Assignment_4

July 16, 2025

1 Assignment 4

4

ВЗ

421

220107089 | Altynbek Adilkhan

Q1: Import the required libraries and Modules

```
[1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Q2: Read the file 'Boston_crime.csv'. Use the argument encoding = 'latin-1' if you find problem related to encoding

#Read the file Boston_crime.csv. If you found an error use the argument encoding = 'latin-1'

```
try:
    crime_df = pd.read_csv('Desktop/SDU/DBMS2/Boston_crime.csv')
except UnicodeDecodeError:
    crime_df = pd.read_csv('Desktop/SDU/DBMS2/Boston_crime.csv', usencoding='latin-1')
crime_df.head(5)
```

[2]:		INCIDENT	_NUMBER	OFFENSE	E_CODE		OFFENS	E_CODE_	_GROUP	OFFE	NSE_DE	SCRIPT	CION ,	\
	0	I182	2070945		619			La	arceny	LAR	CENY A	LL OTH	HERS	
	1	I182	2070943		1402			Vand	dalism		•	VANDAI	LISM	
	2	I182	2070941		3410				Towed	TOWE	D MOTO	R VEHI	CLE	
	3	I182	2070940		3114	In	vestig	ate Pro	perty	INVES	TIGATE	PROPE	ERTY	
	4	I182	2070938		3114	In	vestig	ate Pro	operty	INVES	TIGATE	PROPE	ERTY	
		DISTRICT	REPORTI	NG_AREA	SHOOTI	NG	YEAR	MONTH	DAY_OF	_WEEK	HOUR	UCF	R_PART	\
	0	D14		808	N	aN	2020	4	St	ınday	13	Par	rt One	
	1	C11		347	N	aN	2020	4	Tu	esday	0	Par	rt Two	
	2	D4		151	N	aN	2020	4	Me	onday	19	Part	Three	
	3	D4		272	N	aN	2020	4	Me	onday	21	Part	Three	

NaN 2020

Monday

21 Part Three

```
STREET
                      Lat
                                                          Location
0
   LINCOLN ST
               42.357791 -71.139371
                                      (42.35779134, -71.13937053)
1
      HECLA ST
                42.306821 -71.060300
                                      (42.30682138, -71.06030035)
2
                                      (42.34658879, -71.07242943)
  CAZENOVE ST
                42.346589 -71.072429
3
   NEWCOMB ST
                42.334182 -71.078664
                                      (42.33418175, -71.07866441)
4
      DELHI ST 42.275365 -71.090361
                                      (42.27536542, -71.09036101)
```

Q3: Show your tabulated data and calculate the five number summary

#Show your tabulated data
#Five number summary

[3]: crime_df.describe(include='all')

[3]:		INCIDENT_NUMBER	OFFENSE_CODE		OFFENSE_COI	DE_GROUP	\	
	count	319073	-		_	319073		
	unique	282517	NaN			67		
	top	I162030584	NaN	Motor Veh	icle Accident H	Response		
	freq	13	NaN			37132		
	mean	NaN	2317.546956			NaN		
	std	NaN	1185.285543			NaN		
	min	NaN	111.000000			NaN		
	25%	NaN	1001.000000			NaN		
	50%	NaN	2907.000000			NaN		
	75%	NaN	3201.000000			NaN		
	max	NaN	3831.000000			NaN		
		OFFE	NSE_DESCRIPTION	DISTRICT RE	EPORTING_AREA S	SHOOTING	\	
	count		319073	317308	319073	1019		
	unique		244	12	879	1		
	top	SICK/INJURED/M	EDICAL - PERSON	B2		Y		
	freq		18783	49945	20250	1019		
	mean		NaN	NaN	NaN	NaN		
	std		NaN	NaN	NaN	NaN		
	min		NaN	NaN	NaN	NaN		
	25%		NaN	NaN	NaN	NaN		
	50%		NaN	NaN	NaN	NaN		
	75%		NaN	NaN	NaN	NaN		
	max		NaN	NaN	NaN	NaN		
		YEAR	MONTH 1	DAY_OF_WEEK	HOUI	R UCR_P	ART	\
	count	319073.000000	319073.000000	319073	319073.000000	_	983	
	unique	NaN	NaN	7	Nal	V	4	
	top	NaN	NaN	Friday	Nal	N Part Th	ree	
	freq	NaN	NaN	48495	Nal	N 158	553	
	mean	2018.393264	5.158609	NaN	13.11820	5	NaN	
	std	1.286184	3.304448	NaN	6.29420	5	NaN	
	min	2016.000000	1.000000	NaN	0.000000)	NaN	

```
25%
           2018.000000
                              4.000000
                                                 NaN
                                                           9.000000
                                                                              NaN
50%
           2019.000000
                              4.000000
                                                 NaN
                                                           14.000000
                                                                              NaN
75%
           2019.000000
                              4.000000
                                                 NaN
                                                           18.000000
                                                                              NaN
max
           2020.000000
                             12.000000
                                                 NaN
                                                           23.000000
                                                                              NaN
                STREET
                                                                           Location
                                   Lat
                                                   Long
                308202
                         299074.000000
                                         299074.000000
                                                                             319073
count
unique
                  4657
                                   NaN
                                                    NaN
                                                                              18194
        WASHINGTON ST
                                                          (0.00000000, 0.00000000)
top
                                   NaN
                                                    NaN
freq
                 14194
                                   NaN
                                                    NaN
                                                                              19999
                             42.214381
                                            -70.908272
mean
                   NaN
                                                                                NaN
std
                   NaN
                              2.159766
                                              3.493618
                                                                                NaN
min
                   NaN
                             -1.000000
                                            -71.178674
                                                                                NaN
25%
                   NaN
                             42.297442
                                            -71.097135
                                                                                NaN
50%
                   NaN
                             42.325538
                                            -71.077524
                                                                                NaN
75%
                   NaN
                             42.348624
                                            -71.062467
                                                                                NaN
                   NaN
                             42.395042
                                             -1.000000
                                                                                NaN
max
```

[4]: crime_df.describe(percentiles=[0.25, 0.5, 0.75]).loc[['min', '25%', '50%', \square '75%', 'max']]

```
[4]:
         OFFENSE_CODE
                         YEAR MONTH HOUR
                                                  Lat
                                                            Long
                                 1.0
                                       0.0 -1.000000 -71.178674
                111.0 2016.0
    min
    25%
               1001.0
                       2018.0
                                 4.0
                                       9.0 42.297442 -71.097135
    50%
                                 4.0 14.0 42.325538 -71.077524
               2907.0 2019.0
    75%
               3201.0
                       2019.0
                                 4.0
                                      18.0 42.348624 -71.062467
    max
               3831.0 2020.0
                                12.0
                                      23.0 42.395042 -1.000000
```

Q4: Determine the data types of the features in the dataset?

What are the dataset features types (dtypes)

```
[5]: crime_df.dtypes
```

```
[5]: INCIDENT_NUMBER
                              object
     OFFENSE_CODE
                               int64
     OFFENSE_CODE_GROUP
                              object
     OFFENSE_DESCRIPTION
                              object
     DISTRICT
                              object
     REPORTING_AREA
                              object
     SHOOTING
                              object
     YEAR
                               int64
     MONTH
                               int64
     DAY_OF_WEEK
                              object
     HOUR
                               int64
     UCR PART
                              object
     STREET
                              object
     Lat
                             float64
```

Long float64
Location object
dtype: object

arype: object

Q5: Convert the data type of 'DAY_OF_WEEK' and 'OFFENSE_CODE_GROUP' to category type and then check the data types.

Convert the type of data in 'DAY_OF_WEEK' and 'OFFENSE_CODE_GROUP' into catrgory type # Check again the dataset features types

```
[6]: crime_df['DAY_OF_WEEK'] = crime_df['DAY_OF_WEEK'].astype('category')
crime_df['OFFENSE_CODE_GROUP'] = crime_df['OFFENSE_CODE_GROUP'].

→astype('category')
```

[7]: crime_df.dtypes

```
[7]: INCIDENT_NUMBER
                               object
     OFFENSE_CODE
                                int64
     OFFENSE_CODE_GROUP
                             category
     OFFENSE_DESCRIPTION
                               object
     DISTRICT
                               object
     REPORTING_AREA
                               object
     SHOOTING
                               object
    YEAR
                                int64
    MONTH
                                int64
    DAY_OF_WEEK
                             category
    HOUR
                                int64
    UCR_PART
                               object
     STREET
                               object
    Lat
                              float64
    Long
                              float64
    Location
                               object
     dtype: object
```

Q6: Display the value counts for the 'DAY_OF_WEEK' and 'OF-FENSE CODE GROUP' columns.

#Show value counts of DAY_OF_WEEK and OFFENSE_CODE_GROUP columns

```
[8]: day_of_week_counts = crime_df['DAY_OF_WEEK'].value_counts() offense_code_group_counts = crime_df['OFFENSE_CODE_GROUP'].value_counts()
```

```
[9]: print("Value counts for 'DAY_OF_WEEK':")
print(day_of_week_counts)

print("\nValue counts for 'OFFENSE_CODE_GROUP':")
print(offense_code_group_counts)
```

```
Value counts for 'DAY_OF_WEEK':
DAY_OF_WEEK
Friday
             48495
Wednesday
             46729
Thursday
             46656
Tuesday
             46383
Monday
             45679
Saturday
             44818
Sunday
             40313
Name: count, dtype: int64
Value counts for 'OFFENSE_CODE_GROUP':
OFFENSE_CODE_GROUP
Motor Vehicle Accident Response
                                              37132
Larceny
                                              25935
Medical Assistance
                                              23540
Investigate Person
                                              18750
Other
                                              18075
                                                  7
HUMAN TRAFFICKING
INVESTIGATE PERSON
                                                  4
Biological Threat
Burglary - No Property Taken
                                                  2
HUMAN TRAFFICKING - INVOLUNTARY SERVITUDE
Name: count, Length: 67, dtype: int64
```

Q7: Show the unique values in the UCR_PART column to see its contents

Show the unique values in the UCR_PART column to understand the contents

```
[14]: ucr_part_unique = crime_df['UCR_PART'].unique()
    print("Unique values in 'UCR_PART':")
    print(ucr_part_unique)
Unique values in 'UCR_PART':
```

Q8: Filter the dataset to include only the rows where the UCR_PART column is Part One, Part Two, or Part Three. Don't forget to check the size of the dataset.

#Filter dataset and make it based only on Part One, Part Two, and Part Three (in UCR_PART column # Show the size of the dataset

```
[15]: filtered_df = crime_df[crime_df['UCR_PART'].isin(['Part One', 'Part Two', 'Part_\subseteq Three'])]
print(f"\nFiltered_dataset size (rows, columns): {filtered_df.shape}")
```

Filtered dataset size (rows, columns): (317751, 16)

['Part One' 'Part Two' 'Part Three' 'Other' nan]

Q9: Drope the columns INCIDENT_NUMBER, OFFENSE_CODE, OFFENSE_DESCRIPTION, REPORTING_AREA, SHOOTING, STREET, Lat, Long, Location from the dataset.

Don't forget to check the above step by showing the dataset.

Drope the columns INCIDENT_NUMBER, OFFENSE_CODE, OFFENSE_DESCRIPTION, REPORTING_AREA, SHOOTI #Check the above step by showing the dataset

Dataset after dropping specified columns:

	OFFENSE_CODE_GROUP	DISTRICT	YEAR	MONTH	DAY_OF_WEEK	HOUR	UCR_PART
0	Larceny	D14	2020	4	Sunday	13	Part One
1	Vandalism	C11	2020	4	Tuesday	0	Part Two
2	Towed	D4	2020	4	Monday	19	Part Three
3	Investigate Property	D4	2020	4	Monday	21	Part Three
4	Investigate Property	В3	2020	4	Monday	21	Part Three

Q10: Show the number of the missing values in each column at once

#Show the number of missing values in each column at once

```
[18]: missing_values = crime_df.isnull().sum()
print(f"Missing values in each column: \n{missing_values}")
```

Missing values in each column: INCIDENT_NUMBER 0 OFFENSE_CODE OFFENSE_CODE_GROUP 0 OFFENSE_DESCRIPTION 0 DISTRICT 1765 REPORTING_AREA 0 SHOOTING 318054 YEAR 0 0 MONTH DAY_OF_WEEK 0 HOUR 0 UCR_PART 90 STREET 10871 Lat 19999 19999 Long Location 0

dtype: int64

Q11: Drop the missing values in the DISTRICT column, then check to see if there are any remaining missing values.

#Drope the missing value on column DISTRICT #Again, show the missing values again

```
[19]: crime_df_dropped_district = crime_df.dropna(subset=['DISTRICT'])
missing_values_after_dropping = crime_df_dropped_district.isnull().sum()
print(f"Missing_values_after_dropping 'DISTRICT' column:__

\( \_\n\{\text{missing_values_after_dropping}\}\)'')
```

```
Missing values after dropping 'DISTRICT' column:
INCIDENT_NUMBER
OFFENSE CODE
                             0
OFFENSE_CODE_GROUP
                             0
OFFENSE_DESCRIPTION
                             0
DISTRICT
                             0
REPORTING_AREA
                             0
SHOOTING
                        316291
YEAR.
                             0
MONTH
                             0
DAY_OF_WEEK
                             0
HOUR
                             0
UCR_PART
                            90
STREET
                          9824
                         19715
Lat
Long
                         19715
Location
                             0
dtype: int64
```

Q11: Use subplots to draw a histogram as described above.

Don't forget to use Using constrained_layout argument to set the spacing between subplots #Another way to graph all the features at once that your interested to study them

Q12. What is the most common type of crime in Boston?

Answer this question both numerically, by providing counts, and graphically, by using a histograph the crimes type in Bostons are in the column OFFENSE_CODE_GROUP.

#Calculate the counts for all crimes

#Visualize all the crimes on Boston using catplot. Show the graph in the horizontal axis

Crime type counts:

OFFENSE_CODE_GROUP

Motor Vehicle Accident Response	3713	32		
Larceny	2593	35		
Medical Assistance	2354	ŀΟ		
Investigate Person				
Other	1807	' 5		
HUMAN TRAFFICKING		7		
INVESTIGATE PERSON		4		

Biological Threat 2
Burglary - No Property Taken 2
HUMAN TRAFFICKING - INVOLUNTARY SERVITUDE 2

Name: count, Length: 67, dtype: int64

Based on the results of Q12, give in order most common type of crime in Boston

Answer:

- 1- Larceny Theft
- 2- Motor Vehicle Theft
- 3- Aggravated Assault

Q13. Which year has the highest rate of crimes?

Answer this question both numerically, by providing counts, and graphically, by using a histographical the counts of crimes based on year #Use cat plot to answer Q2

```
plt.title("Crimes by Year in Boston")
plt.xlabel('Year')
plt.ylabel('Crime Count')
plt.show()
```

Crime counts by year:

YEAR
2019 100886
2018 99114
2020 65685
2016 53388

Name: count, dtype: int64

Based on the results of Q13, Which year has the highest rate of crimes in Boston Answer: 2019

Q14. What is the most common type of Uniform Crime Reporting Offence (UCR Part) in Boston?

Answer this question both numerically, by providing counts, and graphically, by using a histographical the counts of crimes that is based on UCR part #Visualize Q14

```
plt.title("Most Common UCR Parts in Boston")
plt.xlabel('UCR Part')
plt.ylabel('Count')
plt.show()
```

```
Crime counts by UCR Part:
UCR_PART
Part Three 158553
Part Two 97569
Part One 61629
Other 1232
Name: count, dtype: int64
```


Based on the result of Q 14, What is the most common type of Uniform Crime Reporting Offence (UCR Part) in Boston? Answer: Part Three

Q15. Which district in boston is the most dangerous district and which one is the safest? District Names To help you see the names of each district, we've replaced the district codes with their corresponding real names. This adjustment has already been made for you.

```
[30]: # Replace district codes with real names without inplace=True

crime_df['DISTRICT'] = crime_df['DISTRICT'].replace({
    'A1': 'Downtown', 'A15': 'Charlestown', 'A7': 'East Boston', 'B2':
    \( 'Roxbury', 'B3': 'Mattapan',
    \( 'C6': 'South Boston', 'C11': 'Dorchester', 'D4': 'South End', 'D14':
    \( \) \( 'Brighton', 'E5': 'West Roxbury',
    \( 'E13': 'Jamaica Plain', 'E18': 'Hyde Park' \) \)
```

Crime counts by district:

DISTRICT

49945 Roxbury Dorchester 42530 South End 41915 Downtown 35717 Mattapan 35442 South Boston 23460 Brighton 20127 Jamaica Plain 17536 Hyde Park 17348 East Boston 13544 West Roxbury 13239 Charlestown 6505 Name: count, dtype: int64

Based on the result of Q 14, Which district in boston is the most dangerous district and which one is the safest? Answer: The most dangerous district is — Roxbury The safest district is — Charlestown