Математическое моделирование и оптимизация сложных систем

Лабораторная работа 2

Колотков Алексей Прикладная математика и информатика Аналитическая логистика

Задание 2.1.12

Нарисуйте все качественно различные векторные поля, которые возможны в системе при изменении r. Покажите, что при некотором критическом значении $r=r^*$ происходит бифуркация. Определите тип бифуркации и укажите точку

$$\dot{x} = rx - 4x^3$$

Пусть $f(x) = \dot{x} = rx - 4x^3$. Для определения особых точек системы примем f(x) = 0. Получаем две ситуации:

- $r \le 0$ одна особая точка x = 0. Данная точка является устойчивой.
- 2. r > 0 – три особые точки:
 - x = 0, неустойчивая

• $x = -\sqrt{\frac{r}{4}}$, устойчивая
• $x = \sqrt{\frac{r}{4}}$, устойчивая
На рисунке 1 представлен график f(x) при различных значениях параметра r.

Рис. 1. График функции $\dot{x} = rx - 4x^3$ при r = -1 (красный), r = 0 (синий), r = 1(зеленый).

Перед нами суперкритическая вилкообразная бифуркация. Точкой бифуркации для системы является $r^*=0$.

Теперь изобразим векторные поля для различных r.

Рис. 2. Векторное поле при r = -4

Рис. 3. Векторное поле при r = 0

Рис. 4. Векторное поле при r=4

Бифуркационная диаграмма будет выглядеть следующим образом:

Рис. 5. Бифуркационная диаграмма.

Задание 2.4

(Субкритическая вилка) Рассмотрим систему $\dot{x} = rx + x^3 - x^5$, которая испытывает субкритическую бифуркацию типа «вилка».

а) Найдите выражения для всех неподвижных точек в зависимости от r.

Пусть $f(x) = \dot{x} = rx + x^3 - x^5$. Для определения особых точек системы примем f(x)=0. Получаем выражения для всех особых точек вне зависимости от параметра r: x=0, $x=\pm\frac{\sqrt{1-\sqrt{1+4r}}}{\sqrt{2}}$, $x=\pm\frac{\sqrt{1+\sqrt{1+4r}}}{\sqrt{2}}$. Теперь рассмотрим различные значения r.

Особые точки $x = \pm \frac{\sqrt{1-\sqrt{1+4r}}}{\sqrt{2}}$, очевидно, должны возникать только при определенных значениях r, поскольку в числителе находится квадратный корень. Эти значения несложно вычислить, они будут находиться в диапазоне (-0.25; 0). Обе границы не входят в интервал, поскольку при r = -0.25 и r = 0числитель выражения для особой точки обращается в 0.

Получаем:

1.
$$r < -0.25$$
 – одна особая точка $x = 0$, устойчивая

2.
$$r = -0.25$$
 – три особые точки:

•
$$x = -\frac{1}{\sqrt{2}}$$
, полуустойчивая слева

•
$$x = 0$$
, устойчивая

$$r < -0.25$$
 — одна особая точка $x = 0.5$ $r = -0.25$ — три особые точки:

• $x = -\frac{1}{\sqrt{2}}$, полуустойчивая слева

• $x = 0$, устойчивая

• $x = \frac{1}{\sqrt{2}}$, полуустойчивая справа

• $0.25 < r < 0$ — пять особых точек:

• $x = -\frac{\sqrt{1+\sqrt{1+4r}}}{\sqrt{2}}$, устойчивая

• $x = -\frac{\sqrt{1-\sqrt{1+4r}}}{\sqrt{2}}$, неустойчивая

• $x = 0$, устойчивая

• $x = \frac{\sqrt{1-\sqrt{1+4r}}}{\sqrt{2}}$, неустойчивая

• $x = -\frac{\sqrt{1+\sqrt{1+4r}}}{\sqrt{2}}$, устойчивая

3.
$$-0.25 < r < 0 - пять особых точек:$$

•
$$x = -\frac{\sqrt{1+\sqrt{1+4}r}}{\sqrt{2+4r}}$$
, устойчивая

•
$$x = -\frac{\sqrt{1-\sqrt{1+47}}}{\sqrt{2}}$$
, неустойчивая

•
$$x = 0$$
, устойчивая

•
$$x = \frac{\sqrt{1-\sqrt{1+4r}}}{\sqrt{\sqrt{2}}}$$
, неустойчивая

•
$$x = -\frac{\sqrt{14\sqrt{1+4r}}}{\sqrt{2}}$$
, устойчивая

4.
$$r = 0$$
 – три особые точки

•
$$x = -1$$
, устойчивая

•
$$x = 0$$
, неустойчивая

•
$$x = 1$$
, устойчивая

5.
$$r > 0$$
 – три особые точки:

$$r > 0$$
 — три особые точки:
• $x = -\frac{\sqrt{1+\sqrt{1+4r}}}{\sqrt{2}}$, устойчивая

•
$$x = 0$$
, неустойчивая

•
$$x = 0$$
, неустойчивая
• $x = \frac{\sqrt{1 + \sqrt{1 + 4r}}}{\sqrt{2}}$, устойчивая

Таким образом, r = 0 — точка субкритической бифуркации, r = -0.25 точка, в которой в результате седлоузловой бифуркации в системе возникают новые равновесные состояния.

Ниже представлены графики f(x) при различных значениях параметра r.

Рис. 6. График функции $\dot{x}=rx+x^3-x^5$ при r=-1 (красный), r=-0.25 (черный).

Рис. 7. График функции $\dot{x}=rx+x^3-x^5$ при r=-0.20 (оранжевый), r=0 (синий).

Рис. 8. График функции $\dot{x} = rx + x^3 - x^5$ при r = 1.

б) Изобразите векторное поле, обозначьте особые точки и их устойчивость.

Векторные поля при различных значениях r представлены на рисунках 9-13.

Рис. 9. Векторное поле при r = -2.

Рис. 10. Векторное поле при r = -0.25.

Рис. 11. Векторное поле при r = -0.10.

Рис. 12. Векторное поле при r = 0.

Рис. 13. Векторное поле при r = 3.

в) Вычислите значение параметра, при котором в результате субкритической бифуркации появляются ненулевые особые точки.

Значение параметра, при котором в результате субкритической бифуркации появляются ненулевые особые точки, равно $r_s = -0.25$.

Рис. 14. Бифуркационная диаграмма.