Always Silent? Endogenous Central Bank Communication During the Quiet Period

Oleg Telegin

June 26, 2024

Intro

Should the central bank always adhere to the quiet period policy?

Silence pros:

* No immediate major shock in financial markets

Communication pros:

- * Let the markets know the reaction function
- * Offset leaks

► If not, what drives the decision?

Intro

- Financial market model
 - * Information asymmetry the central bank can't disclose everything
 - * CB endogenously decides whether to communicate
 - * Investors re-evaluate their beliefs depending on the decision
- Solution
 - * Monte Carlo + ML iterative algorithm

Intro

- Results snapshot
 - * Beneficial to communicate sometimes
 - * Key factors: allocation of uncertainty between different sources, CB priorities
 - * The observed sharp reaction to the news an internal property of the model, not always decisive
 - * Response asymmetry hide bad news more often

Source: Gnan, Rieder (2022)

Source: Gnan, Rieder (2022)

Source: Ehrmann, Gnan, and Rieder (2023)

Source: Ehrmann, Gnan, and Rieder (2023)

- Effects of quiet period violations:
 - * Ehrmann, Fratzscher (2009), Gnan, Rieder (2022): news causes an excessive shock to the markets, volatility increases
 - * Vissing-Jorgensen (2020), Ehrmann, Gnan, and Rieder (2023): attributed communication and consensus-building approach can mitigate the effects of leaks

ECB quiet periods in 2023

Fed quiet periods in 2023

ECB quiet periods in 2023

Fed quiet periods in 2023

ECB quiet periods in 2023

Fed quiet periods in 2023

Model

ntroduction Stylized facts Model Solution Results Contribution/Policy

14

Model

- Financial market model. Ingredients:
 - * 4 dates
 - * Assets: a share and a bond
 - * 3 shocks: news shock, communication, press release
 - * CARA investors
 - * Central bank endogenously communicates (or not).

▶ Main mechanism - uncertainty from different sources, resolving over time.

Securities market

► Bond – a terminal payoff of one

► Stock –
$$D = \bar{D} + \sigma \varepsilon = \bar{D} + \sigma(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$$
,
where shocks $\varepsilon_1 \sim N(o, \delta_1)$, $\varepsilon_2 \sim N\left(\rho\sqrt{\frac{\delta_2}{\delta_1}}\varepsilon_1$, $\delta_2(1-\rho^2)\right)$, $\varepsilon_1 \sim N(o, \beta\delta_3)$,
dissent uncertainty $\beta \in [o; 2]$, shocks correlation $\rho \in [-1; o)$.

Time line

- ► T=o: Underlying model parameters are known prior to the shocks
- ► T=1: News shock is known to the central bank and investors
- ► T=2: CB knows the reaction function and the level of dissent for the upcoming meeting and decides whether to communicate the former to the markets
- T=3: all shocks are known (reaction function and press release)

Central bank design

Mechanism illustration

$$U = -\left(o_1(\widehat{\text{Var}}_2[R_3] - \text{Var}_2[R_3])^2 + o_2(E_2[R_2])^2 + (E_2[R_3])^2\right)$$

- Quadratic in 3 components:
 - * quiet period communication shock
 - * press release shock
 - * distance in implied volatility from the full information mode

- Relative weights:
 - * o_1 on volatility
 - * o_2 on quiet period communication shock.

$$U = -\left(o_1(\widehat{\text{Var}}_2[R_3] - \text{Var}_2[R_3])^2 + o_2(\widehat{\text{E}}_2[R_2])^2 + \left(\widehat{\text{E}}_2[R_3]\right)^2\right)$$

- Quadratic in 3 components:
 - quiet period communication shock
 - * press release shock
 - * distance in implied volatility from the full information mode

- Relative weights:
 - * o₁ on volatility
 - * o_2 on quiet period communication shock.

$$U = -\left(o_1(\widehat{\text{Var}}_2[R_3] - \text{Var}_2[R_3])^2 + o_2(E_2[R_2])^2 + (E_2[R_3])^2\right)$$

- Quadratic in 3 components:
 - * quiet period communication shock
 - * press release shock
 - * distance in implied volatility from the full information mode

- Relative weights:
 - * o_1 on volatility
 - * o_2 on quiet period communication shock.

actual implied volatility

$$U = -\left(o_{1}(\text{Var}_{2}[R_{3}] - \text{Var}_{2}[R_{3}])^{2} + o_{2}(\text{E}_{2}[R_{2}])^{2} + \left(\text{E}_{2}[R_{3}]\right)^{2}\right)$$

- ► Quadratic in 3 components:
 - * quiet period communication shock
 - press release shock
 - * distance in implied volatility from the full information mode

- ► Relative weights:
 - * o₁ on volatility
 - * o_2 on quiet period communication shock.

Equilibrium

- Solve the model backward, finding the risk premium and the stock price at T=3, then T=2, and T=1.
- ightharpoonup Compute expected returns and variances for both cases and can calculate $U^{w/o}$ and U^w .
- ► CB maintains the blackout period policy if $\bigcup^{w/o} \ge \bigcup^w$ and violates it if $\bigcup^{w/o} \le \bigcup^w$.

Equilibrium

The equilibrium condition looks cumbersome and depends on the probability of communication and the moments of shocks and dissent uncertainty parameter:

Equilibrium

The equilibrium condition looks cumbersome and depends on the probability of communication and the moments of shocks and dissent uncertainty parameter:

$$\begin{split} \mathbf{U}^{\mathrm{W}} - \mathbf{U}^{\mathrm{W}/\mathrm{o}} &= o_1 (\sigma^2 \beta \delta_3 - \sigma^2 \underbrace{\mathbf{E}_2[\beta^+]} \delta_3)^2 + o_2 (\sigma \varepsilon_2 - \alpha \sigma^2 \underbrace{\mathbf{E}_2[\beta^+]} \delta_3 - \sigma^2 \mathbf{Pr}^+ \underbrace{\mathbf{E}_1[\varepsilon_2^+]} - \sigma (\mathbf{1} - \mathbf{Pr}^+) \underbrace{\mathbf{E}_2[\varepsilon_2^-]} + r p_1)^2 + \\ &+ (\alpha \sigma^2 \underbrace{\mathbf{E}_2[\beta^+]} \delta_3)^2 - o_1 (\sigma^2 \beta \delta_3 - \sigma^2 \underbrace{\mathbf{Var}_2[\varepsilon_2^-]} - \sigma^2 \underbrace{\mathbf{E}_2[\beta^-]} \delta_3)^2 - o_2 (-\alpha \sigma^2 (\underbrace{\mathbf{Var}_2[\varepsilon_2^-]} + \underbrace{\mathbf{E}_2[\beta^-]} \delta_3) - \\ &- \sigma \mathbf{Pr}^+ \underbrace{\mathbf{E}_1[\varepsilon_2^+]} + \sigma \mathbf{Pr}^+ \underbrace{\mathbf{E}_2[\varepsilon_2^-]} + r p_1)^2 - (\sigma \varepsilon_2 - \sigma \underbrace{\mathbf{E}_2[\varepsilon_2^-]} + \alpha \sigma^2 (\underbrace{\mathbf{Var}_2[\varepsilon_2^-]} + \underbrace{\mathbf{E}_2[\beta^-]} \delta_3))^2. \end{split}$$

, where the risk premium at T=1:

$$\begin{split} rp_1 &= \alpha\sigma^2 \big(Pr^+ \, \mathsf{E}_1[\beta^+] \delta_3 + (1 - Pr^+) \big(\mathsf{Var}_2[\varepsilon_2^-] + \underbrace{\mathsf{E}_2[\beta^-]} \delta_3 \big) \big) + \alpha\sigma^2 Pr^+ (1 - Pr^+) \big(\mathsf{E}_1[\varepsilon_2^+] - \mathsf{E}_2[\varepsilon_2^-] \big)^2 + \\ &+ \frac{1}{2} \alpha^3 \sigma^4 Pr^+ (1 - Pr^+) \big(\mathsf{E}_1[\beta^+] \delta_3 - \mathsf{Var}_2[\varepsilon_2^-] - \mathsf{E}_2[\beta^-] \delta_3 \big)^2 - \frac{3}{2} \alpha^2 \sigma^3 \big(Pr^+ \delta_3 \underbrace{\mathsf{E}_1[\varepsilon_2^+]} \, \mathsf{E}_1[\beta^+] + (1 - Pr^+) \, \mathsf{E}_2[\varepsilon_2^-] \, \mathsf{Var}_2[\varepsilon_2^-] + \\ &+ \big(1 - Pr^+ \big) \delta_3 \, \mathsf{E}_2[\varepsilon_2^-] \, \mathsf{E}_2[\beta^-] \big) + \frac{3}{2} \alpha^2 \sigma^3 \big(Pr^+ \, \mathsf{E}_1[\varepsilon_2^+] + (1 - Pr^+) \, \mathsf{E}_2[\varepsilon_2^-] \big) \big(Pr^+ \, \mathsf{E}_1[\beta^+] \delta_3 + (1 - Pr^+) \big(\mathsf{Var}_2[\varepsilon_2^-] + \mathsf{E}_2[\beta^-] \delta_3 \big) \big). \end{split}$$

Solution

Solution

▶ ML algorithm to find a mapping (Parameters) \rightarrow {communicate; keep silent} for all possible values of the CB reaction function shock ε_2 and disagreement within the Board β , given a single set of other parameter values.

- ► Monte Carlo
 - * ML algorithm one observation (one set of parameters and all possible ε_2 and β)
 - * Generate 20,000 observations, use statistical analysis to find drivers and patterns of CB decision.

Solution

Comparison of returns: $|R_2/R_3|$ density plots

Comparison of returns: $|R_2/R_3|$ density plots

Communication likelihood letter-value plots for different values of $o_{\scriptscriptstyle 1}$ and $o_{\scriptscriptstyle 2}$

Communication likelihood letter-value plots for different values of o_1 and o_2

Communication likelihood letter-value plots for different values of o_1 and o_2

Communication decisions under different ε_2 and β

36

Results

Communication decisions under different ε_2 and β

Communication decisions under different ε_2 and β

Rarely communicate - hide large CB reaction

Communication likelihood under different uncertainty sources

Communication likelihood under different uncertainty sources

Comparison of the "never intervene" and "endogenously intervene" regimes for $o_2={\tt 2}$

Comparison of the "never intervene" and "endogenously intervene" regimes for $o_2={\tt 2}$

Results

Central bank uncertainty management mechanism

Communication

Results # 45

Central bank uncertainty management mechanism

Contribution/Policy

Introduction Stylized facts Model Solution Results **Contribution/Policy**

47

Contribution/Policy

- ► We contribute to the literature on
 - * Central bank communication: effects and transparency
 Morris, Shin (2002), Vissing-Jorgensen (2020), Cieslak, Vissing-Jorgensen (2021), Herbert (2021), Gati
 (2022);
 - * Quiet period
 Ehrmann, Fratzscher (2007), Ehrmann, Fratzscher (2009), Gnan, Rieder (2022), Ehrmann, Gnan, and
 Rieder (2023);
 - Pre-announcement drift and uncertainty prior to the FOMC meetings
 Lucca, Moench (2015), Lucca, Moench (2018), Hu et al. (2022), Bauer, Lakdawala, Mueller (2019).

Contribution/Policy

- Policy implications
 - * Currently consider instantaneous effects. However, markets also gain insights into the central bank's reaction function and the level of dissent within the Board.
 - * At times, optimal to communicate, even if this significantly shakes the markets.
 - * Design complex issue. Centralized communications (managed by the staff rather than individual FOMC members) + disclose some of the information on the table on the decision day (e.g., Tealbook without Alternatives).
 - * Endogenous communications even more intricate. Endogenous can be the amount of information disclosed.