Exercice 11.1

On donne un point P, une droite d et un plan α . Soit β le plan passant par P, parallèle à la droite d et perpendiculaire au plan α . Construire les traces du plan β .

Solution géométrique

- \bullet Le plan β est parallèle à la droite d. Il contient donc une droite parallèle à d.
- Le plan β est perpendiculaire au plan α . Il contient donc une normale au plan α .
- Le plan β passe par le point P. Il est donc défini par
 - $\circ\,$ une droite g passant par P et parallèle à d,
 - \circ et une droite n passant par P et perpendiculaire au plan α .

La droite g est parallèle à la droite d et passe par le point P.

La droite n est perpendiculaire au plan α et passe par le point P.

Le plan β est défini par les deux droites concourantes g et n. Ses traces passent par les traces des droites g et n.

