Unit 4. Eigenvalues

Numerical Analysis

EE/NTHU

March 22, 2017

Numerical Analysis (EE/NTHU)

Unit 4. Eigenvalues

March 22, 2017

1 / 22

Eigenvalues and Eigenvectors

Definition 4.1.1.

Given a real $n \times n$ matrix \mathbf{A} , the number $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{A} if there is a nonnull vector $\mathbf{x} \in \mathbb{R}$ such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.\tag{4.1.1}$$

The vector \mathbf{x} is the eigenvector associated with the eigenvalue λ and the set of eigenvalues of \mathbf{A} is the spectrum of \mathbf{A} , denoted by $\sigma(\mathbf{A})$.

Theorem 4.1.2

The eigenvalue λ corresponding to the eigenvector ${\bf x}$ can be determined by computing the Rayleigh quotient

$$\lambda = \mathbf{x}^T \mathbf{A} \mathbf{x} / \mathbf{x}^T \mathbf{x}. \tag{4.1.2}$$

Definition 4.1.3.

The characteristic polynomial of the real $n \times n$ matrix $\mathbf A$ is

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}). \tag{4.1.3}$$

Eigenvalues and Eigenvectors, II

Theorem 4.1.4.

The eigenvalue λ is the solution of the characteristic equation

$$p_A(\lambda) = 0. (4.1.4)$$

• Since the characteristic polynomial is of degree n with respect to λ , there exist n eigenvalues of \mathbf{A} . But these eigenvalues may not be distinct from each other.

Theorem 4.1.5.

Given real $n \times n$ matrix **A** with the eigenvalues λ_i , $i = 1, \ldots, n$ then

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i,$$
(4.1.5)

$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i. \tag{4.1.6}$$

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

3 / 2

Eigenvalues and Eigenvectors, III

Theorem 4.1.6.

Given a real $n \times n$ matrix **A** with the eigenvalues λ_i , $i = 1, \ldots, n$, then

- 1. A is singular if and only if there is a $\lambda_i = 0$, $1 \le i \le n$.
- 2. Complex eigenvalues of A occur in conjugate pairs.
- 3. The matrix polynomial $p_A(\mathbf{A})$ satisfies

$$p_A(\mathbf{A}) = \mathbf{0}.\tag{4.1.7}$$

Theorem 4.1.7.

The spectral radius of a real matrix ${f A}$ is defined as

$$\rho(\mathbf{A}) = \max_{\lambda \in \sigma(\mathbf{A})} |\lambda|. \tag{4.1.8}$$

Eigenvalues and Eigenvectors, IV

Theorem 4.1.8.

If the real matrix A has the following block triangular form

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1k} \\ 0 & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2k} \\ \vdots & \vdots & \ddots & \mathbf{A}_{2k} \\ 0 & \cdots & 0 & \mathbf{A}_{kk} \end{bmatrix}$$
(4.1.9)

Then

$$p_A(\lambda) = p_{A_{11}}(\lambda) \cdot p_{A_{22}}(\lambda) \cdots p_{A_{kk}}(\lambda), \tag{4.1.10}$$

$$\sigma(\mathbf{A}) = \bigcup_{j=1}^{k} \sigma(\mathbf{A}_{jj}). \tag{4.1.11}$$

Theorem 4.1.9.

If the real matrix A is triangular then

$$\sigma(\mathbf{A}) = \{a_{ii} | i = 1, \cdots, n\}.$$

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

5 / 22

Eigenvalues and Eigenvectors, V

Definition 4.1.10.

Given a real $n \times n$ matrix ${\bf A}$ with the characteristic polynomial

$$p_A(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{\delta_i}$$
(4.1.12)

with $\lambda_i \neq \lambda_j$, $1 \leq i, j \leq k$, and $\sum_{i=1}^k \delta_i = n$. The algebraic multiplicity of λ_i is δ_i , $1 \leq i \leq n$.

Theorem 4.1.11.

The set of eigenvectors associated with a eigenvalue, λ , of a real $n \times n$ matrix $\mathbf A$ forms a subspace. The dimension of this subspace is called geometric multiplicity of the eigenvalue λ . For any λ the geometric multiplicity is less than or equal to the algebraic multiplicity.

A FINIT WILLY

The Power Method

- The power method can be used to estimate the largest and the smallest eigenvalues.
- These eigenvalues are needed for the condition number of a linear system solution, and other applications.
- In this section, we assume the real $n \times n$ matrix \mathbf{A} has n distinct real eigenvalues and \mathbf{x}_i is the eigenvector associated with eigenvalue λ_i , $i=1,\cdots,n$.
- It is further assumed that the eigenvalues are ordered as

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \cdots \ge |\lambda_n|,$$
 (4.1.13)

where λ_1 has the algebraic multiplicity of 1.

• Under these assumptions, λ_1 is called the dominant eigenvalue of matrix **A**.

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

7 / 22

The Power Method, II

Algorithm 4.1.12. Power Method

Given a diagnosable matrix ${\bf A}$ and an arbitrary initial vector ${\bf q}^{(0)}$, then

$$\mathbf{q}^{(k)} = \frac{\mathbf{A}^k \mathbf{q}^{(0)}}{\|\mathbf{A}^k \mathbf{q}^{(0)}\|_2},$$
(4.1.14)

$$\nu^{(k)} = (\mathbf{q}^{(k)})^T \mathbf{A} \mathbf{q}^{(k)}. \tag{4.1.15}$$

• Since ${\bf A}$ is diagnosable, the eigenvectors form a basis of \mathbb{R}^n . Thus, ${\bf q}^{(0)}$ can be expressed as

$$\mathbf{q}^{(0)} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_n \mathbf{x}_n$$

Then

$$\mathbf{A}\mathbf{q}^{(0)} = \mathbf{A}\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = \sum_{i=1}^{n} \alpha_i \lambda_i \mathbf{x}_i$$

The Power Method, III

And

$$\mathbf{A}^{k}\mathbf{q}^{(0)} = \mathbf{A}^{k} \sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i} \mathbf{A}^{k} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \mathbf{x}_{i}$$

$$= \alpha_{1} \lambda_{1}^{k} \left(\mathbf{x}_{1} + \sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}} (\frac{\lambda_{i}}{\lambda_{1}})^{k} \mathbf{x}_{i} \right)$$

$$\mathbf{A}^{k}\mathbf{q}^{(0)} \to \alpha_{1} \lambda_{1}^{k} \mathbf{x}_{1}, \text{ if } \alpha_{1} \neq 0.$$
the
$$\mathbf{q}^{(k)} = \frac{\alpha_{1} \lambda_{1}^{k} (\mathbf{x}_{1} + \mathbf{y}^{(k)})}{\|\alpha_{1} \lambda_{1}^{k} (\mathbf{x}_{1} + \mathbf{y}^{(k)})\|_{2}}$$

When $k o \infty$,

$$\mathbf{A}^k \mathbf{q}^{(0)} \to \alpha_1 \lambda_1^k \mathbf{x}_1$$
, if $\alpha_1 \neq 0$.

Or, we can write

$$\mathbf{q}^{(k)} = \frac{\alpha_1 \lambda_1^k (\mathbf{x}_1 + \mathbf{y}^{(k)})}{\|\alpha_1 \lambda_1^k (\mathbf{x}_1 + \mathbf{y}^{(k)})\|_2}$$

 $\text{where } \mathbf{y}^{(k)} = \sum_{i=0}^n \frac{\alpha_i}{\alpha_1} (\frac{\lambda_i}{\lambda_1})^k \mathbf{x}_i \text{, and } \mathbf{y}^{(k)} \to 0 \text{ when } k \to \infty.$

Also, if $\alpha_1 \neq 0$, as $k \to \infty$

$$\mathbf{q}^{(k)} \to \mathbf{x}_1 \tag{4.1.16}$$

$$\nu^{(k)} \to \lambda_1 \tag{4.1.17}$$

Numerical Analysis (Eigenvalues)

The Power Method, IV

Theorem 4.1.13.

Let $\mathbf{A} \in \mathbb{C}^{n imes n}$ be a diagnosable matrix whose eigenvalues satisfy equation (4.1.13). Assuming $\alpha_1 \neq 0$, there is a constant C > 0 such that

$$\|\tilde{\mathbf{q}}^{(k)} - \mathbf{x}_1\|_2 \le C \left| \frac{\lambda_2}{\lambda_1} \right|^k, \qquad k \ge 1, \tag{4.1.18}$$

where

$$\tilde{\mathbf{q}}^{(k)} = \frac{\mathbf{q}^{(k)} \|\mathbf{A}^k \mathbf{q}^{(0)}\|_2}{\alpha_1 \lambda_1^k} = \mathbf{x}_1 + \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} (\frac{\lambda_i}{\lambda_1})^k \mathbf{x}_i, \qquad k = 1, 2, \dots$$

$$(4.1.19)$$

$$\|\tilde{\mathbf{q}}^{(k)} - \mathbf{x}_1\|_2 = \left\| \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} (\frac{\lambda_i}{\lambda_1})^k \mathbf{x}_i \right\|_2 \le \left(\sum_{i=2}^n \left[\frac{\alpha_i}{\alpha_1} (\frac{\lambda_i}{\lambda_1})^k \right]^2 \right)^{1/2}$$

$$\le \left(\sum_{i=2}^n \left[\frac{\alpha_i}{\alpha_1} (\frac{\lambda_2}{\lambda_1})^k \right]^2 \right)^{1/2} = \left| \frac{\lambda_2}{\lambda_1} \right|^k \left[\sum_{i=2}^n \left(\frac{\alpha_i}{\alpha_1} \right)^2 \right]^{1/2}$$

Thus, $C = \left[\sum_{i=1}^{n} \left(\frac{\alpha_i}{\alpha_1}\right)^2\right]^{1/2}$, and C is independent of k.

The Power Method, V

- The preceding theorem states that the power method converges with the rate $\left|\frac{\lambda_2}{\lambda_1}\right|$.
 - If $|\lambda_2| \ll |\lambda_1|$ then it converges quickly,
 - On the other hand, if $|\lambda_2| \approx |\lambda_1|$ then it converges slowly.
- $oldsymbol{ ilde{q}}^{(k)}$ converges to \mathbf{x}_1
- Since $\tilde{\mathbf{q}}^{(k)} = \frac{\mathbf{q}^{(k)} \|\mathbf{A}^k \mathbf{q}^{(0)}\|_2}{\alpha_1 \lambda_1^k}$, $\mathbf{q}^{(k)}$ converges, too.
 - See textbook.
- ullet And $u^{(k)} = (\mathbf{q}^{(k)})^T \mathbf{A} \mathbf{q}^{(k)}$ converges to λ_1 .
 - By the rate $\left|\frac{\lambda_2}{\lambda_1}\right|$.
- If ${\bf A}$ is real and symmetric and $\alpha_1 \neq 0$, then it can be shown that

$$|\lambda_1 - \nu^{(k)}| \le |\lambda_1 - \lambda_n| \cdot \tan^2(\theta_0) \cdot \left| \frac{\lambda_2}{\lambda_1} \right|^{2k}. \tag{4.1.20}$$

where $\cos(\theta_0) = |\mathbf{x}_1^T \mathbf{q}^{(0)}| \neq 0$.

• In this case, the convergence rate is quadratic, $\left| \frac{\lambda_2}{\lambda_1} \right|^2$.

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

11 / 2

Stopping Criteria

- So far, we know that $\lim_{k\to\infty}\mathbf{q}^{(k)}=\mathbf{x}_1$, the eigenvector associated with λ_1 of matrix \mathbf{A} , and $\lim_{k\to\infty}\nu^{(k)}=\lambda_1$, which is the eigenvalue with the largest module.
- Define the residue at iteration k as

$$\mathbf{r}^{(k)} = \mathbf{A}\mathbf{q}^{(k)} - \nu^{(k)}\mathbf{q}^{(k)}, \qquad k \ge 1.$$
 (4.1.21)

Then, as $k \to \infty$, $\mathbf{r}^{(k)} \to \mathbf{0}$. One can use $\|\mathbf{r}^{(k)}\|_2$ as a stopping criterion.

In fact, it has been shown that

$$|\lambda_1 - \nu^{(k)}| \simeq \frac{\|\mathbf{r}^{(k)}\|_2}{|(\mathbf{w}^{(k)})^T \mathbf{q}^{(k)}|}, \qquad k \ge 1,$$
 (4.1.22)

where $\mathbf{w}^{(k)}$ satisfies $(\mathbf{w}^{(k)})^T \mathbf{A} = \nu^{(k)} (\mathbf{w}^{(k)})^T$, and as $k \to \infty$, $\mathbf{w}^{(k)} \to \mathbf{w}$ and $\mathbf{w}^T \mathbf{A} = \lambda_1 \mathbf{w}^T$ is the left eigenvector associated with λ_1 . If \mathbf{A} is symmetric the $\mathbf{w} = \mathbf{q}$.

• One approach is to use Eq. (4.1.22) as the stopping criterion.

The Algorithm

Algorithm 4.1.14. The Power Method

Given a diagnosable matrix ${\bf A}$, an initial vector ${\bf q}^{(0)}$, a small number ϵ and a large integer maxiter, let

$$\begin{split} tol &= 1 + \epsilon, \ \mathbf{q}^{(0)} = \frac{\mathbf{q}^{(0)}}{\|\mathbf{q}^{(0)}\|_2}, \ \text{and} \ k = 0, \\ \text{while} \ (tol \geq \epsilon \ \text{and} \ k \leq maxiter) \ \{ \\ \mathbf{z} &= \mathbf{A}\mathbf{q}^{(k)} \ , \\ k &= k + 1_{\mathbf{z}}, \\ \mathbf{q}^{(k)} &= \frac{\mathbf{z}}{\|\mathbf{z}\|_2} \ , \\ \nu^{(k)} &= (\mathbf{q}^{(k)})^T \mathbf{A}\mathbf{q}^{(k)} \ , \\ \mathbf{r}^{(k)} &= \mathbf{A}\mathbf{q}^{(k)} - \nu^{(k)}\mathbf{q}^{(k)} \ , \\ (\mathbf{u}^{(k)})^T &= (\mathbf{q}^{(k)})^T \mathbf{A} \ , \\ \mathbf{w}^{(k)} &= \frac{\mathbf{u}}{\|\mathbf{u}\|_2} \ , \\ tol &= \frac{\|\mathbf{r}^{(k)}\|_2}{|(\mathbf{w}^{(k)})^T \mathbf{q}^{(k)}|} \ , \end{split}$$

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

13 / 2

The Algorithm, II

- Note that it can also check for $|(\mathbf{w}^{(k)})^T\mathbf{q}^{(k)}|$. If this number is 0, then λ_1 does not have the algebraic multiplicity of 1.
- If the algebraic multiplicity of λ_1 is greater than 1, then ${f q}^{(k)}$ may not converge though $u^{(k)}$ is convergent.
 - $oldsymbol{\mathbf{r}}^{(k)}$ may not be convergent either.
 - Thus, using $\|\mathbf{r}^{(k)}\|_2$ as the stopping criterion may not work.
- If \mathbf{A} is symmetric then the left eigenvector \mathbf{q}_i of a eigenvalue λ_i is always the same as the right eigenvector \mathbf{w}_i associated with λ_i , and $|(\mathbf{w}^{(k)})^T\mathbf{q}^{(k)}|=1$.
- For asymmetric \mathbf{A} , this property does not hold but $|(\mathbf{w}^{(k)})^T\mathbf{q}^{(k)}|$ is convergent to a single number as both eigenvectors converges.

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

The Power Method, Example

- Using the resistor network example of Unit 3
- The power method is shown to be convergent with a constant rate
 - $\lambda_1 = 5.77846$.

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

The Power Method, Complexity

• The first power method algorithm, Algorithm (4.1.12), is usually formulated as

$$\mathbf{q}^{(k+1)} = \frac{\mathbf{A}\mathbf{q}^{(k)}}{\|\mathbf{A}\mathbf{q}^{(k)}\|_{2}},$$

$$\nu^{(k+1)} = (\mathbf{q}^{(k+1)})^{T} \mathbf{A}\mathbf{q}^{(k+1)}.$$
(4.1.23)

$$\nu^{(k+1)} = (\mathbf{q}^{(k+1)})^T \mathbf{A} \mathbf{q}^{(k+1)}. \tag{4.1.24}$$

- ullet The computation is dominated by $\mathbf{A}\mathbf{q}^{(k)}$
 - Matrix-vector multiplication.
 - Computational complexity is $\mathcal{O}(n^2)$ per iteration.
 - Overall computational complexity is $\mathcal{O}(N_{iter} \times n^2)$.
 - ullet N_{iter} is the number of iterations needed to reach to a converged solution.
 - A function of $\frac{\lambda_2}{\lambda_1}$
- The computation of the second form of power method, Algorithm (4.1.14), is also dominated by $\mathbf{A}\mathbf{q}^{(k)}$ and $(\mathbf{q}^{(k)})^T\mathbf{A}$.
 - Matrix-vector multiplications.
 - Overall computational complexity remains $\mathcal{O}(N_{iter} \times n^2)$.
 - But with a larger coefficient.

Inverse Power Method

• The power method can be modified to find the eigenvalue with the smallest module, and the eigenvector associated.

Algorithm 4.1.15. Inverse Power Method

Given a diagnosable matrix ${\bf A}$ and an arbitrary initial guess ${\bf q}^{(0)}$ with unit Euclidean norm, iterate for $k=1,\ldots$

$$\mathbf{A}\mathbf{z}^{(k)} = \mathbf{q}^{(k-1)},$$
 (4.1.25)

$$\mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2},\tag{4.1.26}$$

$$\mu^{(k)} = (\mathbf{q}^{(k)})^T \mathbf{A} \mathbf{q}^{(k)}.$$
 (4.1.27)

- ullet Note that the vector $\mathbf{z}^{(k)}$ can be found using LU decomposition or any linear system solution method.
- Other than that this is the power method and its convergence rate is determined by $\left|\frac{\lambda_n}{\lambda_{n-1}}\right|$.

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

17 / 22

Inverse Iteration Example

- Using the resistor network example of Unit 3
- The power method is shown to be convergent with a constant rate
 - $\lambda_7 = 0.510711$.

The Inverse Power Method with Shifting

• The inverse power method can be generalized to find eigenvalue that is closest to a specific number, ω , and the eigenvector associated.

Algorithm 4.1.16. Inverse Power Method with Shifting

Given a diagnosable matrix $\bf A$ and an arbitrary initial guess ${\bf q}^{(0)}$ with unit Euclidean norm and $\omega \in \mathbb{R}$, iterate for $k=1,\ldots$

$$(\mathbf{A} - \omega \mathbf{I})\mathbf{z}^{(k)} = \mathbf{q}^{(k-1)}, \tag{4.1.28}$$

$$\mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2},\tag{4.1.29}$$

$$\mu^{(k)} = (\mathbf{q}^{(k)})^T \mathbf{A} \mathbf{q}^{(k)}.$$
 (4.1.30)

- Except Eq. (4.1.28), this algorithm is identical to the inverse power method.
- And the convergence rate is determined by the ratio of the two eigenvalues that are closest to ω .

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

19 / 22

Inverse Power Method with Shifting Examples

Power Methods

- In our development we have assumed that $\lambda_1 > \lambda_2$, or the algebraic multiplicity of λ_1 is 1. But, the power method is convergent when $\lambda_1 = \lambda_2$, since the vectors generated by Eq. (4.1.14) converge to the subspace spanned by \mathbf{x}_1 and \mathbf{x}_2 , and ν converges to λ_1 . (The original form of power method, Algorithm (4.1.12).)
- When $\lambda_1 = -\lambda_2$ then the power method would oscillate and not converge.
- If $\lambda_1 = \overline{\lambda_2}$, it would also oscillate and not converge.
- The inverse power method with shifting is very effective in find eigenvalues and eigenvectors for diagnosable matrices.
- With ω is properly positioned, the eigenvalue closest to ω can be quickly found. The convergence rate can be improved greatly if ω is close to λ_i .
- Initial guess $\mathbf{q}^{(0)}$ can affect the convergence rate as shown in the last example. But, due to the computer round off, the eigenvalue closest to ω is always found, even $\mathbf{q}^{(0)}$ is an eigenvector of a different eigenvalue.
- The inverse power method with shifting is more effective even though it needs more operations for each iteration: matrix addition and forward and backward substitutions. (note that LU decomposition needs to be done only once.)

Numerical Analysis (Eigenvalues)

Unit 4. Eigenvalues

March 22, 2017

21 / 2

Summary

- The power method.
 - Simple form.
 - More elaborated form.
- The inverse power method.
- Power method with shifting.