

Quantifying human gray matter microstructure using NEXI and 300 mT/m gradients

Quentin Uhl¹, Tommaso Pavan¹, Malwina Molendowska², Derek K Jones², Marco Palombo²,* and Ileana Jelescu¹,*

¹Dept. of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland;
²CUBRIC, Cardiff University, Cardiff, United Kingdom;

*equal contribution

#0685

ISMRM & ISMRT Annual Meeting & Exhibition 2023 03-08 June 2023

Faculty of Biology and Medicine

Declaration of Financial Interests or Relationships

Speaker Name: Quentin Uhl

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Modeling Gray Matter:

Gray matter microstructure models require:

- Water exchange across the cell membrane
- Signal contribution from cell bodies
- Non-Gaussian diffusion → structural disorder

Neurite Exchange Imaging (NEXI)

Sources: Jelescu et al. 2022. NeuroImage Olesen et al. 2022. NeuroImage Tax et al. 2020, NeuroImage

-

NEXI & its variants

NEXI

Kernel:	$\mathcal{K}(q,t,\mathbf{g}\cdot\mathbf{n}; f,D_{i,\parallel},D_e,t_{ex}) = f'e^{-q^2tD_i'} + (1-f')e^{-q^2tD_e'}$
Where: "apparent" diffusivities	$D'_{i/e} = \frac{1}{2} \left\{ D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + D_e + \frac{1}{q^2 t_{ex}} \mp \left[\left[D_e - D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + \frac{2f - 1}{q^2 t_{ex}} \right]^2 + \frac{4f(1 - f)}{q^4 t_{ex}^2} \right]^{\frac{7}{2}} \right\}$
"apparent" fraction	$f' = \frac{1}{D_i' - D_e'} \left[f D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + (1 - f) D_e - D_e' \right]$
Powder average (over directions):	$S_{NEXI}(q,t) = S \Big _{q=0} \cdot \int_0^1 \mathcal{K}(q,t,\mathbf{g}\cdot\mathbf{n};\mathbf{p})d(\mathbf{g}\cdot\mathbf{n})$

$$\overline{S_{NEXI_{RM}}} = \sqrt{\frac{\pi}{2}} \cdot \sigma \cdot L_{1/2} \left(-\frac{1}{2} \left(\frac{\overline{S_{NEXI}}}{\sigma} \right)^2 \right)$$

NEXI_{dot}

$$\overline{S_{NEXI_{dot}}} = (1 - f_{dot}).\overline{S_{NEXI}} + f_{dot}$$

Sources : Jelescu et al. 2022. NeuroImage Olesen et al. 2022. NeuroImage Tax et al. 2020, NeuroImage

At fixed diffusion time (t_d)

Preprocessing

NEXI_{dot, RM}

[2.71, 3.09]

[1.01, 1.04]

[0.47, 0.48]

- ▶ NEXI_{RM} and NEXI_{dot.RM} AICc includes both the error of the model and the error on the noisemap
- ▶ NEXI_{dot} is preferred over NEXI while NEXI_{RM} is preferred over NEXI_{dot.RM} ...

[3.34, 3.39]

 48.24 ± 6.19

[0.009, 0.010]

Agreement between the dot fraction estimate of NEXI_{dot} and the Rician floor

NEXI_{dot} essentially captures the Rician noise floor as a dot compartment.

Subject 3 - 1

Subject 2 - 1

Sub. 2

-0.2

Sub. 1 Session 2 - 1

Mean f

Difference in f

-0.2

Subject 4 - 1

 \triangleright The mean difference $\binom{1}{100}$ in f between subjects is more than <u>4.4</u> times greater than the difference between sessions

Sub. 1 Session 2 - 1

Mean t_{ex} (ms)

-60

 \blacktriangleright The mean difference in t_{ex} between subjects is more than 2.5 times greater than the difference between sessions

Take-home message

The first NEXI parametric maps in the human cortex in-vivo.

Quantifying human gray matter microstructure using NEXI and 300 mT/m gradients

- The addition of a dot compartment to the NEXI model is not necessary.
- ➤ Correcting the Rician floor in the fit is more appropriate.

- \triangleright Our results are consistent with previous studies conducted in the rat cortex in vivo. Notably, $t_{ex} \sim 30\text{-}40 \text{ ms}$.
- ➤ Good scan-rescan reproducibility + sensitivity to variations among subjects

Take-home message

Quantifying features of human gray matter microstructure postmortem using Neurite Exchange Imaging (NEXI) at ultra-high field

Andreea Hertanu et al.

Computer *30

Getting the Best Out of Diffusion MRI Power Pitch Theatre 2 Wednesday, 07 June 2023 13:30 - 14:30 Optimizing the NEXI acquisition protocol for quantifying human gray matter microstructure on a clinical MRI scanner using Explainable AI Quentin Uhl et al.

Machine Learning Power Pitch Theatre 1 Wednesday, 07 June 2023 13:30 - 14:30

Acknowledgments

The **Microstructure Mapping** team (Lausanne, Switzerland):

- Ileana O. Jelescu
- Tommaso Pavan
- Yujian Diao
- Andreea Hertanu
- Jasmine Nguyen-Duc
- Inès de Riedmatten
- Saina Asadi

Collaborators from **CUBRIC** (Cardiff, UK):

- Marco Palombo
- Derek K. Jones
- Malwina Molendowska

Our funding:

PCEFP2_194260

