

7

Excretory Products and their Elimination

EXCRETORY WASTE

Common Nitrogenous Wastes

Nature of nitrogenous waste formed and their excretion vary among animals depending on the habitat/availability of water.

Common nitrogenous waste	Nature & Examples	Toxicity level and water required	Special Features
Ammonia (Ammonia converts into urea in liver)	 Ammonotelic Aquatic insects Many bony fishes Aquatic amphibians 	Maximum	 Diffusion through gills surface or body surface as ammoium NH₄⁺ ions
Urea	UreotelicMarine fishesMany terrestrial amphibiansMammals	Lesser	 Kidneys filter urea from blood
Uric acid	Uricotelic Land snails Insects Reptiles Birds	Least	Pellet/Paste (Semi-solid)Minimum loss of water

Different Excretory Structures

* Excretory streuture eliminate nitrogenous waste & maintain fluid and ionic balance

Structures	Examples
Protonephridia/flame cells (osmoregulation)	Platyhelminthes (<i>Planaria</i>) Rotifers Some annelids Cephalochordates (<i>Amphioxus</i>)
Nephridia	• Annelids (Earthworms)
Malpighian tubules	• Insects (Cockroaches)

• Antennal/Green glands • Crustaceans (Praw	vn)
---	-----

- Function of excretory structures:
- Eliminate nitrogenous wastes.
- Maintain ionic and acid-base balance of body fluids, i.e., osmoregulation.

Urinary bladder (Store urine)

signals

Activates

Stretch receptors

NEPHRON

Smooth muscles of Bladder

contractUrethral sphincters relax

Urine

Release

Functional unit of kidney Nearly 1 million complex tubular structure

Each nephron has two parts—(i) Glomerulus (ii) Renal Tubules (Tuft of capillaries, line by simple squamous epithelium)

- ❖ Juxtaglomerular apparatus (JGA): Cellular modifications in D¢T and afferent arteriole at the location of their contact.
- JGA is composed of JG Cells and Macula densa.
- * DCT and collecting duct concentrate the filtrate about four times.

- Filtration is due to pressure in the glomerular capillaries.
- ❖ Glomerular filtration rate (GFR) = Filtration/min 125 ml/min

Operates between the two limbs of loop of Henle and vasa recta

The Filtrate gets concentrated as it moves down the descending loop of Hence and diluted as it move by ascending loop of Henle.

REGULATION OF KIDNEY FUNCTION		
Hypothalamus	JGA/ Renin-Angiotensin Mechanism	Heart
Works when GFR Low, Blood Volume	Low GFR/ Glomerular blood	Increase blood flow to atria of heart
Low	flow/Glomerular blood pressure	\
• osmoreceptors in hypothalamus	Activate↓	Release of ANF (Atrial natriuretic factor)
activated. ❖ Release of ADH/ Vasopressin ↓ Prevent Diuresis	JG cells to release renin	↓Work
	Angiotensinogen (Liver) Angiotensin I Angiotensin II Angiotensin onverting enzyme Activate (Vasopressin) Adrenal cortex aldosterone	Vasodilation
		↓Result
Prevent Diuresis		 Blood pressure decrease
		 GFR decrease
		 Checks on Renin-Angiotensin Mechanism
	Reabsorption of Na+ & water from distal	
	part of Tubule	
	↓	
	Blood pressure and GRP increase	

Characteristics and Composition of Urine

- * Colour Light yellow
- **⋄** pH = 6
- * Odour Characteristic
- * Urea 25-30 gm/day
- Glucosuria [Glucose in urine]
 Ketonuria [Ketone in urine]

 Diabetes mellitus

Role of Other Organs in Excretion

Accessory structure	Basic work
Lungs	• Remove large amount of CO ₂
	Approximately 200 mL/min
	Remove significant quantity of water
Liver (Largest gland)	• Remove Bile-containing substances along with Digestive wastes.
Skin	Removes NaCl, urea and lactic acid
Sweat gland	Facilitates cooling effect
Sebaceous gland	• Removes steroles, hydrocarbons, waxes.
Salivary glands	Small amount of nitrogenous wastes are eliminated through saliva

Disorders of Excretory System

Disorders	Symptoms or Treatment	
Renal calculi	Stone or insoluble mass of crystalised salts (e.g., oxalates)	
Glomerulonephritis	Inflammation of glomeruli of kidney	
Renal/kidney failure	Malfunctioning of kidneys may lead to kidney failure.	
	Treatment	
	(i) Haemodialysis: Process to remove urea from blood	
	• Boon for thousands of uremic patients all over the world.	
	• Composition of dialysing fluid is same as plasma except the nitrogenous wastes.	
	(ii) Kidney transplantation	
	Ultimate method in correction of acute renal failure	
	• Functional kidney is taken from donor	
	• To minimise rejection, close relatives are preferred as donor	
	• Modern clinical problems have increased success rate of such complicated techniques	