Automatique Linéaire 1 – **Travaux Dirigés**

1A ISMIN

Travaux dirigés, Automatique linéaire 1 – J.M. Dutertre – 2016

TD 1 - Introduction, modélisation, outils.

Exercice 1.1: Calcul de la réponse d'un 2nd ordre à une rampe

On considère un système régi par l'équation différentielle :

$$\frac{d^2s}{dt^2} + 3.\frac{ds}{dt} + 2. s(t) = +e(t)$$

Calculer la réponse de ce système à une rampe d'entrée e(t) = t.

Exercice 1.2 : Asservissement de température d'un four (1^{er} ordre) de type proportionnelle dérivée.

On considère l'asservissement de température du système constitué d'un four et d'un capteur de température associé, représenté figure suivante :

Avec:

- $\theta_c(t)$ tension de consigne [V] Elle représente la température de consigne désirée pour le four (par rapport à la température ambiante).
- $\theta(t)$ tension de mesure [V] C'est la tension image de la température intérieure du four délivrée par le capteur (exprimée par rapport à la température ambiante).
- p(t) puissance électrique délivrée au four [W].
- $\varepsilon(t)$ erreur entre la consigne et la mesure [V].

La loi de commande est telle que :

$$p(t) = K_c \cdot \left[\varepsilon(t) + \tau_d \cdot \frac{d\varepsilon(t)}{dt} \right]$$
 Eq. 1
Avec K_c gain statique constante de dérivation

Et les équations de fonctionnement du système conduisent à :

$$\theta(t) + \tau \cdot \frac{d\theta(t)}{dt} = K \cdot p(t)$$
 Eq. 2
Avec τ constante de temps du système K gain statique du système

- 1. Exprimer l'équation différentielle liant $\theta_c(t)$ et $\theta(t)$.
- 2. Donner la transformée de Laplace de l'équation différentielle trouvée au 1. (à t=0 on a $\theta(0)=0$)

La mettre sous la forme $\Theta(p) = G(p)$. $\Theta_c(p)$

- 3. On considère une consigne de la forme : $\theta_c(t) = A_0 \cdot \Gamma(t)$ A_0 constante réelle. Quelles sont alors les valeurs initiales $\theta(0^+)$ et finale $\theta(+\infty)$ de $\theta(t)$? Conclusions?
- 4. Exprimer P(p) en fonction de $\Theta_c(p)$. En déduire les valeurs initiale et finale de la commande p(t) pour $\theta_c(t) = A_0 \cdot \Gamma(t)$. Conclusion?
- 5. On considère $\tau_d = \tau = 60 \text{ s}$, K = 0.01 V/W, et $A_0 = 7$. Tracer sur un même graphe : $\theta_c(t)$, $\theta(t)$, et p(t) pour $K_c = 100$. Commentaire ?

Exercice 1.3: Asservissement du 2nd ordre.

Un processus physique est modélisé par une fonction de transfert du 2nd ordre :

$$G(p) = \frac{G_0}{(1 + \tau_1 p).(1 + \tau_2 p)} \qquad , G_0 = 1, \tau_1 = 10 \ s, \tau_2 = 2 \ s$$

Ce processus est inséré dans une boucle d'asservissement contenant un régulateur proportionnel : C(p) = K.

1. a. Déterminer l'expression de la fonction de transfert en boucle fermée :

$$H(p) = S(p)/E(p)$$
 et la mettre sous la forme canonique :

$$H(p) = \frac{H_0}{1 + 2m\frac{p}{\omega_0} + \left(\frac{p}{\omega_0}\right)^2}$$

En déduire les expressions des paramètres de H(p):

 H_0 gain statique m coefficient d'amortissement ω_0 pulsation propre non amortie

En fonction de τ_1 , τ_2 , G_0 , et K.

- b. Calculer la valeur de K pour obtenir m = 0.7.
- 2. Dans la suite de l'exercice, la consigne est un échelon unitaire et K est réglé tel que m = 0,7.
 - a. On se place en régime permanent, déterminer l'expression de $s(+\infty)$ et calculer sa valeur.
 - b. Exprimer $\varepsilon_0(+\infty) = e(+\infty) s(+\infty)$, la calculer.
 - c. Calculer la valeur du $t_{r5\%}$.
 - d. Représenter l'allure de *s(t)*.
- 3. Pour diminuer l'erreur de position, on augmente la valeur de K.
 - a. Calculer la valeur de K permettant d'obtenir $\varepsilon_0(+\infty) = 0.05 \text{ V}$.
 - b. En déduire la nouvelle valeur du coefficient d'amortissement *m*.
 - c. Calculer l'amplitude relative (en %) du premier dépassement D_I .
 - d. Calculer la nouvelle valeur du $t_{r5\%}$.
 - e. Représenter l'allure de *s(t)*.
 - f. Calculer $u(0^+)$. Sachant que cette grandeur de commande est maximale à l'instant $t = 0^+$, en déduire la dynamique nécessaire à la sortie du correcteur pour que l'asservissement fonctionne toujours en régime linéaire.

TD 2 – Stabilité des systèmes asservis.

Exercice 2.1: Stabilité d'un système du 3ème ordre (Routh)

On considère un système de F.T.B.O.:

$$T(p) = \frac{K}{p.(p+1).(p+2)} \qquad K > 0$$

Déterminer à l'aide du critère de Routh les conditions de stabilité de ce système en boucle fermée lorsqu'il est placé dans une boucle d'asservissement à retour unitaire.

Exercice 2.2: Réglage d'un système avec deux conditions de stabilité

On considère un système de fonction de transfert en boucle ouverte :

$$T(p) = \frac{K}{p(p+100)^2}$$
 $K > 0$

Déterminer les conditions sur K de manière à ce que le système soit caractérisé par une marge de phase supérieure à 45° et par une marge de gain supérieure à 6 dB.

Exercice 2.3 : Mise en évidence des marges sur les diagrammes de Bode

On considère un système de fonction de transfert en boucle ouverte :

$$T(p) = \frac{K}{(p+10)^3} \qquad K > 0$$

Déterminer la valeur de *K* qui assure au système une marge de gain égale à 6 dB. Calculer la marge de phase pour cette valeur de *K*.

Tracer les diagrammes de Bode du système en boucle ouverte en y faisant apparaître ces marges.

Exercice 2.4: Nyquist

On considère un système de fonction de transfert en boucle ouverte :

$$T(p) = \frac{K}{p(p+1)(p+2)} \qquad K > 0$$

- 1. Tracer son diagramme de Nyquist (le tracé préalable d'un diagramme de Bode est une aide).
- 2. Etudier sa stabilité.

Exercice 2.5: Nyquist

On considère un système de F.T.B.O.:

$$T(p) = \frac{K.(1 + \tau_1 p)}{p^2.(1 + \tau_2 p).(1 + \tau_3 p)}$$

$$\tau_1 > \tau_2 > \tau_3 > 0$$

$$K \text{ gain positif réglable}$$

- 1. Tracer le diagramme de Bode asymptotique de la B.O. pour le cas particulier $\tau_1 = 1 s$, $\tau_2 = 0.1 s$, $\tau_3 = 0.01 s$, et K = 1.
- 2. Chercher la pulsation ω_{π} non nulle pour laquelle $\Phi_{BO}(\omega_{\pi}) = -180^{\circ}$. A quelle condition sur τ_1 , τ_2 , et τ_3 existe-t-elle?
- 3. Tracer l'allure du lieu de Nyquist de la boucle ouverte selon que cette condition est réalisée ou non.
- 4. En déduire les conditions de stabilité en boucle fermée pour les valeurs particulières des constantes de temps données au 1. Retrouver ces conditions à l'aide du critère du revers.
- 5. Etablir les conditions de stabilité à l'aide du critère de Routh (sur les constantes de temps et sur *K*).

Exercice 2.6: Nyquist

On considère un système de F.T.B.O.:

$$T(p) = \frac{K}{(1+\tau_1 p).(1+\tau_2 p).(1-\tau_3 p)}$$

$$\tau_1 > \tau_2 > \tau_3 > 0$$

$$K \text{ gain positif réglable}$$

- 1. Tracer le diagramme de Bode asymptotique de la boucle ouverte.
- 2. Tracer l'allure du lieu de Nyquist de la boucle ouverte.
- 3. En déduire les conditions de stabilité en boucle fermée. Quel serait le résultat par application du critère du revers ? Conclusion ?

Exercice 2.7: Nyquist

On considère un système de fonction de transfert en boucle ouverte :

$$T(p) = \frac{10^4}{p(p+10)(p+100)}$$

- 1. Tracer son diagramme de Bode asymptotique (module et phase).
- 2. En déduire son diagramme de Nyquist. Vous démontrerez l'existence d'une asymptote à la courbe de Nyquist lorsque $\omega \otimes 0$.

TD 3 - Correction des systèmes asservis.

Exercice 3.1: Correction à avance de phase.

La fonction de transfert en boucle ouverte d'un système asservi s'écrit :

$$T(p) = \frac{C}{p(1+\tau_1 p).(1+\tau_2 p)}$$
 $\tau_1 = 0.16 \ s \ \tau_2 = 0.02 \ s$
 $C \text{ réel et positif}$

- 1. Tracer le diagramme de Bode asymptotique de T(p) (gain et phase) pour C = 1, et préciser les points remarquables.
- 2. Le système est à <u>retour unitaire</u>. Calculer $C = C_{max}$ qui rend le système instable en boucle fermée.
- 3. Retrouver C_{max} en appliquant le critère de Routh.
- 4. Calculer $C = C_0$ qui assure une marge de phase de 45°.
- 5. Pour une entrée indicielle d'amplitude X_c , expliciter la transformée de Laplace de la sortie Y(p) du système bouclé. En déduire la valeur de $y(+\infty)$.
- 6. Calculer l'erreur de traînage du système bouclé pour une entrée en rampe : $x_c(t) = X_c \cdot t \quad (\forall t > 0)$.
- 7. On désire améliorer le comportement du système à l'aide d'un correcteur qui présente la fonction de transfert suivante :

$$C(p) = \frac{(1 + \alpha.p)}{(1 + \beta.p)}$$
 $\alpha, \beta \text{ r\'eels et positif s}$

Tracer le diagramme de Bode de C(p) pour un comportement dit à avance de phase. On posera : $k = \alpha/\beta$.

- 8. Donner la valeur de α permettant de corriger intégralement le pôle dominant. On impose le déphasage maximal apporté par le correcteur : $\varphi_{max} = 45^{\circ}$. Et, on veut obtenir au final après correction une marge de phase de 45° . Calculer les valeurs de α , β , et $C = C_{0c}$ permettant de remplir ces conditions.
- 9. Tracer dans le plan de Black les fonctions de transfert en boucle ouverte du système corrigé et non corrigé à partir des valeurs données dans le tableau suivant (elles correspondent au cas $C = C_0$):

ω (rad/s)	1	2	5	10	17,5	30	50
T(jω) dB	16,3	9,9	0,22	-9,3	-18,4	-28,3	-38
$Arg(T(j\omega))$	-100	-110	-134	-160	-180	-199	-218
$C(j\omega).T(j\omega) dB$	16,4	10,3	2,3	-4	-9,8	-16,7	-25
$Arg(C(j\omega).T(j\omega))$	-93	-95,4	-103,4	-116	-134	-160	-189

Retrouver la valeur de C_{0c} à l'aide du diagramme.

10. Quelle est la fréquence de résonance du système corrigé (pour $C = C_{0c}$) en boucle fermée? Dessiner l'allure approchée du module de la F.T.B.F. en dB (1^{er} diagramme de Bode). Quel sont sa bande passante à -3 dB, et son temps de réponse à 5%? Comparer ces valeurs à celles obtenues sans correction ($C = C_0$).

Exercice 3.2: Asservissement de fréquence d'un laser Hélium-Néon.

La mesure de la fréquence f d'émission d'un laser hélium-néon est réalisée à l'aide d'un filtre optique sélectif dont le coefficient de transmission varie rapidement en fonction de la différence $f - f_0$, f_0 étant la fréquence à laquelle le laser est susceptible d'émettre.

Après conditionnement électronique du signal issu de ce filtre, on dispose d'un signal électrique $x_r(t) = K \cdot [f(t) - f_0]$ avec K une constante. Ce signal de mesure est utilisé au sein d'un asservissement dont le schéma est donné figure suivante :

On a:
$$K = 5.10^{-8} \text{ V/Hz}$$
 $A_0 = 90 \text{ MHz/V}$ $\tau = 0.1 \text{ ms}$ $\widetilde{y}(t)$ est un signal perturbateur.

I. Correction proportionnelle.

C(p) est un correcteur proportionnel : $C(p) = C_0$.

- a. Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte $T_{BO}(p)$ pour $C_0 = 1$ et $\widetilde{v}(t) = 0$.
- b. Calculer C_0 afin d'obtenir une pulsation de transition de 10^5 rad/s.
- c. Calculer alors la réponse en boucle fermée à un échelon de tension à l'entrée.
- d. $\widetilde{y}(t)$ est maintenant un signal perturbateur contenant une composante continue ainsi qu'une composante sinusoïdale de pulsation 500 rad/s : $\widetilde{y}(t) = 5.10^8 + 10^7 \cdot \cos(500t)$ Quel est l'effet sur la sortie d'un tel signal perturbateur ?

II. Correction intégrale.

C(p) est un correcteur intégral : $C(p) = C_0/p$.

a. Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte $T_{BO}(p)$ pour $C_0 = I$ et $\widetilde{y}(t) = 0$.

- b. Calculer C_0 afin d'obtenir une marge de phase de 45°.
- c. Donner l'expression de la fonction de transfert en boucle fermée et déterminer la valeur du temps de réponse à 5% à partir des abaques (pour un 2nd ordre).
- d. $\widetilde{y}(t)$ prend la même valeur qu'au I.d. Quel est l'effet sur la sortie d'un tel signal perturbateur ?

III. Correction proportionnelle et intégrale.

C(p) est un correcteur proportionnel et intégral : $C(p) = C_0 (1+\tau p)/p$.

- a. Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte $T_{BO}(p)$ pour $C_0 = 1$ et $\widetilde{y}(t) = 0$.
- b. Calculer C_0 afin d'obtenir une pulsation de transition de 10^5 rad/s.
- c. Déterminer la valeur du temps de réponse à 5% lorsque l'entrée est un échelon de tension.
- d. $\widetilde{y}(t)$ prend la même valeur qu'au I.d. Quel est l'effet sur la sortie d'un tel signal perturbateur ?

IV. Bilan.

Discuter et comparer les performances des trois correcteurs envisagés précédemment.

Exercice 3.3: Correcteur P.I.D.

On considère le système (non corrigé) de fonction de transfert en boucle ouverte :

$$T_{BO}(p) = \frac{4}{p.(p+1).(p+2)}$$

Il est inséré dans une boucle d'asservissement à retour unitaire, comprenant un correcteur, C(p), de type P.I.D. tel que :

$$C(p) = K \left(1 + \frac{1}{\tau_i \cdot p} + \tau_d \cdot p \right) \qquad avec \quad \tau_d = \frac{\tau_i}{4}$$

4. Représenter $\underline{T}_{BO}(j\omega)$ dans le plan de Black.

On donne:

ω (rad/s)	0,2	0,4	0,6	0,8	1	1,2	1,6	2	2,5
$ T_{BO} dB$	20	13	8,7	5,2	2	-1	-5,4	-10,5	-15
Arg(T _{BO}) (degrés)	-107	-123	-138	-150	-162	-172	-186	-200	-210

On pourra également utiliser l'abaque A5.1 donnée ci-après pour tracer le lieu de Black de la FTBO.

- 5. Le correcteur P.I.D. est tel que K = I et on pose $u = \tau_i \cdot \omega$. Calculer $|C(j\omega)|_{dB}$ et $Arg(C(j\omega))$ pour $u = 1 \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 16 \cdot 20 \cdot 25$.
- 6. Le P.I.D. est calculé par la méthode du pivot.

On choisi comme pivot le point $\omega = 0.2 \text{ rad/s}$, en déduire τ_i .

Dessiner la FTBO corrigée pour K = 1:

$$T_{BOC}(p) = C(p).T_{BO}(p)$$

Déterminer la valeur de K permettant d'obtenir un coefficient d'amortissement m = 0,7 pour le second ordre dominant équivalent.

7. Quelles sont les erreurs à l'échelon, à la rampe, et à la parabole unitaire ?

A5.1. LIEUX DE BLACK DE $\frac{1}{ju(1+ju)(1+aju)}$

Bibliographie.

"Cours d'automatique, tome 2 – Asservissement, régulation, commande analogique", Maurice Rivoire, Jean-Louis Ferrier, Ed. Eyrolles.

"Electronique Tome 2 : Systèmes bouclés linéaires, de communication et de filtrage : Cours et exercices", François Manneville, Jacques Esquieu, Ed. Dunod.

"Automatique: Commande des systèmes linéaires", Philippe de Larminat, Ed. Hermes.

"Feedback Control of Dynamic Systems", Franklin G.F., Powell J.D., Naemi-Emani A., Addison-Wesley.

Beaucoup de liens de bonne qualité (dans tous les domaines) sur :

http://pagesperso-orange.fr/xcotton/electron/coursetdocs.htm

"Cours d'automatique 1ère année", Jean-Paul Bourguet, cours cycle ISMIN.

Annexe 1 - Transformée de Laplace.

Transformée de Laplace monolatérale.

$$TL[f(t)] = F(p) = \int_{0}^{+\infty} f(t).e^{-pt} dt$$

$$p = \sigma + j\omega$$

Linéarité.

$$a.f(t) + b.g(t) \xrightarrow{TL} a.F(p) + b.G(p)$$

Convolution.

$$(f * g)(t) \xrightarrow{TL} F(p).G(p)$$

Fonction de transfert – H(p).

$$y(t) = (u * h)(t) \xrightarrow{TL} Y(p) = U(p).H(p) \qquad H(p) = \frac{Y(p)}{U(p)}$$

Dérivation en temps.

$$TL[f'(t)] = p.F(p) - f(0^-)$$

Intégration.

$$TL\left[\int_{0}^{t} f(\theta)d\theta\right] = \frac{1}{p}.F(p)$$

Dérivation en p.

$$\frac{dF(p)}{dp} = TL[-t.f(t)]$$

Translation en p.

$$TL[e^{\alpha t}.f(t)] = F(p-\alpha)$$

Théorème du retard temporel.

$$g(t) = f(t - \tau) \rightarrow TL[g(t)] = e^{-p\tau}.F(p)$$

Théorème de la valeur initiale.

$$\lim_{p\to +\infty} p.TL[f(t)] = f(0^+)$$

Théorème de la valeur finale.

$$\lim_{t\to\infty} p.TL[f(t)] = \lim_{t\to\infty} f(t) = f(+\infty)$$

Transformées de Laplace usuelles.

Dirac:
$$\delta(t) \xrightarrow{TL} 1$$

Échelon:
$$\Gamma(t) \xrightarrow{TL} \frac{1}{p}$$

Rampe:
$$t \xrightarrow{TL} \frac{1}{p^2}$$

$$e^{-a.t} \xrightarrow{TL} \frac{1}{p+a}$$

$$t.e^{-a.t} \xrightarrow{TL} \frac{1}{(p+a)^2}$$

$$sin(\omega t) \xrightarrow{TL} \frac{\omega}{p^2 + \omega^2}$$

$$\cos(\omega t) \xrightarrow{TL} \frac{p}{p^2 + \omega^2}$$

$$e^{-a.t}.cos(\omega t) \xrightarrow{TL} \frac{p+a}{(p+a)^2+\omega^2}$$

$$\frac{1}{p''} \xrightarrow{TE^{-1}} \frac{t^{n-1}}{(n-1)} \quad n \ge 1$$

$$\frac{1}{1+\tau,p} \xrightarrow{TE^{-1}} \frac{1}{\tau} e^{-\frac{t}{\tau}}$$

$$\frac{1}{p!(1+\tau,p)} \xrightarrow{TE^{-1}} \frac{1}{\tau} e^{-\frac{t}{\tau}}$$

$$\frac{1}{p!(1+\tau,p)} \xrightarrow{TE^{-1}} \frac{1-e^{-\frac{t}{\tau}}}{1-\tau}$$

$$\frac{1}{p^2.(1+\tau,p)} \xrightarrow{TE^{-1}} \frac{1-e^{-\frac{t}{\tau}}}{1-\tau}$$

$$\frac{1}{p^2.(1+\tau,p)} \xrightarrow{TE^{-1}} \frac{1-\tau}{\tau} e^{-\frac{t}{\tau}}$$

$$\frac{1}{(1+\tau,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1-\tau}{\tau_1-\tau_2} \cdot \left(e^{-\frac{t}{\tau}} - e^{-\frac{t}{\tau}} \right)$$

$$\frac{1}{p!(1+\tau,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1-\frac{1}{\tau_1-\tau_2}}{1-\tau_2} \cdot \left(e^{-\frac{t}{\tau}} - e^{-\frac{t}{\tau}} \right)$$

$$\frac{1}{p^2.(1+\tau_1,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1-\frac{1}{\tau_1-\tau_2}}{1-\tau_2} \cdot \left(\tau_1 \cdot e^{-\frac{t}{\tau}} - \tau_2 \cdot e^{-\frac{t}{\tau}} \right)$$

$$\frac{1}{p^2.(1+\tau_1,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1-\frac{1}{\tau_1-\tau_2}}{1-\tau_2} \cdot \left(\tau_1 \cdot e^{-\frac{t}{\tau}} - \tau_2 \cdot e^{-\frac{t}{\tau}} \right)$$

$$\frac{1+a.p}{(1+\tau_1,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1+\frac{1}{(\tau_2-\tau_1)}}{1-\frac{1}{(\tau_2-\tau_1)}} \cdot \left[(\tau_1-a)e^{-\frac{t}{\tau}} - \tau_1 \cdot (\tau_2-a)e^{-\frac{t}{\tau}} \right]$$

$$\frac{1+a.p}{p!(1+\tau_1,p)(1+\tau_2,p)} \xrightarrow{TE^{-1}} \frac{1+\frac{1}{(\tau_2-\tau_1)}}{1-\tau_2} \cdot \left(\tau_1-\tau_2 \right) + \frac{\tau_1(\tau_1-a)}{\tau_1-\tau_2} \cdot e^{-\frac{t}{\tau}} + \frac{\tau_2(\tau_2-a)}{\tau_2-\tau_1} \cdot e^{-\frac{t}{\tau}} \right)$$

$$\frac{1}{(1+\tau,p)^{2}} \xrightarrow{\tau_{L^{-1}}} \frac{t}{\tau^{2}} e^{-t/\tau} \qquad \qquad \frac{1+a.p}{(1+\tau,p)^{2}} \xrightarrow{\tau_{L^{-1}}} \left(\frac{\tau-a}{\tau^{3}}.t + \frac{a}{\tau^{2}}\right) e^{-t/\tau} \\
\frac{1}{p.(1+\tau,p)^{2}} \xrightarrow{\tau_{L^{-1}}} 1 - \left(1 + \frac{t}{\tau}\right) e^{-t/\tau} \qquad \frac{1+a.p}{p.(1+\tau,p)^{2}} \xrightarrow{\tau_{L^{-1}}} 1 + \left(\frac{a-\tau}{\tau^{2}}.t - 1\right) e^{-t/\tau} \\
\frac{1}{p^{2}.(1+\tau,p)^{2}} \xrightarrow{\tau_{L^{-1}}} t - 2.\tau + (t+2.\tau) e^{-t/\tau}$$

$$\frac{1+a.p}{p^2.(1+\tau.p)^2} \xrightarrow{\tau t^{-1}} t+a-2.\tau + \left[t.\left(1-\frac{a}{\tau}\right)+2.\tau-a\right] e^{-t/\tau}$$

$$\frac{1}{(1+\tau.p)^n} \xrightarrow{\tau t^{-1}} \frac{1}{\tau^n} \cdot \frac{t^{n-1}}{(n-1)} \cdot e^{-t/\tau} \qquad \left\| \frac{p}{(1+\tau.p)^2} \xrightarrow{\tau t^{-1}} \frac{1}{\tau^3} \cdot (\tau-t) e^{-t/\tau} \right\|$$

$$\frac{1}{(1+\tau_{1}.p)(1+\tau_{2}.p)(1+\tau_{3}.p)} \xrightarrow{\tau_{L^{-1}}} (\tau_{1}-\tau_{2})(\tau_{2}-\tau_{3})(\tau_{3}-\tau_{1}) \left[\tau_{1}.(\tau_{3}-\tau_{2})e^{-\frac{t}{\tau_{1}}}+\tau_{2}.(\tau_{1}-\tau_{3})e^{-\frac{t}{\tau_{2}}}+\tau_{3}.(\tau_{2}-\tau_{1})e^{-\frac{t}{\tau_{3}}}\right] \\ \xrightarrow{1+a.p} \xrightarrow{(1+\tau_{1}.p)(1+\tau_{2}.p)(1+\tau_{3}.p)} \xrightarrow{\tau_{L^{-1}}} \frac{1}{(\tau_{1}-\tau_{2})(\tau_{2}-\tau_{3})(\tau_{3}-\tau_{1})} \cdot \left[(\tau_{1}-a)(\tau_{3}-\tau_{2})e^{-\frac{t}{\tau_{1}}}+(\tau_{2}-a)(\tau_{1}-\tau_{3})e^{-\frac{t}{\tau_{2}}}+(\tau_{3}-a)(\tau_{2}-\tau_{1})e^{-\frac{t}{\tau_{3}}}\right]$$

$$\frac{1}{1 + \frac{2m}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}} \xrightarrow{TL^{-1}} \frac{\omega_0}{\sqrt{1 - m^2}} \cdot e^{-m\omega_0 t} \sin\left(\omega_0 \sqrt{1 - m^2} \cdot t\right) \qquad 0 < m < 1$$

$$\frac{p}{1 + \frac{2m}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}} \xrightarrow{TL^{-1}} \frac{\omega_0}{\sqrt{1 - m^2}} \cdot e^{-m\omega_0 t} \sin\left(\omega_0 \sqrt{1 - m^2} \cdot t + \pi - \arccos m\right)$$

$$\frac{1+a.p}{1+\frac{2m}{\omega_0}.p+\frac{p^2}{{\omega_0}^2}} \xrightarrow{TL^{-1}} \frac{\omega_0}{\sqrt{1-m^2}}.\sqrt{1-2am\omega_0+a^2\omega_0^2}.e^{-m\omega_0 t}.\sin\left(\omega_0\sqrt{1-m^2}.t+\arctan\frac{a\omega_0\sqrt{1-m^2}}{1-am\omega_0}\right)$$

$$\frac{1}{p \cdot \left(1 + \frac{2m}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}\right)} \xrightarrow{TL^{-1}} 1 - \frac{1}{\sqrt{1 - m^2}} \cdot e^{-m\omega_0 t} \sin\left(\omega_0 \sqrt{1 - m^2} \cdot t + \arccos m\right)$$

$$\frac{1}{p^{2} \cdot \left(1 + \frac{2m}{\omega_{0}} \cdot p + \frac{p^{2}}{\omega_{0}^{2}}\right)} \xrightarrow{TL^{-1}} t - \frac{2m}{\omega_{0}} - \frac{1}{\omega_{0} \cdot \sqrt{1 - m^{2}}} \cdot e^{-m\omega_{0}t} \sin\left(\omega_{0} \sqrt{1 - m^{2}} \cdot t + 2 \cdot \arccos m\right)$$

Annexe 2 - Systèmes linéaires du second ordre.

Pulsation de résonance

$$\omega_r = \omega_0 \sqrt{1 - 2.m^2}$$

Pulsation de coupure

$$\omega_c = \omega_0 \sqrt{1 - 2.m^2 + \sqrt{1 + \left(1 - 2.m^2\right)^2}}$$

Facteur de résonance

$$M = \frac{1}{2m\sqrt{1 - m^2}}$$

Facteur de qualité

$$Q = \frac{1}{2m}$$

Temps de montée

$$t_m = \frac{1}{\omega_0 \sqrt{1 - m^2}} . (\pi - \arccos m)$$

Temps de réponse à n% (m<0,7)

$$t_r \cong \frac{1}{\omega_0.m}.\ln\left(\frac{100}{n}\right)$$

Temps de pic

$$t_{pic} = \frac{\pi}{\omega_0 \sqrt{1 - m^2}}$$

Pseudo-période

$$T_p = \frac{2\pi}{\omega_0 \sqrt{1 - m^2}}$$

Dépassement

$$D^{0/0} = 100.e^{-\pi . m / \sqrt{1 - m^2}}$$

Nombre d'oscillations complètes

$$n \cong Q = \frac{1}{2m}$$

m	$t_m \omega_0$	$t_{r5\%}\omega_0$	$t_{pic}\omega_0$	$T_p\omega_0$	D %	ω_r/ω_0	ω_c/ω_0	ω_c/ω_r	M_{dB}	m
0,1	1,68	30	3,16	6,31	73	0,99	1,54	1,56	14	0,1
0,15	1,74	20	3,18	6,36	62	0,98	1,53	1,56	10,5	0,15
0,2	1,81	14	3,21	6,41	53	0,96	1,51	1,57	8,1	0,2
0,25	1,88	11	3,24	6,49	44	0,94	1,48	1,59	6,3	0,25
0,3	1,97	10,1	3,29	6,59	37	0,91	1,45	1,61	4,8	0,3
0,35	2,06	7,9	3,35	6,71	31	0,87	1,42	1,63	3,6	0,35
0,4	2,16	7,7	3,43	6,86	25	0,82	1,37	1,67	2,7	0,4
0,45	2,28	5,4	3,52	7,04	21	0,77	1,33	1,72	1,9	0,45
0,5	2,42	5,3	3,63	7,26	16	0,71	1,27	1,8	1,2	0,5
0,55	2,58	5,3	3,76	7,52	12,6	0,63	1,21	1,93	0,7	0,55
0,6	2,77	5,2	3,93	7,85	9,5	0,53	1,15	2,17	0,3	0,6
0,65	3	5	4,13	8,27	6,8	0,39	1,08	2,74	0,1	0,65
0,7	3,29	3	4,4	8,8	4,6	0,14	1,01	7,14	0	0,7
0,75	3,66	3,1	4,75	9,5	2,84	-	0,94	-	-	0,75
0,8	4,16	3,4	5,24	10,5	1,52	-	0,87	-	-	0,8
0,85	4,91	3,7	5,96	11,93	0,63	-	0,81	-	-	0,85
0,9	6,17	4	7,21	14,41	0,15	-	0,75	-	-	0,9
0,95	9,09	4,1	10,06	20,12	0,01	-	0,69	-	-	0,95

