BLOC 4. Fonaments de Química Orgànica

4.1 Completeu la taula següent:

Estructura de Lewis	Fórmula condensada	Estructures de línies i angles
H H H		
	OCOH OCOH OCOH OCOH OCOH OCOH OCOH OCOH	
		F
H H H H H-C-C-Ö-C-C-H H H H H		

4.2 Convertiu les següents fórmules condensades en estructures de línies i angles

CH₃CH=CHCH=CH₂

$$\begin{matrix} \mathsf{OH} \\ \mathsf{HC} \equiv \mathsf{CCH}_2\mathsf{CHCH}_2\mathsf{CH}_2\mathsf{CH}_3 \end{matrix}$$

CH₃CH(Br)CH₂CH₂COCH₃

4.3 Convertiu les següents estructures de línies i angles en fórmules condensades.

4.4 Identifiqueu el grup o grups funcionals en cadascun dels següents compostos.

- **4.5** Formuleu els següents compostos: 2-metilhexà; 2,2,3-trimetilheptà; 4-isopropil-6-propildodecà; 4-etil-5-isobutil-3,4-dimetil-7-propilundecà; 5-(1,2-dimetilpropil)-4-etil-2-metildecà; 5-(2,3-dimetilbutil)-8-etil-2,3-dimetildecà; cicloheptà; 3-heptè; 5-etil-2-metil-3-heptè; 1,3,5-nonatriè; 3-etil-4-metil-1-pentí; 3,3-dimetil-4-noní; 1,5-hexadien-3-í; 1,4-cicloheptadiè; 4-sec-butilciclohexè.
- **4.6** Formuleu els següents compostos: 2,4-hexandiol; alcohol propílic; 2-etil-4-metil-3-hexen-1-ol; 6,6-dibutil-2-ciclohexenol; pentanal; 4-hexenal; 2,4-pentandiona; 3-etil-4-etoxi-3-formildecandial; 1,1-dibromopropanona; butanoat de metil; àcid pentandioic; àcid 2-hidroxibutanoic; propionat de *tert*-butil; àcid 3-metil-5-oxo-2-propilnonandioic; àcid 4-etil-3,3-dimetoxi-4-pentenoic; àcid 6-cloro-6-formilhexanoic.
- **4.7** Formuleu els següents compostos: hexilamina; *N*-etilbutanamina; anilina; 7-octenamida; àcid 4-aminobutanoic; 3-bromo-3-cloro-5-metilheptanoat d'etil; toluè; *o*-dipropilbenzè; 1,2-dimetilbenzè; *p*-etilfenol; àcid *p*-metilbenzoic; trifenilamina; àcid 2-hidroxibenzoic.

4.8 Doneu el nom comú i segons la IUPAC dels següents compostos:

	IUPAC	COMÚ
NH ₂		
0		
N.		
Br		
CN		
O		
OH		
ОН		
0		
0		
O NH ₂		

4.9 Anomeneu els següents grups alquil:

4.10 Anomeneu els següents compostos:

4.11 Indiqueu quin tipus d'hibridació presenten cadascun dels àtoms de carboni de les molècules següents: a) 3-metil-1-butí; b) 1,3-butadiè

4.12 La clorofaciona és un anticoagulant antagonista de la vitamina K de la família de les indandiones que apareix en la formulació de diversos raticides comercials. Tenint en compte que la clorofaciona presenta l'estructura següent, contesteu a les preguntes que s'indiquen a continuació.

- a) Escriviu la seva fórmula molecular
- b) Quants carbonis amb hibridació sp^3 , sp^2 i sp presenta aquesta estructura?
- **4.13** Indiqueu la hibridació dels àtoms de carboni de cadascuna de les molècules següents. Quin dels enllaços senyalats en cada molècula és més curt?

4.14 En les molècules següents, els dos àtoms senyalats queden en el mateix pla que els dos àtoms de carboni que tenen hibridació sp^2 ?

- **4.15** Classifiqueu els següents alcohols en primaris, secundaris o terciaris:
 - a) CH₃(CH₂)₃CH₂OH
 - b) CH₃CH(OH)(CH₂)₃CH₃
 - c) CH₃CH(OH)CH₂CH₂OH
 - d) $(CH_3)_2C(OH)CH_2CH_2CH_3$
- **4.16** Anomeneu els compostos següents i classifiqueu-los com a primaris, secundaris o terciaris.

4.17 Identifiqueu els grups funcionals dels compostos següents i indiqueu el seu grau d'oxidació.

$$\begin{array}{c|c} OH & CI & O & NH_2 \\ \hline \\ CO_2H & \\ \end{array}$$

- **4.18** Donats l'1-propanol, l'1-fluoropropà i l'etil metil èter, responeu a les següents preguntes:
 - a) Quin o quins d'aquests compostos pot formar ponts d'hidrogen entre les seves molècules?
 - b) Quin o quins d'aquests compostos pot formar ponts d'hidrogen amb un dissolvent com l'etanol?
- **4.19** Ordeneu els sis compostos següents segons el seu punt d'ebullició.

- **4.20** L'èter dietílic té un punt d'ebullició de 34 °C i l'1-butanol de 117 °C. Els dos compostos tenen el mateix nombre i tipus d'àtoms. A què es deu aquesta diferència tan gran de punt d'ebullició?
- **4.21** Dibuixeu l'àcid 2-etilbutanoic, el 2,3-dimetilbutà i el 2-metil-3-butanol i ordeneulos per ordre creixent de punt d'ebullició.
- **4.22** Formuleu i ordeneu els compostos segons la seva polaritat i també segons la seva solubilitat en aigua: 1-propanol, 2-metilpropà i propilamina.
- **4.23** En quin dels següents dissolvents seria menys soluble el ciclohexà: 1-pentanol, dietil èter, etanol, hexà?
- **4.24** Formuleu i ordeneu els compostos següents per la seva solubilitat en aigua: àcid butanoic, dietilèter, 1-butè.
- **4.25** Ordeneu en ordre creixent de punt d'ebullició els següents compostos: propà, àcid acètic, etanol.
- **4.26** Ordeneu en ordre creixent els següents compostos en funció de la seva solubilitat en aigua: 2-butanona, clorur sòdic, 2-butanol, 2-metilbutà.
- **4.27** Identifiqueu quin tipus d'isomeria presenten les següents parelles de compostos:

- **4.28** Escriviu i anomeneu tots els isòmers (inclosos els geomètrics) dels alquens:
 - a) C₄H₈
 - b) C₅H₁₀
- **4.29** Formuleu i anomeneu tots el isòmers constitucionals de fòrmula C₃H₆Br₂.
- **4.30** Quants dibromobenzens isomèrics diferents existeixen? Formuleu-los i anomeneu-los tots. Quin tipus d'isomeria presenten?
- **4.31** Quins dels següents compostos presenten estereoisomeria *cis/trans*?
 - a) BrCH₂CH₂Br
 - b) BrCH=CHBr
 - c) BrCH=CBr₂
 - d) Br₂C=CBr₂
- **4.32** Anomeneu els següents compostos. Digueu també si són compostos quirals o aquirals i indiqueu amb un asterisc els carbonis asimètrics.

- 4.33 Indiqueu quins dels següents compostos presenten estereoisomeria òptica. En el cas que en presentin, dibuixeu els dos enantiòmers i determineu la configuració absoluta dels estereocentres.
 - a)Propanal
 - b) Benzè
 - c) 2-Metilbutà
 - d) 3-Metilpentà
 - e) Àcid 2-hidroxipropanoic (àcid làctic)

- **4.34** Donats els compostos 2-butanol i 3-metil-1-butanol, responeu, raonadament a les següents qüestions:
 - a) Són isòmers entre si?
 - b) Presenten alguns d'ells estereoisomeria òptica?
- **4.35** Identifiqueu els grups funcionals de les 6 molècules orgàniques següents i marqueu els carbonis quirals amb un asterisc.

4.36 A continuació es mostra una reacció d'eliminació d'un halur d'alquil per a formar un alquè.

$$\begin{array}{c|c} CH_3 & & & \\ \hline & A & b \\ \hline & Br \\ & & \\$$

- a) Escriu la fórmula molecular del compost 1.
- b) Quina és la hibridació dels àtoms de carboni **a** i **b** en les dues molècules (1 i 2)?
- c) Dibuixa un isòmer geomètric i un isòmer estructural de la molècula 2.
- d) Al final de la reacció s'obté una mescla del producte **2**, metanol i bromur sòdic. Quins components d'aquesta mescla seran solubles en aigua?
- **4.37** Dibuixeu els dos enantiòmers de cadascun dels següents compostos utilitzant projeccions de Fischer. Determineu la configuració absoluta de tots els estereocentres.
 - a) 2-Bromo-1-propanol
 - b) 1-Cloro-3-metilpentà
- **4.38** Dibuixeu tots els estereoisòmers de cadascun dels compostos següents utilitzant estructures de línies i angles. Determineu la configuració absoluta de tots els estereocentres.
 - a) 2.4-Dicloroheptà
 - b) 1,2-Diclorociclohexà

4.39 El compost següent té només un centre asimètric. Llavors, per què hi ha quatre estereoisòmers possibles? Raoneu la vostra resposta i determineu la configuració absoluta de tots els esterocentres.

4.40 Classifica els compostos següents com a nucleòfils o electròfils. Justifica la resposta.

4.41 Identifiqueu el nucleòfil i l'electròfil de les següents reaccions i dibuixeu les fletxes que senyalen el moviment dels electrons.

a)
$$\overset{\overset{\leftarrow}{\text{CH}}}{\text{CH}_3}$$
 + $\overset{\overset{\leftarrow}{\text{CI}}}{\text{CI}}$ $\overset{\overset{\leftarrow}{\text{H}_3C}}{\text{CH}_3}$ + $\overset{\overset{\leftarrow}{\text{CI}}}{\text{CH}_3}$ $\overset{\overset{\leftarrow}{\text{CH}_3}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$ + $\overset{\overset{\leftarrow}{\text{C}}}{\text{CN}}$

4.42 Dibuixeu el producte de les següents reaccions i anomeneu-lo.

- **4.43** Considereu la molècula de 4-penten-1-ol i contesteu les següents preguntes de manera justificada:
 - a) Dibuixeu-la i indiqueu el tipus d'hibridació que presenten cadascun dels àtoms de carboni.
 - b) Dibuixeu un isòmer constitucional de grup funcional i identifiqueu aquest grup funcional.
 - c) Dibuixeu un isòmer constitucional de posició que presenti estereoisomeria geomètrica cis/trans.
 - d) Dibuixeu un isòmer constitucional de posició que presenti estereoisomeria òptica, senvaleu el carboni asimètric.
 - e) Dibuixeu el producte que s'obtindria per escalfament del 4-penten-1-ol amb àcid acètic en presència d'àcid sulfúric (catalitzador).
 - f) Compareu de manera raonada el punt d'ebullició del 4-penten-1-ol amb el de l'1-pentè i amb el de l'àcid 4-pentenoic.
- 4.44 L'àcid esteàric (àcid octadecanoic), l'àcid oleic (àcid *cis*-9-octadecenoic) i l'àcid linoleic (àcid cis,cis-9,12-octadecadienoic) són àcids grassos d'origen natural. L'àcid esteàric té un punt de fusió de 69 °C, l'àcid oleic de 13 °C i l'àcid linoleic de -5 °C. Dibuixa l'estructura d'aquests àcids grassos i justifica aquesta diferència en els punts de fusió.
- **4.45** Donats els monosacàrids següents:

- a) Classifiqueu-los segons el tipus de grup carbonil i el número d'àtoms de carboni que presenten. Indiqueu si són monosacàrids L o D
- b) Dibuixeu l'enantiòmer del monosacàrid 1
- c) Dibuixeu un epímer del monosacàrid 2
- d) Quants estereoisòmers es poden dibuixar pel monosacàrid 3?
- **4.46** Dibuixeu l'estructura d'una L-aldoheptosa i d'una D-2-cetotetrosa.
- **4.47** Igual que en el cas dels monosacàrids, els 4-hidroxialdehids existeixen principalment en la forma cíclica. Dibuixeu l'estructura de la forma cíclica del 4-hidroxibutanal.
- **4.48** Emprant la figura 4.29 del llibret de teoria, dibuixeu l'estructura del tetrapèptid Ala-Ser-Asp-Lys. Senyaleu els enllaços peptídics amb una fletxa i identifiqueu els grups funcionals de les cadenes laterals. Serà polar aquest pèptid? Justifiqueu la vostra resposta.