12강. 빠른 CPU를 위한 설계 기법

CPU는 다음과 같이 동작합니다.

- 컴퓨터 부품들은 클럭 신호에 맞춰서 움직입니다.
- CPU는 명령어 사이클이라는 정해진 흐름에 맞춰 명령어들을 실행합니다.

클럭 (Clock)

CPU의 모든 동작은 클럭 신호에 맞춰 진행됩니다. 클럭은 박자의 역할을 하며, 한 번의 클럭에 CPU 내부에서 정해진 동작을 수행합니다.

단위로는 Hz(헤르츠) 를 사용합니다. 1초에 클럭이 반복되는 횟수 입니다.

• 100Hz : 1초에 100번 반복

명령어 사이클 (Instruction Cycle)

CPU가 명령어를 실행하는 주기입니다. 크게 인출, 실행 사이클로 나뉩니다.

필요에 따하 간접 사이클, 인터럽트 사이클이 추가될 수 있습니다.

클럭 속도 (Clock Speed)

클럭 속도가 높을수록 더 많은 명령을 짧은 시간에 실행할 수 있습니다. 하지만 클럭 속도가 무조건 빠르다고 좋은 것은 아닙니다. 발열 및 전력 소모 문제를 발생시킵니다.

코어와 멀티 코어

클럭 속도를 높이지 않고 빠른 CPU 성능 향상 방법에는 코어, 스레드 수를 증가시키는 방법이 있습니다.

코어(Core)

코어는 CPU 내부에서 명령어를 실제로 처리하는 독립적인 연산 장치입니다. 과거에는 CPU = 코어 1개였지만, 현대 CPU는 보통 여러 개의 코어를 가집니다. (멀티 코어)

코어 수	프로세서 명칭	
1	싱글코어(single-core)	_ _ _ _ _ _ _
2	듀얼코어(dual-core)	
3	트리플코어(triple-core)	
4	쿼드코어(quad-core)	
6	헥사코어(hexa-core)	
8	옥타코어(octa-core)	
10	데카코어(deca-core)	
12	도데카코어(dodeca-core)	

코어 개수가 많다? 라는 것은 동시에 처리할 수 있는 작업의 개수가 많다라는 뜻과 같습니다.

Q1. 코어를 늘릴 수록 비례해서 속도가 증가?

코어를 많이 늘릴 수록 속도가 무조건 증가하는 것은 아닙니다.

예시로 조별 과제를 생각해보면 좋습니다. 4명이 일을 하면 병렬로 할 수 있어 작업 속도가 빨라질 수 있지만, 분업 / 조율 비용 (통신, 동기화) 때문에 비례적으로 빨라지진않습니다. 즉, 프로그램이 병렬 처리에 최적화되어 있어야만 성능 향상을 제대로 얻을 수 있습니다.

스레드와 멀티스레드

스레드 (Thread)

스레드는 프로그램 실행 흐름의 가장 작은 단위입니다. 하나의 프로그램 안에서도 여러 스레드가 동시에 실행될 수 있습니다. 스레드에는 하드웨어적 스레드와 소프트웨어적 스레드가

있습니다.

하드웨어 스레드 (Hardware Thread)

CPU 코어가 동시에 여러 실행 흐름을 지원하는 기능입니다. 논리 프로세서라고 불르기도 합니다.

대표 기술로는 인텔의 하이퍼 스레딩이라고 있습니다.

소프트웨어 스레드

• (운영체제 파트에서 더 자세히 다룰 예정입니다.)

운영체제(OS)에서 관리하는 프로세스 내 실행 단위입니다. 하나의 프로그램에서 독립적으로 실행되는 흐름입니다. 워드 프로세스로 예시를 들으면 다음과 같습니다.

• 스레드1: 글자 입력 처리

• 스레드2: 맞춤법 검사

• 스레드3: 자동 저장 기능

멀티 스레드 (하드웨어, Multithreading)

하나의 코어 또는 CPU가 여러 스레드를 동시에 처리하는 방식입니다. 한 코어에서 두 개 이상의 실행 흐름을 지원합니다.