Лабораторная работа 3.2.5. Вынужденные колебания

Норкин Дмитрий

Теория

Резонансная частота контура $\nu_0 = \frac{1}{2\pi\sqrt{LC}}$

Пусть $\Delta \nu$ - ширина резонансной кривой на высоте $\frac{U}{U_0}=\frac{1}{\sqrt{2}}.$ Тогда нетрудно показать, что добротность контура $Q=\frac{\nu_0}{\Delta \nu}$

При нарастании колебаний $\ln \frac{U_0-U_k}{U_0-U_{k+n}}=n\Theta;$ при затухании – $\ln \frac{U_k}{U_{k+n}}=n\Theta$ Добротность при этом $Q=\frac{\pi}{\Theta}$

Добротность, выраженная через параметры цепи $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$

Измерения

Резонансная кривая

$$L=100$$
 м Γ н; $C=0.1$ мк $\Phi\Rightarrow
u_0^{th}=rac{1}{2\pi\sqrt{LC}}=1.590$ к Γ ц

Рис. 1: Резонансные кривые

U, дел	$ u$, к Γ ц	U/U_0	ν/ν_0
1.0	1.431	0.18	0.918
1.6	1.475	0.28	0.946
2.2	1.5	0.39	0.962
2.6	1.51	0.46	0.969
3.0	1.518	0.53	0.974
3.2	1.522	0.56	0.976
3.4	1.525	0.6	0.978
3.6	1.528	0.63	0.98
3.8	1.531	0.67	0.982
4.0	1.533	0.7	0.983
4.2	1.535	0.74	0.985
4.4	1.538	0.77	0.987
4.6	1.541	0.81	0.988
4.8	1.543	0.84	0.99
5.0	1.545	0.88	0.991
5.2	1.548	0.91	0.993
5.4	1.552	0.95	0.996
5.6	1.556	0.98	0.998
5.7	1.559	1.0	1.0
5.6	1.565	0.98	1.004
5.4	1.569	0.95	1.006
5.2	1.573	0.91	1.009
5.0	1.576	0.88	1.011
4.8	1.578	0.84	1.012
4.6	1.581	0.81	1.014
4.4	1.583	0.77	1.015
4.2	1.586	0.74	1.017
4.0	1.588	0.7	1.019
3.8	1.591	0.67	1.021
3.6	1.594	0.63	1.022

U, дел	$ u$, к Γ ц	U/U_0	ν/ν_0
2.0	1.382	0.45	0.884
2.4	1.415	0.54	0.905
2.6	1.431	0.58	0.915
2.8	1.444	0.63	0.923
3.0	1.457	0.67	0.932
3.2	1.469	0.72	0.939
3.4	1.48	0.76	0.946
3.6	1.493	0.81	0.955
3.8	1.503	0.85	0.961
4.0	1.515	0.9	0.969
4.2	1.53	0.94	0.978
4.4	1.545	0.99	0.988
4.45	1.567	1.0	1.002
4.4	1.589	0.99	1.016
4.2	1.608	0.94	1.028
4.0	1.625	0.9	1.039
3.8	1.642	0.85	1.05
3.6	1.657	0.81	1.059
3.4	1.672	0.76	1.069
3.2	1.688	0.72	1.079
3.0	1.707	0.67	1.091
2.8	1.726	0.63	1.104
2.6	1.751	0.58	1.12
2.4	1.776	0.54	1.136
2.2	1.812	0.49	1.159
2.0	1.845	0.45	1.18

Таблица 2: $R=100~\Omega$

Таблица 1: R=0 Ω

Рассчитаем добротность:
1)
$$R=100~\Omega\Rightarrow \frac{\Delta\nu}{\nu_0}=0.143\Rightarrow Q=7$$

2) $R=0~\Omega\Rightarrow \frac{\Delta\nu}{\nu_0}=0.035\Rightarrow Q=30$

Процессы установления и затухания колебаний

n	U_{k+n} , дел	$ \ln \frac{U_0 - U_k}{U_0 - U_{k+n}} $	n	U_{k+n} , дел	$ \ln \frac{U_0 - U_k}{U_0 - U_{k+n}} $
0.0	1.6	0.0	$\overline{0.0}$	1.1	0.0
4.0	2.3	0.58	1.0	2.0	0.45
10.0	2.8	1.39	2.0	2.6	0.92
15.0	3.0	2.08	3.0	3.0	1.43
			4.0	3.25	1.97

Таблица 3: R=0 $\Omega,$ $U_0=3.2$ дел, нараст. колеб.

Таблица 4: $R=100~\Omega,\, U_0=3.6$ дел, нараст. колеб.

	n	U_{k+n} , дел	$ \ln \frac{U_k}{U_{k+n}} $
0	0.0	3.0	0.0
3	0.8	2.15	0.33
5	0.0	1.7	0.57
9	0.0	1.1	1.0

Таблица 5: R=0 $\Omega,$ затух. колеб.

n	U_{k+n} , дел	$ \ln \frac{U_k}{U_{k+n}} $
0.0	2.8	0.0
1.0	1.8	0.44
2.0	1.2	0.85
3.0	0.8	1.25
4.0	0.5	1.72

Таблица 6: $R=100~\Omega,$ затух. колеб.

Рис. 2: $R = 0 \ \Omega$, нараст. колеб.

Рис. 4: R=0 $\Omega,$ затух. колеб.

Рис. 3: $R=100~\Omega,$ нараст. колеб.

1.75									<u> </u>
1.50								/	
1.25									
1.00									
1.00 = 1.00 = 0.75									
0.50									
0.25									
0.00									
	0.0	0.5	1.0	1.5	n	2.5	3.0	3.5	4.0

Рис. 5: $R = 100 \ \Omega$, затух. колеб.

	0Ω	100Ω
Нарастание	0.138 ± 0.001	0.49 ± 0.01
Затухание	0.112 ± 0.001	0.43 ± 0.01

Таблица 7: Логарифмический декремент Θ

	0Ω	100Ω
Нарастание	23	6
Затухание	28	7

Таблица 8: Добротность Q

Измерим с помощью RLC-измерителя активное сопротивление и индуктивность катушки

$ u$, Γ ц	50	500	1500
R_L, Ω	27.69	28.02	29.49
L , м Γ н	100.12	100.07	100.05

Таблица 9: Измерение параметров цепи

R, Ω	$R_{\scriptscriptstyle{ extbf{KOHT}}}$	Резонанс	Нарастание	Затухание	Теория
0	29	30	23	28	
100	129	7	6	7	

Таблица 10: Добротность

Биения

Разность фаз внешнего напряжения и собственных колебаний контура медленно меняется при достаточно близких значениях частот, вызывая биения. Так как собственные колебания затухают, то амплитуда в конце стремится к константе.

Рис. 6: Картина биений