ABC - Stands for Artificial Bee Colony

AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION

(TECHNICAL REPORT-TR06, OCTOBER, 2005)

Dervis KARABOGA

karaboga@ercives.edu.tr

Erciyes University, Engineering Faculty
Computer Engineering Department
Kayseri/Türkiye

A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm

<u>Dervis Karaboga</u> & <u>Bahriye Basturk</u> ⊠

Journal of Global Optimization 39, 459-471(2007) | Cite this article

The movement of the bees is recorded in three phases

Employed Phase-

- · Generate a new solution.
- · Calculate new fitness.
- · Apply greedy selection.

Onlooker Phase-

- Calculate the probabilities.
- Produce a new solution depending on probability.
- · Calculate new fitness.
- Apply greedy selection.

Scout Phase-

Find the abandoned solution (based on the value of *limit*)

 Generate a new solution randomly to replace them.

0

Working Rule (Algorithm)

Illustrative Example

Maximize
$$f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$
 where $-5 \le x_1, x_2 \le 5$

ABC Parameter Setting (used only for illustration)

Randomly chosen:

Swarm (Population) Size = $10^{(N)}$; No. of cycle (Iteration) = 20Dimension of the problem = 2; Limit = $1 + \frac{N}{2} \times D$

Dimension of the problem = 2/; Limit = $\frac{1}{2}$ $\times D$ No. of employed bees = no. of onlooker bees = food sources = 5

In ABC, our Goal is to calculate and update these values

-5< x, 72 <5

Randomly Initialize food source

between -5 & 5

food Source

Randomly Initialize food source

between -5 & 5

Calculate function values f(x):

food Source

$$\begin{bmatrix} & & & & & & & \\ 3.1472 & & & & & & \\ 4.0579 & & & & & & \\ -3.7301 & & & & & & \\ 4.1338 & & & & & & \\ 4.5751 \\ 1.3236 & & & & & & \\ 4.6489 \end{bmatrix}$$

Maximize f(x)

Minimize

Maximize
$$f(X) = x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

Randomly Initialize food source

between -5 & 5

Calculate function values f(x):

Calculate the fitness:

3.1472	-4.0246
4.0579	-2.2150
-3.7301	0.4688
4.1338	4.5751
1.3236	4.6489

food Source

3.1472	-4.0246
4.0579	-2.2150
-3.7301	0.4688
4.1338	4.5751
1.3236	4.6489

Maximize

Minimize

Randomly Initialize food source

between -5 & 5

Calculate function values f(x):

food Source

3.1472 -4.0246 4.0579 -2.2150 -3.7301 0.4688 4.1338 4.5751 1.3236 4.6489

$\frac{\text{Maximize}}{f(x)}$

[31,9645] 32.6168 13.2971 48.6753 41.4537]

Minimize

fit 0.0303 0.0297 0.0699 0.0201 0.0236

[... ...

trial

Calculate the fitness :

Randomly Initialize food source

between -5 & 5

Calculate function values f(x):

food Source

 3.1472
 -4.0246

 4.0579
 -2.2150

 -3.7301
 0.4688

 4.1338
 4.5751

 1.3236
 4.6489

$\frac{\text{Maximize}}{f(x)}$

[31.9645] 32.6168 13.2971 48.6753 41.4537

Minimize fit

fit trial

0.0303

0.0297

0.0699

0.0201

0.0236

Calculate the fitness :

Set the initial trial vector

Updation rule for Trial Counter

If solution

- Couldn't improve then we increase trail counter by 1.
- Improve, we reset to 0

Updation rule for Trial Counter

If solution

- · Couldn't improve then we increase trail counter by 1.
- · Improve, we reset to 0

Employed bee Phase: 2nd employed bee: Select the random variable to change: 2 Select the random partner: 3 Create a new food location: Let $\phi = 0.31$ $X_{new} = -2.2150 + 0.31(-2.2150 - 0.4688)$ $= -3.0470 \in (-5,5)$ $\times + \phi(\chi - \chi P)$	food Source [3.1472	Maximize $f(x)$ $ \begin{bmatrix} 31.9645 \\ 32.6168 \\ 13.2971 \\ 48.6753 \\ 41.4537 \end{bmatrix} $	$\begin{array}{ccc} \textbf{Minimize} & \textbf{trial} \\ \hline & \textbf{fit} & \textbf{trial} \\ \hline \begin{bmatrix} 0.0303 \\ 0.0297 \\ 0.0699 \\ 0.0201 \\ 0.0236 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{array}$
Thus, $X_2 = \begin{bmatrix} 4.0579 & -3.0470 \end{bmatrix}$ Perform greedy selection:	food Source [3.1472 -4.0246]	Maximize $f(x)$ [31.9645]	Minimize fit trial
Trial Value:		;	;
Employed bee Phase: 2nd employed bee: Select the random variable to change: 2	food Source [3.1472	Maximize $f(x)$ $\begin{bmatrix} 31.9645 \\ 22.6469 \end{bmatrix}$	Minimize fit trial [0.0303] [0]
Select the random partner: 3 Create a new food location: Let $\phi = 0.31$ $X_{new} = -2.2150 + 0.31(-2.2150 - 0.4688)$ $= -3.0470 \in (-5, 5)$	4.0579 2.2150 -3.7301 0.4688 4.1338 4.5751 1.3236 4.6489	; 13.2971 48.6753 41.4537	; 0.0297 0 0.0699 0 0.0201 0 0.0236
Thus, $X_2 = \begin{bmatrix} 4.0579 & -3.0470 \end{bmatrix}$ $f(x) = 37.0428; \text{ fit } = 0.0263$	food Source	Maximize f(x)	Minimize fit trial
Perform greedy selection: As 0.0263< 0.0297; so update food source. Trial Value:	4.0579 - 3.0470	; 37.0428 ;	;
Employed bee Phase: 2nd employed bee: Select the random variable to change: 2 Select the random partner: 3 Create a new food location: Let $\phi = 0.31$ $X_{new} = -2.2150 + 0.31(-2.2150 - 0.4688)$	food Source [3.1472	Maximize $f(x)$ $ \begin{array}{c} 31.9645 \\ 32.6168 \\ 13.2971 \\ 48.6753 \\ 41.4537 \end{array} $	$\begin{array}{c c} \textbf{Minimize} & \textbf{trial} \\ \hline & \textbf{fit} & \textbf{trial} \\ \hline & 0.0297 & 0\\ \hline & 0.0699 & 0\\ \hline & 0.0201 & 0\\ \hline & 0.0236 & 0 \\ \end{array}$
$= -3.0470 \in (-5, 5)$ Thus, $X_2 = [4.0579 - 3.0470]$ $f(x) = 37.0428$; fit = 0.0263 Perform greedy selection:	food Source [3.1472 -4.0246	Maximize $f(x)$ [31.9645] 37.0428	Minimize fit trial [0.0303] 0.0263 [0]
As 0.0263< 0.0297; so update food source. Trial Value: As there is an update, set trial(2) = 0		; []	;

food Source	f(x)	ľ	fit	trial
3.1472 -4.0246 4.0579 -3.0470 -3.7301 2.7604 4.1338 4.5751 1.6327 4.6489	31.9645 37.0428 38.4119 48.6753 41.5487	;	0.0303 0.0263 0.0254 0.0201 0.0235	

un Mout Dago

Onlooker bee Phase:

Calculate the probabilities using $p_i = \frac{fit_i}{\sum fit_i}$ $P_i = \underbrace{0.0303}_{2}$ $P_i = \underbrace{0.0303}_{2}$

 $X_{new} = X + \phi(X - X_p)$

Based on these probabilities, we implement the onlooker phase.

Difference between Employed & Onlooker Bee Phases

Employed -

all food source values are used to generate a new (better) values.

Onlooker -

a food source may or may not

generate a new solution, that depends on the random number selected for a particular onlooker bee as well as the probabilities of the food source.

Memorize the best answer

My objective function is of Maximization

Best food source |-5.000 2.7604 |

Best f(x) = 50.4639

	food	Source	$\frac{\text{Maximize}}{f(x)}$	Minimize fit	trial
	3.1472	-4.0246	[31.9645]	[0.0303]	[3]
	5.0000	- 3.0470	50.3311	0.0195	0
	-5.000	2,7604	50.4639	0.0194	0
1	4.1338	4.5751	48.6753	0.0201	1
	1.6327	5.0000	45.7676	0.0214	[0]

SCOUT Phase.

Remember, Scout phase may or may not be encountered in every iteration.

D

Firstly, we need to check, whether

Scout phase bee implemented or not?

food	Source	N	$\frac{\text{laximize}}{f(x)}$	Mi	inimize fit	trial	
3.1472 5.0000 - -5.000 4.1338	-4.0246 - 3.0470 2.7604 4.5751	;	31.96451 50.3311 50.4639 48.6753	;	0.0303 0.0195 0.0194 0.0201	3	
1.6327	5.0000		45.7676		0.0214	Lo)]

SCOUT Phase.

Remember, Scout phase may or may not be encountered in every iteration.

Firstly, we need to check, whether Scout phase bee implemented or not?

That decision is taken on the basis of trial values & limit.

food Source

3.1472 -4.02465.0000 - 3.0470-5.0002.7604 4.1338 4.5751 1.6327 5.0000

Maximize f(x)31.9645 50.3311

0.0303 0.0195 0.0194 50.4639 0.0201 48.6753 45.7676 0.0214

fit

SCOUT Phase.

Since trial(1)>limit, so we apply scout phase here. 371

food Source 3.1472 -4.0246

5.0000 - 3.0470-5.0002.7604 4.1338 4.5751 1.6327 5.0000

Maximize f(x)31.9645 50.3311

50.4639 48.6753 45.7676

trial 0.0303 0.0195 0.0194 0 0.0201 0.0214

SCOUT Phase.

Since trial(1)>limit, so we apply scout phase here.

In it, we discard this solution and randomly generate a

New solution between the given domain (-5, 5).

$$X = L + rand(U - L)$$

Randomly choose a new solution as

[3.6045
$$-1.7170$$
] f(x) = 25.4710 fft= 0.0378

food :	Source	1	$\frac{1}{f(x)}$	Mi	nimize fit	trial	
Г 3 1472	1.0246	8	r31,96451	- 25	0.03031	F 3	7
5.0000 - -5.000 4.1338	- 3.0470 2.7604 4.5751	;	50.3311 50.4639 48.6753	;	0.0195 0.0194 0.0201	0	
1.6327	5.0000		45.7676		0.0214	lo	

food :	Source	P	$\frac{1}{f(x)}$	Mi	inimize fit	trial	
[3.6045	-1.7170		[25.4710]	1	0.0378	[0	1
5.0000 - -5.000	- 3.0470 2.7604		50.3311 50.4639		0.0195	0	
4.1338	4.5751	,	48.6753	;	0.0201	1	
1.6327	5.0000		45.7676		0.0214	[0	+

SCOUT Phase.

Since trial(1)>limit, so we apply scout phase here.

In it, we discard this solution and randomly generate a

New solution between the given domain (-5, 5).

X =	L +	rand	(U -	L)

Remember:

There is no greedy selection in SCOUTT phase.

food :	Source	N	$\frac{f(x)}{f(x)}$	M	inimize fit	trial	
[3.1472	4.0246		r31.96457	- 7	0.03031	$-(3)_{1}$	_
5.0000 - -5.000 4.1338 1.6327	- 3.0470 2.7604 4.5751 5.0000	;	50.3311 50.4639 48.6753 45.7676	;	0.0195 0.0194 0.0201 0.0214	0 0 1 0	

food	Source	1	$\frac{1}{f(x)}$	Mi	nimize fit	trial	
[3.6045]	-1.7170		(25.4710)	at A	0.0378	[0	1
100.00	- 3.0470		50.3311		0.0195	0	1
-5.000	2.7604		50.4639		0.0194	0	1
4.1338	4.5751	,	48.6753	,	0.0201	1	1
1.6327	5.0000		45.7676		0.0214	0	10

Minimize

Iteration 1:

Best food source |-5.000 2.7604

Best f(x) = 50.4639

food	Source
[3.6045	-1.7170
5.0000	-3.0470
-5.000	2.7604
4.1338	4.5751
1 6327	5,0000

Maximize

Iteration 5;

Best food source [-5.0000 3.8737]

Best f(x) = 67.8691

it -> 19

Iteration 20

Best food source [-5.000 5.000]

Best f(x) = 88.0000

food Source -5.0000 4.8716 -2.6008 -3.7668 5.0000 4.8795 4.5729 4.5751 5.0000 4.2400

(f(xin)-g(xi))/< =

Summary

