Opency application

Opency application

- 1. Enter Docker
- 2. Start the camera
- 3. Start the Opencv_apps function
- 4. Preview the screen
 - 4.1. Local View
 - 4.2. LAN View

References

1. Enter Docker

sh ~/ros_melodic.sh

2. Start the camera

Source code location in Docker: ~/yahboomcar_ws/src/opencv_apps/launch

roslaunch yahboomcar_visual opencv_apps.launch img_flip:=false

img_flip: Whether the image needs to be flipped horizontally, the default is false

3. Start the Opencv_apps function

Only one function can be run at a time, and the debug_view of some functions is closed. If there is no screen, you can view the effect in the following two ways.

The reason for closing debug_view is that an error will be generated in the terminal, and the actual effect has no effect!

You need to start the camera and run this command:

roslaunch opencv_apps	face_recognition.launch	# Face Recognition
roslaunch opencv_apps	corner_harris.launch	# Harris corner
detection		
roslaunch opencv_apps	camshift.launch	# Target Tracking
Algorithm		
roslaunch opencv_apps	contour_moments.launch	# Contour moment
roslaunch opencv_apps	convex_hull.launch	# Polygonal outline
roslaunch opencv_apps	discrete_fourier_transform.launch	# Discrete Fourier
Transform Algorithm		
roslaunch opencv_apps	edge_detection.launch	# Edge detection
algorithm		
roslaunch opencv_apps	face_detection.launch	# Face Detection
Algorithm		
roslaunch opencv_apps	fback_flow.launch	# Optical flow
detection algorithm		
roslaunch opencv_apps	find_contours.launch	# Contour Detection
roslaunch opencv_apps	general_contours.launch	# General contour
detection		
roslaunch opencv_apps	goodfeature_track.launch	# Feature point
tracking		
roslaunch opencv_apps	hls_color_filter.launch	# HLS Color Filtering
roslaunch opencv_apps	hough_circles.launch	# Hough circle
detection		
roslaunch opencv_apps	hough_lines.launch	# Hough Line Detection
roslaunch opencv_apps	hsv_color_filter.launch	# HSV color filtering
roslaunch opencv_apps	lk_flow.launch	# LK optical flow
algorithm		
roslaunch opencv_apps	people_detect.launch	# Human Detection
Algorithm		
roslaunch opencv_apps	phase_corr.launch	# Phase-correlated
shift detection		
roslaunch opencv_apps	pyramids.launch	# Image pyramid
sampling algorithm		
roslaunch opencv_apps	rgb_color_filter.launch	# RGB color filtering
roslaunch opencv_apps	segment_objects.launch	# Clear background
detection algorithm		
roslaunch opencv_apps	simple_flow.launch	# Streamlined optical
flow algorithm		
roslaunch opencv_apps	smoothing.launch	# Simple filter
roslaunch opencv_apps	threshold.launch	# Threshold Image
Processing		
roslaunch opencv_apps	watershed_segmentation.launch	# Watershed
segmentation algorithm		

4. Preview the screen

Start the camera and start one of the Opencv_apps functions to view the screen in the following way.

4.1. Local View

Enter the following command and select the corresponding topic to see the effect:

rqt_image_view

4.2. LAN View

In the same LAN, enter IP:port (8080) in the browser, for example:

192.168.2.150:8080 #IP refers to the host IP

References

wiki: http://wiki.ros.org/opencv apps

Source code: https://github.com/ros-perception/opencv apps.git

Most of the code was originally taken from $\frac{https://github.com/ltseez/opencv/tree/master/sample}{s/cpp}$