

SE-3200 Ethernet Control Operation Guide

Company Confidential

Revision History:

Revision	Date	Description	
0.9.x.x	31/01/2019	Preliminary Version	

Table of Contents

Table of C	Contents	3
1. INTE	RODUCTION	5
1.1 C	ommand Protocol & Real-Time Protocol Overview	5
1.2 G	eneral Connection Information	 5
1.3 Sc	oftware Version	
1.4 C	onnection	^
	onnection Request Channel	
2. Con	mand Protocol	7
	aking the Connection	<i>′</i>
2.1.1	Using the Connection Request Channel	
2.1.2		
	ommands	<u> </u>
	ommand Description	3
2.3.1	DV_COMMAND_SET_CONTROL	5
2.3.1	DV_COMMAND_GET_CONTROL	1
2.3.3	DV_COMMAND_GET_CONTROL	'
2.3.4	DV_COMMAND_OPEN_MINI_PIC_FILE	'
2.3.5	DV_COMMAND_CLOSE_DATA_FILE	'
2.3.6	DV_COMMAND_GET_FILE_DATA	
2.3.7	DV_COMMAND_STORE_FILE_DATA	! 1
2.3.8	DV_COMMAND_FILE_EVENT	
2.3.9	DV_COMMAND_GET_MINI_PIC	
2.3.10	DV_COMMAND_GET_INDIT_NAME	· 1
2.3.10	DV_COMMAND_GET_INPUT_NAME	! 1
2.3.11	DV_COMMAND_GET_HVFUT_NAME	! 1
2.3.12	DV_COMMAND_GET_FILE_NAME DV_COMMAND_SET_FILE_NAME	! 1
2.3.13	DV_COMMAND_GET_FILE_NAME DV_COMMAND_GET_USER_MEM	
2.3.14		
2.3.16	DV_COMMAND_STORE_USER_MEM DV_COMMAND_STREAMER_CONTROL	
2.3.10	DV_COMMAND_OPEN_SOFTWARE_FILE	
2.3.17	DV_COMMAND_INSTALL_SOFTWARE	
2.3.10		
2.3.19	DV_COMMAND_OPEN_NAMES_FILE	' 1
2.3.20	DV_COMMAND_CHROMA_KEYER_AUTO	
	-Time Protocol	18
3.1 M	aking the Connection	18
3.2 Pi	otocol Description	18
	Null Packet	1
3.2.2	Parameter/Value Packet	1
3.2.3	First Packet	1
3.2.4	Controller Reply Packet	
3.2.5	Further Notes	1
4. Get	& Set Control Commands	21
	ontrol Command Descriptions	
4.1.1	DV_CONTROL_SECTION_STATUS	2
4.1.2	DV_CONTROL_SECTION_SYSTEM	
4.1.3	DV_CONTROL_SECTION_SWITCHER (Main Sub-Section)	
4.1.4	SWITCHER Sub-Sections	3
4.1.5	Switcher PINP Sub-Section (SWITCHER_SUB_SECTION_PINP)	4
4.1.6	Switcher Flex Src Sub-Section (SWITCHER_SUB_SECTION_FLEX_SRC)	4

Datavideo SE-3200 Ethernet Control Guide

4.1.7	DV_CONTROL_SECTION_INPUT	45
4.1.8	DV_CONTROL_SECTION_INPUT_CTRL	47
4.1.9	DV_CONTROL_SECTION_OUTPUT_CTRL	49
4.1.10	DV_CONTROL_SECTION_AUDIO_CTRL	52
4.1.11	DV_CONTROL_SECTION_TRANSITION_CTRL	53
4.1.12	DV_CONTROL_SECTION_MEMORY_CTRL	57
4.1.13	DV_CONTROL_SECTION_MEMORY_PRESENT	58
4.1.14	DV_CONTROL_SECTION_STILL_CTRL	58
4.1.15	DV_CONTROL_SECTION_STILL_PRESENT	60
4.1.16	DV_CONTROL_SECTION_STREAMER_CONTROL	61

1. INTRODUCTION

This document describes how to control the SE-3200 Switchers over Ethernet, using the TCP/IP protocol.

The SE-3200 provides two control channels which are used to control the Processor Unit

- Command Channel
 - Uses the Command Protocol
- Real-Time Channel
 - Uses the Real-Time Protocol

1.1 Command Protocol & Real-Time Protocol Overview

The Command Protocol allows access to the full control set for the SE-3200, and operates in a simple Command-Response manner. This operates in a non-Real-Time manner, as is asynchronous to the field-processing of the processor unit. It is generally used for commands that may take more than one field to execute, but can also handle high-rate of command through put limited by the processing speed of the either Controller, the Processor Unit, and the network

The Real-Time Protocol is a field synchronous protocol, which is primarily intended for real-time, field synchronous exchange of parameters between the Processor Unit and the Controller.

- Using this protocol ensures that the parameter updates happen at field-rate, and allow for smooth T-Bar and Joystick control, for example.
- A Key feature of the Real-Time protocol is that any changes to the Processor Unit state are automatically sent to the Controller.
- If multiple Controllers are attached, the Processor Unit automatically ensures that all controllers are kept up-to-date with changes from any of the other controllers. This is a key function of ensure that multiple controllers can operate together smoothly and cleanly.

The full control system should implement both of these protocols, but for simple applications, the Command Protocol may be sufficient.

1.2 General Connection Information

By default, the SE-3200 is configured to operate at a fixed IP address (192.168.100.101).

Please consult with Datavideo support for applications that require configurable IP addresses, or multiple Processor Units on a common network, or DCHP etc.

 These are supported through host configuration files, which are not normally made available to the user.

1.3 Software Version

This document refers to software version v0.9.6.7 or later.

1.4 Connection

The SE-3200 Processor Unit software supports up to four controlling devices (Controllers). Each Controller uses two ports to communicate with the Processor Unit

- RealTime Port
- Command Port

Port	Port Number
RealTime Port 1	5001
Command Port 1	5002
ReaTime Port 2	5003
Command Port 2	5004
RealTime Port 3	5005
Command Port 3	5006
ReaTime Port 4	5007
Command Port 4	5008

1.5 Connection Request Channel

In addition to the 8 ports used for the four Controlling devices, Port 5009 can be used to request a free Control Port Channel

2. Command Protocol

2.1 Making the Connection

In an environment where there are multiple possible controlling devices, using the Connection Request Channel allows any controlling device to determine which ports are available.

In an environment where all the controlling devices are known (or there is just one controlling device), there is no need to use the Connection Request protocol, and any of the available port pairs can be used for the connection

2.1.1 Using the Connection Request Channel

The Connection Request Channel (Port 5009) uses a simple protocol, as follows:

- 1) Open Port 5009
- 2) Send Connection Request Packet

Connection Request Packet:

Dword (32-bits)	Description	Value
0	Packet size (bytes)	0x08
1	Connection Request Command	0x55aa0001

3) Receive Connection Info packet:

Connection Info Packet:

Dword (32-bits)	Description	Value
0	Packet size (bytes)	0x08
1	Connection Info	See below:

Where Connection Info is:

Dword (32-bits)	Description	
0xaa55ffff	No Connection available	
0xaa55xxxx	Xxxx – Real-Time port available (e.g. 5001)	
0x55aa0000	Packet size error	
0x55aa0001	Unknown Command	

The SE-3200MU returns a free Port number for the Real Time Channel

- The associated Command Channel is also available for use
- Add +1 to the Real Time Port Number to get the Command Port number

2.1.2 Connection to the Control Channel

To connect to the SE-3200 Main Unit (SE-3200MU), using the Command Protocol, perform a 'connect' to the device using the designated IP address (e.g. 192.168.100.101), and use the Command Port found using the Connection Request Channel.

The Processor Unit is now ready to accept commands

Command Packets use a simple packet structure as follows:

Dword (32-bits)	Description
0	Packet size (bytes)
1	Command
2	Parameter1
3	Parameter2
	etc

Only 1 command is allowed in each packet

 However, the Set & Get Control Commands can set & get multiple control values per command.

All values in the packet are stored as 32-bit ints or floats.

Note:

- When connecting using the Command protocol, be sure to use even port numbers (5002, 5004, 5006, 5008)
- Connecting to the Real Time ports (5001 etc), but using the 'Command Protocol' can actually
 appear to work ok initially, but the system will eventually cease to work, as the protocols will
 eventually get out of sync!

2.2 Commands

The following Commands are available:

Command	DWORD	Description
DV_COMMAND_GET_CONTROL	0	Get a Control Value from Processor Unit
DV_COMMAND_SET_CONTROL	1	Set a Control Value on the Processor Unit
DV_COMMAND_OPEN_DATA_FILE	2	Open Data File
DV_COMMAND_OPEN_MINI_PIC_FILE	3	Open Mini Pic File
DV_COMMAND_CLOSE_DATA_FILE	4	Close Data File
DV_COMMAND_GET_FILE_DATA	5	Get File Data
DV_COMMAND_STORE_FILE_DATA	6	Store File Data
DV_COMMAND_STILL_EVENT	7	Still Event
DV_COMMAND_GET_MINI_PIC	8	Get Mini Pic
DV_COMMAND_GET_INPUT_NAME	9	Get Input Name
DV_COMMAND_SET_INPUT_NAME	10	Set Input Name
DV_COMMAND_GET_FILE_NAME	11	Get File Name
DV_COMMAND_SET_FILE_NAME	12	Set File Name
DV_COMMAND_GET_USER_MEM	13	Get User Memory
DV_COMMAND_STORE_USER_MEM	14	Store User Memory
DV_COMMAND_STREAMER_CONTROL	15	Streamer Control
DV_COMMAND_OPEN_SOFTWARE_FILE	16	Open a software file for writing
DV_COMMAND_INSTALL_SOFTWARE	17	Install software
DV_COMMAND_OPEN_NAMES_FILE	18	Open names file
DV_COMMAND_RECORDER_CONTROL	19	Recorder Control
DV_COMMAND_CHROMA_KEYER_AUTO	20	Chroma Keyer Auto
DV_COMMAND_MENU_COMMAND	21	Menu Command

2.3 Command Description

2.3.1 DV_COMMAND_SET_CONTROL

This Command allows access to nearly all of the Processor Unit's control variables

The table below shows a typical example of setting the Program Source to Input 1

Dword (32-bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_SET_CONTROL
2	Parameter1 (Section / Control)	DV_CONTROL_SECTION_SWITCHER DV_CONTROL_SWITCHER_PGM_SRC
3	Parameter2	DV_SRC_INPUT_01

The DV_COMMAND_SET_CONTROL command gives access to over 300 Processor Unit variables

• See **Section 4** Get & Set Control Commands for full description of these commands.

2.3.1.1 Parameter 1 Coding

	Bits [31:16]	Bits [15:0]
Parameter 1	Section Num	Control Num

Parameter 1 comprises two 16-bit words

- High 16-bits are the 'Section'
- Low 16-bits are the 'Control' within the section

e.g. in the example above:

Parameter 1 = (DV_CONTROL_SECTION_SWITCHER << 16) | DV_CONTROL_SWITCHER_PGM_SRC

2.3.2 DV_COMMAND_GET_CONTROL

This Command reads control values back from the Processor Unit

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0c
1	Command	DV_COMMAND_GET_CONTROL
2	Parameter1	DV_CONTROL_SECTION_SWITCHER DV CONTROL SWITCHER PGM SRC

This example shows how to request the Processor Unit to send back the value of the PGM_SRC variable.

The Processor Unit will respond with a corresponding SET_CONTROL message

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_SET_CONTROL
2	Parameter1	DV_CONTROL_SECTION_SWITCHER DV_CONTROL_SWITCHER_PGM_SRC
3	Parameter2	DV_SRC_INPUT_01

2.3.3 DV_COMMAND_OPEN_DATA_FILE

Opens a Data file on the Processor Unit

This command allows read/write access to Still, Clip, Logo & Ani Logo files as well as User mems

- For backwards compatibility, the older Still File access mode is also supported

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x14
1	Command	DV_COMMAND_OPEN_DATA_FILE
2	File Type	0 – Mem, 1 – Still, 2 – Clip, 3 – Logo, 4 – Ani Logo
3	Parameter1	File Number
4	Parameter2	Mode (0 – Read, 1 – Write)

For Stills & Logos, the file number is used directly

For Clips & Ani Logos, then bits [9:0] are the Clip/AniLogo number, and bits [23:16] select the frame within the Clip/AniLogo sequence

2.3.3.1 Stills File backwards compatibility mode

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_OPEN_DATA_FILE
2	Parameter1	Still Number
3	Parameter2	Mode (0 – Read, 1 – Write)

2.3.4 DV_COMMAND_OPEN_MINI_PIC_FILE

Opens a Mini-pic file of the selected file type on the Processor Unit

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_OPEN_MINI_PIC_FILE
2	File Type	0 – Mem, 1 – Still, 2 – Clip, 3 – Logo, 4 – Ani Logo
3	Parameter1	Mini Pic Number
4	Parameter2	Mode (0 – Read, 1 – Write)

2.3.4.1 Stills file backwards compatibility mode

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_OPEN_MINI_PIC_FILE
2	Parameter1	Mini Pic Number
3	Parameter2	Mode (0 – Read, 1 – Write)

2.3.5 DV_COMMAND_CLOSE_DATA_FILE

Closes the previously opened data file (ie. Still, Clip or Mini-pic etc) on the Processor Unit

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x08
1	Command	DV_COMMAND_CLOSE_DATA_FILE

2.3.6 DV_COMMAND_GET_FILE_DATA

Gets a packet of data from the open data file (Still or Mini-pic)

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0c
1	Command	DV_COMMAND_GET_FILE_DATA
2	Parameter1	Num bytes

2.3.7 DV_COMMAND_STORE_FILE_DATA

Stores data on the Processor Unit

Also, this command is used for data return from a DV_COMMAND_GET_FILE_DATA command

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + data size
1	Command	DV_COMMAND_STORE_FILE_DATA
2	Parameter1	Length of chunk
3	Parameter2	Chunk number
4 n	Data	Bytes of data

2.3.8 DV_COMMAND_FILE_EVENT

This command signals to other controllers that a file event has taken place

- This is not usually necessary, as most file commands will automatically update this flag

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0c
1	Command	DV_COMMAND_FILE_EVENT
2	File Type	0 – Mem, 1 – Still, 2 – Clip, 3 – Logo, 4 – Ani Logo

2.3.8.1 Stills file backwards compatibility mode

Dword (32- bits)	Description	Value	
0	Packet size (bytes)	0x0c	
1	Command	DV_COMMAND_FILE_EVENT	

2.3.9 DV_COMMAND_GET_MINI_PIC

Gets a Mini-Pic from the Processor Unit

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C
1	Command	DV_COMMAND_GET_MINI_PIC
2	Parameter1	Mini Pic num

The packet returned from the Processor Unit is:

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + Mini Pic size
1	Command	DV_COMMAND_RESULT_MINI_PIC
2	Parameter1	Mini Pic Version Num
3 n	Data	Mini Pic data

Note:

- The Mini-Pic is 96 (H) x 54 (V) pixels in size
- Each pixels is 32-bits
 - o Pixel format is: R: [7:0], G:[15:8], B:[23:16]

2.3.10 DV_COMMAND_GET_INPUT_NAME

Gets the Input Name for a Multiviewer source.

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C
1	Command	DV_COMMAND_GET_INPUT_NAME
2	Parameter1	Input Num

The packet returned from the Processor Unit is:

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + Name Length (Bytes)
1	Command	DV_COMMAND_RESULT_INPUT_NAME
2	Parameter1	Name Length (UNICODE Chars)
3 n	Data	Name (Unicode)

2.3.11 DV_COMMAND_SET_INPUT_NAME

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + Name Length (Bytes)
1	Command	DV_COMMAND_SET_INPUT_NAME
2	Parameter1	Name Length (UNICODE Chars)
3 n	Data	Name (Unicode)

2.3.12 DV_COMMAND_GET_FILE_NAME

Gets the name for a given file

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_GET_FILE_NAME
2	Parameter1	0 – Mem, 1 – Still, 2 – Clip, 3 – Logo, 4 – Ani Logo
3	Parameter2	File Num

The packet returned from the Processor Unit is:

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x2C
1	Command	DV_COMMAND_RESULT_FILE_NAME
2	Parameter1	Name Length (UNICODE Chars)
3 n	Data	Name (Unicode)

2.3.13 DV_COMMAND_SET_FILE_NAME

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + Name Length (Bytes)
1	Command	DV_COMMAND_SET_FILE_NAME
2	Parameter1	0 – Mem, 1 – Still, 2 – Clip, 3 – Logo, 4 – Ani Logo
3	Parameter2	File Num
4	Parameter3	Name Length (UNICODE Chars)
5 n	Data	Name (Unicode)

2.3.14 DV_COMMAND_GET_USER_MEM

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C
1	Command	DV_COMMAND_GET_USER_MEM
2	Parameter1	Num

The packet returned from the Processor Unit is:

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x08 + User Mem size
1	Command	DV_COMMAND_RESULT_USER_MEM
2 n	Data	User Mem data

2.3.15 DV_COMMAND_STORE_USER_MEM

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + User Mem size
1	Command	DV_COMMAND_STORE_USER_MEM
2	Parameter1	Num
3 n	Data	User Mem data

2.3.16 DV_COMMAND_STREAMER_CONTROL

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C + User Mem size
1	Command	DV_COMMAND_STREAMER_CONTROL
2	Streamer Command	Command
3 n	Any parameters	Parameter

Native streaming in not supported on the SE-3200 currently

2.3.17 DV_COMMAND_OPEN_SOFTWARE_FILE

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10 + File name length (inc 0x00 terminator)
1	Command	DV_COMMAND_OPEN_SOFTWARE_FILE
2	Version	Software Version
3	Exe flag	Flag file as executable
4n	File name	File Name (inc 0x00 terminator)

This command opens a software file to be written to the SE-3200 MU.

- See Software Upgrade section

2.3.18 DV_COMMAND_INSTALL_SOFTWARE

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C
1	Command	DV_COMMAND_INSTALL_SOFTWARE
2	Version	Software Version

This command finishes the software upgrade process.

- See Software Upgrade section

2.3.19 DV_COMMAND_OPEN_NAMES_FILE

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	DV_COMMAND_OPEN_NAMES_FILE
2	Parameter1	Input number
3	Parameter2	Mode (0 – Read, 1 – Write)

- Opens an (Input) Name file for read/write access
- The file contents can then be read/written using the DV_COMMAND_GET_FILE_DATA & DV_COMMAND_STORE_FILE_DATA commands

2.3.20 DV_COMMAND_RECORDER_CONTROL

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x10 +
1	Command	DV_COMMAND_RECORDER_CONTROL
2		

This command in not supported on the SE-3200 currently

2.3.21 DV_COMMAND_CHROMA_KEYER_AUTO

Dword (32- bits)	Description	Value
0	Packet size (bytes)	0x0C
1	Command	DV_COMMAND_CHROMA_KEYER_AUTO
2	Keyer	03

This command start the Chroma Keyer Auto setup process

- The parameter 'Keyer' selects the keyer to setup, where

 o 0 Keyer 1

 o 1 Keyer 2

 - o Etc

3. Real-Time Protocol

3.1 Making the Connection

To connect to the Processor Unit to use the Real-Time Protocol, perform a 'connect' to the device using the designated IP address (e.g. 192.168.100.101), and use the port number determined in Port 5003 for Real-Time Port 2.

3.2 Protocol Description

Once the connection has been made, the Processor Unit will attempt to send a packet to the Controller every field.

This packet will either be

- 1. A Null Packet
- 2. A Packet Containing Parameter/Value pairs

3.2.1 Null Packet

A Null Packet is 8 bytes long, as follows:

Dword (32-bits)	Description
0	Packet size (bytes) i.e. 8
1	0

3.2.2 Parameter/Value Packet

The Parameter Value Packet is essentially the same as a DV_COMMAND_SET_CONTROL Command. The Command value is ignored.

The table below shows a typical example of setting the Program Source to Input 1

Dword (32-bits)	Description	Value
0	Packet size (bytes)	0x10
1	Command	0 (Ignored)
2	Parameter1 (Section / Control)	DV_CONTROL_SECTION_SWITCHER DV_CONTROL_SWITCHER_PGM_SRC
3	Parameter2	DV_SRC_INPUT_01

 As with the DV_COMMAND_SET_CONTROL Command many parameters can be updated with one packet

The table below shows a typical example of setting the PGM Source to Input 1 & the PVW Source to Input 2 using a single packet.

Dword (32-bits)	Description	Value
0	Packet size (bytes)	0x18
1	Command	0 (Ignored)
2	Parameter1 (Section / Control)	DV_CONTROL_SECTION_SWITCHER DV_CONTROL_SWITCHER_PGM_SRC
3	Parameter2	DV_SRC_INPUT_01
5	Parameter1 (Section / Control)	DV_CONTROL_SECTION_SWITCHER DV_CONTROL_SWITCHER_PST_SRC
6	Parameter2	DV_SRC_INPUT_02

3.2.3 First Packet

The first packet that the Processor Unit sends to the Controller will be a packet containing all the parameters.

- This allows the Controller to immediately get the complete machine state of the processor unit
- It is assumed that the Controller will keep a copy of the complete machine state
 - Please ensure the Controller machine state copy is set to all-zeros before connection is made
- The Processor Unit will send any changes to this machine state

3.2.4 Controller Reply Packet

Once the Controller has received a packet from the Processor Unit, it must send a reply packet to the Processor Unit.

The Reply packet is of the same format at the packet from the Processor Unit

So, this packet will either be

- 1. A Null Packet
- 2. A Packet Containing Parameter/Value pairs

3.2.4.1 Reply Null Packet

See 3.2.1 Null Packet

3.2.4.2 Reply Parameter/Value Packet

See 3.2.2 Parameter/Value Packet

3.2.5 Further Notes

So, as described above, once connected, the Real-Time Protocol consists of the Processor Unit sending packets to the Controller at Field-Rate, and the Controller replying to each packet with it's own Reply Packet.

The Processor Unit will not send another packet until it has received a reply to the previous packet.

- So the Controller must reply to every packet, even Null Packets
- However, it is permissible for the Reply Packet to take more than a field to arrive
 - o Of course, this will break the Real-Time, field synchronous nature of the protocol
 - o But this is still permissible behaviour
 - o Thus, this protocol can work over extended networks if desired.

Using this Field-Rate exchange of Parameters, all Controllers are kept up-to-date with any changes in the Processor Unit including any changes from any other Controller.

4. Get & Set Control Commands

This section describes the Control (i.e variables) available using the DV_COMMAND_GET_CONTROL & DV_COMMAND_SET_CONTROL Commands.

The Controls for the SE-3200 are divided into a number of different sections:

Control Num	Control Name	Description
0	SECTION_STATUS	Status Information
1	SECTION_SYSTEM	System Control
2	SECTION_SWITCHER	Main Switcher Controls
3	SECTION_INPUT	Input Controls (per channel)
4	SECTION_INPUT_CTRL	Common Input Controls
5	SECTION_OUTPUT_CTRL	Output Controls
6	SECTION_AUDIO_CTRL	Audio Controls
7	SECTION_TRANSITION_CTRL	Transition Engine Controls
8	SECTION_MEMORY_CTRL	User Memory Control
9	SECTION_MEMORY_PRESENT	User Memory Present
10	SECTION_STILL_CTRL	Stills Memory Control
11	SECTION_STILL_PRESENT	Stills Memory Present
12	SECTION_STREAMER_CTRL	Streamer Controls
13	SECTION_CLIP_CTRL,	Clip Controls
14	SECTION_CLIP_PRESENT	Clip Present
15	SECTION_LOGO_CTRL	Logo Controls
16	SECTION_LOGO_PRESENT	Logo Present
17	SECTION_ANI_LOGO_CTRL	Animated Logo Controls
18	SECTION_ANI_LOGO_PRESENT	Animated Logo Present

4.1 Control Command Descriptions

4.1.1 DV_CONTROL_SECTION_STATUS

This Section provides status information about the Processor Unit State

• Writing to these values will have no effect

Control Num	Control Name	Type	Range	Description
0	DV_CONTROL_STATUS_CONNECTION	int		Connection Status
1	DV_CONTROL_STATUS_SYSTEM_VERSION	int		System Header Version
2	DV_CONTROL_STATUS_MAIN_VERSION	int		Main Header Version
3	DV_CONTROL_STATUS_SOFTWARE_VERSION	int		Software Version
4	DV_CONTROL_STATUS_FIRMWARE_VERSION	int		Firmware Version
5	DV_CONTROL_STATUS_KBD_VERSION	int		Output Controls
6	DV_CONTROL_STATUS_BOARD_VERSION	int		Board Version
7	DV_CONTROL_STATUS_PRODUCT_VERSION	int		Product Version
8	DV_CONTROL_STATUS_PRODUCT_SUBVERSION	int		Product Subversion
9	DV_CONTROL_STATUS_BOOT_STATUS	int		Boot Status
1029	DV_CONTROL_STATUS_TALLY_SOURCE019	int		Tally Sources 0-19
30	DV CONTROL STATUS TALLY PGM SRC,	int		Tally Pgm Bus

31	DV_CONTROL_STATUS_TALLY_PST_SRC,	int	Tally Pst Bus
32	DV_CONTROL_STATUS_TALLY_KEY1_FILL_SRC,	int	Tally Key1 Fill Bus
33	DV_CONTROL_STATUS_TALLY_KEY1_KEY_SRC,	int	Tally Key1 Key Bus
34	DV_CONTROL_STATUS_TALLY_KEY2_FILL_SRC,	int	Tally Key2 Fill Bus
35	DV_CONTROL_STATUS_TALLY_KEY2_KEY_SRC,	int	Tally Key2 Key Bus
36	DV_CONTROL_STATUS_TALLY_KEY3_FILL_SRC,	int	Tally Key3 Fill Bus
23	DV_CONTROL_STATUS_TALLY_KEY3_KEY_SRC,	int	Tally Key3 Key Bus
24	DV_CONTROL_STATUS_TALLY_KEY4_FILL_SRC,	int	Tally Key4 Fill Bus
25	DV_CONTROL_STATUS_TALLY_KEY4_KEY_SRC,	int	Tally Key4 Key Bus
26	DV_CONTROL_STATUS_TALLY_DSK1_FILL_SRC,	int	Tally DSK1 Fill Bus
27	DV_CONTROL_STATUS_TALLY_DSK1_KEY_SRC,	int	Tally DSK1 Key Bus
28	DV_CONTROL_STATUS_TALLY_DSK2_FILL_SRC,	int	Tally DSK2 Fill Bus
29	DV_CONTROL_STATUS_TALLY_DSK2_KEY_SRC,	int	Tally DSK2 Key Bus
30	DV_CONTROL_STATUS_FREE_SPACE,	int	Free Space,

4.1.1.1 STATUS_SYSTEM_CONNECTION_STATUS

Connection Status from the Processor Unit

Standard	Value	Description
DV_CONNECTION_NO_CONNECTION	0	Connection not active
DV_CONNECTION_PENDING	1	Connection Pending
DV CONNECTION CONNECTED	2	Connected

- 0 DV CONNECTION NO CONNECTION
 - 1 DV_CONNECTION_PENDING
 - 2 DV CONNECTION CONNECTED

4.1.1.2 STATUS_SYSTEM_VERSION

This is the version number of the System Header used by the Processor Unit software

4.1.1.3 STATUS_MAIN_VERSION

This is the version number of the Main Header used by the Processor Unit software

4.1.1.4 STATUS_SOFTWARE_VERSION

This is the version number of the Software Version of the Processor Unit software

- Bits [31:24] Major Version Number
- Bits [23:16] Minor Version Number
- Bits [15:0] Build Number

4.1.1.5 STATUS_FIRMWARE_VERSION

This is the version number of the Switcher Firmware in the Processor Unit

- Bits [31:16] Year in Hex format (eg 2018 is 0x2018)
- Bits [15:8] Month in Hex format (eg November is 0x11)
- Bits [7:0] Day in Hex format (e.g. 25th is 0x25)

4.1.1.6 STATUS BOARD ID VERSION

Production board ID number

4.1.1.7 Source Tallies

The Controls STATUS_TALLY_SOURCE0-19 provide Tallies for Individual Sources

- SOURCE0 is Input1
- SOURCE1 is Input2 etc

4.1.1.8 Bus Tallies

Bus Tallies are provided by the following Controls

DV_CONTROL_STATUS_TALLY_PGM_SRC
DV_CONTROL_STATUS_TALLY_PST_SRC
DV_CONTROL_STATUS_TALLY_KEY1_FILL_SRC
DV_CONTROL_STATUS_TALLY_KEY1_KEY2_SRC
DV_CONTROL_STATUS_TALLY_KEY2_FILL_SRC
DV_CONTROL_STATUS_TALLY_KEY3_FILL_SRC
DV_CONTROL_STATUS_TALLY_KEY3_FILL_SRC
DV_CONTROL_STATUS_TALLY_KEY3_KEY_SRC
DV_CONTROL_STATUS_TALLY_KEY4_FILL_SRC
DV_CONTROL_STATUS_TALLY_KEY4_KEY_SRC
DV_CONTROL_STATUS_TALLY_DSK1_FILL_SRC
DV_CONTROL_STATUS_TALLY_DSK1_FILL_SRC
DV_CONTROL_STATUS_TALLY_DSK2_FILL_SRC
DV_CONTROL_STATUS_TALLY_DSK2_FILL_SRC
DV_CONTROL_STATUS_TALLY_DSK2_KEY_SRC

4.1.2 DV CONTROL SECTION SYSTEM

This section provides control over the system level functions of the SE-3200

Control Num	Control Name	Туре	Description
0	DV_CONTROL_SYSTEM_STANDARD		System Standard
1	DV_CONTROL_SYSTEM_ASPECT	flag	System Aspect SD (16:9 / 4:3)
2	DV_CONTROL_SYSTEM_GENLOCK_ENABLE	flag	Genlock Enable
3	DV_CONTROL_SYSTEM_GENLOCK_SRC	int	Genlock Src
4	DV_CONTROL_SYSTEM_GENLOCK_H_PHASE	int	Genlock H Phase (no function)
5	DV_CONTROL_SYSTEM_GENLOCK_V_PHASE	int	Genlock V Phase (no function)
6	DV_CONTROL_SYSTEM_NETWORK_IP_MODE	int	IP Mode (Static/DHCP)
7	DV_CONTROL_SYSTEM_NETWORK_IP_ADDR	int	IP Addr
8	DV_CONTROL_SYSTEM_NETWORK_NETWORK_MASK	int	Network Mask
9	DV_CONTROL_SYSTEM_NETWORK_GATEWAY	int	Gateway
10	DV_CONTROL_SYSTEM_NETWORK_MAC_ADDR0	int	Mac Addr0
11	DV_CONTROL_SYSTEM_NETWORK_MAC_ADDR1	int	Mac Addr1
12	DV_CONTROL_SYSTEM_NETWORK_SPARE1	int	Spare1
13	DV_CONTROL_SYSTEM_NETWORK_SPARE2	int	Spare2
14	DV_CONTROL_SYSTEM_PREF_MENU_COLOUR	int	Pref Menu Colour
15	DV_CONTROL_SYSTEM_PREF_MENU_POSITION	int	Pref Menu Position
16	DV_CONTROL_SYSTEM_PREF_TRANSP_MENUS	int	Pref Transp Menus
17	DV_CONTROL_SYSTEM_PREF_SMALL_MENUS	int	Pref Small Menus
18	DV_CONTROL_SYSTEM_AUTO_SAVE_ENABLE	int	Auto Save Enable
19	DV_CONTROL_SYSTEM_LANGUAGE_SELECT	int	Language Select
20	DV_CONTROL_SYSTEM_PREF_MENU_MODE	int	Pref Menu Mode
21	DV_CONTROL_SYSTEM_PREF_KEYBOARD_BRIGHTNESS	int	Pref Keyboard Brightness
22	DV_CONTROL_SYSTEM_SERIAL_MODE	flag	Serial Mode
23	DV_CONTROL_SYSTEM_AUDIO_ANALOG_LEVEL	flag	Audio Analog Level

4.1.2.1 SYSTEM_STANDARD

This controls the system output standard

Standard	Value	Description
DV_STD_HD1080P_60	0	1080p / 60
DV_STD_HD1080P_59_94	1	1080p / 59.94
DV_STD_HD1080P_50	2	1080p / 50
DV_STD_HD1080I_60	3	1080i / 60
DV_STD_HD1080I_59_94	4	1080i / 59.94
DV_STD_HD1080I_50	5	1080i / 50
DV_STD_HD720P_60	6	720p / 60
DV_STD_HD720P_59_94	7	720p / 59.94
DV_STD_HD720P_50	8	720p / 50

4.1.3 DV_CONTROL_SECTION_SWITCHER (Main Sub-Section)

4.1.3.1 Wipe Controls

Control Num	Control Name	Туре	Range	Description
0	SWITCHER_WIPE_PATTERN_NUM	int	[1 -32]	Pattern num
1	SWITCHER_WIPE_LEVEL	float	[0.0 - 100.0]	
2	SWITCHER_WIPE_POSITION_X	float	[-16.0 - 16.0]	
3	SWITCHER_WIPE_POSITION_Y	float	[-16.0 - 16.0]	
4	SWITCHER_WIPE_ROTATION	float	[-16.0 - 16.0]	
5	SWITCHER_WIPE_SOFT	float	[0.0 - 100.0]	
6	Not used	float	[0.0 - 100.0]	
7	SWITCHER_WIPE_ASPECT	float		
8	SWITCHER_WIPE_BORDER_WIDTH	float	[0.0 - 100.0]	
9	SWITCHER_WIPE_BORDER_ENABLE	flag		
10	SWITCHER_WIPE_BORDER_HUE	float	[0.0 - 360.0]	
11	SWITCHER_WIPE_BORDER_SAT	float	[0.0 - 100.0]	
12	SWITCHER_WIPE_BORDER_LUMA	float	[0.0 - 100.0]	

4.1.3.1.1 SWITCHER_WIPE_PATTERN_NUM

Selects the current Wipe Pattern

• Range: 1 - 32

4.1.3.1.2 SWITCHER_WIPE_LEVEL

Sets the current Wipe Level

• Range: 0.0 – 100.0

• When it reaches 100.0, the Processor Unit will set it back to zero, and

complete the transition

This control is also used to drive the DVE transition engine when in DVE transition mode

4.1.3.1.3 SWITCHER WIPE POSITION X

Sets the X position of the centre of the Wipe

- Only applies to Wipes 29, 30, 31 (Circle & Ellipse Wipes)
- Range: -1.0 to + 1.0 (ie. +/- 1 screen width)

4.1.3.1.4 SWITCHER_WIPE_POSITION_Y

Sets the X position of the centre of the Wipe

- Only applies to Wipes 29, 30, 31 (Circle & Ellipse Wipes)
- Range: -1.0 to + 1.0 (ie. +/- 1 screen width)

4.1.3.1.5 SWITCHER_WIPE_ROTATION

Sets the Wipe Rotation

- Only applies to Wipes 29, 30, 31 (Circle & Ellipse Wipes)
- Range: -16.0 to + 16.0 rotations

4.1.3.1.6 SWITCHER_WIPE_SOFT

Sets the Wipe Softness

- Range: 0.0 100.0
- 0.0 is the minimum softness
- 100.0 is the Maximum softness (1 screen width)

4.1.3.1.7 SWITCHER_WIPE_SOFT_BAL

For a Wipe with Border, the sets the balance between the Leading & Trailing edge softness

- Range: -100.0 +100.0
- 0.0 Leading & Trailing Edges have the same softness
- +100 Leading Edge has +100 softeness
- -100 Trailing Edge has +100 softness

4.1.3.1.8 SWITCHER WIPE ASPECT

Not used

4.1.3.1.9 SWITCHER WIPE BORDER WIDTH

Sets the Wipe Border Width

- Range: 0.0 100.0
- 0.0 is no Border
- 100.0 is the Maximum Border (1 screen width)

4.1.3.1.10 SWITCHER_WIPE_BORDER_ENABLE

Set automatically for any non-zero Wipe Border Width

4.1.3.1.11 SWITCHER_WIPE_BORDER_HUE

Wipe Border Hue

• Range: 0.0 – 360.0 degrees

4.1.3.1.12 SWITCHER_WIPE_BORDER_SAT

Wipe Border Saturation

• Range: 0.0 – 100.0%

4.1.3.1.13 SWITCHER_WIPE_BORDER_LUMA

Wipe Border Luma

• Range: 0.0 – 100.0%

4.1.3.2 Keyer 1 Controls

Control		
Num	Control Name	Type
19	SWITCHER_KEY1_KEYER_ON	flag
20	SWITCHER_KEY1_KEY_SRC	int
21	SWITCHER_KEY1_SPLIT_SRC	int
22	SWITCHER_KEY1_LINEAR_OPACITY	float
23	SWITCHER_KEY1_LINEAR_LIFT	float
24	SWITCHER_KEY1_LINEAR_GAIN	float
25	SWITCHER_KEY1_LINEAR_KEY_MODE	int
26	SWITCHER_KEY1_LINEAR_KEY_INVERT	float
27	SWITCHER_KEY1_LINEAR_KEY_SEL_MODE	int
28	SWITCHER_KEY1_LINEAR_KEY_FILL_MODE	int
29	SWITCHER_KEY1_LINEAR_MATTE_HUE	float
30	SWITCHER_KEY1_LINEAR_MATTE_SAT	float
31	SWITCHER_KEY1_LINEAR_MATTE_LUMA	float
32	SWITCHER_KEY1_CHROMA_ENABLE	int
33	SWITCHER_KEY1_CHROMA_MATTE_HUE	float
34	SWITCHER_KEY1_CHROMA_MATTE_SAT	float
35	SWITCHER_KEY1_CHROMA_MATTE_LUMA	float
36	SWITCHER_KEY1_CHROMA_KEY_ACC	float
37	SWITCHER_KEY1_CHROMA_KEY_GAIN	float
38	SWITCHER_KEY1_CHROMA_KEY_LIFT	float
39	SWITCHER_KEY1_CHROMA_CHROMA_ACC	float
40	SWITCHER_KEY1_CHROMA_CHROMA_SUP	float
41	SWITCHER_KEY1_CHROMA_KEY_SOFT	float
42	SWITCHER_KEY1_CHROMA_KEY_SHRINK	float
43	SWITCHER_KEY1_CHROMA_BGND_SUPPRESS	int
44	SWITCHER_KEY1_MASK_LEFT	float
45	SWITCHER_KEY1_MASK_RIGHT	float
46	SWITCHER_KEY1_MASK_TOP	float
47	SWITCHER_KEY1_MASK_BOTTOM	float
48	SWITCHER_KEY1_MASK_ENABLE	int

4.1.3.2.1 SWITCHER_KEY1_KEYER_ON

This Enable Key 1 onto the PGM Output

4.1.3.2.2 SWITCHER KEY1 KEY SRC

This sets the Key Source for Key 1 in Split Mode, and the Video/Key Source for Key 1 in Luma mode

Program Src	Source
00	Black
01 12	Input 1 - 12
13 16	Not used
17	Matte
18	Pattern
19	Still 1
20	Still 2
21	Flex Src

4.1.3.2.3 SWITCHER KEY1 SPLIT SRC

This sets the Video Source for Key 1 in Split Mode

• Source selects, as above

4.1.3.2.4 SWITCHER_KEY1_LINEAR_OPACITY

This sets the Opacity of the Key1 output

• Range: 0.0 – 100.0%

4.1.3.2.5 SWITCHER_KEY1_LINEAR_LIFT

This sets the Lift applied to the Key 1 Linear Keyer Key

- Range: 0.0 100.0%
- 0.0 is no lift
- 100.0 is full scale lift

4.1.3.2.6 SWITCHER_KEY1_LINEAR_GAIN

This sets the Gain applied to the Key 1 Linear Keyer Key

- Range: 0.0 16.0
- 1.0 is unity gain

4.1.3.2.7 SWITCHER_KEY1_LINEAR_KEY_MODE

This sets the Key1 Keyer Mode

- 0 Linear Mix Mode
 - o This is called 'Luma' Mode on the Control Panel
 - Key shaping is also applied
- 1 Additive Mix Mode
 - o This is called 'Linear' Mode on the Control Panel
 - Key shaping is not applied

4.1.3.2.8 SWITCHER_KEY1_LINEAR_KEY_INVERT

When set, this inverts the Key

4.1.3.2.9 SWITCHER_KEY1_LINEAR_KEY_SEL_MODE

This is the Key Select Mode. The following modes are available:

- 0 Self Key Mode
 - o The Key Source is used for both the Key & Video
 - i.e. self key
- 1 Split Mode
 - The Key src is used for the Key, and the Split source is used for the video src
- 2 PIP Mode
 - This mode allows the Video & Key from the PinP to be used as the Video
 & Key for this keyer

4.1.3.2.10 SWITCHER_KEY1_LINEAR_KEY_FILL_MODE

This is the Key Fill Mode. The following modes are available:

- 0 Video Fill Mode
 - The Video source is used as the Video Fill
- 1 Matte Mode
 - The Keyer Matte generator is used as the video source

4.1.3.2.11 SWITCHER_KEY1_LINEAR_MATTE_HUE

The Keyer Matte is used in the Key Fill Matt Mode This control sets the Hue of the Key 1 Keyer Matte

• Range: 0.0 – 360.0 degrees

4.1.3.2.12 SWITCHER_KEY1_LINEAR_MATTE_SAT

The Keyer Matte is used in the Key Fill Matt Mode
This control sets the Saturation of the Key 1 Keyer Matte

• Range: 0.0 – 100.0%

4.1.3.2.13 SWITCHER_KEY1_LINEAR_MATTE_LUMA

The Keyer Matte is used in the Key Fill Matt Mode

This control sets the Luma of the Key 1 Keyer Matte

• Range: 0.0 – 100.0%

4.1.3.2.14 SWITCHER_KEY1_CHROMA_ENABLE

This Control enables the Key 1 Chroma Keyer

- 0 Chroma Keyer not enabled
- 1 Chroma Keyer enabled

4.1.3.2.15 SWITCHER KEY1 CHROMA MATTE HUE

The Chroma Matte defines the colour of the Background used for Chroma Keying

This control sets the Hue of the Key 1 Chroma Keyer Matte

• Range: 0.0 – 360.0 degrees

4.1.3.2.16 SWITCHER KEY1 CHROMA MATTE SAT

This control sets the Saturation of the Key 1 Chroma Keyer Matte

- Range: 0.0 100.0%
- The control is not used in the current software

4.1.3.2.17 SWITCHER_KEY1_CHROMA_MATTE_LUMA

This control sets the Luma of the Key 1 Chroma Keyer Matte

• Range: 0.0 – 100.0%

4.1.3.2.18 SWITCHER KEY1 CHROMA KEY ACC

This control sets the Key Acceptance Angle for the Chroma Keyer

- If the angle is set to 140.0 degrees, then the Key acceptance is +/- 70.0 degrees either side to the Chroma Hue
- Range: 0.0 180.0 degrees

4.1.3.2.19 SWITCHER_KEY1_CHROMA_KEY_GAIN

Set the Gain applied to the Chroma Key

• Range: 0.0 – 16.0

4.1.3.2.20 SWITCHER_KEY1_CHROMA_KEY_LIFT

Set the Lift applied to the Chroma Key

• Range: 0.0 – 100.0%

4.1.3.2.21 SWITCHER_KEY1_CHROMA_CHROMA_ACC

This control sets the Chroma Acceptance Angle for the Chroma Keyer

- Inside the Chroma Acceptance angle, Chroma Suppression is applied
- Outside the Chroma Acceptance Angle, the Chroma is unaltered
- If the angle is set to 140.0 degrees, then the Chroma acceptance is +/- 70.0 degrees either side to the Chroma Hue
- Range; 0.0 180.0 degrees

4.1.3.2.22 SWITCHER KEY1 CHROMA CHROMA SUP

The Chroma Suppression angle is expressed as a percentage of the Chroma Acceptance Angle

- · Low values are usually best
- Within the Chroma Suppression angle, the Chroma is fully suppressed to grey
- Between the Chroma Acceptance Angle and the Chroma Suppression Angle, the Chroma is suppressed along the hue axis.

4.1.3.2.23 SWITCHER KEY1 CHROMA KEY SOFT

No function currently

4.1.3.2.24 SWITCHER_KEY1_CHROMA_KEY_SHRINK

4.1.3.2.25 SWITCHER_KEY1_CHROMA_BGND_SUPPRESS

This control simplifies Chroma Key setup, by always fully suppressing the Background in areas of zero key value. This makes it easier to get clean backgrounds, but may introduce dark edges to the foreground

When not set, the background must be suppressed more carefully using the Luma Suppression controlled by the Luma Value of the Chroma Matte colour

4.1.3.2.26 SWITCHER_KEY1_MASK_LEFT

This control sets the Left edge of the mask

- Specifies the distance from the Screen Left Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.2.27 SWITCHER_KEY1_MASK_RIGHT

This control sets the Right edge of the mask

- Specifies the distance from the Screen Right Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.2.28 SWITCHER_KEY1_MASK_TOP

This control sets the Top edge of the mask

- Specifies the distance from the Screen Top Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.2.29 SWITCHER_KEY1_MASK_BOTTOM

This control sets the Bottom edge of the mask

- Specifies the distance from the Screen Bottom Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.2.30 SWITCHER_KEY1_MASK_ENABLE

This Control enables the Key 1 Mask

- 0 Mask not enabled
- 1 Mask enabled

4.1.3.3 Keyer 2 Controls

Control		
Num	Control Name	Туре
49	SWITCHER_KEY2_KEYER_ON	int
50	SWITCHER_KEY2_KEY_SRC	int
51	SWITCHER_KEY2_SPLIT_SRC	int
52	SWITCHER_KEY2_LINEAR_OPACITY	float
53	SWITCHER_KEY2_LINEAR_LIFT	float
54	SWITCHER_KEY2_LINEAR_GAIN	float
55	SWITCHER_KEY2_LINEAR_KEY_MODE	int
56	SWITCHER_KEY2_LINEAR_KEY_INVERT	float

57	SWITCHER_KEY2_LINEAR_KEY_SEL_MODE	int
58	SWITCHER_KEY2_LINEAR_KEY_FILL_MODE	int
59	SWITCHER_KEY2_LINEAR_MATTE_HUE	float
60	SWITCHER_KEY2_LINEAR_MATTE_SAT	float
61	SWITCHER_KEY2_LINEAR_MATTE_LUMA	float
62	SWITCHER_KEY2_CHROMA_ENABLE	int
63	SWITCHER_KEY2_CHROMA_MATTE_HUE	float
64	SWITCHER_KEY2_CHROMA_MATTE_SAT	float
65	SWITCHER_KEY2_CHROMA_MATTE_LUMA	float
66	SWITCHER_KEY2_CHROMA_KEY_ACC	float
67	SWITCHER_KEY2_CHROMA_KEY_GAIN	float
68	SWITCHER_KEY2_CHROMA_KEY_LIFT	float
69	SWITCHER_KEY2_CHROMA_CHROMA_ACC	float
70	SWITCHER_KEY2_CHROMA_CHROMA_SUP	float
71	SWITCHER_KEY2_CHROMA_KEY_SOFT	float
72	SWITCHER_KEY2_CHROMA_KEY_SHRINK	float
73	SWITCHER_KEY2_CHROMA_BGND_SUPPRESS	int
74	SWITCHER_KEY2_MASK_LEFT	float
75	SWITCHER_KEY2_MASK_RIGHT	float
76	SWITCHER_KEY2_MASK_TOP	float
77	SWITCHER_KEY2_MASK_BOTTOM	float
78	SWITCHER_KEY2_MASK_ENABLE	int

The Controls for Keyer2 follow the same pattern as Keyer1

4.1.3.4 Keyer 3 Controls

Keyer 3 Controls follow the same pattern as Keyer1

Control

Num	Control Name	Type
79	SWITCHER_KEY3_KEYER_ON	int
 108	 SWITCHER_KEY3_MASK_ENABLE	 int

4.1.3.5 Keyer 4 Controls

Keyer 4 Controls follow the same pattern as Keyer1

Control	

Num	Control Name	Туре
109	SWITCHER_KEY4_KEYER_ON	int
		••
138	SWITCHER_KEY4_MASK_ENABLE	int

4.1.3.6 Transition Controls

The Switcher Transition Controls control the actions of the M/E mixer

Num	Control Name	Туре
139	SWITCHER_TRANS_BGND	flag

140	SWITCHER_TRANS_KEY1	flag
141	SWITCHER_TRANS_KEY2	flag
142	SWITCHER_TRANS_KEY3	flag
143	SWITCHER_TRANS_KEY4	flag
144	SWITCHER_TRANS_PRIORITY	flag
145	SWITCHER_TRANS_PREVIEW	flag
146	SWITCHER_TRANS_REVERSE	flag
147	SWITCHER_TRANS_NORMAL_REV	flag
148	SWITCHER_PGM_SRC	int
149	SWITCHER_PST_SRC	int
150	SWITCHER_TRANS_TYPE	int
151	SWITCHER_DVE_TRANS_NUM	int
152	SWITCHER_KEY_PRIORITY	flag

4.1.3.6.1 SWITCHER_TRANS_BGND

The Control sets the Background to be included in the next transition

- 0 Background is not in transition
- 1 Background is in transition

4.1.3.6.2 SWITCHER_TRANS_KEY1

The Control sets Keyer 1 to be included in the next transition

- 0 Keyer 1 is not in transition
- 1 Keyer 1 is in transition

4.1.3.6.3 SWITCHER_TRANS_KEY2

The Control sets Keyer 2 to be included in the next transition

- 0 Keyer 2 is not in transition
- 1 Keyer 2 is in transition

4.1.3.6.4 SWITCHER_TRANS_KEY3

The Control sets Keyer 3 to be included in the next transition

- 0 Keyer 3 is not in transition
- 1 Keyer 3 is in transition

4.1.3.6.5 SWITCHER_TRANS_KEY4

The Control sets Keyer 4 to be included in the next transition

- 0 Keyer 4 is not in transition
- 1 Keyer 4 is in transition

4.1.3.6.6 SWITCHER TRANS PRIORITY

Not currently supported on the SE-3200

4.1.3.6.7 SWITCHER TRANS PREVIEW

This control sets Transition Preview mode. In this mode, the transition is not performed on the Program outputs, instead it is previewed on the Preview Output

- 0 Transition Preview Mode not enabled
- 1 Transition Preview Mode is not enabled

4.1.3.6.8 SWITCHER_TRANS_REVERSE

This control sets Transition Reverse Mode. In this mode, the transition is performed in the reverse direction to the Normal Mode

- 0 Transition Reverse Mode not enabled
- 1 Transition Reverse Mode is not enabled

4.1.3.6.9 SWITCHER_TRANS_NORMAL_REV

This control sets the Transition Normal / Reverse Mode. In this mode, the state of the Transition Reverse Mode is swapped every time a transition completes

- 0 Transition Normal / Reverse Mode not enabled
- 1 Transition Normal / Reverse Mode is not enabled.

4.1.3.6.10 SWITCHER PGM SRC

This control sets the M/E Program Source. The Program Source values are the same as the Keyer sources

Program Src	Source
00	Black
01 12	Input 1 - 12
13 16	Not used
17	Matte
18	Pattern
19	Still 1
20	Still 2
21	Flex Src

4.1.3.6.11 SWITCHER_PST_SRC

This control sets the M/E Preset Source. The Preset Source values are the same as the Program & Keyer sources

4.1.3.6.12 SWITCHER_TRANS_TYPE

This Control sets the transition type. The following transition types are available:

- 0 − Mix
 - o The Transition performs a mix between the Program & Preview Buses
- 1 − Wipe
 - The transition is performed using the Wipe Generator
- 2 Clip

- o The transition is performed using the previously loaded Clip
- 3 DVE Trans
 - o The transition is performed using the Transition DVE

4.1.3.6.13 SWITCHER_KEY_PRIORITY

Not currently supported on the SE-3200

4.1.3.7 DSK1 Controls

The DSK 1 & DSK 2 Keyer Controls are similar to the Keyer 1 & 2 Controls, except that the Chroma Keyer is not available

Control		
Num	Control Name	Type
153	SWITCHER_DSK1_KEYER_ON	flag
154	SWITCHER_DSK1_KEY_SRC	int
155	SWITCHER_DSK1_SPLIT_SRC	int
156	SWITCHER_DSK1_LINEAR_OPACITY	float
157	SWITCHER_DSK1_LINEAR_LIFT	float
158	SWITCHER_DSK1_LINEAR_GAIN	float
159	SWITCHER_DSK1_LINEAR_KEY_MODE	int
160	SWITCHER_DSK1_LINEAR_KEY_INVERT	float
161	SWITCHER_DSK1_LINEAR_KEY_SEL_MODE	int
162	SWITCHER_DSK1_LINEAR_KEY_FILL_MODE	int
163	SWITCHER_DSK1_LINEAR_MATTE_HUE	float
164	SWITCHER_DSK1_LINEAR_MATTE_SAT	float
165	SWITCHER_DSK1_LINEAR_MATTE_LUMA	float
166	SWITCHER_DSK1_MASK_LEFT	float
167	SWITCHER_DSK1_MASK_RIGHT	float
168	SWITCHER_DSK1_MASK_TOP	float
169	SWITCHER_DSK1_MASK_BOTTOM	float
170	SWITCHER_DSK1_MASK_ENABLE	flag

4.1.3.7.1 SWITCHER_DSK1_KEYER_ON

This Enable DSK 1 onto the PGM Output

4.1.3.7.2 SWITCHER_DSK1_KEY_SRC

This sets the Key Source for DSK 1 in Split Mode, and the Video/Key Source for DSK 1 in Luma mode

• Source selects, as Keyer 1 - 4

4.1.3.7.3 SWITCHER_DSK1_SPLIT_SRC

This sets the Video Source for DSK 1 in Split Mode

Source selects, as above

4.1.3.7.4 SWITCHER_DSK1_LINEAR_OPACITY

This sets the Opacity of the DSK 1 output

• Range: 0.0 – 100.0%

4.1.3.7.5 SWITCHER DSK1 LINEAR LIFT

This sets the Lift applied to the DSK 1 Linear Keyer Key

- Range: 0.0 100.0%
- 0.0 is no lift
- 100.0 is full scale lift

4.1.3.7.6 SWITCHER_DSK1_LINEAR_GAIN

This sets the Gain applied to the DSK 1 Linear Keyer Key

- Range: 0.0 16.01.0 is unity gain
- 4.1.3.7.7 SWITCHER_DSK1_LINEAR_KEY_MODE

This sets the DSK1 Keyer Mode

- 0 Linear Mix Mode
 - o This is called 'Luma' Mode on the Control Panel
 - Key shaping is also applied
- 1 Additive Mix Mode
 - This is called 'Linear' Mode on the Control Panel
 - Key shaping is not applied

4.1.3.7.8 SWITCHER_DSK1_LINEAR_KEY_INVERT

When set, this inverts the Key

4.1.3.7.9 SWITCHER_DSK1_LINEAR_KEY_SEL_MODE

This is the Key Select Mode. The following modes are available:

- 0 Self Key Mode
 - The Key Source is used for both the Key & Video
 - o i.e. self key
- 1 Split Mode
 - o The Key src is used for the Key, and the Split source is used for the video src
- 2 PIP Mode
 - This mode allows the Video & Key from the PinP to be used as the Video & Key for this keyer

4.1.3.7.10 SWITCHER_DSK1_LINEAR_KEY_FILL_MODE

This is the Key Fill Mode. The following modes are available:

- 0 Video Fill Mode
 - o The Video source is used as the Video Fill
- 1 Matte Mode
 - o The Keyer Matte generator is used as the video source

4.1.3.7.11 SWITCHER_DSK1_LINEAR_MATTE_HUE

The Keyer Matte is used in the Key Fill Matt Mode This control sets the Hue of the DSK 1 Keyer Matte

• Range: 0.0 – 360.0 degrees

4.1.3.7.12 SWITCHER DSK1 LINEAR MATTE SAT

The Keyer Matte is used in the Key Fill Matt Mode This control sets the Saturation of the DSK 1 Keyer Matte

• Range: 0.0 – 100.0%

4.1.3.7.13 SWITCHER_DSK1_LINEAR_MATTE_LUMA

The Keyer Matte is used in the Key Fill Matt Mode This control sets the Luma of the DSK 1 Keyer Matte

• Range: 0.0 – 100.0%

4.1.3.7.14 SWITCHER_DSK1_MASK_LEFT

This control sets the Left edge of the mask

- Specifies the distance from the Screen Left Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.7.15 SWITCHER_DSK1_MASK_RIGHT

This control sets the Right edge of the mask

- · Specifies the distance from the Screen Right Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.7.16 SWITCHER_DSK1_MASK_TOP

This control sets the Top edge of the mask

- Specifies the distance from the Screen Top Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.7.17 SWITCHER_DSK1_MASK_BOTTOM

This control sets the Bottom edge of the mask

- Specifies the distance from the Screen Bottom Hand edge of the mask edge
- Range: 0.0 100.0%

4.1.3.7.18 SWITCHER_DSK1_MASK_ENABLE

This Control enables the DSK 1 Mask

- 0 Mask not enabled
- 1 Mask enabled

4.1.3.8 DSK2 Controls

Control

Num Control Name Type

171	SWITCHER_DSK2_KEYER_ON	flag
172	SWITCHER_DSK2_KEY_SRC	int
173	SWITCHER_DSK2_SPLIT_SRC	int
174	SWITCHER_DSK2_LINEAR_OPACITY	float
175	SWITCHER_DSK2_LINEAR_LIFT	float
176	SWITCHER_DSK2_LINEAR_GAIN	float
177	SWITCHER_DSK2_LINEAR_KEY_MODE	int
178	SWITCHER_DSK2_LINEAR_KEY_INVERT	float
179	SWITCHER_DSK2_LINEAR_KEY_SEL_MODE	int
180	SWITCHER_DSK2_LINEAR_KEY_FILL_MODE	int
181	SWITCHER_DSK2_LINEAR_MATTE_HUE	float
182	SWITCHER_DSK2_LINEAR_MATTE_SAT	float
183	SWITCHER_DSK2_LINEAR_MATTE_LUMA	float
184	SWITCHER_DSK2_MASK_LEFT	float
185	SWITCHER_DSK2_MASK_RIGHT	float
186	SWITCHER_DSK2_MASK_TOP	float
187	SWITCHER_DSK2_MASK_BOTTOM	float
188	SWITCHER_DSK2_MASK_ENABLE	flag

The Controls for DSK 2 follow the same pattern as DSK 1

4.1.3.9 Additional DSK Controls

Control		
Num	Control Name	Туре
189	SWITCHER_DSK1_TRANS_ENABLE	flag
190	SWITCHER_DSK2_TRANS_ENABLE	flag
191	SWITCHER_DSK_TRANS_LEVEL	float

4.1.3.9.1 SWITCHER_DSK1_TRANS_ENABLE

This control enables DSK 1 in the DSK Transition

- 0 DSK 1 is not in the DSK transition
- 1 DSK 1 is in the DSK transition

4.1.3.9.2 SWITCHER DSK2 TRANS ENABLE

This control enables DSK 2 in the DSK Transition

- 0 DSK 2 is not in the DSK transition
- 1 DSK 2 is in the DSK transition

4.1.3.9.3 SWITCHER_DSK_TRANS_LEVEL

This control is the current level of the DSK transition

- It is not normally driven by the Controlling device
- It can be examined to monitor progress of the DSK Transition
- Range: 0.0 100.0%

4.1.3.10Bus Matte Controls

The Bus matte is a Matte that is available on all busses

Control	
Num	Control Name
192	SWITCHER_BUS_MATTE_HUE

193 SWITCHER_BUS_MATTE_SAT float 194 SWITCHER_BUS_MATTE_LUMA float

Type float

4.1.3.10.1 SWITCHER_BUS_MATTE_HUE

This control sets the Hue of the Bus Matte

• Range: 0.0 – 360.0 degrees

4.1.3.10.2 SWITCHER_BUS_MATTE_SAT

This control sets the Saturation of the Bus Matte

• Range: 0.0 – 100.0%

4.1.3.10.3 SWITCHER_BUS_MATTE_LUMA

This control sets the Luma of the Bus Matte

• Range: 0.0 – 100.0%

4.1.3.11Fade to Black Controls

Control		
Num	Control Name	Туре
195	SWITCHER_FTB_ENABLE	flag
196	SWITCHER_FTB_DIRN	flag
197	SWITCHER_FTB_LEVEL	float

4.1.3.11.1 SWITCHER_FTB_ENABLE

This control enables FTB function

- 0 FTB is not enabled
- 1 FTB is enabled

4.1.3.11.2 SWITCHER_FTB_DIRN

This control set the FTB direction

- 0 FTB is fading down
- 1 FTB is fading up

4.1.3.11.3 SWITCHER_FTB_LEVEL

This control is the current level of the FTB transition

• It is not normally driven by the Controlling device

- It can be examined to monitor progress of the FTB Transition
- Range: 0.0 100.0%
- 0.0 Not faded
- 100.0 Fully Faded

4.1.3.12 Flex Src Controls

The SE-3200 Flex Src provides 4 PIPs over a background and a simple linear keyer

This selection allows Source Selection for the Flex Src BGND, PINP1-4 & Foreground Keyer

Control		
Num	Control Name	Туре
198	SWITCHER_FLEX_SRC_BGND_SRC	int
199	SWITCHER_FLEX_SRC_DVE1_SRC	int
200	SWITCHER_FLEX_SRC_DVE2_SRC	int
201	SWITCHER_FLEX_SRC_DVE3_SRC	int
202	SWITCHER_FLEX_SRC_DVE4_SRC	int
203	SWITCHER_FLEX_SRC_FGND_SRC	int
204	SWITCHER_FLEX_SRC_FGND_SRC_K	int
205	SWITCHER_FLEX_SRC_FGND_ENABLE	flag

4.1.4 SWITCHER Sub-Sections

In addition to the Main Switcher Control, the Switcher Section contains 4 subsections

Sub-Section	Name	Description
0	SWITCHER_SUB_SECTION_MAIN	Main Switcher Sub-Section
1	SWITCHER_SUB_SECTION_PINP	Switcher Keyer PINP1-4 Control
2	SWITCHER_SUB_SECTION_FLEX_SRC	Flex Src PINP1-4 Control
3	SWITCHER_SUB_SECTION_RESERVED	Reserved for future use
4	SWITCHER SUB SECTION LOGO	Logo Control

4.1.4.1 Switcher Sub-Section Control IDs

Controls IDs for Sub-Sections are generated as follows:

Control ID = (DV_CONTROL_SECTION_SWITCHER << 16) | (SUB_SECTION << 8) | ITEM_ID

For example, the Control ID for the Switcher Keyer 1 PINP POSITION_X is:

(DV_CONTROL_SECTION_SWITCHER << 16)

| (SWITCHER_SUB_SECTION_PINP << 8) | SWITCHER_PINP1_POSITION_X

= 0x00020101

4.1.5 Switcher PINP Sub-Section (SWITCHER_SUB_SECTION_PINP)

This section controls the 4 PINPs associated with Switcher Keyers 1-4

4.1.5.1 **PINP 1 Controls**

This section describes the controls available to control the PINP1.

Control		
Num	Control Name	Туре
0	SWITCHER_PINP1_ENABLE	flag
1	SWITCHER_PINP1_POSITION_X	float
2	SWITCHER_PINP1_POSITION_Y	float
3	SWITCHER_PINP1_POSITION_Z	float
4	Not used in SE-3200	float
5	SWITCHER_PINP1_SIZE_X	float
6	SWITCHER_PINP1_SIZE_Y	float
7	SWITCHER_PINP1_SIZE_Z	float
8	SWITCHER_PINP1_EDGE_SIZE	float
9	SWITCHER_PINP1_EDGE_LEFT	float
10	SWITCHER_PINP1_EDGE_RIGHT	float
11	SWITCHER_PINP1_EDGE_TOP	float
12	SWITCHER_PINP1_EDGE_BOTTOM	float
13	SWITCHER_PINP1_EDGE_SOFT	float
14	SWITCHER_PINP1_BORDER_STYLE	int
15	SWITCHER_PINP1_BORDER_OPACITY	float
16	SWITCHER_PINP1_BORDER_SIZE	float
17	SWITCHER_PINP1_BORDER_LEFT	float
18	SWITCHER_PINP1_BORDER_RIGHT	float
19	SWITCHER_PINP1_BORDER_TOP	float
20	SWITCHER_PINP1_BORDER_BOTTOM	float
21	SWITCHER_PINP1_BORDER_SOFT	float
22	SWITCHER_PINP1_BORDER_HUE	float
23	SWITCHER_PINP1_BORDER_SAT	float
24	SWITCHER_PINP1_BORDER_LUMA	float
25	SWITCHER_PINP1_BORDER_SHADE_HUE	float
26 27	SWITCHER_PINP1_BORDER_SHADE_SAT SWITCHER PINP1 BORDER SHADE LUMA	float float
2 <i>1</i> 28	SWITCHER_PINP1_BORDER_SHADE_SOFT	float
26 29	SWITCHER_PINP1_BORDER_SHADE_SOFI SWITCHER_PINP1_BORDER_SHADE_POSITION	float
30	SWITCHER_PINP1_BORDER_SHADE_CORNER_SOFT	float
30 31	SWITCHER_FINET_BORDER_SHADE_CORNER_SOFT SWITCHER PINET BORDER DIRECTION	int
32	SWITCHER_PINP1_BORDER_HIGHLIGHT_HUE	float
33	SWITCHER_FINE1_BORDER_HIGHLIGHT_HOE SWITCHER_PINE1_BORDER_HIGHLIGHT_SAT	float
33 34	SWITCHER_PINP1_BORDER_HIGHLIGHT_SAT SWITCHER PINP1_BORDER_HIGHLIGHT_LUMA	float
34 35	SWITCHER_PINP1_BORDER_HIGHLIGHT_LOWA SWITCHER_PINP1_BORDER_HIGHLIGHT_OPACITY	float
36	SWITCHER_FINE1_BORDER_HIGHEIGHT_OFACITY	float
30	OWITOHER_FINET_DORDER_LOWLIGHT_OFACITT	iioat

4.1.5.1.1 SWITCHER_PINP1_ENABLE

This control enables the PINP 1

- 0 DVE 1 is not enabled
- 1 DVE 1 is enabled

4.1.5.1.2 SWITCHER_PINP1_POSITION_X

Sets the X position of the centre of the DVE 1 Tile

- Range: -16.0 to + 16.0 (ie. +/- 16 screen widths)
- 0.0 Centred on screen
- -0.5 half off to the Left
- -1.0 fully off to the Left
- +0.5 half off to the Right
- +1.0 fully off to the Right
- (assuming Position Z is 0.0, and Sizes are 1.0)

4.1.5.1.3 SWITCHER PINP1 POSITION Y

Sets the Y position of the centre of the DVE 1 Tile

- Range: -16.0 to + 16.0 (ie. +/- 16 screen widths)
- 0.0 Centred on screen
- -0.28 half off to the Bottom
- -0.56 fully off to the Bottom
- +0.5 half off to the Top
- +1.0 fully off to the Top
- (assuming Position Z is 0.0, and Sizes are 1.0)

4.1.5.1.4 SWITCHER_PINP1_POSITION_Z

Sets the Z position of the centre of the DVE 1 Tile

- Range: -16.0 to + 16.0 (ie. +/- 16 screen widths)
- 0.0 Centred on screen plane

4.1.5.1.5 SWITCHER_PINP1_ROTATION_Z

Not used in SE-3200.

Sets the Z rotation of the DVE 1 Tile

• Range: -16.0 to + 16.0 (ie. +/- 16 rotations)

4.1.5.1.6 SWITCHER_PINP1_SIZE_X

Sets the X Size of the DVE 1 Tile

- Range: 0.0 to + 16.0
- 1.0 Unity size

4.1.5.1.7 SWITCHER_PINP1_SIZE_Y

Sets the Y Size of the DVE 1 Tile

- Range: 0.0 to + 16.0
- 1.0 Unity size

4.1.5.1.8 SWITCHER_PINP1_SIZE_Z

Sets the Z Size of the DVE 1 Tile

- Range: 0.0 to + 16.0
- 1.0 Unity size
- Z Size is used to scale both X Size & Y Size

4.1.5.1.9 SWITCHER PINP1 CROP SIZE

Sets the overall Crop Size for the DVE 1 Tile

- Range: 0.0% to 100.0%
- Eg. A value of 10.0% will move the Left, right, top & Bottom Edges in by 10% of a screen width

4.1.5.1.10 SWITCHER PINP1 CROP LEFT

This control sets the Left Edge Crop for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Crop Size value before being applied to the Left hand edge

4.1.5.1.11 SWITCHER_PINP1_ CROP _RIGHT

This control sets the Right Edge Crop for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Crop Size value before being applied to the Right hand edge

4.1.5.1.12 SWITCHER_PINP1_ CROP _TOP

This control sets the Top Edge Crop for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Crop Size value before being applied to the Top edge

4.1.5.1.13 SWITCHER PINP1 CROP BOTTOM

This control sets the Bottom Edge Crop for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Crop Size value before being applied to the bottom edge

4.1.5.1.14 SWITCHER_PINP1_ CROP _SOFT

This control sets the Softness of the DVE1 Tile Crop Edge

• Range: 0.0% to 100.0%

4.1.5.1.15 SWITCHER_PINP1_BORDER_SIZE

This control sets the Size of the Border for the DVE 1 Tile

- Range: 0.0% to 100.0%
- Eg. A value of 10.0% will set the border to 10% of a screen width

4.1.5.1.16 SWITCHER_PINP1_BORDER_LEFT

This control sets the Left Edge Border for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Border Size value before being applied to the Left hand Border Edge

4.1.5.1.17 SWITCHER PINP1 BORDER RIGHT

This control sets the Right Edge Border for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Border Size value before being applied to the Right hand Border Edge

4.1.5.1.18 SWITCHER PINP1 BORDER TOP

This control sets the Top Edge Border for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Border Size value before being applied to the Top Border edge

4.1.5.1.19 SWITCHER_PINP1_BORDER_BOTTOM

This control sets the Bottom Edge Border for the DVE 1 Tile

- Range: 0.0% to 100.0%
- This value is added to the Border Size value before being applied to the Bottom Border Edge

4.1.5.1.20 SWITCHER_PINP1_BORDER_SOFT

This control sets the Softness of the DVE1 Tile Border Edge

• Range: 0.0% to 100.0%

4.1.5.1.21 SWITCHER_PINP1_BORDER_STYLE

Selects the current Border style for PINP1

Value	Name	Desription
0	BORDER_OFF	Border disabled
1	BORDER_NORMAL	Single colour
2	BORDER_SHADED	Two colour, shaded
3	BORDER_3D_BEVEL	Single color 3d bevel
4	BORDER_3D_BEVEL_SHADED	Shaded, Single Bevel
5	BORDER_3D_BEVEL2	Double Bevel
6	BORDER_3D_BEVEL_FLAT	Bevel/Flat
7	BORDER_3D_FLAT_BEVEL	Flat/Bevel
8	BORDER_3D_GLASS	3d Glass (Translucent)
9	BORDER_3D_GLASS_SHADED	Shaded Glass (Translucent)
10	BORDER_3D_GLASS2,	Double 3d Glass (Translucent)
11	BORDER_3D_GLASS_FLAT	Glass / Flat
12	BORDER_3D_FLAT_GLASS	Flat / Glass

Note: In the current s/w Flex Src Pinp1 only support the OFF & NORMAL styles

4.1.5.1.22 SWITCHER_PINP1_BORDER_HUE

This control sets the Hue of the Border Matte

• Range: 0.0 – 360.0 degrees

4.1.5.1.23 SWITCHER_PINP1_BORDER_SAT

This control sets the Saturation of the Border Matte

• Range: 0.0 – 100.0%

4.1.5.1.24 SWITCHER_PINP1_BORDER_LUMA

This control sets the Luma of the Border Matte

• Range: 0.0 – 100.0%

4.1.5.2 PINP2 Controls

PINP2 Controls follow a similar pattern to PINP1 Controls

Control		
Num	Control Name	Type
37	SWITCHER_PINP2_ENABLE	flag
 73	 SWITCHER_PINP2_BORDER_LOWLIGHT_OPACITY	 float

4.1.5.3 PINP3 Controls

PINP3 Controls follow a similar pattern to PINP1 Controls

Control		
Num	Control Name	Type
74	SWITCHER_PINP3_ENABLE	flag
 110	 SWITCHER_PINP3_BORDER_LOWLIGHT_OPACITY	 float

4.1.5.4 PINP4 Controls

PINP4 Controls follow a similar pattern to PINP1 Controls

Control

Num	Control Name	Туре
111	SWITCHER_PINP4_ENABLE	flag
	··	
147	SWITCHER_PINP4_BORDER_LOWLIGHT_OPACITY	float

4.1.6 Switcher Flex Src Sub-Section (SWITCHER_SUB_SECTION_FLEX_SRC)

This section controls the 4 PINPs associated with Flex Src

- The Control ID for this section follow the same values as the Control IDs for the Keyer PINPs

4.1.7 DV_CONTROL_SECTION_INPUT

These Controls are available for each Input

Control Num	Control Name	Description
0	INPUT_PROC_AMP_BLACK_LEVEL	Input Proc Amp - Black Level
1	INPUT_PROC_AMP_CHROMA_GAIN	Input Proc Amp - Chroma Gain
2	INPUT_PROC_AMP_WHITE_CLIP	Input Proc Amp -White Clip Level
3	INPUT_INPUT_VALID	Input Valid Flag
4	INPUT_INPUT_STANDARD	Input Standard
5	INPUT_INPUT_MODE	Input Mode
6	INPUT_INPUT_FREEZE_MODE	Freeze mode (0 - Live, 1 - Freeze, 2 - Still Mode, 3 - Clip, 4 - Capture Mode)
7	INPUT_INPUT_FRAME_MODE	Frame Mode (0 - Frame, 1 - Field, 2 - Video & Key)
8	INPUT_INPUT_REMAP	Input Remap Source
9	INPUT_FREEZE_STILL_LOAD	Still load flag
10	INPUT_FREEZE_STILL_NUM	Still to load in still mode
11	INPUT_AUDIO_GAIN	Input Audio Gain
12	INPUT_AUDIO_DELAY	Input Audio Delay
13	INPUT_AUDIO_REMAP	Input Audio Remap

4.1.7.1 Input Channel Selection

The Input Channel to be select is also encoded into the Command code

- Command Bits [7:4]
 - 0 Input 1
 - 1 Input 2
 - 2 Input 3
 - Etc

4.1.7.2 INPUT_PROC_AMP_BLACK_LEVEL

Sets the Black Level for the Input

• Range: 0.0 – 100.0%

4.1.7.3 INPUT_PROC_AMP_CHROMA_GAIN

Sets the Chroma Gain for the Input

• Range: 0.0 – 16.0

4.1.7.4 INPUT_PROC_AMP_WHITE_CLIP

Sets the WhiteClip for the Input

• Range: 0.0 – 100.0%

4.1.7.5 INPUT_INPUT_VALID

This control is set by the Processor Unit to indicate that the Input is valid

- 0 Input not Valid
- 1 Input Valid

4.1.7.6 INPUT_INPUT_MODE

Not used in SE-3200.

4.1.7.7 INPUT INPUT FREEZE MODE

This Control sets the Input Freeze Mode

- 0 Input is Live, not Frozen
- 1 Input Frozen
- 2 Still
- 3 Clip

4.1.7.8 INPUT_INPUT_FRAME_MODE

This Control sets the Input Frame Mode (for Interlace Input std)

- 0 Frame Mode
- 1 Field Mode

4.1.7.9 INPUT INPUT REMAP

This controls sets the Input Remapping

- The sets which Crosspoint src that this physical Input is remapped to
- Range: 0 -12
 - Where 0 means 'source not used'
 - o Where 1-12 means 'physical source to used'

4.1.7.10 INPUT_FREEZE_STILL_LOAD

• Flag to enable a still load to this input when User Mem is loaded

4.1.7.11 INPUT_FREEZE_STILL_NUM

• Still number to load when User Mem is loaded

4.1.7.12 INPUT AUDIO GAIN

- Input Audio gain (float)
- Range: -60.0dB to +24.0dB

4.1.7.13 INPUT_AUDIO_DELAY

- Input Audio Delay (int)
- Range: 0ms to 340ms

4.1.7.14 INPUT_AUDIO_REMAP

This controls sets the Audio Src for this input

- Range: 0 -12

 - Where 0 means 'source not used'Where 1-12 means 'physical source to used'

4.1.8 DV_CONTROL_SECTION_INPUT_CTRL

Control Num	Control Name
0	Unused in SE-3200
1	Unused in SE-3200
2	Unused in SE-3200
3	Unused in SE-3200
4	INPUT_CLIP0_CLIP_VALID
5	INPUT_CLIP0_CLIP_NUM
6	INPUT_CLIP0_YCK_MODE
7	INPUT_CLIP0_NUM_FRAMES
8	INPUT_CLIP0_STATE
9	INPUT_CLIP0_CURR_FRAME
10	INPUT_CLIP1_CLIP_VALID
11	INPUT_CLIP1_CLIP_NUM
12	INPUT_CLIP1_YCK_MODE
13	INPUT_CLIP1_NUM_FRAMES
14	INPUT_CLIP1_STATE
15	INPUT_CLIP1_CURR_FRAME
16	INPUT_STILL0_STILL_VALID
17	INPUT_STILL0_STILL_NUM
18	INPUT_STILL1_STILL_VALID
19	INPUT_STILL1_STILL_NUM
20	INPUT_LOGO0_LOGO_VALID
21	INPUT_LOGO0_ANI_LOGO
22	INPUT_LOGO0_LOGO_NUM
23	INPUT_LOGO1_LOGO_VALID
24	INPUT_LOGO1_ANI_LOGO
25	INPUT_LOGO1_LOGO_NUM

4.1.8.1 INPUT_CLIP0_CLIP_VALID

Clip 0 Valid Flag

- 0 Clip is not valid
- 1 Clip is valid

4.1.8.2 INPUT_CLIP0_CLIP_NUM

Clip 0 clip number

4.1.8.3 INPUT_CLIP0_YCK_MODE

Clip 0 Yck Mode

- 0 Clip 0 is Y/C
- 1 Clip 0 is YCK

4.1.8.4 INPUT_CLIP0_NUM_FRAMES

Clip 0 Length in Frames

• Max length is 120 Frames

4.1.8.5 INPUT_CLIP0_STATE

• The current run state of Clip 0

ClipState	Description
0	Stopped
1	At Start
2	Running
3	At End
4	Paused

4.1.8.6 INPUT_CLIP0_CURR_FRAME

- The current frame number for Clip 0
- Range is 0 (CLIP0_NUM_FRAMES 1)

4.1.8.7 INPUT_CLIP1_xxx

• Clip 1 is not currently supported

4.1.8.8 INPUT STILLO STILL VALID

Still 0 Valid Flag

- 0 Still is not valid
- 1 Still is valid

4.1.8.9 INPUT_STILL0_STILL_NUM

Still 0 still number

4.1.8.10 INPUT_STILL1_STILL_VALID

Still 1 Valid Flag

- 0 Still is not valid
- 1 Still is valid

4.1.8.11INPUT STILL1 STILL NUM

Still 1 still number

4.1.8.12 INPUT_LOGO0_LOGO_VALID

Logo 0 Valid Flag

- 0 Logo is not valid
- 1 Logo is valid

4.1.8.13 INPUT_LOGO0_ANI_LOGO

Logo 0 Animated Logo Flag

- 0 Logo is not Ani Logo
- 1 Logo is Ani Logo

4.1.8.14INPUT_ LOGO0_ LOGO _NUM

Logo 0 Logo number

4.1.8.15INPUT_LOGO1_LOGO_VALID

Logo 1 Valid Flag

- 0 Logo is not valid
- 1 Logo is valid

4.1.8.16 INPUT_LOGO1_ANI_LOGO

Logo 1 Animated Logo Flag

- 0 Logo is not Ani Logo
 - 1 Logo is Ani Logo

4.1.8.17INPUT_LOGO1_LOGO_NUM

Logo 1 Logo number

4.1.9 DV_CONTROL_SECTION_OUTPUT_CTRL

Control Num	Control Name
0	OUTPUT_AUX_CTRL_AUX1_SRC
1	OUTPUT_AUX_CTRL_AUX2_SRC
2	OUTPUT_AUX_CTRL_AUX3_SRC
3	OUTPUT_AUX_CTRL_AUX4_SRC
4	OUTPUT_MULTIVIEWER_MODE
5	OUTPUT_MULTIVIEWER_MAIN1_SRC
6	OUTPUT_MULTIVIEWER_MAIN2_SRC
7	Not used in SE-3200
8	Not used in SE-3200
9	OUTPUT_MULTIVIEWER_TRANSP_LABELS
10	OUTPUT_MULTIVIEWER_AUTO_NUM
11	OUTPUT_MULTIVIEWER_LABEL_INFO
12	Not used in SE-3200
13	Not used in SE-3200
14	Not used in SE-3200
15	OUTPUT_HDMI1_OUT_SELECT
16	OUTPUT_HDMI2_OUT_SELECT
17	OUTPUT_HDMI3_OUT_SELECT

18	OUTPUT_SDI_OUT1_SELECT
19	OUTPUT_SDI_OUT2_SELECT
20	OUTPUT_GPI_OUT_ENABLE
21	OUTPUT_GPI_OUT_MODE
22	OUTPUT_GPI_OUT_SRC
23	OUTPUT_GPI_OUT_DELAY
24	OUTPUT_GPI_OUT_WIDTH
25	OUTPUT_HDMI_OUT1_1080_MODE
26	OUTPUT_HDMI_OUT2_1080_MODE
27	OUTPUT_HDMI_OUT3_1080_MODE
28	OUTPUT_TALLY_MODE

4.1.9.1 OUTPUT_AUX_CTRL_AUX[1:4]_SRC

Sets the SDI Aux Output Sources

• These are physically mapped to

Src	Assigned to:
00	Black
01	Input 1
02	Input 2
03	Input 3
04	Input 4
05	Input 5
06	Input 6
07	Input 7
08	Input 8
09	Input 9
10	Input 10
11	Input 11
12	Input 12
13	
14	
15	
16	
17	Matte
18	Flex Src
19	Still 1
20	Still 2
21	Program Out
22	Preview Out
23	Program/DSK1
24	Preview/DSK1

4.1.9.2 OUTPUT_MULTIVIEWER_MODESets Multiviewer Output Mode

4.1.9.3 OUTPUT MULTIVIEWER MAIN1 SRC

This control sets the Source for the Multiviewer Main1 tile

Main Src	Source
00 - 16	Black
17	Matte
18	Flex Src
19	Still 1
20	Still 2
21	Program Out
22	Preview Out
23	Program/DSK1
24	Preview/DSK1

4.1.9.4 OUTPUT_MULTIVIEWER_MAIN2_SRC

This control sets the Source for the Multiviewer Main2 tile

• Sources as per Main1 Src

4.1.9.5 OUTPUT MULTIVIEWER MAIN3 SRC

Not used in SE-3200

4.1.9.6 OUTPUT_MULTIVIEWER_MAIN4_SRC

Not used in SE-3200

4.1.9.7 OUTPUT MULTIVIEWER TRANSP LABELS

This Control enables transparent backgrounds on the labels in the Multiviewer

- 0 Label Backgrounds not transparent
- 1 Label Backgrounds transparent

4.1.9.8 OUTPUT_MULTIVIEWER_AUTO_NUM

This Control enables Auto Numbering on the labels in the Multiviewer

- 0 Auto Numbering not enabled
- 1 Auto Numbering not enabled

4.1.9.9 OUTPUT MULTIVIEWER LABEL INFO

This Control enables Input Status Info on the labels in the Multiviewer

- 0 Input Status Info not enabled
- 1 Input Status Info not enabled

4.1.9.10 OUTPUT_HDMI[1:3]_OUT_SELECT

This Control set the HDMI Out 1-3 Output Sources

• The same selections as SDI Aux Output are available

4.1.9.11 OUTPUT SDI[1:2] OUT SELECT

This Control set the SDI Out 1-2 Output Sources

• The same selections as SDI Aux Output are available

4.1.10 DV_CONTROL_SECTION_AUDIO_CTRL

The Sections controls the Audio I/O Functionality

Control Num	Control Name
0	AUDIO_SOURCE
1	AUDIO_CHAN
2	AUDIO_MODE
3	AUDIO_ANALOG_LEVEL
4	AUDIO_AUDIO_OUT_SOURCE
5	AUDIO_AUDIO_IN_MODE
6	AUDIO AUDIO OUT MODE
7	AUDIO MIXER MODE
8	AUDIO MASTER GAIN
9	AUDIO MASTER DELAY
10	AUDIO_AUDIO_OUT_GAIN
11	AUDIO_AUDIO_OUT_DELAY
12	AUDIO SDI1 ENABLE
13	AUDIO_SDI2_ENABLE
14	AUDIO_SDI3_ENABLE
15	AUDIO SDI4 ENABLE
16	AUDIO SDI5 ENABLE
17	AUDIO SDI6 ENABLE
18	AUDIO HDMI1 ENABLE
19	AUDIO HDMI2 ENABLE
20	AUDIO HDMI3 ENABLE
21	AUDIO_INPUT1_GAIN
22	AUDIO_INPUT1_DELAY
23	AUDIO INPUT2 GAIN
24	AUDIO INPUT2 DELAY
25	AUDIO_INPUT3_GAIN
26	AUDIO_INPUT3_DELAY
27	AUDIO_INPUT4_GAIN
28	AUDIO_INPUT4_DELAY
29	AUDIO_INPUT5_GAIN
30	AUDIO_INPUT5_DELAY
31	AUDIO_INPUT6_GAIN
32	AUDIO_INPUT6_DELAY
33	AUDIO_INPUT7_GAIN
34	AUDIO_INPUT7_DELAY
35	AUDIO_INPUT8_GAIN
36	AUDIO_INPUT8_DELAY
37	AUDIO_INPUT9_GAIN
38	AUDIO_INPUT9_DELAY
39	AUDIO_INPUT10_GAIN
40	AUDIO_INPUT10_DELAY
41	AUDIO_INPUT11_GAIN
42	AUDIO_INPUT11_DELAY
43	AUDIO_INPUT12_GAIN
44	AUDIO_INPUT12_DELAY

4.1.10.1 AUDIO_SOURCE

This control sets the Source for the PGM Audio.

Audio Src	Source
0	External Audio In
1	Audio Follow Video
2-13	Inputs 1-12

4.1.10.2 AUDIO_CHAN

Not currently used in SE-3200

4.1.10.3 AUDIO_MODE

This control sets the Audio Mode

Audio Mode	Description
0	Off
1	On

4.1.11 DV_CONTROL_SECTION_TRANSITION_CTRL

This section Controls the three Transition Engines available in the SE-3200

- M/E Transition Engine, responsible for
 - Mix Transitions
 - Wipe Transitions
 - The Wipe Pattern used is defined by the SWITCHER_WIPE_PATTERN_NUM control (Section 4.1.3.1.1).
- DSK Transition Engine, responsible for DSK Transitions
- FTB Transition Engine, responsible for FTB Transitions

Control Num	Control Name	Description
0	ME_TRANS_COMMAND	
1	ME_TRANS_TYPE	
2	ME_TRANS_STATE	
3	ME_TRANS_DURATION	
4	ME_TRANS_DIRN	
5	DSK_TRANS_COMMAND	
6	DSK_TRANS_TYPE	
7	DSK_TRANS_STATE	
8	DSK_TRANS_DURATION	
9	DSK_TRANS_DIRN	
10	FTB_TRANS_COMMAND	
11	FTB_TRANS_TYPE	
12	FTB_TRANS_STATE	
13	FTB_TRANS_DURATION	
14	FTB_TRANS_DIRN	

4.1.11.1ME TRANS COMMAND

The Control sets the ME Transition Command

Transition Command	Description
0	Transition Stop
1	Transition Run
2	Transition Pause
3	Transition Continue
4	Transition Goto Start
5	Transition Goto End
6	Transition Restart
7	Transition Stop And Clear
8	Transition Ready

4.1.11.1.1 Transition Stop

This command causes the M/E Transition Engine to stop running the current transition, and the Transition Engine stops driving any controls.

4.1.11.1.2 Transition Run

This command causes the M/E Transition Engine to run in the direction specified by the Transition Direction control, and with a duration specified by the Transition Duration control.

4.1.11.1.3 Transition Pause

This is similar to 'Stop', except that the M/E Transition Engine continues to drive the controls for the transition. This means that if the Wipe Level is altered, the Transition Engine will update any controls accordingly.

4.1.11.1.4 Transition Continue

This is effectively the same as Run

4.1.11.1.5 Transition Goto Start

Caused the Transition Engine to jump to the start of the transition

4.1.11.1.6 Transition Goto End

Caused the M/E Transition Engine to jump to the end of the transition Since this is the M/E Transition Engine, this causes the Transition to complete.

4.1.11.1.7 Transition Restart

This restarts the Transition from 0.0 position.

4.1.11.1.8 Transition Stop And Clear

This is the same as Stop

4.1.11.1.9 Transition Ready

When the Transition Engine has processed a command, it sets the Command Value to 'Ready'. It can now accept another command. The Transition State control can be examined to see check the state of the Transition Engine e.g. Running.

Since the Transition Engine only processes command at the Field Interval, it is important to wait until a command has been processed (by checking for 'Ready') before checking the Transition State to see if the Transition Engine has finished running.

4.1.11.2ME_TRANS_TYPE

Transition Type	Description
0	One Shot
1	Loop
2	Ping Pong

This controls sets the Transition Type

- One Shot
 - The Transition Runs to the End, and then stops
- Loop
 - o The Transition Runs to the End, and then restarts
- Ping Pong
 - The Transition Runs to the End, and then Runs in the Reverse direction, continually

4.1.11.3ME_TRANS_STATE

Transition State	Description
0	Stopped
1	At Start
2	Running
3	At End
4	Paused

The Control is set by the Transition Engine to indicate its current state

- Stopped
 - The Transition Engine is stopped
- At start
 - o The Transition Engine is At the Start of the transition
 - o The next state will be 'running'
- Running
 - o The Transition is Running
- At End
 - o The Transition is at the End of the Transition
- Paused
 - The Transition Engine is Paused

4.1.11.4ME_TRANS_DURATION

This control set the duration in of the transition in Frames

4.1.11.5ME_TRANS_DIRN

This sets the Direction of the Transition

- 0 Forwards
- 1 Reverse

4.1.11.6DSK TRANS COMMAND

The Control sets the DSK Transition Command See **Section 4.1.11.1** ME_TRANS_COMMAND for description

4.1.11.7DSK_TRANS_TYPE

This controls sets the Transition Type See **Section 4.1.11.2** ME_TRANS_TYPE for description

4.1.11.8DSK_TRANS_STATE

This control gives the Transition State
See **Section 4.1.11.3** ME_TRANS_STATE for description

4.1.11.9DSK TRANS DURATION

This control set the duration in of the transition in Frames

4.1.11.10 DSK_TRANS_DIRN

This sets the Direction of the Transition

- 0 Forwards
- 1 Reverse

4.1.11.11 FTB_TRANS_COMMAND

The Control sets the DSK Transition Command See **Section 4.1.11.1** ME_TRANS_COMMAND for description

4.1.11.12 FTB_TRANS_TYPE

This controls sets the Transition Type See **Section 4.1.11.2** ME_TRANS_TYPE for description

4.1.11.13 FTB_TRANS_STATE

This control gives the Transition State
See **Section 4.1.11.3** ME_TRANS_STATE for description

4.1.11.14 FTB TRANS DURATION

This control set the duration in of the transition in Frames

4.1.11.15 FTB_TRANS_DIRN

This sets the Direction of the Transition

- 0 Forwards
- 1 Reverse

4.1.12 DV_CONTROL_SECTION_MEMORY_CTRL

This section is used to control the Saving and Loading of User Memories

Control Num	Control Name	Description
0	MEMORY_SELECT	
1	MEMORY_COMMAND	
2	MEMORY_STATE	
3	MEMORY_RESULT	
4	MEMORY_EVENT	
5	MEMORY_FLAGS	
6	MEMORY_LOAD_ALL_SECTIONS	

4.1.12.1MEMORY_SELECT

This control set the User Memory to be loaded, saved or deleted

- General User Memories are numbered 0-999
- User memory 1000 is the system memory,
 - o it is always loaded at boot-up
 - o it defines the system standard, and other system functions
- User memory 0 is always loaded at boot-up, after the system memory has been loaded.
 - o This can be used to ensure the SE-3200 ends up in a known state after boot up.

4.1.12.2MEMORY COMMAND

The control sets the Memory command to be executed

- 0 DV_MEMORY_READY
 - O This is not a command, but indicates that the Processor Unit is ready to accept a Memory Command
 - o This should be checked before sending a command
- 1 DV MEMORY LOAD
 - o Command to load the selected user memory
- 2 DV_MEMORY_STORE
 - o Command to store the current state to the selected user memory
- 3 DV MEMORY DELETE
 - o Command to delete the selected user memory

4.1.12.3MEMORY STATE

The control is set by the Memory Command Processor to show the state of command processing

- 0 DV MEM STATE READY
 - o The Memory command processor is ready to execute a command
- 1 DV_MEM_STATE_BUSY
 - o The Memory command processor is busy
- 2 DV_MEM_STATE_ERROR
 - o an error has occurred

4.1.12.4MEMORY_RESULT

The control is set by the Memory Command Processor to show the result of command processing

• 0 - DV_MEM_RESULT_OK

- o command completed ok
- 1 DV_MEM_RESULT_FAIL
 - o general failure
- 2 DV_MEM_RESULT_NOT_FOUND
 - o file not found
- 3 DV_MEM_RESULT_ILLEGAL_COMMAND
 - o illegal command
- 4 DV MEM RESULT ILLEGAL VALUE
 - o illegal value

4.1.12.5MEMORY EVENT

This control is incremented by the Memory Command Processor whenever a Memory Command that effects the memory system is processed – ie. Store or Delete

- This allows a controlling device to detect that the memories have been changed by another controlling device
 - o This allows a memory list to be redrawn on a GUI, if necessary

4.1.13 DV CONTROL SECTION MEMORY PRESENT

This section provides Memory Present Flags

The memory present flags are generated and maintained by the Memory Command Processor and are used to indicate to a controller that a User Memory is stored for any particular Memory number.

- A 1-bit flag is generated per User Memory number
- Since there are 1000 user memories available, there are 1000 1-bit flags generated
- These 1-bit flags are packed into 32 32-bit words, in sequential order
- The Controller can examine these flags to see if any particular memory is currently available
- This is intended to help with display of lists of memories on GUIs

4.1.14 DV_CONTROL_SECTION_STILL_CTRL

This section controls the loading, saving and deleting of stills, and follows a similar pattern to the Memory Control section.

Control Num	Control Name	Description
0	STILL_SELECT	
1	STILL_BUF	
2	STILL_COMMAND	
3	STILL_STATE	
4	STILL_RESULT	
5	STILL_EVENT	

4.1.14.1STILL_SELECT

This control set the Still to be loaded, saved or deleted

• Stills are numbered 0-100

4.1.14.2STILL_BUF

This control selects the SE-3200 Still buffer to be loaded or saved

- 8 Still Buffers are currently supported
- These are numbered 0-7

4.1.14.3STILL COMMAND

The control sets the Still command to be executed

- 0 DV STILL READY
 - This is not a command, but indicates that the Still Command Processor is ready to accept a Still Command
 - This should be checked before sending a command
- 1 DV_STILL_LOAD
 - o Command to load a still from flashdisk to the selected still-buffer
- 2 DV_STILL_STORE
 - o Command to store the selected still buffer to flashdisk
- 3 DV STILL GRAB
 - o Command to grab the current program output to selected still buffer
- 4 DV STILL DELETE
 - Command to delete the selected still

4.1.14.4STILL STATE

The control is set by the Still Command Processor to show the state of command processing

- 0 DV_STILL_STATE_READY
 - o The Still command processor is ready to execute a command
- 1 DV_STILL_STATE_BUSY
 - The Still command processor is busy
- 2 DV_STILL_STATE_ERROR
 - o an error has occurred

4.1.14.5STILL RESULT

The control is set by the Still Command Processor to show the result of command processing

- 0 DV_STILL_RESULT_OK
 - o command completed ok
- 1 DV_STILL_RESULT_FAIL
 - general failure
- 2 DV_STILL_RESULT_NOT_FOUND
 - o file not found
- 3 DV_STILL_RESULT_ILLEGAL_COMMAND
 - o illegal command
- 4 DV_STILL_RESULT_ILLEGAL_VALUE
 - o illegal value

4.1.14.6STILL_EVENT

This control is incremented by the Still Command Processor whenever a Still Command that effects the memory system is processed – ie. Store or Delete

- This allows a controlling device to detect that the still memories have been changed by another controlling device
 - o This allows a Stills list to be redrawn on a GUI, if necessary

4.1.15 DV_CONTROL_SECTION_STILL_PRESENT

This section provides Still Present Flags

The Still present flags are generated and maintained by the Still Command Processor, and are used to indicate to a controller that a Still is stored for any particular Still number.

- A 1 bit flag is generated per Still number
- Since there are 1000 Still memories available, there are 1000 1-bit flags generated
- These 1 bit flags are packed into 32 32-bit words, in sequential order
- The Controller can examine these flags to see if any particular memory is currently available
- This is intended to help with display of lists of memories on GUIs

4.1.16 DV_CONTROL_SECTION_STREAMER_CONTROL

Streaming is not supported on the SE-3200 currently