```
In [1]: import re
         from sklearn.datasets import load_digits
         from sklearn.model_selection import train_test_split
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn import metrics
         %matplotlib inline
         digits = load_digits()
In [2]: print("Image Data shape",digits.data.shape)
         print("Lable Data shape",digits.target.shape)
         Image Data shape (1797, 64)
         Lable Data shape (1797,)
In [5]: plt.figure(figsize=(20,4))
         for index,(image,lable)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
             plt.subplot(1,5,index+1)
             plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
             plt.title('Training:%i\n'%lable,fontsize=10)
                                                                                 Training:3
                                                                                                      Training:4
In [7]: from sklearn.model_selection import train_test_split
        x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30,random_state=2)
In [8]: print(x_train.shape)
         (1257, 64)
In [9]: print(y_train.shape)
         (1257,)
In [10]: print(x_test.shape)
         (540, 64)
In [11]: | from sklearn.linear_model import LogisticRegression
In [12]: |logisticRegr = LogisticRegression(max_iter=10000)
         logisticRegr.fit(x_train,y_train)
Out[12]:
                   LogisticRegression
          LogisticRegression(max_iter=10000)
```

```
In [13]: | print(logisticRegr.predict(x_test))
           [4 0 9 1 8 7 1 5 1 6 6 7 6 1 5 5 8 6 2 7 4 6 4 1 5 2 9 5 4 6 5 6 3 4 0 9 9
            8 4 6 8 8 5 7 9 8 9 6 1 7 0 1 9 7 3 3 1 8 8 8 9 8 5 8 4 9 3 5 8 4 3 1 3 8
            7 3 3 0 8 7 2 8 5 3 8 7 6 4 6 2 2 0 1 1 5 3 5 7 1 8 2 2 6 4 6 7 3 7 3 9 4
            7 0 3 5 1 5 0 3 9 2 7 3 2 0 8 1 9 2 1 5 1 0 3 4 3 0 8 3 2 2 7 3 1 6 7 2 8
            3 1 1 6 4 8 2 1 8 4 1 3 1 1 9 5 4 8 7 4 8 9 5 7 6 9 4 0 4 0 0 9 0 6 5 8 8
            3 7 9 2 0 8 2 7 3 0 2 1 9 2 7 0 6 9 3 1 1 3 5 2 5 5 2 1 2 9 4 6 5 5 5 9 7
            1 5 9 6 3 7 1 7 5 1 7 2 7 5 5 4 8 6 6 2 8 7 3 7 8 0 9 5 7 4 3 4 1 0 3 3 5
            4 1 3 1 2 5 1 4 0 3 1 5 5 7 4 0 1 0 9 5 5 5 4 0 1 8 6 2 1 1 1 7 9 6 7 9 7
            0\; 4\; 9\; 6\; 9\; 2\; 7\; 2\; 1\; 0\; 8\; 2\; 8\; 6\; 5\; 7\; 8\; 4\; 5\; 7\; 8\; 6\; 4\; 2\; 6\; 9\; 3\; 0\; 0\; 8\; 0\; 6\; 6\; 7\; 1\; 4\; 5
            6 \; 9 \; 7 \; 2 \; 8 \; 5 \; 1 \; 2 \; 4 \; 1 \; 8 \; 8 \; 7 \; 6 \; 0 \; 8 \; 0 \; 6 \; 1 \; 5 \; 7 \; 8 \; 0 \; 4 \; 1 \; 4 \; 5 \; 9 \; 2 \; 2 \; 3 \; 9 \; 1 \; 3 \; 9 \; 3 \; 2
            8 0 6 5 6 2 5 2 3 2 6 1 0 7 6 0 6 2 7 0 3 2 4 2 3 6 9 7 7 0 3 5 4 1 2 2 1
            2 7 7 0 4 9 8 5 6 1 6 5 2 0 8 2 4 3 3 2 9 3 8 9 9 5 9 0 3 4 7 9 8 5 7 5 0
            5 3 5 0 2 7 3 0 4 3 6 6 1 9 6 3 4 6 4 6 7 2 7 6 3 0 3 0 1 3 6 1 0 4 3 8 4
            3 3 4 8 6 9 6 3 3 0 5 7 8 9 1 5 3 2 5 1 7 6 0 6 9 5 2 4 4 7 2 0 5 6 2 0 8
            4 4 4 7 1 0 4 1 9 2 1 3 0 5 3 9 8 2 6 0 0 4]
In [14]: | score=logisticRegr.score(x test,y test)
In [15]: print(score)
          0.9537037037037037
 In [ ]:
```