Amrita Vishwa Vidyapeetham MCA

Fourth Semester 18CA314-Cryptography and Network Security Assignment 1 Part A

3. Determine the gcd of 56245 and 43159 gcd(56245,43159)

$$9=4*2+1$$

$$2=2*1+0$$

gcd(56245,43159) = 1

2. Find the multiplicative inverse of all the elements in Z5 and Z11

Z5=

a	1	2	3	4
a^{-1}	1	3	2	4

Z11=

a	1	2	3	4	5	6	7	8	9	10
a^{-1}	1	6	4	3	9	2	8	7	5	10

5. Compute 3¹⁰⁰ mod(31319)

$$100=2^6+2^4+2^2$$

$$3^0 \mod 31319 = 3$$

$$3^2 \mod 31319 = 9$$

$$3^4 \mod 31319 = 81$$

$$3^8 \mod 31319 = 6561$$

$$3^{16} \mod 31319 = 14415$$

$$3^{32} \mod 31319 = 21979$$

$$3^{64} \mod 31319 = 12185$$

$$3^{100} \mod(31319) = 12185*21979*81 \mod 31319$$

=25879

4. Compute $_{(n)}$ for 3^4 and 2^{10}

$$(3^4) = 3^4 - 3^{4-1}$$
$$= 3^{4-1}(3-1)$$

$$=3^4 * (1-1/3) = 54$$

$$(2^{10}) = 2^{10} - 2^{10-1}$$

$$= 2^{10-1} (2-1)$$

$$= 2^{10} x (1-1/2) = 512$$

1. Prove that $(a + p)^n \pmod{p} = a^n \pmod{p}$

$$(a + p)^n \pmod{p} = a^n + p^n \mod p$$

$$=a^n \mod p + p^n \mod p$$

$$=a^n \mod p + 0$$

$$=a^n \mod p$$