Section 6.1, Question 41: Let $f(x) = 3 + x^2 + \tan(\frac{\pi x}{2})$ and let a = 3. Find $(f^{-1})'(a)$.

Solution:

We will solve this question using the same steps as in recitation: by finding successively the quantities:

- a
- $f^{-1}(a)$
- f'(x)
- $f'(f^{-1}(a))$
- $\bullet \quad \frac{1}{f'(f^{-1}(a))}$

The question gives us that a = 3.

Next, to find $f^{-1}(3)$, we set f(x) = 3 and solve for x.

$$f(x) = 3$$

$$\implies 3 + x^2 + \tan(\frac{\pi x}{2}) = 3$$

$$\implies x^2 + \tan(\frac{\pi x}{2}) = 0$$

$$\implies \tan(\frac{\pi x}{2}) = -x^2$$

Above is a graph of the functions $y = -x^2$ (in green) and of $y = \tan(\frac{\pi x}{2})$ (in red). The graphs cross when x = 0, and only when x = 0. This tells us that the left hand side and the right hand side in the above equation are equal if, and only if, x = 0.

1

So, we see that $f^{-1}(3) = 0$.

Next, we have $f(x) = 3 + x^2 + \tan(\frac{\pi x}{2})$

$$\implies f'(x) = 2x + \sec^2(\frac{\pi x}{2})\frac{\pi}{2}$$

$$\implies f'(f^{-1}(3)) = f'(0) = \frac{\pi}{2}$$

Finally, this shows us that $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} = \frac{2}{\pi}$.