Okruhy

Zápis grafu

Cesty a križovatky možeme zapísať ako usmernený graf, kde každá križovatka bude bod a každá cesta spojenie dvoch bodov v určitom smere. Graf budem reprezentovať ako hash mapu so všetkými križovatkami, kde bude ku každej križovatke priradené pole s križovatkami ku ktorým vedie cesta z danej križovatky.

Priradenie podmnožiny ku každej križovatke

V algoritme ako prvé hľadám podmnožiny križovatiek, v ktorých sa z každej križovatky podmnožiny dostanem do každej križovatky tejto podmnožiny.

Na nájdenie všetkých takýchto podmnožín používam Kosarajov algoritmus. Tento algoritmus sa spolieha na fakt, že do podmnožiny v ktorej sa z každej križovatky podmnožiny dostanem do každej križovatky tejto podmnožiny patria také križovatky, ktoré je možné navštíviť prehľadávaním pôvodného aj obráteného grafu (grafu kde je smer všetkých ciest opačný) začínajúc z tej istej križovatky. Najprv prejdem pôvodný graf a uložím si cestu po ktorej som ho prehľadal. Následne sa pokúsim prehľadať aj obrátený graf a ísť podľa cesty prehľadania z pôvodného grafu. Počas prechádzania do hash mapy s križovatkami priradzujem ku každej križovatke aktuálnu podmnožinu. Ak sa v obrátenom grafe nedá dostať na ďalšiu križovatku podľa pôvodnej cesty, zmením podmnožinu a začnem prehľadávať graf so začiatkom v tejto križovatke.

Ak sa nedajú dosiahnuť všetky križovatky začatím v prvej križovatke, vyberiem si križovatku, ku ktorej nebola priradená podmnožina a uplatním už spomenutý algoritmus so začiatkom v tejto križovatke, kde už nenavštenujem križovatky, ku ktorým už je priradená podmnožina. To opakujem pokým nieje ku každej križovatke priradená podmnožina.

Zápis prepojenia podmnožín

Následne zapíšem prepojenia medzi podmnožinami do novej hash mapy vďaka hash mape s križovatkami a podmnožinami. S použitím obidvoch hash máp môžem následne zodpovedať každú otázku s časovou zložitosťou O(1).

Časová zložitosť algoritmu

Asymptomická zložitosť celého algoritmu je O(v+e+q), kde v je počet križovatiek, e je počet ciest medzi križovatkami a q je počet otázok. Pretože na zapísanie grafu do vhodnej dátovej štruktúry je O(v+e), vytvorenie poľa s križovatkami O(v) celý graf sa vždy prehľadá 2-krát a jedno prehľadanie je O(v+e), otočenie grafu je tiež O(v+e), takisto ako vytvorenie hash mapy s prepojenými podmnožinami. Spolu to je teda O(6v+5e). V prípade že sa z každej križovatky, ktorá je zažiatkom v Kosarajovom algoritme dá dostať len do jej podmnožiny a podmnožiny sú 3, hľadanie začiatočnej križovatky pri troch podmnožinách prebehne 3 krát, čo bude O(2v) a otázky sú zodpovedané s časovou zložitosťou O(q) To spolu je O(8v+5e+q). Po odstránení konštánt to možeme zapísať ako O(v+e+q).

Přesně takto je napsané referenční řešení - dobrá práce

Když se zamyslíš nemusíš ani používat hashmapu vzhledem k tomu že víš, že komponenty jsou právě 3. Stačí ti tedy tabulka 3x3 (pozn. red.)

Celkem: 10b