Mammalian innate immunity

Immunity

First barriers

- skin
- epithelia
- body liquids
 (enzymes and antimicrobial substances in tears, sweat, ...)
- increased production of tissue liquids when sick (runny nose, diarrhea, ...)

Immunity

self and non-self

What is non-self?

Non-self is very diverse.

Infection and Immunity

Acquired Immunity

Memory

Innate vs acquired immunity

Innate immunity

- we are born with it
- fast
- low diversity
- ~100 receptors
- no memory

Acquired immunity

- acquired
- slow
- high specificity
- ~10²⁰ possible
 antibodies
- memory

Acquired immunity and the diversity of non-self

Acquired Immunity

Advantages

Limitless repertoir

Disadvanatges

Cannot look at "classes"

Plastic

Slow the first time

Memory

Specificity

Innate immunity

we are born with it

fast

no memory

low specificity or rather it looks at "classes".

Innate immune receptors encoded in the germline

Allows fast response (no need for recombination)

Low repertoire

no memory

No flexibility

Innate immunity

How to recognize non-self with a few receptors?

- Molecules in many microbes
- Constant in microbes
 - since innate immunity cannot create new receptors
 - No mutations!
- Different from "self"
 - to prevent autoimmunity

PAMPs

- lipopolysaccharide LPS
- bacterial lipopeptide BLP
- flagelin
- dsRNA
- CpGDNA
- Pepydoglycan
- Teichoic acid

PAMPs

- lipopolysaccharide LPS
- bacterial lipopeptide BLP
- flagelin
- dsRNA
- CpGDNA
- Pepydoglycan
- Teichoic acid
- What else?

Can self be non-self? The Danger theory

Innate immune receptors

Toll Like Receptors

NOD

Scavangers

GPI anchored (CD14)

Integrin

C-type lectin and C-type lectin like.

G-protein-coupled receptors.

RIG-I

Cytosolic DNA sensors

NF-κB activation

Innate immunity

Genes turned on by NF-κB

Cytokines

Chemokines

Antiapoptosis

Cytokines and Chemokines

Inflammasome

Innate immunity

Innate immunity - components

- cellular
 - phagocytes: granulocytes and macrophages
 - secretory cells: basophiles, mast cells, eosinophiles
 - natural killer cells
 - Innate lymphocytes
- humoral
 - complement

Humoral innate immunity

Complement. What is it good for.

Membrane Attack Complex

Cellular Innate Immune effectors: macrophage

Cellular Innate Immune effectors: Neutrophil

Phagocytosis: the movie

What happens in the phagolysosome

Low pH.

Production of Oxygen Radical Species.

Enzymes

Antimicrobial peptides.

Radical Oxygen in Neutrophils

Phox SOD MPO HOBr
$$O_2 \rightarrow O_2^- \rightarrow H_2O_2 \rightarrow HOI$$
HOCI

Antimicrobial peptides and proteins

All Cationic

Granule associated

Low cytotoxic activity to mammalian cells

"are they for real?"

Iron

• Lactoferrin sequesters Fe, necessary for most bugs.

 Many pathogens have their own siderophores.

Enzymes

- Lysozyme
- Phosphilipases (PLA₂) →
- Proteases:
 - -Protease 3.
 - -Cathepsin G.
 - Neutrophil Elastase.

Innate immunity

Side effects of Inflammation:

Tissue destruction Autoimmunity

What's next?

Systems: real infections

New diseases of direct (or indirect) microbia pathogenesis.

New hosts (model species, specific patients)

Ecology of diseases (systems epidemiology)