Lab 1

ASSEMBLY

- Linguagem básica estrutural característica de cada equipamento.
- Assembler: traduz o código interno de instruções da máquina.
- Os programas de apoio e inclusive partes importantes do sistema operacional são construídos, na maioria dos casos, a partir do mesmo.

COMPILADORES

 Funcionam como tradutores de uma linguagem de uso mais compreensível pelo homem (linguagem de Alto Nível) para linguagem de máquina.

Traduzem todo o código num novo código;

 Executam com a mesma rapidez que os programas escritos diretamente em linguagem máquina

COMPILADORES

- Interpretadores: interpretam instrução a instrução;
- São mais lentos do que os programas escritos diretamente em linguagem máquina.

 Assemblers: interpretam a linguagem simbólica em linguagem máquina.

Linguagens de Programação

- Representam a interface entre o programador e o hardware, ou a ferramenta utilizada para materializar uma tarefa que será desenvolvida pelo sistema
- Na base está a linguagem de máquina, que é a versão final que o computador realmente processa.
- Há ainda a linguagem Assembly, intimamente ligada ao conjunto de instruções do processador.

Linguagens de Programação

- Nível intermediário: encontram-se as linguagens que apresentam facilidade de programação com comandos, porém conseguem amplo acesso ao hardware, como as linguagens de baixo nível.
- Ideais para elaboração de programas como sistemas operacionais ou rotinas que interagem com dispositivos de I/O, memórias, periféricos.
- Exemplo: Linguagem C

Registradores Microprocessador 8085

7 registradores de uso geral, todos de 8 bits

8 bits	8 bits
Acc	
В	С
D	E
Н	L

 A (ACUMULADOR): utilizado em todas as operações de entrada/saída e em quase todas as instruções de lógica e aritmética.

Registradores Microprocessador 8085

 Demais registradores de uso geral: importantes, principalmente porque podem ser utilizados em pares, formando registrados de 16 bits, organizados como: par BC, DE e HL

- Outros registradores: apontador de pilha (SP), o contador de programa (PC), o registrador de instruções e o registrador para FLAGS
- Indispensáveis para o funcionamento do 8085

- A operação de qualquer microprocessador é baseada em um conjunto de códigos que é denominado de CONJUNTO DE INSTRUÇÕES.
- Esses códigos deverão ser inseridos necessariamente em uma memória, e em muitos casos dados adicionais são necessários.
- O microprocessador pode apresentar diferentes modos para acesso à memória, chamados de modos de endereçamento.

- Organização das instruções no 8085:
- 1° byte → código (sempre)
- 2° byte → dado ou byte menos significativo de endereço(LSB)
- 3° byte → dado ou byte mais significativo de endereço(MSB)

- O conjunto de instruções do 8085 está organizado em 5 grupos básicos:
 - 1 transferência de dados: permitem a troca de dados entre registradores e memória;
 - 2 operações lógicas: permitem a implementação de funções lógicas, como AND, OR, XOR, comparações, etc.;
 - 3 operações aritméticas: permitem a realização de somas e subtrações;
 - 4 controle de programa: permitem desvios condicionados ou não, chamadas de subrotinas, etc.
 - 5 manipulação de PILHA e acesso aos dispositivos de entrada/saída.

- Modos de Endereçamento no 8085
- Implícito: o microprocessador "sabe" a priori onde está o dado (ex.: CMA, DAA, etc.)
- Por registro: operações envolvendo registradores internos (ex.: ADD B, SUB D, etc)
- Imediato: o dado segue o código da instrução (ex.: MVI A,25; CPI 00, etc)
- Direto: o endereço do dado segue o código (ex.: STA 2550, LDA 4001, etc)
- Indireto: o endereço do dado é passado via um par de registros (ex.: LDAX B, etc)

- As instruções deste grupo realizam as seguintes funções:
 - Transferência de dados entre registradores e entre registrador e memória;
 - Atribuir valor ao registrador ou à memória;
 - Transferência de dados entre acumulador e memória;
 - Transferência de dados entre os registradores H e L e a memória;
 - Troca de valores entre o par de registradores H,L e o par D,E.

- Considerações iniciais:
 - r, r1, r2 : registradores A, B, C, D, E, H, L;
 - M : símbolo indicando endereço de memória formado pelo conteúdo do par H, L;
 - Data8 Valor de 8 bits
 - Data16 Valor de 16 bits (dado)
 - Adr16 Valor de 16 bits (endereço)
 - DDD registrador de destino do byte (dados)
 - FFF registrador fonte do byte (dados)

Registrador	Composição de Bits	
	DDD ou FFF	
В	000	
C	001	
D	010	
E	011	
Н	100	
L	101	
A	111	

NOME	REGISTRADORES	Composição de Bits PR
В	B, C	00
D	D, E	01
H	H, L	10
SP	SP	11

- rh: registrador superior (B, D e H);
- rl: registrador inferior (C, E, L);

 Tempo de Execução ou Processamento de uma instrução:

$$T_{E} = \frac{\text{Número de Estados T(T)}}{f_{clock}} = \frac{T}{2.35*10^{6}} = 425.10^{-9} * T$$
 [s]

$$(r1) \leftarrow (r2)$$

01 DDD FFF

- Move
- O conteúdo do registrador r2 é copiado no registrador r1.
- Exemplos:

•	Instrução (Hexadecimal)	Código (Binário)	Código
•	MOV A, A	01 111 111	7F
•	MOV C, D	01 001 010	4A
•	MOV H, B	01 100 000	60

MOV r, M

 $(r) \leftarrow ((H)(L))$ **01 DDD 110**

T = 7

- Move
- O conteúdo do endereço de memória formado pelo par H,L é copiado no registrador r.
- Exemplos:

•	Instrução (Hexadecimal)	Código (Binário)	Código
•	MOV A, M	01 111 110	7E
•	MOV C, M	01 001 110	4E

- MOV M, r $((H)(L)) \leftarrow (r)$ 01110 FFF T = 7
- Move
- O conteúdo do registrador r é copiado no endereço de memória formado pelo par H,L.
- Exemplos:

•	Instrução (Hexadecimal)	Código (Binário)	Código
•	MOV M, A	0111 0 111	77
•	MOV M, H	0111 0 100	74

• **MVI r, Data8** (r) ← Data8

00 DDD 110

T = 7

Move Imediate

Data8

- O byte Data 8 é transferido para o registrador r.
- Exemplos:

•	Instrução	Código (Binário)	Código (Hexadecimal)
•	MVI A, 45H	00 111 110	3E
•		0100 0101	45
•	MVI B, 06H	00 000 110	06
•		0000 0110	06

MVI M, Data8

$$((H)(L)) \leftarrow Data8 \ 0011 \ 0110$$

T = 10

Move Imediate

Data8

- O byte Data 8 é transferido para o endereço de memória dado pelo par HL.
- Exemplo:

Instrução

Código (Binário) Código (Hexadecimal)

• MVI M, DCH

0011 0110

36

1101 1100

DC

ANTES

APÓS

• (H) = 20H (L) = 30H (2030H) = XX (2030H) = DC H

(H) = 20H (L) = 30H

$$(rh) \leftarrow Data16^{H}(rl) \leftarrow Data16^{L}$$

00 PR 0001 T =

 Load Extended Imediate Data16^L

•

Data16^H

- O byte superior de Data16 é transferido para o registrador superior rh e o byte inferior de Data16 é transferido para o registrador inferior rl.
- Exemplo:

•	Instrução	Código (Binário)		Código (Hexadecimal)
•	LXI D, 20B0H	00 01 0001	11	
•		1011 0000	В0	
•		0010 0000	20	

APÓS

(D) = 20H(E) = B0H

- O conteúdo do endereço Adr16 é copiado no acumulador.
- Exemplo:

CD H

•	Instrução (Hexadecimal)	Código (Binário)	Código
•	LDA 20B0H	0011 1010	3A
•		1011 0000	В0
•		0010 0000	20
•	ANTES		APÓS
•	(20B0H) = CD H (A)	A) = XX	(20B0H) = CD H (A) =

• STA Adr16
$$T = 13$$

$$Adr16^{L}$$

$$Adr16^{L}$$

$$Adr16^{H}$$

- O conteúdo do acumulador é copiado no endereço Adr16.
- Exemplo:

•	Instrução	Código (Binário)	Código (Hexadecimal)
•	STA 20B0H	0011 0010	32
•		1011 0000	B0
•		0010 0000	20