Contents

1	Linear Algebra	3
Π	Field Theory	5
1	Algebraic Field Extensions	7
2	Galois Theory	9
II	I Algebraic Number Theory	11
3	Cheet Sheet	19
4	Algebraic Numbers and Integers	21
5	3	23
6	Integral Bases 6.1 Overview	25 25 25 25

2 CONTENTS

Part I Linear Algebra

Part II Field Theory

Algebraic Field Extensions

Definition 1 (Splitting Field). A splitting field of a polynomial f over a field K is a field extension L of K over which f factors into linear factors that is

$$f(X) = c \prod_{i=1}^{\deg f} (X - a_i)$$

where $c \in K$ and for each $1 \le i \le \deg f$ we have $X - a_i \in L[X]$ with a_i not necessarily distinct and such that the roots a_i generate L over K.

Remark. The extension L is an extension of minimal degree over K in which f splits. Such extension always exist and is unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of f (if we assume it is separable).

Definition 2 (Normal Extension). A algebraic extension L over a field K is normal if one of the following equivalent conditions are met.

- 1. I don't quite see this.
- 2. L is a splitting field of a family of polynomials of K[X].
- 3. Every irreducible polynomials of K[X] that has a root in L factors into linear factors over L.

Galois Theory

Example 2.1. Let

Proof. The field extension $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ is Galois of degree 4. This means that the Galois group is of order 4. The minimal polynomial of $\sqrt{2}$ is X^2-2 , so the conjugate of $\sqrt{2}$ is $-\sqrt{2}$. Similarly, the conjugate of $\sqrt{3}$ is $-\sqrt{3}$.

Part III Algebraic Number Theory

Theorem 3. Let A be an integral domain, and let L be a field containing A. The elements of L integral over A form a ring.

Remark. The immediate consequence of this theorem is that the ring of integers is indeed a ring.

Definition 4. Symmetric polynomials and elementary symmetric polynomials.

Theorem 5. Let A be a ring. Every symmetric polynomial $P(X_1, \ldots, X_r)$ in $A[X_1, \ldots, X_n]$ can be represented with a linear combination of elementary symmetric polynomials with coefficients in A.

Proof is constructive and inductive by reducing the polynomial over the lexicographically highest monomial. Not a hard proof, but the indecies are anoying.

The above proof implies:

Let $f(X) = X^n + a_1 X^{n-1} + \dots + a_n \in A[X]$, and let $\alpha_1, \dots, \alpha_n$ be the roots of f(X) in some ring containing A, so that $f(X) = \prod (X - \alpha_i)$ in the larger ring. Then

$$a_1 = -S_1(\alpha_1, \dots, \alpha_n), \qquad a_2 = S_2(\alpha_1, \dots, \alpha_n), \qquad a_n = \pm S_n(\alpha_1, \dots, \alpha_n).$$

(I'm not quite sure why this is the case. Maybe use the multi-binomial theorem.)

Thus the elementary symmetric polynomials in the roots of f lie in A. And so the theorem implies that every symmetric polynomial in the roots of f(X) lies in A.

Proposition 6. Let A be a integral domain and Ω be an algebraically closed field containing A. If $\alpha_1, \ldots, \alpha_n$ are the roots in Ω of a monic polynomial in A[X], then every polynomial $g(\alpha_1, \ldots, \alpha_n)$ in $A[\alpha_1, \ldots, \alpha_n]$ is a root of a monic polynomial in A[X].

Proof. Clearly,

$$h(X) := \prod_{\sigma \in \operatorname{Sym}_n} (X - g(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)}))$$

is a monic polynomial whose coeffcients are symmetric polynomials in the α_i , and therefore lie in A. But $g(\alpha_1, \ldots, \alpha_n)$ is one of the roots.

With this we can prove that the above theorem. I don't quite understand few steps ...

Dedekind's Proof

Proposition 7. Let L be a field containing A. An element α of L is integral over A if and only if there exists a nonzero finitely generated A-submodule of L such that $\alpha M \subset M$ (in fact, we can take $M = A[\alpha]$, the A-subalgebra generated by α).

Proof. • Let $\alpha \in L$ be integral over A. The A-submodule $A[\alpha]$ in L is generated by $1, \alpha, \ldots, \alpha^{n-1}$, thus finitely generated and clearly nonzero. $\alpha A[\alpha] \subset A[\alpha]$ also holds.

• Let M be a nonzero, finitely generated A-submodule in L such that $\alpha M \subset M$. Since M is finitely generated, there is a set of generators $v_1, \ldots, v_n \in M$. From $\alpha M \subset M$ we have that

$$\alpha v_i = \sum_{j=1}^n a_{i,j} v_j$$

for some $a_{i,j} \in A$. We rewrite this system of equations

$$(\alpha - a_{i,i})v_i \sum_{j=1, j \neq i}^n a_{i,j}v_j = 0$$

We have the matrix

$$\begin{pmatrix} (\alpha - a_{1,1}) & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & (\alpha - a_{2,2}) & \cdots & a_{2,n} \\ \vdots & & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & (\alpha - a_{n,n}) \end{pmatrix}$$

Applying Cramer's Rule we get $v_i = \frac{\det(C_i)}{\det C}$, but C_i is always 0, and at least one v_i is nonzero, so we have that $\det(C) = 0$.

But calculating the determinant of C gives us

$$\alpha^n + c_1 \alpha^{n-1} + \dots + c_n = 0$$

as desired.

Now take α and β integral over A and denote $\alpha M \subset M$ and $\beta N \subset N$.

1. MN is an A-submodule of L.

Dedekind's proof is much easier to understand, lol.

Integral Elements

Proposition 8. Let K be the field of fractions of A, and let L be a field containing K. If $\alpha \in L$ is algebraic over K, then there exists a nonzero $d \in A$ such that $d\alpha$ is integral over A.

Corollary 1. Let A be an integral domain with field of fractions K, and let B be the integral closure of A in a field L containing K. If L is algebraic over K, then it is the field of fractions B.

Example 8.1. Let d be a square-free integer. Consider $A = \mathbb{Z}[\sqrt{d}]$. Show that every element of R can be written as a product of irreducible elements.

Proof. Define $N: R \longrightarrow \mathbb{N}$ as $N(a+b\sqrt{d}) = |a^2-db^2|$ where $a,b \in \mathbb{Z}$. Let $a_1+b_1\sqrt{d}$ and $a_2+b_2\sqrt{d}$ be two elements in $\mathbb{Z}[\sqrt{d}]$ with $a_1,b_1,a_2,b_2 \in \mathbb{Z}$, then

$$\begin{split} N((a_1+b_1\sqrt{d})(a_2+b_2\sqrt{d})) &= N((a_1a_2+b_1b_2d) + (a_1b_2+a_2b_1)\sqrt{d}) \\ &= |(a_1a_2+b_1b_2d)^2 - d(a_1b_2+a_2b_1)^2| \\ &= |a_1^2a_2^2 + 2a_1a_2b_1b_2d + b_1^2b_2^2d^2 - a_1^2b_2^2d - 2a_1a_2b_1b_2d - a_2^2b_1^2d| \\ &= |a_1^2a_2^2 - a_1^2b_2^2d - a_2^2b_1^2d + b_1^2b_2^2d^2| \end{split}$$

on the other hand

$$N(a_1 + b_1\sqrt{d})N(a_2 + b_2\sqrt{d}) = |a_1^2 - db_1^2||a_2^2 - db_2^2|$$

= |a_1^2a_2^2 - a_1^2b_2^2d - a_2^2b_1^2d + b_1^2b^2d^2|

so we have $N((a_1 + b_1\sqrt{d})(a_2 + b_2\sqrt{d})) = N(a_1 + b_1\sqrt{d})N(a_2 + b_2\sqrt{d})$. Moreover, let $u \in \mathbb{Z}[\sqrt{d}]$ be a unit, then there is an element $v \in \mathbb{Z}[\sqrt{d}]$ such that uv = 1. Applying the function defined above, we get

$$1 = N(1) = N(uv) = N(u)N(v)$$

so N(u) = 1. Now suppose $N(a + b\sqrt{d}) = 1$ with $a, b \in \mathbb{Z}$. Consider

$$(a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2 = \pm 1$$

and therefore $a + b\sqrt{d}$ is a unit.

We have shown that N is a norm map. R is also an integral domain because if $x \in R$ is a zero-divisor, then we have $0 = N(x) = |a^2 - db^2|$, but this is impossible since d is square-free. Applying the example before, we get the desired result.

Example 8.2. 2.1.3. did it before

Example 8.3. Let R be a domain in which every element can be written as a product of irreducibles. Show that the following are equivalent.

- 1. this factorization is unique
- 2. if π is irreducible and π divides ab, then $\pi|a$ or $\pi|b$

Proof. Let the factorization be unique, $\pi \in R$ be irreducible and divide ab. Then $ab = \pi x$ for some $x \in R$. On the other hand, ab has a unique factorization that is the product of the factorization of a and b but must contain π .

For the other side let $p_1^{r_1} \cdot \ldots \cdot p_n^{r_n}$ and $q_1^{s_1} \cdot \ldots \cdot q_m^{r_m}$ be two factorizations of an element in R. Then p_1 divides $q_1^{s_1} \cdot \ldots \cdot q_m^{r_m}$ so p_1 divides some q_i . But q_i is irreducible, so we have $p_1 = q_i$. Induction yields the desired result.

Example 8.4. Show that if π is an irreducible element of a principal ideal domain, then (π) is a maximal ideal.

Proof. Assume (π) is not maximal, then there is an ideal (a) with $a \neq 1$ such that $(\pi) \subsetneq (a)$. But this implies $\pi = ra$ for some $r \in R$ that is not a unit. This is a contradiction.

Example 8.5. If F is a field, prove that F[x] is Euclidean.

Proof. Define $\phi: F[x] \longrightarrow \mathbb{N}$ as $\phi(f) = \deg(f)$. Fix two polynomials $f, g \in F[x]$. If $\deg(f) >= g$, then we can do polynomial division to get f = gp + r where $\deg(g) > r$.

Example 8.6. Show that $\mathbb{Z}[i]$ is Euclidean.

Proof. Fix two elements $x, y \in \mathbb{Z}[i]$ and write $x = a_x + ib_x$ and $y = a_y + ib_y$. It is

$$\frac{x}{y} = \underbrace{\frac{a_x a_y + b_x b_y}{a_y^2 + b_y^2}}_{=:\alpha} + i \underbrace{\frac{a_y b_x - a_x b_y}{a_y^2 + b_y^2}}_{=:\beta}$$

Set p_x to be the closest integer to α and p_y to be the closest integer to β and $p = p_x + ip_y$. Moreover, set $r = ((\alpha - p_x) + i(\beta - p_y))y$.

It is

$$r = y(\alpha + i\beta) - y(p_x + ip_y)$$

$$= y\frac{x}{y} - py$$

$$= x - py$$

so we got the desired representation.

Furthermore, we have

$$N(r) = N(y)((\alpha - p_x)^2 + (\beta - p_y)^2)$$

 $\leq N(y)\frac{1}{2}$

Example 8.7. Prove that if p is a positive prime, then there is an element $x \in \mathbb{Z}/p\mathbb{Z}$ such that $x^2 \equiv -1 \mod p$ if and only if either p = 2 or $p \equiv 1 \mod 4$.

Proof. 1. Let p=2, then we can simply choose x=1. Now let $p\equiv 1\mod 4$. With Wilson's Theorem we have

$$-1 \equiv (p-1)! \equiv 1 \cdot \dots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \dots \cdot p \equiv \left(\left(\frac{p-1}{2} \right)! \right)^2 \cdot (-1)^{\frac{p-1}{2}} \equiv \left(\left(\frac{p-1}{2} \right)! \right)^2$$

where $\mod p$. So choose the last expression as x and we are done.

2. If p=2, then we are done. Now let $x^2 \equiv -1 \mod p$. If $p\equiv 3 \mod (4)$, we have

$$x^{p-1} = x^{4n+2} = x^{4n}x^2 \equiv -1(x^4)^n \equiv -1 \mod p$$

П

as $x^4 \equiv 1 \mod p$. But this contradicts Fermat's Little Theorem.

Example 8.8. Find all integer solutions to $y^2 + 1 = x^3$ with $x, y \neq 0$.

Proof. If x is even, then $4|x^3$, so $x^3 - 1 \equiv 3 \mod 4$ which cannot be a square since all squares are congruent to either 0 or 1 $\mod 4$. So x is odd and y is even. Write $y^2 + 1 = (y+i)(y-i)$. If a prime divides (y+i)(y-i), then the prime divides also their difference 2i. So p=2 up to units. But then p divides y as y was even, but this is impossible since p also divides y+i.

Example 8.9. What are the primes of $\mathbb{Z}[i]$?

Proof. We have two types of primes in $\mathbb{Z}[i]$.

- 1. p and ip where $p \equiv 3 \mod 4$.
- 2. a + ib with $a^2 + b^2 \equiv 1 \mod 4$ and prime.

This is because of the norm function $N(a+ib) = a^2 + b^2$.

Example 8.10. A positive integer a is the sum of two squares if and only if $a = b^2c$ where c is not divisible by any positive prime $p \equiv 3 \mod 4$.

Proof. I don't know.

Example 8.11. $\mathbb{Z}[\rho]$ is a ring where

$$\rho = \frac{-1 + \sqrt{-3}}{2}.$$

Proof. 1. $(\mathbb{Z}[\rho], +)$ is an abelian group.

- (a) If $a_1+b_1\rho$ and $a_2+b_2\rho$ are elements of $\mathbb{Z}[\rho]$, then $a_1+b_1\rho+a_2+b_2\rho=a_1+a_2+(b_1+b_2)\rho$, so the addition is well-defined.
- (b) Associativity and commutativity is inhereted from the addition of integers.
- (c) The additive identity is 0.
- (d) If $a + b\rho$ is in $\mathbb{Z}[\rho]$, then its inverse is $-a b\rho$.
- 2. $(\mathbb{Z}[\rho], \cdot)$ is a monoid.
 - (a) If $a_1 + b_1 \rho$ and $a_2 + b_2 \rho$ are two elements of $\mathbb{Z}[\rho]$, then we have

$$(a_1 + b_1 \rho)(a_2 + b_2 \rho) = a_1 a_2 + b_1 b_2 \rho^2 + (a_1 b_2 + a_2 b_1) \rho$$

$$= a_1 a_2 + b_1 b_2 \overline{\rho} + (a_1 b_2 + a_2 b_1) \rho$$

$$= a_1 a_2 + b_1 b_2 \frac{-1 - \sqrt{3}}{2} + (a_1 b_2 + a_2 b_1) \frac{-1 + \sqrt{3}}{2}$$

$$= a_1 a_2 - \frac{b_1 b_2}{2} - \frac{a_1 b_2 + a_2 b_1}{2} - \frac{b_1 b_2 \sqrt{-3}}{2} + \frac{(a_1 b_2 + a_2 b_1) \sqrt{-3}}{2}$$

$$= a_1 a_2 + \frac{-a_1 b_2 - a_2 b_2 - b_1 b_2}{2} + \frac{(a_1 b_2 + a_2 b_1 - b_1 b_2) \sqrt{-3}}{2}$$

I made some mistake, but should be right.

- (b) The multiplicative identity is 1
- 3. Distributive law is again inherited.

Example 8.12. 1. Show that $\mathbb{Z}[\rho]$ is Euclidean.

Proof. Fix two elements $x_1 + x_2 \rho$ and $y_1 + y_2 \rho$ of $\mathbb{Z}[\rho]$. We have

$$\frac{x_1 + x_2 \rho}{y_1 + y_2 \rho} = \frac{x_1 + x_2 \rho}{y_1 + y_2 \rho} \frac{y_1 - y_2 \rho}{y_1 - y_2 \rho}$$
$$= \frac{x_1 y_1 - x_2 y_2 \overline{\rho} - x_1 y_2 \rho + x_2 y_1 \rho}{y_1^2 + y_2^2 \overline{\rho}}$$

I think this should work at the end of the day, but I'm too lazy to write it out.

2. Show that the only units in $\mathbb{Z}[\rho]$ are ± 1 , $\pm \rho$, and $\pm \overline{\rho}$.

Cheet Sheet

 $K=\mathbb{Q}(\sqrt{d})$ where d is a square-free integer.

1.
$$\mathcal{O}_K = \mathbb{Z}[\alpha]$$
 where

$$\alpha := \begin{cases} \frac{1+\sqrt{d}}{2} & d \equiv 1 \mod 4 \\ \sqrt{d} & d \equiv 2, 3 \mod 4 \end{cases}$$

Algebraic Numbers and Integers

Example 8.13. Show that

$$\alpha := \frac{\sqrt{2}}{3}$$

is an algebraic number, but not an algebraic integer.

Proof. First of all, α is the root of

$$X^2 - \frac{2}{9} \in \mathbb{Q}[X],$$

so it is an algebraic number.

Now assume α is an algebraic integer. Then, there is a monic polynomial $f \in \mathbb{Z}[X]$ such that $f(\alpha) = 0$. It is

$$f(\alpha) = \left(\frac{\sqrt{2}}{3}\right)^n + a_{n-1} \left(\frac{\sqrt{2}}{3}\right)^{n-1} + \dots + a_1 \frac{\sqrt{2}}{3} + a_0 = 0$$
$$(\sqrt{2})^n + 3a_{n-1}(\sqrt{2})^{n-1} + \dots + 3^{n-1}a_1\sqrt{2} + 3^n a_0 = 0$$

If n is odd, then $\sqrt{2}$ is not an integer, therefore, we can separate the sum into two smaller ones.

$$\sum_{k \text{ even}} 3^{n-k} a_k (\sqrt{2})^k = 0$$

and

$$\sum_{k \text{ odd}} 3^{n-k} a_k (\sqrt{2})^k = \sqrt{2} \sum_{k \text{ even}} 3^{n-k} a_k (\sqrt{2})^{\frac{k-1}{2}} = 0.$$

Both sums are divisible by 3 as 3 divides 0 and since all summands except for the very last one contains multiples of 3, they are divisible by 3, so the last summand must be divisible by 3 as well. But this cannot be. Hence α is not an algebraic integer.

Example 8.14. Show that if $r \in \mathbb{Q}$ is an algebraic integer, then $r \in \mathbb{Z}$.

Proof. Write $r = \frac{p}{q}$ such that $q \not| p$ and we have

$$p^{n} + qa_{n-1}p^{n-1} + \dots + q^{n}a_{0} = 0$$

q divides the whole sum, it divides all summands, but it does not divide p^n , therefore q = 1.

3

Example 8.15. Let K be an algebraic number field. If $\alpha \in K$, then there is a nonzero integer $m \in \mathbb{Z}$ such that $m\alpha \in \mathcal{O}_K$.

Proof. Since α is an algebraic number, we have

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0} = 0$$

with $a_0, \ldots, a_{n-1} \in \mathbb{Q}$. So choose $m \in \mathbb{Z}$ such that $m\alpha_i$ is an integer for all i. We have

$$m^{n}\alpha^{n} + m^{n}a_{n-1}\alpha^{n-1} + \dots + m^{n}a_{1}\alpha + m^{n}a_{0} = 0$$
$$(m\alpha)^{n} + ma_{n-1}(m\alpha)^{n-1} + \dots + m^{n-1}a_{1}(m\alpha) + m^{n}a_{0} = 0$$

so $m\alpha \in \mathcal{O}_K$.

24 CHAPTER 5. 3

Integral Bases

- 6.1 Overview
- 6.2 Details
- 6.2.1 Trace, Norm, and Characteristic Polynomial

Errors

- 1. Pretty sure that in the example 9.1. the sign of characteristic polynomial is swapped. We want the definition of characteristic polynomial to be in such a way that it only creates monic polynomials.
- 2. Proof of proposition 10 is wrong. The characteristic polynomial is not the same as the minimal polynomial see:

https://feog.github.io/antchap1.pdf

- 3. Proof of Lemma 11 is wrong because of the stuff above.
- 4. Continue next time from Lemma 11.

Definition 9 (Trace, Norm, and Characteristic Polynomial). Let K be an algebraic number field with degree n. Then, K can be viewed as an finite-dimensional vector space over \mathbb{Q} . If $\alpha \in K$, we can define a linear operator

$$\Phi_{\alpha}: K \longrightarrow K, \qquad v \mapsto \alpha v,$$

which may be represented by $n \times n$ matrix $A_{\Phi} = (a_{i,j})_{1 \leq i,j \leq n}$ by requiring

$$\alpha e_i = \sum_{j=1}^n a_{i,j} e_j, \quad a_{i,j} \in \mathbb{Q}.$$

We define trace of α by $\operatorname{Tr}_K(\alpha) := \operatorname{Tr}(\Phi_\alpha)$, the norm of α by $N(\alpha) := \det(\Phi_\alpha)$ and the characteristic polynomial of α by $\chi_K(X) := \det(XI - \Phi_\alpha)$. If

Example 9.1. In this example, we will compute the traces, norms and characteristic polynomials of some elements in concrete algebraic number fields.

1. Let $K = \mathbb{Q}(i)$. If $\alpha = a + ib$ with $a, b \in \mathbb{Q}$, then the trace of α is $\mathrm{Tr}_K(\alpha) = 2a$, the norm of α is $\mathrm{N}_K(\alpha) = a^2 + b^2$, and the characteristic polynomial of α is $\chi_{\alpha}(X) = X^2 - 2aX + a^2 + b^2$.

Proof. A basis of K is $\{1,i\}$. Then Φ_{α} is defined by

$$1 + 0 \cdot i \mapsto \alpha = a + ib$$
$$0 + 1 \cdot i \mapsto \alpha i = -b + ia$$

and we may represent Φ by a 2×2 matrix

$$A_{\Phi} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Therefore, $\operatorname{Tr}_K(\alpha) = 2a$, $\operatorname{N}_K(\alpha) = a^2 + b^2$, and $\chi_\alpha(X) = X^2 - 2aX + a^2 + b^2$.

2. Let $K = \mathbb{Q}(\sqrt{2})$. If $\alpha = a + \sqrt{2}b$ with $a, b \in \mathbb{Q}$, then the trace of α is $\mathrm{Tr}_K(\alpha) = 2a$, the norm of α is $\mathrm{N}_K(\alpha) = a^2 - 2b^2$, and the characteristic polynomial of α is $\chi_{\alpha} = X^2 - 2aX + a^2 - 2b^2$.

Proof. A basis of K is $\{1, \sqrt{2}\}$. Define Φ_{α} by

$$1 + 0 \cdot \sqrt{2} \mapsto \alpha = a + \sqrt{2}b$$
$$0 + 1 \cdot \sqrt{2} \mapsto \sqrt{2}\alpha = 2b + \sqrt{2}a$$

then the matrix belonging to Φ_{α} is

$$A_{\Phi} = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}.$$

So we have $\operatorname{Tr}_K(\alpha)=2a, \, \operatorname{N}_K(\alpha)=a^2-2b^2, \, \text{and} \, \, \chi_\alpha=X^2-2aX+a^2-2b^2.$

3. Let $K = \mathbb{Q}(\sqrt{5})$. If $\alpha = a + \sqrt{5}b$, then $\mathrm{Tr}_K(\alpha) = 2a$ and $\mathrm{N}_K(\alpha) = a^2 - 5b^2$.

Proof. A basis of K is $\{1, \sqrt{5}\}$. As before, the linear operator Φ is defined by

$$1 + 0 \cdot \omega \mapsto \alpha = a + \sqrt{5}b$$
$$0 + 1 \cdot \omega \mapsto \omega \alpha = 5b + \sqrt{5}a$$

and the matrix belonging to Φ is given by

$$A_{\Phi} = \begin{pmatrix} a & 5b \\ b & a \end{pmatrix}$$

hence it is $\operatorname{Tr}_K(\alpha) = 2a$, $\operatorname{N}_K(\alpha) = a^2 - 5b^2$, and $\chi_\alpha(X) = X^2 - 2aX + a^2 - 5b^2$.

4. In more general terms, let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer. If $\alpha = a + \sqrt{d}b$, then $\operatorname{Tr}_K(\alpha) = 2a$ and $\operatorname{N}_K(\alpha) = a^2 - db^2$.

Proof. A basis of K is $1, \sqrt{d}$. Let Φ_{α} be a linear operator defined by

$$1 + 0 \cdot \sqrt{d} \mapsto \alpha = a + \sqrt{d}b$$
$$0 + 1 \cdot \sqrt{d} \mapsto \sqrt{d}\alpha = db + \sqrt{d}a$$

which we may represent by a 2×2 matrix

$$A_{\Phi} = \begin{pmatrix} a & db \\ b & a \end{pmatrix}.$$

We have $\operatorname{Tr}_K(\alpha)=2a$, $\operatorname{N}_K(\alpha)=a^2-db^2$, and $\chi_\alpha(X)=X^2-2aX+a^2-db^2$ matching the results in our previous examples.

¹The given basis is not an integral basis, but an integral basis is not required to find the field trace and field norm of an element.

6.2. DETAILS 27

5. Let $\mathbb{Q}(\sqrt[3]{2})$. If $\alpha = a + \sqrt[3]{2}b + \sqrt[3]{4}c$, then $N_K(\alpha) = a^3 + 2b^3 + 4c^3 - 6abc$.

Proof. A basis of K is $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. Let Φ_{α} be a linear operator defined by

$$1 + 0 \cdot \sqrt[3]{2} + 0 \cdot \sqrt[3]{4} \mapsto \alpha = a + \sqrt[3]{2}b + \sqrt[3]{4}c$$

$$0 + 1 \cdot \sqrt[3]{2} + 0 \cdot \sqrt[3]{4} \mapsto \sqrt[3]{2}\alpha = 2c + \sqrt[3]{2}a + \sqrt[3]{4}b$$

$$0 + 0 \cdot \sqrt[3]{2} + 1 \cdot \sqrt[3]{4} \mapsto \sqrt[3]{4}\alpha = 2b + \sqrt[3]{2}(2c) + \sqrt[3]{4}a$$

which we again represent by

$$A_{\Phi} = \begin{pmatrix} a & 2c & 2b \\ b & a & 2c \\ c & b & a \end{pmatrix}.$$

We have
$$\operatorname{Tr}_K(\alpha) = 3a$$
, $\operatorname{N}_K(\alpha) = a^3 + 2b^3 + 4c^3 - 6abc$ and $\chi_{\alpha}(X) = X^3 - 3aX^2 + 3a^2X - 6bcX - a^3 - 2b^3 + 6abc - 4c^3$.

Example 9.2. In this example, we will look at the cases when the field extension is given by a root of a polynomial ².

1. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $X^3 - X - 1$. If $\alpha = a + \theta b + \theta^2 c$, then $\operatorname{Tr}_K(\alpha) = 3a + 2c$ and $\operatorname{N}_K(\alpha) = a^3 + b^3 + 2a^2c - bc^2 + c^3 + a(-b^2 - 3bc + c^2)$.

Proof. First, we have

$$X^{3} - X - 1 = 0 \quad \Rightarrow \quad \theta^{3} - \theta - 1 = 0$$
$$\Rightarrow \quad \theta^{3} = \theta + 1$$

so $[K:Q] \le 3$.

Assume $X^3 - X - 1$ is reducible, then by Rational Root Theorem, we have that there is a root $x = pq^{-1}$ with p is a factor of -1 and q is a factor of 1, but ± 1 is not a root of the polynomial. Thus, $X^3 - X - 1$ is irreducible.

If θ^2 is rational, then the minimal polynomial of θ has a degree of 2 and divides $X^2 - X - 1$ which cannot be. Hence θ^2 is not rational and $\{1, \theta, \theta^2\}$ is a basis for K.

Let $\alpha = a + \theta b + \theta^2 c$ be an element in K and define a linear operator Φ_{α} by

$$\begin{aligned} 1 + 0 \cdot \theta + 0 \cdot \theta^2 &\mapsto \alpha = a + \theta b + \theta^2 c \\ 0 + 1 \cdot \theta + 0 \cdot \theta^2 &\mapsto \theta \alpha = \theta^3 c + \theta a + \theta^2 b \\ &= (\theta + 1)c + \theta a + \theta^2 b \\ &= c + \theta (a + c) + \theta^2 b \\ 0 + 0 \cdot \theta + 1 \cdot \theta^2 &\mapsto \theta^2 \alpha = \theta^3 b + \theta^4 c + \theta^2 a \\ &= (\theta + 1)b + (\theta^2 + \theta)c + \theta^2 a \\ &= b + \theta b + \theta^2 c + \theta c + \theta^2 a \\ &= b + \theta (b + c) + \theta^2 (a + c) \end{aligned}$$

which we represent with a 3×3 matrix

$$A_{\Phi} = \begin{pmatrix} a & c & b \\ b & a+c & b+c \\ c & b & a+c \end{pmatrix}$$

so we have
$$\operatorname{Tr}_K(\alpha) = 3a + 2c$$
, $\operatorname{N}_K(\alpha) = a^3 + b^3 + 2a^2c - bc^2 + c^3 + a(-b^2 - 3bc + c^2)$, and $\operatorname{Y}_{\alpha}(X) = \Box$

²The field extensions are defined by a single root of a polynomial, in other words, how the field extension looks exactly depends on the chosen root, and they are not a splitting field of the polynomial.

2. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(X) = X^4 - X - 1$.

Proof. If $X^4 - X - 1$ is reducible, then by Rational Root Theorem, there is a root pq^{-1} with $p, q \in \mathbb{Z}$ relatively prime such that p is a factor of -1 and q is a factor of 1. However, ± 1 is not a root because $f(\pm 1) = 1 \pm 1 - 1 = \pm 1$. We have that f is irreducible over the rational numbers.

Since f is irreducible, if θ is a root of f, then f is the minimal polynomial of θ and we have a basis $\{1, \theta, \theta^2, \theta^3\}$ for K. Now let $\alpha = a + \theta b + \theta^2 c + \theta^3 d$ and define a linear operator Φ_{α} by

$$1 + 0 \cdot \theta + 0 \cdot \theta^{2} + 0\theta^{3} \mapsto \alpha = a + \theta b + \theta^{2} c + \theta^{3} d$$

$$0 + 1 \cdot \theta + 0 \cdot \theta^{2} + 0\theta^{3} \mapsto \theta \alpha = \theta a + \theta^{2} b + \theta^{3} c + \theta^{4} d$$

$$= \theta a + \theta^{2} b + \theta^{3} c + (\theta + 1) d$$

$$= d + \theta (a + d) + \theta^{2} b + \theta^{3} c$$

$$0 + 0 \cdot \theta + 1 \cdot \theta^{2} + 0 \cdot \theta^{3} \mapsto \theta^{2} \alpha = \theta^{2} a + \theta^{3} b + \theta^{4} c + \theta^{5} d$$

$$= \theta^{2} a + \theta^{3} b + (\theta + 1) c + (\theta^{2} + \theta) d$$

$$= c + \theta (c + d) + \theta^{2} (a + d) + \theta^{3} b$$

$$0 + 0 \cdot \theta + 0 \cdot \theta^{2} + 1 \cdot \theta^{3} \mapsto \theta^{3} \alpha = \theta^{3} a + \theta^{4} b + \theta^{5} c + \theta^{6} d$$

$$= \theta^{3} a + (\theta + 1) b + (\theta^{2} + \theta) c + (\theta^{3} + \theta^{2}) d$$

$$= b + \theta (b + c) + \theta^{2} (c + d) + \theta^{3} (a + d)$$

which we can represent by a 4×4 matrix

$$A_{\Phi} = \begin{pmatrix} a & d & c & b \\ b & a+d & c+d & b+c \\ c & b & a+d & c+d \\ d & c & b & a+d \end{pmatrix}.$$

So we have $\operatorname{Tr}_K(\alpha) = 4a + 3d$ and the norm is too unholy to write it out here.

Proposition 10. If α is an algebraic number, then its characteristic polynomial is a multiple of its minimal polynomial, i.e. let K be an algebraic number field and let $\alpha \in K$ be an algebraic number, then

$$\chi_{\alpha}(X) = m_{\alpha}(X)h(X) \qquad h(X) \in \mathbb{Q}[X]$$

where χ_{α} is the characteristic polynomial of α and m_{α} is the minimal polynomial of α .

Proof. Let K be an algebraic number field and fix an algebraic number $\alpha \in K$. Both the characteristic polynomial and the minimal polynomial are monic by definition. If m_{α} is a minimal polynomial of α and has a degree of m, then $[\mathbb{Q}(\alpha):\mathbb{Q}]=m$, so the characteristic polynomial χ_{α} is also of degree m.

An intermediate result that we will not prove (because I cannot be bothered by it) is $\chi_{\alpha}(\Phi_{\alpha}) = \Phi_{\chi_{\alpha}(\alpha)}$. By Cayley-Hamilton theorem we also have $\chi_{\alpha}(\Phi_{\alpha}) = 0$, so $\Phi_{\chi_{\alpha}(\alpha)} = 0$. If the linear operator defined by $v \mapsto \alpha v$ is identical to 0, then α must be 0, so $\chi_{\alpha}(\alpha) = 0$ which means that α is a root of its own characteristic polynomial.

The characteristic polynomial and the minimal polynomial share a root and because of minimality of the minimal polynomial, the minimal polynomial divides the characteristic polynomial, but because they are of the same degree, we have that these polynomials are identical.

Example 10.1. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\alpha = \sqrt{2} + \sqrt{3}$. The minimal polynomial of α is

6.2. DETAILS 29

Proof. A basis of K is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. Define a linear mapping Φ_{α} by

$$1 + 0 \cdot \sqrt{2} + 0 \cdot \sqrt{3} + 0 \cdot \sqrt{6} \mapsto (\sqrt{2} + \sqrt{3})1 = 0 + \sqrt{2} + \sqrt{3} + 0$$

$$0 + 1 \cdot \sqrt{2} + 0 \cdot \sqrt{3} + 0 \cdot \sqrt{6} \mapsto (\sqrt{2} + \sqrt{3})\sqrt{2} = 2 + 0 + 0 + \sqrt{6}$$

$$0 + 0 \cdot \sqrt{2} + 1 \cdot \sqrt{3} + 0 \cdot \sqrt{6} \mapsto (\sqrt{2} + \sqrt{3})\sqrt{3} = 3 + 0 + 0 + \sqrt{6}$$

$$0 + 0 \cdot \sqrt{2} + 0 \cdot \sqrt{3} + 0 \cdot \sqrt{6} \mapsto (\sqrt{2} + \sqrt{3})\sqrt{6} = 0 + 3\sqrt{2} + 2\sqrt{3} + 0$$

which is represented by

$$A_{\phi} = \begin{pmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

П

This gives us the minimal polynomial $m_{\alpha}(X) = X^4 - 10X + 1$ of α .

Lemma 11. If K is an algebraic number field, and $\alpha \in \mathcal{O}_K$ an element in its ring of integers, then $\mathrm{Tr}_K(\alpha)$ and $\mathrm{N}_K(\alpha)$ are in \mathbb{Z} .

- 1. Proof. Let α be an algebraic integer. Since the characteristic polynomial of α is a multiple of the minimal polynomial, it has integer coefficients. Denote the minimal polynomial by $m_{\alpha} = \sum_{i=0}^{n} a_i X^i$ for some $a_i \in \mathbb{Z}$ for $1 \le i \le n$. The trace is coefficient of X^{n-1} in the characteristic polynomial 3, therefore it is an integer. Moreover, we have $N(\alpha) = (-1)^n \chi_{\alpha}(0) = (-1)^n a_0$ which again is an integer.
- 2. Proof. Let K be an algebraic number field of degree n and fix an element $\alpha \in \mathcal{O}_K$ in its ring of integers. We define a linear operator $\Phi: K \longrightarrow K$ by $v \mapsto \alpha v$. If e_1, \ldots, e_n is a basis of K viewed as a vector space over \mathbb{Q} , then we may represent Φ as a $n \times n$ matrix by

$$\alpha e_i = \sum_{j=1}^n a_{i,j} e_j$$

for all $1 \leq i \leq n$ and $a_{i,j} \in \mathbb{Q}$. Taking the conjugates, we get

$$\alpha^{(k)} e_i^{(k)} = \sum_{j=1}^n a_{i,j} e_j^{(k)}$$

and with Kronecker delta we can write

$$\sum_{i=1}^{n} \delta_{j,k} \alpha^{(j)} e_i^{(j)} = \sum_{i=1}^{n} a_{i,j} e_j^{(k)}.$$

Now set $\Phi_A := (a_{i,j})$

Example 11.1. Let $K = \mathbb{Q}(i)$. Show that $i \in \mathcal{O}_K$ and verify that $\mathrm{Tr}_K(i)$ and $\mathrm{N}_K(i)$ are integers. Proof. $X^2 + 1 \in \mathbb{Z}[X]$ has the root i, so i is in \mathcal{O}_K . Since the \mathbb{Q} -basis of $\mathbb{Q}(i)$ is $\{1, i\}$, we have

$$\Phi_i(a+ib) = -b + a_i$$

therefore, the matrix is

$$\Phi_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and hence its trace is $Tr_K(i) = 0$. Similarly, its norm is $N_K(i) = 1$.

³I had no idea. Don't want to prove it now, but I'll look into this later.

Example 11.2. Determine the algebraic integers of $\mathbb{Q}(\sqrt{-5})$.

Proof. A Q-basis for $\mathbb{Q}(\sqrt{-5})$ is $\{1, \sqrt{-5}\}$. Let $\alpha = x + \sqrt{-5}y \in \mathbb{Q}(\sqrt{-5})$. Then

$$\Phi_x(a + \sqrt{-5}b) = (x + \sqrt{-5}y)(a + \sqrt{-5}b) = xa - 5yb + (bx + ya)\sqrt{-5},$$

therefore.

$$\Phi_{\alpha} = \begin{pmatrix} x & y \\ -5y & x \end{pmatrix}$$

hence we have $\operatorname{Tr}_K(\alpha) = 2x$ and $\operatorname{N}_K = x^2 + 5y^2$.

If x is not an integer, then 2x must be, so we must have that $y^2 \equiv 3 \mod 4$, but this is impossible. Hence x, y are both integers, therefore, $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$.

Example 11.3. 4.1.5 I'll skip this.

Example 11.4. Show that there exist $\omega_1^*, \ldots, \omega_n^* \in K$ such that

$$\mathcal{O}_K \subset \mathbb{Z}\omega_1^* + \cdots + \mathbb{Z}\omega_n^*.$$

Proof. Let $\omega_1, \ldots, \omega_n$ be a \mathbb{Q} -basis for K. For any $\alpha \in K$, there is a nonzero integer $m \in \mathbb{Z}$ such that $m\alpha \in \mathcal{O}_K$.

I'll skip exercises that require bilinear form for now.

Definition 12. Let K be an algebraic number field of degree n and \mathcal{O}_K be its ring of integers. We say that $\omega_1, \ldots, \omega_n$ is an integral basis for K if $\omega_i \in \mathcal{O}_K$ for all $1 \leq i \leq n$ and $\mathcal{O}_K = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$.

Example 12.1. Show that det $Tr(\omega_i \omega_j)$ is independent of the choice of integral basis.

Definition 13 (Discriminant). Let K be an algebraic number field of degree n and $\omega_1, \ldots, \omega_n$ an integral basis. The discriminant of K is defined as

$$d_K := \det\left(\omega_i^{(j)}\right)^2.$$

Proof. We show that the discriminant is well-defined. In other words, the discriminant is independent of the choice of integral basis.

Let $\omega_1, \ldots, \omega_n$ and $\theta_1, \ldots, \theta_n$ be two integral basis for K.

Example 13.1. Let d be a square-free integer and consider the algebraic number field $K = \mathbb{Q}(\sqrt{d})$. The discriminant of K is

$$\Delta_K = \begin{cases} d & \text{if } d \equiv 1 \mod 4 \\ 4d & \text{if } d \equiv 2, 3 \mod 4. \end{cases}$$

Proof. The ring of integers of K is $\mathbb{Z}[\alpha]$ where

$$\alpha := \begin{cases} \frac{1+\sqrt{d}}{2} & d \equiv 1 \mod 4\\ \sqrt{d} & d \equiv 2, 3 \mod 4. \end{cases}$$

We will look at each case one by one.

6.2. DETAILS 31

1. If $\alpha = 2^{-1}(1+\sqrt{d})$, then a integral basis and its conjugate are

$$\left\{1, \frac{1+\sqrt{d}}{2}\right\} \text{ and } \left\{1, \frac{1-\sqrt{d}}{2}\right\},$$

therefore, the discriminant is

$$\Delta_K = \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{d}}{2} & \frac{1-\sqrt{d}}{2} \end{pmatrix}^2 = \left(\frac{1-\sqrt{d}}{2} - \frac{1+\sqrt{d}}{2} \right)^2 = \left(-\frac{2\sqrt{d}}{2} \right)^2 = d.$$

2. On the other hand, if $\alpha = \sqrt{d}$, then a integral basis and its conjugate are

$$\left\{1,\sqrt{d}\right\}$$
 and $\left\{1,-\sqrt{d}\right\}$

and hence we have

$$\Delta_K = \begin{pmatrix} 1 & 1 \\ \sqrt{d} & -\sqrt{d} \end{pmatrix}^2 = \left(-2\sqrt{d}\right)^2 = 4d.$$

Conclude the stated result above.