Modèle Conceptuel des Données (MCD)

Merise

Modélisation des Données

La modélisation des niveaux d'abstraction

1 Modélisation des traitements : MCC MCT MOT

2.Le Modèle Conceptuel de Données : (MCD) → modèle «E/A »
 3.Dépendance fonctionnelles (Construction du MCD)

Modèle Conceptuel de Données : MCD Objectifs

- □ Décrire les données du S.I, indépendamment de tout choix d'implémentation physique.
- Établir une représentation clair des données du SI.
- □ Définir les dépendances fonctionnelles de ces données entre elle.

Merise: Modélisation des Données

Modèle Conceptuel de Données (MCD) Concepts de base

- □ Le formalisme utilisé pour décrire un MCD est celui du modèle Entité/Association (E/A); Souvent nommé aussi Entité-Relation.
- ☐ La représentation de ce formalisme s'appuie sur cinq concepts de base:
 - 1. l'entité;
 - 2. la propriété ;
 - 3. L'identifiant;
 - 4. l'association;
 - 5. la cardinalité.
- ☐ Permet de décrire un ensemble de données relatives à un domaine défini afin de les intégrer ensuite dans une Base de Données.

Merise: Modélisation des Données Concepts de base du MCD : le Concept de Propriété **Propriété**: Donnée élémentaire permettant de décrire une entité. Caractéristique d'une entité utile ou nécessaire mais forcément pertinente, pour décrire la réalité perçu. Prend une valeur bien précise pour chaque occurrence d'une entité. Personne Nom Said Prénom **Tahiri** Téléphone 0635254450 Une entité possède au moins une propriété.

Merise: Modélisation des Données

Concepts de base du MCD : le Concept de Propriété

- On associe un domaine à chaque propriété, qui définit l'ensemble des valeurs possibles que peut prendre la propriété.
 Valeur : Valeur que prend une propriété (à l'intérieur du domaine) pour une entité
- particulière

 Ex : 28 ans pour l'âge de Said, 150cv pour la puissance de son 4x4

Propriété	Domaine			
Nom d'une personne	Caractères alphanumériques			
Quantité en stock	Nombre entier positif			
Prix d'un article	Nombre avec 2 décimales			
Sexe	Lettre "M" ou "F"			
Date de commande	Jour/mois/année			
Jour	Liste "Lundi", "Mardi","Dimanche"			

> Une valeur est une occurrence de la propriété.

MCD : Les cardinalités d'une association (suite)

Ce sont les nombres minimum et maximum de fois ou une occurrence d'entité peut ou doit participer dans les occurrences d'association avec d'autre occurrences d'une ou (plusieurs) autre(s) entité(s).

- Minimum: 0 ou 1
- · Maximum: 1 ou n
- La cardinalité minimum à 0 veut dire que certaines occurrences de l'entité E ne sont pas impliquées dans une occurrence de l'association.
- > la cardinalité minimum à 1 veut dire qu'une occurrence de l'entité E ne peut exister sans participer à une occurrence de l'association.
- > la cardinalité maximum à 1 veut dire que toute occurrence de l'entité E ne peut participer au plus qu'à une occurrence de l'association.
- la cardinalité maximum à n veut dire qu'une occurrence de l'entité E peut être impliquée dans un maximum de n occurrences de l'association.

Merise: Modélisation des Données

MCD : Les cardinalités d'une association (suite)

	Configurations possibles				
0,1	Une occurrence participe au moins 0 fois et au plus 1 fois à l'association				
1,1	Une occurrence participe exactement 1 fois à l'association				
0 , n	Une occurrence peut ne pas participer ou participer plusieur fois				
1,n	Une occurrence participe au moins 1 fois, voire plusieurs				

- 0-1 aucune ou une seule
- 1-1 une et une seule
- 0-n aucune ou plusieurs
- 1-n une ou plusieurs

Modélisation direct (1)

Elle consiste à identifier, à partir d'une description exprimée en langage naturel, les entités et les associations:

- · Les noms deviennent des entités.
- · Les verbes deviennent des associations.

Exemple:

« Une voiture appartient à un modèle particulier » Modélisation:

Remarque : Il s'agit du MCD brut car il manque la phase de validation et de normalisation.

Merise: Modélisation des Données

Modélisation direct (2)

Démarche :

- >Identifier les entités présentes (Dictionnaire des données) ;
- > Lister les propriétés des entités ;
- > Identifier de manière unique chaque occurrence ;
- > Établir les relations (les associations) entre les différentes entités ;
- ➤ Identifier les cardinalités ;
- Valider le Modèle Conceptuel de Données (normalisation du modèle).

71

Modélisation par dépendances fonctionnelles (DF)

Démarche :

- 1. Dictionnaire des données ;
- 2. Énoncé des règles de gestion ;
- 3. Détermination des dépendances fonctionnelles ;
- 4. Construction du MCD.

7

Merise: Modélisation des Données

Dictionnaire des données

Le dictionnaire de données : Il a pour but essentiel de recenser toutes les informations utiles à l'entreprise et de distinguer :

- Il doit être à la fois épuré (ne pas comporter des synonymes) et exhaustif (ne pas Comporter de propriétés aux significations multiples).
- Les données paramétrées : cette information prendra toujours la même valeur.
- Les données calculées: cette information pourra être retrouvée par le biais d'un calcul, à l'aide d'une requête, grâce aux données élémentaires et paramétrées.
- Les données élémentaires : cette information pourra prendre plusieurs valeurs.
- · On ne retiendra par la suite que les données élémentaires.
 - > On peut proposer la présentation sous forme de tableau:

Exemple	N°	Nom de la propriété	signification	type	Domaine de définition
	1	1			
	2				
	3				

Dictionnaire des données : Exemple

Soit le Dictionnaire des données relatives à l'organisation d'un examen: Dictionnaire des données

Rubrique	Type (E : élémentaire ; C : calculé ; CD : calculée datée ; Conc. : concaténé)	Commentaire (règles d'intégrité pour vérifier la pertinence de l'information, règles de calcul)
Num Epreuve	E	9999 (Signification : numérique sur 4 positions)
Lib Epreuve	E	
Coef Epreuve	E	9 (Signification : numérique sur 1 position)
Num Cand	E	9999 (Signification : numérique sur 4 positions)
Nom Cand	E	7
Prénom Cand	E	
Code Ets	E	999999 (Signification : numérique sur 6 positions)
Nom Ets	E	
Ville Ets	E	
Note	E	[0;20]
Total	C	\sum (Note × Coef.)
Décision	С	Si total ≥ 210, alors décision : «Admis ». Sinon, décision

Dictionnaire de données

• Exemple :

NOM	SIGNIFICATION	TYPE	LON-	NATURE		REGLE DE CALCUL	
	168/90/20	A N AN	GUEUR	CO CA (2)	M SIG SITU (3)	OU INTEGRITÉ (4)	
NOBON	N° bon de Cde	N	4	E	м		
DATE	Date commande	N	6	E	м	Forme jjmmaa jj: 01 à 31 mm : 01 à 12	
·COCLI	Code client	?	?	E	SIG	A créer	
NOMCLI	Nom client	A	30	E	SIG		
ADRESSE	Adresse client	AN	60	CO	SIG	Rue + Ville	
RUCLI	Rue client	AN	30	E	SIG	YAT O AVT	
VILCLI	Ville client	A	30	E	SIG		
-COREP	Code représ.	?	?	E	SIG	A créer	
NOMREP	Nom représ.	A	30	E	SIG	200	
REF	Réf. produit	AN	5	E	SIG	1 lettre + 3 chiffres	
DESIGN	Désignation	A	30	E	SIG		
OTE	Quant, commandée	N	3	E	M	Entier > 0	
PU	Prix unitaire	N	7	E	SIG	Forme: 9999,99	
MONTANT	Montant ligne	N	8	CA	M	PU x QTE	
TOTAL	Total commande	N	8	CA	M	Somme des montants	

(1) A(Iphabétique) N(umérique) A(Ipha) N(umérique)
(2) E(Iémentaire) CO(ncaténée) CA(Iculée)
(3) M(ouvement) SIG(nalétique) SITU(ation)
(4) Regle de calcul pour les propriétés calculées ou contraintes d'intégrité de forme éveniuelles.

Dépendances Fonctionnelles (DF)

Concepts de Dépendance Fonctionnelle

Une propriété Y dépend fonctionnellement d'une propriété X si et seulement si une valeur de X induit une unique valeur de Y.

→ Y (X détermine Y) x -(source) → (but)

•Exemple: Num client —

Il existe une DF entre Num client et Nom client, car si on connaît une valeur de la propriété Num client (ex : 4553), il ne peut lui correspondre qu'une seule valeur de la propriété nom client. La réciproque est fausse : Nom client Num client, n'est pas une DF

□DF à partie gauche (source) composée
Il peut exister des dépendances fonctionnelles à partir de plusieurs propriétés (en source), qui permettent de connaître une valeur unique du but.

<u>Exemple</u>:
Considérons une commande qui comporte plusieurs produits (Num_Commande , Ref_Produit) quantité commandée

Merise: Modélisation des Données

Dépendances Fonctionnelles (DF) (suite)

☐ Dépendance fonctionnelle élémentaire

Entre les propriétés a et b ($a \rightarrow b$) Si $a \rightarrow b$ et si aucune partie de a ne détermine b.

Exemple. référence article → nom article (num facture , référence article) → quantité facturée (num facture, référence article) → nom article

Les deux premières sont élémentaires, mais la troisième ne l'ai pas !!

□ Dépendance fonctionnelle élémentaire directe

On dit que a \Rightarrow b est une DF élémentaire directe si cette dépendance est élémentaire et s'il n'existe pas de propriété c telle que : a \Rightarrow c et c \Rightarrow b

Exemple, soient les dépendances fonctionnelles :

NumFacture → NumReprésentant et NumReprésentant → NomReprésentant

NumFacture → NomReprésentant n'est pas une dépendance fonctionnelle
directe puisqu'elle est obte par transitivité. Il conviendra alors de ne considérer que la premiére DF.

Propriétés des DF

Réflexivité: a → a

Projection: $a \rightarrow b+c \implies a \rightarrow b$ et $a \rightarrow c$

Augmentation: A \rightarrow b \Longrightarrow \forall c: a + c \rightarrow b

Additivité: $a \rightarrow b$ et $a \rightarrow c \Longrightarrow a \rightarrow b+c$

Transitivité: $a \rightarrow b$ et $b \rightarrow c \Longrightarrow a \rightarrow c$

Merise: Modélisation des Données

Démarche de recherche des DF

A partir du dictionnaire des données (propriétés), il faudra :

- Rechercher les DF à deux rubriques élémentaires et directes
- Rechercher les DF à partie gauche composée.

Rechercher les DF à deux rubriques élémentaires et directes

On commence par rechercher les DF à deux rubriques en commençant par les plus évidentes du genre: Numéro de client \rightarrow nom de client

☐ Si on a une DF du type: Numéro client → adresse, il faudra la décomposer en

Numéro de client → code postal

Numéro de client → rue Numéro de client → localité

🗖 Parfois, la DF est **symétriqu**e. Numéro état civil 🕶 numéro de sécurité sociale.

Dans ce cas, on supprime une des deux pour garder la plus fréquemment utilisée.

77

Merise: Modélisation des Données

Rechercher les DF à partie gauche composée

■ Quand on traite des DFPGC, il faut toujours se poser les deux questions suivantes , si on a une DFPGC du type: A, B, C \rightarrow D

n'y aurait-il pas des DF du style D \rightarrow A ou D \rightarrow B?

Exemple:

 (date commande, n° client) → n° commande. On préférera pourtant n° commande → n° client
 et n° commande → date commande

n'y aurait-il pas, entre A, B, C et D une ou des DFPGC de moins de rubriques que celle citée ,
 du type D, A → B Dans ce cas, il faut la privilégier.

Exemple:

(jour, heure, classe, salle) → professeur
où jour donne lundi , mardi, ...; heure nous donne 1ère heure, 2ème heure, ...; salle
nous donne son n° et classe 1ère info, ...
On préférera : (jour, heure, professeur) → classe

Mode de représentation des DF

Pour représenter les DF dans un ensemble de données: → 2 modes

- La matrice des DF
- **♦Le graphe des DF**

Merise: Modélisation des Données

La matrice des DF

>Principe:

Les différentes propriétés recensées dans le dictionnaire des données sont répertoriées en lignes et répétées par des numéros identiques en colonnes. On a donc au départ une matrice carré; en ligne se trouvent les données BUTS de dépendance fonctionnelle; en colonne sont indiquées les données SOURCES de DF; le 1 à l'intersection de la ligne et de la colonne indique la dépendance entre la donnée source et la donnée but.

	Buts	SOURCES de DF						
		1	2	3	4			
1	N° Étudiant							
2	Nom Étudiant	1						
3	Code diplôme							

L'extrait de matrice ci-dessus décrit la DF: N°Étudiant → Nom Étudiant

Modèle Logique des Données (MLD)

Modélisation des Données La modélisation des niveaux d'abstraction 1. Modélisation des tratements MCC,MCT,MOT 2. Le Modèle Conceptuel de Données (MCD) > modèle & E/As 3. Dépendance fonctionnelles (Construction du MCD) 4. Moternelles (MCD) 5. Le Modèle Logique de Données (MLD) 6. Le Modèle Physique de Données (MLD)

Merise: Modélisation des Données Passage du MCD vers le MLD Niveau conceptuel des données Modèle Entité Association Niveau Logique des données Modèle relationnel Le MLD est une TRADUCTION du MCD en un modèle tenant compte des impératifs liés au type de Système de Gestion de Base de Données (SGBD) utilisé.

Modèle Logique des Données (MLD)

- □ La modélisation logiques des données est une représentation des données, issues de la modélisation conceptuelle puis organisationnelle des données.
- ☐ Le MLD (Modèle Logique des Données) tient compte des choix concernant le Système de Gestion des Bases de Données (SGBD) utilisé dans l'entreprise.
- ☐ Le Modèle logique c'est le modèle sur lequel est construit un Système de Gestion de Bases de Données (SGBD).
- □ Il existe différentes sortes de SGBD qui ont chacun leur propre modèle.

Merise: Modélisation des Données

- Passage du MCD au MLD

 ☐ Une fois le modèle conceptuel des données (représentation de l'ensemble des données et de leurs relations) défini, l'étape suivante consiste à définir le Modèle Logique des Données (MLD).
- ☐ La description conceptuelle a permis de représenter le plus fidèlement possible les réalités de l'univers à informatisé. Mais cette représentation ne peut pas être directement manipulée et accepté par un système Informatique.
- ☐ Il est donc nécessaire de passer du niveau conceptuel à un niveau plus proche des capacité des systèmes informatique → Niveau logique.

Modèle logique des données : résumé

- MLD ajoute au MCD la notion d'organisation (comment les donnée seront organiser dans une Base des Données).
- Les entités du MCD sont converties en tables dans MLD.
- Selon les cardinalités, les associations sont convertis en tables ou supprimées.

12

Problème (1/4)

- Une entreprise est organisée par divisions implantées géographiquement en des localités distinctes. Chaque division est identifiée par un numéro et possède un nom.
- Les salariés de l'entreprise sont identifiés par leur numéro de matricule, travaillent dans une division où ils exercent une fonction. Ils perçoivent un salaire, et s'ils sont vendeurs, une commission.
- Les salariés peuvent être regroupés dans des équipes représentant des pôles de compétence.
- Il est possible que certains salariés ne travaillent dans aucune division. Les salariés sont encadrés par un chef
- Un projet, coordonné par un salarié, le chef de projet, est caractérisé par un numéro, une appellation, un thème, des dates de début et de fin de réalisation. Les projets sont réalisés pour des clients à une date d'échéance.
- Un projet est constitué de tâches caractérisées par un coût.
- Des salariés participent à tout ou partie de ces tâches entre deux dates déterminées.
- Les salariés utilisent des matériels identifiés par un numéro, désignés par un nom, caractérisés par leur type et la référence du constructeur. Un matériel peut lui-même être composé d'autres matériels.

Problème (2/4)

Nom	Code	Туре
Activité du client	CLIACT	A120
Adresse de la division	DIVADR	A120
Adresse du client	CLIADR	A120
CA de la division	DIVCA	N10
Commission du salarié	SALCOM	MN8,2
Contact chez le client	CLICON	A40
Coût de la tâche	TACCOU	N4
Date début	PARDEB	D
Date début de projet	PRODEB	D
Date échéance	PROECH	D
Date fin	PARFIN	D
Date fin de projet	PROFIN	D
Fax du client	CLIFAX	A15
Fonction du salarié	SALFON	A40
Libellé du projet	PROLIB	A120
Nb employés	EQUNBR	N4
Nom de la division	DIVNOM	A40

Nom de la tâche	TACNOM	A40
Nom du client	CLINOM	A40
Nom du matériel	MATNOM	A40
Nom du salarié	SALNOM	A40
Numéro de la division	DIVNUM	N4
Numéro de l'équipe	EQUNUM	N4
Numéro du matériel	MATNUM	N4
Numéro du client	CLINUM	N4
Numéro du projet	PRONUM	N4
Numéro du salarié	SALNUM	N4
Prénom du salarié	SALPRE	A40
Raison sociale	CLIRAI	A120
Référence constructeur	REFCON	A40
Rémunération du salarié	SALREM	MN8,2
Spécialisation	EQUSPE	A40
Téléphone du client	CLITEL	A15
Thème du projet	PROTHE	A40
Type de matériel	MATTYP	A40

Problème (3/4)

- Les types sont alphanumériques (A), numériques (N), dates (D), monétaires (MN).
- Exemples :
 - A40 : zone alphanumérique de 40 caractères
 - N6 : nombre entier à 6 chiffres
 - MN8,2 : nombre décimal à 10 chiffres, dont 2 après la virgule

Problème (4/4)

- Travail à faire :
 - Établir les modèles conceptuel et logique des données.