Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторным работам №7 по дисциплине «Математическая статистика»

> Выполнил студент: Басалаев Даниил Александрович группа: 5030102/10201 Проверил: доцент Баженов Александр Николаевич

Санкт-Петербург

1 Задание

Для мощности распределения n=20,100 Провести исследование гипотез для распределений: нормальное, Стьюдента и равномерного согласно Правилу проверки гипотезы о законе распределения по методу χ^2 и оформить полученные результаты в виде таблицы

$\mathbf{2}$ Правило проверки гипотезы о законе распределения по методу χ^2

- 1. Выбираем уровень значимости α .
- 2. По таблице [6, с. 358] находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k-1 степенями свободы порядка $1 - \alpha$.
- 3. С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i =$ $P(X \in \Delta_i), i = 1, \dots, k.$
- 4. Находим частоты n_i попадания элементов выборки в подмножества $\Delta_i, i=1,\ldots,k$.
- 5. Вычисляем выборочное значение статистики критерия χ^2_V :

$$\chi_V^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

6. Сравниваем χ_V^2 и квантиль $\chi_{1-\alpha}^2(k-1)$: а) Если $\chi_V^2 < \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается. б) Если $\chi_V^2 \ge \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

3 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Таблица 1:
$$\chi_B^2$$
для
п $=20~\chi_{1-\alpha}^2(k-1)=7.814728$

$F_{real} \backslash F_{hip}$	Нормальное	Стьюдента	Равномерное
Нормальное	0.054142	1.223962	13.333333
Стьюдента	35.138698	1.223962	7.5
Равномерное	472.798306	57.515779	3.833333

Таблица 2: Проверка гипотез для выборки n = 20

$F_{real} \backslash F_{hip}$	Нормальное	Стьюдента	Равномерное
Нормальное	верна	верна	не верна
Стьюдента	верна	верна	не верна
Равномерное	не верна	не верна	не верна

Таблица 3: χ_B^2 для
 $\mathbf{n}=100~\chi_{1-\alpha}^2(k-1)=12.591587$

$F_{real} \backslash F_{hip}$	Нормальное	Стьюдента	Равномерное
Нормальное	7.546754	7.691214	191.066667
Стьюдента	95.717563	5.176739	153.783333
Равномерное	3561.497349	259.374862	7.833333

Таблица 4: Проверка гипотез для выборки n=100

$F_{real} \backslash F_{hip}$	Нормальное	Стьюдента	Равномерное
Нормальное	верна	верна	не верна
Стьюдента	не верна	верна	не верна
Равномерное	не верна	не верна	верна

4 Выводы

При увеличении размера выборки отностельная частота сходится к вероятности и проверка гипотез методом хи-квадрат становится более точной. Однако гипотеза: гипотетическое распределение Стьюдента есть нормальное распределение верна, потому что при увеличении размера выборки закон распределения Стьюдента стремится к закону нормального распределения

5 GitHub

https://github.com/11AgReS1SoR11/MatStat/tree/main/Laba7