From Two-Field Bounce to Early Galaxies: A First-Principles SFV/dSB Prediction for JWST's Bright High-z Population

Your Name

October 2, 2025

Abstract

We present an end-to-end, first-principles pipeline that maps parameters of a two-field bounce in the SFV/dSB framework to linear matter power, halo abundances, and predicted UV luminosity functions (UVLFs) at $z \gtrsim 10$. The amplitude of a large-scale component is set by the bounce ratio $(v_{\phi}/v)^4$ and its characteristic scale is anchored to the measured wall radius R_0 (and, optionally, width $w_{\rm eff}$) from the bounce background profile. With this purely bounce- and density-driven input—no free fit to galaxy data—we find enhanced abundances in the rare, massive tail of the halo mass function at $z \sim 12$ –14, directly addressing the brightest part of the current JWST tension while remaining consistent with young stellar ages inferred spectroscopically. We provide open scripts and reproducible figures.

1 Introduction and context

JWST is revealing luminous galaxies at $z \gtrsim 10$ in significant numbers, including spectroscopically confirmed sources at $z \approx 14.3$ (JADES-GS-z14-0, z14-1) and the compact starburst GN-z11 at $z \approx 10.6$ [1, 2]. These systems appear young (tens-hundreds of Myr), but more numerous/bright than many pre-JWST extrapolations, especially at the bright end [3]. Theoretical forecasting typically proceeds from the linear matter power spectrum P(k) (e.g. Eisenstein-Hu) to a halo mass function (e.g. Sheth-Tormen) [4–6], embedded in a baseline cosmology (Planck 2018; Planck Collaboration 7). In that chain, small boosts of variance at large scales preferentially raise abundances of the rarest halos at early times.

2 Bounce/dSB to linear power: parameterization

Our SFV/dSB model introduces an additive component to the Λ CDM linear matter power:

$$P_{\text{tot}}(k) = P_{\Lambda \text{CDM}}(k) + P_{\text{SFV}}(k), \tag{1}$$

with $P_{\Lambda \text{CDM}}(k) \propto k^{n_s} T^2(k)$ using the Eisenstein–Hu transfer function T(k), normalized to σ_8 . The SFV/dSB contribution is tied to bounce outputs:

$$A_{\rm sfv} = \left(\frac{v_{\phi}}{v}\right)^4,\tag{2}$$

$$k_{\rm cut} \equiv \frac{\gamma_k}{R_0}$$
, (with γ_k fixed by a one-time calibration), (3)

$$P_{\rm SFV}(k) = A_{\rm sfv} P_0 \exp\left[-\left(\frac{k}{k_{\rm cut}}\right)^2\right],\tag{4}$$

where R_0 is the measured wall center from the bounce background profile (midpoint crossing of Φ) and P_0 sets overall units (we use $P_0 = P_{\Lambda \text{CDM}}(k)$ evaluated near the bump for transparency).

In the runs presented here we further diagnose the wall thickness $w_{\rm eff}$ (FWHM of $|\mathrm{d}\Phi/\mathrm{d}r|$) for future use as a width prior. No amplitude or scale is fitted to galaxy data; both are set by (v_{ϕ}/v) and R_0 from the bounce.

Bounce/density inputs used. From the two-field bounce driver we used $v = 4.2 \times 10^{-5}$, $v_{\phi} = 9.0 \times 10^{-5}$ (thus $A_{\rm sfv} \approx 21$), and read the background profile to obtain $R_0 \simeq 5.00$ (solver units). Using $\gamma_k = 0.595$ (calibrated so $R_0 = 11.9 \mapsto k_{\rm cut} = 0.05 \, h \, {\rm Mpc}^{-1}$), we obtain $k_{\rm cut} \approx 0.119 \, h \, {\rm Mpc}^{-1}$. The baryon and LSP density evolution is unchanged in the pipeline except through the modified linear power that seeds structure.

3 From P(k) to halos and galaxies

We compute $\sigma^2(R)$ with a real-space top-hat window and evaluate the Sheth-Tormen (ST) mass function,

$$\frac{\mathrm{d}n}{\mathrm{d}M}(M,z) = \frac{\bar{\rho}_m}{M} f(\nu) \left| \frac{\mathrm{d}\ln\sigma^{-1}}{\mathrm{d}M} \right|, \qquad \nu = \frac{\delta_c}{\sigma(M)D(z)}, \tag{5}$$

with the standard ST parameters (A, a, p) = (0.3222, 0.707, 0.3) and δ_c =1.686 [5, 6]. Growth is the usual CPT approximation normalized to D(0)=1. For galaxy comparison we implement a minimal abundance-matching step: we map cumulative halo abundances in Λ CDM to an observed UVLF (Schechter) to infer a rank-ordered $M_{\text{halo}} \leftrightarrow M_{\text{UV}}$, and apply the same mapping to the SFV halo field to predict an SFV UVLF (no change to duty cycle or IMF, unless specified).

4 Results

4.1 Power spectrum

Figure 1 shows the total SFV/dSB $P_{\rm tot}(k)$ alongside the Λ CDM baseline. With the bounce-anchored $k_{\rm cut} \approx 0.119 \, h \, {\rm Mpc}^{-1}$, the excess power is concentrated at large scales but leaks into the $k \sim 0.1$ band relevant for early massive halos.

4.2 Halo abundances and boosts

Figure 2 (left) shows cumulative number densities n(>M) at z=10 and z=15; Fig. 2 (right) shows the ratio SFV/ Λ CDM. The largest fractional boosts occur in the rare, high-mass tail, and the boost grows toward higher redshift.

To target the JWST regime, we also evaluated z = 12 and z = 14. Table 1 summarizes the SFV/ Λ CDM cumulative ratios for several thresholds:

Mass threshold	$10^{11} M_{\odot}$	$3\times10^{11}M_{\odot}$	$10^{12} M_{\odot}$	$3\times10^{12}M_{\odot}$	$10^{13} M_{\odot}$
z = 14	0.998	1.005	1.049	1.256	3.48
z = 12	0.996	1.001	1.033	1.184	2.56

These numbers capture the visual impression: near $10^{11} - 10^{12} M_{\odot}$ the curves nearly overlap, while at a few× 10^{12} - $10^{13} M_{\odot}$ the boost becomes order unity at $z \gtrsim 12$.

Figure 1: Linear power spectra. Λ CDM baseline (blue), SFV contribution (orange), and total (green). Normalized to σ_8 ; $A_{\rm sfv} = (v_\phi/v)^4$ and $k_{\rm cut} = \gamma_k/R_0$ from the bounce background profile.

Figure 2: **Left:** cumulative halo abundances n(>M) for Λ CDM and SFV/dSB at $z=\{10,15\}$. **Right:** SFV/ Λ CDM abundance ratio vs. M.

4.3 UV luminosity function (UVLF) comparison

With a minimal abundance-matching step and fiducial Schechter parameters (illustrative), Figure 3 shows how the halo boost translates into an enhanced bright-end UVLF without invoking older stellar ages. A data-driven variant swaps in any preferred JWST UVLF compilation at $z \in [10, 14]$.

5 Consistency and physical picture

Young ages, not ancient galaxies. Spectroscopy indicates that the record-holders at $z \gtrsim 12$ are young and intensely star-forming, not $\gtrsim 1\,\mathrm{Gyr}$ old. The SFV/dSB mechanism addresses the counts/brightness side by seeding slightly earlier and more efficient collapse in the most massive peaks, most visible at high z—exactly where JWST finds the brightest systems [1–3].

Bounce anchoring. Amplitude and scale of the power enhancement are *directly* inherited from the bounce: $A_{\rm sfv} = (v_\phi/v)^4$; $k_{\rm cut} = \gamma_k/R_0$ with R_0 measured from the background profile. A natural extension (left for near-term work) uses the measured $w_{\rm eff}$ to set the bump width in k-space, shifting some power into $k \sim 0.1$ –1 $h\,{\rm Mpc}^{-1}$ to further affect $\sim 10^{11}$ – $10^{12}M_{\odot}$ halos if required by data.

6 Reproducibility

All figures in this paper were produced by the following scripts (upload alongside the LATEX file and run locally):

- clump_sfv_rework.py (power spectrum; outputs power_spectrum_sfv.png/csv)
- halo_from_power_ST.py (Sheth-Tormen; outputs cumulative_halo_abundance.png, abundance_ratio.halo_abundance_SFV_vs_LCDM.csv)
- abmatch_uvlf_from_power.py (abundance matching; outputs uvlf_pred_comparison.png, uvlf_boost_ratio.png)
- make_all_sfv_plots_from_background.py (one-shot pipeline; reads background_profile.csv, pulls v, v_{ϕ} from the bounce driver).

We used $R_0 \simeq 5.00$ (diagnosed; see wall_estimate_from_background.png) giving $k_{\rm cut} \approx 0.119 \, h \, {\rm Mpc}^{-1}$ and $A_{\rm sfv} \approx (9.0 \times 10^{-5}/4.2 \times 10^{-5})^4$.

7 Conclusions

A bounce/dSB-driven, large-scale enhancement to the linear power spectrum, with no free fitting to galaxy data, naturally raises the abundance of massive halos at $z \sim 12$ –14, aligning with the locus of the JWST bright-end tension while preserving young stellar ages. Tying the k-space width to the measured wall thickness $w_{\rm eff}$ is a straightforward extension that may further affect moderate-mass halos if required by future UVLF/SMF constraints.

References

- [1] S. Carniani et al., "Spectroscopic confirmation of two luminous galaxies at a redshift of 14," Nature 629, 59-64 (2024). https://www.nature.com/articles/s41586-024-07860-9
- [2] A. J. Bunker et al., "JADES NIRSpec Spectroscopy of GN-z11," A&A 678, A185 (2023). https://www.aanda.org/articles/aa/full_html/2023/09/aa46159-23/aa46159-23.html
- [3] M. Boylan-Kolchin, "Stress testing ΛCDM with high-redshift galaxy candidates," Nature Astronomy 7, 731–735 (2023). https://www.nature.com/articles/s41550-023-01937-7
- [4] D. J. Eisenstein and W. Hu, "Baryonic features in the matter transfer function," ApJ 496, 605 (1998). https://arxiv.org/abs/astro-ph/9709112
- [5] R. K. Sheth and G. Tormen, "Large scale bias and the peak background split," MNRAS 308, 119 (1999). https://academic.oup.com/mnras/article/308/1/119/1005406
- [6] R. K. Sheth, H. J. Mo and G. Tormen, "Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes," MNRAS 323, 1 (2001, astro-ph/9907024). https://arxiv.org/abs/astro-ph/9907024
- [7] Planck Collaboration: N. Aghanim et al., "Planck 2018 results. VI. Cosmological parameters," A&A 641, A6 (2020). https://www.aanda.org/articles/aa/abs/2020/09/aa33910-18/aa33910-18.html

Figure 3: Top: observed UVLF (Schechter; illustrative) vs. Λ CDM- and SFV-predicted UVLFs via abundance matching at z=10. Bottom: SFV/ Λ CDM UVLF ratio.