oungsgruppe: 1 André Bl	lickensdörfer		usur 3 am 4.7.2014 Thilo Bronnenmeyer	3 Heik	e Dietl	4 Lu	kas Kla
Jbungsgruppe: 1 André Blickensdörfer 2 Name:			Matrikelnummer:			Punkte:	/ 9
llen Sie bitte Ihre Daten ein usche -1/3 P.). Sie dürfen Extra	apapier für Zwi	schenrechnun ungsfunktion	gen nutzen, aber bitte gel $G(s) = rac{s+1}{(s+4)(s+3)}$ besch	ben Sie am End	e nur dies	ses Blatt ab.	
ist die Sensitivitätsfunktion (a) $\frac{s^2+7s+12}{s^2+8s+13}$	$\operatorname{on} S(s) \equiv \frac{1}{1 + G_0}$ $(b) \square$	$\frac{s^2 + 7s + 12}{s^2 + 9s + 14}$		+12	(d)	$\frac{2(s+4)(s+3)}{s+2}$	
2. Betrachten Sie das folgen	de Nyquist Dia	gramm.					
			Nyquist Diagram				
	0.4	1		' '			
	0.3						
	0.1 - 0.1 -				-		
	o	-+		\triangleleft			
	<u>►</u> -0.1 - -0.2 -						
	-0.3				_		
	-0.4	-1 -0.8	-0.6 -0.4 -0.2	0 0.2 0.4	4		
(a)2	(b)	0.5	(c) 2		(d)	-0.5	
3. Betrachten Sie das folgen	de Nyquist Dia	gramm, in der	n der rote Kreis die Einh	eitsverstärkung	markiert.		
3. Betrachten Sie das folgen	de Nyquist Dia	gramm, in der	n der rote Kreis die Einh Nyquist Diagram	eitsverstärkung	markiert.		
3. Betrachten Sie das folgen	de Nyquist Dia	gramm, in der		eitsverstärkung	markiert.		
3. Betrachten Sie das folgen	2	gramm, in der		eitsverstärkung	markiert.		
3. Betrachten Sie das folgen	2 - 1.5 - 0.5 0.5 1	gramm, in der	Nyquist Diagram	eitsverstärkung	markiert.		
3. Betrachten Sie das folgen Das System hat die folger	2 - 1.5 - 0.5	-2 -1	Nyquist Diagram 0 1 2		markiert.		
	2 - 1.5 - 0.5	-2 -1	Nyquist Diagram 0 1 2	3 4 5	markiert.	-45.7 deg	
Das System hat die folger (a) 134.3 deg 4. Ein System hat eine Amp	is y Average of the server of	$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & \\ \hline & & & &$	Nyquist Diagram 0 1 2 Real Axis	3 4 5	(d)	-45.7 deg	olgend
Das System hat die folger	is y Average of the server of	$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & \\ \hline & & & &$	Nyquist Diagram 0 1 2 Real Axis	3 4 5	(d)	-45.7 deg	olgend

5.	5. Betrachten Sie das folgende Bode Diagramm.								
	100	-90 -135 -180 -180 -225 -270 10 ⁻¹ 10 ⁰ Frequency (rad/sec)							
	Das System hat die folgende Amplitudenreserve:								
	(a) 10 dB (b) -50 dB	(c) ☐ 50 dB (d) ☐ ∞							
6.	5. Ein LTI-System wird durch die Übertragungsfunktion $G(s) = \frac{s+1}{(s+4)(s-5)}$ beschrieben. Betrachten Sie den Regler $K(s) = \frac{s-1}{s+1}$ Was können wir über die Eingang/Ausgangs (E/A) Stabilität und die innere (I) Stabilität des geschlossenen Kreises sagen? (a)								
	(c) E/A-instabil, I-instabil	(d) E/A-instabil, I-stabil							
7.	$T(j\omega)=rac{G_0(j\omega)}{1+G_0(j\omega)}$ beschrieben. $ \begin{array}{c} 0 \\ -2 \end{array} $	rch die folgenden Sensitivitätsfunktionen $S(j\omega)=\frac{1}{1+G_0(j\omega)}$ und							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ⁰ 10 ¹ uency (rad/sec)							
	(a) Referenzsignale mit Frequenz $\omega = 10 \text{ rad/sec}$	(b) Störungen mit Frequenz $\omega=10$ rad/sec							
	(c) Störungen mit Frequenz $\omega=0.1~{\rm rad/sec}$	(d) \square Messrauschen mit Frequenz $\omega=1$ rad/sec							
8.	8. Vervollständigen Sie zu einem korrekten Satz. Das Integrier-Glied bei einem PID-Regler								
	(a) garantiert, dass der Ausgang weniger oszilliert.	(b) braucht keine Anti-Wind-Up Strategie.							
	(c) funktioniert nur mit Systemen zweiter Ordnung.	(d) hilft, bleibende Regelabweichungen zu vermeiden.							
9.	. Betrachten Sie die Systeme $G_1(s)=\frac{1}{s^2+0.04s+4}$ und $G_2(s)=\frac{1}{s^2+4s+4}$. Wir definieren die Überschwingungshöhe als Δh , die statische Verstärkung als $h(\infty)$ und die Abklingzeit als T^s . Welche der folgenden Aussagen ist wahr?								
	(a) \Box $T_1^{\rm s} < T_2^{\rm s}$ (b) \Box $T_1^{\rm s} = T_2^{\rm s}$	(c) $h_2(\infty) > h_1(\infty)$ (d) $\Delta h_1 > \Delta h_2$							
10.	Regelabweichung als $h(\infty)$ und die Abklingzeit als T^s . Welch								
	(a) $h_2(\infty) > h_1(\infty)$ (b) $T_1^s < T_2^s$	$\begin{array}{c cccc} (c) & \Delta h_1 > \Delta h_2 & & (d) & T_2^s < T_1^s \end{array}$							