Définir une suite

Exercice 1 Par récurrence ou par son terme général?

Pour chaque suite :

- · Dire si elle est définie par récurrence ou par son terme général.
- · Calculer les quatre premiers termes.

1.
$$w_n = 2n + 1$$
 pour tout $n \in \mathbb{N}$

2.
$$\begin{cases} k_0 &= 1 \\ k_{n+1} &= k_n+4 \text{ pour tout } n \in \mathbf{N} \end{cases}$$

3.
$$z_n = \sqrt{n+1}$$
 pour tout $n \in \mathbb{N}$.

4.
$$\left\{ \begin{array}{lcl} l_0 & = & 100 \\ l_{n+1} & = & 0, 1l_n & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

5.
$$j_n = n^2$$
 pour tout $n \in \mathbb{N}$

6.
$$\begin{cases} p_0 &= 2 \\ p_{n+1} &= \left(p_n\right)^2 \text{ pour tout } n \in \mathbf{N} \end{cases}$$

Exercice 2 Passage du terme général à une relation de récurrence

- **1.** La suite a est définie par $a_n = 3n 4$ pour tout $n \in \mathbb{N}$.
 - a. Donner l'expression de a_{n+1} en fonction de n.
 - **b.** En déduire l'expression de a_{n+1} en fonction de a_n et de n.
- **2.** La suite g est définie par $g_n=2^n$ pour tout $n \in \mathbb{N}$.
 - a. Donner l'expression de g_{n+1} en fonction de n.
 - **b.** En déduire l'expression de g_{n+1} en fonction de g_n et de n.
- **3.** La suite u est définie par $u_n = n^2 + n$ pour tout $n \in \mathbb{N}$.
 - a. Donner l'expression de u_{n+1} en fonction de n.
 - **b.** En déduire l'expression de u_{n+1} en fonction de u_n et de n.
- **4.** La suite v est définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{n+1}{n+2}$.
 - a. Donner l'expression de v_{n+1} en fonction de n.
 - **b.** En multipliant le membre de droite par $\frac{n+1}{n+1}$, trouver l'expression de v_{n+1} en fonction de v_n et de n.

Exercice 3 Suite définie par une formule de tableur

On souhaite calculer les termes d'une suite à l'aide d'un tableur.

	А	В	С	D	Е	F	G
1	n	0	C2	2	3	4	
2	u _n	-2	=3*C1^2	+5* <mark>C1</mark> −2			
3							
4							
5							
6							

- a. Si on étend la formule de la cellule C2 à la cellule D2, quelle est la valeur de u_2 ?
- **b.** Exprimer le terme général u_n en fonction de n en utilisant la formule donnée par le tableur.
- 2. Pour chacune des feuilles de calcul, écrire la relation donnant u_{n+1} en fonction de u_n et donner les trois premiers termes de la suite (u_n) .

		Α	В	С
	1	n	u _n	
	2	0	3	3
	3	1	=3*B2+1	
	4	2		
	5			
	6			
	7			
1	8			

	-		_	<u> </u>
	3	1	=3*B2+1	
	4	2		
	5			
	6			
	7			
	8			

Exercice 4 Suite définie par un algorithme

1. On considère l'algorithme suivant :

Algorithme

- a. Quelle sera la dernière valeur calculée par cet algorithme?
- **b.** On appelle (u_n) la suite associée aux valeurs calculée par l'algorithme. Donner l'expression du terme général de cette suite.

2. On considère le script suivant :

Python

- a. On appelle (u_n) la suite associée aux valeurs calculées par le script. Écrire une relation entre u_{n+1} et u_n et calculer les quatre premiers termes de cette suite.
- b. À l'aide de la calculatrice, afficher les 10 premiers termes de cette suite.

Exercice 5 Une récurrence d'ordre 2

La suite r est définie par $r_0=2$, $r_1=3$ et, pour tout entier naturel n:

$$r_{n+2} = 2r_n - r_{n+1}$$

Calculer les cinq premiers termes de la suite.

Exercice 6 Deux suites récurrentes imbriquées

Les suites a et b sont définies par $a_0=900,\,b_0=200$ et pour tout $n\in \mathbb{N}$:

$$\begin{cases} a_{n+1} = 0,9a_n + 0,1b_n \\ b_{n+1} = 0,1a_n + 0,9b_n \end{cases}$$

Calculer les trois premiers termes des deux suites.

Exercice 7 Une suite périodique

On considère la suite p définie par

$$\left\{ \begin{array}{lcl} p_0 & = & 2 \\ p_{n+1} & = & 1-\frac{1}{p_n} \end{array} \right. \text{ pour tout } n \in \mathbf{N}$$

Calculer les 10 premiers termes de cette suite.

Modéliser à l'aide d'une suite

Exercice 8

On considère la succession de figures suivantes :

3

On note b_n le nombre de bâtons nécessaires à la construction de la figure n où $n \in \mathbf{N}^*$.

- **1. a.** Donner les valeurs de b_1, b_2 et b_3 .
 - **b.** Tracer la figure 4 et donner la valeur de b_4 .
 - **c.** Conjecturer une formule explicite de la suite (b_n) .
- 2. En supposant exacte la conjecture émise à la question 1c, déterminer :
 - **a.** la valeur de b_{20} ;
 - b. quelle est la plus grande figure que l'on puisse construire avec 200 bâtons.

Avec des carreaux, on construit un motif géométrique par la succession des figures suivantes :

Modéliser, à l'aide d'une suite récurrente, le nombre de carreaux de chaque figure.

Exercice 10

En 2021, un journal régional compte 62 000 abonnés. On suppose que chaque année 85 % des abonnés renouvellent leur abonnement et que l'on compte 4500 nouveaux abonnés.

- 1. Déterminer le nombre de d'abonnés à ce journal en 2022, puis en 2023.
- 2. Modéliser, à l'aide d'une suite récurrente, le nombre d'abonnés à ce journal.

Exercice 11

Une ville compte 195 médecins. En raison des départs à la retraite, elle enregistre chaque année une perte de médecins de 4 % et on estime à 5 le nombre de nouveaux médecins qui s'installent. À l'aide d'une suite, modéliser cette situation pour estimer le nombre de médecins dans n années.

Exercice 12

Avec des anneaux, on réalise une succession de motifs géométriques dont on a représenté les trois premiers ci-contre.

Pour tout nombre entier naturel non nul n, on note c_n le nombre d'anneaux du motif n.

Motif 1

Motif 2 Motif 3

- **1. a.** Représenter le motif 4 et donner les valeurs de c_1, c_2, c_3 et c_4 .
 - **b.** Établir une relation de récurrence entre c_{n+1} et c_n .
- **2.** On remarque que, pour tout $n \in \mathbb{N}^*$: $c_n = 1 + 0 \times 4 + 1 \times 4 + ... + (n-1) \times 4$.
 - a. On admet que, pour tout $n \in \mathbf{N}^*$: $1+2+...+(n-1)=\frac{n(n-1)}{2}$. Prouver que $c_n=2n^2-2n+1$.
 - b. Quel est le plus grand motif que l'on peut réaliser avec 2000 anneaux?

Exercice 13 Suites de moyennes

On considère les suites (a_n) et (b_n) vérifiant $a_0 \ge 0, b_0 \ge 0$ et pour tout $n \in \mathbb{N}$:

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 et $b_{n+1} = \sqrt{a_n b_n}$.

4

- 1. Pour chacun des termes initiaux donnés ci-dessous :
 - calculer a_1, b_1, a_2 et b_2 ;
 - ranger dans l'ordre croissant les nombres a_1, b_1, a_2 et b_2 .

a.
$$a_0 = 8$$
 et $b_0 = 18$.

b.
$$a_0 = 45$$
 et $b_0 = 5$. **c.** $a_0 = 6$ et $b_0 = 6$.

c.
$$a_0 = 6$$
 et $b_0 = 6$

- 2. Connaissant les nombres a_n et b_n , une construction géométrique des nombres a_{n+1} et b_{n+1} , sur l'axe des nombres réels d'origine O, est illustrée ci-dessous :
 - a. Justifier cette construction. Aide : Utiliser le théorème de Pythagore.
 - b. Conjecturer une propriété concernant la monotnie des suites (a_n) et (b_n) .

Info: a et b étant deux nombres positifs, le nombre \sqrt{ab} est appelé **moyenne géométrique** de a et b.

Représentation graphique d'une suite

Exercice 14

Considérons la suite u définie par :

$$\left\{ \begin{array}{lcl} u_0 & = & 4 \\ u_{n+1} & = & 0, 5u_n + 4 \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

- **1.** Calculer u_1 , u_2 , u_3 et u_4 .
- 2. Représenter ces termes dans le repère cidessous.
- 3. Quelle semblent être la variation et la «limite de la suite u?

Exercice 15

Considérons la suite v définie par :

$$\left\{ \begin{array}{lcl} v_0 & = & 16 \\ v_{n+1} & = & 0, 5v_n+4 \quad \mbox{pour tout } n \in \mathbf{N} \end{array} \right.$$

- **1.** Calculer v_1 , v_2 , v_3 et v_4 .
- 2. Représenter ces termes dans le repère cidessous.
- 3. Quelle semblent être la variation et la «limite » de la suite v?

On considère la famille de suites (α_n) suivante : $\left\{ \begin{array}{ll} \alpha_0 &=& a & \text{ où } a \text{ est un réel donné} \\ \alpha_{n+1} &=& 0, 5\alpha_n + 4 \end{array} \right.$ pour tout $n \in \mathbf{N}$

Il existe un moyen commode de représenter ces suites :

- On pose pour tout $x \in \mathbf{R}$, f(x) = 0, 5x + 4.
- · Dans un repère **orthogonal**, on représente \mathcal{C}_f et la droite d'équation y=x :

1. On considère la suite u définie à l'exercice 14.

Au crayon à papier (puis en rouge une fois que vous êtes sûr(e) de vous) nous allons représenter les premiers termes de u:

- Placer sur l'axe des abscisses le **nombre** u_0 .
- Placer le **point** de coordonnées $(u_0; f(u_0))$.
- Placer le **point** de coordonnées $(f(u_0); f(u_0))$ et relier avec le **point** précédent.
- Puisque $f(u_0) = u_1$, placer sur l'axe des abscisses le **nombre** u_1 .
- Placer le **point** de coordonnées $(u_1; f(u_1))$ et relier avec le **point** précédent.
- · Placer le **point** de coordonnées $(f(u_1); f(u_1))$ et relier avec le **point** précédent.
- Puisque $f(u_1) = u_2$, placer sur l'axe des abscisses le **nombre** u_2 .
- Et cætera.
- 2. Faire de même en vert pour les premiers termes de la suite v définie à l'exercice 15.

On peut adapter ce procédé aux suites définies par récurrence à l'aide d'une fonction f:

$$\left\{ \begin{array}{ll} u_0 & = & a & \text{ où a est un réel donné} \\ u_{n+1} & = & f(u_n) & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

Pour l'exemple, prenons f définie sur $[-1; +\infty[$ par $f(x) = \sqrt{1+x}.$

Représenter sans chercher à les calculer, les premiers termes de la suite r définie par

$$\left\{ \begin{array}{lcl} r_0 & = & 8 \\ u_{n+1} & = & \sqrt{1+r_n} & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

- 1. Conjecturer la variation de r et donner une valeur approchée de sa limite.
- 2. Proposer une valeur exacte en déterminant l'intersection de \mathcal{C}_f et de la droite d'équation y=x.

Faire de même avec
$$\left\{ \begin{array}{ll} q_0 &=& 7 \\[1mm] q_{n+1} &=& \frac{4}{1+q_n} \end{array} \right. \ \ {\rm pour \ tout} \ n \in {\bf N}$$

Exercice 19

De même avec
$$\left\{ \begin{array}{lcl} v_0 & = & 2 \\ \\ v_{n+1} & = & 1-\frac{1}{v_n} \end{array} \right. \ \mbox{pour tout } n \in \mathbf{N} \label{eq:v0}$$

Sens de variation

Dans chaque cas, étudier le sens de variation de la suite (u_n) définie par la relation donnée.

Exercice 20 À l'aide d'une étude de fonction

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = 3n - 4$

2. Pour tout
$$n \in \mathbb{N}$$
, $u_n = 3n^2 - 4$

3. Pour tout
$$n \in \mathbb{N}$$
, $u_n = -2n - 3$

4. Pour tout
$$n \in \mathbb{N}$$
, $u_n = n^2 - 10n + 15$

Exercice 21 À l'aide du signe de $u_{n+1} - u_n$

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = 2n^2 - n + 1$

2.
$$\begin{cases} u_0 &= 2 \\ u_{n+1} &= u_n - \sqrt{u_n^2 + 3} \quad \text{pour tout } n \in \mathbf{N} \end{cases}$$

3.
$$\begin{cases} u_0 & = 1 \\ u_{n+1} & = -u_n^2 + u_n - 1 \text{ pour tout } n \in \mathbb{N} \end{cases}$$

2.
$$\begin{cases} u_0 = 2 \\ u_{n+1} = u_n - \sqrt{u_n^2 + 3} \text{ pour tout } n \in \mathbf{N} \end{cases}$$
 4.
$$\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + n^2 - n + 3 \text{ pour tout } n \in \mathbf{N} \end{cases}$$

Exercice 22 Sens de variation d'une suite à termes positifs à l'aide de $\frac{u_{n+1}}{u_n}$

On admet que les suites u, v et w sont à termes strictement positifs.

a. u définie par $u_0 = 20$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1, 4u_n$.

b. v définie par $v_0 = 1$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{v_n}{n+1}$.

c. w définie pour tout $n \in \mathbf{N}^*$ par , $w_n = \frac{n}{2^n}$.

Exercice 23

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = 2n^2 - n + 1$

2. Pour tout
$$n \in \mathbb{N}$$
, $v_n = (4n-1)^2$

3. Pour tout
$$n \in \mathbf{N}^*$$
, $w_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$

4. Pour tout
$$n \in \mathbb{N}$$
, $x_n = 1 + 2^2 + 3^3 + \ldots + n^n$

Exercice 24

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = (-1)^n$

2. Pour tout
$$n \in \mathbb{N}$$
, $v_n = 5n^2 - n + 2$

3.
$$\begin{cases} t_0 &= 2 \\ t_{n+1} &= t_n - (n+3)^2 \text{ pour tout } n \in \mathbf{N} \end{cases}$$

4.
$$\bigstar$$
 Pour tout $n \in \mathbb{N}$, $w_n = n^3 + 7n + 3$

Pour la question 4., on pourra utiliser l'identité : $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

9

1. Pour tout
$$n \in \mathbb{N}$$
, $u_n = 9n + (-3)^n$

2. Pour tout
$$n \in \mathbb{N}$$
, $v_n = n^3 - n^2$

3. Pour tout
$$n \in \mathbb{N}$$
, $w_n = 1 + \frac{1}{n+1}$

4.
$$\left\{ \begin{array}{lcl} t_0 & = & 2 \\ t_{n+1} & = & t_n - \sqrt{n+1} & \text{pour tout } n \in \mathbf{N} \end{array} \right.$$