Implementação de Latchs e FlipFlops

Professores: Kennedy/Emanoel

Email: [kenreurison/emanoel.chaves]@dca.ufrn.br

Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte DCA0202 - Circuitos Digitais

Latches e FlipFlops

Latches e FlipFlops

Latches e FlipFlops são dispositivos básicos de armazenamento de informação. Armazenando um ou mais bits de informação. A principal diferença entre eles consiste na maneira que suas saídas são atualizadas.

- O Latch tem suas saídas constantemente modificadas quando estiver habilitado.
- O FliFlop precisa de um sinal de Clock.

Tipos de Latches (L-SR)

(b) LSR-Diagram

S	R	Q	Q_{next}	Q_{next}'
0	0	×	1	1
0	1	×	1	0
1	0	×	0	1
1	1	0	0	1
1	1	1	1	0

(c) LSR-Table

Tipos de Latches (L-SR com Habilitador)

(a) LSR-Enable

(b) LSR-Enable-Diagram

E	S	R	Q	Qnext	Qnext'
0	×	×	0	0	1
0	×	×	1	1	0
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	×	0	1
1	1	0	×	1	0
1	1	1	×	1	1

(c) LSR-Enable-Table

Tipos de Latches (L-D)

(b) LD-Diagram

D	Q	Q_{next}	Q_{next}'
0	×	0	1
1	×	1	0

(c) LD-Table

Tipos de Latches (FlipFlop D)

Clk	D	Q	Q_{next}	Q_{next}'
0	×	0	0	1
0	×	1	1	0
1	×	0	0	1
1	×	1	1	0
	0	×	0	1
	1	×	1	0

(b) FFD-Table

Tipos de Latches (FlipFlop SR)

S	R	Q	Q_{next}	Q_{next}'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	×	×
1	1	1	×	×

(b) FFSR-Table

Tipos de Latches (FlipFlop JK)

-	J	Q	H
-	>Clk		
-	K	Q'	\vdash
(a) F	FJI	K

J	K	Q	Q_{next}	Q_{next}'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

(b) FFJK-Table

Name / Symbol	Characteristic (Truth) Table	State Diagram / Characteristic Equations	Excitation Table
SR - S Q	S R Q Qnext 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 × 1 1 1 ×	$SR=00 \text{ or } 0 \\ \hline Q=0 \\ SR=01 \\ \hline SR=00 \text{ or } 10 \\ \hline Q_{meat} = S + R^*Q \\ SR = 0$	O Onest S R 0 0 0 0 × 0 1 1 0 1 0 0 1 1 1 × 0
JK	J K O Onext 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0	$JK=00 \text{ or } 01$ $Q_{meat} = J'K'Q' + JK'' + JKQ'$ $= K'Q(J''+J) + JQ'(K'+K)$ $= K'Q(J''+J) + JQ'(K'+K)$ $= K'Q+JQ'' + JQ'(K'+K)$	O Onest J K 0 0 0 × 0 1 1 × 1 0 × 1 1 0 × 1 1 1 × 0
D	D Q Onext 0 × 0 1 × 1	D=0 (Q=0 (Q=1) D=1 (Q=1) D=1	O Onext D 0 0 0 0 1 1 1 0 0 1 1 1
T	T Q Onest 0 0 0 0 1 1 1 0 1 1 1 0	$Q_{\text{exc}} = IQ + IQ = I \oplus Q$ $Q = 0$	Q Qnext T 0 0 0 0 1 1 1 0 1 1 1 0

Figura: Resumo dos FlipFlops

Flip-Flops em VHDL

Flip-Flops em VHDL

• O Flip-Flop somente deve atualizar o seu estado quando ocorrer uma transição do estado do CLOCK.

Flip-Flops em VHDL

Flip-Flops em VHDL

- O Flip-Flop somente deve atualizar o seu estado quando ocorrer uma transição do estado do CLOCK.
- Torna-se necessário impementar uma desvio condicional IF no VHDL.

Flip-Flops em VHDL

Flip-Flops em VHDL

- O Flip-Flop somente deve atualizar o seu estado quando ocorrer uma transição do estado do CLOCK.
- Torna-se necessário impementar uma desvio condicional IF no VHDL.
- O ambiente PROCESS no VHDL permite implementar condicionais, laços e muitos outras funções típicas de algorítimos de programação.

O ambiente PROCESS é descrito com as variáveis envolvidas no processo em parênteses ().

```
library ieee;
      use ieee.std logic 1164.all;
    ⊟entity ffjk is
       port(j,k : in std logic;
              clock, preset, clear : in std logic;
             g : out std logic);
8
     end ffik;
   Farchitecture ffjk of ffjk is
    Lsignal estado : std logic;
   □ begin
         process (clock, preset, clear)
14
        begin
         if (preset = 'l') then estado <= 'l';
        elsif (clear = '0') then estado <= '0';
17
       elsif (clock='l' and clock'EVENT) then
18
               if (j='0' and k='1') then estado <='0';
19
               elsif (j='l' and k='0') then estado <='l';
20
21
22
23
24
               elsif (j='1' and k='1') then estado <= not estado;
               end if:
            end if:
       end process:
         σ <= estado:
    Lend ffik:
```

O comando 'EVENT descreve uma transição de alguma variável binária.

Exercício

Durante uma viagem de avião, os passageiros tem acesso a um botão para solicitar algo aos comissários de bordo. E os comissários tem acesso a outro para finalizar a solicitação.

- O botão A (dos passageiros) indica o chamado pendente, mantendo a luz correspondente ao seu acento ligado.
- O botão B (dos comissários) indica que a solicitação foi concluída, desligando a mesma luz.

Utilizando flip-flop tipo D, implemente VHDL e embarque na FPGA este circuito sequencial. Considere que o botão A tem prioridade sobre o botão B.