Property Graphs

ANNA QUERALT

FACULTAT D'INFORMÀTICA DE BARCELONA

Data Model

The Property Graph Data Model

Born in the database community

- Meant to be queried and processed
- GQL standard, but only since April 2024

Two main constructs: nodes and edges

- Nodes represent entities
- Edges relate pairs of nodes, and may represent different types of relationships

Both nodes and edges:

- May be labeled
- May have a set of properties represented as attributes (key-value pairs)

Further considerations:

- Edges are directed
- Multi-graphs are allowed

Formal Definition

Definition 2.3 (Property graph). A property graph G is a tuple $(V, E, \rho, \lambda, \sigma)$, where:

- (1) *V* is a finite set of *vertices* (or *nodes*).
- (2) E is a finite set of *edges* such that V and E have no elements in common.
- (3) $\rho: E \to (V \times V)$ is a total function. Intuitively, $\rho(e) = (v_1, v_2)$ indicates that e is a directed edge from node v_1 to node v_2 in G.
- (4) $\lambda: (V \cup E) \to Lab$ is a total function with Lab a set of labels. Intuitively, if $v \in V$ (respectively, $e \in E$) and $\lambda(v) = \ell$ (respectively, $\lambda(e) = \ell$), then ℓ is the label of node v (respectively, edge e) in G.
- (5) $\sigma: (V \cup E) \times Prop \to Val$ is a partial function with Prop a finite set of properties and Val a set of values. Intuitively, if $v \in V$ (respectively, $e \in E$), $p \in Prop$ and $\sigma(v, p) = s$ (respectively, $\sigma(e, p) = s$), then s is the value of property p for node v (respectively, edge e) in the property graph G.

Extracted from: R. Angles et al. Foundations of Modern Query Languages for Graph Databases

Does this definition admit...

- Several edges between the same nodes?
- Edges between more than 2 nodes?
- Edges with a single node?
- Properties in edges?
- Nodes without a label?
 And edges?
- The same property in different nodes or edges?
- Nodes/edges with the same label and different set of properties?

Example of Property Graph

A valid graph according to the previous formal definition. Instantiation:

$$V = 0$$
 $E = 0$

 ρ

 λ

Traversal Navigation

We define the graph traversal pattern as:

"the ability to rapidly traverse structures to an arbitrary depth and with an arbitrary path description" [Marko Rodriguez]

Traversal Navigation

We define the graph traversal pattern as:

"the ability to rapidly traverse structures to an arbitrary depth and with an arbitrary path description" [Marko Rodriguez]

Totally opposite to set theory (on which relational databases are based on)

Sets of elements are operated by means of the relational algebra

Traversing Data in a RDBMS

Obtaining all the items that Alice has ordered

Users

User	Address	Phone	Email
Alice			
Bob	456 Bar Ave.		bob@example.org
Zach	99 South St.		zach@example.org

Orders

Order	Date	Status	UserId
1234	20120808	delivered	Alice
5678	20120816	dispatched	Alice
5588	20120613	delivered	Zach

Items

Id	Description	Handling
abcd	Strawberry ice-cream	freezer
efab	Brussels sprouts	
cdef	Espresso beans	

OrderItems

OrderId	ItemId
1234	abcd
1234	efab
1234	cdef
5678	cdef
5588	hijk

SELECT i.id, i.description FROM users u, orders o, order items oi, items i WHERE u.user = 'Alice' AND u.user = o.userId AND Navigation in RDBMS is

equivalent to join

equivalent to join

(schema level) t

selection (instance level) o.order = oi.orderId AND oi.itemId = i.id

Cardinalities:

|Users|: 5.000.000

|Orders|: 1.000.000.000

|OrderItems|: 3.000.000.000

|Items|: 35.000

Is this really a traversal navigation?

Traversing Data in a Graph Database

- what if now an order can be placed by more than one person?
- Relationships are explicit
 - No need for Foreign Keys
 - No need to add nodes for "artificial" concepts
 - No need for JOIN operation, JOINs are "hard-wired"
- Traversing from one node to another is a **constant time** operation

Activity

What would be the cost of the same query (obtaining all the items that Alice has bought) in a graph database?

Assume you can find the node "Alice" in constant time

Graph DBs vs Relational DBs

The following table reports the result of an experiment aimed at finding friends-of-friends in a social network, to a maximum depth of 5

For a social network containing 1,000,000 people, each of them with approximately 50 friends.

Depth	RDBMS execution time (s)	Neo4j execution time (s)	Records returned
2	0.016	0.01	~2500
3	30.267	0.168	~110,000
4	1543.505	1.359	~600,000
5	Unfinished	2.132	~800,000

Activity: Modeling in Graph DBs

- Objective: Learn how to model property graphs
- Tasks:
 - (15') Model the TPC-H database as a property graph
 - (15') Discussion

Summary

Property graphs are:

- Directed
- Multigraph
- Nodes/edges may have labels (similar to the concept of typing) and properties (equivalent to the concept of attributes)

Completely different mindset, compared to RDBMS:

- Schema-less
- No FKs, no JOINS, no relationship tables
- Navigating an edge is a constant time operation

Thanks! Any Question?