

Variables C_I

 C_O

 C_R

Total investment cost for deploying smart

Total expected cost of load loss across all fault

ing the pre-disaster stage, including substation,

the pre-disaster stage, based on the linearized

switches (RCS and SOP).

DistFlow model.

Operational cost of DC-DR.

scenarios and management phases. $P_{i,PD}$, $Q_{i,PD}$ Active/reactive power injection at node i dur-

DG, SOP, and load components. $P_{ij,PD}$, $Q_{ij,PD}$ Active/reactive power flow on line ij during

Proactive Resilience Enhancement for Flexible Distribution Networks Containing Data Centers with Multiple Fault Phases Coupling

Ziyao Wang, Tao Yu, Senior Member, IEEE, Jimmy Chih-Hsien Peng, Senior Member, IEEE, Zhenning Pan, Member, IEEE, Wei Chen, Member, IEEE, Yufeng Wu

	Nomenclature	$U_{i,PD}$	The square of voltage magnitude at node i
Sets		$DSS \cap SS$	during the pre-disaster stage. Active/reactive power injected by the substa-
Ω_L	Set of lines.	$i_{i,PD}, Q_{i,PD}$	tion at node i during the pre-disaster stage.
Ω_L^T	Set of the lines (SOP candidate lines).	$P^{DG} = O^{DG}$	Active/reactive power generated by the dis-
	Set of nodes.	i,PD , \mathfrak{C}_{i},PD	tributed generator (DG) at node i during the
$\Omega_N \\ \Omega_N^{DG}$	Set of distributed generator (DG) nodes.		pre-disaster stage.
Ω_N^{TDC}	Set of data center (IDC) nodes.	$P_{i PH c}, Q_{i P}$	$_{H,c}$ Active/reactive power injection at node i
Ω_N^{DG} Ω_N^{IDC} Ω_N^{SS}	Set of substation nodes.	0,1 11,C/ 0 0,1	during phase PH of fault scenario c .
Parameters		$U_{i,PH,c}$	The square of voltage magnitude at node i
β_i^{CE}	Constant power consumption of the cooling		during phase PH of fault scenario c .
- 7.7	equipment at data center node i .	$\Delta P_{i,PH,c}^{LS}, \Delta Q$	$Q_{i,PH,c}^{LS}$ Load shedding of active/reactive power
β_i^{RP}	Fixed power consumption of IT equipment at		at node i during phase PH of fault scenario c .
\TI \SI	data center node i.	$z_{ij,PD}$	Binary variable indicating the status of line ij
$\lambda_i^{TL},\lambda_i^{SL}$	The proportion of temporal/spatial transferable		during the pre-disaster stage (1 if connected, 0
	workload in the total workload at IDC node i .		if disconnected).
μ	Average service rate of servers in data center.	$z_{ij,DD,c}$	Binary variable indicating the status of line
c^{RCS}, c^{SOP}	The importance level of load at node <i>i</i> . Annual deployment cost of RCS/SOP.		ij during the degradation phase (DD) at fault scenario c .
c^{TL}, c^{SL}	Demand response cost of temporal/spatial	~	Binary variable indicating the status of line ij
С , С	workload management.	$z_{ij,RI,c}$	during the remote isolation phase (RI).
c^{Voll}	Value of lost load (VOLL), representing the	$z_{ij,SR,c}$	Binary variable indicating the status of line <i>ij</i>
	cost of unmet demand.	~13,511,6	during the service restoration phase (SR).
D_b	Delay tolerance time of delay-sensitive work-	$f_{i,PH,c}$	Binary variable indicating whether node i is
	load.	0 0,1 11,0	in the fault area during phase PH of fault
$F_{ij,c}^L$	Indicator of line ij failure in scenario c , which		scenario c .
3,	takes the value 1 if a fault occurs and 0 if the	$\alpha_{i,PH,c}$	Binary variable indicating whether load at node
, DCC	line is normal.		i is picked up during phase PH of fault
k_i^{PCS}	Cost of power consumption of IT equipment	DCC	scenario c .
ı PUE	with each activated server.	x_{ij}^{RCS}	Binary variable indicating the deployment of a
k_i^{PUE}	Power usage effectiveness (PUE) coefficient	SOP	remote-controlled switch (RCS) on line ij.
	for the data center at IDC node <i>i</i> , reflecting	x_{ij}^{SOP}	Binary variable indicating the deployment of a
$T_{\rm DD}$ $T_{\rm DL}$ $T_{\rm G}$	the efficiency of power use. R Duration of the degradation phase, remote	S_i	soft-open point (SOP) on line <i>ij</i> . Number of active servers at data center node <i>i</i> ,
$_{DD},_{RI},_{IS}$	isolation phase, service restoration phase.	\mathcal{O}_{l}	related to workload processing.
V_i^0	Value of lost load (VOLL), representing the	$h_{ij,PD}^p, h_{ij,PD}^n$	Non-negative continuous auxiliary variables.
· · ·	cost of unmet demand.	ij,PD,iij,PD	Constitutions administry variables.