

① $\forall v \in D: d^+(v) = 1$ $|V(D)| \geq n$

a) D is weakly connected

As shown in class, D must have a cycle if $\forall v \in D: d^+(v) \geq 1$

minimum = 1

Can D have more than one cycle?

- We note that in some cycle C , there can be no out edges "exiting" the cycle from any $v \in C$

\Rightarrow Therefore, there can only be edges "entering" any given cycle $C \in D$

- In order to maintain weak connectivity with two or more cycles, there must be some set of edges between a hypothetical C_1, C_2 forming weak path P

- However, we observe if $|V(P)| = x$, then $|E(P)| = x+1$, as the final edges point from P into C_1, C_2 . As $d^+(v) = 1$, such P can't exist.

\Rightarrow maximum = 1

b) D is no longer weakly connected

- As we've just proved, the maximum number of cycles in a weak component is one

⇒ we want to maximize the number of weak components

- As we disallow self loops, the minimum size of a component is two

- So our maximum number of cycles is $\left\lfloor \frac{|V(D)|}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor$

c) We now allow self loops, we can use the same logic to get:

- Our maximum is now $|V(D)| = n$

$$\textcircled{2} \quad S = \{1, 2, 1, 1, 4, 3\}$$

Using Havel-Hakimi

$$\{4, 3, 2, 1, 1, 1\}$$

-1 -1 -1 -1

$$\{2, 1, 1\}$$

-1 -1

As a Prüfer code

$$S = \{1, 2, 1, 1, 4, 3\}$$

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$\text{Edges} = (5, 1)$$

$$(6, 2)$$

$$(2, 1)$$

$$(7, 1)$$

$$(1, 4)$$

$$(4, 3)$$

$$(3, 8)$$

=>

③ We observe that the degree sequence is all even

- As we proved in class:

G is Eulerian iff $\forall v \in V(G) : d(v)$ is even
assuming G is connected

\Rightarrow Therefore, $\exists R \in G$ where R is
a closed trail containing all $e \in E(G)$

- So for any $u, v \in V(G)$, there exists two paths P_1, P_2 connecting v and u
- Removal of any single edge will only disconnect P_1 or P_2 from u, v

\Rightarrow So no single edge will disconnect G , or G has no cut edge \square

④ Note: this proof is valid for any connected graph, not only trees

- We consider hypothetical tree T which contains $P_1, P_2 \in T$ where P_1, P_2 are of some maximum length n
 - We consider the instance where no such $v \in V(T), v \notin P_1, P_2$ exists
→ i.e. P_1, P_2 have no share vertex

\Rightarrow So there must exist some minimum path connecting P_1, P_2 denoted as P_3

- Consider the below: $(T \text{ is connected, so such a } P_3 \text{ must exist})$

if $a > b$:

$$|\text{1u, g-path}| = a + n - b + c \geq n$$

If $b > a$:

$$|v, x\text{-path}| = b + n - a + c > n$$

$$\text{if } b=a \geq \frac{n}{2}$$

$$|u, x\text{-path}| = a + b + c > n$$

$$\text{if } b = a < \frac{n}{2}$$

$$|v, y\text{-path}| = n - a + b + c > n$$

→ regardless of case,
there always exists
some larger path,
a contradiction □

⑤ - Consider if G is connected, then it must have a minimum possible degree of 1 and a maximum possible degree of $n-1$

\Rightarrow possible degrees of $\{1, 2, \dots, n-1\}$, where there are $n-1$ possible degrees for n vertices

\Rightarrow by pigeon hole principle, at least one degree must be repeated ✓

- Now consider if G is disconnected, then each component of G will have its own independent degree sequence

\Rightarrow we can repeat the same argument above for each component of G □

Note: we need to consider the disconnected case separately, otherwise we could include a vertex of degree zero, invalidating our first argument

⑥ Show if $|V(G)| > |E(G)| \Rightarrow G$ must have at least one component that is a tree

We consider induction on edges of G

Base: $\bullet\bullet \Rightarrow$ a single edge fits our assumptions and is a tree

Hypothesis: assume for some $P(k) = H$ s.t,
 $|V(H)| > |E(H)| \Rightarrow H$ has at least one tree component

Inductive Step: We construct H by contracting some edge $e \in E(G)$, $H = G \cdot e, |V(G)| > |E(G)|$

- We note $V(H) = V(G) - 1, E(H) = E(G) - 1$ fits our assumption, we invoke our I.H.
- We consider two cases:

Case 1: e was on a cycle. As we've seen, edge contraction retains cycles, so there is some other component in H and therefore G without a cycle \Rightarrow tree

Case 2: e was not on a cycle. Edge contraction does not create cycles, so some tree component of $H \Rightarrow$ same tree component of $G \square$