Aprendizaje Automático - Trabajo Práctico 3

Gonzalo Castiglione - 49138

May 18, 2012

Objetivo: Aplicar diversos métodos estadísticos para aprender a hacer inferencia a partir de datos experiemtales.

1 Métodos de estadística paramétrica

- 1. Resultados
 - (a) Se calculó para cada especie, su medida y su desvio estandard:

Especie Estimador		Largo Sépalo	Ancho Sépalo	Largo Pétalo	Ancho Pétalo	
Virginica	Virginica $\hat{\mu}$		2.9740	5.5520	2.0260	
	$\hat{\sigma}$	0.6232	0.3160	0.5409	0.2692	
Versicolor	olor $\hat{\mu}$ 5.9360		2.7700	4.2600	1.3260	
	$\hat{\sigma}$	0.5058	0.3075	0.4605	0.1938	
Setosa	Setosa $\hat{\mu}$ 5.0060		3.4280	1.4620	0.2460	
	$\hat{\sigma}$	0.3454	0.3715	0.1702	0.1033	

(b) Cálculo de los errores cuadráticos medios

Especie	Largo Sépalo	Ancho Sépalo	Largo Pétalo	Ancho Pétalo
Virginica	0.0081	0.0021	0.0061	0.0015
Versicolor	0.0053	0.0020	0.0044	0.0008
Setosa	0.0025	0.0029	0.0006	0.0002

(c) Intervalos de confianza para con un nivel de confianza de 0.95.

	Intervalo							
Especie	Largo Sépalo	Ancho Sépalo	Largo Pétalo	Ancho Pétalo				
Virginica	6.7687 3.0657	5.7088 2.1041	6.4073 2.8823	5.3952 1.9479				
Versicolor	6.0827 2.8592	4.3935 1.3822	5.7893 2.6808	4.1265 1.2698				
Setosa	5.1062 3.5357	1.5114 0.2760	4.9058 3.3203	1.4126 0.2160				

- 2. Se tienen 80 componentes, de las cuales 12 son defectuosas. Por ser este experimiento una secuencia de ensayos Bernoulli, repetidos n veces a probabilidad constante, se lo puede considerar como una distribución binomial.
 - (a) La proporción de componentes no defetuosos de la muestra = $\bar{x}_{nd} = \frac{80-12}{80} = 0.85$
 - i. Un estimador \hat{x} es un estimador insesgado para estimar a p si $E[\hat{x}] = p$. $E[\bar{x}] = E((\sum x_i)/n) = \frac{1}{n}E(\sum x_i) = \frac{1}{n}np = p.$ Por lo tanto este es un estimador insesgado.
 - ii. Por ser X una muestra aleatoria de variables independiente, y \hat{x} un estimador insesgado de p, se puede calcular al error cuadrático medio como

$$r[\hat{\mu}, \mu] = V(\hat{\mu}) + b_{\mu}(\hat{\mu}) = V(\hat{\mu}) = \frac{V(x_i)}{n} = \frac{\sigma^2}{n} = \frac{pq}{n} = 0.85 * (1 - 0.85)/80 = 1.59 * 10^{-3}$$

(b) Sean:

 $x_a = \text{total de formas de tomar los componentes que andan de a pares (sin importar orden)}$.

1

 $x_t = \text{toal de formas de tomar el total de componentes de a pares (sin impratar orden)}$.

Proporción de sistemas que funcionan correctamente $\frac{x_a}{x_t} = \frac{\binom{80-12}{2}}{\binom{80}{2}} = \frac{2278}{3160} = 0.72$

3. Resultaodos obtenidos:

Variables	Valor numérico
alpha	0.05
h	1
p	0.0118
ci	[0.0314, 0.2040]
df	12
sd	0.1428

Para el apha tomado, la hipótesis nula se rechaza y los científicos estan en lo cierto, hay variación entre el color de las plumas.

4. Solución

Figure 1: Peso del cerebro y peso total para cada medición en brains.txt*

(a) 1

Figure 2: Peso total en Kg Vs peso del cerebro en \mathbf{G}^{**}

^{1*}El valor del peso del cerebro de la medición 25 no se ve en la figura ya que se aleja demasiado del resto de los valores y el ajustar los ejes solo para mostrar ese valor produce que todas las demas mediciónes no puedan apreciarse correctamente.

- i. En una observación a simple vista, se puede ver que las mediciónes que se diferencian notablemente del resto son: 6, 7, 14, 15, 16 y la 25.
- ii. En el segundo gráfico, puede verse que debido a la dispersión de los datos, si aproximamos los valores por una recta, a simple vista se ve que se va a estar cometiendo un error muy grande para la mayoría de los datos. Por lo que no existe una relación lineal.
- (b) En el gráfico a continuación puede verse que graficando el log de ambas variables, los datos tienden a formar una línea mas definida.

Figure 3: Logaritmo de ambas mediciónes y la línea que mejor los aproxima

(c) La recta que mejor ajusta con los ejes x e y con la función log aplicados a ambos es: y = a * x + b. Con a = 0.496 y b = 2.55.

Para obtener la recta que ajusta a los puntos x e y sin aplicar las transformación, se debe aplicar la transformación inversa al log, es decir pow(10, n). Quedando así la curva que aproxima a los puntos como: $10^y = a*10^x + b$. Despejando por y, se obtiene $y = log(a*10^x + b)$.

Coeficientes de Regresion	$\sum res^2$	E_{cm}
0.496 - 2.55	60.99	2.34

(d) En los gráficos del punto b, se puede observar que las mediciones que estan muy fuera del común son no solo las14,15 y 25 sinó que también la 6 y la 16. Por lo que fueron removidos de la tabla de valores. El gráfico obtenido luego de ajustados los valores se muestra en la fiegura 5 del Anexo.

 $^{^{2**}}$ Se removieron los valores para los 4 valores de x mayores a 2000 ya que ocultaban la visualización de todos los demás valores

Figure 4: Logaritmo de ambas mediciónes y la línea que mejor los aproxima

5. Censo poblacional de Estados Unidos 1790 - 1990

Figure 5: Cantidad de habitantes medidas por el cendo por año

(a) De la figura puede verse que exite un patrón entre las mediciones, pero no lineal.

(b)
$$P_2(x) = p1 * z^2 + p2 * z + p3$$

 $z = \frac{x-\mu}{\sigma} = \frac{x-1890}{62.05}$
 $p1 = 2.5049e7$
 $p2 = 7.5414e7$
 $p3 = 6.1927e7$

(c)
$$P_3(x) = p1 * z^3 + p2 * z^2 + p3 * z + p4$$

 $p1 = 7.7279e5$
 $p2 = 2.5049e7$
 $p3 = 7.4093e7$
 $p4 = 6.1927e7$

Figure 6: Cantidad de habitantes por cada año

- (d) A partir de los residuos generados por cada polinomio, puede verse que el polinomio de grado 3 es ligeramente menor, por lo que es el que mejor representaría a esta muestra.
- (e) De acuerdo a cada polinomio,

$$P_2(2000) = 2.74e8$$

$$P_3(2000) = 2.76e8$$

Sabiendo que el valor real para ese año fue 281421906 (2.8e8). Por haberle acertado con menor grado de error, el polinomio de grado 3 es el que mejor aproxima.

6. Estimadores de maxima verosimilitud

Especie	Vector de medias [largo S., ancho S., largo P., ancho P.]	μ	σ
Virginica	[6.5880, 2.9740, 5.5520, 2.0260]	4.2850	3.4327
Versicolor	[5.9360, 2.7700, 4.2600, 1.3260]	3.5730	3.5730
$\operatorname{Set}\operatorname{osa}$	[5.0060, 3.4280, 1.4620, 0.2460]	2.5355	3.3235

Especie	N	σ			
	0.4043	0.0938	0.3033	0.0491	
Virgínica	0.0938	0.1040	0.0714	0.0476	0.8695
Viiginica	0.3033	0.0714	0.3046	0.0488	0.0099
	0.0491	0.0476	0.0488	0.0754	
	0.2664	0.0852	0.1829	0.0558	
Versicolor	0.0852	0.0985	0.0827	0.0412	0.6150
Versicolor	0.1829	0.0827	0.2208	0.0731	
	0.0558	0.0412	0.0731	0.0391	
	0.1242	0.0992	0.0164	0.0103	
Setosa	0.0992	0.1437	0.0117	0.0093	0.3064
Delosa	0.0164	0.0117	0.0302	0.0061	0.5004
	0.0103	0.0093	0.0061	0.0111	

7. Matriz obtenida:

(a)	1	0.2286	-0.8241	-0.2454	
	0.2286	1	-0.1392	-0.9730	
	-0.8241	-0.1392	1	0.0295	
	-0.2454	-0.9730	0.0295	1	

Cada x_{ij} representa la correlación de la cantidad de calor por ingrediente i por gramo de cemento con relacion al elemento j. Cuanto mas cercano em módulo a 1 es, mas se correlacionan.

(b) selección hacia adelante

	R^2	F			D^2	E.)			
x_1	0.5339	12.6025			0.0705	170,0070			R^2	F
x_2	0.6663	21.9606	\Longrightarrow	x_4x_1	0.9725	176.6270		$x_1 x_4 x_2$	0.9823	166.8317
x_3	0.2859	4.4034		x_4x_2	0.6801	10.6280		$x_1 x_4 x_3$	0.9813	157.2658
x_4	0.6745	22.7985	j l	x_4x_3	0.9353	72.2674	J '			

8. Proporción de la varianza = $\frac{\lambda_1+\ldots+\lambda_k}{\lambda_1+\ldots+\lambda_p}$ para cada una de las variables:

variable: 0.8660
 variables: 0.9789
 variables: 0.9996
 variables: 1

Del análisis de los autovalores de la matriz de covarianza se puede ver que solamente con 2 componentes, es posible representar mas del 90% de la varianza.

2 Anexo

```
1. Lirios Fisher
   (a) Código
          %range toma los valores 0:50; 51:100 y 101:150
          data=meas(range,:);
          n=size(data,1);
          uHat=mean(data);
          sHat=(n-1)*std(range)/n;
   (b) Código
          ecm=std(data).^2;
          ecm=ecm/n;
   (c) Código
          mu=mean(data);
          sigma=std(data);
          p=0.05/2;
          zAlpha=tinv(p,n-1) % T student
          aux=zAlpha.*sigma/sqrt(n);
          interval=[mu-aux,mu+aux];
2. -
3. Carpinteros escapularios
       birds=[
          ...meditions here...
       ];
       alpha=0.05};
       [h,p,ci,stats]=ttest(birds(:,2),birds(:,3),alpha);
4. Masa croporal vs Masa cerebral
   (a) Código
          load brains.txt;
          x = 1:28;
          y = brains(:,1);
          z = brains(:,2);
          clf;
          hold on;
          plot(x, y, '*b;Peso Promedio en Kg;')
          plot(x, z, '*r;Peso Cerebro Promedio en G;')
          print('-dpng', './TotalWeightVsBrainWeight.png')
   (b) Código
          load brains.txt
          regstats(brains(:,1), brains(:,2),'linear')
5. Censo
   (a) .
          load population.txt;
          x = population(:, 1);
          y = population(:, 2);
          plot(x,y, '*')
   (b) .
```

```
load population.txt;
c2=polyfit(cdate,pop,2)
poli2=polyval(c2,cdate);
```

6. Lirios Fisher

```
meanVector=mean(data)
n=size(meanVector,2);
mu=mean(meanVector)
sigma= sum((meanVector-ones(1,n)*mu).^2)/n
% segunda parte
cm=cov(data)
sigma=cm(1,1)+cm(2,2)+cm(3,3)+cm(4,4)*(n-1)/n
```

7. Evolución de las calorías por gramo de cemento

[r] = corrcoef(ingredients)