

Master's Degree in Data Science Department of Mathematics and Computer Science(LM-Data)

Multiparametric analysis in Volcanic **Environment**

Final Thesis

Author:

Gaetano De Angelis

Supervisor: Prof. Sebastiano Battiato

INGV CO-SUPERVISOR:

Dr. Salerno Giuseppe

Dr. Reitano Danilo

Academiic Year 2024-2025

1. Introduction

Data drive decisions, improve efficiency, and boost performance. In natural hazard monitoring, timely and accurate data are crucial for safety.

Volcanic monitoring

INGV manages thousands of data daily via sensor networks...

• Case study: Etna 2018

Focus on eruption affecting Zafferana Etnea in 2018.

Data analysis process

Managing data and Correlation analysis between variables and features...

• Model implementation

Machine and Deep Learning simulations to predict earthquakes within 24 hours.

2. Something about volcanic aspects

It's important to know how is structured the volcano's building; its divided in three parts:

- Deep pumbling system: Where Magma forms under high pressure and temperature and Incorporates deep volatiles (He, C, O, S, H).
- Intermediate pumbling system: In which Magma rises and may accumulate in crustal reservoirs; here gases start to separate.
- Shallow system: In the highest part of the volcano's building it happen Final gas separation and formation of gas phases.

1. Image on the right side is an example of a mapping visualization of the earthquake; implemented by INGV experts to localize seismic events.

2.1 RMS Graphical representations

2. Just to have an idea, here an example of RMS graphical representation. This is how changes on volcanic tremor are typical represented at INGV.

3. Data: How are collected and how to clean them

• The dataset is a CSV file with sensor data from Mount Etna.

• Data issues

• Each variable required a specific cleaning approach.

Cleaning steps

• Outliers were filtered with the Interquartile Range (IQR) method and Features were standardized using Z-score and Min–Max normalization.

• Feature engineering

A 30-step sliding window was applied to add temporal context.

4. Feature selection and analysis

Some functions to see feauture's patterns:

- A correlation matrix: highlighting relevant variables
- Clustering process: Dividing earthquakes in categories based on depth (deep, intermediate, shallow)
- PCA: to reduce variables dimensions from three to two
- A scatter plot: for a better graphical visualization

3. Image represents graphical visualization after the clustering process implementation; we can distinguish earthquake in differents clusters based on their depth

5. Train the model: Prevision of seismic events

5.1 Random Forrest

As a first attempt, I implemented a Random Forest model, which combines multiple decision trees to make predictive decisions. I carried out two different experiments:

- Experiment 1: Using raw data without any preprocessing; the accuracy was low, with many missed earthquake events.
- Experiment 2: Introducing a more robust preprocessing phase to improve performance.

5.1 Graphical visualization of the results

4. The feature importance plot highlights that in this casethe most informative variables are those exhibiting sudden changes.

5.2 LSTM Model

The analysis focused on predicting the occurrence of earthquakes within the next 24 hours by constructing a binary target variable (quake_next24h).

The predictive model was designed with:

a single LSTM layer (64 units)

a dropout layer to reduce overfitting

a dense layer (32 neurons)

a sigmoid output layer for probability estimation.

5.2 LSTM Graphical representation

5. In the left graph we can see a high precision which higlight difficulty of the model to capture false negatives. In the ROC curve performances increases but still with imperfections; this could be a good baseline model.

5.3 Mulivariate LSTM

In natural phenomena is needed to take in to account all the variables simultaneosly; to overcome these shortcomings, a multivariate LSTM model was developed.

- **Model design**: The multivariate framework takes into account more variables (CO2,SO2,Clinometry)
- Evaluation strategy: The univariate model doesn't captured rare events; now we focus on F1-score and recall

5.3 Multivariate LSTM graphical representations

6. This is the proof that the model perform better taking into account rare events; but there is still an instability given by the "nature" of phenomena

6. Reviewing the results

The performance are "theoretically" good but he model proposed could be only a simulation or baseline for deepest architeture; this is for the imprevedibility of natural phenomena and earthquake in general.

	date	ten_batt	temp_CR10	tilt_x_Avg	tilt_y_Avg	temp_tilt	nord_tilt	barometro
479203	2022-12-31 22:45:00	12.42	11.76	102.644	255.606	7.080	230.5	854
479204	2022-12-31 23:00:00	12.43	11.69	102.637	255.507	7.078	230.5	854
479205	2022-12-31 23:15:00	12.44	11.62	102.629	255.438	7.077	230.5	854
479206	2022-12-31 23:30:00	12.42	11.55	102.625	255.394	7.075	230.5	854
479207	2022-12-31 23:45:00	12.41	11.48	102.629	255.430	7.084	230.5	854

7. Here the variables taken into account during LSTM multivariate training

7. Conclusions

In conclusion, this work emphasizes the power of deep-learning architetures and models even in critical phenomena such as earthquakes; but the imprevedibility of the events make imperfect the model.

