

STATISTIKA INFERENSIAL

TATIK WIDIHARIH

Teknik Pengambilan Keputusan Statistika

UJI HIPOTESIS

Definisi 1

 Hipotesis adalah pernyataan (dugaan) tentang parameter populasi.

Definisi 2

 Dua hipotesis yang saling asing dalam persoalan uji hipotesis disebut hipotesis nol dinotasikan H₀ dan hipotesis alternatif dinotasikan H

KESIMPULAN UJI HIPOTESIS

Kesimpulan yang diperoleh dari uji hipotesis hanya menolak H₀ (berarti menerima H₁) atau menerima H₀ (berarti menolak H₁). Bila kita mempunyai suatu hipotesis (dugaan), biasanya kita berkeyakinan dugaan tersebut benar, sehingga harapannya diterima, maka kebiasaan ilmiah dugaan yang dianggap benar diletakkan sebagai hipotesis alternatif (H₁), dan dugaan yang diharapkan untuk ditolak diletakkan sebagai hipotesis nol (H)

CONTOH HIPOTESIS

H₀: rata-rata IPK kelulusan mahasiswa informatika maksimal 3.15

H₁: rata-rata IPK kelulusan mahasiswa informatika lebih dari 3.15

H₀: rata-rata masa tunggu mendapat pekerjaan alumni informatika minimal 8 bulan

H₁: rata-rata masa tunggu mendapat pekerjaan alumni informatika kurang dari 8 bulan

Probabilitas / Peluang kesalahan dalam pengujian hipotesis

Dalam memutuskan untuk menerima atau menolak H_0 kita bisa membuat suatu kesalahan. Ada dua jenis kesalahan dalam uji hipotesis yang dikenal dengan kesalahan tipe I dinotasikan α , dan kesalahan tipe II dinotasikan β . Untuk lebih jelasnya perhatikan ilustrasi berikut :

	Hipotesis nol (H ₀)				
Keputusan	benar	salah			
Menolak H ₀	Kesalah tipe I(α)	Keputusan benar			
Menerima H ₀	Keputusan benar	Kesalahan tipe II (β)			

Kesalahan tipe I dan II

Kesalahan tipe I (α) dan kesalahan tipe II (β) didefinisikan sebagai :

- $\alpha = P(menolak H_0 | H_0 benar)$
- β = P(menerima H₀ | H₀ salah)
 - = $P(menerima H_0 | H_1 benar)$

Beberapa istilah/konsep dalam pengujian hipotesis

Level of significance (α)

Adalah harga maximal probabilitas kesalahan tipe I yang diambil/ ditetapkan oleh peneliti untuk menolak H_0 .

Kekuatan Uji

Kekuatan pengujian dapat ditentukan jika Probabilitas type kesalahan $II(\beta)$ dihitung, kekuatan uji = 1 - β

Statistik Uji

Biasa disebut juga statistik hitung, berupa suatu konstanta berdasarkan formula statistic yang dipakai sebagai indicato untuk menerima atau menolak H_0 .

Kriteria pengambilan keputusan

Statistik Tabel

Nilai statistika tabel diperoleh dari tabel distribusi yang bersesuaian dengan rumus statistik hitung.

Pada intinya uji hipotesis memutuskan menolak atau menerima hipotesis nol (H_0) dengan membandingkan statistik hitung dengan statistik tabel berdasarkan rumusan hipotesis nol (H_0) , hipotesis alternatif (H_1) yang dibuat dan α vang ditetapkan.

UJI SATU RATA-RATA

Pengujian ini didasarkan asumsi bahwa populasi berdistribusi normal dengan rata-rata μ dan variasi σ^2 (bisa diketahui bisa tidak)

A. Jika σ^2 diketahui atau n > 30 digunakan uji Z dengan :

$$Z_{hit} = \frac{(\overline{x} - \mu)}{\sigma / \sqrt{n}}$$

berdistribusi normal standar, untuk n >30 dan σ^2 tidak diketahui maka σ^2 diduga dengan S^2 dengan :

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Uji DUA SISI

Rumusan hipotesis:

 $H_0 : \mu = \mu_0$

 H_1 : $\mu \neq \mu_0$

Kriteria Uji

Tolak H₀ jika Z_{hit} terletak pada daerah arsir

Uji satu sisi (kanan)

Rumusan hipotesis:

• $H_0: \mu \leq \mu_0$

 $H_1: \mu > \mu_0$ tolak H_0 jika Z_{hit} terletak pada daerah arsir

Uji satu sisi kiri

Rumusan hipotesis:

• $H_0: \mu \ge \mu_0$

 $H_1: \, \mu < \mu_0 \,\,$ tolak H_0 jika $Z_{hit}\,$ terletak pada daerah arsir

Contoh 1:

Diduga nilai rata-rata bahasa inggris pada UN mhs ilkom adalah 8.75. Bila dari 40 mhs diperoleh data nilai bahasa inggris sbb: 7.96 6.41 6.37 8.26 6.26 7.32 5.87 9.79 8.68 9.73 8.56 9.27 9.41 8.43 6.15 7.61 9.86 9.34 7.27 7.76 5.68 6.89 7.56 8.98 9.56 6.25 6.35 8.25 7.65 8.21 9.05 8.74 6.98 8.23 5.96 6.49 5.89 6.87 7.59 8.67 bagaimana kesimpulan anda ujilah dengan

 α = 5% bila diasumsikan nilai bahasa inggi berdistribusi normal

Penyelesaian:

$$H_0: \mu = 8.75$$

 $H_1: \mu \neq 8.75$

Berdasarkan data:

$$n=40$$
 , $\alpha = 5\%$

$$\bar{X} = \frac{1}{40} \sum_{i=1}^{40} X_i = \frac{1}{40} (7.96 + 6.41 + \dots + 8.67) = 7.754$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$= \frac{1}{40-1} ((7.96 - 7.754)^{2} + (6.41 - 7.754)^{2} + \dots + (8.67 - 7.754)^{2})$$

$$= 1.609922$$

$$S = 1.268827$$

penyelesaian

Statistik hitung:

$$Z_{hit} = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{7.754 - 8.75}{1.268827/\sqrt{40}} = -4.9646$$

Kesimpulan H₀ ditolak, berarti H₁ diterima, ratarata nilai bahasa inggris kurang dari 8.75

Cumulative Standard Normal Distribution

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-v^{2}/2} du$$

Cumulative Standard No	rmal Distribution
------------------------	-------------------

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-a^{2}/2} du$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	z
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586	0.0
1.0	0.53983	0.54379	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57534	0.1
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409	0.2
0.3	0.61791	0.62172	0.62551	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173	0.3
0.4	0.65542	0.65910	0.62276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68438	0.68793	0.4
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240	0.5
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490	0.6
0.7	0.75803	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78523	0.7
0.8	0.78814	0.79103	0.79389	0.79673	0.79954	0.80234	0.80510	0.80785	0.81057	0.81327	0.8
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83397	0.83646	0.83891	0.9
1.0	0.84134	0.84375	0.84613	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214	1.0
1.1	0.86433	0.86650	0.86864	0.87076	0.87285	0.87493	0.87697	0.87900	0.88100	0.88297	1.1
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89616	0.89796	0.89973	0.90147	1.2
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91465	0.91621	0.91773	1.3
1.4	0.91924	0.92073	0.92219	0.92364	0.92506	0.92647	0.92785	0.92922	0.93056	0.93189	1.4
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408	1.5
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95448	1.6
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327	1.7
1.8	0.96407	0.96485	0.96562	0.96637	0.96711	0.96784	0.96856	0.96926	0.96995	0.97062	1.8
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	(0.97500)	0.97558	0.97615	0.97670	1.9
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169	2.0
2.17	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574	2.1
2.1	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899	2.2
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158	2.3
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361	2.4
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520	2.5
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643	2.6
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736	2.7
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807	2.8
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861	2.9
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.99900	3.0
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929	3.1
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950	3.2
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965	3.3
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976	3,4
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983	3.5
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989	3.6
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992	3.7
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995	3.8
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997	3.9

Contoh:

Diduga nilai rata-rata matematika pada UN mhs IF lebih dari 8.5 dengan simpangan baku 1.5. Bila dari 20 mhs diperoleh data nilai matematika sbb : 6.37 9.27 7.96 6.41 8.26 6.26 7.32 5.87 9.79 8.68 9.73 8.56 9.41 8.43 6.15 7.61 9.86 9.34 7.27 7.76 bagaimana kesimpulan anda ujilah dengan α = 1.5%

penyelesaian.

 $H_0: \mu \leq 8.5$

 $H_1 : \mu > 8.5$

Berdasarkan data:

n=20, σ =1.5, n=20 ,
$$\alpha$$
 = 1.5%

$$\bar{X} = \frac{1}{20} \sum_{i=1}^{20} X_i = \frac{1}{20} (6.37 + 9.27 + \dots + 7.76) = 8.0155$$

$$Z_{hit} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{8.0155 - 8.5}{1.5 / \sqrt{20}} = -1.4445$$

Kesimpulan H₀ diterima Nilai rata-rata matematika maksimal 8.5

Uji satu rata-rata

B. Jika σ² tidak diketahui dan n kecil digunakan uji T dengan **Statistik hitung** sebagai berikut:

$$T_{hit} = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

yang **berdistribusi t** dengan derajad bebas **(n-1)**. Uji bisa berupa uji dua sisi, uji satu sisi kanan atau uji satu sisi kiri.

Uji dua sisi

Rumusan hipotesis:

 $H_0 : \mu = \mu_0$

 $H_1: \mu \neq \mu_0$

Tolak H₀ jika t_{hit} terletak pada daerah arsir

Uji satu sisi (kanan)

Rumusan hipotesis:

• $H_0: \mu \leq \mu_0$

 H_1 : $\mu > \mu_0$, tolak H_0 jika t_{hit} terletak pada daerah arsir

Uji satu sisi kiri

Rumusan hipotesis:

• $H_0 : \mu \ge \mu_0$

 $H_1: \, \mu < \mu_0 \,\,$ tolak H_0 jika $t_{hit}\,$ terletak pada daerah arsir

Contoh:

- Mahasiswa Informatika rata-rata belajar mandiri di laboratorium komputer selama 2 jam per hari. Jika dari 15 mahasiswa diperoleh data sebagai berikut: 1.5 2.8 3.6 4.2 5.1 2.9 3.6 4.5 1.6 2.5 2.7 3.5 3.2 4.0 2.8 diasumsikan data berdistribusi normal.
- Tuliskan H₀ dan H₁
- Ujilah dengan α= 2% dan bagaimana kesimpulannya

penyelesaian

Rumusan hipotesis:

$$H_0: \mu = 2$$

 $H_1: \mu \neq 2$

- Berdasarkan data:
- n=15, α = 2%

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{15} (1.5 + 2.8 + \dots + 2.8) = 3.23333$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{15-1} ((1.5 - 3.23333)^{2} + (2.8 - 3.23333)^{2} + \dots + (2.8 - 3.23333)^{2}) = 0.995238$$

$$S = 0.997616$$

$$T_{hit} = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{3.233333 - 2}{0.997616/\sqrt{15}} = 4.7881$$

penyelesaian

 Kesimpulan: H₀ ditolak, rata rata mahasiswa informatika belajar mandiri di lab komputer lebih dari 2 jam/hari

Tabel t

Percentage Points of the t Distribution^a

α										
v	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.727	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.49	4.019	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.20	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.992
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Jetima Kasik

