

basic education

Department:

Basic Education

REPUBLIC OF SOUTH AFRICA

SENIOR SERTIFIKAAT SENIOR CERTIFICAT NASIONALE NATIONAL

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2) FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2015

MEMORANDUM

MARKS/PUNTE: 150

Hierdie memorandum bestaan uit 17 bladsye. This memorandum consists of 17 pages,

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assbelief

Physical Sciences P2/Fisiese Wetenskappe V2 2 NSC/NSS – Memorandum

DBE/November 2015

QUESTION 1/VRAAG 1

/ B / 7

2 (2)(2) \Im \odot (2) \overline{S} (2) $\overline{0}$

\ \ D 1.2 Y \ 53 > A 4.

1.5 > 0 1.6 × < B

1.7

1.8

\ \ \ \ 1.10

/ B /

6.

[20]

 \equiv

 Ξ

QUESTION 2/VRAAG 2

2.1.1

2.1.2

CnH2n-2 V 2.1.3 4-ethyl-5-methylhept-2-yne / 4-ethyl-5-methyl-2-heptyne 2.1.4

4-etiel-5-metielhept-2-yn / 4-etiel-5-metiel-2-heptyn

Marking criterialNasienriglyne:

◆ 4-ethyl / 4-etiel ✓ OR/OF 4 ethyl / 4 etiel

5-methyl / 5-metiel < ORIOF 5 methyl / 5 metiel

hept-2-yne / 2-heptyne / hept-2-yn / 2-heptyn \checkmark OR/OF hept 2 yn / 2 heptyn

Enige fout bv. koppelfekens weggelaat en/of verkeerde volgorde: Any error e.g. hyphens omitted and/or incorrect sequence:

ල

Max/Maks. 2/3

Butan-2-one / 2-butanone / Butanone Butan-2-oon / 2-butanoon / Butanoon 2.1.5

Marking criteria/Nasienriglyne:

Functional group / Funksionele groep V

Whole name correct / Hele naam korrek ✓

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assbelief

3

222 <u>2-methyl</u>propane <u>2-metiel</u>propaan 2.2 2.2.1

Alkanes / Alkane <

OR/OF

Methylpropane Metielpropaan

Notes/Aantekeninge: IF/IND/EN:

2 methylpropane l 2 metielpropaan $\sqrt{\frac{1}{2}}$

verkeerd: Max./Maks. 1/2 IF sequence incorrect/INDIEN volgorde

Marking criteria structural formula:

Drie koolstowwe in die langste ketting.

Notes/Aantekeninge:

3.1.5

3.1.4

Dehidrasie / dehidratering / eliminasie

Dehydration / elimination ✓

3.1.3

Propanoic acid / Propanoësuur V

Gekondenseerde of semi-struktuur-

formule:

Methyl group on second carbon. Metielgroep op tweede koolstof. 🗸

One or more H atoms omitted:

Condensed or semi-structural formula:

2.2.3 Chain / Ketting <

2.3 2.3.1 Haloalkanes / Alkyl halides V Haloalkane / Alkielhaliede

2.3.2 Substitution / halogenation / bromonation / Substitusie / halogenering / halogenasie / bromonering

 $\widehat{\Xi}$

4

3

[6]

322

Addition / Addisie <

 Ξ

3.1 3.1.1

Esterification / Condensation <

Esterffikasie / Verestering / Kondensasie

 Ξ

QUESTION 3/VRAAG 3

3.12

Nasienriglyne struktuurformule:
Three carbons in longest chain.

Een of meer H-atome uitgelaat: $\frac{1}{2}$

3.16

Notes/Aantekeninge Functional group: <

(Gekonsentreerde) H₂SO₄ / / swaelsuur / swawelsuur / H₃PO₄ / fosforsuur (Concentrated) H₂SO₄ / sulphuric acid / H₃PO₄ / phosphoric acid V

 Ξ

 Ξ

 Ξ Ξ

Funksionele groep:

Whole structure correct:

Hele struktuur korrek: <u>(V)</u>

32 321

Notes/Aantekeninge Functional group: <

Funksionele groep:

Whole structure correct:
Hele struktuur korrek: \odot

(£)

QUESTION 4/VRAAG 4

4.

A bond/an atom or a group of atoms V that determine(s) the (physical and 'n Binding of 'n atoom of 'n groep atome wat die (fisiese en chemiese) eienskappe van 'n groep organiese verbindings bepaal. chemical) properties of a group of organic compounds.

4.2.1 ⊖ D / ethanoic acid / etanoësuur ✓

owest vapour pressure. 🗸 Laagste dampdruk.

A / butane / butaan < 4.2.2

4.3

- Tussen molekule van <u>A</u> / butaan / alkane is <u>London / geïn</u>duseerde dipole , Between molecules of ${f A}$ / butane / alkanes are ${f London}$ / induced dipole / dispersion forces.
 - Between molecules of B / propan-2-one / ketones are dipole-dipole forces / in addition to London / induced dipole / dispersion forces.

Tussen molekule van B / propan-2-oon / ketone is dipool-dipool-kragte

Intermolekulêre kragte in A is swakker as die in B./ Minder energie word Intermolecular forces in A are weaker than those in B. / Less energy is tesame met London / geïnduseerde dipool /dispersiekragte. by A benodig om intermolekulêre kragte te breek/oorkom. needed in A to break/overcome intermolecular forces.

Intermolekulêre kragte in B is sterker as die in A. / Meer energie word by B Intermolecular forces in B are stronger than those in A. / More energy is needed in B to break/overcome intermolecular forces. benodig om intermolekulêre kragte te breek/oorkom.

Tussen molekule van <u>A</u> / butaan/alkane is <u>swak London / geïnduseerde</u> Between molecules of ${f A}$ / butane / alkanes are ${f weak London}$ / induced dip<u>ole / dispersion fo</u>rces dipool / dispersiekragte.

Between molecules of **B** /propan-2-one / ketone are strong(er) dipoledipole forces in addition to London/induced dipole / dispersion forces. Tussen molekule van <u>B</u> / propan-2-oon / ketone is <u>sterk(er) dipool-</u> dipool/dispersiekragte.

ල

Londonkragte/dispersiekragte/geïnduseerde dipoolkragte/dipool-dipoolkragte. London forces/dispersion forces/induced dipole forces/dipole-dipole forces. 4.4

OR/OF

A and **B** do not have hydrogen bonding./**C** and **D** have hydrogen bonding. **A** en **B** het nie waterstofbinding nie./**C** en **D** het waterstofbinding.

Please turn over/Blaai om assbelief

Copyright reserved/Kopiereg voorbehou

 \equiv

Physical Sciences P2/Fisiese Wetenskappe V2 6 NSC/NSS – Memorandum

OPTION 1/OPSIE 1 4.5

- D het meer punte vir waterstofbinding as C / vorm dimere / is meer D has more sites for hydrogen bonding than C / forms dimers / is more polar than C.
- D has stronger / more intermolecular forces / dipole-dipole forces. ✓ D het sterker / meer intermolekulêre kragte / dipool-dipoolkragte. polêr as C.

OR/OF

 \overline{S}

D needs more energy to overcome/break the intermolecular forces.

D het meer energie nodig om die intermolekulêre kragte te oorkom/breek.

3 \in

- C has less sites for hydrogen bonding than D. / C does not form dimers / C is less polar.
 - C het minder plekke vir waterstofbinding as D. / C vorm nie dimere nie / C is minder polêr
- less energy to overcome/break intermolecular forces / dipole-dipole forces. benodig minder energie om intermolekulêre kragte / dipool-dipoolkragte te C has weaker / less intermolecular forces / dipole-dipole forces./ C needs C het swakker / minder intermolekulêre kragte / dipool-dipoolkragte./ C oorkom/breek

3

Marking criteria/Nasienriglyne

4.6

- Mole ratio for $V(CO_2)$ correctly used. / Molverhouding vir $V(CO_2)$ korrek gebruik. Mole ratio for $V(H_2O)$ correctly used. / Molverhouding vir $V(H_2O)$ korrek gebruik.
 - Mole ratio for V(O₂ reacted) correctly used. / Molverhouding vir V(O₂ reageer)
 - korrek gebruik.
- $V(O_2 \text{ excess/oormaat}) = V(O_2 \text{ initial/aanvanklik}) V(O_2 \text{ change/verandering}).$

_						
	V(O ₂ reacted/reageer): V(O ₂) = $\frac{13}{2}$ V(C ₄ H ₁₀) = $(\frac{13}{2})(8)$ \checkmark = 52 cm ³ V(O ₂ excess/oormaat): V(O ₂) = 60 - 52 \checkmark = 8 cm ³					
	$V(O_2 \text{ reg})$ $V(O_2) = (V(O_2 \text{ exc}))$, E		E S	0	40 ✓
		$V_{tot} = 32 + 40 + 8 = 80 \text{ cm}^3 \checkmark$		ဝွိ	0	32 ✓
	$V(H_2O) = 5V(C_4H_{10})$ = (5)(8) \checkmark = 40 cm ³	2 + 40 +		20	09	52 ✓
	V(H ₂ O	V _{tot} = 3		CH10	8	∞
▼ Vtot ¬ o∪ GII	OPTION 1/OPSIE 1 $V(CO_2) = 4V(C_4H_{10})$ $= (4)(8)^4$ $= 32 \text{ cm}^3$		OPTION 2/OPS/E 2		Initial V (cm 3) BeginV (cm 3)	Change in V (cm³) Verandering V (cm³)

Copyright reserved/Kopiereg voorbehou

Total/totale volume = $8 + 32 + 40 = 80 \text{ cm}^3$

Please turn over/Blaai om assbelief

40

32

× ∞

Finale V (cm Final V (cm³

DBE/November 2015

OPTION 3/OPSIE 3				
	C4H10	02	CO2	H ₂ O
Initial V (dm³) Begin V (dm³)	0,008	0,06	0	0
Change in V (dm³) Verandering V (dm³)	0,008	0,008 0,052 \ 0,032 \ 0,04 \	0,032 ✓	0,04 ✓
Final V (dm³) <i>Finale</i> V (dm³)	0	0,008 ✓ 0,032	0,032	0,04
Total <i>ltotale</i> volume = 0,008 + 0,032 + 0,04 = 0,08 dm ³ <	,008 + 0,	032 + 0,04	= 0,08 dm	3 🗸

QUESTION 5/VRAAG 5

Time/Tyd: (Stop) watch / (Stop)horlosie <

Volume: (Gas) syringe / Burette / Measuring cylinder / (Chemical) balance / Erlenmeyer flask / Graduated flask /

(Gas)spuit / Buret / Maatsilinder / (Chemiese) balans / Erlenmeyer fles / Gegradueerde fles

Notes/Aantekeninge

(V)

52 2.1

5.2.2

S

Between t₁ and t₂ \(

Tussen t₁ en t₂

Only one mark per type of apparatus. I Slegs een punt per tipe apparaat.

Exp. 1

5.4

Volume (cm3) Time (s) EXP. 3

1624	Morking oritoria Macionrichino	_
Εχρ	Initial gradient higher than that of Exp.1.	`
2	Aanvanklike gradient groter as die van Eksp 1.	
	Curve reaches same constant volume as for Exp. 1 (but earlier).	
	Kurwe bereik dieselfde konstante volume as in Eksp 1 (maar gouer).	
m Š	Initial gradient lower than that of Exp.1.	\
ω	Aanvanklike gradient kleiner as die van Eksp. 1.	•
	Curve reaches a smaller constant volume as for Exp. 1 (at a later stage).	<u> </u>
	Kurwe bereik (later) 'n kleiner konstante volume as vir Eksp. 1.	

Please turn over/Blaai om assbelief

£

Copyright reserved/Kopiereg voorbehou

Physical Sciences P2IFIsiese Wetenskappe V2 8 NSC/NSS – Memorandum

DBE/November 2015

[36]

5.5.2 Smaller than I Kleiner as V

 Ξ

 Ξ 3

QUESTION 6/VRAAG 6

Equal to I Gelyk aan V

3

 $\sum_{i=1}^{\infty} \left[\sum_{j=1}^{\infty} \right]^{2}$ $=\frac{(0,226)^2}{}$ = 236,46 < (0,06)3 No K_C expression, correct substitution / Geen K_C- utidrukking. If one or more exponents are omitted in substitution step but Wrong K_c expression Nerkeerde K_c-uitdrukking Max.Maks. $\frac{9}{4}$ korrekte substitusie: Max./Maks. $\frac{3}{4}$ maar korrekte antwoord verkry: Maks 3/4 Indien een of meer eksponente uitgelaat by substitusie stap, correct answer obtained: Max

6.3.1 6.3.1 Increases / Vermeerder

The increase in $[X_3]$ is opposed. / Change is opposed. \(Die verhoging in $[X_3]$ word teengewerk. / Verandering word teenwerk.

The reverse reaction is favoured. / X₃ is used / [X₃] decreases. Die terugwaartse reaksie word bevoordeel./ X_3 word gebruik / [X_3] neem af

(2)

 \mathfrak{Z} 4

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assbelief

Higher than / Hoër as 6.4

Exothermic / Eksotermies 🗸 6.5

Die konsentrasie van die produkte/X3(g) is laer / die konsentrasie van die The concentration of the product/ $\chi_3(g)$ is lower / the concentration of the reactant / $X_2(g)$ is higher. *

The increase in temperature favoured the reverse reaction. < reaktans / $X_2(g)$ is hoër.

According to Le Chatelier's principle an increase in temperature favours the Die toename in temperatuur het die terugwaartse reaksie bevoordeel.

endothermic reaction. ✓ Volgens Le Chatelier se beginsel bevoordeel <u>'n toename in temperatuur die</u> endotermiese reaksie.

Exothermic / Eksotermies 🗸

[X₃] decreases and [X₂] increases. / [X₃] neem af en [X₂] neem toe. \checkmark

Ke decreases if temperature increases./Ke neem af as die temperatuur afneem. 🗸

Decrease in temperature favoured the forward reaction. / Verlaging in temperatuur het die voorwaartse reaksie bevoordeel. <

6.6

400 °C Aantal deeltjies Number of particles

Kinetic energy / Kinetiese energie

Marking criteria/Nasienriglyne	
Peak of curve at 400 °C lower than at 300 °C and shifted to the right.	\
Piek van kurwe by 400 °C laer as by 300 °C en skuif na regs.	>
Curve at 400 °C has larger area at the higher E _k .	Ľ
Kurwe by 400 °C het groter oppervlak by hoë E _k .	>

Physical Sciences P2/Fisiese Wetenskappe V2 10 NSC/NSS – Memorandum

QUESTION 7/VRAAG 7

 \in

7.1

Hydrolysis / Hidrolise ✓

 $\widehat{\Xi}$

7.1.2 Acidic / Suur ✓

<u>*orms H₃O*</u> ions during hydrolysis./Vorm H₃O* ione gedurende hidrolise. ✓

Salt of strong acid and weak base./Sout van sterk suur en swak basis.

 (NH_4^{\downarrow}) acts as proton donor. / (NH_4^{\downarrow}) tree op as 'n protonskenker.

 \overline{S}

ල

OR/OF

7.2 7.2.1

 $n = cV \checkmark$ = (0,1)(0,1) \checkmark

 $= 0.01 \text{ mol } \checkmark$

POSITIVE MARKING FROM QUESTION 7.2.1. POSITIEWE NASIEN VAN VRAAG 7.2.1. 7.2.2

Marking criteria/Nasienriglyne

4

Substitute volume and concentration to calculate n(HCt) Vervang volume en konsentrasie om n(HCt) te bereken.

Use mole ratio/Gebruik molverhouding; n(NaOH) = n(HCt) = 1:1

n(NaOH) \times 4 **OR/OF** V(HCt) \times 4 **OR/OF** n(HCt) \times 4 \checkmark

Subtraction/Affrekking: n(NaOHinitial/aanvanklik) - n(NaOHexcess/oomaat)

Use mole ratio/Gebruik molverhouding: n(NaOH) = n(NH₄Ct) = 1:1 ✓

Substitute/Vervang 53,5 g·mof⁻¹ in n = $\frac{m}{M}$. \checkmark

Percentage calculation/Persentasieberekening

Final answer/Finale antwoord: 0,11 g - 0,21 g \u21 g

35

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assbelief

Please turn over/Blaai om assbelief

n(NaOH reacted/gereageer): n(NaOH) = 0,01 - 0,006402 < = 0,003598 mol n(NaOH reacted/gereageer) = $0.01 - 6.4 \times 10^{-3} \checkmark$ = 3.6×10^{-3} mol n(NaOH excess/oormaat) in 100 cm³ = $1.6 \times 10^{-3} \times 4 \checkmark$ = 6.4×10^{-3} mol 92% : 0,192 g $m(NH_4Cl) = nM$ $..x = \frac{0.193 \times 100}{2}$ $m(NH_4Cl) = nM$ $n(NH_4Cl) = n(NaOH) = 3.6 \times 10^{-3} \text{ mol } \checkmark (0.003598 \text{ mol})$ $n(NaOH) = n(HCl) = 1.6 \times 10^{-3} \text{ mol } \checkmark$ $n(HC\ell) = c_a V_a = \overline{(0,11)(14,55 \times 10^{-3})} \checkmark = 1,6 \times 10^{-3} \text{ mol}$ $n(NH_4Cl) = n(NaOH)$ = 0,003598 mol \checkmark n(NaOH) = n(HCl)= 0,006402 mol \checkmark $n(HC\ell) = cV$ $V(HCl) = 14,55 \times 4 \times 14,55 \times 14 \times 14,55 \times 14 \times 14,55 \times 14 \times 14,55 \times$ 92%: 0,193 g 100%: x OPTION 1/OPS/E V(HCt) to neutralise 100 cm³ NaOH: V(HCt) neutraliseer 100 cm³ NaOH: 100%: OPTION 2/OPSIE 2 $= 0,21 \text{ g} \checkmark$ = {0,11)(0,0582) </br>
= 0,066402 mol 0,192×100 <= 0,21 g < = 0,193 g =0,192 g $= (3.6 \times 10^{-3})(53.5) \times \left| \text{ n(NH₄Ct)} = 0.92 \frac{\dot{x}}{53.5} \right|$ = (0,003598)(53,5) < 92 $\therefore 3.6 \times 10^{-3} = 0.92 \frac{\times}{53.5}$ $:: x = 0.21 g \checkmark$ $m(NH_4Ct) = nM$ = (0,003598)(53,5) \checkmark = 0,1/92 g 92% : 0,192 g n(HCt) to neutralise 100 cm³ NaOH: n(HCt) neutraliseer 100 cm³ NaOH: 100%: 0,192 x $\frac{100}{92}$ $\checkmark = 0,21$ g \checkmark $n(NH_4Cl) = n(NaOH)$ = 0,003598 mol < n(NaOH reacted/gereageer): $n(NaOH) = 0.01 - 0.006402 \checkmark$ $n(NaOH) = n(HCl) = 6.4 \times 10^{-3} \text{ mol } \checkmark$ n(HCt) = cVOPTION 3/OPSIE 3 n(NaOH excess/oormaat): = $(0,11)(0,01455 \times 4^{\checkmark})^{\checkmark}$ = $0,006402 \text{ mol } (6,4 \times 10^{-3} \text{ mol})$ = 0.003598 mol $n(NH_4Cl) = \frac{m}{53.5}$ $m = \frac{0,192 \times 100}{2}$ m(fertiliser/kunsmis): $n(NH_4Cl) = 0,192 g$ $\therefore 3.6 \times 10^{-3} = \frac{\text{m}}{53.5}$ $= 0.21 \, \text{g} \, \text{V}$

7.3

8

	32
	$100\% : 0,192 \times \frac{100}{92} \checkmark = 0,21 \text{ g} \checkmark$
×=0,∠ g √	92%: 0,192 g
0.0036(53.5) = 0.92x	= 0,192 g
0,0036 = 100 V	$m(NH_4CC) = nM$ = (0,003598)(53,5) \checkmark
92 X	= 0,003598 mol <
n = m	
$n(NH_4Cl) = n(NaOH) = 0,0036 \text{ mol } \checkmark$	$n(NaOH) = 0.01 - 0.008402 \times 0.003598 \text{ mol}$
= 0,0036 mol	n(NaOH reacted/gereageer):
$= 0.036 \times 0.1$	$= 6.4 \times 10^{-3}$ mol
n(NaOH reacted/gereageer):	= (0,064)(0,1) <
	n(NaOH) = cV
= 0,036 mol·dm ⁻³	n(NaOH in oormaat in 100 cm³):
$\Delta c(NaOH) = 0.1 - 0.064 \checkmark \checkmark$	n(NaOH in excess in 100 cm ³):
$c_b = 0.064 \text{ mol·dm}^{-3}$	$c_b = 0,064 \text{ mol} \cdot \text{dm}^{-3}$
c _b x 25 1	$c_b \times 25$
$c_aV_a = n_a = 0,11 \times 14.55 = 1$	$c_{a}V_{a}$ n_{a} 0,11 x 14,55 1
OPTION 5/OPSIE 5	OPTION 4/OPSIE 4

|--|

Please turn over/Blaai om assbelief

Physical Sciences P2/Fisiese Wetenskappe V2 12
NSC/NSS – Memorandum

Physical Sciences P2/Fisiese Wetenskappe V2 13 NSC/NSS – Memorandum

Physical Sciences P2/Fisiese Wetenskappe V2 14 NSC/NSS – Memorandum

QUESTION 8/VRAAG 8

101.3 kPa / 1,013 x 10⁵ Pa / 1 atm / 100 kPa ~ 25°C/298K~ 1 mol·dm⁻³ < Concentration/Konsentrasie: Temperature/Temperatuur. Pressure/Druk: 8.1

8.2

Notes/Aantekeninge Ignore phases. / Ignoreer Cd(s) / Cadmium / Kadmium / $Cd[Cd^{2+}/Cd^{2+}]Cd \checkmark$ 8.2.1

 $\widehat{\Xi}$

(3)

 $0.13 = E_{\text{cathode}}^{\theta} - (-0.40)^{\checkmark}$ $E_{cell}^{\theta}=E_{cathode}^{\theta}-E_{anode}^{\theta}$

8.2.2

 $=-0.27 (V) \checkmark$ $E_{cathode}^{\theta}=0.13-0.40$

Q is Ni/nickel/nikkel ✓

 Accept any other correct formula from the data sheet. / Aanvaar enige ander korrekte formule vanaf gegewensblad,

Notes/Aantekeninge $Cd^{2+} + 2e^{-} \leftarrow Cd$ $Cd \leftarrow Cd^{2+} + 2e^{-}$

8.3.2

Notes/Aantekeninge

Any other formula using unconventional abbreviations, e.g. $E_{coll} = E_{col.} - E_{col.}^2$ followed by correct substitutions: / Enige ander formule wat onkonvensionele afkortings gebruik bv. $E_{col.} = E_{col.} - E_{col.}$ gevolg deur korrekte vervangings: 4/5

Cd(s) → Cd²⁺(aq) + 2e⁻ ✓ ✓ Ignore phases. / Ignoreer fases. 8.3 8.3.1

Cd²⁺ + 2e⁻ = Cd $Cd \rightleftharpoons Cd^{2+} + 2e^{-}$ $\hat{\mathcal{S}}$

Pt/Platinum /

OPTION 1/OPSIE 1

8.4

 \mathbf{Q}^{2^+} word gereduseer / \mathbf{Cd} word geoksideer, en dus is \mathbf{Q}^{2^+} 'n sterker oksideermiddel as \mathbf{Cd}^{2^+} Q2+ is reduced / Cd is oxidised and therefore Q2+ is a stronger oxidising agent than Cd2+ Compare/Vergelyk Q²⁺ & Cd²⁺

> > > R₂ is reduced / Cd is oxidised and therefore R₂ is a stronger oxidising agent than Cd²⁺.
R₂ word gereduseer / Cd word geoksideer, dus is R₂ in sterker oksideermiddel as Cd²⁺. The cell potential of combination II is higher than that of combination I, therefore R_2 is a stronger oxidising agent than Q^{2*} . Die selpotensiaal van kombinasie II is hoër as dié van kombinasie I en dus is R_2 'n sterker oksideermiddel as $Q^{2\star}$. Cd²⁺; Ni²⁺; Cl₂ OR/OF Cd²⁺; Q²⁺;R₂ Compare/Vergelyk R₂ & Cd²⁺ Compare/Vergelyk R₂ & Q²⁺ Finale antwoord Final answer/

OPTION 2/OPSIE 2

(5)

The reduction potential of $\overline{Ct1Ct_2} = 1.36~\mathrm{V}$ \checkmark because the cell potential of combination II is 1,76 V and the reduction potential of CdICd²⁺ is 0,4 V. Die reduksiepotensiaal van $\overline{C\ell \, IC\ell_2} = 1.36 \, \underline{V}$ omdat die selpotensiaal van kombinasie II 1,76 V is en die reduksiepotensiaal van Cd/Cd²⁺ 0,4 V is. R_2 is C_2 because the cell potential of combination II is 1,76 V and the

reduction potential of CdICd²⁺ is 0,4 V.J. R₂ is $C\ell_2$ omdat die selpotensiaal van kombinasie II 1,76 V is en die reduksiepotensiaal van CdICd²⁺ 0,4 V

(2) \in

88

- CdICd²⁺ has the lowest reduction potential (-0,4 V) and therefore Cd^{2+} is the weakest oxidising agent. I $CdICd^{2+}$ hat die laagste reduksiepotensiaal (0,4 V) en dus is Cd^{2+} die swakste oksideermiddel. \checkmark
- CLIC ℓ_2 has the highest reduction potential and therefore C ℓ_2 is the strongest oxidising agent. / CLIC ℓ_2 het die hoogste reduksiepotensiaal en dus is Cl₂ die sterkste oksideermiddel. <
- Final answer/Finale antwoord: Cd²⁺; Q²⁺; R₂ < OR/OF Cd²⁺; Ni²⁺; Ct₂

(4) [16]

DBE/November 2015

Physical Sciences P2/Fisiese Wetenskappe V2 15 NSC/NSS – Memorandum

Physical Sciences P2/Fisiese Wetenskappe V2 16 NSC/NSS – Memorandum

DBE/November 2015

QUESTION 9/VRAAG 9

ANY ONE/ENIGE EEN:

The chemical process in which electrical energy is converted to

chemical energy. 🔨 Die chemiese <u>proses</u> waarin <u>elektriese energie omgeskakel word na</u> chemiese energie

The use of electrical energy to produce a chemical change. Die gebruik van elektriese energie om 'n chemiese verandering te weeg te bring.

Decomposition of an jonic compound by means of electrical energy Ontbinding van 'n joniese verbinding met behulp van elektriese energie.

Die proses waardeur 'n elektriese stroom deur 'n oplossing/ioniese solution/jonic liquid/motten ionic compound. The process during which and electric current passes through a vloeistof/gesmelte ioniese verbinding beweeg.

92 ANY ONE/ENIGE EEN:

Om die polariteit van die elektrodes dieselfde te hou To keep the polarity of the electrodes the same.

To prevent the anode and cathode from swopping. Om te verhoed dat die anode en katode omruil

DC provides a one way flow of electrons ensuring that the same chemical reaction occurs all the time at the electrodes.

GS verskaf 'n <u>eenrigting vloei van elektrone</u> en verseker dat dieselfde chemiese reaksie altyd by die elektrodes plaasvind

If you use AC the polarity of the electrodes will keep changing te verander. Wanneer jy WS gebruik word hou die polariteit van die elektrodes aan om

Pure copper deposited on only one electrode. Suiwer koper slaan slegs op een elektrode neer

(1)

9.3 Cu^{2+} (aq) + 2e \rightarrow Cu (s) $\checkmark\checkmark$ Ignore phases, / Ignoreer fases

Ignore phases. I ignoreer rases.

Notes/AanteKeninge

$$Cu^{2+} + 2e^- \Rightarrow Cu \quad (\frac{1}{2})$$
 $Cu \Rightarrow Cu^{2+} + 2e^- \quad (\frac{0}{2})$

Cu
$$\leftarrow$$
 Cu²⁺ + 2e⁻ (2/2)
Cu²⁺ + 2e⁻ \leftarrow Cu (9/2)

 \mathfrak{D}

9.4

OR/OF

Zn is a stronger reducing agent than Cu.

Zn is 'n sterker reduseermiddel as Cu.

Cu²⁺ will be reduced to Cu. / Cu²⁺ sal gereduseer word na Cu.

OR/OF

 $\frac{Zn^{2+}Zn}{Cu^{2+}}$ will be reduced to Cu. / Cu^{2+} sal gereduseer word na Cu. The standard reduction potential of Cu²⁺|Cu is higher than that of Zn²⁺|Zn. Die standaard reduksie potensiaal van Cu²⁺|Cu is hoër as die van

OR/OF

Ø

The standard reduction potential of $\mathbb{Z}n^{2^+}|\mathbb{Z}n$ is lower than that of $\mathbb{C}u^{2^+}|\mathbb{C}u$. Die standaard reduksie potensiaal van $\mathbb{Z}n^{2^+}|\mathbb{Z}n$ is laer as die van $\mathbb{C}u^{2^+}|\mathbb{C}u$. $\mathbb{C}u^{2^+}$ will be reduced to $\mathbb{C}u$. $|\mathbb{C}u^{2^+}|$ sal gereduseer word na $\mathbb{C}u$.

3

9.5
$$n = \frac{m}{M}$$

$$2.85 \times 10^{-2} = \frac{m}{63.5}$$

% purity =
$$\frac{181}{2} \times 100 \checkmark$$

= 90,49 % \checkmark

m = 1,81g

Percentage purity. v

Persentasie suiwerheid.

Marking guidelines/Nasienriglyme

• Substitute 63,5
$$\checkmark$$
 and 2,85 \times 10² \checkmark in n = $\frac{\text{m}}{\text{M}}$

Vervang 63,5 en 2,85 x
$$10^2$$
 in $n = \frac{m}{M}$

Final answer/Finale antwoord: 90,49% (Accept/Aanvaar: 90,5%)

4

[12]

QUESTION 10/VRAAG 10

10.1 10.1.1 Haber (process) / Haber(proses) ✓

 $\widehat{\Xi}$

10.1.2

Balancing ✓ Balansering ✓ Products ✓ Produkte ✓ $N_2 + 3H_2 \checkmark = 2NH_3 \checkmark bal \checkmark$ Notes/Aantekeninge
• Reactants \checkmark Products
Reaktanse \checkmark Produkte

Ignore/Ignoreer → and phases / en fases
 Marking rule 6.3.10/Nasienreë/ 6.3.10

10.1.3 Air / Lug ~

 Ξ (3)

 Ξ

2 Ξ

10.2 10.2.1 40% \

10.2.2

Hoë opbrengs / persentasie High yield / percentage ✓

High rate due to higher concentration. < Hoë tempo weens hoër konsentrasie.

10.2.3 Low reaction rate / Lae reaksietempo ✓

Marking guidelines/Nasienriglyne 10.3

OPTION 2/OPSIE 2 17,5 kg 🗸 $\frac{20}{80}$ **OPTION 1/OPS/E 1** % N in NH₄NO₃ = $\frac{28}{80}$ \checkmark ×100 = 35%

 $m(N \text{ in } NH_4NO_3) = \frac{28}{80} < \times 50 <$ $\frac{35}{100} \times 50 \checkmark = 17,5 \text{ kg} \checkmark$

 $= 17,5 \text{ kg } \checkmark$

150 TOTAL/TOTAAL:

(3)