#### YData: An Introduction to Data Science

#### Lecture 25: Center and Spread

Jessi Cisewski-Kehe Statistics & Data Science, Yale University Spring 2020

Credit: data8.org



## Announcements

## Chance versus Confidence

#### Is This What a CI Means?

By our calculation, an approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

#### True or False:

• There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer: **False**. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved.



# Confidence Intervals For Testing

## Using a CI for Testing

- Null hypothesis: **Population average** = x
- Alternative hypothesis: Population average ≠ x
- Cutoff for P-value: p%
- Method:
  - Construct a (100-p)% confidence interval for the population average
  - If x is not in the interval, reject the null
  - If x is in the interval, can't reject the null

## Center and Spread

#### **Questions**

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?
- How is sample size related to the accuracy of an estimate?

# Average

## The Average (or Mean)

Data: 2, 3, 3, 9 Average = 
$$(2+3+3+9)/4 = 4.25$$

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- Smoothing operator: collect all the contributions in one big pot, then split evenly

(DEMO)

#### **Discussion Question**

Create a data set that has this histogram. (You can do it with a short list of whole numbers.)

What are its median and mean?



#### **Discussion Question**

Are the medians of these two distributions the same or different? Are the means the same or different? If you say "different," then say which one is bigger.





## **Comparing Mean and Median**

- Mean: Balance point of the histogram
- Median: Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

#### **Discussion Question**

Which is bigger?

(a) mean (b) median



(DEMO)

## Standard Deviation

## **Defining Variability**

- Plan A: "biggest value smallest value"
  - Doesn't tell us much about the shape of the distribution

#### Plan B:

- Measure variability around the mean
- Need to figure out a way to quantify this

(DEMO)

#### How Far from the Average?

 Standard deviation (SD) measures roughly how far the data are from their average

SD has the same units as the data

#### Why Use the SD?

There are two main reasons.

#### The first reason:

No matter what the shape of the distribution, the bulk of the data are in the range "average  $\pm$  a few SDs"

#### • The second reason:

Coming up in the next lecture.

Chebyshev's Inequality

#### The Mathematician's Name

- Chebyshev
- Chebychev
- Chebishov
- Čebyšev
- Tchebichev
- Tchebicheff
- Tschebyscheff
- Tschebyschew
- Чебышёв

#### How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range "average  $\pm$  a few SDs"

#### Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average  $\pm$  z SDs" is

at least 
$$1 - 1/z^2$$

## **Chebyshev's Bounds**

| Range           | Proportion                 |
|-----------------|----------------------------|
| average ± 2 SDs | at least 1 - 1/4 (75%)     |
| average ± 3 SDs | at least 1 - 1/9 (88.888%) |
| average ± 4 SDs | at least 1 - 1/16 (93.75%) |
| average ± 5 SDs | at least 1 - 1/25 (96%)    |

No matter what the distribution looks like