

University Institute of Engineering

Department of Computer Science & Engineering

EXPERIMENT: 3

NAME: Himanshi Kaushal UID: 23BCS12735

BRANCH: BE-CSE SECTION/GROUP: KRG-2A

SEMESTER: 5th SUBJECT CODE: 23CSP-339

SUBJECT NAME: ADBMS

1. Aim Of The Practical:

[EASY]:

1. Basic table creation and Duplicate handling:

Generate an employee relation with single attribute

ID. Retrieve the maximum ID value while excluding duplicates.

2 .Product Sales Analysis:

Select products which have never been sold.

Calculate the total quantity sold for each respective product.

[MEDIUM]:

1. To identify the top earners in every department:

If multiple employees share the same highest salary within a department, all of them should be celebrated equally.

The final result should present the department name, employee name, and salary of these top-tier professionals arranged by department.

[HARD]:

1. To merge the datasets and identify each unique employee (by EmpID) along with their lowest recorded salary across both systems.

Combine two tables A and B.

Return each EmpID with their lowest salary, and the corresponding Ename.

2. Tools Used : Microsoft SQL Server

3. Code:

```
EASY:
  Q_1:
  create table employees_tbl(
    e_id int
  );
  insert into employees_tbl values
  (1),
  (1),
  (2),
  (3),
  (3),
  (4),
  (5),
  (5),
  (6),
  (7),
  (7);
  select max(a.e_id) as max_distinct_id from (select e_id, count(e_id) as id_cnt from employees_tbl group by e_id) as a
    where a.id\_cnt = 1;
Q_2:
-- select product which has not been sold once
-- find the total quantity of sold for each respective product
 create table tbl products
          id int primary key identity,
          [name] nvarchar(50),
          [description] nvarchar(250)
 create table tbl_productsales
          id int primary key identity,
          productid int foreign key references tbl_products(id),
          unitprice int,
          qualtitysold int
 )
 insert into tbl products values ('tv','52 inch black color lcd tv')
 insert into tbl_products values ('laptop', 'very thiin black color acer laptop')
 insert into tbl_products values ('desktop', 'hp high performance desktop')
 insert into tbl_productsales values (3,450,5)
 insert into tbl_productsales values (2,250,7)
 insert into tbl productsales values (3,450,4)
 insert into tbl_productsales values (3,450,9)
 select * from tbl_products where tbl_products.id not in (select distinct productid from
                                                                                                 tbl_productsales);
 select name, (select sum(tbl_productsales.qualtitysold) from tbl_productsales where productid
 tbl_products.id) as [product sales] from tbl_products;
```

MEDIUM:

```
Q_{1}:
create table department (
  id int primary key,
  dept_name varchar(50)
);
-- create employee table
create table employee (
  id int,
  name varchar(50),
  salary int,
  department_id int,
  foreign key (department_id) references department(id)
);
-- insert into department table
insert into department (id, dept_name) values
(1, 'it'),
(2, 'sales');
-- insert into employee table
insert into employee (id, name, salary, department_id) values
(1, 'joe', 70000, 1),
(2, 'jim', 90000, 1),
(3, 'henry', 80000, 2),
(4, 'sam', 60000, 2),
(5, 'max', 90000, 1);
select d.dept_name, e.name, e.salary, d.id
from department as d
inner join
employee as e
e.department_id = d.id
where e.salary in
(
select max(e2.salary)
from employee as e2
where e2.department\_id = e.department\_id
)
order by d.dept_name
HARD:
Q_{1}:
create table table a (
 empid int primary key,
 ename varchar(50),
 salary int
);
create table table_b (
 empid int primary key,
 ename varchar(50),
 salary int
);
insert into table_a(empid, ename, salary) values
```

```
(1, 'aa', 1000),
(2, 'bb', 300);

insert into table_b(empid, ename, salary) values
(2, 'bb', 400),
(3, 'cc', 100);

select empid, ename, min(salary) as minsalary
from (
select *from table_a
union all
select *from table_b
) as combined
group by empid, ename;
```

4. Output:

[EASY]:

Q_1:

```
Output:

max_distinct_id
-----6
```

Q_2:

Output:		
id name		description
	1 tv	52 inch black color lcd tv
name		product sales
tv		NULL
tv laptop desktop		7
desktop		18

[MEDIUM]:

Q_1:

Output:		
dept_name	name	salary id
IT	MAX	90000
IT	JIM	90000
SALES	HENRY	80000

[HARD]:

Q_1:

Output:		
empid	ename	minsalary
1	aa	1000
2	bb	300
3	cc	100

5. Learning Outcomes:

- > Understood how to create a basic table and remove duplicates while retrieving values.
- > Understood how to analyze product sales data by finding unsold products and calculating total quantities.
- > Understood how to identify top earners in each department, including handling ties fairly.
- > Understood how to merge datasets from multiple sources to get unified employee records.
- > Understood how to use aggregate functions to find the lowest salary for each employee across systems.