國立臺灣大學管理學院資訊管理學系

碩士論文

Institute of Information Management

College of Management

National Taiwan University

Master Thesis

基於總體成本與駕駛與乘客間公平性之最佳化共乘演 算法

An Optimization Based Carpool Algorithm in Consideration of the Total Cost and Fairness among the Driver and All Passengers

黄文鴻

Wen-Hong Huang

指導教授: 林永松 博士

Advisor: Frank Yeong-Sung Lin Ph.D.

中華民國 109 年 12 月

December, 2020

摘要

共享經濟是隨著網路以及行動裝置普及下逐漸興起的熱潮,傳統的計程車與 共乘服務在共享經濟的風潮下產生出新的商業模式,不同於以往使用者必須到目 的地才能知道價錢,或是只能針對特定路線如通勤、通學等才容易有共乘機會; 透過線上叫車服務,使用者除了可以事先知道價錢,還可以透過共乘配對服務, 自動配對有相近路線的乘客,共同分攤車資,提供使用者更便宜經濟的選擇。

目前的線上共乘配對服務,為共乘平台針對目前行徑中或是配對中的乘客透 過運算,找尋最適合的路線與乘客。自動配對的共乘服務中,往往需要多繞路以 同時滿足不同乘客間的載運需求,如何讓使用者之間繞路多寡符合公平性,便是 重要的挑戰。本研究考慮共享經濟中共乘服務的多乘客路線規劃問題,將乘客可 接受的抵達時間、繞多少路的可接受程度,車輛人數限制,以及載客的優先順序 納入考量,以最小化最大乘客共乘後節費比例,透過拉格朗日鬆弛法以取得最佳 解。

關鍵字:共乘、共享經濟、車輛路徑問題、拉格朗日鬆弛法

Abstract

Keywords: Carpooling, Sharing economy, Vehicle routing problem, Largrangian relaxation

Contents

	P	age
摘要		3
Abstract		5
Contents		7
List of Figu	res	9
List of Table	es	11
Chapter 1	Introduction	1
1.1	Background	1
1.2	Motivation	2
1.3	Objective	3
1.4	Thesis Organization	3
Chapter 2	Literature Review	5
2.1	Related research on carpooling	5
2.2	Dial-a-ride-problem	5
2.3	Steiner tree	5
Chapter 3	Problem Formulation	7
3.1	Problem Description	7
3.1.1	Assumptions	11

3.1.2	Fairness of Vehicle Dispatching	
3.2	Mathematical Model	13:
References		# 17

List of Figures

3.1	1 Example road network with driving fare and points of passengers and their							
	destinations	8						
3.2	Best routing path when the driver only serving Passenger 1	9						
3.3	Best routing path when the driver only serving Passenger 2	9						
3.4	One of the best routing when both Passenger 1 and Passenger 2 carpool .	10						
3.5	Another best routing when both Passenger 1 and Passenger 2 carpool	10						

List of Tables

3.1	Notations of given parameters	•			•				•				•	•	•	13
3.2	Notations of decision variables															14

Chapter 1 Introduction

1.1 Background

近年來,隨著網際網路的普及以及幾乎人手一支的行動裝置帶動之下,資訊分享無遠弗屆,開始有人將閒置資源放到網路上與人們共享與交換,然而與陌生人共享意味者風險,隨著使用者評比系統的出現,共享平台開始可以透過評比知道使用者好壞,大大降低了網路共享行為的風險[1],此後這樣的共享平台逐漸推廣到生活的各個層面,蔚為風潮,從食物外送、住宿、乘車都可以見到他的身影,而人們稱呼這樣的新模式為「共享經濟」。

如何定義共享經濟目前並沒有統一的說法,一般來說,共享經濟中的活動主要分為四大類型:商品的再循環、增加耐久財的使用率、服務交換與經營性資產的共享[1]。這些活動本質上圍繞著「閒置資產」的重新分配[2],不論是透過資源的交換,或從中賺取報酬,只要透過共享經濟平台的媒合,低廉的交易成本使得閒置資產擁有者將資產發揮更大的價值,而需求者能以較低廉的成本運用該資產,如此一來便能增進整體社會資產的使用率,甚至可以「以租代買」,改變以往必須擁有資產才能使用的思維。

共享經濟的閒置資產重新分配精神,為行之有年的計程車與共乘服務注入了 活水,相對於傳統的大眾運輸服務,共享經濟下的新型態的運輸服務有以下的特 色:

1. 有效率的資源使用:傳統的計程車以往需要透過路邊欄車〉電話叫車或是計程車隊的無線電派車模式,以台灣為例,根據交通部數據,巡迴攬客、招呼站等候以及定點排班 [3] 便佔了超過一半的比例,這樣的叫車模式,需要計程車在路上徘徊,或是在定點等候,容易增加計程車的時間空車率,造成資源浪費;透過叫車平台的派車服務,可以隨時媒合平台上的計程車,使用者也不須在路邊等候,只需要打開手機,便可明確知道計程車抵達時間,旅程時間,減少不確定性同時也可以提升計程車使用率。2. 動態的服務資源:叫車平台上的司機可彈性決定自己的工作時間,隨時可以透過登入與登出叫車 App,決定是否開放載客,因此相對於傳統無線電計程車有固定的派車資源,叫車平台的供給方有非常高度的動態性。3. 動態共乘:有些叫車 App 也提供共乘配對服務,如 UberPool 與 Lyft Line,只要開啟 App 中的共乘選項,便能及時配對有相近路線需求的乘客,不但可以一起分攤車資,還可以減少旅程中空位的浪費,然而對於平台設計者而言,如何在動態的路線需求中,規劃出能滿足各乘客的行車路線,並在媒合各乘客路線的同時,能有合理範圍的繞路。

從以上特性中,我們可以了解到,在新型態的叫車平台上,不論供需雙方都 具有高度的動態性與不確定性,在叫車平台上的共乘服務,還需考量隨時從各地 出現的路線需求中,找到合適的司機規劃出適合的路線,這對平台方來說,會是 一大考驗。

1.2 Motivation

早期的共乘多半是要定點如計程車招呼站找人配對、由固定通勤路線長期配合,或是由互相認識的人有相近的路程 [4] 才比較有機會有共乘的可能。隨著行

動裝置的成熟與普及,使得行動裝置所能應用的領域呈現史無前例的廣泛,食衣住行育樂無所不包,任何將行動裝置拿出口袋時會想到的事情,都有可能成為App的題材;行動裝置上的唾手可及的定位服務,帶給了App開發者無限的想像空間,共乘就是一個很經典例子。在共享經濟時代下,只要隨手拿出手機,共乘服務就能將原本閒置的座位、車輛得到了更好地利用,司機透過共乘平台規劃,在原本的路線上多繞一點路,就能多賺取費用;乘客可以與司機及其他乘客一起分攤車資,用更划算的價格取得服務,使社會資源的到更良好的使用。

學術上,在目前針對共享經濟中行動裝置的動態共乘問題,已有許多探討, 針對為了各個乘客的起訖而繞路的研究,目前來說只有乘客自行限制繞路的距離 或由平台給定[5],至於乘客們之間對於自己起迄站最小路徑與實際上繞路的多 寡,並沒有公平性機制的探討,換句話說,對於同車各個乘客之間的繞路多寡, 是可能會有分配不均的情形在的,很可能造成一趟共乘中有人繞了很多路,而有 人幾乎不繞路,這樣對於乘客共乘的權益,是很不公平的一件事,因此,如何在 動態共乘問題中,考慮乘客間的公平性,是本文中所要套討的議題。

1.3 Objective

本研究目標是在不同乘客起迄站的服務要求中,有著駕駛資源與路線條件的限制下,最小化最大乘客繞路比例。(待補)確保乘客對於旅程時間不會有過多的落差

1.4 Thesis Organization

Chapter 2 Literature Review

- 2.1 Related research on carpooling
- 2.2 Dial-a-ride-problem
- 2.3 Steiner tree

In order

Chapter 3 Problem Formulation

In this chapter, we will introduce the scenario of the carpooling fairness problem.

Then formulate the problem into a mathematical model with given parameters and decision variables.

3.1 Problem Description

The object of this research is to minimize the maximum percentage of cost saving when a passenger chooses to carpool, with consideration of the number of drivers, car capacity and routing limit constraints.

Take Figure 3-1 as an example scenario; Passenger 1 and Passenger 2 are requesting a trip. When Passenger 1 chooses to take a ride by himself/herself, called "exclusive" riding shown as Figure 3-2, it would cost \$5. We can describe the scenario as a shortest path problem from S to D_1 , and P_1 is a must-pass node. We use Steiner tree to solve this kind of shortest path problem with must-pass nodes. Passenger 2's "exclusive" riding would also cost \$5 in Figure 3-3. In this case, it would be a shortest path problem from S to S_2 with S_3 as a must-pass node.

When the passengers choose to take a carpool, which is called "sharing" riding. We

can describe the scenario as a shortest problem from S to D_1 with P_1 , P_2 and D_2 as mustpass nodes or S to D_2 with P_1 , P_2 and D_1 as must-pass nodes. In Figure 3-4 is one of the best case, which would cost \$8 for all the passengers, in Figure 3-5 would cost the same \$8 and both of the fares they could share are \$5 ($\overline{P_2D_1}$ and $\overline{P_2D_2}$ respectively); however, in Figure 3-4 would cost $1 + \frac{1}{2} \times \frac{\overline{P_2D_1}}{5} = \3.5 for Passenger 1 and $1 \times \frac{\overline{P_2D_2}}{5} = \3.5 for Passenger 2, in Figure 3-5 would cost $1 + \frac{1}{2} \times \frac{\overline{P_2D_2}}{5} + \frac{\overline{D_2D_1}}{1} = \4.5 for Passenger 1 and $1 \times \frac{\overline{P_2D_2}}{5} = \2.5 for Passenger 2.

Figure 3.1: Example road network with driving fare and points of passengers and their destinations

Figure 3.2: Best routing path when the driver only serving Passenger 1

Figure 3.3: Best routing path when the driver only serving Passenger 2

Figure 3.4: One of the best routing when both Passenger 1 and Passenger 2 carpool

Figure 3.5: Another best routing when both Passenger 1 and Passenger 2 carpool

3.1.1 Assumptions

There are three assumption in out system:

- 1. Every driving request only includes one passenger. This driving request will be split into multiple one-person driving request for a driving request with multiple people.
- 2. System calculation time is not considered, that is, assume that drivers' location will still keep unchanged after the time of system calculation.
- 3. The carpooling fare is shared equally by the time passengers in the vehicle. For a certain section of the route that has n passengers, this fare of link for a passenger will be divided by n.

3.1.2 Fairness of Vehicle Dispatching

In order to consider the fairness when dispatching driver, we introduce Jain's fairness index to avoid unfair situation:

Firness Index =
$$f_A(x) = \frac{\left(\sum\limits_{i=1}^n x_i\right)^2}{n\sum\limits_{i=1}^n x_i^2}$$

We take accumulate driving requests that a driver has received as the metrics for fairness. That is, when a driver receives more driving requests in the past, he/she should give his/her chance of receiving a new driving request to the one who takes fewer driving requests.

As a new driving request comes, we need to ensure our system must get more or at least keep the same fairness. Hence, we form a constraint that the fairness index can not decrease compared to the previous fairness index.

However, when the driving resource changes, such as a new driver joins our system, it will violate our constraint for fairness. Because the newcomer has not taken any driving request before, the fairness will decrease. Even if a driver leaves our system, the fairness will increase or decrease due to the driver's situation. As a result, we need to reset the fairness index to the initial state and reset all the drivers' accumulated driving requests to 0. Nevertheless, it will make the fairness index's denominator to 0, which can not be divided. To avoid this situation, we assign a virtual driver with one accumulated driving request, which will make the fairness index to $\frac{1}{(n+1)}$, where n is the number of drivers in our system. Moreover, for any situation that the fairness index will decrease when dispatching a new driving request, the fairness will reset.

3.2 Mathematical Model

We will go through the detailed given parameters and decision variables in the mathematical model before describing our mathematical model.

Table 3.1: Notations of given parameters

Notation	Description
B_r	Set of passengers that driver r has picked up, where $r \in R$
D	Set of destinations in the system (take k as index)
L	Set of links on the road network
L_p	Set of links on the road network that pass by the passenger $p \in P$
L_d	Set of links on the road network that pass by the destination $d \in D$
P	Set of passengers in the system (take j as index)
P_r	Set of all paths for driver r , where $r \in R$
P_{rw}	Set of all paths for driver r from initial location to a passenger or a destination, where $r \in R$ and $w \in W$
P_{rp_i}	Set of all paths for driver r from initial location to passenger p_i , where $r \in R$ and $p_i \in P$
P_{rd_i}	Set of all paths for driver r from initial location to destination d_i , where $r \in R$ and $d_i \in D$
Q_r	Maximum load capacity for driver r , where $r \in R$
R	Set of drivers in the system (take i as index)
W	Set of passengers or destinations in the system, where $W=P\cup D$
f_l	The fare for the link l , where $l \in L$
g_r	The capacity that the driver $r \in R$ has loaded in the previous decision round.
α	The fairness index in the previous decision round.
δ_{pl}	Indicator function which is 1 if link l on the route r is selected; 0 otherwise

Table 3.2: Notations of decision variables

Notation	Description	•
x_p	Binary variable, 1 if route $p \in P_r$ is chosen; 0 otherwise.	7
y_l	Binary variable, 1 if link $l \in L$ is on the shortest path; 0 otherwise.	
z_p	Binary variable, 1 if route $p \in P_{rw}$ is chosen; 0 otherwise.	
a_r	Total fare that the driver $r \in R$ has earned before current decision round.	
b_r	Total fare that the driver $r \in R$ has earned after current decision round.	

Objective Function

The objective function is to maximize the minimum discount percentage when applying carpooling among passengers in one trip.

$$max min \frac{Original \ cost_i - carpool \ cost_i}{Original \ cost_i}$$
 (IP1)

Constraints

Constraint 3.1 ensures there is only one path selected for a driver.

$$\sum_{p \in P_r} x_p \le 1 \tag{3.1}$$

Constraint 3.2 ensures the selected link on the route we chose is on the shortest path.

$$\sum_{p \in P_r} x_p \delta_{pl} \le y_l \qquad \forall l \in L \cup L_p \cup L_d \qquad (3.2)$$

Constraint 3.3 ensures all the links pass by the node of passenger or destination we chose is the shortest path.

$$y_l \le 1 \qquad \forall l \in L_p \cup L_d \tag{3.3}$$

Constraint 3.4 ensures that all the routes to passengers or destinations we chose is on the shortest path and overlap the route we chose.

$$\sum_{p \in P_w} z_p \delta_{pl} \le y_l \qquad \forall w \in W \tag{3.4}$$

Constraint 3.5 ensures the route we chose will only pass by the node of passenger or destination once.

$$\sum_{p \in P_w} z_p \le 1 \qquad \forall w \in W \tag{3.5}$$

Constraint 3.6 ensures that we must pick up the passenger before we drop off the passenger.

$$\sum_{l \in L \cup L_p} \sum_{p \in P_{rp_i}} z_p \delta_{pl} f_l \le \sum_{l \in L \cup L_d} \sum_{p \in P_{rd_i}} z_p \delta_{pl} f_l \qquad \forall i \in \{1, 2, ..., n\}, r \in D$$
 (3.6)

Constraint 3.7 ensures the fairness index after current decision round will not less than the previous decision round.

$$\frac{\left(\sum_{r \in R} b_r\right)^2}{\sum_{r \in R} 1 \sum_{r \in R} b_r^2} \ge \alpha \tag{3.7}$$

Constraint 3.8 is the fairness index in the previous decision round.

$$\frac{\left(\sum_{r \in R} a_r\right)^2}{\sum_{r \in R} 1 \sum_{r \in R} a_r^2} \le \alpha$$

References

- [1] J. Schor. Debating the sharing economy. Library Catalog: greattransition.org Section: 2014. [Online]. Available: https://greattransition.org/publication/debating-the-sharing-economy
- [2] K. Frenken, T. Meelen, M. Arets, and P. v. d. Glind, "Smarter regulation for the sharing economy." [Online]. Available: https://www.theguardian.com/science/political-science/2015/may/20/smarter-regulation-for-the-sharing-economy
- [3] M. o. t. Department of Statistics and R. communications, 100年計程車營運狀況調查報告. Ministry of transportation and communications, R.O.C., 2012.
- [4] N. D. Chan and S. A. Shaheen, "Ridesharing in north america: Past, present, and future," vol. 32, no. 1, pp. 93–112. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01441647.2011.621557
- [5] B. Shen, Y. Huang, and Y. Zhao, "Dynamic ridesharing," vol. 7, no. 3, pp. 3–10.[Online]. Available: https://doi.org/10.1145/2876480.2876483