1.) Identify your problem statement

Supervised Learning

Machine Learning

Regression

2). Tell basic info about the dataset (Total number of rows, columns)

RangeIndex: 1338 entries, 0 to 1337

Data columns (total 6 columns):

Column Non-Null Count Dtype

--- ----- -----

0 age 1338 non-null int64

1 bmi 1338 non-null float64

2 children 1338 non-null int64

3 charges 1338 non-null float64

4 sex_male 1338 non-null int64

5 smoker_yes 1338 non-null int64

dtypes: float64(2), int64(4) memory usage: 62.8 KB

3). Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Yes i converted column sex, smoker string column to number

5.) All the research values (r2_score of the models) should be documented.

(You can make tabulation or screenshot of the results.)

Hyper Tuning parameter

MultiLinearRegression == 0.78

Support Vector Regression.

C	kernel	gamma	Output
1000	rbf	scale	0.81
100	rbf	scale	0.32
1000	rbf	auto	0.81
1000	linear	scale	0.76
100	linear	scale	0.62
1000	linear	auto	0.76
1000	poly	scale	0.85
100	poly	scale	0.61
1000	poly	auto	0.85
1000	sigmoid	scale	0.28
100	sigmoid	scale	0.52
1000	sigmoid	auto	0.28
	1000 100 1000 1000 1000 1000 1000 1000 1000 1000 1000	1000 rbf 100 rbf 1000 linear 100 linear 1000 linear 1000 poly 100 poly 1000 poly 1000 sigmoid 100 sigmoid	1000 rbf scale 100 rbf scale 1000 rbf auto 1000 linear scale 100 linear auto 1000 poly scale 100 poly scale 1000 poly auto 1000 sigmoid scale 100 sigmoid scale

Decision tree regressor

S.no	criterion	splitter	max_features	output
1	friedman_mse	random	None	0.68
2	friedman_mse	random	sqrt	0.70
3	friedman_mse	best	log2	0.72
4	friedman_mse	best	sqrt	0.76
5	friedman_mse	random	log2	0.67
6	squared_error	random	None	0.71
7	squared_error	random	sqrt	0.70
8	squared_error	random	log2	0.63
9	squared_error	best	sqrt	0.69
10	squared_error	best	log2	0.76
11	absolute_error	random	None	0.73
12	absolute_error	random	sqrt	0.78
13	absolute_error	random	log2	0.70
14	absolute_error	best	sqrt	0.66
15	absolute_error	best	log2	0.76

16	poisson	random	None	0.76
17	poisson	random	sqrt	0.73
18	poisson	random	log2	0.73
19	poisson	best	sqrt	0.63
20	poisson	best	log2	0.67

Random Forest Regressor

S.no	n_estimators	criterion	max_features	output
1	50	friedman_mse	1.0	0.85
2	50	friedman_mse	sqrt	0.86
3	50	friedman_mse	log2	0.86
4	50	squared_error	1.0	0.85
5	50	squared_error	sqrt	0.87
6	50	squared_error	log2	0.87
7	50	absolute_error	1.0	0.85
8	50	absolute_error	sqrt	0.87
9	50	absolute_error	log2	0.87
10	50	poisson	1.0	0.85
11	50	poisson	sqrt	0.86
12	50	poisson	log2	0.87

6.) Mention your final model, justify why u have chosen the same.
i suggest Random Forest Regressor because i got more R2 value 0.87