

ТЕПЛОВАЯ ЕСТЕСТВЕННАЯ КОНВЕКЦИЯ В ПРИЗЕМНОМ СЛОЕ ЗЕМНОЙ АТМОСФЕРЫ $\sqrt{{m M} {m \Phi} {m T} {m M}}$.

КАЧЕСТВЕННОЕ РЕШЕНИЕ ЗАДАЧИ О ВЕРТИКАЛЬНОМ ПРОФИЛЕ ТЕМПЕРАТУРЫ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ (1)

Исходное состояние (t=0) сплошной однородной по химическому составу среды-покой. Простейшая модель «приземного» слоя $0 \le H \le \sim 10$ км (высота тропопаузы) земной атмосферы. Среда - в поле силы тяжести $\vec{g} = -\vec{k} \ g$; подогревается снизу (охлаждается сверху): T(z=0) > T(z=H). Задача: на качественном уровне исследовать поведение среды при t>0. Модель процесса: Рассмотрим ЭФО, который в исходном состоянии находится на высоте z. Случайная флуктуация – медленное (изэнтропическое) смещение (всплытие) ЭФО вверх на величину $\xi>0$. В исходном состоянии в ЭФО T(z), P(z), S(z) (S=0) - энтропия).

В новом (возмущенном) состоянии: $(z'=z+\xi)\ T(z')=T'< T(z), P(z')=P'< P(z), S(z')=S'=S(z)$. На ЭФО в новом состоянии действуют одновременно две силы: направленная вверх выталкивающая сила Архимеда и вниз – сила тяжести. Вопрос: условие при котором случайная флуктуация (всплытие) будет затухать, т.е. ЭФО из нового состояния будет смещаться вниз, т.е. «потонет». Ответ: $\rho(p',S)g>\rho(p',S')g$ (1), где ρ - плотность среды. Т.к. $\rho=v^{-1}(v-y)$ дельный объем).

T.e.
$$v(p',S') - v(p',S) > 0$$
. (2)
$$v(p',S') - v(p',S) = \left(\frac{\partial v}{\partial S}\right)_p \frac{dS}{dz} \xi = \left(\frac{\partial v}{\partial T}\right)_p \left(\frac{\partial T}{\partial S}\right)_p \frac{dS}{dz} \cdot \xi > 0.$$
(3)

КАЧЕСТВЕННОЕ РЕШЕНИЕ ЗАДАЧИ О ВЕРТИКАЛЬНОМ АДИАБАТИЧЕСКОМ ПРОФИЛЕ ТЕМПЕРАТУРЫ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ (2)

$$v(p',S')-v(p',S)=\left(\frac{\partial v}{\partial S}\right)_p\frac{dS}{dz}\xi=\left(\frac{\partial v}{\partial T}\right)_p\left(\frac{\partial T}{\partial S}\right)_p\frac{dS}{dz}\xi>0 \ \ (3) \ \ \left(\frac{\partial v}{\partial T}\right)_p=\beta$$
 — коэффициент температурного расширения.

$$\left(\frac{\partial T}{\partial S}\right)_{p} -?. dU = TdS - pdv + vdp - vdp = TdS - d(pv) + vdp \quad (4)$$

$$dH = d(U + pv) = TdS + vdp$$
 (5), $H = U + pv -$ энтальпия.

При
$$p=const$$
 из (5): $dH=TdS$. Т. к. $H=C_pT+H_0\left(C_p=const\right)$ $\left(\frac{\partial T}{\partial S}\right)_p=\frac{T}{C_p}$ (6).

Неравенство (3)
$$\left(\frac{\partial v}{\partial T}\right)_p \left(\frac{\partial T}{\partial S}\right)_p \frac{dS}{dz} \xi = \beta \frac{T}{C_p} \frac{dS}{dz} \xi > 0$$
 (7). Здесь: $\beta > 0$, $\frac{T}{C_p} > 0$ и $\xi > 0$.

Условие «затухания» возмущения:
$$\frac{dS}{dz} > \mathbf{0}$$
 (8). $\frac{dS(p,T)}{dz} = \left(\frac{\partial S}{\partial T}\right)_p \frac{dT}{dz} + \left(\frac{\partial S}{\partial p}\right)_T \frac{dp}{dz} = \frac{C_p}{T} \frac{dT}{dz} + \left(\frac{\partial S}{\partial p}\right)_T \frac{dp}{dz} > 0$ (9).

$$\left(\frac{\partial S}{\partial p}\right)_T$$
-? $d\Phi=d(H-TS)=-SdT+vdp$ (10) $\Phi=H-TS$ —термодинамический потенциал.

$$d\Phi = \left(\frac{\partial \Phi}{\partial T}\right)_{p} dT + \left(\frac{\partial \Phi}{\partial p}\right)_{T} dp \quad (11). \text{ Сравнивая}(11) \text{ и (10): } S = -\left(\frac{\partial \Phi}{\partial T}\right)_{p} (12), v = \left(\frac{\partial \Phi}{\partial p}\right)_{T} (13). \quad \frac{\partial^{2} \Phi}{\partial p \partial T} = \frac{\partial^{2} \Phi}{\partial T \partial p} \quad (14)$$

$$\frac{\partial^{2} \Phi}{\partial p \partial T} = \left[\frac{\partial}{\partial p} \left(\frac{\partial \Phi}{\partial T}\right)_{p}\right]_{T} = -\left(\frac{\partial S}{\partial p}\right)_{T} \text{ и } \quad \frac{\partial^{2} \Phi}{\partial T \partial p} = \left[\frac{\partial}{\partial T} \left(\frac{\partial \Phi}{\partial p}\right)_{T}\right]_{p} = \left(\frac{\partial v}{\partial T}\right)_{p}. \quad \longrightarrow \quad \left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial v}{\partial T}\right)_{p} (15)$$

Из (9)
$$\frac{dS(p,T)}{dz} = \frac{C_p}{T}\frac{dT}{dz} + \left(\frac{\partial S}{\partial p}\right)_T \frac{dp}{dz} = \frac{C_p}{T}\frac{dT}{dz} - \left(\frac{\partial v}{\partial T}\right)_p \frac{dp}{dz} > 0$$
 (16) $\frac{dT}{dz} > \frac{T}{C_p}\left(\frac{\partial v}{\partial T}\right)_p \frac{dp}{dz}$ (17). Пусть $\frac{dp}{dz} = -\rho g$,

$$\frac{dT}{dz} > -\frac{T}{C_p} \left(\frac{\partial v}{\partial T}\right)_p \frac{g}{v}$$
 (18). Совершенный газ $pv = RT \quad \left(\frac{\partial v}{\partial T}\right)_p = \frac{R}{p}$. Из (18) $\frac{d\tilde{T}}{dz} > -\frac{g}{C_p}$ (19).

Воздух:
$$g = 10^{10} M_{c^2}$$
; $C_p = 10^7 \frac{\text{эрг}}{\text{г} \cdot \text{грд}K}$; g/ $C_p \approx 10$ грд/км.

Стандартная модель атмосферы Земли (краткая справка)

Стандартизация атмосферы необходима для обеспечения единства измерений и расчетов в авиации, ракетостроении, космонавтике. Состав наиболее вероятного сочетания различных газов для установления возможных отклонений от нормы утвержден государственным стандартом ГОСТ 4401-81, соответствующий Международной стандартной атмосфере. Многолетние исследования атмосферы, в которые внесли значительный вклад отечественные ученые, позволили уточнить химический состав сухого воздуха (отсутствуют пары воды) по объему: - азот 78, 084%, - кислород 20,948%, - аргон 0,934%, - углекислый газ (CO_2) 0,031%, - 0,003% неон, криптон и ксенон. Водяной пар (H_2O) , попадает в атмосферу в результате испарения с поверхности океанов, морей, озер и рек, а также с поверхности Земли. Количество пара в атмосфере колеблется в зависимости от температуры воздуха и условий испарения количество пара составляет по объему: - в полярных районах 0, 2% - в тропиках - до 2, 6% в тропиках, а при высоких температурах - до 4, 0%. Атмосферный воздух содержит также переменное количество примесей, находящихся во взвешенном состоянии: - пыль, - мельчайшие капли воды и кристаллы льда (H_2O) жидкая и твердая фракции), - морская соль, - парниковые газы помимо CO_2 и H_2O , — продукты горения и и др. Общая масса атмосферы Земли \approx 5,15 х 10¹⁵ т. Около половины этой массы сосредоточенно в слое высотой 5 км над поверхностью Земли, 75% - на высотах до 10 км, 90% - до 16 км, 95% - до 20 км, 99% до высот 30-35 км. Плотность атмосферы на высоте 100 км в миллион раз меньше, чем у поверхности Земли. Верхняя граница атмосферы - высота, на которой плотность ее газов приближается к плотности газа, заполняющего межпланетное пространство - около 100 молекул в 1 см 3 .

Стандартная атмосфера делится на 5 основных сфер: тропосфера, стратосфера, мезосфера, термосфера, экзосфера. В основе деления атмосферы на слои — закономерность изменения температуры в зависимости от высоты над

уровнем мирового океана. В тропосфере вертикальный градиент температуры:

ы: $\frac{(300-220)K}{10\,\mathrm{KM}} pprox 8K/\mathrm{KM}$

Тропосфера - нижний слой атмосферы, простирающийся до 8-10 км в полярных областях, до 10-12 км в умеренных широтах и до 16-18 км в тропиках.

Стратосфера - переходный слой над тропопаузой толщиной ~ 1 км. Верхняя граница стратосферы находится примерно на высоте 50 км. На этой высоте начинается следующий переходный слой - **стратопауза**, над которой до высоты 80 км простирается **мезосфера**. Затем следует **мезопауза**, над которой до высот около 800 км располагается **термосфера**. Выше нее находится **экзосфера**, на верхней границе которой молекулы воздуха перемешиваются с межпланетным газом.

Граница космоса. Линия Ка́рмана — высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом и является верхней границей государств. В соответствии с определением Международной авиационной федерации (ФАИ), линия Кармана находится на высоте 100 километров над уровнем моря.

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (1) (Задача Релея)

Постановка задачи

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0 \tag{1}$$

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{F} - \nabla P - div \vec{\tau} \tag{2}$$

$$\frac{\partial \rho}{\partial t} \frac{dC_{\alpha}}{dt} = \vec{w}_{\alpha} - div \vec{j}_{\alpha} \qquad (\alpha = 1, 2, ..., N) \tag{3}$$

$$\rho \frac{dE}{dt} = - div (\vec{q} + \vec{q}_{p}) - div [\vec{v}(\vec{\delta}P - \vec{\tau})] \qquad (4)$$

$$U = f(\rho, P, T, ...) \tag{5}$$

$$\begin{cases} \frac{\partial \mathbf{p}}{\partial t} + \operatorname{div}(\mathbf{p}\mathbf{v}) = 0, \\ \mathbf{p} \frac{d\mathbf{v}}{dt} = -\nabla P + \mathbf{p}\mathbf{g} + \frac{\partial \tau_{ik}}{\partial x_k}, \end{cases}$$
(7)
$$\begin{cases} \mathbf{p} \frac{d\varepsilon}{dt} = -\operatorname{div}\mathbf{q} - \operatorname{div}\left[\mathbf{v}(\delta_{ik}P - \tau_{ik})\right] \\ f(\mathbf{p}, P, T) = 0. \end{cases}$$
(8)

$$ho(T,S)\vec{g}$$
 - сила тяжести, Архимеда. Уравнение состояния: $ho=
ho_0(1-eta T)$, $ho=rac{1}{
ho_0}ig(rac{\partial
ho}{\partial T}ig)_P$ (13)

$$egin{cases} \mathbf{v}_0 = 0, \ -
abla P_0 +
ho_0 \mathbf{g} = 0, \ \mathbf{C}$$
 (14)

ГПОКОЯ $ho_0 = ar{
ho}_0 (1 - eta T_0).$

Начальные этапы движения жидкости – малые возмущения: $f' \ll f$ $\rho(\vec{r},t) = \rho_0(\vec{r}) + \rho'(\vec{r},t); \qquad T(\vec{r},t) = T_0(\vec{r}) + T'(\vec{r},t) \\ P(\vec{r},t) = P_0(\vec{r}) + P'(\vec{r},t); \qquad \vec{v}(\vec{r},t) = \vec{v}_{\vec{r}}(\vec{r}) + \vec{v}'(\vec{r},t)$ (15)

 $\tau_{ik} = \mu^{(1)} \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} - \frac{2}{3} \delta_{ik} \operatorname{div} \mathbf{v} \right) + \mu^{(2)} \delta_{ik} \operatorname{div} \mathbf{v}, \quad (10) \quad \mathbf{q} = A \nabla T + B \nabla P + \sum_{k=1}^{N} C_{\beta} \nabla c_{\beta} (11) \quad \mathbf{q} = -\lambda \nabla T \quad (12)$

Теплофизические свойства $\left(\lambda,\mu^{(1)},\mu^2,\mathcal{C}_p,\mathcal{C}_v..
ight)-const$ В (14) $oldsymbol{
ho}_0pprox\overline{
ho}_0$

Линеаризация уравнений (6)-(13) - приближение Буссинеска

1) Уравнение неразрывности (6)
$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{v}) = 0$$
 $\frac{\partial \rho}{\partial t} + \varrho \operatorname{div} \mathbf{v} + \mathbf{v} \nabla \rho = 0$. Т.к.р = $\rho_0 + \rho' \left(\rho' \sim \delta \rho \right) \nabla \rho$

члены І-ІІІ
$$I \sim \frac{\delta \rho}{\tau};$$
 $III \sim \frac{\rho_0 v^*}{L};$ $III \sim \frac{v^* \delta \rho}{L}.$ Здесь τ - характерное время возмущения плотности; $L = \frac{1}{2}$

характерный размер рассматриваемой области; $\delta
ho$ — характерное значение возмущенной плотности; v^* - характерное

значение возмущения скорости, причем: $v^*\sim L/\tau$. Поэтому: $\dfrac{\mathrm{I}}{\mathrm{II}}\sim \dfrac{\delta\rho}{\tau}\dfrac{L}{\rho_0v^*}\sim \dfrac{\delta\rho}{\rho_0}; \qquad \dfrac{\mathrm{III}}{\mathrm{II}}\sim \dfrac{v^*\cdot\delta\rho\cdot L}{L\cdot\rho_0\cdot v^*}\sim \dfrac{\delta\rho}{\rho_0}. \quad \delta\rho\ll\rho_0$

Вместо (6) имеем:
$$div v' = 0$$
 (16). По виду (16) – уравнение неразрывности для **несжимаемой** жидкости (в (6) ρ =

2) Уравнение движения: (7)
$$\frac{d\mathbf{v}}{dt} = -\frac{\nabla P}{\mathbf{0}} + \mathbf{g} + \frac{1}{0} \frac{\partial \mathbf{\tau}_{ik}}{\partial x_i}$$
. Общее правило линеаризации: Если скаляр $f = f_0 + f'$ такой

что $|f'| \ll f_0$ и $|f'| \varphi'| \ll |f'|^{\sim} |\varphi'| \ll f_0$, то при преобразованиях остаются только члены нулевого и первого порядка малости. (Примечание: f и φ могут быть и функциями и их скалярными производными. Например, в левой части (7), т.к.

$$\mathbf{v} = \mathbf{v}' (v_x', v_y', v_z')$$
: $\frac{dv_x'}{dt} = \frac{\partial v_x'}{\partial t} + v_y' \frac{\partial v_x'}{\partial x} \approx \frac{\partial v_x'}{\partial t}$, т.е. второе слагаемое – второй порядок малости.

Линеаризуем в (7)
$$-\frac{\nabla P}{\rho}$$
 и $\frac{\partial \tau_{ik}}{\partial x_{\nu}}$ (следующий слайд)

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (3)

$$-\frac{\nabla P}{\rho} = -\frac{1}{\rho_0 + \rho'} \nabla (P_0 + P')$$

$$= -\frac{1}{\rho_0 \left(1 + \frac{\rho'}{\rho_0}\right)} \nabla (P_0 + P')$$

$$\approx -\frac{1}{\rho_0} \left(1 - \frac{\rho'}{\rho_0}\right) \nabla (P_0 + P') \approx -\frac{\nabla P_0}{\rho_0} - \frac{\nabla P'}{\rho_0} + \frac{\rho'}{\rho_0} \frac{\nabla P_0}{\rho_0} =$$

$$= -\vec{q} - \frac{\nabla P'}{\rho_0} + \frac{\rho'}{\rho_0} \vec{q}$$

$$\begin{aligned} \tau_{ik} &= \mu^{(1)} \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} - \frac{2}{3} \delta_{ik} \operatorname{div} \mathbf{v} \right) + \mu^{(2)} \delta_{ik} \operatorname{div} \mathbf{v}, \\ \operatorname{div} \mathbf{v}' &= 0 \end{aligned}$$

$$\tau_{ik} &= \mu \left(\frac{\partial v_i'}{\partial x_k} + \frac{\partial v_k'}{\partial x_i} \right)$$

$$\tau. e. \quad \frac{\partial \tau_{ik}}{\partial x_k} &= \frac{\partial}{\partial x_k} \mu \left(\frac{\partial v_i'}{\partial x_k} + \frac{\partial v_k'}{\partial x_i} \right) = \mu \cdot \Delta \mathbf{v}'$$

Было: $\frac{d\mathbf{v}}{dt} = -\frac{\nabla P}{\mathbf{\rho}} + \mathbf{g} + \frac{1}{\mathbf{\rho}} \frac{\partial \mathbf{\tau}_{ik}}{\partial x_k}$

Исходное уравнение баланса полной энергии:
$$\rho \frac{d\varepsilon}{dt} = -\operatorname{div}\mathbf{q} - \operatorname{div}\left[\mathbf{v}\left(\delta_{ik}P - \mathbf{\tau}_{ik}\right)\right]$$
 , где $\varepsilon \approx U = \mathcal{C}_V T$; $\mathbf{q} = -\lambda \nabla T$

Линеаризованное УБПЭ:
$$\dfrac{\partial T'}{\partial t} + \mathbf{v}'
abla T_0 = \chi \Delta T'$$
 . Исходное уравнение состояния: $\mathbf{p} = \mathbf{p}_0 (1 - \mathbf{\beta} T),$

$$\chi = \frac{\lambda}{(
ho_0 C_v)}; [\chi] = [\nu] -$$
 коэффициент температуропроводности Линеари

Линеаризованное УС : $ho' = ho_0 eta T'$

Стало: $\frac{\partial \mathbf{v}'}{\partial t} = -\frac{\nabla P'}{\bar{\rho}_0} + \frac{\rho'}{\bar{\rho}_0} \mathbf{g} + \nu \Delta \mathbf{v}'$. где $\nu = \mu/\rho_0$ —

Строгая процедура при выводе уравнений движения вязкой, теплопроводной жидкости (газа) в рассматриваемой задаче.

Имеем: $\frac{\partial \rho}{\partial t} + div(\rho \vec{v}) = 0$ (1) – уравнение неразрывности; $\rho \frac{d\vec{v}}{dt} = \rho \vec{F} + div \vec{A}$ (2) – уравнение движения, где \vec{A} — тензор напряжений;

$$ho rac{dE}{dt} = -div ec{q} +
ho ec{F} \cdot ec{v} + div (\overleftrightarrow{A} \cdot ec{v})$$
 3) – уравнение баланса полной энергии, где $ec{q} = -\lambda
abla T$; $E = rac{ec{v} \cdot ec{v}}{2} + C_v T$.

Уравнение (3) перепишем в виде
$$\left(\rho \frac{d}{dt} \left(\frac{\vec{v} \cdot \vec{v}}{2} \right) + \rho C_v \frac{dT}{dt} = div(\lambda \nabla T) + \rho \vec{F} \cdot \vec{v} + \left[\frac{\partial}{\partial x} \left(\vec{A}_x \vec{v} \right) + \frac{\partial}{\partial y} \left(\vec{A}_y \vec{v} \right) + \frac{\partial}{\partial z} \left(\vec{A}_z \vec{v} \right) \right]$$
 (4).

Исключим из (4) $\rho \frac{d}{dt} \left(\frac{\vec{v} \cdot \vec{v}}{2} \right)$ с помощью (2): Умножим (2) почленно на \vec{v} : $\rho \vec{v} \frac{d\vec{v}}{dt} = \rho \vec{F} \vec{v} + \vec{v} \left(\frac{\partial \vec{A}_x}{\partial x} + \frac{\partial \vec{A}_y}{\partial y} + \frac{\partial \vec{A}_z}{\partial z} \right)$ (5), где $\rho \vec{v} \frac{d\vec{v}}{dt} = \rho \frac{d}{dt} \left(\frac{\vec{v} \cdot \vec{v}}{2} \right)$.

Подставим (5) в (4):
$$\rho \vec{F} \vec{v} + \vec{v} \left(\frac{\partial \vec{A}_x}{\partial x} + \frac{\partial \vec{A}_y}{\partial y} + \frac{\partial \vec{A}_z}{\partial z} \right) + \rho C_v \frac{dT}{dt} = div(\lambda \nabla T) + \rho \vec{F} \vec{v} + \vec{v} \left(\frac{\partial \vec{A}_x}{\partial x} + \frac{\partial \vec{A}_y}{\partial y} + \frac{\partial \vec{A}_z}{\partial z} \right) + \left(\vec{A}_x \frac{\partial \vec{v}}{\partial x} + \vec{A}_y \frac{\partial \vec{v}}{\partial y} + \vec{A}_z \frac{\partial \vec{v}}{\partial z} \right)$$

Т.е. уравнение (4): $\rho C_v \frac{dT}{dt} = di \underline{v} (\lambda \nabla T) + \left(\vec{A}_x \frac{\partial \vec{v}}{\partial x} + \vec{A}_y \frac{\partial \vec{v}}{\partial y} + \vec{A}_z \frac{\partial \vec{v}}{\partial z} \right)$ (6), где \vec{A}_x , \vec{A}_y и \vec{A}_z - векторные компоненты тензора \vec{A} :

$$\vec{A}_{x} \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$
(7). В (7): $A_{yy} = -p + \zeta div\vec{v} + 2\mu \frac{\partial v_x}{\partial x}$ $A_{xy} = A_{yx} = \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$ $A_{xz} = A_{zx} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right)$ (7) $A_{yy} = -p + \zeta div\vec{v} + 2\mu \frac{\partial v_z}{\partial y}$ $A_{xz} = A_{zx} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right)$ (7) $A_{zz} = -p + \zeta div\vec{v} + 2\mu \frac{\partial v_z}{\partial z}$ $A_{yz} = A_{zy} = \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)$

Рассмотрим преобразования для каждого члена $\left(\vec{A}_x \frac{\partial \vec{v}}{\partial x} + \vec{A}_y \frac{\partial \vec{v}}{\partial y} + \vec{A}_z \frac{\partial \vec{v}}{\partial z}\right)$ отдельно

К вопросу о линеаризации уравнения баланса энергии (I) (факультатив)

1)
$$\vec{A}_x \frac{\partial \vec{v}}{\partial x} = A_{xx} \frac{\partial v_x}{\partial x} + A_{xy} \frac{\partial v_y}{\partial x} + A_{xz} \frac{\partial v_z}{\partial x} = (-p + \zeta \operatorname{div} \vec{v} + 2\mu \frac{\partial v_x}{\partial x}) \frac{\partial v_x}{\partial x} + \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) \frac{\partial v_y}{\partial x} + \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) \frac{\partial v_z}{\partial x} =$$

$$= -p \frac{\partial v_x}{\partial x} + \zeta \operatorname{div} \vec{v} \frac{\partial v_x}{\partial x} + 2\mu \left(\frac{\partial v_x}{\partial x} \right)^2 + \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} \right) \frac{\partial v_y}{\partial x} + \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_z}{\partial x}$$
(8).
$$2) \vec{A}_y \frac{\partial \vec{v}}{\partial y} = A_{yx} \frac{\partial v_x}{\partial y} + A_{yy} \frac{\partial v_y}{\partial y} + A_{yz} \frac{\partial v_z}{\partial y} = \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} \right) \frac{\partial v_x}{\partial y} + (-p + \zeta \operatorname{div} \vec{v} + 2\mu \frac{\partial v_y}{\partial y}) \frac{\partial v_x}{\partial y} + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_z}{\partial y} =$$

$$= -p \frac{\partial v_y}{\partial y} + \zeta \operatorname{div} \vec{v} \frac{\partial v_y}{\partial y} + 2\mu \left(\frac{\partial v_y}{\partial y} \right)^2 + \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} \right) \frac{\partial v_x}{\partial y} + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_z}{\partial y}$$
(9).
$$3) \vec{A}_z \frac{\partial \vec{v}}{\partial z} = A_{zx} \frac{\partial v_x}{\partial z} + A_{zy} \frac{\partial v_y}{\partial z} + A_{zz} \frac{\partial v_z}{\partial z} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) \frac{\partial v_x}{\partial z} + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_y}{\partial z} + (-p + \zeta \operatorname{div} \vec{v} + 2\mu \frac{\partial v_z}{\partial z}) \frac{\partial v_z}{\partial z} =$$

$$= -p \frac{\partial v_z}{\partial z} + \zeta \operatorname{div} \vec{v} \frac{\partial v_z}{\partial z} + A_{zz} \frac{\partial v_z}{\partial z} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) \frac{\partial v_x}{\partial z} + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_y}{\partial z} + (-p + \zeta \operatorname{div} \vec{v} + 2\mu \frac{\partial v_z}{\partial z}) \frac{\partial v_z}{\partial z} =$$

$$= -p \frac{\partial v_z}{\partial z} + \zeta \operatorname{div} \vec{v} \frac{\partial v_z}{\partial z} + 2\mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_x}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_y}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_z}{\partial z} + (10).$$

$$\vec{A}_x \frac{\partial \vec{v}}{\partial x} + \vec{A}_y \frac{\partial \vec{v}}{\partial y} + \vec{A}_z \frac{\partial \vec{v}}{\partial z} + \zeta \operatorname{div} \vec{v} \frac{\partial v_z}{\partial x} + 2\mu \left(\frac{\partial v_z}{\partial z} + 2\mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial y} \right) \frac{\partial v_z}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_z}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_z}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_z}{\partial z} + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right) \frac{\partial v_z}{\partial z} + \mu \left(\frac{\partial v_z}{\partial$$

К вопросу о линеаризации уравнения баланса энергии (факультатив)

Таким образом, уравнение баланса энергии (6) $\rho C_v \frac{dT}{dt} = div(\lambda \nabla T) + \left(\vec{A}_x \frac{\partial \vec{v}}{\partial x} + \vec{A}_y \frac{\partial \vec{v}}{\partial y} + \vec{A}_z \frac{\partial \vec{v}}{\partial z}\right)$

$$\rho C_v \frac{dT}{dt} = div(\lambda \nabla T) - p div \vec{v} + \zeta (div \vec{v})^2 + 2\mu \left[\left(\frac{\partial v_x}{\partial x} \right)^2 + \left(\frac{\partial v_y}{\partial y} \right)^2 + \left(\frac{\partial v_z}{\partial z} \right)^2 \right] + \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)^2 + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)^2 + \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \right)^2 + \mu \left(\frac{\partial v_z$$

При линеаризации (12): 1) $div\vec{v}=0$; 2) <u>Подчеркнутые члены – 2-го</u> порядка малости.

Окончательно:
$$\rho C_v \frac{dT}{dt} = div(\lambda \nabla T) \longrightarrow \rho C_v \left[\frac{\partial T}{\partial t} + \vec{v} \nabla T \right] = \lambda \Delta T$$
 (13)

$$\rho_0 C_v \left[\frac{\partial T'}{\partial t} + \vec{v}' \nabla T_0 \right] = \lambda \Delta T' \tag{14}$$

Второй член в правой части уравнения

$$rac{\partial {f v}'}{\partial t}=-rac{
abla P'}{ar
ho_0}+rac{
ho'}{ar
ho_0}{f g}+
u\Delta{f v}'.$$
 преобразуем, используя $ho'=-
ho_0eta T'$

Окончательно система уравнений, описывающая возмущенное движение «жидкости» имеет вид (1) $(\vec{g} = -\vec{k}g)$

$$\begin{cases} \frac{d\mathbf{v}\,\mathbf{v}' = 0,}{\partial \mathbf{v}'} = -\frac{\nabla P'}{\bar{\rho}_0} + g\mathbf{k}\beta T' + \mathbf{v}\Delta\mathbf{v}' \\ \frac{\partial T'}{\partial t} + \mathbf{v}'\nabla T_0 = \chi\Delta T' \end{cases}$$

Переход в (1) к безразмерным переменным.

$$\bar{x} = \frac{x}{L_x}, \quad \bar{y} = \frac{y}{L_y}, \quad \bar{z} = \frac{z}{L_z}, \quad \bar{t} = \frac{t}{\tau^*}, \quad \bar{\mathbf{v}}' = \frac{\mathbf{v}'}{v^*}, \quad \bar{P}' = \frac{P'}{P^*}, \quad \bar{T}' = \frac{T'}{T^*}.$$

Здесь *Lx, Ly, Lz* — характерные значения размеров рассматриваемой области возмущённого движения жидкости; т — характерное время развития возмущений, v*, P* и T* — характерные значения возмущений скорости, давления и температуры.

В рассматриваемой задаче исходным состоянием, на фоне которого развиваются возмущения, является состояние покоя, характерные значения искомых функций T^*, P^*, v^* должны быть выбраны, исходя из особенностей постановки задачи, которые состоят в том, что в явном виде отсутствуют характерные значения возмущения температуры T^* , а также возмущения скорости v*, т. к. $\vec{v}_0=0$.

Оценка
$$T^*$$
. Особенность задачи — наличие исходного (в состоянии покоя) градиента температуры., т.е. T^* надо оценивать, исходя из оценки характерного значения градиента. В **уравнения в состоянии покоя** градиент температуры явно не входит. Однако его можно получить математически, применив к $\Delta T_0 = 0$, уравнению $-VP_0 + \rho_0 \vec{g} = 0$ операцию rot : $\nabla \times \left[-\nabla P_0 + \overline{\rho}_0 (1 - \beta T_0) g \vec{k} \right] = 0 \longrightarrow \nabla T_0 = -A \vec{k}$ (2) $\rho_0 = \bar{\rho}_0 (1 - \beta T_0)$. Поэтому $T^* = AL$ ($A > 0$, подогрев снизу). В безразмерном виде (2): $\overline{VT}_0 = -\vec{k}$ (3)

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (5)

$$\begin{cases} \frac{\operatorname{div} \mathbf{v}' = 0}{\partial \mathbf{v}'} = -\frac{\nabla P'}{\bar{\rho}_0} + g\mathbf{k}\beta T' + v\Delta \mathbf{v}' \\ \frac{\partial T'}{\partial t} + \mathbf{v}'\nabla T_0 = \chi\Delta T' \end{cases}$$

Оценка \boldsymbol{v}^* . В связи с тем, что $\vec{v}_0=0$ и отсуствует *явное значение характерной скорости* возмущённого движения, а также с учётом того, что возмущение давления проявляется, как следствие возмущения скорости (следует из формулы Бернулли $P^*=\bar{\rho}_0(\boldsymbol{v}^*)^2$ выбор характерной скорости \boldsymbol{v}^* - **ключевая** проблема обезразмеривания. Способ решения задачи. Анализ соответствующего уравнения с точки зрения размерности физических коэффициентов, определяющих размерность каждого члена.

Уравнение движения (второе уравнение в системе (1), в котором каждый член имеет размерность $L \cdot T-2$; поэтому: $v^* = \nu L^{-1}$, где размерность коэффициента кинематической вязкости $[\nu] = L^2 T^{-1}$ (здесь T- размерность времени). Отсюда: $P^* = \bar{\rho}_0(v^*)^2 = \bar{\rho}_0 \nu^2 L^{-2}$ и характерное время: $\tau^* = L^2 \nu^{-1}$. При обезразмеривании x, y и z: $L_x \sim L_v \sim L_z \sim L$.

Примечание: Далее, для обозначения безразмерных функций и аргументов используются те же обозначения, что и для размерных величин.

Система уравнений, описывающих возмущенное движение, в безразмерной форме (4):

$$\begin{cases} \operatorname{div} \mathbf{v}' = 0, & (4) \\ \frac{\partial \mathbf{v}'}{\partial t} = -\nabla P' + \frac{g\beta A L^4}{\mathbf{v}^2} \mathbf{k} T' + \Delta \mathbf{v}' \\ \frac{\partial T'}{\partial t} + (\mathbf{v}'\nabla) T_0 = \frac{\chi}{\mathbf{v}} \Delta T' \end{cases}$$

С учетом $\overline{V}T_0=-\vec{k}$ третье уравнение в (4): $\dfrac{\partial T'}{\partial t}-v_z'=\dfrac{\chi}{v}\Delta T',$ (5), где v_Z' -

вертикальная составляющая вектора скорости. В (4) появились два безразмерных

комплекса: $\frac{g \beta A L^4}{v^2} = G r$ – число **Грассгофа** и $\frac{\chi}{v} = P r^{-1}$, где P r –число Прандтля

Подход для получения аналитического решения. Граничные условия Релея. Линейный анализ устойчивости

$$\begin{array}{c|c}
\hline
z\\
H\\
g = -gk\\
\hline
z\\
\hline
z = z/L
\end{array}$$

$$\vec{z}$$
 \vec{z} \vec{z}

которых можно получить аналитическое решение:

Математическая постановка задачи: Попытаться найти аналитическое (близкое к аналитическому) решение системы (5) уравнений (второе уравнение в (5) — векторное) относительно 5 неизвестных $(v_x', v_y', v_z', T'$ и P'). Возмущенная плотность находится из уравнения состояния: $ho' = \bar{
ho}_0 eta T'$. ГУ (6) только на v_x' , v_y' и T', <u>на P' нет.</u> Стандартный прием в классической гидродинамике- исключение из (5) P', т. е. снижение числа неизвестных до $(v_x', v_y', v_z',$ T'). Вопрос: почему и как это можно сделать? Применим ко 2-му уравнению в (5) $rotrot = \nabla \times \nabla \times$:

$$\nabla \times \nabla \times \left[\frac{\partial \vec{v}'}{\partial t} = -\nabla P' + Gr\vec{k}T' + \Delta \vec{v}'\right] (6). \longrightarrow \frac{\partial}{\partial t} \left[\nabla (\nabla \vec{v}') - \vec{v}'(\nabla \nabla)\right] = -\nabla \times \nabla \times \nabla P' + \nabla (\nabla \Delta \vec{v}') - \Delta \vec{v}'(\nabla \nabla) + Gr(rotrot\vec{k}T')$$

$$\frac{\partial}{\partial t} \Delta \vec{v}' = -Gr(\nabla \times \nabla \times (\vec{k}T')) + \Delta \Delta \vec{v}'(7). \nabla \times \nabla \times (\vec{k}T') = rot \left[\vec{t}\frac{\partial T'}{\partial v} - \vec{j}\frac{\partial T'}{\partial x}\right] = -\vec{k}(\frac{\partial^2 T'}{\partial x^2} + \frac{\partial^2 T'}{\partial v^2}) + \vec{\iota}(...) + \vec{j}(...) (8).$$

В третье уравнение (5) входит v_z' . Поэтому (7) с учетом (8) рассмотрим относительно v_z' :

$$\frac{\partial}{\partial t}\Delta v_z' = Gr \left(\frac{\partial^2 T'}{\partial x^2} + \frac{\partial^2 T'}{\partial y^2}\right) + \Delta \Delta v_z' = Gr \Delta_h T' + \Delta \Delta v_z'$$
(9); $\Delta_h = \frac{\partial^2 T'}{\partial x^2} + \frac{\partial^2 T'}{\partial y^2} -$ плоский лапласиан.

Для определения ГУ для v_z' продифференцируем $div\vec{v}' = \frac{\partial v_x'}{\partial x} + \frac{\partial v_y'}{\partial y} + \frac{\partial v_z'}{\partial z}$ по z при $\overline{z} = 0,1$:

$$\frac{\partial}{\partial z} \left(\frac{\partial v_x'}{\partial x} + \frac{\partial v_y'}{\partial y} + \frac{\partial v_z'}{\partial z} \right) = 0 \quad \text{при} \, \overline{z} = 0, 1 \longrightarrow \frac{\partial}{\partial x} \left(\frac{\partial v_x'}{\partial z} \right)_{\overline{z} = 0, 1} + \frac{\partial}{\partial y} \left(\frac{\partial v_y'}{\partial z} \right)_{\overline{z} = 0, 1} + \frac{\partial}{\partial z} \left(\frac{\partial v_z'}{\partial z} \right)_{\overline{z} = 0, 1} = 0 \quad (10)$$

$$\frac{\partial}{\partial z} \left(\frac{\partial v_x'}{\partial x} + \frac{\partial v_y'}{\partial y} + \frac{\partial v_z'}{\partial z} \right) = 0 \quad \text{при} \, \overline{z} = 0, 1 \longrightarrow \frac{\partial}{\partial x} \left(\frac{\partial v_x'}{\partial z} \right)_{\overline{z} = 0, 1} + \frac{\partial}{\partial y} \left(\frac{\partial v_y'}{\partial z} \right)_{\overline{z} = 0, 1} + \frac{\partial}{\partial z} \left(\frac{\partial v_z'}{\partial z} \right)_{\overline{z} = 0, 1} = 0 \quad (10)$$
В силу ГУ (6) $\left(\frac{\partial v_x'}{\partial z} \right)_{\overline{z} = 0, 1} = \left(\frac{\partial v_y'}{\partial z} \right)_{\overline{z} = 0, 1} = 0 \quad \text{из (10)} \longrightarrow \frac{\partial^2 v_z'}{\partial z^2} = 0 \quad \text{при} \, \overline{z} = 0, 1 \quad (11).$ Таким образом, задача,

которую надо решать, свелась к:

$$\begin{cases} \frac{\partial}{\partial t} \Delta v_z' = Gr \Delta_h T' + \Delta \Delta v_z' \\ \frac{\partial T'}{\partial t} - v_z' = Pr^{-1} \Delta T' \\ \frac{\partial^2 v_z'}{\partial z^2} = T' = 0 \text{ при } \overline{z} = 0,1 \end{cases}$$
 (12). Решение (12) ищем в виде:
$$v_z'(x,y,z,t) = v_z(z) \exp \left[i \omega t + i \left(k_x x + k_y y \right) \right]$$
 (13)
$$T'(x,y,z,t) = T(z) \exp \left[i \omega t + i \left(k_x x + k_y y \right) \right]$$
 (14) Здесь $v_z(z)$ и $T(z)$ - амплитудные значения искомых функций;

$$v_z'(x, y, z, t) = v_z(z) \exp[i\omega t + i(k_x x + k_y y)]$$
 (13)

$$T'(x, y, z, t) = T(z) \exp[i\omega t + i(k_x x + k_y y)]$$
 (14)

В общем случае $\omega = \omega' + i\omega''$. Мы ограничимся случаем $\omega' = 0$.

Т. е. $\omega = i\omega'' = -i\gamma$ (γ -декремент апериодических возмущений); в (13) и (14) $\exp(i\omega t) = \exp(\gamma t)$. Подставляя (13) и (14) в (12), получим:

$$\begin{cases} \gamma \left[v_z^{\mathrm{II}}(z) - k^2 v_z(z) \right] = -\operatorname{Gr} k^2 T(z) + v_z^{\mathrm{IV}}(z) - 2k^2 v_z^{\mathrm{II}}(z) + k^4 v_z(z) \right] \\ \operatorname{Pr} \gamma T(z) = \operatorname{Pr} v_z(z) + T^{\mathrm{II}}(z) - k^2 T(z), \\ v_z^{\mathrm{II}}(z) = T(z) = 0 \quad \text{при } z = 0, 1. \end{cases}$$
 (15) —амплиту уравнения

(15) –амплитудные

$$\begin{cases} v_z(z) = \sum_{n=1}^{\infty} a_n \sin \pi n z, \\ T(z) = \sum_{n=1}^{\infty} b_n \sin \pi n z. \end{cases}$$

$$\begin{cases} v_{z}(z) = \sum_{n=1}^{\infty} a_{n} \sin \pi nz, \\ v_{z}(z) = \sum_{n=1}^{\infty} a_{n} \sin \pi nz, \end{cases}$$
 (16)
$$\begin{cases} \gamma \left[v_{z}^{\text{II}}(z) - k^{2}v_{z}(z) \right] = -\operatorname{Gr} k^{2}T(z) + v_{z}^{\text{IV}}(z) - 2k^{2}v_{z}^{\text{II}}(z) + k^{4}v_{z}(z), \\ \operatorname{Pr} \gamma T(z) = \operatorname{Pr} v_{z}(z) + T^{\text{II}}(z) - k^{2}T(z), \\ v_{z}^{\text{II}}(z) = T(z) = 0 \quad \text{при } z = 0, 1. \end{cases}$$
 (15)

$$\begin{cases} -(\gamma_n \alpha + \alpha^2) a_n + \operatorname{Gr} k^2 b_n = 0, \\ \operatorname{Pr} a_n - (\alpha + \operatorname{Pr} \gamma_n) b_n = 0, \\ \alpha = n^2 \pi^2 + k^2. \end{cases}$$

Система (17) имеет нетривиальные решения, если определитель матрицы коэффициентов = 0:

Из (19) следует, что для действительных значений γ_n реализуются 2 моды апериодических возмущений при условии $Gr \cdot Pr = Ra > 0$ (Ra – число Релея). Т.к. $Pr=rac{
u}{
u}>0$, а $Gr=rac{geta L^4}{
u^2}A$, то $A>{f 0}$, что соответствует отрицательному градиенту температуры («подогрев» снизу-»охлаждение» сверху). Т. к. временной фактор $\sim \exp(\gamma t)$, условие $\gamma_n^{(+)} > 0$ (развитие возмущений со временем) соответствует: $\alpha^3 - Rak^2 < 0$, а $\gamma_n^{(-)} < 0$ — обратному неравенству. Следовательно: $\alpha^3 - Rak^2 = 0$ (20) – граница устойчивости. Отсюда $Ra_{cr} = \frac{\alpha^3}{k^2} = \frac{\left(\pi^2 n^2 + k^2\right)^3}{k^2}$ - критическое число Релея.

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (5)

Гидродинамическая картина возмущённого движения. Ячейки Релея – Бенара

Строгое решение задачи в изложенной постановке (определить поля возмущенной скорости $v_z'(x,y,z,t)$ и температуры T'(x,y,z,t) определяется ранее полученными формулами (1), (2) и (3).

$$\begin{cases} v_z'(x,y,z,t) = v_z(z) e^{i\omega t + i(k_x x + k_y y)} \\ T'(x,y,z,t) = T(z) e^{i\omega t + i(k_x x + k_y y)} \end{cases}$$
(1)
$$\begin{cases} v_z(z) = \sum_{n=1}^{\infty} a_n \sin \pi nz, \\ T(z) = \sum_{n=1}^{\infty} b_n \sin \pi nz. \end{cases}$$
(2)
$$\begin{cases} -(\gamma_n \alpha + \alpha^2) a_n + \operatorname{Gr} k^2 b_n = 0, \\ \operatorname{Pr} a_n - (\alpha + \operatorname{Pr} \gamma_n) b_n = 0. \end{cases}$$
(3)

Далее: плоская задача:
$$\vec{v}'(v_y', v_z', t)$$
. Для n-ой гармоники: $v_z'(y, z, t) = v_z(z) \, \mathrm{e}^{\gamma t} \, \mathrm{e}^{ik_y y} = a_n \sin \pi n z \, \mathrm{e}^{\gamma t} \, \mathrm{e}^{ik_y y}$ (4)

Вместо (4) удобно рассматривать
$$v_z'(y,z,t) = a_n \sin(\pi nz) \cdot \cos(k_y \cdot y) \, \mathrm{e}^{\gamma t}$$
 (5)

Вопрос. Как, зная $v_z'(x, y, z, t)$ из (5), определить $v_y'(x, y, z, t)$?

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (6)

Вопрос. Как, зная $v_z'(x,y,z,t)$ из (5), определить $v_y'(x,y,z,t)$? Ответ: Из уравнения неразрывности: $div\vec{v}' = \frac{\partial v_y'}{\partial y} + \frac{\partial v_z'}{\partial z} = 0$

$$div\vec{v}' = \frac{\partial v_y'}{\partial y} + \frac{\partial v_z'}{\partial z} = 0$$

Подставляя сюда $v_z'(y,z,t)=a_n\sin(\pi nz)\cos(k_yy)e^{\gamma t}$, получим:

$$v_y'(y,z,t) = -a_n \frac{\pi n}{k_v} \cos(\pi n z) \sin(k_y y) e^{\gamma t}$$
 (6)

В гидродинамике ключевое понятие – **траектория частицы.** Если определены компоненты скорости (в данном случае $v_{v}'(y,z,t)$ и

$$v_z'(y,z,t)$$
), то уравнения траекторий: $\begin{cases} \overline{dt} \\ \underline{dz} \end{cases}$

$$v_{z}'(y,z,t)$$
), то уравнения траекторий:
$$\begin{cases} \frac{dy}{dt} = v_{y}'(y,z,t) \\ \frac{dz}{dt} = v_{z}'(y,z,t) \end{cases}$$
 (7) с $y(t_{0}) = y_{0}$; $z(t_{0}) = z_{0}$ (8)

Для большей наглядности полезно использовать понятие – линия тока – кривая в каждой точке которой в заданный момент времени

вектор скорости
$$\vec{v}'$$
 направлен по касательной к ней. Уравнение линии тока:
$$\frac{dy}{v_y'(y,z,t)} = \frac{dz}{v_z'(y,z,t)}$$
 (9). Подставляя в (9) (5) и (6), получим:
$$\frac{dy}{dz} = -\frac{\pi n}{k_y} \frac{\sin(k_y y)}{\cos(k_y y)} \frac{\cos(\pi n z)}{\sin(\pi n z)}$$
 (10).
$$\sin(k_y y) \sin(\pi n z) = C(t)$$
 (11), где $-1 \le c(t) \le 1$

Линии тока, определяемые (11) — «мгновенная фотография» в момент времени t картины течения, соответствующей nой гармонике. Важнейшую роль играет зависящая от времени «constanta» $-1 \le c(t) \le 1$. При этом особую роль играет

случай
$$C(t)=0$$
. Из (11) $\sin(\pi nz)=0$, т. е. $\pi nz=\pi m_1\;(m_1=0,\pm 1,\pm 2,\ldots)$ $\sin(k_\nu y)=0$, т. е. $k_\nu y=\pi m_2\;(m_2=0,\pm 1,\pm 2,\ldots)$ (12)

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (6)

Для примера рассмотрим случай
$$k^*=k_{\mathcal{Y}}^*=rac{\pi n}{\sqrt{2}}$$
 при $n=1$

 $\sin(\pi nz) = 0$, τ . e. $\pi nz = \pi m_1 \ (m_1 = 0, \pm 1, \pm 2, ...)$ $\sin(k_y y) = 0$, τ . e. $k_y y = \pi m_2 \ (m_2 = 0, \pm 1, \pm 2, ...)$ (вспомним картинку). Рис.А – вертикальные и горизонтальные линии – решения (12)

ячеек в залаче Релея – Бенара при n=1

Внутри каждой прямоугольной ячейки кольцеобразными фигурами показаны качественные картинки - решения уравнения (11) для разных моментов времени, т.е. для разных $C(t) \neq 0$. Рис. А – конвективные ячейки Релея-Бенара (для плоской задачи).

б) Трёхмерная задача

Рис. В Компьютерное моделирование конвективных ячеек

а) Общий вид эксперимента

б) Увеличенный фрагмент

Опыт, иллюстрирующий структуру конвективных ячеек

ТЕПЛОВАЯ КОНВЕКЦИЯ В ПОЛЕ СИЛЫ ТЯЖЕСТИ В ПРИРОДЕ

(внизу) конвективных ячейках

Облачные ячейки закрытого типа на снимках из космоса

СТРОГОЕ РЕШЕНИЕ ЗАДАЧИ О ТЕПЛОВОЙ КОНВЕКЦИИ В ПОЛЕ СИЛЫ ТЯЖЕСТИ (6)

03.10.2024