Induction, Recursion, and Algorithmic Analysis

Exercise 1. Prove by induction that

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1$$
 for $n \ge 1$

Exercise 2. Let $\Sigma = \{1, 2, 3\}$.

- (a) Give a recursive definition for the function $\operatorname{sum}: \Sigma^* \to \mathbb{N}$ which, when given a word over Σ returns the sum of the digits. For example $\operatorname{sum}(1232) = 8$, $\operatorname{sum}(222) = 6$, and $\operatorname{sum}(1) = 1$. You should assume $\operatorname{sum}(\lambda) = 0$.
- (b) For $w \in \Sigma^*$, let P(w) be the proposition that for all words $v \in \Sigma^*$, $\operatorname{sum}(wv) = \operatorname{sum}(w) + \operatorname{sum}(v)$. Prove that P(w) holds for all $w \in \Sigma^*$.
- (c) Consder the function rev : $\Sigma^* \to \Sigma^*$ defined recursively as follows:
 - $rev(\lambda) = \lambda$
 - For $w \in \Sigma^*$ and $a \in \Sigma$, rev(aw) = rev(w)a

Prove that for all words $w \in \Sigma^*$, sum(rev(w)) = sum(w)

Exercise 3. Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ recursively as follows: f(m,0) = 0 for all $m \in \mathbb{N}$ and f(m,n+1) = m + f(m,n).

- (a) Let P(n) be the proposition that f(0,n)=f(n,0). Prove that P(n) holds for all $n\in\mathbb{N}$.
- *(b) Let Q(m) be the proposition $\forall n, f(m,n) = f(n,m)$. Prove that Q(m) holds for all $m \in \mathbb{N}$.

Exercise 4. Analyse the complexity of the following algorithms to compute the n-th Fibonacci number

(a) $\mathbf{FibOne}(n)$:

if
$$n \le 2$$
 then return 1
else return **FibOne** $(n-1) +$ **FibOne** $(n-2)$

(b) $\mathbf{FibTwo}(n)$:

$$x = 1, y = 0, i = 1$$

While $i < n$:
 $t = x$
 $x = x + y$
 $y = t$
 $i = i + 1$
return x

Exercise 5. Analyse the complexity of the following recursive algorithm to test whether a number x occurs in an *ordered* list $L = [x_1, x_2, \ldots, x_n]$ of size n. Take the cost to be the number of list element comparison operations.

```
\begin{aligned} \mathbf{BinarySearch}(x, L &= [x_1, x_2, \dots, x_n]): \\ &\text{if } n = 0 \text{ then return no} \\ &\text{else} \\ &\text{if } x_{\left \lceil \frac{n}{2} \right \rceil} > x \text{ then return } \mathbf{BinarySearch}(x, [x_1, \dots, x_{\left \lceil \frac{n}{2} \right \rceil - 1}]) \\ &\text{else if } x_{\left \lceil \frac{n}{2} \right \rceil} < x \text{ return } \mathbf{BinarySearch}(x, [x_{\left \lceil \frac{n}{2} \right \rceil + 1}, \dots, x_n]) \\ &\text{else return yes} \end{aligned}
```