

CPI2 : ALGÈBRE 3

Pr. H. EL AMRI

Table des matières

1	ESF	ACES	VECTORIELS	5
	1.1	Définit	tions	5
	1.2	Sous e	space vectoriel	6
	1.3		$egin{array}{llllllllllllllllllllllllllllllllllll$	6
		1.3.1	Systèmes libres	7
		1.3.2	Systèmes générateurs	7
		1.3.3	Base d'un espace vectoriel	8
2	\mathbf{AP}	PLICA	TIONS LINÉAIRES	9
		2.0.1	Définitions	9
		2.0.2	L'espace L(E,F)	10
		2.0.3		10
		2.0.4		12
		2.0.5		$\frac{1}{12}$
		2.0.6	0 1	13
3	МΔ	TRICI	ES 1	15
•	3.1			15
	3.2			17
	0.4	3.2.1	<u> </u>	18
		3.2.1 $3.2.2$		19
		$\frac{3.2.2}{3.2.3}$		19 19
		3.2.4		19
		3.2.5		19
		3.2.6		20
		3.2.7	v 1	20
	3.3			20
		3.3.1		21
	3.4	_		21
	3.5	Applic	ation aux applications linéaires	22
4	DÉ	TERM	INANTS 2	23
	4.1	Permu	${f tations}$	23
	4.2	Applic	eations et formes multilinéaires alternées	23
		4.2.1	Applications symétriques	23
		122)3

Chapitre 1

ESPACES VECTORIELS

1.1 Définitions

Dans le cours le corps K considéré sera toujours R et dans certains cas qu'on précisera C.

Définition 1.1.1 (Groupe commutatif). Soit E un ensemble muni d'une loi de composition interne notée + et vérifiant :

- 1. $\forall x, y \in E \text{ on } x + y \in E$
- 2. $\forall x, y \in E \text{ on } x + y = y + x$
- 3. $\exists 0_E \in E \text{ tel que } \forall x \in E \text{ on a } x + 0_E = 0_E + x = x \text{ (\'el\'ement neutre)}$
- 4. $\forall x \in E, \exists x' \in E \text{ tel que } x + x' = x' + x = 0_E. \text{ On note } x' = -x$

L'ensemble (E,+) vérifiant les quatre axiomes ci dessus est appelé groupe commutatif ou groupe abélien.

Définition 1.1.2. On appelle loi de composition externe sur E toute application de $\mathbb{K} \times E \longrightarrow E$ qui au couple $(\lambda, x) \in \mathbb{K} \times E$ associe un élément de E noté $\lambda.x$ ou plus simplement λx .

Définition 1.1.3. Le triplet (E, +, .), c'est à dire l'ensemble E muni de la loi de composition interne + et d'une loi de composition externe, est dit **espace vectoriel** si :

- 1. (E, +) est un groupe abélien (donc vérifie les quatre axiomes de la définition (1.1.1).
- 2. $\forall x, y \in E, \ \forall \lambda \in \mathbb{K} : \lambda(x+y) = \lambda x + \lambda y$
- 3. $\forall x \in E, \ \forall \lambda, \mu \in \mathbb{K} : (\lambda + \mu)x = \lambda x + \mu x$
- 4. $\forall x \in E, \ \forall \lambda, \mu \in \mathbb{K} : (\lambda \mu) x = \lambda(\mu x)$
- 5. $\forall x \in E$: 1x = x.

Les éléments de E sont appelés des **vecteurs** et ceux du corps \mathbb{K} sont appelés des **scalaires**.

Exercice 1.1.4. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Montrer que $\forall x \in E$

- 1. x + x = 2x
- 2. $0_{\mathbb{K}}.x = 0_E$
- 3. (-1)x = -x

Exemple 1.1.5. 1. L'ensemble $(\mathbb{R}, +, .)$ muni de l'addition et de la multiplication naturelles est un espace vectoriel sur lui même.

- 2. $(\mathbb{C}, +, .)$ est un espace vectoriel sur \mathbb{R} .
- 3. Pour tout $n \in \mathbb{N}$, $(\mathbb{R}^n, +, .)$ muni de la loi de composition interne définie par : $\forall x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

et de la loi de composition externe définie par :

$$\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n \ et \ \forall \lambda \in \mathbb{R}$$

$$\lambda x = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

est un espace vectoriel sur \mathbb{R} .

4. L'ensemble des fonctions $F(A,\mathbb{R})$ d'un sous-ensemble A de \mathbb{R} dans \mathbb{R} : Si $f,g \in F(A,\mathbb{R})$ et $\lambda \in \mathbb{R}$, on définit f+g et λf pour tout $x \in A$ par :

$$(f+g)(x) = f(x) + g(x)$$
 et $(\lambda f)(x) = \lambda f(x)$

- 5. L'ensemble des fonctions continues $C([a, b[, \mathbb{R}) \ d'un \ intervalle \]a, b[\ de \ \mathbb{R} \ dans \ \mathbb{R}.$
- 6. L'ensemble des fonctions dérivables $D([a,b[,\mathbb{R}) \ d'un \ intervalle \]a,b[\ de \mathbb{R} \ dans \mathbb{R}.$
- 7. L'ensemble des fonctions infiniment dérivables $D^{\infty}([a,b[,\mathbb{R}) \ d'un \ intervalle \]a,b[\ de \ \mathbb{R} \ dans \ \mathbb{R}.$
- 8. On peut évidemment considérer dans les exemples précédents des intervalles fermés à gauche ou à droite.
- 9. L'ensemble des fonctions polynômes sur \mathbb{R} .
- 10. L'ensemble polynômes de degré inférieur ou égal à un entier donné n sur $\mathbb R$
- 11. L'ensemble des solutions d'une équation différentielle linéaire homogène.
- 12. L'espace E des applications continues de \mathbb{R} dans lui même muni de la loi composition interne (fog)(x) = f(g(x)) et de la loi de composition externe $(\lambda f)(x) = \lambda f(x)$ n'est pas un espace vectoriel (Pourquoi?)

1.2 Sous espace vectoriel

Définition 1.2.1. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Soit $F \subset E$ non vide. F est un sous espace vectoriel de E si

- 1. $\forall u, v \in F, u+v \in F$
- 2. $\forall \lambda \in \mathbb{K}, \forall u \in F, \quad \lambda u \in F.$

Théorème 1.2.2. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Soit $F \subset E$ non vide. F est un sous espace vectoriel de E si et seulement si

$$\forall u, v \in F, \ \forall \lambda \in \mathbb{K} \ on \ a \ , \ u + \lambda v \in F$$

Théorème 1.2.3. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . L'intersection de deux sous espace vectoriels de E est un sous espace vectoriel de E.

Démonstration. Soit F_1 et F_2 deux sous espaces vectoriels de E. Comme $0_E \in F_1$ et $0_E \in F_2$, alors $F = F_1 \cap F_2$ est non vide.

Soit $u, v \in F$ et $\lambda \in \mathbb{K}$ alors $u + \lambda v \in F_1$ et $u + \lambda v \in F_2$ donc $u + \lambda v \in F$

Exercice 1.2.4. Que peut on dire de la réunion de deux sous espaces vectoriels d'un espace vectoriel? Donner un contre exemple.

1.3 Systèmes de vecteurs

Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . On appelle système de vecteurs toute famille de la forme $(v_1, v_2, ..., v_n)$ où $v_1, v_2, ..., v_n \in E$ et n entier quelconque.

1.3.1 Systèmes libres

Définition 1.3.1. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Un système $(v_1, v_2, ..., v_n)$ de E est dit libre si

$$\forall \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}; \quad \left(\sum_{i=1}^n \lambda_i v_i = 0_E\right) \Rightarrow (\lambda_1 = \lambda_2 = ... = \lambda_n = 0_{\mathbb{K}})$$

Un système qui n'est pas libre est dit système lié.

Remarque 1.3.2. Un système $(v_1, v_2, ..., v_n)$ de E est lié s'il existe des scalaires $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ **NON** TOUS NULS tels que $\sum_{i=1}^n \lambda_i v_i = 0_E$

Exemple 1.3.3. 1. Un système qui contient le vecteur nul est lié (c'est à dire n'est pas libre)

- 2. Un système qui contient deux fois le même vecteur est lié.
- 3. Un système qui contient un sous-système lié est lié.
- 4. Un système qui est contenu dans un sous-système libre est libre.
- 5. Dans \mathbb{P}_n l'espace vectoriel des polyn \tilde{A} tmes de degré inférieur ou égal à n le système $(1, X, X^2, ..., X^n)$ est libre.
- 6. Soit P_i un polyn \tilde{A} tme de la forme $X^i+a_{i-1}X^{i-1}+...+a_0$, Dans \mathbb{P}_n le système $(P_0,P_2,...,P_n)$ est libre.
- 7. Dans $F(\mathbb{R}, \mathbb{R})$ le système $(1, e^x, ..., e^{nx})$ est libre pour tout $n \in \mathbb{N}$.

1.3.2 Systèmes générateurs

Définition 1.3.4. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Un système $(v_1, v_2, ..., v_n)$ de E est dit générateur si pour tout $x \in E$, $\exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ tels que

$$x = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \sum_{i=1}^n \lambda_i v_i$$

Exemple 1.3.5. Dans \mathbb{R}^n tout $x = (x_1, x_2, ..., x_n)$ peu s'écrire sous la forme

$$x = (x_1, 0, ..., 0) + (0, x_2, 0, ..., 0) + ... + (0, 0, ..., x_n)$$

et encore

$$x = x_1(1, 0, ..., 0) + x_2(0, 1, 0, ..., 0) + ... + x_n(0, 0, ..., 1)$$

et si on pose

$$\begin{cases} e_1 = (1, 0, ..., 0) \\ e_2 = (0, 1, 0, ..., 0) \\ ... \\ e_n = (0, 0, ..., 1) \end{cases}$$

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n = \sum_{i=1}^{n} x_ie_i$$

qui veut dire que le système $(e_1, e_2, ..., e_n)$ est un système générateur de l'espace vectoriel \mathbb{R}^n .

1.3.3 Base d'un espace vectoriel

Définition 1.3.6. Soit (E, +, .) un espace vectoriel sur un corps \mathbb{K} . Un système $(v_1, v_2, ..., v_n)$ de E est une base de E s'il est libre et générateur de E. n est alors appelé la dimension de E, dimE = n.

Exemple 1.3.7. 1. Dans l'exemple 1.3.5 le système $(e_1, e_2, ..., e_n)$ est une base de \mathbb{R}^n . En effet, on a vu qu'il est générateur. Montrons qu'il est libre. Soient $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}$. et supposons que

$$\sum_{i=1}^{n} \lambda_i e_i = 0_{\mathbb{R}^n} = (0, 0, ..., 0).$$

Donc $(\lambda_1, \lambda_2, ..., \lambda_n) = (0, 0, ..., 0)$ et donc tous les λ_i sont nuls. CQFD.

2. L'ensemble des solutions de l'équation différentielle y'' + 4y = 0 est un espace vectoriel. Sa base est (y_1, y_2) où $y_1(x) = \sin(2x)$ et $y_2(x) = \cos(2x)$.

Chapitre 2

APPLICATIONS LINÉAIRES

2.0.1 Définitions

Définition 2.0.1. Soient E et F deux espaces vectoriels sur un même corps K. Une application de E dans F est dite est dite application linéaire si elle vérifie :

$$\forall x, y \in E , f(x+y) = f(x) + f(y)$$

$$(2.1)$$

$$\forall x \in E, \forall \lambda \in K , f(\lambda x) = \lambda f(x)$$
 (2.2)

Exemple 2.0.2. 1. Pour tout réel a l'application

$$\begin{cases}
f: \mathbb{R} \longrightarrow \mathbb{R} \\
x \longrightarrow ax
\end{cases} \tag{2.3}$$

est une application linéaire de \mathbb{R} dans lui même.

2. L'application définie par :

$$\begin{cases}
f: \mathbb{R}^2 & \longrightarrow \mathbb{R} \\
(x_1, x_2) & \longrightarrow x_1
\end{cases}$$
(2.4)

est une application linéaire de \mathbb{R}^2 dans \mathbb{R} .

3. L'application définie par :

$$\begin{cases}
f: \mathbb{R}^3 & \longrightarrow \mathbb{R}^2 \\
(x_1, x_2, x_3) & \longrightarrow (x_1 - x_2 + x_3, 2x_1 + x_3)
\end{cases}$$
(2.5)

est une application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 .

4. Soit C([0,1]) l'espace des fonctions continues de [0,1] dans \mathbb{R} . L'application définie par :

$$\begin{cases}
f: C([0,1]) &\longrightarrow \mathbb{R} \\
u &\longrightarrow \int_0^1 u(t)dt
\end{cases}$$
(2.6)

est une application linéaire de C([0,1]) dans \mathbb{R} .

5. Soit C([0,1]) l'espace des fonctions continues de [0,1] dans \mathbb{R} . L'application définie par :

$$\begin{cases}
f: C([0,1]) & \longrightarrow \mathbb{R} \\
u & \longrightarrow u(\frac{1}{2})
\end{cases}$$
(2.7)

est une application linéaire de C([0,1]) dans \mathbb{R} .

6. Soit $C^1([0,1])$ l'espace des fonctions de classe C^1 de [0,1] dans \mathbb{R} . L'application définie par :

$$\begin{cases}
f: C^{1}([0,1]) & \longrightarrow C([0,1]) \\
u & \longrightarrow u'
\end{cases} (2.8)$$

est une application linéaire de $C^1([0,1])$ dans C([0,1]...

Définition 2.0.3. Soient E et F deux espaces vectoriels sur un même corps K. Soit $f: E \longrightarrow F$ une application linéaire.

- 1. f est dite isomorphisme si f est une bijection de E dans F,
- 2. f est dite **endomorphisme** si E = F,
- 3. f est dite **automorphisme** si f est une bijection de E dans lui même (ie E = F).

2.0.2 L'espace L(E,F)

Définition 2.0.4. Soient E et F deux espaces vectoriels sur un même corps K. On note par L(E, F) l'espace de toutes les applications linéaires de E dans F. Lorsque E = F on le note L(E)

Opérations sur les applications linéaires

Définition 2.0.5. Soient $f: E \longrightarrow F$ et $q: E \longrightarrow F$ deux applications linéaires.

1. On définit la somme (la loi de composition interne) de f et q par :

$$(f+g)(x) = f(x) + g(x)$$
, $\forall x \in E$

2. On définit le produit de f par un scalaire (la loi de composition externe) :

$$(\lambda f)(x) = \lambda f(x)$$
, $\forall x \in E \ et \ \forall \lambda \in K$

Théorème 2.0.6. Soient E et F deux espaces vectoriels sur un corps K. L'espace L(E,F) des applications linéaires de E dans F muni des lois définies ci dessus est un espace vectoriel sur K.

2.0.3 E' =**Dual** de $E = L(E, \mathbb{R})$

Définition 2.0.7. Soit E un espace vectoriel sur un corps K. On appelle dual de E l'espace $L(E, \mathbb{R})$. Les éléments de E' sont appelés des **formes linéaires** sur E.

Théorème 2.0.8. L'application composée de deux applications linéaires est une application linéaire.

Soient E, F et G trois espaces vectoriels sur un même corps K. Soit

$$f: E \longrightarrow F$$
, $g: F \longrightarrow G$

deux applications linéaires.

Alors

$$gof(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = gof(x) + gof(y)$$

et

$$gof(\lambda x) = g(f(\lambda x)) = g(\lambda f(x)) = \lambda g(f(x)) = \lambda gof(x)$$

Théorème 2.0.9. Si f est une application linéaire de E dans F, alors

- 1. $f(0_E) = 0_F$, f(-x) = -f(x).
- 2. Si A est un sous espace vectoriel de E alors

$$f(A) = \{f(x), x \in A\}$$

est un sous espace vectoriel de F.

3. Si B est un sous espace vectoriel de F alors

$$f^{-1}(B) = \{ f^{-1}(y), y \in B \}$$

est un sous espace vectoriel de E.

Démonstration.

- 1. $x + 0_E = x$ donc $f(x + 0_E) = f(x)$ comme f est linéaire alors $f(x) + f(0_E) = f(x)$, c'est à dire $f(0_E) = f(x) f(x) = 0_F$ De même on a : $x + (-x) = 0_E$ donc $f(x) + f(-x) = f(0_E) = 0_F$ D'où f(-x) = -f(x).
- 2. On montre f(A) est stable pour les deux lois : Soit $y_1, y_2 \in f(A)$ et soit $\lambda_1, \lambda_2 \in K$ on doit montrer que

$$\lambda_1 y_1 + \lambda_2 y_2 \in f(A)$$

Comme $y_1 \in f(A)$ alors $\exists x_1 \in A$ tel que $f(x_1) = y_1$

Comme $y_2 \in f(A)$ alors $\exists x_2 \in A$ tel que $f(x_2) = y_2$

Comme A est un sous espace vectoriel de E alors :

$$\lambda_1 x_1 + \lambda_2 x_2 \in A$$

Et donc

$$f(\lambda_1 x_1 + \lambda_2 x_2) \in f(A)$$

On applique la linéarité de f et on obtient

$$\lambda_1 f(x_1) + \lambda_2 f(x_2) \in f(A)$$

c'est à dire

$$\lambda_1 y_1 + \lambda_2 y_2 \in f(A)$$
 CQFD

3. On montre que $f^{-1}(B)$ est stable pour les deux lois : Soient $x_1, x_2 \in f^{-1}(B)$ et soit $\lambda_1, \lambda_2 \in K$, on doit montrer que

$$\lambda_1 x_1 + \lambda_2 x_2 \in f^{-1}(B)$$

Comme $x_1 \in f^{-1}(B)$ alors $f(x_1) \in B$

Comme $x_2 \in f^{-1}(B)$ alors $f(x_2) \in B$

Comme B est un sous espace vectoriel de F alors :

$$\lambda_1 f(x_1) + \lambda_2 f(x_2) \in B$$

Comme f est linéaire ceci s'écrit :

$$f(\lambda_1 x_1 + \lambda_2 x_2) \in B$$

c'est à dire que

$$\lambda_1 x_1 + \lambda_2 x_2 \in f^{-1}(B)$$

2.0.4 Noyau et Image d'une application linéaire

Définition 2.0.10. Soient E et F deux espaces vectoriels sur un corps K. Soit f une application linéaire de E dans F ($f \in L(E, F)$).

- 1. $f^{-1}(0_F)$ est un sous espace vectoriel de E. On l'appelle **noyau** de l'application linéaire f, et on le note Kerf.
- 2. f(E) est un sous espace vectoriel de F. On l'appelle **image** de l'application linéaire f, et on le note Imf.

Théorème 2.0.11. Soient E et F deux espaces vectoriels sur un corps K. Soit f une application linéaire de E dans F ($f \in L(E, F)$).

- 1. f est injective si et seulement si $Kerf = \{0_E\}$
- 2. f est surjective si et seulement si Im <math>f = F

Démonstration.

1. (\Rightarrow) : Supposons f injective.

Soit $x \in Kerf$, alors f(x) = 0 et donc f(x) = f(0) et comme f est injective alors x = 0, c'est à dire $Kerf = \{0\}$

 (\Leftarrow) : Supposons $Kerf = \{0_E\}.$

Soient $x, y \in E$ tels que f(x) = f(y) alors comme f est linéaire, f(x - y) = 0, et donc $x - y \in Kerf$, et comme $Kerf = \{0\}$ alors x - y = 0 c'est à dire x = y et donc f est injective.

2. C'est la définition de la surjectivité.

Théorème 2.0.12. Si f est un isomorphisme d'un espace vectoriel E sur un espace vectoriel F alors, f^{-1} est un isomorphisme de F sur E.

2.0.5 Image de parties de E

Théorème 2.0.13. Soient E et F deux espaces vectoriels sur un corps K. Soit f une application linéaire de E dans F ($f \in L(E, F)$).

- 1. Si $(v_1, v_2, ..., v_n)$ est un système générateur de E alors $(f(v_1), f(v_2), ..., f(v_n))$ est un système générateur de f(E).
- 2. L'image d'un système lié de E est un système lié de F.

Démonstration.

1. Soit $w \in f(E)$, alors $\exists v \in E$ tel que f(v) = w. Comme $(v_1, v_2, ..., v_n)$ engendre E alors $\exists \lambda_1, \lambda_2, ..., \lambda_n \in K$ tels que :

$$v = \sum_{i=1}^{n} \lambda_i v_i$$

Et comme f est linéaire alors

$$f(v) = \sum_{i=1}^{n} \lambda_i f(v_i)$$

c'est à dire

$$w = \sum_{i=1}^{n} \lambda_i f(v_i)$$

et donc le système $(f(v_1), f(v_2), ..., f(v_n))$ engendre f(E).

2. Soit $(v_1, v_2, ..., v_n)$ un système lié de E. Alors $\exists \lambda_1, \lambda_2, ..., \lambda_n \in K$ non tous nuls tel que

$$\sum_{i=1}^{n} \lambda_i v_i = 0$$

Donc

$$\sum_{i=1}^{n} \lambda_i f(v_i) = 0$$

et les λ_i non tous nuls. C'est à dire que le système $(f(v_1), f(v_2), ..., f(v_n))$ est lié.

2.0.6 Cas où E est de dimension finie

Théorème 2.0.14. Soient E et F deux espaces vectoriels sur un corps K. Supposons que E est de dimension finie (dim E = n).

Soit $(a_1, a_2, ..., a_n)$ une base de E.

Alors pour tout système $(b_1, b_2, ..., b_n)$ de F il existe une application linéaire **unique** f telle que

$$\forall i = 1, ..., n , on a : f(a_i) = b_i$$

Démonstration.

Théorème 2.0.15 (et définition). Soient E et F deux espaces vectoriels sur un corps K. Supposons que E est de dimension finie. Soit f une application linéaire de E dans F.

- 1. f(E) est de dimension finie et $dim f(E) \leq dim E$
- 2. La dimension de f(E) est le rang de l'application linéaire f, il est noté rg(f), de plus :

$$dimE = dimKerf + rq(f)$$

Corollaire 2.0.16. Soient E et F deux espaces vectoriels de dimensions finies sur un corps K. On note n = dimE et p = dimF.

Soit f une application linéaire de E dans F. Alors on a :

- 1. rq(f) = n si et seulement si f est injective.
- 2. rg(f) = p si et seulement si f est surjective.

Corollaire 2.0.17. Soient E et F deux espaces vectoriels de même dimension finie sur un corps K. Alors les propriétés suivantes sont équivalents :

- 1. f est bijective (ie f isomorphisme de E sur F)
- 2. f est injective $(Kerf = \{0\})$
- 3. f est surjective (f(E) = F)

Chapitre 3

MATRICES

3.1 Introduction

Soient m, n deux entiers naturels strictement positifs. On note $(e_1, e_2, ..., e_n)$ la base canonique de \mathbb{R}^n et $(f_1, f_2, ..., f_m)$ la base canonique de \mathbb{R}^m . Il est clair que

$$\begin{cases}
e_{1} = (1, 0, 0, ..., 0) \in \mathbb{R}^{n} \\
e_{2} = (0, 1, 0, 0, ..., 0) \in \mathbb{R}^{n} \\
\vdots \\
e_{i} = (0, 0, ..., 1, 0, 0, ..., 0) \in \mathbb{R}^{n} \\
\vdots \\
\vdots \\
e_{n} = (0, 0, 0, ..., 1) \in \mathbb{R}^{n}
\end{cases}$$
(3.1)

et que

$$\begin{cases} f_{1} = (1, 0, 0, ..., 1) \in \mathbb{R}^{m} \\ f_{2} = (0, 1, 0, 0, ..., 0) \in \mathbb{R}^{m} \\ \vdots \\ f_{i} = (0, 0, ..., 1, 0, 0, ..., 0) \in \mathbb{R}^{m} \\ \vdots \\ f_{m} = (0, 0, 0, ..., 1) \in \mathbb{R}^{m} \end{cases}$$

$$(3.2)$$

On considère une application linéaire définie par :

$$\begin{cases} f: \mathbb{R}^n & \longrightarrow \mathbb{R}^m \\ x & \longrightarrow y = f(x) \end{cases}$$
 (3.3)

On cherche une écriture de y en fonction de x. Comme $f(e_i) \in \mathbb{R}^m$ pour tout i = 1, ..., n alors

$$\begin{cases}
f(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m \\
f(e_2) = a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m \\
\vdots \\
f(e_i) = a_{1i}f_1 + a_{2i}f_2 + \dots + a_{mi}f_m \\
\vdots \\
f(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m
\end{cases} (3.4)$$

C'est à dire pour tout i = 1, ..., n on a :

$$f(e_i) = a_{1i}f_1 + a_{2i}f_2 + \dots + a_{mi}f_m = \sum_{i=1}^{m} a_{ji}f_j$$

Soit maintenant $x \in \mathbb{R}^n$, posons $y = f(x) \in \mathbb{R}^m$

$$x = (x_1, x_2, ..., x_n) = x_1 e_1 + x_2 e_2 + ... x_n e_n = \sum_{i=1}^{n} x_i e_i$$

Donc

$$y = f(x) = \sum_{i=1}^{n} x_i f(e_i) = \sum_{i=1}^{n} x_i \sum_{j=1}^{m} a_{ji} f_j = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i a_{ji} f_j$$

On peut permuter les sommations :

$$y = \sum_{i=1}^{m} \sum_{i=1}^{n} x_i a_{ji} f_j$$

Et comme f_j ne dépend pas de l'indice i on peut le sortir de la sommation interne :

$$y = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ji} x_i \right) f_j$$

C'est à dire que y s'écrit dans la base de \mathbb{R}^m sous la forme

$$y = \sum_{j=1}^{m} y_j f_j$$

avec pour tout j = 1, ..., m

$$y_j = \sum_{i=1}^n a_{ji} x_i$$

$$\begin{cases} y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ \vdots \\ y_{j} = a_{j1}x_{1} + a_{j2}x_{2} + \dots + a_{jn}x_{n} \\ \vdots \\ y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \end{cases}$$

$$(3.5)$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \times \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix}$$

$$(3.6)$$

Définition 3.1.1. Soit $I = \{1, 2, ..., m\}$ et $J = \{1, 2, ..., n\}$ deux ensembles d'indices. On appelle matrice de type (m, n) (m lignes et n colonnes) sur un ensemble $K = \mathbb{R}$ ou \mathbb{C} toute application A de $I \times J$ dans K:

$$\begin{cases}
A: I \times J \longrightarrow K \\
(i,j) \longrightarrow A(i,j) = a_{ij} = a_i^j
\end{cases}$$
(3.7)

On note une matrice de type (m,n) sous la forme d'un tableau ayant m lignes et n colonnes.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Propriétés: Égalité, Somme, Multiplication par un scalaire 3.2

1. Deux matrices A et B de même type (m, n) sont égales si

$$a_{ij} = b_{ij}, \forall i = 1, ..., m; \forall j = 1, ..., n.$$

2. Soient A et B deux matrices de même type (m, n). On définit la somme A + B par

$$(A+B)(i,j) = A(i,j) + B(i,j), i = 1, ..., m; j = 1, ..., n$$

C'est à dire si on pose C = A + B alors

$$c_{ij} = a_{ij} + b_{ij}, i = 1, ..., m; j = 1, ..., n.$$

3. Soit A une matrice de type (m,n) et $\lambda \in K$ alors la matrice λA est définie par

$$(\lambda A)(i,j) = \lambda A(i,j) = \lambda a_{ij}$$

C'est à dire si on pose $P = \lambda A$ alors

$$c_{ij} = \lambda a_{ij}, i = 1, ...m; j = 1, ..., n$$

Définition 3.2.1. On note $M^{m,n}(K)$ l'espace des matrices de types (m,n) sur K.

Théorème 3.2.2. L'espace des matrices $M^{m,n}(K)$ défini ci dessus est un espace vectoriel sur le corps K.

1. Élément neutre : La matrice nulle

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 0 \end{bmatrix}$$

2. L'élément opposé d'une matrice $A = (a_{ij})$ est la matrice -A dont les termes sont

$$(-A)(i,j) = -a_{ij}, i = 1, ..., m; j = 1, ..., n$$

Exercice 3.2.3. Soit p, q et r trois entiers naturels strictement positifs. On considère les applications linéaires suivantes

$$\begin{cases} f: \mathbb{R}^p & \longrightarrow \mathbb{R}^q \\ x & \longrightarrow y = f(x) \end{cases}$$
 (3.8)

et

$$\begin{cases} f: \mathbb{R}^p & \longrightarrow \mathbb{R}^q \\ x & \longrightarrow y = f(x) \end{cases}$$

$$\begin{cases} g: \mathbb{R}^q & \longrightarrow \mathbb{R}^r \\ y & \longrightarrow z = g(y) \end{cases}$$

$$(3.8)$$

deux applications linéaires.

- 1. Écrire la matrice A_f associée à l'application linéaire f,
- 2. Écrire la matrice A_g associée à l'application linéaire g,
- 3. Montrer que l'application

$$\begin{cases}
gof: \mathbb{R}^p & \longrightarrow \mathbb{R}^r \\
x & \longrightarrow z = gof(x)
\end{cases}$$
(3.10)

est linéaire,

- 4. Écrire la matrice A_{gof} associée à l'application linéaire gof.
- 5. On pose $A = A_f$, $B = A_g$ et $C = A_{gof}$.

Calculer c_{ij} en fonction des a_{ik} et b_{kj}

- 6. définir le produit AB de deux matrices $A \in M^{p,q}(\mathbb{R})$ et $B \in M^{q,r}(\mathbb{R})$.
- 7. On suppose que p = q = r Montrer que la matrice

$$I = \begin{bmatrix} 1 & 0 & . & . & . & 0 \\ 0 & 1 & . & . & . & 0 \\ . & . & . & . & . & . & . \\ 0 & 0 & . & 1 & . & 0 \\ . & . & . & . & . & . & . \\ 0 & 0 & . & . & . & 1 \end{bmatrix}$$

est l'élément neutre de cette multiplication.

8.

3.2.1 Matrice Transposée

Définition 3.2.4. Soit $A = (a_{ij})_{\substack{i=1,n \ j=1,m}} \in M^{m,n}$ une matrice. On appelle la matrice transposée de A la matrice notée tA définie par : ${}^tA = (b_{ij})_{\substack{i=1,m \ j=1,n}} \in M^{n,m}$ où

$$b_{ij} = a_{ji}$$

Remarque 3.2.5. La transposée de la transposée d'une matrice A est la matrice A:

$$t(^tA) = A$$

Exemple 3.2.6. 1. La transposée de la matrice

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

est la matrice

$${}^{t}A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

la matrice inverse de A est

$$A^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$$

$$(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$$

2. La transposée de la matrice

$$U = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

est la matrice

$${}^{t}U = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Théorème 3.2.7. Les espaces $M^{m,n}$ et $M^{n,m}$ sont des espaces vectoriels isomorphes.

En effet l'application

$$\begin{cases}
L: M^{m,n} \longrightarrow M^{n,m} \\
A \longrightarrow {}^{t}A
\end{cases} (3.11)$$

est un isomorphisme (c'est à dire application linéaire bijective)

3.2.2 Matrice ligne

On appelle matrice ligne toute matrice A de type (1,n), c'est à dire $A \in M^{1,n}(K)$:

$$A = (a_1, a_2, ..., a_n)$$

3.2.3 Matrice colonne

On appelle matrice colonne toute matrice A de type (m, 1), c'est à dire $A \in M^{m,1}(K)$:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_m \end{pmatrix}$$

3.2.4 Matrice carrée

On parle de matrice carrée lorsque m=n, c'est dire $A \in M^{n,n}(K)$.

3.2.5 Matrice diagonale

On appelle matrice diagonale toute matrice $A \in M^{n,n}(K)$ telle que $a_{ij} = 0$ si $i \neq j$

$$A = \begin{pmatrix} a_{11} & 0 & . & . & . & 0 \\ 0 & a_{22} & 0 & . & . & 0 \\ . & . & . & . & . & . \\ . & . & . & a_{ii} & . & . \\ . & . & . & . & . & . & . \\ 0 & . & . & . & . & . & a_{nn} \end{pmatrix}$$

3.2.6 Matrice triangulaire

On appelle matrice triangulaire inférieure toute matrice A telle que

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & 0 & \dots \\ a_{i1} & \dots & a_{ii} & 0 & \dots \\ a_{n1} & \dots & \dots & \dots & a_{nn} \end{pmatrix}$$

On appelle matrice triangulaire supérieure toute matrice A telle que

$$a_{ij} = 0$$
, pour $j \le i$

$$A = \begin{pmatrix} a_{11} & a_{12} & . & . & . & a_{1n} \\ 0 & a_{22} & a_{23} & . & . & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & . & .a_{3n} \\ 0 & 0 & . & a_{ii} & a_{i,i+1} & .a_{in} \\ 0 & 0 & . & . & . & . \\ 0 & 0 & . & . & . & . & a_{nn} \end{pmatrix}$$

Remarque 3.2.8. Si une matrice est triangulaire supérieure alors sa matrice transposée est triangulaire inférieure, et réciproquement.

3.2.7 Matrice symétrique

Une matrice carrée A est dite symétrique si $\forall i, j = 1, ..., n$ on

$$a_{ij} = a_{ji}$$

c'est à dire

$$^t A = A$$

Une matrice A est dite antisymétrique si

$$^{t}A = -A$$

3.3 Produit de matrices

Soient A une matrice de type (m, n) et B une matrice de même type (n, p). On définit le produit AB par C = AB de type (m, p) avec

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
, $\forall i = 1, ..., m$, $\forall j = 1, ..., p$

Exercice 3.3.1. Soient A et B deux matrices de type (n, n). Montrer que

$$^{t}(A.B) = {}^{t}B.{}^{t}A$$

Exercice 3.3.2. Soit $\theta \in [-\pi, \pi[$ et $A(\theta)$ la matrice définie par $A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

- 1. Soient $\theta, \theta' \in [-\pi, \pi[$, calculer le produit $A_{\theta}.A_{\theta'}$
- 2. Calculer $(A_{\theta})^p$ pour tout entier $p \in \mathbb{N}$

3. Montrer que $\forall \theta \in [-\pi, \pi[$ la matrice A_{θ} est inversible et donner sa matrice inverse.

Exercice 3.3.3. Soient $a, b \in \mathbb{R}$ et M(a, b) la matrice définie par :

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

On note \mathfrak{M} l'espace de toutes les matrices de la forme M(a,b).

$$\mathfrak{M} = \{ M(a,b), a, b \in \mathbb{R} \}$$

Montrer que $(\mathfrak{M}, +, .)$ est un corps commutatif.

3.3.1 Base de $M^{m,n}$

Soit E_{ij} la matrice dont tous les éléments sont nuls sauf l'élément qui se trouve dans la j -ème colonne (j=1,...,n) sur la i -ème ligne (i=1,...,m):

$$A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij} = \sum_{(i,j)=(1,1)}^{(i,j)=(m,n)} a_{ij} E_{ij}$$

Théorème 3.3.4. Le système $(E_{11},...,E_{ij},...,E_{mn})$ est une base de $M^{m,n}$. Et l'espace $M^{m,n}$ est un espace vectoriel de dimension mn.

Exemple 3.3.5.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

c'est à dire :

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$

C'est à dire que le système $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ est une base.

3.4 Changement de base

Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une application linéaire. Soit $(e_1, e_2, ..., e_n)$ la base canonique de \mathbb{R}^n . Alors il existe une unique matrice carrée de type (n, n) telle que :

$$f(x) = Ax$$
, $\forall x \in \mathbb{R}^n$

La matrice A s'écrit

$$A = (f(e_1), f(e_2), ..., f(e_n))$$

avec
$$f(e_1) = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{pmatrix}$$
, $f(e_2) = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{n2} \end{pmatrix}$,..., $f(e_i) = \begin{pmatrix} a_{1i} \\ a_{2i} \\ a_{3i} \\ \vdots \\ a_{ni} \end{pmatrix}$, ..., $f(e_n) = \begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ a_{nn} \end{pmatrix}$

Si on munit \mathbb{R}^n d'une nouvelle base $(e'_1, e'_2, ..., e'_n)$ f va s'écrire dans cette nouvelle base sous la forme

$$f(x) = A'x$$
, $\forall x \in \mathbb{R}^n$

$$A' = (f(e'_1), f(e'_2), ..., f(e'_n))$$

Chaque élément de la nouvelle base s'écrit dans l'ancienne base comme suit :

$$\begin{cases}
e'_{1} = p_{11}e_{1} + p_{21}e_{2} + \dots + p_{n1}e_{n} \\
e'_{2} = p_{12}e_{1} + p_{22}e_{2} + \dots + p_{n2}e_{n} \\
\vdots \\
e'_{i} = p_{1i}e_{1} + p_{2i}e_{2} + \dots + p_{ni}e_{n} \\
\vdots \\
e'_{n} = p_{1n}e_{1} + p_{2n}e_{2} + \dots + p_{nn}e_{n}
\end{cases}$$
(3.12)

On construit alors une nouvelle matrice P:

$$P = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1j} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2j} & \dots & p_{2n} \\ \vdots & & & & & & \\ p_{i1} & p_{i2} & \dots & p_{ij} & \dots & p_{in} \\ \vdots & & & & & & \\ p_{n1} & p_{n2} & \dots & p_{nj} & \dots & p_{nn} \end{pmatrix}$$

On construit alors une nouvelle matrice
$$P$$
:
$$P = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1j} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2j} & \dots & p_{2n} \\ \vdots & & & & & & \\ p_{i1} & p_{i2} & \dots & p_{ij} & \dots & p_{in} \\ \vdots & & & & & \\ p_{n1} & p_{n2} & \dots & p_{nj} & \dots & p_{nn} \end{pmatrix}$$
 Si $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}$ sont les composantes d'un élément x dans la base (e_i) et $X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_i \\ \vdots \\ x'_n \end{pmatrix}$ les composantes du même vecteur dans la base (e'_i) alors
$$X = PX'; X' = P^{-1}X$$

vecteur dans la base (e'_i) alors

$$X = PX'$$
; $X' = P^{-1}X$

Théorème 3.4.1. $(e_i)_{i=1,n}$, $(e'_i)_{i=1,n}$, étant deux bases d'un espace vectoriel E de dimension n sur un corps K, la matrice P qui a pour colonne j les coordonnées de e'_j dans la base $(e_i)_{i=1,n}$ est inversible; on l'appelle la matrice de passage de la base $(e_i)_{i=1,n}$ à la base $(e'_i)_{i=1,n}$, de plus

$$P = M(id_E, (e_i), (e'_i))$$
, $P^{-1} = M(id_E, (e'_i), (e_i))$.

Application aux applications linéaires 3.5

Théorème 3.5.1. Soient E et F deux espace vectoriels de dimensions finies sur un corps K.

Soient $(e_i)_{i=1,n}$, $(e'_i)_{i=1,n}$, deux bases de E et P la matrice de passage de (e_i) à (e'_i) ,

Soient $(f_i)_{i=1,m}$, $(f'_i)_{i=1,m}$, deux bases de F et Q la matrice de passage de (f_i) à (f'_i) ,

Soit f une application linéaire de E dans F.

Soit A la matrice de $f:(E,(e_i)) \longrightarrow (F,(f_i)),$

Soit A' la matrice de $f:(E,(e'_i)) \longrightarrow (F,(f'_i))$

alors

$$A' = Q^{-1}AP$$

Lorsque E = F alors

$$A' = P^{-1}AP.$$

Chapitre 4

DÉTERMINANTS

4.1 Permutations

Définition 4.1.1. Soit $n \in \mathbb{N}^*$. On appelle permutation toute bijection de l'ensemble $\{1, 2, ..., n\}$ dans lui même

Théorème 4.1.2. L'ensemble des permutations définies sur $\{1, 2, ..., n\}$ muni de la loi o (composition fog) est un groupe. On le note S_n , et on l'appelle groupe symétrique de

4.2 Applications et formes multilinéaires alternées

4.2.1 Applications symétriques

Soient E un espace vectoriel sur un corps K. Soit F un groupe. Soit

$$\begin{cases}
f: E \times E \times E \times \dots \times E \to F \\
(x_1, x_2, \dots, x_n) \to f(x_1, x_2, \dots, x_n)
\end{cases}$$
(4.1)

Définition 4.2.1. On dit que f est symétrique si pour toute bijection $p:\{1,2,...,n\}$ dans lui même, et pour tout $(x_1,x_2,...,x_n) \in E \times E \times E \times ... \times E \to F$ on a

$$f(x_{p(1)}, x_{p(2)}, ..., x_{p(n)}) = f(x_1, x_2, ..., x_n)$$

4.2.2 Applications antisymétriques

Définition 4.2.2. 1. On dit que f est antisymétrique relativement aux variables (x_i, x_j) $(i \neq j)$ si pour tout $(x_1, x_2, ..., x_n) \in E \times E \times E \times ... \times E \to F$ on a

$$f(x_{\tau(1)}, x_{\tau(2)}, ..., x_{\tau(i)}, ..., x_{\tau(n)}) = -f(x_1, x_2, ..., x_n)$$

où τ est la bijection qui permute seulement i et j ($\tau(i) = j$ et $\tau(j) = i$ et $\tau(k) = k$ pour tout $k \neq i$ et $k \neq j$.

2. On dit que f est antisymétrique si elle est antisymétrique par rapport à tous les couples (x_i, x_j) $i \neq j$.

Soit p une permutation de $\{1, 2, ..., n\}$, Posons

$$V_n = \prod_{1 \le i < j \le n} (j - i)$$

Ce produit est un nombre strictement positif.

$$V_n = (n-1)!(n-2)!...3!2!$$

On pose de même

$$p(V_n) = \prod_{1 \le i < j \le n} (p(j) - p(i))$$

Exemple 4.2.3. La permutation (en deuxième ligne on a mis les images p(i)):

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$V_4 = 3!2! = 6.2 = 12$$

$$p(V_4) = \prod_{1 \le i < j \le 4} (p(j) - p(i))$$

$$p(V_4) = (p(2) - p(1)) (p(3) - p(2))(p(3) - p(1))(p(4) - p(3))(p(4) - p(2))(p(4) - p(1))$$

= (3-2)(4-3)(4-2)(1-4)(1-3)(1-2) = -12

Exemple 4.2.4. La permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}$$

$$p(V_4) = (p(2) - p(1)) (p(3) - p(2))(p(3) - p(1))(p(4) - p(3))(p(4) - p(2))(p(4) - p(1))$$

$$= (-1)(2)(1)(1)(3)(2) = -12$$

Exemple 4.2.5. La permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{pmatrix}$$

$$p(V_4) = (p(2) - p(1)) (p(3) - p(2))(p(3) - p(1))(p(4) - p(3))(p(4) - p(2))(p(4) - p(1))$$

$$= (-1)(2)(3)(-1)(2)(1) = 12$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix} o \begin{pmatrix}
2 & 1 & 3 & 4 \\
2 & 3 & 1 & 4
\end{pmatrix} o \begin{pmatrix}
2 & 3 & 1 & 4 \\
2 & 3 & 4 & 1
\end{pmatrix}$$

Définition 4.2.6. Pour toute permutation de l'ensemble $\{1, 2, ..., n\}$ on a $p(V_n) = \varepsilon(p)V_n$ où $\varepsilon(p) = \pm 1$ On appelle signature de la permutation p ce nombre $\varepsilon(p)$.

Si $\varepsilon(p) = 1$ on dit que la permutation est paire.

Si $\varepsilon(p) = -1$ on dit que la permutation est impaire.

On aura donc:

$$f(x_{p(1)}, x_{p(2)}, ..., x_{p(i)}, ..., x_{p(n)}) = \varepsilon(p) f(x_1, x_2, ..., x_i, ..., x_n)$$

$$A = \begin{pmatrix} 1 & 2 & -3 & -4 & a \\ 2 & 3 & b & 4 & 1 \\ 1 & c & 1 & -3 & 4 \\ 2 & 3 & 1 & d & 4 \\ e & -5 & 1 & 3 & 5 \end{pmatrix}$$

$$det(A) = \dots + \dots - \dots + \varepsilon abcde + \dots$$

Calculer ε .

$$A = \begin{pmatrix} 1 & 2 & -3 & -4 & a \\ b & 3 & 2 & 4 & 1 \\ 1 & c & 1 & -3 & 4 \\ 2 & 3 & d & 2 & 1 \\ 3 & -5 & 1 & e & 5 \end{pmatrix}$$

$$det(A) = \dots + \dots - \dots + \varepsilon abcde + \dots$$

Calculer ε .

$$A = \begin{pmatrix} 1 & 2 & a & -4 & 2 \\ b & 3 & 2 & 4 & 1 \\ 1 & c & 1 & -3 & 4 \\ 2 & 3 & 1 & 2 & d \\ 3 & -5 & 1 & e & 5 \end{pmatrix}$$

$$det(A) = \ldots + \ldots - \ldots + \varepsilon abcde + \ldots$$

Calculer ε .

$$A = \begin{pmatrix} 1 & 2 & a & -4 & 2 \\ b & 3 & 2 & 4 & 1 \\ 1 & c & 1 & -3 & 4 \\ 2 & 3 & 1 & 2 & d \\ 3 & -5 & 1 & 5 & e \end{pmatrix}$$

$$det(A) = \ldots + \ldots - \ldots + \varepsilon abcde + \ldots$$

Calculer ε .