15-151 EXCEL

Topic: Review sets and functions, Integers, Induction basics

EXCEL Leader: Sam Yong Email: myong@andrew.cmu.edu Session Date: Sun 22 Sep 19
Academic Development
Cyert Hall B5 | 412-268-6878

Services available: Supplemental Instruction (SI), Academic Counseling in Study Skills, Individual & Walk-in Tutoring

- 0. Agenda
 - 1) Reviewing sets and functions
 - Set equality proofs
 - Well-definedness
 - In-/sur-/bi-jectivity proofs
 - Image/preimage
 - 2) Properties of integers
 - Parity and divisions
 - Naturals
 - The Fibonacci numbers
 - 3) The concept of induction
 - The principles
 - An example

"The really unusual day would be one where nothing unusual happens."

- Persi Diaconis

1. Definitions review

[Instruction] Turn to your partner and complete the following together.

A function $f: X \to Y$ is injective if	
A function $I: A \rightarrow I$ is injective if	

- A function $f: X \to Y$ is surjective if ______.
- A function is **bijective** if _______.
- \blacktriangleright Let $f: X \to Y$ be a function. A **left inverse** for f is a function $g: Y \to X$ such that
- \blacktriangleright Let $f: X \to Y$ be a function. A **right inverse** for f is a function $g: Y \to X$ such that
- \blacktriangleright Let $f: X \to Y$ be a function. An **inverse** for f is ______.
- \blacktriangleright A function $f: X \to Y$ is **injective** if and only if it has a ______.
- \triangleright A function $f: X \to Y$ is **surjective** if and only if it has a ______.

Let $f: X \to Y$ be a function. $X = \{1, 2, 3\}, Y = \{1, 2, 3\}, f(1) = 1, f(2) = 2, f(3) = 2.$

- $\rightarrow f[X] = \underline{\hspace{1cm}}$
- ▶ f[{2,3}] = _____
- $> f^{-1}[Y] = \underline{ }$
- $> f^{-1}[\{2,3\}] = \underline{ }$
- $> f^{-1}[{3}] = \underline{ }$

2. Some practice problems

[Instruction] Again in your pair, go to a board space for the following practice problems.

- 1) Let $f: X \to Y$ be a function. Prove $X \subseteq f^{-1}[f[X]]$.
- 2) Let $f: X \to Y$ be a function. Prove $f[f^{-1}[Y]] \subseteq Y$.
- 3) Consider function $f: X \to X$. Show that if $f \circ f$ is injective, then f is injective.
- 4) Let A, B, C, D be sets. Show that if $A \subseteq B \land C \subseteq D$, then $A \cap C \subseteq B \cap D$.
- 5) Let $A = \{n: n = 2k + 1, k \in \mathbb{Z}\}, B = \{n: n = 2k 1, k \in \mathbb{Z}\}.$ Prove A = B.

I LOVE FINDING REVIEWS OF PLACES THAT REALLY DON'T NEED TO HAVE REVIEWS.

★☆☆☆☆ PLEASE DON'T LAUNCH THESE

SITE. HOW DO I PREORDER?

3. Principle of mathematical induction (weak)

Let p(n) be logical formula with free variable $n \in \mathbb{N}$, and let $n_0 \in \mathbb{N}$. If

- i) $p(n_0)$ is true; and
- ii) For all $n \ge n_0$, if p(n) is true, then p(n + 1) is true;

then p(n) is true for all $n \ge n_0$.

Induction goal

[Instruction] Identify the following concepts in the principle.

Base case	
Induction step	
Induction hypothesis	

Prove the following formula on $n \in \mathbb{N}$, $n \ge 1$.

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$