Romaric Pujol, romaric.pujol@insa-lyon.fr

Exercise 1.

1. Let $a \in \mathbb{R}$. The function $x \mapsto e^{-at}$ is continuous on $[0, +\infty)$, hence the improper integral I(a) is improper at $+\infty$. First observe that if a = 0 then

$$\lim_{t \to +\infty} e^{-at} = 1 \neq 0,$$

hence I(0) diverges. So, from now on, we assume that $a \neq 0$. Let X > 0. Then:

$$\int_0^X e^{-at} dt = \left[-\frac{e^{-at}}{a} \right]_{t=0}^{t=X} = \frac{1}{a} (1 - e^{-aX}).$$

Now,

$$\lim_{X \to +\infty} e^{-aX} = \begin{cases} +\infty & \text{if } a < 0\\ 0 & \text{if } a > 0, \end{cases}$$

hence I(a) diverges when a < 0 and I(a) converges if a > 0; in the case a > 0 we conclude that I(a) = 1/a. Conclusion: I(a) converges if and only if a > 0, and in this case, I(a) = 1/a.

- 2. Let $a \in \mathbb{R}$. The function $t \mapsto t^a/(1+t^2)$ is continuous on \mathbb{R}_+^* (and not \mathbb{R}_+ in the case a < 0). Hence the improper integral J(a) is improper at 0 and at $+\infty$.
 - Convergence at 0: from the equivalent

$$\frac{t^a}{1+t^2} \underset{t\to 0^+}{\sim} t^a = \frac{1}{t^{-a}} > 0,$$

and the well-known Riemann integrals at 0, the improper integral

$$\int_0^1 \frac{\mathrm{d}t}{t^{-a}}$$

converges at 0 if and only if -a < 1, i.e., a > -1. Hence, by the equivalent test, J(a) converges at 0 if and only if a > -1.

• Convergence at $+\infty$: from the equivalent

$$\frac{t^a}{1+t^2} \underset{t\rightarrow +\infty}{\sim} \frac{t^a}{t^2} = \frac{1}{t^{2-a}} > 0,$$

and the Riemann integrals at $+\infty$, the improper integral

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{2-a}}$$

converges at $+\infty$ if and only if 2-a>1, i.e., if and only if a<1. Hence, by the equivalent test, J(a) converges at $+\infty$ if and only if a<1.

Conclusion: the improper integral J(a) converges if and only if $a \in (-1,1)$.

Exercise 2.

1. Let $f \in E$. The function $t \mapsto |f(t)|/\sqrt{t}$ is continuous on (0,1], hence the improper integral

$$\int_0^1 |f(t)| \frac{\mathrm{d}t}{\sqrt{t}}$$

is improper at 0. Since |f| is continuous on the closed and bounded interval [0, 1], the Extreme Value Theorem guarantees the existence of $M \in \mathbb{R}$ such that

$$\forall t \in [0, 1], \ 0 \le |f(t)| \le M.$$

Hence,

$$\forall t \in (0,1], \ 0 \le \frac{|f(t)|}{\sqrt{t}} \le \frac{M}{\sqrt{t}}.$$

Now, the improper integral

$$\int_0^1 \frac{M}{\sqrt{t}} \, \mathrm{d}t$$

converges (by Riemann at 0 with $\alpha = 1/2 < 1$), hence, by the comparison test (observing that its application is valid since we're dealing with a non-negative function), the improper integral

$$\int_0^1 |f(t)| \frac{\mathrm{d}t}{\sqrt{t}}$$

converges.

2. • Let $f \in E$ such that N(f) = 0. Since the function $t \mapsto |f(t)|/\sqrt{t}$ is continuous and non-negative on (0,1], we must have:

$$\forall t \in (0,1], \ \frac{\left|f(t)\right|}{\sqrt{t}} = 0,$$

hence

$$\forall t \in (0,1], \ f(t) = 0,$$

and since f is continuous at 0 we also have

$$f(0) = \lim_{t \to 0^+} f(t) = 0,$$

hence $f = 0_E$.

• Let $f \in E$ and $\lambda \in \mathbb{R}$. Then:

$$N(\lambda f) = \int_0^1 \left| \lambda f(t) \right| \frac{\mathrm{d}t}{\sqrt{t}} = \left| \lambda \right| \int_0^1 \left| f(t) \right| \frac{\mathrm{d}t}{\sqrt{t}} = \left| \lambda \right| N(f).$$

• Let $f, g \in E$. Then:

$$\forall t \in (0,1], \ |f(t) + g(t)| \le |f(t)| + |g(t)|$$

hence

$$\forall t \in (0,1], \ \frac{\left| f(t) + g(t) \right|}{\sqrt{t}} \le \frac{\left| f(t) \right|}{\sqrt{t}} + \frac{\left| g(t) \right|}{\sqrt{t}},$$

hence

$$N(f+g) = \int_0^1 |f(t) + g(t)| dt \le \int_0^1 \left(\frac{|f(t)|}{\sqrt{t}} + \frac{|g(t)|}{\sqrt{t}} \right) dt = \int_0^1 |f(t)| \frac{dt}{\sqrt{t}} + \int_0^1 |g(t)| \frac{dt}{\sqrt{t}} = N(f) + N(g).$$

3. a) The function $s \mapsto e^{-s}/\sqrt{s}$ is continuous on \mathbb{R}_+^* . Now,

$$\frac{\mathrm{e}^{-s}}{\sqrt{s}} \underset{s \to 0^+}{\sim} \frac{1}{\sqrt{s}} > 0,$$

and we know (Riemann at 0 with $\alpha = 1/2 < 1$) that the improper integral

$$\int_0^1 \frac{\mathrm{d}s}{\sqrt{s}}$$

converges at 0 hence, by the equivalent test, our improper integral converges at 0. Moreover,

$$\forall s \ge 1, \ 0 \le \frac{\mathrm{e}^{-s}}{\sqrt{s}} \le \mathrm{e}^{-s}$$

and we know that the improper integral

$$\int_{1}^{+\infty} e^{-s} \, \mathrm{d}s$$

converges (see, e.g., Exercise 1, Question 1) hence, by the comparison test (which is valid since we're dealing with non-negative functions), the improper integral

$$\int_{1}^{+\infty} e^{-s} \frac{ds}{\sqrt{s}}$$

converges at $+\infty$. Hence the improper integral

$$\int_0^{+\infty} e^{-s} \, \frac{\mathrm{d}s}{\sqrt{s}}$$

converges.

b) Let $n \in \mathbb{N}^*$. Then

$$N(f_n - 0_E) = \int_0^1 |f_n(t)| \, \frac{dt}{\sqrt{t}} = \int_0^1 e^{-nt} \, \frac{dt}{\sqrt{n}} = \int_0^n e^{-s} \frac{ds}{n\sqrt{s/n}} = \frac{1}{\sqrt{n}} \int_0^n e^{-s} \, \frac{ds}{\sqrt{s}}.$$

Now, since the function

$$s \longmapsto \frac{\mathrm{e}^{-s}}{\sqrt{s}}$$

is non-negative and since the improper integral

$$\int_0^{+\infty} e^{-s} \frac{ds}{\sqrt{s}}$$

converges, we have:

$$\int_0^n e^{-s} \frac{ds}{\sqrt{s}} \le \int_0^{+\infty} e^{-s} \frac{ds}{\sqrt{s}}.$$

Hence,

$$N(f_n - 0_E) \le \frac{1}{\sqrt{n}} \int_0^1 e^{-s} \frac{ds}{\sqrt{s}} \underset{n \to +\infty}{\longrightarrow} 0.$$

Conclusion: the sequence $(f_n)_{n\in\mathbb{N}^*}$ converges to 0_E for the norm N.

c) For $n \in \mathbb{N}^*$,

$$|f_n(0)| = 1 \le ||f_n||_{\infty} = ||f_n - 0_E||_{\infty},$$

hence

$$||f_n - 0_E||_{\infty} \xrightarrow[n \to +\infty]{} 0,$$

hence the sequence $(f_n)_{n\in\mathbb{N}^*}$ doesn't converge to 0_E for the norm N.

4. The norms N and $\|\cdot\|_{\infty}$ are not equivalent since the sequence $(f_n)_{n\in\mathbb{N}^*}$ converges to 0_E for N but not for $\|\cdot\|_{\infty}$.

Exercise 3. Let $A_0 \in E$ and $H \in E$. Then:

$$f(A_0 + H) = (A_0 + H)^2 = (A_0 + H)(A_0 + H) = A_0^2 + A_0H + HA_0 + H^2 = f(A_0) + (A_0H + HA_0) + H^2.$$

Clearly, the mapping

$$E \longrightarrow E \\ H \longmapsto A_0 H + H A_0$$

is linear (and continuous since we're in a finite-dimensional vector space). We identify our remainder as being the term H^2 . We need to choose a norm on E: we'll use the following one:

$$\left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\| = |a| + |b| + |c| + |d|$$

(which is directly obtained from the 1-norm of \mathbb{R}^4). Then, for $H \in E$, say $H = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$,

$$H^2 = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} = \begin{pmatrix} h_{11}^2 + h_{12}h_{21} & h_{11}h_{12} + h_{12}h_{22} \\ h_{21}h_{11} + h_{22}h_{21} & h_{21}h_{12} + h_{22}^2 \end{pmatrix},$$

hence

$$\begin{aligned} \left\| H^{2} \right\| &= \left| h_{11}^{2} + h_{12}h_{21} \right| + \left| h_{11}h_{12} + h_{12}h_{22} \right| + \left| h_{21}h_{11} + h_{22}h_{21} \right| + \left| h_{21}h_{12} + h_{22}^{2} \right| \\ &\leq \left| h_{11}^{2} \right| + \left| h_{12}h_{21} \right| + \left| h_{11}h_{12} \right| + \left| h_{12}h_{22} \right| + \left| h_{21}h_{11} \right| + \left| h_{22}h_{21} \right| + \left| h_{21}h_{12} \right| + \left| h_{22}^{2} \right| \\ &< 8 \| H \|^{2}. \end{aligned}$$

Hence, for $H \in E \setminus \{0_E\}$,

$$\frac{\left\|H^2\right\|}{\|H\|} \le 8\|H\| \underset{\|H\| \to 0}{\longrightarrow} 0.$$

This shows that f is differentiable at A_0 and that

$$\begin{array}{ccc} D_{A_0}f : & E & \longrightarrow & E \\ & H & \longmapsto A_0H + HA_0. \end{array}$$

Exercise 4.

1. Let $f \in F$ and $g \in G$. We know that

$$\forall t \in \mathbb{R}_+, \ 0 \le |f(t)| \le ||f||_{\infty},$$

hence

$$\forall t \in \mathbb{R}_+, \ 0 \le |f(t)g(t)| \le ||f||_{\infty} g(t),$$

and since $g \in G$, we can apply the Comparison Test to conclude that the improper integral

$$\int_0^{+\infty} \left| f(t)g(t) \right| dt$$

converges, and that

$$\int_0^{+\infty} \left| f(t)(g(t) \right| \mathrm{d}t \leq \|f\|_\infty \int_0^{+\infty} \left| g(t) \right| \mathrm{d}t \leq \|f\|_\infty \|g\|_1.$$

2. Clearly, the mapping φ_{g_0} is linear, hence we only need to check continuity at 0_F : let $f \in F$. Then,

$$\left|\varphi_{g_0}(f)\right| = \left|\int_0^{+\infty} f(t)g_0(t) \, \mathrm{d}t\right| \le \int_0^{+\infty} \left|f(t)g_0(t)\right| \, \mathrm{d}t \le \|g_0\|_1 \|f\|_{\infty} \underset{\|f\|_{\infty} \to 0}{\longrightarrow} 0,$$

hence

$$\lim_{\|f - 0_F\|_{\infty} \to 0} |\varphi_{g_0}(f) - \varphi_{g_0}(0_F)| = 0,$$

hence φ_{g_0} is continuous at 0_F .

3. Similarly, we recognize that ψ_{f_0} is linear, hence we only check that ψ_{f_0} is continuous at 0_G : let $g \in G$, then:

$$|\psi_{f_0}(f)| = \left| \int_0^{+\infty} f_0(t)g(t) dt \right| \le \int_0^{+\infty} |f_0(t)g(t)| dt \le ||f_0||_{\infty} ||g||_1,$$

hence ψ_{f_0} is continuous at 0_G .

4. a) Let $n \in \mathbb{N}$. Then

$$||f_n - \cos||_{\infty} = \sup_{t \in \mathbb{R}_+} \frac{1}{t^2 + 1 + n} = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0,$$

hence the sequence of functions converges to cos in $(F, \|\cdot\|_{\infty})$ (here, by cos, we mean the restriction of the cosine function to \mathbb{R}_+ , and noticing that $\cos \in F$).

b) Let g_0 be the function defined by

$$g_0: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
 $t \longmapsto e^{-t}$.

Clearly, the function g_0 belongs to G. We notice that the limit we want to compute is:

$$\lim_{n\to+\infty}\varphi_{g_0}(f_n).$$

Since φ_{g_0} is continuous, and since the sequence $(f_n)_{n\in\mathbb{N}}$ converges to cos in $(F, \|\cdot\|_{\infty})$ we have:

$$\lim_{n \to +\infty} \varphi_{g_0}(f_n) = \varphi_{g_0}(\cos) = \int_0^{+\infty} \cos(t) e^{-t} dt = \frac{1}{2}.$$

(The details of this last integral are left to the reader: hint, use complex numbers).