TA: Ondřej Čertík

web: http://hpfem.math.unr.edu/~ondrej/

class: MATH 181 date: January 27, 2009

1 Introduction

Today I explained the function notation s(t), see the solution of the quiz 1.

2 Problem 1

That is the problem 11 in the section 2.2 in the book.

$$g(x) = \frac{x-1}{x^3 - 1}$$

Estimate the limit:

$$\lim_{x \to 1} g(x)$$

We calculate the table:

x	0.2	0.4				0.99	_	_	l	·-	1.1	1.01	And we can
g(x)	0.80	0.64	0.51	0.41	0.37	0.3367	0.16	0.19	0.22	0.27	0.30	0.3300	And we can

see, that for $x \to 1$, the g(x) is approaching to something like 0.33, e.g. our guess would be that the limit is equal to $\frac{1}{3}$. We can also calculate that exactly:

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{x - 1}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{1}{x^2 + x + 1} = \frac{1}{3}$$

3 Problem 2

We did a problem 9, section 2.2. See the solution of the quiz 2 for a solution (just the numbers are different.

4 Problem 3

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} \frac{(x+3)(x-2)}{x - 2} = \lim_{x \to 2} x + 3 = 5$$