3.012 Fund of Mat Sci: Bonding – Lecture 8 THE PERIODIC TABLE

M. C. Escher, "Ascending and Descending," 1960. Image removed for copyright reasons.

Homework for Fri Oct 7

• Study: 21.4, 23.1, 23.2, 23.3

- Exam check all points mentioned in PS3.
- Study all paragraphs assigned from textbook.
- Old problem sets, quizzes, available on the MIT server, together with solutions
- Office hours

Last time:

- 1. Absorption/emission processes, XPS
- 2. Orbitals in a central potential
- 3. Accidental degeneracies removed by centripetal potential, and screening
- 4. Coupled ("Hartree") equations for a many electron atom
- 5. Spin

Many-electron case

Helium atom

Hartree equations

Right experiment – wrong theory (Stern-Gerlach)

$$\hat{H} \rightarrow \hat{H} + \frac{\mu_B}{\hbar} (\hat{L} + 2\hat{S}) \cdot \vec{B} = \hat{H} + \frac{\mu_B}{\hbar} (\hat{L}_z + 2\hat{S}_z) B_z$$
 Goudsmit and Uhlenbeck

Spin Eigenvalues/Eigenfunctions

• Norm (s integer \rightarrow bosons, half-integer \rightarrow fermions)

$$\hat{S}^2 \Psi_{spin} = \hbar^2 s \left(s + 1 \right) \Psi_{spin}$$

• Z-axis projection (electron is a fermion with s=1/2)

$$\hat{S}_z \Psi_{spin} = \pm \frac{\hbar}{2} \Psi_{spin}$$

• Spin-orbital: product of the "space" wavefunction and the "spin" wavefunction

Pauli Exclusion Principle

We can't have two electrons in the same quantum state \rightarrow

Any two electrons in an atom cannot have the same 4 quantum numbers n,l,m,m_s

Auf-bau

Figure by MIT OCW.

The periodic table

Source: Wikipedia

Periodic Table – Electronic Configuration

Z	ELI	EMENT	ELECTRONIC* CONFIGURATION	TERM*	IONIZATION POTENTIAL (e
1	Н	Hydrogen	1s	$^{2}S_{1/2}$	13.60
2		Helium	1s ²	¹ S ₀	24.59
3	Li	Lithium	[He]2s	² S _{1/2}	5.39
4	Be	Beryllium	[He]2s ²	¹ S ₀	9.32
5	В	Boron	[He]2s ² 2p	² P _{1/2}	8.30
6	C	Carbon	[He]2s ² 2p ²	³ P ₀	11.26
7	N	Nitrogen	[He]2s ² 2p ³	⁴ S _{3/2}	14.53
8	0	Oxygen	[He]2s ² 2p ⁴	³ P,	13.62
9	F	Fluorine	[He]2s ² 2p ⁵	² P _{3/2}	17.42
10	Ne	Neon	[He]2s ² 2p ⁶	¹ S ₀	21.56
11	Na	Sodium	[Ne]3s	² S _{1/2}	5.14
12	Mg	Magnesium	[Ne]3s ²	¹ S ₀	7.65
13	Al	Aluminium	[Ne]3s ² 3p	² P _{1/2}	5.99
14	Si	Silicon	[Ne]3s ² 3p ²	$^{3}P_{0}$	8.15
15	P	Phosphorus	[Ne]3s ² 3p ³	⁴ S _{3/2}	10.49
16	S	Sulphur	[Ne]3s ² 3p ⁴	³ P ₂	10.36
17	Cl	Chlorine	[Ne]3s ² 3p ⁵	² P _{3/2}	12.97
18	Ar	Argon	[Ne]3s ² 3p ⁶	¹ S ₀	15.76
19	K	Potassium	[Ar]4s	² S _{1/2}	4.34
20	Ca	Calcium	[Ar]4s ²	¹ S ₀	6.11
21	Sc	Scandium	[Ar]4s ² 3d	2D _{3/2}	6.54
22	Ti	Titanium	[Ar]4s ² 3d ²	³ F,	6.82
23	V	Vanadium	[Ar]4s ² 3d ³	⁴ F _{3/2}	6.74
24	Cr	Chromium	[Ar]4s3d5	⁷ S,	6.77
25		Manganese	[Ar]4s ² 3d ⁵	6S _{5/2}	7.44
26	Fe	Iron	[Ar]4s ² 3d ⁶	5D,	7.87
27	Co	Cobalt	[Ar]4s ² 3d ⁷	⁴ F _{9/2}	7.86
28	Ni	Nickel	[Ar]4s ² 3d ⁸	3F ₄	7.64
29	Cu	Copper	[Ar]4s3d10	${}^{2}S_{1/2}$	7.73
30	Zn	Zinc	[Ar]4s ² 3d ¹⁰	¹ S ₀	9.39
31	Ga	Gallium	[Ar]4s ² 3d ¹⁰ 4p	² P _{1/2}	6.00
32	Ge	Germanium	[Ar]4s ² 3d ¹⁰ 4p ²	³ P ₀	7.90
33	As	Arsenic	[Ar]4s23d104p3	4S _{3/2}	9.81
34	Se	Selenium	[Ar]4s ² 3d ¹⁰ 4p ⁴	$^{3}P_{2}$	9.75
35	Br	Bromine	[Ar]4s ² 3d ¹⁰ 4p ⁵	² P _{3/2}	11.81
36	Kr	Krypton	[Ar]4s ² 3d ¹⁰ 4p ⁶	¹ S ₀	14.00
37	Rb	Rubidium	[Kr]5s	$^{2}S_{1/2}$	4.18
38	Sr	Strontium	[Kr]5s ²	¹ S ₀	5.70
39	Y	Yttrium	[Kr]5s24d	² D _{3/2}	6.38
40	Zr	Zirconium	[Kr]5s ² 4d ²	³ F,	6.84
41	Nb	Niobium	[Kr]5s4d4	⁶ D _{1/2}	6.88
42	Мо			⁷ S ₃	7.10
43	Tc	Technetium	[Kr]5s ² 4d ⁵	⁶ S _{5/2}	7.28
44	Ru	Ruthenium	[Kr]5s ² 4d ⁷	5F ₅	7.37
45	Rh	Rhodium	[Kr]5s ² 4d ⁸	4F _{9/2}	7.46
46	Pd	Palladium	[Kr]4d10	¹ S ₀	8.34
47	Ag		[Kr]5s4d ¹⁰	² S _{1/2}	7.58
48	Cd	Cadmium	[Kr]5s ² 4d ¹⁰	¹ S ₀	8.99
49	In	Indium	[Kr]5s ² 4d ¹⁰ 5p	² P _{1/2}	5.79
	Sn	Tin	[Kr]5s ² 4d ¹⁰ 5p ²	³ P ₀	7.34
50				⁴ S _{3/2}	

Z	ELEN	MENT	ELECTRONIC* CONFIGURATION	TERM*	I ONIZATION POTENTIAL (eV
52	Te	Tellurium	[Kr]5s ² 4d ¹⁰ 5p ⁴	³ P ₂	9.01
53	I	Iodine	[Kr]5s ² 4d ¹⁰ 5p ⁵	² P _{3/2}	10.45
54	Xe	Xenon	[Kr]5s ² 4d ¹⁰ 5p ⁶	¹ S ₀	12.13
55	Cs	Cesium	[Xe]6s	² S _{1/2}	3.89
56	Ba	Barium	[Xe]6s ²	¹ S ₀	5.21
57	La	Lanthanum	[Xe]6s25d	² D _{3/2}	5.58
58	Ce	Cerium	[Xe](6s ² 4f5d)	(¹G,)	5.47
59	Pr	Praseodymiu		(⁴ I _{9/2})	5.42
60	Nd	Neodymium	[Xe]6s ² 4f ⁴	5I ₄	5.49
61	Pm	Promethium	[Xe](6s ² 4f ⁵)	(6H ₅₀)	5.55
62	Sm	Samarium	[Xe]6s ² 4f ⁶	⁷ F ₀	5.63
63	Eu	Europium	[Xe]6s ² 4f ⁷	8S _{7/2}	5.67
64	Gd	Gadolinium	[Xe]6s ² 4f ⁷ 5d	9D,	6.14
65	Tb	Terbium	[Xe](6s ² 4f ⁹)	⁶ H _{15/2}	5.85
66	Dy	Dysprosium	[Xe](6s ² 4f ¹⁰)	(5I ₈)	5.93
67	Но	Holmium	[Xe](6s ² 4f ¹¹)	(4I _{15/2})	6.02
68	Er	Erbium	[Xe](6s ² 4f ¹²)	(3H ₂)	6.10
69	Tm	Thulium	[Xe]6s ² 4f ¹³	² F _{7/2}	6.18
70	Yb	Ytterbium	[Xe]6s ² 4f ¹⁴	¹ S ₀	6.25
71	Lu	Lutetium	[Xe]6s ² 4f ¹⁴ 5d	$^{2}D_{_{3/2}}$	5.43
72	Hf	Hafnium	[Xe]6s ² 4f ¹⁴ 5d ²	3 F	7.0
73	Ta	Tantalum	[Xe]6s ² 4f ¹⁴ 5d ³	4F _{3/2}	7.89
74	W	Tungsten	[Xe]6s ² 4f ¹⁴ 5d ⁴	5D ₀	7.98
75	Re	Rhenium	[Xe]6s ² 4f ¹⁴ 5d ⁵	6S _{5/2}	7.88
76	Os	Osmium	[Xe]6s ² 4f ¹⁴ 5d ⁶	5D,	8.7
77	Ir	Iridium	[Xe]6s ² 4f ¹⁴ 5d ⁷	(4F _{9/2})	9.1
78	Pt	Platinum	[Xe]6s4f ¹⁴ 5d ⁹	3D,	9.0
79	Au	Gold	[Xe]6s4f ¹⁴ 5d ¹⁰	² S _{1/2}	9.23
80	Hg	Mercury	[Xe]6s ² 4f ¹⁴ 5d ¹⁰	$^{1}S_{0}$	10.44
81	Tl	Thallium	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p	² P _{1/2}	6.11
82	Pb	Lead	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	$^{3}P_{0}$	7.42
83	Bi	Bismuth	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	$^{4}S_{_{3/2}}$	7.29
84	Po	Polonium	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	3P.,	8.42
85	Ar	Astatine	[Xe](6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵)	² P _{3/2}	9.5
86	Rn	Radon	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶	$^{1}S_{0}$	10.75
87	Fr	Francium	[Rn]7s	${}^{2}S_{1/2}$	4.0
88	Ra	Radium	[Rn]7s ²	$^{1}S_{0}$	5.28
89	Ac	Actinium	[Rn]7s26d	$^{2}D_{_{3/2}}$	6.9
90	Th	Thorium	[Rn]7s26d2	3F,	
91	Pa	Protactinium	[Rn](7s25f26d)	(4K _{11/2})	
92	U	Uranium	[Rn]7s25f36d	5L ₆	4.0
93	Np	Neptunium	[Rn]7s25f6d	5L _{11/2}	
94	Pu	Plutonium	[Rn]7s25f6	⁷ F ₀	5.8
95	Am	Americium	[Rn]7s25f7	⁸ S _{7/2}	6.0
96	Cm	Curium	[Rn]7s25f76d	⁹ D,	
97	Bk	Berkelium	[Rn]7s25f86d	8H _{17/2}	
98	Cf	Californium	[Rn]7s25f10	⁵ I ₈	
99	Es	Einsteinium	[Rn]7s25f11	⁴ I _{15/2}	
100	Fm	Fermium	[Rn](7s25f12)	(3H ₆)	
101	Md	Mendeleviun		(2F _{7/2})	
102	No	Nobelium	[Rn](7s25f14)	(1S ₀)	
103	Lw	Lawrencium	[Rn]7s25f146d	(2D _{3/2})	
			[].551 04	3/2	

Electronic configuration, term value, and ionization potential of the atoms in their ground state.

Atomic radii

Graph of atomic radius plotted against atomic number removed for copyright reasons. See http://www.webelements.com/webelements/properties/text/image-line/atomic-radius-emp.html.

Graphs of electron affinity plotted against atomic number removed for copyright reasons. See http://www.webelements.com/webelements/properties/text/image-line/electron-affinity.html and http://www.webelements.com/webelements/properties/text/image-cityscape/electron-affinity	

Good Quantum Numbers

$$\frac{d\langle A \rangle}{dt} = \frac{d\langle \Psi | \hat{A} | \Psi \rangle}{dt} = \frac{1}{ih} \langle \left[\hat{A}, \hat{H} \right] \rangle$$

If A commutes with the Hamiltonian, its expectation value does not change with time (it's a constant of motion – if we are in an eigenstate, that quantum number will remain constant)

Variational Principle

$$E\left[\Phi\right] = \frac{\left\langle\Phi\middle|\hat{H}\middle|\Phi\right\rangle}{\left\langle\Phi\middle|\Phi\right\rangle}$$

$$E[\Phi] \ge E_0$$

If $E[\Phi] = E_0$, then Φ is the ground state wavefunction, and viceversa...