HOMEWORK 9

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [?, Ch. 11, $\S11.1$]:

• **Chapter 11 Section 11.1**, Exercises: 2, 6, 10.

CONTENTS

Chapter 11 Section 11.1	1
Ch.11, §11.1, Exercise 2	1
Ch.11, §11.1, Exercise 6	2
Ch.11, §11.1, Exercise 8	2

CHAPTER 11 SECTION 11.1

Ch.11, §**11.1, Exercise 2.** Consider the relation $R = \{(a, b), (a, c), (c, b), (b, c)\}$ on set $A = \{a, b, c\}$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Date: April 3, 2020.

2 QI

Solution to Ch.11, §11.1, Exercise 2.

The graph is not reflexive, because $(a, a) \notin R$.

The graph is not Symmetric, because $(a, b) \in R$ and $(b, a) \notin R$.

The Graph is trasitive, because $(a, c) \in R$, $(c, b) \in R$ and $(a, b) \in R$.

Ch.11, §11.1, Exercise 6. Consider the relation $R = \{(x, x) : x \in \mathbb{Z}\}$ on \mathbb{Z} . Is R reflexive? Symmetric? Transitive? If Property does not hold, say why.

Solution to Ch.11, §11.1, Exercise 6.

The Graph is reflexive, because for every $x \in Z$ there is a relation of $(x, x) \in R$.

The graph only contians self-to-self relations, so it is not transitive or symmetric.

Ch.11, §**11.1, Exercise 8.** Define a relation on \mathbb{Z} as xRy if |x-y| < 1. Is R reflexive? Symmetric? Transitive?

Solution to Ch.11, §11.1, Exercise 8.

$$|x - y| < 1$$

$$-1 < x - y < 1$$

$$x + 1 > y > x - 1$$

$$y \in \mathbb{Z}$$

$$y = x$$

The graph is transitive, because for every $x \in \mathbb{Z}$, there is a relation $(x,y) \in \mathbb{R}$, where y = x.

The graph only contains self-to-self relations, so it is not Symmetric or Transitive.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu