(Machine) Learning Parameter Regions

```
José Luis Montiel-Olea (Columbia)
James Nesbit (NYU)
June 21<sup>st</sup>, 2018
```

Introduction

- Recent gainful connection between Machine Learning & Econometrics
 - "Machine learning is a field that develops algorithms designed to be applied to datasets, with the main areas of focus being prediction (regression), classification, and clustering or grouping tasks" (Athey 2018)
- We use off-the-shelf ML concepts to study computational issues arising in some econometric models
- Motivating example is SVARs, but the scope is more general
 - reporting an estimator of an identified set
 - confidence set formed via inverting test statistics
 - highest posterior density credible set for a vector-valued parameter

A Motivating Example

- How does the price level respond to a monetary policy contraction?
- Model + US data + theory restrict responses to a set
- Difficult to describe this set analytically, so use 'random sampling' to generate an approximation

A Motivating Example

- How does the price level respond to a monetary policy contraction?
- Model + US data + theory restrict responses to a set
- Difficult to describe this set analytically, so use 'random sampling' to generate an approximation

This Paper

How many draws are needed to 'learn' these types of 'parameter regions'?

This Paper

- How many draws are needed to 'learn' these types of 'parameter regions'?
- 'Random sampling approximations' are a 'supervised machine learning' problems
 - Analogous to sampling pixels of an image to recognize it
- This analogy allows us to
 - Build a framework of 'learning' to discipline the way we think about the accuracy of a random sampling approximation
 - 2. Characterize what can and cannot be learned
 - 3. Provide concrete guidance on the number of random draws that suffice to guarantee we learn a parameter region

Learning Framework

Abstract Definition of the Problem

- ullet The parameters of interest are of the form $\lambda(heta) \in \mathbb{R}^d$
 - $\theta \in \mathbb{R}^p$, parameters of a statistical model
 - ullet λ function of interest; e.g., IRFs, subvector, identity
- $\lambda(\theta)$ belongs to a set, denoted $\lambda(S)$ the parameter region of interest
 - $S \subseteq \mathbb{R}^p$
- Easy to check if $\theta \in S$: there is a labeling function $I:I(\theta)=1\{\theta \in S\}$
- Difficult to describe $\lambda(S)$ analytically. All we know is $\lambda(S) \in \Lambda$

Sampling at Random: Supervised Learning Problem

- In order to evaluate $\lambda(S)$, use random sampling
 - Fix distribution P, generate i.i.d. $(\theta_1, \ldots, \theta_M)$
 - Use the draws and $I(\cdot)$ to report some set $\widehat{\lambda}_M$
- In supervised learning terminology (Mohri 2012)
 - $(\lambda(\theta_1), \ldots, \lambda(\theta_M))$ are inputs \sim i.i.d. according to P
 - $(I(\theta_1), \dots, I(\theta_M))$ are binary *labels* generated by $I(\theta) = \mathbf{1}\{\theta \in S\}$
 - $\widehat{\lambda}_M$ is a learning algorithm: a map from inputs and labels to Λ

Learning Criterion

Define misclassification error

$$\mathcal{L}(\widehat{\lambda}_M;\lambda(S),P) \equiv P\left(\lambda(S)\triangle\widehat{\lambda}_M\right),$$

 \triangle is the symmetric set difference

DEFINITION 1: A parameter region $\lambda(S) \in \Lambda$ is said to be learnable if there exists an algorithm $\widehat{\lambda}_M$ and a number of draws $m(\epsilon, \delta)$ such that for any ϵ - δ :

$$P\left(\mathcal{L}(\widehat{\lambda}_M; \boldsymbol{\lambda}, P) < \epsilon\right) \ge 1 - \delta,$$

for all P on Θ and for any $\lambda \in \Lambda$; provided $M \geq m(\epsilon, \delta)$. Valiant, L.G. (1984): A Theory of the Learnable. PAC-Learning.

Unpacking Learning

 Suppose there exists a journal referee that can compute misclassification events:

$$\lambda \in \lambda(S) \triangle \widehat{\lambda}_M$$

• The journal referee can *P*-compute how often misclassification happens:

$$\mathcal{L}(\widehat{\lambda}_M; \lambda(S), P) \equiv P\left(\lambda(S) \triangle \widehat{\lambda}_M\right),$$

• An approximation is ϵ -good when

$$\mathcal{L}(\widehat{\lambda}_M; \lambda(S), P) < \epsilon$$

7

Unpacking Learning

- The journal referee is worried
 - 1. That due to a insufficient number of draws, the quality of approximation may be poor too often
 - 2. About the distribution the econometrician uses
- To protect against this, the oracle requires

$$P\left(\mathcal{L}(\widehat{\lambda}_M;\lambda(S),P)<\epsilon\right)\geq 1-\delta$$

Uniformly over all probability distributions and shapes of $\lambda(S)$.

What Can and Cannot be Learned

Learning \iff VC Dimension of \land is Finite

• THEOREM 1: $\lambda(S) \in \Lambda$ is learnable \iff VC-dim(Λ) $< \infty$. PROOF: Blumer, Ehrenfeucht, Haussler, Warmuth (1989), Learnability and the VC dimension; Theorem 2.1

- Assumptions to simplify econometric problems insufficient to learn (via random sampling)
 - Convex sets have infinite VC dimension ⇒ cannot be learned
- If $\lambda(S)$ can't live in too complex of a class: what can we learn?

'Tightest Bands' for Parameter Regions

• Define the 'tightest band' containing $\lambda(S)$ as follows:

$$[\lambda(S)] \equiv \underset{j=1}{\overset{d}{\times}} \left[\inf_{\theta \in S} \lambda_j(\theta), \sup_{\theta \in S} \lambda_j(\theta) \right]$$

$$(\lambda_i \text{ is the } j^{\text{th}} \text{ coordinate of } \lambda \in \mathbb{R}^d)$$

 The tightest band is a d-dimensional axis-aligned hyperrectangle, which has VC dimension of 2d

Tightest Bands that Contains $\lambda(S)$

Impulse Responses as Hyperrectangles

Algorithm for Learning Bands

DEFINITION 2: Given a sample $\theta_M \equiv (\theta_1, \dots, \theta_M)$ with labels $I_M \equiv (I(\theta_1), \dots, I(\theta_M))$, let $[\widehat{\lambda}_M]$ denote the algorithm that reports

$$[\widehat{\lambda}_{M}](\boldsymbol{\theta}_{M}, \boldsymbol{I}_{M}) := \underset{j=1}{\overset{d}{\times}} \left[\underset{m|I(\boldsymbol{\theta}_{m})=1}{\min} \lambda_{j}(\boldsymbol{\theta}_{m}), \underset{m|I(\boldsymbol{\theta}_{m})=1}{\max} \lambda_{j}(\boldsymbol{\theta}_{m}) \right]$$

where $\lambda_j(\theta)$ is the *j*-th element of $\lambda(\theta)$.

• Report min. and max. in each dimension (over positive labels).

Algorithm for Learning Bands

Can we Learn $[\lambda(S)]$ using $[\widehat{\lambda}_M]$?

• Is there a number of draws $m(\epsilon, \delta)$ such that

$$P\left(\mathcal{L}([\widehat{\lambda}_{M}];[\boldsymbol{\lambda}],P)<\epsilon\right)\geq 1-\delta$$

for any P on Θ , for any $\lambda \in \Lambda$, when $M > m(\epsilon, \delta)$?

- Theorem 2 in the paper answers this question in the negative
 (∄ algorithm that returns ∅ absent positive labels, and learns)
- ullet Problem: allow for P's that put high mass on $[\lambda(S)]\setminus\lambda(S)$

Can we Learn $[\lambda(S)]$ using $[\widehat{\lambda}_M]$?

Learning $[\lambda(S)]$ from the Inside

Define

$$\mathcal{P}(S) \equiv \{P \mid P \text{ is a distribution on } \Theta \text{ and } P(S) = 1\}$$

DEFINITION 3: The set $[\lambda(S)]$ is said to be learnable from the inside if there exists an algorithm $\widehat{\lambda}_M$ and a number of draws $m(\epsilon, \delta)$ such that

$$P\left(\mathcal{L}(\widehat{\lambda}_{M}; [\lambda], P) < \epsilon\right) \ge 1 - \delta,$$

for any $P \in \mathcal{P}(S)$ and any $\lambda \in \Lambda$, provided $M \geq m(\epsilon, \delta)$.

How Many Draws to Learn from the

Inside?

Neccessary/Sufficient Draws to Learn $[\lambda(S)]$ from the Inside

THEOREM 3: The algorithm $[\widehat{\lambda}_M]$ learns $[\lambda(S)]$ from the inside. Moreover, the 'sample complexity' of $[\widehat{\lambda}_M]$ —denoted $m^*(\epsilon, \delta)$ —admits the following bounds:

$$(1 - \epsilon/\epsilon) \ln(1/\delta) \le m^*(\epsilon, \delta) \le (2d/\epsilon) \ln(2d/\delta)$$

Proof

- For example $\epsilon = \delta = 0.01, \ d = 25$
 - Lower bound = 456
 - Upper bound = 42,586

Iso-Draw Curves

- \bullet If choosing $\epsilon\text{-}\delta$ is a problem, commit to number of draws and report "Iso-Draw curves"
 - ullet All the $\epsilon ext{-}\delta$ that support upper bound on sample complexity

Example (Revisited)

$$d=$$
 17 (impact $+$ 16 quarters) $\epsilon=\delta=0.1$

Numbers of draws from inside sufficient for learning:

$$\frac{2d}{\epsilon}\log\left(\frac{2d}{\delta}\right) = 1,982$$

Example (Revisited)

Misclassifcation error of less than 10% with probability at least 90%

Example (Revisited)

Iso-draw curve: The values of $\epsilon\text{-}\delta$ that can be supported with 1,982 draws.

Conclusion

Conclusion

- Random sampling approximations are supervised learning problems
- Misclassification error and learning are natural criterion to judge the accuracy of these approximations
- Learning a parameter region is possible iff the class is not too complex
- Defined learning from the inside and showed that to learn the tightest bands from the inside $(2d/\epsilon) \ln(2d/\delta)$ draws suffice

Thank you for listening!

VC Dimension

- Let E denote a finite subset of \mathbb{R}^d (the space in which Λ lives)
- Define $\Pi_{\Lambda}(E) \equiv \{E \cap \Lambda \mid \Lambda \in \Lambda\}$
- Say that E is shattered by the class Λ whenever $\Pi_{\Lambda}(E) = 2^{E}$
- Define the VC dimension of Λ as the cardinality of the largest finite set of points E shattered by the class Λ
- Vapnik, V. (1998): Statistical Learning Theory
- Axis-aligned rectangles have a VC dimension of 4

$$\Pi_{\Lambda}(E) = \{\{x_1\}, \{x_2\}, \{x_1, x_2\}, \{\emptyset\}\}\$$

 $\operatorname{VC-dim}\, \Lambda \geq 2$

(In fact VC-dim $\Lambda = 4$)

- ullet The true concept is $[\lambda(S)]$ and the estimator is $[\widehat{\lambda}_M]$
- Note that for any draws we have that $[\widehat{\lambda}_M] \subseteq [\lambda(S)]$. Consequently:

$$\mathcal{L}([\widehat{\lambda}_M];[\lambda(S)],P) = P(\theta \in [\lambda(S)] \setminus [\widehat{\lambda}_M])$$

- Since *P* samples from inside *S*, then $P(\lambda(\theta) \in [\lambda(S)]) = 1$.
- Construct 2d 'special hyperrectangles' $(r_1, r_2, \cdots, r_{2d})$, parallel to each side of $[\lambda(S)]$, each with probability $\geq \epsilon/2d$ (but interior has probability $\leq \epsilon/2d$)

- Consider the event that $[\widehat{\lambda}_M]$ intersects each of these 2d special rectangles
- The misclassification error is less than the probability of the union of the interior of these rectangles

$$\mathcal{L}([\widehat{\lambda}_M]; [\lambda(S)], P) \leq \sum_{j=1}^{2d} \epsilon/2d = \epsilon$$

$$P(\mathcal{L}([\widehat{\lambda}_{M}]; [\lambda(S)], P) > \epsilon) \leq P([\widehat{\lambda}_{M}] \cap r_{j} = \emptyset, \text{ for some } j)$$

$$\leq \sum_{j=1}^{2d} P([\widehat{\lambda}_{M}] \cap r_{j} = \emptyset)$$

$$= \sum_{j=1}^{2d} P(\lambda(\theta_{m}) \notin r_{j} \text{ or } \theta_{m} \notin S)^{M}$$

$$\leq \sum_{j=1}^{2d} P(\lambda(\theta_{m}) \notin r_{j})^{M}$$

$$\leq 2d(1 - \epsilon/2d)^{M}$$

Learning is guaranteed whenever

$$2d(1 - \epsilon/2d)^M \le \delta$$

$$\iff$$

$$M \ge -\ln(2d/\delta)/\ln(1-\epsilon/2d)$$

Roughly

$$M \ge \frac{2d}{\epsilon} \ln \left(\frac{2d}{\delta} \right)$$