Exercise Solutions for Math 20

Equations in Quadratic Form and with Radicals and Absolute Values

Nile Jocson <novoseiversia@gmail.com>

November 9, 2024

Contents

1	Find the solution set of the following inequalities.	3
	1.1 $\frac{2x+1}{4} \le \frac{2x}{3} + \frac{1}{6}$	3
	1.2 $-2 < 5 + 3x < 20$	
	1.3 $\frac{x}{x-1} > -1$	3
	$1.4 \frac{x}{x} > \frac{2}{x}$	3

1 Find the solution set of the following inequalities.

1.1 $\frac{2x+1}{4} \le \frac{2x}{3} + \frac{1}{6}$

$$\Rightarrow \frac{3(2x+1)}{12} \le \frac{4(2x)}{12} + \frac{2}{12}$$

$$\Rightarrow \frac{6x+3}{12} \le \frac{8x+2}{12}$$

$$\Rightarrow 6x+3 \le 8x+2$$

$$\Rightarrow 3-2 \le 8x-6x$$

$$\Rightarrow 1 \le 2x$$

$$\Rightarrow x \ge \frac{1}{2}$$

$$\Rightarrow x \in [\frac{1}{2}, +\infty)$$
Final answer.

1.2 -2 < 5 + 3x < 20

$\Rightarrow -7 < 3x < 15$	Solve for x .
$\Rightarrow -\frac{7}{3} < x < 5$	
$\Rightarrow x \in (-\frac{7}{3}, 5)$	Final answer.

1.3 $\frac{x}{x-1} > -1$

$\Rightarrow \frac{x}{x-1} + 1 > 0$)			Solve for x .				
$\Rightarrow \frac{x}{x-1} + \frac{x-1}{x-1}$	> 0							
$\Rightarrow \frac{x+x-1}{x-1} > 0$								
$\Rightarrow \frac{2x-1}{x-1} > 0$			x = 1 is an undefined point.					
				Create a table of signs.				
	$\frac{1}{2}$ 1							
2x-1	_	+	+					
x-1	_	_	+					
$\frac{2x-1}{x-1}$	+	_	+					
$\Rightarrow x \in (-\infty, \frac{1}{2}) \cup (1, +\infty)$ Final answer								

1.4 $\frac{x}{x+1} \ge \frac{2}{x+3}$

$\Rightarrow \frac{x}{x+1} - \frac{2}{x+3} \ge 0$	Solve for x .

Continued on next page

$$\Rightarrow \frac{x(x+3)}{(x+1)(x+3)} - \frac{2(x+1)}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x(x+3)-2(x+1)}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x^2+3x-2x-2}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x^2+x-2}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{(x-1)(x+2)}{(x+1)(x+3)} \ge 0$$

LCM = (x+1)(x+3)

Factor by grouping. $x \in \{-3, -1\}$ are undefined points.

Create a table of signs.

	_	-3 –	-2 -	-1	1
x-1	_	_	_	_	+
x + 2	_	_	+	+	+
x + 1	_	_	_	+	+
x + 3	-	+	+	+	+
$\frac{(x-1)(x+2)}{(x+1)(x+3)}$	+	-	+	-	+

$$\Rightarrow (-\infty, -3) \cup [-2, -1) \cup [1, +\infty)$$

Final answer. Don't include undefined points.