

INTRODUCTION

- -> Based on the latest statistics, the reason for major fatal road accident were due to over speeding, driver fatigue and other distractions etc.
- -> These problems can be overcome with the help of autonomous cars.
- -> As the cars become more automated, road fatalities can be controlled.
- -> With the application of Deep Learning(CNN), cars can drive autonomously without the human intervention.

PROJECT OBJECTIVE

- -> While building an autonomous cars, these are some of the factors to be considered,
 - > Steering Wheel Angle
 - > Acceleration system
 - > Braking system
- -> Our primary objective is about predicting the steering wheel angle of the car.

SOFTWARE AND HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

OS: GNU/Linux, Windows 10,8.1

Programming

: Python3 Language

Framework : Pytorch/ TensorFlow

Training

<u>Platform</u> : Google Colabs/ Kaggle HARDWARE REQUIREMENTS

GPU: 12GB NVIDIA Tesla K80 GPU

Processor: Intel Core i5-7200U (7th

Gen)

Ram : 8GB

Memory: 1TB HDD

WORKFLOW

STEP 1: DATA GENERATION USING A SIMULATOR

Dataset generated by manual driving.

Car driven without human intervention

Medium Level

Hard Level

TWO VARIANTS OF DATA GENERATION

MEDIUM HARD

GENERATED DATASET

	A	В	С
70	home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_203.jpg/	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_203.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
71	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_281.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_281.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
72	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_362.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_362.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
73	home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_437.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_437.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
74	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_521.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_521.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
75	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_598.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_598.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
_76	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_681.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_681.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
_77	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_764.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_764.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
78	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_849.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_849.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
79	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_02_933.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_02_933.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
80	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_015.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_015.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
81	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_098.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_098.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
82	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_178.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_178.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
83	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_260.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_260.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
84	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_341.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_341.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20
85	/home/vanquisher/Desktop/A_self_driving_car/IMG/center_2020_02_25_00_37_03_423.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/left_2020_02_25_00_37_03_423.jpg	/home/vanquisher/Desktop/A_self_driving_car/IMG/right_20

Path of Center camera image.

Path of left camera image.

Path of right camera image.

GENERATED DATASET CONTD.

	•					
	D	E	F	G	i.	
76	0	1	0	30.19031		
77	0	1	0	30.18985		
78	0	1	0	30.19006		
79	0.2	1	0	30.18193		
80	0.4	1	0	30.15741		
81	0.6000001	1	0	30.13366		
82	0	1	0	30.18476		
83	0	1	0	30.18926		
84	0	1	0	30.19019		
85	0	1	0	30.19036		
86	0	1	0	30.18876		

Reduced Steering angle

Throttle

Brake

Speed

PRE-PROCESSING: AUGMENTATION

i) CROPPING

sheared image

cropped image

- The images captured from the simulator include unnecessary information (like sky).
- So we are cropping out unwanted information.

PRE-PROCESSING: AUGMENTATION Contd.

ii) FLIPPING

- Our dataset contains more images of right turns.
- To get better accuracy we are flipping the images, so that it appears like left turns.

STEP 2: TRAINING

Training: High level overview of the project

CNN

9 layered Convolutional Neural Network

STEP 3: TESTING

We can think as **Client - server** model:

Our *trained model acts as a client*. It pops out steering angles continuously.

The *simulator acts as server*. When it gets the steering angle it gives out corresponding image.

LOSS AND ACCURACY

```
torch.Size([32, 64, 2, 33])
torch.Size([28, 64, 2, 33])
torch.Size([28, 64, 2, 33])
torch.Size([28, 64, 2, 33])
Loss: 0.069
```

Our model was able to produce the loss of 0.069

Not sure how to consider.

Accuracy _____

TEAM All

KIRAN U KAMATH DHANUSH B RAJ MEGHANA GS PRAJWAL T

THANK YOU