Course contents

Design with Hardware Description Language: Structural and behavioural Verilog

Combinational logic circuits

Encoder, decoder, multiplexer

Sequential logic circuits

Counter, register, finite state machine

Digital circuits					Flip-flops	
Number systems and codes	Logic gates	Boolean algebra	Digita arithme		Boolean expression simplification	

Lecture 11 key concepts

- Digital circuits transfer characteristic
- Voltage parameters and noise margins
- Current parameters and fan-out
- Power dissipation, switching speed and propagation delay
- Rise time and fall time
- Tri-state output
- Open-drain output

Which concepts are unclear to you after viewing L11?

- A. Voltage/current parameters
- B. Noise margin and fan-out
- C. Power dissipation
- D. <u>Timing parameters</u>
- E. Tristate output
- F. Open drain output
- G. none

Static characteristics

Static

When outputs are not changing
 Voltage/current parameters

DC noise margin = min { $V_{OH}(min) - V_{IH}(min)$,

DC fan-out = min {
$$I_{OH}/I_{IH}$$
, I_{OI}/I_{II} }

 V_{II} (max) - V_{OI} (max) }

VOH, IOH, VIH, IIH

VOL, IOL, VIL, IIL

Requirements for device A to drive device B:

A's output provides	≤/≥?	B's input requires
V _{OH} (min)		V _{IH} (min)
I _{OH} (max)		I _{IH} (max)
V _{OL} (max)		V _{IL} (max)
I _{OL} (max)		I _{IL} (max)

DC noise margin = min(Difference in input/output voltages)

DC fan-out = min(Ratio of output/input
currents)

Dynamic characteristics

Dynamic

- When outputs are changing

Low is better:

Power dissipation, propagation delay, rise time and fall time

High is better:

Switching speed

Tristate output

Enabled output: 0, 1

Disable output: H-Z (High-impedance)

Connected tristate outputs:

Why not more than one output can be enabled?

Question: which is which?

(a)	(b)			
Outputs can be connected together				
Does not require external pull- up resistor	Requires external pull-up resistor			
Has enable input	Does not have enable input			
At most one individual output can produce High or Low (i.e. enabled) at any time. The rest must be Hi-Z.	Each individual output can produce High or Low at any time.			
Common output follows enabled output; Hi-Z when all outputs are disabled	Common output is wire-AND of individual outputs			

Connected open-drain outputs

$$U = (AB)$$

Each NAND gate can work on its own with a pull-up resistor

Each NAND gate can work on its own with a pull-up resistor

Each NAND gate can work on its own with a pull-up resistor

Wired-AND output

Wired-And: is a behavior, not an AND gate

Z = 0 if U=0, or V=0 or W=0

End of L11 summary

Lecture 12 key concepts

- Schmitt-trigger inputs
 Key parameters: VT-, VT+
- Programmable Logic Arrays
 Implement SOP with some flexibility
- Fixed point and floating point numbers -Pros and cons

Which concepts are unclear to you after viewing L12?

- A. Schmitt-trigger input
- B. Programmable logic array
- C. Floating point number
- D. none

Are these input/output waveforms of a Schmitt-trigger buffer or inverter?

Programmable Logic Devices

Digital Systems Design Using Verilog, Roth, John, Lee. Cengage 2016.

Programmable Logic Arrays

Both AND plane and OR plane are programmable

What circuit is implemented?

Fig. 9.33 from Fundamentals of Logic Design by Roth and Kinney

Fixed/floating point example

Store the unsigned decimal value 15.9375 15.9375(dec) = 1111.1111(bin)


```
Floating point:
0011 1111
1111.1111 = 1.11111111x2^3
4-bit significand=1111
4-bit exponent=0011
1. is not stored
```

Range of values

Compare largest value represented

Fixed point:

1111 . 1111

= 15.9375(dec)

Floating point:

0111 1111

 $= 1.11111 \times 2^{(+7)}$

= 1111 1000(bin)

= 248(dec)

Given the same number of bits, floating point can represent a much wider range of values than fixed point but is more complex.

Disadvantage of fixed point

e.g. Multiply 0.0010 with 0.0011 = 0.0000011

Fixed point result:

<u>0000</u> . <u>0000</u>

Floating point

result:

1010 1000

 $= 1.1000 \times 2^{(-6)}$

Fixed-point arithmetic such as multiplication may result in a loss of significant bits.

Disadvantage of floating point

http://jasss.soc.surrey.ac.uk/9/4/4.html

End of L12 summary