

함수의 의미를 이해하고 함수와 관련된 다양한 논제들을 고찰한다.

- 함수의 정의와 정의역, 공변역, 치역의 개념을 알아본다.
- 함수와 그래프와의 관계를 이해한다.
- 전사 함수, 단사 함수, 전단사 함수의 개념을 예제를 통해 익힌다.
- 합성 함수, 역함수, 올림 함수 등의 개념을 정의한다.
- 컴퓨터 언어에서의 함수의 역할을 파악한다.
- 함수의 응용과 4차 산업혁명과의 관계를 살펴본다.

06 chapter 함수 Function & Its Applications

- 6.1 함수의 정의
- 6.2 함수 그래프
- 6.3 단사 함수, 전사 함수, 전단사 함수
- 6.4 여러 가지 함수들
- 6.5 컴퓨터 언어에서의 함수의 역할
- 6.6 함수의 응용과 4차 산업혁명과의 관계
- 요약 및 생활 속의 응용
- 연습문제

함수(Function)

- **함수(function)**는 **관계(relation)**의 특수한 형태로서, 첫 번째 원소가 같지 않은 순서쌍들의 집합임
- 함수란 한 집합의 원소들과 다른 집합의 원소들 간의 관계를 나타내는 순서쌍 중에서, 앞에 있는 집합의 모든 원소가 한 번씩만 순서쌍에 포함될 경우를 말함
- 함수는 여러 가지 수학적 도구(tool) 중에서 가장 중요한 개념의 하나인데, 수학과 컴퓨터공학 그리고 다양한 공학 분야들에서 폭넓게 활용됨
- 함수 개념의 이해와 컴퓨터 언어에서의 응용 능력을 배양함으로써
 주어진 문제를 해결하는 데 많은 도움이 됨

정의 ⑥−1

두 집합 X와 Y에서 함수(function) f는 집합 X에서 Y로의 관계의 부분 집합으로서, 집합 X에 있는 모든 원소 x가 집합 Y에 있는 원소 중 오직 하나씩만 대응되는 관계를 말한다. 집합 X에서 집합 Y로의 함수 f는 다음과 같이 표기한다.

 $f: X \to Y$

이때, X를 함수 f의 정의역(domain)이라 하며, Y를 함수 f의 공변역(codomain)이라 한다.

- 함수 f를 사상(mapping)이라고 하면 'f는 X에서 Y로 사상한다'라고 표현함
- f : X → Y를 함수라 할 때 f(x) = y라 표시하면, y를 함수 f에 의한 x의 상(image) 또는 **함수값**이라고 함
- 함수 f의 정의역은 Dom(f)라 표시함
- 함수 f의 **치역(range)**은 Ran(f)라고 표시함

Dom $(f) = \{x \mid (x, y) \in f, x \in X, y \in Y\}$

Ran $(f) = \{y \mid (x, y) \in f, x \in X, y \in Y\}$

함수의 정의역, 공변역, 치역의 정의(그림 참조)

〈그림 6.1〉 함수의 정의역, 공변역, 치역

두 함수 f와 g가 같은 정의역과 공변역을 가지는 경우, 즉 정의역에 있는 모든 원소 x에 대하여 f(x)=g(x)가 성립하면, 함수 f와 g는 서로 같다(equal)라고 하고 f = g로 표기함

함수는 수학에서 매우 중요한 역할을 담당하는데, 함수라는 용어를 처음으로 사용한 수학자는 라이프니츠(Leibniz)이고, 현대적 개념의 함수의 기초를 구축한 사람은 코시(Cauchy)와 푸리에(Fourier)이다. 함수는 실생활에도 많이 활용되는데, 예를 들면 거리에 따라 고속도로 요금이 결정되는 것 등을 들 수 있다.

 $A = \{a, b\}, B = \{1, 2, 3\}$ 이라고 할 때, A에서 B로의 함수가 되는 경우와 함수가 될 수 없는 경우를 살펴보자.

풀이 (1) 함수가 되는 경우

(2) 함수가 될 수 없는 경우

(b에서 동시에 2개의 원소에 대응된다.)

다음과 같이 주어진 각 화살표 도표가 $A=\{a, b, c\}$ 에서 $B=\{x, y, z\}$ 로의 함수가 되는지를 판별해보자.

- (1) $b \in A$ 에 대응되는 원소가 없으므로 함수가 아니다.
- (2) $c \in A$ 가 x와 y에 두 군데로 대응되었으므로 함수가 아니다.
- (3) 정의에 따라 함수이다.

A를 인터넷 온라인상의 사진 동호회 회원들의 집합이라고 할 때, 다음의 대응이 A에 관한 함수가 되는지를 알아보자.

- (1) 각 회원에 그 사람의 나이를 대응시킨다.
- (2) 각 회원에 그 사람의 성별을 대응시킨다.
- (3) 각 회원에 그 사람의 배우자를 대응시킨다.
- 풀 (1) 각 회원이 오직 하나의 나이를 가지고 있으므로 함수이다.
- (2) 함수이다.
- (3) 결혼하지 않은 회원이 한 명이라도 있는 경우에는 함수가 될 수 없다.

관계와 함수의 차이점

함수의 개념은 관계와 매우 밀접한 관련이 있으며 기본적으로는 비슷한 개념이다. 그러나 관계에서의 화살표 도표가 함수가 되기 위해서는 집합 X에 있는 모든 원소 x가 집합 Y에 있는 원소 중 한 개와 관계가 있어야 한다. 따라서 함수는 관계의 특별한 경우로 볼 수 있다.

다음의 관계가 함수인지의 여부를 밝히고, 만약 함수인 경우 정의역, 공변역, 치역을 각각 구해보자.

- $(1)\{(1,a),(1,b),(2,c),(3,b)\}$
- $(2) \{(a,a), (b,b), (c,c)\}$
- (3) $\{(x,y) | x,y \in Z, y-x=1\}$
- $(4) \{(x,y) | x, y \in N, y x = 1\}$

(1) 하나의 정의역 값에는 반드시 하나의 값만 대응되어야 함수이다. 그러나 (1, a)와 (1, b)가 동시에 있으므로 함수가 아니다.

(2) 함수이다. 정의역, 공변역, 치역 모두 {a, b, c}이다.

- (3) y-x=1이므로 y=x+1이다. 우리는 이 식으로부터 함수가 됨을 쉽게 알수 있다. 정의역과 공변역은 Z이고, y의 각 값에 대하여 y=x+1을 만족시키는 실수 x가 존재하므로 치역 역시 Z이다.
- (4) 이 관계 역시 함수이다. 정의역과 공변역은 자연수의 집합 N이고, x가 자연수일 때 y=x+l이므로 y의 범위는 y≥ 2인 자연수이다.
 따라서 치역은 {2, 3, 4, ···}이다.

 $A = \{-1,0,1\}, B = \{1,2,3,4\}$ 에 대한 관계가 $\{(x,y) | x \in A, y \in B, y = x + 3\}$ 일 때 이 관계가 함수인지를 판별하고, A의 원소들에 대한 함수값을 구해보자.

② 한계를 그림으로 표시하면 다음과 같다.

따라서 이 관계는 함수이다. A의 원소들의 함수값은 f(-1) = 2, f(0) = 3, f(1) = 4이다.

 $A = \{-1, 0, 1\}$ 에서 $f: A \to A$ 가 $f(x) = x^2$ 으로 주어졌을 때 함수가 되는지를 판별하고, 정의역과 치역 그리고 공변역을 구해보자.

물이 먼저 함수의 값을 구하면 f(-1)=f(1)=1, f(0)=0이므로 $f(A)=\{0,1\}$ 이 된다. 따라서 f는 함수이다. 여기서 정의역은 $\{-1,0,1\}$ 이고, 치역은 $\{0,1\}$ 이며, 공변역은 $\{-1,0,1\}$ 이다.

함수 그래프의 정의

 두 집합 A, B에 대한 모든 함수 f: A → B는 집합 A에서 집합 B로의 관계로 정의함

• 함수 f에 대한 그래프 G의 원소들을 좌표 평면상에 점으로 표시하는 것을 함수 f의 그래프에서 순서쌍들은 집합 A의 모든 원소 x에 대하여 오직 하나씩만의 관계를 가짐

함수 $f:R \to R$ 일 때 다음과 같은 함수 그래프를 순서쌍의 집합으로 표시하고, 좌표 평면상에 나타내어보자.

(1)
$$y = x + 2$$

(2)
$$y = x^2$$

(3)
$$y = |x|$$

(4)
$$y = 2^x$$

(3) y = x + 2를 순서쌍의 집합으로 표시하면

$$G = \{(x, y) | y = x + 2, x \in R\}$$

이 되고, 이를 좌표 평면상에 나타내면 아래와 같다.

(2) $y = x^2$ 을 순서쌍의 집합으로 표시하면

 $G = \{(x,y) | y = x^2, x \in R\}$ 또는 $G = \{(x,x^2) | x \in R\}$ 가 된다.

у
4
1
0
1
4

(3) $G = \{(x, y) | y = |x|, x \in R\}$

X	у
-2	2
-1	1
0	0
1	1
2	2

(4)
$$G = \{(x, y) | y = 2^x, x \in R\}$$

	١.,
<i>x</i>	у 1
-2	$\frac{1}{4}$
— 1	$\frac{1}{2}$
0	1
1	2
2	4

다음의 그래프들이 실수 R에서 R로의 함수가 되는가를 판별해보자.

물이 (1), (2), (5), (6)은 x의 모든 실수값에 y의 실수값이 하나씩만 대응되므로 모두 함수가 된다. 그러나 (3)과 (4)는 함수가 아니다. (3)의 경우에 x=0일 때 y의 값이 2개 대응하고, (4)의 경우에 x=0일 때 대응되는 y의 값이 없기 때문이다.

(1) 단사 함수

정의 6-3 함수 $f: A \to B$ 에서 $a_i, a_j \in A$ 에 대하여 $f(a_i) = f(a_j)$ 이면 $a_i = a_j$ 일 경우, 함수 f = 단사함수(injective function)라고 한다. 즉, $\forall a_i, a_j \in A, \quad f(a_i) = f(a_j) \Rightarrow a_i = a_j$

- 정의역 A의 모든 원소들이 공변역 B의 서로 다른 원소와 대응되기 때문에 단사 함수를 일대일 함수(one-to-one function)라고 함
- a_i , a_j ∈ A에 대하여 a_i ≠ a_j 이면 f(a_i) ≠ f(a_j)이 성립함
- 단사 함수에서 함수의 치역은 공변역의 부분 집합이 됨
- *f* : A → B에서 Ran(*f*) ⊆ B

(2) 전사 함수

정의 6-4 함수 $f:A\to B$ 에서 B의 모든 원소 b에 대하여 f(a)=b가 성립되는 $a\in A$ 가 적어도 하나 존재할 때 함수 f를 전사 함수(surjective function)라고 한다. 즉,

 $\forall b \in B, \exists a \in A, f(a) = b$

- 전사 함수의 정의에서 알 수 있는 것은 공변역 B의 모든 원소가 정의역에 대응 되어야 하므로 그 자체가 바로 치역이 된다는 것임
- Ran(f) = B이다. 전사 함수는 모든 함수의 관계가 B의 모든 원소에 반영되므로 반영 함수(onto function)라고도 함

(3) 전단사 함수

정의 $\bigcirc -5$ 함수 $f: A \to B$ 에서 f가 단사 함수인 동시에 전사 함수일 때, 함수 f를 전단사 함수(bijective function)라고 한다.

전단사 함수는 집합 A의 모든 원소들이 집합 B의 모든 원소와 하나씩
 대응되기 때문에 일대일 대응 함수(one-to-one correspondence function)라고 함

Lenson Land

• 단사, 전사, 전단사 함수를 쉽게 알기 위해서는 각 원소들의 관계를 화살표로 표시하는 **화살표 도표(arrow diagram)**를 활용함

〈그림 6.2〉 단사, 전사, 전단사 함수

함수 f : A → B에서 함수 f의 특성

- 1) f가 단사 함수일 경우에는 B의 모든 원소가 A의 원소와 반드시 대응하는 것은 아니므로 A의 원소와 B의 원소의 개수를 비교하면 |A| ≤ |B|이 성립된다. 즉, B의 원소의 개수는 A의 원소의 개수보다 크거나 같아야 함
- 2) f가 전사 함수일 경우에는 그와 반대로 B의 모든 원소가 A의 원소와 대응되어야 하므로 A의 원소와 B의 원소의 개수를 비교하면 |A| ≥ |B|이 성립된다.즉, A의 원소의 개수는 B의 원소의 개수보다 크거나 같아야 함
- 3) f가 전단사 함수인 경우에는 A의 모든 원소가 B의 모든 원소와 하나씩 일대일 대응 되므로 |A| = |B|이다. 즉, A의 원소의 개수는B의 원소의 개수와 같음

앞에서 단사 함수를 일대일 함수(one-to-one function)라고 하였고, 전단사 함수를 일대일 대응 함수(one-to-one correspondence function)라고도 하였는데, 서로 다른 점에 유의해야 한다.

함수 f_1, f_2, f_3 가 다음과 같이 주어졌을 때, 이 함수가 단사 함수, 전사 함수, 전 단사 함수인지를 판별해보자.

- $(2) f_2$ 는 단사 함수이며 전사 함수이므로, 전단사 함수이다.
- (3) f_3 은 단사 함수이고, 전사 함수는 아니다.

대한민국 국적을 가진 사람과 자신의 주민등록번호와의 관계를 살펴보자.

 $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}$ 일 때, $f = \{(1, 1), (2, 3), (3, 4)\},$ $g = \{(1, 1), (2, 3), (3, 3)\}$ 라고 하면 A에서 B로의 함수 f와 g는 각각 단사 함수가 되는지 살펴보자.

 \bigcirc 00 f는 단사 함수이고 g는 단사 함수가 아니다.

 $A=\{1, 2, 3, 4\}$, $B=\{x, y, z\}$ 이고 f_1, f_2, f_3 가 다음과 같을 때, 각 함수들이 전사 함수가 되는지 판별해보자.

$$f_1 = \{(1, z), (2, y), (3, x), (4, y)\}$$

$$f_2 = \{(1, x), (2, x), (3, y), (4, z)\}$$

$$f_3 = \{(1, x), (2, x), (3, y), (4, y)\}$$

다음 함수식들이 실수 R에서 R로의 함수일 때, 이 함수가 단사, 전사, 전단사 함수인지를 판별해보자.

(1)
$$f_1(x) = \sin x$$

(2)
$$f_2(x) = x^2$$

(3)
$$f_3(x) = 2^x$$

(4)
$$f_4(x) = x^3 + 2x^2$$

물이 각각의 함수식을 그래프로 그리면 다음과 같다.

- (4) $f_4(x) = x^3 + 2x^2$
- (1) $f_1(x) = \sin x$ 는 $f_1(0) = f_1(\pi) = 0$ 일 때 $0 \neq \pi$ 이므로 단사 함수가 아니고, $f_1(R) \neq R$ 이므로 전사 함수도 아니다.
- (2) $f_2(x) = x^2$ 역시 $f_2(-1) = f_2(1) = 1$ 일 때 $-1 \neq 1$ 이므로 단사 함수가 아니고, $f_2(R) \neq R$ 이므로 전사 함수도 아니다.
- (3) $f_3(x) = 2^x$ 는 단사 함수이나 $f_3(R) \neq R$ 이므로 전사 함수는 아니다.
- (4) $f_4(x) = x^3 + 2x^2$ 는 $f_4(-2) = f_4(0) = 0$ 일 때 $-2 \neq 0$ 이므로 단사 함수가 아니고, $f_4(R) = R$ 이므로 전사 함수이다.

다음의 각 경우에 함수 f가 단사 함수, 전사 함수, 전단사 함수인지를 판별해보자.

- (1) $f: N \to N \circ] \mathcal{I}, f(x) = 2x$
- $(2) f: \{1, 2\} \rightarrow \{0\}$
- (3) f: {a, b} → {2, 4, 6} \Box , f(a) = 2, f(b) = 6
- $(4) f: Z \to Z \circ \exists x, f(x) = x+1$

(2) 함수 f가 집합 $\{1, 2\}$ 에서 집합 $\{0\}$ 로의 함수이므로, f(1) = f(2) = 0이다. 따라서 f는 단사 함수는 아니나 전사 함수이다.

(3) 함수 f가 f(a) = 2이고 f(b) = 6이므로, 이 함수는 단사 함수이나 전사 함수는 아니다.

(4) 이 함수는 단사 함수이고 전사 함수이므로 전단사 함수이다.

6.4 여러 가지 함수들

정의 🜀 – 6

정의 6-6 두 함수 $f:A \to B$, $g:B \to C$ 에 대하여 두 함수 f와 g의 합성 함수(composition function) 는 집합 A에서 집합 C로의 함수, $g \circ f:A \to C$ 를 의미하며 다음을 만족시킨다.

 $g \circ f = \{(a, c) | a \in A, b \in B, c \in C, f(a) = b, g(b) = c\}$

두 함수 f와 g의 합성함수 $g \circ f$ 는 A의 모든 원소 a에 대하여

$$\forall a \in A, (g \circ f)(a) = g(f(a))$$

함수 f, g 와 합성 함수 $g \circ f$ 에 대한 관계

(그림 6.3) 합성 함수

6.4 여러 가지 함수들

 $f:A\to B$ 와 $g:B\to C$ 가 다음 그림과 같을 때, 두 함수 f와 g의 합성 함수 $g\circ f$ 를 구해보자.

어기서
$$(g \circ f)(1) = g(f(1)) = g(b) = x$$

 $(g \circ f)(2) = g(f(2)) = g(c) = y$
 $(g \circ f)(3) = g(f(3)) = g(a) = y$
이다.

6.4 여러 가지 함수들

 $A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e\}, C = \{7, 8, 9\}$ 이고, $f: A \to B$, $g: B \to C$ 일 때 합성 함수 $h: A \to C$ 를 구해보자.

풀 ○ 이 과정을 단계별로 살펴보면 다음과 같다.

$$f g g g g f$$

$$1 \mapsto a \mapsto 8 \Rightarrow 1 \mapsto 8$$

$$2 \mapsto b \mapsto 9 \Rightarrow 2 \mapsto 9$$

$$3 \mapsto d \mapsto 7 \Rightarrow 3 \mapsto 7$$

$$f g g g \Rightarrow f$$

$$4 \mapsto b \mapsto 9 \Rightarrow 4 \mapsto 9$$

그러므로 합성 함수 h는 다음과 같이 표현된다.

두 함수 f와 g가 각각 $f: R \to R$, f(x) = x + 3이고, $g: R \to R$, $g(x) = x^2 - 1$ 일 때, 합성 함수 $f \circ g$ 와 $g \circ f$ 를 구해보자.

$$f \circ g(x) = f(g(x)) = f(x^2 - 1) = x^2 - 1 + 3 = x^2 + 2$$

$$g \circ f : R \to R$$

$$g \circ f(x) = g(f(x)) = g(x + 3) = (x + 3)^2 - 1 = x^2 + 6x + 8$$

합성 함수의 경우에는 그 함수의 연산 순위에 유의해야 한다. $g \circ f(x)$ 의 경우에는 f(x)를 먼저 적용하고, 그 값을 다시 g에 적용시킨다. 즉, $f \circ g(x) = f(g(x))$ 임을 유념해야 한다.

정리 🙃 – 1

세 함수 f, g, h를 각각 $f:A \to B$, $g:B \to C$, $h:C \to D$ 라 할 때, 그들의 합성 함수는 다음과 같은 **결합 법칙(associative law)**이 성립한다.

$$h \circ (g \circ f) = (h \circ g) \circ f$$

집합 A에 대한 함수 f가 $f:A \to A$, f(a)=a일 때 함수 f를 항등 함수(identity function)라 하고. I_A 로 표기한다. 즉.

 $\forall a \in A, I_A(a) = a$ $0 \mid \Box f$.

항등 함수는 x가 항상 자기 자신에게 대응하기 때문에 단사 함수이면서 전사 함수이므로 전단 사 함수이다.

예제 6-18

집합 $A=\{-1, 0, 1\}$ 이고 함수 $f: A \to A$, $f(x)=x^3$ 일 때 함수 f는 항등 함수 임을 보이자.

물이
$$f(-1) = (-1)^3 = -1$$

 $f(0) = 0$
 $f(1) = 1^3 = 1$
이므로 f는 항등 함수이다.

함수 $f:A\to B$ 가 전단사 함수일 때 f의 역함수(inverse function)는 $f^{-1}:B\to A$ 로 표기하고 다음과 같이 정의한다.

 $\forall a \in A, \ \forall b \in B, \ f(a) = b \Rightarrow f^{-1}(b) = a$

〈그림 6.4〉 함수 f의 역함수 f^{-1}

모든 함수 f에 대하여 그것의 역함수 f^{-1} 이 항상 존재하는 것은 아니고, 함수 f가 전단사 함수 일 경우에만 역함수 f^{-1} 이 존재한다. 따라서 함수 f가 전단사 함수가 아닐 경우에는 함수 f의 역관계는 함수가 되지 않는다.

 $f:\{0,1,2\} \to \{a,b,c\}$ 가 다음과 같은 그래프로 정의될 경우 이에 대응되는 역 함수를 구해보자.

집합 A={1, 2, 3}, B={a, b, c}이고 A에서 B로의 함수 f={(1, a), (2, c), (3, b)}일 때 $(f^{-1})^{-1}$, $f^{-1} \circ f$ 를 구해보자.

● ①
$$f^{-1} = \{(a,1), (c,2), (b,3)\}$$
○] □로 $(f^{-1})^{-1} = \{(1,a), (2,c), (3,b)\} = f$ $f^{-1} \circ f = \{(1,1), (2,2), (3,3)\} = I_A$

상수 함수

 $\forall a \in A, \ \exists b \in B, \ f(a) = b$ $0 \mid \Box 1.$

 $f: R \to R$ 이고 f(x) = 2로 정의될 때, f가 상수 함수임을 보이자.

(월0) 정의역의 모든 x에 대한 f(x)의 값이 모두 2이므로 상수 함수이다.

특성 함수

전체 집합 U의 부분 집합 A의 특성 함수(characteristic function) $f_A\colon U\to \{0,1\}$ 는 다음 과 같이 정의된다.

$$f_A(x) = \begin{cases} 0, & x \notin A \\ 1, & x \in A \end{cases}$$

집합 $U = \{x \in \mathbb{R} | 0 \le x \le 1\}$ 이고 $A = \{x \in \mathbb{R} | 0 : \frac{1}{2}x \le \}$ 일 때, f_A 특성 함수 를 그래프로 나타내어보자.

 $U=\{x\in R|0\le x\le 2\}$ 이고 $A=\left\{x\in R\left|\frac{1}{2}\le x\le \frac{3}{2}\right\}$ 일 때, 특성 함수 f_A 를 그 래프로 나타내어보자.

올림함수와 내림함수

 $x \in R$ 에 대한 <mark>올림 함수(ceiling function)는</mark> x보다 크거나 같은 정수값 중 가장 작은 값을 나타내며 $\lceil x \rceil$ 로 표기한다. $x \in R$ 에 대한 내림 함수(floor function)는 x보다 작거나 같은 정수 값 중 가장 큰 값을 나타내며, $\lceil x \rceil$ 로 표기한다.

예를 들어, [3.5] = 4이고 [3.5] = 3이다. 또한 [2] = [2] = 2이며, [-0.5] = 0이고 [-0.5] = -1이다.

- 함수의 역할
- 컴퓨터 프로그램을 작성하는 데 있어서, 일반적으로 복잡한 문제를 여러 개의 독립적 기능을 가지는 서브프로그램(subprogram)으로 나누어서 해결함
- 서브프로그램들은 각기 논리적으로 독립된 계산을 할 때나, 동일한 수행을 여러 번 해야 할 때 많이 사용

예를 들면, 입력되는 데이터에 대하여 같은 일을 계속 수행해야 하는 경우에는 데이터마다 수행해야 하는 부분을 서브프로그램으로 만들어서 필요한 경우 호출하여 사용

- 서브프로그램 중 함수에 속하는 서브프로그램은 정의역에 있는 매개 변수의 값을 받아서 계산을 한 뒤 하나의 값을 되돌려 줌
- 함수 호출(function call) 매개 변수(parameter)를 가지고 함수를 부르는 것임
- 리턴(return) 함수에서 계산된 값을 되돌려 주는 것임

컴퓨터 언어에서의 두 가지 함수

- 1. 컴퓨터 언어 자체에서 미리 만들어 놓은 함수 라이브러리(library)라는 곳에 저장되어 있으며, 자주 사용하는 작업을 위해 미리 만들어 놓은 함수들로서 수학적 계산을 하는 sin, cos, sqrt 등이 여기에 속함
- 2. 프로그래머(programmer)가 자기 상황에 편리하도록 직접 만든 함수로 각자의 경우에 따라 여러 가지의 함수가 만들어질 수 있음

실수의 제곱을 구하는 함수 square

```
double square(double num)
{
    return num*num;
}
```


〈그림 6.5〉 square 함수

- 함수는 매개 변수로 실수 num을 넘겨주고, 결과값으로 실수인 num의 제곱 값을 리턴 받음
- 함수의 정의역과 공변역은 모두 실수 R임
- 함수 이름 앞의 자료형(type)은 공변역을 나타내며, 매개 변수 앞의 자료형은 정의역을 나타냄

프로그래머가 작성한 함수

```
int is_positive(int num)
{
    if (num >= 0) return 1;
    else return 0;
}
```

• 함수를 이용하기 위하여 주 프로그램(main program)에서 다음과 같이 작성

- 6.5 컴퓨터 언어에서의 함수의 역할
- 주 프로그램에서 반복문을 통하여 함수 is_positive를 호출함
- is_positive 함수는 매개 변수가 양수이거나 0이면 1을 리턴하고, 음수 이면 0을 리턴함
- 함수에서 정의역과 공변역은 모두 정수 Z임
- 치역은 리턴되는 값이 0 또는 1이므로 {0, 1}임
- 주 프로그램에서는 i 값이 5부터 5까지 1씩 증가하면서 계속 함수 is_positive를 호출하기 때문에 모두 11번을 호출하게 됨
- 컴퓨터 언어에서의 함수들도 일반적인 함수의 기능과 같은 역할을 프 로그램 내에서 수행함
- 컴퓨터 프로그램을 작성할 때 알맞은 함수를 사용하면 좀 더 명확하 고 간단하게 문제를 해결할 수 있음

6.6 함수의 응용과 4차 산업혁명과의 관계

① 일상생활과 공학에 널리 활용

함수는 우리의 일상생활 속에서도 다양하게 활용되고 있다. 가령 이동통신 기기의 사용시간에 따른 요금 계산, 고속도로 이용 시의 요금 계산 등에 쓰인다. 또한 대부분의 과학과 공학 분야에서 함수가 활용되는데, 우주선 발사, 정밀기계의 작동, 물체의 이동, 비행기의 이착륙, 자유낙하 시간의 계산 등 수많은 응용에 폭넓게 활용되고 있다.

② 영상 처리와 패턴 인식 등에서 함수의 응용

영상 처리(Image processing)란 유용한 정보를 도출하기 위해 영상 자료를 처리하는 과정을 말하는데, 영상 압축, 영상 복구, 영상 향상, 영상 인식 등을 포함한다. 예를 들어 주어진 영상을 보다 선명하게 하거나 복원하기 위해서는 그 작업에 필요한 적절한 함수의 활용이 필수적이다. 특히 패턴 인식(Pattern recognition) 분야에서의 함수의 역할은 매우 크다.

6.6 함수의 응용과 4차 산업혁명과의 관계

(2) 함수와 4차 산업혁명과의 관계: 드론

도론(Drone)이란 무선전파로 조종할 수 있는 무인 항공기로 카메라, 센서, 통신시스템 등이 장착되어 있으며, 경우에 따라 고도로 지능적인 인공지능 소프트웨어가 탑재되기도 한다. 〈그림 6.6〉과 같은 드론은 군사용 소형정찰기, 항공 촬영, 농약 살포, 공기질 측정, 택배 배달 등으로 그 용도가 다양하게 확대되고 있다.

4차 산업혁명의 한 분야에 속하는 드론의 경우 정교하게 하늘을 날아다니는 조종을 위해 적절한 함수를 적용하는 것이 필수적이다.

〈그림 6.6〉 드론

- 두 집합 X와 Y에서 함수 f는 집합 X에서 Y로의 관계의 부분 집합으로서, 집합 X에 있는 모든 원소 x는 집합 Y에 있는 원소 중 한 개와 관계가 있을 때를 말한다.
- 집합 X에서 집합 Y로의 함수 f는 f: X → Y로 표기하고, X를 함수 f의 정의
 역이라 하며, Y를 함수 f의 공변역이라고 한다.
- 함수 f의 정의역을 Dom(f)라 표시하고, 함수 f의 치역은 Ran(f)라고 표시하며, 다음과 같이 정의한다.

Dom $(f) = \{x \mid (x, y) \in f, x \in X, y \in Y\}$ Ram $(f) = \{y \mid (x, y) \in f, x \in X, y \in Y\}$

- 단사 함수는 함수 $f: A \to B$ 에서 $a_i, a_j \in A$ 에 대하여 $f(a_i) = f(a_j)$ 이면 $a_i = a_j$ 일 경우를 말한다. 즉, $\forall a_i, a_j \in A, f(a_i) = f(a_j) \Rightarrow a_i = a_j$ 이다.
- 전사 함수는 함수 f: A → B에서 B의 모든 원소 b에 대하여 f(a) = b가 성립되는 a ∈ A가 적어도 하나 존재할 때를 말한다. 즉,
 ∀b ∈ B, ∃a ∈ A, f(a) = b이다.

- 전단사 함수는 함수 $f:A\to B$ 에서 f가 단사 함수인 동시에 전사 함수일 때를 말한다.
- 주어진 함수가 단사, 전사, 전단사 함수인지를 알 수 있는 예는 다음과 같다.

- 두 함수 f: A → B, g: B → C에 대하여 두 함수 f와 g의 합성 함수는 집합 A에서 집합 C로의 함수 g∘f: A → C를 의미하며 다음을 만족시킨다.
 g∘f = {(a, c) | a ∈ A, b ∈ B, c ∈ C, f(a) = b, g(b) = c}
- 집합 A에 대한 함수 f가 f: A → A, f(a) = a일 때, 함수 f를 항등 함수라 하고 I_A
 로 표기한다. 즉, ∀a ∈ A, I_A(a) = a이다.
- f의 역함수는 함수 $f: A \to B$ 가 전단사 함수일 때 $f^{-1}: B \to A$ 로 표기한다. 즉, $\forall a \in A, \forall b \in B, f(a) = b \Rightarrow f^{-1}(b) = a$ 이다.
- 함수 f: A → B에서 집합 A의 모든 원소가 집합 B의 오직 한 원소와 대응할 때 함수 f를 상수 함수라고 한다. 즉, ∀a ∈ A, ∃b ∈ B, f(a) = b이다.

전체 집합 U의 부분 집합 A의 특성 함수 f_A:U → {0, 1}는 다음과 같이 정의된다.

$$f_A(x) = \begin{cases} 0, & x \notin A \\ 1, & x \in A \end{cases}$$

- 컴퓨터 언어에서 함수는 컴퓨터 언어 자체에서 미리 만들어 놓은 함수와 프로 그래머가 자기 상황에 편리하게 직접 만든 함수가 있다. 컴퓨터 언어에서의 함 수들도 일반적인 함수의 기능과 같은 역할을 프로그램 내에서 수행한다
- 함수의 응용 분야로는 이동통신 기기의 요금 계산, 정밀 기계의 작동, 비행기의 이착륙, 영상 처리와 패턴 인식 등에 폭넓게 활용되고 있다. 함수와 4차 산업혁 명과의 관계로는 드론을 들 수 있다.

