07.02,24 \times μ , k=1,2,...,N. Each \times μ is distributed according to \times $\Pr(x=x_j)=p_j$, j=1,2,...,dMultinomial distribution Emnt - n; = NP; Probability of only typical = p_i and $\frac{N \rightarrow \infty}{2} - NH(X)$ Sequence $P_i = P_i - P_i = P_i$ $P_i = P_i - P_i = P_i$ = N(- \sqrt{p; ln p;}) Typical requences boy all the probability in the N-200 limit

 $p(x_1,...,x_N) = e^{-NH(x)}$ concatenation was we $x_1,...x_N \in T(N,\epsilon)$ Def A requence is E-typical if - log p(x,,...,xN) - H(X) (E -N[H(X)+e] -N[H(X)-e]Looks line a LOL-type statement Sample $S_{n} = -\frac{1}{N} \log p(x_{1}, ..., x_{N}) = \frac{1}{N} \frac{N}{\log p(x_{N})}$ when $N = -\frac{1}{N} \log p(x_{1}, ..., x_{N}) = \frac{1}{N} \frac{N}{\log p(x_{N})}$ $N = \frac{1}{N} \log p(x_{N})$ $N = \frac{1}{N} \log p(x_{N})$ $=\frac{1}{N}\left\langle \left[\Delta(-\log P(x))\right]^{2}\right\rangle =\frac{1}{N}\sum_{x}P_{x}\left(-\log P_{x}-H(x)\right)^{2}$ Average H(x) + log Px < log d + log Px < log d Single-shot => <(05y)2> < (log d)2 Proven elsewhere Var J < (log d)2 Source ____ Receiver

- N[H(X)+E] 2 Opper bound 1 > [> (x1, ..., xN) > |T(N,E) | min p(x1,..., XN) $\Rightarrow |7(N,\epsilon)| \geq (1-\delta) 2^{N[H(X)-\epsilon]}$ $\leq 1-1+\delta'=\delta'$ < 2 NR max p(x1,3...,xn) = 2 NR 2-N(H(X)-E) Define this to be $\delta/2$ and try to bound the = 2-N[H(x)-R-E] left term by 5/2 or well. Choose No ≥No 5.t. ≥-N[H(x)-R-E] < 5 Then for N>No, Sp(X1,...,XN) < 25'=5 Contrapritive: if any net har an appreciable probability (bounded away from zero), then it is "as large as T(NE)"

Than non source coding theorem
(A (lossy) (N, E) - Llock code for i.i.d., roundom variables X,,, X, is a set SC Sxxs such that N times
Pr (x, x2 x N ∈ 5) > 1-8
log 151 is called the rate of the code because it is the number of
bits (log (51) per symbol (x; for each j) wed for encoding
The minimum possible respective vate is the entropy H(X) of the source
In information theory, the source coding theorem (Shannon 1948) ^[2] informally states that (MacKay 2003, pg. 81, ^[3] Cover 2006, Chapter $5^{[4]}$): $N \text{ i.i.d. random variables each with entropy } H(X) \text{ can be compressed into more than } NH(X) \text{ bits with negligible risk of information loss, as } N \to \infty;$ but conversely, if they are compressed into fewer than $NH(X)$ bits it is virtually certain that information will be lost.
Similar statements & proofs can be found in Machay's (free) electronic book: Information Theory, Interence, and Learning Algorithms