Augmented Reality based Navigation

CS461 Project:
Aryan Agrawal (170101013)
Udbhav Chugh (170101081)
Mayank Baranwal (170101084)

Augmented Reality (AR)

Definition of AR

- Interactive experience of a real-world environment where objects enhanced by computer generated images
- Can be across multiple senses: visual, auditory, somatosensory, haptic, and olfactory → Our focus towards visual
- Famous example: Pokémon Go

Challenges with AR

- Computationally expensive
- Need for multiple sensors to create immersive experience

Brief Timeline of Popular Navigation Apps

Google Maps features:

- Online version of maps
- Introduction of satellite images to public domain
- Algorithms to chart optimal routes based on time

Disadvantages:

 No live street classification; difficult to differentiate streets

Online Maps

Google Street View (Quasi - AR)

- Multiple photos taken by 360 degree cameras
- Images stitched together that provide basic navigation

Disadvantages:

- Google Street View banned outside of NA, Europe
- Images not updated regularly

Integrating AR with Maps

- Live user's camera feed
- Navigation aids overlayed on top

Disadvantages:

- Only testing versions available
- Requires heavily annotated map data underneath
- Non-proprietary (e.g. Google, Apple AR)

Quasi AR AR based Navigation

Recent AR based Navigation Works

Augmented reality navigation systems (Wolfgang Narzt, Gustav Pomberger, Alois Ferscha)

- 1. Work out route with online maps
- Have a pre-processed topography map of route
- 3. Develop virtual 3D model
- 4. Project 3D route on top on map

Disadvantages

- Targeted towards automobile based navigation
- Requirement of existing topography map → Inapplicable to remote locations
- Cannot run on a low-end smartphone

Recent AR based Navigation Works (Contd)

Based	Sensor	Advantage	Weakness
Sensor-based	GPS Gyro Accelerometer	Easy to develop	uncormfortable in indoor movement
Vision-based	Computer Vision Open GL Marker based Marker-less based	High immersion level	self technology development
Hybrid	Vision + Sensor	If tracking is lost, it will be compensated through the sensor. The weight of the vision is compensated by the sensor	Hard to develop, Unavailability of contents

Augmented Reality Navigation System on Android (Chee Oh Chung, Yilun He, Hoe Kyung Jung)

- 1. Utilize Google Maps API to plot route
- 2. Displace waypoints at large distances with hybrid (sensor + vision) based approach to plot markers

Disadvantages

- Waypoints spaced too far apart for street level differentiation
- Markers are static → Do not take into account that they may be out of line-of-sight

End-to-End Solution

Screenshots

CS461 Project

Library Utilised: BeyondAR

About

Open source framework for creating AR applications for Android devices.

Geolocalization

Uses GPS to find the geo coordinates and insert AR information annotations using appropriate geo coordinates and altitude.

AR object Rendering

Uses OpenGL to create the graphical object with required specification.

Sensors

BeyondAR uses Accelerometer and Magnetic field sensors to provide the AR experience.

BeyondAR (Cont.)

BeyondAR Features

- Create the AR world with current geo coordinates of user.
- Convert the geobjects to gl points representation relative to geo-coordinates of the AR world.
- Works by taking snapshot of view per frame, placing the gl objects and returning the rendered frame.
- Sensitive to the smartphone/User motion.

Advantages:

- Computationally Inexpensive.
- Quick and efficient to run unlike other AR engines

Our Approach

Special Features

Different Marker Features

Markers of different colours and sizes to depict checkpoints, changing direction (going left or right), etc. and reflect the user's perspective.

Controlling Sparsity of Markers

Allow the user to set how close they want these guiding points to be depending on the surrounding lighting and weather conditions.

Haversine Distance and Heading Angle

Haversine Algorithm

- Calculates the shortest distance between two points on a sphere using their latitude and longitude values. Haversine is expressed as:
- haversine of the central angle (which is d/r) is calculated by the following formula:
- Solving it gives the following value of distance:

Heading or Bearing Angle

- A heading is the angle of a direction from a fixed reference point(true north).
- Used to compute direction to traverse given two coordinates on Earth.
- Using the bearing angle, we can calculate the intermediate geo coordinates (taking marker sparsity into account)

$$haversine(heta) = sin^2\left(rac{ heta}{2}
ight)$$
 $\left(rac{d}{r}
ight) = haversine(\Phi_2 - \Phi_1) + cos(\Phi_1)cos(\Phi_2)haversine(\lambda_2 - \lambda_1)$ $d = rhav^{-1}(h) = 2rsin^{-1}(\sqrt{h})$

$$d = 2rsin^{-1} \left(\sqrt{sin^2 \left(\frac{\Phi_2 - \Phi_1}{2} \right) + cos(\Phi_1)cos(\Phi_2)sin^2 \left(\frac{\lambda_2 - \lambda_1}{2} \right)} \right)$$

 $\theta = atan2(\ sin\ \Delta\lambda \cdot cos\ \phi_2\ , \ cos\ \phi_1 \cdot sin\ \phi_2 - sin\ \phi_1 \cdot cos\ \phi_2 \cdot cos\ \Delta\lambda\)$ $\phi_1, \lambda_1\ is\ the\ start\ point,\ \phi_2, \lambda_2\ the\ end\ point\ (\Delta\lambda\ is\ the\ difference\ in\ longitude)$

- latitude of second point = la2 = $asin(sin la1 * cos Ad + cos la1 * sin Ad * cos \theta)$, and
- longitude of second point = $lo2 = lo1 + atan2(sin \theta * sin Ad * cos la1, cos Ad sin la1 * sin la2)$

Demo and Code (Demo Link)

Non AR Features

Integrated Google Maps to navigate to destination without the use of AR

Controlling Sparsity of Markers

Allow the user to set the proximity of AR markers during navigation

Difficulties Encountered

Limitations and Future Work

Thank You!