CSE-571 Robotics

Probabilistic Robotics

Probabilities Bayes rule Bayes filters

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in {x₁, x₂, ..., x_n}.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .
- *P(.)* is called probability mass function.
- E.g. $P(Room) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then P(x,y) = P(x) P(y)
- $P(x \mid y)$ is the probability of x given y $P(x \mid y) = P(x,y) / P(y)$ $P(x,y) = P(x \mid y) P(y)$
- If X and Y are independent then $P(x \mid y) = P(x)$

Law of Total Probability, Marginals

Discrete case

Continuous case

$$\sum_{x} P(x) = 1 \qquad \qquad \int p(x) \, dx = 1$$

$$P(x) = \sum_{y} P(x, y) \qquad p(x) = \int p(x, y) \, dy$$

$$\sum_{x} P(x) = 1$$

$$\int p(x) dx = 1$$

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int p(x, y) dy$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

$$p(x) = \int p(x \mid y) p(y) dy$$

Events

- P(+x, +y)?
- P(+x)?
- P(-y OR +x) ?
- Independent?

P(X,	Y)

Х	Υ	Р
+x	+y	0.2
+x	-у	0.3
-x	+y	0.4
-x	-V	0.1

Marginal Distributions

	Χ	Р		
	+x			
	-x			
P(Y)				
	Υ	Р		

P(X)

Conditional Probabilities

• P(+x | +y)?

Υ	Р
+y	0.2
-у	0.3
+y	0.4
-у	0.1
	-у

P(X,Y)

- P(-x | +y)?
- P(-y | +x) ?

Bayes Formula

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

- Often causal knowledge is easier to obtain than diagnostic knowledge.
- Bayes rule allows us to use causal knowledge.

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open|z)?

Example

$$P(z \mid open) = 0.6$$
 $P(z \mid \neg open) = 0.3$
 $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

• z raises the probability that the door is open.

Normalization

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta P(y \mid x) P(x)$$

$$\eta = P(y)^{-1} = \frac{1}{\sum_{x'} P(y \mid x') P(x')}$$

Algorithm:

$$\forall x : aux_{x|y} = P(y \mid x) P(x)$$

$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

$$\forall x : P(x \mid y) = \eta \text{ aux}_{x \mid y}$$

Conditioning

• Bayes rule and background knowledge:

$$P(x | y, z) = \frac{P(y | x, z) P(x | z)}{P(y | z)}$$

$$P(x|y) \stackrel{?}{=} \int P(x|y,z) P(z) dz$$

$$\stackrel{?}{=} \int P(x|y,z) P(z|y) dz$$

$$\stackrel{?}{=} \int P(x|y,z) P(y|z) dz$$

Conditioning

• Bayes rule and background knowledge:

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

$$P(x \mid y) = \int P(x \mid y, z) P(z \mid y) dz$$

Conditional Independence

$$P(x,y|z)=P(x|z)P(y|z)$$

Equivalent to

$$P(x|z) = P(x|z,y)$$

$$P(y|z) = P(y|z,x)$$

Simple Example of State Estimation

- Suppose our robot obtains another observation z_2 .
- What is $P(open|z_1, z_2)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x,z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is conditionally independent of $z_1,...,z_{n-1}$ given x.

$$P(x | z_1,...,z_n) = \frac{P(z_n | x) P(x | z_1,...,z_{n-1})}{P(z_n | z_1,...,z_{n-1})}$$

$$= \eta P(z_n | x) P(x | z_1,...,z_{n-1})$$

$$= \eta_{1...n} \prod_{i=1}^{n} P(z_i | x) P(x)$$

Example: Second Measurement

$$P(z_2 | open) = 0.5$$
 $P(z_2 | \neg open) = 0.6$
 $P(open | z_1) = 2/3$ $P(\neg open | z_1) = 1/3$

$$P(open | z_2, z_1) = \frac{P(z_2 | open) P(open | z_1)}{P(z_2 | open) P(open | z_1) + P(z_2 | \neg open) P(\neg open | z_1)}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$

• z_2 lowers the probability that the door is open.