Lecture 4 – Inverse Functions Part 2

Recall that in definition 3.4, we stated that if f is invertible, then an inverse function for f exists. The question remains, what is this inverse function?

Definition 4.1: Let \mathcal{A} and \mathcal{B} be sets. Let $f: \mathcal{A} \to \mathcal{B}$ be some function. Let $g: \mathcal{B} \to \mathcal{A}$ be the function such that,

- 1. For all $a \in \mathcal{A}$, $g(f(a)) = id_{\mathcal{A}}(a) = a$.
- 2. For all $b \in \mathcal{B}$, $f(g(b)) = \mathrm{id}_{\mathcal{B}}(b) = b$.

Then we say that g is the **inverse function** of f.

Example 4.1: Let $\mathcal{A} = \{1, 2, 3, 5\}$ and $\mathcal{B} = \{2, 4, 6, 10\}$ be sets, lets define the following function,

- $f: \mathcal{A} \to \mathcal{B}$.
- f(a) = 2a.

I claim that the function,

- $q: \mathcal{B} \to \mathcal{A}$.
- $\bullet \ g(b) = \frac{1}{2}b.$

is the inverse function for f. (Explanation in class)

Notation 4.1: If a function f has an inverse, then we normally label this function as f^{-1} . This is meant to clear up confusion between functions, but ironically it causes more confusion amongst student. Basically whatever letter the function is labelled by, just put a '-1' on top to indicate the inverse function if it exists.

Example 4.2: Let $\mathcal{A} = \{1, 3, 5, 9\}$ and $\mathcal{B} = \{1, 2, 3, 5\}$ be sets, lets define the following function,

- $\phi \colon \mathcal{A} \to \mathcal{B}$.
- $\phi(a) = \frac{1}{2}(a+1)$.

I claim that the function,

- $\phi^{-1} \colon \mathcal{B} \to \mathcal{A}$.
- $\phi^{-1}(b) = 2b 1$.

is the inverse function. (Explanation in class)

Lets take a look at a more interesting function and its inverse, but before doing so, I will briefly introduce you to a new object.

4.1 Binary Strings

Definition 4.2: A binary string is sequence of 1's and 0's, formally referred to as bits. The string with no bits is denoted as ϵ (similar to the empty set).

Example 4.3: The following are binary strings,

- S = 101011.
- T = 001010.
- K = 1.

Definition 4.3: Let S and T be binary strings. We define S+T by gluing S and T together.

Example 4.4: Let S = 101 and T = 0001, then S + T = 1010001.

Example 4.5: Let S = 111 and $T = \epsilon$, then S + T = 111.

Notation 4.2: Lets say we have a binary string S, then s_i refers to the i^{th} bit of S.

Example 4.6: Let S = 10100, then $s_1 = 1$, $s_3 = 1$, $s_5 = 0$, etc.

Example 4.7: Let T = 00100, then $t_1 = 0$, $t_3 = 1$, $t_4 = 0$ etc.

This notation allows us to build <u>substrings</u> of other strings, lets see how in the following example,

Example 4.8: Let S = 10100, then $R = s_1 s_3 s_4 =$ (In class).

Example 4.9: Let T = 000111, then $B = t_2t_3t_6 =$ (In class).

Example 4.10: Let $S = \{111, 010, 110\}$ and $\mathcal{R} = \{0101, 1101, 1111\}$. Define the following function,

- $f: S \to \mathcal{R}$.
- f(S) = S + 1.

We can draw a mapping diagram to understand how the function behaves.

Question: What is the inverse function f^{-1} ? (In class)