U 2064435

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 064 435 ⁽¹³⁾ C1

(51) Int. Cl.⁶ C 01 F 7/44

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 94001144/26, 12.01.1994

(46) Date of publication: 27.07.1996

- (71) Applicant: Spetsial'noe konstruktorsko-tekhnologicheskoe bjuro katalizatorov s opytnym zavodom, Nauchno-proizvodstvennoe predprijatie "Tekhprodukt"
- (72) Inventor: Balashov V.A., Borisova T.V., Lotjuk K.S., Khilja V.M., Kovalev L.N., Kolotjuk V.A.
- (73) Proprietor: Spetsial'noe konstruktorsko-tekhnologicheskoe bjuro katalizatorov s opytnym zavodom, Nauchno-proizvodstvennoe predprijatie "Tekhprodukt"

(54) METHOD FOR PRODUCTION OF CHEMICALLY ACTIVE ALUMINIUM HYDROXIDE

(57) Abstract:

FIELD: production of active aluminium oxide. SUBSTANCE: hydrate of aluminium oxide is quickly heated in gas stream having temperature 500-1200 C, rate of gas stream

being 8-25 m/s. The process is followed by separation of aluminium hydroxide of gas stream and by cooling within less 10 min to temperature being less 60 C. EFFECT: improves efficiency of the method. 1 tbl

9

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 064 435 ⁽¹³⁾ C1

(51) MПK⁶ C 01 F 7/44

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 94001144/26, 12.01.1994
- (46) Дата публикации: 27.07.1996
- (56) Ссылки: Авторское свидетельство СССР N 477113, кл. С 01 F 7/00, 1975. Патент Франции N 2384540, кл. В 01 J 21/04, 1978. Патент Великобритании N 1367925, кл. С 01 F 7/44, 1974.
- (71) Заявитель: Специальное конструкторско-технологическое бюро катализаторов с опытным заводом, Научно-производственное предприятие "Техпродукт"
- (72) Изобретатель: Балашов В.А., Борисова Т.В., Лотюк К.С., Хиля В.М., Ковалев Л.Н., Колотюк В.А.
- (73) Патентообладатель: Специальное конструкторско-технологическое бюро катализаторов с опытным заводом, Научно-производственное предприятие "Техпродукт"

2

(54) СПОСОБ ПОЛУЧЕНИЯ ХИМИЧЕСКИ АКТИВНОГО ГИДРОКСИДА АЛЮМИНИЯ

(57) Реферат:

Использование: в производстве активной окиси алюминия, гидроокиси алюминия различных модификаций, в качестве наполнителя, поглотителя, как исходный продукт при получении солей алюминия. Сущность изобретения: гидрат окиси алюминия быстро нагревают в потоке

горячего газа с температурой 500 - 1200 °C. Быстрый нагрев гидрата окиси алюминия осуществляют при скорости газового потока от 8 до 25 м/с с последующим отделением гидроксида алюминия от газового потока и охлаждением до температуры ниже 60°C за время менее 10 мин путем псевдоожижения охлаждающим газом. 1 табл.

Изобретение относится к химической технологии и может быть использовано в производстве активной окиси алюминия, гидроокиси алюминия различных модификаций, в качестве наполнителя и поглотителя, как исходный продукт при получении солей алюминия.

Известен способ получения ρ (ро) формы окиси алюминия путем термического разложения гидраргиллита при 450 600 °C в течение 5 30 с, предпочтительно 15 20 с. Получаемый продукт при этом имеет химическую активность, определяемую по растворимости в щелочном растворе, от 50 до 65 [1]

Недостатком способа является невысокая химическая активность, что затрудняет дальнейшую его переработку.

Известен способ [2] получения активного оксида алюминия включающий быструю сушку гидроокиси алюминия с размером частиц 10 65 мкм при температуре 700 800°С в течение 0,5 2 с, быстрое охлаждение до температуры ниже 180°С с введением охлаждающего газа в газовый поток с последующими стадиями формования, обработки паром, сушки и прокаливания гранул. В результате быстрого нагрева образуется с(хи)-Al 2O3, которая имеет также незначительную химическую активность на уровне 25 35 Охлаждение ниже 180°С применяют для исключения преобразования гидроксида алюминия в бемит, который, по мнению авторов, снижает прочность гранул.

Наиболее близким к предлагаемому способу получения химически активного гидроксида алюминия является способ [3] получения активной окиси алюминия с кристаллически нарушенной χ структурой нагреванием гидроокиси алюминия при температуре 350 800°C в течение 0.1 2 с в зоне высокотурбулентного горячего газового потока, поступающего из зоны с температурой 500 1200°C, причем скорость горячего газового потока составляет 30 150 м/с. Недостатком этого способа является получение при высоких скоростях газа малоактивного с-Al₂O₃ с активностью 20 25 Кроме того, высокие скорости газового потока приводят к увеличению энергетических затрат процесса.

Цель изобретения состоит в улучшении качества продукта за счет увеличения химической активности продукта, т.е. получении химически активного гидроксида алюминия переходного состава, содержащего $\geq 94\,\%_P(\text{po})\text{-}\chi(\text{xu})\text{-Al}_2\text{O}_3$ общей формулы Al $_2\text{O}_3$ • nH $_2\text{O}$, 0,5 $_\cong$ n $_\cong$ 0,92, с химической активностью, определяемой по растворимости в щелочном растворе, выше 70

Для достижения поставленной цели процесс быстрого нагрева гидроокиси алюминия проводят в газовом потоке с температурой 500 1200°С при скорости горячего газового потока 8 25 м/с и наполнение его гидроксидом алюминия от 0,08 до 0,25 кг/м³ с последующим отделением гидроксида алюминия от газового потока и охлаждением до температуры ниже 60°С за время менее 10 мин путем псевдоожижения охлаждающим газом.

Отличительными признаками

предлагаемого способа являются:

проведение быстрого нагрева при скоростях 8 25 м/с;

наполнение горячего газового потока гидроксидом алюминия от 0,08 до 0,25 кг/м³;

быстрое охлаждение продукта после отделения от газового потока до температуры ниже 60°C за время менее 10 мин;

быстрое охлаждение продукта осуществляют в режиме псевдоожижения охлаждающим газом.

Предлагаемая совокупность признаков позволяет получить химически активный гидроксид алюминия переходного состава, содержащий $\geq 94\%_P(po)-\chi(xu)-Al_2O_3$ общей формулы Al_2O_3 • nH_2O , $0,5\cong n\cong 0,92$ с химической активностью, определяемой по растворимости в щелочном растворе, выше 70

Предлагаемый способ получения химически активного гидроксида алюминия переходного состава является существенно новым по отношению к известному уровню техники в области получения высокоактивного гидроксида алюминия.

Предлагаемый способ осуществляется следующим образом.

Технический гидрат глинозема подвергают быстрому нагреву в газовом потоке с температурой 500 1200°С при скорости газового потока 8 25 м/с и наполнений его гидроксидом алюминия от 0,08 до 0,25 кг/м³. Горячий гидроксид алюминия отделяют от газового потока и затем быстро охлаждают до температуры ниже 60°С за время менее 10 мин охлаждающим газом путем псевдоожижения гидроксида алюминия.

Свойства полученного химически активного гидроксида алюминия определяют следующими методами:

фазовый состав на дифрактометре ДРОН УМ 1 в Си-К монохроматическом излучении с использованием дифференциальной дискриминации и Ni-фильтра;

химическую активность по растворимости в щелочном растворе.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Технический гидрат глинозема подается в реактор ленточным шнеком. Снизу из топки поступают топочные газы с температурой 1070°С и скоростью 20,78 м/с. Количество подаваемых гидрата окиси алюминия и топочных газов обеспечивают наполнение газового потока 0,245 кг/м². Дегидратированный гидроксид алюминия отделяется от газового потока в циклонах (температура газа на выходе 340°C), после чего охлаждается в режиме псевдоожижения до 35°C в течение 5 мин холодным воздухом, при этом образуется химически активный гидроксид алюминия общей формулы Al 2O3 • 0,872 H2O с химической активностью 70,4 96 его составляет г(ро)- χ (хи)-Al₂O₃.

Примеры 2 13 аналогичны примеру 1, отличаются условиями приготовления и характеристиками получаемого продукта.

Пример 14 (по прототипу). Гидроксид алюминия вводится в коническую реакционную камеру V 600 л через форсунку сжатым воздухом, туда же тангенциально подастся топочный газ с t 900 °C. Прокаленный активный оксид алюминия

RU 2064435 C

покидает реакционную камеру тангенциально через верх вместе с топочными газами, температура газового потока на выходе 500 °С, и отделяется от газового потока в циклонах. Время контакта продукта с газовым потоком 0,5 с, скорость потока 50 м/с. Получаемый оксид алюминия имеет ППП - 6,3 уд. 354 м/г и состоит из χ -Al₂O₃. Химическая активность такого продукта составляет 20

Как видно из представленных в таблице данных, при увеличении скорости газового потока выше 25 м/с, (пример 3) и уменьшении ниже 8 м/с (пример 11) происходит снижение химической активности гидроксида алюминия.

При увеличении наполнения газового потока выше 0,25 кг/м 3 (пример 10) происходит как снижение химической активности, так и нарушение требуемой структуры переходного ρ - χ -Al $_2$ O $_3$.

Снижение наполнения газового потока ниже 8 кг/м³ резко снижает производительность процесса и экономически не целесообразно.

Охлаждение продукта за время более 10 мин (пример 2) или охлаждение до температуры выше $60\,^{\circ}$ С (пример 8) приводит к снижению химической активности и изменению структуры ρ - γ - Al_2O_3 .

При сопоставлении характеристик продуктов, полученных по предлагаемому способу и по прототипу видно, что высокие

скорости газового потока и отсутствие быстрого охлаждения по прототипу не позволяет получать химически активный алюминия переходного ρ - χ -Al $_2$ O $_3$ состава общей формулы Al_2 O $_3$ • nH_2 O $_2$, 0,5 $_{\cong}$ n $_{\cong}$ 0,92 с химической активностью 70%

Предлагаемый способ по сравнению с известным позволяет:

получать химически активный гидроксид алюминия переходного состава, содержащий ≥94%_{Р_X}-Al₂O₃ и имеющий формулу Al₂O₃ • nH₂O, где 0,5_≈n_≈0,92;

получать гидроксид алюминия с химической активностью более 70 уменьшить энергетические затраты.

Формула изобретения:

Способ получения химически активного гидроксида алюминия путем быстрого нагрева гидрата окиси алюминия в потоке горячего газа с температурой 500 - 1200°С, отличающийся тем, что быстрый нагрев гидрата окиси алюминия осуществляют при скорости газового потока от 8 до 25 м/с, наполнении газового потока гидратом окиси алюминия от 0,08 до 0,25 кг/м ³ с последующим отделением гидроксида алюминия от газового потока и охлаждением до температуры ниже 60°С за время менее 10 мин путем псевдоожижения охлаждающим

2064435

30

35

40

45

50

55

60

Таблица

? .

Содержание	11 1120 F. J A1205	0/	8	66	94	26	00I	95	46	16	%	33	98	83 83	46	1- AL 03
Значение п в общей фо- рмуле	,		0,872	0,48	0,526	0,700	0,714	0,913	0,913	0,721	0,913	I,I	I, OI	0,5	0,5	1
Химическая активность	6	Q/	70,4	30	34	81,26	94,27	75,7	8,0%	40,3	78,44	45	58,I	20	70,I	20
Время схлаж- дения	МИН	unin -	വ	240	OI	Ģ	ω	9	.9	ΩĪ	0.T	· 0I	9	9	0.1	1
Темпера- тура по- сле охла-	illo Illo		£	09	09	20	25	50	50	. 09I	20	0.9	50	50	50	ī
Наполнение газового по- тока	KT/M3	M / M	0,245	0,204	0,193	001.0	I'0	0,17	0,17	0,083	80,0	0,278	0,095	0,12	0,25	1
Скорость газового потока	M/C	2 00	20,78	23,54	26,4I	11,26	11,00	21,26	17,84	8,68	66,11	17,8	7,82	12,06	24,6	20
		04.0	340	400	200	330	330	355	200	310	365	320	320	320	200	200
Temneparypa rasoboro no roka	Je OC	1000	70.7	1050	T050	800	800	016	950	650	650	0001	650	IOOO	1200	006
№ п/п			.	∾'	က်	4	<u>ئ</u>	9	7.	ထံ	ი	. IO.	II.	12.	13.	I4.

RU 2064435 C1