1.3 EXERCISES

In Exercises 1 and 2, compute $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - 2\mathbf{v}$.

1.
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$
 2. $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

2.
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

In Exercises 3 and 4, display the following vectors using arrows on an xy-graph: \mathbf{u} , \mathbf{v} , $-\mathbf{v}$, $-2\mathbf{v}$, \mathbf{u} + \mathbf{v} , \mathbf{u} - \mathbf{v} , and \mathbf{u} - $2\mathbf{v}$. Notice that $\mathbf{u} - \mathbf{v}$ is the vertex of a parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}, \text{ and } -\mathbf{v}$.

3. u and v as in Exercise 1

4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent to the given vector equation.

5.
$$x_1 \begin{bmatrix} 3 \\ -2 \\ 8 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 0 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$$

6.
$$x_1 \begin{bmatrix} 3 \\ -2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of \mathbf{u} and \mathbf{v} . Is every vector in \mathbb{R}^2 a linear combination of \mathbf{u} and \mathbf{v} ?

7. Vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d}

8. Vectors \mathbf{w} , \mathbf{x} , \mathbf{y} , and \mathbf{z}

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9.
$$x_2 + 5x_3 = 0$$
 10. $3x_1 - 2x_2 + 4x_3 = 3$
 $4x_1 + 6x_2 - x_3 = 0$ $-2x_1 - 7x_2 + 5x_3 = 1$
 $-x_1 + 3x_2 - 8x_3 = 0$ $5x_1 + 4x_2 - 3x_3 = 2$

In Exercises 11 and 12, determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$

12.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$

In Exercises 13 and 14, determine if **b** is a linear combination of the vectors formed from the columns of the matrix A.

13.
$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$

15. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 3 \\ -5 \\ h \end{bmatrix}$. For what

value(s) of h is \mathbf{b} in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ?

16. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what value(s) of h is \mathbf{v} in the plane generated by \mathbf{v} .

value(s) of h is y in the plane generated by v_1 and v_2 ?

In Exercises 17 and 18, list five vectors in Span $\{v_1, v_2\}$. For each vector, show the weights on \mathbf{v}_1 and \mathbf{v}_2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

17.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

18.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$$

19. Give a geometric description of Span $\{v_1, v_2\}$ for the vectors $\mathbf{v}_1 = \begin{bmatrix} 8 \\ 2 \\ -6 \end{bmatrix} \text{ and } \mathbf{v}_2 = \begin{bmatrix} 12 \\ 3 \\ -9 \end{bmatrix}.$

20. Give a geometric description of Span $\{v_1, v_2\}$ for the vectors

21. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Show that $\begin{bmatrix} h \\ k \end{bmatrix}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$ for all h and k .

22. Construct a 3×3 matrix A, with nonzero entries, and a vector \mathbf{b} in \mathbb{R}^3 such that \mathbf{b} is *not* in the set spanned by the columns

In Exercises 23 and 24, mark each statement True or False. Justify

23. a. Another notation for the vector $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$ is $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$.

b. The points in the plane corresponding to $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$ lie on a line through the origin.

c. An example of a linear combination of vectors \mathbf{v}_1 and \mathbf{v}_2 is the vector $\frac{1}{2}\mathbf{v}_1$.