

www.nagpurstudents.org

B.E. Fourth Semester (Computer Science Engineering) (C.B.S.)

Theoretical Foundations of Computer Science

P. Pages: 3

Time: Three Hours

NKT/KS/17/7296

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.

1. a) With the help of Mathematical Induction, prove that

1)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2)
$$1.1!+2.2!+3.3!+....+n.n!=(n+1)!-1$$

b) Explain Pigeonhole principle with example. Also explain Generalised pigeonhole principle.

OR

2. a) Explain in detail Chomsky Hierarchy of languages.

6

5

b) What is Countability & Diagonalization.

4

c) Let
$$R = \{(1,2), (2,3), (3,1)\} \&$$

 $A = \{1, 2, 3\}$. Find Reflexive, Symmetric & transitive closure of R.

3

3. a) Design DFA over $\Sigma = \{0, 1\}$ to accept strings containing even number of 0's and 1's.

6

b) Consider \in -NFA.

8

Z Q	\in	a	b	c
$\rightarrow p$	7	p	q	r
q	p	q	r	ф
*r	q	r	ф	p

- i) Compute \in -closure of each state
- ii) Compute all the strings of length 3 or less accepted by the automata
- iii) Convert to DFA.

NagpuiStudents

- **4.** a) Construct Mealy Machine to compute 2's complement of binary number. Also convert this machine to Moore Machine.
 - 0

13

10

b)	Construct Minimum	state automata	equivalent to	given automata.
----	-------------------	----------------	---------------	-----------------

State	0	1
$\rightarrow q_0$	q_1	q_5
q_1	q_6	q_2
$\overline{q_2}$	q_0	q_2
q_3	q_2	q_6
q_4	q_7	q_5
q_5	q_2	q_6
q_6	q_6	q_4
q_7	q_6	q_2

5. Construct F.A. to accept strings over $\Sigma = \{a, b\}$ containing at least one aba and not containing bbb.

OR

6. a) Check whether given grammar is ambiguous or not.

 $S \rightarrow a/Sa/bSS/SbS$

b) Reduce the grammar & find equivalent grammar.

 $S \rightarrow aA / aBB$

 $A \rightarrow aaA / \in$

 $B \rightarrow bB/bbC$

 $C \rightarrow B$

c) Convert the following CFG into CNF.

 $S \rightarrow bA/aB$

 $A \rightarrow bAA/aS/a$

 $B \rightarrow aBB/bS/b$

7. a) Construct CFG from following PDA.

 $\delta(q_0, 1, Z_0) \rightarrow (q_0, XZ_0)$

 $\delta(q_0, 1, X) \rightarrow (q_0, XX)$

 $\delta(q_0, 0, X) \rightarrow (q_1, X)$

 $\delta(\mathbf{q}_0,\in,\mathbf{Z}_0)\!\rightarrow\!(\mathbf{q}_0,\in)$

 $\delta(q_1, 1, X) \rightarrow (q_1, \in)$

 $\delta(q_1, 0, Z_0) \rightarrow (q_0, Z_0)$

b) Explain the model of PDA.

OR

NagpuiStudents

- **8.** a) Convert the CFG into PDA.
 - $E \rightarrow aAB/d$
 - $A \rightarrow BA/a$
 - $B \rightarrow Ead / C$
 - b) Design PDA for

$$h = \left\{ WW^R \middle/ W \in \left\{ a, b \right\}^* \right\}$$

- **9.** a) Explain in detail, types of Turing Machines.
 - b) Design Turing Machine for

$$h = \left\{ a^n b^n c^n / n \ge 1 \right\}$$

OR

8

7

7

- **10.** a) Design a Turing Machine for multiplication of unary numbers.
 - b) Give the model of LBA and define it formally.
- 11. a) What is Post Correspondence Problem? Explain with example. Also explain modified PCP.
 - b) Define Ackermann's function. Compute A (1, 1), A (2, 1), A (2, 2)

OR

- 12. a) Explain properties of Recursively Enumerable Languages.
 - b) Write a note on Recursive function.
 - c) Explain Halting Problem.
 - d) Define Decidability & Undecidability.

The secret of getting ahead is getting started. ~ Mark Twain

