26 Février 2021 Sophie Gorno

Série 1

Exercice 1: Calculs avec l'opérateur ∇

Soit $f(\vec{r},t)$ un champ scalaire et $\vec{u}(\vec{r},t)$ un champ vectoriel. Vérifier la validité des relations suivantes puis indiquer si les membres de droite et de gauche sont des champs scalaires ou vectoriels.

(a)
$$\nabla \cdot (f\vec{u}) \stackrel{?}{=} \vec{u} \cdot \nabla f + f \nabla \cdot \vec{u}$$

(b)
$$(\vec{u} \cdot \nabla) f \stackrel{?}{=} (\nabla \cdot \vec{u}) f$$

(c)
$$\nabla \cdot \frac{\partial}{\partial t} \vec{u} \stackrel{?}{=} \frac{\partial}{\partial t} \nabla \cdot \vec{u}$$

(d)
$$(\vec{u} \cdot \nabla)\vec{u} \stackrel{?}{=} \vec{u} \cdot (\nabla \times \vec{u})$$

Indication : Calculer ces expressions en coordonnées cartésiennes.

Exercice 2: Gradient en coordonnées cartésiennes et sphériques

Dans le cours, nous avons défini ∇f , $\nabla \cdot \vec{u}$ et $\nabla \times \vec{u}$ en coordonnées cartésiennes, mais ils sont indépendants du système de coordonnées. On va illustrer ceci avec un exemple. On considère la fonction suivante :

$$f = \exp\left(-\frac{|\vec{r}|}{\lambda}\right)$$

- (a) Calculer ∇f en coordonnées cartésiennes.
- (b) Maintenant, calculer ∇f en coordonnées sphériques. Utiliser le formulaire.

Exercice 3: Plus d'exemples en coordonnées sphériques

On définit la fonction suivante : $f(\vec{r}) = f(x,y,z) = \frac{1}{r}$. Utiliser les coordonnées sphériques pour pouvoir répondre aux questions suivantes :

- (a) Calculer $\nabla f = \vec{F}$.
- (b) Que vaut $\nabla \cdot \vec{F}$?
- (c) Que vaut $\nabla \times \vec{F}$? Pourriez-vous deviner le résultat?

Indication : utiliser le formulaire du cours.

Exercice 4: Calcul de flux

On considère un tuyau rectangulaire de section S. Un liquide de densité ρ_0 constante coule dans le tuyau à une vitesse fluide constante $\vec{u_0}$ dirigée selon l'axe du tuyau qui est selon l'axe $\vec{e_z}$.

- (a) Quel est le flux de masse à travers la section du tuyau (on considère la section S perpendiculaire à l'axe $\vec{e_z}$)?
- (b) A présent, on considère une surface S' identique à S mais qui n'est pas perpendiculaire à $\vec{e_z}$. Comment écrivez-vous le flux de masse à travers S'? Ce flux est-il égal à celui calculé précédemment?

Remarque : on ne veut pas utiliser la relation $\phi = \iint_{S'} d\phi = \iint_{S'} \rho \vec{u_0} \cdot d\vec{S}'$ vue dans le cours. Le but de cet exercice est de la dériver.