CHAPTER :SEMI-STABLE LATTICE IN HIGHER RANK

April 13, 2025

In this chapter, we will establish the notion of semi-stable lattice. Heuristically, this is the lattice that achieve all the successive minima at the same time, see [?].

We will provide two different definitions of semi-stable lattice: one is geometric - which follows Grayson's idea of utilizing the canonical plot, and one is purely algebraic, which make use of the maximal standard parabolic subgroups. The toy model will be the moduli space of 2-dimensional lattice, which is essential the upper half plane in the complex field. At the end, we will show that the two definitions coincide.

1 Lattices in higher rank

For each z with $\Im(z) > 0$, we can attach to z a lattice structure $L_z = \mathbb{Z}z \oplus \mathbb{Z}$. Roughly speaking a lattice is a discrete subgroup that is generated by a k- basis of the k-space V. In particular, we will only work with the real vector space V. Grayson works with lattice over a ring of algebraic integers, but we will restrict to just the lattice that has the underlying structure as a $\mathbb{Z}-$ module.

1.1 First definition of lattices

Definition 1.1 (Abstract \mathbb{Z} -lattices). Let L be a finitely generated \mathbb{Z} -module. In particular, it is a free \mathbb{Z} -module of finite rank. Suppose that L is endowed with a real-valued positive definite quadratic form $Q: L \to \mathbb{R}$, such that the set

$${x \in L : Q(x) \leq r}$$

is finite for any real number r. We will call the pair (L,Q) a **abstract** \mathbb{Z} -lattice.

An easy example is to take $L = \mathbb{Z}^n$ and choose our quadratic form to be the standard one. namely

$$\langle x, y \rangle = x \cdot y = \sum_{i=1}^{n} x_i y_i$$

Here the multiplication is just the usual dot product between 2 vectors. In term of matrix, this quadratic form is assigned to the identity matrix I_n .

If there is no further confusion, we can just denote a Euclidean lattice by L, without specifying the bilinear form Q. The lattice L determines a full-rank lattice inside $L_{\mathbb{R}}$, namely, the rank of the lattice L is equal to the dimension of $L_{\mathbb{R}}$.

1.2 An alternative definition of lattices

For the sake of computation, we also usually adopt another definition of the lattice. In particular, we view lattice as a free \mathbb{Z} — module of rank n that is isomorphic to \mathbb{R}^n via base changing.

¹The non-degenerate implicity state that rank L is the same as $dim L_{\mathbb{R}}$

Definition 1.2. A lattice in \mathbb{R}^n is a subset $L \subset \mathbb{R}^n$ such that there exists a basis b_1, \ldots, b_n of \mathbb{R}^n such that

$$L = \mathbb{Z}b_1 \oplus \mathbb{Z}b_2 \oplus \dots \mathbb{Z}b_n$$

If we put the vector b_1, b_2, \ldots, b_n in columns, with respect to the standard basis, namely

$$g = [b_1|b_2|\dots|b_n],$$

then $L = q\mathbb{Z}^n$.

In the second definition, we can just identify L with the standard lattice \mathbb{Z}^n and the symmetric positive definite form is g^tg . So an Euclidean \mathbb{Z} -lattice is an abstract lattice with the standard positive definite quadratic form.

1.3 Equivalence between two definitions of lattices

In this subsection, we will show that every abstract \mathbb{Z} - lattice is isomorphic to an Euclidean \mathbb{Z} lattice. This will be helpful in visualizing the abstract lattices, as we are just looking at conrete
lattices with deformation by a linear transformation.

First we need to specify the notion of isomormorphic lattices - in the first definition

Definition 1.3. A map $f:(L,Q) \to (L',Q')$ is an **isomorhism** between lattices if it is a group isomorhism and for all $x \in L$, we have

$$Q(x) = Q'(f(x))$$

Proposition 1.4. Any abstract lattice is isomorphic to a Euclidean \mathbb{Z} - lattice.

Proof. Let (L,Q) be an arbitrary lattice. We define a bilinear form as

$$\langle x, y \rangle := \frac{Q(x+y) - Q(x-y)}{4}$$

We will show that this bilinear form defines an inner product over the real vector space $L_{\mathbb{R}} = L \otimes_{\mathbb{Z}} \mathbb{R}$. Clearly we have $\langle x, x \rangle = 4Q(x)/4 = Q(x) \geqslant 0$ for all $x \in L \setminus \{0\}$. Now the extended bilinear form is defined as

$$\langle \cdot, \cdot \rangle : L_{\mathbb{R}} \times L_{\mathbb{R}} \to \mathbb{R}$$

 $(x \otimes a, y \otimes b) \mapsto ab \langle x, y \rangle$

It is mmediate that the extended bilinear form is inner product. So we have proved that $L_{\mathbb{R}}$ is a Euclidean space containing L. Moreover, L is embedded injectively in $L_{\mathbb{R}}$ as \mathbb{R} is a flat \mathbb{Z} module. The condition that

$$\#\{x \in L : Q(x) \leq r\} < \infty$$

implies L can be identified with a discrete in $L_{\mathbb{R}}$. But this implies that there exists a basis $\{b_1, \ldots, b_n\} \subset L_{\mathbb{R}}$ such that

$$L = \mathbb{Z}b_1 \oplus \mathbb{Z}b_2 \oplus \dots \mathbb{Z}b_n$$

Hence we are done.

1.4 Covolume of a lattice

Now that for every abstract lattice L we can find an invertible matrix g such that

$$L \cong g\mathbb{Z}^n$$

The number n is called the **rank** of the lattice L.

Let $\{e_1, e_2, \dots, e_n\}$ be an orthonormal basis of $L_{\mathbb{R}} \cong \mathbb{R}^n$ and

$$q = [b_1|b_2|\dots|b_n].$$

The covolume of the lattice L is defined as

fix the proof so that we use the definition 1.4.

Definition 1.5. The covolume of L is given by the formulae

$$\operatorname{vol}(L_{\mathbb{R}}/L) = |\det(b_i \cdot e_j)|$$

The rank and covolume are invariant numerical values of L, as they don't depend on the choice of basis.

may
be
add
proof.

1.5 Sublattices

To work with semi-stable lattice, we need to consider all the lattices containing inside

Definition 1.6 (sublattice). Let (L,Q) be a Euclidean \mathbb{Z} -lattice. We say that a \mathbb{Z} -submodule M of L a sublattice if and only if L/M is torsion free.

From this definition, we can prove that M is a sublattice of L if it satisfies one of the following equivalent properties:

- 1. M is a summand of L.
- 2. every basis of M can be extended to a basis of L.
- 3. L/M is torsion free.
- 4. The group M is an intersection of L with a rational subspace of $L_{\mathbb{R}}$.

Example 1.7. If $L = \mathbb{Z}^2$, then any sublattice of L is a primitive vector u = (a, b), i.e gcd(a, b) = 1. Indeed, u = (a, b) is a sublattice of \mathbb{Z}^2 if and only if there exists a vector $v \in \mathbb{Z}^2$ such that $L = \mathbb{Z}u \oplus \mathbb{Z}v$. With respect to the usual inner product on \mathbb{R}^2 , we have

$$1 = \operatorname{vol}(\mathbb{Z}^2) = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

This happens if and only if gcd(a, b) = 1.

2 Semi-stable lattices: two definitions

2.1 Grayson's definition of semi-stable lattice

In this section, we introduce the idea of Grayson in defining *semi-stable* lattices. In particular, he associates every lattices a plot and its convex hull - called *profiles*. An easy observation is that, if $M \subset L$ is a sublattice, then the space $M_{\mathbb{R}} = M \otimes \mathbb{R}$ is a subspace of $L_{\mathbb{R}}$, equipped with the restriction of the positive definite symmetric form Q of L,hence M is also a lattice of rank not exceeding rank of L.

Definition 2.1 (slope). The slope of a non-zero lattice L is the number

$$\mu(L) = \frac{\log \operatorname{vol}(L)}{\dim L}$$

Definition 2.2. Suppose we have a lattice L. For any sublattice $M \subset L$, we assign M to a point

$$l(M) = (\dim M, \log \operatorname{vol}(M))$$

in the plane \mathbb{R}^2 . The collection of all points l(M) where M ranges over all sublattices of L is called **the canonical plot** of the lattice L. By convention, we assign the lattice of zero rank to the origin of the plane.

The following lemma asserts that, for each vertical axis x = i, there is a lowest point.

Lemma 2.3. Given a lattice L and a number c, there exists only a finite number of sublattices $M \subset L$ such that vol(M) < c.

add a proof

Definition 2.4. The boundary polygon of the convex hull of the canonical plot is called **profile** of the lattice L.

In theory, we can compute the profile by searching for the shortest vector in each of its exterior product, but this computation is infeasible when the dimension of the lattice grows. Since there are lattices with arbitrarily large volume of any rank smaller than that of L, we add to the side the point $(0, \infty)$ and (n, ∞) . The sides of the profile are therefore two vertical lines. The bottom is just the convex polygonal connecting the origin with the point $l(L) = (n, \log \operatorname{vol}(L))$, where n is the rank of L.

Definition 2.5. If the bottom of the profile contains only two points (0,0) and $(n, \log \operatorname{vol} L)$, then the lattice L is said to be **semi-stable**. Otherwise L is said to be **unstable**.

Here are the picture of two lattices. The one on the left is semi-stable while the one on the right is unstable.

Visually, a lattice is called **semi-stable** if it satisfies the other equivalent conditions: If M is an arbitrary sublattice of L then $\mu(M) \ge \mu(L)$.

2.2 ρ -definition of semi-stability

There is another, more algebraic way to determine whether a given lattice is semi-stable. This definition ultilize the notion of parabolic subgroups. We will first recall what is a k- parabolic subgroups for the general linear group GL_n for $n \ge 2$, over an arbitrary field k. Let e_1, e_2, \ldots, e_n be a standard basis for the vector space k^n . From linear algebra, we know that each linear map $T: k^n \to k^n$ can be identified with a $n \times n$ matrix. In particular we obtain an identification between the group $GL_n(k)$ with $GL(k^n)$ of k- automorphisms of k^n .

Definition 2.6. A flag \mathcal{F} of k^n is a chain of linear subspaces

$$\mathcal{F} \colon 0 \subset F_1 \subset F_2 \subset \ldots \subset F_r \subset k^n$$

Let $d_i = \dim F_i$, then we call the ordered r-tuple (d_1, d_2, \ldots, d_r) the type of the flag \mathcal{F} .

A parabolic subgroup of $Gl(k^n)$ is the stabilizer $P_{\mathcal{F}} = P$ of a flag \mathcal{F} . A parabolic subgroup P is call *minimal* if it stabilizes a flag of type (1, 2, ..., n).

Let e_1, \ldots, e_n be the standard basis for the k-vector space k^n . For any $1 \le i \le n$, define V_i to be $e_1 + \cdots + e_i$. We call a flag \mathcal{V} by the chain

$$\mathcal{V}: 0 \subset V_{d_1} \subset V_{d_2} \subset \cdots \subset V_{d_r} \subset k^n,$$

a standard flag in k^n . Let $d_0 = 0$ and $d_{r+1} = n$. We define $r_j := d_j - d_{j-1}$, where $j = 1, \ldots, r+1$. Then $\rho = (r_1, \ldots, r_{r+1})$ is an ordered partition of n into positive integers, i.e., an ordered sequence of positive integers so that $r_1 + \cdots + r_{r+1} = n$. The corresponding standard parabolic subgroup $P_{\mathcal{V}} := P_{\rho}$ consists of all matrices in $GL_n(k)$ admitting a block decomposition whose diagonal blocks are $(r_j \times r_j)$ -matrices in $GL_{r_j}(k)$, $j = 1, \ldots, r+1$, the lower entries are 0, and the other entries are arbitrary. Every parabolic subgroup of $GL_n(k)$ is conjugate to a subgroup of this type. The maximal standard parabolic subgroups in $GL_n(k)$ corresponds to the stabilizer of the flag of type $\rho_i = (i, n-i)$, where $i = 1, \ldots, n-1$ of n. We will further denote $Q_i = P_{\rho_i}$ and $\mathbf{MaxParSt}$ the collection of such maximal parabolic subgroups. We are now ready to define the ρ -definition of semi-stable lattice. Recall that we define the space of lattices of rank n by $X_n := K \backslash GL_n(\mathbb{R})$, where K is the orthogonal subgroup.

Definition 2.7 (ρ -definition). Let $x \in X_n$ be an arbitrary lattice, then the lattice x is called **semi-stable** if and only if its degree of instability $\deg_{inst}(x) \ge 0$, where

$$\deg_{inst}(x) := \min_{Q \in MaxParSt, \gamma \in SL(\mathbb{Q})/Q_i(\mathbb{Q})} \langle \rho_Q, H_Q(x\gamma) \rangle$$

A simple observation is that - a lattice x is semi - stable if for all maximal standard parabolic subgroups Q_i , we have

$$\min_{\gamma \in \mathrm{SL}_n(\mathbb{Q})/Q_i(\mathbb{Q})} \langle \rho_Q, H_Q(x\gamma) \rangle \geqslant 0$$