NWChem Input Basics

Minimal input (all defaults)

```
n 0.00 0.00 0.00
n 0.00 0.00 1.08
end
basis
n library cc-pvdz
end
task scf
```

Performs a closed-shell SCF on the N₂ molecule

Geometry Input: Units

Input can be in Angstrom or atomic units

```
geometry # units are in angstroms

C 0 0 0

H 0 0.9885 -0.4329

H 0 –0.9885 0.4329

end
```

OR

```
geometry units au # change units to a.u.

C 0 0 0

H 0 1.868 -0.818

H 0 -1.868 0.818

end
```

Geometry Input: Symmetry

 \blacksquare CH2 molecule with C_{2v} symmetry

```
geometry units au #input using symmetry
C 0 0 0
H 0 1.868 -0.818
symmetry c2v
end
```

C₆₀ with I_h symmetry

```
geometry #bonds = 1.4445 and 1.3945 Angstrom
symmetry Ih
c -1.2287651 0.0 3.3143121
end
```

Geometry Input: autosym and autoz

- By default NWChem will:
 - Attempt to find symmetry if none is specified
 - Attempt to build a z-matrix from cartesian coordinates (for the geometry optimization)
 - Center the molecule in the reference frame
 - The input below turns off these three steps (not recommended!)

```
geometry noautoz noautosym nocenter
C 0 0 0
H 0 0.9885 -0.4329 #Angstroms
H 0 -0.9885 0.4329
end
```

Geometry Input: zmatrix

Geometry can be specified using a z-matrix format

```
geometry
zmatrix
O
H1 O 0.95
H2 O 0.95 H1 108.0
end
end
```

Geometry Input: zmatrix

Distances and angles can be specified with variables

```
geometry
  zmatrix
   O
   H1 O doh
   H2 O doh H1 ahoh
   variables
    ahoh 108.0
   constant
    doh 0.95
  end
end
```

Geometry Input: zcoord

Forcing internal coordinates (use with care ...)

```
geometry
Si
      0.0000E+00 0.0000E+00 0.0000E+00
 Н
      -0.9436E+00 -0.8807E+00 0.7319E+00
      0.7373E+00 -0.8179E+00 -0.9932E+00
 Н
      -0.7835E+00 0.1038E+01 -0.7137E+00
      0.1699E+01 0.1556E+01 0.1695E+01
 Н
   0.7715E+00 0.2377E+01 0.2511E+01
 Н
   0.2544E+01 0.6805E+00 0.2539E+01
      0.2514E+01 0.2381E+01 0.7713E+00
end
### fix the Si-Si distance to 4.0 angstroms ###
geometry adjust # initial state
zcoord
  bond 1 4 4.00 r constant
end
end
```

Geometry Input: system

Crystal lattice, used in plane wave code, for 3-D periodic systems (crystals)

```
geometry units angstroms center noautosym noautoz print
 system crystal
  lat a 3.625d0
               #diamond
 lat b 3.625d0
 lat c 3.625d0
  alpha 90.0d0
  beta 90.0d0
  gamma 90.0d0
end
    -0.50000d0 -0.50000d0 -0.50000d0
     0.0000d0 0.0000d0 -0.5000d0
     0.0000d0 -0.5000d0 0.0000d0
    -0.50000d0 0.00000d0 0.00000d0
    -0.25000d0 -0.25000d0 -0.25000d0
    0.25000d0 -0.25000d0 0.25000d0
    -0.25000d0 0.25000d0 0.25000d0
end
```

Basis Set Input: Using libraries

Atoms can be defined by symbol and name

```
basis
O library cc-pvdz
H1 library cc-pvdz file /home/me/nwchem/libraries/
H2 library sto-3g
end
```

* can be used to state that all atoms in the system should be using the same basis set type

```
basis
* library cc-pvdz
end
```

Basis Set Input: Explicit basis sets

Basis set input can be done with exponents and coefficients

```
basis spherical
 Hs
  13.0100 0.019685
  1.9620 0.137977
  0.4446 0.478148
  0.1220 0.501240
H s
  0.1220 1.000000
Hp
  0.7270 1.000000
end
```

Basis Set Input: Explicit basis sets

Basis Libraries and explicit input can be used together

```
basis spherical
* library cc-pvdz
H p
0.007270 1.000000
end
```

Task Input

Task directive tells NWChem what it should do

task scf
task scf energy

task dft optimize
task dft saddle
task ccsd frequencies

task pspw optimize
task md dynamics

Task Input

Tasks are preformed in sequence as listed in input

task scf energy

task dft optimize ignore # ignore if failed, go to next task

task dft saddle

task ccsd frequencies

Restarting a calculation

To restart NWChem will need certain files, that should be saved in permanent directory

```
start ne
permanent_dir /users/me
geometry
ne 0 0 0
end
basis
ne library cc-pvdz
end
task scf
```

```
restart ne
permanent_dir/users/me
scf
thresh 1e-8
end
task scf
```

Setting memory and charge keyword

If NWChem fails with an error asking for more memory, you can set it explicitly

memory 2400 mb

- Remember, memory is per processor!
- By default, molecules have a neutral charge (0)

charge -1

Open Shell Input

DFT input block, e.g.,

```
dft
mult 3
end
```

- Unrestriced Open Shell Default (different from Hartree-Fock)
- RODFT is available

Minimal Input Example

Minimal input (all defaults)

```
geometry; ne 0 0 0; end
basis; ne library cc-pvdz; end
task dft
```

Performs a closed-shell N⁴ DFT calculation using the local density approximation on the neon atom (no fitting)

Simple DFT Input Example

Input with default DFT input (single point LDA calculation)

```
echo # echoes the input in the output file
start silane # name of files
title silane # title of the calculation in output
charge 0.
geometry
  si
          0.00000000 0.0000000
                                     0.0000000
  h
          0.75252170
                       -0.75252170 0.75252170
  h
         -0.75252170 0.75252170 0.75252170
  h
         0.75252170 0.75252170 -0.75252170
           -0.75252170 -0.75252170 -0.75252170
  h
end
dft; mult 1;end
basis
 * library cc-pvdz
end
task dft # specifies the task > energy by default
```

Changing the exchange-correlation

```
echo
start silane
title silane
geometry
               0.00000000 0.0000000
                                            0.0000000
     si
     h
               0.75252170
                             -0.75252170
                                            0.75252170
               -0.75252170 0.75252170
                                            0.75252170
     h
               0.75252170 0.75252170
                                           -0.75252170
     h
               -0.75252170
                             -0.75252170
                                           -0.75252170
     h
end
                           dft.
basis
                             xc becke88 lyp #BLYP
 * library cc-pvdz
                           end
end
                           dft.
                             xc becke88 perdew86
dft
                           end
  xc b3lyp # B3LYP
end
                           Many other combinations possible...
```

task dft

Important DFT keywords

```
xc: controls the choice of the exchange-correlation
convergence: controls the convergence (energy, density...)
grid: specifies the grid
mult: specifies the multiplicity
odft: specify open shell calculation (redundant when mult is there)
iterations: controls the number of iterations
smear: useful for degenerate states
```

dft grid fine convergence energy 1e-08 xc b3lyp #B3LYP mult 1

end

```
TRIPLET

dft

odft

grid fine

convergence energy 1e-08

xc b3lyp #B3LYP

mult 3

end
```

Putting it all together

end

task dft

```
echo
start silane
title silane
geometry
               0.0000000
     si
                         0.0000000
                                          0.0000000
     h
              0.75252170
                            -0.75252170
                                          0.75252170
     h
              -0.75252170 0.75252170
                                          0.75252170
             0.75252170 0.75252170
                                          -0.75252170
     h
     h
              -0.75252170
                            -0.75252170
                                          -0.75252170
end
basis
 * library cc-pvdz
end
dft
  grid fine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
```

Geometry Optimization

task dft optimize

```
echo
start silane
geometry
               0.0000000
                              0.0000000
                                            0.0000000
     si
              0.75252170
                             -0.75252170
     h
                                            0.75252170
     h
               -0.75252170 0.75252170
                                            0.75252170
     h
              0.75252170 0.75252170
                                           -0.75252170
                             -0.75252170
                                           -0.75252170
     h
               -0.75252170
end
basis
  * library cc-pvdz
end
dft
 grid xfine
 convergence energy 1e-08
  xc b3lyp # B3LYP
 mult 1
end
```

Frequencies

```
echo
start silane
geometry
            0.0000000
                         0.0000000
                                        0.0000000
  si
          0.75252170
                         -0.75252170
                                        0.75252170
 h
 h
         -0.75252170 0.75252170
                                        0.75252170
 h
          0.75252170 0.75252170
                                       -0.75252170
           -0.75252170
                         -0.75252170
 h
                                       -0.75252170
end
basis
  * library cc-pvdz
end
dft
 grid xfine
 convergence energy 1e-08
 xc b3lyp # B3LYP
 mult 1
end
task dft frequencies
```

Combining Calculations I

task dft frequencies

```
echo
start silane
geometry
                0.0000000
                              0.0000000
                                            0.0000000
     si
              0.75252170
                             -0.75252170
     h
                                            0.75252170
     h
               -0.75252170 0.75252170
                                            0.75252170
     h
              0.75252170 0.75252170
                                           -0.75252170
                                           -0.75252170
     h
               -0.75252170
                             -0.75252170
end
basis
  * library cc-pvdz
end
dft
 grid xfine
 convergence energy 1e-08
 xc b3lyp # B3LYP
 mult 1
end
task dft optimize
```

Combining Calculations II

```
geometry
end
basis
  * library cc-pvdz
end
dft
   xc b3lyp #B3LYP
   mult. 1
end
task dft optimize
task dft frequencies
dft
   odft
   xc becke88 lyp #BLYP
   mult 3
end
task dft optimize
```

Restarting Calculations

task dft

```
echo
restart silane
geometry
                0.0000000
                               0.0000000
                                             0.0000000
     si
               0.75252170
                              -0.75252170
     h
                                             0.75252170
     h
               -0.75252170 0.75252170
                                             0.75252170
     h
               0.75252170 0.75252170
                                            -0.75252170
                                            -0.75252170
     h
               -0.75252170
                              -0.75252170
end
basis
  * library cc-pvdz
end
dft
 grid xfine
                                       Restart files
  convergence energy 1e-08
                                       •silane.db
  xc b3lyp # B3LYP
                                       •silane.movecs
 mult. 1
end
```

Using Old Molecular Orbitals

```
echo
start silane
geometry
               0.0000000 0.0000000
                                            0.0000000
     si
             0.75252170
     h
                             -0.75252170
                                            0.75252170
     h
               -0.75252170 0.75252170
                                            0.75252170
     h
              0.75252170 0.75252170
                                           -0.75252170
     h
               -0.75252170
                             -0.75252170
                                           -0.75252170
end
basis
  * library cc-pvdz
end
dft
 grid xfine
 convergence energy 1e-08
 xc b3lyp # B3LYP
 mult 1
 vectors input old.movecs output b3lyp.movecs
end
task dft
```

Organizing Your Files

```
echo
start silane
permanent dir /home/yourname/silane/b3lyp
scratch dir /scratch
geometry
               0.00000000 0.00000000
     si
                                           0.0000000
              0.75252170
                            -0.75252170
     h
                                           0.75252170
            -0.75252170 0.75252170 0.75252170
     h
             0.75252170 0.75252170
                                          -0.75252170
     h
              -0.75252170
                            -0.75252170
                                          -0.75252170
     h
end
basis
  * library cc-pvdz
end
dft
 grid xfine
 convergence energy 1e-08
 xc b3lyp #B3LYP
 mult 1
end
task dft optimize
```

Customizing The Basis

```
geometry
      si
                  0.0000000
                                 0.0000000
                                                0.0000000
     h1
                 0.75252170
                                -0.75252170
                                                0.75252170
     h2
                 -0.75252170
                                 0.75252170
                                                0.75252170
     h3
                 0.75252170
                                 0.75252170
                                               -0.75252170
                 -0.75252170
                                -0.75252170
                                               -0.75252170
     h4
end
```

```
si library 6-31G
h1 library h sto-3g
h2 library h 6-31g
h3 library h 3-21g
h4 library h 6-31g*
end
```

. . .

```
geometry
end
basis
end
dft
 xc b3lyp
 disp vdw 4
end
task dft optimize
```

- S. Grimme J. Comp. Chem. 25 1463 (2004)
- S. Grimme J. Comp. Chem. 271787 (2006)

Semi-empirical hybrid DFT + MP2 Double Hybrid Functionals

```
geometry
end
basis
end
dft
  xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27
  dftmp2 direct
  direct
  convergence energy 1e-8
  iterations 100
end
```

S. Grimme, J. Chem. Phys., 124, 034108 (2006)

Charge-Density Fitting

- Important difference between DFT and SCF
 - Additional fitting basis set (reduces cost from N⁴ --> N³)

```
geometry; ne 0 0 0; end

basis "ao basis" spherical
  ne library def2-tzvp
end

basis "cd basis"
  ne library "Weigend Coulomb Fitting"
end

task dft
```

Effective Core Potentials

- Reduces the cost of calculation for heavy elements
 - Additional input field required to define potential

```
geometry; ne 0 0 0; end

ecp spherical
  * library Stuttgart_RSC_1997_ECP
end

basis "ao basis"
  ni library "Stuttgart_RSC_1997_ECP"
end

task dft
```

Excited State Calculations with TDDFT

```
geometry
0.0000000
                  0.0000000 0.12982363
н 0.75933475
                  0.0000000
                               -0.46621158
н -0.75933475
                  0.0000000
                               -0.46621158
end
basis
O library 6-31G**
H library 6-31G**
end
dft
 xc b3lyp
end
tddft
nroots 10
notriplet
end
task tddft energy
```

Excited State Sample Output

```
Root 1 singlet b2 0.294221372 a.u. ( 8.0061743 eV)
  Transition Moments X 0.00000 Y -0.26890 Z 0.00000
  Transition Moments XX 0.00000 XY 0.00000 XZ 0.00000
  Transition Moments YY 0.00000 YZ 0.08066 ZZ 0.00000
  Transition Moments XXX 0.00000 XXY -0.93672 XXZ 0.00000
  Transition Moments XYY 0.00000 XYZ 0.00000 XZZ 0.00000
  Transition Moments YYY -1.60959 YYZ 0.00000 YZZ -0.72276
  Transition Moments ZZZ 0.00000
                                                  0.01418
  Dipole Oscillator Strength
  Occ. 5 b2 --- Virt. 6 a1 -1.00002 X
Root 2 singlet a2 0.369097477 a.u. (10.0436576 eV)
  Transition Moments X 0.00000 Y 0.00000 Z 0.00000
  Transition Moments XX 0.00000 XY 0.24936 XZ 0.00000
  Transition Moments YY 0.00000 YZ 0.00000 ZZ 0.00000
  Transition Moments XXX 0.00000 XXY 0.00000 XXZ 0.00000
  Transition Moments XYY 0.00000 XYZ -0.34740 XZZ 0.00000
  Transition Moments YYY 0.00000 YYZ 0.00000 YZZ
                                                 0.00000
  Transition Moments ZZZ
                         0.00000
  Dipole Oscillator Strength
                                                  0.00000
              --- Virt. 7 b1 -0.99936 X
  Occ. 5 b2
```