THE RANK SPECTRAL SEQUENCE OF ALGEBRAIC K-THEORY

SUN FEI

ABSTRACT. Bruno Kahn has constructed a rank spectral sequence by using a purely categorical approach. This spectral sequence was derived by using a filtration of the category of torsion-free modules over integral domain by ranks and hence the name: rank spectral sequence. The E^1 terms of this spectral sequence coincide with E^2 terms of Quillen's spectral sequence used to prove the finite generation of K-groups of ring of integers.

In this talk, we will show how to calculate the d^1 -differential of the rank spectral sequence. We will put the differential in certain distinguished triangles of coefficients/functors over some categories, and make these functors explicit in terms of Tits building and Ash-Rudolph's modular symbols. To accomplish this, we shall use Quillen's categorical homotopy theory intensively and introduce the notion of extended (modular) symbols which is equivalent to Ash-Rudolph's via the suspension of Tits buildings.

Contents

1. Rank Spectral Sequence	2
1.1. Singular Chain Complexes	
1.2. Cellular Functors	2
1.3. Thomason's Theorem	3
1.4. Spectral Sequence and Exact Couples	3
2. Reduction using Grothendieck Constructions	2 3 3 5 5 7 7
2.1. Background	5
2.2. Pass to \mathcal{D} -chains	5
2.3. distinguished Triangles of Functors/Coefficients	7
2.4. Pass to $(\mathcal{D} - \mathcal{B})$ -chains	7
2.5. Replace T by T'	8
3. Tits Buildings, (Extended) Modular Symbols and the Rank Spectral Sequence in	
Algebraic K-Theory	9
3.1. Tits Buildings and Rank Spectral Sequence	9
3.2. Some Homotopy Properties	10
3.3. Extended Modular Symbols	11
4. Calculation of d^1 on Coefficents	13
4.1. Some Homology Properties	13
4.2. d^1 in Terms of Singular Homologies of Simplicial Complexes	15
5. The Formula for $d^1 _{E^1_{n>3.0}}$	25
5.1. The Induced Functor	25
5.2. The Formula for d^1	26
References	28

1. Rank Spectral Sequence

1.1. Singular Chain Complexes. We will study the singular homologies of categories and functors. For X a simplicial abelian group, we denote $[X] = C_*(X)$ the corresponding singular chain complex such that $C_n(X)$ is the free Abelian group generated by X_n and differentials are alternating sums of faces. If X is a simplicial set, we define $C_*(X) := [\mathbb{Z}X]$. Moreover, for a category \mathcal{C} , we denote by $C_*(\mathcal{C}) := [\mathbb{Z}N\mathcal{C}]$ its singular chain complex where N is the nerve functor.

Now, suppose that X is a bisimplicial set, then we denote by δX the corresponding diagonal simplicial set and define $C_*(X) := [\mathbb{Z}\delta X]$.

Definition 1. If $\mathbb{F}: \mathcal{D} \to \mathbf{sSet}$ is a functor taking value in the category of simplicial sets, then we define $N(\mathcal{D}, \mathbb{F})$ as a bisimplicial set with

$$N_{p,q}(\mathcal{D}, \mathbb{F}) := \coprod_{d_0 \to \cdots \to d_p} \mathbb{F}_q(d_0),$$

and $C_*(\mathcal{D}, \mathbb{F}) := [\mathbb{Z}\delta N(\mathcal{D}, \mathbb{F})].$

We notice that this construction in definition 1 makes $C_*(\mathcal{D}, \mathbb{F})$ functorial with respect to \mathbb{F} . We define $C_*(\mathcal{D}, \widetilde{\mathbb{F}})$ to be the homotopy fiber of $C_*(\mathcal{D}, \mathbb{F}) \to C_*(\mathcal{D}, \star)$ in the derived category of Abelian groups $\mathbf{D}(Ab)$ so that it gives rise to a distinguished triangle

$$C_*(\mathcal{D}, \widetilde{\mathbb{F}}) \to C_*(\mathcal{D}, \mathbb{F}) \to C_*(\mathcal{D}) \to C_*(\mathcal{D}, \widetilde{\mathbb{F}})[1].$$

1.2. Cellular Functors.

Definition 2. Let $T: \mathcal{C} \to \mathcal{D}$ be a functor, we call T a cellular functor if it satisfies

- (1): T is fully faithful;
- (2): $Hom_{\mathcal{D}}(d, T(c)) = \emptyset$ for any $c \in \mathcal{C}$ and $d \in \mathcal{D} T(\mathcal{C})$

Moreover, we say that a cellular functor $T: \mathcal{C} \to \mathcal{D}$ is connected if in addition it satisfies

(3): for any $d \in \mathcal{D}$ we have $T \downarrow d \neq \emptyset$.

By abuse of notation, if $T: \mathcal{C} \to \mathcal{D}$ is cellular, we will write $\mathcal{D} - \mathcal{C}$ instead of $\mathcal{D} - T(\mathcal{C})$.

Definition 3 (Grothendieck Construction, [4], VI, Sections 8, 9). Let $\mathbb{F}: \mathcal{D} \to \mathbf{Cat}$ be a functor. The Grothendieck construction $\mathcal{D} \cap \mathbb{F}$ is defined as a category such that:

- (1) Objects in $\mathcal{D} \int \mathbb{F}$ are pairs (d, x) such that $d \in \mathcal{D}$ and $x \in \mathbb{F}(d)$;
- (2) For two objects (d, x), $(d', x') \in \mathcal{D} \int \mathbb{F}$, a morphism between them is given by the pair $d \xrightarrow{f} d'$ and $\mathbb{F}(f)(x) \xrightarrow{g} x'$:
- (3) For three objects (d, x), (d', x') and (d'', x''), the composition of morphisms is given by $d \xrightarrow{f} d' \xrightarrow{f'} d''$ and $\mathbb{F}(f' \circ f)(x) \xrightarrow{\mathbb{F}(f')(g)} \mathbb{F}(f')(x') \xrightarrow{g'} x''$.

Let $T:\mathcal{C}\to\mathcal{D}$ be a functor between two small categories and $\mathbb{F}_T:\mathcal{D}\to\mathbf{Cat}$ be a functor sending $d\in\mathcal{D}$ to $T\downarrow d$. The Grothendieck construction $\mathcal{D}\int\mathbb{F}_T$ has objects (d,x) such that $d\in\mathcal{D},\ x\in\mathbb{F}_T(d)=T\downarrow d$. A morphism $(d,x)\to(d',x')\in\mathcal{D}\int\mathbb{F}_T$ is given by a morphism

 $f: d \to d' \in \mathcal{D}$ and $g: \mathbb{F}_T(f)(x) \to x' \in \mathbb{F}_T(d') = T \downarrow d'$, i.e, a commutative diagram:

$$T(c) \longrightarrow T(c')$$

$$\downarrow x \qquad \qquad \downarrow x'$$

$$d \longrightarrow d'$$

Proposition 4 ([6], proposition 2.3.5). If $T: \mathcal{C} \to \mathcal{D}$ is cellular, the naturally commutative diagram of categories

$$(\mathcal{D} - \mathcal{C}) \int \mathbb{F}_T \xrightarrow{p} \mathcal{C}$$

$$\varepsilon \downarrow \qquad \qquad \downarrow_T$$

$$\mathcal{D} - \mathcal{C} \xrightarrow{} \mathcal{D}$$

is homotopy cocartesian (i.e, it is so after applying the nerve functor). Here, ι is inclusion, p is the projection to C and ε is the augmentation induced by $\mathbb{F}_T \to \star$.

1.3. Thomason's Theorem.

Theorem 5 (Thomason's Theorem, [21], theorem 1-2). Let C be a category and $\mathbb{F}: C \to \mathbf{Cat}$ be a functor. There is a weak equivalence:

$$\delta N(\mathcal{C}, \mathbb{F}) \xrightarrow{\sim} N\left(\mathcal{C} \int \mathbb{F}\right),$$

sending

$$(c_0 \xrightarrow{f_1} \cdots \xrightarrow{f_n} c_n, x_0 \xrightarrow{g_1} \cdots \xrightarrow{g_n} x_n); c_i \in \mathcal{C}, x_i \in \mathbb{F}(c_0)$$

to

$$\left((c_0, y_0 = x_0) \xrightarrow{h_1} \cdots \xrightarrow{h_n} (c_n, y_n) \right)$$

with $y_i = \mathbb{F}(f_i \cdots f_1) x_i \in \mathbb{F}(c_i)$ for $0 < i \le n$ and $h_i = (f_i, \mathbb{F}(f_i \cdots f_1) g_i)$.

According to Thomason's theorem, for any small category \mathcal{D} and any functor $\mathbb{F}: \mathcal{D} \to \mathbf{Cat}$, the complex $C_*(\mathcal{D}, \mathbb{F})$ is quasi-isomorphic to the complex $C_*(\mathcal{D} \int \mathbb{F})$, so we have:

Theorem 6 ([6], theorem 2.3.6). If $T: \mathcal{C} \to \mathcal{D}$ is a cellular functor, there exists an distinguished triangle in the derived category of abelian groups:

$$C_*(\mathcal{D} - \mathcal{C}, \widetilde{\mathbb{F}_T}) \xrightarrow{\widetilde{p}_*} C_*(\mathcal{C}) \xrightarrow{T_*} C_*(\mathcal{D}) \xrightarrow{\partial_T} C_*(\mathcal{D} - \mathcal{C}, \widetilde{\mathbb{F}_T})[1].$$

This theorem gives us a description of the homotopy mapping cone of T_* as $C_*(\mathcal{D}-\mathcal{C},\widetilde{\mathbb{F}_T})[1]$.

1.4. Spectral Sequence and Exact Couples. Recall that (c.f, [6, Section 2]) the rank spectral sequence is constructed under the background of any triangulated category \mathcal{T} with countable direct sums as follows. We take

$$C_0 \xrightarrow{i_1} \cdots \xrightarrow{i_n} C_n \xrightarrow{i_{n+1}} \cdots$$

being a sequence of objects in \mathcal{T} and C as a homotopy colimit of the C_n . For each n, we choose a mapping cone $C_{n/n-1}$ of i_n so that there is an distinguished triangle

$$C_{n-1} \xrightarrow{i_n} C_n \xrightarrow{j_n} C_{n/n-1} \xrightarrow{k_n} C_{n-1}[1].$$

Let $H_*: \mathcal{T} \to \mathcal{A}$ be a (co)homological functor taking values in an abelian category such that H_* commutes with countable direct sums. Then the exact couple

$$D_{p,q} := H_{p+q}(C_p), \qquad E_{p,q} := H_{p+q}(C_{p/p-1})$$

gives rise to a spectral sequence $E_{p,q}=E^1_{p,q}\Rightarrow H_{p+q}(C)$ where C is the homotopy colimit of the C_n . Let $C_{p/p-2}$ be a cone of $i_pi_{p-1}:C_{p-2}\to C_p$, then we get a commutative diagram of distinguished triangles

$$(1.1) C_{p-2} = C_{p-2}$$

$$\downarrow i_{p}i_{p-1} \downarrow \qquad \qquad \downarrow i_{p}i_{p-1} \downarrow \qquad \qquad \downarrow c_{p-1} - c_{p} \rightarrow C_{p/p-1} - c_{p} \rightarrow C_{p-1}[1]$$

$$\downarrow j_{p-1} \downarrow \qquad \qquad \downarrow j_{p-1}[1]$$

$$\downarrow C_{p-1/p-2} \xrightarrow{\overline{i_{p}}} C_{p/p-2} \xrightarrow{\overline{j_{p}}} C_{p/p-1} \xrightarrow{\overline{k_{p}}} C_{p-1/p-2}[1]$$

The differential $d^1_{p,q}$ is the boundary map $\bar{k}_{p,n}$ with n=p+q of the long distinguished sequence

$$H_{p+q}(C_{p-1/p-2}) \xrightarrow{\bar{i}_{p,n}} H_{p+q}(C_{p/p-2}) \xrightarrow{\bar{j}_{p,n}} H_{p+q}(C_{p/p-1}) \xrightarrow{\bar{k}_{p,n}} H_{p+q-1}(C_{p-1/p-2})$$

associated with the bottom distinguished triangle of the above diagram. We notice that d^1 is unique up to isomorphisms between the chosen mapping cones $C_{n/n-1}$, i.e, if we choose another mapping cone $C'_{n/n-1}$ and an isomorphism $C'_{n/n-1} \to C_{n/n-1}$ fitting into the following commutative diagram of distinguished triangles

then the different choice of mapping cone gives us another map $\bar{k}'_p:C'_{p/p-1}\to C'_{p-1/p-2}[1]$ and a commutative diagram determined by this isomorphism of mapping cones. It follows that up to the isomorphisms of mapping cones, d^1 is unique.

Our main target of this talk is to give a formula of the d^1 -differential of the rank spectral sequence. By proposition 4, for a cellular functor $T: \mathcal{C} \to \mathcal{D}$, we choose the mapping cone of $C_*(\mathcal{C}) \to C_*(\mathcal{D})$ as $C_*(\mathcal{D} - \mathcal{C}, \widetilde{\mathbb{F}_T})[1]$. Consider two composable cellular functors $\mathcal{B} \xrightarrow{U} \mathcal{C} \xrightarrow{T} \mathcal{D}$. It is easy to show that $T \circ U$ is still cellular. Replacing the abstract objects by chain complexes in diagram (1.1), we get the following commutative diagram:

We see that d^1 is the composition of

$$C_*(\mathcal{D} - \mathcal{C}, \widetilde{\mathbb{F}_T}) \to C_*(\mathcal{C}) \to C_*(\mathcal{C} - \mathcal{B}, \widetilde{\mathbb{F}_U})[1].$$

In the following sections, we will put this composition into suitable distinguished triangles so that it can be explicitly calculated.

2. Reduction using Grothendieck Constructions

Suppose that $\mathbb{F}: \mathcal{D} \to \mathbf{Cat}$ is a functor and $\mathbb{G}: \mathcal{D} \int \mathbb{F} \to \mathbf{Cat}$ is another functor. We can prove that (c.f, [20, Chapter 2])

$$(\mathcal{D}\int\mathbb{F})\int\mathbb{G}=\mathcal{D}\int(\mathbb{F}\int\mathbb{G}).$$

So we can write the above double Grothendieck constructions as $\mathcal{D} \int \mathbb{F} \int \mathbb{G}$.

2.1. Background. We consider the composable connected cellular functors

$$\mathcal{B} \xrightarrow{U} \mathcal{C} \xrightarrow{T} \mathcal{D}.$$

Recall that by the construction of the rank spectral sequence we have short exact sequences

$$(2.2) 0 \to C_*(\mathcal{B}) \xrightarrow{U} C_*(\mathcal{C}) \to C_*(\mathcal{C})/C_*(\mathcal{B}) \to 0$$

$$(2.3) 0 \to C_*(\mathcal{C}) \xrightarrow{T} C_*(\mathcal{D}) \to C_*(\mathcal{D})/C_*(\mathcal{C}) \to 0,$$

which induce morphisms in the derived category of abelian groups Ab:

$$(2.4) C_*(\mathcal{D})/C_*(\mathcal{C}) \to C_*(\mathcal{C})[1] \to C_*(\mathcal{C})/C_*(\mathcal{B})[1].$$

By theorem 6, we choose the following mapping cones

$$C_*(\mathcal{D})/C_*(\mathcal{C}) = C_*(\mathcal{D} - \mathcal{C}, \widetilde{\mathbb{F}_T})[1], \qquad C_*(\mathcal{C})/C_*(\mathcal{B}) = C_*(\mathcal{C} - \mathcal{B}, \widetilde{\mathbb{F}_U})[1].$$

Together with diagram (1.2), we see that in order to calculate d^1 of the rank spectral sequence, we calculate the composition of (2.4).

In this section, we put (via quasi-isomorphisms) the composition of (2.4) into certain distinguished triangles that come from distinguished triangles of functors (coefficients) defined over different categories: firstly \mathcal{D} , then $\mathcal{D}-\mathcal{B}$. Notice that every short exact sequence is naturally a distinguished triangle, so we say that two short exact sequences are quasi-isomorphic if corresponding distinguished triangles are. In this case, we say that one short exact sequence can be replaced (up to quasi-isomorphism) by the other. It turns out that d^1 of rank spectral sequence can be calculated via the distinguished triangles of functors we constructed.

2.2. Pass to \mathcal{D} -chains. We define a functor

$$U_*: \mathcal{B} o \mathcal{D} \int \mathbb{F}_T; \qquad b \mapsto (b=b).$$

Then there exists a Grothendieck construction $\mathcal{D}\int\mathbb{F}_T\int\mathbb{F}_{U_*}$ whose objects can be written as $b\to c\to d$ with $b\in\mathcal{B}$ and $c\to d\in\mathcal{D}\int\mathbb{F}_T$. Notice that for a fixed $c\to d\in\mathbb{F}_T(d)$, the categories $\mathbb{F}_{U_*}(c\to d)$ and $\mathbb{F}_U(c)$ are canonically isomorphic.

Lemma 7. The categories $\mathcal{D} \int \mathbb{F}_T \int \mathbb{F}_{U_*}$ and $\mathcal{D} \int \mathbb{F}_{TU}$ are homotopy equivalent.

Proof. We define two functors

$$p: \mathcal{D} \int \mathbb{F}_T \int \mathbb{F}_{U_*} \to \mathcal{D} \int \mathbb{F}_{TU}; \qquad (b \to c \to d) \mapsto (b \to d)$$

and

$$s: \mathcal{D} \int \mathbb{F}_{TU} \to \mathcal{D} \int \mathbb{F}_T \int \mathbb{F}_{U_*}; \qquad (b \to d) \mapsto (b = b \to d)$$

Since s is left adjoint to p, they induce homotopy equivalences between two corresponding categories.

We notice that this lemma actually says that p and s make the functors $\mathbb{F}_T \int \mathbb{F}_{U_*}$ and \mathbb{F}_{TU} naturally homotopy equivalent over the category \mathcal{D} , i.e, after applying to \mathcal{D} the resulting categories are homotopy equivalent.

It is easy to see that the projection functor $\mathcal{D}\int\mathbb{F}_T\to\mathcal{C}$ (resp. $\mathcal{D}\int\mathbb{F}_{TU}\to\mathcal{B}$) admits a left adjoint $c\to[c=c]$ (resp. $b\to[b=b]$), so there exist a pair of homotopy equivalences between the categories $\mathcal{D}\int\mathbb{F}_T$ and \mathcal{C} (between $\mathcal{D}\int\mathbb{F}_{TU}$ and \mathcal{B}). Together with Thomason's theorem (theorem 5), we obtain canonical homotopy equivalences

(2.5)
$$N(\mathcal{D}, \mathbb{F}_T) \approx N\mathcal{C}, \qquad N(\mathcal{D}, \mathbb{F}_{TU}) \approx N\mathcal{B}.$$

Then, up to canonical homotopy equivalences, (2.1) becomes

(2.6)
$$\mathcal{D} \int \mathbb{F}_{TU} \to \mathcal{D} \int \mathbb{F}_T \to \mathcal{D},$$

and (2.3) can be replaced by (notice that T is connected cellular)

$$(2.7) 0 \to C_*(\mathcal{D}, \widetilde{\mathbb{F}_T}) \to C_*(\mathcal{D}, \mathbb{F}_T) \to C_*(\mathcal{D}) \to 0.$$

Definition 8 (Compare to [6], 2.2.2). Suppose that $U : \mathcal{B} \to \mathcal{C}$ is connected cellular. We define the relative reduced chain complex

$$C_*(\mathcal{D}, \mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}}) = Ker(C_*(\mathcal{D}, \mathbb{F}_T \int \mathbb{F}_{U_*}) \to C_*(\mathcal{D}, \mathbb{F}_T)).$$

Therefore, use lemma 7, we see that (2.2) and (2.4) can be replaced by

$$(2.8) 0 \to C_*(\mathcal{D}, \mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D}, \mathbb{F}_T \int \mathbb{F}_{U_*}) \to C_*(\mathcal{D}, \mathbb{F}_T) \to 0.$$

and

$$(2.9) C_*(\mathcal{D}, \widetilde{\mathbb{F}_T}) \to C_*(\mathcal{D}, \mathbb{F}_T) \to C_*(\mathcal{D}, \mathbb{F}_T / \widetilde{\mathbb{F}_{U_*}})[1] \xrightarrow{+1}$$

In particular, the above triangle is induced by the distinguished triangle of their coefficients:

$$(2.10) C_*(\widetilde{\mathbb{F}_T}) \to C_*(\mathbb{F}_T) \to C_*(\mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}})[1] \xrightarrow{+1}$$

2.3. distinguished Triangles of Functors/Coefficients. There exists a commutative diagram of short exact sequences

$$(2.11) 0 \longrightarrow C_{*}(\mathcal{D}, \mathbb{F}_{T} \int \widetilde{\mathbb{F}_{U_{*}}}) \longrightarrow C_{*}(\mathcal{D}, \mathbb{F}_{T} \int \mathbb{F}_{U_{*}}) \longrightarrow C_{*}(\mathcal{D}, \widetilde{\mathbb{F}_{T}}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

such that all sequences are induced by the short exact sequences of their coefficients. Thus, the composition of (2.9) fits into the distinguished triangle

$$C_*(\mathcal{D}, \mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D}, \mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D}, \widetilde{\mathbb{F}_T}) \xrightarrow{+1} C_*(\mathcal{D}, \mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}})[1]$$

and the composition of (2.10) fits into the distinguished triangle of coefficients

$$(2.12) C_*(\mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathbb{F}_T \int \mathbb{F}_{U_*}) \to C_*(\widetilde{\mathbb{F}_T}) \xrightarrow{+1} C_*(\mathbb{F}_T \int \widetilde{\mathbb{F}_{U_*}})[1].$$

This triangle is distinguished in the sense that it gives a term-wise distinguished triangle, i.e, after applying to any object $d \in \mathcal{D}$ the resulting triangle is distinguished. For simplicity, we will just say that this sequence is a distinguished triangle of coefficients or functors without mentioning which category it applies.

2.4. Pass to $(\mathcal{D} - \mathcal{B})$ -chains. There exists a commutative diagram of distinguished triangles

$$(2.13) C_{*}(\mathcal{D} - \mathcal{B}, \mathbb{F}_{T}) \xrightarrow{\widetilde{\mathbb{F}_{U_{*}}}} C_{*}(\mathcal{D} - \mathcal{B}, \mathbb{F}_{T}) \xrightarrow{F_{T}} C_{*}(\mathcal{D} - \mathcal{B}, \widetilde{\mathbb{F}_{T}}) \xrightarrow{+1} C_{*}(\mathcal{D}, \mathbb{F}_{T}) \xrightarrow{F_{T}} C_{*}(\mathcal{D}, \mathbb{F}_{T}) \xrightarrow{+1} C_{*}(\mathcal{D}, \mathbb{F}_{T}$$

where all vertical morphisms are quasi-isomorphisms (we use [6, Prop. 2.3.4] to the case $\phi: \mathbb{F} \Rightarrow *$ and $TU: \mathcal{B} \to \mathcal{D}$, where we replace \mathbb{F} by corresponding functors appearing in the above diagram). It follows that d^1 can be calculated by the top distinguished triangle of diagram (2.13) which is induced by the distinguished triangle of coefficients (2.12).

Remark 9. Use the proof of lemma 7, we can show that p and s give homotopy equivalences between $(\mathcal{D} - \mathcal{B}) \int \mathbb{F}_T \int \mathbb{F}_{U_*}$ and $(\mathcal{D} - \mathcal{B}) \int \mathbb{F}_{TU}$. So $\mathbb{F}_T \int \mathbb{F}_{U_*}$ and \mathbb{F}_{TU} are naturally homotopy equivalent over the category $\mathcal{D} - \mathcal{B}$.

We define $\mathcal{C}' := \mathcal{C} - \mathcal{B}$, $\mathcal{D}' := \mathcal{D} - \mathcal{B}$ and $T' = T|_{\mathcal{C}'} : \mathcal{C}' \to \mathcal{D}'$. Notice that if T is cellular then so does T'.

2.5. Replace T by T'. Suppose that $T: \mathcal{C} \to \mathcal{D}$ and $T': \mathcal{C}' \to \mathcal{D}'$ are connected cellular. We first notice that for any $d \in \mathcal{D}'$ there exists a functor

$$\mathbb{F}_{U_*}|_{\mathbb{F}_{T'}(d)}:\mathbb{F}_{T'}(d)\to\mathbf{Cat}$$

so that we have a Grothendieck construction $\mathbb{F}_{T'}(d) \int \mathbb{F}_{U_*}$ whose objects are $b \to c \to d$ with $b \in \mathcal{B}$ and $c \in \mathcal{C} - \mathcal{B}$.

Let $d \in \mathcal{D}'$. The inclusion functor $i : \mathbb{F}_{TU}(d) \hookrightarrow \mathbb{F}_{T}(d)$ is connected cellular and

$$\mathbb{F}_T(d) - \mathbb{F}_{TU}(d) = \mathbb{F}_{T'}(d).$$

Applying [6, Proposition 2.3.4] to the cellular functor i and the natural transformation $\mathbb{F}_{U_*} \Rightarrow \star$ and use Thomason's formula, we can construct a homotopy cocartesian diagram

$$(2.14) \qquad \qquad \mathbb{F}_{T'}(d) \int \mathbb{F}_{U_*} \longrightarrow \mathbb{F}_{T}(d) \int \mathbb{F}_{U_*}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_{T'}(d) \longrightarrow \mathbb{F}_{T}(d)$$

which gives a canonical quasi-isomorphism

$$(2.15) C_*(\mathbb{F}_{T'}(d) \int \widetilde{\mathbb{F}_{U_*}}) \xrightarrow{\sim} C_*(\mathbb{F}_T(d) \int \widetilde{\mathbb{F}_{U_*}}), \quad \forall d \in \mathcal{D}'.$$

Combined with the top distinguished triangle of diagram (2.13), we obtain an distinguished triangle

$$(2.16) C_*(\mathcal{D} - \mathcal{B}, \mathbb{F}_{T'} / \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D} - \mathcal{B}, \mathbb{F}_T / \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D} - \mathcal{B}, \widetilde{\mathbb{F}_T}) \xrightarrow{+1}$$

which is induced by the distinguished triangle of coefficients/functors

$$(2.17) C_*(\mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathbb{F}_T \int \mathbb{F}_{U_*}) \to C_*(\widetilde{\mathbb{F}_T}) \xrightarrow{+1} C_*(\mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}})[1].$$

Moreover, according to remark 9, (2.16) is isomorphic to the distinguished triangle

$$(2.18) C_*(\mathcal{D} - \mathcal{B}, \mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\mathcal{D} - \mathcal{B}, \widetilde{\mathbb{F}_{TU}}) \to C_*(\mathcal{D} - \mathcal{B}, \widetilde{\mathbb{F}_T}) \xrightarrow{+1}$$

which is induced by the distinguished triangle of coefficients/functors

$$(2.19) C_*(\mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}}) \to C_*(\widetilde{\mathbb{F}_{TU}}) \to C_*(\widetilde{\mathbb{F}_T}) \xrightarrow{+1} C_*(\mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}})[1].$$

We consider Quillen's Q-construction: let A be an integral Noetherian domain and $\mathcal{D}=Q_n$ be the full sub-category of $Q^{\mathrm{tf}}(A)$ consisting of torsion-free modules of rank smaller or equal to n. Similarly, we define $\mathcal{B}=Q_{n-2}$ and $\mathcal{C}=Q_{n-1}$. Let $T':\mathcal{C}-\mathcal{B}\hookrightarrow\mathcal{D}-\mathcal{B}$ be the inclusion functor. We notice that for any $d\in\mathcal{D}-\mathcal{C}$ the category $\mathbb{F}_{T'}(d)$ has only objects the admissible monomorphisms $c\rightarrowtail d$ and admissible epimorphisms $d\twoheadrightarrow c$, hence it is discrete. On the other hand, if $d\in\mathcal{C}-\mathcal{B}$ then $\mathbb{F}_{T'}(d)$ is contractible since this category has a terminal object d=d. In particular, applying (2.19) to any $d\in\mathcal{D}-\mathcal{C}$, we get a distinguished triangle

(2.20)
$$\bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} C_*(\widetilde{\mathbb{F}_U}(c)) \to C_*(\widetilde{\mathbb{F}_{TU}}(d)) \to C_*(\widetilde{\mathbb{F}_T}(d))$$

$$\stackrel{+1}{\longrightarrow} \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} C_*(\widetilde{\mathbb{F}_U}(c))[1].$$

Therefore, d^1 on coefficients is given by

(2.21)
$$\widetilde{St}(d) \simeq H_{n-1}(\widetilde{\mathbb{F}_T}(d)) \to H_{n-2}(\mathbb{F}_{T'}(d)) \int \widetilde{\mathbb{F}_{U_*}}(c) dc$$

$$= \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} H_{n-2}(\widetilde{\mathbb{F}_{U_*}}(c \to d)) \simeq \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} \widetilde{St}(c).$$

- 3. Tits Buildings, (Extended) Modular Symbols and the Rank Spectral Sequence in Algebraic K-Theory
- 3.1. Tits Buildings and Rank Spectral Sequence. Suppose that A is an integral domain and $Q^{\mathrm{tf}}(A)$ be Quillen's Q-construction over the the category of finitely generated torsion-free modules. For an A-module M we define its rank as

$$rank(A) := dim(M \otimes_A K)$$

where K = Frac(A). Then we denote $Q_n^{\mathrm{tf}}(A)$ for $n \geq 0$ the full subcategory of $Q^{\mathrm{tf}}(A)$ of modules with rank less or equal to n. If d is a torsion-free Noetherian A-module, a submodule $c \subset d$ is said to be pure if d/c is torsion-free. According to [6, Prop. 4.2.4], there is a bijection between the poset of proper pure submodules of d and the poset of proper subspaces of $V := d \otimes K$. Let V be an n-dimensional vector space over a field K. According to [16], the Tits building T(V) is defined to be the simplicial complex whose p-simplices are

$$V_0 < \dots < V_p; \quad V_0 > 0, \ V_p < V.$$

We use Quillen's model of the suspension of the Tits building, $\Sigma T(V)$, which is a simplicial complex where a p-simplex is a flag of subspaces

$$W_0 < \cdots < W_p$$

with either $0 < W_0$ or $W_p < V$. This does give a model of suspension of T(V) for $\dim(V) > 1$, and when $\dim(V) = 1$, $\Sigma T(V)$ consists of two points, whereas $T(V) = \emptyset$. We denote by J(V) the ordered set of proper layers in V. This consists of pairs (W_0, W_1) of subspaces of V, with $W_0 \subset W_1$, excluding the pair (0, V), and where $(W_0, W_1) \leq (W_0', W_1')$ if $W_0' \subset W_0 \subset W_1 \subset W_1'$. J(V) has the homotopy type of the suspension of the Tits building, $\Sigma T(V)$.

Lemma 10. For any $d \in Q^{\mathrm{tf}}(A)$ of rank n, the functor $Q_{n-1}^{\mathrm{tf}}(A) \downarrow d \to J(d \otimes K) = J(V)$ sending

to $(ker(\phi) \otimes K, c' \otimes K)$ is an isomorphism of categories.

Proof. Since c' and $ker(\phi)$ are pure submodules of d, we see that this functor is fully faithful and bijective on objects.

The Solomon-Tits theorem ([16, Theorem 2]) says that T(V) has the homotopy type of a bouquet of (n-2)-spheres for $n \geq 2$. The Steinberg module St(V) will be defined as

$$St(V) := \begin{cases} H_{n-2}(T(V)) & ; & n \ge 2\\ \mathbb{Z} & ; & n = 1 \end{cases}$$

Definition 11. [[7], (1)] The reduced Steinberg module, $\widetilde{St}(V)$, is defined as

$$\widetilde{St}(V) := \left\{ \begin{array}{ccc} St(V) & ; & \dim(V) > 2 \\ Ker(St(V) \to \mathbb{Z}) & ; & \dim(V) = 2 \\ \mathbb{Z} & ; & \dim(V) = 1 \\ \mathbb{Z} & ; & \dim(V) = 0 \end{array} \right.$$

Let us write $Q_{n-1}:=Q_{n-1}^{\rm tf}$, $Q_n:=Q_n^{\rm tf}$ for short and denote $T_n:Q_{n-1}\hookrightarrow Q_n$ the inclusion functor (which is connected cellular by definition). By [6, Thm 2.3.6], we are able to describe the homotopy mapping cone of $C_*(Q_{n-1})\hookrightarrow C_*(Q_n)$ as $C_*(Q_n-Q_{n-1},\widetilde{\mathbb{F}_{T_n}})[1]$. If we denote $D_{p,q}^1=H_{p+q}(Q_p)$ and $E_{p,q}^1=H_{p+q-1}(Q_p,\widetilde{\mathbb{F}_{T_p}})$, we get an exact couple and hence a spectral sequence ([6, theorem 2.4.1]) converging to the homology groups of $BQ^{\rm tf}(A)$

$$E_{p,q}^{1} = H_{p+q-1}(Q_{p}(A) - Q_{p-1}(A), \widetilde{\mathbb{F}_{p}}) \Rightarrow H_{p+q}(BQ^{\mathrm{tf}}(A)).$$

This spectral sequence is called the rank spectral sequence. Moreover, since for any $d \in Q_n - Q_{n-1}$, $\mathbb{F}_{T_n}(d) = T_n \downarrow d \simeq J(V)$, the rank spectral sequence becomes

$$E_{n,i-n+1}^1 = H_i(Q_n - Q_{n-1}, \widetilde{\mathbb{F}_{T_n}}) \simeq \bigoplus_d H_{i-n+1}(Aut(d), \widetilde{St}(V)) \Rightarrow H_{i+1}(BQ^{\mathrm{tf}}(A))$$

where d runs over the isomorphism classes of torsion-free A-modules of rank n. We denote by QP(A) the Quillen's Q-construction over the category of finitely generated projective A-modules. By Quillen's resolution theorem, if A is moreover regular, the inclusion $Q^{\mathrm{tf}}(A) \hookrightarrow QP(A)$ is a weak equivalence. In this case, the rank spectral sequence converges to $H_*(BQP(A))$.

We notice that, in particular, if A is a Dedekind domain, then all projective modules are torsion-free and hence $Q^{\mathrm{tf}}(A) = QP(A)$ in this case. So our construction above generalizes Quillen's setup in [16, Section 3]. The idea above applies to the case of an integral scheme X and the Q-construction over the category of finitely generated coherent sheaves $Q^{\mathrm{coh}}(X)$ (resp. finitely generated torsion-free sheaves $Q^{\mathrm{tf}}(X)$). Please go to [6, Section 4] for more details.

3.2. Some Homotopy Properties. Let X be a set and E(X) be the simplicial complex of finite non-empty subsets of X. Let $\mathcal{P}_f(X) := \mathbf{Simpl}(E(X))$ be the ordered set of simplices of E(X). By [7, Lemma 1], $\mathcal{P}_f(X)$ and E(X) are contractible.

Let V be a finite dimensional vector space over a field K such that $\dim(V) \geq 1$. If $X \subset V$ is a non-empty finite subset, we denote $\langle X \rangle$ the subspace of V generated by X.

Definition 12.

(1) We define $E^*(V)$ to be the subsimplicial complex of E(V) such that

$$Vert(E^*(V)) = Vert(E(V))$$

and if $0 \in X \in \mathbf{Simpl}(E^*(V))$ then $\langle X \rangle < V$.

(2) $\mathcal{P}^*(V)$ is defined as the ordered set $\mathbf{Simpl}(E^*(V))$.

Definition 13. Let V be a finite dimensional vector space and $W_0, W_1 \subseteq V$ be two subspaces such that $W_0 \leq W_1$. We define

$$\mathcal{P}_f(W_0, W_1) = \{ X \in \mathcal{P}_f(W_1) \mid W_0 \le \langle X \rangle \}.$$

Lemma 14. $\mathcal{P}_f(W_0, W_1)$ is contractible.

Proof. Let $B \subseteq W_1$ be a non-empty finite subset such that $W_0 = \langle B \rangle$ and we define $\mathcal{P}_f(W_0, W_1)_B$ the sub ordered set of $\mathcal{P}_f(W_0, W_1)$ whose elements always contain B. Then the inclusion $\mathcal{P}_f(W_0, W_1)_B \hookrightarrow \mathcal{P}_f(W_0, W_1)$ has a left adjoint $X \mapsto X \cup \{B\}$. So $\mathcal{P}_f(W_0, W_1)_B$ and $\mathcal{P}_f(W_0, W_1)$ are homotopy equivalent. Since $\mathcal{P}_f(W_0, W_1)_B$ admits a smallest element B, it is contractible. It follows that $\mathcal{P}_f(W_0, W_1)$ is also contractible.

Lemma 15. The order preserving map

$$g' : \mathbf{Simpl}(B\mathcal{P}^*(V)) \to J(V); \qquad X_0 < \dots < X_p \mapsto (\langle X_0 \rangle, \langle X_p \rangle)$$

is a homotopy equivalence.

Proof. We will prove this lemma by using Quillen's theorem A. Let $(W, W') \in J(V)$ be a proper layer of V. We consider the category

$$g' \downarrow (W, W') = \{X_0 < \dots < X_p \in \mathbf{Simpl}(B\mathcal{P}^*(V)) \mid W \leq \langle X_0 \rangle \leq \langle X_p \rangle \leq W' \}.$$

If $W' \neq V$, we see that $g' \downarrow (W, W') = \mathbf{Simpl}(B\mathcal{P}_f(W, W'))$ which is contractible by lemma 14.

It leaves us to prove that $g' \downarrow (W, V)$ with $(W, V) \in J(V)$ is contractible. Let $\mathcal{P}^*(V)_W$ be the sub-ordered set of $\mathcal{P}^*(V)$ whose object X satisfies $W \leq \langle X \rangle$. We denote $0 \notin B \subset V$ a finite subset such that $W = \langle B \rangle$ and $\mathcal{P}^*(V)_B$ the sub-ordered set of $\mathcal{P}^*(V)$ whose objects contain B. The natural inclusion $\mathcal{P}^*(V)_B \hookrightarrow \mathcal{P}^*(V)_W$ admits a left adjoint $X \mapsto X \cup \{B\}$ and hence is a homotopy equivalence. Since $\mathcal{P}^*(V)_B$ has a minimal object B, it is contractible which implies that $\mathcal{P}^*(V)_W$ is also contractible. We conclude by noticing that $g' \downarrow (W, V) = \mathbf{Simpl}(B\mathcal{P}^*(V)_W)$ which is contractible.

Proposition 16 ([16], section 2). Suppose $n \geq 2$. There is a GL(V)-equivariant homotopy equivalence

$$g: \mathbf{Simpl}(\Sigma T(V)) \to J(V); \qquad (W_0 < \dots < W_p) \mapsto (W_0, W_p).$$

Corollary 17. The simplicial complexes $E^*(V)$ and $\Sigma T(V)$ are homotopy equivalent.

Proof. According to Proposition 16, there is a homotopy equivalence $\mathbf{Simpl}(\Sigma T(V)) \xrightarrow{\approx} J(V)$. Since $B \circ \mathbf{Simpl} = sd$, by lemma 15, we see that $\mathbf{Simpl}(sdE^*(V))$ and $\mathbf{Simpl}(\Sigma T(V))$ are homotopy equivalent. It follows that $sdE^*(V)$ and $\Sigma T(V)$ are homotopy equivalent (c.f, argument at the beginning of Chapter 4) and hence so do $E^*(V)$ and $\Sigma T(V)$.

By Proposition 16 and Corollary 17, we see that $E^*(V)$ and J(V) are homotopy equivalent.

3.3. Extended Modular Symbols. Let $n := \dim(V) \ge 2$. By definition, we have $C_*(E(V)) = C_*(E^*(V))$ for $* \le n-1$. Since E(V) is contractible ([7, Lemma 1]), the complex $C_*(E(V))$ is acyclic for * > 0. It follows that

$$Ker(C_{n-1}(E^*(V)) \xrightarrow{\partial} C_{n-2}(E^*(V))) = Im(C_n(E(V)) \xrightarrow{\partial} C_{n-1}(E(V)))$$

So we have

$$H_{n-1}(E^*(V)) = Im(C_n(E(V)) \xrightarrow{\partial} C_{n-1}(E(V))) / Im(C_n(E^*(V)) \xrightarrow{\partial} C_{n-1}(E^*(V)))$$

and the sequence

$$(3.1) C_{n+1}(E(V)) \xrightarrow{\partial} C_n(E(V)) / C_n(E^*(V)) \xrightarrow{\partial} H_{n-1}(E^*(V)) \to 0$$

is exact. By definition 12, the symbol $(g_0, \dots, g_i) \in C_i(E^*(V))$ if it satisfies one the following two conditions

- none of the vectors in $\{g_0, \cdots, g_i\}$ is zero.
- ullet the collection of vectors $\{g_0,\cdots,g_i\}$ contains zero and $\langle g_0,\cdots,g_i \rangle < V$.

Thus $C_n(E(V))/C_n(E^*(V))$ is a free Abelian group on symbols (g_0, \dots, g_n) such that one of the vectors is zero and the others are linearly independent. Moreover, if $g_0, \dots, g_{n+1} \in V$, then

$$0 = \partial \circ \partial(g_0, \dots, g_{n+1}) = \sum_{i=0}^{n+1} (-1)^i \partial(g_0, \dots, \widehat{g_i}, \dots, g_{n+1}) \in C_{n-1}(E(V)) = C_{n-1}(E^*(V)).$$

So, when $n=\dim(V)\geq 2$, $H_{n-1}(E^*(V))$ is generated by symbols $\partial(g_0,g_1,\cdots,g_n)$ and presented by the relations

- (a): if the collection of vectors $\{g_0, \dots, g_n\}$ does not contain zero or it contains zero but does not generate V, then $\partial(g_0, g_1, \dots, g_n) = 0$.
- (b): the alternating sum

$$\sum_{i=0}^{n+1} (-1)^i \partial(g_0, \cdots, \widehat{g_i}, \cdots, g_{n+1})$$

equals zero.

We will call the symbols $\partial(g_0, \dots, g_n)$ the extended (modular) symbols.

Proposition 18. The extended symbols $\partial(g_0, \dots, g_n)$ satisfy the relations

- (a0): Swapping two vectors in $\partial(g_0, g_1, \dots, g_n)$ changes the sign;
- (b0): $\partial(ag_0, g_1, \dots, g_n) = \partial(g_0, g_1, \dots, g_n)$ for any $a \in K \{0\}$.

Proposition 19. When $n = \dim(V) \geq 2$, The homology group $H_{n-1}(E^*(V))$ is generated by symbols $\partial(0, g_1, \dots, g_n)$ and presented by the relations

- (1) If g_1, \dots, g_n are linearly dependent then $\partial(0, g_1, \dots, g_n) = 0$.
- (2) The alternating sum

$$\sum_{i=1}^{n+1} (-1)^{i} \partial(0, g_1, \cdots, \widehat{g_i}, \cdots, g_{n+1})$$

equals zero.

Proof. We have seen that $H_{n-1}(E^*(V))$ is generated by symbols $\partial(g_0, g_1, \dots, g_n)$ and presented by relations (a) and (b) above. In particular, these symbols satisfy the properties listed in proposition 18. Since a non-zero symbol consists one zero vector, we can thus permute 0 to the beginning after a proper sign change. It follows that $H_{n-1}(E^*(V))$ is generated by symbols $\partial(0, g_1, \dots, g_n)$ which equal zero if g_1, \dots, g_n are linearly dependent, thus the relation 1.

We notice that, by sequence (3.1), if none of g_0, \dots, g_{n+1} is zero, then each summand in the alternating sum $\partial(g_0, \dots, g_n)$ is zero in $C_n(E(V))/C_n(E^*(V))$. If two of these vectors are zero, the symbol $C_n(E(V))/C_n(E^*(V)) \ni (g_0, \dots, \widehat{g_i}, \dots, g_{n+1})$ is zero if $g_i \neq 0$. Suppose $g_j = g_k = 0$, then by (a0) it is easy to see that

$$(-1)^{j}\partial(g_0,\cdots,\widehat{g_j},\cdots,g_n)+(-1)^{k}\partial(g_0,\cdots,\widehat{g_k},\cdots,g_n)=0.$$

If more than three vectors are zero, we see that these vectors do not generate V, so by (a), each symbol $(g_0, \dots, \widehat{g_i}, \dots, g_{n+1}) = 0$.

It leaves us to consider the case where exactly one of these vectors is zero. According to the formula given in (b), if $g_0 = 0$, we get the relation 2. If, say, $g_j = 0$ for some $0 < j \le n$, then we use (a0) of proposition 18 which implies that

$$\partial(g_0, \dots, \widehat{g_i}, \dots, g_n) = \begin{cases} (-1)^{j-1} \partial(0, g_0, \dots, \widehat{g_i}, \dots, \widehat{g_j}, \dots, g_n); & i < j \\ (-1)^j \partial(0, g_0, \dots, \widehat{g_j}, \dots, \widehat{g_i}, \dots, g_n); & i > j \end{cases}$$

Moreover, by (a), we have $\partial(g_0, \dots, \widehat{g_j}, \dots, g_n) = 0$. It follows from (b) that

$$\sum_{i=0}^{j-1} (-1)^{i+j-1} \partial(0, g_0, \dots, \widehat{g_i}, \dots, \widehat{g_j}, \dots, g_n) + \sum_{i=j+1}^{n} (-1)^{i+j} \partial(0, g_0, \dots, \widehat{g_j}, \dots, \widehat{g_i}, \dots, g_n)$$

equals zero which implies the relation 2.

Remark 20. In [20, Theorem 34], we show that the correspondence

$$\partial(0, g_1, \cdots, g_n) \leftrightarrow [g_1, \cdots, g_n]$$

gives a bijection between extended symbols and modular symbols in the sense of Ash-Rudolph in [1]. The reason we need extended symbols is that they form a set of generators of $\widetilde{H}_{n-1}(\Sigma T(V)) \simeq \widetilde{H}_{n-1}(\mathbb{F}_{T_n}(d))$ for $d \in \mathcal{D} - \mathcal{C}$ and $V = d \otimes K$ which was used in the explicit form of rank spectral sequence (c.f., Section 3.1).

4. Calculation of d^1 on Coefficents

In this section, we will put d^1 into distinguished triangles of singular homology groups of simplicial complexes so that we can use the extended symbols (and hence modular symbols) to calculate d^1 . According to lemma 10, the category $\mathbb{F}_T(d)$ is isomorphic to the ordered set J(V) of proper layers of V so that we use a proper layer of J(V) to denote an object in $\mathbb{F}_T(d)$ and vice versa.

4.1. Some Homology Properties.

Definition 21 ([18], p186). We say that a commutative diagram of simplicial complexes

$$\begin{array}{ccc} A & \xrightarrow{i} & B \\ \downarrow i' & & \downarrow j \\ C & \xrightarrow{j'} & D \end{array}$$

is a Mayer-Vietoris diagram if all the maps are inclusions and

$$D = B \cup C$$
, $A = B \cap C$.

According to [18, p186], a Mayer-Vietoris diagram induces a short exact sequence of (reduced) chain complexes

$$0 \to \widetilde{C}_*(A) \xrightarrow{(i_*, -i'_*)} \widetilde{C}_*(B) \oplus \widetilde{C}_*(C) \xrightarrow{(j_*, j'_*)} \widetilde{C}_*(D) \to 0$$

where \widetilde{C}_* denotes the reduced chain complex, i.e, $\widetilde{C}_* = Ker(C_* \to \mathbb{Z})$.

We define the simplicial complex

$$E^{< n}(V) := \bigcup_{W < V, \dim(W) = n - 1} E(W).$$

Let $E^{n-1}(V)$ be the subset of $\mathbf{Simpl}(E^*(V))$ with elements (0,X) such that $\dim(\langle X \rangle) = n-1$. We take $E^{**}(V) := E^*(V) - E^{n-1}(V)$ which is a sub-simplicial complex of $E^*(V)$. Thus, we have a Mayer-Vietoris diagram

$$(4.1) E^{

$$\downarrow \qquad \qquad \downarrow$$

$$E^{$$$$

which induces a short exact sequence

$$0 \to \widetilde{C}_*(E^{< n}(V) \cap E^{**}(V)) \to \widetilde{C}_*(E^{**}(V)) \oplus \widetilde{C}_*(E^{< n}(V))$$

$$\to \widetilde{C}_*(E^*(V)) \to 0.$$
(4.2)

Lemma 22. Suppose that (X,0) is a pointed simplicial complex (0 be the base point) which is covered by a family of pointed sub-simplicial complexes $\{X_i\}_{i\in I}$. If the intersection $\bigcap_{j\in J} X_j$ is contractible for all non-empty subsets $J\subseteq I$, then the natural map

$$\bigvee_{i \in I} X_i \to X$$

is a homology equivalence.

Proof. Let us define

$$X' := \bigvee_{i \in I} X_i$$

which is also covered by $X'_i = X_i$, $i \in I$ such that $X'_i \cap X'_{i'} = 0$ (the base point) for all $i \neq i' \in I$. So we have a map between E^1 -terms of Mayer-Vietoris spectral sequences

$$E_{p,q}^{'1} = H_p \left(\coprod_{|J|=q, j_i \neq j_k} X'_{j_0} \cap \dots \cap X'_{j_q} \right) = \bigoplus_{|J|=q, j_i \neq j_k} H_p \left(X'_{j_0} \cap \dots \cap X'_{j_q} \right)$$

$$\longrightarrow E_{p,q}^1 = H_p \left(\coprod_{|J|=q, j_i \neq j_k} X_{j_0} \cap \dots \cap X_{j_q} \right) = \bigoplus_{|J|=q, j_i \neq j_k} H_p \left(X_{j_0} \cap \dots \cap X_{j_q} \right).$$

 $D_{p,q} = H_p \left(\prod_{|J|=q, j_i \neq j_k} A_{j_0} + \dots + A_{j_q} \right) - \bigcup_{|J|=q, j_i \neq j_k} H_p \left(A_{j_0} + \dots + A_{j_q} \right).$ Here, |J| denotes the cardinality of the set J. If the indices in $J \subseteq I$ are not identical then intersections of both sides are contractible and if the indices in J are identical then the corresponding

sections of both sides are contractible and if the indices in J are identical then the corresponding map $H_p(\bigcap_J X'_{j_k}) \to H_p(\bigcap_J X_{j_k})$ is the identity map. So above map is an isomorphism. Since E^1 converges to $H_{p+q}(\bigcup_{i\in K} X_i)$ and E'^1 converges to $H_{p+q}(X')$, we get an homology isomorphism

$$H_n(X') \stackrel{\simeq}{\to} H_n\left(\bigcup_{i \in K} X_i\right).$$

Corollary 23. $E^{< n}(V) \cap E^{**}(V)$ (resp. $E^{< n}(V)$) is homology equivalent to $\bigvee E^{*}(W)$ (resp. $\bigvee E(W)$) where the wedge sum is indexed by the set

$$\{W \mid W < V, \dim(W) = n - 1\}.$$

Proof. In the category of simplicial complexes, we have

$$E^{< n}(V) \cap E^{**}(V) = \bigcup_{W < V, \dim(W) = n - 1} E^*(W), \qquad E^{< n}(V) = \bigcup_{W < V, \dim(W) = n - 1} E(W)$$

which are covered by $E^*(W)$ and E(W) respectively and have 0 as base points. Since the W's do not contain each other, any proper intersection satisfies

$$\bigcap_{i} E^{*}(W_{i}) = E\left(\bigcap_{i} W_{i}\right)$$

and is contractible ([7, Lemma 1]). It suffices to apply lemma 22.

This corollary implies that the distinguished triangle (4.2) can be replaced by (up to quasi-isomorphism)

(4.3)
$$\bigoplus_{\dim(W)=n-1} \widetilde{C}_*(E^*(W)) \to \widetilde{C}_*(E^{**}(V)) \to \widetilde{C}_*(E^*(V)) \xrightarrow{+1}$$

since $E^{< n}(V)$ has trivial reduced homology.

- 4.2. d^1 in Terms of Singular Homologies of Simplicial Complexes. Since $\mathbb{F}_{T'}(d)$ is discrete and consists of admissible monomorphisms and admissible epimorphisms, we shall distinguish these two cases and get the formula of d^1 on coefficients by combining them.
- 4.2.1. The Formula for d^1 Having Image in Direct Sums of Reduced Steinberg Modules Indexed by Admissible Monomorphisms.

Some Calculation of Singular Chains

Lemma 24. The simplicial map

$$AR': sdE^*(V) \to \Sigma T(V), \qquad X \mapsto \langle X \rangle.$$

is a homotopy equivalence.

Proof. According to lemma 15, the functor

$$g' : \mathbf{Simpl}(sdE^*(V)) = \mathbf{Simpl}(B\mathcal{P}^*(V)) \to J(V), \quad (X_0 < \dots < X_p) \mapsto (\langle X_0 \rangle, \langle X_p \rangle)$$

is a homotopy equivalence. So, combined with proposition 16, we get the following commutative diagram

$$\mathbf{Simpl}(sdE^*(V)) \xrightarrow{\mathbf{Simpl} \circ AR'} \mathbf{Simpl}(\Sigma T(V))$$

$$\approx \downarrow g$$

$$J(V)$$

П

It follows that $\operatorname{\mathbf{Simpl}} \circ AR'$ (and hence $B \circ \operatorname{\mathbf{Simpl}} \circ AR' = sd \circ AR'$) is a homotopy equivalence. According to ([7, (3)]), for any simplicial complex C there is a homotopy equivalence $\varepsilon_C : |sdC| \stackrel{\approx}{\to} |C|$ which is natural on C. So, |AR'| is a homotopy equivalence and so is AR'.

Moreover, for any sub simplicial complex $C \subseteq E^*(V)$, the map AR' sends sdC to a sub simplicial complex of $\Sigma T(V)$. In particular, $AR'(sdE^*(W)) = \Sigma T(W)$ for W a subspace of V. Applying the functor $AR' \circ sd$ to (4.1) we get a Mayer-Vietoris diagram

$$(4.4) \qquad \bigcup_{\dim(W)=n-1} \Sigma T(W) \longrightarrow AR'(sdE^{**}(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$AR'(sdE^{< n}(V)) \longrightarrow \Sigma T(V)$$

where $AR'(sdE^{< n}(V)) = \bigcup_W Ct(W)$ such that Ct(W) is the simplicial complex (c.f, [16, Section 2]) whose p-simplices are

$$W_0 < \cdots < W_p$$

with W_i subspaces (may equals 0 or W) for each $0 \le i \le p$. It follows that, by lemma 22, $AR'(sdE^{< n}(V))$ has trivial reduced homology since the Ct(W)'s and their intersections are contractible. Lemma 22 also gives us the following canonical quasi-isomorphisms

$$\bigoplus_{\dim(W)=n-1} \widetilde{C}_*(E^*(W)) \xrightarrow{\sim} \widetilde{C}_* \left(\bigcup_{\dim(W)=n-1} E^*(W) \right)$$

and

$$\bigoplus_{\dim(W)=n-1} \widetilde{C}_*(\Sigma T(W)) \xrightarrow{\sim} \widetilde{C}_* \left(\bigcup_{\dim(W)=n-1} \Sigma T(W) \right).$$

Thus, the functor $AR' \circ sd$ from diagram (4.1) to diagram (4.4) gives a morphism between distinguished triangles

$$\bigoplus_{\dim(W)=n-1} \widetilde{C}_{*}(E^{*}(W)) \longrightarrow \widetilde{C}_{*}(E^{**}(V)) \longrightarrow \widetilde{C}_{*}(E^{*}(V)) \stackrel{+1}{\longrightarrow}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

such that all vertical morphisms are quasi-isomorphisms.

 d^1 in Terms of the Boundary Map of Mayer-Vietoris Sequence Recall that there is a homotopy equivalence (c.f, [16, Prop. p10])

$$g: \mathbf{Simpl}(\Sigma T(V)) \to J(V), \qquad (W_0 < \dots < W_p) \mapsto (W_0, W_p).$$

We define $J_1 := g \circ \mathbf{Simpl}(AR'(sdE^{**}(V))) \subset J(V)$ which is an ordered set consisting of proper layers (X,Y) such that if $Y \neq V$ then $\dim(Y/X) \leq n-2$ and (L,V) with $\dim(L) = 1$. In particular, the above order preserving map g gives a homotopy equivalence between $\mathbf{Simpl}(AR'(sdE^{**}(V)))$

and J_1 . Therefore, we obtain a morphism of distinguished triangles

$$(4.6) \qquad \bigoplus_{\dim(W)=n-1} \widetilde{C}_{*}(\Sigma T(W)) \longrightarrow \widetilde{C}_{*}(AR'(sdE^{**}(V))) \longrightarrow \widetilde{C}_{*}(\Sigma T(V)) \xrightarrow{+1} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \bigoplus_{\dim(W)=n-1} \widetilde{C}_{*}(J(W)) \longrightarrow \widetilde{C}_{*}(J_{1}) \longrightarrow \widetilde{C}_{*}(J(V)) \xrightarrow{+1}$$

such that all vertical morphisms are induced by the functor $g \circ \mathbf{Simpl}$ and hence are quasi-isomorphisms.

For any $d \in \mathcal{D} - \mathcal{C}$ such that $V = d \otimes K$, the inclusion functor $i' : \mathbb{F}_{TU}(d) \hookrightarrow J_1$ is connected cellular which gives rise to a homotopy cocartesian diagram

$$(J_1 - \mathbb{F}_{TU}(d)) \int \mathbb{F}_{i'} \longrightarrow \mathbb{F}_{TU}(d)$$

$$\downarrow \qquad \qquad \downarrow i'$$

$$J_1 - \mathbb{F}_{TU}(d) \longrightarrow J_1$$

Since $\mathbb{F}_{TU}(d)\subset J(V)$ consists of proper layers (X,Y) such that $\dim(Y/X)\leq n-2$, by our description of J_1 , we see that $J_1-\mathbb{F}_{TU}(d)$ is a set (i.e, discrete category) consisting of proper layers (L,V) with $\dim(L)=1$. Since $(L,V)\int\mathbb{F}_{i'}\simeq\mathbb{F}_{U_*}(L,V)$, the homotopy cocartesian diagram above gives us a distinguished triangle

$$(4.7) \qquad \bigoplus_{d \to c} C_*(\widetilde{\mathbb{F}_U}(c)) \to C_*(\widetilde{\mathbb{F}_{TU}}(d)) \to \widetilde{C}_*(J_1) \xrightarrow{+1}$$

Moreover, the lower triangle of (4.6) fits into the commutative diagram of distinguished triangles

$$(4.8) \qquad \bigoplus_{d \to c \in \mathbb{F}_{T'}(d)} C_{*}(\widetilde{\mathbb{F}_{U}}(c)) \stackrel{=}{\longrightarrow} \bigoplus_{d \to c} C_{*}(\widetilde{\mathbb{F}_{U}}(c))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} C_{*}(\widetilde{\mathbb{F}_{U}}(c)) \longrightarrow C_{*}(\widetilde{\mathbb{F}_{TU}}(d)) \longrightarrow C_{*}(\widetilde{\mathbb{F}_{T}}(d)) \stackrel{d^{1}}{\longrightarrow}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow =$$

$$\bigoplus_{\dim(W)=n-1} \widetilde{C}_{*}(J(W)) \longrightarrow \widetilde{C}_{*}(J_{1}) \longrightarrow \widetilde{C}_{*}(J(V)) \stackrel{d^{1}}{\longrightarrow}$$

where the left vertical sequence is split short exact, the middle vertical distinguished triangle is the triangle (4.7) and the middle horizontal one is the triangle (2.20). Hence, there exists a commutative diagram

$$H_{n-1}(\widetilde{\mathbb{F}_T}(d)) \xrightarrow{d^1} \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} H_{n-2}(\widetilde{\mathbb{F}_U}(c))$$

$$\downarrow = \qquad \qquad \downarrow$$

$$\widetilde{H}_{n-1}(J(V)) \xrightarrow{+1} \bigoplus_{\dim(W)=n-1} \widetilde{H}_{n-2}(J(W))$$

The lower map of the above diagram is calculated as the boundary map of the lower triangle of diagram (4.8) which gives part of d^1 . We will give its formula in this subsection.

The Formula

Together with (4.5) and (4.6), up to explicit quasi-isomorphisms, we are able to calculate one part of d^1 on coefficients through the boundary map of (4.3) and hence of (4.2) which fits into a Mayer-Vietoris sequence after applying the functor $H_*(-)$. More precisely, we take $[a] \in \widetilde{Z}_{n-1}(E^*(V))$ and lift it to $[a] = [a_1] + [a_2] \in \widetilde{C}_{n-1}(E^{< n}(V)) \oplus \widetilde{C}_{n-1}(E^{**}(V))$. Then we apply the differential map to $[a_2]$ to get $\partial([a_2]) = -\partial([a_1])$. The boundary map is then given by $[a] \mapsto -\partial([a_1])$.

We write $\widetilde{H}_{n-1}(E^*(V)) = \widetilde{St}(d)$ and $\widetilde{H}_{n-2}(E^*(W)) = \widetilde{St}(c)$ for $d \in \mathcal{D} - \mathcal{C}$ of rank n with $V = d \otimes K$ and $c \subset d$ a sub-module of rank n-1 with $W = c \otimes K$.

Proposition 25. The boundary map of (4.2) is given by

$$\widetilde{St}(d) \to \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} \widetilde{St}(c), \qquad \partial(0, g_1, \cdots, g_n) \mapsto -\sum_{i=1}^n (-1)^i((0, W_i), \partial(0, g_1, \cdots, \widehat{g_i}, \cdots, g_n))$$

where $d \in \mathcal{D} - \mathcal{C}$, $W_i := \langle g_1, \dots, \widehat{g_i}, \dots, g_n \rangle$ for $1 \leq i \leq n$ and $(0, W_i)$ stands for the index of the summand.

Proof. We will use extended symbols. Consider

$$[a] := \partial(0, g_1, \dots, g_n) = \sum_{i=1}^{n} (-1)^i (0, g_1, \dots, \widehat{g_i}, \dots, g_n) + (g_1, \dots, g_n) \in \widetilde{Z}_{n-1}(E^*(V))$$

such that

$$(0, g_1, \dots, \widehat{g_i}, \dots, g_n) \in C_{n-1}(E(W_i)), \quad (g_1, \dots, g_n) \in C_{n-1}(E^{**}(V)).$$

It follows that we can lift [a] to

$$[a'] = [a_1] + [a_2] = \sum_{i=1}^{n} (-1)^i (0, g_1, \dots, \widehat{g_i}, \dots, g_n) + (g_1, \dots, g_n) \in C_*(E^{< n}(V)) \oplus C_*(E^{**}(V))$$

where $[a_1] = \sum (-1)^i (0, g_1, \dots, \widehat{g_i}, \dots, g_n) \in C_{n-1}(E^{< n}(V))$ and $[a_2] = (g_1, \dots, g_n) \in C_{n-1}(E^{**}(V))$. Apply ∂ to $[a_2]$, we have

$$\partial[a_2] = -\partial[a_1] = -\sum_{i=1}^n (-1)^i \partial(0, g_1, \cdots, \widehat{g_i}, \cdots, g_n).$$

So we get the formula we are looking for

$$\partial(0, g_1, \cdots, g_n) \longmapsto -\sum_{i=1}^n (-1)^i((0, W_i), \partial(0, g_1, \cdots, \widehat{g_i}, \cdots, g_n)).$$

4.2.2. The Formula for d^1 Having Image in Direct Sums of Reduced Steinberg Modules Indexed by Admissible Epimorphisms. In this section, we will calculate the other part of d^1 than proposition 25.

Some distinguished Triangles

Suppose $\dim(V) \geq 3$. We define J_2 as the sub-ordered set of J(V) obtained by removing proper layers (L,V) with $\dim(L)=1$. Thus, $J(V)-J_2=\{(L,V)\mid \dim(L)=1\}$ and the inclusion $i'':J_2\hookrightarrow J(V)$ is connected cellular. We have the following homotopy cocartesian diagram

$$\coprod_{(L,V)} J(L,V) \longrightarrow J_2$$

$$\downarrow \qquad \qquad \downarrow_{i''}$$

$$\coprod_{(L,V)} \star \longrightarrow J(V)$$

where $J(L,V)=i''\downarrow (L,V)$ denotes the ordered set of proper layers $\{(W,W')\mid (W,W')<(L,V)\}$. This diagram induces a distinguished triangle

$$\bigoplus_{\dim(L)=1} \widetilde{C}_*(J(L,V)) \to \widetilde{C}_*(J_2) \to \widetilde{C}_*(J(V)) \xrightarrow{+1}$$

We write X as the sub-simplicial complex of $B\mathcal{P}^*(V)=sdE^*(V)$ obtained by deleting the simplices

$$\{K_0 < \dots < K_p \mid \dim(\langle K_0 \rangle) = 1, \ \langle K_p \rangle = V\}.$$

Lemma 26. The order preserving map

$$g' : \mathbf{Simpl}(X) \to J_2, \qquad (K_0 < \dots < K_p) \mapsto (\langle K_0 \rangle, \langle K_p \rangle)$$

is a homotopy equivalence.

Proof. It suffices to restrict g' of lemma 15 to $\mathbf{Simpl}(X)$.

Suppose $\dim(L)=1$. Let $B\mathcal{P}(V-\{0\})_L$ be the sub-simplicial complex of $B\mathcal{P}(V-\{0\})=sdE(V-\{0\})$ whose vertices K satisfy $L\leq \langle K\rangle$ and we define X_L as the sub-simplicial complex of $B\mathcal{P}(V-\{0\})_L$ obtained by deleting the set of simplices

$$\{K_0 < \dots < K_p \mid \langle K_0 \rangle = L, \ \langle K_p \rangle = V\}.$$

For two subspaces $W \subseteq W'$ of V, we denote

$$\mathcal{P}'_f(W, W') = \{ K \in \mathcal{P}_f(W' - \{0\}) \mid W \le \langle K \rangle \}.$$

Lemma 27.

- (1) The ordered set $\mathcal{P}'_f(W, W')$ is contractible.
- (2) The functor g' restricted on X_L induces a homotopy equivalence

$$g': \mathbf{Simpl}(X_L) \to J(L, V).$$

Proof.

- (1) Let $A \subset W' \{0\}$ be a finite subset such that $\langle A \rangle = W$ and $\mathcal{P}'_f(W, W')_A$ be the sub-simplicial complex of $\mathcal{P}'_f(W, W')$ whose elements contain A. The natural inclusion $\mathcal{P}'_f(W, W')_A \hookrightarrow \mathcal{P}_f(W, W')$ admits a left adjoint $B \mapsto B \cup A$, so the two ordered sets are homotopy equivalent. Since $\mathcal{P}'_f(W, W')_A$ has a minimal element A, it is contractible. It follows that $\mathcal{P}'_f(W, W')$ is contractible.
- (2) For any proper layer (W, W') < (L, V), we consider the comma category

$$g' \downarrow (W, W') =$$

$$\{K_0 \le \dots \le K_p \in \mathbf{Simpl}(B\mathcal{P}_f(V - \{0\})) \mid W \le \langle K_0 \rangle \le \langle K_p \rangle \le W' - \{0\}\}$$

=
$$\mathbf{Simpl}(B\mathcal{P}'_f(W, W')).$$

We conclude by 1. and Quillen's theorem A.

Corollary 28. The natural chain map

$$\bigoplus_{\dim(L)=1} \widetilde{C}_* (X_L) \to \widetilde{C}_* \left(\bigcup_{\dim(L)=1} X_L \right)$$

is a quasi-isomorphism.

Proof. By the proof of the previous lemma, it is easy to show that $\bigcup_L sdX_L \to \bigcup_L BJ(L,V)$ is a homotopy equivalence by using Quillen's theorem A. Moreover, BJ(L,V) is a simplicial complex pointed at (V,V). If $L \neq L' \subset V$ we have $BJ(L,V) \cap BJ(L',V) = BJ'(L \oplus L',V)$ where $J'(L \oplus L',V)$ denotes the ordered set consisting of proper layers $(W,W') \leq (L \oplus L',V)$. Since $J'(L \oplus L',V)$ has a maximal element $(L \oplus L',V)$ it is contractible. Similarly, we can prove that $\bigcap_{L \in S} BJ(L,V)$ is also contractible for any subset S of $\{L \mid \dim(L) = 1\}$. Then, lemma 22 shows that $\bigvee_L BJ(L,V) \to \bigcup_L BJ(L,V)$ is a homology equivalence. Thus, we have a commutative diagram

$$\bigoplus_{L} \widetilde{C}_{*}(sdX_{L}) - - - - \ge \widetilde{C}_{*} \left(\bigcup_{L} sdX_{L} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{L} \widetilde{C}_{*}(BJ(L,V)) \longrightarrow \widetilde{C}_{*} \left(\bigcup_{L} BJ(L,V) \right)$$

where all solid morphisms are quasi-isomorphisms, it follows that the dotted one is so. Hence the map in question is a quasi-isomorphism.

Since the diagram

$$\bigcup_{\dim(L)=1} X_L \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$sdE(V - \{0\}) \longrightarrow sdE^*(V)$$

is Mayer-Vietoris, together with corollary 28, we get a short exact sequence fitting into the commutative diagram of distinguished triangles

$$\bigoplus_{\dim(L)=1} \widetilde{C}_{*}(X_{L}) \longrightarrow \widetilde{C}_{*}(X) \oplus \widetilde{C}_{*}(sdE(V - \{0\})) \longrightarrow \widetilde{C}_{*}(sdE^{*}(V))$$

$$\downarrow \qquad \qquad \downarrow (g' \circ \mathbf{Simpl}, 0) \qquad \qquad \downarrow \downarrow$$

$$\bigoplus_{\dim(L)=1} \widetilde{C}_{*}(J(L, V)) \longrightarrow \widetilde{C}_{*}(J_{2}) \longrightarrow \widetilde{C}_{*}(J(V))$$

$$(4.9) \qquad \qquad \longrightarrow \bigoplus_{L} \widetilde{C}_{*}(X_{L}) [1]$$

$$\downarrow \qquad \qquad \longrightarrow \bigoplus_{L} \widetilde{C}_{*}(J(L, V)) [1]$$

where all vertical morphisms are quasi-isomorphisms.

As mentioned at the beginning of this section, we identify $\mathbb{F}_{T'}(d)$ with J(V) and use a proper layer to denote an object of $\mathbb{F}_{T'}(d)$ and vice versa. Notice that J_2 consists of proper layers (W,W') with $\dim(W'/W) \leq n-2$ and (0,W) with $\dim(W)=n-1$. Thus $\mathbb{F}_{TU}(d) \hookrightarrow J_2$ is connected cellular and we have a homotopy cocartesian diagram

$$\coprod_{(0,W)} \mathbb{F}_{U}(W) \simeq \coprod_{(0,W)} \mathbb{F}_{U_{*}}(0,W) \longrightarrow \mathbb{F}_{TU}(d)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\coprod_{(0,W)} \star \longrightarrow J_{2}$$

which gives rise to a distinguished triangle

$$(4.10) \qquad \bigoplus_{c \mapsto d \in \mathbb{F}_{T'}(d)} C_*(\widetilde{\mathbb{F}_U}(c)) \to C_*(\widetilde{\mathbb{F}_{TU}}(d)) \to C_*(J_2) \xrightarrow{+1}$$

Moreover, the lower triangle of (4.9) fits into the commutative diagram of distinguished triangles

$$(4.11) \qquad \bigoplus_{c \mapsto d \in \mathbb{F}_{T'}(d)} C_{*}(\widetilde{\mathbb{F}_{U}}(c)) \stackrel{=}{\longrightarrow} \bigoplus_{c \mapsto d \in \mathbb{F}_{T'}(d)} C_{*}(\widetilde{\mathbb{F}_{U}}(c))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

where the left vertical sequence is split short exact, the middle vertical distinguished triangle is the triangle (4.10) and the middle horizontal one is the triangle (2.20).

d1 in Terms of the Boundary Map of Mayer-Vietoris Sequence

Our discussion above implies that we have a commutative diagram

$$H_{n-1}(\widetilde{\mathbb{F}_T}(d)) \xrightarrow{d^1} \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} H_{n-2}(\widetilde{\mathbb{F}_U}(c))$$

$$\downarrow = \qquad \qquad \downarrow$$

$$ai\widetilde{H}_{n-1}(J(V)) \xrightarrow{+1} \bigoplus_{\dim(L)=1} \widetilde{H}_{n-2}(J(L,V))$$

The lower map of the above diagram is calculated as the boundary map of the lower triangle of diagram (4.11) which gives the other part of d^1 . We will give its formula in this subsection. So, together with (4.9), we see that the remaining part of d^1 can be calculated via the boundary map of the top distinguished triangle of (4.9).

Let $X_L':=sdE^*(V/L)$. The quotient map $V-\{0\}\to V/L$ induces a simplicial map $q_L:X_L\to X_L'$. By lemma 15, the functor

$$g': \mathbf{Simpl}(X'_L) \to J(V/L), \qquad (K'_0, \cdots, K'_p) \mapsto (\langle K'_0 \rangle, \langle K'_p \rangle)$$

is a homotopy equivalence. Moreover, the functor

$$J(L,V) \to J(V/L), \qquad (W,W') \mapsto (W/L = \overline{W}, W'/L = \overline{W'})$$

is an isomorphism. So there exists a commutative diagram

$$X_{L} \xrightarrow{q_{L}} X'_{L}$$

$$\approx \left| g' \qquad \qquad g' \right| \approx$$

$$J(L, V) \xrightarrow{\sim} J(V/L)$$

It follows that q_L is a homotopy equivalence. Moreover, in the following diagram

$$\bigoplus_{\dim(L)=1} \widetilde{C}_* \left(X_L \right) \longrightarrow \widetilde{C}_*(X) \oplus \widetilde{C}_*(sdE(V - \{0\})) \longrightarrow \widetilde{C}_*(sdE^*(V))$$

$$\downarrow \oplus_{q_{L*}} \qquad \qquad \qquad \downarrow = \qquad \qquad \downarrow =$$

$$\bigoplus_{\dim(L)=1} \widetilde{C}_* \left(sdE^*(V/L) \right) \longrightarrow \widetilde{C}_*(X) \oplus \widetilde{C}_*(sdE(V - \{0\})) \longrightarrow \widetilde{C}_*(sdE^*(V))$$

$$\downarrow \varepsilon_* \qquad \qquad \downarrow (1,\varepsilon_*) \qquad \qquad \downarrow \varepsilon_*$$

$$\bigoplus_{\dim(L)=1} \widetilde{C}_* \left(E^*(V/L) \right) \longrightarrow \widetilde{C}_*(X) \oplus \widetilde{C}_*(E(V - \{0\})) \longrightarrow \widetilde{C}_*(E^*(V))$$

the middle and lower triangles are quasi-isomorphic to the top one, so they are distinguished triangles. It suggests that up to explicit quasi-isomorphisms we can use the bottom triangle to calculate our formula. By the naturality of ε (c.f, [7, (3)]), we first calculate the boundary map of the second horizontal distinguished triangle. Since the top triangle is Mayer-Vietoris, we take $[z] \in \widetilde{Z}_{n-1}(sdE^*(V))$ and lift it as $[z] = [z_1] + [z_2]$ such that $[z_1] \in \widetilde{C}_{n-1}(X)$ and $[z_2] \in \widetilde{C}_{n-1}(sdE(V-\{0\}))$. Then we apply the differential map to get the homology class

$$\partial([z_1]) = -\partial([z_2]) \in \widetilde{H}_{n-2}\left(\bigcup_L X_L\right) \simeq \bigoplus_L \widetilde{H}_{n-2}(X_L).$$

We need to calculate the image of $\partial([z_1])=-\partial([z_2])$ in $\bigoplus\widetilde{H}_{n-2}(sdE^*(V/L))$ under $\bigoplus q_{L*}$.

There exists a commutative diagram for each $L \subset V$ with $\dim(L) = 1$

$$\widetilde{C}_{n-1}\left(\bigcup_{L}B\mathcal{P}(V-\{0\})_{L}\right) = \widetilde{C}_{n-1}(sdE(V-\{0\})) \xrightarrow{q'_{L}} \widetilde{C}_{n-1}(sdE(V/L))$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$\widetilde{Z}_{n-2}\left(\bigcup_{L}X_{L}\right) \hookrightarrow \widetilde{Z}_{n-2}(sdE(V-\{0\})) \xrightarrow{q'_{L}} \widetilde{Z}_{n-2}(sdE^{*}(V/L))$$

where q'_L is induced by the simplicial map $E(V-\{0\}) \to E(V/L)$ sending a vertex v to the quotient class \bar{v} represented by v. Notice that since

$$sdE^*(V - \{0\}) = B\mathcal{P}(V - \{0\}) = \bigcup_{\dim(L)=1} B\mathcal{P}(V - \{0\})_L,$$

we may then write

$$[z_2] = \sum_{L} n_L[y_L], \quad [y_L] \in \widetilde{C}_{n-1}(B\mathcal{P}(V - \{0\})_L).$$

In particular, if $[y_L]$ also belong to $\widetilde{C}_{n-1}(B\mathcal{P}(V-\{0\})_{L'})$ with $L\neq L'$, then it must lie in $\widetilde{C}_{n-1}(X_L)$ (and in $\widetilde{C}_{n-1}(X_{L'})$) and hence

$$0 = \partial[y_L] \in \widetilde{H}_{n-2}\left(\bigcup_L X_L\right).$$

Therefore, we may write

$$\partial[z_1] = -\partial[z_2] = \sum_{L} n_L \partial[y_L] \in \bigoplus_{L} \widetilde{H}_{n-2}(X_L)$$

such that each $[y_L]$ in a unique $\widetilde{C}_{n-1}(B\mathcal{P}(V-\{0\})_L)$. Moreover, if $[y_{L'}] \in \widetilde{C}_{n-1}(B\mathcal{P}(V-\{0\})_{L'})$ and $L \neq L' \subset V$, then

$$0 = q'_L(\partial[y_{L'}]) = \partial q'_L([y_{L'}]) \in \widetilde{H}_{n-2}(sdE^*(V/L))$$

since $q'_L[y_{L'}] \in \widetilde{C}_{n-1}(sdE^*(V/L))$. Thus we find that

$$\sum_{L} q'_{L} \left(\sum n_{L} \partial [y_{L}] \right) = \sum_{L} n_{L} q'_{L} (\partial [y_{L}]) \in \bigoplus_{L} \widetilde{H}_{n-2} (sdE^{*}(V/L))$$

and it suffices to calculate the image of $-\partial([z_2])$ under the morphisms

$$\widetilde{Z}_{n-2}(sdE(V-\{0\})) \xrightarrow{q'_L} \widetilde{Z}_{n-2}(sdE^*(V/L)) \to \widetilde{H}_{n-2}(sdE^*(V/L))$$

for all lines $L \subset V$.

Proposition 29. We write $\widetilde{St}(V/L) := \widetilde{H}_{n-2}(E^*(V/L))$. The second part of d^1 on coefficients

$$\widetilde{St}(d) \to \bigoplus_{(L,V) \in \mathbb{F}_{T'}(d)} \widetilde{St}(V/L)$$

is given by

$$\partial(0, g_1, \cdots, g_n) \mapsto \sum_{i=1}^n (-1)^i((L_i, V), \partial(0, \overline{g}_1, \cdots, \widehat{g}_i, \cdots, \overline{g}_n))$$

where $L_i := \langle g_i \rangle$ and \bar{g}_j denotes the image of g_j under the quotient map $V \to V/L_i$ for all $1 \le i \ne j \le n$. The proper layers (L_i, V) stand for the index of the summands.

Proof. By our discussion above, the boundary map of the bottom triangle can be calculated as follows. Let $[a] \in \widetilde{Z}_{n-1}(E^*(V))$ and we lift [a] to

$$[a'] = [a'_1] + [a'_2] \in \widetilde{C}_{n-1}(X) \oplus \widetilde{C}_{n-1}(E(V - \{0\})).$$

We have $\partial([a'_1]) \in \widetilde{Z}_{n-2}(X)$ and $\partial([a'_2]) \in \widetilde{Z}_{n-2}(E(V - \{0\}))$. Then, we calculate the image of $-\partial([a'_2])$ under the morphism

$$\widetilde{Z}_{n-2}(E(V - \{0\})) \to \widetilde{Z}_{n-2}(E^*(V/L)) \to \widetilde{H}_{n-2}(E^*(V/L))$$

to find the image of [a] in $\bigoplus_L \widetilde{St}(V/L)$. Here, the first map is induced by the simplicial map $E(V - \{0\}) \to E(V/L)$ sending a vertex v to the quotient class \bar{v} represented by v.

Let us take

$$0 \neq [a] = \partial(0, g_1, \dots, g_n) = \sum_{i=1}^{n} (-1)^i (0, g_1, \dots, \widehat{g_i}, \dots, g_n) + (g_1, \dots, g_n) \in \widetilde{Z}_{n-1}(E^*(V))$$

and write $[a] = [a_1] + [a_2]$ such that

$$[a_1] = \sum_{i=1}^{n} (-1)^i (0, g_1, \dots, \widehat{g_i}, \dots, g_n),$$
 $[a_2] = (g_1, \dots, g_n).$

We lift $[a] = [a_1] + [a_2]$ to $[a'] = [a'_1] + [a'_2]$ with $[a'_1] \in \widetilde{C}_*(X)$ and

$$[a_2'] = [a_2] = (g_1, \dots, g_n) \in \widetilde{C}_*(E(V - \{0\})).$$

By our discussion in section 4.3, $\widetilde{St}(V/L)$ is generated by the extended symbols $\partial(\bar{v}_0, \dots, \bar{v}_{n-1})$ such that if none of $\bar{v}_0, \dots, \bar{v}_{n-1}$ is zero or some $\bar{v}_i = 0$ but they do not span V/L then $\partial(\bar{v}_0, \dots, \bar{v}_{n-1}) = 0$. So the image of $-\partial([a_2])$ under the morphism

$$\widetilde{Z}_{n-2}(E(V-\{0\})) \to \widetilde{H}_{n-2}(E^*(V/L)) = \widetilde{St}(V/L)$$

equals zero if none of $g_i, 1 \leq i \leq n$ generates L, and equals

$$-\partial(\bar{g}_1,\cdots,\bar{g}_{i-1},0,\bar{g}_{i+1},\cdots,\bar{g}_n) = (-1)^i(0,\bar{g}_1,\cdots,\hat{g}_i,\cdots,\bar{g}_n) \in \widetilde{St}(V/L_i)$$

for each $\langle g_i \rangle = L_i$ with $1 \leq i \leq n$. Thus we get the formula

$$\partial(0, g_1, \dots, g_n) \mapsto \sum_{i=1}^n (-1)^i((L_i, V), \partial(0, \overline{g}_1, \dots, \widehat{g}_i, \dots, \overline{g}_n)).$$

4.2.3. The Formula of d^1 on Coefficients.

Theorem 30. The formula of d^1 is given by

$$\partial(0, g_1, \cdots, g_n) \longmapsto$$

$$-\sum_{i=1}^n (-1)^i((0, W_i), \partial(0, g_1, \cdots, \widehat{g_i}, \cdots, g_n)) + \sum_{i=1}^n (-1)^i((L_i, V), \partial(0, \overline{g_1}, \cdots, \widehat{g_i}, \cdots, \overline{g_n})).$$

Proof. It suffices to notice that, by our discussion in previous sections, there exists a commutative diagram

$$H_{n-1}(\widetilde{\mathbb{F}_T}(d)) \xrightarrow{d^1} \bigoplus_{c \to d \in \mathbb{F}_{T'}(d)} H_{n-2}(\widetilde{\mathbb{F}_U}(c))$$

$$\stackrel{\simeq}{=} \bigvee_{c \to d \in \mathbb{F}_{T'}(d)} \widetilde{St}(c) \oplus \left(\bigoplus_{(L,V) \in \mathbb{F}_{T'}(d)} \widetilde{St}(V/L)\right)$$

where $W = c \otimes K$.

Remark 31. According to remark 20, the formula for d^1 on coefficients theorem 30 can be written as

$$[g_1, \dots, g_n] \longmapsto -\sum_{i=1}^n (-1)^i((0, W_i), [g_1, \dots, \widehat{g_i}, \dots, g_n]) + \sum_{i=1}^n (-1)^i((L_i, V), [\overline{g_1}, \dots, \widehat{g_i}, \dots, \overline{g_n}]).$$

5. The Formula for
$$d^1|_{E^1_{n>3.0}}$$

5.1. The Induced Functor.

Definition 32. Suppose that $f: \mathcal{C}_1 \to \mathcal{C}_2$ and $\mathbb{F}: \mathcal{C}_1 \to \mathbf{Cat}$ are two functors and for each $y_2 \in \mathcal{C}_2$ the category $\mathbb{F}_f(y_2) \neq \emptyset$. We define

$$\operatorname{Ind}_f \mathbb{F}: \mathcal{C}_2 \to \mathbf{Cat}, \qquad y_2 \mapsto \mathbb{F}_f(y_2) \int \mathbb{F} \circ \pi_{y_2}$$

where $\pi_{y_2}: \mathbb{F}_f(y_2) \to \mathcal{C}_1$ is the projection.

Lemma 33. There is a canonical isomorphism

$$H_*(\mathcal{C}_2, \operatorname{Ind}_f \mathbb{F}) \simeq H_*(\mathcal{C}_1, \mathbb{F}).$$

Proof. We define the projection functor

$$p_1: \mathcal{C}_2 \int \operatorname{Ind}_f \mathbb{F} \to \mathcal{C}_1 \int \mathbb{F}, \quad \{(y_1 \to y_2, x) \mid x \in \mathbb{F}(y_1)\} \mapsto \{(y_1, x) \mid x \in \mathbb{F}(y_1)\}$$

and

$$s_1: \mathcal{C}_1 \int \mathbb{F} \to \mathcal{C}_2 \int \operatorname{Ind}_f \mathbb{F}, \quad \{(y_1, x) \mid x \in \mathbb{F}(y_1)\} \mapsto \{(y_1 = y_1, x) \mid x \in \mathbb{F}(y_1)\}.$$

It is easy to verify that s_1 is left adjoint to p_1 and hence the categories $C_2 \int \operatorname{Ind}_f \mathbb{F}$ and $C_1 \int \mathbb{F}$ are homotopy equivalent and hence the isomorphism we are looking for.

This lemma tells us that we have a pair of canonical isomorphisms

$$H_*(\mathcal{C}_1, \mathbb{F}) \simeq H_*(\mathcal{C}_2, \operatorname{Ind}_f \mathbb{F}).$$

Combined with Eilenberg-Zilber-Cartier theorem, we obtain

$$H_q(\mathcal{C}_1, H_*(\mathbb{F})) \simeq H_q(\mathcal{C}_2, H_*(\operatorname{Ind}_{f}\mathbb{F})), \quad q \geq 0.$$

Suppose that we are under the condition given at the beginning of section 5.1. We apply our discussion to

$$\begin{array}{c|c}
\mathcal{C} - \mathcal{B} & \xrightarrow{*} \mathbf{Cat} \\
\downarrow^{T'} & & \\
\mathcal{D} - \mathcal{B} & & \\
\end{array}$$

Notice that $\operatorname{Ind}_{T'}*=\mathbb{F}_{T'}$, so the projection functor $(\mathcal{D}-\mathcal{B})\int\mathbb{F}_{T'}\xrightarrow{p_1}C-\mathcal{B}$ given by $(c\to d)\to c$ admits a left adjoint $c\to(c=c)$ and hence is a homotopy equivalence. So we have

$$C_*\left((\mathcal{D}-\mathcal{B})\int \mathbb{F}_{T'}, \widetilde{\mathbb{F}_{U_*}}\right)$$

$$= Ker\left(C_*\left((\mathcal{D} - \mathcal{B})\int \mathbb{F}_{T'}, \mathbb{F}_{U_*}\right) \to C_*\left((\mathcal{D} - \mathcal{B})\int \mathbb{F}_{T'}\right) \xrightarrow{\sim} C_*(\mathcal{C} - \mathcal{B})\right)$$
$$= Ker\left(C_*\left((\mathcal{D} - \mathcal{B})\int \mathbb{F}_{T'}, \mathbb{F}_{U_*}\right) \xrightarrow{p_{1*}} C_*(\mathcal{C} - \mathcal{B}, \mathbb{F}_{U}) \to C_*(\mathcal{C} - \mathcal{B})\right).$$

It follows that there is a canonical quasi-isomorphism

$$C_*\left((\mathcal{D}-\mathcal{B})\int \mathbb{F}_{T'}, \widetilde{\mathbb{F}_{U_*}}\right) \xrightarrow{\sim} C_*(\mathcal{C}-\mathcal{B}, \widetilde{\mathbb{F}_U})$$

and hence by Thomason's theorem (theorem 5) we get canonical isomorphisms

$$p_{1*}: H_q\left(\mathcal{D} - \mathcal{B}, H_{n-2}(\mathbb{F}_{T'} \int \widetilde{\mathbb{F}_{U_*}})\right) \simeq H_q\left((\mathcal{D} - \mathcal{B}) \int \mathbb{F}_{T'}, H_{n-2}(\widetilde{\mathbb{F}_{U_*}})\right)$$

$$\stackrel{\simeq}{\to} H_q(\mathcal{C} - \mathcal{B}, H_{n-2}(\widetilde{\mathbb{F}_U})).$$
(5.1)

5.2. The Formula for d^1 . We notice that the canonical quasi-isomorphism $C_*(\mathcal{D}-\mathcal{B},\mathbb{F}_{T'})\to C_*((\mathcal{D}-\mathcal{B})\int \mathbb{F}_{T'})$ induced by Thomason's theorem 5 sends the simple chain

$$d_0 \longrightarrow d_1 \longrightarrow \cdots \longrightarrow d_p$$

$$\downarrow \\ c_0 \longrightarrow c_0 \longrightarrow \cdots \longrightarrow c_0$$

to

$$d_0 \longrightarrow d_1 \longrightarrow \cdots \longrightarrow d_p$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$c_0 = c_0 = \cdots = c_0$$

Since $\mathbb{F}_{T'}(d)$ is discrete for $d \in \mathcal{D} - \mathcal{C}$ and if $d \in \mathcal{C}$ then $H_{n-1}(\widetilde{\mathbb{F}_T}(d)) = 0$. Apply the functor $C_q(\mathcal{D} - \mathcal{B}, -)$ to the formula obtained in proposition 25, we get

$$C_q(\mathcal{D}-\mathcal{B}, H_{n-1}(\widetilde{\mathbb{F}_T})) \to C_q\left(\mathcal{D}-\mathcal{B}, H_{n-2}(\mathbb{F}_{T'}\int \widetilde{\mathbb{F}_{U_*}})\right)$$

sending $0 \neq \sum_d n_d(d_0 \to \cdots \to d_q, \sum_g n_g[g_1, \cdots, g_n])$ with $d_j \in \mathcal{D} - \mathcal{C}$ for $0 \leq j \leq q$ to

$$\sum_{d} n_d \left(d_0 \to \cdots \to d_q, \sum_{g} n_g \left(-\sum_{i=1}^n (-1)^i ((0, W_i), [g_1, \cdots, \widehat{g_i}, \cdots, g_n]) + ((L_i, V), [\overline{g_1}, \cdots, \widehat{g_i}, \cdots, \overline{g_n}])) \right).$$

Combined with (5.1), we have proved that

Theorem 34. Let A be an integral Noetherian ring and $Q^{tf}(A)$ be Quillen's Q-construction over the category of finitely generated torsion-free modules. Then the differential $E_{n,q}^1 \xrightarrow{d_{n,q}^1} E_{n-1,q}^1$ is given by

$$\sum_{d} n_d \left(d_0 \xrightarrow{f_1} \cdots \xrightarrow{f_q} d_q, \sum_{g} n_g[g_1, \cdots, g_n] \right)$$

$$\longmapsto \sum_{d,g} n_d n_g \left(\sum_i (-1)^i \left(-(c_i^0 \to \cdots \to c_i^q, [g_1, \cdots, \widehat{g_i}, \cdots, g_n]) + (c_i^{'0} \to \cdots \to c_i^{'q}, [\overline{g_1}, \cdots, \widehat{g_i}, \cdots, \overline{g_n}]) \right) \right).$$

Here, $(0, W_i) = (0, c_i^0)$ is an admissible monomorphism and $c_i^j \to d_j = (f_j \circ \cdots \circ f_1)(0, W_i)$, meanwhile $(L_i, V) = d_0 \twoheadrightarrow c_i^{'0}$ is an admissible epimorphism and $(c_i^{'j} \to d_j) = (f_j \circ \cdots \circ f_1)(L_i, V)$.

Remark 35. For any $1 \le i \ne j \le n$, the map d^1 sends the simple chain

$$(d_0 \to \cdots \to d_q, \sum_q n_g[g_1, \cdots, g_n])$$

to

$$\sum_{i} (-1)^{i} \left(-(c_{i}^{0} \to \cdots \to c_{i}^{q}, [g_{1}, \cdots, \widehat{g_{i}}, \cdots, g_{n}]) + (c_{i}^{'0} \to \cdots \to c_{i}^{'q}, [\overline{g_{1}}, \cdots, \widehat{g_{i}}, \cdots, \overline{g_{n}}]) \right).$$

According to [15, p17, diagram (4)], any morphism under Q-construction can be factored as an injective-followed-by-surjective map or a surjective-followed-by-injective map, and the factorizations are unique up to unique isomorphisms. In the language of proper layers, this can be written as

$$(L_i, W_i) \circ (0, W_i) = (L_i, W_i) \circ (L_i, V) = (L_i, W_i).$$

So if we apply d^1 again, the above chain will further be sent to

$$\sum_{i=1}^{n} (-1)^{i} \left(\sum_{k=1}^{n-1} (-1)^{k} \left((b_{ik}^{0} \to \cdots \to b_{ik}^{q}, [g_{1}, \cdots, \widehat{g_{i}}, \cdots, \widehat{g_{k}}, \cdots, g_{n}] \right) - (b_{ik}^{'0} \to \cdots \to b_{ik}^{'q}, [\bar{g}_{1}, \cdots, \widehat{g_{i}}, \cdots, \widehat{g_{k}}, \cdots, \bar{g_{n}}]) \right) \right) + \sum_{i=1}^{n} (-1)^{i} \left(\sum_{k=1}^{n-1} (-1)^{k} \left(-(b_{ik}^{'0} \to \cdots \to b_{ik}^{'q}, [\bar{g}_{1}, \cdots, \widehat{g_{i}}, \cdots, \widehat{g_{k}}, \cdots, \widehat{g_{n}}]) + (b_{ik}^{''0} \to \cdots \to b_{ik}^{''q}, [\bar{g}_{1}, \cdots, \widehat{g_{i}}, \cdots, \widehat{g_{k}}, \cdots, \bar{g_{n}}]) \right) \right)$$

such that k = j if $1 \le j < i$ and k = j - 1 if $i < j \le n$. Here, $b_{ik}^0 = \langle g_1, \cdots, \widehat{g_i}, \cdots, \widehat{g_k}, \cdots, g_n \rangle \cap c_i^0$, $b_{ik}'^0 \to c_i^0 = (L_k, W_i)$, $b_{ik}'^0 \to c_i'^0 = (L_i, W_k)$ and $b_{ik}''^0 \to c_0' = (L_k, V/L_i) = (L_k \oplus L_i, V)$. Thus we find that in the above formula, a summand with same two entries omitted appears twice with opposite signs, so the resulting alternating sum is zero which verifies that $d^1 \circ d^1 = 0$.

References

- [1] Avner Ash and Lee Rudolph, The Modular Symbol and Continued Fractions in Higher Dimensions, Invectiones math. 55, 241-250 (1979).
- [2] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer (1967).
- [3] Paul G. Goerss and John F. Jardine: Simplicial Homotopy Theory, Modern Birkhauser Classics.
- [4] Alexandre Grothendieck, 1960-61 Revêtements etales et groupe fondamental (SGA 1) (Lecture notes in mathematics 224). Berlin; New York: Springer-Verlag. xxii+447. doi:10.1007/BFb0058656. ISBN 978-3-540-05614-0.
- [5] G. Harder, Die Kohomologie S-arithmetischer Gruppen uber Funktionenkorpern, Inventiones Math. 42 (1977) 135-175.
- [6] Bruno Kahn: Around Quillen's Theorem A: http://arxiv.org/abs/1108.2441.
- [7] Bruno Kahn and Fei Sun: On Universal Modular Symbols, http://arxiv.org/abs/1407.0475.
- [8] T. Y. Lam: A crash course on Stable Range, Cancellation, Substitution, and Exchange, J. Algebra Appl., 03, 301 (2004).
- [9] Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften 332, Springer (2006).
- [10] Joseph Le Potier, Lectures on Vector Bundles, Cambridge Studies in Advanced Mathematics 54, 1997.
- [11] Ronnie Lee and R. H. Szczarba: On the Homology and Cohomology of Congruence Subgroups, Inventiones math. 33, 15-53 (1976).
- [12] J. Milnor: Introduction to Algebraic K-Theory, Princeton University Press.
- [13] J. Milnor and J. Moore: On the structure of Hopf Algebras, The Annals of Mathematics, Second Series, Vol. 81. No. 2 (Mar., 1965), pp. 211-264.
- [14] Yu. P. Nesterenko and A. A. Suslin: Homology of the full linear group over a local ring, and milnor K-theory, Math. USSR Izvestiya Vol. 34(1990), No.1.
- [15] Daniel Quillen: Higher algebraic K-theory I.
- [16] Daniel Quillen: Finite generation of the groups K_i of rings of algebraic integers. Text prepared by H. Bass from Quillen's lecture at the battle conference september, 1972.
- [17] Daniel R. Grayson: Finite Generation of K-groups of a Curve over a Finite Field.
- [18] Edwin H. Spanier: Algebraic Topology, Springer, December 6, 1994.
- [19] V. Srinivas: Algebraic K-Theory, second edition, Modern Birkhauser Classics.
- [20] Fei Sun: Algebraic K-Theory and Modular Symbols, doctoral thesis, UPMC.
- [21] R. W. Thomason: Homotopy colimits in the category of small categories, Math. Proc. Cambridge. Philos. Soc. 85(1979), 91-109.
- [22] Charles A. Weibel: An introduction to homological algebra, Cambridge studies in advanced mathematics 38.