Minimisation

Problème

 Donnée: A un AFD complet dont chaque état est accessible depuis l'état initial

 Problème : construire un AFD minimal qui reconnaisse le même langage que A.

Idée : fusionner les états équivalents.

En pratique, l'algorithme est fondé sur un principe de séparation des états ...

0≈1? Non car 0∉F et 1∈F

 $3 \approx 6$? Oui car $3,6 \in F$, $\delta(3,a) = \delta(6,a)$ et $\delta(3,b) = \delta(6,b)$

4≈6? Oui car 4,6∈F, δ(4,a)=δ(6,a) et δ(4,b)=δ(6,b)

1≈6? Oui car 1,6∈F, δ (1,a) = δ (6,a) et δ (1,b) = δ (6,b)

2≈5? Oui car 2,5∉F, δ(2,a)=δ(5,a) et δ(2,b)=δ(5,b)

 $0 \approx 2$? Oui car $0,2 \notin F$, $\delta(0,a) = \delta(2,a)$ et $\delta(0,b) = \delta(2,b)$

0≈1? Non car 0∉F et 1∈F

Classe d'équivalence et automate associé

La relation ≈ est une relation d'équivalence (elle est réflexive, symétrique, transitive).

Si q est un état, on note [q] l'ensemble des états qui lui sont équivalents et on définit l'automate des classes d'équivalence :

Classe d'équivalence et automate associé

Étant donné un AFD $A = (\Sigma, Q, \delta, q_0, F)$, l'automate minimal associé à A est :

$$\mu A = (\Sigma, Q', \delta', [q_0], F')$$

- $Q' = \{[q], q \in Q\}$
- $F' = \{ [f], f \in F \}$
- $\delta' = \{ ([p], \sigma, [q]) \text{ tels } que \exists p' \in [p], \exists q' \in [q] \}$ $(p', \sigma, q') \in \delta \}$

Justification

■3 étapes:

- * L'automate μA des classes d'équivalence de A est bien défini, réduit et $L(\mu A) = L(A)$.
- Pour tout AFD B tel que L(B) = L(A), #états(B) ≥ #états(μA)
- Tout automate minimal B tel que L(B) = L(A), est isomorphe* à A
- * Isomorphe = Il existe une bijection ϕ entre les états de A et ceux de B qui préserve
 - les états spéciaux (initial et d'acceptation)
 - * les transitions : $\forall p,q \in Q_A$, $\delta_A(p,a) = q \Leftrightarrow \delta_B(\phi(p),a) = \phi(q)$

Sur les quotients gauches

- L'automate Q(L) des quotients gauches défini comme $\{L_q(A): q \in Q\} = Q(L)$ est-il bien minimal?
- Supposons, par l'absurde qu'il ne le soit pas. Alors il existe au moins p et q, deux états de l'automate tels que $L_p(A)=L_q(A)$, par définition de Q(L).
 - Si tel est le cas, par définition de l'équivalence, p ≈ q.
 - Il s'ensuit que p et q peuvent être fusionnés, contredisant la minimalité de l'automate des quotients gauches.

Complexité du regroupement d'états

■ Pour chaque paire d'états, il faut considérer l'ensemble des mots de longueur n sur Σ . $O(n^2)$ paires d'états $|\Sigma|^n$ mots de longueur n (n = nombre d'états de l'AFD)

■ Algorithme en $O(n^2 |\Sigma|^n)$... catastrophique

Trouver un meilleur algorithme!

Principe

- Au lieu de fusionner les états équivalents,
 - on groupe tous les états;
 - on sépare inductivement les états non équivalents;
 - quand on ne peut plus séparer on a terminé.

La séparation inductive se fait en construisant inductivement ≈

Construction inductive de ~

Base:

$$p \approx_0 q \Leftrightarrow (p \in F \land q \in F) \lor (p \notin F \land q \notin F)$$

■ Règle :

$$p \approx_i q \Leftrightarrow (p \approx_{i-1} q) \land (\forall a \in \Sigma, \delta(p,a) \approx_{i-1} \delta(q,a))$$

La base permet de partitionner Q La règle affine la partition de Q

Remarque: p≈; q si on ne peut pas séparer p de q par un mot de longueur au plus i.

Cas d'arrêt

dès que 2 équivalences successives coincident

$$\approx_i = \approx_{i+1} \Rightarrow \forall k, \approx_i = \approx_{i+k}$$

Par hypothèse, $\approx_i = \approx_{i+1}$. Alors $p\approx_i q$ et $\forall a \in \Sigma$, $\delta(p,a) \approx_i \delta(q,a) \Leftrightarrow p\approx_{i+1} q$ $p\approx_{i+1} q$ et $\forall a \in \Sigma$, $\delta(p,a) \approx_{i+1} \delta(q,a) \Leftrightarrow p\approx_{i+2} q$

 Conséquence : dès qu'il y a coïncidence de 2 équivalences successives, on a obtenu l'automate minimal

Cas d'un AFD déjà minimal

Aucune paire d'états n'est équivalente.

$$\approx = \approx_{n-2} \text{ pour n} = |Q|$$

■ \approx_0 partitionne Q en deux classes;

puisque $\forall i \approx_i \neq \approx_{i+1}$

- ≈_{i+1} partitionne Q avec au moins une classe de plus que ≈_i
- on ne peut avoir plus de n classes (n = |Q|), donc $\approx = \approx_{n-2}$

Minimisation de $A=\langle Q, \Sigma, \delta, i, T \rangle$

La séparation des états est définie par :

- Pour chaque classe G de ∏ faire
 - p et q sont dans des classes d'équivalence différentes SSI $\exists a \in \Sigma : \delta(p,a)$ et $\delta(q,a)$ sont dans des classes différentes
 - Remplacer G par les sous-groupes ainsi formés.

Terminer

■Choisir un état [p] représentant chaque classe de ∏

- Pour chaque transition $\delta(p,a)=q$ de A, ajouter une transition de [p] vers [q] étiquetée par a.
- Etat initial: l'état représentant la classe de i
- États terminaux : les état représentant les classes contenant des terminaux de A.

Complexité

La définition inductive fournit un algorithme en $O(n^2|\Sigma|)$ pour n=|Q|, qui détermine les classes d'équivalence et construit donc l'AFD minimal.

• Avec quelques améliorations, on peut construire l'AFD minimal en $O(n \log n |\Sigma|)$

 $\approx_3 = \approx_2$ Plus rien ne peut se séparer

5 et 6 sont équivalents

i	k	[j]		[f]		
1	3	2	4	5	6	
k	i	f	f	j	j	a
j	i	f	f	f	f	b

2 et 4 sont équivalents

Propriétés de clôture

But

 Savoir quelles sont les opérations qui conservent la rationalité d'un langage.

- On connaît déjà plusieurs manières de considérer les langages rationnels
 - Par les expressions rationnelles
 - Par les automates

Clôture par complémentation

- La classe des langages rationnels est close par complémentation : L∈Rat(Σ) $\Rightarrow \Sigma$ *\L ∈Rat(Σ),
- Preuve par automates:
 - •L∈Rat(Σ) \Rightarrow il existe A un AFD complet, A= $\langle Q, \Sigma, \delta, i, F \rangle$ t.q. L(A) = L
 - •on définit A' à partir de A pour reconnaître $\Sigma^* \backslash L$:

•
$$A' = \langle Q, \Sigma, \delta, i, Q \rangle$$

 Tous les états non terminaux deviennent terminaux et vice versa

Clôture par l'intersection

■ Si L et M sont deux langages rationnels alors L∩M est également rationnel.

Preuve directe:

Comme l'ensemble des langages rationnels est clos pour la complémentation et l'union, il est clos pour l'intersection

Preuve par automates

- Soit A=<Q,Σ,δ,i,T> tel que L(A)=L
- Soit B=<Q',Σ,δ',j,T'> tel que L(B)=M

Alors,
$$C=\langle QxQ', \Sigma, \delta_{C}, [i,j], TxT' \rangle$$
 pour $\delta_{C}([p,q]), a)=[\delta(p,a), \delta'(q,a)]$ Pour tout $p\in Q$, $q\in Q'$ et $a\in \Sigma$

Reconnaît LaM

Clôture par l'union

- La construction précédente permet également de prouver la clôture par l'union
- Si L et M sont deux langages rationnels alors L∪M est également rationnel.
- Preuve par automates :
 - Soit A=<Q,Σ,δ,i,F> complet tel que L(A)=L
 - Soit B=<Q',Σ,δ',j,F'> complet tel que L(B)=M

Alors, D= $\langle Q \times Q', \Sigma, \delta_D, [i,j], \{[f,f'] \mid f \in F \text{ ou } f' \in F'\} \rangle$ pour $\delta_D([p,q]), a) = [\delta(p,a), \delta'(q,a)]$

pour tout $p \in Q$, $q \in Q'$ et $a \in \Sigma$ reconnaît $L \cup M$

Clôture par substitution

À chaque lettre de l'alphabet d'une expression rationnelle on associe un langage rationnel: on substitue un langage à une lettre.

$$f(\varepsilon)=\varepsilon$$
 et $f(ma)=f(m)f(a)$

m un mot et a une lettre

Pour les langages:

$$f(L) = \bigcup_{m \in L} f(m)$$

• f(0)=a et f(1)=b*

• f(010)=ab*a

Pour L=0*(0+1)1*, f(L)=a*(a+b*)(b*)*=a*b*

Clôture par substitution

- Soit L∈Rat(Σ) et \forall a ∈ Σ , R_a ∈Rat(Δ). Soit la substitution $f: \Sigma \to \Delta^*$, $f(a)=R_a$ f remplace toute occurrence de a dans L par R_a .
- f(L∪M)=f(L) ∪ f(M), f(L.M)=f(L).f(M), f(M*)=f(M)*
- On montre par récurrence sur la structure de L que l'expression rationnelle obtenue représente bien f(L).

Récapitulatif

Clôture image miroir

- Si L est un langage rationnel alors le langage r(L), composé des images miroirs des mots de L est également rationnel.
- La preuve est facile. En effet, si l'automate A reconnaît L, alors l'automate inverse r(A), reconnaît r(L).

Le langage des mots ayant abb comme suffixe

 (a+b)*abb

est reconnu par l'automate A

Pour reconnaître le langage miroir, il suffit d'inverser l'orientation des arcs - r(A).

Exemple (suite)

- Mais, nous avons obtenu un automate A' non déterministe!
- Il faut donc déterminiser, pour obtenir d(A')

Problème de l'égalité d'expressions rationnelles

Égalité d'expressions rationnelles

- Problème
 - Données : e₁ et e₂ deux expressions rationnelles
 - Question : $e_1 = e_2$?

- Exemple
 - ■(a*b*)*(b*a*)*bb((b*a*)*+(b+a)*)=(a+b)*bb(a+b)*

Fonctionnement

$$L=[(bb)*a((bb) *a)*(b(bb)*a+a)+(bb)*ba](a+b)*$$

$$L'=(abb+bb)*(aa+aba+ba)(a+b)*$$

	a	b
\rightarrow 1	24	35
2	_	3
3	-	1
4	6	5
5	6	-
← 6	6	6

Minimal, à vue de nez...

	a	b
→1	24	35
2	-	3
3	-	1
4	6	5
5	6	-
← 6	6	6
\rightarrow 1	24	35
24	6	35
35	6	1
← 6	6	6

L' = (abb+bb)*(a+ab+b)a (a+b)*

isomorphes

L=[(bb)*a((bb)*a)*(b(bb)*a+a)+(bb)*ba](a+b)*