Моделирование динамики жидкости в крупных кровеносных сосудах

Долгов Д.А.

Кемеровский Государственный Университет

6 сентября 2014 г.

Введение

Рассмотрим задачу о течении крови внутри крупных сосудов с гибкими стенками и клапанами. Кровь будем моделировать как вязкую, несжимаемую однородную жидкость, стенки сосуда и лепестки клапанов - как поверхность заданной формы, обладающую определенной жесткостью.

Введение

Моделирование течения

Система уравнений Навье-Стокса:

$$\rho(\frac{\partial u}{\partial t} + u \cdot \nabla u) = -\nabla p + \nabla \sigma + f \tag{1}$$

$$\nabla u = 0 \tag{2}$$

где
$$\sigma = \mu (\nabla u + (\nabla u)^T$$
, с начальными условиями

$$u(x, y, z, t_0) = 0, \ p(x, y, z, t_0) = p_0$$
 (3)

Условия на стенках

- ullet на Γ_1,Γ_4 задаются условия прилипания
- ullet на Γ_2,Γ_3 заданы значения давления P_{int},P_{out}

Помимо этого в каждой точке стенки определена сила сопротивления деформации

$$F = F(x, y, z, t)$$

Метод решения

В соответствии с методом погруженной границы, будем рассматривать отдельно задачи вычисления параметров течения жидкости и параметров движения стенок сосуда и клапанов. Для этого введем в расчетной области сетки:

- $\Omega = \Omega(x,y,z)$ равномерная разнесенная сетка для расчета течения
- $\Gamma = \Gamma(q,r,s,t)$ соответствует стенкам сосуда и клапанам в лагранжевых координатах

Метод решения

- Рассчитываем параметры течения в $\Omega(x,y,z)$, в частности векторное поле скорости
- С помощью полученной скорости вычислить скорость движения точек границы и ее деформацию
- На основе деформации $\Gamma(q,r,s,t)$ находим силу сопротивления F(q,r,s,t)
- ullet С помощью F(q,r,s,t) вычислить f(x,y,z,t) для жидкости
- Перейти к новому временному слою с измененной f(x,y,z,t)

- Рассчитываем параметры течения в $\Omega(x,y,z)$, в частности векторное поле скорости
- С помощью полученной скорости вычислить скорость движения точек границы и ее деформацию
- На основе деформации $\Gamma(q,r,s,t)$ находим силу сопротивления F(q,r,s,t)
- ullet С помощью F(q,r,s,t) вычислить f(x,y,z,t) для жидкости
- Перейти к новому временному слою с измененной f(x,y,z,t)

- Рассчитываем параметры течения в $\Omega(x,y,z)$, в частности векторное поле скорости
- С помощью полученной скорости вычислить скорость движения точек границы и ее деформацию
- На основе деформации $\Gamma(q,r,s,t)$ находим силу сопротивления F(q,r,s,t)
- ullet С помощью F(q,r,s,t) вычислить f(x,y,z,t) для жидкости
- Перейти к новому временному слою с измененной f(x,y,z,t)

- Рассчитываем параметры течения в $\Omega(x,y,z)$, в частности векторное поле скорости
- С помощью полученной скорости вычислить скорость движения точек границы и ее деформацию
- На основе деформации $\Gamma(q,r,s,t)$ находим силу сопротивления F(q,r,s,t)
- ullet С помощью F(q,r,s,t) вычислить f(x,y,z,t) для жидкости
- Перейти к новому временному слою с измененной f(x,y,z,t)

- Рассчитываем параметры течения в $\Omega(x,y,z)$, в частности векторное поле скорости
- С помощью полученной скорости вычислить скорость движения точек границы и ее деформацию
- На основе деформации $\Gamma(q,r,s,t)$ находим силу сопротивления F(q,r,s,t)
- ullet С помощью F(q,r,s,t) вычислить f(x,y,z,t) для жидкости
- Перейти к новому временному слою с измененной f(x,y,z,t)

Схема расщепления

$$\frac{u^* - u^n}{\triangle t} = -(u^n \cdot \nabla)u^n + \frac{1}{\rho}\nabla\sigma + f \tag{4}$$

$$\rho \triangle p^{n+1} - (\nabla p \cdot \nabla p^{n+1}) = \frac{\rho^2 \nabla u^*}{\triangle t}$$
 (5)

$$\frac{u^{n+1} - u^*}{\Delta t} = -\frac{1}{\rho} \nabla p^{n+1} \tag{6}$$

где
$$\nabla \sigma(u^n, \mu) = \mu \triangle u^n + (\nabla \mu \cdot \nabla) u^n + (\nabla \mu \cdot J_{u^n})$$

- С помощью схемы стабилизирующей поправки решаем уравнение (4) и получаем промежуточное поле скорости u^*
- Из уравнения (5) методом бисопряженных градиентов определяем поле давления
- Восстанавливаем окончательное поле вектора скорости по явным формулам (6)

- С помощью схемы стабилизирующей поправки решаем уравнение (4) и получаем промежуточное поле скорости u^*
- Из уравнения (5) методом бисопряженных градиентов определяем поле давления
- Восстанавливаем окончательное поле вектора скорости по явным формулам (6)

- С помощью схемы стабилизирующей поправки решаем уравнение (4) и получаем промежуточное поле скорости u^*
- Из уравнения (5) методом бисопряженных градиентов определяем поле давления
- Восстанавливаем окончательное поле вектора скорости по явным формулам (6)

Погруженная граница

Взаимодействие погруженной границы и жидкости:

$$\frac{\partial X}{\partial t} = \int_{\Gamma} u \cdot \delta(x - X) \, dx \, dy \, dz \tag{7}$$

$$f = \int_{\Omega} F \cdot \delta(x - X) \, dq \, dr \, ds \tag{8}$$

и условия прилипания

$$\frac{\partial X}{\partial t}(q, r, s, t) = u(X(q, r, s, t), t) \tag{9}$$

Метод решения

Данный метод разрабатывался с учетом применения в исследовании биологических систем, для которых подвижность и эластичность границ является важным фактором. Он разделяет одну сложную задачу на три более простые - моделирование течения, моделирование состояния границы и их взаимодействие.

Метод решения

Это позволяет применять мощные методы для решения каждой из задач. Помимо этого такой подход позволяет единообразно моделировать различные классы проблем, т.к. погруженная граница может иметь практически любую форму.

Работы других коллективов

- IBAMR (UNC McAllister Heart Institute)
- Пример моделирования аортального клапана
- Расчет параметров хордового протеза для митрального клапана

Примеры

- Деформация стенок сосуда
- Аналогичный расчет на более мелкой сетке

Дополнительная информация

- Peskin C.S., Numerical Analysis of Blood Flow in the Heart// JCP 25,220-252, (1977)
- Peskin C.S., The immersed boundary method, (1977)
- Mittal R, laccarino G, Immersed boundary method// ARFM, 37, 239-261, (2005)
- Bandringa H., Immersed boundary method, Groningen, (2010)
- Kruger T., Introduction to the immersed boundary method, (2011)

