La noción de principalidad en Especialización de Tipos

Pablo E. "Fidel" Martínez López

Tesis de Doctorado en Ciencias de la Computación

Dpto de Computación, Facultad de Cs Exactas y Naturales Universidad Nacional de Buenos Aires

3ras Jornadas de Ciencias de La Computación Universidad Nacional de Rosario

El comienzo...

Bilbo tomó un copón de doble asa, de los más pesados que podía cargar, y echó una temerosa mirada hacia arriba. (...)

Entonces escapó corriendo. (...) Su principal pensamiento era "¡Lo hice! (...) ¡Ahora soy realmente un saqueador!"

El Hobbit

John R. R. Tolkien

Especialización de Programas

- Motivación:
 - Generación de programas por medios automáticos
- Método:
 - Especialización de programas
 - Enfoque tradicional: evaluación parcial

Especialización de Programas

Evaluación Parcial (PE)

- Especialización por EVALUACIÓN (reducción)
- Programa fuente: varios argumentos
 - · Argumentos conocidos: estáticos (S)
 - · Los restantes: dinámicos (D)
- Operaciones anotadas con S ó D
 - Análisis de binding times (BTA)
- ✓ <u>Técnica</u>:
 - Reducir todas las operaciones estáticas

Evaluación Parcial

- Compilando por especialización de intérpretes
 - Ecuación Mix
 prog_res = mix prog_fuente datos^S
 t.q. prog_res datos^D = prog_fuente datos^S datos^D
 - Primera Proyección de Futamura
 prog' = mix interp prog
 t.q. prog' data = interp prog data
 - Especialización Óptima
 mix auto_interp prog = prog' = prog

Evaluación Parcial

- ✓ Compilando por especialización de intérpretes **con tipos**
 - Ecuación Mix
 prog_res = mix prog_fuente datos^S
 t.q. prog_res datos^D = prog_fuente datos^S datos^D
 - Primera Proyección de Futamura
 prog' = mix interp prog
 t.q. prog' data = interp prog data
 - Especialización Óptima, perdida
 mix auto_interp prog = prog' ≠ prog

 $prog' :: Val \rightarrow Val$

El problema de los tags

```
data Val = N^D Int^D | F^D (Val \rightarrow^D Val)

eval (Const n) env = N^D n

eval (Var x) env = env x

eval (Lam x e) env =

F^D (\lambda^D v. \text{ eval e (bind x v env)})

eval (App e e') env =

unF^D (\text{eval e env}) @^D (\text{eval e' env})
```

```
\lambda f. f(f0)''
(Lam 'f' (App (Var 'f') (Const 0))))
(App (Var 'f') (Const 0))))
```

```
F (λv. unF v
(unF v (N 0)))
:: Val
```

El problema de los tags

```
data Val = N^D Int^D | F^D (Val \rightarrow^D Val)

eval (Const n) env = N^D n

eval (Var x) env = env x

eval (Lam x e) env =

F^D (\lambda^D v. \text{ eval e (bind x v env)})

eval (App e e') env =

unF^D (\text{eval e env}) @^D (\text{eval e' env})
```

(App (Const 0) (Const 2))

mix

unF (N 0) (N 2)
:: Val

- ✓ Los tipos aproximan información estática
 - e.g. e:: Int significa que [e] es un entero (si su computación termina)
- ✓ ¿Podemos tener una aproximación mejor? ¡Sí!
 - e.g. podemos tener un tipo que exprese que e es 42 (llamémoslo 42)
 - La expresión para calcular e no se necesita más
 - Por ello, podemos especializar $e :: Int \longrightarrow \bullet :: 42$

- ✓ ¡Los tipos se pueden especializar!
 - e.g. Int especializa a 42 en el ejemplo previo
- Nueva forma de juicio

Más posibilidades:

$$\underbrace{(\lambda^D x. \ x + ^S1^S)}_{::: Int^S \to Int^S} 41^S :: Int^S \hookrightarrow \underbrace{(\lambda x. \bullet)}_{::: 41 \to 42} \bullet :: 42$$

- Especialización por INFERENCIA DE TIPOS
 - Mejor flujo de información
- Programa fuente anotado
 - ¡Las anotaciones son más flexibles que en PE!
 - BTA completamente automático no es posible
 - · Las anotaciones son parte del input

✓ <u>Técnica</u>:

- Mover la información estática al tipo
- ¡Precisa un sistema de tipos residual más rico!

✓ Los tipos suma se especializan a una rama

- e.g.
$$InL^S 41^D :: Int^{D+S}Bool^S \hookrightarrow 41 :: InL Int$$

La información de tipos extra se utiliza en el case para elegir la alternativa

```
(\lambda^{D}x. \text{ case}^{S} x \text{ of InL } a \rightarrow a +^{D} 1^{D};
InR b \rightarrow \text{if}^{S} b \text{ then } 1^{D} \text{ else } 0^{D}
) (InL^{S} 41^{D}) :: Int^{D} \longrightarrow (\lambda x. x + 1) 41 :: Int
:: InL Int \rightarrow Int
```

¡El problema de los tags, resuelto!

```
data Val = N^{S} Int^{D} | F^{S} (Val \rightarrow^{D} Val)

eval (Const n) env = N^{S} n

eval (Var x) env = env x

eval (Lam x e) env =

F^{S} (\lambda^{D} v. \text{ eval e (bind x v env)})

eval (App e e') env =

unF^{S} (eval e env) @^{D} (eval e' env)
```

```
\lambda f. f(f0)''
(Lam 'f' (App (Var 'f') (Const 0))))
(App (Var 'f') (Const 0))))
```



```
(\lambda v. \ v \ (v \ 0)))
:: F (F (N Int \rightarrow N Int)
\rightarrow N Int))
```

¡El problema de los tags, resuelto!

```
data Val = N^S Int^D \mid F^S (Val \rightarrow^D Val)

eval (Const n) env = N^S n

eval (Var x) env = env x

eval (Lam x e) env =

F^S (\lambda^D v. \text{ eval e (bind x v env)})

eval (App e e') env =

unF^S (\text{eval e env}) @^D (\text{eval e' env})
```

``0 2''
(App (Const 0) (Const 2))

tspec

Error: (N Int) is different than (F (N Int \rightarrow N Int))

- Anotación adicional: lift
 - lift transforma un Int estático a uno dinámico
 - comparar

$$(\lambda^{D}x. x+^{S}1^{S}) 41^{S} :: Int^{S} \hookrightarrow (\lambda x. \bullet) \bullet :: 42$$

$$(\lambda^{D}x. \operatorname{lift}(x+S1S)) 41S :: \operatorname{Int}^{D} \hookrightarrow (\lambda x.42) \bullet :: \operatorname{Int}$$

entonces

No hay polivariaza por defecto

let^D
$$f = (\lambda^{D}x. \text{ lift } (x+S1S))$$

in $(f41S, f17S)$:: (Int^D, Int^D)
 \leftarrow error (41 no es igual a 17)

- ¡Se precisan tanto $f::41 \rightarrow Int como f::17 \rightarrow Int!$
- ¡Este tipo de errores es una característica!
- Polivarianza
 - Habilidad de especializar a más de un residuo
 - Guiado por anotaciones
 - Característica de primera clase

Anotaciones adicionales: poly y spec

```
let<sup>D</sup> f = \text{poly} (\lambda^{D}x. \text{ lift } (x+S1S))

in (spec f + 41S, spec f + 17S) :: (Int<sup>D</sup>, Int<sup>D</sup>)

let f = (\lambda x. + 42, \lambda x. + 18)S

in (\pi_{1}S f \bullet, \pi_{2}S f \bullet) :: (Int, Int)
```

 Observar como poly se transforma en una tupla, y cada spec en la proyección correspondiente

Monomorfización

```
data Val = N^{S} Int^{D} | F^{S} (Val \rightarrow^{D} Val)
data MPVal = M<sup>S</sup> Val | P<sup>S</sup> (poly Val)
eval (Const n) env = N^{S} (lift n)
eval (Var x) env =
  case<sup>S</sup> env x of
      M^S \lor \to \lor; P^S \lor \to \operatorname{spec} \lor
eval (Let x e e') env =
   let^D v = P^S (poly (eval e env))
    in eval e' (bind x v env))
```

```
\begin{array}{l}
\text{Let } i = \lambda x.x \text{ in } i \text{ } 0'' \\
\text{(Let 'i' (Lam 'x' (Var 'x'))} \\
\text{(App (App (Var 'i') (Var 'i'))} \\
\text{(Const 0)))}
\end{array}
```

tspec

let
$$i = (\lambda x.x, \lambda x.x)^s$$

in $(\pi_1^s i) (\pi_2^s i) 0$
:: N Int

e.g. expresiones lift

$$(\lambda^{D}x. \operatorname{lift}(x+^{S}1^{S})) :: \operatorname{Int}^{S} \rightarrow^{D} \operatorname{Int}^{D}$$

 λx . m :: $\hat{n} \rightarrow \text{Int}$, para todos n,m tal que m = n+1

 Sólo puede decidirse usando el contexto, e.g.

$$(\lambda^{D}x. \text{ lift } (x+S1S)) 41S :: Int^{D}$$

$$(\lambda x. 42) \bullet :: \widehat{41} \rightarrow Int$$

Es peor para expresiones polivariantes

```
let<sup>D</sup> f = \text{poly}(\lambda^D x. \text{ lift } (x + S1^S))
   in (spec f 41^{S}, spec f) :: (Int<sup>D</sup>, Int<sup>S</sup> \rightarrow<sup>D</sup> Int<sup>D</sup>)
 let f = (\lambda x. 42)^{S}
   in (\pi_1^S f \bullet, \pi_1^S f) :: (Int, 42 \rightarrow Int)
pero también
 let f = (\lambda x. 42, \lambda x. m)^{S}
   in (\pi_1^S f \bullet, \pi_2^S f) :: (Int, \widehat{\mathbf{n}} \to Int),
```

para todos n, m tal que m = n+1

- ✔ Primera idea: usar variables de tipos
 - e.g.

$$(\lambda^{D}x. \ x + {}^{S}1^{S}) :: Int^{S} \rightarrow {}^{D}Int^{S} \hookrightarrow \lambda x. \bullet :: \forall \alpha \beta. \alpha \rightarrow \beta$$

- ¡No captura la relación entre α y β!
- Mi propuesta:
 - Usar un sistema residual con tipos calificados
 - Los predicados expresan dependencias sobre información estática desconocida
 (e.g. _:=_+_ es un predicado que relaciona 3 tipos).
 - entonces $\lambda x. \bullet :: \forall \alpha \beta. \beta := \alpha + \widehat{1} \Rightarrow \alpha \rightarrow \beta$

- Los predicados pueden verse como restricciones entre tipos
- ✓ Habrá una clase de predicados para cada clase de construcción estática, e.g.
 - IsInt α expresa que α debe ser un tipo \widehat{n}
 - $\alpha := \alpha_1 + \alpha_2$ expresa que α debe ser un tipo \widehat{n} , α_1 un tipo \widehat{m}_1 , y α_2 un tipo \widehat{m}_2 , tal que $n=m_1+m_2$

- Yo distingo entre
 - tipos (τ) : Int \rightarrow Int
 - tipos calificados (ρ) : β:= α +1 ⇒ α →β
 - esquemas (σ): $\forall \alpha \beta. \beta := \alpha + 1 \Rightarrow \alpha \rightarrow \beta$
- ✓ La polivarianza se expresa diferente.
 - (poly σ) es un tipo que representa al residuo de expresiones polivariantes
- ✓ Se define una noción de ``más general que'' entre esquemas de tipos.

- ¿Qué sucede en el lenguaje de términos?
 - Vimos que

$$(\lambda^{D}x. x +^{S}1^{S}) :: Int^{S} \rightarrow^{D} Int^{S}$$

$$\lambda x. \bullet :: \forall \alpha \beta. \beta := \alpha + \widehat{1} \Rightarrow \alpha \rightarrow \beta$$

- pero, ¿cuál debe ser el resultado con lift?

$$(\lambda^{D}x. \operatorname{lift}(x + {}^{S}1^{S})) :: \operatorname{Int}^{S} \rightarrow^{D} \operatorname{Int}^{D}$$

$$(\lambda x.??) \bullet :: \forall \alpha \beta. \beta := \alpha + \widehat{1} \Rightarrow \alpha \rightarrow Int$$

- Algo que se corresponda con los predicados...

- ✓ Evidencia: la contraparte de los predicados
 - La evidencia se puede abstraer

$$(\lambda^{D}x. \operatorname{lift}(x + {}^{S}1^{S})) :: \operatorname{Int}^{S} \rightarrow^{D} \operatorname{Int}^{D}$$

$$\Lambda h.\lambda x.h :: \forall \alpha \beta. \beta := \alpha + 1 \Rightarrow \alpha \rightarrow Int$$

La evidencia se puede instanciar

$$(\lambda^{D}x. \text{ lift}(x + ^{S}1^{S})) 41^{S} :: \text{Int}^{D}$$

$$(\Lambda h.\lambda x.h)$$
 {{42}} • :: Int

- Cada predicado tiene su propia forma de evidencia.

- La polivarianza usa esquemas (en lugar de tuplas)
 - Las expresiones polivariantes abstraen evidencia

poly
$$(\lambda^{D}x. \operatorname{lift}(x + {}^{S}1^{S})) :: \operatorname{poly} (\operatorname{Int}^{S} \to^{D} \operatorname{Int}^{D})$$

$$\Lambda h.\lambda x.h :: poly (\forall \alpha \beta. \beta := \alpha + \widehat{1} \Rightarrow \alpha \rightarrow Int)$$

Los specs proveen la instancia correcta

let^D
$$f = \text{poly } (\lambda^D x. \text{ lift}(x + \text{S1S})) \text{ in spec } f \text{ 41S} :: \text{Int}^D$$

let
$$f = \Lambda h.\lambda x.h$$
 in $f \{\{42\}\}\}$ • :: Int

- ✓ Se divide la especialización en fases:
 - 1) Generación de restricciones (especialización propia)
 - 2) Resolución de restricciones
- ✓ Generación de restricciones
 ≅ especificación del problema
- ✓ Resolución de restricciones
 ≅ implementación de la especificación

- Generación de restricciones
 - Dirigida por sintaxis
 - Los términos tienen especialización principal
 - Para cada $e: \tau$, especializable existe $e'_{\mathfrak{p}}: \sigma'_{\mathfrak{p}}$ tal que

$$e :: \tau \longrightarrow e'_{\mathfrak{p}} :: \tau'_{\mathfrak{p}}$$

y, para cualquier especialización e': σ' de e, e'_p : σ'_p es más general que e': σ'

- Resolución de restricciones
 - Permite diferentes heurísticas y diferentes lenguajes objetivo
 - Resolución de restricciones regular:
 abstracción y aplicación de evidencia
 - Eliminación de evidencia: tuplas
 - · Otras heurísticas permiten:
 - Generación de polimorfismo
 - Especialización de estructuras lazy

- ✓ Eliminación de evidencia
 - Mueve la evidencia hacia las abstracciones
 - ¡Reintroduce las tuplas!

```
let<sup>D</sup> f = \text{poly } (\lambda^{D}x. \text{ lift } (x+^{S}1^{S}))

in (\text{spec } f41^{S}, \text{ spec } f17^{S}) :: (\text{Int}^{D}, \text{Int}^{D})

\rightarrow

let f = \Lambda h.\lambda x.h in (f\{\{42\}\} \bullet, f\{\{18\}\}\} \bullet) :: (\text{Int, Int})

\bullet \rightarrow

let f = ((\Lambda h.\lambda x.h)\{\{42\}\}, (\Lambda h.\lambda x.h)\{\{18\}\})^{S}

in (\pi_{1}^{S} f \bullet, \pi_{2}^{S} f \bullet) :: (\text{Int, Int})
```

Generando polimorfismo

```
``let i = \lambda x.x in i i 0''
      (Let 'i' (Lam 'x' (Var 'x'))
              (App (App (Var 'i') (Var 'i'))
                    (Const 0)))
                      tspec
poly(\forall \alpha. IsResOf \alpha Val \Rightarrow F (\alpha \rightarrow \alpha))
         let i = \Lambda h.\lambda x.x
          in i {{...}} (i {{...}}) 0
              :: N Int
```

Generando polimorfismo

```
data Val = N^S Int^D \mid F^S (Val \rightarrow^D Val)

data MPVal = M^S Val \mid P^S (polym Val)

:

eval (Var x) env =

case^S env x of

M^S v \rightarrow v; P^S v \rightarrow inst v

:

eval (Let x e e') env =

let^D v = P^S (polym (eval e env))

in eval e' (bind x v env))
```

```
``let i = \lambda x.x in i i 0''
(Let 'i' (Lam 'x' (Var 'x'))
       (App (App (Var 'i') (Var 'i'))
             (Const 0)))
              tspec
                     \forall \alpha. F (\alpha \rightarrow \alpha)
      let i = \lambda x.x
      in i i 0
          :: N Int
```

Estructuras Lazy

```
data List<sup>S</sup> t = Nil^S \mid Cons^S t (List^S t);
let rec^S f x = Cons^S 1^D (f x)
in case<sup>S</sup> f ()^S of Cons^S x xs \rightarrow x :: Int^D
```

```
\begin{split} & \Lambda \text{ h}_{\text{U}}, \text{ h}_{\text{L}}, \text{ h}_{\text{y}}. \text{ first}^{\text{S}} \text{ (h}_{\text{L}} @_{\text{V}} \bullet @_{\text{V}} \text{ ()}^{\text{S}}) \\ & :: \forall \alpha, \alpha_{ys}, \alpha_{e}. \text{ IsFix } \text{ cl}_{xs} \alpha, \\ & \text{IsFun } \alpha \text{ clos}(\alpha_{e} \rightarrow \text{Cons Int } \alpha_{ys}), \\ & \text{IsConstrOf (List}^{\text{S}} \text{ Int}^{\text{D}}) \ \alpha_{ys} \\ & \Rightarrow \text{Int} \end{split}
```

Recursión Dinámica

letrec^D poly f x ys = if^D lift x == D 0^D then x + S 1^S
else spec f @ x @ snd^D ys

in λ^{D} zs \rightarrow **spec** f @ 3^S @ zs :: $\alpha \rightarrow^{D}$ Int^S where $\alpha = (Int^{S}, \alpha)$

letrec f x ys = **if** 3 == 0 **then** • **else** f @ x @ **snd** ys

in $\lambda zs \rightarrow f @ \bullet @ zs$

 $:: \alpha \rightarrow 4$ where $\alpha = (\hat{n}, \alpha)$

Recursión Dinámica

Pero también...

```
letrec<sup>D</sup> poly f x ys = if<sup>D</sup> lift x == ^D 0<sup>D</sup> then x + ^S 1 s else spec f @ x @ snd<sup>D</sup> ys in \lambda^D zs \rightarrow spec f @ 3 s @ zs :: \alpha \rightarrow^D Int<sup>S</sup> where \alpha = (Int<sup>S</sup>, \alpha)
```

```
letrec f x ys = if 3 == 0 then •
else f' @ x @ snd ys
f' x ys = if 3 == 0 then •
else f @ x @ snd ys
else f @ x @ snd ys
in \lambda zs \rightarrow f @ • @ zs
:: \alpha \rightarrow 4 where \alpha = (n, \alpha)
\beta = (m, \beta)
```

Mis Contribuciones

- ✓ Dos fases:
 - Cálculo de restricciones ⇒ dirigido por sintaxis
 - $Resolución \Rightarrow$ permite diferentes heurísticas
- Nuevo tratamiento de polivarianza.
- ✓ Existencia de especializaciones principales.
- Posibilidades de mi formulación:
 - Generación de programas residuales polimórficos
 - Especialización de lenguajes con evaluación *lazy*
 - Mejor formulación de los problemas que trae la interacción entre polivarianza y recursión dinámica

Trabajos Futuros (1)

- Considerar construcciones fuente adicionales
 - Tipos suma dinámicos
 - Especialización de constructores
 - ¡¡Recursión dinámica!!
- Implementación
 - Implementación más eficiente
 - Especificación y testeo usando QuickCheck
 - Asistente de cálculo de binding times

Trabajos Futuros (2)

- Arity raising
 - Programas polimórficos
 - Términos con predicados
- ✓ ¿Especialización de Tipos para Haskell?
 - Polimorfismo en programas fuente
 - Especialización de evaluación *lazy* (interacción entre resolución de restricciones y arity raising)
 - Especialización de clases de tipos

Concluyendo...

El Portero sonrió y dijo su nombre; y Ged, repiténdolo, entró por última vez en aquella Casa.

Un Mago de Terramar Úrsula K. Le Guin