The Rossby Adjustment Problem, Rossby Radius
linearized SWE on an f-plane summary parcel motion
high frequency: non-rotating waves $\omega = f$: inential oscillations $\omega = 0$: steady quostrophic flow \Rightarrow
Since the equations are linear we may superimpose (add) solutions. Recall the expression from John x- xmm y
$\Rightarrow \left(\zeta_{3} - \frac{f}{H}\eta\right)_{t} = 0 \Rightarrow \left[\zeta_{3} - \frac{f}{H}\eta\right] = \left(\zeta_{3} - \frac{f}{H}\eta\right)\Big _{t=0} \tag{*}$
a linearized form of conservation of "potential vorticity" initial fluid column Squash it and 9<0 Stretch it and 9>0
and G<0 and G>0 and G>0 and G>0 cyclonic*

potential vorticity is conserved

The math is easy:

$$G - \frac{f}{H} \eta = \frac{f}{H} \eta_0 sgn(x)$$
 (**)

and
$$G = Vx - yy = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \eta_x \right) = \frac{\partial}{\partial x} \eta_{xx}$$

thus (**) is
$$\eta_{xx} - \frac{f^2}{gH} \eta = \frac{f^4}{gH} \eta_0 sgn(x)$$

where
$$a = \sqrt{9H}$$
 the "Rosrby radius of deformation" i?

-> how far a non rotating wave gets in time 1/f

Solution to (t) eq. to 10 = 9 guess
$$\eta = Ae^{\frac{1}{2}a} + Be^{\frac{1}{2}a}$$
(I) Humogeneous solution $\eta = a - a - a = 0$ = 9 guess $\eta = Ae^{\frac{1}{2}a} + Be^{\frac{1}{2}a}$

sum must satisfy boundary conditions: (2) $\eta(0)=0$, $\eta(x\to00)=-\eta_0$

$$= M_{\perp} + M_{\mp} = M = C + Be^{-1/a} = -M_0 + M_0 e^{-1/a}$$

full solution is

 $M = \begin{cases} -1 + e^{-x/a}, & x > 0 \\ 1 - e^{x/a}, & x < 0 \end{cases}$

M A A A

only slumped a distance
"a" before quostrophic
balance was attained

in further changes

(except by friction)

for x 10 fluid columns squashed

=) G be comes negative

2

but for x >0 fluid columns are stretched => & maritime to

=> 9 postive The

• Only a little of the original (mfinite)
potential energy of the M field was extracted

(⅓ → KE, ⅓ goes to radiated Poincaré Waves)