Digital Down-converter para o padrão DVDS2x

1st Jhonathan Nicolas Moreira Silva Matrícula: 160031621 Programa de Engenharia Eletrônica Universidade de Brasília - FGA Brasília, Brasil jnicolas@aluno.unb.br https://bitbucket.org/jhonicolas 2nd Misael de Souza Andrade Matrícula: 160015669 Programa de Engenharia Eletrônica Universidade de Brasília - FGA Brasília, Brasil misas.andrade@aluno.unb.br https://bitbucket.org/misaelandrade

Resumo—Este documento refere-se ao ponto de controle II da disciplina de projeto de circuitos reconfiguráveis, este mesmo visa mostrar a implementação e caracterização dos módulos de hardware do Digital Down Converter em VHDL.

I. JUSTIFICATIVA

Digital Down-converter(DDC) é um componente que converte um sinal digitalizado RF ou IF com taxa de amostragem alta num sinal de frequência mais baixa de banda limitada, a uma taxa de amostragem mais baixa, a fim de recuperar a informação desse sinal modulado. De forma simplificada, a Figura 1 ilustra a caixa-preta do DDC, em que tem como entrada um sinal digitalizado com alta taxa de amostragem e como saída o sinal em fase e em quadratura.

Figura 1. Down-Converter Genérico

As características do DDC o leva para aplicações chaves em sistemas de comunicações, principalmente em receptores de rádio digital, onde estes geralmente possuem conversores analógicos-digitais(A/D) rápidos para digitalizar sinais RF ou IF de banda limitada, o que gera altas taxas de amostragem. Todavia, em muitos casos o sinal de interesse representa uma pequena parcela dessa banda, consequentemente, para extrair esta parcela a essa alta taxa de dados, é necessário um filtro abusivamente grande. Então, a partir desse ponto o DDC permite mover a faixa de interesse do sinal, de modo que ele tenha sua frequência reduzida, diminuindo a taxa de amostragem, tornando os requisitos de processamento do sinal de interesse e de filtro viáveis.

Para a implementação do DDC, é muito comum a utilização de circuitos integrados para aplicação específica padrão ASSPs(Application-Specific Standard parts), todavia, por mais barato que seja atualmente o custo de fabricação das ASSPs, elas não oferecem a integração e a flexibilização que um FPGA fornece. Além disso, a maior vantagem do uso do FPGA(Field Programmable Gate Array) para implementar um DDC é a velocidade, devido suas grande matriz de blocos lógicos

configuráveis, evidenciando assim o motivo da implementação do DDC por um FPGA no projeto.[1]

II. OBJETIVOS

A. Objetivo geral

O presente projeto tem como objetivo principal desenvolver e implementar no FPGA o componente DDC para o receptor no padrão DVBS2x, para um sinal amostrado de 8 bits. Em conjunto com a implementação e caracterização do DDC em hardware pela linguagem VHDL deve ser elaborado também o modelo de referência do componente em software usando o Matlab.

B. Objetivos específicos

Os objetivos específicos do projeto, originam-se dos módulos necessários para compor o DDC, sendo passíveis de serem integrados entre si ou ramificados em outros. São eles:

- Descrever, simular e implementar o componente do sintetizador de freqüência DDS (Direct Digital Synthesizer), que gera uma sinusóide digital amostrada a ser multiplicada pelo sinal.
- Descrever, simular e implementar o componente do Mixer para multiplicar o sinal de entrada pelo sinusóide gerado localmente para mudar o espectro do sinal.
- Descrever, simular e implementar o componente do Decimador(Downsample) de fator de decimação N, que tem a função de subamostrar o sinal recebido, reduzinho sua taxa de amostragem.
- Descrever, simular e implementar o componente do Filtro Digital FIR Passa-baixas de ordem N.

III. METODOLOGIA

Com uma visão geral do DDC sua arquitetura básica é um oscilador, mixers, um par de filtros passa baixa além de um sub amostrador [2]

Observando a figura 2 constata-se que o DDC será dividido em cinco blocos básicos são eles:

- Um oscilador ou Direct Digital Synthesizer (DDS)
- Mixer
- Cascaded Integrator Comb (CIC) filter
- Filtro Compensador FIR (CFIR)
- Filtro Compensador FIR (CFIR)

Figura 2. Lógica de um bloco DDC

A. Direct Digital Synthesizer (DDS)

Um sintetizador digital direto ou também conhecido como Oscilador complexo é um componente do DDC responsável por gerar um sinal senoidal com defassagens (seno + cosseno) ambos na frequência intermediária. A arquitetura desse bloco é relativamente flexível o que facilitará na descrição de hardware, matematicamente uma onda senoidal pode ser obtida rotacionando um vetor em volta do círculo da fase conforme figura 3. O DDS é dividido em dois blocos são eles o acumulados de fase (PA) e o conversor de fase para amplitude (PAC)

Figura 3. Lógica de um bloco DDS

B. PA

Acumulador de Fase

O acumulador de fase é a parte principal do DDS. Esse bloco é atualizado a cada ciclo de clock. A cada período a fase do acumulador é incrementada com a palavra de ajuste Δf

Essa palavra forma o tamanho do passo entre o relógio e então define quantos passos pular M conforme a figura 3. Nesse caso o próprio PA torna o contador de endereços desnecessário criando uma lógica conhecida como roda de fase que pode ser vizualizado na figura 3 um vetor girando em torno de um ponto, sendo que cada passo M forma as amostras de fase de uma onda senoidal completa. Cada vez

que há um pulso de clock PA aumenta o número armazenado na fase no registrador adicionando FTW nesse registrador e a frequência de sicronização é obtida com a equação 1.

$$f_{out} = \frac{(\Delta f * f_{clk})}{2^N} \tag{1}$$

Onde

 Δf é a frequência de sintonia da palavra f_{out} é a frequência requerida na saída N é o número de bits requeridos para representar FTW f_{clk} é a frequência do clock

A palavra da frequência de sintonia (FTW) forma um "salto" processo para pular os pontos de fase N-bit da roda de fase. Esses pontos de fase de N bits são conhecidos como tamanho de etapa de fase ou tamanho do salto de fase. O controle sobre o tamanho do salto constitui a resolução do ajuste de freqüência do sistema DDS. o Quanto maior o tamanho do salto, mais rápido o PA completa a geração de um ciclo de onda senoidal. A saída do Acumulador de Fase (em graus) é obtido usando a fórmula 2

$$PA = \frac{(\Delta f * n * 360^\circ)}{2^N} \tag{2}$$

C. Conversor da Fase para Amplitude PAC

O conversor de fase para amplitude nesse caso será basicamente uma mememória ROM onde o endereçamento será dado pelo acumulador de fase e o tamanho dessa memória é de $2^N\ 3$

$$PAC_{output}x(n) = sin(PA)$$
 (3)

D. Mixer

Um mixer é usado para converter o sinal IF para um sinal com base banda ou banda limitada multiplicando a entrada do sinal complexo sinoídal $cos(wt)-jsin(wt)=e^-jwt$ por isso são gerados dois sinais como saída:

- Sinal em Fase
- Sinal em Quadratura

A figura 5 segue a lógica da equação 4

$$Frequencia(A) * Frequencia(B) =$$

$$Frequencia(A - B) + Frequencia(A + B)$$
(4)

Figura 5. Bloco do Mixer

E. Filtro CIC

A função do filtro digital é suprimir tanto o sinal de banda de devido à mistura de frequência e ruído resultando em aliasing resultados de dizimação e também para maximizar a relação sinal-ruído (SNR).O espectro de sinais de fase e de quadratura pode ser filtrado pois isso é implementável sem grandes problemas em um FPGA. Uma resposta de freqüência de filtro digital é sempre simétrico sobre 0.5Fs. A frequência indesejada os componentes vão para fora da banda de passagem do filtro.

F. CFIR Filter

saída do filtro CIC tem é "filtro de limpeza"onde pode ser aplicado no CIC droop, bem como para atingir a frequência de corte desejada e a forma de filtro. Este filtro é tipicamente um subamostrador por um fator de "2"ou "4"para minimizar a amostra de saída.

IV. METODOLOGIAS DE TESTES

Figura 6. Metodologia de Teste Proposta

A. A nível comportamental

Para as simulações será ultilizado um modelo de testebench disponibilizado não convencional que funciona com máquinas de estados onde no final de cada ciclo é comparado o resultado com o modelo de referência em software.

B. A nível de implementação

Todos os circuitos aqui descritos em VHDL será implementado no FPGA Xilinx Zynq-7000 (XC7Z010-1CLG400C) com o kit de desenvolvimento Zybo para fins de testes ultlizando uma memória ROM para que os resultados sejam lidos em tempo de execução e então os resultados serão gravados em uma memória externa (um micro SD, por exemplo) nesse ponto será comparado o resultado obtido com os resultados dos modelos de referência em software desenvolvidos conforme na figura 6.

V. RESULTADOPARCIAIS

Até o atual momento o projeto possui os seguintes resultados

- Descrição completa do DDS em VHDL.
- Descrição completa do subamostrador.
- Descrição em fase de finalização do Mixer.
- Filtro FIR em fase de desenvolvimento do modelo de software

A. Decimador(Downsample)

O bloco proposto para o downsample foi descrito em VHDL para uma implementação em tempo real, de modo que não há a necessidade de armazenamento prévio de uma quantidade fixa de amostras do sinal a ser subamostrado, o que trás maior robustês ao dispositivo.

Seu funcionamento consiste em contar até um fator N, genérico a nível de síntese, para obter na saída, as amostras múltiplas desse fator. Após a primeira amostra de entrada do sinal, que é sempre a primeira amostra do sinal de saída subamostrado, as seguintes amostras de saída serão sempre as amostras de índices múltiplos do fator N.

B. Ocilador)

O bloco do oscilador foi descrito conforme a seção IV ultilizando uma memória ROM e o acumulador de fase que funciona como um um endereçamento. conforme mostrado na figura 7

Figura 7. Resultados da implementação do mixer e downsample

Os recursos ultilizados até agora foram conforme a figura 8

VI. REQUISITOS

Os requisitos para a execução do projeto do Digital Down Converter são baseados até o momentos em:

 Fazer o componente com o tamanho dos dados configuráveis em tempo de síntese para que projeto possa ser implementado independentemente da arquitetura do FPGA.

Resource	Estimation	Available	Utilization
LUT	65	20800	0.31
FF	58	41600	0.14
BRAM	1.50	50	3.00
IO	14	106	13.21
BUFG	1	32	3.13

Figura 8. Recursos ultilizados até o momento

- Tornar a frequência do oscilador do bloco DDS configurável em tempo de síntese.
- A frequência do sinal de saída deve ser centrada em zero.
- Em caso de trade-off entre arquiteturas dos componentes a performace e a quantidade de DSPs devem ser os principais requisitos de escolha.
- A frequência do sinal de entrada deve ser plausível de configuração em tempo de síntese.

Dados os conhecimentos a respeito do DDC e com base nos requisitos apresentados, tem-se na Figura 6 (Anexo A), a proposta para a entidade do projeto em VHDL. A entidade apresenta o mapeamento das entradas e saídas do DDC e também dos parâmetros genéricos requisitados. Observase que os valores atribuídos são exemplares levando em consideração a placa ADALM-PLUTO com um conversor A/D de 12 bits de resolução.

REFERÊNCIAS

- ANDRAKA, Ray. High Performance Digital Down-Converters for FP-GAs. San Jose, Ca: Xcell Journal, 2000.
- [2] EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE. ETSI EN 301 545-2 V1.2.1: Digital Video Broadcasting (DVB); Second Generation DVB Interactive Satellite System(DVB- RCS2); Part 2 Lower Layers for Satellite Standard. Sophia Antipolis: European Telecommunications Standards Institute, 2014.
- [3] SAVVOPOULOS, Panayiotis; ANTONAKOPOULOS, Theodore. COM-PARATIVE PERFORMANCE ANALYSIS OF SYMBOL TIMING RECOVERY FOR DVB-S2 RECEIVERS. Patras, Greece: University Of Patras, 2006.
- [4] LIMA, Eduardo R. de et al. A Detailed DVB-S2 Receiver Implementation: FPGA Prototyping and Preliminary ASIC Resource Estimation. Campinas: Eldorado Research Institute, 2014.
- [5] HARRIS, Fred et al. Cascade linear phase recursive half-band filters implement the most efficient digital down converter. San Diego: Springer Science+business Media, 2012.
- [6] CHANGRUI, Wu et al. Design and FPGA Implementation of Flexible and Efficiency Digital Down Converter. Wu Changrui: Ieee, 2010.

VII. ANEXOS

A. Anexo A

Figura 9. Entidade prévia proposta para o DDC.

Figura 10. RTL do downsampler.