ANALISIS DATA

- Pengantar
- Tahapan Analisis data
- Teknik Analisis data
- Parametrik dan Non Parametrik
- Interpretasi Data

PENGANTAR

- Analisis data merupakan salah satu tahapan terpenting dalam proses penelitian.
- Analisis data merupakan proses penyederhanaan data ke dalam bentuk yang lebih mudah dibaca dan dinterpretasikan (Efendi & Manning, 2006
- Analisis data bertujuan untuk menjawab tujuan/ pertanyaan/hipotesis penelitian.
- Analisis data dapat dilakukan secara munual atau dengan bantuan aplikasi Komputer (SPSS)

TAHAPAN ANALISIS DATA

- Persiapan
- Coding data
- Enter data
- Data cleaning
- Analisis Data
- Data Output
- Interpretasi Data

PERSIAPAN

Persiapan dapat dilakukan dengan cara:

- Mengumpulkan dan mengorganisasi kuesioner yang digunakan dalam penelitian
- Mengecek kelengkapan identitas
- Mengecek kelengkapan data
- Mengecek isian data

CODING DATA

Coding Data

- Merupakan suatu proses penyusunan secara sistematis data mentah (data dikuesioner) ke dalam bentuk yg mudah dibaca oleh program komputer (Prasetyo & Jannah, 2005)\
- coding data berguna untuk mempermudah dalam memasukkan dan membaca data.
- Untuk mengkoding data harus tahu dan faham cara dalam mengkoding data, jenis data dan skoring data

TINGKATAN DATA

Kriteria	Nominal	Ordinal	Interval	Rasio
Ciri	Kategori, penggolongan	Tingkatan, urutan, tidak diketahui jaraknya	Tingkatan, jaraknya sama	Tingkatan, jaraknya sama
Nilai	Tidak ada nilai	Tidak ada nol mutlak	Tidak ada nol mutlak	ada nol mutlak
contoh	SSE, suku Kaya: 1 Miskin: 0	Jabatan, juara 1,2,3	Suhu, IQ 34C	Berat, tinggi 10 kg 1, 67 m
Pengukuran	mode	median	Mean, SD	Mean, SD

CODING DATA

Nama	=	[1]
 Jenis kelamin 	=	[2]
• Umur	=	[3[
 Pendidikan 	=	(4)

Saya tepat waktu ketika datang ke kantor

a. Selalu [4]

b. Sering [3]

c. Jarang [2]

d. Tidak pernah [1]

ENTER DATA

- Enter data adalah memasukkan data yang telah dicoding ke dalam mesin pengolahan data.
- Memastikan bahwa data yang dimasukkan ke mesin pengolah data telah sesuai dengan sebenarnya
- Mengecek kembali data apakah sudah sesuai dengan kode yang telah diberikan

DATA CLEANING

- Perlu memeriksa ketelitian dan akuratan data.
 Caranya:
- Posible code cleaning melakukan perbaikan akibat dari kesalahan memberikan kode.
- Contoh: jenis kelamin pria 1; wanita 2: diisi 3
- Contigency cleaning kesalahan akibat ketidak akuratan dalam menjwaab pertanyaan dalam kuesioner.
- Modifikasi: melakukan pengkodean ulang terhadap data.

ANALISIS DATA

- Analisis Deskriptif: analisis yang bertujuan untuk menggambarkan karakteristik data (mean, frekuensi, dll) berdasarkan kategori tertentu (statistik deskriptif).
- Analisis Inferensial: analisis yang betujuan untuk membuat/menarik keputusan, kesimpulan pada sampel, yang digunakan untuk digeneralisir ke populasi (statistik inferensial).

ANALISIS DESKRIPTIF

Distribusi ferkuensi adalah susunan data berdasarkan kategori tertentu.

1. Ukuran Pemusatan (central tendensi).

Suatu ukuran untuk melihat seberapa kecenderungan data memusat pada nilai tertentu. Ukuran ini terdiri dari:

Modus (Mode)

Data yang memiliki **frekuensi terbanyak** dalam suatu kumpulan data. Modus cocok untuk data **nominal**

ANALISIS DESKRIPTIF

Rata-rata (Mean)

Data yang diperoleh melalui penjumlah nilai seluruh data kemudian dibagi dengan banyaknya data. Mean cocok untuk data interval dan rasio

Median

Nilai yang terletak di tengah kumpulan data yang diurut dari nilai terkecil sampai ke terbesar/ sebaliknya. Median cocok untuk data minimal ordinal.

CONTOH

NILAI UTS PSIKOLOGI SOSIAL

No	Nilai	Frekuensi	Tot Nilai
1	60	1	60
2	70	1	70
3	80	1	80
4	75	1	75
5	74	1	74
6	78	3	234
7	90	2	180
		10	773

Tentukan:

- a. mean
- b. modus
- c. median

ANALISIS DESKRIPTIF

2. Ukuran Penyebaran (dispersion)

untuk melihat sejauh mana sebaran/ penyimpangan data dari nilai pusatnya. Dispersion terdiri dari:

Range (Jangkauan)

Range adalah selisish nilai maximun dengan nilai minimum dalam kumpulan data.

4 6 8 10 24

ANALISIS DESKRIPTIF

Variance (Varians)

varians adalah merupakan jumlah kuadrat dari selisih nilai data pengamatan dengan dibagi banyak data, V= SD²

Standar Deviasi (simpangan baku)

Standar deviasi adalah akar kuadrat dari varians. (SD= $V\Sigma X^2$ - M^2)

CONTOH

NILAI UTS PSIKOLOGI SOSIAL

No	Nilai	Umur
1	60	20
2	70	19
3	80	19
4	75	18
5	74	20
6	78	20
7	90	19
8	90	21
9	78	20
10	78	19

Tentukan:

- a. range
- b. Standar deviasi
- c. varians

CONTOH

Statistics

NILAI

Valid N 10 Missing 10 Mean 77,30 Median 78,00 Mode 78 Std. Deviation 8,820 Variance 77,789 Range 30 Minimum 60 Maximum 90

Analisis Deskriptif Menggunakan Aplikasi SPSS

GRAFIK

Bar Charts

NILAPie Charts

NILAI

ANALISIS DATA

• Paramatrik: prosedur ini dapat digunakan bila asumsiasumsi parametrik terpenuhi.

Asumsi:

- 1. Data harus berdistribusi normal
- Data minimal interval
- 3. Homogen
- 4. Linear
- 5. Random (dipilih secara acak)
- Non Parametrik: prosedur ini digunakan bila asumsi tersebut tidak terpenuhi/ tanpa menggunakan asumsi statistik

Parametrik:

- kelebihan: kesimpulan yang dihasilkan lebih kuat dan akurat.
 - -Kelemahannya: data harus memenuhui asumsiasumsi parametrik dan jumlah sampel > 30

Non Parametrik:

- -kelemahan: kesimpulan yang dihasilkan lebih lemah dari parametrik
- -Kelebihan: semua data dapat dianalisis dan dapat digunakan pada sampel sedikit

ALUR ANALISIS DATA

Model	Keterangan	Parametri k	Non Parametrik
Korelasi	Dua variabel	Korelasi Pearson	Spearman
Uji Beda	Dua kelompok independen	Uji t independen	U Mann Whitney
	Satu kelompok dgn dua pengukuran	Uji T (paired sample T)	McNemar

Korelasi

No	Koefesien Korelasi	Varaibel yang diukur
1	Produk Momen Pearson	Kedua variabel berskala interval
2	Order Rank Spearmen	Kedua variabel berskala ordinal
3	Poin Serial	Satu dikotomi sebenarnya dan satu
		interval
4	Biserial	Satu dikotomi buatan dan satu interval
5	Koefesien Kontigensi	Kedua variabel berskala nominal

(Usman & Akbar, 2008: 199)

(Parametrik)

KORELASI PEARSON (r)

2. Uji Asumsi

- Normalitas: apakah variabel terdistribusi normal (one-sample Kolmogorov-Smirnov Tes)
- Normal : P> 0,05
- Linearitas: apakah hubungan variabel linear/searah (Regression)
- linear: P < 0,05

APLIKASI SPSS

Uji Normalitas

Analyze----non parametrik test---1 sampel KS

Masukkan variabel ke kotak : test variabel list

Klik: Normal

Ok

Sig > 0.05 normal

Sig < 0.05 Tidak Normal

UJI NORMALITAS

UJI NORMALITAS

One-Sample Kolmogorov-Smirnov Test

		PERSEPSI	KCEMASAN
N		80	80
Normal Parameters ^{a,b}	Mean	10.0750	83.6250
	Std. Deviation	4.44595	10.05476
Most Extreme	Absolute	.130	.046
Differences	Positive	.105	.044
	Negative	130	046
Kolmogorov-Smirnov Z		1.163	.409
Asymp. Sig. (2-tailed)		.134	.996

- a. Test distribution is Normal.
- b. Calculated from data.

Persepsi: skor *Kolmogorov-Smirnov* sebesar z = 1, 163 dengan skor

signifikansi sebesar 0,134 (p> 0,05). : Normal

Kecemasan: z: 0,409 dengan skor signifikansi sebesar 0, 996 (p> 0,05):

Normal

NORMALITAS

Sebaran data Normal: jika bentuk kurva seperi lonceng

UJI LINIERITAS

- Uji linearitas adalah untuk mengetahui apakah data berbentuk garis lurus.
- Linear berarti: kenaikan angka pada variabel X diikuti kenaikan angka pada variabel Y
- Cara I aplikasi SPSS:
- Analyze----Regression- Linear
- Masukkan:
- Variiabel X ke kotak Independen
- Variabel Y ke kotak dependen
- Ok

UJI LINEARITAS

ANOVA

Mod	el	Sum of Squares		lean Squar	F	Sig.
1	Regress	83 ,476	1	683,476	7,954	,008 ^a
	Residual	65,299	38	85,929		
	Total	48,775	39			

a.Predictors: (Constant), kepercayaan terhadap dosen

b.Dependent Variable: Motivasi Belajar

Lihat: Sig 0,008 (P < 0,05) berarti linear

LINEARITAS

Cara II

- Analyze
- Compare mean– means
- Masukkan
- Var independent ke : independent list
- Var dependen: ke dependent list
- Chek list: Tes linearity
- Ok...

OUT PUT TES LINEARITAS

ANOVA Table

		Sum of				
	;	Squares	df M	ean Squai	F	Sig.
Motivasi Be Bejetween	(Combined)	36,742	24	89,031	,737	,755
* kepercaya@moups	Linearity	83,476	1	683,476	5,658	,031
terhadap dosen	Deviation from	53 1, 266 ty	/ 23	63,185	,523	,921
Within Gr	12,033	15	120,802			
Total	48,775	39				

Lihat: Sig 0,031(P < 0,05) berarti linear

PERBEDAAN

Uji Asumsi

- Normalitas: apakah variabel terdistribusi normal (one-sample Kolmogorov-Smirnov Tes)
- Normal: P> 0,05
- Homogenitas (Levene's test): apakah data bersifat homogen:artinya: apakah varins skor pada kedua kelompok/sampel memiliki varians yang sama/ tidak
- P > 0,05: homogen
- P < 0,05 tidak homogen

APLIKASI SPSS

- Analyze
- Compare means----Independent sampel T test
- Masukkan: Var Y ke Kotak Dependent
- Variabel X ke Group (ketik : 1 dan 2)
- Interpretasi
- P > 0,05 : homogen
- P < 0,05 : tidak homogen

UJI HOMOGENITAS

Independent Samples Test

Levene's Test for Equality of Means									
						Moan	Std. Erro	Interva	nfidence I of the rence
	F	Sig.	t	df Si	ig. (2-taile t				Upper
kualitas hid topual varia assumed	nces 3,691	,068	-,386	22	,703	-1,25	3,236	-7,961	5,461
Equal varia not assume			-,386	15,842	,704	-1,25	3,236	-8,116	5,616

Kedua sampel datanya homogen P= 0,068 (> 0,05)

UJI HIPOTESIS

Korelasi Langkah:

- Analyze
- Correlate--bivariate
- Masukkan
- kedua variab

📰 Lat. MP2 UIN - SPSS Data Editor _ |&| ×| File Edit View Data Transform Analyze Graphs Utilities Descriptive Statistics Compare Means kprcyaan motvasi var General Linear Model Mixed Models Correlate Bivariate... Regression Distances... Data Reduction Nonparametric Tests 10 Multiple Response Missing Value Analysis... 73 100 21 rumah 103 19 kos 103 19 rumah 113 81 97 20 kos 101 95 2 20 kos 21 kos 74 20 rumah 21 rumah 101 21 rumah 21 kos 19 kos SPSS Processor is ready

Ok.

HASIL

Correlations

		kepercayaan terhadap dosen	Motivasi Belajar
kepercayaan	Pearson Correlation	1	,416**
terhadap dosen Sig.	Sig. (2-tailed)		,008
	N	40	40
Motivasi Belajar	Pearson Correlation	,416**	1
	Sig. (2-tailed)	,008	.
	N	40	40

^{**.} Correlation is significant at the 0.01 level (2-tailed).

UJI HIPOTESIS

Perbedaan

Langkah:

- Analyze
- Compare mean
- Independent sample T test
- Masukkan variabel Y ke: kotak Tes variabel
- Klik dan pindah variabel X (dikotomi) ke lotak :Grouping Variabel
- Klik Define Variabel
- Masukkan angka (sesuai dengan nilai label)
- Ok

HASIL

Independent Samples Test

	Levene's Test f Equality of Variar				t-test for Equality of Means				
						MearS		nterva	nfidend I of the rence
	F	Sig.	t	dSig	j. (2-ta D €				
Motivasi Eelaja rva assumed	riances 1,144	,291-	1,054	38	,298	-3,35	3,177-	9,782	3,082
Equal va not assu		5 -	1,0543	4,954	,299	-3,35	3,177-	9,801	3,101

INTERPRETASI DATA

No	Besarnya "r" Product Moment	interpretasi
1	0,00 -0.199	Korelasi sangat rendah
2	0,200-0,399	Korelasi rendah
3	0,400-0,599	Korelasi sedang
4	0,600-0,799	Korelasi kuat
5	0,800-1,00	Korelasi Sangat Kuat

INTERPRETASI DATA

Lihat Pada tabel:

- Sig > 0,05 tidak signifikan------Ho diterima
- Sig < 0.05 signifikan.....Ha diterima