1 Syllabus covered

- ☑ Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them.
 - 1. Homework 1 and Lectures 08/31 and 09/02.
- ✓ Generate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them
 - 1. Lecture 09/09
- ✓ Understand and use the laws and theorems of Boolean Algebra
 - 1. Homework 2 and Lectures 09/16-09/19
- ✓ Perform algebraic simplification using Boolean algebra
 - 1. Homework 2 and Lectures 09/16-09/19
- ✓ Simplification using K-maps
 - 1. Homework 2 and 3 and Lectures 09/12-09/14
- Derive sum of product and product of sums expressions for a combinational circuit
 - 1. Homework 2 and 3 and Lectures 09/12-09/23
- ✓ Convert combinational logic to NAND-NAND and NOR-NOR forms
 - 1. Homework 3 and Lecture 09/28
- ✓ Simplification using Quine-McCluskey method
 - 1. Lecture 09/28
- ${\bf { \checkmark }}$ Design combinational circuits for positive and negative logic
 - 1. For Negative logic is H = 0, L = 0. See Example 6, on lecture 10/19
- ✓ Design Hazard-free two level circuits.
 - 1. See Example 14, on lecture 10/24
- - 1. See Section 2 of lecture 10/17
- ✓ Describe how tri-state and open-collector outputs are different from totempole outputs.

	l.	See Definitions	11-13	covered	in	lecture	10	/21
--	----	-----------------	-------	---------	----	---------	----	-----

 \Box Convert between Mealy and Moore designs

 $\hfill\Box$ Partition a system into multiple state machines

✓	Different between and limitations of level-triggered latches and edge-triggered flip-flops.
	1. See lecture $10/26-10/28$
√	Analyze a sequential circuit and derive a state-table and a state-graph
√	Understand the difference between synchronous and asynchronous inputs
√	Derive a state graph or state table from a word description of the problem
√	Implement a design using JK, SR, D or T flip-flops
	Compute fan out and noise margin of one device driving the same time
	Know the differences and similarities between PAL, PLA, and ROMs and can use each for logic design
	Design combinational circuits using multiplexers and decoders
	Reduce the number of states in a state table using row reduction and implication tables
	Perform a state assignment using the guideline method
	Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs