непрерывные производные $f'(x), \ldots, f^{(n-1)}(x);$ 3) пр:1 a < x < b существует конечная производная $f^{(n)}(x)$, то

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x) \quad (a \le x \le b),$$

rze

$$R_n(x) = \frac{f^{(n)}(a + \theta(x - a))}{n!} (x - a)^n \quad (0 < \theta < 1)$$

(остаточный член в форме Лагранжа), или

$$R_n(x) = \frac{f^{(n)}(a + \theta_1(x - a))}{(n - 1)!} (1 - \theta_1)^{n - 1} (x - a)^n \quad (0 < \theta_1 < 1)$$

(остаточный член в форме Коши).

1376. Многочлен

$$P(x) = 1 + 3x + 5x^2 - 2x^3$$

расположить по целым неотрицательным степеням двучлена x + 1.

Написать разложения по целым неотрицательным степеням переменной х до членов указанного порядка включительно следующих функций:

1377.
$$f(x) = \frac{1+x+x^2}{1-x+x^3}$$
 до члена с x^4 . Чему равно $f^{(4)}(0)$?

1378.
$$\frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}}$$
 до члена с x^2 .

1379.
$$\sqrt[m]{a^m + x}$$
 ($a > 0$) до члена с x^2 .

1380.
$$\sqrt{1-2x+x^3}-\sqrt[3]{1-3x+x}$$
 до члена с x^3 .

1381.
$$e^{2x-x^2}$$
 до члена с x^5 .

1382.
$$\frac{x}{e^x-1}$$
 до члена с x^4 .

1383.
$$\sqrt[3]{\sin x^3}$$
 до члена с x^{13} .

1387.
$$\ln \frac{\sin x}{x}$$
 до члена с x^4 .