For IRIS Dataset,

K-Means (when init is 'random'):

The K-means (when init is 'random') cluster analysis are:

Cluster Centres for k-means (when init is 'random') are:

[[5.006 3.428 1.462 0.246]

[5.9016129 2.7483871 4.39354839 1.43387097]

[6.85 3.07368421 5.74210526 2.07105263]]

Distortion for k-means (when init is 'random'): 26.59

K-Means (when init is 'k-means++'):

K-Means Cluster analysis for k-means (when init is 'k-means++') are:

Cluster Centres for k-means (when init is 'k-means++') are:

[[5.9016129 2.7483871 4.39354839 1.43387097]

[5.006 3.428 1.462 0.246]

[6.85 3.07368421 5.74210526 2.07105263]]

Distortion for k-means (when init is 'k-means++'): 26.09

k-means plot (when init is 'random')

Elbow approach and the silhouette (when init is 'random')

The Blue colour line is the Elbow approach for the k-means (when init is 'random') as we can see from the plot the K value for the elbow method is unsure what to take so I compared the elbow with that of the silhouette score (orange colour line) so that the K value can be fixated on what to take.

k-means plot (when init is 'k-means++')

Elbow approach and the silhouette (when init is 'k-means++')

The Blue colour line is the Elbow approach for the k-means (when init is 'k-means++') as we can see from the plot the K value for the elbow method is unsure what to take so I compared the elbow with that of the silhouette score (orange colour line) so that the K value can be fixated on what to take.

Hierarchical Clustering (using SciPy library) Dendrograms

Hierarchical clustering (using Scikit library) Dendrograms

Algorithms	Sum of Squared Errors	Silhouette Scores	Time Taken
K-means (when init is 'random')	78.851	0.5528	0.2076
Elbow Method (when init is 'random')		0.3044	0.1713
K-means (when init is 'k-means++')	78.851	0.5528	0.0255
Elbow Method (when init is 'k-means++')		0.3312	0.3763
Hierarchical approach (using SciPy library)		Cluster1 (when max_d is taken) = 0.4998 Cluster2 (when k is taken) = 0.5159	0.2689
Hierarchical approach (using scikit library)		0.5135	0.0025

For MNIST Dataset,

I took a subset of test - size '0.90'.

K-Means (when init is 'random'):

The K-means (when init is 'random') cluster analysis are:

Cluster Centres for k-means (when init is 'random') are:

[[0. 0. 0. ... 0. 0. 0.]

[0. 0. 0. ... 0. 0. 0.]

[0. 0. 0. ... 0. 0. 0.]]

Distortion for k-means (when init is 'random'): 17839831688.70

K-Means (when init is 'k-means++'):

K-Means Cluster analysis for k-means (when init is 'k-means++') are:

[0 0 1 ... 0 2 1]

Cluster Centres for k-means (when init is 'k-means++') are:

[[0. 0. 0. ... 0. 0. 0.]

[0. 0. 0. ... 0. 0. 0.]

[0. 0. 0. ... 0. 0. 0.]]

Distortion for k-means (when init is 'k-means++'): 17838960304.95

k-means plot (when init is 'random')

Elbow approach and the silhouette (when init is 'random')

The Blue colour line is the Elbow approach for the k-means (when init is 'random') as we can see from the plot the K value for the elbow method is unsure what to take so I compared the elbow with that of the silhouette score (orange colour line) so that the K value can be fixated on what to take.

k-means plot (when init is 'k-means++')

Elbow approach and the silhouette (when init is 'k-means++')

The Blue colour line is the Elbow approach for the k-means (when init is 'k-means++') as we can see from the plot the K value for the elbow method is unsure what to take so I compared the elbow with that of the silhouette score (orange colour line) so that the K value can be fixated on what to take.

Hierarchical Clustering (using SciPy library) Dendrograms

Hierarchical clustering (using Scikit library) Dendrograms

Algorithms	Sum of Squared Errors	Silhouette Scores	Time Taken
K-means (when init is 'random')	21392925381.585	0.0538	2.9420
Elbow Method (when init is 'random')		0.0572	33.8220
K-means (when init is 'k-means++')	21392906205.685	0.0539	3.9344
Elbow Method (when init is 'k-means++')		0.0577	40.6300
Hierarchical approach (using SciPy library)			102.7345
Hierarchical approach (using scikit library)		0.0399	22.7918