Development and Validation of an Artificial Intelligence System to Optimize Clinician Review of Patient Records

Authors: Ethan Andrew Chi, Gordon Chi, Cheuk To Tsui, et al. **Published in:** *JAMA Network Open, 2021*

Key Takeaways

This research paper focuses on the use of **Artificial Intelligence (AI) to improve clinician efficiency in reviewing patient records** by organizing and optimizing data retrieval.

What We Use

♦ AI-Assisted Data Organization for Patient Records:

- The research developed an **AI-powered system** that organizes **unstructured medical records** into structured formats.
- Your project can apply a similar approach to enhance data accessibility for healthcare professionals in Sri Lanka.

Reduction in Time for Clinician Data Review:

- The AI system **reduced review time by 18%** compared to non-AI record review while maintaining high accuracy.
- Your project can leverage Al-driven searchability & indexing to reduce time spent by doctors and improve efficiency in Sri Lankan hospitals.

♦ Challenges in Medical Data Extraction:

- Issues in data extraction include scanning errors, redundant information, and lack of structured formatting.
- Your system should integrate Natural Language Processing (NLP) and Optical Character Recognition (OCR) to improve data structuring and readability.

Cloud-Based Data Security Considerations:

- The paper highlights concerns regarding data security, encryption, and user authentication.
- Your project must ensure secure patient record handling using cloud-based encryption and access control mechanisms (e.g., AES encryption, secure login authentication).

What We Gained

✓ Understanding Al's Role in Healthcare Record Management:

- The study proves that **AI can significantly improve the efficiency of medical data review**, reducing clinician workload.
- This validates your **project's goal to digitize healthcare records** for Sri Lankan hospitals.

✓ Inspiration for System Design:

- The research used a web-based interface to present structured patient data.
- Your system can adopt a similar design with an interactive dashboard for medical professionals.

√ Validation of AI Accuracy in Medical Record Review:

- Al did not compromise accuracy while improving efficiency.
- This supports your approach of integrating AI models for data analysis while maintaining medical accuracy.

✓ Empirical Evidence for AI Adoption in Healthcare:

- 92% of clinicians preferred Al-assisted record review over traditional methods.
- This shows that **healthcare professionals are willing to adopt AI-driven solutions**, reinforcing your project's feasibility.

Patient Health Record Systems Scope and Functionalities: Literature Review and Future Directions

Authors: Lina Bouayad, Anna Ialynytchev, Balaji Padmanabhan **Published in:** *Journal of Medical Internet Research, 2017*

Key Takeaways

This paper presents a **literature review of Personal Health Records (PHRs)** and their evolution, functionality, and challenges. It provides insights into **how PHRs contribute to patient engagement, healthcare digitization, and Al-based analytics**.

What We Use

Evolution of Personal Health Records (PHRs):

- PHRs have evolved from simple data storage systems to interactive platforms that allow data sharing, automation, and predictive analytics.
- Your project can incorporate Al-driven automation and predictive analytics for better patientcentric healthcare management.

Integration of AI & Data Analytics in Healthcare:

- The study highlights how Al-based analytics in PHRs can help with disease prediction, patient risk assessment, and treatment recommendations.
- Your system can **apply machine learning models** to predict patient conditions based on stored health records.

Security & Privacy Challenges in PHRs:

- The research emphasizes data security concerns in handling patient-generated data.
- Your project should **prioritize strong encryption**, **role-based access control**, **and compliance** with healthcare regulations (e.g., GDPR, HIPAA).

♦ Impact of PHRs on Patient-Centric Healthcare:

- PHRs **empower patients** by providing them access to their medical records, appointment scheduling, and treatment plans.
- Your system can include a patient dashboard where users can track their health progress, receive automated alerts, and communicate with doctors.

Emerging Trends: Remote Monitoring & IoT in Healthcare:

 The paper highlights real-time health tracking using IoT devices such as smartwatches and biosensors. • Your project can explore **integrating wearable health data** into the system for **real-time patient monitoring and Al-based health predictions.**

- **✓** Understanding How PHRs Enhance Healthcare Efficiency:
 - Al-driven electronic health record (EHR) management reduces doctor workload and improves decision-making.
- ✓ Validating the Role of AI & Predictive Analytics in Healthcare:
 - Al-powered patient risk assessment and health prediction models can enhance the quality of medical care.
- **✓** Inspiration for System Architecture:
 - A secure cloud-based platform with patient-provider communication, automated reminders, and data-driven decision support.
- **✓** Recognizing Data Security as a Core Concern:
 - Need for encrypted storage, multi-factor authentication, and compliance with healthcare regulations.

Performance Evaluation of AWS and IBM Cloud Platforms for Security Mechanism

Authors: Avneet Kaur, Sachin Yadav, Gaurav Raj, Tanupriya Choudhury

Published in: International Conference on Computational Techniques, Electronics and Mechanical

Systems (CTEMS), 2018

Key Takeaways

This research compares **AWS and IBM Cloud** based on security mechanisms, **performance benchmarking**, and **cost efficiency** using the **Phoronix Test Suite**.

What We Use

♦ Cloud-Based Security Mechanisms:

- AWS uses **RSA security** techniques, while IBM lacks this feature.
- Your project should implement strong encryption (e.g., RSA, AES) for patient record security in the cloud.

♦ Performance Benchmarks for Healthcare AI Systems:

- AWS outperforms IBM in disk performance and RAM speed.
- For Al-driven healthcare solutions, AWS might be more suitable for high-speed data processing in Sri Lankan hospitals.

Cost Analysis for Cloud-Based Healthcare AI:

- AWS is more cost-effective compared to IBM.
- Your system can optimize cost efficiency by leveraging AWS Elastic Compute Cloud (EC2) and S3 storage for medical records.

Cloud Scalability & Flexibility for Hospitals:

- AWS allows on-demand scaling, making it easier to handle large hospital datasets.
- Your project should integrate **cloud-based auto-scaling** to **manage patient records efficiently** as hospital demands fluctuate.

What We Gained

✓ Understanding the Best Cloud Platform for Your Project:

 AWS is more secure, cost-effective, and scalable than IBM for AI-based patient record management.

✓ Guidelines for Implementing Secure Cloud Storage:

• The research emphasizes **security layers (IAM policies, RSA encryption, and firewall protection)**, which you should incorporate.

✓ Cloud Computing in Al-Driven Healthcare:

• AWS services like EC2, S3, CloudFront, and Route 53 can improve data storage, access speed, and reliability.

✓ Data Processing Speed for AI Models:

• Since AWS provides **better performance metrics** for **RAM**, **storage**, **and processing**, it is ideal for **training AI models on patient health records**.

Data Security in Cloud Computing

Authors: Ahmed Albugmi, Madini O. Alassafi, Robert Walters, Gary Wills **Published in:** *University of Southampton, IEEE, 2016*

Key Takeaways

This research paper provides an in-depth **analysis of data security concerns in cloud computing**, including **encryption mechanisms**, **virtualization risks**, **public cloud threats**, **and security challenges**.

What We Use

- Cloud Security for Healthcare Data Protection
 - The study discusses the importance of encrypting both Data-at-Rest and Data-in-Transit.
 - Your project can implement strong encryption techniques (AES, RSA) to secure patient records stored in the cloud.
- ♦ Challenges in Public Cloud Storage for Medical Records
 - Public cloud solutions expose sensitive patient data to risks like unauthorized access, breaches, and cyber-attacks.
 - Your project should consider a hybrid cloud model (using both private and public clouds) for balancing security and accessibility.
- ♦ Virtualization Security Risks in Healthcare AI Systems
 - The paper highlights how hypervisor vulnerabilities can expose patient data in multi-tenant cloud environments.
 - Your project should include isolation mechanisms and strong user authentication protocols to prevent unauthorized access.
- Encryption Techniques for Securing Cloud Data
 - The study explains three cryptographic methods used in cloud security:
 - Block Ciphers Encrypts data in fixed-size blocks (e.g., AES-256).
 - Stream Ciphers Encrypts data bit-by-bit (used for real-time data transmission).
 - ✓ Hash Functions Converts patient data into unique digital signatures for integrity verification.
 - Your system should use a combination of AES (for storage) and Hashing (for integrity verification).
- ◆ Authentication & Access Control in Cloud-Based Healthcare Systems
 - The research highlights multi-factor authentication (MFA) and role-based access control (RBAC)
 as critical security measures.

 Your project should restrict access based on user roles (e.g., Doctors, Nurses, Admins) to prevent unauthorized modifications.

- **✓** Understanding Cloud-Based Data Protection Strategies
 - The study emphasizes data confidentiality, integrity, and availability (CIA), which are critical for securing patient records.
- ✓ Justification for Using Hybrid Cloud in Healthcare AI
 - Public cloud reduces costs but poses security risks, while private cloud ensures stronger control over patient data.
- √ Guidelines for Implementing AI Security in Medical Data Handling
 - Ensures **compliance with healthcare security standards (HIPAA, GDPR)** for handling **sensitive patient data**.
- ✓ Validation of Security Mechanisms for Your AI System
 - You can apply best practices from this study to secure Al-driven medical analytics and patient monitoring.

Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques

Authors: Rajkumar Gangappa Nadakinamani, A. Reyana, Sandeep Kautish, et al. **Published in:** *Computational Intelligence and Neuroscience, 2022*

Key Takeaways

Despite its retraction, this research explores machine learning (ML) techniques for cardiovascular disease prediction, which is relevant to Al-based patient health management in your project.

What We Use

Application of ML in Clinical Data Analysis

- The study used various ML models (Random Tree, Naïve Bayes, J48, Linear Regression, JRIP) to classify cardiovascular disease data.
- Your project can apply similar ML models for predictive analytics in patient health monitoring.

Best Performing ML Model for Disease Prediction

- The study found Random Tree achieved 100% accuracy in cardiovascular disease prediction.
- Your system could **benchmark its own ML model's performance** against these reported accuracy levels.

♦ Importance of Data Preprocessing in Healthcare AI

- The research emphasized handling missing and noisy values using filtering techniques to improve prediction accuracy.
- Your project must include robust data preprocessing techniques to ensure clean and structured patient data.

♦ Feature Selection for ML-Based Disease Prediction

- The study highlights key health record features used in prediction models:
 - o Age, Blood Pressure, Cholesterol, ECG Readings, Heart Rate, etc.
- Your project can incorporate a similar feature set while validating their impact on prediction accuracy.

Evaluation Metrics for ML Models

- The study used Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Accuracy to assess model performance.
- Your project should apply these metrics to evaluate AI-driven medical insights.

What We Gained

✓ Understanding ML's Role in Disease Prediction

• Reinforces the idea that **ML can effectively analyze medical data** to predict diseases.

✓ Guidance on Model Selection for Healthcare AI

• Confirms that Random Tree, Naïve Bayes, and J48 perform well in classifying patient health data.

✓ Data Preprocessing as a Key Factor in Al-Driven Healthcare

• Highlights the need for handling missing values, feature selection, and data standardization.

✓ Performance Benchmark for Your Project's ML Model

• Your Al system can be **compared against the reported 100% accuracy of Random Tree** to **validate improvements.**

Electronic Patient Records – The Reality

Authors: Dr. Kumara Mendis, Prof. Ian Purves **Published in:** *University of Kelaniya, Sri Lanka (2019)*

Key Takeaways

This paper provides an in-depth **analysis of Electronic Patient Records (EPRs)** and their role in improving **healthcare efficiency, data management, and decision-making**. It also examines **Sri Lanka's healthcare context** and discusses the **challenges and benefits of digitizing patient records**.

What We Use from This Research

Challenges of Paper-Based Medical Records

- Paper records are inefficient, error-prone, and difficult to manage in modern healthcare.
- Your project supports digital transformation by replacing manual records with Al-driven EPRs for better efficiency and accuracy.

Electronic Patient Records (EPRs) as Essential Tools

- The Institute of Medicine (USA) considers EPRs an "essential tool for modern medicine."
- Your system aligns with this vision by creating a cloud-based patient record system integrated with Al-driven analytics.

EPRs in Developed vs. Developing Countries

- Developed countries have successfully implemented EPRs for improved healthcare.
- In Sri Lanka, **EPR adoption is still in its early stages**, providing an **opportunity for AI-driven transformation** in **local hospitals**.

Impact of EPRs on Clinical Efficiency

- Doctors spend one-third of consultation time retrieving medical records.
- Your project reduces this workload by offering Al-powered data retrieval and analysis, improving decision-making efficiency.

EPR Features & Functionalities for Sri Lankan Healthcare

- The paper highlights key EPR functionalities required for Sri Lankan hospitals, including:
 - ✓ Cloud storage for medical records
 - Clinical decision support systems (CDSS)
 - ✓ AI-based diagnostic assistance
 - Secure patient data handling with access control
- Your system can incorporate these features to enhance patient care quality and hospital efficiency.

Security & Privacy Challenges in EPRs

- Data breaches, unauthorized access, and cyber risks are major concerns in EPR adoption.
- Your project must integrate AES encryption, multi-factor authentication, and role-based access controls to ensure patient data privacy.

Adoption Barriers & Implementation Strategies

- The research identifies **barriers to EPR adoption** in Sri Lanka, such as:
 - Lack of funding and IT infrastructure
 - Limited digital literacy among healthcare staff
 - o Resistance to change from manual to digital records
- Your project should include training programs and user-friendly interfaces to ease the transition to Al-driven EPRs.

What We Gained

✓ Validation of EPR Importance in Healthcare

 Reinforces the idea that digitizing patient records improves efficiency, decision-making, and data security.

✓ Understanding Local Healthcare Challenges

 Provides insights into Sri Lanka's healthcare digitalization gaps, helping your project tailor solutions to local needs.

√ Guidance for System Features & Design

• Confirms the need for **cloud-based Al-driven patient management systems** in Sri Lankan hospitals.

√ Security Measures for Cloud-Based EPRs

 Recommends data encryption, access control, and secure authentication methods to protect patient records.

Implementation Challenges and Research Gaps of Electronic Medical Records (EMR) in Public Sector Hospitals of Sri Lanka

Authors: Kumudini Sarathchandra, Shriyananda Rathnayake **Published in:** International Journal of Scientific and Research Publications, July 2019

Key Takeaways

This research focuses on the challenges, progress, and research gaps in implementing Electronic Medical Records (EMR) in Sri Lanka's public hospitals. It provides a valuable local perspective on the barriers to adopting digital health solutions, which aligns with your project's goals.

What We Use from This Research

- Challenges in Implementing EMRs in Sri Lanka
 - The study identifies barriers to EMR adoption, including:
 - Resistance to change among healthcare professionals.
 - Limited IT infrastructure in public hospitals.
 - Lack of a national policy for full-scale EMR implementation.
 - Security and privacy concerns related to patient data protection.
 - Your project should address these challenges by incorporating user-friendly designs, secure cloud storage, and training programs for medical staff.

Gaps in EMR Research in Sri Lanka

- Few scientific studies exist on the effectiveness of EMRs in Sri Lanka.
- Most research focuses on user acceptance rather than technical and economic feasibility.
- Your thesis can help fill this gap by analyzing the performance and cost-effectiveness of Aldriven EMRs in local hospitals.

Current Status of EMR Adoption in Sri Lankan Hospitals

- The government planned to implement EMRs in **300 hospitals by 2018**, but by mid-2019, only **50 hospitals (15%) had adopted the system**.
- Lack of interoperability between different healthcare institutions prevents full integration.
- Your project should design an AI-based EMR solution that integrates seamlessly across different hospitals to enhance data-sharing and accessibility.

Security & Privacy Concerns in EMR Implementation

- Over 3 million patient records exist in digital form, but data security measures are weak.
- Your project should include **AES encryption, multi-factor authentication, and routine security** audits to ensure data integrity and confidentiality.

♦ Role of AI & Data Analytics in EMR Adoption

- The study recommends integrating data mining and Al-driven decision support tools to enhance patient care.
- Your project aligns with this by using AI analytics for predictive healthcare insights.

What We Gained

✓ Understanding the Barriers to EMR Implementation in Sri Lanka

• Helps you identify potential challenges and plan solutions for successful system deployment.

✓ Guidance on Policy & Standardization for EMRs

 Confirms the need for a national policy and government involvement to scale up AI-powered EMR systems.

✓ Security & Privacy Best Practices for Your System

 Reinforces the importance of strong data protection mechanisms in cloud-based healthcare solutions.

✓ Benchmark for EMR Adoption in Sri Lanka

• Provides local implementation statistics you can compare with your project's expected impact.

Enhancing the Security of Cloud Data Using Hybrid Encryption Algorithm

Authors: K. R. Sajay, Suvanam Sasidhar Babu, Yellepeddi Vijayalakshmi **Published in:** *Journal of Ambient Intelligence and Humanized Computing, 2024*

Key Takeaways

This research focuses on hybrid encryption techniques for securing cloud data, which is relevant to protecting patient health records in cloud-based Electronic Medical Record (EMR) systems. Despite its retraction, some of its concepts remain valuable for understanding cloud security strategies.

What We Use from This Research

- Hybrid Encryption for Cloud-Based EMR Security
 - The study proposed a **hybrid encryption model** combining:
 - AES (Advanced Encryption Standard) for fast encryption of large medical datasets.
 - RSA (Rivest-Shamir-Adleman) for secure key exchange between users and cloud servers.
 - Your project can adopt a similar hybrid encryption approach to ensure high-security standards for patient records stored in the cloud.

Cloud Data Security Vulnerabilities

- The paper highlights **common security threats** in cloud storage:
 - ✓ Data breaches due to weak encryption mechanisms.
 - Man-in-the-middle (MITM) attacks on unprotected communication channels.
 - ✓ Unauthorized access due to improper authentication protocols.
- Your project should integrate multi-layer encryption and secure authentication mechanisms (e.g., Multi-Factor Authentication MFA) to mitigate these threats.

Comparative Performance of Encryption Algorithms

- The study compared encryption techniques in terms of **speed**, **security level**, **and resource consumption**:
 - ✓ AES was the fastest but less secure for key exchange.
 - RSA was highly secure but computationally expensive.
 - A hybrid model (AES + RSA) provided the best balance between speed and security.
- Your project should consider **benchmarking encryption techniques** for **optimal performance in securing patient records.**

Key Exchange Mechanism for Secure Data Access

- The research suggested a hybrid key exchange system using:
 - **✓** Public-key cryptography (RSA) for initial authentication.
 - Session-based AES encryption for fast data retrieval.

 Your project can adopt this hybrid key exchange model to enhance secure access control for hospital data storage.

- **✓** Understanding Hybrid Encryption for Cloud-Based Healthcare Systems
 - Confirms that a combination of AES + RSA provides a robust encryption solution for securing medical records.
- √ Guidelines for Data Security in Cloud-Based EMRs
 - Reinforces the importance of secure key exchange mechanisms, end-to-end encryption, and secure authentication layers.
- **✓** Validation of Secure Data Transmission Approaches
 - Supports the need for TLS/SSL encryption in cloud-based patient record management systems.
- ✓ Performance Benchmarking of Encryption Algorithms
 - Helps evaluate trade-offs between encryption speed, security, and computational efficiency in your project.

Encryption as a Service for Data Healthcare Cloud Security

Authors: Abdelali El Bouchti, Samir Bahsani, Tarik Nahhal **Published in:** *IEEE.* 2016

Key Takeaways

This research focuses on **Encryption as a Service (EaaS)** for securing **cloud-based healthcare data**, which directly relates to the **security model of your Al-driven patient record management system**.

What We Use

- ♦ Encryption as a Service (EaaS) for Healthcare Cloud Security
 - The study introduces **EaaS** as a cloud security model that allows healthcare organizations to manage their encryption keys independently from cloud providers.
 - Your project can incorporate EaaS by enabling end-to-end encryption for patient records, ensuring that hospitals retain control over data privacy and compliance.
- ♦ Hybrid Encryption Model Using Cryptography-as-a-Service (CaaS)
 - The paper proposes a **hybrid cloud security model** based on:
 - Homomorphic Encryption Allows computations on encrypted data without decryption.
 - RSA Algorithm Provides strong asymmetric encryption for securing patient data.
 - Your system can use a similar hybrid encryption strategy to ensure secure medical data storage and processing.
- Benefits of Cloud-Based Encryption for Healthcare
 - Cloud encryption enhances:
 - ✓ **Data confidentiality** Prevents unauthorized access to sensitive patient data.
 - Data integrity Ensures that medical records remain unchanged and verifiable.
 - Secure patient-doctor communication Protects EHR access using end-to-end encryption.
 - Your project should incorporate these security measures to enhance cloud-based patient record management.
- Challenges in Implementing Cloud-Based Encryption in Healthcare
 - The paper identifies three major barriers:
 - Latency issues Complex encryption can slow down hospital data retrieval.
 - **Data availability concerns** Hospitals must ensure **secure data backup & redundancy**.
 - Regulatory compliance Cloud-based EHR systems must comply with HIPAA & GDPR.
 - Your system should optimize encryption for speed, integrate backup solutions, and comply with healthcare data regulations.

- √ Understanding the Role of EaaS in Securing Healthcare Data
 - Confirms that hospitals can maintain control over their encryption keys using cloud security models like EaaS.
- **✓** Guidance for Implementing Hybrid Encryption in Patient Record Management
 - Reinforces the use of RSA & Homomorphic Encryption for secure healthcare cloud storage.
- ✓ Validation of Security Challenges in Cloud-Based Healthcare AI
 - Identifies latency, data availability, and compliance risks, which your project must address.
- √ Inspiration for AI-Based Secure Medical Data Processing
 - Suggests that hospitals can process encrypted data using AI without compromising security (e.g., secure AI-driven patient analytics).

Database Security Management for Healthcare SaaS in the Amazon AWS Cloud

Authors: Fabio Bracci, Antonio Corradi, Luca Foschini **Published in:** *University of Bologna, IEEE, 2012*

Key Takeaways

This research explores data security management in cloud-based healthcare Software as a Service (SaaS) applications, focusing on Amazon AWS. It highlights security risks, encryption gaps, and solutions to ensure safe medical data storage and transmission.

What We Use

- Security Challenges in Cloud-Based Healthcare SaaS
 - SaaS applications provide ubiquitous access to healthcare data, improving patient monitoring and remote care.
 - However, data privacy risks arise due to:
 - Unauthorized access to patient data.
 - Insufficient encryption mechanisms in AWS databases.
 - Limited security key management in AWS cloud services.
 - Your project should address these gaps by implementing strong encryption and role-based access controls (RBAC).
- **♦** AWS Security Deficiencies & Required Enhancements
 - The research highlights that AWS does not provide built-in at-rest encryption for databases.
 - Solution:
 - ✓ Use MySQL native encryption for storing patient data securely.
 - Implement third-party key management services to protect encryption keys.
 - Your project should incorporate an advanced encryption model for securing cloud-hosted patient records.
- Encryption Models for Healthcare SaaS Security
 - The study evaluates three encryption approaches:
 - **✓ Transparent Data Encryption (TDE):** Encrypts **entire databases automatically**.
 - **Column-Level Encryption:** Encrypts **specific sensitive fields** (e.g., patient names, diagnoses).
 - Application-Level Encryption: Encrypts data before storing it in the cloud.
 - Your project can combine TDE with column-level encryption to enhance security without sacrificing performance.

- ♦ Role-Based Access Control (RBAC) for Secure Data Access
 - The research suggests **RBAC for multi-user environments**, where:
 - **✓** Doctors access medical records but cannot modify billing data.
 - Nurses access prescriptions but not patient financial information.
 - Administrators manage system settings without seeing patient details.
 - Your project should implement RBAC to control access to patient data based on roles.
- **♦** Performance Testing of Encrypted Healthcare Databases
 - The study benchmarked database performance with and without encryption, finding:
 - Minimal performance impact (1-2% overhead) for column-level encryption.
 - Significant slowdown (5-10% latency) when encrypting entire databases.
 - Your project should **test encryption speed and optimize database queries to maintain real-time** access.

- ✓ Understanding the Security Challenges in AWS-Based Healthcare SaaS
 - Confirms that AWS lacks built-in at-rest encryption for healthcare data, requiring custom encryption implementations.
- ✓ Guidance on Choosing the Right Encryption Model
 - Suggests using a hybrid encryption approach (TDE + column-level encryption) for securing patient data.
- ✓ Validation of Role-Based Access Control (RBAC) for Healthcare Security
 - Confirms the importance of limiting access to sensitive patient records based on user roles.
- ✓ Performance Benchmark for Cloud-Based EMRs
 - Helps compare encryption techniques and evaluate their impact on system performance.