Cálculo de tabla de reenvío

- Cada enrutador mantiene una tabla de enrutamiento (o de reenvío) indizada por cada enrutador en la subred.
 - ☐ Cada entrada comprende: la línea preferida de salida hacia ese destino y una estimación del tiempo o distancia a ese destino.
- A partir de su tabla de enrutamiento un enrutador E puede obtener un vector de distancia que contiene una lista de pares <destino, retardo estimado>
- El retardo de un enrutador a un vecino suyo, puede medirlo con
 - paquetes de ECO que el receptor simplemente marca con la hora y los regresa tan rápido como puede.

- Cada t mseg, cada enrutador envía a todos sus vecinos un vector de distancia y también recibe un vector de distancia de cada vecino.
- Un poco de notación:
 - \square El vector de distancia del enrutador X se denota con VD_X .
 - \square VD_X es una función: VD_X (i) es la 'distancia estimada' para llegar al enrutador i desde X.
 - \square Si X vecino de E, el retardo de E a X se denota con $R_{E,X}$.
 - > se usa paquete ECO para obtenerlo.
- Entonces la distancia estimada desde E enrutador a i a través de X es:

$$R_{E,X} + VD_X(i)$$
.

- Tengo estimación $R_{E, Xn} + VD_{Xn}(i)$ de camino más corto de E a i que pasa por Xn, para todo n en $\{1,...,4\}$.
- ¿cuál es la mejor de esas estimaciones?
- Aquella que tiene el menor valor en $\{R_{E, X1} + VD_{X1}(i), R_{E, X2} + VD_{X2}(i), R_{E, X3} + VD_{X3}(i), R_{E, X4} + VD_{X4}(i)\}$
- El vecino de *E* con la mejor de esas estimaciones conviene que sea la línea de salida a usar desde E para ir a i.

- El enrutador *E* estima la **distancia** desde *E* al enrutador de destino *i* de la siguiente manera:
 - $d(E, i) = min\{R_{E,X} + VD_X(i) \mid X \text{ vecino de } E\}$
- El **mejor vecino** para ir de *E* a *i* se define como:
 - $MV(E, i) = elegir \{V : R_{E,V} + VD_{V}(i) = d(E, i)\}.$
 - elegir elige un elemento de un conjunto.
- ¿Cómo se actualiza tabla de enrutamiento de E?
 - E recibió de todo vecino X suyo: VD_X y $R_{E,X}$
 - La tabla de enrutamiento de E en la fila del enrutador de destino i va a tener los valores: d(E, i) y MV(E, i).
 - Observar que la vieja tabla de enrutamiento no se usa en este cálculo.

Se tienen vectores VD_A , VD_I , VD_H y VD_K . La última tabla es la de enrutamiento De J.

(a) Una subred. (b) Input de A, I, H, K, y la nueva tabla de reenvío para J.

- Evaluación del AEVD
- Reacciona con rapidez a las buenas noticias, pero con lentitud ante las malas.

- Considere un enrutador cuya mejor ruta al destino X es larga. Si en el siguiente intercambio el vecino A informa repentinamente un retardo corto a X,
 - \square el enrutador simplemente se conmuta a modo de usar la línea a A para enviar tráfico hasta X.
- Supongamos que la métrica de retardo es el número de saltos.
 - ☐ Las buenas noticias se difunden a razón de un salto por intercambio.
 - ☐ En una subred cuya ruta mayor tiene una longitud de N saltos, en un lapso de N intercambios todo el mundo sabrá sobre las líneas y enrutadores recientemente revividos.

A volvió a la vida

Good news of a path to *A* spreads quickly

A se cayó

Bad news of no path to *A* is learned slowly

- La razón de porqué las malas noticias viajan con lentitud es: ningún enrutador jamás tiene un valor mayor en más de una unidad que el mínimo de todos sus vecinos.
 - ☐ Gradualmente todos los enrutadores elevan cuentas hacia el infinito, pero el número de intercambios requeridos depende del valor numérico usado para el infinito.
 - Si la métrica usada es el número de saltos, es prudente hacer que el infinito sea igual a la ruta más larga más 1.

- Si la métrica es el retardo de tiempo no hay un límite superior bien definido,
 - se necesita un valor alto para evitar que una ruta con un retardo grande sea tratada como si estuviera desactivada.
- Este es el problema de la cuenta hasta el infinito.
 - ☐ Se han hecho varios intentos para resolverlo, pero ninguno funciona bien en general.
 - \square La esencia del problema consiste en que cuando X indica $VD_X(i)$ a E, E no tiene forma de saber si él destino i está en alguna ruta en funcionamiento.