Distribution: the possible values a variable can take and how frequently they occur.

Y: the actual outcome of an event

y: one of the possible outcomes

p(y): the probability function

mean = average value (μ)

variance = how spread out the data is or how the data is far away from the mean (6^2)

standard deviation is the root square of the variance (6 for population data) and (s for sample data)

Х	~	N	(μ, σ^2)
variable	tilde	type	characteristics

Binomial Distribution: B (n, p) or B(number of trials and the probability of success in each one)

Conditional Probability Law: $p(E \setminus F) = p(E \cap F)/p(f)$

Or

Product rule: $p(E \cap F) = p(E \setminus F) * p(f)$

Independent Events Law: $p(E \setminus F) = p(E)$

If you want to know if two events are independent or not, we use the following law: if $p(E \cap F) = p(E) * p(f)$ then the two events are independent.

So, $p(E1 \cap E2 \cap En) = p(E1) * p(E2) * p(En)$

Bayes' theorem: P(A|E) = [P(A). P(E|A)]/P(E).

Sample space: every possible result that can happen.

Outcome: number of results ^ number of repetitions.

Ex: A=
$$\{1,2,3\}$$
, B = $\{2,3,4\}$, S = $\{0,1,2,3,4\}$.
A \cap B = $\{2,3\}$
A \cup B = $\{1,2,3,4\}$
A` = $\{0,4\}$
B` = $\{0,1\}$
P (A \cap B) = $2/5$
P (A \cup B) = $4/5$
P(A)= $3/5$

Counting techniques

1. Multiplication rule

P(B') = 2/5P(S) = 5/5 = 1

- 2. Permutation rule:
 - a. Ordering elements
 - b. Of similar objects
 - c. Of subsets
- 3. Combination

Multiplication rule:

Ex: a coffee shop has 4 types of sandwiches, 5 types of coffee and 2 cake types in how many ways can we choose one of each.

$$= 4*5*2 = 40.$$

Permutation rule:

1 – ordering elements:

Ex: 6 students are lining up outside the heads office what is the number of different orders that they could queue up in?

$$= 6! = 720$$

2 - subsets

Ex: in an examination a student must choose 4 out of 10 questions. how many different ways can she select which 4 questions she attempts.

$$P^{n} = \frac{n!}{(n-r)!}$$
 = 10P4 = 5040

3 - similar objects

Ex: how many different orders of that ward [MINIMUM]

$$= n! / (n! *n!) = 7! / (3! *2!) = 420.$$