Chapter 10: Computer Arithmetic

10-2	Addition and Subtraction
10-3	Multiplication Algorithms
10-4	Division Algorithms
10-5	Floating-Point Arithmetic Operations
10-6	Decimal Arithmetic Unit
10-7	Decimal Arithmetic Operations

Sign-magnitude

Addition and Subtraction -

2's complement

TABLE 10-1 Addition and Subtraction of Signed-Magnitude Numbers

	Add	Subt	ract Magnitudes		
Operation	Magnitudes	When $A > B$	When $A < B$	When $A = B$	
(+A) + (+B)	+(A+B)	a Upper angle in	DOMESTA H	MARIE SE	
(+A) + (-B)	Branch and almost	+(A-B)	-(B-A)	+(A-B)	
(-A) + (+B)		-(A-B)	+(B-A)	+(A-B)	
(-A) + (-B)	-(A+B)	Alla Li Francessa			
(+A)-(+B)	a retec residen	+(A-B)	-(B-A)	+(A-B)	
(+A)-(-B)	+(A+B)	nemala en a verte de			
(-A)-(+B)	-(A+B)				
(-A)-(-B)		-(A-B)	+(B-A)	+(A-B)	

2's complement addition and subtraction:

AC register

complement representation.

Multiplication algorithms:

A binary example:

Hardware implementation

#of bit in multiplier

Partial product

Algorithm:

Figure 10-6 Flowchart for multiply operatic

	B=11011 Q=00111
4	Q4=1,A=0,Qs=1 EA=A+B=1011 EAQ= 0 1011 0111 Shr EAQ= 0 0101 1011
3	Q3=1 EA = 1 0000 EAQ 1 0000 1011 Shr EAQ 0 1000 0101
2	Q2=1 EA= 1 0011 EAQ 1 0011 01 01 shr EAQ 0 1001 101 0
1	Q1=0 Shr EAQ 0 0100 1101=77
0	

Booth multiplication algorithm

$$A = 00011 B = 00111 => A*B = A*(7)=A*(8-1)=A*8-A*1$$

- 1. The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1's in the multiplier.
- The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous 1) in a string of 0's in the multiplier.
- The partial product does not change when the multiplier bit is identical to the previous multiplier bit.

In 2's compl. representation, we can use Booth alg. without change.

Hardware

Figure 10-7 Hardware for Booth algorithm.

Algorithm

Figure 10-8 Booth algorithm for multiplication of signed-2's complement numbers.

An example:

TABLE 10-3 Example of Multiplication with Booth Algorithm

_								
	Q_nQ	Q_{n+1}	$\frac{BR}{BR} = 10111$ $\frac{BR}{R} + 1 = 01001$	AC	QR	Q_{n+1}	SC	=
	1	0	Initial Subtract BR	00000 01001 01001	10011	0	101	_
			ashr	00100	11001	1	100	
	1	1	ashr	00010	01100	1	011	
	0	1	Add BR	$\frac{10111}{11001}$			×	
			ashr	11100	10110	0	010	
	0	0	ashr	11110	01011	0	001	
	1	0	Subtract BR	$\frac{01001}{00111}$				
			ashr	00011	10101	1	000	

Array multiplier: Fast approach

		a_1	b_0 a_0	
	a_1b_1	a_0b_1 a_1b_0	a_0b_0	
<i>c</i> ₃	c_2	c_1	c_0	

Figure 10-10 4-bit by 3-bit array multiplier.

Division algorithms:

A/B = q, r; A: Dividend, B: Divisor, q: quotient, r: remainder

Restoring method:

Divisor $B = 10001$,		$\overline{B} + 1 = 011$	11	
	E	A	Q	SC
Dividend: Shl EAQ $add \overline{B} + 1$	0	01110 11100 01111	00000	5
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	01011 01011 10110 01111	00001 00010	4
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	00101 00101 01010 01111	00011 00110	3
$E = 0$; leave $Q_n = 0$ Add B	0	11001 10001	00110	
Restore remainder shl EAQ Add $\overline{B} + 1$	1 0	01010 10100 01111	01100	2
E = 1 Set $Q_n = 1$ shl EAQ Add $\overline{B} + 1$	1 1 0	00011 00011 00110 01111	01101 11010	1
$E = 0$; leave $Q_n = 0$ Add B	0	10101 10001	11010	
Restore remainder Neglect E Remainder in A:	1	00110	11010	0
Quotient in Q:		00110	11010	

Figure 10-12 Example of binary division with digital hardware.

Divide operation Algorithm: Dividend in AQ Divisor in B Divide magnitudes If A-B>= 0 then DVF \leftarrow 1 $Q_s \leftarrow A_s \bigoplus B_s$ $SC \leftarrow n-1$ shl EAQ = 0= 1 $EA \leftarrow A + \overline{B} + 1$ $A \leftarrow A + \overline{B}$ $EA \leftarrow A + \overline{B} + 1$ = 1 $A \ge B$ A < B $EA \leftarrow A + B$ $Q_n \leftarrow 1$ $EA \leftarrow A + B$ $EA \leftarrow A + B$ $DVF \leftarrow 1$ DVF ← 0 $SC \leftarrow SC - 1$ $(EA - 2^{n-1}) + (2^{n-1} - B) = EA - B$ = 0 $\neq 0$ END END (Quotient is in Q (Divide overflow) remainder is in A)

Other methods:

- Comparison
- Non-restoring: in the restoring method when A<B → 2(A-B+B)-B=2A-B,
 A<B → 2(A-B)+B=2A-B

Floating point operations

- The standard format:
- ➤ IEEE 754 single precision

S 8 bits - biased exponent
$$E$$
 23 bits - unsigned fraction f

$$F = (-1)^S 1.f 2^{E-127}$$

• F=0 : E=0 & f=0

•F=denormalized : E=0 & $f\neq 0$

•F= $\pm \infty$: E=255 & f=0

•F=NAN: E=255 & f ≠0

Hardware:

Addition and subtraction

- 1. Check for zeros.
- 2. Align the mantissas.
- 3. Add or subtract the mantissas.
- 4. Normalize the result.

Figure 10-15 Addition and subtraction of floating-point numbers.

Multiplication:

Figure 10-16 Multiplication of floating-point numbers.

Division:

- 1. Check for zeros.
- 2. Initialize registers and evaluate the sign.
- 3. Align the dividend.
- 4. Subtract the exponents.
- 5. Divide the mantissas.

Decimal Arithmetic Unit

BCD Adder

	Bi	nary S	um			BCD Sum				
K	Z_8	Z_4	Z_2	Z_1	C	S ₈	S_4	S ₂	S_1	- S ₁ Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Hardware:

BCD subtractor:

A-B = A+ 9's compl. of B

$$B'+ 1010= 15-B+1010=9-B+16$$

9' compl.(B) = $(B+ 0110)' = 15 - B- 0110 = 9-B$
logic circuit

An example: -(0111) = 1000+1010=(0111+0110)'=0010

Decimal arithmetic operation

Decimal arithmetic operation

$A \leftarrow A + B$	Add decimal numbers and transfer sum into A
\overline{B}	9's complement of B
$A \leftarrow A + \overline{B} + 1$	Content of A plus 10's complement of B into A
$Q_L \leftarrow Q_L + 1$	Increment BCD number in QL
dshr A dshl A	Decimal shift-right register A Decimal shift-left register A
	Jan 1987 - Anna Parker Barrer

dshr (7680) → 0768

Addition and Subtraction

Parallel adder:

Digit serial bit parallel:

(b) Digit-serial, bit-parallel decimal addition

All serial:

Multiplication:

$$A_i * B_i = [0,81]!$$

Algorithm:

K: # Of digits

