Penalized Least Squares with LASSO and SCAD

San-Teng Huang, Shang-Chien Ho, Hsing-Cheng Pan

National Dong Hwa University

2019/01/04

Outline

Introduction

LASSO

SCAD

Simulation

Conclusion

Multiple Linear Regression

Consider multiple linear model:

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{p-1} X_{ip-1} + \varepsilon_i \quad \text{, } i = 1, 2, ..., n \\ \text{where } \boldsymbol{\beta} \text{ is } p \times 1 \text{ vector, } \boldsymbol{X} \text{ is } n \times p \text{ matrix,} \\ \text{and } \varepsilon_i \text{ } i.i.d \text{ with mean 0, variance } \sigma^2 \text{, for } i = 1, ..., n. \end{aligned}$$

Assume only some parameters are non-zero. the true $\boldsymbol{\beta_0} = (\beta_{01}, \beta_{02}, ..., \beta_{0p}) = (\boldsymbol{\beta_{01}^T}, \boldsymbol{\beta_{02}^T}) = (\boldsymbol{\beta_{01}^T}, \boldsymbol{0})$

Goal

 $\begin{tabular}{l} \blacksquare \mbox{Variable selection} \\ \mbox{the true } \pmb{\beta_0} = (\beta_{01},\beta_{02},...,\beta_{0p}) = (\pmb{\beta_{01}^T},\pmb{\beta_{02}^T}) = (\pmb{\beta_{01}^T},\pmb{0}) \\ \end{tabular}$

The LASSO : ℓ_1 penalty

- Tibshirani (1996) introduced the LASSO: least absolute shrinkage and selection operator.
- LASSO coefficients are the solutions to the ℓ_1 optimization problem :

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \quad s.t. ||\beta||_1 \le t$$
 (2)

$$\Leftrightarrow \min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (3)

where $||\beta||_1 = \sum_{j=1}^p |\beta_j|$

λ (or t) as a tuning parameter

■ The constraint:

$$\sum_{j=1}^{p} |\beta_j| \le t \quad or \quad \lambda \sum_{j=1}^{p} |\beta_j|$$

- If $\lambda = 0$, then it means no shrinkage. (hence is the OLS solutions.)
- Large enough λ (or small enough t) will set some coefficients exactly equal to 0.

• Ridge regression's coefficients are the solutions to the ℓ_2 optimization problem :

$$\begin{split} \min_{\beta} \sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}\beta_j)^2 \quad \text{s.t.} \, ||\beta||_2 &\leq t \\ \Leftrightarrow \min_{\beta} \sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^p \beta_j^2 \end{split}$$
 where $||\beta||_2 = \sqrt{\sum_{i=1}^p \beta_j^2}$

Why the LASSO set coefficients exactly equal to 0?

Estimation picture for (a) the lasso and (b) ridge regression

(a) Example in which the lasso estimate falls in an octant different from the overall least squares estimate; (b) overhead view

Example

Consider model:

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{10} X_{i10} + \varepsilon_i$$
 , $i = 1, 2, ..., 100$

where $\mathbf{X} \sim MVN(0, \Sigma)$, Σ be covariance matrix with for $j, k = 1, ..., 10, j \neq k$, $Var(X_j) = 1$, $Cov(X_j, X_k) = 0.5$ and $\varepsilon_i \sim N(0, 3^2)$, i = 1, ..., 100. the true $\boldsymbol{\beta_0} = (3, 1.5, 2, -7, 15, 0, 0, 0, 0, 0)$

• With 100 replication, count the number of estimated value greater than 10^{-3} . The parameter λ choosed by 10-fold cross validation.

	OLS		$LASSO(\lambda = 0.2636)$	
	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.0400(0.44)	1	-0.1529(0.42)	1
$\beta_2 = 1.5$	0.0307(0.45)	1	-0.1655(0.42)	1
$\beta_3 = 2$	0.0474(0.43)	1	-0.1435(0.42)	1
$\beta_4 = 7$	-0.0495(0.40)	1	0.3294(0.39)	1
$eta_5=15$	0.0623(0.47)	1	-0.1395(0.45)	1
$\beta_6 = 0$	-0.0102(0.45)	1	0.0272(0.25)	0.59
$\beta_7 = 0$	0.0028(0.39)	0.99	0.0547(0.22)	0.54
$\beta_8 = 0$	-0.0636(0.43)	1	0.0215(0.25)	0.55
$\beta_9 = 0$	0.0180(0.44)	1	0.0744(0.25)	0.61
$\beta_{10}=0$	-0.0678(0.39)	1	0.0045(0.21)	0.58

Penalized Least Squares

■ To minimize

$$Q(\beta) = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + n \sum_{j=1}^{p} p_{\lambda}(|\beta_j|)$$
 (4)

where $p_{\lambda}(|\beta|)$ is a penalty function.

■ The penalized least squares estimator is

$$\hat{\pmb{\beta}} = \arg\min_{\pmb{\beta}} Q(\pmb{\beta})$$

Penalty function

■ LASSO(*L*₁-penalty):

$$p_{\lambda}(|\beta|) = \lambda |\beta|$$

Smoothly Clipped Absolute Deviation (SCAD):

$$p_{\lambda}(|eta|) = egin{cases} \lambda |eta| &, |eta| \leq \lambda \ -(rac{|eta|^2 - 2\mathsf{a}\lambda |eta| + \lambda^2}{2(\mathsf{a} - 1)}), \lambda < |eta| \leq \mathsf{a}\lambda \ rac{(\mathsf{a} + 1)\lambda^2}{2} &, |eta| > \mathsf{a}\lambda \end{cases}$$

where a = 3.7

Plot of $p_{\lambda}(|\beta|)$:

What is good penalty function?

- **Unbiasedness**: The estimator is nearly unbiased when the true unknown parameter is large to avoid modeling bias.
- Sparsity: The estimator is a thresholding rule, which sets small estimated coefficients to zero.
- Continuity: The estimator is continuous in data x to avoid instability in model prediction.

	Unbiasedness	Sparsity	Continuity
L_1 -penalty(LASSO)	no	yes	yes
L_2 -penalty(ridge regression)	no	no	yes
SCAD	yes	yes	yes

Conti. Example

■ Consider model:

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{10} X_{i10} + \varepsilon_i$$
, $i = 1, 2, ..., 100$

where $\mathbf{X} \sim MVN(0, \Sigma)$, Σ be covariance matrix with for $j, k = 1, ..., 10, j \neq k$, $Var(X_j) = 1$, $Cov(X_j, X_k) = 0.5$ and $\varepsilon_i \sim N(0, 3^2)$, i = 1, ..., 100. the true $\boldsymbol{\beta_0} = (3, 1.5, 2, -7, 15, 0, 0, 0, 0, 0)$

• With 100 replication, count the number of estimated value greater than 10^{-3} . The parameter λ choosed by 10-fold cross validation.

	$SCAD(\lambda = 0.3792)$		$LASSO\big(\lambda = 0.2636\big)$	
	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.0415(0.42)	1	-0.1529(0.42)	1
$\beta_2 = 1.5$	-0.0394(0.52)	1	-0.1655(0.42)	1
$\beta_3 = 2$	0.0390(0.43)	1	-0.1435(0.42)	1
$\beta_4 = 7$	-0.0571(0.38)	1	0.3294(0.39)	1
$\beta_5 = 15$	0.0740(0.46)	1	-0.1395(0.45)	1
$\beta_6 = 0$	-0.0230(0.23)	0.46	0.0272(0.25)	0.59
$\beta_7 = 0$	0.0053(0.17)	0.36	0.0547(0.22)	0.54
$\beta_8 = 0$	-0.0303(0.21)	0.44	0.0215(0.25)	0.55
$\beta_9 = 0$	0.0218(0.19)	0.48	0.0744(0.25)	0.61
$\beta_{10}=0$	-0.0279(0.16)	0.39	0.0045(0.21)	0.58

	SCAD		LASSO	
$\lambda = 0.3792$	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.0415(0.42)	1	-0.2232(0.42)	1
$\beta_2 = 1.5$	-0.0394(0.52)	1	-0.2341(0.41)	1
$\beta_3 = 2$	0.0390(0.43)	1	-0.2100(0.42)	1
$\beta_4 = 7$	-0.0571(0.38)	1	0.5049(0.39)	1
$eta_5=15$	0.0740(0.46)	1	-0.2126(0.45)	1
$\beta_6 = 0$	-0.0230(0.23)	0.46	0.0420(0.19)	0.47
$\beta_7 = 0$	0.0053(0.17)	0.36	0.0578(0.18)	0.42
$\beta_8 = 0$	-0.0303(0.21)	0.44	0.0317(0.20)	0.43
$\beta_9 = 0$	0.0218(0.19)	0.48	0.0802(0.20)	0.41
$\beta_{10}=0$	-0.0279(0.16)	0.39	0.0175(0.15)	0.39

	SCAD		LASSO	
$\lambda = 0.7585$	bias(sd)	count(%)	bias(sd)	count(%)
$\beta_1 = 3$	0.1655(0.50)	1	-0.4177(0.44)	1
$\beta_2 = 1.5$	-0.4698(0.57)	0.97	-0.4319(0.42)	1
$\beta_3 = 2$	-0.2262(0.64)	1	-0.4000(0.44)	1
$\beta_4 = 7$	0.0947(0.38)	1	1.1121(0.40)	1
$eta_5=15$	0.2376(0.46)	1	-0.4214(0.46)	1
$\beta_6 = 0$	0.0018(0.05)	0.18	0.0357(0.10)	0.26
$\beta_7 = 0$	0.0148(0.06)	0.14	0.0462(0.12)	0.23
$\beta_8=0$	0.0083(0.06)	0.12	0.0396(0.12)	0.19
$\beta_9 = 0$	0.0186(0.07)	0.15	0.0616(0.15)	0.27
$\beta_{10}=0$	0.0035(0.04)	0.09	0.0163(0.07)	0.18

Conclusion

Variable selection via penalized least squares.

	Unbiasedness	Sparsity	Continuity
L_1 -penalty(LASSO)	no	yes	yes
L_2 -penalty(ridge regression)	no	no	yes
SCAD	yes	yes	yes