Math 251, Mon 13-Sep-2021 -- Mon 13-Sep-2021 Discrete Mathematics Fall 2021

Monday, September 13th 2021

Wk 3, We

Topic:: Sets

Read:: Rosen 2.1

Due:: Quiz Ch. 1 ends at 10 pm

MATH 251 Notes

Sets

Sets

Sets

• collections of objects

We'll avoid descriptions penerating paradoxes

ways of describing

enumeration

{ ..., -4, -2, 0, 2, ... }

o set builder notation

$$Q = \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \}$$

$$\{ x \mid x^2 + 3x + 2 = 0 \} = \{ -1, -2 \}$$

o intervals of numbers

o words/symbols

1

MATH 251 Notes

items in a set are called **elements** of that set
 Some notions and how to express them

Empty set
$$\emptyset$$
 {}

By convention \emptyset is a subset of every set.

o "is/is not a subset of"

A, B sets, say
$$A \subseteq B \iff ((x \in A) \rightarrow (x \in B))$$

Say $A = \{0,1,2\}$, $B = \{0,1,2,...5\}$
True: $| \in A|$, $| \in B|$
True: $\{1\} \subseteq A$, $| \in B|$

o "equality of sets"

A, B sets are equal precisely when the contain the same elements.
$$\{1,3,2\}=\{1,2,3\}$$

 $\{1,1,2,1,3,1\}=\{1,2,3\}$
Fact: $A=B\iff (A\subseteq B)\land (B\subseteq A)$

can be empty, finite or infinite cardinality = count of elements in a set
 If A = {2, 7, 16}, then | A| = 3

MATH 251 Notes

Sets built from other sets

the power set P(A) of a set A
 use of bitstrings to describe subsets of a finite set A

$$|\emptyset| = 0$$

$$P(\emptyset) = \{\{\}\}$$

$$P(P(\emptyset)) = \{\{\}\}, \{\{\}\}\}$$

• Cartesian product $A \times B$ of two sets A, B