Inertial Motion Tracking using IMUs

Inertial Measurement Unit (IMU)

Accelerometer

Gyroscope

Magnetometer

Inertial Measurement Unit (IMU)

Inertial Measurement Unit (IMU)

Wide applications in motion tracking

Lot of work in inertial motion tracking

Lot of work in inertial motion tracking

Open problem in mobile computing

No one has the solution ... but people making progress

Lot of work in inertial motion tracking

Open problem in mobile computing

No one has the solution ... but people making progress Let's understand what's the real difficulty here ...

One Prerequisite Slide: Rotation Matrices

Ax=b

Rotation is a function

Rot
$$_{90^{\circ}}($$
 $X: \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $X: \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Mathematically, rotation is a matrix

$$\begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Same for 3D Rotation

MUSE: Our Goal is 3D Localization

Let's Understand the Inputs

Can we solve localization with these inputs?

One possibility is:

But there is one BIG problem: Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

But there is one BIG problem: Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

But there is one BIG problem:

Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

As an analogy

But there is one BIG problem:

Accel. =
$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 is in local reference frame

As an analogy

This makes orientation necessary

• What is 3D orientation? Orientation is the 3D rotation needed to make:

This makes orientation necessary

What is 3D orientation? Orientation is the 3D rotation needed to make:

