IN THE CLAIMS:

- 1. Cancelled.
- 2. (Currently Amended) A lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a crosslinked polymer having ink repellency, wherein the photosensitive layer is water-insoluble а photosensitive hydrophilic resin layer obtained by crosslinking a photosensitive composition comprising a hydrophilic polymer, a crosslinking agent and a light absorbing compound, wherein the photosensitive hydrophilic resin layer has a phase-separation structure comprised of a hydrophilic polymer phase and a hydrophobic polymer phase, and wherein the photosensitive layer changed from being ink-repellant to ink-receptive is irradiation with light whereby the plate is without need of developing the unexposed areas of the photosensitive layer with a fountain solution during printing.
- 3. (Currently Amended) A lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a crosslinked polymer having ink repellency, wherein the photosensitive layer is a water-insoluble photosensitive hydrophilic resin layer obtained by crosslinking a photosensitive composition comprising a hydrophilic polymer, a crosslinking agent, a light absorbing compound and a hydrophobic

polymer, and wherein the photosensitive layer is changed from being ink repellant to ink receptive by irradiation with light wherein the photosensitive layer is locally foamed by irradiation with a light and changed from ink-repellant to ink-receptive.

4. Cancelled.

5. (Original) The lithographic printing original plate as claimed in claim 3, wherein the hydrophilic polymer is a polymer containing as a main component one or more monomers selected unsubstituted or substituted (meth)acrylamide, vinylformamide and N-vinylacetamide, the hydrophobic polymer is aqueous dispersion polymer having an average particle diameter of 0.005 to 0.5 μm and a film forming temperature of not higher than 50°C, and the photosensitive hydrophilic resin layer has а phase separation structure consisting hydrophilic polymer phase and a hydrophobic polymer phase.

6-8. Cancelled.

9. (Currently Amended) A lithographic printing plate obtained by irradiating a lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a crosslinked polymer having ink repellency, wherein the photosensitive layer is a water-insoluble

photosensitive hydrophilic resin layer obtained by crosslinking a photosensitive composition comprising a hydrophilic polymer, a crosslinking agent and a light absorbing compound, wherein the photosensitive hydrophilic resin layer has a phase separation structure comprised of a hydrophilic polymer phase and a hydrophobic polymer phase, by irradiation with a light whereby the photosensitive layer is changed from being ink-repellant to ink-receptive whereby the plate is without need of developing the unexposed areas of the photosensitive layer with a fountain solution during printing.

10. (Currently Amended) A lithographic printing plate obtained by irradiating a lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a crosslinked polymer having ink repellency, wherein the photosensitive layer is a water-insoluble photosensitive hydrophilic resin layer obtained by crosslinking a photosensitive composition comprising a hydrophilic polymer, a crosslinking agent, a light absorbing compound and a hydrophobic polymer, with a light whereby the photosensitive layer is changed from being ink repellant to ink receptive wherein the photosensitive layer is locally foamed by irradiation with a light and changed from ink-repellant to ink-receptive.

11. Cancelled.

12. (Previously Presented) The lithographic printing plate as claimed in claim 10, wherein the hydrophilic polymer is a polymer containing as a main component one or more monomers selected from unsubstituted or substituted (meth)acrylamide, N-vinylformamide and N-vinylacetamide, the hydrophobic polymer is an aqueous dispersion polymer having an average particle diameter of 0.005 to 0.5 μ m and a film forming temperature of not higher than 50°C, and the photosensitive hydrophilic resin layer has a phase separation structure consisting of a hydrophilic polymer phase and a hydrophobic polymer phase.

13-14. Cancelled.

15. (Previously Presented) The lithographic printing original plate as claimed in claim 2, wherein the photosensitive layer is locally foamed by irradiation with a light and changed from ink-repellant to ink-receptive.

16. (Cancelled)

17. (Previously Presented) A process for producing a lithographic printing plate, comprising irradiating the lithographic printing original plate of claim 5 with a light having a wavelength of 750 to 1100 nm.

18. (Previously Presented) A process for producing a lithographic printing plate, comprising irradiating the lithographic printing original plate of claim 15 with a light having a wavelength of 750 to 1100 nm.

19. (Cancelled)

20. (Currently Amended) The lithographic printing original plate as claimed in claim 9, wherein the photosensitive layer is locally foamed by irradiation with a light and changed from inkrepellant to ink-receptive.

21. (Cancelled)

- 22. (Previously Presented) The lithographic printing plate as claimed in claim 12, wherein the light for the irradiation has a wavelength of 750 to 1100 nm.
- 23. (Previously Presented) The lithographic printing plate as claimed in claim 20, wherein the light for the irradiation has a wavelength of 750 to 1100 nm.

24. (Cancelled)

- 25. (Previously Presented) The lithographic printing original plate as claimed in claim 2, wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from ink-repellent to ink-receptive.
- 26. (Previously Presented) The lithographic printing original plate as claimed in claim 5, wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from ink-repellent to ink-receptive.
- 27. (Previously Presented) The lithographic printing plate as claimed in claim 9, wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from ink-repellent to ink-receptive.
- 28. (Previously Presented) The lithographic printing plate as claimed in claim 12, wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from ink-repellent to ink-receptive.
- 29. (New) The lithographic printing original plate as claimed in claim 2, wherein the hydrophilic polymer is a polymer having an amide group.

- 30. (New) The lithographic printing original plate as claimed in claim 2, wherein the hydrophilic polymer comprises one or more monomers selected from the group consisting of unsubstituted or substituted (meth)acrylamide, N-vinylformamide and N-vinylacetamide.
- 31. (New) The lithographic printing plate as claimed in claim 9, wherein the hydrophilic polymer is a polymer having an amide group.
- 32. (New) The lithographic printing plate as claimed in claim 9, wherein the hydrophilic polymer comprises one or more monomers selected from the group consisting of unsubstituted or substituted (meth)acrylamide, N-vinylformamide and N-vinylacetamide.
- 33. (New) The lithographic printing original plate as claimed in claim 3, wherein the hydrophobic polymer has an average particle diameter of 0.005 to 0.5 μm .
- 34. (New) The lithographic printing original plate as claimed in claim 3, wherein the hydrophobic polymer is an aqueous dispersion polymer having a film forming temperature of not higher than 50°C.

- 35. (New) The lithographic printing plate as claimed in claim 10, wherein the hydrophobic polymer has an average particle diameter of 0.005 to 0.5 μm .
- 36. (New) The lithographic printing plate as claimed in claim 10, wherein the hydrophobic polymer is an aqueous dispersion polymer having a film forming temperature of not higher than 50°C.
- 37. (New) A lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a polymer having repellency, wherein crosslinked ink the photosensitive layer is a water-insoluble photosensitive hydrophilic layer obtained crosslinking resin by photosensitive composition comprising a hydrophilic polymer, a crosslinking agent, a light absorbing compound and a hydrophobic polymer, and wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from inkrepellant to ink-receptive.

- (New) A lithographic printing plate obtained by 38. irradiating a lithographic printing original plate having a photosensitive layer on a substrate directly or on another layer provided thereon, said photosensitive layer being comprised of a crosslinked polymer having ink repellency, wherein photosensitive layer is a water-insoluble photosensitive hydrophilic resin layer obtained by crosslinking photosensitive composition comprising a hydrophilic polymer, a crosslinking agent, a light absorbing compound and a hydrophobic polymer, wherein the photosensitive layer is locally heat melted by irradiation with a light and changed from ink-repellant to ink-receptive.
- 39. (New) The lithographic printing original plate as claimed in claim 37, wherein the hydrophobic polymer has an average particle diameter of 0.005 to 0.5 μm .
- 40. (New) The lithographic printing original plate as claimed in claim 37, wherein the hydrophobic polymer is an aqueous dispersion polymer having a film forming temperature of not higher than 50°C.

- 41. (New) The lithographic printing plate as claimed in claim 38, wherein the hydrophobic polymer has an average particle diameter of 0.005 to 0.5 μm .
- 42. (New) The lithographic printing plate as claimed in claim 38, wherein the hydrophobic polymer is an aqueous dispersion polymer having a film forming temperature of not higher than 50°C.