扫地才子的学习笔记

——数理统计

扫地才子

2023年3月15日

前言

数理统计是我认为很麻烦的一门课.

数不清的公式,数不清的数据,乱七八糟的定义.

但却很有用.

本文参考陈家鼎数理统计学讲义茆诗松概率论与数理统计

为初等统计知识,没有涉及到测度理论

有些真的是很粗略的直观理解,还待更进一步的深入理解.但这些粗略的理解是很有必要的,因为我上课的时候,老师说的每个字我都知道是什么意思,但就是理解不了这是在干什么,为什么要这么干

这也是学数学的通病吧,一开始就站在比较高的高度取看待一个问题, 反而会让人摸不着头脑

至此结束我的复习笔记的撰写.

附上孙七七的主页.home.ustc.edu.cn/~tysun/

但是孙七七的笔记里并没有数理统计

高 2023 年 3 月 15 日

目录

第一章	总体与样本	1
1.1	总体与样本的概念	1
1.2	抽样	3
1.3	统计量	3
	1.3.1 样本均值	3
	1.3.2 样本方差	4
	1.3.3 次序统计量	6
	1.3.4 由次序统计量衍生出的统计量	7
第二章	抽样分布	9
2.1	初论样本均值和方差的分布	9
2.1 2.2	初论样本均值和方差的分布	_
		1
	三大分布 1	1 1
	三大分布	1 1 2
	三大分布	1 1 2 2
2.2	三大分布 <td< td=""><td>1 1 2 2</td></td<>	1 1 2 2
2.2	三大分布 1 2.2.1 卡方分布 1 2.2.2 t 分布 1 2.2.3 F 分布 1 再论样本均值与方差的分布 1 2.3.1 样本方差的分布 1	1 1 2 2 3

第三章	参数估计	16
3.1	点估计	16
	3.1.1 矩估计	17
	3.1.2 矩估计习题	18
	3.1.3 极大似然估计法	19
	3.1.4 最大似然估计法习题	22
3.2	点估计的优良性	24
	3.2.1 相合性	24
	3.2.2 无偏性	25
	3.2.3 有效性	26
	3.2.4 完全充分统计量	26
3.3	区间估计的概念	28
3.4	一元正态总体下的区间估计	30
	3.4.1 均值的置信区间	30
	3.4.2 方差的置信区间	30
3.5	二元正态总体下的区间估计	30
第四章	假设检验	32
4.1	假设检验的概念	32
4.2	一元正态总体下的假设检验	33
	$4.2.1$ 期望的假设检验 σ 已知 \dots	33
	4.2.2 期望的假设检验 σ 未知	
	4.2.3 方差的假设检验 (<i>μ</i> 已知)	
	4.2.4 方差的假设检验 (<i>μ</i> 未知)	
4.3	两个正态总体下的假设检验	
1.0	$4.3.1$ 期望的假设检验 σ_1, σ_2 已知 \dots	
	4.3.2 期望的假设检验 $\sigma_1^2 = \sigma_2^2 = \sigma^2$	
	4.3.3 期望的假设检验 σ_1^2, σ_2^2 未知, $\sigma_1 \neq \sigma_2$, 大样本	
	21010 77422H3 HA SA 12322 0 1, 0 2 717H, 0 1 / 0 2, 7 VIII / 1 · · · · · · · ·	50

目录		III
	$4.3.4$ 期望的假设检验 σ_1^2, σ_2^2 未知, $\sigma_1 \neq \sigma_2$, 小样本	36
	4.3.5 方差的假设检验	36
4.4	成对数据的比较	36
4.5	似然比检验	37
4.6	广义似然比检验	38
4.7	拟合优度检验	39
4.8	列联表	40
4.9	其他非参数检验	40
<i>kk</i> — 11		
第五章	一元线性回归	41
5.1	相关系数	41
5.2	一元线性回归模型	41
5.3	估计的性质	42
5.4	显著性检验	42
	5.4.1 F 检验法	42
	5.4.2 判别系数 r 检验法	43
	5.4.3 t 检验法	43
5.5	点估计与区间估计	43
	5.5.1 点估计	43
	5.5.2 区间估计	43

第一章 总体与样本

1.1 总体与样本的概念

我擅长以例子来理解数学概念,所以样本与总体,我同样以例子作为 起始。

假设我要统计一个地区的平均身高。我们不妨设这个地区的人的身高满足正态分布。即 $N(\mu, \sigma^2)$

事实上,我们一般情况下对于参数 μ, σ 是不知道的,这正是我们统计 意义。

在这个例子中,总体为这个地区(为了方便我记该地区为 A)所有人的身高,是"所有人的身高",而并非"所有人",我想这很容易理解。

在这个例子中,我们可以考虑将 A 地区的所有人的身高都测量一遍,但那无疑是愚蠢的,费时费力。

我们常用的手法是抽取一定的样本。为了方便我设 A 地区共有 100 人。 其中我抽取 10 个个体的身高, X_1, X_2, \cdots, X_{10} ,构成一个随机向量 $X = (X_1, X_2, \cdots, X_{10})$ 。该随机向量我们称之为样本。

事实上,我们有时候也会将 X_i 称为样本,注意不要引起歧义,在本文中,我一般称之为"个体"。

这里将是第一个难点。

 X_i 是随机变量!

 X_i 是随机变量!

 X_i 是随机变量!

重要的话说三遍,我知道这很难理解,但事实就是如此。 样本具有随机性与确定性。

- 随机性是指,我们抽取样本时,是随机抽取的。
- 确定性是指,我们抽取的样本是会以数据的形式呈现。

也就是说,样本是随机变量,又是数据。在此,我认为理解样本时,暂且不要将其理解为数据。

样本 X_1, X_2, \dots, X_{10} 代表的仅仅是随机抽选的 10 个个体的身高,而并非是"165cm,170cm, \dots ,155cm"这些具体的数值。只是代表"身高"这个概念,而并不是具体的数值。

我们将这些具体的数值以另一种形式去呈现,即样本的观测值 x_1, x_2, \cdots, x_{10} 。 如果你对分析中的集合论部分足够了解,应该很容易构造一个二者的映射。

将样本与观测值区分开是有好处的,尽管很多时候,他们可以合二为 一

比如上述例子中的身高,就可以合二为一,但我还是倡导分开理解。

再比如测量一批产品的次品率,这时候 X_i 表示"好产品"或"坏产品",而对应的观测值 x_i 可以为 1 或 0。1 代表好产品,2 代表坏产品也就是次品。

也就是说, X_i 是随机的,而其观测值 x_i 是确定的。

也就是对同一个 X_i 进行多次观测,得到的 x_i 是不一样的。这话其实说的并不合理,因为 X_i 未必是同一个,而是随机抽取的,得到的 x_i 自然是不同的。

说了这么多,就是为了说明,样本是随机变量,为什么要着重强调这一点,因为既然是随机变量,就会满足一定的分布,在后面我们会详细的说明这一点。

1.2 抽样

抽样是十分重要的,不当的抽样会让我们对整体信息的把控出现偏差,有时候这些偏差是致命的。

这让我想起了盲人摸象的故事。

第一个盲人摸了大象的身体,认为这是一堵墙。

第二个盲人摸了大象的耳朵,认为这是一把扇子。

这是因为他们的抽样次数太少了,只掌握了部分信息,才会出现如此大的错误。

在此,不仅仅是抽样次数,如何抽样也是一个问题。

试想水油分层的小实验,如果我事先并不知道这是水油的混合物,我 在上层抽取的很多样本,于是我得到结论,这杯液体是油。这显然也是荒谬 的。

- 一般我们抽取的叫做简单随机样本,其具有以下特点。
- 样本要简单,换言之个体之间相互独立,这会大大简化我们对样本的 处理。
- 样本要和总体具有同样的随机性,换言之,同分布。

1.3 统计量

统计量:完全由样本所决定的量,不由参数决定。当然这其中有一些我们比较常用的统计量

1.3.1 样本均值

设 X_1, X_2, \dots, X_n 为样本,则样本均值为:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

我们知道 X_i 是随机变量,因此, \bar{X} 也是随机变量,尽管一般情况下, 它的观测值只有一个。

我们通常在简单随机样本的情况下,用样本均值估计总体分布的均值, 也就是期望。

样本方差 1.3.2

设 X_1, X_2, \cdots, X_n 为样本,则样本方差为:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2})$$

我们通常在简单随机样本的情况下,用样本方差估计总体分布的方差。 同样的, 样本方差也是个随机变量, 尽管通常情况下表现为一个确定的 数.

样本方差与方差的关系

$$Var(\bar{x}) = \frac{\sigma^2}{n}$$

证明:

$$Var(\bar{x}) = \frac{1}{n^2} Var(\sum_{i=1}^{n} x_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

$$E(S^2) = \sigma^2$$

证明:

$$E(S^{2}) = E(\frac{1}{n-1}(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}))$$
$$= \frac{1}{n-1}(\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\bar{X}^{2}))$$

根据方差的性质我们有以下式子

$$\sigma^2 = E(X^2) - \mu^2$$

$$E(X^2) = \sigma^2 + \mu^2$$

$$E(\bar{X}^2) = Var(\bar{X}) + [E(\bar{X})]^2 = \frac{\sigma^2}{n} + \mu^2$$

代入得到:

$$E(S^{2}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\bar{X}^{2}) \right)$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (\sigma^{2} + \mu^{2}) - n(\frac{\sigma^{2}}{n} + \mu^{2}) \right)$$
$$= \sigma^{2}$$

对此, 我们有大数定律:

$$\lim_{n \to \infty} P(|\bar{X} - \mu| < \epsilon) = 1$$

假设我们取 n 个样本, 计算出每个样本的样本方差 $S_1^2, S_2^2, \cdots, S_n^2$, 求出算数平均值:

$$\bar{S}^2 = \frac{S_1^1 + S_2^2 + \dots + S_n^2}{n}$$

代入得到:

$$\lim_{n \to \infty} P(|\bar{S}^2 - \sigma^2| < \epsilon) = 1$$

我们可以拿这个平均值逼近总体的方差.

自由度

这里 n-1 称为自由度.

自由度有两种理解方式:

- 一共有 n 个数值 X_1, X_2, \dots, X_n 应该有 n 个自由度 (因为每个样本可以自由变化, 不受其他样本的影响牵连), 但已经有一个自由度用于估计 \bar{X} , 所以还剩 n-1 个自由度. 也就是说, 因为 \bar{X} 的存在, 我们只需要知道 n-1 个 X_i , 就可以知道所有的 X_i
- 若以 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 代入 $\sum_{i=1}^{n} (X_i \bar{X})^2$ 中, 而将其整理成二次型 $\sum_{i,j=1}^{n} a_{ij} X_i X_j (a_{ij} = a_{ji})$, 不难验证: 方阵 $A = (a_{ij})$ 的秩为 n-1, 自由度就定义为这个秩.

当然, 为什么样本方差要除以这个自由度, 在之后将予以阐述.

1.3.3 次序统计量

在此引入次序统计量, 何为次序统计量? 设 X_1, X_2, \cdots, X_n 为样本. 之后得到相应的观测值 x_1, x_2, \cdots, x_n 将观测值从小到大排列 $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$ 再找出对应的样本 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$

称 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ 为次序统计量, 有时候我们也称 $X_{(i)}$ 为次序统计量

次序统计量也是随机变量, 因为样本是随机变量.

这个其实理解起来可能有些困难,因为在次序统计量中涉及到了观测值,这可能让人对样本造成误解,认为样本就是数据.

但其实可以这么想, 样本是随机抽取的, 每次抽取样本, 对其进行观测,都会有最小值, 第二小值,......,最大值.

每次抽取样本,观测的最小值都是不一样的,但会呈现一定的分布,也就是会围绕均值出现.

这就代表这个最小值,第二小值,...... 最大值都是随机变量. 也就是次序统计量是随机变量.

1.3.4 由次序统计量衍生出的统计量

中位数 (第 p 百分位数)

$$m = \left\{ egin{array}{ll} X_{(rac{n+1}{2})} & n$$
为奇数 $rac{1}{2}(X_{(rac{n}{2})} + X_{(rac{n}{2})}) & n$ 为偶数

中位数也被称为第50百分位数.

极值

样本的最大值和最小值, 即 X_n 和 X_1

极差

最大值与最小值之差, 即 $X_n - X_1$

经验分布函数

为什么引入经验分布函数,因为有些时候我们可以通过样本分布来估计总体分布.

而经验分布函数是依概率收敛于总体分布

定义: 设 X_1, X_2, \dots, X_n 为样本. 对应的次序统计量为 $X_{(1)}, X_{(2)}, \dots, X_{(n)}$, 当给定次序统计量的观测值 $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ 时, 对任意实数 x 时, 对任意实数 x, 称下列函数

$$F_n(x) = \begin{cases} 0 & x < x_{(1)} \\ \frac{k}{n} & x_{(k)} \ge x \ge x_{(k+1)} \\ 1 & x_{(n)} \ge x \end{cases}$$

当然, 其实这并不是特别重要, 因为很多时候我们并不需要估计总体的分布, 而是估计总体分布的某些参数.

Clivenkotheorem

设总体 X 的分布函数为 F(x), 经验分布函数为 $F_n(x)$, 对任意实数 x, 记

$$D_n = \sup\{|F_n(x) - F(x)|, -\infty < x < +\infty\}$$

則 $P\{\lim_{n\to\infty} D_n = 0\} = 1$

当然, 上述的所有前提, 都是样本足够大.

第二章 抽样分布

我们已经知道了,在数量足够大的情况下,总体的均值和方差是可以用样本均值和样本方差替代的.

然而很多时候,数量 n 都不会足够的大,这时候我们用样本均值和方差 预测是十分危险的,运气不好的话会和总体的均值和方差有很大的偏差.

但所幸的是, 样本均值和样本方差都是随机变量, 既然是随机变量, 就会满足一定的分布.

2.1 初论样本均值和方差的分布

设 X_1, X_2, \dots, X_n 为取自正态总体 $N(\mu, \Sigma^2)$ 的简单随机样本. 对应的样本均值为 \bar{X} , 则样本均值的随机分布为:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

或

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

证明:

由正态分布性质得到:

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} \sim N(\mu, \frac{\sigma^2}{n})$$

第二章 抽样分布

10

又根据正态分布的性质: $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$

上述是在总体是正态分布的情况下得到的.

但事实上, 如果总体不是正态分布, 只要 n 足够的大, 那么样本均值同样符合正态分布

设 X_1, X_2, \dots, X_n 为取自总体的简单随机样本. 对应的样本均值为 \bar{X} , 其中 $E(X) = \mu, Var(X) = \sigma^2$ 当 n 足够大时, 则样本均值的随机分布为:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

证明:

假设

$$Y = \frac{X_1 + X_2 + \dots + X_n}{\sigma \sqrt{n}}$$

根据中心极限定理:

$$\lim_{n \to \infty} = F_r(y) = \lim_{n \to \infty} P(Y \ge y) = \Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{t^2}{2}} dt$$

也就是说, 在 n 足够大的前提条件下

$$Y \sim N(0,1)$$
 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

我们看似已经知道了样本均值的分布, 但实际上这是没有意义的, 因为 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, 要想知道样本均值的分布, 我们还是要知道总体的均值和方差.

但正是因为我们得不到样本均值的均值和方差,我们才不得不去寻求样本的分布.

但我们并非一无所获,因为很多时候我们是可以知道总体方差的,所以我们可以去用样本均值来估计总体均值,并且由于我们得到了样本均值的分布,这个估计会更加准确.

但并不是每次都会那么幸运的知道总体分布,这就又陷入了一个困境. 幸运的是这个问题同样是可以被解决的.

2.2 三大分布

为了解决上述问题, 我们要引入三大分布.

2.2.1 卡方分布

随机变量 X_1, X_2, \cdots, X_n 相互独立, 都服从 N(0,1) 则随机变量:

$$X^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

的概率密度函数为:

$$P(x) = \frac{1}{\Gamma(\frac{n}{2})2^{\frac{2}{n}}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} \quad (x > 0)$$

其中伽马函数为: $\Gamma(x) = \int_0^\infty \frac{t^{x-1}}{e^t} dt$

称 X^2 服从自由度为 n 的卡方分布, 记作: $X^2 \sim X^2(n)$. 其期望和方差分别为:

$$E(X^2) = n, \quad Var(X^2) = 2n$$

证明:

$$(1)E(X^2) = n$$

$$E(X_i^2) = D(X_i) + EX_i^2 = 1 + 0 = 1$$

$$E(X^2) = E(X_1^2 + X_2^2 + \dots + X_n^2) = n$$

$$(2)Var(X^2) = 2n$$

$$Var(X_i^2) = E(X_i^4) - E(X_i^2)^2 = 3 - 1 = 2$$

 $Var(X^2) = Var(\sum_{i=1}^n X_i^2) = 2n$

2.2.2 t 分布

设 $X \sim N(0,1), Y \sim X^2(n)$

X 和 Y 相互独立, 则随机变量:

$$T = \frac{X}{\sqrt{\frac{Y}{n}}}$$

的概率密度函数为:

$$P(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}, \quad -\infty < x < +\inf ty$$

称 T 服从自由度为 n 的 t 分布, 记作: $T \sim t(n)$, 其期望和方差为:

$$E(T) = 0$$
 $(n > 1), Var(T) = \frac{n}{n-2}$ $(n > 2)$

特别的当 n=1 时,这个分布被称为柯西分布,是个极其特殊的分布,没有 k 阶距.

证明:

2.2.3 F 分布

设 $X \sim X^2(n)$ $Y \sim X^2(m)$

X 和 Y 相互独立, 则随机变量:

$$F = \frac{\frac{X}{n}}{\frac{Y}{n}}$$

的概率密度函数为:

$$P(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{\frac{m}{2}}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} x^{\frac{m}{2}-1} (1 + \frac{m}{n}x)^{-\frac{m+n}{2}}$$

称 F 服从自由度为 (n,m) 的 F 分布, 记作:

$$F \sim F(n,m)$$

, 期望和方差为:

$$E(F) = \frac{n}{n-2} \quad (n > 2), Var(F) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \quad (n > 4)$$

证明:

2.3 再论样本均值与方差的分布

与上次不同的是, 这次我们将先从样本方差入手, 并且我们更加关注的 是正态总体

2.3.1 样本方差的分布

设 X_1, X_2, \dots, X_n 为取自正态总体 $N(\mu, \Sigma^2)$ 的简单随机样本. 对应的样本均值为 \bar{X} , 则样本方差为:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})$$

我们有 $\frac{(n-1)S^2}{\sigma^2} \sim X^2(n-1)$ 并且 \bar{X} 与 S^2 独立证明:

第二章 抽样分布 14

这无疑是个很好的结果, 我们可以用这个结果来限定 $S^2: \sigma^2$, 将之限制 在自由度为 n 的卡方分布当中了.

这样就可以确定我们的样本方差与总体方差的逼近程度了.

再来看样本均值

2.3.2 样本均值的分布

当我们知道总体方差的时候, 我们可以用 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

当我们不知道总体方差的时候呢? 我们依旧有方法来描述样本均值与总体均值的逼近程度

设 X_1, X_2, \dots, X_n 为取自正态总体 $N(\mu, \Sigma^2)$ 的简单随机样本, 则有:

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim t(n-1)$$

证明:

己知 $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$

然后:

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}}$$

根据 t 分布的定义我们有:

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim t(n-1)$$

根据这个定理, 我们就不需要去知道总体方差 σ^2 , 只需要算出样本方差 S^2 就可以知道 $\bar{X} - \mu$ 被限制在自由度为 n-1 的 t 分布范围内了.

2.3.3 关于 F 分布

最后, 为什么要引入 F 分布

分别取自两个正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的两个简单随机样本:

$$X_1, X_2, \cdots, X_n$$
 Y_1, Y_2, \cdots, Y_m

这两个样本相互独立, 其样本均值为:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \bar{Y} = \frac{1}{m} \sum_{i=1}^{n} Y_i$$

样本方差为:

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y})^2$

则有:

$$\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} = \frac{S_X^2/S_Y^2}{\sigma_1^2/\sigma_2^2} \sim F(n-1, m-1)$$

证明:

根据之前的方差分布:

$$\frac{(n-1)S_X^2}{\sigma_1^2} \sim X^2(n-1), \frac{(m-1)S_Y^2}{\sigma_2^2} \sim X^2(m-1)$$

根据条件可知 S_X^2 和 S_Y^2 独立, 所以根据 F 分布的定义有:

$$\frac{(n-1)S_X^2}{(n-1)\sigma_1^2} / \frac{(m-1)S_Y^2}{(m-1)\sigma_2^2} \sim F(n-1, m-1)$$

整理之后有:

$$\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} = \frac{S_X^2/S_Y^2}{\sigma_1^2/\sigma_2^2} \sim F(n-1, m-1)$$

第三章 参数估计

很多时候我们知道总体的分布类型,但其中含有未知的参数,我们需要估计这些参数,因此这就需要估计一下。

下面来看两种估计方式

研究某地小麦亩产量问题,已知小麦亩产量 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 未知,假设有 1000 亩地,分别记录每亩地的小麦产量,若随机抽查 50 亩地的产量数据,问小麦的亩产量是多少?

回答 1: 小麦每亩产量 600 斤

回答 2: 小麦每亩产量以 95% 的概率在 550-650 之间.

回答 1 就是我们所谓的"点估计",而回答 2 就是我们所谓的"区间估计"

本章主要介绍这两类估计

3.1 点估计

定义: 设 X_1, X_2, \dots, X_n 为取自某总体的样本, 若构造某统计量 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 作为总体分布中未知参数 θ 的近似, 可以称此统计量为估计量, 并且称此估计量 $\hat{\theta}$ 为 θ 的点估计.

点估计的方法有很多, 但在此只介绍两种主要方法: 矩估计和极大似然估计 (MLE)(也叫最大似然估计法, 网上有观点认为这两种方法有区别, 在本文中对两种叫法不作区分).

3.1.1 矩估计

 $X \sim F(X;\theta), \theta = (\theta_1, \dots, \theta_k)$ 为未知参数向量, 若 X 的 m 阶原点 矩, $\alpha_m = E(X^m) = \int_{-\infty}^{+\infty} x^m dF(X;\theta)$ 存在, $m = 1, 2, \dots, k$, 且 α_m 是 $\theta = (\theta_1, \dots, \theta_k)$ 的函数, 记作 $\alpha_m(\theta_1, \dots, \theta_k)$

$$\begin{cases} \alpha_1(\theta_1, \dots, \theta_k) = A_1 = \frac{1}{n} \sum_{i=1}^n X_i \\ \alpha_2(\theta_1, \dots, \theta_k) = A_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \\ \dots \\ \alpha_m(\theta_1, \dots, \theta_k) = A_m = \frac{1}{n} \sum_{i=1}^n X_i^m \end{cases}$$

解上述方程组, 解出 $\hat{\theta}_i = \hat{\theta}_i(X_1, X_2, \dots, X_n), i = 1, 2, \dots, k$ $\hat{\theta}_i$ 就是 θ_i 的矩估计量;

例题 1: 设总体 X 的密度函数 $f(x)=\left\{ egin{array}{ll} & \alpha x^{\alpha-1}, & 0 < x < 1 \\ & 0, & \text{其他} \end{array} \right.$,其中 $\alpha>0$ 为未知参数, X_1,X_2,\cdots,X_n 是样本,求 α 的矩估计.

解答:

总体的一阶原点矩为:

$$E(X)=\int_{-\infty}^{+\infty}xf(x)dx=\int_{0}^{1}x\alpha x^{\alpha-1}dx=rac{lpha}{lpha+1}=ar{X}$$
 求出 $lpha$ 即可

例题 2: 设总体 X 的均值 $E(X) = \mu$, 方差 $DX = \sigma^2, X_1, \dots, X_n$ 为取自总体的样本, 求 μ 和 σ^2 的矩估计.

我们知道二阶原点矩 $EX^2 = DX + (EX)^2 = \sigma^2 + \mu^2$ 令

$$\begin{cases} \mu = \bar{X} \\ \sigma^2 + \mu^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \end{cases}$$

解方程组得到:

$$\begin{cases} \mu = \bar{X} \\ \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 \end{cases}$$

看起来流程还是很简单的, 但学数学的人不懂原理的话用起来就会很不安心.

当然, 这个原理也很直观, 我们遇到 n 阶原点矩, 很自然的就会想到辛钦大数定律.

设 X_1, X_2, \dots, X_n 取自某总体的简单随机样本, 设随机变量的 k 阶距与样本的 k 阶距分别为: $E(X^k) = \mu_k, A_k = \frac{1}{n} \sum_{i=1}^n X_i^k (k = 1, 1, \dots)$

则有

$$\lim_{n \to \infty} P(|A_k - \mu_k| < \epsilon) = 1$$

也就是说 A_k 依概率收敛于 μ_k

3.1.2 矩估计习题

1. 设 X_1, X_2, \cdots, X_n 是来自下列分布的样本:

$$f(x;\theta) = \begin{cases} \frac{\Gamma(\theta+1)}{\Gamma(\theta)\Gamma(1)} x^{\theta-1}, & 0 \ge x \ge 1\\ 0, & otherwise \end{cases}$$

的总体的样本, 其中 $\theta \in (0, +\infty)$ 试用矩法估计 θ

分析: 思路还是很简单的, 样本给了, 分布给了, 一个参数, 不出意外求总体一阶矩就可以得到估计了.

解答:

$$E(X) = \int_0^1 x \cdot \theta x^{\theta-1} dx = \frac{\theta}{\theta+1}$$
 这是总体一阶矩

$$A(X) = \bar{X}$$
 这是样本一阶矩

二者相等得出估计结果

$$\hat{\theta} = \frac{\bar{X}}{1-\bar{X}}$$

2. 设 X_1, X_2, \cdots, X_n 是来自分布密度为

$$f(x; c, \theta) = \frac{1}{2\theta} I_{[c-\theta, c+\theta]}(x)$$

的总体分布的样本, $-\infty < c < +\infty$, $\theta > 0$,试用矩法估计 c 和 θ

分析: 比上一题难一点, 当然, 也就一点, 两个参数, 不出意外需要求导二阶矩, 有一点需要提示的是, $I_{[c-\theta,c+\theta]}(x)$ 为特征函数, 也就是说在指定区间 $[c-\theta,c+\theta]$ 取 1, 其他区间为 0.

解答:

$$E(X) = \int_{c-\theta}^{c+\theta} x \cdot \frac{1}{2\theta} dx = c$$

$$A(X) = \bar{X}$$

$$E(X^2) = \int_{c-\theta}^{c+\theta} x^2 \cdot \frac{1}{2\theta} dx = c^2 + \frac{1}{3}\theta^2$$

$$A(K^2) = c^2 + s^2$$

对应相等,解得估计值:

$$\begin{cases} \hat{c} = \bar{X} \\ \hat{\theta} = \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \end{cases}$$

3.1.3 极大似然估计法

有一个不透明的盒子, 里面有黑色与白色两种类型的小球, 随机的抽取一个, 是黑球.

这个时候会认为黑球要多于白球.

当然,一次试验的说服力显然不够,如果再抽取一个,依旧是黑球.

再抽取一个, 依旧是黑球.

这个时候,随着试验次数的增加,我们会越来越坚信,黑球要多于白球.这就是最大似然思想.

设总体 X 为离散型, 其分布律为 $p(X=x)=p(x;\theta),\theta$ 为未知参数, Θ 为 θ 的取值范围

设
$$(x_1, x_2, \cdots, x_n)$$
 的概率为

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X = x_i) = \prod_{i=1}^n P(x_i; \theta)$$

定义上式为似然函数, 记作 $L(\theta) = L = (x_1, x_2, \dots, x_n; \theta)$

既然在一次试验中, 样本 (x_1, x_2, \dots, x_n) 出现, 说明试验条件 θ 有利于该结果的出现, 参数 θ 应选取使该概率最大的参数值, 称为最大似然估计法.

最大似然估计法就是在参数 θ 的可能的取值范围内, 找出使似然函数 (样本结果出现的概率) $L(\theta)$ 最大的参数值 $\hat{\theta}$, $\hat{\theta}$ 即为 θ 的最大似然估计值, 相应的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为最大似然估计量.

也就是说, 求参数的最大似然估计, 就是求似然函数的最大值点的问题. 当然, 因为很多时候 $L(\theta)$ 的单调性并不好研究, 但是由于 $L(\theta)$ 与 $lnL(\theta)$ 的单调性是一致的.

于是我们更多时候用 $lnL(\theta)$

当然,连续型的时候类似,将在例题中体现.

例题 1: 已知 $X \sim B(1,p), (x_1,x_2,\cdots,x_n)$ 为一个样本, 设求 p 的最大似然估计量

$$X$$
 的分布律为 $P(X=x) = p^x (1-p)^{1-x}, x=0,1$
构造似然函数 $L(p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$
取对数 $lnL(p) = (\sum_{i=1}^n) lnp + (n-\sum_{i=1}^n x_i) ln(1-p)$
然后求导, $\frac{d}{d\theta} lnL(p) = 0$ 得到最大值点

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

最后得到的最大似然估计量为 $\hat{p} = \bar{x}$

例题 2: 设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均未知, (x_1, x_2, \dots, x_n) 为 X 的样本值, 求 μ, σ^2 的最大似然估计

X 的概率密度为: $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 构造似然函数:

$$L(\mu, sigma^2) = \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

取对数以后变成:

$$lnL(\mu, \sigma^2) = -\frac{n}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$
 分别对 μ, σ 求偏导令偏导等于 0 , 得到

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

例题 3: 设已知总体 X 在 [a,b] 上服从均匀分布,a,b 未知, (x_1,x_2,\cdots,x_n)

为 X 的一组样本. 如何求 a,b 的最大似然估计量

$$X$$
 的概率密度函数为 $f(x) = \begin{cases} \frac{1}{b-a}, & a \ge x \ge b \\ 0 & otherwise \end{cases}$

构造似然函数
$$L(a,b) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} \frac{1}{b-a} = (\frac{1}{b-a})^n$$

取对数,求偏导

但是这道题的偏导为零的点确是不存在的

$$\begin{cases} \frac{\partial}{\partial a} lnL(a,b) = \frac{n}{b-a} = 0\\ \frac{\partial}{\partial b} lnL(a,b) = -\frac{n}{b-a} = 0 \end{cases}$$

在分析学中, 我们知道偏导不存在未必会没有最值, 偏导存在也未必会 有最值

而我们的目标是要找 $(\frac{1}{b-a})^n$ 的最大值

也就是找 b-a 的最小值, 但是 b-a 却又不能尽可能的小, 因为有如下 式子成立

$$\begin{cases} a \ge \min\{x_i\} \\ b \le \max\{x_i\} \end{cases}$$

为了让 b-a 最小, 只需要

$$\begin{cases} a = min\{x_i\} \\ b = max\{x_i\} \end{cases}$$

最大似然估计法习题 3.1.4

1. 设 X 服从几何分布

$$P(X = k) = p(1 - p)^{k-1}, k = 1, 2, \cdots$$

 X_1, X_2, \dots, X_n 是 X 的简单随机样本, 试找出 p 的最大似然估计 分析: 没什么可分析的, 按步骤算就好, 此题的流程是标准流程 解答:

构造似然函数
$$L(p) = \prod_{i=1}^{n} p(1-p)^{k_i} = (\frac{p}{1-p})^n (1-p)^{\sum_{i=1}^{n} k_i}$$
 取对数得到 $lnL(p) = n[lnp + (\bar{p}-1)ln(1-p)]$ 对其求导 $\frac{d}{dp}lnL(p) = n[\frac{1}{p} - (\bar{k}-1)\frac{1}{1-p}] = 0$ 得到极值点 $\hat{p} = \frac{1}{k}$ 其中 $\bar{k} = \sum_{i=1}^{n} k_i$

2. 设 X 的分布密度是

$$f(x) = \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|x|} \quad (\sigma > 0)$$

 X_1, X_2, \cdots, X_n 是 X 的简单随机样本, 试求 σ 的最大似然估计 分析: 标准流程

构造似然函数
$$L(p) = \prod_{i=1}^n \frac{1}{2\sigma} e^{-\frac{1}{\sigma}|x_i|} = (\frac{1}{2\sigma})^n e^{\frac{1}{\sigma} \sum\limits_{i=1}^n |x_i|}$$

取对数得到
$$lnL(p) = -nln2\sigma - \frac{1}{\sigma} \sum_{i=1}^{n} |x_i|$$

对其求导
$$\frac{d}{dp}lnL(p) = -(\frac{n}{\sigma} - \frac{1}{\sigma^2}\sum_{i=1}^{n}|x_i|) = 0$$

得到极值点
$$\hat{\sigma} = \frac{\sum\limits_{i=1}^{n}|x_i|}{n}$$

3. 设
$$X_1, X_2, \dots, X_n$$
 是来自下列两参数指数分布的样本:
$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2} e^{-\frac{1}{\theta_2}(x-\theta_1)}, & x \leq \theta_1 \\ 0, & x < \theta_1 \end{cases}$$

其中 $\theta_1 \in (-\infty, +\infty)$, $\theta_2 \in (0, +\infty)$, 试求出 θ_1 和 θ_2 的最大似然估计 分析: 依旧是标准流程, 难一点, 真就一点

解答:

构造似然函数
$$L(p) = \prod_{i=1}^{n} \frac{1}{\theta_2} e^{-\frac{1}{\theta_2}(x_i - \theta_1)} = (\frac{1}{\theta})^n e^{-\frac{1}{\theta_2}(\sum_{i=1}^{n} - n\theta_1)}$$

上述这个式子的前提是 $x_1, x_2, \cdots, x_n \geq \theta_1$ 也就是说 $\theta_1 \leq min\{x_1, x_2, \cdots, x_n\}$ 我们只关注这一部分,因为其他部分的概率为 0,没有研究的必要 取对数 $lnL(\theta_1, \theta_2) = -nln\theta_2 - \frac{\sum_{i=1}^{n} x_i}{\theta_2} + n\frac{\theta_1}{\theta_2}$ 分别求偏导
$$\frac{\partial}{\partial \theta_1} lnL(\theta_1, \theta_2) = \frac{n}{\theta_2} > 0$$
 解得 $\hat{\theta}_2 = \bar{X}$

在此情况下, 要想使对数似然函数取得最大, 只需要 θ_1 取最大, 而幸运的是, 这个恰好有范围, 只需要取 $\hat{\theta} = min\{x_1, x_2, \cdots, x_n\}$

4. 设随机变量 X 以均等机会按 $N \sim (0,1)$ 分布取值和按 $N \sim (\mu, \sigma)$ 分布取值 $(\mu, \sigma^2 + \pi), -\infty < \mu < +\infty, \sigma^2 > 0)$ 这时 X 的分布密度为这两个分布的密度的平均, 即

$$f(x; \mu, \sigma^2) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \frac{1}{2} \frac{1}{\sqrt{2\pi}\sigma} r^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

设 X_1, X_2, \dots, X_n 为此混合分布的简单随机样本, 试证明 μ 和 σ^2 不存在最大似然估计.

分析: 这题还算比较难, 这是两个分布的混合分布, 单独拿出每一个正态分布, μ 和 σ^2 都存在最大似然估计, 但题目要证明的是混合分布不存在, 这就说明, 一个正态分布必然会受另一个分布的影响, 导致不存在最大似然估计. 其实我们可以简化这道题, 题目取 n 个样本, 这样构造似然函数会涉及到连乘, 会给我们的求解造成很大的困扰. 不妨取 n=1 这样分析起来会比较容易, 但证明的时候还需要一般化的证明, 我们只需要证明似然函数无解即可. 但这个似然函数为二元函数找这个无界点还是很困难的.

求解:

构造似然函数:

$$\begin{split} L(\mu,\sigma^2) &= (\frac{1}{2})^n \frac{1}{\sqrt{2\pi}} e^{\sum_{i=1}^n -\frac{x_i^2}{2}} \prod_{i=1}^n [1 + exp\{-\frac{(x_i - \mu)^2}{2\sigma^2} + \frac{x_i^2}{2} - ln\sigma^2\}] \\ &= (\frac{1}{2})^n \frac{1}{\sqrt{2\pi}} e^{\sum_{i=1}^n -\frac{x_i^2}{2}} [1 + exp\{-\frac{(x_1 - \mu)^2}{2\sigma^2} + \frac{x_1^2}{2} - ln\sigma^2\}] \\ &\cdot [1 + exp\{-\frac{(x_2 - \mu)^2}{2\sigma^2} + \frac{x_2^2}{2} - ln\sigma^2\}] \cdot \dots \cdot [1 + exp\{-\frac{(x_n - \mu)^2}{2\sigma^2} + \frac{x_n^2}{2} - ln\sigma^2\}] \end{split}$$

为了方便, 我们考察其中一项

$$f_i(\mu, \sigma^2) = 1 + exp\{-\frac{(x_i - \mu)^2}{2\sigma^2} + \frac{x_i^2}{2} - ln\sigma^2\}$$
 lim_{(\mu, \sigma^2) \rightarrow (x_i, 0)} $f(\mu, \sigma^2) = +\infty$ 不失一般性,令 $(\mu, \sigma^2) \to (x_1, 0)$ 此时 $lim_{(\mu, \sigma^2) \to (x_1, 0)} f(\mu, \sigma^2) = +\infty$ 而对于 $i = 2, 3, \cdots, n$ 则有 $f_i(\mu, \sigma^2) = 1 + exp\{-\frac{(x_i - \mu)^2}{2\sigma^2} + \frac{x_i^2}{2} - ln\sigma^2\} > 1$ 则 $\lim_{(\mu, \sigma^2) \to (x_1, 0)} L(\mu, \sigma^2) = +\infty$ 无界

故无最大似然估计.

3.2 点估计的优良性

我们知道,点估计可以有很多个,但如何判断哪个点估计是最优的,可以从以下三方面入手.

3.2.1 相合性

相合性也被称为一致性. 它的直观上的理解就是, 随着样本量 n 的增加, 估计量会越来越接近真值.

这个特性实际上是很有必要的,因为在实际中,我们能控制的只有样本量,我们希望样本量越大,我们的估计越接近真值.

25

相合性用数学语言表达为: 如果对 $\forall \epsilon > 0, \hat{\theta_n}$ 依概率收敛到参数 θ

$$\lim_{N \to +\infty} P(|\theta_n - \theta| > \epsilon) = 0$$

则称 $\hat{\theta}_n$ 是 θ 的相合估计量或一致估计量.

特别的,如果将依概率收敛改为几乎处处收敛,那么则称为强相合估计.但其实,要想证明相合性是一件十分困难的事情,在这里我们不给予证

但其实,要想证明相合性是一件十分困难的事情,在这里我们不给予证明的给出两种方法

 $1.\hat{\theta}_n$ 是 θ 的无偏估计, 如果 $\lim_{n\to\infty} D(\hat{\theta}) = 0$, 则 $\hat{\theta}_n$ 必为 θ 的相互估计.(无偏性的概念将在后面阐述)

2. 如果 $\hat{\theta}_n$ 是 θ 的相合估计, $g(\theta)$ 连续, 则 $g(\hat{\theta}_n)$ 为 $g(\theta)$ 的相合估计.

3.2.2 无偏性

我们希望我们的点估计不会偏离真值太远, 而是在真值周围浮动. 这就需要这个点估计量具有无偏性, 即:

$$E(\hat{\theta}) = \theta$$

在这里的时候也许会有疑问, 其实我们并不知道真值是多少, 那么要如何去计算 $E(\hat{\theta}) = \theta$

其实并不需要我们知道真值是多少,因为每一个样本都是与总体同分布的,我们可以根据期望的性质来判断上式是否成立 $E(\hat{\theta}) = \theta$

如果用一个比喻的话, 无偏性就是一把带有准星的枪, 无论怎样都可以打到靶心附近

这也就是为什么样本方差的分母是 n-1 了.

3.2.3 有效性

对于两个估计量, 如何判断其更有效.

这里引入均方误差的概念

如果有两估计量 $\hat{\theta}_1$ 和 $\hat{\theta}_2$, 前者的均方误差更小, 则称前者更为有效.

我们很希望找到找到这样一个估计值,它同时满足相合性,无偏性,以及有着较小的均方误差.

但事实上总是事与愿违, 找到这样的一个统计量并不容易.

3.2.4 完全充分统计量

之前在统计量的章节说过一些常用的统计量,那么为什么我们要用比如样本均值,样本方差这些统计量来描述样本呢?

事实上, 样本均值是充分统计量.

什么是充分统计量, 粗略的讲, 充分统计量就是能充分描述总体的量, 也就是说, 有了充分统计量, 丢掉样本也没什么大关系.

在知乎上找到了一个有趣的例子.

假设你辛辛苦苦收集的 500 个数据全都写在了一张纸上,这些数据是给你写论文用的,非常重要。突然有一天你的狗把你这张写满数据的纸吃掉了,这个时候假如你的数据满足正态分布,且你已经提前把这些数据的均值和方差记录在另外一张纸上了,那你的狗也没坏了什么大事——因为这两个充分统计量包含了这 500 个数据的所有有用信息。

当然这只是粗略的理解.

在我们做估计的时候, 比如正态分布我们要估计均值和方差, 我们会用样本均值和样本方差来估计总体的均值和方差.

当然,估计参数的信息是包含在样本当中,但样本当中确实有很多无用的信息.

充分统计量的意义在于, 如果给定了样本统计量的值, 那么分布就与参

数无关了

还是在知乎上找到的一个理解, 通俗却不失准确

得到一个统计量,那么我们就是想用统计量来对未知参数进行分析,对 未知参数估计的数值总是来自于统计量的一个取值,那么,在给定统计量的 一个取值之后,我们就用那个数值当做参数的值去刻画总体的分布了,但是 在统计量取定那个值以后,再次去观察样本的联合分布时,也就是最能够 反应所得到样本信息的分布时,如果发现联合分布里面还有未知参数的话, 那说明现在手中这个参数估计值没啥用,还不能把样本联合分布刻画出来, 所以,当给定了参数估计值后,样本的联合分布里面没有未知参数,这个估 计值才算是足够充分的刻画了样本。

现在再来看这个没头没脑的定理, 我想会简单很多.

定理 3.2.1. 因子分解定理 $T(X_1, X_2, \cdots, X_n)$ 是 θ 的充分统计量的充要条件是:

$$L(\theta) = \prod_{i=1}^n f(x_i;\theta) = g(T(x_1,x_2,\cdots,x_n);\theta)h(x_1,x_2,\cdots,x_n)$$
 其中 $f(x;\theta)$ 是总体的密度函数, g 是 $T(X_1,X_2,\cdots,X_n)$ 的函数依赖于 $\theta,h(x_1,x_2,\cdots,x_n)\geq 0$ 不依赖于 θ

事实上, 充分统计量的值是由参数所决定的, 也就是说, 给出充分统计量的值, 参数也就随之确定了, 所以充分统计量描述了参数的信息.

注 3.2.1. 1. 充分统计量不是唯一的

- 2. 维数越少的充分统计量越有价值
- 3. 并非所有分布都存在降维的充分统计量
- 4. 若 $T \to \theta$ 的充分统计量, 函数 u(T) 具有单值反函数, 则 u(T) 也是 θ 的充分统计量, 也就是说, 一一映射之后还是充分统计量

在点估计的优良性章节, 我们其实首先要保证无偏性, 再去保证有效性.

第三章 参数估计 28

也就是说, 我们想找到无偏估计中最有效的那个, 被称为最小方差无偏估计 (MVUE)

定理 3.2.2. 设 $T(X_1, X_2, \cdots, X_n)$ 是 θ 的充分统计量, $S(X_1, X_2, \cdots, X_n)$ 是 $g(\theta)$ 的无偏估计量,且对 $\forall \theta \in \Theta, D(S) < \infty$, 令 $T^* = E[S|T]$,则对 $\forall \theta \in \Theta$ 有

$$E(T^*) = g(\theta), D(T^*) \le D(S)$$

且除 $P(S = T^*) = 1$ 外, 上述不等式中严格不等号成立.

定理写的太难看了, 其实的意思就是, 要找最小方差无偏估计, 只需要构造充分统计量, 之后构造充分统计量的一一映射, 使其无偏即可.

定义 3.2.3. 完全统计量 称统计量 T 为完全统计量, 如果对任意定义在 T 的值域上的实函数 h, 只要 E(h(T)) = 0, 就有 h(T) = 0 几乎处处成立

定理 3.2.4. Cramer-Rao 不等式 设总体 X 为连续型随机变量, 密度函数 为 $f(x;\theta),\theta$ 为未知参数, $\theta \in \Theta$, (X_1,X_2,\cdots,X_n) 为来自该总体的一个样本, $T(X_1,X_2,\cdots,X_n)$ 为 $g(\theta)$ 的无偏估计量. 如果满足下列正则条件:

1.
$$I(\theta)=E[\frac{\partial lnf(X;\theta)}{\partial \theta}]^2>0$$
, 其中 $E=\{x:f(x;\theta)\neq 0\}$ 与 θ 无关

2.
$$\frac{f(x;\theta)}{\partial \theta}$$
 存在, 并且 $(积分与求导可交换次序)$ $\int_{-\infty}^{+\infty} \frac{\partial f(X;\theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} f(x;\theta) dx = 0$ $\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\partial}{\partial \theta} L(x_1, x_2, \cdots, x_n; \theta) dx_1 \cdots dx_n = \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} L(x_1, x_2, \cdots, x_n; \theta) dx_1 \cdots dx_n = 0$

3.
$$g'(\theta)$$
 存在,且 $g'(\theta) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} T(x_1, x_2, \cdots, x_n) \frac{\partial}{\partial \theta} L(x_1, x_2, \cdots, x_n; \theta) dx_1 \cdots dx_n$
则有 $D(T) \geq \frac{|g'(\theta)|^2}{nl(\theta)}$,特别当 $g(\theta) = \theta$ 时, $D(T) \geq \frac{1}{nl(\theta)}$

3.3 区间估计的概念

点估计实际上只给出了真实值大概是多少, 但事实上, 我们并不知道点估计的值距离真实值到底有多远, 因此, 区间估计应运而生.

第三章 参数估计 29

以样本均值为例,样本不同得到的样本均值 \bar{X} 也就不一样,样本均值 \bar{X} 到真实值 μ 的距离也不相同,那么怎么才能保证取的 \bar{X} 周围的区间能涵 盖真值呢?

当然,取一个特别大的区间当然是可以的,但那就没有价值了.

于是,我们要求区间宽度要要有足够的覆盖率,这个覆盖率一般都会取95%,也就是说,计算出100次样本均值,平均下来要有95次可以覆盖到真值,并且在保证覆盖率的情况下,区间宽度要尽可能的短.

这样构造的区间就是 μ 的置信区间, 覆盖率为 95% 的置信区间也可以 称为置信水平为 95% 的置信区间.

如果总体 $X \sim N(\mu, \sigma^2)$, 样本 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

也就是说 \bar{X} 的变动是一个以真值为中心的正态分布, 因此可以取以中间 95% 对应的区间作为置信区间.

为了方便还是稍微做一下变换 $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

那么求这个区间就变成了

$$P(-z_{0.975} < Z < z_{0.975}) = 95\%$$

这里的分位点采用陈家鼎数理统计学讲义中的定义方式.

$$[\bar{X} - \frac{\sigma}{\sqrt{n}}z_{0.975}, \bar{X} + \frac{\sigma}{\sqrt{n}}z_{0.975}]$$

定义 3.3.1. 置信区间 设总体 X 的分布函数含有一个未知参数 $\theta \in \Theta(\Theta)$ 为 θ 可能的取值范围),对于给定值 $\alpha,0<\alpha<1$,若由来自 X 的样本 X_1,X_2,\cdots,X_n 确定的两个统计量 $\underline{\theta}=\underline{\theta}(X_1,X_2,\cdots,X_n)$ 和 $\overline{\theta}=\overline{\theta}(X_1,X_2,\cdots,X_n)$,对于任意 $\theta\in\Theta$ 满足:

$$P(\underline{\theta} \le \theta \le \overline{\theta}) \ge 1 - \alpha$$

则称随机区间 $(\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha$ 的置信区间, $\underline{\theta}, \overline{\theta}$ 分别称为置信下限和置信上限, $1-\alpha$ 称为置信水平

3.4 一元正态总体下的区间估计

3.4.1 均值的置信区间

如果
$$\sigma$$
 已知
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

$$P(\underline{\mu} < Z < \overline{\mu}) = 1 - \alpha$$
 如果 σ 未知
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n - 1)$$

$$P(\mu < T < \overline{\mu}) = 1 - \alpha$$

3.4.2 方差的置信区间

$$\mu$$
 已知的情况
$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)$$
 μ 未知的情况下,有:
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

3.5 二元正态总体下的区间估计

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

当 σ_1, σ_2 已知:
$$\mu_1 - \mu_2 \text{ 的置信区间取枢轴量 } Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

因为 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 所以 $\bar{X} - \bar{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$
当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知:
$$\mu_1 - \mu_2 \text{ 的置信区间取枢轴量 } T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

因为:

$$\begin{split} \bar{X} - \bar{Y} &\sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) \\ \frac{(n_1 - 1)S_X^2}{\sigma^2} &\sim \chi^2(n_1 - 1), \frac{(n_2 - 1)S_Y^2}{\sigma^2} \sim \chi^2(n_2 - 1) \\ \text{所以} \ \frac{1}{\sigma^2}[(n_1 - 1)S_x + (n_2 - 1)S_y] &\sim \chi^2(n_1 + n_2 - 2) \ \text{由t} \ \text{分布的定义} \end{split}$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})\sigma^2}} / \sqrt{\frac{(n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2}{(n_1 + n_2 - 2)\sigma^2}} \sim t(n_1 + n_2 - 2)$$

$$\frac{\sigma_1^2}{\sigma_2^2}$$
的置信区间选取枢轴量 $F = \frac{S_Y^2/\sigma_2^2}{S_X^2/\sigma_1^2} \sim F(n_2-1,n_1-1)$ $\frac{(n_1-1)S_X^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_Y^2}{\sigma^2} \sim \chi^2(n_2-1)$ 所以 $\frac{(n_2-1)S_Y^2}{(n_2-1)\sigma^2}/\frac{(n_1-1)S_X^2}{(n_1-1)\sigma_1^2} \sim F(n_2-1,n_1-1)$

第四章 假设检验

4.1 假设检验的概念

从 Fisher 的女士品茶故事开始, 一位女士认为自己可以分别出先放茶叶再放奶 (茶奶) 和先放奶再放茶叶 (奶茶) 的口感区别 Fisher 对此做出假设

 H_0 : 不具备正确分辨的能力, H_1 : 具备正确分辨的能力

 H_0 习惯性称为零假设或原假设, H_1 被称为备择假设

我们想把这两段文字转化成数学语言,因此将其转化为概率问题,将女士品茶猜对的杯数转换成二项分布

 $H_0: X \sim b(10, p), (p \le 0.5), H_1: X \sim b(10, p), p > 0.5$

Fisher 认为, 如果猜对 9 杯以上, 那么就说明原假设不成立. 这里的 9 杯以上被称为单边拒绝域.

之所以划定9杯以上作为拒绝域,是因为它们的概率和小于0.05

P(X > 9) = 0.0011 < 0.05

选择 0.05 是因为 Fisher 觉得 0.05 足够的小, 在此将 0.05 称作显著性 水平

如果我们改变一下假设

 H_0 : 不具备分辨的能力, H_1 : 具备分辨的能力

在此,只需要分辨出来就好了,并不需要正确,因此猜错的足够多或者 足够少时,都可以认为具有分辨能力 第四章 假设检验

33

因此假设可以改成

 $H_0: p = 0.5, H_1: p \neq 0.5$

在 H_0 成立的前提条件下, $P(X \le 1) + P(X \ge 9) = 0.022 \le 0.05$

以上被称为双边拒绝域

事实上, H_0 , H_1 的地位不是平等的,假设检验更倾向于保护原假设.

打个比方 H_0 就像是某个案件中的嫌疑人.

 $H_0: 无罪, H_1: 有罪$

由于总体和样本都是具有随机性的, 所以有可能原假设是对的, 但我们却拒绝了它, 或者原假设是假的, 我们却接受了它.

 H_0 为真 H_1 为真

拒绝 H₀ 第一类错误 (弃真) 正确决定

拒绝 H₀ 正确决定 第二类错误 (纳伪)

冤枉一个好人要比放走一个坏人更无法容忍.

因此我们可以看出第一类错误更加严重,因此实际中我们会更加注意降低第一类错误的概率,因为这两个错误发生的概率不能同时降低

4.2 一元正态总体下的假设检验

4.2.1 期望的假设检验 σ 已知

如果总体 $X \sim N(\mu, \sigma^2)$, 容量为 n 的样本均值为 \bar{X} , 假设如下:

$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$$

在 H_0 成立的前提下, 有:

$$\bar{X} \sim N(\mu_0, \frac{\sigma^2}{n})$$

还是为了方便稍作变换 $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$ 这个拒绝域很容易得到

第四章 假设检验

34

当然如果是单边检验, 以右边检验为例:

如果总体 $X \sim N(\mu, \sigma^2)$, 容量为 n 的样本均值为 \bar{X} , 假设如下:

$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$

如果 σ 已知, 在 H_0 成立的前提下, 有:

$$\bar{X} \sim N(\mu_0, \frac{\sigma^2}{n})$$

还是为了方便稍作变换 $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$

这个拒绝域很容易得到

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > z_{1-\alpha}$$

4.2.2 期望的假设检验 σ 未知

如果总体 $X \sim N(\mu, \sigma^2)$, 容量为 n 的样本均值为 \bar{X} , 假设如下:

$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$$

在 H_0 成立的前提下, 有:

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$

这个拒绝域也很容易得到

当然, 如果是大样本, 那么样本方差可直接替代总体方差

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim N(0, 1)$$

4.2.3 方差的假设检验 (μ 已知)

如果总体 $X \sim N(\mu, \sigma^2)$, 容量为 n 的样本, 假设如下:

$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$$

在 H₀ 成立的前提下, 有:

$$\chi^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

这个拒绝域很容易得到

4.2.4 方差的假设检验 (μ 未知)

如果总体 $X \sim N(\mu, \sigma^2)$, 容量为 n 的样本, 假设如下:

$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$$

在 H_0 成立的前提下, 有:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$

这个拒绝域很容易得到

4.3 两个正态总体下的假设检验

4.3.1 期望的假设检验 σ_1, σ_2 已知

 $H_0: \mu_1 = \mu_2 \Leftrightarrow H_1: \mu_1 \neq \mu_2$

检验统计量:

$$Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

4.3.2 期望的假设检验 $\sigma_1^2 = \sigma_2^2 = \sigma^2$

 $H_0: \mu_1 = \mu_2 \Leftrightarrow H_1: \mu_1 \neq \mu_2$

检验统计量:

$$T = \frac{(\bar{X} - \bar{Y})}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$\sharp + S_w = \frac{(n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2}{n_1 + n_2 - 2}$$

期望的假设检验 σ_1^2, σ_2^2 未知, $\sigma_1 \neq \sigma_2$, 大样本 4.3.3

$$H_0: \mu_1 = \mu_2 \Leftrightarrow H_1: \mu_1 \neq \mu_2$$

检验统计量
$$Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

4.3.4 期望的假设检验 σ_1^2, σ_2^2 未知, $\sigma_1 \neq \sigma_2$, 小样本

$$T = \frac{(\bar{X} - \bar{Y})}{\sqrt{\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}}} \sim t(l)$$

$$l = \frac{(\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2})^2}{\frac{S_X^4}{n_1^2(n_1 - 1)} + \frac{S_Y^4}{n_2^2(n_2 - 1)}}$$

4.3.5 方差的假设检验

 $H_0: \sigma_1^2 = \sigma_2^2 \Leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$ 检验统计量: $F = \frac{S_X^2}{S_Y^2} \sim F(n_1 - 1, n_2 - 1)$

4.4 成对数据的比较

设 X 总体和 Y 总体服从正态分布, 两总体样本数据匹配或者配对.

观测序号 样本 1 样本 2 差值

检验统计量:

$$T = \frac{\bar{Z} - d}{S_Z / \sqrt{n}} \sim t(n-1)$$

其中 $S_Z = \sqrt{\frac{\sum\limits_{i=1}^n (Z_i - \bar{Z})^2}{n-1}}$

4.5 似然比检验

定义 4.5.1. 功效函数 W 是拒绝域, $\rho_W(\theta) = P((X_1, X_2, \dots, X_n) \in W | \theta)$

定义 4.5.2. 一致最大功效检验 (UMP) 如果 W 是水平为 α 的否定域,且对一切水平不超过 α 的否定域 \tilde{W} 有 $\rho_W(\theta) \geq \rho_{\tilde{W}}(\theta)$ (对一切 $\theta \in \Theta_1$),则称 W 为一致最大功效检验.

定义 4.5.3. 无偏检验 如果 W 是水平为 α 的否定域, 若对一切 $\theta \in \Theta_1$, 有 $\rho_W(\theta) \geq \alpha$, 则称 W 是无偏检验

定义 4.5.4. 一致最大功效无偏检验 UMPU 如果 W 是无偏否定域中, 水平为 α 的一致最大功效否定域, 则称 W 是一致最大功效无偏检验.

设 X 为连续型随机变量, 密度函数为 $f(x;\theta), \theta \in \Theta = \{\theta_1, \theta_2\}, x = (x_1, x_2, \dots, x_n)$ 为样本值. 考虑检验问题 $H_0: \theta = \theta_1 \Leftrightarrow H_1: \theta = \theta_2$

定理 4.5.5. N-P 引理 给定检验水平 α , 令

$$W_0 = \{x : \lambda(x) \triangleq \frac{L(\theta_2; x)}{L(\theta_1, x)} > \lambda_0\}$$

为水平为 α 的否定域, 则它是唯一水平为 α 的 UMP 否定域且无偏. 即对任意的 W 满足 $\rho_{W_0}(\theta_2) \geq \rho_W(\theta_2)$

定理 4.5.6. 设 X 具有单参数指数型分布, 给定检验问题

 $H_0: \theta \leq \theta_1 \Leftrightarrow H_1: \theta > \theta_1$ 令 $W_0 = \{(X_1, X_2, \cdots, X_n): T > C\}$ 对 $\alpha \in (0, 1)$,若存在 C 满足

$$P(T > C|\theta_1) = \alpha$$

则 W_0 是检验水平为 α 的 UMP 否定域

很抱歉, 我一点也看不懂.

4.6 广义似然比检验

对于假设 $H_0: \theta \in \Theta_0 \Leftrightarrow H_1: \theta \in \Theta_1$, 如果 H_0 成立, 由极大似然原理, 最可能有

$$\sup_{\theta \in \Theta_0} \{L(x; \theta)\} > \sup_{\theta \in \Theta_1} \{L(x; \theta)\}$$

其中 $x = (x_1, x_2, \cdots, x_n)$ 记

$$\lambda(x) = \frac{\sup_{\theta \in \Theta} \{L(x; \theta)\}}{\sup_{\theta \in \Theta_0} \{L(x; \theta)\}} \triangleq \frac{L(\Theta)}{L(\Theta_0)}$$

则当 H_0 成立时, $\lambda(x)$ 应该较小, 否则, 就不能认为 H_0 成立, 而应认为 H_1 成立故 H_0 的拒绝域应为

$$W_0 = \{x : \lambda(x) > \lambda_0\}$$

其中 λ_0 依赖于犯第一类错误的概率 α , 当 α 给定后, λ_0 由下式确定

$$\alpha = P(\lambda(x) > \lambda_0 | \Theta_0)$$

这种检验法, 称为广义似然比检验法.

4.7 拟合优度检验

回忆高中生物, 孟德尔得出 9331 的比例. 但实际试验中几乎不可能是达到完美的 9331 的比例 我们对该比例进行的假设检验就是拟合优度检验.

离散卡方拟合优度检验

$$\sum \frac{(实际频数-理论频数)^2}{理论频数} \to \chi^2$$
(类的个数 -1) 所有类 建立假设:

 $H_0: P(A_i) = p_i$ 其中 p_i 分别为 $\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}$

类别
$$p_i$$
 np_i n_i $\frac{(n_i-np_i)^2}{np_i}$ 1 $\frac{9}{16}$ 312.75 315 0.016 2 $\frac{3}{16}$ 104.25 108 0.135 3 $\frac{3}{16}$ 104.25 101 0.101 4 $\frac{1}{16}$ 34.75 32 0.218 合计 1 556 556 0.47

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} = 0.47$$

在接受域, 因此可以接受原假设

以上为无参数的情况, 若有参数, 则首先需要对参数进行最大似然估计 卡方的自由度变为 k-1-r 即在无参数的情况下减去一个参数数量

连续卡方拟合优度检验

连续情况下则需要对其进行分类 之后与离散型一致

4.8 列联表

自己看吧, 电脑没电了, 敲不动了.

4.9 其他非参数检验

累瘫, 敲不动了

第五章 一元线性回归

5.1 相关系数

皮尔逊相关系数:

$$r = \frac{\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n}}{\sqrt{\frac{\sum (x_i - \bar{x})^2}{n}} \sqrt{\frac{\sum (y_i - \bar{y})^2}{n}}}$$

$$= \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

$$= \frac{l_{xy}}{\sqrt{l_{xx}} \sqrt{l_{yy}}}$$

斯皮尔曼相关系数:

$$r = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

5.2 一元线性回归模型

 $Y = \beta_0 + \beta_1 X + e, e \sim N(0, \sigma^2)$

用最小二乘思想得到未知参数 β_1 , β_0 的估计值,

$$\hat{\beta_1} = \frac{l_{XY}}{l_{XX}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

可证明回归直线穿过点 (\bar{X}, \bar{Y})

5.3 估计的性质

- 1. $\hat{\beta}_0$ 与 $\hat{\beta}_1$ 皆服从正态分布
- 2. $E(\hat{\beta}_1) = \beta_1, D(\hat{\beta}_1) = \frac{\sigma^2}{l_{XX}}$
- 3. $E(\hat{\beta}_0) = \beta_0, D(\hat{\beta}_0) = (\frac{1}{n} + \frac{\bar{X}^2}{l_{XX}})\sigma^2$
- 4. $E(SSE) = (n-2)\sigma^2$, 即 $\hat{\sigma^2} = \frac{SSE}{n-2}$ 是 σ^2 的无偏估计

5.4 显著性检验

离差的分解: $y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$

两边平方后有:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

离差平方和 = 残差平方和 + 回归平方和

SST = SSE + SSR

如果 SSR 的数值比较大,则 SSE 的数值比较小,回归效果比较好如果 SSR 的数值比较小,则 SSE 的数值比较大,回归效果比较差在回归方程中,我们应当判断 X,Y 之间确实有一个线性关系,这才有实际意义.

 $H_0: \beta_1 = 0$ (回归不显著) $\Leftrightarrow H_0: \beta_1 \neq 0$ (回归显著)

5.4.1 F 检验法

因为 $\frac{SSE}{\sigma^2} \sim \chi^2(n-2); H_0$ 为真时, $\frac{SSE}{\sigma^2} \sim \chi^2(1);$ 并且二者相互独立, 所以

$$F = \frac{SSR/1}{SSE/(n-2)} \sim F(1, n-2)$$

F 表明了 Y 与 X 的线性关系与残差之比

F 很大时, 表示 SSR 值比较大, 应拒绝原假设, 认为有很好的线性关系

5.4.2 判别系数 r 检验法

容易验证
$$SSR = \hat{\beta}_1 L_{XY} = \frac{l_{XY}}{l_{XX}}, r^2 = \frac{l_{XY}^2}{l_{XX}l_{XY}}$$
 $r = \sqrt{\frac{l_{XY}^2}{l_{XX}l_{YY}}} = \sqrt{\frac{SSR}{SST}}$ $|r|$ 较大, 则线性回归显著, 回归效果比较好.

5.4.3 t 检验法

因为
$$\frac{SSE}{\sigma^2} \sim \chi^2(n-2); \hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{l_{XX}})$$

$$T = \hat{\beta}_1 \sqrt{\frac{l_{XX}}{SSE/(n-2)}} \sim t(n-2)$$

5.5 点估计与区间估计

5.5.1 点估计

当 $x=x_0$ 时, 用 $\hat{y_0}=\beta_0+\beta_1x_0$ 预测 Y_0 的观测值 y_0 称为点估计, 可以证明点估计无偏

5.5.2 区间估计

假定与 x_0 相对应的实际观测值为 y_0 , 则

$$y_0 = \beta_0 + \beta_1 x_0 + e_0$$

其中 $e_0 \sim N(0, \sigma^2)$

对给定置信水平 $1-\alpha$, 求一个 δ , 使得 $P(|y_0-\hat{y_0}|<\delta)=1-\alpha$ 很容易知道 $y-y_0$ 服从正态分布, 且

$$\begin{split} E(y_0 - \hat{y_0}) &= 0 \\ D(y_0 - \hat{y_0}) &= \sigma^2 [1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{XX}}] \\ \text{所以 } y_0 - \hat{y_0} &\sim N(0, \sigma^2 [1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{XX}}]) \\ \text{并且 } \frac{SSE}{\sigma^2} &\sim \chi^2 (n-2) \end{split}$$

$$\frac{(y_0 - \hat{y_0})}{\sqrt{\frac{SSE}{(n-2)}[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{XX}}]}} \sim t(n-2)$$

因此 δ 的选择为

$$\delta = t_{1-\frac{\alpha}{2}}(n-2)\sqrt{\frac{SSE}{(n-2)}\left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{XX}}\right]}$$