GENEROWANIE LICZB LOSOWYCH METODĄ

Karolina Baranowska Jerzy Jaszczura Katarzyna Zatorska BOXA-MULLERA

DANE POCZĄTKOWE

- Dwie wartości zmiennej
- Przedział (0.1)
- Niezależne
- Losowe
- Rozkład jednostajny

- Dwie wartości zmiennej
- Przedział (0,1)
- Niezależne
- Losowe
- Rozkład normalny


```
def Box Muller(u1,u2,n):
#u1=np.random.random(n)
\#u2=np.random.random(n)
r=np.sqrt(-2*np.log(u1))
theta=2*np.pi*u2
x=r*np.cos(theta)
y=r*np.sin(theta)
return x,y
```


Testy statystyczne

HO: Rozkład zmiennych po transformacji Boxa-Mullera jest normalny

HA: Rozkład zmiennych po transformacji Boxa-Mullera nie jest normalny

	p-value (x)	p-value (y)
D'Agostino - Pearson	0.783900	0.693992
Kolmogorov-Smifnov	0.559263	0.369788
Chi-kwadrat	1.000000	1.000000

Brak podstaw do odrzucenia hipotezy zerowej.

Wykresy kwantylowe: centralne twierdzenie graniczne

Centralne twierdzenie graniczne to twierdzenie matematyczne mówiące, że jeśli X_i są niezależnymi zmiennymi losowymi o jednakowym rozkładzie, takiej samej wartości oczekiwanej (średniej) μ i skończonej wariancji σ^2 większej od 0 to zmienna losowa o postaci:

$$\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sigma \sqrt{n}}$$

zbiega według rozkładu do standardowego rozkładu normalnego gdy n rośnie do nieskończoności. $N\left(0.1\right)$

Wykresy kwantylowe

Histogramy

Histogramy

Histogramy

