HW2

Justin Nguyen

September 18, 2024

1. $9 \cdot 10^6 = 9,000,000$ seven-digit phone numbers.

- 2. (a) 8! = 40320 seatings
 - (b) $5! \cdot 4 \cdot 3! = 2880$ consecutive male seatings.
 - (c) $4! \cdot 2^4 = 384$ consecutive couples seatings.
- 3. $6m, 7s, 4e \rightarrow 2$ books
 - (a) $\binom{6}{2} + \binom{7}{2} + \binom{4}{2} = 42$ choices of the two books who share the same subject.
 - (b) $\binom{6}{1}\binom{7}{1} + \binom{6}{1}\binom{4}{1} + \binom{7}{1}\binom{4}{1} = 94$ choices of two books who don't share the same subject.
- 4. $8w, 6m \rightarrow 3w, 3m$
 - (a) $\binom{8}{3} [\binom{6}{3} \binom{4}{1}] = 896$ committees where m_1, m_2 don't work together.
 - (b) $\binom{6}{3} \begin{bmatrix} \binom{8}{3} \binom{6}{1} \end{bmatrix} = 1000$ committees where w_1, w_2 don't work together.
 - (c) $\binom{8}{3}\binom{6}{3} P_3^7 = 910$ committees where w_1, m_1 don't work together.
- 5. Let $D_6 = \{1, 2, 3, 4, 5, 6\}$, $A = \text{rolling } 1 \dots 6$ in any order, and $|S| = |D_6|^6$. If the point $r_1 = (1, 2, 3, 4, 5, 6) \in A \implies$ other points in A must be arrangements of $r_1 \implies |A| = |D_6|!$ $\therefore P(A) = \frac{6!}{6^6} = \frac{5}{324} \approx 0.015 \dots$
- 6. $|S| = \binom{10}{5}$ because the professor chooses 5 questions from 10 $|A| = \binom{6}{5}$ because she chose to study 6 questions, and 5 are on the test $\therefore P(A) = \frac{|A|}{|S|} = \frac{1}{42} \approx 0.02...$
- 7. $4s_w, 2s_b, 6s_r, 3s_g \to 4s$ $|S| = \binom{15}{4}$ which is all choices of 15 socks taken 4 at a time.
 - (a) We want all possible one color two sock pairs, with another color two sock pairs. $P(2s_1,2s_2) = \frac{\binom{4}{2} [\binom{2}{2} + \binom{6}{2} + \binom{3}{2}] + \binom{2}{2} [\binom{6}{2} + \binom{3}{2}] + \binom{6}{2} \binom{3}{2}}{\binom{15}{4}} = \frac{177}{1365} \approx 0.13$
 - (b) At least one red sock is the same as the complement of no red socks. $P(1s_r)=1-P(\text{no reds})=1-\frac{P_4^9}{P_4^{15}}=\frac{59}{65}\approx 0.91$
- 8. 52 cards \rightarrow 5 cards; $|S| = {52 \choose 5}$ which is how many ways to draw 5 cards from 52 cards.
 - (a) The #ways to pick 3 aces from 4 by how many ways to pick two kings from 4 $P(3A,2K) = \frac{\binom{4}{3}\binom{4}{2}}{\binom{52}{5}} \approx 0.000009...$
 - (b) The amount of ways to pick 1 rank from a suite by the amount of ways to pick each rank from a suite. $P(\text{full house}) = \frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{5}} \approx 0.001\dots$
- 9. $2w, 4h, 7a \rightarrow 1w, 2h, 3a$

If every claim is different, and the process order doesn't matter, then $|S| = \binom{13}{6}$. There is only one way to select $\{w_1, h_1, h_2, a_1, a_2, a_3\} \implies |A| = 1$. $\therefore P(A) = \frac{1}{\binom{13}{6}} = \frac{1}{1716} \approx 0.0006...$

 $^{{}^{1}}P_{3}^{7}$ is a simplification of the number of committees where w_{1}, m_{1} work together.

10. (a) Fluke =
$$\binom{5}{1}\binom{4}{1}\binom{3}{1}\binom{2}{1}\binom{1}{1} = 120$$
 arrangements

(b) Propose =
$$\binom{7}{2}\binom{5}{1}\binom{4}{2}\binom{2}{1}\binom{1}{1} = 1260$$
 arrangements

(c) Mississippi =
$$\binom{11}{1}\binom{10}{4}\binom{6}{4}\binom{2}{2} = 34650$$
 arrangements

11.
$$3u, 4r, 2z, 1c; |S| = \binom{10}{3,4,2,1} = 12600 \text{ rankings}$$

$$P(1 \text{ winner, } 2 \text{ losers of US}) = \frac{\binom{7}{2,4,1}\binom{3}{1}\binom{3}{2}}{12600} = \frac{3}{40} = 0.075$$

12.
$$9m = 2m_{\alpha} + 7m_{x} \rightarrow 3p_{1}, 3p_{2}, 3p_{3}; |S| = \binom{9}{3,3,3} = 1680 \text{ outcomes}$$

$$P(2m_{\alpha} \rightarrow 3p_{1}) = \frac{\binom{7}{1,3,3}}{1680} = \frac{1}{12} = 0.08\overline{3}$$

13. **Proof:**
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Proof:
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

The Binomial Theorem states that $(x+y)^n = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^k$.
Then, let $x = y = 1 \implies (1+1)^n = (2)^n = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^k = \sum_{k=0}^{n} {n \choose k} 1^n = \sum_{k=0}^{n} {n \choose k}$.
 $\therefore \sum_{k=0}^{n} {n \choose k} = 2^n$.

14. **Proof:**
$$\sum_{k=0}^{n>0} (-1)^k \binom{n}{k} = 0$$

If $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k \implies (1-1)^n = 0^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} (-1)^k = \sum_{k=0}^n \binom{n}{k} (-1)^k$
 $\therefore \sum_{k=0}^{n>0} (-1)^k \binom{n}{k} = 0^n = 0.$