

Requirements:

Everyone

- Written in Python using OpenCV
- Code compliant with MIT use license
- Documented and maintained on GitHub
- Include demonstration/example code

ECE 1390 Students

- Load/Save and process still images
- include an image enhancement method
- Include an image filtering method
- Include an edge detection method
- Demonstrate segmentation
- Include some object recognition
- Incorporate 1 additional methods from class code

ECE 2390 Students

- Load/Save and process still images
- Process video feed
- include an image enhancement method
- Include an image filtering method
- Include an edge detection method
- Demonstrate segmentation
- Include some object recognition
- Include some object tracking
- Incorporate 3 additional methods from class code

Syllabus

Week	Date	Topic	In class work	Due date
8	10/14/2024	FALL Break [No Class]		
	10/16/2024	Camera Calibration	Python problems (HW5)	Due 10/23
9	10/21/2024	Depth estimation	Group Project work	
	10/23/2024	3D Reconstruction and Pose estimation	Python problems (HW6)	Due 10/30
10	10/28/2024	Haar Cascade Classifiers	Python problems (HW7)	Due 11/4
	10/30/2024	HOG and Custom Detectors	Project updates	
11	11/4/2024	Object Tracking	Project updates	
	11/6/2024	OCR Text Detection	Python problems (HW8)	Due 11/13
12	11/11/2024	MediaPipe/SLAM	Group Project work	
	11/13/2024	OpenCV DNN	Python problems (HW9)	Due 11/20
13	11/18/2024	Super Resolution	Python problems (HW10)	Due 12/4
	11/20/2024	Image compression	Python problems	
14	11/25/2024	Thanksgiving recess		
	11/27/2024	Thanksgiving recess		
15	12/2/2024	Group Project work	Group Project work	
	12/4/2024	Group Project work	Group Project work	Final project commit
16	12/9/2024	Final Projects	Project presentations	Final group ratings

Project Updates (10/30 & 11/4)

10/30

- BokehSwap
- DC not DC
- AutonomousDriving
- RepVision
- FaceEmojiSwap

11/4

- Team Sebastian, Timothy, Jake, & Tyler
- Shopkeepr
- The Riddlers
- Touchfree

What do I expect?

- Progress update
- 10min informal presentation
- Can use your own laptop or give me slides
- Show off what you have done so far
- Have you tried things that didn't work?
- What class lessons have you incorporated into the project? Any insights?
- Have your objectives changed?
- Has there been any unanticipated issues?

$$\begin{bmatrix} B_x \\ B_y \\ B_z \\ 1 \end{bmatrix} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} & \Delta X \\ r_{1,0} & r_{1,1} & r_{1,2} & \Delta Y \\ r_{2,0} & r_{2,1} & r_{2,2} & \Delta Z \\ 0 & 0 & 0 & 1 \end{bmatrix} \star \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$

3D to 2D projection

$$\begin{bmatrix} u_{ideal} \\ v_{ideal} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} B_x \\ B_y \\ B_z \\ 1 \end{bmatrix}$$

Intrinsic Camera distortion (K)

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & \gamma & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{ideal} \\ v_{ideal} \\ 1 \end{bmatrix}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \frac{1}{n} \sum \overrightarrow{X_{world}}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \overrightarrow{t}$$

$$\overrightarrow{U_{image|Centered}} = S * \overrightarrow{X_{world|Centered}}$$

$$\overrightarrow{U_{image|Centered}} = S * \overrightarrow{X_{world|Centered}}$$

$$\begin{bmatrix} B_{x} \\ B_{y} \\ B_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} & \Delta X \\ r_{1,0} & r_{1,1} & r_{1,2} & \Delta Y \\ r_{2,0} & r_{2,1} & r_{2,2} & \Delta Z \\ 0 & 0 & 0 & 1 \end{bmatrix} \star \begin{bmatrix} A_{x} \\ A_{y} \\ A_{z} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u_{ideal} \\ v_{ideal} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} B_x \\ B_y \\ B_z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & \gamma & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{ideal} \\ v_{ideal} \\ 1 \end{bmatrix}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \frac{1}{n} \sum \overrightarrow{X_{world}}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \overrightarrow{t}$$

$$\overrightarrow{U_{image|Centered}} = S * \overrightarrow{X_{world|Centered}}$$

$$\begin{bmatrix} u_c \\ v_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} \\ r_{1,0} & r_{1,1} & r_{1,2} \\ r_{2,0} & r_{2,1} & r_{2,2} \end{bmatrix} * \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \frac{1}{n} \sum \overrightarrow{X_{world}}$$

$$\overrightarrow{X_{world|Centered}} = \overrightarrow{X_{world}} - \overrightarrow{t}$$

$$\mathsf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_x & -\sin\theta_x \\ 0 & \sin\theta_x & \cos\theta_x \end{bmatrix} * \begin{bmatrix} \cos\theta_Y & 0 & \sin\theta_Y \\ 0 & 1 & 0 \\ -\sin\theta_Y & 0 & \cos\theta_Y \end{bmatrix} * \begin{bmatrix} \cos\theta_z & -\sin\theta_z & 0 \\ \sin\theta_z & \cos\theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\overrightarrow{U_{image|Centered}} = S * \overrightarrow{X_{world|Centered}}$$

$$\begin{bmatrix} u_c \\ v_c \end{bmatrix} = \rho * \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$\rho = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} \\ r_{1,0} & r_{1,1} & r_{1,2} \\ r_{2,0} & r_{2,1} & r_{2,2} \end{bmatrix} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} \\ r_{1,0} & r_{1,1} & r_{1,2} \end{bmatrix}$$

Number of tracked points (centered)

Number of tracked points (centered) [M]

ther of frames $(N \times 2)$

 $W^T = P * X^T$

 $W = \langle M \times 2 N \rangle$

Sub-matrix that depends on movement (rho) < 2N x 3 >

Sub-matrix that depends on shape (X) < M x 3 >

Number of tracked points (centered)

$$W^T = P * X^T$$

$$SVD(W^T) \rightarrow WT = U * S * V^T$$

P is rank 3

 $P = U_{<2Nx3>} * S_{<3x3>}^{1/2}$

X is rank 3

 $X = V_{< Mx3>} * S_{<3x3>}^{1/2}$

Therefore, W is also (ideally) rank 3

$$W = \begin{bmatrix} U_{1,A} & U_{1,B} & \dots \\ U_{2,A} & U_{2,B} \\ U_{3,A} & U_{3,B} \\ U_{4,A} & U_{4,B} \\ U_{5,A} & U_{5,B} \\ \vdots \\ V_{1,A} & V_{1,B} & \dots \\ V_{2,A} & V_{2,B} \\ V_{3,A} & V_{3,B} \\ V_{4,A} & V_{4,B} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$W^T = (P * Q) * (Q^{-1} * X^T)$$

However, this is not a unique solution:

Metric constraints:

We want a rotation matrix that uses orthogonal axes

For i in range(1:N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

For i in range(N+1:2*N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

$$(P_i * Q) * (P_{i+N} * Q)^T = 0$$

$$W = \begin{bmatrix} U_{1,A} & U_{1,B} & \dots \\ U_{2,A} & U_{2,B} \\ U_{3,A} & U_{3,B} \\ U_{4,A} & U_{4,B} \\ U_{5,A} & U_{5,B} \\ \vdots \\ V_{1,A} & V_{1,B} & \dots \\ V_{2,A} & V_{2,B} \\ V_{3,A} & V_{3,B} \\ V_{4,A} & V_{4,B} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$W^T = (P * Q) * (Q^{-1} * X^T)$$

However, this is not a unique solution:

Metric constraints:

We want a rotation matrix that uses orthogonal axes

For i in range(1:N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

For i in range(N+1:2*N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

$$(P_i * Q) * (P_{i+N} * Q)^T = 0$$

$$P_i * Q * QT * Pi^T = 1$$

$$P_i * Q * QT * P_{N+i}^T = 0$$

$$\begin{bmatrix} q_{1,1} & q_{1,2} & q_{1,3} \\ q_{2,1} & q_{2,2} & q_{2,3} \\ q_{3,1} & q_{3,2} & q_{3,3} \end{bmatrix} = Q * QT$$

Metric constraints:

We want a rotation matrix that uses orthogonal axes

For i in range(1:N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

For i in range(N+1:2*N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

$$(P_i * Q) * (P_{i+N} * Q)^T = 0$$

$$\begin{bmatrix} P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1} \\ P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2} \\ P_{i,1} * q_{1,3} + P_{i,2} * q_{2,3} + P_{i,3} * q_{3,3} \end{bmatrix} * [P_{i,1} \quad P_{i,2} \quad P_{i,3}] = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + P_{i,2} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,2} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} = \begin{bmatrix} P_{i,1} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix} + P_{i,3} * (P_{i,1} * q_{1,2} + P_{i,3} * q_{3,2}) \end{bmatrix}$$

$$P_{i,1} * (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + P_{i,2} * (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + P_{i31} * (P_{i,1} * q_{1,3} + P_{i,2} * q_{2,3} + P_{i,3} * q_{3,3}) = 1$$

$$\begin{split} P_{i,1} * & (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + \\ P_{i,2} * & (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + \\ P_{i,3} * & (P_{i,1} * q_{1,3} + P_{i,2} * q_{2,3} + P_{i,3} * q_{3,3}) = 1 \end{split}$$

$$\begin{split} P_{N+i,1} * & (P_{i,1} * q_{1,1} + P_{i,2} * q_{2,1} + P_{i,3} * q_{3,1}) + \\ P_{N+i,2} * & (P_{i,1} * q_{1,2} + P_{i,2} * q_{2,2} + P_{i,3} * q_{3,2}) + \\ P_{N+,3} * & (P_{i,1} * q_{1,3} + P_{i,2} * q_{2,3} + P_{i,3} * q_{3,3}) = 0 \end{split}$$

$$\mathsf{Chol} \begin{bmatrix} q_{1,1} & q_{1,2} & q_{1,3} \\ q_{2,1} & q_{2,2} & q_{2,3} \\ q_{3,1} & q_{3,2} & q_{3,3} \end{bmatrix} = Q$$

Metric constraints:

We want a rotation matrix that uses orthogonal axes

For i in range(1:N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

For i in range(N+1:2*N)

$$(P_i * Q) * (P_i * Q)^T = 1$$

$$(P_i * Q) * (P_{i+N} * Q)^T = 0$$

Steps:

- 1. Find matching points (M) across frames (N)
- 2. Construct the **W** matrix < M x 2*N >
- 3. SVD on $W \rightarrow U^*S^*V^T$. Keep only top 3 terms
- 4. P' = U *S $^{1/2}$ (non-unique P)
- 5. $X'=V*S^{1/2}$ (non-unique X)
- 6. Use P' to find Q^TQ
- 7. Chol(Q^TQ) = Q
- 8. P = P'*Q. (unique P)
- 9. $X^{T} = Q^{-1} * X'^{T}$ (unique X)

Building Rome in a Day

Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski
International Conference on Computer Vision, 2009,
Kyoto, Japan.

Building Rome in a Day

Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski

International Conference on Computer Vision, 2009, Kyoto, Japan.

Structure from Motion

Stereo

Fusion

Moving the object is the same as moving the camera

 $\Pi = \{\pi_i\}$: Intrinsic (K_i) and Extrinsic (R_{i,}T_i) properties for N cameras

 $X = \{x_j\}$: Set of P 3D points in the world

 $U = \{u_i\}$: Set of P 2D points in the image

Camera projector function

$$\pi_i\left(x_i\right) = K_i\big(R_ix_i + t_i\big)$$

 $\Pi = {\pi_i}$: Intrinsic (K_i) and Extrinsic (R_{i,}T_i) properties for N cameras

 $X = \{x_i\}$: Set of P 3D points in the world

 $U = \{u_i\}$: Set of P 2D points in the image

- Large scale minimization
- Not convex (sensitive to local minima)
- Requires good initial guess
- Computationally intense
- Solution is sparse (make use of sparse solvers e.g. Google's Ceres)

Camera projector function

$$\pi_i\left(x_i\right) = K_i(R_i x_j + t_i)$$

Feature matching and reconstruction pipeline (COLMAP):

- ► Correspondence Search: Find and match robust 2D features acroess images
- ► Incremental Reconstruction: Start with 2 views, incrementally add cameras

Step 1. Find the features for all images

▶ Detect features (eg, SIFT, SURF, BRISK) in all input images

Step 2. Create graph of all-to-all image matches

Find overlapping image pairs and associated feature correspondences

Step 3. Prune matches (geometric verification)

► Find overlapping image pairs and associated feature correspondences

Step 4. Find most centrally connected pair of images

Find overlapping image pairs and associated feature correspondences

Step 5. Two image initialization

Select two views with many correspondences and estimate their geometry

Step 6. Add new image

Already know this from previous step

$$\{\Pi, X\} = \arg\min \sum_{i=1}^{N} \sum_{j=1}^{P} w_{i,j} \|u_j - \pi_i(x_j)\|^2$$

Solve this for the new image

$$\pi_i(x_j) = K_i(R_i x_j + t_i)$$

RANSAC:

Random Sampling Consensus

- 1) Grab small subsets of the data to solve the problem (e.g. features to solve the homography)
- 2) Based on that solution, compute for all other points if they are outliers or inliers
- 3) Repeat 1-2
- 4) Remove points that produce the lowest number inliers

Sparse Reconstruction

Dense Reconstruction

Sparse Reconstruction

Dense Reconstruction

Epipolar coordinates

- E, mask = cv2.findEssentialMat(pts1, pts2, K, method=cv2.RANSAC, prob=0.999, threshold=1.0)
- _, R, t, _ = cv2.recoverPose(E, pts1, pts2, K, mask=mask)