

Z-Stack OS Abstraction Layer Application Programming Interface

Document Number: F8W-2003-0002

Texas Instruments, Inc.
San rg2, a f an a UAA

() 38 5

Version	Description	Date
.0	In a gBee .0 re ease.	0 /08/2005
•	Addednizen Manazan z Mamber ny API nzyducyn.	0_/22/2005
.2	Modred discussion of the Tas Manage en A.	08/25/2005
.3	ຳanged າgາ າກ ຼາຍ age, changed co yn gh _ າກ age (າ າໝຸ.	02/2_/200
	Modfred wire anage ren_A.™.	/2 <u>/2</u> 00¶
.5	r rrcard ssa sef() and ssaT as Add()	2/ 8/200

TABLE OF CONTENTS

1. INTR	ODUCTION	1
	⁹ №20 №	
	k 0 Ph.,	
	\ \(\frac{\mu}{\text{MS}} \)	
2. API O	OVERVIEW	2
	ν ν <u>Ευν</u> Ιν	
3. MESS	SAGE MANAGEMENT API	3
	<u>w</u> o 5710 <u>n</u>	3
3.2 o	SAL MSG ALLO AT L()	3
3.2.1	Description	3
3.2.2	Prototype	3
3.2.3	Parameter Details	3
3.2.4	Return	
3.3 o	SAL MSG VALLO ATV()	3
3.3.1	Description	3
3.3.2	Prototype	3
3.3.3	Parameter Details	3
3.3.4	Return	3
3. o	SAL MSG Str. (-)	
3.4.1	Description	4
3.4.2	Prototype	4
3.4.3	Parameter Details	4
3.4.4	Return	4
3.5 0	SAL MSG የሚኒ ካኒ ኒ()	5
3.5.1	Description	
3.5.2	Prototype	5
3.5.3	Parameter Details	
3.5.4	Return	5
4. TASK	SYNCHRONIZATION API	6
	w_eo 157 lo x	
	SAL SHIP NOT	A
4.2.1	Description	à
4.2.1	Prototype	
4.2.3	Parameter Details	
4.2.3 4.2.4	Return	
_	ER MANAGEMENT API	
	ար <u>ի</u> ց Աղնա <u></u>	
5.2 o	SAL START TIMER()	······································
5.2.1	Description	7 ל
5.2.2	Prototype	
5.2.3	Parameter Details	7
5.2.4	Return	
5.3 o	SAL START TIMERX()	8
5.3.1	Description	8
5.3.2	Prototype	8
5.3.3	Parameter Details	8
5.3.4	Return	8

5. o s	\$AL \$10 ₽ T MÞ\$()	8
5.4.1	Description	8
5.4.2	Prototype	8
5.4.3	Parameter Details	8
5.4.4	Return	9
5.5 0	\$AL 910 P ገ[Mኒትኒአ()	
5.5.1	Description	
5.5.2	Prototype	
5.5.3	Parameter Details	
5.5.4	Return	
5. 4 0 :	SAL G AT S STAM LO ^{*(} ()	
5.6.1	Description	
5.6.2	Prototype	
5.6.3	Parameter Details	
5.6.4	Return	
		11
6. INTEI	RRUPT MANAGEMENT API	11
	<u>ነም</u> ው ይገቦ <u>ነ</u>	
.2 o:	SAL INCA-MABLA()	
6.2.1	Description	11
6.2.2	Prototype	11
6.2.3	Parameter Details	11
6.2.4	Return	11
4.3 os	SAL INC_ISABLE()	
6.3.1	Description	
6.3.2	Prototype	
6.3.3	Parameter Details	11
6.3.4	Return	
7. TASK	MANAGEMENT API	12
	w <u>≠</u> o uto w	
	SAL 1 164-9 51 14M()	
7.2.1	Description	
7.2.2	Prototype	
7.2.3	Parameter Details	
7.2.4	Return	
_3 0:	SAL SIA ()	
7.3.1	Description	
7.3.2	Prototype	
7.3.3	Parameter Details	
7.3.4	Return	
	\$AL \$\psi_{\psi}(\psi_{\psi})	
7.4.1	Description	
5 0:	\$ALT A\$^A ()	
7.5.1	Description	
8. MEM	ORY MANAGEMENT API	15
_		
	neto rator	
8.2 o s	SAL MEM ALLO ()	
8.2.1	Description	
8.2.2	Prototype	
8.2.3	Parameter Details	
8.2.4	Return	
	SAL Mem Ade()	5
8.3.1	Description	

8.3.3 Parameter Details	15
0.3.3 Farameter Details	IJ
8.3.4 Return	
9. POWER MANAGEMENT API	16
. 1 m=0 15710 m	
.2 0 SAL P MOR HT 1 h()	
9.2.1 Description	
9.2.2 <i>Prototype</i>	
9.2.3 Parameter Details	
9.2.4 Return	
3 0 SAL P MM TAN STATE()	
9.3.2 <i>Prototype</i>	
9.3.3 Parameter Details	
9.3.4 Return	17
10. NON-VOLATILE MEMORY API	18
0. 1 m/20 15710 m	
0.2 OSAL METERN INTO	
10.2.1 Description	
10.2.2 <i>Prototype</i>	
10.2.3 Parameter Details	
10.2.4 Return	
0.3 OSAL MANA ()	
10.3.1 Description	
10.3.2 Prototype	
10.3.3 Parameter Details	
10.3.4 Return	
0. 0 SAL N_ 5/12()	20
10.4.1 Description	
10.4.2 Prototype	20
10.4.3 Parameter Details	20
10.4.4 Return	
0.5 0 SAL 0 22940 2()	20
10.5.1 Description	20
10.5.2 Prototype	20
10.5.3 Parameter Details	20

1. Introduction

1.1 Purpose

The unitse of solution solden me the O.S. Abstraction Layer (O.S.AL) Abstraction as Abstraction Layer (O.S.AL) Abstraction in the solution of the solution of

1.2 Scope

This document material menuncinca said ded by the OSAL. The functinca same sheef he distributed in sufficient the association and a same sheef he association and a same sheef he association and association association and association and association and association and association and

1.3 Acronyms

A P	A ca_nhogia ngln⊕nac⊨
O SAL	Omang Syste (OS) Abstac n Laya
۶	Pas∍na ∍ u <u>ra</u>
sel.	Sm a Pu Interface

2. API Overview

2.1 Overview

The O Sabstaction agents used the traces of the times of the street of the times of

- . Tas reg sta n, n a za n, sa ng
- 2. Message e ich ange bewern as s
- 3. Tas synction za in
- . Ingru Zand ng
- 5. T 🛪 s
- . Me nya ca_n

3. Message Management API

3.1 Introduction

The ressage anager n AP to des a rectants for exchanging ressages bewreen as some tocessing the rensword of noticessing the rensword of notices in the

3.2 osal_msg_allocate()

3.2.1 Description

This function is cared by a as the assage busines, we as function with the ressage and ca osal_msg_send() a send the ressage and the assage are as a limit busine cannot be a scared, sg two be set a number of the second that the second tha

NOTE: no confuse sounce now cosal_mem_alloc(), sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare buffer a send restages between as sounce no sused a scare buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between as sounce no sused a scare a buffer a send restages between a send restage no succession and send restages a send restage no send restages a scare a buffer a send restage no send restages a send restage no send restage no

3.2.2 Prototype

byte *osal_msq_allocate(uint16 len)

3.2.3 Parameter Details

len sime rengin im ressage.

3.2.4 Return

There un aue sa in ma the buffer a scare of nitre ressage. A MULLine un no cares the ressage a scalin sea infared.

3.3 osal_msg_deallocate()

3.3.1 Description

This function is used the analogue as ressage buffer. This function is called by a last of the cessing after the ressage.

3.3.2 Prototype

byte osal_msg_deallocate(byte *msg_ptr)

3.3.3 Parameter Details

msg_ptr sa na tare ressage by a tareds to be de-a cared.

3.3.4 Return

e un aux nd cares reseau resu re a rea.

HET UR MEAL US	Mario M
5. C. 255	re-a ca_n Success u
INLAL MSG POINTE	In a d ressage on me
MSG B DAM NOT-AV ALL	Bujja s que une d

3.4 osal_msg_send()

3.4.1 Description

This as greend funcings caned by a as is send a command at a message is an improved as in incressing the renult modern and a send of the send and a send of the send as send of the send as send of the send of th

3.4.2 Prototype

byte osal_msg_send(byte destination_task, byte *msg_ptr)

3.4.3 Parameter Details

destination_task simply meas where rime ressage.

msg_ptr sa where con annum ressage. Msg i us be a where was a wared a was sg a weard.

3.4.4 Return

the un aue sa by the d nd cang the resu the main.

ME IN MEAL THE	ha meno h
50 kss	Message sen_success u y
INLAL MSG POINCE	In a d Message Pong
INLAL TASK	res_na_n as sn_a d

3.5 osal_msg_receive()

3.5.1 Description

This function is called by a as the present of the called and restage. The called a scale and restage using the same using the same as a second of the called a scale and the called a

3.5.2 Prototype

byte *osal_msg_receive(byte task_id)

3.5.3 Parameter Details

task_id sign den as () the can gas () the ressagew as des med).

3.5.4 Return

The un aue sa ne gabyme con anng the ressage a MULL there snotece red ressage.

4. Task Synchronization API

4.1 Introduction

The Administration of the second of the seco

4.2 osal_set_event()

4.2.1 Description

The stuncton is cased a settles the fags of a as .

4.2.2 Prototype

byte osal_set_event(byte task_id, UINT16 event_flag)

4.2.3 Parameter Details

4.2.4 Return

e un aum ne cares remesu ra a n.

MAL UM	MANON_
20 7-20	Success
INLAL TASA	In a dT as

5. Timer Management API

5.1 Introduction

This AP renables the use of this by normal (-Sac) as sast a as expans (A cathere) as s. The AP resolutions as a land so a military as can be seen note that second.

5.2 osal_start_timer()

5.2.1 Description

This function is called a salar and the sala

5.2.2 Prototype

byte osal_start_timer(UINT16 event_id, UINT16 timeout_value);

5.2.3 Parameter Details

5.2.4 Return

e un aum nd cares treuresu of tre una on.

MET UNITAL UM	ha meno h
50 kss	T # Sa Successfu
NO_FIMAL AV AILABLA	Unabre is a interpretation

5.3 osal_start_timerEx()

5.3.1 Description

This s mays a posal_start_timer(), w நா added and ஈற இ taskID. This a w s ஈ ca m ந கூட்டு நார்க்கார் as . ாள் n doub_use நிரியாட்டும் நா osal_start_timer().

5.3.2 Prototype

byte osal_start_timerEx(byte taskID, UINT16 event_id, UINT16
timeout_value);

5.3.3 Parameter Details

tasked size as a same remaining rate into the seconds before a sum of the control of the control

5.3.4 Return

eun aue nd cares resu resu ra an.

THE UNITAL US	ha Mario m
5 b 455	T m Sa Successfu
NOTIME AV ALABLE	Chabr saith m

5.4 osal_stop_timer()

5.4.1 Description

This function is called a solution and as a ready been sailed. If successful, refunctions cance the and the refunction associated and the refunction as a summing of reconnection as called a summing of reconnections as called a summing of reconnections. The solution as a summing of reconnection as called a summing of reconnections.

5.4.2 Prototype

byte osal_stop_timer(UINT16 event_id);

5.4.3 Parameter Details

event_id sign den fra fight a sign sign ed.

5.4.4 Return

e un aum nd cares de resu de la readon.

ME IN MEAL US	ha Mario m
36 233	T n 🖎 rd Successiu y
INCALL MARKET	In a d te-ren_

5.5 osal_stop_timerEx()

5.5.1 Description

5.5.2 Prototype

byte osal_stop_timerEx(byte task_id, UINT16 event_id);

5.5.3 Parameter Details

5.5.4 Return

e un aum nd cares tressu of the main.

MET UNITAL UM	MANDO M
36 233	T n 🖎 rd Successiu y
INCALL MENTEN	In a de-ren

5.6 osal_GetSystemClock()

5.6.1 Description

The souncine scared in a control system con

5.6.2 Prototype

uint32 osal_GetSystemClock(void);

5.6.3 Parameter Details

None.

5.6.4 Return

The system c > c - n seconds.

6. Interrupt Management API

6.1 Introduction

The API menabres a as a nonfacew present a north soft of the control of the API a war a as assocate a specific some central new praction in the north soft of the soft of the

6.2 osal_int_enable()

6.2.1 Description

To sounce in social relation and an interval of non-renabled, occurrence in the name causes the second under associal and an armination of the caled.

6.2.2 Prototype

byte osal_int_enable(byte interrupt_id)

6.2.3 Parameter Details

interrupt_id den res menu _ beenabed.

6.2.4 Return

eun aum nd cames mursu am ann.

THE UNITAL US	ha Mario m
3.6 has	Ingru Inabad Successiu y
MEAL MARK ON 1	In a dinaru

6.3 osal_int_disable()

6.3.1 Description

To sounce on sica reduct sabre an ingriture a disabred ingriture cours, The serious me associared with a nagriture since a reduction of the serious me associared with a nagriture since a reduction of the serious me associared with a nagriture since a reduction of the serious me associared with a nagriture since a reduction of the serious me associared with a ser

6.3.2 Prototype

byte osal_int_disable(byte interrupt_id)

6.3.3 Parameter Details

 $\label{eq:continuity} \text{interrupt_id} \quad \text{den}_{\text{\tiny 1}} \text{res} \xrightarrow{\text{\tiny n}} \text{nerrupt} \quad \underset{\text{\tiny 1}}{\text{\tiny 2}} \text{be } c \text{ sabec}.$

6.3.4 Return

the un a um nd cares the result in a in.

THE UNITAL US	ha Mario m
5 b 125	Inmu sabrd Successiu y
I MEAL I MEAN OF I	In a dIngru

7. Task Management API

7.1 Introduction

This AP sused add and anage as sing OSAL syste. The as side uses and another processing function. OSAL casosalInitTasks() [a cath sused to a solution and another processing function. OSAL casosalInitTasks() [a cath sused to a solution and a second second processing function as (as a cath sused to a solution as (as a cath sused).

```
ta as abr rena on:
      const pTaskEventHandlerFn tasksArr[] =
       macEventLoop,
       nwk_event_loop,
       Hal_ProcessEvent,
       MT_ProcessEvent,
       APS_event_loop,
        ZDApp_event_loop,
      const uint8 tasksCnt = sizeof( tasksArr ) / sizeof( tasksArr[0] );
🖦 a 🖛 x an ssa n I as s() 🖛 🖛 a sn:
      void osalInitTasks( void )
        uint8 taskID = 0;
        tasksEvents = (uint16 *)osal_mem_alloc( sizeof( uint16 ) * tasksCnt);
        osal_memset( tasksEvents, 0, (sizeof( uint16 ) * tasksCnt));
        macTaskInit( taskID++ );
        nwk_init( taskID++ );
        Hal_Init( taskID++ );
       MT_TaskInit( taskID++ );
       APS_Init( taskID++ );
        ZDApp_Init( taskID++ );
```

7.2 osal_init_system()

7.2.1 Description

The stunction in a zest to SAL syste. The stunction is be cased a said in a tusing any step 0 SAL sunction.

7.2.2 Prototype

```
byte osal_init_system( void )
```

7.2.3 Parameter Details

Mane.

7.2.4 Return

eun aue nd cares retresu y retre a n.

ME UNITAL UM	MATIO M
3.6 4 33	Success

7.3 osal_start_system()

7.3.1 Description

This function is the and off function of the assistant and the ass

7.3.2 Prototype

void osal_start_system(void)

7.3.3 Parameter Details

Mane

7.3.4 Return

Mane

7.4 osal_self()

7.4.1 Description

This function has been de recared and single survivad.

7.5 osalTaskAdd ()

7.5.1 Description

This function has been de recared and single survives single. Therefore the OSAL as in a zation and rentices single.

8. Memory Management API

8.1 Introduction

Tis Aliminesen sas me mya oca n sysme. These functins a w dyna c me mya oca n.

8.2 osal_mem_alloc()

8.2.1 Description

To stunc on sas * * * ya caontunc on taurunsa on a a butta (f successiu).

8.2.2 Prototype

void *osal_mem_alloc(uint16 size);

8.2.3 Parameter Details

size - renu ba f by esw aned n re buffa.

8.2.4 Return

A od one who should be cas the number of business yet a scared business of the solution of the

8.3 osal_mem_free()

8.3.1 Description

This func_infirmes the a scared in му_be used again. This snyw и s fitter и у had a meady been a scared with osal_mem_alloc().

8.3.2 Prototype

void osal_mem_free(void *ptr);

8.3.3 Parameter Details

ptr - one oberne berned. To s buyen us ar been in ous y a ocared osal_mem_alloc().

8.3.4 Return

Marie.

9. Power Management API

9.1 Introduction

The second describes in OSAL's with an anager on syste. The syste is desaway in the a calens/as so in 1900 SAL when is safe thin in the second and a second are, and under some a calens/as so in 1900 SAL when is safe thin in the second and are and under some ana

9.2 osal_pwrmgr_device()

9.2.1 Description

The sounce on search on where where the white require the schange (ex. Barry bac red conditional). The sounce on search of the care of th

9.2.2 Prototype

void osal_pwrmgr_state(byte pwrmgr_device);

9.2.3 Parameter Details

Pwrmgr_device - changes a ses was a ngs ode.

Tyr≠	r≄sor _n
P MM AL A SO M	s serec in mare snow masa ngs and me de ce s is reyon ans wma.
P MM BATT NA	Turns արար sa ngs տո.

9.2.4 Return

Marie.

9.3 osal_pwrmgr_task_state()

9.3.1 Description

9.3.2 Prototype

byte osal_pwrmgr_task_state(byte task_id, byte state);

9.3.3 Parameter Details

state - changes a as 's wm sam.

Тур	resor _n
PRMSR ONSERVE	Turns war sa ngson, a as share agree. This she chau sarwaren a as sin a zed.
P MG WL	Turns was a ngs 47.

9.3.4 Return

e un aue no cares remesu y reme mayn.

MAL UM	MARION M
5 C 1255	Success
INCAL TASK	In a dras

10. Non-Volatile Memory API

10.1 Introduction

This section describes the OSAL Mando are (M)—re my system. The system is described any massen spage of chain as me and announced by the green spage of calling the strength of the described and with a strength of the described and with an entire the strength of the described and with an entire the strength of the described and the strength of t

The mass a unique of the sas record a unique of a caling with the same are the same and a used by the sac of a fine of the same and a calin of the same and a unique of the same above with the same and the same and

₩ AL Us	UMAR.
00002	Presented
0 2000 - 0 20020	O SAL
0 x002 - 0 x00 0	<u>M_ &</u>
0 x 00 − 0 00 x 0 − 00 x 0	AP\$
0800 x 0 − №00 x 0	Secu <u>v</u>
0 x008 - 0 x00A0	0
0 x00A - 0 x0200	Person red
0 1020 - 0 10 222	A ca_n
0 5 000 -0 5 2-2-2-	Pesa red

There are some on an consider a c

- These are buc ingluncine a sandanumain ay are sema seconds icu me. This is respect ay tuer in Minimumains. In add in, north a say be disabled in sema seconds. I she in the second in sale in the second in the seco
- 2. Try = m/n Mwr res nirequen y. lars rand wm; as serias de cestara red nu barrase cycres.
- 3. If the student of the state of the state

10.2 osal_nv_item_init()

10.2.1 Description

In a ze an ze n M T stunc in tree state resence from ze n M I dres no ze s s created and n a zedware data assed refuncin, any.

The sfunc _n us_be ca சேர்வே சன்ன சூ bசிவச ca ngosal_nv_read() வ osal_nv_write().

10.2.2 Prototype

byte osal_nv_item_init(uint16 id, uint16 len, void *buf);

10.2.3 Parameter Details

10.2.4 Return

e un aue no cares merresu y me i mayn.

MET UNITAL UM	MANON_
5 b 1255	Success
me tram white	Success bu ze ddn zes s
MOPAR SAIL	O ma_nfa rd

10.3 osal_nv_read()

10.3.1 Description

mad da an i Manthe stunction can be used the adapting the state of the

10.3.2 Prototype

byte osal_nv_read(uint16 id, uint16 offset, uint16 len, void *buf);

10.3.3 Parameter Details

10.3.4 Return

ື້ອບາກ aum nd cares ກາກອນ ຊື່ການ ກາລຸກ.

ME OF MEAL OF	MARION_
5 t 255	Success
metron white-	læ snon a zed
MOPA ALL	O ma_nfa nd

10.4 osal_nv_write()

10.4.1 Description

The date of the state of the st

10.4.2 Prototype

byte osal_nv_write(uint16 id, uint16 offset, uint16 len, void *buf);

10.4.3 Parameter Details

10.4.4 Return

eun aue nd cares meresu y me i mayn.

THE UNITED THE	Mario M
5 C 255	Success
me tran white-	le snon a zed
MOMA ALL	O mainfa md

10.5 osal_offsetof()

10.5.1 Description

This action calculates the many most on by mest and the many that a study mest by Mest on the calculates and the many mass of the mest of

10.5.2 Prototype

osal_offsetof(type, member)

10.5.3 Parameter Details