Espérance d'une variable aléatoire réelle

Exercice 1. Soit X une variable aléatoire suivant la loi de Bernoulli de paramètre $p \in [0,1]$. Calculer $\mathbb{E}[X]$ puis, pour tout z, $\mathbb{E}[z^X]$.

Même questions lorsque X suit la loi binomiale de paramètres $n \in \mathbb{N}$ et $p \in [0, 1]$.

Exercice 2. Calculer la moyenne et la variance des lois usuelles vues en cours.

Exercice 3. Soient a > 0 et b un réel. Déterminer la loi de la v.a. Y = aX + b quand X suit la loi uniforme sur [0,1] puis quand X est gaussienne centrée réduite.

Exercice 4. Soit X une variable aléatoire de loi $\mathcal{N}(0,1)$. Calculer, pour tout réel s, $\mathbb{E}[e^{sX}]$.

Exercice 5. Soit X une v.a. de densité $p(x) = x \exp(-x^2/2) \mathbf{1}_{x \ge 0}$. Vérifier que p est une densité de probabilité puis calculer la moyenne de X.

Exercice 6. À quelle condition sur α , la fonction p définie par $p(x) = \alpha x^{\alpha-1}$ si 0 < x < 1, p(x) = 0 sinon est-elle une densité de probabilité? Montrer que la loi de $Y = -\alpha \ln(X)$ ne dépend pas de α . Calculer $\mathbb{E}[Y]$.

Exercice 7. Soit X une variable aléatoire de densité $\exp(-|x|)/2$.

- 1. Pour |s| < 1, calculer $\Lambda(s) = \mathbb{E}[\exp(sX)]$. Comparer $\Lambda''(0)$ et $\mathbb{E}[X^2]$.
- 2. Déterminer la loi des variables aléatoires $U = \exp(-|X|)$ et $Y = \frac{1-U}{U}$.

Exercice 8. Soit X une v.a. de loi $\mathcal{N}(0,1)$. On définit $Y = \exp(X)$. Déterminer la densité de Y, $\mathbb{E}[Y]$ ainsi que $\mathbb{V}[Y]$.

Exercice 9. Soient X et ε deux v.a. indépendantes; X de loi gaussienne $\mathcal{N}(0,1)$ et ε de loi donnée par $\mathbb{P}(\varepsilon=1)=\mathbb{P}(\varepsilon=-1)=1/2$. On pose $Y=\varepsilon X$. Quelle est la loi de Y? Calculer $\mathbb{E}[XY]$. Les v.a. X et Y sont-elles indépendantes?

Exercice 10. Soit X une v.a. de densité $p(x) = \lambda \exp(-|x|)$.

- 1. (a) Calculer λ ; déterminer la fonction de répartition de X et la loi de |X|.
- (b) Montrer que X possède des moments de tous les ordres et calculer $\mathbb{E}[X^n]$ pour tout entier n. En déduire la moyenne et la variance de X.
- 2. Soit Y une v.a. indépendante de X et de même loi. Calculer la moyenne et la variance des v.a. $S=2X-Y,\,T=X^2.$

Exercice 11. Soient $(X_i)_{1 \le i \le n}$ n v.a. indépendantes et identiquement distribuées de loi $\mathcal{B}(p)$. Quelle est la loi de $S = X_1 + \ldots + X_n$? En déduire la moyenne et la variance de S.

Exercice 12. Soient X et Y deux v.a. indépendantes. Calculer la loi de la v.a. X+Y dans les cas suivants :

- 1. X de loi $\mathcal{P}(\lambda)$, Y de loi $\mathcal{P}(\mu)$;
- 2. X de loi $\mathcal{B}(n,p)$, Y de loi $\mathcal{B}(m,p)$;
- 3. X de loi $\mathcal{N}(\mu, \sigma^2)$, Y de loi $\mathcal{N}(\mu', \sigma'^2)$.

Exercice 13. Une puce se déplace dans le plan par saut de longueur $\delta > 0$. La puce part du point O, origine des coordonnées du plan, et saute n fois dans une direction qui, pour chaque saut, est aléatoire. L'abscisse et l'ordonnée de la puce, après n sauts, sont

$$X_n = \sum_{i=1}^n \delta \cos(\theta_i), \qquad Y_n = \sum_{i=1}^n \delta \sin(\theta_i);$$

et on suppose les v.a. $(\theta_i)_{1 \geq i \geq n}$ indépendantes de même loi uniforme sur $[0, 2\pi]$.

Calculer l'espérance et la variance de de X_n et Y_n , puis $\mathbb{E}[X_n^2 + Y_n^2]$. Calculer $\mathbb{E}[X_n Y_n]$; les v.a. X_n et Y_n sont-elles indépendantes?

Exercice 14. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et de même loi $\mathcal{B}(p)$ où $0 définie sur <math>(\Omega, \mathcal{F}, \mathbb{P})$. On pose, pour tout $\omega \in \Omega$,

$$S(\omega) = \inf\{i \ge 1, \ X_i(\omega) = 1\}, \qquad T(\omega) = \inf\{i \ge 1, \ X_i(\omega) = 0\},$$

avec la convention $\inf\{\emptyset\} = +\infty$.

- 1. Montrer que $\mathbb{P}(T=\infty)=\mathbb{P}(S=\infty)=0$ et déterminer la loi de S et T.
- 2. On définit, pour $\omega \in \Omega$, $\tau(\omega) = \inf\{i \geq 2, X_{i-1}(\omega) = 0, X_i(\omega) = 1\}$ avec la même convention.
 - (a) Montrer que $\tau \geq T + 1$;
 - (b) Établir que $\mathbb{P}(\tau = \infty) = 0$;
 - (c) Montrer que $\tau(\omega) = \inf\{i > T(\omega), X_i(\omega) = 1\}$.
- 3. (a) Montrer que, si $k \ge 2$, $\{\tau = k\} = \bigcup_{i=1}^{k-1} \{\tau = k\} \cap \{T = i\}$.
 - (b) Montrer que si $m \ge 1$, $l \ge 1$, $\mathbb{P}(\tau = m + l/T = l) = \mathbb{P}(S = m)$.
 - (c) En déduire que, pour $k \geq 2$, notant q = 1 p,

$$\mathbb{P}(\tau = k) = \frac{pq}{q - p} (q^{k-1} - p^{k-1}).$$

Déterminer la fonction caractéristique de τ , sa moyenne, sa variance.