

RE051-19-105023-1-A Ed. 0

# **MPE** test report

According to the standard: CFR 47 FCC PART 15

Equipment under test: Wirnet iStation 915

FCC ID: 2AFYS-KLKWIIS915

Company: KERLINK

**Distribution:** Mr LOUVEAU (Company: KERLINK)

Number of pages: 9 with 1 appendix

| Ed. | Date      | Modified | Technical Verification and Quality Approval |      |  |
|-----|-----------|----------|---------------------------------------------|------|--|
|     |           | Page(s)  | Name and Function                           | Visa |  |
| 0   | 24-Jan-20 | Creation | T. LEDRESSEUR, Radio Technician             |      |  |

Duplication of this document is only permitted for an integral photographic facsimile. It includes the number of pages referenced here above.

This document is the result of testing a specimen or a sample of the product submitted. It does not imply an assessment of the conformity of the whole manufactured products of the tested sample.





| DESIGNATION OF PRODUCT:      | Wirnet iStat                        | ion 915                                                                  |       |
|------------------------------|-------------------------------------|--------------------------------------------------------------------------|-------|
| Serial number (S/N):         | 1980018353                          |                                                                          |       |
| Reference / model (P/N):     | Wirnet iStation                     | on 915                                                                   |       |
| Software version:            | V4.2.1<br>Test software             | e: libloragw-utils_5.0.1-klk                                             | 10    |
| MANUFACTURER:                | KERLINK                             |                                                                          |       |
| COMPANY SUBMITTING THE PRODU | JCT:                                |                                                                          |       |
| Company:                     | KERLINK                             |                                                                          |       |
| Address:                     | 1 Rue Jacqu<br>35235 THOF<br>FRANCE | eline Auriol<br>RIGNE-FOUILLARD                                          |       |
| Responsible:                 | Mr LOUVEA                           | U                                                                        |       |
| DATES OF TEST:               | From 15-Jan                         | -20 to 24-Jan-20                                                         |       |
| TESTING LOCATION:            | FCC Accredited un                   | S laboratory at JUIGNE S<br>der US-EU MRA Designat<br>ion Number: 873677 |       |
| TESTED BY:                   | S. LOUIS                            | VISA:                                                                    | Ocean |
| WRITTEN BY:                  | S. LOUIS                            |                                                                          |       |



# **CONTENTS**

|    | TITLE               | PAGE |
|----|---------------------|------|
| 1. | INTRODUCTION        | 4    |
| 2. | PRODUCT DESCRIPTION | 4    |
| 3. | NORMATIVE REFERENCE | 5    |
| 4. | RF EXPOSURE         |      |



#### 1. INTRODUCTION

This report presents the results of radio test carried out on the following radio equipment: Wirnet iStation 915, in accordance with normative reference.

The device under test integrates the followings radio function:

- GPS receiver
- 3G/LTE module already certified (FCC ID: XMR201903EG25G)
- LoRa function

#### 2. PRODUCT DESCRIPTION

#### Frequencies plan detailed (LoRaWAN standard)

#### Transmitter

| Channel frequencie    | s LoRa | bandwidth<br>(kHz) | Number of channel | Channel width (kHz) | SPREAD FACTOR |
|-----------------------|--------|--------------------|-------------------|---------------------|---------------|
| 923,3+i*0.6MHz (i=0 8 | 7)     | 500                | 8                 | 600                 | 7 to 12       |

#### Receiver

| Channel frenquencies       | LoRa bandwidth (kHz) | Number of channel | Channel width (kHz) | SPREAD FACTOR |
|----------------------------|----------------------|-------------------|---------------------|---------------|
| 902,3+i*0,2MHz (i= 0 à 63) | 125                  | 64                | 200                 | 7 to 10       |
| 903,0+i*1.6MHz (i=0 à 7)   | 500                  | 8                 | 600                 | 7 to 12       |

Class: B

Utilization: Residential use

Antenna type and gain: Internal antenna: 2.6 dBi

External antennas: 3 dBi or 6dBi

Power source: AC/DC PoE

Power level, frequency range and channels characteristics are not user adjustable. The details pictures of the product and the circuit boards are joined with this file.



#### 3. NORMATIVE REFERENCE

The standards and testing methods related throughout this report are those listed below.

They are applied on the whole test report even though the extensions (version, date and amendment) are not repeated.

CFR 47 FCC Part 15 (2020) Radio Frequency Devices

ANSI C63.10 2013

Procedures for ComplianceTesting of Unlicensed Wireless Devices.

447498 D01 General RF Exposure Guidance v06

RF Exposure procedures and equipment authorization policies for mobile and

portable equipment

OET BULLETIN 65 Evaluating Compliance with FCC Guidelines for Human Exposure to

Radiofrequency Electromagnetic Fields



#### 4. RF EXPOSURE

#### Calculus for LoRa in standalone

RF EXPOSURE: The analyze is realized only with the worst critical antenna 6 dBi

Maximum measured power = 27.46 dBm at 923.3 MHz With a gain of 6dBi EIRP = 33.46 dBm = 2.2182 W

The maximum duty cycle is 40% on the reference period of 6min, so the power computed is: 887.28mW

In accordance with KDB 447498 D01 General RF Exposure Guidance v06:

**PSD=** EIRP/
$$(4*\pi*R^2)$$

 $\Rightarrow$  887.28/(4\* $\pi$ \*(20 cm)²)= 0.176mW/m² (limit=0.6155 mW/cm2)

The MPE ratio is then calculated for the simultaneous transmission.

$$MPE\ ratio(LoRa) = \frac{PSD}{PSD\ lim} = 0.286$$

The equipment fulfils the requirements on power density for general population/uncontrolled exposure and therefore fulfils the requirements of 47 CFR §1.1310.



### Calculus for EG25-G in standalone

The results are extracted from  $\underline{\text{EG25-G Module}}$  RF Exposure evaluation report referenced  $\underline{\text{HR/2019/1001602}}$  and calculated with the antenna used (see appendix 1).

| Operating<br>Band | Frequency<br>Band (MHz) | Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Conducted<br>Power (W) | Gain<br>(dBi) | Average<br>EIRP (mW) | Power density at 20 cm (mW/cm²) | Limit<br>(mW/cm²) | MPE ratio |
|-------------------|-------------------------|--------------------|-----------------------------|------------------------|---------------|----------------------|---------------------------------|-------------------|-----------|
| GSM 850           | 824-849                 | 824.2              | 25.81                       | 0.381                  | -0.7          | 324.3                | 0.064                           | 0.55              | 0.116     |
| GSM 1900          | 1850-1910               | 1850.2             | 22.81                       | 0.191                  | 5.4           | 662.2                | 0.132                           | 1                 | 0.132     |
| WCDMA B2          | 1850-1910               | 1852.4             | 25.00                       | 0.316                  | 5.4           | 1096.5               | 0.218                           | 1                 | 0.218     |
| WCDMA B4          | 1710-1755               | 1712.4             | 25.00                       | 0.316                  | 5.0           | 1000                 | 0.199                           | 1                 | 0.199     |
| WCDMA B5          | 824-849                 | 826.4              | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.55              | 0.098     |
| LTE B2            | 1850-1910               | 1850.7             | 25.00                       | 0.316                  | 5.4           | 1096.5               | 0.218                           | 1                 | 0.218     |
| LTE B4            | 1710-1755               | 1710.7             | 25.00                       | 0.316                  | 5.0           | 1000                 | 0.199                           | 1                 | 0.199     |
| LTE B5            | 824-849                 | 824.70             | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.55              | 0.098     |
| LTE B7            | 2500-2570               | 2502.50            | 25.00                       | 0.316                  | 6.3           | 1349                 | 0.268                           | 1                 | 0.268     |
| LTE B12           | 699-716                 | 699.70             | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.47              | 0.115     |
| LTE B13           | 777-787                 | 779.50             | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.52              | 0.104     |
| LTE B25           | 1850-1915               | 1850.7             | 25.00                       | 0.316                  | 5.4           | 1096.5               | 0.218                           | 1                 | 0.218     |
| LTE B26           | 814-824                 | 814.7              | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.54              | 0.100     |
| LTE B26           | 824-849                 | 824.7              | 25.00                       | 0.316                  | -0.7          | 269.2                | 0.054                           | 0.55              | 0.098     |



### Calculus for simultaneous transmission

Only the worst critical case for the WAN module is taken into account for this analysis

$$\sum$$
 of MPE ratio = MPE ratio (LoRa) + MPE ratio (LTE<sub>B7</sub>) = 0.286 + 0.268 = 0.554  $\leq$  1.0

The product meet the requirement for Simultaneous transmission MPE test exclusion from §7.2 of KDB 447498

□□□ End of report, 1 appendix to be forwarded □□□



## APPENDIX 1: Internal antenna gain

