CBO Applied to RL: Q-Control

Dynamics and Model

Continuous statespace

$$egin{aligned} \mathbb{S} &= (0,2\pi] \ \Delta s_m &= a_m \epsilon + \sigma \sqrt{\epsilon} Z_m \ a_m &\in \mathbb{A} = \{\pm 1\} \ a_m &\sim \pi_b(\cdot|s_m) \ arepsilon &= rac{2\pi}{32} \ \sigma &= 0.2 \ r(s_{m+1},s_m,a_m) = \sin(s_{m+1}) + 1 \ \pi_b(a|s) &= rac{1}{|\mathbb{A}|} \ \mathrm{Model} : \mathrm{ResNet} \end{aligned}$$

Discrete statespace

$$\mathbb{S} = \{rac{2\pi k}{n}: k \in \mathbb{Z} \cap [0,n-1]\}$$
 $\Delta s_m = rac{2\pi}{n} a_m \epsilon + \sigma \sqrt{\epsilon} Z_m$
 $a_m \in \mathbb{A} = \{\pm 1\}$
 $a_m \sim \pi_b(\cdot|s_m)$
 $n = 32$
 $\varepsilon = 1$
 $\sigma = 1$
 $r(s_{m+1},s_m,a_m) = \sin(s_{m+1}) + 1$
 $\pi_b(a|s) = rac{1}{2} + a\sin(s)$
Model: Tabular

Optimization Methods

Bellman Residual Method (BRM)

$$egin{aligned} J(heta) &= \mathbb{E}[((\mathbb{T}^{\pi_*} - \mathbb{I})Q^*(s, a; heta))^2] \ &= \mathbb{E}[\mathbb{E}[j^{ctrl}(s_m, a_m, s_{m+1}; heta) | s_m, a_m]^2] \ j^{ ext{ctrl}}(s_m, a_m, s_{m+1}; heta) &= r(s_{m+1}, s_m, a_m) + \gamma \max_{a'} Q^*(s_{m+1}, a'; heta) - Q^*(s_m, a_m; heta) \end{aligned}$$

Using Batches, and a specific sampling method (UR, DS, BFF), at each iteration we get an estimate $\tilde{J}(\theta)$ for the loss $J(\theta)$.

SGD

$$M=1000$$
 Batch size $ext{epochs}=1$ $\gamma=0.9$ Discount factor $au_k=\max(au_i\cdot au_r^k, au_i\cdot au_f)$ Learning rate

$$\Delta heta_k = - au_k
abla_ heta ilde{J}\left(heta
ight)$$

CBO

 $\begin{array}{ll} N=90 & \text{Number of particles} \\ m=1000 & \text{Batch size} \\ \text{epochs}=1 \\ \gamma=0.9 & \text{Discount factor} \\ \delta=1\times10^{-5} & \text{Threshold of difference below which particles take a brownian motion step} \\ \eta_k=\max(\eta_i\cdot\eta_r^k,\eta_i\cdot\eta_f) & \text{Learning rate} \\ \tau_k=\max(\tau_i\cdot\tau_r^k,\tau_i\cdot\tau_f) & \text{Exploration rate} \\ \beta_k=\min(\beta_i\cdot\beta_r^k,\beta_i\cdot\beta_f) & 1/\text{Characteristic energy} \\ \end{array}$

$$egin{aligned} ar{ heta}_k &= rac{\sum_{j=1}^N heta_k^j \exp(-eta_k ilde{J}\left(heta
ight))}{\sum_{j=1}^N \exp(-eta_k ilde{J}\left(heta
ight))} \ \Delta heta_k^j &= (-\eta_k I + au_k \sqrt{\eta_k} \cdot Z)(heta^j - ar{ heta}); \quad Z = \mathrm{diag}(\{z_i \sim \mathcal{N}(0,1)\}_{i=1}^N) \end{aligned}$$

Procedure

- Policy is sampled using fixed behaviour policy $\pi_b: \mathbb{A} \times \mathbb{S} \to [0,1]$ generating long and normal trajectories.
- Reference θ^* is computed by running UR SGD for 1 epoch based on longer trajectory with $\tau = \max(0.8 \cdot 0.9992^k, 0.3), M = 1000.$
- Perform hyperparameter optimization, using optuna, fixing $M=1000, \delta=10^{-5}$, running 150 trials, and 90 particles for CBO, taking error of UR as loss. 3 Variables for SGD, 9 for CBO.
- Average 10 instances using best hyperparameters found, $\hat{\theta}$, plotting $Q(\cdot,\cdot;\theta)$, and $e_k = \|Q(\cdot,\cdot;\theta^*) Q(\cdot,\cdot;\theta_k)\|$.
- Visualize optimization landscape by evaluating error on affine combination of parameters of θ^* and random initialization parameters ($J(\alpha\theta^* + (1-\alpha)\theta)$) vs $\alpha \in [0,1]$)

Procedure takes ~20 hours (running on 10th gen Intel i9 processor)

Results

Continuous + ResNet

SGD	au
i	0.08001579582322532
f	0.9835361410049764
r	0.950886309322411

СВО	η	τ	β
i	0.27998130431694734	0.45180905444083275	8.51669145194007
f	0.5194195083343263	0.4287097014952387	1.7500535407136808
r	0.9698276350455655	0.9578569049519733	1.0213109427307054

Discrete + Tabular

SGD	au
i	4.703979337147098
f	0.654883440315296
r	0.9730502549231891

СВО	η	au	β
i	0.9785432879550536	0.893733865582011	12.055703082474112
f	0.8242055859864529	0.3129317992204857	2.6535471522264684
r	0.9827373829994701	0.9999130685913801	1.019158705231164

Conclusions

- Discrete + Tabular
 - o CBO >> SGD
 - o BFF > UR
- Continuous + ResNet
 - o CBO < SGD
 - \circ BFF \sim UR

An important note is that the differences noted above could be related to the number of variables in the hyper-parameter search (3 for SGD, 9 for CBO), as well as the complexity/convexity of the problem, ie. if we performed more trials, it might be possible for CBO > SGD and BFF > UR in the continuous case, although we have not observed this fact. This is also based on the fact that CBO > SGD for V-eval without hyperparameter search.