ECE 65: Components & Circuits Lab

Lecture 5

Zener Diode

Reference notes: sections 2.1-2.8

Sedra & Smith (7th Ed): sections 4.3-4.4

Saharnaz Baghdadchi

Course map

2. Diodes

Other types of diodes

Light-emitting diode (LED)

 $V_{D0} = 1.7 - 1.9 \text{ V}$

Made specially to operate in the reverse breakdown region.

Useful as a "reference" voltage in many circuits.

Zener Diode piecewise-linear model

Diode ON: $v_D = V_{D0}$ and $i_D \ge 0$

Diode OFF: $i_D = 0$ and $-V_Z < v_D < V_{D0}$

Zener: $v_D = -V_Z$ and $i_D \le 0$

ON:

OFF: + VD

Zener: \underbrace{i}_{D}

Zener Diode piecewise-linear model

Assume Zener diode with $V_D=0.7 \, \text{V}$ and $V_Z=5 \, \text{V}$.

- A) When $0 \langle V_1 V_2 \langle 0.7 \rangle$, diode is forward-biased, but it's not on, yet $\Longrightarrow i_D = 0$
- B When $-5 \ \langle V_1 V_2 \ \langle 0 \rangle$, diode is reverse_biased, but it's not in the Zener region, so it's Off. $\implies i_D = 0$
- When $V_1 V_2 = 0.7$, diode is forward-biased and it's $0N \implies i_D > 0$ and $V_D = V_{D_0} = 0.7 \text{ V}$.
- When $V_1 V_2 = -5 V$, diode is in Zener region, it conducts, $i_0 \leqslant 0$ and $V_D = -V_Z = -5 V$

Example:

In the following circuit, find i_L and v_L for $v_S=10~V$. For what range of v_S and R_L the Zener diode will be in the Zener region and the circuit can operate as a voltage regulator? ($V_Z=3~V,V_{D0}=0.7~V$)

Assume the diode is in the Zener region:
$$V_{D} = -V_{Z}, \quad i_{D} < 0$$

$$V_{L} = V_{Z} = 3V$$

$$i_{L} = \frac{V_{L}}{I_{K}} = \frac{3V}{I_{K}} = 3mA, \quad i_{L} = 3mA$$

$$i_{S} = \frac{V_{S} + V_{D}}{R_{S}} = \frac{10 \text{ V} - 3 \text{ V}}{1 \text{ K}}$$

$$i_{S} = 7 \text{ mA}$$

$$i_{D} = i_{L} - i_{S} = 3 \text{ mA} - 7 \text{ mA}$$

$$= -4 \text{ mA} < 0$$

when the diode is in the Zener region, is <0.

$$i_0 = i_L - i_s \leq 0$$
 $\longrightarrow i_s > i_L$

$$V_{L} = V_{Z} , \qquad \dot{U}_{L} = \frac{V_{L}}{R_{L}} = \frac{V_{Z}}{K_{L}}$$

$$\dot{U}_{S} = \frac{V_{S} - V_{Z}}{K_{S}}$$

$$i_s = \frac{V_s - V_z}{K_s}$$

$$\left(\frac{V_{s}-V_{z}}{R_{s}}>,\frac{V_{z}}{R_{L}}\right)$$

$$\frac{v_s}{R_s} \gg v_z \left(\frac{1}{R_L} + \frac{1}{R_s} \right) \longrightarrow v_s \gg \frac{v_z \left(1 + \frac{R_s}{R_L} \right)}{R_s}$$

$$\frac{\frac{V_{5/V_{Z}-1}}{R_{s}}}{\frac{1}{R_{s}}} \rightarrow \frac{1}{R_{L}} \rightarrow \frac{R_{s}}{\frac{V_{5/V_{Z}-1}}{V_{2}}}$$

Lecture 3 reading quiz

In the following circuit, find V_R for $V_S = +5 V$ and $V_S = -5 V$. Assume

$$V_Z = 3 V$$
 and $V_{Do} = 0.7 V$.

Assume diode is in Zener

$$V_{D} = -V_{Z}$$
, (0)

$$KVL: V_{S} = V_{D} + R i_{D}$$

$$5 = -3 + 1 k_{A} \times i_{D} \longrightarrow i_{D} = 8mA > 0$$

Assumption was wrong.

Lecture 3 reading quiz

In the following circuit, find V_R for $V_S = +5 V$ and $V_S = -5 V$. Assume

$$V_Z = 3 V$$
 and $V_{Do} = 0.7 V$.

Assume the diode is ON,

$$V_{D} = V_{D_0}$$
 and $i_D > 0$

$$KVL: V_S = V_D + Ri_D \longrightarrow$$

For
$$V_s = -5V$$
,

Assume hode is in Zener region:

$$V_{0} = -V_{z}$$
, $(\dot{b} < 0)$

$$-5V = -3V + 1kn \times i_0 - i_0 = -2mA < 0$$

Assumption was correct and the diode is in the Zener region.

$$V_R = 1kn \times i_D = -2V$$

what if we assumed the diode was off for $V_s = -5^{\circ}$

$$V_S = V_D + Ri_D$$
 $\longrightarrow V_S = V_D = -5V \langle -3V \rangle \longrightarrow Assumption were wrong.$

Discussion question 1.

In the below circuit find the range of v_i for which D_1 is ON and D_2 is in the Zener region. Calculate v_{out} .

Are there any other possible states at which D_1 and D_2 can operate? Assume $V_{D0} = 0.7 V$ and $V_Z = 5 V$.

Extra activity: find v_{out} for all ranges of v_i (solve the circuit parametrically).

Discussion question 1.

$$V_{0_0}=0.7V$$
, $V_z=5V$

Solve the following circuit parametrically.

D, and D2 cannot be forward biased and ON, be cause:

$$D_1 \circ N \longrightarrow i_{0_1} \geqslant 0$$
, $V_{0_1} = 0.7 \lor$
 $D_2 \circ N \longrightarrow i_{0_2} \geqslant 0$, $V_{0_2} = 0.7 \lor$

$$D_1 ON \longrightarrow i_{D_1} \geqslant 0 \& V_{D_1} = V_{D_0} = 0.7 \lor$$

$$D_2$$
 Zener $\longrightarrow i_{D_2} \leq 0 \quad \& \quad V_{D_2} = -V_2 = -5V$

$$kvL: i_{D_1} = \frac{V_S - V_{D_0} - V_Z}{R} \geqslant 0 \longrightarrow V_S \geqslant V_Z + V_{D_0} \longrightarrow V_S \geqslant 5.7 V$$

For
$$V_s > 5.7V \longrightarrow D_1$$
 is ON and D_2 is in Zener region

B) When D, and D2 are off:

When D₁ and D₂ are off:

$$KVL: V_i = R \times i_{D_1} + V_{D_1} - V_{D_2} \Rightarrow V_i = V_{D_1} - V_{D_2}$$

also $V_{O_1} \times V_{O_0}$. V_{O_1} in this range can have any value from $-\infty$ up to V_{O_0} .

As a result, we can write $-\infty < V_0 < V_0$

Clicker question 1:

What is the range of v_i for which both diodes are ON? Assume $V_Z=4\ V$ and $V_{Do}=0.7\ V$.

$$D^{1} \circ \gamma : \qquad \int_{D^{1}} \int_{D} dz$$

$$D_2 \circ N$$
: $C_{D_2} > 0$

$$V_{D_2} = V_{D_0}$$

$$(A.) v_i \geqslant 2.1 \text{ V}$$

B.
$$v_i \ge 1.4 \text{ V}$$

C.
$$v_i \ge 0.7 \text{ V}$$

D. Both diodes cannot be ON simultaneously.

$$v_i$$
 v_i
 v_i

$$KCL: i_{D_2} = i_{D_1} + i_R$$

,
$$i_{D_1} > 0$$
 and $i_{D_2} > 0$

Both current inequalities must be true when D, and D2 are ON.

$$i_R = \frac{V_{D_I}}{1k} = \frac{0.7V}{1kx} = 0.7mA$$

$$kVL: V_i = V_{D_1} + 1k \times i_{D_2} + V_{D_2} \longrightarrow V_i = 0.7V + 1k \times (i_D + 0.7V) + 0.7V$$

$$V_i = 2.1 V + 1 k x \times i_0$$
, $\longrightarrow i_0 = \frac{V_i - 2.1 V}{1 k x} > 0 \longrightarrow V_i > 2.1 V$