Stikprøveteori vejning/vægte/

Sommerskole

om vejning

- 1. Traditionel vejning ("lagkageregning"). Brug af "officielle" variable så som køn, alder, geografi.
- 2. Politisk vejning, en sofistikeret version af ovenstående her inddrages panel tankegangen

Stratifikation

Strata	Antal	Univers	stikprøve	stikprøve	sum	gns	var
		vægte	antal	vægte			
1	N_1	$W_1 = \frac{N_1}{N}$	n_1	$w_1 = \frac{n_1}{n}$	<i>Y</i> _{1.}	$\overline{Y}_{1.}$	S_1^2
2							
K	N _K	$W_K = \frac{N_K}{N}$	n _K	$W_K = \frac{n_K}{n}$	Y_{K}	$\overline{Y}_{K.}$	S_K^2
TOTAL	N	1	n	1	Y = Y	_ '	

Stratifikation

$$E(\overline{y}_{k.}) = \overline{Y}_{k.}$$

$$V(\overline{y_{k.}}) = \frac{(N_k - n_k)}{N_k} \frac{1}{n_k} S_k^2$$

$$\overline{y}_{strat} = \sum_{k=1}^{K} W_k \overline{y}_{k}$$

$$E(\overline{y}_{strat}) = \overline{Y}$$

$$V(\overline{y}_{strat}) = \sum_{k=1}^{K} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2$$

Vejning

$$\overline{y}_{strat} = \sum_{k=1}^{K} W_k \overline{y_{k.}} = \sum_{k=1}^{K} W_k \frac{1}{n_k} \sum_{m=1}^{n_k} y_{km} = \frac{1}{n} \sum_{k=1}^{K} W_k \frac{n}{n_k} \sum_{m=1}^{n_k} y_{km}$$
 brug stikprøve vægte $w_k = \frac{n_k}{n}$

$$\frac{1}{n} \sum_{k=1}^{K} W_k \frac{1}{w_k} \sum_{m=1}^{n_k} y_{km} = \frac{1}{n} \sum_{k=1}^{K} \sum_{m=1}^{n_k} \frac{W_k}{w_k} y_{km}$$

$$\frac{1}{n}\sum_{k=1}^K\sum_{m=1}^{n_k}(vgt_k)y_{km}$$

vægtene er
$$\frac{W_k}{w_k} = \frac{\textit{univers}_\textit{vægt}}{\textit{stikprøve}_\textit{vægt}}$$

5 / 11

Stratifikation

	alder	Univers	W_k	n_k	W _k	vgt	DF	DF	
							i stik	vægtet	
М	15-40	874.044	19,8	165	13,3	1,49	10	14,9	
М	40-69	1.057.619	24,0	368	29,6	0,81	30	24,3	
М	70+	233.798	5,3	77	6,2	0,86	12	10,3	
K	15-40	851.737	19,3	179	14,4	1,34	6	8,0	
K	40-69	1.053.420	23,9	359	28,9	0,83	35	29,1	
K	70+	340.962	7,7	96	7,7	1,00	4	4,0	
		4.411.580	100	1244	100	-	97	90,6	

Dansk Sociologi december 2009. Data er fra ESS år 2006 dvs. 3. runde

Meningsmåling

I 1997 udvalgte Gallup simpelt tilfældigt (så godt som muligt) 990 personer, som de stillede nogle spørgsmål.

Det sidste folketingsvalg var i 1994. Her fik liste A (socialdemokraterne) 34,6% af stemmerne og dermed fik de øvrige partier 65,4%

1. spørsmål:

Hvilket part stemte De på ved FV i 1994? (Stikprøve n=990)

parti	Stemte	procent	
Α	278	28%	
Andet	712	72%	
TOTAL	990	100%	

Overvej hvilken fordeling du vil bruge til at beskrive ovenstående Der stilles også spørgsmålet hvilket part ville De stemme på hvis der var FV i morgen?

Politisk indeks

De to spørgsmål er nu "krydses" mod hinanden.

vil stemme	stemte	stemte	total	
	А	Andet		
А	248	44	292	
Andet	30	668	698	
TOTAL	278	712	990	

 $\begin{array}{ll} A = \{ vil \ stemme \ på \ A \} & B = \{ stemte \ på \ A \} \\ P(A) & P(AIB) \ og \ P(AIB^c) \ B^c \ er \ B's \ komplementærhændelse \\ \end{array}$

opskriv udtrykket for P(A) ved brug af B og B^c Er de to hændelser A og B uafhænige?

Politisk indeks

vil stemme	stemte	stemte	total	
	А	Andet		
Α	248	44	292	
Andet	30	668	698	
TOTAL	278	712	990	

P(vil stemme A I stemte på A) = $\frac{248}{278}$ = 0, 8921 P(vil stemme A I stemte på andet) = $\frac{44}{712}$ = 0, 0618

P(vil stemme på A) = P(vil A I stemte A)P(stemte A) + P(vil A I stemte andet)P(stemte andet)

 $= 0.8921*0.346 + 0.0618*0.654 = 34.9\% \pmod{\text{si på} \frac{292}{990}} = 29.5\%$

Politisk indeks

to strataer. Stemte på A, stemte på andet ved FV i 1994

strata		univers vgt			andel		
	N_k	W_k	n_k		\widehat{p}_k	$W_k * \widehat{p}_k$	
stemte A	1.453.200	0,346	278	248	0,8921		
stemte -A	2.746.800	0,654	712	44	0,0618		
TOTAL	4.200.000	1,000	990			0,349	

$$V(\widehat{p}_{strat}) = \sum_{k=1}^{2} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2 \approx \sum_{k=1}^{2} W_k^2 \frac{1}{n_k} S_k^2 = \sum_{k=1}^{2} W_k^2 \frac{1}{n_k} P_k (1 - P_k) = (0,87\%)^2$$

$$\sum_{k=1}^{N} VV_{k}^{2} \frac{1}{n_{k}} P_{k} (1 - P_{k}) = (0.87\%)^{2}$$

$$V(\widehat{P}) = \frac{N-n}{N} \frac{1}{n} P(1-P) = (1,45\%)^2$$

se også regneark

Ved valget den den 11. marts 1998 fik A 35,9%

Universvægte: $W_K = \frac{N_K}{N}$ kan bruges til prop allokering stikprøvevægte: $w_K = \frac{n_K}{n}$ er resultat af indsamlingen

"analyseinstitutsvægte" vgt= $\frac{W_K}{w_K}=\frac{univers-vgt}{stikprøve-vgt}$ "man vejer intuitivt på plads (s 151 i S. SAS)

Disse vægte er ofte dem der udleveres til når data er indsamlet af et institut (herunder også ESS ?)

Udvalgsvægte: $\frac{N_K}{n_K}$ den reciprokke udvalgsbrøk pr. stratum bruges når SAS skal beregne variansen af en stratificeret stikprøve

 $\mathsf{DEFF}_w = \frac{n\sum\limits_{k=1}^n vgt_i^2}{(\sum\limits_{vgt_i})^2} = \mathsf{populært\ sagt},\ \mathsf{den\ andel\ man\ skal\ } \mathsf{øge\ stikpr} \mathsf{øven}$

med, for at opnå variansen for en simpel tilfældig stikprøve. (s. 172 i S. SAS)