Bayesian non-parametric models for machine learning

Mauricio A. Álvarez

Lecturer in Machine Learning since January 2017.

Multi-task learning with Gaussian Processes

Prior knowledge from mechanistic systems

Bioengineering applications
Deep brain stimulation
Diffusion tensor imaging

Dependencies between related processes

Latent variable/function models

- □ Consider a set of processes $\{f_d(\mathbf{x})\}_{d=1}^D$, with $\mathbf{x} \in \mathcal{X}$.
- Each function can be expressed as

$$f_d(\mathbf{x}) = \int_{\mathcal{X}} G_d(\mathbf{x} - \mathbf{z}) u(\mathbf{z}) d\mathbf{z} = G_d(\mathbf{x}) * u(\mathbf{x}).$$

- □ If $u(\mathbf{x})$ is a GP, then $f_d(\mathbf{x})$ is also a GP.
- We could also include more latent processes $u_1(\mathbf{x}), u_2(\mathbf{x}), \dots, u_Q(\mathbf{x})$

$$f_d(\mathbf{x}) = \sum_{q=1}^{Q} \int_{\mathcal{X}} G_{d,q}(\mathbf{x} - \mathbf{z}) u_q(\mathbf{z}) d\mathbf{z}.$$

Example: Predicting tide height

Extensions

Hierarchical multi-task learning.

Semi-supervised multi-task learning.

Multi-resolution multi-task learning.

Model selection with the Indian Buffet Process.

Multi-task learning with Gaussian Processes

Prior knowledge from mechanistic systems

Bioengineering applications

Deep brain stimulation Diffusion tensor imaging

Green's functions

 \Box As we saw before, we can express processes $f_d(\mathbf{x})$ using

$$f_d(\mathbf{x}) = \int_{\mathcal{X}} G_d(\mathbf{x} - \mathbf{z}) u(\mathbf{z}) d\mathbf{z}$$

□ Function $G_d(\mathbf{x} - \mathbf{z})$ might be related to the so called Green's function of a dynamical system.

■ We can encode mechanistic properties in data-driven models.

A second order dynamical system can be described by

$$mass_d rac{\mathrm{d}^2 f_d(t)}{\mathrm{d}t^2} + damper_d rac{\mathrm{d} f_d(t)}{\mathrm{d}t} + spring_d f_d(t) = u(t).$$

There is a Green's function associated to this equation.

We can compute things like p(u|f) (Bayesian inverse problems) or $p(f^*|f)$ (predictive modeling).

Human motion description

Walking movement with missing poses

Frames have been filled with plausible poses

Semi-parametric LFM: HMM + LFM

- Motor primitive representation: Latent Force Models (LFM).
- Motor primitives sequential dynamics: Hidden Markov Models (HMM).

Synthetic example

The correct hidden state was recovered with a success rate of 95% failing only in 10 out of 200 validation segments (10/20 trajectories for validation).

Multi-task learning with Gaussian Processes

Prior knowledge from mechanistic systems

Bioengineering applications

Deep brain stimulation Diffusion tensor imaging

Multi-task learning with Gaussian Processes

Prior knowledge from mechanistic systems

Bioengineering applications Deep brain stimulation Diffusion tensor imaging

Deep Brain Stimulation for Parkinson's patients

Deep Brain Stimulation

- Voltage Amplitude.
- Pulse width.
- Contacts: cathode, anode or switched-off.

Volume of tissue activated

VTA estimation - Gold standard

Machine learning challenges

Multi-task learning with Gaussian Processes

Prior knowledge from mechanistic systems

Bioengineering applications
Deep brain stimulation
Diffusion tensor imaging

Resolution enhancement for diffusion tensor imaging

Real tensor field (left). Enhanced tensor field (right).

High-order tensor field interpolation

Examples of HOT fields: (left) rank-4; (right) rank-6