Series Solutions n'ear au Ordinary Point

Definition: Circh a differential equation of the form y'' + p(x) y' + Q(x) y = 0 we say that $x = x_0$ is an ordinary point of p(x) and p(x) are directiable at p(x) otherwise we say p(x) is a singular point.

Note: If P(x) and P(x) one polynomials, exponential fuctions, or sine (coince fuctions then every point is an ordinary point.

Ex y" + (ux) y = 0 has a singular point at x=0.

 E_{K} $y'' + \frac{2x}{x^{2}-1}y' + \frac{b}{x^{2}-1}y = 0$ has singular points at $k=\pm 1$.

Theorem: If $x=x_0$ is an ordinary point of an ODE, then we can find two trearly independent power series solutions centered at $x=x_0$ of the form $\sum_{i=0}^{\infty} C_i(x-x_0)^i$. The series will converge as an interval containing the series will converge as an interval containing $|x-x_0| < \mathcal{R}$, where \mathcal{R} is the distance from x_0 to the closest singular point.

Note: If the two solutions found are y, and yz. then
The general solution is $y = c_0 y_1 + c_1 y_2$.

Ex. Find a series solution of y'' + y = 0. Every point is an ordinary point, so let $y = \sum_{n=0}^{\infty} c_n x^n ... \otimes (\text{choosing } x_0 = 0).$

$$\sum_{k=2}^{\infty} V(k-k)C_{k}X_{k-2} + \sum_{k=0}^{\infty} C_{k}X_{k} = 0$$

This is our recurrence relation.

$$- > C_2 = \frac{-C_0}{2} \text{ and } C_3 = \frac{-C_1}{6}$$

Ex First a series solution of
$$y'' - xy = 0$$
.
Every point is an ordinary point, so we let
$$y = \sum_{k=0}^{\infty} C_k x^k$$

Les substituting we get

$$\sum_{k=2}^{\infty} \lambda(\lambda-1) C_{k} X^{k-2} - \sum_{k=0}^{\infty} C_{k} X^{k+1} = 0$$

-> \(\(\lambda \) (\(\lambda \ta \ta \) (\(\lambda \ta \) (\(\lambda \ta \) (\(\lambda \ta \) (\(\lambda \ta \) (\(\lam

Hence
$$C_0 = C_0$$

$$C_1 = C_1$$

$$C_2 = C_0$$

$$C_3 = C_0$$

$$C_3 = C_0$$

$$C_4 = C_1$$

$$C_5 = C_1$$

$$C_7 = C_1$$

$$C_8 = C_1$$

$$C_8 = C_1$$

$$C_8 = C_1$$

Thus one solution is
$$y_1 = C_0 \left(1 + \frac{x^3}{6} + \frac{x^6}{180} + \dots \right)$$
and another is
$$y_2 = C_1 \left(x + \frac{x^4}{12} + \frac{x^7}{504} + \dots \right)$$

So the general solution is

$$y = C_0 \left(1 + \frac{x^3}{5} + \frac{x^6}{180} + \dots \right) + C_r \left(x + \frac{x^4}{12} + \frac{x^7}{504} + \dots \right)$$

Ex Fig a series solution of $y'' + x^2y = 0$.

Every point is an ordinary point, so we let

 $y = \sum_{r=0}^{\infty} C_r x^r$
 $y'' = \sum_{r=0}^{\infty} A_r C_r x^{r-2}$
 $y''' = \sum_{r=0}^{\infty} A_r C_r x^{r-2}$

So substituting we get
$$\sum_{\lambda=2}^{\infty} \lambda(\lambda-1) C_{\lambda} \times \lambda^{-2} + \sum_{\lambda=2}^{\infty} C_{\lambda} \times \lambda^{+2} = 0$$

$$\sum_{\lambda=2}^{\infty} (\lambda+2)(\lambda+1) C_{\lambda+2} \times^{\lambda} + \sum_{\lambda=2}^{\infty} C_{\lambda} \times^{\lambda} = 0$$

$$C_{1} = 0$$
, $C_{3} = 0$, and $C_{1+2} = -\frac{C_{1-2}}{(1+2)(1+1)}$ $A = .2$, 3 , 4 , ...

Thus one solution is $y_1 = C_0 \left(1 - \frac{X^4}{12} + \frac{X^8}{672} - \dots\right)$ and another solution is $y_2 = C_1 \left(X - \frac{X^5}{20} + \frac{X^9}{1440} - \dots\right)$ Thus the general solution is $y = C_0 \left(1 - \frac{X^4}{12} + \frac{X^8}{12} - \dots\right) + C_1 \left(X - \frac{X^5}{20} + \frac{X^9}{1440} - \dots\right)$

Ex Find a Series solution of $(x^2-1)y''+xy'-y=0$ Zero is an ordinary point, so let R= ZCXX -3 $A_{n} = \sum_{k=1}^{\infty} v(v-l)C^{k}X_{v-5}$ So substituting we get Ση(ν-ι) C1Xx - Ση(ν-ι) C1Xx-5 $+\sum_{k=1}^{\infty}\sqrt{c_k}x^k-\sum_{k=1}^{\infty}c_kx^k=0$ -> 5/2 (M) Cxxx - 5 (M2) (M4) Cxxxx + 5 xcxxx - 5 cxx = 0 $-2c_2-6c_3\times+5/8-c_0-5/8$

$$\begin{array}{lll}
+ \sum_{k=2}^{\infty} \left[\Lambda(\lambda-1)C_{\lambda} - (\lambda+2)(\lambda+1)C_{\lambda+2} + \Lambda C_{\lambda} - C_{\lambda} \right] \chi^{\lambda} = 0 \\
\text{Hence} & 2c_{2} - C_{0} = 0 \\
\text{and} & (-6c_{3} = 0) \\
\text{and} & \Lambda(\lambda-1)C_{\lambda} - (\lambda+2)(\lambda+1)C_{\lambda+2} + \Lambda C_{\lambda} - C_{\lambda} = 0 \\
& - 3 C_{\lambda+2} = \Lambda(\lambda-1)C_{\lambda} + \lambda C_{\lambda} - C_{\lambda} \\
& - (\lambda+2)(\lambda+1) \\
& - 3 C_{\lambda+2} = (\lambda^{2}-1)C_{\lambda} \\
& - (\lambda+2)(\lambda+1) \\
& - 3 C_{\lambda+2} = (\lambda^{2}-1)C_{\lambda} \\
& - (\lambda+2)(\lambda+1) \\
& - 3 C_{\lambda+2} = (\lambda-1)C_{\lambda} \\
& - (\lambda+2)(\lambda+1)
\end{array}$$

So
$$C_0 = C_0$$

$$C_2 = -\frac{C_0}{2}$$

$$C_3 = 0$$

$$C_4 = \frac{C_2}{4} = -\frac{C_0}{8}$$

$$C_6 = \frac{3C_4}{6} = -\frac{C_0}{128}$$

$$C_8 = \frac{5C_0}{8} = -\frac{5C_0}{128}$$

$$C_9 = 0$$

Thus one Solution is $y_1 = C_0 \left(1 - \frac{x^2}{2} - \frac{x^4}{8} - \frac{x^6}{16} - \frac{5x^8}{124} - \dots \right)$

ard the other is

92= C, X

Thus the general solution is y, + y2.