모비율에 대한 검정

한 모집단의 비율

예: 국립 안전심의회(NSC)

국립 안전심의회(NSC)는 크리스마스와 연초 기간에 교통사고로 500명이 사망하고 25,000명이 부상을 입는다고 추정 하였다. NSC는 사고의 50%가 음주 운전으로 발생한다고 주장 하였다.

120 건의 교통사고를 표본으로 조사한 결과 67 건이 음주운전으로 일어난 사고였다.

- 이 자료를 바탕으로 음주운전으로 일어난 사고의 비율에 대한 95% 신뢰구간을 구하시오.
- 유의수준 α = .05에서 NSC의 주장을 검정하시오.

모비율에 대한 구간추정

$$\hat{p} \pm z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

> prop.test(67,120,p=0.5)

1-sample proportions test with continuity correction

모비율에 대한 가설검정

1. 귀무가설과 대립가설 설정

 H_0 :

 H_a :

2. 가정체크

$$np \ge 5$$
, $n(1-p) \ge 5$

3. 검정 통계량과 P-값

> prop.test(67,120,p=0.5)

1-sample proportions test with continuity correction

4. 결론

정당 지지도: '16년 6월 4주차 주간집계

·조사기관: 리얼미터 ·총응답자: 전국 성인 2,539명 ·응답률: 8.4%

•조사방법: 무선(70%)·유선(30%) RDD 전화면접·스마트폰앱·자동응답 온용 •표집오차: 95% 신뢰수준 ±1.9%p

조사기간: 2016년 6월 20일(월)~24일(금)

모비율에 대한 검정

두모집단의 비율 비교

두 비율의 차이

■ 예: 시장조사 협회

시장조사 협회는 의뢰기업의 새로운 광고 캠페인 효과를 측정 하려고 한다. 새로운 캠페인이 시작 되기 전에 측정하고자 하는 시장지역의 150가구에 대하여 전화조사를 실시하였다. 조사결과, 150가구 중 60가구가 의뢰기업의 생산품에 대하여 알고 있었다.

새로운 캠페인은 TV와 신문을 통해 3주 동안 실시해 왔다. 새로운 캠페인이 시작된 직후 실시된 조사에서는 250가구 중 120가구가 의뢰회사의 제품에 대하여 알고 있다고 한다.

이러한 자료는 '새로운 광고 캠페인이 의뢰회사의 제품에 대하여 인지도를 증가시켰다'는 주장을 지지하는가?

두 모집단 비율의 차이에 대한 추정량

- 모수: p₁ p₂
 - $p_1 =$ 새로운 캠페인 실시 전 제품에 대해 인지를 하고 있는 가구의 모집단의 비율
 - $-p_2 =$ 새로운 캠페인 실시 후 제품에 대해 인지를 하고 있는 가구의 모집단의 비율
- 추정량: $\widehat{p_1} \widehat{p_2}$
 - $-\widehat{p_1}$ =새로운 캠페인 실시 전 제품에 대하여 인지하고 있는 가구의 표본 비율
 - $-\widehat{p_2}$ =새로운 캠페인 실시 후 제품에 대하여 인지하고 있는 가구의 표본 비율

1. 귀무가설과 대립가설 설정

$$H_0: p_1 - p_2 = 0$$
 vs. $H_a: p_1 - p_2 < 0$

2. 가정체크

$$n_1 p_1 \ge 5$$
, $n_1 (1 - p_1) \ge 5$
 $n_2 p_2 \ge 5$, $n_2 (1 - p_2) \ge 5$

	캠페인 전	캠페인 후
인지 o	60	120
인지 x	90	130
계	150	250

3. 검정 통계량과 P-값

4. 결론

여기서 잠깐: 집단 비교와 인과관계

여기서 잠깐: 집단 비교와 인과관계

- 폭력게임과소년범죄
 - 범죄를 저지른 아이들은 폭력적인 게임을 즐김.
 - 폭력게임이 범죄의 원인?
 - 다른 영향요소
 - 부모의 성향
 - 타고난 본성
 - 가정환경

'공정한 비교'를 위한 방법

- 관찰연구(Observational study)
 - 부모의 성격, 가정환경, 심리적 경향 등 '관련있는 조건'을 추적조사, 측정된 조건에 한해서 '공정한 비교'
- 실험연구(Experimental study)
 - 데이터 수집을 최대한 '공정'하게
 - Ex) 연수 대상자를 임의로 반반씩 나누어 한쪽은 특별연수, 한쪽은 일반연수, 업무성과를 수치화해 비교
 - 윤리적 논란 가능성 (ex. 흡연자와 비흡연자의 폐암발생 여부 비교)

모비율에 대한 검정

독립성검정

독립성(분할표) 검정

- 두 범주형 자료가 독립인지 검정
- 예
 - 맥주 선호도는 성별에 독립인가?맥주종류 (라이트맥주, 일반맥주, 흑맥주) vs. 성별
 - 독립적이라면 각 맥주를 선호하는 비율이 남녀가 동일
 - 생산현장에서 불량품 발생률이 작업교대조별(혹은 종류별)로 관련이 있는가?
 - 여론조사에서 특정 주제에 대한 의견이 성별(혹은 지역, 소득수준, 교육수준) 과 관련이 있는가?

예: 우울증

• 소득수준이 우울증에 영향을 미치는지 알기 위해 300명을 무작위 추출하여 다음의 결과를 얻었다. 소득수준이 우울증과 관련이 있다고 할 수 있는지를 유의수준 0.05에서 검정하라.

소득수준	우울증상		
	있다	없다	
저소득	33	67	
중간층	28	122	
고소득	5	45	

가설

 H_0 : 우울증과 소득수준은 독립이다.

 H_1 : 우울증과 소득수준은 독립적이지 않다.

검정통계량

$$\chi^2 = \sum_{i} \frac{\left(\text{관찰빈도}_{ij} - \text{기대빈도}_{ij}\right)^2}{\text{기대빈도}_{ij}}$$

자유도= (k-1)*(m-1)

```
> chisq.test(matrix(c(33,28,5,67,122,45),3,2))
Pearson's Chi-squared test

data: matrix(c(33, 28, 5, 67, 122, 45), 3, 2)
X-squared = 12.2183, df = 2, p-value = 0.002222
```

- 두 개의 범주형 자료
- 각 변수 당 2개 이상의 카테고리 존재 (예, m개, k개)
- 총 m*k개의 cell

 예) 124명 (test group: 60, placebo:64)을 대상으로 병세가 호전되는지 (outcome=1)그렇지 않은지 (outcome=0) 조사하여 아래와 같은 결과를 얻었다.

	оитс		
Treat	0	1	합
Placebo	48	16	64
Test	20	40	60

- 각 셀에 해당하는 자료를 알고 있을 때
 - matrix(벡터, ncol=열의 개수)

```
> matrix(c(48,20,16,40),ncol=2)
      [,1] [,2]
[1,] 48 16
[2,] 20 40
```

- 각 셀에 해당하는 자료의 수가 두 변수의 카테고리를 나타내는 변수와 함께 열로 나타나 있을 때
 - xtabs(도수 ~ 가로+세로)

- 각 셀에 해당하는 자료의 수가 계산되어 있지 않고 모든 관찰치에 대해 두 변수의 값이 나열되어 있을 때
 - xtabs(~가로+세로)

Mosaic plot

- 막대폭=treatment의 빈도에 비례
- 막대길이=outcome의 빈도에 비례

- > tab=xtabs(~treat+outcome,data=respire2)
- >
- > mosaicplot(tab)

변수유형에 따른 분석기법

		설명변수 (분석축)			
		한 그룹과 특정 숫자와의 비교	두 그룹의 비교	셋 이상 그룹 의 비교	양적변수 (연속 값)의 크기로 비 교
반응변수 (분석하고 싶은 것)	양적변수 (연속값 등)	한 집단의 평균 T-검정	독립표본 T-검정, 쌍체표본 T-검정	분산분석 (ANOVA)	회귀분석
	질적변수 (Yes/No)	한 집단의 비율 z-검정	두 집단의 비율 z-검정	분할표 카이제곱 검정	로지스틱 회귀 분석