大学物理实验报告

大学物理实验中心 实验时间: 开课学院、实验室 声光行射与液 实验项目类型 实验项目 体中声序的测定 验证 综合 设计 大学物理 演示 课程 名称 名称

其他 成绩 指导 秀乃梅 教师

实验目的:

1. 理解声光相互作用的机理和超声光栅的原理

2. 观察声光衍射现象

3. 学会用起声先栅测定液体中声速

实验原理: 声波在气体、液体介质中传播时、会引起介质密度呈疏密交替变 化形成液体市场,当光通过这种市场时就相当于通过一个庞射相位光栅并 发生栅射, 称为声光衍射. 本实验研究以液体为介质的超声光栅对光 的衍射作用

超声很在液体中传播的方式可以是行波也可以是驻波、行波形式的 超声光栅,栅面在空间随时间移动、密度和折射辛都是周期性变化且周 期相同,相应波长正是超声波的波长入。折射中的分布的声速 Vs 推进,表 超声被传 亦为:

{ n(&,t) = noton(&,t) (an (a,t) = ansin(ksz-wst) 前此波与反射波叠加得 a U,t)= 2A 08)217 是·SINXT 卡

计算得 an(j,t)=2n sinkj. con wit.

当一来单色光垂直入射到超声光栅上时,出光即为 行射光· Vs= ZL入fs Xm/m.

传读误差 最懂 0.01 实验仪器: 0.01 0-13 0.02 声光行身投/INTE 0.02 02120 0.5 游标卡尺/mm b ~ 2000 1.5 卷尺 /mm 0~1000 温度汁/°C

实验步骤:

- ②在液槽中装入适量透明液体,尽量使液槽器壁气泡少,放入
- 超声按能量,打开激光器,使激光垂直射入液槽.
- ③连接电路,开机炬换能器加上激励电压,调节声光衍射仪频平,
- 图反复仔细观察, 调节液槽的俯仰. 方位, 换能器的位置 以及仪器的 直到观察屏上出现衍射图样 板平,直至观察屏中出现 行射光斑最多、光强最大
 - ⑤用朱尺测量液槽中心利屏的距离 L
 - ①用游标卡尺测量±m级光键 Xm
 - ①测温厂
 - ②测频年fs. 计算Vs.
 - ⑦改变T. 比较对声速的影响.

G. IMHZ 6/mm	XI/mm	X2/mm	X3/mm	dram
实验记录: 100 入/nm 75/1111	12.56	24.82		1
19.5 650.4 10.64 12564.5	11.95	24.01	35.86	121.2
78 43.5	/			

数据处理:

据处理:

$$t=19.5^{\circ}C$$
. $\frac{x_{m}}{m} = \frac{1}{3}(\frac{x_{1}}{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3}) = 12.35 \text{ mm}$
 $L=10+\frac{1}{2} = 1281.8 \text{ mm}$
 $V_{5} = \frac{2+5}{x_{m}} = 1436 \text{ m/s}$.

$$t=43.5^{\circ}C \qquad \frac{x_{m}}{m} = \frac{1}{3} \left(\frac{x_{1}}{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3} \right) = 11.97 \text{ mm}$$

$$L = 10 + \frac{1}{9} = (290.3 \text{ mm})$$

$$V_{S} = \frac{2f_{3} L x_{1}}{x_{m}} = 1569 \text{ m/s}.$$

由计算信果可知,温度越高,水中声速越大

数据处理:

Suro

讨论: 1. 注意水槽与老屏距离需大于1.1m.

- 2. 激光需重重射入
- 3. 水槽装水前严禁打开超声波。
- 4. 激光需穿过液体不能从液面上射出

物理实验 原始实验数据记录

2021年 12月 6日

	_			
1211		- 4-1	仕中五	建的洲龙
	+ 1 1.2	DX 5/1/2	JAT P	DE MILLA
トマト なずか	面光约	オーフィー	. / / /	

实验仪器:

	H. 103	最小量	估读误差	仪器误差	零位误差
仪器名称	量程のいる	0.01	0.0		
声光行身仪/MHB	0~150	0.02	0.01		
方子(T-) / MM	0~2000	1	0.5		
	0~100		0.5		

物理现象及数据记录(表格自拟):

介质		入/nm	fs/MHz	lo/mm	XI/mm	X2/mm	X3/mm	d/mm
-	10 E		10.64	1256.0		24.82	36.24	\$1.5
水 19-5 650	650.4	11.19	1264.5	11.95	24.01	35.86		

$$t=19.8$$
C 时, $\frac{x_{m}}{m} = \frac{1}{3}(\frac{x_{1}}{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3}) = 12.35$ mm

 $L=10+\frac{d}{2}=1281.9$ mVs = $\frac{2}{5}$ L λ = $\frac{2\times 10.64\times 10^{6}\times 1281.75\times 650.4\times 10^{9}}{12.35}$ = $\frac{1436}{5}$ m $\frac{x_{m}}{m} = \frac{1}{3}(\frac{x_{1}}{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3}) = 11.97$ mm

 $L=10+\frac{d}{3}=1290.3$ mm. $V_{5}=\frac{2}{5}$ L λ = $\frac{2\times 11.19\times 10^{6}\times 1290.3\times 650.4\times 10^{-1}}{11.97}=1569$ m/s. 由计算指果可知,温度越高,水中声速越大

指导教师: