

FIG. 1

CTR 002

CTR 002

$$c = \text{High_capacity} / \text{Low_capacity}$$

FIG. 2

Example:
 $TF1 = 15.325 \text{ microsec} - High_capacity = OC-192$
 $TF2 = 125 \text{ microsec} - Low_capacity = OC-3$
 $\Rightarrow C = 64 = (OC-192/OC-3)$

FIG. 3

UTC/CTR™ is used to forward time frames
in a synchronized/pipelined manner

FIG. 4

FIG. 5

Two time intervals: $\text{SC1_length} \cdot \text{TF1} = 1$ UTC second

- $\text{SC2_length} \cdot \text{TF2} = 1$ UTC second
 - $\text{TF2} = (\text{SC1_length} / \text{SC2_length}) \cdot \text{TF1} = k \cdot \text{TF1}$, where the time cycles of TF1 and TF2 are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 6

Two time intervals: $SCI_length \cdot TFI = 1$ UTC second

- $SCI_length \cdot TFI = 1$ UTC second
- $TF2 = (SCI_length / SC2_length) \cdot TFI = k \cdot TFI$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.

For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 7

Two time intervals: $SCI_length \cdot TF1 = 1$ UTC second

- $SCI2_length \cdot TF2 = 1$ UTC second
 - $TF2 = (SCI1_length / SCI2_length) \cdot TF1 = k \cdot TF1$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 8

Two time intervals: $SCI_length \cdot TFI = 1$ UTC second

- $SCI_length \cdot TRF = 1$ UTC second
 - $TF2 = (SCI_length / SC2_length) \cdot TFI = k \cdot TFI$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 9

$c=4$, e.g., OC-192/OC-48
 $k=2$, e.g., 25 microsec/12.5 microsec

FIG. 10

$c=4$, e.g., OC-192/OC-48
 $k=2$, e.g., 25 microsec/12.5 microsec

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

N: number of input/output channels. E.g., N=256

FIG. 18

TF_i_j: Time frame duration on channel j at Input Interface i.
UTR_i: UTR on link connected to Input Interface i
Common Time Reference - CTR/UTC

**Alignment Subsystem for Channel j at Input Interface i
with a Plurality of Time Frame Queues**

FIG. 19

TFi_j: Time frame duration on channel j at Input Interface i .
UTR i: UTR on link connected to Input Interface i
 $Pi_j = TFi_j/\text{subTF}$

*Alignment Subsystem for high capacity Channel j at Input Interface i
with a Plurality of Sub-Time Frame Queues*

FIG. 18+2 TFi_j : Time frame duration on channel j at Input Interface i .
 UTRi: UTR on link connected to Input Interface i

Rate Matching Buffer for Channel j at Output Interface i
with a Plurality of Time Frame Queues
 (Also single buffer with dual access memory with single phase
 switching and forwarding)

FIG. 21

SHEET 21 OF 65

ATTORNEY DOCKET NO.: SYN 1776

OFEK ET AL.

PATENT APPLICATION

FIG. 22

N: number of input/output channels. E.g., N=256
 $M \cdot \text{High_capacity} = N_{\text{high}} \cdot \text{High_capacity} + N_{\text{low}} \cdot \text{Low_capacity}$
 $M < N$

FIG. 23

FIG. 24

FIG. 25

N: number of input/output channels. E.g., N=256
 $L \cdot \text{Low_capacity} = N_{\text{high}} \cdot \text{High_capacity} + N_{\text{low}} \cdot \text{Low_capacity}$
 $L > N$

FIG. 26

FIG. 27

FIG. 28

N: number of input/output channels. E.g., N=256
 $L \cdot \text{Low_capacity} = N \cdot \text{High_capacity}$
 $L = c \cdot N > N$

FIG. 29

FIG. 30

Select-O
[CTR-Switching word/byte/bit rate]

FIG. 31

FIG. 32

Channel Capacity	TF Duration	TF Size	STS-1s	TFs/s	
51.84	STS- 1	250 500 1000 125 250 500 62.5 125 250 62.5 31.25 15.625 7.8125 15.625 125 100 80 15.625 12.5 10	1620 3240 6480 2430 4860 9720 4860 9720 19440 19440 9720 9720 19440 19440 9720 9720 19440 15625 12500 10000 19531.25 15625 12500	1512 3024 6048 2268 4536 9072 4536 9072 18144 18144 9072 4536 18144 18144 9072 4536 18144 15625 12500 10000 19531.3 15625 12500	2 4 8 3 6 12 6 12 24 24 12 24 12 24 6 24 19.3 15.4 12.3 24.1 19.3 15.4
155.52	STS- 3			4000 2000 1000 8000 4000 2000 16000 8000 4000 16000 32000 16000 64000 64000 128000 64000 80000 80000	
622.08	STS- 12				
2488.32	STS- 48				
9953.28	STS- 192				
1000	GE				
10000	10GE				

FIG. 33

Ch Capacity	TF Dur.	TF Size	GE	TFs/s
1000 GE	80	10000	1.0	12500
51.84 STS- 1	250	1512	0.15	4000
155.5 STS- 3	500	3024	0.30	2000
	1000	6048	0.60	1000
	125	2268	0.23	8000
	250	4536	0.45	4000
	500	9072	0.91	2000
622.1 STS- 12	62.5	4536	0.45	16000
	125	9072	0.91	8000
	250	18144	1.81	4000
2488 STS- 48	62.5	18144	1.81	16000
	31.25	9072	0.91	32000
	15.625	4536	0.45	64000
9953 STS- 192	7.8125	9072	0.91	128000
	15.625	18144	1.81	64000
	8	10000	1.00	125000
10000 10GE	16	20000	2.00	62500

FIG. 34

Ch Capacity	GE	TF Dur.	TF Size	GE TFs	TFs/s
1000	GE	62.5	7812.5	1.0	16000
51.84	STS- 1	250	1512	0.19	4000
		500	3024	0.39	2000
155.52	STS- 3	1000	6048	0.77	1000
		125	2268	0.29	8000
622.08	STS- 12	250	4536	0.58	4000
		500	9072	1.16	2000
2488.32	STS- 48	62.5	4536	0.58	16000
		125	9072	1.16	8000
9953.28	STS- 192	250	18144	2.32	4000
		31.25	9072	1.16	32000
10000	10GE	62.5	18144	2.32	16000
		15.625	4536	0.58	64000
		7.8125	9072	1.16	128000
		1.5625	15625	2.00	80000
		12.5	31250	4.00	40000
		25			

FIG. 35

TF Alignment of UTR(i) to UTC - with three input queues - principle of operation:

The same queue is not used simultaneously for:

1. Receiving data packets from the serial link, and
2. Forwarding data packets to the switch

FIG. 36

SHEET 36 OF 65
ATTORNEY DOCKET NO.: SYN 1776
OFEK ET AL.
PATENT APPLICATION*

FIG. 37

FIG. 38

FIG. 39

FIG. 40 OC-12

SHEET 40 OF 65

ATTORNEY DOCKET NO.: SYN 1776

OFER ET AL.

PATERSON APPLICATION*

FIG. 41

FIG. 42

FIG. 43

FIG. 44

- $CC1_length \cdot TF1 = CC2_length \cdot TF2 = CC3_length \cdot TF2$
 - $TF2 = (SC1_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the common cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

- $CC1_length \cdot TF1 = CC2_length \cdot TF2 = CC3_length \cdot TF2$
 - $TF2 = (SCI_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the common cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
 - and $c = 4$ (e.g., High capacity=OC-192, Low_capacity=OC-48).

FIG. 53

FLI - Fractional Lambda Interface
FLS - Fractional Lambda Switch
OXC - Optical Cross Connect

FLS - Fractional Lambda Switch

OXC - Optical Cross Connect
G - Grooming system
D - Degrooming system

Time Frame size 9720 KB

FIG. 54

FLI - Fractional Lambda Interface

FLS - Fractional Lambda Switch

OVC Onsite Cross Connect

OAC = Optimal Cross C

G - Grooming system

12 STS-1s per time frame

FIG. 55

FIG. 56

FIG. 57

SHEET 57 OF 65

ATTORNEY DOCKET NO.: SYN 1//6

OFFEK ET AL.

*PATENT APPLICATION

FIG. 58

FIG. 59

FIG. 60

SONET Fractional Lambda Interface - Egress Module

FLP = Fractional Lambda Pipe

FIG. 61

ATTONEY DOCKET NO.: SYN 1776
SHEET 61 OF 65
OFEK ET AL.
PATENT APPLICATION*

FIG. 62

SHEET 62 OF 65
ATTORNEY DOCKET NO.: SYN 1776
OFFICE ET AL.
PATENT APPLICATION*

FIG. 63

FIG. 64

- SONET - synchronous optical network
- Multiplexing method: byte interleaving
- Signal hierarchy: OC-N (STS-N)
 - STS-N rate: $N \times 51.84$ Mb/s
 - Frame format: 9 rows by $90 \times N$ columns
 - capacity: $N \times 810$ bytes in 125 microsecond.
 - overhead: $N \times 27$ bytes
 - payload: $N \times 783$ bytes

FIG. 65

SHEET 65 OF 65
ATTORNEY DOCKET NO.: SYN 1776
OFFICE ET AL.
PATENT APPLICATION*