Basic Examination May 2003

1. (a) Suppose $f:(0,1)\to\mathbb{R}$ is a continuous function. Define what it means for f to be **uniformly continuous**.

(b) Show that if $f:(0,1)\to\mathbb{R}$ is uniformly continuous, then there is a continuous function $F:[0,1]\to\mathbb{R}$ with F(x)=f(x) for all $x\in(0,1)$.

2. Prove: If a_1, a_2, a_3, \ldots is a sequence of real numbers with

$$\sum_{j=1}^{+\infty} |a_j| < +\infty,$$

then $\lim_{N\to+\infty} \sum_{j=1}^{N} a_j$ exists.

3. Find a subset S of the real numbers \mathbb{R} such that both (i) and (ii) hold for S:

(i) S is not the countable union of closed sets

(ii) S is not the countable intersection of open sets.

4. Consider the following equation for a function F(x,y) on \mathbb{R}^2

$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2} \tag{*}$$

(a) Show that if a function F has the form F(x,y) = f(x+y) + g(x-y) where $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are twice differentiable, then F satisfies the equation (*).

(b) Show that if $F(x,y) = ax^2 + bxy + cy^2$, $a,b,c \in \mathbb{R}$, satisfies (*) then F(x,y) = f(x,y) + g(x-y) for some polynomials f and g in one variable.

5. Consider the function $F(x,y) = ax^2 + 2bxy + cy^2$ on the set $A = \{(x,y) : S^2 + y^2 = 1\}$.

(a) Show that F has a maximum and minimum on A.

(b) Use Lagrange multipliers to show that if the maximum of F on A occurs at a point (x_0, y_0) , then the vector (x_0, y_0) is an eigenvector of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$

6. Formulate some reasonably general conditions on a function $f:\mathbb{R}^2\to\mathbb{R}$ which guarantee that

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

and prove that your conditions do in fact guarantee that this equality holds.

7. Let V be a finite dimensional real vector space. If $W \subset V$ be a subspace let $W^o := \{f : V \to F \mid \text{linear}, | f = 0 \text{ on } W\}$. Let $W_i \subset V$ be subspaces for i = 1, 2. Prove that

$$W_1{}^o \cap W_2{}^o = (W_1 + W_2)^o$$

- 8. Let V be an n-dimensional complex vector space and $T:V\to V$ a linear operator. Suppose that the characteristic polynomial of T has n distinct roots. Show that there is a basis B for V such that the matrix representation of T is the basis B is diagonal. (Make sure that you prove that your choice of B is in fact a basis.)
- 9. Let $A \in \mathbf{M}_3(\mathbf{R})$ satisfy $\det(A) = 1$ and $A^t A = I = AA^t$ where I is the 3×3 identity matrix. Prove that the characteristic polynomial of A has 1 as a root.
- 10. Let V be a finite dimensional real inner product space and $T:V\to V$ a hermitian linear operator. Suppose the matrix representation of T^2 in the standard basis has trace zero. Prove that T is the zero operator.