Critérios para Discriminação de Duas Classes

Critério de Fisher

- Este critério procura a maior separação possível entre as classes através de uma combinação linear das variáveis.
- Considere ω_1 com n_1 pontos e ω_2 com n_2 pontos. Os vetores de médias de cada classe são

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{n \in \omega_i} \mathbf{x}_i \quad (n = n_1 + n_2)$$

- A forma mais simples de separar as classes é escolher um vetor de projeção \mathbf{w} que maximiza a distância entre as médias \mathbf{m}_1 e \mathbf{m}_2 , i.e., max $\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2 \mathbf{m}_1)$.
- Para restringir a magnitude de \mathbf{w} , fazemos \mathbf{w} com comprimento unitário, i.e., $\sum_i w_i^2 = 1$.

 O critério de Fisher maximiza a razão das variâncias entre e dentro das classses, obtida pela projeção w, i.e.,

$$J_F = \frac{||\mathbf{w}^\mathsf{T}(\mathbf{m}_2 - \mathbf{m}_1)||^2}{\mathbf{w}^\mathsf{T} \mathbf{S}_w \mathbf{w}} = \frac{\mathbf{w}^\mathsf{T} \mathbf{S}_B \mathbf{w}}{\mathbf{w}^\mathsf{T} \mathbf{S}_w \mathbf{w}}$$

em que

$$\mathbf{S}_{w} = \frac{1}{n-2} \left(n_1 \mathbf{\hat{\Sigma}}_1 + n_2 \mathbf{\hat{\Sigma}}_2 \right)$$

Nota: $\hat{\Sigma}_i$ é a estimativa de máxima verossimilhança da matriz de covariância da classe ω_i .

• A solução para \mathbf{w} que maximiza J_F é obtida através da diferenciação de J_F em relação a \mathbf{w} e igualando a zero, resultando em

$$\frac{2\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2 - \mathbf{m}_1)}{\mathbf{w}^{\mathsf{T}}\mathbf{S}_{w}\mathbf{w}} \left\{ (\mathbf{m}_2 - \mathbf{m}_1) - \frac{\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2 - \mathbf{m}_1)}{\mathbf{w}^{\mathsf{T}}\mathbf{S}_{w}\mathbf{w}} \mathbf{S}_{w}\mathbf{w} \right\} = 0.$$

• O critério de Fisher não fornece uma regra de alocação, mas apenas uma projeção em que a discriminação das classes é mais fácil de ser realizada.

Esquerda: projeção com superposição das classes. Direita: projeção segundo critério de Fisher. (Bishop, 2006)

- O critério de Fisher não fornece uma regra de alocação, mas apenas uma projeção em que a discriminação das classes é mais fácil de ser realizada.
- Para obter um critério de alocação precisamos especificar um limite (threshold) w_0 e alocar \mathbf{x} to ω_1 se

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 > 0$$

Exemplo de critério alocação

Considere que os dados são normalmente distribuídos e com $\Sigma_1 = \Sigma_2$.

Alocar **x** a ω_1 se $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 > 0$ tal que

$$\mathbf{w} = \mathbf{S}_w^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$
 e

$$w_0 = -rac{1}{2}(\mathbf{m}_1 + \mathbf{m}_2)^\mathsf{T} \mathbf{S}_w^{-1} (\mathbf{m}_1 - \mathbf{m}_2) - \log\left(rac{p(\omega_2)}{p(\omega_1)}
ight)$$

Observação: utilizamos normalidade para especificar w_0 e obter uma solução ótima. No caso de não normalidade, a solução não é necessariamente ótima.

Critérios para Discriminação de Duas Classes

Critério de Mínimos Quadrados

 Este critério utiliza todos os dados da amostra para encontrar uma solução para a qual

$$u^{\mathsf{T}}\mathbf{y}_{i}=\mathbf{t}_{i}$$

é satisfeita para constantes positivas \mathbf{t}_i .

- Lembre que $\mathbf{y}_i^\mathsf{T} = (1, \mathbf{x}_i^\mathsf{T})$ para $\mathbf{x}_i \in \omega_1$ e $\mathbf{y}_i^\mathsf{T} = (-1, -\mathbf{x}_i^\mathsf{T})$ para $\mathbf{x}_i \in \omega_2$.
- A solução é obtida por mínimos quadrados, i.e., minimizando

$$J_{\mathcal{S}} = ||\mathbf{Y}\boldsymbol{\nu} - \mathbf{t}||^2.$$

De Análise de Regressão, se Y^TY é não singular,

$$u = (\mathbf{Y}^\mathsf{T}\mathbf{Y})^{-1}\mathbf{Y}^\mathsf{T}\mathbf{t}.$$

ullet Outra solução para $oldsymbol{
u}$, minimizando $J_{\mathcal{S}}$ é

$$\nu = \mathbf{Y}^{-}\mathbf{t}$$

em que \mathbf{Y}^- é a pseudo-inversa (ou inversa generalizada) de \mathbf{Y} .

 A inversa generalizada A⁻ pode ser obtida da decomposição em valores singulares de A.

Decomposição em Valores Singulares (SVD)

- Uma matriz $\mathbf{A}_{n \times d}$ (valores reais) pode ser sempre escrita como $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathsf{T}} = \sum_{i=1}^{r} \lambda_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}$ em que
 - r é o posto da matriz **A**;
 - **U** é uma matriz de colunas ortonormais contendo n autovetores da matriz $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ ("left singular vectors");
 - **V** é uma matriz de colunas ortonormais contendo d autovetores da matriz $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ ("right singular vectors");
 - **D** é uma matriz $n \times d$ diagonal com $\sqrt{\lambda_i}$ em que $\lambda_i's$ (min $\{n,d\}$) são os maiores autovalores de $\mathbf{A}\mathbf{A}^\mathsf{T}$ ou $\mathbf{A}^\mathsf{T}\mathbf{A}$, chamados de valores singulares.
- A inversa generalizada será $\mathbf{A}^- = \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^\mathsf{T} = \sum_{i=1}^r \frac{1}{\lambda_i} \mathbf{v}_i \mathbf{u}_i^\mathsf{T}$.
- Propriedades:
 - AA⁻ e A⁻A são simétricas;
 - \bullet $AA^-A = A$;
 - $\bullet A^{-}AA^{-} = A^{-}.$

O critério de mínimos quadrados é fortemente influenciado por *outliers*. Linha rosa indica limite obtido por mínimos quadrados e linha verde por regressão logística. (Bishop, 2006)

- Se $t_i = t_1$ (constante) para todo $\mathbf{x}_i \in \omega_1$ e $t_i = t_2$ (constante) para todo $\mathbf{x}_i \in \omega_2$, a solução de mínimos quadrados corresponde ao discriminante de Fisher.
- Observação: usual fazer $t_1 + t_2 \neq 0$.

Algoritmos para 3 ou mais Classes

Ideias Gerais: considere c > 2 classes para classificar.

1 Uma classe contra as demais: utiliza c-1 classificadores e para cada um deles resolve o problema de separação de pontos de uma classe ω_i $(i=1,\ldots,c)$ e os pontos que não pertencem a esta classe.

Problema: pode gerar regiões no espaço com pontos que não possuem uma classe definida.

Pares de classes: utiliza c(c-1)/2 discriminantes binários para comparar todos os possíveis pares de classes.

Problema: número muito grande de comparações quando temos muitas classes. Também pode gerar regiões no espaço com pontos que não possuem uma classe definida.

O Discriminantes para *c* funções lineares:

- Função: $y_i(\mathbf{x}) = \mathbf{w}_i^\mathsf{T} \mathbf{x} + w_{i0}$
- Alocar o ponto \mathbf{x} a classe ω_i se $y_i(\mathbf{x}) > y_j(\mathbf{x})$ para todo $i \neq j$ em $\{1, \ldots, c\}$.
- O limite (boundary) será dado por $y_i(\mathbf{x}) = y_j(\mathbf{x})$ e corresponde ao hiperplano definido por

$$(\mathbf{w}_i - \mathbf{w}_j)^\mathsf{T} \mathbf{x} + (w_{i0} - w_{j0}) = 0.$$

 As regiões definidas pelos discriminantes são conectadas e convexas.

Regiões convexas: Seja
$$0 \le \lambda \le 1$$
. Então $y_k(\hat{\mathbf{x}}) = \lambda y_k(\mathbf{x}_A) + (1 - \lambda) y_k(\mathbf{x}_B)$. (Bishop, 2006)

• Webb e Copsey (2011) descrevem os algoritmos de Fisher e Mínimos Quadrados para o caso de c > 2 classes.

