第六册

大青花鱼

目录

第一章	向量	5
1.1	点、向量和直线	5
1.2	角度与长度	9
1.3	直线和圆的方程	14
第二章	从平面到立体	19
2.1	透视与投影	19
第三章	同余	21
3.1	同余类	22
3.2	完全同余系和简化同余系	25
3.3	方余定理	28
第四章	用数据说话	31
4.1	样本和特征	31
4.2	描述和分析	31

4		录
4.3	数据的结构	31
第五章	数学和社会	33
5.1	随时代变化的数学	33
5.2	数学和科学	33
5.3	数学和现代化	33

第一章 向量

第五册中,我们学习了用三角函数解三角形。三角函数是定量研究平面形的利器。不过,三角函数本身并不是简单的函数。我们目前只能通过查表的方式得到函数值。这让我们思考,能不能打造一种更方便定量研究的体系呢?

回顾我们对平面形的研究,我们从几条公理出发,得出点、直线、三角形、圆等形状之间的定性关系。公理体系的缺陷在于没有与数紧密结合。比如,"两点之间直线最短",除了定性的"最短",没有提供别的信息。我们需要一种根本上和数量结合的体系,来理解各种平面形状。

此外,公理体系中并没有强调运动的概念。我们说点运动形成了线,旋转形成角度和圆,但并没有相关的工具来描述具体的运动。我们需要一种根本上和运动结合的体系,来理解形状之间的关系。

1.1 点、向量和直线

学习有理数的时候,我们使用数轴上的点表示。每个点代表一个实数。两点重合,当且仅当它们代表同一个数。这种表示方法把数和直线上的点牢牢绑在一起。我们可以用数的关系表示直线上点的关系。数轴使我们可以定量理解直线。

6 第一章 向量

至于平面中的点,我们用相互垂直的数轴定义了点的坐标。每个点代表一个有序数对。两个数按顺序排列,对应平面中一点。

能不能像数轴一样,用一个量代表平面中一点呢?数轴之所以能用一个数代表一个点,是因为直线只有两个方向,使用正负号就可以代表方向。 平面中不止两个方向,我们无法用正负来表示方向了。为此,我们引入一个新的量来代表平面中的点:**向量**。

自然数、有理数、实数都有自己的运算法则。向量作为代表点的量,需要满足怎样的运算法则呢?我们从运动出发,给出以下的法则:

- 1. 向量的加法就是平移:两个向量相加得到另一个向量。向量的加法满足结合律和交换律。
- 2. 零向量表示静止不变:存在这样一个向量,任何向量与它相加,仍然 是自己。这个向量叫做零向量。零向量不定义方向,也可以说它与任 何向量同向或反向。它对应的点称为**原点**。
- 3. 从每个非零向量,引出一根数轴:任何实数乘以向量,得到方向相同或相反的向量。这个运算称为**数乘运算**。数乘运算对应图形的放缩。
- 4. 放缩和四则运算相容:数轴上可以做数的运算。
- 5. 平移和放缩相容: 先平移再放缩,和先放缩再平移,结果一样。

按照定义,**向量就是点**,所以可以用大写字母来表记。比如零向量就是原点,记为 O。此外,**向量就是平移**。点 A 就是把 O 对应到 A 的平移,也是 O 平移的结果,记为 \overrightarrow{OA} 。反过来, \overrightarrow{BA} 就是把 B 对应到 A 的平移。

让我们用数学语言把这些法则更具体地写出来。我们把平面看作集合,记为 V, 其中的元素称为向量或点, 用粗体小写字母表示, 以便和代表数的量区分:

- 1. 加法结合律: $\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}, \mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ 。
- 2. 加法交换律: $\forall \mathbf{a}, \mathbf{b} \in \mathbb{V}, \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ 。
- 3. 存在零向量: $\forall \mathbf{a} \in \mathbb{V}, \mathbf{a} + \mathbf{0} = \mathbf{a}$ 。

7

- 4. 放缩和四则运算相容: $\forall \mathbf{a} \in \mathbb{V}, \ 1 \cdot \mathbf{a} = \mathbf{a}, \ \forall s, t \in \mathbb{R}, \ (s+t) \cdot \mathbf{a} = (s \cdot \mathbf{a}) + (t \cdot \mathbf{a}), \ (s \cdot t) \cdot \mathbf{a} = s \cdot (t \cdot \mathbf{a}),$
- 5. 放缩和平移相容: $\forall \mathbf{a}, \mathbf{b} \in \mathbb{V}, \ \forall \ t \in \mathbb{R}, \ t \cdot (\mathbf{a} + \mathbf{b}) = t \cdot \mathbf{a} + t \cdot \mathbf{b}$ 。

从以上法则出发,我们可以定义直线:

定义 1.1.1. 过原点的直线是非零向量放缩得到的集合。不过原点的直线是过原点的直线按一点平移得到的集合。

给定非零向量 $A = \mathbf{a}$, $\{t\mathbf{a} \mid t \in \mathbb{R}\}$ 是一条过原点 O 和 A 的直线 OA。给定向量 $B = \mathbf{b}$, $\{t\mathbf{a} + \mathbf{b} \mid t \in \mathbb{R}\}$ 是一条过 B 的直线;而 $\{t\mathbf{a} + (1-t)\mathbf{b} \mid t \in \mathbb{R}\}$ 就是直线 AB。

给定非零向量 \mathbf{a} , 如果向量 \mathbf{b} 可以通过 \mathbf{a} 放缩得到, 或者说 $\mathbf{b} \in \{t\mathbf{a} \mid t \in \mathbb{R}\}$, 就称两者**共线**。

类比可以定义线段和射线: 给定非零向量 $A = \mathbf{a}$ 和向量 $B = \mathbf{b}$, $\{t\mathbf{a} + (1-t)\mathbf{b} | t \in [0,1]\}$ 是端点为 \mathbf{a} , \mathbf{b} 的线段 AB, $\{t\mathbf{a} + (1-t)\mathbf{b} | t \geq 0\}$ 是以 B为端点,经过 A 的射线。

这样定义的线段和射线,也具备了数轴的性质。比如,在线段 { $t\mathbf{a}$ + $(1-t)\mathbf{b}$ | $t \in [0,1]$ } 中,t 的不同值就对应了不同的点: t=0 对应点 \mathbf{b} , t=1 对应点 \mathbf{a} 。对一般的 $t \in (0,1)$, $t\mathbf{a}$ + $(1-t)\mathbf{b}$ 对应的点 P(t) 满足: |AP(t)| = (1-t)|AB|,|P(t)B| = t|AB|。也就是说,P(t) 是线段 AB 上使得 $\frac{|AP(t)|}{|P(t)B|} = \frac{1-t}{t}$ 的点。 $\overrightarrow{AP(t)}, \overrightarrow{P(t)B}$ 都和 \overrightarrow{AB} 共线。

反过来,设 $\frac{|AP(t)|}{|P(t)B|}$ 等于定值 k > 0,对应的点 P(t) 是什么点呢? 这个问题实际上是求方程:

$$\frac{1-t}{t} = k$$

的解。容易解出这个方程的唯一解: $t = \frac{1}{k+1}$ 。因此我们得到结论:

定理 1.1.1. 定比分点定理 线段 AB 上到两端距离之比 $\frac{|AP|}{|PB|}$ 为定值 k 的点 P 恰有一个,称为它的 k **分点**。

正数 k 越小, k 分点距离 A 越近, k 越大, k 分点离 A 越远; k=1 时, 我们就得到线段的中点。

以上我们讨论了 k>0 的情况,显然,k=0 对应 P=A。对于负数 k,有没有对应的点呢?我们用平移的思想考虑这个问题,从 A 到 P(t) 经历的平移是 $\overrightarrow{AP(t)}=(1-t)\overrightarrow{AB}$,从 P(t) 到 B 经历的平移是 $\overrightarrow{P(t)B}=t\overrightarrow{AB}$ 。它们的系数之比就是 $\frac{1-t}{t}$ 。于是,我们可以对一般的 k 定义定比分点:如果 k 能使得方程

$$\frac{1-t}{t} = k$$

有唯一解,那么我们就把对应的点 P(t) 称为 AB 的 k 分点。

如果 k < -1,那么 k 分点对应的 $t = \frac{1}{k+1} < 0$,也就是说,P(t) 在线段 BA 沿 B 的延长线上。如果 -1 < k < 0,那么 k 分点对应的 $t = \frac{1}{k+1} > 1$,也就是说,P(t) 在线段 BA 沿 A 的延长线上。如果 k = -1,以上方程无解,这说明 -1 分点不存在。

共线的向量,通过数轴,可以方便地讨论相互的位置关系。不共线的向量之间,如何讨论位置关系呢?为此,我们要引入**平面的根本性质**:

- 1. 给定任何非零向量 A, 平面中总有另一个向量 B, 不在直线 OA 上。 我们说两者**不共线**。
- 2. 从不共线的向量 A, B 出发,经过放缩、平移,可以得到平面中任何向量。具体来说,任何向量都可以表示成 sA + tB 的形式,集合 $\{sA + tB | s, t, \in \mathbb{R}\}$ 就是整个平面。这样的 A, B 称为平面的一组**基**或**基底**。

举例来说,在直角坐标系中,我们选择了原点重合、互相垂直的两条数轴,以每条数轴上数 1 对应的点(记为 $\mathbf{e}_x,\mathbf{e}_y$)出发,通过放缩和平移,就得到平面所有的点。平面中任一点可以写成 $x\mathbf{e}_x+y\mathbf{e}_y$,其中 x,y 就是点的坐标。直角坐标系其实是一种用向量描述平面的方法。 $\mathbf{e}_x,\mathbf{e}_y$ 就是一组基。

思考 1.1.1.

1. 设平面上有两点 A, B, 以 OA, OB 为邻边作平行四边形 AOBC。向量

1.2 角度与长度 9

 \overrightarrow{OA} 和 \overrightarrow{BC} 是什么关系?

2. 设平面上有两点 A,B,三角形 OAB 中,连接边 OA,OB 的中点 M,N。 向量 \overrightarrow{AB} 和 \overrightarrow{MN} 是什么关系?

习题 1.1.1.

1. 证明:零向量只有一个,任何向量乘0得到零向量。

2. 证明: 零向量乘任何数得到零向量。

3. 证明:任何向量 a 都有唯一的反向量 b,满足 a+b=0。

4. 设 **a**, **b** 不共线,如果 s**a** + t**b** = **0**,证明: s = t = 0。

直角坐标系 xOy 中,设 $\mathbf{a} = 4\mathbf{e}_x + \mathbf{e}_y$, $\mathbf{b} = \mathbf{e}_x - 2\mathbf{e}_y$, $\mathbf{b} = -\mathbf{e}_x + 2\mathbf{e}_y$ 。

5. 在坐标轴上标出 a, b 和 c。

6. 用 a 和 b 表示 e_x 、 e_y 和点 (3,0)。

7. 用 \mathbf{a} 和 \mathbf{b} 表示它们的中点、3 分点、-0.5 分点、-3 分点。写出这些点的坐标和直线的方程。

8. 用 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 表示顶点为 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 的三角形三边和重心。

1.2 角度与长度

根据平面的根本性质,任何向量都可以用两个不共线向量表示。如何讨论它们的位置关系呢?下面我们定义一种关系,把长度、距离和角度统一起来。

给定平面基底 $\mathbf{e}_1, \mathbf{e}_2$,我们给出这样一个二元映射 f:

 $\forall s_1, s_2, t_1, t_2 \in \mathbb{R}, \quad f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, t_1\mathbf{e}_1 + t_2\mathbf{e}_2) = s_1t_1 + s_2t_2.$

f 把两个向量对应到一个实数。它满足以下五个性质:

1. 向量的顺序不影响关系大小:

$$f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, t_1\mathbf{e}_1 + t_2\mathbf{e}_2)$$

$$= s_1t_1 + s_2t_2 = t_1s_1 + t_2s_2$$

$$= f(t_1\mathbf{e}_1 + t_2\mathbf{e}_2, s_1\mathbf{e}_1 + s_2\mathbf{e}_2).$$

2. 零向量和任意向量关系为 0:

$$f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, \mathbf{0}) = f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, 0\mathbf{e}_1 + 0\mathbf{e}_2) = s_1 \cdot 0 + s_2 \cdot 0 = 0.$$

3. 非零向量与自身的关系总是正的: s_1, s_2 不全为零时,

$$f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, s_1\mathbf{e}_1 + s_2\mathbf{e}_2) = s_1^2 + s_2^2 > 0.$$

4. 和向量的放缩相容:

$$f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, t(t_1\mathbf{e}_1 + t_2\mathbf{e}_2))$$

$$= s_1tt_1 + s_2tt_2 = t(s_1t_1 + s_2t_2)$$

$$= tf(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, t_1\mathbf{e}_1 + t_2\mathbf{e}_2).$$

5. 和向量的平移相容:

$$f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, (t_1\mathbf{e}_1 + t_2\mathbf{e}_2) + (r_1\mathbf{e}_1 + r_2\mathbf{e}_2))$$

$$= s_1(t_1 + r_1) + s_2(t_2 + r_2) = (s_1t_1 + s_2t_2) + (s_1r_1 + s_2r_2)$$

$$= f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, t_1\mathbf{e}_1 + t_2\mathbf{e}_2) + f(s_1\mathbf{e}_1 + s_2\mathbf{e}_2, r_1\mathbf{e}_1 + r_2\mathbf{e}_2).$$

满足以上五个条件的映射 f 称为平面向量的内积。从第四个性质可知,向量与自身的内积总是正数。我们把这个数的平方根叫做向量的长度,记为:

$$\forall \mathbf{a} \in \mathbb{V}, \quad \|\mathbf{a}\| = \sqrt{f(\mathbf{a}, \mathbf{a})}.$$

两个向量之差的长度, 称为向量之间的距离。

$$\forall \mathbf{a}, \mathbf{b} \in \mathbb{V}, \quad \|\mathbf{a} - \mathbf{b}\| = \sqrt{f(\mathbf{a} - \mathbf{b}, \mathbf{a} - \mathbf{b})}.$$

1.2 角度与长度 11

如果基底 e_1, e_2 是直角坐标系的基,那么

$$\forall \mathbf{a} = x_A \mathbf{e}_x + y_A \mathbf{e}_y,$$

$$\|\mathbf{a}\| = \sqrt{x_A^2 + y_A^2},$$

$$\forall \mathbf{a} = x_A \mathbf{e}_x + y_A \mathbf{e}_y, \quad \mathbf{b} = x_B \mathbf{e}_x + y_B \mathbf{e}_y,$$

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}.$$

给定向量 $A = \mathbf{a} \times B = \mathbf{b}$, $\|\mathbf{a}\|$ 就是 |OA|, $\|\mathbf{a} - \mathbf{b}\|$ 就是 |AB|。也就是说,我们这样定义的映射 f,分别与直观经验中长度和距离的概念相符合。

那么,f 本身有什么含义呢? 我们来计算 $\frac{|OA|^2 + |OB|^2 - |AB|^2}{2}$

$$\frac{|OA|^2 + |OB|^2 - |AB|^2}{2} = \frac{x_A^2 + y_A^2 + x_B^2 + y_B^2 - (x_A - x_B)^2 - (y_A - y_B)^2}{2}$$
$$= x_A x_B + y_A y_B = f(\mathbf{a}, \mathbf{b}).$$

另一方面,余弦定理告诉我们, $\frac{|OA|^2+|OB|^2-|AB|^2}{2}=|OA||OB|\cos\angle AOB$ 。也就是说, $f(\mathbf{a},\mathbf{b})=\|\mathbf{a}\|\|\mathbf{b}\|\cos\angle AOB$ 。内积 f 的本质是向量夹角的余弦与向量长度的乘积。通过内积,我们把角度和长度统一起来了。

向量夹角的余弦值总在 -1 和 1 之间,所以向量的内积的绝对值不大于向量长度的乘积:

$$|x_A x_B + y_A y_B| \le \sqrt{x_A^2 + y_A^2} \sqrt{x_A^2 + y_A^2}.$$

可以验证这个关系对任意 x_A, y_A, x_B, y_B 成立。从这个关系出发,可以得到:

$$|AB| = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} \leqslant \sqrt{x_A^2 + y_A^2} + \sqrt{x_A^2 + y_A^2} = |OA| + |OB|.$$

这符合直观经验中"三角形两边之和大于第三边"或"两点之间线段距离最短"的性质。

内积为 0,就表示向量夹角的余弦为 0,即两个向量垂直。比如令 $\mathbf{a} = 2\mathbf{e}_x - \mathbf{e}_y$, $\mathbf{b} = \mathbf{e}_x + 2\mathbf{e}_y$,那么 $f(\mathbf{a}, \mathbf{b}) = 2 \cdot 1 - 1 \cdot 2 = 0$ 。在平面上画出对应的点 A, B,可以验证 $\angle AOB = 90^\circ$ 。

内积映射并不是唯一的,我们看另一个映射 f_2 :

$$\forall s_1, s_2, t_1, t_2 \in \mathbb{R}, \quad f(s_1 \mathbf{e}_1 + s_2 \mathbf{e}_2, t_1 \mathbf{e}_1 + t_2 \mathbf{e}_2) = 2s_1 t_1 + s_2 t_2.$$

可以验证, f_2 也满足 f 满足的五个性质。从 f_2 出发,我们也可以定义距离和长度:

$$\forall \mathbf{a} = x_A \mathbf{e}_x + y_A \mathbf{e}_y, \quad \|\mathbf{a}\|_2 = f_2(\mathbf{a}, \mathbf{a}) = 2x_A^2 + y_A^2.$$

这样定义的距离和长度和我们直观经验中有些不一样,不过,我们可以验证,这样定义的距离也满足"两点之间线段最短"的性质。

$$|2x_A x_B + y_A y_B| \leqslant \sqrt{2x_A^2 + y_A^2} \sqrt{2x_A^2 + y_A^2}.$$

因此, f_2 也是内积。

我们把符合直观经验的内积 f 称为**经典内积**,一般称内积都默认指经典内积;把对应的长度称为向量的**模**或**范**。我们把 \mathbf{a} , \mathbf{b} 的(经典)内积记为 $(\mathbf{a}|\mathbf{b})$,不至于混淆时,也常称为**点积**,记为 $\mathbf{a} \cdot \mathbf{b}$;把模记为 $|\mathbf{a}|$ 、 $|\mathbf{b}|$ 。

既然有余弦,自然有正弦。记 $\alpha = \angle AOB$,则 $(\mathbf{a}\,|\,\mathbf{b}) = |\mathbf{a}||\mathbf{b}|\cos\alpha$,于 是,

$$|\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \alpha = |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} |\mathbf{b})^2$$

记 $\mathbf{a} = x_A \mathbf{e}_x + y_A \mathbf{e}_y$, $\mathbf{b} = x_B \mathbf{e}_x + y_B \mathbf{e}_y$,则

$$(x_A^2 + y_A^2)(x_A^2 + y_A^2)\sin^2\alpha = (x_A^2 + y_A^2)(x_A^2 + y_A^2) - (x_A x_B + y_A y_B)^2$$
$$= (x_A y_B - x_B y_A)^2$$
$$|\sin\alpha| = \frac{|x_A y_B - x_B y_A|}{\sqrt{x_A^2 + y_A^2}\sqrt{x_A^2 + y_A^2}}$$

我们得出了夹角 ∠AOB 正弦的绝对值。

观察向量夹角的正弦和余弦,我们注意到,它们的表达式与和差角公式有相似之处。 $x_Ax_B + y_Ay_B$ 与差角余弦公式形式相似, $x_Ay_B - x_By_A$ 与差角正弦公式形式相似。

1.2 角度与长度 13

让我们在直角坐标系中找几个例子,看看直观结果。设有点 A(1, 0)、 $B(\frac{1}{2},\frac{\sqrt{3}}{2})$ 。不难得出 $\angle AOB=60^{\circ}$ 。我们用以上公式计算 $\angle AOB$ 的正弦和 余弦:

$$\frac{x_A y_B - x_B y_A}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}} = \frac{\sqrt{3}}{2}, \quad \frac{x_A x_B + y_A y_B}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}} = \frac{1}{2}.$$

把 P 的坐标换成 (0, 1)、 $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ 、 $(\frac{\sqrt{3}}{2}, -\frac{1}{2})$ 等,可以验证,通过以上两个公式得到的值,就是直观角度的正弦、余弦值。如果我们定义向量 $A(x_A, y_A)$ 、 $B(x_B, y_B)$,记 $\angle AOB = \alpha$,那么:

$$\sin \alpha = \frac{x_A y_B - x_B y_A}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}}, \quad \cos \alpha = \frac{x_A x_B + y_A y_B}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}}.$$

要注意的是,以上公式成立,是因为直角坐标系 xOy 的 x 轴和 y 轴沿逆时针顺序摆放,同时规定逆时针方向为角度的正方向。如果直角坐标系的坐标轴摆放顺序和角度的正方向相反,以上的公式就要改为:

$$\sin \alpha = \frac{x_B y_A - x_A y_B}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}}, \quad \cos \alpha = \frac{x_A x_B + y_A y_B}{\sqrt{x_A^2 + y_A^2} \sqrt{x_B^2 + y_B^2}}.$$

正弦对应着平行四边形的面积。比如,邻边为 OA 和 OB 的平行四边形,面积是 $|OA||OB|\sin \angle AOB$ 。对照上面正弦的表达式,可以发现这个面积等于 $x_By_A-x_Ay_B$ 。我们就把对应的映射

$$(A, B) \mapsto x_B y_A - x_A y_B.$$

称为向量 A, B 的**面积**,记为 $A \wedge B$ 。向量的面积和内积,分别对应正弦和 余弦。两向量面积为零,当且仅当它们共线;两向量内积为零,当且仅当它们互相垂直。

习题 1.2.1.

1. 直角坐标系中,已知两向量,计算它们的内积和面积,讨论它们的关系。

1.1.
$$A(0, 2), B(1, 1)$$

1.2.
$$A(2, 1), B(0.5, -1)$$

14 第一章 向量

1.3.
$$A(1.6, 0.2), B(-0.9, -3)$$

1.4.
$$A(1, -0.28), B(-0.45, -0.6)$$

2. 直角坐标系中,已知向量 B 的模为 2,根据以下条件,求向量 A, B 的内积:

$$2.1 A = (-4, 2), \angle AOB = 60^{\circ}$$

$$2.2 A = (0, 5), \angle AOB = 135^{\circ}$$

$$2.3.A = (3, -2.5), \angle AOB = 45^{\circ}$$

- 3. 直角坐标系中,已知点 P(2, 1),求使得 P,Q 内积为 4 的点 Q。
- 4. 直角坐标系中,已知点 P(2, 1),求使得 P,Q 面积为 4 的点 Q。

1.3 直线和圆的方程

直角坐标系中,二元一次方程的解集对应平面中一条直线。下面我们用向量的语言,给出符合不同条件的直线的方程。

点向式: 已知直线过点 $A(x_A, y_A) = \mathbf{a}$, 方向为 $\mathbf{b} = (x_B, y_B)$ 。考虑直线上一点 $P(x, y) = \mathbf{p}$, $\mathbf{p} - \mathbf{a}$ 和 \mathbf{b} 共线,所以面积为 0。于是 (x, y) 满足方程:

$$(x - x_A)y_B - (y - y_A)x_B = 0.$$

我们把这个二元一次方程称为直线的点向式方程。已知直线上一点和直线的方向,可以写出直线的点向式方程。比如,过 (1, 2),方向为 (-1, 1) 的直线方程为: $1 \cdot (x-1) - (-1) \cdot (y-2) = 0$,即 x+y=3。

两点式: 已知直线过点 $A(x_A, y_A) = \mathbf{a}$ 和点 $B(x_B, y_B) = \mathbf{b}$ 。考虑直线上一点 $P(x, y) = \mathbf{p}$,则 $\mathbf{p} - \mathbf{a}$ 和 $\mathbf{b} - \mathbf{a}$ 共线。于是 (x, y) 满足方程:

$$(x - x_A)(y_B - y_A) - (y - y_A)(x_B - x_A) = 0.$$

我们把以上方程称为直线的两点式方程。已知直线上不同的两点,可以写出直线的两点式方程。比如,过 (1, 2)、(-2, 1) 的直线方程为: (x-1)(1-2)-(y-2)(-2-1)=0,即 -x+3y=5。

点斜式: 已知直线过点 $A(x_A, y_A) = \mathbf{a}$,斜率为 k。考虑直线上一点 $P(x, y) = \mathbf{p}$ 。直线斜率为 k,说明直线是某个一次函数 $x \mapsto kx + b$ 的图像。对比可知,直线方向和 (1, k) 共线。我们用 (1, k) 作为直线方向,于是直线方程为:

$$y - y_A = k(x - x_A).$$

我们把这个方程称为直线的点斜式方程。已知直线上一点和直线的斜率,可以写出直线的点斜式方程。比如,过 (1, 2),斜率为 2 的直线方程为: y-2=2(x-1),即 y-2x=0。

点法式: 已知直线过点 $A(x_A, y_A) = \mathbf{a}$, 并且和 $\mathbf{b} = (x_B, y_B)$ 垂直。考虑直线上一点 $P(x, y) = \mathbf{p}$, $\mathbf{p} - \mathbf{a}$ 和 \mathbf{b} 垂直,所以内积为 0。于是 (x, y) 满足方程:

$$(x - x_A)x_B + (y - y_A)y_B = 0.$$

我们把 **b** 称为直线的**法向量**,把以上方程称为直线的点法式方程。已知直线上一点和法向量,可以写出直线的点法式方程。比如,过 (1, 2),法向量为 (3, -1) 的直线方程为: $(x-1)\cdot 3+(y-2)\cdot (-1)=0$,即 3x-y=1。

等高式: 已知点 $P(x, y) = \mathbf{p}$ 与 $B(x_B, y_B) = \mathbf{b}$ 的面积为 S, 则 (x, y) 满足方程:

$$xy_B - yx_B = S.$$

我们把这个二元一次方程称为直线的等高式方程。从直观上看,它表示所有以 OB 为底,高相等(从而面积相等)的三角形 OBP 的顶点 P 的集合,即一条平行于 OB 的直线。比如,与 (1, -1) 的面积为 3 的点构成直线,方程为: -x + y = 3。

等垂式: 已知点 $P(x, y) = \mathbf{p}$ 与 $B(x_B, y_B) = \mathbf{b}$ 的内积为 T,则 (x, y) 满足方程:

$$xx_B + yy_B = T.$$

我们把这个二元一次方程称为直线的等垂式方程。从直观上看,它表示所有到 OB 的垂足为定点 H 的点 P 的集合,也就是一条垂直于 OB 的直线。

比如,与(1,-1)的内积为3的点构成直线,方程为:x-y=3。

两条直线的交点,就是同时满足两直线方程的点。两直线如果有交点, 它的坐标就是两直线方程组成的方程组的解。

除了用二元一次方程表示直线,我们还可以用别的方式表示直线。前面我们用集合 $\{t\mathbf{a} + (1-t)\mathbf{b} | t \in \mathbb{R}\}$ 表示经过 \mathbf{a}, \mathbf{b} 的直线。设 \mathbf{a}, \mathbf{b} 的坐标分别是 (x_A, y_A) 、 (x_B, y_B) ,则直线上 t 对应的点的坐标就是

$$(tx_A + (1-t)x_B, ty_A + (1-t)y_B)$$

AB 的 k 分点坐标是:

$$\left(\frac{x_A + kx_B}{k+1}, \ \frac{y_A + ky_B}{k+1}\right)$$

我们把这样表示直线上的点的方法称为直线的参数表示。

圆是到一点距离相同的点的集合。用向量的语言,以 \mathbf{w} 为圆心、以正数r为半径的圆,是关于 \mathbf{p} 的方程:

$$|\mathbf{p} - \mathbf{w}| = r$$

的解集。直角坐标系中,设 \mathbf{p} 的坐标为 (x, y), \mathbf{w} 的坐标为 (x_W, y_W) , 则以上方程变为:

$$\sqrt{(x - x_W)^2 + (y - y_W)^2} = r$$

根号中的值总大于等于零,所以这个方程的解集就是方程

$$(x - x_W)^2 + (y - y_W)^2 = r^2$$

的解集。我们把这个方程称为圆的方程,它的解集就是以 (x_W, y_W) 为圆心、r为半径的圆。比如,

$$x^2 + y^2 = 4$$

表示圆心为(0,0)、半径为2的圆。

习题 1.3.1.

- 1. 根据已知条件,写出直线的方程:
 - 1.1. 过点 (1, -3), 与 (0.5, 2.1) 共线。
 - 1.2. 过点 (2, -0.8)、(-2, 2.5)。
 - 1.3. 过点 (-1, 1), 与 (-0.5, 1.5) 垂直。
 - 1.4. 过点 (-2.25, -6), 斜率为 -1.7。
 - 1.5. 与 (4.5, -5) 内积为 -1.2。
 - 1.6. 与 (5.6, 1) 面积为 -8。
- 2. 写出圆心为 (-3, 2), 过 (1, 1.3) 的圆的方程。
- 3. 直线过点 (2, 5), 且和点 (0, 1) 的距离是 2.3, 求直线的方程。
- 4. 直线 l 过点 (4, 2),且和圆 $(x+1)^2 + (y-1.5)^2 = 4$ 相切。求直线 l 的 方程和对应切点的坐标。

18 第一章 向量

第二章 从平面到立体

我们已经初步了解了简单的平面图形的性质。现在我们来认识立体形状。

我们生活的世界是立体空间。人类自身和自然万物,都是立体的。立体 形状是我们最常接触的形状。不过,我们的眼睛和大脑并不能直接处理立 体形状,只能感知立体事物的平面图像,在大脑中还原事物的形状。因此, 人类总是通过立体事物的平面图像来了解事物。

2.1 透视与投影

让我们在平面上还原我们看到的立体事物。为什么图中的 A 显得远, B 显得近?

大脑还原事物的形状时, 遵循"近大远小"的规律。

同一个物体,离眼睛越远,就显得越小;离眼睛越近,就显得越大。物体在人眼中的大小,大致和它到眼睛的距离成正比。

在平面中,可以使用"近大远小"的方法,表现立体事物的远近。这种 表现方法称为诱视法。

我们把到眼睛距离相等的位置的集合称为等距面。图形在等距面上移

动,大小不变。然而,等距面并不是平面。为了方便理解,我们把与视线垂直的平面称为视垂面,可以想象正对面的一张白纸。

单一的图像往往无法反映立体事物的全部情况。我们通常从多个不同位置观察事物,得出结论。

第三章 同余

例子 3.0.1. 7⁶⁵ 的个位数是多少?

解答. 从 7^0 , 7^1 , 7^2 , 7^3 · · · 开始找规律。 $7^0 = 1$, $7^1 = 7$, $7^2 = 49$, $7^3 = 343$, $7^4 = 2401$, $7^5 = 16807$ 。 7^4 和 7^0 的个位数都是 1, 7^5 和 7^1 的个位数都是 7。我们可以总结出这样的规律:个位数是 1 的,乘以 7 得到 7;个位数是 7 的,乘以 7 得到 9;个位数是 9 的,乘以 7 得到 3;个位数是 3 的,乘以 7 得到 1。

也就是说,如果把 7^0 , 7^1 , 7^2 , 7^3 … 的个位数写成一列,应该是这个样子的:

$$1, 7, 9, 3, 1, 7, 9, 3, 1, 7, \cdots$$

用归纳法不难证明,这列数字以 4 为周期不断重复。所以,要求 7^{65} 的个位数,可以看 65 在相关的周期里处于哪个位置。换句话说,只要看 65 除以 4 的余数。 $65 = 16 \times 4 + 1$,所以 7^{65} 的个位数和 7^{1} 的个位数一样,都是 7。

从这个例子可以看出,两个整数除以同一个数得到相同的余数,是一个重要的性质。我们把这种性质称为**同余**。比如,65 和 1 除以 4 余数都是 1,我们就说 65 和 1 模 4 同余。 7^{65} 和 7^{1} 除以 10 余数都是 7,我们说 7^{65} 和 7^{1} 模 10 同余,记为:

$$7^{65} \equiv_{10} 7^1$$

22 第三章 同余

3.1 同余类

整数除以 3,余数有 0,1,2 三种可能。整数除以 10,余数有 0,1,…,9 十种可能。一般来说,给定正整数 n,整数除以 n,余数有 0,1,…,n-1 这 n 种可能。因此,按除以 n 的余数,可以把整数集分成 n 类。同属一类的数,模 n 同余,所以这 n 类数叫作模 n 同余类。所有模 n 同余类的集合,叫作模 n 同余系。

每个模 n 同余类,可以写成 $\{kn+a \mid k \in \mathbb{Z}\}$ 的形式。也就是说,可以看成某个数 a 不断加上或减去 n 得到的所有数的集合。这个集合是无穷的。不同的模 n 同余类,交集是空集,并集是 \mathbb{Z} 。也就是说,它们是 \mathbb{Z} 的分划。

为了方便,我们从每个模 n 同余类中选一个元素,代表这个同余类。一般来说,可以选 $0,1,\cdots,n-1$ 个数。我们给它们加个上划线,以和作为整数的 $0,1,\cdots,n-1$ 区分:

$$\overline{0},\overline{1},\cdots,\overline{n-1}$$

如果要强调 n, 可以把 n 加在右上角:

$$\overline{0}^n, \overline{1}^n, \cdots, \overline{n-1}^n$$

给定整数 m,我们可以把它对应到某个模 n 同余类,称为对 n **取模**。 比如 n=5 时,24 \equiv_5 4,我们把 24 对应到 $\overline{4}^5$,或者说,24 对 5 取模,得 $\overline{4}^5$ 。

同余关系和相等关系很像,它们是否有一样的性质呢?我们可以验证,同余关系满足以下的性质:

- 1. $\forall a \in \mathbb{Z}, a \equiv_n a$;
- 2. $\forall a, b \in \mathbb{Z}$, 如果 $a \equiv_n b$, 那么 $b \equiv_n a$;
- 3. $\forall a, b \in \mathbb{Z}$, 如果 $a \equiv_n b$, $b \equiv_n c$, 那么 $a \equiv_n c$ 。

3.1 同余类 23

满足以上三个性质的二元关系(两个元素之间的关系)称为**等价关系**。数与数的等于关系是等价关系,数与数的同余关系也是等价关系。因此,我们可以把同余关系用作同余类之间的等于关系。

整数之间有四则运算,模 n 同余类之间,也可以进行运算。以 n=5 为例子。我们分别计算 24 和 37 除以 5 的余数,以及它们的和 61 除以 5 的余数:

$$24 \equiv_5 4$$
, $37 \equiv_5 2$, $61 \equiv_5 1$

可以发现: $4+2 \equiv_5 1$,也就是说,取模和加法可以交换顺序。可以验证,两个同余类中各取一个元素相加,和所在的同余类,就是两者模 n 余数的和所在的同余类。用集合的语言,可以写成:

$$\{kn + a + ln + b \mid k \in \mathbb{Z}, l \in \mathbb{Z}\} = \{kn + a + b \mid k \in \mathbb{Z}\}\$$

所以,可以定义同余类的加法:

$$\overline{a}+\overline{b}=\overline{a+b}$$

其中的 $\overline{a+b}$ 指的是 a+b 所在的同余类。为了方便,我们用 a+b 作为代表。

可以验证,同余类的加法也满足结合律和交换律。这里我们只证明同余类的加法满足结合律,交换律的证明留做习题:

证明: 由上可知 $\overline{a} + \overline{b} = \overline{a+b}$, 所以

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a+b} + \overline{c} = \overline{a+b+c}.$$

类似可得:

$$\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b + c} = \overline{a + b + c}.$$

24 第三章 同余

于是

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b + c} = \overline{a} + (\overline{b} + \overline{c}).$$

类似可以定义同余类的减法和乘法:

$$\overline{a} - \overline{b} = \overline{a - b}, \ \overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

可以验证,同余类的减法性质和整数减法一样,同余类的乘法也满足结合律、交换律和分配律。

能否定义同余类的除法呢? 我们来看一个例子。设 n=6,考虑等式 $12\div 4=3$ 。 12、 4 和 3 对 6 取模,得到 0、 4 和 3。考虑等式 $60\div 10=6$ 。 60、 10 和 6 对 6 取模,得到 0、 4 和 0。也就是说,两个模 6 同余类中各 取元素相除,商所在的同余类不是唯一的。所以,我们没法定义模 6 同余类的除法。

再看另一个例子。设n=5,考虑以下的"乘法表":

×	$\overline{0}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	3
3	$\overline{0}$	3	$\overline{1}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

可以看出,任何模 5 同余类乘以 $\bar{0}$ 都得到 $\bar{0}$,非 $\bar{0}$ 同余类乘以不同的同余类,结果也不同。这说明每个同余类除以另一个同余类(非 $\bar{0}$),都必然有唯一的结果。这样我们就定义了模 5 同余系里的除法。

习题 3.1.1.

动手做一做:

- 1. 证明同余关系满足等价关系所要求的三个性质。
- 2. 证明同余类的加法满足交换律。
- 3. 证明同余类的减法是加法的逆运算。
- 4. 证明同余类的乘法满足结合律和交换律。
- 5. 证明同余类的乘法满足分配律。
- 6. 证明:如果某模 n 同余类的代表与 n 的最大公因数是 d,则其中所有元素与 n 的最大公因数都是 d。
- 7. 分别画出模 3 同余系和模 4 同余系的"乘法表"。它们和模 5 同余系的"乘法表"哪些地方相同,哪些地方不同?

3.2 完全同余系和简化同余系

上一节我们提到模 6 同余系无法定义除法,而模 5 同余系可以定义除法。两者有什么不同呢? 我们画出模 6 同余系的"乘法表":

×	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	<u>5</u>
$\overline{0}$						
$\overline{1}$	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{0}$	$\overline{2}$	$\overline{4}$
3	$\overline{0}$	3	$\overline{0}$	3	$\overline{0}$	3
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{2}$	$\overline{0}$	$\overline{4}$	$\overline{2}$
<u>5</u>	$\overline{0}$	$\overline{5}$	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

可以看到,这个"乘法表"和模 5 同余系的大有不同。同一行或同一列常有重复。这说明不同的同余类乘同一个同余类得到同一个结果。比如

$$\overline{2} \times \overline{4} = \overline{5} \times \overline{4} = \overline{2}$$
.

这就使我们没法定义除法。

如果我们把上面的等式稍作变化,会得到:

$$\overline{0} = (\overline{5} - \overline{2}) \times \overline{4} = \overline{3} \times \overline{4}.$$

也就是说,有非 $\bar{0}$ 的同余类相乘等于 $\bar{0}$ 。同余类乘法的这个性质和整数乘法完全不同。我们把这种非 $\bar{0}$ 同余类叫做**零因子**。整数中没有零因子: 非 $\bar{0}$ 的整数相乘必然不是 $\bar{0}$ 。而只要有这种零因子存在,同余系中就会发生"不同的同余类乘同一个同余类得到同一个结果"的现象,从而无法定义除法。

有什么办法在模 6 同余系中定义除法呢? 我们可以选一部分同余类, 在其中定义除法。如果同余类 \overline{a} 的代表 a 与 6 不互素, 设最大公因数是 b, 那么

$$\frac{a}{b} \times 6 = a \times \frac{6}{b}$$

于是有 $\overline{a} \times \frac{\overline{6}}{b} = \overline{0}$,出现零因子。因此,为了避免零因子问题,我们只选和 6 互素的数所在的同余类,也就是 $\overline{1}$ 和 $\overline{5}$ 。我们发现 $\{\overline{1},\overline{5}\}$ 中可以定义乘法 和除法(但不再满足加减法)。

×	$\overline{1}$	5
1	$\overline{1}$	<u>5</u>
<u>5</u>	5	1

我们把模 6 同余系称为模 6 的**完全同余系**,把 $\{\overline{1},\overline{5}\}$ 称为模 6 的**简化同余 系**。

一般来说,我们把模 n 同余系称为模 n 的完全同余系,在其中可以定义加减法和乘法;把其中所有和 n 互素的同余类的集合称为模 n 的简化同余系 1 。

定理 3.2.1. 给定正整数 n, 在模 n 的简化同余系中可以定义乘法和除法。

 $^{^{1}}$ 通常不把 $\bar{0}$ 计入简化剩余系,以省去讨论除以 $\bar{0}$ 的问题。

证明: 模 n 同余类的乘法已经定义好了。我们只需要说明: 简化同余系中的同余类相乘,仍然在简化同余系中。这是因为与 n 互素的整数相乘,结果还是与 n 互素。

接下来定义除法。除法是乘法的逆运算。比照数的除法: $a \div b = a \times \frac{1}{b}$ 。因此,只要将简化同余系中每个同余类都对应一个"倒数",就可以用"乘以倒数"来定义除法。

我们把模n 简化同余系中的同余类用小于n 且与n 互素的正整数来代表,记为

$$1 = b_1 < b_2 < \dots < b_{\varphi(n)} = n - 1.$$

其中 $\varphi(n)$ 是模 n 简化同余系的元素个数。考虑任一元素 b_i ,我们接下来会证明: $b_ib_1, b_ib_2, \dots, b_ib_{\varphi(n)}$ 模 n 两两不同余。于是,它们中恰有一个模 n 余 1。设 $b_ib_i \equiv_n 1$,那么 b_i 就是 b_i 的"倒数"。

最后用反证法证明命题: $b_ib_1, b_ib_2, \cdots, b_ib_{\varphi(n)}$ 模 n 两两不同余。

反设命题不成立,即存在 b_j , b_k 使得 $b_i b_j \equiv_n b_i b_k$ 。这说明 $n|b_i(b_j - b_k)$ 。由于 b_i 和 n 互素,根据倍和析因定理,存在整数 p,q,使得:

$$b_i p + nq = 1.$$

两边乘以 $b_j - b_k$, 就得到:

$$b_i(b_j - b_k)p + nq(b_j - b_k) = b_j - b_k.$$

等式左边是 n 的倍数,因此 b_j 和 b_k 模 n 同余,这与它们的定义矛盾。因此命题的否定为假,原命题为真。

简化同余系的除法和整数不同,任何同余类都能整除另一个同余类,不需要余数、带余除法的概念。每个同余类都有自己的"倒数",比如在模 6 简化同余系中, $\overline{5} \times \overline{5} = \overline{1}$ 。我们把同余类的"倒数"称为它的(乘法)**逆**。

习题 3.2.1.

- 1. 写出模 12 的简化同余系。写出 7^{12} 的逆。
- 2. 比较模 12 简化同余系中的乘除法和模 4 完全同余系中的加减法,

它们有何异同?

3. 写出模 10 的简化同余系。写出 $\overline{7}^{10}$ 的逆。

4. 比较模 10 简化同余系中的乘除法和模 4 完全同余系中的加减法, 它们有何异同?

5. 给定素数 n, 写出模 n 简化同余系。

3.3 方余定理

与模 n 简化同余系密切相关的一个定理是方余定理 2 。

定理 3.3.1. 方余定理 设 a 是模 n 简化同余系中某个同余类中的元素,则:

$$a^{\varphi(n)} \equiv_n 1$$

其中 $\varphi(n)$ 是模 n 简化同余系中同余类的个数。

比如,模 10 简化同余系有 4 个元素: $\bar{1},\bar{3},\bar{7},\bar{9}$ 。7 属于同余类 $\bar{7}$,则 $7^4\equiv_{10}1$ 。

证明: 我们把模 n 简化同余系中的同余类用小于 n 且与 n 互素的正整数来代表,记为

$$1 = b_1 < b_2 < \dots < b_{\varphi(n)} = n - 1.$$

它们两两不同余。把它们各自乘以a,得到 $\varphi(n)$ 个整数: $ab_1,ab_2,\cdots,ab_{\varphi(n)}$ 。前面我们已经证明了,它们仍然两两不同余。

这说明这 $\varphi(n)$ 个整数也分别代表模n简化同余系中的各个同余类。

考虑乘积: $b_1b_2\cdots b_{\varphi(n)}$ 。 $(ab_1)(ab_2)\cdots (ab_{\varphi(n)})$ 和它同余。也就是说:

$$b_1b_2\cdots b_{\varphi(n)} \equiv_n (ab_1)(ab_2)\cdots (ab_{\varphi(n)}) \equiv_n a^{\varphi(n)}b_1b_2\cdots b_{\varphi(n)}.$$

²这个定理也称为欧拉定理。但以欧拉命名的定理太多了。为了避免混淆,这里不采用。

3.3 方余定理 29

由于 $b_1b_2\cdots b_{\varphi(n)}$ 也与 n 互素, 我们把等式两边除以 $b_1b_2\cdots b_{\varphi(n)}$, 就得到:

$$a^{\varphi(n)} \equiv_n 1.$$

如果 n 是素数,那么 $1,2,\cdots,n-1$ 都和它互素,于是模 n 的简化同 余系就是 $\{\overline{1},\overline{2},\cdots,\overline{n-1}\}$, $\varphi(n)=n-1$ 。根据方余定理,只要 a 不是 n 的倍数,就有:

$$a^{n-1} \equiv_n 1.$$

这个结论也叫做费马小定理。

习题 3.3.1.

给定素数 n, 证明:

- 1. 除了 $\overline{1}$ 和 $\overline{n-1}$, 其它同余类的逆都不是自己。
- 2. $(n-1)! \equiv_n -1$.

设 a 与 n 互素, 称使得 $a^m \equiv_n 1$ 的最小正整数 m 为 a 模 n 的**阶**。

- 3. 证明 a 的阶整除 $\varphi(n)$ 。
- 4. 如果 a 的阶等于 $\varphi(n)$, 就说 a 是模 n 的**原根**。证明: 如果 a 是模 n 的原根,那么模 n 简化同余系可以写成: $\{\overline{a^0}, \overline{a^1}, \cdots, \overline{a^{\varphi(n)-1}}\}$ 。
 - 5. 找出所有模7的原根。

第四章 用数据说话

- 4.1 样本和特征
- 4.2 描述和分析
- 4.3 数据的结构

第五章 数学和社会

- 5.1 随时代变化的数学
- 5.2 数学和科学
- 5.3 数学和现代化