Normal Forms for Context-free Grammars

Linz 6th, Section 6.2 "Two Important Normal Forms," pages 171--178

Chomsky Normal Form

All productions have form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow (aa)$$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

Example:

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

Introduce intermediate variable: V_1

$$S \rightarrow ABT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

$$S \rightarrow AV_{1}$$

$$V_{1} \rightarrow BT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

$$T_{c} \rightarrow c$$

Introduce intermediate variable:

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}V_{2}$$

$$V_{2} \to T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Final grammar in Chomsky Normal Form:

$$S oup AV_1$$
 $V_1 oup BT_a$
 $A oup T_a V_2$
 $V_2 oup T_a T_b$
 $S oup ABa$
 $A oup AT_c$
 $A oup aab$
 $B oup Ac$
 $T_a oup a$
 $T_b oup b$

 $T_c \rightarrow c$

In general:

From any context-free grammar not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

For every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$
 $V_1 \rightarrow C_2 V_2$ $V_{n-2} \rightarrow C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar G such that the empty string is not in L(G), there is an equivalent grammar in Chomsky Normal Form

Linz, 6th, Theorem 6.6, page 172.

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form of any context-free grammar

Greibach Normal Form

All productions have form:

Examples:

$$S \rightarrow cAB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$

$$S \to abSb$$
$$S \to aa$$

Not Greibach Normal Form

Conversion to Greibach Normal Form:

Theorem:

For any context-free grammar G such that the empty string is not in L(G), there is an equivalent grammar in Greibach Normal Form

Linz, 6th, Theorem 6.7, page 176. Proof not given because it is too complicated.

Observations

 Greibach normal forms are very good for parsing

• It is hard to find the Greibach normal form of any context-free grammar

An Application of Chomsky Normal Forms

The CYK Membership Algorithm J. Cocke, D. H. Younger, and T. Kasami Input:

- · Grammar G in Chomsky Normal Form
- String W

```
Output: find if w \in L(G)
```

Considers every possible consecutive subsequence of letters and sets K∈T[i,i] if the sequence of letters starting from i to j can be generated from the non-terminal K. Once it has considered sequences of length 1, it goes on to sequences of length 2, and so on.

For subsequences of length 2 and greater, it considers every possible partition of the subsequence into two halves, and checks to see if there is some production A-> BC such that B matches the first half and C Matches the second half. If so, it records A as matching the whole subsequence.

Once this process is completed, the sentence is recognized by the grammar if the entire string is matched by the start symbol.

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB$ $A \rightarrow a$ $B \rightarrow AB$ $B \rightarrow b$

• String w : aabbb

aabbb

[0:3] [1:4] [2:5]

[0:4] [1:5]

[0:5]

[0:2] [1:3] [2:4] [3:5]

[0:1] [1:2] [2:3] [3:4] [4:5]

26

aabbb

a

a

b

aa

aab

ab

abb

bb

bb

aabb aabbb

abbb

bbb

27

$S \rightarrow AB$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

a a b b b A A B B B

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

28

$S \rightarrow AB$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

a	a	b	b	b
A	A	В	В	В
aa	ab	bb	bb	
	S,B	A	A	

bbb

aabb abbb

abb

aabbb

aab

Therefore:
$$aabbb \in L(G)$$

Time Complexity:
$$|w|^3$$

Observation: The CYK algorithm can be easily converted to a parser

Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

The States

stack

\boldsymbol{C}
h
e
\$

$$\underbrace{q_1} \xrightarrow{a, \lambda \to c} \underbrace{q_2}$$

C
b
h
e
\$

stack

h	
e	
\$	

stack

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Input

Stack

 $a, \lambda \rightarrow a \qquad b, a \rightarrow \lambda$ $q_1 \qquad b, a \rightarrow \lambda \qquad \lambda, \$ \rightarrow \$$ $q_2 \qquad \lambda, \$ \rightarrow \$$

Input

Stack

 \boldsymbol{a}

Input

a a\$

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

· All the input is consumed

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$\lambda$$
, $\lambda \rightarrow \lambda$

$$b, b \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

 $\lambda, \lambda \to \lambda$

Guess the middle of string

Stack

 $a, a \rightarrow \lambda$

 $b, b \rightarrow \lambda$

Input

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Input

\$

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $\lambda, \$ \rightarrow \$$

Rejection Example:

Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda$$
, $\lambda \rightarrow \lambda$

$$\lambda$$
, \$ \rightarrow \$

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$\lambda, \lambda \rightarrow \lambda$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$ $b, \lambda \rightarrow b$

 $a, a \rightarrow \lambda$

 $b, b \rightarrow \lambda$

 λ , \$ \rightarrow \$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Another computation on same string:

Input

Stack

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

 λ , \$ \rightarrow \$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

 $\lambda, \lambda \rightarrow \lambda$

Stack

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$

 $a, a \rightarrow \lambda$

Input

b
b
b
а
\$

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

Input

No final state is reached

b
b
b
a
\$

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

There is no computation that accepts string abbb

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2