Singolaité exolate e los classifications Def. Sie f. $\Omega \setminus \{2^0\} \subseteq \emptyset \longrightarrow \emptyset$. Si dice che # à una SINGOLARUTA 1801ATA par f se: $\exists \ \mathcal{U}(\mathcal{Z})\subseteq \Omega \ \text{tale she } f \ \text{nia slomerfa su} \ \mathcal{U}(\mathcal{Z}) \setminus \mathcal{Z}^{\circ} \mathcal{Y}.$ \$ M(2°) Esempi 1) $f(x) = \frac{1}{x}$ olomorfa on $C \setminus \{0\}$, $\Rightarrow x_0 = 0$ è sing locata. 2) $f(x) = \frac{1}{\sin(\frac{4}{2})}$ olomorfor on $(1 + \frac{1}{2})$ olomorfor on $(1 + \frac{1}{2})$ frim (=) +0 => = + Kur, KeZL 1=> 2 + 1 , Ke ZL 10) l'origine à una sinspolacità non isolata. TMTe le altre si.

Sia 2º una ringolavita isolata per f. Def 1 Si dice en 7 è una SINGOLARITÀ ELITINABILE e $\exists \mathcal{U}(\mathcal{Z}), \exists \mathcal{L}: \mathcal{U}(\mathcal{Z}) \rightarrow \mathcal{L} \text{ took whe } \mathcal{L} |_{\mathcal{U}(\mathcal{Z}) \setminus \mathcal{Z}}$ $e \in \mathcal{L} \text{ in a dominfar in } \mathcal{U}(\mathcal{Z}).$ Escupio $f(\pm) = \frac{\sin \pm}{\pm}$, $\pm^0 = 0$ sing eliminalike. $\int_{0}^{\infty} (\pm) = \begin{cases} \sin \pm \frac{1}{2} & \forall 2 \neq 0 \\ 1 & = 0 \end{cases}$ $mm = \sum_{m > 0} (-1)^{\frac{m}{2}} \frac{2n+1}{2}$ (3n+1)! $\frac{\sin t}{t} = \frac{1}{6} + o(\frac{2}{5})$ $4 + o(\frac{2}{5})$ $4 + o(\frac{2}{5})$ $4 + o(\frac{2}{5})$ $4 + o(\frac{2}{5})$ $\oint (x) = \sum_{m > 0} (-1)^m \frac{2m}{2m}$ $(2n+1)^{\frac{1}{2}}$ On1 Se esiste 6, 6 è uniea. Se una g i domorfa, e anche continua: $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right] = \lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$ $\lim_{\lambda \to \pm^0} \left[g(\pm) - g(\pm^0) \right], \left[2 - 2^0 \right], = 0$

f amitata (in modulo) vieino a zo 2° sing, eliminalite per f > D02 3 U(xº), 3 M>0 taleche [f(+) | ≤ M + ∈ U(+) ++9 Enfatti; 2° ring, eliminalile per f ⇒ 3 lim f(x) € C Decrema rimonone della singulante f limitate in U(x°)-32° à → à è ringolavite eliminalile Quirdi, in comelusione: (& f è olomosfa on U(20)~1204). 2° sing, eliminalili & f dimitata in Ulzo)1/204

Def 2 di dice she
$$\pm^{\circ}$$
 is un POLO for β so binn $f(\pm) = \infty$ overo $\lim_{x \to a^{\circ}} |f(\pm)| = +\infty$.

From $f(\pm) = 1$ from $\lim_{x \to a^{\circ}} |f(\pm)| = +\infty$.

Lim $\lim_{x \to \infty} |f(\pm)| = \lim_{x \to \infty} |f(\pm)| = \lim_{x \to \infty} |f(\pm)| = +\infty$

Def 3 of olies the $\lim_{x \to \infty} |f(\pm)| = +\infty$

Def 3 of olies the $\lim_{x \to \infty} |f(\pm)| = +\infty$

So inno ring, isolate a moni me aliminatile me polo.

Granjio $f(\pm) = e^{1/2}$ $f(\pm) = e^{$

Teorema (Pieard) 2° ving. essentiale per b =>

V U(2°) , \(\((U(2°)) \) \\
\(\(\) \(\) \\
\(\) \ immaginedi U(2º) tramite perf = f(±): ± e U(2º)3 Exemplo. $f(\pm) = e^{-1/2}$. Fissiamo $w \in \mathbb{C} \setminus \{0\}$, Vediamo che w à assunto in qualsiasi interno dell'origine Quehiano 2 tali che [e 1/2 = x/.] Chiamo $\underline{1} = x + iy$, $w = \beta e = \beta(\omega 0 + i \sin 0)$ $\underline{1}$ incognite $\underline{1}$ assignation

Imponiano: $\underline{2}$ \underline{iy} $\underline{x} + iy$ \underline{i} $\underline{0}$ $\begin{cases} e = S \\ y - Q = 2KT, K \in \mathbb{Z} \end{cases} (=) \begin{cases} x = log S \\ y = Q + 2KT \end{cases}$ Quirdi 2 = 1 = 1 $\log \rho + i(\theta + 2 \kappa \pi)$, $\kappa \in \mathbb{Z}$. $(v. |2k| \rightarrow 0, |2k| \rightarrow +)$

Sviluppi in sevie di Laurent

Theorema of olomorpa on $\Omega \setminus \frac{1}{2}$ (Ω aperto) \Rightarrow b "sviluppolile in sevie di Laurent d'centro \Rightarrow " ovvero $\Rightarrow U(x) \subseteq \Omega$ tale she $\forall x \in U(x) \setminus \frac{1}{2}$.

 $\frac{1}{2} \text{ U(2)} \subseteq \Omega \quad \text{tale ofe} \quad \forall x \in \text{U(2)} \land d \neq 1.$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x) + \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x) + \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x - x) = \text{ Cx } (x - x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$ $\frac{1}{2} \text{ Cx } (x - x - x) = \text{ Cx } (x - x - x)$

= $C_0 + C_1(\pm -2^\circ) + C_2(\pm -2_\circ) + \dots$ parte regolare + $C_{-1}(\pm -2^\circ) + C_{-2}(\pm -2^\circ) + \dots$ parte singolare Snoltre:

Emoltre: $C_{K} = \underbrace{1}_{2\pi i} \underbrace{\int_{C_{r}(\pm^{0})}^{(\pm)} (\pm^{-\pm^{0}})^{K+1}} d\pm \forall K \in \mathbb{Z}.$

Qualsiasi eineonfereuse di raggior ecentro t^2 (param. da $r(t) = 2^{\circ} + r e^{it}$, $t \in [0,211]$)

con $(r(2^{\circ}) \subseteq \mathcal{U}(2^{\circ})$

In particular.

$$\mathcal{E}_{-1} = \underbrace{\Delta}_{2\pi i} \int_{C(\pm^{0})} d\pm \underbrace{\Delta}_{\pm} \int_{$$

Come riconocere i vani tipi di ingolanità dello su davent · 2° mo eliminabile (=) parte ringolar dello sviluppo · 2° 1000? a 2º sino, essentiale?