MATH H113: Honors Introduction to Abstract Algebra

2016-01-29

- Groups
- Dihedral Groups

Homework due 2016-02-05:

- Sect 1.1: 6, 12, 18, 30
- Sect 1.2: 4, 10, 14, 15

Definition: A group (G, \star) is:

- a. finite if G is a finite set;
- b. infinite if G is an infinite set;
- c. abelian (or commutative) if \star is commutative

Two more examples of groups:

- the trivial group $G = \{e\}, e \star e = e$
- For any $n \in \mathbb{Z}_{>0}$, $GL_n(\mathbb{R})$ is the group of invertible $n \times n$ matrices with entries in \mathbb{R} . The inverse in G is the matrix inverse, and the identity in G is the identity matrix I_n . This group is non-abelian (unless n = 1).

A word on notation: people usually don't write \star for the group operation. There are two choices of notation:

- a. Multiplicative notation: Write ab instead of $a \star b$, a^{-1} for the inverse of a and 1 or e for the identity element.
- b. Additive notation: Write a+b instead of $a\star b$, -a for the inverse of a and 0 for the identity element.

Also define a - b = a + (-b)

Additive notation is *only used* for abelian groups. Multiplicative notation can be used for any group.

Basic Properties of Groups

(see book for omitted proofs)

- a. A group can have only one identity element (proved already)
- b. Every $a \in G$ has only one inverse and ab = e or $ba = e \implies b = a^{-1}$.
- c. $(a^{-1})^{-1} = a$
- d. $(ab)^{-1} = b^{-1}a^{-1}$ $(ab)b^{-1}a^{-1} = abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$
- e. $e^{-1} = e$ $e^{-1} = e^{-1}e = e$
- f. Generalized associative law:

in a product of n elements $(n \in \mathbb{Z})$, you get the same answer no matter what order the operations are performed in.

example: (ab)(cd) = ((ab)c)d = (a(bc))d

The proof is by strong induction on n.

Proposition: Let G be a group, and let $a, b, c \in G$.

- a. (Cancellation law): if ac = bc then a = b.
- b. (Another cancellation law): if ca = cb then a = b.
- c. The equation ax = b has a unique solution $x \in G$. $x = a^{-1}b$.
- d. Same for the equation xa = b, $x = ba^{-1}$ (not necessarily the same solution).

Proof:

- a. $ac = bc \implies acc^{-1} = bcc^{-1} \implies ae = be \implies a = b$
- b. Similar
- c. $ax = b \iff a^{-1}ax = a^{-1}b \iff ex = a^{-1}b \iff x = a^{-1}b$ Check by pluggin in: $a(a^{-1}b) = b$
- d. Similar (be careful about lack of commutativity)

Definition: For a group G, an element $x \in G$, and $n \in \mathbb{Z}$

$$x^{n} = \begin{cases} xx \dots x \text{ (n times)} & n > 0 \\ e & n = 0 \\ (x^{-1})^{-n} & n < 0 \end{cases}$$

In additive notation, this is written nx.

The usual rules for exponentials are satisfied:

- $x^n x^m = x^{n+m} \forall n, m \in \mathbb{Z}$
- $(x^n)^m = x^{nm} \forall n, m \in \mathbb{Z}$

Definition: The order of an element $x \in G$ is the smallest positive integer n such that $x^n = e$, or ∞ if there is no such n. It is written |x|.

Examples:

- In any group, $|x| = 1 \iff x = e$
- In \mathbb{R} , all non-zero elements have infinite order
- In $(\mathbb{Z}/5\mathbb{Z})^{\times}$ |4| = 2 because $4^2 = 16 \equiv 1 \pmod{5}$, but |3| = 4 because $3^2 = 9 \in \bar{4}, 3^3 = 27 \in \bar{2}, 3^4 = 81 \in \bar{1}$.

Definition: The cardinality of a set A is the number of elements of A if A is finite, or ∞ if A is infinite. (In this class, we won't distinguish between countably infinite and uncountable cardinalities). This is written |A| or, sometimes, #A

Definition: The *order* of a group G is the cardinality of its set of elements, also written |G| (or #G).

With a group, you can write its *multiplication table*. For example:

	Ō	Ī	$\bar{2}$	$\bar{3}$
$\overline{0}$	Ō	Ī	$\bar{2}$	$ \overline{\frac{3}{0}} $ $ \overline{\frac{1}{2}} $
$\bar{1}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{0}$
$ \begin{array}{c} \bar{0} \\ \bar{1} \\ \bar{2} \\ \bar{3} \end{array} $	$egin{array}{c} ar{0} \\ ar{1} \\ ar{2} \\ ar{3} \end{array}$	$ \bar{1} $ $ \bar{2} $ $ \bar{3} $ $ \bar{0} $		$\bar{1}$
$\bar{3}$	$\bar{3}$	$\bar{0}$	$\bar{1}$	$\bar{2}$

 $\mathbb{Z}/4\mathbb{Z}$ is abelian

Dihedral Groups

Definition: Let $n \in \mathbb{Z}$, $n \geq 3$. The dihedral group of order 2n is the group D_{2n} (som authors write it as D_n) is the set of symmetries of a regular n-gon. This is the set of permutations (= bijections) of the set of vertices of the n-gon that can be obtained by rigid motion of \mathbb{R}^3 .

See figure 1 on paper D_{16} has 16 elements

We can think of two elements:

r= rotation clockwise by $\frac{2\pi}{n}$ radians s= flip about the line through vertex position 1 and the center

n	1	2	3	4	5	6	7	8
\overline{r}	8	1	2	3	4	5	6	7
s	1	8	7	6	5	4	3	2
rs								
sr^{-1}								

headers are numbers on blackboard, below are numbers on the cardboard (if the cardboard starts in "standard position")