DB Module

Introduction To Databases

Databases

Day 1

Objectives

- Understand and analyse data required by an organisation and to represent this information requirement using a modelling technique
- Transform data model to database tables
- To create and manipulate tables using a well accepted language, SQL

What is a database?

File-Based System vs Database System

File-Based System

- A file-based system is a collection of application programs, each managing its own data.
- Each application program defines and handles its own data files independently of others.
- Sharing of data between applications is likely to be limited

File-Based System

Each department maintains its own data in its own data files.

School of ICT

File-Based System - Real Estate Company

Each department maintains its own data in its own data files.

Sales Dept

What are some of drawbacks of this approach?

Operations Dept

Rental Propert	y File								
PropertyID	Address	District Type		No	No of Rooms		Rent		wnerlD
Owner File									
OwnerlD	Name	Address			Office No Mot		le No	No Email	
Renter File	Renter File								
CustomerID	Name	Contact No Em		Email	nail				
Contract File						,	601		
ContractID	Property ID	CustomerID	Deposit	Rent	Payment M	ode	Start D	ate	End Date

School of ICT

Database Systems

A database is an organized collection of logically-related data (including its description) that is shared across related applications as part of the information system of an organization.

Database Systems

Different departments can share the data in the database.

School of ICT

Last Update: 23 Sep 2022

Slide 8

Database Application Lifecycle

Define mission statement of database

Identify system boundaries

Collecting & analyzing information

Creating a plan/model that captures the data requirements

School of ICT

Database Design Steps

Database design consists of 3 main phases.

Database Design

Library: Student loan materials

Model Staff Student Loan

Entity mapped to relation

Relation transformed To table

Creating table Using ddl

Query language To test the links

Go live Maintenance

- Family of five
 - > Elderly couple
 - > 3 young children
- Likes to entertain

One master room
Three other bedrooms
One dining room
Three storey

Master room with walkin wardrobe All bedrooms with attached toilet

Twenty by 15 feet master Toilet by the side

Building the foundation Putting in the bricks Internal works External works

Building Inspection

Move in List of defects

School of ICT

Modelling (in context)

School of ICT

Transforming to Relation

- Dentist (dentistID, name, gender..)
- Patient (patientID, name, gender..)
- Appointment (appointmentNo, dateofAppointment, dentistID, patientID, appointmentType ..)
 - ▼ Who dentistID (who is attending) , patientID (who is being treated)
 - When appointmentDate
 - ▼ What appointmentType (annual checkup, pulling of tooth, Crowning, etc)
 - ▼ Where at clinic (Is there a need to capture? Why?)

Transforming to Tables

Dentist

DentistID	Name	Gender
D001	Ng Aik Kiat	Male
D002	Sharon Au	Female

Patient

PatientID	Name	Gender
P001	Sng Liau Kar	Male
P003	Wong Sau Chee	Female

Appointment

Appointment No	AppointmentDate	DentistNo	PatientNo
AP01	24/04/2009	D001	P003

School of ICT

Why are we doing this?

To be able to answer queries such as:

Who are the dentists I can consult?
When is the appointment of patient P003?
How many dentists are there?

>>> Information is kept for a purpose

If there is no relation between dentist and patient, some important queries will not be answered.

Example: If there is no appointment relation, we would not be able to tell which dentist attends to which patient?

>>> A well designed database is a foundation to a good information system.

At the End of this Module

1. You must know what this means

- 2. Transform the above into two tables
- 3. Retrieve information from the tables to meet users' queries (requirements)