Paper Reading

Xinwei Geng 2018-07-02

Focused Hierarchical RNNs for Conditional Sequence Processing

- Nan Rosemary Ke
- A second year PhD student at the Montreal Institute for Learning Algorithms MILA
- Received a Bachelors in Computer Science at the University of Auckland
- At Carnegie Mellon University working on speech recognition and deep learning
- Now at Microsoft Research, Montreal, where I work on improved RNN training, generative models and language related research.
- Interested in new ways of training Recurrent Neural Networks, generative models and causal inference learning.
- ICML 2018
- Homepage: https://nke001.github.io/

Issues

- Recurrent neural network with attention
 - the attention looks over the entire sequence and assign a soft weight to each token
 - in some case such as complex tasks, selectively process relevant information within input is crucial
- Real-word human cognitive processes
 - Reading a Wikipedia article and trying to identify information that is relevant to answering a question
 - Given a context or question, it's much easier to read over the article, identify relevant information, group items and selectively process relevant information to answer the question
- It's beneficial to selectively process the input sequence conditioned on a question or input context

Focused Hierarchical RNN

- Focused hierarchical encoder is modeled by a two-layer LSTM
 - The lower layer operates at the input token level
 - The upper layer focuses on tokens relevant to the context
 - A conditional boundary gate to whether it is useful to update the upper-level LSTM with lower layer hidden state

$$b_t = \sigma(\mathbf{w}_b^{\top} \operatorname{LReLU}(\mathbf{W}_b \mathbf{z}_t + \mathbf{b}_b)), \qquad \mathbf{z}_t = [\mathbf{q} \odot \mathbf{h}_t^l, \mathbf{h}_t^l, \mathbf{q}],$$

Training

 Maximize the log-likelihood of the answer (A) given the context (Q) and the passage (P)

$$\mathcal{R} = \log p(A \mid Q, P).$$

- Policy gradient
 - the discrete decisions involved in sampling the boundary variable make it impossible to use standard gradient back-propagation to learn the parameters of the boundary gate

$$\sum_{\mathbf{b}} \nabla \pi_b(\mathbf{b}) \mathcal{R}_{\mathbf{b}} = E_{\mathbf{b} \sim \pi_b} [\nabla \log \pi_b(\mathbf{b}) \mathcal{R}_{\mathbf{b}}],$$

- Negative entropy regularization
- Sparsity Constraints

$$\beta G(\mathbf{b}) = \beta ReLU\left(\left(\sum_{t=1}^{T} b_{t}\right) - \gamma T\right)$$

Synthetic Experiment

Picking task

- A sequence of randomly generated digits of length n
- The goal of the picking task is to determine the most frequent digit within the first k digits

Input		TARGET
SEQUENCE	K	MODE
random examples		
<u>8056020170</u> 82838371701316304473	10	0
6 3 87 33 290890 3 966902559 3 7986485	23	3
<u>16455193757937389681398112</u> 5982	26	1
malicious examples		
666 33366628888288881999999999	6	6
666 333 666 28888288881999999999	10	6
6663336662 888828888 1999999999	20	8
<u>66633366628888288881</u> 999999999 0	30	9

Pixel-by-Pixel MNIST QA task

- the passage encoder reads in MNIST digits one pixel at a time
- the question asked is whether the image is a specific digit and the answer is either True or False

Experimental Results of Picking Task

Table 2. Accuracy (%) for picking task for LSTM1, LSTM2 and FHE-fixed. Our model and LSTM2 are on par with performing while LSTM1 is behind for longer input sequences.

LENGTH	LSTM1	LSTM2	FHE-FIXED
100	99.4	99.7	99.5
200	97.0	99.2	99.4
400	92.9	97.5	96.9

Table 3. Accuracy (%) for picking task for the models providing a level of control over the accuracy-sparsity trade-off at a cost of slightly lower performance.

LENGTH	FHE80	FHE90	FHE95	FHE98
100	93.4	94.2	96.6	98.7
200	92.3	92.4	93.6	93.6
400	87.2	90.5	90.0	91.0

Table 4. Test accuracy (%) for longer sequence length for picking task on model trained on sequence length n = 200.

LENGTH	LSTM1	LSTM2	FHE-FIXED
200	97.1	99.2	99.4
400	55.9	61.4	97.6
800	39.6	39.7	95.6
1600	29.5	28.6	93.3
10000	18.5	14.8	66.8

Visualization of Picking Task

Figure 2. A relationship between accuracy and gate openness for picking task and sequence length n=100. The best performance is achieved for gate openness around 10%.

Figure 3. Gate openness (G) conditioned on the position asked (P). Focus (F) is the average of final attention weight set for a given step. Hence, focus sums to one and it is always lower than gate openness (because our model attends only over unique states). Result showed for sequence length n=200. The first four plots illustrate FHE model having 99.4% accuracy and 10% gate openness, while the last four are for FHE model having 97% accuracy but 5% gate openness.

Experimental Results of Pixel-by-Pixel MNIST QA Task

LSTM1	LSTM2	FHE-FIXED
97.3	98.4	99.1

Figure 4. A visualization of the gating mechanism learned using the Pixel-by-Pixel MNIST dataset. Red pixels indicate a gate opening and are overlayed on top of the digit which is white on a gray background. The digits are vectorized row-wise which explains why white pixels appear left of the red pixels.

SearchQA Question and Answering Task

MODELS	VALII	VALIDATION		TEST	
MODELS	F1	\mathbf{EM}	F1	EM	
TF-IDF MAX (DUNN ET AL., 2017)	-	13.0	-	12.7	
ASR (DUNN ET AL., 2017)	24.1	43.9	22.8	41.3	
AQA (BUCK ET AL., 2018)	47.7	40.5	45.6	38.7	
HUMAN (DUNN ET AL., 2017)	-	-	43.9	-	
LSTM1 + POINTER SOFTMAX	52.8	41.9	48.7	39.7	
LSTM2 + POINTER SOFTMAX	55.3	44.7	51.9	41.7	
OUR MODEL	56.7	49.6	53.4	46.8	
CONCURRENT WORK					
AMANDA (KUNDU & NG, 2018)	57.7	48.6	56.6	46.8	

MS MARCO Question and Answering Task

GENERATIVE MODELS		VALIDATION		TEST	
		ROUGE-L	BLEU-1	ROUGE-L	
SEQ-TO-SEQ (NGUYEN ET AL., 2016)	-	8.9	-	-	
Memory Network (Nguyen et al., 2016)	_	11.9	-	-	
ATTENTION MODEL (HIGGINS & NHO, 2017)	9.3	12.8	-	-	
LSTM1 + POINTER SOFTMAX	24.8	26.5	28	28	
LSTM2 + POINTER SOFTMAX	24.3	23.3	27	28	
OUR MODEL	27.3	26.7	30	30	
ABLATION STUDY					
OUR MODEL – DOT-PRODUCT BETWEEN QUESTION AND CONTEXT	18.5	19.3	-	-	
Our Model – pointer softmax	20.5	18.7	-	-	
Our Model – Learned Boundaries	23.5	24	-	-	

Thanks & QA