國立虎尾科技大學機械設計工程系

電腦輔助設計實習 ag1 期末報告

第一組期末報告

學生:

設計二乙40523101 江宜欣

設計二乙40523102 杜羿蓉

設計二乙40523111 何偉豪

設計三甲40423160 許育誠

設計三乙40423246 劉永駿

指導教授:嚴家銘

2018.01.11

摘要

報告動機:

製作小鋼球提球機構,組員製作各自的小鋼球運送軌道, 適用在小組的機構中,小鋼球提球機構必須能放置在郵局 BOX2【23*18*19(cm)】的箱子中。

報告重點:

小組中五位成員各自製作個人小鋼球運輸軌道,必須適 用在小組的鋼球提球機構,並且尺寸符合規範。

組員各自的影片介紹。

關鍵字:

提球機構、Onshape

目錄

摘要・・	· · · · · · · · · · · · · · · i
目録・・	
第一章	前言・・・・・・・・・・・・1
第二章	機構介紹・・・・・・・・・・・・2
2.1	機構設計・・・・・・・・・・2
2.2	模擬遇到的困難・・・・・・・・・5
2.3	個人軌道組合到機構上・・・・・・・6
第三章	個人部分・・・・・・・・・・・8
3.1	設計二乙 40523101 江宜欣・・・・・・8
3.2	設計二乙 40523102 杜羿蓉・・・・・・・・
3.3	設計二乙 40523111 何偉豪・・・・・・・・・・
3.4	設計三甲 40423160 許育誠・・・・・・・・・
3.5	設計三乙 40423246 劉永駿・・・・・・・・・
第四章	期末報告心得・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第五章	結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1	討論與建議・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第五章	参考文獻・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1	附録・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

圖目錄

昌	1-1	Gi	thub	別	司倉	諸	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
昌	2-1	参	考影	片	提玛	求	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
昌	2-2	参	多考影	涓	放理	求	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
昌	2-3	SO	lvespa	ace	模類	疑	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (3
圖	2-4	SO	lvespa	ace	模排	疑	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (3
昌	2-5	SO	lvespa	ace	模排	疑	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (3
昌	2-6	~1() 零作	牛表	₹•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	4
圖	2-1	1 :	組合領	完成	送圖	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
圖	2-12	2 .	上軌刻	首余	和	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
圖	2-13	3 i	nvento	or 1	慔擬	馬	達	轉	動	j 1	•	•	•	•	•	•	•	•	•	•	•	•	5
昌	2-13	3 i	nvento	or †	慔擬	馬	達	轉	動	j 2	•	•	•	•	•	•	•	•	•	•	•	•	5
昌	2-14	4	江宜加	次	個人	動	達	Í	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
昌	2-15	5	許育詞	成	個人	動	達	Í	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
昌	2-17	7 !	劉永思	浚	個人	動	道	Í	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
昌	2-18	8	何偉	豪	個人	動	道	Í	•	•			•			•	•		•	•	•	•	7

第一章 前言

各組員練習所分配到的 OnShape 影片,並拍攝成練習影片,各組員在第九週後,按照課程進度,完成 Fossil SCM 網誌的更新,並提供個人製作過程的心得。

經過小組成員的討論後,先決定做出共用的提球機構, 各成員再製作各自的運輸軌道,並且調整至每個軌道都可以 替換,並且功能正常,大小也符合規範。

使用 Github 建立小組的協同倉儲,進行多人分工,以達到整合的目的,組員之間可以利用各自的時間,完成各自的工作,並上傳到 Github 上,使組員之間能夠在任何地方看到組員上傳後的負責項目。

圖 1-1 Github 協同倉儲

第二章 機構介紹

2.1 機構設計

機構必須要能放入郵局 BOX2 的紙箱中【23*18*19(cm)】, 鋼球大小直徑為 9mm,並且參考老師提供的影片,組員之間 互相討論,選擇一組機構當作參考,組員之間開始分工。

圖 2-1 參考影片 提球

圖 2-2 參考影片 放球

在 solvespace 中化至四連趕機構,並且模擬轉動情形

圖 2-3 solvespace 模擬 1

圖 2-4 solvespace 模擬 2

圖 2-5 solvespace 模擬 3

主機構 零件表							
底板							
抬球臂							
槓桿							
連桿 1							
連桿 2							

圖 2-11 組合完成圖

2.2 模擬遇到的困難

在 V-rep 中模擬,有時會遇到在斜面中,但是球卻往返 方向滾動,或者球在原地,而不是往低處滾動,導致模擬出 現問題,及抬球臂無法預期的將球送至上軌道,而是把球拍 走或是在空中滑落,造成模擬時出現無法預期的結果。

圖 2-12 上軌道斜面

圖 2-13 inventor 模擬馬達轉動 1

圖 2-14 inventor 模擬馬達轉動 2

2.3 個人軌道組合到機構上

每個組員各自設計自己的軌道,並且放在小組的機構中 能夠吻合及運作

圖 2-15 江宜欣 個人軌道

圖 2-16 許育誠 個人軌道

圖 2-17 劉永駿 個人軌道

圖 2-18 何偉豪 個人軌道

第三章 個人部分

3.1 四設二甲 江宜欣

Onshape 影片中文化

https://vimeo.com/242699889

https://vimeo.com/242733229

https://vimeo.com/249396896

https://vimeo.com/249998335

tinkercad arduino 操作影片

https://vimeo.com/243073102

機構模擬影片

https://vimeo.com/247266935

https://vimeo.com/249998334

https://vimeo.com/249998383

個人分工:機構設計及繪製零件圖

心得:這學期我都有按部就班的練習,翻譯的4部的onshape

影片,利用inventor做模組的設計再轉stl檔放入vrep做模擬,

再利用 github 做協同,以及好幾次 blog 壞掉徹底的熟悉

fossil °

3.2 四設二甲 杜羿蓉

3.3 四設二甲 何偉豪

3.4 四設三甲 許育誠 Onshape 影片

https://vimeo.com/250096665

https://vimeo.com/250098570

個人軌道模擬

https://vimeo.com/250241069

彈珠檯模擬

https://vimeo.com/249897827

個人負責項目:期末報告編寫及整合

心得:因為畫圖能力不強,所以負責工作為製作報告,不過自己的軌道設計也有完成,而且可以放到機構中實際模擬,因為檔案的問題,個人電腦無法完成讓球跑完整個機構,但是從軌道中間放置球可以模擬球除了擋球跟抬球的大部分,軌道也跟小組的機構吻合,跟老師說必須要可以替換軌道的部分是完成的;另外彈珠檯模擬的部分,引為彈簧的問題,所以也只能從空中落下,讓求去自由滾落,網路上看到有人用 matlab 跟 V-rep 做結合,不過看了幾次後還是不太懂如何

去做完整的結合;在 Onshape 的部分,原本用 solid edge 設計 了自己得虎鉗,但是放到 Onshape 中開得起來但是無法模擬 組裝,所以只好再 Onshape 中再畫一次,不過螺桿的螺牙部 分因為不熟悉 Onshape 的使用,畫不出來,否則應該跟在其 他 cad 軟體繪製的一樣,第二部影片,從 Onshape 開啟 dxf 檔,影片中是直接開啟檔案,而經過實際操作後,則是由其 他軟體配合 Onshape 開啟,無法做到修改尺寸的部分,實際 遇到這些問題後,個人部份:自己要懂得如何克服問題,問 老師或助教或者同學;小組部份:自己更加懂得小組整合的 重要,及組員之間互相配合的角色扮演,還有組員為了小鋼 球機構跟期末報告一起努力完成。

3.5 四設三乙 劉永駿

Onshape 影片

https://vimeo.com/250012096

https://vimeo.com/250009803

solvespace 機構模擬及 arduino 伺服馬達控制

https://vimeo.com/250010633

vrep 機構模擬

https://vimeo.com/250433958

個人負責項目:機構設計與機電模擬與 3D 列印後組裝

心得:在期中過後的分組,製作運球機構,我主要是教導隊 友製作模型,並且協助模擬機構的部分,以及模型的組裝, 在途中發現我們的連桿機構,有運球上切線的問題,這部分 老師有提醒所以有改善,但是由於在畫模型圖時,發現 vrep 對變化極少的斜坡,會有模擬失敗的問題,但是稍微調整參 數還是可以模擬得出來,可能在製圖時也要考慮 vrep 可模擬 的範圍,這學期對 vrep 的操作,已經有更加熟練。

第四章 期末報告心得

經過半個學期組員之間的相互配合,從不認識到互相配合一起完成機構與報告,及 3D 列印完成,每位組員都付出相當多的精神與時間,也因為大家都使用不同的 cad 軟體,整合上也需要花上許多時間,在 github 上都可以看到大家上傳的資料,這應該就是協同,大家在不同時間不同地點都可以上傳自己的資料,讓組員間可以達到協同的目的,雖然要交的東西很多,而且又有點複雜,但是只要按部就班,都可以順利解決,能夠學到不少經驗。

結論

設計後的機構大小為 **20*15*6.5(CM)**, 合乎郵局 BOX2 的大小規範。

組員有設計出屬於自己的軌道,及介紹自己的影片。

討論與建議

問題一:當初設計時有尺寸標錯,倒置 3D 列印後,孔的尺寸大於對於相對應的孔的尺寸。

解決一:3D列印後,組裝時軸用螺絲代替,所以只需要墊上墊片就可以解決問題。

問題二:完成設計後,老師提醒,擔心抬球臂把球從低處送 往高處時,球會從凹槽直接掉出。

解决二:把凹槽加深,使球在80度時,一樣可以把球穩穩地停在凹槽中。

https://www.youtube.com/watch?v=JcjSIvs-lEk

https://mde1a1.kmol.info/2017fall/wiki?name=cadpw10-w12