|              | Student information | Date       | Number of session |
|--------------|---------------------|------------|-------------------|
| Algorithmics | UO: 301022          | 19/03/2025 | 6                 |
|              | Surname: Canga      | Escuela de |                   |



| Escuela de                                         |
|----------------------------------------------------|
| Ingeniería<br>Informática<br>Universidad de Oviedo |
|                                                    |

## Activity 1. [Time measuring of the greedy algorithm]

| n     | t colouring (ms) |  |
|-------|------------------|--|
| 8     | LoR              |  |
| 16    | LoR              |  |
| 32    | LoR              |  |
| 64    | LoR              |  |
| 128   | LoR              |  |
| 256   | LoR              |  |
| 512   | 0.999            |  |
| 1024  | 1.999            |  |
| 2048  | 4.999            |  |
| 4096  | 11               |  |
| 8192  | 24.999           |  |
| 16384 | 69.509           |  |
| 32768 | 140.606          |  |
| 65536 | 444.362          |  |

We can see that the times match the theoretical complexity which in this case is:

$$O(n \times E)$$

Where:

- E = the number of neighbors of the node
- n =the number of nodes

So, the best possible complexity is O(n) when E=1 and the worst possible complexity is  $O(n^2)$  when E=n

## t coloring (ms)



## t coloring (ms) Log

