

AULA 1 - TRANSFORMAÇÕES GASOSAS

As equações das transformações gasosas podem ser deduzidas a partir da Equação geral dos gases:

$$\frac{P_i.\,V_i}{T_i} = \frac{P_o.\,V_o}{T_o}$$

Transformação Isobárica

Quando a Pressão é constante e o Volume e a Temperatura são variáveis.

$$\frac{V_i}{T_i} = \frac{V_o}{T_o}$$

Transformação Isovolumétrica/Isométrica/Isocórica

Quando o Volume é constante e a Pressão e a Temperatura são variáveis.

$$\frac{P_i}{T_i} = \frac{P_o}{T_o}$$

Transformação Isotérmica

Quando a Temperatura é constante e o Volume e a Pressão são variáveis.

$$P_i.V_i = P_o.V_o$$

AULA2 - TRABALHO DE UM GÁS

Considere um gás contido em um recipiente fechado por um êmbolo móvel. Ao aumentar a temperatura no recipiente, o volume aumenta também, deslocando o êmbolo e realizando **trabalho**.

Sejam:

• V_i: volume inicial do gás

• V_o : volume final do gás

• $\Delta V : V_o - V_i$ (Variação do volume)

P: pressão do gás

τ: trabalho do gás

Temos que:

$$\tau = P.\Delta V$$

Fonte:

http://www.sofisica.com.br/conteudos/Termologia/Termodi namica/trabalho.php

Quando há uma expansão do êmbolo (ΔV positiva), o trabalho do gás é positivo, e quando há uma compressão do êmbolo (ΔV negativa), o trabalho do gás é negativo.

Gráfico PxV

Também é possível calcular o trabalho do gás observando seu gráfico de Pressão (P) x Volume (V).

A área sob esse gráfico é numericamente igual ao trabalho realizado pelo gás.

Fonte:

http://www.mundoeducacao.com/upload/conteudo/gr%C3 %A1fico%20Px%CE%94V.jpg

AULA 3 – 1ª LEI DA TERMODINÂMICA

Em um sistema, toda **energia** recebida é direcionada para realizar o **trabalho** e para a **variação da energia interna**.

No caso em que o sistema perde calor (Q negativo), significa que o gás sofreu uma compressão (trabalho negativo) e a energia interna diminui.

Sejam:

Q: quantidade de energia recebida

ΔU: variação da Energia interna

τ: trabalho

Temos que:

$$O = \Delta U + \tau$$

1

AULA 4 - TRANSFORMAÇÃO ISOBÁRICA

Quando a Pressão é constante e o Volume e a Temperatura são variáveis.

Fonte: http://www.mspc.eng.br/termo/img01/termod101.gif

1ª Lei da Termodinâmica

Na transformação isobárica a equação da 1ª Lei da Termodinâmica não tem alterações:

$$Q = \Delta U + \tau$$

AULA 5 - TRANSFORMAÇÃO ISOMÉTRICA

Quando o Volume é constante e a Pressão e a Temperatura são variáveis.

Fonte: http://www.mspc.eng.br/termo/img01/termod102.gif

1ª Lei da Termodinâmica

Na transformação isométrica temos au=0, logo:

$$Q = \Delta U$$

AULA 6 - TRANSFORMAÇÃO ISOTÉRMICA

Quando a Temperatura é constante e o Volume e a Pressão são variáveis.

Fonte:

http://lh5.ggpht.com/_Qmjqb2Gk9no/S7U4A_oUjPI/AAAAA AAAFwQ/sK8nYjy_tKc/image_thumb%5B15%5D.png?img max=800

1ª Lei da Termodinâmica

Na transformação isotérmica temos $\Delta U = 0$, logo:

$$Q = \tau$$

AULA 7 - TRANSFORMAÇÃO ADIABÁTICA

Quando não recebe energia do meio externo, ou seja, para o gás realizar trabalho é necessário gastar a própria energia interna.

Sejam:

- C_p: calor especifico sensível do gás quando a pressão for constante
- C_v : calor especifico sensível do gás quando o volume for constante
- $\gamma = \frac{c_p}{c_v}$

Temos que:

$$P.V^{\gamma} = constante$$

Fonte:

http://www.vestibular.ufrrj.br/gabarito_html/biologia_clip_im age068.jpg

1ª Lei da Termodinâmica

Na transformação adiabática temos Q = 0, logo:

$$\tau = -\Delta U$$

AULA 8 - CICLOS

A quantidade de **energia** trocada em um ciclo é a **soma do trabalho** exercido em cada processo desse ciclo. Por ser um ciclo, não há variação da energia interna ($\Delta U = 0$).

$$Q = \tau$$

Gráfico

O trabalho exercido é representado pela área interna do ciclo no gráfico.

Fonte:

http://www.mundoeducacao.com/upload/conteudo_legend a/9a36739a46a110ada17ef43b53a78cde.jpg

Sentido do ciclo

Se o sentido for horário, o trabalho será positivo e o ciclo é chamado de **motor**.

Se o sentido for anti-horário, o trabalho será negativo e o ciclo é chamado de **refrigerador**.

AULA 9 - MÁQUINAS TÉRMICAS E RENDIMENTO

Máquinas térmicas

São maquinas que convertem energia térmica em trabalho, interagem sempre com uma fonte quente e uma fonte fria.

As maquinas térmicas podem ser do ciclo motor e do ciclo refrigerador.

Rendimento

Uma máquina rende mais quando desperdiça menos energia.

$$Rendimento = \frac{Energia \ \text{\'util}}{Energia \ recebida}$$

Máquina de ciclo motor

Recebe calor da fonte quente e transforma parte da energia térmica em trabalho. A parte restante da energia é desperdiçada, ou seja, enviada para a fonte fria.

Rendimento

Sejam:

- η_{motor} : rendimento da máquina de ciclo motor
- Q_1 : calor **enviado** da fonte quente
- Q_2 : calor **recebido** pela fonte fria
- τ: trabalho gerado pela máquina térmica

Temos que:

$$\eta_{motor} = \frac{\tau}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

Máquina de ciclo refrigerador

Recebe calor da fonte fria através da aplicação de um trabalho. A energia restante é enviada para a fonte quente.

Rendimento

Sejam:

- η_{refr} : rendimento da máquina de ciclo refrigerador
- Q_1 : calor **recebido** pela fonte quente
- Q_2 : calor **enviado** pela fonte fria
- τ: trabalho exercido na máquina térmica

Temos que:

$$\eta_{refr} = \frac{Q_2}{|\tau|} = 1 - \frac{Q_2}{Q_1}$$

Fonte:

http://educacao.globo.com/fisica/assunto/termica/transform acoes-ciclicas-e-maquinas-termicas.html

AULA 10 - CICLO DE CARNOT

Em 1824, o engenheiro Carnot provou que não é possível construir uma máquina com rendimento total. Mas desenvolveu um modelo de máquina que possui o **máximo rendimento possível**, que é quando o ciclo é composto de duas transformações adiabáticas e duas transformações isotérmicas.

Fonte: http://www.mspc.eng.br/termo/img01/termod307.gif

Rendimento

Sejam:

• η_{carnot} : rendimento da máquina de ciclo motor

• T_1 : temperatura da fonte quente

T₂: temperatura da fonte fria

Temos que:

$$\eta_{carnot} = 1 - \frac{T_2}{T_1}$$

AULA 11 - 2ª LEI DA TERMODINÂMICA

Enunciado de Kelvin-Planck

"É impossível a construção de uma máquina que, operando em um ciclo termodinâmico, converta toda a quantidade de calor recebido em trabalho."

Enunciado de Clausius

"O calor não pode fluir, de forma espontânea, de um corpo de temperatura menor, para um outro corpo de temperatura mais alta."