1 Category Theory

1.1 Categories

Definition 1 (Category). A category \mathscr{C} is a collection of **objects**, such that:

- (i.) for each pair of objects $A, B \in Ob(\mathscr{C})$;
- (ii.) a collection of morphisms is given by $\operatorname{Mor}(A,B)$;
- (iii.) there exists operation titled composition of morphisms given by

$$Mor(A, B) \times Mor(B, C) \to Mor(A, C)$$

such that $f, g \mapsto g \circ f$;

- (iv.) Category Theory Axioms:
 - (a) every object A has an identity morphism $id_A \in Mor(A, A)$ such that

$$\forall f \in \text{Mor}(A, B), f \circ \text{id}_A = \text{id}_B \circ f = f;$$

(b) composition (of morphisms) is associative, i.e., $(f \circ g) \circ h = f \circ (g \circ h)$.

We can think of categories and sets as, for the most part, the same thing, except for the fact that a category may include the category of all sets; this is where we deliniate sets and categories in order to avoid pesky paradoxes.

Some examples of categories, for purposes of clarity:

- 1. category of sets, $Mor(A, B) = all \text{ maps } A \to B$
- 2. Vect_k as a fin. dim. vector space over k, then Mor = linear maps
- 3. groups, group homomorphisms
- 4. topological spaces, continuous maps
- 5. and more...

There exists a relationship called **isomorphism** not too dissimilar from group-theoretic isomorphisms.

Definition 2 (Isomorphism). $f \in \text{Mor}(A, B)$ is an isomorphism if has inverse, i.e., $\exists g \in \text{Mor}(B, A)$ s.t. $g \circ f = id_A$ and $f \circ g = id_A \Rightarrow \text{if } \exists g \Rightarrow ! \exists g$ and that id_A is an isomorphism. $f \Rightarrow f^{-1}(gf^{-1})$ are both called isomorphisms, individually.

Concequentially the automorphisms Aut(A) is always a group. sets :permutations, groups: automs, vec: invertible lin op.

Isomorphic objects of e have isomorphic automorphic groups. Given $f \in \text{Mor}(A, B)$ as an isomorphism $c_f : Aut(A) \to Aut(B)$ which maps $q \mapsto f \circ q \circ f^{-1}$.

We may define sum, product, and quotient objects in categories. Consider a product $A \times B := \mathcal{C}$ of objects $A, B \in \mathcal{C}$ characterized by \mathcal{P} projects $\pi_1 \in \operatorname{Mor}(\mathcal{P}, A), \pi_2 \in \operatorname{Mor}(\mathcal{P}, A)$ s.t. \forall object T, $\forall f_1 \in \operatorname{Mor}(T, A), f_2 \in \operatorname{Mor}(T, B), \exists$ unique $f \in \operatorname{Mor}(T, \mathcal{P})$ s.t. $\pi_1 \circ f = f_1, \pi_2 \circ f = f_2$.

Figure 1

Definition 3 (functor). C, D categories, a (covariant) functor $F: C \to D$ is an assignment:

- 1. for every object X of C an object F(X) of D
- 2. for each morphism $f \in \text{Mor}_C(X, Y)$, a morphism $F(f) \in \text{Mor}_D(F(X), F(Y))$ s.t.
 - (a) $F(id_X) = id_{F(X)}$
 - (b) $F(g \circ f) = F(g) \circ F(f)$

Consider Forgetful functors , on a vector space over k given vector sace $V : Vect_k \to Vect_k$ objects: $W \mapsto Hom(V, W)$ lin. maps $V \to W$, morphism $f : W \to W' \Rightarrow ??$

Anywhos. He's going on about linear maps as morphisms for categories and functors but I don't care all that much at the moment. As a functor $F: \mathrm{Vect}_k \to \mathrm{Vect}_k$ can be shown as $Hom(V, \circ)$. What the mell does obj. $V \mapsto V_{\mathbb{C}} = V \oplus iV$

Definition 4. A contravariant functor $F: C \to D$ is the same except reverses direction of morphism:

$$f \in \operatorname{Mor}_C(X,Y) \mapsto F(f) \in \operatorname{Mor}_D(F(Y),F(X)) \mid F(g \circ f) = F(f) \circ F(g).$$

So for example, consider $V \to V^*$ s.t. $f \in Hom(V, W) \mapsto f^* \in Hom(W^*, V^*)$.

Definition 5. Given two functors $F, G : \mathscr{C} \to \mathscr{D}$ a natural transformation t from F to G is the data $\forall X \in Ob(\mathscr{C})$, a morphism $t_X \in \operatorname{Mor}_{\mathscr{D}}(F(X), G(X))$ s.t.

$$\begin{aligned} \forall X,Y \in Ob(\mathscr{C}), \forall f \in \operatorname{Mor}_{\mathscr{C}}(X,Y), \\ F(X) & \xrightarrow{F(f)} F(Y) \\ & t_{x} \Big\downarrow & \downarrow t_{y} \\ & G(X) & \xrightarrow{G(f)} G(Y) \end{aligned}$$

Definition 6 (Bilinear forms). A *bilinear form* on a vector space V over a field k is a map b: $V \times V \to k$ (this is to say we take $(v, w) \mapsto b(v, w)$) that is linear in each variable, i.e., $\forall u, v, w \in V$, $\lambda \in k$, $b(\lambda v, w) = b(v, \lambda w) = \lambda b(v, w)$ ("multiplied" on both sides separately).

Definition 7 (symmetric). Say b is symmetric if $b(v, w(=b(w, v))) \forall v, w \in V$ and is skew symmetric if b(v, w) = -b(w, v).

I have mentally clocked out, I spent last night and this morning going over the notes for today and ngl i understood it better before he started explaining it

AWWWWWW

