1. Să se scrie algoritmul de simulare a unui număr pseudo-aleator uniform distribuit pe multimea $\{-3, -2, -1, 0, 1, 2, 3\}$.

Rezolvare: Reamintim următorul rezultat:

Dacă $U \sim \text{Unif}[0,1)$ v.a. uniform distribuită pe [0,1), iar n este număr întreg, n > 1,

$$X = [nU]$$

o variabilă aleatoare discretă ce are distribuția uniformă pe mulțimea $\{0, 1, 2, \dots, n-1\}$,

- adică $X = \begin{pmatrix} 0 & 1 & \dots & n-1 \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{pmatrix}$. Variabila X se poate simula prin algoritmul:
 - 1 Function SimDiscretU(n)
 - $2 \quad u=urand();$
 - 3 k=int(n*u);
 - 4 return k;
 - 5 end.

Mai mult, pentru X = [(n - m + 1)U] avem :

$$X = \left(\begin{array}{ccc} m & m+1 & \dots & n \\ \frac{1}{n-m+1} & \frac{1}{n-m+1} & \dots & \frac{1}{n-m+1} \end{array}\right).$$

iar algoritm de simulare a unei valori de observație este:

- 1 Function randint(m,n)
- 3 k=int((n-m+1)*u));//k in $\{0, 1, 2, ..., n-m\}$
- 4 return k+m;
- 5 end.

In cazul ex 1) trebuie să determină numărul de valori ale variabilei X.

m = -3 capat inferior interval

m = 3 | capat superior interval

N = W - W + 1 = 7 numar de elemente din interval

- 1 Function randint(-3,3)
- 2 u=urand();
- 3 k=int(7*u));//k in $\{0, 1, 2, ..., 6\}$
- 4 return k-3;
- 5 end.

4. Fie o variabilă aleatoare $X \sim \text{Exp}(\theta)$. Să se arate că X se poate simula prin metoda inversării. Să se scrie algoritmul de simulare a unei valori de observație a variabilei aleatoare X.

Rezolvare:

Metoda inversării: se aplică pentru a genera numere pseudo–aleatoare ca valori de observație asupra unei variabile aleatoare X, ce are funcția de repartiție inversabilă.

Si anume, dacă $U \sim [0,1)$ și F_X o funcție de repartiție strict crescătoare și continuă pe in-Si anume, dacă $U \sim [0, 1)$ și F_X o funcție de repartiție strict crescătoare și continuă pe intervalul de lungime minimă din \mathbb{R} , pe care variabila aleatoare X ia valori cu probabilitatea X = X1, atunci variabila aleatoare

care variabila aleatoare
$$X$$
 ia valori cu probabilitatea— X $X = X$

are aceeași funcție de repartiție ca și variabila X, adică Y și X sunt identic distribuite și nu se disting din punct de vedere probabilist (se simulează în același mod).

Pentru a aplica metoda inversării pentru ex 4. vom studia funcția de repartiție a unei variabile aleatoare $X \sim \text{Exp}(\theta)$. Avem următoarele rezultate:

- O v. a. exponențial distribuită ia valori pozitive cu probabilitatea 1 pe $I = [0, \infty)$ $P(X \ge 0) = 1 - P(X < 0) = 1 - F_X(0) = 1 - 0 = 1$
- \bullet prin metoda inversării putem simula X.
- 1 Function SimulExp(theta)
- 2 u=urand();
- 3 x = -theta * log(1-u);
- 4 return x:
- 5 end

Dbs.: În simularea unei variabile aleatoare $X \sim Exp(\theta)$ putem înlocui pe 1-u cu u.