שיעור *9* גרדיאנט נגדרת כיוונית מישור משיק למשטח

9.1 מישור משיק למשטח והגרדיאנט

משפט 9.1 מישור משיק למשטח

תהי $f:D o\mathbb{R}$ כאשר כאשר מספר קבוע. תהי משטח מספר פונקציה בשלושה משתנים. נגדיר משטח $f:D o\mathbb{R}$ כאשר $f:D o\mathbb{R}$ מספר קבוע. תהי $P(x_0,y_0,z_0)$

- P קיים מישור העובר דרך הנקודה P כך שהמשיק לכל קו שנמצא על משטח ועובר דרך הנודה (1 נמצא במישור זו.
 - הינו $P(x_0,y_0,z_0)$ בנקודה f(x,y,z)=c הינו (2

$$\boldsymbol{n} = (f'_x(P), f'_y(P), f'_z(P)) .$$

הינה P המשוואה של המישור המשיק למשטח בנקודה P

$$f'_x(P)(x-x_0) + f'_y(P)(x-x_0) + f'_z(P)(x-x_0) = 0$$
.

P המישור הזה נקרא המישור המשיק למשטח בנוקדה

בורה פרמטרית: נסתכל אל קו על המשטח העובר דרך הנקודה $P(x_0,y_0,z_0)$. נרשום את משוואת הקו בצורה פרמטרית:

$$x = x(t),$$
 $y = y(t),$ $z = z(t).$

משוואת המשטח הינה

$$f(x, y, z) = c$$
, $c \in \mathbb{R}$.

בפרט, הקו נמצא על המשטח ולכן משוואת המשטח מתקיים בכל נקודה על הקו. נציב את משוואת הקו במשוואת המשטח ונקבל

$$f\left(x(t), y(t), z(t)\right) = c$$
.

:P נקח נגזרת של משוואת המשטח לפי הפרמטר נקח נגזרת

$$f'_t(x_0, y_0, z_0) = 0$$
.

לפי כלל השרשרת:

$$f'_x(P)x'_t(t_0) + f'_y(P)y'_t(t_0) + f'_z(P)z'_t(t_0) = 0$$
,

באה: הבאה הערך את הערך בנקודה P בנקודה בנקודה של הערך הערך של הפרמטר בנקודה

$$\left(f'_x(P), f'_y(P), f'_z(P)\right) \cdot \left(x'_t(t_0), y'_t(t_0), z'_t(t_0)\right) = 0.$$

x=x(t),y=y(t),z=z(t) שימו לב, הוקטור $\left(x_t'(t_0),y_t'(t_0),z_t'(t_0)
ight)$ הוא וקטור כיוון של הישר המשיק לקו, ניצב לוקטור $\left(f_x'(P),f_y'(P),f_z'(P)
ight)$ בגלל ש בהמישור, אז הוקטור הנורמל למישור הינו

$$\boldsymbol{n} = \left(f'_x(P), f'_y(P), f'_z(P) \right) .$$

דוגמה 9.1

P(3,-2,19) בנקודה $z=3x^2+y^3$ חשבו את המישור המשיק למשטח

פתרון:

נשרום את משוואת המשטח בצורה

$$f(x, y, z) = 3x^2 + y^3 - z = 0$$
.
 $f'_x = 6x, f'_y = 3y^2, f'_z = -1$.

משואת המישור היא

$$18(x-3) + 12(y+2) - (z-19) = 0 ,$$

או

$$18x + 12y - z - 11 = 0$$
.

דוגמה 9.2

ובין P(1,1,1) העובר דרך העובר המשיק למשטח למשטח ביו המישור המשיק המישור מצאו את את את ביו המישור המשיק למשטח ביו המישור המשיק המישור המ

פתרון:

נשרום את משוואת המשטח בצורה

$$f(x, y, z) = 2x^2 + xyz + z^2 = 4.$$

$$f'_x = 4x + yz,$$
 $f'_y = xz,$ $f'_z = xy + 2z.$ $f'_x(1,1,1) = 5,$ $f'_y(1,1,1) = 1,$ $f'_z(1,1,1) = 3.$

משואת המישור היא

$$5(x-1) + (y-1) + 3(z-1) = 0$$
 \Rightarrow $5x + y + 3z - 9 = 0$.

הוא P(1,1,1) הנורמל למשיור המשיק למשטח הנורמל

$$n = (f'_x(1,1,1), f'_y(1,1,1), f'_z(1,1,1)) = (5,1,3).$$

ינת ע"י גתונה x בין n לציר ה- α נתונה ע"י

$$\cos \alpha = \frac{n \cdot i}{|n||i|} = \frac{(5,1,3) \cdot (1,0,0)}{|(5,1,3)||(1,0,0)|} = \frac{5}{\sqrt{35}} = \sqrt{\frac{5}{7}} \ .$$

דוגמה 9.3

המישור m_1 מצאו את משיק למשטח m_2 למשטח m_3 בנקודה m_2 בנקודה m_3 מצאו את המישור שיק למשטח משיק לאותו המשטח ומקביל ל- m_3 (שימו לב: מישורים מקבילים לא מתלכדים). חשבו את הזווית בין המישורים הללא לציר ה- m_3

פתרון:

שיטה 1

הנורמל למישור המשיק:

$$\nabla f = (2x, 2y - 2, 2z + 4)$$
.

:M בנקודה

$$n_1 = (2\sqrt{3}, 0, 2)$$
.

 $n_2 \parallel n_1$ אבה ניתן לחפש נקודה שבה $abla(P_0) = n$ אבה ערכים עוד ערכים אל

נציב זה במשוואת המשטח:

$$x^{2} + y^{2} + z^{2} - 2y + 4z + 1 = 0 \quad \Rightarrow \quad 3t^{2} + 1 + (t - 2)^{2} - 2 + 4(t - 2) + 1 = 0 \quad \Rightarrow \quad 4t^{2} = 4 \quad \Rightarrow \quad t = \pm 1.$$

לכן

$$(x_0, y_0, z_0) = (\sqrt{3}, 1, -1)$$

או

המישורים (המישורים לציר ה- y הוא הזווית היו וגם $n_1 \perp j$ וגם $n_1 \perp j$ מכיוון ש $n_1 \perp j$ המישורים ($n_1 \perp j$ מכיוון ש $n_2 \perp j$ המישורים (בילים לציר ה- $n_2 \perp j$).

שיטה 2

משוואת המשטח היא

$$x^{2} + y^{2} + z^{2} - 2y + 4z + 1 = 0$$
 \Rightarrow $x^{2} + (y - 1)^{2} + (z + 2)^{2} = 4$.

המשטח היא ספירה:

$$P = (0,1,-2)$$

$$(0,-1,-2)$$

$$(0,1,-2)$$

$$(0,1,-4)$$

 M_2 הנקודה דרך עובר אנקודה לכן לספירה לכן הישר לכן לספירה לכן הישר לספירה לספירה אנקודה לכן הישר הנורמל

שבה המישור המשיק המבוקש.

$$n_1 = (2\sqrt{3}, 0, 2)$$

$$M(t) = (\sqrt{3} + 2\sqrt{3}t, 1, -1 + 2t)$$

נבדוק נקודת חיתוך של הישר עם הספירה:

$$(\sqrt{3} + 2\sqrt{3}t)^{2} + (1-1)^{2} + (-1+2t+2)^{2} = 4$$

$$3(1+2t)^{2} + (1+2t)^{2} = 4$$

$$3(1+4t+4t^{2}) + (1+4t+4t^{2}) = 4$$

$$4(1+4t+4t^{2}) = 4$$

$$1+4t+4t^{2} = 1$$

$$4t+4t^{2} = 0$$

$$4t(1+t) = 0$$

$$.-1$$
 או $t=0$ לכן M_1 נותן את $t=0$ M_2 נותן את $t=-1$

דוגמה 9.4

מצאו את משוואת הספירה החסומה ע"י המישורים

$$x = 0$$
, $y = 0$, $z = 0$, $2x + y + 2z = 8$.

פתרון:

המרחק מברכז הספירה מבין מכל אחד מבין מבין מכל אחד מבין מכל אחד הרדיוס. אחד החקה ממרכז הספירה ממרכז אחד מבין מכל אחד מבין מכל אחד מבין מכל אחד מבין מכל אחד מבין המישורים אחד מבין המישורים מבין מכל אחד מבין מכל אחד מבין המישורים אחד מבין המישורים מבין החקה מכל אחד מבין המישורים אודים אודים אחד מבין המישורים אודים אוד

$$\left.egin{array}{ll} x&=0\ y&=0\ z&=0 \end{array}
ight\}$$
 נקבל

$$R = |x_0| = |y_0| = |z_0|$$

:לכן למישור הנוסף. $R=x_0=y_0=z_0>0$ לכן

$$\begin{aligned} \frac{|2x_0 + y_0 + 2z_0 - 8|}{\sqrt{2^2 + 1^2 + 2^2}} &= R \\ \frac{|2R + R + 2R - 8|}{\sqrt{9}} &= R \\ \frac{|5R - 8|}{3} &= R \\ |5R - 8| &= 3R \\ 5R - 8 &= \pm 3R \\ 5R \pm 3R &= 8 \\ R &= 4 \text{ In } 1 \text{ .} \end{aligned}$$

הינה הספירה המשטח אל ומשוואת לכן R=1 לא אפשרי כי אז מרכז ההספירה היה מחוץ לפירמידה. לכן R=4

$$(x-1)^1 + (y-1)^2 + (z-1)^2 = 1$$
.

דוגמה 9.5

מצאו את המרחק בין המשטח

$$6x^2 + 6y^2 + 2z^2 = 5 .$$

לבין המישור

$$x + y + z = 9.$$

פתרון:

x + y + z = 9 צריך נקודה שבה המישור המשיק לאליפסה מקביל

$$f(x, y, z) = 6x^2 + 6y^2 + 2z^2 - 5 = 0.$$

$$n = (f'_x, f'_y, f'_z) = (12x, 12y, 4z) \stackrel{!}{=} (1, 1, 1) \cdot t$$
,

לכן

$$(x, y, z) = \left(\frac{t}{12}, \frac{t}{12}, \frac{t}{4}\right)$$

$$6\left(\frac{t}{12}\right)^2 + 6\left(\frac{t}{12}\right)^2 + 2\cdot\left(\frac{t}{4}\right)^2 - 5 = 0 \qquad \Rightarrow \qquad t = \pm\sqrt{24} \ .$$

 $(\sqrt{24},\sqrt{24},\sqrt{24})$ לכן $t=\sqrt{24}$ לכן לכן הנקודה הקרובה לכן לכן . $t=\sqrt{24}$

$$d = \frac{|\sqrt{24} + \sqrt{24} + \sqrt{24} - 9|}{\sqrt{3}}$$

9.2 הגראדיאנט ונגזרת מכוונת

הגדרה 9.1 הגרדיאנט

תהי $P(x_0,y_0,z_0)$ מוגדר להיות הוקטור משתנים. הגרדיאנט של f בנקודה f(x,y,z) מוגדר להיות הוקטור

$$\nabla f(P) = \left(f'_x(P), f'_y(P), f'_z(P) \right) .$$

הגדרה 9.2 הנגזרת המכוונת

הנגזרת המכוונת של $ar{a} \in \mathbb{R}^3$ בכיוון של הוקטור בנקודה f(x,y,z) בנקודה המגזרת המכוונת של

$$\frac{df}{d\bar{a}} = \frac{1}{|a|} \lim_{t \to 0} \frac{f\left(P_0 + t\bar{a}\right) - f\left(P_0\right)}{t} \ .$$

 $.ar{a}$ של בכיוון בכיוון אל בנקודה P_0 בכיוון של

משפט 9.2 נוסחה לנגזרת מכוונת

$$\frac{df}{d\bar{a}} = \frac{\nabla f \cdot \bar{a}}{|\bar{a}|} \ .$$

הוכחה:

$$\begin{split} & \lim_{t\to 0} \frac{f\left(P_0+t\bar{a}\right)-f\left(P_0\right)}{t} = \lim_{t\to 0} \frac{f\left(x_0+ta_x,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0\right)}{t} \\ & = \lim_{t\to 0} \frac{f\left(x_0+ta_x,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0+ta_y,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0\right)}{t} \\ & = \lim_{t\to 0} \frac{f\left(x_0+ta_x,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0+ta_y,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0,ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & = \lim_{t\to 0} \frac{f\left(x_0,y_0,ta_y,z_0+ta_z\right)-f\left(x_0,y_0,ta_y,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0,ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} \frac{f\left(x_0,y_0,ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0+ta_z\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+ta_y,z_0+ta_z\right)-f\left(x_0,y_0,z_0\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+ta_y,z_0\right)-f\left(x_0,y_0,z_0\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+t_0+t_0,x_0\right)-f\left(x_0,y_0,z_0\right)}{t} \\ & + \lim_{t\to 0} a_x \cdot \frac{f\left(x_0,y_0+t_0+t_0,x_0\right)-f\left($$

 $\frac{df}{d\bar{a}} = \frac{1}{|\bar{a}|} \lim_{t \to 0} \frac{f(P_0 + t\bar{a}) - f(P_0)}{t} = \frac{\bar{a} \cdot \nabla f(P)}{|\bar{a}|}.$

לכן

דוגמה 9.6

חשבו את הגרדיאנט של הפונקציה $f(x,y,z)=x^2y^3-z$ בנקודה את חשבו את חשבו הפונקציה $\bar{a}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$ ואת הנגזרת שלה בכיוון

פתרון:

$$f_z' = -1$$
 , $f_y' = 3x^2y^2$, $f_x' = 2xy^3$

$$\nabla f(P) = (f_x'(P), f_y'(P), f_z'(P)) = (-4, 12, -1)$$

$$\frac{df(P)}{d\bar{a}} = \frac{\nabla f(P) \cdot \bar{a}}{|\bar{a}|} = \frac{(-4, 12, -1) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)}{1} = \frac{-4}{\sqrt{2}} + \frac{12}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 4\sqrt{2}.$$

דוגמה 9.7

 $z=-4y+x^2+4x+4$ של $\dfrac{dz}{\overrightarrow{OP}}$ של המעגל $P(x_0,y_0)$ כך ש הנגזרת $x^2+y^2=9$ מצאו את הנקודה מקסימלי.

פתרון:

, הנקודה בשאלה היא סעב לייה של המשטח בנקודה (0,0), הנקודה שממנה יוצא הוקטור \overrightarrow{OP} , הוא הנקודה בשאלה היא געל המעגל $x^2+y^2=9$.

$$\nabla z = z_x' \hat{\boldsymbol{i}} + z_y' \hat{\boldsymbol{j}} = (2x+4)\hat{\boldsymbol{i}} - 4\hat{\boldsymbol{j}}$$

Oולכן בנקודה

$$\nabla z(O) = 4\hat{\boldsymbol{i}} - 4\hat{\boldsymbol{j}} .$$

לכן הכיוון שבו שבו היה (4, -4)הוא יהיה מקסימלי היה $\frac{dz}{\overrightarrow{OP}}$ יהיש לכן לכן לכן הכיוון שבו

$$x = 4t, y = -4t \implies \frac{x}{4} + \frac{y}{4} = 0 \implies y = -x.$$

נקודת חיתוך של הישר הזה והמעגל $x^2+y^2=9$ הוא

$$P = \left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right)$$

דוגמה 9.8

 $z=xy-4y+x^2+2x+4$ על המעגל $\dfrac{dz}{\overrightarrow{OP}}$ של הנקודה $P(x_0,y_0)$ כך ש הנגזרת $x^2+y^2=1$ מצאו את הנקודה \vec{OP} הבינון של \vec{OP} תהיה מקסימלית וחשבו את קוסינוס הזווית \vec{OP} לישר בנקודה O(0,0)

פתרון:

הנגזרת מכוונת, אשר מוגדרת להיות

$$\frac{dz}{d\overrightarrow{\overrightarrow{OP}}} = \nabla z \cdot \overrightarrow{OP} \ ,$$

. תהיה מקסימלית כאשר הזווית בין הוקטור \overrightarrow{OP} ובין הוגרדיאנט ∇z שווה אפס, כלומר כאשר ו- סקבילים. תהיה מקסימלית כאשר הזווית בין הוקטור הוגרדיאנט של z בנקודה (0,0) הינו

$$\nabla z \big|_{x=0,y=0} = (y+2x+2,x-4) \big|_{x=0,y=0} = (2,-4)$$

הזנב של וקטור \overrightarrow{OP} נמצא בראשית הצירים (0,0) והראש בנקודה וקטור על המעגל מרדיוס 1. לכן יש לו את הקואורדינטות

$$\overrightarrow{OP} = (x_0 - 0, y_0 - 0) = (x_0, y_0)$$
.

אבל \overrightarrow{OP} גם מקביל ל- ∇z , לכן נחפש וקטור בעל כיוון (2,-4) ואורך ו

$$\overrightarrow{OP} = (2t, -4t)$$

 $|\overrightarrow{OP}| = 1$ כך ש

$$|\overrightarrow{OP}| = \sqrt{(2t)^2 + (-4t)^2} = \sqrt{4t^2 + 16t^2} = \sqrt{20t^2} = 2\sqrt{5}t = 1$$

(שים לב האורך חייב להיות חיובי), לכן $t=rac{1}{2\sqrt{5}}$ (שים לב האורך חייב להיות חיובי)

$$\overrightarrow{OP} = (2t, -4t) = \left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$$

סך הכל הנקודה הינה

$$P(x_0, y_0) = \left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$$

,y=x היא הישר בין הישר הכיוון אישר (z,-4), כלומר הישר בין הוקטור הישר א היא הישר הישר ו- y=x היא הישר הישר בין הוקטור הישר לומר (z,-4).

$$\cos\alpha = \frac{(2,-4)\cdot(1,1)}{|(2,-4)|\;|(1,1)|} = \frac{(2,-4)\cdot(1,1)}{|(2,-4)|\;|(1,1)|} = \frac{-2}{\sqrt{2^2+(-4)^2}\sqrt{1^2+1^2}} = \frac{-2}{\sqrt{20}\sqrt{2}} = \frac{-1}{\sqrt{10}}$$

ולכן

$$\alpha = \cos^{-1}\left(\frac{-1}{\sqrt{10}}\right) = 108.4349488^{\circ}$$
.

משפט 9.3 כיוון של קצב שינוי מקסימלי של פונקציה

תהי f(x,y,z) פונקציה.

מצביע בכיוון שבו הקצב שינוי של f מקסימלי. ∇f

מצביע בכיוון שבו הקצב שינוי של f מינימלי. $-\nabla f$

הוכחה:

$$\frac{df}{d\bar{a}} = \frac{\nabla f \cdot \bar{a}}{|\bar{a}|} = \frac{|\nabla f| \cdot |\bar{a}| \cdot \cos \theta}{|\bar{a}|} = |\nabla f| \cdot \cos \theta.$$

מצביע $ar{a}$ יהיה מקסימלי אם $ar{d}$ יהיה df יהיה df יהיה מקסימלי אם $d\bar{a}$ יהיה df יהיה מקסימלי אם $d\bar{a}$ יהיה מקסימלי אם $-1 \leq \cos \theta \leq 1$ באותו הכיוון כמו

דוגמה 9.9

 $P_0(1,1,1)$ בנקודה $f(x,y,z)=x^2+y^2-z$ בנקודה של ביותר של שינוי הגדול שינוי את מצאו

פתרון:

$$\nabla f = (2x, 2y, -1)$$
.
 $\nabla f(P) = (2, 2, -1)$.

9.3 תזכורת - המשוג של הדיפרנציאל מחדוא 1

הגדרה 9.3 הדיפרנציאל של פונקציה של משתנה אחד

 $a+\Delta x\in I$ פונקציה גזירה בקטע I. נניח ש- $a\in I$ פונקציה גזירה בקטע נגדיר את הנקודות

$$A = (a, f(a)),$$
 $B = (a + \Delta x, f(a)),$ $D(a + \Delta x, f(a + \Delta x)).$

(ראו תרשים).

a בנקודה f(x) -ל המשיק ל-BD בנקודה שבה C

יהי

$$\Delta f = BD = f(a + \Delta x) - f(a)$$

הא ,a -ב f -הוא המשיק ל- AC .f של

$$\frac{BC}{AB} = f'(a)$$
 \Rightarrow $BC = AB \cdot f'(a) = f'(a)\Delta x$.

נסמן ש- BD=BC+CD - כיוון ש- . $\epsilon o 0$ הילכד עם יתלכד עם יתלכד ול בגבול כאשר . $\Delta x o 0$ הגבול באשר . $CD=\epsilon$

$$\Delta f = f'(a)\Delta x + \epsilon .$$

f ע"י לקחת את הגבול בנקודה a, הדיפרנציאל של בנקודה b, אז הגבול בנקודה a, אז הגבול בנקודה a מוגדר להיות הגבול הזה, כלומר

$$df := \lim_{\Delta x \to 0} \Delta f = \lim_{\Delta x \to 0} f'(a) \Delta x$$
.

dx למה 9.1 הדיפרנציאל

נניח ש- f(x) הפונקציה f(x)=x הז בכל נקודה f(x)=a לכן, לפי ההגדרה של הדיפרנציאל, הדיפרציאל ב- a הינו

$$dx = \lim_{\Delta x \to 0} \Delta x .$$

למה 9.2 קשר בין הדיפרנציאל והנגזרת

לפי הגדרה 9.3 ולמה 9.1, הדיפרנציאל של פונקציה f בנקודה a ניתן ע"י

$$df = f'(a)dx$$
.

9.4 הדיפרנציאל

הגדרה 9.4 הדיפרנציאל של פונקציה של שלושה משתנים

נתונה פונקציה f=f(x,y,z) מסדר הדיפרנציאל מסדר הדיפרנציאל מסדר f=f(x,y,z)

$$df = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)f(x, y, z)$$

$$d^{2}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)^{2} f(x, y, z)$$

$$d^{3}f = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)^{3}f(x, y, z)$$

:

$$d^{n} f = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y} + dz \frac{\partial}{\partial z} \right)^{n} f(x, y, z)$$

9.5 אקסטרמום מקומי במשטח

משפט 9.4 תנאי הכרחי לקיום נקודת קיצון

 $.
abla f\left(P_{0}
ight)=0$ אז P_{0} פונקציה של מקומי נקודת היש נקודת ל- אם ל- f יש משתנים. אם ל- $f\left(x,y
ight)$

הגדרה 9.5 נקודת קריטית

נקודה P שבה

$$f'_x(P) = 0$$
, $f'_y(P) = 0$

. או $f_{y}^{\prime}\left(P
ight)$, לא קיים, נקראת נקודת קריטית או $f_{y}^{\prime}\left(P
ight)$

משפט 9.5 תנאי מספיק לקיום נקודת קיצון

נתון פונקציה z=f(x,y) של שני משתנים. נגדיר

$$\Delta = f''_{xx}f''_{yy} - (f''_{xy})^2$$

 $f_y'(P)=0$ אם בנקודה $f_x'(P)=0$ שבה שבה $P(x_0,y_0)$ וגם

- אז P מינימום מקומי. $f_{xx}(P)>0$ ו- $\Delta>0$
- אז P מקסימום מקומי. $f_{xx}(P) < 0$ ו- $\Delta > 0$ (2
 - אז P נקודת אוכף. $\Delta < 0$
- אז הקריטריון לא נותן תשובה והנקודה P יכול להיות מינימום, מקסימום אן אוכף, ויש לחרוק את לחרוק את f(x,y) סביב לנקודה P בדרכים נוספות.

	$f_x'(P) = 0$	$f_y'(P) = 0$
מקסימום	$\Delta > 0$	$f_{xx}''(P) < 0$
	$f_x'(P) = 0$	$f_y'(P) = 0$
מינימום	$\Delta > 0$	$f_{xx}''(P) > 0$
	$f_x'(P) = 0$	$f_y'(P) = 0$
	$\Delta < 0$	
אוכף		
	$f_x'(P) = 0$	$f_y'(P) = 0$
	$\Delta < 0$	
אוכף	_	

דוגמה 9.10

 $z = xy^2 - 2x^2y - 4xy$ מצאו אקסטרמום מקומי של הפונקציה

פתרון:

$$x = 0$$
 -1 $y - 4x - 4 = 0$ (1 $.(x,y) = (0,4) \Leftarrow$

$$2y-2x-4=0$$
 -1 $y-4x-4=0$ (2
$$.(x,y)=(-\tfrac{2}{3},\tfrac{4}{3}) \Leftarrow$$

$$x=0 \text{ -1 } y=0 \text{ (3}$$

$$.(x,y)=(0,0) \Leftarrow$$

$$2y - 2x - 4 = 0$$
 -1 $y = 0$ (4 $.(x,y) = (-2,0) \Leftarrow$

$$z''_{xx} = -4y$$
, $z''_{xy} = 2y - 4x - 4$, $z''_{yy} = 2x$.

	(0,0)	(0,4)	(-2,0)	$\left(-\frac{2}{3},\frac{4}{3}\right)$
$z_{xx}''(P)$	0	-16	0	$-\frac{16}{3}$
$z_{xy}^{\prime\prime}(P)$	-4	4	4	$\frac{4}{3}$
$z_{yy}''(P)$	0	0	-4	$-\frac{4}{3}$
Δ	-16	-16	-16	$\frac{48}{9}$
	אוכף	אוכף	אוכף	מקסימום

9.6 נקודות קיצון בתנאי וכופלי לגרנז'

משפט 9.6 שיטת כופלי לגרנז'

האקסרמום של הפונקציה f(x,y) כאשר y ו- y קשורים אחד בשני ע"י האילוץ

$$\phi(x,y) = 0$$

הנתון במישור xy, ניתן ע"י השיטה הבאה:

(1) מרכיבים את פונקצית לגרנז':

$$L(x, y, \lambda) = f(x, y) + \lambda \phi(x, y)$$

 x,y,λ לפי שלושת המשתנים $L(x,y,\lambda)$ את גוזרים את (2)

$$L'_x = f'_x + \lambda \phi'_x$$
, $L'_y = f'_y + \lambda \phi'_y$, $L'_\lambda = \phi(x, y)$.

ע"י לפתור את המערכת $L(x,y,\lambda)$ או הקריטיות הקריטיות את מוצאים את מוצאים את מוצאים את הנקודות את ה

$$\begin{cases} L'_x &= 0 \\ L'_y &= 0 \\ L'_\lambda &= 0 \end{cases} \Leftrightarrow \begin{cases} f'_x(x,y) + \lambda \phi'_x(x,y) &= 0 \\ f'_y(x,y) + \lambda \phi'_y(x,y) &= 0 \\ \phi(x,y) &= 0 \end{cases}$$

דוגמה 9.11

מצא את הערך הגדול ביותר של הפונקציה

$$z=5-rac{x}{3}-rac{y}{4}$$
בתנאי $x^2+rac{y^2}{4}=1$

פתרון:

יהי z(x,y) הפונקציה

$$z(x,y) = 5 - \frac{x}{3} - \frac{y}{4}$$

ראילוץ $\phi(x,y)$ -ו

$$\phi(x,y) = x^2 + \frac{y^2}{4} - 1 = 0 .$$

נרכיב את פונקצית לגרנז':

$$L(x, y, \lambda) = z(x, y) + \lambda \phi(x, y) = 5 - \frac{x}{3} - \frac{y}{4} + \lambda \left(x^2 + \frac{y^2}{4} - 1\right)$$

 $:\lambda$ -ו y ,x לפי $L(x,y,\lambda)$ את וזרמים את

$$L_x' = -\frac{1}{3} + 2\lambda x$$
, $L_y' = -\frac{1}{4} + \frac{1}{2}\lambda y$, $L_z' = x^2 + \frac{y^2}{4} - 1$.

פותרים את המערכת:

$$\begin{cases} L'_x &= 0 \\ L'_y &= 0 \\ L'_\lambda &= 0 \end{cases} \Rightarrow \begin{cases} -\frac{1}{3} + 2\lambda x &= 0 \\ -\frac{1}{4} + \frac{1}{2}\lambda y &= 0 \\ x^2 + \frac{y^2}{4} - 1 &= 0 \end{cases} \Rightarrow \begin{cases} x &= \frac{1}{6\lambda} \\ y &= \frac{1}{2\lambda} \\ \lambda &= \frac{\pm\sqrt{13}}{12} \end{cases}.$$

בכך מקבלים את שתי הנקודות הקריטיות הבאות:

$$P_1\left(\frac{2}{\sqrt{13}}, \frac{6}{\sqrt{13}}\right), \qquad P_2\left(-\frac{2}{\sqrt{13}}, -\frac{6}{\sqrt{13}}\right)$$

שים לב כי

$$z(P_1) = 5 - \frac{\sqrt{13}}{6}$$
, $z(P_2) = 5 + \frac{\sqrt{13}}{6}$

הוא $x^2+rac{y^2}{4}-1=0$ בתנאי ביותר הוא בנקודה P_2 והערך המקסימלי ביותר הגדול היותר הוא בנקודה ביותר המקסימלי של

$$z(P_2) = 5 + \frac{\sqrt{13}}{6}$$
.

דוגמה 9.12

 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ על האליפסה z = x + 2y + 7 מצאו את הערך הגדול והקטן ביותר של

פתרון:

$$.f(x,y)=x+2y+7$$
 נגדיר $.\phi(x,y)=4x^2+9y^2-36=0$ האילוץ הוא $.\phi(x,y)=4x^2+9y^2-36=0$.
$$L(x,y,\lambda)=f(x,y)-\lambda\phi(x,y)\ .$$

$$L'_x=f'_x-\lambda\phi'_x=1-8\lambda x =0$$

$$L'_y=f'_y-\lambda\phi'_y=2-18\lambda y =0$$

$$L'_y=f'_y-\lambda\phi'_y=2-4x^2-9y^2+36=0\ .$$

הפתרון הוא

$$\begin{cases}
8\lambda x = 1 \\
18\lambda y = 2 \\
4x^2 + 9y^2 - 36 = 0
\end{cases}
\Rightarrow
\begin{cases}
x = \frac{1}{8\lambda} \\
y = \frac{1}{9\lambda} \\
4x^2 + 9y^2 = 36
\end{cases}
\Rightarrow
\begin{cases}
y = \frac{8}{9}x \\
4x^2 + 9y^2 = 36
\end{cases}$$

$$\Rightarrow 4x^2 + 9\left(\frac{8}{9} \cdot x\right)^2 = 36$$

$$8x = 9y$$

$$4x^2 + 9\left(\frac{8}{9} \cdot x\right)^2 = 36$$

$$\Rightarrow \left(4 + \frac{64}{9}\right)x^2 = 36$$

$$\Rightarrow \frac{100}{9}x^2 = 36$$

$$\Rightarrow \qquad \qquad x^2 = \frac{36 \cdot 9}{100} \qquad \qquad \Rightarrow \qquad \qquad x = \pm \frac{9}{5} \qquad \qquad \Rightarrow \qquad \qquad y = \frac{8}{9}x = \pm \frac{8}{5}$$

9.7 เวาเท

ראקסרמום של הפונקציה f(x,y,z) כאשר z ,y,x קשורים אחד בשני ע"י האילוץ

$$\phi(x, y, z) = 0$$

הנתון במרחב xyz, ניתן ע"י השיטה הבאה:

(1) מרכיבים את פונקצית לגרנז':

$$L(x, y, z, \lambda) = f(x, y, z) + \lambda \phi(x, y, z)$$

 x,y,λ לפי שלושת המשתנים $L(x,y,z,\lambda)$ גוזרים את (2)

$$L'_{x} = f'_{x} + \lambda \phi'_{x}$$
, $L'_{y} = f'_{y} + \lambda \phi'_{y}$, $L'_{z} = f'_{z} + \lambda \phi'_{z}$, $L'_{\lambda} = \phi(x, y, z)$.

ע"י לפתור את המערכת $L(x,y,z,\lambda)$ או הקריטיות את מוצאים את מוצאים את מוצאים את מוצאים את הנקודות את ה

$$\begin{cases} L'_x &= 0 \\ L'_y &= 0 \\ L'_z &= 0 \\ L'_\lambda &= 0 \end{cases} \Leftrightarrow \begin{cases} f'_x(x,y,z) + \lambda \phi'_x(x,y,z) &= 0 \\ f'_y(x,y,z) + \lambda \phi'_y(x,y,z) &= 0 \\ f'_z(x,y,z) + \lambda \phi'_z(x,y,z) &= 0 \\ \phi(x,y,z) &= 0 \end{cases}$$

דוגמה 9.13

 $f(x,y,z)=x^2+y^2+2z^2$ מצאו את הערך הקטן ביותר של הפונקציה

פתרון:

נגדיר .
$$\phi(x,y,z) = x - y + z - 1 = 0$$
 נגדיר

$$\begin{split} L(x,y,z,\lambda) &= f(x,y,z) - \lambda \phi(x,y,z) = x^2 + y^2 + 2z^2 - \lambda \left(x - y + z - 1 \right) \ . \\ L'_x &= f'_x - \lambda \phi'_x &= 2x - \lambda &= 0 \\ L'_y &= f'_y - \lambda \phi'_y &= 2y + \lambda &= 0 \\ L'_z &= f'_z - \lambda \phi'_z &= 4z - \lambda &= 0 \\ L'_\lambda &= -\phi &= -x + y - z + 1 &= 0 \ . \end{split}$$

הפתרון הוא

$$\lambda = rac{4}{5}$$
 , $z = rac{1}{5}$, $y = rac{-2}{5}$, $x = rac{2}{5}$:פתרון:

9.7 הערך המקסימלי והמינימלי של פונקציה בתחום סגור

משפט 9.8

פונקציה רציפה בתחום חסום וסגור מקבלת בן ערך מקסימלי וערך מינימלי. ערכים אלה יכולים להתקבל בפנים על התחום או על השפה, אם הם מתקבלים פנימית אז זו תהיהי נרודת קריטית.

דוגמה 9.14

 $f(x,y) = e^{2x^2+y^2+4x+5}$ נתונה הפונקציה

- א) מצאו את הנקודות קיצום מקומיות של פונקציה זו.
- $x^2+y^2\leq 25$ מצאו את הערך הגדול ביותר והערך הקטן ביותר של מצאו את הערך הגדול ביותר והערך מ

פתרון:

 $z=2x^2+y^2+4x+5$ מכיוון ש שעיף א מספיק מספיק מספיק עולה ממש, שליי עולה מכיוון ש

$$z'_{x} = 4x + 4 = 0 \quad \Rightarrow \quad x = -1 , \qquad z'_{y} = 2y = 0 \quad \Rightarrow \quad y = 0 .$$

(-1,0) - מצאנו נקודת קריטית

$$\begin{vmatrix} z''_{xx} & = 4 > 0 \\ z''_{xy} & = 0 \\ z''_{yy} & = 2 \end{vmatrix} \Rightarrow \Delta = z''_{xx} \cdot z''_{yy} - (z''_{xy})^2 = 8 > 0$$

לכן הנקודה (-1,0) היא נקודת מינימום מקומי.

. סעיף ב) הנקודה (-1,0) היא נקודה פנימים למעדל. נבדוק נקודות קיצון בתנאי על המעגל.

שיטה 1

$$\phi(x,y) = x^2 + y^2 - 25$$

$$L(x, y, \lambda) = 2x^{2} + y^{2} + 4x + 5 - \lambda (x^{2} + y^{2} - 25)$$

$$(x,y)=(-2,-\sqrt{21})$$
 או $(x,y)=(-2,\sqrt{21})$ פתרון

$$z = (-2, \sqrt{21}) = 26$$
, $z = (-2, -\sqrt{21}) = 26$.

$$z(5,0) = 75$$
, $z = (-5,0) = 35$.

שיטה 2

אם
$$x^2 + y^2 = 25$$
 אם

$$g(x) = z = x^2 + 4x + 30$$
, $-5 \le x \le 5$.

$$g'(x) = 2x + 4 \stackrel{!}{=} 0 \quad \Rightarrow \quad x = -2 \quad \Rightarrow \quad y = \pm \sqrt{21} \ .$$

 $-5 \le x \le 5$ מכאן מציבים. אבל לא לשכוח את קצוות הקטע

.(5,0) הערך הגדול ביותר של בz הוא ביותר הגדול הערך הגדול ביותר

(-1,0) הערך הגדול ביותר של z הוא ביותר הגדול

תשובה סופית:

$$\max f = f(5,0) = e^{75}$$
, $\min f = f(-1,0) = e^{3}$.

דוגמה 9.15

מצאו את הערך הגדול ביותר ואת הערך הקטן ביותר של הפונקציה $f(x,y)=x^2+xy-y-4x$ בתחום מצאו את הערך הקטן ביותר ואת הערך הקטן ביותר ואת הערך הקטן ביותר ואת הערך הערץ הערץ הערץ ביותר ואת הערך הערץ ביותר ואת הערך הערץ ביותר ואת הערץ ביותר ביותר

פתרון:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array}$$

$$\begin{cases}
f'_x = 2x + y - 4 & \stackrel{!}{=} 0 \\
f'_y = x - 1 & \stackrel{!}{=} 0
\end{cases} \Rightarrow y = 2 \\
x = 1
\end{cases}$$

$$f''_{xx} = 2$$

$$\begin{cases} f''_{xx} = 2 \\ f''_{xy} = 1 \\ f''_{yy} = 0 \end{cases} \Rightarrow \Delta = f''_{xx} \cdot f''_{yy} - (f''_{xy})^2 = -1.$$

לכו הנקודה (1,2) היא נקודת אוכף.

$$\Leftarrow \left\{ \begin{array}{c} y=4\\ -2 \leq x \leq 2 \end{array} \right.$$
 לבדוק קיצון לאורך לאורך
$$f(x,4)=x^2+4x-4-4x=x^2-4$$

ערך מקסימלי: 0

-4 :ערך מינימלי

$$\Leftarrow \left\{ \begin{array}{ll} y=x^2\\ -2\leq x\leq 2 \end{array} \right.$$
עבדוק קיצון לאורך
$$g(x)=f(x,x^2)=\cancel{x}^2+x^3-\cancel{x}^2-4x=x^3-4x \\ \\ g'(x)=3x^2-4\stackrel{!}{=}0 \quad \Rightarrow \quad x=\pm\sqrt{\frac{4}{3}} \end{array} \right.$$

$$g\left(\pm\sqrt{\frac{4}{3}}\right) = \left(\pm\sqrt{\frac{4}{3}}\right)^3 - 4\left(\pm\sqrt{\frac{4}{3}}\right) = \pm\sqrt{\frac{4}{3}}\left(\frac{4}{3} - 4\right) = \pm\sqrt{\frac{4}{3}}\left(-\frac{8}{3}\right) = -\frac{16}{\sqrt{27}}$$

$$\max_{D} f(x,y) = f\left(-\frac{2}{\sqrt{3}}, \frac{4}{3}\right) = \frac{16}{\sqrt{27}}$$

$$\min_{D} f(x,y) = f\left(0,4\right) = -4$$

9.8 מרחק בין משטח למישור

דוגמה 9.16

מצאו את שתי הנקודות הכי קרובות על המשטח

$$f(x,y,z) = \frac{(x-3)^2}{4} + \frac{(y-1)^2}{16} + \frac{(z+2)^2}{9} = 1$$

והמישור

$$\phi(x, y, z) = 36x + 9y + 4z - 3600 = 0$$

והמרחק ביניהן.

פתרון:

שים לב, בנקודות האלה הנורמל למשטח מקביל עם הנורמל למישור:

$$\nabla f = t \nabla \phi$$

כך ש

$$\left(\frac{2(x-3)}{4}, \frac{2(y-1)}{16}, \frac{2(z+2)}{9}\right) = t(36, 9, 4)$$

המשוואה הפרמטרית מתאימה להישר המאונך להמישור ולמשטח.

$$\frac{2x-6}{4} = 36t$$
, $\frac{2y-2}{16} = 9t$, $\frac{2z+4}{9} = 4t$.

או שקול

$$x = 72t + 3$$
, $y = 72t + 1$, $z = 18t - 2$.

נציב למשוואת המשטח f(x,y,z)=0 ונקבל

$$t = \pm \frac{1}{6\sqrt{46}}$$

ולכן נקבל שתי נקודות על המשטח:

$$(x_1, y_1, z_1) = (1.2307, -0.769303, -2.44233), \qquad (X_1, Y_1, Z_1) = (4.7693, 2.7693, -1.55767)$$

עכשיו נציב את $x=72t+3\;,y=72t+1\;,z=18t-2$ את עכשיו נציב את

$$36(72t+3) + 9(72t+1) + 4(18t-2) - 3600 = 0 \Leftrightarrow t = 1.05405$$

ולכן הנקודה על המישור הינה

$$(x_2, y_2, z_2) = (78.8913, 76.8913, 16.9728)$$

הוא (x_2,y_2,z_2) -ו (x_1,y_1,z_1) הוא המרחק בין הנקודות

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = 111.532$$

הוא (x_2,y_2,z_2) -ו (X_1,Y_1,Z_1) הוא המרחק בין הנקודות

$$d = \sqrt{(x_2 - X_1)^2 + (y_2 - Y_1)^2 + (z_2 - Z_1)^2} = 106.45$$

. על המישור (x_2,y_2,z_2) הנקודה ביותר המשטח על המשטח על אל (X_1,Y_1,Z_1) הנקודה לכן הנקודה

דוגמה 9.17 מרחק בין משטח למישור: סוג 2

על המשטח

$$f(x, y, z) = 3x^2 + 4y^2 - z = 0$$

מצאו את הנקודה $P_0(x_0,y_0,z_0)$ הקרובה ביותר למישור

$$\phi(x, y, z) = 2x + 3y - z - 5 = 0$$

וחשבו את המרחק d ביניהם.

פתרון:

הנקודות הקרובות ביותר על המשטח והמישור נמצאות על הקו המאונך למישור ולמשטח. לכן מספיק למצוא שתי נקודות על המישור והמשטח בהן הנורמלים מקבילים. הנורמל למשטח הינו

$$\nabla f = (4x, 6y, -1)$$

והנורמל למישור הינו

$$\nabla \phi = (2, 3, -1)$$

שים לב, שונה מהדוגמה הקודמת לא ניתן למצוא את משוואת הישר ע"י להשוואות את הנורמלים ע"י פרמטר ב, שים לב, שונה מהדוגמה הקודמת לא ניתן למצוא את משוואת הישר ל ∇f לא תלוי ב- ∇f

 $:
abla \phi$ את הנקודה abla f מקביל השמטח בעל הנורמל P_0 מקביל ל

$$(4x, 6y, -1) = (2, 3, -1)$$
 \Rightarrow $x_1 = \frac{1}{2}, y_1 = \frac{1}{2}$

ינמצא את במשואת להציב את ע"י להציב ע"י P_0 במשואת מצא נמצא את נמצא את

$$z_0 = 2x_0^2 + 3y_0^2 \qquad \rightarrow \qquad z_0 = \frac{5}{4} = 1.25 \ .$$

לכן

$$P_0 = (0.5, 0.5, 1.25)$$

משוואת הישר המקביל לוקטור הנורמל של המישור (2,3,-1) העובר דרך נקודה P_0 על המשטח היא

$$x - x_1 = 2t$$
, $y - y_1 = 3t$, $z - z_1 = -t$, \Leftrightarrow $(x, y, z) = (0.5 + 2t, 0.5 + 3t, 1.25 - t)$

2x-3y-z-5= כדי למצוא את הנקודה בה הישר חותך את המישור נציב משוואת המישור נציב הישר חותך את המישור כדי למצוא את הנקודה בה הישר חותך את המישור נציב משוואת המישור z

$$2(0.5+2t) + 3(0.5+3t) - (1.25-t) - 5 = 0 \implies 10t + 1.25 = 0 \implies t = -0.125$$
.

ואז נציב את לתוך משוואת הישר כדי לקבל את הקואורדינטות של הנקודה $P_1(x_1,y_1,z_1)$ בה הישר בה הישר לתוך את המישור:

$$x_1 = 0.5 + 2(-0.125) = 0.25, \quad y_1 = 0.5 + 3(-0.125) = 0.125, \quad z_1 = 1.25 - (-0.125) = 1.375$$

לכן d ניתן ע"י הנוסחה הרגילה: $P_1 = (0.25, .125, 1.375)$

$$d = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$$

= $\sqrt{(0.25 - 0.5)^2 + (0.125 - 0.5)^2 + (1.375 - 1.25)^2}$
= 0.467707

9.9 מרחק בין נקודה למשטח

דוגמה 9.18

משטח על הנקודה את מצאו $P_0(10,10,10)$ מנתון הנקודה על מעון

$$f(x, y, z) = x^2 + y^2 + z^2 - 9 = 0$$

P הקרובה ביותר לנקודה

פתרון:

ניתן לפתור בעיה של מרחק בין נקודה למשטח ע"י כופלי לגרנז'. המרחק בריבוע בין נקודה למשטח בין נקודה למשטח ע"י כופלי לגרנז'. המרחק בין נקודה $P_1(x_1,y_1,z_1)$ הוא

$$d^{2} = (x_{1} - x_{0})^{2} + (y_{1} - y_{0})^{2} + (z_{1} - z_{0})^{2}$$

יש לעשות את פונקצית לגרנז': רנמצא עך מינימום בתנאי ש ℓ^2 מינימום מינימום לעשות את לעשות את רחשים לא מינימום בתנאי ש

$$L = d^{2}(x_{1}, y_{1}, z_{1}) + \lambda f(x_{1}, y_{1}, z_{1})$$

$$L'_{x_{1}} = 2(x_{1} - x_{0}) + 2\lambda x_{1} = 0$$

$$L'_{y_{1}} = 2(y_{1} - x_{0}) + 2\lambda y_{1} = 0$$

$$L'_{z_{1}} = 2(z_{1} - z_{0}) + 2\lambda z_{1} = 0$$

$$L'_{\lambda} = f(x_{1}, y_{1}, z_{1}) = 0$$

כך ש

$$x_1 = \frac{x_0}{\lambda + 1}$$

$$y_1 = \frac{y_0}{\lambda + 1}$$

$$z_1 = \frac{z_0}{\lambda + 1}$$

$$\left(\frac{x_0}{1 + \lambda}\right)^2 + \left(\frac{y_0}{1 + \lambda}\right)^2 + \left(\frac{z_0}{1 + \lambda}\right)^2 = 1$$

ולכן

$$(1+\lambda)^2 = x_0^2 + y_0^2 + z_0^2 = 300 \implies \lambda = \pm \sqrt{300} - 1$$

והנקודה P_1 הינה

$$P_1 = \left(\frac{10}{\sqrt{300}}, \frac{10}{\sqrt{300}}, \frac{10}{\sqrt{300}}\right)$$
 in $\left(\frac{-10}{\sqrt{300}}, \frac{-10}{\sqrt{300}}, \frac{-10}{\sqrt{300}}\right)$

d אחת משתי הנקודות אלה עושה את המרחק d מקסימום והשני עושה את מינימום. יש לבדןק לפי הערך של איזה מהן מתאים מרחק המינימום.