Distribution-free prediction: exchangeability and beyond

Rina Foygel Barber

http://rinafb.github.io/

Collaborators

Aaditya Ramdas

Ryan Tibshirani

 Thanks to American Institute of Math (AIM) for hosting & supporting our collaboration as an AIM SQuaRE

Setting:

• Training data $(X_1, Y_1), \dots, (X_n, Y_n)$, test point (X_{n+1}, Y_{n+1})

observed want to predict

• If fitted model $\widehat{\mu}_n$ overfits to training data,

$$|Y_{n+1} - \widehat{\mu}_n(X_{n+1})| \gg \frac{1}{n} \sum_{i=1}^n |Y_i - \widehat{\mu}_n(X_i)|$$

even if training & test data are from the same distribution

Run algorithm \mathcal{A} on the training data \leadsto fitted model $\widehat{\mu}_n$ Prediction interval for Y_{n+1} :

 $\widehat{C}_n(X_{n+1}) = \widehat{\mu}_n(X_{n+1}) \pm \text{(margin of error)}$

Use training residuals? ("naive")

Use a parametric model?

Use smoothness assumptions?

Use cross-validation?

• Want to be <u>distribution-free</u> —

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \geq 1 - \alpha \ \ \text{w/o assumptions on data distrib.}$$

• Want to be efficient — minimize width of interval $\widehat{C}_n(X_{n+1})$

Outline:

- 1. Background: conformal prediction
- 2. The jackknife+
- 3. Conformal prediction beyond exchangeability

Using a holdout set

• Using any algorithm, fit model

$$\widehat{\mu}_{n/2} = \mathcal{A}\Big((X_1, Y_1), \dots, (X_{n/2}, Y_{n/2})\Big)$$

• Compute holdout residuals

$$R_i = |Y_i - \widehat{\mu}_{n/2}(X_i)|, \quad i = n/2 + 1, \ldots, n$$

Prediction interval:

$$\widehat{\mathcal{C}}_n(X_{n+1}) = \widehat{\mu}_{n/2}(X_{n+1}) \, \pm \, \left(\mathsf{the} \, (1-lpha) \mathsf{-quantile} \; \mathsf{of} \; R_{n/2+1}, \ldots, R_n
ight)$$

Conformal prediction

Background on the conformal prediction framework: key idea = statistical inference via exchangeability of the data

Gammerman, Vovk, Vapnik UAI 1998

Vovk, Gammerman, Shafer 2005 — see alrw.net

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman JASA 2018

Split conformal prediction interval (a.k.a. holdout):

$$\widehat{C}_n(X_{n+1}) = \widehat{\mu}_{n/2}(X_{n+1}) \pm \widehat{\mathbb{Q}}_{1-\alpha}\Big\{R_{n/2+1},\dots,R_n\Big\}$$
 the $\lceil (1-\alpha)(n/2+1) \rceil$ -th smallest value in the list

Theorem: [Vovk, Gammerman, Shafer 2005]

If $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.), then for any algorithm A, the split conformal method satisfies

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Proof:

After conditioning on $\widehat{\mu}_{n/2}$, holdout + test data is exchangeable

- \Rightarrow residuals $R_{n/2+1}, \ldots, R_n, R_{n+1}$ are exchangeable
- $\Rightarrow \mathbb{P}\left\{R_{n+1} \leq \left(\mathsf{the}\;(1-lpha)\text{-quantile of}\;R_{n/2+1},\ldots,R_{n+1}
 ight)
 ight\} \geq 1-lpha$

Proof:

```
After conditioning on \widehat{\mu}_{n/2}, holdout + test data is exchangeable \Rightarrow residuals R_{n/2+1},\ldots,R_n,R_{n+1} are exchangeable \Rightarrow \mathbb{P}\left\{R_{n+1} \leq \left(\text{the } (1-\alpha)\text{-quantile of } R_{n/2+1},\ldots,R_{n+1}\right)\right\} \geq 1-\alpha \updownarrow R_{n+1} \leq \widehat{\mathbb{Q}}_{1-\alpha}\{R_{n/2+1},\ldots,R_n\} \updownarrow Y_{n+1} \in \widehat{C}_n(X_{n+1})
```

Full conformal prediction:

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$$

• Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)|$$
 for $i \le n$; $R_{n+1} = |Y_{n+1} - \widehat{\mu}_{n+1}(X_{n+1})|$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and $\mathcal A$ treats data points symmetrically, then R_1,\ldots,R_{n+1} are exchangeable \Rightarrow this event has $\geq 1-\alpha$ probability

Full conformal prediction:

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_n))$$

• Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)| \text{ for } i \leq n; \ R_{n+1} = |Y_i / \widehat{\mu}_{n+1}(X_{n+1})|$$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and $\mathcal A$ treats data points symmetrically, then R_1,\dots,R_{n+1} are exchangeable

 \Rightarrow this event has $\geq 1-lpha$ probability if we plug in $\emph{y}=\emph{Y}_{\emph{n}+1}$

Full conformal prediction:

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_n))$$

• Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)| \text{ for } i \leq n; \ R_{n+1} = |Y_i / \widehat{\mu}_{n+1}(X_{n+1})|$$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and $\mathcal A$ treats data points symmetrically, then R_1,\dots,R_{n+1} are exchangeable \Rightarrow this event has $\geq 1-\alpha$ probability if we plug in $\mathbf y=\mathbf Y_{n+1}$

$$\widehat{C}_n(X_{n+1}) = \{ \text{all } y \in \mathbb{R} \text{ for which the event above holds} \}$$

Theorem: [Vovk, Gammerman, Shafer 2005] If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.),

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

and the algorithm A treats data points symmetrically, then full CP satisfies

Outline

- 1. Background: conformal prediction
- 2. The jackknife+
- 3. Conformal prediction beyond exchangeability

Computational/statistical tradeoff:

	$\#$ calls to ${\cal A}$	Sample size for training
Split conformal (a.k.a. holdout)	1	n/2
Full conformal	∞	n

Can cross-validation type methods offer a compromise?

Jackknife a.k.a. leave-one-out cross-validation:

$$\widehat{C}_n(X_{n+1}) = \widehat{\mu}_n(X_{n+1}) \pm \widehat{Q}_{1-\alpha}\{R_1, \dots, R_n\}$$

where $R_i = |Y_i - \widehat{\mu}_{-i}(X_i)| = \text{leave-one-out residual}$ trained on data points $\{1, \ldots, n\} \setminus \{i\}$

- No distribution-free guarantees
- Predictive coverage holds assuming algorithmic stability:¹

$$\widehat{\mu}_n(X_{n+1}) \approx \widehat{\mu}_{-i}(X_{n+1})$$

¹Steinberger & Leeb 2018

Jackknife+:

$$\widehat{C}_n(X_{n+1}) = \left[\widehat{Q}_{\alpha}\left\{\widehat{\mu}_{-i}(X_{n+1}) - R_i\right\}, \ \widehat{Q}_{1-\alpha}\left\{\widehat{\mu}_{-i}(X_{n+1}) + R_i\right\}\right]$$

- CV+ = extension to *K*-fold cross-validation
- Closely related to the cross-conformal method²

²Vovk 2015, Vovk et al 2018

	$\#$ calls to ${\cal A}$	Sample size for training
Split conformal (a.k.a. holdout)	1	n/2
Full conformal	∞	n
Jackknife+	n	n-1
K-fold CV $+$	K	n - n/K

Theory for jackknife+

Theorem: [B., Candès, Ramdas, Tibshirani]

If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.), and \mathcal{A} treats data points symmetrically, then jackknife+ satisfies

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-2\alpha.$$

- In practice, typically see $\approx 1 \alpha$ coverage
- ullet Can prove $\gtrapprox 1-lpha$ coverage if assume ${\mathcal A}$ is stable

Theory for jackknife+

Challenge: jackknife+ construction doesn't appear exchangeable: fitted models $\widehat{\mu}_{-i}$ for $i \in \{1,\ldots,n\}$

Proof idea: embed jackknife+ into a larger exchangeable problem: models $\tilde{\mu}_{-ij}$ for each $i,j\in\{1,\ldots,n+1\}$

Simulation

- $n = 100, d \in \{5, 10, \dots, 200\}$
- $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \quad Y_i = X_i^{\top} \beta + \mathcal{N}(0,1)$
- $\mathcal{A}=$ "ridgeless" regression (least sq. with min ℓ_2 norm) Stable if $d\ll n$ or $d\gg n$, but if $d\approx n$ then unstable³

³Hastie et al 2019, Ridgeless Least Squares Interpolation.

Outline

- 1. Background: conformal prediction
- 2. The jackknife+
- 3. Conformal prediction beyond exchangeability

Theory for full conformal relies on:

- 1. $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.)
- 2. Regression algorithm ${\mathcal A}$ treats input data points symmetrically

 \Rightarrow when $\widehat{\mu}_{n+1}$ is fitted to training + test data, (X_{n+1},Y_{n+1}) is equally likely to be any of the n+1 data points:

Challenges in practice:

- 1. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ may be nonexchangeable (e.g., distribution drift, dependence over time, ...)
- 2. May want to choose $\mathcal A$ that treats data nonsymmetrically (e.g., weighted regression, autoregressive model, ...)

Example: distribution drift

Example: distribution drift

Example: \mathcal{A} is weighted least sq.

Our aims:

- Allow for nonsymmetric algorithms (for a more accurate model)
- Guarantee exact coverage if data is exchangeable,
 & bounded loss of coverage under bounded violation of exch.

nexCP method (symmetric algorithm case)

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y))$$

Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)| \text{ for } i \le n; \ R_{n+1} = |y - \widehat{\mu}_{n+1}(X_{n+1})|$$

 $\bullet \ \ \mathsf{Check} \ \mathsf{if} \ \ R_{n+1} \ \le \ \left(\mathsf{the} \ (1-\alpha) \ \mathsf{quantile} \ \mathsf{of} \ \{R_i \ \mathsf{with} \ \mathsf{weight} \ w_i\}\right)$

fixed weights
$$w_i \geq 0$$
 with $\sum_i w_i = 1$

$$\widehat{C}_n(X_{n+1}) = \{ \text{all } y \in \mathbb{R} \text{ for which the above holds} \}$$

Example: distribution drift

Example: distribution drift

nexCP method (nonsymmetric algorithm case)

Draw a random index K with $\mathbb{P}\{K=i\}=w_i$, then:

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, \underbrace{(X_{n+1}, y)}_{\text{in position } K}, \dots, (X_n, Y_n), (X_K, Y_K))$$

• Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)|$$
 for $i \le n$; $R_{n+1} = |y - \widehat{\mu}_{n+1}(X_{n+1})|$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } \{R_i \text{ with weight } w_i\})$

$$\widehat{C}_n(X_{n+1}) = \{ ext{all } y \in \mathbb{R} \text{ for which the above holds} \}$$

Example: \mathcal{A} is weighted least sq.

Example: A is weighted least sq.

Apply ${\mathcal A}$ after swapping data points ${\mathcal K}$ & n+1

Extensions — can define analogous nonexchangeable versions of:

- \bullet Split conformal (note: symmetry of ${\mathcal A}$ doesn't matter for this case)
- Jackknife+ and CV+

Theoretical guarantee

Theorem: [B., Candès, Ramdas, Tibshirani]

Let $w_i > 0$ be fixed, with

$$\sum_{i} w_{i} = 1, \quad w_{n+1} = \max_{i} w_{i}.$$

Then nonexchangeable conformal prediction satisfies

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \ge 1 - \alpha - \sum_i w_i \cdot d_{\mathsf{TV}}(R(\mathsf{data}), R(\mathsf{data}_{\mathsf{swap}(i)}))$$

 \Rightarrow If data is i.i.d. or exchangeable, coverage $\geq 1 - \alpha$

Empirical results

Compare 3 methods:

- 1. **CP+LS**: conformal prediction with A = least squares
- 2. **nexCP+LS**: nonexch. conformal prediction with $w_i \propto 0.99^{-i}$, with $\mathcal{A} = \text{least squares}$
- 3. **nexCP+WLS**: nonexch. conformal prediction with $w_i \propto 0.99^{-i}$, with $\mathcal{A}=$ weighted least squares with weights $\propto 0.99^{-i}$

Empirical results

Simulated data

Summary

Under exchangeability:

- Jackknife+ allows for a compromise between split and full conformal for tradeoff of computation & accuracy
- \bullet Coverage guarantee is $\geq 1-2\alpha$ (but $\gtrapprox 1-\alpha$ with stability)

Summary

Under exchangeability:

- Jackknife+ allows for a compromise between split and full conformal for tradeoff of computation & accuracy
- Coverage guarantee is $\geq 1-2\alpha$ (but $\gtrsim 1-\alpha$ with stability)

Beyond exchangeability:

- Robust to violations of exchangeability
- Swap trick allows for a nonsymmetric algorithm
- ⇒ can apply CP to nonstationary data / models with drift / etc

Summary

Thank you!

Papers:

- B., Candès, Ramdas, Tibshirani, Predictive inference with the jackknife+
- B., Candès, Ramdas, Tibshirani, Conformal prediction beyond exchangeability

Website:

http://rinafb.github.io/