

Pentographe de TGV

Le pantographe est essentiellement constitué d'un archet frottant sur la caténaire articulé autour de deux bras inférieur et supérieur et de deux bielles (voir Figure 2 et Figure 3). La mise en mouvement du pantographe et le maintien de l'archet sur la caténaire est assurée par un coussin pneumatique et d'une came

Figure 2 : Vue d'un pantographe

ure 3 : Descriptif d'un pantographe

 $(\overrightarrow{x_0}, \overrightarrow{x_1}) = \theta_1, (\overrightarrow{x_0}, \overrightarrow{x_2}) = \theta_2, (\overrightarrow{x_0}, \overrightarrow{x_3}) = \theta_3$

2 : Bras supérieur (masse m_2 , centre de gravité G_2 , moment d'inertie I_{G_2})

(masse m_2 , centre de gravite G_2 , moment a inertie I_{G22})

3 : Bielle inférieure

(masse m_3 , centre de gravité G_3 , moment d'inertie I_{G3z})

4: **Ressort** (Raideur k, longueur libre x_0)

$$\left\{\mathcal{T}_{(catenaire\rightarrow 2)}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{C\rightarrow 2}} \\ \overrightarrow{M_{E_{C\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{C\rightarrow 2}} = -Y_E.\overrightarrow{y_0} \\ \overrightarrow{M_{E_{C\rightarrow 2}}} = \overrightarrow{0} \end{array}\right\} \; ; \\ \left\{\mathcal{T}_{(1\rightarrow 2)}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} = -X_C.\overrightarrow{x_0} - Y_C.\overrightarrow{y_0} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} = \overrightarrow{0} \end{array}\right\} \; ; \\ \left\{\mathcal{T}_{(1\rightarrow 2)}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} = -X_C.\overrightarrow{x_0} - Y_C.\overrightarrow{y_0} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} = \overrightarrow{0} \end{array}\right\} \; ; \\ \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} = -X_C.\overrightarrow{x_0} - Y_C.\overrightarrow{y_0} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} = \overrightarrow{0} \end{array}\right\} \; ; \\ \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}}} \end{array}\right\} = \left\{\begin{array}{c} \overrightarrow{R_{1\rightarrow 2}} \\ \overrightarrow{M_{C_{1\rightarrow 2}} } \end{array}\right\} = \left\{$$

$$\left\{\mathcal{T}_{(4\rightarrow3)}\right\} = \left\{\begin{matrix} \overrightarrow{R_{4\rightarrow3}} \\ \overrightarrow{M_{G_{4\rightarrow3}}} \end{matrix}\right\} = \left\{\begin{matrix} \overrightarrow{R_{4\rightarrow3}} = -X_G.\overrightarrow{x_0} \\ \overrightarrow{M_{G_{4\rightarrow3}}} = \overrightarrow{0} \end{matrix}\right\} \; ; \; \left\{\mathcal{T}_{(0\rightarrow3)}\right\} = \left\{\begin{matrix} \overrightarrow{R_{0\rightarrow3}} \\ \overrightarrow{M_{B_{0\rightarrow3}}} \end{matrix}\right\} = \left\{\begin{matrix} \overrightarrow{R_{0\rightarrow3}} = X_B.\overrightarrow{x_0} + Y_B.\overrightarrow{y_0} \\ \overrightarrow{M_{B_{0\rightarrow3}}} = \overrightarrow{0} \end{matrix}\right\}$$

$$\left\{\mathcal{T}_{(0\rightarrow1)}\right\} = \left\{\begin{matrix} \overrightarrow{R_{0\rightarrow1}} \\ \overrightarrow{M_{A_{0\rightarrow1}}} \end{matrix}\right\} = \left\{\begin{matrix} \overrightarrow{R_{0\rightarrow1}} & = X_A \cdot \overrightarrow{x_0} + Y_A \cdot \overrightarrow{y_0} \\ \overrightarrow{M_{A_{0\rightarrow1}}} & = \overrightarrow{0} \end{matrix}\right\}; \left\{\mathcal{T}_{(2\rightarrow3)}\right\} = \left\{\begin{matrix} \overrightarrow{R_{2\rightarrow3}} \\ \overrightarrow{M_{D_{2\rightarrow3}}} \end{matrix}\right\} = \left\{\begin{matrix} \overrightarrow{R_{2\rightarrow3}} & = -X_D \cdot \overrightarrow{x_0} - Y_D \cdot \overrightarrow{y_0} \\ \overrightarrow{M_{B_{0\rightarrow3}}} & = \overrightarrow{0} \end{matrix}\right\}$$

Questions

- 1) Réalisez les figures de changement de repère
- 2) A partir de la relation \overrightarrow{AE} . $\overrightarrow{y_0} = \ell$, déterminez la relation entre θ_2 , θ_3 , a, c et ℓ
- 3) A partir de la fermeture géométrique (ACDB) déterminez :
- une relation entre θ_1 , θ_2 , θ_3 , a, b, d et e
- une relation entre θ_1 , θ_2 , θ_3 , , a, b, d et h
- 4) Déterminez les vecteurs rotation $\vec{\Omega}$ (S_1/R_0) ; $\vec{\Omega}$ (S_2/R_0) ; $\vec{\Omega}$ (S_3/R_0)
- 5) Déterminez la vitesse de $G_1 \overrightarrow{V}_{G_1 \ 1/R_0}$. Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)
- 6) Déterminez l'accélération de G_1 $\vec{\Gamma}_{G_1 \ 1/R_0}$. Vous l'exprimerez dans le repère R_0 (A, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$)
- 7) Déterminez la vitesse de G_2 \overrightarrow{V}_{G_2} $^{2/R_0}$. Vous l'exprimerez dans le repère R_0 (A, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$)
- 8) Déterminez l'accélération de G_2 $\vec{\Gamma}_{G_2 \ 2/R_0}$. Vous l'exprimerez dans le repère R_0 (A, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$)
- 9) Déterminez la vitesse de G₃ $\vec{V}_{G_3\ 3/R_0}$. Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)
- 10) Déterminez l'accélération de G_3 $\vec{\Gamma}_{G_3\ 3/R_0}$. Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)
- 11) Déterminez le moment cinétique en A de (1) par rapport à $R_0 \vec{\sigma}_{A 1/R_0}$.

Vous l'exprimerez dans le repère R_0 (A, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$)

12) Déterminez le moment dynamique en A de (1) par rapport à $R_0 \vec{\delta}_{A \, 1/R_0}$.

Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)

13) Déterminez le moment cinétique en D de (2) par rapport à $R_0 \vec{\sigma}_{D \, 2/R_0}$.

Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)

14) Déterminez le moment dynamique en D de (2) par rapport à $R_0 \, \vec{\delta}_{D \, 2/R_0}$.

Vous l'exprimerez dans le repère R_0 (A, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$)

15) Déterminez le moment cinétique en B de (3) par rapport à $R_0 \vec{\sigma}_{B 3/R_0}$.

Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)

16) Déterminez le moment dynamique en B de (3) par rapport à $R_0 \, \delta_{B \, 3/R_0}$.

Vous l'exprimerez dans le repère R_0 ($A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)

17) Appliquez le principe fondamental de la dynamique au solide (1) et écrire les équations qui en résultent.

Ne pas oublier de faire au préalable le bilan des actions mécaniques appliquées à l'ensemble isolé.

18) Appliquez le principe fondamental de la dynamique au solide (2) et écrire les équations qui en résultent.

Ne pas oublier de faire au préalable le bilan des actions mécaniques appliquées à l'ensemble isolé.

19) Appliquez le principe fondamental de la dynamique au solide (3) et écrire les équations qui en résultent.

Ne pas oublier de faire au préalable le bilan des actions mécaniques appliquées à l'ensemble isolé.

- 20) Ecrire la relation qui lie la force développée par le ressort (composante X_G) à son allongement exprimé en fonction de Θ_3 .
- 21) Faire le bilan:

Identifier le nombre d'inconnues de liaisons ainsi que le nombre d'équations et indiquer si le système peut être résolu.