

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"



APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

3/108/62/017/004/001/010 D288/D301

9.3272

Tsikin, I.A., Member of the Society (see Association)

TITLE:

AUTHOR:

Interference immunity of SSB and DSB communication

systems

PERIODICAL: Radiotekhnika, v. 17, no. 4, 1962, 3 - 12

TEXT: J.P. Costas' claim that a suppressed carrier DSB AM transmission with two-phase synchronous detector reception achieves essentially same signal-to-noise performance as SSB operation is submitted to a critical analysis and shown to be erroneous. Idealized synchronous detectors and low pass filters are assumed. Elementary synchronous detectors and low pass filters are assumed. Elementary Fourier analysis shows that the integrator of the two-phase synchronous receiver in the case of correct 90° phase relationship does not produce a larger voltage than a single sideband channel, a fact often disregarded. Autocorrelation—and cross-correlation functions for random noise are written down and yield noise power in each channel and in the output integrator. In practical cases, where the phase difference between oscillator and suppressed carrier is

Card 1/3

S/108/62/017/004/001/010 D288/D301

Interference immunity of SSB and ...

negligible, a simple expression for signal-to-noise power is obtained and shown to be half of the SSB system. Interference immunity is investigated next, interfering signals being assumed as neighboring channel signals of equal output. Formulas are quoted for minimal and normalized r.m.s. error γ, for the general case of

 $\int\limits_{0}^{\infty}F_{o}(\omega)d\omega=1 \text{ and then for Costas' proposed case }F_{\text{signal}}=F_{\text{interfernc}}.$ 

 $= \frac{\beta}{\pi} \frac{1}{\omega^2 + \beta^2}$  where  $F_{\beta} = 0.5 F(0)$ . Six cases are then considered,

being single channel synchronous DSB, twin-phase DSB and SSB, all with DSB interference, and twin-phase DSB, upper and lower SSB with SSB interference. The results are shown in diagrams, plotting  $\gamma$  vs.  $\nu$ , where  $\nu$  is the ratio of frequency separation of wanted-to-unwanted signals to  $\beta$ , and indicate generally the superiority of SSB reception. It is admitted that DSB operation has some advantages because of it's synchronizing system's higher noise immunity and it's higher transmitter efficiency. There are 7 figures. The most important English language references read as follows: J.P. Costas, Proc.

Card 2/3

S/108/62/017/004/001/010 ... D288/D301

Interference immunity of SSB and ...

I.R.E., v. 44, no. 12, 1956; H.W. Bode, C.E. Shannon, Proc. I.R.E., v. 38, no. 4, 1950.

ASSOCIATION: Nauchno-tekhnicheskoye obshchestvo radiotekhniki i elektrosvyazi imeni A.S. Popova (Scientific and Technical Society of Radio Engineering and Electrical Communications imeni A.S. Popov) [Abstractor's note: Name of the Association taken from first page of journal].

SUBMITTED: May 4, 1961

Card 3/3

MODEL', Z.I.; ARZUMANOV, V.N.; TSIKIN, I.A.

Two-band radio communication without carrier frequency. Radiotekhnika 17 no.6:42-53 Je . 162. (MIRA 15:5)

l. Deystvitel'nyye chleny Nauchno-tekhnicheskogo obshchestva radiotekhniki i elektrosvyazi imeni Popova. (Radio)

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

L 14924-63

AFFTC/ASD/ESD-3 EWT(d)/EWT(1)/BDS/EEC-2/EED-2/EEO-2

P1-4/Pn-4

ACCESSION NR: AP3004085

8/0108/63/018/007/0003/0013

AUTHOR: Tsikin, I. A. (Member of the Society, see "Association)

TITLE: Conditions of maximum noise immunity in systems having active intervals with indefinite signal phase

SOURCE: Radiotekhnika, v. 18, no. 7, 1963, 3-13

TOPIC TAGS: noise immunity

ABSTRACT: L. M. Fink supposed (Radiotekhnika, v. 14, nos. 1 and 9, 1959) that the orthogonal, in an amplified sense, signal systems ensure maximum noise immunity in a channel with an indefinite signal phase and an additive fluctuation noise. The article offers accurate mathematical proof of the above theorem for a particular case of binary systems and Raleigh fadings. Further, some consideration is given to the optimum choice of signals in non-Raleighfading cases and to the noise immunity of multiposition systems. "In conclusion,

Card 1/2

|   | L 14924-63<br>ACCESSION NR: AP300408                      | 15                                                     | A COLOR DE LA COLO | 1    |
|---|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | bit of the second second                                  |                                                        | M. Wink for his interes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t in |
|   | the author expresses his de<br>the work and for his commo | ents and advice used in wr                             | iting this article."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|   | Orig. art. has: 39 formulas                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   | ASSOCIATION: Nauchno-t<br>elektrosvyazi (Scientific ar    | ekhnicheskoye obshchestv<br>id Technical Society of Ra | o radiotekhniki i<br>dio Engineering and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|   | Electrocommunication)                                     |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   | SUBMITTED: 28Dec62                                        | DATE ACQ: 05Aug63                                      | ENCL: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|   | SUB CODE: CO                                              | NO REF SOV: 004                                        | OTHER: 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|   |                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| £ |                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

。 1975年1月1日至日日日日本大学、1975年1月17日日本大学、日本大学、日本大学、1975年1月1日本 L 42907-66 EWT(1) ACC NRI AR6015861 SOURCE CODE: UR/0275/65/000/012/A022/A022 AUTHOR: Tsikin, B. G. TITLE: An approximate nonlinear theory for a traveling wave tube SOURCE: Ref. zh. Elektronika i yeye primeneniye, Abs. 12A152 REF SOURCE: Tr. molodykh uchenykh. Saratovsk. un-t. Vyp. fiz., Saratov, 1965, 15-22 TOPIC TAGS: traveling wave tube, nonlinear theory, approximation method ABSTRACT: An investigation is made of an approximate nonlinear theory of a TWT, based on the solution of the known self-consistent system of Weinstein nonlinear equations, using representations of the distribution function of the amplitude of the field along the tube in the form of a series on the odd degrees of the input signal. The space charge and the distributed attenuation was not taken into account. A comparison of the efficiency of the TWT, obtained by the exact and the approximate methods with three terms of the series taken into account, showed good qualitative agreement. [Translation of abstract ] Bibliography of 8 titles. A. D. SUB CODE: 09

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

UDC: 621.385.632







THE PROPERTY OF THE PROPERTY O

TSIKINOVSKAYA, S.L.; DEMIDOV, Yu.N.; FEDOROVA, Ye.M.

Potentialities for reducing the cost of cast iron. Stal 23 (MIRA 16:11)



BATURIN, V.V., glav. red.; BRYUKHANOV, V.N., red.; TSIKKEL', L.N., red. VOSKRESENSKIY, Ye.N., red.; IL'INA, N.S., red.; LEONOV, B.N., red.; LUNGERSGAUZEN, G.F., red.; EIECKAYA, V.M., red.; MORALEV, V.L., red.; RAKOVETS, O.A., red.

[Methods for the interpretation of the materials of aerial photography in geological studies; materials] Metody deshifrirovaniia aerofotomaterialov pri geologicheskikh issledovaniiakh; materialy. Glav. red. V.V.Baturin, V.N. Briukhanov, L.M.TSikkel!. Moskva, Izd-vo "Nedra," 1964. 150 p. (MIRA 17:7)

1. Vsesoyuznyy seminar po geologicheskomu deshifrirovaniyu pri geologicheskikh issledovaniyakh, Moscow, 1961.

"APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001757030001-7

| The control of the co |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

TSIKLAURI, D.S., dotsent, kand.tekhn.nauk; BYKOV, V.M., kand.tekhn.nauk, red.; VINOGRADOVA, G.M., red.izd-va; BOROVNEV, N.K., tekhn.red.

[Hydraulic compressors] Gidrokompressory. Moskva, Gos.izd-vo lit-ry po stroit., arkhit. i stroit.materialam, 1960. 70 p. (MIRA 13:6)

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

TSIKLAURI, David Semenovich, dots., kand. tekhn. nauk; VOLOD'KO, Kand. tekhn. nauk, nauchm. red.; SHERSHUKOVA, M.A., red.

[Water supply for fields and pastures] Polevoe i pastbishchnoe vodosnabzhenie. Moskva, Stroiizdat, 1964. 162 p. (MIRA 17:5)

MOSTKOV, Mikhail Abramovich, prof. [deceased]; TSIKLAURY, D.S., red.; GIORGADZE, O.N., red.izd-va; EOKERIYA, E.B., tekhn. red.

[Elements of the theory of water supply] Elementy teorii vodosnabzheniia. Tbilisi, Izd-vo AN Gruz.SSR, 1963. 139 p.

(MIRA 16:11)

(Water supply)

Using a jet hydrocompressor to ventilate production space. Vod.
i san. tekh. no.3:21-24, %64. (MIRA 18:2)

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

TSIKLAURI, David Semenovich, dots., kand. tekhn. nauk; VULCD'KO,
I.F., kand. tekhn. nauk, nauchn. red.; SHERSHUKOVA, M.A.,
red.

. [Water supply in fields and pastures] Polovoe i pastbishchnoe vodosnabzhenie. Moskva, Stroiizdat, 1964. 162 p.

(MIRA 17:9)

TSIKLAURI, G. V., and USANOV, V. V.

"On the Analytical Determination of Effective Surfaces in Channels at the Presence of Heat Transfer and Friction."

Report submitted for the Conference on Heat and Mass Transfer, Minsk, BSSR, June 1961.

TSIKLAURI. G.V.; USANOV. V.V.

Heat transfer in a pipe at high speeds of air flow. Inzh.-fiz. zhur. no.11:48-51 N 160. (MIRA 13:11)

l. Moskovskoye otdeleniye TSentral'nogo kotloturbinnogo instituta im. I.I.Polzunova i Vsesoyuznyy nauchno-issledovatel'skiy institut kislorodnogo mashinostroyeniya, Moskva.

(Pipe--Hydrodynamics) (Thermodynamics)

TSIKLAURI, GL.V. and USANOV, V. V.

"The problem of the analytical determination of the effective surfaces in channels involved with heat-exchange and friction."

Report presented at the 1st All-Union Conference on Heat- and Mass-Exchange, Minsk, BSSR, 5-9 June 1961.

85433

10.4100

S/170/60/003/011/004/016 B019/B056

11,9200 AUTHORS:

Tsiklauri, G. V., Usanov, V. V.

TITLE:

The Problem of Heat Exchange in a Tube at High Air

Velocities

PERIODICAL:

Inzhenerno-fizicheskiy zhurnal, 1960, Vol. 3, No. 11,

pp. 48-51

TEXT: The one-dimensional flow of a compressible gas in a tube is measured under the assumption of a convective heat exchange with the wall. The authors succeeded in setting up a linearized differential equation, which describes the motion of the gas. The solutions were checked by means of data experimentally determined by B. S. Pezovan at the MEI, where the local heat exchange in the case of a turbulent flow was investigated. The thin walled tubes had a diameter of 15.95 mm, and a length, which amounted to the 29.5-fold of the diameter. The temperature of the air flow was changed between 150 and 400 K, whereas the wall temperature was kept constant at 300 K. As may be seen from the comparison of the results, the relations of the hydrodynamic theory for the heat exchange

Card 1/2

85433

The Problem of Heat Exchange in a Tube at High Air Velocities

S/170/60/003/011/004/016

B019/B056

within the Mach number range of from :.5 to 3 are correct and may be used for practical calculations. There are ! figure and 5 Soviet references.

ASSOCIATION:

Moskovskoye otdeleniye Tsentralinogo kotloturbinnogo

instituta im. I. I. Polzunova (Moscow Branch of the Central

Steam Turbine Institute imeni I. I. Polzunov).

Vsesoyuznyy nauchno-issledovatel skiy institut kislorodnogo mashinostroyeniya, g. Moskva (All-Union Scientific Research

Institute of Oxygen Apparatus and Machinery, Moscow)

SUBMITTED:

May 16, 1960

Card 2/2

DEYCH, M.Ye.; STEPANCHUK, V.F.; SALTANOV, G.A.; TSIKLAURI, G.V.

Experimental study of condensation jumps. Teplofiz. vys. temp. 2 no.5:789-796 S-0 '64. (MIRA 17:11)

1. Moskovskiy energeticheskiy institut.

USANOV, V.V., inzh.; Prinimali uchastiye: NAURITS, L.N., inzh.; TSIKLAURI, G.V.; SHISHOV, Ye.V.; VSEKHSVYATSKIY, V.N.; tekhnik; PONOMAREVA, T.A.; tekhnik; SHCHERBAKOV, V.D.; tekhnik; SPESIVYKH, A.F., tekhnik

Heat exchange and resistance in an axisymmetric nozzle at low supersonic speeds. Trudy VNIIKIMASH no.5:61-83 '62. (MIRA 18:3)

是一个人,这个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也是一个人,我们也是一个人,我们就是一个人,我们

1 35458-65 SUP(m)/SUT(1)/SCS(k)/SWA(d)/SWA(1) Pd-1 WW

ACCESSION NR: AP5007799

5/0281/65/000/001/0122/0128

AUTHOR: Deych, H. Ye.; Stepanchuk, V. F.; Saltanov, G. A.; Tsiklauri, G. V.

TITLE: Experimental studies of condensation discontinuities within an axially symmetric water vapor flow

SOURCE: AN SSSR, Izvestiya, Energetika i transport, no. 1, 1965, 122-128

TOPIC TACS: condensation discontinuity, nozzle flow, supersonic vapor flow, water vapor flow, supercooled vapor flow, Laval nozzle

ABSTRACT: The study of high-velocity vapor flows in the presence of phase transitions is of great importance for the theory of steam turbines, at mic is wer engineer-ing, the present interior of a contract transport present is such two vorks (Izv. Ad Saba, inergetima is transport, 1200, no. 3; Teploinalia conkide temperatur, 1964, no. 3; Ibid., 1964, no. 5) carried out at the Kafedra parovych i gazovych turbin (Department of vapor and gas turbines) of the MEI. The concretences describe the experimental equipment and procedures used for the subsequent experimental studies of condensation discontinuities within the tree flow following the cross-section of taparain across in within the wifening is tree for the Lavai oracle. Results within the cross-section of taparain across in within the wifening in the Lavai oracle. Results within the constitution of the lavai oracle, Results within the constitution of the constit

L 35456-05

ACCESSION NR: AP5007799

1) condensation discontinuities appearing within the free supersonic flow and in the winering portion of the Cauthon walk months to estructure of the flow in a control was possessed as each of the flow of the f

tinuity depends on the overheating factor and the time interval needed for the vapor to expand from the upper boundary numbers the discontinuity, and 3) the maximum costs of the continuity and 3 to the appropriate of the continuity of the upper boundary numbers of the discontinuity, and 3 to the upper boundary numbers of the continuity and 3 to the upper boundary numbers of the upper boundary

nas: 4 lumulas and / Ligures.

ASSOCIATION: none

SUBMILITED: 04Jun64

ENCL: 00

SUB CODE: ME

NO REF SOV: 004

OTHER: 006

Card 2/2

DEYCH, M.Ye.; TSIKLAURI, G.V.

Supercooling and structure of a stream of wet steam escaping from a tapering nozzle. Teplofiz. vys. temp. 2 no.3:454-463 My-Je '64. (MIRA 17:8)

1. Moskovskiy energeticheskiy institut.

DEYCH, M.Ye., doktor tekhn.nauk, prof.; STEPANCHUK, V.F., dotsent, kand.tekhn.nauk; TSIKLAURI, G.V., inzh.

Distribution of static pressures in the flow of wet steam. Izv. vys. ucheb, zav.; energ. 7 no.8:111-115 Ag '64. (MIRA 17:12)

1. Moskovskiy ordena Lenina energeticheskiy institut.

DEYCH, M.Ye. (Moskva); STEPANCHUK, V.F. (Moskva); SALTANOV, G.E. (Moskva); TSIKLAURI, G.V. (Moskva)

Experimental study of rapid condensation changes in an axisymmetrical accelerating flow of water vapor. Izv. AN SSER, Energ. 1 transp. no.1:122-128 Ja-F '65. (MIRA 18:4)



SHEBES, Mikhail Romanovich; TSIKLINAM Yevgeniya Aleksandrovna; ROZHDESTVENSKAYA, V.A., red.

[Problems in electromagnetic field theory; textbook for students of the technological faculties of the All-Union Correspondence Electrotechnical Institute of Communications] Zadachnik po teorii elektromagnitnogo polia; uchebnoe posobie dlia studentov tekhnicheskikh fakul'tetov VZEIS. Moskva, Red.-izd.otdel Vses. zaochnogo elektrotekhn. in-ta sviazi, 1963. 199 p. (MIRA 18:3)

# TSIKLIS. D.A.

Phase equilibria in the acetaldehyde water methane system at high pressures [with summary in English]. Zhur. fiz. khim. 32 no. 6:1367-1371 Je 158.

(MIRA 11:8)

1. Institut azotnoy promyshlennosti. Moskva.
(Acetaldehyde)
(Methane)
(Phase rule and equilibrium)

TSIKLIS, D.S.; SHENDEREY, L.I.; KOFMAN, A.N. (Moscow)

Solubility of acetaldehyde in compressed gases. Zhur. fiz. khim.
34 no.4: 768-772 Ap '60. (MURA 14:5)

(Acetaldehyde) (Nitrogen) (Hydrogen)

TSIKLIS, D.S.

Surface tension between two immiscible gases.

Report to be submitted for the 3rd Congress, European Federation of Chemical Engineering London, England 20-29 Jun 1962



Moscow State Witrogen Institute (-1)/2-)

"Equilibriums of Gases - Gas and Phase Equilibrium in Binomial Systems." Zhur.

Fiz. Khim., Vol. 17, No. 3, 19/43

(4-59059019

#### "APPROVED FOR RELEASE: 03/14/2001

#### CIA-RDP86-00513R001757030001-7



#### "APPROVED FOR RELEASE: 03/14/2001

#### CIA-RDP86-00513R001757030001-7

















| ***            | (2)<br>gas<br>white<br>and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | US           | Industry Description (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7Z           | Cas,                                                                        | USSR/                              | ĺ |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|------------------------------------|---|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USSR/Physics | very pure & Describes this need to 720 atm (1) abilit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "Zavod Lab"  |                                                                             |                                    | • |
|                | no contact, thus insuit the solution that is obtained attempts to the strength of the strength | лувіс        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tab"         | for<br>D. S.                                                                | Physics<br>High Pressures<br>Gases |   |
| !              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | He do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V01          | the<br>Tsi                                                                  | นธธยา                              |   |
|                | tact between lubrication insuring as purity; and btainable is limited only the of apparatus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Contd)      | quently requires large amou compressed under high pressingle apparatus developed it is capable of compressing Advantages are many, include work with small amounts 58/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vol XV, No 6 | ce for the High-Pressure<br>D. S. Teiklis, N. E. K<br>of Nitrogen Ind, 2 pp | 108                                |   |
| . •            | etween lub<br>ing as puri<br>able is lin<br>apparatus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | y requires essed under apparatus capable of stages are stages are stages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . No 6       | Press.<br>N. E.<br>2 pp                                                     |                                    |   |
|                | n lubricat<br>purity; a<br>s limited<br>atus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | under under catus catus catus catus catus catus catus catus catus are many many many many many many many many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                                             |                                    |   |
|                | ation ;<br>and ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | s large amounts are high pressures of the free stage of the free s |              | e Compressing<br>Khazanova, Ste                                             |                                    |   |
| 58,            | o11<br>(3)<br>y by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>u</u>     | pressures of gasing as including: 58/49798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Audit .                                                                     | Ju                                 |   |
| /49 <u>798</u> | <br>oil and<br>3) pressure<br>by size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jun 49       | amounts of pressures of gas; 58/49798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | State                                                                       | Jun 49                             |   |
| Ø              | are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~            | 96. 1111<br>1111 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 9 14                                                                        |                                    |   |

TSIKLIS, D.S.; KRICHEVSKIY, I.R., professor, redaktor.

[Technology of physical and chemical high pressure research]
Tekhnika fiziko-khimicheskikh issledovanii pri vysokikh davleniiach.
Pod red. I.R.Krichevskogo. Moskva, Gos.nauchno-tekhn.izd-vo khim.
lit-ry, 1951. 216 p.

(MERA 7:3)

(Pressure (Physics))

TSIKLIS, D. S.

178T10

DBER/Chemistry - Liquefied Gases

1 Jan 51

"Limited Mutual Solubility of Gases at High Pressures. System Ammonia-Methane-Nitrogen," D. S. Tsiklis

"Dok Ak Nauk SSSR" Vol LXXVI, No 1, pp 97-99

Ternary mixtuof ammonia-methane-nitrogen separate into 2 phases, i.e., show limited soly at definite temp and pressures just as other mixt (ammonia-nitrogen, ammonia-methane, sulfur dioxide-nitrogen, ammonia-nitrogen-hydrogen) contg polar component do. Phenomenon of barotropism /lower sp gr of phase richer in ammonia/ is also observed here.

178r10

|          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                         | 184                                                                                                                                                                                                                             | <b>T</b> 17                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 7 A18#17 | ussr/Chemistry - Compressed Gases 21 Jun 51 (Contd)  which has gasket instead of ordinary seal for the piston. Compression of gas proceeds under displacement of mercury into piezometer by liquid transmitting pressure. Tested method by compressing N2 at 50° to 3,000-6,000 at. | In detg compressibility of gases in steel ves- sels by applying elevated pressure on one side, it is difficult to est elastic and plastic de- formation of vessel. Method described elimi- nates this fault by using newly designed app | "Method of Determining Compressibility of Gases at High Pressures," I. P. Krichevskiy, D. S. Tsiklis, State Sci. Res, and Plan, Inst. of Nitrogen Ind. (-c/5/), [78] / 857]  "Dok Az Nauk SSSR" Vol LXXVIII, No 6, pp 1169-1172 | USSR/Chemistry - Compressed Gases 21 Jun 51 |

USSR/Chemistry - Nitrogen 11 Jul 51

"Compressibility of Nitrogen at Pressures up to 10,000 Atmospheres," D. S. Tsiklis, State Res and Project Inst of Nitrogen Ind

"Dok Ak Nauk SSSR" Vol LXXIX, No 2, pp 289, 290

Gives the compressibility of nitrogen at 500, 1000, and 1500 for pressures up to 10,000 atm measured at intervals of 500 atm. Compares the exptl values with values calcd from Tait's eq.



TSIKLIS, D. S.

Pressure (Physics)

"Technique of physical-chemical investigations at high pressures." Reviewed by M. S. Gonikberg. Usp.khim., 21, No. 1, 1952.

Monthly List of Russian Accessions, Library of Congress, June 1952. UNCLASSIFIED

| STORY BY | TSIKLIS, D.S. |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | PA 234T12                                                                                                                                                                                                      |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | State(2       | Emmonia has a min soly in nitrogen at 500 atm. The soly increases with a max at 1,000 atm. At 80° the soly is greater with a min at 600 atm. At 1,100 atm the soly is crit, increasing very much at a slight increase in pressure. When introgen is dissolved in liquid ammonia at 75°, its max soly lies between 1,000 and 1,300 atm. | "Dok Ak Nauk SSSR" Vol 83, No 4, pp 585-588  Soly diagrams for liquid ammonia in nitrogen and nitrogen in liquid ammonia were constructed.  Measurements were made at 75 and 800 and at pressures of 0 to 4,000 atm. At 750 liquid | USSR/Chemistry - Liquid Gases, Am- 1 Apr 52 monia "Solubility of Liquid Ammonia in Compressed Mi- trogen at Pressures Up to 4,000 Atmospheres," D. S. Tsiklis, State Sci Res and Flanning Inst of Nitrogen Ind |
| 300      |               |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                |

| "The Limited Mutual Solutions 11 Oct 52  "The Limited Mutual Solutility of Gases at High Pressures in the Ammonia-Witrogen System," D. S. Taiklis  "Dok Ak Mauk SSR" Vol 86, No 5, pp 993-995  Refers to previous research on the ammonia-nitrogen system, in which the course of the critical curve in that system was followed up to 1480 and to a pressure higher than 9.000 kg/sq. cm. He attempted to increase the pressure span in order to examine the furthermost course of the critical curve. For this purpose, author constructed an appearatus with which experiments could be conducted under pressures reaching 20,000 kg/sq cm. In actual experiments with this appearatus, reached a pressure of 18,000 kg/sq cm. Beyond a pressure of 20,000 kg/sq cm, beyond a pressure of 20,000 kg/sq cm, the new appearatus, investigated the ammonia-nitrogen system, at temperatures of 1480 to 1750, and at ipressures up to 16,700 kg/sq cm. These investigations showed that the critical curve, in the investigated interval of temperatures and pressures. Presented by Acad S. I. Vol'fkovich, 7 Aug 52. | TSIKLIS, D                                   | ). S. | .Lilişe ka                                                                                    |                                                                                                                                                                                                                                          | X 호텔 이 타마 보는 현실 및 함께 되었 |                                                                                             | PA 245                                                                                                                                                                                                                          | 5T5 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USSR/Ghemistry - Gaseous Solutions 11 Oct 52 | He .  | "Dok Ak Mauk SSSR" Vol. 86, No 5, pp 993-995 Refers to previous research on the ammonia-nitro | gen system, in which the course of the critical curve in that system was followed up to 1480 and to a pressure higher than 9,000 kg/sq. cm. He attempted to increase the pressure span in order to examine the furthermost course of the | M 177                   | ammonia-nitrogen system, at temperatures of 1480 to 1750, and at operatures of up to 16,700 | kg/sq cm. These investigations showed that the critical curve, in the investigated interval of temperatures and pressures, heads toward still higher temperatures and pressures. Presented by Acad S. I. Vol'fkovich, 7 Aug 52. |     |  |

### "APPROVED FOR RELEASE: 03/14/2001

#### CIA-RDP86-00513R001757030001-7

|           | Journal of Applied Chemistry<br>June 1954<br>Industrial Inorganic Chemistry | Formation of ammonia in adiabatic compression of nitrogen-hydrogen mixtures. D. S. Tsiklis (Dold. Akad Nauh. SSSR, 1953, 91, 327-329).—Rapid-compression of a mixture of N <sub>2</sub> 4-311 <sub>2</sub> to 3000-10,000 atm. (2000-4000 k.) yields 5-20% of the theoretical ammont of NH <sub>3</sub> , predicted by extrapolation from published figures for equilibrium constants at lower temp. (the yield is strongly affected by the condition of the surface. R. C. Morray.) | .1 |
|-----------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| e mana di |                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| <b>k</b>  |                                                                             | - va evante                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

TSIKLIS, D. S.

B. T. R. Vol. 5 No. 3 Mar. 1954 Chemistry-Physical 3072\* Oxidation of Methane Under Conditions of Adiabatic Compression. (Russian.) M. S. Furmar and D. S. Tsiklis, Daklady Akademii Nauk SSSR, v. 01, no. 3, July 21, 1953, p. 507-508.

Data show that even under atmospheric pressure and temperatures, disintegration of carbon dioxide cannot proceed. None of the tests gave evidence of elementary carbon formation. Graph, table, 8 ref.



TSIKLIS, D. S.

USSR/Chemistry - Helium

21 Aug 53

3.20.1人以前的公司的公司的公司的公司的公司公司公司公司公司的公司的公司的公司的公司的公司。

"The Limited Mutual Solubility of Gases in the System Helium - Ethylene at High Pressures," D. S. Tsiklis, Sci-Res and Project Inst of the Nitrogen Industry

DAN SSSR, Vol 91, No 6, pp 1361-1363

Observed appearance of a meniscus in a mixt of 53% C<sub>2</sub>H<sub>4</sub>+ 47% He at various temps and pressures (16-150°, 225-10000 kg/cm<sup>2</sup>) indicating limited soly and the presence of distinct phases. Presented by Acad S. I. Vol'fkovich 30 May 53.

269T14

#### "APPROVED FOR RELEASE: 03/14/2001

#### CIA-RDP86-00513R001757030001-7

は、これの主義はは、特別の対象を表現の対象を表現を表現を表現を表現を表現を表現という。

151K W15 D.S.

USSR/Physical Chemistry - Thermodynamics, Thermochemistry, Equilibria, Physical-Chemical Analysis, Phase Transitions.

B-8

Abs Jour: Referat. Zhurnal Khimiya, No 2, 1958, 3809.

Author : D.S. Tsiklis.

: State Scientific Research and Planning Institute of Nitrogen Inst

Industry.

: Solubility of Liquid Ammonia in Compressed Nitrogen Under Title

Pressures up to 4000 Atmospheres.

Orig Pub: Tr. Gos. n.-i. i proyektn. in-ta azotn. prom-sti, 1954, vyp. 3,

12-17.

Abstract: The solubility of liquid ammonia (I) in nitrogen (II) compressed to 4000 abs. atm. at 75 and 80°, as well as of II in I at pressures from 1600 to 2600 abs. atm. was studied. The point of the maximum on the solubility curve of I in II converts into a cusp approaching the temperature of the double homog. point (at

-45-

which the critical points of gas-gas and liquid-gas coincide; Card : 1/2

TSIKLIS, Daniil Semenovich

(State Scientific Research and Planning Inst of Nitrogen Industry, of the Min of Chemical Industry USSR), Academic degree of Doctor of Chemical Sciences, based on his defense, 13 June 1955, in the Council of Labor Red Banner Scientific research physico-chemical Inst imeni Karpov, of his dissertation entitled: "Equilibrium between phases in systems and gas phases under very high pressure."

Academic degree and/or title: Doctor of Sciences

SO: Decisions of VAK, List no. 24, 26 Nov 55, Byulleten' MVO SSSR, No. 20, Oct 57, Moscow, pp 22-24, Uncl. JPRS/NY-471



Tsiklis, D.S.

USSR/ Chemistry - Physical chemistry

Card 1/1

Fub. 22 - 34/51

Authors

Tsiklis, D. S.

Title

Limited reciprocal solubility of gases in a helium-propane system at high pressures

Periodical

Dok. AN SSSR 101/1, 129-130, Mar. 1, 1955

Abstract

Brief thesis is presented on the limited reciprocal solubility phenomena of gases in a system consisting of two nonpolar gases helium - propene -. The data regarding the limited solubility of the gases were gathered at temperatures of 105, 110, 120, 130 and 150° and pressures ranging up to 5000 kg/cm². Four references: 3 USSR and 1 Dutch (1907-1953). Graphs.

Institution :

State Scientific Research and Planning Institute of Nitrogen

Industry

Presented by :

Academician S. I. Vol'fkovich, September 11, 1954



#### "APPROVED FOR RELEASE: 03/14/2001 CIA-RDI

CIA-RDP86-00513R001757030001-7

101K415, N. J.

Category: USSR / Physical Chemistry.

Thermodynamics. Thermochemistry. Equilibrium Physico-

chemical analysis. Phase transitions.

B-8

Abs Jour: Referat Zhur-Khimiya, No 9, 1957, 29863.

Author : Tsiklis D. S. Inst : not given

Title : Calculation of Volatility of Some Gases.

Orig Pub: Zh. fiz. khimii, 1956, 30, No 5, 1182-1183

Abstract: For the calculation of the volatility of gases under high pressure

an equation is proposed which has been derived by means of a general thermodynamic correlation, on the basis of Tait equation. Verification of the equation using data on compressibility of nitrogen at 6000 and 10000 atmospheres resulted in a deviation from the results of the usual

calculation procedure (according to \( \mathbf{V} \) dp) of less than 2%.

Card : 1/1

-7-



| entis fermed a straight line on the log $P-1/A$ community.  The partial pressure of $HO$ was affected little by the compagn of the soln. The heats of reperiestine of $MH_s$ , $H_sO$ and $CO_t$ varied with the soln, concur. $AH_{BH_s} = 8000-13.600$ ; $V = \Delta H_{B_sO} = 9900-11.000$ , and $\Delta H_{CO_t} \sim 10.000-14.5 \pm 0.01$ .  W. M. Straberz |                                                                                                         |                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                    | e de la seguera de                                                                                      | o o o o o o o o o o o o o o o o o   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                    | ents formed a straight if The partial pressure of its of the solu. The leasts (XI) varied with the solu | O was affected little by the compa- |   |
|                                                                                                                                                                                                                                                                                                                                                                    | $V$   $\Delta H_{\rm BgO} = 9900-11.000$ , an                                                           |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                     |   |

PEREVERTKIN, S.M.; KHRAPOVITSKIY, Yu.S., kand.tekhn.nauk; TSIKLIS, D.S., doktor khim.nauk

Compressibility of some liquids at high pressures. Trudy GIAP no.7:26-32 '57. (MIRA 12:9)

(Liquids) (Compressibility)

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

TSIKLIS, D.S., doktor khim. nauk; KOFMAN, A.N.

Partial pressures of ammonia, water, and carbon dioxide over copper-ammonia solutions. Trudy GIAP no.8:21-30 157.

(Vapor pressure)

(Vapor pressure)



Frikus, F. 2

AUTHORS:

Tsiklis, D. S., Shvarts, Ya. D.

76-10-19/34

TITLE:

Gas-Liquid Equilibrium in the System Acetaldehyde-Methane Under High Pressures (Ravnovesiye zhidkost' gaz v sisteme atsetal'degid - metan pri vysokikh

davleniyakh).

PERIODICAL:

Zhurnal Fizicheskoy Khimii, 1957, Vol. 31, Nr 10,

pp. 2302-2305 (USSR)

ABSTRACT:

Referring to the paper of one of the authors (Tsiklis) in Zhurnal Fizicheskoy Khimii, 1957, Vol. 31, p. 100, the solubility of methane in acetaldehyde and of the acetaldehyde in methane at a pressure of 100 at and temperatures of from 0 to 40° C is determined here. The solubility of the methane in acetaldehyde was determined at 1,20 and 40° C and pressures up to 90 at. This can be expressed by the equation of I. R. Krichevskiy, and N. Ye. Khozanova, for solutions of polar liquids in nonpolar gases. The solubility of the acetaldehyde in compressed methane was determined at 1,20 and 40° C and

pressures up to 110 at. The equation of Krichevskiy-Khazanova gives the data for the solubility of the

CARD 1/2

Gas-Liquid Equilibrium in the System Acetaldehyde-Methane 76-10-19/34 Under High Pressures

acetaldehyde in compressed methane satisfactorily. The equation see "Acta Physicochem." 15, 327, 1941. There are 2 figures, 3 tables, 7 Slavic references.

ASSOCIATION:

Institute for Nitrogen Industry, Moscow (Institut

azotnoy promyshlennosti, Moskva).

SUBMITTED:

July 24, 1956

AVAILABLE:

Library of Congress

CARD 2/2

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

### PHASE I BOOK EXPLOITATION 828

### Tsiklis, Daniil Semenovich

Tekhnika fiziko-khimicheskikh issledovaniy pri vysokikh davleniyakh (Technology of Physical and Chemical High Pressure Research) 2nd ed., rev. and enl. Moscow, Goskhimizdat, 1958. 301 p. 4,000 copies printed.

Ed.: Levantovskaya, I.I.; Tech. Ed.: Lyr'ye, M.S.

FURPOSE: The book is intended for engineers and scientists working in the field of physicochemical research at high pressures.

COVERAGE: This is a manual on research techniques at high pressures. It describes problems of materials selection, construction of apparatus and experimental procedure. Methods are also discussed for producing and measuring high and ultrahigh pressures, for establishing high temperatures and high pressures simultaneously, and for mixing operations under pressure. The book presents methods for investigating phase equilibrium, compressibility of gases and liquids under pressure, measuring surface tension on the liquid - gas boundary and wetting of solids in the presence of compressed gases. Optical instruments are described for visual observations, etc. References appear at the end of each chapter.

Card 1/9

| chnology of Physical and Chemical (Cont.) 828                                             |            |
|-------------------------------------------------------------------------------------------|------------|
| There are 231 references of which 59 are Soviet, 138 English, 28 Germannes and 1 Italian. | en, 5      |
| BLE OF CONTENTS:                                                                          |            |
| preword                                                                                   | 6          |
| . I. Structural Materials Applicable for Work at High Pressures                           | 7          |
| Steels                                                                                    | 7          |
| Heat treatment                                                                            | 9          |
| Material testing                                                                          | 10         |
| Machining                                                                                 | 11         |
| Properties of steels under experimental conditions                                        | 11         |
| Packing materials                                                                         | 50         |
| Insulating materials                                                                      | 25         |
| Pressure-transmitting media                                                               | 29         |
| Bibliography                                                                              | 35         |
| n. II. Design and Construction of High Pressure Equipment                                 | <b>3</b> 8 |
| Design of Equipment                                                                       | 38         |
| ard 2/9                                                                                   |            |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

| echnology of Physical and Chemical (Cont.) 828     |                |
|----------------------------------------------------|----------------|
| Properties of materials under load                 | <i>3</i> 8     |
| Stresses in trick-walled containers under pressure | 42             |
| Equivalent stresses                                | 14.14          |
| Calculation of temperature stresses                | 48             |
| Simultaneous action of pressure and temperature    | 51             |
| Apparatus construction                             | 52             |
| Self-reinforcing                                   | 52             |
| Multilayer vessels                                 | 54             |
| Vessels with adjustable outer mechanical support   | 56             |
| Vessels with hydraulic support                     | 60             |
| ibliography                                        | 62             |
| h. III. Methods of Creating Pressure               | 63             |
| Gas compression                                    | 63             |
| Laboratory compressors                             | 63             |
| Final compression stages                           | 64             |
| Compression devices                                | 63<br>64<br>65 |
| Oxygen compression                                 | 67             |
| Another method of gas compression                  | 68             |
| Compression of liquids and solids                  | 70             |
| Liquid pumps                                       | 70             |
| ard 3/9                                            |                |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

| chnology of Physical and Chemical (Cont.) 828                 |     |
|---------------------------------------------------------------|-----|
| Sidorov's mechanical press                                    | 76  |
| Intensifiers                                                  | 77  |
| Simultaneous creation of high pressures and high temperatures | 86  |
| Intensifier details                                           | 91  |
| Other methods of obtaining high pressures                     | 100 |
| Bibliography                                                  | 101 |
| . IV. High Pressure Measurement Methods                       | 103 |
| Pressure units                                                | 103 |
| Absolute manometers                                           | 103 |
| Liquid manometers                                             | 103 |
| Piston manometers                                             | 105 |
| Construction of piston manometers                             | 115 |
| Relative manometers                                           | 121 |
| Manometers based on elastic properties of materials           | 121 |
| Electrical manometers                                         | 123 |
| Ryabinin's crusher manometer                                  | 134 |
| Capacity manometer                                            | 135 |
| Interference manometer                                        | 136 |
| Tensiometric manometer                                        | 137 |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

Andrews and the second second

| Differential manomet                   | ers                                     | 137 |
|----------------------------------------|-----------------------------------------|-----|
| Capillary high press                   |                                         | 143 |
| Measuring gas flow w                   |                                         | 143 |
|                                        | id into the compressed gas              | 145 |
| Pressure control                       | 24 2400 0110 01110 01110                | 146 |
| Bibliography                           |                                         | 148 |
| The U. David of Hilliah Du             | ndeuro Tratallatdona                    | 150 |
| Ch. V. Part of High Pr<br>Valves       | sagnie Tubrarracione                    | 152 |
| ,                                      | ith a contact win                       | 152 |
| Adjusting valve w                      |                                         | 152 |
| Valve with a ball<br>Shut-off valve wi |                                         | 154 |
| Pressure valves                        | cu a roose coue                         | 155 |
| Constant volume V                      | ave                                     | 156 |
| Diaphragm valve                        | a., 7 G                                 | 157 |
| Sealing of laborator                   | v amaratus                              | 158 |
|                                        | ith flat gasket and compensated surface | 158 |
|                                        | thout compensated surface               | 160 |
| Lens-shaped closi                      |                                         | 163 |
| Closing device wi                      | th wave-shaped ring                     | 164 |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

| echnology of Physical and Charles                     |     |
|-------------------------------------------------------|-----|
| echnology of Physical and Chemical (Cont.) 828        |     |
| Closing device with rubber gasket                     |     |
| nydraulic closing devices                             | 165 |
| Stuffing boxes                                        | 165 |
| Simple stuffing box                                   | 166 |
| Selfpacking stuffing boxes                            | 166 |
| Fittings                                              | 166 |
| Gaskets                                               | 169 |
| Cones                                                 | 169 |
| Lenses                                                | 169 |
| Lipped fittings                                       | 170 |
| Glass-metal seals                                     | 171 |
| Glass-metal werus                                     | 172 |
| Electric insulation techniques                        | 174 |
| Electric input terminals of low pressure              | 174 |
| Electric input terminels based on the principle of un | 174 |
|                                                       |     |
| Sight Holes                                           | 174 |
| Bibliography                                          | 178 |
|                                                       | 181 |
| rd 6/9                                                |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |
|                                                       |     |

| Technology of Physical and Chemical (Cont.) 828                      |     |
|----------------------------------------------------------------------|-----|
| Ch. VI. Mixing and Circulation Under Pressure                        | 18  |
| Mixing                                                               | 18  |
| Mechanical agitators                                                 | 18  |
| Electromagnetic agitators                                            | 18  |
| Circulation                                                          | 19  |
| Circulating pumps                                                    | 19  |
| Bibliography                                                         | 19  |
| Ch. VII. General Outfitting of High Pressure Laboratories            | 19  |
| Building                                                             | 19  |
| Equipment                                                            | 19  |
| Gasholders                                                           | 19  |
| Compressor                                                           | 19  |
| Gas purification                                                     | 19  |
| Equipment installing                                                 | 20  |
| Exploitation rules                                                   | 20  |
| Bibliography                                                         | 201 |
| Ch. VIII. Methods of Research in Phase Equilibrium at High Pressures | 205 |
| System liquid - gas                                                  | 205 |
| Card 7/9                                                             |     |
|                                                                      |     |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

| Technology of Physical and Chemical (Cont.) 828                   |                                    |
|-------------------------------------------------------------------|------------------------------------|
| Determining solubility of gases in liquids                        | 207                                |
| Potermining equilibrium of liquid - vapor in nyurocarbon mixtures | 211                                |
| Determining solubility of liquids in compressed gases             | 225                                |
| Cretem des - des                                                  | 23 <sup>1</sup><br>23 <sup>1</sup> |
| Determination of limited reciprocal solubility of gases           | 23                                 |
| System solid substances - gas                                     | 23                                 |
| Method of selecting samples for analysis                          | 23                                 |
| Analytical methods                                                | 23                                 |
| Volume measurements                                               | 24                                 |
| Gravimetric measurements                                          | 24                                 |
| Bibliography                                                      |                                    |
| Ch. IX. Determination of Compressibility in Gases and Liquids     | 24                                 |
| demonstration of deges                                            | 24                                 |
| Installations with water pressure gages of constant capacity      | 24                                 |
| Installations with water pressure gages of variable capacity      | 25                                 |
| Mixed methods                                                     | 26                                 |
| Compressibility of liquids                                        | 26                                 |
| Water pressure gages of constant capacity                         | 26                                 |
| . Water pressure gages of variable capacity                       | 27                                 |
| Pycnometers                                                       | 27                                 |
| Bibliography                                                      | 21                                 |
| Card 8/9                                                          |                                    |

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001757030001-7"

| Technology of Physical and Chemical (Cont.) 828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~/        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Ch. X. Methods of Measuring Surface Tension and Wetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276<br>276 |
| Measuring of surface tension on liquid-gas boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276        |
| Methods of capilary rising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 278        |
| Method of maximum pressure in the buble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 281        |
| Method of the suspended drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 283        |
| Method of the weight (volume) of the drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 284        |
| Measuring edge angles at high pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 287        |
| Bibliography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,          |
| Appendix I. Conversion of Brinell's and Rockwell's numbers into stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000        |
| Appendix II. Conversion table of pressure units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 290        |
| and the state of t |            |
| Appendix III. Chemical composition of steels, applicable for manufactur-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 290        |
| ing of high pressure equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L)4        |
| Appendix IV. Mechanical and physical properties of some steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 292        |
| Appendix IV. Medianical and physical proposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Subject index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 294        |
| DEDUCCO TEGOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| AVAILABLE: Library of Congress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| mel.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Card 9/9 TM/sfm 12-11-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |

TSIKLIS, D.S.; MUSHKINA, Ye.V.; SHENDEREY, L.I.

· 1912年 - 1915年 - 1918年 - 191

Phase equilibriums in the ethylene water system at high temperatures and pressures [with summary in English]. Inzh.-fiz. thur. 1 no.8:3-7 Ag 158.

1.Gosudarstvennyy nauchno-issledovatel'skiy i proyektnyy institut azotnoy promyshlennosti, Moskva.

(Phase rule and equilibrium)

5(4), 5(1)

Tsiklis, D. S.

SOV/64-58-7-4/18

TITLE:

The Solubility of Lubricating Oil in Compressed Ethylene (Rastvorimost' smazochnogo masla v szhatom etilene)

PERIODICAL:

Khimicheskaya promyshlennost', 1958, Nr 7, pp 404 - 406 (USSR)

ABSTRACT:

A. N. Kofman participated in the experiments carried out. It is known that compressed gases dissolve solids and liquids (Ref 1). Ethylene, for instance, dissolves at 50° and 240 atmospheres absolute pressure up to 17 mol % naphthalene (Ref 2). The solubility of lubricating oil of the type "S" in ethylene at 50° and 3700 kg/cm² was investigated. The apparatus used is described in publications (Ref 3). Instead of the piezometer of this apparatus one with an electromagnetic stirrer was used (diagram). The vapor pressure of the oil was determined according to the diagram of coke (Ref 4). A molecular weight of 352 is given. A special valve was constructed to deliver the ethylene and to take the sample (diagram). The properties of the lubricating oil investigated (type "S") according to GOST 1707-42/49 are mentioned. It was found that in the pressure range from

Card 1/2

### "APPROVED FOR RELEASE: 03/14/2001 CIA-RDP

CIA-RDP86-00513R001757030001-7

The Solubility of Lubricating Oil in Compressed Ethylene

SOV/64-58-7-4/18

100 to 2000 kg/cm<sup>2</sup> the solubility of this oil increased and decreased again after the maximum (at 2000 kg/cm<sup>2</sup>). The molecular weight of the oil that dissolved in ethylene was 650. This demonstrates that ethylene mainly dissolves the heavy oil fraction. There are 3 figures, 1 table, and 6 references, 4 of which are Soviet.

Card 2/2

TSIKLIS, D.S.; KHODEYEVA, S.M.

Limited mutual solubility of games at high pressures in systems containing liquid in a supercritical state. Inzh.-fiz.zhur. no.11:62-66 N 58. (MIRA 12:1)

1. Institut azotnoy promyshlennosti, g. Moskva. (Systems (Chemistry)) (Solubility)

AUTHOR:

Tsiklis, D.S.

SOV/76-32-6-21/40

TITLE:

The Phase Equilibrium in the System Acetaldehyde-Water Methane High Pressures (Fazovyje ravnovesiya v sisteme atsetal'degid-

-voda - metan pri vysokikh davleniyakh)

PERIODICAL:

Zhurnal fizicheskoy khimii, 1958, Vol. 32, Nr 6,

pp. 1367-1371 (USSR)

ABSTRACT:

In continuation of an earlier paper the solubility of the acetaldehyde and water in a solution containing 43,5% acetaldenyde in compressed methane was investigated at pressures up to 80 atmospheres absolute pressure and at temperatures from 1 to 40°C, as well as the solubility of

methane in this solution. The apparatus used was already

described. The partial pressures as well as the total pressure at the given temperatures were also determined. The experimental work was carried out by A. N. Kofman, L. I. Shenderey and S. M. Khodeyeva. The Henry coefficient was calculated from given data according to a mentioned formula; from these values the solubility was calculated in order to be able to compare these values with the experimental data.

Card 1/3

Acetaldehyde -

The Phase Equilibrium in the System/ Water -

SOV/ 76-52-6-27/46

-Methane at High Pressures

However, the volatility of acetaldehyde in the gaseous phase above the aqueous solution should have been known. Instead, the partial pressures were used in its place, using a correction according to the equation by Poynting. In the calculation it was assumed that the main quantity of acetaldehyde in the gaseous phase is not bound in complexes. The experimental results obtained were evaluated according to the equation by I. R. Krichevskiy and N. Ye. Khazanova (Ref 7). A good agreement with the demands was obtained. The greater deviations are explained by the fact that the formation of hydrates in the gaseous phase could not be taken into account; the accuracy is, however, sufficient, for technological calculations. Finally the author thanks Professor I, R. Krichevskiy. There are 2 figures, 5 tables, and 7 references, 5 of which are Soviet.

ASSOCIATION:

Institut azotnoy promyshlennosti, Moskva (Moscow, Institute

of Nitrogen Industry)

SUBMITTED:

February 20, 1957

Card 2/3

507/76-32-6-27/46 The Phase Equilibrium in the System Acetaldehyde Water-Methane at High Pressures.

- 1. Acetaldehyde-methane-water systems--Analysis 2. Methane--Solubility
- 3. Pressure--Chemical effects 4. Chemical equilibrium

Card 3/3

CIA-RDP86-00513R001757030001-7" APPROVED FOR RELEASE: 03/14/2001

AUTHORS:

Krichevskiy, I. R. Tsiklis, D. S. SOV/76-32-6-33/46

TITLE:

Discussion (Diskussiya)

Answer to the Paper by V. Yu. Urbakh "Is There a Finite Mutual Solubility of Gases?" (Otvet na stat'yu V. Yu. Urbakha "Sushchestvuyet li ogranichennaya vzaimnaya

rastvorimost' gazov ?")

PERIODICAL:

Zhurnal fizicheskoy khimii, 1958, Vol. 32, Nr 6, pp.

1407-1409 (USSR)

ABSTRACT:

It is pointed out that already Kamerlingh Onnes and Keesom (Ref 1) laid down a theory on the equilibrium gas-gua, besides, corresponding notes are to be found in the book by Van der Waals-Konstamm (Ref 2). The main argument mentioned by Urbakh was mentioned by Batelli in 1892, it was, however, refuted as may be seen from the paper by A. G. Stoletov (Ref 3). The assumptions by A. Eucken (Ref 4) are explained by the theory of the phase transitions by L. D. Landau (Ref 6), while the statements by A. Ye., Sheyndlin (Ref 5) were again refuted by A.M. Rozen (Ref 7). In the further considerations contrary to the ideas by Urbakh the papers by Vogel (Ref 8), D. P. Konovalov (Ref 9) and I. R.

Card 1/2

Discussion. Answer to the Paper by V.Yu. SOV/76-32-6-33/46 Urbakh "Is There a Finite Mutual Solubility of Gases?"

Krichevskiy and N. Ye Khazanova (Ref 10) are mentioned and it is found that for reasoning his assumption Urbakh had to develop a new theory in the place of the Gibbs-Stoletov theory, as otherwise the statement of a certain role played by surface phenomena in the thermodynamics of critical phenomena is without any scientific value and of no importance, just as the second assumption concerning the possibility of a lengthening of the curve of equilibrium liquid-gas beyond the critical point was refuted in the above mentioned papers. There are 10 references, 5 of which are Soviet.

NATIONAL PROPERTY OF THE PROPE

. ASSOCIAITON:

Institut azotnoy promyshlennosti, Moskva (Moscow, Institute of Nitrogen Industry)

SUBMITTED:

November 11, 1957

1. Gases--Solubility 2. Gases--Theory 3. Gases--Phase studies

4. Gases--Thermodynamic properties

Card 2/2

AUTHORS: Tsiklis, D. S., Svetlova, G. M. (Deceased) SOV/76-32-7-6/45

TITLE: The Solubility of Gases in Cyclohexane (Rastvorimost' gazov

v tsiklogeksane)

PERIODICAL: Zhurnal fizicheskoy khimii, 1958, Vol. 32, Nr 7, pp.1476-1480

(USSR)

ABSTRACT: Since, with one exception, no data are available on the

solubility of chlorine, hydrogen chloride, nitrosyl chloride, nitrogen oxide and hydrogen sulfide in cyclohexane in publications the authors in the present paper determined these values and gave their data. The measurements were carried out according to the static method by the determination of the total pressure above the solution at certain temperatures

(10, 20 and 40°) and concentrations of the solution. A schematic representation of the experimental equipment is given from which may be seen that a spring with a mirror served as manometer with a light pencil being reflected to a

scale. The checking system of the equipment was housed in a thermostat and the gases used had been dried by freezing before the experiments; the purification of the cyclohexane

Card 1/2 was carried out by G. A. Sorina. To avoid a possible photo-

The Solubility of Gases in Cyclohexane

SOV/76-32-7-6/45

chemical reaction the authors used dark glass and brass filters. From the results obtained may be seen that the solubility of the gases investigated decreases with an increase of the temperature. The solubility of hydrogen chloride and nitrogen oxide is subject to the Henry law, while the solubility of nitrosyl chloride, chlorine and hydrogen sulfide does not vary linearly as the pressure, and can be expressed by the equation according to Krichevskiy-Il'inskaya. The heats of solution of the gases investigated were calculated and given in a table. The deviations of the determinations from the values obtained by interpolation are given to be 5 % in the case of nitrosyl chloride and 10-15 % for the other gases, respectively. Finally the authors thank I. R. Krichevskiy. There are 2 figures, 4 tables, and 3 references, 2 of which are Soviet.

ASSOCIATION:

Institut azotnoy promyshlennosti, Moskva (Moscow, Institute of Nitrogen Industry)

1. Gases—Solubility 2. Gases—Temperature factors 3. Gases—Heat of solution 4. Cyclohexanes—Properties

Card 2/2 :

5(4)

sov/76-33-9-20/37

AUTHORS:

Esiklis, D. S., Kofman, A. N., Shenderey, L. I.

TOTAL PROPERTY OF STREET

TITLE:

Phase- and Volumetric Behavior of Solutions of Acetylene in

Acetone

PERIODICAL:

Zhurnal fizicheskoy khimii, 1959, Vol 33, Nr 9, pp 2012-2016

(USSR)

ABSTRACT:

G. S. Cherkasova and L. F. Abramova (NIAT) took part in the experimental part of the work under review. As there are no accurate data in publications concerning the volumetric behavior of solutions of acetylene (I) in acetone (II), the present investigation was carried out following suggestions made by Yu. V. Dalago and G. F. Chepelyugin. The solubility of (I) in (II) was measured according to the statistical method by measuring the total pressure over the solution at a given temperature and known concentration of the solution; a special arrangement was used for the purpose (Fig 1). The device essentially consists of a graduated tube with tap, glass manometer (as zero instrument), mercury gauge, and portioning

Card 1/2

vessel. The working procedure is described. The solubility of (I) in (II) was measured at -40, -50, -60, -70 and -80°C at a

sov/76-33-9-20/37

Phase and Volumetric Behavior of Solutions of Acetylene in Acetone

pressure up to 1 atm, and the volume of the solution was determined. To interpret results for the phase equilibrium, the known equation (1) (Ref 5) was applied and the values obtained are specified (Table 1). With the (I)-concentration the volume of the solution rises noticeably (Table 2). By extrapolation, the solubility of (I) ir (II) was determined at -80°C even for a pressure above 1000 torr (Table 3). The solubility of (I) in (II) may be expressed by the equation of I. R. Krichevskiy - A. A. Il'inskays. The solution heat of (I) in (II) was likewise calculated. Finally, gratitude is expressed to I. R. Krichevskiy for valuable advice. There are 3 figures, 3 tables, and 8 references, 5 of which are Soviet.

SUBMITTED:

February 26, 1958

Card 2/2

66478

10(4) 5.1600

SOV/20-129-1-24/64

AUTHORS:

Gonikberg, M. G., Tsiklis, D. S., Opekunov, A. A.

TITLE:

On the Problem of Reinforcement of High Pressure Containers

PERIODICAL: Doklady Akademii nauk SSSR, 1959, Vol 129, Nr 1,

pp 88 - 90 (USSR)

ABSTRACT:

Recently a method of replacing the tensile stresses in constructions by compressive stresses, is applied in the construction of high pressure apparatus. The fact is used as well, that the compressive strength of materials like tungsten carbide and hard steels is by 3 to 4 times larger than tensile strength. This principle for instance, is applied to that construction, which is known under the name "tetrahedral anvil" and which makes it possible already now to produce pressures of 200000 atmospheres within the apparatus at very high temperatures. In this construction 4 pistons move in a highly viscous medium (pyrophyllite) towards a common center. The triangular plane frontal areas of these pistons (with a pyrophyllite intermediate layer between them) form a tetrahedral highpressure "container". 2 problems are solved by such a construc-

Card 1/4

66478

On the Problem of Reinforcement of High Pressure SOV/20-129-1-24/64 Containers

tion: The backing of the moving piston and the production of a high-pressure container, with extremely high strains and high temperatures. These problems, however, may be solved separately, using the same principle, which underlies the tetrahedral anvil. First the construction of a high-pressure container with high strength is discussed. At the internal walls of the container a plastic layer is formed, which is fixed by an elastic layer. With increasing extension of the plastic layer, the elastic layer becomes thinner and thinner and, at a certain pressure, a break occurs. As was shown by experiments, high pressure containers break from outside. Now, a high pressure container may be assumed, which is produced of 2 layers, of an external elastic bandage and of an internal layer, which is composed of several hard wedges (compare R. V. Mil'vitskiy (Ref 3)). The material of these wedges reacts not to extension, but to pressure and, therefore, withstand considerably higher pressure than the walls of a customary cylinder. An apparatus with a high-pressure container, which is schematically illustrated by a picture, was developed and built by the authors,

Card 2/4