

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE MATEMÁTICAS

ESTUDIO COMPARATIVO DE TRES DEMOSTRACIONES DEL TEOREMA DE INCONSISTENCIA DE KUNEN.

Por:

Jhonny Lanzuisi Berrizbeitia

Realizado con la asesoría de: Jesús Nieto Martínez

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Licenciatura en Matemáticas Puras

LISTA DE SÍMBOLOS

En la lista siguiente, ${\cal C}$ es un conjunto.

Símbolo	Significado
$\mathcal{P}(C)$	Conjunto de partes.
$\sup(C)$	Supremo, es decir, $\bigcup C$.
cf C	Cofinalidad

LISTA DE ABREVIATURAS

Abreviatura	Significado
ZF	Teoría de conjuntos de Zermelo-Fraenkel.
AC	Axioma de elección.
ZFC	ZF al añadir AC.
NBG	Teoría de conjuntos de Von Neumann, Bernays y Gödel.
CH	Hipótesis del continuo: $2^{\aleph_0} = \aleph_1$.
c. n. a.	Cerrado no acotado.

ÍNDICE GENERAL

1. Nociones básicas			1
	1.1.	Filtros	1
	1.2.	Conjuntos Estacionarios	2
	1.3.	Teoría de Modelos	5
	1.4.	Inmersiones Elementales	6
	1.5.	Ultrapotencias	7

CAPÍTULO 1

NOCIONES BÁSICAS

Este capítulo establece varios conceptos básicos que serán necesarios más adelante. Las nociones de filtro, ultrafiltro y filtro κ -completo junto con los conjuntos no acotados y estacionarios componen las definiciones de conjuntos más elementales que harán falta. Luego, un rápido repaso de la teoría de modelos permitirá abordar las inmersiones elementales, que son una pieza central del teorema de Kunen.

Es bien sabido que existen diversos sistemas axiomáticos con los cuales se puede desarrollar la teoría de conjuntos. En todo este texto, se usará el de Zermelo-Fraenkel con el axioma de elección, tal como aparece en cualquiera de las referencias estándar [1, 2]. Más aún, se asume familiaridad con las nociones elementales de la teoría de conjuntos y de la lógica de primer orden.

1.1 Filtros

Esta sección se ocupa de dar las definiciones básicas de filtros, que serán necesarias a lo largo del texto. Los filtros caracterizan a conjuntos "grandes" dentro de un conjunto dado C.

Definición 1.1. Sea C un conjunto no vacío. Un conjunto $F \subset \mathcal{P}(C)$ es un filtro si se cumplen las siguientes condiciones:

- a) $C \in F y \emptyset \notin F$.
- b) Si $X, Y \in F$ entonces $X \cap Y \in F$.
- c) Si $X, Y \subset C, X \in F$ y $X \subset Y$ entonces $Y \in F$.

Definición 1.2. Sea F un filtro sobre C. F es ultrafiltro si, para todo $X \subset C$, se tiene que $X \in F$ o $X - S \in F$.

Una caracterización para ultrafiltros viene dada por la propiedad de maximalidad:

TEOREMA 1.1. Sea F un filtro sobre C. F es ultrafiltro si, y solo si, es maximal.

La siguiente definición es central para la teoría de cardinales medibles.

Definición 1.3. Sea κ un cardinal regular y F un filtro sobre C. F es κ -completo siempre que dada una familia de conjuntos $\{X_{\alpha} \in F \mid \alpha < \kappa\}$, se tiene que

$$\bigcap X_{\alpha} \in F$$
.

Un ejemplo que une los conceptos tratados hasta ahora es, como ya se mencionó, la definición de cardinal medible.

Definición 1.4. Sea $\kappa > \omega$ un cardinal. κ es medible si existe un ultrafiltro κ -completo sobre κ .

1.2 Conjuntos Estacionarios

El principal objetivo de esta sección es establecer un teorema de Solovay, acerca de particiones con conjuntos estacionarios, usando el teorema 1.3 de Fodor.

Sea C un conjunto y $X \subset C$, diremos que X es no acotado en C si sup(X) = C. Si C es además un conjunto de ordinales, un ordinal límite α es punto límite de C si sup $(C \cap \alpha) = \alpha$.

Definición 1.5. Sea κ un cardinal regular no numerable. Un conjunto $C \subset \kappa$ es cerrado no acotado (c. n. a.) si C es no acotado en κ y contiene a todos sus puntos límites menores que κ . Un conjunto $S \subset \kappa$ es estacionario si para cada conjunto c. n. a. $C \subset \kappa$ se tiene $S \cap C \neq \emptyset$.

Será de utilidad saber el comportamiento de los conjuntos c. n. a. bajo intersecciones. Para este fin, definimos, dada $\langle X_{\alpha} \mid \alpha < \kappa \rangle$ una sucesión de subconjuntos de κ , la intersección diagonal de X_{α} como:

$$\underset{\alpha < \kappa}{\triangle} X_{\alpha} = \left\{ \epsilon < \kappa \mid \epsilon \in \bigcap_{\alpha < \epsilon} X_{\alpha} \right\}.$$

TEOREMA 1.2. Sea κ un cardinal regular no numerable y $\{C_{\alpha}\}_{\alpha<\kappa}$ una familia de c. n. a. en κ , entonces:

- a) $C_{\alpha} \cap C_{\beta}$ es c. n. a. $(\alpha, \beta < \kappa)$.
- b) $\bigcap_{\alpha \le \kappa} C_{\alpha}$ es c. n. a.
- c) $\triangle_{\alpha < \kappa} C_{\alpha}$ es c. n. a.

Demostración. Veamos cada parte por separado.

a) Es claro que $C \cap D$ es cerrado. Veamos que es no acotado. Sea $\alpha < \kappa$. Dado que C es no acotado, existe $\alpha_1 \in C$ tal que $\alpha_1 > \alpha$. De la misma forma, existe $\alpha_2 \in D$ tal que $\alpha_2 > \alpha_1$. Podemos seguir con este proceso para obtener una sucesión creciente:

$$\alpha < \alpha_1 < \alpha_2 < \dots$$

Sea β el límite de la sucesión de arriba. Entonces $\beta < \kappa$ y $\beta \in C$ y $\beta \in D$.

b) La demostración será por inducción. Sea $\lambda < \kappa$ y $\langle C_\alpha \mid \alpha < \lambda \rangle$ una sucesión de conjuntos c. n. a. en κ . Para los ordinales sucesores, podemos simplemente aplicar el punto a). Si λ es ordinal límite, asumiremos que el teorema es cierto para cada $\alpha < \lambda$. Podemos ahora sustituir cada C_α por $\bigcap_{\xi \leq \alpha} C_\xi$ y obtenemos una sucesión decreciente con la misma intersección. Entonces a partir de ahora:

$$C_0 \subset C_1 \subset C_2 \subset \dots$$

serán c. n. a. y $C = \bigcap_{\alpha < \lambda} C_{\alpha}$. Por la misma razón que el punto a), no es difícil ver que C es cerrado. Veamos que es no acotado. Sea $\alpha < \kappa$, construiremos una sucesión de la siguiente forma: sea $\beta_0 \in C_0$ mayor que α , y para cada $\xi < \lambda$ se tomará $\beta_{\xi} \in C_{\xi}$ tal que $\beta_{\xi} > \sup \{\beta_{\nu} \mid \nu < \xi\}$. Dado que κ es regular y $\lambda < \kappa$, la sucesión que se acaba de describir existe y su límite β es menor que κ . Para cada $\eta < \lambda$, β es límite de una sucesión $\langle \beta_{\xi} \mid \eta \leq \xi < \lambda \rangle$ en C_{η} , por lo que $\beta \in C_{\eta}$ y esto implica $\beta \in C$.

c) Llamemos D a $\triangle_{\alpha<\kappa}$ C_α . Veamos primero que D es cerrado. Sea entonces $\lambda<\kappa$ tal que $D\cap\lambda$ no está acotado en λ , esto es, que λ es punto límite de D. Tomemos $\beta\in\lambda$, entonces existe $\epsilon\in\lambda\cap D$ tal que $\beta<\epsilon$ pues $D\cap\lambda$ es no acotado. Como $\epsilon\in D$, existe C_α , con $\alpha<\epsilon<\lambda$, al que ϵ pertenece. Pero entonces, lo que hemos demostrado es que siempre que tomemos $\beta\in\lambda$ existe $\epsilon\in C_\alpha\cap\lambda$ que esta por encima de β o, equivalentemente, que $C_\alpha\cap\lambda$ es no acotado en λ . Al ser C_α cerrado tenemos $\lambda\in C_\alpha$ y esto implica $\lambda\in D$. Luego D es cerrado.

Solo falta ver que D es no acotado en κ . Para esto notemos que, debido al punto b), se puede reemplazar cada C_{α} por $\bigcap_{\xi \leq \alpha} C_{\xi}$ y obtenemos una sucesión decreciente $C_0 \subset C_1 \subset \ldots$ que no cambia el valor de D. Sea $\gamma \in \kappa$. Como cada C_{α} es no acotado en κ , podemos construir una sucesión $\langle \beta_n \mid n \in \omega \rangle$ de la siguiente forma: tomamos $\beta_0 \in C_0$ mayor que γ , luego dado β_n , tomamos $\beta_{n+1} \in C_{\beta_n}$ mayor que β_n . Llamemos $\beta = \lim_n \beta_n$ y tomemos $\xi < \beta$. Entonces existe $\beta_n > \xi$ y cada β_k con k > n pertenece a C_{β_n} , pues los C_{α} están encajados, por lo que $\beta \in C_{\beta_n}$ y $\beta \in C_{\xi}$. Pero esto muestra que $\beta \in D$ y que D es no acotado.

Definición 1.6. Una función de ordinales f en un conjunto S es regresiva, si $f(\alpha) < \alpha$ para todo $\alpha \in S$.

TEOREMA 1.3 (Fodor). Sea f una función regresiva en un conjunto estacionario $E \subset \kappa$. Entonces existe $\alpha \in \kappa$ tal que $f^{-1}(\{\alpha\})$ es estacionario.

Demostración. Supongamos, en busca de una contradicción, que $f^{-1}(\{\alpha\})$ no es estacionario para todo $\alpha < \kappa$. Entonces existen conjuntos c. n. a. C_α tales que $C_\alpha \cap f^{-1}(\{\alpha\}) = \emptyset$, esto es, que $f(\gamma) \neq \alpha$ para todo $\gamma \in E \cap C_\alpha$. Si $D = \triangle_{\alpha < \kappa} C_\alpha$, por el teorema 1.2, D es c. n. a. en κ . Pero entonces $D \cap E \neq \emptyset$ y podemos tomar $\gamma \in D \cap E$, luego, $f(\gamma) \neq \alpha$ para todo $\alpha < \gamma$ lo que implica $f(\gamma) \geq \gamma$ y esto es una contradicción.

El siguiente es un teorema auxiliar, que será de utilidad para el teorema 1.5.

TEOREMA 1.4. Sea $E \subset \kappa$ un conjunto estacionario en κ y supongamos que todo ordinal perteneciente a E es regular no numerable. Entonces el conjunto

$$T = \{ \alpha \in E \mid E \cap \alpha \text{ no es un subconjunto estacionario de } \alpha \}$$

es estacionario en κ .

Demostración. Veamos que T intersecta a todos los c. n. a. de κ . Sea C c. n. a. en κ y C' el subconjunto de los puntos límite de C. Tenemos que C' también es c. n. a. en κ por lo que podemos tomar el menor $\alpha \in C' \cap E$. Puesto que α es regular y punto límite de C, $C_{\alpha} \cap \alpha$ es un subconjunto c. n. a. de α , como también lo es $C' \cap \alpha$. Dado que α es el elemento más pequeño de $C' \cap E$, $C' \cap E \cap \alpha = \emptyset$. Esto último dice que $E \cap \alpha$ es no estacionario en α , y $\alpha \in T \cap C$.

TEOREMA 1.5 (Solovay). Sea κ un cardinal regular no numerable. Entonces cada subconjunto estacionario de κ es la unión disjunta de κ subconjuntos estacionarios.

Demostración. Sea E un subconjunto estacionario de κ . Por el teorema 1.4, asumiremos que el conjunto W consistente de todos los $\alpha \in E$ tales que α es cardinal regular y $E \cap \alpha$ no es estacionario en α , es estacionario en κ . Existe entonces un conjunto c. n. a. $C_{\alpha} \subset \alpha$ tal que $E \cap C_{\alpha} = \emptyset$, pero $W \subset E$ por lo que $C_{\alpha} \cap W = \emptyset$. Sea $\langle a_{\xi}^{\alpha} \mid \xi < \alpha \rangle$ una enumeración creciente de C_{α} . Se tiene entonces que lím $_{\xi \to \alpha} a_{\xi}^{\alpha} = \alpha$ y $a_{\xi}^{\alpha} \notin W$ para todo ξ , α .

Veamos, en primer lugar, que existe ξ tal que, para todo $\eta < \kappa$, el conjunto:

$$\left\{\alpha \in W \mid a_{\xi}^{\alpha} \ge \eta\right\} \tag{1.1}$$

es estacionario. Si este no fuese el caso, para cada ξ tendríamos un $\eta(\xi)$ y un conjunto c. n. a. C_{ξ} , tal que $a_{\xi}^{\alpha} < \eta(\xi)$ para todo $\alpha \in W \cap C_{\xi}$, siempre que a_{ξ}^{α} este definida. Sea C la intersección diagonal de los C_{ξ} . Entonces si α es un elemento de $W \cap C$, se tiene que $a_{\xi}^{\alpha} < \eta(\xi)$ para todo $\xi < \alpha$. Consideremos ahora el conjunto D de los $\gamma \in C$ tales que $\eta(\xi) < \gamma$ para todo $\xi < \gamma$, este conjunto es c. n. a. y $W \cap D$ es estacionario. Sean $\alpha < \gamma$ dos ordinales en $W \cap D$, si $\xi < \gamma$ entonces $a_{\xi}^{\alpha} < \eta(\xi) < \gamma$, lo cual implica que $a_{\gamma}^{\alpha} = \gamma$. Pero esto es una contradicción puesto que $\gamma \in W$ y $a_{\gamma}^{\alpha} \notin W$.

Tenemos ahora ξ tal que (1.1) es estacionario. Sea f una función en W definida por $f(\alpha) = a_{\xi}^{\alpha}$. Por la definición de a_{ξ}^{α} la función f es regresiva, por lo que para cada $\eta < \kappa$ el teorema 1.3 de Fodor nos da un conjunto estacionario E_{η} de (1.1) y un $\gamma_{\eta} \geq \eta$ que es testigo de que E_{η} sea estacionario. Ahora, si $\gamma_{\eta} \neq \gamma_{\eta'}$ entonces $E_{\eta} \cap E_{\eta'} = \emptyset$ y, puesto que κ es regular, se tiene también $|\{E_{\eta} \mid \eta < \kappa\}| = |\{\gamma_{\eta} \mid \eta < \kappa\}| = \kappa$.

1.3 Teoría de Modelos

La teoría de modelos es un área relativamente joven [3, pág. 3]. No obstante, su desarrollo ha sido crucial para la teoría de conjuntos y los cardinales grandes [4, pág. xv].

Se quiere definir lo que es un modelo para un lenguaje formal \mathcal{L} . Un lenguaje \mathcal{L} es un conjunto de símbolos relacionales, funcionales y constantes. Los símbolos relacionales y funcionales pueden tener cualquier cantidad finita de argumentos, lo que se conoce usualmente como su aridad, excepto cero.

Dado un conjunto cualquiera A, interesa darle significado a los símbolos de un lenguaje \mathcal{L} en A. Esto se logra a través de una interpretación, esto es, una correspondencia que asigna a cada relación n-aria P una relación $R \subset A^n$, a cada función m-aria una función $G \colon A^m \to A$ y a cada constante c un elemento $x \in A$.

Definición 1.7. Sea L un lenguaje formal. Un modelo A para L se define como,

$$\mathfrak{A} = \langle A, \mathfrak{I} \rangle.$$

Donde A, que es un conjunto cualquiera, es el universo de $\mathfrak A$ y $\mathfrak I$ es una interpretación de los símbolos de $\mathcal L$ en A.

Dada una sentencia ϕ de un lenguaje \mathcal{L} y \mathfrak{A} un modelo para \mathcal{L} , se escribirá $\mathfrak{A} \models \phi$ si la fórmula ϕ se satisface en \mathfrak{A} . Intuitivamente, la relación \models quiere decir que ϕ es verdadera en el modelo. Una definición rigurosa de \models es posible, y requiere inducción sobre la complejidad de ϕ (véase [3, §1.3] ó [2, §12]).

Dados dos modelos \mathfrak{A} , \mathfrak{B} se dirá que \mathfrak{A} es elementalmente equivalente a \mathfrak{B} , en símbolos $\mathfrak{A} \equiv \mathfrak{B}$, si toda sentencia que es verdadera en \mathfrak{A} lo es también en \mathfrak{B} y viceversa.

La definición 1.7 esta dada en forma general. Normalmente interesarán modelos del lenguaje de la teoría de conjuntos, denotado \mathcal{L}_{\in} , el cual consiste de la lógica de primer orden con la relación de igualdad y el símbolo binario \in . Los \in -modelos de la forma $\langle A, \in \rangle$, a los que denotaremos solamente por A, son los modelos de \mathcal{L}_{\in} con los que se trabajará la mayoría del tiempo. Existe una clase de \in -modelos de gran importancia, que se definen a continuación.

DEFINICIÓN 1.8. Un modelo interno de ZF es un ∈-modelo transitivo donde se satisfacen los axiomas y que contiene a los ordinales.

1.4 Inmersiones Elementales

El objetivo de este capítulo es establecer los resultados básicos sobre las inmersiones elementales de modelos internos de ZFC.

Definición 1.9. Sean $\mathfrak{M} = \langle M, \ldots \rangle$ y $\mathfrak{N} = \langle N, \ldots \rangle$ dos modelos de un lenguaje \mathcal{L} . Una función inyectiva $f: M \to N$ es una inmersión elemental, denotado por $f: \mathfrak{M} \prec \mathfrak{N}$, si, y solo si, para cualquier fórmula n-aria ϕ de \mathcal{L} y $x_1, \ldots, x_n \in M$,

$$\mathfrak{M} \models \phi(x_1,\ldots,x_n) \iff \mathfrak{N} \models \phi(f(x_1),\ldots,f(x_n)).$$

Si f es la función identidad, diremos que $\mathfrak M$ es una subestructura elemental de $\mathfrak N$ y se denotará por $\mathfrak M \prec \mathfrak N$.

Hace falta una pequeña digresión para tratar el caso de inmersiones elementales entre clases propias transitivas. Es sabido que en ZFC no es posible formalizar el concepto de inmersión elemental para clases propias, pues lo prohíbe el teorema de la indefinibilidad de la verdad de Tarski. A partir de ahora la noción de inmersión elemental se trabajará de manera informal, pero sin olvidar que, en los contextos que será utilizada, puede ser formalizada en ZFC [4, pág. 45-46].

De la definición de inmersión elemental se sigue que estas preservan todas las operaciones conjuntistas que son absolutas para modelos transitivos. En particular, las inmersiones envían ordinales en

ordinales y preservan su orden.

TEOREMA 1.6. Sean M y N modelos internos de ZFC y $j: M \prec N$. Si j no es la función identidad, existe un ordinal δ tal que $j(\delta) > \delta$.

Demostración. Primero, $j(\delta)$ nunca es estrictamente menor que δ : si este fuese el caso, podríamos tomar el menor δ con dicha propiedad y puesto que $j(\delta) < \delta \in M$, y M transitivo, se tendría $j(\delta) \in M$ y al considerar ahora $j(j(\delta))$ se llega a la conclusión $j(j(\delta)) < j(\delta)$, pues las inmersiones preservan el orden.

Sea $x \in M$ y $b = \operatorname{tc}(\{x\})$ su clausura transitiva en V. Supongamos que $j(\delta) = \delta$ para todo ordinal $\delta \in M$. Si $x \in M$ es un conjunto de ordinales entonces j(x) = x. Dado que $M \models AC$, existe un ordinal γ y una biyección $e \in M$ que va de γ sobre b. Sea $E \in M$ la relación binaria sobre γ definida de la siguiente forma,

$$\langle \alpha, \beta \rangle \in E$$
 si, y solo si, $e(\alpha) \in e(\beta)$.

Se puede identificar a E con un conjunto de ordinales de la forma usual para obtener j(E)=E. Puesto que todo subconjunto no vacío de γ tiene un elemento E-minimal en V, se sigue que esto también ocurre en M y N y que E esta bien fundada en ambos conjuntos. Se puede entonces usar el teorema de colapso de Mostowski para $\langle \gamma, E \rangle$ tanto en M como en N para obtener un isomorfismo entre $\langle \gamma, E \rangle$ y $\langle M, \in \rangle$ donde M es transitivo pero, como el colapso transitivo es único, debe ocurrir b=M.

Se sigue del párrafo anterior que j(b) = b, en efecto, la elementaridad de j junto con j(E) = E y el hecho de que $\langle b, \in \rangle$ es el colapso transitivo único de $\langle \gamma, E \rangle$ tanto en M como en N, obligan a que j(b) = b. Pero x es definible como el elemento de mayor rango de b, por lo que también j(x) = x. Es decir, j es la función identidad.

A partir de ahora se considerarán solamente inmersiones elementales que no sean la identidad entre modelos internos de ZFC. Esto permite dar un nombre al δ del teorema 1.6.

Definición 1.10. Sea $j: M \to N$ una inmersión elemental. El punto crítico de j es el menor ordinal α tal que $j(\alpha) > \alpha$.

1.5 Ultrapotencias

Sea I un conjunto no vacío, U un ultrafiltro sobre I y, para cada $i \in I$, sean A_i conjuntos no vacíos. Dadas dos funciones f y g pertenecientes al producto cartesiano de los A_i , se define la relación de

U-equivalencia:

$$f =_U g$$
 si, y solo si, $\{i \in I \mid f(i) = g(i)\} \in U$.

La relación anterior es una relación de equivalencia [3, Proposición 4.1.5], por lo que podemos considerar la clase de equivalencia de una función dada f:

$$f_U = \left\{ g \in \prod_{i \in I} A_i \mid g =_U f \right\},\,$$

el ultraproducto de los A_i se define como el conjunto de todas las f_U , y lo denotamos por $\prod_U A_i$. En el caso de que los A_i sean todos iguales, digamos que a un conjunto A, el ultraproducto se conoce como ultrapotencia y se denota, naturalmente, por $\prod_U A$.

Si en la construcción anterior, para cada $i \in I$, se consideran modelos \mathfrak{A}_i entonces se puede construir un modelo $\prod_U \mathfrak{A}_i$, al que llamaremos igualmente ultraproducto o ultrapotencia según sea el caso, haciendo de $\prod_U A_i$ el universo del modelo y dando una interpretación apropiada (es decir, definida en relación al ultrafiltro) a las relaciones, funciones n-arias y las constantes [3, Definición 4.1.6], donde lo importante es que dicho modelo está bien definido [3, Proposición 4.1.7]. Conviene, sin embargo, enunciar el teorema fundamental de los ultraproductos, pues da la forma en la que podemos interpretar la satisfacción de fórmulas en estas estructuras.

TEOREMA 1.7. Sea $\prod_U \mathfrak{A}_i$ un ultraproducto e I su conjunto de índices. Dada cualquier fórmula $\phi(x_1, \ldots, x_n)$ del lenguaje y $(f_1)_U, \ldots, (f_n)_U \in \prod_{i \in I} \mathfrak{A}_i$,

$$\prod_{U} \mathfrak{A}_{i} \models \phi((f_{1})_{U}, \dots, (f_{n})_{U}) \quad \text{si, y solo si,} \quad \left\{ i \in I \mid \mathfrak{A}_{i} \models \phi(f_{1}(i), \dots, f_{n}(i)) \right\} \in U.$$

Como es usual para esta clase de teoremas en la teoría de modelos, el resultado anterior se demuestra haciendo inducción sobre la complejidad de ϕ [3, Teorema 4.1.9]. El teorema 1.7 tiene varios corolarios importantes, de mayor utilidad será el hecho de que existe una inmersión elemental $j: \mathfrak{A} \prec \prod_U \mathfrak{A}$ [3, Corolario 4.1.13], llamada normalmente inmersión canónica. En efecto, se define $j(\alpha)$ para $\alpha \in \mathfrak{A}$ como la clase de equivalencia de la función constantemente igual a α .

La primera dificultad para extender el concepto de ultrapotencia al universo proviene de que, dada $f: I \to V$ y U ultrafiltro sobre I, la clase de equivalencia f_U como se definió anteriormente es una clase propia. Esto motiva un pequeño ajuste a la definición:

$$(f)_U^0 = \{ g \in f_U \mid \forall h \ (h \in f_U \implies \operatorname{rank}(g) \le \operatorname{rank}(h)) \},$$

es decir, por la clase de f se entiende ahora el conjunto de las funciones de f_U con rango mínimo. Entonces, si α es el ordinal más pequeño para el que existe una función de rango α en $(f)_U^0$ esta clase de equivalencia estará contenida en $V_{\alpha+1}$ y será por tanto un conjunto. Se puede entonces definir el universo del modelo de ultraproducto que se busca como el conjunto de todas las $(f)_U^0$. Si a este universo le añadimos la relación \in_U dada por:

$$(g)_U^0 \in_U (f)_U^0$$
 si, y solo si, $\{i \in I \mid g(i) \in f(i)\} \in U$,

se obtiene un modelo denotado por Ult(V, U).

Vale la pena destacar que el teorema 1.7 sigue aplicando para Ult(V, U) con la acotación de que, puesto que ahora está involucrada la relación de satisfacción para clases propias, debe ser interpretado como un esquema infinito de teoremas.

La última herramienta teórica relacionada a ultrapotencias que será necesaria viene dada por los siguiente dos teoremas. Primero, una condición extra sobre U da como resultado modelos bien fundados y, además, la relación \in_U es tipo-conjunto.

TEOREMA 1.8. Si U es ω_1 -completo entonces \in_U es una relación bien fundada.

Demostración. Para la implicación directa, sea $\langle (f_n)_U^0 \mid n < \omega \rangle$ tal que $(f_{n+1})_U^0 \in_U (f_n)_U^0$ para $n < \omega$, entonces $\bigcap_n \left\{ i \in I \mid f_{n+1}(i) \in f_n(i) \right\} \neq \emptyset$ da una sucesión infinita descendiente de \in .

Ahora, sean $\{X_n \mid n \in \omega\}$ subconjuntos de U tales que $\bigcap_{n < \omega} X_n \notin U$ entonces se definen $g_k \colon I \to V$ para $k < \omega$ de la siguiente forma:

$$g_k(i) = \begin{cases} n - k & \text{si } i \in (\bigcap_{m < n} X_m) - X_n \text{ y } n \ge k, \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Entonces,

$$\{i \in S \mid g_{k+1}(i) \in g_k(i)\} \supseteq \bigcap_{m \le k} X_m - \bigcap_{n \in \omega} X_n \in U,$$

para $k \in \omega$ y la sucesión $\langle (g_n)_U^0 \mid n \in \omega \rangle$ es testigo de que \in_U no esta bien fundada.

TEOREMA 1.9. La relación $\in U$ es tipo-conjunto.

Demostración. Sean $(g)_U^0$, $(f)_U^0 \in \text{Ult}(U, V)$ tales que $(g)_U^0 \in U$ $(f)_U^0$ y $g_0 \in (g)_U^0$. Se define $g_1: S \to V$ mediante:

$$g_1(i) = \begin{cases} g_0(i) & \text{si } g_0(i) \in f(i), \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Entonces $g_1 \in (g)_U^0$ y rank $(g_1) \leq \operatorname{rank}(f)$. Luego, rank $((g)_U^0) \leq \operatorname{rank}(f) + 1$, y se tiene que $\{(g)_U^0 \mid (g)_U^0 \in U(f)_U^0\} \subseteq V_{\operatorname{rank}(f)+2}$ es un conjunto.

Se sigue de los teoremas 1.8 y 1.9, usando el teorema de colapso de Mostowski, que si U es ω_1 completo existe una clase transitiva M_U y un isomorfismo π_U tales que:

$$\pi_U \colon \operatorname{Ult}(V, U) \to \langle M_U, \in \rangle,$$

además, debido al teorema fundamental de los ultraproductos, M_U es un modelo interno de ZFC.

$$j_U(x) = [f_x]_U.$$

La función j_U es una inmersión de V en M_U , debido al teorema fundamental. Lo anterior se resumirá de la siguiente forma:

$$j_U \colon V \prec M_U \cong \text{Ult}(U, V).$$

REFERENCIAS

- [1] K. Kunen, "Set theory", Rev. ed, College Publ, London, 402, (2013)
- [2] T. J. Jech, "Set theory", The 3rd millennium ed., Springer, Berlin; New York, 769, (2003)
- [3] C. C. Chang y H. J. Keisler, "Model theory", Dover ed, Dover Publications, Mineola, N.Y, 650, (2012)
- [4] A. Kanamori, "The higher infinite: large cardinals in set theory from their beginnings", 2nd ed, Springer, Berlin, 536, (2009)