Diffusion Tensor Imaging (DTI)

for the study of disorders of consciousness

COMA Stephen Larroque
Coma Science Group, GIGA research University of Liège

Motivation

- Connectivity is of paramount importance for consciousness
- Study connectivity structure (micro and macro) from white matter

DTI preproc in 3 easy steps! (sort of...)

Using diffusion magnetic resonance imagery, acquire water molecules (brownian) motion.

Estimate tensors ≈ mean motion of water molecules for each brain's voxel. We get isotropic (round, grey matter) and anisotropic (ellipsoidic, white matter) shapes.

DTI preproc in 3 easy steps! (sort of...)

Estimate **tractography** (=**connectivity map**): use a **probabilistic** algorithm (Viterbi) to walk through the tensors and reconstruct a brain connectivity map.

CONTROL

PATIENT

Result

CONTROL

DTI preprocessing theory vs reality

DTI preprocessing summary in theory:

- Acquire DTI images (= hydrogen particles motion)
- Estimate tensors (= mean particles motion)
- Tractography (= reconstruct tracts and disambiguate cross-sections)

DTI preprocessing theory vs reality

DTI preprocessing summary in practice:

- Acquire DTI images + T1
- Reorient both
- Extract gradients (bvecs and bvals)
- 4. Brain Extraction (BET) mask on DWI and T1
- 5. Correct eddy currents
- Estimate tensors & FA metrics
- 7. Segment T1
- 8. Coregister DWI on T1
- Downsample T1
- 10. Estimate DWI response function
- n. Tractography
- 12. And more steps depending on your objectives...

→DTI is still in the process of standardization... but not there yet!

2nd-level analysis (group comparison)

Fixel-based (local metrics) approach:

- Normalize all subjects on a (tracts) template
- 2. Compare locally difference of tracts metrics (eg, AFD for density)

Advantage: compare directly the whole structure, but at the expense of losing info at normalization.

Connectivity approach:

- 1. Parcellation (Freesurfer) to get regions
- 2. Connectivity matrix
- 3. Graph theory measures and comparison

Advantage: respects each subject's structure and global brain approach, but lose info at parcellation (your analysis is as good as your parcellation)

Average/global measures approach:

- 1. Compute a global measure for each subject (eg, average FA)
- 2. T-test on the values of one group with the other group

Take home message

- Enables research of connectivity fibers' micro- and macro-structure
- In vivo (and the first one!)
- By measuring the magnitude and orientation of water diffusion
- -> non-invasive
- Useful pre-clinical diagnosis tool
- Limitation: only ~30% of DTI fibers actually exist in the brain, keep in mind it's a model!

To go further

- MRTRIX3 whole documentation
- Beginner's DTI preprocessing pipeline:
 http://community.mrtrix.org/t/beginner-connectome-pipeline-updated/373/2
- Fixel-based analysis using MRTRIX3:
 http://mrtrix.readthedocs.io/en/latest/workflows/fixel-based-analysis.html
- FSL eddy
- Subparcellation
- Do Tromp DTI tutorials, http://www.diffusion-imaging.com/, 2016
- MRTRIX3 community forum!

Thank you for your attention

References:

- •Posterior cingulate cortex-related co-activation patterns: a resting state FMRI study in propofol-induced loss of consciousness, Amico, Enrico, et al, PLoS One 9.6 (2014): e100012.
- •Multimodal neuroimaging in patients with disorders of consciousness showing "functional hemispherectomy", Van Someren, E. J. W. (2011), Slow Brain Oscillations of Sleep, Resting State and Vigilance: Proceedings of the 26th International Summer School of Brain Research, Held at the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, 29 June-2 July, 2010, 193, 323.
- Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a crosssectional multimodal imaging study, Carol Di Perri & Mohamed Ali Bahri & Enrico Amico & Aurore Thibaut & Lizette Heine et al., The Lancet Neurology, 2016
- •Do Tromp, http://www.diffusion-imaging.com/, 2016
- •Amico et al., Conf Proc IEEE Eng Med Biol Soc. 2015

BONUS SLIDES

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

UNKNOWN LAND

(YES I WAS TOO LAZY TO DRAW)

TO SOIENGE GROOT

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

How DTI works – A small tale

Duck's tale imagery to DTI

- Ducks with GPS = hydrogen particles (in water molecules)
- Ducks motion = Brownian motion (influenced by environment)
- Ellipsoid of average travel distance = FA tensors (Fraction Anisotropy)
- Rivers = white matter fibers tracts
- Solving river cross-sections = tractography