Quantitative genetics from genome assemblies to neural network aided omics-based prediction of complex traits

Jan Freudenthal

CCTB Evolutionary genomics Julius-Maximilians-Universität Würzburg

31. Jan 2020

Quantitative genetics

Quantitative genetics aims to explain the heritable parts of traits that follow certain statistical distributions.

Quantitative genetics

Quantitative genetics

$$\sigma_P = \sigma_G + \sigma_E + \sigma_{G \times E}$$

$$\sigma_G = \sigma_A + \sigma_D + \sigma_I$$

$$\sigma_{I} = \sigma_{AA} + \sigma_{AD} + \sigma_{DD}$$

$$h^2 = \frac{\sigma_A}{\sigma_P}$$

$$\sigma_P = \sigma_G + \sigma_E + \sigma_{G \times E}$$

$$\sigma_{G} = \sigma_{A} + \sigma_{D} + \sigma_{I}$$

$$\sigma_I = \sigma_{AA} + \sigma_{AD} + \sigma_{DD}$$

$$h^2 = \frac{\sigma_A}{\sigma_P}$$

$$\sigma_P = \sigma_G + \sigma_E + \sigma_{G \times E}$$

$$\sigma_G = \sigma_A + \sigma_D + \sigma_I$$

$$\sigma_I = \sigma_{AA} + \sigma_{AD} + \sigma_{DD}$$

$$h^2 = \frac{\sigma_A}{\sigma_P}$$

$$\sigma_P = \sigma_G + \sigma_E + \sigma_{G \times E}$$

$$\sigma_G = \sigma_A + \sigma_D + \sigma_I$$

$$\sigma_I = \sigma_{AA} + \sigma_{AD} + \sigma_{DD}$$

$$h^2 = \frac{\sigma_A}{\sigma_P}$$

Workflow in quantitative Genetics

Schematic process of genotyping for quantitative genetics analyses with its crucial steps

Numeric marker matricies

Tabelle: Schematic representation of the enhanced genotype matrix for across environment prediction of maize phenotypes with DHs 1-2 with markers M 1-2 in environments E1-2

	M-1	M-2	M-3	M-4
Acc1	0	1	1	0
Acc2	1	0	1	0
Acc3	0	1	0	1
Acc4	1	0	0	1

Methods in quantitative genetics

