

TIME SERIES ANALYSIS

Hunter

QUIZ

- X What is Time Series Data
- X What is Stationarity
- X What is Seasonality
- X What is Moving Average
- X What is Auto Regression
- X What is Exponential Smoothing

TOPICS

- X Time Series Data
- X Smoothing Techniques
- X Box-Jenkins Approach

TIME SERIES DATA

WHAT IS TIME SERIES

"An ordered sequence of values of a variable at equally spaced time intervals."

- X Obtain an understanding of the underlying forces and structure that produced the observed data
- X Fit a model and proceed to forecasting, monitoring or even feedback and feedforward control.

The term "univariate time series" refers to a time series that consists of single (scalar) observations recorded sequentially over equal time increments.

STATIONARITY

Assumption in many time series techniques is that the data are stationary.

A stationary process has the property that the mean, variance and autocorrelation structure do not change over time and no periodic fluctuations (seasonality).

Transform data to stationarity:

X difference the data.
$$Y_i = Z_i - Z_{i-1}$$

- X If the data contain a trend, we can fit some type of curve to the data and then model the residuals from that fit.
- X For non-constant variance, taking the logarithm or square root of the series may stabilize the variance. For negative data, you can add a suitable constant to make all the data positive before applying the transformation..

SEASONALITY

Many time series display seasonality. By seasonality, we mean periodic fluctuations.

To detect seasonality:

- **X** A run sequence plot will often show seasonality.
- **X** A seasonal subseries plot is a specialized technique for showing seasonality.
- X Multiple box plots can be used as an alternative to the seasonal subseries plot to detect seasonality.
- X The autocorrelation plot can help identify seasonality.

SMOOTHING TECHNIQUES

SINGLE MOVING AVERAGE

- X Taking averages is the simplest way to smooth data. The computed mean or average of the data = 10
- X Compute the mean of successive smaller sets of numbers of past data as follows.
- X The MSE = 2.42 as compared to 3 by taking average.

$M_t =$	$X_t + X_{t-1} + \cdots + X_{t-N+1}$
	$\overline{}$

Supplier	\$	MA	Error	SE
1	9			
2	8			
3	9	8.667	0.33	0.111
4	12	9.667	2.33	5.444
5	9	10	-1	1
6	12	11	1	1
7	11	10.667	0.33	0.111
8	7	10	-3	9
9	13	10.333	2.667	7.111
10	9	9.667	-0.667	0.444
11	11	11	0	0
12	10	10	0	0

CENTERED MOVING AVERAGE

- We could have placed the average in the middle of the time interval of three periods, that is, next to period 2. The MSE = 3.88
- X This works well with odd time periods, but not so good for even time periods. We can smooth the smoothed values for even time periods.

Supplier	\$	MA	Error	SE
1	9			
2	8	8.667	-0.667	0.444
3	9	9.667	-0.667	0.444
4	12	10	2	4
5	9	11	-2	4
6	12	10.667	1.333	1.777
7	11	10	1	1
8	7	10.333	-3.333	11.109
9	13	9.667	3.333	11.109
10	9	11	-2	4
11	11	10	1	1
12	10			

Supplier	\$	MA	Centered
1	9		
1.5			
2	8		
2.5		9.5	
3	9		9.5
3.5		9.5	
4	12		10
4.5		10.5	
5	9		10.75
5.5		11	
6	12		
6.5			
7	11		

EXPONENTIAL SMOOTHING

- X Exponential Smoothing assigns exponentially decreasing weights as the observation get older.
- X In other words, recent observations are given relatively more weight in forecasting than the older observations.

SINGLE EXPONENTIAL SMOOTHING

1. For any time period t, the smoothed value S_t is found by computing

$$S_t = lpha y_{t-1} + (1-lpha)S_{t-1} \quad 0 < lpha \leq 1 \quad t \geq 3$$

2. Why is it called "Exponential"?

$$egin{aligned} S_t &= lpha y_{t-1} + (1-lpha) \left[lpha y_{t-2} + (1-lpha) S_{t-2}
ight] \ &= lpha y_{t-1} + lpha (1-lpha) y_{t-2} + (1-lpha)^2 S_{t-2} \,. \end{aligned}$$

3. What is the "best" value for α ? When α is close to 1, dampening is quick and when α is close to 0, dampening is slow. choose the best value for α so the value which results in the smallest MSE.

α	(1-lpha)	$(1-lpha)^2$	$(1-lpha)^3$	$(1-lpha)^4$
0.9	0.1	0.01	0.001	0.0001
0.5	0.5	0.25	0.125	0.0625
0.1	0.9	0.81	0.729	0.6561

DOUBLE EXPONENTIAL SMOOTHING

* Single Smoothing does not excel in following the data when there is a trend. This situation can be improved by the introduction of a second equation with a second constant, γ , which must be chosen in conjunction with α .

$$egin{aligned} S_t &= lpha y_t + (1-lpha)(S_{t-1} + b_{t-1}) \; 0 \leq lpha \leq 1 \ \ b_t &= \gamma(S_t - S_{t-1}) + (1-\gamma)b_{t-1} \; 0 \leq \gamma \leq 1 \end{aligned}$$

 \star Here are three suggestions for b_1 .

$$egin{align} b_1 &= y_2 - y_1 \ b_1 &= rac{1}{3}[(y_2 - y_1) + (y_3 - y_2) + (y_4 - y_3)] \ b_1 &= rac{y_n - y_1}{n-1} \ \end{pmatrix}$$

TRIPLE EXPONENTIAL SMOOTHING

 $I_2 = (y_2/A_1 + y_6/A_2 + y_{10}/A_3 + y_{14}/A_4 + y_{18}/A_5 + y_{22}/A_6)/6$

 $I_3 = (y_3/A_1 + y_6/A_2 + y_{11}/A_3 + y_{15}/A_4 + y_{19}/A_5 + y_{23}/A_6)/6$

X Triple Exponential Smoothing is introduced to take care of seasonality. The resulting set of equations is called the "Holt–Winters" (HW) method after the names of the inventors.

$$S_t = lpha rac{y_t}{I_{t-L}} + (1-lpha)(S_{t-1}+b_{t-1})$$
 OVERALL SMOOTHING $b_t = \gamma(S_t-S_{t-1}) + (1-\gamma)b_{t-1}$ TREND SMOOTHING $I_t = eta rac{y_t}{S_t} + (1-eta)I_{t-L}$ SEASONAL SMOOTHING $F_{t+m} = (S_t+mb_t)I_{t-L+m}$ FORECAST,

X To initialize the HW method we need at least one complete season's data to determine initial estimates of the seasonal indices I_{t-L} . $I_1 = (y_1/A_1 + y_5/A_2 + y_9/A_3 + y_{13}/A_4 + y_{17}/A_5 + y_{21}/A_6)/6$ 3.

 Compute the averages of each of the 6 years.

$$A_p = rac{\sum_{i=1}^4 y_i}{4} \,, \;\;\; p = 1, \, 2, \, \ldots, \, 6 \,.$$

2. Divide the observations by the appropriate yearly mean.

1	2	3	4	5	6
y_1/A_1	y_5/A_2	y_9/A_3	y_{13}/A_4	y_{17}/A_5	y_{21}/A_6
y_2/A_1	y_6/A_2	y_{10}/A_3	y_{14}/A_4	y_{18}/A_5	y_{22}/A_6
y_3/A_1	y_7/A_2	y_{11}/A_3	y_{15}/A_4	y_{19}/A_5	y_{23}/A_6
y_4/A_1	y_8/A_2	y_{12}/A_3	y_{16}/A_4	y_{20}/A_5	y_{24}/A_6

3. Compute the average of each row:

COMPARE DIFFERENT SMOOTHING METHODS

BOX-JENKINS APPROCH

AUTO REGRESSION

An autoregressive model is simply a linear regression of the current value of the series against one or more prior values of the series.

$$X_t = \delta + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-1} + A_t$$

Where X_t is the time series, A_t is white noise, with μ denoting the process mean.

$$\delta = igg(1 - \sum_{i=1}^p \phi_iigg)\mu\,,$$

MOVING AVERAGE

Moving average model is conceptually a linear regression of the current value of the series against the white noise or random shocks of one or more prior values of the series.

$$X_t = \mu + A_t - heta_1 A_{t-1} - heta_2 A_{t-2} - \cdots - heta_q A_{t-q}$$

where X_t is the time series, μ is the mean of the series, A_{t-i} are white noise terms, and $\theta_1,...,\theta_q$ are the parameters of the model. The value of q is called the order of the MA model.

$$\delta = igg(1 - \sum_{i=1}^p \phi_iigg)\mu\,,$$

BOX AND JENKINS METHOD

Box and Jenkins popularized an approach that combines the moving average and the autoregressive approaches

$$X_t = \delta + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \ A_t - heta_1 A_{t-1} - heta_2 A_{t-2} - \dots - heta_q A_{t-q} \,,$$

- 1. The Box-Jenkins model assumes that the time series is stationary. Box and Jenkins recommend differencing non-stationary series one or more times to achieve stationarity. Doing so produces an ARIMA model, with the "I" standing for "Integrated".
- Box-Jenkins models can be extended to include seasonal autoregressive and seasonal moving average terms.
- 3. The most general Box-Jenkins model includes difference operators, autoregressive terms, moving average terms, seasonal difference operators, seasonal autoregressive terms, and seasonal moving average terms.

BOX AND JENKINS METHOD

- 1. Determine if the series is stationary and if there is any significant seasonality that needs to be modeled.
- 2. Differencing to achieve stationarity
- 3. Seasonal differencing
- 4. Identify the order (i.e., the p and q) of the autoregressive and moving average terms using autocorrelation plot (ACF) and the partial autocorrelation plot (PACF).

RECOMMENDED READINGS

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm