

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Mazev operaciino programa.	
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných
	kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	KOM III
Popis sady vzdělávacích materiálů:	Konstrukční měření III, 3. ročník.
Sada číslo:	J-05
Pořadové číslo vzdělávacího materiálu:	26
Označení vzdělávacího materiálu:	VY_52_INOVACE_J-05-26
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Zkoušky rázem
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Zkoušky rázem

U těchto zkoušek probíhá zatěžování velmi rychle, takzvaným rázem. Zkušební vzorek se nestihne plasticky deformovat a praská křehce. Při rázu je chování materiálu velmi závislé na různých nepravidelnostech povrchu, kterým říkáme vruby.

Rázová zkouška v tahu

K této zkoušce se používá kyvadlové kladivo. Je sestrojeno tak, aby se zkušební tyčinka při průchodu kladiva spodní polohou přetrhla. Příčník dosedne ve spodní poloze na rám kladiva a kinetická energie kladiva tyčinku přetrhne. Tyčinka je kruhového průřezu opatřená vrubem.

Měříme energii spotřebovanou k přetržení tyčinky, ze které vypočteme vrubovou houževnatost v tahu $R_{\scriptscriptstyle t}=\frac{A_{\scriptscriptstyle s}}{S_0}$ jednotka $\frac{J}{cm^2}$. As je energie spotřebovaná k přetržení tyčinky, kterou určíme

z výšky překmitnutí kladiva na druhou stranu, So je průřez v místě vrubu před zkouškou.

Tato zkouška se používá málo.

Rázová zkouška v ohybu – zkouška vrubové houževnatosti

K této zkoušce se používá kyvadlové kladivo, nejčastěji takzvané Charpyho kladivo. Normalizovaná zkušební tyčinka se podkládá na dvě podpěry na rám stroje. Kladivo se uvolní z horní polohy a při průchodu kladiva spodní polohou přerazí zkušební tyčinku. Kladivo pak překmitne na druhou stranu. Energie spotřebovaná k přeražení tyčinky se odečte na stupnici z výšky tohoto překmitnutí.

Používá se normalizovaná zkušební tyčinka opatřená vrubem. Vrub může být tvaru U nebo V, podle toho vrubovou houževnatost značíme KCU nebo KCV.

Zkouškou určujeme vrubovou houževnatost.

$$KCU(KCV) = \frac{A_s}{S_0}$$
 jednotka $\frac{J}{cm^2}$.

 $A_{\scriptscriptstyle s}$ – energie spotřebovaná k přeražení tyčinky stranu;

 \boldsymbol{S}_0 – je průřez v místě vrubu před zkouškou.

Čím je hodnota vrubové houževnatosti větší, tím je materiál houževnatější, lépe snáší rázy a není citlivý na působení vrubů. Je tedy mírou houževnatosti materiálu. Běžně se hodnota vrubové houževnatosti udává v materiálových normách. Je to velmi často používaná zkouška.

Kromě hodnoty vrubové houževnatosti posuzujeme i tvar lomu zkušební tyčinky.

Vrubová houževnatost se často zkouší i za nízkých teplot, protože se s teplotou mění. Od takzvané přechodové teploty se vrubová houževnatost prudce sníží a i houževnatý materiál se začne chovat křehce.

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: Technologická a strojnická měření. Praha: SNTL, 1982. ISBN 04-214-82.