HK distance

In \mathbb{R}^d space, let $c_\lambda(x,y)=-2\ln(\overline{\cos}(\frac{\|x-y\|}{2\sqrt{\lambda}}))$ and $\Omega\subset\mathbb{R}^d$ be a convex set.

Definition 0.1. By ([1] Definition 5.5), the (square of) WFR (Wasserstein Fisher Rao) distance is defined by

$$WFR^{2}(\mu,\nu) = \frac{1}{2} \inf_{\rho,\omega,\zeta} \int_{\Omega \times [0,1]} \left(|v|^{2} + \lambda \left(\frac{\zeta}{\rho} \right)^{2} \right) \rho dx dt \tag{1}$$

where $(\rho, v\rho, \zeta) \in \mathcal{M}_+([0,1] \times \Omega)^{1+d+1}$ satisfies continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = \zeta.$$

Definition 0.2. The Static Kantorovich formulation of HK is is defined as:

$$HK_S(\mu,\nu) := \min_{\pi_1,\pi_2} 2\lambda \int \left(\frac{d\pi_1}{d\mathcal{L}} + \frac{d\pi_2}{d\mathcal{L}} - 2\sqrt{\frac{d\pi_1}{d\mathcal{L}}} \frac{d\pi_2}{d\mathcal{L}} \cdot \left(\frac{\|x - y\|}{2\sqrt{\lambda}} \right) \right) d\mathcal{L}$$
 (2)

where \mathcal{L} is a reference such that $\pi_1, \pi_2 \ll \mathcal{L}$ and it does not affect the problem.

By Theorem 5.6 in [1], WFR²(μ, ν) = HK_S(μ, ν).

Definition 0.3. The dual formulation of HK distance is:

$$HK_{duel}(\mu,\nu) := 2\lambda (\sup_{u,v} \int_{\Omega} (1 - e^{-u}) d\mu + \int_{\Omega} (1 - e^{-v}) d\nu)$$
(3)

where $u, v \in C_0(\Omega)$ and $u + v \le c_{\lambda}(x, y), \forall (x, y) \in \Omega^2$.

By Corollary 5.8 in [1], we have WFR²(μ, ν) = HK_{duel}(μ, ν).

Definition 0.4. The optimal entropy transport formulation of HK problem is defined as:

$$HK_{ET}(\mu,\nu) := 2\lambda \min_{\pi \in \mathcal{M}_{+}(\Omega^{2})} \int c_{\lambda}(x,y) d\pi + KL((P_{1})_{\#}\pi \parallel \mu) + KL((P_{2})_{\#}\pi \parallel \nu)$$
(4)

where $u, v \in C_0(\Omega)$ and $u + v \le c_{\lambda}(x, y), \forall (x, y) \in \Omega^2$.

By Corollary 5.9 in [1], we have WFR²(μ, ν) = HK_{ET}(μ, ν)

References

 Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Unbalanced optimal transport: Dynamic and kantorovich formulations. *Journal of Functional Analysis*, 274(11):3090–3123, 2018.