Chapter 4. (Part 2)

The Greedy Approach

경북대학교 배준현 교수

(joonion@knu.ac.kr)

Contents

- 4.1 Minimum Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- 4.2 Dijkstra's Algorithm for Single-Source Shortest Paths
- 4.3 Scheduling Problem
- 4.4 Huffman Code
- 4.5 The Knapsack Problem: Greedy .vs. Dynamic Programming

■ The *Scheduling* Problem:

- The time in the system is
 - the time spent both waiting and being served.
- The problem of *minimizing* the *total time in the system*
 - has many applications.
 - ex) scheduling users' access to a bank counter or a disk drive.
- You would learn it in detail
 - when you study the schedulers of operating system.

Scheduling with Deadlines:

- Another scheduling problem
 - occurs when each job takes the same amount of time to complete,
 - but has a *deadline* by which it must start to *yield a profit*
 - associated with the job.
- The goal is
 - to schedule the jobs to *maximize* the *total profit*.

- The Problem of Scheduling with Deadlines:
 - Each job *takes one unit* of time to finish
 - and has a *deadline* and a *profit*.
 - If the job starts *before or at* its deadline, the profit is obtained.
 - Therefore, not all jobs have to be scheduled.
 - A schedule is called *impossible*,
 - if a job is scheduled *after its deadline*.
 - We need not consider any impossible schedule
 - because the job in that schedule does not yield any profit.

Job	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

1	2	3	4
Job 1	Job 2 (i	mpossible))
Job 1	Job 3		
Job 1	Job 4 (i	mpossible))
Job 2	Job 1		
Job 2	Job 3		
Job 2	Job 4 (i	mpossible))

ofit	Total Pro	Schedule
	55	[1, 3]
	65	[2, 1]
	60	[2, 3]
	55	[3, 1]
(optimal)	70	[4, 1]
	65	[4, 3]

$$profit([1,3]) = 30 + 25 = 55$$

 $profit([4,1]) = 40 + 30 = 70$

- The Greedy Approach to the Problem:
 - To consider all schedules, a brute-force approach,
 - takes *factorial* time. (worse than exponential)
 - A reasonable greedy approach for solving the problem would be:
 - First, *sort* the jobs in *non-increasing* order *by profit*.
 - Next, *inspect* each job in sequence
 - and add it to the schedule if it is possible.

- The Greedy Approach to the Problem:
 - A sequence is called a **feasible sequence**
 - if all the jobs in the sequence *start by their deadlines*.
 - ex) [4, 1]: feasible sequence, [1, 4]: not a feasible sequence.
 - A set of jobs is called a **feasible set**
 - if there exists *at least one feasible sequence* for the jobs in the set.
 - ex) $\{1, 4\}$: feasible set, $\{2, 4\}$ not a feasible set.
 - Our goal is to find an *optimal* sequence,
 - which is a feasible sequence with maximum total profit.
 - An *optimal set of jobs* is the set of jobs in an optimal sequence.

• High-level greedy algorithm for the problem:

```
sort the jobs in nonincreasing order by profit;
S = \emptyset;
while (the instance is not solved) {
  select next job;
  if (S is feasible with this job added)
     add this job to S;
  if (there are no more jobs)
     the instance is solved;
```


Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

1.
$$S = \phi$$

- 2. $S = \{1\}, [1]$ is feasible
- 3. $S = \{1, 2\}, [2, 1]$ is feasible
- 4. $S = \{1, 2, 3\}$, rejected there is no feasible sequence for this set : $S = \{1, 2\}$
- 5. $S = \{1, 2, 4\}, [2, 1, 4]$ is feasible
- 6. $S = \{1, 2, 4, 5\}$, rejected $S = \{1, 2, 4\}$
- 7. $S = \{1, 2, 4, 6\}$, rejected $S = \{1, 2, 4\}$
- 8. $S = \{1, 2, 4, 7\}$, rejected $S = \{1, 2, 4\}$ (feasible set) [2, 1, 4] (feasible sequence)

- An efficient way to *determine* whether a set is *feasible*:
 - Lemma:
 - Let S be a set of jobs, then S is feasible
 - *if and only if* the sequence obtained by ordering
 - the jobs in *S* according to *nondecreasing deadlines*

We need only check the feasibility of the sequence:

• is feasible.

 $S = \{1, 2, 4, 7\}$: feasible? [2, 7, 1, 4]not feasible

ALGORITHM 4.4: Scheduling with Deadlines

```
void schedule(int n, int dealine[], sequence_of_integer &J) {
    int i;
    sequence of integer K;
    J = [1];
    for (i = 2; i <= n; i++) {
        K = J with i added according to nondecreasing values of deadline[i];
        if (K is feasible)
            J = K;
```


Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

The jobs are already sorted by the profit

1.
$$J = [1]$$

- 2. K = [2,1], K is feasible J = [2,1]
- 3. K = [2,3,1] is rejected, because K is not feasible
- 4. K = [2,1,4], K is feasible J = [2,1,4]
- 5. K = [2,5,1,4] is rejected
- 6. K = [2,1,4,6] is rejected
- 7. K = [2,7,1,4] is rejected
- J = [2, 1, 4] is the final result
- $Total\ Profit = 35 + 40 + 25 = 100$


```
typedef vector<int> sequence_of_integer;
bool is_feasible(sequence_of_integer& K, sequence_of_integer& deadline) {
    for (int i = 1; i < K.size(); i++)
        if (i > deadline[K[i]])
            return false;
    return true;
```



```
void schedule(int n, sequence of integer& deadline, sequence of integer &J) {
    sequence of integer K;
    J.clear();
    J.push back(0); // for an empty job
    J.push back(1);
    for (int i = 2; i <= n; i++) {
        // K = J with i added according to nondecreasing values of deadline[i];
        K.resize(J.size());
        copy(J.begin(), J.end(), K.begin());
        int j = 1;
        while (j < K.size() && deadline[K[j]] <= deadline[i])</pre>
            j++;
        K.insert(K.begin() + j, i);
        if (is_feasible(K, deadline)) {
            //J = K
            J.resize(K.size());
            copy(K.begin(), K.end(), J.begin());
```


- Time Complexity of Algorithm 4.4 (Worst-Case)
 - Basic Operation: the operation of comparisons to *sort*, to do K = I, and to *check* if K is *feasible*.
 - Input Size: *n*, the *number of jobs*.
 - In each iteration of the for-i loop, we need to do
 - at most i-1 comparisons to add the ith job of K,
 - and at most *i* comparisons to *check* if *K* is *feasible*.
 - Therefore, the worst case is

$$W(n) = \sum_{i=2}^{n} [(i-1) + i] = n^2 - 1 \in \Theta(n^2)$$

- The problem of *data compression*
 - is to find an *efficient method* for *encoding a data file*.
 - A *binary code* is a common way to represent a data file.
 - A codeword is a unique binary string
 - representing *each character* in a binary code.
 - A *fixed-length* binary code
 - represents each character using the *same number of bits*.
 - A *variable-length* binary code is a more efficient coding.
 - It represents different characters using different number of bits.

- The Problem of the *Optimal Binary Code*:
 - Given a file (or a string of characters),
 - find a *binary character code* for the characters in the file,
 - which represents the file in the *least number of bits*.
 - We discuss the encoding method, called *Huffman code*,
 - then we develop *Huffman's algorithm* for solving this problem.

 $File = ababcbbbc, character set = \{a, b, c\}$

Character	Fixed-lengh Binary Code
a	00
b	01
c	10

Character	Variable-length Binary Code
a	10
b	0
С	11

a b a b c b b c c 00 01 00 01 10 01 01 10

a b a b c b b c
10 0 10 0 11 0 0 0 11

• It takes 18 bits with this encoding

- 'b' occurs most frequently:
 - Encode 'b' with one bit (0)
- Encode 'a' and 'c' starting with 1 to distinguish from 'bb'
 'a': 10, 'c': 11
- It takes only 13 bits with this encoding

Prefix Code

- is one particular type of variable-length code.
- In a prefix code, *no codeword* for one character
 - constitutes the *beginning of the codeword* for another character.
- Every prefix code can be represented by
 - a binary tree whose *leaves* are *the characters* that are to be encoded.
- The advantage of a prefix code is that
 - we *need not look ahead* when parsing the file.

- a: 10
- c: 11

S	= -	$\{a,$	b,	С,	d,	e,	<i>f</i> }
		()	~ ,	-,	••,	•,	ו ו

$Code_2$	
0 1	
f	
0 1	
a	
0 1	
d	
0 1	
c	
	\

Character	Frequency	$Code_1$	$Code_2$	$Code_3$
a	16	000	10	00
b	5	001	11110	1110
c	12	010	1110	110
d	17	011	110	01
e	10	100	11111	1111
f	25	101	0	10

- *Code*₁: Fixed-Length
- *Code*₃: Huffman code

- Computing the *number of bits* for *encoding*:
 - Given the binary tree T corresponding to some code
 - the number of bits it takes to encode a file is given by
 - bits(T) = $\sum_{i=1}^{n} frequency(v_i) \times depth(v_i)$
 - where $\{v_1, v_2, \dots, v_n\}$ is the set of characters in the file,
 - $frequency(v_i)$ is the number of times v_i occurs in the file,
 - and $depth(v_i)$ is the depth of v_i in T.

- $bits(Code_1) = 255$
- $bits(Code_2) = 231$
- $bits(Code_3) = 212$

- Huffman's Algorithm
 - Huffman developed a greedy algorithm
 - that produces an *optimal binary character code* by constructing
 - a *Huffman code*, a *binary tree* corresponding to an *optimal code*.
 - We need a *type declaration* for the node of binary tree.
 - We also need to use a *priority queue*
 - in which the character with the *lowest frequency* is *removed next*.
 - It can be implemented as a *min-heap*.

• High-level pseudo-code for the Huffman's algorithm:

```
n = number of characters in the file;
Arrange n pointers to nodetype records in a PQ;
for (i = 1; i <= n - 1; i++) {
    remove(PQ, p);
    remove(PQ, q);
    r = new nodetype;
    r \rightarrow left = p;
    r \rightarrow right = q;
    r->frequency = p->frequency + q->frequency;
    insert(PQ, r);
remove(PQ, r);
return r;
```



```
typedef struct node *node ptr;
typedef struct node {
    char symbol; // the value of a character.
    int frequency; // the number of times the character is in the file.
    node ptr left;
    node_ptr right;
} node t;
struct compare {
    bool operator()(node_ptr p, node_ptr q) {
        return p->frequency > q->frequency;
};
typedef priority queue<node ptr, vector<node ptr>, compare> PriorityQueue;
```



```
void huffman(int n, PriorityQueue& PQ)
    for (int i = 1; i <= n - 1; i++) {
        node_ptr p = PQ.top(); PQ.pop();
        node_ptr q = PQ.top(); PQ.pop();
        node_ptr r = create_node('+', p->frequency + q->frequency);
        r \rightarrow left = p;
        r->right = q;
        PQ.push(r);
```


- Time Complexity of Huffman's Algorithm
 - If a priority queue is implemented as a min-heap,
 - each heap operation (insert & remove) requires $\Theta(\lg n)$ time.
 - Since there are n-1 passes through the for-i loop,
 - the algorithm runs in $\Theta(n \lg n)$ time.

- It is *provable* that
 - Huffman's algorithm always produces an optimal binary code.
 - based on Lemma:
 - The binary tree corresponding to an *optimal binary prefix code* is *full*.
 - That is, every nonleaf node has two children.

- How to *encode* a string of characters?
 - Make a hash map of characters and binary codes, then,
 - Given with a string of characters, *afdbce*,
 - you can *transform* it directly into 00100111101101111.


```
void make_encoder(node_ptr node, string code, map<char, string> &encoder) {
    if (node->symbol != '+') { // leaf node
        encoder[node->symbol] = code;
    } else { // internal node
       make_encoder(node->left, code + "0", encoder);
       make_encoder(node->right, code + "1", encoder);
```


- How to decode an encoded binary string?
 - Given with an encoded binary string, 001001111011011111,
 - you can *traverse* the binary tree to decode it into *afdbce*.


```
void decode(node_ptr root, node_ptr node, string s, int i) {
    if (i <= s.length()) {
        if (node->symbol != '+') { // leaf node
            cout << node->symbol;
            decode(root, root, s, i);
        } else { // internal node
            if (s[i] == '0')
                 decode(root, node->left, s, i + 1);
            else // <mark>s[i] == '1'</mark>
                decode(root, node->right, s, i + 1);
```

Any Questions?

