《生物实验设计》 第六章 方差分析

王超

广东药科大学

Email: wangchao@gdpu.edu.cn

2022-09-30

第六章 方差分析

方差分析

- 样本平均数的假设检验适用于样本与总体或者两个样本之间的差 异显著性检验
- 实际研究中, 常需要 3 个及 3 个以上样本平均数进行比较
 - 如果两两相互比较,随着样本平均数个数增加而剧增
 - ullet n 个样本平均数需要比较的次数为 C_n^2
- 导致:
 - 检验过程繁琐
 - 无统一的试验误差,误差估计的精确性和检验的灵敏性低
 - 推断的可靠性降低

方差分析

- 方差分析 ANOVA
 - 将所有处理的观测值作为一个整体,一次比较就对所有各组间样本 平均数是否有差异做出判断
 - 差异不显著,则认为他们是相同的
 - 差异显著,进一步比较是哪一组数据与其他数据不同
- 方差分析的用途
 - 多个样本平均数的比较
 - 分析多个因素间的交互作用
 - 回归方程的假设检验
 - 方差的同质性检验

第一节 方差分析的基本方法 一、方差分析的基本原理

- 外理效应
 - 处理因素的不同造成
- 误差效应
 - 试验过程中偶然性因素的干扰
 - 测量误差
- 方差分析的基本思想
 - 将测量数据的总变异按照变异原因不同分解为处理效应和误差效应, 并作出其数量估计

- 反应测量数据变异性指标
 - 方差,即均方

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

- 分别计算出处理效应的方差和误差效应的方差,在一定显著水平 下进行比较
 - 二者相差不大, 说明试验处理对指标影响不大
 - 二者相差较大,说明试验处理影响是很大的,不可忽视

以单因素试验为例,假设试验考察的因素有 k 个水平,每个处理重复 n 次,共有 nk 个观测值

$$\begin{bmatrix} A_1 & A_2 & \dots & A_i & \dots & A_k \\ x_{1,1} & x_{2,1} & \dots & x_{i,1} & \dots & x_{k,1} \\ x_{1,2} & x_{2,2} & \dots & x_{i,2} & \dots & x_{k,2} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{1,j} & x_{2,j} & \dots & x_{i,j} & \dots & x_{k,j} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{1,n} & x_{2,n} & \dots & x_{i,n} & \dots & x_{k,n} \end{bmatrix}$$

处理的总和 $T_{i,:}$,

$$\begin{bmatrix} T_{1,:} & T_{2,:} & \dots & T_{i,:} & \dots & T_{k,:} \end{bmatrix}$$

平均 $\bar{x}_{i..}$,

$$\begin{bmatrix} \bar{x}_{1,:} & \bar{x}_{2,:} & \dots & \bar{x}_{i,:} & \dots & \bar{x}_{k,:} \end{bmatrix}$$

$$x_{i,j} = \mu_i + \epsilon_{i,j}$$

- $x_{i,j}$ 表示第 i 个处理的第 j 个观测值,对于任意 $x_{i,j}$,可以用线性可加模型来进行描述
- μ_i 为第 i 个处理观测值总体平均数
- ullet $\epsilon_{i,j}$ 为试验误差,相互独立,服从正态分布 $N(0,\sigma^2)$

单因素试验资料的数学模型

$$\mu = \frac{1}{k} \sum_{i=1}^{k} \mu_i$$

$$\tau_i = \mu_i - \mu$$

$$x_{i,j} = \mu + \tau_i + \epsilon_{i,j}$$

- μ 为总体平均数
- τ_i 为第 i 个处理的效应
- 将观测值分解为影响观测值大小的各个因素的线性组合

对 τ_i 的不同假定

- 固定模型
 - ullet 各个处理的效应 au_i 是固定的一个常量,由固定因素引起的效应 $\sum au_i = 0$
 - 除去随机误差之后每个处理所产生的效应是固定的、分析的目的在 干研究 τ_i
- 随机模型
 - 各个处理的效应 τ_i 是由随机因素所引起的效应
 - \bullet τ_i 是一个随机变量,是从 $N(0,\sigma^2)$ 的正态总体中得到的
 - 研究的目的不仅是 τ_i , 还有 τ_i 的变异程度
- 混合模型
 - 多因素试验中,既包括固定效应的试验因素,又包括随机效应的试验因素

- 全部观测值的变异可以用总体的方差来度量
- ullet 方差是离均差的平方和(SS)除以自由度 $s^2=rac{\sum (x-ar{x})^2}{{
 m d}f}$
- 依据变异来源将试验资料的总变异分解为相应的变异
- ullet 包括总平方和 (SS_T) 与总自由度 (df_T) 的各个变异来源

(一) 平方和分解

- 引起观测值变异的原因有处理效应和误差效应
 - 处理间平均数的差异由处理效应所致
 - 同一处理内的变异由随机误差引起
- 任一观测值 x_ij 与总平均数之差可以表示为:

$$(x_{i,j} - x_{:,:}) = (x_{i,j} - \bar{x}_{i,:}) + (\bar{x}_{i,:} - x_{:,:})$$

(一) 平方和分解

• 两边分别平方

$$(x_{i,j} - x_{:,:})^2 = (x_{i,j} - \bar{x}_{i,:})^2 + 2(x_{i,j} - \bar{x}_{i,:})(\bar{x}_{i,:} - x_{:,:}) + (\bar{x}_{i,:} - x_{:,:})^2$$

● 每一个处理 n 个观测值离均差平方和累加,有

$$\sum_{j=1}^{n} (x_{i,j} - x_{:,:})^2 = \sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})^2 + 2\sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})(\bar{x}_{i,:} - x_{:,:}) + \sum_{j=1}^{n} (\bar{x}_{i,:} - x_{:,:})$$

(一) 平方和分解

• 因为 $\sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})(\bar{x}_{i,:} - x_{:,:}) = (\bar{x}_{i,:} - x_{:,:}) \sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:}) = 0$

$$\sum_{j=1}^{n} (x_{i,j} - x_{:,:})^2 = \sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})^2 + n(\bar{x}_{i,:} - x_{:,:})^2$$

• 把 k 个处理的离均差平方再累加,得

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i,j} - x_{:,:})^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})^2 + n \sum_{i=1}^{n} (\bar{x}_{i,:} - x_{:,:})^2$$

(一) 平方和分解

总平方和 = 处理间平方和 + 处理内平方和

$$SS_T = SS_t + SS_e$$

$$\begin{cases} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i,j} - \bar{x}_{i,:})^{2} \\ n \sum_{i=1}^{n} (\bar{x}_{i,:} - x_{:,:})^{2} \end{cases}$$

$$SS_T = SS_t + SS_e$$

(二) 自由度分解

总自由度 = 处理间自由度 + 处理内自由度

$$df_T = df_t + df_e$$

$$\begin{cases} df_T = nk - 1 \\ df_t = k - 1 \\ df_e = (nk - 1) - (k - 1) = k(n - 1) \end{cases}$$

(三) 计算方差

根据各变异部分得平方和与自由度,计算处理间 s_t^2 和处理内方差 s_e^2

$$\begin{cases} s_t^2 = \frac{SS_t}{df_t} \\ s_e^2 = \frac{SS_e}{df_e} \end{cases}$$

- 在方差分析中进行 F 检验的目的在于推断处理间的差异是否存在
- 计算 F 时,以处理间均方 s_t^2 作分子,以处理内均方 s_e^2 作分母
- 无效假设是把各个处理的变量假设来自同一个总体,认为处理间方差与处理内方差相等

$$\begin{cases} H_0 : \sigma_t^2 = \sigma_e^2 \\ H_A : \sigma_t^2 \neq \sigma_e^2 \end{cases}$$

• 无效假设是否成立,主要取决于计算出来的 F 值在 F 分布中出现的概率

第一节 方差分析的基本方法 五、多重比较