Manoj Kumar

GATE AIR - 13

M.Tech in Data Science From IIT Guwahati

Gate DSAI - Manoj Kumar

Linear Algebra Practice - VI

Q1 [MSQ]

Let Q be a 5 imes 3 matrix with orthonormal columns. Which of the following statements **must be** true?

a.
$$\|Qx\|=\|x\|$$
 for $x\in\mathbb{R}^3$.

b.
$$\|Q^ op y\| = \|y\|$$
 for $y \in \mathbb{R}^5$.

c.
$$QQ^{ op}=I$$
.

$$\operatorname{d.} Q^\top Q = I.$$

Relate the four fundamental subspaces of $A^{\top}A$ to the four fundamental subspaces of a real matrix A. Fill in the blanks:

- 1. The nullspace of $A^{\top}A$ is the _____ space of A.
- 2. The left nullspace of $A^{\top}A$ is the _____ space of A.
- 3. The column space of $A^{\top}A$ is the _____ space of A^{\top} .
- 4. The row space of $A^{\top}A$ is the _____ space of A^{\top} .

Options:

- a. Column
- b. Row
- c. Null
- d. Left null

Q3 [MSQ]

Which of the following matrices cannot be singular for any real square matrix A? Select all correct options:

- a. $A^{\top}A$
- b. A^2+I
- c. $(A+A^{ op})^2+I$
- d. e^{-A}
- e. $A+10^{100}I$
- f. $3A^{ op}A + 4I$

Q 4 [MSQ]

If the eigenvectors of A are linearly independent, then which of the following statements is/are true? Here, X is the matrix whose columns are the eigenvectors of A.

- (a) \boldsymbol{A} is invertible.
- (b) A is diagonalizable.
- (c) X is invertible.
- (d) X is diagonalizable.

Given matrices:

$$B = egin{bmatrix} 1 & 0 & 0 \ -1 & 2 & 1 \ 2 & 0 & 1 \end{bmatrix}, \quad C = egin{bmatrix} 2 & 0 & 2 \ 0 & 2 & 2 \ 2 & 2 \end{bmatrix},$$

and $A=C^{-1}B$, answer the following:

- a. Compute the first column of A^{-1} .
- b. Compute the trace of the matrix $A^{-1}B$.
- c. Given an eigenvalue of C, $\lambda_1=2$, find a corresponding eigenvector $\mathbf{x}_1=$ _____.

Given:

$$x_1 = egin{bmatrix} 1 \ 2 \ -1 \ 0 \ 1 \end{bmatrix}, \quad b = egin{bmatrix} 3 \ 1 \ 0 \ 1 \ 2 \end{bmatrix},$$

find the projection of b onto the **orthogonal complement** S^\perp of the span S of x_1 .

Suppose Q is a 4×3 real matrix with orthonormal columns q_1,q_2,q_3 . Find the dimensions of the following:

- 1. N(Q)
- 2. $N(Q^{ op})$
- 3. $N(Q^{ op}Q)$
- 4. $N(QQ^{ op})$

The nullspace N(A) of the real matrix A is spanned by the vector v=

(a) Find an eigenvector and corresponding eigenvalue of the matrix:

$$B = (3I - A^{\top}A)(3I + A^{\top}A)^{-1}.$$

(Give just one eigenvalue with its eigenvector.)

(b) Aside from the eigenvalue identified in part (a), all other eigenvalues λ of B must be:

- Purely real
- Purely imaginary
- Zero
- Negative real part
- Positive real part
- $|\lambda| < 1$
- $|\lambda| > 1$
- $|\lambda| \leq 1$
- $|\lambda| \geq 1$.

The matrix A is given as:

$$A = egin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}.$$

Diagonalize A and use the formula $A^k=X\Lambda^kX^{-1}$ to compute A^k . Which of the following represents A^k ?

(a)
$$A^k=rac{1}{2}egin{bmatrix}1+3^k&1-3^k\\1-3^k&1+3^k\end{bmatrix}$$
(b) $A^k=rac{1}{3}egin{bmatrix}1+2^k&1-2^k\\1-2^k&1+2^k\end{bmatrix}$
(c) $A^k=rac{1}{2}egin{bmatrix}1-3^k&1+3^k\\1+3^k&1-3^k\end{bmatrix}$
(d) $A^k=rac{1}{3}egin{bmatrix}1+3^k&1-3^k\\1-3^k&1+3^k\end{bmatrix}$

Suppose $A^2=A$, meaning A is idempotent. Answer the following:

- 1. Which subspace contains the eigenvectors of $oldsymbol{A}$ corresponding to the larger eigenvalue?
- 2. Which subspace contains the eigenvectors of A corresponding to the smaller eigenvalue?
- 3. Is A diagonalizable?

Suppose the same matrix X diagonalizes both A and B, meaning they share the same eigenvectors:

$$A=X\Lambda_1X^{-1},\quad B=X\Lambda_2X^{-1}$$

Which of the following statements is true?

a.
$$AB = BA$$
.

b.
$$AB \neq BA$$
.

Matrix A has eigenvalues and eigenvectors as follows:

- $ullet \ \lambda_1=2$ with eigenvector $x_1=egin{bmatrix}1\0\end{bmatrix}$,
- $ullet \ \lambda_2=5$ with eigenvector $x_2=egin{bmatrix}1\1\end{bmatrix}$.

Using the formula $A=X\Lambda X^{-1}$, where X is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues, compute A.

Q 13,14 [MSQ]

- 1. If the eigenvalues of A are 2, 2, 5, then the matrix is certainly:
 - (a) Invertible
 - (b) Diagonalizable
 - (c) Not diagonalizable
- 2. If the only eigenvectors of A are multiples of $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$, then A has
 - (a) No inverse
 - (b) A repeated eigenvalue
 - (c) No diagonalization $X\Lambda X^{-1}$

Q 15 [MSQ]

Suppose A has eigenvalues 0,3,5 with independent eigenvectors u,v,w. Which of the following statements is true?

- a. Ax = u has no solution.
- b. u and v can form a basis for the column space of A.
- c. Ax=v has a solution.
- d. Ax = w has no solution.

Given the matrices:

- 1. Find the rank of A and C.
- 2. Determine the four eigenvalues of A and C.

The block matrix A is defined as:

$$A = egin{bmatrix} B & C \ 0 & D \end{bmatrix} = egin{bmatrix} 0 & 1 & 3 & 0 \ -2 & 3 & 0 & 4 \ 0 & 0 & 6 & 1 \ 0 & 0 & 1 & 6 \end{bmatrix},$$

where:

- ullet The block B has eigenvalues 1 and 2,
- ullet The block C has eigenvalues 3 and 4,
- The block D has eigenvalues 5 and 7.

Find the eigenvalues of the 4x4 matrix A.

A 3 imes 3 matrix B is known to have eigenvalues 0,1,2.

- (a) What is the rank of B?
- (b) What is the determinant of $B^T B$?
- (c) What are the eigenvalues of $(B^2+I)^{-1}$?