Trees

- A non-linear hierarchical data structure
- Can be very efficient
- Example: You look for a file containing your A1 project source code.
 - Option 1: you have 10000 files, all stored in a single folder
 - Option 2: you have 10000 files organised hierarchical with subfolders,
 - e.g. university->year1->CS130->A1->SourceCode
 - Which option makes it easier to find the file?

Tree Applications

Examples and Applications of trees include:

- Family trees
- Directory structures (file system)
- Arithmetic expressions
- Game trees (finding winning positions in a game)
- Binary Space Partitioning (BSP) trees (finding visible objects in a scene)
- Search trees (finding all the paths back out of a maze)
- Quadtrees (for efficient terrain rendering)
- Octree (for fast collision detection, ray tracing etc.)
- Constructed Solid Geometry (CSG) objects
- Joint hierarchies (for skeletal animation of characters)
- etc.

Tree Definition

A tree is defined as a set of points called *nodes* and a set of lines called *edges* where an edge connects two distinct nodes.

A tree has three properties:

• One node is distinguished and called the root.

- Every node *n* other than the root is connected by an edge to exactly one other node *p* closer to the root.
- A tree is connected in the sense that if we start at any node n other than the root and move to the parent of n, continue to the parent of the parent of n, and so on, we eventually reach the root.

Recursive definition: A tree is either empty or it consist of a node (called root) and a list of subtrees connected to it

Trees

Some terminology

- A node N is the child of M (and M the parent of N) if they are connected by an edge and M is closer to the root than N.
- A tree where every node has at most two children is called a binary tree

Binary Trees

We normally think of binary trees being balanced and full

But they can be all sorts of different shapes and sizes

- What tree has only leaf nodes?
 - A tree consisting only of the root, i.e. with no children
- What is the maximum height (number of levels) of a binary tree with 7 nodes? What is its minimum height?
 - Maximum height is 7 (each node, except the last, has one child)
 - Minimum height is 3 (root and children of root have all two children)

BinaryTree class

```
class BinaryTree:
```

```
def init (self, data, left=None, right=None):
    self. data = data
                                                      def get left(self):
    self. left = left
                                                         return self. left
                                                      def get right(self):
    self. right = right
                                                         return self. right
def insert left(self, new data):
                                                      def set data(self, data):
    if self. left == None:
                                                         self. data = data
                                                      def get data(self):
        self.left = BinaryTree(new data)
                                                         return self. data
    else:
        t = BinaryTree(new data, left=self. left)
        self. left = t
def insert right(self, new data):
    if self. right == None:
        self. right = BinaryTree(new data)
    else:
        t = BinaryTree(new data, right=self. right)
        self. right = t
```


Drawing a tree

• Note:

- root must be at the top!
- draw an edge from parent to child nodes

Draw the expression tree of the following mathematical expression

Answer: (penalty regime: 0, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 %)

Help

- Create a node using a double click and click on it to enter the value.
- Draw an edge using shift and clicking on a node, then drag with the mouse cursor to You must draw an edge from parent to child nodes. You don't have to provide a value
- Delete an edge/node by clicking on the edge/node and pressing delete.
- Move a (sub)tree by clicking on ALT and moving the root node of the (sub)tree.

Tree traversals

 The order in which we print the nodes depends on where we place the print() statement relative to the recursive calls


```
def basic print(t):
                               def basic print(t):
                                                               def basic print(t):
  if t != None:
                                  if t != None:
                                                                 if t != None:
   print(t.get data())
                                   basic_print(t.get_left())
                                                                   basic print(t.get left())
                                   print(t.get data())
   basic print(t.get left())
                                                                   basic print(t.get right())
                                   basic_print(t.get_right())
   basic print(t.get right())
                                                                   print(t.get data())
                                                                   2 7 5 15 999 10
     10 5 2 7 999 15
                                    2 5 7 10 999 15
                                       in-order
       pre-order
                                                                    post-order
```