Music Information Retrieval A3

James Davidson - V00812527 March 17th, 2017

All up-to-date code for this can be found at https://github.com/jamesthomasdavidson/Music-Classifer

Question 1

•

```
import numpy as np
2 from sklearn import svm, datasets, linear_model
3 from sklearn.externals.joblib import Memory
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import confusion_matrix
6 from sklearn.neighbors import KNeighborsClassifier
    def get_data():
        return datasets.load_svmlight_file('genres3.libsvm')
   def SVC():
        X, y = get_data()
        print('Support Vector Machine')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = svm.SVC(kernel='linear', C=.8)
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
20 def SGD():
       X, y = get_data()
        print('Stochastic Gradient Descent')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = linear_model.SGDClassifier()
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
   def NN():
        X, y = get_data()
        print('Nearest Neighbours')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = KNeighborsClassifier(n_neighbors=2)
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
38 SVC()
    SGD()
40 NN()
```

./mkcollection -c classical.mf -l classical ../../genres/classical ./mkcollection -c rock.mf -l rock ../../genres/rock ./mkcollection -c hiphop.mf -l hiphop ../../genres/hiphop cat cl.mf hi.mf ro.mf > genres3.mf bextract -sv genres3.mf -w genres3.arff

Using Weka:

=======ZeroR======

Correctly Classified Instances	100	33.3333 %
Incorrectly Classified Instances	200	66.6667 %
Kappa statistic	0	
Mean absolute error	0.4444	
Root mean squared error	0.4714	
Relative absolute error	100 %	
Kappa statistic Mean absolute error Root mean squared error	0 0.4444 0.4714	66.6667 %

Root relative squared error 100 % **Total Number of Instances** 300

=== Detailed Accuracy By Class ===

```
TP Rate FP Rate Precision Recall F-Measure MCC
                                                      ROC Area PRC Area Class
        1.000 1.000 0.333
                            1.000 0.500
                                          0.000 0.500 0.333
                                                              classical
        0.000 0.000 0.000
                            0.000 0.000
                                          0.000 0.500
                                                       0.333
                                                              hiphop
        0.000 0.000 0.000
                            0.000 0.000
                                          0.000 0.500
                                                       0.333
                                                              rock
Weighted Avg. 0.333 0.333 0.111 0.333 0.167
                                              0.000 0.500 0.333
```

=== Confusion Matrix ===

a b c <-- classified as 100 0 0 | a = classical 100 0 0 | b = hiphop 100 0 0 | c = rock

=====NaiveBayesSimple=====

Correctly Classified Instances 253 84.6154 % Incorrectly Classified Instances 15.3846 % 46 Kappa statistic 0.7692 Mean absolute error 0.1021 Root mean squared error 0.3158

Relative absolute error 22.9815 % 66.99 % Root relative squared error Total Number of Instances 299

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.949 0.035 0.931 0.949 0.940 0.910 0.987 0.975 classical 0.742 0.974 0.938 0.710 0.025 0.934 0.710 0.807 hiphop 0.880 0.171 0.721 0.880 0.793 0.681 0.921 0.778 Weighted Avg. 0.846 0.077 0.862 0.777 0.961 0.897 0.846 0.846

=== Confusion Matrix ===

a b c <-- classified as 94 0 5 | a = classical

```
0 71 29 | b = hiphop
7 5 88 | c = rock
```

======J48=======

Correctly Classified Instances 248 82.6667 % Incorrectly Classified Instances 52 17.3333 %

Kappa statistic0.74Mean absolute error0.1225Root mean squared error0.3324Relative absolute error27.5682 %Root relative squared error70.5044 %Total Number of Instances300

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.880 0.045 0.907 0.880 0.893 0.842 0.923 0.846 classical 0.850 0.085 0.833 0.850 0.842 0.761 0.895 0.763 hiphop 0.750 0.130 0.743 0.750 0.746 0.618 0.796 0.654 rock Weighted Avg. 0.827 0.087 0.828 0.827 0.827 0.740 0.871 0.754

=== Confusion Matrix ===

a b c <-- classified as 88 1 11 | a = classical 0 85 15 | b = hiphop 9 16 75 | c = rock

======SMO=======

Correctly Classified Instances 288 96 % Incorrectly Classified Instances 12 4 %

Kappa statistic0.94Mean absolute error0.2311Root mean squared error0.288Relative absolute error52 %Root relative squared error61.101 %Total Number of Instances300

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.998 0.990 0.000 1.000 0.990 0.995 0.993 0.999 classical 0.920 0.015 0.968 0.920 0.944 0.917 0.979 0.938 hiphop rock 0.970 0.045 0.915 0.970 0.942 0.912 0.963 0.898 Weighted Avg. 0.960 0.020 0.961 0.960 0.960 0.941 0.980 0.944

```
a b c <-- classified as
99 0 1 | a = classical
0 92 8 | b = hiphop
0 3 97 | c = rock
```

Using scikit-learn:

	Support Vector Machine	Stochastic Gradient Descent	Nearest Neighbours
Confusion matrix:	[[23 0 1] [0 23 3] [0 0 25]]	[[24 0 0] [3 23 0] [7 18 0]]	[[23 0 1] [2 22 2] [3 6 16]]
Accuracy:	0.966666666667	0.64	0.886666666667

Question 2

•

```
69  #start
70  tag = {'Rap' : 12, 'Pop_Rock' : 1, 'Country' : 3}
71  words = get_words()
72  tracks = get_tracks()
73  labels = genres()
```

```
def extract_vocabulary(D):
    V = []
    for word in words:
                                                                            V = extract_vocabulary(D)
                                                                             N = count_documents(D)
                                                                             prior, condprob = dict.fromkeys(C), {}
                                                                                 N_c = count_docs_in_class(D, c)
                                                                                 prior[c] = float(N_c)/N
                                                                                 text_c = concatenate_all_text_in_docs(D, c)
                                                                                 T = \{\}
    return len([get_tracks(genre = c)])
                                                                                    T[(t,c)] = count_tokens_of_terms(text_c, t)
def concatenate_all_text_in_docs(D, c):
                                                                                 for t in V:
    text, tracks = [], get_tracks(genre = c)
                                                                             return V, prior, condprob
                                                                        #apply the multinomial on new instance d
def apply_multinomial(C, V, prior, condprob, d):
    return text
                                                                             W = extract_tokens_from_doc(V, d)
                                                                                 score[c] = np.log(prior[c])
                                                                                 for t in W:
                                                                                    score[c] += np.log(condprob[(t,c)])
                                                                             argmax, max_score = '', -np.inf
                                                                             for c in C:
                                                                                 if score[c] > max_score:
        while n > 0:
                                                                                     max_score = score[c]
           text.append(word)
                                                                                     argmax = c
           n = n - 1
    return text
                                                                             return argmax
```

The probability of a word given a genre, pr(word | genre), is obtaining by condprob[(word,genre)] which can be obtained by calling train_multinomial(C, D). (lines 110 - 124 above) (Resulting table below)

(de,Rap,0.072)	(de,Pop_Rock,0.026)	(de,Country,0.002)
(niggaz,Rap,0.042)	(niggaz,Pop_Rock,0.003)	(niggaz,Country,0.001)
(ya,Rap,0.093)	(ya,Pop_Rock,0.012)	(ya,Country,0.012)
(und,Rap,0.047)	(und,Pop_Rock,0.019)	(und,Country,0.000)
(yall,Rap,0.042)	(yall,Pop_Rock,0.002)	(yall,Country,0.005)
(ich,Rap,0.067)	(ich,Pop_Rock,0.030)	(ich,Country,0.000)
(fuck,Rap,0.069)	(fuck,Pop_Rock,0.022)	(fuck,Country,0.002)
(shit,Rap,0.093)	(shit,Pop_Rock,0.006)	(shit,Country,0.003)
(yo,Rap,0.078)	(yo,Pop_Rock,0.009)	(yo,Country,0.005)
(bitch,Rap,0.059)	(bitch,Pop_Rock,0.004)	(bitch,Country,0.001)
(end,Rap,0.014)	(end,Pop_Rock,0.037)	(end,Country,0.022)
(wait,Rap,0.013)	(wait,Pop_Rock,0.045)	(wait,Country,0.026)
(again,Rap,0.019)	(again,Pop_Rock,0.048)	(again,Country,0.053)
(light,Rap,0.016)	(light,Pop_Rock,0.044)	(light,Country,0.032)
(eye,Rap,0.023)	(eye,Pop_Rock,0.056)	(eye,Country,0.042)
(noth,Rap,0.012)	(noth,Pop_Rock,0.038)	(noth,Country,0.021)
(lie,Rap,0.009)	(lie,Pop_Rock,0.038)	(lie,Country,0.017)
(fall,Rap,0.011)	(fall,Pop_Rock,0.050)	(fall,Country,0.031)
(our,Rap,0.023)	(our,Pop_Rock,0.062)	(our,Country,0.043)
(away,Rap,0.017)	(away,Pop_Rock,0.079)	(away,Country,0.054)
(gone,Rap,0.016)	(gone,Pop_Rock,0.035)	(gone,Country,0.044)
(good,Rap,0.029)	(good,Pop_Rock,0.033)	(good,Country,0.062)
(night,Rap,0.023)	(night,Pop_Rock,0.063)	(night,Country,0.071)
(blue,Rap,0.007)	(blue,Pop_Rock,0.015)	(blue,Country,0.037)
(home,Rap,0.015)	(home,Pop_Rock,0.034)	(home,Country,0.055)
(long,Rap,0.017)	(long,Pop_Rock,0.037)	(long,Country,0.065)
(littl,Rap,0.025)	(littl,Pop_Rock,0.038)	(littl,Country,0.075)
(well,Rap,0.022)	(well,Pop_Rock,0.044)	(well,Country,0.065)
(heart,Rap,0.015)	(heart,Pop_Rock,0.052)	(heart,Country,0.087)
(old,Rap,0.011)	(old,Pop_Rock,0.019)	(old,Country,0.066)

```
def run_multinomial():
   C, D, k = ['Rap', 'Pop_Rock', 'Country'], get_tracks(), 10
   def print_statistics(data):
       confusion_matrix = [[0,0,0,C[2]],[0,0,0,C[1]],[0,0,0,C[0]]]
       total = 0
       for d in [d for d in data if d.genre == tag['Rap']]:
           c = apply_multinomial(C, V, prior, condprob, d)
               total += 1
               confusion_matrix[2][0] += 1
           elif c == C[1]:
               confusion_matrix[2][1] += 1
               confusion_matrix[2][2] += 1
       for d in [d for d in data if d.genre == tag['Pop_Rock']]:
          c = apply_multinomial(C, V, prior, condprob, d)
               confusion_matrix[1][0] += 1
               confusion_matrix[1][1] += 1
               confusion_matrix[1][2] += 1
       for d in [d for d in data if d.genre == tag['Country']]:
          c = apply_multinomial(C, V, prior, condprob, d)
           if c == C[0]:
               confusion_matrix[0][0] += 1
           elif c == C[1]:
               confusion_matrix[0][1] += 1
               confusion_matrix[0][2] += 1
       print("classification accuracy: " + str(total*1.0/count_documents(data)))
       print('|%10s |%10s |%10s | % (C[0],C[1],C[2]))
       print('-
       for row in confusion_matrix:
               print('|%10s' % col),
       print('\n')
   random.shuffle(D)
   V, prior, condprob = train_multinomial(C, D)
   for i in range(k):
       k_folds = np.split(D, k)
       test_data = k_folds.pop(i)
       train_data = [j for i in k_folds for j in i]
       V, prior, condprob = train_multinomial(C, train_data)
       print_statistics(test_data)
```

Confusion Matrix for Naive Bayes classifier.

Using all sets as training data and test data:

```
classification accuracy: 0.68
| Rap | Pop_Rock | Country |
```

	25	206	769 Country
	114	507	379 Pop_Rock
1	748	118	134 Rap

Using k = 10 folds, use 9 sets for training and 1 for testing. Run 10 times to try each k^{th} fold as test data with the remaining k-1 folds as training data:

cla 		accuracy: 0.6		classification accuracy: 0.71 Rap Pop_Rock Country
 	3 11 78	23 56 15	70 Country 33 Pop_Rock 11 Rap	
cla	classification accuracy: 0.683333333333			classification accuracy: 0.653333333333
 	Rap Po	p_Rock Co	ountry 	Rap Pop_Rock Country
I	-	•	84 Country	2 23 81 Country
	10 75		36 Pop_Rock 12 Rap	15 52 37 Pop_Rock 63 12 15 Rap
cla	classification accuracy: 0.62		2	classification accuracy: 0.666666666667
I	Rap Po	p_Rock Co	ountry	Rap Pop_Rock Country
	•	•	58 Country	1 13 77 Country
	15 76	52 15	46 Pop_Rock 16 Rap	7 46 46 Pop_Rock 77 18 15 Rap
cla	ssification a	accuracy: 0.6	3	classification accuracy: 0.693333333333
1		p_Rock Co		Rap Pop_Rock Country
	•	•	86 Country	2 23 72 Country
	13 70	48 8	38 Pop_Rock 12 Rap	13 64 33 Pop_Rock 72 11 10 Rap
cla	ssification a	accuracy: 0.6	7	classification accuracy: 0.69
I		p_Rock Co		Rap Pop_Rock Country
	•	•	77 Country	4 19 83 Country
 	14 80	44 13	37 Pop_Rock 12 Rap	9 46 36 Pop_Rock 78 6 19 Rap

Making randomly generated tracks using the probability distribution of a word occurring given a genre:

```
def get_probabilistic_word(genre = None):
                     assert(genre is not None)
                     prob dist = []
                     for word in words:
                           prob_dist.append(condprob[(word, genre)])
                     return np.random.choice(words, p = prob_dist)
               n_{\text{lyrics}}, n_{\text{songs}} = 20, 5
               generated_tracks = []
               for e, c in enumerate(C):
                     for i in range(n_songs):
                           t = Track(n_songs*e+i, [0]*30, c)
                           for j in range(n_lyrics):
                                 t.add_word(words.index(get_probabilistic_word(c)))
                           generated_tracks.append(t)
               for t in generated_tracks:
                     t.print_track()
ID: 0 Genre:
               12
Feature Vector: [0, 2, 0, 2, 0, 3, 2, 2, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0]
ID: 1 Genre:
Feature Vector: [0, 2, 1, 2, 2, 1, 3, 5, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
ID: 2 Genre:
Feature Vector: [1, 1, 0, 0, 2, 1, 1, 4, 3, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0]
ID: 3 Genre:
Feature Vector: [3, 0, 1, 2, 1, 0, 3, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0]
ID: 4 Genre:
               12
Feature Vector: [2, 2, 1, 1, 2, 0, 1, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0]
ID: 5 Genre:
Feature Vector: [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 0]
ID: 6 Genre:
Feature Vector: [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 3, 1, 0, 0, 3, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0]
Feature Vector: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 2, 1, 0, 0, 1, 0, 1, 1, 2, 2, 0, 3]
ID: 8 Genre:
Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 3, 2, 1, 1, 3, 1, 2, 0, 0, 0, 0, 1]
ID: 9 Genre:
Feature Vector: [0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0]
```

ID: 10 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 2, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 2, 4, 0]

ID: 11 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 0, 0, 1, 3, 1, 1]

ID: 12 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 3, 0, 0, 0, 1, 3, 0, 0, 3, 0, 0, 0, 1, 1, 0, 4]

ID: 13 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 2, 2, 0, 4, 3]

ID: 14 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2, 3, 1]

Running classifier on generated data for fun:)

classification accuracy: 0.86666666667

I	Rap Po	p_Rock	Country	
	0	0	5	Country
1	0	3	2	Pop_Rock
1	5	0	0	Rap

Happy Marking!