时间序列

question

17. 某城市过去 63 年中每年降雪量数据如表 3-20 所示。

126.4	82. 4	78. 1	51.1	90.9	76.2	104.5	87.4
110.5	25	69.3	53. 5	39.8	63.6	46.7	72.9
79.6	83.6	80.7	60.3	79	74.4	49.6	54.7
71.8	49.1	103.9	51.6	82.4	83.6	77.8	79.3
89.6	85. 5	58	120.7	110.5	65.4	39.9	40.1
88. 7	71.4	83	55.9	89.9	84. 8	105.2	113.7
124.7	114.5	115.6	102. 4	101.4	89.8	71. 5	70.9
98.3	55.5	66.1	78.4	120.5	97	110	

- 1. 判断该序列的平稳性与纯随机性
- 2. 如果序列平稳且非白噪声,选泽适当模型拟合序列发展
- 3. 利用拟合模型, 预测该城市未来5年的降雪量

问题一解决

在SAS中输入以下程序

```
1 data example1;
2 input x@@;
3 time= n;
4 cards;
5 126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4
6 110.5 25 69.3 53.5 39.8 63.6 46.7 72.9
7 79.6 83.6 80.7 60.3 79 74.4 49.6 54.7
8 71.8 49.1 103.9 51.6 82.4 83.6 77.8 79.3
9 89.6 85.5 58 120.7 110.5 65.4 39.9 40.1
10 88.7 71.4 83 55.9 89.9 84.8 105.2 113.7
11 124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.9
12 98.3 55.5 66.1 78.4 120.5 97
                                           110
13 ;
14 proc gplot data=example1;
15 plot x*time=1;
16 | symbol1 c=red i=join v=star;
   proc arima data=example1;
18 identify var=x nlag=8 minic p=(0:5) q=(0:5);
19 run;
```

得到时序图以及自相关图:

从时序图可以看出,序列基本上在一个数值上随机波动,可认为该序列平稳。

从自相关图可以看出,该序列的自相关系数一直都比较小,始终在2倍标准差范围以内,可以认为该序列 自始至终都在零轴附近波

动, 所以认为该序列平稳。

白噪声检测结果为:

白噪声的自相关检查									
至滞后	卡方	自由度	Pr > 卡方	自相关					
6	13.28	6	0.0387	0.306	0.296	0.037	0.127	0.009	0.008

表中,P值6阶的小于0.05,所以认为该序列具有非纯随机性。

问题二解决

上述程序可以中有 (p和q分别从1到5) 相对最有定阶输出结果为:

最小信息准则							
滞后	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5	
AR 0	6.066377	6.011288	5.967583	5.969761	5.993731	6.028832	
AR 1	5.915676	5.955878	5.991668	6.011213	6.041339	6.091295	
AR 2	5.926375	5.990873	6.056201	6.064921	6.095037	6.15154	
AR 3	5.947206	6.012904	6.074911	6.1305	6.143917	6.188833	
AR 4	5.998927	6.0514	6.116968	6.176641	6.206573	6.251795	
AR 5	6.034244	6.086526	6.14446	6.209642	6.263344	6.315751	

误差序列模型: AR(10)

最小表值: BIC(1,0) = 5.915676

所以该模型为AR(1)模型时拟合最好。

再在上述程序中添加以下语句,再次运行:

1 estimate p=1;

得到:

条件最小二乘估计							
参数	估计	标准 误差	t值	近似 Pr > t	滞后		
MU	80.99410	4.15326	19.50	<.0001	0		
AR1,1	0.31587	0.12329	2.56	0.0129	1		

由于P值都小于0.05,所以认为所有参数显著,可得到该AR(1)模型为

$$x_t = 80.99410 + 0.31587x_{t-1} + \xi_t$$

问题三解决

在代码中添加:

forecast lead=5 id=time out=results;

可得预测信息如下:

变量"x"的预测							
观测	预测 标准误差 95% 置信限						
64	90.1563	22.7294	45.6075	134.7050			
65	83.8882	23.8363	37.1698	130.6065			
66	81.9083	23.9440	34.9789	128.8376			
67	81.2829	23.9547	34.3325	128.2332			
68	81.0853	23.9558	34.1329	128.0377			

所以预测未来五年的降雪量以此为:

90.1563mm, 83.8882mm, 81.9083mm, 81.2829mm, 81.0583mm