

Análisis Avanzado - Compacidad 2

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Definición

Sea (E, d) un espacio métrico. Decimos que un subconjunto K de E es compacto si toda sucesión en K tiene una subsucesión convergente en K.

La el lin de la sulmu.

lor mi

Definición

Sea (E, d) un espacio métrico. Decimos que un subconjunto K de E es compacto si toda sucesión en K tiene una subsucesión convergente en K.

Proposición

Sea $K \subset E$ compacto. Entonces K es cerrado y acotado.

Definición

Sea (E,d) un espacio métrico. Decimos que un subconjunto K de E es compacto si toda sucesión en K tiene una subsucesión convergente en K.

Proposición

Sea $K \subset E$ compacto. Entonces K es cerrado y acotado.

Teorema de Heine-Borel

Un conjunto $K \subseteq \mathbb{R}^m$ es compacto si y sólo si es cerrado y acotado.

Definición

Sea (E, d) un espacio métrico. Decimos que un subconjunto K de E es compacto si toda sucesión en K tiene una subsucesión convergente en K.

Proposición

Sea $K \subset E$ compacto. Entonces K es cerrado y acotado.

Teorema de Heine-Borel

Un conjunto $K \subseteq \mathbb{R}^m$ es compacto si y sólo si es cerrado y acotado.

Observación

Un conjunto infinito con la métrica discreta es cerrado y acotado pero no compacto.

Eiemplo

En C([0,1]), cerrado y acotado no implica compacto.

NO ES COMPACTO (IDEA, SIN CUENTAS):

$$\mathcal{A}_{m}$$
 \mathcal{C} \mathcal{A} $\mathcal{A$

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo $A \subset K$ infinito tiene un punto de acumulación en K.

=>) ACK INFWISO. =>] (yn/m CA suesión de elementos distinto de A. Como (ym) CACK =)] (yna/ sulsue. com. a y c K. (yng/ CA, son todos distritos, yng =7 y s pto de ae. de A

(=) q v q k compacto. [(Mm)n CK. A = { Mm: MG/W}. . Si A & FINITO, 3 algun valor de la me que se rejute so veces: 3x GA/ Mmq = x V2. 7 (Harlech ____ =7 (Mma/2 la mline. CONV. · Si A & INFINITO S 7 N EK pto de al-de A =) f (Mni/2 mbrue. que converge a NEK.

Análisis Avanzado D. Carando - V. Paternostro

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo cubrimiento de K por abiertos admite un subcubrimiento finito.

Sea (E,d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo cubrimiento de K por abiertos admite un subcubrimiento finito.

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo cubrimiento de K por abiertos admite un subcubrimiento finito.

Definición

Un cubrimiento por abiertos de K es una familia $(V_i)_{i \in I}$ de subconjuntos abiertos de E tal que

$$K \subset \bigcup_{i \in I} V_i$$
.

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo cubrimiento de K por abiertos admite un subcubrimiento finito.

Definición

Un cubrimiento por abiertos de K es una familia $(V_i)_{i \in I}$ de subconjuntos abiertos de E tal que

$$K \subset \bigcup_{i \in I} V_i$$
.

Definición

Cuando existen $i_1, i_2, \ldots, i_N \in I$ tales que

$$K \subset V_{i_1} \cup \cdots \cup V_{i_N}$$

decimos que $(V_{i_k})_{k=1}^N$ es un subcubrimiento finito de $(V_i)_{i\in I}$.

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo <u>cubr</u>imiento de K por abiertos admite un subcubrimiento finito.

[0,1] = U (1/m,1) U (-8,8) U (1-8,148) > CUB [011] - U (1/m, 1) U (-8,5) U (-8,1+\$) 16 M 2mo DM-FCEN-UBA

Sea (E, d) un e.m.. Entonces $K \subset E$ es compacto si y sólo si todo cubrimiento de K por abiertos admite un subcubrimiento finito.

$$\begin{array}{c|c}
SUP. QUE NO: dado x \in K, & & & & \\
B(x_1, n_x) & & & & \\
K \subseteq U & B(x_1, n_x) & = \\
X \in K & & & \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2, n_x) & = \\
K \subset U & B(x_2,$$

D. Carando - V. Paternostro

Continuidad y compacidad

Tooroma

Sean (E,d), (E',d') e.m. y sea $f:E\to E'$ continua. Si $K\subset E$ es compacto, entonces f(K) es compacto en E'.

CONT MANDAN COMPACTOS EN COMPACTOS'I. TSON (MM) C P(K) P(C/M CNV. FM CK / In=f(2m) (Mm) CK = TIENT SUBSUC (Mng) Cow. a => f(Mma) => f(N) & f(K) => f(M) & f(K) => f(M) & f

Corolario

Sea $K \subseteq E$ compacto y $f: E \to \mathbb{R}$ continua. Entonces,

• f es acotada en K: existe c > 0 tal que $|f(x)| \le c$ para todo $x \in K$.

• f alcanza su máximo y su mínimo en K.

D. Carando - V. Paternostro

$$\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left\{ f(x) : x \in K \right\} \longrightarrow \int_{\mathbb{R}^{n}} \left(x_{n} \right)_{n} \in K.$$

 $K \subset \mathcal{M}_{PACFO}$, $\exists (\mathcal{H}_{MA})_n \subset \mathcal{M}$. $C = \mathcal{H}_{ACFO}$. $C = \mathcal{H}_{ACFO}$. $C = \mathcal{H}_{ACFO}$. $C = \mathcal{H}_{ACFO}$.

Sean (E,d), (E',d') e.m., y sea $f:E\to E'$. Si f es continua y Ees compacto, entonces f es uniformemente continua.

