National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Theory of Automata	Course Code:	CS 301
Program:	BS Computer Science	Semester:	Fall 2019
Duration:	180 Minutes	Total Marks:	75
Paper Date:	December 16, 2019.	Weight	45
Section:	N/A	Page(s):	6
Exam Type:	Final Exam		

Roll No. Student : Name:

Instruction/ **Notes:**

- 1. Solve in the space provided. Extra sheets will NOT be collected or marked.
- 2. One A4 handwritten help sheet is allowed.
- 3. In case of any ambiguity make a reasonable assumption.

Good luck!

Problem 1 (Marks: 1+2+2)

Given the regular expressions: $R_1 = (a^*+b)^*ab$ and $R_2 = (a+b^*)^*a^*b$

- a. Write the three shortest strings generated by R₁.
- b. Give a regular expression for $L(R_1) \cap L(R_2)$
- Which of the expressions are correct?

i.
$$L(R_1) \cup L(R_2) = \Sigma^*$$

ii.
$$L(R_1)\subseteq L(R_2)$$

ii.
$$L(R_1)\subseteq L(R_2)$$
 iii. $L(R_1)L(R_2) = (a+b)*ab(a+b)*(a*b*)b$

Problem 2 (Marks: 5)

Remove all the ϵ -transitions from this NFA- ϵ and make the state transition diagram of the resulting NFA. No additional working is required. Also, indicate the start and final states.

State	0	1

Roll Number: _____

Problem 3 (Marks: 5)

Minimize the following DFA. Fill out the table. Draw the resulting DFA and clearly indicate which states

were merged.

6											х	
5									х		х	
4							х		х		х	
3					х		х		х		х	
2			х		х		х		x		х	
1	х		Х		х		х		х		х	
		1		2		3		4		5		6

Problem 4 (Marks: 5)

Find the regular expression corresponding to the given automaton using the method of state elimination. Show all steps.

Roll Number:	
Ron Number.	

Problem 5 (Marks: 5)

$$L = \{ (0^n 1^{2n}) * \mid n \ge 0 \}$$

Write the three shortest strings of L and express this language as a CFG. Clearly mark the start symbol.

Problem 6 (Marks: 5)

Use the CYK algorithm to determine if the string 0110 is generated by the given CFG (S is start symbol). Show working.

 $S \rightarrow AZ \mid ZA$

 $Z \rightarrow 0 \mid AZ$

 $A \rightarrow 1 \mid ZA$

Problem 7 (Marks: 5) Prove that $n^4 2^{n^3} = 2^{O(n^3)}$. All steps are required.

Kon Number.	Roll Number:	
-------------	--------------	--

Problem 8 (Marks: 5)

Prove that if we find a language $A \in P$ and we also find that A is NP-complete then P=NP

Problem 9 (Marks: 5)

Reduce the following instance of 3SAT to an instance of CLIQUE. Clearly specify the graph G and k. CLIQUE = $\{ \langle G,k \rangle \mid G \text{ is an undirected graph with a k-clique} \}$ $(x_1 \wedge x_1 \wedge x_2) \vee (\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_2)$

Problem 10 (Marks: 5)

Prove that the following language belongs to NP complexity class

 $L = \{ \langle G, s, t, k \rangle \mid G \text{ is an undirected graph and there is a path from s to t of length at least k and no node repeats itself in the path}$

Problem 11 (Marks: 2x8=16)

For each part, give a one/two line explanation or counter example. Only yes/no answer scores zero.

- i. Can an NFA can be reduced to a DFA in polynomial time or not?
- ii. If L_1 and L_2 are context free languages then is $L_1 \cap L_2$ also a context free language?
- iii. Are all context free languages member of NP? Are they NP-complete?
- iv. If $L_1 \subseteq L_2$ and L_1 is not a regular language then is L_2 also non-regular?
- v. Are there any recursively enumerable languages member of NP?
- vi. $L = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ halts on input } w \}$. Is L Turing recognizable?
- vii. Is $P \subseteq NP$?
- viii. Can we simulate a PDA using a queue, which is a first in first out structure, instead of a stack?

Problem 12 (Marks: 2+2)

- i. Write the complement of L defined over the alphabet $\{0,1\}$. L = $\{0^n 1^n \mid n \ge 0\}$
- ii. Suppose $L_1 = \{0^n 1^n \mid n \ge 0\}$ and $L_2 = \{1^n 2^n \mid n \ge 0\}$ Write down $L_1 L_2$

Roll Number:	

Problem 13 (Marks: 5)

Make a deterministic single tape Turing machine to decide the following language:

 $L = \{x \mid x \in \{0,1\}^* \text{ and length of } x \text{ is odd and there is a zero in the center of the string}\}$

Examples of string in L are 11010, 011100011, 001, etc.

Label each edge using Sipser's notation: Symbol read -> symbol written, {L,R} (you can omit symbol written if input symbol is not changed)