q_1 q_2}{r_{min}},$$

где $q_1=2e$ – заряд lpha-частицы, $q_2=82e$ – заряд ядра свинца.

Из формулы получим: $r_{min} \approx R_{\rm M} \approx 9.6 \cdot 10^{-10} \, \, {\rm cm}.$

Для более точного расчёта $T = \frac{2ze^2}{r_{min}}$, где ${\bf z} = 82$.

- 4.3. α -частица с кинетической энергией T налетает с прицельным параметром $0.9 \cdot 10^{-11}$ см на покоящееся ядро свинца. Найти:
 - а) модуль приращения вектора импульса рассеянной α -частицы, если T=2,3 МэВ;
 - б) при каком значении T модуль приращения вектора импульса рассеяния α -частицы будет максимальным для данного прицельного параметра. Каков при этом угол рассеяния?

4.4. Нерелятивистская частица массой m и кинетической энергией T испытала упругое рассеяние на первоначально покоящемся ядре с массой M. Найти в Ц-системе импульс каждой частицы и их суммарную энергию.

$$\begin{split} p &= \mu v_{\textit{omh}} = \frac{m_2}{m1 + m2} \cdot p_1, \quad p_1 = \sqrt{2mT}. \\ \mu &= \frac{m1 \cdot m2}{m1 + m2}, \quad m1 = m, \quad m_2 = M; \\ p &= \frac{\sqrt{2mT}}{1 + \frac{m}{M}}; \quad E = \frac{p^2}{2\mu} = \frac{T}{1 + \frac{m}{M}}. \end{split}$$

4.5.	Найти	максимальное	значение	угла	рассеяния	lpha-частицы	на	первоначально	покоя-
	щемся	дейтроне.							

4.6. В результате упругого рассеяния протона с кинетической энергией T=13,0 кэВ в кулоновском поле покоящегося ядра 4 Не последнее испытало отдачу под углом $\vartheta=60^\circ$ к направлению движения налетающего протона. Вычислить прицельный параметр.

Решение:

Прицельный параметр b можно найти, воспользовавшись формулой:

$$\operatorname{tg}\frac{\vartheta}{2} = \frac{q_1 q_2}{2bT_1},$$

откуда

$$b = \frac{q_1 q_2}{2T_1} \operatorname{ctg} \frac{\vartheta}{2}.$$

Так как ϑ и T – это параметры в Ц-системе, необходимо перейти в Π -систему:

$$T_1 = \frac{m_2}{m_1 + m_2} = \frac{4}{5}T.$$

Следовательно

$$b = rac{2e^2 \cdot 5}{2 \cdot 4 \cdot T} \operatorname{ctg} 30^\circ \approx 2.4 \cdot 10^{-11} \ \mathrm{cm}$$

4.7. α -частица с кинетической энергией T=5,0 кэВ упруго рассеялась в кулоновском поле покоящегося дейтрона. Найти прицельный параметр, соответствующий максимально возможному углу рассеяния α частицы в Π -системе.

4.8. При рассеянии α -частицы с кинетической энергией T=29 кэВ в кулоновском поле покоящегося ядра 6 Li последнее испытало отдачу под углом $\vartheta=45^\circ$ к направлению движения налетающей частицы. На какое минимальное расстояние сблизились обе частицы в процессе взаимодействия?

4.9.	Вычислить	сечение	ядра ат	гома	золота,	отвечающее	рассеянию	протонов	с кине	етиче-
	ской энерги	ией $T=1$	1,20 М э	Вві	интерва	ле углов от	$\vartheta=\pi/3$ до	π .		

4.10. Найти вероятность того, что α -частица с энергией T=3,0 МэВ при прохождении свинцовой фольги толщиной 15 мкм испытает рассеяние в интервале углов: a) $59-60^\circ$; б) $60-90^\circ$.

4.11. Узкий пучок моноэнергетических α -частиц падает нормально на свинцовую фольгу толщиной 2,2 мг/см 2 . При этом $\eta=1,6\cdot 10^{-3}$ – часть первоначального потока, рассеивающегося под углами $\vartheta>20^\circ$. Найти дифференциальное сечение $d\sigma/d\Omega$ ядра свинца, отвечающее углу рассеяния $\vartheta_0=60^\circ$.

4.12. Сколько α -частиц Δn рассеется в интервале углов между 44 и 46°, если на медную пластинку толщиной в 0,005 мм было выпущено $n=10^4~\alpha$ -частиц с энергией в 1 МэВ?

4.13.	Сколько спектральных линий может излучать модель атома Томсона с одним электроном? Каков должен быть радиус атома, чтобы он излучал волну $\lambda=500$ нм?
	Решение:

4.14. Какой молярной теплоемкостью, согласно классической теории, должен обладать газ, состоящий из атомов Томсона с одним электроном, если не учитывать вращения атомов?

4.15. Найти минимальное расстояние, на которое протон с кинетической энергией $T=0.87~{
m M}{
m э}{
m B}$ приблизился к покоящемуся ядру Hg при рассеянии на угол $\vartheta=\pi/2$. Сравнить это расстояние с соответствующим значением прицельного параметра. Решение:

- 4.16. Узкий пучок α -частиц с кинетической энергией T=10 МэВ падает нормально на золотую фольгу толщиной d=1,0 мкм. Поток α -частиц $I=3,6\cdot 10^4$ с $^{-1}$. Найти число α -частиц, рассеянных фольгой в течение $\tau=10$ мин под углами:
 - а) в интервале $59 61^{\circ}$;
 - б) превышающими $\vartheta_0 = 60^{\circ};$
 - в) меньшими $\vartheta_0=10^\circ$ (предполагается, что формула Резерфорда вблизи этого значения угла ϑ_0 справедлива).

4.17. Узкий пучок α -частиц с кинетической энергией $T=0.50~{\rm M}$ эВ и интенсивностью $I=5.0\cdot 10^5$ частиц/с падает нормально на золотую фольгу. Найти её толщину, если на расстоянии $r=15~{\rm cm}$ от рассеивающего участка под углом $\vartheta=60^\circ$ к направлению падающего пучка плотность потока рассеянных частиц J=40 частиц/(см $^2\cdot{\rm c}$).

Часть 5. Теория Бора.

5.1. Оценить время, за которое электрон, движущийся вокруг ядра водорода по орбите радиусом $0.5 \cdot 10^{-8}$ см, упал бы на ядро, если бы он терял энергию на излучение в соответствии с классической теорией:

$$\frac{dE}{dt} = -k\frac{2e^2}{3c^3}a^2,$$

где a – ускорение электрона. Считать, что вектор \vec{a} все время направлен к центру атома.

5.2.	Какие спектральные линии появятся при возбуждении атомарного водорода электронами с энергией в 12,5 эВ?
	Решение:

5.3.	Вычислить энергию,	которую над	о сообщить	атому	водорода,	чтобы е	го серия	Баль-
	мера содержала толь	ько одну спек	тральную л	инию.				

5.4.	Какие спектральные линии появятся в спектре атомарного водорода при облучении его ультрафиолетовым светом с длиной волны 100 нм?	I
	Решение:	

5.5. Первоначально неподвижный атом водорода испустил фотон с частотой, соответствующей головной линии серии Лаймана. Найти скорость v атома после излучения фотона.

5.6. Определить наименьшую энергию, которую надо сообщить в основном состоянии трижды ионизованному атому бериллия, чтобы возбудить полный спектр этого атома.

5.7. Фотон головной серии Лаймана иона гелия He^+ поглощается водородным атомом в основном состоянии и ионизует его. Определить кинетическую энергию ε , которую получит электрон при такой ионизации.

5.8. В спектрах некоторых звезд наблюдается $m \approx 30$ линий водородной серии Бальмера. При каком наименьшем числе N штрихов дифракционной решетки можно разрешить эти линии в спектре первого порядка?

5.9. На сколько вольт ионизационный потенциал дейтерия (D) больше ионизационного потенциала водорода (H)? Выразить разность между энергиями ионизации D и H в джоулях на моль.

- 5.10. Определить квантовое число n возбужденного состояния атома водорода, если известно, что при переходе в основное состояние атом излучил:
 - а) фотон с длиной волны $\lambda = 97{,}25$ нм;
 - б) два фотона, с $\lambda_1 = 656,\!3$ нм и $\lambda_2 = 121,\!6$ нм.

5.11.	У	какого	водород	оподобного	иона	разность	длин	волн	головных	линий	серии	Баль-
	Mθ	ера и Ла	аймана р	равна 59,3 н	? _M							

- 5.12. Вычислить для мезоатома водорода (в котором вместо электрона движется мезон, имеющий тот же заряд, но массу в 207 раз больше):
 - а) расстояние между мезоном и ядром в основном состоянии;
 - б) длину волны резонансной линии;
 - в) энергии связи основных состояний мезоатомов, ядра которых протон и дейтрон.

- 5.13. Найти для позитрония (система из электрона и позитрона, вращающаяся вокруг центра инерции):
 - а) расстояние между частицами в основном состоянии;
 - б) ионизационный потенциал и первый потенциал возбуждения;
 - в) постоянную Ридберга и длину волны резонансной линии.

5.14. Вычислить отношение массы протона к массе электрона, если известно, что отношение постоянных Ридберга тяжелого и легкого водорода $\eta=1{,}000272$, а отношение масс ядер $n=2{,}00$.

5.15.	Энергия	связи з	электрона	в атом	е Не	равно	$E_0 =$	24,6	эВ.	Найти	энергию,	необход	(И-
	мую для	удален	ния обоих	электр	онов	из это	го ато	ома.					

5.16. Атом водорода, двигающийся со скоростью $v_0=3.26$ м/с, испустил фотон, соответствующий переходу из первого возбужденного состояния в основное. Найти угол φ между направлением движения атома, если кинетическая энергия атома осталась прежней.

5.17. При наблюдении излучения пучка возбужденных атомов водорода под углом $\vartheta=45^\circ$ к направлению их движения длина волны резонансной линии оказалась смещенной на $\Delta\lambda=0.20$ нм. Найти скорость атомов водорода.