Abstract Algebra

: Lecture 9

Leo

2024.10.22

Theorem 1. A_n is a simple group when $n \ge 5$.

Remark 2. Let $G = \text{Sym}(\Omega) = S_n$, if $|\Omega| = n$.

- each element of G is a product of transpositions. \checkmark .
- each even permutation of Ω is a product of some 3-cycles.

证明. Let $N \triangleleft A_n$, s.t. $N \neq \{e\}$. We aim to prove $N = A_n$.

Claim 1: N cotains a 3-cycle. $\chi(W) = W$. Let $e \neq g \in N$ s.t. $|\operatorname{Fix}(g)| \geqslant |\operatorname{Fix}(x)|$ for all $x \in A_n$. In which $\operatorname{Fix}(x) = \{\omega \in \Omega | \omega^x = \omega, \ x \in S_n\}$ called the set of fixed points of x.

Remark 3. Since g is a even permutation, $|\operatorname{Fix}(g)| \leq n-3$.

If $|\operatorname{Fix}(g)| = n - 3$ then g is a 3-cycle as claimed.

To complete the proof of the claim, we assume that $|\operatorname{Fix}(g)| < n-3$. Then relabling if necessary,

we may write $g = \begin{cases} (1234)(5...) & \\ (1234)(5...) & \\ (123)(45...) & \\ \end{cases}$ or g = (12)(34) which means that we write g into a product of disjoint cycles and put the longest cylce in the first place, and relabling if necessary.

If $\text{Fix}(g) \cap \{1,2,3,4,5\} = \emptyset$ and so $\text{Fix}(g) \subseteq \{6,7,\ldots,n\}$. In particular, $1^g = 2$. Let $\sigma = (345)$ and $h = [\sigma,g]$. Then $h \in N$ and $1^{\sigma} = 2^{g^{-1}} = 1$. So $1 \in \text{Fix}(h)$ and h fixes each point in $(a) \in \mathbb{R}^n$. in Fix(g). Thus $|\text{Fix}(h)| \ge |\text{Fix}(g)| + 1$, and h = 1 by our assumption. Then $[\sigma, g] = 1 \Rightarrow \sigma g = g\sigma$ it is obviously wrong, just need to consider the result of conjugacy action of σ .

This is a contradiction, so g is not a product of two disjoint cycles. It is just a 3-cycle as we

Lemma 5. Let $g = (ijk...), \ \sigma \in S_n, \ g^{\sigma} = (i^{\sigma}j^{\sigma}k^{\sigma}...)$

04(i, i, ... it) ~= (O(i,) o(i,) ... o(it)). $(\alpha(i)) = (i) \circ \alpha \text{ group action.}$ $(\alpha(i)) = (i) \circ \alpha \text{ group action.}$ $= (i) \circ \alpha = (i) \circ \alpha = (i) \circ \alpha$ **Remark 6.** 1. $|\operatorname{Fix}(g)| = n - 3 \Leftrightarrow g \text{ is } g \text{ 3-cycle.}$ 2. As g is even, if g is not a 3-cycle, then either g moves at least 5 points or g is a product of two $= O(\sqrt{1+1})$ disjoint transpositions. for uffa(i), ..., a(i)) + Claim 2: N contains all 3-cycles. $O(u) \notin \{t_1, \dots, i_t\} = \{t_1, \dots, i_t\} = \{t_1, \dots, t_t\} = \{t_1, \dots, t_t\} = \{t_1, \dots, t_t\} = \{t_2, \dots, t_t\} = \{t$ Then there exists $x \in S_n$ such that $(ijk)^x = (123)$. 1. If $\{i, j, k\} \cap \{1, 2, 3\} = \emptyset$, then let x = (1i)(2k)(3j)(23). The $(ijk)^x \neq (123)$ 2. Assume $|\{i, j, k\} \cap \{1, 2, 3\}| = 1$. WLOG, i = 1 and $\{j, k\} \cap \{2, 3\} = \emptyset$. Let x = (2j)(3k). $n(ijk)^x = (123)$ Then $(ijk)^x = (123)$. =) u is a 3. Assume $|\{i,j,k\} \cap \{1,2,3\}| = 2$. WLOG, i = 1, j = 2 and k = 4. Let x = (k35). That means all 3-cycles are in N since $N \triangleleft A_n$, and each element fo A_n is a product of 3-cycles so fixed part $N=A_n$. **Remark 8.** If G is simple then for all $e \neq g \in G$, the normal closure $g^G = G$ where $g^G = \langle g^x | x \in G \rangle$. 由放射组成 To group. Permutation Group **Definition 9.** For a set Ω , each subgroup of $\operatorname{Sym}(\Omega)$ is called a permutation group on Ω . **Theorem 10.** (Cayley) Every finite group is isomorphic to a permutation group. 证明. Let G be a group, $G = \{g_1, g_2, \dots g_n\} = \Omega$. For each element $x \in G$ define a permutation on Ω by $\hat{x}: g_i \mapsto g_i x$. Then $\hat{x} \in \operatorname{Sym}(\Omega)$ (the proof of \hat{x} is a bijection is easy to check). Let $\hat{G} = \{\hat{x} | x \in G\}$ then \hat{G} is a group which isomorphic to G since $\hat{x}\hat{y} = \widehat{xy}$. Also $\hat{G} \leqslant \operatorname{Sym}(\hat{\Omega})$ For any $g_i, g_j \in G$ there exists $\hat{x} \in \hat{G}$ s.t. $g_i^{\hat{x}} = g_j$. So \hat{G} is transitive on Ω . And such \hat{x} is unique. So \hat{G} is regular on Ω which means only the identity permutation fixes some point of Ω .

下面证明 H 含有所有的 3 轮换. 无妨设上述的 $\tau = (1\ 2\ 3)$. 对于任一 $(i\ j\ k)\in A_n$, 取

$$\nu = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & \cdots & n \\ \\ i & j & k & x_4 & x_5 & \cdots & x_n \end{array}\right),$$

其中 $(x_4 \ x_5 \ \cdots \ x_n)$ 是 $\{1,2,\cdots,n\}\setminus \{i,j,k\}$ 的一个适当的排列,使得 $\nu\in A_n$. 这样适当的排列是可以取到的,原因是:如果 ν 是 奇置换,将 ν 的表达式中的 x_4 和 x_5 对调,即令

$$u' = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & \cdots & n \\ \\ i & j & k & x_5 & x_4 & \cdots & x_n \end{array} \right),$$

则 $\nu' = (x_4 \ x_5)\nu$ 是偶置换. 由引理 1.10 即知 $(i \ j \ k) = \nu \tau \nu^{-1} \in H$. 这就完成了定理的证明.