Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

Алексей Владимирович Востров, Михаил Александрович Курочкин

Экспертные системы

Слайды видеолекций

Учебное пособие

Санкт-Петербург, 2015

Содержание курса

- ЛЕКЦИЯ 1. Введение в экспертные системы
- ЛЕКЦИЯ 2. Программный инструментарий разработки экспертных систем
- ЛЕКЦИЯ 3. Теоретические аспекты инженерии знаний
- ЛЕКЦИЯ 4. Представление знаний: принципы и методы
- ЛЕКЦИЯ 5. Представление неопределенности знаний и данных
- ЛЕКЦИЯ 6. Приобретение знаний
- ЛЕКЦИЯ 7. Эвристическая классификация
- ЛЕКЦИЯ 8. Методы практического извлечения знаний
- ЛЕКЦИЯ 9. Разработка экспертных систем

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 1

Введение в экспертные системы

Содержание лекции 1

- Какую программу можно назвать «экспертом»?
- Типовые задачи, решаемые экспертными системами
- Базовые функции экспертных систем
- Разработчики экспертных систем
- Искусственный интеллект
- Исследования в области ИИ

Какую программу можно назвать «экспертом»?

Экспертые системы

Обладание знаниями Организация и интеграция знаний

Решение проблем Обладание знаниями:

наличие сведений, необходимых для решения проблем.

Организация и интеграция знаний:

отдельные сведения должны соотноситься друг с другом и образовывать нечто вроде цепочки, в которой одно звено «тащит» за собой следующее.

Решение проблем:

способность сделать выводы применимо к текущей ситуации на основе имеющихся знаний.

Экспертная система — это программа для компьютера, которая оперирует со знаниями в определенной предметной области с целью выработки рекомендаций или решения проблем.

Типовые задачи, решаемые экспертными системами

Извлечение информации из первичных данных

• таких как сигналы, поступающие от гидролокатора.

Диагностика неисправностей

• как в технических системах, так и в человеческом организме.

Структурный анализ сложных объектов

• например, химических соединений.

Выбор конфигурации сложных многокомпонентных систем

• например, распределенных компьютерных систем.

Планирование последовательности выполнения операций, приводящих к заданной цели

• например, выполняемых промышленными роботами.

Базовые функции экспертных систем

Функции экспертных систем

Приобретение знаний Представление знаний в удобной для работы форме

Управление процессом поиска решений

Разработчики экспертных систем

Программист

Инженер

Эксперт

Пользователь

Менеджер системы

- Сопровождает, отлаживает и модернизирует систему.
- Нуждается в инструменте, позволяющем заглянуть в "ее нутро" на уровне более высоком, чем вызов отдельных языковых процедур.
- Формирует базу знаний на основе знаний эксперта.
- •Должен убедиться, что сформулированные им знания применены правильно.
- •Источник информации для базы знаний.
- •Должен проследить ход рассуждений и способ использования сведений, которые с его слов были введены в базу знаний (оценить корректность применения).
- Работает с программой.
- Нуждается в подтверждении корректности заключения, к которому пришла программа.
- Несет ответственность за последствия решения, принятого программой.
- •Также нуждается в подтверждении, что эти решения достаточно обоснованы.

Разработчики экспертных систем

Эксперт

Источник информации для базы знаний.

Инженер

Формирует базу знаний на основе знаний эксперта.

Программист

Сопровождает, отлаживает и модернизирует систему.

Менеджер системы
Несет ответственность за последствия решения, принятого программой.

Пользователь

Работает с программой.

Искусственный интеллект

Искусственный интеллект эмуляция мышления человека

Ответвление технических наук Ответвление естественных наук

Создание интеллектуальных искусственных существ Исследование процессов обработки информации в мозгу человека

"Искусственный интеллект (ИИ) — это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, т.е. систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, — понимание языка, обучение, способность рассуждать, решать проблемы и т.д."

Исследования в области ИИ

Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)

Программное обеспечение систем ИИ (software engineering for Al) Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing) Основные Интеллектуальные роботы (robotics) направления исследований в Обучение и самообучение (machine learning) области искусственного интеллекта Распознавание образов (pattern recognition) Новые архитектуры компьютеров (new hardware platforms and architectures) Игры и машинное творчество Другие направления

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 2

Программный инструментарий разработки экспертных систем

Содержание лекции 2

- Инструментальные средства разработки экспертных систем
- Основные аспекты извлечения знаний
- Психологический аспект
- Классификация знаний
- Лингвистический аспект
- Гносеологический аспект
- Классификация методов практического извлечения знаний
- Коммуникативные методы
- Текстологические методы

Инструментальные средства разработки экспертных систем

- Оболочки экспертных систем (expert system shells)
- Языки программирования высокого уровня
- Среда программирования, поддерживающая несколько парадигм (multiple- paradigm programming environment)
- Дополнительные модули

Название дисциплины

Основные аспекты извлечения знаний

Ключевая проблема основной стратегии получения знаний — непосредственное извлечение знаний "из" памяти эксперта.

Можно выделить три основных аспекта этого процесса:

- психологический;
- лингвистический;
- гносеологический.

Психологический аспект

Можно выделить такие структурные компоненты модели общения при извлечении знаний:

- участники общения (партнеры);
- средства общения (процедура);
- предмет общения (знания).

Структура процесса общения

Лингвистический аспект

"Общий код" решает проблему языковых ножниц между профессиональной терминологией эксперта и обыденной литературной речью инженера по знаниям.

Структура общего кода

Гносеологический аспект

Системная методология заставляет за частным всегда стремиться увидеть общее, т. е. строить цепочки:

факт ->

обобщенный факт ->

эмпирический закон -> теоретический закон

Такой подход согласуется со структурой самого знания, которое имеет два уровня:

- эмпирический (наблюдения, явления);
- теоретический (законы, абстракции, обобщения).

Основными методологическими критериями стройности выявленной системы знаний можно считать:

- внутреннюю согласованность;
- системность;
- объективность;
- историзм.

государственный у политехнический

Классификация методов практического извлечения знаний

Коммуникативные методы

Коммуникативные методы извлечения знаний охватывают методы и процедуры контактов инженера по знаниям с непосредственным источником знаний – экспертом.

Пассивные методы извлечения знаний включают такие методы, где ведущая роль в процедуре извлечения фактически передается эксперту, а инженер по знаниям только фиксирует рассуждения эксперта во время работы по принятию решений.

Активные индивидуальные методы извлечения знаний на сегодняшний день – наиболее распространенные. К основным активным методам можно отнести:

- анкетирование;
- интервью;
- свободный диалог;
- игры с экспертом.

Текстологические методы

Текстологические методы извлечения знаний включают методы извлечения знаний из документов (методик, пособий, руководств) и специальной литературы (статей, монографий, учебников).

Схема извлечения знаний из специальных текстов

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 3

Теоретические аспекты инженерии знаний

Содержание лекции 3

- Понятие инженерии знаний
- Данные и знания
- Классификация знаний
- Пирамида знаний
- Вывод на знаниях
- Стратегии управления выводом

Понятие инженерии знаний

Данные — это информация, полученная в результате наблюдений или измерений отдельных свойств (атрибутов), характеризующих объекты, процессы и явления предметной области.

Знания — это связи и закономерности предметной области (принципы, модели, законы), полученные в результате практической деятельности и профессионального опыта, позволяющего специалистам ставить и решать задачи в данной области.

Инженерия знаний — направление исследований и разработок в области ин-теллектуальных систем, ставящее целью разработку моделей, методов и сис-тем для получения, структурирования и формализации знаний специалистов с целью проектирования баз знаний.

Данные и знания

Данные

Знания

При обработке на ЭВМ трансформируются, условно проходя следующие этапы:

D1 — данные как результат измерений и наблюдений;

Z1 — знания в памяти человека как результат мышления;

D2 — данные на материальных носителях информации (таблицы, протоколы, справочники);

Z2 — материальные носители знаний (учебники, методические пособия);

D3 — модели (структуры) данных в виде диаграмм, графиков, функций;

Z3 — поле знаний — условное описание основных объектов предметной облас-ти, их атрибутов и закономерностей, их связывающих;

D4 — данные в компьютере на языке описания данных;

Z4 — знания, описанные на языках представления знаний (продукционные язы-ки, семантические сети, фреймы — см. далее);

D5 — базы данных на машинных носителях информации.

Z5 — **база знаний на машинных носителях информации.**

Классификация знаний

Способы определения понятия (знаний)

Интенсионал

Экстенсионал

Определение его через соотнесение с понятием более высокого уровня абстрак-ции с указанием специфических свойств

Определение через соотнесение с понятиями более низкого уровня абстракции или перечисление фактов, относящихся к определяемому объекту

Пример: «Персональный компьютер это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за \$2000-3000»

Пример: «Персональный компьютер — это Mac, IBM PC, Sinkler...»

Классификация знаний

Поверхностные

Глубинные

знания о видимых взаимосвязях между отдельными собы-тиями и фактами в предметной области.

абстракции, аналогии, схемы, отображающие структуру и приро-ду процессов, протекающих в предметной области.

Пример: «Если нажать на кнопку звонка, раздастся звук».

Пример: «Принципиальная электрическая схема звонка и проводки».

Пирамида знаний

Поле знаний - это условное неформальное описание основных понятий и взаимосвя-зей между понятиями предметной области, выявленных из системы знаний эксперта, в виде графа, диаграммы, таблицы или текста.

Структура семиотики

Пирамида Ньюэлла

Вывод на знаниях

Машина вывода (интерпретатор правил) — это программа, имитирующая логический вывод эксперта, пользующегося данной продукционной базой знаний для интерпретации поступивших в систему данных.

Стратегии управления выводом

При разработке стратегии управления выводом важно определить:

Какую точку в пространстве состояний принять в качестве исходной? (в прямом или об-ратном направлении)

Какими методами можно повысить эффективность поиска решения? (в глубину, в ширину, по подзадачам или иначе)

Прямой и обратный вывод

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 4

Представление знаний: принципы и методы

Содержание лекции 4

- Критерии представлений знаний в системе
- Представление знаний
- Продукционная модель
- Семантические сети
- Фреймы
- Формальные логические модели

Критерии представлений знаний в системе

Основная часть представления знаний состоит в том, что представление должно стандартизировать семантическое разнообразие человеческого языка.

Критерии представления знаний

Логическая адекватность

Представление должно обладать способностью распознавать все отличия, которые вы закладываете в исходную сущность.

Эвристическая мощность

Должно существовать некоторое средство использования представлений, сконструированных и интерпретируемых таким образом, чтобы с их помощью можно было решить проблему.

Естественность нотации

Выражения, которыми описываются знания, должны быть по возможности простыми для написания, а их смысл должен быть понятен даже тому, кто не знает, как компьютер интерпретирует эти выражения.

Название дисциплины

Представление знаний

Продукционная модель

«Условие» (*антецедент*) - некоторое предложение-образец, по которому осуществляется поиск в базе знаний

«Действие» (консеквент) — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия и терминальными или целевыми, завершающими работу системы).

Продукционная модель чаще всего применяется в промышленных экспертных системах.

Пример: Есть фрагмент базы знаний из двух правил: П1: Если (отдых – летом) и (человек – активный) то (ехать в горы)

П2: Если (любит – солнце) то (отдых – летом)

Предположим, в систему поступили данные — (человек- – активный) и (любит – солнце).

Прямой вывод — исходя из данных, получить ответ.

1-й проход. Шаг 1. Пробуем П1, не работает (не хватает данных (отдых-летом)).

Шаг 2. Пробуем П2, работает, в базу поступает факт (отдых-летом).

2-й проход. Шаг 3. Пробуем П1, работает, активируется цель (ехать в горы), которая и выступает как вывод.

ТІТІНІНЭ ТІТІНІНІ ТІТІТ ЗІНІНІ В ЗІНІНІТІТ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИІ

Семантические сети

Характерной особенностью семантичес-ких сетей является обязательное наличие трех типов отношений:

- **класс** элемент класса (цветок роза);
- **свойство** значение (цвет желтый);
- пример элемента класса (роза чайная).

Пример семантической сети.

Фреймы

Пример фрейма.

фреймы-структуры (заем, залог);

Модели фреймы-ролы (менеджер, кассир, клиент);

фреймы-сценарии (банкротство, собрание акционеров);

фреймы-ситуации (тревога, авария, рабочий режим устройства) и др.

Структура фрейма:

Имя фрейма			
Имя	Значение	Способ	
слота	слота	получения	Присоединенн
		значения	ая процедура

Формальные логические модели

```
Пример.

1)высказывание: a > b представляется термом p(a,b) (двуместный предикат), где p -  предикатный символ, заменяющий знак ">";

2)высказывание "аппаратная ax -  исправна" представляется Q(x);

3)теорема Пифагора может быть представлена термом: P_1[P_2(P_3(x), P_3(y)), P_3(z)]
```


Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 5

Представление неопределенности знаний и данных

Содержание лекции 5

- Источники неопределенности
- Нечеткие знания
- Основы теории нечетких множеств
- Пример нечетких знаний
- Операции с нечеткими знаниями
- Пути разрешения конфликтов

Источники неопределенности

- недостаточно полное знание предметной области
- недостаточная информация о конкретной ситуации.

Теория предметной области (т.е. наши знания об этой области) может быть неясной или неполной: в ней могут использоваться недостаточно четко сформулированные концепции или недостаточно изученные явления.

Неопределенность знаний приводит к тому, что правила влияния даже в простых случаях не всегда дают корректные результаты.

Нечеткие знания

Аппарат нечеткой (fuzzy) алгебры и нечеткой логики

Мягкие вычисления (soft computing).

• Лингвистическая переменная (ЛП) — это переменная, значение которой определяется набором вербальных (то есть словесных) характеристик некоторого свойства.

Основы теории нечетких множеств

• Нечеткое множество определяется через некоторую базовую шкалу В и функцию принадлежности НМ — $\mu(x)$, $x \in B$, ε [0...1]. Таким образом, нечеткое множество В — это совокупность пар вида $(x, \mu(x))$, где $x \in B$.

$$B = \sum_{i=1}^{n} \frac{1}{n} \frac{1$$

- Функция принадлежности определяет субъективную степень уверенности экс-перта в том, что данное конкретное значение базовой шкалы соответствует определяемому НМ.
 - Эту функцию не стоит путать с вероятностью.

Пример нечетких знаний

Для ЛП «возраст» базовая шкала — это числовая шкала [0,120], обозначающая количество прожитых лет.

Лингвистическая переменная «возраст» и нечеткие множества, определяющие ее значения

Формирование нечетких множеств

государственный политехнический в политехническ

Операции с нечеткими знаниями

Опера-ция «ИЛИ»:

- $\mu(x) = max(\mu 1(x), \mu 2(x))$ (логика Заде)
- или так: $\mu(x) = \mu 1(x) + \mu 2(x) \mu 1(x) * \mu 2(x)$ (вероятностный подход).

Усиление или ослабление лингвистических понятий достигается введением спе-циальных квантификаторов.

$$con(A) = A \mathcal{I} \mathbf{2} = \sum_{i=1}^{n} \mathbf{1} \mathbf{n} \mathbf{x} \mathbf{i} / \mu \mathbf{i} \mathcal{I} \mathbf{2}$$

Пути разрешения конфликтов

Разнообразие

 Не применять к одним и тем же данным одни и те же правила подряд.

Новизна

• Чем «старее» правило, тем меньше его приоритет.

Специфика

• Более специфичные правила имеют больший приоритет.

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 6

Приобретение знаний

Содержание лекции 6

- Стадии приобретения знаний
- Онтологический анализ
- Понятие онтологии
- Формальная модель онтологии
- Формальная модель онтологической системы
- Онтологическая система

Стадии приобретения знаний

- Идентификация. Анализируется класс проблем, которые предполагается решать с помощью проектируемой системы, включая данные, которыми нужно оперировать, и критерии оценки качества решений. Определяются ресурсы, доступные при разработке проекта, источники экспертных знаний, трудоемкость, ограничения по времени, стоимости и вычислительным ресурсам.
- **Концептуализация**. Формулируются базовые концепции и отношения между ними. Сюда же входят и характеристика различных видов используемых данных, анализ информационных потоков и лежащих в их основе структур в предметной области в терминах причинно-следственных связей, отношений частное/целое, постоянное/временное и т.п.
- Формализация. Предпринимается попытка представить структуру пространства состояний и характер методов поиска в нем. Выполняется оценка полноты и степени достоверности (неопределенности) информации и других ограничений, накладываемых на логическую интерпретацию данных, таких как зависимость от времени, надежность и полнота различных источников информации.
- Реализация. Преобразование формализованных знаний в работающую программу, причем на первый план выходит спецификация методов организации управления процессом и уточнение деталей организации информационных потоков. Правила преобразуются в форму, пригодную для выполнения программой в выбранном режиме управления. Принимаются решения об используемых структурах данных и разбиении программы на ряд более или менее независимых модулей.
- Тестирование. Проверка работы созданного варианта системы на большом числе репрезентативных задач. В процессе тестирования анализируются возможные источники ошибок в поведении системы. Чаще всего таким источником является имеющийся в системе набор правил. Оказывается, что в нем не хватает каких-то правил, другие не совсем корректны, а между некоторыми обнаруживается противоречие.

Онтологический анализ

Статическая онтология

в нее входят сущности предметной области, их свойства и отношения;

Динамическая онтология

определяет состояния, возникающие в процессе решения проблемы, и способ преобразования одних состояний в другие;

Эпистемическая онтология

описывает знания, управляющие процессом перехода из одного состояния в другое.

Онтологический анализ предполагает, что решаемая проблема может быть сведена к проблеме поиска, но при этом не рассматривается, каким именно способом нужно выполнять поиск.

тосударственный тосударственн

Текстологические методы

Текстологические методы извлечения знаний включают методы извлечения знаний из документов (методик, пособий, руководств) и специальной литературы (статей, монографий, учебников).

Схема извлечения знаний из специальных текстов

Понятие онтологии

Онтологией называется эксплицитная спецификация концептуализации. Формально онтология состоит из терминов, организованных в таксономию, их определений и атрибутов, а также связанных с ними аксиом и правил вывода.

О*нтология* предметной области включает упорядоченные понятия предметной области (ПО) A и моделирует основные функциональные связи R_A или отношения между понятиями, образующими Sk.

Помимо онтологии понимание задачи отражает модель или стратегия принятия решения *Sf* в выбранной ПО.

Схема, отображающая отношения между реальной действительностью и полем знаний:

Формальная модель онтологии

Под формальной моделью онтологии **О** будем понимать упорядоченную тройку вида:

$$O = \langle X, \Re, \Phi \rangle$$

где

 ${\bf X}$ - конечное множество концептов (понятий, терминов) предметной области, которую представляет онтология ${\bf O}$;

 \Re - конечное множество отношений между концептами (понятиями, терминами) заданной предметной области;

 Φ - конечное множество функций интерпретации (аксиоматизация), заданных на концептах и/или отношениях онтологии O.

Под *таксономической структурой* будем понимать иерархическую систему понятий, связанных между собой отношением **is_a** («быть элементом класса»).

тосударственный уполитехнический уполит

Формальная модель онтологической системы

Под формальной моделью онтологической системы $\sum_{i=1}^{n} o_{i}$ будем понимать триплет вида:

$$\sum_{i=1}^{N} = ,$$

Где $O^{\textit{meta}}$ — онтология верхнего уровня (метаонтология);

 $\{O^{d\&t}\}$ – множество предметных онтологий и онтологий задач предметной области;

 $\mathbf{\Xi}^{\inf f}$ - модель машины вывода, ассоциированной с онтологической системой $\sum_{i=1}^{\infty} \mathbf{e}^{i}$

В модели $\sum_{i=0}^{n}$ имеются три онтологические компоненты:

- метаонтология;
- предметная онтология;
- онтология задач.

Онтологическая система

Взаимосвязь между онтологиями онтологической системы

Онтология задач

Подходы и методологии базируются на следующих принципах проектирования и реализации онтологий:

- Ясность (Clarity)
- Согласованность (Coherence)
- Расширяемость (Extendibility)
- Минимум влияния кодирования (Minimal encoding bias)
- Минимум онтологических обязательств (Minimal ontological commitment)

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 7

Эвристическая классификация

Содержание лекции 7

- Структура системы, основанной на знаниях
- Терминология
- Эвристическое сопоставление
- Структура взаимодействия
- Может ли система, основанная на знаниях, решать проблемы?
- Понижение уровня сложности

Структура экспертной системы

Обобщенная структура системы, основанной на знаниях представлена на рисунке. Следует учесть, что реальные системы могут иметь более сложную структуру, однако блоки, изображенные на рисунке, непременно присутствуют в любой подобной системе, поскольку де-факто представляют собой стандарт современной структуры.

Терминология

Так как терминология в области разработки систем, основанных на знаниях постоянно модифицируется, определим основные термины в рамках данных лекций:

Пользователь— специалист предметной области, для которого преднаначена система. Обычно его квалификация недостаточно высока и поэтому он нуждается в помощи и поддержке своей деятельности со стороны системы.

Инженер по знаниям — специалист в области искусственного интеллекта, выступающий в роли промежуточного буфера между экспертом и базой знаний. Синонимы: когнитолог, инженер-интерпретатор, аналитик. Интерфейс пользователя — комплекс программ, реализующих диалог пользователя с системой как на стадии ввода информации, так и при получении результатов.

База знаний (БЗ) — ядро системы, совокупность знаний предметной области, записанная на машинный носитель в форме, понятной эксперту и пользователю (обычно на некотором языке, приближенном к естественному).

Эвристическое сопоставление

Структура взаимодействия

Эксперт

Источник информации для базы знаний.

Инженер

Формирует базу знаний на основе знаний эксперта.

Программист

Сопровождает, отлаживает и модернизирует систему.

Менеджер системы
Несет ответственность за последствия решения, принятого программой.

Пользователь

Работает с программой.

Может ли система, основанная на знаниях, решать проблемы?

Понижение уровня сложности

Производится обратная трассировка проблемы — "отталкиваясь" от цели, выясняем, какие предварительные условия требуется удовлетворить для ее достижения, и формулируем более простые подцели. Этот процесс рекурсивно продолжается до тех пор, пока не будут сформулированы тривиальные подцели, достижимые с помощью простейших операций.

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

HBEPCHTE

ЛЕКЦИЯ 8

Методы практического извлечения знаний

Содержание лекции 8

- Классификация методов практического извлечения знаний
- Экспертные системы
- Выбор подходящей проблемы
- Разработка прототипа
- Развитие прототипа до промышленной системы
- Оценка системы
- Стыковка и поддержка системы

Классификация методов практического извлечения знаний

Экспертные системы

6 Поддержка
5 Стыковка
4 Оценка
3 Доработка
2 Разработка прототипа
Выбор проблемы

Этап, предшествующий разработке конкретной системы, основанной на знаниях. Он включает:

- определение проблемной области и задачи;
- нахождение эксперта, желающего сотрудничать при решении проблемы, и назначение коллектива разработчиков;
- определение предварительного подхода к решению проблемы;
- анализ расходов и прибылей от разработки;
- подготовку подробного плана разработки.

Выбор подходящей проблемы

Разработка прототипа

Идентиф икация проблем ы

знакомство и обучение членов коллектива разработчиков, а также создание неформальной спецификации задачи.

Извлечен ие знаний

получение инженером по знаниям наиболее полное представление о предметной области и способах принятия решения в ней.

Структури рование или концептуа лизация знаний

разработка неформального наглядного описания знаний о предметной области в различных видах, которые отражают основные концепции и взаимосвязи между понятиями.

Формализ ация знаний

разработка базы знаний на языке представления знаний, который соответствует структуре поля знаний и позволяет реализовать прототип системы на следующей стадии программной реализации.

Программ ная реализаци я

разработка программного комплекса, демонстрирующего жизнеспособность подхода в целом. **Тестирова** ние

выявление ошибок в подходе и реализации прототипа и выработка рекомендаций по доводке системы до промышленного варианта.

HALIMOHAANHAIÄ MCCAFAORATEANC

Развитие прототипа до промышленной системы

Этапы развития прототипа	Функциональность прототипа
Демонстрационный прототип ЭС	Система решает часть задач,
	демонстрируя жизнеспособность
	подхода (несколько десятков правил
	или понятий)
Исследовательский прототип ЭС	Система решает большинство
	задач, но неустойчива в работе и не
	полностью проверена (несколько сотен
	правил или понятий)
Действующий прототип ЭС	Система надежно решает все задачи
	на реальных примерах, но для
	сложной задачи требует много
	времени и памяти
Промышленная система	Система обеспечивает высокое
	качество решений при
	минимизации требуемого времени и
	памяти; переписывается с
	использованием более эффективных
	средств представления знаний
Коммерческая система	Промышленная система, пригодная к
	продаже, хорошо документирована
	и снабжена сервисом

Оценка системы

Оценка системы

критерии коллектива разработчик ов (эффективность реализации, дизайн т. п.).

критерии приглашенн ых экспертов (оценка советоврешений и др.);

критерии пользовате лей (удобство интерфейсов и др.);

государственный толитехнический

Стыковка и поддержка системы

Стыковка системы

Это разработка связей между экспертной системой и средой, в которой она действует.

Стыковка происходит с другими программными средствами в рабочей среде и обучение пользователей.

Поддержка системы

Перекодирование системы на язык, подобный Си приемлемо лишь в том случае, если система сохраняет все знания проблемной области, и это знание не будет изменяться в ближайшем будущем. Однако если экспертная система создана именно из-за того, что проблемная область изменяется, то необходимо поддерживать систему в ее инструментальной среде разработки.

Спасибо за внимание

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Кафедра Телематики (при ЦНИИ РТК)

ЛЕКЦИЯ 9

Разработка экспертных систем

Содержание лекции 9

- Классификация задач экспертных систем
- Классификация по решаемой задаче
- Классификация по связи с реальным временем
- Классификация по типу ЭВМ
- Этапы разработки экспертной системы

Классификация задач экспертных систем

Классификация по решаемой задаче

Классификац ия по решаемой задаче

Интерпретация данных. Это процесс определения смысла данных, результаты которого должны быть согласованными и корректными.

Например, обнаружение и идентификация различных типов океанских судов по результатам аэрокосмического сканирования — S1AP и др.

Задачи анализы

Диагностика. Это процесс соотнесения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы.

Например: диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ — система CRIB и др.

Поддержка принятия решений. Это совокупность процедур, обеспечивающая принимающего решения индивидуума необходимой информацией и рекомендациями, облегчающими процесс принятия решения.

Например: помощь в выборе страховой компании или инвестора — CHOICE и др.

Классификация по решаемой задаче

Классификац ия по решаемой задаче

Проектирование. Состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Основные проблемы — получение четкого структурного описания знаний об объекте и проблема "следа".

Например: синтез электрических цепей — SYN и др.

Планирование. Это нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции.

Например: планирование эксперимента — MOLGEN и др.

Задачи синтеза

Управление. Это функция организованной системы, поддерживающая определенный режим деятельности.

Например: управление системой календарного планирования Project Assistant и др.

Мониторинг. Основная задача - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания.

Комбинированн ые задачи

Обучение. Это использование компьютера для обучения какой-то дисциплине или предмету.

Например: система PROUST — обучение языку Паскаль и др.

Прогнозирование. Позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций.

Например: прогнозы в экономике — ECON и др.

Классификация по связи с реальным временем

Классификация по связи с реальным временем

Динамические ЭС работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступающих в систему данн Пример: мониторинг в реанимационных пала

Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

Пример: микробиологические ЭС, в которых снимаются лабораторные измерения с технологического процесса один в 4 — 5 часов и анализируется динамика полученных показателей по отношению к предыдущему измерению.

Статические ЭС разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.

Пример: диагностика неисправностей в автом

Классификация по типу ЭВМ

Классификация по степени интеграции с другими программами

Автономные ЭС работают непосредственно в режиме консультаций с пользователем для специфически "экспертных" задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчеты, моделирование и т. д.).

Гибридные ЭС представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ и средства манипулирования знаниями

Этапы разработки экспертной системы

Этап, предшествующий разработке конкретной системы, основанной на знаниях. Он включает:

- определение проблемной области и задачи;
- нахождение эксперта, желающего сотрудничать при решении проблемы, и назначение коллектива разработчиков;
- определение предварительного подхода к решению проблемы;
- анализ расходов и прибылей от разработки;
- подготовку подробного плана разработки.

Спасибо за внимание

