Kvantizacija

Linearni kvantizator – L-PCM (pulse-code modulation) – A/D konverter:

Ulazni signal: \boldsymbol{x} Kvantizirani signal: x_q N Broj kvantizacijskih nivoa: Δ Razmak kvantizacijskih nivoa: b Rezolucija kvantizatora [bit]:

Kvantizirani signal:

$$x_q = \Delta \cdot round\left(\frac{x}{\Delta}\right)$$

Ulazna dinamika ADCa [V]:

$$A = N \cdot \Delta$$

Granulacijska pogreška kvantizatora za danu ulaznu dinamiku:

$$\Delta = A \cdot 2^{-b}$$

Ulazna dinamika preko bitova je

$$A = 2^b \cdot \Delta$$

Signal kao slučajni proces:

Realizacija slučajnog procesa X:

 $e[n] = x[n] - x_a[n]$ Realizacija procesa pogreške:

 $|e| \leq \Delta/2$

 $f_x(X)$ pdf Gustoća razdiobe procesa X:

 $f_e(e) = \frac{1}{\Lambda}$ Gustoća razdiobe greške e:

Varijanca signala:

 $\sigma_x^2 = E(x - E(x))^2$ $\sigma_x^2 = E(x^2) = \int_{\phi} x(\phi)^2 f_{\phi}(\phi) d(\phi)$ $f_{\phi}(\phi) = pdf$

Za uniformni signal:

Varijanca kvantizacijske pogreške: $\sigma_e^2 = E(e - E(e))^2$

Za uniformnu grešku: $\sigma_e^2 = E(e^2) = \int e^2 f_e de = \frac{1}{\Delta} \int_{A/2}^{\Delta/2} e^2 de = \frac{1}{\Delta} \frac{e^3}{3} \Big|_{A/2}^{\Delta/2} = \frac{\Delta^2}{12}$

Kvantizacijski omjer signal-šum (SQNR) za zadani broj bitova:

 $SQNR(b) = 10\log_{10}\frac{\sigma_x^2}{\sigma^2} = 6.02 \cdot b + 10\log_{10} = 6.02 \cdot b + 10\log_{10}\frac{12 \cdot \sigma_x^2}{A^2}$ [dB]

Kvantizacijska greška se smanjuje za 6 dB za svaki bit rezolucije!

Limitiranje:

Signal ima efektivnu vrijednost σ_x , za limit unutar dinamike amplituda mora biti ispod $\frac{A}{2}$.

 $\delta = \frac{A/2}{\sigma_x}$ $A = 2 \delta \sigma_x$ $\Delta = 2 \delta \sigma_x 2^{-b}$ Tjemeni faktor za efektivnu vrijednost: Ulazna dinamika bez zasićenja:

Kvantizacijski korak bez zasićenja:

 $SQNR(b) = 20 b \log_{10} 2 + 10 \log_{10} \frac{3}{\delta^2}$ Direktan SQNR za signal:

Kodiranje:

- source coding se temelji na svojstvima signala
- entropy coding se temelji na statistici uzoraka signala

 $S = \{s_{1}, s_{2}, s_{3}, ...\}$ Izvor signala:

Vjerojatnost simbola:

 p_i $\log_2 \frac{1}{n}$ Količina informacije za simbol:

Entropija – količina informacije koju izvor generira (prosječna duljina simbola)

$$H(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- kodovi varijabilne duljine imaju kraće kodne riječi za vjerojatnije znakove
- prefiksni kodovi nemaju nijednu kodnu riječ koja je početak neke druge

Huffmanov kod

Prefiksni i varijabilno dug kod, dodjeljuje kraće kodne riječi vjerojatnijim znakovima

Algoritam

- 1. Sortiraj poznate znakove po vjerojatnosti
- 2. Uzmi dva najmanje vjerojatna simbola, grupiraj stablom u jedan, zbroji im vjerojatnosti i makni ih iz algoritma
- 3. Ponovi postupak dok se ne istroše svi znakovi i dok korijen nema vjerojatnost 1
- 4. Dodijeli kodne riječi svakom listu; gornja podgrana svake grane ima vrijednost 0, a donja 1; svaki list grane ima kodnu riječ koja je niz 0 i 1 kojim se od korijena došlo do njega

Ako je entropija cjelobrojna, to je prosječna duljina kodne riječi.

Ako entropija nije cjelobrojna, prosječna duljina kodne riječi je H(S)+1

Aritmetičko kodiranje

Cijela poruka se enkodira u dugi binarni broj

Algoritam

- 1. Uzmi skup ulaznih simbola i pridodaj im \$ kao završni znak, te svima pridijeli interval proporcionalan vierojatnosti tako da im unija spada u [0, 1>
- 2. Kodiraj simbol tako da njegov interval particioniraš u istim omjerima kao i početni [0, 1>, da bi ponovno dobio proporcionalne dijelove intervala
- 3. Ponavljaj prošli korak dok ne enkodiraš do zaključno znaka \$
- 4. Kodirana poruka je broj iz krajnjeg intervala dobivenog odabirom \$ enkodiraj broj tako da ga zapišeš kao binarni "decimalni" broj

 $p_{m} = \prod_{i}^{s_{i} = \$} p_{i}$ $H(S) = -\log_{2} p_{m}$ Vjerojatnost poruke

Entropija poruke:

Kodiranje radi kompresije

Kodiranje s konačnom entropijom: kako da poruka stane u kanal uz visoku kvalitetu? Kodiranje s konačnom distorzijom: kako minimizirati širinu kanala za danu kvalitetu?

ECSQ - entropy-constrained scalar quantization

Korak kvantizacije: $\Delta = \frac{A}{N}$

Kvantizacijski razredi: $C_i = [\Delta i - \Delta/2, \Delta i + \Delta/2]$

Rekonstrukcija - zamjena koda i pripadnim centroidom

$$x_{qi} = \Delta \cdot i$$

Vjerojatnost pojedinog simbola i:

simbola i:

$$p_I(i) = \int_{\Delta i - \Delta/2}^{\Delta i + \Delta/2} f_X(x) dx$$

Entropija je najveća za proces uniformne gustoće Distorzija unutar kvantizacijskog razreda:

$$D = \sum_{i} D_{i} = \sum_{i} \int_{\Delta i - \Delta/2}^{\Delta i + \Delta/2} f_{X}(x) (x - x_{qi})^{2} dx$$

USQ (uniform scalar quantization)

 $f_{X} = \frac{1}{\Delta N}$ $p_{I} = \int_{\Delta i - \Delta/2}^{\Delta i + \Delta/2} \frac{1}{\Delta N} dx = \frac{1}{\Delta N} \int_{\Delta i - \Delta/2}^{\Delta i + \Delta/2} dx = \frac{1}{\Delta N} \Delta = \frac{1}{N}$

$$\max(H(i)) = \log_2(N)$$

Distorzija: $D = \frac{\Delta^2}{12} = \sigma_e^2$

Varijanca ulaznog procesa: $\sigma_x^2 = \frac{(\Delta N)^2}{12}$

$$SQNR(N) = 6.02 H(I)$$

Za smanjenje distorzije za 6 dB potrebno je povećati entropiju za 1 bit. Izlazna entropija ne-uniformnog procesa je uvijek manja od entropije uniformnog.

HR-ECSQ - High-Resolution ECSQ

Za dovoljno uske kvantizacijske razrede pdf se može aproksimirati vrijednošću u centroidu razreda!

Uniformni kvantizator Δ je UVIJEK najbolje rješenje!

$$H(I) = h(X) - \frac{1}{2}\log_2(12D), D = \frac{\Delta^2}{12}$$

Diferencijalna entropija je mjera kompleksnosti signala:

$$h(X) = -\int_{x} f_{X}(x) \log f_{X}(x) dx$$

Ukupni SQNR:

$$SQNR = 20 \log_{10} 2 H(I) + SQNR_0$$
 [dB]

Offset veze, SQNR₀ ovisi o ulaznoj diferencijalnoj entropiji i varijanci:

$$SQNR_0 = 20 \log_{10}(\sqrt{12 \cdot \sigma_x^2} 2^{-h(X)})$$

Veći offset uz istu izlaznu entropiju daje bolju kvalitetu!

Kako odrediti korak HR-ECSQ kvantizatora (Δ_{min}) za zadanu ograničenu entropiju H(I)?

$$h(X) = -\int_{X} f_X(x) \log f_X(x) dx$$
$$\Delta_{min} = 2^{h(X) - H(I)}$$

Kako odrediti potrebnu entropiju $H(I)_{min}$ i korak Δ_{min} za zadanu minimalnu kvalitetu $SQNR_{min}$?

$$h(X) = -\int_{x} f_{X}(x) \log f_{X}(x) dx$$

$$SQNR_{0} = 20 \log_{10}(\sqrt{12 \cdot \sigma_{x}^{2}} 2^{-h(X)})$$

$$H(I)_{min} = \frac{SQNR_{min} - SQNR_{0}}{20 \log_{10} 2}$$

$$\Delta = 2^{h(X) - H(I)_{min}}$$

Kvantizacijski korak za zadanu izlaznu entropiju H(I) za uniformni proces σ_x je:

$$\Delta_{unif} = \sqrt{12\,\sigma_x^2} 2^{-H(I)}$$

Linearna predikcija

Cilj je na osnovu poznatog vektorskog procesa *X* predvidjeti skalarni proces *Y* (uz određene zavisnosti). Uz primjenu prediktora procjenujemo Y i kodiramo samo razlike!

Poznati vektorski proces dimenzije p \vec{x} Skalarni proces koji procjenjujemo y Procjena skalarnog procesa \tilde{y} Pogreška procjene $e=y-\tilde{y}$ Prediktor s minimalnom varijancom greške Red prediktora (dimenzija prediktora) p Broj uzoraka nad kojima se vrši predikcija N

Princip rada prediktora:

$$\tilde{y} = [\vec{\boldsymbol{\alpha}}^T] \cdot \left[\vec{\boldsymbol{x}} \right]$$

Kovarijancijska simetrična matrica opisuje međuovisnosti između svih parova komponenata ulaznog procesa:

$$\vec{\boldsymbol{\phi}}_{xx} = E([\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{x}}^T]) = \frac{1}{N} [\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{x}}^T]$$

Korelacijska matrica opisuje korelacije ciljnog procesa i komponenti izvora X:

$$\vec{\boldsymbol{\Psi}}_{xy} = E[\vec{\boldsymbol{x}} \cdot y] = \frac{1}{N} [\vec{\boldsymbol{x}} \cdot y]$$

Optimalni linearni prediktor:

$$\bar{\boldsymbol{\alpha}} = \boldsymbol{\Phi}_{xx}^{-1} \cdot \boldsymbol{\Psi}_{xy}$$

Prediktor reda p korelira p koraka unazad. Povećanje reda smanjuje ukupnu pogrešku

Prediktor kao filter

Linearni prediktor je FIR (finite-impulse response) stabilni filter P(z):

$$P(z) = \sum_{k=1}^{p} \alpha_k z^{-k}$$

Inverzni filter je IIR (infinite-impulse response) filter-rekonstruktor:

Filter greške: A(z)=1-P(z)

Rekonstruktor: $H(z) = \frac{1}{A(z)} = \frac{1}{\sum_{k=1}^{p} \alpha_k z^{-k}}$

H(z) je IIR filter – stabilan je jedino ako su svi polovi unutar jedinične kružnice, tj. ako su sve nultočke po modulu manje od 1.

Autokorelacija

Za osiguravanje stabilnosti IIR rekonstruktora koristi se metoda autokorelacije. R(j) je autokorelacija x[n] sa uzorcima na indeksima za korak j.

$$R(j) = \sum_{m=0}^{N-1-j} x[m]x[m+j]$$

Formira se matrica iz koje se izračuna stabilni IIR rekonstruktor.

$$\begin{bmatrix} R(0) & R(1) & R(2) & \cdots & R(p-1) \\ R(1) & R(0) & R(1) & \cdots & R(p-2) \\ R(2) & R(1) & R(0) & \cdots & R(p-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R(p-1) & R(p-2) & R(p-3) & \cdots & R(0) \end{bmatrix} \begin{bmatrix} \bar{\alpha}_1 \\ \bar{\alpha}_2 \\ \bar{\alpha}_3 \\ \vdots \\ \bar{\alpha}_p \end{bmatrix} = \begin{bmatrix} R(1) \\ R(2) \\ R(3) \\ \vdots \\ R(p) \end{bmatrix}$$

Vrste LPC kodera

OLP (Open-Loop Prediction) koder

Izvorni proces korišten je sličan, ali ne isti kao rekonstrukcijski. Pogreška nastaje pri kvantizaciji $e[n] \rightarrow \hat{e}[n]$ i razlici u predikciji dekodera i enkodera. Međutim, šum se također rekonstruira s parametrima glasa, pa se "skriva" iza signala (proces noise shapinga)

CLP (Closed-Loop Prediction) koder

Originalni proces je dostupan na obje strane koristi se predkvantizirani signal koji se lokalno rekonstruira i tvore isti proces predikcije. Međutim, do noise maskinga ne dolazi.

Adaptacija

Koder mora s vremenom slati ažurni prediktor: to može napraviti kao:

FAP - forward-adaptive prediction (šalje se uz tok samog kodiranog signala)

BAP - backward-adaptive prediction (proces CLPa)

Kodiranje govora

Dugotrajna korelacija potrebna je za pojedine glasove (od 3 do 15 ms trajanja) Kratkotrajna korelacija potrebna je unutar glasa (unutar 1 ms) Formanti - rezonantne karakteristike glasa (frekvencije u pojedinom glasu)

Za analizu se koristi spektrogram narrowband za dugotrajne korelacije wideband za kratkotrajne korelacije

Princip rada LPC VoCodera:

- 1) Primijeni LPC na 20-30 ms glasa i nađi prediktor P(z) reda p s koeficijentima $\vec{\alpha}_1$ do $\vec{\alpha}_p$
- 2) Izračunaj signal predikcijske pogreške e[n], varijancu $\sigma_e^2(\bar{\alpha})$ te faktor pojačanja $G = \sigma_e(\bar{\alpha})$
- 3) Za pogrešku potraži periodičnost i ovisno o tome koristi sinus ili bijeli šum (autokorelacijom)
- 4) Kvantiziraj procijenjene parametre i ubaci uz poruku
- 5) Pomakni fokus za 10-20 ms na idući frame (framerate 50 do 100 fps)

Princip rada LPC VoDecodera:

- 1) Rekonstuiraj parametre
- 2) Formiraj segment signala jediničnim impulsima s razmakom periode ili uzorkom šuma
- 3) Pomnoži signal s G da bi se dobio sintetički e[n] na ulazu H(z)
- 4) Propusti signal kroz H(z) s parametrima koji su poslani ($\hat{\alpha}_k = Q(\bar{\alpha}_k)$)
- 5) Pusti segment sintetskog glasa i ponovi postupak za idući frame

OLP (Open-Loop Prediction) koder (ponovno)

Pogreška kvantizacije se prolaskom kroz H(z) na drugoj strani spektralno uobličuje (noise shaping) i zbog spektralne sličnosti je manje primjetna nego direktno kvantizirani glas (frequency masking). SQNR se ne povećava, ali se energija pogreške frekvencijski bolje raspodjeljuje.

CLP (Closed-Loop Prediction) koder (ponovno)

Pogreška rekonstrukcije je jednaka pogrešci kvantizacije, a lakše je kvantizirati grešku jer ima manju varijancu od signala. Kvaliteta se poboljšava samo smanjenjem energije pogreške, ne noise shapingom.

Prediction gain je poboljšanje SQNRa predviđenog u odnosu na kvantizirani signal.

$$PG = 10 \log_{10} \frac{\sigma_x^2}{\sigma_{ec}^2} \text{ [dB]}$$

Problem je što ne možemo odrediti grešku CLPa jer za prediktor trebamo kvantizator i obratno. Prediktor se stoga optimira za mod rada blizu OLPu, gdje je idealno $H(I) = \infty$.

$$PG_{\infty} = 10 \log_{10} \frac{\sigma_x^2}{\sigma_e^2}$$
 [dB]