1.

III SEMESTER EXAMINATION, 2023 – 24

IInd yr B.Tech. – (Civil Eng/CS&E/AI&ML/IT/EE/E&EE/ME/Robotics &Automation) ADVANCE APPLIED MATHEMATICS

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

O	Answer any	y four parts	of the	followin	g.
~	I IIID II OI OII	, rour parts	OI CIIC	10110 1111	

5x4=20

- a) Find the Laplace transform of the function $F(t) = (\sin t \cos t)^2$.
- b) Find the Fourier sine transform of $\frac{1}{x}$.
- c) Find the third divided with arguments 2,4,9,10 of the function $f(x) = x^3 2x$.
- d) The first three moments about the origin are given by

$$\mu_1 = \frac{n+1}{2}, \ \mu_2 = \frac{(n+1)(2n+1)}{6}, \ \mu_3 = \frac{n(n+1)^2}{4}$$

Examine the skewness of the data.

- e) For a group of 20 items, $\sum x_i = 200$, $\sum x_i^2 = 500$ and median 1.5, find Karl person's coefficient of skewness.
- f) Find $\frac{dy}{dx}$ at x = 0.1 from the following data

х	0.1	0.2	0.3	0.4	
у	0.9975	0.9900	0.9776	0.9604	

Q Answer any four parts of the following. 2.

5x4 = 20

- a) Find the inverse Laplace transform of $\frac{1}{9s^2 + 6s + 1}$.
- b) Find the Fourier cosine transform of $f(x) = e^{-ax}$
- c) Find the first four moments for the following individual data:

х	1	3	9	12	20

- d) Find a root of the equation $x^3 4x 9 = 0$. Using Bisection method is four stages.
- e) The first three moments of a distribution, about the value 2 of the variable are 1, 16 and -40.

Show that the mean is 3, Variance is 15 and $\mu_3 = -86$.

	f) Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ considering five intervals.								
Q 3.	Answer any two parts of the following. a) State convolution theorem and hence find $L^{-1} \left[\frac{1}{s^3(s^2+1)} \right]$.						10x2= 20		
	b) Using Laplace transform, solve the following equation $\frac{d^2x}{dt^2} + 9x = \cos 2t \text{ , if } x(0) = 1 \text{ and } x\left(\frac{\pi}{2}\right) = -1.$								
	c) Use Fourier Sine transform to solve the equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$, under the condition								
	(i) $u(0,t) = 0$ (ii) $u(x,0) = e^{-x}$ and (iii) $u(x,t)$ is bounded.								
Q 4.								10x2= 20	
	initial condition $u(x,0) = 0, x \ge 0.$								
	b) Find the root of	the equati	on $\tan x +$	$\tanh x = 0$, which lies	in the interv	val (1.6, 3.	0) correct to	
	four significant dig	its using r	nethod of	False positi	ion.				
	c) The function $y = f(x)$ is given at the point $(7,3)$, $(8,1)$, $(9,1)$ and $(10,9)$. Find the value of y								
	for $x = 9.5$, using Lagrange's interpolation formula.								
Q 5.	a) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Simpson's one-third rule (ii) Simpson's three-eight rule (iii)							10x2= 20	
	Trapizoidal rule b) Calculate the coefficient of the Skewness from the following data:								
	Wage in rupees	0-10	10-20	20-30		40-50	50-60	60-70	
	No. of labours	185	77	34	180	136	23	50	
	c) Use least square method to fit a curve of the form $y = ae^{bx}$ to the following data:								
	x 1 2 3 4 5 6 y 7.209 5.265 3.846 2.809 2.052 1.499								
	У	7.209	5.2	265	3.846	2.809	2.052	1.499	