Table of Contents:

AC Power Meter/Dimmer

1	АC	Input	
⊥.	AC	mput	

2. AC Current Sensor

3. AC Output

4. +12V Power Supply

5. +3.3V Power Supply

6. Microcontroller

7. Microcontoller Programming

8. Sensor Signal Conditioning

9. USB UART Bridge

10. USB UART Isolation

11. OLED Display

AC Input AC_Input.sch

AC Current Sensor

AC_Current_Sensor.sch

AC Output AC_Output.sch

POS12 Power Supply

POS12_Power_Supply.sch

POS3P3 Power Supply

POS3P3_Power_Supply.sch

Microcontroller

Microcontroller.sch

Microcontroller Programming

Microcontroller_Programming.sch

Sensor Signal Conditioning

Sensor_Signal_Conditioning.sch

USB UART Bridge

USB_UART_Bridge.sch

USB UART Isolation

USB_UART_Isolation.sch

OLED Display

OLED_Display.sch

12. Mechanical

13. Zero Cross Detect

14. Output Switch

15. Status LEDs

16. Pushbuttons

17. Firmware Notes

Mechanical Mechanical.sch

Zero Cross Detect

Zero_Cross_Detect.sch

Output Switch

Output Switch.sch

Status LEDs

Status_LEDs.sch

Pushbuttons

Pushbuttons.sch

Firmware Notes

Firmware_Notes.sch

Sheet: /

File: AC_Power_Meter.sch

Title:

Date: 2018-10-01 Size: A Rev: A KiCad E.D.A. kicad (5.0.0) ld: 1/18

Programming Header, MCLR Reset Filter, ICSP Detection

Sheet: /Microcontroller Programming/ File: Microcontroller_Programming.sch

Title:

 Size: A
 Date:
 Rev:

 KiCad E.D.A. kicad (5.0.0)
 Id: 8/18

Mounting Holes and Mechanical Components MH1301 MountingHole MH1303 MountingHole MH1305 MountingHole MH1307 MountingHole 0 0 0 4-40 Screw 4-40 Screw 4-40 Screw 4-40 Screw MK1303 MK1307 MK1311 MK1315 MH1302 MountingHole MH1306 MountingHole MH1308 MountingHole 4-40 Screw 4-40 Screw 4-40 Screw MK1304 MK1312 MK1316 4-40 Standoff 4-40 Standoff 4-40 Standoff 4-40 Standoff MK1305 MK1309 MK1313 MK1317 4-40 Standoff 4-40 Standoff 4-40 Standoff MK1306 MK1314 MK1318 Sheet: /Mechanical/ File: Mechanical.sch Title: Size: A Date: 2018-10-01 Rev: A KiCad E.D.A. kicad (5.0.0) ld: 13/18

Output AC Solid State Switch, Random Phase HS1501 WWW Heatsink +3.3V ↑ U1501 1% 2512 R1503 SSR_Force SSR_Dim ____180 R1505 (ISNS_HT_OUT 0603 Q1501 BT139-600 1% 1/10W R1501 0603 1% R1502 0603 1% 1/10W GND GND 1206 630V X7R 2512 5% R1504 0603 50V X7R C1501 0.1uF GND TRIAC_HT_OUT) Sheet: /Output Switch/ File: Output_Switch.sch Title: Size: A Date: Rev: KiCad E.D.A. kicad (5.0.0) ld: 15/18

Firmware Notes * Configure RAO as both an ADC input and the inverting input into an internal comparator

* Comparator will be used with internal DAC to set a current limit

* Configure ADC clock as FRC, external +/-VREF

* Configure Clocking structure to use ECM clock mode, 16MHz clock input, 4xPLL = 64MHz SYSCLK

* Configure RBO as EXTINTO for ZCD, and RB1 as EXTINT1 for output switching

* Configure RBO and RE2 as ADC inputs

* Configure RE0 and RE3 as interrupt on change inputs

* Configure RF1 as open drain output, force low after booting

* Configure RF0 as open drain output, force low after booting

* Configure RF1.3 as push pull outputs, start low

* Configure RG6 as EUSART2 RX and RG7 as EUSART2 TX

* Configure RG6 as EUSART2 RX and RG7 as EUSART2 TX

* Use Timer7 to gather ADC data on all channels and run calculations on it at a fixed time base

* Use Timer6 as hearthbeat time base

* Use Timer6 as hearthbeat time base * Use Timer6 as hearthbeat time base Sheet: /Firmware Notes/ File: Firmware_Notes.sch Title: Size: A Rev: Date: KiCad E.D.A. kicad (5.0.0) ld: 18/18