Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer Ludwig-Maximilians-Universität München Institut für Informatik 18. Oktober 2017

1. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 1-1 (Grenzwerte) Berechnen Sie folgende Grenzwerte, falls diese existieren. Begründen Sie jeweils Ihre Antwort.

a)
$$\lim_{n \to \infty} \frac{3n}{n+3}$$

d)
$$\lim_{n \to \infty} \frac{2n^3 - 4n^2}{4n^3 + 2}$$

b)
$$\lim_{n \to \infty} \frac{5+n}{3n+3}$$

e)
$$\lim_{n \to \infty} \frac{2^n}{n^2}$$

c)
$$\lim_{n \to \infty} \frac{(-2)^{n-1}}{3^n}$$

f)
$$\lim_{n\to\infty} \frac{n^2}{2^n}$$

Aufgabe 1-2 (Grenzwerte) Beweisen Sie folgende Aussage für jede beliebige Folge (a_n) und jede beliebige Zahl b: Wenn $\lim_{n\to\infty} a_n = a$, dann $\lim_{n\to\infty} b\cdot a_n = b\cdot a$.

Aufgabe 1-3 (Reihen) Welche der folgenden Reihen konvergiert? Begründen Sie jeweils Ihre Antwort!

a)
$$\sum_{k=0}^{\infty} \frac{(1+k^2)^2}{(1+k^3)^2}$$

$$c) \sum_{k=1}^{\infty} \frac{k^4}{3^k}$$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

d)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

Aufgabe 1-4 (Der kleine Gauß) Beweisen Sie mit Induktion den "kleinen Gauß":

$$\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$$

Abgabe: Sie können Ihre Lösung bis zum Mittwoch, den 25.10. um 12 Uhr über Uni-WorX abgeben. Auf dieses Übungsblatt gibt es keine Bonuspunkte. Die Korrektur dient Ihrem Verständnis des Stoffes.