10, 1	Estimating the Probability Density Function
	- Consider the problem of estimating a continuous pdf $f(x)$.
	Histogram:
	- Suggested width, $d = 3.5 \frac{s}{3n}$, $S = sample standard deviation$
10.1.1	Kernel Method
	-involves taking a certain weighted average of data points near X to estimate $f(x)$.
	- Kernel Estimate of f(x),
	$\hat{f}(x) = \frac{1}{n\Delta} \sum_{i=1}^{n} \omega \left(\frac{x - X_i}{\Delta} \right), \text{ where } \omega(\xi) = \text{kernel}, \Delta = \text{bandwidth} = \frac{1.06}{510} \text{ S}$
	Assume $W(Z)$ is the standard normal pdf
10.2	Nonparametric Curve Smoothing
	- In many cases, we may not know the functional form of a model, meaning
	we don't know if the actual model is linear, quadratic, or other forms. Then
	we may use nonparametric regression, smoothing specifically,
	- Many smooth nonparametric estimates of $P(X)$ involve giving greater weight to pairs
	of observations (Xi, Yi) for which Xi is near X and lesser weight to other pairs.
	splines, loess, kernel
10.2.1	Loess Method
	- Note that $\varphi(x)$ can often be adequately approximated by a linear function
	$\int (x) = \beta_0 + \beta_1(x - x_0) \text{when } x \text{ is near } x_0,$
	- first determine the k values of the X_i 's nearest to X_o (Span = $\frac{k}{n}$) *Span determines the smoothness of the approximation
	1 Span, & complexity (smooth or constant model)
	1 Span, 4 complexity (Complex model)
	- The loess approximation uses weighted least squares to find the l(x) that
	minimizes, $(X_0 - X_1)$
	minimizes,
	, I = MAN /

$\frac{1}{X}$ = can be either linear, quadratic, or higher terms.
$N_{\kappa}(X_0) = k$ nearest X;'s to the point X_0
$\mathcal{N}(u) = (1 - u^3)^3$
$\triangle_{X_0} = \max_{x_i \in N_k(x_0)} X_i - X $, meaning it is the farthest point X; among K nearest
points from Xo, so u becomes the standardization.
Kernel Method
- Kernel Method is determined by the choice of h = bandwidth.
th, tomplexity th templexity
- Kernel Method uses points within the range of Xo ± h, where as
KNN and Loess uses a predetermined k number of points, Universally.
- The conditional expectation of Y given X=x is,
f f(x II)
$\phi(x) = \int y \cdot \frac{f(x,y)}{f(x)} dy$, so estimating $\phi(x) = \int y \cdot \frac{f(x,y)}{f(x)} dy$, so estimating $\phi(x) = \int y \cdot \frac{f(x,y)}{f(x)} dy$
is obtained by estimating $f(x,y)$ and $f_x(x)$ by the kernel method
and then performing the integration to get an approximation of the
conditional expectation.
- $f(x,y)$ can be obtained,
$\frac{n}{2} \left(\frac{x - x_i}{x - x_i} \right) = \frac{n}{2} \left(\frac{x - x_i}{x - x_i} \right)$
$\widehat{f}(x,y) = \frac{1}{N \Delta_X \Delta_Y} \sum_{i=1}^{M} w\left(\frac{x - X_i}{\Delta_X}\right) w\left(\frac{y - Y_i}{\Delta_Y}\right)$
A / X-X1
ZY; W(Dx)
$= \frac{\sum_{i=1}^{n} Y_{i} \mathcal{W}\left(\frac{x-X_{i}}{\Delta x}\right)}{\sum_{i=1}^{n} \mathcal{W}\left(\frac{x-X_{i}}{\Delta x}\right)}, \text{ where } n \text{ is the number of}$
i=1 (\(\Delta \times \) points within the bandwidth.
KNN Loess Kernel
- take the averange of K - Each point Xo has unique - Fach point Xo has unique
nearest X;'s from the Xo function with K nearest function within the range
- More like step function Xi's of Xo ± h.
- The closer, the more weights - Uses the conditional pdf

