Züchtungslehre - Einführung

Peter von Rohr

22 September 2017

Inhalt der heutigen Vorlesung

- Einführung in die Vorlesung
- Lineare Algebra
- Einführung in R

Who Is Who

- Studiengang
- Motivation f
 ür diese Vorlesung
- ► Erfahrungen in Tierzucht / R / Statistik / ...

Ziele dieser Vorlesung

- Verstehen der Grundlagen
- ► Erklärung von Zusammenhängen (siehe nächste Folie)
- ► Weiterbildung in Statistik
- Anwendung von R

Zitate

- "Tiefe Kuhfamilien" (Schweizer Bauer https://www.schweizerbauer.ch/tiere/milchvieh/ eine-komplette-kuh-zuechten-17854.html)
- ▶ "Bei der Auswahl von Kühen für die Zuchtprogramme sollten also auch Eigenleistungen, Leistungen von Vorfahren und die Blutlinien stimmen." (swissherdbookbulletin 5/15)
- "Ich habe noch niemanden getroffen, der mir diese Zuchtwerte erklären kann. Eine Kuh von mir hat einen Zuchtwert von —900 und gibt immer noch Milch." (Leserbrief im Schweizer Bauer)

Informationen

- ► Webseite: http://charlotte-ngs.github.io/LBGHS2017
- ► Kreditpunkte: Schriftliche Prüfung am 22.12.2017

Ablauf einer Vorlesung

- ► Typ G im Vorlesungsverzeichnis
- Ab kommender Woche:
 - ▶ U: 9-10
 - ▶ V: 10-12 (Besprechung der Übung, neuer Stoff)

Vorlesungsprogramm

Woche	Datum	Thema
1	22.09	Einführung, Lineare Algebra, R
2	29.09	keine Vorlesung
3	06.10	Repetition Quantitative Genetik
4	13.10	Selektionsindex
5	20.10	Zuchtwertschätzung, Selektionsindex
6	27.10	Verwandtschaft und Inzucht
7	03.11	BLUP I
8	10.11	BLUP II
9	17.11	Varianzanalyse, Varianzkomponentenschätzung
10	24.11	Linkage disequilibrium
11	01.12	Genomische Selektion
12	08.12	Genom-weite Assoziationsstudien
13	15.12	Reserve, Fragen
14	22.12	Prüfung

Voraussetzungen für diese Vorlesung

- Keine
- Konzepte und Grundbegriffe werden erklärt
- Hilfreich sind
 - ► Kenntnisse in Quantitativer Genetik
 - Statistik
 - ► Lineare Algebra
 - ► Erfahrungen mit R

Übungen

- ▶ Zu jedem Vorlesungsblock wird es eine Übung geben
- Übungsstunde steht zur Bearbeitung der Aufgaben zur Verfügung
- ► Lösungsvorschläge eine Woche nach der Übung
- Stil der Übungsaufgaben: Bearbeitung einer Fragestellung mit R (oder anderer Programmiersprache)
- ▶ **NEU**: Übungsplatform unter:

Ihre Erfahrungen

- ► Kennen Sie eine/mehrere Programmiersprachen, wenn ja welche?
- Wie erledigen Sie Datenverarbeitungsjobs? (Semesterarbeit, Praktika, Bachelorarbeit)
- Was hat Sie bis jetzt daran gehindert das Programmieren zu erlernen?
- ► In welchen Veranstaltungen (Vorlesungen, Übungen, Praktika) wurden Sie schon mit Programmiersprachen konfrontiert und was sind Ihre Erfahrungen

Lineare Algebra

Wichtige Elemente aus der linearen Algebra

- Vektoren
- Matrizen
- Gleichungssysteme

Was ist ein Vektor

Vektoren sind bestimmt durch Länge und Richtung

 \rightarrow Vektoren v und w sind gleich v=w, Vektor x ist verschieden von den beiden anderen, $v \neq x$, $w \neq x$

Koordinaten

Differenz zwischen Koordinaten des Endpunktes minus Koordinaten des Anfangspunktes

$$v = \left[\begin{array}{c} e_{x} - a_{x} \\ e_{y} - a_{y} \end{array} \right]$$

Operationen mit Vektoren

- Addition
- Subtraktion
- Multiplikation mit Skalar
- Skalarprodukt

Addition

 \rightarrow Zusammensetzen der Pfeile: u = v + w = w + v

Subtraktion

Aus Addition u = v + w folgt, dass

- V u v = w
- $\triangleright u w = v$

Multiplikation mit einem Skalar

$$u = \lambda * v = \begin{bmatrix} u_{\mathsf{x}} \\ u_{\mathsf{y}} \end{bmatrix} = \begin{bmatrix} \lambda * v_{\mathsf{x}} \\ \lambda * v_{\mathsf{y}} \end{bmatrix}$$

Multiplikation mit einem Skalar II

Faktor	Richtung	Länge
$\lambda < -1$	entgegengesetzt	länger
$\lambda = -1$	entgegengesetzt	gleich
$-1 < \lambda < 0$	entgegengesetzt	kürzer
$\lambda = 0$	unbestimmt	kürzer
$0 < \lambda < 1$	gleich	kürzer
$\lambda = 1$	gleich	gleich
$\lambda > 1$	gleich	länger

Skalarprodukt

$$v \cdot w = ||v|| * ||w|| * cos(\alpha) = v_x * w_x + v_y * w_y$$

Was ist eine Matrix

▶ Mehrere Vektoren "nebeneinander" gestellt

$$M = \left[\begin{array}{cc} v & w \end{array} \right] = \left[\begin{array}{cc} v_x & w_x \\ v_y & w_y \end{array} \right]$$

► Beispiel einer 2 * 3-Matrix

$$A = \left[\begin{array}{rrr} 2 & 3 & 0 \\ -1 & 4 & 7 \end{array} \right]$$

• Element $(A)_{12} = a_{12} = 3$

Matrixoperationen: Addition und Subtraktion

$$S = A + B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

$$A = S - B = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} s_{11} - b_{11} & s_{12} - b_{12} \\ s_{21} - b_{21} & s_{22} - b_{22} \end{bmatrix}$$

Matrixmultiplikation

$$(A \cdot B)_{ij} = \sum_{k=1}^{n} a_{ik} * b_{kj}$$

Spezielle Matrizen

- Nullmatrix: alle Elemente $o_{ij} = 0$, Neutralelement von Addition und Subtraktion
- ▶ **Rechtsmatrix**: $(R)_{ij} = 0$ für alle i > j
- ▶ **Linksmatrix**: $(L)_{ij} = 0$ für alle i < j
- ► Einheitsmatrix: diag(n)=1
- ► Transponierte: $(A)_{ij} = (A^T)_{ji}$
- ▶ Inverse: $A \cdot A^{-1} = I$

Rechenregeln Transponierte

• die Transponierte von A^T :

$$(A^T)^T = A$$

Summe:

$$(A+B)^T = A^T + B^T$$

► Produkt:

$$(A \cdot B)^T = B^T \cdot A^T$$

Einheitsmatrix:

$$I^T = I$$

Rechenregeln Inverse

Inverse der Inversen:

$$(A^{-1})^{-1} = A$$

► Produkt:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

► Transponierte:

$$(A^T)^{-1} = (A^{-1})^T$$

► Einheitsmatrix:

$$I^{-1} = I$$

Gleichungssysteme

$$x_1 + 2x_2 = 5$$

$$2x_1 + 3x_2 = 8$$
 (1)

- ▶ Welche Werte für x₁ und x₂ erfüllen beide Gleichungen
- ▶ Versuch $x_1 = 1$ und $x_2 = 2$

Lösungsmenge

keine Lösung

$$x_1 + x_2 = 4$$

 $2x_1 + 2x_2 = 5$ (2)

• unendlich viele Lösungen: $x_1 = 2$, $x_2 = \alpha$ und $x_3 = \alpha$

$$x_1 - x_2 + x_3 = 2$$

 $2x_1 + x_2 - x_3 = 4$ (3)

Äquivalenz zwischen Gleichungssystemen

- ► Gleichungssystem *A* und *B* sind äquivalent, falls deren Lösungsmengen gleich
- Operationen zur Erzeugung von äquivalenten Gleichungssystemen
 - Vertauschen der Reihenfolge der Gleichungen
 - Addition eines Vielfachen einer Gleichung zu einer anderen Gleichung

Beispiel

Zweite Gleichung minus zweimal erste Gleichung

$$x_1 + 2x_2 = 5$$

 $2x_1 + 3x_2 = 8$ (4)

$$x_1 + 2x_2 = 5$$

 $-x_2 = -2$ (5)

▶ Dreiecksgestalt \rightarrow einfache Lösung für x_2

Gaussverfahren

- Äquivalenzoperationen bis Gleichungssystem in Dreiecksgestalt
- Rückwärts-Einsetzen der gefundenen Lösungen
- Schema für Gaussverfahren

a ₁₁	a ₁₂	a ₁₃	b_1
a ₂₁	a ₂₂	a ₂₃	b_2
a ₃₁	a ₃₂	<i>a</i> 33	<i>b</i> ₃

Schritt 1

- ▶ Vertauschen der Reihenfolge bis $a_{11} \neq 0$
- ▶ Von zweiter a_{21}/a_{11} -fache der ersten abziehen
- ▶ Von dritter a_{31}/a_{11} -fache der ersten abziehen

a ₁₁	a ₁₂	a ₁₃	b_1
0	$a_{22}^{(2)}$	$a_{23}^{(2)}$	$b_2^{(2)}$
0	$a_{32}^{(2)}$	$a_{33}^{(2)}$	$b_3^{(2)}$

Schritt 2

► Analog zu Schritt 1 bis

a ₁₁	a ₁₂	a ₁₃	b_1
0	$a_{22}^{(2)}$	$a_{23}^{(2)}$	$b_2^{(2)}$
0	0	$a_{33}^{(3)}$	$b_3^{(3)}$

Rückwärts-Einsetzen

Aus dem letzten Schema in Dreiecksgestalt folgt

$$x_3 = b_3^{(3)}/a_{33}^{(3)}$$

► Einsetzen in zweite Gleichung

$$x_2 = \frac{b_2^{(2)} - a_{23}^{(2)} * b_3^{(3)} / a_{33}^{(3)}}{a_{22}^{(2)}}$$

► Einsetzen in erste Gleichung

$$x_1 = ...$$

Matrix- und Vektorschreibweise

Gegeben sei das Gleichungssystem

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$
(6)

Definition der Matrix A und der Vektoren x und b

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ und } b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

• Gleichung kann als $A \cdot x = b$ geschrieben werden

Vorteile

- Notation ist unabhängig von Anzahl Unbekannten und Anzahl Gleichungen
- ► Eigenschaften von Vektoren und Matrizen können auf Gleichungssystem angewendet werden
- Lösung einfach darstellbar als

$$x = A^{-1} \cdot b$$