The group G is isomorphic to the group labelled by [12, 5] in the Small Groups library. Ordinary character table of $G \cong C6 \times C2$:

	1a	3a	3b	2a	6a	6b	2b	6c	6d	2c	6e	6f
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1
χ_3	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_4	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1
χ_5	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_6	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$
χ_7	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$
χ_8	1	E(3)	$E(3)^{2}$	-1	-E(3)	$-E(3)^2$	-1	-E(3)	$-E(3)^2$	1	E(3)	$E(3)^2$
χ_9	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_{10}	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)
χ_{11}	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)
χ_{12}	1	$E(3)^{2}$	E(3)	-1	$-E(3)^2$	-E(3)	-1	$-E(3)^2$	-E(3)	1	$E(3)^{2}$	E(3)

Trivial source character table of $G \cong C6 \times C2$ at p = 2:

Normalisers N_i	N_1		N_2		N_3			N_4			N_5				
					~		-			714					
p-subgroups of G up to conjugacy in G				P_2		P_3			P_4			P_5			
Representatives $n_j \in N_i$	1 <i>a</i>	3a	3b	1a	3a	3b	1a	3a	3b	1a	3a	3b	1a	3a	3b
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	0	0	0	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	4 * E(3)	$4 * E(3)^2$	0	0	0	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	4	$4 * E(3)^2$	4 * E(3)	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $		2 * E(3)	$2 * E(3)^2$	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	$2 * E(3)^2$	2 * E(3)	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	0	0	0	2	2	2	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	2 * E(3)	$2 * E(3)^2$	0	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	$2 * E(3)^2$	2 * E(3)	0	0	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	0	0	0	0	0	0	2	2	2	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(3,4)]) \cong C2$

 $P_{3} = Group([(3, 1)]) \cong C2$ $P_{4} = Group([(1, 2)(3, 4)]) \cong C2$ $P_{5} = Group([(3, 4), (1, 2)]) \cong C2 \times C2$

 $N_1 = Group([(1,2),(3,4),(5,6,7)]) \cong C6 \times C2$

 $N_2 = Group([(1, 2), (3, 4), (5, 6, 7)]) \cong C6 \times C2$

 $N_3 = Group([(1,2),(3,4),(5,6,7)]) \cong C6 \times C2$ $N_4 = Group([(1,2),(3,4),(5,6,7)]) \cong C6 \times C2$ $N_5 = Group([(1,2),(3,4),(5,6,7)]) \cong C6 \times C2$