

2019_2 PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

Sedes regionales

(25 de octubre de 2019)

Nombre:_____ Código:_____ Grupo:___

Instrucciones:

- Tiempo: (1 h 50 min) 1 h 40 min para resolver + 10 min de revisión y entrega.
- Para todas las preguntas, justifique sus respuestas.
- Si requiere de calculadora, solo puede usar calculadora no programable.

▶Pregunta 1. (0,9 valor). Tiempo estimado (20 min)

En la Figura 1, la batería tiene un voltaje de 12 V y cada uno de los cinco condensadores tiene una capacitancia de 10 μ F. Calcule la carga en:

- a) (valor 0,3) el condensador C_1
- b) (valor 0,3) el condensador C_2
- c) (valor 0,3) el condensador C_3

Figura 1.

Solución pregunta 1:

Nota: Los valores de esta solución se calcularon para V = 10 V y se encontraron las capacitancias de otros condensadores.

Circuito de capacitores.

Cado uno liene 10 yF

Caso =
$$\frac{1}{C_{2}} + \frac{1}{C_{3}} = \frac{1}{10} + \frac{1}{10}$$
 $\frac{1}{C_{23}} = \frac{2}{C_{23}} + \frac{1}{C_{3}} = \frac{1}{10} + \frac{1}{10}$
 $\frac{1}{C_{23}} = \frac{2}{C_{23}} + \frac{1}{C_{23}} = \frac{1}{10} + \frac{1}{10}$
 $\frac{1}{C_{23}} = \frac{2}{C_{23}} + \frac{1}{C_{23}} = \frac{1}{10} + \frac{1}{10}$
 $\frac{1}{C_{23}} = \frac{2}{C_{23}} + \frac{1}{C_{23}} = \frac{1}{10} + \frac{1}{10} = \frac{10 \cdot 15}{150} = \frac{25}{150} = \frac{1}{6}$
 C_{23} = $\frac{1}{C_{23}}$ + $\frac{1}{C_{3}}$ = $\frac{1}{15}$ + $\frac{1}{10}$ = $\frac{10 \cdot 15}{150}$ = $\frac{25}{150}$ = $\frac{1}{6}$
 C_{23} = $\frac{1}{C_{23}}$ = $\frac{1}{C_{23}}$ = $\frac{1}{10}$ + $\frac{1}{10}$ = $\frac{10 \cdot 15}{150}$ = $\frac{25}{150}$ = $\frac{1}{6}$
 C_{23} = $\frac{1}{150}$ = $\frac{1}{150}$

$\boldsymbol{2019}_{-}\boldsymbol{2}$

PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

S FÍSICA

Sedes regionales (25 de octubre de 2019)

Figura 2.

▶ Pregunta 2. (1,1 valor). Tiempo estimado (20 min)

La partícula 1 (de carga 5 μ C) y la partícula 2 (de 3 μ C) están fijas a una distancia d=4 cm una de la otra sobre el eje x como se muestra en la Figura 2. Determine la distancia desde el origen sobre el eje x a la cual la partícula 3 con carga de -5,7 μ C debe ser colocada de tal manera que la energía potencial para el sistema (la energía de ensamble) sea igual a cero.

Solución pregunta 2:

▶ Pregunta 3. (1,2 valor). Tiempo estimado (20 min)

Los cuatro condensadores que se muestran en la Figura 3 tienen las siguientes capacitancias al vacío: $C_1=30~\mu\text{C},~C_2=20~\mu\text{C},~C_3=60~\mu\text{C}$ y $C_4=40~\mu\text{C}$. Todos los condensadores están inicialmente descargados. Si se cierra el interruptor S_1 , aparece una diferencia de potencial de 20 V entre las placas del condensador C_3 .

b) (valor 0,6) Si luego se abre el interruptor S_1 y se cierra el interruptor S_2 simulataneamente, calcule la diferencia de potencial eléctrico final entre las placas del condensador C_2 .

Observaciones: En la pregunta 3 existen dos errores, el primero: las unidades de los capacitores o condensadores se encuentran en μC y las unidades correctas son μF , el segundo: el circuito mostrado

2019_{-2}

PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

Sedes regionales

(25 de octubre de 2019)

en la figura tiene el voltaje de la fuente (80 [V]) y el enunciado da el voltaje de C_3 (20[V]) cuando el interruptor S_1 está cerrado; se observa que no cumplen con la segunda ley de Kirchhoff, como se muestra a continuación:

Como los condensadores están en serie, todos tienen la misma carga.

$$Q = Q_1 = Q_3 = Q_4 \tag{1}$$

y al tener el voltaje de C_3 , se puede conocer el voltaje de C_1 y C_4

$$V_1 + V_3 + V_4 = \frac{Q_1}{C_1} + \frac{Q_3}{C_3} + \frac{Q_4}{C_4} \tag{2}$$

Al calcular Q_3 se puede conocer el valor de Q_1 Y Q_4

$$Q_3 = C_3 V_3 = 60[\mu F]20[V] = 1200[\mu C] \tag{3}$$

entonces, sumando todoso los voltajes:

$$V_1 + V_3 + V_4 = \frac{1200}{30} + \frac{1200}{60} + \frac{1200}{40} \frac{[\mu C]}{[\mu F]} = 90[V] \tag{4}$$

De esta manera se corroborá que **no se cumple** la segunda ley de kirchhoff, ya que al sumar todos los voltajes de los condensadores no es igual al voltaje de la fuente, el cual corresponde a 80 [V].

Solución pregunta 3:

a). Al cerrar el interruptor S_1 , los condensadores C_1 , C_3 , C_4 quedan en serie. Por lo tanto:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_3} + \frac{1}{C_4} = \frac{1}{30} + \frac{1}{60} + \frac{1}{40} = \frac{3}{40} \tag{5}$$

La capacitancia equivalente es igual a:

$$C_{eq} = \frac{40}{3} \tag{6}$$

Existen dos maneras para solucionar el inciso b, el primero es usando el voltaje C_3 y la segunda forma es usando el voltaje de la fuente, es necesario aclarar que ambas respuestas son correctas.

b). Primer método de solución: Abre el interruptor S_1 y se cierra el interruptor S_2 simultaneamente, los condensadore C_2 y C_4 quedan en paralelo, por consiguiente ambos tienen el mismo potencial V'.

La carga total es igual a la carga que tenía el condensador C_4 ya que C_2 se encontraba descargado. Como los condensadores están en serie, todos tienen la misma carga, la cual es la carga del condensador equivalente:

$$Q = Q_1 = Q_3 = Q_4 = C_{eq}V (7)$$

sí calculamos Q_3 se tendría el valor de Q_4

$$Q_3 = C_3 V_3 = 60[\mu F] 20[V] = 1200[\mu C] \tag{8}$$

Ahora, para calcular la diferencia de potencial eléctrico final entre las placas del condensador C_2 , se realiza de la siguiente manera:

$$V_2' = \frac{Q_2'}{C_2} \tag{9}$$

$$Q_2' + Q_4' = 1200\mu C \tag{10}$$

Se calcula el valor de Q'_2 ,

$\boldsymbol{2019}_{-2}$

PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

Sedes regionales

(25 de octubre de 2019)

$$V_2' = V'4 \to \frac{Q_2'}{C_2} = \frac{Q_4'}{C_4} \tag{11}$$

dejando Q'_4 en términos de Q'_2 :

$$Q_4' = \frac{C_4}{C_2} Q_2' = \frac{40}{20} Q_2' = 2Q_2' \tag{12}$$

Usando la ecuación 10:

$$Q_2' + 2Q_2' = 3Q_2' = 1200[\mu C] \tag{13}$$

despejando $Q_2' = 600[\mu C]$

Usando la ecuación 9, se tiene que el valor de la diferencia de potencial eléctrico final entre las placas del condensador C_2 es :

$$V_2' = \frac{600}{20} = 30[V] \tag{14}$$

b). Segundo método de solución:

Abre el interruptor S_1 y se cierra el interruptor S_2 simultaneamente, los condensadore C_2 y C_4 quedan en paralelo, por consiguiente ambos tienen el mismo potencial V'.

La carga total es igual a la carga que tenía el condensador C_4 ya que C_2 se encontraba descargado.

Como los condensadores están en serie, todos tienen la misma carga, la cual es la carga del condensador equivalente:

$$Q = Q_1 = Q_3 = Q_4 = C_{eq}V = \frac{40}{3}80 = \frac{3200}{3}[\mu C]$$
(15)

Ahora, para calcular la diferencia de potencial eléctrico final entre las placas del condensador C_2 , se realiza de la siguiente manera:

$$V_2' = \frac{Q_2'}{C_2} \tag{16}$$

$$Q_2' + Q_4' = \frac{3200}{3} [\mu C] \tag{17}$$

Se calcula el valor de Q'_2 ,

$$V_2' = V'4 \to \frac{Q_2'}{C_2} = \frac{Q_4'}{C_4}$$
 (18)

dejando Q'_4 en términos de Q'_2 :

$$Q_4' = \frac{C_4}{C_2} Q_2' = \frac{40}{20} Q_2' = 2Q_2' \tag{19}$$

Usando la ecuación 17:

$$Q_2' + 2Q_2' = 3Q_2' = \frac{3200}{3}[\mu C] \tag{20}$$

despejando $Q_2' = \frac{3200}{9} = 355, 55[\mu C]$

Usando la ecuación 16, se tiene que el valor de la diferencia de potencial eléctrico final entre las placas del condensador C_2 es :

$$V_2' = \frac{3200}{9 * 20} = \frac{3200}{180} = 17,7[V] \tag{21}$$

2019_{-2}

PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

Sedes regionales (25 de octubre de 2019)

Figura 4.

▶ Pregunta 4. (1,2 valor). Tiempo estimado (20 min)

Una esfera pequeña con masa de 1,50 g cuelga de una cuerda entre dos placas verticales paralelas separadas por una distancia de 5,00 cm. Las placas son aislantes y tienen densidades de carga superficial uniformes de $+\sigma$ y $-\sigma$. La carga sobre la esfera es $q = 8,90 \cdot 10^{-6}$ C. ¿Qué diferencia de potencial entre las placas ocasionará que la cuerda forme un ángulo de 30° con respecto a la vertical?

Solución pregunta 4:

Es necesario realizar el diagrama de fuerzas de la esfera.

La diferencia de potencial se obtiene de la siguiente manera:

$$F_{electrica} = Eq = \frac{Vq}{d} \tag{22}$$

despejando la diferencia de potencial:

$$V = \frac{Fd}{a} \tag{23}$$

Se conocen los valores de distancia y carga pero se debe calcular la Fuerza eléctrica, para ello se usa el diagrama de fuerzas.

$$F_{electrica} = \frac{mg}{\cos(30)} \operatorname{sen}(30) = mg \tan(30) \tag{24}$$

Reemplazando en la ecuación anterior los valores del enunciado:

$$F_{electrica} = \frac{1,50x10^3 [kg]9,8[\frac{m}{s^2}]}{t} an(30) = 0,0085[N]$$
 (25)

reemplazando la ecuación 23, se obtiene:

$$V = \frac{Fd}{q} = \frac{(0,0085[N])(0,0500[m])}{8,90x10^{-6}[C]} = 47,8[V]$$
 (26)

▶Pregunta 5. (1,0 valor). Tiempo estimado (20 min)

Dado el esquema que se presenta en la Figura 6, calcule el trabajo eléctrico que se requiere para desplazar una carga $q_3 = 2 \mu C$ desde el punto A hasta el punto B

2019_{-2}

PREGUNTAS EVALUACIÓN MÓDULO 1 DE FÍSICA II

Sedes regionales (25 de octubre de 2019)

Solución pregunta 5:

Datos:

$$q_1 = 3\mu[C] = 3X10^{-6}[C]$$

$$q_2 = 3\mu[C] = 3X10^{-6}[C]$$

$$r_{12} = 50[cm] = 0.5[m]$$

$$r_{AB} = 20[cm] = 0.2[m]$$

La distancia entre:

- $q_1 y q_2$ es de 0.5[m]
- q_1 y A es $r_{1A} = 0.25[m]$
- q_2 y A es $r_{1A} = 0.25[m]$

entonces para encontrar la distancia entre q_1 y B, se aplica el teorema de pitágoras, de la siguiente manera:

de tal forma que $r_{1B} = R_{1A} = 0.32[m]$ El trabajo eléctrico se obtiene de la siguiente expresión:

$$W_{A \to B} = -q(V_B - V_A) \tag{27}$$

Para ello se cálcula el potencial eléctrico en A (V_A) y en B (V_B) .

Potencial en A V_A

Para el cálculo del potencial en A es la suma del potencial de la carga q_1 y por la carga q_1 .

$$V_A = V_{1A} + V_{2A} \tag{28}$$

$$V_A = K \frac{q_1}{r_{1A}} + K \frac{q_2}{r_{2A}} \tag{29}$$

$$V_A = 9X10^9 \frac{3X10^{-6}}{0,25} + 9X10^9 \frac{3X10^{-6}}{0,25} = 216000[V]$$
(30)

Potencial en B V_B

Para el cálculo del potencial en B es la suma del potencial de la carga q_1 y por la carga q_1 .

$$V_B = V_{1B} + V_{2B} (31)$$

$$V_B = K \frac{q_1}{r_{1B}} + K \frac{q_2}{r_{2B}} \tag{32}$$

$\boldsymbol{2019}_{-}\boldsymbol{2}$

Sedes regionales (25 de octubre de 2019)

$$V_B = 9X10^9 \frac{3X10^{-6}}{0.32} + 9X10^9 \frac{3X10^{-6}}{0.32} = 168750[V]$$
(33)

Ya conocidos los valores de V_A y V_B , se reemplaza en la ecuación 27.

$$W_{A\to B} = -2x10^{-6}(168750 - 216000) = 0,09[J]$$
(34)

¡Éxitos!