Q3.A parallel beam of light is incident on a plane transmission grating having 3000 lines/cm. A third order diffraction is observed at 30[®]. calculate the wavelength of the line.

Given:-a+b =
$$1/3000$$
; n=3; θ =30

Formula:-
$$(a + b)\sin \theta = n \lambda$$
, $n=1,2,3...$

Solution:-
$$\lambda = \frac{a+b}{n} \times sin\theta$$

= $\frac{1}{3000 \times 3} \times sin30$
= $\frac{1}{9000 \times 2}$ = 5.555×10⁻⁵ cm

Ans:- The wavelength of the line is 5.555×10⁻⁵ cm.