BIG DATA AND CLOUD PLATFORMS

Data pipelines on cloud (Computing)

Data transformation

Serve (deciding)

- SQL
- BI tools (e.g., Tableau)

Analytics (analyzing)

- Processing
 - Batch
 - Streaming
- Machine learning

Ingestion (acquiring)

- Batch
- Streaming

Supporting services

Supporting data pipelines

We can choose the XaaS configuration to build our pipelines

IaaS

- Outsource virtual machines to the cloud (AWS EC2)
- (You) Manage technological and business challenges

PaaS

- Outsource the data ecosystem to the cloud (e.g., AWS EMR)
- (You) Manage business challenges

Single instance: AWS EC2

Amazon Elastic Compute Cloud

- A web service that provides resizable compute capacity
- Complete control of computing resources
 - Processor, storage, networking, OS, and purchase model

The instance type determines the hardware

Different compute and memory capabilities

Amazon Machine Image is a software template

- The EC2 instance is used for creating the virtual server in
- The AMI is the EC2 virtual machines image

Interact with EC2 instance as with any computer

You have complete control of your instances

Host computer

https://aws.amazon.com/ec2/instance-types

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instances-and-amis.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html

Single instance: AWS EC2

https://aws.amazon.com/ec2/instance-types/

Cluster: AWS EMR

Amazon EMR is a data platform based on the Hadoop stack

- Apache Spark, Apache Hive, Apache HBase, etc.
- You can run workloads on
 - Amazon EC2 instances
 - Amazon Elastic Kubernetes Service (EKS) clusters

Example of workload

- Upload input data into Amazon S3
- EMR launches EC2 instances that you specified
- EMR begins the execution while pulling the input data from S3 into the launched instances
- Once the cluster is finished, EMR transfers output data to Amazon S3

Provision as much capacity as you need

Deploy Multiple Clusters

Add or remove capacity at any time

Resize a Running Cluster

EMR cluster

Master group controls the cluster

- Coordinate the work distribution
- Manage the cluster state

Core groups

Core instances run Data Node daemons

(Optional) Task instances

The central component of Amazon EMR is the cluster

- A collection of Amazon Elastic Compute Cloud (Amazon EC2) instances
- Each instance is called a node

The **node type** identifies the role within the cluster

- Master node coordinates the distribution of data and tasks among other nodes
 - Every cluster has (at least) a master node
 - Always active
- Core node runs tasks and store data in the Hadoop Distributed File System (HDFS)
 - Multi-node clusters have at least one core node
 - Always active, contains the data node daemon
- Task node only runs tasks
 - Task nodes are optional
 - Decoupling processing and storage, we lose data locality

On-Demand Instance

- Pay for compute capacity by the hour (minimum of 60 seconds)
- No long-term commitments

Spot Instance

- Unused EC2 instance that is available for less than the on-demand price
- Hourly price is called spot price
 - Adjusted based on long-term supply and demand for spot instances
- Run the instance when capacity is available and price is below threshold
 - When data-center resources are low, spot instances are dropped
 - Mainly suitable for batch workloads

Spot Instance cost strategies

Capacity-optimized strategy

- Allocated instances into the most available pools
- Look at real-time capacity data, predict which are the most available
- Works well for workloads such as big data and analytics
- Works well when we have high cost of interruption

Lowest-price strategy

Allocates instances in pools with lowest price at time of fulfillment

Choose to launch master, core, or task on Spot Instances

- The master node controls the cluster
 - When terminated, the cluster ends
 - Use spot instances if you are running a cluster where sudden termination is acceptable
- Core nodes process data and store information using HDFS
 - When terminated, data is lost
 - Use spot instances when partial HDFS data loss is tolerable
- Task nodes process data but do not hold persistent data in HDFS
 - When terminated, computational capacity is lost
 - The effect of spot instances on the cluster is "minimal"

Application Scenario	Master Node Purchasing Option	Core Nodes Purchasing Option	Task Nodes Purchasing Option
Long-Running Clusters and Data Warehouses	On-Demand	On-Demand or instance-fleet mix	Spot or instance-fleet mix
Cost-Driven Workloads	Spot	Spot	Spot
Data-Critical Workloads	On-Demand	On-Demand	Spot or instance-fleet mix
Application Testing	Spot	Spot	Spot

Amazon EMR provides two main file systems

- HDFS and EMRFS, specify which file system to use by the prefix
- hdfs://path (or just `path`)
 - HDFS is used by the master and core nodes
 - AWS EBS volume storage is used for HDFS data
 - Is fast, best used for caching the results produced by intermediate job-flow steps, why?
 - It's ephemeral storage which is reclaimed when the cluster ends
- s3://DOC-EXAMPLE-BUCKET1/path (EMRFS)
 - An implementation of the Hadoop file system atop Amazon S3
 - We can avoid EBS storage

Using CLI (command line interface)

```
aws emr create-cluster --auto-scaling-role EMR_AutoScaling_DefaultRole --termination-protected --
applications Name=Hadoop Name=Hive Name=Hue Name=JupyterEnterpriseGateway Name=Spark --ebs-root-volume-
size 10 --ec2-attributes
'{"KeyName":"bigdata","InstanceProfile":"EMR_EC2_DefaultRole","SubnetId":"subnet-
5fa2f912","EmrManagedSlaveSecurityGroup":"sg-07818b5690a50b3f1","EmrManagedMasterSecurityGroup":"sg-
0e2f5550a2cb98f79"}' --service-role EMR_DefaultRole --enable-debugging --release-label emr-6.2.0 --log-
uri 's3n://aws-logs-604905954159-us-east-1/elasticmapreduce/' --name 'BigData' --instance-groups
'[{"InstanceCount":1,"BidPrice":"OnDemandPrice","EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeSpe
cification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumesPerInstance":2}]},"InstanceGroupType":"MASTER","I
nstanceType":"m4.xlarge","Name":"OnDemandPrice","EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeS
pecification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumeSPerInstance":2}]},"InstanceGroupType":"CORE","I
nstanceType":"m4.xlarge","Name":"Core - 2"}]' --scale-down-behavior TERMINATE_AT_TASK_COMPLETION --
region us-east-1
```

Cluster lifecycle

Creating a cluster (it takes ~10 minutes)

- A cluster cannot be stopped
- It can only be terminated

Cluster lifecycle

STARTING: EMR provisions EC2 instances for each required instance BOOTSTRAPPING: EMR runs actions that you specify on each instance

E.g., install custom applications and perform customizations

Amazon EMR installs the native applications

E.g., Hive, Hadoop, Spark, and so on

RUNNING: a step for the cluster is currently being run

Cluster sequentially runs any steps that you specified when you created the cluster

WAITING: after steps run successfully

TERMINATING: after manual shut down

Any data stored on the cluster is deleted

Cluster lifecycle

A **step** is a user-defined unit of processing

• E.g., one algorithm that manipulates the data

Step states

- PENDING: The step is waiting to be run
- RUNNING: The step is currently running
- COMPLETED: The step completed successfully
- CANCELLED: The step was cancelled before running because an earlier step failed
- FAILED: The step failed while running

Running the cluster

Running the cluster

