BANGALORE HOUSE PRICE PREDICTION

A data science project from scratch

Heba Mohamed

PROBLEM STAMENT

What are the things that a potential home buyer considers before purchasing a house?

The location, the size of the property, vicinity to offices, schools, parks, restaurants, hospitals or the stereotypical white picket fence?

What about the most important factor — the price?

PROPOSED SOLUTION

I provided a study methodology that employs a range of algorithms (Logistic Regression, K-Folds, and DNN) to assess the dataset's most vital parts or attributes and compare their accuracy.

LOAD DATA

DATA CLEANING

DATA VISUALIZATION

DATA PREPARING

DATA MODELING

- Building
- Training
- Evaluating
- Testing

DATASET BEFORE CLEANING

Shape = (13320, 9)

```
1 df = pd.read_csv('Bengaluru_House_Data.csv')
2 df.head()
```

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.07
1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.00
2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.00
3	Super built-up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.00
4	Super built-up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.00

Handle null values

CLEANING

Feature Engineering

- Add new feature (bedrooms)
- Fix (total_sqft) feature
- Add new feature called (price_per_sqft)

Dimensionality reduction for categorical feature (location)

Outlier removal

- Outlier removal from (price_per_sqft) feature according to business logic
- Outlier removal from (price_per_sqft) feature according to std and mean
- Outlier removal from (bedroom) feature according to business logic
- Outlier removal from (bath) feature

DATASET AFTER CLEANING

Shape = (7268, 244)

	1st Block Jayanagar			2nd Stage Nagarbhavi	5th Block Hbr Layout	JP	6th Phase JP Nagar	JP	JP	JP	 Vijayanagar	Vishveshwarya Layout	Vishwapriya Layout	Vittasandra	Whitefield
0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
3	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0

Scatter chart for (bedroom) feature before and after outliers' removal

Relation between Total price vs Number of bedrooms and bathrooms.

Trend chart for Total square feet vs Total price.

Searching for Best Regression Model Using K-Fold Cross Validation

- Shuffle the dataset randomly with test size= [0.3,0.2,0.15].
- Split the dataset into k-folds groups folds=[2,3,4,5,6,7,8,9,10].

- Best Accuracy = 83.0%
- Test size = 30.0%
- Folds = 8
- The accuracy of the model is pretty good, but I will improve it using deep learning technique.

Deep Learning Model

Hyperparameter	values
Test size	20%
Number of hidden layers	10
Hidden layers size	[100,90,80,70,60,50,40,30,20,10]
Activation function	ReLU
Optimizer	Adam
learning rate	0.0001
Number of epochs	500
Callbacks	Model Check Point
Metric	Mean Square Error

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 110)	26840
dense_1 (Dense)	(None, 100)	11100
dense_2 (Dense)	(None, 90)	9090
dense_3 (Dense)	(None, 80)	7280
dense_4 (Dense)	(None, 70)	5670
dense_5 (Dense)	(None, 60)	4260
dense_6 (Dense)	(None, 50)	3050
dense_7 (Dense)	(None, 40)	2040
dense_8 (Dense)	(None, 30)	1230
dense_9 (Dense)	(None, 20)	620
dense_10 (Dense)	(None, 10)	210
dense_11 (Dense)	(None, 1)	11
Tabal		=========

Total params: 71,401 Trainable params: 71,401 Non-trainable params: 0 In [77]: 1 n_epochs = 500
2 hist N_model fit(

Training Deep Learning Model

with 500 epochs

```
Epoch 2/500
Epoch 3/500
Epoch 4/500
Epoch 5/500
Epoch 6/500
Epoch 7/500
Epoch 8/500
Epoch 9/500
Epoch 10/500
Epoch 11/500
Epoch 12/500
```

Deep learning history

(training and validation losses vs number of epochs) function.

The best model was preserved during training as a consequence of the use of the model check point API, I utilized it for testing and documenting the final findings.

el.evaluate(X_train, l.evaluate(X_test, y_ 0.2f%%, Test Accuracy

Accuracy: 91.20%

Deep learning Accuracy

Model	Accuracy
Multivariate Regression	77.17%
K-Fold Regression	83.0%
Deep Learning	91.20%

Conclusion

Therefore, it is clear that the third model that was built using deep learning is the most efficient among the three, with an accuracy of 91.20%.