Boosting I

Introduction to Boosting; AdaBoost

Introduction

Boosting

- Class of ensemble methods which combine sequential prediction models
- Adaptive approach with focus on "difficult observations"
- Different flavors exist
 - AdaBoost
 - Gradient Boosting Machines (GBM)
 - o ...
- Can be applied to different (weak) base learners
 - Boosting trees
 - o ...

AdaBoost

Figure: Process of AdaBoost algorithm¹

AdaBoost

AdaBoost

- Algorithm for classification problems ($Y \in \{-1, 1\}$)
- Estimate a sequence of classifiers using reweighted data
- AdaBoost process
 - ① Fit classifier $G_m(x)$ to weighted data (intitial weights $w_i = \frac{1}{n}$)
 - 2 Compute the misclassification rate

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{n} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{n} w_{i}}$$

- 3 Compute the classifier weight $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$
- 4 Recalculate weights $w_i = w_i \exp(\alpha_m I(y_i \neq G_m(x_i)))$
- Majority vote classification: $G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$

Boosting Stumps

Figure: (Ada)Boosting stumps (example)²

(b) Step 2:
$$\alpha_2 = 0.65$$

(c) Step 3:
$$\alpha_3 = 0.92$$

Boosting Stumps

Figure: Step 4: Combine models

