PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 98/22575 (11) International Publication Number: (51) International Patent Classification 6: **A2** C12N 9/12, 15/10, 15/54 28 May 1998 (28.05.98) (43) International Publication Date:

PCT/US97/21347 (21) International Application Number:

21 November 1997 (21.11.97) (22) International Filing Date:

(30) Priority Data:

US 22 November 1996 (22.11.96) 60/031,626 14 October 1997 (14.10.97) US 60/061,953

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). UNIVERSITY OF WISCONSIN [US/US]; 1300 University Avenue, Madison, WI 53706 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DILLON, Patrick, J. [US/US]; 7508 Boxberry Terrace, Gaithersburg, MD 20879 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). WELCH, Rodney, A. [US/US]; 410 Ridge Street, Madison, WI 53705 (US).
- (74) Agents: STEFFE, Eric, K. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to a deposited microorganism furnished under Rule 13bis separately from the description. Date of receipt by the International Bureau: 20 March 1998 (20.03.1998)

(54) Title: THERMOSTABLE POLYMERASES HAVING ALTERED FIDELITY

(57) Abstract

The present invention relates to novel genes located in two chromosomal regions within uropathogenic E. coli that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs). In particular, the present application discloses 142 sequenced fragments (contigs) of DNA from two pools of cosmids covering pathogenicity islands PAI IV and PAI V located on the chromosome of the uropathogenic Escherichia coli 196. Further disclosed are 351 predicted protein-coding open reading frames within the sequenced fragments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Y assalts		
AM	Armenia	FI	Finland		Lesotho	SI	Slovenia
AT	Austria	FR	France	LT	Lithuania	SK	Slovakia
AU	Australia	GA	Gabon	LU	Luxembourg	SN	Senegal
AZ	Azerbaijan	GB		LV	Latvia	SZ	Swaziland
BA	Bosnia and Herzegovina	GE GE	United Kingdom	MC	Мопасо	TD	Chad
BB	Barbados		Georgia	MD	Republic of Moldova	TG	Togo
BE		GH	Ghana	MG	Madagascar	TJ	Tajikistan
BF	Belgium Bushing B	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	MŁ	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	211	Ziiiibabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
Œ	Germany	LI	Liechtenstein	SD	Sudan		
K	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Nucleotide Sequence of Escherichia coli Pathogenicity Islands

Background of the Invention

Field of the Invention

5

The present invention relates to novel genes located in two chromosomal regions within *E. coli* that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs).

Related Background Art

10

15

20

25

Escherichia coli (E. coli) is a normal inhabitant of the intestine of humans and various animals. Pathogenic E. coli strains are able to cause infections of the intestine (intestinal E. coli strains) and of other organs such as the urinary tract (uropathogenic E. coli) or the brain (extraintestinal E. coli). Intestinal pathogenic E. coli are a well established and leading cause of severe infantile diarrhea in the developing world. Additionally, cases of newborn meningitis and sepsis have been attributed to E. coli pathogens.

In contrast to non-pathogenic isolates, pathogenic *E. coli* produce pathogenicity factors which contribute to the ability of strains to cause infectious diseases (Mühldorfer, I. and Hacker, J., *Microb. Pathogen.* 16:171-181 1994). Adhesions facilitate binding of pathogenic bacteria to host tissues. Pathogenic *E. coli* strains also express toxins including haemolysins, which are involved in the destruction of host cells, and surface structures such as O-antigens, capsules or membrane proteins, which protect the bacteria from the action of phagocytes or the complement system (Ritter, *et al.*, *Mol. Microbiol.* 17:109-212 1995).

The genes coding for pathogenicity factors of intestinal *E. coli* are located on large plasmids, phage genomes or on the chromosome. In contrast to intestinal *E. coli*, pathogenicity determinants of uropathogenic and other extraintestinal *E. coli* are, in most cases, located on the chromosome. *Id.*

Large chromosomal regions in pathogenic bacteria that encode adjacently located virulence genes have been termed *pathogenicity islands* ("PAIs"). PAIs are indicative of large fragments of DNA which comprise a group of virulence genes behaving as a distinct molecular and functional unit much like an island within the bacterial chromosome. For example, intact PAIs appear to transfer between organisms and confer complex virulence properties to the recipient bacteria.

Chromosomal PAIs in bacterial cells have been described in increasing detail over recent years. For example, J. Hacker and co-workers described two large, unstable regions in the chromosome of uropathogenic *Escherichia coli* strain 536 as PAI-I and PAI-II (Hacker J., *et al.*, *Microbiol. Pathog.* 8:213-25 1990). Hacker found that PAI-I and PAI-II containing virulence regions can be lost by spontaneous deletion due to recombination events. Both of these PAIs were found to encode multiple virulence genes, and their loss resulted in reduced hemolytic activity, serum resistance, mannose-resistant hemagglutination, uroepithelial cell binding, and mouse virulence of the *E. coli*. (Knapp, S *et al.*, *J. Bacteriol.* 168:22-30 1986). Therefore, pathogenicity islands are characterized by their ability to confer complex virulence phenotypes to bacterial cells.

In addition to *E. coli*, specific deletion of large virulence regions has been observed in other bacteria such as *Yersinia pestis*. For example, Fetherston and co-workers found that a 102-kb region of the *Y. pestis* chromosome lost by spontaneous deletion resulted in the loss of many *Y. pestis* virulence phenotypes. (Fetherston, J.D. and Perry, R.D., *Mol. Microbiol.* 13:697-708 1994, Fetherston, *et al.*, *Mol. Microbiol.* 6:2693-704 1992). In this instance, the deletion appeared to be due to recombination within 2.2-kb repetitive elements at both ends of the 102-kb region.

It is possible that deletion of PAIs may benefit the organism by modulating bacterial virulence or genome size during infection. PAIs may also represent foreign DNA segments that were acquired during bacterial evolution that conferred important pathogenic properties to the bacteria. Observed flanking

10

5

15

20

25

repeats, as observed in *Y. pestis* for example, may suggest a common mechanism by which these virulence genes were integrated into the bacterial chromosomes.

Integration of the virulence genes into bacterial chromosomes was further elucidated by the discovery and characterization of a locus of enterocyte effacement (the LEE locus) in enteropathogenic *E. coli* (McDaniel, *et al.*, *Proc. Natl Acad. Sci.* (USA) 92:1664-8 1995). The LEE locus comprises 35-kb and encodes many genes required for these bacteria to "invade" and degrade the apical structure of enerocytes causing diarrhea. Although the LEE and PAI-I loci encode different virulence genes, these elements are located at the exact same site in the *E. coli* genome and contain the same DNA sequence within their right-hand ends, thus suggesting a common mechanism for their insertion.

Besides being found in enteropathogenic *E. coli*, the LEE element is also present in rabbit diarrheal *E. coli*, *Hafnia alvei*, and *Citrobacter freundii* biotype 4280, all of which induce attaching and effacing lesions on the apical face of enterocytes. The LEE locus appears to be inserted in the bacterial chromosome as a discrete molecular and functional virulence unit in the same fashion as PAI-I, PAI-II, and *Yersinia* PAI.

Along these same lines, a 40-kb Salmonella typhimurium PAI was characterized on the bacterial chromosome which encodes genes required for Salmonella entry into nonphagocytic epithelial cells of the intestine (Mills, D.M., et al., Mol. Microbiol. 15:749-59 1995). Like the LEE element, this PAI confers to Salmonella the ability to invade intestinal cells, and hence may likewise be characterized as an "invasion" PAI.

The pathogenicity islands described above all possess the common feature of conferring complex virulence properties to the recipient bacteria. However, they may be separated into two types by their respective contributions to virulence. PAI-I, PAI-II, and the *Y. pestis* PAI confer multiple virulence phenotypes, while the LEE and the *S. typhimurium* "invasion" PAI encode many genes specifying a single, complex virulence process.

It is advantageous to characterize closely-related bacteria that contain or do not contain the PAI by the isolation of a discrete molecular and functional unit

30

5

10

15

20

10

15

20

on the bacterial chromosome. Since the presence versus the absence of essential virulence genes can often distinguish closely-related virulent versus avirulent bacterial strains or species, experiments have been conducted to identify virulence loci and potential PAIs by isolating DNA sequences that are unique to virulent bacteria (Bloch, C.A., et al., J Bacteriol. 176:7121-5 1994, Groisman, E.A., EMBO J. 12:3779-87 1993).

At least two PAIs are present in *E. coli* J96. These PAIs, PAI IV and PAI V are linked to tRNA loci but at sites different from those occupied by other known *E. coli* PAIs. Swenson *et al.*, *Infect. and Immun.* 64:3736-3743 (1996).

The era of true comparative genomics has been ushered in by high through-put genomic sequencing and analysis. The first two complete bacterial genome sequences, those of *Haemophilus influenzae* and *Mycoplasma genitalium* were recently described (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)). Large scale DNA sequencing efforts also have produced an extensive collection of sequence data from eukaryotes, including *Homo sapiens* (Adams, M.D., et al., Nature 377:3 (1995)) and Saccharomyces cerevisiae (Levy, J., Yeast 10:1689 (1994)).

The need continues to exist for the application of high through-put sequencing and analysis to study genomes and subgenomes of infectious organisms. Further, a need exists for genetic markers that can be employed to distinguish closely-related virulent and avirulent strains of a given bacteria.

Summary of the Invention

The present invention is based on the high through-put, random sequencing of cosmid clones covering two pathogenic islands (PAIs) of uropathogenic *Escherichia coli* strain J96 (O4:K6; *E. coli* J96). PAIs are large fragments of DNA which comprise pathogenicity determinants. PAI IV is located approximately at 64 min (near *pheV*) on the *E. coli* chromosome and is greater than 170 kilobases in size. PAI V is located at approximately 94 min (at *pheR*) on the *E. coli* chromosome and is approximately 106 kb in size. These PAIs

differ in location from the PAIs described by Hacker and colleagues for uropathogenic strain 536 (PAI I, 82 minutes {selC} and PAI II, 97 minutes {leuX}).

5

10

15

20

25

30

NSDOCID: <WO__9822575A2 1 >

The location of the PAIs relative to one another and the cosmid clones covering the J96 PAIs is shown in Figure 1. The present invention relates to the nucleotide sequences of 142 fragments of DNA (contigs) covering the PAI IV and PAI V regions of the *E. coli* J96 chromosome. The nucleotide sequences shown in SEQ ID NOs: 1 through 142 were obtained by shotgun sequencing eleven *E. coli* J96 subclones, which were deposited in two pools on September 23, 1996 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession numbers 97726 (includes 7 cosmid clones covering PAI (IV) and 97727 (includes 4 cosmid clones covering PAI V). The deposited sets or "pools" of clones are more fully described in Example 1. In addition, *E. coli* strain J96 was also deposited at the American Type Culture Collection on September 23, 1996, and given accession number 98176.

Three hundred fifty-one open reading frames have been thus far identified in the 142 contigs described by SEQ ID NOs: 1 through 142. Thus, the present invention is directed to isolated nucleic acid molecules comprising open reading frames (ORFs) encoding *E. coli* J96 PAI proteins, and fragments of said nucleic acid molecules.

The present invention also relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of *E. coli* J96 PAI proteins. Further embodiments include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of an *E. coli* J96 PAI ORF described herein, and fragments of said nucleic acid molecules.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention and fragments thereof, host cells containing the recombinant vectors, as well as methods for

10

15

20

25

making such vectors and host cells for *E. coli* J96 PAI protein production by recombinant techniques.

The invention further provides isolated polypeptides encoded by the *E. coli* J96 PAI ORFs or fragments of said ORFs. It will be recognized that some amino acid sequences of the polypeptides described herein can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope-bearing portion is an immunogenic or antigenic epitope useful for raising antibodies.

The invention further provides a vaccine comprising one or more *E. coli* J96 PAI antigens together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the one or more antigens are present in an amount effective to elicit protective antibodies in an animal to pathogenic *E. coli*, such as strain J96.

The invention also provides a method of eliciting a protective immune response in an animal comprising administering to the animal the above-described vaccine.

The invention further provides a method for identifying pathogenic *E. coli* in an animal comprising analyzing tissue or body fluid from the animal for one or more of:

- (a) polynucleic acids encoding an open reading frame listed in Tables 1-4 or a fragment of said polynucleic acid;
- (b) full length or mature polypeptides encoded for by an open reading frame listed in Tables 1-4; or

3NSDOCID: <WO 9822575A2 1 >

10

15

20

(c) antibodies specific to polypeptides encoded for by an open reading frame listed in Tables 1-4.

The invention further provides a nucleic acid probe for the detection of the presence of one or more *E. coli* PAI nucleic acids (nucleic acids encoding one or more ORFs as listed in Tables 1-4) in a sample from an individual comprising one or more nucleic acid molecules sufficient to specifically detect under stringent hybridization conditions the presence of the above-described molecule in the sample.

The invention also provides a method of detecting *E. coli* PAI nucleic acids in a sample comprising:

- a) contacting the sample with the above-described nucleic acid probe, under conditions such that hybridization occurs, and
- b) detecting the presence of the probe bound to an E. coli PAI nucleic acid.

The invention further provides a kit for detecting the presence of one or more *E. coli* PAI nucleic acids in a sample comprising at least one container means having disposed therein the above-described nucleic acid probe.

The invention also provides a diagnostic kit for detecting the presence of pathogenic *E. coli* in a sample comprising at least one container means having disposed therein one or more of the above-described antibodies.

The invention also provides a diagnostic kit for detecting the presence of antibodies to pathogenic *E. coli* in a sample comprising at least one container means having disposed therein one or more of the above-described antigens.

Brief Description of the Figures

25

Figure 1 is a schematic diagram of cosmid clones derived from *E. coli* J96 pathogenicity island and map positions of known *E. coli* PAIs (not drawn to scale). The gray bar represents the *E. coli* K-12 chromosome with minute demarcations of PAI junction points located above the bar. *E. coli* J96 overlapping cosmid clones are represented by hatched bars (overlap not drawn to

10

15

20

scale) with positions of *hly*, *pap*, and *prs* operons indicated above bar. The PAIs and estimated sizes are shown above and below the K-12 chromosome map.

Figure 2 is a block diagram of a computer system 102 that can be used to implement the computer-based systems of present invention.

Detailed Description of the Invention

The present invention is based on high through-put, random sequencing of a uropathogenic strain of *Escherichia coli*. The DNA sequences of contiguous DNA fragments covering the pathogenicity islands, PAI IV (also referred to as PAI_{J96(pheV)}) and PAI V (also referred to as PAI_{J96(pheV)}) from the chromosome of the *E. coli* uropathogenic strain, J96 (04:K6) were determined. The sequences were used for DNA and protein sequence similarity searches of the database.

The primary nucleotide sequences generated by shotgun sequencing cosmid clones of the PAI IV and PAI V regions of the *E. coli* chromosome are provided in SEQ ID NOs:1 through 142. These sequences represent contiguous fragments of the PAI DNA. As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system. The present invention provides the nucleotide sequences of SEQ ID NOs:1 through 142, or representative fragments thereof, in a form that can be readily used, analyzed, and interpreted by a skilled artisan. Within these 142 sequences, there have been thus far identified 351 open reading frames (ORFs) that are described in greater detail below.

As used herein, a "representative fragment" refers to *E. coli* J96 PAI protein-encoding regions (also referred to herein as open reading frames or ORFs), expression modulating fragments, and fragments that can be used to diagnose the presence of *E. coli* in a sample. A non-limiting identification of such representative fragments is provided in Tables 1 through 6, preferably in Tables 1 through 4. As described in detail below, representative fragments of the present invention further include nucleic acid molecules having a nucleotide sequence at least 95% identical, preferably at least 96%, 97%, 98%, or 99%

-9-

identical, to an ORF identified in Tables 1 through 6, or more preferably Tables 1 through 4.

As indicated above, the nucleotide sequence information provided in SEQ ID NOs:1 through 142 was obtained by sequencing cosmid clones covering the PAIs located on the chromosome of E. coli J96 using a megabase shotgun sequencing method. The sequences provided in SEQ ID NOs:1 through 142 are highly accurate, although not necessarily a 100% perfect, representation of the nucleotide sequences of contiguous stretches of DNA (contigs) which include the ORFs located on the two pathogenicity islands of E. coli J96. As discussed in detail below, using the information provided in SEQ ID NOs:1 through 142 and in Tables 1 through 6 together with routine cloning and sequencing methods, one of ordinary skill in the art would be able to clone and sequence all "representative fragments" of interest including open reading frames (ORFs) encoding a large variety of E. coli J96 PAI proteins. In rare instances, this may reveal a nucleotide sequence error present in the nucleotide sequences disclosed in SEQ ID NOs: 1 through 142. Thus, once the present invention is made available (i.e., once the information in SEQ ID NOs: 1 through 142 and in Tables 1 through 6 is made available), resolving a rare sequencing error would be well within the skill of the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler™ can be used as an aid during visual inspection of nucleotide sequences.

Even if all of the rare sequencing errors were corrected, it is predicted that the resulting nucleotide sequences would still be at least about 99.9% identical to the reference nucleotide sequences in SEQ ID NOs: 1 through 142. Thus, the present invention further provides nucleotide sequences that are at least 99.9% identical to the nucleotide sequence of SEQ ID NOs: 1 through 142 in a form which can be readily used, analyzed and interpreted by the skilled artisan. Methods for determining whether a nucleotide sequence is at least 99.9% identical to a reference nucleotide sequence of the present invention are described below.

30

5

10

15

20

10

15

20

25

Nucleic Acid Molecules

The present invention is directed to isolated nucleic acid fragments of the PAIs of *E. coli* J96. Such fragments include, but are not limited to, nucleic acid molecules encoding polypeptides, nucleic acid molecules that modulate the expression of an operably linked ORF (hereinafter expression modulating fragments (EMFs)), and nucleic acid molecules that can be used to diagnose the presence of *E. coli* in a sample (hereinafter diagnostic fragments (DFs)).

By "isolated nucleic acid molecule(s)" is intended a nucleic acid molecule, DNA or RNA, that has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, purified (partially or substantially) DNA molecules in solution, and nucleic acid molecules produced synthetically. Isolated RNA molecules include in vitro RNA transcripts of the DNA molecules of the present invention.

In one embodiment, *E. coli* J96 PAI DNA can be mechanically sheared to produce fragments about 15-20 kb in length, which can be used to generate an *E. coli* J96 PAI DNA library by insertion into lambda clones as described in Example 1 below. Primers flanking an ORF described in Tables 1 through 6 can then be generated using the nucleotide sequence information provided in SEQ ID NOs: 1 through 142. The polymerase chain reaction (PCR) is then used to amplify and isolate the ORF from the lambda DNA library. PCR cloning is well known in the art. Thus, given SEQ ID NOs: 1 through 142, and Tables 1 through 6, it would be routine to isolate any ORF or other representative fragment of the *E. coli* J96 PAI subgenomes. Isolated nucleic acid molecules of the present invention include, but are not limited to. single stranded and double stranded DNA, and single stranded RNA, and complements thereof.

Tables 1 through 6 herein describe ORFs in the *E. coli* J96 PAI cosmid clone library.

Tables 1 and 3 list, for PAI IV and PAI V, respectively, a number of ORFs that putatively encode a recited protein based on homology matching with protein sequences from an organism listed in the Table. Tables 1 and 3 indicate the location of ORFs (i.e., the position) by reference to its position within the one of the 142 *E. coli* J96 contigs described in SEQ ID NOs: 1 through 142. Column 1 of Tables 1 and 3 provides the Sequence ID Number (SEQ ID NO) of the contig in which a particular open reading frame is located. Column 2 numerically identifies a particular ORF on a particular contig (SEQ ID NO) since many contigs comprise a plurality of ORFs. Columns 3 and 4 indicate an ORF's position in the nucleotide sequence (contig) provided in SEQ ID NOs: 1 through 142 by referring to start and stop positions in the contig sequence.

One of ordinary skill in the art will appreciate that the ORFs may be oriented in opposite directions in the *E. coli* chromosome. This is reflected in columns 3 and 4. For these ORFs, the sense strand is complementary to the actual sequence given. The corresponding sense-strand of the ORF must be read as the 5'-3' complement of the antisense strand actually shown in the Sequence Listing, wherein the location is specified 3'-5'.

Column 5 provides a database accession number to a homologous protein identified by a similarity search of public sequence databases (see, infra). Column 6 describes the matching protein sequence and the source organism is identified in brackets. Column 7 of Tables 1 and 3 indicates the percent similarity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. Column 8 of Tables 1 and 3 indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. The concepts of percent identity and percent similarity of two polypeptide sequences are well understood in the art and are described in more detail below. Identified genes can frequently be assigned a putative cellular role category adapted from Riley (see, Riley, M., Microbiol. Rev. 57:862 (1993)). Column 9 of Tables 1 and 3 provides the nucleotide length of the open reading frame.

20

5

10

15

25

5

10

15

20

Tables 2 and 4, below, provide ORFs of *E. coli* J96 PAI IV and PAI V, respectively, that did not elicit a homology match with a known sequence from either *E. coli* or another organism. As above, the first column in Tables 2 and 4 provides the contig in which the ORF is located and the second column numerically identifies a particular ORF in a particular contig. Columns 3 and 4 identify an ORF's position in one of SEQ ID NOs: 1 through 142 by reference to start and stop nucleotides.

Tables 5 and 6, below, provide the *E. coli* J96 PAI IV ORFs and PAI V ORFs, respectively, identified by the present inventors that provided a significant match to a previously published *E. coli* protein. Columns 1-6 correspond to columns 1-6 appearing in Tables 1 and 3. Column 7 indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. Column 8 indicates the length of the high-scoring segment pair (HSP). Column 9 provides the nucleotide length of the open reading frame.

As used herein, "open reading frame" or "ORF" refers to the nucleotide sequences as described in Tables 1 through 6. In Tables 1 through 6, each ORF is designated by a nucleotide sequence start position and stop position according to numbering of contig nucleotides in the Sequence Listing provided (Contig ID = SEQ ID NO).

In a first embodiment, the invention comprises a nucleotide sequence described in Tables 1 through 4 which begins with the nucleotide following the last nucleotide of an upstream stop codon (first nucleotide of the "ORF"), an initiation codon, in-frame putative polypeptide-encoding sequence, and nucleotides of an in-frame stop codon.

In a second embodiment, the invention comprises a nucleotide sequence of Tables 1 through 4 which contains an initiation codon (*e.g.* a methionine or valine codon) on their 5' end and a stop codon on their 3' end. The sequences of this embodiment are present within the nucleotide sequence described in Tables 1 through 4 by start and stop position as numbered in the Sequence Listing. To

25

-13-

determine the 5' start position of this embodiment, one simply reads 5' to 3' from the designated 5' end position until an initiation codon is found.

In a third embodiment, the invention comprises a nucleotide sequence of the second embodiment, except that the 3' stop codon is not present.

5

In a fourth embodiment, the invention comprises a nucleotide sequence encoding a putative protein which is a sequence of Tables 1 through 4 excluding sequence encoding amino acids subject to removal by post-translational processing and sequences 3' of the last codon coding for an amino acid present in the putative polypeptide (e.g., sequences not containing the stop codon and encoding the mature form of the polypeptide).

10

Certain embodiments of the invention may therefore either include or exclude initiation codons for methionine or valine and either include or exclude the stop codon.

15

Further details concerning the algorithms and criteria used for homology searches are provided in the Examples below. A skilled artisan can readily identify ORFs in the *Escherichia coli* J96 cosmid library other than those listed in Tables 1 through 6, such as ORFs that are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

20

Isolated nucleic acid molecules of the present invention include DNA molecules having a nucleotide sequence substantially different than the nucleotide sequence of an ORF described in Tables 1 through 4, but which, due to the degeneracy of the genetic code, still encode a *E. coli* J96 PAI protein. The genetic code is well known in the art. Thus, it would be routine to generate such degenerate variants.

25

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of an *E. coli* protein encoded by an ORF described in Table 1 through 4. Non-naturally occurring variants may be produced using art-known mutagenesis techniques and include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more

nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the *E. coli* protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of an ORF described in Tables 1 through 6, preferably 1 through 4. By a polynucleotide having a nucleotide sequence at least, for example, 95% identical to the reference E. coli ORF nucleotide sequence is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the ORF sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference ORF nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleotide sequence of an *E. coli* J96 PAI ORF can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Waterman, *Advances in Applied Mathematics* 2: 482-489 (1981).

25

5

10

15

20

-15-

Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

5

10

15

20

25

30

INSDOCID - WO_

9822575**A**2 1,>

Preferred are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence of an *E. coli* J96 PAI ORF that encode a functional polypeptide. By a "functional polypeptide" is intended a polypeptide exhibiting activity similar, but not necessarily identical, to an activity of the protein encoded by the *E. coli* J96 PAI ORF. For example, the *E. coli* ORF [Contig ID 84, ORF ID 3 (84/3)] encodes a hemolysin. Thus, a "functional polypeptide" encoded by a nucleic acid molecule having a nucleotide sequence, for example, 95% identical to the nucleotide sequence of 84/3, will also possess hemolytic activity. As the skilled artisan will appreciate, assays for determining whether a particular polypeptide is "functional" will depend on which ORF is used as the reference sequence. Depending on the reference ORF, the assay chosen for measuring polypeptide activity will be readily apparent in light of the role categories provided in Tables 1, 3, 5 and 6.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of a reference ORF will encode a functional polypeptide. In fact, since degenerate variants all encode the same amino acid sequence, this will be clear to the skilled artisan even without performing a comparison assay for protein activity. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a functional polypeptide. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not

-16-

likely to significantly affect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J.U. et al., supra, and the references cited therein.

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having the nucleotide sequence of an *E. coli* J96 PAI ORF is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length that are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-500 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence of an *E. coli* J96 PAI ORF. By a fragment at least 20 nt in length, for example, is intended fragments that include 20 or more contiguous bases from the nucleotide sequence of an *E. coli* J96 PAI ORF. Since *E. coli* ORFs are listed in Tables 1 through 6 and the sequences of the ORFs have been provided within the contig sequences of SEQ ID NOs: 1 through 142, generating

30

5

10

15

20

such DNA fragments would be routine to the skilled artisan. For example, restriction endonuclease cleavage or shearing by sonication could easily be used to generate fragments of various sizes from the PAI DNA that is incorporated into the deposited pools of cosmid clones. Alternatively, such fragments could be generated synthetically.

Preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of an *E. coli* J96 PAI protein. Methods for determining such epitope-bearing portions are described in detail below.

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide that hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, an ORF described in Tables 1 through 6, preferably an ORF described in Tables 1, 2, 3 or 4. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5 x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65°C.

By a polynucleotide that hybridizes to a "portion" of a polynucleotide is intended a polynucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide (e.g., a *E. coli* ORF), for instance, a portion 50-500 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of an *E. coli* J96 PAI ORF.

10

5

15

20

25

10

15

20

By "expression modulating fragment" (EMF), is intended a series of nucleotides that modulate the expression of an operably linked, putative polypeptide-encoding region (encoding region). A sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments that induce the expression of an operably linked encoding region in response to a specific regulatory factor or physiological event. EMF sequences can be identified within the E. coli genome by their proximity to the encoding regions within ORFs described in Tables 1 through 6. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken 5' from any one of the encoding regions of ORFs of Tables 1 through 6 will modulate the expression of an operably linked 3' encoding region in a fashion similar to that found within the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to the fragments of the E. coli J96 PAI subgenome that are between two encoding regions herein described. Alternatively, EMFs can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site 5' to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence that is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed

30

-19-

PCT/US97/21347

host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

By a "diagnostic fragment" (DF), is intended a series of nucleotides that selectively hybridize to *E. coli* sequences. DFs can be readily identified by identifying unique sequences within the *E. coli* J96 PAI subgenome, or by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format for amplification or hybridization selectivity.

Each of the ORFs of the *E. coli* J96 PAI subgenome disclosed in Tables 1 through 4, and EMFs found 5' to the encoding regions of the ORFs, can be used in numerous ways as polynucleotide reagents. The sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of uropathogenic *E. coli* in a sample. This is especially the case with the fragments or ORFs of Table 2 and 4 which will be highly selective for uropathogenic *E. coli* J96, and perhaps other uropathogenic or extraintestinal strains that include one or more PAIs.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the

NSDOCID. <WO_ 9822575A2 1 >

25

5

10

15

5

10

15

20

25

sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

Vectors and Host Cells

The present invention further provides recombinant constructs comprising one or more fragments of the *E. coli* J96 PAIs. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which, for example, an *E. coli* J96 PAI ORF is inserted. The vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the encoding region of an ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments (preferably an ORF) of the *E. coli* J96 PAIs described herein. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a

3NSDOCID: <WO__ 9822575A2 1.>

-21-

lower eukaryotic host cell, such as a yeast cell, or the host cell can be a procaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). Host cells containing, for example, an E. coli J96 PAI ORF can be used conventionally to produce the encoded protein.

Polypeptides and Fragments

5

10

15

20

25

NSDOCID: <WO__ 9822575A2_I, >

The invention further provides isolated polypeptides having the amino acid sequence encoded by an *E coli* PAI ORF described in Tables 1 through 6, preferably Tables 1 through 4, or a peptide or polypeptide comprising a portion of the above polypeptides. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least two amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus.

It will be recognized in the art that some amino acid sequences of E. coli polypeptides can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

Thus, the invention further includes variations of polypeptides encoded for by ORFs listed in Tables 1 through 6 which show substantial pathogenic activity or which include regions of particular *E. coli* PAI proteins such as the protein portions discussed below. Such mutants include deletions, insertions,

inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on activity.

5

Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

10

As indicated in detail above, further guidance concerning which amino acid changes are likely to be phenotypically silent (i.e., are not likely to have a significant deleterious effect on a function) can be found in Bowie, J.U., et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science 247*:1306-1310 (1990).

15

20

Thus, the fragment, derivative or analog of a polypeptide encoded by an ORF described in one of Tables 1 through 6, may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

25

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the

characteristics of said proteins. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard et al., Clin Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36:838-845 (1987); Cleland et al. Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993)).

The replacement of amino acids can also change the selectivity of binding to cell surface receptors. Ostade *et al.*, *Nature 361*:266-268 (1993) describes certain mutations resulting in selective binding of TNF- α to only one of the two known types of TNF receptors. Thus, proteins encoded for by the ORFs listed in Tables 1, 2, 3, 4, 5, or 6, and that bind to a cell surface receptor, may include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation.

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 7).

TABLE 7. Conservative Amino Acid Substitutions

Aromatic	Phenylalanine Tryptophan Tyrosine
Hydrophobic	Leucine Isoleucine Valine
Polar	Glutamine Asparagine
Basic	Arginine Lysine Histidine
Acidic	Aspartic Acid Glutamic Acid
Small	Alanine Serine Threonine Methionine Glycine

20

5

10

Amino acids in the proteins encoded by ORFs of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro, or in vitro proliferative activity. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992) and de Vos et al. Science 255:306-312 (1992)).

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the polypeptides can be substantially purified by the one-step method described in Smith and Johnson, *Gene 67:31-40* (1988).

The polypeptides of the present invention include the polypeptide encoded by the ORFs listed in Tables 1-6, preferably Tables 1-4, as well as polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above, and also include portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a polypeptide is intended

10

5

15

20

25

5

10

15

20

25

30

NSDOCID: <WO___9822575A2 1_>

that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of said polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence encoded by the ORFs listed in Tables 1, 2, 3, 4, 5, or 6 can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

The polypeptide of the present invention could be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art.

As described in detail below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting pathogenic protein expression as described below or as

10

15

20

agonists and antagonists capable of enhancing or inhibiting protein function of important proteins encoded by the ORFs of the present invention. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" protein binding proteins which are also candidate agonist and antagonist according to the present invention. The yeast two hybrid system is described in Fields and Song, *Nature 340*:245-246 (1989).

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R.A. (1983) Antibodies that react with predetermined sites on proteins. *Science 219*:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. Sutcliffe *et al.*,

30

supra, at 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. Sutcliffe et al., supra, at 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777. The antipeptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are

30

25

5

10

15

10

15

20

25

30

considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously. Houghten et al., supra, at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen *et al.*, *supra*, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen *et al. supra* with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction

30

25

5

10

15

with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

5

10

15

20

30

25

Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. *et al.* (1996) on Peralkylated Oligopeptide Mixtures discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

The entire disclosure of each document cited in this section on "Polypeptides and Peptides" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, *E. coli* PAI polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EP A 394,827; Traunecker *et al.*, *Nature 331*:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other

-31-

molecules than the monomeric E. coli J96 PAI proteins or protein fragments alone (Fountoulakis et al., J. Biochem 270:3958-3964 (1995)).

Vaccines

5

10

15

20

25

NSDOCID: <WO_ 9822575A2 1_>

In another embodiment, the present invention relates to a vaccine, preferably in unit dosage form, comprising one or more *E. coli* J96 PAI antigens together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the one or more antigens are present in an amount effective to elicit a protective immune response in an animal to pathogenic *E. coli*. Antigens of *E. coli* J96 PAI IV and V may be obtained from polypeptides encoded for by the ORFs listed in Tables 1-6, particularly Tables 1-4, using methods well known in the art.

In a preferred embodiment, the antigens are *E. coli* J96 PAI IV or PAI V proteins that are present on the surface of pathogenic *E. coli*. In another preferred embodiment, the pathogenic *E. coli* J96 PAI IV or PAI V protein-antigen is conjugated to an *E. coli* capsular polysaccharide (CP), particularly to capsular polypeptides that are more prevalent in pathogenic strains, to produce a double vaccine. CPs, in general, may be prepared or synthesized as described in Schneerson *et al. J. Exp. Med.* 152:361-376 (1980); Marburg *et al. J. Am. Chem. Soc.* 108:5282 (1986); Jennings *et al., J. Immunol.* 127:1011-1018 (1981); and Beuvery *et al., Infect. Immunol.* 40:39-45 (1983). In a further preferred embodiment, the present invention relates to a method of preparing a polysaccharide conjugate comprising: obtaining the above-described *E. coli* J96 PAI antigen; obtaining a CP or fragment from pathogenic *E. coli*; and conjugating the antigen to the CP or CP fragment.

In a preferred embodiment, the animal to be protected is selected from the group consisting of humans, horses, deer, cattle, pigs, sheep, dogs, and chickens. In a more preferred embodiment, the animal is a human or a dog.

In a further embodiment, the present invention relates to a prophylactic method whereby the incidence of pathogenic *E. coli*-induced symptoms are

decreased in an animal, comprising administering to the animal the above-described vaccine, wherein the vaccine is administered in an amount effective to elicit protective antibodies in an animal to pathogenic *E. coli*. This vaccination method is contemplated to be useful in protecting against severe diarrhea (pathogenic intestinal *E. coli* strains), urinary tract infections (uropathogenic *E. coli*) and infections of the brain (extraintestinal *E. coli*). The vaccine of the invention is used in an effective amount depending on the route of administration. Although intra-nasal, subcutaneous or intramuscular routes of administration are preferred, the vaccine of the present invention can also be administered by an oral, intraperitoneal or intravenous route. One skilled in the art will appreciate that the amounts to be administered for any particular treatment protocol can be readily determined without undue experimentation. Suitable amounts are within the range of 2 micrograms of the protein per kg body weight to 100 micrograms per kg body weight.

The vaccine can be delivered through a vector such as BCG. The vaccine can also be delivered as naked DNA coding for target antigens.

The vaccine of the present invention may be employed in such dosage forms as capsules, liquid solutions, suspensions or elixirs for oral administration, or sterile liquid forms such as solutions or suspensions. Any inert carrier is preferably used, such as saline, phosphate-buffered saline, or any such carrier in which the vaccine has suitable solubility properties. The vaccines may be in the form of single dose preparations or in multi-dose flasks which can be used for mass vaccination programs. Reference is made to Remington's *Pharmaceutical Sciences*, Mack Publishing Co., Easton, PA, Osol (ed.) (1980); and *New Trends and Developments in Vaccines*, Voller *et al.* (eds.), University Park Press, Baltimore, MD (1978), for methods of preparing and using vaccines.

The vaccines of the present invention may further comprise adjuvants which enhance production of antibodies and immune cells. Such adjuvants include, but are not limited to, various oil formulations such as Freund's complete adjuvant (CFA), the dipeptide known as MDP, saponins (ex. *Quillajasaponin* fraction QA-21, U.S. Patent No. 5,047,540), aluminum hydroxide, or lymphatic

10

15

20

25

cytokines. Freund's adjuvant is an emulsion of mineral oil and water which is mixed with the immunogenic substance. Although Freund's adjuvant is powerful, it is usually not administered to humans. Instead, the adjuvant alum (aluminum hydroxide) may be used for administration to a human. Vaccine may be absorbed onto the aluminum hydroxide from which it is slowly released after injection. The vaccine may also be encapsulated within liposomes according to Fullerton, U.S. Patent No. 4,235,877.

Protein Function

Each ORF described in Tables 1 and 3 possesses a biological role similar to the role associated with the identified homologous protein. This allows the skilled artisan to determine a function for each identified coding sequence. For example, a partial list of the *E. coli* protein functions provided in Tables 1 and 3 includes many of the functions associated with virulence of pathogenic bacterial strains. These include, but are not limited to adhesins, excretion pathway proteins, O-antigen/carbohydrate modification, cytotoxins and regulators. A more detailed description of several of these functions is provided in Example 1 below.

Diagnostic Assays

In another preferred embodiment, the present invention relates to a method of detecting pathogenic *E. coli* nucleic acid in a sample comprising:

- a) contacting the sample with the above-described nucleic acid probe, under conditions such that hybridization occurs, and
- b) detecting the presence of the probe bound to pathogenic *E. coli* nucleic acid.

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of pathogenic *E. coli* nucleic acid in a sample comprising at least one container means having disposed therein the above-described nucleic acid probe.

10

5

15

20

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of pathogenic *E. coli* antigens in a sample comprising at least one container means having disposed therein the above-described antibodies.

5

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of antibodies to pathogenic *E. coli* antigens in a sample comprising at least one container means having disposed therein the above-described antigens.

10

The present invention provides methods to identify the expression of an ORF of the present invention, or homolog thereof, in a test sample, using one of the antibodies of the present invention. Such methods involve incubating a test sample with one or more of the antibodies of the present invention and assaying for binding of the antibodies to components within the test sample.

In a further embodiment, the present invention relates to a method for

15

identifying pathogenic *E. coli* in an animal comprising analyzing tissue or body fluid from the animal for a nucleic acid, protein, polypeptide-antigen or antibody specific to one of the ORFs described in Tables 1-4 herein from *E. coli* J96 PAI IV or V. Analysis of nucleic acid specific to pathogenic *E. coli* can be by PCR techniques or hybridization techniques (cf. *Molecular Cloning: A Laboratory Manual. second edition*, edited by Sambrook, Fritsch, & Maniatis, Cold Spring Harbor Laboratory, 1989; Eremeeva *et al.*, *J. Clin. Microbiol.* 32:803-810 (1994) which describes differentiation among spotted fever group *Rickettsiae* species by

20

25

Proteins or antibodies specific to pathogenic *E. coli* may be identified as described in *Molecular Cloning: A Laboratory Manual, second edition*, Sambrook *et al.*, eds., Cold Spring Harbor Laboratory (1989). More specifically, antibodies may be raised to *E. coli* J96 PAI proteins as generally described in *Antibodies: A Laboratory Manual*, Harlow and Lane, eds., Cold Spring Harbor Laboratory (1988). *E. coli* J96 PAI-specific antibodies can also be obtained from infected animals (Mather, T. *et al.*, *JAMA 205*:186-188 (1994)).

analysis of restriction fragment length polymorphism of PCR-amplified DNA).

-35-

In another embodiment, the present invention relates to an antibody having binding affinity specifically to an *E. coli* J96 PAI antigen as described above. The *E. coli* J96 PAI antigens of the present invention can be used to produce antibodies or hybridomas. One skilled in the art will recognize that if an antibody is desired, a peptide can be generated as described herein and used as an immunogen. The antibodies of the present invention include monoclonal and polyclonal antibodies, as well as fragments of these antibodies. The invention further includes single chain antibodies. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques, for example, such fragments include but are not limited to: the F(ab')₂ fragment; the Fab' fragments, Fab fragments, and Fv fragments.

Of special interest to the present invention are antibodies to pathogenic E. coli antigens which are produced in humans, or are "humanized" (i.e. nonimmunogenic in a human) by recombinant or other technology. Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e. chimeric antibodies) (Robinson, R.R. et al., International Patent Publication PCT/US86/02269; Akira, K. et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison, S.L. et al., European Patent Application 173,494; Neuberger, M.S. et al., PCT Application WO 86/01533; Cabilly, S. et al., European Patent Application 125,023; Better, M. et al., Science 240:1041-1043 (1988); Liu, A.Y. et al., Proc. Natl. Acad. Sci. USA 84:3439-3443 (1987); Liu, A.Y. et al., J. Immunol. 139:3521-3526 (1987); Sun, L.K. et al., Proc. Natl. Acad. Sci. USA 84:214-218 (1987); Nishimura, Y. et al., Canc. Res. 47:999-1005 (1987); Wood, C.R. et al., Nature 314:446-449 (1985)); Shaw et al., J. Natl. Cancer Inst. 80:1553-1559 (1988). General reviews of "humanized" chimeric antibodies are provided by Morrison, S.L. (Science, 229:1202-1207 (1985)) and by Oi, V.T. et al., BioTechniques 4:214 (1986)). Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution (Jones, P.T. et al., Nature 321:552-525 (1986); Verhoeyan et al.,

NSDOCID: <WO___9822575A2_I_>

5

10

15

20

25

10

15

20

Science 239:1534 (1988); Beidler, C.B. et al., J. Immunol. 141:4053-4060 (1988)).

In another embodiment, the present invention relates to a hybridoma which produces the above-described monoclonal antibody. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing monoclonal antibodies and hybridomas are well known in the art (Campbell, "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology," Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35:1-21 (1980)).

In another embodiment, the present invention relates to a method of detecting a pathogenic *E. coli* antigen in a sample, comprising: a) contacting the sample with an above-described antibody, under conditions such that immunocomplexes form, and b) detecting the presence of said antibody bound to the antigen. In detail, the methods comprise incubating a test sample with one or more of the antibodies of the present invention and assaying whether the antibody binds to the test sample.

Conditions for incubating an antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the antibody used in the assay. One skilled in the art will recognize that any one of the commonly available immunological assay formats (such as radioimmunoassays, enzyme-linked immunosorbent assays, diffusion based Ouchterlony, or rocket immunofluorescent assays) can readily be adapted to employ the antibodies of the present invention. Examples of such assays can be found in Chard, *An Introduction to Radioimmunoassay and Related Techniques*, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock *et al.*, *Techniques in Immunocytochemistry*. Academic Press. Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, *Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands

30

-37-

(1985); and Antibodies: A Laboratory Manual, Harlow and Lane, eds., Cold Spring Harbor Laboratory (1988).

The immunological assay test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is capable with the system utilized.

In another embodiment, the present invention relates to a method of detecting the presence of antibodies to pathogenic *E. coli* in a sample, comprising: a) contacting the sample with an above-described antigen, under conditions such that immunocomplexes form, and b) detecting the presence of said antigen bound to the antibody. In detail, the methods comprise incubating a test sample with one or more of the antigens of the present invention and assaying whether the antigen binds to the test sample.

In another embodiment of the present invention, a kit is provided which contains all the necessary reagents to carry out the previously described methods of detection. The kit may comprise: i) a first container means containing an above-described antibody, and ii) second container means containing a conjugate comprising a binding partner of the antibody and a label. In another preferred embodiment, the kit further comprises one or more other containers comprising one or more of the following: wash reagents and reagents capable of detecting the presence of bound antibodies. Examples of detection reagents include, but are not limited to, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the chromophoric, enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. The compartmentalized kit may be as described above for nucleic acid probe kits.

5

10

15

20

One skilled in the art will readily recognize that the antibodies described in the present invention can readily be incorporated into one of the established kit formats which are well known in the art.

Screening Assay for Binding Agents

5

Using the isolated proteins described herein, the present invention further provides methods of obtaining and identifying agents that bind to a protein encoded by an *E. coli* J96 PAI ORF or to a fragment thereof.

The method involves:

(a) contacting an agent with an isolated protein encoded by a *E. coli*J96 PAI ORF, or an isolated fragment thereof; and

(b) determining whether the agent binds to said protein or said fragment.

15

10

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques. For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by an ORF of the present invention.

20

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide ligands, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides, In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspezak et al., Biochemistry 28:9230-8 (1989).

10

15

20

25

VSDOCID: <WO __9822575A2 1, >

In addition to the foregoing, one class of agents of the present invention, can be used to control gene expression through binding to one of the ORF encoding regions or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed and selected. Targeting the encoding region or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF encoding region or multiple encoding regions that rely on the same EMF for expression control.

One class of DNA binding agents are those that contain nucleotide base residues that hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives having base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Computer Related Embodiments

The nucleotide sequence provided in SEQ ID NOs: 1 through 142, representative fragments thereof, or nucleotide sequences at least 99.9% identical to the sequences provided in SEQ ID NOs: 1 through 142, can be "provided" in

WO 98/22575

a variety of media to facilitate use thereof. As used herein, "provided" refers to a manufacture, other than an isolated nucleic acid molecule, that contains a nucleotide sequence of the present invention, i.e., the nucleotide sequence provided in SEQ ID NOs: 1 through 142, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NOs: 1 through 142. Such a manufacture provides the *E. coli* J96 PAI subgenomes or a subset thereof (e.g., one or more *E. coli* J96 PAI open reading frame (ORF)) in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *E. coli* J96 PAI subgenome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, one or more nucleotide sequences of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on

10

5

15

20

25

WO 98/22575

computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing the nucleotide sequence of SEQ ID NOs: 1 through 142, representative fragments thereof, or nucleotide sequences at least 99.9% identical to SEQ ID NOs: 1 through 142, in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the E. coli J96 PAI subgenome that contain homology to ORFs or proteins from other organisms. Such ORFs are proteinencoding fragments within the E. coli J96 PAI subgenome and are useful in producing commercially important proteins such as enzymes used in modifying surface O-antigens of bacteria. A comprehensive list of ORFs encoding commercially important E. coli J96 PAI proteins is provided in Tables 1 through 6.

The present invention provides a DNA sequence - gene database of pathogenicity islands (PAIs) for *E. coli* involved in infectious diseases. This database is useful for identifying and characterizing the basic functions of new virulence genes for *E. coli* involved in uropathogenic and extraintestinal diseases. The database provides a number of novel open reading frames that can be selected for further study as described herein.

Selectable insertion mutations in plasmid subclones encoding PAI genes with potentially significant phenotypes for *E. coli* uropathogenesis and sepsis can

5

10

15

20

25

10

15

20

be isolated. The mutations are then crossed back into wild type, uropathogenic *E. coli* by homologous recombination to create wild-type strains specifically altered in the targeted gene. The significance of the genes to *E. coli* pathogenesis is assessed by *in vitro* assays and *in vivo* murine models of sepsis/peritonitis and ascending urinary tract infection.

New virulence genes and PAI sites in uropathogenic *E. coli* may be identified by the transposon signature-tagged mutagenesis system and negative selection of *E. coli* mutants avirulent in murine models of ascending urinary tract infection or peritonitis.

Epidemiological investigations of new virulence genes and PAIs may be used to test for their occurrence in the genomes of other pathogenic and opportunistic members of the Enterobacteriaceae.

One can choose from the ORFs included in SEQ ID NOs: 1 through 142, using Tables 1 through 6 as a useful guidepost for selecting, as candidates for targeted mutagenesis, a limited number of candidate genes within the PAIs based on their homology to virulence, export or regulation genes in other pathogens. For the large number of apparent genes within the PAIs that do not share sequence similarity to any entries in the database, the transposon signature-tagged mutagenesis method developed by David Holden's laboratory can be employed as an independent means of virulence gene identification.

Allelic knock-outs are constructed using different *pir*-dependent suicide vectors (Swihart, K.A. and R.A. Welch, *Infect. Immun.* 58:1853-1869 (1990)). In addition, two different animal model systems can be employed for assessment of pathogenic determinants. The initial identification of *E. coli* hemolysin as a virulence factor came from the construction of isogenic *E. coli* strains that were tested in a rat model of intra-abdominal sepsis (Welch, R.A. *et al.*, *Nature* (London) 294:665-667 (1981)). The ascending UTI (Urinary Tract Infection) mouse model was also successfully performed with allelic knock-outs of the *hpmA* hemolysin of *Proteus mirabilis* (Swihart, K.A. and R.A. Welch, *Infect. Immun.* 58:1853-1869 (1990)).

-43-

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the *E. coli* J96 PAI subgenome. As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

5

10

15

20

25

30

NSDOCID: <WO ___9822575A2_I_>

As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the E. coli genome that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available and can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the E. coli J96 PAI subgenome, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

10

5

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

Thus, the present invention further provides an input means for receiving

a target sequence, a data storage means for storing the target sequence and the

homologous E. coli J96 PAI sequence identified using a search means as described above, and an output means for outputting the identified homologous E. coli J96 PAI sequence. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems

of the present invention. A preferred format for an output means ranks fragments

of the E. coli J96 PAI subgenome possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified

15

20

25

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

30

fragment.

WO 98/22575

5

10

15

20

25

VSDOCID <WO 9822575A2 | >

E. coli J96 PAI subgenomes. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) can be used to identify open reading frames within the E. coli J96 PAI subgenome A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.

One application of this embodiment is provided in Figure 2. Figure 2 provides a block diagram of a computer system 102 that can be used to implement the present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114 once inserted in the removable medium storage device 114 once inserted in the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. Software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108 during execution.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Experimental

Example 1: High Through-put Sequencing of Cosmid Clones Covering PAI IV and PAI V in E. coli J96

The complete DNA sequence of the pathogenicity islands, PAI IV and PAI V (respectively >170 kb and ~110 kb), from uropathogenic *E. coli* strain, J96 (04:K6) was determined using a strategy, cloning and sequencing method, data collection and assembly software essentially identical to those used by the TIGR group for determining the sequence of the *Haemophilus influenzae* genome (Fleischmann, R.D., *et al.*, *Science 269*:496 (1995)). The sequences were then used for DNA and protein sequence similarity searches of the databases as described in Fleischmann, *Id.*

The analysis of the genetic information found within the PAIs of *E. coli* J96 was facilitated by the use of overlapping cosmid clones possessing these unique segments of DNA. These cosmid clones were previously constructed and mapped (as further described below) as an overlapping set in the laboratory of Dr. Doug Berg (Washington University). A gap exists between the left portion of cosmid 2 and the end of the PAI IV that would represent the *pheV* junction to the *E. coli* K-12 genome.

Uropathogenic strain *E. coli* J96 (O4:K6) was used as a source of chromosomal DNA for construction of a cosmid library. *E. coli* K-12 DH5α and DH12 (Gibco/BRL, Gaithersburg, Md.) were used as hosts for maintaining cosmid and plasmid clones. The cosmid library of *E coli* J96 DNA was constructed essentially as described by Bukanow & Berg (*Mol. Microbiol 11*:509-523 (1994)). DNA was digested with *Sau*3AI under conditions that generated fragments with an average size of 40 to 50 kb and electrophoresed through 1% agarose gels. Fragments of 35 to 50 kb were isolated and cloned into Lorist 6 vector that had been linearized with *Bam*III and treated with bacterial alkaline phosphatase to block self-ligation. (Lorist 6 is a 5.2-kb moderate-copy-number cosmid vector with T7 and SP6 promoters close to the cloning site.) Cloned

20

15

5

10

DNA was packaged in lambda phage particles *in vitro* by using a commercial kit (Amersham, Arlington Heights, IL) and cosmid-containing phage particles were used to transduce *E. coli* DH5α. Transductant colonies were transferred to 150 μL of Luria-Bertani broth supplemented with kanamycin in 96-well microtiter plates and grown overnight at 37°C with shaking. Two sets of clones, one for each PAI were ultimately assembled, as previously described (Swenson *et al.*, *Infection and Immunity 64*:3736-3743 (1996)), fully incorporated by reference herein).

The two sets of clones contain eleven sub-clones that were employed in the sequencing method described below. One set of four overlapping cosmid clones covers the *prs*-containing PAI V, ATCC Deposit No. 97727, deposited September 23, 1996. A second set of seven subclones covers much of the *pap*-containing PAI V, ATCC Deposit No. 97726, deposited September 23, 1996. See Figure 1.

A high through-put, random sequencing method (Fleischmann et al.,

15

5

10

25

20

Science 269:496 (1995); Fraser et al., Science 270:397 (1995)) was used to obtain the sequences for 142 (contigs) fragments of E. coli J96 PAIs. All clones were sequenced from both ends to aid in the eventual ordering of contigs during the sequence assembly process. Briefly, random libraries of ~ 2 kb clones covering the two J96 PAIs were constructed, ~ 2,800 clones were subjected to automated sequencing (~ 450 nt/clone) and preliminary assemblies of the sequences accomplished which result in 142 contigs for each of the two PAIs that total 95 and 135 kb respectively. The estimated sizes of the PAI IV and PAI V based on the overlapping cosmid clones are 1.7 X 10⁵ and 1.1 X 10⁵ bp respectively. The 142 sequences were assembled by means of the TIGR Assembler (Fleischmann et al.; Fraser et al.); Sutton et al., Genome Sci. Tech. 1:9 (1995)). Sequence and physical gaps were closed using a combination of strategies (Fleischmann et al.; Fraser et al.). Presently the average depth of sequencing for each base assembled in the contigs is 6-fold. The tentative identity of many genes based on sequence homology is covered in Tables 1, 3, 5 and 6.

10

15

20

Open reading frames (ORFs) and predicted protein-coding regions were identified as described (Fleischmann et al.; Fraser et al.) with some modification. In particular, the statistical prediction of uropathogenic E. coli J96 pathogenicity island genes was performed with GeneMark (Borodovsky, M. & McIninch, J. Comput. Chem. 17:123 (1993)). Regular GeneMark uses nonhomogeneous Markov models derived from a training set of coding sequences and ordinary Markov models derived from a training set of noncoding sequences. The ORFs in Tables 1-6 were identified by GeneMark using a second-order Markov model trained from known E. coli coding regions and known E. coli non-coding regions.

Among the important genes that are implicated in the virulence of *E. coli* J96 PAIs are adhesins, excretion pathway proteins, proteins that participate in alterations of the O-antigen in the PAIs, cytotoxins, and two-component (membrane sensor/DNA binding) proteins.

I. Adhesins. It is believed that the principal adhesin determinants involved in uropathogenicity that are present within PAIs of uropathogenic E. coli are the pili encoded by the pap-related operons (Hultgren et al., Infect. Immun. 50:370-377 (1993), Stromberg et al., EMBO J 9:2001-2010 (1990), High et al., Infect. Immun. 56:513-517 (1988)) and the distantly related afimbrial adhesins (Labigne-Roussel et al., Infect. Immun. 46:251-259 (1988)). The presence of two of these (pap, and prs) has been confirmed. In addition potential genes for five other adhesins including sla (described above), AIDA-I (diffuse adherence-DEAC), hra (heat resistant hemagglutinin-ETEC), fha (filamentous hemagglutinin-Bordetella pertussis) and the arg-gingipain proteinase of Porphyromonas gingivalis have been found.

II. Type II exoprotein secretion pathway. Highly significant statistics support the presence of multiple genes involved in the type II exoprotein pathway. Curiously, perhaps two different determinants appear to be present in PAI IV where one set of genes has the highest sequence similarity to eps-like genes (Vibrio cholerae Ctx export) and the other has greatest similarity to exe genes (Aeromonas hydophilia aerolysin and protease export). At present, the assembly of contigs involving these potential genes is incomplete. Thus, it is

25

WO 98/22575

5

10

15

20

25

30

Nenocio «WO

9822575A2 | >

uncertain if two separate and complete determinants are present. However, it is clear that these genes are newly discovered and novel to pathogenic *E. coli* because the derived sequences do not have either the *bfp* or *hop* genes as the highest matches. The gene products that are the target of the type II export pathway are not evident at this time.

Within PAI IV there are sequences which suggest genes very similar to secD and secF. These two linked genes encode homologous products that are localized to the inner membrane and are hypothesized to play a late role in the translocation of leader-peptide containing proteins across the inner membrane of gram-negative bacteria. In addition, in each PAI, sequences are found that are reminiscent of the heat-shock htrA/degA gene that encodes a piroplasmic protease. They may perform endochaperone-like function as Pugsley et al. have hypothesized for different exoprotein pathways.

has the O4. The O-antigen portion of lipopolysaccharide is encoded by *rfb* genes that are located at 45 min. on the *E. coli* chromosome. We have found in both PAIs a cumulative total of five possible *rfb*-like genes which could participate alterations of the O-antigen in the PAIs. Overall these data suggest that PAIs provide the genetic potential for greater change of the cell surface for uropathogenic *E. coli* strains than what was previously known.

The apparent capsule type for strain J96 is a non-sialic acid K6-type. Sequence similarity "hits" were made in PAI IV region to two region-1 capsule genes, kpsS and kpsE involved in the stabilization of polysaccharide synthesis and polysaccharide export across the inner membrane. This is not altogether surprising based on the genetic mapping of the kps locus to serA at 63 minutes on the genome of the K1 capsular type of $E.\ coli$. This suggests that these kps-like genes either are participating in the K6-biosynthesis or perhaps are involved in complex carbohydrate export for other purposes.

An intriguing discovery are the hits made on genes involved in bacteriaplant interactions by *Rhizobium*, *Bradyrhizobium* and *Agrobacterium*. Four potential genes identified thus far share significant sequence similarity to genes encoding products that modify lipo-oligosaccharides that influence nodule morphogenesis on legume roots. These are: ORF140, carbamyl phosphate synthetase; nodulation protein 1265; phosphate-regulatory protein; and an ORF at a plant-inducible locus in *Agrobacterium*. To date there are no descriptions in the literature of such gene products being utilized by human or animal bacterial pathogens for the purposes of modification or secretion of extracellular carbohydrate. However, the sequence similarity to the capsular region-2 genes and to lipooligosaccharide biosynthetic genes in *Rhizobium* spp has been recently noted by Petit (1995).

10

15

5

IV. Cytotoxins. Besides the previously known hemolysin and CNF toxins in the PAIs, in each PAI sequences similar to the shlBA operon (cosmid 5 and 12) were found for a cytolytic toxin from Serratia marcescens and Proteus mirabilis. Ironically, the P. mirabilis hemolysin (HpmA) member of this family of toxins was discovered by Uphoff and Welch (1990), but not thought to exist in other members of the Enterobacteriaceae (Swihart (1990)). A shlB-like transporter does also appear to be involved in the export of the filamentous hemagglutinin of Bordetella pertussis which was described above and a cell surface adhesin of Haemophilus influenzae. It has been demonstrated that cosmid #5 of E. coli J96 encodes an extracellular protein that is ~180 kDa and crossreactive to polyclonal antisera to the P. mirabilis HpmA hemolysin. Thus, there is evidence suggesting there is new member of this family of proteins in extraintestinal E. coli isolates. In addition, there is also a hit on the FhaC hemolysin-like gene within the PAI V although its statistical significance for the sequence thus far available is only 0.0043.

25

20

V. Regulators. A common regulatory motif in bacteria are the two-component (membrane sensor/DNA binding) proteins. In numerous instances in pathogenic bacteria, external signals in the environment cause membrane-bound protein kinases to phosphorylate a cytoplasmic protein which in turn acts as either a negative or positive effector of transcription of large sets of operons. On cosmid 11 representing PAI V were found, in two different PstI clones, sequences

-51-

for two-component regulators (similar probabilities for OmpR/ AIGB and separately RcsC, probabilities at the 10⁻²² level).

In addition, the phosphoglycerate transport system (pgtA, pgtC, and pgtP) including the pgtB regulator is present in PAI IV. This transport system which was originally described in S. typhimurium is not appreciated as a component of any pathogenic E. coli genome. The operon had been previously mapped at 49 minutes, near or within one of the S. typhimurium chromosome specific-loops not present in the K-12 genome. It should be noted that the E. coli K-12 glpT gene product is similar to pgtP gene product (37% identity), but the E. coli J96 genes are clearly homologs to the pgt genes and their linkage within the middle of PAI IV element (cosmid #4) is suspicious.

Mobile genetic elements. There are numerous sequences that VI. share similarity to genes found on insertion elements, plasmids and phages. The temperate bacteriophage P4 inserts within tRNA loci in the E. coli chromosome. The hypothesis was made that PAIs are the result of bacteriophage P4-virulence gene recombination events (Blum et al., Infect. Immun. 62:606-614 (1994). Data supporting this hypothesis was found during our sequencing with the identification of P4-like sequences in each of the PAIs (cosmids 7 and 9). This is a very important preliminary result which supports the hypothesis that PAIs can be identified by common sequence or genetic elements. However, there are indications that multiple mobile genetic elements involved in the evolution of the J96 PAIs. Conjugal plasmid-related sequences may also be present at two different locations (F factor and RI plasmid). Sequences for multiple transposable elements are present that are likely to have originated from different bacterial genera (Tnl000, IS630, IS911, IS100, IS21, IS 1203, IS5376 (B. stearothermophflus) and RHS). Of particular interest is IS100, which was originally identified in Yersinia pestis (Fetherston et al., Mol. Microbiol. 6:2693-2704 (1992)). The presence of IS100 is significant because it has been associated with the termini of a large chromosomal element encoding pigmentation and some aspect of virulence in Y. pestis. This element undergoes spontaneous deletions similar to the PAIs from E. coli 536 (Fetherston et al., Mol. Microbiol.

30

5

10

15

20

6:2693-2704 (1992)) and appears to participate in plasmid-chromosome rearrangements. This element was not previously known to be in genera outside of *Yersinia*.

The discovery of the apparent *att* site for bacteriophage P2 in the PAIs is interesting. P2 acts as a helper phage for the P4 satellite phage. The P2 *att* site is at 44 min in the K-12 genome. The significance of this hit is unknown at present, but may be explained as either a cloning artifact (some K-12 fragments in the *Pst* I library of cosmid 5) or evidence of some curious chromosomal-P4/P2 phage history. It may indicate that the J96 PAIs are composites of multiple smaller PAIs.

Example 2: Preparation of PCR Primers and Amplification of DNA

Various fragments of the sequenced *E. coli* J96 PAIs, such as those disclosed in Tables 1 through 6 can be used, in accordance with the present invention, to prepare PCR primers. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers are useful during PCR cloning of the ORFs described herein.

Example 3: Gene expression from DNA Sequences Corresponding to ORFs

A fragment of an *E. coli* J96 PAI (preferably, a protein-encoding sequence provided in Tables 1 through 6) is introduced into an expression vector using conventional technology (techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art). Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper

NSDOCID <WO _ 9822575A2 1 >

25

20

5

10

-53-

protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U.S. Pat. No. 5,082,767, which is hereby incorporated by reference.

5

10

15

20

25

30

NSDOCID <WO__9822575A2_I_>

The following is provided as one exemplary method to generate polypeptide(s) from a cloned ORF of an E. coli J96 PAI whose sequence is provided in SEQ ID NOs: 1 through 142. A poly A sequence can be added to the construct by, for example, splicing out the poly A sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The E. coli J96 PAI DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the E. coli J96 PAI DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding E. coli J96 PAI DNA 3' primer, taking care to ensure that the E. coli J96 PAI DNA is positioned such that its followed with the poly A sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BglII, purified and ligated to pXT1, now containing a poly A sequence and digested BglII.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface.

Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *E. coli* J96 PAI DNA

sequence are injected into mice to generate antibody to the polypeptide encoded by the *E. coli* J96 PAI DNA.

If antibody production is not possible, the *E. coli* J96 PAI DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as a chimeric with, for example, β-globin. Antibody to β-globin is used to purify the chimeric. Corresponding protease cleavage sites engineered between the β-globin gene and the *E. coli* J96 PAI DNA are then used to separate the two polypeptide fragments from one another after translation. One useful expression vector for generating β-globin chimerics is pSG5 (Stratagene). This vector encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides may additionally be produced from either construct using *in vitro* translation systems such as In vitro ExpressTM Translation Kit (Stratagene).

Example 4

E. coli Expression of an E. coli J96 PAI ORF and protein purification

20

5

10

15

An E. coli J96 PAI ORF described in Tables 1 through 6 is selected and amplified using PCR oligonucleotide primers designed from the nucleotide sequences flanking the selected ORF and/or from portions of the ORF's NH₂- or COOH-terminus. Additional nucleotides containing restriction sites to facilitate cloning are added to the 5' and 3' sequences, respectively.

25

The restriction sites are selected to be convenient to restriction sites in the bacterial expression vector pQE60. The bacterial expression vector pQE60 is used for bacterial expression in this example. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible

-55-

promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin sold by QIAGEN, Inc., *supra*, and suitable single restriction enzyme cleavage sites. These elements are arranged such that a DNA fragment encoding a polypeptide may be inserted in such as way as to produce that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of an *E. coli* J96 PAI is amplified from the deposited cDNA clone using PCR oligonucleotide primers which anneal to the amino terminal sequences of the desired portion of the *E. coli* protein and to sequences in the deposited construct 3' to the cDNA coding sequence. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

The amplified *E. coli* J96 PAI DNA fragments and the vector pQE60 are digested with one or more appropriate restriction enzymes, such as Sall and Xbal, and the digested DNAs are then ligated together. Insertion of the *E. coli* J96 PAI DNA into the restricted pQE60 vector places the *E. coli* J96 PAI protein coding region, including its associated stop codon, downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described in Sambrook *et al.*, *Molecular Cloning: a Laboratory Manual, 2nd Ed.*; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989). *E. coli* strain Ml5/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing an *E. coli* J96 PAI protein, is available commercially from QIAGEN, Inc., *supra*. Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from

30

25

5

10

15

10

15

20

25

resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the laci repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH8. The cell debris is removed by centrifugation, and the supernatant containing the *E. coli* J96 PAI protein is dialyzed against 50 mM Na-acetate buffer pH6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *E. coli* J96 PAI protein. The purified protein is stored at 4°C or frozen at -80°C.

Example 5

Cloning and Expression of an E. coli J96 PAI protein in a Baculovirus Expression System

A E. coli J96 PAI ORF described in Tables 1 through 6 is selected and amplified as above. The plasmid is digested with appropriate restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1%

-57-

agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated herein "V1".

Fragment F1 and the dephosphorylated plasmid V1 are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria are identified that contain the plasmid with the *E. coli* J96 PAI gene by digesting DNA from individual colonies using appropriate restriction enzymes and then analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBac *E. coli J96*.

Five μg of the plasmid pBac *E. coli* J96 is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA.), using the lipofection method described by Felgner *et al.*, *Proc. Natl. Acad. Sci. USA 84*:7413-7417 (1987). 1 μg of BaculoGoldTM virus DNA and 5 μg of the plasmid pBac *E. coli* J96 are mixed in a sterile well of a microliter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is rocked back and forth to mix the newly added solution. The plate is then incubated for 5 hours at 27°C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation is continued at 27°C for four days.

After four days the supernatant is collected and a plaque assay is. performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc.) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies

10

5

15

20

25

10

15

20

25

Inc., page 9-10). After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4°C. The recombinant virus is called V-E. coli J96.

To verify the expression of the *E. coli* gene Sf9 cells are grown in Grace's medium supplemented with 10% heat inactivated FBS. The cells are infected with the recombinant baculovirus V-*E. coli* J96 at a multiplicity of infection ("MOI") of about 2. Six hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc.). If radiolabeled proteins are desired, 42 hours later, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then they are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled). Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the mature protein and thus the cleavage point and length of the secretary signal peptide.

Example 6

Cloning and Expression in Mammalian Cells

Most of the vectors used for the transient expression of an *E. coli* J96 PAI gene in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which express the T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein coding

WO 98/22575

5

10

15

20

sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRS) from Retroviruses, e.g., RSV, 1HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as PSVL and PMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV I, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

The expression vectors pC1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen *et al.*, Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart *et al.*, Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme

30

cleavage sites BamHI, Xbal and Asp718, facilitate the cloning of the gene of interest. The vectors contain in addition the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene.

Example 6(a): Cloning and Expression in COS Cells

5

The expression plasmid, p E. coli J96HA, is made by cloning a cDNA encoding E. coli J96 PAI protein into the expression vector pcDNAI/Amp or pcDNAIII (which can be obtained from Invitrogen, Inc.).

The expression vector pcDNAI/amp contains: (1) an E. coli origin of

10

replication effective for propagation in *E. coli* and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a cDNA can be conveniently placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson *et al.*, *Cell 37:767* (1984). The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope.

20

15

A DNA fragment encoding the *E. coli* J96 PAI protein is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The *E. coli* cDNA of the deposited clone is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of *E. coli* J96 PAI protein in *E. coli*.

pcDNAIII contains, in addition, the selectable neomycin marker.

25

The PCR amplified DNA fragment and the vector, pcDNAI/Amp, are digested with appropriate restriction enzymes for the chosen primer sequences

WO 98/22575

5

10

15

20

25

and then ligated. The ligation mixture is transformed into *E. coli* strain SURE (available from Stratagene Cloning Systems, La Jolla, CA 92037), and the -transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the *E. coli* J96 PAI protein-encoding fragment.

For expression of recombinant *E. coli* J96 PAI protein, COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook *et al.*, *Molecular Cloning: a Laboratory Manual*, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989). Cells are incubated under conditions for expression of *E. coli* J96 PAI protein by the vector.

Expression of the *E. coli* J96 PAI - HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow *et al.*, *Antibodies: A Laboratory Manual*, *2nd Ed.*; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988). To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson *et al.* cited above. Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

Example 6(b): Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of an *E. coli* J96 PAI protein. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Acc. No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early

10

15

20

25

30

promoter. Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies, Inc.) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F. W. et al., 1978, J. Biol. Chem. 253:1357-1370, Hamlin, J. L. and Ma, C. 1990, Biochim. et Biophys. Acta, 1097:107-143, Page, M. J. and Sydenham, M.A. 1991, Biotechnology 9:64-68). Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains for expressing the gene of interest the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus (Cullen, et al., Molecular and Cellular Biology, March 1985:438-447) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al., Cell 41:521-530 (1985)). Downstream of the promoter is BamHI restriction enzyme site that allows the integration of the Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human β -actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the E. coli protein in a regulated way in mammalian cells (Gossen, M., & Bujard, H. 1992, Proc. Natl. Acad. Sci. USA 89: 5547-5551). For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the

chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

The DNA sequence encoding the complete *E. coli* J96 PAI protein including its leader sequence is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene.

The amplified fragment is digested with appropriate endonucleases for the chosen primers and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. 5 μ g of the expression plasmid pC4 is cotransfected with 0.5 μ g of the plasmid pSVneo using lipofectin (Felgner *et al.*, *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nm, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 μ M. Expression

20

5

10

15

25

-64-

of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 7

Production of an Antibody to an E. coli J96 Pathogenicity Island Protein

5

Substantially pure E. coli J96 PAI protein or polypeptide is isolated from the transfected or transformed cells described above using an art-known method. The protein can also be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

10

Monoclonal Antibody Production by Hybridoma Fusion

15

20

25

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein, Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis,

10

15

20

25

L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other molecules and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall (*See* Ouchterlony, O. *et al.*, Chap. 19 in: *Handbook of Experimental Immunology*, Wier, D., ed, Blackwell (1973)). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 μM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical Immunology*, 2nd ed., Rose and Friedman, (eds.), Amer. Soc. For Microbio., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample.

NSDOCID <WO _,9822575A2_! >

TABLE 1 (PAI IV)

Putative coding regions of novel E. coli PAI IV proteins similar to known proteins

1000 10	100 100 100 100 93 93 94 95 95 97 71 71 72 73 74 74	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u> </u>	match acession	Stop 1042 1042 1042 1042 1042 1042 11915 119	Start (int) 1902 2096 2096 2096 2096 2096 2096 2096 2096 2096 2096 2097 2013 2013 2013 2014 2015 20	<u>58 2 2 2 2 2 2 2 2 2 </u>	Contig 10 10 65 65 61 73 73 73 73 73 73 73 73 73 73
396	β1 81 53	œ œ	ORP (343 AA) [Shigella sonnel] [Exek gene product [Aeromones hydrophile]	91 47542	4731	1 4336	- i — i —	3 8
717	77	20	Exek gene product [Aeromones hydrophile]	91.38832	2582	1 2800	÷	2 1
1 219	1 83	98	Exek gene product (Aeromones hydrophila)	91 38832	2582	1 2800	-	80
966	- ÷	8	ORP (343 AA) [Shigelle sonnel]		4731	4336	− }	99
426	74	88	diDP-6-decxy-L-mannose-dehydrogenase [Escherichia coli]	91 508238	-	428	_	95
069	53	86	putative [Vibrio cholerae]	91 609625	-	693	;	00
949	74	187	unknown [Escherichia coli]	91 1208992	9077	5254	_ :	82
495	1 72	87	[putative [Vibrio choleree]	91 609628	745	251	<u> </u>	67
1263		68	phosphoglycerate transport system activator protein (Salmonella typhimurium)	91 154255	3019	4281		63
273	72	88	Orfiot homolog		157	729	<u> </u>	96
1107	81	88	dTDP-glucose 4,6-dehydratese [Salmonella enterica]	91 581654	£	1519	<u> </u>	95
189	80	89	ExeE gene product [Aeromones hydrophile]		689	201	-	90
1 369	84	68	dtDP-6-deoxy-L-mannose-dehydrogenase [Shigella flexneri]	gi 294899	1811	2179	:	13
8901	8 4	68	regulatory protein pgtB (Salmonella typhimurium)	191 858753	5234	6301		5
750	67	9.1	putative [Vibrio cholerae]	1911609625	248	709	! —	91
990	1 77	9.1	ExeE gene product (Aeromonas hydrophile)	01 38826	366	-	-	90
372	82	9.1		01 46985	2242	2613	-	7.3
348	85	9.1	ORP (343 AA) (Shigelim sonneil	81 47542	1 4088	3741	2	3
144	92	92	rtbC gene product (Shigelle flexmeri)	1911454900	2996	3139	2	73
515	94	92	Escherichia	91 799234	2511	3029	-	5
273	1 11	92	Exef gene product (Aeromonas hydrophila)	91 809648	273	-	-	67
264	92	9.2	ORFS protein; ella sonnei;	91 1143207	4338	4075	9	7.
171	78	97	unknown [Escherichia coli]		172	~	-	138
978	96	9.7	ORFA; putative transposase (Yersinia pestis)	01 1655837	1915	2889	-	65
1383	93	88	transporter protein pgtP (Salmonella typhimurium)	91 154262	9238	7856	=	
276	100	100	ORF1 [Yersinia pestis]		1821	2096	-	65
861	1 000	100	ORFB; putative transposase [Yersinia pestis]		1042	1902	2	59
length (nt)	* ident	E 18	match gene name	match	Stop (nt)	Start (nt)	10%	

TABLE 1 (PAI IV)(CONTINUED)

Contig	ORF	Start	Stop	Batch	match gene name	E S	* ident	length (nt)
6		5399	:	sp P37433 PGTB_	PHOSPHOGLYCERATE TRANSPORT SYSTEM SENSOR PROTEIN PGTB (EC 2.7.31.	83	75	1 570
9	- + -	7572	•	12 154258	regulatory protein pgtC (Salmonelle typhimurium)	83	78	1314
59		3351	3100	d1 1196999	unknown protein (Transposon Injell)	82	80	252
100	-	337	2	91 41004	UNF 2 (Escherichia coli)	82	64	336
877	7	109	429	41 1033128	ORF_0171 (Escherichia coli)	80	62	321
7	- 🗧	1331	831	01 38826	ExeE gene product (Aeromonas hydrophila)	96	62	501
63	-	4873	4256	sp P37433 PGTB_	PHOSPHOGLYCERATE TRANSPORT SYSTEM SENSOR PROTEIN POTB (EC 2.7.3).	1 78	72	618
70		5759	5529	91 1773143	Hha protein (Escherichia coli)	78	88	231
91	-	1154	534	191 609 625	putative (Vibrio cholerae)	77	1 65	621
75	-	3524	3255	91 463911	heat resistant agglutinin 1 (Bscherichia coli)	76	62	270
69	-	2	1 667	91 1574313	H. influenzae predicted coding region Hil472 [Hasmophilus influenzae]	75	98	999
104	-	485	315	91 530438	arabinose transport protein [Mycoplasma capricolum]	72	41	171
63		2180	1 1629	91 622948	transposase (Escherichia coli)	1,	09	552
63	112	9688	10005	sp P39213 YI91_	INSERTION ELEMENT IS911 HYPOTHETICAL 12.7 ND PROTEIN.	1.	57	318
61	-	1283	876	41 581535	ORPI40 gene product (Rhizobium sp.)	70	54	906
84	-	1 2361	3437	91 1772623	Heck (Erwinia chrysanthemi]	1 70	09	1077
16	1 - 1	1 300	-	41 295430	apsE [Vibrio cholerse]	1 70	49	297
1	74 1	541	- 2	91 609627	[putative [Vibrio cholerae]	69	54	540
9	67 4	1297	1581	91 151469	[PliD-dependent protein [Pseudomonas aeruginosa]	68	20	1 285
	84 1	578	1741	01 1772622	HecB [Erwinia chrysenthemi]	69	54	1164
	84 2	1698	2363	91 1772622	HecB [Erwinta chrysanthemi]	67	80	999 1
9	63 [2	1734	1393	91 1323798	transposase [Plasmid pRL1063a]	1 65	46	1 342
	1 1	1134	-	91 397405	kpsg gene product (Zacherichia coli)	65	36	1131
-	64 2	2828	1839	41 310632	hydrophobic membrane protein (Streptococcus gordonii)	64	38	066
	74 2	198	1355	191 148436	secretory component [Erwinia chrysanthemi]	64	54	1 507
-	66 1	1 556	2	[91]1235662	Ribc [Myxococcus xanthus]	62	39	353
-	70 6	1 3017	2814		similar to E. coli ORF of08 [Escherichia coli]	62	7	204

TABLE 1 (PAI IV)(CONTINUED)

sim ident length (nc)	62 56 213	62 45 321	61 46 771	61 46 153	60 43 570	60 45 375	60 44 1179	59 41 774	59 45 456	58 41 71	58 41 654	57 36 879	55 30 903	55 42 324	53 30 273	52 37 7HB	51 27 258	50 40 651	50 32 291	50 38 441	48 22 978	48 25 459	48 25 510	47 35 2145	42 28 462	36 36 504	34 29 807	
match gene name	activator 1 17K chain - human	hypothetical protein [Escherichia coli]	liph protein - Neisseria meningitidis	T03F6.f [Caenorhabditis elegans]	putative [Vibrio cholerae]	similar to E. coli ORP_0208 [Escherichia coli]	spore coat polysaccharide biosynthesis protein E [Hethanococcus januaschil]	putative [Vibrio cholerae]	Adhasin AIDA-I precursor. [Escherichia coli]	unknown protein [Insertion sequence 1866]	transposase (Escherichia coli)	unknown [Erysipelothrix rhusiopathise]	adhesin B (Streptococcus sanguls)	lerB gene product (Rhizobium sp.)	hypothetical protein 88 - phage phi-R73	filementous hemagglutinin (Bordetella pertussis)	[P53C11.6 [Caenorhabditis elegans]	puld (Klebsiella pneumoniae)	[Brugia malay] myosin heavy chain gene, complete cds.], gene product [Brugia malayi]	unknown protein [Plasmid Ti]	neuronal myosin heavy chain (Rattus rattus)	extragenic suppressor (Escherichia coli)	polysaccharide translocation-related protein - Escherichia coli	RfbC (Hyxococcus xanthus)	RfbC [Myxococcus xanthus]	glycine-rich protein, atGRP (clone atGRP-1) (Arabidopsis thaliana, C24, Peptide Partial, 210 as) (Arabidopsis thaliana)	silk fibroin heavy chain (C-terminal) (Bombyx mori-silkworms, Peptide Pertial, 633 as) (Bombyx mori)	
match acession	14452	91 1778562	pir 532879 5328	gn1 PID e276217	91 609629	91 1657478	91 1591717	91 609632	91 1736670	91 1196968	g1 622948	gi 1335913	91 153826	91 152259	pir G42465 O424	94 144048	gn1 PID 6264304	91 149309	91 156087	91 1196964	91 57633	91 147899	pir s27564 s275	91 1235662	91 1235662	bbs 117606	bbs 157676	
Stop (nt)		323	-		1312	4292	1179	1790		-	2178		917		6753	1530	4806	2761	388	687	-	199	145	4245	134	515	973	
Start (nt)	278	_	173	196	743	4666		2563		173	2831	3568	1819	7008	6481	9317	5063	3411	86	1127	981	657	654	2101	595	1018	1779	
ORF OI	-	_		~	~	9	-	2	-	<u>-</u>	ر م	~	-	6	=	5	8	-		_		-	-	~	-	- 5		
Contig ID	85	126	7.3	96	67	70 10	81	80	137	61	63	64	64	64	70	85	64	0.8	80	96	89	113	118	58	87	85	85	

TABLE 2 (PAI IV)

Putative coding regions of novel E. coli PAI IV proteins not similar to known proteins

Contig ORF	12	- 1	: -			358	1 677		2 119																		
	į		186	85 4		104 1	112 1	_ ;	;																		
	<u>-</u>	!_	1_	!_	-	_	_		_																		
top nt)	1120		3639	3627	3239	6683	978	861	1476	1900	2220	3259	3680	4513	4498	1866	7449	10806	3666	1301	165	354	2575	2469	3387	3362	- 0367
	-	-	-		-	-	-	-	98	-	-	-	- †	4220 4513	4950 4498	1294 1866	-	_	247		1 165	719 354	108	831	-	3	
P Start (nt)	1 1176 2120	- 54	1875	-	 -	2 6027	-	18	-	-	2795	- †	- †	-	-	-	6805	_	-	-	-	-	2108	2631	3223	-	: -

TABLE 3 (PAI V)

Putative coding regions of novel E. coli PAI V proteins similar to known proteins

Contig ORF ID ID	Start (nt)	Stop (nt)	metch acession	match gene name	e is	I Ident	length (nt)
14 3	1 2826	3686	91 1655838	ORFB; putative transposase [Yersinia pestis]	100	100	861
14 2	1837	2907	91 1655837	ORFA; putative transposase (Yersinia pestis)	66	1 66	101
9 6	1 7927	7595	91 1657499	putative transposase for insertion sequence IS3 (Escherichia coli)	68	- 58	333
20 6	3462	4304	gi 1208992	unknown (Escherichia coli)	87	13	843
9 9	3541	3263	pir s43483 s434	Orfi04 homolog - Escherichia coli	189	62	279
20 3	1616	2332	91 1033129	ORF_0233 (Escherichia coli)	080	61	717
6	-	681	91 537112	ORF_0396 [Escherichia coli]	1 77	5.5	681
15 3	1899	1672	pir S43483 S434	Orfilo4 homolog - Escherichia coli	1 25	55	228
20 9	4302	4880	91 1552816	similar to E. coli ORF_o152 [Escherichia coli]	74	09	\$79
14 13	112972	15359	91 1772623	Heck (Erwinia chrysanthemi)	70	0.9	2388
5 3	1112	1570	191 1001717	regulatory components of sensory transduction system (Synechocystis sp.)	68	- 53	459
T - C	2572	5,51	91 849022	Lactate oxidase (Aerococcus viridans)	99	9.7	1200
 	6989	6498	91 581535	ONF140 gene product [Rhizobium sp.]	99	45	372
9 9	1 3265	2951	91 642184	F19C6.1 [Caenorhabditis elegans]	99	7	315
14 12	111775	12974	[91]1772622	HecB [Erwinia chrysanthemi]	99	20	1200
20 1	- 545	1450	[61 1033127	ORF_0289 [Escherichia coli]	99	-	906
57 1	969	124	91 1772622	HecB [Erwinia chrysanthemi]	99	- 23	573
	3320	1 3700	91 431950	similar to a B.subtilis gane (GB: BACHEHFY_S) [Clostridium pasteurianum]	9	34	381
5 7	4565	4239	sp P39213 YI91_	INSERTION ELEMENT IS911 HYPOTHETICAL 12.7 KD PROTEIN.	9	86	327
22 2	1681	557	91 290430	adhesin (Escherichia coli)	64	89	1095
8	1455	1841	191 1575577	DNA-binding response regulator (Thermotoga maritima)	61	47	387
14 11	111161	11937	91 1772622	HecB [Erwinia chrysanthemi]	09	39	111
14 1	930	1700	91 1657478	similar to E. coli ORF_0208 [Escherichia coli]	88	47	171
5 6	3834	3391	g1 155032	ORF B [Plasmid pEn14]	95	36	444
3 5	6500	5982	91 1633572	Herpesvirus saimiti ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	45	25	519
14 7	8429	8809	191 1196729	unknown protein (Bacteriophage P4)	- 54 -	- =	18.

TABLE 3 (PAI V) (CONTINUED)

Contig ONF Start Stop match	Start	Stop	i	match gene name	E s i	sim * ident length	length (nt)
14 14	15191	(21793		filamentous hemagglutinin [Bordetella pertuseis]	52	:	37 6603
14 16	21427	22671		glycine-rich protein, atgRP (clone atgRP-4) (Arabidopsis thaliana, C24, Peptide Partial, 112 aa) (Arabidopsis thaliana)	52	39	1245
5 2	1004	381		Hydc (Wolinella succinogenes)	51	34	624
5 5	1941	3311		alkaline phosphatese regulatory protein (Bacillus subtilis)	51	51 21	1371
14 4	3968	5431	1	ONF_0469 [Escherichia coli]	51	29	1464
32 1	481	227	1	(AE000010) Hycoplasma pneumoniae, fructose-permease IIBC component; similar 50 to Swiss-Prot Accession Number P20866, from E. coli [Mycoplasma pneumoniae]	80	4 1	255
20 17	7039	7284	20 17 7039 7284 91 1123054	coded for by C. elegans CDNA CEESNSIP; similar to protein kinases including CDC15 in year (Caenorhabditis elegans)	4. 80	28	246

ABLE 4 (PAI V)

Putative coding regions of novel E. coli PAI V proteins not similar to known proteins

															• —	•	· — .	•	•	•	•	•	•	• —	•
Stop (nt)	1165	2640	6425	6833	455	-	1749	2114	2331	2626	7699	8507	9624	10846	20921	826	1365	605	3157	3396	3492	3828	7950		-
Start (nt)	809	3275	9009	6423	-	501	2168	2527	2648	3099	7112	7800	9040	10586	21721	575	850	904	2330	3139	3812	4373	7282	356	492
88	-	~		_		-	-	7	-	-	50	9	-	2	2	-	~	~	-	5	-	60	87	ì	
Contig	-	~	-		7	5	9	9	9	9	=	77	7.7	7	7	15	15	20	50	30	30	20	30	22	77
.	: —	-	: — ·	: —	. —	:	: —	. —	. —		÷ ·	· ·	•	•	•	•	•	•	•	•			•—		•

Putative coding regions of novel E. coli PAI IV containing known E. coli sequences

TABLE 5 (PAI IV)

percent HSP nt ORF nt Ident length length	P-pill proteins	olved in formation of pap pill					ertion sequence IS1203 12.7 kDs protein and 93 164 complete cds	1:H- insertion sequence IS1203 12.7 kDa protein and 85 285 351 agenes, complete cds	Escherichia coli Ollin- insertion sequence 181203 12.7 kDa protein and 86 145 849 Nutraive transposase genes, complete cds		(5'-region) 98 310	Escherichia coli from bases 263572 to 274477 (section 23 of 400) of the 89 431 576	genes for F13 P-pill proteins	ene for Papy protein	for F13 P-pili proteins	for F13 P-pili proteins	sphoribosyl-transferase (APRT), 98 225	gene encoding adenine phosphoribosyl-transferase (APRT), 95 162 267 cds	4787 oll5;v165;f165 flmbrlal regulatory f16521, f1652B and 89 225 684 complete cds	assuv, erfK, cobr, cobs, cobu, yi52_6, yi22_3, yi21_3 95 553 969 2060089 to 2072765 (section 181 of 400) of the complete	scherichia coli , asny, erfk, cobT, cobS, cobU, y152_6, y122_3, y121_3 genes from bases 2060089 to 2072765 (section 181 of 400) of the complete
ch gene name	F. coll papascorection genes for Pl3	pevious and Contains	3	coli pape gene involved	11 papABCDEFGHIJK	Escherichia coli from complete genome	Escherichia coli Olli:H- ins	Escherichia coli Olli:H- insertion nutative transposase genes, comple	scherichia coli Olllin- ins	' i 🕳	Š	C011	E.coli papaBCDEFGHIJK	Eschericia coli papi gene	E.coll papABCDEFGHIJK genes	E.coll papABCDEFGHI	T D	E.coli apt gane and complete cds	78	1,3	Escherichia coli , genes from bases ;
match	1		PA	emb Y00529 ECPA E. c		gb AE000133 Esch	<u>ш</u>		gb U06468 Esc	0.81 My31/2000/14-0	300	_		ECPA	ECPA	ECPA	ω	gb M14040 E.	Es Es	gb AE000291 E8	gb AE000291 E
-	- i -	_ [- ;		<u>:</u> —	<u> </u>	1 gb 006468	2868 gb U06468	3216 gb UC	-†-	-†-	5781 gb A	1315 Jan	- † -	†-	- † -		117 gb ?	149 gp	11767 gb	11045 gb
rt Stop	- i -	- ‡	1 805	2 1494	5 1220	7 10480	671	-		- † -	-	5206 57		- 🛉 —	- † -	- † -	- 🛊	383 1	832 1	10799	11809
- + -	(ac)	896	1551	1 1742	1975	10097	886	3218	4064	- ‡ -	- † -		- + -	-	- † -	-	-		- ; -	17	- 11 - 11
Contig ORF		59 1	59 2	59 3	61 4	63 13	65 1	65 5	65 8	- ∤ ·	- ;	65 10 65 11	-	99 1 90	- ‡ -	- ‡ -	- 1 - 69		- 2	- 102	02

-73-

TABLE 5 (PAI IV) (CONTINUED)

Contig ORF	Start (nt)	Stop (nt)	scession	match gene name	percent ident	HSP nt length	ORF nt
70 20	15316	16836	gb AE000292	Escherichia coli , yeak, sbmC, yeaC, sbcB, yeaD, yeaE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	96	1488	1521
70 21	16722	11771	gb AE000292	Escherichia coli , yeak, shmC, yeaC, shcB, yeaD, yeaE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete ganome	96	8 2	066
70 22	17426	16776	gb AE000292	Escherichia coli , yeah, shmC, yeaC, sbcB, yeaD, yeaE ganes from bases 2072708 to 2083664 (section 182 of 400) of the complete ganome	96	63	651
72 1	7	1061	gb H10133	E.coli (396) hlyc, hlya, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	1024	1050
72 2	947	1285	gb M10133	E.coli (396) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	96	261	339
73 6	4437	3205	gb AE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	95	392	1233
73 8	1 6177	4555	gb U28377	Escherichia coli K-12 genome; approximately 65 to 68 minutes	06	1133	1623
73 9	6835	6128	95 AE000380	Escherichia coli , glcB, glcG, glcD genes from bases 3112500 to 3126189 (section 270 of 400) of the complete genome	93	103	708
75 2	1553	1059	gb AE000498	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	0 6	385	495
5 3	2579	1566	gb AE000498	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	92	464	1014
75	1 3297	2743	gb U07174	Escherichia coli 09.H10:K99 heat resistant agglutinin 1 gene, complete cds	81	283	555
76 1	869	rs	gb H10133	E.coli (796) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	693	969
78 1	382	53	gb AE000360	Escherichia coli from bases 2885166 to 2897277 (section 250 of 400) of the complete genome	66	315	324
2 2	2620	1529	 gb H10133	E.coli (J96) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	1084	1092
79	2925	2587	gb M10133	E.coll (396) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	97	322	339
79 4	3576	2923	gb H10133	E.coli (J96) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	654	654
1 80 1	376	83	gb U05251	Escherichia coli polysialic acid gene cluster region 3, promoter region	93	210	294
80 2	638	210	ab AE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	98	347	429
e 08	1246	710	gb AE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	96	9 9	537

TABLE 5 (PAI IV) (CONTINUED)

Contig	ORF	Start	Stop	match	match gene name	percent	HSP nt length	ORF nt length
80	2 -	1796	1182	gb AE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete ganome	46	397	615
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			567	emb X74567 ECKP	E.coli K5 antigen gene cluster region 1 kpsE, kpsD, kpsU, kpsC and kpsS genes	87	551	567
88 2		549	1157	amb X74567 ECKP	E.coli K5 antigen gene cluster region 1 kpsE, kpsD, kpsU, kpsC and kpsS genes	88	554	609
82	- n	1500	1180	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	06	62	321
82		2163	1519	gb AE000292	Escherichia coli , yeah, sbmC, yeaC, sbcB, yeaD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	89	143	645
82		2594	2139	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	97	456	456
82	9-	3000	2605	gb AE000292	Escherichia coli , yeeh, shmC, yeeC, shcB, yeeD, yeeE genes from bases 2072708 to 2081664 (section 182 of 400) of the complete genome	86	396	396
82		3463	3047	gb AE000292	Escherichia coll , yeak, shmc, yeaC, sbcB, yeaD, yeaE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	96	283	417
82	6	3831	7566	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	96	453	495
83	-		311	gb AE000151	Escherichia coli, ybaE, cof, mdlA, mdlB, glnK, amtB, tesB, ffs genes from bases (64774 to 475868 (section 41 of 400) of the complete genome	66	207	309
8		176	£ +	gb AE000151	Escherichia coli , ybaE, cof, mdlh, mdlB, ginK, amtB, tesB, ffs genes from bases (64774 to 475868 (section 41 of 400) of the complete genome	100	223	258
989		529		gb \xE000379	Escharichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	93	398	528
93		440		gb H10133	E.coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	9.6	351	438
46	4 1	368	1 72	emb x14180 ECGL	Escherichia coli glutamine permesse glnMPQ operon	100	229	297
66	-	161	586	ab \xe000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	86	426	426
	99 2	643	476	gb \xE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	66	1068	168
	99 3	532	1092	gb \E000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	95	537	561
+	4 66	1094	1396	gb AE000379	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	9.6	274	303

TABLE 5 (PAI IV) (CONTINUED)

								- 7	'6 <i>-</i>											
ORF nt length	525	390	375	396	561	147	1 672	177	300	249	360	228	156	336	432	474	258	159	225	258
HSP ny length	427	333	343	390	549	143	125	177	263	148	113	200	113	335	304	314	237	115	178	157
percent	100	1 66	100	66	66	66	100	86	100	86	66	100	97	66	86	99	86	66	97	88
match gene name	E. coll papC gane involved in formation of pap pili	E. coli papo gane involved in formation of pap pili	Escherichia coli from bases 4277211 to 4288813 (section 370 of 400) of the complete genome	E.coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	E.coll (196) hlyc, hlyh, hlyb and hlyD genes coding for chromosomal hemolysins C, A, B and D	Escherichia coli secD and secF genes for membrane proteins involved in protein export	E.coli tRNA-quanine-transglycosylase (tgt) gene, complete cds	Escherichia coli from bases 4013123 to 4024654 (section 349 of 400) of the complete genome	Escherichia coli from bases 4584059 to 4594314 (section 396 of 400) of the complete genome	E.coli papH gane encoding a pilin-like protein	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli , racC, ydaD, sieB, trkG genes from bases 1415432 to 1425731 (section 123 of 400) of the complete genome	Escherichia coli , racC, ydaD, siaB, trkG genes from bases 1415432 to 1425731 (section 123 of 400) of the complete genome	E. coli transposon Ini000 (gamma delta) tnpR and tnpA genes for resolvase and transposase	E.coli recQ gene complete cds, and pldA gene, 3' end	E.coli recQ gene complete cds, and pldh gene, 3' end	Escherichia coli , yabr, kefC, fola, apaH, apaG, ksga, pdxa, sura, imp genes from bases 47163 to 57264 (section '5 of 400) of the complete genome	Escherichia coli , yabr, kefC, folk, apaH, apaG, kegA, pdxk, surk, imp genes from bases 47163 to 57264 (section 5 of 400) of the complete genome	Escherichia coli K-12 pldA gene for DR-phospholipase A	Escherichia coli K-12 plda game for DR-phospholipase A
match	emb Y00529 ECPA	emb Y00529 ECPA	gb AE000480	gb[H10133]	gb[H10133]	emb x56175 ECSB	gb H63939	db AE000459	gb AE000506	gb H16202	gb AE000379	gb AE000233	gb AE000233	emb x60200 ECTN	se H30198	gb M30198	gb AE000115	gb AE000115	emb X02143 ECPL	emb x02143 ECPL
Stop (nt)	-	173		397	996	~	9	325	302	250	~	229	382	7	92	270	258	350	327	409
Start (nt)	527	762	17.8	2	907	148	312	501		~	361	7	227	337	510	743	-	192	103	1
ORF		~			2					-	-		7		-	- 3	-	~	-	135 2 152
Contig	102	102	105	107	107	110	110	115	111	121	123	127	127	133	5	<u> </u>	133	133	135	135

TABLE 5 (PAI IV) (CONTINUED)

percent HSP nt ORF nt Ident length	97 237 411		-77- - 620 - 68	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		· : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
pe match gene name	411 237 411	Escherichia coli from bases 4013123 to 4024594 (section 34) of the complete genome	Escherichia coli , asny, erfx, cobf, cobf, cobo, yi52,6, yi22,3, yi21_3	genes Errom Dasses accouds to account to the contract of the c	Escherichia coli , asny, erfK, cobr, cobo, cobu, yi52.6, yi22.3, yi21.3, genes from bases 2060089 to 2072765 (section 181 of 400) of the complete	\$60000
atch	ession	136 1 122 532 gb AE000459	244 GB AE000291		gb AE000291	
+ -	(nt)	532	244		2	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(nt)	122	1 576	<u>.</u>	445	
	ID (ne) (nt) ac	1 136 1	- + -		141 1 445 2	

TABLE 6 (PAI V)

Putative coding regions of novel E. coll PAI V containing known E. coli sequences

Contig	ORF	Start	Stop	setch scession	match gene hame	percent ident	MSP nt length	ORF ot length
		6150	4855	gb AE000292	Escherichia coli , yeak, sbmC, yeeC, sbcB, yeeD, yeeR genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	16	129	1296
	10	8214	1723	emb x02311 ECIS	E.coll insertion sequence 183	76	274	492
	3	7867	8319	emb 211606 ECIS	E.coli DNA for insertion sequence 153	0.80	378	453
-	112	8462	1157	emp 211606 ECIS	R.coli DNA for insertion sequence 153	06	267	306
	12_	8487	8663	gb L19084	Escherichia coli Rhab genetic element; core protein (rhab) gene, complete cds; complete cds; complete cNF-D2; complete cNF-D2	96	112	177
	~	1441	818	gb AE000498	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	16	517	627
		923	1372	gb AE000498	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	92	448	450
	-	2343	1324	ab AE000498	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	92	244	1020
	1 - 1	-	7.0	emb X61239 ECPA	R.coll pspABCDEFGHIJK genes for F13 P-pili proteins	1000	741	1 141
	7 2	176	613	emb x61239 ECPA	E.coll papabcDEFGHIJK genes for FlJ P-pill proteins	66	363	363
-	7 3	741	1214	emb x51704 ECPA	Eschericia coli papi gene for Papi protein	86	459	424
		438	-	emb x60200 ECTN	E. coli transposon in1000 (gamma delta) than and than genes for resolvase and transposase	66	435	435
	10 1	1932	2426	emb x61238 ECPR	E.coli prees genes for Fil pili tip proteins	6	462	1 495
=======================================		606	1550	gb H10133	E.coli (396) hlyc, hlyb, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	452	648
1 12	2 1	2559	1531	[gb U82598]	Escherichia coli genomic sequence of minutes 9 to 12	100	1029	1029
12	2 2	1594	1860	emb X13668 ECIS	E.coli insertion element 5 (155) DNA	100	267	267
1	12 3	1858	2235	[gb U95365]	Escherichia coli transposon 155, transposase (1858) gene, complete cds	66	354	378
	1 - 1	_	1424	emb x61239 ECPA	E.coli papascorfounk genes for Fll P-pill proteins	66	885	1332
	6	9832	10515		CI III	92	225	684
	16 1	-	375	ab u07174	Escherichia coli 09:H10:K99 heat resistant agglutinin 1 gene, complete cds	76	320	375
1	16 2	263	616	[gb[U07174]	Escherichia coli 09:H10:K99 heat resistant agglutinin 1 gene, complete cds	96	283	354
-	17 1	1 282	-	emb Y00529 ECPA	E. coli pape gane involved in formation of pap pili	86	240	279
-	17 2	- 410	174	emb Y00529 ECPA	E. coli papC gane involved in formation of pap pili	100	168	237
	14411			•				

-78-

TABLE 6 (PAI V) (CONTINUED)

Contig ORF	100 t	Start (nt)	Stop (nt)	match	match gene name	percent 1dent	HSP nt	ORF nt length	
18	-		369	gb AE000418	Escherichia coli from bases 3550279 to 3561054 (section 308 of 400) of the complete genome	66	347	369	
50	<u> </u>	5401	4829	gb AE000292	Eacherichia coli , yeek, sbmC, yeeC, sbcB, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	96	468	573	
20	=	4874	5371	gb AE000292	Escherichia coli , yeak, sbmC, yeaC, sbc8, yeaD, yeaE genes from bases 2072708 to 2081664 (section 182 of 400) of the complete genome	96	453	498	
20	77	5245	5679	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	σ. α	235	435	
50	===	5732	6139	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	93	329	408	
	20 114	6316	5822	gb AE000292	Escherichia coli , yeek, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2081664 (section 182 of 400) of the complete genome	9.8	239	495	
20	0 115	6048	0659	gb AE000292	Escherichia coli , yeak, sbmC, yeaC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	87	908	543	
7	20 16	6969	2075	gb AE000292	Escherichia coli , yesA, sbaC, yesC, sbcB, yesD yesE genes from bases 2072708 to 2081664 (section 182 of 400) of the complete genome	87	136	507	
·	20 119	8686	9915	gb H67452	Escherichia coli lysine decarboxylase (cadB, and cadC, complete cds, and cadA, 5' end) genes	8 6	1205	1230	
7	20 20	10604	11938	ap n14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes	86	1308	1335	
-	20 21	111940	112368	gb H76411	E.coli cadA gene, 5' cds and cadB and cadC genes, complete cds	100	363	429	
-	21 1	369	~	emb x03391 ECPA	E. coli major pilu subunit genes genes papi, paps, papa and papH 5'-region	86	201	366	
-	23 1		878	gb U14003	Escherichia coll K-12 chromosomal region from 92.8 to 00.1 minutes	9.6	879	879	
7	23 2	900	16	gb U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes	86	885	885	
-	23 3	953	1186	emb x77707 ECCY	E.coli ORF112, DIPZ and ORF191 ganes	66	225	234	
-	23 6	1223	12677	emb X77707 ECCY	E.coli ORF112, DIPZ and ORF191 genes	1 97	1454	1455	
	25 1	536	171	emb X60200 ECTN	B. coli transposon In1000 (gamma delta) topR and topA genes for resolvase and transposase	100	164	366	
	25 2	1128	295	emb x60200 ECTN	E. coli transposon Thiddd (gamma delta) thpR and thpA genes for resolvase and transposess	66	654	567	
	27 1	108	1 436	emb X61239 ECPA	E.coli papABCDEFGHIJK ganes for F13 P-pili proteins	100	252	273	• •
_	28 - 1	900	~	emb x77707 ECCY	E.coli ORF112, DIPZ and ORP191 ganes	9.6	278	306	•
_	28 - 2	167	213	emb x77707 zccY	E.coli ORF111, DIPZ and ORF191 ganes	96	150	219	· ·
		,			**				٠

TABLE 6 (PAI V) (CONTINUED)

0 -	ORF	Start (nt)	Stop (nt)	match	match gene name	percent ident	HSP nt length	ORF nt length
	-	399	*	gb H26893	E.coll amidophosphoribosyltransferase (purf) gene, complete cds	96	295	396
	_	106	170	emb x56780 ECRR	E.coli terminator sequence of RNA G operon gene	- 66	513	537
	-	2	007	gb M63703	E.coli pyruvate kinase type II (pykA) gene, complete cds	- 86	399	399
	-	463	~	emb X13463 ECGU	Escherichia coli gutM gene and gutR gene for activator and repressor proteins	66	363	462
		3		gb H64367	Escherichia coli DNA recombinase (recG) gene, complete cds, spoU gene, 3' end, and gltS gene, 3' end	97	316	411
	2	115	591	gb H64367	Escherichia coli DNA recombinase (recG) gene, complete cds, spoU gene, 3' end end, and gltS gene, 3' end	86	266	774
. —	-	1 2	1 277	emb x77707 ECCY	E.coli ORF112, DIP2 and ORF191 genes	98	187	276
	-	-	17.1	gb AE000491	Escherichia coli from bases 4413548 to 4424699 (section 381 of 400) of the complete genome	80	162	171
1 00	7	105	464	gb AE000491	Escherichia coli from bases 4413548 to 4424699 (section 381 of 400) of the complete genome	86	144	360
	-	7	172	95 000800	Escherichia coli cloning vector Pk184, complete sequence, kanamycin phosphotransferase (kan) and (laczalpha) genes, complete cds	86	167	171
		77		gb AE000341	Escherichia coli , glyk, hmpk, glnB, yfhk, yfhG genes from bases 2677406 to 2687636 (section 231 of 400) of the complete genome	66	411	411
		~	307	emb x60200 ECTN	E. coli transposen Th1000 (gamma delta) thpR and thpA genes for resolvase and transposesse	001	284	306
	-	280	4.	dp H3636	E.coli htrA gene, complete cds	100	131	240
53	- 5	558	214	ap H36536	E.coli htra gene, complete cds	66	315	345
54		6.	263	gb[AE000381]	Escherichia coli from bases 3125914 to 3136425 (section 271 of 400) of the complete genome	46	111	255
55			675	gb AE000179	Eccherichia coli, modă, modă, modă, ybhă, ybhă yabb genes from bases 794199 to 805312 (section 69 of 400) of the complete genome	86	332	675

-81-

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications recited herein are hereby incorporated by reference.

5

-82-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANTS: Human Genome Sciences, Inc. 9410 Key West Avenue Rockville, Maryland 20850 United States of America

> University of Wisconsin 1300 University Avenue Madison, Wisconsin 53706 United States of America

APPLICANTS/INVENTORS: Dillon, Patrick J. Choi, Gil H.

Welch, Rodney A.

- (ii) TITLE OF INVENTION: Nucleotide Sequence of Escherichia coli Pathogenicity Islands
- (iii) NUMBER OF SEQUENCES: 142
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Sterne, Kessler, Goldstein & Fox P.L.L.C.
 - (B) STREET: 1100 New York Ave., N.W., Suite 600
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: USA
 - (F) ZIP: 20005-3934
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage

 - (B) COMPUTER: HP Vectra 486/33(C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To be assigned
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/031,626 AND US 60/061,953
 - (B) FILING DATE: 22-NOV-1996 AND 14-OCT-1997
- (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Steffe, Eric K.(B) REGISTRATION NUMBER: 36,688
 - (C) REFERENCE/DOCKET NUMBER: 1488.074PC02/EKS/CBM
 - (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 371-2600
 - (B) TELEFAX: (202) 371-2540
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 1178 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

-83-

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: CNTANATTAG GCCTGCTNAA TGTATTTATA TCTAAAAAAA TTCGCATCCA AAAGGAATCC 60 AATCTGTACT GTTTTTCTT GTGCTGACAT CTTCTTTTCC CTGGCTGGTA TGGCAAGTGA 120 CGGAGACAAG AGAAACGTTT TAAGCTCAGT TATCTCCGCC ATCACTTTCC ACGAATGACA 180 AGTAATTTTG CCTATTTTAA AACCATGCAA AAGGCAGGGT AAAAGGAGAA AATTCGATCG 240 AATCGATCGA CAAAATCGAT CATACATGAT GAAGATTTCT TATCGAATCC ATAAAAATAG 300 TGACAGCTAA CCGGCGTTGC AGGAACAGTC AGAAATGGGC GTTTGGGAAA GAGCCATAGC 360 ATACGTCGTC GCTGACATAG AGGAACTGTG CTTTGTTGAT AAGATCCTTT ATACGGCAAC 420 CAATCCACTG GACAAAAGAT GAACTACGTA ATCACCGGGT TCTCACTGAC GAAATACAGA 480 AGTTAATGAC ACAACTGTGC CATGCACCTT GTACAACAGC GGTGGAAAGC TCTCAGAACA 540 ATGGAATTGC AGAAAGGTGT TAAAACGATG AAAGCCTTCA TACCCAAATC GAATGTAAGA 600 ACGGCAGTAA AGACTGAATT GCGTAACCTT GCAGTAGCTC GAGTATTACA CTGCATAGTG 660 TGCAGGGTTA TCTCCCATCG AGAAATATC GGCGCCAGCG AATAACGTCA CCTTAGATGT 720 AGCAGTTGCC AAATAGTGAC TCAAGGGCGG GCTTACCGCA TACACTGACA CTTAGCGGAT 780 CGACAGAATA TTATTAGCAG ATCATCACTG AACGCTACGT AATTATCGTA ATAAAGGCTT 840 TTTCTGGCTA CCAGGAAGAC CTGACATGGC TCTGCTCTGG AACCAGGCCG CAGGAAGCAT 900 CAATCTGGAG TTTATCAGCT ACTGGAATTC CGGTGTATTG GCAGCCCCTG ATAATCACCT 960 GACCCACGAA GAGCGCTCTG CTTTGCAGAA ACTCTGGGGC GGTTTGGAGA CAGGAGATGT 1020 AACGATTATA GGACGTTCTG ATGAAGTCCA TGATTTTACC TCCGCCTTAA TTAACTGTTT 1080 1140 TCTTTCTGAA GAAGAAATTG TCTGGTGGCA ATCAGGTGGC ATTTTCCCGG ATCCTTGGCC CGCTAATATA TCCCGGCTGA ACTGACGATT AACGCGAT 1178

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 414 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATCCTATTCA	TTTTGCCATG	ACGGGCGAAC	TCCAGATAAA	GGTTTTGAAA	GTAATGAGAA	60
ATTATTAATT	CATCCATGTT	ACTGGCTTGG	TTTGAATCTA	AATCGTAATG	CACTTGCTCC	120
AGAGGAAGCA	GAGGAGATAA	ATGACGAATA	TGATATTAAT	ATTATTTCAG	ATAATTCAGC	180

-84-

CATTAGAAAT	AAAACAATAG	GTCAAATAAC	TACTCATCTA	GATCAGATAC	CGATAGGAAA	240
TGAAGGTGCC	ACTGAATTTG	AACAATGGTG	TTTAGACGCA	CTAAGAATAG	TATTTGCATC	300
CCACCTAACA	GACATCAAGT	CCCATCCAAA	TGGTAACGCA	GTTCAGAGAC	GAGATATTAT	360
AGGCACCAAT	GGTGGCAAAT	CTGAWTTTTG	GRAACGAGTA	TTGGAGGACT	ATAA	414

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8752 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TTGGGATCTG	GTACANTCCA	CCCAGCGGCA	TTATCCNGAA	GGCAATATTT	TTAAGGATTA	60
TTCGTCCACA	AAATCAGTAC	TGGAACCAGG	CTCAAAAAAG	GCTTTAACGT	GACCTGCTNC	120
CATCTACAGT	AGATGTACAA	CCTGTTAAGT	TAATTGAAAA	TGGTGTTAAT	CCGGTTGTTT	180
CTCCAGGGGT	AGCAAGGGCC	TTATTCGATA	CAGTGGGTAA	TGTTACTGTA	AAATTACCAT	240
CATTCCCTGT	GGTCACATTG	CAGGTCTGAG	CTACAACTTT	GCCTGTAAAC	GTAATTGTTC	300
CGTCATAGGC	CATAGCTGAA	CCAACAAACA	CAGCAGAAAC	AAATGTAGCC	AATGCTATAA	360
CTTTTATTTT	CATAAAATGA	ATTCCTGTTT	AATTCCGGTA	TTGATCATTT	GTTCAGCAAT	420
CATCCCCAAC	AAAACAATCA	TTTTCAAAAT	GTTTTTACCG	ATCGATAACC	AGCACATGAT	480
AGATTGCACC	TATCATGATT	GCTAAAACGA	TCGGGAAAAG	CGATCAAAAA	CCATATTTAT	540
TGTGTTGGTA	ATGACAAAAG	ATATGCTTTA	CCCTGAAATG	AGCGACCTAT	TCATGAAAAT	600
ATGTAGGTCT	GTATTTGATT	ACTATCATTG	CTATATTTCC	ACTATCCAAT	TTATATTTCA	660
TGATTAAAAT	ATACCTTTTT	ACACTATTAT	TTATTTGTTG	CAGCTTGCCT	GGCTTTATCT	720
TATTCCGACT	ATTTTATGGT	AGATACAGAA	TACAATTAAT	TAAACTTATT	TAAAGATTTT	780
ATAAATACCA	TATTGGAGTT	GACCGATAGA	TACCTACTAA	CAAGAGCAAT	CACCACCACC	840
CCATGAGGTG	TTTAGGAATA	CAATCAATAA	ACAACATCCA	TGCCCGGCGA	CGTACATACC	900
TGTTTGCTAT	GATATCTGTT	ACGCTACGCT	TGCTAATTTA	CTGAAACTCA	GCATCTGTCG	960
ACGGAGATTC	GTCCGGGCCC	TGATACAACA	AGGGCAAGAA	AACCACCCGA	AATACAGATA	1020
TTCTTATAAA	AATGGATCAT	ATTTCCATGT	GCAAGTTCAG	CTGGCATCGT	CCAGAATGCG	1080
TGTCCAAGAA	ATGAAGCAAA	CACGGTATAC	AGGCACAGAA	TAATGCTCAC	TGGCCGGGTG	1140
AAAAAGCCRA	AAACAATCAT	TAATGCTCCA	ACGATTTCGA	CAAGGACCAC	TATTGCTGCA	1200
GTAATCGCCG	GAAATATAAG	CCCAAGAGAG	GCCATTTTAT	CGATAGTGCC	AGTGAATGAT	1260
AGCAGCTTGG	GAACGCCGGA	TATCATATAA	AGGCATGCCA	GCATCAGACG	GGCAAGGAGC	1320

-85-

AACAATGCCG	ACGTGTAATT	TCCCATATTA	AAATACCTGA	TTTTATCCAC	TATCAATGCT	1380
CAGTCTCCTT	GTTTCTGATA	AAGCCCTGAG	CCAAATCCTT	AAGTGTACGA	GCACCACTCA	1440
GTAACATTGC	CGTCCTCAGC	TCCGTCTTCA	GGTGCTCAAT	GACACTGGCA	ACGCCCCGA	1500
CACCACCTGC	TGCGATGCCA	TAAAGAACAG	GACGTCCGAC	CGCAACAGCC	GTTGCCCCAA	1560
GAGAGATAGC	CCTTACAACA	TCAACCCCCC	TGCGAATACC	GCTGTCAAAA	ATGACCGGAA	1620
CTTTGTGCCC	GACTCTTGCA	GCAACTTCCT	GCAACTGGCT	GATGGCAGAA	GGAACACCAT	1680
CAATCTGGCG	ACCACCATGA	TTAGACACCT	GGATGGCATC	TGCTCCTGCA	TCAATGGCGA	1740
CCACTGCATC	CTCACCTCTG	AGGATGCCCT	TGACAATGAC	TGGCAGCCCG	GTGATTTTT	1800
TTACAAACTC	AATATCAGCC	GGGGTCAGCT	CAACTTTTTG	GTTAAAAAAA	TCACCTTTGC	1860
CACCGTAACG	GGGGTCATGA	TTACCGAACG	TCGCTCCTGC	AGGGAAAGGC	GAGCTCATGC	1920
TGAGAAAAGC	ATCACTTGTC	CCGGGACCAA	GCGCATCCGC	TGTGATAATA	ATGGCTGAAT	1980
AGCCTGCCGC	TTTTGCACGC	TCCAGTAAAC	TTCGGGTCAC	ACCAGCATCC	GCGTTAAAAT	2040
ACAGCTGGAA	CCATTTAGGT	CCTTTACTGG	CTTTTGCAAT	ATCCTCCAGA	GAGCGGTTGG	2100
ATGCCCCTGA	TGATTCATAA	AGTGCCCCGG	CCTTTTCTGC	ACCCGCTGCA	GCAATCACCT	2160
CCCCTTCCGG	ATGGACGAAC	ATATGCGCGC	CCATAGGTGC	TATCAGCAGG	GGATGTTCCA	2220
GATGATGGCC	CAAAAGGTCA	GTCCGGATAT	CAATGCTGTG	GGCAGCAACT	CCACTGAGTC	2280
GGTGAGGTAA	. CAAAGGATAA	TCACTGAANT	GCCTGCGGTT	CTCATGATAC	GTCCACTCAT	2340
CTCCAGCACC	ATGAGCAATA	TATGCATACG	CAGCTTCCGT	CATCACATCT	TTTGCTGAAG	2400
TCTYCAGTCT	GTCCAGACTG	ATGATATGAA	GAGATTTGCT	GGTCGATGTA	TCAGCATGTC	2460
CAGACGTTTT	C ACTGATGATA	TGTGCCGTTG	AAGATGAGAT	ATTTTTGGCA	AGGGCCGGCG	2520
CAGTTGACAG	CCTGCGGCAG	: ATATTCCTAP	AACGGCATTC	TGAATAAAAT	TACGTCGGGA	2580
AAGAGGCATA	A TAAGCTCCA	AATATTATAA	A ATAAGCCAGG	TCTCCCTGGC	TTATAATGAT	2640
CATGCCACGC	CCTGAAGCGG	GTTGGTGTTG	AAGGTATAAA	. GGAAAATTTT	CCATTCACCA	2700
TTAATTTTAC	TGAGGACAAA	AACTTCACGO	TTCAGGTCAA	TAATGGTTTT	CTGCTCTTTA	2760
AAGTTCGTT	A CAACAGAACO	CACATGGTGG	G TGAGTGCGGA	CAACCGCGGT	ATCTCCGTTG	2820
ATCCAGATAC	G AGTCAAACGO	C AAAATCGGT(C TCAAACTTTI	CACGCTTGAA	CAGATCATCG	2880
TACTGCCCC	r GGCGTTTTT	TGTATTGTC	A GCCGTCAACI	TATCATTCCA	CTGGGAATAA	2940
CTTTCATCA	G CAAACAGGC	CAGGATGGT	TTTGTATCCC	CGGCATTCAG	TGCGTTCTGA	3000
					GTCTGTGGAG	
TATTTGAAT	G TACCGCCGG	A TTGTTCAGG	T GAGCTTTCCT	TCTGTGCTG1	CGACGATGAG	3120
					TGCTATAAAA	
TGTTTCATA	T ATTCTCCAT	C AGTTCTTCT	G GGGATCTGT	GGCAGCATA	r AGCGCT CAT A	3240

CTATGCTGCT	GTTTCAATAT	TAGCGGCAGA	CGTCAGCCTT	ACCGCACTAC	TTATTGGATA	3300
AGAATATCAA	AAGTGACCGT	GAAGTCAATT	TTATCACAAC	ACAGAAGGCC	ACTATTTATG	3360
CCCAGAAAAT	ATGAATCGTC	CTCATCATGC	ACGAAAGACT	CGTAGTTGCA	GCCCGGAAAA	3420
AACTGCCAGG	ACACGACAGC	AGATAGCCCG	GGCAGCACTT	GAGGAGTTCT	CTGCACAAGG	3480
GTTCGCTCGC	GCCACATNCA	GCAATATCAG	CAAGCGCGCA	GGAGTAGCTA	AAGGCACGGT	3540
ATATAACTAC	TTCCCAACAA	AGGAATTATT	GTTTGAAGCG	GTTCTGAAGG	AGTTCATTGC	3600
TACCGTCCGT	ACTGAACTGG	AATCTTCCCC	CCGCCGCAAC	GGGGNAAACC	GTAAAAGCCT	3660
ATCTGTTGAG	AGTGATGTTA	CCTGCCGTCA	GGAAAATTGA	CGACGCATCA	ACAGGCAGAG	3720
CCAGAATAGC	CCACCTGGTT	ATGACAGAAG	GGAGCCGGTT	CCCGGTAATC	GCTCAGGCTT	3780
ATTTACGGGA	AATACATCAG	CCACTACAGC	AAGCCATGAC	CCAACTGATT	CAGGAAGCAG	3840
CATCAGCCGG	AGAGTTAAAA	GCAGAGCAAC	TGCTCTGCKT	CCCCTGTTTA	TTGCTGGCTC	3900
CAAACTGGTT	TGGCATGGTG	TATAACGAAT	TCTGAACCCG	GCAGCACCGG	TCAGTACAGG	3960
CGATCTTTTT	GAAGCCGGAA	TTGGTGCTTT	TTTCCGATAG	ACACATAACT	GTCAGTATTA	4020
TGACCATGCC	GTCAGGAGGA	GGTATACCAG	TGATACCCTG	CCATGACCCG	GTAACGTCTC	4080
CTGGCTGCCT	TAAACCTGAA	AGACCTGGCC	CCACCACACT	GCCGGTTACG	CATCAAGATG	4140
CAGCAACCCT	TGCATAAGGC	TGTTTTGTGC	AGAGGGCTAC	CGGAAAGATA	ATAACGTCAC	4200
AGCCCGTATG	CATCAGATAA	AACAGTGTAT	TTTATCTGTC	AGCAGTCACT	GGAGCGGATT	4260
GTGGGGCGAG	ATTCAGGTGC	TGATACTGTA	ACGACTCTGC	GCCGCTGCTG	CGGTAAAAGC	4320
GGCTGCCACC	AGGCACGGTT	ATCAGAGGAG	GATGACCGTG	TCCGCCCCTG	GTGGTGATGA	4380
ACTCTCCATC	ACAATCAATA	ATGCCGCCGG	GTGGATGAAG	CAGACAGGGA	TGGCAAGTCC	4440
CACTATCCCG	GATAAAATGG	GCTCTGGGCG	CTCAGAAGAC	CTGTGTGTCA	GGCAGGGGTG	4500
AGAACGGTGA	TGTTTTTTGT	TGTCTGAAAG	TCCAGCTCCA	GCATTGCCTG	CCAGCCTCAA	4560
GACTTCCGCT	TTCTGCCCTT	TCCGGCATTT	TCTTCCGTTA	CCATCATTCT	GTTAATTCAG	4620
AGGCGTAGTA	GTAGTAAACG	TAATACATAT	CCGGGAGGAT	GAAGTCATCT	AATCCTGCTC	4680
CCCGAATATC	ATACAGCCAT	TCCTGAGTGT	GACTGCACCA	TTTCCAATTA	TGCAGTCTGT	4740
CCTCATCACA	AAAATGTTGC	AAGCAGTGCG	GAGTCACGTT	CCGTATTCAT	GCCCTCTGCC	4800
AGATATTGAG	CGGGGGAGAA	ATGTGTAAGC	GTCAACAGAG	CGCCGTATTG	ACACTTATTT	4860
ATCGGTGAAA	ACTACGTTCC	ATGGCAGCAG	TTCGTCAACA	CGGTTGGAGG	GCCATTCCGG	4920
CAGTACGCTC	AGGATATGGC	GCAGATACGC	TTCTGGATCG	ATACCGTTCA	ACCGACAGCT	4980
CCCGATTAGT	CCGTACAGCA	GAGCTCCGCG	CTCGCCTCCA	TGATCGTTGC	CGAAGAACAT	5040
GTAATTCTTT	TTCCCGAGAC	AGACGGCACG	AAGCGCTCTT	TCTGCTGTGT	TATTGTCCGC	5100
CTCCGCCAGA	CCGTCATCAC	TGTAATAACA	GAGGGCGTCC	CACTGATTCA	GGACATAGCT	5160

-87-

GAACGCTTSR C	CCAGTCTGG	ATTTTTTCGA	CAACGTGCCA	TTCTTCTCCA	CCATCCATTC	5220
ATGCAGCGAC G	TCAGTAACG	CTTTGCTTCG	CTGCTGCCTG	GCTGCAAGAC	GTTCAGACTC	5280
CGGTAAGCCC C	GTATTTCAT	CMTCAATGGC	GTACAGTTCA	CTGATGCGCT	TCAGAGCTTC	5340
TTCTGCCGTC G	STACTTTTGC	TGCTGATGTA	TACATCGTGG	ATTTTTCGCC	GGGCATGGGC	5400
CCAGCACGCA A	CTTCTGTCA	GTGCACCACC	TTCACGTTCG	GCACTGAACA	GCCGATCGTA	5460
ACCGCTGAAT G	CATCCGCCT	GCAGGATACC	CCGGAAGGGA	CGAAGGTGTT	GTACCGGATG	5520
TTTTCCCTGC C	TGTCTGGTG	AGTAGGCGAA	CCAGACCSCC	GGTGGCTCTG	ATGAGCCCGC	5580
ATTCCGGTCA T	CCCSGACAT	ACGTCCAGAT	GCGTCCTGTT	TTTGCCTTTT	TTCTGCCCGG	5640
TGCCAGCACT T	TTACTGGTA	TGTCGTCAGT	GTGAACCTTG	CGGGTGTTCA	TCACGTAACG	5700
GTACAGGGCA T	CATTCAGCG	GAGTCATTAA	CTGGCAGCAC	GCGTCAACCC	AGTTGGAGAG	5760
TAATGCACGG C	CTCAGTTCGG	CACCCTGTCG	GGCAAAGATT	TCACTCTGAC	GATACAGTGG	5820
CAGGTGTTCG C	CAGTATTTTC	CCGTTAACAC	GCGGGCAAGT	AATCCGGAGC	CCGCGATGCC	5880
GCGCTCTATC C	GGCGGGACG	GCGCTGGCGC	TTCAACTATA	CAGTCACATT	TTGTACAGGC	5940
TTTTTTTACC (CGAACAGTGC	GGATCACTTT	CAGGGCGCTA	CTCACCAGTT	CCAGCTGCTC	6000
AGCACTAACT T	CACCCAGAT	AATCCAGCTC	ACTGCCACAC	TCCGGGCAAC	AACTTTCTTC	6060
AGGCTCCAGG (CGGTGTATTT	CACGGGGAAG	ATGTGCTGGT	AACGGACGAC	GATGACGTGA	6120
TTGTCGCAAC	rggcgggaa	CTGCGGGTCA	TCCTCACGCC	CACTGTAACG	ATCGCTTTCC	6180
TGTTCGCGTT (GTTTCAGTTG	GGCCTCAGCC	TGTTCAACCT	CACGCTGCAG	TTTTTCAGAA	6240
CGGGTACCGA A	ACAGCATCCG	GCGCAGTTTT	TCTATCTGGG	CCCTCAGATG	TTCTATTTCC	6300
CGCTCCTCCT	CTTCGATCTT	TTCTTCGGCA	CGTGCCARTG	CAGAGCGCAG	GAAGGCCTCC	6360
GTCTCTTCAA	CCAGACTCAG	TTGCTGATCT	TTCTGACGGA	GGGCTTCAGC	CTGCTCAGAG	6420
AGTAGCCTTT (CCAGCTCAGT	GATACGAATG	AGGTATTTCC	GACTCATGAC	CGTTTTTATA	64 80
ATCCGGCCAT	GACATTTTTA	CAACATTGTC	AGTGCATTAA	GGCGGGATGT	TTTGGGTTGA	6540
CGCCAGTCCA	GTTTATCGAG	GAGCATTGCC	AGCTGCGAGC	GGGTAATGGA	TACCTTACCG	6600
TCACGCACCG	CAGNCCAGAT	AAACTGGCCT	TCCTCCAGAC	GTTTGGTGAA	CAGGCACAGA	6660
CCATCAGCAT	CAGCCCACAG	GATTTTAATC	GTGTCACCCC	GTCGGCCGCG	AAAGATAAAC	6720
AGGTGACCGG	AGAAGGGGTT	CTCATCCAGC	ACATGTTGTA	CCTGTTCACC	CAGACCGTTG	6780
AAGGATTTAC	GCATATCAGT	AACGCCGGCA	. ACCAGCCAGA	TTCGAGTGTC	TGATGGGAGC	6840
GAGATCATCG	TCCTCTCCCG	GTCAGTTCAC	GGATCAACAC	CGTGAGCAGC	TCTGGTGAAG	6900
GATTTTCCAG	CGTCATGTTA	CCGTGGCGGA	. ACTCAACTTT	ACAGGAACTG	GCACTGACTG	6960
TGCTTTGTGA	AGGAGTGGAT	AAAAGCGGAG	TAAGAGCCGC	CATAGGCTCT	TTCTGCTCAT	7020
CAGGCGTTAT	CTCAACAGGT	AATAATTCAA	CGCCAGCGCC	AGAAGAGGTT	GTTACCGGAA	7080

GACGCCGCGA	TATACGCCCT	TCGTTCTGCC	AGAGCCTGAG	CCATTTGAAC	AGGAGGTTAT	7140
CATTGATATC	GTGTTCCCTG	GCAATACGGG	CAACAGAGGC	TCCTGGTTGT	GAAGCCAGTT	7200
TAACCATTTG	AAGTTTAAAC	TCATTTGAAA	ATGTTCTGCA	GGSTTCTGCG	GATAATATTT	7260
TCTGTTCCAT	AACAGGTGTC	CACTAGTTGA	AAAAGTGGGC	ACCTACGTTA	CCAATACTGG	7320
CTTAATGGCT	ACATACGGCG	GTCAGTTTAC	GCTTACAGAA	ATGTAATGAA	CACGTCCTAC	7380
CATTAACTGA	AGAGCATGGT	GACGGATGAA	GGAAAAAGCA	GGAGTGTGTG	GTGCCTCACA	7440
GATTTCCGAC	ATCATAGCTG	TCAACGACGG	ATGAAAAGCG	GCTCTTCCGC	AACTTGGGTG	7500
GAAGAAAATG	GATGAAACTT	TCTGGTGTGA	GAACCTTAAG	GAAACAACAT	GTTGGGTGGA	7560
GCGGACAATC	CAAATGGTGA	ATTACCGTCT	TATATCACTG	GCGCTGACAT	TCCGGGCGTC	7620
TTCTCCGCCA	CAACGCCATT	TGCAGTGCAT	CACAGGCCAG	TTGTGCTGTC	ATTCGCGGTG	7680
ACATCGACCA	GCCAATAACG	GCGCGTGACC	ACAGGTCGAT	GACTACTGCG	AGATACAACC	7740
AGCCCTCATC	GGTACGCAAG	TAMGTGATGT	CACCCGCCCA	MTTCTGGTTC	GGAGCCTGGC	7800
GCTGAAGTTC	CTGCTCCAGC	AGATTCTCCA	ATACGGGCAG	GCCATGTGCA	CGGTAGCTGA	7860
CCGGGCTGAA	CTTCCGGCTG	CTTTCGCCCG	CAGCCCCTGA	CGACGCAGGC	TGGCGGCAAT	7920
GGTTTTAATA	TTGAACTCCG	GCATTTCGTC	AGCAAGGCGG	GGAGCACCGT	ATCGCTGCTT	7980
TGCCTCAATG	AATGCCTTAT	GGACAGCGGC	ATCGCAGGTG	AGCCGAAACT	GTTGGCGCAG	8040
GCTCATCTGG	TGACGACGCC	TGAGCCAGAC	ATACCAGCCG	CTGCGGGCAA	CCCGAAGTAC	8100
ACGACACATC	GCTTTGATGC	TGAACTCTGC	CCGATGATTT	TCGATGAAGA	CATACTTCAT	8160
TTCAGGCGCT	TCGCGAAGTA	TGTCGCGGCC	TTTTGGAGGA	TGGCCAGTTC	CTCAGCCTGC	8220
TCCGCCAGTT	GTCGTTTAAG	GCGGACATTT	TCAGCGGCCA	GTTCGCTTTC	GCGCTCTGAC	8280
GAACTCATTT	GTTGCTGCTG	TTTACTGCGC	CAGGCATAAA	GCTGAGATTC	ATACAGGCTG	8340
AGTTCACGGG	CTGCGGCGGC	CACACCGATG	CGTTCAGCGA	GTTTCAGGGC	TTCGTTACGA	8400
AATTCAGGCG	TATGTTGTTT	ACGGGGCTTC	TTGCTGATTG	ATACTGGTTT	TGTCATGAGT	8460
CACCTCTGGT	TGAGAGTTTA	CTCACTTAGT	CCTGTGTCCA	CTATTGGTGG	GTAAGATCAC	8520
TCAGCAACGT	ATCAAAAGTC	TGTAAAATCA	TGGGCGTTTC	GCGTGATACA	TTTTATCGTT	8580
ACCGCGAACT	GGTCGATGAA	GGCGGTGTGG	ATGCGCTGAT	TAATCGTAGT	GCCGCGCTCC	8640
TAACCTTAAG	AACGTACCGA	TGAGGCAACT	GAACAGGCTG	TTGTTGATTA	CGCCGTCGCT	8700
TTCCCGGCAC	ACGGTCAGCA	CCGGACCAGC	AAACAAGCTG	CGTAAACAGG	GC	8752

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2417 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
TGGTCAAAGA TGCAACTGCA TTTCGTCGCG GCTTTGCGGC AAATACTTAC ATCGCAGAAA	60
TACTGTGCGG AAATCTGCAT CCATTTCCAC TTGCTGTATG GCATAACTTT TCAGGCGGTC	120
CGGATACTGC CGAAGATTAT TATGCCACAT ACCACCCGTT ATGGGGGCAA TATCCGGAAG	180
CATTGCTGTT TGTAAACTGG CTCTATAATC ATTCCTCTGT GCTGCATGAA CGGGCAGAAA	240
TCATTAAATG CGCCGAAATG CTGATGCAGG AAGATGATTT CGAAATATGC GAAAGTATTT	300
TAAGACAGCA GGAGAAGTTG CGTGAAAGAA TTGATGAGAC GCTTTCTGAG AAAATTGTAC	360
AGAAATGCAG AAATATGAAT GGTGAATATG TCTGGCCCTG GATATTGCCG TTTTCAGCGG	420
CAGGCATGAA ACATACTGGC ATACAGTATC AGTAGATATT GCATTAGTGT ATCCTGCACA	480
CAAGTAATAA TTTATCCACC AATAATAACA CTGTTAATGT CCCCTTCCCC TGGTTGTCAG	540
CCAGGGGTTA TCTTCTGAAT ATTTCTTTTG AAAAGGATAA CACAATAAAT TATTTTTATG	600
AATTATCCCA TGGACTCATT AACACCCTTT CATAATGTTT TATTGTCAAA CACGTTATGG	660
CTGACATCAA AAAAAACCGG ATTTCCTCTG CCAGCGGGTA ATCACCTCCC CGGTGTTTTC	720
GGTTGGTCTG GTTACTCCTG TCTGGTTATT AGCAAGATAA TTGCTATAAA CAGTGGAAAA	780
CTCATCGTAC ATAATCTGGT GATGAACATT ACGCTTATTT TCCCTTGACC GGAAGAATCA	840
GAGGCTGCGG TTTCAGACTG TCTGCCGGTA CATTCCTCTC TCCGTTAAAA ACCATAATGG	900
GTTCATTATC TTCGTCTGTC AGTAGATTGA ATGGCGGTAT ATTTTCAGTA CGAATGCCGG	960
TCAGCCACTG AAAAATACCT GCGAAATGAC GGGCACTGAT TTTTCTGCTG ACGGACTGAT	1020
GAGACGTGAT GTCACTGGCG GTAATAATCA GGGGAACGCT GTAGCCTCCC TGCACATGAC	1080
CATCATGATG AACAGGATTA GCACTGTCGC TGACCGACAG CCCATGGTCA GAAAAGTAAA	1140
GCATGACGAA ATGACGGGAA TGCCGGCGAN GGATACCATC AAGCTGACCG AGAAAGTTAT	1200
CCAGTTTACT GATGCTGGCG AGGTAACAGG CAACCTTTCG GGGATACTGC TCCAGGTAAT	1260
GATTCGGCCA GGAGTGAAGC CGGTCACACG GGTTCGGATG AGACCCCATC ATGTGCAGGA	1320
ATATCACCTT CGGAGAGGAT TTATCCGCCA GCGCACGTTC TGTTTCCTGT AACAACAACA	1380
TGTCATCCGT TTTACGGGAA GCGAATGCSC TTTCTTGAGG AAAACGGTAT GCTCCGCATC	1440
AGAAGCAATA ACAGAGATGC GTGTGTCATG CTCTCCCAGT TTTCCCTGAT TGGATATCCA	1500
CCATGTGCTG TATCCTGCTT TTGCTGCCAG CGCCACCACG TTGTTGCCGG AATCAGGGTT	1560
CTGCTCATAG TCATAAATCA GTGTCCSGCT CAGGGAAGGT ACGGTACTGG CTGCTGCCGA	1620
TGTATAGCCG TCAATAAATA AACCGGGAGC TGTCATTCCA GCCACGGCGT GGTTGGCCAC	1680
GGGATAACCA TATACCGACA TATAATCCCT GCGCACACTC TCACCAGTGA CAATCACAAT	1740
CGTGTCATAT AACGGTGTTC CCCGGCCAGG ATTTTCCCAG TTGTCAGCCC CGTGCTGACT	1800

-9()-

CAGTTGTTTA	TAATGCTGCA	TTTCACGCAA	TGTGTCAGTT	GTCCCCACAA	CAGTTCCTTT	1860
AACCATCCGC	AACGGCCAGC	TGTTTACTGA	GCATAATACG	AACAGCAGCA	GTGCCAGCCA	1920
GTTACGGTGA	CCACGGCGGT	GTGTTCGCCA	GAAAATCACC	ATGAATACCT	GAATCGCGGC	1980
ACTGACCAGA	AAATGATAAA	CAGGAATCAT	CCCGGTAAAC	TCCGCTGCCT	CATCAGTTGT	2040
GGTCTGCAGC	AACGCGACAA	TAAAACTGTT	GTTGATTTTA	CCGTACGTCA	TACCGGCAGG	2100
CGCATACAGT	GCACAACAGA	ACAGAAATAA	CAGCGCTGTA	ATGGATGTGA	GGGTATTTCT	2160
GTGTGCAAGG	AGCAGAAGGA	GAAACAGAAG	CAGCACATTT	CCTGTTGCAT	TCCTCTCAGT	2220
GTATCCGCAT	GCAATTGTGG	TTATTGCAGA	CACAACAAAA	AAGAATAAAA	ACAATAAAAT	2280
CCGGGGGGG	TTGCCCGGAC	AAAACAGTTT	TCTGATATTC	ATCGGAGTAT	ATCGACAACA	2340
TTATTATGAA	GAGAACAGGA	TAAAAAAAT	CAGAAATTAT	TGTAAAACAG	ATAAAAGCAN	2400
CNATGCAGTA	ATAGACT					2417

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6294 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AGACAAAAAC CAGTTACGG	TATCACGTAC	CAGCCCCCGT	ATTTCCAATT	TATAATCCTG	60
GCCATCAATT ACTGGGATC	CTTCTTCTCC	ATAGAAGGCA	TTAAAAGGGA	ATGGAGTGGT	120
AATGTCCTCT GGAAGATAT	CTGGTGCCAC	ACTGTTTTTG	CTGAACAGAA	AACTTTGAAT	180
CCGGTCATTA AATCTGGATA	TACGGAACAA	TGCTTTTTCA	ATATCATCAT	TATTGCTTAT	240
ATCACAGCCA GTCAGCATCA	TAATTCCCCC	AAGCGTCAGT	CCCTGTTGGA	GTAAACGACG	300
TCTGTCCGGC GCAAGGATT	TTTCTGCATC	TTTCACCACG	TAATGGGCAT	CACTGTCAGA	360
CAAAAACGT TTTTTCTTC	TTAGTGACCC	CGTATCATAG	ATAACAATGC	ACGCGGAACC	420
AATAACACCA TAACCAGGTO	S AATAATAATG	AACAGTACCA	TAATGTTCAT	GCACAGAAAG	480
TGGATATAAC GCGCTGTATO	C ATAACCACCG	RATAGTATAG	TCAGAAGGGA	AAACTGAACG	540
GGTTTCCATA AAACCAGAC	C AGACAATAGA	AGAGCAGCGC	CATCTAAAAT	AATCAGAATA	600
TAGGCGACTT TTTGCACCA	T ATTGTATTCC	TGCATATTCG	TATGATGCAG	CTTTCCATAC	660
AGTGCCTGCG TAAGGGATT	TTTCAGTGAG	GTCCATGACA	GCGGGAAAAA	CTTGCTCCGG	720
AAACGTCCGC TACAAATTC	CAGAGTAAGA	TAGATCGTGG	CATTAATCAG	CAGAATCCAC	780
ATCAGGGCGA AGTGCCACA	TAACGCACCG	CCAAGCCAGC	CACCGAGAGT	TAATGCTGCC	840
GGATAGTTAA AAGAAAACA	A AGGAGAAGCA	TTATAAATGC	GCCATCCACT	ACATATCATG	900

CCTGCGACAG	TAACAGCATT	AATCCAGTGG	CAACAGCGTA	ACCACAGAGG	RTGTATTTGT	960
TTTAACGGTA	ATGGCTGCAT	TATGTGATCT	CTGTCTGTAA	ACTAAGTATA	TTATGGAAAG	1020
GAATGTTCAT	CACATCCTCA	CAAGAGTTTA	AAAAAAATGT	GACAANTCAT	CGTCAAATGC	1080
TGGGGTAAAA	TTCAGATAAA	GAATATGTGG	ATAACTTTTG	ATGAATAACG	TAAAAAAAT	1140
ACTGCTGATG	GAAGATGATT	ATGATATTGC	AGCTCTGTTG	CGGCTTAATC	TGCAGGATGA	1200
AGGGTATCAG	ATAGTTCATG	AAGCGGATGG	CGCCAGAGCT	CGTTTATTAC	TAGACAAGCA	1260
GACCTGGGAT	GCCGTAATAC	TTGATCTTAT	GCTGCCTAAT	GTTAATGGGC	TGGAGATTTG	1320
CCGTTATATC	CGTCAGATGA	CCCGTTATCT	GCCTGTGATT	ATCATCAGTG	CCCGTACCAG	1380
CGAAACCCAC	CGCGTCCTGG	GACTGGAAAT	GGGGGCTGAT	GACTATCTAC	CGAAACCCTT	1440
TTCCATTCCT	GAGCTGATTG	NCCCGCATCA	AAGCGTTGTT	TCGTCGTCAG	GAAGCCATGG	1500
GGCAAAATAT	TCTCCTGGCA	GGTGGACTGA	TTTGCTGTCA	CGGTCTGTGC	ATCAATCCAT	1560
TTTCACGTGA	AGTTCATTTG	CATAATAAAC	AGGTTGATCT	TACCCCACGC	GAGTTTGATC	1620
TGCTGCTCTG	GTTTGCACGT	CATCCTGGCG	AAGTTTTTTC	CCGTCTTTCA	CTGCTGGATA	1680
ATGTCTGGGG	GTATCAGCAT	GAAGGATATG	AGCATACAGT	CAACACGCAT	ATCAACCGTC	1740
TTCGTGCCAA	AATTGAACAG	GATGCAGCAG	AGCCAAAGAT	GATCCAGACC	GTCTGGGGAA	1800
AAGGGTATAG	GTTTTCAGTT	GACAATGCAG	GAATGCGATA	AATGAATTGT	AGCCTGACAT	1860
TAAGCCAGAG	GTTAAGCCTA	GTATTTACAG	TCGTTTTGCT	GTTTTGCGCC	GTGGACATGT	1920
GGCGTTCATA	TTTACAGCAG	TAATCTGTAT	GGCAATGCAA	TGGTACAGCG	TTTATCTGCA	1980
GGCTGGCGCA	ACAGATTGTC	ATCACGGAGT	CTCTGCTGGA	TAATCGTGGG	CAGGTGAATC	2040
ACCGGACATT	AAAGAGTCTG	TTTGAGCGTC	TGATGACGCT	TAATCCCAGT	GTGGAGCTGT	2100
ATATTGTCTC	GCCGGAAGGT	CGGCTGCTTG	TGGAGGCCGC	CCCTCCAGGT	CATATCAAAC	2160
GTCGGTATAT	CAATATAGCG	CCCTTGAAAA	AATTTCTCTC	CGGTGCTGTC	TGGCCCGTAT	2220
ATGGTGATGA	TCCCCGAAGT	GTAAATAAGA	AAAAAGTTTT	CAGTACCGCA	CCGCTTTACC	2280
TGAGGGATGA	TCTGAAAGGA	TATCTGTATA	TTATTTTACA	GGGAGAGGAA	CTTAATGCTC	2340
TTACTGATGO	CAGCCTGGACA	AAGGCACTAT	' GGAATGCACT	GTACTGGTCG	CTGTTTCTGG	2400
TAGTGATATO	TGGTCTGCT	TCGGGTATGC	TGGTCTGGTA	CTGGGTAACC	CGTCCCATAC	2460
AGCAACTAAG	TGAAAATGTC	AGCGGGATAG	G AGCAGGACAG	TATTAGTGCC	ATTAAACAAC	2520
TGGCAATTCA	A GCGCCCTGCC	ACCCCCCT#	GCAACGAGGT	CGAGATATTA	CACAATGCCT	2580
TCATTGAAC	r ggcccgtaa	ATATCCTGT	CAGTGGGATCA	ACTTTCAGAA	AGTGATCAAC	2640
AGCGCCGTGA	A ATTTATTGCC	AATATCTCC	CATGATTTACG	GACGCCATTA	ACATCACTTC	2700
TGGGATATC	r ggaaaccct	G TCAATGAAG	r CGGATTCGCI	ATCATCAGAG	GACTGTCATA	2760
AATATCTGA	C AACAGCTCT	CGGCAGGGA	CACAAGGTGAG	GCATCTGTCC	TGTCAGCTTT	2820

TTGAGCTGGC	ACGTCTTGAG	CATGGTGCTA	TAAAACCTCA	ACTGGAGCAA	TTTTCTGTCT	2880
GTGAACTTAT	TCAGGATGTA	GCTCAAAAAT	TTGAGCTCAG	CATAGAAACC	CGTCGATTGC	2940
AACTAAGAAT	TATGATGTCA	CATTCCCTGC	CTCTTATCAG	GGCAGATATT	TCAATGATAG	3000
AGCGTGTGAT	AACAAATTTA	CTGGATAATG	CTGTACGCCA	CACACCTCCG	GAAGGCTCGA	3060
TCAGGCTGAA	AGTCTGGCAG	GAAGATAATC	GGTTGCACGT	CGAAGTGGCT	GACAGCGGCC	3120
CTGGACTAAC	TGAAGATATG	CGAACTCATC	TTTTCCGGCG	GGCATCAGTG	TTATGTCATG	3180
AACCGTCAGA	AGAGCCCCGG	GGAGGACTGG	GATTGCTGAT	TGTACGCAGG	ATGCTGGTAC	3240
TACACGGTGG	TGATATCAGG	TTGACTGATT	CAACGACTGG	AGCCTGCTTT	CGTTTTTTC	3300
TTCCATTATA	ACATCAGGCG	GCATATTTTG	GGGTGGTTAT	GTGTATCTGC	CTTTGTAAAA	3360
GGGATACAAG	TTCTGTAGTG	GAGCACAAAA	TCAGGACACC	GGAATAACCT	GTTTCCACTT	3420
TTCTTCATGT	AAGCAAGGCG	GTAAACCATC	GTTGTTCGTG	TGAGGTCGAT	AAACGTTGTA	3480
ATAACCATTA	ATCCACTGGT	TTATATCACG	TACCGCATGG	ATAAAATCAC	CATAACCACC	3540
TTTCGGAAGC	CATTCATTTT	TAAGGCTGCG	AAAGACTCTT	TCCATCGGCG	AATTATCCAG	3600
GCCATTCCCT	CTGCAACTCA	TACTTTGCAT	TACCCCATAA	CGCCAGAGTA	ACTTTCTGTA	3660
TTTATTGCTT	TTATACTGAA	CACCTTGATC	TGAATGAAAC	AGCAGGCGGC	CATCACGCGG	3720
TCGAGTTTCC	AGTCCGTTAC	GCAAAGCCCT	ACACACCAAC	TCAGCATCAG	CGGTTAATGA	3780
GAGGGCTGAA	CCGATAATCC	GCCGTGAATA	TAAATCAACA	ACGAGCGCGA	GCTAACACCA	3840
TTTGTCCTGC	AGGCGAATAA	AACTGATGTC	GCGCACCAGA	CGCAGTTTGG	TGCGGCGGG	3900
TGAAATTGCC	GGTTCAGTAA	ATTTGGCAAT	GGCGGACTTT	TGTCTTCGTT	TACCCGGTTG	3960
TGATGTTTAA	CCGGCTGTCG	ACTTGTCAGC	CCTCATTCCC	GCATCAGTCG	TCATGCCAGC	4020
CACCGGCCTG	CATCAACGCC	ACTCTGGCGC	AACATCTGAC	TGATTGCCCG	GCTACCCGGC	4080
TGCGCCACGA	CTGAGAGCAT	GGAAAGCCCT	CACCCGGCTT	CGTAATTCAA	TTCTTTGCAC	4140
ATTAACAGGA	CGCTTCACCT	GCGCGTAATA	AACGCTACGG	TTAATACCGA	ATAAATGACA	4200
AATAACCCAC	ACTGGCCACT	TTGCTTTCAG	CTGTGTGATT	AGCGCGACAG	CTTCCCGGGG	4260
ATTTCGCTCA	TCAGCACGGC	AGCCTGCTTT	AGTATTTCTT	TTTCCATCTC	AACGCGCTTT	4320
ATCTGCGCTT	TAAGCTGCTG	AATTTCGCGT	TGTTCAGGGG	TAATAGCATT	ACCAGCTGGC	4380
TCAATACCCT	GAAGTTCCTG	CTTATACAAC	CGTATCCATT	TACGCAAATG	GTCAGGGTTG	4440
AGCTCGAGTG	CCTGCGCGAC	TTCTCTGACA	TCACGCTGGT	ATTTAACCAC	CACCTGCTCG	4500
AAAGCTTCAA	GCTTGAACTC	CGGGGAAAAG	GTACGTTTAG	TCCGACGAGT	TTTGATCATG	4560
CATCACCTCA	TTTTCACTGT	TTTAACATTA	ACAGGATTTC	GAGGTGTCCT	GAATTACCGA	4620
TCCACTACAA	AGTACGACAG	GTACTGTGGA	GGTACTCCCG	TAAAGACGGC	CATCAAGCTC	4680
CCGCTCCGAC	ATACCTGCGG	GCAGAGGCCA	TGAAAAGCCA	GCTTTGCGAA	AGCGCACGAA	4740

PCT/US97/21347 WO 98/22575

-93-

CATACCACAA	GCTGTTGATT	TTGGTACGCC	CAGGCGACGC	CCGACCACAA	CCTGGGGTAA	4800
ATGTTCTTCA	AAGTGAAGAC	GTAAAGCTTC	AGTGATCCAA	GTCCGGTGTT	TCATACGATA	4860
GTGTCCATTA	AAAATGATGG	ACATTATTTT	TGTAAAACCG	GAGGAAACAG	ACCAGACGGT	4920
TTAAATGAGC	CGGTTACATG	TAATCCATAC	TCATCCAAGG	TTTAATTCTG	ACACAATAAG	4980
AAAATATGGA	AAGTCTCGCT	CTAGAGATGG	GGAGAGGGAT	ATTGAAGTGT	ATGATATTCC	5040
AAGAACTGCC	GGAGATATCC	TCGTAAATGG	ATTTTCCAGT	GCAAACTGAT	AACAAATTCG	5100
AAGTCATTAT	CTGCAACAAG	ATTGATTGAT	GTAGGGGATA	TGTTAGAGCA	TTATAATGCT	5160
CAAGGATTTG	GCGTGATGAC	ATCTGCGCCA	ATTGATGCGA	CACTATATGA	TAAACTGGAT	5220
GCTATTTGCA	GTAAGTGTAA	AATAGAACAA	TTTTTAAATT	CAGTATTAGA	GTCAGAACGC	5280
GCACTATATT	ATGACGATAT	ATTAAGATGC	CGTTACTTTG	GTAAATAMCA	TAAAATTAAT	5340
CAATATGGTA	ATATATCAGT	TGTAATTGAT	CGAAACAAAG	CACATAAATG	CCATCTTATA	5400
AAGATGGTGT	TTKTTAAGCA	TATAAAATAT	ATTTTCTATA	AGATATAGGG	CAAACTAAAT	5460
TTCTTGACTT	CTATGATGGA	CTAACTAGAT	ATACATGCCG	CCAGTTTTTA	TAAAACG AC G	5520
GCATATATAA	TCATTTATAT	ATCTTTTGAT	TTTATTCGTA	ACCACTCATG	TTGATCTAAA	5580
CCTATTCTTG	ACAGATTAGC	AACAATATCA	GTTGTTATTT	TTTGCGCGTA	CGTTGTTTTT	5640
ATTTCCCCGA	TCCATTTCAA	TACTTTTGGA	GTAGATATTT	TTTCAACGAG	TAAAGGAACG	5700
AATGAGATAT	AGTCAGTATT	AACTAGATTG	TTCTTTTTCC	CTATGATGAC	ACCGTTTCCA	5760
TTTTCGACTC	CAAATGAAAA	TGAAATAATA	TTAGAAGCTT	TTGCCGGCAT	TTTAATTTTA	5820
TAAAAACCGC	CATATTCATC	TTCGATTAAC	AAATTGTAAT	TATTATCGTC	CAGTGTTCCC	5880
CTGAGGAATA	AAAAATCGGC	TTTTTCATGC	AATCTGACGC	TATCACATAA	TGGTTGTATG	5940
CATAGATAGA	CAAAATTATA	TGCATCTAAA	AGTAAAGTTC	CTTGTTTTAA	GGACACATTA	6000
TCTATATGAG	AATGATATCT	TAAACTCCTG	CGCGTGATTT	CCAGAGAGCA	TAATTGCATT	6060
AACTTTTAT	CTTCTTCACC	ATCTTGGCTT	AAGTATTCCT	TTTTACCTAA	AGATGCG T GT	6120
TCAATAGCGT	GTTGAATTTC	TTCTAAAGAA	. TCAGCAGAGA	GTATATTCCT	TAGATGTTCT	6180
ACTGATAAGT	CTTTTTGTTT	TTTTCCAGTT	AATAGAAAAT	TCTTACAACC	ATTTTTGCA	6240
TAGTGAAAAA	TAGGCCAATG	GGATAAGGAG	TTTTTGCTTA	GAGATTTCTG	GGGA	6294

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4519 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (mi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

-94-

TATTCCTTTC	TCTCCCATGA	TAGGGCGAAA	GGCTTTATTA	CTATCCACTG	CTGGTTTATT	60
AATTGCATCA	TCGTCGATTA	ATTTGCTGGA	GGTTCCAATA	GTCAACCACC	TCTCTTCAAA	120
TTCATCGGTT	GTCATACCTA	ATCCATCATC	TOTCAAGATA	AGAAGATTTT	CTTTCCTAAA	180
AAAATCAACT	TCGACATTAT	CAGCATAGGC	ATCATGAGCA	TTTTTAAATA	ACTCACTCAA	240
GGCAGTAGGT	ATACCTGCAA	TTTGTTGTCT	GCCAAGCATG	TCCAAAGCTC	GAGCCTTTGT	300
TCTTATTTTA	GCCATATATC	TATGAATCCT	TATTAGTACA	ATTTTCTATG	AGATGTAGCC	360
CAAATAGTCT	AGCGAGTTCG	CAAGGTACAG	CATTGCCGAT	TTGCTTTGCC	ATTGAATTCA	420
GCGAACCTTT	AAAAACATAG	CTTAAAGGAA	ATGTTTGTAA	TCTTGATGCT	TCTCTTATGC	480
TAATTGCTCT	ATGTTGAGTG	GGGTCAGGAT	GCCCAAAACG	ACCATTGGAG	TAACTATTAC	540
ATTTCGTCGT	AAGTGTAGGC	GCAGGCTTAT	CCCAACTCAT	TCTTCCATAA	GTATCTGTGT	600
GGCCATCATA	ATTTTTATGG	CATTTATTAA	CTAACTCTTC	TGGCCAATTT	CTTCTATCCC	660
CTCCTTCTGG	AGTGTGCATA	AKTCTTTTTA	GGTTAAGAGG	GCTCAGTGTT	CCAGCCCTAT	720
GTAAAGGATC	TTTGGGGTCG	GTTTCTCCTG	AACATAACTT	TGTGAAGTCC	TGGATATAAT	780
CTCGTACAGT	TTTGAATGGG	ATTTTATTTT	TACCATGGGT	TATCTCTGGT	AGGGTAACTT	840
TACCTACTCG	ACTAGCTAAG	AGCACGAGTC	TTTTTCTTCT	TTGGGGAATC	CCATAGTTCT	900
CAGCATTGGC	TATAAAAGAT	ATATAGTTAT	ACTCTAACTC	TTTAAGTAGC	TTAATAAACT	960
CCTGAAATGG	GCCTTCTTTT	TCTTCATCAA	TTTTTTGCAT	TCCAGGAACA	TTTTCAAGCA	1020
TAATATATTC	AGGAAGAAGT	TCTCTAATAA	AACGATGAGT	TTCATTTAGT	AGATTTC T CC	1080
TTGAGTCGTC	ACTAGTTTTA	TTTTTATTCT	GTTGCGAAAA	TGGTTGACAT	GGTGCACATG	1140
CACTCAGTAA	CAAAGGCCGT	TTAGCTTTAA	TATCAATGAT	GTCGGAGATA	TCTTGAGGTT	1200
CGATTTTCCT	AATATCATCT	TGGATGAATT	TTGCATCAGG	GAAATTAGCT	TTAAATGTTT	1260
CTGATGCTTG	TTGGTCAATA	TCTAATCCAA	GCTCGATATC	AAAGCCAGCC	TGACGTAGCC	1320
CTTCACTGGC	TCCACCACAG	CCACAAAAAA	AATCTATAAC	TATCAATTTG	ATACCTTCTT	1380
TGAACTAAAT	AAAACAACTC	GAATAAGTTG	ATATTTTAAA	TAAAAATAAT	TGGTATGGAT	1440
ATGAACTTTG	GTCACGCTAC	CGCCCTGAGK	TCATGGCCAT	CCCCAGACCT	TTTAAAGGGA	1500
TTATGAACAA	CACCCAGCCG	ACGTTCAACG	GTGTTACCCA	TACATATCAC	AAAGTTAGTT	1560
AATTGGTTGG	TCGTAAATTG	ACCTAAAATG	GATTGAGGGC	AATGCAAAAA	TCATTGGGAA	1620
ATCCAGGCGA	CACAGATGTT	CGGAAGAGAC	TGAATGTTAA	AAATATAGAA	TGTATATTCT	1680
CAAAAAAGAG	ATATTTCATT	ACATTTTATA	TGTGTATAGG	AAAGTGAGAT	TGGCGAATCA	174C
CCTCCCAATC	ATCCCGCCAG	CGCTCCATTC	AGCGCCACGC	CAACCCTCAC	TCCAGCCCAC	1800
GTCATCGCCC	CCAGCCAGAA	TGTCGGCAAC	ACCAGAAACA	TCAACCTCAT	CACCAGATTG	1860
ATAATCACGT	CATCCTGCGT	ATTCTGGATC	CCGGCTAAAT	TCCAGCTACT	GTGGGTATCG	1920

-95-

CTGTTGTAGA	GCACATCCAG	CAGCCAGCTA	TCAAGCCACC	GTGCCAGTTC	CCACCAAAAG	1980
GTGAGGAAAA	ATAGTGCAAA	CTGCACAAAC	GTCAGCGTCA	TCACTACTTT	CACATCCCAC	2040
GCCGAACAGA	GCGTTATCAG	CGGAATACAG	ATCACCAGCG	CTATTTGCAG	TGCGCCTGTA	2100
CCATCGGTAG	TGCCTAACGC	ACGCTGTCGA	ATGCCGTACA	TGCCGCTATG	CTGCCGAGGA	2160
TATTTCTAGC	GCCGGATGCC	AACCG GGTGG	CGGCATTGGC	GACGGTGCCA	TCAACGTTAC	2220
CGCCATAGCT	TGGATAAACG	CGCCCATTCT	GCGATACCTG	CATATTTCGT	TCACTGACCC	2280
GCGAGCGCAG	CACGGCCTCT	TCATACACTA	CCTGCGACTG	GTCGATTTTT	TTAAACGCCG	2340
TCCAGATATC	TAGGGCAGGA	AGTTGCAGTA	GACGGGCTTT	CAGCCCAAGC	GGTGTCGTCG	2400
GCCCACCGCT	GTTTACAAGT	GGGATAGCCG	CCCGCGCCCG	TATOGGCCAG	CCCGGCATCG	2460
CGCGATGCAC	TGTACGGCCA	AGCACTGTGT	GGTGAAAGCG	CATGGTCGGA	AAAGGCCTGT	2520
TCAGCTAACC	AAGCACATCC	CACCATCACA	AGAATCGCCA	GAAAACCAAA	CTCAGTCAGA	2580
ATAACTCTTC	CTGATTCAGG	CTTTGCTCCT	GCATTATGGC	TACCACTATT	GTTTGCCTGC	2640
ACGTATCATC	TGATAACGGT	TAATTAACTG	ATTTAGCGCC	ATTTCAGCCT	GTTTTTGCTG	2700
CTGTTCACTG	CCATTCTGGT	TACGGACTTC	ACCGTAGCGA	CGTAACTGCT	CTTCCGCCGG	2760
GATATGCCGG	TTAAAAGCCT	GCATGATGCC	AAACACCTCC	GTTTTCAGTT	CACTGACCGT	2820
CATGTATTT	CCCCGCTGTT	CATCCTGACG	GTTCAGGCGC	TCAGCCAACT	GCTGTAAGCG	2880
GATCATGCCT	TCGTTCCAGC	CCGTCATCGC	CTCTTCCGGG	AGCGCACGAC	TCCTTACACT	2940
CTTCTGCCAG	TTATCCACCA	TTTCCTGAAC	ACGGGGATTG	CCGGGGACAA	GAACCCTCAG	3000
TTGCTGCAGC	AGCTGCGCAC	TGCACCGCAG	GTTGTATGCT	GGAGGTAATT	CTGCCAGTCG	3060
CGTTATCTGG	TGACCGGAAA	GGGTTATCCA	GTGCACTCAG	GGCAGATACC	GGATTCAGGT	3120
TAATTTTTO	: AAACAGGGAA	GCATATACGC	TGTCGCCGGT	ATGCGTTTCA	GATACCACAC	3180
TCTCTGCGAC	GTTCTTTTCT	' TTCTGTACAG	ACATCAGCAT	TTTCTGTAAG	CGTACAGCGA	3240
GGGCCGTATI	CACGGGGATG	G TGTTATTCAG	CTGGCAGTGC	TATGCGCCAC	GGAAGCAGTT	3300
CGCTGACCCC	GTTGACCGGC	CAGTCTGCTA	TGACGGCAAG	CACATGGCGA	AGGTAGCTTT	3360
CTGGATCCAC	GTCATTCAGT	TTGCACGTCC	CGATCAGGCT	GTACAGTAGC	GCTCCCCGCT	3420
CACCACCATO	GTCAGAGCCC	S AAGAACAGGA	AGTTTTTACG	ACCCAGACTG	ACCGCCCGCA	3480
GGNCATNTT	r CAGCGATGT	GTTGTCGATT	TCCACCCAGC	CATCGTTCGC	ATAGTACGTC	3540
ATGCCGGCCA	A CTGGTTAAG	r GCGTACGCGA	A ACGCCTTCGC	CACCATCAGG	CTGGACAGGG	3600
GACTTTCAC	C CCCAAGCTG	C TGAACATGCC	C CGGCACACAA	AGAAGATCTC	GGCTCAGTGG	3660
CCGGGATTA	G TTATACAAT	r atctgattg	TATTAATAT	ATCTTTTCTT	AAATCATCGT	3720
TAATATCTG	A CGGTTCTAG	C TGGTTTATA	A GTTGCCTTAT	TTGGGTAAAG	GTACTTTTCT	3780
GATCTTTTA	G ATCTTCTCC	r TTTATCGTT	S ATAAAGCTGO	: AATTAGTTCA	CCATCGTAAT	3840

-96-

ATTCACCCGC	TAACGGCTCT	TTAGTTAGAA	CTTCCAACAC	TCTTGGCATC	AACTGATCAA	3900
TACATAAATT	TTGTCGGATA	GCGCGGCAAA	GATCTTCCAC	TGTTAACTTT	TCAAGAGGCA	3960
CATCTATGAT	ACGTTCGAAC	CAGAGTTCAA	GCGGTGATTG	TTGCTCAGGC	TCTTTTGTCA	4020
TATTGATGTT	TCCAATCAAT	TTACGTAAGG	TAATCATATT	CCATATCCTT	TCAAGGCTGA	4080
TTCTATTTTA	TTAATAGCAT	CTGTTGCTCT	GCCATACGCA	GCCTGAGCTT	CAGGATTGTT	4140
GACGTTTTTC	AACGTATCCG	CATGATTTCT	TAATCCTCTG	AGCGTATTTT	GCATTTCCTG	4200
CATATGATCC	CAATATCCTC	CATTCTCTTT	AGGAACTGGC	TTACCATCCA	TATCCTTGAG	4260
AGTTCCAATT	AATATCATGA	ATCTTTTCAG	ANCATTTTTT	TAATAGTGGT	TAATCGANTC	4320
TTCTTTAANT	CGGCAACTTT	TCTTGGCCTT	CCTGGAATTA	AAGGCTTTAA	TCCTAACAAG	4380
TTTTTTCTC	AATTTTTGGC	TGGCTTTAGG	GAATCAATTT	TTCCCGGATT	GGGTGG GT GG	4440
GTGGTAACCC	GGGTTTCCCT	TGAAGCCCGG	GAAACCCGGC	CCCAAGTTCT	TACTTTTTT	4500
CCCGCAATCG	GGTCAAGAT					4519

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1213 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATTACAGAAT GTGGAAATTA	AGTATGATTC	GAAAAAAGAT	TCTGATGGCT	GCCATCCCCC	60
TGTTTGTTAT ATCCGGGGCA	GACGCTGCTG	TTTCGCTGGA	CAGAACCCGC	GCGGTGTTTG	120
ACGGGAGTGA GAAGTCAATG	ACGCTTGATA	TCTCCAATGA	TAACAAACAA	CTGCCCTATC	180
TTGCTCAGGC ATGGATAGAA	AATGAAAATC	AGGAAAAAAT	TATTACAGGG	CCGGTTATTG	240
CCACCCTCC GGTTCAGCGC	CTTGAGCCGG	GTGCGAAAAG	CATGGTCAGG	CTGAGTACCA	300
CACCGGATAT CAGTAAACTT	CCTCAGGACA	GGGAATCACT	GTTTTATTTT	AATCTCAGGG	360
AAATACCGCC GAGGAGTGAA	AAGGCCAATG	TACTGCAGAT	AGCCTTACAG	ACCAAAATAA	420
AGCTTTTTTA TCGCCCGGCA	GCAATTAAAA	CCAGACCAAA	TGAAGTATGG	CAGGACCAGT	480
TAATTCTGAA CAAAGTCAGC	GGTGGGTATC	GTATTGAAAA	CCCAACGCCC	TATTATGTCA	540
CTGTTATTGG TCTGGGAGGA	AGTGAAAAGC	AGGCAGAGGA	AGGTGAGTTT	GAAACCGTGA	600
TGCTGTCTCC CCGTTCAGAG	CAGACAGTAA	AATCGGCAAA	TTATAATACC	CCTTATCTGT	660
CTTATATTAA TGACTATGGT	GGTCGCCCGG	TACTGTCGTT	TATCTGTAAT	GGTAGCCGTT	720
GCTCTGTGAA AAAAGAGAAA	TAATGTACCG	CAATAACGGT	TAAATGCGGG	TGGGATATTA	7 80
TGGTTGTGAA TAAAACAACA	GCAGTACTGT	ATCTTATTGC	ACTGTCGCTG	AGTGGTTTCA	840

PCT/US97/21347

-97-

TCCATACTTT	CCTGCGGGCT	GAAGAGCGGG	GTATATACGA	TGACGTCTTT	ACTGCAGATG	900
AGTTGCGTCA	TTACCGGATA	AATGAACGGG	GGGGACGCAC	CGGAAGCCTG	ACCGTCAGTG	960
GTGCACTGCT	GTCCTCACCC	TGCACGCTGG	TGAGTAATGA	GGTGCCGTTA	ARCCTCCGGC	1020
CGGAAAATCA	CTCTGCGGCA	GCCGGAGCAC	CTCTGATGCT	GAGGCTGGCA	GGATGTGGGG	1080
ACGGTGGTGC	ACTTCAGCCC	GGAAAACGGG	GCGTTGCGAT	GACAGTCTCC	GGCTCACTGG	1140
TAACCGGTCC	CGGAAGCGGA	AGTGCTTTAC	TTCCTGACCG	TAASCTATCC	GGCTGTGACA	1200
TCTTGTTATA	CAC					1213

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 451 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

ACGCTCTAGT	ATTCTCTGTC	GTTCTGCCTG	GGCCACTGCA	GATAGAATAG	TGACAACCAT	60
TTTACCCATC	TCCCCATCGG	TACTGATTCC	GTCATCAATA	AACCGAATGG	ATACACCTTG	120
GGCGTCAAAC	TCTTTTATTA	ACTGGATCAT	GTCAGCAGTA	TCGCGCCCAA	GGGGTTCAAG	180
TTTCTTCACC	AAGATGACGT	CACCTTCCTC	CACCTTCATC	CTCAGCAAGT	CCAGCCCTTT	240
CCGATCGCTT	GAACTGCCCG	ATGCCTTGTC	AGTAAAGATG	CGATTTGCTT	TCACGCCTGC	300
GTCTTTGAGT	GCCCGAACCT	GAATATCGAG	AGATTGCTGG	CTGGTTGATA	CCCGTGCGTA	360
ACCAAAAAGT	CGCATAAAAA	TGTATCCYAA	ATCAAATATC	GGACAAGCAG	TGTCTGTTAT	420
ААСАААААТ	CGATTTNAAT	TAGACACCNT	T			451

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 720 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GACAAGGCTT	ATAAACTCAC	TGACGGGGCT	GGCATGTTCC	TGCTGGTACA	TCCTAATGGT	60
TCCCGTTACT	GGCGTCTCCG	TTATCGTATT	CTGGGTAAGG	AGAAGACTCT	GGCACTTGGT	120
GTGTATCCAG	AAGTTTCTCT	CTCCGAAGCT	CGTACAAAAC	GGGATGAGGC	CCGAAAACTG	180
ATTTCGGAGG	GGATTGACCC	TTGCGAACAG	AAAAGAGCTA	AAAAAGTAGT	CCCTGATTTA	240
CAGCTCTCTT	TTGAACATAT	TGCACGACGC	TGGCATGCCA	GTAATAAACA	ATGGGCACAA	300

-98-

TCACACAGCG	ATAAAGTACT	CAAAAGCCTC	GAAACACACG	TTTTCCCCTT	TATCGGCAAC	360	
CGGGATATCA	CAACACTCAA	TACCCCGGAT	CTGCTTATCC	CTGTTCGTGC	TGCAGAAGCT	420	
AAACAAATTT	ATGAAATCGC	CAGTCGTCTG	CAGCAAAGAA	TATCTGCCGT	AATGCGTTAT	480	
GCCGTACAGT	CTGGCATCAT	CAGATATAAT	CCTGCTCTGG	ATATGGCTGG	CGCATTGACT	540	
ACGGTAAAAC	GCCAGCATCG	CCCCGCTCTT	GATCTTTCAC	GTCTGCCTGA	ACTTCTGTCG	600	
CGTATTAACA	GTTATAAAGG	NCAGCCTGTC	ACCCGGCTTG	CGTTGATGCT	GAATTTACTG	660	
GGTTTTTATT	CGTTCCAGTG	AACTCAGATA	CGCCCGCTGG	TTCTGAAAAT	TGATATTGGA	720	
(2) INFORMATION FOR SEQ ID NO: 10:							

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 2920 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

NCNTTAATTT T	ATATCTCGT	TAAAATAAAA	GTTTTCTGTA	CCGCTCTCCG	GAGGGGGAA	60
TGATTCGTTT A	TCATTATTT	ATATCGTTGC	TTCTGACATC	GGTCGCTGTA	CTGGCTGATG	120
TGCAGATTAA C	ATCAGGGGA	AATGTTTATA	TCCCCCCATG	CACCATTAAT	AACGGGCAGA	180
ATATTGTTGT TO	GATTTTGGG	AATATTAATC	CTGAGCATGT	GGACAACTCA	CGTGGTGAAG	240
TCACAAAAAC C	ATAAGCATA	TCCTGTCCGT	ATAAGAGTGG	CTCTCTCTGG	ATAAAAGTTA	300
CGGGAAATAC TA	ATGGGAGGA	GGTCAGAATA	ATGTACTGGC	AACAAATATA	ACTCATTTTG	360
GTATAGCGCT G	TATCAGGGA	AAAGGAATGT	CAACACCTCT	TACATTAGGT	AATGGTTCAG	420
GAAATGGTTA CA	AGAGTTACA	GCAGGTCTGG	ACACAGCACG	TTCAACGTTC	ACCTTTACTT	480
CAGTGCCCTT TO	CGTAATGGC	AGCGGGATAC	TGAATGGCGG	GGATTTCCGG	ACCACGGCCA	540
GTATGAGCAT GA	ATTTATAAC	TGAGTCATAC	CCAAATGAAT	AACTGTAATT	ACGGAAGTGA	600
TTTCTGATGA A	AAAATGGCK	CCCTGCTTTT	TATTTTTAT	CCCTGTCAGG	CTGTAATGAT	660
GCTCTGGCTG CA	AAACCAGAG	TACAATGTTT	TACTCGTTTA	ATGATAACAT	TTATCGTCST	720
CAACTTAGTG T	TAAAGTAAC	CGATATTGTT	CAATTCATAG	TGGATATAAA	CTCCGCATCA	780
AGTACGGCAA C	TTTAAGCTA	TGTGGCCTGC	AATGGATTTA	CCTGGACTCA	TGRTCTTTAC	840
TGGTCTGAGT A	TTTTGCATG	GCTGGTTGTT	CCTAAACATG	TTTCCTATAA	TGGATATAAT	900
ATATATCTTG A	ACTTCAGTC	CAGAGGAAGT	TTTTCACTTG	ATGCAGAAGA	TAATGATAAT	960
TACTATCTTA CO	CAAGGGATT	TGCATGGGAT	GAAGCAAACA	CATCTGGACA	GACATGTTTC	1020
AATATCGGAG AA	AAAAAGAAG	TCTGGCATGG	TCATTTGGTG	GTGTTACCCT	GAACGCCAGA	1080
TTGCCTGTTG AC	CCTTCCTAA	GGGGGATTAT	ACGTTTCCAG	TTAAGTTCTT	ACGTGGCATT	1140

-99-

CAGCGTAATA	ATTATGATTA	TATTGGTGGA	CGCTACAAAA	TCCCTTCTTC	GTTAATGAAA	1200
ACATTTCCTT	TTAATGGTAC	ATTGAATTTC	TCAATTAAAA	ATACCGGAGN	ATGCCGTCCT	1260
TCTGCACAGT	CTCTGGAAAT	AAATCATGGT	GATCTGTCGA	TTAATAGCGC	TAATAATCAT	1320
TATGCGGCTC	AGACTCTTTC	TGTGTCTTGC	GATGTGCCTA	CAAATATTCG	TTTTTTCCTG	1380
TTAAGCAATA	CAAATCCGGC	ATACAGCCAT	GGTCAGCAAT	TTTCGGTTGG	TCTGGGTCAT	1440
GGCTGGGACT	CCATTATTTC	GATTAATGGC	GTGGACACAG	GAGAGACAAC	GATGAGATGG	1500
TACAGAGCAG	GTACACAAAA	CCTGACCATC	GCAGTCGCCT	CTATGGTGAA	TCTTCAAAGA	1560
TACAACCAGG	AGTACTATCT	GGTTCAGCAA	CGCTGCTCAT	GATATTGCCA	TAAATGGTTT	1620
ATCCGGAGCC	GGATAGTGTG	TTGTGGATAT	CTGGCATGCC	CCGGGAAGTC	ACCTTTCAGA	1680
CGGGCGGAGG	GCTGGTGAAT	TATCCGCGAT	TACTGAGCAG	TATGGATAAT	CCTTTTTCAC	1740
AGACTTGTCA	GCAGCCAGCA	TTTATGTTCT	TTTATCTGAG	GGAATTTATC	TGTACGCTGT	1800
GCCGGGATAT	CTCAGTTATA	CAGAAATCAG	GCAGGAATAA	ATTGTAGTGG	AAAGTCGATG	1860
TTTACCGGAT	GACTGATGCG	CGCTTGTACA	CAGACAGTGT	GTTTCAGTAA	TATGGAGAAT	1920
AATGAAATGA	ATAACACAGA	CACATTAGAA	AAAATAATCA	GACACCAAAA	AAACAAAGAC	1980
CCCGCATATC	CTTTCGGGAA	CATTTGTTGA	TGCAGCTCTG	TATTCGCACA	AATAAAAGAA	2040
TGCAGGATAA	TATATCTGAA	TTTCTGGGGG	CGTATGGAAT	AAATCACTCA	GCATATATGG	2100
TCCTCACCAC	ATTATTCGCA	GCGGAGAACC	ATTGTCTGTC	ACCTTCAGAG	ATAAGCCAGA	2160
AACTTCAGTT	TACCAGAACT	AATATTACCC	GCATTACAGA	TTTTTTAGAA	AAAGCCGGAT	2220
ATGTAAAAAG	GACGGATAGC	AGGGAGGATC	GCCGTGCTAA	AAAAATCAGT	CTGACATCTG	2280
AAGGTATGTT	TTTTATTCAG	AGGCTCACTC	TTGCACAAAG	CATGTATCTG	AAAGAAATCT	2340
GGGATTATCT	GACCCATGAT	GAACAGGAAC	TGTTTGAAGT	CATTAATAAA	AAATTACTGG	2400
CACATTTTTC	TGATGCCAGC	TCATAAAGTG	CGAAATATCT	GAGGATGCCG	GATAGCTTCA	2460
GGCAAAATAA	TAATGATTCT	TGCAGATGTG	TTTTTCCGGA	TACAAAAACA	AATGATAAAA	2520
ATTGCAGCGC	CAGGCACCTT	TCAAAGCAGG	GAGACCTGTA	CCGCGTCGAA	AATTTCAGCC	2580
AGTTAATATC	ATTGTCTGAA	CCAGGCACTT	TGCCCGGGCA	GGAGAAGGAG	TTGTGGCGGT	2640
CTCAGCCCGG	AACAATTTGA	AAACCATAAT	CTCGCTTAGG	GCCGTGTCCA	CATTACGTGG	2700
GTAGGATCAC	CTCCTGGATTI	TCTCTTTTT	GACATTGACG	TCTCCATTGG	TTTAAACACG	2760
GCAATGGAGA	CTGCGGTGAA	AAGAGTTAAT	TCCCGGAGTG	ACTGGCTGGA	TGCCAATCAA	2820
TGATCGGAAC	CATGCCAAAC	TGTGAACGGA	A GATGGATGCC	GCCAAATCAT	GATCGATTCA	2880
GATGCCATAT	TTGCAATATC	GCGTTAATC	TCAGTTCAGC			2920

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

-100-

(A) LENGTH: 1678 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GGTAAGGAAG TTATATATAT	GAGCAACTAT	ACATCTTAGA	TGTATGATAA	AGAAAAAGAT	60
AACAGTTCTT TAGAATATGT	ATATTGAAGA	GAATGCAATA	GCATGGTTTA	TATAAATTAC	120
GCATAAAAAT AAGCATATGT	AAGCATTTTG	GTTTGCTTTT	TTTAACCTGC	CACCGCAATG	180
AATGCTTTTT TTATGTTAAT	GTGCGTTATG	AAACTAAATG	CAAGAAACAT	ATTTAAAGGA	240
TTAATATCGT TCTCTCACAG	ACTCCGTTTA	CTTATTCAAG	AATATAATTT	AATTTATAGT	300
GAGCTTATTA TGAATATGAA	CAATCCATTA	GAGGKTCTTG	GGCATGTATC	CTGGCTCKGG	360
GGCCAGTTCC CCATTACACA	GAAACYGGCC	AGTTTCTTTG	TTTGCAATAA	ATGTATTACC	420
TGCAATACGG GGCTAACCAA	TATGCTTTAT	TAACCCGGGG	ATAATTACCC	TGTTGCATAT	480
TGTAGTTGGG GCTAATTTAA	GTTTAGAAAA	TGAAATTAAA	TATCCTAATG	ATGTTACCTC	540
ATTAGTCGCA GAAGACTGGA	CTTCAGGTGA	TCGTAAAKGG	TYCATTGACT	GGATTGCTCC	600
TTTCGGGGAT AACGGTGCCC	TGTACAAATA	TATGGGAAAA	AAATTCCCTG	ATGAACTATT	660
CCGAGCCATC AGGGTGGATY	CCAAAACTCA	TGTTGGTAAA	GTATCAGAAT	TTCACGGAGG	720
TAAAATTGAT AAACAGTTAG	CGAATAAAAT	TTTTAAACAA	TATCACCACG	AGTTAATAAC	780
TGAAGTAAAA AACAAGACAG	ATTTCAATTT	TTCATTAACA	GGTTAAGAGG	TAATTAAATG	840
CCAACAATAA CCACTGCACA	AATTAAAAGC	ACACTACAGT	CTGCAAAGCA	ATCCGCTGCA	900
AATAAATTGC ACTCAGCAGG	ACAAAGCACG	AAAGATGCAT	TAAAAAAAGC	AGCAGAGCAA	960
ACCCGCAATG GGGGAAAACA	GACTCATTTT	TACTTATCCC	TAAAGATTAT	AAAGGACAGG	1020
GTTCAAGCCT TAATGACCTT	GTCAGGACGG	CAGATGAACT	GGGAATTGAA	GTCCAGTATG	1080
ATGAAAAGAA TGGCACGGCG	ATTACTAAAC	AGGTATTCGG	CACAGCAGAG	AAACTCATTG	1140
GCCTCACCGA ACGGGGAGTG	ACTATCTTTG	CACCACAATT	AGACAAATTA	CTGCAAAAGT	1200
ATCAAAAAGC GGGTAATAAA	TTAGGCGGCA	GTGCTGAAAA	TATAGGTGAT	AACTTAGGAA	1260
AGGCAGGCAG TGTACTGTCA	ACGTTTCAAA	ATTTTCTGGG	TACTGCACTT	TCCTCAATGA	1320
AAATAGACGA ACTGATAAAG	AAACAAAAT	CTGGTAGCAA	TGTCAGTTCT	TCTGAACTGG	1380
CAAAAGCGAG TATTGAGCTA	ATCAACCAAC	TCGTGGACAC	AGCTGCCAGC	ATTAATAATA	1440
ATGTTAACTC ATTTTCTCAA	CAACTCAATA	AGCTGGGAAG	TGTATTATCC	AATACAAAGC	1500
ACCTGAACGG TGTTGGTAAT	AAGTTACAGA	ATTTACCTAA	CCTTGGATAA	TATCGGTGCA	15€0
GGGTTAGATA CTGTATCGGG	KATTTTATCT	GCGRTTTCAG	CAAGCTTCAT	TCTGAGSCAT	1620

-101-

GCAGATGCAG ATACCGGRAC TAAAGCTGCC AGCAGGTGTT GGATTNACCA ACGGAANT 1678

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2676 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

60	AAAGTTATAT	AAGAACTAAC	TACTATGAAA	ACAACAAAGT	TTGGAATCTG	AAGGATTACT
120	AATTTCTGAT	CAAATAGGTT	CAATCTAAAG	GAAAGATGTG	AAAATGCTTT	AATGACGCTA
180	ATCAACTAAT	ATGAATTCCA	AACATTTCTT	TGAACTAAAA	AACATAAGAG	AATAAGANAA
240	AAGTAAAATT	GAAATCTAGA	GATGTARAAA	GTATATATTG	AAGATACTGC	CTCAATGGCA
300	AGATTGCAAT	CTAACCGACC	AATAAGAAAA	AGTGTAATGA	CAAACGAATG	GAGAATACTT
360	AAGCAATCGA	CAAGTAACTG	ATCATCGGCT	CTGAAAATTT	AGTACCACTT	AATTAGTGAT
420	TACTACTTGG	GCAGAGTTAA	AGCAAATAAC	GAGACCAACA	GAACATTTAC	AACTGAACTT
480	TTAGAAGTGC	ATTAGGGCAA	TAATGGTAAT	ATCATGNATT	TCTGTAGTAC	CATGGCTCTT
540	TATACCAAAA	CTTGATATTA	AAATCCTAAG	GGGCTGACAG	TTAAAAGCAT	GCTAAGGGAA
600	CATTGACAAG	ACCTTTACAC	TTATTTAAAA	ACTTAGATGG	AGTTTTGATC	AATCAGAACT
660	TTATCAGAGA	ATTTTAGAAT	TGGAACTGCC	CCAATATAAC	CGCTCTMAAA	ACGTTTAAGT
720	CAAAGTTTGT	TTCACTACCT	AATTGAATTA	AGAAAGAAGG	GATCGTCTTG	TGTATTCGAT
780	ATCTAATTGA	GTCTTTATAA	CATTTACCCT	ACACATCAAC	ATTGTAACTT	TAATCAAGAA
840	TTGATGCKAC	AGACTTATAC	TGGAGAAAA	GGAAAACAAC	TACTGGCTTG	TAACGCAATA
900	ATCGAGATAT	TCAACTAGAG	TCCCGGTGTT	GTGATACTGG	TTTGTTATTG	TGAAACAGGA
960	TATTCATTTC	GGAATGGGAT	AGGAGGGCGT	CACGAAAAAC	ATGGGATTTA	AATATTTGAT
1020	CTCCTGAACA	GATGATTACA	TATAAGATTG	ATGGATTTAC	TTATCTCGAG	CAAAGAGTGT
1080	AAATAAATAT	GAATAGCGGA	AGAAACAAGT	AGCCATCAGA	TTTATTATTG	GGGTGCTTTC
1140	TTTTTACATT	CGTTCGCCGT	CTGAAGACTG	CATAAACTTT	TACTGATTTN	TGACAAGCTC
1200	TTCCCTACAG	TAGTGATACT	TTGGAGCTGG	AATATGTCTT	TGTAGATGAC	CTGTAGTTGC
1260	ATAACAGCAT	TACACCAATA	ACGATGATCC	GTTGATCCCG	TAATGCTTTA	ACGAAGATAT
1320	CATCCTTTTG	GGTAAAAAAC	CAAAAGCAAA	TCAACTAAAT	AAGGATAGAA	CAGCATCCCC
1380	GGATTATTAG	TGCTTGTTGC	AAGATGGTAT	GCTTTCGCCA	TCTAGCAGAA	ATTACCAAGC
1440	TTTCATTTCT	GACTCAGTCA	CTTCTCGGCT	CGGGGAAATT	TGCGAATAAG	CTAAGGAAGG
1500	TAGACCGTTT	TCAGCCTATT	ATGCCTTGAA	TCTCCCGTAA	. GCCGATTTT	TCATGTTTGA

-102-

CTTCGCCATT	TAAGGCGTTA	TCCCCAGTTT	TTAGTGAGAT	CTCTCCCACT	GACGTATCAT	1560
TTGGTCCGCC	CGAAACAGGT	TGGCCAGCGT	GAATAACATC	GCCAGTTGGT	TATCGTTTTT	1620
CAGCAACCCC	TTGTATCTGG	CTTTCACGAA	GCCGAACTGT	CGCTTGATGA	TGCGAAATGG	1680
GTGCTCCACC	CTGGCCCGGA	TGCTGGCTTT	CATGTATTCG	ATGTTGATGG	CCGTTTTGTT	1740
CTTGCGTGGA	TGCTGTTTCA	AGGTTCTTAC	CTTGCCGGGG	COCTCGGCGA	TCAGCCAGTC	1800
CACATCCACC	TCGGCCAGCT	CCTCGCGCTG	TGGCGCCCCT	TGGTAGCCGG	CATCGGCTGA	1860
GACAAATTGC	TCCTCTCCAT	GCAGCAGATT	ACCCAGCTGA	TTGAGGTCAT	GCTCGTTGGC	1920
CGCGGTGGTG	ACCAGGCTGT	GGGTCAGGCC	ACTCTTGGCA	TCGACACCAA	TGTGGGCCTT	1980
CATGCCAAAG	TGCCACTGAT	TGCCTTTCTT	GGTCTGATGC	ATCTCCGGAT	CGCGTTGCTG	2040
CTCTTTGTTC	TTGGTCGAGC	TGGGTGCCTC	AATGATGGTG	GCATCGACCA	AGGTGCCTTG	2100
AGTCATCATG	ACGCCTGCTT	CGGCCAGCCA	GCGATTGATG	GTCTTGAACA	ATTGGCGGGC	2160
CAGTTGATGC	TGCTCCAGCA	GGTGGCGGAA	ATTCATGATG	GTGGTGCGGT	CCGGCAAGGC	2220
GCTATCCAGG	GATAACCGGG	CAAACAGACG	CATGGAGGCG	ATTTCGTACA	GAGCATCTTC	2280
CATCGCGCCA	TCGCTCAGGT	TGTACCAATG	CTGCATGCAG	TGAATGCGTA	GCATGGTTTC	2340
CAGCGGATAA	GGTCGCCGGC	CATTACCAGC	CTTGGGGTAA	AACGGCTCGA	TGACTTCCAC	2400
CATGTTTTGC	CATGGCAGAA	TCTGCTCCAT	GCGGGACAAG	AAAATCTCTT	TTCTGGTCTG	2460
ACGGCGCTTA	CTGCTGAATT	CACTGTCGGC	GAAGGTAAGT	TGATGACTCA	TGATGAACCC	2520
TGTTCTATGG	CTCCAGATGA	CAAACATGAT	CTCATATCAG	GGACTTGTTC	GCACCTTCCC	2580
TAAGAGTTTT	AATGTTTGAA	GAAAGAGATA	TAATTACAGC	ATCATCCCAC	AAAGCAGATA	2640
TTACAATACC	TTGACTGGGN	TATTGCCAAG	CGGATA			2676

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1485 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

AAATTTGTCC	TCCGGNTCTT	TTCCCGTGGA	TACGGGCATT	GAGACCCGAA	AGGSCCTGTA	€0
TTTGCGACCG	GAGAGGCATC	CTGGGGGCTC	AGTAAACCAG	TGGTCGCTGT	ATGGCGGGGC	120
TGTGCTTGCC	GGTGATTATA	ATGNCACTGG	SAGCCGGTGC	CGGCTGGGAC	CTGGGTGTGC	180
CGGGGACCCT	TTCCGCTGAT	ATCACGCAGT	CAGTAGCCCG	TATTGAGGGA	GAGAGAACGT	240
TTCAGGGAAA	ATCCTGGCGT	CTGAGCTACT	CCAAACGGTT	TGATAATGCG	GATGCCGACA	300
TTACGTTCGC	CGGGTATCGT	TTCTCAGAGC	GAAACTATAT	GACCATGGAG	CAGTACCTGA	360

PCT/US97/21347 WO 98/22575

-103-

ACGCCCGCTA	CCGTAATGAT	TACAGCAGTC	GGGAAAAAGA	GATGTATACC	GTTACGCTGA	420
ATAAAAACGT	GGCGGACTGG	AACACCTCTT	TTAACCTGCA	GTACAGCCGT	CAGACATACT	480
GGGACATACG	GAAAACGGAC	TATTATACGG	TGAGCGTCAA	CCGCTACTTT	AATGTTTTCG	540
GACTCCAGGG	TGTGGCGGTT	GGATTGTCAG	CCTCAAGGTC	TAAATATCTG	GGGCGTGATA	600
ACRRTTCTGC	TTACCTGCGT	ATATCCGTGC	CGCTGGGGAC	GGGGACAGCG	AGCTACAGTG	660
GCAGTATGAG	TAATGACCGT	TATGTGAATA	TGGCCGGCTA	CACTGACACG	TTCAATGACG	720
GTCTGGACAG	CTACAGCCTG	AACGCCGGCC	TTAACAGTGG	CGGTGGACTG	ACATCGCAAC	780
GTCAGATTAA	TGCCTATTAC	AGTCATCGTA	GTCCGCTGGC	AAATTTGTCC	GCGAATATTG	8 4 0
CATCCCTGCA	GAAAGGATAT	ACGTCTTTCG	GCGTCAGTGC	TTCCGGTGGG	GCAACAATTA	900
CCGGAAAAGG	TGCGGCGTTA	CATGCAGGGG	GAATGTCCGG	TGGAACACGT	CTTCTTGTTG	960
ACACGGATGG	TGTGGGAGGT	GTACCGGTTG	ATGGCGGGCA	GGTGGTGACA	AATCGCTGGG	1020
GAACGGGCGT	GGTGACTGAC	ATCAGCAGTT	ATTACCGGAA	TACAACCTCT	GTTGACCTGA	1080
AGCGCTTACC	GGATGATGTG	GAAGCAACCC	GTTCTGTTGT	GGAATCGGCG	CTGACAGAAG	1140
GTGCCATTGG	TTACCGGAAA	TTCAGCGTGC	TTAAAGGGAA	ACGTCTGTTT	GCAATACTGC	1200
GTCTTGCTGA	TGGCTCTCAG	CCCCCGTTTG	GTGCCAGTGT	AACCAGTGAA	AAAGGCCGGG	1260
AACTGGGCAT	GGTGGCCGAC	GAAGGCCTTG	CCTGGCTGAG	TGGCGTGACG	CCGGGGGAAA	1320
CCCTGTCGGT	AAACTGGGAT	GGAAAAATAC	AGTGTCAGGT	AAATGTACCG	GAGACAGCAA	1380
TATCTGACCA	GCAGTTATTG	CTTCCCTGTA	CGCCTCAGAA	ATAAATGAAA	GTCCGGAATA	1440
TTAACGGCTG	ATTGAATTGC	GGTTTATGCC	ATTTTCCCGG	ACCAA		1485

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22671 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTACCAATTT	CATCGTCCGG	TACATCCTCC	AGAACATCTC	GCAATAAACT	CTCGTCTGCC	60
TCATTCCATG	CCACACCAGC	ATTTGGGAAA	CGAGGATCGA	TOTOTOTTTC	CTTCTTCTCC	120
TTCTTACTTT	GCTCTTTTCG	GGATGATACA	GATACGACAG	AACGTTCTTT	TACCGCTGTA	140
ATTGCCATAA	CTGCATTGAG	CAGAGATCTG	CGCTCCACAT	CGTTCAGCAT	TTTTCCTTCA	240
CAGATCAAAT	CATTCAGGAT	GTCAATGACT	AGATTCAGAC	TTTCTTCTGT	TAGCTTCATA	300
TTTCAGACCT	TGAAGTATGT	AGATAATCAG	CACAATTACT	AATGTGATAA	ATATCAGAAG	360
ATAATTTACA	GGTAAACCGG	AAAATACATC	TGAAGAATAA	AGGCCTCAGC	TTAACGTTTC	420

-104-

AGCCAGTTTG	TGAGCTGATT	GAGGTACGGC	GATGACATTA	ACGGGAATTA	CTCCCCTATA	480
GCTCTGAGCT	TATTTTTCAC	CCTGGCAACA	TATGGTGGCT	ACTGCGCATG	GTTTTGGAGT	54:0
AGATATCTTA	CTACTCGTAG	AATTGTGCTT	ACTGGTCAGG	CCAGCGCACA	GGCATTCCGT	600
GCAATCAATA	GAACACTGGT	TTTTTAGTCT	TCCGTTACCC	ATCAGGATGT	TAGTGCAGAT	660
TCCGGTGTAT	TCGATCAGTT	GTTCGGCGAA	TCAGCGATCG	ATCACGATGC	GATTTCGTAT	720
GTTAGGGATG	CTGGTATGAT	TACTCGCTGA	AAAATAATGT	GAAAAGGCAG	TTTTTCTTTA	780
GACATTTAGC	TCATTCATGC	TGTTGTTTTA	CGTTTTGCTG	TCGTGTGCAG	GATTATCTTT	840
TCGTTACGGG	ACGATTCATT	CCGTTTTAAT	CAGGAGCTAT	TGGCGTTGCT	CATTGGTGGG	900
ATGCCGTAAA	GTTTTACCGC	GGCGATTAAT	GATGTGAAGT	CAATCCAAAT	CAACGGAGAT	960
CTCTCATCAT	GAATCAACCA	ATACACAATG	ATTACTGGTT	ATCCCGTTTT	GAAAGTATTC	1020
TCAACAGTGC	CCTGGTGCAA	CACCGTGCCG	TCTCGTTAAT	CTGGGTGGAT	TTACGTTTCC	1080
CTGAGCATAT	GCCTGTCACC	ATCATGGATC	CCGATCCGGA	TTCAGCGGTG	ATTTCTCGTT	1140
TTTTCGAATC	CCTGAAAGCC	AAAATTCAGG	CTTACCAGCG	GAAAAAACGA	CGTACCAACA	1200
AGCGTGTGCG	TGCAACCACC	CTGCATTATT	TCTGGTGTCG	GGAGTTTGGC	AAGGAAAAAG	1260
GCAGGAAACA	TTATCACGTG	ATATTACTGC	TCAACAAAGA	TACCTGGTGC	TCGCCAGGGG	1320
ATTTCACCGT	TCCTTCTTCG	CTGGCGACGC	TGATCCAACT	GGCATGGTGT	AGCGCTCTGC	1380
ATCTTGAGCC	CTGGCAGGGT	AATGGACTGG	TTCATTTTTC	CAGGCGGACG	CYTTTCCGTA	1440
AACCGGTATC	ATCTGATGCT	CGCCCTTCTT	CCGATGATAC	GCCTTTGTCG	GGTGGATGTT	1500
CTGAAACCAG	GAAGGCTTCA	GACAAAAAGC	CGGGTGAAGC	CGCTGTTCTC	TGGATCAAGC	1560
GTGGTGATGT	GGAAGCGATG	CAGAAAGCCA	TGGAGAGAGC	CCGTTATCTC	GTGAAGTATG	1620
AGACGAAGCA	GCATGACGGT	TCTGGTCAAC	GTAATTATGG	TTGCAGCCGT	GGAGCGGGGC	1680
GTCTACTGGA	TGGCAGGTGA	ACCCTGTAAA	ACGGCATCCG	GTGCCAGAGT	ATATGTCACA	1740
GTAAGGGCGT	GGTTGATGCC	CTTAGCTCGT	TTTCTGAAAA	AGTCGTCCTG	AAGTCATGTG	1800
TCACGAACGG	TGCAATAGTG	ATCCACACCC	AACGCCTGAA	ATCAGATCCA	GGGGGTAATC	1860
TGCTCTCCTG	ATTCAGGAGA	GYTTATGGTC	ACTTTTGAGA	CAGTTATGGA	AATTAAAATC	1920
CTGCACAAGC	AGGGAATGAG	TAGCCGGGCG	ATTGCCAGAG	AACTGGGGAT	CTCCCGCAAT	1980
ACGGTTAAAC	GTTATTTGCA	GGCAAAATCT	GAGCCGCCAA	AATATACGCC	GCGACCTGCT	2040
GTTGCTTCAC	TCCTGGATGA	ATACCGGGAT	TATATTCGTC	AACGCATCGC	CGATGCTCAT	2100
CCTTACAAAA	TCCCGGCAAC	GGTAATCGCT	CGAGAGATCA	GAGACCAGGG	ATATCGTGGC	2160
GGAATGACCA	TTCTCAGGGC	ATTCATTCGT	TCTCTCTCGG	TTCCTCAGGA	GCAGGAGCCT	2220
GCCGTTCGGT	TCGAAACTGA	ACCCGGACGA	CAGATGCAGG	TTGACTGGGG	CACTATGCGT	2280
AATGGTCGCT	CACCGCTTCA	CGTGTTCGTT	GCTGTTCTCG	GATACAGCCG	AATGCTGTAC	2340

ATCGAATTCA	CTGACAATAT	GCGTTATGAC	ACGCTGGAGA	CCTGCCATCG	TAATGCGTTC	2400
CGCTTCTTTG	GTGGTGTGCC	GCGCGAAGTG	TTGTATGACA	ATATGAAAAC	TGTGGTTCTG	2460
CAACGTGACG	CATATCAGAC	CGGTCAGCAC	CGGTTCCATC	CTTCGTTGTG	GCAGTTCGGC	2520
AAGGAGATGG	GCTTCTCTCC	COGACTGTGT	CGCCCCTTCA	GGGCACAGAC	TAAAGGTAAG	2580
GTGGAACGGA	TGGTGCAGTA	CACCCGTAAC	AGTTTTTACA	TCCCACTAAT	GACTCGCCTG	2640
CGACCGATGG	GGATCACTGT	CGATGTTGAA	ACAGCCAGCC	GCCACGGTCT	GCGCTGGCTG	2700
CACGATGTCG	CTAACCAACG	AAAGCATGAA	ACAATCCAGG	CCCGTCCCTG	CGATCGCTGG	2760
CTCGAAGAGC	AGCAGTCCAT	GCTGGCACTG	CCTCCGGAGA	AAAAAGAGTA	TGACGTGCAT	2820
CCTGGTGAAA	ATCTGGTGAA	CTTCGACAAA	CACCCCCTGC	ATCATCCACT	CTCCATTTAC	2880
GACTCATTCT	GCAGAGGAGT	GGCGTGATGA	TGGAACTGCA	ACATCAACGA	CTGATGGCGC	2940
TCGCCGGGCA	GTTGCAACTG	GAAAGCCTTA	TAAGCGCAGC	GCCTGCGCTG	TCACAACAGG	3000
CAGTAGACCA	GGAATGGAGT	TATATGGACT	TCCTGGAGCA	TCTGCTTCAT	GAAGAAAAAC	3060
TGGCACGTCA	TCAACGTAAA	CAGGCGATGT	ATACCCGAAT	GGCAGCCTTC	CCGGCGGTGA	3120
AAACGTTCGA	AGAGTATGAC	TTCACATTCG	CCACCGGAGC	ACCGCAGAAG	CAACTCCAGT	3180
CGTTACGCTC	ACTCAGCTTC	ATAGAACGTA	ATGAAAATAT	CGTATTACTG	GGACCATCAG	3240
GTGTGGGGAA	AACCCATCTG	GCAATAGCGA	TGGGCTATGA	AGCAGTCCGT	GCAGGTATCA	3300
AAGTTCGCTT	CACAACAGCA	GCAGATCTGT	TACTTCAGTT	ATCTACGGCA	CAACGTCAGG	3360
GCCGTTATAA	AACGACGCTT	CAGCGTGGAG	TAATGGCCCC	CCGCCTGCTC	ATCATTGATG	3420
AAATAGGCTA	. TCTGCCGTTC	AGTCAGGAAG	AAGCAAAACT	GTTCTTCCAG	GTCATTGCTA	3480
AACGTTACGA	AAAGAGCGCA	ATGATCCTGA	CATCCAATCT	GCCGTTCGGG	CAGTGGGATC	3540
AAACGTTCGC	CGGTGATGCA	GCCCTGACCT	CAGCGATGCT	GGACCGTATC	TTACACCACT	3600
CACATGTCGT	TCAAATCAAA	GGAGAAAGCT	ATCGACTCAG	ACAGAAACGA	AAGGCCGGGG	3660
TTATAGCAGA	A AGCTAATCCT	GAGTAAAACG	GTGGATCAAT	ATTGGGCCGT	TGGTGGAGAT	3720
ATAAGTGGAT	CACTTTTCAT	CCGTCGTTGA	CATCATGCAA	TGTTTCCTGG	TTTTCATGCA	3780
TCCATCATT	GTCGCTGCGA	TGCCAGACTT	CTGGATGCAC	ACATGTTGTT	TTACTTTTGT	3840
CAGCATCATA	A AATGCGCCGG	GACTGGTGAA	TGGAGATAAG	CCATTTTATT	ATCGACGTCA	3900
GCGAACATAG	C TCACCATGCC	GGTATGTTCC	TGAACTGAAC	AATAAGTTTT	GCGCTGATTA	3960
CAGTATGTG	A AGGAGGTCCC	TTACAATGAA	TTCCGCTTAT	ATGCAATCCT	TGCAGACATC	4020
CCACCACTT	C CCAGCTGATI	TAACCTACAG	ATTATTTCCI	AGTGAGCTTG	CATATCTCAT	4680
TGACGACTT	n tatgaaagta	A CCCAACTICO	CGCTGGAGCTC	ATTTTTAATA	CTGTACTGGC	4140
AACGCTCTC	A CTCTCCTGT	C AGTCACTGGT	TGACGTTGTI	CATCCTCACA	CCAACATGCC	4200
GGAACCCTG	C TCACTTTATO	TGTTGGCAAT	r ogdagagdua	A GGCGCGGGAA	AAACAACGAT	4260

-106-

AAACAGACTG	GTGATGAACC	CCTGTTACGA	ATTTGCCGAT	CGACTCATTC	AACAATACGA	4320
AGAGAGAAAC	AAAGATTATA	AGACTGAACT	ACAGATCTGG	AATACCCGGC	AGAAAGCGCT	4380
TGCTGCCAAT	TTAAGAAAGG	CTGTTAACCG	GGGGTATCCG	GGGGAACAGG	AAGAAGAGGC	4440
GCTGCGTAAT	CACGAAAGAA	ATAAACCGAC	ACGTCCGGTT	CGACCGAATT	TTATCTATGA	4500
AGATGTTTCG	CTTAAAGCGC	TTGTGGAAGG	GCTCAATGAA	CATCCTGAGG	CAGGGGTTAT	4560
TTCTGACGAG	GCGGTCACTT	TTTTCAGAAG	CTATCTGAAA	AATTATCCGG	GCCTGTTGAA	4620
TAAAGCATGG	AGTGGACAAC	CGTTTGATTT	TGGACGGGCT	GACGAGAAAT	ACCATATCAC	4680
GCCACGTCTG	ACATTTTCGT	TAATGTCCCA	GCCGGATGTC	TTTACGAATT	AATAAATATA	4740
AAATGACGTA	CTGGCGTGGG	GAAGCGGATT	TCTTTCCCGG	TTTCTGTTCA	GTCAGACCGG	4800
AAGTCCTTCC	CGGGTACGGG	ATTATACGAG	AGGCGAGTTC	AGAACAAAAC	CAACCCTGGA	4860
GAAGTTTCAT	AAAAAGATTA	ACGGATTTCT	GTTAAGCCAT	AACATTAATT	CCCCGGGTAT	4920
GAGCACCGAA	AGGAAAACAT	TAAAACTTGC	AAAGAAAGCG	TTGGGGGAGT	GGCAGGAAAA	4980
CCAGATTAAG	ATTGAAAGAA	AAGCGCTTGC	AGGAGGGGAG	TGGGAACACA	TCAGAGATAT	5040
TGTTCTGAAA	GCAGGTTCTA	ATATACTGAG	GATAGCTGGA	ATATTCACCT	GCTATTGCTA	5100
TAAAGATGCT	GAGGAAATTG	AATCAATTGC	GCTTTTTAAA	GCTATGCATC	TCATGGGCTG	5160
GTATCTGGAG	GAGGCGAGCA	CAATATTTTA	TCCCATGTCT	GCACGATGCC	AGTTTGAACA	5220
GGATGCCTGT	GAACTGTATG	CATGGATTAT	GACCCGAATA	AGGCAGAATA	ATTGGCGTGC	5280
TATCAGGAAA	ACAGACATTG	AAAGATATGG	TCCCAATCGT	CTGAGAAGAG	CAGAAAAACT	5340
TACACCTGTA	CTCAATCAGT	TAATCGYTCA	GAATTATTTC	CGTATCATCM	AAGATGCGAT	5400
CGCATCAGGC	ACTTTATGTT	TCTGCTCTTG	ATAATAATGG	TTACATCCTT	CCTTTCGGCG	5460
CAATGTCTTA	CGAACCGTTT	GATATTGTTC	CACCCCAGTA	TAACCATAAT	GCGAAAACAT	5520
ATTCCGTTGT	TATTCCACCG	GCATTAATTC	AGTCATTTAC	ACCTGATTCC	TCAGCTTACA	5580
CCTTATTTTA	AAACAATTTT	GTGAGTAGAA	AACGAAAATC	ATAATCCTTC	GAATGAAGGT	5640
TAATGATAAG	GTGTGTTGCA	TATCCTGCAC	CTGTGCAAAT	ATTCACCAAT	CATTGGGTGT	5700
GAATGAAAAT	TTCTCTGAAA	AAATCGCTAT	GGTAGCAACA	GTAGCAGCAC	ATACACTACA	5760
TCTGTGATTT	GGTTTTGTTT	TCATAATGAC	CTGCTGTCAG	AGCTGATTGA	ATGCTGGGAT	5820
GTGCGCACTG	GTGGAAGAGT	GGTTTTCGTT	TCAGATATAA	CGAAAGGTAA	TCGAAAGATT	5880
GTTTTAAACA	TGGATTAAAG	CTAATAATTA	ACCATATTGT	GTGAGTTTTT	ATATATAAGT	5940
TTGTTTGATT	CTTGCCGTGA	TGAGTGCTGG	GGTATATGAC	GATGTCGCTC	TCTTTCTGAA	6000
TAACAAATTA	TTATTCGTCT	GTTACTGATA	AGGGATGCGA	TTCATGTTTT	AATAGAGGGT	6060
TGAAGAAAAT	TAATTTGATA	TTTTTTTGTA	AGGGAATGGA	ACTGTCCGGA	ATATGTTCAG	6120
AACGGCGGAT	TTCTCATTTC	CATTCATTAA	ACATGGATAA	TTTTAATTTA	GGTTTATTAC	6180

PCT/US97/21347

TATTATTATA	CTCACTCCCT	TTTTCATACA	ATCTCTATTG	TTATTTACTT	CCTGTCTTTA	6240
CTCACTCTCT	ATCTTTACGA	TTATATTCAC	TCTATCGTTA	CACATTCCAT	TAGTATTACT	6300
CTTGTTATCG	TATTCATTCC	ATCCCTCAAT	CATATTTACT	GTAACTCATA	TGATGTTCAG	6360
GTAAGTTATT	CTCTACCATT	CTACTGATGA	TATCCATCTG	TTCTCATTTT	CAGTGAAACA	6420
GCAATTGATT	TTAATCTTAT	CCATCATGAA	CTGTATTTGC	TTAACAATGA	TTGTTTATCT	6480
GAAGTGTTTT	AACTATTCTG	GTTGGAAACA	ATTTCTCTGT	CATCACAGAT	TAACTGAATG	6540
TTTACTCTTT	GATAAGGTAT	CCATGATTCC	GTCATGTTTA	ACAGCGCAGG	ATAAACAACA	6600
GAATTAACAG	AGTGAATTTC	TGATTATATT	TGTTGCCGGT	TGTATTGTTT	AAGGTAC TG G	6660
GTGAAAATTA	TTCATCCATG	GTATGTTGTC	TTATGCTATC	GTGTGTCGTT	AACGTTCATA	6720
TCCTGGAGAA	CAGATTGAAT	GAGCGCATAT	AAGTTTATTG	CATTGGCCTT	GTACACGGTT	6780
TTTACAACCA	CTGAGAGCAA	GTTTGTAGTT	TATGATGTGA	TTGGTCGCAA	TATGTTTCTT	6840
AACCTTCTGG	TCGTGGTGTT	TTATCGCGTA	TTTTGCAGTA	TTTCGTGATG	TTTTATTGAG	6900
TCTGTATTTT	CTTTACTCCT	CGTTTATCTC	ATCTCTTTAG	CTAATACCAT	CAGATAATCC	6960
ATTTCTTTCT	GCATAATGCT	GCGTATCGTT	AATAACCCGT	CGTATCCATT	CTGCTACAGC	7020
ATGCCTGATA	AATACCATCT	GTAAGTTATT	ACCGTTTTAG	ATCTGATTAT	GAGCGAAAGC	7080
ATTAATTCGT	TCACAGAGCT	TAAAACATCA	TTAACTTTCA	GGAGTCATCA	ACATGCCTAA	7140
ATCTTACACA	CCAAACTGGT	TTTTTACCGC	TTTACTTGAC	AATCACATCA	ATCAAATGAT	7200
GGCACGCTAT	TCCTGCCTGC	GGGCCTTACG	CATGGATTTC	TTCTACAGGA	AAGATACGCC	7260
CGATTTCTTA	CAACCTGATC	ATCGCTGGCT	TGAATTGCAG	TTGCGTATGA	TGCTGGAGCA	7320
GGTGGAACAA	TTTGAAAATA	TCGTTGGCTT	CTTCTGGGTG	ATTGAATGGA	CGGCTGATCA	7380
TGGTTTTCAT	GCGCATGCGG	TTTTCTGGAT	CGATCGTCAG	AGGGTTAAAA	AAATATATCC	7440
CTTTGCGGAG	CGGATTACGG	AATGCTGGCG	GTCTATTACG	CATAACAGCG	GTTCGGCACA	7500
CCGCTGCACA	TATCAGCCGC	ATTATACATA	CAACATCAAC	ATTCCTGTGC	GCCACAACGA	7560
TCCTGAAAGC	ATCGATAATA	TTCGCGGTGC	CCTGCATTAT	CTGGCGAAAG	AAGAGCAAAA	7620
AGACGGGCTG	TGTGCTTACG	GCTGCAATGA	AGTTCCTGAA	CGTCCTGCTG	CAGGGCGTCC	7680
TCGTAAGCCT	CACTTCTGAA	GCTTAAGGCC	TGAGCCTTCG	CTCCTGGAAA	CACTCCGTCG	7740
GTAAAAACTT	ACCGCCTTGA	TTAATGATGT	GAACTGAAGT	CAACGGAGAT	CATTCATCCT	7800
GAACCTGCAT	CCGGTGTTTT	GTTCCTTGTC	TTCCCGTTCT	GCTTCGGTTC	TTCACTTATT	7860
CCATCAATCT	CATTCCGCAA	. GCCATAACAC	GTCAGCTCAT	TCACGGGCAG	GACGCATTGT	7920
GGGCTGCGCA	TAACGGAACA	TATCTTATGA	ATGCTATTCC	TTATTTCGAC	TATAGCCTGG	7980
CACCCTTCTG	GCCATCTTAT	CAGAACAAAG	TCATCGGCGT	CCTTGAGCGT	GCGCTGCGTG	8040
AGCAGTCCGG	CTCACGGATA	CGGCGGATCC	TGCTTCGTCT	GCCGTGGGAA	CATGACAACG	8100

-108-

CCTTCAGCAG	CAGAAAGATU	1661:CGG1A	IGGACITIAI	CGMMACCGTC	AGTGUSCTGA	8160
TGAATGCGAA	ACCCGGACGC	GACCTTTGCT	GGCTCCTGAC	COGTCATCOG	GAAAAGCCGG	8220
AATACCACGT	GGTGCTGTGC	GTCAGACAGG	AGTATTTCGA	CGGCCCCGAA	CTGGATCGGT	8280
TGATACTGGA	TGCCTGGAGT	AATGTGCTGG	GTTTCGCGTC	ACCAGGTGAA	GCAAAGCCGT	8340
ACCAGAAGCA	GATCACCCGG	GATGTGGTAC	TGGATCGCCG	GTCACCGGAC	TGCGAAGCCC	8400
TGTTTAAGGA	CCTTATCTGG	GCGTTCAGTG	ATTTCGCCCG	CGATCGCCGT	GGAGTGTGCG	8460
ATCCGGAAGC	CCGTTGCCTT	GCCGGCAATC	CCGGTTGGCA	GTGCTGAAAG	CAGCACGCCA	8520
TCCCATCCCC	CGTATTACCC	CATTCTTCAT	AAATCTCACT	GAGGACATTC	TGACCATGTT	8580
GACCACAACA	AGCCACGACA	GCGTATTGCT	GCGTGCCGAC	GATCCCCTGA	TCGACATGAA	8640
CTACATCACC	AGTTTCACCG	GCATGACCGA	TAAATGGTTT	TACAGGCTGA	TCAGTGAAGG	8700
GCATTTTCCT	AAACCCATCA	AACTGGGGCG	CAGCAGCCGC	TGGTACAAAA	GTGAAGTGGA	8760
GCAGTGGATG	CAACAACGAA	TTGAGGAATC	ACGAGGAGCA	GCAGCATGAA	ACGTGTTGTG	8820
ATGCCAGTAC	GTTGGCAATG	TGCAAAATGC	CAGCGCTGGT	ATTGTGGAAA	TCAGCCCTGT	8880
CCCTGGTGCT	GGCGACATTC	CCGCTTATCT	TTCCGCTGAC	ACCCTCCGGT	CAGCCAACTG	8940
TTAGTCATCA	TTTCCTGACT	GATTCGTCAT	TCCATTCTTA	TTGATTATAA	CTGGCATTAC	9000
ACCGGTGCTG	GCGTGCTTTC	CTGCGTGTCT	GCACCGGTTT	GACAAAATTC	AACAGGGTTT	9060
GAAAAGGAAC	ATTTCGTGCA	AATAACCGAA	GCCTTAATTT	CAGAGCCGGG	AGACATCCGG	9120
CGTTTTATTC	AACATGCTGT	TGACCACTGG	CCGCGTCTGC	TGGCAGTCCA	CTTCATACTC	9180
CATTCGACAG	AAGGAAACAT	CTACGGGCAA	CAGATTCATG	CATTCTGCAC	TTCCTTTTAT	9240
CGACAACTGC	ATGAACGTAT	TACTGAGAGC	AATCACACTG	CCAGTCCATC	ATCGTCGGTG	9300
GTATTACGCT	GGTTGCGGGA	ACAACATGGA	GGAGCAACAA	TTCGATGCCT	GTTGCTGCTC	9360
AGCCAGACGA	GTATTTGTCA	CCCGCGAGCC	AGTGTCACAG	TTGATGAACA	ATGTTCGCAA	9420
GTGGTGGATT	TACTGCAACA	TAGCTGGCAG	GTGATAAGTG	CTGGCGGACA	ATGCCGGGTG	9480
GAAAGGTGTT	TTCGGGTTGC	CCGGGGTGAT	ACATCCGGTC	AGTATGTTGC	GTTAAAAACA	9540
GTCGCATTGT	CTCTGGGGTT	ACCGGTTGTG	ACCGCCATTA	CCCATCGTCC	GGTACAGCGC	9600
TGTACATTGA	TTACAGCTCA	GTGAATCAGC	GCTTTCTGGC	TTTTCGTCGG	TCATTCTGTC	9660
AACGCCACGA	TGTTTGACCG	TTATGGGGAT	GCGGACGATT	CCCTGCACAG	CGTTGTTTCA	9720
CGGTGGTGGA	TGACGCAACA	CCGCTGTTAA	AAACAGTCGT	TCAGTCCTTT	GTGTTACCGG	9780
TTGTGACAAC	AATCAGTTGG	TAATGGACGT	GTGAACCATC	TGCGCTTCCG	TTGATTTTTA	9840
TGGACTGATA	AAGTTTTGCC	AGCTGAATCT	TTATACGGAA	TGCTCTTCAG	TATGCGTACA	9900
CGAATTGACT	ATCTGGCGGA	TAAATACTCT	TTTACCGAAC	GGAATGAATC	TCCACGCCTT	9960
CGCCGGCAGT	GGCAGGATGT	TCTGGAGGAG	TGTCGGCTGA	CAGAGGCCGG	ACCAGAAGAA	10020

-109-

CGGCTGCGTA	TTGCCCTGCT	GAATGTGGAT	TACGTCACCA	GTTTTGAACT	GCCTTTTCGC	10080
TTGTTGCTTA	CTCGTACACC	ACAACTGATT	GCCGCGCTTC	GGGAAGAATG	GGGCCTCAGC	10140
CAGAAAAATG	TGGTGTTCAA	CGATAAACGG	TTTGGCTGCG	TGTACAGCCT	GAAGGCCAGT	10200
CTTTCTGGTG	TACCGGATAC	ATTCCGGTAT	CATCTGTCTC	ATCGTATTCG	CCGGATGGTT	10260
GGGAATGAAA	ATACATCATC	GCCATATCAG	CAGATTGCCC	GGGAAGTGAA	AGTGCCCCGT	10320
GAACGGCTGA	AGTATGCGCT	GGAAGCCGGT	TTACTGGTGA	CTGCACTGGA	CGGGCTGTTC	10380
TGGTCTGGTA	GTCAGCGCAT	TGCGGCTGAT	ATCCTGAGAC	TGAGAAAGAG	CGGAATGCCG	10440
GTGGTGACAA	CGTCCGTGGA	AGCGAGCGAT	AACCTGACGG	GAACAACCCG	CAAAATACCG	10500
GCATACCATC	TCTGACATTG	CGATGAAGGG	CAGATTTCAC	CTTGACAGGG	GCAGAGTGCC	10560
GCTTTTTATA	CTTTATTCCC	GTGTCTGAAA	AAAATG T GCA	AAGGAAACGG	GAATGGCAAG	10620
GTCCGATTAC	GATTTTATCA	ATCTGTCTCT	GGGACATGAA	CTGAATGAGT	GGCTGGCAGA	10680
GAGAGGTTAT	GCCGGACAGG	CGGATAACCG	GAACCGACTG	GCAGAGGTGG	TTACCCGCAA	10740
ATTGCGGGAC	AGTTTTTATG	CGGACGTCTC	CTGGGATGCG	CTGAATGTGG	CATACAGTGA	10800
ACACCCTGAG	TGGTTTTCAG	AGCTTGCCTC	CGGGGATGAG	GATTAACAGG	CAAATTATGC	10860
TGCTATCGGG	CAGAGTGATT	ACCTGCAGGG	ATTTCCATTT	ATAAGAATAC	GCCGCTTCGG	10920
GAAAGCTCCG	GTTCTCCGGA	GAGTTACGAT	TATTTTTACT	CAAATTCACA	ACACCTGAAC	10980
TGGAACTTGC	GTTGTGTCCC	GGATTGTTAC	TCCGCAGAAG	CATCCTTTTT	ACCATACGGA	11040
TGTTTGTTT	CCATTTCCCC	TCCGAAAAAT	ACAACTCCGA	TCACATTTCT	GATATTTTCC	11100
CCGGATTTTA	CATAACAGGA	TTGTTTCTGT	ATGTTTTTA	TCTGGTGTAA	ATTICAGCAC	11160
TGACATTCCG	CTTACGTTAA	TTTACACTGG	ATACCCCACG	AGGAGAATAT	GCAGCACCGG	11220
CAGGATAACT	TACTGGCGAA	CAGAAATTTG	TTGCCTGGTA	TGG TTT CCGG	TCAGTACGCA	11280
TTCAGGATCC	GTACCTTATC	TCAGGTGGTA	. CGCTATTTT	CCCTCCTCCC	CTGCCTTTGC	11340
ATTCTTTCAT	TTTCGTCTCC	GGCAGCCATC	CTGTCTCCGG	GTGACCGCAG	TGCAATTCAG	11400
CAGCAACAGO	CAGCAGTTGTT	GGATGAAAAC	CAGCGCCAGC	GTGATGCGCT	GGAGCGCAGT	11460
GCGCCGCTGA	CCATCACGCC	GTCTCCGGAA	ACGTCTGCCG	GTACTGAAGG	TCCCTGCTTT	11520
ACGGTGTCAC	GCATTGTTGT	CAGTGGGGCC	ACCCGACTGA	CGTCTGCAGA	AACCGACAGA	11580
CTGGTGGCAG	CGTGGGTGAA	TCAGTGTCTC	S AATATCACGG	GACTGACCGC	GGTCACGGAT	11640
GCCGTGACG	G ACGGCTATA	ACGCCGGGGA	A TATATCACCA	GCCGGGCCT1	TCTGACAGAG	11700
CAGGACCTT	r caggggggg	r ACTGCACATA	A ACGGTCATGG	AAGGCAGGCI	GCAGCAAATC	11760
CGGGCGGAA	G GCGCTGACC	TCCTGCCCG	o accotgaaga	A TGGTTTTCCC	GGGAATGGAG	11820
GGGAAGGTT	C TGAACTGCG	G GATATTGAG	C AGGGGATGGA	A GCAGATTAAT	CGTCTGCGTA	11880
CGGAGCCGG'	r acagattga	A ATATCGCCC	G GTGACCGTG	A GGGATGGTC	G GTGGTGACAC	11940

TGACGGCATT GCCGGAATGG	CCTGTCACAG	GGAGCGTGGG	CATOGACAAC	AGCGGGCAGA	12000
AGAATACCGG TACGGGGCAG	TTALATGGTG	TCCTTTCCTT	TAATAATCCT	CTGGGGCTGG	12060
CTGACAACTG GTTTGTCAGC	GGGGGACGGA	GCAGTGACTT	TTCGGTGTCA	CATGATGCGA	12120
GGAATTTTGC CGCCGGTGTC	AGTCTGCCGT	ATGGCTATAC	CCTGGTGGAT	TACACGTATT	12180
CATGGAGTGA CTACCTCAGC	ACCATTGATA	ACCGGGGCTG	GCGGTGGCGT	TCCACGGGAG	12240
ACCTGCAGAC TCACCGGCTG	GGACTGTCGC	ATGTCCTGTT	CCGTAACGGG	GACATGAAGA	12300
CAGCACTGAC CGGAGGTCTG	CAGCACCGCA	TTATTCACAA	TTATCTGGAT	GATGTTCTGC	12360
TTCAGGGCAG CAGCCGTAAA	CTCACTTCAT	TTTCTGTCGG	GCTGAATCAC	ACACACAAGT	12420
TTCTGGGTGG TGTCGGAACA	CTGAATCCGG	TATTCACACG	GGGGATGCCC	TGGTTCGGCG	12480
CAGAAAGCGA CCACGGGAAA	AGGGGAGACC	TGCCCGTAAA	TCAGTTCCGG	AAATGGTCGG	12540
TGAGTGCCAG TTTTCAGCGC	CCCGTCACGG	ACAGGGTGTG	GTGGCTGACC	AGCGCTTATG	12600
CCCAGTGGTC ACCGGACCGT	CTTCATGGTG	TGGAACAACT	GAGCCTCGGG	GGTGAGAGTT	12660
CAGTGCGTGG CTTTAAGGAG	CAGTATATCT	CCGGTAATAA	CGGCGGTTAT	CTGCGAAATG	12720
AGCTGTCCTG GTCTCTGTTC	TCCCTGCCAT	ATGTGGGGAC	AGTCCGTGCA	GTGACTGCAC	12780
TGGACGGCGG CTGGCTGCAC	TCTGACAGAG	ATGACCCGTA	CTCGTCCGGC	ACGCTGTGGG	12840
GTGCTGCTGC CGGGCTCAGC	ACCACCAGTG	GTCATGTTTC	CGGTTCGTTC	ACTGCCGGAC	12900
TGCCTCTGGT TTACCCGGAC	TGGCTTGCCC	CTGACCATCT	CACGGTTTAC	TGGCGCGTTG	12960
CCGTCGCGTT TTAAGGGATT	ATTACCATGC	ATCAGCCTCC	CGTTCGCTTC	ACTTACCGCC	13020
TGCTGAGTTA CCTTATCAGT	ACGATTATCG	CCGGGCAGCC	GTTGTTACCG	GCTGTGGGGG	13080
CCGTCATCAC CCCACAAAAC	GGGGCTGGAA	TGGATAAAGC	GGCAAATGGT	GTGCCGGTCG	13140
TGAACATTGC CACGCCGAAC	GGGGCCGGGA	TTTCGCATAA	CCGGTTTACG	GATTACAACG	13200
TCGGGAAGGA AGGGCTGATT	CTCAATAATG	CCACCGGTAA	GCTTAATCCG	ACGCAGCTTG	13260
GTGGACTGAT ACAGAATAAC	CCGAACCTGA	AAGCGGGCGG	GGAAGCGAAG	GGTATCATCA	13320
ACGAAGTGAC CGGCGGTAAC	CGTTCACTGT	TGCAGGGCTA	TACGGAAGTG	GCCGGCAAAG	13380
CGGCGAATGT GATGGTTGCC	AACCCGTATG	GTATCACCTG	TGACGGCTGT	GGTTTTATCA	13440
ACACGCCGCA CGCGACGCTC	ACCACAGGCA	AACCTGTGAT	GAATGCCGAC	GGCAGCCTGC	13500
AGGCGCTGGA GGTGACTGAA	GGCAGTATCA	CCATCAATGG	CGCGGGCCTG	GACGGCACCC	13560
GGAGCGATGC CGTATCCATT	ATTGCCCGTG	CAACGGAAGT	GAATGCCGCG	CTTCATGCGA	13620
AGGATTTAAC TGTCACTGCA	GGCGCTAACC	GGATAACTGC	AGATGGTCGC	GTCAGTGCCC	13680
TGAAGGCCGA AGGTGATGTG	CCGAAAGTTG	CCGTTGATAC	CGGCGCGCTC	GGTGGAATGT	13740
ACGCCAGGCG TATTCATCTG	ACCTCCACTG	AAAGTGGTGT	CGGGGTTAAT	CTGGGTAACC	13800
TTTATGCCCG CGAGGGCGAT	ATCATACTGA	GCAGTGCCGG	AAAACTGGTC	CTGAAGAACA	13860

-111-

GCCTTGCCGG	CGGCAATACC	ACCGTAACCG	GAACGGATGT	CTCACTTTCA	GGGGATAACA	13920
AAGCCGGAGG	AAATCTCAGC	GTTACCGGGA	CAACGGGACT	GACACTGAAT	CAGCCCCGTC	13980
TGGTGACGGA	TAAAAATCTG	GTGCTGTCTT	CATCCGGGCA	GATTGTACAG	AACGGTGGTG	14040
AACTGACTGC	CGGACAGAAC	GCCATGCTCA	GTGCACAGCA	CCTGAACCAG	ACTTCCGGGA	14100
CCGTGAATGC	AGCTGAAAAT	GTCACCCTTA	CCACCACCAA	TGATACCACA	CTGAAAGGCC	14160
GCAGCGTTGC	CGGGAAAACA	CTCACTGTCA	GTTCCGGCAG	CCTGAACAAC	GGTGGGACAC	14220
TGGTTGCCGG	GCGCGATGCC	ACGGTGAAAA	CCGGGACATT	CAGTAATACC	GGTACCGTCC	14280
AGGGGAATGG	CCTGAAAGTT	ACCGCCACTG	ACCTGACCAG	CACCGGCAGT	ATTAAAAGTG	14340
GCAGCACACT	CGATATCAGC	GCCCGCAATG	CCACACTGTC	CGGTGATGCC	GGTGCAAAAG	14400
ACAGTGCCCG	CGTTACCGTC	AGCGGTACAC	TCGAAAACCG	CGGCAGACTT	GTCAGCGATG	14460
ACGTGCTGAC	GCTCAGTGCC	ACGCAGATAA	ACAACAGCGG	TACCCTCTCC	GGGGCAAAGG	14520
AACTTGTGGC	TTCTGCAGAC	ACACTGACCA	CCACAGAAAA	ATCGGTCACA	AACAGTGACG	14580
GTAACCTCAT	GCTGGACAGC	GCGTCTTCCA	CACTGGCGGG	TGAAACCAGT	GCGGGTGGCA	14640
CGGTGTCTGT	AAAAGGCAAC	AGTCTGAAGA	CCACGACCAC	TGCGCAGACG	CAGGGCAACA	14700
GTGTCAGCGT	GGATGTGCAG	AACGCACAGC	TTGACGGAAC	ACAGGCTGCC	AGAGACATCC	14760
TTACCCTGAA	CGCCAGTGAA	AAGCTCACCC	ACAGCGGGAA	AAGCAGTGCC	CCGTCGCTCA	14820
GCCTCAGTGC	GCCGGAACTG	ACCAGCAGCG	GCGTACTTGT	TGGTTCCGCC	CTGAATACAC	14880
AGTCACAGAC	CCTGACCAAC	AGCGGTCTGT	TGCAGGGGGA	GGCCTCACTC	ACCGTTAACA	14940
CACAGAGGCT	TGATAATCAG	CAGAACGGCA	CGCTGTACAG	TGCTGCAGAC	CTGACGCTGG	15000
ATATACCGGA	CATCCGCAAC	AGCGGGCTTA	TCACCGGTGA	TAATGGTTTA	ATGTTAAATG	15060
CTGTCTCCCT	CAGCAATCCG	GGAAAAATCA	TCGCTGACAC	GCTGAGCGTC	AGGGCGACCA	15120
CGCTGGATGG	TGACGGCCTG	TTGCAGGGCG	CCGGTGCACT	GGCGCTTGCT	GGCGACACCC	15180
TCTCACAGGG	TAGTCACGGA	CGCTGGCTGA	CGGCGGACGA	CCTCTCCCTC	CGGGGCAAAA	15240
CACTGAATAC	CGCAGGACCA	CGCAGGGACA	GAATATCACC	GTGCAGGCGG	ACAGATGGGC	15300
GAACAGTGGT	TCCGTGCTGG	CAACCGGTAA	CCTTACTGCT	TCGGCAACCG	GTCAGTTGAC	15360
CAGTACCGGC	GATATCATGA	GCCAGGGTGA	CACCACGCTG	AAAGCAGCCA	CCACGGACAA	15420
CCGGGGCAGT	CTGCTTTCGC	CCGGCACGC	CTCCCTTGAT	GGAAACTCAC	TGGATAACAG	15480
CGGCACTGT	CAGGGTGACC	ATGTCACGAT	TOGCCAGAAC	AGTGTCACCA	ACAGTGGCAC	15540
GCTCACCGG	G ATCGCCGCGC	C TGACGCTTG	CGCCCGTATC	GTATCCCCTC	AACCTGCGCT	15600
GATGAATAA	C GGAGGTTCA	TGCTGACCA	G CGGCGATCTG	ACAATCACCO	CAGGCAGTCT	15660
GGTAAACAGG	C GGGGCGATC	C AGGCGGCTG	A CAGCCTGACT	GCACGTCTGA	CGGGTGAGCT	15720
CGTCAGCAC	A GCGGGCAGC	A AAGTCACCT	C GAACGGTGAA	A ATGGCGCTCF	GTGCACTGAA	15780

TTTAAGCAAC	AGCGGACAAT	GGATTGCAAA	AAATCTGACC	CTGAAGGCGA	ACTCACTGAC	15840
CAGTGCGGGT	GACATCACCG	GTGTGGATAC	TCTCACGCTC	ACGGTGAATC	AGACGCTGAA	15900
CAATCAGGCG	AACGGAAAAC	TGCTCAGTGC	AGGTGTGCTG	ACGETGAAGG	CAGACAGTGT	15960
CACAAACGAC	GGGCAATTAC	AGGGAAATGC	CACCACCATC	ACGGCAGGAC	AACTCACAAA	16020
CGGCGGCAT	CTGCAGGGCG	AAACGCTGAC	GCTGGCCGCC	TCCGGTGGCG	TGAACAACCG	16080
TTCCGGTGGT	GTTCTGATGA	GCCGGAATGC	ACTGAATGTC	AGTACTGCGA	CCCTGAGTAA	16140
CCAGGGCACG	ATACAGGGTG	GTGGCGGGGT	TTCCCTGAAC	GCCACTGACC	GTCTGCAGAA	16200
CGACGGCAAA	ATCCTCTCCG	GCAGTAACCT	CACGCTGACG	GCGCAGGTGC	TGGCGAACAC	16260
CGGCAGCGGA	CTGGTACAGG	CTGCCACCCT	GCTGCTGGAT	GTGGTGAATA	CTGTCAACGG	16320
CGGACGCGTA	CTTGCCACCG	GCAGTGCCGA	CGTTAAAGGA	ACCACGCTGA	ATAATACCGG	16380
TACGCTTCAG	GGTGCGGACC	TGCTGGTGAA	TTACCACACA	TTCAGCAACA	GCGGTACCCT	16440
GCTGGGAACC	TCCGGGCTTG	GCGTCAAGGG	CAGTTCACTG	CTGCAAAATG	GTACAGGGCG	16500
GCTGTACAGT	GCAGGCAACC	TGCTGCTTGA	CGCTCAGGAC	TTCAGTGGTC	AGGGGCAGGT	16560
GGTGGCCACC	GGTGATGTCA	CACTGAAACT	GATTGCTGCC	CTCACGAATT	ACGGTACCCT	16620
GGCCGCAGGG	AAAACCCTTT	CCGTCACGTC	GCAAAATGCC	ATCACCAACG	GCGGTGTCAT	16680
GCAGGGTGAT	GCCATGGTGC	TCGGTGCCGG	AGAGGCATTC	ACCAACAATG	GAACGCTGAC	16740
TGCCGGTAAA	GGCAACAGTG	TTTTCAGCGC	ACAGCGTCTT	TTCCTTAACG	CACCGGGTTC	16800
ACTTCAGGCC	GGTGGCGATG	TGAGTCTGAA	CAGCCGGAGT	GATATCACCA	TCAGTGGTTT	16860
TACCGGCACG	GCAGGCAGTC	TGACAATGAA	TGTGGCCGGT	ACCCTGCTGA	ACAGTGCGCT	16920
GATTTATGCG	GGGAATAACC	TGAAGCTGTT	TACAGACCGT	CTGCATAACC	AGCATGGTGA	16980
TATCCTGGCC	GGCAACAGTC	TGTGGGTACA	GAAGGATGCT	TCCGGCGGTG	CAAACACAGA	17040
GATTATCAAT	ACTTCCGGGA	ATATTGAGAC	GCATCAGGGC	GATATTGTTG	TAAGAACCGG	17100
GCATCTTCTG	AACCAGCGGG	AGGGATTTTC	TGCCACAACA	ACAACCCGGA	CTAACCCCTC	17160
ATCCATTCAG	GGAATGGGAA	ATGCTCTGGT	TGATATTCCC	CTTTCCCTTC	TTCCTGACGG	17220
CAGCTATGGC	TATTTCACCC	GTGAAGTTGA	AAATCAGCAC	GGTACGCCCT	GCAACGGGCA	17280
CGGGGCATGC	AATATCACAA	TGGATACGCT	TTATTATTAC	GCTCCGTTTG	CTGACAGTGC	17340
CACACAGCGC	TTTCTCAGCA	GCCAGAACAT	CACAACAGTA	ACCGGTGCTG	ATAATCCGGC	17400
AGGCCGCATT	GCGTCAGGGC	GTAATCTTTC	TGCTGAGGCT	GAACGACTGG	AAAACCGGGC	17460
GTCATTTATC	CTGGCGAATG	GGGATATCGC	ACTCTCGGGC	AGAGAGTTAA	GCAATCAGAG	17520
CTGGCAGACG	GGGACAGAGA	ATGAATATCT	GGTATACCGC	TACGACCCGA	AAACGTTTTA	17580
CGGTAGCTAT	GCAACAGGCT	CTCTGGATAA	ACTGCCCCTG	CTGTCACCGG	AATTTGAAAA	17640
CAATACCATC	AGATTTTCAC	TGGATGGCCG	GGAAAAAGAT	TACACGCCCG	GTAAGACGTA	17700

-113-

TTATTCCGTT	ATTCAGGCGG	GCGGGGATGT	TAAGACCCGT	TTTACCAGCA	GTATCAATAA	17760
CGGAACAACC	ACTGCACATG	CAGGTAGTGT	CAGTCCGGTG	GTCTCTGCAC	CTGTACTGAA	17820
TACGTTAAGT	CAGCAGACCG	GCGGAGACAG	TCTGACACAG	ACAGCGCTGC	AGCAGTATGA	17880
GCCGGTGGTG	GTTGGCTCTC	CGCAATGGCA	CGATGAACTG	GCAGGTGCCC	TGAAAAATAT	17940
TGCCGGAGGT	TCGCCACTGA	CCGGTCAGAC	CGGTATCAGT	GATGACTGGC	CACTGCCTTC	18000
CGGCAACAAT	GGATACCTGG	TTCCGTCCAC	GGACCCGGAC	AGTCCGTATC	TGATTACGGT	18060
GAACCCGAAA	CTGGATGGTC	TCGGACAGGT	GGACAGCCAT	TTGTTTGCCG	GACTGTATGA	18120
GCTTCTTGGA	GCGAAACCGG	GTCAGGCGCC	ACGTGAAACG	GCTCCGTCGT	ATACCGATGA	18180
AAAACAGTTT	CTGGGCTCAT	CGTATTTTCT	TGACCGCCTC	GGGCTGAAAC	CGGAAAAAGA	18240
TTATCGTTTC	CTGGGGGATG	CGGTCTTTGA	TACCCGGTAT	GTCAGTAACG	CGGTGCTGAG	18300
CCGGACGGGT	TCACGTTATC	TCAACGGACT	GGGTTCAGAC	ACGGAACAGA	TGCGGTATCT	18360
GATGGATAAC	GCGGCCAGAC	AACAGAAAGG	ACTGGGATTA	GAGTTTGGTG	TGGCGCTGAC	18420
AGCTGAACAG	ATTGCTCAGC	TTGACGGCAG	CATGCTGTGG	TGGGAGTCAG	TCACCATCAA	18480
CGGACAGACA	GTCATGGTCC	CGAAACTGTA	TCTGTCGCCG	GAAGATATCA	CCCTGCATAA	18540
CGGCAGCGTT	ATCAGCGGGA	ACAACGTGCA	GCTTGCGGAC	GGCAATATCA	CCAACAGCGG	18600
CGGCAGCATC	AACGCACAGA	ACGACCTTTC	GCTCGACAGT	ACCGGCTATA	TCGACAACCT	18660
GAATGCAGGG	CTGATAAGCG	CGGGCGGTAG	CCTGGACCTG	AGCGCCATCG	GGGATATCAG	18720
CAATATCAGC	TCAGTCATCA	GCGGTAAAAC	CGTACAACTG	GAAAGCGTGA	GTGGCAACAT	18780
CAGCAATATC	ACCCGGCGTC	AGCAATGGAA	TGCGGGCAGT	GACAGCCGAT	ATGGTGGTGT	18840
GCATCTCAGC	GGTACGGACA	CCGGTCCGGT	TGCGACCATT	AAAGGCACTG	ATTCACTTTC	18900
ACTGGA T GCA	GGGAAAAACA	TTGATATTAC	CGGGGCAACG	GTCTCGTCCG	GTGGAGACCT	18960
TGGAATGTCT	GCGGGTAATG	ACATCAACAT	TGCCGTAAAC	CTGATAAGCG	GGAGCAAAAG	19020
TCAGTCCGGT	TTCTGGCACA	CTGATGACAA	CAGTTCATCA	TCCACCACCT	CACAGGGCAG	19080
CAGCATCAGC	GCCGGCGGTA	ACCTGGCGAT	GGCTGCAGGC	CATAATCTGG	ATGTCACAGC	19140
ATCCTCTGTT	TCTGCCGGGC	ACAGCGCCCT	GCTTTCTGCA	GGTAACGACC	TGAGTCTGAA	19200
TGCAGTCAGG	GAAAGCAAAA	ACAGTCGCAA	CGGCAGGTCA	GAAAGTCATG	AAAGCCACGC	19260
AGCTGTGTCC	ACGGTGACGG	CGGGCGATAA	CCTCCTCCTT	GTTGCCGGTC	GTGATATTGC	19320
CAGTCAGGCT	GCCGGTATGG	CTGCGGAAAA	TAACGTGGTC	ATCCGGGGCG	GACGTGATGT	19380
GAACCTGGTG	GCAGAGTCTG	CCGGCGCAGG	CGACAGCTAT	ACGTCGAAGA	AAAAGAAAGA	19440
GATTAACGAG	ACAGTCCGTC	AGCAGGGAAC	GGAAATCGCC	AGCGGTGGTG	ACACCACCGT	19500
CACCGCAGGA	. CGGGATATCA	CCGCTGTTGC	GTCATCCGTT	ACCGCAACCG	GCAATATCAG	19560
CGTGAATGCC	GGTCGTGATG	TTGCCCTGAC	CACGGCGACA	GAAAGTGACT	ATCACTATCT	19620

GGAAACGAAG	AAAAAAAGCG	GAGGTTTTCT	CAGTAAGAAA	ACCACCCACA	CCATCAGTGA	19680
GGACAGTGCC	TCCCGTGAAG	CAGGTTCCCT	GCTGTCGGGG	AACCGCGTGA	CCGTTAACGC	19740
CGGTGATAAN	CTGACGGTAG	AGGGTTCGGA	TGTGGTGGCT	GACCGGGATG	TGTCACTGGC	19800
GGCGGGTAAC	CATGTTGATG	TTCTTGCTGC	CACCAGTACA	GATACGTCCT	GGCGCTTTAA	19860
GGAAACGAAG	AAATCCGGTC	TGATGGGTAC	CGGCGGTATT	GGTTTCACCA	TTGGCAGCAG	19920
TAAGACAACG	CACGACCGCC	GCGAGGCSGG	GACAACGCAG	AGTCAGAGTG	CCAGTACCAT	19980
CGGCTCCACT	GCCGGTAATG	TCAGTATTAC	CGCGGGCAAA	CAGGCTCATA	TCAGCGGTTC	20040
GGATGTGATT	GCGAACCGGG	ATATCAGCAT	TACCGGTGAC	AGTGTGGTGG	TTGACCCGGG	20100
GCATGATCGT	CGTACTGTGG	ACGAAAAATT	TGAGCAGAAG	AAAAGCGGGC	TGACGGTTGC	20160
CCTTTCCGGC	ACGNTGGGCA	GTGCCATCAA	TAATGCGGTC	ACCAGTGCAC	AGGAGACGAA	20220
GGAGAGCAGT	GACAGCCGTC	TGAAAGCCCT	GCAGGCCACA	AAGACAGCGC	TGTCTGGTGT	20280
GCAGGCCGGA	CAGGCTGCGG	CAATGGCCAC	CGCAACCGGT	GACCCGAATG	CGACGGGAGT	20340
CAGCCTGTCG	CTTACCACCC	AGAAATCGAA	ATCACAACAA	CATTCTGAAA	GTGACACAGT	20400
ATCCGGCAGT	ACGCTGAATG	CCGGGAATAA	TCTGTCTGTT	GTCGCAACCG	GCAAAAACAG	20460
GGGAGATAAC	CGCGGAGATA	TTGTGATTGC	AGGAAGCCAG	CTTAAGGCCG	GTGGTAACAC	20520
AAGCCTGGAT	GCCGCGAATG	ATGTTCTGTT	GAGTGGCGCT	GCAAACACAC	AAAAAACAAC	20580
GGGCAGGAAC	AGCAGCAGTG	GCGGTGGCGT	GGGTGTCAGT	ATCGGTGCCG	GTGGTAACGG	20640
TGCCGGTATC	AGCGTCTTTG	CCAGCGTTAA	TGCGGCAAAA	GGCAGCGAGA	AAGGTAACGG	20700
TACTGAGTGG	ACTGAAACCA	CAACAGACAG	CGGTAAAACC	GTCACCATCA	ACAGTGGTCG	20760
GGATACGGTA	CTGAACGGTG	CTCAGGTCAA	CGGCAACAGG	ATTATCGCCG	ATGTGGGCCA	20820
CGACCTGCTG	ATAAGCAGCC	AGCAGGACAC	CAGTAAGTAC	GACAGTAAAC	AGACCAGCGT	20880
GGCTGCCGGC	GGCAGTTTTA	CCTTTGGCTC	CATGACCGGC	TCAGGTTACA	TCGCTGCCTC	20940
CCGGGATAAG	ATGAAGAGCC	GCTTTGACTC	CGTTGCTGAA	CAAACCGGGA	TGTTTTCCGG	21000
AGATGGCGGC	TTCGATATCA	CGGTCGGCAA	CCACACCCAG	CTCGATGGTG	CGGTTATCGC	21060
TTCCACGGCG	ACGGCAGATA	AAAACAGCCT	CGATACCGGG	ACGCTCGGCT	TCAGCGATAT	21120
TCACAACGAA	GCGGATTATA	AAGTCAGTCA	CAGTGGAATC	AGTCTGAGCG	GTGGTGGCAG	21180
CTTCGGGGAT	AAATTTCAGG	GTAACATGCC	GGGTGGCATG	ATATCCGCCG	GAGGTCACAG	21240
CGGACATGCG	GAAGGAACGA	CTCAGGCCGC	AGTGGCAGAT	GGCACAATCA	CCATCCGGGA	21300
CAGGGACAAT	CAGAAGCAGA	ATCTGGCGAA	CCTGAGCCGT	GACCCTGCGC	ACGCTAATGA	21360
CAGTATCAGC	CCGATATTTG	ACAAGGAGAA	AGAGCAGAGG	CGTCTGCAGA	CAGTGGGGCT	21420
TATCAGTGAC	ATTGGCAGTC	AGGTGGCGGA	TATCGCGCGG	ACGCAGGGGG	AACTGAATGC	21480
GTTGAAGCTG	CGCAGGATAA	ATATGGGCCT	GTTCCGGCGG	ATGCGACGGA	AGAACAGCGG	21540

PCT/US97/21347 WO 98/22575

-115-

CAGGCATATC	TGGCAAAACT	GCGTGATACG	CCGGAATACA	AAAAGGAACA	GGAAAAGTAT	21600
GGTACCGGCA	GCGATATGCA	GCGCGGTATC	CAGGCTGCAA	CGGCTGCACT	TCAGGGCCTG	21660
GTGGGCGCA	ATATGGCAGG	CGCGCTGGCA	GGTGCTTCAG	CGCCGGAGCT	GGCGAACATC	21720
ATCGGTCATC	ACGCGGGTAT	TGATGACAAT	ACAGCGGCAA	AAGCCATTGC	CCATGCCATT	21780
CTCGGTGGTG	TGACAGCAGC	CCTTCAGGGC	AACAGTGCGG	CAGCAGGCGC	AATTGGTGCG	21840
GGTACTGGTG	AAGTGATCGC	GTCAGCCATT	GCGAAAAGCC	TCTACCCGGG	CGTAGATCCG	21900
TCGAAACTGA	CAGAAGATCA	GAAGCAAACT	GTAAGCACGC	TGGCAACGCT	GTCAGCGGGT	21960
ATGGCCGGCG	GCATTGCCAG	TGGCGATGTG	GCTGGCGCGG	CTGCTGGAGC	TGGTGCCGGG	22020
AAGAACGTTG	TTGAGAATAA	TGCGCTGAGT	CTGGTTGCCA	GAGGCTGTGC	GGTCGCAGCA	22080
CCTTGCAGGA	CTAAAGTTGC	AGAGCAGTTG	CTAGAAATCG	GGGCGAAAGC	GGGCATGGCC	22140
GGGCTTGCCG	GGGCGGCAGT	CAAGGATATG	GCCGACAGGA	TGACCTCCGA	TGAACTGGAG	22200
CATCTGATTA	CCCTGCAAAT	GATGGGTAAT	GATGAGATCA	CTACTAAGTA	TCTCAGTTCG	22260
TTGCATGATA	AGTACGGTTC	CGGGGCTGCC	TCGAATCCGA	ATATCGGTAA	AGATCTGACC	22320
GATGCGGAAA	AAGTAGAACT	GGGCGGTTCC	GGCTCAGGAA	CCGGTACACC	ACCACCATCG	22380
GAAAATGATC	CTAAGCAGCA	AAATGAAAAA	ACTGTAGATA	AGCTTAATCA	GAAGCAAGAA	22440
AGTGCGATTA	AGAAGATCGA	TAACACTATA	AAAAATGCTC	TGAAAGATCA	TGATATTATT	22500
GGAACTCTCA	AGGATATGGA	TGGTAAGCCA	GTTCCTAAAG	AGAATGGAGG	ATATTGGGAT	22560
CATATGCAGG	AAATGCAAAA	TACGCTCAGA	GGATTAAGAA	ATCATGCGGA	TACGTTGAAA	22620
AACGTCAACA	ATCCTGAAGC	TCAGGCTGCG	TATGGCAGAG	CAACAGATGC	Т	22671

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2385 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

GGGCGACACG	GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	TCAATATTAT	TGAAGCATTT	60
ATCAGGGTTA	TTGTCTCATG	AGCGGATACA	TATTTGAATG	TATTTAGGCA	ACTGAAACCC	120
GCTGACGGAT	NANGTGTACA	GTGGCATCAG	TGGACGGMTT	ACAGCATAAG	TGCTTAAGGC	180
GCGTGACCAT	ACAGMTACGG	TCGCTGCAGA	GAACAGGGAG	AATATCATCC	GGAACACGGT	240
GGCCATAAAC	CGTAACACCA	GGGGGCTGCT	TTCCCCGGGA	GAGGTGCTGG	AGATGCATGC	300
GGACGTCTGA	ACAGTCAGCA	GGGCTGATTA	ATGAGAATCA	CGAGGAAATG	AAGCGGGAGC	360
CGTACAGTGA	GGATAAATTT	AACGCCATAG	CGGCTGTGGG	CGGGTATAGT	GCCAAGCAGA	420

-116-

CTGCTTAAAG	GCAGGTACTA	CTTTCAGTGG	CGGCTATGTT	TCCTGGAATG	TGGGTGTCAA	480
CTGGTAGTTC	TGAACCCGGG	CCTGAGTCAC	CGGGGAGGCA	GTTTTCGGTA	TGAAGTAATG	540
ATTCGCTGCC	TGTTTTTCTC	CCCGATGGCA	TAACTGACTG	TTCCCGGGTA	TTCCTGAAGA	600
TCTGAGAGGA	AGAGTGTATA	TGCTGAACTA	TCGCATAAGG	TCAGTGCAGC	TATTTATTGT	660
AAACGGTCGG	GCTGACAGGG	CGCAGGTGCG	TCTGGAATGC	GACGATGAAG	CCGTTTTTGA	720
ATGTTATCTT	CTTGCTGAAG	GGGAAGGGGA	ACTGAAAGAA	CTGAGCCTGT	CAGAGCTGGA	780
AGAGCGGGCG	CTGATGTATG	CGGCAGACAG	TTTCCGTTAT	GAATGATAAG	TCAGTTATAC	840
CGGTAATGGT	AAACGGAGCC	GGTATCCGGG	ATACAAGGGG	CAGAGAGTAT	GCTGATTATT	900
ATTATGACCC	GGGACAGATA	TCTGGAATAT	GGCCTGATGC	GTATACTGAG	CGGATATCAG	960
GTCACGACAG	GCAGAGAGCT	GTTTAATGCC	GGAAAGCAAC	GTCAGTCACT	TCCCGAAGAC	1020
AGTTATGTGA	TTCTCTGTGA	CCGTAATCTG	GAAAGGCTTA	CATACTCTAT	GTTCTGTGGG	1080
CGTCGGTTTC	TTGTCATTCC	TGTTTCCTCT	GTGAGATGCC	TGACAGATAT	CAGGCAAACC	1140
ATCCGCCGTG	GAGCGTGGCT	GTTCGGACAT	ACGGCAAGGC	CACTGACCCG	GACAGAGATG	1200
GTGGTGGTCT	TCGGGGTTGT	TTTCCATGAC	TACGGGTTTA	CCTTTCTGGC	AGACCGGCTG	1260
GGGATAACCA	TGAAGACGGT	ATGTGCGCAT	CTTTACAATG	CGATGGAGAA	AAATGGTATG	1320
CGCGGCGTCA	GTATTAAATA	TCTCTGCAAC	ACCATAGACC	GGTAAAAAGA	TGGTTTTCTG	1380
ATAAAGGCTG	TTGCGACGGG	GATTTCTGTG	CATGCTGTGT	CACGGGCATC	CCAGCTCTCC	1440
GGATAATTAA	TGTTATGTAG	TCAGGCGTGA	TAAATTTCAT	ATGGAACAGG	TATGCGTTTT	1500
ATTTGTGATA	ACAGTTAATG	AGGTGTTTCC	ATACACACTG	AAGTTACCTG	TAATATTAGC	1560
GGGGGATTTG	AATGATGTTG	CGTGTCTGCG	ACCACTCGTT	TATTCATGCA	AATAAGTGGA	1620
CTGCTGGATC	CACGGTAAGA	GTACAGCGAG	GGCCGTATTG	ACGGGGATGT	GTTATTCAGC	1680
GGGCAGTGCT	ATGCGCCACG	GAAGCAGTTC	GCTGACACGG	TTGACCGGCC	AGTCAGCTAT	1740
GACGCCAAAC	ACATGGCGAA	GGTAGTTTTC	TGGATCCTCG	TCGTTCAGTT	TGCACGTCCC	1800
GATCAGGCTG	TACAGTAGCA	CTCCCCGCTC	ACCACCATGC	TCAGAGCTGC	GTATTACCGT	1860
GAAGGAGATC	GGTGAGTAAC	CCTCTGTGTC	GGCACATTAT	AGCCGTCACA	TCGGATAACT	1920
GTTATCCTTC	TGTTCTGATG	TATTCTGGGA	GGTGATGTTT	CACTCCTGAT	AAGAGCATTA	1980
CTAATTACAG	CTGCTTTTCG	GATAACATTC	GGGCAGTTTT	CTTTAATTCT	GAAGTCTGAA	2040
AGAGATATCA	GTAATTGTAT	TGCTTTTAAA	CATTGTCAGT	ATTTATTTGT	CCAAATCGTT	2100
CACGTTTCTC	ATAATCTTCC	CGACAGTCAC	CATCACAAAA	CAATCCAGTC	TTAACAGGTT	2160
CTCCGCAGTT	ATAGCAGAAT	CCTGTTTCAG	GGAGTCTATT	CCGGATACGA	TTTTTTAGTC	2220
TGATGCTCAT	GCTGAATTGT	TCATTTTCAT	AAGCAATATC	TGCACTATCT	GCCATAAACG	2280
ATCCTCTGAG	GAGACCACAT	CTTTATAACC	CACCACCGAA	ATATTACAAA	GTAATACTCA	2340

PCT/US97/21347

-117-

TTGTATAATC TTTAACCRGG GGCAGGATAA TTGTATCCTG CCCCT	2385
(2) INFORMATION FOR SEQ ID NO: 16:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 746 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
CTTTCAGACC AGCGTTTCCT GTCAGGAGAT GAGGAAGAAA CATCAAAGTA TAAAGGCGGC	60
GATGACCATG ATACGGTATT CAGTGGCGGT ATTGCGGCCG GTTATGATTT TTATCCGCAG	120
TTCAGTATTC CGGTTCGTAC AGAACTGGAG TTTTACGCTC GTGGAAAAGC TGATTCGAAG	180
TATAACGTAG ATAAAGACAG CTGGTCAGGT GGTTACTGGC GTGATGACCT GAAGAATGAG	240
GTGTCAGTCA ACACACTAAT GCTGAATGCG TACTATGACT TCCGGAATGA CAGCGCATTC	300
ACACCATGGG TATCCGCAGG ATTGGCTACG CAGAATTCAC CAGAAAACAA CCGGTATCAG	360
TACCTGGGAT TATGAGTACG GAAGCAGTGG TCGCGAATCG TTGTCACGTT CAGGCTCTGC	420
TGACAACTTC GCATGGAGCC TTGGCGCGGG TGTCCGCTAT GACGTAACCC CGGATATCGC	480
TCTGGACCTC AGCTATCGCT ATCTTGATGC AGGTGACAGC AGTGTGAGTT ACAAGGACGA	540
GTGGGGCGAT AAATATAAGT CAGAAGTTGA TGTTAAAAGT CATGACATCA TGCTTGGTAT	600
GACTTATAAC TTCTGACGAC ACTGCTCCTG AACGATAATT GCGTATATTC TGTAATTAAG	660
ATAATTGCAT ATCKTCTGCA ATTAAF.CAGA AATACCCTGC AGTCTATTAC TGCAGGGNTG	720
TCTTTTATCT GTTTTACAGA NAATTT	746
(2) INFORMATION FOR SEQ ID NO: 17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
TCTGTTTGTC GTTTTTTCCC CGTTGTAGCG GYTCTGCTCC TGGCTTCCCT GATAGTCAGC	60
CCGCAGGCGC CAGGGCCCCA GATTCCCCCC CACAGTCCCG TTATAACTGA ACTGATGAGA	120
GTCTCCTCCC TGATAATTAC GGGAAACCGT CCCGTTGA3G TTATAATCCA GCATCAGTCC	180
GGGAATGCCG TCGTCCCAGC GTGAGGGAGG CAGCCAGGTG GCATCAGAAT ACTCAAGCCC	240
AGCTGCGGCA TATTGATGCG TAATACGCCC GCTCCGGTAT CAGGACGAAT ATCCACTCCC	300
GGCAACCCAT GAAAATCCGC ACACTGACCA TCATGCCAGT AAACAACTTT ATCCAGAGAT	360

WO 98/22575

-118-

-110-	
TCTGCTGTTA ACCCCATCAG TCTGACCATA TCTGATGTCA GACAGGCCTG C	411
(2) INFORMATION FOR SEQ ID NO: 18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 977 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
TATTATCGCG CGCGCGCTGC ACAGGGGTTA TCTACATCTG CTGCTGCTGC CGGTTTAATT	60
GCTTCTGTAG TGACATTAGC AATTAGTCCC CTCTCATTCC TGTCCATTGC CGATAAGTTT	120
AAACGTGCAA ATAAAATAGA GGAGTATTCA CAACGATTCA AAAAACTTGG ATACGATGGT	180
GACAGTTTAC TTGCTGCTTT CCACAAAGAA ACAGGAGCTA TTGATGCATC ATTAACAACG	240
ATAAGCACTG TACTGGCTTC AGTATCTTCA GGTATTAGTG CTGCKGCAAC GACATCTCTT	300
GTTGGTGCAC CGGTAAGCGC ACTGGTAGGT GCTGTTACGG GGATAATTTC AGGTATCCTT	360
GAGGCTTCAA AGCAGGCAAT GTTTGAACAT GTTGCCAGTA AAATGGCTGA TGTTATTGCT	420
GAATGGGAGA AAAAACACGG TAAAAATTAC TTTGAAAATG GATATGATGC CCGCCATGCT	480
GCATTTTTAG AAGATAACTT TAAAATATTA TCTCAGTATA ATAAAGAGTA TTCTGTTGAA	540
AGATCAGTCC TCATTACTCA ACAACATTGG GATATGCTGA TAGGTGAGTT AGCTAGTGTC	600
ACCAGAAATG GAGACAAGAC ACTCAGTGGT AAAAGTTATA TTGACTATTA TGAAGAGGGA	660
AAGCGGCTGG AAAGAAGGCC AAAAGAGTTC CAGCAACAAA TCTTTGATCC ATTAAAAGGA	720
AATATTGACC TTTCTGACAG CAAATCTTCT ACGTTATTGA AATTTGTTAC GCCATTGTTA	780
ACTCCCGGTG AGGAAATTCG TGAAAGGAGG CAGTCCGGAA AATATGAATA TATTACCGAG	840
TTATTAGTCA AGGGTGTTGA TAAATGGACG GTGAAGGGGG TTCAGGACAA GGGGTCTGTA	900
TATGATTACT CTAACCTGAT TCAGCATGCA TCAGTCGGTA ATAACCAGTA TCGGGNAATT	960
CGTATTGAGT CACACCT	977
(2) INFORMATION FOR SEQ ID NO: 19:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
TTTCTTAAGT CCGGCATTGC CACGCGTAAC CCCCACTTCA ACCGCATGAT TGAGCAGATC	60
GAAAAAGTGG CGATCAAATC CCGCGCGCCCG ATTCTGCTTA ACGGTCCAAC CGGCGCGGGC	120

-119-

AAGTCATTTC TGGCGCGACG CATCTTAGAG TTAAAACAGG CGCGGCATCA GTTTAGCGGC 180
GCKTTTGTGG AAGTGAACTG CGCCACCCTG CGCGGCGATA CCGCCATGTC GACGCTGTTT 240
GGTCATGTAA AAGGCGCGTT TACCGGGGGG CGGGAATCTC GTGAAGGTTT ATTACGCAGC 300
GCCAACGGGG AAATGTTGTT TCTTGATGAG ATTGGCGAAC TGGGCGCGAC GAACAGGCAA 360
TGCTGCTGAA ACCCATTGAA GRGGAAAACC TTTTACCCGT 400

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12368 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GTATGCGTTT TCATTAAGAT ATTOTCTGCT GTAGAGAAAC TTATAGCAAT ATAATCTGAT 60 AATATCTTTT ATGTAAAATT TAAATAGTTC ACCTGTGACA GATATATGTT TTCTGCTCAG 120 TAACTCCTGT GTATTAAGCC ATTCCCGTGA CCGAAGCACA CCCTTGTGAA AACTTTTTCT 180 TACTTGCTTT GAGGCACGGC ATTGATGTAA TATTTTTGCG TCCTCAATAA TTCTCTTTCC 240 CGTTTTATTT TTTGCAGCAT CTCTTACTCC ATAAAATATC TCCCGGTCCA GACTTTTGTC 300 ATATTTACTG ATTATACGAC AAATATTCCT GACCCGACGA TTCTCTTTAT TTCGCTTCCA 360 420 TAGCTTATAA TGATCATCGC ATAACCTTAA GGCATTTGCC TCATCAAATT CTGAAACAGG ATTACTGCAT TTTTTATTCC GACAAATACC TTTGTTTTTA GCCATACTCT TCTTCCCGTC 480 AATGGAAAAA TTTTCACACC CATATTACCT GAATGATAAA CCGGATTAGT GTGATCCGGT 540 TCAGTSAAAT CAACAGGATA CCGGTATGCC ATTCAGCAAT TCTTCCCTCT CCGCGCAAGT 600 GAAATCATAT CTGACGTTTC TTCCTGAAGA AATACGCCAG AAAATCCTTG AACATCTCCA 660 720 CGGTGTTATT CATTACGAGC CCGTGATTGG CATTATGGGT AAATCCGGCA CCGGCAAGAG CAGCCTGTGT AATGCCATTT TTCAGTCCCG TATCTGCGCC ACGCATCCCC TGAACGGCTG 780 CACCCGCCAG GCTCATCGTC TTACCCTGCA GCTCGGTGAA CGCAGAATGA CGCTGGTCGA 840 TCTGCCCGGC ATTGGTGAAA CACCGCAGCA TGATCAGGAA TACCGAGCGC TTTATCGTCA 900 960 GTTACTGCCG GAACTGGATC TGATTATCTG GATCCTGCGG AGTGATGAAC GTGCGTATGC TGCCGATATT GCCATGCATC AGTTTTTACT GAATGAGGGC GCAGATCCCT CGCGCTTTCT 1020 1080 1140 ATGCCCGTCC CGTCACCAGG AACTCTCACT GGCGACAGTA ATAGCCCGGG TGGCCACCCT GTTCCCTTCA TCATTTCCGG TACTCCCTGT AGCCGCACCT GCAGGCTGGA ACCTTCCAGC 1200 1260 GCTGGTGTCA CTGATGATCC ACGCGCTGCC ACCACAGGCA ACCAGCGCAG TTTATTCACA

-120-

TATCAGGGGG	GAAAACCGCT	CTGAACAGGC	CCGGAAACAC	GCACAACAGA	CTTTTGGTGA	1320
TGCCATCGGG	AAAAGTTTTG	ACGACGCCGT	TGCCCGGTTC	AGTTTTCCGG	CCTGGATGTT	1380
ACAGCTTCTG	CGTAAAGCCC	GGGACCGCAT	TATCCACCTG	CTGATCACAC	TGTGGGAGCG	1440
TCTGTTCTGA	CACACTCACG	CCGACAGATG	TGTCGCTGGA	TTAACGAGCA	TTCTTCTTTT	1500
TATGAAATCA	TGCTTAAAAA	TCAGATAATT	ARAAGAATAT	TTTTTCTGCT	GCATTTTATT	1560
CCTGATTATC	CGGATGCGAC	ACATCCTTTC	AACATCATGA	TGCATAATAA	CATCATGAAA	1620
TAAAAGATGT	TTTCTTACGG	AGTGCACATC	TATGTCTGAT	AATCGTTCCC	GGCATGATCG	1680
CCTGGCGGTT	CGCTTATCAC	TCATTATCAG	CCGACTGATG	GCCGGAGAAT	CTCTGTCACT	1740
AAAAACACTG	TCAGATGAAT	TTGGCGTTAC	AGAACGTACT	TTACAGCGCG	ATTTTCATCA	1800
GCGTCTGGTT	CACCTAGATT	TAGAGTACAG	AAATGGCAGG	TACAGCCTCA	GACGACAGAG	1860
CAGCCCAGGT	GCGATCCCTG	AAATGCTTTC	TTTTATACAG	AATACCGGGA	TCGCACGGAT	1920
ACTTCCGCTC	CGGAACGGAC	GACTGATAAC	CTGTCTTACC	GACAACCAGG	AGCCCTCTCC	1980
CTGCCTTATC	TGGCTACCGG	CGCCGGATAT	CACTGCAACG	TTCCCCGAGT	GTTTCTCGCA	2040
ACTCATCCTG	GCAATAAGAC	AGTGTATCCA	CATCTCTCTG	ATGACTGAGC	GATGGTATCC	2100
GTCACTGGAG	CCCTGCCGGC	TCATTTATTA	CAGCGGTAGC	TGGTATCTGA	TCGCGTTACA	2160
GAAGGGAAAA	CTGCAGGTCT	TTCCTCTGGC	AGATATCAAA	TCAGTCAGCC	TGACATCAGA	2220
ACGGTTTGAA	CGGAGAGGCC	ACATCCACAG	TCTGGTCGCT	GAAGAGCGTT	TTATCTCCGC	2280
CCTGCCACAT	TTCTCTTTCA	TCCATAAACT	TATCAACACC	TTTAACCTGT	GATCGCCGGC	2340
CTGCCAAAGC	CGTCCCGACA	GGTATGGAGA	CAATATGTTG	AACAGAAAAC	TAAATATACG	2400
GCTACGTCAT	TCCCTGAACA	GTCACTGCAT	ACCTTCCATC	ATTATCAATA	ACACCGTACG	2460
TTCATTTCAG	AGGTCAGTCA	TGAATACCAG	AGCTCTTTTT	CCCCTGCTGT	TCACTGTGGC	2520
ATCATTCTCC	GCCTCCGCCG	GCAACTGGGC	TGTCAAAAAC	GGCTGGTGTC	AGACCATGAC	2580
GGAAGATGGT	CAGGCGCTGG	TAATGCTGAA	AAATGGCACG	ATTGGTATTA	CCGGCCTGAT	2640
GCAGGGATGC	CCGAATGGTG	TACAGACGCT	CCTGGGCAGC	CGTATCAGTA	TTAACGGTAA	2700
CCTGATCCCC	ACATCACAAA	TGTGTAATCA	GCAGACGGGA	TTCAGGGCTG	TTGAGGTGGA	2760
AATCGGACAG	GCGCCGGAAA	TGGTCAAAAA	AGCCGTTCAC	TCCATAGCAG	AGCGTGATGT	2820
GTCCGTTTTA	CAGGCATTTG	GTGTACGAAT	GGAATTCACC	CGCGGTGATA	TGCTGAAGGT	2880
CTGTCCGAAA	TTTGTCACAT	CACTTGCCGG	TTTTTCCCCG	AAACAGACGA	CCACTATTAA	2940
TAAAGATTCC	GTCCTGCAGG	CTGCCCGGCA	GGCATACGCC	CGGGAATATG	ACGAGGAAAC	3000
AACAGAAACC	GCTGATTTTG	GCTCTTACGA	AGTAAAAGGC	AATAAGGTTG	AGTTTGAAGT	3060
ATTCAATCCT	GAAGACCGTG	CGTACGACAA	AGTGACCGTC	ACGGTTGGTG	CTGACGGTAA	3120
TGCCACCGGC	GCCAGCGTTG	AATTTATCGG	AAAATAGCCG	GTATGTCGGA	CTGCCACCCT	3180

GTTTTATTGC	CCGAAGGCCC	TTTCTCACGC	GAACAGGCGA	TGGCTGTCAC	AACAGCTTAC	3240
CGCAATGTGC	TTATTGAAGA	TGACCAGGGA	ACGCATTTCC	GGCTGGTTAT	CCGCAATGCC	3300
GAAGGGCAGC	TACGCTGGCG	GTGCTGGAAT	TTTGAACCTG	ATGCCGGAAA	ACAGCTAAAT	3360
TOGTATOTOG	CCAGTGAGGG	AATTCTCAGG	CAATAAACGT	CTTCATTTCA	TCCATCAGGC	3420
CGCGTCTTCT	CCGGGAGACG	CGGCCTTTTC	GTTTATACCG	CTAATTCATT	CATAAGGAGC	3480
AAAGTATGCA	ATTAGCCAGT	CGTTTTGGTC	ATGTAAATCA	GATCCGTCGG	GAGCGCCCAC	3540
TGACACGCGA	AGAACTGATG	TACCACGTCC	CGAGTATTTT	TGGAGAAGAC	CGGCACACCT	3600
CCCGCAGTGA	ACGGTATGCG	TACATTCCCA	CCATCACCGT	CCTGGAAAAT	CTGCAGCGGG	3660
AAGGCTTTCA	GCCGTKCTTC	CCCTGCCAGA	CCCGTGTGCG	CGACCAGAGC	CGCCGGGAAT	3720
ATACCAAACA	TATGCTGCGT	CTGCGGCGGG	CCGGACAGAT	AACCGGTCAG	CATGTGCCTG	3780
AAATTATTCT	GCTCAACTCC	CATGACGGTT	CATCCAGCTA	CCAGATGTTA	CCCGGATATT	3840
TTCGTGCCAT	TTGTACCAAT	GGCCTGGTCT	GCGGTCAGTC	GCTGGGAGAA	GTCCGGGTGC	3900
CACACCGGGG	AAACGTGGTG	GACAGGGTCA	TAGAAGGTGC	TTACGAAGTG	GTGGGCGTGT	3960
TTGACCTGAT	TGAGGAAAAG	CGTGATGCCA	TGCAGTCGCT	GGTCCTGCCG	CCACCGGCAC	4020
GCCAGGCGCT	GGCACAGGCG	GCGCTGACTT	ACCGTTATGG	TGATGAACAT	CAGCCCGTCA	4080
CCACTACCGA	CATTCTGACG	CCACGACGCC	GGGAGGATTA	CGGTAAGGAC	CTGTGGAGTG	4140
CTTATCAGAC	CATCCAGGAG	AATATGCTGA	AAGGCGGGAT	TTCCGGTCGC	AGTGCCAGAG	4200
GAAAACGTAT	CCATACCCGG	GCCATTCACA	GCATCGATAC	CGACATTAAG	CTCAACCGGG	4260
CGTTGTGGGT	GATGGCAGAA	ACGCTGCTGG	AGAGCCTGCG	CTGATACCGT	TTCCCTGAAA	4320
GCGCAGTCCT	GTTCACGGCT	GTCCCTTCCC	CCAGACATTC	CACCATTCAT	TTACTTTTTA	4380
TAAGGAATAA	TCTCATGACA	ACCTCTTCGC	ATAATTCCAC	CACACCTTCT	GTTTCCGTGG	4440
CCGCTGCATC	AGGGAATAAC	CAGTCTCAGT	TGGTTGCCAC	TCCCGTCCCT	GATGAACAGC	4500
GCATCAGCTT	CTGGCCGCAG	CATTTTGGCC	TCATTCCACA	GTGGGTCACC	CTGGAGCCCC	4560
GTGTCTTCG	CTGGATGGAC	CGTCTGTGCG	AAAACTACTG	CGGGGGTATC	TGGAATCTGT	4620
ACACCCTGAA	CAACGGTGGC	GCATTTATAG	CACCTGAACC	GGATGAAGAT	GATGGAGAAA	4680
CCTGGATACT	GTTCAATGCC	ATGAACGGTA	ACCGCGCTGA	AATGAGCCCG	GAAGCTGCCG	4740
GCATTGCCGG	CTGTCTGATG	ACGTACAGCC	ATCATGCCTG	TCGTACGGAG	AATTATGCCA	4800
TGACGGTCCA	A TTATTACCGO	TTGCGGGATT	ACGCCCTGCA	. GCATCCGGAA	TGCAGCGCCA	4860
TTATGCGCA	r cattgactg <i>a</i>	AAGGGGCCGG	AATAATGCAA	CAGATTTCCI	TTCTGCCCGG	4920
AGAAATGACC	G CCCGGCGAGG	C GCAGTCACAT	TCTGCGGGCC	CTGAAAACCC	TGGACCGCCA	4980
TCTTCATGA	A CCCGGTGTG	CCTTCACCTC	CACCCGTGCG	GCACGGGAAT	GGCTGATTCT	5040
GAACATGGC	G GGACTGGAGG	C GTGAAGAGTT	r ccgggtgcte	; TATCTGAATA	ACCAGAATCA	5100

-122-

GCTGATTGCC	GGTGAAACCC	TCTTCACCGG	CACCATCAAC	CGCACGGAAG	TCCATCCCCG	5160
GGAAGTGATT	AAACGCGCCC	TGTACCACAA	TGCCGCTGCC	GTGGTGCTGG	CGCACAATCA	5220
CCCGTCCGGT	GAAGTCACAC	CCAGTAAGGC	AGACCGGCTT	ATCACCGAAC	GTCTGGTACA	5280
GGCACTGGGC	CTGGTGGATA	TCCGGGTGCC	GGACCATCTG	ATAGTCGGTG	GCAGCCAGGT	5340
TTTCTCCTTT	GCGGAACACG	GTCTGCTTTA	ACCCGTCACC	GTCACAATCA	CCTTCATATC	5400
ACTTCAGTTT	CTCTTTCTCA	GCTGTTTCTT	ACTTTCACAT	TCAGGAGGAC	TATTCTCATG	5460
AAAATCATCA	CCCGTGGTGA	AGCCATGCGT	ATTCACCGTC	AGCATCCTGC	ATCCCGTCTT	5520
TTTCCGTTCT	GTACCGGTAA	ATACCGCTGG	CACGGTAGCA	CGGATACATA	TACCGGCCGT	5580
GAAGTACAGG	ATATTCCCGG	TGTGCTGGCT	GTGTTTGCTG	AACGCCGTAA	GGACAGTTTT	5640
GGCCCGTATG	TCCGGCTGAT	GAGCGTCACC	CTGAACTGAA	TCAGGACGGG	CATTCAGAAG	5700
AGCAGAATTA	TCGCCACCAC	CGGACCATTC	TTAACCAATT	TTCTGTGAGG	ATTTTATCGT	5760
GTCAGACACT	CTCCCCGGGA	CAACGCATCC	CGACGATAAC	AACGACCGCC	CCTGGTGGGG	5820
GCTACCCTGC	ACCGTGACGC	CCTGTTTTGG	GGCACGTCTG	GTGCAGGAGG	GTAACCGGTT	5880
GCATTACCTT	GCAGACCGCG	CCGGTATCAG	AGGCCGGTTC	AGCGACGCGG	ATGCGTACCA	5940
TCTGGACCAG	GCCTTTCCGC	TGCTGATGAA	ACAACTGGAA	CTCATGCTCA	CCAGCGGTRA	6000
ACTGAATCCC	CGCCATCAGC	ATACCGTCAC	GCTGTATGCA	AAAAGGCTGA	CCTGCGAANC	6060
GACACCCTCG	GCAGTTGTGG	CTACGTTTAT	ATGGCTGTTT	ATCCGACGCC	CGAAACGAAA	6120
AAGTAACTCT	CCAGAATAAC	CTTCTGCCCC	GGCCTGGTGC	TTTCACCACG	CCACTTTTCC	6180
ATTTTTCATC	TCTGCATATC	AGGAAAATCT	TCAGTATGAA	CACATTACCC	GATACACACA	6240
TACGGGAGGC	ATCGCATTGC	CAGTCTCCCG	TCACCATCTG	GCAGACACTG	CTCACCCGAC	6300
TGCTGGACCA	GCATTACGGC	CTCACACTGA	ATGACACACC	GTTCGCTGAT	GAACGTGTGA	6360
TTGAGCAGCA	TATTGAGGCA	GGCATTTCAC	TGTGTGATGC	GGTGAACTTT	CTCGTTGAAA	6420
AATACGCACT	GGTGCGTACC	GACCAGCCGG	GATTCAGCGC	CTGTACTCGT	TCTCAGTTAA	6480
TAAACAGTAT	TGATATCCTC	CGGGCCCGCC	GGGCAACCGG	CCTGATGGCC	CGCGACAATT	6540
ACAGAACGGT	AAATAACATT	ACCCTGGGTA	AGCATCCGGA	GAAACGATGA	AACTTTCCCT	6600
GATGCTGGAA	GCCGACAGAA	TTAATGTGCA	GGCACTGAAC	ATGGGGCGAA	TTGTCGTTGA	6660
CGTCGATGGT	GTTAATCTCA	CTGAACTGAT	TAACAAGGTC	GCTGAAAACG	GTTATTCACT	6720
CCGCGTGGTG	GAGGAATCCG	ACCAACAGTC	AACCTGCACA	CTACCACCGT	TTGCAACCCT	6780
TGCCGGCATA	CGCTGCAGTA	CCGCACATAT	CACGGAAAAG	GATAACGCCT	GGCTGTACTC	6840
GCTGTCACAC	CAGACCAGTG	ACTTCGGTGA	ATCAGAATGG	ATTCATTTCA	CAGGTAGCGG	6900
ATATCTGTTA	CGTACCGATG	CGTGGTCATA	TCCGGTTCTG	CGGCTTAAAC	GCCTGGGGCT	6960
CTCNNNNNCC	ምም ርርር ም ርርምር	$\Psi \subset C \Psi \Psi \Lambda \Psi \cap \Lambda \subset \Lambda$	7 CTT 7 CCCC 7	CCTTATCCCC	ጥር እ ርጥርጥር እጥ	7020

TCATCTGGAT	GCCAGCGCTG	AATGCCTGCC	GGGTTTACCC	ACTTTCAACT	GGTAACCAGG	7080
AACAACATGA	AATCATTAAC	CACGGAAACC	GCACTGGATA	TTCTGATTGC	GTGGCTGCAG	7140
GACAATATCG	ACTGCGAATC	GGGAATTATC	TTTGACAACA	ATGAGGATAA	AACGGATTCA	7200
GCAGCACTGT	TGCCCTGTAT	CGAACAGGCC	AGAGAGGATA	TCCGTACCCT	GCGCCAACTG	7260
CAGCTTCAGC	ACCAGAACCG	GTGAGTCTCA	CTCATCATCT	CACTCACCAG	ACTTCATTCC	7320
ACTSACGCCA	GCCTGAACAC	GGCTGGCGTT	TTCATTTATC	TGCAAAAAGG	AATATCGATT	7380
ATGTCTGAAA	TCACAGTCTC	CCGTCCGGAA	GTGGTCAACG	AGAATACGGA	CGTTATCTGC	7440
TCCACCTCAG	TCAGGTACAG	GTCACTGGAA	TATGATAATT	TTCCGGAAAT	CAGCGAAGCG	7500
AACATTCTGA	GCACATTTGA	ACAACTGCAC	CAGAACAAAG	ATGAAGTGTT	TGAACGGGGA	7560
GTGATCAACG	TCTTCAAAGG	GCTGAGCTGG	GATTACAAAA	CCAACTCACC	CTGTAAATTT	7620
GGCAGTAAAA	TTATCGTCAA	CAATCTGGTG	AGATGGGACC	AGTGGGGATT	TCATCTTATC	7680
AGTGGAATGC	AGGCAGATCG	CCTGGCTGAC	CTGGAAAGAA	TGTTGCATCT	GCTCAGCGGT	7740
AAACCGATCC	CCGACAACCG	AGGGAATATC	ACCATTAATC	TGGATGACCA	CATACAGTCC	7800
GTTCAGGGTA	AAGGACGCTA	TGAAGATGAG	ATGTTCATCA	TTAAATACTT	TAAGAAGGGA	7860
TCTGCACACA	TCACTTTCAA	AAGGCTGGAG	CTGATTGACA	GAATTAACGA	TATAATAGCC	7920
AGGCACTTTC	CTTCTGTGCT	CTCAGCCTGA	CCCCGAGTTT	GATTCCCTTT	CGATATCAAA	7980
AGGGACTGCG	GGTACAAAAG	AGGGTACATC	TTTCACCAAA	CCAAACAAAA	TAAACTAATA	8040
TCAACATGAT	AGAAGCATTC	TTCGATTCCG	AGTCCGGCAC	CAAATTCATA	TAAACGGACC	8100
TCCACGGAGG	TCCGTTTTTC	GTTTCAGGAC	GCCACGATTT	AAGCGTCCTG	CCGCCAAATC	8160
AATTCTACCG	AACTCAACCA	GATTCTCCCC	CACATCACCAG	CAATTTGCGG	GCATATCCCA	8220
ATTCGGGAAA	ATTTGTTTCT	GAGCTATAGC	GCTGACTGAC	GTGAAATGTC	GTGCGGCCCC	8280
GTGATGCTGT	TGAAMGTCAA	ATGACGTCAT	CAGGAGCGTA	ACGCACCCAT	AAAGCACAAC	8340
ATCGGGCAGA	A ACGCCAACTO	ATGAGATTT	CTGAATGAGA	ACAAAGAGAA	ATGTATCAGT	8400
CCGTTTGCT	C ATGCAAAGAG	TAACAATCC	A TTAAAATAGI	AAGCGCTCCG	GACAATTTTC	8 4 60
CATGGATTA	r tttctgaac <i>i</i>	A TTTTTCTTTC	GCAAAGATGA	TGAATTTTGF	TGGTAAGGAA	8520
AATTACTTC	r GGTTCTCAG	T AAAATCCTT	r cgtaatacta	TGTAATCAAC	AAGTTTATGG	8580
CTAGTAAAA	A TAACGTCTT	G CATTCACCA	A TAATATGTAA	A ATAAACCCA	CTATAGATGG	8640
EATAAAAA	G TTATGGAAT	r ATCATTGCA	r CATTCCCTT1	TCGAATGAG1	TTCTATTATG	8700
CAACAACCT	g TAGTTCGCG	T TGGCGAATG	G CTTGTTACTO	CGTCCATAA	A CCAAATTAGC	8760
CGCAATGGG	C GTCAACTTA	C CCTTGAGCC	G AGATTAATCO	G ATCTTCTGG	TTTCTTTGCT	8820
CAACACAGT	g gcgaagtac	T TAGCAGGGA	T GAACTTATCO	G ATAATGTCT	G GAAGAGAAGT	8880
ATTGTCACC	A ATCACGTTG	T GACGCAGAG	T ATCTCAGAA	C TACGTAAGT	CATTAAAAGAT	8940

-124-

AATGATGAAG	ATAGTCCTGT	CTATATCGCT	ACTGTACCAA	AGCGCGGCTA	TAAATTAATG	9000
GTGCCGGTTA	TCTGGTACAG	CGAAGAAGAG	GGAGAGGAAA	TAATGCTATC	TTCGCCTCCC	9060
CCTATACCAG	AGGCGGTTCC	TGCCACAGAT	TCTCCCTCCC	ACAGTCTTAA	CATTCAAAAC	9120
ACCACAACGC	CACCTGAACA	ATCCCCAGTT	AAAAGCAAAC	GATTCACTAC	CTTTTGGGTA	9180
TGGTTTTTTT	TCCTGTTGTC	GTTAGGTATC	TGTGTAGCAC	TGGTAGCGTT	TTCAAGTCTT	9240
GAAACACGTC	TTCCTATGAG	TAAATCGCGC	ATTTTGCTCA	ATCCACGCGA	TATTGACATT	9300
AATATGGTTA	ATAAGAGTTG	TAACAGCTGG	AGTTCTCCGT	ATCAGCTCTC	TTACGCGATA	9360
GGCGTGGGTG	ATTTGGTGGC	GACATCACTT	AACACCTTCT	CCACCTTTAT	GGTGCATGAC	9420
AAAATCAACT	ACAACATTGA	TGAACCGAGC	AGTTCCGGTA	AAACATTATC	TATTGCGTTT	9480
GTTAATCAGC	GCCAATACCG	TGCTCAACAA	TGCTTTATGT	CGGTAAAATT	GGTAGACAAT	9540
GCAGATGGTT	CAACCATGCT	GGATAAACGT	TATGTCATCA	CTAACGGTAA	TCAGCTGGCG	9600
ATTCAAAATG	ATTTGCTCCA	GAGTTTATCA	AAAGCGTTAA	ACCAACCGTG	GCCACAACGA	9660
ATGCAGGAGA	TGCTCCAGCA	AATTTTGCCG	CATCGTGGTG	CGTTATTAAC	TATTTTTAT	9720
CAGGCACATG	ATTATTTACT	GCATGGTGAT	GATAAATCAT	TGGATCGTGC	CAGTGAATTA	9780
TTAGGTGAGA	TTGTTCAATC	ATCCCCAGAA	TTTACCTACG	CGAGAGCAGA	AAARGCATTR	9840
GTTGRTATCG	TGCGCCATTC	TCAACATCCT	TTAGACGRAA	AACAATTAGC	CAGCACTGAA	9900
CACAGAAATA	GATAACATTG	TTACACTGCC	GGAATTGAAC	AACCTGTCCA	TTATATATCA	9960
AATAAAAGCG	GTCAGTGCCC	TGGTAAAAGG	TAAAACAGAT	GAGTCTTATC	AGGCGATAAA	10020
TACCGGCATT	GATCTTGAAA	TGTCCTGGCT	AAATTATGTG	TTGCTTGGCA	AGGTTTATGA	10080
AATGAAGGGG	ATGAACCGGG	AAGCAGCTGA	TGCATATCTC	ACCGCCTTTA	ATTTACGCCC	10140
AGGGGCAAAC	ACCCTTTACT	GGATTGAAAA	TGGTATATTC	CAGACTTCTG	TTCCTTATGT	10200
TGTACCTTAT	CTCGACAAAT	TTCKCGCTTC	AGAATAAGTA	ACTCCCGGGT	TGATTCATGC	10260
TCGGGAATAT	TTGTTGTTGA	GTTTTTGTAT	GTTCCCGTTG	GTATAATATG	GTTCGGCAAT	10320
TTATTTGCCG	CATAATTTTT	ATTACATAAA	TTTAACCAGA	GAATGTCACG	CAATGCATTG	10380
TAAACATTGA	ATGTTTATCT	TTTCATGATA	TCAACTTGCG	ATCCTGATGT	GTTAATAAAA	10440
AACCTCAAGT	TCTCACTTAC	AGAAACTTTT	GTGTTATTTC	ACCTAATCTT	TAGGATTAAT	10500
CCTTTTTTCG	TGAGTAATCT	TAGCGCCAGT	TTGGTCTGGT	CAGGAAATAG	TTATACATCA	10560
TGACCCGGAC	TCCAAATTCA	AAAATGAAAT	TAGGAGAAGA	GCATGAGTTC	TGCCAAGAAG	10620
ATCGGGCTAT	TTGNCCTGTA	CCGGTGTTGT	TGCCGGTAAT	ATGATGGGGA	GCGGTATTGC	10680
ATTATTACCT	GCGAACCTAG	CAAGTATCGG	TGGTATTGCT	ATCTGGGGTT	GGATTATCTC	10740
TATTATTGGT	GCAATGTCGC	TGGCATATGT	ATATGCCCGA	CTGGCAACAA	AAAACCCGCA	10800
ACAAGGTGGC	CCAATTGCGT	ATGCCGGAGA	AATTTCCCCT	GCATTTGGTT	TTCAGACAGG	10860

TGTTCTTTAT	TACCATGCTA	ACTGGATTGG	TAACCTGGCA	ATTGGTATTA	CCGCTGTATC	10920
TTATCTTTCC	ACCTTCTTCC	CAGTATTAAA	TGATCCTGTT	CCGCCGGGTA	TOGOTGTTAT	10980
TGCTATCGTC	TGGGTATTTA	CCTTTGTGAA	TATGCTCGGC	GGTACCTGGG	TAAGCCGTTT	11040
AACCACGATT	GGTCTGGTGC	TGGTTCTTRK	TCCTGTGGTG	ATGACTGCTA	TTGTTGGCTG	11100
GCATTGGTTT	GATGCAGCAA	CTTATGCAGC	TAACTGGAAT	ACTGCGGATA	CCACTGATGG	11160
TCATGCGATC	ATTAAAAGTA	TTCTGCTCTG	CCTGTGGGCC	TTCGTGGGTG	TTGAATCCGC	11220
AGCAGTAAGT	ACTGGTATGG	TTAAAAACCC	GAAACGTACC	GTTCCGCTGG	CAACCATGCT	11280
GGGTACTGGT	TTAGCAGGTA	TTGTTTACAT	CGCTGCGACT	CAGGTGCTTT	CCGGTATGTA	11340
TCCGTCTTCT	GTAATGGCGG	CTTCCGGTGC	TCCGTTTGCA	ATCAGTGCTT	CAACTATCCT	11400
CGGTAACTGG	GCTGCACCAC	TGGTTTCTGC	ATTCACCGCC	TTTGCGTGTC	TGACTTCTCT	11460
GGGCTCCTGG	ATGATGTTGG	TAGGCCAGGC	AGGTGTACGT	GCCGCTAACG	ACGGTAACTT	11520
CCCGAAAGTT	TATGGTGAAG	TCGACAGCAA	CGGTATTCCG	AAAAAAGGTC	TGCTGCTGGC	11580
TGCAGTGAAA	ATGACTGCCC	TGATGATCCT	CATCACTCTG	ATGAACTCTG	CCGGTGGTAA	11640
AGCCTCTGAC	CTGTTCGGTG	AACTGACCGG	TATCGCAGTA	CTGCTGACTA	TGCTGCCGTA	11700
CTTCTACTCT	TGCGTTGACC	TGATTCGTTT	TGAAGGCGTT	AACATCCGCA	ACTTTGTCAG	11760
CCTGATCTGT	TCTGTACTGG	GTTGCGTGTT	CTGCTTCATC	GCGCTGATGG	GCGCAAGCTC	11820
CTTCGAGCTG	GCAGGTACCT	TCATCGTCAG	CCTGATTATC	CTGATGTTCT	ATGCTCGCAA	11880
AATGCACGAG	CGCCAGAGCC	ACTCAATGGA	TAACCACACA	GCGTCTAACG	CACATTAATT	11940
AAAAGTATTT	TCCGAGGCTC	CTCCTTTCAT	TTTGTCCCAT	GTGTTGGGAG	GGGCCTTTTT	12000
TACCTGGAGA	TATGACTATG	AACGTTATTG	CAATATTGAA	TCACATGGGG	GTTTATTTTA	12060
AAGAAGAACC	CATCCGTGAA	CTTCATCGCG	CGCTTGAACG	TCTGAACTTC	CAGATTGTTT	12120
ACCCGAACGA	CCGTGACGAC	TTATTAAAAC	TGATCGAAAA	CAATGCGCGT	CTGTGCGGCG	12180
TTATTTTTGA	CTGGGATAAA	TATAATCTCG	AGCTGTGCGA	AGAAATTAGC	AAAATGAACG	12240
AGAACCTGCC	GTTGTACGCG	TTCGCTAATA	CGTATTCCAC	TCTCGATGTA	AGCCTGAATG	12300
ACTGCGTTTA	CAGATTAGCT	TCTTTGAATA	TGCGCTGGGT	GCTGCTGATG	ATATTGCTAA	12360
CAAGATCC						12368

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 base pairs

 - (E) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

-126-

GCACGGCACT	CTGATGTANC	TTTTATCTGT	TCCCAGTGGA	AGCATGCCCC	ACAACTGAGT	60
CATTAAGTGT	GGAAGAACAG	TTTTGTCCCC	GCCTGCAATC	TCTCCCTTTC	NAAAAACCAG	120
TATGTCGCCA	TGCCTCGCCT	TAATGGAGAG	CGCTGAACCA	TACCTTCTTT	TTCCCAGTAA	180
TAACAGGTAA	TAGCGTGCCT	GGTAATCCGT	TACCGCCAGC	GCCTCCGCAA	TTTCTGCGGT	240
TTTCCCTCCA	TTATGCCTGT	TCAGAAATYC	CAGTATTTCA	TTCTTCATAT	ATTCACTCAT	300
CTCACTGTAA	CAAAGTTYCT	YCGAATAATA	AAAATCATGC	TTTCTGTTAT	CAACGGAAAG	360
GTATTTTTAT	TCTCTGTGTT	TGCTTTATTT	GTGAAATTTA	GTGAATTTGC	TTTTTGTTGG	420
CTTTATTTGN	ATGTGTGTCA	CATTTTGTGT	GTTATTTTTC	TGTGAAAAGA	AAGTCCGTAA	480
AAATGCATTT	AGACGATCTT	TTATGCTGTA	AATTCAATTC	ACCATGATGT	TTTTATCTGA	540
GTGCATTCTT	TTTGTTGGTG	TTTTATTCTA	GTTTGATTTT	GTTTTGTGGG	TTAAAAGATC	600
GTTTAAATCA	ATATTTACAA	CATAAAAAAC	TAAATTTAAC	TTATTGCGTG	AAGAGTATTT	660
CCGGGCCGGA	AGCATATATC	CAGGGGCCCG	ACAGAAGGGG	GAAACATGGC	GCATCATGAA	720
GTCATCAGTC	GGTCAGGAAA	TGCGTTTTTG	CTGAATATAC	GCGAGAGCGT	AYTGTTGCCC	780
GGCTMTATGT	CTGAAATGCA	TTTTTTTTA	CTGATAGGTA	TTTCTTCTCA	TTC	833

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2916 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

TGCACCATCA CTGATAC	CAC CGGGACCCCG	GATTTTATCC	GGTCCCCGCG	GACTGACAGG	60
GTTTGTGACA CCTGAGT	CAT ATCCGATGTA	AACTTCATTT	TCACGGGTTG	TACAGGAAAA	120
CTCCCCTGTG CCATTGAG	GTT CTGATGTGTG	CCCTTCGCCA	CAACTCCCAC	CGTCACGGCA	180
CCAGTTGCAT CTGACGC	CGA CCAACTGCTG	AGAGCCATGC	CGTTTCCGGC	TTTGTCGACA	240
ACGCATGCTG CAGTTCC	CAG CGATGCGAAC	TGGTCTGGCA	TGCATTCACG	AACCAACAGC	300
AGTGGTGCTA CGTCCGG	ATG CAATTCGCAT	GAGCTCCAAC	CGCGGTTGTA	AGTTCAGCAG	360
CCCGGGCCTC TGCCCCC	GGC ACAGTCGCAT	AAGTATTCGA	TACCGTGCGA	CACCATTACC	420
TTCAGGATAC GCCACGG	ACC CGTCACCCTA	CGAAAACGCC	GGAGCACCGG	CAATCAGCAA	480
AGGCAGCAGT GATAAAA	GAC TGATATATTT	CCTGTCATTA	TTTTTCATAT	TAATTTAACT	540
CCTGATTAAC CGGTTTT	TAT TGATATGAGA	AAGTAATAGT	TGCAATAGCC	TTCACACTTC	600
CAGGTGTAGT TGCATCA	GCA ATTTTTATAT	AATTGGCTCT	TAAATTGATA	TGTGGATTTA	660
CCTCTCCCCT GTAATCG	GAG AAGTGCCATT	GACTGCCATT	TCCTTTCACA	GGGGAGTCTT	720

-127-

CACCATAGCT	GATGGCAGTT	ACATCACTGT	CTTTATATAG	CCTGATGCCA	AATCCTTTTG	780
CAGTGGATTC	ACTGCTTAAG	GTCAATATAT	CTGTTCTGTT	CACTGGCTGT	GATGCATCTG	840
TCAATGTAGC	ATAAACATCA	ATTCCATCCG	GGCATTGTAG	GTGTATGTCA	ATTTTACCTC	900
CCTGTATTTC	TTTATACAAA	GATGTGAACT	GTGATTGATA	TACGGTATTT	AATGGCACCA	960
CATAGTTTTT	TTGCCCCATG	GTACATGTCT	GACTCTGTAC	CTGAATGCGC	CCACCATTTA	1020
ACATAACAGG	TGCTGTCAGT	CCTTTATTAT	TTAAACTTGT	ACGTTTTGCT	TCCAACAAAA	1080
TAGTACCAAG	CTGCCTGGTG	GGTATTGTTA	TATATCCATT	GGGTAATCTT	CCCGTTGCGA	1140
CAAAAGCAAC	AAACAAACGA	GCTCCGAAGC	TTGCTGTCGC	ACCGTTATAA	GTATTGGGGT	1200
TTGTATTGGC	ACCTACAGGG	TCAATATATA	TACCTGAGCT	ATTTATGGGG	ACCAGAGGCG	1260
TTGCGGGCCA	ATAGCCCGCC	ATGCCAATAA	TAATACCCAG	TCCGGATACA	CCAATATCAT	1320
AGATATCAAA	ATCAGATGAA	TCACGGCTGT	TTCCTTGATG	GAAAGTATAC	GTAATACTTC	1380
CAATTTTAGG	CAGTGCGGGT	GTAAACTTTC	CACGCATCAG	AGCGATGGCA	CCGCCATTAA	1440
AAACATACTG	GTTACTTGTT	CCCGCCAGCT	CTCCTATCAC	CCGGGGATAG	GTATGGGCAT	1500
CAGCAGGACC	AATCACAACA	CCTGGCAATG	TGGATGTATT	AACCGCTATC	TGCGAAGGCA	1560
CATAATCATC	CGGACCCGCT	ACCGCCAGCT	TAGGGAGTAA	AATTAAAAAC	AATGGTATGA	1620
AAAAGATTCT	TTTCATGTTT	TTTCCTGATT	AGGGTGCTGT	ATACACAGAA	CAGGAACGAG	1680
CTGAGATTGC	ATATCATCTT	TATTGTGTGC	AACATGATAT	ACAAATGAAC	ATCTGTCTTT	1740
ATTATCTGGT	CCCCATACAA	CGCTGAGATG	ACCTTTTTCA	GGGAGTCCCC	TGGTAAATAC	1800
CTTCCCGGCC	TGAGCGACAT	ATCCGGCCAA	CTGTCCATGT	TCATCCAGAA	CTTCAGAAGC	1860
CATTGGAGGG	GGATTGCCAG	TAGACATACG	AATATCAAAT	AACAGACTTC	TTCCTGTTTT	1920
AGTGTCAAAT	TTYACTAACG	TGGCGCTATT	AGCACGAGGA	ATGATTTCCT	GCTCCGTCGC	1980
CGATAATTCA	ACATTCAAAT	CTAAATTGGA	GGGATCGATG	CTAATTTGAT	TTTTCTCATA	2040
GGGTGTAACA	TAAGGAACAA	TACCATTTCC	CCAAAAATCC	AGACGACTAC	CAGAGGCATT	2100
ATTGATGGCA	GCCCCTGAG	CTCCTTCAGC	ATGGATAATG	GCAAAAGTAT	CACTCAGGTC	2160
ATTACTCAAT	GTCACTCCAT	AGGGGTGTGC	GACCACCGCT	CCCGACGCAC	CAAATGACCT	2220
TTGATTATTA	TTCTGAGTAT	CATGCCCGAC	TGTTGTGGTT	ATATTTACAT	AAGGTGAACG	2280
ATAACCCCCA	TTCATTGCAT	AACCGGAAGG	CCCGTTTTCC	TGGCTGTTTC	CTGAAAGACC	2340
ATAAGAGAAC	TGATTATCCT	CCCCGCCAGT	ACCACTAATT	GATGTCTGAA	TACTATTTT	2400
CTCTTCTTT	CTATAATTTA	AAACAGTGGA	AAACACCGGG	CTTTGAACAC	TTNCCTCCCA	2460
GAGGGAGAGT	· AAAATTAATA	TAAAATCTGT	CATCACGGCG	TTGTTGCTCA	TTATCTCTTG	2520
ACTGAGACAA	TCCAATTTGA	TAGCCGAGTT	GTTTCCAGAA	GTTGCTGTAC	CCCATCTGGT	2580
ATTCATTACC	ACTTCCTTTA	TGTCCCCAGT	AATTATAGGT	TGTTCCTGTT	AAATACATCC	2640

PCT/US97/21347 WO 98/22575

-128-

CACCCCATTT	TTCACCTAAT	TCCTGGTTGA	TTGAAATCTG	GAATTGATTC	CTGGGACGAT	2700
AAAACGCTGT	ACTTTTTACA	GAAACATCAT	CAATAAACGC	GTTGTGATTA	GCTGATAGCG	2760
CATCCTTCAG	ATGATAAAAA	TCTTTTGATG	AATAACGATA	AGCCGCCAGA	GTTATATTTG	2820
TGTTTTGAGG	GCTGGGAATA	TTGGATGGCT	AATAACTTGG	AGTNGCAGGA	CTAATAAACC	2880
TTTTACGGCG	GTTACACCGG	GAATACCNGG	AAATGC			2916

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2677 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

ACCGCATCGC CAATC	CTCAGC GGCAGTGGTT	TACATGTCTT	CCGTGATGGA	AGGTCATGGC	60
ATCAGCTACC TCCAT	CTGCT CTCCGTGGTC	ATCCCGTCCA	CCCTGCTGGC	GGTTCTGGTG	120
ATGTCCTTCC TGGTC	CACTAT GCTGTTCAAC	TCCAAACTCT	CTGACGATCC	GATTTATCGC	180
AAGCGTCTGG AAGAG	GGCCT GGTTGAACTC	CGCGGTGAAA	AGCAGATTGA	AATCAAATCC	240
GGTGCAAAAA CGTCC	CGTCTG GCTGTTCCTC	CTGGGCGTAG	TTGGCGTGGT	TATCTATGCA	300
ATCATCAACA GCCCA	AAGCAT GGGTCTGGTT	GAAAAACCAC	TGATGAACAC	CACCAACGCA	360
ATCCTGRTCA TCATG	CTCAG CGTTGCAACT	CTGACCACCG	TTATCTGTRA	ARTCGATACC	420
GACAACATTC TCAAY	TCCAG CACCTTCAAA	GCAGGTATGA	GCGCCTGTAT	TTGTATCCTG	480
GGTGTTGCGT GGCTG	GGGCGA TACTTTCGTT	TCCAACAACA	TCGACTGGAT	CAAAGATACC	540
GCTGGTGAAG TGATT	CAGGG TCATCCGTGG	CTGCTGGCCG	TCATCTTCTT	CTTTGCTTCT	600
GCTCTGCTGT ACTCT	CAGGC TGCAACCGCA	AAAGCAYTGA	TGCCGATGGC	TCTGGCACTG	660
AACGTTTCTC CGCTG	SACCGC TGTTGCTTCT	TTTGCTGCGG	TGTCTGGTCT	GTTCATTCTG	720
CCGACCTACC CGACA	ACTGGT TGCTGCGGT	CAGATGGATG	ACACGGGTAC	TACCCGTATC	780
GGTAAATTCG TCTTC	CAACCA TCCGTTCTTC	: ATCCCGGGTA	CTCTGGGTGT	TGCCCTGGCC	840
GTTTGCTTCG GCTTC	CGTGCT GGGTAGCTT	ATGCTGTAAT	GACCCATYGC	GGGGCGTTCA	900
CGCCCCGCTT TCTTT	ICCCGC CGACTAACA	CCTTTCCCCG	TCCGTTGTAT	AGTGACCTCT	960
CTCTTGCGGT TCCAT	CTGTT CTTGCGAGG	GTTTATGCTT	GATGAAAAA	GTTCGAATAC	1020
CACGTCTGTC GTGGT	GCTAT GTACGGCAC	GGATGAAGCG	ACAGCCCAGG	ATTTAGCCGC	1080
CAAAGTGCTG GCGGA	AAAAAC TGGCGGCCT(G CGCGACCTTG	ATCCCCGGCG	CTACCTCTCT	1140
CTATTACTGG GAAGG	GTAAGC TGGAGCAAG	A ATACGAATGC	AGATGATTTT	AAAAACTACC	1200
GTATCTCACC AGCAG	GGCACT GMTGAATGC	C TGAAGTCTCA	TCATCCATAT	CAAACCCCGG	1260

-129-

AACTTCTGGT	TTTACCTGTT	ACACACGGAG	ACACAGATTA	CCTCTCATGG	CTCAACGCAT	1320
CTTTACGCTG	ATCCTGCTAC	TTTGCAGCAC	TTCCGTTTTT	GCCGGATTAT	TCGACGCGCC	1380
GGGACGTTCA	CAATTTGTCC	CCGCGGATCA	AGCCTTTGCT	TTTGATTTTC	AGCAAAACCA	1440
ACATGACCTG	AATCTGACCT	GGCAGATCAA	AGACGGTTAC	TACCTCTACC	GTAAACAGAT	1500
CCGCATTACG	CCGGAACACG	CGAAAATTGC	CGACGTGCAG	CTGCCGCAAG	GCGTCTGGCA	1560
TGAAGATGAG	TTTTACGGCA	AAAGCGAGAT	TTACCGCGAT	CGGCTGACGC	TTCCCGTAAC	1620
CATCAACCAG	GCGAGTGCGG	GAGCAACGTT	AACTGTCACC	TACCAGGGCT	GTGCTGATGC	1680
CGGTTTCTGT	TATCCGCCAG	AAACCAAAAC	CGTTCCGTTA	AGCGAAGTGG	TCGCCAACAA	1740
CGAAGCGTCA	CAGCCTGTGT	CTGTTCCGCA	GCAAGAGCAG	CCCACCGCGC	AATTGCCCTT	1800
TTCCGCGCTC	TGGGCGTTGT	TGATCGGTAT	TGGTATCGCC	TTTACGCCAT	GCGTGCTGCC	1860
AATGTACCCA	CTGATTTCTG	GCATCGTGCT	GGGCGGTAAA	CAGCGGCTTT	CCACTGCCAG	1920
AGCATTGTTG	CTGACCTTTA	TTTATGTGCA	GGGGATGGCG	CTGACTTACA	CGGCGCTGGG	1980
TCTGGTGGTT	GCCGCCGCAG	GKTTACAGTT	CCAGGCGGCG	CTACAGMACC	CATACGTGCT	2040
CATTGGCCTC	GCCATCGTCT	TTACYTTGCT	GGCGATGTCA	ATGTTTGGCT	TKTTTACTCT	2100
GCAACTCCCC	TCTTCGCTGC	AAACACGTCT	CACGCTGATG	AGCAATCGCC	AACAGGGCGG	2160
CTCACCTGGC	GGTGTGTTTA	TTATGGGGGC	GATTGCCGGA	CTGATCTGTT	CACCYTGCAC	2220
CACCGCACCE	CTTAGCGCGA	TTCTGCTGTA	TATCGCCCAA	AGCGGGAACA	TGTGGCTGGG	2280
CAGCGGCACG	CTTTATCTTT	ATGCGCTGGG	CATGGGCCTG	CCGCTGATGC	TAATTACCGT	2340
CTTTGGTAAC	CGCTTGCTGC	CGAAAAGCGG	CCCGTGGATG	GAACAAGTCA	AAACCGCGTT	2400
TGGTTTTGTG	ATCCTCGCAC	TGCCGGTCTT	CCTGCTGGAG	CGAGTGATTG	GTGATATATG	2460
GGGATTACGC	TTGTGGTCGG	CGCTTGGTGT	CGCATTCTTT	GGCTGGGCCT	TTATCACCAG	2520
CNTACAGGCC	AAACGCGGCT	GGATGCGCGT	GGTGCAAATA	ATCCTGCTGG	CAGCGGCATT	2580
GGTTAGCGT	GCCCACTTC	AGGATTGGGC	ATTTGGTGCA	ACACATACCG	CGCAAACTCA	2640
GACGCATCTC	C AACTTTACAC	AAATCAAAAC	AGTAGAT			2677

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 537 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATCCTGATGA CGCCGTAAAT GTGCATTTGC CAGGATTGCC GCATAGAGGG CACGAAGAAA 60 AGGTCGGTTG TCAGGATGTA TCCAGATGAT TCTGCCACTG AAACCTTCAG GGATAAGACG 120

-130-

ATTGCCAACT	GCCAGTCCTT	TAAGGGCAGC	ATTCAGCGCC	TTACGCGGGG	CATTCTGCTC	180
CAGAAATACG	TATGCCAAGT	GAGCGTGTAC	ATCAATAAAG	TCATTCTCCT	GTCGGGCAAG	240
GCGCCTGAGT	TTGTTGATGT	AACTTGTTTC	GCTGATTTCA	TOOGCATOGT	ATGCATCAAT	300
CAGTTCTTCA	AACTCATCCA	GCAACGAGCC	AAACCAGGTT	TCCGGAAATA	TGAAACAGCC	360
CTGGTTATCG	TTCACTTCAA	AGCGTAATTT	GCCAGTCATA	TTCTGAACCT	GTAAAAAAGG	420
ATAGACCATA	ATCTGCAGGC	TTAAAAATT	GTGGATGCCT	GGCATCGGGT	GTCCTTTTAT	480
TGTCCGGGAT	TAACGTTGCC	CATGATAATA	CAGTGAATCC	NGTTCTGTGG	TAAGACG	537

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

CGCTCGAGCA CCAGATTCAC	TGACATGCGC	AAACTCATGT	GTAAATCCTG	TCTGGGCATC	60
TATCTCAAGT AACAGTTCCG	TTAAATCTAC	CGGTGGGAGT	AGCTGTTTGA	TCCGATTATT	120
TAGACGAAGC AATGATGGTG	GCTCTTCCTG	TTTCTCCAGA	CAACTGATAG	TCAGGGATGG	180
ATATTTACCT TCATTACAGA	TATGAACTTC	CGCATTCTTT	TCAAATCGTG	ATGCCAGGCT	240
TTCCAGGTCT CATCCAGCTG	AATAGCCAGT	TGTTGCACAC	CTTTACGTCC	ATCGACAGGA	300
TGTCCCAGTG CCCGACAGAC	AGGAATACGC	TGAGTCTGCC	ACTCTTCACC	TTGCAACAAC	360
TTCTCGCGAG GATCTCCCCA	GCGATCACTG	TTTTCAAGCC	CAGATGTCCC	CGGCGGCGCA	420
RTGCATCCTG AAGGCGTTCC	AGCAAACATA	GTGAATAACC	TGCACGCTGT	ATCCCG TC CC	480
TCCGCATCGT ATACGAGGCG	TTTCCAGGGA	CCGGTGATAA	TATGTTCAGC	GCATCATCAA	540
GGATGCGCTT TTTCGAACCA	TTCAGTTCTG	CCAGATAATG	AATCGCAGCC	AGTACATGTC	600
ACCTGCCGGT GCCGCACGGA	AATGCAGGTC	CCGCAACACC	GCCGGAAGAA	AACGTTTAAC	660
CCGACCGTAC TGCTCAACCA	TTTCGTCATG	GAAATTATTG	TTCTGTGGAC	GAGCAAGTTC	720
ATTAACCTTG CTTACAGATT	CTGCCAGTCT	GTTTTTGGGT	ACGCACTTGA	AGATAACCTG	780
CCTGAGATCT GGGACATCTG	TATTATCATC	CAGCAACAAT	GCACATGCCC	GCGCCAGTAA	840
CAATGCGGCC TGATCAAGAT	CTTTCAGTGT	CCTGAGTCTT	TTTTTTTGCC	CGGTTTTCTT	900
TGCTTCGCGG ATAATGTCCA	GAATTAGCAT	ATCAAGCACA	TCAACGGCAT	CGTCTAATGC	960
CGTTATTTCC TGTGCTTTAA	CGAATGCAGT	AAGTACAGCA	AGCTTTCTCT	GCTGTGGCAT	1020
TCGAGCGATA TATTTTACCG	ACGCCATGCC	AGCATGAACG	AGCCAGATTA	CGCNTTGGNA	1080
ATGGTCAGGC AGACCGGGAA	AAGTTCCAGT	CGGGNAAAAC	TCCAAGAA		1128

(2) INFORMATION FOR SEQ ID NO: 26:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2311 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GGNTGATAAA	AATCYTTTGA	TGAATAACGA	TAAGCCGCCC	AGAGTTATAT	TTGTGTTTGA	60
GGCTGGAATA	TTGATGCTAT	AACTTGAGTG	CAGACTATAA	CCTTTACGCG	TTACACCGGA	120
ATACCTGAAT	GCTGTTCTGG	ACAATGTAAT	GTCAGATGCT	ATAGCACCCA	GATGGGTATT	180
AAAGGCCAGG	CCAGCTAACC	CCGCTGTATA	TCCTGAAGCT	GTGGTAAGAC	CACTGTTTAA	240
AGTAATATCA	TTCGTCAGGC	CGTATTGATA	GGTGCCTTGT	GCTATTAAAT	CATTATATGT	300
TTTATTCGCA	TAACGATACT	TTCCCACTGA	CATTTGCCAG	CGACTAAATC	CGGGACGAAT	360
GAGTTGAGCA	ACGGCCGCAA	AAGGAACCGT	GAACATTCGT	GTCTGGCCAT	TAGACTCTGT	420
TATCTTAACG	AGAAGGTCAC	CAGCATATCC	ACTGGGATAT	AAATCATTGA	TGACAAA T GG	480
TCCGGCTGGC	ACCGTCGTTT	CATAGAGGAT	ATGAGCATTT	TGATAAATGG	TTACTTTAGC	540
ATTACTGTTA	GCTATTCCCC	GGACAGCAGG	RGCATAGCCA	CGTAAAGAAC	CGGGTAACAT	600
TCGTTCATCC	GATGCTAACC	TGACTCCCCG	CAAACTGAGG	CTATCCATTA	GCTCACCATT	660
CGTATAAAAA	TCCCCTAATG	TGAATTGTGC	TCTCAATGGG	GCAAGGTCAT	GCATTATACT	720
TGTTTCTATA	TTCTGATATC	CGGCAGGATA	GCTATTATTC	CAGCTCTCAC	TGCCACGGTG	780
GCGCAAAGCC	TCCCCACAA	ATTGAATCCA	GCTTTTAATC	CCAGATAAGT	CTGTTCGTTA	840
CTCGTCCCGG	AAGAGCTATA	CTGGTAATAG	TTAGCATCAT	AGTTTATAAA	TGCTGCAGGA	900
ACACCACTTT	GCCACTGAGA	AGGGGAAATA	TATCCTCTTG	GACGTGTATT	CAGCAGTGCT	960
GCGGGATTT	GATATTCAAC	CTTAAAGTCG	ATAAGTCAAA	ATTAATTCTG	GCTGAAGAAA	1020
GCCCTGTTG	A CGCCGGAAAG	CAGGAGGTGT	TTCCCGACAT	AGTATCTTTG	ACTAAATCAA	1080
TCAATGAAA	G CAGCTCAGGC	: GTCAGGCATA	ACGTCGGAGC	ACCGGTATTG	GCAGTACGTA	1140
AATACTGCAA	A ATCAGCCTTO	CCCTTCCATA	CATTATTAAC	ATAAATATCA	GAATAATACC	1200
TGCCCTCAG	G CACAGGGTTA	A CCATGACTA	AGCGGCGGAT	ATCAATAGCA	TTTATCCCTT	1260
TATCCAAAT	G CAAAAACTCA	A GAATCAAACI	CAGCCTCTTC	AGCAGCAAAT	GAATGGTTTG	1320
TTACTGTTA	A CCCTAATGC	GCAAAAAGCA	A GAAGAGAACA	A ACGACAGTAA	ATCAGGCATG	1380
ACAGATTAT	T AGCGTTCAT	r ATTACCTTAC	TCCAGAACA	ATTCTCCTTC	CTGATATCCT	1440
CCGTAATCA	T TAACAATAA	C CCAGGAAAC	TTGCTGGTG	G CGCAGTTCT	CCTTTAAGTG	1500
CAAATACTG	T TGAAGAGAA	A GGGGGAATCA	A TTCCACCATO	TTCAACAGG	GTTAAGTGCT	1560

-132-

TATTCTGGTC	AACTGCAATT	TTGTTGTAGG	TTATGTAATA	AGGTGTTGGA	TTAACTGCTT	1620
TAATTCGGCC	TICCICCIGG	TGCCAGGTAA	CTTTCAGATA	AGCATCATTT	GGTGTTAACT	1680
TCAGGTGAGC	AGGACGAAAG	AAAAATTTTA	TGCGACTACG	AACAGCTAGT	TGCAAATAAT	1740
TATTATTCCG	CTGCTCTGAG	TTATCGGAGT	CTTTTTTTGC	CCTGGGCTTT	GCTGGAATAT	1800
CCAGAACATT	TAGATAGAAA	AGAGATTCTC	GGTCTTTCGG	TAGTGACTCG	CCTGTATATA	1860
CAATTCTGAC	TGTTTGTCCT	GATTTAGAGT	CCATACGAAA	TATTGGCGGA	GTAATGATAA	1920
AAGGACGTGG	ACTGACTCAG	GGGGAGCTGC	TGCATCTCCA	TCGYCAACCA	GGACTGGACT	1980
AATGCCGAGA	TTTCATTGTC	ATTATTNAA	CGTATGCTAA	TACTCTTTTG	AGTCGCCGGA	2040
TAAACAACAC	GGGTTCCCAT	GATAACTACA	CTACCCTGAA	CAACTGCAGA	TACAGATAGA	2100
GTAAAAAAA	ACAGCACAAA	CCTTAGCATG	GTATCTCCAG	AAGAAAGCAG	GGCAGTATTT	2160
CCTGCCCCAA	AATACAAAAC	CGTTTGTTAT	TCGTAGGCGA	TGGTATAATT	GACTGTTGTT	2220
TTTACATTGC	CTGGAGTTGA	TGTCCCGGTC	GCATAATATT	GAGCCATATA	ACGTAATGTG	2280
GCATTACCAT	CCCCACCAAT	AGTTTCAGAA	Т			2311

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1118 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TATTACCTGT	GATTTTTCCG	GGCGTAAATG	GAGTCCCTAA	AGTTATCGCA	GTCCCAATAT	60
TTCCTGCATT	ACTGTTATAA	AGATAAACGA	GTAACCCATC	AGAAGATGTG	TTTGATGTAT	120
TCTGAACTAA	AATAGCATTG	TNATAAGTGT	TTGTTGCCGT	TATCGTAACC	TTCATTGTTC	180
CCAGATTATA	GGGACACCGC	ATATTCACAG	TAAACTCTTT	TTCGTGANTT	CCATTTTGAC	240
TCAGGGTCTG	AATCTCTACA	NCCTGCCAGT	CAACAGTTGT	GTTGCTTACA	GTACAGGCAG	300
GAATAATCAG	TTTTCCTCTG	AAGGTCAGAT	TATCAACTGC	ATGTACATGC	TGAGACATTA	360
ACACTGCCCC	CAGCATTACC	GGAAGACACA	AACCTCTTAT	CTTTTTCATC	TGAAATATCC	420
TGTACAAAAA	TTTTGCTAAC	GATATGTCAA	TTCAAACGTG	GCTGTTGCTT	CATAATCACC	480
GGGTACCACA	CTCTTCGTCC	GCAGGGCTTC	CGGCGTTGCC	ACAACATACG	CGCCGAAAGG	540
AAGCTCAAGA	CTGTTTCCGG	TAACCTTTTC	CCCCTGGCCT	TTGTTATGGG	AGGTGCCGGG	600
TTTCAGCAGA	CTGCTGCCAT	CGGTGTCCAG	CAGTGCAATG	CCTAACCGGC	CAGCATTCAC	660
TCCGGTTACC	TTCAGATGGC	CCGGGAGRCG	CYNTCTTCCG	TCCCCTTAAA	GGTCAGGGTC	720
ACAATTTTGC	CAACTGCTGT	TGCATGGCAG	TTTTCCAGCC	TGATGACAAA	CGACTCTGTC	780

PCT/US97/21347

-133-

GGCGAACGTC	CGGGCGGATA	CCAGAAATCC	CTGGACGCCC	GGGTTTTGAA	GACGACATGT	840
TTATTCAGAC	TGTCACCGGA	CACATGGCAG	GGTCTGTCAA	GCAGATTACC	CCTGAATGCC	900
ACATCTGAGG	CTATTGCCTG	TCCGGCAGAC	AGTGCGGCAA	ACAGTAAAAG	AGCGCCTGTG	960
CTTTTTATCA	TCACATTCCC	TTACTCATAT	TTTATGCTCA	GACGCAGCAT	GGCCGGATTG	1020
CTCCTGGCAT	CAGAATACTC	AACCTCCTGT	GGCGGCCTTT	TCCTCCAGGC	GGGCAAGCAT	1080
CTCCTCCTGG	CGGCGGGTAA	GGCGGGGACA	GTAAAAA			1118

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 562 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TTCGTGGGTG AAATCGTAGG	CCGCGCTTTT	TTGCTGATCG	GCCAGTTGAT	GAATAGGGTG	60
GCCAKGATCG GGATAAAACG	TACAGGCAGC	GATAAACAGA	CAGCCCGGAT	AGCGGTTGTT	120
TTTAACGCAC TCCGATAACG	CCTGATAACG	TGCCAGCAAC	TTTTGTTCGG	CGGTTTGCGT	180
TTCGTCCAGC ATCAGCTGAC	GACGCCAGAC	ATCTATCTGT	TGGCTAAGAT	AACGCAGCGC	240
ATCGTAGAGG ATTGCCTCTT	TGTCTGGCCA	GAAGCGGCGT	ACTCGTCCAG	TGGATAATCC	300
ACACGTTCAG CAACCATCTC	CAGCGTGGTG	TTGGCAATCC	CTTGTAATTC	TAATAATTTC	360
AGGGCTTCTC CCAGTACATC	TTCACGTTGC	ACGCTATTTT	CCTCCGKCTT	TCCCACTGCA	420
ATGTTCGFTC ACGGTTGGCG	ATCGCGCAAA	TGTGCGCTGG	AAGGTTTCAG	CATCCATAAA	480
GCCCGTGACG CGTGCTTGTG	GATGCTCCTG	GCCTTGGTCC	GGTCAAAAAA	GAGAATTTGT	540
CCGGTAGGGC CAAGGATATT	AA				562

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 745 base pairs
- (E) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

60	TCGTCGTATC	GGGATATAAG	TATAATGTGA	AGTTAAGCCA	ACCCCAGAAA	CCATCGCTTT
120	TGAACAAACG	ATTTTATCTC	CATTCAGTAA	AACATAAGCT	AGATAACCAC	CGGTAAGTAC
180	AGCATTAACC	ATTATCTGTA	AGAAAGTGTG	ACTATTCATA	GCTCATTTAT	ACTATGGCAT
240	GGTAACTTAT	ACCATTAGCA	GATCATCAGC	TAAACTGGCG	ATAACCATAC	ATCAAATCAT

	-134-								
IGAAATTTTA	TTATGTGTTT	TTTGTTGATA	ATTAATATGC	AATATGAATT	TGCTATTTTA	300			
GAATCATGAA	CACCATTTAA	AATTACCATC	ATTAACATCA	TATAAAAATA	TATTTTTACT	360			
AAAACATGAA	TTGTATATAT	TTATTAGCTC	AGGAAAATTA	TCAGGGTTCA	CCTTCAAATT	420			
AACCTGAATG	TTATGCTTAA	TTTCACCCAG	TAGTTCTTCA	TGTGTAGATT	TTATTATCCC	480			
AATATTATTA	TCGATAAATG	CACACATGTT	TTTTATGAAT	TCAAAACCTT	TTCCTGTATA	540			
CAGTTTAATG	AATGCCACCA	GAGCAAACAT	TTCAAGATGT	AGCCATAATG	CTACGTTAGT	600			
PTTTTGCAAA	GTATAAAAAA	TTGAATTCGC	CACTTTTTA	CTTATTGCTC	TTTTATACTG	660			
rgategagea	AGATTCAGTA	GCGGAAGTCC	TCGTTCAATA	AATGAATGTG	AAAAGACTGG	720			
ATAAATTGAT	GTCGGAAACC	TTTCA				745			
(2) INFORMATION FOR SEQ ID NO: 30:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double									

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

(D) TOPOLOGY: linear

GCGTTNATGC	ATTTCGASAT	TTTCCACTTC	GTTCTGACGT	TGCACTGCTT	TGGCGTCATC	60
ATTACGTAAC	GTATCGAGGA	AATCGAGGTA	GCCCTGATCA	ACATCTTTGG	TGACGTAGAC	120
GCCGTTGAAC	ACCGAGCATT	CAAACTGCTG	GATATCCGGA	TTTTCAGCGC	GAACGGCGTC	180
GATCAGATCG	TTCAGATCCT	GGAAAATCAA	CCCGTCAGCA	CCGATGATCT	GGCGAATTTC	240
ATCAACTTCG	CGACCGTGAG	CGATCAGTTC	CGTGGCGCTC	GGCATATCAA	TACCATAAAA	300
CGTTCGGGAA	AGCGAATTTC	CGGTGCCGCA	GAAGCGAGGT	ACACTTTCTT	CGCTCCGGCT	360
TCGCGTGCCA	TCTCGATAAT	CTGTCAGAAG	TGGTGCCACG			400

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 824 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

TGTCGACGAT	GAGGCAGCCA	GAGCATTAGA	GCCGAAAAGA	AGGGATGATG	CCATGACTGC	60
TGTTGCTATA	AAATGTTTCA	TATATTCTCC	ATCAGTTCTT	CTGGGGATCT	GTGGGCAGCA	120
TATAGCGCTC	ATACTAGGGG	TTTGAGGGCC	AATGGAACGA	AAACGTACGT	TAAGGAGATA	180
ATTCGTTGTT	TATATTTAAA	TTTAGAGCTC	TCAGTTCCCC	ТТТТААААТА	TCCTCTGGCA	240

PCT/US97/21347 WO 98/22575

-135-

ACGTGAATGT	ATAATGGCCC	AACATATTGA	TATGCCCGTG	CATCAGGGGA	GATAGCCGAG	300
CGATATCTTC	ATCTATAATT	TCTTCGCCAT	TACGGCGCAT	CCAGCTCAAC	GCTTCCTCCA	360
TATAGAGCGT	GTTCCACAGA	ACCACTGCAT	TAGTAACCAG	GCCCAGCGCC	CCCAGTTGAT	420
CTTCCTGCCC	TTCACGATAA	CGCTTTCTGA	TCTCTCCGCG	TTGTCCGTAA	CAAATCGCAC	480
GAGCCACAGC	GTGCGKTCCT	TOTOCTOGAT	TAAGCTGCGT	CAGGATCCGC	CGACGATAAT	540
CTTCATCATC	AATATAATTG	AGGAGATATA	GCGTTTTGTT	TACACGCCCT	ACTTCCATAA	600
TTGCCTGTGC	CAGTCCTGAT	GGGCGCGAGC	TTTTCAGTAA	AGAGCGAATG	AGTTCTGACG	660
CATGAATTGT	ACCCAACTTC	AGGAACCAGC	GGTTCGCATC	ATCTCATCCC	ACTGACTCTC	720
CGCTTTTGAC	AGATCTGCAT	ATCCTCGGGC	CAACTTATCC	AGTACTCCGT	AGTTTGCCGA	780
TTTATTCACC	CGCCAGAACA	CCGCCTCACC	TGCATCGGCA	AGCC		824

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 911 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ACAAATCAGA	CCAGTTAACC	AGTCAGTCGG	TTTTATGATT	TCACTCACTA	TACTTTGTTT	60
CATAAGGATT	TCAGGATCTG	CCAGACTGCG	CAGAAATGAT	GCTTACGAAT	ACACAGTAAA	120
GGCAATGTCA	TTTCCGATAC	AGAGCCTGAC	ATTGCCATAA	TGAGCTATTT	ATCTGAAAAA	180
CGACAGAATA	TGATGTTTTA	TCGTAACGTA	ATTTTAAGTT	CTCAACTTAT	TGAGACATAT	240
TGTCTTTTTT	ACCCATGTGG	TCATTTTTCA	TCCCATCCGT	TTTGCTCATG	TGTTCTTTCT	300
CCATTTTCTC	TTTATCCATT	GCATTTTTGC	ACATACCATC	CTTGCACATT	TTATCATGCG	360
CGCTGGACAT	GCTGCCTTTT	ACTTCATGTG	TTTTATCCAT	TGTGTCTGCT	GCCTGAGCAT	420
TGAACATGAA	CAGCGCGGAT	AGTACAGTTG	CAGAAATAAT	ATTTTTCATG	GTTCTTCCTC	480
ATTTTTAACA	ATTGTATCAA	CAACCACCAA	ACCAGTTATA	ACCCTGGTCT	TCCCAGTACC	540
CCCCCGGAAA	ATGATTAGTG	ACCTCTATAA	CCTGAACATG	CTTGGGGTTT	TTATATCCCA	600
GCTTAGTAGG	GATACGTATC	TTTATGGGAT	AGCCATATTC	TTTTGGCAAT	ACCCTGTTAT	660
TCCATGTCAA	TGTCAGCAAT	GTTTGTGAAT	GTAGTGCTGT	CGCCATATCA	ATACTGGTGT	720
AGTAACCATC	GACGCAACGA	AAACTGACGT	ATTTTGCCCG	CATATCGGCA	CCAATCAGCG	780
TCAGGAAATG	CCGGAATGGT	ATCCCTCCCC	ATTTTCCTAT	TGCACTCCAT	CCTTCAACAC	840
NGATATGACG	GGTTATCTGA	CTCACATGCT	GCATGTTATA	CAATTCAGAC	CAAAAACCAG	900
TTACGGGTTA	. Т					911

-136-

(2)	INFORMATION	FOR	SEO	ΙD	No:	33:
-----	-------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 463 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

NGGGGCAGGA	TAATTGTATC	CTGCCCNGTA	TATAATTCTC	AGCACAGGTG	TTGACTAAAG	60
AGCGTGAAAC	TTTGCTATTA	TGTCTTCGTA	AGATTCACGG	ACGGTTATAC	TTGAGCCTGA	120
TTCTGTGAAG	TAAACAACAG	CAGAAGCATC	GTTGCCTTTT	TCAATGTATG	AAACATTCCA	180
GTCATGGATA	GCCACTGCGG	GCTGACCATT	ATCCCGACGG	TGCGTCTTAA	TGAATCGCGG	240
AAGTAATTCT	GCAATATCGT	TAAAAACACC	ATTTACGGTA	TGAGTGATAC	CACCAACGCA	300
ATGTAGATGA	GTTGACTCCG	GGGTATCATT	GTCTGCTTCT	GCAAAGAGTA	TAGCTGTCTT	360
GCTAATTGTA	ACAGGCGCCT	GTGARCGGGA	TAATTCGAGA	GAAATAAACC	CGGATTCTGC	420
CATAAAAACT	CCAGTTTGTG	ATGTTATATC	ATTTCATATG	TTT		463

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 565 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

TTCTAACCTC	TGACCAAAAA	CAGAATTACG	GTTGTTATGC	TGCAGAACCT	AATGACGTGC	60
AACTGGCGCG	CTATTTTCAT	CTTGATGAAC	GGGATCTGGC	CTTCATTAAC	CAACGACGGG	120
GCAAACATAA	TAGGCTGGGC	ATTGCGCTTC	AGCTCACCAC	AGCCCGTTTT	CTGGGAACAT	180
TTCTGACGGA	TTTAACTCAG	GTTCTGCCTG	GTGTTCAACA	TTTTGTCGCG	GTACAGCTTA	240
ATATCCACCG	TCCAGAAGTT	CTCTCCCGCT	ATGCTGAACG	GGACACTACC	CTTAGAGAAC	300
ATACTGCATT	AATTAAGGAA	TATTACGGCT	ATCATGAATT	TGGTGATTTT	CCATGGTCTT	360
TCCGCCTGAA	GCGTCTGCTA	TATACCCGGG	CGTGGCTCAG	TAATGACGAC	CGGGTCTGAT	420
GTTTGATTTT	GCCACTGCAT	GGTTGCTTCA	AAATAAGGTA	TTACTGCCCG	GAGCAACCAC	480
ACTAGTACGT	CTCATCAGTG	AAATTCGTGA	AAGGGCAAAT	CAGCGGCTGT	GGAAAAAGCT	540
GGCCGCACTG	CCGAACAAAT	GGCAG				565

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

-137-

(A) LENGTH: 512 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CGATGGCGTC CGGGGTGAAC GCCGGATAAG TTTAATTTAT CCGGTCAGGC AAAAGGCATT 60 AATCTGCAGA TAGCTGATGT CAGGGGAAAT ATTGCCCGGG CAGGAAAAGT AATGCCTGCA 120 ATACCATTGA CGGGTAATGA AGAAGCGCTG GATTACACCC TCAGAATTGT GAGAAACGGA 180 AAAAAACTTG AAGCCGGAAA TTATTTTGCT GTGCTGGGAT TCCGGGTCGA TTATGAGTGA 240 GTCACTCCGG TGAGATGTCC GGTTATTTAT CTTTTTTGTG AATCTGGTGA TGCGTGGAAT 300 GAAAGACAGA ATACCTTTTG CAGTCAACAA TATTACCTGT GTGATATTGT TGTCTCTGTT 360 420 TTGTAACGCA GCCAGTGCCG TTGAGTTTAA TACAGATGTA CTTGACGCAG CGGACAAGAA AAATATTGAC TTCACCCGTT TTTCAGAAGC CGGCTATGTT CTGCCGGGGG CAATATCTTC 480 512 TGGGATGTGG AATTGTTAAC GGGGCCAAAG TA

(2) INFORMATION FOR SEQ ID NO: 36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 827 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

TTGCCGGTGC GGTTANTAGT GGCAGTGGTG TCTTTTGGTG TAAATGCTGC TCCAACTATT 60 CCACAGGGGC AGGGTAAAGT AACTTTTAAC GGAACTGTTG TTGATGCTCC ATGCAGCATT 120 TCTCAGAAAT CAGCTGATCA GTCTATTGAT TTTGGACAGC TTTCAAAAAG CTTCCTTGAG 180 GCAGGAGGTG TATCCAAACC AATGGACTTA GATATTGAAT TGGTTAATTG TGATATTACT 240 300 GCCTTTAAAG GTGGTAATGG CGCCAAAAAA GGGACTGTTA AGCTGGCTTT TACTGGCCCG ATAGTTAATG GACATTCTGA TGAGCTAGAT ACAAATGGTG GTACGGGCAC AGCTATCGTA 360 NTTCAGGGGG CAGGTAAAAA CGTTGTCTTC GATGGCTCCG AAGTGATGCT AATACCCTGA 420 AAGATGGTGA AAACGTGCTG CATTATACTG CTGTTGTTAA GAAGTCGTCA GCCGTTGGTG 480 540 CCGCTGTTAC TGAAGGTGCC TTCTCAGCAG TTGCGAATTT CAACCTGACT TATCAGTAAT ACTGATAATC CGGTCGGTAA ACAGCGGAAA TATTCCGCTG TTTATTTCTC AGGGTATTTA 600 TCATGAGACT GCGATTCTCT GTTCCACTTT TCTTTTTTGG CTGTGTGTTT GTTCATGGTG 660 TTTTTGCCGG TCCGTTTCCT CCGCCCGGCA TGTCCCTTCC TGAATACTGG GGAGAAGAGC 7.20

-138-

ACGTATGGTG GGACGGCAGG GCTCCTTTTC ATGGTGAGGT TGTCAGACCT GCCTGTACTC	780
TGGCGATGGA AGACGCCTGG CAGATTATTG ATATGGGGGA ATACCCC	827
(2) INFORMATION FOR SEQ ID NO: 37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
CCAGGGGCCC AAAATCCGTG TATCCACCTT TAAAGAAGGC AAAGTTTTCC TCAATATTGG	60
GGATAAATTC CTGCTCGACG CCAACCTGGG TAAAGGTGAA GGCGACAAAG AAAAAGTCGG	120
TATCGACTAC AAAGGCCTGC CTGCTGACGT CGTGCCTGGT GACATCCTGC TGCTGGACGA	180
TGGTCGCGTC CAGTTAAAAG TACTGGAAGT TCAGGGCATG AAAGTGTTCA CCGAAGTNAC	240
CGTCGGTGGT CCCCTCTCCA ACAATAAAGG TATCAACAAA CTTGGCGGCG GTTTGTCGGC	300
TGAAGCGCTG ACCGAAAAAG ACAAAGCAGA CATTAAGACT GCGGCGTTGA TTGGCGTAGA	360
TTANCTGGCT GTCTCCTTCC CACNCTGTGG CGAAGATNTG	400
(2) INFORMATION FOR SEQ ID NO: 38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 578 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
CCGATTTTTT GCGAAACGTT CCGCCTGGCA TCAGGATAGT TTGTTCGTTA TCCAGTTCGG	60
ATAGCGCATT GACGATATGC AGGCTGTTGG TCATCACCGT GATGTNATTA AAGCGCGAGA	120
GCAGGGGAAC CATCTGCAAA ACGGTACTGC CAGCATCAAG AATGATCGAA TCGCCATCAT	180
GGATAAAACT AACGGCAGCT TCTGCAATCA GCTCTTTCTT GTGGGTGTTG ATGAGTGTTT	240
TATGATCGAT AGGCGGATCG GATTCCTCTT TATTCAACAC CACTCCGCCA TAAGTACGAA	300
TGACGGTTCC GGCATGTTCC AGAATGACCA GATCTTTGCG AATGGKTGTG CCTGTGGTGT	360
CAAATATTGC GCCATTCTTC AACCGAGCAT TTACCCTGCT TTGCAGATAC TCCAGAATGG	420
CGGCCTGACG CTGACGAGTT TCATGGGCGT GATACCTGAT TTAGGTTCAA ATGATAACTC	480
GCAAGCAGTA ACATCACACG NAATATCCAC GTTCAGTTAA GCGCCATGAT AGAGCATCCG	540
TGATAGGGNC AGGGGNAGTC ACACGGCGTA ATCACCGC	578
(2) INFORMATION FOR SEQ ID NO: 39:	

-139-

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 399 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
TGTTAGGTCA GGGCCCACAG TCAAGCTTAG GTTTTACTGA ATATACCTCA AATGTTAACA	60
GTGCASATGC AGCAAGCAGA CGACACTTTC TGGTAGTTAT AAAAGTGCRC GTAAAATATA	120
TCACCAATAA TAATGTTTCA TATGTTAATC ATTGGGCAAT TCCTGATGAA GCCCCGGTTG	180
AAGTACTGGC TGTGGTTGAC AGGMGATTTA ATTTTCCTGA GCCATCAACG CCTCCTGATA	240
TATCAACCAT ACGTAAATTG TTATCTCTAC GATATTTTAA AGAAAGTATC GAAAGCACCT	300
CCAAATCTAA CTTTCAGAAA TTAAGTCGCG GTAAATATTG GATGTGCTTA AAGGACGGGG	360
AAGATTTCAT CGACACGTCN GCGTGCAATC TATCCGTAT	399
(2) INFORMATION FOR SEQ ID NO: 40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
CAGCCTCCGT TACCGGACAG CAAGGAGGCT GAATGGAGTT TACAGGATTT GCTTTTTAT	60
AATGTCTGGC CATGCAGTMA AACCGGACAG GTTTTATTAT CATGTGAGGT ATTCTGACAT	120
AAAATGCTGG ATTTTTATTT TGTGACGAAT GCTGCAAAAT TGCATCTGCA CTCTGATGTA	180
GCTTTTATCT GTTTCAGTGA AGCATGCCCA CAAACTGAGT TATTAAGTTG TGGAAGAACA	240
GTTTTGTCCC GCCTGCATAT CTCCTTTCAA AAACCAGTAT GTCGCCATGC CTCGCCTTAA	300
TGGAGAGCGC TGAACCATAC CTTCTTT	327
(2) INFORMATION FOR SEQ ID NO: 41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 314 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
GGAGATGGGC ATGGAACTCA CTTCATAATA ATGCCTACCG AAGAAATATT AATAGATGAC	60

PCT/US97/21347 WO 98/22575

	1	4 .	•	ì	
-	ı	4	l	,	-

TTAGGTTTTA	CAAACACAAT	GTACAGTGAT	TCAAACCCTC	CTATTATAGC	TCGTTTTAGA	180
GACTATCTGG	AAGATGGTGA	GTGCATTGAC	AGAATTAGCG	AATCAATTTT	TTTTACACCG	240
CAAGAATTCA	ATCTTGCAGA	TCACCACATT	GAAGGATGGT	TCAATGAATT	TGGTCAATTC	300
AGTGGAACTG	TTTC					314

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 590 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

TCCCAAGATC	TTTTTGGCCG	CAAATCCACA	AAACCCGTCG	TTANTGTCGC	GCAGCCANTT	60
GCAGGCCGAA	TTTGCACCGT	TTTAGAAAGC	GGCGTTTTGT	AGAGCAGCAC	GCAGTGAGAA	120
GCCACCGCGC	CACGACCTAC	GNGCNCGCGC	AGCTGGTGTA	ATTGCGCCAG	ACCCAGACGC	180
TCCGGGTTTT	CGATAATCAT	CAGACTGGCG	TTAGGCACAT	CAACGCCGAC	TTCAATAACG	240
GTTGTGGCAA	CCAGCAGGTG	TAGCTCACCT	TGTTTAAACG	ACGCCATCAC	CGCCTGTTTC	300
TCGGCAGGTT	TCATCCGCCC	GTGTACCAGG	CCAACGTTCA	ACTCTGGTAG	CGCCAGTTTC	360
AACTCTTCCC	AGGTAGTTCC	GMCGCCTGCG	CTTCCAGCAA	TTCCGACTCT	TCAATCAACG	420
TACAAACCCA	GTATGCCTGA	CGACCTTCAG	TTATGCAGGC	GTGGTGCACC	GGGTGCAATG	480
GATGTCGGTA	NNGCGGGTAT	CAGGAATAGC	GACCGTAGTC	ACTGGGCGTG	CGGCCTGGGC	540
GGCACTCCAT	CTATCACCGA	GGGTATCGAG	ATCGGGCATA	CGCNTGCATT		590

(2) INFORMATION FOR SEQ ID NO: 43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

60	ATAATGGTTT	TGTCATGATA	TATAGGTTAA	CGCCTATTTT	CCTCGTGATA	GACGAAAGGG
120	TGTTTATTTT	AACCCCTATT	ATGTGCGCGG	TTTCGGGGAA	AGGTGGCACT	CTTAGACGTC
180	AATGCTTCAA	ACCCTGGATA	TGAGACAATA	TATCCGCTCA	TTCAAATATG	TCTAAATACA
240	TATTCCCTTT	GTGTCGCCCT	CAACATTTCC	TATGAGTATT	AAAGGAAGAG	TAATATTGAA
300	AAGTAAAAGA	ACGCTGGTGA	TCACCCAGAA	CTGTTTTTGC	TTTGCCTTGC	TTTGCGGCAT
360	CAACAGCGGT	CTGGGATCTG	TTACATCGAA	CACGAGTGGG	CAGTTGGGTG	TGCTGAAGAT

-141-

AAGATCCTTG AGAGTTTTTC GCCCCGAAGG AACGTTTTTC	400
(2) INFORMATION FOR SEQ ID NO: 44:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
ATTCGGAAAG ATGCTTCTAN TTTTTTTAAG CACGTATAAA CTGTTAATTC AGGTTCAATG	60
CTACGAAATG CACTAGTTAT AACCTGTATT GAAGGAAAGA TCTTCTGATA CTCTTTCCAG	120
AGATCTTCAA GTCTGGCCAT GGAAATTGAC TTGGCTGCAT ATTCTAGGTC AGTGTTTATG	180
ATAGTTTCTC TATTCTCTCT GAATGCGGAA AAAAAAGCTT CATTCAACAA TGATAGTAAA	2 4 0
TCCCTGGGCC GGTAAAGGGT AAATTGCAAA CATCGCTTAA AACCATTCCT CCCTTTAAGA	300
TCATCCGCTG TGCATCTATC CCAAACTCGT TGATCTTTCT CAATATCTAG CTTAAATGCT	360
ACTITCATIC TITTAGCIGA CAGCATTAGG AGTIGIGCCC	400
(2) INFORMATION FOR SEQ ID NO: 45:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 585 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
TAATGTTGAA GACAGAGATA TAATNTACAG CATCATCCCA CAAGGCAGAT ATAACAATAC	60
TTGACTGGGA TATGCAAAGC GATAGTGGGC AATTTGCTAT TGAAATAATA AAATCGATAA	120
TCGTTTCAGA TATAAATTCT GGAGGACGTT TACGTCTTCT TTCTATTTAT ACTGGTGNAC	180
ATGTTACTGC TGTTATAACT AAGTTGAACA ATGAGTTAAA GAAAACATAC CGTAGCGTAA	240
TAAAAAATGA TGATAGTATT TTTATTGAAG ATAACTATGC ACTCGAACAA TGGTGTATAG	300
TTGTTATTAG TAAAGACGTT TATGAAAAAG ATCTTCCAAA TGTGTTAATA AAAAAATTCA	360
CTAACCTTAC AGCTGGGTTG CTATCCAACG CCGCACTCTC TTGCATTTCT GAAATAAGAG	420
AWAAAACCCA TGGGATATTA ACAAAATATA ATAATAAATT AGACACTGCA TATGTTTCCC	480
ACATCTTAAA TTTAATAAAA TCCAAGGRGT CAAGGGCATA TGCTTATGAA AATGCTCATG	540
ATTATGCAGT AGATTTAATT TCTGAAGAAA TAAGATCAAT ATTGC	585
(2) INFORMATION FOR SEQ ID NO: 46:	

(i) SEQUENCE CHARACTERISTICS:

PCT/US97/21347

-142-

(A)	LENGTH: 390 base pairs
(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: double
(D)	TOPOLOGY: linear

WO 98/22575

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 473 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

GGATGCCAGT	GTCAGCGACT	GGTTAAAGTG	GTCGATATCG	ATGAGCAAAT	TTACGCGCGC	60
CTGCGCAATA	ACAGTCGGGA	AAAATTAGTC	GGTGTAAGAA	AGACGCCGCG	TATTCCTGCC	120
GTTCCGCTCA	CGGAACTTAA	CCGCGAGCAG	AAGTGGCAGA	TGATGTTGTC	AAAGAGTATG	180
CGTCGTTAAT	TTTATCTCGT	TGATACCGGG	CGTCCTGCTT	GCCAGATGCG	ATGTTGTAGC	2 4 0
ATCTTATCCA	GCAACCAGGT	CGCATCCGGC	AAGATCACCG	TTTAGGCGTC	ACATCCGTCG	300
TCCCCTGGCA	AACGGGGGCG	ATTTTCCTCC	ATTTGCCTCA	GTGGCTGGCG	TTTCATGTAA	360
CGATACATGA	CAGCGCCCGA	CAAGATCCTG	ATACTCTTTG	GGTATTCAAC	CGTTTCCAGT	420
GTAATTCGTC	GTTCACNAAC	ATTGGCGTTA	CAGGCGGGGC	TGGCNGTNAC	CCA	473

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

-143-

GAAGTGACGG	ATGGCTGTGG	TTTCTCCATC	GGTCACCAGC	AGCAGTTNGC	ATCATGGATT	60
GCCTATAAAG	TOGOGOCOTT	CCTCGGNAAA	AAAGAGGAGA	GCCTTGAAGA	CCTCAAATTG	120
CCGGGCTGGC	TGAACATTTT	CCACGACAAC	ATCGTCTCCA	CGCGATTGTG	ATGACCATCT	180
TCTTTGGTGC	CATTCTGCTC	TOTTOGGTAT	CGACACCGTG	CAGCGATGGC	AGGCAAAGTG	240
CACTGGACGG	TGTACATCCT	GCAAACTGGT	TCTCCTTTGC	GGTGGCGATC	TTCATCATCA	300
CGCAGGGTGT	GCGCATGTTT	GTGGCGGAAC	TCTCTGAAGC	ATTTAACGGC	ATTTCCCAGC	360
GCCTGATCCC	AGGTGCGGTT	CTGGCGATTG	ACTGTGCAGC	TATCTATAGT	TCGCGCCGAA	420
CGCCGTGGTC	TGGGGCTTTA	TGTGGGGCAC	CATCGGTCAG	CTGATTGCGG	TTGGCATCCT	480
AG						482

(2) INFORMATION FOR SEQ ID NO: 49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 185 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

GACGACCTGC AGGCATGC	AA GCTTGGCACT	GGCCGTCGTT	TTACAACGTC	GTGACTGGGA	60
AAACCCTGGC GTTACCCA	AC TTAATCGSCT	TGCAGCACAT	CCCCCTTTCG	CCAGCTGGCG	120
TAATAGCGAA GAGGCCCG	CA CCGATCGCCC	TTCCCAACAG	TTGCGCANCT	GAATGGCGAA	180
TGGCG					185

(2) INFORMATION FOR SEQ ID NO: 50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

TAACGCTTCA	ATACGCGCGA	CCAGCTGGCG	GCGCTCATAC	GGCGTAATTT	TGGCGTCGGC	60
GAGCAAAATC	CCTTGTTTAA	AGGTATTTTG	CCAGCTGCCG	TCGTCATATT	GGCGAGCTTG	120
CTGACGCGAC	TGCGCAGGCA	TTAAACGATC	AGCACAATCC	ATCGCCCGCA	GCCAGTAAAG	180
CGGATTGGTT	TCGGTTGATT	TACCTTGCAG	CGCCCAGATG	TCGCTACATT	CAGTAGAAAG	240
ATAGTCAGCC	AGTTGATAAA	CCGGAATTTT	TTCTTCTGCT	GGCGTATCAA	TGGCTGGCTT	300
ATTGTGATTC	TGCACGCAAC	CCAGCAATGC	CAGACATGGA	GACCCTGCCA	GCCACAGCCG	360
TCGGGGCAAT	AATCGTTGAA	AAATGTGTCG	CATATTCACC	AGACTTAAAG	CCTATCCCAG	420

,	4	4
	7.1	. 1 _

TGGGCGTAAT TGTTGCAGAC AGTCTGGACA TGGACAGCGC GGAGAAACCG GNAGCGTACA	480
TATCGTACGT G	491
(2) INFORMATION FOR SEQ ID NO: 51:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
ACTTGAACGG CAATTATTAT TTATCCATGC AACTTCAAGT TGCAGTATCG GAACATTAAC	60
TTTTCTGGGG TGAATATCAC TCTGATATCG TTTTTTGTAT GCGTNT	106
(2) INFORMATION FOR SEQ ID NO: 52:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 481 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
TTTATGTGCG GTATTGATGG CTGAAGCCTG TAATATCGGA CTGGAACCGC TGATAAAGCA	60
CAATATACCA GCACTGACCC GCCATCGGCT CAGTTGGGTG AAACAGAATT ACCTTCGTGC	120
AGAAACGCTG GTCAGCGCCA ATGCCCGCCT GGTTGATTTT CAGTCCACAC TGGAGCTTGC	180
TGGTCGTTGG GGAGGTGGAG AAGTGGCATC AGCTGACGGC ATGCGCTTTG TCACACCAGT	240
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT	300
GGTATAACTT CGTATCTGGA TCAGTACTCT GGGTTCCATG GCATTGTGGT ACCCGGTACA	360
TTACGGGRCT CGATTTTGTA CTGGAAGGAC TTCTTGAGCA GCAGACAGGG CTGAATCCAG	420
TTGAAATCAT GACAGACANT GCGGGTAGCA GCGATATTAT TTTCGGTCTG TTCTGGCTAC	480
Т	481
(2) INFORMATION FOR SEQ ID NO: 53:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 558 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	

TGGNCCGTAA TTCCCAACCA TTTGCCGAGG TCCAGNTTTT TCACCATGTT ACTCGGGATA 60

PCT/US97/21347 WO 98/22575

		_
	14	_
_		· ¬-

GCCAAAACNG	ATACCGATGT	TGCCGCCGTC	CCGGTGCGAG	GATCGCGGTG	TTGATACCGA	120
TCAGTTCGCC	GTTCAGGTTA	ACCAGCGCAC	CACCGGAGTT	ACCACGGTTG	ATCGCTGCAT	180
CGGTCTGGAT	GAAGTTTTCG	TAGTTTTCGG	CATTCAGGCC	GTACGCCCCA	GCGCAGAGAC	240
AATCCCGGAA	GTTACCGTCT	CGCCCAGACC	AAACGGGTTA	CCAATCGCTA	CGGTGTAATC	300
ACCCACGCGC	AGTGCATCAG	AATCCCCCCAT	CTTAATTGCG	GTCAGGTTTT	TCGGGTTCTG	360
GATTTGGATC	AGCGCGATAT	CAGAGCGCGG	ATCTTTGCCA	ACCATCTTCG	CGTCGAACTT	420
ACGGCCATCG	CTCAGTTGAA	CTTTAATGAC	CGTCGNGTTA	TNAACAACGT	GGTTGTTGGT	480
GACGACATAG	CCTTTATCGG	CATCAATGAT	GACGCCGGAA	CCCAGCGCCA	TGAATTCTGT	540
TGCTGGCCGC	CACCATTA					558

(2) INFORMATION FOR SEQ ID NO: 54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 263 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CACCTGCGTG	ACGTGACCGA	CCTTTTCTCC	TCGCTGNTTG	TTTCCCCTAT	CGTCGGCCTG	60
GTCATTGCGG	GAGGCCTGAT	ATTCCTGCTG	CGACGCTACT	GGCGCGGGAC	GAAAAAAGCG	120
TGACCGTATT	CGCCGCATTC	CGGAAGATCG	CAAAAAGAAA	AAACGGCAAA	CGTCAACCGN	180
CATTCTGGAC	GCGTATTGCG	CTGATTGTTT	CCGCTGCGGG	CGTGGCGTTT	TCGCACGGCG	240
CGAACGACGG	ACCAAAAGGG	ATC				263

(2) INFORMATION FOR SEQ ID NO: 55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 683 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

60	GGGGCTGGAC	ATGTGGTCGA	GGCGTCGTCG	CCTGCCAGTG	TGGAAGATGG	GTAACGCGTC
120	GGCATTAAAG	TGTGGGTTCC	AACCGTACGC	CTCACCGGAC	CCGCCAATAT	GGTTGCCATT
180	GCAGGACCCT	ATCTCGTGGC	GATGATGGTC	TACGGTCAGC	TTTGCCTGTT	CAGGATCGCA
240	TCCAAACGAA	TGGTATTCCA	CCGCGTCATA	AGGGGCCGGC	CCACCGTTGA	GCGGAAGTGA
300	ACTGAAAGAT	ATGTCTGGGA	AGCTCAGTGG	TGAGTTAAAC	ATTGCGTCAA	CAATATGCGT
360	ATTCTCCGAC	ATGCCGGAAA	GCTGGATATG	GTGTCCAGAC	ATAATCGAAT	CCGCACGGTA

-146-						
ACCCGTTGGG CGGCKGATAT TCATATCACC CCGGATGGTC GCCATTTATA CGCCTGCGAC	420					
CGTACCGCCA GCCTGATTAC CGTTTTCAGC GTTTCGGAAG ATGGCAGCGT GTTGAGTAAA	480					
GAAGGCTTCC AGCCAACGGA AACCCAGCCG CGCGGCNTCA ATGTTGATCA CAGCGGCAAG	540					
TATCTGATTG COGCCGGGCA AAAATCTCAC CACATCTCGG TATACGAAAT TGTTGGCGAN	600					
CAGGGGCTAC TGCATGAAAA AGGCCGCTAT GCGGTCGGGC AGGGACCAAT GTGGGTGGTG	660					
GTTAACGCAC ACTAACCGCT GAT	683					
(2) INFORMATION FOR SEQ ID NO: 56:						
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:						
TGGATGCAGG GAAAAACATT GATATTACCG GGGCAACGTG CTCGTCCGGT GGAGACCTTG	60					
GAATGTCTGC GGGTAATRAC ATCAACATTG CCGTAAACCT GATAAGCGGG ACAAAAGTCA	120					
GTCCGGTTTC TGGCACACTG ATGACAACAG TTCATCATCC ACCACCTCAC AGGGCAGCAG	180					
CATCAGCGCC GGCGATAACC TGGGCGATGG CTGCAGGCAG AGATKCTGGG NTGTCACAGC	240					
ATCCTCTGTT TCTGCCGGGC ACAGCGCCCT GCTTTCTGCA GT	282					
(2) INFORMATION FOR SEQ ID NO: 57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 697 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:						
ATGAACGGCC CCCCCACAG CCCGTTAACA AACGGNTGCC CCGGCGATAA TCGTACTGAT	6 0					
AAGTTAACTC CAGCAGGCGG TTAATTGAAA GCGAACGGGA GGCTGATGCA TGGTAATAAT	120					
CCCTTAAAAC GCGACGGCAA CGCGCCAGTA AACCGTGAGA TGGTCAGGGG CAAGCCAGTC	180					
CGGGTAAACC AGAGGCAGTC CGGCAGTGAA CGAACCGGAA ACATGACCAC TGGTGGTGCT	240					
GAGCCCGGCA GCAGCACCCC ACAGCGTGCC GGACGAGTAC GGGTCATCTC TGTCAGAGTG	300					
CAGCCAGCCG CCGTCCAGTG CAGTCACTGC ACGGACTGTC CCCACATATG GCAGGGAGAA	360					

CAGAGACCAG GACAGCTCAT TTCGCAGATA ACCGCCGTTA TTACCGGAGA TATACTGCTC 420

GTCCGGTGAC CACTGGGCAT AAGCGCTGGT CAGCCACCAC ACCCTGTCCG TGACGGGGCG 540

480

CTTAAAGCCA CGCACTGAAC TCTCACCCCC GAGGCTCAGT TGTTCCACAC CATGAAGACG

-147-

CTGAAAACTG	GCACTCACCG	ACCATTTCCG	GAACTGATTT	ACGGGCAGGT	CTCCCCTTTT	600
CCCGTGGTCG	CTTTCTGCGC	CGAACCAGGG	CATCCCCCGT	GTGAATACCG	GATTCAGTGT	660
TCCGACACCA	CCCAGAAACT	TGTGTGTGTG	ATTCANC			697

(2) INFORMATION FOR SEQ ID NO: 58:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4835 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

TTCGACTGAG	CACCACAAAT	ACTGGGTATC	TCCCCAGATA	GTTCATTGCG	GTACAAGCAA	60
TATAGGTGCA	GAAAGTCAAC	CTGCTGCACC	CTATTGGATA	ATTATATATG	GCCTTCAATA	120
AAGTTTGCGG	TTGTCGACGT	TGGCTATATC	AGCCATTTCC	AATGCATAGT	TCTTTGGTTT	180
AGCACCATCA	AGTTATAGAT	TTGGGAATAG	TTTCAACTGG	TATTGATTGA	ATTGGGTTTC	240
ATCGTCGATG	ATTAATACTA	TTTGTAAAGA	CTTTATTGTT	GATTTCTTAT	TATACCACAA	300
ACCCAAACTG	GTCTAGGTCA	TCATTTGGTG	TTGATAACGG	GCTCTGATAA	TTTCTGCTCT	360
TCTGCTATAC	TGGGGATTAT	GAAGAATATT	AAGGCTGAGT	GTATTGAGGT	AGTGTTCTTT	420
GAACCGACCA	TTCATGACAA	TATATTCTTC	AATTCGTGAG	TGATCCAGCA	ACTGGTTGAA	480
TTTAAAACAC	TGAGTGATGT	TATCCTCTGT	AATCGTATGG	TTGCTGAACT	AGTTGATGTA	540
GCCGATAAGG	TTTATACCAG	ATATCTTTTG	GGGGGATTAG	ATAACGTAGC	CGCGGATAGC	600
AAACGAGATA	GTTGAATTTT	ATTACCGTAA	TTTCTTCCAT	TGAGAAAAGC	TTATTTTCT	660
TGGTGGTATT	CGCAGTTATG	TATCTTCCAT	AAAGACTTGG	GAATATCTTG	CTTGAAARGC	720
TATCTGGAGA	TAGCCTTAGT	TATTTGATAA	ATATTTCAAA	TAGGAGGAGC	CGTATGGCTG	780
TCATTTATAC	CCTCACTAAA	TCGTCACTTG	TCAAGTCTGG	TGGTCAATTA	CATTGGAATA	840
TTGATTCGCC	ATCAGAACAA	CAGCCACAAA	AGATCGTCAA	TGGTCGGGTT	GCGCTTCGGG	900
GATGGTTACT	GGCAGATGTG	GAAAAAGATC	TCCGTGTTGC	GGTTAAAATT	GAACATTTGA	960
CATACAGTTT	TCCCTTCAAT	ATAAAGCGCC	CTGATGTTAT	TTCAGCTATA	CTGAAACAGC	1020
CACCTGAAAA	ACATCAAAGA	CTTCATTGTG	GATTTGATAT	CAATGTCCCA	TTTTCTACTA	1080
TATTAATAAA	TGGCCTTGAG	TCTGATGGGT	TGATTACCTG	GTTGGAAGAG	TTATTATTTC	1140
TCCTGCCTGA	TAATTGAATT	AAGTATCTAT	ACCGATAGTA	TCGCGATAGA	TATATTTTT	1200
TACAGGATGA	TAATTTGAGA	ATCTATATAG	CCGCTATTAT	CAAGGATGAG	TATTCAAGTT	1260
TACTTGAATG	GATTGCCTAC	CATCGAGTAT	TAGGTGTTGA	TGGGTTTAKT	ATTGCAGATA	1320
ATGGCAGTCG	TGAWGGTAGC	CGAGAATTAC	TATTTTCCCT	CGCTCGCCTA	GGTATTGTGA	1380

-148-

CGATGTTCGA	ACAACCGACT	TTGGTGAATC	AAAAGCCACA	ATTACCTGCA	TATGAACATA	1440
TTTTACGTAG	CTGTCCCAGA	GACATAGACC	TGCTTGCATT	TATAGATGCT	GATGAATTTT	1500
TATTGCCACT	TGAATCGGAT	ACCAATTTGT	CAGATTTTTT	TTCTGAAAAG	TTTCAGGATG	1560
AGAGTGTCAG	CGCTATTGCA	TTGAATTGGG	CAAATTTTGG	TTCTAGTGGT	GAATGGTTTG	1620
CTGAAGAGGG	GTTGGTTATT	GAACGTTTTA	CCTATCGTGC	CCCGCAATCC	TTTAACGTTC	1680
ATCATAACTT	CAAAAGCGTG	GTCAAACCCG	AACGAGTTAA	CCGCTTTCAT	AATCCGCATT	1740
ATGCTGATTT	GCGTTATGGT	CGATATATCG	ATGCATTGGG	TCGTGATTTG	ATTCTGCACC	1800
CGAGGCATGG	TAATGGGGTT	AGTGCTGAAG	TGACTTGGAG	CGGTGTCAGG	GTAAATCACT	1860
ATGCAGTTAA	ATCACTTGAG	GAATTCTTGT	TGGGCAAGCA	TCTGCGTGGT	AGTGCTGCCA	1920
CTGCTAATCG	AGTAAAGCAT	AAAGATTATT	TCAAGGCACA	TGATCGTAAT	GATGAAGAGT	1980
GCCTTCTCGC	TGCCGCATTC	TCAGAACAAG	TAAAAGCTGA	AATGGAACGA	TTAAGTGTGA	2040
AGTTGACTGA	GTTACCAGCA	GTTGAACCTA	TTCCTACTGG	TTCTTGGTTC	AAAAAAAA	2100
TGAAGAAATG	GATGGTTTGA	ATATATTGAG	CAAGCACTTT	GGTATTTATT	TCTGCTCTTA	2160
TCTACAGGTC	TGCTAATAAG	GATCTGTATC	CCCCAGGTGT	TACCTTGGAC	TGTAAGTTAT	2220
ATTATGTGTA	GCTATTGCGA	TTGGCAGCCT	CTGACATTGC	CAGACTCGTT	TTCTCTTCAT	2280
TCTGGTTGGC	TTCTGATTCG	GGGGCGCGTG	TTGACGACTC	AAACTCGAGG	TGAAACTCGT	2340
CTGCGCTGGC	AATGCGGACA	AGGAATATGG	CATGAACAGA	AGTTGCCGGT	CACTCGTCGA	2400
GGCACGTTGC	TGGAGCTGGT	TTATCTACCY	TCGGGAGCTA	GTCATTKGTC	TTTGCTGGCA	2460
AGTAATAAGG	GCGCTGAGTG	TAATGTTGAA	ATTACTCAGC	TTTGTTGTGT	ATCCCGTGCC	2520
GAGAGTCTCT	GGCGTCGATT	GCGCCGGGTT	GTACCTTTTT	ACCGACGCTT	AACGAAGTCC	2580
AGACGCAAAA	GGTTAGGCCT	TTCATGGCAT	TTGTGGCTCA	CGGACTTGCA	GCAAGCTTAC	2640
CAACTTGTCA	GCAGAGTTCG	CGATGATAAA	CCACTCAATA	GCTATGATGA	GTGGCTAGCA	2700
GACTTCGACA	CCCTTGAACC	CGCCGAATAC	AAGCTGATTA	AGCGCCAGCT	GGCTCGCTGG	2760
GGCACATTAC	CACGTTTCTG	TTTGCATCTT	GTTGGCGTTG	GGGATGAACA	GAGCCGCCAC	2820
AAGACCCTGG	AGAGTATTCA	GGCACTCTGT	TATCCGGCAA	GCAATATAAA	CCTGCAGGAG	2880
CATGGTGCAT	ATCCAGAAAT	CTCCAGTCAG	TCAAGCGGCG	AATGGCAGTG	GGTGTTGCCT	2940
GTAGGGGCAG	TGGTTTCGCC	AAGCGCCTTA	TTTTGGGTTG	CCCACCAGTT	ACGCCAGAAT	3000
CCTGATTGTT	TATGGATATA	CGGTGATCAC	GATCTGCTTG	ACGAGAGAGG	TGAACGTCAC	3060
TCTCCCAACT	TCAAACCTGA	TTGGAATGAA	ACGCTGCTAC	AGAGCCAAAA	CTATATTAGT	3120
TGGTGTGGTT	TGTGGCGTGA	ACAAGGTGCT	GGCCGTGTTC	CCTTTGATGC	GGCGACATGC	3180
CATCAGTGGT	GGCTACAGTT	GGCAAAGATG	TGTGAACCGA	AACAGATAGT	CCATATTCCA	3240
TCATTGATGA	TGCATTTGCC	TGCAAGAGCG	TTGATTTCGG	ATGATTTTGA	GTCGCTGAAA	3300

PCT/US97/21347 WO 98/22575

-149-

GATAAAGAAG	ATTTACTGCC	ATCAGGAGTG	AGCATTGAGG	CAGCACCTCA	TGGTGTATGT	3360
CGTTGGCGCT	GGCCGTTGCC	AGCGCAATTG	CCATTGGTTT	CAGTGATTAT	CCCTACTAGA	3420
AATGGTATTG	CTCATTTACG	CCCTTGTATC	GAAAGCCTGA	TACAAAAGAC	GCAATATGCC	3480
AATATGGAAG	TCATAGTGAT	GGATAATCAG	AGCGATGAGG	AGGAGACGCT	TGCTTATCTT	3540
GCTCATATCG	AACAGGTTTA	TGGCGTTAGG	GTGATTTCTT	ATGATCAACC	GTTTAACTAT	3600
TCAGCCATCA	ACAATCTGGC	AGTGAGAAAC	GCACATGGAG	ATATGATATG	TTTGCTGAAT	3660
AATGATACTC	AGGTAATCAG	TATTGACTGG	CTGGATGAAA	TGGTTTCTCA	TTTATTACGC	3720
CCCGGCGTGG	GTGTGGTAGG	AGCAAAGCTG	TATTACGGAA	ATGGCTTGAT	TCAGCATGCA	3780
GGCGATGCTG	TCGGCCCTGG	CGGTTGTGCA	GATCATTTTC	ATAATGGTTT	GTCAGCTAAC	3840
GATCCTGGAT	ATCAGCGTAG	GGCTGTTAGT	GCCCAAGAGC	TGTCAGCTGT	GACTGCAGCT	3900
TGTTTATTGA	CTCATAAAGA	GTTATATCTG	GCGCTCGGAG	GACTTGATGA	AACGAATTTG	3960
CCGATAGCTT	TTAATGACGT	RGATTATTGT	CTCAGAGTTC	GAGATGCTGG	CTGGAGAGTA	4020
ATCTGGACTC	CCTTCGCTGA	ATTGTATCAT	CATGAGTCTA	TTTCCCGTGG	TAAAGATGTA	4080
TCAAAACAAC	AGCAGATACG	AGCGAAATCT	GAGTTGCGCT	ATATGAAAAA	ACGATGGGCA	4140
TGTGCACTTA	AACACGATCC	AGCCTACAAC	CAAAATTTGA	GTTATGAACG	TCCTGATTTC	4200
TCTTTAAGTA	GAGCTCCTAA	TATAGTATTG	CCATGGATGA	ATTAATTCGC	AGGAAACTAT	4260
TTAAGCCTTA	TCGTAAATTA	AATAAACAGA	GTTATAGAAG	TCCGCAAAGC	TCTGAGATTA	4320
ACTTTGAACG	ATTGTTTATA	TTACATGAGG	GAAAATCACC	TACATTAGCC	TATTTTGAAT	4380
CGGCTATTAT	AAGTCGGTTT	CCTGATGCAG	AATGTCATTT	TATCGACACA	TTAGCATCCA	4440
CTGATATATT	TATTCCTAGA	GGATCTGCCC	TTGTCGTCAT	TAGATTCATC	TCCCCAAAAT	4500
GGCAACAGCA	CATAGAAAGA	TATAACGACA	GGTTTTCTCG	AATTGTTTAT	TTTATGGATG	4560
ACGACCTGTT	TGACCCGACT	GCACTATCTA	. CGTTACCAAA	AGAGTATCGT	ACCAAGATAA	4620
TAAGGAGGTC	GGCGGCTCAG	CATCGATGGA	TTACGCAATA	TTGTGATAAC	ATTTGGGTTT	4680
CAACTGCCTA	TTTGGCTAAT	AAATATGCAC	ATCTTAACCC	GGAGATTGTT	TCTGCTAAAC	4740
CGTCACTGGC	CACTCATTGAA	ACACATCGAT	CAGTAAAAAT	CGCTTATCAT	GGCTCAAGTT	4800
CTCATCGGGA	A AGAAAATAT	TGGTTGAGAC	CAAATC			4835

(2) INFORMATION FOR SEQ ID NO: 59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1746 base pairs

 - (A) EENSIN: 1740 base particles (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

-150-

GAAAAATGNC	ATAACCGCAT	TCCATCAAGC	CCGTNAATAT	CCCGGACTTT	CATTTATTTC	60
TGAGGCGTAC	AGGGAAGCAA	TAACTGCTGG	TCAGATATTG	CTGTCTCCGG	TACATTTACC	120
TGACACTGTA	TTTTTCCATC	CCAGTTTACC	GACAGGGTTT	COCCCGGCGT	CACGCCACTC	180
AGCCAGGCAA	GGCCTTCGTC	GGCCACCATG	CCCAGTTCCC	GGCCTTTTTC	ACTGGTTACA	240
CTGGCACCAA	ACGGGGGCTG	AGAGCCATCA	GCAAGACGCA	GTATTGCAAA	CAGACGTTTC	300
CCTTTAAGCA	CGCTGAATTT	CCGGTAACCA	ATGGCACCTT	CTGTCAGCGC	CGATTCCACA	360
ACAGAACGGG	TTGCTTCCAC	ATCATCCGGT	AAGCGCTTCA	GGTCAACAGA	GGTTGTATTC	420
CGGTAATAAC	TGCTGATGTC	AGTCACCACG	CCCGTTCCCC	AGCGATTTGT	CACCACCTGC	480
CCGCCATCAA	CCGGTACACC	TCCCACACCA	TCCGTGTCAA	CAAGAAGACG	TGTTCCACCG	540
GACATTCCCC	CTGCATGTAA	CGCCGCACCT	TTTCCGGTAA	TTGTTGCCCC	ACCGGAAGCA	600
CTGACGCCGA	AAGACGTATA	TCCTTTCTGC	AGGGATGCAA	TATTCGCGGA	CAAATTTGCC	660
AGCGGACTAC	GATGACTGTA	ATAGGCATTA	ATCTGACGTT	GCGATGTCAG	TCCACCGCCA	720
CTGTTAAGGC	CGGCGTTCAG	GCTGTAGCTG	TCCAGACCGT	CATTGAACGT	GWCAGTGTAG	780
CCGGCCATAT	TCACATAACG	GTCATTACTC	ATACTGCCAC	TGTAGCTCGC	TGTCCCCGTC	840
CCCCAGCGGC	ACGGATATAC	GCAGGTAAGC	AGAATCNTTA	TCACGCCCCA	GATATTTAGA	900
CCTTGAGGCT	GACAATCCAA	CCGCCACACC	CTGCAGTCCG	AAAACATTAA	AGTAGCGGTT	960
GACGCTCACC	GTATAATAGT	CCGTTTTCCG	TATGTCCCAG	TATGTCTGAC	GGCTGTACTG	1020
CAGGTTAAAA	GAGGTGTTCC	AGTCCGCCAC	GTTTTTATTC	AGCGTAACGG	TATACATCTC	1080
TTTTTCCCGA	CTGCTGTAAT	CATTACGGTA	GCGGGCGTTC	AGGTACTGCT	CCATGGTCAT	1140
ATAGTTTCGC	TCTGAGAAAC	GATACCCGGC	GAACGTAATG	TCGGCATCCG	CATTATCAAA	1200
CCGTTTGGAG	TAGCTCAGAC	GCCAGGATTT	TCCCTGAAAC	GTTCTCTCTC	CCTCAATACG	1260
GGCTACTGAC	TGCGTGATAT	CAGCGGAAAG	GGTCCCCGGC	ACACCCAGGT	CCCAGCCGGC	1320
ACCGGCTGCC	AGTGCATTAT	AATCACCGGC	AAGCACAGCC	CCGCCATACA	GCGACCACTG	1380
GTTACTGAGC	CCCCAGGATG	CCTCTCCGGT	CGCAAATACA	GGCCCTTCGG	TCTCATGCCC	1440
GTATCCACGG	GAACGACCGG	AGACAAGTTT	GTACCGGACC	TGTCCCGGAC	GCGTCAGATA	1500
AGGAACCGAG	GCCGTATCGA	CCTGAAAGTT	TTCTTCCGTC	CGTTCTGTTC	AATAACCTCA	1560
ACATCAAGAC	GTCCGCGAAC	TGAACTGTCC	AGGTCCTGAA	TACTGAATGG	CCCTGCGGGG	1620
ACCATCGAGT	CGTACAGCAC	CCGTCCCTGC	TGCGACACCA	CAACACGGGC	ATTAGTCTCC	1680
GCAATCCCGG	TAATCTGCGG	TGCATAAGCC	TTCGCATTCT	TGGGGCGGCA	CATTCCGGGT	1740
CAGCGN						1746

(2) INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

-151-

(A) LENGTH: 723 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

TGTACTGAGC	ACGGCGAATA	TCCAGTGTTC	AAATTCCACT	TTGCAGCGAC	TGCATGATGT	60
CTGCGGCGCG	GTAACAATCA	GGGCATTACT	GTGTTTGCTG	GCGGCGATGG	AGACAACCTC	120
ACGCCCGCTA	CCGACCGTGC	CTTCCGCCTC	TTCTTTAGCC	GCCGTGAGCG	TGCCGCTGAC	180
CTGCTTCAGC	ACATCGACCA	GATCTTCGGC	TTTGCTGTAT	TTGAGATAGA	AAACCTGGCT	240
GTTGCCGCTG	CGTTCCATTT	CTGAGTCCAG	CCGACGGATC	AGGCGGCGCA	TTTTGTCCCG	300
CGTGGCCGGG	TCACCACTGA	CAATCACACT	GTTGGTGCGT	TCGTCGGCGA	CAATTTGAGA	360
TTTCAGCGTC	GCAGGCTGGT	TCTCGCCGCT	GTTTTTAGTC	AGGCTTTCCA	GCACGCGGC	420
GATTTCCGAA	GCAGAGGCGT	TATCCAGCGG	GATCACCTCT	TCAGTGCGAT	TANCCGCGTG	480
ATCCACACGC	TGGATCACTT	CCGTCAGCCG	CTCCACGACG	GAGGCGCCC	CGGTGAGCAT	540
AATCACGTTG	GAGGGATCGT	AATTAACAAC	GTTGCCTGAG	CCTGCGCTGT	CGATCATCTG	600
GCGCAGAATC	GGTGCCAGTT	CGCGTACCGA	AACATNACGT	ACCGGCACGA	CTTTGGTGAC	660
CATTTCATCG	CCCGCGTATT	GTCGCTGCCT	TCACCAACCA	GCGGCAGGGC	TCGACTTTCG	720
CGG						723

(2) INFORMATION FOR SEQ ID NO: 61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2556 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

60	CGGTAGGTAT	CACAKCCGTC	AACATAGACC	GATCGTCACG	CCGGCGTTGC	TAGAGGATCC
120	TTTACCCGGC	CGGCATGCAC	GGCGTGTCAT	TACATTTACC	CCGGYTCCAG	TTACCCTGAC
180	CATGATGTCA	GCTGCTCTCC	AGCGGGCGAA	TTCATCATAC	AGTGCTTCAG	ATCAGCACAT
240	GATTTCCGAC	GGCGGGCATA	TCCACGCCCT	GCAGTGCAGC	CCATCGTATT	ACCCAGCGCC
300	CAGCAGAGCC	TTATGCGGGC	TTAGCCATGA	CTCGGCGAAC	GCGGCAGATG	TGACGGTACA
360	TATACAGTCG	GAGCCTGAAC	GGTGGCTGCG	GATGGGTTTT	AACTGCGCTC	GGACTGGCGT
420	GGTGTTGATG	CCCTGAACGC	GTTTCGATTA	TGGGCGAACC	AGGCCAGTTT	CACCGGCTGC
480	GCAGACGGGG	GTTTGCCGCT	AGCGGTTTCA	GCTTTCTCCC	GTTCAGAGAT	ATATCCAGTT

-152-

CATTCGGTTT	CTGCCGGGGA	GATAACOTOC	CTGTCACGGG	GAAGTGTTGC	CGGAAGTGCT	540
TTGCGGACGG	GAGAGTCTGA	TGTTTTCGGC	GCTGTCTCTC	CGGCCATTGA	GGTGAGTTGC	600
AACTGCGCCT	CACCAAGCCT	GTTCTGGAGC	TOGGTTATAC	GCGTTTCTGC	CCGTGCGATC	660
TTCTTTTCTA	TCTTCTCGCG	GCTTTTCTCG	CTGCTGCGAC	CGAACAACAT	TCTCTGTAGT	720
TTAGCGACCA	GCGCTCTGAG	TGAGCTGATC	TCGCGGCATA	GCCGGTTATT	TCACCAGACA	780
GACGGACGAT	AACAGCCTGC	TGTGCGATCA	GCAGGGCCTT	CAGTTGCTCG	ATGTCGTCGG	840
GGAGTGTGTT	GTTCATTCCC	CTGTTTTATC	ACGGGTTATA	TCCGGATGCC	AGGCCGTTCT	900
GTCCGTTTGG	GATGTTGCCA	CGCGATCCCC	TCCAGTAGCA	TGGATAACTG	AGCTGGCGTC	960
AGGTGCACTT	TCCCTTCCCG	GGTTACCGGC	CAGACGAAGC	GGCCCCGTTC	CAGGCGTTTG	1020
GCGAACAGGC	ATAACCCGTC	ACGATCGGCC	CACAGTATTT	TCACCATTTT	GCCACTGCGG	1080
CCCCGGAAGA	CGAAGATATG	CCCGGAGAAC	GGGTCATCTT	TCAGCGTGTT	CTGCACCTTC	1140
GAAGCCAGGC	CGTTGAAGCC	ACAACGCATA	TCTGTGATGC	CAGCGATGAT	CCAGATTCTG	1200
GTACCGGTTG	GCAGCGTTAT	CATCGGGTAC	CTCCTTTTAT	TTCGCGGATT	AGCGCCCGTA	1260
ACATTTCCGG	AGTGAGAGGG	TCAAACAGTT	TTACCACACC	TGATTTAAGA	TGCAGCTCGC	1320
ACCGTGGGAC	GTTTCCGGGA	TCACACTCAG	GGCACTCATC	AGGCTTGTTA	CGCCAGAAGG	1380
GATTTGTAAC	TGGTCTGGTC	GGCTCTGGCG	TATCAGTCAG	AGCCACCGGG	ACAGGCATGC	1440
ATTCCTGTAT	GTCATCATCG	CTCAGTAAGC	CGTCCTCGTA	CTGGCTTTTC	CATTTAAACA	1500
GCAGGTTATC	ATTGATACCG	TGCTCTCTGG	CGATCCGGGC	AACAACAGCA	CCGGGCTGTA	1560
ATGCCTGCTT	AGCCAGACGG	ACCTTAAATT	CACGGCTGTA	GCTGGCTCGC	CGTTCTTTTC	1620
GCCATGTGCC	TTCGCTGATT	TGAGGCTCTG	TTAATTCCTT	CTTTCTGTTG	GCATAAAGGA	1680
TGGCGTCAAG	CTGAGCTAAT	GAAACTGAAT	CGGGCAATGG	CCATGCGATA	CCGGATGCAA	1740
TAAATCGCTG	AAAAAGCGTA	TGTATTGTGG	AATGACTGAG	ACCTAGACGC	TGAGCGATGG	1800
CCCGGATGGT	CAGTTTATCT	TCAAATCTTA	AACGCAGAGC	ATCAGGCAAA	TAAGAACGGA	1860
AGCAGGGAAT	ATCTTTTTT	GTCTGGGAAT	TCATCGTTCG	TGTCCATCTA	TATAGATGGG	1920
CGCGATTGTT	GCCAGACAGG	ACAATTTTCA	CAAGACGTCG	CAGATGGGGC	GCTTACCAGA	1980
AATGCGCGGG	TACGACAGTG	ACTCGTCAAA	TCTCAGTTGT	AGCACACGCG	GGATCAATTC	2040
CGGATTGTCT	GCCAGTACCG	CCTTTCGTGC	ATTCATCTTA	AATGTCCCTT	TACTGCAAAA	2100
ATGGACATTA	GTATCGGAAA	CAGGAAAGGG	AGGCGAAAGA	CGCTTTAAAT	GAGACGGTTA	2160
CCATTGTGTC	GGGCTGTGTA	CGTTCTCCCC	GGACAGACAG	CCTCAGTTCG	TAGAATCTAT	2220
AAATTACTGC	TACTGATGCT	GCCGGGGAAA	GGCGTAACGA	AAAAACAGCC	TCCGTTACCG	2280
GACAGCAAGG	AGGCTGAATG	GAGTTTACAG	GATTTGCTTT	TTTATAATGT	CTGGCCATGC	2340
AGTAAAACCG	GACAGGTTTT	ATTATCATGT	GAGGTATTCT	GACATAAAAT	GCTGGATTTT	2400

PCT/US97/21347 WO 98/22575

		_	$\overline{}$	
_	1	^	4	_

TATTTTGTGA	CGAATGCTGC	AAAATTGCAT	CTGCACTCTG	ATGTAGCTTT	TATCTGTTTC	460
AGTGAAGCAT	GCCCACAAAC	TGAGTTATTA	AGTTGTGGAA	GAACAGTTTT	GTCCCGCCTG	2520
CATCTCTCCT	TTCAAAAACC	AGTATGTCGC	CATGCC			2556

- (2) INFORMATION FOR SEQ ID NO: 62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 790 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

60	TACAATNATT	CCCACCAATA	AGAAATTACA	CCTCTGCTNC	TAAAAAATNT	CAGTTAGTGT
120	TGATGGGGTT	TAATATCTCT	TGGGATTCGA	AGGTAATGGC	CGGTTGGGTT	AATAAATTT
180	AAAGAT TGA G	CAAAAACAGT	ACAGCCGGCT	ACGCTGGTAC	AGGAAATATT	GAACAGAGTG
240	TTCTATGACT	AGCTATCTGG	AAACCCGGGG	GGGAAAGAGA	ATGGTGAAGA	AGCAGGTTGT
300	TCATCAGTCG	GACTGGCTGT	TGGATTATCT	AATAAGATGA	GTTTCCCCTG	ATGGTTCTGA
360	TCCGTCACCA	ATGTGCAGGA	TGTGCGGGCA	AGCAACAGGT	AAAACTGATG	GATAATGATG
420	CTGGAGTTTG	TGAGCTATTT	ACGGGTTACA	ACTCAGATAA	GTTGCGGGCG	AAGGGTGGAA
480	AACATCTGTC	GTCTCTGGAA	TTCCATTGAT	GAAGAGGCGA	CTGGAAGGGA	ACGAAGCCGT
540	TTGATGAACA	TTATCCAACA	ATGGGAATGG	TGATAGAGCA	CTGGAAATAT	AGTCGTGCTG
600	GTGTAAAAAT	AGGTTAAATC	AGGACTCAGC	TTTTAAAAAC	TTACAGAAAT	TATTGTATAT
660	TTATTCAGGC	TAAGCAGATC	GCGATGTGGT	GGCTTACAAA	TACCATTATG	TACTCATGAA
720	GGGAGATAGG	ACAGGGGAAT	ATAACGCCAT	ATAGGATCGA	TAGGATTACA	CTGTGCAGCG
780	TACCCCAGAT	TCMANTATGT	ATATCGGGAA	AACCAGGAGC	CTGTGGCTAT	CTGATTCATC
790						GGAACACCAT

- (2) INFORMATION FOR SEQ ID NO: 63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10906 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

GCGGCCGCAG	TACTGGATCT	CTTTGCGGCA	TGACGATGAG	GGGGAGAGAA	ATAAACTTAA	60
CCCAGTCATG	GCAGATGAAG	AACAGGCTTA	CGTAAAAGGG	TTATATGAAG	GGATTATGCT	120
GATTGGTAAT	ATAATCAATA	AGCCTGAAGA	AGCTAAAGCG	TTAATCAAGG	CAACTGAAAA	180

TGGCTGCAGA	ATGGTGAGTA	ACCGGCTGCA	ACTTCTACCC	GAAGAGCAGC	GTGTTCGTGC	240
CTATATGGCG	AATCCTGAAT	TGACCACTTA	TGGTTCCGGA	AAATATACAG	GATTAATGAT	300
GAAACATGcT	GGCGCAGTAA	ACGTOGCCGC	TTCCACCATT	AAAGGTTTCA	AACAGGTCTC	360
GATAGAGCAA	GTCATTGAAT	GGAATCCTCA	GGTAATTTT	GTGCAGAATC	GTTATCCTGC	420
TGTAGTGAAT	GAAATACAGT	CAAGCCCACA	GTGGCAGGTA	ATAGATGCTG	TCAAAAATCA	480
TCGTGTTTAT	TTGATGCCAG	AGTATGCCAA	AGCATGGGGC	TATCCGATGC	CCGAGGCTAT	540
GGGGaTTGGG	GAATTGTGGA	TGGCGAAAAA	GCTGTATCCA	GAAAAATTCA	ATGATGTTGA	600
TATGCATAAA	ATAGTCAATG	ACTGGTATAG	AACGTTTTAC	CGTACTGATT	ATCAGGGTGA	660
AGACTAATGC	GAGTGCTTGC	TGCGGGCAGT	TTACGCCGGG	TATGGAAATC	ACTTGTGTCA	720
GAGTATCAGG	CCGATAATAT	ACAGTGTGAT	TTTGGACCAG	CGGGTATATT	AAGGGAGCGT	780
ATTGAGGTGG	GTGAGGCATG	CGATTTTTT	GCATCAGCCA	ATATGACTCA	CCCACAGATA	840
TTAATGtCCG	CAGGanGAGC	ATTGTGTATT	AAACCTTTTG	CCAGAAATCG	TTTGTGTTTG	900
TATGTTCGGG	CGAATAAATT	CAATGAGAAT	GACGACTGGT	ATTCTTTATT	AAATCGGGAA	960
ACATTGCGAA	TCGGAACATC	AACGGCGGGA	TGTGATCCAT	CTGGTGATTA	CACTCAGGAA	1020
CTGTTTGAAA	ATATGGGGAG	TGTCGGTGAA	AAAATAAGGC	AACGGGCTGT	AGCATTAGTT	1080
GGGcgGGAGG	CATTCGTTTC	CTCTTCCAGG	AAATGCGATA	gcAGCGCAGT	GGTTAATTGA	1140
AAATGATTAT	ACTGATCTGT	TCATCGGTTA	TGCCAATTAC	GCTCCTGGCT	TGCAATCAAT	1200
TGATTCAGTA	AAAGTTATAG	AAATACCGGA	ACCTTATAAT	CCGATTGCTA	TCTATGGATT	1260
TGCCTGTCTG	ACCGATAATG	CCCTGCCACT	TGCCGACTTT	TTAGTTTCAC	CTGTTGCCAG	1320
AGGTATACTT	GAACAGCATG	GGTTTATGCC	TCCAGGTACG	TTATAGCCCC	CTGTCTTACA	1380
GCTGtCTCTT	gATCAGATCT	CCTGATCAAG	AGACTTCATC	ACCAGGTAAC	CCTCAACCAT	1440
ATCCTGCATA	TCCTGAAGTC	TGAACCAGCC	ATCCCACATA	ACTACCCAAC	CGGGGCGGCC	1500
TGTGCGTTTG	CTGTCATGCC	ATCGCCCCAG	TTTCGCCAGT	TTCAGACAGG	CCCATTTCAG	1560
TGTCGGCGTC	TGTGACGGAA	GCGGTTTTCC	TTCCAGCTTA	ACCCACAGCA	GTTTCCACTC	1620
TGTCGGCGTC	AGTATTTTCT	TACAGCTGTC	ATTTTGTGTT	TCTTCACTGA	TACCTCCCTG	1680
CCGCAGGCCa	GCACCCGTAC	CGCGATAAAC	GCCTTGATAA	CCACCATGCG	CTCAAGGTTA	1740
TCCCGGGTCT	GCATTCGCAG	CGATTCCACA	CATGTACCAC	CACTTTTCCA	CGCCTTGTGG	1800
TATTCCTCTA	TCAGCCaGCG	TCGCTCGTAA	TGGCTGACGA	TACGTCGCGC	ATCGGCGGCA	1860
CTCGCCACTT	TTTCTGACGT	CAGCAGATGC	CAGCAGGCAC	CGTCCTCTGC	CTGCTCCCGG	1920
CAACAGACAT	ACGTGAGCGG	GAGCGCCTGG	CCGCTGTTGT	CGGGATTTTT	TATGCTGAcT	1980
TCGTTGTAAC	TGATGAACAT	ccGGGCCtgg	CGGGCTGCCC	GCCCGCCTTT	TTGCATCACA	2040
TTCAGCGTGT	GGCTTCCCGC	GGTTGCCAGG	ACTTCCGGCA	GTTCGAAGAG	CTTGCCGGGT	2100

-155-

GCTTCTTCCA	GCCGGCGATT	CTGTGCAGCA	CGCACCACGA	AGCGCTGTCC	GTGGCTGACT	2160
TTATAATGCA	GGTAATGCTA	GATATCCGCT	TOCOGGTCAC	AGACAGTGAT	TACCCGTTTC	2220
TGTATCTCCC	CCAGCCGTTC	GGCCATACGC	TOOGAAGCOT	GCTGCCAGCG	GTAACTTTCT	2280
TTTTCTTCAT	AGGGACGTTC	TTTTCGCTGG	TGCTTAACAC	CATAGGTgtC	CGTGACCCGA	2340
CTCCAGCGCT	GCTGTTCGAT	AAGACCGACT	GGCAGGGCGC	TGTCGGGGGC	GTACATCAGG	2400
ACAGAGTGAG	CCAGCAGCCC	GCGCGTCTTC	GGGTTAGTGG	TGGTATTCCC	CAGGTCATCA	2460
GATGCCGTAC	TGTGGCTGAA	GTTAATGGTG	GTGGTGTCTT	CCAGTGCGAG	GAGCAGCGGA	2520
TGAGCCTCAC	ATGCCCTTAC	AGTGGCGGTA	AATCCGGCTT	CGGCAATGGC	TTGCGGGGAC	2580
ACAGACGGGT	TACGTATCAG	GCGGTACGCA	CCTTCAACCT	GAGCAGTGGA	CTGGGATGAT	2640
TTCACAATAG	AAAGACCTGC	ATGCTGAGCG	AGAGAAGAGG	TCAGTGACAC	AAGGCGTCGT	2700
GTACGACGCG	GATCACCGAG	ACGGGCATGT	CCAAACTGCT	CGTTAGCCCA	TGAATAACAA	2760
TCAGAAAGTA	CCATAACAGA	GTCGAATAAA	ATGAAATATA	AGAGAAGATC	AACGGGTGAA	2820
GAAAAAGTTC	AAAAAATGGC	TACCGGGGAG	GAAGGAAAGT	ACCGGATGGA	AAGAGCCCCC	2880
CTAAAGCAGA	CTGACAGACA	TCACAAATCC	CCGGGGGGGA	CTTGTGTATA	AGAGACAGGT	2940
CTTACAGGGG	GAGCGTCCGT	CTTTTTATCA	ACATCAGGCA	ATGACATAAC	ATTATGAACA	3000
AGCTCACAAG	TCTGATGGTT	AAATTTTATA	ATGCTCCTTA	CTAAGACCGT	ATTTTTTCAT	3060
TCTGAGATAG	AGTTTTTTCC	GCGGGATTTG	TAAATATTCA	GCAACCTCAT	TGATACGCCC	3120
CTGATGGATA	TTAAGTGCCT	CTGTGATTAT	CTGTCGCTCA	GCGTCCTCCA	CTCGTCTGTC	3180
AAGCGGTGTC	GGGGTTCCGA	CGTGCATCAA	CGGATTTGCT	GTTTCTGCCA	GCGGTAATAC	3240
TCCTACAGTA	AATAGTTCTG	CTGCATTGGC	CAGCTCTCGC	ACATTATTTG	GCCACATGCG	3300
GCGCATCATC	TCTTTGAGCA	TCTCTTTTCC	CACTTCCGGA	ACAGGATGGT	TAAGCCGTTG	3360
ACATGCTTTA	CAAAGGTAAT	GGCGAAACAG	TGGTTCAATA	TCATCGGGGC	GTTGAGTTAA	3420
TGGCAGGCAA	GCGATTTGTG	TCATTGCAAA	GCAGTAATAG	AGCTCCGCGA	TGATATGGTT	3480
GCTGGCGGCC	AGCTCGACCA	GCGAAGTGTC	TCCAATACCA	ATCAGGCGAA	AAGGTCGGTG	3540
TTCCTGGCTT	TGTAACTGAA	CCAGATGGTA	CTGCTGTTCA	CGCGTCAGGT	GTTCAGGATG	3600
GCTGAGCACT	AATGTTCCCC	CCTGAGCCAG	CGCAATGAAA	TCATTAAGCT	GTGGTGCATT	3660
GTCTGGTGTC	AGCTCGCGGT	AGATAAATTC	GCCTTGTGCA	TTACGTCCAA	ATTGGTGCAG	3720
ATAACGTGCA	CCGGTCATCC	GTCCTGTGCC	TGGGGCAC≎G	TAGAGCCAGA	CGGCAATATC	3780
TGTTTCAGAC	AACTGCTGTA	AACGTCGCCG	ATACTGATTT	ATCCATTCAC	TTCTCCCTAT	3840
CAACTCCACC	TGCAACGTCT	GTTGGCAATA	CTGACGACGC	GCAATGATTG	ATTGACGCTG	3900
GCGTAgcGCC	TCTTCAACCA	. GAGAAAGCAA	TTTGCCGGGA	TCAACCGGTT	TTTGCAAAAA	3960
ATCCCACGCG	CCTTTTTTA	CCGCATCAAC	TGCCATTGGC	ACGTCGCCGT	GCCCGGTaAT	4020

AAGCAGAATG	GGGATCTGTT	GATCATCCTG	GTGAAATAAC	ATCATCAAAT	CGATACCAGA	4080
GCAGCCAGGC	ATACACACAT	CACTTAGCAC	AATACCTGGC	CAGTCTGGTT	GTATCCACGT	4140
CTGCGCCTCA	AAAGGATTGT	TACAGGCAAA	AACCCGATAG	CCTGACTGTT	CAAGTAACTG	4200
TGTGTAGGCG	TCCAGCACGT	CAGCATCATC	ATCAATCAGC	AGAATCGAAT	ATTCACTACT	4260
TAGCATCTTC	CACATCCGTT	AGTCTGAATT	GCAGTACCAC	ACAGGCATTC	CTGGTCATCG	4320
TTGATGCCAG	CCGTAATTCA	CCTTTCATTT	GCTCCATCAA	CGACACACAA	ATTGAAAGAC	4380
CAATACCCAG	TCCTACTTCT	TTACTGGTGG	TAAACGGCTT	CAATAACGAA	GGCAACAATG	4440
CCTCAGGCCA	GCCCGGGCCA	TTATCGCCAA	TGAATACGTT	CAGCGTTTTA	CCCTGCATTT	4500
GCCAGTTAAC	GGTAATGACA	GCGCCTTGCC	CACAAACATC	AAGCGCATTC	GCCAGTACGT	4560
TAACCAGTAC	CTGCTGGGTT	CTGACCTCAT	CGCCTGAAAC	TGTGGCTGTA	CCTTGCGGCA	4620
GAACAAGCGT	AGCTTGCAAA	GGGCGATGAC	GCATGGCCAG	AAGTTCCCAG	GCCGCACTGA	4680
ACATCTGTGC	TAAATCAACG	GAATGGAGTG	ATATTTCCAG	TTCGGCGCGC	CGGGTAAACT	4740
GCCGTAGTGA	ACGGATAATG	GCGTCAATGC	GACCAATCAC	CCcTTCGGCT	TTACCAAGCA	4800
TCATGCTGGC	CTGTTCTGTC	TGGGTCTGTT	cAaTGcCTGC	GGGCTGTAAA	CAGATACATC	4860
GACAGCGCAT	TTAGCGGCTG	ATTGATCTCG	TGGGCCAGCG	TGGTCATCGT	TTGCCCGACT	4920
AnCCGCaGct	TCGCTGTCTG	AATCAGTTCG	TCCTGGGTGG	CTCGCAGATC	GGCTTC TAT C	4980
ACCTTTCGAT	CGGTAATTTC	TTGTTCAAGT	TGCTGTTTTT	GCACATTGAG	CTGCCCGAGA	5040
GTATGGCGTA	ATAATCCTGC	AATTCTCCCC	AGTTCATCAT	TCCCATAAAC	AGGAATAGCC	5100
GTTTCCGTGC	CTCCCAGACC	AATTTGCACA	ACGGCCTGAT	TCAGTAGGGT	AAAGCGTTTC	5160
ACCAACCGTG	AGCGGATAAA	ATAATGGTTG	AATACCCATG	CCAGCAGTAA	CGCCAGTGcT	5220
GTCGCCACCA	GGATCAGCCC	ACCgctAACG	CGAACAATTT	GTTCCATTCG	TTGATTAAAC	5280
ATCTGCATTT	GTTGATGAGT	ACTGCcAAGT	GCGCTTCCAG	TAACGTTCTG	AAGCGACCCA	5340
GTGTCGCTTC	CCTGGTGCGA	CTGGCATCCT	CTAAGGCTTT	TTGGGCGGTG	ACATATTCAC	5400
GCATCGTAGC	CGGCATTTTG	TTTTTTACGA	TTCCCATATC	CAGCAATTCA	TCGATAGTCT	5460
GCCTCAGGGT	AATGGTGCCA	GGCCAGTCAT	CCAGCATACG	TATATTTTCA	TCTGCCGTTT	5520
TTTTCAGATT	TTCAAAATAA	CGGAGATGAG	TTTCCACCTG	TGTGTCGTCA	TCACGTCCTG	5580
ATTTGAGTTC	ATTGAGTCTG	TCACGCAGAT	CGTCAACAAT	CTGATTTTCA	ATGCGTGCCA	5640
GGGTATAAAC	CTGCTGCTGT	TCATTTTGCA	CTTCACGAGA	TCGCTTCAGG	TATTGCGCCG	5700
TATCGCCyTG	TCGGGAGGCG	ATTTGATCCA	GCAGCGTTCC	CTGCTGCCAG	GTGAAATCCT	5760
GCACTAAAGA	ATTAAGCTCG	GTAGTAAAAT	CATCGTGTAA	CCAGTCAATC	CTCGCTGATA	5820
GCTCACTCAC	CTTTTCCCGT	AGTAAAAACA	TGTTGTAAAG	CGCACGATCC	AACTCGGATA	5880
ACAGTGATCG	ACTGTCCTGC	AAAAtGACCG	TCAGTTGTTG	GCGTTCCCGG	GATGACAGCC	5940

-157-

,	CCCGACTAAG	CCGTTCTATG	GTGTCGAGAT	GCTGAATAAT	CTGGGTACGA	AGTTGCAATC	6000
	GCACCGTGGT	GTTGGGAGCC	TGCAAAAATT	CATTTAGCTG	GTCTACCACC	AGATTCAGGT	6060
	TOCOTTCAAT	AAGGAAAGCA	GAGTGAATAC	GGGGAAAATA	CTCATCCAGC	GAGTAACGAA	6120
	TTTGTGAGCT	TTGTTCATGC	CATGAATACA	GACTGACACT	ACTGACAATC	AGGGTCAGAA	6180
	GTGCCCCCAT	CAGAAATGCG	CAACGTAAGC	TGGTACTGAT	ACTGACCTGT	CTTAAACGCT	6240
	GCCACAGCGT	TATGTTTTTC	ATTTCAGCTC	TTCCAGTTTT	TTTATCGCCA	GGCGCTGGTT	6300
	ATTCAGAAAC	CAGAGTTGCC	ATTCCATCAT	TTGCTGCTCG	GCAAAGCTTT	TGTTATCGAA	6360
	CTGTGCCAGC	CAGACGGGAT	CTTCACTGCT	GGCCGCTGCA	ACGGGCACTT	GTGTTAACAG	6420
	TGCACGTATT	TCTGGTAATG	GTTTCTTCAG	ACGTGCCTCG	GTACTGTGCA	GCGCTCGCCA	6480
	GGCATCTTTT	AGCTGTGCTA	ACCGAAAGCT	AATTGCCGTA	TCAAACAAGC	GCTGCACCAG	6540
	ACGCTGACGT	TTCAGGATAA	GGTGATAATT	CAGCGGGGGT	TGATTCATCA	GGAGCTGTTG	6600
	TTGCGTTGCC	CGCGGATTGT	CTGCGGCAAG	TGGTGTCACC	GGATATTTTC	CTGTATTGGC	6660
	ATCGGCCAGA	ATACGCTGTC	CTTTCGGACT	TAACAGGTAG	TGAATAAAGC	GACGGGCTGC	6720
	ATCGACGTGT	GGGCTTTTCC	TGAGAATTGC	AACGTAGGTG	GGGGATACCG	CAGACCGGGG	6780
	GAAATAGGTA	AAAGAGAGAT	GGGGGTCATT	TAACAGTAAA	TTAGCATAGT	TATCGATAAC	6840
	GGGGCCGGCA	ACGCCGAGTC	CGCTTTTTAT	TTTAnTCGcT	ACGCCAAAAC	TGCGGGAGGA	6900
	GATTGTCACC	AGGTTTCCTG	CACTTGTCAG	CAACGTTTCC	CATCCTTTCA	CCCAGCCTTT	6960
	TTGCTGTAGT	AATGACTCAA	CCATTAAATG	GTTAGTATCT	GAACGCGACG	GACTACTCAT	7020
	CAATAAAGCG	TCCTGATAGA	TCGGCAAAGC	AAGATOGTOO	CAGTCAGCAG	GGGCAGGAAG	7080
	GTGTTTTACA	GAAAGCGCCG	GACGATTAAT	GAGCAGACCA	AAACCTGATA	TTGCTACTGC	7140
	AACGGAGGTT	GCACGGATCG	ACTCCGGCAC	CAGGTTTTGG	CTTTCTGCGG	GTGCATCATC	7200
	AAACGGGGCC	AGTTTCTGGT	GCTCCTGAAG	GTGCTGGAGC	AGCATTGGTG	ATGAAGTCAG	7260
	GATAAGATCG	ACGTTTTCTA	CGTTGGCCGT	ATCAAGCAAc	TGTTCCAGTG	AGGCACTGGT	7320
	GCGGTTAAGC	GTACGGATCA	TTACCGACTC	AGGCTCTGTT	TGCCAGCGCT	GTATTATCCA	7380
	CGCGGTAGCT	CCGGGTGAGA	ATGTGGTGGC	CATCACCAGT	TCATTTCGTT	GAGCCCTGAC	7440
	GGCCCCGGCG	TCCATCAGCA	ACAGTAAAAG	AATCATGGTT	TTGATGCCGA	TTTCGCACCA	7500
	GCTAAAAAAT	CGGTTTGTGA	TCCAGGTCAT	TAATTATAAA	ACACCGCAAA	AATCGCATTG	7560
	AGACAAAAAT	TACCCGTTTC	AGACATTIGT	CTGATAACAC	GTCTGCTCAA	AGAGACCGTT	7620
	AATATATTAA	TCAGAGATTA	CCCGATAATC	AGCATGAGAT	TTGTTAATAT	CCGCACATGC	7680
	TAACAACAAA	CCAGATAAAG	CATAAATSTA	CCTTGTCTAT	GCATCAATAA	AATGGGTCAA	7740
	AAACAGGCTT	TGATTTTATT	ATTTTGTGTC	AATTGTGACA	CATTTTTCA	GTTTGATGTT	7800
	TCATYTCAAT	TATATGACTC	TCATTGTCAG	AATACTCCTG	ATGTTCATAT	CAATATAAAA	7860

-158-

TACAGGTGAA	GACATGTTAT	CAATATTTAA	AACGGGGCAA	TOGGOGGATA	GTGTTCCGGT	7920
GGAGAAAATT	CAGGTGACAT	ATCGTCGCTA	TCGTATGCAG	GOGTTACTTA	GCGTATTTCT	7980
GGGGTATCTT	GCATACTATA	TCGTGCGTAA	TAATTTCACT	TTATCGACGC	CTTATCTTAA	8040
AGAGCAATTA	GATCTCAGCG	CCACACAAAT	TGGCGTACTG	AGTAGCTGTA	TGCNTATCGC	8100
CTATGGTATC	AGCAAAGGAG	TGATGAGTAG	CCTTGCCGAT	AAAGCCAGTC	CGAAAGTCTT	8160
TATGGCGTGT	GGGCTGGTGT	TATGTGCCAT	CGTTAACGTT	GGCCTGGGAT	TCAGCACTGC	8220
ATTCTGGATT	TTTGCGGCAT	TGGTTGTTCT	GAATGGTCTT	TTCCAGGGAA	TGGGCGTTGG	8280
TCCTTCTTTC	ATCACTATTG	CTAACTGGTT	CCCTCGCCGG	GAGCGTGGTC	GGGTTGGTGC	8340
TTTCTGGAAT	ATCTCTCATA	ACGTCGGTGG	TGGTATTGTT	GCCCCTATTG	TTGGTGCCGC	8400
TTTTGCCCTA	CTCGGCAGCG	AGCACTGGCA	AGGTGCGAGC	TATATCGTTC	CGGCCTGCGT	8460
GGCTATCGTT	TTTGCGGTAA	TTGTGCTGAT	TCTCGGTAAA	GGTTCCCCAC	GTCAGGAAGG	8520
TCTACCCTCT	CTGGAAGAGA	TGATGCCGGA	AGAAAAAGTC	GTCCTGAATA	CCCGACAGAC	8580
GGTAAAAGCA	CCAGAAAACA	TGAGCGCCTT	TCAGATTTTC	TGCACTTATG	TATTACGCAA	8640
CAAAAATGCC	TGGTATGTCT	CACTGGTTGA	CGTATTTGTA	TACATGGTGC	GCTTCGGGAT	8700
GATTAGCTGG	TTGCCTATTT	ACCTGCTGAC	GGTGAAACAT	TTTTCTAAAG	AACAAATGAG	8760
CGTCGCGTTT	TTATTTTTTG	AATGGGCCGC	AATCCCTTCC	ACGCTACTTG	CCGGTTGGTT	8820
GTCAGACAAA	CTGTTTAAAG	GGCGTCGTAT	GCCATTGGCG	ATGATTTGTA	TGGCGCTGAT	8880
TTTCATTTGC	CTGATTGGCT	ACTGGAAAAG	TGAATCGCTG	TTTATGGTGA	CAATTTTTGC	8940
TGCCATTGTT	GGTTGCCTGA	TTTACGTTCC	ACAATTTCTG	GCTTCCGTTC	AGACTATGGA	9000
GATCGTTCCC	AGCTTTGCTG	TTGGTTCTGC	AGTAGGCTTA	CGCGGTTTTA	TGAGCTATAT	9060
CTTCGGTGCG	TCTCTGGGCA	CCAGCCTGTT	TGGTATTATG	GTCGATCATA	TTGGCTGGCA	9120
TGGCGGATTT	TATCTTCTTG	GCTGCGGTAT	TATTTGTTGC	ATCATTTTCT	GCTGGTTATC	9180
ACATCGTGGT	GCAATTGAAC	TTGAACGTCA	CAGAGCCGCA	TATATAAAAG	AACACTGATT	9240
ACCTTCCCCA	GGGCCGTCTC	CCTGGGGAGT	GGAGTATATT	ATGATTTATA	AGATATCTGG	9300
AAATCAGAGA	TTAATATGGA	AATTTTATAA	GACTGATTAC	AATAAATGGA	GATGGTATTG	9360
TCATGAGAAA	AATGGATATC	TTTTGTCTCA	ATCAGATAAC	GCATATAATT	CGCAATTGTT	9420
ATGCATTGAA	AATGCTAAAA	AACAGGGATA	CTCAGACGAA	TCGGTCTTGC	CACTTTTTCT	9480
ACATATTTCC	TATATTCAGG	AAAAAGGCTG	GAAATGGTAT	CAATGTTATG	ATTGTGGATA	9540
TATTGTAAAA	GAAACCTCTG	TTTTTTTTC	GACATACCAG	GAATGTGTCA	ATGATGTTAA	9600
AAGGAATATA	CTAGCATCTA	TGTGTAGTGG	TTGTAGTGGC	ACAGTAAATT	TGGCCACCTG	9660
ATTAAAGGTG	ATATTCTCAC	CACAACATAA	AACAACAAGA	AAACAAAGCG	TACCTTCTCT	9720
CCTGAGTTTA	AACTGGAATG	CGCCCAACTT	ATCGTTGATA	ACGGTTACTC	ATACCGGGAA	9780

PCT/US97/21347 WO 98/22575

-159-

GCTACTGAAG	CTATGAATGT	TGGTTTCTCT	ACTCTGGAGG	CATGGGTACG	TCAGCTCAGA	9840
CGGGAACGTC	AGGAGATCAC	GCCTTCTGCT	GCAGCACCAC	TCACATCAGA	GCAGCAACGT	9900
ATTCGTGAGC	TGGAAAAGCA	GGTGCGTCGT	CTGGAGGAAC	AAAATACGAT	ATTAAAAAAAG	9960
GCTACCGCGC	TCTTGATATC	AGACTTCCTG	AATAGTTACC	GATAATCGGG	AAACTCAGAG	10020
CGCATTATCC	GGTGGTCACA	CTCTGCCATG	TGTTCAGGGT	TCATCGCAGT	AGCTACAGAT	10080
ACTGGAAAAA	CCGTCCTGAA	AAACCAGATG	GGCTGTATTA	CACAGTCAGG	TACTTGAGCT	10140
ACATGGCATC	AGCCACGGTT	CGGCCGGAGC	AAGAAGCATC	GCCACAATGG	CAACCCGGAG	10200
AGGCTACCAG	ATGGGACGCT	GGCTTGCTGG	CAGGCTCATG	AAAGAGCTGG	GGTTGGTCAG	10260
CTGTCAGCAG	CCGACTCACC	GGTATAAACG	TGGTGGTCAT	GAACATGTTG	CTATCCCTAA	10320
AAGCAACAGO	AAACAGCGAC	CACTGGGGAG	CCCTGCATTG	CGGGATTGTA	TTGTTCAGCG	10380
GGCCATGCTG	ATGGCGATGG	GGCCGAGGAG	AGTGATTTTC	ATACGCTCTC	ATATGGTTTT	10440
CGACTTGTGC	GAAATGTCCA	CTACGCGATC	CGCACGGTGA	AACTGCAACT	CACCGACTTC	10500
AGGGGAAACT	CGGGGCCGCT	GGGTAATCTC	ACATAAAAGT	TCTTCGGTGT	CATAAACAAC	10560
GAGAGTATTT	GATTCCTTTA	TGGTGGCCTG	GTGCAGAGCT	GCCCTTTCCC	AGGACCTCCA	10620
TATAATTTT	GTAGCGGCAG	TCAGTGGCAC	ACTCAGTTAA	CTACTTTCAC	TTCAGTGACT	10680
TTGAATGAGT	CAGGGCTGCC	GTTAAAGGTG	TTAATGAAGG	CTTGTATTTT	CCACTTCTGG	10740
CCTGGTTCAA	GATTGGATGC	TGTGTCGATT	GTTTGACCGA	TAACGACTCC	ATCTTTTAAN	10800
AGATTAAATT	TTACATAAGC	ATTTTTGACA	ACAGAGTTTG	ATTTATTTNC	AGCATAACCC	10860
ACAATTGCCT	TCGTCCCACT	TGGGGTGTTT	TCCACATGAA	GGTTAG		10906

(2) INFORMATION FOR SEQ ID NO: 64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7430 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

ATGGTTATTT	TTATTTCCTG	CACCTTGCTT	CATTTGAAAT	AAAAACATAT	GCATACGACG	60
CTGCCATTGA	GCAGAAAAAT	ACAGGAATTA	ATGTTATGAG	TTAACCATAA	TACCTGTGTT	120
ATGAATATCT	GACATAAACA	AGAACAATTC	ATATCTTCTG	TATTCAGCAG	AAAATAAAA	180
GTTCGTCTGC	CATTCTCAAA	CTTATTCTTC	GGAATACGTT	GTTTCATGAA	AGAAGGGCC	240
GGAATAAAAG	CTGGTCACCG	TAATGCTAAT	ATTAATGCAG	ACTACCGCCT	TCTGGAATTA	300
ACAGTCATCA	ACCAGCACAA	ACCATTAGCA	ATCAAACAAA	TTTTAATTAA	CAAAATTTTA	360
GCTAATACAA	TTACTGCATT	AACCACTCTG	CAGTTTGCCT	TCTCAATAAG	TTACAGATGC	420

-160-

CAAACAATAC	TCTTTTATAT	GTTATAACAT	AACACAAACA	ATAAATAAAG	AACAGACGGC	480
ACTCCATTTC	TCCACGTAAG	TGAGCCATCA	GAATOGCTTA	TGAATGTGTA	CGGCAGACGT	540
ATACTCGTGT	TTTACTGCAG	CAACCGGAGC	AAAAGTTGCA	CTTCCACAGC	CTGGGTTAAG	600
TTTTTCATGC	TTGTGGGCTC	GTCCTCCCTC	CATTTCCACC	GCGGGCAAAC	AAGGCCATCT	660
TTTGTCTGGC	CACACAGCAG	ATGGAGAGTC	GAATTATGCT	GTCTGACGAC	ACCGGGAACA	720
AATATGCCAT	GCCTTCGCAC	AATGAACCCG	GGCATCATCG	TTTTATCTTT	ATAATCGAGA	780
CAGGTATGAG	GGAAAGTCGG	ATGATAAGCA	GATAGTGAGT	GAGGCGCTGG	AACATGGCGC	8 4 0
TCTGGCAAGA	GAAGTGTCAC	AGGTTACCTG	ATGATATGGG	GCAACCTGAT	ATCTACTTAC	900
TTTTTTGCCT	ACTCTCTTAC	TTCATGCCAG	CAGCGAGGGT	ATCGACATTG	TGTTTGAACG	960
CTGCCGTGTA	GGTAGCAGCG	AGGCCGCTAC	TGTCGGTAAG	TGCTTCCGGA	TAAAGCTCTC	1020
CTCCCGCTTG	TGCACCACTG	GCATTGGCGA	TTTGTTTCAC	CAAACGGGGA	TCTGTCTGGT	1080
TTTCGATAAA	GTACAATTTT	ACGTGCTCTC	TCTTAATTTG	ATTAATCAGT	TTCGCCACAT	1140
TTTTACTGCT	AGCTTCCGAC	TCAGTGGAGT	ACCCCACTGG	CGACAGAAAG	CGAACCCCGT	1200
AGGCGGCAGC	GAAATACCCA	AACGCATCAT	GACTGGTCAG	TACTTTACGT	TTTTCTCTTG	1260
GAATAGCAGC	AAACGTCTGC	GTGGCGTAAT	TATCCAGTTG	CTTCAACTGC	TGGATATAGC	1320
TGTCACCCTG	TTTTCGATAA	TCGCTGGCGT	GCTCCGGGTC	TGCTTTGCTC	AGGCCATTGA	1380
CAATGTTGTG	AGCATAGACA	ATACCGTTTT	TCATGCTGTT	CCAGGCGTGC	GGATCAGTGA	1440
TGGTGATCCC	ATCCTCTTTC	ATTTTCAGTG	TATCTATTCC	GTTAGACGCG	GTAATTACCT	1500
CACCTCTGTA	GCCAGAGGCT	TTCACCAGAC	GGTCCAGCCA	TCCCTCCAGT	CCCAATCCAT	1560
TGACAAAGAC	AACATCCGCC	TGTGCCAGCG	TTTTGCTGTC	TTTCGKCGAC	GGTTCAAATT	1620
CATGTGGATC	ACCATCCGGT	TGCACCAGAT	CAGTGACATG	AACGTATGGG	CCGCCAATCT	1680
GGCTGACCAT	ATCGCCCAGT	ACCGAGAAAC	TTGCCACCAC	ATTCAACTCT	TTTGCAATCA	1740
CCAGTGGGCT	CACTAGTAGG	CTGGACAGTG	CCACAACCAA	AATGGACCGT	TTCATCTTTC	1800
CTCCTTCATC	TCGTTGCTAT	GTGTAAAAAC	ACTTCTTGTC	AGCGACATCT	GCATAACATG	1860
CCGCCATTAG	AGCCAAACAG	AACTGAAAAG	CAGAAAAACA	GAGTGCTCGT	GAGGATGACT	1920
GCAGGACCTG	CAGGCAAATC	AGCGTAATAA	GACCAGATCA	GTCCAACCAG	ACTGGCGCAG	1980
GTACCAATAC	CCACTGCAGC	TAACAACATG	ATGGACAGAC	GTTGACTCCA	GAAACGCGCG	2040
CTGGCAGCCG	GTAACATCAT	AATACCGACT	GTCATCAGGG	TGCCAAGTAG	CTGGAAACCT	2100
GCCACCAGAT	TGAGTACCAC	CATTGACAAA	AACAGGCAGT	GGATCAGCGC	CCGCGACCGA	2160
CGTGACAGAA	CTTTCAGGAA	AGTGACATCA	AACGACTCAA	TCACCAGCAC	CCGGTAGATC	2220
AACGCCAGTA	CCAGAACCGA	ACCGGAACTA	ATTATGCCGA	TAGTGATCAG	AGCATTGGCG	2280
TCAATAGCCA	GAATGGAACC	GAACAGCACA	TGCAGCAGGT	CGACACTGGA	GCCACGCAAA	2340

-161-

GAGACCAGGG	TGACGCCAAG	TGCCAGCGAG	CCGAGGTAAA	ACCEGGEGAA	ACTGGCGTCT	2400
TCTCTCAATC	CAGTGCGGCG	GCTGACCACA	CCAGACAACA	TCGCCACAGA	CAGCCCGGCA	2460
ATGAAGCCAC	CGACTCCCAT	CGCAACCAGC	GACATGCCCG	ATACCAGGTA	GCCAATTGCT	2520
ACTCCCGGCA	ACACCGCATG	GGACAGTGCA	TCACCGATCA	GGCTCATACG	GCGCAGTAGC	2580
AAAAAACAG:	CAAGTGGCGC	GGCGCTCAGG	GTCAACGCCA	GACATCCGAC	CAGCGCCCGA	2640
CGCATAAAAC	CGAAATCGCC	AAATGGCTCG	CACAACAGGT	GCAGTAACAT	CATGGCAGCA	2700
GCCCCTGCTG	CGGTGGCGTG	GCTGCAGCCG	TGAGGGAATG	GAGTATATCG	GCACTTCTCC	2760
CCCATCGGTG	GCCTTCCGCA	CTGAGCATCA	GTACATGAGG	AAAGTATTTT	TCTACCTGTT	2820
CCATGTCATG	CAACACCGCA	AGAATTGTAC	GTCCTTCCAG	ATGTAGCTGC	CGAATAACAA	2880
CCAGCAGAGT	ACGGATAGTC	TGAATATCAA	TGCCAGTAAA	TGGTTCATCC	AGCAGAATAA	2940
CCGACGGCTG	CATCACCAGC	AGTCGTGCGA	ACAGTACGCG	CTGTAACTGA	CCACCGGAAA	3000
GTGTGCCGAT	GTGCATCGGC	GAAAATTCTG	TCATACCGAC	GGTATCCAGC	GCTTCGATAG	3060
CTTTTTTTCG	CCATAGACCG	GAAATACGAC	CGAACATCCC	GCTGTGTGGA	ATACATCCCA	3120
TCAGCACCAG	ATCGTTAACA	CTCAGTGGAA	ACTGGCGATC	AAATTCAGTC	AATTGGGGCA	3180
AATAACCTAA	CTGGCGTTGC	CCCTGCGGTG	CCATGCAGAA	GCAACCACCC	AGAGGTGGCA	3240
GCAGACCGGC	CAACGTTTTA	AGCAAGGTGG	ATTTACCTGT	GCCATTCGCT	CCGATAATGG	3300
CAGTCAGTGA	ACCGGTGTCA	AAACATCCAT	TCAGCGTACC	CAGCGGGTGC	TGTCCCGAAT	3360
AGCCAAATGC	CAGTGAATGT	AATGCGATCA	TGTCAGTACC	ACCGCCCAGG	AAATAAGAGT	3420
CCATAACAGT	ACCAGCAGCA	CACCGACGAT	ACCCAGTCGG	GCTATTGCGG	AAAAAGCATA	3480
AAGACTGACC	ACAGTATCCC	CCATCAAAAT	TGTTATAGTA	TAACATTATT	GCTTTATGGG	3540
TGCCGATGAT	AGGTAAGAAA	ATGTGTCATG	GCTTCTGCAG	CGTAAGCATA	CAGCGAGAGC	3600
AGTATTGACA	GGGATGCGTT	AGTCATTTĀG	CAGTGTAATG	CGCTAAATAG	NTGCGCGGAA	3 6 60
TAGTAGATCA	CTTTGAGGGT	ACTCAGCCCG	GATTGTGCGC	TCTGATCAAT	CGCCAAATCA	3720
AAACAAATCA	CCAACCGAAC	TGAGCAATGC	CGATCATAGC	ACCAATTTCC	CGTGACGAAC	3780
GACACCGGAT	GCAGAAAGCC	ATCCATAAAA	CACACGATAA	AAATTATGCC	CGCAGACTGA	3840
CTGCCATGCT	GATGCTGCAC	CGGGGCAACC	GTATCAACGA	CGTTGCCAGA	ACGCTCTGCT	3900
GCACCCGTTC	ATCTGTTGGA	. TGCTGGATTA	ACTGGTTACT	AAAATCATTO	CCTGCCGGGC	3960
GTGCCCATCG	CTGGCCATTT	GAGCATATCT	GCACACTGTT	ACGTGAGCTG	GTAAAACATT	4020
CTCCCGACGA	CTTTGGCTAC	AAGCGTTCAC	CCTGGAATAC	AGAACTGCTG	GCAATAAAAA	4080
ATCAATGAGA	TAACCGGTTG	CCTGTTAAAT	GCCGGAACCG	TTCGCCGTTG	GTTGCCGTCT	4140
GCGGGGATAG	TGTGGCTAAG	GGTTGTGCCA	GCTCTGCGTA	. TCCGTGACCC	GCATAAAGAT	4200
GAAAAGATGG	CAGCAATCC#	TAAGGCACTO	GACGAATGCA	. GCACAGAGCA	TCCGGTCTTT	4260

-162-

TATGAAGATG	AAGTGGATAT	CCATCTTAAT	CCCAAAATCG	GCGCTGACTG	GCAGTTACGC	4320
GGACAGCAAA	ACGGGTGATC	ACGCCGGGAC	AGAATGAAAA	ATATTATCTG	GCCGGAGCGC	4380
TGCACTGCAG	GACAGGTTAA	AGTCAGCCAT	GTGGGCGGCA	ACCGCAAAAA	TTCGGTGCTG	4440
TTCATCAGTC	TGCTGAAGCG	GCTTAAAGCG	ACATACTGTC	GAGCGAAAAC	CAGCACGCTG	4500
ATCGTGGGCA	ACAACATTAT	CCACAAAAGC	CGGGAAACAC	AGCGCTGGCT	GAAGGAGAAC	4560
CCGAAGTTCA	GGGGCATTTA	TCAGCCGGTT	TACTCGCCAT	GSGTGAACCA	TGTTGAACGG	4620
CTATGGCAGA	CACTTCTCGA	CACAATAATG	TGTAATCATC	AGTACCGCTC	AATGTGGCAA	4680
CTGGTGAAAA	AAGTTCGCCA	TTTTATGGAA	ACCGTCAGCC	CATTCCCGTA	GGGGAACATG	4740
GGCTGGCAAA	AGTGTAGCGG	TATTAGGAGC	AGCTATTTAG	GAGAACAGCT	CGCTGACCCG	4800
GTTGACTATG	ACTCAAGCCC	ATGACGAAGA	TAGCTTTCTG	GATCAACATC	GTTCAGTCTG	4860
CACGTCCCAA	TCCAGCCACC	AGCCACCAGC	CACCAGCCAC	CAGCCACCAG	CCACCAGCCA	4920
CCAGCCAGGC	TACAGTGCCA	TCCCGACCTC	CCCACGTAAA	CCCAGGGACA	GGCTAAAGGC	4980
AGAAAATGGG	GAAGGCAGTA	TGACTCTCCG	TGACACAGAT	GCGGGTACCT	GATGGGAGTG	5040
AGATCATCTT	CCCCTCCCGG	TCAGTTCCCG	GATCAACACC	GTGAGCAGCT	CTGGCGAAGG	5100
TTTTTCCAGC	GTCATTTTAC	CGTAACGAAA	TTCAACCTTA	CAGGAACTGG	CACAGACTGT	5160
GCACTAAGTG	GCAGTGGATA	AAAGCGGAGT	AAGAGCCGCC	ACAGGCTCTT	TCTGCTCATC	5220
AGGCATTATC	TCAACAGGTA	ATAATTCAAC	GCCAGCGCCA	GAAGAGGTTG	TTACCGGAAG	5280
ACGCCGCGCC	CCCCTTCGTT	CAGCCAGAGC	CTGAGCCATT	TGACCAGGAG	GTTATCATTG	5340
ATATCGTGTT	CCTGGTCAAT	ACGGGCAACA	GAGGTGCCTA	CGACGTTTTT	TCAGTTCGGT	5400
TATCTATTGA	CTTAACTCTT	TGGCCAGTAA	TGCTGCAGCC	CCCGTGCCAT	GAATAAACGA	5460
GTGGTCGCAG	ACCACGCAAC	ATGCAACATC	ATTCAGATCC	CCCGCTAATA	TTACAGGTAA	5520
TTCAGAATCA	GCAATACTTT	TCCCGACCAT	TAAAAGTTCT	GAGTCACGAT	CAGTTGACTC	5580
ATCACTTTCA	GTCGGGCTCG	GTGGAACAGG	ATGAAGACAA	TGTAATCTTA	TTCTCAAACC	5640
TTCTGGCATA	TGAACTATCA	TATTCATGGA	GGGAATTTCC	TTGTCCACTA	AATACTGTAT	5700
TTCTGCATCA	CTTAAAATCA	TCCAGGAATA	TACATGCATG	CCATATAAAT	TTTCTTTCGG	5760
GCATTTCAGG	GAGTATGGAA	ACACTTCATC	CAGAGGTGAT	AGTTTCTGTT	CCCACCATAA	5820
GTTTGTTTCA	AGAAGAACAA	GTATATCAGG	TTTTTCTTTA	TTTATAAGTT	CAAGAATGGG	5880
TATATATTT	TTATTGGTCA	TAAGAACATT	GAATACCAGT	ATACTTAAAC	CCAGAAATCC	5940
ATCAGAGTCC	TTTATTTCCT	TTACCTGCTT	CTTGCCAATT	ACTGTATAAG	GAATTATCCA	6000
TACCAACTGG	TAAGCGACAC	AAATTAAACT	TATTATCCCA	ACAAACAACT	CTGTAAATAA	6060
GTCAAGAAAA	ACAACAGACA	GAAAAACATT	CAAAGTACAC	AGCAAAAGTA	TCTGTAGTCG	6120
GGGAAAATCC	CATCCCCGA	CAACCCATGA	TGTATTACCG	GAAACAGGGA	TAAAAGTTAT	6180

PCT/US97/21347 WO 98/22575

-163-

GACTGCCAGA	AGGATAGCAG	AAAAAAAT	AACACAAGTT	ATCACAAATC	GCTCCTTGTT	6240
CTGAACCGGA	ACACAAAACT	GTCATATACG	TTTCAAAAGT	AAAATACAC	TGCTGCCACA	6300
AGATTTACAG	CGTAACCGGA	CAGCATATCC	TGATTACGGA	CAATCCATGA	AACCGCCTCA	6360
CCAGAAGCGT	CCATCACATC	CGTTTTTTCC	CTGTTTTATA	TTCCCCGAAA	CATTTTATTT	6420
TCAGGAATCT	CCGGGCCTTT	ATCCCGCATC	ATTGCAAAAT	GGCATCTGAA	TOGATCATGA	6480
TTTGGCATCC	ATCTCCGATC	ACAGTTTGGC	ATCACAATCG	ATCACGATTT	GGCATGCTTC	6540
CGATCATTGA	TTAGCATCCT	GCCAGTCACT	CCGGGAATTA	ACTCTTTTCG	CCACAGTCTT	6600
CATTGCCGTG	TTTAAACCAA	TGGAGACGGC	AATGTCCAAA	AAGAGAATAT	CCAGGAGCAC	6660
TATGGATACC	TGTTTTAAGA	TCCTTCAGCT	CAAGTTCGAC	CAGAAGCTGG	CTAACCGTTG	6720
TATCGGACTT	GCAAAACACC	AATGGGGATT	GATCTCTATT	TTGCGACACA	GACGCATTAT	6780
CAATACATCG	ATGGTGCGAT	CAAATACCTC	AGTGGTCTCA	CCGTGGATCA	AATCCAGCAA	6840
TTGCTCACAG	ATTAAGACTC	GTCGGGAGTT	TTGAGCCAAC	ACCAGCAGTA	ACCCATATTC	6900
ACCTTGAGTG	AAATCTACAG	GCTGTTGATG	AGCATCAACC	AGCACGTAAC	GGTCCGGGAT	6960
CAAGTGTCCA	GCCGTTAAAA	AAACCACTCT	ACTACCCTGC	TCGACCTAAG	CCTCGGCGTT	7020
CAGCCGCCTG	AACGGGTATG	GCAAGGGTGA	AAAGAAACAG	CATCCCCACA	GTACCGACCA	7080
GACGACAGGA	TGATGCTGGA	ACAGAAAGCA	TTCGCACCTC	TCTTAGAATT	AGACAGTGCG	7140
TACAGGATAC	GTAAGACAGG	GTGACGGGGC	GGCGATAAAC	TCTATTTACA	AAGCTGAAAA	7200
TTTTCTGACG	ATGAAAAACT	ATTCAACAAG	GTTATCTGAG	GCGTTAAAAT	AACCAGCTCG	7260
ATTAACGACT	AACTTGAGGT	GAATATGAAT	TTAAAAAATA	TAATTTTAAG	TACTGTTTTA	7320
TCAATCGCTA	GTTGTCATGC	CCTGGCTGTA	GGTAATTCTC	CAAATAGCGC	TATCTAACCT	7380
TCATGTGGGR	AAACACCCCC	AGTGGGGACS	AAGGSCAATT	GGTGGGGTTA		7430

(2) INFORMATION FOR SEQ ID NO: 65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6681 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

AGATTATTCT	GGCTCAGATT	CATTTTTCAT	CAGTCGCTTT	CCCCTATAAA	CCGTAAGGTT	60
CCATAGTGTC	GACGCTCTCG	CTTAATTCCC	ATATCGTCGA	TAGTCTTATT	AGCCGCTTCT	120
GTCAGGTCAG	AAAAAGTATC	ACGCTTCTTT	GGGAGTTCAA	GTCAGATTTC	TCGCCGTCGG	180
GCGATGCGCT	CAAAATGTTT	GTCTGTATGG	GGTCGCTTCA	TCACGTCAAG	CCATCGCGCT	240
GCCGCTCTCC	GCCAGAGTAC	AAGCTCTTCC	AGTTGTTCTG	CTTTTTATCT	TATCTGTGGC	300

-164-

GATGCAGTAT	CCTCCTCCGT	TTGTGTAAAT	CGTTGAGTGG	TGAATCACGC	AAAGGGGCTT	360
CTTTTTTCTG	ATCTATCCCC	ATATTCTTTA	GCGTTCTGGT	CGCAGCATCT	CTGATGTCGC	420
AGACACTGAA	CCTTTGTATT	TTCCATGATC	TTGTGGAGTT	TTOGATACAT	CTGCTCCGAT	480
GCTGGGTTAT	AAAGATCCGC	TCTTTATCAT	CCTTGGCTTG	TGTAAGCAAT	TCTCCCCAAC	540
GTTCTGCTGC	ACGCCCCCAT	AACTCTCTTC	TTTCCAGTTC	CTCAGCTTTT	TCATCATGTA	600
CCATTCGTGT	ATCCCCGTTT	ATCCAGTCTG	AACCGCACCG	GGTTTCCTGG	AGAATGTTTT	660
CTCTGTGAAC	TCAGGCTGCC	AGATCATCGT	TTCCGATGGA	AGCATAATAA	GCTTTTTCTG	720
CTTCTGCCGG	ARGAATATGG	CCCAGCTTTT	CCAGCAATCG	TCGATTGTCA	TACCAGTCCA	780
CCCACGTTAG	TGTGGCCAGC	TCCACTTCTG	TCCGTTTTTT	CCAGCTCTTA	CGGTTATTAC	840
CTCCGTTTTG	TAAAGACCAT	TGATGCTCTC	CGCCATTGCG	TOGTCATACG	AGTCGCCTGT	900
ACTCCCTGTT	GATGCCAGTA	ATCCGGCTTC	CTTAAGCCGT	TGCGGACACA	TAATGAGAGC	960
CTTTATCGCT	GTAATTGTCA	ACGACGGATG	AAAAGTGATC	CACTTATATC	TCCACCAACG	1020
GCCCAATATT	GATCCACCGT	TTTACTCAGG	ATTAGCTTCT	GCTATAACCC	CGGCCTTTCG	1080
TTTCTGTCTG	AGTCGATAGC	TTTCTCCTTT	GATTTGAACG	ACATGTGAGT	GGTGTAAGAT	1140
ACGGTCCAGC	ATCGCTGAGG	TCAGTGCTGC	ATCACCGGCG	AACGTTTGAT	CCCACTGCCC	1200
GAACGGCAGA	TTGGATGTCA	GGATCATTGC	GCTCTTTTCG	TAACGTTTAG	CGATGACCTG	1260
GAAGAACAGC	TTTGCTTCTT	CCTGACTGAA	CGGCAGATAG	CCTATTTCAT	CAATGATGAG	1320
CAGGCGGGG	GCCATTACTC	CACGCTGAAG	CGTCGTTTTA	TAACGGCCCT	GACGTTGTGC	1380
CGTAGATAAC	TGAAGTAACA	GATCTGCTGC	TGTTGTGAAG	CGAACTTTGA	TACCTGCACG	1440
GACTGCTTCA	TAGCCCATCG	CTATTGCCAG	ATGGGTTTTC	CCCACACCTG	ATGGCCCCAG	1500
TAATACGATA	TTTTCATTAC	GTTCTATGAA	GCTGAGTGAG	CGTAACGACT	GGAGTTGCTT	1560
CTGCGGTGCT	CCGGTGGCGA	ATGTGAAGTC	ATACTCTTCG	AACGTTTTCA	CCGCCGGGAA	1620
GGCTGCCATT	CGGGTATACA	TCGCCTGTTT	ACGTTGATGA	CGTGCCAGTT	TTTCTTCATG	1680
AAGCAGATGC	TCCAGGAAGT	CCATATAACT	CCATTCCTGG	TCTACTGCCT	GTTGTGACAG	1740
CGCAGGCGCT	GCGCTTATAA	GGCTTTCCAG	TTGCAACTGC	CCGGCGAGCG	CCATCAGTCG	1800
TTGATGTTGC	AGTTCCATCA	TCACGCCACT	CCTCTGCAGA	ATGAGTCGTA	GATGGAGAGT	1860
GGATGATGCA	GGGGGTGTTT	GTCGAAGTTC	ACCAGATTTT	CATCAAGATG	CACGTCATAC	1920
TCTTTTTCT	CCGGAGCAGT	GCCAGCATGG	ACTGCTGTCT	TCGAGCCAGC	GATCGCAGG	1980
ACGGGCCTGG	ATTGTTTCAT	GCTTTCGTTG	GTTAGCGACA	TOGTGCAGCC	AGCGCAGACC	2040
GTGGCGGTTG	GCTGTTTCAA	CATCGACAGT	GATCCCCATC	GGGCGCAGGC	GAGTCATTAG	2100
TGGGATGTAA	AAACTGTTAC	GGGTGTACTG	CACCATCCGT	TCCACCTTAC	CTTTAGTCTG	2160
TGCCCTGAAG	GGGCGACACA	GTCGGGGAGA	GAAGCCCATC	TCCTTGCCGA	ACTGCCACAG	2220

CGAAGGATGG	AACCGGTGCT	GACCGGTCTG	ATATGCGTCA	CGTTGCAGAA	CCACAGTTTT	2280
CATATTGTCA	TACAACACTT	CGCGCGGCAC	ACCACCAAAG	AAGCGGAACG	CATTACGATG	2340
GCAGGTCTCC	AGCGTGTCAT	AACGCATATT	GTCAGTGAAT	TCGATGTACA	GCATTCGGCT	2400
GTATCCGAGA	ACAGCAACGA	ACACGTGAAG	CGGTGAGCGA	CCATTACGCA	TAGTGCCCCA	2460
GTCAACCTGC	ATCTGTCGTC	CGGGTTCAGT	TTCGAACCGA	ACGGCAGGCT	CCTGCTCCTG	2520
AGGAACCGAG	AGAGAACGAA	TGAATGCCCT	GAGAATGGTC	ATTCCGCCAC	GATATCCCTG	2580
GTCTCTGATC	TCGCGAGCGA	TTACCGTTGC	CGGGATTTTG	TAAGGATGAG	CATCGGCGAT	2640
GCGTTGACGA	ATATAATCCC	GGTATTCATC	CAGGAGTGAA	GCAACAGCAG	GTCGCGGCGT	2700
ATATTTTGGC	GGCTCAGATT	TTGCCTGCAA	ATAACGTTTA	ACCGTATTGC	GGGAGATCCC	2760
CAGTTCTCTG	GCAATCGCCC	GGCTACTCAT	TCCCTGCTTG	TGCAGGATTT	TAATTTCCAT	2820
AACTGTCTCA	AAAGTGACCA	TAAACTCTCC	TGAATCAGGA	GAGCAGATTA	CCCCCTGGAT	2880
CTGATTTCAG	GCGTTGGGTG	TGGATCACTA	TTGCACCGTT	CGTGACAGTA	ATGGATTGTG	2940
TCAGACGGAC	GACGGGCCCA	TAACGCCTGC	TCCAGTGCAT	CCAGCACGAA	TGTTGTTTCC	3000
ATGGACGATG	AGACTCGCCA	TCCCACGATG	TATCCGGCGA	ACACATCAAT	GATGAACGCC	3060
ACATAAACAA	AGCCCCGCCA	TGTGCTTATC	CCGGTAAAAT	CAGCTACCCA	CAACTGGTCC	3120
GGGCGTTCTG	CGATGAACTG	ACGGTTTACA	CCGTTGCATG	CGGCAACAGC	TTTCCGGCTG	3180
ATTGTCATGC	GAACCTTTTG	CAAACCCCAT	ATATTTCAGA	CGATACCGTT	CAACGGTAGT	3240
GAACCCACCA	TCACCGCTCC	CGGTATCCCG	CTCATGCTGG	TATACCCAGA	CATGCAGGGG	3300
TTCCAGCGTA	CAGCCAATCT	TTGGGGCAAT	GGAACAAATT	GACGCCCACT	ACGAGTCATA	3360
CGACTTTCCA	GAACAATACG	GAGCGCCCGC	TGACGGACCA	CCAAAGAGCC	GCCATTATTC	3420
TTATTACCTT	TAACTAATAA	TGCCAATTCA	GACCCAAACA	CGGCATCATT	CGCTTCAGCC	3480
TCTGCGCCAT	TAATTAATGC	CAGGACTTGG	TCAAGAAAGC	GTTGCGCTTC	GTTTACATCT	3540
GTTGCTTGTC	GCAGGTAATA	AGGTATTCGT	TCAACAAACT	CGGAACGTGA	TAAAGGCTGA	3600
TGCTCCAGCA	AAACCTCAAG	CATTGCGGGC	CGCAACAAAC	GACGCTCAGC	ATCAACATTG	3660
GGAAACTTAA	CCTCAATGGC	ATATGTGGCA	AAATACTTAA	GTTGCTCCTT	AAGCCCCAAA	3720
TTAGGCATAA	GAGAATCAAT	TGAGCCAGAC	GCCACTGCAG	CGCTTGATTC	AATTGTTTCT	3780
ACATACTCGT	AGGAAGGTAC	AACAACATCT	GGAGCCAATG	TTTTAAGCTC	ATGGAGTTGA	3840
CGGATAATCG	GGGATAGAAC	CTCATCAGGA	TTACTGAACC	AATCAGTGGA	CCAAATACGG	3900
CTAATTCTCC	ACCCCAAACG	CTCCAAAACC	: TCTTGACGCA	AACGATCACG	GGCAGATTTA	396
GCTGAATGAT	` AAGCCGCACC	ATCGCACTCT	· ATACCCATTA	AGTAACAACC	CGGATCTTCT	402
ACCGACAGAT	CAATAAAGAA	TCCTGCAACC	CCACCTGAGG	TTCACACTCA	AACCCAGCGT	408
CATTCACTC	י ייירכי אייי איי	CCAACCTCAR	AGTCACTATC	CGGAGCCCTG	CCCGTATACG	414

-166-

TCGTGAGGGA ATCTA	ATTTG CCACTTTCGC	S CAAACTGTAA	AAAACCTTTC	AACGAAATAA	4200
CACCAAATTT ACTGG	ITTCA CTCGTCAATA	A CATCTTCAGA	ACGCATTGAA	CTAAACACAT	4260
GCATCCGTTT CTTTGA	ATCGA GTTAAAAGC	A CATTCAAGCG	GCGCCAGCMA	ACATCGGAAT	4320
TGACAGGCCC AAAGCC	GTTAA TAAACCTTT	CACCATGCTC	AGAAGGTCCA	CAGGTAAAGG	4380
AAATAAAGAT TACATO	CACGO TOATCACCT	GAACGTTCTC	AAGTTTTTC	ACAAAAAGTG	4440
GCTCTTCCAT GGCATA	ATAAG CCATCAATTO	G CATCGTTAAA	TTCAGTGCGA	TTTCGGCGCA	4500
ATTCATCAAT AGCGCC	GCTCA ATCTGATCG	CGTTGCCTGGA	ACTCATGGCC	ACTACCCCAA	4560
GAGATTCATC CAGCCC	GGTGT TGCGCATGA	r GAAGTACAGC	CTCAGCAACT	GCTTGGGCTT	4620
CTTCAATATT GTGTTC	GATTA GAGCAACGAG	CTTTTGATAC	ATAAGTAAAT	TTGATTCCAT	4680
ACTCTGGAGA CTCAGG	CATTT GGAGAAGGGA	A ATATCACCAA	ATCACTGTTA	TAAAAATGGC	4740
GGTTAGAGTA TGCAA	TTAAC TTTTCGTGT	C GTGAACGATA	GTGCCAATGC	AAACGTCTCA	4800
TAGGAAACAG TGGCAA	AAGCA GCATCCAAAA	A TGCCGTCAGT	ATCACTTAAA	GCCGCGACAT	4860
CATCGTCATC TTCTCC	CGGCG GAACTTCGA	CTGAAGTGGC	ACACTGAATT	TGGCCACCTG	4920
AACAGAGGTG ATATGO	CTCAC CTCAGAACA	A CACAGGTGCT	CCAATGAAAA	AAAGGAATTT	4980
CAGCGCAGAG TTTAAA	ACGCG AATCCGCTCA	A ACTGGTTGTT	GACCAGAACT	ACACGGTGGC	5040
AGATGCCGCC AAAGCT	TATGG ATATCGGCC	TTCCACAATG	ACAAGATGGG	TCAAACAACT	5100
GCGTGATGAG CGTCAG	GGGCA AAACACCAAA	A AGCCTCTCCG	ATAACACCAG	AACAAATCGA	5160
AATACGTGAG CTGAGG	gaaaa agctacaac	G CATTGAAATG	GAGAATGAAA	AAAAAATTAT	5220
GGCTACCGCG CTCTTC	GATGT CAGACTCCC	GAACAGTTCT	CGATAATCGG	GAAACTCAGA	5280
GCGCATTATC CTGTGC	GTCAC ACTCTGCCA	GTGTTCGGGG	TTCATCGCAG	CAGCTACAGA	5340
TACTGGAAAA ACCGTO	CCTGA AAAACCAGAG	GGCAGACGGG	CTGTATTACG	CAGTCAGGTA	5400
CTTGAGTTGC ATAACA	ATCAG CCATGGTTC	C GCCGGGGCAA	GAAGCATCGC	CACAATGGCA	5460
ACCCGGAGAG GCTACC	CAGAT GGGGCGCTG	G CTTGCCGGCA	GGCTCATGAA	AGAACTGGGA	5520
CTGGTCAGTT GCCAG	CAGCC TGCGCACCG	TATAAACGAG	GTGGTCGTGA	ACATGTCACT	5580
ATCCCGAATC ACCTTC	GGGCG GCAGTTCGCA	A GTGACAGAGC	CAAATCAGGT	ATGGTGCGGC	5640
GACGTGACGT ACATC	IGGAC GGGGAAACG	TGGGCATACC	TTGCCGTTGT	TCTCGACCTG	5700
TTTGCAAGGA AACCGC	GTAGG TTGGGCAAT	TCGTTCTCTC	CGGACAGCAG	ACTGACCATC	5760
AAAGCGCTGA AAATGG	GCCTA GGAAATCCG	CAGTAAACCAG	CCGGGGTAAT	GTTCCACAGC	5820
GATAGTAATA ATGCCC	GGTAT CAGTTTTTA	CATCACTCTG	TTTGCTGTTT	AACCAGACTG	5880
GTGTGATTAC TGATGO	CAGTG AAGACCTTC	CGCATCCTGA	CTCACACAGC	GATCGACCCT	5940
TTGTGTCCTG CCCTGG	SACCT GTCGGTTGC	GGAAGCGCCT	TCATGCGAGG	CGTCTCCTCA	6000
CCGATGCGCG TGACTC	CAAGA AGGGCCTGAG	GGTTTGTCTC	GTTACTGTCC	TGTCCGGGTT	6060

-167-

ATCTGTCTGG AGATTCAACT	CTGTTTCCTC	ACAGGAGCTC	TGTTATGGCA	GGTAAAGTTA	6120
CGGAAACCGC TGTTGTGGGT	GGCGTGGATA	CACATAAAGA	TCTGCACGTT	GCCGCTGTCG	6180
TAGATCAGAA CAATAAAGTT	CTGGGGACCC	AGTTTTTCTC	CACAATACGG	CAAGGTTACC	6240
GGCAGATGCT GGCATGGATG	ACTTCGTTTG	GGGCATTAAA	GCGAATTGGT	GTTGAGTGTA	6300
CTGGCACCTA TGGATCAGGT	CTGCTTCGCT	ATTTACAGAA	TGCCGGGTTA	GACGTTCTTG	6360
AGGTGACTGC GCCAGATCGG	ATGGAGCGAC	GCAAACGGGG	TAAAAGTGAC	ACGATTGATG	6420
CTGAATGTGC CGCTCACGCC	GCATTCTCCC	GAATAAGAAC	CGTCACACCC	AAAACGCGCA	6480
ATGGCATGAT TGAGTCTCTG	CGGGTATTAA	AAACTTGCCG	AAAAACAGCA	ATATCAGCCC	6540
GCAGAGTCGC TCTCCAGATT	ATCCATTCCA	ATATTATCTC	TGCCCCGGAT	GAATTACGTG	6600
AACAGCTCAG AAATATGACG	CGCATGCAGC	TCATCAGGAC	TCTGGGATCC	TGGCGGCCTG	6660
ATGCCAGTGA ATACCGCAAT	G				6681

(2) INFORMATION FOR SEQ ID NO: 66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1342 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - ([)) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

TATTCGCGCA	TACGCGTTGC	ACATGTTCTT	TTGGCGAACG	ATCATCGGCA	ATACAGAGTT	60
CCCAATGGGG	ATAGCTTTGA	GCCAGGACAG	AATCCAGACA	GGCACGCAMG	TAGATCTCCG	120
CTGGATTATA	AACAGGAATC	ACAATAGATA	TAACTGGAGG	GTGAGTCATA	CTGGCAAGCA	180
TCAGACTCAC	CWCTTCKTTG	CCAGGCAACG	AAGGTAATTC	CACCGTTTCT	ATCCATTCCT	240
CATAACCGAC	AGAAGACGGG	GTAACGCTGA	ACGTYTCGTT	ATAGAATGCT	TGCAGGCGCT	300
CTATTGACAT	ATCGCCATTG	TSCATCAATA	TGGATTTTWT	GATTTTTTCT	AGCGGCATGT	360
CACGATAGCT	TTGGTGTTCT	TTTTGAATGC	GAGCCAATAG	TGCAGACTCG	ACTACTTTCA	420
CATCAACAGC	CGCTATTTCA	AACTGATTAA	TTGCAAATTT	TGCTGCCTGT	TCTAATGGAT	480
CAAATCGTAA	TGCACAAGAG	GCGATTCCAG	ATAGAACAAC	GACTGACGCT	GACCGCTCGT	540
TTATATGGCA	ACGTTACTGT	TTCAAACTCA	TTGAACCCTT	TACCTGTATC	CAAATRTAAC	600
TTAGCTAATC	CTTGCTTTGG	TTGGGCAATT	AATAGAGATA	TTAAATTGAT	ACCATCCCTT	660
GCTAATATTT	GAGAGCTGCT	CCAAATCAAT	AATGAAAAAT	GGATCATTTC	CCTCTGCAAC	720
CCAACTTTGT	GAATTATCTA	TATCTATCGA	GAGCTGATTT	GTTGCCAGAT	AGGGCAGCAC	780
AACTGTATTT	TGCATTTTAC	TCACTGCAGG	AGAAACGTCC	CATGCTTCGC	ATGGTTTCCT	840
ACCAAGTAAC	ATCCCATAAC	GCTTAAAATG	TTCTCTTGCT	GACAACCCGG	TCTGTTTCAC	900

-168-

ATCCAAATAG	TTATGCAGAT	ACCAATGTTC	ATCAAAGTGA	GCTAGCAACT	CGTCTTGGTG	960
ATTTTTAACC	ATCACTTTTA	TTCTCCCTTA	TTGACAGGCA	GGCAACTGCG	CTGCTCAAAC	1020
TTCCCATACA	TAATGTAATG	AAGCAGCGGA	TTAATGCCTC	CTTGGGCCAC	ATCCGGATAG	1080
GTTTGCAAAT	ACCAGCGAGT	ATCAAACTGC	TCACTAGGGC	TATAACCTTT	ATCCGCCCCC	1140
ACGCTAATAA	AATGCTCAAG	AGCTGAGAGC	CCAGTGTCTG	CAACCTCTGG	GTAGCGATGT	1200
TGATACCAGA	GTTCATCAAA	CAATCCTGAA	GCGGCAANTA	CTCCGCGGCA	CTCTCTGTAG	1260
CTGTTGTTCT	GGATGGAGTC	TCCTCCTTAA	ATGTTCTGCC	AAGAGCACGA	ACTGGGGCTG	1320
TAATCTTCCA	AGAGACGGTT	CT				1342

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1580 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

CGAAGGAAGC AGTNTGCNGC	CTGCGCTGGC	GGAGTTGCGC	CTGTTCCCAC	CGATGATGCT	60
GTACATGAAT CCTCCGGCGA	ACAGAGCGGT	GAACTGGAAA	CCATGCTTGA	ACAGGCCGCG	120
GTCAATCAGG AACGGGAATT	TGATACCCAG	GTGGGGCTGG	CGTTAGGGCT	GTTTGAGCCG	180
GCGCTGGTGG TGATGATGGC	GGGCGTGGTG	CTGTTTATCG	TCATCGCCAT	CCTCGAGCCG	240
ATGCTGCAAC TGAACAATAT	GGTTGGAATG	TAATTTACGG	AGTTATCACA	TGAATTCGTT	300
ATCCCGCACA CAAAAACCAC	GGGCAGGTTT	TACCCTGCTG	GAAGTGATGG	TGGTGATTGT	360
TATTCTTGGC GTCCTGGCAA	GTCTGGTGGT	GCCTAACCTG	TTGGGCAACA	AAGAGAAARC	420
CGATCGGCAA AAAGCCATCA	GCGATATCGT	GGCGCTGGAG	AATGCGCTGG	ATATGTACCG	480
ACTGGATAAC GGGCGTTATC	CGACCACTGA	GCAGGGGCTT	GAGGCGCTGA	TCCAGCAACC	540
GGCCAATATG GCGGATTCCC	GTAACTACCG	TACCGGTGGA	TACATTAAAC	GACTGCCAAA	600
GGATCCGTGG GGCAATGATT	ATCAGTATCT	CAGCCCGGGT	GAAAAAGGGC	TGTTTGATGT	660
TTATACCCTG GGGGCAGATG	GTCAGGAAAA	TGGGGAGGGC	GCTGGCGCAG	ATATCGGTAA	720
CTGGAATTTG CAGGAGTTTC	AGTAATCAGT	GCCTGAACGC	GGATTCACAC	TTCTGGAAAT	780
CATGCTGGTG ATITTCCTTA	TCGGCCTTGC	CAGTGCGGGC	GTGATACAGA	CGTTTGCGAC	840
CGCTTCAGAG CCGCCTGCGA	AAAAAGCGGC	GCAGGATTTT	CTGACTCGCT	TTGCGCAGTT	900
TAAGGACAGG GCAGTGATCG	AAGGGCAAAC	ACTCGGTGTG	CTAATCGACC	CGCCTGGCTA	960
TCAGTTTATG CAGCGTCGTC	ACGGACAGTG	GCTACCCGTT	TCTGCGACCC	GCTTATCGAC	1020
ACAGGTTACG GTGCCAAAAC	AGGTGCAGAT	GCTGTTACAA	CCCGGCAGTG	ATATCTGGCA	1080

PCT/US97/21347 WO 98/22575

-169-

GAAGGAGTAT	GCGCTGGAGC	TGCAACGTCG	TCGCCTGACG	CTGCACGATA	TTGAACTGGA	1140
GTTGCAAAAA	GAGGCGAAAA	AGAAGACGCC	ACAGATCCGT	TTTTCGCCTT	TTGAACCCGC	1200
CACGCCGTTT	ACGCTGCGCT	TCTACTCAGC	GGCGCAAAAC	GCATGTTGGG	CGGTAAAACT	1260
GGCACACGAT	GGCGCGTTAT	CCCTCAGTCA	ATGTGATGAG	AGGATGCCAT	GAAGCGTGGA	1320
TTTACCTTGC	TGGAAGTGAT	GCTCGCGCTG	GCGATTTTTG	CGCTGGCTGC	CACGGCGGTG	1380
TTACAGATTG	CCAGCGGCGC	GCTGAGTAAT	CAGCACGTTC	TTGAGGAAAA	AACGGTAGCG	1440
GGCTGGGTAG	CTGAAAACCA	GACCGCACTG	CTCTACCTGA	TGACCCGCGA	ACAACGGGCG	1500
GTCAGGCACC	AGGGCGAGAG	CGATATGGCA	GGAAGCCGCT	GGKTCTGGCG	AACCACACCA	1560
CTGAATACCG	GTAATGCGCT					1580

(2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3241 base pairs
- (B) TYFE: nucleic acid
 (C) STFANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

(CTTAACCATT	ACCCAGCATT	TGGTAGTTAA	ATAGTCGTTA	AAAGCATAAA	ACATGGACAT	60
,	rgtgccatcc	CAGCTAAAGC	ATCCATTACC	GCCTGACAGG	GATAAAAATA	AAAAAGCAGG	120
(GAACCATTTT	TTCATCAGAA	ATCACTTCCG	TAATTACAGT	TATTCATTTA	GGTATGACTC	180
į	AGTTATAAAT	CATGCTCATA	CTGGCCGTGG	TCTGGRAATC	CCCGCCATTC	AGTATCCCGC	240
•	IGCCATTACG	AAAGGGCACT	GAAGTAAAGG	TGAACGTTGA	ACGTGCTGTG	TCCAGACCTG	300
	CTGTCACTCC	GTAACCATTT	CCTGAACCAT	TACCTAATAT	AAGAGGTGTT	GACATTCCTT	360
	TTCCCTGATA	CAGCGCTATA	CCAAAATGAG	TTATATTTGT	TGCCAGTACA	TTATTCTGAC	420
	CTCCTCCCAT	AGTATTTCCC	GTAACTTTTA	TCCAGAGAGA	GCCACTCTTA	TACGGACAGG	480
	ATATGCTTAT	GGTTTTTGTG	ACTTCACCAC	GTGAGTTGTC	CACGTGCTCA	GGATTAATAT	540
	TCCCAAAATC	AACAACAATA	TTCTGCCCGT	TATTAATGGT	GCATGGGGG	ATATAAACAT	600
	TCCCCCTGAT	GTTAATCTGC	ACATCAGCCA	GTACAGCGAC	CGATGTCAGA	AGCAACGATA	660
	TAAATAATGA	TAAACGAATC	ATTCCCCTCC	GGAGAGCGGT	ACAGAAAACA	TTTTATTTTA	720
	CGAGATATAA	AATTAACGTA	TTTTAGTTGA	TACTATTACG	AATATGATGC	AACCAGCGTT	780
	GCTGTTGCAG	AGAAAGGACC	GGCTATCAAA	TTCTGCATAT	TCCCTTTATA	TCCAAGTTTG	840
	GCATGAAGTG	ATATAGTTTT	ATCTGCATTA	TTACCTGTGA	TTTTTCCGGG	CGTAAATGGA	900
	GTCCCTAAAG	TTATCGCAGT	CCCAATATTT	CCTGCATTAC	TGTTATAAAG	ATAAACGAGT	960
	AACCCATCAG	AAGATGTGTT	TGATGTATTC	TGAACTAAAA	TAGCATTGTT	ATAAGTGTTT	1020

-170-

GTTGCCGTTA	TCGTAACCTT	CATTGTTCCC	AGATTATAGG	GACACCGCAT	ATTCACAGTA	1080
AACTCTTTTT	CGTGATTTCC	ATTTTGACTO	AGGGTCTGAA	TOTOTACATO	CTGCCAGTCA	1140
ACAGTTGTGT	TGCTTACAGT	ACAGGCAGGA	ATAATCAGTT	TTCCTCTGAA	GGTCAGATTA	1200
TCAACTGCAT	GTACATGCTG	AGACATTAAC	ACTGCCCCCA	GCATTACCGG	AAGACACAAA	1260
CCTCTTATCT	TTTTCATCTG	AAATATCCTG	TACAAAAATT	TTGCTAACGA	TATGTCAATT	1320
CAAACGTGGC	TGTTGCTTCA	TAATCACCGG	GTACCACACT	CTTCGTCCGC	AGGCTTCCGG	1380
CGTTGCCACA	ACATACGCGC	CGAAAGGAAG	CTCAAGACTG	TTTCCGGTAA	CCTTTTCCCC	1440
CTGGCCTTTG	TTATGGGAGG	TGCCGGGTTT	CAGCAGACTG	CTGCCATCGG	TGTCCAGCAG	1500
TGCAATGCCT	AACCGGCCAG	CATTCACTCC	GGTTACCTTC	AGATGGCCCG	GGAGGGCGCC	1560
TCTTCCGTCC	CCTTAAAGGT	CAGGGTCACA	ATTTTGCCAA	CTGCTGTTGC	ATGGCAGTTT	1620
TCCAGCCTGA	TGACAAACGA	CTCTGTCGGC	GAACGTCCGG	GCGGATACCA	GAAATCCCTG	1680
GACGCCCGGG	TTTTGAAGAC	GACATGTTTA	TTCAGACTGT	CACCGGACAC	ATGGCAGGGT	1740
CTGTCAAGCA	GATTACCCCT	GAATGCCACA	TCTGAGGCTA	TTGCCTGTCC	GGCAGACAGT	1800
GCGGCAAACA	GTAAAAGAGC	GCCTGTGCTT	TTTATCATCA	CATTCCCTTA	CTCATATTTT	1860
ATGCTCAGAC	GCAGCATGGC	CGGATTGCTC	CTGGCATCAG	AATACTCACC	CTCCTGTGTC	1920
GCCCTTTTCC	TCCAGGCGGC	CAGCATCTCC	TCCTGCCGCC	GGTCAGGCCG	GCACAGTAAA	1980
AAGGTATCAC	CATCGTGTAT	AACAAGATGG	TCACAGCCGG	ATAGCTTACG	GTCAGGAAGT	2040
AAAGCACTTC	CGCTTCCGGG	ACCGGTTACC	AGTGAGCCGG	AGACTGTCAT	CGCAACGCCC	2100
CGTTTTCCGG	GCTGAAGTGC	ACCACCGTCC	CCACATCCTG	CCAGCCTCAG	CATCAGAGGT	2160
GCTCCGGCTG	CCGCAGAGTG	ATTTTCCGGC	CGGAGGYTTA	ACGGCACCTC	ATTACTCACC	2220
AGCGTGCAGG	GTGAGGACAG	CAGTGCACCA	CTGACGGTCA	GGCTTCCGGT	GCGTCCCCCC	2280
CGTTCATTTA	TCCGGTAATG	ACGCAACTCA	TCTGCAGTAA	AGACGTCATC	GTATATACCC	2340
CGCTCTTCAG	CCCGCAGGAA	AGTATGGATG	AAACCACTCA	GCGACAGTGC	AATAAGATAC	2400
AGTACTGCTG	TTGTTTTATT	CACAACCATA	ATATCCCACC	CGCATTTAAC	CGTTATTGCG	2460
GTACATTATT	TCTCTTTTTT	CACAGAGCAA	CGGCTACCAT	TACAGATAAA	CGACAGTACC	2520
GGGCGACCAC	CATAGTCATT	AATATAAGAC	AGATAAGGGG	TATTATAATT	TGCCGATTTT	2580
ACTGTCTGCT	CTGAACGGGG	AGACAGCATC	ACGGTTTCAA	ACTCACCTTC	CTCTGCCTGC	2640
TTTTCACTTC	CTCCCAGACC	AATAACAGTG	ACATAATAGG	GCGTTGGGTT	TTCAATACGA	2700
TACCCACCGC	TGACTTTGTT	CAGAATTAAC	TGGTCCTGCC	ATACTTCATT	TGGTCTGGTT	2760
TTAATTGCTG	CCGGGCGATA	AAAAAGCTTT	ATTTTGGTCT	GTAAGGCTAT	CTGCAGTACA	2820
TTGGCCTTTT	CACTCCTCGG	CGGTATTTCC	CTGAGATTAA	AATAAAACAG	TGATTCCCTG	2880
TCCTGAGGAA	GTTTACTGAT	ATCCGGTGTG	GTACTCAGCC	TGACCATGCT	TTTCGCACCC	2940

-171-

GGCTCAAGGC	GCTGAACCGG	AGGGGTGGCA	ATAACCGGCC	CTGTAATAAT	TTTTTCCTGA	3000
TTTTCATTTT	CTATCCATGC	CTGAGCAAGA	TAGGGCAGTT	GTTTGTTATC	ATTGGAGATA	3060
TCAAGCGTCA	TTGACTTCTC	ACTCCCGTCA	AACACCGCGC	GGGTTCTGTC	CAGCGAAACA	3120
GCAGCGTCTG	CCCCGGATAT	AACAAACAGG	GGGATGGCAG	CCATCAGAAT	CTTTTTTCGA	3180
ATCATACTTA	ATTTCCACAT	TCTGTAATTT	CACCTGGTCC	GGAAAATGGC	ATAACCGCAT	3240
Т						3241

(2) INFORMATION FOR SEQ ID NO: 69:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 398 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

AACGTGGATC	TCCAGCTGAT	CGGTGCCGTA	TTCCAGGTCG	TAAGTTTCAC	TGATGGTTTC	60
ACGCGGCAGT	TTGCCCGGTT	TACGGACCGG	TACAAAGCCA	ACGCCCAGAC	CCAGAGCTAC	120
CGGAGCGCCA	AACAAGAAGC	CACGCGCTTC	GGTGCCGACA	ACTTTGGTAA	TGCCCGCATT	180
TTTGTAACGC	TCAACCAGCA	AGTCGATGCT	GAGAGCGTAA	TTTTCGGGTC	TTCCAGTAAG	240
CTGGTGACAT	CGCGGAAAAG	AATGCCGGGT	TTTGGGTAGT	CCTGAATGCT	TTTGATGCTA	300
TTTTTGAGAT	ACTCAAGCTG	CTGTGCATCG	CGGGKCATAA	GTGTATGCCT	GCTTGTTACG	360
GTGGTACTCA	CGGCGCGTTT	TTAAACGTAT	CAAAAGTT			398

(2) INFORMATION FOR SEQ ID NO: 70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17710 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

CAGTTNCNGT	TCTCATAGAC	AGATTGATAA	AATCGTAAAC	AGCCCCTAGC	ATTCCCGTTT	60
CCTTTGCACA	CATATTCAGG	CACGGGGATA	AAGTATAAAG	AATGTCGTAC	TGCTGCTACC	120
AGAGCAATAT	TCCCCCCTGA	TGGCCGTATC	AGAGATAGTA	TGCCGGTATT	TTGCGGGTGG	180
TTCCCGTCAG	GTTATCGTGT	ACCTCCACGG	TCGTAGTCAC	CACCGGCATT	CCGGCYTTTC	240
TCAGCCTCAA	AACATCAGCT	GCAATACGCT	GACTGCCGAA	CCAGAACAGG	CCGTCCAGTG	300
CAGTCACCAG	CAACCCCGCC	TCCAGCGCAT	GCTTCAGCCG	TTCACGGGGC	GCTTTCACTT	360
CCCGGGCAAT	CTGCTGGTAT	GGCGATGATG	TGTTTTCATT	CCCAATCACC	CGGCGAATAC	420

-172-

GATGAGACAG	ATGATACCGG	TATGTATCCG	GCACACCGGA	AAGGCTGGCC	TTCAGGCTGT	480
ACACGCAGCC	AAATCGTTTA	TCATTGAACA	CCACATTTTT	CTGGCTGATG	CCCCATTCTT	540
CACGCAGCGC	GGCAATCAGT	TGTGGTGTAC	GGGTAAGCAA	CAAGCGAAAA	GGCAGTTCAA	600
AACTGGTGAC	ATAATCCACA	TTCAACAGGG	CAATGCGAAG	TCGTTCTTCT	GGTCCGGCTT	660
CTGTCTGCCG	GCACTCCTCC	AGGACATCCT	GCCACTGCAG	GCGAAGACGG	GAAGACTCAT	720
TCAGTTCTGT	AAAGCAGTAT	TTATCCGCCA	GATAGTCAAT	TCGTGTATGC	ATACTGAAGA	780
GTATTCCGTA	TAAAGATTCA	GCTGGCAAAA	CTTTATCAGT	CTGTAAAAAC	TAACGGAAGA	840
GTCGATATTT	CTCCCGACAA	TCACCGGATG	ATTGTTGCAA	TACCTCGTGG	CATCAGAGAC	900
TGAACAGCAG	TTTTTAACGC	AACGTATTGC	TCTGATGTAT	CAGGCCGGAC	AACCCGAAAA	960
CAGCCTTCCA	CCCGGCATTG	TCCGCCAGCG	CTTATCACCG	GCCAGGTCTG	TTGCAGTAAA	1020
TCCGCCACTT	GCGAACATGC	TTCATCAACT	GTGACACTGG	CCCGCGGATG	GCAAATGCTC	1080
GTCTGGCTGA	GCAGCAACAG	GCATCGCATT	GTTGCTCCTC	TATGTTGTTC	CCGCAACCAG	1140
CGTAATACCA	CCGGCGAGGA	TGGACAGGCA	GTGTGATTAC	GCTCCGTAAT	ACGTTCGTGC	1200
ACCCGTCGGT	GAAAGGAACT	ACAGAATGTC	TGAATCTGTT	GCCCGTTGAT	GTATCCTTCT	1260
GTCGAATGAA	GTGTGAAGTG	GATTGCCAGC	AGATGCGGCC	AGTGATCCAC	CGCCTGCTGA	1320
ACAAAACGCC	GGATTTCCCC	CGGCTCTGAA	AGTAAGGCTT	CGGTTATTTG	CACTATTTTA	1380
TCTCTGTTGA	ATTTGGTTAA	GTCGGTGCAG	ACGCATCAAC	ACAAGTACGG	TTCGATGCAA	1440
ACAGCTGTGA	CTGGCAATAT	GAAAGGAATG	ATGAATCAGT	CAGGATGACA	AAGTGCCGGC	1500
TGACCGGAGG	GGACGCAGGA	AGATTCACGG	GGGGACCAGC	ACCAGGGAAC	AGCGCCACAA	1560
TACCAGCGCT	GACACGTTGA	ACATTGCCAG	CGTACCGGTA	TCACAACACG	TTTCATACTT	1620
CTGCCCCCGT	GATTCTTCGA	TTCGTTACTG	TATCTACTGT	GACACTTCGC	TTTTATACCT	1680
GCGGCTGGAT	CGGCCCGGCT	TGATGAATCT	TCACTGATCA	GCTTATAAAA	CCCTCTGTCG	1740
GTCATACCGG	TGAAACTGGT	GATATAGTTC	ATGTCAATCA	GGGAATTATC	GGCACGCAGA	1800
AATACGCTGT	CGTGGCTTGT	TGTAGTCAAC	ATGGTCAGAA	TGTCCTCTGT	GAGATTTATG	1860
AAGATTGTGC	GAATGCGGGG	AATCTACTGA	GCTGTGCTTT	CAGAACTGGC	CTGTTACGGG	1920
AKRSCAGGGA	TTACCGGCGG	GGTAACGGGC	TTCCGGATCA	TACACACCAC	GATTATCGCG	1980
GACAAAATCA	CTGAACGCCC	ATATCACCTC	TTTAAGTATG	TCTTCGCAGC	CCGGTACATG	2040
ACGATCCAGC	GCCACATCCC	GAGTGGTACT	ACTTTGATGC	GCCCGGTGAC	ACAAAGCCCG	2100
GATTGTTCCA	GACATCCTGA	ATCAAACGCC	CCAGATTAGG	GGCGTCGAAA	TATGCCTCTC	2160
TGACCATTAT	ATTCCGGTGT	ACAGGTAGCA	GGTCAGAAGT	GACAATGCGT	CACCTGACGT	2220
TAAAAGTCAC	TACACCCAAG	ATGACGTTCA	ACAGCACCAT	GCGATTCAAT	GTAAGCCCGG	2280
GCTGTCTGTT	CCAGTACACC	AGGCTCAGCG	TTGTATGTGT	TAGCTGCATC	AAATACCAAC	2340

-173-

GACAGCACTT	CAGGATACAC	AACCAGATGT	GTAATGGAGT	TATCTTCACC	CAATACTTTT	2400
CCCCACGCCT	GCTCAATCAG	ATTTCTGAGA	ACCACCACCT	CACGACTCTT	ACACCAGACA	2460
TCGTTATTAA	GTAGCAGCAC	CATAAGATAA	GGAGTGGTAT	CGTTAGTCAC	AGCCTCCCTA	2520
CTCCAGAGAT	AATATAAAGG	GGTGGGCTCA	ACAGATTTAT	CTTTACGTCG	CTTACACTGC	2580
AAATATTCAG	AAATGAGTCT	ATGCAGTTCA	CCAGTAAAAT	CCGCCATCAG	AGAGGGAATG	2640
GCCTTATTAA	TACCAGGGCA	AGGTATTAAT	TTAAATTGTA	ATAATTTAAT	TTCAGGATGT	2700
GTGGCTGCAG	CCCGATACAG	AGTTGCAAGG	ACACACTTTT	GCCAGAGGGC	GTTACTGGAA	2760
AGCTTAACGT	TTGATTCTGT	ATACATAATA	AATCACCTTA	CAGTTACAAC	AGGTCAAAAA	2820
CCGCTGTAGC	CAGAGTTACG	CTGGCCTGAT	GCTTTAGTAC	CGGGCTTCGT	CAGATAATCC	2880
AGACGCTCCA	ATAAGCGCTG	ATACTGCTCA	GGGAAATCAG	GATCATGAAT	ATCCTGGATG	2940
TCACGTCCAT	TAGCAGGGAA	ATGAATAACG	CAGCCCCCTG	GATTAACAAT	GCAGAAATCG	3000
TCCTGAGGTA	CTGATCAATA	CGGAGAGGAC	TCTCGCGTGT	GGTTTATTGA	CACCACAGTG	3060
CAGATTCGGC	GAATCCGCGA	TCACGGTGCG	ATTTCGTTCC	ACAGCACACA	ATCATGACCC	3120
CGGGTTTTAT	TCAGGTAAGC	AGGATTGCGG	ATATCCGGTG	TCGCGCCTTT	CTGTCACGAA	3180
CGGGGTAGGT	GCGAAACACC	GGATAAAATG	CAGGCTGGCA	ATACCTCTGA	ACGCCCTGCG	3240
CAGAGCGGAT	ATTTTGGATT	AAGTACTCGC	ACCTCCGCAG	TCCTGAAACA	AGTCTGGCTG	3300
GTAGCTGTAA	ACAGACTTCG	TACATGTTGC	TCTGGAATAG	ATCCCCGTGC	CACAGGCTTC	3360
GCAGAACTTT	TTCCCGGGAA	AATGCTGCCC	GCACATCACA	CAATGCCACT	CCAGCACGAC	3420
CGGTAATGGC	GATAGAAACA	TCGCCATATC	CTCAATGTAA	GGGTGGGACT	TTTCCGGATT	3480
CAGCACCACG	CAGGCCGCCT	TCTGTTGCGC	GCTCAGGGCA	TGTAAATCGT	GCTCAAACCA	3540
CGCCCCTGA	GCATCTGTCT	GCAAAATCAA	CCGACCACGA	CAGGAAAGGC	AGAAACAATG	3600
CCTGATATTT	CTGCTAAGGC	TGAGGCCGCA	CTGATAATGT	GTTCACCCGG	CGTGATCCCC	3660
AGCCCCGTTT	TTATACCGTT	CATTCAGCCA	CTCCCTCCTC	ACTGAAGTGC	CCTGTATGGC	3720
AGTGAGTGCA	GTACCGCTCC	CCATAATAAT	CGTGGTGACA	TTGTCTGCAG	TGCCAGCTGG	3780
CTTTACGCAC	CACGGGTAAG	GCATCCGGTA	CGAATTTCTG	CAGACGCTTA	ATCAGTTGTA	3840
TTTCTCTGCG	CTCCGGTCTG	ACATAAGGGC	ACTGTTGACC	GTGCTCCGTC	AGCCCGTCGT	3900
CAGTGTGTTC	AAACCAGGGA	AGTTCAGTGT	CGTATTGCGG	ATGGTATCTG	AGCGCACTGC	3960
CGCAAAGGTG	GCAGGTGTAG	CGGTCGTAAG	GTGCAGTCTG	TGCGGTACGG	GCAGCGGTCA	4020
GACGTCCGTT	GCCATCAAAT	GCGAGAAAAG	ATTTTGCGTA	CATAGTATAT	GTTCCTTACC	4080
GCCAGACGAC	ACGCAGGCGT	CAGCGTCCCT	TTACGGGCAG	CGTGGGCAGG	GTGTGAATGG	4140
CGGTACAGTT	' AAGGGGGGG	TGGAAAATGG	GCGGGCTGTT	GTTACAGCAC	TGTGGATGTC	4200
ACATCATGGG	GTACCAACGT	TAATAAAAA	CAGCAGGCCC	GGATACATCG	TTGTCGCCGG	4260

-174-

ACATCAGCCC	GTCCTGCTGG	TTTTGCCGGG	CTCAGCCCCG	ACTGCAGCCG	AAATTACGCT	4320
CACCAGTGGC	GTGAGCTTTG	GTATGTTCCT	TCGCCAGATA	GTCAGCACGT	TCCAGCACCT	4380
GCTGAAAGCC	AGTGTCATCA	CCGCGTTCCA	GCCACACCGC	CGGCGTGTCA	GGAAAATGCG	4440
CCAACGTGGC	ATAAGGCCCG	GCATCCACCC	CCAGGGCACT	GCACCAGGCN	TGWTTAATCA	4500
TCCCGGCCAG	TGACCCCGGA	TCGCGGTAAT	CGCCGGCACG	ACACCAGGTA	TCCCGGTTGA	4560
CCAGCAGCAG	GAGGTGATAG	TGTTTTTTGC	CCCTGAGTAC	CCCGAACTCC	CGGGCCCAGG	4620
CGTAATGCAG	GGTGGTGGGA	TGCACGCGTT	TACCTTCACG	NCGTTACGCT	TCTGGTAAGC	4680
GTCGATTCGG	GCTTTCAGGG	CATTGATGAA	GCGGGATATC	ACAGCCGCGT	CCGTAGCTGC	4740
CGGTACATCC	GGGAGACGCA	GATCAACCCG	AAGTGCCGTC	AGGCGGGGAT	GAACATTCAG	4800
TGCGTGCCGC	ACCGTCTCAC	GAATACGTTG	CTGCCAGAAG	GGGTTGTATT	TGTAGGTCAT	4860
GGTTAAATCT	CCGTATGGTT	CATACGGAAT	AGCCACGTCG	TAAAAAATGC	GCAGAGCCCC	4920
TGACGTGGCC	ACCGACAGAA	CACGGCCTCA	GGCGCGTTGT	GATAACCCAG	CTATCGTTTC	4980
CGGACTGACG	GTTGAATTTC	CTGCGTTGTT	TTCTTAATGT	AAAAAACCTG	CTACGGGTAA	5040
GGCTGTGAGG	AGGAAGTGAT	GGTGATACGC	AAAAAGAAGT	GCAGGGACTG	CGGAGAAGCG	5100
ACAGAGCATA	ACACGGTATG	TTGCCCACAC	TGCGGTTCTG	TCGATCCCTT	CGGCTATTAC	5160
CGCAATACAG	ACAGAATATT	CACCCTCCTG	ATGGTCCTGC	TGGTTGTGGT	TCTGCTGATG	5220
ACGGCTGCGG	TCAGCGTGTA	TGTGCTGTGG	TAGTCGGAGG	GGCAGGGAGC	AGACGATGAC	5280
GTAAAATATC	TCCGGTGCTC	AGATATCACG	GCCGGTCAGA	CCGCAAACCA	ACGGTTAATC	5340
GTAACCGGAT	CAGGCAAATG	TGTGATTAGC	CCCCTGGCGC	TCATACCCGC	ACCGCAGACC	5400
ACCTTAAGTA	CTTCCCGCCC	GACACCATTC	CCTGCTCCCG	GATAATTTGT	TGTCGCTATA	5460
CCGCTTAACA	TCACCGATAC	CACACCGGCG	CAGATAGCAC	CGGATTCATT	GTAGAGATGA	5520
CTTAAGGTTC	AGGTAACATA	TTTCCAGACA	GAAGCGGGAA	CACGATCGTA	AAGTTTGTTC	5580
ATGGTCAGTT	CTGCCAGCCG	GTGATCAACC	GCAGAGTTGA	AATTTTCCAG	CTCCGCCGGG	5640
GTGAGTTTAT	ACCGTGCGTG	GGAAATCACT	TTTTCCAGTG	TCTCCCGGGA	TGAACAACGA	5700
CGGAACTGAT	ACAGCCAGTC	TTCTTTGGTT	TTTACTTCCA	TTCGTCTCTC	GTTACTTTAT	5760
GCTGCGGTTA	ACAGGATGCC	GTCAGTATAC	CGCATGCAGA	CACTCTCCCG	CTCCCCCGCT	5820
TGCTGCGATA	CAACTTAACG	TTTCAGGAAT	CCAGTCATCG	CACCGGGAAA	GGCTTTCTGG	5880
TGACAGGAAA	CGTCAGGAAC	AGGAGTTTCT	CAGACTCCCA	CTCATCGGAT	CAGGCTCAGA	5940
CAGGATTATT	AATACGCTCA	GTTCATGTGT	CATATACAGG	GCATCGGGGA	TGAATATATG	6000
GGTATAACTC	AGAGCCTGTA	CTACAGCTTT	CACTGCTGAC	TGATTTTACG	TATCAGCGTT	6060
CATGTATCTG	CACTCTGATA	TAGAATACTT	CTACCGGAGC	TACTCTTACG	TTAGCTCACT	6120
CTCACATCAG	GCAACATCAC	TTATTCAGCT	CACTTACCTC	TTACCACTCA	CTACTTCTTT	6180

-175-

ATATTTATAA	TATCAATCAG	ACAGCCTTAT	CCCCCCGGTA	ATATCTGTTG	CCTTCCCGCC	6240
AGCCACAGGC	TTATTCACCA	CAACCACCTC	CGATAACAAC	TCTGCAATTA	TCAGAACGCC	6300
TGCTTCTCTC	CCTGTCCTCA	CGAAAACTAT	CCCCTCTTTA	TCGCGCGTGC	GTGCGGAAGC	6360
ATCTTTTCGC	AACAACCACC	CGGGATTCCG	CTACGGCTCT	GCCATCGCAA	TCCCCCCGTT	6420
TATCTCCGGA	CAGCCACATT	CCCGATTATT	TTTTACGTTT	CTCCCCGGTT	GTTATGCCGG	6480
TGAAGGTGGT	GCGTCGTTTT	CATCACCACA	CCGGTTGCGA	TTAACAACAT	CCGGAGGAAC	6540
ATTCTCATGA	CCACACCCTT	TTCACTGATG	GATGACCAGA	TGGTCGACAT	GGCGTTTATC	6600
ACTCAACTGA	CCGGCCTGAG	CGATAAGTGG	TTTTACAAAC	TCATCCAGGA	CGGAGCCTTT	6660
CCGGCCCCCA	TCAAACTGGG	CCGCAGCTCC	CGCTGGCTGA	AAAGTGAAGT	GGAAGCCTGG	6720
CTGCAGGCGC	GTATTACACA	GTCCCGTCCG	TAATTTCTGC	CCCTTATCCG	TTCACCCGCA	6780
GCAGACGCCT	CCCCGGCCTG	CCGTTGACAT	TCTGCTGCCT	GTTTTATCCC	CGTGAGGAAT	6840
ATGAAAATGA	AACAACAGTA	CCAGACCCGC	TACGAATGGC	TCCACGAAAG	CTACCAGAAA	6900
TGGCTGACCG	GCTTCAMCCG	GCACGCCGTA	TCCTGGGGCG	TGTGTCATCC	GAATATCTAC	6960
TATTTCCATA	ATCTGACGCC	CGGGTGGGTG	TCATTCAACG	GCGAACAGTC	GGAGATTGCC	7020
ATTGTTCCCG	GCAGTCTGCA	CCGGCTGATT	TATGGTCATG	ACAAACGGGC	CATGCCGCCC	7080
CTGGATGATG	ATCTGGTGGT	GAATTTATGC	ACCAGTGAGA	ATCTGCTGGT	TCATCATCCG	7140
ATGCTGGAAG	GCATTCTGCT	GTCTGAGTGC	ACGCGCCTGC	ATAAAAAATC	ACTGGCGAAC	7200
AAACTGATCA	GTATATTCCG	TCAGTTTGAC	GGCACGGAGC	TGCGTCTCAA	ACTGGTCTGG	7260
CTTTGCTGGT	TTGATTTAAT	GACCGGAAAC	TGCCTTGACG	ACTGGACGGA	GAACCTGNAA	7320
CGGAAATCAG	AAAAAGAGCT	GGAGAAATGG	ATCATTGAGC	GCCAGAACCG	GAACGCACCG	7380
CTGACGAATC	TGATGGATCA	GTACGTGCTC	CTGGCATTCC	GCACAACGGT	TGACGATAGC	7440
CGCAACTGAT	GTCTGCATGC	TGCCSGCTGA	AGCCATATTC	ACGGGGCAGG	GACGCCCCTG	7500
CTTCCGCAAC	AATCCGGGGT	AATGGCGACG	TACGCCTGCA	GAGTGTGTTC	ATCGTTG T CA	7560
CAGCCGGACA	AGGTGAATAC	CGTTGATGAT	GCGGGGATGA	ACCTGCTGGT	CCACCGCGCT	7620
GTCACTCAGA	CGCGTCAGCG	TGTATGGACG	CCCCGATCGA	ATGGTTCTTC	CGCCAGAGTG	7680
CACAGAAATG	AGGCACGGAA	CGTTACCTGA	AGGGTGACCG	GCACGGACTG	CAACTTGTTG	7740
CCATTGATGG	CGCACAAGTC	CACATACAGCA	GAATGTCGTG	ACCGCACCTT	ACCGGTGAAG	7800
CGAAACGGTG	CTGCCCCACT	CCACCACCAT	CCCGGATAAC	GCCATTACGC	TGTCTGATAA	7860
GCGCTTTTAC	agcgcaaatc	C TGGTGCAGAA	AAGCGTAAAG	CTGACCTGCC	GGAGCAGGAT	7920
GTGGGCATGT	TGCGGGCTTA	A CAACCTGATA	CGGCATGAGG	CACTAAAAGC	AGCATCAGAA	7980
ATCAGCCTGA	GTTCGCGTTC	CGGTTTATCC	CGACAGAGAG	GACAGTGCCG	GGCAACACGG	8040
TGTCACCGGG	GAGCATCCCG	AAACGACCGG	AGCATCTGCG	GGATGCTCTG	TAAGTGGTGT	8100

-176-

TAAGGTGGGC	GGTTAAGGTA	TCAAAAAAAT	CGTTATCCTG	TGAAAGACAG	TGCGCTCTGC	8160
TGAAGTGAAC	GTCACTGCCG	GGAAGCATCG	GGTTTCGCTA	CCGGACAGTC	GCGGTAACGC	8220
GTTTACCGGC	ATCTGTCTGT	GTGGCAGGGA	TGGCTGATAT	TGTCGGTTAT	ACCAGCGGCA	8280
GGTGCGTCCT	GTTATCTGTA	AAATCAGGGC	GTGCCGGTAC	ACAACGCCTC	GTTGATGCCG	8340
GTCACTGAAC	GAATCATCCT	CTGACGAAAA	CAACCGTCGA	TACAACGCCG	GCGTAAAAAG	8400
AAAACCGGAA	ACCATCTTGT	GCACGACAGG	TACTCAGGGG	GGTATAACGC	CTGCGCACCA	8460
TCACATCCGG	GAACAGGGCT	GCTCCTCAGT	GTCTTCGTGT	GGCGAAGCAT	CTGCAACCGG	8520
ACGGTACTGC	CCTCAGAGCA	ATCTCCCTGC	TGCAGTGCAC	AGAGTAAGCC	GGAAAGCTGG	8580
TGAATGCCGC	CATGACACAC	TGCGACGTGG	AGAAACAAAC	GACACACTCC	GTCCGCAGTA	8640
ACACTGAAGG	TAGTCCCGCA	AACCTCAGAC	TTCTTCCTGC	ACGTTATCAG	CGGACTGAAC	8700
CCCGGTCAGC	CACTTAAACC	TGCTAATCGT	GTTGCTGCAT	ACCCGCCCGG	CCGGAAGGTG	8760
TTATGAAGCC	CGCCACCGGA	GCGCTTCTGC	AAATATCCGG	GGAGATAAAA	TTTTCGTGAC	8820
AGGATGACGG	TCGTGCTGCA	GACGTAAAGC	CGCAGGAGCG	GACACGACAG	ACAGTGTTCA	8880
CTGTGGCGTC	CTTTGCCGTC	GGTATCGTGC	TCACGCTGAG	GTCCCGGGGG	TACACCTGAC	8940
GACAAATACC	TGCGATTCCC	GGGACGGTCT	GTTCTCCGTA	AAATAAAGAA	AATGCGGGAT	9000
GCCTCCCGGA	CTGCAGAGAA	GAGGGATTGA	CAGACAGTGT	ATATTGCGTA	CGATTACAGG	9060
GGAAAAACAC	AGTAAATATG	GAGGTCAGGT	CCGAAAACAA	CCTACGAAAT	TTCTATGAAA	9120
AACGATTGAA	AAAATCATCA	AATTCAGTTC	GTTTTTCTAT	GGTAATTTTT	AAACACTCCC	9180
GATGATAACC	TGTTGTATGT	GCATGTGGGG	AACGCACCGA	AAACATCAGA	ATCATCTGAA	9240
AAAAACAACG	AACACACCAG	AAAAACAGGA	GCAACCATAA	CGAAGCAACA	TATTGATTTT	9300
AAACAGAATT	TAAGGTTAAC	AGACAAAAA	CACTTTCAAC	TGAAGGAGAA	ATATACACTG	9360
GCGACAGTGC	AGGGTTTTTC	ATGCAAAAAA	AATGAGCTTT	TATCTCCGGC	GCATACTGAC	9420
CGGGATGCAG	CCATGACAGA	GCAAAAACCA	TTAAATATCA	GGAGGTTAAA	CACACAAAAA	9480
GCTGACATGC	ATCAGGGAGC	AATCCCTCAC	AACAGAGGCT	GAGCGGCAAC	GCTTCCTCAC	9540
AGGACGGCAT	TCCTGAAAGG	ACAGGCAGCC	ACGGCTTTTT	ACTGCCCGTA	TCCGGTATAT	9600
TTATCTGCCG	TGACGTGCAG	AGGATTTTGT	GTTTCCGGAA	ATCAGGAAAA	CAGGAGAACC	9660
GCGGGAGATA	TGATGGAAAA	AGAACCGGAT	GATATCTGCG	CAGACTGTCC	GAATATTGAT	9720
GCAATAAAAC	GGCACAAACA	ACAGGCCGGA	GCCATCAGGG	AATACACTGA	GTGGTTAAAA	9780
AAACAACCGC	GTGCTTCTTA	CTTTTTTCTC	TTCCGGTTGT	ACGCATACCT	TCAGAATGAA	9840
GTGATATCCC	GAAAACAAAA	ACATTCGCTC	ACCAGCGATA	ACAGCCATCC	CCCGGAATCT	9900
GATGTCACCC	CTCCGGATTT	AACCCTTCCC	CGTCGCTACT	ACTGTGATTA	CGGTTACACG	9960
CCCTACCCCA	TGATGGGCGG	ACAGATGTCT	GTTTTTGCCA	CAACGTCAGA	AACCACCAGT	10020

-177-

TCGACGAATG	CAGTCCCCGG	AAACGCAGTT	ACCGGGAATG	AGACTGAAAA	GCATGAAAAC	10080
GCGGTACCGG	CGACATTCCC	CGTCAGCCGT	TCTGCAATGC	CCCCGGAACC	TCTGCGGTTT	10140
GCCACGGGTT	TTCCATCGCA	ACCACTGCTT	GCCGGTCCCC	GGGAAAAGCC	GATGCGCACC	10200
GTGCATCCTG	ACATCCACAG	CGAAATTATA	TGGTTCTGCT	CCACTTACCT	GCTGAAATCC	10260
GGACCACAGA	TTACGAAGAC	GATTATCAAC	TCAGTATTCT	CTGAATGGGC	CCGCATCAGC	10320
AATGATTACC	CCTCCCCCTT	TTCGTGGGTG	GACAGCAGGG	ACAGTGAACA	GTGTGACTGG	10380
TTATGGAACG	CCATGCAGCT	CCGGTGTGTG	GGAACCCCGC	TGAATCCCCT	TACCCCGGAG	10440
CAGAAATACT	GGTTTGCCTG	CGCCACGTTT	GATAACTGGG	AGGGCTGGAA	TGAGCAACAG	10500
ATACAGTTTT	TACTGAAAAG	TAATCCCAGA	CGAAACAGAG	CGAAGTTTAC	GGTCACCTTC	10560
GGCCCTCCCT	GGATTCAGCA	TAAAGCCATT	CTTCTTGATG	AGCTGAAGAG	TGCCCGGGAG	10620
СААСААААА	GGCGCGATGA	ACGCGCTGAT	GGTTCCGTCC	CGCTGAAACT	GTCCGGAAAA	10680
ATCCACAAAC	ACCTTGAAAG	TATTGCCCGG	AGTCGTGGTA	TCCCCCCAAA	AAAACTGCTG	10740
AATGAAATGA	TTGAGCAGGC	GTACCAGGAC	TCAGTGGTGA	ACAGCCGGAA	TAAACCACTG	10800
ATTAAAATA	ATTTCAGACA	GATATTATCT	CCGTGAATCC	CCCGCCACCT	TTCCGGTGCG	10860
CGGGGTTTTG	TCTTTTTCA	CCGGGAATAC	ATGTATGAAT	CCGTCTGATG	CCATTGAGGC	10920
AATTGAAAAA	CCGCTCTCCT	CCCTGCCTTA	CTCGCTTTCC	CGTCACATCC	TGGAACATCT	10980
GCGCAAACTC	ACCCGTCACG	AACCCGTGAT	TGGCATTATG	GGTAAAAGCG	GGGCCGGTAA	11040
ATCCTCACTC	TGTAATGCAC	TGTTTCAGGG	GGAGGTCACC	CCGGTCAGTG	ATGTTCACGC	11100
CGGCACCCGG	GAAGTGCGGC	GCTTCCGTCT	GAGTGGCCAT	GGTCACAACA	TGGTTATCAC	11160
TGACCTGCCC	GGGGTGGGCG	AGAGCNGGGA	CAGGGATGCA	GAGTATGAAG	CCCTGTACCG	11220
TGACATTCTG	CCTGAACTGG	ACCTGGTACT	GTGGCTGATT	AAAGCCGATG	ACCGTGCCCT	11280
GTCTGTGGAT	GAGTATTTCT	GGCGACACAT	CCTGCAACGC	GGACATCAGC	AGGTGCTGTT	11340
TGTGGTGACG	CAGGCCGACA	AAACGGAGCC	CTGCCATGAA	TGGGATATGG	CCGGCATTCA	11400
GCCCTCTCCC	GCACAGGCAC	AGAACATTCG	CGAAAAAACG	GAGGCGGTAT	TCCGTCTGTT	11460
CCGGCCTGTA	CATCCGGTTG	TGGCCGTATC	GGCCCGCACC	GGCTGGGAAC	TGGATACGCT	11520
GGTCAGTGCA	CTCATGACAG	CGCTTCCCGA	CCATGCCGCC	AGTCCCCTGA	TGACCCGACT	11580
GCAGGACGAG	CTGCGCACGG	AGTCTGTCCG	CGCTCAGGCC	CGTGAACAGT	TTACCGGTGC	11640
GGTGGACCGG	ATATTTGACA	CAGCGGAGAG	CGTCTGTGTT	GCCTCTGTTG	TCCGTACGGC	11700
CCTGCGCGCT	GTTCGTGACA	CCGTGGTCTC	TGTTGCCCGC	GCGGTATGGA	ACTGGATCTT	11760
CTTCTGAACC	TGTTGTGGAT	GATGTCCTCC	CTGCCTCTGA	GTCTGCTCAC	AAAAGCGCTG	11820
TTTTCGTTAC	тотстстстт	GTCCGTGCAA	TAGCTCAATA	ATAGAATAAA	GCGATCGATA	11880
ACTATTTCAT	CGATCGTTTA	TATCGATCGA	. TATGCTAATA	ATAACCTTTA	TTACCAACAT	11940

-178-

GCGCAGATAC	GCACAGACAG	ACATTCAGGG	GACGACAGAA	CAACACTTCA	GAAACTCCCG	12000
TCAGCCGGAC	CTCCGGCACT	GTAACCCTTT	ACCTGCCGGT	ATCCACATCT	GTGGATACCG	12060
GCTTTTTTAT	TCACCCTCAC	TCTGATTAAG	GAAATGCTGA	TGAAACGACA	TCTGAATACC	12120
TGCTACAGGC	TGGTATGGAA	TCACATTACG	GGCGCTTTCG	TGGTTGCCTC	CGAACTGGCC	12180
CGCGCACGGG	GTAAACGTGG	CGGTGTGGCG	GTTGCACTGT	CTCTTGCCGC	GGTCACGTCA	12240
CTCCCGGTGC	TGGCTGCTGA	CATCGTTGTG	CACCCGGGTG	AAACAGTGAA	TGGCGGAACA	12300
CTGGTAAACC	ATGACAACCA	GTTTGTATCC	GGAACAGCTG	ATGGCGTGAC	TGTCAGTACC	12360
GGGCTTGAGC	TGGGGCCGGA	CAGTGACGAA	AACACCGGCG	GGCAATGGAT	AAAAGCGGGT	12420
GGCACAGGCA	GAAACACCAC	TGTCACCGCA	AATGGTCGTC	AGATTGTGCA	GGCAGGAGGA	12480
ACTGCCAGTG	ATACGGTTAT	TCGTGATGGC	GGAGGGCAGA	GCCTTAACGG	ACTGGCGGTG	12540
AACACCACGC	TGGATAACAG	AGGTGAGCAG	TGGGTACACG	GGGGAGGGAA	AGCAGACGGT	12600
ACAATTATTA	ACCAGGATGG	TTACCAGACC	ATAAAACATG	GCGGACTGGC	AACCGGAACC	12660
ATCGTCAACA	CCGGTGCAGA	AGGTGGTCCG	GAGTCTGAAA	ATGTGTCCAG	CGGTCAGATG	12720
GTCGGAGGGA	CGGCTGAATC	CACCACCATC	AACAAAAATG	GCCGGCAGGT	TATCTGGTCT	12780
TCGGGGATGG	CACGGGACAC	CCTCATTTGC	GCTGGTGGTG	ACCAGACGGT	ACACGGAGAG	12840
GCACATAACA	CCCGACTGGA	GGGAGGTAAC	CAGTATGTAC	ACAACGGTGG	CACGGCAACA	12900
GAGACGCTGA	TAAACCGTGA	TGGCTGGCAG	GTGATTAAGG	AAGGAGGAAC	TGCCGCGCAT	12960
ACCACCATCA	ACCAGAAAGG	AAAGCTGCAG	GTGAATGCCG	GCGGTAAAGC	GTCTGATGTC	13020
ACCCAGAACA	CGGGCGGAGC	ACTGGTTACC	AGCACTGCTG	CAACCGTCAC	CGGCACAAAC	13080
CGCCTGGGAG	CATTCTCTGT	TGTGGAGGGT	AAAGCTGATA	ATGTCGTACT	GGAAAATGGC	13140
GGCCGTCTGG	ATGTGCTGAC	CGGACACACA	GCCACCAGAA	CCCGTGTGGA	TGATGGCGGA	13200
ACGCTGGATG	TCCGCAACGG	TGGCACCGCC	ACCACCGTAT	CCATGGGGGA	TGGCGGTATA	13260
CTGCTGGCCG	ATTCCGG T GC	CGCTGTCAGT	GGTACCCGGA	GCGACGGAAC	GGCATTCCGT	13320
ATCGGGGGCG	GTCAGGCGGA	TGCCCTGATG	CTGGGAAAAG	GCAGTTCATT	CACGCTGAAC	13380
GCCGGTGATA	CGGCCACGGA	TACCACGGTA	AATGGCGGAC	TGTTCACCGC	CAGAGGGGGC	13440
ACGCTGGCGG	GCACCACCAC	ACTGAATAAC	GGTGCCACGC	TTACCCTTTC	CGGGAAAACG	13500
GTGAATAACG	ATACCCTGAC	CATCCGTGAA	GGTGATGCAC	TCCTGCAGGG	AGGCGCTCTT	13560
ACCGGTAACG	GCAGGGTGGA	AAAATCAGGA	AGTGGCACAC	TCACTGTCAG	CAACACCACA	13620
CTCACCCAGA	AAACCGTCAA	CCTGAATGAA	GGCACGCTGA	CGCTGAACGA	CAGTACCGTC	13680
ACCACGGATA	TCATCGCTCA	TCGCGGCACG	GCCCTGAAGC	TGACCGGCAG	CACCGTGCTG	13740
AACGGTGCCA	TTGACCCCAC	GAATGTCACC	CTCGCCTCCG	GTGCCATCTG	GAATATCCCC	13800
GATAACGCCC	CGGTTCAGTC	AGTAGTGGAT	GACCTCAGCC	ATGCCGGACA	GATTCATTTC	13860

-179-

ACCTCCGCCC	GCACAGGGAA	GTTCGTACCG	GCAACTCTGC	AGGTGAAAAA	CCTGAACGGA	13920
CAGAATGGCA	CCATCAGCCT	GCGTGTACGC	CCGGATATGG	CGCAGAACAA	TGCTGACAGA	13980
CTGGTCATTG	ACGGTGGCAG	GGCAACCGGA	AAAACCATCC	TGAATCTGGT	GAACGCCGGC	14040
AACAGTGCGT	CGGGGCTGGC	GACCACCGGT	AAGGGGATTC	AGGTGGTTGA	AGCCATTAAC	14100
GGTGCCACCA	CGGAGGAAGG	GGCCTTTGTC	CAGGGGAATA	TGCTGCAGGC	CGGGGCCTTT	14160
AACTACACCC	TCAACCGGGA	CAGTGATGAG	AGCTGGTATC	TGCGCAGTGA	AGAACGTTAT	14220
CGTGCTGAAG	TCCCCCTGTA	TGCCTCCATG	CTGACACAGG	CAATGGACTA	TGACCGGATT	14280
CTGGCAGGCT	CCCGCAGCCA	TCAGACCGGT	GTAAGCGGTG	AAAATAACAG	CGTCCGTCTC	14340
AGCATTCAGG	GCGGTCATCT	CGGGCACGAT	AACAACGGTG	GTATTGCCCG	TGGGGCCACG	14400
CCGGAAAGCA	GCGGCAGCTA	TGGCTTCGTC	CGTCTGGAGG	GTGACCTGCT	CAGAACAGAG	14460
GTTGCCGGTA	TGTCTGTGAC	CGCGGGGGTA	TATGGTGCTG	CTGGCCATTC	TTCCGTTGAT	14520
GTTAAGGATT	ATGACGGTTC	ccgccccccc	ACGGTCCGGG	ATGATGCCGG	CAGCCTGGGC	14580
GGATACCTGA	ATCTGGTACA	CACCTCCTCC	GGCCTGTGGG	CTGACATTGT	GGCACAGGGA	14640
ACCCGCCACA	GTATGAAAGC	GTCATCGGAC	AATAACGACT	TCCGCGCACG	GGGCCG GG C	14700
TGGCTGGGCT	CACTGGAAAC	CGGTCTGCCC	TTCAGTATCA	CTGACAATCT	GATGCTGGAG	14760
CCACGACTGC	AGTACACCTG	GCAGGGGCTC	TCCCTGGATG	ACGGTAAGGA	CAACGCCGGT	14820
TATGTGAAGT	TCGGGCATGG	CAGTGCACAA	CATGTGCGTG	CCGGTTTCCG	TCTGGGCAGC	14880
CACAACGATA	TGACCTTTGG	TGAAGGCACC	TCATCCCGTG	ACACCCTGCG	TGACAGTGCA	14940
AAACACAGTG	TGCGTGAACT	GCCGGTGAAC	GGGTGGGTAC	AGCCTTCTGT	TATCCGCACC	15000
TTCAGCTCCC	GGGGAGACAT	GAGCATGGGT	ACAGCCGCAG	CCGGCAGTAA	CATGACGTTC	15060
TCACCGTCCC	GGAATGGCAC	GTCACTGGAG	CTGCAGGCCG	GACTGGAAGC	CCGTSTCCGG	15120
GAAAATATCA	CCCTGGGCGT	TCAGGCCGGT	TATGCCCACA	GCGTCAGCGG	CAGCAGCGCT	15180
GAAGGTTATA	ACGGCCAAGC	CACACTGAAT	GTGACCTTCT	GATAATTCGG	CATTGTCTCT	15240
CTGTGGTCCC	GGTCATCATG	ACCGGGACCC	GGACAGGTGC	AAACGCTTCA	GTGCCACATT	15300
CACTGGCATT	CACAATAACA	TGATATTCAT	CACGGAGTGA	CTATGTTACA	GATAGTCGGT	15360
GCGCTGATTC	TGCTGATCGC	AGGATTTGCC	ATTCTTCGCC	TTTTGTTCAG	AGCATTAACC	15420
AGCACAGCGT	CTGCGCTGGC	AGGGTTCATA	TTGCTGTGTC	TGTTCGGCCC	GGCTTTACTG	15480
GCTGGCTATA	TCACTGAACG	CATAACCCGG	TTATTCCATA	TTCGCTGGCT	GGCAGGCGTA	15540
TTTCTGACGA	. TTGCCGGAAT	GGTCATCAGC	TTCATGTGGG	GACTTGATGG	TAAACATATC	15600
GCACTGGAGG	CTCATACCTT	TGACTCTGTA	AAATTTATTC	TGACCACCGC	TCTCGCCGCT	15660
GGTCTGCTGG	CTCTTCCCGT	GCAGATAAGA	ACCATTCAGC	AGAACGGGCT	CACACCAGAA	15720
GATATCAGCA	AGGAAATTAA	CGGGTATTAC	TGCTGTTTTT	ATACTGCTTT	TTTCCTTATG	15780

GCGTGTTCTG	CATACGCACC	ATTGATOGOA	TTGCAGTTCG	ATATTTCACC	CTCACTGATG	15840
TGGTGGGGCG	GGTTGTTGTA	CTGGCTGGCT	GCATTAGTGA	CGCTGCTATG	GGCGGCCAGC	15900
CAGATCCAGG	CGCTGAAAAA	ACTGACCAGT	GCCATCAGCC	AGACACTGGA	AGAACAACCG	15960
GTGCTCAACA	GTAAATCGTG	GCTGACCAGT	TTGCAAAACG	ATTACAGCCT	TCCTGACTCA	16020
CTGACGGAGC	GCATCTGGCT	CACGCTCATT	TCACAACGGA	TTTCCCGGGG	AGAACTGAGG	16080
GAATTTGAAC	TGGCAGACGG	AAACTGGCTA	CTGGACAATG	CCTGGTATGA	AAGAAACATG	16140
GCGGGTTTCA	ACGAAAAGCT	GAGAGAGAGC	CTGTCATTTA	CCCCTGATGA	ACTGAAAACC	16200
CTCTTCCGGA	ACCGCCTGAA	TTTATCACCG	GAAGCGAATG	ACGATTTTCT	CGATCGTTGC	16260
CTGGACGGCG	GTGACTGGTA	CCCCTTTTCA	GAAGGCCGCC	GTTTTGTATC	ATTCCACCAC	16320
GTGGATGAGC	TTCGTATCTG	TGCCTCCTGC	GGGCTGACAG	AAGTACATCA	TGCCCCGGAA	16380
AATCATAAGC	CGGATCCGGA	ATGGTACTGC	TCCTCTCTTT	GTCGCGAAAC	AGAAACACTG	16440
TGTCAGGACA	TTTATGAACG	TTCTTACACC	GGTTTTATTT	CCGATGCAAC	GGCGAATGGT	16500
CTGATTCTCA	TGAAACTGCC	GGAAACCTGG	AGTACAAATG	AGAAAATGTT	TGCTTCCGGA	16560
GGGCAGGGAC	ATGGGTTTGC	CGCTGAACGG	GGAAACCATA	TTGTCGACAG	AGTCCGTCTG	16620
AAAAACGCAC	GGATCCTCGG	TGATAATAAT	GCCAAAAATG	GAGCAGACAG	ACTGGTCAGC	16680
GGAACAGAAA	TCCAGACGAA	ATATTGTTCA	ACTGCAGCCC	GTAGCGTCGG	TGCGGCATTC	16740
GACGGACAGA	ACGGACAGTA	TCGTTACATG	GGAAATCATG	GTCCCATGCA	ACTGGAAGTC	16800
CCCGTGATCA	GTATGCCGGC	GCTGTGGAAA	CCATGAAGAA	TAAGATCCGC	GAAGGTAAAG	16860
TACCCGGTGT	AACCGATCCC	GAAGAAGCGT	CCCGGCTGAT	TCGTCGGGGA	CATCTGACTT	16920
ATACCCAGGC	CCGTAATATC	ACCCGGTTCG	GGACCATCGA	ATCGGTCACT	TATGATATTG	16980
CCGAGGGGTC	GGTTGTCAGT	CTGGCGGCCG	GAGGGATCAG	TTTTGCCCTG	ACGGCATCGG	17040
TCTTCTGGCT	CAGCACCGGC	GATCGCGATG	CTGCCCTGCA	GACAGCTGCT	GTCCAGGCAG	17100
GAAAAACCTT	CACCCGCACA	CTGGCTGTCT	ACGTCACAAC	CCAGCAACTT	CACCGGCTCA	17160
GTGTTGTTCA	GGGTATGCTG	AAGCATATTG	ATTTTTCGAC	GGCCAGCCCG	ACTGTCCGGC	17220
AGGCGCTTCA	GAAGGGGACC	GGTGCAGGAA	ATATCAGTGC	CCTGAACAAA	GTGATGAAGG	17280
GGTCGCTGGT	GACATCTCTG	GCACTGGTAG	CTGTCACAAC	CGGCCCTGAC	ATGATCAAAA	17340
TGTTGCGGGG	A C C C A M C M C C	CCTCCCCACT	TCATCAGGAA	TCTTGCCGTG	GCATCTTCCT	17400
	ACGGATCICC	GGIGCGCNGI	1011101100111		osmerieer	
GTGTGGCAGG	TGGTGCTGTC					17460
		GGGTCAGTGG	CGGGCGGGAT	ATTGTTCAGT	CCACTGGGAC	17 4 60 17520
CATTTGGTGC	TGGTGCTGTC	GGGTCAGTGG CGTGTGGTTG	CGGGCGGGAT GCGGTGTTCT	ATTGTTCAGT GGGGGGAATG	CCACTGGGAC ATTGCCTCCG	
CATTTGGTGC	TGGTGCTGTC ACTGACAGGG	GGGTCAGTGG CGTGTGGTTG GGAGCGCTGG	CGGGCGGGAT GCGGTGTTCT TTGAAGAAGA	ATTGTTCAGT GGGGGGAATG TCGCGTCAAA	CCACTGGGAC ATTGCCTCCG ATTCTGGCAA	17520

-181-

GCCGCCGGTA 17710

(2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1803 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

AATAACCAAT	AGATGCTTAA	GTTTACGATA	TGCCTCAACC	CGCGTCTGCT	CTAAGCTGAT	60
AAGGCCAGTT	TTGTAGAGAT	CCGCTGCCAA	GGTTGCCTGC	GTTTGCACAT	CCATGTAACC	120
GGCGGTGATT	TCATTCATGG	CATCGTTATC	TTGACCAGTC	AGCTTAGCAC	GCTCCTGTTC	180
AAGCTGCTTG	GTTAGGGCGT	CAACTCGGCT	CTGTAATGAG	ACTACGGCCG	GTGCGGTTTC	240
CTTCATATAG	CTGCGCAGTT	GTTTTAGCTC	CCCCTGTTGA	CGCACCAGCT	CTCCTTCAAT	300
CTGGCTGACC	ACTCCCAAGC	GTGCGCTGCT	GGTAGATTCA	GGGCTGAGAA	GTTGGTGGCT	360
ATTCTGAAAT	GCTAATACTT	TAGCTTTTTC	ATCCTGTAAG	CGTTGATATG	CTCTATTTAC	420
TTCTTTTTCA	ACAAAGGCCA	ATTGTTCGAG	CGCAACCTGA	TGACCTAATT	TGTTAATAAA	480
ACGCTCCGAT	TCTTTGAGCA	TTAACTCAAC	AACTCGCTGA	CCGTATTGGG	GATCAAATGT	540
CTGCAACTCA	ACGGTAAGTA	CTCCTGATAA	TTCATCAAGG	TGTAACGTCA	AATGTTTGCG	600
GTAATAATCA	AGAAAATCTT	CCCTACTGAC	TCCCTTATGC	AACCGCGAGA	AATAATCTGC	660
ACTATCACTC	TGGAAATGTG	CTTTAAGTGC	AAGTTCTTTG	TCCAACTTGG	CCAGCATATC	720
CCATGACTTC	ATATAATCCT	GAACGAGTAA	TATATCCTGA	TGATTACTAC	CACCTATCCC	780
TAACATTGAT	AACGCATCAG	GCAACATTTT	AACTTGATCG	GCTTGTTTAA	TCATTAATTC	840
AGCCCGGSTC	ACATAACGAT	CGGAAGCAAT	GAAGCCAAAA	TAGAGCACTG	CGATAGAAAA	900
GCAGATAACT	ACCCAAAGAA	AACTGCCTAG	CTGTAAACTT	TTCTTCCACG	AGCGGTGTAC	960
AATTTGATAT	CCTCTCGAAT	CAATCAAAAA	TAGTTTTGGA	TTATTGCTCA	GTTTTCTTAA	1020
CTTTCGCGTA	AGGCGAGATA	TTGAGGATGA	AGAATTCGGA	GATGTCATAA	TCAGTTGCTG	1080
CTCAAAGTGA	CTGGTAAATT	TTGATGGCAT	CATCAATATT	ATCAAAAACT	TCTAATTTAC	1140
CATCACGTAA	CAAGATGCCC	ATATCGCATT	GTTGTCGTAG	ATTTTTCATA	TCATGCGAAA	1200
CCATAATCAA	ACTAGCTGTT	TCTCGCTTTT	TGTTAAATAC	ATCAATACAT	TTTTGTTTAA	1260
AACGTGCATC	ACCTACTGAG	GTAATTTCAT	CGGTAAGATA	TATATCAAAA	TCAAAAGCCA	1320
TACTAACAGC	AAAAGAAAAT	TTTGATTTCA	TGCCGCTAGA	GTATGTTTTA	ATAGGCAGCT	1380
CATAATGTTG	TCCAATTTCA	GAAAACTCTT	TAACCCACTC	TTCTACGGGG	CTTGTATCGC	1440
GTACACCATG	AATGCGGCAA	ACAAATCGCG	TGTTTTCACG	ACCAGTCATA	CTACCTTGAA	1500

-182-

ATCCCCCAGC	TAGTGCTAGA	GGCCAAGATA	CTCGGCAGAG	ACGAGTTACT	TTCCCCCTGT	1560
TAGGCGTATC	CATCCCTCCT	AACAAACGTA	ACAAAGTAGA	TTTYCCKGCT	CCATKGATAC	1620
CTAGAATACC	TATATTACGG	TCCCTTGGTA	GCTCAATATT	TACATTCCTC	AGGACATAAT	1680
TTCGTCCAAA	TTTAGTTGGA	TAATATTTTG	ATACATTATC	AAGAATAATC	ATTTTTCTTA	1740
ACGCTAACTA	GCAATCAATT	GGCGATGCCG	TAATCGGTAA	CAACTCATAG	CAAAAGTGAG	1800
CAA						1803

(2) INFORMATION FOR SEQ ID NO: 72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1283 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

60	ATTTCTCTGC	ATTAAACTTT	CMATTGACCG	GTAAAAAAA	GTAAAAACNG	NGGACCCAAG
120	AGTAAAGAAG	NACTAAAGTC	ATTTTAATTT	GATGGATGTC	CTGGAGAGAG	CCGCATTAGT
180	GAACAGTCTG	CCGTGTTCTC	AGCGAAATCC	GATCTGGAGC	TCTTATTTTT	CAAACAGATA
240	TCTGTTACCG	TTCCCGTTCT	TTCTTATTGC	GGGCATATTA	GTTATATCAG	AGTTTGAGGC
300	TACAGGAAAA	CATTATAAAA	TTATTCCTGC	TTTACCTGGT	AAAATTTGAC	GGAAACTGGC
360	ATAACCCCCC	ATTTGCATTA	TTTTACAATT	GTATCTGTTT	AACCCTTGTT	TATTTATTGA
420	ACCCTTAATG	GGGGTTTTCA	TAGTACACAG	GACAAAGTAT	GGTGGTTATG	TTTTTTTCA
480	GGTTTAAGAA	TATACTCAGC	TGTTTGAGAT	GTTGTGGTGG	CGCATTATCT	TTATTACTGT
540	AAACTCTTCC	GTTGGGTGCC	TTGATGTTGA	ACAAGTCGGA	TGCACATAGT	CTTACATTTT
600	GATACTGTTG	TCGTGTTGGT	TTGAGAGTCG	ATCTCTTATT	GGCGCTACCG	GGCATTTACT
660	TTAACATCTG	AGGACAGGCA	ATTTCCTGAC	CAGATCCGTA	AGAATTAGAC	CCAGGGTAAG
720	AGCCCAAAGC	GTGGTATTAC	TTGCGGTAAT	TTCATATTTT	ATTATTTTCA	TTCTGGACTT
780	TTTATTAGCC	ATGGTCTGTT	GTTATGCTGC	TCGCTGCCCT	GATCTTATTT	TTACTCTGGT
840	CAATCTTTCC	TGCGGATAAT	TTTCACGGAA	GATGATAAGT	ACGTCGCCTT	CCATTTTGCG
900	CCTCAGATGA	GGCAGTCTCA	TAAAAGCTAT	ATTAACACTA	AGTCACGGCG	TGGTGGAATC
960	GTGACAGTAT	AGGCTTTAAA	ATGTTGCTGC	TTGGCAGGAT	GGACAAACAA	CGAACATATG
1020	ATCATCAACC	GACTGTTATG	TAATACAAAA	GGAATACAGT	TGGTCAACAA	TAGCCACCAT
1080	AGTTAATTGC	AGTATTGGTC	CGGGGATTTA	TGGTTATTTC	GGTGCACACC	TGTGGGTTGG
1140	AAATCTGGCA	CGCCTTGCAC	ACCGGTTATT	AGATTGTTGC	CTTGCAGGTC	TTTTAATATG
1200	ACTCTCCAAC	GATGTGCTTA	CCGCCTTGGT	TATCAGTTAC	CAGGTTGGTA	GGATTTCCAG

-183-

TGAARTTCAT	CATGGGAAAC	TGGSATTACC	GGRAATTAAW	GGTGATATCA	CTTTTCGTAA	1260
TATCCGGTTT	CGCTATAAGC	CTG				1283

- (2) INFORMATION FOR SEQ ID NO: 73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6836 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

TCAACCTGAC	CAACCACTAG	AATCAACTCA	CGTCCGTCGT	TAGGGGGCTC	ATATTCTTGT	60
GTACTCCCCA	CATTGTATTT	ACTGACTCGT	GATGATTGTA	ATTGCGCTAA	TAATGACTCT	120
GCGCGTGCTT	CTTCTTTCGC	ATCTAAAACG	TACGTAGTGA	GTAACTGCTC	AAGCTTACTC	180
GGACGGCGGC	TATCAAAATA	GATTCCAACG	GGGTCAATCG	AGAGTGATGA	AGGTCGACAT	240
AAATTAGACC	CCAATCCGTT	GGAGCGGATA	AAACCATCTT	CAATCCGGAT	CACTGATTGC	300
AGTTCAGGAT	AACGGTTTCC	CCACACCAAC	ACCTGTTCAT	CATCTTTTAA	CTGTGAGGGC	360
ACAGTACGAA	CAAAACAAAG	TTCATCTGCC	AAATACGCAC	AAAATGTGCG	TATAAAAGCA	420
CGCTTCCACA	GAGAAAAACC	AACGAGATAA	AGACGACGCC	AAGGTTTGGG	CTCTACCTGC	480
TGCTGAGCCA	AAATCGCTAC	AACATCTTCT	ACCTCACAAC	GTTTTCCCAA	TATAGGATCT	540
AAATAACGCG	GATAACGGAT	CAACGCCGCC	GCAACTAAGC	GGGGCAATGA	AATAGATGAA	600
ACGCCTTCGG	CTGACATTGC	TTCTTCACGG	CGTATACAAC	GTTTACTGTC	ATGCGTTAAC	660
CCCCACCCAG	CATAAAATGG	CATACCGAAG	CAATATACAG	GTTTGCCCAA	CAGCAACGCT	720
TCCAAAGCCA	ACCTGCGATG	AAACTGTGTA	CACCGCATCC	ACCATACGAA	TTATTCTATG	780
CGGATGGCAA	GTTCACTCAC	CACCTCAACA	TCAGCCAGTC	GAGGATCACG	CCCCACTAAA	840
CGTGCTAACA	CGCCGCTTTT	TTTGCTAAAG	CGTGTATCTG	GGTGTGTTCG	CAACAATAGA	900
CGCGCATTAG	GGTGATTACG	GCGAGCCTCG	ACCACCATAG	AAACAAAATC	AGCTTCGCAA	960
GCAAGAGCCC	CAGAAATTGA	CAAGTCTCCC	GCTACTTGAT	CCACAAGCAA	AATACGCGGT	1020
CTTGGATCAT	CCAGTAAACG	TGCTAAGTTT	GAATGAGCCG	TGAGGTGAAT	AACTCAGGTT	1080
GTATATGTGT	CGGTAAATCT	AAAGAAGGCC	CGTCAGTAGC	ACGGGACAGA	GCCATTAAAT	1140
GTATGCTCAG	TGCTATTGGG	TATAGCAGTT	ATACTTGGTG	ATTCCTAAAC	GCAAAATATC	1200
MGAGATCAGA	TGCTCCAGGG	CGCGCAAAGT	AAAGCCGTAT	CCAACAGGTT	CCAATAATAA	1260
GCTGTTCTAA	TTGACTCGTC	TGATGTGCAT	CATAATATAT	CCCCAGAGGG	TCAGCAATAA	1320
GAGAAACCGC	CTTTCCTCCT	TTTGCTGGGT	GCCCGATATA	GCCAATAAAA	CCATCTTCAA	1380
GTTGCCAATA	AGATATTCCT	AACTCTTGAG	CTTTCTGTTT	AATCTGCTTA	GTATTAGATT	1440

-184-

TTTTTCCCCA	GCCAACTAAA	ACGTCATTTT	TAGAAAAAGC	CTCGTCTCCT	TTCATATAAA	1500
GCAATGGGTG	ACCAAGCATA	GGCTCAATAT	TATTTTYTCT	GGCAAGAATC	CCTTTCGATC	1560
CCGTATATAA	ATACATGTTG	TCTCTGTGAA	CTGAAGATTC	TCTACAATGG	TGTATAAAGT	1620
GTGATTTAGA	TGAACAGCTC	TGCGCTCTCT	AATGACTTTG	CAATACTATC	TTTTGCTGAA	1680
GTGAGAATGT	CCGCCTTTAA	CTCGGGCCAC	CTAATACCAA	TTGTAGGATC	ATTCCATGCA	1740
ATGCCTCTAT	CACTGGCAGG	GGCATAATAA	TTAGTTGTTT	TATACAAAAA	TTCGGCCGAT	1800
TCAGTCAGTG	TTACAAAACC	ATGGGCAAAT	CCTTCCGGAA	TCCATAATGT	CGTTTGTTTT	1860
CCCCTGAAAG	ATGAACGCCA	ACCCATTGTC	CGRAGCTCGG	TGAGCTTTTG	CGAATATCTA	1920
CCGCAACATC	AAACACTTCA	CCGGCTACAC	AACGCACTAA	CTTGCCCTGG	GCATGGGGAG	1980
GTAACTGATA	GTGCAAGCCA	CGCAGTACCC	CTTTAGAAGA	TTTTGAGTGA	TTATCCTGCA	2040
CAAAGGTAAC	TGGATATCCT	ACAGCCTCTT	CAAACAACTT	GTGATTAAAA	CTCTCAAAGA	2100
AAAAACCACG	CTCATCTCCA	AATACTTTTG	GCTCAAAAAT	AAGCACACCA	GGAATTGCTG	2160
TCTTGATTAC	ATTCATCTAT	ATGCCCACAT	TTAATTAAAT	ATTTTTAGGG	GAAGCATATT	2220
CCCTCCCCCT	TCTCAATTAC	ATCACGCCTT	ATCAATCATT	TTTAATAAAT	ATTGCCCATA	2280
GGCGTTTTTT	GCCAACGGAG	CAGCAAGYTC	ACGAACCTGG	TCGGCACTAA	TAAACTTCTG	2340
GCGATAAGCA	ATCTCTTCCG	GACAAGCCAC	TTTCAATCCC	TGACGCGTCT	CGATGGTCTG	2400
AATAAAGTTA	CTCGCTTCAA	TTAGGCTTTC	GTGGGTACCG	GTATCAAGCC	AGGCATAACC	2460
ACGCCCCATC	ATTGCCACCG	ATAGATTGCC	TTGCTCCAGG	TAAATACGGT	TCACATCGGT	2520
GATTTCCAAC	TCACCACGCG	GCGATGGCTT	GAGACCCTTG	GCAACGTCCA	CAACGCTGTT	2580
GTCGTAGAAA	TAGAGGCCGG	TGACTGCGTA	STACTCTTAG	GCTCCAGTGG	TTTTTCTTCC	2640
AGTGAAATAG	CGGTACCTTG	ATTATCAAAT	TCGACCACTC	CATAACGTTC	CGGGTCGTGC	2700
ACATGATAGG	CAAATACAGT	AGCACCGGTC	TCTTTGGCCG	CGGCTGCCTC	CAACTGTTTC	2760
TGTAGGTCAT	GACCGTAGAA	GATGTTATCC	CCCAGCACCA	GTGCACACGG	GGCTGAACCA	2820
ATGAATTCTT	CACCTAGAAT	AAAAGCTTGT	GCCAACCCGT	CTGGGCTTGG	CTGAACCTCA	2880
TATTGTAAAT	TCAGTCCCCA	GTGGCTGCCA	TCACCCAGCA	ATCGCTGAAA	GGANGGAGTA	2940
TCTTGTGGAG	TGCTAATGAT	CAAAATATCG	CGAATTCCAG	CCAGCATCAG	GGTGCTCAGC	3000
GGCCGCAGTA	CTGGATCATC	GGCTTGTCAT	AGATGGGCAA	CAACTGCTTG	CTCACCGCCA	3060
TAGTAACCGG	ATAGAGACGT	GTACCAGATC	CACCGGCCAG	AATAATACCT	TTACGTTTAG	3120
TCATGATGCT	TGTTTCTTAT	TTTTAAATTA	CATAAGAATA	AAGTGGCTTG	AGCCGCGCCT	3180
TTCTGTTTTA	TCCTCACCTG	TGGTTTACTT	CCCCATGATC	TCAGTCAACA	TCCGCTCAAC	3240
ACCGACTGAC	CAGTCCGGCA	AAACCAGATC	AAATGTACGC	TGGAATTTTT	TAGTATCAAG	3300
TCGGGAATTA	TGAGGGCGTT	TCGCCGGGGT	CGGAAAGGCG	CCTGTCGGCA	CTGCATTAAG	3360

-185-

CTGTGTGACT	GCCAGTTCAA	CTCCTGCGTC	TCTGGCTTTG	TCAAACACCA	ACCGGGCGTA	3420
GTCAAACCAA	GTGGTAGTAC	CGGAGGCAGC	CAAATGGTAC	AGCCCGGCAA	CGTCGGGTTT	3480
GCTCTGTGCA	ACTCGGATTG	CATGGGCGGT	ACAATCGGCC	AGCAACTCAG	CTCCAGTTGG	3540
AGCGCCAAAC	TGATCATTAA	TGACCGATAT	CTCGCGACGC	TCTTTGCCAA	GACGCAGCAT	3600
AGTTTTGGCG	AAGTTGGCAC	CGCGCGCAGC	ATAAACCCAA	CTGGTACGAA	AGATAAGGTG	3660
ACGTGAGCAG	AGTGCCGCAC	CGTGTTCCCC	TGCCAGCTTG	GTTTCGCCAT	AGAOGTTGAG	3720
CGGGGAAATC	ACATCGGTTT	CCACCCAAGG	ACGTTCACCA	CTTCCATCGA	AAACATAGTC	3780
GGTGGAATAA	TGTACTAGCC	ACGCACCTAA	TGCTTCAGCT	TCTTTGGCAA	TAACCGCCAC	3840
ACTAGTTGCA	TTGAGTAACT	CGGCAAATTC	CCGCTCACTC	TCCGCTTTGT	CGACTGCAGT	3900
ATGGGCCGCT	GCGTTAACAA	TCACATCCGG	CTTGACGAGA	CGTACCGTTT	CAGCCACCCC	3960
TGCAGAATTG	CTAAAATCAC	CGCAATAGTC	GGTGGAGTCA	AAATCAACGG	CAGTGATGTG	4020
CCCCAGAGGC	GCCAATGCAC	GCTGCAGCCC	CCATCCACTT	TCTGGCCACA	CCAGACTCGC	4080
CAGCAAAAA	GTGAGTGCTG	TCAATAACTC	AACCAGCGGA	TAACGCTTGC	TGATTTTCGC	4140
CTGACAGTCG	CGGCAGCGCC	CTTTGAGCAT	CAACCATGAG	AGCAGCGGAA	TATTGTCACG	4200
AACGCGGATG	GTCTGCTGGC	AATGCGGACA	GTGCGAACGC	GGTAGCGCAA	GGCTTATTTT	4260
TGACTGCGCA	CTCGGCATTT	CACCATGAAA	CTCCGCCATT	TGTTGGCGCA	GCATGATGGG	4320
GTAACGCCAA	ATCACCACAT	TCAAAAAACT	GCCGATGATC	AATCCTCCGA	CGGTTGCCAG	4380
TATGGGCATC	GCCGCGGGGT	ATTGCTGAAA	AACATCAAAA	AGCATGGTTA	AAGGTTATTT	4440
GTTGTAACTT	GCCGGATGCG	GGCCTGCGGG	TGTATGCCAT	ACGGCTTTCC	TTCAGGCCCG	4500
ATGCGCCTTA	TTTCATGCCG	GATGCGGCGC	GAGCGCCTTA	TCCGGCATAC	AGGCTTACTC	4560
AGCTGACATO	TTATGCTCGG	TAACCTGATT	AATGGTTTCC	GGCCCTTGCT	GCGGTTTCGG	4620
CAGATTAAGC	GCCGCCAGTG	TCTCGTAAGC	CGACTGGCTC	ACACCGCCCT	CGAAGTTCAT	4680
CTCGCTCGCT	CCCGGCAACT	GGTAAGCATT	CGCGCCCGGA	TTCCATTTCT	TAAAGAACTC	4740
CGAAAGATCC	GTCTGGGCGA	CCCAGGATGC	ACACAGCATC	AGCTTG T CGG	CAGCGTTACC	4800
GTTGGATTCG	GCACAGTAAT	TTCTTTCGCC	AAACTTGGTT	TTGCCAACCT	CATCGCCGCG	4860
TGCTTTACGG	TGCATCAACT	GGAACAGGTT	CCAGCCTTTC	ATCCCTTCAC	GATCGCTGTA	4920
GAACTTAGGC	C AGGTCACCTT	CTGGATACCA	CTGTTTGATA	TCAAAGTTTT	TCTCTGCCCA	4980
CTCTTTCAGG	TGTGCGTACA	. TCAGCAGACG	GTCACCCGCA	ccgccgcgcg	CCCATGCCTG	5040
ACCGTTGCT	TCCTCCAGAT	ATTCCGGCGC	GACGGTAATG	TCGTCAGCGA	CACGGTTCAT	5100
CTTGCCGAGA	A TAGCGATCCI	GCATGTACAG	CGCCAGCACG	TTGTTCGCTA	CTTCAGTTGC	5160
GCCAGGAACA	A GTCAGCGGCG	TTTCGGCGGC	GTTGTGACCA	ACTTCGTGCC	AGATCAGCCA	5220
GTCGTTCAGG	C GGCGTCGTCG	GCAGCGTGGT	GCTGTTCGTC	GAGAAGCTGC	TGTTCATTAC	5280

-186-

CGGATAACCA	GAGTGCGCAT	CACCGATGGA	GATCTGCACA	TCGTTGGTGA	AACGATGCTT	5340
GTGGCCCGTC	AAGTTTTTAT	AGGTAAACAT	CCGGTGCTTA	CCGTCTTCAT	CATTACGACC	5400
GTAGAAGTCA	TTCATCGAGC	TGGCAAAGGT	ATCCAGATCT	TTAGCGAATT	CTGCTACGCC	5460
ACCAGTGAAA	TTGCTGGCCT	CAAGGTTCTT	CTTCGGCGTG	GTGTAGACGA	AAGCGTCTGA	5520
CTCCAGCTCG	CCCAACGGCG	CAGGGGAGTT	CAGAGCGTTT	TTCCATGCGC	CATCTTTATA	5580
GAACGGCGCT	TTCACCACAC	CAGTAAAGGT	GAATTCGGCT	GACTCATTCT	GTGGGCTGTT	5640
GCCCTTGATA	TAAATCAGAC	CACCGTAAGG	AACCGTAAAC	TTCACCTCAC	CATTGGCTTT	5700
CAGCTCATAG	GTTTTCGTCA	CTTTTGGCGG	ACGGTTCAGA	GCGACTTCAT	GCTTCTCACG	5760
TCCGGTAAGG	TCGTCGGCCA	GCGCCACGGT	GACAGTCACA	GGAACTGATG	CAGAAGACTC	5820
AATGGTGACC	TCTTTCTGAG	CCGGAGCCCA	CAGGCCAGTA	GACTGCATGT	TACCCGCAAA	5880
CCATTTGGTC	GGATTCGAGT	ACAGGCTGAT	GGTTTCAGTA	ACCTTCTCAC	CTTCTGCCGA	5940
TACCGCTCCC	GGATACTTCT	CGACATCAAC	TTTGATGTTC	AGATCCCACC	AGGAACGACC	6000
CAGCATCAGG	CGCGTCAGCG	GTTTTTCCAT	ATAGTTGAGC	GGATAGCTCG	GGTTCATCAT	6060
GCCCGCTTTA	TTAACGCTCT	TCTCGCCGTA	GATCATGTTG	TTATCGACCA	GCGATTTTTT	6120
CAGCTCATCA	GAAACACTGC	GTGCCGCCAG	TATAGGCATC	GTTGGCGTAG	CAGTTCAGGA	6180
ACTCGGTGAA	CGTTTTAAAG	CCCAGCTCGT	CATCCTTGTC	GTTTTCATAG	CGATATTCAA	6240
TTTTATTCCA	CAGCCAGACC	GACATGTTCT	GGTACAGACG	TTCCAGATCG	ACGCTGCTCA	6300
GACGCTCACC	TTTGCGACCA	TTGGTCCGGA	AGTAGAGCTC	ATGCTGATAC	AGACGCTGAA	6360
TGTTGGTGCC	TAAATCCGCA	GCCTGCACCA	TCGCTTTTGC	CGTGTCGGCG	TTAAGGCTTA	6420
GTTGCGTATA	CTGTGGAACA	TACATGCCAC	CAGTAACCGG	AACCCCCGTG	CCAGGACGAT	6480
ATTCCAGACA	GTTGACCTCG	TAGTGGTAAG	TTGGGTCCTT	ACACTCCTTT	AATCCAGGAA	6540
ACTTCTCAAA	GATTTTTGCC	TTCGCAGCCT	TCAGAGAATC	CTCTGTTTTA	TGATCGGCCT	6600
CATCAATAAA	GGCATAACGC	GTTTCCTGTT	TGCCATCTAC	ATCTTCCAGC	CAGCTGGCAA	6660
CTTCCAGCTT	CGGTTTGTCA	TCAGGTTTGT	TTTCTACCTG	ATATTTCCAC	TTAACTTCCC	6720
CTGTCTTACT	ATCGATGGTG	TACGGCAGCG	CACCATCTAC	GGCAGGATAA	CGTTCATAGA	6780
CCCAAATGCC	CGTTGCGCGC	TGCTGACGAA	CGCGGTTCGG	ATACCCTTGC	GGATCC	6836

(2) INFORMATION FOR SEQ ID NO: 74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

PCT/US97/21347

-187-

GGAAAAACNC	GCCGTATATT	AGCCCGCGCG	GAAAAAGCCC	CGTNACGGGC	AAACGCAGCA	60
AGGTTTTATC	CCAGCGCAGG	CGCATGGCAG	GATTTTTGAG	TAGCCGTTGC	CCCAGCACCA	120
GAAGCCCCAG	CAATCCCGCC	AGCCAGTAAA	CGCCGCTGGT	CTGTAACGTG	TCGCTCATGG	180
CGATGAGCGT	GCGGGTGGAG	GCGGGCAGCG	CGTGTCCGAG	ATGATCAAAC	TGTTCGATGA	240
TTTTTGGCAC	CACTGCCGTC	AGCAAAATAG	TGACCACGCC	CGTTGCCACC	ACCAGCAGTA	300
CCAGCGGGTA	GAGCATGGCC	TGCAGCAGGC	GTGAATTTCC	AGNACCTGCC	GCTGTTACGG	360
TGTAACCCGC	CAGGCGATTG	AGCACCACGT	CGAGATGTCC	GGATTTTTCT	CCGGCAGCAA	420
CCATCGAACA	AAACAGGGAA	TCAAAGACGC	GGGGATGTTC	GCGCAGGCTG	TCCGACAGGK	480
TGTAACYTTC	CTGAATCCGC	TGCGCAGCGC	CATTCCGAGG	CTTTTTACAT	GCAGTTTTTC	540
ACTTTGCTCA	CTGACCGCCT	GTAAGCAGGT	TTCCAGCGGC	ATTGCTGCCT	GTACCAGCGT	600
TGCCAGTTGG	CGCGTGAACA	GCGCAAGATC	TGCCGCCGCC	ACGCGACGAT	GTGCGTGCCG	660
CCGACGCTGC	AACATCCCCC	CTGACGAAGT	ATTCATCCGG	GCTTCAATAT	GCACGGGGAT	720
AAGCTCTTTA	CCGCGCAACA	ACTGGCGGGC	ATGACGCGCG	GAATCCGCCT	CAATCATACC	780
TTTGGTTTTG	CGACCATTAC	GCTCCAGCGC	CTGATAGTAA	AACAGTGCCA	TTACGCCTCC	840
ATGGTTACCC	GCAGAACTTC	ATCGAGAGAG	GTTTCTCCGG	CGAGCACTTT	CTCAATGCCG	900
TTGCTGCGGA	TACCCGCAGA	GTGTTGTCGG	ACATAACGTT	CCAGCTCCAG	CTCCCCGGCC	960
TGACGGTGGA	TCAAATCACG	CAATGTGGCA	TCCACCACGA	TCAGCTCATG	GATGGCAGTC	1020
CGTCCGCGAA	AACCTTTGTG	ATTACAGGCG	GGACAGCCCT	GTGGATGGTA	CAGAGTGACG	1080
GTACGGGCGT	CGGTAATTCC	CAGCAGGCGT	TTTTCTTCGT	CGGTGGCAGG	CGCGGCCTGA	1140
CGGCAGTCGG	AGCACAGCGT	GCGGACCAGT	CGCTGCGCCA	TCACGCCCGT	CAGACTGGAA	1200
GAGAGCAGGA	AAGGCTCCAC	GCCCATATCC	TGCAAACGTG	TGATCGCCCC	CACCGCTGTG	1260
TTGGTATGCA	GCGTGGAAAG	TACCAGGTGT	CCGGTCAGTG	AAGCCTGAAC	AGCGATTTCT	1320
GCGGTTTCGG	TA					1332

(2) INFORMATION FOR SEQ ID NO: 75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4407 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

CCCAACGTTT	ATCGTATTTC	ATTAAAGTCC	CTTGCCCGAT	GCTATCTCGA	GTTACATGAC	60
GAAATCGCTG	ATTTGGATGT	CATGATTGCG	GCAATTGTCG	ATGARCTGGC	GCCTGAACTG	120
ATTAAACGTA	ATGCTATTGG	ATACGAAAGC	STTCGCAGTT	GCTGATCACG	GCAGGAGACA	180

ATCCCCAACG ATTAAGATCA	GARTCAGGTT	TTGCGGCACT	GTGTGGTGTC	AGCCCTGTTC	240
CCGTATCTTC AGGAAAAACG	AATCGTTATC	GACTTAACCG	GGGTGGAGAT	CGTGCTGCAA	300
ATAGTGCACT TCACATCATT	GCCATCGGAC	GTTTGCGAAC	TGACGATAAA	ACGAAGGAAT	360
ATGTCGCCAG ACGAGTAGCG	GAAGGGCATA	CAAAAATGGA	AGCAATACGC	TGCCTGAAGC	420
GCTATATCTC ACGCGAAGTT	TATACATTAC	TGCGTAATCA	AAACAGGCAG	CTCAACAGCA	480
TCCCGATAAC GGCTTGACTC	TTAGAAGGGC	GTCCAGGGCA	GCCACTATAC	AAGCAGGCAG	540
TTCCGGCAGT TACTGTGGCG	TTACCAGATC	AAACAGAGTC	TGAGTCGACG	AGGAAATTGC	600
TGGGATAACA GCCCGATGGA	GCGCTTCTTC	AGGAGTCTGA	AAAACGAGTG	GATACCGGTG	660
ACGGGTTACA TGAACTTCAG	CGATGCTGCC	CATGAAATAA	CGGACTATAT	CGTTGGGTAT	720
TACAACGCGC TCAGGCCGCA	CGAATATAAC	GGTGGGTTGC	CACCAAATGA	ATCGGAAAAC	780
CGATACTGGA AAAACTCTAA	AGCGGTGGCC	AGTTTTTGTT	GACCACTACA	TTTAGTGCGA	840
CACGGGAAGC GCGATATGAA	CGATACGATA	CATCAATGGT	TTATTGCGGT	GATAACCTGA	900
AGGGTGAGAT TGAGGCTATT	TATAATAGTC	TTGAGAGGCG	TCAGGTTTAG	AGCAGGAATG	960
CTGAGTAGCC ATCTTATCGA	TTGTTTTCGA	GCGTAAGATG	GCTGAATGGA	ATGGCTATTA	1020
TTGCACAGTC CTTAATTATA	ACATTCATAC	CGACATGATT	ATCTTCTGTC	CGGAAGAATC	1080
AGAGGCTGCG GTTTCAGACT	GTCTGCCGGT	ACATTCCTCT	CTCCGTTAAA	AACCATAACG	1140
GGTTCATTAT CTTCGTCTGT	CAGCAGATTG	AATGGCGGTA	TATTTTCAGT	ACGAATGCCG	1200
GTCAGCCACT GAAAAATACC	TGCGAAATGA	CGGGCACTGA	TTTTTCTGCT	GACGGACTGA	1260
TGAGACGTGA TGTCACTGGC	GGTAATAATC	AGGGGAACGC	TGTAGCCTCC	CTGCACATGA	1320
CCATCATGAT GAACAGGATT	AGCACTGTCG	CTGACCGACA	GACCATGGTC	AGAAAAGTAA	1380
AGCATGGCAA AATGACGGGA	ATGCCGGCGA	AGGATACCAT	CAAGCTGCCC	GAGAAAGTTA	1440
TCCCAGTTTA CTGATGCTGG	CGAGGTAACA	GGCAATTTTT	CGGGGATACT	GCCCCAGGTA	1500
ATGATTCGGC CAGGAGTTAA	GCCGGTCACA	CGGGTTCGGA	TGAGACCCCA	TCATGTGCAG	1560
GAATATCACT TCGGAGAGGA	TTTATCCGCC	AGTGCACGTT	CTGTTTCCTG	TAACAACAAC	1620
ATGTCATCCG TTTTACGGGA	AGCAAAGCTG	CCTTTCTTGA	GGAAAACGGT	ATGCTCCGCA	1680
TCAGAAGCAA TAACAGAGAT	GCGTGTATCA	TGCTCCCCCA	GCTTTCCCTG	ATTGGATATC	1740
CACCATGTGC TGTATCCTGC	TTTTGCTGCC	AGCGCCACCA	CGTTGTTGCC	GGAGTCAGGG	1800
TTCTGCTCAT AGTCATAAAT	CAGTGTCCGG	CTCAGGGAAG	GTACGGTACT	GGCTGCTGCC	1860
GATGTATAGC CGTCAATAAA	TAAACCGGGA	GCAGTATTCA	GCCACGGTGT	GGTTGGCACG	1920
GGATAGCCAT ATACCGACAT	ATAATCCCTG	CGCACACTCT	CACCAGTGAC	GATAACAATC	1980
GTGTCATACA ACGGTACACC	CGGCAGGATT	TTCCAGTTGT	CAGCCCCGTG	CTGATTCAGT	2040
TGTTTATAAC GCTGCATTTC	ACGCAATGTG	TCAGTTGTCC	CCACAACAGT	TCCTTTAACC	2100

-189-

ATCCGCAACG	GCCAGCTGTT	TACTGAGCAT	AATACGAACA	GCAGCAGTGC	CAGCCAGTTA	2160
CGGTGACCGC	GGTGGTGTGT	TCGCCAGAAA	ATCACCATGA	ATACCAGAAT	CGCGGCACTG	2220
ACCAGAAAAT	GATAAACAGG	AATCATCCCG	GTAAACTCCG	CTGCCTCATC	AGTTGTGGTC	2280
TGCAGCAACG	CAACAATAAA	ACTGTTGTTG	ATTTTACCGT	ACGTCATACC	GGCAGGCGCA	2340
TACAGTGCAC	AACAGAACAG	AAATAACAGC	GCTGTAATGG	ATGTGAGGGT	ATTTCTGTGT	2400
GCAAGAAGCA	GAAGAAAGAA	CAGCAGCAAC	ACATTCCCGG	TGGTATTCTT	CTCAGTGTAT	2460
CCGCATGCAA	TTGTGGTTAT	GACAGAAACA	ACAAAAAAGA	ATAAAAACAA	TATAATCCTG	2520
AGAGTGTTGC	CCGGACAAAA	CAGTTTTCTG	ATATTCATCG	GAGTATATCG	ACAACATTAT	2580
TATGAAGAGA	ACAGGATAAT	AAAAATCAGA	AGTTATCTGT	GAAACAGATA	ACAGACANCC	2640
CTGCAGTATA	ATATTACTGC	AGGGTGTTCC	TTTTTAATTA	CAGAAATACG	TAATTATCTT	2700
AATTGCAGAA	ATATGCGCAA	TTATCGTTCA	GAAGCAGTGT	CGTCAGAAGT	TATAAGTCAC	2760
ACCAAGCAGG	ATGTCATGAC	TTTTAACATC	AACCTCTGAT	TTATATTTAT	CCCCTTCTGT	2820
ATCCTTGTAA	TACAGGGAGG	ATTTACCAGC	ATCCAGATAG	CGATAGCTGA	GGTCAAGAGC	2880
GATATCCGGG	GTTACGTCAT	AGCGAACACC	GGCCCCAATG	CTCCATGCGA	AGTTGTCAGC	2940
AGAGCCTGAG	CGTGATATAG	AATAACGCAC	TCGCTCACCG	TAGCCATAAT	CCCAACTACC	3000
GCTACCTGTT	GATTCCTGAT	GAATTCTGGC	GTAACCAATT	CCGGCAGACA	CCCATGGCGT	3060
AAATGCACTG	TCGTTTCTGA	AATCATAGTA	CGCATTCAGC	ATCAGGCTGT	TGACTGACAC	3120
CTCATTCTTC	AGGTCACTAT	GTCCCGCGTG	GTCCTTATAG	AGGTTGTATG	TTGTGTCAGC	3180
TTTTCCACGG	GCGTAAAACT	CCAGTTCTGT	ACGCACAGGA	ATACTGAACT	GCGGATGCAA	3240
GTCATAACCA	AACGCTATAC	CTCCACTGAA	TACCGTGTTA	TGGCCATCCC	CCCCCTATAC	3300
TTTGATGTTT	CCTCTTTATT	TTCGGACAGG	AAACTCTGGT	CAGAAAGAGA	TACTGCTGAA	3360
GTACCTGCTT	TACCGGTCAG	ATAAAAACCG	CTTTTACCTT	CCTCAGCACC	CGCATTTGCT	3420
GCAANCATAC	AGGCAGCGGT	AACTGCTGAA	ACAGCAAAAA	CTTTTTTCAT	TTCAATTAAC	3480
TCCATTATTT	CACTATTTT	GTAAATAGCA	CTCCTAATAT	TTTAAAACCA	GTCAAAAGAT	3540
AGTATCAAGC	AAATTATTCA	TGTCTAATGA	ACAGATAAAA	TCGACTATGT	GTCGGCAAGA	3600
CTCTGCTCCA	CCGATATTCC	TCTTATTTCC	GCCTCGATGA	AATACCCCCG	TTACCTTATT	3660
TGTACCCCTT	ATAATGGGAT	GTTGGCCAGC	CAGACCCGGC	ATGATTAGTT	CTCCCTGTCG	3720
ACTATGCTCC	GGGAGGGATG	TCACCGGGTC	TGGTGAGGCG	CGGATAACCG	CTAATAGGGG	3780
AAGGTCAGGT	ATTTTACACC	GGGACCGTCA	GGGCAAGATA	ACGAAAGCCA	GCTCCCCGCA	3840
TGAACTGACG	CCAGATAGTT	TCTGTCCATT	GCTGCTTTTC	TCATCTTACG	TCTTAACCCT	3900
GCCTTGAATA	CCTTATCTCT	CGTCAAAATA	TTAATAGCGA	TATGCCGTAT	CCCTGAAAAT	3960
AATCCCGCTG	CGTTTCCTCT	TCTTACTTGC	AGTCGTCTTC	ATTCATTACC	ACGTCCAGAC	4020

-190-

GCCATGCAGC	TTATTCTCCA	CGTGCCAGTG	ATTTCGGATC	GCTGTGACGA	ACTTCTCTGC	4080
GGTTAAATCA	GCAGAACTGA	TATAATATCT	GACCATTATT	TOTGACTOTT	GCTTTTGTTC	4140
TGCTATTATT	GACCGAAAGG	AGACTGCCAG	GCATATTTTT	TCAGCCCTTT	CCATTCAAAC	4200
GTGAATTCAA	TCAGCTCATC	AGGGACNTCG	CCAAACCATA	TGAAGACGGG	ATCCTNCTCT	4260
GCCGTGACTC	TTGTCACTAA	TTGCGTAACA	GTCATGCTCN	GGGATAATTA	AATCTTTCAG	4320
CGGAAATAAA	AAGATTATCA	GATATGGGGA	TGACACCACA	GCACCGCTGA	GGCCAGTATG	4380
GATAAACCAT	GTACCTTATT	AACCAAA				4407

(2) INFORMATION FOR SEQ ID NO: 76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 824 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

TTTTTTGCAA	GAGAATTTCC	CTGAACCTGA	AGCTCATCAT	CGCCATCTCC	GCCGTTCAGG	60
TAATTATTAC	CTGCTCCCCC	AATTAACTTA	TCGTTGCCAT	CACCGCCATA	GAGCTGGTCA	120
TCTCCGTTTC	CACCACTCAG	TGTGTCATTA	CCTTTATCAC	CATATAAGCG	GTCATTCCCG	180
TCATTTCCTT	CTATATGGTC	ATCACCATCC	GCGCCATGGA	AGATATCAGC	AAATTTACTG	240
ССААААААСТ	TGTCGGCACG	CGTGGTCCCA	ATAAGTTCTT	CCACGGAATA	TAAGTTATCA	300
GTCTCTGTTA	AATTTTTACC	ATTGATATGA	GTGAATTCAT	AACTCCGATA	TTGCGTTTTT	360
TCAGTTCTTT	TTCCAACTGA	AACCTCCTGC	TCCTTCACAA	CTTCCTGTAA	AACCTTAACA	420
TCACCACCAA	GTACACGTGT	TACCGTGTAA	TTACCCGCTT	CGGTTGCTTT	TGTGCCATCA	480
ATGGTCAGAT	AACCGGTGTC	TGTTTTATCA	TAATAAACAA	CATCATGTCC	TTTACCTGCG	540
TAGATATTGG	CTGAGCCGGC	AGATAAAAAG	ACCTTATCAT	CCCCGTCTCC	CAGGTGTGAC	600
TCAATACGAA	TTTCCCGATA	CTGGTTATTA	CCGACTGATG	CATGCTGAAT	CAGGTTAGAG	660
TAATCATATA	CAGACCCCTT	GTCCTGNAAC	CCCCTTCACC	GTCCATTTAT	CAACACCCTT	720
GACTAATAAC	TCGGTAATAT	ATTCATATTT	TCCGGACTGC	CTCCTTTCAC	GAATTTCCTC	780
ACCGGGAGTT	TAACAATGGG	CGTAACNAAT	TTGCAATAAC	GTGG		824

(2) INFORMATION FOR SEQ ID NO: 77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 550 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-191-	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
GNGGCCGCAG TACTGGATCA TCACCGAAGT TTCGCGCGGA AAAGCGTTAG AGAAAGATCT	60
AATGCTTCAT GATGGTGATG GACTTTTCCT GATGGTGAAA TCCAGCGGGA AATGCTCTGG	120
CGTTTCCGTT ATCAACATTC GACAACAAAG CAGCGGACAA TGATGGGACT CGGTGTCTTT	180
TCCACACTTT CACTTGCTGA TACCCGAGGG CTAAGAGTGG ATTATATTTC CTTATTAGCC	240
AACAGAATCG ACCCGCAAAT TCAAGCTAAA GCCGTAGACG AAGAGCAATA TTTGAAAAGG	300
TGGGCACCTA CGTTACCAAT ACTGGCTTAA TGGCTACATA CGGCGGTCAG GGTCAGTTTA	360
CGCTTACAAA ATATAAAACA ATTTGATACA AAATATTCCT CTTATTCTAA ATAAAAGTAT	420
CTTGAAAACC TTCCAACTGG AAGGTAGATT GAATTTATGC TAAACATAAA GAGGAATTGC	480
TTATGAATTA CGTTATCCGC ACTACCACCG TCGTCTTTAG TCTCATGCTG GGCAGGTTAC	540
GCAACTGCTG	550
(2) INFORMATION FOR SEQ ID NO: 78:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
CACTAAAGGC CCTGGATGTT TTTCGCTCAT TAGTAGACAT CTCGCTGATA ACGGCGCTCT	60
ACCCCACTC ACTTAAAAT TCATCCCCC CTTCGGTGTC CATGCCACCA AATTCGGCAA	120

CACTAAAGGC	CCTGGATGTT	TTTCGCTCAT	TAGTAGACAT	CTCGCTGATA	ACGGCGCTCT	60
ACGCGCACTC	ACTTAAAAAT	TCATCCGCCG	CTTCGGTGTC	CATGCCACCA	AATTCGGCAA	120
TCACTTCCAG	AAGTGCCTGC	TCAACGTCTT	TCGCCATGCG	ATTAGCGTCG	CCGCAGACAT	180
AAATGTGGGC	ACCATCATTG	ATCCAGCGCC	ACAGCTCCGC	GCCCTGTTCG	CGCAGTTTGT	240
CTTGTACGTA	AACTTTTTCT	TTTTGATCGC	GCGACCAGGC	AAGATCGATA	CGTGTCAGCA	300
CGCCATCTTT	GACGTAGCGC	TGCCAMTCCA	MCTGGTACAG	GAAGTCTTCC	GTAAAGTGCG	360
GATTACCAAA	GAACAGCCAG	TT				382

- (2) INFORMATION FOR SEQ ID NO: 79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3576 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79: TAAATCAGCA GAACTGATAT AATATCTGAC CATTATTTCT GACTCTTGCT TTTGTTCTGC 60 TATTATTGAC CGAAAGGAGA CTGCCAGGCA TATTTTTTCA GCCCTTTCCA TTCAAACGTG 120

-192-

AATTCAATCA	GCTCATCAGG	AACATCGCAA	ACAATATGAA	GAUGGATTTC	TTCTCTGCCG	180
TGACTCTTGT	CACTAATTGC	GTAACAGTCA	TGCTCTGGAT	TATTTAATTC	TTTCAGCGAA	240
AATAAAAGAT	TATCAGATAT	GGGATGACAC	ACAGCACCGC	TGAGCAAGTA	TGTATAACCA	300
TGTACTTATA	ACAAAAGGAG	ACGTAAGAAG	GGGAACGGGT	ATCAGAGGGC	CAATCAAAGC	360
AGGTATAATG	AACGCCAGTA	TAATTGTCCG	CAACCCAGAA	ATATATTATT	GAACTGGTTA	420
TCTCCTGCGA	ATGCATATAC	TGCAACGGCC	GTTAAAATAG	CATTATATCC	ATAAAGCCCG	480
GCAGAGATTT	TATCAGGAGA	AAGCTCAGGA	ATACAGAATG	ATACCACCAC	ACTCAGAAAC	540
GAAGCGACAA	CCGTAATCAT	CAGTAGTTTC	CGGCTCCCTG	CAAGTAGTCC	CAGCATAACA	600
AGAATACCGC	CGACAGCATC	AGGAAACATA	AAAATCTCCA	TAAAGCTACC	AGACAATGCC	660
ACCGGATAGT	TTTTCAGCAA	AACAGAACCT	GCACTTCGCC	CGAAGGTACT	GACATATCAT	720
GAGGCATTAT	TCCGGAATGT	AATAACCACG	TAGCGATAAT	AAAGGGGGCG	GTCAATACGG	780
GTAACCCTCT	GAGCACTGAC	GACAACAGGG	GAGTAAACAA	AACAATACCA	AGAGTTCCGA	840
CGATAAGTAC	AGCAATTCCG	GAGACTGACA	CAGGGACAAG	CATGCCACAG	GCTATGCCAT	900
ACAGAACAGC	ATTATATCCC	CATATACCTT	CATTAATCTC	CTCATCAGGA	TACCGCAAAC	960
ACCAGGCAAA	GAACGGAGAA	AGTGCTGCAC	TGATGGCTGA	GAAATACAGT	ATTTCGGGGT	1020
GCCCCATATT	AAAAGAGGCT	ATTCCAGTCG	ССААААААА	GAACAAGCCA	GAAACAACAT	1080
TGTTCTGTAA	TAATACCTGT	GAATACCCCT	TACTAAAGGC	GGTTATCACC	TGTTTTACTC	1140
TCATGTAAAA	TGTCACACAC	ACCTCATACA	TAAACCATTC	TCCGCTTCTG	CGGGACAGTA	1200
CCGCCCCTGA	CTCCACCTCA	CAGCGGATTG	TGTATTTTTA	AACAATCACA	GTCTTCTCAT	1260
ATACTTTCCA	TTCTGAAGCT	TATCTCTTCC	TCCGTGATAA	GCTTCCGTCG	CGGGATGTGT	1320
TATACGCCCT	GTAAGACAGT	TATAAAGGAC	ATCAATGCCA	TAGTTAATGA	YTACCGAATT	1380
CCGGTGGATA	GTCAGTACTG	GTTTGCCACA	AAACAGTGCA	GTCACACATG	ACAGGAGAAG	1440
ATATGAGCCG	GATACCGCTG	CTCTGAGACT	TAACGCTCAT	GTAAACTTTC	TGTTACAGAT	1500
TCTTCCAGGG	ACTAAGAAGA	TAACTGANTT	ACGTTCGCAT	TCCAGTSTTT	ATTTCTGCAG	1560
TGACAGCCAT	ACCCGAGCTT	AATGGAATGT	GCTTATTCCC	GGTTGACAAA	TCATTCTCTT	1620
CAACAGAAAC	AATGACATTA	AAAACGAGTC	CCAGTTTCTG	GTCTTCTATT	GCATCTAAAT	1680
TTATATTTT	TACCTTACCC	ACCAGATAAC	CATATCGGGT	GTAAGGAAAA	GCCTCCACTT	1740
TAATGATGGC	ATTCTGCCCG	ACGTTAATAA	AACCAATATC	TTTATTTTGT	ACCAGAGCAG	1800
TAACCTCCAG	CGTGTCATCT	TCCGGAACGA	TGACCATCAG	TGTTTCCGCT	GTTGTAACAA	1860
CCCCACCTTC	AGTATGAACC	TTCAGTTGCT	GAACTTTTCC	CGAAACAGGG	GCCCTGATTA	1920
CGAAGCCTG	TTGACGCTCT	TCATTTTTCT	CTAACTCCAG	AGTTAATAAC	TCAATGCTGT	1980
GTTGTTTG	TOTTACOTTO	TCTAAAATTT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	а в сетесете	ACAAGCTGAT	2040

ATTCTTCTTT	TGCAGACAAT	ATCTCACTCT	CAATTTGCTC	CAGTTGCGAT	TTATAAACCC	2100
GTAATTCATT	TGCTGCCTCA	ACATATTTAT	TCTCCTGCTC	AAGTACAGCA	TGTTTTGCAA	2160
TTGCCTGTTT	ATGCAACAGG	CTCCTGAAAT	CATCCAGACG	GCTTTTTTCA	ACCCTCGATA	2220
CATTTTCATA	ACGGTTTATA	CGGGCAAGTA	TTGTTAAWCG	CTCTGCTCTT	TTCTTATCCA	2280
GATTCAGTTC	TTTTTGATAC	TTCTGATTTT	GCCATGTGGA	AAACTGTTCT	TTTATCAAAG	2340
AAGTTAAACG	CAGTACTTCC	TCTTCAGATA	CATTCTGAAA	ATAAGGCTCA	TCAGGAAGTT	2400
TCAGTTCAGG	AAGTTTATTT	AATTCAATTG	ACCGGCTCAG	AATTTGATAC	CGAATTTGTT	2460
CCAGCCTGGC	CTGTAACAGT	GATGACTGCG	TTTTTAACGT	ATCAGCTTCA	GCTCCCAGCG	2520
CTGTAAGCTT	TAATAACACA	TCCCCTTTCC	GGACTGACTC	TCCTTCTTTT	ACGAYAATTT	2580
CTTTAACTAT	CGAGTTTTCA	ATAGGTTTAA	TTTCTTTNTA	CGCCCACTGA	GTGTTAATTT	2640
CCCATTTGCA	GTGGCAACAA	TTTCCACCTG	GCCTAAAACA	GATAAAATGA	AAGCAATAAC	2700
CAGAAACCCC	ATAATAAAAT	AAGCAACCAG	ACGCGGCCGT	CTGGATACCG	GCGTTTCAAT	2760
TAATTCCAGA	TGAGCGGGTA	AGAATTCATT	TTCGTCCTTT	TCACGTACCG	GAGTATCTAA	2820
CTGCTTCCGG	ATTTTCCATG	TTTCACTCCA	GACAAGTTTA	TAGCGCAACA	GGAACTCGCT	2880
GAACCCCATT	AACCATGTTT	TCATATTCTT	CTGTTCTTTC	TGTTAGTCTG	ACTGTAACTG	2940
ATATAAGTAA	CTGTATAAAC	TTTCCGGTTC	AGAAAGCAGC	TCCTTATGTT	TACCCTGTTC	3000
AACAATTTTC	CCTTTTTCCA	TGACAATAAT	GCGGTCTGCA	TTTTTTACTG	TAGACAGACG	3060
ATGAGCAATG	ATTATAACCG	TTCTGCCCTT	ACATATTTTG	TGCATATTGC	GCATGATGAC	3120
ATGCTCCGAC	TCATAATCCA	GAGCACTGGT	TGCTTCATCA	AAGATGAGTA	TTTTAGGGTT	3180
GTTCACCAGC	GCCCTTGCAA	TTGCGATGCG	TTGACGTTGA	CCTCCGGATA	ATCCTGCCCC	3240
CTGTTCCCCG	ACAATGGTGT	TATACCCCTC	ACGCAATTCA	GAAATAAAAT	CATGAGCACC	3300
TGSTAATTTC	GCTGCATAAA	TAACTTTTTC	GACGGACATG	CCAGGATTAG	CCAGTGAAAT	3360
ATTATCAATA	ATACTGCGAT	TAAGCAGCAC	ATTGTCCTGC	AACACAACCC	CCACCTGACG	3420
ACGTAACCAG	TTAGGATCGG	CCAACGCAAG	ATCATGTCCA	TCAATTAAGA	CCTGGCCATT	3480
TTCAGGAATA	TAAAAACGTT	GAATTAATTT	AGTTAATGTG	CTTTTTCCTG	AACCAGAACG	3540
TCCGACAATA	CCAATAACCT	CCCCCTGCTT	AATACT			3576

(2) INFORMATION FOR SEQ ID NO: 80:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 3541 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

-194-

TCAGCCCGGT GAGCGGGTTT	GACAATTCCG	CACTCACCAT	TGGGCTAAGG	GTTATCAGGT	60
GGGGTTAAGG AAATGGCAAA	ACCTACCCCC	GTOCAAACTC	CAGTOGCTGC	ACATTCACCA	120
TCCCTGGCTT CTCACCTGCG	CTGACATCAA	TTTGTGTCAC	COGCAGCGCA	TATTTTTCAT	180
CCAGTGCTTT TAACCAGTTC	AGCAGGTCAT	TAAACACCAC	AGGTTCTATC	CAGACCTGGA	240
TATTCTCCCC GCGCTCGGCA	ATCCGTTTGA	TGACCACCGA	GTGCGCGGAA	GCTGTCACTG	300
ATGACCCGCG ATACCTGTGC	TGGCGTTGTC	GTGCCGGATT	TTCGCGCCCC	AATAATATCC	360
GGCGCGGCGC TCTTCAGTCG	CGCGTTCATC	GCCACCAGCT	GCTGCAACAT	CGTCTCCTGT	420
TGCTCAATCC GTTCGCTCAA	CGGCTGCCAG	ATGAGAACGT	AATATCCGGC	GCTAAACAGG	480
AACACTACCG CTGCCAGTAA	CATGCCTTTT	TCACGCGGCG	AACGCCCCGC	CAGGTGTTGT	540
GTCAGCCAGT GTTCGCCACG	GCTTAACTGG	CGTTCACGCC	ATTGCTGAAA	ATAGTGAATA	600
AATTTATCGC GTAACATGTT	ATTTCCTCCG	CAACGTTACG	CCGCCGGAAA	CCGCATCACC	660
CTCTTTCTGT AACGCGTCCT	GTTGCACAAC	ATAATCTGCC	GCCAGTGCGC	TACGAGTTTA	720
TCGAAGCTGG CAAAGTTCGC	AGCCCGTAGC	TGGAGGTGAA	GCGTCTGGCG	TTTTTGATCA	780
AAGGTGAAAC ACGCATTTCG	ATGTCGGTAA	GTGACGCTGA	TTTCAGGGTA	CTGGCGATCG	840
CTGACAATTC TGCGAGCAGC	CGGGTATCGT	CGGTCTGTGG	GCGATATTTT	TTCAGCGCCA	900
TCGTCACCTG AGAGCGTAAA	TTCACAATCC	GCTTCTGCTC	CGGGAATAGC	GTTAAGAACT	960
GTTTCTCCGC CTGGGTGCGG	CTTTGCGCCA	CCTGTTCGCT	GACGCTCCAT	AACGTCACGC	1020
CCCGTTCCAC TACCAGCGCA	ACCAGAATCA	ACAATATCGG	CAGAATCATC	ACCCGCCAGC	1080
GCGCCCACTG TTTTCGGTAG	CTGACACGAG	GCTGCCACGG	CCCTGTTAGC	AGGTTCCCTT	1140
CCGGTTCGCC ATAAGTGGTA	ATGGCGGGCA	GAGCGTAACG	GTCAGCGTTC	GGCGTCTGCA	1200
CCAGCCCATG CAGACAGTTC	TTCCGGTGCA	ATGCCGACCA	CGGTTAGTGA	AAGCGGTAAA	1260
TCCTGCTCAT TGAGCTGTGC	TCGGAACATG	ACCGGAGCCA	GCGCCCGCCC	GGCGCTCCAT	1320
CCCCGGCATT CATCGATGCG	GMAGATAACC	CGTTGCGCAT	CGCCAGCCAT	AAACCCACAA	1380
GGAATGGACA TCCAGTCCGG	CGCGACGATA	GCGCGGGTGA	TGCCGTTTGC	CTGCAACCAC	1440
TGCGCAATGT TGCGCATATG	CTGCTGGTGA	ATCACAGCTA	CGGTTGCCAG	TTGCTGGTCG	1500
ATTTTCAACG GGGCGAAATG	CAGTTCATCG	ATATCCTGGT	TCAGCTCTTC	TTCCAGCAAG	1560
GCGGGCAGAA TCGTCGGTAT	CTGCTTGCGG	GGCACATCAG	GCAGTTCAAC	CTGCCAGACG	1620
CTGATCCATT CGCCGGGAAT	GTAGAGTCGA	ATCGCATCAG	TTTGCAGCCA	TTGCTGGAGA	1680
CATTCATCAG CAACGTCAGG	CCAGATGCCG	CACTCCACGT	CGGCGGTACG	ACGCTGCCAA	1740
CGGATGGGAG CGGAAMGNCA	AAGCGGGAAA	AAAATCTCAA	GCATGGAACT	CACTCACTTT	1800
CTCCTGTCTG ATGCCAGAGA	ACAGAAAAGT	GTTGTGGGCC	CATGCGGACA	ATTAACGAAT	1860
TCATCGTCAG TTCAATCTCA	TTCACGGTGA	TATCTGAACG	CAGCCAGAAG	TAATTGCTGT	1920

-195-

CCACGCTCAG	GACGGTTTTT	AGCTGTTTTT	TAGTACGCTC	ATCGACGTCA	GCAAGTAACG	1980
GCTGTGCAAG	AAACTGATCG	ACATOTTOCO	AGCCCTTCGC	ATGACGTTGT	TGTAATAACG	2040
CTCGCGCCTG	AACAGGGCTT	AACCACGGGT	CAAACAGCGC	CTCAAGAATC	ACACTTTGCG	2100
TGACGTCTAA	GGTATTGATG	TTGATTTGCT	GGCGGGTCAT	CGGCAGCGCA	CAGACCAGCG	2160
GTTTCAGTTT	TTGATAAAGC	CCGGCGTCCA	TTCCCTGCAC	CACGCGCATC	TCGCTGATAT	2220
CAGCCAGCGG	TTGATTAGCG	GCGTAAAACG	GCACCGAACG	GGCGAGATAC	TCGCTGTCTT	2280
CACGGCCCAG	ACGCGTCTGC	ACGCTGCGGT	CTTCGTCAAT	AAACTCCCAC	AGGCTTTCGG	2340
CTATCAGTTC	GGCCCGATAA	GCAGGCACAT	CCAGGCGCGT	GATCAGGGCA	ATCAGTTGTT	2400
GTACCGCGAG	CGGACGCGAC	GCCGTCGTCG	GCTGAGCGAG	GGCATTCAGG	TTAAAGCAAG	2460
CCTGTGCGTC	ACGCAGAGTG	ACGGCGATTT	GCCCTGCGGC	AGTGGGAAAA	AACGCGGGCC	2520
GGAAGCCCNA	CGTGCGCCAG	ATGCACGCGC	TTTTCATTTT	TCAGGCTCAG	ACTGAGTGCG	2580
CTCAACGCCA	GGCTTTCCGC	ACTGGCGCTG	TACCACAGOG	CCTGCTGGTA	CTCCTGCTGG	2640
TGCGCGTTCG	CCCAAGTTGT	TTCTGCATCC	GCCCGGAAAG	CGTGATGGTC	ACCAGCATCA	2700
TAACCGCCAG	CAATACCAGC	ACCACGACCA	GTGCCATTCC	GCSTTTTGGT	GGTGAGGTGA	2760
TCATGATAAT	TGCGGCCCGC	GTAACAACCA	GATGCGTTCA	ATTTCGCCCC	ATTGTGGCGA	2820
ATGCAGGGTT	ATGCGTACTG	CCACGGGGAT	CGCCTGCACT	GATGACCAGC	TCTCCTGCCA	2880
GCGCGTGCCG	TCGTAGAACT	GCAAACGGAG	CGAATCCGCC	GGGATTAATT	TTTGCGTTGT	2940
TGGCTTCACG	CTGCCTGCCG	CATCGGTCAG	TGGCCAGGCT	AACCGTTCGA	GATAACCACC	3000
ATGAATGCGG	TAACCGACGG	TGAGCAGATT	ACTGCGCGGC	AGACGCATCA	ACGGATTAAC	3060
CACGCCGCCA	CGTACAAAAC	GCATCCCTTC	ACTCTCAGAC	GCCAGCACGC	CAGCGCCCGC	3120
CAGTAACGCT	RGTTCACGCT	GGCCCTGATC	GCCTCTTACC	GGACGCGGCA	TCATTTGTGT	3180
CAGATCGTG3	GTCAGAAAAC	TCATCGTTTG	CTGCATGAGG	TTTAGTTTTT	GATCGTGTCC	3240
GGCGACGGCG	CTATTCACGC	GTGTAACCCG	TTTGTCACCT	GCTGCGCCAT	CATTGCCAGT	3300
GAGGCAAAAA	TGGCTATTGC	CACCAGCATT	TCCAGTAACG	TGAAACCAGC	GCGAGTCCTT	3360
CTCACTGTTG	GTCTCCCACG	GCGCTAAACC	ANGCGCGTCG	TGACTGAATC	ACTGACGAAA	3420
AGTCNTCATG	AAGACTGACT	TCAATATCCA	CNGCATGGAG	CAGCGCATTA	NCGGTATTCA	3480
GTGGTGTTGG	TTCGCCAGAA	CCAAGCGGCT	TTCCTGCCAT	AATCGCTCTC	GGCCCTGGGT	3540
G						3541

(2) INFORMATION FOR SEQ ID NO: 81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1234 base pairs

 - (E) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

-196-

		31:	SEQ ID NO: 8	SCRIFTION: S	SEQUENCE DES	(xi)
60	TGATCGTAAT	TGTACGTCTC	CAGTGTAAAT	ACAAGCTCCT	TCTTTGATGA	GTACTGGACA
120	TGAGTCGGCA	CCTATACTCC	GAATTTATAC	TCTATCCGCT	GCGTTGAACA	CTTCCTGAGG
180	AATTGTTGTT	TTGAAAGTGC	ACTATCCATA	TTTCTCTGAA	TTCAACGTTT	GATTTTCTGA
240	GAATGTGTAT	ATGAGACCAA	CTATCTCAAA	TCAGATTGCT	AAATTGCCAA	ACAGCACTTA
300	CTGCGCAGCC	GCAAGATCCC	GGGTTCACTA	GATAAAGGGG	TTGATTTTAC	CTGCTTGGAT
360	GCTATTGCAG	GTCAAGAACA	ATTATCAGTA	TCAAGAGCGA	AACCAGAATA	TTGCATGCCG
420	TAATAAGCCT	ATCATGTTGG	ATCAATATCA	ACGCCTGAAT	CAGAAAAAAC	ATGCTCCTTG
480	TCGTGGAGTC	CTGCCCGCCA	CAAGTGTTCG	TGCATTTAAT	ATTCTGTTGA	TACAGCGTAT
540	GAAGGTGATC	AAAATGGGGT	ACATCATCAC	GATTTCCACT	CACATGCCCA	GTGCTGCCCA
600	GATTGTAGCG	TGAAGTCAAT	ATGGACCGAT	CTTTGGTGAT	CTACTAATCA	GCAGAGATTA
660	AAGTTTCTAT	GTGATGTTGA	CTGCAGAAGC	CTATATCAAA	CAGGGGCTGA	GCCAAGCAGG
720	TAGGGACTAT	GCACCACCTT	TCTCCTTTTG	ACCGTACAAC	AGCTGGAGTC	AGCAGGGAGA
780	CTGTAAAGAG	TCGACTCTTT	TTTTCCTTTG	TGAAGAGCAA	TTGAACTCAA	CGGCATGGCA
8 4 0	CATTCGGCAA	CGTATGAGTT	GATATGCCCT	TTCTATTTTA	GCTGGTTTGC	ATTGGTATCG
900	TTATTTGGCT	AACATAAAGA	ACTATATCTG	GCTACCATCA	ATATGATCAA	TTTGAACCAG
960	TGATGAGGCC	CTGGTTATAC	GTAATTTCAA	TAAAGATGTA	CTGATTTTAC	GCTGTTGCTT
1020	GCTGCAATGC	ATATTTATCT	AAGGTTAGAA	TAACTTTACC	TTAYCCTKGA	TATGAGCGTT
1080	ACATTATTAT	GTGTGATAAG	ACCCAGCTAG	GAATGAAGAT	ATCCCACACC	ACCTCGGCTT
1140	TATTGGTAGC	CCAGCCATGA	CCTGGTTTTT	ACGTATTATT	AAAAGGATCC	AATTTGGCGA
1200	GTTAAA TTT G	TGAAAAGCAT	CAAAAATGAT	GCAGCCGGTG	TGATGNTGTC	CTTTGTTCCA
1234			TTGC	TTTGATGAAG	TTGGTCTCAC	GCAATGTGGC

(2) INFORMATION FOR SEQ ID NO: 82:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6313 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

60	TAACGCTGTG	CATTAGGTCG	TGGTTAGAGT	TGTTGCCGAG	TCTTCAATGA	ATGGGACCTT
120	TCTGGCTTAT	ATCGACACTA	TACTGCCGTC	AGATCGTTTT	TCAATGGAGG	AATGTTGTAT
180	ATTTGACTTT	TCCACCGGCA	TTACGAGATA	TCCTGGTTGG	CGAAAGAATT	TACCAAACGC

-197-

GATACCATTC	TCTGTTTTGG	TGACTGCCGT	CCATTGCACA	AAGAAGCAAA	ACGTTGGGCG	240
AAGTCTAAAG	GGATCCGCTT	TCTGGCATTT	GAAGAAGGAT	ATTTACGTCC	GCAATTTATT	300
ACTGTTGAAG	AGGACGGTGT	AAACGCGTAT	TCATCGCTGC	CGCGCGATCC	TGACTTTTAT	360
CGTAAATTAC	CAGATATGCC	TGCACCACAT	GTTGAGAACT	TAAAACCCTC	GACGATGAAA	420
CGTATTGGTC	ATGCAATGTG	GTATTACCTG	ATGGGATGGC	ATTACCGACA	TGAATTCACT	480
CGCTACCGTC	ATCACAAATC	ATTTTCTCCT	TGGTATGAGG	CTCGTTGCTG	GGGGCG TGC G	540
TACTGGCGTA	ACTATTTTAC	AAAATAATGC	AACGTAATGT	ATTGGCTCGG	TTAGTGAATG	600
ATCTGGACCA	ACGTTACTAT	CTTGTTATTT	TACAAGTTTA	TAATGATAGC	CAAATTCGTA	660
ATCACAGTAA	TTATAATGAT	GTGCGTGATT	ATATTAACGA	AGTTGTATAT	TCATTTTCGC	720
ATAAGGCACC	GAAAGAGAGT	TATTTGGTGA	TCAAACACCA	TCCGATGGAT	CGCGGTCACA	780
GACTCTATCG	ACCATTAATT	AAGCGGTTGA	GTAAGGAATA	TGGCTTAGGC	GAGCGAGTCA	840
TATACGTACA	CGATCTCCCA	ATGCCGGAAT	TATTACGCCA	TGCAAAAGCG	GTTGTGACAA	900
TTAACAGTAC	AGTGGGGATC	TCTGCACTGA	TTCATAACAA	ACCACTCAAA	GTGATGGGTA	960
ATGCTCTGTA	CGACATCAAG	GGGTTGACGT	ATCAAGGGCA	TTTGCACCAA	TTCTGGCAGG	1020
CCGATTTTAA	ACCAGATATG	AAACTGTTTA	AGAAGTTTCG	TGAATATTTA	TTGATGAAGA	1080
CGCAAATTAA	TGCTGTTTAT	TATGGTGTAA	AATCAAAAAG	CAATAGAAGG	TCCGCATTCC	1140
TAAACGGTAG	CAGATGATGG	TTTTCATGGG	CGTTTCAGGT	TACTCAATCA	GCCAACAACC	1200
GCAGCGAAAA	CCCTGCTTTC	TCGACCAGTT	CAGGCCGGTT	TTACCTCCAA	TGCTTTCCGT	1260
CAGAACTGAG	ATTTCAGCCA	GTTGCCGGAT	AAGTGTGTCG	ATTTGCAGCA	GTATACTTTT	1320
TCGTACAGCC	AGAATGTGGC	AGACTGAGGT	GGAATAGATA	ACGTCCGTAT	GCCCGCTCAC	1380
CACCTCCGGG	CGGGAGTGTG	TGGTATCTGA	CATCATCATT	TTTCCTTTCT	GTTTATAAAT	1440
GAAAACGCCA	GCCGTGTTCA	GGCTGACGTC	AGGGAAGTGA	AATCGGGTGA	GTGATCTTCA	1500
CTGGTTCTGG	TGCAAAAGTT	ACTGTTGGCG	CAGGGTACGG	ATACCCTCCC	TGGCCTGTTC	1560
GATACAGGG	CAACAGTGCTG	CCGAATCTGT	TTTATCCTCA	TCGTTGTCGA	AGATAATTCC	1620
CGATTCGCAC	TCGATATTGT	CCTGCAGCCA	CGTAATCAGA	ATATCCAGCG	CTGTTTCCGT	1680
GGTTAATGAT	TTCATGTTGT	GAATTTCCGG	ATTACCAGTC	GAAAGTGGGT	AAACCTGGCA	1740
GACATCTGGG	CACTGGCATCC	AGATGAATGA	GACTGACACC	ATAACGCCGG	ATGAGTGTGA	1800
CGACCAGAC	G ACGGAACGTA	. ACAGATAACO	GGTACCGGTA	AAATGAATCC	ATTCTGATTC	1860
ACCAAAGTC	A CTGGTCTGGT	GTAACAGCGA	GTACAGCCAG	GCGTTGTCCT	TTTCCGTGAT	1920
ATGTGCGGT	A CTGCAGCGTA	TGCCGGAAAG	AGTCGTAAAC	GGTTGTGGAG	TGCAGGTTGA	1980
CTGTTGGTC	A GATTCATCCA	CCACGCGGAE	TGAATAACCG	TTTTCAGCGA	CCTTGTTAAT	2040
CAGTTCAGC	G AGATTAATAC	CATCGACGTO	AACGACAATG	CGCCCCATAT	TCAGTGCCTG	2100

TACGTTAACG	CTGTCGGCTT	CCGGCGTCAG	GGAAAGTTTC	ATTGTTTCAC	CTCCGGGTGC	2160
TTACCCAGGA	TAATATTATT	TACCGCTCTG	TAATTGTCGC	GGGTCATCAG	GCCGGTCGCC	2220
CTGCGAGCCC	GGAGGATATC	GATGCTGTTT	ATTAACTGAG	AGCGGGTACA	GGCGCTGAAT	2280
CCCGGCTGGT	CGGTACGCAC	CAGCGCGTAT	TTTTCCACGA	GAAAGTTCAC	CGCATCACAC	2340
AGTGAAATGC	CTGCCTCAAT	ATGCTGCTCG	ATCACACGTT	CATCGGCAAA	CGGTGTGTCA	2400
TTCAGTGTGA	GGCCGTAGTG	CTGGTCCAGC	AGTCGGGACA	GAAGTATCTG	CCAGATTTCA	2460
ACAGGAGACG	GGCGAGAACT	GGCCGCCTGC	CCGGGTAATA	CAGGTAATGT	TTTCATACTG	2520
AAGATTTTCC	TGATATGCAG	ATATAAAAAT	GGGAAAGTGG	CGTGGTGAAA	ACACCAGGCC	2580
GTAGCAGAAG	GCTATTCTGG	AGAGTTAATT	TTTCATTTCG	GGCGTCGGAT	AAACAGCCAG	2640
ATAAACGTAA	CCACAACTGC	TGAGGGTATC	GGCTTTGCAG	GTCAGCCCTT	TTGCATACAG	2700
CGTGACGGTA	TGCTGATGGC	GGGGATTCAG	TTCACCGCTG	GTGAGCATGA	GTTCCAGTTG	2760
TTTCATCAGC	AGCGGAAAGG	CCTGGTCCAG	GTGGTACGCA	TCTGCATTGC	TGTATAGGCC	2820
TCTGATACCG	GCGCGGTCGG	CAAGGTAATG	CAACCGGTTA	CCCTCCTGCA	CCAGACGTGC	2880
CCCGAAACAG	GGCGTCACGG	TGCAGGGCAG	CCCCCACCAG	GGGCGGTCGT	GATTGTCGTC	2940
GGGAAGTGTT	GTCCCGGGGA	GTGTGTCTGA	CACGATAAAA	TCCCTACAGA	AAATCGGCTA	3000
AGAATGCTCC	GGTATTGGCG	ATAATTCTGC	TCATCAGAAT	TCCCACTCAG	TTCAGGGTGA	3060
CGCTCATCAG	CCGGACATAC	GGGCCAAAAC	TGTCCTTACG	GCGTTCAGCA	AACACGGCCA	3120
GCACACCGGG	AATATCCTGT	ACTTCACGAC	CGGTATACGC	CTCAGCACTG	CCGTGCCAGC	3180
GGTACTTACC	GGTGCAGAAC	GGAAATAGAC	GGGATGCAGG	ATGCTGTTGG	TGAATACGCA	3240
TGGCTTCACC	ACGGGTGATG	ATTTTCATAA	TGGGATACCT	CTGAAGACAG	AAGATAAAAG	3300
TGAAAACAGG	TGTGATGTGG	TTGTGACGGT	GACGGGTTAA	AGCAGACCGT	GTTCCGCAAA	3360
GGAGAAAACC	TGACTGCCAC	CAACTATCAG	ATGGTCCGGT	ACCCGGATAT	CCACCAGGGC	3420
CAGTGCCTGT	ACCAGACGTT	CCGTGATAAG	GCGGTCTGCC	TTACTGGGGG	TGACTTCACC	3480
GGACGGGTGA	TTGTGTGCCA	GTACCACGGC	GGCGGCATTG	TGGTACAGGG	CGCGTTTAAT	3540
CACTTCCCGG	GGATGGACTT	CCGTGCGGTT	GATGGTGCCG	GTGAAGAGGG	TTTCACCGGC	3600
AATCAGCTGA	TTCTGGTTGT	TCAGATACAG	TACCCGGAAC	TCTTCACGCT	CCAGTCCCGC	3660
CATCTTCAGA	ATCAGCCATT	CCCGTGCCGC	ACGGGTGGAG	GTGAAGGCCA	CGCCGGGTTC	3720
ATGAAGATGG	CGGTCCAGGG	TTTTCAGGGC	CCGCAGAATG	AGACTGCGCT	CGCCGGGCGT	3780
CATCTCTCCG	GGCAGAAAGG	AAAGTTGTTG	CATTGTGCTT	CTCTCCATTC	AGTCGATGAT	3840
GCGCATAATG	GCGCTGCATT	CCGGATGCTG	CAGGGCGTAA	TCCCGCAACC	GGTAATAATG	3900
GATCGTCATG	GCATAACACT	CCGTACGACA	GGCATGATGA	CTGTACGTCA	TCAGACAGGC	3960
GGCAATGCCG	GCGGCTTCCG	GGCTCATTTC	AGCGCGGTTA	CCGTTCATGG	CATTGAACAG	4020

-199-

TACCCAGTTT	TCGTCATCAT	CGTCATCCGG	TTCGGGTGCC	ATAAATGCCC	CGCCGTTGTT	4080
CAGGGTGTAC	AGATTCCAGA	TACCACCGCA	GTAGTCTTCG	CACAGACGGT	CCATCCAGCC	4140
GAAGACACGG	GGCTCCAGGG	TCACCCACTG	TGGAATGAGG	CCAAAGTGCT	GCGGCCAGAA	4200
GCTGATGCGC	TGTTCATCAG	GGACTATGGT	GGCAACCAGC	TGAGGCTGGT	CATTCCCTGA	4260
TGCAGCGGTT	ACGGAAACAG	AAGGAGTGGT	GGAATTATGC	AAGACGGTTG	TCATGAGATT	4320
ATTCCTTATA	AAAAGTAAAT	GAATGGAAGA	AACCCCGGGG	GAAGGGACAG	ACGTGAGTCA	4380
GAACTGCGCT	TTCAGGGAAA	CGGCATCAGC	GCATACTCTC	CAGCAGCGTT	TCAGCCATCA	4440
CCCACAATGC	GCGGTTGAGC	TTAATGTCGG	TGTCGATGCT	GTGAATGGCA	CGGGTATGGA	4500
TACGTTTTCC	TCTGGCACTG	CGACCGGAAA	TTCCGCCTTT	CAGCATATTC	TCCTGAATGG	4560
TCTGATAAGC	ACTCCACAGG	TCCTTACCGT	AATCCTCCCG	GCGTCGTGGT	GTCAGAATGT	4620
CGGCGGTGGT	GACGGGCTGA	TGTTCGTCAC	CATAACGGTA	AGTCAGTGCC	GCCTGTGCCA	4680
GCGCCTGGCG	TGCCGGTGGC	GGCAGAATCA	GCGACTGCAT	GGCATCACGC	TTTTCCTCAA	4740
TCCGGTCAAA	AACCCCCACC	ACCTCGTAAG	CCCCTTCAAT	AACTTTCTCC	ACCACATTTC	4800
CCCGGTGCGG	AACACGCACT	TCCCCCAGAG	ACTGACCACA	GACGCATCCG	TTCTGGCAGA	4860
CGAACCTGAA	GTAACCCGGC	AGCATCTGGT	AGCTGGAGGT	ACCGTCATGA	GAGTTGAGCA	4920
GAATAATTTC	AGGGACATGT	TCTCCGTTTA	TCTCTCCGGC	CCGCCGCAGA	CGCAGCATGT	4980
GTTTGGTGTA	TTCCCGGCGG	TCCGGGTCAC	GTACGCGGGT	CTGGCAGGCG	AAGAATGGCT	5040
GAAAGCCTTC	CCGCTGCAGG	CTTTCCAGTA	CGGTGATGGT	GGGGATGTAC	GTATAGCGTT	5100
CACTGCGGGA	GGTATGCCGG	TCTTCACCGA	AAATACCCGG	TACATGGTGC	ATCAGTTCTT	5160
CGTGTGTCAG	CGGACGGTCA	CGGCGTATCT	GGTTCGCATA	ACCAAAACGA	CTGGCTAGTC	5220
GCATAATTTG	CTCCTTATCG	GTGGTTAAGA	TTTACTGGTG	TAATAAATGA	AAAAGCCACG	5280
TCTCCCGGAG	AAGACGCGGC	CTGACAGATG	AAATGAATGA	CGTTTATTGT	CTGAGAAGCC	5340
CTTAACTGGC	GAGCTGAGTA	TTAAGCTGTG	TTCCGGCATC	ACCAGCGCAA	CTGACCTTCA	5400
GCATTACGGA	TAACCAGCCG	GGAATATGTI	CCCTGGTCAT	CTTCAGTAAA	CACATTGCGG	5460
TAAGCTGTTA	TGACAGCAAC	CGCCTGCCCG	TATGAGAAAG	ATCCTTCAGC	CAGGACATAC	5520
TCTGTGTGT	A ACCCGGCATA	TCTGGTTTCT	CCTGATAAAT	AGCCTCTGCC	ATACGTTGTG	5580
GCAGAGGCTC	S AAGCATGAAA	A CTGACTTCAC	G GGATCAGTTA	ACATTTTTC	CGGAAACGGT	5640
AATCAGCAGT	r ggatggtagi	CCTGGGGAT	GAAAACCGAT	AACGGCAGAC	TGACACGATG	5700
GCCGTTACT	r TCTTCAGTT(CTTTAATGA	TTCGGTTGTG	GCGACATTT1	CCACGCACTC	5760
CGTTTCCAGA	A AATGCGTCT	G TGGTTCGCG	r GGCATTACTG	TCACCAAAGO	G CTTCCGTTTC	5820
CATTTTTCT	G GTCACCAGC	G TCTGACCATA	A TTTGTCTTTC	AGTTGCAGAC	TGATGGTGAG	5880
GGGGCCAAA'	r ccttcatcg	TTCCGCCAT	r ATCCAGCEGO	G AACTGGTAAC	CACAAATATT	5940

-200-

TCCCGGGAGC	CATATCGTAT	CTGTATTGCG	TATACTGATG	TAACGTTGAT	CCTGTGCCCG	6000
GAGTGGGGCA	GACCACGTTA	ACCCCAGAAT	GAAGGCGGTA	ATCATGCAGG	TTTTGAACAG	6060
GTGAATCATG	GTATTTACCT	CTCTGAGTCA	TGACGATTAC	ACTGACAAAT	CAGGTGATAA	6120
AACGTAAAAG	GCGCAGAATA	GCCGTTATGC	CGGTAACTCC	GGGGGTAATG	TTTCTTCCAG	6180
TCGGTTAACC	ATATTGCCGA	GATGGGATGC	ATCATATTCC	ATGACGGGGC	GTTGCCTGAT	6240
GATACTGACC	ACCAGTGGTT	TGATTAACAT	GTTGGTCGCG	GCCCGTTGTT	GTATACCGGC	6300
GGCGAAAATG	ATC					6313

(2) INFORMATION FOR SEQ ID NO: 83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

CGTTGGCCGC	TTGCGCAGAT	AAAAGCGCGG	ATATTCAGAC	GCCAGCACCG	GCTGCAAATA	60
CGTCTATTTC	AGCAACACAA	CAACCAGCTA	TCCAGCAACC	GAATGTCTCC	GGTACCGTCT	120
GGATCCGTCA	GAAAGTCGCA	CTGCCGCCTG	ATGCTGTGCT	GACCGTGACA	CTTTCTGACG	180
CGTCGTTAGC	CGATGCACCG	TCAAAAGTGT	GGCGCAGAAA	GCGGTGCGTA	CTGAAGGTAA	240
ACAGTCACCA	TTCAGCTTTG	TTCTGTCATT	TAACCCGGCA	GATGTTCAGC	CGAACGCGCG	300
TATTCTGTTG	AGTGCGGCGA	TTACCGTGAA	TGACAAACTG	GTATTTATCA	CCGATACCGT	360
TCAGCCGGTG	ATCAACCAGG	GCGGAACTAA	AGCCGACCTG	ACATTGGTGC	CGGTACAGCA	420
AACCGCCGTG	CC					432

(2) INFORMATION FOR SEQ ID NO: 84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3494 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

GGGCTGATTA	CGATTTTATC	AATCTGTCTA	TAGAACATGA	ACTGAATGAA	GGAATAGCTG	60	
GCAGAGAGAG	GTTATGCCGG	ACTGGCGGAT	AACCGGAACC	GGTTGGCAGA	GGTGGTTACC	120	
CGTAAATTGC	AGGACAGCTT	TTATATGAAC	TTTCCTGGGA	TGCGCTGAAC	ACGGCATACA	180	
GTGAACACCC	AGAGTGGTTT	TCCGGGCTTG	TCTCCGGGGA	TGAGAATTAA	AAAGTGGATT	240	
ATGCTGCTAT	AGCGCGGCGT	GATTTCCTGC	AGGGATTTCC	ATTTATAAGA	ATACGCCGCT	300	

-201-

TCGGGGAATC	TCCGGTTCTC	CTGAGAGTTA	CGATTGTTTT	TTTACTCAAA	TCCACAACAC	360
CTGAACTGGA	ACTTGTGTTG	CATCCCTGAT	TGTTACTCTG	CAGGAAACAT	CTTTTTTACC	420
ATCAAAGGAT	GACTGTTTTC	CTTTCTCCCC	TCCGTAAAAC	ACAACTTCGA	TCACATTTCT	480
GACATTTTTT	CCAGATTTTA	CATAACAGGA	TTGTTTCTGT	ATGTTTTTA	TCTGGTGTAA	540
ATTTCAGCAC	TGACATTCCG	CTTACGTTAA	TTTACACTGA	ATACCCCACG	AGGAGAATAT	600
GCAGCACCGG	CAGGATAACT	TACTGGCGAG	CAGAACGTCG	TTGCCTGGTA	TGGTTTCCGG	660
TCAGTGCGCA	TTTAAGCTCC	GCACTTTCTC	TCCGGTGGCA	CGCTATTTTT	CCCTCCTCCC	720
CTGCCTTTGT	ATTCTTTCGT	TTTCGTCTCC	GGCAGCCATG	CTGTCTCCGG	GTGACCGCAG	780
TGCAATTCAG	CAGCAACAGC	AACAGTTGCT	GGATGAAAAC	CAGCGCCAGC	GTGATGCGCT	840
GAAGCGCAGT	GCGCCGCTGA	CTGTCATACC	GTCTCCGGAA	ATGTCTGCCG	GTACTGAAGG	900
TCCCTGCTTT	ACGGTGTCAC	GCATTGTTGT	CCGTGGGGCC	ACCCGACTGA	CGTCTGCAGA	960
AACCGACAGA	CTGGTGGCAC	CGTGGGTGAA	TCAGTGTCTG	AATATCACGG	GGCTGACCGC	1020
GGTCACGGAT	GCCGTGACGG	ACAGCTATAT	ACGCCGGGGA	TATATCACCA	GCCGGGCCTT	1080
TCTGACAGAG	CAGGACCTTT	CAGGGGGCGT	ACTGCACATA	ACGGTCATGG	AAGGCAGGCT	1140
GCAGCAAATC	CGGGCGGAAG	GCGCTGACCT	TCCTGCCCGC	ACCCTGAAGA	TGGTTTTCCC	1200
GGGAATGGAG	GGGAAGGTTC	TGAACCTGCG	GGATATTGAG	CAGGGGATGG	AGCAGATTAA	1260
TCGTCTGCGT	ACGGAGCCGG	TACAGATTGA	AATATCGCCC	GGTGACCGTG	AGGGATGGTC	1320
GGTGGTGACA	CTGACGGCAT	TGCCGGAATG	GCCTGTCACA	GGGAGTGTGG	GCATCGACAA	1380
CAGCGGGCAG	AAGAATACCG	GTACGGGGCA	GTTAAATGGT	GTCCTTTCCT	TTAATAATCC	1440
TCTGGGGCTG	GCTGACAACT	GGTTTGTCAG	CGGGGGACGG	AGCAGTGACT	TTTCGGTGTC	1500
ACATGATGCG	AGGAATTTTG	CCGCCGGTGT	CAGTCTGCCG	TATGGCTATA	CCCTGGTGGA	1560
TTACACGTAT	TCATGGAGTG	ACTATCTCAG	CACCATTGAT	AACCGGGGCT	GGCGGTGGCG	1620
TTCCACGGGA	GACCTGCAGA	CTCACCGGCT	GGGACTGTCG	CATGTCCTGT	TCCGTAACGG	1680
GGACATGAAG	ACAGCACTGA	CCGGAGCTGC	AGCACCGCAT	TATTCACAAT	TATCTGGATG	1740
ATGTTCTGCT	TCAGGGCAGC	AGCCGTAAAC	TCACTTCATT	TTCTGTCGGG	CTGAATCACA	1800
CACACAAGTT	TCTGGGGGGT	GTCGGAACAC	TGAATCCGGT	ATTCACACGG	GGGATGCCCT	1860
GGTTCGGCGC	AGAAAGCGAC	CACGGGAAAA	GGGGAGACCT	GCCCGTAAAT	CAGTTCCGGA	1920
AATGGTCGGT	GAGTGCCAGT	TTTCAGCGCC	CCGTCACGGA	CAGGGTGTGG	TGGCTGACCA	1980
GCGCTTATGC	CCAGTGGTCA	CCGGACCGTC	TTCATGGTGT	GGAACAACTG	AGCCTCGGGG	2040
GCGAGAGTTC	AGTGCGTGGC	TTTAAGGAGC	AGTATATCTC	CGGTAATAAC	GGTGGTTATC	2100
TGCGAAATGA	A GOTGTOCTGG	TCTCTGTTCT	CCCTGCCATA	TGTGGGAACT	GTCCGTGCAG	2160
TGACTGCACT	GGACGGTGGC	TGGCTGCACT	CTGACAGAGA	TGACCCGTAC	TCGTCCGGCA	2220

TGCTGCTGCC	GGGCTCAGCA	CCACCAGTGG	CCATGTTTCC	GGTTCGTTCA	2280
GCCTCTTGTT	TACCCGGACT	GGCTTGCCCC	TGACCATCTC	ACGGTTTACT	2340
CGTCGCGTTT	TAAGGGATTA	TTACCATGCA	TCAGCCTCCC	GTTCGCTTCA	2400
GCTGAGTTAC	CTTATCAGTA	CGATTATCGC	CGGGCAGCCG	TTGTTACCGG	2460
CGTCATCACC	CCACAAAACG	GGGCCGGAAT	GGATAAAGCG	GCAAATGGTG	2520
GAACATTGCC	ACGCCGAACG	GGGCCGGGAT	TTCGCATAAC	CGGTTTACGG	2580
CGGGAAGGAA	GGGCTGATTC	TCAATAATGC	CACCGGTAAG	CTTAATCCGA	2640
TGGACTGATA	CAGAATAACC	CGAACCTGAA	AGCGGGCGGG	GAAGCGAAGG	2700
CGAAGTGACC	GGCGGTAACC	GTTCACTGCT	GCAGGGCTAT	ACGGAAGTGG	2760
GGCGAATGTG	ATGGTTGCCA	ACCCGTATGG	TATCACCTGT	GACGGCTGTG	2820
CACGCCGCAC	GCGACGCTCA	CCACAGGCAG	ACCTGTGATG	AATGCCGACG	2880
GGCGCTGGAG	GTGACTGAAG	GCAGTATCAC	CATCAATGGC	GCGGGCCTGG	2940
GAGCGATGCC	GTATCCATTA	TTGCCCGTGC	AACGGAAGTG	AATGCCGCGC	3000
GGATTTAACT	GTCACTGCAG	GCGCTAACCG	GATAACTGCA	GATGGTCGCG	3060
GAAGGGCGAA	GGTGATGTGC	CGAAAGTTGC	CGTTGATACC	GGCGCGCTCG	3120
CGCCAGGCGT	ATTCATCTGA	CCTCCACTGA	AAGTGGTGTC	GGGGTTAATC	3180
TTATGCCCGC	GATGGCGATA	TCACCCTGGA	TGCCAGCGGC	AGACTGACTG	3240
TCTCGCCACG	GGGGCCGTCA	CTGCAAAAGG	TCAGGGCGTC	ACCTTAACCG	3300
AGCGGGAGGT	AACCTGAGCG	TCACAGCCGG	AGCGATATCG	TTCTCAGCAA	3360
AACAGCGACA	AGGACCTCAG	CCTNGACCGC	CGGCGGCAGA	AATTCACTCA	3420
AAACTGACTG	CCGGCCGGGA	TGTAACGCTT	GCCGCGAAAA	AACATCACAC	3480
GCCA					3494
	GCCTCTTGTT CGTCGCGTTT GCTGAGTTAC CGTCATCACC GAACATTGCC CGGGAAGGAA TGGACTGATA CGAAGTGACC GGCGAATGTG CACGCCGCAC GGCGTGGAG GAGCGATGCC GGATTTAACT GAAGGGCGAA CGCCAGGCGT TTATGCCCGC TCTCGCCACG AGCGGGAGGT AACAGCGACA AAACTGACTG	GCCTCTTGTT TACCCGGACT CGTCGCGTTT TAAGGGATTA GCTGAGTTAC CTTATCAGTA CGTCATCACC CCACAAAACG GAACATTGCC ACGCCGAACG CGGGAAGGAA GGGCTGATTC TGGACTGATA CAGAATAACC CGAAGTGACC GGCGGTAACC GGCGAATGTG ATGGTTGCCA CACGCCGCAC GCGACGCTCA GAGCGTGAG GTGACTGAAG GAAGGGCGAA GGTGATTC CGCCAGGCGT ATTCATCTGA TTATGCCCGC GATGGCGATA TCTCGCCACG GGGGCCGTCA AGCGGGAGGT AACCTGAGCG AACAGCGACA AGGACCTCAG AACAGCGACA AGGACCTCAG	GCCTCTTGTT TAACCGGACT GGCTTGCCCC CGTCGCGTTT TAAGGGATTA TTACCATGCA GCTGAGTTAC CTTATCAGTA CGATTATCGC CGTCATCACC CCACAAAACG GGGCCGGAAT GAACATTGCC ACGCCGAACG GGGCCGGGAT CGGGAAGGAA GGGCTGATTC TCAATAATGC TGGACTGATA CAGAATAACC CGAACCTGAA CGAAGTGACC GGCGGTAACC GTTCACTGCT GGCGAATGGC GCGACGCTCA CCACAGGCAG GGCGCTGAG GTGACTGAA GCAGTATCAC GAGCGATGCC GTATCCATTA TTGCCCGTGC GAAGGGCGAA GGTGATGTG CGAAAGTTGC GAAGGGCGAA GGTGATGTG CGAAAGTTGC GAAGGGCGAA GGTGATGTG CGAAAGTTGC GAAGGGCGAA GGTGATGTG CGAAAGTTGC TTATGCCCGC GATGGCGATA TCACCCTGGA TCTCGCCACG GGGCCGTCA CTGCAAAAGG AGCGGGAGGT AACCTGAGCG TCACAGCCGG AACAGCGACA AGGACCTCAG CCTNGACCGC AACAGCGACA CCGGCCGGGA TCACAGCCGC	GCCTCTTGTT TACCCGGACT GGCTTGCCCC TGACCATCTC CGTCGCGTTT TAAGGGATTA TTACCATGCA TCAGCCTCCCC GCTGAGTTAC CTTATCAGTA CGATTATCGC CGGGCAGCCG CGTCATCACC CCACAAAACG GGGCCGGAAT GGATAAAGCG GAACATTGCC ACGCCGAACG GGGCCGGGAT TTCGCATAAC CGGGAAGGAA GGGCTGATTC TCAATAATGC CACCGGTAAG AGCGGGCGGGAT CACAGAGATAACC CGAACCTGAA AGCGGGCGGG TTGGACTGAT CACGCGAACG GGCCGGAAT GGAAGTGAC GGCGGAATGTG TATCACCTGT CACGCCGAA CGCGAATGTG TATCACCTGT CACGCCGAA CGCGAATGTG ATGCTTGCA ACCCGTATGA ACCTGTGATG CACGCCGAA GGACGTCA CCACAGGCAG ACCTGAATGGC GGACGCTCA CCACAGGCAG ACCTGATGG TATCACTGT GGAGGGATGCC GTATCCATTA TTGCCCGTGC AACGGAAGTG GGATATCAC GAAAGGGCGAA GGTGATGTC CGAAAGTTGC CGTTGATACC CGCCAGGCGA ATTCACTGA CCGCCAGGCGA AACTGCA AACGGAAGTG CCGCCAGGCGA AACTGCA TCACGCGC ATTCACTGA TCACGCGCG ATTCACTGA TCACGCGCG AACCGGAAAAAG TCACGCGAAAAAG TCACGGAAAAAG TCACGGGAAGT TCACGCGCG AGCGATATCG AACGGGAAGA AACCTGAGC TCACAGCGC AGCGATATCG AACCGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG TCACGGGAAAAAG AACCTGAGA CCGCGAGAAAACG AACCTGAGA AACCTGAGA AACCTGAGA AACCTGAG CGGCGAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGGCAGAAAACCTGA CGGCGCGAGAAAACCTGA CGGCGCGCAGAAAACCTGA CGGCGCGAGAAAACCTGA CGGCGCGAGAAAACCTGA CGGCGCGAGAAAACCTGA CGGCGCGAGAAAACCTGA CGGCGAGAAAACCTGA CGGCGAGAAAACCTAACCG CGGCGAGAAAACCTAACCG CGGCGAGAAAACCTAACCGA CGGCGAGAAAACCTAACCGA CGGCGAGAAACCTAACCG CGGCGAGAAACCTAACCGA CGGCGAGAAAACCTAAACCTAAACCACACA	TGCTGCTGCC GGGCTCAGCA CCACCAGTGG CCATGTTTCC GGTTCGTTCA GCCTCTTGTT TACCCGGACT GGCTTGCCCC TGACCATCTC ACGGTTTACT CGTCGCGTTT TAAGGGATTA TTACCATGCA TCAGCCTCCC GTTCGCTTCA GCTGAGTTAC CTTATCAGTA CGATTATCGC CGGGCAGCCG TTGTTACCGG CGTCATCACC CCACAAAACG GGGCCGGAAT GGATAAAGCG GCAAATGGTG GAACATTGCC ACGCCGAACG GGGCCGGAAT TTCGCATAAC CGGTTTACCGG CGGGAAGGAA GGGCTGATTC TCAATAATGC CACCGGTAAG CTTAATCCGA TGGACTGATA CAGAATAACC CGAACCTGAA AGCGGGCGGG GAAGCGAAGG CGAAGTGACC GGCGGTAACC GTTCACTGCT GCAGGGCTAT ACGGAAGTGG GGCGAATGTG ATGGTTGCCA ACCCGTATGG TATCACCTGT GACGGCTGTG CACGCCGCAC GCGACCTCA CCACAGGCAG ACCTGTGATG AATGCCGACG GGGCGTGAG GTGACTGAA GCAGTATCAC CATCAATAGC GCGGCCTGG GAGCGATGCC GTATCCATTA TTGCCCGTGC AACGGAAGTG AATGCCGCGC GGATTTAACT GTCACTGCA GCGCTAACCG GATAACTGCA GATGGTCGCG GAAGGGCGAA GGTGATGTGC CGAAAGTTGC CGTTGATACC GGCGCCTCG GAAGGGCGAA GGTGATGTGC CGAAAGTTGC CGTTGATACC GGCGCCTCG CGCCAGGCGT ATTCATTATCTGA CCTCCACTGA AAGTGGTGCC GGGGCTTCG TTATGCCCGC GATGGCGATA TCACCCTGGA TGCCAGCGGC AGACTGACTG TCTCGCCACG GGGCCGTCA CTGCAAAAGG TCAGGCGGC AGACTGACTG TCTCGCCACG GGGCCGTCA CTGCAAAAGG TCAGGGCGGC ACCTTAACCC AGCGGGAGGT AACCTGAGCG TCACAGCCGG AGCGTATCG TTCTCAGCAA AACAGCGACA AGGACCTCAG CCTNGACCGC CGGCGGCAGA AATTCACTCA AAACTGACTG AGGACCTCAG CCTNGACCGC CGGCGGAAAA AACATCACAC GCCA

(2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9319 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

GNCCCAAGCT	TAGGTTCGCG	GCCGCAGTAC	TGGATCTATT	GCCAGCTTCA	CCGCCAGACT	60
GTCAGTCAGT	ACATCACCGT	ATTTCTGCTG	GCAGGTTGCC	GGGCGGCTGC	ACAGTCACTG	120
ATCAGTTGCT	TCTGCTGTGC	CGTACTCAAC	TCTTCGTACT	TTTTGATAAT	ACCGCCGCAG	180
TCACCGCCTT	TCGCCTGACA	GGACTTCATT	TCAGCAGAGC	AGGCATCTAT	CTGCTTATTG	240

-203-

CTCAGGTAGT	TATTCTCAAC	AACAACCACA	GGGGATTAGA	AGCCTTTTAG	CCTGAAATAT	300
TTTGCGAGAG	CACATCCAAT	ACCAATAAAT	GAGCCAATCA	CACATCCGAT	AAAAAACA	360
TGCCGAATCT	CTTTCAAACT	AATTTTAAA	TTACCTGTTA	TCAACCACTC	CACCAAAGAA	420
AAAAACACAT	CAATACATAG	GAATGACACC	ACTATAGAAA	GAAATGCGAT	TATAAAAATA	480
ATAAACAATT	CTGATAAGTG	CTGAGAATTG	CCGCTCATTT	TTTCACCTCC	GGAATGT AA G	540
ACTCAATCTT	TTTACCTTCA	TACTCAGAAG	CAAAAGAAGC	CGACACATCC	CCAGCTATAC	600
CAGGAATCCT	ACTGGGTGTC	ATTTCTTTTG	ATAGCCCCAA	TTCTCCTTTA	ATATCGGTAT	660
ATTTTTGAAG	TGTTGGATTA	AATTTCGGGT	CCCAGCCGTC	TTTTAACCAG	TTAGCACCAC	720
TATTAATGCC	CCATGAAAGG	CCTTTACCAA	TGCCATATCC	AATAGCAGAA	CCAGCACCAT	780
TGATCAACGC	ACCAGATGTT	GGGGCTTTTC	CTTCGAGCCA	GTTTCCTAAT	GCTCCTCCAG	840
TTGCATTCCA	GCCAACTGTG	CCTACAACTC	CATTCCCTGC	ACTAATCACA	TTAACCCAAC	900
CACCGATAAT	CGCTGTTGTA	GGATCTATAG	TTCCATCCGT	CAGATAGCTA	ACACCTGCAT	960
TAGCTCCTGC	CCCTAATCCC	CACATGGCCT	GAGCACCGCC	AGTAAGAGAG	CTACACTACC	1020
AGTGGCCAAC	GCTCCGGCAT	ACGCTTTATT	GACTGCTTCT	CCTCGCTTAC	AGGCTTCACC	1080
GCCTGGGGCA	TCGTTACAGG	AAAGTACATC	TGCGCCATGC	GTCTGAGCAG	CTTTGCTCTG	1140
CTCGGACTCT	GTGCCACCAA	CCAGGTTATT	CTCAGCAATG	TTCTTCCCGA	CACCAGCCCC	1200
AGCAGCCGCG	CCAGCCACAT	CGCCACTGGC	AATGCCGCCA	GCCATACCCG	CTGACAGCGT	1260
TGCCAGCGT	CTTACGGTTT	GCTTCTGATC	TTCTGTCAGT	TTCGACGGAT	CTACGTCCGG	1320
ATAGAGGCTT	TTCGCAATGG	CTGACGAGAT	CACTTCACCA	GTACCCGCAC	CAATTGCGCC	1380
TGCTGCCGCF	A CTGTTGCCCT	GAAGGGCTGC	TGTCACACCA	CCGAGAATGG	CATGGGCAAT	1440
GGCTTTTGCC	C GCTGTATTGT	CATCAATACC	CGCGTGATGA	CCGATGATGT	TCGCCAGCTC	1500
CGGCGCCGA	A GCTCCGGCC#	A GAGCACCTGC	TAAATTACCC	CCCGCCAGCC	CCTGAAGTGC	1560
AGCCGTTGC	A GCCTGGATAC	CGCGCTGCAT	ATCGCTGCCG	GTACCATACT	TTTCCTGTTC	1620
CTTTTTGTA	T TCCGGCGTA	CACGCAGTTI	TGCCAGATAT	GCCTGCCGCT	GTTCTTCCGT	1680
CGCATCCGC	C GGAACAGGC	CATATTTATO	CTGCGCAGCT	TCAACGCATT	CAGTTCCCCC	1740
TGCGTCCGC	G CAATATCCG	CACCTGACT	CCTATGTCAC	TGATAAGCCC	CACTGTCTGC	1800
AGACGCCTC'	T GCTCCTTCT	CTTGTCAAA1	TATCGGGCTGA	TACTGTCATT	AGCGTGCGCA	1860
GGGTCACGG	C TCAGGTTCG	C CAGATTCTG	TTCTGATTGC	CCCTGTCCCG	GATGGTGATA	1920
GTGCCTTCT	G CCACTGCGG	C CTGAGTCGT	r CCTTCCGCAT	GTCCGC T GTG	ACCTCCGGCG	1980
GATATCATG	C CACCCGGCA	T GTTACCCTGA	A AATTTATCCC	CGAAGCTGCC	ACCACCGCTC	2040
AGACTGATT	C CACTGTGAC	T GACTTTATA	A TCCGCTTCGT	TGTGAAGGTC	ACTGAACCCC	2100
AGCGTTCCG	G TATCCAGGT	G GTTTTTATC	C GGTGTGGCAG	TGGAGGCAAT	CACCGCACCA	2160

-204-

TCCAGTTGGG	TATGTTTACC	CACTGTGATG	TCGAAGCCGC	CGTCACCGGC	AAACATTCCG	2220
GTTTGTTCAG	CAACGGAGTC	AAAGGGGCTC	TTCATCTTAT	CCCGGGAGGC	AGCGATGTAA	2280
CCTGAGCCGG	TCATGGAGCC	AAAGGTAAAA	CTGCCGCCGG	CASCCACGCT	GGTCTGTTTA	2340
CTGTCGTACT	TACTGGTGTC	CTGCTGGCTG	CTTATCAGCA	GGTCGTGGCC	CACATCGGCG	2400
ATAATCCTGT	TGCCGTTGAC	CTGAGCACCG	TTCAGTACCG	TATCCCGACC	ACTGTTGATG	2460
GTGACGGTTT	TACCGCTGTC	TGTTGTGGTT	TCAGTCCACT	CAGTACCGTT	ACCTTTCTCG	2520
CTGCCTTTTG	CCGCATTAAC	GCTGGCAAAG	ACACTGATAC	CGGCACCTTT	ACCTGCACCG	2580
ATACTGACAC	CCACGCCACC	GCCACTGCTG	CTGTTCCTGC	CCGTTGTTTT	TTGTGTGTTT	2640
GCCGCGCCAC	TCAACAGAAC	ATCATTCGCA	GCATCCAGGT	TTGTGTTACC	ACCGGCCTTA	2700
AGCTGGCTTC	CGGCAATCAC	AATATCTCCG	CGGTTATCGC	CCCTGTTTTT	ACCGGTTGCG	2760
ACAACAGACA	GATTATTCCC	GGCATTCAGC	GTACTGCCGG	ATACTGTGTC	ACTTTCAGAA	2820
TGTTGTTGTG	ATTTCGATTT	CTGGGTGGTG	AGCGACAGGC	TGACTCCCGT	CGCATTCGGG	2880
TCACCGGTTG	CGGAGGCCAT	TGCCGCAGCC	TGTCCGGCCT	GCACACCAGA	CAGCGCTGTC	2940
TTTGTAGCCT	GCAGGGTTTT	CAGACGGCTG	TCACTGCTCT	CCTTCGTCTC	CTGTGCACTG	3000
GTGACCGCAT	TATTGATGGC	ACTGCCCACT	GTGCCGGAAA	GGGCAACCGT	CAGCCCGCTT	3060
TTCTTCTGCT	CAAATTTTTC	GTCCACAGTA	CGACGGTCAT	GCCCCGGGTC	AACCACCACA	3120
CTGTCACCGG	TAATGCTGAT	ATCCCGGTTC	GCAATCACAT	CCGAACCGCT	GATATGAGCC	3180
TGTTTGCCCG	CGGTAATACT	GACATTACCG	GCAGTGGAGC	CGATGGTACT	GGCACTCTGA	3240
CTCTGCGTTG	TCCCGGCCTC	GCGGCGGTCG	TGCGTTGTCT	TACTGCTGCC	AATGGTGAAG	3300
CCAATACCGC	CGGTACCCAT	CAGACCGGAT	TTCTTCGTTT	CCTTAAAGCG	CCAGGACGTA	3360
TCTGTACTGG	TGGCAGCAAG	AACATCAACA	TGGTTACCCG	CCGCCAGTGA	CACATCCCGG	3420
TCAGCCACCA	CATCCGAACC	CTCTACCGTC	AGGTTATCAC	CGGCGTTAAC	GGTCACGCGG	3480
TTCCCCGACA	GCAGGGAACC	TGYTTCACGG	GAGGCACTGT	CCTCACTGAT	GGTGTGGGTG	3540
GTTTTCTTAC	TGAGAAAACC	TCCGCTTTTT	TTCTTCGTTT	CCAGATAGTG	ATAGTCACTT	3600
TCTGTCGCCG	TGGTCAGGGC	AACATCACGA	CCGGCATTCA	CGCTGATATT	GCCGGTTGCG	3660
GTAACGGATG	ACGCAACAGC	GGTGATATCC	CGTCCTGCGG	TGACGGTGGT	GTCACCACCK	3720
CTGGCGATTT	CCGTTCCCTG	CTGACGGACT	GTCTCGTTAA	TCTCTTTCTT	TTTCTTCGAC	3780
GTATAGCTGT	CGCCTGCGCC	GGCAGACTCT	GCCACCAGGT	TCACATCACG	TCCGCCCCGG	3840
ATGACCACGT	TATTTTCCGC	AGCCATACCG	GCAGCCTGAC	TGGCAATATC	ACGACCGGCA	3900
ACAAGGAGGA	GGTTATCGCC	CGCCGTCACC	GTGGACACAG	CTGCGTGGCT	TTCATGACTT	3960
TCTGACCTGC	CGTTGCGACT	GTTTTTGCTT	TCCCTGACTG	CATTCAGACT	CAGGTCGTTA	4020
CCTGCAGAAA	GCAGGGCGCT	GTGCCCGGCA	GAAACAGAGG	ATGCTGTGAC	ATCCAGATTA	4080

TGGCCTGCAG	CCATCGCCAG	GTTACCGCCG	GCGCTGATGC	TGCTGCCCTG	TGAGGTGGTG	4140
GATGATGAAC	TGTTGTCATC	AGTGTGCCAG	AAACCGGACT	GACTTTTGCT	CCCGCTTATC	4200
AGGTTTACGG	CAATGTTGAT	GTCATTACCC	GCAGACATTC	CAAGGTCTCC	ACCGGACGAG	4260
ACCGTTGCCC	CGGTAATATC	AATGTTTTTC	CCTGCATCCA	GTGAAAGTGA	ATCAGTGCCT	4320
TTAATGGTCG	CAACCGGACC	GGTGTCCGTA	CCGCTGAGAT	GCACACCACC	ATATCGGCTG	4380
TCACTGCCCG	CATTCCATTG	CTGACGCCGG	GTGATATTGC	TGATGTTGCC	ACTCACGCTT	4440
TCCAGTTGTA	CGGTTTTACC	GCTGATGACT	GAGCTGATAT	TGCTGATATC	CCCGATGGCG	4500
CTCAGGTCCA	GGCTACCGCC	CGCGCTTATC	AGCCCTGCAT	TCAGGTTGTC	GATATAGCCG	4560
GTACTGTCGA	GCGAAAGGTC	GTTCTGTGCG	TTGATGCTGC	CGCCGCTGTT	GGTGATATTG	4620
CCGTCCGCAA	GCTGCACGTT	GTTCCCGCTG	ATAACGCTGC	CGTTATGCAG	GGTGATATCT	4680
TCCGGCGACA	GATACAGTTT	CGGGACCATG	ACTGTCTGTC	CGTTGATGGT	GACTGACTCC	4740
CACCACAGCA	TGCTGCCGTC	AAGCTGAGCA	ATCTGTTCAG	CTGTCAGCGC	CACACCAAAC	4800
TCTAATCCCA	GTCCTTTCTG	TTGTCTGGCC	GCGTTATCCA	TCAGATACCG	CATCTGTTCC	4860
GTGTCTGAAC	CCAGTCCGTT	GAGATAACGT	GAACCCGTCC	GGCTCAGCAC	CGCGTTACTG	4920
ACATACCGGG	TATCAAAGAC	CGCATCCCCC	AGGAAACGAT	AATCTTTTTC	CGGTTTCAGC	4980
CCGAGGCGGT	CAAGAAAATA	CGATGAGCCC	AGAAACTGTT	TTTCATCGGT	ATACGACGGA	5040
GCCGTTTCAC	GTGGCGCCTG	ACCCGGTTTC	GCTCCAAGAA	GCTCATACAG	TCCGGCAAAC	5100
AAATGGCTGT	CCACCTGTCC	GAGACCATCC	AGTTTCGGGT	TCACCGTAAT	CAGATACGGA	5160
CTGTCCGGGT	CCGTGGACGG	AACCAGGTAT	CCATTGTTGC	CGGAAGGCAG	TGGCCAGTCA	5220
TCACTGATAC	CGGTCTGACC	GGTCAGTGGC	GAACCTCCGG	CAATATTTTT	CAGGGCACCT	5280
GCCAGTTCAT	CGTGCCATTG	CGGAGAGCCA	ACCACCACCG	GCTCATACTG	CTGCAGCGCT	5340
GTCTGTGTCA	GACTGTCTCC	GCCGGTCTGC	TGACTTAACG	TATTCAGTAC	AGGTGCAGAG	5400
ACCACCGGAC	TGACACTACC	TGCATGTGCA	GTGGTTGTTC	CGTTATTGAT	ACTGCTGGTA	5460
AAACGGGTCT	TAACATCCCC	GCCCGCCTGA	ATAACGGAAT	AATACGTCTT	ACCGGGCGTG	5520
TAATCTTTTT	CCCGGCCATC	CAGTGAAAAT	CTGATGGTAT	TGTTTTCAAA	TTCCGGTGAC	5580
AGCAGGGGCA	GTTTATCCAG	AGAGCCTGTT	GCATAGCTAC	CGTAAAACGT	TTTCGGGTCG	5640
TAGCGGTATA	CCAGATATTC	ATTCTCTGTC	CCCGTCTGCC	AGCTCTGATT	GCTTAACTCT	5700
CTGCCCGAGA	GTGCGATATC	CCCATTCGCC	AGGATAAATG	ACGCCCGGTT	TTCCAGTCGT	5760
TCAGCCTCAG	CAGAAAGATT	ACGCCCTGAC	GCAATGCGGC	CTGCCGGATT	ATCAGCACCG	5820
GTTACTGTTG	TGATGTTCT	GCTGCTGAGA	AAGCGCTGTG	TGGCACTGTC	AGCAAACGGA	5880
GCGTAATAAT	AAAGCGTATC	CATTGTGATA	TTGCATGCCC	CGTGCCCGTT	GCAGGGCGTA	5940
CCGTGCTGAT	TTTCAACTTC	: ACGGGTGAAA	. TAGCCATAGC	TGCCGTCAGG	AAGAAGGGAA	6000

AGGGGAATAT	CAACCAGAGC	ATTTCCCATT	CCCTGAATGG	ATGAGGGGTT	AGTCCGGGTT	6060
GTTGTTGTGG	CAGAAAATCC	CTCCCGCTGG	TTCAGAAGAT	GCCCGGTTCT	TACAACAATA	6120
TCGCCCTGAT	GCGTCTCAAT	ATTCCCGGAA	GTATTGATAA	TCTCTGTGTT	TGCACCGCCG	6180
GAAGCATCCT	TCTGTACCCA	CAGACTGTTG	CCGGCCAGGA	TATCACCATG	CTGGTTATGC	6240
AGACGGTCTG	TAAACAGCTT	CAGGTTATTC	CCCGCATAAA	TCAGCGCACT	GTTCAGCAGG	6300
GTACCGGCCA	CATTCATTGT	CAGACTGCCT	GCCGTGCCGG	TAAAACCACT	GATGGTGATA	6360
TCACTCCGGC	TGTTCAGACT	CACATCGCCA	CCGGCCTGAA	GTGAACCCGG	TGCGTTAAGG	6420
AAAAGACGCT	GTGCGCTGAA	AACACTGTTG	CCTTTACCGG	CAGTCAGCGT	TCCATTGTTG	6480
GTGAATGCCT	CTCCGGCACC	GAGCACCATG	GCATCACCCT	GCATGACACC	GCCGTTGGTG	65 4 0
ATGGCATTTT	GCGACGTGAC	GGAAAGGGTT	TTCCCTGCGG	CCAGGGTACC	GTAATTCGTG	6600
AGGGCAGCAA	TCAGTTTCAG	TGTGACATCA	CCGGTGGCCA	CCACCTGCCC	CTGACCACTG	6660
AAGTCCTGAG	CGTCAAGCAG	CAGGTTGCCT	GCACTGTACA	GCCGCCCTGT	ACCATTTTGC	6720
AGCAGTGAAC	TGCCCTTGAC	GCCAAGCCCG	GAGGTTCCCA	GCAGGGTACC	GCTGTTGCTG	6780
AATGTGTGGT	AATTCACCAG	CAGGTCCGCA	CCCTGAAGCG	TACCGGTATT	ATTCAGCGTG	6840
GTTCCTTTAA	CGTCGGCACT	GCCGGTGGCA	AGTACGCGTC	CGCCGTTGAC	AGTATTCACC	6900
ACATCCAGCA	GCAGGGTGGC	AGCCTGTACC	AGTCCGCTGC	CGGTGTTCGC	CAGCACCTGC	6960
GCCGTCAGCG	TGAGGTTACT	GCCGGAGAGG	ATTTTGCCGT	CGTTCTGCAG	ACGGTCAGTG	7020
GCGTTCAGGG	AAACCCCGCC	ACCACCCTGT	ATCGTGCCCT	GGTTACTCAG	GGTCGCAGTA	7080
CTGACATTCA	GTGCATTCCG	GCTCATCAGA	ACACCACCGG	AACGGTTGTT	CACGCCACCG	7140
GAGGCGGCCA	GCGTCAGCGT	TTCGCCCTGC	AGATGCCCGC	CGTTTGTGAG	TTGTCCTGCC	7200
GTGATGGTGG	TGGCATTTCC	CTGTAATTGC	CCGTCGTTTG	TGACACTGTC	TGCCTTCAGC	7260
GTCAGCACAC	CTGCACTGAG	CAGTTTTCCG	CTCGCGTGAT	TGTGCAGCGT	CTGATTCACC	7320
GTGAGCGTGA	GAGCATCCAC	ACCGGTGATG	TCACCCGCAC	TGGTCAGTGA	GTTCGCCTTC	7380
AGGGTCAGAT	TTTTTGCAAT	CCATTGTCCG	CTGTTGCTTA	AATTCAGTGC	ACTGAGCGCC	7440
ATTTCACCGT	TCGAGGTGAC	TTTGCTGCCT	GCTGTGCTGA	CGAGCTCACC	CGTCAGACGT	7500
GCAGTCAGGC	TGTCAGCCGC	CTGGATCGCC	CCGCTGTTTG	CCAGACTGTC	TGCGGTGATC	7560
AGCACCCGTT	TGCCCTGCCA	GTGTCCGGAA	CTGGTAATAC	TGCCTGCGGT	GATTGTCAGA	7620
TCGCCGCTGG	TCAGCAATGA	ACCTCCGTTA	TTCATCAGCG	CAGGTTGAGG	GGATGCCATA	7680
CGGGCGCAA	GCGTCAGCGC	GGCTATCCCG	GTGAGEGTGC	CACTGTTGGT	GACACTGTTC	7740
TGGCGAATCG	TGACATGGTT	ACCCTGGACA	GTGCCGCTGT	TATCCAGTGA	GTTTCCATCA	7800
AGGGAGAGCG	TGCCGGCCGA	AAGCAGACTG	CCCCGGTTGT	CCATGGTGGC	TGCTTTCAGC	7860
GTGGTGTCAC	CCTGGCTCAT	GATATCGCCG	GTACTGGTCA	ACTGACCGGT	TGCCGAAGCA	7920

-207-

GTAAGGTTAC	CGGTTGCCAG	CACGGAACCA	CTGTTCGCCC	AGTTGTCCCG	CYTGCACGGT	7980
GAGATTCTGT	CCCTGCGTGG	TCCTGCGGTA	TGCAGTGTTT	TACCCCGGAG	GGTGAGGTCG	8040
CCCGCCGTCA	GCCAGCGCCC	GTTACTACCC	TGTGAGAGGG	TGTCGCCAGC	AAGCGCCAGT	8100
GCACCGGCGC	CCTGCAACAG	GCCGTCACCA	TCCAGCGTGG	TCGCCCTGAC	GCTCAGCGTG	8160
TCAGCGATGA	TTTTTCCCGG	ATTGCTGAGG	GAGACAGCAT	TTAACATTAA	ACCATTATCA	8220
CCGGTGATAA	GCCCGCTGTT	GCGGATGTCC	GGTATATCCA	GCGTCAGGTC	TGCAGCACTG	8280
TACAGCGTGC	CGTTCTGCTG	ATTATCAAGC	CTCTGTGTGT	TAACGGTAAG	TGAGGCCTCC	8340
CCCTGCAACA	GACCGCTGTT	GGTCAGGGTC	TGTGACTGTG	TATTCAGGGC	GGAACCAACA	8400
AGTACGCCGC	TGCTGGTCAG	TTCCGGCGCA	CTGAGGCTGA	GCGACGGGGC	ACTGCTTTTC	8460
CCGCTGTGGG	TGAGCTTTTC	ACTGGCGTTC	ACCACCATGG	TCTGTTGTGC	TGCCTGCGTA	8520
CCTGCAAGAC	GTGCATCTCT	GGCGTTGATG	CTGAGATTTT	TACCGCTCTG	AAGCTGTGCG	8580
CCCGCTGCGG	TACTCAGTTT	GTCTGCCTGA	ACCCGGAGGG	TGTCACCGGC	ACTGTTTTCC	8640
CCGTCCAGCG	CCACTGTTGT	CACATTCAGC	GTCATCGCAG	CATCGCTGTG	GGTGACCGAT	8700
TTTTTACCGG	AGCTCAGCGC	CTGCGCACTG	ACCGTCAGCC	CTTTGCCGCC	GGACAGCACA	8760
CCGTTCTGTG	TCACATCCTG	CGCCTTCAGC	ACCAGTACAT	CATCGCTCAC	CAGCGAACCT	8820
GTACTGGTCA	GTTTCCCACT	GGCCGTGATA	TCCACTTTGC	CCTTCGCGCC	AGTGCGGCCG	8880
CTCTGGGTAA	AGTCGCGGGT	ATTCACGGTC	AGGGGACCGC	CACTGAGCAG	GGAGCCACTG	8940
TTGCTGAGCG	TTGTACTGCC	GAGCGTCAGG	GAAGCCCCCT	GAACAGCACC	ACTGTTATTC	9000
AGCGTGCCGG	CATCGAGTCC	CGCATGACCT	TTCGCCAGCA	ATATTCCGTC	CTGTGTCAGC	9060
GTGGTGGCGC	TGGCCGTGAG	ATTCTGCCCG	GCGGTTATCT	GTCCCTGTGT	TGTCAGCGTG	9120
TCACTGGCGA	CAGTCACGAT	ATCGCGGGCC	GCGTTAATCT	GGCTGGCGGT	ATCCTGTGTG	9180
ATGTTTTTCG	CGGCAAGCGT	TACATCCCGG	CCGGCAGTCA	GTTTTTCATT	CTGTTGAGTG	9240
ATTCTGCCGC	CGGCGGTCAG	GCTGAGGTCC	TTGTCGCTGT	TAAGCGTTCC	ATTGCTGAGA	9300
ACGATAATCG	CTCCGGGCT					9319

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTEFISTICS:

- (A) LENGTH: 551 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

ATGAGGCGAT TAAAGCAACA TTGGGCAGTG ATAATGCCCC CACCCAGCCA CCTAACGCAG 60 120 CGAAGAGTAA TACATCGCCC ATGCCTAATG CTTCTTTACG CAGAACTATT CCGGCTATCC

-200-

AGCGSAGGGA	GTAAAAAGTG	ATAAATCCCA	CCAGTACGCC	GGTAACTGCG	TCTTGTAGCG	180
TTAACGGACT	CTGTTGCGCC	CATGCTGCAA	TCAGCCCGGT	CCACAATACG	CCCTGAGTAA	240
AAACATCGGG	CAGCCATTGG	TTGTCGAGGT	CAATGACGCT	CGCGGCAATC	AGCCAGGCGG	300
ATAATATCAT	CACCGCCAGC	CCCCATCCAC	TTTCTGGCCA	CACCAGACTC	GCCAGCAAAA	360
AAGTGAGTGC	TGTCAATAAC	TCAACCAGCG	GATAACGTTG	CTGATTTTCG	CCTGACAGTC	420
GCGGCAGCCC	TTTGAGCATC	AACCATGAGA	GCAGCGGAAT	ATTGTCACGA	ACGCGGATGG	480
TCTGCTGGCA	ATGCGGGACA	GTTGCGAACC	GGGTTAGCCA	AGGGCTTTAT	TTTTTGGACT	540
GCGGCACTCG	G					551

(2) INFORMATION FOR SEQ ID NO: 87:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 595 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

CATTTACCAA	ACCCCGTTCG	AATATCTTAT	CTATTGCCCA	TCTCATATTA	AATATAACCG	60
ATAATTTGGT	GGATACTAAT	AGTAATTACC	TTGTTATTGA	AAATATAATT	ATTGTTATTT	120
TTAGCCTCAT	TAATTAAATT	GAAAAATCCT	CTCTAATTTT	TGTCAGATTA	GGGCTGTAGA	180
AAGGATCGAG	TTCAAGATGT	TTACCCCATT	TGCTTTTCAT	AAAGTCCACT	TCCCTGGCAA	240
ATCTGGCTAG	TTTCTCCGGT	GAATCTTCGG	CTCCTCGACT	AATCGATTCA	TAGTGGTAAA	300
GCTCGGCATA	AGGTGTCCAG	AGATTACGAT	ACCCCGCTTC	GNGTACTTTC	AGACAGAAGT	360
CCACATCATT	AAAAGCAACA	TGCAGATTCT	CTTCATCCAA	CCCGGCAACT	TCCTCATAAA	420
TATCTTTGCG	AATAAGCAGG	CAAGCCGCCG	TGACGGCCGA	GAGAGTTTGT	GTCAACAACA	480
AACGGCTGAA	ATAGCCCGGA	TGGTGGCGAG	GATAATGTTT	ATGGGAGTGT	CCAGCTACAC	540
CACCAATACC	GAGAATCACT	CCGCCATGTT	GTAAAAGTAT	CATTACTGTN	ATAGG	595

(2) INFORMATION FOR SEQ ID NO: 88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

TGGCAGTTGA	ACAGATTTTC	ACATCAGCAA	CAGATTAGCG	AACGGGACTT	GGCATTAGCC	60
GAGCGTTTTA	GTGAANGTTT	AGCTCTAACA	CGTCTATTAG	AAGAGCGCAC	GCAGNATTAT	120

-209-

CACTGAACTA	GAGATTGAAA	AACAATTGCT	TACCACCAAG	TTGTCTGGCG	TAGAGCAGCA	180
GTTAAGGGCT	GAGCAAGAGT	CGCTTCAGCA	GGCCCAGTCT	GCATTGCTCT	CAGCAGCAAA	240
AGAAAAGCAA	CATCAACTTG	ATGAGTTGGA	ATCGGTGCTC	AATGAGCGGT	ACAGTGAGAT	300
TGCAACCTTA	ACCCGTTGGC	TGGAAGAACG	TGATCAGGCA	CTCCTTAGTG	CAGCAAGTGA	360
ACAACAACAG	ACCAATGANA	CCATATAGAG	CTCAGCCAG			399

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1013 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

TGTTGAGCAG	CCATTACGTC	GCTTTGTGAC	GCAATATTAG	ACTCGTGCAC	60
TGAGTCAGTT	CATCACATTG	TTTAGAAGCC	GCAGCCAAAG	CAAGAGTTTG	120
CTTTGCTGCA	ATGTTTGTTG	CACAAGTTGC	CCTTCTTCCA	GCTGTTGCTG	180
CTTACCTTTT	TCAGTGCATC	ATATTCCAAG	CCTAACGTAT	CGTGCTGTGC	240
CCATAAGCAT	GCTGCAACTG	GTTTTTAGTT	TGCTGCTCAC	CGTCAAGCTG	300
GCATTAGCCT	GCTGTTGCAA	CAAGTTCACC	ATATTGTCTC	GCTCGGCCAG	360
TGTGTATCCT	GGATATGTAG	CGCTTGTTCC	AACTGAAGCT	GTAATTCGGT	420
GAATGTTCGC	TCAATGCTCT	GTTGCTCTTG	CTGAGCGCGA	GAGTAAGGTG	480
TGTGTTTCTT	CACTCAATTG	TAACGTCAGG	GTATTGACCT	GTTGCTCCAG	540
GCTTGCTCCT	GGCTCGTGAT	GCGACTCTGT	TGCTGCTCTA	GTTGATGCAG	600
AACTCATCGT	TGGCTTGTAT	TCGCTCCTGC	GACCATACAC	TCAAGTTTGT	660
TTGAGCTGTT	CTTGCAATAA	TGCCACCTCA	GATGTCAGCG	AATTGATATG	720
AAAGATAGCT	CATCAGATTG	CACTTGAGCA	TGTGCAAGCT	GCTTTTCCAT	780
CTGTTATGTT	GTGCAGTAAT	GCGCTCGGCA	AGACGCCCCC	TTTCCAATGC	840
ACCAATAGCT	GCCGTTCAGC	CTGAATGTCA	TCTTGTTGTG	TAGACAACTG	900
TGGGAATTCT	CCCAACTCTC	GCTACAAGAT	TTNCCCAAAC	GACAAAAGAT	960
TGTNTGGGTT	ACACGAGCAT	TTTCTGAGGA	TTTTATACCA	ATN	1013
	TGAGTCAGTT CTTTGCTGCA CTTACCTTTT CCATAAGCAT GCATTAGCCT TGTGTATCCT GAATGTTCGC TGTGTTTCTT ACCATAGCT AAAGATAGCT CTGTTTATGTT ACCAATAGCT TGGGAATTCT TGGGAATTCT	TGAGTCAGTT CATCACATTG CTTTGCTGCA ATGTTTGTTG CTTACCTTTT TCAGTGCATC CCATAAGCAT GCTGCAACTG GCATTAGCCT GCTGTTGCAA TGTGTATCCT GGATATGTAG GAATGTTCGC TCAATGCTCT GCTTGCTCT GGCTCGTGAT ACCACTCGT TGGCTTGTAT AAAGATAGCT CTTGCAATAA AAAGATAGCT CATCAGATTG CTGTTATGTT GTGCAGTAAT AAAGATAGCT GCCGTTCAGC CTGGGAATTCT CCCAACTCTC	TGAGTCAGTT CATCACATTG TTTAGAAGCC CTTTGCTGCA ATGTTTGTTG CACAAGTTGC CTTACCTTTT TCAGTGCATC ATATTCCAAG CCATAAGCAT GCTGCAACTG GTTTTTAGTT GCATTAGCCT GCTGTTGCAA CAAGTTCACC GAATGTTCCT GGATATGTAG CGCTTGTTCC GAATGTTCGC TCAATGCTCT GTTGCTCTTG GCTTGCTCCT GGCTCGTGAT GCGACTCTGT AACCTCATCGT TGGCTTGTAT TCGCTCCTGC ATGAGCTGT CTTGCAATAA TGCCACCTCA AAAAGATAGCT CATCAGATTG CACTTGAGCA CTGTTATGTT GTGCAGTAAT GCGCTCGGCA CTGTTATGTT GTGCAGTAAT GCGCTCGGCA CTGGGAATTCT CCCCAACTCTC GCTACAAGAT CTGGGAATTCT CCCCAACTCTC GCTACAAGAT	TGAGTCAGTT CATCACATTG TTTAGAAGCC GCAGCCAAAG CTTTGCTGCA ATGTTTGTTG CACAAGTTGC CCTTACCTA CTTACCTTTT TCAGTGCATC ATATTCCAAG CCTAACGTAT CCATAAGCAT GCTGCAACTG GTTTTTAGTT TGCTGCTCAC GCATTAGCCT GCTGTTGCAA CAAGTTCACC ATATTGTCTC GAATGTTCCT GGATATGTAG CGCTTGTTCC AACTGAAGCT GAATGTTCGC TCAATGCTCT GTTGCTACT CTGAGCCGCA GCTTGCTCTT CACTCAATTG TAACGTCAGG GTATTGACCT AACTCATCGT TGGCTTGTAT TCGCTCCTGC GACCATACAC ATATTGTCTC GAATGTTCTT CACTCAATTG TAACGTCAGG GTATTGACCT AACTCATCGT TGGCTTGTAT TCGCTCCTGC GACCATACAC AAAGATAGCT CTTGCAATAA TGCCACCTCA GATGTCAGCG AAAAGATAGCT CATCAGATTG CACTTGAGCA TGTGCAAGCT CTGTTATGTT GTGCAGTAAT GCGCTCGGCA AGACGCCCCC ACCAATAGCT CCCAACTCTC GCTACAAGAT TTNCCCAAAC	CTTTGCTGCA ATGTTTGTTG CACAAGTTGC CCTTCTTCCA GCTGTTGCTG CTTACCTTTT TCAGTGCATC ATATTCCAAG CCTAACGTAT CGTGCTGTGC CCATAAGCAT GCTGCAACTG GTTTTTAGTT TGCTGCTCAC CGTCAAGCTG GCATTAGCCT GCTGTTGCAA CAAGTTCACC ATATTGTCTC GCTCGGCCAG TGTGTATCCT GGATATGTAG CGCTTGTTCC AACTGAAGCT GTAATTCGGT GAATGTTCGC TCAATGCTCT GTTGCTCTTG CTGAGCGCGA GAGTAAGGTG GCTTGCTCCT GGCTCGTGAT GCGACTCTGT TGCTGCTCTA GTTGCTCCAG ACCTCATCGT TGGCTTGTAT TCGCTCCTGC GACCATACAC TCAAGTTTGT TTGAGCTGTT CTTGCAATAA TGCCACCTCA GATGTCAGCG AATTGATATG AAAAGATAGCT CATCAGATTG CACTTGAGCA TGTGCAAGCT GCTTTTCCAT CTGTTATGTT GTGCAGTAAT GCGCTCGGCA AGACGCCCC TTTCCAATGC ACCAATAGCT GCCGTTCAGC CTGAATGTCA TCTTGTTGTG TAGACAACTG

(2) INFORMATION FOR SEQ ID NO: 90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-210-

(Хĺ	SE	DUENCE	DESCRIPTION:	SEO	ID NO:	90:
---	----	----	--------	--------------	-----	--------	-----

GATATCCACA	TCGAGACGTT	TGAAAAGAGT	CTGGTGATCC	GTTTTCGTGT	TGACGGCACA	60
TTACATGAAA	TGCTGCGTCC	GGGGCGCAAA	CTGGCCTCGC	TGCTGGTGTC	GCGTATCAAG	120
GTGATGGCGC	GGCTGGACAT	TGCCGAAAAG	CGCGTGCCGC	AGSATGGACG	TATTGCGCTG	180
TTGCTGGGCG	GCCGGGCGAT	TGACGTGCGT	GTATCAACCA	TGCCTTCCGC	CTGGGGGGAA	240
CGGGTGGTGC	TGCGACTGCT	GGACAAAAAC	CAGGCTCGCC	TGACGCTGGA	GCGTCTGGGT	300
TTAAGTCTCG	AACTGACTGC	GCAGTTGCGC	CACTGTTACA	CAAACCGCAC	GGCATTTTTC	360
TGGTGACGGG	GCCGACCGGT	TCCGGCAAAA	GCACCACGCT	GTACGCTGGA	TTGCAGGAGC	420
TGAACAACCA	CTCGCGTAAC	ATTCTCACGG	TTGAAGACCC	TATCGAATAC	ATGATTGAAG	480
GGATCGGTCA	GACGCAGGTT	AACACCCGCG	TCGGCATGAC	ATTCGCCCGT	GGCCTGCGCG	540
CAATTTTGCG	TCAGGACCCG	GATGTGGTGA	TGGTCSGTGA	AATCCGCGAT	ACCGAAACCG	600
CAGAAATCGC	TGTTCAGGCT	TCAACTGGAC	CGGACACCTG	GGNACTTTCN	ACGCTGGNAT	660
ACCAAAAAA	AGGGGTGGGG	GGATTATAC				689

(2) INFORMATION FOR SEQ ID NO: 91:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1281 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

CTCAGCAGAA	CCGAGATCTT	CCATCAGCTG	GCGGGCCTCG	GAAGANTCCC	GCTGCCAGAC	60
CGCATTCAGC	CGCTGTTCAA	ATTCGGCCTC	GTCGATTTGC	CTCAGCGTAA	AGGGCGCGTT	120
CAGCCCCCGT	TGCAGCTCCT	GCAAAACAGA	GAGCGACAAC	GGATGCACAT	GGAGGATCTC	180
CAGCGACGCT	TCGCACCATG	CCACCAGGCT	AAACCGACGG	CTGAAACTAT	AGGGCAGACG	240
CACGGTGTTA	GCGGTGGTTT	CCTGTGCTAC	AGGCACCATT	AACGCGTTCT	CCCGGCATTA	300
AGGAACGCAC	GAACTTCTGG	CGGTAAGGCC	TGATTTTGCG	CAGGCAATAT	CGCTGCGCAG	360
TGTGCGGCAT	CAGGCTTAAG	CCCTGCTCAT	CGCGGTAGAT	TTGCTCGGCG	CGCATGTAGT	420
TATATTTGCG	CTGCGACACA	CCGTCTGCCG	CCATACCGTC	ACGCAGAATG	GTCGGGCGGA	480
TAAACACCAT	CAGGTTACGT	TTTTCTTTTT	TATCCGCCGT	CGATTTAAAC	AGGTTACCAA	540
TCAACGGGAT	ATCGCCCAGC	AGCGGCACTT	CTCGCCACGC	TTTCTCCCGC	CTGGTCGTCC	600
ATCAGACCGC	CAAGCACAAT	TAGCTCACCA	TCGTTAGCCA	ACACGGTGGT	TTTCAGTTTG	660
CGCTCACCAA	ACACCACGTC	GAGGCTGGTC	TGTCCTTCCA	CCTTCGACAC	TTCCTGCTCA	720

-211-

ATCACCATCT	GTACCGCGTT	TCCTTCGTTA	ATCTGCGGCG	TGACTTTCAG	CATGATGCCG	780
ACTTTTTTCC	TCTCTACCGT	GTTGAAAGGA	TTGCTGTTAT	TGGAGCCAAC	GGTAGATCCA	840
GTTAATACCG	GAACGTCCTG	GCCCACCATG	AAGAAGGCTT	CCTGGTTGTC	CAGCGTGGTG	900
ATGCTCGGCG	TGGAGAGCAC	GTTCGAGCTG	GAGTCGTTTT	TGACCGCCTG	TACCAGCGCC	960
ATCCAGTCGC	CTTTCAMCAC	GCCAACCGCC	GTACCGCTAA	AGCCAGAAAG	AAGCTGAGCA	1020
AGCGTGGAGA	GATCGCCGTT	AGTATCCGGA	TTTATGGTGG	TAGCGCCGTT	TTCACTGATC	1080
ACCGTGGAGC	CTTTCTGCGG	TTTTGCYTGA	GAAATCGTGC	GCCCAGCGTA	CCAATAGGGA	1140
TCTGCGTACC	GTTAGCAAAC	TGCATTAATC	CGGCATCTTT	CGACGCCCAC	TGCACGCCGA	1200
AATTGATAAT	TCACCTTCGG	CAACTTCCAC	GATCAACGCC	TCGACATGTA	CCTGAGCACG	1260
GCGAATATCC	AGTTGTTCAA	Т				1281

(2) INFORMATION FOR SEQ ID NO: 92:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 421 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

CAATATTAGC GC	CACGGCACC A	AAGGTGATG	AATGAGCAGG	CTGRAATATT	ATTTTCCCGC	60
GGTGCAGAAA TC	CCTTGTTCT T	GGTTGTACA	GAAATTCCGG	TTATTCTGGC	GCAACGTTAA	120
AGAGCAGCCT TO	CCCGCTATA T	TGACTCACG	GCGTCACTCG	TTCGTGCCGG	AATAAAATGG	180
TACGAAAATC GT	GTCGGTAA A	CATTATCTT	TTAACCCAAT	AATCATTTAA	ATCGCAGCCA	240
GAAAGTTATT CO	SCTTTTAAC T	GAATTATAT	TTATAACGGA	GAACATTATG	GTTTGGCTGG	300
AAATTATCGT AG	STACTTGGT G	CAATAKTTT	TTGGTATTCG	CCAGGGGGGA	ATCGGTATTG	360
GTTTATGTGG CG	GGCTTGGG C	TTGCCATTC	TGACTCTGGG	ACTTGGTCTG	CCTATGGGGG	420
G						421

(2) INFORMATION FOR SEQ ID NO: 93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1018 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

GTTAACAATG GCGTAACAA	A TTTCAATAAC	GTAGAAGATT	TGCTGTCAGA	AAGGTCAATA	60
TTTCCTTTCA ATGGGTCAA	A GACTTGCTTC	TGGAATTCAT	CCGGTTTTTT	CTCCAGACGT	120

-212-

TTTCCTTCTT	CATAATAGTO	AATATAACTT	TTACCACTGA	GTGTTTTGKC	YCCATTTCTG	180	
GTGACACCAG	CTAACTCACC	TATCAGCGTA	TCCCMATGTT	GCTGGGTAAT	GAGGACTGAT	240	
CTTTCAACAG	AATACTCTTT	ATTATACTGA	GATAATATTT	TAAAGTTATC	TTCTAAAAAT	300	
GCAGCATGGC	GGGCATCATA	TCCCATTTTC	AAAGTAATTT	TTGCCGTGTT	TTTTCTCCCA	360	
TTCAGCAATA	ACATCGGCCA	TTTTACTGGC	GACATGTTCA	AACATTGCCT	GTTTTGAAGC	420	
CTCAAGGATG	CCTGAAATTA	TCCCCGTAAC	AGCCCCTACC	AGCGCGCTTA	CCGGTGCACC	480	
AACCAGAGAT	GTCGTTGCAG	CAGCACTAAT	ACCTGAAGAT	ACTGAAGCCA	GAACAGTGCT	540	
TATCGTTGTT	AACGATGCAT	CAATAGCTCC	TGTTTCTTTG	TGGAAAGCAG	CAAGTAAACT	600	
GTCACCATCG	TATCCAAGTT	TTTTGAATCG	TTGTGAATAC	TCCTCTATTT	TATTGGCACG	660	
TTTAAACTTA	TCGGCAATGG	ACAGGAATGA	GAGGGGACTA	ATTGCCAGTG	TCACAACAGA	720	
AGCAATTAAA	CCGGCAGCAG	CAGCAGATGT	AGATAACCCC	TGTGCTGCAC	GCTGTGCGAY	780	
NAATATATTG	AGAAATACCT	TTTCCAACAT	TACCCAGTAC	TTTCGTTGTT	AATTCAACAC	840	
CTGCTGCAGC	TTTAGTTCCG	GTATCTGCAT	CTGCATTGCT	CAGAATGAAA	CTTGCTGAAA	900	
TCGCAGATAA	AATACCCGAT	ACAGTATCTA	ACCCTGCACC	GATATTATCA	AGGTTAGGTA	960	
AATTCTGTAA	CTTATTACCA	ACACCGTTCN	GGNCTGTTGG	TATTGGGATA	ATACACTT	1018	
(2) INFORMATION FOR SEQ ID NO: 94:							

· ·

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

- (2) INFORMATION FOR SEQ ID NO: 95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1857 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
CGTGTTCCCC TGGCCNGCTT GGTTTCGCCA TAGACGTTGA GCGGGGAAAT CACATCGGTT	60
TCCACCCAAG GACGTTCACC ACTTCCATCG AAAACATAGT CGGTGGAATA ATGTACTAGC	120
CACGCACCTA ATGCTTCAGC TTCTTTGGCA ATAACCGCCA CACTAGTTGC ATTGAGTAAC	180
TCGGCAAATT CCCGCTCACT CTCCGCTTTG TCGACTGCAG TATGGGCCGC TGCGTTAACA	240
ATCACATCCG GCTTGACGAG ACGTACCGTT TCAGCCACCC CTGCAGAATT GCTAAAATCA	300
CCGCAATAGT CGGTGGAGTC AAAATCAACG GCAGTGATGT GCCCCAGAGG CGCCAATGCA	360
CGCTGCAGCT CCCATCCTAC CTGACCATTT TTGCCAAACA ACAGAATATG CATCAGGTAC	420
GCTCCCTATA GTTTTGTTCA ATCCAGGATT GGTAGGCACC ACTCTTGACG TTGTTAATCC	480
ATTGTTGATT ATCCAGATAC CACTGCACGG TCTTGCGAAT ACCAGACTCA AAAGTCTCCT	540
CTGGCTGCCA ATCCAACGCA GCGCTCATCT TGCAAGCATC AATCGCATAT CGGCGATCGT	600
GTCCGGGGCG ATCCGCCACA TAAGTAATTT GATCGCGATA AGAGCCAGCT TTCGGTACCA	660
TCTCGTCAAG CAGATCACAA ATAGTATGTA CTACATCCAG GTTCTGCTTC TCGTTGTGAC	720
CGCCTATGTT ATAAGTCTCC CCGACCAAGC CAGTGGTCAC TACCTTGTAG AGTGCTCGTG	780
CATGATCTTC CACATACAAC CAGTCACGAA TTTGGTCACC TTTACCATAA ACCGGCAGCG	840
GCTTGCCATC CAGCGCATTG AGGATCACTA GCGGGATCAG CTTCTCGGGA AAGTGGTAAG	900
GGCCATAGTT GTTGGAGCAG TTAGTGACAA TGGTTGGCAG GCCGTACGTA CGGTACCAAG	960
CACGCACCAG ATGATCGCTG GAAGCCTTGG AGGCAGAATA GGGACTGCTA GGAGCGTAGG	1020
AGGTAGTTTC GGTAAAGAGC GGCAATGCCT CACCGGAGGC TACTTCATCC GGATGGGCA	1080
GATCGCCATA TACTTCATCG GTAGAAATAT GGTGGAAGCG AAAGGCCGCC TTGCTCAACT	1140
CGCCCAGACT GCTCCAATAG GCGCGAGCCG CTTCCAGCAA TGTATAGGTG CCTACGATAT	1200
TGGTTTCGAT AAAGTCGGCT GGCCCTGTGA TAGAACGATC AACATGGCTT TCAGCAGCCA	1260
GATGCATCAC GGCATCTGGC TGGTGCAGAG CAAACACCCG ATCCAACTCA GCACGATTAC	1320
AGATATCAAC TTGTTCAAAC GAATAACGCT CACTTGACGA TACACTGGCC AAAGATTCCA	1380
AATTGCCAGC ATAGGTGAGT TTATCCAGAT TGATAACGGA GTCTCCAGTA TCACTAATGA	1440
TATGACGCAC CACGGCAGAG CCGANAAAAC CAGCACCGCC AGTAACGAGA ATCTTCATAT	1500
ATTTCGCTCT CTTATTTTAC AATTAATAGC TATTAAAAAT AAACTTGTTG ACTCCGATAT	1560
ATTAGAAATA TCGGGATACC GAACTAAATA TTTTTATATG CTTTTGCCAA GCAGACTCTA	1620
TATCCACCCT GTATCACTAT GCTTTCTGGC ATACAATATC CCATCATTGA CACAATGATA	1680
AACATATAAA TAAAGAAAAT TTTAAATCAT ATAACCAAAT TACTTTCATT TATTATCAAT	1740
AAGTATTTTG ATAAGAATAC CTATACCACA GGGAGCCCCC TGAAACATAA TATTAGCGAA	1800

-214-

GAATGATAAC	TGATAGTTAC	CATCTTAGAG	ATAAAAACTT	ATTTGTGTGG	CGGGATG	1857
------------	------------	------------	------------	------------	---------	------

- (2) INFORMATION FOR SEQ ID NO: 96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

AGCTCTTTCG	TGTAAAATAA	AATACAGCAT	ATCCTATATA	GCTTACAATC	ATTAAATGAA	60
GTCGCCAATA	TTTATATGTT	TTATCAATAT	CAGCTTGACT	CATTGTTATT	TCTTTGTCAG	120
GAGACTCTGA	AAATATGGAC	ATATATAACC	TCTTTTATTA	TGAAATATTT	TCAATAATAA	180
TAATCCGTTA	GTAATCCTAT	CATAGGGTAA	TGTCTCATCA	TGTTAAAATG	ATCACATTTA	240
TAATCATGTC	AAAAAGAACA	ACAGAAAAA	TCATATAAAA	TCAATTAAAT	ATAATTGCCA	300
CATATTGTTG	TTATTWAAAC	ATTGGTGGTG	AATTTAAAGC	GAGAACAGTT	TGTAACAGTG	360
ACTCCTTGCA	GACTAAGTTA	GAGTCTCCTT	CTAAAATTAG	ACGGWKTTCT	ATTGATGGAT	420
AATAGTAAGC	GCACCGTGAA	KGACGTGGGG	TAAAAATTAG	TTTACAGATT	GAGTGACATT	480
CCAGGGCAAC	AACTCTTTCA	CGCGGTTGGC	AGGCCAGGTG	TTGATTACAC	TGATCACGTG	540
GCGTACATTA	CCGGACTCGA	TTCCGTTAAG	TTTGCAGCTA	CCGATCAGGC	TGTACATCAC	600
TGCCGCACTC	TCGCCTCCAC	CATCAGAGCC	GAAGAACATG	TAGTTACGCC	GCCCCAGTGC	660
AATACCCGGA	GGCGTTTTCA	CACAGGTTAT	TGTCGATCTC	CACCCAGCCA	TTGCGGCAGT	720
ATTCGTTCAG	AGCGTCCCAT	TGCTTCAGCA	GATAGGTGAA	CGCTTTCGCT	GTATCCGAGT	780
GGCGCGACAG	TGCTCATCTG	CCCCTGGAGC	CACTCATACA	ACGACTGCAT	TAGCGGTACC	840
GTTCTGGCTT	TTCTGACCGC	CAGTCGCTCT	TCTGCCGGAC	TGCCGCGGAT	CTCAGCCTCG	900
ATAGCGTACA	GTTCACCGAT	ACGCTGCAGG	GCTTCCGTGG	TGATGTCAGG	TGGCGCTCTT	960
GCATGCACAT	CGTGGATTTT	TCTCCGGGCA	TGGGCCATAC	AAGCCGCTTC	GGTTACCTGA	1020
CCGCTTTCGT	AAAGAGCATT	GTAACCCGCA	TATGCATCGG	CCTGCAGGAT	ACCTCTG T AG	1080
TCCGCCAGAT	GTTGCTGTGG	GTGGATGCCT	TTGCGGTCGG	GAGAGTAT		1128

- (2) INFORMATION FOR SEQ ID NO: 97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

PCT/US97/21347 WO 98/22575

-215-

GTTTGCTTAC	GAACCGTGAA	ATATGACGGT	CCCATATAAC	TGCCTGATAC	TTGTATATCA	60
TATACTTGTG	CATGCATGTC	ATCATTAAAA	AGTACTTTGT	CACCGTCTTT	AAGTTGAAGA	120
CGTGTAAAAT	CTTTATACGG	CAAGTAGACG	GAAAACGGGC	GCTTTCCCTG	TCGCCAATCA	180
CACCGACATG	ACTGACTTTT	GCGAGAGGAA	GTGCATAATT	CACCAATTCA	GAGCCTAATG	240
CATTGCGCTG	GGTAAGCTCA	AATCGGAATG	GGTTTCGAAC	CTTTCCCGCA	ACATTGATCA	300
TTGGACCTTG	TTGCTCAACT	GAAAATCACA	TOTTGATOTT	TTAATGCCAG	CTTCGGGAGT	360
TTCCCATACC	GTATGAAATC	ATAAAGATCA	ATTTGCKGTG	NTTACTGCTA	TTTTGTGCGT	420
GAACACCTTA	ATTTTTGCG					439

(2) INFORMATION FOR SEQ ID NO: 98:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 906 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

TATTCGTAAT	TAGTTATAAA	CAGATGATGT	AAACACCAGT	TGACTAGAGT	CAATCTTATA	60
CTGGCAACAT	CTATGATTAA	TTTGTGTGGT	TATAATTTTA	AATATCTTAT	ATTTATGGGC	120
TATTATTGAT	ATCTGTCAGA	GTATCAATAA	TAGAAGGTAA	TTGTTTTACA	TACTATCAAC	180
TTTTGGATAA	CGTTTTAAAA	TGCACCTTGC	ACATCGTATT	TTATTATTTT	CACTAATCTT	240
TTTTATAACG	GCCTGCGCAC	ATGATCCAAA	ACAAGTTGAA	GCCTCTCGTC	CATTGGTAAC	300
AGCGATTAAT	TCTTCTTATT	CTCTTATTCC	TGAAGATTTG	CAGGCACCAT	TAAATAACCA	360
AGATCAAGGC	ACGACATTCA	ACAAAAATGG	CGTAATTTAT	ACTATTGAGG	AAAGGTATAT	420
ATCGGCTTTA	GGTTCTCAAT	GCATAAAGTT	AAGTTATGCG	ATGAATAAAA	ATTATTCAAA	480
GCGAAGTGTT	GTATGTAAAG	AGAATAACAA	GTGGTATCAA	GTACCTCAGT	TGGAACAAAC	540
ATCAGTTAGC	ACTTTGCTTA	TTGAAGAATA	AAGTTGAAGG	TAGACGGTTA	GAAAATAATG	600
AAAATTTCGC	AACTTAGCAC	TCTTCTCTTT	CTTATTTCTG	CATCAGCATT	CGCCGCAATA	660
GAGCAAAATC	AATCTAATGG	TTCACATTTA	GATTATGATC	TTGCTGCCTC	GACAGGAGAG	720
TCTCGGAAAA	TGCTAGCAGA	CATCACTGGA	CAGCCTAATA	CAACCTCCAC	AACAGGAAGC	780
TTCACACAAC	AGAATCGTAA	TGGGATGTTG	CTTCCAGGAG	AGTCAGATGT	ACGAAAATTA	840
CTGCCGCAAT	CTGAAGCAGG	CTTACCTCCT	CCGTATGGTG	CTAATTTATT	TGCCGGAGGC	900
TATGAA						906

(2) INFORMATION FOR SEQ ID NO: 99:

(i) SEQUENCE CHARACTERISTICS:

WO 98/22575 PCT/US97/21347

-216-

(A) LENGTH: 1395 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

GCGGCCTGAT	ATATGCCGTT	ATTACAAAAA	GAGGATCAAC	CACACTGCCT	TTTGGACCGT	60
GTTTAAGTCT	GGGCGGTATA	GCAACACTTT	ATCTACAGGC	ATTGTTTTAA	TGATAACCAC	120
GTCATTATCA	AAGTGACATT	TTAACTCTTA	TTAATAACCT	TAGAGATTAT	TTACCATGTC	180
GATAAAACAA	ATGCCAGGGA	GGGTATTAAT	ATCGCTATTG	TTGAGCGTTA	CAGGATTATT	240
AAGTGGCTGT	GCCAGCCATA	ATGAAAATGC	CAGTTTACTG	GCGAAAAAAC	AGGCGCAAAA	300
TATCAGCCAA	AACCTGCCGA	TTAAATCTGC	GGGATATACC	TTAGTGCTGG	CGCAAAGTAG	360
TGGCACGACG	GTAAAAATGA	CCATTATCAG	CGAATCGGGT	ACTCAGACCA	CGCAGACACC	420
TGACGCCTTT	TTAACCAGCT	ATCAACGACA	AATGTGCGCT	GACCCAACGG	TGAAATTAAT	480
GATCACCGAG	GGAATTAATT	ACAGCATAAC	GATTAATGAT	ACACGTACAG	GTAACCAGTA	540
TCAGCGGAAA	CTGGATCGTA	CCACCTGTGG	AATAGTCAAA	GCATAACGTC	GGGTAGATAT	600
AAATTGGCGC	GGGTTGTTTT	TCGTGACGCA	CGAATTTATC	TCATTCAATG	GCTGACAAAA	660
ATTCGTCACA	CTCTTAACCA	GAGACAATCT	CTTAATACAG	ACAAAGAGCA	TCTGCGCAAA	720
ATTGCACGCG	GGATGTTCTG	GCTGATGCTG	CTTATTATTT	CTGCAAAAGT	GGCGCATTCA	780
CTCTGGCGCT	ATTTCTCCTT	TTCTGCGGAA	TATACGGCGG	TTTCCCCATC	GGCGAATAAA	840
CCGCTCCGTG	CGRATGCAAA	AGCGTTCGAT	AAAAATGACG	TGCAATTAAT	CAGCCAGCAA	900
AACTGGTTTG	GCAAATATCA	GCCCGTCGCC	ACGCCGGTAA	AACAACCCGA	ACCTGCACCT	960
GTGGCCGAAA	CGCGTCTTRR	TGTGGTGTTG	CGTGGGATCG	CCTTTGGTGC	CAGACCCGGC	1020
GCGGTTATTG	AAGAAGGTGG	TAAACAGCAG	GTCTATTTGC	AGGGTGAACG	CTTGGCTCGC	1080
ACAACGCAGT	GATTGAGGAA	ATCAACCGCG	ACCATGTGAT	NTGCGCTATC	AGGGAAAAAT	1140
AGAGCGCCTG	AGCCTGGCTG	AAGAGGAGCG	TTCCACCGTT	GCCGCGACCA	ACAAAAAAGC	1200
TGTCAGTGAC	GAAGCAAAGC	AAGCTGTTGC	TGAACCTGCT	GTCAGTGCGC	CAGTTGAGAT	1260
CCCNGCTGCC	GTGCGTCAGG	CACTGGCGAA	AGATCCGCAG	AAAATTTTTA	ACTATATCCA	1320
GCTTACGCCT	GTGCGTAAGG	AAGGGATTGT	CGGTTATGCA	GTGAAACCGG	GGGCAGATCG	1380
TTCTCTGTTC	GATGC					1395

(2) INFORMATION FOR SEQ ID NO: 100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double

-217-

(D) TOPOLOGY: linear

(xi) :	SEQUENCE DES	ECRIPTION: S	SEQ ID NO: 1	100:		
CACTTGAA	TA	AAACTGACAC	CGTTTACCTC	CATAATAGTG	AGCATAGCCG	CCATTGCGGC	60
CTGATCGG	CG	AACCGGAAAT	CGCAACCTGC	GAACGACAAC	CGAACCGGCA	AGCGTGCGGG	120
AAGGACGG.	ΤA	ACCGGACTCT	TTCGCCACTT	CAGCAATCAC	CGGCAGCGTG	GAAAAAACAA	180
TAAACCCA	GT	ACCGGCCATA	ATGGTCATAG	ACCAGGTGAT	AATCGGCGCG	ATTATGTTGA	240
TATATTTC	GG	GTTACGCCGC	ATAAAATTAC	CAGCGACGGT	ACCAGATAAT	CCATTCCCCT	300
GCGGCCTG	TA	AGGCTGAGGC	CGCCACAACA	ACGGTCATAA	TAATCAGGAT	CACGTCGACT	360
GGCGGCGA	CC	CCATAGGCAG					380

(2) INFORMATION FOR SEQ ID NO: 101:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 995 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

CTTTACGGTT	TAATAGGGGA	ANGCCGACTG	GATGNAAAAA	TGGAATCTGG	AGCCCAGAAT	60
AAATCTGAAT	TTAATGTGGA	CTGGATATGC	TCCAATAACC	CCGGCAGGGA	GTCATCTGTG	120
CGAAGATATT	TGCGTTATGC	TGTAATATAA	TAATTCAATG	TATTTCAGGA	ACAGTAATAT	180
ACTACAGTTT	CTACTTTCTT	GTATTTAATA	AATTGTTCCG	CATCGCTAAA	AGCAGGTCTT	240
TCAGAAGCCA	CAAGAATTCT	GTGGTCCCAG	TATTTTTAGT	TATCCTATTT	TTATATCTAA	300
CTTGTAATAC	TTACAGCATT	TTCATTCATC	CTAATGGAAG	GCTGTAATAA	TCTTTGAGCT	360
TAGAAACATC	AAAATTATGC	ATCTCATTAA	TTTTGTCAGT	CACACGACCT	CTGGTAAAAA	420
TAAAACCCCC	AGAAATATGC	CATTTCTAGG	GGGGGCGTAA	GAATCAATAT	ATTTTAGTGT	480
TGTTACATTT	AGCTCTTAGC	TCTTAGCTCT	TAGCTCTTAG	CTCTTAGCTC	TTAGCGTTTG	540
TAGTTTCATC	GCAATGAGTA	AAAGGACAAC	AAGAATAAGT	GATAACGTTA	AGAGAAGAGC	600
ATAGAAACCA	TTCCAGTGGT	ATATTTCTAT	TATTTTAGAC	AATGGATAGC	CAGCCGCGGA	660
CGCACCAAGA	TATGCGAATA	AACTAACAAA	ACCAGTAGAA	GCACCAGATG	CATATTTATG	720
TGAGTTTTCA	GCAGCTGCCA	TTGCGATCAG	AAATTGTGGC	CCAAAGATAA	AGAAGCCAGT	780
GATGAAAAAT	AATAACGAAA	AAACATATTT	ACTATCAATA	GAAACCAACC	ATAGACATGC	840
AGAAGCAATG	ATTATACCAA	TTGTATAAAT	AACATTCATT	TGAGAGCGAT	TGCCCTTAAA	900
CAGAATATCT	GATCCCCATC	CAGCTACGAT	AGCACCAAAA	AAGCCTCCAA	CCTCAAACAT	960

WO 98/22575 PCT/US97/21347

-218-

CATTACTGTT GCATTTGCTG TTAGCAAGTC ATATT	995
(2) INFORMATION FOR SEQ ID NO: 102:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
TAAAAGCGAC TCCATGTGAA ATTTCTGTTT GTCGTTTTTT CCCCGTTGTA GCGGCTCTGC	60
TCCTGGCTTC CCTGATAGTC AGCCCGCAGG CGCCAGGGCC CCAGATTCCC CCCCACAGTC	120
CCGTTATAAC TGAACTGATG AGAGTCTCCT CCCTGATAAT TACGGGAAAC CGTCCCGTTG	180
AGGTTATAAT CCAGCATCAG TCCGGGAATG CCGTCGTCCC AGCGTGAGGG AGGCAGCCAG	240
GTGGCATCAG AATACTCAAG CCAGGCCTGC GGCATATTGA TGCGTAATAC GCCCGCTCCG	300
GTATCAGGAC GAATATCCAC TCCCGGCAAC CCATGAAAAT CCGCACACTG ACCATCATGC	360
CAGTAAACAA CTTTATCCAG AGATTCTGCT GTTAACCCCA TCAGTCTGAC CATATCTGAT	420
GTCAGACAGC TGCGGCAATT TTTTTTCTGC CTTATCTCCT GACAACGCAG GTTCAACAAA	480
TGAMATCTGT AACGATGCGG GAGAAATACT TTGCCCGTTA ACAATCACAT CCAGAAGATA	540
TTGCCCCGGC AGAACATAGC CGGCTTCTGA AAAACGGGTG AAGTCAATAT TTTTCTTGTC	600
CGCTGCGTCA AGTACATCTG TATTAAACTC AACGGCACTG GCTGCGTTAC AAAACAGAGA	660
CAACAATATC ACACAGGTAA TATTGTTGAC TGCAAAAGGT ATTCTGTCTT TCATTCCACG	720
CATCACCAGA TTCACAAAAA AGATAAATAA CCGGACATCT CACCGGAGTG ACTCACTCAT	780
AATCGACCCG GAATCCCAGC ACAGCAAAAT AATTTCC	817
(2) INFORMATION FOR SEQ ID NO: 103:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 709 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
TTTTTGTCAG AGCGTTCACT CTCTGGCTGG ATGATTTCGG CTCGGGAAAT GCAGGCTTAA	60
TGTGGGGACT GTCGGGGATG TTTGAACGGG TAAAAATAAG TCATGAGTTT TTTCATTATG	120
TCCTGAAAAA CGGGTGTGCA ATGCCACTTC TCCGTGCTGT GGCAGACACT GTTGCCTGTC	180
ACAACAGAGG CGTGATACTC GAAGGTGTTG AAAATGAAGC GTTGTTCCGT ATTGCCAGAG	240
ACATGAATGT CCAGGGCTGT CAGGGATGGC TCTACAGGCG TGTGGGGGGTT GATGAATTAT	300

WO 98/22575 PCT/US97/21347

-219-

CCGCGCTTAT	TCAGCAGTAT	GAATAATCCT	TTTTCACAGA	CTGGTCAGCT	GTCAACATTT	360
ATGTTTTTT	ATCTGCGGGA	ATTTATCCGT	CTGCCTGTCG	GGACTACTCT	GTCATACAGA	420
AATCAGGCCA	GAATAAATTG	TTGTGGAAAG	GTGAGATTTA	CCGGATGACT	GATGTGCTCT	480
TGTGCACAGG	TATACAGGCA	GTGTGTTTCC	AGTATATGGA	AAATGATTAA	ATGAATAACA	540
CAGACTTATT	AGAAAAAATC	ATCAGGCATC	AACAAAACAA	AGATCCTGCA	TATCCTTTCC	600
GGGAACATCT	TTTGATGCAA	CTCTGTATCC	GTGTAAACAA	AAAAATACAG	AACAGTACAT	660
CTGAGTTTTT	TGGTGCATAT	GGTATAAATC	ACTCAGTATA	TATGGTTCT		709

(2) INFORMATION FOR SEQ ID NO: 104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

TCATCAAGGG ACGGGGCATA	TCTGGATGCG	ACAGGGCAAA	CCAACCACTG	AGAATCCAAC	60
CTGCCAAAGC CTGACCAGGA	AGTCCGACGT	TAAAGAAACC	AGCTCGACTG	GCAACGGCAA	120
AACCAAGACC AATCAAGACC	AGAGGACCCA	TAGCACGGAA	GATTTCTCCA	ATCCCACGCA	180
GACTGCCAAA GGCTGTATAG	AACAATTCTT	CGTAGCCCCA	AATAGCATCA	TAACCGAAGA	240
TCCACATGAC AATGGCTCCG	AGTAAAATTC	CTAGGAATAC	AGAAATCAAG	GGAACCGAAA	300
TTTGTTGTAA TTTTTTAGAC	ATCACTCTTC	TCCTTTCCCA	AGTTYCCACC	AGCCATCAAG	360
ACACCAAGTT CTTGTTTATT	GGTTGTTTCT	GGTGATACAA	TACCTTGAAT	CTTACCATCG	420
TGGATAACGG CAATACGGTC	TGAGACGTTT	AAAATCTCAT	CCAATTCAAA	GCTGACNACA	480
AGGAC					485

(2) INFORMATION FOR SEQ ID NO: 105:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 459 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

60	GCCAGCCGCC	AGAGAATGAC	AACAGCGAGA	CACGCCGACA	GCAACATCAC	AGCAGAATAG
120	CAGCGGGATA	CCGGCAAGAG	ACGTTACCAT	CGCCGGGAAG	GCTCATAGCG	AGGAACACCA
180	GATCAGGATT	CGAAAGACGC	CGCACCCCGG	GATCGCCCCA	CGGCCAGAGT	GAGAGCACAC
240	GTTGCTGAAC	TCAGGAAGCG	GGCTTCTTCT	AAACTCCATC	TCCACGAACC	TCTCGTGTGG

PCT/US97/21347 WO 98/22575

-220-

TTTTTCATCG	TOCACAGOCA	GCCGAAACGG	ACCAGCATCA	GCGCCGCATA	TATCAGAATA	300
ATATTGGTAA	ACAGCATCCA	GATTTCGACG	TTAGGGTCGA	TTTCTTGCTG	GCCATCAGCG	360
GACGTCTTCC	AGRATTACCC	GGCAGCTGCA	GACCTTAACA	GCAGGGAACA	CCATGGCCGT	420
TTTAAGGACA	ATTTCNAGCA	TCGGCCCANG	TGCTGTTTT			459

(2) INFORMATION FOR SEQ ID NO: 106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 908 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

TTAATAGCAC TAATACTGTC CTGCTCTATT CCGCTGACAT TTTCAGTCAG CTGCTGTATG	60
GGATGGGTTA CCCAAAACCA GACCAGCATA CCTGACAAGA GACCGCATAT CACTACCAGA	120
AACAGCGACC AGTACAGTGC ATTCCATAGT GCCTTTGTCC AGGCTGTATC AGTAAGAGCA	180
TTAAGTTCCT CTCCCTGTAA AATAATATAC AGATATCCTT TCGGTTCATC ACTCTGGTAA	240
AGCGGTGCGG TACTGAAAAC TTTTTGCTTA TTTACACTTC GGGGATCATC ACCATATACG	300
GGCCAGACAC TGCCGGAGAG AAATTTTTTC AACGGTGCAA TATTGATATA CCGGCGTTTG	360
AGATGACCCG GAGGGCGCCC TCCACAAGCA GTCGCCCTTC CGGTGAAACC ATATACAGCT	420
CCACACTGGG ATTAAGCGTC ATCAGACGCT CAAACAGACT CGTTAATGTC CGGTGTTACC	480
AGACAAAACA AGCATCGCAA GACGCCACAA ACGGTGCGCT TACTTAAATA AGCCGGTTAC	540
AGGTGAAAAA TCACGTCCTG ATATTCAAAT GTTTTTTCAG GTCATATTTT AGCAGGACAC	600
TACCAGCACC TAACAGCAGC ACATCTTTTA TAACAAAACT GTCAACTTTC CCCAGTTGTG	660
GTAACAGGCT GAGCGTGGTT ATTCCTGTAA CAATAACGAT AATATCTCCC AGTACACCAG	720
CAGCAGGCCT GAAGAAACCG ATAATCAATG CCAGAAATGT GATAGTTTCC ACTATGCCGA	780
GGAAATAGCT CCCTCCATGA ATACCAAATA TAATATACAG GATATTCAGC CAGGTGGGAT	840
ATATCAGGGG CTTGAGAGCC ATAACTTCAA AATCAAACCA TTTATAAGTC CCAAAAAGCA	900
TTATAAAT	908

(2) INFORMATION FOR SEQ ID NO: 107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1057 base pairs

 - (E) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

PCT/US97/21347 WO 98/22575

-221-

CGGGCTAACC	CAATATGCTT	TATTAACCCG	GGATAATTAC	CCTGTTGCAT	ATTGTAGTTG	60
GGCTAATTTA	AGTTTAGAAA	ATGAAATNAA	ATATCTTAAT	GATGTTACTT	CATTAGTCGC	120
AGAAGACTGG	ACTTCTGGTG	ATCGTAAATG	GTTCATTGAC	TGGATTGCTC	CTTTCGGGGA	180
TAACGGTGCC	CTGTACAAAT	ATATGCGAAA	AAAATTCCCT	GATGAACTAT	TCAGAGCCAT	240
CAGGGTGGAT	CCCAAAACTC	ATGTTGGTAA	AGTATCAGAA	TTTCACGGAG	GTAAAATTGA	300
TAAACAGTTA	GCGAATAAAA	TTTTTAAACA	ATATCACCAC	GAGTTAATAA	CTGAAGTAAA	360
AAACAAGTCA	GATTTCAATT	TTTCATTAAC	AGGTTAAGAG	GTAATTAAAT	GCCAACAATA	420
ACCGCTGCAC	AAATTAAAAG	CACACTGCAG	TCTGCAAAGC	AATCCGCTGC	AAATAAATTG	480
CACTCAGCAG	GACAAAGCAC	GAAAGATGCA	TTAAAAAAAG	CAGCAGAGCA	AACCCGCAAT	540
GCGGAAAACA	GACTCATTTT	ACTTATCCCT	AAAGATTATA	AAGGGCAGGG	TTCAAGCCTT	600
AATGACCTTG	TCAGGACGGC	AGATGAACTG	GGAATTGAAG	TCCAGTATGA	TGAAAAGAAT	660
GGCACGGCAA	TTACTAAACA	GGTATTCGGC	ACAGCAGAGA	AACTCATTGG	CCTCACCGAA	720
CGGGGAGTGA	CTATCTTTGC	ACCACAATTA	GACAAATTAC	TGCAAAAGTA	TCAAAAAGCG	780
GGTAATAAAT	TAGGCGGCAG	TGCTGAAAAT	ATAGGTGATA	ACTTAGGAAA	GGCAGGCAGT	840
GTACTGTCAA	CGTTTCAAAA	TTTTCTGGGT	ACTGCACTTT	CCTCAATGAA	AATAGACGAA	900
CTGATAAAGA	AACAAAAATC	TGGTGGCAAT	GTCAGTTCTT	CTGAACTGGG	CAAAAGCGAG	960
TATTGAGCTA	ATCAACCAAC	TCGTGGGACA	CAGCTGGCCA	GCCTTTAATA	ATAATGTTNA	1020
ACTCATTTTC	TCAACAACTC	AATAAGCTGG	GGAAGTG			1057

(2) INFORMATION FOR SEQ ID NO: 108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

TACCGGGCCC	CCCCTCGAGG	TCGACGGTAT	CGATAAGCTT	GATATCGAAT	TCCTGCAGCC	60
CGGGGGATCC	ACTAGTTCTA	GAGCGGCCGC	CACCGCGGTG	GAGCTCCAGC	TTTTGTTCCC	120
TTTAGTGAGG	GTTAATTTCG	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	180
ATTGTTATCC	GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	240
GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	300
AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	360
GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	420
GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	480

WO 98/22575 PCT/US97/21347

-222-						
GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA	540					
AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCT GACGAGCATC ACAAAAATCG	600					
ACGCTCAAGT CAGAGGTGGC GAAACCCGAC AGGACTATAA AGATACCAGG CGTTTCCCCC	660					
TGGAAGCTCC CTCGTGCGCT CTCCTGTTTC CGACCCTGCC GCTTTACCGG ATANCTGTNC	720					
GGCTTTCTCC CTTCGGGAAG CGTGGCGCTT TC	752					
(2) INFORMATION FOR SEQ ID NO: 109:						
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:						
CTTGGGTAAT NGACCTCATA TCCCTCCGCC AAAAAAGGAT CTACATGCGA TTTTGCGAAG	60					
CCAGCGTTGA TTGTAGGCGA GAGAATGGTT CTGTTGTTTT GGTACATTTC AGTTGTCATG	120					
GATTTCACAA ATGTAGCATG ACCTTTCACC TGTCCAAGAG ACTGCAACAC CATCTGTCCA	180					
AAACAATAAA TAGGAATCAA ACAGGCTACC AACATCAACA AGTATCCCAA TAAGGCTCGT	240					
AGTTTAGTCC TTGACATGAC GCCCCTCCAA TTGCTTTTCT AGTCCTTTGA CAATCCGTCG	300					
ATTACGATAC ACGCGATACA GCAAGAGAAG GATGACCGCC ATCGCTCCTA GTAATAACCA	360					
CAACCAGAAT TGCCCACGCT CTCTCACCGC TCGATTCCGC TCTGCAATTG GTGCCGTATA	420					
CGGAATCCGC TTCCCACGTA CCAACAGACG ATGACTGTTA ATCCTATACG GTGTACNAGT	480					
CAACCA	486					
(2) INFORMATION FOR SEQ ID NO: 110:						
 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 313 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 						
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:						
TTACGCNTTC AACCAGGTCT TCTGGTTTAC CAACGCCCAT CAGGTAACGC GGTTTGTCTG	60					
CCGGAATTTG CGGGCATACA TGCTCCAGAA TGCGGTGCAT ATCTGCTTTC GGCTCACCCA	120					
CAGCCAGACC GCCGACAGCG TACCATCAAA ACCGATATCT ACCAGACCTT TAACAGAAAT	180					
ATCACGTAAA TCTTCGTAAA CGCTGCCCTG GATGATACCA AACAGCGCAT TTTTGTTTCC	240					
GAGACTGTCA AAACGCTCAC GGCTACGTCG CCCAACGCAG AGACATCTCC ATGGAGCGTT	300					

313

TTGCGTAATC CCA

-223-

(2) INFORMATION FOR SEQ ID NO: 111:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1613 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

CGGAAATCCC	AGTAATTCCA	TCCTCANATA	TTCCACTCAN	CCTCACTGTA	ACAAAGTTTC	60
TTCGAATAAT	AAAAATCATG	CTTTCTGTTA	TCAACGGAAA	GGTATTTTTA	TTCTCTGTGT	120
TTGCTTTATT	TGTGAAATTT	AGTGAATTTG	CTTTTTGTTG	GCTTTATNTG	ATGTGTGTCA	180
CATTTTGTGT	GTTATTTTC	TGTGAAAAGA	AAGTCCGTAA	AAATGCATTT	AGACGATCTT	240
TTATGCTGTA	AATTCAATTC	ACCATGATGT	TTTTATCTGA	GTGCATTCTT	TTTGTTGGTG	300
TTTTATTCTA	GTTTGATTTT	GTTTTGTGGG	TTAAAAGATC	GTTTAAATCA	ATATTTACAA	360
CATAAAAMMC	TAAATTTAAC	TTATTGCGTG	AAGAGTATTT	CCGGGCCGGA	AGCATATATC	420
CAGGGGCCCG	ACAGAAGGGG	GAAACATGGC	GCATCATGAA	GTCATCAGTC	GGTCAGGAAA	480
TGCGTTTTTG	CTGAATATAC	GCGAGAGCGT	ACTGTTGCCC	GGCTCTATGT	CTGAAATGCA	540
TTTTTTTTA	CTGATAGGTA	TTTCTTCTAT	TCACAGTGAC	AGGGTCATTC	TGGCTATGAA	600
GGACTATCTG	GTAGGTGGGC	ATCCCGTAAG	GAGGTCTGCG	AGAAATACCA	GATGAATAAT	660
GGGTATTTCA	GTACAACACT	GGGGAGACTT	ATACGGCTGA	ATGCTCTTGC	AGCAAGGCTT	720
GCACCTTATT	ATACAGATGA	GTCGTCGGCA	TTTGACTAAA	TTATGGCATT	CCGGAGTTTC	780
TGGAAGATAA	AAAAAGAAGC	CCTTATCAGA	AAGCAGACAG	GTTATATCAG	TATTCTGTCG	840
ATAAATAACC	TGCCCTGAAA	ATACGAGAAT	ATTATTTGTA	TTGATCTGGT	TATTAAAGGT	900
AATCGGGTCA	TTTTAAATTG	CCAGATATCT	CTGGTGTGTT	CAGTAATGAA	AAAGAGGTTG	960
TTATTTATGA	TTAAGTCGGT	TATTGCCGGT	GCGGTRCTAT	GGCAGTGGTG	TCTTTTGGTG	1020
TAAATGCTGC	TCCAACTATT	CCACAGGGGC	AGGGTAAAGT	AACTTTTAAC	GGAACTGTTG	1080
TTGATGCTCC	ATGCAGCATT	TCTCAGAAAT	CAGCTGATCA	GTCTATTGAT	TTTGGACAGC	1140
TTTCAAAAAG	CTTCCTTGAG	GCAGGAGGTG	TATCCAAACC	AATGGACTTA	GATATTGAAT	1200
TGGTTAATTG	TGATATTACT	GCCTTTAAAG	GTGGTAATGG	CGCCAAAAAA	GGGACTGTTA	1260
AGCTGGCTTT	TACTGGCCCG	ATAGTTAATG	GACATTCTGA	TGAGCTAGAT	ACAAATGGTG	1320
GTACGGGCAC	AGCTATCGTA	GTTCAGGGGG	CAGGTAAAAA	CGTTGTCTTC	GATGGCTCCG	1380
AAGTGATGCT	AATACCCTGA	AAGATGGTGA	AAACGTGCTG	CATTATACTG	CTGTTGTTAA	1440
GAAGTCGTCA	GCCGTTGGTG	CCGCTGTTAC	TGAAGGTGCC	TTCTCAGCAG	TTGCGAATTT	1500
CAACCTGACT	TATCAGTAAT	ACTGATAATO	CGGTCGGTAA	. ACAGCGGAAA	TATTCCGCTG	1560

WO 98/22575 PCT/US97/21347

-224-

22.	
TTTATTTCTC AGGGTATTTA TCATGAGACT GCGATTCTCT GTTCCACTTT TCT	1613
(2) INFORMATION FOR SEQ ID NO: 112:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 930 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
NTAGTCCATG GCCCCATGGA GCGAANTCCA AAGTGTGGAT ATTGTCGTTT TAATTCATCC	60
CAAAAGCTGA AATACGCCAA AACCCACGTT CCCTAACATT GGTATCATGC ATAATGACCA	120
CAGCCNTTCA GAAAGCTTTG GCAACCAGCT TTCAAAATCA TGGGTACCGC TTCAAACGTA	180
TGCAAACCAT CAATATGAAG CAGATCAATG CTACCTTGTG AAAAATGCTC TAACGCTTGG	240
TCAAATGTAC TGCGAATGAG AGTAGAAAAA CCTGAATAGT GCTGTTGATT ATATTCTGAT	300
ACTTGCCTGT AAACTTCTTC GCCATACAGC CCCGCATGTT CATCTCCCCC CCAGGTATCA	360
ACGGCAAAGC AGCATGTTTC TAAATCTAGT TTAGAGACTG CTTGGCAAAA TGAGAAATAA	420
GAACTTCCAT AATGAGTTCC CAGCTCAACA ATATTTCTTG GCCGCAGTGT GTCAACTAAC	480
CAGAAAGCAA AAGGAATGTG TTCTAGCCAA GCAGATTGTG CAAGGTATGT AGGACACCAN	540
AAAAGAGATG GTTTGAAAAT GAAATTCAAT TCCCTGCCAA TATCAGTGAT GGGATATAAC	600
TCACGATTCT CTACTAACTG ACTAATTTTT TGACTATCCA TTGAGGAAAA CTCACATGTA	660
TTTATAGAAT TAAATCAAGA AACCTGAAAA TACCTATAGT GCGGTAACTT ATTAACTAAC	720
ATTTAAATAT TAACAATACA CTTGGAAATA TTAGTTAAAA ATAAATCATT ATGATTTCTC	780
ATCAATCCTG GTGCTCACGC AAAGTTGCCA GCCCCATAAT AATAAGACCA TAGAACAAGC	840
AAAGTAATAC ACCCACAGTC GCAAGATTAT AGAATCGCCG TGGATATTCG GCATCTTCCG	900
CTAAAGTTGG TTGGGTAATA ACCAATAGAT	930
(2) INFORMATION FOR SEQ ID NO: 113:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 659 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
ACGATATCCC CCCTCTGCTT TTGAGAGGCA ATCTGCTTTA ATACATGATT CATCACAACA	60
CCTCTTGCTG CGCTTTGATC TTAATTTTAT ATTTTTGGGT AGGGAAAAGT AATTGCCCCT	120
GATACGGCTC ACCATTTACC AACGTTTCAC AGCTATGTTC CAGAGCTAAA TTAAGACCTG	180

556

-225-

CTAGAATATC	CCAGCAATTC	ACCCCTTTGA	CATTTTCAAA	GCTGTCATAA	GCACCGGNNA	240		
AGGGGGGCC	AACATGTTAT	ACATGGAGCA	GCCAATGATA	CGATATTCAA	AGCCCTCTTC	300		
CAGTTGCATC	AGATCCTGCT	TGGTAASGGA	GGAAGAGAGG	CCACGAATAC	GAGAGCGATG	360		
ATGTGTAATC	GGCATACCTG	TGATATGAAG	ATCATTCAAT	TCAGGTAAGA	AGATGCAGGA	420		
CTCTTGATGT	TTCCCCTCGG	TGTAAATGCT	GATACCAATG	CCCCACTCTT	TGAGCCCAGA	480		
GACAAAGTTT	TCTGTGCCAT	CAATTGGATC	TAGAACAATG	TAAGAACCTT	TGGGATTCCA	540		
CTCAATATCT	CCTAAAGGGG	CTAATTCCTC	TGAAATTAGC	ACATGCCCTG	GTAGATGCTT	600		
TCTACAGAGT	TCGAAAACTA	TATCTTGAAC	TTTTAGATCC	AGTACTGCGG	CCGCGATCC	659		
(2) INFORM	(2) INFORMATION FOR SEC ID NO: 114:							

(2) INFORMATION FOR SEQ ID NO: 114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 556 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- CCCGGATATA CATCAGGAGA AATTGGAGCA GCAATTGGAT GCGCCATTAA TGCCTGGTTA 60 GGGATCCCCG CATGTGGGCA CGCAAATGGC TCAGAATATG ATCGACCTTC ACCAGATAAA 120 CCAAATCTGA GCGAACCATT TATCCCAAGA CCCACGTATG ACGCTTCACT TCATTCCTGG 180 CATGGCGGAT ACTGAGTAAA TCATCCTGAA TCATTATGTT CAACATCATC AATTCTCCGG 240 ACTTGTTGTC AGATGTCCGG AGAATATTAA CCTTTTCTTC AGAAACAGAW TGATCAAGAA 300 TCACACTCCT TCTTTAAGAG GATTTTATCC AGAAAACTGA CTTTCTTCTA TCAAAATMAC 360 AGTATCCTGT TTTATCAGGA ATAATCTTTA CCTCCGGTAT CATTCCCATA ATCAGATATC 420 480 AGAAAAATGT GCCAGTAATT TTTTACTGAT GACTTCAAAC ATTTCACATT CATCACACGT CAGATTACTC CAAAGTTCTT TCAGATATGT GTTCTGCGCC AGAGTGAGTC TCTGAATAAA 540

(2) INFORMATION FOR SEQ ID NO: 115:

AAACATACCT TCAGAC

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 503 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

TACCTGTTTG TGGAATTTGA CCCAGAAGTG ATTCATACCA CGACTATCAA CGCGACCCGN 60 GTGTNCAGCC ACTTCGTGCG CTTTGGCGTN CGCAGCGATA GTCCCATCGG CGGTTATTCA 120 WO 98/22575 PCT/US97/21347

7	1	~	

-226-	
TEAGETATES GTATATAAAC CGAAAGACAT TGTCGATTCC GGCAACCCCT TATCCGGGTG	180
ATAAGGTGAT TATTACCGAA GCGCGTTCGA AGGCTTTCAG GCCATTTTCA CCGAACCCGA	240
TGGTGAGGCT CGCTCCATGC TATTGCTTAA TCTTATTAAT AAAGAGATTA AGCACAGTGT	300
GAAGAATACC GAGTTCCGCA AACTCTAAAA CGCAATCCCA AACAGTGTTT TGACATTAGC	360
ATCCGTGGTG GCAGCCAGCC ATGCGGCATC TTCTCCACGC CAGTGCGCAA TACGTTGCAA	420
AATATGGGGC AGATGGGCTG GCTCGTTGCG CCGGGATGAN GGCTTTGGCG TGAGATCGCG	480
AGGGAGCAGA TACGGNGCAT CAG	503
(2) INFORMATION FOR SEQ ID NO: 116:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 433 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
TTTAACATCA AAATTACCTG CAGCTGAAAT GATTTTGCTG ATTTCATTAA TTAATGGATT	60
AAGATTACCC TGACTTCCAT AGGCTAATGC ATCATTCCCA TACACATAAC TTGCCTTATT	120
ATTACTCTGT TGATACTNAA GTGCCTTTTT AAGGGAATCT GGTGTGATTA CCCTGCCGTC	180
TTTATCAAAA ATCTGCTCTA TCTGGTGATT AGAGATATCA CCTGACTCTT TTTCAAACCA	240
GTTTTTAAAT GTAATACCAT TTTTGTGGCC AATGGAAAGA ACATTACCTT CAGCTTTATA	300
CATGATGAGG TCATTACCTT CTCGCCTGAA GGCCACATCC CGGAAATCAA TATCAGCCAA	360
ACTGAGTTTA TCGTCTTTCC CCCCATCATC GTCAATAATA TGATGGCCAT ATCCTGAAAG	420
ATAACGATAA ATA	433
(2) INFORMATION FOR SEQ ID NO: 117:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 302 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
GCGCTCTGTT CCCGTTCCTG TTCATCACCA TCGCCTGTGG TGCGGTATCT GGCTTCCACG	60
CGCTGATCTC TTCCGGTACG ACGCCAAAAC TGCTGGCTAA TGAAACCGAC GCGCGTTTCA	120
TCGGCTACGG CGCAATGCTG ATGGAGTCCT TCGTGGCGAT TATGGCGCTG GTTGCTGCGT	180
CCATCATCGA ACCGGGTCTT TACTTCGCGA TGAACACCCC GCCTGCTGGC CTTGGCATCA	240
CCATGCCTAA CCTGCATGAA ATGGGGTGGC GAGAACGCGN CGGATTCATC ATGGCGCANT	300

PCT/US97/21347

-227-

GA	302
(2) INFORMATION FOR SEQ ID NO: 118:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 656 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
AATTAATAAG CCAAATACTA CATCACGTAA TACTTGCAAA GAAGTGCGTG GAGTTTGACT	60
AATAATGGGT TTGTCCATTA ATACTTACCC AAATAATCGG CTCATTATAG CAACGAGCCT	120
CCGATTAAAA TTTAAAATAC TCAATCATTT AATAGCAACG TTAGCAGCTA CAGCGATTTG	180
ATAAATAATT TGTGTGATAT CTTTAAATGA TTGCATGGTT TTGCTATCAA CCTGAGGTAG	240
AACCAATATC TGATCCCCCG GTTGTACTTT ACCTTGCCCT TTAAATTCTA CAAGACCATT	300
TGCATGTACA ATAGCAATTC GCTTGTCGTT AGCTCGCTCA GTAAAACCTC CGGCCCATGC	360
AACATAATCA TCCAAATTAG CATCGGCATT ATATACTACT GCTTGTGGCA TCAACACTTC	420
ACCCCCCACT TGAATAAGAT CAGTCTTATT TGGAATAACT ATTTGATCGC CTTGTTCTAA	480
TTGGATAWTG GCAATAACAC CTTTATCTGC AACTACTACT TTACCAAGCG GTKGAACTTT	540
ACGAGCCTTT YCAACAAACT GCATCACTAA CTCTGCTTCT TTAGCACGTA TATTCGCCTC	600
ACCATCAGAT CGCGCGGGTG TGGTAAANTT CATACGTTCC AAGCGGTTTA GAGATT	656
(2) INFORMATION FOR SEQ ID NO: 119:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	
ATATGTTATC TGGATCCAGA TAAAGAGCGT TCTTGACCCG CTATATCCAG ACAGGTCAGT	60
TACACCCTGT CCGGAAAAAC TGATCGGAAT AACAACAGTA TATTTTCTAA TACACTGGCA	120
AATGGTGCCG GCGGTGTGGG GATTCAGCTT CTGGATAGCG CTGGTAATGC GGTTGCTGCT	180
GGACAGAAGA AATATCTGGG ACAGGTAGGA CCATCAACAT CTCTCAATAT TGGATTAAGG	240
GCATCTTATG CACTGACCAA TGGACAGACT CCACCTACTC CCGGACGAGT TCAGGCGTTA	300
GTTGATGTTA CCTTCGAGTA TAATTAGGAA TGTCGGGGAT GGGCTATCCC CGATATTATT	360
GCAGGATTAG TCTGTGATAC AGATATACAG CCCATATGAA CAACTGTTTG CATATAAA	420
AATGATGATA ATTTTA	436

WO 98/22575 PCT/US97/21347

-228-

(2) INFORMATION FOR SEQ ID NO: 120:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 559 base pairs

(E) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

AATTAATTAA	TTTGGAGGGA	TCAGTTTTCT	GATAATGTTC	TGTTATTAAA	ACATTATCCC	60
ATGGGGCGTA	GTTATATCAA	TTAGCAGGAT	CTTATGAGTT	AACTAACATC	AGTTTTGAAT	120
TTTTAATGGG	GGTAATTTAT	CTTTTACTAA	AAATATTTTA	ACTATTAATA	TAGCATCATG	180
GTTGTTACGG	TTTGTTTTAA	TTCTATTTTA	TAATGTGCTA	TATATTGTAT	TTTTGTGCTT	240
AGATAAATAT	GTTTTTTCAT	TACTTTAGTG	ATGTTAATAT	TTTGCGTGTA	GTAAAAATCA	300
TTGTTATAAC	AAATGTCACT	GTTGCTATAC	TTTGCTGAAC	TGTTTATCGG	TCATTTTGAT	360
TCAATCACTG	GTTCTATATT	TTTTAATAAC	CGTTCTGTAG	CGATTAATAT	ATTGCTCTCC	420
AGAGGATACA	CTATATGAAA	TATATTAAAA	GTCATTAATT	TTNATTCAAT	GTTGTTTAGA	480
GTTATGTTCA	GTGTTTGGNA	ATAGGATGTG	TTTCTAAACC	GTCTTGGGTT	CTATAATAAA	540
TTCTATTCTT	ANAGGTTTT					559

(2) INFORMATION FOR SEQ ID NO: 121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 481 base pairs
 - (E) TYPE: nucleic acid
 - (€) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

CATGTCCCTT	CCTGAATACT	GGGGAGAAGA	GCACGTATGG	TGGGACGGCA	GGGCTGCTTT	60
TCATGGTGAG	GTTGTCAGAC	CTGCCTGTAC	TCTGGCGATG	GAAGACGCCT	GGCAGATTAT	120
TGATATGGGG	GAAACCCCGG	TACGGATTTA	CAGAATGGTT	TCTCCGGACC	TGAAAGAAAA	180
TTCAGCCTCC	GGCTCAGGAA	TTGTGAATTT	AACAGTCAGG	GTGGGAACCT	TTTCTCTGAT	240
TCCCGGATAA	GGGTGACTTT	CGATGGCGTC	CGGGGTGAAA	CGCCGGATAA	GTTTAATTTA	300
TCCGGTCAGG	CAAAAGGCAT	TAATCTGCAG	ATAGCTGATG	TCAGGGGAAA	TATTGCCCGG	360
GCAGGAAAAG	TAATGCCTGC	AATACCATTG	ACGGGTAATG	AAGAAGCGCT	GGATTACACC	420
CTCAGAATTG	TGAGAACGGA	AAAAAACTTG	AAGCCGGAAA	TTATTTTGCT	GTCTGGGATT	480
A						481

(2) INFORMATION FOR SEQ ID NO: 122:

-229-

(i)	SEQUENCE	CHARACTERISTICS:

- (A) LENGTH: 535 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOFOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

CCATATAGTG	ACTTCATTGA	ACAAAATGTA	AATGGAATCT	TGCTGGAGAA	TGACCCACAT	60
ATATGGATAA	AAGCTCTTTC	ATTACTTGTT	AGTGCAGATC	ATAAACGTAG	CGAGTTGGCG	120
TTCAATGCTA	AAAAATATGC	TTGTAAAATT	GTAGGTGTCG	AGTAAAAAGA	TATTTTTATT	180
TAATTGGTGC	TATTGAATGT	TTAAAAATCG	AACTGATTGG	TGTTTTAATA	TTAATCATAG	240
GTTATGATGC	AAAAATATAT	TAGGCATTGC	CTGCTTCAAT	TAACTTGAGA	GTGTAAGTTG	300
AATTGAAATA	TGGTTATATG	ATAAAGCAAT	ATATGTTAAT	ACATATGTCA	ACCGAAAATG	360
CCATTATGTG	TTTTTTACTT	TATCTGTAAC	GACACAATAT	ATAAAATAAG	GCTAATAATC	420
AAAACGCTTT	TTAATTTGAT	TGTTTTGAAT	CAAGTGACTA	AGAAATTCTC	TTGCTGCAAA	480
TAACTCCCTT	AGTGATTTT	TTTGAGTCTA	TTTTATTCTC	TGGGCATGGT	CATGC	535
		no zn No 1:	n n .			

(2) INFORMATION FOR SEQ ID NO: 123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

CCGGCCCCAT	AATGATGGTT	TTATTAAGGT	TAGCGCCGAC	GGTTTCGATG	AACGATTTCA	60
GGTCGGTATC	TTTAAAATTA	GCGGTGAAAG	TGGCTTCTTC	CGCCCAGACC	GGTGAACTGC	120
ATAATGCCGC	TGCCAGCACC	AGCGGCAGTA	AACGCTTTTT	TGTTTTGAGG	CCAGTTGTCT	180
TCTTACGCCA	GACCGACAAC	GTCATATCAC	GCCAAAACAC	GATGAATGAT	TCTCCTGGAT	240
TAAATGCGGT	TAGCGCAGCG	CGATGGAAAT	GTCGTGGCGC	GCACCCTTGC	GTAAAACCGT	300
AAGTTGAATG	GAATCCATTG	AAGGTAACTG	CCGCATCAGA	GCAATCATTG	CTCGTGGATC	360
AGTGAAATCC	TGCTGATTTA	GCGCAAATGC	GATATCGCCT	TCCTTAAAAC	CG	412

(2) INFORMATION FOR SEQ ID NO: 124:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 576 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

WO 98/22575 PCT/US97/21347

-230-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
TAGCCTGTTC AGCGTATATT TGGGATGAGA AGCCAAAGTG GCTTTGGTGG TGTCCCAGCC	60
CAGGTTTTTA TTACTGCTGG TTATTTACCT TTCATGTTTT TCAATAAAGT TGTGACTCAG	120
TTGAAATCTG CTGTCAATGC TAATATGGGA CTTTTTTGTT ATAGACAAGT GACTCCTTTT	180
GCAACTTTTA TAGCACGTTT TATGCTAGAA ACAATGGTGG GCATGATTGT CGGTATAATC	240
CTAGTACTAG GATTATTGTG GTTTGGCTTT GATGCAATAC CTGCGGATCC ATTGCAAGTG	300
ATCCTTGGTT ATTCTCTTCT GATGCTGTTT TCTTTTTCTC TTGGTATTGT ATTTTGTGTT	360
ATTTGTAATT KRGCGARAGA GGCAGATAAA TTTCTTAGCT TGTTAATGAT GCCTTTGATG	420
TTTATCTCTT GTGTTATGTT TCCTCTTGCT ACTATTCCCC CTCAATATCA GCATTGGGTT	480
TTTATGGAAT CCACTTGTGC ATGCTGTAGA ACTAATCCGA AGGGCATGGG ATATCTGGGT	540
TATCGTAGTC CTGATGTAAG TTGGGCGTAT CTGTCG	576
(2) INFORMATION FOR SEQ ID NO: 125:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT	60
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG	60 120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG	120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT	120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	120 132
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA	120 132
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA ATAATGATAT TACAGCACAA TACCGTCTGG CAAAACTTTA TGAACAAGGT AACGGTGTAA	120 132 60 120
CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA ATAATGATAT TACAGCACAA TACCGTCTGG CAAAACTTTA TGAACAAGGT AACGGTGTAA AACGTGATTA TCAACAAGCG ATAAACCTTT ACCTTAAACA TATCAACAGA ATGGATCACA	120 132 60 120 180

-231-

251	
ACATGGCGGA ATTCCCCTAT TCTTTGTTGG CGCTTACAAC AGACTATATT CCGCCATATC	420
TGTCTTTATT GTGTATAAAC CATCGATACT GATGTTTGAT AGTGCTAAAT AATCATTGGC	480
GCAATCACAA AGCCTAATGC CACTCCAGCA ATAATTCCCC CCAACCCAGG CAGCATAAAT	540
GG	542
(2) INFORMATION FOR SEQ ID NO: 127:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
GAACCACTTA GCGGCAGCTA TCGGGAATCG CCTGCTGAAA GACGGTCAGA CAGTGATTGT	60
GGTTACCGTG GCTGATGTTA TGAGTGCCCT GCACGCCAGC TATGACGATG GGCAGTCAGG	120
CGAAAAATTT TTGCGGGAAC TGTGCGAAGT GGATCTGCTG GTTCTTGATG AAATTGGCAT	180
TCAGCGCGAG ACGAAAAACG AAGCAGGTGG TACTGCACCA GATTGTTGAT CGCCGGACAG	240
CSTCGATGCG CACGTGGGGA TRCTGACAAA CCTGAACTAT GAGGCCATGA AAACATTGCT	300
CGGCGARCGG ATTATGGATC RCATGACCAT GAACGGCGGG CGATGGGTGA ATTTTAACTG	360
GGAGACTGGC GTCCGAATGT CG	382
(2) INFORMATION FOR SEQ ID NO: 128:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
CGTCCCGCAC CCGGAAATGG TCAGCGAACC AATCAGCAGG GTCATCGCTA GAAATCATCC	60
TTAGCGAAAG CTAAGGATTT TTTTTATCTG AATTCTAGCC AGATCCCCGC TGATTTATGC	120
TGGTTA	126
(2) INFORMATION FOR SEQ ID NO: 129:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 258 base pairs (B) TYPE: nucleic acid (C) STRANLEDNESS: double (D) TOPOLOGY: linear	

⁽xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

WO 98/22575 PCT/US97/21347

-232-	
ACCCCCAGCC TAGCTGGGGG TTTTCTGTGC ACAAAAAATC CCGGCATAAT GGCCGGGATT	60
TGCGAGCTTT CCCACTATTT CTTGATTCCT AAACGGAACA TATCAGTTGG GAATAAAGGT	120
TGTATTATCA CTTCATCATT ANAAATGAAT AATTTGGGCG ATAAAGCTGT TACGTCATAG	180
ATATTTCAG CGATTAATCT TAGANTTGAC CTAAAAACTG GAATACTTGC ATCATCTGCA	240
AAGACAAACA TGTCATCG	258
(2) INFORMATION FOR SEQ ID NO: 130:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 399 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
AACCAGCGGT TCGCATCATC TCATCCCACT GACTCTCCGC TTTTGACAGA TCTGCATATC	60
CTCGGGCCAA CTTATCCAGT ACTCCGTAGT TTGCCGATTT ATTCACCCGC CAGAACACCG	120
CCTCACCTGC ATCGGCAAGC CGGGGGGAAA ACTGATACCC CAGTAGCCAG AACAGACCGA	180
AAATAATATC GCTGCTACCC GCAGTGTCTG TCATGATTTC AACTGGATTC AGCCCTGTCT	240
GCTGCTCAAG AAGTCCTTCC AGTACAAAAA TCGAATCCCG TAATGTACCG GGTACCACAA	300
TGCCATGGAA CCCAGAGTAC TGATCAGATA CGAATTATAC CAGGTGATGC CTCGTCCAGA	360
ACCAAAATAT TTTCTGTTAG ATCCTGAGTT GATGGTCTT	399
(2) INFORMATION FOR SEQ ID NO: 131:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 745 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
AAATAACATC AACATACATT TGACTCGCGG GGGAAACGTT TACGGAGTCT TCATACTGGC	60
ACTITITAT GCTGCTGACT ACTCTTCGTC ATCGCCATCA ACATGCGCAC GAATCAGCGC	120
CATAAACGGT TTGCCAAAGC GTTCCAGCTT GCGCATCCCA ACGCCGTTAA CGCTGAGCAT	180
TTCGCTGGCG GTGATCGGCA TCTGTTCAGC CATCTCAATC AAGGTTGCGT CGTTAAACAC	240
CACGTACGGC GGGACATTAC TTTCATCGGC TATCGATTTA CGCAGTTTGC GTAATTNGGC	300
GAACAGTTTG CGATCATAGT TGNCGCCGAN CGATNTCTGC ATCGCTTTCG GTTTGAGCGC	360
CACGATACGC GGCACGGCAA TTGCAAAGAG GATTCGCCGC GCAGCACCGG GCGCGCGCCC	4 ^ 0

TCTGTCAGTT GTAGGGCAGA ATGCTGGGCA ATATTTTGCG TCACCAGGCC GAGGTGAATC 480

PCT/US97/21347

-233-

AGCTGGCGGA	TCACGCTCAC	CCAATGTTCA	TGGCTTTTAT	CACGGCCCAT	GCCATAGACT	540
TTCAGTTTGT	CATGACCATA	GTCGCGGATA	CGCTGGTTAT	TAGCACCACG	AATCACTTCC	600
ACCACATAAC	CCATCCCAAA	CCGCTGATTC	ACACGACCAA	TGGTGGAAAG	GGCAATCTGA	660
GCATCGGTTG	AACCGTCGTA	CTGTTTCGGC	GGATCGAGGC	AGATATCGCA	GTTCNCCGCA	720
CGGCTCCTGA	CGCCCTTCGC	CAAAA				745

(2) INFORMATION FOR SEQ ID NO: 132:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 439 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

AGAATGGCGG	CTTCTTGCCC	CCCTTTGCCC	CGGTCCTGAC	TAGCATGGCT	GGAGTCCAGT	60
GTCCAGGCCA	CGACCATGCT	CATCATGGAA	GCAGCTTTTG	TAGTACANTC	GCAGCTTATT	120
TTCCTGGAAC	GAAATGTCTG	GCATCGTGGT	GCATAACATA	ACCCCCAATG	CCCAGCAGAT	180
GCACAGAAGG	TTCTAGAATC	GCCCACTGAT	ATCCCATACA	AAATTTACCA	AAACGTGTTC	240
GTATTTCTCG	TATAAATAAT	GTCTCTATGG	TGACGTTCTA	GACTTCAAAC	CCACTTTTTG	300
AATTTGATGA	TGTGCTCCTA	ATCTCTTCAG	GAATGTAACG	CCCTTGGTTT	ACAGCTACCA	360
ATACACTGGA	GGTATACTTA	TCTGCAACTG	GATGAACTAG	ATGTACTTGA	GCAAACATTT	420
CATAAGCTCG	ACGACAGTT					439

(2) INFORMATION FOR SEQ ID NO: 133:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

CTGGAAAGCG A	CGTTGATGG	ATTAATGCAG	TCGGTAAAAC	TGAACGCTGC	TCAGGCAAGG	60
CAGCAACTTC C	TGATGACGC	GACGCTGCGC	CACCAANTCA	TGGAACGTTT	GATCATGGAT	120
CAAMTCATCC T	'GCAGATGGG	GCAGAAAATG	GGAGTGAAAA	TCTCCGATGA	GCAGCTGGAT	180
CAGGCGATTG C	CTAACATCGC	GAAACAGNAC	AACATGACGC	TGGATCAGAT	GCGCACCGTC	240
TGGCTTACGA T	GGACTGAAC	TACAACACCT	ATCGTAACCA	GATCCGCAAA	GAGATGATTA	300
TCTCTGAAGT G	CGTAACAAC	GAGGTGCGTC	GTCGNATCAC	CATCCTGCCG		350

(2) INFORMATION FOR SEQ ID NO: 134:

-234-

(i)	SEQUE	INCE CHARACTERISTICS:
	(A)	LENGTH: 400 base pair.
	(B)	TYPE: nucleic acid
	(C)	STRANDEDNESS: double
	(D)	TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

CCCCAAGATT GCTAACAAT GCGCGTTGTT CATGCCGGAT GCGGCGTGAC CGCCTTATCC 60
GGCCTACGAA ACCGCAAGAA TTCAATATAT TGCAGGAGCG GTGTAGGCCT GATAAGCGTA 120
GCGAWTCAGG CAGTTTTGCG TTTGCCCGCA ACCTTAGGGG ACATTTAGCG ACCCCATTTA 180
TTTCTCACTT TTCCGCCTCA TCATCGCGCG TTAATTTCTT TCATGAATCA CGCTTTACAA 240
TATCCAGCGC GCGCANAACG GTACTGGCAG GGATCTGAAT TTTCCTCCAG CAGCACAATC 300
AAATCGACAG CCAGTTTGAC ATCGTCAAGG GGCATTTTC CAGTGACATA ATCTCTCCAT 360
TGCTAAGCGG GTTAAAACGC GCTAACCTGT TTCGATTTTT 400

(2) INFORMATION FOR SEQ ID NO: 135:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 463 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

CTATCCTTAT GACCACCCAA CTACNTCATT TACACCCAAA CCAGCGATCT GAATAAAGAA 60 GCGATTGCCC AGTTACGACT GGGCGGAAAA TGCGCGTAAG GATGAAGTAA AGTTTCAGTT 120 GAGCCTGGCA TTTCCCTGTG GCGTGGGATT TTAGGCCCGA ACTCGGTGTT GGGTGCGTCT 180 TATACGCAAA AATCCTGGTG GCAACTGTCC AATAGCGAAG AGTCTTCACC GTTTCGTGAA 240 ACCAACTACG AACCGCAATT GTTCCTCGGT TTTGCCACCG ATTACCGTTT TGCAGGTTGG 300 ACTGCGCGAT GTGGAGATGG GGTATAACCA CGACTCTAAA CGGGCGTTCC GACCCGACCT 360 CCCGCAGCTG GAACCGCCTT TATACTCGCC TGATGGCAGA AAACGGTAAC TGGCTGGTAG 420 AAGTGAAGCC GNGGTATGTG GTGGGTAATA CTGACGATAA CCC 463

(2) INFORMATION FOR SEQ ID NO: 136:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 584 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

PCT/US97/21347

-235-

TTGGTCAGCC	GTACCTGAAT	GGGGGCTGAT	GCCCGGCTGG	TTAATGGCAG	GTGGTCTGAT	60
CGCCTGGTTT	GTCGGTTGGC	GCAAAACACG	CTGATTTTTT	CATCGCTCAA	GGGGGGCCGT	120
GTAACGTATA	ATGCGGCTTT	GTTTAATCAT	CATCTACCAC	AGAGGAACAT	GTATGGGTGG	180
TATCAGTATT	TGGCAGTTAT	TGATTATTGC	CGTCATCGTT	GTACTGCTTT	TTGGCACCAA	240
AAAGCTCGGC	TCCATCGGTT	CCGATCTTGG	TGCGTCGATC	AAAGGCTTTA	AAAAAGCAAT	300
GAGCGATGAT	GAACCAAAGC	AGGATAAAAC	CAGTCAGGAT	GCTGATTTTA	CTGCGAAAAC	360
TATCGCCGAT	AAGCAGGCGG	ATACGAATCA	GGAACAGGCT	AAAACAGAAG	ACGCGAAGCC	420
TACGNTAAAG	AGCAGGTGTA	ATCCGTGTTT	GATATCGGTT	TTAGCGNACT	GCTATTGGTG	480
TTCATCATCG	GCCTCGTCGT	TCTGGGGGCG	CAACGACTGC	CTGTGGCGGT	AAAAACGGTA	540
GCGGGCTGGA	TTCGCGCGTT	GCGTTCACTG	GCGACAACGG	TGCA		584

(2) INFORMATION FOR SEQ ID NO: 137:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 527 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

GCAGGCAGGA	GGAACTGCCC	AGTGATACGG	TTATTCGTGA	TGGCGGAGGG	CAGAGCCTTA	60
ACGGACTGGC	GTTGAACACC	ACGCTGGATA	ACAGAGTTGA	GCATTGGNTA	CACGGGGGAG	120
GGAAAGCAGA	CGTTACAATT	ATTAACCAGG	ATGTTTACCC	AGACCATAAA	ACATGGCGGA	180
TTGGCAACCG	NAACCATCGT	CAACACCGTT	GCAGAAGKTG	GTCCGGAGTC	TGAAAATGTG	240
TCCAGCGGTC	AGATGGTCGG	AGGGACGGCT	GAATCCACCA	CCATCAACAA	AAATGGCCGG	300
CAGTTATCTG	GTCTTCGGGG	ATGGCACGGG	ACACCCTCAT	TTGCGCTGGT	GGTGACCAGA	360
CGGTACACGG	AGAGGCACAT	AACACCCGAC	TGGAGGGAGG	TTAACCAGTA	TGTACACAAC	420
GGTGGCACGG	CAACAGAGAC	GCTGATAAAC	CGTGATGGCT	GGCAGGTGAT	TAAGGAAGGA	480
GGGAACTGCC	GGCGCATTAC	CACCATCAAN	CCNGAAAAGG	GAAANCT		527

(2) INFORMATION FOR SEQ ID NO: 138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

GTCAGTCTCT GGGGGAAGTG CGTGTTCCGA CCGGGGAAAT GTGGTGGAGA AAGTTATTGA

WO 98/22575 PCT/US97/21347

_	7	1
- 2.	•	n-

-236-	
AGGGGCTTAC GAGGTGGTGG GGGTTTTTGA CCGGATTGAG GAAAAGCGTG A	TGCCATGCA 120
GTCGCTGATT CTGCCGCCAC CGGACGCCAG GCGCTGGCAC AGGCGGCACT G	ACTTACCGT 180
TATGGTGACG AACMTCARCC CGTCACCACG GCCGACATTC T3ACACCACG A	CGCCGGGAR 240
GATTACGGTA AGGACCTGTG GAGTGCTTAT CAGACCATTC AGGAGAATAT G	CTGAAAGGC 300
GGAATTTCCG GTCGCAGTGC CAGAGGAAAA CGTATCCATA CCCGTGCCAT T	CACAGCATC 360
GACACCGACA TTAAGCTCAA CCGCGCATTG TGGGTGATGG CTGAAACGCT G	CTGGAGAGT 420
ATGCGCTGAT GCCGTTTCCN T	441
(2) INFORMATION FOR SEQ ID NO: 139:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 398 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
CGAGCGAGAT GAACTTCGAG GGCGGTGTGA GCCAGTCGGC TTACGAGACA C	TGGCGGCGC 60
TTAATCTGCC GAAACCGCAG CAAGGGCCGG AAACCATTAA TCAGGTTACC G	AGCATAAGA 120
TGTCAGCTGA GTAAGCCTGT ATGCCGGATA AGGCGCTCGC GCCNATTCCG A	TGAAAT AA G 180
GCGCATCGGG CCTGAAGGAA AGCCGTATGN ATACACCCGC AGCCCGCATC CO	GGCAAGTTA 240
CAACAAATAA CCTTTAACCA TGCTTTTTGA TGTTTTTCAG CAATACCCCG CC	GGCGATGCC 300
CATACTGGCA ACCGTCGGGA GGGATTGATC ATCGGCAGTT TTTTGAATGT G	GTGATTTGG 360
GCGTTACCCC ATCATGCTGC GCCAACAAAT GGCGGAGT	398
(2) INFORMATION FOR SEQ ID NO: 140:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 580 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:	
GCCGAACAGA CACAGCAATA TGAACCCTGC CAGCGCAGAC GCTTGCTGAT T	AATGCTCTG 60
AACAAAAGGC GAAGAATGGC AAATCCTGCG ATCAGCAAAG TCAGCGCACC G	ACTATCTGT 120
AACATAGTCA CTCCGTGATG AATATCATGT GTATTGTGAA TGCCAGTGAA T	GTGGCACTG 180
AAGCGTTTGC ACCTGTCCGG GTCCCGGTCA TGATGACCGS AACAGAGAGA C	AATGCCGAA 240
TTATCAGAAG GTCACATTCA GTGTGGCTTG GCCGTTATAA CCTTCAGCGC T	GCTGCCGCT 300

GACGCTGTGG GCATAACCGG CCTGAACGCC CAGGGTGATA TTTTCCCGGA CACGGGCTTC 360

-237-

CAGTCCGGCC	TGCAGCTCCA	GTGACGTGCC	ATTCCGGGAC	GGTGAGAACG	TCATGTTACT	420
GCCGGCTGCG	GCTGTACCCA	TGCTCATGTC	TCCCCGGGAG	CTGAAGGTGC	GGATAACAGA	480
AGGCTGTACC	CACCCGTTCA	CCGGCAGTTC	ACGCACACTG	TGTTTTGCAC	TGTCACGCAA	540
GGTGTCACGG	GATGAGGTGC	CTTCANCAAA	AGGTCATATT			580

(2) INFORMATION FOR SEQ ID NO: 141:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 446 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:

TGCGGACATC	CAGCGTTCCG	CCATCATCCA	CACGGGTTCT	GGTGGCTGTG	TGTCCGGTCA	60
GCACATCCAG	ACGGCCGCCA	TTTTCCAGTA	CGACATTATC	AGCTTTACCC	TCCACAACAG	120
AGAATGCTCC	CAGGCGGTTT	GTGCCGGTGA	CGGTTGCAGC	AGTGCTGGTA	ACCAGTGCTC	180
CGCCCGTGTT	CTGGGTGACA	TCAGACGCTT	TACCGCCGGC	ATTCACCTGC	AGCTTTCCTT	240
TCTGGTTGAT	GGTGGTATGC	GCGGCAGTTC	CTCCTTCCTT	AATCAMCTGC	CAGCCATCAC	300
GGTTTATCAG	CGTCTCTGTT	GCCGTGCCAA	CGTTGTGTAC	ATACTGGTTA	MCTCCCTCCA	360
GTCGGGTGTT	AWGTGSCTCT	CCGTGTANCG	TCTGGTCANC	AACAACGCAA	ATGANGGTGT	420
CCCGTGCCAT	CCCCGAAGAC	CAGTAA				446

(2) INFORMATION FOR SEQ ID NO: 142:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 327 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

TGAATACGTT AAGTCAGCAG	ACCGGCGGAG	ACAGTCTGAC	ACAGACAGCG	CTGCAGCAGT	60
ATGAGCCGGT GGTGGTTGGC	TCTCCGCAAT	GGCACGATGA	ACTGGCAGGT	GCCCTGAATA	120
ATATTGCCGG AGTTCGCCAC	TGACCGGTCA	GACCGGTATC	AGTGATGACT	GGCCACTGCC	180
TTCCGTCAAC AATGGATACC	TGGTTCCGTC	CACGGACCCG	GACAGTCCGT	ATCTGATTAC	240
GGTGAACCCG AAACTGGATR	GTCTCGGACA	GGTGGACAGC	CATTTGTTTN	CCGGACTGTA	300
TGAGCTTCTT GGAGCGAAAC	CGGGTCA				327

-238-

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page5, line8				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution				
American Type Culture Collection (ATCC)				
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit	Accession Number			
September 23, 1996	97726			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	ole) This information is continued on an additional sheet			
DNA plasmid PAI-1 D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (Ica	ve blank if not applicable)			
Number of Deposit*)	Bureau later (specify the general nature of the indications e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer	Authorized officer			

-239-

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

e of depositary institution erican Type Culture Collection (ATCC) ress of depositary institution (including postal code and country) 301 Parklawn Drive ckville, Maryland 20852 ited States of America e of deposit September 23, 1996	ner deposits are identified on an additional sheet X
ress of depositary institution (including postal code and country) 301 Parklawn Drive Ckville, Maryland 20852 ited States of America a of deposit September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Burelember of Deposit*)	
ress of depositary institution (including postal code and country) 301 Parklawn Drive Ckville, Maryland 20852 ited States of America a of deposit September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Burelember of Deposit*)	
and Parklawn Drive Ekville, Maryland 20852 ited States of America of deposit September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure lumber of Deposit*)	
and Parklawn Drive Ekville, Maryland 20852 ited States of America of deposit September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure lumber of Deposit*)	
sof deposit September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure umber of Deposit*)	
September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A . SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure umber of Deposit*)	
September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure sumber of Deposit*)	
September 23, 1996 ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure sumber of Deposit*)	on Number
ADDITIONAL INDICATIONS (leave blank if not applicable) NA plasmid PAI-2 DESIGNATED STATES FOR WHICH INDICATIONS A . SEPARATE FURNISHING OF INDICATIONS (leave blank in the indications listed below will be submitted to the International Bure sumber of Deposit*)	97727
DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blanche indications listed below will be submitted to the International Bure umber of Deposit*)	is information is continued on an additional sheet
DESIGNATED STATES FOR WHICH INDICATIONS A SEPARATE FURNISHING OF INDICATIONS (leave blanthe indications listed below will be submitted to the International Bure umber of Deposit*)	
. SEPARATE FURNISHING OF INDICATIONS (leave blan he indications listed below will be submitted to the International Bure umber of Deposit")	
. SEPARATE FURNISHING OF INDICATIONS (leave blan he indications listed below will be submitted to the International Bure umber of Deposit")	
. SEPARATE FURNISHING OF INDICATIONS (leave blan he indications listed below will be submitted to the International Bure umber of Deposit")	
. SEPARATE FURNISHING OF INDICATIONS (leave blan he indications listed below will be submitted to the International Bure umber of Deposit")	
. SEPARATE FURNISHING OF INDICATIONS (leave blan he indications listed below will be submitted to the International Bure umber of Deposit")	E MADE (if the indications are not for all designated States)
he indications listed below will be submitted to the International Bure umber of Deposit")	
he indications listed below will be submitted to the International Bure umber of Deposit")	
he indications listed below will be submitted to the International Bure umber of Deposit")	
he indications listed below will be submitted to the International Bure umber of Deposit")	
he indications listed below will be submitted to the International Bure umber of Deposit")	
he indications listed below will be submitted to the International Bure umber of Deposit")	
umber of Deposit")	
	f not applicable)
For receiving Office use only	f not applicable) I later (specify the general nature of the indications e.g., "Accessio
For receiving Office use only	f not applicable) later (specify the general nature of the indications e.g., "Accessio
For receiving Office use only	f not applicable) I later (specify the general nature of the indications e.g., "Accessio
For receiving Office use only	f not applicable) Nater (specify the general nature of the indications e.g., "Accession")
	later (specify the general nature of the indications e.g., "Accessio
This sheet was received with the international application	later (specify the general nature of the indications e.g., "Accession for indication
Authorized officer	later (specify the general nature of the indications e.g., "Accessio
	later (specify the general nature of the indications e.g., "Accession for indication

Form PCT/RO/134 (July 1992)

-240-

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

The indications made below relate to the microorganism refer on page	red to in the description
3. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	
American Type Culture Collection (ATCC)	
Address of depositary institution (including postal code and country)	
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit	Accession Number
September 23, 1996	98176
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(c) This information is continued on an additional sheet
Escherichia coli, 596	
	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (lea	ve blank if not applicable)
The indications listed below will be submitted to the International Number of Deposit*)	al Bureau later (specify the general nature of the indications e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on
Authorized officer	Authorized officer

What Is Claimed Is:

1	1. An isolated nucleic acid molecule, comprising a polynucleotide
2	having a nucleotide sequence at least 95% identical to a sequence selected from
3	the group consisting of:
4	(a) a nucleotide sequence of an open reading frame depicted in one of
5	Tables 1 through 4;
6	(b) a nucleotide sequence beginning with the first initiation codon
7	encountered reading 5' to 3' in an open reading frame depicted in one of Tables 1
8	through 4, and ending with the 3' terminal stop codon;
9	(c) a nucleotide sequence beginning with the first initiation codon
10	encounter reading 5' to 3' in an open reading frame depicted in one of Tables 1
11	through 4, and ending with the nucleotide preceeding the 3' terminal stop codon;
12	(d) a nucleotide sequence of (a) excluding codons for amino acids
13	eliminated during processing of the putative protein identified in one of Tables 1
14	through 4; or
15	(e) a nucleotide sequence that is complementary to any of the
16	nucleotide sequences in (a), (b), (c), or (d).
1	2. An isolated nucleic acid molecule of claim 1, wherein said
2	nucleotide sequence is 100% identical to the nucleotide sequence of an open
3	reading frame depicted in Tables 1 through 4, or a complement thereof.
1	 An isolated nucleic acid molecule, comprising a polynucleotide that
2	hybridizes under stringent hybridization conditions to a nucleic acid molecule of
3	claim 2.
1	4. An isolated nucleic acid molecule, comprising a polynucleotide that
2	encodes the amino acid sequence of an epitope-bearing portion of an E. coli J96
3	PAI protein encoded by an open reading frame depicted in one of Tables 1
4	through 4.

1	5. A method of making a recombinant vector, comprising inserting		
2	an isolated nucleic acid molecule of claim 1 into a vector.		
1	6. A recombinant vector produced by the method of claim 5.		
1	7. A method of making a recombinant host cell, comprising		
2	introducing a recombinant vector of claim 6 into a host cell.		
1	8. A recombinant host cell produced by the method of claim 7.		
1	9. A recombinant method for producing an E. coli J96 PAI		
2	polypeptide, comprising culturing a recombinant host cell of claim 8 under		
3	conditions such that said polypeptide is expressed and recovering said polypeptide.		
1	10 An included web-sould of our English 100 DATIVE and ALVESTED		
1 2	10. An isolated polypeptide of an E. coli J96 PAI IV or PAI V protein encoded by a polynucleotide of claim 1.		
L	encoded by a polyhucleotide of claim 1.		
1	11. An isolated polypeptide of an E. coli J96 PAI IV or PAI V protein		
2	encoded by a polynucleotide of claim 2.		
1	12. An isolated polypeptide comprising an immunogenic epitope of an		
2	E. coli J96 PAI IV or PAI V protein encoded for by an open reading frame		
3	depicted in one of Tables 1, 2, 3 or 4.		
1	13. A vaccine, in dosage form, comprising		
2	(a) a pharmaceutically acceptable diluent, carrier, or excipient, and		
3	(b) an antigen selected from the group consisting of:		
4	(i) a polypeptide having an amino acid sequence at least 95% identical to		
5	an amino acid sequence encoded by a uropathogenic E. coli J96 PAI IV or PAI		
6	V open reading frame depicted in Tables 1, 2, 3 or 4, and		
7	(ii) a polypeptide comprising an immunogenic epitope of an E. coli J96		
8	PAI IV or PAI V protein encoded for by an open reading frame depicted in one		
9	of Tables 1, 2, 3 or 4;		

10	wherein said antigen is present in an amount effective to elicit protective immune			
11	responses in an animal to pathogenic E. coli.			
1	An isolated antibody that binds specifically to a polypeptide of			
2	claim 10 or 11.			
1	An antibody having binding affinity to a polypeptide according to			
2	claim 12.			
1	16. A method of detecting a pathogenic E. coli antigen in a sample,			
2	comprising:			
3	(a) contacting said sample with an antibody according to claim 14 or			
4	15 under conditions such that immunocomplexes form, and			
5	(b) detecting the presence of said antibody bound to said antigen.			
1	17. A diagnostic kit comprising:			
2	(a) a first container means containing an antibody according to claim			
3	14 or 15 and			
4	(b) second container means containing a conjugate comprising a			
5	binding partner of said antibody and a label.			
1	18. A hybridoma which produces an antibody according to claim 14			
2	or 15.			
1	19. A method of detecting the presence of antibodies to pathogenic E.			
2	coli in a sample, comprising:			
3	(a) contacting said sample with a polypeptide according to one of			
4	claims 10, 11 or 12 under conditions such that immunocomplexes form, and			
5	(b) detecting the presence of said antibody bound to said antigen.			
1	20. A kit for detecting the presence of antibodies to pathogenic E. coli			
2	in a sample comprising at least one container means having disposed therein a			
3	polypeptide according to one of claims 10, 11 or 12.			
	·			

1	Computer readable medium having recorded thereon one or more
2	nucleotide sequences depicted in SEQ ID NOs: 1 through 142, or nucleotide
3	sequences at least 99.9% identical thereto.
1	22. Computer readable medium having recorded thereon a nucleotide
2	sequence of at least one uropathogenic E. coli J96 pathogenicity island open
3	reading frame depicted in Tables 1 through 4, or a complement thereof.
3	reading frame depicted in Tables 1 through 4, of a complement thereof.
1	The computer readable medium of claim 21, wherein said medium
2	is selected from the group consisting of a floppy disc, a hard disc, random access
3	memory (RAM), read only memory (ROM), and CD-ROM.
1	24. The computer readable medium of claim 22, wherein said medium
2	is selected from the group consisting of a floppy disc, a hard disc, random access
3	memory (RAM), read only memory (ROM), and CD-ROM.
1	25. A computer-based system for identifying fragments of
2	uropathogenic E. coli J96 pathogenicity islands PAI IV and PAI V that are
3	homologous to target nucleotide sequences, comprising:
4	 a) a data storage means comprising a nucleotide sequence of
5	SEQ ID NOs: 1 through 142, or a nucleotide sequence at least 99.9% identical
6	thereto;
7	b) a search means for comparing a target sequence to said
8	nucleotide sequence of said data storage means of step (a) to identify a
9	homologous sequence, and
10	c) a retrieval means for obtaining said homologous sequence
11	of step (b).

Applicant's or ager	ıt's file
reference number	1488.074PC02

International application No. PCT/US97/21347

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM (PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page5, line8				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution				
American Type Culture Collection (ATCC)				
Address of depositary institution (including postal code and country)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America				
Date of deposit September 23, 1996	Accession Number 97726			
C. ADDITIONAL INDICATIONS (leave blank if not appl.	(icable) This information is continued on an additional sheet			
DNA plasmid PAI-1				
The applicants hereby request that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.				
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)			
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")				
For equiving Officers				
For receiving Office use only	For International Bureau use only			
☐ This sheet was received with the international application	☐ This sheet was received by the International Bureau on:			
Authorized officer	Authorized officer			

Form PCT/RO/134 (July 1992)

Applicant's or agent's file reference number 1488.074PC02

International application No. PCT/US97/21347

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page5, line8					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution					
American Type Culture Collection (ATCC)					
Address of depositary institution (including postal code and coun	try)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit September 23, 1996	Accession Number 97727				
C. ADDITIONAL INDICATIONS (leave blank if not appli	icable) This information is continued on an additional sheet				
DNA plasmid PAI-2					
The applicants hereby request that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.					
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)					
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)				
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only	For International Bureau use only				
This chaet was received with the intermedian land in the					
☐ This sheet was received with the international application	☐ This sheet was received by the International Bureau on:				
Authorized officer	Authorized officer				

Applicant's or agent's file					
reference number	1488.074PC02				

International application No. PCT/US97/21347

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM (PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page5, line14					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution					
American Type Culture Collection (ATCC)					
Address of depositary institution (including postal code and count	ry)				
12301 Parklawn Drive Rockville, Maryland 20852 United States of America					
Date of deposit September 23, 1996	Accession Number 98176				
C. ADDITIONAL INDICATIONS (leave blank if not appli	This information is continued on an additional sheet				
Escherichia coli, 596					
The applicants hereby request that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.					
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (leave					
The indications listed below will be submitted to the international Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")					
For receiving Office use only For International Bureau use only					
For receiving Office use only	To international bureau use only				
☐ This sheet was received with the international application	☐ This sheet was received by the International Bureau on:				
Authorized officer	Authorized officer				
	l				

- -			

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/31, 5/16, C07K 14/245, 16/12, A61K 39/108, G01N 33/68, G06F 17/30

A2

(11) International Publication Number:

WO 98/22575

(43) International Publication Date:

28 May 1998 (28.05.98)

(21) International Application Number:

PCT/US97/21347

(22) International Filing Date:

21 November 1997 (21.11.97)

(30) Priority Data:

60/031,626 60/061,953 22 November 1996 (22.11.96) US 14 October 1997 (14.10.97) US

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). UNIVERSITY OF WISCONSIN [US/US]; 1300 University Avenue, Madison, WI 53706 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DILLON, Patrick, J. [US/US]; 7508 Boxberry Terrace, Gaithersburg, MD 20879 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). WELCH, Rodney, A. [US/US]; 410 Ridge Street, Madison, WI 53705 (US).
- (74) Agents: STEFFE, Eric, K. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to a deposited microorganism furnished under Rule 13bis separately from the description. Date of receipt by the International Bureau: 20 March 1998 (20.03.1998)

(54) Title: NUCLEOTIDE SEQUENCE OF ESCHERICHIA COLI PATHOGENICITY ISLANDS

(57) Abstract

The present invention relates to novel genes located in two chromosomal regions within uropathogenic *E. coli* that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs). In particular, the present application discloses 142 sequenced fragments (contigs) of DNA from two pools of cosmids covering pathogenicity islands PAI IV and PAI V located on the chromosome of the uropathogenic *Escherichia coli* J96. Further disclosed are 351 predicted protein-coding open reading frames within the sequenced fragments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/11, 15/63, C07K 16/12, G01N 33/569, G06F 17/30, G11B 7/00

A3

(11) International Publication Number:

WO 98/22575

(43) International Publication Date:

28 May 1998 (28.05.98)

(21) International Application Number:

PCT/US97/21347

(22) International Filing Date:

21 November 1997 (21.11.97)

(30) Priority Data:

60/031,626

22 November 1996 (22.11.96) US

60/061,953

US 14 October 1997 (14.10.97)

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). UNIVERSITY OF WISCONSIN [US/US]; 1300 University Avenue, Madison, WI 53706 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DILLON, Patrick, J. [US/US], 7508 Boxberry Terrace, Gaithersburg, MD 20879 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). WELCH, Rodney, A. [US/US]; 410 Ridge Street, Madison, WI 53705 (US).
- (74) Agents: STEFFE, Eric, K. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

With an indication in relation to a deposited microorganism furnished under Rule 13bis separately from the description.

Date of receipt by the International Bureau:

20 March 1998 (20.03.98)

(88) Date of publication of the international search report:

10 December 1998 (10.12.98)

(54) Title: NUCLEOTIDE SEQUENCE OF ESCHERICHIA COLI PATHOGENICITY ISLANDS

(57) Abstract

The present invention relates to novel genes located in two chromosomal regions within uropathogenic E. coli that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs). In particular, the present application discloses 142 sequenced fragments (contigs) of DNA from two pools of cosmids covering pathogenicity islands PAI IV and PAI V located on the chromosome of the uropathogenic Escherichia coli 196. Further disclosed are 351 predicted protein-coding open reading frames within the sequenced fragments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 97/21347

			3 377 2 20 11	
A. CLASSIF IPC 6	FICATION OF SUBJECT MATTER C12N15/11 C12N15/63 C07K16/ G11B7/00	12 G01N33/569	G06F17/30	
According to	o international Patent Classification (IPC) or to both national classifica	ition and IPC		
B. FIELDS	SEARCHED			
Minimum do IPC 6	cumentation searched (classification system followed by classification C12N C07K	on symbols)		
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are included in the fi	eids searched	
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search term	s used)	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the reli	evant passages	Relevant to claim No.	
X	SWENSON D.L.: "Two pathogenicit in Escherichia coli J96: cosmid and sample sequencing" INFECTION AND IMMUNITY, vol. 64, no. 9, September 1996, 3736-3743, XP002069149 WASHINGTON US cited in the application	cloning	1-12, 14-17	
X	see the whole document Database EMBL, Heidelberg, DE AC: u59875 12-NOV-1996 Yersinia pestis pesticin plasmid insertion sequence IS100 XP002069557 & MCDONOUGH K.A. ET AL.: J.BACTE vol. 179, 1997, pages 2081-2085,	RIOL.,	1-12	
X Furt	ther documents are listed in the continuation of box C.	Patent family members are	listed in annex.	
* Special of "A" docum consults" earlier filing of "L" docum which citatio "O" docum other "P" docum later t	stegones of cited documents: sent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or it is cited to establish the publication date of another on or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but than the priority date claimed actual completion of the international search 29 June 1998	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "3." document member of the same patent family Date of mailing of the international search report.		
ļ	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Panzica, G		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/UJ 97/21347

		PCT/65 97/21347			
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Criation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
-au-gury -	Chausin of Document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
X	Database EMBL, Heidelberg, DE AC z32853 05-MAY-1994 Yersinia pestis insertion sequence IS100 XP002069152 see abstract & PODLACHIKOVA O. ET AL.: FEMS MICROBIOL. LETT., vol. 121, 1994, pages 269-274,	1-12			
A	BURLAND V. ET AL.: "Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes" NUCLEIC ACID RESEARCH, vol. 23, 1995, pages 2105-2119, XP000612159 OXFORD, GB				

INTERNATIONAL SEARCH REPORT

inter 'ional application No.

PCT/US 97/21347

Box Observations where certain claims were found unsearchable (Continuation of item Of its 3 steel)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see further information sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: See further information sheet, subject 1.
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-20 (partially)

Invention 1.

An isolated nucleic acid molecule, comprising a polynucleotide having a nucleotide sequence consisting of the sequence of the ORF ID 2 (Contig Id.No.65 Start: nt1902 Stop: nt1042) and uses thereof.

2. Claims: 1-20 (partially)

Inventions 2 to 175:

same as invention 1, but according to each single ORF ID as set forth in Tables 1 through 4, starting from the second of the list (2: Contig ID 65, ORF ID 3, start: nt2096 stop: nt1821; 3: Contig ID 63, ORF ID 11, start: nt7856 stop: nt9238; ... 175: Contig ID 24, ORF ID 1, start: nt492, stop: nt4)

3. Claims: 21-24

Invention 176.

A computer readable medium having recorded thereon nucleotide sequences depicted in SEQ.ID.NOs.1 through 142 or sequences at least 99.9% identical thereto, or a complementary thereof.
Said computer readable medium selected from floppy disc, hard disc, RAM, ROM, CD-ROM.

4. Claim: 25

Invention 177.

A computer-based system for identifying fragments of uropathogenic E.coli J96 pathogenicity islands PAI IV and PAI V that are homlogous to target nucleotide sequences, comprising:

- a) A data storage means comprising nucleotide sequences out of SEQ.ID.NOs:1 through 142 or a nucleotide sequence at least 99.9% identical thereto,
- b) A search means for comparing a target sequence to said nucleotide sequence of said data storage means of step a) to identify a homologous sequence,
- c) A retrieval means for obtaining said homologous sequence of step b).

CORRECTED VERSION**

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

101

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/11, 15/63, C07K 16/12, G01N 33/569, G06F 17/30, G11B 7/00

A3

(11) International Publication Number:

WO 98/22575

(43) International Publication Date:

28 May 1998 (28.05.98)

(21) International Application Number:

PCT/US97/21347

(22) International Filing Date:

21 November 1997 (21.11.97)

(30) Priority Data:

60/031,626 60/061,953 22 November 1996 (22.11.96) US 14 October 1997 (14.10.97) US

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). UNIVERSITY OF WISCONSIN [US/US]; 1300 University Avenue, Madison,

WI 53706 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DILLON, Patrick, J. [US/US]; 7508 Boxberry Terrace, Gaithersburg, MD 20879 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). WELCH, Rodney, A. [US/US]; 410 Ridge Street, Madison, WI 53705 (US).

(74) Agents: STEFFE, Eric, K. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH,

KE, LS, MW, SD, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,

ML, MR, NE, SN, TD, TG).

Published

With international search report.

With an indication in relation to a deposited microorganism furnished under Rule 13^{bu} separately from the description.

Date of receipt by the International Bureau:

20 March 1998 (20.03.98)

(88) Date of publication of the international search report:

10 December 1998 (10.12.98)

(54) Title: NUCLEOTIDE SEQUENCE OF ESCHERICHIA COLI PATHOGENICITY ISLANDS

(57) Abstract

The present invention relates to novel genes located in two chromosomal regions within uropathogenic *E. coli* that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs). In particular, the present application discloses 142 sequenced fragments (contigs) of DNA from two pools of cosmids covering pathogenicity islands PAI IV and PAI V located on the chromosome of the uropathogenic *Escherichia coli* J96. Further disclosed are 351 predicted protein—coding open reading frames within the sequenced fragments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cub a	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Nucleotide Sequence of Escherichia coli Pathogenicity Islands

Background of the Invention

Field of the Invention

5

The present invention relates to novel genes located in two chromosomal regions within *E. coli* that are associated with virulence. These chromosomal regions are known as pathogenicity islands (PAIs).

Related Background Art

been attributed to E. coli pathogens.

10

and various animals. Pathogenic *E. coli* strains are able to cause infections of the intestine (intestinal *E. coli* strains) and of other organs such as the urinary tract (uropathogenic *E. coli*) or the brain (extraintestinal *E. coli*). Intestinal pathogenic *E. coli* are a well established and leading cause of severe infantile diarrhea in the developing world. Additionally, cases of newborn meningitis and sepsis have

Escherichia coli (E. coli) is a normal inhabitant of the intestine of humans

15

20

In contrast to non-pathogenic isolates, pathogenic *E. coli* produce pathogenicity factors which contribute to the ability of strains to cause infectious diseases (Mühldorfer, I. and Hacker, J., *Microb. Pathogen.* 16:171-181 1994). Adhesions facilitate binding of pathogenic bacteria to host tissues. Pathogenic *E. coli* strains also express toxins including haemolysins, which are involved in the destruction of host cells, and surface structures such as O-antigens, capsules or membrane proteins, which protect the bacteria from the action of phagocytes or the complement system (Ritter, *et al.*, *Mol. Microbiol.* 17:109-212 1995).

25

The genes coding for pathogenicity factors of intestinal *E. coli* are located on large plasmids, phage genomes or on the chromosome. In contrast to intestinal *E. coli*, pathogenicity determinants of uropathogenic and other extraintestinal *E. coli* are, in most cases, located on the chromosome. *Id.*

-2-

Large chromosomal regions in pathogenic bacteria that encode adjacently located virulence genes have been termed *pathogenicity islands* ("PAIs"). PAIs are indicative of large fragments of DNA which comprise a group of virulence genes behaving as a distinct molecular and functional unit much like an island within the bacterial chromosome. For example, intact PAIs appear to transfer between organisms and confer complex virulence properties to the recipient bacteria.

Chromosomal PAIs in bacterial cells have been described in increasing detail over recent years. For example, J. Hacker and co-workers described two large, unstable regions in the chromosome of uropathogenic *Escherichia coli* strain 536 as PAI-I and PAI-II (Hacker J., *et al.*, *Microbiol. Pathog.* 8:213-25 1990). Hacker found that PAI-I and PAI-II containing virulence regions can be lost by spontaneous deletion due to recombination events. Both of these PAIs were found to encode multiple virulence genes, and their loss resulted in reduced hemolytic activity, serum resistance, mannose-resistant hemagglutination, uroepithelial cell binding, and mouse virulence of the *E. coli.* (Knapp, S *et al.*, *J. Bacteriol.* 168:22-30 1986). Therefore, pathogenicity islands are characterized by their ability to confer complex virulence phenotypes to bacterial cells.

In addition to *E. coli*, specific deletion of large virulence regions has been observed in other bacteria such as *Yersinia pestis*. For example, Fetherston and co-workers found that a 102-kb region of the *Y. pestis* chromosome lost by spontaneous deletion resulted in the loss of many *Y. pestis* virulence phenotypes. (Fetherston, J.D. and Perry, R.D., *Mol. Microbiol.* 13:697-708 1994, Fetherston, *et al.*, *Mol. Microbiol.* 6:2693-704 1992). In this instance, the deletion appeared to be due to recombination within 2.2-kb repetitive elements at both ends of the 102-kb region.

It is possible that deletion of PAIs may benefit the organism by modulating bacterial virulence or genome size during infection. PAIs may also represent foreign DNA segments that were acquired during bacterial evolution that conferred important pathogenic properties to the bacteria. Observed flanking

10

5

15

20

25

repeats, as observed in *Y. pestis* for example, may suggest a common mechanism by which these virulence genes were integrated into the bacterial chromosomes.

Integration of the virulence genes into bacterial chromosomes was further elucidated by the discovery and characterization of a locus of enterocyte effacement (the LEE locus) in enteropathogenic *E. coli* (McDaniel, *et al.*, *Proc. Natl Acad. Sci.* (USA) 92:1664-8 1995). The LEE locus comprises 35-kb and encodes many genes required for these bacteria to "invade" and degrade the apical structure of enerocytes causing diarrhea. Although the LEE and PAI-I loci encode different virulence genes, these elements are located at the exact same site in the *E. coli* genome and contain the same DNA sequence within their right-hand ends, thus suggesting a common mechanism for their insertion.

Besides being found in enteropathogenic *E. coli*, the LEE element is also present in rabbit diarrheal *E. coli*, *Hafnia alvei*, and *Citrobacter freundii* biotype 4280, all of which induce attaching and effacing lesions on the apical face of enterocytes. The LEE locus appears to be inserted in the bacterial chromosome as a discrete molecular and functional virulence unit in the same fashion as PAI-I, PAI-II, and *Yersinia* PAI.

Along these same lines, a 40-kb Salmonella typhimurium PAI was characterized on the bacterial chromosome which encodes genes required for Salmonella entry into nonphagocytic epithelial cells of the intestine (Mills, D.M., et al., Mol. Microbiol. 15:749-59 1995). Like the LEE element, this PAI confers to Salmonella the ability to invade intestinal cells, and hence may likewise be characterized as an "invasion" PAI.

The pathogenicity islands described above all possess the common feature of conferring complex virulence properties to the recipient bacteria. However, they may be separated into two types by their respective contributions to virulence. PAI-I, PAI-II, and the *Y. pestis* PAI confer multiple virulence phenotypes, while the LEE and the *S. typhimurium* "invasion" PAI encode many genes specifying a single. complex virulence process.

It is advantageous to characterize closely-related bacteria that contain or do not contain the PAI by the isolation of a discrete molecular and functional unit

5

10

15

20

25

-4-

on the bacterial chromosome. Since the presence versus the absence of essential virulence genes can often distinguish closely-related virulent versus avirulent bacterial strains or species, experiments have been conducted to identify virulence loci and potential PAIs by isolating DNA sequences that are unique to virulent bacteria (Bloch, C.A., *et al.*, *J Bacteriol.* 176:7121-5 1994, Groisman, E.A., *EMBO J.* 12:3779-87 1993).

At least two PAIs are present in *E. coli* J96. These PAIs, PAI IV and PAI V are linked to tRNA loci but at sites different from those occupied by other known *E. coli* PAIs. Swenson *et al.*, *Infect. and Immun.* 64:3736-3743 (1996).

The era of true comparative genomics has been ushered in by high through-put genomic sequencing and analysis. The first two complete bacterial genome sequences, those of *Haemophilus influenzae* and *Mycoplasma genitalium* were recently described (Fleischmann, R.D., et al., Science 269:496 (1995); Fraser, C.M., et al., Science 270:397 (1995)). Large scale DNA sequencing efforts also have produced an extensive collection of sequence data from eukaryotes, including *Homo sapiens* (Adams, M.D., et al., Nature 377:3 (1995)) and Saccharomyces cerevisiae (Levy, J., Yeast 10:1689 (1994)).

The need continues to exist for the application of high through-put sequencing and analysis to study genomes and subgenomes of infectious organisms. Further, a need exists for genetic markers that can be employed to distinguish closely-related virulent and avirulent strains of a given bacteria.

Summary of the Invention

The present invention is based on the high through-put, random sequencing of cosmid clones covering two pathogenic islands (PAIs) of uropathogenic *Escherichia coli* strain J96 (O4:K6; *E. coli* J96). PAIs are large fragments of DNA which comprise pathogenicity determinants. PAI IV is located approximately at 64 min (near *pheV*) on the *E. coli* chromosome and is greater than 170 kilobases in size. PAI V is located at approximately 94 min (at *pheR*) on the *E. coli* chromosome and is approximately 106 kb in size. These PAIs

10

5

15

20

differ in location from the PAIs described by Hacker and colleagues for uropathogenic strain 536 (PAI I, 82 minutes {selC} and PAI II, 97 minutes {leuX}).

The location of the PAIs relative to one another and the cosmid clones covering the J96 PAIs is shown in Figure 1. The present invention relates to the nucleotide sequences of 142 fragments of DNA (contigs) covering the PAI IV and PAI V regions of the *E. coli* J96 chromosome. The nucleotide sequences shown in SEQ ID NOs: 1 through 142 were obtained by shotgun sequencing eleven *E. coli* J96 subclones, which were deposited in two pools on September 23, 1996 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession numbers 97726 (includes 7 cosmid clones covering PAI (IV) and 97727 (includes 4 cosmid clones covering PAI V). The deposited sets or "pools" of clones are more fully described in Example 1. In addition, *E. coli* strain J96 was also deposited at the American Type Culture Collection on September 23, 1996, and given accession number 98176.

Three hundred fifty-one open reading frames have been thus far identified in the 142 contigs described by SEQ ID NOs: 1 through 142. Thus, the present invention is directed to isolated nucleic acid molecules comprising open reading frames (ORFs) encoding *E. coli* J96 PAI proteins, and fragments of said nucleic acid molecules.

The present invention also relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of *E. coli* J96 PAI proteins. Further embodiments include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of an *E. coli* J96 PAI ORF described herein, and fragments of said nucleic acid molecules.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention and fragments thereof, host cells containing the recombinant vectors, as well as methods for

30

5

10

15

20

making such vectors and host cells for *E. coli* J96 PAI protein production by recombinant techniques.

The invention further provides isolated polypeptides encoded by the *E. coli* J96 PAI ORFs or fragments of said ORFs. It will be recognized that some amino acid sequences of the polypeptides described herein can be varied without significant effect on the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope-bearing portion is an immunogenic or antigenic epitope useful for raising antibodies.

The invention further provides a vaccine comprising one or more *E. coli* J96 PAI antigens together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the one or more antigens are present in an amount effective to elicit protective antibodies in an animal to pathogenic *E. coli*, such as strain J96.

The invention also provides a method of eliciting a protective immune response in an animal comprising administering to the animal the above-described vaccine.

The invention further provides a method for identifying pathogenic *E. coli* in an animal comprising analyzing tissue or body fluid from the animal for one or more of:

- (a) polynucleic acids encoding an open reading frame listed in Tables 1-4 or a fragment of said polynucleic acid;
- (b) full length or mature polypeptides encoded for by an open reading frame listed in Tables 1-4; or

INSDOCID: <WO__ 9822575A3 IA>

25

5

10

15

WO 98/22575

5

10

15

20

(c) antibodies specific to polypeptides encoded for by an open reading frame listed in Tables 1-4.

The invention further provides a nucleic acid probe for the detection of the presence of one or more *E. coli* PAI nucleic acids (nucleic acids encoding one or more ORFs as listed in Tables 1-4) in a sample from an individual comprising one or more nucleic acid molecules sufficient to specifically detect under stringent hybridization conditions the presence of the above-described molecule in the sample.

The invention also provides a method of detecting E. coli PAI nucleic acids in a sample comprising:

- a) contacting the sample with the above-described nucleic acid probe, under conditions such that hybridization occurs, and
- b) detecting the presence of the probe bound to an E. coli PAI nucleic acid.

The invention further provides a kit for detecting the presence of one or more *E. coli* PAI nucleic acids in a sample comprising at least one container means having disposed therein the above-described nucleic acid probe.

The invention also provides a diagnostic kit for detecting the presence of pathogenic *E. coli* in a sample comprising at least one container means having disposed therein one or more of the above-described antibodies.

The invention also provides a diagnostic kit for detecting the presence of antibodies to pathogenic *E. coli* in a sample comprising at least one container means having disposed therein one or more of the above-described antigens.

Brief Description of the Figures

25

Figure 1 is a schematic diagram of cosmid clones derived from *E. coli* J96 pathogenicity island and map positions of known *E. coli* PAIs (not drawn to scale). The gray bar represents the *E. coli* K-12 chromosome with minute demarcations of PAI junction points located above the bar. *E. coli* J96 overlapping cosmid clones are represented by hatched bars (overlap not drawn to

5

10

15

20

scale) with positions of *hly*, *pap*, and *prs* operons indicated above bar. The PAIs and estimated sizes are shown above and below the K-12 chromosome map.

Figure 2 is a block diagram of a computer system 102 that can be used to implement the computer-based systems of present invention.

Detailed Description of the Invention

The present invention is based on high through-put, random sequencing of a uropathogenic strain of *Escherichia coli*. The DNA sequences of contiguous DNA fragments covering the pathogenicity islands, PAI IV (also referred to as PAI_{J96(pheV)}) and PAI V (also referred to as PAI_{J96(pheV)}) from the chromosome of the *E. coli* uropathogenic strain, J96 (04:K6) were determined. The sequences were used for DNA and protein sequence similarity searches of the database.

The primary nucleotide sequences generated by shotgun sequencing cosmid clones of the PAI IV and PAI V regions of the *E. coli* chromosome are provided in SEQ ID NOs:1 through 142. These sequences represent contiguous fragments of the PAI DNA. As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system. The present invention provides the nucleotide sequences of SEQ ID NOs:1 through 142, or representative fragments thereof, in a form that can be readily used, analyzed, and interpreted by a skilled artisan. Within these 142 sequences, there have been thus far identified 351 open reading frames (ORFs) that are described in greater detail below.

As used herein, a "representative fragment" refers to *E. coli* J96 PAI protein-encoding regions (also referred to herein as open reading frames or ORFs), expression modulating fragments, and fragments that can be used to diagnose the presence of *E. coli* in a sample. A non-limiting identification of such representative fragments is provided in Tables 1 through 6, preferably in Tables 1 through 4. As described in detail below, representative fragments of the present invention further include nucleic acid molecules having a nucleotide sequence at least 95% identical, preferably at least 96%, 97%, 98%, or 99%

5

10

15

20

25

30

VSDOC1D: <WO _ 9822575A3 1A>

-9-

identical, to an ORF identified in Tables 1 through 6, or more preferably Tables 1 through 4.

As indicated above, the nucleotide sequence information provided in SEQ ID NOs:1 through 142 was obtained by sequencing cosmid clones covering the PAIs located on the chromosome of E. coli J96 using a megabase shotgun sequencing method. The sequences provided in SEQ ID NOs:1 through 142 are highly accurate, although not necessarily a 100% perfect, representation of the nucleotide sequences of contiguous stretches of DNA (contigs) which include the ORFs located on the two pathogenicity islands of E. coli J96. As discussed in detail below, using the information provided in SEQ ID NOs:1 through 142 and in Tables 1 through 6 together with routine cloning and sequencing methods, one of ordinary skill in the art would be able to clone and sequence all "representative fragments" of interest including open reading frames (ORFs) encoding a large variety of E. coli J96 PAI proteins. In rare instances, this may reveal a nucleotide sequence error present in the nucleotide sequences disclosed in SEQ ID NOs: 1 through 142. Thus, once the present invention is made available (i.e., once the information in SEQ ID NOs: 1 through 142 and in Tables 1 through 6 is made available), resolving a rare sequencing error would be well within the skill of the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssemblerTM can be used as an aid during visual inspection of nucleotide sequences.

Even if all of the rare sequencing errors were corrected, it is predicted that the resulting nucleotide sequences would still be at least about 99.9% identical to the reference nucleotide sequences in SEQ ID NOs: 1 through 142. Thus, the present invention further provides nucleotide sequences that are at least 99.9% identical to the nucleotide sequence of SEQ ID NOs: 1 through 142 in a form which can be readily used, analyzed and interpreted by the skilled artisan. Methods for determining whether a nucleotide sequence is at least 99.9% identical to a reference nucleotide sequence of the present invention are described below.

Nucleic Acid Molecules

The present invention is directed to isolated nucleic acid fragments of the PAIs of *E. coli* J96. Such fragments include, but are not limited to, nucleic acid molecules encoding polypeptides, nucleic acid molecules that modulate the expression of an operably linked ORF (hereinafter expression modulating fragments (EMFs)), and nucleic acid molecules that can be used to diagnose the presence of *E. coli* in a sample (hereinafter diagnostic fragments (DFs)).

By "isolated nucleic acid molecule(s)" is intended a nucleic acid molecule, DNA or RNA, that has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, purified (partially or substantially) DNA molecules in solution, and nucleic acid molecules produced synthetically. Isolated RNA molecules include *in vitro* RNA transcripts of the DNA molecules of the present invention.

In one embodiment, *E. coli* J96 PAI DNA can be mechanically sheared to produce fragments about 15-20 kb in length, which can be used to generate an *E. coli* J96 PAI DNA library by insertion into lambda clones as described in Example 1 below. Primers flanking an ORF described in Tables 1 through 6 can then be generated using the nucleotide sequence information provided in SEQ ID NOs: 1 through 142. The polymerase chain reaction (PCR) is then used to amplify and isolate the ORF from the lambda DNA library. PCR cloning is well known in the art. Thus, given SEQ ID NOs: 1 through 142, and Tables 1 through 6, it would be routine to isolate any ORF or other representative fragment of the *E. coli* J96 PAI subgenomes. Isolated nucleic acid molecules of the present invention include, but are not limited to. single stranded and double stranded DNA, and single stranded RNA, and complements thereof.

Tables 1 through 6 herein describe ORFs in the *E. coli* J96 PAI cosmid clone library.

5

10

15

20

Tables 1 and 3 list, for PAI IV and PAI V, respectively, a number of ORFs that putatively encode a recited protein based on homology matching with protein sequences from an organism listed in the Table. Tables 1 and 3 indicate the location of ORFs (i.e., the position) by reference to its position within the one of the 142 *E. coli* J96 contigs described in SEQ ID NOs: 1 through 142. Column 1 of Tables 1 and 3 provides the Sequence ID Number (SEQ ID NO) of the contig in which a particular open reading frame is located. Column 2 numerically identifies a particular ORF on a particular contig (SEQ ID NO) since many contigs comprise a plurality of ORFs. Columns 3 and 4 indicate an ORF's position in the nucleotide sequence (contig) provided in SEQ ID NOs: 1 through 142 by referring to start and stop positions in the contig sequence.

One of ordinary skill in the art will appreciate that the ORFs may be oriented in opposite directions in the *E. coli* chromosome. This is reflected in columns 3 and 4. For these ORFs, the sense strand is complementary to the actual sequence given. The corresponding sense-strand of the ORF must be read as the 5'-3' complement of the antisense strand actually shown in the Sequence Listing, wherein the location is specified 3'-5'.

Column 5 provides a database accession number to a homologous protein identified by a similarity search of public sequence databases (see, infra). Column 6 describes the matching protein sequence and the source organism is identified in brackets. Column 7 of Tables 1 and 3 indicates the percent similarity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. Column 8 of Tables 1 and 3 indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. The concepts of percent identity and percent similarity of two polypeptide sequences are well understood in the art and are described in more detail below. Identified genes can frequently be assigned a putative cellular role category adapted from Riley (see, Riley, M., Microbiol. Rev. 57:862 (1993)). Column 9 of Tables 1 and 3 provides the nucleotide length of the open reading frame.

10

5

15

20

25

-12-

Tables 2 and 4, below, provide ORFs of *E. coli* J96 PAI IV and PAI V, respectively, that did not elicit a homology match with a known sequence from either *E. coli* or another organism. As above, the first column in Tables 2 and 4 provides the contig in which the ORF is located and the second column numerically identifies a particular ORF in a particular contig. Columns 3 and 4 identify an ORF's position in one of SEQ ID NOs: 1 through 142 by reference to start and stop nucleotides.

Tables 5 and 6, below, provide the *E. coli* J96 PAI IV ORFs and PAI V ORFs, respectively, identified by the present inventors that provided a significant match to a previously published *E. coli* protein. Columns 1-6 correspond to columns 1-6 appearing in Tables 1 and 3. Column 7 indicates the percent identity of the protein sequence encoded by an ORF to the corresponding protein sequence from the organism appearing in parentheses in the sixth column. Column 8 indicates the length of the high-scoring segment pair (HSP). Column 9 provides the nucleotide length of the open reading frame.

As used herein, "open reading frame" or "ORF" refers to the nucleotide sequences as described in Tables 1 through 6. In Tables 1 through 6, each ORF is designated by a nucleotide sequence start position and stop position according to numbering of contig nucleotides in the Sequence Listing provided (Contig ID = SEQ ID NO).

In a first embodiment, the invention comprises a nucleotide sequence described in Tables 1 through 4 which begins with the nucleotide following the last nucleotide of an upstream stop codon (first nucleotide of the "ORF"), an initiation codon, in-frame putative polypeptide-encoding sequence, and nucleotides of an in-frame stop codon.

In a second embodiment, the invention comprises a nucleotide sequence of Tables 1 through 4 which contains an initiation codon (e.g. a methionine or valine codon) on their 5' end and a stop codon on their 3' end. The sequences of this embodiment are present within the nucleotide sequence described in Tables 1 through 4 by start and stop position as numbered in the Sequence Listing. To

5

10

15

20

25

-13-

determine the 5' start position of this embodiment, one simply reads 5' to 3' from the designated 5' end position until an initiation codon is found.

In a third embodiment, the invention comprises a nucleotide sequence of the second embodiment, except that the 3' stop codon is not present.

In a fourth embodiment, the invention comprises a nucleotide sequence encoding a putative protein which is a sequence of Tables 1 through 4 excluding sequence encoding amino acids subject to removal by post-translational processing and sequences 3' of the last codon coding for an amino acid present in the putative polypeptide (e.g., sequences not containing the stop codon and encoding the mature form of the polypeptide).

Certain embodiments of the invention may therefore either include or exclude initiation codons for methionine or valine and either include or exclude the stop codon.

Further details concerning the algorithms and criteria used for homology searches are provided in the Examples below. A skilled artisan can readily identify ORFs in the *Escherichia coli* J96 cosmid library other than those listed in Tables 1 through 6, such as ORFs that are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

Isolated nucleic acid molecules of the present invention include DNA molecules having a nucleotide sequence substantially different than the nucleotide sequence of an ORF described in Tables 1 through 4, but which, due to the degeneracy of the genetic code, still encode a *E. coli* J96 PAI protein. The genetic code is well known in the art. Thus, it would be routine to generate such degenerate variants.

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of an *E. coli* protein encoded by an ORF described in Table 1 through 4. Non-naturally occurring variants may be produced using art-known mutagenesis techniques and include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more

5

10

15

20

25

-14-

nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the *E. coli* protein or portions thereof. Also especially preferred in this regard are conservative substitutions.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to the nucleotide sequence of an ORF described in Tables 1 through 6, preferably 1 through 4. By a polynucleotide having a nucleotide sequence at least, for example, 95% identical to the reference E. coli ORF nucleotide sequence is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the ORF sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference ORF nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleotide sequence of an *E. coli* J96 PAI ORF can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575

As a practical matter, whether any particular nucleic acid molecule is at

Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Waterman, *Advances in Applied Mathematics* 2: 482-489 (1981),

10

5

15

20

25

Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

5

10

15

20

25

30

ISDOCID: <WO_ 9822575A3 IA>

Preferred are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence of an *E. coli* J96 PAI ORF that encode a functional polypeptide. By a "functional polypeptide" is intended a polypeptide exhibiting activity similar, but not necessarily identical, to an activity of the protein encoded by the *E. coli* J96 PAI ORF. For example, the *E. coli* ORF [Contig ID 84, ORF ID 3 (84/3)] encodes a hemolysin. Thus, a "functional polypeptide" encoded by a nucleic acid molecule having a nucleotide sequence, for example, 95% identical to the nucleotide sequence of 84/3, will also possess hemolytic activity. As the skilled artisan will appreciate, assays for determining whether a particular polypeptide is "functional" will depend on which ORF is used as the reference sequence. Depending on the reference ORF, the assay chosen for measuring polypeptide activity will be readily apparent in light of the role categories provided in Tables 1, 3, 5 and 6.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequence of a reference ORF will encode a functional polypeptide. In fact, since degenerate variants all encode the same amino acid sequence, this will be clear to the skilled artisan even without performing a comparison assay for protein activity. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a functional polypeptide. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not

-16-

likely to significantly affect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid).

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality. As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J.U. et al., supra, and the references cited therein.

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having the nucleotide sequence of an *E. coli* J96 PAI ORF is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length that are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-500 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence of an *E. coli* J96 PAI ORF. By a fragment at least 20 nt in length, for example, is intended fragments that include 20 or more contiguous bases from the nucleotide sequence of an *E. coli* J96 PAI ORF. Since *E. coli* ORFs are listed in Tables 1 through 6 and the sequences of the ORFs have been provided within the contig sequences of SEQ ID NOs: 1 through 142, generating

30

5

10

15

20

such DNA fragments would be routine to the skilled artisan. For example, restriction endonuclease cleavage or shearing by sonication could easily be used to generate fragments of various sizes from the PAI DNA that is incorporated into the deposited pools of cosmid clones. Alternatively, such fragments could be generated synthetically.

Preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of an *E. coli* J96 PAI protein. Methods for determining such epitope-bearing portions are described in detail below.

10

15

5

In another aspect, the invention provides an isolated nucleic acid molecule comprising a polynucleotide that hybridizes under stringent hybridization conditions to a portion of the polynucleotide in a nucleic acid molecule of the invention described above, for instance, an ORF described in Tables 1 through 6, preferably an ORF described in Tables 1, 2, 3 or 4. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5 x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65°C.

20

By a polynucleotide that hybridizes to a "portion" of a polynucleotide is intended a polynucleotide (either DNA or RNA) hybridizing to at least about 15 nucleotides (nt), and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably about 30-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

25

Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide (e.g., a *E. coli* ORF), for instance, a portion 50-500 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of an *E. coli* J96 PAI ORF.

-18-

By "expression modulating fragment" (EMF), is intended a series of nucleotides that modulate the expression of an operably linked, putative polypeptide-encoding region (encoding region). A sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments that induce the expression of an operably linked encoding region in response to a specific regulatory factor or physiological event. EMF sequences can be identified within the E. coli genome by their proximity to the encoding regions within ORFs described in Tables 1 through 6. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken 5' from any one of the encoding regions of ORFs of Tables 1 through 6 will modulate the expression of an operably linked 3' encoding region in a fashion similar to that found within the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to the fragments of the E. coli J96 PAI subgenome that are between two encoding regions herein described. Alternatively, EMFs can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site 5' to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence that is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed

30

25

5

10

15

host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

By a "diagnostic fragment" (DF), is intended a series of nucleotides that selectively hybridize to *E. coli* sequences. DFs can be readily identified by identifying unique sequences within the *E. coli* J96 PAI subgenome, or by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format for amplification or hybridization selectivity.

Each of the ORFs of the *E. coli* J96 PAI subgenome disclosed in Tables 1 through 4, and EMFs found 5' to the encoding regions of the ORFs, can be used in numerous ways as polynucleotide reagents. The sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of uropathogenic *E. coli* in a sample. This is especially the case with the fragments or ORFs of Table 2 and 4 which will be highly selective for uropathogenic *E. coli* J96, and perhaps other uropathogenic or extraintestinal strains that include one or more PAIs.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the

ISDOCID: <WO ___9822575A3, IA>

5

10

15

20

-20-

sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

Vectors and Host Cells

The present invention further provides recombinant constructs comprising one or more fragments of the *E. coli* J96 PAIs. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which, for example, an *E. coli* J96 PAI ORF is inserted. The vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the encoding region of an ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P_R, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments (preferably an ORF) of the *E. coli* J96 PAIs described herein. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a

5

10

15

20

lower eukaryotic host cell, such as a yeast cell, or the host cell can be a procaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)). Host cells containing, for example, an E. coli J96 PAI ORF can be used conventionally to produce the encoded protein.

Polypeptides and Fragments

5

10

15

20

25

ISDOCID <WO __9822575A3 IA>

The invention further provides isolated polypeptides having the amino acid sequence encoded by an *E coli* PAI ORF described in Tables 1 through 6, preferably Tables 1 through 4, or a peptide or polypeptide comprising a portion of the above polypeptides. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least two amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus.

It will be recognized in the art that some amino acid sequences of *E. coli* polypeptides can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.

Thus, the invention further includes variations of polypeptides encoded for by ORFs listed in Tables 1 through 6 which show substantial pathogenic activity or which include regions of particular *E. coli* PAl proteins such as the protein portions discussed below. Such mutants include deletions, insertions,

-22-

inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on activity.

5

Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asp and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

10

As indicated in detail above, further guidance concerning which amino acid changes are likely to be phenotypically silent (i.e., are not likely to have a significant deleterious effect on a function) can be found in Bowie, J.U., et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," *Science* 247:1306-1310 (1990).

15

20

Thus, the fragment, derivative or analog of a polypeptide encoded by an ORF described in one of Tables 1 through 6, may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

25

Of particular interest are substitutions of charged amino acids with another charged amino acid and with neutral or negatively charged amino acids. The latter results in proteins with reduced positive charge to improve the

-23-

characteristics of said proteins. The prevention of aggregation is highly desirable. Aggregation of proteins not only results in a loss of activity but can also be problematic when preparing pharmaceutical formulations, because they can be immunogenic. (Pinckard et al., Clin Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36:838-845 (1987); Cleland et al. Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993)).

The replacement of amino acids can also change the selectivity of binding to cell surface receptors. Ostade *et al.*, *Nature 361*:266-268 (1993) describes certain mutations resulting in selective binding of TNF-α to only one of the two known types of TNF receptors. Thus, proteins encoded for by the ORFs listed in Tables 1, 2, 3, 4, 5, or 6, and that bind to a cell surface receptor, may include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation.

As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 7).

TABLE 7. Conservative Amino Acid Substitutions

Aromatic	Phenylalanine Tryptophan Tyrosine
Hydrophobic	Leucine Isoleucine Valine
Polar	Glutamine Asparagine
Basic	Arginine Lysine Histidine
Acidic	Aspartic Acid Glutamic Acid
Small	Alanine Serine Threonine Methionine Glycine

20

5

10

WO 98/22575

Amino acids in the proteins encoded by ORFs of the present invention that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro, or in vitro proliferative activity. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992) and de Vos et al. Science 255:306-312 (1992)).

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the polypeptides can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67:31-40 (1988).

The polypeptides of the present invention include the polypeptide encoded by the ORFs listed in Tables 1-6, preferably Tables 1-4, as well as polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above, and also include portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489, 1981) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a polypeptide is intended

10

5

15

20

25

that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of said polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence encoded by the ORFs listed in Tables 1, 2, 3, 4, 5, or 6 can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

The polypeptide of the present invention could be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art.

As described in detail below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting pathogenic protein expression as described below or as

10

5

15

20

25

agonists and antagonists capable of enhancing or inhibiting protein function of important proteins encoded by the ORFs of the present invention. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" protein binding proteins which are also candidate agonist and antagonist according to the present invention. The yeast two hybrid system is described in Fields and Song, *Nature 340*:245-246 (1989).

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R.A. (1983) Antibodies that react with predetermined sites on proteins. *Science 219*:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. Sutcliffe *et al.*,

30

25

5

10

15

supra, at 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. Sutcliffe et al., supra, at 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777. The antipeptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are

30

25

5

10

15

5

10

15

20

considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously. Houghten et al., supra, at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

30

PCT/US97/21347

Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction

30

25

WO 98/22575

5

10

15

-30-

PCT/US97/21347

with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of

monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest.

Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on

Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a

5

10

15

20

Peralkylated Oligopeptide Mixtures discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

The entire disclosure of each document cited in this section on "Polypeptides and Peptides" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, *E. coli* PAI polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, e.g., for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EP A 394,827; Traunecker *et al.*, *Nature 331*:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other

30

-31-

molecules than the monomeric E. coli J96 PAI proteins or protein fragments alone (Fountoulakis et al., J. Biochem 270:3958-3964 (1995)).

Vaccines

In another embodiment, the present invention relates to a vaccine, preferably in unit dosage form, comprising one or more *E. coli* J96 PAI antigens together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the one or more antigens are present in an amount effective to elicit a protective immune response in an animal to pathogenic *E. coli*. Antigens of *E. coli* J96 PAI IV and V may be obtained from polypeptides encoded for by the ORFs listed in Tables 1-6, particularly Tables 1-4, using methods well known in the art.

In a preferred embodiment, the antigens are *E. coli* J96 PAI IV or PAI V proteins that are present on the surface of pathogenic *E. coli*. In another preferred embodiment, the pathogenic *E. coli* J96 PAI IV or PAI V protein-antigen is conjugated to an *E. coli* capsular polysaccharide (CP), particularly to capsular polypeptides that are more prevalent in pathogenic strains, to produce a double vaccine. CPs, in general, may be prepared or synthesized as described in Schneerson *et al. J. Exp. Med.* 152:361-376 (1980); Marburg *et al. J. Am. Chem. Soc.* 108:5282 (1986); Jennings *et al., J. Immunol.* 127:1011-1018 (1981); and Beuvery *et al., Infect. Immunol.* 40:39-45 (1983). In a further preferred embodiment, the present invention relates to a method of preparing a polysaccharide conjugate comprising: obtaining the above-described *E. coli* J96 PAI antigen; obtaining a CP or fragment from pathogenic *E. coli*; and conjugating the antigen to the CP or CP fragment.

In a preferred embodiment, the animal to be protected is selected from the group consisting of humans, horses, deer, cattle, pigs, sheep, dogs, and chickens. In a more preferred embodiment, the animal is a human or a dog.

In a further embodiment, the present invention relates to a prophylactic method whereby the incidence of pathogenic *E. coli*-induced symptoms are

10

5

15

20

decreased in an animal, comprising administering to the animal the above-described vaccine, wherein the vaccine is administered in an amount effective to elicit protective antibodies in an animal to pathogenic *E. coli*. This vaccination method is contemplated to be useful in protecting against severe diarrhea (pathogenic intestinal *E. coli* strains), urinary tract infections (uropathogenic *E. coli*) and infections of the brain (extraintestinal *E. coli*). The vaccine of the invention is used in an effective amount depending on the route of administration. Although intra-nasal, subcutaneous or intramuscular routes of administration are preferred, the vaccine of the present invention can also be administered by an oral, intraperitoneal or intravenous route. One skilled in the art will appreciate that the amounts to be administered for any particular treatment protocol can be readily determined without undue experimentation. Suitable amounts are within the range of 2 micrograms of the protein per kg body weight to 100 micrograms per kg body weight.

The vaccine can be delivered through a vector such as BCG. The vaccine can also be delivered as naked DNA coding for target antigens.

The vaccine of the present invention may be employed in such dosage forms as capsules, liquid solutions, suspensions or elixirs for oral administration, or sterile liquid forms such as solutions or suspensions. Any inert carrier is preferably used, such as saline, phosphate-buffered saline, or any such carrier in which the vaccine has suitable solubility properties. The vaccines may be in the form of single dose preparations or in multi-dose flasks which can be used for mass vaccination programs. Reference is made to Remington's *Pharmaceutical Sciences*, Mack Publishing Co., Easton, PA, Osol (ed.) (1980); and *New Trends and Developments in Vaccines*, Voller *et al.* (eds.), University Park Press, Baltimore, MD (1978), for methods of preparing and using vaccines.

The vaccines of the present invention may further comprise adjuvants which enhance production of antibodies and immune cells. Such adjuvants include, but are not limited to, various oil formulations such as Freund's complete adjuvant (CFA), the dipeptide known as MDP, saponins (ex. *Quillajasaponin* fraction QA-21, U.S. Patent No. 5,047,540), aluminum hydroxide, or lymphatic

10

5

WO 98/22575

15

20

25

5

10

15

cytokines. Freund's adjuvant is an emulsion of mineral oil and water which is mixed with the immunogenic substance. Although Freund's adjuvant is powerful, it is usually not administered to humans. Instead, the adjuvant alum (aluminum hydroxide) may be used for administration to a human. Vaccine may be absorbed onto the aluminum hydroxide from which it is slowly released after injection. The vaccine may also be encapsulated within liposomes according to Fullerton, U.S. Patent No. 4,235,877.

Protein Function

Each ORF described in Tables 1 and 3 possesses a biological role similar to the role associated with the identified homologous protein. This allows the skilled artisan to determine a function for each identified coding sequence. For example, a partial list of the *E. coli* protein functions provided in Tables 1 and 3 includes many of the functions associated with virulence of pathogenic bacterial strains. These include, but are not limited to adhesins, excretion pathway proteins, O-antigen/carbohydrate modification, cytotoxins and regulators. A more detailed description of several of these functions is provided in Example 1 below.

Diagnostic Assays

In another preferred embodiment, the present invention relates to a method of detecting pathogenic *E. coli* nucleic acid in a sample comprising:

- a) contacting the sample with the above-described nucleic acid probe, under conditions such that hybridization occurs, and
- b) detecting the presence of the probe bound to pathogenic *E. coli* nucleic acid.

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of pathogenic *E. coli* nucleic acid in a sample comprising at least one container means having disposed therein the above-described nucleic acid probe.

20

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of pathogenic *E. coli* antigens in a sample comprising at least one container means having disposed therein the above-described antibodies.

5

In another preferred embodiment, the present invention relates to a diagnostic kit for detecting the presence of antibodies to pathogenic *E. coli* antigens in a sample comprising at least one container means having disposed therein the above-described antigens.

10

The present invention provides methods to identify the expression of an ORF of the present invention, or homolog thereof, in a test sample, using one of the antibodies of the present invention. Such methods involve incubating a test sample with one or more of the antibodies of the present invention and assaying for binding of the antibodies to components within the test sample.

15

20

25

30

In a further embodiment, the present invention relates to a method for identifying pathogenic *E. coli* in an animal comprising analyzing tissue or body fluid from the animal for a nucleic acid, protein, polypeptide-antigen or antibody specific to one of the ORFs described in Tables 1-4 herein from *E. coli* J96 PAI IV or V. Analysis of nucleic acid specific to pathogenic *E. coli* can be by PCR techniques or hybridization techniques (cf. *Molecular Cloning: A Laboratory Manual, second edition*, edited by Sambrook, Fritsch, & Maniatis, Cold Spring Harbor Laboratory, 1989; Eremeeva *et al.*, *J. Clin. Microbiol.* 32:803-810 (1994) which describes differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA).

Proteins or antibodies specific to pathogenic *E. coli* may be identified as described in *Molecular Cloning: A Laboratory Manual, second edition*, Sambrook *et al.*, eds., Cold Spring Harbor Laboratory (1989). More specifically, antibodies may be raised to *E. coli* J96 PAI proteins as generally described in *Antibodies: A Laboratory Manual*, Harlow and Lane, eds., Cold Spring Harbor Laboratory (1988). *E. coli* J96 PAI-specific antibodies can also be obtained from infected animals (Mather, T. *et al.*, *JAMA 205*:186-188 (1994)).

5

10

15

20

In another embodiment, the present invention relates to an antibody having binding affinity specifically to an *E. coli* J96 PAI antigen as described above. The *E. coli* J96 PAI antigens of the present invention can be used to produce antibodies or hybridomas. One skilled in the art will recognize that if an antibody is desired, a peptide can be generated as described herein and used as an immunogen. The antibodies of the present invention include monoclonal and polyclonal antibodies, as well as fragments of these antibodies. The invention further includes single chain antibodies. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques, for example, such fragments include but are not limited to: the F(ab')₂ fragment; the Fab' fragments, Fab fragments, and Fv fragments.

Of special interest to the present invention are antibodies to pathogenic E. coli antigens which are produced in humans, or are "humanized" (i.e. nonimmunogenic in a human) by recombinant or other technology. Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e. chimeric antibodies) (Robinson, R.R. et al., International Patent Publication PCT/US86/02269; Akira, K. et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison, S.L. et al., European Patent Application 173,494; Neuberger, M.S. et al., PCT Application WO 86/01533; Cabilly, S. et al., European Patent Application 125,023; Better, M. et al., Science 240:1041-1043 (1988); Liu, A.Y. et al., Proc. Natl. Acad. Sci. USA 84:3439-3443 (1987); Liu, A.Y. et al., J. Immunol. 139:3521-3526 (1987); Sun, L.K. et al., Proc. Natl. Acad. Sci. USA 84:214-218 (1987); Nishimura, Y. et al., Canc. Res. 47:999-1005 (1987); Wood, C.R. et al., Nature 314:446-449 (1985)); Shaw et al., J. Natl. Cancer Inst. 80:1553-1559 (1988). General reviews of "humanized" chimeric antibodies are provided by Morrison, S.L. (Science, 229:1202-1207 (1985)) and by Oi, V.T. et al.. BioTechniques 4:214 (1986)). Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution (Jones, P.T. et al., Nature 321:552-525 (1986); Verhoeyan et al.,

30

-36-

PCT/US97/21347

Science 239:1534 (1988); Beidler, C.B. et al., J. Immunol. 141:4053-4060 (1988)).

In another embodiment, the present invention relates to a hybridoma which produces the above-described monoclonal antibody. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing monoclonal antibodies and hybridomas are well known in the art (Campbell, "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology," Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35:1-21 (1980)).

In another embodiment, the present invention relates to a method of detecting a pathogenic *E. coli* antigen in a sample, comprising: a) contacting the sample with an above-described antibody, under conditions such that immunocomplexes form, and b) detecting the presence of said antibody bound to the antigen. In detail, the methods comprise incubating a test sample with one or more of the antibodies of the present invention and assaying whether the antibody binds to the test sample.

Conditions for incubating an antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the antibody used in the assay. One skilled in the art will recognize that any one of the commonly available immunological assay formats (such as radioimmunoassays, enzyme-linked immunosorbent assays, diffusion based Ouchterlony, or rocket immunofluorescent assays) can readily be adapted to employ the antibodies of the present invention. Examples of such assays can be found in Chard, *An Introduction to Radioimmunoassay and Related Techniques*, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock *et al.*, *Techniques in Immunocytochemistry*, Academic Press. Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, *Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands

10

5

15

20

25

-37-

(1985); and Antibodies: A Laboratory Manual, Harlow and Lane, eds., Cold Spring Harbor Laboratory (1988).

The immunological assay test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is capable with the system utilized.

In another embodiment, the present invention relates to a method of detecting the presence of antibodies to pathogenic *E. coli* in a sample, comprising: a) contacting the sample with an above-described antigen, under conditions such that immunocomplexes form, and b) detecting the presence of said antigen bound to the antibody. In detail, the methods comprise incubating a test sample with one or more of the antigens of the present invention and assaying whether the antigen binds to the test sample.

In another embodiment of the present invention, a kit is provided which contains all the necessary reagents to carry out the previously described methods of detection. The kit may comprise: i) a first container means containing an above-described antibody, and ii) second container means containing a conjugate comprising a binding partner of the antibody and a label. In another preferred embodiment, the kit further comprises one or more other containers comprising one or more of the following: wash reagents and reagents capable of detecting the presence of bound antibodies. Examples of detection reagents include, but are not limited to, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the chromophoric enzymatic or antibody binding reagents which are capable of reacting with the labeled antibody. The compartmentalized kit may be as described above for nucleic acid probe kits.

5

10

15

20

-38-

PCT/US97/21347

One skilled in the art will readily recognize that the antibodies described in the present invention can readily be incorporated into one of the established kit formats which are well known in the art.

Screening Assay for Binding Agents

5

Using the isolated proteins described herein, the present invention further provides methods of obtaining and identifying agents that bind to a protein encoded by an *E. coli* J96 PAI ORF or to a fragment thereof.

The method involves:

10

- (a) contacting an agent with an isolated protein encoded by a *E. coli*J96 PAI ORF, or an isolated fragment thereof; and
- (b) determining whether the agent binds to said protein or said fragment.

15

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques. For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by an ORF of the present invention.

20

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide ligands, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides, In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989).

In addition to the foregoing, one class of agents of the present invention, can be used to control gene expression through binding to one of the ORF encoding regions or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed and selected. Targeting the encoding region or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF encoding region or multiple encoding regions that rely on the same EMF for expression control.

One class of DNA binding agents are those that contain nucleotide base residues that hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives having base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Computer Related Embodiments

The nucleotide sequence provided in SEQ ID NOs: 1 through 142, representative fragments thereof, or nucleotide sequences at least 99.9% identical to the sequences provided in SEQ ID NOs: 1 through 142, can be "provided" in

5

10

15

20

-40-

a variety of media to facilitate use thereof. As used herein, "provided" refers to a manufacture, other than an isolated nucleic acid molecule, that contains a nucleotide sequence of the present invention, i.e., the nucleotide sequence provided in SEQ ID NOs: 1 through 142, a representative fragment thereof, or a nucleotide sequence at least 99.9% identical to SEQ ID NOs: 1 through 142. Such a manufacture provides the *E. coli* J96 PAI subgenomes or a subset thereof (e.g., one or more *E. coli* J96 PAI open reading frame (ORF)) in a form that allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *E. coli* J96 PAI subgenome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, one or more nucleotide sequences of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on

5

10

15

20

25

-41-

computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

5

10

15

20

25

30

ISDOCID <WO

9822575A3 IAS

By providing the nucleotide sequence of SEQ ID NOs: 1 through 142, representative fragments thereof, or nucleotide sequences at least 99.9% identical to SEQ ID NOs: 1 through 142, in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system can be used to identify open reading frames (ORFs) within the E. coli J96 PAI subgenome that contain homology to ORFs or proteins from other organisms. Such ORFs are proteinencoding fragments within the E. coli J96 PAI subgenome and are useful in producing commercially important proteins such as enzymes used in modifying surface O-antigens of bacteria. A comprehensive list of ORFs encoding commercially important E. coli J96 PAI proteins is provided in Tables 1 through 6.

The present invention provides a DNA sequence - gene database of pathogenicity islands (PAIs) for *E. coli* involved in infectious diseases. This database is useful for identifying and characterizing the basic functions of new virulence genes for *E. coli* involved in uropathogenic and extraintestinal diseases. The database provides a number of novel open reading frames that can be selected for further study as described herein.

Selectable insertion mutations in plasmid subclones encoding PAI genes with potentially significant phenotypes for *E. coli* uropathogenesis and sepsis can

-42-

be isolated. The mutations are then crossed back into wild type, uropathogenic *E. coli* by homologous recombination to create wild-type strains specifically altered in the targeted gene. The significance of the genes to *E. coli* pathogenesis is assessed by *in vitro* assays and *in vivo* murine models of sepsis/peritonitis and ascending urinary tract infection.

New virulence genes and PAI sites in uropathogenic *E. coli* may be identified by the transposon signature-tagged mutagenesis system and negative selection of *E. coli* mutants avirulent in murine models of ascending urinary tract infection or peritonitis.

Epidemiological investigations of new virulence genes and PAIs may be used to test for their occurrence in the genomes of other pathogenic and opportunistic members of the Enterobacteriaceae.

One can choose from the ORFs included in SEQ ID NOs: 1 through 142, using Tables 1 through 6 as a useful guidepost for selecting, as candidates for targeted mutagenesis, a limited number of candidate genes within the PAIs based on their homology to virulence, export or regulation genes in other pathogens. For the large number of apparent genes within the PAIs that do not share sequence similarity to any entries in the database, the transposon signature-tagged mutagenesis method developed by David Holden's laboratory can be employed as an independent means of virulence gene identification.

Allelic knock-outs are constructed using different *pir*-dependent suicide vectors (Swihart, K.A. and R.A. Welch, *Infect. Immun.* 58:1853-1869 (1990)). In addition, two different animal model systems can be employed for assessment of pathogenic determinants. The initial identification of *E. coli* hemolysin as a virulence factor came from the construction of isogenic *E. coli* strains that were tested in a rat model of intra-abdominal sepsis (Welch, R.A. *et al.*, *Nature* (London) 294:665-667 (1981)). The ascending UTI (Urinary Tract Infection) mouse model was also successfully performed with allelic knock-outs of the *hpmA* hemolysin of *Proteus mirabilis* (Swihart, K.A. and R.A. Welch, *Infect. Immun.* 58:1853-1869 (1990)).

25

5

10

15

20

-43-

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify commercially important fragments of the *E. coli* J96 PAI subgenome. As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As indicated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory that can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention. As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the E. coli genome that match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are available and can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

30

5

10

15

20

PCT/US97/21347

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that during searches for commercially important fragments of the *E. coli* J96 PAI subgenome, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

10

5

WO 98/22575

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

20

15

Thus, the present invention further provides an input means for receiving a target sequence, a data storage means for storing the target sequence and the homologous *E. coli* J96 PAI sequence identified using a search means as described above, and an output means for outputting the identified homologous *E. coli* J96 PAI sequence. A variety of structural formats for the input and output means can be used to input and output information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *E. coli* J96 PAI subgenome possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

30

25

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

E. coli J96 PAI subgenomes. For example, implementing software which implement the BLAST and BLAZE algorithms (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) can be used to identify open reading frames within the E. coli J96 PAI subgenome A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention.

One application of this embodiment is provided in Figure 2. Figure 2 provides a block diagram of a computer system 102 that can be used to implement the present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114 once inserted in the removable medium storage device 114 once inserted in the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. Software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108 during execution.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

5

10

15

20

Experimental

Example 1: High Through-put Sequencing of Cosmid Clones Covering PAI IV and PAI V in E. coli J96

The complete DNA sequence of the pathogenicity islands, PAI IV and PAI V (respectively >170 kb and ~110 kb), from uropathogenic *E. coli* strain, J96 (04:K6) was determined using a strategy, cloning and sequencing method, data collection and assembly software essentially identical to those used by the TIGR group for determining the sequence of the *Haemophilus influenzae* genome (Fleischmann, R.D., *et al.*, *Science 269*:496 (1995)). The sequences were then used for DNA and protein sequence similarity searches of the databases as described in Fleischmann, *Id.*

The analysis of the genetic information found within the PAIs of *E. coli* J96 was facilitated by the use of overlapping cosmid clones possessing these unique segments of DNA. These cosmid clones were previously constructed and mapped (as further described below) as an overlapping set in the laboratory of Dr. Doug Berg (Washington University). A gap exists between the left portion of cosmid 2 and the end of the PAI IV that would represent the *pheV* junction to the *E. coli* K-12 genome.

Uropathogenic strain *E. coli* J96 (O4:K6) was used as a source of chromosomal DNA for construction of a cosmid library. *E. coli* K-12 DH5α and DH12 (Gibco/BRL, Gaithersburg, Md.) were used as hosts for maintaining cosmid and plasmid clones. The cosmid library of *E coli* J96 DNA was constructed essentially as described by Bukanow & Berg (*Mol. Microbiol 11*:509-523 (1994)). DNA was digested with *Sau3*AI under conditions that generated fragments with an average size of 40 to 50 kb and electrophoresed through 1% agarose gels. Fragments of 35 to 50 kb were isolated and cloned into Lorist 6 vector that had been linearized with *Bam*III and treated with bacterial alkaline phosphatase to block self-ligation. (Lorist 6 is a 5.2-kb moderate-copy-number cosmid vector with T7 and SP6 promoters close to the cloning site.) Cloned

20

15

5

10

DNA was packaged in lambda phage particles *in vitro* by using a commercial kit (Amersham, Arlington Heights, IL) and cosmid-containing phage particles were used to transduce *E. coli* DH5α. Transductant colonies were transferred to 150 μL of Luria-Bertani broth supplemented with kanamycin in 96-well microtiter plates and grown overnight at 37°C with shaking. Two sets of clones, one for each PAI were ultimately assembled, as previously described (Swenson *et al.*, *Infection and Immunity 64*:3736-3743 (1996)), fully incorporated by reference herein).

The two sets of clones contain eleven sub-clones that were employed in the sequencing method described below. One set of four overlapping cosmid clones covers the *prs*-containing PAI V, ATCC Deposit No. 97727, deposited September 23, 1996. A second set of seven subclones covers much of the *pap*-containing PAI V, ATCC Deposit No. 97726, deposited September 23, 1996. See Figure 1.

15

20

25

30

5

10

A high through-put, random sequencing method (Fleischmann et al., Science 269:496 (1995); Fraser et al., Science 270:397 (1995)) was used to obtain the sequences for 142 (contigs) fragments of E. coli J96 PAIs. All clones were sequenced from both ends to aid in the eventual ordering of contigs during the sequence assembly process. Briefly, random libraries of ~ 2 kb clones covering the two J96 PAIs were constructed, ~ 2,800 clones were subjected to automated sequencing (~ 450 nt/clone) and preliminary assemblies of the sequences accomplished which result in 142 contigs for each of the two PAIs that total 95 and 135 kb respectively. The estimated sizes of the PAI IV and PAI V based on the overlapping cosmid clones are 1.7 X 10⁵ and 1.1 X 10⁵ bp respectively. The 142 sequences were assembled by means of the TIGR Assembler (Fleischmann et al.; Fraser et al.); Sutton et al., Genome Sci. Tech. 1:9 (1995)). Sequence and physical gaps were closed using a combination of strategies (Fleischmann et al.; Fraser et al.). Presently the average depth of sequencing for each base assembled in the contigs is 6-fold. The tentative identity of many genes based on sequence homology is covered in Tables 1, 3, 5 and 6.

I.

Open reading frames (ORFs) and predicted protein-coding regions were identified as described (Fleischmann et al.; Fraser et al.) with some modification. In particular, the statistical prediction of uropathogenic E. coli J96 pathogenicity island genes was performed with GeneMark (Borodovsky, M. & McIninch, J. Comput. Chem. 17:123 (1993)). Regular GeneMark uses nonhomogeneous Markov models derived from a training set of coding sequences and ordinary Markov models derived from a training set of noncoding sequences. The ORFs in Tables 1-6 were identified by GeneMark using a second-order Markov model trained from known E. coli coding regions and known E. coli non-coding regions.

10

5

Among the important genes that are implicated in the virulence of *E. coli* J96 PAIs are adhesins, excretion pathway proteins, proteins that participate in alterations of the O-antigen in the PAIs, cytotoxins, and two-component (membrane sensor/DNA binding) proteins.

Adhesins. It is believed that the principal adhesin determinants

15

involved in uropathogenicity that are present within PAIs of uropathogenic *E. coli* are the pili encoded by the *pap*-related operons (Hultgren *et al.*, *Infect. Immun.* 50:370-377 (1993), Stromberg *et al.*, *EMBO J 9*:2001-2010 (1990), High *et al.*, *Infect. Immun.* 56:513-517 (1988)) and the distantly related afimbrial adhesins (Labigne-Roussel *et al.*, *Infect. Immun.* 46:251-259 (1988)). The presence of two of these (*pap*, and *prs*) has been confirmed. In addition potential genes for five other adhesins including *sla* (described above), AIDA-I (diffuse adherence-DEAC), *hra* (heat resistant hemagglutinin-ETEC), *fha* (filamentous hemagglutinin- *Bordetella pertussis*) and the arg-gingipain proteinase of

25

20

II. Type II exoprotein secretion pathway. Highly significant statistics support the presence of multiple genes involved in the type II exoprotein pathway. Curiously, perhaps two different determinants appear to be present in PAI IV where one set of genes has the highest sequence similarity to eps-like genes (Vibrio cholerae Ctx export) and the other has greatest similarity to exe genes (Aeromonas hydophilia aerolysin and protease export). At present, the assembly of contigs involving these potential genes is incomplete. Thus, it is

Porphyromonas gingivalis have been found.

5

10

15

20

25

uncertain if two separate and complete determinants are present. However, it is clear that these genes are newly discovered and novel to pathogenic *E. coli* because the derived sequences do not have either the *bfp* or *hop* genes as the highest matches. The gene products that are the target of the type II export pathway are not evident at this time.

Within PAI IV there are sequences which suggest genes very similar to secD and secF. These two linked genes encode homologous products that are localized to the inner membrane and are hypothesized to play a late role in the translocation of leader-peptide containing proteins across the inner membrane of gram-negative bacteria. In addition, in each PAI, sequences are found that are reminiscent of the heat-shock htrA/degA gene that encodes a piroplasmic protease. They may perform endochaperone-like function as Pugsley et al. have hypothesized for different exoprotein pathways.

has the O4. The O-antigen portion of lipopolysaccharide is encoded by rfb genes that are located at 45 min. on the $E.\ coli$ chromosome. We have found in both PAIs a cumulative total of five possible rfb-like genes which could participate alterations of the O-antigen in the PAIs. Overall these data suggest that PAIs provide the genetic potential for greater change of the cell surface for uropathogenic $E.\ coli$ strains than what was previously known.

The apparent capsule type for strain J96 is a non-sialic acid K6-type. Sequence similarity "hits" were made in PAI IV region to two region-1 capsule genes, kpsS and kpsE involved in the stabilization of polysaccharide synthesis and polysaccharide export across the inner membrane. This is not altogether surprising based on the genetic mapping of the kps locus to serA at 63 minutes on the genome of the K1 capsular type of $E.\ coli$. This suggests that these kps-like genes either are participating in the K6-biosynthesis or perhaps are involved in complex carbohydrate export for other purposes.

An intriguing discovery are the hits made on genes involved in bacteriaplant interactions by *Rhizobium*, *Bradyrhizobium* and *Agrobacterium*. Four potential genes identified thus far share significant sequence similarity to genes

encoding products that modify lipo-oligosaccharides that influence nodule morphogenesis on legume roots. These are: ORF140, carbamyl phosphate synthetase; nodulation protein 1265; phosphate-regulatory protein; and an ORF at a plant-inducible locus in *Agrobacterium*. To date there are no descriptions in the literature of such gene products being utilized by human or animal bacterial pathogens for the purposes of modification or secretion of extracellular carbohydrate. However, the sequence similarity to the capsular region-2 genes and to lipooligosaccharide biosynthetic genes in *Rhizobium* spp has been recently noted by Petit (1995).

10

15

5

Cytotoxins. Besides the previously known hemolysin and CNF IV. toxins in the PAIs, in each PAI sequences similar to the shlBA operon (cosmid 5 and 12) were found for a cytolytic toxin from Serratia marcescens and Proteus mirabilis. Ironically, the P. mirabilis hemolysin (HpmA) member of this family of toxins was discovered by Uphoff and Welch (1990), but not thought to exist in other members of the Enterobacteriaceae (Swihart (1990)). A shlB-like transporter does also appear to be involved in the export of the filamentous hemagglutinin of Bordetella pertussis which was described above and a cell surface adhesin of Haemophilus influenzae. It has been demonstrated that cosmid #5 of E. coli J96 encodes an extracellular protein that is ~180 kDa and crossreactive to polyclonal antisera to the P. mirabilis HpmA hemolysin. Thus, there is evidence suggesting there is new member of this family of proteins in extraintestinal E. coli isolates. In addition, there is also a hit on the FhaC hemolysin-like gene within the PAI V although its statistical significance for the sequence thus far available is only 0.0043.

25

20

V. Regulators. A common regulatory motif in bacteria are the two-component (membrane sensor/DNA binding) proteins. In numerous instances in pathogenic bacteria, external signals in the environment cause membrane-bound protein kinases to phosphorylate a cytoplasmic protein which in turn acts as either a negative or positive effector of transcription of large sets of operons. On cosmid 11 representing PAI V were found, in two different PstI clones, sequences

5

10

15

20

25

for two-component regulators (similar probabilities for OmpR/ AIGB and separately RcsC, probabilities at the 10⁻²² level).

In addition, the phosphoglycerate transport system (pgtA, pgtC, and pgtP) including the pgtB regulator is present in PAI IV. This transport system which was originally described in S. typhimurium is not appreciated as a component of any pathogenic E. coli genome. The operon had been previously mapped at 49 minutes, near or within one of the S. typhimurium chromosome specific-loops not present in the K-12 genome. It should be noted that the E. coli K-12 glpT gene product is similar to pgtP gene product (37% identity), but the E. coli J96 genes are clearly homologs to the pgt genes and their linkage within the middle of PAI IV element (cosmid #4) is suspicious.

Mobile genetic elements. There are numerous sequences that VI. share similarity to genes found on insertion elements, plasmids and phages. The temperate bacteriophage P4 inserts within tRNA loci in the E. coli chromosome. The hypothesis was made that PAIs are the result of bacteriophage P4-virulence gene recombination events (Blum et al., Infect. Immun. 62:606-614 (1994). Data supporting this hypothesis was found during our sequencing with the identification of P4-like sequences in each of the PAIs (cosmids 7 and 9). This is a very important preliminary result which supports the hypothesis that PAIs can be identified by common sequence or genetic elements. However, there are indications that multiple mobile genetic elements involved in the evolution of the J96 PAIs. Conjugal plasmid-related sequences may also be present at two different locations (F factor and RI plasmid). Sequences for multiple transposable elements are present that are likely to have originated from different bacterial genera (Tnl000, IS630, IS911, IS100, IS21, IS 1203, IS5376 (B. stearothermophflus) and RHS). Of particular interest is IS100, which was originally identified in Yersinia pestis (Fetherston et al., Mol. Microbiol. 6:2693-2704 (1992)). The presence of IS100 is significant because it has been associated with the termini of a large chromosomal element encoding pigmentation and some aspect of virulence in Y. pestis. This element undergoes spontaneous deletions similar to the PAIs from E. coli 536 (Fetherston et al., Mol. Microbiol.

6:2693-2704 (1992)) and appears to participate in plasmid-chromosome rearrangements. This element was not previously known to be in genera outside of *Yersinia*.

The discovery of the apparent *att* site for bacteriophage P2 in the PAIs is interesting. P2 acts as a helper phage for the P4 satellite phage. The P2 *att* site is at 44 min in the K-12 genome. The significance of this hit is unknown at present, but may be explained as either a cloning artifact (some K-12 fragments in the *Pst* I library of cosmid 5) or evidence of some curious chromosomal-P4/P2 phage history. It may indicate that the J96 PAIs are composites of multiple smaller PAIs.

Example 2: Preparation of PCR Primers and Amplification of DNA

Various fragments of the sequenced *E. coli* J96 PAIs, such as those disclosed in Tables 1 through 6 can be used, in accordance with the present invention, to prepare PCR primers. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers are useful during PCR cloning of the ORFs described herein.

Example 3: Gene expression from DNA Sequences Corresponding to ORFs

20

25

5

10

15

A fragment of an *E. coli* J96 PAI (preferably, a protein-encoding sequence provided in Tables 1 through 6) is introduced into an expression vector using conventional technology (techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art). Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper

5

10

15

20

protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U.S. Pat. No. 5,082,767, which is hereby incorporated by reference.

The following is provided as one exemplary method to generate polypeptide(s) from a cloned ORF of an E. coli J96 PAI whose sequence is provided in SEQ ID NOs: 1 through 142. A poly A sequence can be added to the construct by, for example, splicing out the poly A sequence from pSG5 (Stratagene) using BglI and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The E. coli J96 PAI DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the E. coli J96 PAI DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding E. coli J96 PAI DNA 3' primer, taking care to ensure that the E. coli J96 PAI DNA is positioned such that its followed with the poly A sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BglII, purified and ligated to pXT1, now containing a poly A sequence and digested BglII.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface.

Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *E. coli* J96 PAI DNA

30

sequence are injected into mice to generate antibody to the polypeptide encoded by the *E. coli* J96 PAI DNA.

If antibody production is not possible, the *E. coli* J96 PAI DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as a chimeric with, for example, β-globin. Antibody to β-globin is used to purify the chimeric. Corresponding protease cleavage sites engineered between the β-globin gene and the *E. coli* J96 PAI DNA are then used to separate the two polypeptide fragments from one another after translation. One useful expression vector for generating β-globin chimerics is pSG5 (Stratagene). This vector encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides may additionally be produced from either construct using *in vitro* translation systems such as In vitro ExpressTM Translation Kit (Stratagene).

Example 4

E. coli Expression of an E. coli J96 PAI ORF and protein purification

20

5

10

15

An E. coli J96 PAI ORF described in Tables 1 through 6 is selected and amplified using PCR oligonucleotide primers designed from the nucleotide sequences flanking the selected ORF and/or from portions of the ORF's NH₂- or COOH-terminus. Additional nucleotides containing restriction sites to facilitate cloning are added to the 5' and 3' sequences, respectively.

25

The restriction sites are selected to be convenient to restriction sites in the bacterial expression vector pQE60. The bacterial expression vector pQE60 is used for bacterial expression in this example. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible

promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin sold by QIAGEN, Inc., *supra*, and suitable single restriction enzyme cleavage sites. These elements are arranged such that a DNA fragment encoding a polypeptide may be inserted in such as way as to produce that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of an *E. coli* J96 PAI is amplified from the deposited cDNA clone using PCR oligonucleotide primers which anneal to the amino terminal sequences of the desired portion of the *E. coli* protein and to sequences in the deposited construct 3' to the cDNA coding sequence. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

The amplified *E. coli* J96 PAI DNA fragments and the vector pQE60 are digested with one or more appropriate restriction enzymes, such as Sall and Xbal, and the digested DNAs are then ligated together. Insertion of the *E. coli* J96 PAI DNA into the restricted pQE60 vector places the *E. coli* J96 PAI protein coding region, including its associated stop codon, downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described in Sambrook *et al.*, *Molecular Cloning: a Laboratory Manual*, *2nd Ed.*; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989). *E. coli* strain Ml5/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing an *E. coli* J96 PAI protein, is available commercially from QIAGEN, Inc., *supra*. Transformants are identified by their ability to grow on LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from

30

25

5

10

15

5

10

15

20

resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the laci repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH8. The cell debris is removed by centrifugation, and the supernatant containing the *E. coli* J96 PAI protein is dialyzed against 50 mM Na-acetate buffer pH6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *E. coli* J96 PAI protein. The purified protein is stored at 4°C or frozen at -80°C.

Example 5

Cloning and Expression of an E. coli J96 PAI protein in a Baculovirus Expression System

routine procedures known in the art. The DNA is then isolated from a 1%

A E. coli J96 PAI ORF described in Tables 1 through 6 is selected and amplified as above. The plasmid is digested with appropriate restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using

-57-

agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated herein "V1".

Fragment F1 and the dephosphorylated plasmid V1 are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria are identified that contain the plasmid with the *E. coli* J96 PAI gene by digesting DNA from individual colonies using appropriate restriction enzymes and then analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing. This plasmid is designated herein pBac *E. coli J96*.

5

10

15

20

25

30

9822575A3 IA>

NSDOCID: <WO

Five μg of the plasmid pBac *E. coli* J96 is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA.), using the lipofection method described by Felgner *et al.*, *Proc. Natl. Acad. Sci. USA 84*:7413-7417 (1987). 1 μg of BaculoGoldTM virus DNA and 5 μg of the plasmid pBac *E. coli* J96 are mixed in a sterile well of a microliter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is rocked back and forth to mix the newly added solution. The plate is then incubated for 5 hours at 27°C. After 5 hours the transfection solution is removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. The plate is put back into an incubator and cultivation is continued at 27°C for four days.

After four days the supernatant is collected and a plaque assay is. performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc.) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies

5

10

15

20

25

Inc., page 9-10). After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4°C. The recombinant virus is called V-E. coli J96.

To verify the expression of the *E. coli* gene Sf9 cells are grown in Grace's medium supplemented with 10% heat inactivated FBS. The cells are infected with the recombinant baculovirus V-*E. coli* J96 at a multiplicity of infection ("MOI") of about 2. Six hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc.). If radiolabeled proteins are desired, 42 hours later, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then they are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled). Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the mature protein and thus the cleavage point and length of the secretary signal peptide.

Example 6

Cloning and Expression in Mammalian Cells

Most of the vectors used for the transient expression of an *E. coli* J96 PAI gene in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which express the T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.

A typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein coding

sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRS) from Retroviruses, e.g., RSV, 1HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as PSVL and PMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109). Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV I, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful to develop cell lines that carry several hundred or even several thousand copies of the gene of interest. Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (199 1); Bebbington et al., Bio/Technology 10:169-175 (1992)). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

The expression vectors pC1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen *et al.*, Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart *et al.*, Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme

√SDOCID <WO

9822575A3 IA>

25

5

10

15

cleavage sites BamHI, Xbal and Asp7l8, facilitate the cloning of the gene of interest. The vectors contain in addition the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene.

Example 6(a): Cloning and Expression in COS Cells

5

The expression plasmid, p *E. coli* J96HA, is made by cloning a cDNA encoding *E. coli* J96 PAI protein into the expression vector pcDNAI/Amp or pcDNAIII (which can be obtained from Invitrogen, Inc.).

replication effective for propagation in E. coli and other prokaryotic cells; (2) an

The expression vector pcDNAI/amp contains: (1) an E. coli origin of

10

ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a cDNA can be conveniently placed under expression control of the CMV promoter and operably

15

linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the

influenza hemagglutinin protein described by Wilson et al., Cell 37:767 (1984).

20

The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope.

pcDNAIII contains, in addition, the selectable neomycin marker.

A DNA fragment encoding the *E. coli* J96 PAI protein is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The *E. coli* cDNA of the deposited clone is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of *E. coli* J96 PAI protein in *E. coli*.

25

The PCR amplified DNA fragment and the vector, pcDNAI/Amp, are digested with appropriate restriction enzymes for the chosen primer sequences

5

10

15

20

25

and then ligated. The ligation mixture is transformed into *E. coli* strain SURE (available from Stratagene Cloning Systems, La Jolla, CA 92037), and the -transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the *E. coli* J96 PAI protein-encoding fragment.

For expression of recombinant *E. coli* J96 PAI protein, COS cells are transfected with an expression vector, as described above, using DEAE-DEXTRAN, as described, for instance, in Sambrook *et al.*, *Molecular Cloning: a Laboratory Manual*, Cold Spring Laboratory Press, Cold Spring Harbor, New York (1989). Cells are incubated under conditions for expression of *E. coli* J96 PAI protein by the vector.

Expression of the *E. coli* J96 PAI - HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow *et al.*, *Antibodies: A Laboratory Manual, 2nd Ed.*; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988). To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson *et al.* cited above. Proteins are precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

Example 6(b): Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of an *E. coli* J96 PAI protein. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Acc. No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early

-62-

promoter. Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies, Inc.) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F. W. et al., 1978, J. Biol. Chem. 253:1357-1370, Hamlin, J. L. and Ma, C. 1990, Biochim. et Biophys. Acta, 1097:107-143, Page, M. J. and Sydenham, M.A. 1991, Biotechnology 9:64-68). Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains for expressing the gene of interest the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus (Cullen, et al., Molecular and Cellular Biology, March 1985:438-447) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al., Cell 41:521-530 (1985)). Downstream of the promoter is BamHI restriction enzyme site that allows the integration of the gene. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human β-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the E. coli protein in a regulated way in mammalian cells (Gossen, M., & Bujard, H. 1992, Proc. Natl. Acad. Sci. USA 89: 5547-5551). For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used Stable cell lines carrying a gene of interest integrated into the as well.

30

5

10

15

20

chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

The DNA sequence encoding the complete *E. coli* J96 PAI protein including its leader sequence is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene.

The amplified fragment is digested with appropriate endonucleases for the chosen primers and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. 5 μ g of the expression plasmid pC4 is cotransfected with 0.5 μ g of the plasmid pSVneo using lipofectin (Felgner *et al.*, *supra*). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nm, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 μ M. Expression

20

5

10

15

25

30

WO 98/22575 PCT/US97/21347

-64-

of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 7

Production of an Antibody to an E. coli J96 Pathogenicity Island Protein

5

Substantially pure *E. coli* J96 PAI protein or polypeptide is isolated from the transfected or transformed cells described above using an art-known method. The protein can also be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

10

Monoclonal Antibody Production by Hybridoma Fusion

15

20

25

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein, Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis,

3NSDOCID <WO 9822575A3 IA>

L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other molecules and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall (*See* Ouchterlony, O. *et al.*, Chap. 19 in: *Handbook of Experimental Immunology*, Wier, D., ed, Blackwell (1973)). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 µM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: *Manual of Clinical Immunology*, 2nd ed., Rose and Friedman, (eds.), Amer. Soc. For Microbio., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample.

5

10

15

20

25

length	(nt)	198	276	1383	975	171	564		273	519	144	348	372	366	357	8901	369	489	1107	273	1263	495	849	069	426	396	219	552
7,0	ident	001	001	93	%	78	92		71	98	92	85	82	77	19	84	84	08	1.8	72	79	72	74	57	74	18	53	72
%	sim	100	100	86	- 6	16	92		92	92	92	16	6	16	16	68	68	68	88	88	87	87	87	98	85	84	84	84
match	0	ORFB; putative transposase [Yersinia pestis]	ORF1 [Yersinia pestis]	transporter protein pgtP [Salmonella typhimurium]	ORFA; putative transposase [Yersinia pestis]	unknown [Escherichia coli]	Description: IS630 insertion element; ORF5 protein; Method: conceptual	translation supplied by author [Shigella sonnei]	ExeF gene product [Aeromonas hydrophila]	glucose-1-phosphate thymidylyltransferase [Escherichia coli]	rfbC gene product [Shigella flexneri]	ORF (343 AA) [Shigella sonnei]	glucose-1-phosphate thymidylyltransferase [Salmonella enterica]	ExeE gene product [Aeromonas hydrophila]	putative [Vibrio cholerae]	regulatory protein pgtB [Salmonella typhimurium]	dTDP-6-deoxy-L-mannose-dehydrogenase [Shigella flexneri]	ExeE gene product [Aeromonas hydrophila]	dTDP-glucose 4,6-dehydratase [Salmonella enterica]	Orf104 homolog - Escherichia coli	phosphoglycerate transport system activator protein [Salmonella typhimurium]	putative [Vibrio cholerae]	unknown [Escherichia coli]	putative [Vibrio cholerae]	dTDP-6-deoxy-L-mannose-dehydrogenase [Escherichia coli]	ORF (343 AA) [Shigella sonnei]	ExeK gene product [Aeromonas hydrophila]	ORF_0152 [Escherichia coli]
match	accession	gi 1655838	gi 467612	gi 154262	gi 1655837	gi 1208992	gi 1143207		gi 809648	gi 799234	gi1454900	gi 47542	gi 46985	gi 38826	gi 609625	gi 858753	gi 294899	gi 38826	gi 581654	pir S43483 S434	gi/154255	gi 609628	gi 1208992	gi 609625	gi 508238	gi 47542	gi 38832	gi 1033137
	(ut)	1042	1821	9238	1915	172	4338		273	2511	2996	4088	2242	366	248	5234	1811	689	413	457	3019	745	4406	7	3	4731	2582	3829
1	(ut)	1902	5096	7856	5885	2	4075			3029	3139	3741	2613	1	604	6301	2179	201	1519	729	4281	251	5254	693	428	4336	2800	4380
ORF	Ω	2	3		ţ	1	9		-	4	5	5	3	1	2	6	2	2	2	_	9	2	12	-	_	7	~	01
Contig	, QI	99	\$9	63	99	138	1 9		29	73	73	64	73	06	16	63	73	8	95	96	63	- 62	82	09	95	64	80	82

SUBSTITUTE SHEET (RULE 26)

Table 1 (PAI IV) (CONTINUED)

length	(nt)	570	1314	252	336	321	501	819		231	621	270	999	171	552	318	408	1077	297	540	285	1164	999	342	1131	066	507	555	204
%	ident	7.5	78	80	64	62	62	72	1	58	65	62	99	41	09	57	54	09	46	54	20	54	48	46	36	38	54	39	4-1
%	sim	83	83	82	82	80	62	8/		78	77	9/	7.5	7.2	1/	7.1	70	70	70	69	89	89	<i>L</i> 9	99	99	64	64	62	62
match gene name		PHOSPHOGLYCERATE TRANSPORT SYSTEM SENSOR PROTEIN PGTB (EC 2.7.3).	regulatory protein pgtC [Salmonella typhimurium]	unknown protein [Transposon Tn3411]	URF 2 [Escherichia coli]	ORF_0273 [Escherichia coli]	ExeE gene product [Aeromonas hydrophila]	PHOSPHOGLYCERATE TRANSPORT SYSTEM SENSOR PROTEIN	PGTB (EC 2.7.3).	Hha protein [Escherichia coli]	putative [Vibrio cholerae]	heat resistant agglutinin 1 [Escherichia coli]	H. influenzae predicted coding region H11472 [Haemophilus influenzae]	arabinose transport protein [Mycoplasma capricolum]	transposase [Escherichia coli]	INSERTION ELEMENT 18911 HYPOTHETICAL 12.7 KD PROTEIN	ORF140 gene product [Rhizobium sp.]	HecA [Erwinia chrysanthemi]	epsE [Vibrio cholerae]	putative [Vibrio cholerae]	PiID-dependent protein [Pseudomonas aeruginosa]	HecB [Erwinia chrysanthemi]	HecB [Erwinia chrysanthemi]	transposase [Plasmid pRL 1063a]	kpsE gene product [Escherichia coli]	hydrophobic membrane protein [Streptococcus gordonii]	secretory component [Erwinia chrysanthemi]	RfbC [Myxococcus xanthus]	similar to E. coli ORF_0208 [Escherichia coli]
match	accession	sp P37433 PGTB_	gi 154258	gi 1196999	gi 41004	gi 1033128	gi 38826	sp P37433 PGTB_		gi 1773143	gi 609625	gi 463911	gi 1574313	gi 530438	gi 622948	sp P39213 Y191_	gi 581535	gi 1772623	gi 295430	gi 609627	gi 151469	gi 1772622	gi 1772622	gi 1323798	gi 397405	gi 310632	gi 148436	gi 1235662	gi 1657478
Stop	(nt)	4830	6229	3100	2	429	831	4256		6255	534	3255	299	315	1629	10005	928	3437	4	2	1881	1741	2363	1393	4	1839	355	2	2814
Start	(nt)	5399	7572	3351	337	109	1331	4873		5759	1154	3524	2	485	2180	8896	1283	2361	300	541	1297	578	8691	1734	1134	2828	198	556	3017
ORF	Ω	∞	2	7	-	2	4	7		13	3	5	-	2	3	2	3	_	-	-	4	-	2	2	-	2	2	_	9
Contig	<u>.</u>	63	63	65	100	138	74	63		70	16	75	63	104	63	63	19	84	16	74	19	84	84	63	17	64	74	99	70

Table 1 (PAI IV) (CONTINUED)

length	(III)	213	321	171	153	570	375	1179		774	426	177	654	879	903	324	273	7788	258	159	167	441	826	459	510	2145	462	504	807
9,6	ident	99	45	46	46	43	45	44		41	45	7	14	36	30	42	30	37	27	40	32	38	22	25	25	35	28	36	56
%	sim	62	62	19	19	09	09	09		89	89	88	58	57	55	55	53	52	15	50	50	50	48	48	48	47	42	36	34
match gene name		activator I 37K chain - human	hypothetical protein [Escherichia coli]	lipA protein - Neisseria meningitidis	T03F6.f [Caenorhabditis elegans]	putative [Vibrio cholerae]	similar to E. coli ORF_0208 [Escherichia coli]	spore coat polysaccharide biosynthesis protein E [Methanococcus	[jannaschii]	putative [Vibrio cholerae]	Adhesin AIDA-I precursor. [Escherichia coli]	unknown protein [Insertion sequence 1866]	transposase [Escherichia coli]	unknown [Erysipelothrix rhusiopathiae]	adhesin B [Streptococcus sanguis]	IcrB gene product [Rhizobium sp.]	hypothetical protein 88 - phage phi-R73	filamentous hemagglutinin [Bordetella pertussis]	F53C11.6 [Caenorhabditis elegans]	pulJ [Klebsiella pneumoniae]	[Brugia malayi myosin heavy chain gene, complete cds.], gene product [Brugia malayi]	unknown protein [Plasmid Ti]	neuronal myosin heavy chain [Rattus rattus]	extragenic suppressor [Escherichia coli]	polysaccharide translocation-related protein - Escherichia coli	RfbC [Myxococcus xanthus]	RfbC [Myxococcus xanthus]	glycine-rich protein, atGRP (clone atGRP-1) (Arabidopsis thaliana, C24, Peptide Partial, 210 aa] [Arabidopsis thaliana]	silk fibroin heavy chain (C-terminal) [Bombyx mori=silkworms, Peptide Partial, 633 aa] [Bombyx mori]
match	accession	pir A45253 A452	gi 1778562	pir S32879 S328	gn1 PID e276217	gi 609629	gi 1657478	gi 1591717		gi 609632	gi 1736670	gi 1196968	gi 622948	gi 1335913	gi 153826	gi 152259	pir G42465 G424	gi 144048	gnl PID e264304	gi 149309	gi 156087	gi 1196964	gi 57633	gi 147899	pir(S27564)S275	gi 1235662	gi+1235662	bbs 117606	bbs 157676
Stop	(nt)	99	323	3	644	1312	4292	1179		1790	528	3	2178	2690	617	6685	6753	1530	4806	2761	388	687	4	199	145	4245	134	515	973
Start	(nt)	278	3	773	962	743	4666	1		2563	73	773	2831	3568	6181	7008	6481	9317	5063	3411	86	1127	186	657	654	2101	595	8101	1779
O.K.	ΩI	_	-	-	2	3	10	_		'n	-		5	9	-	6	4	S	∞	6	_	3	-	-	-	2	-	2	3
Contig	Q)	85	126	73	96	- 67	70	81		80	137	19	63	64	64	64	70	88	64	80	88	96	68	113	8=	58	87	85	85

SUBSTITUTE SHEET (RULE 26)

											_			-		·			,
Stop	(nt)	2120	995	2639	3627	3239	6899	846	198	1476	0061	2220	3259	3680	4513	4498	4866	7449	10806
Start	(nt)	1176	54	1875	3911	3009	6027	1289	1418	1886	2124	2795	3645	4078	4220	4950	4594	6805	9520
ORF	Q	_	2	4	4	9	12	2	2	3	4	5	7	8	6	-	12	15	16
Contig	<u> </u>	58	61	63	64	65	59	99	70	70	70	70	70	70	70	70	70	70	70

_		_		_		1	_							_	_		_	_	
Stop	(nt)	3998	1301	165	354	2575	2469	3387	3362	4260	5218	5614	3281	2285	9320	2	501	143	328
Start	(nt)	3247	720	_	719	2108	2831	3223	3541	3313	4340	0609	3487	1485	8373	358	677	3	611
ORF	QI	7	3		-	9	7	01	=	8	-	13	4	4	9			1	2
Contig	, GI	73	74	75	79	08	08	80	80	82	82	82	84	85	85	104	112	142	142

Table 3 (PAI V)

Putative coding regions of novel E. coli PAI V proteins similar to known proteins

	length	(III)	198	101	333	843	279	717	189	228	579	2388	459	1200	372	315	1200	906	573	381	327	1095	387	777	171	444	519	381
	0,0	ident	001	66	85	73	62	19	55	55	09	09	45	46	45	44	90	45	47	34	38	48	47	39	47	36	25	17
	0/0	sim	100	66	68	87	<u>~</u>	80	77	75	74	70	89	99	99	99	99	99	99	65	65	64	19	09	58	56	54	54
ung regions of novel E. coll PALV proteins similar to known proteins	match gene name		ORFB; putative transposase [Yersinia pestis]	ORFA; putative transposase [Yersinia pestis]	putative transposase for insertion sequence 1S3 [Escherichia coli]	unknown [Escherichia coli]	Orf104 homolog - Escherichia coli	ORF_0233 [Escherichia coli]	ORF_0396 [Escherichia coli]	Orf104 homolog - Escherichia coli	similar to E. coli ORF_o152 [Escherichia coli]	HecA [Erwinia chrysanthemi]	regulatory components of sensory transduction system [Synechocystis sp.]	Lactate oxidase [Aerococcus viridans]	ORF140 gene product [Rhizobium sp.]	F19C6.1 [Caenorhabditis elegans]	HecB [Erwinia chrysanthemi]	ORF_o289 [Escherichia coli]	HecB [Erwinia chrysanthemi]	similar to a B. subtilis gene (GB: BACHEMEHY_5) [Clostridium pasteurianum]	INSERTION ELEMENT 18911 11YPOTHETICAL 12.7 KD PROTEIN.	adhesin [Escherichia coli]	DNA-binding response regulator [Thermotoga maritima]	HecB [Erwinia chrysanthemi]	similar to E. coli ORF_0208 [Escherichia coli]	ORF B [Plasmid pEa34]	Herpesvirus saimiri ORF73 homolog [Kaposi's sarcoma- associated herpes-like virus]	unknown protein [Bacteriophage P4]
von 10 snorger gint	match	accession	gi 1655838	gi 1655837	gi 1657499	gi 1208992	pir S43483 S434	gi 1033129	gi 537112	pir S43483 S434	gi 1552816	gi 1772623	gi 1001717	gi 849022	gi 581535	gi 642184	gi 1772622	gi 1033127	gi 1772622	gi 431950	sp P39213 Y191_	gi 290430	gi 1575577	gi 1772622	gi 1657478	gi 155032	gi 1633572	gi 1196729
ŏ I	Stop	(ut)	3686	2907	7595	4304	3263	2332	189	1672	4880	15359	1570	1373	6498	2951	12974	1450	124	3700	4239	557	1841	11937	1700	3391	5982	6088
7	Start	(nt)	2826	1837	7927	3462	3541	9191	-	1899	4302	12972	1112	2572	6989	3265	11775	545	969	3320	4565	1651	1455	11161	930	3834	0059	8429
100	CRI.	≘	3	2	6	9	9	3	-	3	6	13	3		8	2	12	-	-	3	7	2	4	=	-	9	ς.	7
	Contrig	≘	14	7	~	20	9	20	6	2	2	=	~	3	3	9	4	20	22	3	5	22	~	-	=	~	۳ ا	14

Table 3 (PAI V) (CONTINUED)

Contig	ORF	Start	Stop	match	match gene name	%	9%	length
QI OI	Ω	(ut)	ut)	accession		sim	ident	(nt)
14	7	15191	21793	gi 144048	filamentous hemagglutinin [Bordetella pertussis]	25	37	6603
7	16	21427	22671	bbs 117613	glycine-rich protein, atGRP (clone atGRP-4) [Arabidopsis thaliana, C24, Peptide Partial, 112 aa] [Arabidopsis thaliana]	52	39	1245
8	2	1004	381	gi 48518	HydC [Wolinella succinogenes]	51	34	624
5	S	1941	3311	gi 143331	alkaline phosphatase regulatory protein [Bacillus subtilis]	51	21	1371
14	-	3968	5431	gi 1033120	ORF_0469 [Escherichia coli]	51	29	1464
32	_	481	227	gi 1673731	(AE000010) Mycoplasma pneumoniae, fructose-permease IIBC	95	41	255
					component; similar to Swiss-Prot Accession Number P20966, from			
					E. coli [Mycoplasma pneumoniae]			
20	17	7039	7284	gi 1123054	coded for by C. elegans cDNA CEESN53F; similar to protein kinases	48	28	246
					including CDC15 in yeast [Caenorhabditis elegans]			

Table 4 (PAI V)

Putative coding regions of novel E. coli PAI V proteins not similar to known proteins	Stop	(nt)	1165	2640	6425	6833	455	4	1749	2114	2331	2626	7699	8507	9624	10846	20921	826	1365	909	3157	3396	3492	3828	7950	3	4
AI V proteins not sin	Start	(nt)	608	3275	9009	6423	3	501	2168	2527	2648	3099	7112	7800	9040	98501	21721	575	850	406	2330	3139	3812	4373	7282	356	492
is of novel E. coli PA	ORF	ID		2	9	L	l		1	2	3	4	5	9	8	10	15	1	2	2	4	\$	7	8	18	1	
utative coding regior	Contig	QI	-	3	ξ	3	4	5	9	9	9	9	14	14	14	14	14	15	15	20	20	20	20	20	20	22	24

140	25.0	length	915	747	249	756	384		216		351		846		603	348	576		261	621	363	747	297		267		684	696		765		3201
3011	HSF n	length	790	518	182	69	216		164		285		145		53	310	431		186	621	363	747	225		162		225	553		595		2667
	percent	ident	66	66	66	100	16		93		82		98		96	86	68		100	66	66	100	86		95		68	36		94		88
Putative coding regions of novel E. coll PAI IV containing known E. coll sequences	match gene name		E. coli papABCDEFGHIJK genes for F13 P-pili proteins	E. coli papC gene involved in formation of pap pili	E. coli papC gene involved in formation of pap pili	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	Escherichia coli from bases 263572 to 274477 (section 23 of 400) of the	complete genome	Escherichia coli 0111:H- insertion sequence 1S1203 12.7 kDa protein and	putative transposase genes, complete cds	Escherichia coli 0111:H- insertion sequence IS1203 12.7 kDa protein and	putative transposase genes, complete cds	Escherichia coli 0111:H- insertion sequence IS1203 12.7 kDa protein and	putative transposase genes, complete cds	E. coli hns gene for DNA-binding protein II-NS (5'-region)	E. coli hns gene for DNA-binding protein H-NS (5'-region)	Escherichia coli from bases 263572 to 274477 (section 23 of 400) of the	complete genome	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	Eschericia coli papJ gene for PapJ protein	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	E. coli apt gene encoding adenine phosphoribosyl-transferase (APRT).	completed cds	E. coli apt gene encoding adenine phosphoribosyl-transferase (APRT), complete	cds	Escherichia coli 4787 o 115:v165:f165 fimbrial regulatory f1652l, f1652B and f1652 A genes, complete cds	Eccharichia coli acov arth coht coht vist 6 vist 3 vist 3 oppor	from bases 2060089 to 2072765 (section 181 of 400) of the complete genome	Escherichia coli, asnV, erfK, cobT, cobS, cobU, yi52_6, yi22_3, yi21_3 genes	from bases 2060089 to 2072765 (section 181 of 400) of the complete genome	E. coli genomic DNA, Kohara clone #348 (44 5-44 9 min.)
e coding regions of	match	accession	emb X61239 ECPA	emb Y00529 ECPA	emb Y00529 ECPA	emb X61239 ECPA	gb AE000133		gb U06468		gb U06468		gb U06468		emb Y00976 ECHN	emb Y00976 ECHN	gb AE000133		emb X61239 ECPA	emb X51704 ECPA	emb X61239 ECPA	emb X61239 ECPA	gh M14040		gb M14040		gb U09857	~F A E000201	17700070108	gb AE000291		4bi D90838 D908
Putativ	Stop	(nt)	54	805	1494	1220	10480		129		2868		3216		4337	5266	5781		1315	1848	2594	2466	7		117		149	11763	6	11045		15222
	Start	(nt)	896	1551	1742	1975	10001		988		3218		4064		4939	4919	5206		5751	2468	2232	3212	300		383		832	00201	66/01	60811		12022
	ORF	Œ		2	3	4	13		_		5		8		6	91	=		-	2	3	4	-		2		_	;	-	18		61
	Contig	Ω	59	89	59	19	63		65		65		99		65	99	65		89		89	89	69		69		70	î	Q 	70		70

Table 5 (PAI IV) (CONTINUED)

	ORF nt	length	1521	066	159	1050	339	1233	1623	708	495	1014	444	969	324	1092	339	654	294	456	537
	HSP nt	length	1488	82	63	1024	261	392	1133	703	385	464	283	693	315	1084	322	654	210	347	388
	percent	ident	96	96	96	66	96	95	06	93	06	92	-8	66	66	66	97	66	93	95	96
Table 5 (PALIV) (CONTINUED)	match gene name		Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli K-12 genome; approximately 65 to 68 minutes	Escherichia coli, glcB, glcG, glcD genes from bases 3112500 to 3126189 (section 270 of 400) of the complete genome	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	Escherichia coli 09:H10:K99 heat resistant agglutinin 1 gene, complete cds	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemoly sins C, A, B and D	Eschrichia coli from bases 2883166 to 2897277 (section 250 of 400) of the complete genome	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysms C, A, B and D	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C,A, B and D	Escherichia coli polysialic acid gene cluster region 3, promoter region	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome
	match	accession	gb AE000292	gb AE000292	gb AE000292	gb M10133	gb M10133	gb AE000379	gb U28377	gb AE000380	gb AE000498	gb AE000498	gb U07174	10133	gb/AE000360/	10133	gb M10133	0133		1625000	gb AE000379
	Stop	(m)	16836	11771	9//91	1901	1285	3205	4555	6128	1059	1566	2743	3	59	1529		2923		210	710
	Start		15316	16722	17426	12	947	4437	2/19	6835	1553	2579	3297	869	382	2620	2925	3576	376	638	1246
	ORF	3 6	07	21	22	_	2	9	«	6	2	3	4		_	2	3	4	-	7	~
ļ	Contig	<u> </u>	0/	70	70	72	72	73	73	7.3	75	75	75	76	78	79	79	79	8	08	80

Table 5 (PAI IV) (CONTINUED)

																,	,	
ORF nt length	615	267	609	321	645	456	396	417	495	309	258	528	438	297	426	168	195	303
HSP nt length	397	551	554	62	143	456	396	283	453	207	223	398	351	677	426	891	537	274
percent ident	64	87	88	06	68	64	86	96	96	66	001	93	95	100	86	66	95	94
match gene name	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	E. coli K5 antigen gene cluster region 1 kpsE, kpsD, kpsU, kpsC and kpsS genes	E. coli K5 antigen gene cluster region 1 kpsE, kpsD, kpsU, kpsC and kpsS genes	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072/08 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, ybaE, cof, mdlA, mdlB, glnK, amtB, tesB, ffs genes from bases 464774 to 475868 (section 41 of 400) of the complete genome	Escherichia coli, ybaE, cof, mdlA, mdlB, glnK, amtB, tesB, ffs genes from bases 464774 to 473868 (section 41 of 400) of the complete genome	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	Escherichia coli glutamine permease glnHPQ operon	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome
match accession	gb AE000379	emb X74567 ECKP	emb X74567 ECKP	gb AE000292	gb AE000151	gb AE000151	gb AE000379	gb M10133	emb X14180 ECGL	gb AE000379	gb AE000379	gb AE000379	gb AE000379					
Stop (nt)	1182	567	1157	1180	1519	2139	2605	3047	3337	311	433	2	3	72	586	476	1092	1396
Start (nt)	96/1		549	1500	2163	2594	3000	3463	3831	3	176	529	440	368	191	643	532	1094
ORF ID	4	-	2	3	7	5	9	7	6		2	_	_	_	_	2	3	77
Contig ID	80	82	82	82	82	82	82	82	82	83	83	86	93	94	66	66	66	66

Table 5 (PAI IV) (CONTINUED)

1D	Contie	ORF	F	ton	match	match owner name	nercent	HCD mt	ODE
2 1 527 3 emb Y00529 ECPA 5 1 377 3 gb AE000480 7 1 2 397 gb MI0133 8 1 148 2 emb X56175 ECSE 9 6 gb MI0133 9 1 148 2 emb X56175 ECSE 1 32 40 gb M63939 1 501 325 gb AE000459 1 361 2 250 gb AE000379 1 3 302 gb AE000333 1 2 227 382 gb AE000233 1 310 79 gb M30198 1 1 510 79 gb M30198 1 1 510 79 gb M30198 1 1 1 258 gb AE000115 8 2 192 350 gb AE000115 8 1 103 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL				j (ji	accession		ident	lenoth	length
2 762 373 emb Y00529 ECPA 1 377 3 gb AE000480 2 406 966 gb MI0133 2 312 40 gb M63939 1 501 325 gb AE000459 1 361 2 250 gb M16202 1 361 2 229 gb AE000379 1 337 2 cmb X60200 ECTN 2 227 382 gb AE000115 1 510 79 gb M30198	102	1 5.	╀			E. coli papC gene involved in formation of pap pili	100	427	525
1 377 3 gb AE000480 1 2 397 gb MI0133 2 406 966 gb MI0133 1 148 2 emb X56175 ECSE 1 301 325 gb AE000459 1 361 2 250 gb AE000379 1 361 2 229 gb AE000233 1 317 2 229 gb AE000233 1 317 2 cmb X60200 ECTN 2 743 270 gb M30198 3 7 6 gb M30198 1 510 79 gb M30198 1 510 79 gb M30198 1 1 258 gb AE000115 1 103 327 emb X02143 ECPL 1 103 270 emb X02143 ECPL 1 103 327 emb X02143 ECPL 1 103 2140 emb X02143 ECPL 1 103 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL 1 103 120141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 100141 1 1001	102					E. coli papC gene involved in formation of pap pili	66	333	390
1 2 397 gb M10133 2 406 966 gb M10133 1 148 2 emb X56175 ECSE 2 312 40 gb M63939 1 501 325 gb AE000459 1 361 2 250 gb M16202 1 361 2 gb AE000233 1 2 227 382 gb AE000233 1 337 2 cmb X60200 ECTN 1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL 3 2	501	1	7.7	ю	gb AE000480	Escherichia coli from bases 4277211 to 4288813 (section 370 of 400) of the complete genome	001	343	375
2 406 966 gb M10133 1 148 2 emb X56175 ECSE 2 312 40 gb M63939 1 301 325 gb AE000459 1 3 302 gb AE000379 1 3 302 gb AE000379 1 3 302 gb AE000233 2 227 382 gb AE000233 2 227 382 gb AE000115 2 743 270 gb M30198 2 743 270 gb M30198 2 743 270 gb M30198 2 192 350 gb AE000115	107					E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	390	396
1 148 2 emb X56175 ECSE 2 312 40 gb M63939 1 301 325 gb AE000459 1 2 250 gb M16202 1 361 2 gb AE000379 1 337 2 cmb X60200 ECTN 1 310 79 gb M30198 1 1 258 gb AE000115 2 743 270 gb M30198 3 1 1 258 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL	107					E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	66	549	195
2 312 40 gb M63939 1 501 325 gb AE000459 1 3 302 gb AE000506 1 2 250 gb M16202 1 361 2 gb AE000379 2 227 382 gb AE000233 1 337 2 cmb X60200 ECTN 2 743 270 gb M30198 2 743 270 gb M30198 2 743 270 gb M30198 2 192 350 gb AE000115 2 152 409 cmb X02143 ECPL	110	71 1	81		emb X56175 ECSE	Escherichia coli secD and secF genes for membrane proteins involved in protein export	66	143	147
1 501 325 gb AE000459 1 3 302 gb AE000306 1 2 250 gb M16202 1 2 229 gb AE000233 2 227 382 gb AE000233 1 337 2 cmb X60200 ECTN 2 743 270 gb M30198 2 2 743 270 gb AE000115 2 192 350 gb AE000115 2 192 350 gb AE000115 2 152 409 emb X02143 ECPL 2 15	_	_			gb M63939	E. coli tRNA-guanine-transglycosylase (tgt) gene, complete cds	100	125	273
1 3 302 gb AE000506 1 2 250 gb M16202 1 361 2 gb AE000379 1 2 229 gb AE000233 1 337 2 cmb X60200 ECTN 1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 327 emb X02143 ECPL 1 103 327 emb X02143 ECPL	115	1 5(gb AE000459	Escherichia coli from bases 4013123 to 4024654 (section 349 of 400) of the complete genome	86	177	177
1 2 250 gb M16202 1 361 2 gb AE000379 1 2 229 gb AE000233 1 337 2 cmb X60200 ECTN 1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL	117	_	3 31		gb AE000506	Escherichia coli from bases 4584059 to 4594314 (section 396 of 400) of the complete genome	100	263	300
1 361	121	_			gb M16202	E. coli papH gene encoding a pilin-like protein	86	148	249
1 2 229 gb AE000233 227 382 gb. AE000233 227 382 gb. AE000233 227 382 gb AE0001ECTN 2 743 270 gb M30198 2 743 270 gb M30198 2 192 350 gb AE000115 2 192 350 gb AE000115 2 152 409 emb X02143 ECPL 2 2 2 2 2 2 2 2 2	123	1 36				Escherichia coli from bases 3102169 to 3112339 (section 269 of 400) of the complete genome	66	113	360
2 227 382 gb. AE000233 1 337 2 cmb X60200 ECTN 1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 cmb X02143 ECPL 2 152 409 cmb X02143 ECPL	127					Escherichia coli, racC, ydaD, sieB, trkG genes from bases 1415432 to 1425731 (section 123 of 400) of the complete genome	100	200	228
1 337 2 cmb X60200 ECTN 1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 cmb X02143 ECPL 2 152 409 cmb X02143 ECPL						Escherichia coli, racC, ydaD, sieB, trkG genes from bases 1415432 to 1425731 (section 123 of 400) of the complete genome	97	=3	156
1 510 79 gb M30198 2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL	130	. 33) ECTN	$E.\ coli$ transposon Tn 1000 (gamma delta) tnpR and tnpA genes for resolvase and transposase	66	335	336
2 743 270 gb M30198 1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL	131	1 51				E. coli recQ gene complete cds, and pldA gene, 3' end	86	304	432
1 1 258 gb AE000115 2 192 350 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL						E. coli recQ gene complete cds, and pldA gene, 3' end	66	314	474
2 192 350 gb AE000115 1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL	133	_	1 25			Escherichia coli, yabF, kefC, folA, apaH, apaG, ksgA, pdxA, surA, imp genes from bases 47163 to 57264 (section 5 of 400) of the complete genome	86	237	258
1 103 327 emb X02143 ECPL 2 152 409 emb X02143 ECPL						Escherichia coli, yabF, kefC, folA, apaH, apaG, ksgA, pdxA, surA, imp genes from bases 47163 to 57264 (section 5 of 400) of the complete genome	66	115	159
2 152 409 emb X02143 ECPL					02143 ECPL	Escherichia coli K·12 pldA gene for DR-phospholipase A	62	178	225
	\dashv	-	\dashv		32143 ECPL	Escherichia coli K-12 pldA gene for DR-phospholipase A	86	157	258

Table 5 (PAI IV) (CONTINUED)

Contig	ORF	Start	Stop	match	match gene name	percent	percent HSP nt ORF nt	ORF nt
Ω	ID OI	(nt)	(II)	accession		ident	length	length
136	-	122	532	gb AE000459	Escherichia coli from bases 4013123 to 4024654 (section 349 of 400) of the	97	237	411
					complete genome			
140	-	576	244	gb AE000291	Escherichia coli, asnV, erfK, cobT, cobS, cobU, yi52_6, yi22_3, yi21_3	68	329	333
					genes from bases 2060089 to 2072765 (section 181 of 400) of the complete			
					genome			
141	-	445	2	gb AE000291	Escherichia coli, asnV, erfK, cobT. cobS, cobU, yi52_6, yi22_3, yi21_3	77	432	444
					genes from bases 2060089 to 2072765 (section 181 of 400) of the complete			
					genome			

	700	L	2000	dotto.	more and dotom	nercent	Dercent HSP nt	OREnt
Config	ב	_	done	match	יוופורון פרוול וופוור		1 1	1 2 2
OI OI	Ω	(ut)	(ut)	accession		ident	length	length
136	-	122	532	gb AE000459	Escherichia coli from bases 4013123 to 4024654 (section 349 of 400) of the	62	237	411
					complete genome			
071	-	576	244	gb AE000291	Escherichia coli, asnV, erfK, cobT, cobS, cobU, yi52_6, yi22_3, yi21_3	68	329	333
					genes from bases 2060089 to 2072765 (section 181 of 400) of the complete			
					genome			
141	_	445	2	gb AE000291	Escherichia coli, asnV, erfK, cobT, cobS, cobU, yi52_6, yi22_3, yi21_3	77	432	444
					genes from bases 2060089 to 2072765 (section 181 of 400) of the complete			
					genome			

Table 6 (PAI V)
Putative coding regions of novel E. coli PAI V containing known E. coli sequences

-	_			_	_																			•	_		-
	ORF II	length	1296	492	453	306	177	627		450	1020		741	363	474	435	495	648	1029	267	378	1332	684	375	354	516	237
	HSP nt	length	129	274	378	267	112	577		448	244		741	363	459	435	462	452	1029	267	354	885	225	320	283	240	168
	percent	ident	16	92	08	06	96	16		92	92		100	66	86	66	- 64	66	100	100	66	66	92	94	86	86	100
ing regions of novel E. coli PAI V containing known E. coli sequences	match gene name		Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	E. coli insertion sequence 1S3	E. coli DNA for insertion sequence IS3	E. coli DNA for insertion sequence 1S3	Escherichia coli RhsD genetic element; core protein (rhsD) gene, complete cds; complete ORF-D2; complete ORF-D3	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the	complete genome	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the complete genome	Escherichia coli from bases 4493507 to 4503769 (section 388 of 400) of the	complete genome	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	Eschericia coli papJ gene for PapJ protein	E. coli transposon Tn1000 (gamma delta) tnpR and tnpA genes for resolvase and transposase	E. coli prsEFG genes for F13 pili tip proteins	E. coli (196) hlyC, hlyA, hlyB and hlyD genes coding for chromosomal hemolysins C, A, B and D	Escherichia coli genomic sequence of minutes 9 to 12	E. coli insertion element 5 (1S5) DNA	Escherichia coli transposon 185, transposase (185B) gene, complete cds	E. coli papABCDEFGHIJK genes for F13 P-pili proteins	Escherichia coli 4787 o115:v165:f165 fimbrial regulatory f16521, f1652B and f1652 A genes, complete cds	Escherichia coli 09:H10:K99 heat resistant agglutinin 1 gene, complete cds	Escherichia coli 09:H10:K99 heat resistant agglutinin 1 gene, complete cds	E. coli papC gene involved in formation of pap pili	$E.\ coli$ papC gene involved in formation of pap pili
e coding regions of r	match	accession	gb AE000292	emb X02311 ECIS	emb Z11606 ECIS	emb Z11606 ECIS	gb L19084	gb AE000498		gb AE000498	gb AE000498		emb X61239 ECPA	emb X61239 ECPA	emb X51704 ECPA	emb X60200 ECTN	emb X61238 ECPR	gb M10133	gb U82598	emb X13668 ECIS	gb U95365	emb X61239 ECPA	gb U09857	gb U07174	gb U07174	emb Y00529 ECPA	emb Y00529 ECPA
Putative cod	Stop	(nt)	4855	7723	8319	8157	8663	815		1372	1324		743	615	1214	→	2426	1550	1531	1860	2235	1424	51501	375	919	4	174
	Start	(nt)	0519	8214	7867	8462	8487	1441		923	2343		3	677	741	438	1932	903	2559	1594	1858	93	9832	_	263	282	410
	ORF	OI	4	01	E	12	13	2		3	7			2	3	_	Ŀ	_	_	2	3	_	6	-	2	_	2
	Contig	ΩI	3	~	~	3	e	4		4	7		7	7	7	∞	02	=	12	12	12	13	7-	16	91	17	17

Table 6 (PAI V) (CONTINUED)

ORF nt	length	369	573	498	435	408	495	543	507	1230	1335	429	366	879	885	234	1455	366	567	273	306	219
HSP nt	length	347	468	453	235	329	239	406	136	1205	1308	363	201	879	885	225	1454	164	459	252	278	150
percent	ident	66	96	96	68	93	95	87	87	86	86	001	86	86	86	66	65	100	66	001	86	96
match gene name		Escherichia coli from bases 3550279 to 3561054 (section 308 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli, yeeA, sbmC, yeeC, sbcB, yeeD, yeeE genes from bases 2072708 to 2083664 (section 182 of 400) of the complete genome	Escherichia coli Iysine decarboxylase (cadB, and cadC, complete cds, and cadA, 5' end) genes	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes	E. coli cadA gene, 5' cds and cadB and cadC genes, complete cds	E. coli major pilu subunit genes genes papl, papB, papA and papH 5'-region	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes	E. coli ORF112, DIPZ and ORF191 genes	E. coli ORF112, DIPZ and ORF191 genes	E. coli transposon Tn1000 (gamma delta) tnpR and tnpA genes for resolvase and transposase	E. coli transposon Tn1000 (gamma delta) tnpR and tnpA genes for resolvase and transposase	E. coli papABCDEFGHIIK genes for F13 P-pili proteins	E. coli ORF112, DIPZ and ORF191 genes	E. coli ORF112. DIPZ and ORF191 genes
match	accession	gb AE000418	gb AE000292	gb M67452	gb U14003	gb/M76411	emb X03391 ECPA	gb U14003		emb X77707 ECCY	emb X77707 ECCY	emb X60200 ECTN	emb X60200 ECTN	emb X61239 ECPA	emb X77707 ECCY	emb X77707 ECCV						
Stop	(nt)	369	4829	5371	5679	6139	5822	0659	7075	9915	11938	12368	4	879	91	9811	2677	1/1	295	436	4	213
Start	(nt)	_	5401	4874	5245	5732	6316	6048	6959	9898	10604	11940	369	-	006	953	1223	536	1128	208	309	431
ORF	Ω	_	10	=	12	13	41	15	91	61	20	21	-	-	2	3	4	_	č	_	_	,
Contig	10	61	20	20	20	20	20	20	20	20	20	20	21	23	23	23	23	25	25	27	28	36

Table 6 (PAI V) (CONTINUED)

			Г		Ī	Т			Ŧ	Т	-	Т		_		Γ-		_		_	Т	,		1
ORF nt	length	366	537	399	462	===		477	276	171		360		171		117		306		240	345	255		675
HSP nt	length	567	513	399	363	316		266	187	162		144		167		=		284		131	315	Ξ		332
percent	ident	86	66	86	66	76		86	86	86		86		86		66		100		100	66	94		86
match gene name		E. coli amidophosphoribosyltransferase (purF) gene, complete cds	E. coli terminator sequence of RNA G operon gene	E. coli pyruvate kinase type II (pykA) gene, complete cds	Escherichia coli gutM gene and gutR gene for activator and repressor proteins	Escherichia coli DNA recombinase (recG) gene, complete cds, spoU gene, 3'	end, and gltS gene, 3' end	Escherichia coli DNA recombinase (recG) gene, complete cds, spoU gene, 3' end, and gltS gene, 3'end	E. coli ORF112, DIPZ and ORF191 genes	Escherichia coli from bases 4413548 to 4424699 (section 381 of 400) of the	complete genome	Escherichia coli from bases 4413548 to 4424699 (section 381 of 400) of the	complete genome	Escherichia coli cloning vector Pk184, complete sequence, kanamycin	phosphotransferase (kan) and (lacZalpha) genes, complete cds	Escherichia coli, glyA, hmpA, glnB, yfhA, yfhG genes from bases 2677406	to 2687636 (section 231 of 400) of the complete genome	E. coli transposon Tn1000 (gamma delta) tnpR and tnpA genes for resolvase	and transposase	E. coli htrA gene, complete cds	E. coli htrA gene, complete eds	Escherichia coli from bases 3125914 to 3136425 (section 271 of 400) of the	complete genome	Escherichia coli, modA, modB, modC, ybhA, ybhE, ybhD genes from bases 794199 to 805132 (section 69 of 400) of the complete genome
match	accession	gb M26893	emb X56780 ECRR	gb M63703	emb X13463 ECGU	gb M64367		gb M64367	emb X77707 ECCY	gb AE000491		gb AE000491		gb U00800		gb AE000341		emb X60200 ECTN		gb M36536	gb M36536	gb AE000381		gb AE000179
Stop	(nt)	4	170	400	2	3		165	277	171		464		172		4		307		41	214	263		675
Start	(III)	399	706	2	463	413		115	2	_		501		7		414		2		280	558	6		-
ORF		-	-	ı		-		2	_	_		2		_		_		_		1	2			
Contig	QI	30	31	37	38	42		42	46	48		48		46		50		52		53	53	54		55

PCT/US97/21347

5

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications recited herein are hereby incorporated by reference.

WO 98/22575 PCT/US97/21347

-82-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANTS: Human Genome Sciences, Inc. 9410 Key West Avenue Rockville, Maryland 20850 United States of America

> University of Wisconsin 1300 University Avenue Madison, Wisconsin 53706 United States of America

APPLICANTS/INVENTORS: Dillon, Patrick J. Choi, Gil H. Welch, Rodney A.

- (ii) TITLE OF INVENTION: Nucleotide Sequence of Escherichia coli Pathogenicity Islands
- (iii) NUMBER OF SEQUENCES: 142
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Sterne, Kessler, Goldstein & Fox P.L.L.C.
 - (B) STREET: 1100 New York Ave., N.W., Suite 600
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: USA
 - (F) ZIP: 20005-3934
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage

 - (B) COMPUTER: HP Vectra 486/33(C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: To be assigned
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/031,626 AND US 60/061,953
 - (B) FILING DATE: 22-NOV-1996 AND 14-OCT-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Steffe, Eric K.

 - (B) REGISTRATION NUMBER: 36,688
 (C) REFERENCE/DOCKET NUMBER: 1488.074PC02/EKS/CBM
 - (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 371-2600
 - (B) TELEFAX: (202) 371-2540
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1178 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

-83-

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: CNTANATTAG GCCTGCTNAA TGTATTTATA TCTAAAAAAA TTCGCATCCA AAAGGAATCC 60 AATCTGTACT GTTTTTCTT GTGCTGACAT CTTCTTTTCC CTGGCTGGTA TGGCAAGTGA 120 CGGAGACAAG AGAAACGTTT TAAGCTCAGT TATCTCCGCC ATCACTTTCC ACGAATGACA 180 AGTAATTTTG CCTATTTTAA AACCATGCAA AAGGCAGGGT AAAAGGAGAA AATTCGATCG 240 AATCGATCGA CAAAATCGAT CATACATGAT GAAGATTTCT TATCGAATCC ATAAAAATAG 300 TGACAGCTAA CCGGCGTTGC AGGAACAGTC AGAAATGGGC GTTTGGGAAA GAGCCATAGC 360 ATACGTCGTC GCTGACATAG AGGAACTGTG CTTTGTTGAT AAGATCCTTT ATACGGCAAC 420 CAATCCACTG GACAAAAGAT GAACTACGTA ATCACCGGGT TCTCACTGAC GAAATACAGA 480 AGTTAATGAC ACAACTGTGC CATGCACCTT GTACAACAGC GGTGGAAAGC TCTCAGAACA 540 ATGGAATTGC AGAAAGGTGT TAAAACGATG AAAGCCTTCA TACCCAAATC GAATGTAAGA 600 ACGGCAGTAA AGACTGAATT GCGTAACCTT GCAGTAGCTC GAGTATTACA CTGCATAGTG 660 TGCAGGGTTA TCTCCCATCG AGAAAATATC GGCGCCAGCG AATAACGTCA CCTTAGATGT 720 AGCAGTTGCC AAATAGTGAC TCAAGGGCGG GCTTACCGCA TACACTGACA CTTAGCGGAT 780 CGACAGAATA TTATTAGCAG ATCATCACTG AACGCTACGT AATTATCGTA ATAAAGGCTT 840 900 TTTCTGGCTA CCAGGAAGAC CTGACATGGC TCTGCTCTGG AACCAGGCCG CAGGAAGCAT CAATCTGGAG TTTATCAGCT ACTGGAATTC CGGTGTATTG GCAGCCCCTG ATAATCACCT 960 GACCCACGAA GAGCGCTCTG CTTTGCAGAA ACTCTGGGGC GGTTTGGAGA CAGGAGATGT 1020 AACGATTATA GGACGTTCTG ATGAAGTCCA TGATTTTACC TCCGCCTTAA TTAACTGTTT 1080 TCTTTCTGAA GAAGAAATTG TCTGGTGGCA ATCAGGTGGC ATTTTCCCGG ATCCTTGGCC 1140 CGCTAATATA TCCCGGCTGA ACTGACGATT AACGCGAT 1178

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 414 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATCCTATTCA	TTTTGCCATG	ACGGGCGAAC	TCCAGATAAA	GGTTTTGAAA	GTAATGAGAA	60
ATTATTAATT	CATCCATGTT	ACTGGCTTGG	TTTGAATCTA	AATCGTAATG	CACTTGCTCC	120 -
AGAGGAAGCA	GAGGAGATAA	ATGACGAATA	TGATATTAAT	ATTATTTCAG	ATAATTCAGC	180

CATTAGAAAT	AAAACAATAG	GTCAAATAAC	TACTCATCTA	GATCAGATAC	CGATAGGAAA	240
TGAAGGTGCC	ACTGAATTTG	AACAATGGTG	TTTAGACGCA	CTAAGAATAG	TATTTGCATC	300
CCACCTAACA	GACATCAAGT	CCCATCCAAA	TGGTAACGCA	GTTCAGAGAC	GAGATATTAT	360
AGGCACCAAT	GGTGGCAAAT	CTGAWTTTTG	GRAACGAGTA	TTGGAGGACT	ATAA	414
(2) INFORM	ATION FOR SE	EQ ID NO: 3:	:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8752 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TTGGGATCTG	GTACANTCCA	CCCAGCGGCA	TTATCCNGAA	GGCAATATTT	TTAAGGATTA	60
TTCGTCCACA	AAATCAGTAC	TGGAACCAGG	CTCAAAAAAG	GCTTTAACGT	GACCTGCTNC	120
CATCTACAGT	AGATGTACAA	CCTGTTAAGT	TAATTGAAAA	TGGTGTTAAT	CCGGTTGTTT	180
CTCCAGGGGT	AGCAAGGGCC	TTATTCGATA	CAGTGGGTAA	TGTTACTGTA	AAATTACCAT	240
CATTCCCTGT	GGTCACATTG	CAGGTCTGAG	CTACAACTTT	GCCTGTAAAC	GTAATTGTTC	300
CGTCATAGGC	CATAGCTGAA	CCAACAAACA	CAGCAGAAAC	AAATGTAGCC	AATGCTATAA	360
CTTTTATTTT	CATAAAATGA	ATTCCTGTTT	AATTCCGGTA	TTGATCATTT	GTTCAGCAAT	420
CATCCCCAAC	AAAACAATCA	TTTTCAAAAT	GTTTTTACCG	ATCGATAACC	AGCACATGAT	480
AGATTGCACC	TATCATGATT	GCTAAAACGA	TCGGGAAAAG	CGATCAAAAA	CCATATTTAT	540
TGTGTTGGTA	ATGACAAAAG	ATATGCTTTA	CCCTGAAATG	AGCGACCTAT	TCATGAAAAT	600
ATGTAGGTCT	GTATTTGATT	ACTATCATTG	CTATATTTCC	ACTATCCAAT	TTATATTTCA	660
TGATTAAAAT	ATACCTTTTT	ACACTATTAT	TTATTTGTTG	CAGCTTGCCT	GGCTTTATCT	720
TATTCCGACT	ATTTTATGGT	AGATACAGAA	TACAATTAAT	TAAACTTATT	TAAAGATTTT	780
ATAAATACCA	TATTGGAGTT	GACCGATAGA	TACCTACTAA	CAAGAGCAAT	CACCACCACC	840
CCATGAGGTG	TTTAGGAATA	CAATCAATAA	ACAACATCCA	TGCCCGGCGA	CGTACATACC	900
TGTTTGCTAT	GATATCTGTT	ACGCTACGCT	TGCTAATTTA	CTGAAACTCA	GCATCTGTCG	960
ACGGAGATTC	GTCCGGGCCC	TGATACAACA	AGGGCAAGAA	AACCACCCGA	AATACAGATA	1020
TTCTTATAAA	AATGGATCAT	ATTTCCATGT	GCAAGTTCAG	CTGGCATCGT	CCAGAATGCG	1080
TGTCCAAGAA	ATGAAGCAAA	CACGGTATAC	AGGCACAGAA	TAATGCTCAC	TGGCCGGGTG	1140
AAAAAGCCRA	AAACAATCAT	TAATGCTCCA	ACGATTTCGA	CAAGGACCAC	TATTGCTGCA	1200
GTAATCGCCG	GAAATATAAG	CCCAAGAGAG	GCCATTTTAT	CGATAGTGCC	AGTGAATGAT	1260 -
AGCAGCTTGG	GAACGCCGGA	TATCATATAA	AGGCATGCCA	GCATCAGACG	GGCAAGGAGC	1320

AACAATGCCG	ACGTGTAATT	TCCCATATTA	AAATACCTGA	TTTTATCCAC	TATCAATGCT	1380
CAGTCTCCTT	GTTTCTGATA	AAGCCCTGAG	CCAAATCCTT	AAGTGTACGA	GCACCACTCA	1440
GTAACATTGC	CGTCCTCAGC	TCCGTCTTCA	GGTGCTCAAT	GACACTGGCA	ACGCCCCCGA	1500
CACCACCTGC	TGCGATGCCA	TAAAGAACAG	GACGTCCGAC	CGCAACAGCC	GTTGCCCCAA	1560
GAGAGATAGC	CCTTACAACA	TCAACCCCCC	TGCGAATACC	GCTGTCAAAA	ATGACCGGAA	1620
CTTTGTGCCC	GACTCTTGCA	GCAACTTCCT	GCAACTGGCT	GATGGCAGAA	GGAACACCAT	1680
CAATCTGGCG	ACCACCATGA	TTAGACACCT	GGATGGCATC	TGCTCCTGCA	TCAATGGCGA	1740
CCACTGCATC	CTCACCTCTG	AGGATGCCCT	TGACAATGAC	TGGCAGCCCG	GTGATTTTTT	1800
TTACAAACTC	AATATCAGCC	GGGGTCAGCT	CAACTTTTTG	GTTAAAAAAA	TCACCTTTGC	1860
CACCGTAACG	GGGGTCATGA	TTACCGAACG	TCGCTCCTGC	AGGGAAAGGC	GAGCTCATGC	1920
TGAGAAAAGC	ATCACTTGTC	CCGGGACCAA	GCGCATCCGC	TGTGATAATA	ATGGCTGAAT	1980
AGCCTGCCGC	TTTTGCACGC	TCCAGTAAAC	TTCGGGTCAC	ACCAGCATCC	GCGTTAAAAT	2040
ACAGCTGGAA	CCATTTAGGT	CCTTTACTGG	CTTTTGCAAT	ATCCTCCAGA	GAGCGGTTGG	2100
ATGCCCCTGA	TGATTCATAA	AGTGCCCCGG	CCTTTTCTGC	ACCCGCTGCA	GCAATCACCT	2160
CCCCTTCCGG	ATGGACGAAC	ATATGCGCGC	CCATAGGTGC	TATCAGCAGG	GGATGTTCCA	2220
GATGATGGCC	CAAAAGGTCA	GTCCGGATAT	CAATGCTGTG	GGCAGCAACT	CCACTGAGTC	2280
GGTGAGGTAA	A CAAAGGATAA	TCACTGAANT	GCCTGCGGTT	CTCATGATAC	GTCCACTCAT	2340
CTCCAGCACC	ATGAGCAATA	TATGCATACG	CAGCTTCCGT	CATCACATCT	TTTGCTGAAG	2400
TCTYCAGTCT	r GTCCAGACT	S ATGATATGA	A GAGATTTGCT	GGTCGATGTA	TCAGCATGTC	2460
CAGACGTTT	r actgatgata	TGTGCCGTTG	AAGATGAGAT	ATTTTTGGCA	AGGGCCGGCG	2520
CAGTTGACAG	G CCTGCGGCAC	S ATATTCCTA	A AACGGCATTC	TGAATAAAAT	TACGTCGGGA	2580
AAGAGGCATA	A ATAAGCTCC	ATATTATAT	A ATAAGCCAGG	TCTCCCTGGG	TTATAATGAT	2640
CATGCCACG	C CCTGAAGCG	G GTTGGTGTT	S AAGGTATAAA	A GGAAAATTT	CCATTCACCA	2700
TTAATTTA	C TGAGGACAA	A AACTTCACG	G TTCAGGTCA	A TAATGGTTT	CTGCTCTTTA	2760
AAGTTCGTT	A CAACAGAAC	CACATGGTG	G TGAGTGCGG <i>I</i>	A CAACCGCGG	T ATCTCCGTTG	2820
ATCCAGATA	G AGTCAAACG	C AAAATCGGT	C TCAAACTTT	r cacgettga	A CAGATCATCG	2880
TACTGCCCC	T GGCGTTTTT	C TGTATTGTC.	A GCCGTCAAC	r TATCATTCC	A CTGGGAATAA	2940
CTTTCATCA	G CAAACAGGC	C CAGGATGGT	T TTTGTATCC	C CGGCATTCA	G TGCGTTCTGA	3000
TACTTGATT	A TCGTGTCAT	A CACGTTCTT	C TGCTCAGTA	G CAATCTTAC	T GTCTGTGGAG	3060
TATTTGAAT	G TACCGCCGG	A TTGTTCAGG	T GAGCTTTCC	T TCTGTGCTG	T CGACGATGAG	3120
GCAGCCAGA	G CATTAGAGC	C GAAAAGAAG	G GATGATGCC.	A TGACTGCTG	T TGCTATAAAA	3180
$TGTTTC\Delta T\Delta$	יי מייררררמיי	C AGTTCTTCT	G GGGATCTGT	G GGCAGCATA	T AGCGCTCATA	3240

WO 98/22575

CTATGCTGCT	GTTTCAATAT	TAGCGGCAGA	CGTCAGCCTT	ACCGCACTAC	TTATTGGATA	3300
AGAATATCAA	AAGTGACCGT	GAAGTCAATT	TTATCACAAC	ACAGAAGGCC	ACTATTTATG	3360
CCCAGAAAAT	ATGAATCGTC	CTCATCATGC	ACGAAAGACT	CGTAGTTGCA	GCCCGGAAAA	3420
AACTGCCAGG	ACACGACAGC	AGATAGCCCG	GGCAGCACTT	GAGGAGTTCT	CTGCACAAGG	3480
GTTCGCTCGC	GCCACATNCA	GCAATATCAG	CAAGCGCGCA	GGAGTAGCTA	AAGGCACGGT	3540
ATATAACTAC	TTCCCAACAA	AGGAATTATT	GTTTGAAGCG	GTTCTGAAGG	AGTTCATTGC	3600
TACCGTCCGT	ACTGAACTGG	AATCTTCCCC	CCGCCGCAAC	GGGGNAAACC	GTAAAAGCCT	3660
ATCTGTTGAG	AGTGATGTTA	CCTGCCGTCA	GGAAAATTGA	CGACGCATCA	ACAGGCAGAG	3720
CCAGAATAGC	CCACCTGGTT	ATGACAGAAG	GGAGCCGGTT	CCCGGTAATC	GCTCAGGCTT	3780
ATTTACGGGA	AATACATCAG	CCACTACAGC	AAGCCATGAC	CCAACTGATT	CAGGAAGCAG	3840
CATCAGCCGG	AGAGTTAAAA	GCAGAGCAAC	TGCTCTGCKT	CCCCTGTTTA	TTGCTGGCTC	3900
CAAACTGGTT	TGGCATGGTG	TATAACGAAT	TCTGAACCCG	GCAGCACCGG	TCAGTACAGG	3960
CGATCTTTTT	GAAGCCGGAA	TTGGTGCTTT	TTTCCGATAG	ACACATAACT	GTCAGTATTA	4020
TGACCATGCC	GTCAGGAGGA	GGTATACCAG	TGATACCCTG	CCATGACCCG	GTAACGTCTC	4080
CTGGCTGCCT	TAAACCTGAA	AGACCTGGCC	CCACCACACT	GCCGGTTACG	CATCAAGATG	4140
CAGCAACCCT	TGCATAAGGC	TGTTTTGTGC	AGAGGGCTAC	CGGAAAGATA	ATAACGTCAC	4200
AGCCCGTATG	CATCAGATAA	AACAGTGTAT	TTTATCTGTC	AGCAGTCACT	GGAGCGGATT	4260
GTGGGGCGAG	ATTCAGGTGC	TGATACTGTA	ACGACTCTGC	GCCGCTGCTG	CGGTAAAAGC	4320
GGCTGCCACC	AGGCACGGTT	ATCAGAGGAG	GATGACCGTG	TCCGCCCCTG	GTGGTGATGA	4380
ACTCTCCATC	ACAATCAATA	ATGCCGCCGG	GTGGATGAAG	CAGACAGGGA	TGGCAAGTCC	4440
CACTATCCCG	GATAAAATGG	GCTCTGGGCG	CTCAGAAGAC	CTGTGTGTCA	GGCAGGGGTG	4500
AGAACGGTGA	TGTTTTTTGT	TGTCTGAAAG	TCCAGCTCCA	GCATTGCCTG	CCAGCCTCAA	4560
GACTTCCGCT	TTCTGCCCTT	TCCGGCATTT	TCTTCCGTTA	CCATCATTCT	GTTAATTCAG	4620
AGGCGTAGTA	GTAGTAAACG	TAATACATAT	CCGGGAGGAT	GAAGTCATCT	AATCCTGCTC	4680
CCCGAATATC	ATACAGCCAT	TCCTGAGTGT	GACTGCACCA	TTTCCAATTA	TGCAGTCTGT	4740
CCTCATCACA	AAAATGTTGC	AAGCAGTGCG	GAGTCACGTT	CCGTATTCAT	GCCCTCTGCC	4800
AGATATTGAG	CGGGGGAGAA	ATGTGTAAGC	GTCAACAGAG	CGCCGTATTG	ACACTTATTT	4860
ATCGGTGAAA	ACTACGTTCC	ATGGCAGCAG	TTCGTCAACA	CGGTTGGAGG	GCCATTCCGG	4920
CAGTACGCTC	AGGATATGGC	GCAGATACGC	TTCTGGATCG	ATACCGTTCA	ACCGACAGCT	4980
CCCGATTAGT	CCGTACAGCA	GAGCTCCGCG	CTCGCCTCCA	TGATCGTTGC	CGAAGAACAT	5040
GTAATTCTTT	TTCCCGAGAC	AGACGGCACG	AAGCGCTCTT	TCTGCTGTGT	TATTGTCCGC	5100
CTCCGCCAGA	CCGTCATCAC	TGTAATAACA	GAGGGCGTCC	CACTGATTCA	GGACATAGCT	5160

GAACGCTTSR	CCCAGTCTGG	ATTTTTTCGA	CAACGTGCCA	TTCTTCTCCA	CCATCCATTC	5220
ATGCAGCGAC	GTCAGTAACG	CTTTGCTTCG	CTGCTGCCTG	GCTGCAAGAC	GTTCAGACTC	5280
CGGTAAGCCC	CGTATTTCAT	CMTCAATGGC	GTACAGTTCA	CTGATGCGCT	TCAGAGCTTC	5340
TTCTGCCGTC	GTACTTTTGC	TGCTGATGTA	TACATCGTGG	ATTTTTCGCC	GGGCATGGGC	5 4 00
CCAGCACGCA	ACTTCTGTCA	GTGCACCACC	TTCACGTTCG	GCACTGAACA	GCCGATCGTA	5460
ACCGCTGAAT	GCATCCGCCT	GCAGGATACC	CCGGAAGGGA	CGAAGGTGTT	GTACCGGATG	5520
TTTTCCCTGC	CTGTCTGGTG	AGTAGGCGAA	CCAGACCSCC	GGTGGCTCTG	ATGAGCCCGC	5580
ATTCCGGTCA	TCCCSGACAT	ACGTCCAGAT	GCGTCCTGTT	TTTGCCTTTT	TTCTGCCCGG	5640
TGCCAGCACT	TTTACTGGTA	TGTCGTCAGT	GTGAACCTTG	CGGGTGTTCA	TCACGTAACG	5700
GTACAGGGCA	TCATTCAGCG	GAGTCATTAA	CTGGCAGCAC	GCGTCAACCC	AGTTGGAGAG	5760
TAATGCACGG	CTCAGTTCGG	CACCCTGTCG	GGCAAAGATT	TCACTCTGAC	GATACAGTGG	5820
CAGGTGTTCG	CAGTATTTTC	CCGTTAACAC	GCGGGCAAGT	AATCCGGAGC	CCGCGATGCC	5880
GCGCTCTATC	GGGCGGGACG	GCGCTGGCGC	TTCAACTATA	CAGTCACATT	TTGTACAGGC	5940
TTTTTTACC	CGAACAGTGC	GGATCACTTT	CAGGGCGCTA	CTCACCAGTT	CCAGCTGCTC	6000
AGCACTAACT	TCACCCAGAT	AATCCAGCTC	ACTGCCACAC	TCCGGGCAAC	AACTTTCTTC	6060
AGGCTCCAGG	GCGTGTATTT	CACGGGGAAG	ATGTGCTGGT	AACGGACGAC	GATGACGTGA	6120
TTGTCGCAAC	TGGCGGGGAA	CTGCGGGTCA	TCCTCACGCC	CACTGTAACG	ATCGCTTTCC	6180
TGTTCGCGTT	GTTTCAGTTG	GGCCTCAGCC	TGTTCAACCT	CACGCTGCAG	TTTTTCAGAA	6240
CGGGTACCGA	A ACAGCATCCG	GCGCAGTTTT	TCTATCTGGG	CCCTCAGATG	TTCTATTTCC	6300
CGCTCCTCCT	CTTCGATCTT	TTCTTCGGCA	CGTGCCARTG	CAGAGCGCAG	GAAGGCCTCC	6360
GTCTCTTCAA	A CCAGACTCAG	TTGCTGATCT	TTCTGACGGA	GGGCTTCAGC	CTGCTCAGAG	6420
AGTAGCCTT	r ccagctcagt	GATACGAATG	AGGTATTTCC	GACTCATGAC	CGTTTTTATA	6480
ATCCGGCCA'	I GACATTTT	A CAACATTGTO	AGTGCATTAA	GGCGGGATGT	TTTGGGTTGA	6540
CGCCAGTCC	A GTTTATCGAG	GAGCATTGCC	AGCTGCGAGC	GGGTAATGGA	A TACCTTACCG	6600
TCACGCACC	G CAGNCCAGA	r aaactggcci	TCCTCCAGAC	GTTTGGTGA	A CAGGCACAGA	6660
CCATCAGCA	T CAGCCCACA	G GATTTTAATO	GTGTCACCC	GTCGGCCGC	S AAAGATAAAC	6720
AGGTGACCG	G AGAAGGGGT	r CTCATCCAGO	C ACATGTTGTA	A CCTGTTCAC	CAGACCGTTG	6780
AAGGATTTA	C GCATATCAG	T AACGCCGGCA	A ACCAGCCAGA	A TTCGAGTGT	C TGATGGGAGC	6840
GAGATCATC	G TCCTCTCCC	G GTCAGTTCA	C GGATCAACA	C CGTGAGCAG	C TCTGGTGAAG	6900
GATTTTCCA	G CGTCATGTT.	A CCGTGGCGG	A ACTCAACTT	r acaggaact	G GCACTGACTG	6960
TGCTTTGTG	A AGGAGTGGA	T AAAAGCGGA	G TAAGAGCCG	C CATAGGCTC	T TTCTGCTCAT	7020
CAGGCGTTA	T CTCAACAGG	T AATAATTCA	A CGCCAGCGC	C AGAAGAGGT	T GTTACCGGAA	7080

GACGCCGCGA	TATACGCCCT	TOGTTOTGCC	AGAGCCTGAG	CCATTTGAAC	AGGAGGTTAT	7140
CATTGATATC	GTGTTCCCTG	GCAATACGGG	CAACAGAGGC	TOOTGGTTGT	GAAGCCAGTT	7200
TAACCATTTG	AAGTTTAAAC	TCATTTGAAA	ATGTTCTGCA	GGGTTCTGCG	GATAATATTT	7260
TCTGTTCCAT	AACAGGTGTC	CACTAGTTGA	AAAAGTGGGC	ACCTACGTTA	CCAATACTGG	7320
CTTAATGGCT	ACATACGGCG	GTCAGTTTAC	GCTTACAGAA	ATGTAATGAA	CACGTCCTAC	7380
CATTAACTGA	AGAGCATGGT	GACGGATGAA	GGAAAAAGCA	GGAGTGTGTG	GTGCCTCACA	7440
GATTTCCGAC	ATCATAGCTG	TCAACGACGG	ATGAAAAGCG	GCTCTTCCGC	AACTTGGGTG	7500
GAAGAAAATG	GATGAAACTT	TCTGGTGTGA	GAACCTTAAG	GAAACAACAT	GTTGGGTGGA	7560
GCGGACAATC	CAAATGGTGA	ATTACCGTCT	TATATCACTG	GCGCTGACAT	TCCGGGCGTC	7620
TTCTCCGCCA	CAACGCCATT	TGCAGTGCAT	CACAGGCCAG	TTGTGCTGTC	ATTCGCGGTG	7680
ACATCGACCA	GCCAATAACG	GCGCGTGACC	ACAGGTCGAT	GACTACTGCG	AGATACAACC	7740
AGCCCTCATC	GGTACGCAAG	TAMGTGATGT	CACCGCCCA	MTTCTGGTTC	GGAGCCTGGC	7800
GCTGAAGTTC	CTGCTCCAGC	AGATTCTCCA	ATACGGGCAG	GCCATGTGCA	CGGTAGCTGA	7860
CCGGGCTGAA	CTTCCGGCTG	CTTTCGCCCG	CAGCCCCTGA	CGACGCAGGC	TGGCGGCAAT	7920
GGTTTTAATA	TTGAACTCCG	GCATTTCGTC	AGCAAGGCGG	GGAGCACCGT	ATCGCTGCTT	7980
TGCCTCAATG	AATGCCTTAT	GGACAGCGGC	ATCGCAGGTG	AGCCGAAACT	GTTGGCGCAG	8040
GCTCATCTGG	TGACGACGCC	TGAGCCAGAC	ATACCAGCCG	CTGCGGGCAA	CCCGAAGTAC	8100
ACGACACATC	GCTTTGATGC	TGAACTCTGC	CCGATGATTT	TCGATGAAGA	CATACTTCAT	8160
TTCAGGCGCT	TCGCGAAGTA	TGTCGCGGCC	TTTTGGAGGA	TGGCCAGTTC	CTCAGCCTGC	8220
TCCGCCAGTT	GTCGTTTAAG	GCGGACATTT	TCAGCGGCCA	GTTCGCTTTC	GCGCTCTGAC	8280
GAACTCATTT	GTTGCTGCTG	TTTACTGCGC	CAGGCATAAA	GCTGAGATTC	ATACAGGCTG	8340
AGTTCACGGG	CTGCGGCGGC	CACACCGATG	CGTTCAGCGA	GTTTCAGGGC	TTCGTTACGA	8400
AATTCAGGCG	TATGTTGTTT	ACGGGGCTTC	TTGCTGATTG	ATACTGGTTT	TGTCATGAGT	8460
CACCTCTGGT	TGAGAGTTTA	CTCACTTAGT	CCTGTGTCCA	CTATTGGTGG	GTAAGATCAC	8520
TCAGCAACGT	ATCAAAAGTC	TGTAAAATCA	TGGGCGTTTC	GCGTGATACA	TTTTATCGTT	8580
ACCGCGAACT	GGTCGATGAA	GGCGGTGTGG	ATGCGCTGAT	TAATCGTAGT	GCCGCGCTCC	8640
TAACCTTAAG	AACGTACCGA	TGAGGCAACT	GAACAGGCTG	TTGTTGATTA	CGCCGTCGCT	8700
TTCCCGGCAC	ACGGTCAGCA	CCGGACCAGC	AAACAAGCTG	CGTAAACAGG	GC	8752

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2417 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:		
TGGTCAAAGA TGCAACTGCA TTTCGTCGCG GCTTTGCGGC AAATACTTAC ATC	CGCAGAAA 60	
TACTGTGCGG AAATCTGCAT CCATTTCCAC TTGCTGTATG GCATAACTTT TCA	AGGCGGTC 120	
CGGATACTGC CGAAGATTAT TATGCCACAT ACCACCCGTT ATGGGGGCAA TA	rccggaag 180	
CATTGCTGTT TGTAAACTGG CTCTATAATC ATTCCTCTGT GCTGCATGAA CGC	GGCAGAAA 240	
TCATTAAATG CGCCGAAATG CTGATGCAGG AAGATGATTT CGAAATATGC GAA	AAGTATTT 300	
TAAGACAGCA GGAGAAGTTG CGTGAAAGAA TTGATGAGAC GCTTTCTGAG AAA	AATTGTAC 360	
AGAAATGCAG AAATATGAAT GGTGAATATG TCTGGCCCTG GATATTGCCG TT	TTCAGCGG 420	
CAGGCATGAA ACATACTGGC ATACAGTATC AGTAGATATT GCATTAGTGT AT	CCTGCACA 480	
CAAGTAATAA TTTATCCACC AATAATAACA CTGTTAATGT CCCCTTCCCC TG	GTTGTCAG 540	
CCAGGGGTTA TCTTCTGAAT ATTTCTTTTG AAAAGGATAA CACAATAAAT TA	TTTTTATG 600	
AATTATCCCA TGGACTCATT AACACCCTTT CATAATGTTT TATTGTCAAA CA	CGTTATGG 660	
CTGACATCAA AAAAAACCGG ATTTCCTCTG CCAGCGGGTA ATCACCTCCC CG	GTGTTTTC 720	
GGTTGGTCTG GTTACTCCTG TCTGGTTATT AGCAAGATAA TTGCTATAAA CA	GTGGAAAA 780	
CTCATCGTAC ATAATCTGGT GATGAACATT ACGCTTATTT TCCCTTGACC GG	AAGAATCA 840	
GAGGCTGCGG TTTCAGACTG TCTGCCGGTA CATTCCTCTC TCCGTTAAAA AC	CATAATGG 900	
GTTCATTATC TTCGTCTGTC AGTAGATTGA ATGGCGGTAT ATTTTCAGTA CG	AATGCCGG 960	
TCAGCCACTG AAAAATACCT GCGAAATGAC GGGCACTGAT TTTTCTGCTG AC	GGACTGAT 1020	
GAGACGTGAT GTCACTGGCG GTAATAATCA GGGGAACGCT GTAGCCTCCC TG	CACATGAC 1080	
CATCATGATG AACAGGATTA GCACTGTCGC TGACCGACAG CCCATGGTCA GA	AAAGTAAA 1140	
GCATGACGAA ATGACGGGAA TGCCGGCGAN GGATACCATC AAGCTGACCG AG	AAAGTTAT 1200	
CCAGTTTACT GATGCTGGCG AGGTAACAGG CAACCTTTCG GGGATACTGC TC	CAGGTAAT 1260	
GATTCGGCCA GGAGTGAAGC CGGTCACACG GGTTCGGATG AGACCCCATC AT	GTGCAGGA 1320	
ATATCACCTT CGGAGAGGAT TTATCCGCCA GCGCACGTTC TGTTTCCTGT AA	CAACAACA 1380	
TGTCATCCGT TTTACGGGAA GCGAATGCSC TTTCTTGAGG AAAACGGTAT GC	TCCGCATC 1440	
AGAAGCAATA ACAGAGATGC GTGTGTCATG CTCTCCCAGT TTTCCCTGAT TG	GGATATCCA 1500	
CCATGTGCTG TATCCTGCTT TTGCTGCCAG CGCCACCACG TTGTTGCCGG AA	ATCAGGGTT 1560	
CTGCTCATAG TCATAAATCA GTGTCCSGCT CAGGGAAGGT ACGGTACTGG CT	CGCTGCCGA 1620	
TGTATAGCCG TCAATAAATA AACCGGGAGC TGTCATTCCA GCCACGGCGT GG	STTGGCCAC 1680	
GGGATAACCA TATACCGACA TATAATCCCT GCGCACACTC TCACCAGTGA CA	AATCACAAT 1740	-
CGTGTCATAT AACGGTGTTC CCCGGCCAGG ATTTTCCCAG TTGTCAGCCC CC	STGCTGACT 1800	

WO 98/22575 PCT/US97/21347

-90-

CAG TT GTTTA	TAATGCTGCA	TTTCACGCAA	TGTGTCAGTT	GTCCCCACAA	CAGTTCCTTT	1860
AACCATCCGC	AACGGCCAGC	TGTTTACTGA	GCATAATACG	AACAGCAGCA	GTGCCAGCCA	1920
GTTACGGTGA	CCACGGCGGT	GTGTTCGCCA	GAAAATCACC	ATGAATACCT	GAATCGCGGC	1980
ACTG AC CAGA	AAATGATAAA	CAGGAATCAT	CCCGGTAAAC	TCCGCTGCCT	CATCAGTTGT	2040
GGTCTGCAGC	AACGCGACAA	TAAAACTGTT	GTTGATTTTA	CCGTACGTCA	TACCGGCAGG	2100
CGCATACAGT	GCACAACAGA	ACAGAAATAA	CAGCGCTGTA	ATGGATGTGA	GGGTATTTCT	2160
GTGTGCAAGG	AGCAGAAGGA	GAAACAGAAG	CAGCACATTT	CCTGTTGCAT	TCCTCTCAGT	2220
GTATCCGCAT	GCAATTGTGG	TTATTGCAGA	CACAACAAAA	AAGAATAAAA	ACAATAAAAT	2280
CCGGGGGGG	TTGCCCGGAC	AAAACAGTTT	TCTGATATTC	ATCGGAGTAT	ATCGACAACA	2340
TTATTATGAA	GAGAACAGGA	TAATAAAAT	CAGAAATTAT	TGTAAAACAG	ATAAAAGCAN	2400
CNATGCAGTA	ATAGACT					2417

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6294 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AGACAAAAAC	CAGTTACGGT	TATCACGTAC	CAGCCCCCGT	ATTTCCAATT	TATAATCCTG	60
GCCATCAATT	ACTGGGATCT	CTTCTTCTCC	ATAGAAGGCA	TTAAAAGGGA	ATGGAGTGGT	120
AATGTCCTCT	GGAAGATATT	CTGGTGCCAC	ACTGTTTTTG	CTGAACAGAA	AACTTTGAAT	180
CCGGTCATTA	AATCTGGATA	TACGGAACAA	TGCTTTTTCA	ATATCATCAT	TATTGCTTAT	240
ATCACAGCCA	GTCAGCATCA	TAATTCCCCC	AAGCGTCAGT	CCCTGTTGGA	GTAAACGACG	300
TCTGTCCGGC	GCAAGGATTT	TTTCTGCATC	TTTCACCACG	TAATGGGCAT	CACTGTCAGA	360
CAAAAAACGT	TTTTTCTTCA	TTAGTGACCC	CGTATCATAG	ATAACAATGC	ACGCGGAACC	420
AATAACACCA	TAACCAGGTG	AATAATAATG	AACAGTACCA	TAATGTTCAT	GCACAG AAA G	480
TGGATATAAC	GCGCTGTATC	ATAACCACCG	RATAGTATAG	TCAGAAGGGA	AAACTGAACG	540
GGTTTCCATA	AAACCAGACC	AGACAATAGA	AGAGCAGCGC	CATCTAAAAT	AATCAGAATA	600
TAGGCGACTT	TTTGCACCAT	ATTGTATTCC	TGCATATTCG	TATGATGCAG	CTTTCCATAC	660
AGTGCCTGCG	TAAGGGATTT	TTTCAGTGAG	GTCCATGACA	GCGGGAAAAA	CTTGCTCCGG	720
AAACGTCCGC	TACAAATTCC	CAGAGTAAGA	TAGATCGTGG	CATTAATCAG	CAGAATCCAC	780
ATCAGGGCGA	AGTGCCACAG	TAACGCACCG	CCAAGCCAGC	CACCGAGAGT	TAATGCTGCC	840 -
GGATAGTTAA	AAGAAAACAA	AGGAGAAGCA	TTATAAATGC	GCCATCCACT	ACATATCATG	900

WO 98/22575 PCT/US97/21347

-91-

CCTGCGACAG TAACAGCATT AATCCAGTGG CAACAGCGTA ACCACAGAGG RTGTATTTGT	960
TTTAACGGTA ATGGCTGCAT TATGTGATCT CTGTCTGTAA ACTAAGTATA TTATGGAAAG	1020
GAATGTTCAT CACATCCTCA CAAGAGTTTA AAAAAAATGT GACAANTCAT CGTCAAATGC	1080
TGGGGTAAAA TTCAGATAAA GAATATGTGG ATAACTTTTG ATGAATAACG TAAAAAAAAT	1140
ACTGCTGATG GAAGATGATT ATGATATTGC AGCTCTGTTG CGGCTTAATC TGCAGGATGA	1200
AGGGTATCAG ATAGTTCATG AAGCGGATGG CGCCAGAGCT CGTTTATTAC TAGACAAGCA	1260
GACCTGGGAT GCCGTAATAC TTGATCTTAT GCTGCCTAAT GTTAATGGGC TGGAGATTTG	1320
CCGTTATATC CGTCAGATGA CCCGTTATCT GCCTGTGATT ATCATCAGTG CCCGTACCAG	1380
CGAAACCCAC CGCGTCCTGG GACTGGAAAT GGGGGCTGAT GACTATCTAC CGAAACCCTT	1440
TTCCATTCCT GAGCTGATTG NCCCGCATCA AAGCGTTGTT TCGTCGTCAG GAAGCCATGG	1500
GGCAAAATAT TCTCCTGGCA GGTGGACTGA TTTGCTGTCA CGGTCTGTGC ATCAATCCAT	1560
TTTCACGTGA AGTTCATTTG CATAATAAAC AGGTTGATCT TACCCCACGC GAGTTTGATC	1620
TGCTGCTCTG GTTTGCACGT CATCCTGGCG AAGTTTTTTC CCGTCTTTCA CTGCTGGATA	1680
ATGTCTGGGG GTATCAGCAT GAAGGATATG AGCATACAGT CAACACGCAT ATCAACCGTC	1740
TTCGTGCCAA AATTGAACAG GATGCAGCAG AGCCAAAGAT GATCCAGACC GTCTGGGGAA	1800
AAGGGTATAG GTTTTCAGTT GACAATGCAG GAATGCGATA AATGAATTGT AGCCTGACAT	1860
TAAGCCAGAG GTTAAGCCTA GTATTTACAG TCGTTTTGCT GTTTTGCGCC GTGGACATGT	1920
GGCGTTCATA TTTACAGCAG TAATCTGTAT GGCAATGCAA TGGTACAGCG TTTATCTGCA	1980
GGCTGGCGCA ACAGATTGTC ATCACGGAGT CTCTGCTGGA TAATCGTGGG CAGGTGAATC	2040
ACCGGACATT AAAGAGTCTG TTTGAGCGTC TGATGACGCT TAATCCCAGT GTGGAGCTGT	2100
ATATTGTCTC GCCGGAAGGT CGGCTGCTTG TGGAGGCCGC CCCTCCAGGT CATATCAAAC	2160
GTCGGTATAT CAATATAGCG CCCTTGAAAA AATTTCTCTC CGGTGCTGTC TGGCCCGTAT	2220
ATGGTGATGA TCCCCGAAGT GTAAATAAGA AAAAAGTTTT CAGTACCGCA CCGCTTTACC	2280
TGAGGGATGA TCTGAAAGGA TATCTGTATA TTATTTTACA GGGAGAGGAA CTTAATGCTC	2340
TTACTGATGC AGCCTGGACA AAGGCACTAT GGAATGCACT GTACTGGTCG CTGTTTCTGG	2400
TAGTGATATG TGGTCTGCTG TCGGGTATGC TGGTCTGGTA CTGGGTAACC CGTCCCATAC	2460
AGCAACTAAC TGAAAATGTC AGCGGGATAG AGCAGGACAG TATTAGTGCC ATTAAACAAC	2520
TGGCAATTCA GCGCCCTGCC ACCCCCCTA GCAACGAGGT CGAGATATTA CACAATGCCT	2580
TCATTGAACT GGCCCGTAAA ATATCCTGTC AGTGGGATCA ACTTTCAGAA AGTGATCAAC	2640
AGCGCCGTGA ATTTATTGCC AATATCTCCC ATGATTTACG GACGCCATTA ACATCACTTC	2700
TGGGATATCT GGAAACCCTG TCAATGAAGT CGGATTCGCT ATCATCAGAG GACTGTCATA	2760
AATATCTGAC AACAGCTCTC CGGCAGGGAC ACAAGGTCAG GCATCTGTCC TGTCAGCTTT	2820

TTGAGCTGGC	ACGTCTTGAG	CATGGTGCTA	TAAAAGCTCA	ACTGGAGCAA	TTTTCTGTCT	2880
GTGAACTTAT	TCAGGATGTA	GCTCAAAAAT	TTGAGCTCAG	CATAGAAACC	CGTCGATTGC	2940
AACTAAGAAT	TATGATGTCA	CATTCCCTGC	CTCTTATCAG	GGCAGATATT	TCAATGATAG	3000
AGCGTGTGAT	AACAAATTTA	CTGGATAATG	CTGTACGCCA	CACACCTCCG	GAAGGCTCGA	3060
TCAGGCTGAA	AGTCTGGCAG	GAAGATAATC	GGTTGCACGT	CGAAGTGGCT	GACAGCGGCC	3120
CTGGACTAAC	TGAAGATATG	CGAACTCATC	TTTTCCGGCG	GGCATCAGTG	TTATGTCATG	3180
AACCGTCAGA	AGAGCCCCGG	GGAGGACTGG	GATTGCTGAT	TGTACGCAGG	ATGCTGGTAC	3240
TACACGGTGG	TGATATCAGG	TTGACTGATT	CAACGACTGG	AGCCTGCTTT	CGTTTTTTTC	3300
TTCCATTATA	ACATCAGGCG	GCATATTTTG	GGGTGGTTAT	GTGTATCTGC	CTTTGTAAAA	3360
GGGATACAAG	TTCTGTAGTG	GAGCACAAAA	TCAGGACACC	GGAATAACCT	GTTTCCACTT	3420
TTCTTCATGT	AAGCAAGGCG	GTAAACCATC	GTTGTTCGTG	TGAGGTCGAT	AAACGTTGTA	3480
ATAACCATTA	ATCCACTGGT	TTATATCACG	TACCGCATGG	ATAAAATCAC	CATAACCACC	3540
TTTCGGAAGC	CATTCATTTT	TAAGGCTGCG	AAAGACTCTT	TCCATCGGCG	AATTATCCAG	3600
GCCATTCCCT	CTGCAACTCA	TACTTTGCAT	TACCCCATAA	CGCCAGAGTA	ACTTTCTGTA	3660
TTTATTGCTT	TTATACTGAA	CACCTTGATC	TGAATGAAAC	AGCAGGCGGC	CATCACGCGG	3720
TCGAGTTTCC	AGTCCGTTAC	GCAAAGCCCT	ACACACCAAC	TCAGCATCAG	CGGTTAATGA	3780
GAGGGCTGAA	CCGATAATCC	GCCGTGAATA	TAAATCAACA	ACGAGCGCGA	GCTAACACCA	3840
TTTGTCCTGC	AGGCGAATAA	AACTGATGTC	GCGCACCAGA	CGCAGTTTGG	TGCGGCGGGG	3900
TGAAATTGCC	GGTTCAGTAA	ATTTGGCAAT	GGCGGACTTT	TGTCTTCGTT	TACCCGGTTG	3960
TGATGTTTAA	CCGGCTGTCG	ACTTGTCAGC	CCTCATTCCC	GCATCAGTCG	TCATGCCAGC	4020
CACCGGCCTG	CATCAACGCC	ACTCTGGCGC	AACATCTGAC	TGATTGCCCG	GCTACCCGGC	4080
TGCGCCACGA	CTGAGAGCAT	GGAAAGCCCT	CACCCGGCTT	CGTAATTCAA	TTCTTTGCAC	4140
ATTAACAGGA	CGCTTCACCT	GCGCGTAATA	AACGCTACGG	TTAATACCGA	ATAAATGACA	4200
AATAACCCAC	ACTGGCCACT	TTGCTTTCAG	CTGTGTGATT	AGCGCGACAG	CTTCCCGGGG	4260
ATTTCGCTCA	TCAGCACGGC	AGCCTGCTTT	AGTATTTCTT	TTTCCATCTC	AACGCGCTTT	4320
ATCTGCGCTT	TAAGCTGCTG	AATTTCGCGT	TGTTCAGGGG	TAATAGCATT	ACCAGCTGGC	4380
TCAATACCCT	GAAGTTCCTG	CTTATACAAC	CGTATCCATT	TACGCAAATG	GTCAGGGTTG	4440
AGCTCGAGTG	CCTGCGCGAC	TTCTCTGACA	TCACGCTGGT	ATTTAACCAC	CACCTGCTCG	4500
AAAGCTTCAA	GCTTGAACTC	CGGGGAAAAG	GTACGTTTAG	TCCGACGAGT	TTTGATCATG	4560
CATCACCTCA	TTTTCACTGT	TTTAACATTA	ACAGGATTTC	GAGGTGTCCT	GAATTACCGA	4620
TCCACTACAA	AGTACGACAG	GTACTGTGGA	GGTACTCCCG	TAAAGACGGC	CATCAAGCTC	4680
CCGCTCCGAC	ATACCTGCGG	GCAGAGGCCA	TGAAAAGCCA	GCTTTGCGAA	AGCGCACGAA	4740

PCT/US97/21347 **WO 98/22575**

-93-

CATACCACAA	GCTGTTGATT	TTGGTACGCC	CAGGCGACGC	CCGACCACAA	CCTGGGGTAA	4800
ATGTTCTTCA	AAGTGAAGAC	GTAAAGCTTC	AGTGATCCAA	GTCCGGTGTT	TCATACGATA	4860
GTGTCCATTA	AAAATGATGG	ACATTATTTT	TGTAAAACCG	GAGGAAACAG	ACCAGACGGT	4920
TTAAATGAGC	CGGTTACATG	TAATCCATAC	TCATCCAAGG	TTTAATTCTG	ACACAATAAG	4980
AAAATATGGA	AAGTCTCGCT	CTAGAGATGG	GGAGAGGGAT	ATTGAAGTGT	ATGATAT T CC	5040
AAGAACTGCC	GGAGATATCC	TCGTAAATGG	ATTTTCCAGT	GCAAACTGAT	AACAAATTCG	5100
AAGTCATTAT	CTGCAACAAG	ATTGATTGAT	GTAGGGGATA	TGTTAGAGCA	TTATAATGCT	5160
CAAGGATTTG	GCGTGATGAC	ATCTGCGCCA	ATTGATGCGA	CACTATATGA	TAAACTGGAT	5220
GCTATTTGCA	GTAAGTGTAA	AATAGAACAA	TTTTTAAATA	CAGTATTAGA	GTCAGAACGC	5280
GCACTATATT	ATGACGATAT	ATTAAGATGC	CGTTACTTTG	GTAAATAMCA	TAAAATTAAT	5340
CAATATGGTA	ATATATCAGT	TGTAATTGAT	CGAAACAAAG	CACATAAATG	CCATCTTATA	5400
AAGATGGTGT	TTKTTAAGCA	TATAAAATAT	ATTTTCTATA	AGATATAGGG	CAAACTAAAT	5460
TTCTTGACTT	CTATGATGGA	CTAACTAGAT	ATACATGCCG	CCAGTTTTTA	TAAAACGACG	5520
GCATATATAA	TCATTTATAT	ATCTTTTGAT	TTTATTCGTA	ACCACTCATG	TTGATCT AA A	5580
CCTATTCTTG	ACAGATTAGC	AACAATATCA	GTTGTTATTT	TTTGCGCGTA	CGTTGTTTTT	5640
ATTTCCCCGA	TCCATTTCAA	TACTTTTGGA	GTAGATATTT	TTTCAACGAG	TAAAGGAACG	5700
AATGAGATAT	AGTCAGTATT	AACTAGATTG	TTCTTTTTCC	CTATGATGAC	ACCGTTTCCA	5760
TTTTCGACTC	CAAATGAAAA	TGAAATAATA	TTAGAAGCTT	TTGCCGGCAT	TTTAATTTTA	5820
TAAAAACCGC	CATATTCATC	TTCGATTAAC	AAATTGTAAT	TATTATCGTC	CAGTGTTCCC	5880
CTGAGGAATA	AAAAATCGGC	TTTTTCATGO	CAATCTGACGC	TATCACATAA	TGGTTGTATG	5940
CATAGATAGA	A CAAAATTATA	TGCATCTAAA	AGTAAAGTTC	CTTGTTTTAA	GGACACATTA	6000
TCTATATGAG	AATGATATCT	TAAACTCCT	G CGCGTGATTI	CCAGAGAGCA	TAATTGCATT	6060
AACTTTTTAT	CTTCTTCACC	ATCTTGGCTT	C AAGTATTCCT	TTTTACCTAA	AGATGCGTGT	6120
TCAATAGCG	r GTTGAATTT	TTCTAAAGAA	A TCAGCAGAGA	A GTATATTCCT	TAGATGTTCT	6180
ACTGATAAG	r ctttttgtt	TTTTCCAGT	r aatagaaaai	TCTTACAACO	ATTTTTTGCA	6240
TAGTGAAAA	A TAGGCCAAT	G GGATAAGGA	G TTTTTGCTT	A GAGATTTCT	G GGGA	6294

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4519 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

60	CTGGTTTATT	CTATCCACTG	GGCTTTATTA	TAGGGCGAAA	TCTCCCATGA	TATTCCTTTC
120	TCTCTTCAAA	GTCAACCACC	GGTTCCAATA	ATTTGCTGGA	TCGTCGATTA	AATTGCATCA
180	CTTTCCTAAA	AGAAGATTTT	TCTCAAGATA	ATCCATCATC	GTCATACCTA	TTCATCGGTT
240	ACTCACTCAA	TTTTTAAATA	ATCATGAGCA	CAGCATAGGC	TCGACATTAT	AAAATCAACT
300	GAGCCTTTGT	TCCAAAGCTC	GCCAAGCATG	TTTGTTGTCT	ATACCTGCAA	GGCAGTAGGT
360	AGATGTAGCC	ATTTTCTATG	TATTAGTACA	TATGAATCCT	GCCATATATC	TCTTATTTTA
420	ATTGAATTCA	TTGCTTTGCC	CATTGCCGAT	CAAGGTACAG	AGCGAGTTCG	CAAATAGTCT
480	TCTCTTATGC	TCTTGATGCT	ATGTTTGTAA	CTTAAAGGAA	AAAAACATAG	GCGAACCTTT
540	TAACTATTAC	ACCATTGGAG	GCCCAAAACG	GGGTCAGGAT	ATGTTGAGTG	TAATTGCTCT
600	GTATCTGTGT	TCTTCCATAA	CCCAACTCAT	GCAGGCTTAT	AAGTGTAGGC	ATTTCGTCGT
660	CTTCTATCCC	TGGCCAATTT	CTAACTCTTC	CATTTATTAA	ATTTTTATGG	GGCCATCATA
720	CCAGCCCTAT	GCTCAGTGTT	GGTTAAGAGG	AKTCTTTTTA	AGTGTGCATA	CTCCTTCTGG
780	TGGATATAAT	TGTGAAGTCC	AACATAACTT	GTTTCTCCTG	TTTGGGGTCG	GTAAAGGATC
840	AGGGTAACTT	TATCTCTGGT	TACCATGGGT	ATTTTATTTT	TTTGAATGGG	CTCGTACAGT
900	CCATAGTTCT	TTGGGGAATC	TTTTTCTTCT	AGCACGAGTC	ACTAGCTAAG	TACCTACTCG
960	TTAATAAACT	TTTAAGTAGC	ACTCTAACTC	ATATAGTTAT	TATAAAAGAT	CAGCATTGGC
1020	TTTTCAAGCA	TCCAGGAACA	TTTTTTGCAT	TCTTCATCAA	GCCTTCTTT	CCTGAAATGG
1080	AGATTTCTCC	TTCATTTAGT	AACGATGAGT	TCTCTAATAA	AGGAAGAAGT	TAATATATTC
1140	GGTGCACATG	TGGTTGACAT	GTTGCGAAAA	TTTTTATTCT	ACTAGTTTTA	TTGAGTCGTC
1200	TCTTGAGGTT	GTCGGAGATA	TATCAATGAT	TTAGCTTTAA	CAAAGGCCGT	CACTCAGTAA
1260	TTAAATGTTT	GAAATTAGCT	TTGCATCAGG	TGGATGAATT	AATATCATCT	CGATTTTCCT
1320	TGACGTAGCC	AAAGCCAGCC	GCTCGATATC	TCTAATCCAA	TTGGTCAATA	CTGATGCTTG
1380	ATACCTTCTT	TATCAATTTG	AATCTATAAC	ССАСААААА	TCCACCACAG	CTTCACTGGC
1440	TGGTATGGAT	TAAAAATAAT	ATATTTTAAA	GAATAAGTTG	AAAACAACTC	TGAACTAAAT
1500	TTTAAAGGGA	CCCCAGACCT	TCATGGCCAT	CGCCCTGAGK	GTCACGCTAC	ATGAACTTTG
1560	AAAGTTAGTT	TACATATCAC	GTGTTACCCA	ACGTTCAACG	CACCCAGCCG	TTATGAACAA
1620	TCATTGGGAA	AATGCAAAAA	GATTGAGGGC	ACCTAAAATG	TCGTAAATTG	AATTGGTTGG
1680	TGTATATTCT	AAATATAGAA	TGAATGTTAA	CGGAAGAGAC	CACAGATGTT	ATCCAGGCGA
1740	TGGCGAATCA	AAAGTGAGAT	TGTGTATAGG	ACATTTTATA	ATATTTCATT	CAAAAAAGAG
1800	TCCAGCCCAC	CAACCCTCAC	AGCGCCACGC	CGCTCCATTC	ATCCCGCCAG	CCTCCCAATC
1860	CACCAGATTG	TCAACCTCAT	ACCAGAAACA	TGTCGGCAAC	CCAGCCAGAA	GTCATCGCCC
1920	GTGGGTATCG	TCCAGCTACT	CCGGCTAAAT	ATTCTGGATC	CATCCTGCGT	ATAATCACGT

WO 98/22575 PCT/US97/21347

-95**-**

CTGTTGTAGA GCACATO	CCAG CAGCCAGCTA	TCAAGCCACC	GTGCCAGTTC	CCACCAAAAG	1980
GTGAGGAAAA ATAGTGO	CAAA CTGCACAAAC	GTCAGCGTCA	TCACTACTTT	CACATCCCAC	2040
GCCGAACAGA GCGTTAT	rcag cggaatacag	ATCACCAGCG	CTATTTGCAG	TGCGCCTGTA	2100
CCATCGGTAG TGCCTA	ACGC ACGCTGTCGA	ATGCCGTACA	TGCCGCTATG	CTGCCGAGGA	2160
TATTTCTAGC GCCGGA	IGCC AACCGGGTGG	CGGCATTGGC	GACGGTGCCA	TCAACGTTAC	2220
CGCCATAGCT TGGATA	AACG CGCCCATTCT	GCGATACCTG	CATATTTCGT	TCACTGACCC	2280
GCGAGCGCAG CACGGC	CTCT TCATACACTA	CCTGCGACTG	GTCGATTTTT	TTAAACGCCG	2340
TCCAGATATC TAGGGC	AGGA AGTTGCAGTA	GACGGGCTTT	CAGCCCAAGC	GGTGTCGTCG	2400
GCCCACCGCT GTTTAC	AAGT GGGATAGCCG	CCCGCGCCCG	TATCGGCCAG	CCCGGCATCG	2460
CGCGATGCAC TGTACG	GCCA AGCACTGTGT	GGTGAAAGCG	CATGGTCGGA	AAAGGCCTGT	2520
TCAGCTAACC AAGCAC	ATCC CACCATCACA	. AGAATCGCCA	GAAAACCAAA	CTCAGTCAGA	2580
ATAACTCTTC CTGATT	CAGG CTTTGCTCCT	GCATTATGGC	TACCACTATT	GTTTGCCTGC	2640
ACGTATCATC TGATAA	CGGT TAATTAACT	; ATTTAGCGCC	ATTTCAGCCT	GTTTTTGCTG	2700
CTGTTCACTG CCATTC	TGGT TACGGACTTC	CACCGTAGCGA	CGTAACTGCT	CTTCCGCCGG	2760
GATATGCCGG TTAAAA	GCCT GCATGATGCC	C AAACACCTCC	GTTTTCAGTT	CACTGACCGT	2820
CATGTATTTT CCCCGC	CTGTT CATCCTGACC	GTTCAGGCGC	TCAGCCAACT	GCTGTAAGCG	2880
GATCATGCCT TCGTTC	CCAGC CCGTCATCG	CTCTTCCGGG	AGCGCACGAC	TCCTTACACT	2940
CTTCTGCCAG TTATCC	CACCA TTTCCTGAAG	C ACGGGGATTG	CCGGGGACAA	GAACCCTCAG	3000
TTGCTGCAGC AGCTGC	CGCAC TGCACCGCA	G GTTGTATGCT	GGAGGTAATT	CTGCCAGTCG	3060
CGTTATCTGC TGACCO	GGAAA GGGTTATCC	A GTGCACTCAG	GGCAGATACC	GGATTCAGGT	3120
TAATTTTTTC AAACAC	GGGAA GCATATACG	C TGTCGCCGGT	ATGCGTTTCA	GATACCACAC	3180
TCTCTGCGAC GTTCT	TTTCT TTCTGTACA	G ACATCAGCAT	TTTCTGTAAG	CGTACAGCGA	3240
GGGCCGTATT GACGG	GGATG TGTTATTCA	G CTGGCAGTGC	TATGCGCCAC	GGAAGCAGTT	3300
CGCTGACCCG GTTGAG	CCGGC CAGTCTGCT	A TGACGGCAAG	CACATGGCGA	AGGTAGCTTT	3360
CTGGATCCAC GTCAT	TCAGT TTGCACGTC	C CGATCAGGCI	GTACAGTAGO	GCTCCCCGCT	3420
CACCACCATG GTCAG	AGCCG AAGAACAGG	A AGTTTTTACO	ACCCAGACTO	ACCGCCCGCA	3480
GGNCATNTTT CAGCG	ATGTT GTTGTCGAT	T TCCACCCAGO	CATCGTTCGC	CATAGTACGTC	3540
ATGCCGGCCA CTGGT	TAAGT GCGTACGCG	A ACGCCTTCG	CACCATCAGO	CTGGACAGGG	3600
GACTTTCACC CCCAA	GCTGC TGAACATGC	CC CGGCACACA	A AGAAGATCT	GGCTCAGTGG	3660
CCGGGATTAG TTATA	CAATT ATCTGATT	SA TTTTTAATA	r ATCTTTTCT	r aaatcatcgt	3720
TAATATCTGA CGGTT	CTAGC TGGTTTATA	AA GTTGCCTTA	TTGGGTAAA	G GTACTTTTCT	3780
GATCTTTTAG ATCTT	CTCCT TTTATCGT	rg ataaagctg	C AATTAGTTC	A CCATCGTAAT	3840

PCT/US97/21347 WO 98/22575

-96-

ATTCACCCGC	TAACGGCTCT	TTAGTTAGAA	CTTCCAACAC	TCTTGGCATC	AACTGATCAA	3900
TACATAAATT	TTGTCGGATA	GCGCGGCAAA	GATCTTCCAC	TGTTAACTTT	TCAAGAGGCA	3960
CATCTATGAT	ACGTTCGAAC	CAGAGTTCAA	GCGGTGATTG	TTGCTCAGGC	TCTTTTGTCA	4020
TATTGATGTT	TCCAATCAAT	TTACGTAAGG	TAATCATATT	CCATATCCTT	TCAAGGCTGA	4080
TTCTATTTTA	TTAATAGCAT	CTGTTGCTCT	GCCATACGCA	GCCTGAGCTT	CAGGATTGTT	4140
GACGTTTTTC	AACGTATCCG	CATGATTTCT	TAATCCTCTG	AGCGTATTTT	GCATTTCCTG	4200
CATATGATCC	CAATATCCTC	CATTCTCTTT	AGGAACTGGC	TTACCATCCA	TATCCTTGAG	4260
AGTTCCAATT	AATATCATGA	ATCTTTTCAG	ANCATTTTTT	TAATAGTGGT	TAATCGANTC	4320
TTCTTTAANT	CGGCAACTTT	TCTTGGCCTT	CCTGGAATTA	AAGGCTTTAA	TCCTAACAAG	4380
TTTTTTTCTC	AATTTTTGGC	TGGCTTTAGG	GAATCAATTT	TTCCCGGATT	GGGTGGGTGG	4440
GTGGTAACCC	GGGTTTCCCT	TGAAGCCCGG	GAAACCCGGC	CCCAAGTTCT	TACTTTTTT	4500
CCCGCAATCG	GGTCAAGAT					4519

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1213 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATTACAGAAT	GTGGAAATTA	AGTATGATTC	GAAAAAAGAT	TCTGATGGCT	GCCATCCCCC	60
TGTTTGTTAT	ATCCGGGGCA	GACGCTGCTG	TTTCGCTGGA	CAGAACCCGC	GCGGTGT TT G	120
ACGGGAGTGA	GAAGTCAATG	ACGCTTGATA	TCTCCAATGA	TAACAAACAA	CTGCCCTATC	180
TTGCTCAGGC	ATGGATAGAA	AATGAAAATC	AGGAAAAAAT	TATTACAGGG	CCGGTTATTG	240
CCACCCCTCC	GGTTCAGCGC	CTTGAGCCGG	GTGCGAAAAG	CATGGTCAGG	CTGAGTACCA	300
CACCGGATAT	CAGTAAACTT	CCTCAGGACA	GGGAATCACT	GTTTTATTTT	AATCTCAGGG	360
AAATACCGCC	GAGGAGTGAA	AAGGCCAATG	TACTGCAGAT	AGCCTTACAG	ACCAAAATAA	420
AGCTTTTTTA	TCGCCCGGCA	GCAATTAAAA	CCAGACCAAA	TGAAGTATGG	CAGGACCAGT	480
TAATTCTGAA	CAAAGTCAGC	GGTGGGTATC	GTATTGAAAA	CCCAACGCCC	TATTATGTCA	540
CTGTTATTGG	TCTGGGAGGA	AGTGAAAAGC	AGGCAGAGGA	AGGTGAGTTT	GAAACCGTGA	600
TGCTGTCTCC	CCGTTCAGAG	CAGACAGTAA	AATCGGCAAA	TTATAATACC	CCTTATCTGT	660
CTTATATTAA	TGACTATGGT	GGTCGCCCGG	TACTGTCGTT	TATCTGTAAT	GGTAGCCGTT	720
GCTCTGTGAA	AAAAGAGAAA	TAATGTACCG	CAATAACGGT	TAAATGCGGG	TGGGATATTA	780 -
TGGTTGTGAA	TAAAACAACA	GCAGTACTGT	ATCTTATTGC	ACTGTCGCTG	AGTGGTTTCA	840

PCT/US97/21347

-97-

TCCATACTTT	CCTGCGGGCT	GAAGAGCGGG	GTATATACGA	TGACGTCTTT	ACTGCAGATG	900
AGTTGCGTCA	TTACCGGATA	AATGAACGGG	GGGGACGCAC	CGGAAGCCTG	ACCGTCAGTG	960
GTGCACTGCT	GTCCTCACCC	TGCACGCTGG	TGAGTAATGA	GGTGCCGTTA	ARCCTCCGGC	1020
CGGAAAATCA	CTCTGCGGCA	GCCGGAGCAC	CTCTGATGCT	GAGGCTGGCA	GGATGTGGGG	1080
ACGGTGGTGC	ACTTCAGCCC	GGAAAACGGG	GCGTTGCGAT	GACAGTCTCC	GGCTCACTGG	1140
TAACCGGTCC	CGGAAGCGGA	AGTGCTTTAC	TTCCTGACCG	TAASCTATCC	GGCTGTGACA	1200
TCTTGTTATA	CAC					1213

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 451 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

ACGCTCTAGT	ATTCTCTGTC	GTTCTGCCTG	GGCCACTGCA	GATAGAATAG	TGACAACCAT	60
TTTACCCATC	TCCCCATCGG	TACTGATTCC	GTCATCAATA	AACCGAATGG	ATACACCTTG	120
GGCGTCAAAC	TCTTTTATTA	ACTGGATCAT	GTCAGCAGTA	TCGCGCCCAA	GGGGTTCAAG	180
TTTCTTCACC	AAGATGACGT	CACCTTCCTC	CACCTTCATC	CTCAGCAAGT	CCAGCCCTTT	240
CCGATCGCTT	GAACTGCCCG	ATGCCTTGTC	AGTAAAGATG	CGATTTGCTT	TCACGCCTGC	300
GTCTTTGAGT	GCCCGAACCT	GAATATCGAG	AGATTGCTGG	CTGGTTGATA	CCCGTGCGTA	360
ACCAAAAAGT	CGCATAAAAA	TGTATCCYAA	ATCAAATATC	GGACAAGCAG	TGTCTGTTAT	420
AACAAAAAAT	CGATTTNAAT	TAGACACCNT	T			451

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 720 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GACAAGGCTT	ATAAACTCAC	TGACGGGGCT	GGCATGTTCC	TGCTGGTACA	TCCTAATGGT	60
TCCCGTTACT	GGCGTCTCCG	TTATCGTATT	CTGGGTAAGG	AGAAGACTCT	GGCACTTGGT	120
GTGTATCCAG	AAGTTTCTCT	CTCCGAAGCT	CGTACAAAAC	GGGATGAGGC	CCGAAAACTG	180
ATTTCGGAGG	GGATTGACCC	TTGCGAACAG	AAAAGAGCTA	AAAAGTAGT	CCCTGATTTA	240 -
CAGCTCTCTT	TTGAACATAT	TGCACGACGC	TGGCATGCCA	GTAATAAACA	ATGGGCACAA	300

WO 98/22575 PCT/US97/21347

-98-

TCACACAGCG	ATAAAGTACT	CAAAAGCCTC	GAAACACACG	TTTTCCCCTT	TATCGGCAAC	360
CGGGATATCA	CAACACTCAA	TACCCCGGAT	CTGCTTATCC	CTGTTCGTGC	TGCAGAAGCT	420
AAACAAATTT	ATGAAATCGC	CAGTCGTCTG	CAGCAAAGAA	TATCTGCCGT	AATGCGTTAT	480
GCCGTACAGT	CTGGCATCAT	CAGATATAAT	CCTGCTCTGG	ATATGGCTGG	CGCATTGACT	540
ACGGTAAAAC	GCCAGCATCG	CCCCGCTCTT	GATCTTTCAC	GTCTGCCTGA	ACTTCTGTCG	600
CGTATTAACA	GTTATAAAGG	NCAGCCTGTC	ACCCGGCTTG	CGTTGATGCT	GAATTTACTG	660
GGTTTTTATT	CGTTCCAGTG	AACTCAGATA	CGCCCGCTGG	TTCTGAAAAT	TGATATTGGA	720
(2) INFORMATION FOR SEQ ID NO: 10:						

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

1	NCNTTAATTT	TATATCTCGT	TAAAATAAAA	GTTTTCTGTA	CCGCTCTCCG	GAGGGGGAA	60
•	TGATTCGTTT	ATCATTATTT	ATATCGTTGC	TTCTGACATC	GGTCGCTGTA	CTGGCTGATG	120
•	TGCAGATTAA	CATCAGGGGA	AATGTTTATA	TCCCCCCATG	CACCATTAAT	AACGGGCAGA	180
į	ATATTGTTGT	TGATTTTGGG	AATATTAATC	CTGAGCATGT	GGACAACTCA	CGTGGTGAAG	240
	TCACAAAAAC	CATAAGCATA	TCCTGTCCGT	ATAAGAGTGG	CTCTCTCTGG	ATAAAAGTTA	300
	CGGGAAATAC	TATGGGAGGA	GGTCAGAATA	ATGTACTGGC	AACAAATATA	ACTCATTTTG	360
,	GTATAGCGCT	GTATCAGGGA	AAAGGAATGT	CAACACCTCT	TACATTAGGT	AATGGTTCAG	420
	GAAATGGTTA	CAGAGTTACA	GCAGGTCTGG	ACACAGCACG	TTCAACGTTC	ACCTTTACTT	480
	CAGTGCCCTT	TCGTAATGGC	AGCGGGATAC	TGAATGGCGG	GGATTTCCGG	ACCACGGCCA	540
	GTATGAGCAT	GATTTATAAC	TGAGTCATAC	CCAAATGAAT	AACTGTAATT	ACGGAAGTGA	600
	TTTCTGATGA	AAAAATGGCK	CCCTGCTTTT	TTATTTTTAT	CCCTGTCAGG	CTGTAATGAT	660
	GCTCTGGCTG	CAAACCAGAG	TACAATGTTT	TACTCGTTTA	ATGATAACAT	TTATCGTCST	720
	CAACTTAGTG	TTAAAGTAAC	CGATATTGTT	CAATTCATAG	TGGATATAAA	CTCCGCATCA	780
	AGTACGGCAA	CTTTAAGCTA	TGTGGCCTGC	AATGGATTTA	CCTGGACTCA	TGRTCTTTAC	840
	TGGTCTGAGT	ATTTTGCATG	GCTGGTTGTT	CCTAAACATG	TTTCCTATAA	TGGATATAAT	900
	ATATATCTTG	AACTTCAGTC	CAGAGGAAGT	TTTTCACTTG	ATGCAGAAGA	TAATGATAAT	960
	TACTATCTTA	CCAAGGGATT	TGCATGGGAT	GAAGCAAACA	CATCTGGACA	GACATGTTTC	1020
	AATATCGGAG	AAAAAAGAAG	TCTGGCATGG	TCATTTGGTG	GTGTTACCCT	GAACGCCAGA	1080
	TTGCCTGTTG	ACCTTCCTAA	GGGGGATTAT	ACGTTTCCAG	TTAAGTTCTT	ACGTGGCATT	1140

-99-

			, ,			
CAGCGTAATA A	TTATGATTA	TATTGGTGGA	CGCTACAAAA	TCCCTTCTTC	GTTAATGAAA	1200
ACATTTCCTT T	TAATGGTAC /	ATTGAATTTC	TCAATTAAAA	ATACCGGAGN	ATGCCGTCCT	1260
TCTGCACAGT C	TCTGGAAAT A	AAATCATGGT	GATCTGTCGA	TTAATAGCGC	TAATAATCAT	1320
TATGCGGCTC A	AGACTCTTTC	TGTGTCTTGC	GATGTGCCTA	CAAATATTCG	TTTTTTCCTG	1380
TTAAGCAATA C	CAAATCCGGC A	ATACAGCCAT	GGTCAGCAAT	TTTCGGTTGG	TCTGGGTCAT	1440
GGCTGGGACT (CATTATTTC	GATTAATGGC	GTGGACACAG	GAGAGACAAC	GATGAGATGG	1500
TACAGAGCAG (GTACACAAAA	CCTGACCATC	GCAGTCGCCT	CTATGGTGAA	TCTTCAAAGA	1560
TACAACCAGG A	AGTACTATCT	GGTTCAGCAA	CGCTGCTCAT	GATATTGCCA	TAAATGGTTT	1620
ATCCGGAGCC (GGATAGTGTG	TTGTGGATAT	CTGGCATGCC	CCGGGAAGTC	ACCTTTCAGA	1680
CGGGCGGAGG	GCTGGTGAAT	TATCCGCGAT	TACTGAGCAG	TATGGATAAT	CCTTTTTCAC	1740
AGACTTGTCA	GCAGCCAGCA	TTTATGTTCT	TTTATCTGAG	GGAATTTATC	TGTACGCTGT	1800
GCCGGGATAT	CTCAGTTATA	CAGAAATCAG	GCAGGAATAA	ATTGTAGTGG	AAAGTCGATG	1860
TTTACCGGAT	GACTGATGCG	CGCTTGTACA	CAGACAGTGT	GTTTCAGTAA	TATGGAGAAT	1920
AATGAAATGA	ATAACACAGA	CACATTAGAA	AAAATAATCA	GACACCAAAA	AAACAAAGAC	1980
CCCGCATATC	CTTTCGGGAA	CATTTGTTGA	TGCAGCTCTG	TATTCGCACA	AATAAAAGAA	2040
TGCAGGATAA	TATATCTGAA	TTTCTGGGGG	CGTATGGAAT	AAATCACTCA	A GCATATATGG	2100
TCCTCACCAC	ATTATTCGCA	GCGGAGAACC	ATTGTCTGTC	ACCTTCAGAG	ATAAGCCAGA	2160
AACTTCAGTT	TACCAGAACT	AATATTACCC	GCATTACAGA	. TTTTTTAGA	AAAGCCGGAT	2220
ATGTAAAAAG	GACGGATAGC	AGGGAGGATO	GCCGTGCTAA	AAAAATCAGI	CTGACATCTG	2280
AAGGTATGTT	TTTTATTCAG	AGGCTCACT	TTGCACAAAG	CATGTATCT	AAAGAAATCT	2340
GGGATTATCT	GACCCATGAT	GAACAGGAA	C TGTTTGAAG1	CATTAATAA	A AAATTACTGG	2400
CACATTTTTC	TGATGCCAGC	TCATAAAGT	G CGAAATATCI	r GAGGATGCC	G GATAGCTTCA	2460
GGCAAAATAA	TAATGATTCT	TGCAGATGT	G TTTTTCCGG/	A TACAAAAAC	A AATGATAAA	2520
ATTGCAGCGC	CAGGCACCTT	TCAAAGCAG	G GAGACCTGT	A CCGCGTCGA	A AATTTCAGCC	2580
AGTTAATATC	ATTGTCTGAA	CCAGGCACT	T TGCCCGGGC	a ggagaagga	G TTGTGGCGGT	2640
CTCAGCCCGG	AACAATTTGA	AAACCATAA	T CTCGCTTAG	G GCCGTGTCC	A CATTACGTGG	2700
GTAGGATCAC	TCCTGGATTI	TCTCTTTTT	G GACATTGAC	G TCTCCATTG	G TTTAAACACG	2760
GCAATGGAGA	CTGCGGTGAA	A AAGAGTTAA	T TCCCGGAGT	G ACTGGCTGG	A TGCCAATCAA	2820
TGATCGGAAG	CATGCCAAAC	TGTGAACGG	A GATGGATGC	C GCCAAATCA	T GATCGATTCA	2880
GATGCCATAT	TTGCAATATC	C GCGTTAATC	G TCAGTTCAG	С		2920

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

-100-

(A) LENGTH: 1678 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GGTAAGGAAG	TTATATATAT	GAGCAACTAT	ACATCTTAGA	TGTATGATAA	AGAAAAAGAT	60
AACAGTTCTT	TAGAATATGT	ATATTGAAGA	GAATGCAATA	GCATGGTTTA	TATAAATTAC	120
GCATAAAAAT	AAGCATATGT	AAGCATTTTG	GTTTGCTTTT	TTTAACCTGC	CACCGCAATG	180
AATGCTTTTT	TTATGTTAAT	GTGCGTTATG	AAACTAAATG	CAAGAAACAT	ATTTAAAGGA	240
TTAATATCGT	TCTCTCACAG	ACTCCGTTTA	CTTATTCAAG	AATATAATTT	AATTTATAGT	300
GAGCTTATTA	TGAATATGAA	CAATCCATTA	GAGGKTCTTG	GGCATGTATC	CTGGCTCKGG	360
GGCCAGTTCC	CCATTACACA	GAAACYGGCC	AGTTTCTTTG	TTTGCAATAA	ATGTATTACC	420
TGCAATACGG	GGCTAACCAA	TATGCTTTAT	TAACCCGGGG	ATAATTACCC	TGTTGCATAT	480
TGTAGTTGGG	GCTAATTTAA	GTTTAGAAAA	TGAAATTAAA	TATCCTAATG	ATGTTACCTC	540
ATTAGTCGCA	GAAGACTGGA	CTTCAGGTGA	TCGTAAAKGG	TYCATTGACT	GGATTGCTCC	600
TTTCGGGGAT	AACGGTGCCC	TGTACAAATA	TATGGGAAAA	AAATTCCCTG	ATGAACTATT	660
CCGAGCCATC	AGGGTGGATY	CCAAAACTCA	TGTTGGTAAA	GTATCAGAAT	TTCACGGAGG	720
TAAAATTGAT	AAACAGTTAG	CGAATAAAAT	TTTTAAACAA	TATCACCACG	AGTTAATAAC	780
TGAAGTAAAA	AACAAGACAG	ATTTCAATTT	TTCATTAACA	GGTTAAGAGG	TAATTAAATG	840
CCAACAATAA	CCACTGCACA	AATTAAAAGC	ACACTACAGT	CTGCAAAGCA	ATCCGCTGCA	900
AATAAATTGC	ACTCAGCAGG	ACAAAGCACG	AAAGATGCAT	TAAAAAAAGC	AGCAGAGCAA	960
ACCCGCAATG	GGGGAAAACA	GACTCATTTT	TACTTATCCC	TAAAGATTAT	AAAGGACAGG	1020
GTTCAAGCCT	TAATGACCTT	GTCAGGACGG	CAGATGAACT	GGGAATTGAA	GTCCAGTATG	1080
ATGAAAAGAA	TGGCACGGCG	ATTACTAAAC	AGGTATTCGG	CACAGCAGAG	AAACTCATTG	1140
GCCTCACCGA	ACGGGGAGTG	ACTATCTTTG	CACCACAATT	AGACAAATTA	CTGCAAAAGT	1200
ATCAAAAAGC	GGGTAATAAA	TTAGGCGGCA	GTGCTGAAAA	TATAGGTGAT	AACTTAGGAA	1260
AGGCAGGCAG	TGTACTGTCA	ACGTTTCAAA	ATTTTCTGGG	TACTGCACTT	TCCTCAATGA	1320
AAATAGACGA	ACTGATAAAG	AAACAAAAAT	CTGGTAGCAA	TGTCAGTTCT	TCTGAACTGG	1380
CAAAAGCGAG	TATTGAGCTA	ATCAACCAAC	TCGTGGACAC	AGCTGCCAGC	ATTAATAATA	1440
ATGTTAACTC	ATTTTCTCAA	CAACTCAATA	AGCTGGGAAG	TGTATTATCC	AATACAAAGC	1500
ACCTGAACGG	TGTTGGTAAT	AAGTTACAGA	ATTTACCTAA	CCTTGGATAA	TATCGGTGCA	1560
GGGTTAGATA	CTGTATCGGG	KATTTTATCT	GCGRTTTCAG	CAAGCTTCAT	TCTGAGSCAT	1620

-101-

GCAGATGCAG ATACCGGRAC TAAAGCTGCC AGCAGGTGTT GGATTNACCA ACGGAANT 1678

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2676 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

AAGGATTACT TTGGAATCTG ACAACAAAGT TACTATGAAA AAGAACTAAC AAAGTTATAT 60 AATGACGCTA AAAATGCTTT GAAAGATGTG CAATCTAAAG CAAATAGGTT AATTTCTGAT 120 AATAAGANAA AACATAAGAG TGAACTAAAA AACATTTCTT ATGAATTCCA ATCAACTAAT 180 CTCAATGGCA AAGATACTGC GTATATATTG GATGTARAAA GAAATCTAGA AAGTAAAATT 240 GAGAATACTT CAAACGAATG AGTGTAATGA AATAAGAAAA CTAACCGACC AGATTGCAAT 300 AATTAGTGAT AGTACCACTT CTGAAAATTT ATCATCGGCT CAAGTAACTG AAGCAATCGA 360 AACTGAACTT GAACATTTAC GAGACCAACA AGCAAATAAC GCAGAGTTAA TACTACTTGG 420 CATGGCTCTT TCTGTAGTAC ATCATGNATT TAATGGTAAT ATTAGGGCAA TTAGAAGTGC 480 GCTAAGGGAA TTAAAAGCAT GGGCTGACAG AAATCCTAAG CTTGATATTA TATACCAAAA 540 AATCAGAACT AGTTTTGATC ACTTAGATGG TTATTTAAAA ACCTTTACAC CATTGACAAG 600 ACGTTTAAGT CGCTCTMAAA CCAATATAAC TGGAACTGCC ATTTTAGAAT TTATCAGAGA 660 TGTATTCGAT GATCGTCTTG AGAAAGAAGA AATTGAATTA TTCACTACCT CAAAGTTTGT 720 TAATCAAGAA ATTGTAACTT ACACATCAAC CATTTACCCT GTCTTTATAA ATCTAATTGA 780 TAACGCAATA TACTGGCTTG GGAAAACAAC TGGAGAAAAA AGACTTATAC TTGATGCKAC 840 TGAAACAGGA TTTGTTATTG GTGATACTGG TCCCGGTGTT TCAACTAGAG ATCGAGATAT 900 AATATTTGAT ATGGGATTTA CACGAAAAAC AGGAGGGCGT GGAATGGGAT TATTCATTTC 960 CAAAGAGTGT TTATCTCGAG ATGGATTTAC TATAAGATTG GATGATTACA CTCCTGAACA 1020 GGGTGCTTTC TTTATTATTG AGCCATCAGA AGAAACAAGT GAATAGCGGA TATAAATAAA 1080 TGACAAGCTC TACTGATTTN CATAAACTTT CTGAAGACTG CGTTCGCCGT TTTTTACATT 1140 CTGTAGTTGC TGTAGATGAC AATATGTCTT TTGGAGCTGG TAGTGATACT TTCCCTACAG 1200 ACGAAGATAT TAATGCTTTA GTTGATCCCG ACGATGATCC TACACCAATA ATAACAGCAT 1260 CAGCATCCCC AAGGATAGAA TCAACTAAAT CAAAAGCAAA GGTAAAAAAC CATCCTTTTG 1320 ATTACCAAGC TCTAGCAGAA GCTTTCGCCA AAGATGGTAT TGCTTGTTGC GGATTATTAG 1380 CTAAGGAAGG TGCGAATAAG CGGGGAAATT CTTCTCGGCT GACTCAGTCA TTTCATTTCT 1440 -TCATGTTTGA GCCGATTTTT TCTCCCGTAA ATGCCTTGAA TCAGCCTATT TAGACCGTTT 1500

-102-

CTTCGCCATT	TAAGGCGTTA	TCCCCAGTTT	TTAGTGAGAT	CTCTCCCACT	GACGTATCAT	1560
TGGTCCGCC	CGAAACAGGT	TGCCCAGCCT	GAATAACATC	GCCAGTTGGT	TATCGTTTTT	1620
CAGCAACCCC	TTGTATCTGG	CTTTCACGAA	GCCGAACTGT	CGCTTGATGA	TGCGAAATGG	1680
STGCTCCACC	CTGGCCCGGA	TGCTGGCTTT	CATGTATTCG	ATGTTGATGG	CCGTTTTGTT	1740
CTTGCGTGGA	TGCTGTTTCA	AGGTTCTTAC	CTTGCCGGGG	CGCTCGGCGA	TCAGCCAGTC	1800
CACATCCACC	TCGGCCAGCT	CCTCGCGCTG	TGGCGCCCCT	TGGTAGCCGG	CATCGGCTGA	1860
GACAAATTGC	TCCTCTCCAT	GCAGCAGATT	ACCCAGCTGA	TTGAGGTCAT	GCTCGTTGGC	1920
CGCGGTGGTG	ACCAGGCTGT	GGGTCAGGCC	ACTCTTGGCA	TCGACACCAA	TGTGGGCCTT	1980
CATGCCAAAG	TGCCACTGAT	TGCCTTTCTT	GGTCTGATGC	ATCTCCGGAT	CGCGTTGCTG	2040
CTCTTTGTTC	TTGGTCGAGC	TGGGTGCCTC	AATGATGGTG	GCATCGACCA	AGGTGCCTTG	2100
AGTCATCATG	ACGCCTGCTT	CGGCCAGCCA	GCGATTGATG	GTCTTGAACA	ATTGGCGGGC	2160
CAGTTGATGC	TGCTCCAGCA	GGTGGCGGAA	ATTCATGATG	GTGGTGCGGT	CCGGCAAGGC	2220
GCTATCCAGG	GATAACCGGG	CAAACAGACG	CATGGAGGCG	ATTTCGTACA	GAGCATCTTC	2280
CATCGCGCCA	TCGCTCAGGT	TGTACCAATG	CTGCATGCAG	TGAATGCGTA	GCATGGTTTC	2340
CAGCGGATAA	GGTCGCCGGC	CATTACCAGC	CTTGGGGTAA	AACGGCTCGA	TGACTTCCAC	2400
CATGTTTTGC	CATGGCAGAA	TCTGCTCCAT	GCGGGACAAG	AAAATCTCTT	TTCTGGTCTG	2460
ACGGCGCTTA	CTGCTGAATT	CACTGTCGGC	GAAGGTAAGT	TGATGACTCA	TGATGAACCC	2520
TGTTCTATGG	CTCCAGATGA	CAAACATGAT	CTCATATCAG	GGACTTGTTC	GCACCTTCCC	2580
TAAGAGTTTT	AATGTTTGAA	GAAAGAGATA	TAATTACAGC	ATCATCCCAC	AAAGCAGATA	2640
TTACAATACC	TTGACTGGGN	TATTGCCAAG	CGGATA			2676

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1485 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

CTGTA 60	AGGSCCTG	GAGACCCGAA	TACGGGCATT	TTCCCGTGGA	TCCGGNTCTT	AAATTTGTCC
GGGGC 120	ATGGCGGG	TGGTCGCTGT	AGTAAACCAG	CTGGGGGCTC	GAGAGGCATC	TTTGCGACCG
TGTGC 180	CTGGGTGT	CGGCTGGGAC	SAGCCGGTGC	ATGNCACTGG	GGTGATTATA	TGTGCTTGCC
AACGT 240	GAGAGAAC	TATTGAGGGA	CAGTAGCCCG	ATCACGCAGT	TTCCGCTGAT	CGGGGACCCT
CGACA 300	GATGCCGA	TGATAATGCG	CCAAACGGTT	CTGAGCTACT	ATCCTGGCGT	TTCAGGGAAA
CCTGA 360	CAGTACCT	GACCATGGAG	GAAACTATAT	TTCTCAGAGC	CGGGTATCGT	TTACGTTCGC

-103-

ACGCCCGCTA	CCGTAATGAT	TACAGCAGTC	GGGAAAAAGA	GATGTATACC	GTTACGCTGA	420
ATAAAAACGT	GGCGGACTGG	AACACCTCTT	TTAACCTGCA	GTACAGCCGT	CAGACATACT	480
GGGACATACG	GAAAACGGAC	TATTATACGG	TGAGCGTCAA	CCGCTACTTT	AATGTTTTCG	540
GACTGCAGGG	TGTGGCGGTT	GGATTGTCAG	CCTCAAGGTC	TAAATATCTG	GGGCGTGATA	600
ACRRTTCTGC	TTACCTGCGT	ATATCCGTGC	CGCTGGGGAC	GGGGACAGCG	AGCTACAGTG	660
GCAGTATGAG	TAATGACCGT	TATGTGAATA	TGGCCGGCTA	CACTGACACG	TTCAATGACG	720
GTCTGGACAG	CTACAGCCTG	AACGCCGGCC	TTAACAGTGG	CGGTGGACTG	ACATCGCAAC	780
GTCAGATTAA	TGCCTATTAC	AGTCATCGTA	GTCCGCTGGC	AAATTTGTCC	GCGAATATTG	840
CATCCCTGCA	GAAAGGATAT	ACGTCTTTCG	GCGTCAGTGC	TTCCGGTGGG	GCAACAATTA	900
CCGGAAAAGG	TGCGGCGTTA	CATGCAGGGG	GAATGTCCGG	TGGAACACGT	CTTCTTGTTG	960
ACACGGATGG	TGTGGGAGGT	GTACCGGTTG	ATGGCGGGCA	GGTGGTGACA	AATCGCTGGG	1020
GAACGGGCGT	GGTGACTGAC	ATCAGCAGTT	ATTACCGGAA	TACAACCTCT	GTTGACCTGA	1080
AGCGCTTACC	GGATGATGTG	GAAGCAACCC	GTTCTGTTGT	GGAATCGGCG	CTGACAGAAG	1140
GTGCCATTGG	TTACCGGAAA	TTCAGCGTGC	TTAAAGGGAA	ACGTCTGTTT	GCAATACTGC	1200
GTCTTGCTGA	TGGCTCTCAG	CCCCCGTTTG	GTGCCAGTGT	AACCAGTGAA	AAAGGCCGGG	1260
AACTGGGCAT	GGTGGCCGAC	GAAGGCCTTG	CCTGGCTGAG	TGGCGTGACG	CCGGGGGAAA	1320
CCCTGTCGGT	AAACTGGGAT	GGAAAAATAC	AGTGTCAGGT	AAATGTACCG	GAGACAGCAA	1380
TATCTGACCA	GCAGTTATTG	CTTCCCTGTA	CGCCTCAGAA	ATAAATGAAA	GTCCGGAATA	1440
TTAACGGCTG	ATTGAATTGC	GGTTTATGCC	ATTTTCCCGG	ACCAA		1485

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22671 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTACCAATTT	CATCGTCCGG	TACATCCTCC	AGAACATCTC	GCAATAAACT	CTCGTCTGCC	60
TCATTCCATG	CCACACCAGC	ATTTGGGAAA	CGAGGATCGA	TCTCTCTTTC	CTTCTTCTCC	120
TTCTTACTTT	GCTCTTTTCG	GGATGATACA	GATACGACAG	AACGTTCTTT	TACCGCTGTA	180
ATTGCCATAA	CTGCATTGAG	CAGAGATCTG	CGCTCCACAT	CGTTCAGCAT	TTTTCCTTCA	240
CAGATCAAAT	CATTCAGGAT	GTCAATGACT	AGATTCAGAC	TTTCTTCTGT	TAGCTTCATA	300
TTTCAGACCT	TGAAGTATGT	AGATAATCAG	CACAATTACT	AATGTGATAA	ATATCAGAAG	360 -
ATAATTTACA	GGTAAACCGG	AAAATACATC	TGAAGAATAA	AGGCCTCAGC	TTAACGTTTC	420

AGCCAGTTTG	TGAGCTGATT	GAGGTACGGC	GATGACATTA	ACGGGAATTA	CTCCCCTATA	480
GCTCTGAGCT	TATTTTTCAC	CCTGGCAACA	TATGGTGGCT	ACTGCGCATG	GTTTTGGAGT	540
AGATATCTTA	CTACTCGTAG	AATTGTGCTT	ACTGGTCAGG	CCAGCGCACA	GGCATTCCGT	600
GCAATCAATA	GAACACTGGT	TTTTTAGTCT	TCCGTTACCC	ATCAGGATGT	TAGTGCAGAT	660
TCCGGTGTAT	TCGATCAGTT	GTTCGGCGAA	TCAGCGATCG	ATCACGATGC	GATTTCGTAT	720
GTTAGGGATG	CTGGTATGAT	TACTCGCTGA	AAAATAATGT	GAAAAGGCAG	TTTTTCTTTA	780
GACATTTAGC	TCATTCATGC	TGTTGTTTTA	CGTTTTGCTG	TCGTGTGCAG	GATTATCTTT	840
TCGTTACGGG	ACGATTCATT	CCGTTTTAAT	CAGGAGCTAT	TGGCGTTGCT	CATTGGTGGG	900
ATGCCGTAAA	GTTTTACCGC	GGCGATTAAT	GATGTGAAGT	CAATCCAAAT	CAACGGAGAT	960
CTCTCATCAT	GAATCAACCA	ATACACAATG	ATTACTGGTT	ATCCCGTTTT	GAAAGTATTC	1020
TCAACAGTGC	CCTGGTGCAA	CACCGTGCCG	TCTCGTTAAT	CTGGGTGGAT	TTACGTTTCC	1080
CTGAGCATAT	GCCTGTCACC	ATCATGGATC	CCGATCCGGA	TTCAGCGGTG	ATTTCTCGTT	1140
TTTTCGAATC	CCTGAAAGCC	AAAATTCAGG	CTTACCAGCG	GAAAAAACGA	CGTACCAACA	1200
AGCGTGTGCG	TGCAACCACC	CTGCATTATT	TCTGGTGTCG	GGAGTTTGGC	AAGGAAAAAG	1260
GCAGGAAACA	TTATCACGTG	ATATTACTGC	TCAACAAAGA	TACCTGGTGC	TCGCCAGGGG	1320
ATTTCACCGT	TCCTTCTTCG	CTGGCGACGC	TGATCCAACT	GGCATGGTGT	AGCGCTCTGC	1380
ATCTTGAGCC	CTGGCAGGGT	AATGGACTGG	TTCATTTTTC	CAGGCGGACG	CYTTTCCGTA	1440
AACCGGTATC	ATCTGATGCT	CGCCCTTCTT	CCGATGATAC	GCCTTTGTCG	GGTGGATGTT	1500
CTGAAACCAG	GAAGGCTTCA	GACAAAAAGC	CGGGTGAAGC	CGCTGTTCTC	TGGATCAAGC	1560
GTGGTGATGT	GGAAGCGATG	CAGAAAGCCA	TGGAGAGAGC	CCGTTATCTC	GTGAAGTATG	1620
AGACGAAGCA	GCATGACGGT	TCTGGTCAAC	GTAATTATGG	TTGCAGCCGT	GGAGCGGGC	1680
GTCTACTGGA	TGGCAGGTGA	ACCCTGTAAA	ACGGCATCCG	GTGCCAGAGT	ATATGTCACA	1740
GTAAGGGCGT	GGTTGATGCC	CTTAGCTCGT	TTTCTGAAAA	AGTCGTCCTG	AAGTCATGTG	1800
TCACGAACGG	TGCAATAGTG	ATCCACACCC	AACGCCTGAA	ATCAGATCCA	GGGGGTAATC	1860
TGCTCTCCTG	ATTCAGGAGA	GYTTATGGTC	ACTTTTGAGA	CAGTTATGGA	AATTAAAATC	1920
CTGCACAAGC	AGGGAATGAG	TAGCCGGGCG	ATTGCCAGAG	AACTGGGGAT	CTCCCGCAAT	1980
ACGGTTAAAC	GTTATTTGCA	GGCAAAATCT	GAGCCGCCAA	AATATACGCC	GCGACCTGCT	2040
GTTGCTTCAC	TCCTGGATGA	ATACCGGGAT	TATATTCGTC	AACGCATCGC	CGATGCTCAT	2100
CCTTACAAAA	. TCCCGGCAAC	GGTAATCGCT	CGAGAGATCA	GAGACCAGGG	ATATCGTGGC	2160
GGAATGACCA	TTCTCAGGGC	ATTCATTCGT	TCTCTCTCGG	TTCCTCAGGA	GCAGGAGCCT	2220
GCCGTTCGGT	TCGAAACTGA	ACCCGGACGA	CAGATGCAGG	TTGACTGGGG	CACTATGCGT	2280 -
AATGGTCGCT	CACCGCTTCA	CGTGTTCGTT	GCTGTTCTCG	GATACAGCCG	AATGCTGTAC	2340

-105-

ATCGAATTCA	CTGACAATAT	GCGTTATGAC	ACGCTGGAGA	CCTGCCATCG	TAATGCGTTC	2400
CGCTTCTTTG	GTGGTGTGCC	GCGCGAAGTG	TTGTATGACA	ATATGAAAAC	TGTGGTTCTG	2460
CAACGTGACG	CATATCAGAC	CGGTCAGCAC	CGGTTCCATC	CTTCGTTGTG	GCAGTTCGGC	2520
AAGGAGATGG	GCTTCTCTCC	CCGACTGTGT	CGCCCCTTCA	GGGCACAGAC	TAAAGGTAAG	2580
GTGGAACGGA	TGGTGCAGTA	CACCOGTAAC	AGTTTTTACA	TCCCACTAAT	GACTCGCCTG	2640
CGACCGATGG	GGATCACTGT	CGATGTTGAA	ACAGCCAGCC	GCCACGGTCT	GCGCTGGCTG	2700
CACGATGTCG	CTAACCAACG	AAAGCATGAA	ACAATCCAGG	CCCGTCCCTG	CGATCGCTGG	2760
CTCGAAGAGC	AGCAGTCCAT	GCTGGCACTG	CCTCCGGAGA	AAAAAGAGTA	TGACGTGCAT	2820
CCTGGTGAAA	ATCTGGTGAA	CTTCGACAAA	CACCCCCTGC	ATCATCCACT	CTCCATTTAC	2889
GACTCATTCT	GCAGAGGAGT	GGCGTGATGA	TGGAACTGCA	ACATCAACGA	CTGATGGCGC	2940
TCGCCGGGCA	GTTGCAACTG	GAAAGCCTTA	TAAGCGCAGC	GCCTGCGCTG	TCACAACAGG	3000
CAGTAGACCA	GGAATGGAGT	TATATGGACT	TCCTGGAGCA	TCTGCTTCAT	GAAGAAAAC	3060
TGGCACGTCA	TCAACGTAAA	CAGGCGATGT	ATACCCGAAT	GGCAGCCTTC	CCGGCGGTGA	3120
AAACGTTCGA	AGAGTATGAC	TTCACATTCG	CCACCGGAGC	ACCGCAGAAG	CAACTCCAGT	3180
CGTTACGCTC	ACTCAGCTTC	ATAGAACGTA	ATGAAAATAT	CGTATTACTG	GGACCATCAG	3240
GTGTGGGGAA	AACCCATCTG	GCAATAGCGA	TGGGCTATGA	AGCAGTCCGT	GCAGGTATCA	3300
AAGTTCGCTT	CACAACAGCA	GCAGATCTGT	TACTICAGTT	ATCTACGGCA	CAACGTCAGG	3360
GCCGTTATAA	AACGACGCTT	CAGCGTGGAG	TAATGGCCCC	CCGCCTGCTC	ATCATTGATG	3420
AAATAGGCTA	. TCTGCCGTTC	AGTCAGGAAG	AAGCAAAACT	GITCTTCCAG	GTCATTGCTA	3480
AACGTTACGA	AAAGAGCGCA	ATGATCCTGA	CATCCAATCT	GCCGTTCGGG	CAGTGGGATC	3540
AAACGTTCGC	CGGTGATGCA	GCCCTGACCT	CAGCGATGCT	GGACCGTATC	TTACACCACT	3600
CACATGTCGT	TCAAATCAAA	GGAGAAAGCT	ATCGACTCAG	ACAGAAACGA	AAGGCCGGGG	3660
TTATAGCAGA	AGCTAATCCI	GAGTAAAACG	GTGGATCAAT	ATTGGGCCGT	TGGTGGAGAT	3720
ATAAGTGGAT	CACTTTTCAT	CCGTCGTTGA	. CATCATGCAA	TGTTTCCTGG	TTTTCATGCA	3780
TCCATCATT	GTCGCTGCGA	TGCCAGACTI	CTGGATGCAC	ACATGTTGTT	TTACTTTTGT	3840
CAGCATCATA	AATGCGCCGG	GACTGGTGAA	TGGAGATAAG	CCATTTTATT	ATCGACGTCA	3900
GCGAACATAG	TCACCATGC	G GGTATGTTCC	TGAACTGAAC	AATAAGTTTT	GCGCTGATTA	3960
CAGTATGTG	A AGGAGGTCC	S TTACAATGAA	A TTCCGCTTAT	ATGCAATCCT	TGCAGACATC	4020
CCACCACTT	C CCAGCTGAT	TAACCTACAC	ATTATTTCCT	· AGTGAGCTTG	CATATCTCAT	4(180
TGACGACTT	A TATGAAAGT	A CCCAACTTC	C GCTGGAGCTC	C ATTTTTAATA	CTGTACTGGC	4140
AACGCTCTC	A CTCTCCTGT	C AGTCACTGG	r TGACGTTSTI	CATCCTCACA	CCAACATGCC	4200
GGAACCCTG	C TCACTTTAT	C TGTTGGCAA	r cgcagagcc	A GGCGCGGGAA	AAACAACGAT	4260

-106-

AAACAGACTĞ	GTGATGAACC	CCTGTTACGA	ATTTGCCGAT	CGACTCATTC	AACAATACGA	4320
AGAGAGAAAC	AAAGATTATA	AGACTGAACT	ACAGATCTGG	AATACCCGGC	AGAAAGCGCT	4380
TGCTGCCAAT	TTAAGAAAGG	CTGTTAACGG	GGGGTATCCG	GGGGAACAGG	AAGAAGAGGC	4440
GCTGCGTAAT	CACGAAAGAA	ATAAACCGAC	ACGTCCGGTT	CGACCGAATT	TTATCTATGA	4500
AGATGTTTCG	CTTAAAGCGC	TTGTGGAAGG	GCTCAATGAA	CATCCTGAGG	CAGGGGTTAT	4560
TTCTGACGAG	GCGGTCACTT	TTTTCAGAAG	CTATCTGAAA	AATTATCCGG	GCCTGTTGAA	4620
TAAAGCATGG	AGTGGACAAC	CGTTTGATTT	TGGACGGGCT	GACGAGAAAT	ACCATATCAC	4680
GCCACGTCTG	ACATTTTCGT	TAATGTCCCA	GCCGGATGTC	TTTACGAATT	ATATAAATAA	4740
AAATGACGTA	CTGGCGTGGG	GAAGCGGATT	TCTTTCCCGG	TTTCTGTTCA	GTCAGACCGG	4800
AAGTCCTTCC	CGGGTACGGG	ATTATACGAG	AGGCGAGTTC	AGAACAAAAC	CAACCCTGGA	4860
GAAGTTTCAT	AAAAAGATTA	ACGGATTTCT	GTTAAGCCAT	AACATTAATT	CCCCCGGTAT	4920
GAGCACCGAA	AGGAAAACAT	TAAAACTTGC	AAAGAAAGCG	TTGGGGGAGT	GGCAGGAAAA	4980
CCAGATTAAG	ATTGAAAGAA	AAGCGCTTGC	AGGAGGGGAG	TGGGAACACA	TCAGAGATAT	5040
TGTTCTGAAA	GCAGGTTCTA	ATATACTGAG	GATAGCTGGA	ATATTCACCT	GCTATTGCTA	5100
TAAAGATGCT	GAGGAAATTG	AATCAATTGC	GCTTTTTAAA	GCTATGCATC	TCATGGGCTG	5160
GTATCTGGAG	GAGGCGAGCA	CAATATTTTA	TCCCATGTCT	GCACGATGCC	AGTTTGAACA	5220
GGATGCCTGT	GAACTGTATG	CATGGATTAT	GACCCGAATA	AGGCAGAATA	ATTGGCGTGC	5280
TATCAGGAAA	ACAGACATTG	AAAGATATGG	TCCCAATCGT	CTGAGAAGAG	CAGAAAAACT	5340
TACACCTGTA	CTCAATCAGT	TAATCGYTCA	GAATTATTTC	CGTATCATCM	AAGATGCGAT	5400
CGCATCAGGC	ACTTTATGTT	TCTGCTCTTG	ATAATAATGG	TTACATCCTT	CCTTTCGGCG	5460
CAATGTCTTA	CGAACCGTTT	GATATTGTTC	CACCCCAGTA	TAACCATAAT	GCGAAAACAT	5520
ATTCCGTTGT	TATTCCACCG	GCATTAATTC	AGTCATTTAC	ACCTGATTCC	TCAGCTTACA	5580
CCTTATTTTA	AAACAATTTT	GTGAGTAGAA	AACGAAAATC	ATAATCCTTC	GAATGAAGGT	5640
TAATGATAAG	GTGTGTTGCA	TATCCTGCAC	CTGTGCAAAT	ATTCACCAAT	CATTGGGTGT	5700
GAATGAAAAT	TTCTCTGAAA	AAATCGCTAT	GGTAGCAACA	GTAGCAGCAC	ATACACTACA	5760
TCTGTGATTT	GGTTTTGTTT	TCATAATGAC	CTGCTGTCAG	AGCTGATTGA	ATGCTGGGAT	5820
GTGCGCACTG	GTGGAAGAGT	GGTTTTCGTT	TCAGATATAA	CGAAAGGTAA	TCGAAAGATT	5880
GTTTTAAACA	TGGATTAAAG	CTAATAATTA	ACCATATTGT	GTGAGTTTTT	ATATATAAGT	5940
TTGTTTGATT	CTTGCCGTGA	TGAGTGCTGG	GGTATATGAC	GATGTCGCTC	TCTTTCTGAA	6000
TAACAAATTA	TTATTCGTCT	GTTACTGATA	. AGGGATGCGA	TTCATGTTTT	AATAGAGGGT	6060
TGAAGAAAAT	TAATTTGATA	TTTTTTTGTA	AGGGAATGGA	ACTGTCCGGA	ATATGTTCAG	6120
AACGGCGGAT	. ჀჀႺႻႺႣႻႻ Ⴅ	CATTCATTAA	ACATGGATAA	στττααττττ	GGTTTATTAC	6180

ATATTATTAT	CTCACTCCCT	TTTTCATACA	ATCTCTATTG	TTATTTACTT	CCIGICITIA	6240
CTCACTCTCT	ATCTTTACGA	TTATATTCAC	TCTATCGTTA	CACATTCCAT	TAGTATTACT	6300
CTTGTTATCG	TATTCATTCC	ATCCCTCAAT	CATATTTACT	GTAACTCATA	TGATGTTCAG	6360
GTAAGTTATT	CTCTACCATT	CTACTGATGA	TATCCATCTG	TTCTCATTTT	CAGTGAAACA	6420
GCAATTGATT	TTAATCTTAT	CCATCATGAA	CTGTATTTGC	TTAACAATGA	TTGTTTATCT	6480
GAAGTGTTTT	AACTATTCTG	GTTGGAAACA	ATTTCTCTGT	CATCACAGAT	TAACTGAATG	6540
TTTACTCTTT	GATAAGGTAT	CCATGATTCC	GTCATGTTTA	ACAGCGCAGG	ATAAACAACA	6600
GAATTAACAG	AGTGAATTTC	TGATTATATT	TGTTGCCGGT	TGTATTGTTT	AAGGTACTGG	6660
GTGAAAATTA	TTCATCCATG	GTATGTTGTC	TTATGCTATC	GTGTGTCGTT	AACGTTCATA	6720
TCCTGGAGAA	CAGATTGAAT	GAGCGCATAT	AAGTTTATTG	CATTGGCCTT	GTACACGGTT	6780
TTTACAACCA	CTGAGAGCAA	GTTTGTAGTT	TATGATGTGA	TTGGTCGCAA	TATGTTTCTT	6840
AACCTTCTGG	TCGTGGTGTT	TTATCGCGTA	TTTTGCAGTA	TTTCGTGATG	TTTTATTGAG	6900
TCTGTATTTT	CTTTACTCCT	CGTTTATCTC	ATCTCTTTAG	CTAATACCAT	CAGATAATCC	6960
ATTTCTTTCT	GCATAATGCT	GCGTATCGTT	AATAACCCGT	CGTATCCATT	CTGCTACAGC	7020
ATGCCTGATA	AATACCATCT	GTAAGTTATT	ACCGTTTTAG	ATCTGATTAT	GAGCGAAAGC	7080
ATTAATTCGT	TCACAGAGCT	TAAAACATCA	TTAACTTTCA	GGAGTCATCA	ACATGCCTAA	7140
ATCTTACACA	CCAAACTGGT	TTTTTACCGC	TTTACTTGAC	AATCACATCA	ATCAAATGAT	7200
GGCACGCTAT	TCCTGCCTGC	GGGCCTTACG	CATGGATTTC	TTCTACAGGA	AAGATACGCC	7260
CGATTTCTTA	CAACCTGATC	ATCGCTGGCT	TGAATTGCAG	TTGCGTATGA	TGCTGGAGCA	7320
GGTGGAACAA	TTTGAAAATA	. TCGTTGGCT1	CTTCTGGGTG	ATTGAATGGA	CGGCTGATCA	7380
TGGTTTTCAT	GCGCATGCGG	TTTTCTGGAT	CGATCGTCAG	G AGGGTTAAAA	AAATATATCC	7440
CTTTGCGGAG	CGGATTACGG	AATGCTGGC	GTCTATTACO	CATAACAGCO	GTTCGGCACA	7500
CCGCTGCACA	TATCAGCCGC	: ATTATACATA	A CAACATCAAC	ATTCCTGTGC	GCCACAACGA	7560
TCCTGAAAGG	CATCGATAATA	TTCGCGGTG	C CCTGCATTAT	CTGGCGAAA	AAGAGCAAAA	7620
AGACGGGCT	G TGTGCTTACC	GCTGCAATG	A AGTTCCTGA	A CGTCCTGCT	CAGGGCGTCC	7680
TCGTAAGCC	r cacttctga	A GCTTAAGGC	C TGAGCCTTC	G CTCCTGGAA	A CACTCCGTCG	7740
GTAAAAACT	r accgccttg <i>i</i>	A TTAATGATG	T GAACTGAAG	r caacggaga'	r cattcatcct	7800
GAACCTGCA'	r ccggtgttt	r gttccttgt	C TTCCCGTTC	T GCTTCGGTT	C TTCACTTATT	7860
CCATCAATC	T CATTCCGCA	A GCCATAACA	C GTCAGCTCA	T TCACGGGCA	G GACGCATTGT	7920
GGGCTGCGC.	A TAACGGAAC	A TATCTTATG	A ATGCTATTC	C TTATTTCGA	C TATAGCCTGG	7980
CACCCTTCT	G GCCATCTTA	T CAGAACAAA	G TCATCGGCG	T CCTTGAGCG	T GCGCTGCGTG	8040
AGCAGTCCG	G CTCACGGAT.	A CGGCGGATC	C TGCTTCGTC	T GCCGTGGGA	A CATGACAACG	8100

CCTTCAGCAG	CAGAAAGATC	TGGTTCGGTA	TGGACTTTAT	CGAAACCGTC	AGTGCGCTGA	8160
TGAATGCGAA	ACCCGGACGC	GACCTTTGCT	GGCTCCTGAC	CCGTCATCCG	GAAAAGCCGG	8220
AATACCACGT	GGTGCTGTGC	GTCAGACAGG	AGTATTTCGA	CGGCCCCGAA	CTGGATCGGT	8280
TGATACTGGA	TGCCTGGAGT	AATGTGCTGG	GTTTCGCGTC	ACCAGGTGAA	GCAAAGCCGT	8340
ACCAGAAGCA	GATCACCCGG	GATGTGGTAC	TGGATCGCCG	GTCACCGGAC	TGCGAAGCCC	8400
TGTTTAAGGA	CCTTATCTGG	GCGTTCAGTG	ATTTCGCCCG	CGATCGCCGT	GGAGTGTGCG	8460
ATCCGGAAGC	CCGTTGCCTT	GCCGGCAATC	CCGGTTGGCA	GTGCTGAAAG	CAGCACGCCA	8520
TCCCATCCCC	CGTATTACCC	CATTCTTCAT	AAATCTCACT	GAGGACATTC	TGACCATGTT	8580
GACCACAACA	AGCCACGACA	GCGTATTGCT	GCGTGCCGAC	GATCCCCTGA	TCGACATGAA	8640
CTACATCACC	AGTTTCACCG	GCATGACCGA	TAAATGGTTT	TACAGGCTGA	TCAGTGAAGG	8700
GCATTTTCCT	AAACCCATCA	AACTGGGGCG	CAGCAGCCGC	TGGTACAAAA	GTGAAGTGGA	8760
GCAGTGGATG	CAACAACGAA	TTGAGGAATC	ACGAGGAGCA	GCAGCATGAA	ACGTGTTGTG	8820
ATGCCAGTAC	GTTGGCAATG	TGCAAAATGC	CAGCGCTGGT	ATTGTGGAAA	TCAGCCCTGT	8880
CCCTGGTGCT	GGCGACATTC	CCGCTTATCT	TTCCGCTGAC	ACCCTCCGGT	CAGCCAACTG	8940
TTAGTCATCA	TTTCCTGACT	GATTCGTCAT	TCCATTCTTA	TTGATTATAA	CTGGCATTAC	9000
ACCGGTGCTG	GCGTGCTTTC	CTGCGTGTCT	GCACCGGTTT	GACAAAATTC	AACAGGGTTT	9060
GAAAAGGAAC	ATTTCGTGCA	AATAACCGAA	GCCTTAATTT	CAGAGCCGGG	AGACATCCGG	9120
CGTTTTATTC	AACATGCTGT	TGACCACTGG	CCGCGTCTGC	TGGCAGTCCA	CTTCATACTC	9180
CATTCGACAG	AAGGAAACAT	CTACGGGCAA	CAGATTCATG	CATTCTGCAC	TTCCTTTTAT	9240
CGACAACTGC	ATGAACGTAT	TACTGAGAGC	AATCACACTG	CCAGTCCATC	ATCGTCGG T G	9300
GTATTACGCT	GGTTGCGGGA	ACAACATGGA	GGAGCAACAA	TTCGATGCCT	GTTGCTGCTC	9360
AGCCAGACGA	GTATTTGTCA	CCCGCGAGCC	AGTGTCACAG	TTGATGAACA	ATGTTCGCAA	9420
GTGGTGGATT	TACTGCAACA	TAGCTGGCAG	GTGATAAGTG	CTGGCGGACA	ATGCCGGGTG	9480
GAAAGGTGTT	TTCGGGTTGC	CCGGGGTGAT	ACATCCGGTC	AGTATGTTGC	GTTAAAAACA	9540
GTCGCATTGT	CTCTGGGGTT	ACCGGTTGTG	ACCGCCATTA	CCCATCGTCC	GGTACAGCGC	9600
TGTACATTGA	TTACAGCTCA	GTGAATCAGC	GCTTTCTGGC	TTTTCGTCGG	TCATTCTGTC	9660
AACGCCACGA	TGTTTGACCG	TTATGGGGAT	GCGGACGATT	CCCTGCACAG	CGTTGTTTCA	9720
CGGTGGTGGA	TGACGCAACA	CCGCTGTTAA	AAACAGTCGT	TCAGTCCTTT	GTGTTACCGG	9780
TTGTGACAAC	AATCAGTTGG	TAATGGACGT	GTGAACCATC	TGCGCTTCCG	TTGATTTTTA	9840
TGGACTGATA	AAGTTTTGCC	AGCTGAATCT	TTATACGGAA	TGCTCTTCAG	TATGCGTACA	9900
CGAATTGACT	ATCTGGCGGA	TAAATACTCT	TTTACCGAAC	GGAATGAATC	TCCACGCCTT	9960
CGCCGGCNCT	CCCACCATCT	TOTOCACCAC	TOTOCOCTO	CACACCCCC	ACCAGAAGAA	10020

-109-

80
4 O
00
60
20
80
40
00
660
520
680
740
300
360
920
980
040
100
160
220
280
340
400
460
520
.580
640
1700
1760
1820
1880
1940

TGACGGCATT (GCCGGAATGG	CCTGTCACAG	GGAGCGTGGG	CATCGACAAC	AGCGGGCAGA	12000
AGAATACCGG	TACGGGGCAG	TTALATGGTG	TCCTTTCCTT	TAATAATCCT	CTGGGGCTGG	12060
CTGACAACTG (GTTTGTCAGC	GGGGGACGGA	GCAGTGACTT	TTCGGTGTCA	CATGATGCGA	12120
GGAATTTTGC (CGCCGGTGTC	AGTCTGCCGT	ATGGCTATAC	CCTGGTGGAT	TACACGTATT	12180
CATGGAGTGA (CTACCTCAGC	ACCATTGATA	ACCGGGGCTG	GCGGTGGCGT	TCCACGGGAG	12240
ACCTGCAGAC '	TCACCGGCTG	GGACTGTCGC	ATGTCCTGTT	CCGTAACGGG	GACATGAAGA	12300
CAGCACTGAC	CGGAGGTCTG	CAGCACCGCA	TTATTCACAA	TTATCTGGAT	GATGTTCTGC	12360
TTCAGGGCAG	CAGCCGTAAA	CTCACTTCAT	TTTCTGTCGG	GCT GAATCAC	ACACACAAGT	12420
TTCTGGGTGG	TGTCGGAACA	CTGAATCCGG	TATTCACACG	GGGGATGCCC	TGGTTCGGCG	12480
CAGAAAGCGA	CCACGGGAAA	AGGGGAGACC	TGCCCGTAAA	TCAGTTCCGG	AAATGGTCGG	12540
TGAGTGCCAG	TTTTCAGCGC	CCCGTCACGG	ACAGGGTGTG	GTGGCTGACC	AGCGCTTATG	12600
CCCAGTGGTC	ACCGGACCGT	CTTCATGGTG	TGGAACAACT	GAGCCTCGGG	GGTGAGAGTT	12660
CAGTGCGTGG	CTTTAAGGAG	CAGTATATCT	CCGGTAATAA	CGGCGGTTAT	CTGCGAAATG	12720
AGCTGTCCTG	GTCTCTGTTC	TCCCTGCCAT	ATGTGGGGAC	AGTCCGTGCA	GTGACTGCAC	12780
TGGACGGCGG	CTGGCTGCAC	TCTGACAGAG	ATGACCCGTA	CTCGTCCGGC	ACGCTGTGGG	12840
GTGCTGCTGC	CGGGCTCAGC	ACCACCAGTG	GTCATGTTTC	CGGTTCGTTC	ACTGCCGGAC	12900
TGCCTCTGGT	TTACCCGGAC	TGGCTTGCCC	CTGACCATCT	CACGGTTTAC	TGGCGCGTTG	12960
CCGTCGCGTT	TTAAGGGATT	ATTACCATGC	ATCAGCCTCC	CGTTCGCTTC	ACTTACCGCC	13020
TGCTGAGTTA	CCTTATCAGT	ACGATTATCG	CCGGGCAGCC	GTTGTTACCG	GCTGTGGGGG	13080
CCGTCATCAC	CCCACAAAAC	GGGGCTGGAA	TGGATAAAGC	GGCAAATGGT	GTGCCGGTCG	13140
TGAACATTGC	CACGCCGAAC	GGGGCCGGGA	TTTCGCATAA	CCGGTTTACG	GATTACAACG	13200
TCGGGAAGGA	AGGGCTGATT	CTCAATAATG	CCACCGGTAA	GCTTAATCCG	ACGCAGCTTG	13260
GTGGACTGAT	ACAGAATAAC	CCGAACCTGA	AAGCGGGCGG	GGAAGCGAAG	GGTATCATCA	13320
ACGAAGTGAC	CGGCGGTAAC	CGTTCACTGT	TGCAGGGCTA	TACGGAAGTG	GCCGGCAAAG	13380
CGGCGAATGT	GATGGTTGCC	AACCCGTATG	GTATCACCTG	TGACGGCTGT	GGTTTTATCA	13440
ACACGCCGCA	CGCGACGCTC	ACCACAGGCA	AACCTGTGAT	GAATGCCGAC	GGCAGCCTGC	13500
AGGCGCTGGA	GGTGACTGAA	GGCAGTATCA	CCATCAATGG	CGCGGGCCTG	GACGGCACCC	13560
GGAGCGATGC	CGTATCCATT	ATTGCCCGTG	CAACGGAAGT	GAATGCCGCG	CTTCATGCGA	13620
AGGATTTAAC	TGTCACTGCA	GGCGCTAACC	GGATAACTGC	AGATGGTCGC	GTCAGTGCCC	13680
TGAAGGGCGA	AGGTGATGTG	CCGAAAGTTG	CCGTTGATAC	CGGCGCGCTC	GGTGGAATGT	13740
ACGCCAGGCG	TATTCATCTG	ACCTCCACTG	AAAGTGGTGT	CGGGGTTAAT	CTGGGTAACC	13800
TTTATGCCCG	CGAGGGCGAT	ATCATACTGA	. GCAGTGCCGG	AAAACTGGTC	CTGAAGAACA	13860

GCCTTGCCGG	CGGCAATACC	ACCGTAACCG	GAACGGATGT	CTCACTTTCA	GGGGATAACA	13920
AAGCCGGAGG	AAATCTCAGC	GTTACCGGGA	CAACGGGACT	GACACTGAAT	CAGCCCCGTC	13980
TGGTGACGGA	TAAAAATCTG	GTGCTGTCTT	CATCCGGGCA	GATTGTACAG	AACGGTGGTG	14040
AACTGACTGC	CGGACAGAAC	GCCATGCTCA	GTGCACAGCA	CCTGAACCAG	ACTTCCGGGA	14100
CCGTGAATGC	AGCTGAAAAT	GTCACCCTTA	CCACCACCAA	TGATACCACA	CTGAAAGGCC	14160
GCAGCGTTGC	CGGGAAAACA	CTCACTGTCA	GTTCCGGCAG	CCTGAACAAC	GGTGGGACAC	14220
TGGTTGCCGG	GCGCGATGCC	ACGGTGAAAA	CCGGGACATT	CAGTAATACC	GGTACCGTCC	14280
AGGGGAATGG	CCTGAAAGTT	ACCGCCACTG	ACCTGACCAG	CACCGGCAGT	ATTAAAAGTG	14340
GCAGCACACT	CGATATCAGC	GCCCGCAATG	CCACACTGTC	CGGTGATGCC	GGTGCAAAAG	14400
ACAGTGCCCG	CGTTACCGTC	AGCGGTACAC	TCGAAAACCG	CGGCAGACTT	GTCAGCGATG	14460
ACGTGCTGAC	GCTCAGTGCC	ACGCAGATAA	ACAACAGCGG	TACCCTCTCC	GGGGCAAAGG	14520
AACTTGTGGC	TTCTGCAGAC	ACACTGACCA	CCACAGAAAA	ATCGGTCACA	AACAGTGACG	14580
GTAACCTCAT	GCTGGACAGC	GCGTCTTCCA	CACTGGCGGG	TGAAACCAGT	GCGGGTGGCA	14640
CGGTGTCTGT	AAAAGGCAAC	AGTCTGAAGA	CCACGACCAC	TGCGCAGACG	CAGGGCAACA	14700
GTGTCAGCGT	GGATGTGCAG	AACGCACAGC	TTGACGGAAC	ACAGGCTGCC	AGAGACATCC	14760
TTACCCTGAA	. CGCCAGTGAA	AAGCTCACCC	ACAGCGGGAA	AAGCAGTGCC	CCGTCGCTCA	14820
GCCTCAGTGC	GCCGGAACTG	ACCAGCAGCG	GCGTACTTGT	TGGTTCCGCC	CTGAATACAC	14880
AGTCACAGAC	CCTGACCAAC	AGCGGTCTGT	TGCAGGGGGA	GGCCTCACTC	ACCGTTAACA	14940
CACAGAGGCT	TGATAATCAG	CAGAACGGCA	CGCTGTACAG	TGCTGCAGAC	CTGACGCTGG	15000
ATATACCGGA	A CATCCGCAAC	AGCGGGCTTA	1 TCACCGGTGA	TAATGGTTTA	ATGTTAAATG	15060
CTGTCTCCCT	CAGCAATCC	GGAAAAATCA	TCGCTGACAC	GCTGAGCGTC	AGGGCGACCA	15 1 20
CGCTGGATG	TGACGGCCTC	TTGCAGGGCC	CCGGTGCACT	GGCGCTTGCT	GGCGACACCC	15180
TCTCACAGGG	G TAGTCACGG	A CGCTGGCTGA	A CGGCGGACGA	CCTCTCCCTC	CGGGGCAAAA	15240
CACTGAATAG	C CGCAGGACCA	A CGCAGGGACA	A GAATATCACC	GTGCAGGCGG	ACAGATGGGC	15300
GAACAGTGG	r TCCGTGCTG	G CAACCGGTA	A CCTTACTGCT	TCGGCAACCG	GTCAGTTGAC	15360
CAGTACCGG	C GATATCATGA	A GCCAGGGTGA	A CACCACGCT	S AAAGCAGCCA	CCACGGACAA	15420
CCGGGGCAG'	T CTGCTTTCG	G CCGGCACGC	r ctcccttgat	GGAAACTCAC	TGGATAACAG	15480
CGGCACTGT	C CAGGGTGAC	C ATGTCACGA	T TCGCCAGAA	C AGTGTCACCA	ACAGTGGCAC	15540
GCTCACCGG	G ATCGCCGCG	C TGACGCTTG	C CGCCCGTAT	G GTATCCCCTC	AACCTGCGCT	15600
GATGAATAA	C GGAGGTTCA	T TGCTGACCA	G CGGCGATCT	G ACAATCACCO	G CAGGCAGTCT	15660
GGTAAACAG	C GGGGCGATC	C AGGCGGCTG	A CAGCCTGAC	r gcacgtctg	A CGGGTGAGCT	15720-
CGTCAGCAC	A GCGGGCAGC	A AAGTCACCT	C GAACGGTGA	A ATGGCGCTC	A GTGCACTGAA	15780

-112-

TTTAAGCAAC	AGCGGACAAT	GGATTGCAAA	AAATCTGACC	CTGAAGGCGA	ACTCACTGAC	15840
CAGTGCGGGT	GACATCACCG	GTGTGGATAC	TCTCACGCTC	ACGGTGAATC	AGACGCTGAA	15900
CAATCAGGCG	AACGGAAAAC	TGCTCAGTGC	AGGTGTGCTG	ACGUTGAAGG	CAGACAGTGT	15960
CACAAACGAC	GGGCAATTAC	AGGGAAATGC	CACCACCATC	ACGGCAGGAC	AACTCACAAA	16020
CGGCGGGCAT	CTGCAGGGCG	AAACGCTGAC	GCTGGCCGCC	TCCGGTGGCG	TGAACAACCG	16080
TTCCGGTGGT	GTTCTGATGA	GCCGGAATGC	ACTGAATGTC	AGTACTGCGA	CCCTGAGTAA	16140
CCAGGGCACG	ATACAGGGTG	GTGGCGGGGT	TTCCCTGAAC	GCCACTGACC	GTCTGCAGAA	16200
CGACGGCAAA	ATCCTCTCCG	GCAGTAACCT	CACGCTGACG	GCGCAGGTGC	TGGCGAACAC	16260
CGGCAGCGGA	CTGGTACAGG	CTGCCACCCT	GCTGCTGGAT	GTGGTGAATA	CTGTCAACGG	16320
CGGACGCGTA	CTTGCCACCG	GCAGTGCCGA	CGTTAAAGGA	ACCACGCTGA	ATAATACCGG	16380
TACGCTTCAG	GGTGCGGACC	TGCTGGTGAA	TTACCACACA	TTCAGCAACA	GCGGTACCCT	16440
GCTGGGAACC	TCCGGGCTTG	GCGTCAAGGG	CAGTTCACTG	CTGCAAAATG	GTACAGGGCG	16500
GCTGTACAGT	GCAGGCAACC	TGCTGCTTGA	CGCTCAGGAC	TTCAGTGGTC	AGGGGCAGGT	16560
GGTGGCCACC	GGTGATGTCA	CACTGAAACT	GATTGCTGCC	CTCACGAATT	ACGGTACCCT	16620
GGCCGCAGGG	AAAACCCTTT	CCGTCACGTC	GCAAAATGCC	ATCACCAACG	GCGGTGTCAT	16680
GCAGGGTGAT	GCCATGGTGC	TCGGTGCCGG	AGAGGCATTC	ACCAACAATG	GAACGCTGAC	16740
TGCCGGTAAA	GGCAACAGTG	TTTTCAGCGC	ACAGCGTCTT	TTCCTTAACG	CACCGGGTTC	16800
ACTTCAGGCC	GGTGGCGATG	TGAGTCTGAA	CAGCCGGAGT	GATATCACCA	TCAGTGGTTT	16860
TACCGGCACG	GCAGGCAGTC	TGACAATGAA	TGTGGCCGGT	ACCCTGCTGA	ACAGTGCGCT	16920
GATTTATGCG	GGGAATAACC	TGAAGCTGTT	TACAGACCGT	CTGCATAACC	AGCATGGTGA	16980
TATCCTGGCC	GGCAACAGTC	TGTGGGTACA	GAAGGATGCT	TCCGGCGGTG	CAAACACAGA	17040
GATTATCAAT	ACTTCCGGGA	ATATTGAGAC	GCATCAGGGC	GATATTGTTG	TAAGAACCGG	17 1 00
GCATCTTCTG	AACCAGCGGG	AGGGATTTTC	TGCCACAACA	ACAACCCGGA	CTAACCCCTC	17160
ATCCATTCAG	GGAATGGGAA	ATGCTCTGGT	TGATATTCCC	CTTTCCCTTC	TTCCTGACGG	17220
CAGCTATGGC	TATTTCACCC	GTGAAGTTGA	AAATCAGCAC	GGTACGCCCT	GCAACGGGCA	17280
CGGGGCATGC	AATATCACAA	TGGATACGCT	TTATTATTAC	GCTCCGTTTG	CTGACAGTGC	17340
CACACAGCGC	TTTCTCAGCA	GCCAGAACAT	CACAACAGTA	ACCGGTGCTG	ATAATCCGGC	17400
AGGCCGCATT	GCGTCAGGGC	GTAATCTTTC	TGCTGAGGCT	GAACGACTGG	AAAACCGGGC	17460
GTCATTTATC	CTGGCGAATG	GGGATATCGC	ACTCTCGGGC	AGAGAGTTAA	GCAATCAGAG	17520
CTGGCAGACG	GGGACAGAGA	ATGAATATCT	GGTATACCGC	TACGACCCGA	AAACGTTTTA	17580
CGGTAGCTAT	GCAACAGGCT	CTCTGGATAA	ACTGCCCCTG	CTGTCACCGG	AATTTGAAAA	17640 -
CAATACCATC	AGATTTTCAC	TGGATGGCCG	GGAAAAAGAT	TACACGCCCG	GTAAGACGTA	17700

TTATTCCGTT	ATTCAGGCGG	GCGGGGATGT	TAAGACCCGT	TTTACCAGCA	GTATCAATAA	17760
CGGAACAACC	ACTGCACATG	CAGGTAGTGT	CAGTCCGGTG	GTCTCTGCAC	CTGTACTGAA	17820
TACGTTAAGT	CAGCAGACCG	GCGGAGACAG	TCTGACACAG	ACAGCGCTGC	AGCAGTATGA	17880
GCCGGTGGTG	GTTGGCTCTC	CGCAATGGCA	CGATGAACTG	GCAGGTGCCC	TGAAAAATAT	17940
TGCCGGAGGT	TCGCCACTGA	CCGGTCAGAC	CGGTATCAGT	GATGACTGGC	CACTGCCTTC	18000
CGGCAACAAT	GGATACCTGG	TTCCGTCCAC	GGACCCGGAC	AGTCCGTATC	TGATTACGGT	18060
GAACCCGAAA	CTGGATGGTC	TCGGACAGGT	GGACAGCCAT	TTGTTTGCCG	GACTGTATGA	18120
GCTTCTTGGA	GCGAAACCGG	GTCAGGCGCC	ACGTGAAACG	GCTCCGTCGT	ATACCGATGA	18180
AAAACAGTTT	CTGGGCTCAT	CGTATTTTCT	TGACCGCCTC	GGGCTGAAAC	CGGAAAAAGA	18240
TTATCGTTTC	CTGGGGGATG	CGGTCTTTGA	TACCCGGTAT	GTCAGTAACG	CGGTGCTGAG	18300
CCGGACGGGT	TCACGTTATC	TCAACGGACT	GGGTTCAGAC	ACGGAACAGA	TGCGGTATCT	18360
GATGGATAAC	GCGGCCAGAC	AACAGAAAGG	ACTGGGATTA	GAGTTTGGTG	TGGCGCTGAC	18420
AGCTGAACAG	ATTGCTCAGC	TTGACGGCAG	CATGCTGTGG	TGGGAGTCAG	TCACCATCAA	18480
CGGACAGACA	A GTCATGGTCC	CGAAACTGTA	TCTGTCGCCG	GAAGATATCA	CCCTGCATAA	18540
CGGCAGCGTT	r ATCAGCGGGA	ACAACGTGCA	GCTTGCGGAC	GGCAATATCA	CCAACAGCGG	18600
CGGCAGCATO	C AACGCACAGA	ACGACCTTTC	GCTCGACAGT	ACCGGCTATA	TCGACAACCT	18660
GAATGCAGG	G CTGATAAGCG	CGGGCGGTAG	CCTGGACCTG	AGCGCCATCG	GGGATATCAG	18720
CAATATCAG	C TCAGTCATCA	. GCGGTAAAAC	CGTACAACTG	GAAAGCGTGA	GTGGCAACAT	18780
CAGCAATAT	C ACCCGGCGTC	AGCAATGGAA	TGCGGGCAGT	GACAGCCGAT	ATGGTGGTGT	18840
GCATCTCAG	C GGTACGGACA	CCGGTCCGGT	TGCGACCATT	AAAGGCACTG	ATTCACTTTC	18900
ACTGGATGC	A GGGAAAAACA	A TTGATATTAC	CGGGGCAACG	GTCTCGTCCG	GTGGAGACCT	18960
TGGAATGTC'	T GCGGGTAATG	ACATCAACAT	TGCCGTAAAC	CTGATAAGCG	GGAGCAAAAG	19020
TCAGTCCGG'	T TTCTGGCAC	A CTGATGACAA	CAGTTCATCA	TCCACCACCT	CACAGGGCAG	19080
CAGCATCAG	C GCCGGCGGTA	A ACCTGGCGAI	GGCTGCAGGC	CATAATCTGG	ATGTCACAGC	19140
ATCCTCTGT	T TCTGCCGGG	C ACAGCGCCCI	GCTTTCTGCA	GGTAACGACC	TGAGTCTGAA	19200
TGCAGTCAG	G GAAAGCAAA	A ACAGTCGCAA	A CGGCAGGTCA	GAAAGTCATG	AAAGCCACGC	19260
AGCTGTGTC	C ACGGTGACG	G CGGGCGATA	A CCTCCTCCTI	GTTGCCGGTC	GTGATATTGC	19320
CAGTCAGGC	T GCCGGTATG	G CTGCGGAAA	A TAACGTGGTC	ATCCGGGGCC	GACGTGATGT	19380
GAACCTGGT	G GCAGAGTCT	G CCGGCGCAG	G CGACAGCTAT	T ACGTCGAAGA	A AAAAGAAAGA	19440
GATTAACGA	G ACAGTCCGT	C AGCAGGGAA	C GGAAATCGCC	C AGCGGTGGT	ACACCACCGT	19500
CACCGCAGG	A CGGGATATC	A CCGCTGTTG	C GTCATCCGT	r accgcaacco	G GCAATATCAG	19560
CGTGAATGC	CC GGTCGTGAT	G TTGCCCTGA	C CACGGCGACA	A GAAAGTGAC	T ATCACTATCT	19620

-114-

GGAAACGAAG	AAAAAAAGCG	GAGGTTTTCT	CAGTAAGAAA	ACCACCCACA	CCATCAGTGA	19680
GGACAGTGCC	TCCCGTGAAG	CAGGTTCCCT	GCTGTCGGGG	AACCGCGTGA	CCGTTAACGC	19740
CGGTGATAAN	CTGACGGTAG	AGGGTTCGGA	TGTGGTGGCT	GACCGGGATG	TGTCACTGGC	19800
GGCGGGTAAC	CATGTTGATG	TTCTTGCTGC	CACCAGTACA	GATACGTCCT	GGCGCTTTAA	19860
GGAAACGAAG	AAATCCGGTC	TGATGGGTAC	CGGCGGTATT	GGTTTCACCA	TTGGCAGCAG	19920
TAAGACAACG	CACGACCGCC	GCGAGGCSGG	GACAACGCAG	AGTCAGAGTG	CCAGTACCAT	19980
CGGCTCCACT	GCCGGTAATG	TCAGTATTAC	CGCGGGCAAA	CAGGCTCATA	TCAGCGGTTC	20040
GGATGTGATT	GCGAACCGGG	ATATCAGCAT	TACCGGTGAC	AGTGTGGTGG	TTGACCCGGG	20100
GCATGATCGT	CGTACTGTGG	ACGAAAAATT	TGAGCAGAAG	AAAAGCGGGC	TGACGGTTGC	20160
CCTTTCCGGC	ACGNTGGGCA	GTGCCATCAA	TAATGCGGTC	ACCAGTGCAC	AGGAGACGAA	20220
GGAGAGCAGT	GACAGCCGTC	TGAAAGCCCT	GCAGGCCACA	AAGACAGCGC	TGTCTGGTGT	20280
GCAGGCCGGA	CAGGCTGCGG	CAATGGCCAC	CGCAACCGGT	GACCCGAATG	CGACGGGAGT	20340
CAGCCTGTCG	CTTACCACCC	AGAAATCGAA	ATCACAACAA	CATTCTGAAA	GTGACACAGT	20400
ATCCGGCAGT	ACGCTGAATG	CCGGGAATAA	TCTGTCTGTT	GTCGCAACCG	GCAAAAACAG	20460
GGGAGATAAC	CGCGGAGATA	TTGTGATTGC	AGGAAGCCAG	CTTAAGGCCG	GTGGTAACAC	20520
AAGCCTGGAT	GCCGCGAATG	ATGTTCTGTT	GAGTGGCGCT	GCAAACACAC	AAAAAACAAC	20580
GGGCAGGAAC	AGCAGCAGTG	GCGGTGGCGT	GGGTGTCAGT	ATCGGTGCCG	GTGGTAACGG	20640
TGCCGGTATC	AGCGTCTTTG	CCAGCGTTAA	TGCGGCAAAA	GGCAGCGAGA	AAGGTAACGG	20700
TACTGAGTGG	ACTGAAACCA	CAACAGACAG	CGGTAAAACC	GTCACCATCA	ACAGTGGTCG	20760
GGATACGGTA	CTGAACGGTG	CTCAGGTCAA	CGGCAACAGG	ATTATCGCCG	ATGTGGGCCA	20820
CGACCTGCTG	ATAAGCAGCC	AGCAGGACAC	CAGTAAGTAC	GACAGTAAAC	AGACCAGCGT	20880
GGCTGCCGGC	GGCAGTTTTA	CCTTTGGCTC	CATGACCGGC	TCAGGTTACA	TCGCTGCCTC	20940
CCGGGATAAG	ATGAAGAGCC	GCTTTGACTC	CGTTGCTGAA	CAAACCGGGA	TGTTTTCCGG	21000
AGATGGCGGC	TTCGATATCA	CGGTCGGCAA	CCACACCCAG	CTCGATGGTG	CGGTTATCGC	21060
TTCCACGGCG	ACGGCAGATA	AAAACAGCCT	CGATACCGGG	ACGCTCGGCT	TCAGCGATAT	21120
TCACAACGAA	GCGGATTATA	AAGTCAGTCA	CAGTGGAATC	AGTCTGAGCG	GTGGTGGCAG	21180
CTTCGGGGAT	AAATTTCAGG	GTAACATGCC	GGGTGGCATG	ATATCCGCCG	GAGGTCACAG	21240
CGGACATGCG	GAAGGAACGA	CTCAGGCCGC	AGTGGCAGAT	GGCACAATCA	CCATCCGGGA	21300
CAGGGACAAT	' CAGAAGCAGA	ATCTGGCGAA	CCTGAGCCGT	GACCCTGCGC	ACGCTAATGA	21360
CAGTATCAGO	CCGATATTTG	ACAAGGAGAA	AGAGCAGAGG	CGTCTGCAGA	CAGTGGGGCT	21420
TATCAGTGAC	CATTGGCAGTC	AGGTGGCGGA	TATCGCGCGG	ACGCAGGGG	AACTGAATGC	21480
GTTGAAGCTG	G CGCAGGATAA	ATATGGGCCT	GTTCCGGCGG	ATGCGACGGA	AGAACAGCGG	21540

-115-

CAGGCATATC	TGGCAAAACT	GCGTGATACG	CCGGAATACA	AAAAGGAACA	GGAAAAGTAT	21600
GGTACCGGCA	GCGATATGCA	GCGCGGTATC	CAGGCTGCAA	CGGCTGCACT	TCAGGGCCTG	21660
GTGGGCGGCA	ATATGGCAGG	CGCGCTGGCA	GGTGCTTCAG	CGCCGGAGCT	GGCGAACATC	21720
ATCGGTCATC	ACGCGGGTAT	TGATGACAAT	ACAGCGGCAA	AAGCCATTGC	CCATGCCATT	21780
CTCGGTGGTG	TGACAGCAGC	CCTTCAGGGC	AACAGTGCGG	CAGCAGGCGC	AATTGGTGCG	21840
GGTACTGGTG	AAGTGATCGC	GTCAGCCATT	GCGAAAAGCC	TCTACCCGGG	CGTAGATCCG	21900
TCGAAACTGA	CAGAAGATCA	GAAGCAAACT	GTAAGCACGC	TGGCAACGCT	GTCAGCGGGT	21960
ATGGCCGGCG	GCATTGCCAG	TGGCGATGTG	GCTGGCGCGG	CTGCTGGAGC	TGGTGCCGGG	22020
AAGAACGTTG	TTGAGAATAA	TGCGCTGAGT	CTGGTTGCCA	GAGGCTGTGC	GGTCGCAGCA	22080
CCTTGCAGGA	CTAAAGTTGC	AGAGCAGTTG	CTAGAAATCG	GGGCGAAAGC	GGGCATGGCC	22140
GGGCTTGCCG	GGGCGGCAGT	CAAGGATATG	GCCGACAGGA	TGACCTCCGA	TGAACTGGAG	22200
CATCTGATTA	CCCTGCAAAT	GATGGGTAAT	GATGAGATCA	CTACTAAGTA	TCTCAGTTCG	22260
TTGCATGATA	AGTACGGTTC	CGGGGCTGCC	TCGAATCCGA	ATATCGGTAA	AGATCTGACC	22320
GATGCGGAAA	AAGTAGAACT	GGGCGGTTCC	GGCTCAGGAA	CCGGTACACC	ACCACCATCG	22380
GAAAATGATC	CTAAGCAGCA	AAATGAAAAA	ACTGTAGATA	AGCTTAATCA	GAAGCAAGAA	22440
AGTGCGATTA	AGAAGATCGA	TAACACTATA	AAAAATGCTC	TGAAAGATCA	TGATATTATT	22500
GGAACTCTCA	AGGATATGGA	. TGGTAAGCCA	GTTCCTAAAG	AGAATGGAGG	ATATTGGGAT	22560
CATATGCAGG	AAATGCAAAA	TACGCTCAGA	GGATTAAGAA	. ATCATGCGGA	TACGTTGAAA	22620
AACGTCAACA	ATCCTGAAGC	: TCAGGCTGCG	TATGGCAGAG	CAACAGATGC	Т	22671
	GGTACCGGCA GTGGGCGGCA ATCGGTCATC CTCGGTGGTG GGTACTGGTG TCGAAACTGA ATGGCCGGCG AAGAACGTTG CCTTGCAGGA GGGCTTGCCG CATCTGATTA TTGCATGATA GATGCGGAAA GAAAATGATC AGTGCGATTA GGAACTCTCA CATATGCAGG	GGTACCGGCA GCGATATGCA GTGGGCGGCA ATATGCAGG ATCGGTCATC ACGCGGGTAT CTCGGTGGTG TGACAGCAGC GGTACTGGTG AAGTGATCGC TCGAAACTGA CAGAAGATCA ATGGCCGGCG GCATTGCCAG AAGAACGTTG TTGAGAATAA CCTTGCAGGA CTAAAGTTGC GGGCTTGCCG GGGCGCAGT CATCTGATTA CCCTGCAAAT TTGCATGATA AGTACGGTTC GATGCGGAAA AAGTAGAACT GAAAATGATC CTAAGCAGCA AGTGCGATTA AGAAGATCGA GGAACTCTCA AGGATATGGA CATATGCAGG AAATGCAAAA	GGTACCGGCA GCGATATGCA GCGCGGTATC GTGGGCGGCA ATATGGCAGG CGCGCTGGCA ATCGGTCATC ACGCGGGTAT TGATGACAAT CTCGGTGGTG TGACAGCAGC CCTTCAGGGC GGTACTGGTG AAGTGATCGC GTCAGCCATT TCGAAACTGA CAGAAGATCA GAAGCAAACT ATGGCCGGCG GCATTGCCAG TGGCGATGTG AAGAACGTTG TTGAGAATAA TGCGCTGAGT CCTTGCAGGA CTAAAGTTGC AGAGCAGTTG GGGCTTGCCG GGGCGGCAGT CAAGGATATG CATCTGATTA CCCTGCAAAT GATGGGTAAT TTGCATGATA AGTACGGTTC CGGGGCTGCC GATGCGGAAA AAGTAGAACT GGGCGGTTCC GAAAATGATC CTAAGCAGCA AAATGAAAAA AGTGCGATTA AGAAGATCGA TAACACTATA GGAACTCTCA AGGATATGGA TGGTAAGCCA CATATGCAGG AAATGCAAAA TACGCTCAGA	GGTACCGGCA GCGATATGCA GCGCGGTATC CAGGCTGCAA GTGGGCGGCA ATATGGCAGG CGCGCTGGCA GGTGCTTCAG ATCGGTCATC ACGCGGGTAT TGATGACAAT ACAGCGGCAA CTCGGTGGTG TGACAGCAGC CCTTCAGGGC AACAGTGCGG GGTACTGGTG AAGTGATCGC GTCAGCCATT GCGAAAAGCC TCGAAACTGA CAGAAGATCA GAAGCAAACT GTAAGCACGC ATGGCCGGCG GCATTGCCAG TGGCGATGTG GCTGGCGCGG AAGAACGTTG TTGAGAATAA TGCGCTGAGT CTAGAAATCG CCTTGCAGGA CTAAAGTTGC AGAGCAGATTG CTAGAAATCG GGGCTTGCCG GGGCGGCAGT CAAGGATATG GCCGACAGGA CATCTGATTA CCCTGCAAAT GATGGGTAAT GATGAGATCA TTGCATGATA AGTACGGTTC CGGGGCTGCC TCGAATCCGA GATGCGGAAA AAGTAGAACT GGGCGGTTCC GGCTCAGGAA GAAAATGATC CTAAGCAGCA AAATGAAAAA ACTGTAGATA AGTGCGATTA AGAAGATCGA TAACACTATA AAAAATGCTC GGAACTCTCA AGGATATGGA TGGTAAGCCA GTTCCTAAAG CATATGCAGG AAATGCAAAA TACGCTCAGA GGATTAAGAA	GGTACCGGCA GCGATATGCA GCGCGGTATC CAGGCTGCAA CGGCTGCACT GTGGGCGGCA ATATGGCAGG CGCGCTGGCA GGTGCTTCAG CGCCGGAGCT ATCGGTCATC ACGCGGGTAT TGATGACAAT ACAGCGGCAA AAGCCATTGC CTCGGTGGTG TGACAGCAGC CCTTCAGGGC AACAGTGCGG CAGCAGGCGC GGTACTGGTG AAGTGATCAC GTCAGCCATT GCGAAAAGCC TCTACCCGGG TCGAAACTGA CAGAAGATCA GAAGCAAACT GTAAGCACGC TGGCAACGCT ATGGCCGGCG GCATTGCCAG TGGCGATGTG CCTGGCGCGG CTGCTGGAGC CCTTGCAGGA CTAAAGTTGC AGAGCAGTT CTAGCAGGA CCTTGCAGGA CGGCTTGCCG GGGCGGCAGT CAAGGATATG GCCGACAGGA TGACCTCCGA CATCTGATTA CCCTGCAAAT GATGGGTAAT GATGAGATCA CTACTAAGTA TTGCATGATA AGTACGGTTC CGGGGCTGCC TCGAATCCGA ATATCGGTAA GATGCGGAAA AAGTAGAACT GGCGGTTCC GGCTCAGGAA CCCGTACACC GAAAATGATC CTAAGCAGCA AAATGAAAAA ACTGTAGATA AGCTTAATCA AGTGCGATTA AGAAGATCGA TAACACTATA AAAAATGCTC TGAAAGGTCA GGAACTCTCA AGGATATGGA TGGTAAGCCA GTTCCTAAAG AGAATGGAG CATATGCAGG AAATGCAAAA TACGCTCAGA GGTTCCTAAAGA AGCATGGAGG CATATGCAGG AAATGCAAAA TACGCTCAGA GGTTCCTAAAGA AGAATGGAG CATATGCAGG AAATGCAAAA TACGCTCAGA GGATTAAGAA ATCATGCGGA	CAGGCATATC TGGCAAAACT GCGTGATACG CCGGAATACA AAAAGGAACA GGAAAAGTAT GGTACCGGCA GCGATATGCA GCGCGGTATC CAGGCTGCAA CGGCTGCACT TCAGGGCCTG GTGGGCGGCA ATATGGCAGG CGCGCTGGCA GGTGCTTCAG CGCGGAGCT GCCAACATC ATCGGTCATC ACGCGGGTAT TGATGACAAT ACAGCGGCAA AAGCCATTCC CTCGGTGGTG TGACAGCAGC CCTTCAGGGC AACAGTGCG CAGCAGGCGC AATTGGTGCG GGTACTGGTG AAGTGATCGC GTCAGCCATT GCGAAAAGCC TCTACCCGGG CGTAGATCCG TCGAAAACTGA CAGAAGATCA GAAGCAAACT GTAAGCACGC TGGCAACGCT GTCAGCGGGT ATGGCCGGCG GCATTGCCAG TGGCGATGT GCTGAGCGGG CTGCTGAGC AAGAACGTTG TTGAGAATAA TGCGCTGAGT CTGGTTGCCA GAGGCTGCC GGTCGCAGCA CCTTGCAGGA CTAAAGTTGC AGAGCAATTG CTAGAAAATCG GGGCGAAAAGC GGGCTTGCCG GGGCGCAGT CAAGGATATG GCCGACAGGA TGACCTCCGA TGAACTGGAG CATCTGATTA CCCTGCAAAT GATGGGTAAT GATGAGATCA CTACTAAGTA TCTCAGTTCG GATGCGGAAAA AAGTAGAACT GGGCGGTTCC GCCTCAGGAA CCGCTACACC GATGCGGAAA AAGTAGAACT GGGCGGTTCC GCCTCAGGAA CCGCTACACC GAAAATGATC CTAAGCACA AAATGAAAAA ACTGTAGATA AGCTTAATCA GAAGCAAGAA AGGCGGATTA AGAAGATCGA TAACACTATA AAAAATGCTC TGAAAGATCA TGATATTATT GGAACTCTCA AGGATATGGA TGACACTATA AAAAATGCTC TGAAAGATCA TGATATTATT GGAACTCTCA AGGATATGGA TGGTAAGCCA GTTCCTAAAG AGAATGAGA ATTTGGGAT AACGCTCAACA ATCCTGAAAA TACGCTCAGA GGATTAAGAA ATCATTGAGA AACGTCAACA ATCCTGAAAA AACGTCAACA ATCCTGAAAA AACGCTCAACA AACGATAGA AACGCTCAACA AACGATAGA AACGCTCAACA AGAATGAAAA ACTGTAAAAA ACCGTCAACA AGAATGAAAA ACCGTCAACA ACCACCATCG CATATGCAGA AAATGCAAAA TACGCTCAAG AGAATGAAAA ACCACTACAA ACCACTACAA AACACTATA AAAAATGCTC TGAAAGATCA TGATATTATT CATATGCAGA AAATGCAAAA TACGCTCAAG AGAATGAAAA ACCACTACA TCAACCAAAA ACCACTACAAAA ACCACTACAA AACACTATA AAAAATGCCC TAAAGAATCA TGATATTATT CATATGCAGA AATCCAAAAA TACGCTCAAAA TACGCTCAAAA ACCACTACAAA ACCACTACAAA ACCACTACAAAA ACCACTACAAAA ACCACTACAAAA ACCACTACAAAA ACCACTACAAAAAAAA

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2385 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

GGGCGACACG	GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	TCAATATTAT	TGAAGCATTT	60
ATCAGGGTTA	TTGTCTCATG	AGCGGATACA	TATTTGAATG	TATTTAGGCA	ACTGAAACCC	120
GCTGACGGAT	NANGTGTACA	GTGGCATCAG	TGGACGGMTT	ACAGCATAAG	TGCTTAAGGC	180
GCGTGACCAT	ACAGMTACGG	TCGCTGCAGA	GAACAGGGAG	AATATCATCC	GGAACACGGT	240
GGCCATAAAC	CGTAACACCA	GGGGGCTGCT	TTCCCCGGGA	GAGGTGCTGG	AGATGCATGC	300
GGACGTCTGA	ACAGTCAGCA	GGGCTGATTA	ATGAGAATCA	CGAGGAAATG	AAGCGGGAGC	360
CGTACAGTGA	GGATAAATTT	AACGCCATAG	CGGCTGTGGG	CGGGTATAGT	GCCAAGCAGA	420

-116-

CTGCTTAAAG	GCAGGTACTA	CTTTCAGTGG	CGCCTATGTT	TCCTGGAATG	TGGGTGTCAA	480
CTGGTAGTTC	TGAACCCGGG	CCTGAGTCAC	CGGGGAGGCA	GTTTTCGGTA	TGAAGTAATG	540
ATTCGCTGCC	TGTTTTTCTC	CCCGATGGCA	TAACTGACTG	TTCCCGGGTA	TTCCTGAAGA	600
TCTGAGAGGA	AGAGTGTATA	TGCTGAACTA	TCGCATAAGG	TCAGTGCAGC	TATTTATTGT	660
AAACGGTCGG	GCTGACAGGG	CGCAGGTGCG	TCTGGAATGC	GACGATGAAG	CCGTTTTTGA	720
ATGTTATCTT	CTTGCTGAAG	GGGAAGGGGA	ACTGAAAGAA	CTGAGCCTGT	CAGAGCTGGA	780
AGAGCGGGCG	CTGATGTATG	CGGCAGACAG	TTTCCGTTAT	GAATGATAAG	TCAGTTATAC	840
CGGTAATGGT	AAACGGAGCC	GGTATCCGGG	ATACAAGGGG	CAGAGAGTAT	GCTGATTATT	900
ATTATGACCC	GGGACAGATA	TCTGGAATAT	GGCCTGATGC	GTATACTGAG	CGGATATCAG	960
GTCACGACAG	GCAGAGAGCT	GTTTAATGCC	GGAAAGCAAC	GTCAGTCACT	TCCCGAAGAC	1020
AGTTATGTGA	TTCTCTGTGA	CCGTAATCTG	GAAAGGCTTA	CATACTCTAT	GTTCTGTGGG	1080
CGTCGGTTTC	TTGTCATTCC	TGTTTCCTCT	GTGAGATGCC	TGACAGATAT	CAGGCAAACC	1140
ATCCGCCGTG	GAGCGTGGCT	GTTCGGACAT	ACGGCAAGGC	CACTGACCCG	GACAGAGATG	1200
GTGGTGGTCT	TCGGGGTTGT	TTTCCATGAC	TACGGGTTTA	CCTTTCTGGC	AGACCGGCTG	1260
GGGATAACCA	TGAAGACGGT	ATGTGCGCAT	CTTTACAATG	CGATGGAGAA	AAATGGTATG	1320
CGCGGCGTCA	GTATTAAATA	TCTCTGCAAC	ACCATAGACC	GGTAAAAAGA	TGGTTTTCTG	1380
ATAAAGGCTG	TTGCGACGGG	GATTTCTGTG	CATGCTGTGT	CACGGGCATC	CCAGCTCTCC	1440
GGATAATTAA	TGTTATGTAG	TCAGGCGTGA	TAAATTTCAT	ATGGAACAGG	TATGCGTTTT	1500
ATTTGTGATA	ACAGTTAATG	AGGTGTTTCC	ATACACACTG	AAGTTACCTG	TAATATTAGC	1560
GGGGGATTTG	AATGATGTTG	CGTGTCTGCG	ACCACTCGTT	TATTCATGCA	AATAAGTGGA	1620
CTGCTGGATC	CACGGTAAGA	GTACAGCGAG	GGCCGTATTG	ACGGGGATGT	GTTATTCAGC	1680
GGGCAGTGCT	ATGCGCCACG	GAAGCAGTTC	GCTGACACGG	TTGACCGGCC	AGTCAGCTAT	1740
GACGCCAAAC	ACATGGCGAA	GGTAGTTTTC	TGGATCCTCG	TCGTTCAGTT	TGCACGTCCC	1800
GATCAGGCTG	TACAGTAGCA	CTCCCCGCTC	ACCACCATGC	TCAGAGCTGC	GTATTACCGT	1860
GAAGGAGATC	GGTGAGTAAC	CCTCTGTGTC	GGCACATTAT	AGCCGTCACA	TCGGATAACT	1920
GTTATCCTTC	TGTTCTGATG	TATTCTGGGA	GGTGATGTTT	CACTCCTGAT	AAGAGCATTA	1980
CTAATTACAG	CTGCTTTTCG	GATAACATTC	GGGCAGTTTT	CTTTAATTCT	GAAGTCTGAA	2040
AGAGATATCA	GTAATTGTAT	TGCTTTTAAA	CATTGTCAGT	ATTTATTTGT	CCAAATCGTT	2100
CACGTTTCTC	ATAATCTTCC	CGACAGTCAC	CATCACAAAA	CAATCCAGTC	TTAACAGGTT	2160
CTCCGCAGTT	ATAGCAGAAT	CCTGTTTCAG	GGAGTCTATT	CCGGATACGA	TTTTTTAGTC	2220
TGATGCTCAT	GCTGAATTGT	TCATTTTCAT	AAGCAATATC	TGCACTATCT	GCCATAAACG	2280-
ATCCTCTGAG	GAGACCACAT	CTTTATAACC	CACCACCGAA	ATATTACAAA	GTAATACTCA	2340

-117-

TTGTATAATC TTTAACCRGG GGCAGGATAA TTGTATCCTG CCCCT	2385
(2) INFORMATION FOR SEQ ID NO: 16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 746 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
CTTTCAGACC AGCGTTTCCT GTCAGGAGAT GAGGAAGAAA CATCAAAGTA TAAAGGCGGC	60
GATGACCATG ATACGGTATT CAGTGGCGGT ATTGCGGCCG GTTATGATTT TTATCCGCAG	120
TTCAGTATTC CGGTTCGTAC AGAACTGGAG TTTTACGCTC GTGGAAAAGC TGATTCGAAG	180
TATAACGTAG ATAAAGACAG CTGGTCAGGT GGTTACTGGC GTGATGACCT GAAGAATGAG	240
GTGTCAGTCA ACACACTAAT GCTGAATGCG TACTATGACT TCCGGAATGA CAGCGCATTC	300
ACACCATGGG TATCCGCAGG ATTGGCTACG CAGAATTCAC CAGAAAACAA CCGGTATCAG	360
TACCTGGGAT TATGAGTACG GAAGCAGTGG TCGCGAATCG TTGTCACGTT CAGGCTCTGC	420
TGACAACTTC GCATGGAGCC TTGGCGCGGG TGTCCGCTAT GACGTAACCC CGGATATCGC	480
TCTGGACCTC AGCTATCGCT ATCTTGATGC AGGTGACAGC AGTGTGAGTT ACAAGGACGA	540
GTGGGGCGAT AAATATAAGT CAGAAGTTGA TGTTAAAAGT CATGACATCA TGCTTGGTAT	600
GACTTATAAC TTCTGACGAC ACTGCTCCTG AACGATAATT GCGTATATTC TGTAATTAAG	660
ATAATTGCAT ATCKTCTGCA ATTAARCAGA AATACCCTGC AGTCTATTAC TGCAGGGNTG	720
TCTTTTATCT GTTTTACAGA NAATTT	746
(2) INFORMATION FOR SEQ ID NO: 17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 411 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
TCTGTTTGTC GTTTTTTCCC CGTTGTAGCG GYTCTGCTCC TGGCTTCCCT GATAGTCAGC	60
CCGCAGGCGC CAGGGCCCCA GATTCCCCCC CACAGTCCCG TTATAACTGA ACTGATGAGA	120
GTCTCCTCCC TGATAATTAC GGGAAACCGT CCCGTTGAGG TTATAATCCA GCATCAGTCC	180
GGGAATGCCG TCGTCCCAGC GTGAGGGAGG CAGCCAGGTG GCATCAGAAT ACTCAAGCCC	240
AGCTGCGGCA TATTGATGCG TAATACGCCC GCTCCGGTAT CAGGACGAAT ATCCACTCCC	300-
GGCAACCCAT GAAAATCCGC ACACTGACCA TCATGCCAGT AAACAACTTT ATCCAGAGAT	360

TCTGCTGTTA ACCCCATCAG TCTGACCATA TCTGATGTCA GACAGGCCTG C	411
(2) INFORMATION FOR SEQ ID NO: 18:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 977 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
TATTATCGCG CGCGCGCTGC ACAGGGGTTA TCTACATCTG CTGCTGCTGC CGG	TTTAATT 60
GCTTCTGTAG TGACATTAGC AATTAGTCCC CTCTCATTCC TGTCCATTGC CGA	TAAGTTT 120
AAACGTGCAA ATAAAATAGA GGAGTATTCA CAACGATTCA AAAAACTTGG ATAG	CGATGGT 180
GACAGTTTAC TTGCTGCTTT CCACAAAGAA ACAGGAGCTA TTGATGCATC ATTA	AACAACG 240
ATAAGCACTG TACTGGCTTC AGTATCTTCA GGTATTAGTG CTGCKGCAAC GACA	ATCTCTT 300
GTTGGTGCAC CGGTAAGCGC ACTGGTAGGT GCTGTTACGG GGATAATTTC AGG	TATCCTT 360
GAGGCTTCAA AGCAGGCAAT GTTTGAACAT GTTGCCAGTA AAATGGCTGA TGT	TATTGCT 420
GAATGGGAGA AAAAACACGG TAAAAATTAC TTTGAAAATG GATATGATGC CCG	CCATGCT 480
GCATTTTTAG AAGATAACTT TAAAATATTA TCTCAGTATA ATAAAGAGTA TTC	TGTTGAA 540
AGATCAGTCC TCATTACTCA ACAACATTGG GATATGCTGA TAGGTGAGTT AGC	TAGTGTC 600
ACCAGAAATG GAGACAAGAC ACTCAGTGGT AAAAGTTATA TTGACTATTA TGA	AGAGGGA 660
AAGCGGCTGG AAAGAAGGCC AAAAGAGTTC CAGCAACAAA TCTTTGATCC ATT	AAAAGGA 720
AATATTGACC TTTCTGACAG CAAATCTTCT ACGTTATTGA AATTTGTTAC GCC	ATTGTTA 780
ACTCCCGGTG AGGAAATTCG TGAAAGGAGG CAGTCCGGAA AATATGAATA TAT	TACCGAG 840
TTATTAGTCA AGGGTGTTGA TAAATGGACG GTGAAGGGGG TTCAGGACAA GGG	GTCTGTA 900
TATGATTACT CTAACCTGAT TCAGCATGCA TCAGTCGGTA ATAACCAGTA TCG	GGNAATT 960
CGTATTGAGT CACACCT	977
(2) INFORMATION FOR SEQ ID NO: 19:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 400 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	

TTTCTTAAGT CCGGCATTGC CACGCGTAAC CCCCACTTCA ACCGCATGAT TGAGCAGATC 60°

GAAAAAGTGG CGATCAAATC CCGCGCGCCG ATTCTGCTTA ACGGTCCAAC CGGCGCGGGC 120

-119-

AAGTCATTTC	TGGCGCGACG	CATCTTAGAG	TTAAAACAGG	CGCGGCATCA	GTTTAGCGGC	180
			CGCGGCGATA			240
					ATTACGCAGC	300
					GAACAGGCAA	360
			TTTTACCCGT			400
TGCTGCTGAA	ACCCALIGNA	GINGGIRERICS				

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12368 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

GTATGCGTTT TCATTAAGAT ATTCTCTGCT GTAGAGAAAC TTATAGCAAT ATAATCTGAT 60 AATATCTTTT ATGTAAAATT TAAATAGTTC ACCTGTGACA GATATATGTT TTCTGCTCAG 120 TAACTCCTGT GTATTAAGCC ATTCCCGTGA CCGAAGCACA CCCTTGTGAA AACTTTTTCT 180 TACTTGCTTT GAGGCACGGC ATTGATGTAA TATTTTTGCG TCCTCAATAA TTCTCTTTCC 240 CGTTTTATTT TTTGCAGCAT CTCTTACTCC ATAAAATATC TCCCGGTCCA GACTTTTGTC 300 ATATTTACTG ATTATACGAC AAATATTCCT GACCCGACGA TTCTCTTTAT TTCGCTTCCA 360 TAGCTTATAA TGATCATCGC ATAACCTTAA GGCATTTGCC TCATCAAATT CTGAAACAGG 420 ATTACTGCAT TTTTTATTCC GACAAATACC TTTGTTTTTA GCCATACTCT TCTTCCCGTC 480 AATGGAAAAA TTTTCACACC CATATTACCT GAATGATAAA CCGGATTAGT GTGATCCGGT 540 TCAGTGAAAT CAACAGGATA CCGGTATGCC ATTCAGCAAT TCTTCCCTCT CCGCGCAAGT 600 GAAATCATAT CTGACGTTTC TTCCTGAAGA AATACGCCAG AAAATCCTTG AACATCTCCA 660 CGGTGTTATT CATTACGAGC CCGTGATTGG CATTATGGGT AAATCCGGCA CCGGCAAGAG 720 CAGCCTGTGT AATGCCATTT TTCAGTCCCG TATCTGCGCC ACGCATCCCC TGAACGGCTG 780 CACCCGCCAG GCTCATCGTC TTACCCTGCA GCTCGGTGAA CGCAGAATGA CGCTGGTCGA 840 TCTGCCCGGC ATTGGTGAAA CACCGCAGCA TGATCAGGAA TACCGAGCGC TTTATCGTCA 900 GTTACTGCCG GAACTGGATC TGATTATCTG GATCCTGCGG AGTGATGAAC GTGCGTATGC 960 TGCCGATATT GCCATGCATC AGTTTTTACT GAATGAGGGC GCAGATCCCT CGCGCTTTCT 1020 1080 ATGCCCGTCC CGTCACCAGG AACTCTCACT GGCGACAGTA ATAGCCCGGG TGGCCACCCT 1140 GTTCCCTTCA TCATTTCCGG TACTCCCTGT AGCCGCACCT GCAGGCTGGA ACCTTCCAGC 1200-GCTGGTGTCA CTGATGATCC ACGCGCTGCC ACCACAGGCA ACCAGCGCAG TTTATTCACA 1260

-120-

ΤA	TCAGGGGG	GAAAACCGCT	CTGAACAGGC	CCGGAAACAC	GCACAACAGA	CTTTTGGTGA	1320
TG	CCATCGGG	AAAAGTTTTG	ACGACGCCGT	TGCCCGGTTC	AGTTTTCCGG	CCTGGATGTT	1380
AC	CAGCTTCTG	CGTAAAGCCC	GGGACCGCAT	TATCCACCTG	CTGATCACAC	TGTGGGAGCG	1440
TC	TGTTCTGA	CACACTCACG	CCGACAGATG	TGTCGCTGGA	TTAACGAGCA	TTCTTCTTTT	1500
ΤP	ATGAAATCA	TGCTTAAAAA	TCAGATAATT	ARAAGAATAT	TTTTTCTGCT	GCATTTTATT	1560
CC	CTGATTATC	CGGATGCGAC	ACATCCTTTC	AACATCATGA	TGCATAATAA	CATCATGAAA	1620
TF	AAAAGATGT	TTTCTTACGG	AGTGCACATC	TATGTCTGAT	AATCGTTCCC	GGCATGATCG	1680
CC	CTGGCGGTT	CGCTTATCAC	TCATTATCAG	CCGACTGATG	GCCGGAGAAT	CTCTGTCACT	1740
AA	AAAACACTG	TCAGATGAAT	TTGGCGTTAC	AGAACGTACT	TTACAGCGCG	ATTTTCATCA	1800
GC	CGTCTGGTT	CACCTAGATT	TAGAGTACAG	AAATGGCAGG	TACAGCCTCA	GACGACAGAG	1860
CA	AGCCCAGGT	GCGATCCCTG	AAATGCTTTC	TTTTATACAG	AATACCGGGA	TCGCACGGAT	1920
A	CTTCCGCTC	CGGAACGGAC	GACTGATAAC	CTGTCTTACC	GACAACCAGG	AGCCCTCTCC	1980
C:	rgccttatc	TGGCTACCGG	CGCCGGATAT	CACTGCAACG	TTCCCCGAGT	GTTTCTCGCA	2040
A	CTCATCCTG	GCAATAAGAC	AGTGTATCCA	CATCTCTCTG	ATGACTGAGC	GATGGTATCC	2100
G.	rcactggag	CCCTGCCGGC	TCATTTATTA	CAGCGGTAGC	TGGTATCTGA	TCGCGTTACA	2160
G	AAGGGAAAA	CTGCAGGTCT	TTCCTCTGGC	AGATATCAAA	TCAGTCAGCC	TGACATCAGA	2220
A	CGGTTTGAA	CGGAGAGGCC	ACATCCACAG	TCTGGTCGCT	GAAGAGCGTT	TTATCTCCGC	2280
C	CTGCCACAT	TTCTCTTTCA	TCCATAAACT	TATCAACACC	TTTAACC T GT	GATCGCCGGC	2340
C'	TGCCAAAGC	CGTCCCGACA	GGTATGGAGA	CAATATGTTG	AACAGAAAAC	TAAATATACG	2400
G	CTACGTCAT	TCCCTGAACA	GTCACTGCAT	ACCTTCCATC	ATTATCAATA	ACACCGTACG	2460
T	TCATTTCAG	AGGTCAGTCA	TGAATACCAG	AGCTCTTTTT	CCCCTGCTGT	TCACTGTGGC	2520
A	TCATTCTCC	GCCTCCGCCG	GCAACTGGGC	TGTCAAAAAC	GGCTGGTGTC	AGACCATGAC	2580
G	GAAGATGGT	CAGGCGCTGG	TAATGCTGAA	AAATGGCACG	ATTGGTATTA	CCGGCCTGAT	2640
G	CAGGGATGC	CCGAATGGTG	TACAGACGCT	CCTGGGCAGC	CGTATCAGTA	TTAACGGTAA	2700
C	CTGATCCCC	CACATCACAAA	TGTGTAATCA	GCAGACGGGA	TTCAGGGCTG	TTGAGGTGGA	2760
A	ATCGGACAG	GCGCCGGAAA	TGGTCAAAAA	AGCCGTTCAC	TCCATAGCAG	AGCGTGATGT	2820
G	TCCGTTTTA	A CAGGCATTTO	GTGTACGAAT	GGAATTCACC	CGCGGTGATA	TGCTGAAGGT	2880
С	TGTCCGAAA	A TTTGTCACAT	CACTTGCCGG	TTTTTCCCCG	AAACAGACGA	CCACTATTAA	2940
Т	'AAAGATTCC	GTCCTGCAGG	CTGCCCGGC	A GGCATACGCC	CGGGAATATG	ACGAGGAAAC	3000
A	ACAGAAAC	GCTGATTTT	GCTCTTACGA	A AGTAAAAGGC	AATAAGGTTG	AGTTTGAAGT	3060
A	TTCAATCC	r GAAGACCGT	G CGTACGACAA	AGTGACCGTC	ACGGTTGGTG	CTGACGGTAA	3120 -
Τ	GCCACCGG	C GCCAGCGTT	AATTTATCG	S AAAATAGCCG	GTATGTCGGA	CTGCCACCCT	3180

-121-	•
GTTTTATTGC CCGAAGGCCC TTTCTCACGC GAACAGGCGA TGGCTGTCAC AACAGCTTAC	3240
CGCAATGTGC TTATTGAAGA TGACCAGGGA ACGCATTTCC GGCTGGTTAT CCGCAATGCC	3300
GAAGGGCAGC TACGCTGGCG GTGCTGGAAT TTTGAACCTG ATGCCGGAAA ACAGCTAAAT	3360
TOGTATOTOG COAGTGAGGG AATTOTOAGG CAATAAACGT OTTOATTTOA TOOATOAGGO	3420
CGCGTCTTCT CCGGGAGACG CGGCCTTTTC GTTTATACCG CTAATTCATT CATAAGGAGC	3480
AAAGTATGCA ATTAGCCAGT CGTTTTGGTC ATGTAAATCA GATCCGTCGG GAGCGCCCAC	3540
TGACACGCGA AGAACTGATG TACCACGTCC CGAGTATTTT TGGAGAAGAC CGGCACACCT	3600
CCCGCAGTGA ACGGTATGCG TACATTCCCA CCATCACCGT CCTGGAAAAT CTGCAGCGGG	3660
AAGGCTTTCA GCCGTKCTTC GCCTGCCAGA CCCGTGTGCG CGACCAGAGC CGCCGGGAAT	3720
ATACCAAACA TATGCTGCGT CTGCGGCGGG CCGGACAGAT AACCGGTCAG CATGTGCCTG	3780
AAATTATTCT GCTCAACTCC CATGACGGTT CATCCAGCTA CCAGATGTTA CCCGGATATT	3840
TTCGTGCCAT TTGTACCAAT GGCCTGGTCT GCGGTCAGTC GCTGGGAGAA GTCCGGGTGC	3900
CACACCGGGG AAACGTGGTG GACAGGGTCA TAGAAGGTGC TTACGAAGTG GTGGGCGTGT	3960
TTGACCTGAT TGAGGAAAAG CGTGATGCCA TGCAGTCGCT GGTCCTGCCG CCACCGGCAC	4020
GCCAGGCGCT GGCACAGGCG GCGCTGACTT ACCGTTATGG TGATGAACAT CAGCCCGTCA	4080
CCACTACCGA CATTCTGACG CCACGACGCC GGGAGGATTA CGGTAAGGAC CTGTGGAGTG	4140
CTTATCAGAC CATCCAGGAG AATATGCTGA AAGGCGGGAT TTCCGGTCGC AGTGCCAGAG	4200
GAAAACGTAT CCATACCCGG GCCATTCACA GCATCGATAC CGACATTAAG CTCAACCGGG	4260
CGTTGTGGGT GATGGCAGAA ACGCTGCTGG AGAGCCTGCG CTGATACCGT TTCCCTGAAA	4320
GCGCAGTCCT GTTCACGGCT GTCCCTTCCC CCAGACATTC CACCATTCAT TTACTTTTA	4380
TAAGGAATAA TCTCATGACA ACCTCTTCGC ATAATTCCAC CACACCTTCT GTTTCCGTGG	4440
CCGCTGCATC AGGGAATAAC CAGTCTCAGT TGGTTGCCAC TCCCGTCCCT GATGAACAGC	4500
GCATCAGCTT CTGGCCGCAG CATTTTGGCC TCATTCCACA GTGGGTCACC CTGGAGCCCC	4560
GTGTCTTCGG CTGGATGGAC CGTCTGTGCG AAAACTACTG CGGGGGTATC TGGAATCTGT	4620
ACACCCTGAA CAACGGTGGC GCATTTATAG CACCTGAACC GGATGAAGAT GATGGAGAAA	4680
CCTGGATACT GTTCAATGCC ATGAACGGTA ACCGCGCTGA AATGAGCCCG GAAGCTGCCG	4740
GCATTGCCGC CTGTCTGATG ACGTACAGCC ATCATGCCTG TCGTACGGAG AATTATGCCA	4800
TGACGGTCCA TTATTACCGG TTGCGGGATT ACGCCCTGCA GCATCCGGAA TGCAGCGCCA	4860
TTATGCGCAT CATTGACTGA AAGGGGCCGG AATAATGCAA CAGATTTCCT TTCTGCCCGG	4920
AGAAATGACG CCCGGCGAGC GCAGTCACAT TCTGCGGGCC CTGAAAACCC TGGACCGCCA	4980
TCTTCATGAA CCCGGTGTGG CCTTCACCTC CACCCGTGCG GCACGGGAAT GGCTGATTCT	5040-
GAACATGGCG GGACTGGAGC GTGAAGAGTT CCGGGTGCTG TATCTGAATA ACCAGAATCA	5100

-122-

GCTGATTGCC	GGTGAAACCC	TCTTCACCGG	CACCATCAAC	CGCACGGAAG	TCCATCCCCG	5160
GGAAGTGATT	AAACGCGCCC	TGTACCACAA	TGCCGCTGCC	GTGGTGCTGG	CGCACAATCA	5220
CCCGTCCGGT	GAAGTCACAC	CCAGTAAGGC	AGACCGGCTT	ATCACCGAAC	GTCTGGTACA	5280
GGCACTGGGC	CTGGTGGATA	TCCGGGTGCC	GGACCATCTG	ATAGTEGGTG	GCAGCCAGGT	5340
TTTCTCCTTT	GCGGAACACG	GTCTGCTTTA	ACCCGTCACC	GTCACAATCA	CCTTCATATC	5400
ACTTCAGTTT	CTCTTTCTCA	GCTGTTTCTT	ACTTTCACAT	TCAGGAGGAC	TATTCTCATG	5460
AAAATCATCA	CCCGTGGTGA	AGCCATGCGT	ATTCACCGTC	AGCATCCTGC	ATCCCGTCTT	5520
TTTCCGTTCT	GTACCGGTAA	ATACCGCTGG	CACGGTAGCA	CGGATACATA	TACCGGCCGT	5580
GAAGTACAGG	ATATTCCCGG	TGTGCTGGCT	GTGTTTGCTG	AACGCCGTAA	GGACAGTTTT	5640
GGCCGTATG	TCCGGCTGAT	GAGCGTCACC	CTGAACTGAA	TCAGGACGGG	CATTCAGAAG	5700
AGCAGAATTA	TCGCCACCAC	CGGACCATTC	TTAACCAATT	TTCTGTGAGG	ATTTTATCGT	5760
GTCAGACACT	CTCCCCGGGA	CAACGCATCC	CGACGATAAC	AACGACCGCC	CCTGGTGGG	5820
GCTACCCTGC	ACCGTGACGC	CCTGTTTTGG	GGCACGTCTG	GTGCAGGAGG	GTAACCGGTT	5880
GCATTACCTT	GCAGACCGCG	CCGGTATCAG	AGGCCGGTTC	AGCGACGCGG	ATGCGTACCA	5940
TCTGGACCAG	GCCTTTCCGC	TGCTGATGAA	ACAACTGGAA	CTCATGCTCA	CCAGCGGTRA	6000
ACTGAATCCC	CGCCATCAGC	ATACCGTCAC	GCTGTATGCA	AAAAGGCTGA	CCTGCGAANC	6060
GACACCCTCG	GCAGTTGTGG	CTACGTTTAT	ATGGCTGTTT	ATCCGACGCC	CGAAACGAAA	6120
AAGTAACTCT	CCAGAATAAC	CTTCTGCCCC	GGCCTGGTGC	TTTCACCACG	CCACTTTTCC	6180
ATTTTTCATC	TCTGCATATC	AGGAAAATCT	TCAGTATGAA	CACATTACCC	GATACACACA	6240
TACGGGAGGC	ATCGCATTGC	CAGTCTCCCG	TCACCATCTG	GCAGACACTG	CTCACCCGAC	6300
TGCTGGACCA	GCATTACGGC	CTCACACTGA	ATGACACACC	GTTCGCTGAT	GAACGTGTGA	6360
TTGAGCAGCA	TATTGAGGCA	GGCATTTCAC	TGTGTGATGC	GGTGAACTTT	CTCGTTGAAA	6420
AATACGCACT	GGTGCGTACC	GACCAGCCGG	GATTCAGCGC	CTGTACTCGT	TCTCAGTTAA	6480
TAAACAGTAT	TGATATCCTC	CGGGCCCGCC	GGGCAACCGG	CCTGATGGCC	CGCGACAATT	6540
ACAGAACGGT	AAATAACATT	ACCCTGGGTA	AGCATCCGGA	GAAACGATGA	AACTTTCCCT	6600
GATGCTGGAA	GCCGACAGAA	TTAATGTGCA	GGCACTGAAC	ATGGGGCGAA	TTGTCGTTGA	6660
CGTCGATGGT	GTTAATCTCA	CTGAACTGAT	TAACAAGGTC	GCTGAAAACG	GTTATTCACT	6720
CCGCGTGGTG	GAGGAATCCG	ACCAACAGTC	AACCTGCACA	CTACCACCGT	TTGCAACCCT	6780
TGCCGGCATA	CGCTGCAGTA	CCGCACATAT	CACGGAAAAG	GATAACGCCT	GGCTGTACTC	6840
GCTGTCACAC	CAGACCAGTG	ACTTCGGTGA	ATCAGAATGG	ATTCATTTCA	CAGGTAGCGG	6900
ATATCTGTTA	CGTACCGATG	CGTGGTCATA	TCCGGTTCTG	CGGCTTAAAC	GCCTGGGGCT	6960
GTCAAAAACG	TTCCGTCGTC	TGGTTATCAC	ACTTACCCGA	CGTTATGGCG	TCAGTCTCAT	7020

-123-

-123-	
CATCTGGAT GCCAGCGCTG AATGCCTGCC GGGTTTACCC ACTTTCAACT GGTAACCAGG	7080
AACAACATGA AATCATTAAC CACGGAAACC GCACTGGATA TTCTGATTGC GTGGCTGCAG	7140
GACAATATCG ACTGCGAATC GGGAATTATC TTTGACAACA ATGAGGATAA AACGGATTCA	7200
GCAGCACTGT TGCCCTGTAT CGAACAGGCC AGAGAGGATA TCCGTACCCT GCGCCAACTG	7260
CAGCTTCAGC ACCAGAACCG GTGAGTCTCA CTCATCATCT CACTCACCAG ACTTCATTCC	7320
ACTSACGCCA GCCTGAACAC GGCTGGCGTT TTCATTTATC TGCAAAAAGG AATATCGATT	7380
ATGTCTGAAA TCACAGTCTC CCGTCCGGAA GTGGTCAACG AGAATACGGA CGTTATCTGC	7440
TCCACCTCAG TCAGGTACAG GTCACTGGAA TATGATAATT TTCCGGAAAT CAGCGAAGCG	7500
AACATTCTGA GCACATTTGA ACAACTGCAC CAGAACAAAG ATGAAGTGTT TGAACGGGGA	7560
GTGATCAACG TCTTCAAAGG GCTGAGCTGG GATTACAAAA CCAACTCACC CTGTAAATTT	7620
GGCAGTAAAA TTATCGTCAA CAATCTGGTG AGATGGGACC AGTGGGGATT TCATCTTATC	7680
AGTGGAATGC AGGCAGATCG CCTGGCTGAC CTGGAAAGAA TGTTGCATCT GCTCAGCGGT	7740
AAACCGATCC CCGACAACCG AGGGAATATC ACCATTAATC TGGATGACCA CATACAGTCC	7800
GTTCAGGGTA AAGGACGCTA TGAAGATGAG ATGTTCATCA TTAAATACTT TAAGAAGGGA	7860
TCTGCACACA TCACTTTCAA AAGGCTGGAG CTGATTGACA GAATTAACGA TATAATAGCC	7920
AGGCACTTTC CTTCTGTGCT CTCAGCCTGA CCCCGAGTTT GATTCCCTTT CGATATCAAA	7980
AGGGACTGCG GGTACAAAAG AGGGTACATC TTTCACCAAA CCAAACAAAA TAAACTAATA	8040
TCAACATGAT AGAAGCATTC TTCGATTCCG AGTCCGGCAC CAAATTCATA TAAACGGACC	8100
TCCACGGAGG TCCGTTTTTC GTTTCAGGAC GCCACGATTT AAGCGTCCTG CCGCCAAATC	8160
AATTCTACCG AACTCAACCA GATTCTCCCC ACATCACCAG CAATTTGCGG GCATATCCCA	8220
ATTCGGGAAA ATTTGTTTCT GAGCTATAGC GCTGACTGAC GTGAAATGTC GTGCGGCCCC	8280
GTGATGCTGT TGAAMGTCAA ATGACGTCAT CAGGAGCGTA ACGCACCCAT AAAGCACAAC	8340
ATCGGGCAGA ACGCCAACTG ATGAGATTTT CTGAATGAGA ACAAAGAGAA ATGTATCAGT	8400
CCGTTTGCTC ATGCAAAGAC TAACAATCCA TTAAAATAGT AAGCGCTCCG GACAATTTTC	8460
CATGGATTAT TTTCTGAACA TTTTTCTTTG GCAAAGATGA TGAATTTTGA TGGTAAGGAA	8520
AATTACTTCT GGTTCTCAGT AAAATCCTTT CGTAATACTA TGTAATCAAG AAGTTTATGG	8580
CTAGTAAAAA TAACGTCTTG CATTCACCAA TAATATGTAA ATAAACCCAT CTATAGATGG	8640
AAAAAATAGG TTATGGAATT ATCATTGCAT CATTCCCTTT TCGAATGAGT TTCTATTATG	8700
CAACAACCTG TAGTTCGCGT TGGCGAATGG CTTGTTACTC CGTCCATAAA CCAAATTAGC	8760
CGCAATGGGC GTCAACTTAC CCTTGAGCCG AGATTAATCG ATCTTCTGGT TTTCTTTGCT	8820
CAACACAGTG GCGAAGTACT TAGCAGGGAT GAACTTATCG ATAATGTCTG GAAGAGAAGT	8880-
ATTGTCACCA ATCACGTTGT GACGCAGAGT ATCTCAGAAC TACGTAAGTC ATTAAAAGAT	8940

-124-

AATGATGAAG	ATAGTCCTGT	CTATATCGCT	ACTGTACCAA	AGCGCGGCTA	TAAATTAATG	9000
GTGCCGGTTA	TCTGGTACAG	CGAAGAAGAG	GGAGAGGAAA	TAATGCTATC	TTCGCCTCCC	9060
CCTATACCAG	AGGCGGTTCC	TGCCACAGAT	TCTCCCTCCC	ACAGTCTTAA	CATTCAAAAC	9120
ACCACAACGC	CACCTGAACA	ATCCCCAGTT	AAAAGCAAAC	GATTCACTAC	CTTTTGGGTA	9180
TGGTTTTTT	TCCTGTTGTC	GTTAGGTATC	TGTGTAGCAC	TGGTAGCGTT	TTCAAGTCTT	9240
GAAACACGTC	TTCCTATGAG	TAAATCGCGC	ATTTTGCTCA	ATCCACGCGA	TATTGACATT	9300
AATATGGTTA	ATAAGAGTTG	TAACAGCTGG	AGTTCTCCGT	ATCAGCTCTC	TTACGCGATA	9360
GGCGTGGGTG	ATTTGGTGGC	GACATCACTT	AACACCTTCT	CCACCTTTAT	GGTGCATGAC	9420
AAAATCAACT	ACAACATTGA	TGAACCGAGC	AGTTCCGGTA	AAACATTATC	TATTGCGTTT	9480
GTTAATCAGC	GCCAATACCG	TGCTCAACAA	TGCTTTATGT	CGGTAAAATT	GGTAGACAAT	9540
GCAGATGGTT	CAACCATGCT	GGATAAACGT	TATGTCATCA	CTAACGGTAA	TCAGCTGGCG	9600
ATTCAAAATG	ATTTGCTCCA	GAGTTTATCA	AAAGCGTTAA	ACCAACCGTG	GCCACAACGA	9660
ATGCAGGAGA	TGCTCCAGCA	AATTTTGCCG	CATCGTGGTG	CGTTATTAAC	TATTTTTAAT	9720
CAGGCACATG	ATTATTTACT	GCATGGTGAT	GATAAATCAT	TGGATCGTGC	CAGTGAATTA	9780
TTAGGTGAGA	TTGTTCAATC	ATCCCCAGAA	TTTACCTACG	CGAGAGCAGA	AAARGCATTR	9840
GTTGRTATCG	TGCGCCATTC	TCAACATCCT	TTAGACGRAA	AACAATTAGC	CAGCACTGAA	9900
CACAGAAATA	GATAACATTG	TTACACTGCC	GGAATTGAAC	AACCTGTCCA	TTATATATCA	9960
AATAAAAGCG	GTCAGTGCCC	TGGTAAAAGG	TAAAACAGAT	GAGTCTTATC	AGGCGATAAA	10020
TACCGGCATT	GATCTTGAAA	TGTCCTGGCT	AAATTATGTG	TTGCTTGGCA	AGGTTTATGA	10080
AATGAAGGGG	ATGAACCGGG	AAGCAGCTGA.	TGCATATCTC	ACCGCCTTTA	ATTTACGCCC	10140
AGGGGCAAAC	ACCCTTTACT	GGATTGAAAA	TGGTATATTC	CAGACTTCTG	TTCCTTATGT	10200
TGTACCTTAT	CTCGACAAAT	TTCKCGCTTC	AGAATAAGTA	ACTCCCGGGT	TGATTCATGC	10260
TCGGGAATAT	TTGTTG TT GA	GTTTTTGTAT	GTTCCCGTTG	GTATAATATG	GTTCGGCAAT	10320
TTATTTGCCG	CATAATTTTT	ATTACATAAA	TTTAACCAGA	GAATGTCACG	CAATGCATTG	10380
TAAACATTGA	ATGTTTATCT	TTTCATGATA	TCAACTTGCG	ATCCTGATGT	GTTAATAAAA	10440
AACCTCAAGT	TCTCACTTAC	AGAAACTTTT	GTGTTATTTC	ACCTAATCTT	TAGGATTAAT	10500
CCTTTTTTCG	TGAGTAATCT	TAGCGCCAGT	TTGGTCTGGT	CAGGAAATAG	TTATACATCA	10560
TGACCCGGAC	TCCAAATTCA	AAAATGAAAT	TAGGAGAAGA	GCATGAGTTC	TGCCAAGAAG	10620
ATCGGGCTAT	TTGNCCTGTA	CCGGTGTTGT	TGCCGGTAAT	ATGATGGGGA	GCGGTATTGC	10680
ATTATTACCT	GCGAACCTAG	CAAGTATCGG	TGGTATTGCT	ATCTGGGGTT	GGATTATCTC	10740
TATTATTGGT	GCAATGTCGC	TGGCATATGT	ATATGCCCGA	CTGGCAACAA	AAAACCCGCA	10800
ACAAGGTGGC	CCDDTTCCCT	ATGCCGGAGA	ΑΑΨΨΨΟΟΟΟΨ	GCATTTGGTT	TTCAGACAGG	10860

TGTTCTTTAT	TACCATGCTA	ACTGGATTGG	TAACCTGGCA	ATTGGTATTA	CCGCTGTATC	10920
TTATCTTTCC	ACCTTCTTCC	CAGTATTAAA	TGATCCTGTT	CCGGCGGGTA	TCGCTGTTAT	10980
TGCTATCGTC	TGGGTATTTA	CCTTTGTGAA	TATGCTCGGC	GGTACCTGGG	TAAGCCGTTT	11040
AACCACGATT	GGTCTGGTGC	TGGTTCTTRK	TCCTGTGGTG	ATGACTGCTA	TTGTTGGCTG	11100
GCATTGGTTT	GATGCAGCAA	CTTATGCAGC	TAACTGGAAT	ACTGCGGATA	CCACTGATGG	11160
TCATGCGATC	ATTAAAAGTA	TTCTGCTCTG	CCTGTGGGCC	TTCGTGGGTG	TTGAATCCGC	11220
AGCAGTAAGT	ACTGGTATGG	TTAAAAACCC	GAAACGTACC	GTTCCGCTGG	CAACCATGCT	11280
GGGTACTGGT	TTAGCAGGTA	TTGTTTACAT	CGCTGCGACT	CAGGTGCTTT	CCGGTATGTA	11340
TCCGTCTTCT	GTAATGGCGG	CTTCCGGTGC	TCCGTTTGCA	ATCAGTGCTT	CAACTATCCT	11400
CGGTAACTGG	GCTGCACCAC	TGGTTTCTGC	ATTCACCGCC	TTTGCGTGTC	TGACTTCTCT	11460
GGGCTCCTGG	ATGATGTTGG	TAGGCCAGGC	AGGTGTACGT	GCCGCTAACG	ACGGTAACTT	11520
CCCGAAAGTT	TATGGTGAAG	TCGACAGCAA	CGGTATTCCG	AAAAAAGGTC	TGCTGCTGGC	11580
TGCAGTGAAA	ATGACTGCCC	TGATGATCCT	CATCACTCTG	ATGAACTCTG	CCGGTGGTAA	11640
AGCCTCTGAC	CTGTTCGGTG	AACTGACCGG	TATCGCAGTA	CTGCTGACTA	TGCTGCCGTA	11700
CTTCTACTCT	TGCGTTGACC	TGATTCGTTT	TGAAGGCGTT	AACATCCGCA	ACTTTGTCAG	11760
CCTGATCTGT	TCTGTACTGG	GTTGCGTGTT	CTGCTTCATC	GCGCTGATGG	GCGCAAGCTC	11820
CTTCGAGCTG	GCAGGTACCT	TCATCGTCAG	CCTGATTATC	CTGATGTTCT	ATGCTCGCAA	11880
AATGCACGAG	CGCCAGAGCC	ACTCAATGGA	TAACCACACA	GCGTCTAACG	CACATTAATT	11940
AAAAGTATTT	TCCGAGGCTC	CTCCTTTCAT	TTTGTCCCAT	GTGTTGGGAG	GGGCCTTTTT	12000
TACCTGGAGA	TATGACTATG	AACGTTATTG	CAATATTGAA	TCACATGGGG	GTTTATTTTA	12060
AAGAAGAACC	CATCCGTGAA	CTTCATCGCG	CGCTTGAACG	TCTGAACTTC	CAGATTGTTT	12120
ACCCGAACGA	CCGTGACGAC	TTATTAAAAC	TGATCGAAAA	CAATGCGCGT	CTGTGCGGCG	12180
TTATTTTTGA	. CTGGGATAAA	TATAATCTCG	AGCTGTGCGA	AGAAATTAGC	AAAATGAACG	12240
AGAACCTGCC	GTTGTACGCG	TTCGCTAATA	CGTATTCCAC	TCTCGATGTA	AGCCTGAATG	12300
ACTGCGTTTA	CAGATTAGCT	TCTTTGAATA	TGCGCTGGGT	GCTGCTGATG	ATATTGCTAA	12360
CAAGATCC						12368

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 833 base pairs

 - (A) EENGTH. 055 base part (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

-126-

GCACGGCACT	CTGATGTANC	TTTTATCTGT	TCCCAGTGGA	AGCATGCCCC	ACAACTGAGT	60
CATTAAGTGT	GGAAGAACAG	TTTTGTCCCC	GCCTGCAATC	TCTCCCTTTC	NAAAAACCAG	120
TATGTCGCCA	TGCCTCGCCT	TAATGGAGAG	CGCTGAACCA	TACCTTCTTT	TTCCCAGTAA	180
TAACAGGTAA	TAGCGTGCCT	GGTAATCCGT	TACCGCCAGC	GCCTCCGCAA	TTTCTGCGGT	2 4 0
TTTCCCTCCA	TTATGCCTGT	TCAGAAATYC	CAGTATTTCA	TTCTTCATAT	ATTCACTCAT	300
CTCACTGTAA	CAAAGTTYCT	YCGAATAATA	AAAATCATGC	TTTCTGTTAT	CAACGGAAAG	360
GTATTTTTAT	TCTCTGTGTT	TGCTTTATTT	GTGAAATTTA	GTGAATTTGC	TTTTTGTTGG	420
CTTTATTTGN	ATGTGTGTCA	CATTTTGTGT	GTTATTTTTC	TGTGAAAAGA	AAGTCCGTAA	480
AAATGCATTT	AGACGATCTT	TTATGCTGTA	AATTCAATTC	ACCATGATGT	TTTTATCTGA	540
GTGCATTCTT	TTTGTTGGTG	TTTTATTCTA	GTTTGATTTT	GTTTTGTGGG	TTAAAAGATC	600
GTTTAAATCA	ATATTTACAA	CATAAAAAAC	TAAATTTAAC	TTATTGCGTG	AAGAGTATTT	660
CCGGGCCGGA	AGCATATATC	CAGGGGCCCG	ACAGAAGGGG	GAAACATGGC	GCATCATGAA	720
GTCATCAGTC	GGTCAGGAAA	TGCGTTTTTG	CTGAATATAC	GCGAGAGCGT	AYTGTTGCCC	780
GGCTMTATGT	CTGAAATGCA	ATTTTTTTT	CTGATAGGTA	TTTCTTCTCA	TTC	833

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2916 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

TGCACCATCA CTGATACCAC	CGGGACCCCG	GATTTTATCC	GGTCCCCGCG	GACTGACAGG	60
GTTTGTGACA CCTGAGTCAT	ATCCGATGTA	AACTTCATTT	TCACGGGTTG	TACAGGAAAA	120
CTCCCCTGTG CCATTGAGTT	CTGATGTGTG	CCCTTCGCCA	CAACTCCCAC	CGTCACGGCA	180
CCAGTTGCAT CTGACGCCGA	CCAACTGCTG	AGAGCCATGC	CGTTTCCGGC	TTTGTCGACA	240
ACGCATGCTG CAGTTCCCAG	CGATGCGAAC	TGGTCTGGCA	TGCATTCACG	AACCAACAGC	300
AGTGGTGCTA CGTCCGGATG	CAATTCGCAT	GAGCTCCAAC	CGCGGTTGTA	AGTTCAGCAG	360
CCCGGGCCTC TGCCCCGGC	ACAGTCGCAT	AAGTATTCGA	TACCGTGCGA	CACCATTACC	420
TTCAGGATAC GCCACGGACC	CGTCACCCTA	CGAAAACGCC	GGAGCACCGG	CAATCAGCAA	480
AGGCAGCAGT GATAAAAGAC	TGATATATTT	CCTGTCATTA	TTTTTCATAT	TAATTTAACT	540
CCTGATTAAC CGGTTTTTAT	TGATATGAGA	AAGTAATAGT	TGCAATAGCC	TTCACACTTC	600
CAGGTGTAGT TGCATCAGCA	ATTTTTATAT	AATTGGCTCT	TAAATTGATA	TGTGGATTTA	660
CCTCTCCCCT GTAATCGGAG	AAGTGCCATT	GACTGCCATT	TCCTTTCACA	GGGGAGTCTT	720

-127-

CACCATAGCT GATGGCAGTT ACATCACTGT CTTTATATAG CCTGATGCCA AATCCTTTTG	780
CAGTGGATTC ACTGCTTAAG GTCAATATAT CTGTTCTGTT	840
TCAATGTAGC ATAAACATCA ATTCCATCCG GGCATTGTAG GTGTATGTCA ATTTTACCTC	900
CCTGTATTTC TTTATACAAA GATGTGAACT GTGATTGATA TACGGTATTT AATGGCACCA	960
CATAGTTTTT TTGCCCCATG GTACATGTCT GACTCTGTAC CTGAATGCGC CCACCATTTA	1020
ACATAACAGG TGCTGTCAGT CCTTTATTAT TTAAACTTGT ACGTTTTGCT TCCAACAAAA	1080
TAGTACCAAG CTGCCTGGTG GGTATTGTTA TATATCCATT GGGTAATCTT CCCGTTGCGA	1140
CAAAAGCAAC AAACAAACGA GCTCCGAAGC TTGCTGTCGC ACCGTTATAA GTATTGGGGT	1200
TTGTATTGGC ACCTACAGGG TCAATATATA TACCTGAGCT ATTTATGGGG ACCAGAGGCG	1260
TTGCGGGCCA ATAGCCCGCC ATGCCAATAA TAATACCCAG TCCGGATACA CCAATATCAT	1320
AGATATCAAA ATCAGATGAA TCACGGCTGT TTCCTTGATG GAAAGTATAC GTAATACTTC	1380
CAATTTTAGG CAGTGCGGGT GTAAACTTTC CACGCATCAG AGCGATGGCA CCGCCATTAA	1440
AAACATACTG GTTACTTGTT CCCGCCAGCT CTCCTATCAC CCGGGGATAG GTATGGGCAT	1500
CAGCAGGACC AATCACAACA CCTGGCAATG TGGATGTATT AACCGCTATC TGCGAAGGCA	1560
CATAATCATC CGGACCCGCT ACCGCCAGCT TAGGGAGTAA AATTAAAAAC AATGGTATGA	1620
AAAAGATTCT TTTCATGTTT TTTCCTGATT AGGGTGCTGT ATACACAGAA CAGGAACGAG	1680
CTGAGATTGC ATATCATCTT TATTGTGTGC AACATGATAT ACAAATGAAC ATCTGTCTTT	1740
ATTATCTGGT CCCCATACAA CGCTGAGATG ACCTTTTTCA GGGAGTCCCC TGGTAAATAC	1800
CTTCCCGGCC TGAGCGACAT ATCCGGCCAA CTGTCCATGT TCATCCAGAA CTTCAGAAGC	1860
CATTGGAGGG GGATTGCCAG TAGACATACG AATATCAAAT AACAGACTTC TTCCTGTTTT	1920
AGTGTCAAAT TTYACTAACG TGGCGCTATT AGCACGAGGA ATGATTTCCT GCTCCGTCGC	1980
CGATAATTCA ACATTCAAAT CTAAATTGGA GGGATCGATG CTAATTTGAT TTTTCTCATA	2040
GGGTGTAACA TAAGGAACAA TACCATTTCC CCAAAAATCC AGACGACTAC CAGAGGCATT	2100
ATTGATGGCA GCCCCCTGAG CTCCTTCAGC ATGGATAATG GCAAAAGTAT CACTCAGGTC	2160
ATTACTCAAT GTCACTCCAT AGGGGTGTGC GACCACCGCT CCCGACGCAC CAAATGACCT	2220
TTGATTATTA TTCTGAGTAT CATGCCCGAC TGTTGTGGTT ATATTTACAT AAGGTGAACG	2280
ATAACCCCCA TTCATTGCAT AACCGGAAGG CCCGTTTTCC TGGCTGTTTC CTGAAAGACC	2340
ATAAGAGAAC TGATTATCCT CCCCGCCAGT ACCACTAATT GATGTCTGAA TACTATTTTT	2400
CTCTTCTTTG CTATAATTTA AAACAGTGGA AAACACCGGG CTTTGAACAC TTNCCTCCCA	2460
GAGGGAGAGT AAAATTAATA TAAAATCTGT CATCACGGCG TTGTTGCTCA TTATCTCTTG	2520
ACTGAGACAA TCCAATTTGA TAGCCGAGTT GTTTCCAGAA GTTGCTGTAC CCCATCTGGT	2580
ATTCATTACG ACTTCCTTTA TGTCCCCAGT AATTATAGGT TGTTCCTGTT AAATACATCC	2640

-128-

CACCCCATTT	TTCACCTAAT	TCCTGGTTGA	TTGAAATCTG	GAATTGATTC	CTGGGACGAT	2700
AAAACGCTGT	ACTTTTTACA	GAAACATCAT	CAATAAACGC	GTTGTGATTA	GCTGATAGCG	2760
CATCCTTCAG	ATGATAAAAA	TCTTTTGATG	AATAACGATA	AGCCGCCAGA	GTTATATTTG	2820
TGTTTTGAGG	GCTGGGAATA	TTGGATGGCT	AATAACTTGG	AGTNGCAGGA	CTAATAAACC	2880
TTTTACGGCG	GTTACACCGG	GAATACCNGG	AAATGC			2916

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2677 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

ACCGCATCGC	CAATCTCAGC	GGCAGTGGTT	TACATGTCTT	CCGTGATGGA	AGGTCATGGC	60
ATCAGCTACC	TCCATCTGCT	CTCCGTGGTC	ATCCCGTCCA	CCCTGCTGGC	GGTTCTGGTG	120
ATGTCCTTCC	TGGTCACTAT	GCTGTTCAAC	TCCAAACTCT	CTGACGATCC	GATTTATCGC	180
AAGCGTCTGG	AAGAGGGCCT	GGTTGAACTG	CGCGGTGAAA	AGCAGATTGA	AATCAAATCC	240
GGTGCAAAAA	CGTCCGTCTG	GCTGTTCCTG	CTGGGCGTAG	TTGGCGTGGT	TATCTATGCA	300
ATCATCAACA	GCCCAAGCAT	GGGTCTGGTT	GAAAAACCAC	TGATGAACAC	CACCAACGCA	360
ATCCTGRTCA	TCATGCTCAG	CGTTGCAACT	CTGACCACCG	TTATCTGTRA	ARTCGATACC	420
GACAACATTC	TCAAYTCCAG	CACCTTCAAA	GCAGGTATGA	GCGCCTGTAT	TTGTATCCTG	480
GGTGTTGCGT	GGCTGGGCGA	TACTTTCGTT	TCCAACAACA	TCGACTGGAT	CAAAGATACC	540
GCTGGTGAAG	TGATTCAGGG	TCATCCGTGG	CTGCTGGCCG	TCATCTTCTT	CTTTGCTTCT	600
GCTCTGCTGT	ACTCTCAGGC	TGCAACCGCA	AAAGCAYTGA	TGCCGATGGC	TCTGGCACTG	660
AACGTTTCTC	CGCTGACCGC	TGTTGCTTCT	TTTGCTGCGG	TGTCTGGTCT	GTTCATTCTG	720
CCGACCTACC	CGACACTGGT	TGCTGCGGTA	CAGATGGATG	ACACGGGTAC	TACCCGTATC	780
GGTAAATTCG	TCTTCAACCA	TCCGTTCTTC	ATCCCGGGTA	CTCTGGGTGT	TGCCCTGGCC	840
GTTTGCTTCG	GCTTCGTGCT	GGGTAGCTTC	ATGCTGTAAT	GACCCATYGC	GGGGCGTTCA	900
CGCCCCGCTT	TCTTTCCCGC	CGACTAACAT	CCTTTCCCCG	TCCGTTGTAT	AGTGACCTCT	960
CTCTTGCGGT	TCCATCTGTT	CTTGCGAGGT	GTTTATGCTT	GATGAAAAA	GTTCGAATAC	1020
CACGTCTGTC	GTGGTGCTAT	GTACGGCACC	GGATGAAGCG	ACAGCCCAGG	ATTTAGCCGC	1080
CAAAGTGCTG	GCGGAAAAAC	TGGCGGCCTG	CGCGACCTTG	ATCCCCGGCG	CTACCTCTCT	1140
CTATTACTGG	GAAGGTAAGC	TGGAGCAAGA	ATACGAATGC	AGATGATTTT	AAAAACTACC	1200
GTATCTCACC	AGCAGGCACT	GMTGAATGCC	TGAAGTCTCA	TCATCCATAT	CAAACCCCGG	1260

WO 98/22575

-129-

			አ <i>ርአርአር</i> አምሞሽ	CCTCTCATGG	CTCAACGCAT	1320
AACTTCTGGT	TTTACCTGTT	ACACACGGAG	ACACAGATTA	CCCCCATTAT	TCGACGCGCC	1380
CTTTACGCTG	ATCCTGCTAC	TTTGCAGCAC	TTCCGTTTTT	GCCGGATTAT	ncca a a acca	1440
GGGACGTTCA	CAATTTGTCC	CCGCGGATCA	AGCCTTTGCT	TTTGATTTTC	AGCAAAACCA	1500
			AGACGGTTAC			2000
CCGCATTACG	CCGGAACACG	CGAAAATTGC	CGACGTGCAG	CTGCCGCAAG	GCGTCTGGCA	1560
TGAAGATGAG	TTTTACGGCA	AAAGCGAGAT	TTACCGCGAT	CGGCTGACGC	TTCCCGTAAC	1620
CATCAACCAG	GCGAGTGCGG	GAGCAACGTT	AACTGTCACC	TACCAGGGCT	GTGCTGATGC	1680
CCCTTTCTGT	TATCCGCCAG	AAACCAAAAC	CGTTCCGTTA	AGCGAAGTGG	TCGCCAACAA	1740
CONNECCTO	CAGCCTGTGI	CTGTTCCGCA	A GCAAGAGCAG	CCCACCGCGC	AATTGCCCTT	1800
mmaccccctt(TGGGGGTTGT	TGATCGGTAI	TGGTATCGCC	TTTACGCCAT	GCGTGCTGCC	1860
TICCGCGCIC		CCATCGTGC	r gggcggtaaa	CAGCGGCTTT	CCACTGCCAG	1920
					CGGCGCTGGG	1980
AGCATTGTT	G CTGACCTIA	A IIIAIGIGG	T CCACCCGCC	CTACAGMACO	CATACGTGCT	2040
						2100
					TKTTTACTCT	2160
GCAACTCCC	C TCTTCGCTG	C AAACACGTC	T CACGCTGAT	G AGCAATCGCC	AACAGGGCGG	2220
CTCACCTGG	C GGTGTGTTT	A TTATGGGGG	C GATTGCCGG.	A CTGATCTGT	CACCYTGCAC	
CACCGCACC	G CTTAGCGCG	A TTCTGCTGT	'A TATCGCCCA	A AGCGGGAAC	A TGTGGCTGGG	2280
CAGCGGCAC	CG CTTTATCTT	T ATGCGCTGG	G CATGGGCCT	G CCGCTGATG	C TAATTACCGT	2340
CTTTGGTA	AC CGCTTGCT	C CGAAAAGCC	GG CCCGTGGAT	G GAACAAGTC	A AAACCGCGTT	2400
					G GTGATATATG	2460
CCCATTAC	ac TTGTGGTC(G CGCTTGGT	GT CGCATTCTT	T GGCTGGGCC	T TTATCACCAG	2520
					G CAGCGGCATT	2580
					CG CGCAAACTCA	2640
						2677
GACGCATC	TC AACTTTAC	AC AAATCAAA	AC AGIMONI			

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

* * * * * * * * * * * * * * * * * * * *						
ATCCTGATGA	CGCCGTAAAT	GTGCATTTGC	CAGGATTGCC	GCATAGAGGG	CACGAAGAAA	60 ·
AGGTCGGTTG	TCAGGATGTA	TCCAGATGAT	TCTGCCACTG	AAACCIICAG	GGATAAGACG	

-130-

ATTGCCAACT	GCCAGTCCTT	TAAGGGCAGC	ATTCAGCGCC	TTACGCGGGG	CATTCTGCTC	180
CAGAAATACG	TATGCCAAGT	GAGCGTGTAC	ATCAATAAAG	TCATTCTCCT	GTCGGGCAAG	240
GCGCCTGAGT	TTGTTGATGT	AACTTGTTTC	GCTGATTTCA	TCCGCATCGT	ATGCATCAAT	300
CAGTTCTTCA	AACTCATCCA	GCAACGAGCC	AAACCAGGTT	TCCGGAAATA	TGAAACAGCC	360
CTGGTTATCG	TTCACTTCAA	AGCGTAATTT	GCCAGTCATA	TTCTGAACCT	GTAAAAAGG	420
ATAGACCATA	ATCTGCAGGC	TTAAAAATT	GTGGATGCCT	GGCATCGGGT	GTCCTTTTAT	480
TGTCCGGGAT	TAACGTTGCC	CATGATAATA	CAGTGAATCC	NGTTCTGTGG	TAAGACG	537

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

CGCTCGAGCA	CCAGATTCAC	TGACATGCGC	AAACTCATGT	GTAAATCCTG	TCTGGGCATC	60
TATCTCAAGT	AACAGTTCCG	TTAAATCTAC	CGGTGGGAGT	AGCTGTTTGA	TCCGATTATT	120
TAGACGAAGC	AATGATGGTG	GCTCTTCCTG	TTTCTCCAGA	CAACTGATAG	TCAGGGATGG	180
ATATTTACCT	TCATTACAGA	TATGAACTTC	CGCATTCTTT	TCAAATCGTG	ATGCCAGGCT	240
TTCCAGGTCT	CATCCAGCTG	AATAGCCAGT	TGTTGCACAC	CTTTACGTCC	ATCGACAGGA	300
TGTCCCAGTG	CCCGACAGAC	AGGAATACGC	TGAGTCTGCC	ACTCTTCACC	TTGCAACAAC	360
TTCTCGCGAG	GATCTCCCCA	GCGATCACTG	TTTTCAAGCC	CAGATGTCCC	CGGCGGCGCA	420
RTGCATCCTG	AAGGCGTTCC	AGCAAACATA	GTGAATAACC	TGCACGCTGT	ATCCCGTCCC	480
TCCGCATCGT	ATACGAGGCG	TTTCCAGGGA	CCGGTGATAA	TATGTTCAGC	GCATCATCAA	540
GGATGCGCTT	TTTCGAACCA	TTCAGTTCTG	CCAGATAATG	AATCGCAGCC	AGTACATGTC	600
ACCTGCCGGT	GCCGCACGGA	AATGCAGGTC	CCGCAACACC	GCCGGAAGAA	AACGTTTAAC	660
CCGACCGTAC	TGCTCAACCA	TTTCGTCATG	GAAATTATTG	TTCTGTGGAC	GAGCAAGTTC	720
ATTAACCTTG	CTTACAGATT	CTGCCAGTCT	GTTTTTGGGT	ACGCACTTGA	AGATAACCTG	780
CCTGAGATCT	GGGACATCTG	TATTATCATC	CAGCAACAAT	GCACATGCCC	GCGCCAGTAA	840
CAATGCGGCC	TGATCAAGAT	CTTTCAGTGT	CCTGAGTCTT	TTTTTTTGCC	CGGTTTTCTT	900
TGCTTCGCGG	ATAATGTCCA	GAATTAGCAT	ATCAAGCACA	TCAACGGCAT	CGTCTAATGC	960
CGTTATTTCC	TGTGCTTTAA	CGAATGCAGT	AAGTACAGCA	AGCTTTCTCT	GCTGTGGCAT	1020
TCGAGCGATA	TATTTTACCG	ACGCCATGCC	AGCATGAACG	AGCCAGATTA	CGCNTTGGNA	1080
ATGGTCAGGC	AGACCGGGAA	AAGTTCCAGT	CGGGNAAAAC	TCCAAGAA		1128

-131-

(2) INFORMATION FOR SEQ ID NO: 26:

(1) SEQUENCE CHARACTERISTICS:

- (\bar{A}) LENGTH: 2311 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GGNTGATAAA AATCYTTTGA TGAATAACGA TAAGCCGCCC AGAGTTATAT TTGTGTTTGA	60
GGCTGGAATA TTGATGCTAT AACTTGAGTG CAGACTATAA CCTTTACGCG TTACACCGGA	120
ATACCTGAAT GCTGTTCTGG ACAATGTAAT GTCAGATGCT ATAGCACCCA GATGGGTATT	180
AAAGGCCAGG CCAGCTAACC CCGCTGTATA TCCTGAAGCT GTGGTAAGAC CACTGTTTAA	240
AGTAATATCA TTCGTCAGGC CGTATTGATA GGTGCCTTGT GCTATTAAAT CATTATATGT	300
TTTATTCGCA TAACGATACT TTCCCACTGA CATTTGCCAG CGACTAAATC CGGGACGAAT	360
GAGTTGAGCA ACGGCCGCAA AAGGAACCGT GAACATTCGT GTCTGGCCAT TAGACTCTGT	420
TATCTTAACG AGAAGGTCAC CAGCATATCC ACTGGGATAT AAATCATTGA TGACAAATGG	480
TCCGGCTGGC ACCGTCGTTT CATAGAGGAT ATGAGCATTT TGATAAATGG TTACTTTAGC	540
ATTACTGTTA GCTATTCCCC GGACAGCAGG RGCATAGCCA CGTAAAGAAC CGGGTAACAT	600
TCGTTCATCC GATGCTAACC TGACTCCCCG CAAACTGAGG CTATCCATTA GCTCACCATT	660
CGTATAAAAA TCCCCTAATG TGAATTGTGC TCTCAATGGG GCAAGGTCAT GCATTATACT	720
TGTTTCTATA TTCTGATATC CGGCAGGATA GCTATTATTC CAGCTCTCAC TGCCACGGTG	780
GCGCAAAGCC ATCCCCACAA ATTGAATCCA GCTTTTAATC CCAGATAAGT CTGTTCGTTA	840
CTCGTCCCGG AAGAGCTATA CTGGTAATAG TTAGCATCAT AGTTTATAAA TGCTGCAGGA	900
ACACCACTTT GCCACTGAGA AGGGGAAATA TATCCTCTTG GACGTGTATT CAGCAGTGCT	960
GCGGGATTTC GATATTCAAC CTTAAAGTCG ATAAGTCAAA ATTAATTCTG GCTGAAGAAA	1020
GCCCTGTTGA CGCCGGAAAG CAGGAGGTGT TTCCCCGACAT AGTATCTTTG ACTAAATCAA	1080
TCAATGAAAG CAGCTCAGGC GTCAGGCATA ACGTCGGAGC ACCGGTATTG GCAGTACGTA	1140
AATACTGCAA ATCAGCCTTC CCCTTCCATA CATTATTAAC ATAAATATCA GAATAATACC	1200
TGCCCTCAGG CACAGGGTTA CCATGACTAA AGCGGCGGAT ATCAATAGCA TTTATCCCTT	1260
TATCCAAATG CAAAAACTCA GAATCAAACT CAGCCTCTTC AGCAGCAAAT GAATGGTTTG	1320
TATCCAAATG CAAAAACTCA GAATCAAACT CAGGOTTOTT TTACTGTTAA CCCTAATGCA GCAAAAAGCA GAAGAGAACA ACGACAGTAA ATCAGGCATG	1380
TTACTGTTAA CCCTAATGCA GCAAAAAGCA GAAGAGTAGT TOO	1440
ACAGATTATT AGCGTTCATT ATTACCTIAC TECAGAACAC INTOTOTOTO CCGTAATCAT TAACAATAAC CCAGGAAACT TTGCTGGTGG CGCAGTTCTG CCTTTAAGTG	1500
CCGTAATCAT TAACAATAAC CCAGGAAACT TIGCIGGIGG CGC.NOTTOTT CAAATACTGT TGAAGAGAAA GGGGGAATCA TTCCACCATG TTCAACAGGC GTTAAGTGCT	1560
CAAATACTGT TGAAGAGAAA GGGGGAATCA TICCACCATG 11011101101	

-132-

TATTCTGGTC	AACTGCAATT	TTGTTGTAGG	TTATGTAATA	AGGTGTTGGA	TTAACTGCTT	1620
TAATTCGGCC	TTCCTCCTGG	TGCCAGGTAA	CTTTCAGATA	AGCATCATTT	GGTGTTAACT	1680
TCAGGTGAGC	AGGACGAAAG	AAAAATTTTA	TGCGACTACG	AACAGCTAGT	TGCAAATAAT	1740
TATTATTCCG	CTGCTCTGAG	TTATCGGAGT	CTTTTTTTGC	CCTGGGCTTT	GCTGGAATAT	1800
CCAGAACATT	TAGATAGAAA	AGAGATTCTC	GGTCTTTCGG	TAGTGACTCG	CCTGTATATA	1860
CAATTCTGAC	TGTTTGTCCT	GATTTAGAGT	CCATACGAAA	TATTGGCGGA	GTAATGATAA	1920
AAGGACGTGG	ACTGACTCAG	GGGGAGCTGC	TGCATCTCCA	TCGYCAACCA	GGACTGGACT	1980
AATGCCGAGA	TTTCATTGTC	ATTATTTNAA	CGTATGCTAA	TACTCTTTTG	AGTCGCCGGA	2040
TAAACAACAC	GGGTTCCCAT	GATAACTACA	CTACCCTGAA	CAACTGCAGA	TACAGATAGA	2100
GTAAAAAAAA	ACAGCACAAA	CCTTAGCATG	GTATCTCCAG	AAGAAAGCAG	GGCAGTATTT	2160
CCTGCCCCAA	AATACAAAAC	CGTTTGTTAT	TCGTAGGCGA	TGGTATAATT	GACTGTTGTT	2220
TTTACATTGC	CTGGAGTTGA	TGTCCCGGTC	GCATAATATT	GAGCCATATA	ACGTAATGTG	2280
GCATTACCAT	CCCCACCAAT	AGTTTCAGAA	T			2311

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1118 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

60	GTCCCAATAT	AGTTATCGCA	GAGTCCCTAA	GGCGTAAATG	GATTTTTCCG	TATTACCTGT
120	TTTGATGTAT	AGAAGATGTG	GTAACCCATC	AGATAAACGA	ACTGTTATAA	TTCCTGCATT
180	TTCATTGTTC	TATCGTAACC	TTGTTGCCGT	TNATAAGTGT	AATAGCATTG	TCTGAACTAA
240	CCATTTTGAC	TTCGTGANTT	TAAACTCTTT	ATATTCACAG	GGGACACCGC	CCAGATTATA
300	GTACAGGCAG	GTTGCTTACA	CAACAGTTGT	NCCTGCCAGT	AATCTCTACA	TCAGGGTCTG
360	TGAGACATTA	ATGTACATGC	TATCAACTGC	AAGGTCAGAT	TTTTCCTCTG	GAATAATCAG
420	TGAAATATCC	CTTTTTCATC	AACCTCTTAT	GGAAGACACA	CAGCATTACC	ACACTGCCCC
480	CATAATCACC	GCTGTTGCTT	TTCAAACGTG	GATATGTCAA	TTTTGCTAAC	TGTACAAAAA
540	CGCCGAAAGG	ACAACATACG	CGGCGTTGCC	GCAGGGCTTC	CTCTTCGTCC	GGGTACCACA
600	AGGTGCCGGG	TTGTTATGGG	CCCCTGGCCT	TAACCTTTTC	CTGTTTCCGG	AAGCTCAAGA
6 ₆ 0	CAGCATTCAC	CCTAACCGGC	CAGTGCAATG	CGGTGTCCAG	CTGCTGCCAT	TTTCAGCAGA
720 -	GGTCAGGGTC	TCCCCTTAAA	CYNTCTTCCG	CCGGGAGRCG	TTCAGATGGC	TCCGGTTACC
780	CGACTCTGTC	TGATGACAAA	TTTTCCAGCC	TGCATGGCAG	CAACTGCTGT	ACAATTTTGC

	1	~	\rightarrow	
-	1	ى	٥	-

GGCGAACGTC	CGGGCGGATA	CCAGAAATCC	CTGGACGCCC	GGGTTTTGAA	GACGACATGT	840
TTATTCAGAC	TGTCACCGGA	CACATGGCAG	GGTCTGTCAA	GCAGATTACC	CCTGAATGCC	900
ACATCTGAGG	CTATTGCCTG	TCCGGCAGAC	AGTGCGGCAA	ACAGTAAAAG	AGCGCCTGTG	960
CTTTTTATCA	TCACATTCCC	TTACTCATAT	TTTATGCTCA	GACGCAGCAT	GGCCGGATTG	1020
CTCCTGGCAT	CAGAATACTC	AACCTCCTGT	GGCGGCCTTT	TCCTCCAGGC	GGGCAAGCAT	1080
CTCCTCCTGG	CGGCGGGTAA	GGCGGGGACA	GTAAAAA			1118

(2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 562 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOFOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

TTCGTGGGTG	AAATCGTAGG	CCGCGCTTTT	TTGCTGATCG	GCCAGTTGAT	GAATAGGGTG	60
GCCAKGATCG	GGATAAAACG	TACAGGCAGC	GATAAACAGA	CAGCCCGGAT	AGCGGTTGTT	120
TTTAACGCAC	TCCGATAACG	CCTGATAACG	TGCCAGCAAC	TTTTGTTCGG	CGGTTTGCGT	180
TTCGTCCAGC	ATCAGCTGAC	GACGCCAGAC	ATCTATCTGT	TGGCTAAGAT	AACGCAGCGC	240
ATCGTAGAGG	ATTGCCTCTT	TGTCTGGCCA	GAAGCGGCGT	ACTCGTCCAG	TGGATAATCC	300
ACACGTTCAG	CAACCATCTC	CAGCGTGGTG	TTGGCAATCC	CTTGTAATTC	TAATAATTTC	360
AGGGCTTCTC	CCAGTACATC	TTCACGTTGC	ACGCTATTTT	CCTCCGKCTT	TCCCACTGCA	420
ATGTTCGKTC	ACGGTTGGCG	ATCGCGCAAA	TGTGCGCTGG	AAGGTTTCAG	CATCCATAAA	480
GCCCGTGACG	CGTGCTTGTG	GATGCTCCTG	GCCTTGGTCC	GGTCAAAAAA	GAGAATTTGT	540
CCGGTAGGG	: CAAGGATATT	AA				562

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 745 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

CCATCGCTTT ACCCCAGAAA	AGTTAAGCCA	TATAATGTGA	GGGATATAAG	TCGTCGTATC	60
CGGTAAGTAC AGATAACCAC	AACATAAGCT	CATTCAGTAA	ATTTTATCTC	TGAACAAACG	120
ACTATGGCAT GCTCATTTAT	ACTATTCATA	AGAAAGTGTG	ATTATCTGTA	AGCATT A ACC	180 -
ATCAAATCAT ATAACCATAC	TAAACTGGCG	GATCATCAGC	ACCATTAGCA	GGTAACTTAT	240

	1	~	4	
_	1	•	4	-

TGAAATTTTA	TTATGTGTTT	TTTGTTGATA	ATTAATATGC	AATATGAATT	TGCTATTTTA	300
GAATCATGAA	CACCATTTAA	AATTACCATC	ATTAACATCA	TATAAAAATA	TATTTTTACT	360
AAAACATGAA	TTGTATATAT	TTATTAGCTC	AGGAAAATTA	TCAGGGTTCA	CCTTCAAATT	420
AACCTGAATG	TTATGCTTAA	TTTCACCCAG	TAGTTCTTCA	TGTGTAGATT	TTATTATCCC	480
AATATTATAA	TCGATAAATG	CACACATGTT	TTTTATGAAT	TCAAAACCTT	TTCCTGTATA	540
CAGTTTAATG	AATGCCACCA	GAGCAAACAT	TTCAAGATGT	AGCCATAATG	CTACGTTAGT	600
TTTTTGCAAA	GTATAAAAA	TTGAATTCGC	CACTTTTTTA	CTTATTGCTC	TTTTATACTG	660
TGATCGAGCA	AGATTCAGTA	GCGGAAGTCC	TCGTTCAATA	AATGAATGTG	AAAAGACTGG	720
ATAAATTGAT	GTCGGAAACC	TTTCA				745

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

GCGTTNATGC	ATTTCGASAT	TTTCCACTTC	GTTCTGACGT	TGCACTGCTT	TGGCGTCATC	60
ATTACGTAAC	GTATCGAGGA	AATCGAGGTA	GCCCTGATCA	ACATCTTTGG	TGACGTAGAC	120
GCCGTTGAAC	ACCGAGCATT	CAAACTGCTG	GATATCCGGA	TTTTCAGCGC	GAACGGCGTC	180
GATCAGATCG	TTCAGATCCT	GGAAAATCAA	CCCGTCAGCA	CCGATGATCT	GGCGAATTTC	240
ATCAACTTCG	CGACCGTGAG	CGATCAGTTC	CGTGGCGCTC	GGCATATCAA	TACCATAAAA	300
CGTTCGGGAA	AGCGAATTTC	CGGTGCCGCA	GAAGCGAGGT	ACACTTTCTT	CGCTCCGGCT	360
TCGCGTGCCA	TCTCGATAAT	CTGTCAGAAG	TGGTGCCACG			400

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 824 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

60	CCATGACTGC	AGGGATGATG	GCCGAAAAGA	GAGCATTAGA	GAGGCAGCCA	TGTCGACGAT
120	GTGGGCAGCA	CTGGGGATCT	ATCAGTTCTT	TATATTCTCC	AAATGTTTCA	TGTTGCTATA
180-	TAAGGAGATA	AAACGTACGT	AATGGAACGA	TTTGAGGGCC	ATACTAGGGG	TATAGCGCTC
240	TCCTCTGGCA	TTTTAAAATA	TCAGTTCCCC	TTTAGAGCTC	ТАТАТТТААА	ATTCGTTGTT

-135-

ACGTGAATGT	ATAATGGCCC	AACATATTGA	TATGCCCGTG	CATCAGGGGA	GATAGCCGAG	300
CGATATCTTC	ATCTATAATT	TCTTCGCCAT	TACGGCGCAT	CCAGCTCAAC	GCTTCCTCCA	360
TATAGAGCGT	GTTCCACAGA	ACCACTGCAT	TAGTAACCAG	GCCCAGCGCC	CCCAGTTGAT	420
CTTCCTGCCC	TTCACGATAA	CGCTTTCTGA	TCTCTCCGCG	TTGTCCGTAA	CAAATCGCAC	480
GAGCCACAGC	GTGCGKTCCT	TCTCCTCGAT	TAAGCTGCGT	CAGGATCCGC	CGACGATAAT	540
CTTCATCATC	AATATAATTG	AGGAGATATA	GCGTTTTGTT	TACACGCCCT	ACTTCCATAA	600
TTGCCTGTGC	CAGTCCTGAT	GGGCGCGAGC	TTTTCAGTAA	AGAGCGAATG	AGTTCTGACG	660
CATGAATTGT	ACCCAACTTC	AGGAACCAGC	GGTTCGCATC	ATCTCATCCC	ACTGACTCTC	720
CGCTTTTGAC	AGATCTGCAT	ATCCTCGGGC	CAACTTATCC	AGTACTCCGT	AGTTTGCCGA	780
TTTATTCACC	CGCCAGAACA	CCGCCTCACC	TGCATCGGCA	AGCC		824

(2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 911 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ACAAATCAGA	CCAGTTAACC	AGTCAGTCGG	TTTTATGATT	TCACTCACTA	TACTTTGTTT	60
CATAAGGATT	TCAGGATCTG	CCAGACTGCG	CAGAAATGAT	GCTTACGAAT	ACACAGTAAA	120
GGCAATGTCA	TTTCCGATAC	AGAGCCTGAC	ATTGCCATAA	TGAGCTATTT	ATCTGAAAAA	180
CGACAGAATA	TGATGTTTTA	TCGTAACGTA	ATTTTAAGTT	CTCAACTTAT	TGAGACATAT	240
TGTCTTTTT	ACCCATGTGG	TCATTTTTCA	TCCCATCCGT	TTTGCTCATG	TGTTCTTTCT	300
CCATTTTCTC	TTTATCCATT	GCATTTTTGC	ACATACCATC	CTTGCACATT	TTATCATGCG	360
CGCTGGACAT	GCTGCCTTTT	ACTTCATGTG	TTTTATCCAT	TGTGTCTGCT	GCCTGAGCAT	420
TGAACATGAA	CAGCGCGGAT	AGTACAGTTG	CAGAAATAAT	ATTTTTCATG	GTTCTTCCTC	480
ATTTTTAACA	ATTGTATCAA	CAACCACCAA	ACCAGTTATA	ACCCTGGTCT	TCCCAGTACC	540
CCCCGGAAA	ATGATTAGTG	ACCTCTATAA	CCTGAACATG	CTTGGGGTTT	TTATATCCCA	600
GCTTAGTAGG	GATACGTATC	TTTATGGGAT	AGCCATATTC	TTTTGGCAAT	ACCCTGTTAT	660
TCCATGTCAA	TGTCAGCAAT	GTTTGTGAAT	GTAGTGCTGT	CGCCATATCA	ATACTGGTGT	720
AGTAACCATC	GACGCAACGA	AAACTGACGT	ATTTTGCCCG	CATATCGGCA	CCAATCAGCG	780
TCAGGAAATG	CCGGAATGGT	ATCCCTCCCC	ATTTTCCTAT	TGCACTCCAT	CCTTCAACAC	840
NGATATGACG	GGTTATCTGA	CTCACATGCT	GCATGTTATA	. CAATTCAGAC	CAAAAACCAG	900
TTACGGGTTA	Y T					911

-136-

(2)	INFORMATION	FOR	SEQ	ΙD	$N \odot$:	33:
-----	-------------	-----	-----	----	-------------	-----

(i) SEQUENCE CHARACTERISTIC	(i)	SEOUENCE	CHARACTERISTIC.
-----------------------------	-----	----------	-----------------

- (A) LENGTH: 463 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

NGGGGCAGGA	TAATTGTATC	CTGCCCNGTA	TATAATTCTC	AGCACAGGTG	TTGACTAAAG	60
AGCGTGAAAC	TTTGCTATTA	TGTCTTCGTA	AGATTCACGG	ACGGTTATAC	TTGAGCCTGA	120
TTCTGTGAAG	TAAACAACAG	CAGAAGCATC	GTTGCCTTTT	TCAATGTATG	AAACATTCCA	180
GTCATGGATA	GCCACTGCGG	GCTGACCATT	ATCCCGACGG	TGCGTCTTAA	TGAATCGCGG	240
AAGTAATTCT	GCAATATCGT	TAAAAACACC	ATTTACGGTA	TGAGTGATAC	CACCAACGCA	300
ATGTAGATGA	GTTGACTCCG	GGGTATCATT	GTCTGCTTCT	GCAAAGAGTA	TAGCTGTCTT	360
GCTAATTGTA	ACAGGCGCCT	GTGARCGGGA	TAATTCGAGA	GAAATAAACC	CGGATTCTGC	420
CATAAAAACT	CCAGTTTGTG	ATGTTATATC	ATTTCATATG	TTT		463

(2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 565 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

TTCTAACCTC	TGACCAAAAA	CAGAATTACG	GTTGTTATGC	TGCAGAACCT	AATGACGTGC	60
AACTGGCGCG	CTATTTTCAT	CTTGATGAAC	GGGATCTGGC	CTTCATTAAC	CAACGACGGG	120
GCAAACATAA	TAGGCTGGGC	ATTGCGCTTC	AGCTCACCAC	AGCCCGTTTT	CTGGGAACAT	180
TTCTGACGGA	TTTAACTCAG	GTTCTGCCTG	GTGTTCAACA	TTTTGTCGCG	GTACAGCTTA	240
ATATCCACCG	TCCAGAAGTT	CTCTCCCGCT	ATGCTGAACG	GGACACTACC	CTTAGAGAAC	300
ATACTGCATT	AATTAAGGAA	TATTACGGCT	ATCATGAATT	TGGTGATTTT	CCATGGTCTT	360
TCCGCCTGAA	GCGTCTGCTA	TATACCCGGG	CGTGGCTCAG	TAATGACGAC	CGGGTCTGAT	420
GTTTGATTTT	GCCACTGCAT	GGTTGCTTCA	AAATAAGGTA	TTACTGCCCG	GAGCAACCAC	480
ACTAGTACGT	CTCATCAGTG	AAATTCGTGA	AAGGGCAAAT	CAGCGGCTGT	GGAAAAAGCT	540
GGCCGCACTG	CCGAACAAAT	GGCAG				565

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

PCT/US97/21347

WO 98/22575

-137-

(A) LENGTH: 512 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

CGATGGCGTC CGGGGTGAAC GCCGGATAAG TTTAATTTAT CCGGTCAGGC AAAAGGCATT 60 AATCTGCAGA TAGCTGATGT CAGGGGAAAT ATTGCCCGGG CAGGAAAAGT AATGCCTGCA 120 ATACCATTGA CGGGTAATGA AGAAGCGCTG GATTACACCC TCAGAATTGT GAGAAACGGA 180 AAAAAACTTG AAGCCGGAAA TTATTTTGCT GTGCTGGGAT TCCGGGTCGA TTATGAGTGA 240 GTCACTCCGG TGAGATGTCC GGTTATTTAT CTTTTTTGTG AATCTGGTGA TGCGTGGAAT 300 GAAAGACAGA ATACCTTTTG CAGTCAACAA TATTACCTGT GTGATATTGT TGTCTCTGTT 360 TTGTAACGCA GCCAGTGCCG TTGAGTTTAA TACAGATGTA CTTGACGCAG CGGACAAGAA 420 AAATATTGAC TTCACCCGTT TTTCAGAAGC CGGCTATGTT CTGCCGGGGG CAATATCTTC 480 512 TGGGATGTGG AATTGTTAAC GGGGCCAAAG TA

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 827 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

TTGCCGGTGC GGTTANTAGT GGCAGTGGTG TCTTTTGGTG TAAATGCTGC TCCAACTATT 60 120 CCACAGGGGC AGGGTAAAGT AACTTTTAAC GGAACTGTTG TTGATGCTCC ATGCAGCATT TCTCAGAAAT CAGCTGATCA GTCTATTGAT TTTGGACAGC TTTCAAAAAG CTTCCTTGAG 180 GCAGGAGGTG TATCCAAACC AATGGACTTA GATATTGAAT TGGTTAATTG TGATATTACT 240 GCCTTTAAAG GTGGTAATGG CGCCAAAAAA GGGACTGTTA AGCTGGCTTT TACTGGCCCG 300 ATAGTTAATG GACATTCTGA TGAGCTAGAT ACAAATGGTG GTACGGGCAC AGCTATCGTA 360 NTTCAGGGGG CAGGTAAAAA CGTTGTCTTC GATGGCTCCG AAGTGATGCT AATACCCTGA 420 AAGATGGTGA AAACGTGCTG CATTATACTG CTGTTGTTAA GAAGTCGTCA GCCGTTGGTG 480 540 CCGCTGTTAC TGAAGGTGCC TTCTCAGCAG TTGCGAATTT CAACCTGACT TATCAGTAAT ACTGATAATC CGGTCGGTAA ACAGCGGAAA TATTCCGCTG TTTATTTCTC AGGGTATTTA 600 TCATGAGACT GCGATTCTCT GTTCCACTTT TCTTTTTTGG CTGTGTGTTT GTTCATGGTG 660 TTTTTGCCGG TCCGTTTCCT CCGCCCGGCA TGTCCCTTCC TGAATACTGG GGAGAAGAGC 720

-138-

ACGTATGGTG GGACGGCAGG GCTGCTTTTC ATGGTGAGGT TGTCAGACCT GCCTGTACTC	780
TGGCGATGGA AGACGCCTGG CAGATTATTG ATATGGGGGA ATACCCC	827
(2) INFORMATION FOR SEQ ID NO: 37:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
CCAGGGGCCC AAAATCCGTG TATCCACCTT TAAAGAAGGC AAAGTTTTCC TCAATATTGG	60
GGATAAATTC CTGCTCGACG CCAACCTGGG TAAAGGTGAA GGCGACAAAG AAAAAGTCGG	120
TATCGACTAC AAAGGCCTGC CTGCTGACGT CGTGCCTGGT GACATCCTGC TGCTGGACGA	180
TGGTCGCGTC CAGTTAAAAG TACTGGAAGT TCAGGGCATG AAAGTGTTCA CCGAAGTNAC	240
CGTCGGTGGT CCCCTCTCCA ACAATAAAGG TATCAACAAA CTTGGCGGCG GTTTGTCGGC	300
TGAAGCGCTG ACCGAAAAAG ACAAAGCAGA CATTAAGACT GCGGCGTTGA TTGGCGTAGA	360
TTANCTGGCT GTCTCCTTCC CACNCTGTGG CGAAGATNTG	400
(2) INFORMATION FOR SEQ ID NO: 38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 578 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
CCGATTTTTT GCGAAACGTT CCGCCTGGCA TCAGGATAGT TTGTTCGTTA TCCAGTTCGG	60
ATAGCGCATT GACGATATGC AGGCTGTTGG TCATCACCGT GATGTNATTA AAGCGCGAGA	120
GCAGGGGAAC CATCTGCAAA ACGGTACTGC CAGCATCAAG AATGATCGAA TCGCCATCAT	180
GGATAAAACT AACGGCAGCT TCTGCAATCA GCTCTTTCTT GTGGGTGTTG ATGAGTGTTT	240
TATGATCGAT AGGCGGATCG GATTCCTCTT TATTCAACAC CACTCCGCCA TAAGTACGAA	300
TGACGGTTCC GGCATGTTCC AGAATGACCA GATCTTTGCG AATGGKTGTG CCTGTGGTGT	360
CAAATATTGC GCCATTCTTC AACCGAGCAT TTACCCTGCT TTGCAGATAC TCCAGAATGG	420
CGGCCTGACG CTGACGAGTT TCATGGGCGT GATACCTGAT TTAGGTTCAA ATGATAACTC	480
GCAAGCAGTA ACATCACACG NAATATCCAC GTTCAGTTAA GCGCCATGAT AGAGCATCCG	540
TGATAGGGNC AGGGGNAGTC ACACGGCGTA ATCACCGC	578

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 399 base pairs (B) TYPE: nucleic acid

-139-

(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	60
TGTTAGGTCA GGGCCCACAG TCAAGCTTAG GTTTTACTGA ATATACCTCA AATGTTAACA	
GTGCASATGC AGCAAGCAGA CGACACTTTC TGGTAGTTAT AAAAGTGCRC GTAAAATATA	120
TCACCAATAA TAATGTTTCA TATGTTAATC ATTGGGCAAT TCCTGATGAA GCCCCGGTTG	180
AAGTACTGGC TGTGGTTGAC AGGMGATTTA ATTTTCCTGA GCCATCAACG CCTCCTGATA	240
TATCAACCAT ACGTAAATTG TTATCTCTAC GATATTTTAA AGAAAGTATC GAAAGCACCT	300
CCAAATCTAA CTTTCAGAAA TTAAGTCGCG GTAAATATTG GATGTGCTTA AAGGACGGGG	360
AAGATTICAT CGACACGICN GCGIGCAATC TATCCGIAT	399
(2) INFORMATION FOR SEQ ID NO: 40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	60
CAGCCTCCGT TACCGGACAG CAAGGAGGCT GAATGGAGTT TACAGGATTT GCTTTTTAT	
AATGTCTGGC CATGCAGTMA AACCGGACAG GTTTTATTAT CATGTGAGGT ATTCTGACAT	120
AAAATGCTGG ATTTTTATTT TGTGACGAAT GCTGCAAAAT TGCATCTGCA CTCTGATGTA	180
GCTTTTATCT GTTTCAGTGA AGCATGCCCA CAAACTGAGT TATTAAGTTG TGGAAGAACA	240
GTTTTGTCCC GCCTGCATAT CTCCTTTCAA AAACCAGTAT GTCGCCATGC CTCGCCTTAA	300
TGGAGAGCGC TGAACCATAC CTTCTTT	327
(2) INFORMATION FOR SEQ ID NO: 41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 314 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
GGAGATGGGC ATGGAACTCA CTTCATAATA ATGCCTACCG AAGAAATATT AATAGATGAC	60 -

ATTTCCACGA GNGATAGCAA TAAAACATCA GAGCAGTCTT CTCGCTTAGA AAAAGCTTTA 120

-140-

TTAGGTTTTA	CAAACACAAT	GTACAGTGAT	TCAAACCCTC	CTATTATAGC	TCGTTTTAGA	180
GACTATCTGG	AAGATGGTGA	GTGCATTGAC	AGAATTAGCG	AATCAATTTT	TTTTACACCG	240
CAAGAATTCA	ATCTTGCAGA	TCACCACATT	GAAGGATGGT	TCAATGAATT	TGGTCAATTC	300
AGTGGAACTG	TTTC					314

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 590 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

TCCCAAGATC TTTTTGGCCG	CAAATCCACA	AAACCCGTCG	TTANTGTCGC	GCAGCCANTT	60
GCAGGCCGAA TTTGCACCGT	TTTAGAAAGC	GGCGTTTTGT	AGAGCAGCAC	GCAGTGAGAA	120
GCCACCGCGC CACGACCTAC	GNGCNCGCGC	AGCTGGTGTA	ATTGCGCCAG	ACCCAGACGC	180
TCCGGGTTTT CGATAATCAT	CAGACTGGCG	TTAGGCACAT	CAACGCCGAC	TTCAATAACG	240
GTTGTGGCAA CCAGCAGGTG	TAGCTCACCT	TGTTTAAACG	ACGCCATCAC	CGCCTGTTTC	300
TCGGCAGGTT TCATCCGCCC	GTGTACCAGG	CCAACGTTCA	ACTCTGGTAG	CGCCAGTTTC	360
AACTCTTCCC AGGTAGTTCC	GMCGCCTGCG	CTTCCAGCAA	TTCCGACTCT	TCAATCAACG	420
TACAAACCCA GTATGCCTGA	CGACCTTCAG	TTATGCAGGC	GTGGTGCACC	GGGTGCAATG	480
GATGTCGGTA NNGCGGGTAT	CAGGAATAGC	GACCGTAGTC	ACTGGGCGTG	CGGCCTGGGC	540
GGCACTCCAT CTATCACCGA	GGGTATCGAG	ATCGGGCATA	CGCNTGCATT		590

(2) INFORMATION FOR SEQ ID NO: 43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

GACGAAAGGG	CCTCGTGATA	CGCCTATTTT	TATAGGTTAA	TGTCATGATA	ATAATGGTTT	60
CTTAGACGTC	AGGTGGCACT	TTTCGGGGAA	ATGTGCGCGG	AACCCCTATT	TGTTTATTTT	120
TCTAAATACA	TTCAAATATG	TATCCGCTCA	TGAGACAATA	ACCCTGGATA	AATGCTTCAA	180
TAATATTGAA	AAAGGAAGAG	TATGAGTATT	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT	240
TTTGCGGCAT	TTTGCCTTGC	CTGTTTTTGC	TCACCCAGAA	ACGCTGGTGA	AAGTAAAAGA	300 -
TGCTGAAGAT	CAGTTGGGTG	CACGAGTGGG	TTACATCGAA	CTGGGATCTG	CAACAGCGGT	360

-141-

• • •	
AAGATCCTTG AGAGTTTTTC GCCCCGAAGG AACGTTTTTC	400
(2) INFORMATION FOR SEQ ID NO: 44:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
ATTCGGAAAG ATGCTTCTAN TTTTTTTAAG CACGTATAAA CTGTTAATTC AGGTTCAATG	60
CTACGAAATG CACTAGTTAT AACCTGTATT GAAGGAAAGA TCTTCTGATA CTCTTTCCAG	120
AGATCTTCAA GTCTGGCCAT GGAAATTGAC TTGGCTGCAT ATTCTAGGTC AGTGTTTATG	180
ATAGTTTCTC TATTCTCTCT GAATGCGGAA AAAAAAGCTT CATTCAACAA TGATAGTAAA	240
TCCCTGGGCC GGTAAAGGGT AAATTGCAAA CATCGCTTAA AACCATTCCT CCCTTTAAGA	300
TCATCCGCTG TGCATCTATC CCAAACTCGT TGATCTTTCT CAATATCTAG CTTAAATGCT	360
ACTITCATIC TITTAGCIGA CAGCATIAGG AGTIGIGCCC	400
(2) INFORMATION FOR SEQ ID NO: 45:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 585 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
TAATGTTGAA GACAGAGATA TAATNTACAG CATCATCCCA CAAGGCAGAT ATAACAATAC	60
TTGACTGGGA TATGCAAAGC GATAGTGGGC AATTTGCTAT TGAAATAATA AAATCGATAA	120
TCGTTTCAGA TATAAATTCT GGAGGACGTT TACGTCTTCT TTCTATTTAT ACTGGTGNAC	180
ATGTTACTGC TGTTATAACT AAGTTGAACA ATGAGTTAAA GAAAACATAC CGTAGCGTAA	240
TAAAAAATGA TGATAGTATT TTTATTGAAG ATAACTATGC ACTCGAACAA TGGTGTATAG	300
TTGTTATTAG TAAAGACGTT TATGAAAAAG ATCTTCCAAA TGTGTTAATA AAAAAATTCA	360
CTAACCTTAC AGCTGGGTTG CTATCCAACG CCGCACTCTC TTGCATTTCT GAAATAAGAG	420
AWAAAACCCA TGGGATATTA ACAAAATATA ATAATAAATT AGACACTGCA TATGTTTCCC	480
ACATCTTAAA TTTAATAAAA TCCAAGGRGT CAAGGGCATA TGCTTATGAA AATGCTCATG	540
ATTATGCAGT AGATTTAATT TCTGAAGAAA TAAGATCAAT ATTGC	585
(2) INFORMATION FOR SEQ ID NO: 46:	

(i) SEQUENCE CHARACTERISTICS:

> (A) LENGTH: 390 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

-142-

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
ANTCATCCAA CTGGCCGATC AGCAAAAAAG CGCGGCCTAC GATTTCACCC ACGAACTGTT	60
AACCACGCTG GAAGTTGACG ATCCGGCGAT GGTAGCAAAG CAGATGGAAC TGGTGCTGGA	120
AGGCTGTTTA AGCCGAATGC TGGTGAATCG TAGCCAGGCG GATGTCGACA CCGCACATCG	180
GCTGGCGGAA GATANTCNTT GCGTTCGCCC GCTGCCGTCA GGGTGGTGCA CTGACCTGAC	240
AGAAACACAG AAAAGAAGCG ATTTGCCGCA ATCTTAAGCA GTTGAATCGC TTTTACTGAA	300
ATTAGGTTGA CGAGATGTGC AGATTACGGT TTAATGCGCC CCGTTGCCCG GATAGCTCAG	360
TCGTAGAGCA GGGGATTGAA AATCCGTTGT	390
(2) INFORMATION FOR SEQ ID NO: 47:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 473 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
GGATGCCAGT GTCAGCGACT GGTTAAAGTG GTCGATATCG ATGAGCAAAT TTACGCGCGC	60
CTGCGCAATA ACAGTCGGGA AAAATTAGTC GGTGTAAGAA AGACGCCGCG TATTCCTGCC	120
GTTCCGCTCA CGGAACTTAA CCGCGAGCAG AAGTGGCAGA TGATGTTGTC AAAGAGTATG	180

CGTCGTTAAT TTTATCTCGT TGATACCGGG CGTCCTGCTT GCCAGATGCG ATGTTGTAGC

ATCTTATCCA GCAACCAGGT CGCATCCGGC AAGATCACCG TTTAGGCGTC ACATCCGTCG

TCCCCTGGCA AACGGGGGCG ATTTTCCTCC ATTTGCCTCA GTGGCTGGCG TTTCATGTAA

CGATACATGA CAGCGCCCGA CAAGATCCTG ATACTCTTTG GGTATTCAAC CGTTTCCAGT

GTAATTCGTC GTTCACNAAC ATTGGCGTTA CAGGCGGGGC TGGCNGTNAC CCA

240

300

360

420

473

- (2) INFORMATION FOR SEQ ID NO: 48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

-	14	4.	3-
---	----	----	----

GAAGTGACGG	ATGGCTGTGG	TTTCTCCATC	GGTCACCAGC	AGCAGTTNGC	ATCATGGATT	60
GCCTATAAAG	TCGCGCCGTT	CCTCGGNAAA	AAAGAGGAGA	GCGTTGAAGA	CCTCAAATTG	120
CCGGGCTG3C	TGAACATTTT	CCACGACAAC	ATCGTCTCCA	CGCGATTGTG	ATGACCATCT	180
TCTTTGGTGC	CATTCTGCTC	TCTTCGGTAT	CGACACCGTG	CAGCGATGGC	AGGCAAAGTG	240
CACTGGACGG	TGTACATCCT	GCAAACTGGT	TCTCCTTTGC	GGTGGCGATC	TTCATCATCA	300
CGCAGGGTGT	GCGCATGTTT	GTGGCGGAAC	TCTCTGAAGC	ATTTAACGGC	ATTTCCCAGC	360
GCCTGATCCC	AGGTGCGGTT	CTGGCGATTG	ACTGTGCAGC	TATCTATAGT	TCGCGCCGAA	420
CGCCGTGGTC	TGGGGCTTTA	TGTGGGGCAC	CATCGGTCAG	CTGATTGCGG	TTGGCATCCT	480
AG						482

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 185 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

GACGACCTGC AGGCATGCAA GCTTGGCACT GGC	CGTCGTT TTACAACGTC GTGACTGGGA 60
AAACCCTGGC GTTACCCAAC TTAATCGSCT TGC	AGCACAT CCCCCTTTCG CCAGCTGGCG 120
TAATAGCGAA GAGGCCCGCA CCGATCGCCC TTC	CCAACAG TTGCGCANCT GAATGGCGAA 180
TGGCG	185

(2) INFORMATION FOR SEQ ID NO: 50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

TAACGCTTCA A	ATACGCGCGA	CCAGCTGGCG	GCGCTCATAC	GGCGTAATTT	TGGCGTCGGC	60
GAGCAAAATC (CCTTGTTTAA	AGGTATTTTG	CCAGCTGCCG	TCGTCATATT	GGCGAGCTTG	120
CTGACGCGAC '	TGCGCAGGCA	TTAAACGATC	AGCACAATCC	ATCGCCCGCA	GCCAGTAAAG	180
CGGATTGGTT '	TCGGTTGATT	TACCTTGCAG	CGCCCAGATG	TCGCTACATT	CAGTAGAAAG	240
ATAGTCAGCC .	AGTTGATAAA	CCGGAATTTT	TTCTTCTGCT	GGCGTATCAA	TGGCTGGCTT	300
ATTGTGATTC	TGCACGCAAC	CCAGCAATGC	CAGACATGGA	GACCCTGCCA	GCCACAGCCG	360 -
TCGGGGCAAT	AATCGTTGAA	AAATGTGTCG	CATATTCACC	AGACTTAAAG	CCTATCCCAG	420

-144-

	480
TATCGTACGT G	491
(2) INFORMATION FOR SEQ ID NO: 51:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
ACTTGAACGG CAATTATTAT TTATCCATGC AACTTCAAGT TGCAGTATCG GAACATTAAC	60
TTTTCTGGGG TGAATATCAC TCTGATATCG TTTTTTGTAT GCGTNT	106
(2) INFORMATION FOR SEQ ID NO: 52:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 481 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
TTTATGTGCG GTATTGATGG CTGAAGCCTG TAATATCGGA CTGGAACCGC TGATAAAGCA	60
CAATATACCA GCACTGACCC GCCATCGGCT CAGTTGGGTG AAACAGAATT ACCTTCGTGC	120
AGAAACGCTG GTCAGCGCCA ATGCCCGCCT GGTTGATTTT CAGTCCACAC TGGAGCTTGC	180
TGGTCGTTGG GGAGGTGGAG AAGTGGCATC AGCTGACGGC ATGCGCTTTG TCACACCAGT	240
TOUTCOITED GOAGGTGAA AAGTGGCATC AGCTGACGC ATGCGCTTTG TCACACCAGT	300
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT	500
	360
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT	
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT GGTATAACTT CGTATCTGGA TCAGTACTCT GGGTTCCATG GCATTGTGGT ACCCGGTACA	360
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT GGTATAACTT CGTATCTGGA TCAGTACTCT GGGTTCCATG GCATTGTGGT ACCCGGTACA TTACGGGRCT CGATTTTGTA CTGGAAGGAC TTCTTGAGCA GCAGACAGGG CTGAATCCAG	360 420
GAAGACCATC AACTCAGGAT CTAACAGAAA ATATTTTGGT TCTGGGACGA GGCATCACCT GGTATAACTT CGTATCTGGA TCAGTACTCT GGGTTCCATG GCATTGTGGT ACCCGGTACA TTACGGGRCT CGATTTTGTA CTGGAAGGAC TTCTTGAGCA GCAGACAGGG CTGAATCCAG TTGAAATCAT GACAGACANT GCGGGTAGCA GCGATATTAT TTTCGGTCTG TTCTGGCTAC	360 420 480

TGGNCCGTAA TTCCCAACCA TTTGCCGAGG TCCAGNTTTT TCACCATGTT ACTCGGGATA 60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

3NSDOCID: <WO | 9822575A3 IA>

-1	45-
----	-----

GCCAAAACNG	ATACCGATGT	TGCCGCCGTC	CCGGTGCGAG	GATCGCGGTG	TTGATACCGA	120
TCAGTTCGCC	GTTCAGGTTA	ACCAGCGCAC	CACCGGAGTT	ACCACGGTTG	ATCGCTGCAT	180
CGGTCTGGAT	GAAGTTTTCG	TAGTTTTCGG	CATTCAGGCC	GTACGCCCCA	GCGCAGAGAC	240
AATCCCGGAA	GTTACCGTCT	CGCCCAGACC	AAACGGGTTA	CCAATCGCTA	CGGTGTAATC	300
ACCCACGCGC	AGTGCATCAG	AATCCGCCAT	CTTAATTGCG	GTCAGGTTTT	TCGGGTTCTG	360
GATTTGGATC	AGCGCGATAT	CAGAGCGCGG	ATCTTTGCCA	ACCATCTTCG	CGTCGAACTT	420
ACGGCCATCG	CTCAGTTGAA	CTTTAATGAC	CGTCGNGTTA	TNAACAACGT	GGTTGTTGGT	480
GACGACATAG	CCTTTATCGG	CATCAATGAT	GACGCCGGAA	CCCAGCGCCA	TGAATTCTGT	540
TGCTGGCCGC	CACCATTA					558

(2) INFORMATION FOR SEQ ID NO: 54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 263 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

CACCTGCGTG	ACGTGACCGA	CCTTTTCTCC	TCGCTGNTTG	TTTCCCCTAT	CGTCGGCCTG	60
GTCATTGCGG	GAGGCCTGAT	ATTCCTGCTG	CGACGCTACT	GGCGCGGGAC	GAAAAAAGCG	120
TGACCGTATT	CGCCGCATTC	CGGAAGATCG	CAAAAAGAAA	AAACGGCAAA	CGTCAACCGN	180
CATTCTGGAC	GCGTATTGCG	CTGATTGTTT	CCGCTGCGGG	CGTGGCGTTT	TCGCACGGCG	240
CGAACGACGG	ACCAAAAGGG	ATC				263

(2) INFORMATION FOR SEQ ID NO: 55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 683 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

G	STAACGCGTC	TGGAAGATGG	CCTGCCAGTG	GGCGTCGTCG	ATGTGGTCGA	GGGGCTGGAC	60
(GTTGCCATT	CCGCCAATAT	CTCACCGGAC	AACCGTACGC	TGTGGGTTCC	GGCATTAAAG	120
(CAGGATCGCA	TTTGCCTGTT	TACGGTCAGC	GATGATGGTC	ATCTCGTGGC	GCAGGACCCT	180
(GCGGAAGTGA	CCACCGTTGA	AGGGGCCGGC	CCGCGTCATA	TGGTATTCCA	TCCAAACGAA	240
(CAATATGCGT	ATTGCGTCAA	TGAGTTAAAC	AGCTCAGTGG	ATGTCTGGGA	ACTGAAAGAT	300 -
(CCGCACGGTA	ATAATCGAAT	GTGTCCAGAC	GCTGGATATG	ATGCCGGAAA	ATTCTCCGAC	360

-146-	
ACCCGTTGGG CGGCKGATAT TCATATCACO CCGGATGGTC GCCATTTATA CGCCTGCGAC	420
CGTACCGCCA GCCTGATTAC CGTTTTCAGC GTTTCGGAAG ATGGCAGCGT GTTGAGTAAA	480
GAAGGCTTCC AGCCAACGGA AACCCAGCCG CGCGGCNTCA ATGTTGATCA CAGCGGCAAG	540
TATCTGATTG CCGCCGGGCA AAAATCTCAC CACATCTCGG TATACGAAAT TGTTGGCGAN	600
CAGGGGCTAC TGCATGAAAA AGGCCGCTAT GCGGTCGGGC AGGGACCAAT GTGGGTGGTG	660
GTTAACGCAC ACTAACCGCT GAT	683
(2) INFORMATION FOR SEQ ID NO: 56:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
TGGATGCAGG GAAAAACATT GATATTACCG GGGCAACGTG CTCGTCCGGT GGAGACCTTG	60
GAATGTCTGC GGGTAATRAC ATCAACATTG CCGTAAACCT GATAAGCGGG ACAAAAGTCA	120
GTCCGGTTTC TGGCACACTG ATGACAACAG TTCATCATCC ACCACCTCAC AGGGCAGCAG	180
CATCAGCGCC GGCGATAACC TGGGCGATGG CTGCAGGCAG AGATKCTGGG NTGTCACAGC	240
ATCCTCTGTT TCTGCCGGGC ACAGCGCCCT GCTTTCTGCA GT	282
(2) INFORMATION FOR SEQ ID NO: 57:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 697 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
ATGAACGGCC CCCCCACAG CCCGTTAACA AACGGNTGCC CCGGCGATAA TCGTACTGAT	60
AAGTTAACTC CAGCAGGCGG TTAATTGAAA GCGAACGGGA GGCTGATGCA TGGTAATAAT	120
CCCTTAAAAC GCGACGGCAA CGCGCCAGTA AACCGTGAGA TGGTCAGGGG CAAGCCAGTC	180
CGGGTAAACC AGAGGCAGTC CGGCAGTGAA CGAACCGGAA ACATGACCAC TGGTGGTGCT	240
GAGCCCGGCA GCAGCACCCC ACAGCGTGCC GGACGAGTAC GGGTCATCTC TGTCAGAGTG	300
CAGCCAGCCG CCCTCCAGTG CAGTCACTGC ACGGACTGTC CCCACATATG GCAGGGAGAA	360
CAGAGACCAG GACAGCTCAT TTCGCAGATA ACCGCCGTTA TTACCGGAGA TATACTGCTC	420
CTTAAAGCCA CGCACTGAAC TCTCACCCCC GAGGCTCAGT TGTTCCACAC CATGAAGACG	480 -

GTCCGGTGAC CACTGGGCAT AAGCGCTGGT CAGCCACCAC ACCCTGTCCG TGACGGGGCG 540

-147-

CTGAAAACTG	GCACTCACCG	ACCATTTCCG	GAACTGATTT	ACGGGCAGGT	CTCCCCTTTT	600
CCCGTGGTCG	CTTTCTGCGC	CGAACCAGGG	CATCCCCCGT	GTGAATACCG	GATTCAGTGT	660
TCCGACACCA	CCCAGAAACT	TGTGTGTGTG	ATTCANC			697

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4835 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

TTCGACTGAG	CACCACAAAT	ACTGGGTATC	TCCCCAGATA	GTTCATTGCG	GTACAAGCAA	60
TATAGGTGCA	GAAAGTCAAC	CTGCTGCACC	CTATTGGATA	ATTATATATG	GCCTTCAATA	120
AAGTTTGCGG	TTGTCGACGT	TGGCTATATC	AGCCATTTCC	AATGCATAGT	TCTTTGGTTT	180
AGCACCATCA	AGTTATAGAT	TTGGGAATAG	TTTCAACTGG	TATTGATTGA	ATTGGGTTTC	240
ATCGTCGATG	ATTAATACTA	TTTGTAAAGA	CTTTATTGTT	GATTTCTTAT	TATACCACAA	300
ACCCAAACTG	GTCTAGGTCA	TCATTTGGTG	TTGATAACGG	GCTCTGATAA	TTTCTGCTCT	360
TCTGCTATAC	TGGGGATTAT	GAAGAATATT	AAGGCTGAGT	GTATTGAGGT	AGTGTTCTTT	420
GAACCGACCA	TTCATGACAA	TATATTCTTC	AATTCGTGAG	TGATCCAGCA	ACTGGTTGAA	480
TTTAAAACAC	TGAGTGATGT	TATCCTCTGT	AATCGTATGG	TTGCTGAACT	AGTTGATGTA	540
GCCGATAAGG	TTTATACCAG	ATATCTTTTG	GGGGGATTAG	ATAACGTAGC	CGCGGATAGC	600
AAACGAGATA	GTTGAATTTT	ATTACCGTAA	TTTCTTCCAT	TGAGAAAAGC	TTATTTTCT	660
TGGTGGTATT	CGCAGTTATG	TATCTTCCAT	AAAGACTTGG	GAATATCTTG	CTTGAAARGC	720
TATCTGGAGA	TAGCCTTAGT	TATTTGATAA	ATATTTCAAA	TAGGAGGAGC	CGTATGGCTG	780
TCATTTATAC	CCTCACTAAA	TCGTCACTTG	TCAAGTCTGG	TGGTCAATTA	CATTGGAATA	840
TTGATTCGCC	ATCAGAACAA	CAGCCACAAA	AGATCGTCAA	TGGTCGGGTT	GCGCTTCGGG	900
GATGGTTACT	GGCAGATGTG	GAAAAAGATC	TCCGTGTTGC	GGTTAAAATT	GAACATTTGA	960
CATACAGTT	TCCCTTCAAT	ATAAAGCGCC	CTGATGTTAT	TTCAGCTATA	CTGAAACAGC	1020
CACCTGAAAA	A ACATCAAAGA	CTTCATTGTG	GATTTGATAT	CAATGTCCCA	TTTTCTACTA	1080
AAATAATTA	r TGGCCTTGAG	TCTGATGGGT	TGATTACCTG	GTTGGAAGAG	TTATTATTTC	1140
TCCTGCCTG	A TAATTGAATT	AAGTATCTAT	ACCGATAGTA	TCGCGATAGA	TATATTTTT	1200
TACAGGATG	A TAATTTGAGA	A ATCTATATAC	CCGCTATTAT	CAAGGATGAG	TATTCAAGTT	1260
TACTTGAAT	G GATTGCCTAG	CATCGAGTAT	TAGGTGTTG	TGGGTTTAKT	ATTGCAGATA	1320
ATGGCAGTC	G TGAWGGTAG	C CGAGAATTA	C TATTTTCCCI	r CGCTCGCCTA	GGTATTGTGA	1380

-148-

CGAIGIICGA	MCAMCCOMC.	IIGGIGAAIG	AAAAGUUAUA	ATTACCIGCA	IAIGAACA.A	1440
TTTTACGTAG	CTGTCCCAGA	GACATAGACC	TGCTTGCATT	TATAGATGCT	GATGAATTTT	1500
TATTGCCACT	TGAATCGGAT	ACCAATTTGT	CAGATTTTT	TTCTGAAAAG	TTTCAGGATG	1560
AGAGTGTCAG	CGCTATTGCA	TTGAATTGGG	CAAATTTTGG	TTCTAGTGGT	GAATGGTTTG	1620
CTGAAGAGGG	GTTGGTTATT	GAACGTTTTA	CCTATCGTGC	CCCGCAATCC	TTTAACGTTC	1680
ATCATAACTT	CAAAAGCGTG	GTCAAACCCG	AACGAGTTAA	CCGCTTTCAT	AATCCGCATT	1740
ATGCTGATTT	GCGTTATGGT	CGATATATCG	ATGCATTGGG	TCGTGATTTG	ATTCTGCACC	1800
CGAGGCATGG	TAATGGGGTT	AGTGCTGAAG	TGACTTGGAG	CGGTGTCAGG	GTAAATCACT	1860
ATGCAGTTAA	ATCACTTGAG	GAATTCTTGT	TGGGCAAGCA	TCTGCGTGGT	AGTGCTGCCA	1920
CTGCTAATCG	AGTAAAGCAT	AAAGATTATT	TCAAGGCACA	TGATCGTAAT	GATGAAGAGT	1980
GCCTTCTCGC	TGCCGCATTC	TCAGAACAAG	TAAAAGCTGA	AATGGAACGA	TTAAGTGTGA	2040
AGTTGACTGA	GTTACCAGCA	GTTGAACCTA	TTCCTACTGG	TTCTTGGTTC	AAAAAAAAA	2100
TGAAGAAATG	GATGGTTTGA	ATATATTGAG	CAAGCACTTT	GGTATTTATT	TCTGCTCTTA	2160
TCTACAGGTC	TGCTAATAAG	GATCTGTATC	CCCCAGGTGT	TACCTTGGAC	TGTAAGTTAT	2220
ATTATGTGTA	GCTATTGCGA	TTGGCAGCCT	CTGACATTGC	CAGACTCGTT	TTCTCTTCAT	2280
TCTGGTTGGC	TTCTGATTCG	GGGGCGCGTG	TTGACGACTC	AAACTCGAGG	TGAAACTCGT	2340
CTGCGCTGGC	AATGCGGACA	AGGAATATGG	CATGAACAGA	AGTTGCCGGT	CACTCGTCGA	2400
GGCACGTTGC	TGGAGCTGGT	TTATCTACCY	TCGGGAGCTA	GTCATTKGTC	TTTGCTGGCA	2460
AGTAATAAGG	GCGCTGAGTG	TAATGTTGAA	ATTACTCAGC	TTTGTTGTGT	ATCCCGTGCC	2520
GAGAGTCTCT	GGCGTCGATT	GCGCCGGGTT	GTACCTTTTT	ACCGACGCTT	AACGAAGTCC	2580
AGACGCAAAA	GGTTAGGCCT	TTCATGGCAT	TTGTGGCTCA	CGGACTTGCA	GCAAGCTTAC	2640
CAACTTGTCA	GCAGAGTTCG	CGATGATAAA	CCACTCAATA	GCTATGATGA	GTGGCTAGCA	2700
GACTTCGACA	CCCTTGAACC	CGCCGAATAC	AAGCTGATTA	AGCGCCAGCT	GGCTCGCTGG	2760
GGCACATTAC	CACGTTTCTG	TTTGCATCTT	GTTGGCGTTG	GGGATGAACA	GAGCCGCCAC	2820
AAGACCCTGG	AGAGTATTCA	GGCACTCTGT	TATCCGGCAA	GCAATATAAA	CCTGCAGGAG	2880
CATGGTGCAT	ATCCAGAAAT	CTCCAGTCAG	TCAAGCGGCG	AATGGCAGTG	GGTGTTGCCT	2940
GTAGGGGCAG	TGGTTTCGCC	AAGCGCCTTA	TTTTGGGTTG	CCCACCAGTT	ACGCCAGAAT	3000
CCTGATTGTT	TATGGATATA	CGGTGATCAC	GATCTGCTTG	ACGAGAGAGG	TGAACGTCAC	3060
TCTCCCAACT	TCAAACCTGA	TTGGAATGAA	ACGCTGCTAC	AGAGCCAAAA	CTATATTAGT	3120
TGGTGTGGTT	TGTGGCGTGA	ACAAGGTGCT	GGCCGTGTTC	CCTTTGATGC	GGCGACATGC	3180
CATCAGTGGT	GGCTACAGTT	GGCAAAGATG	TGTGAACCGA	AACAGATAGT	CCATATTCCA	3240
TCATTGATGA	TGCATTTGCC	TGCAAGAGCG	TTGATTTCGG	ATGATTTTGA	GTCGCTGAAA	3300

-149-

GATAAAGAAG	ATTTACTGCC	ATCAGGAGTG	AGCATTGAGG	CAGCACCTCA	TGGTGTATGT	3360
		AGCGCAATTG				3420
		CCCTTGTATC				3480
		GGATAATCAG				3540
		TGGCGTTAGG				3600
		AGTGAGAAAC				3660
		TATTGACTGG				3720
		AGCAAAGCTG				3780
		CGGTTGTGCA				3840
		GGCTGTTAGT				3900
		GTTATATCTG				3960
					CTGGAGAGTA	4020
					TAAAGATGTA	4080
					ACGATGGGCA	4140
					TCCTGATTTC	4200
					AGGAAACTAT	4260
					TCTGAGATTA	4320
					TATTTTGAAT	4380
					A TTAGCATCCA	4440
					C TCCCCAAAAT	4500
GGCAACAGC	A CATAGAAAG.	A TATAACGAC	A GGTTTTCTC	AATTGTTTA	T TTTATGGATG	4560
					T ACCAAGATAA	4620
					C ATTTGGGTTT	4680
					T TCTGCTAAAC	4740
					T GGCTCAAGTT	4800
		T TGGTTGAGA				4835

(2) INFORMATION FOR SEQ ID NO: 59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1746 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

⁽xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

-150-

GAAAAATGNC ATAACCGCAT	TOCATCAAGO	CCGTNAATAT	CCCGGACTTT	CATTTATTTC	€0
TGAGGCGTAC AGGGAAGCAA	TAACTGCTGG	TCAGATATTG	CTGTCTCCGG	TACATTTACC	120
TGACACTGTA TTTTTCCATC	CCAGTTTACC	GACAGGGTTT	CCCCCGGCGT	CACGCCACTC	180
AGCCAGGCAA GGCCTTCGTC	GGCCACCATG	CCCAGTTCCC	GGCCTTTTTC	ACTGGTTACA	240
CTGGCACCAA ACGGGGGCTC	AGAGCCATCA	GCAAGACGCA	GTATTGCAAA	CAGACGTTTC	300
CCTTTAAGCA CGCTGAATTT	CCGGTAACCA	ATGGCACCTT	CTGTCAGCGC	CGATTCCACA	360
ACAGAACGGG TTGCTTCCAC	ATCATCCGGT	AAGCGCTTCA	GGTCAACAGA	GGTTGTATTC	420
CGGTAATAAC TGCTGATGTC	AGTCACCACG	CCCGTTCCCC	AGCGATTTGT	CACCACCTGC	480
CCGCCATCAA CCGGTACACC	TCCCACACCA	TCCGTGTCAA	CAAGAAGACG	TGTTCCACCG	540
GACATTCCCC CTGCATGTA	CGCCGCACCT	TTTCCGGTAA	TTGTTGCCCC	ACCGGAAGCA	600
CTGACGCCGA AAGACGTATA	TCCTTTCTGC	AGGGATGCAA	TATTCGCGGA	CAAATTTGCC	660
AGCGGACTAC GATGACTGTA	ATAGGCATTA	ATCTGACGTT	GCGATGTCAG	TCCACCGCCA	720
CTGTTAAGGC CGGCGTTCAG	GCTGTAGCTG	TCCAGACCGT	CATTGAACGT	GWCAGTGTAG	780
CCGGCCATAT TCACATAACO	GTCATTACTC	ATACTGCCAC	TGTAGCTCGC	TGTCCCCGTC	840
CCCCAGCGGC ACGGATATAG	GCAGGTAAGC	AGAATCNTTA	TCACGCCCCA	GATATTTAGA	900
CCTTGAGGCT GACAATCCAA	CCGCCACACC	CTGCAGTCCG	AAAACATTAA	AGTAGCGGTT	960
GACGCTCACC GTATAATAG	CCGTTTTCCG	TATGTCCCAG	TATGTCTGAC	GGCTGTACTG	1020
CAGGTTAAAA GAGGTGTTC	CAGTCCGCCAC	GTTTTTATTC	AGCGTAACGG	TATACATCTC	1080
TTTTTCCCGA CTGCTGTAA	CATTACGGTA	GCGGGCGTTC	AGGTACTGCT	CCATGGTCAT	1140
ATAGTTTCGC TCTGAGAAA	CGATACCCGGC	GAACGTAATG	TCGGCATCCG	CATTATCAAA	1200
CCGTTTGGAG TAGCTCAGA	CGCCAGGATTT	TCCCTGAAAC	GTTCTCTCTC	CCTCAATACG	1260
GGCTACTGAC TGCGTGATA	CAGCGGAAAG	GGTCCCCGGC	ACACCCAGGT	CCCAGCCGGC	1320
ACCGGCTGCC AGTGCATTA	T AATCACCGGC	AAGCACAGCC	CCGCCATACA	GCGACCACTG	1380
GTTACTGAGC CCCCAGGAT	CCTCTCCGGT	CGCAAATACA	GGCCCTTCGG	TCTCATGCCC	1440
GTATCCACGG GAACGACCG	G AGACAAGTTT	GTACCGGACC	TGTCCCGGAC	GCGTCAGATA	1500
AGGAACCGAG GCCGTATCG	A CCTGAAAGTT	TTCTTCCGTC	CGTTCTGTTC	AATAACCTCA	1560
ACATCAAGAC GTCCGCGAA	C TGAACTGTCC	AGGTCCTGAA	TACTGAATGG	CCCTGCGGGG	1620
ACCATCGAGT CGTACAGCA	C CCGTCCCTGC	TGCGACACCA	CAACACGGGC	ATTAGTCTCC	1680
GCAATCCCGG TAATCTGCG	G TGCATAAGCC	TTCGCATTCT	TGGGGCGCA	CATTCCGGGT	1740
CAGCGN					1746

⁽²⁾ INFORMATION FOR SEQ ID NO: 60:

(i) SEQUENCE CHARACTERISTICS:

-151-

(A)	LENGTH: 723 base pairs
(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: double
(D)	TOFOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

TGTACTGAGC ACGGCGAATA TCCAGTGTTC AAATTCCACT TTGCAGCGAC TGCATGATGT 60 CTGCGGCGCG GTAACAATCA GGGCATTACT GTGTTTGCTG GCGGCGATGG AGACAACCTC 120 ACGCCCGCTA CCGACCGTGC CTTCCGCCTC TTCTTTAGCC GCCGTGAGCG TGCCGCTGAC 180 CTGCTTCAGC ACATCGACCA GATCTTCGGC TTTGCTGTAT TTGAGATAGA AAACCTGGCT 240 GTTGCCGCTG CGTTCCATTT CTGAGTCCAG CCGACGGATC AGGCGGCGCA TTTTGTCCCG 300 CGTGGCCGGG TCACCACTGA CAATCACACT GTTGGTGCGT TCGTCGGCGA CAATTTGAGA 360 TTTCAGCGTC GCAGGCTGGT TCTCGCCGCT GTTTTTAGTC AGGCTTTCCA GCACGCGGGC 420 GATTTCCGAA GCAGAGGCGT TATCCAGCGG GATCACCTCT TCAGTGCGAT TANCCGCGTG 480 ATCCACACGC TGGATCACTT CCGTCAGCCG CTCCACGACG GAGGCGCGCC CGGTGAGCAT 540 AATCACGTTG GAGGGATCGT AATTAACAAC GTTGCCTGAG CCTGCGCTGT CGATCATCTG 600 GCGCAGAATC GGTGCCAGTT CGCGTACCGA AACATNACGT ACCGGCACGA CTTTGGTGAC 660 CATTTCATCG CCCGCGTATT GTCGCTGCCT TCACCAACCA GCGGCAGGGC TCGACTTTCG 720 723 CGG

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2556 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

TAGAGGATCC	CCGGCGTTGC	GATCGTCACG	AACATAGACC	CACAKCCGTC	CGGTAGGTAT	60
TTACCCTGAC	CCGGYTCCAG	TACATTTACC	GGCGTGTCAT	CGGCATGCAC	TTTACCCGGC	120
ATCAGCACAT	AGTGCTTCAG	TTCATCATAC	AGCGGGCGAA	GCTGCTCTCC	CATGATGTCA	180
ACCCAGCGCC	CCATCGTATT	GCAGTGCAGC	TCCACGCCCT	GGCGGGCATA	GATTTCCGAC	240
TGACGGTACA	GCGGCAGATG	CTCGGCGAAC	TTAGCCATGA	TTATGCGGGC	CAGCAGAGCC	300
GGACTGGCGT	AACTGCGCTC	GATGGGTTTT	GGTGGCTGCG	GAGCCTGAAC	TATACAGTCG	360
CACCGGCTGC	AGGCCAGTTT	TGGGCGAACC	GTTTCGATTA	CCCTGAACGC	GGTGTTGATG	420
ATATCCAGTT	GTTCAGAGAT	GCTTTCTCCC	AGCGGTTTCA	GTTTGCCGCT	GCAGACGGGG	480

-152-

CATTOGGTTT CTGCCGG	GGA GATAACCTSC	CTGTCACGGG	GAAGTGTTGC	CGGAAGTGCT	540
TTGCGGACGG GAGAGTC	TGA TGTTTTCGGC	GCTGTCTCTC	CGGCCATTGA	GGTGAGTTGC	600
AACTGCGCCT CACCAAG	CCT GTTCTGGAGC	TOGGTTATAC	GCGTTTCTGC	COGTGOGATO	660
TTCTTTTCTA TCTTCTC	GCG GCTTTTCTCG	CTGCTGCGAC	CGAACAACAT	TCTCTGTAGT	720
TTAGCGACCA GCGCTCT	'GAG TGAGCTGATC	TCGCGGCATA	GCCGGTTATT	TCACCAGACA	780
GACGGACGAT AACAGCC	TGC TGTGCGATCA	GCAGGGCCTT	CAGTTGCTCG	ATGTCGTCGG	840
GGAGTGTGTT GTTCATT	CCC CTGTTTTATC	ACGGGTTATA	TCCGGATGCC	AGGCCGTTCT	900
GTCCGTTTGG GATGTTG	CCA CGCGATCCCC	TCCAGTAGCA	TGGATAACTG	AGCTGGCGTC	960
AGGTGCACTT TCCCTTC	CCG GGTTACCGGC	CAGACGAAGC	GGCCCCGTTC	CAGGCGTTTG	1020
GCGAACAGGC ATAACCC	GTC ACGATCGGCC	CACAGTATTT	TCACCATTTT	GCCACTGCGG	1080
CCCCGGAAGA CGAAGAT	ATG CCCGGAGAAC	GGGTCATCTT	TCAGCGTGTT	CTGCACCTTC	1140
GAAGCCAGGC CGTTGAA	AGCC ACAACGCATA	TCTGTGATGC	CAGCGATGAT	CCAGATTCTG	1200
GTACCGGTTG GCAGCGT	TAT CATCGGGTAC	CTCCTTTTAT	TTOGCGGATT	AGCGCCCGTA	1260
ACATTTCCGG AGTGAGA	AGGG TCAAACAGTT	TTACCACACC	TGATTTAAGA	TGCAGCTCGC	1320
ACCGTGGGAC GTTTCCG	GGA TCACACTCAG	GGCACTCATC	AGGCTTGTTA	CGCCAGAAGG	1380
GATTTGTAAC TGGTCTG	GTC GGCTCTGGCG	TATCAGTCAG	AGCCACCGGG	ACAGGCATGC	1440
ATTCCTGTAT GTCATCA	ATCG CTCAGTAAGC	CGTCCTCGTA	CTGGCTTTTC	CATTTAAACA	1500
GCAGGTTATC ATTGATA	ACCG TGCTCTCTGG	CGATCCGGGC	AACAACAGCA	CCGGGCTGTA	1560
ATGCCTGCTT AGCCAGA	ACGG ACCTTAAATT	CACGGCTGTA	GCTGGCTCGC	CGTTCTTTTC	1620
GCCATGTGCC TTCGCTG	SATT TGAGGCTCTG	TTAATTCCTT	CTTTCTGTTG	GCATAAAGGA	1680
TGGCGTCAAG CTGAGCT	CAAT GAAACTGAAT	CGGGCAATGG	CCATGCGATA	CCGGATGCAA	1740
TAAATCGCTG AAAAAGC	CGTA TGTATTGTGG	AATGACTGAG	ACCTAGACGC	TGAGCGATGG	1800
CCCGGATGGT CAGTTTA	ATCT TCAAATCTTA	AACGCAGAGC	ATCAGGCAAA	TAAGAACGGA	1860
AGCAGGGAAT ATCTTT	TTTT GTCTGGGAAT	TCATCGTTCG	TGTCCATCTA	TATAGATGGG	1920
CGCGATTGTT GCCAGAC	CAGG ACAATTTTCA	CAAGACGTCG	CAGATGGGGC	GCTTACCAGA	1980
AATGCGCGGG TACGACA	AGTG ACTCGTCAAA	TCTCAGTTGT	AGCACACGCG	GGATCAATTC	2040
CGGATTGTCT GCCAGTA	ACCG CCTTTCGTGC	ATTCATCTTA	AATGTCCCTT	TACTGCAAAA	2100
ATGGACATTA GTATCGC	GAAA CAGGAAAGGG	AGGCGAAAGA	CGGTTTAAAT	GAGACGGTTA	2160
CCATTGTCTC GGGCTGT	rgta cgttctcccc	GGACAGACAG	CCTCAGTTCG	TAGAATCTAT	2220
AAATTACTGC TACTGAT	rgct gccggggaaa	GGCGTAACGA	AAAAACAGCC	TCCGTTACCG	2280
GACAGCAAGG AGGCTGA	AATG GAGTTTACAG	GATTTGCTTT	TTTATAATGT	CTGGCCATGC	2340 -
AGTAAAACCG GACAGG	TTTT ATTATCATGT	GAGGTATTCT	GACATAAAAT	GCTGGATTTT	2400

-153-	
TATTTTGTGA CGAATGCTGC AAAATTGCAT CTGCACTCTG ATGTAGCTTT TATCTGTTTC	2460
AGTGAAGCAT GCCCACAAAC TGAGTTATTA AGTTGTGGAA GAACAGTTTT GTCCCGCCTG	2520
CATCTCTCT TTCAAAAACC AGTATGTCGC CATGCC	2556
(2) INFORMATION FOR SEQ ID NO: 62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 790 base pairs (B) TYFE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
CAGTTAGTGT TAAAAAATNT CCTCTGCTNC AGAAATTACA CCCACCAATA TACAATNATT	60
AATAAATTTT CGGTTGGGTT AGGTAATGGC TGGGATTCGA TAATATCTCT TGATGGGGTT	120
GAACAGAGTG AGGAAATATT ACGCTGGTAC ACAGCCGGCT CAAAAACAGT AAAGATTGAG	180
AGCAGGTTGT ATGGTGAAGA GGGAAAGAGA AAACCCGGGG AGCTATCTGG TTCTATGACT	240
ATGGTTCTGA GTTTCCCCTG AATAAGATGA TGGATTATCT GACTGGCTGT TCATCAGTCG	300
GATAATGATG AAAACTGATG AGCAACAGGT TGTGCGGGCA ATGTGCAGGA TCCGTCACCA	360
AAGGGTGGAA GTTGCGGGCG ACTCAGATAA ACGGGTTACA TGAGCTATTT CTGGAGTTTG	420
ACGAAGCCGT CTGGAAGGGA GAAGAGGCGA TTCCATTGAT GTCTCTGGAA AACATCTGTC	480
AGTCGTGCTG CTGGAAATAT TGATAGAGCA ATGGGAATGG TTATCCAACA TTGATGAACA	540
TATTGTATAT TTACAGAAAT TTTTAAAAAC AGGACTCAGC AGGTTAAATC GTGTAAAAAT	600
TACTCATGAA TACCATTATG GGCTTACAAA GCGATGTGGT TAAGCAGATC TTATTCAGGC	660
CTGTGCAGCG TAGGATTACA ATAGGATCGA ATAACGCCAT ACAGGGGAAT GGGAGATAGG	720
CTGATTCATC CTGTGGCTAT AACCAGGAGC ATATCGGGAA TCMANTATGT TACCCCAGAT	780
GGAACACCAT	790
(2) INFORMATION FOR SEQ ID NO: 63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10906 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	60
GCGGCCGCAG TACTGGATCT CTTTGCGGCA TGACGATGAG GGGGAGAGAA ATAAACTTAA	60
CCCAGTCATG GCAGATGAAG AACAGGCTTA CGTAAAAGGG TTATATGAAG GGATTATGCT	120-

GATTGGTAAT ATAATCAATA AGCCTGAAGA AGCTAAAGCG TTAATCAAGG CAACTGAAAA 180

-154-

TGGCTGCAGA	ATGGTGAGTA	ACCGGCTGCA	ACTTCTACCC	GAAGAGCAGC	GTGTTCGTGC	240
CTATATGGCG	AATCCTGAAT	TGACCACTTA	TGGTTCCGGA	AAATATACAG	GATTAATGAT	300
GAAACATGcT	GGCGCAGTAA	ACGTCGCCGC	TTCCACCATT	AAAGGTTTCA	AACAGGTCTC	360
GATAGAGCAA	GTCATTGAAT	GGAATCCTCA	GGTAATTTTT	GTGCAGAATC	GTTATCCTGC	420
TGTAGTGAAT	GAAATACAGT	CAAGCCCACA	GTGGCAGGTA	ATAGATGCTG	TCAAAAATCA	480
TCGTGTTTAT	TTGATGCCAG	AGTATGCCAA	AGCATGGGGC	TATCCGATGC	CCGAGGCTAT	5 4 0
GGGGaTTGGG	GAATTGTGGA	TGGCGAAAAA	GCTGTATCCA	GAAAATTCA	ATGATGTTGA	600
TATGCATAAA	ATAGTCAATG	ACTGGTATAG	AACGTTTTAC	CGTACTGATT	ATCAGGGTGA	660
AGACTAATGC	GAGTGCTTGC	TGCGGGCAGT	TTACGCCGGG	TATGGAAATC	ACTTGTGTCA	720
GAGTATCAGG	CCGATAATAT	ACAGTGTGAT	TTTGGACCAG	CGGGTATATT	AAGGGAGCGT	780
ATTGAGGTGG	GTGAGGCATG	CGATTTTTT	GCATCAGCCA	ATATGACTCA	CCCACAGATA	840
TTAATGtCCG	CAGGanGAGC	ATTGTGTATT	AAACCTTTTG	CCAGAAATCG	TTTGTGTTTG	900
TATGTTCGGG	CGAATAAATT	CAATGAGAAT	GACGACTGGT	ATTCTTTATT	AAATCGGGAA	960
ACATTGCGAA	TCGGAACATC	AACGGCGGGA	TGTGATCCAT	CTGGTGATTA	CACTCAGGAA	1020
CTGTTTGAAA	ATATGGGGAG	TGTCGGTGAA	AAAATAAGGC	AACGGGCTGT	AGCATTAGTT	1080
GGGcgGGAGG	CATTCGTTTC	CTCTTCCAGG	AAATGCGATA	gcAGCGCAGT	GGTTAATTGA	1140
AAATGATTAT	ACTGATCTGT	TCATCGGTTA	TGCCAATTAC	GCTCCTGGCT	TGCAATCAAT	1200
TGATTCAGTA	AAAGTTATAG	AAATACCGGA	ACCTTATAAT	CCGATTGCTA	TCTATGGATT	1260
TGCCTGTCTG	ACCGATAATG	CCCTGCCACT	TGCCGACTTT	ITAGTTTCAC	CTGTTGCCAG	1320
AGGTATACTT	GAACAGCATG	GGTTTATGCC	TCCAGGTACG	TTATAGCCCC	CTGTCTTACA	1380
GCTGtCTCTT	gATCAGATCT	CCTGATCAAG	AGACTTCATC	ACCAGGTAAC	CCTCAACCAT	1440
ATCCTGCATA	TCCTGAAGTC	TGAACCAGCC	ATCCCACATA	ACTACCCAAC	CGGGGCGGCC	1500
TGTGCGTTTG	CTGTCATGCC	ATCGCCCCAG	TTTCGCCAGT	TTCAGACAGG	CCCATTTCAG	1560
TGTCGGCGTC	TGTGACGGAA	GCGGTTTTCC	TTCCAGCTTA	ACCCACAGCA	GTTTCCACTC	1620
TGTCGGCGTC	AGTATTTTCT	TACAGCTGTC	ATTTTGTGTT	TCTTCACTGA	TACCTCCCTG	1680
CCGCAGGCCa	GCACCCGTAC	CGCGATAAAC	GCCTTGATAA	CCACCATGCG	CTCAAGGTTA	1740
TCCCGGGTCT	GCATTCGCAG	CGATTCCACA	CATGTACCAC	CACTTTTCCA	CGCCTTGTGG	1800
TATTCCTCTA	TCAGCCaGCG	TCGCTCGTAA	TGGCTGACGA	TACGTCGCGC	ATCGGCGGCA	1860
CTCGCCACTT	TTTCTGACGT	CAGCAGATGC	CAGCAGGCAC	CGTCCTCTGC	CTGCTCCCGG	1920
CAACAGACAT	ACGTGAGCGG	GAGCGCCTGG	CCGCTGTTGT	CGGGATTTTT	TATGCTGAcT	1980
TCGTTGTAAC	TGATGAACAT	CCGGGCCtgg	CGGGCTGCCC	GCCCGCCTTT	TTGCATCACA	2040-
TTCAGCGTGT	GGCTTCCCGC	GGTTGCCAGG	ACTTCCGGCA	GTTCGAAGAG	CTTGCCGGGT	2100

-155-

GCTTCTTCCA	GCCGGCGATT	CTGTGCAGCA	CGCACCACGA	AGCGCTGTCC	GTGGCTGACT	2160
TTATAATGCA	GGTAATGCTA	GATATCCGCT	TOCOGGTCAC	AGACAGTGAT	TACCCGTTTC	2220
TGTATCTCCC	CCAGCCGTTC	GGCCATACGC	TCCGAAGCCT	GCTGCCAGCG	GTAACTTTCT	2280
TTTTCTTCAT	AGGGACGTTC	TTTTCGCTGG	TGCTTAACAC	CATAGGTgtC	CGTGACCCGA	2340
CTCCAGCGCT	GCTGTTCGAT	AAGACCGACT	GGCAGGGCGC	TGTCGGGGGC	GTACATCAGG	2400
ACAGAGTGAG	CCAGCAGCCC	GCGCGTCTTC	GGGTTAGTGG	TGGTATTCCC	CAGGTCATCA	2460
GATGCCGTAC	TGTGGCTGAA	GTTAATGGTG	GTGGTGTCTT	CCAGTGCGAG	GAGCAGCGGA	2520
TGAGCCTCAC	ATGCCCTTAC	AGTGGCGGTA	AATCCGGCTT	CGGCAATGGC	TTGCGGGGAC	2580
ACAGACGGGT	TACGTATCAG	GCGGTACGCA	CCTTCAACCT	GAGCAGTGGA	CTGGGATGAT	2640
TTCACAATAG	AAAGACCTGC	ATGCTGAGCG	AGAGAAGAGG	TCAGTGACAC	AAGGCGTCGT	2700
GTACGACGCG	GATCACCGAG	ACGGGCATGT	CCAAACTGCT	CGTTAGCCCA	TGAATAACAA	2760
TCAGAAAGTA	CCATAACAGA	GTCGAATAAA	ATGAAATATA	AGAGAAGATC	AACGGGTGAA	2820
GAAAAAGTTC	AAAAAATGGC	TACCGGGGAG	GAAGGAAAGT	ACCGGATGGA	AAGAGCCCCC	2880
CTAAAGCAGA	CTGACAGACA	TCACAAATCC	CCGGGGGGGA	CTTGTGTATA	AGAGACAGGT	2940
CTTACAGGGG	GAGCGTCCGT	CTTTTTATCA	ACATCAGGCA	ATGACATAAC	ATTATGAACA	3000
AGCTCACAAG	TCTGATGGTT	AAATTTTATA	ATGCTCCTTA	CTAAGACCGT	ATTTTTTCAT	3060
TCTGAGATAG	AGTTTTTCC	GCGGGATTTG	TAAATATTCA	GCAACCTCAT	TGATACGCCC	3120
CTGATGGATA	TTAAGTGCCT	CTGTGATTAT	CTGTCGCTCA	GCGTCCTCCA	CTCGTCTGTC	3180
AAGCGGTGTC	GGGGTTCCGA	CGTGCATCAA	CGGATTTGCT	GTTTCTGCCA	GCGGTAATAC	3240
TCCTACAGTA	AATAGTTCTG	CTGCATTGGC	CAGCTCTCGC	ACATTATTTG	GCCACATGCG	3300
GCGCATCATC	TCTTTGAGCA	TCTCTTTTCC	CACTTCCGGA	ACAGGATGGT	TAAGCCGTTG	3360
ACATGCTTTA	CAAAGGTAAT	GGCGAAACAG	TGGTTCAATA	TCATCGGGGC	GTTGAGTTAA	3420
TGGCAGGCAA	GCGATTTGTG	TCATTGCAAA	GCAGTAATAG	AGCTCCGCGA	TGATATGGTT	3480
GCTGGCGGCC	AGCTCGACCA	GCGAAGTGTC	TCCAATACCA	ATCAGGCGAA	AAGGTCGGTG	3540
TTCCTGGCTT	TGTAACTGAA	CCAGATGGTA	CTGCTGTTCA	CGCGTCAGGT	GTTCAGGATG	3600
GCTGAGCACT	AATGTTCCCC	CCTGAGCCAG	CGCAATGAAA	. TCATTAAGCT	GTGGTGCATT	3660
GTCTGGTGTC	: AGCTCGCGGT	AGATAAATTC	GCCTTGTGCA	TTACGTCCAA	ATTGGTGCAG	3720
ATAACGTGCA	CCGGTCATCC	GTCCTGTGCC	TGGGGCACcG	TAGAGCCAGA	CGGCAATATC	3780
TGTTTCAGAC	AACTGCTGTA	AACGTCGCCG	ATACTGATTT	' ATCCATTCAC	TTCTCCCTAT	3840
CAACTCCACC	TGCAACGTCT	GTTGGCAATA	CTGACGACGC	C GCAATGATTG	ATTGACGCTG	3900
GCGTAgcGCC	TCTTCAACCA	GAGAAAGCAA	A TTTGCCGGGA	A TCAACCGGTT	TTTGCAAAAA	3960 -
ATCCCACGCC	G CCTTTTTTA	CCGCATCAAC	TGCCATTGGC	ACGTCGCCGT	GCCCGGTaAT	4020

AAGCAGAATG	GGGATCTGTT	GATCATCCTG	GTGAAATAAC	ATCATCAAAT	CGATACCAGA	4030
GCAGCCAGGC	ATACACACAT	CACTTAGCAC	AATACCTGGC	CAGTCTGGTT	GTATCCACGT	4140
CTGCGCCTCA	AAAGGATTGT	TACAGGCAAA	AACCCGATAG	CCTGACTGTT	CAAGTAACTG	4200
TGTGTAGGCG	TOCAGCACGT	CAGCATCATC	ATCAATCAGC	AGAATCGAAT	ATTCACTACT	4260
TAGCATCTTC	CACATCCGTT	AGTCTGAATT	GCAGTACCAC	ACAGGCATTC	CTGGTCATCG	4320
TTGATGCCAG	CCGTAATTCA	CCTTTCATTT	GCTCCATCAA	CGACACACAA	ATTGAAAGAC	4380
CAATACCCAG	TCCTACTTCT	TTACTGGTGG	TAAACGGCTT	CAATAACGAA	GGCAACAATG	4440
CCTCAGGCCA	GCCCGGGCCA	TTATCGCCAA	TGAATACGTT	CAGCGTTTTA	CCCTGCATTT	4500
GCCAGTTAAC	GGTAATGACA	GCGCCTTGCC	CACAAACATC	AAGCGCATTC	GCCAGTACGT	4560
TAACCAGTAC	CTGCTGGGTT	CTGACCTCAT	CGCCTGAAAC	TGTGGCTGTA	CCTTGCGGCA	4620
GAACAAGCGT	AGCTTGCAAA	GGGCGATGAC	GCATGGCCAG	AAGTTCCCAG	GCCGCACTGA	4680
ACATCTGTGC	TAAATCAACG	GAATGGAGTG	ATATTTCCAG	TTCGGCGCGC	CGGGTAAACT	4740
GCCGTAGTGA	ACGGATAATG	GCGTCAATGC	GACCAATCAC	CCcTTCGGCT	TTACCAAGCA	4800
TCATGCTGGC	CTGTTCTGTC	TGGGTCTGTT	cAaTGcCTGC	GGGCTGTAAA	CAGATACATC	4860
GACAGCGCAT	TTAGCGGCTG	ATTGATCTCG	TGGGCCAGCG	TGGTCATCGT	TTGCCCGACT	4920
AnCCGCaGct	TCGCTGTCTG	AATCAGTTCG	TCCTGGGTGG	CTCGCAGATC	GGCTTCTATC	4980
ACCTTTCGAT	CGGTAATTTC	TTGTTCAAGT	TGCTGTTTTT	GCACATTGAG	CTGCCCGAGA	5040
GTATGGCGTA	ATAATCCTGC	AATTCTCCCC	AGTTCATCAT	TCCCATAAAC	AGGAATAGCC	5100
GTTTCCGTGC	CTCCCAGACC	AATTTGCACA	ACGGCCTGAT	TCAGTAGGGT	AAAGCGTTTC	5160
ACCAACCGTG	AGCGGATAAA	ATAATGGTTG	AATACCCATG	CCAGCAGTAA	CGCCAGTGcT	5220
GTCGCCACCA	GGATCAGCCC	ACCgctAACG	CGAACAATTT	GTTCCATTCG	TTGATTAAAC	5280
ATCTGCATTT	GTTGATGAGT	ACTGCcAAGT	GCGCTTCCAG	TAACGTTCTG	AAGCGACCCA	5340
GTGTCGCTTc	CCTGGTGCGA	CTGGCATCCT	CTAAGGCTTT	TTGGGCGGTG	ACATATTCAC	5400
GCATCGTAGC	CGGCATTTTG	TTTTTTACGA	TTCCCATATC	CAGCAATTCA	TCGATAGTCT	5460
GCCTCAGGGT	AATGGTGCCA	GGCCAGTCAT	CCAGCATACG	TATATTTTCA	TCTGCCGTTT	5520
TTTTCAGATT	TTCAAAATAA	CGGAGATGAG	TTTCCACCTG	TGTGTCGTCA	TCACGTCCTG	5580
ATTTGAGTTC	ATTGAGTCTG	TCACGCAGAT	CGTCAACAAT	CTGATTTTCA	ATGCGTGCCA	5640
GGGTATAAAC	CTGCTGCTGT	TCATTTTGCA	CTTCACGAGA	TCGCTTCAGG	TATTGCGCCG	5700
TATCGCCyTG	TCGGGAGGCG	ATTTGATCCA	GCAGCGTTCC	CTGCTGCCAG	GTGAAATCCT	5760
GCACTAAAGA	ATTAAGCTCG	GTAGTAAAAT	CATCGTGTAA	CCAGTCAATC	CTCGCTGATA	5820
GCTCACTCAC	CTTTTCCCGT	AGTAAAAACA	TGTTGTAAAG	CGCACGATCC	AACTCGGATA	5880
ACAGTGATCG	ACTGTCCTGC	AAAA+GACCG	тсасттсттс	GCGTTCCCGG	GATGACAGCC	5940

-157-

CCCGACTAAG CCGTTCTATG	GTGTCGAGAT	GCTGAATAAT	CTGGGTACGA	AGTTGCAATC	6000
GCACCGTGGT GTTGGGAGCC '	TGCAAAAATT	CATTTAGCTG	GTCTACCACC	AGATTCAGGT	6060
TCCCTTCAAT AAGGAAAGCA	GAGTGAATAC	GGGGAAAATA	CTCATCCAGC	GAGTAACGAA	6120
TTTGTGAGCT TTGTTCATGC	CATGAATACA	GACTGACACT	ACTGACAATC	AGGGTCAGAA	6180
GTGCCCCCAT CAGAAATGCG	CAACGTAAGC	TGGTACTGAT	ACTGACCTGT	CTTAAACGCT	6240
GCCACAGCGT TATGTTTTTC	ATTTCAGCTC	TTCCAGTTTT	TTTATCGCCA	GGCGCTGGTT	6300
ATTCAGAAAC CAGAGTTGCC	ATTCCATCAT	TTGCTGCTCG	GCAAAGCTTT	TGTTATCGAA	6360
CTGTGCCAGC CAGACGGGAT	CTTCACTGCT	GGCCGCTGCA	ACGGGCACTT	GTGTTAACAG	6420
TGCACGTATT TCTGGTAATG	GTTTCTTCAG	ACGTGCCTCG	GTACTGTGCA	GCGCTCGCCA	6480
GGCATCTTTT AGCTGTGCTA	ACCGAAAGCT	AATTGCCGTA	TCAAACAAGC	GCTGCACCAG	65 4 0
ACGCTGACGT TTCAGGATAA	GGTGATAATT	CAGCGGGGGT	TGATTCATCA	GGAGCTGTTG	6600
TTGCGTTGCC CGCGGATTGT	CTGCGGCAAG	TGGTGTCACC	GGATATTTTC	CTGTATTGGC	6660
ATCGGCCAGA ATACGCTGTC	CTTTCGGACT	TAACAGGTAG	TGAATAAAGC	GACGGGCTGC	6720
ATCGACGTGT GGGCTTTTCC	TGAGAATTGC	AACGTAGGTG	GGGGATACCG	CAGACCGGGG	6780
GAAATAGGTA AAAGAGAGAT	GGGGGTCATT	TAACAGTAAA	TTAGCATAGT	TATCGATAAC	6840
GGGGCCGGCA ACGCCGAGTC	CGCTTTTTAT	TTTAnTCGcT	ACGCCAAAAC	TGCGGGAGGA	6900
GATTGTCACC AGGTTTCCTG	CACTTGTCAG	CAACGTTTCC	CATCCTTTCA	CCCAGCCTTT	6960
TTGCTGTAGT AATGACTCAA	CCATTAAATG	GTTAGTATCT	GAACGCGACG	GACTACTCAT	7020
CAATAAAGCG TCCTGATAGA	TCGGCAAAGC	AAGATCGTCC	CAGTCAGCAG	GGGCAGGAAG	7080
GTGTTTTACA GAAAGCGCCG	GACGATTAAT	GAGCAGACCA	AAACCTGATA	TTGCTACTGC	7140
AACGGAGGTT GCACGGATCG	ACTCCGGCAC	CAGGTTTTGG	CTTTCTGCGG	GTGCATCATC	7200
AAACGGGGCC AGTTTCTGGT	GCTCCTGAAG	GTGCTGGAGC	AGCATTGGTG	ATGAAGTCAG	7260
GATAAGATCG ACGTTTTCTA	CGTTGGCCGT	ATCAAGCAAc	TGTTCCAGTG	AGGCACTGGT	7320
GCGGTTAAGC GTACGGATCA	TTACCGACTC	AGGCTCTGTT	TGCCAGCGCT	GTATTATCCA	7380
CGCGGTAGCT CCGGGTGAGA	ATGTGGTGGC	CATCACCAGT	TCATTTCGTT	GAGCCc TGA C	7440
GGCCCCGGCG TCCATCAGCA	ACAGTAAAAG	AATCATGGTT	TTGATGCCGA	TTTCGCACCA	7500
GCTAAAAAAT CGGTTTGTGA	TCCAGGTCAT	TAATTATAAA	ACACCGCAAA	AATCGCATTG	7560
AGACAAAAAT TACCCGTTTC	AGACATTCGT	CTGATAACAC	GTCTGCTCAA	AGAGACCGTT	7620
AATATATTAA TCAGAGATTA					7680
TAACAACAAA CCAGATAAAG	CATAAATCTA	A CCTTGTCTAT	GCATCAATAA	AATGGGTCAA	7740
AAACAGGCTT TGATTTTATT	ATTTTGTGTG	AATTGTGACA	. CATTTTTCA	. GTTTGATGTT	7800 -
TCATYTCAAT TATATGACTC	TCATTGTCAG	AATACTCCTG	S ATGTTCATAT	CAATATAAAA	7860

-158-

TACAGGTGAA	GACATGTTAT	CAATATTTAA	AACGGGGCAA	TCGGCGGATA	GTGTTCCGGT	7920
GGAGAAAATT	CAGGTGACAT	ATCGTCGCTA	TCGTATGCAG	GCGTTACTTA	GCGTATTTCT	7980
GGGGTATCTT	GCATACTATA	TCGTGCGTAA	TAATTTCACT	TTATCGACGC	CTTATCTTAA	8040
AGAGCAATTA	GATCTCAGCG	CCACACAAAT	TGGCGTACTG	AGTAGCTGTA	TGCNTATCGC	8100
CTATGGTATC	AGCAAAGGAG	TGATGAGTAG	CCTTGCCGAT	AAAGCCAGTC	CGAAAGTCTT	8160
TATGGCGTGT	GGGCTGGTGT	TATGTGCCAT	CGTTAACGTT	GGCCTGGGAT	TCAGCACTGC	8220
ATTCTGGATT	TTTGCGGCAT	TGGTTGTTCT	GAATGGTCTT	TTCCAGGGAA	TGGGCGTTGG	8280
TCCTTCTTTC	ATCACTATTG	CTAACTGGTT	CCCTCGCCGG	GAGCGTGGTC	GGGTTGGTGC	8340
TTTCTGGAAT	ATCTCTCATA	ACGTCGGTGG	TGGTATTGTT	GCCCCTATTG	TTGGTGCCGC	8400
TTTTGCCCTA	CTCGGCAGCG	AGCACTGGCA	AGGTGCGAGC	TATATCGTTC	CGGCCTGCGT	8460
GGCTATCGTT	TTTGCGGTAA	TTGTGCTGAT	TCTCGGTAAA	GGTTCCCCAC	GTCAGGAAGG	8520
TCTACCCTCT	CTGGAAGAGA	TGATGCCGGA	AGAAAAAGTC	GTCCTGAATA	CCCGACAGAC	8580
GGTAAAAGCA	CCAGAAAACA	TGAGCGCCTT	TCAGATTTTC	TGCACTTATG	TATTACGCAA	8640
CAAAAATGCC	TGGTATGTCT	CACTGGTTGA	CGTATTTGTA	TACATGGTGC	GCTTCGGGAT	8700
GATTAGCTGG	TTGCCTATTT	ACCTGCTGAC	GGTGAAACAT	TTTTCTAAAG	AACAAATGAG	8760
CGTCGCGTTT	TTATTTTTTG	AATGGGCCGC	AATCCCTTCC	ACGCTACTTG	CCGGTTGGTT	8820
GTCAGACAAA	CTGTTTAAAG	GGCGTCGTAT	GCCATTGGCG	ATGATTTGTA	TGGCGCTGAT	8880
TTTCATTTGC	CTGATTGGCT	ACTGGAAAAG	TGAATCGCTG	TTTATGGTGA	CAATTTTTGC	8940
TGCCATTGTT	GGTTGCCTGA	TTTACGTTCC	ACAATTTCTG	GCTTCCGTTC	AGACTATGGA	9000
GATCGTTCCC	AGCTTTGCTG	TTGGTTCTGC	AGTAGGCTTA	CGCGGTTTTA	TGAGCTATAT	9060
CTTCGGTGCG	TCTCTGGGCA	CCAGCCTGTT	TGGTATTATG	GTCGATCATA	TTGGCTGGCA	9120
TGGCGGATTT	TATCTTCTTG	GCTGCGGTAT	TATTTGTTGC	ATCATTTTCT	GCTGGTTATC	9180
ACATCGTGGT	GCAATTGAAC	TTGAACGTCA	CAGAGCCGCA	TATATAAAAG	AACACTGATT	9240
ACCTTCCCCA	GGGCCGTCTC	CCTGGGGAGT	GGAGTATATT	ATGATTTATA	AGATATCTGG	9300
AAATCAGAGA	TTAATATGGA	AATTTTATAA	GACTGATTAC	AATAAATGGA	GATGGTATTG	9360
TCATGAGAAA	AATGGATATC	TTTTGTCTCA	ATCAGATAAC	GCATATAATT	CGCAATTGTT	9420
ATGCATTGAA	AATGCTAAAA	AACAGGGATA	CTCAGACGAA	TCGGTCTTGC	CACTTTTTCT	9480
ACATATTTCC	TATATTCAGG	AAAAAGGCTG	GAAATGGTAT	CAATGTTATG	ATTGTGGATA	9540
TATTGTAAAA	GAAACCTCTG	TTTTTTTTC	GACATACCAG	GAATGTGTCA	ATGATGTTAA	9600
AAGGAATATA	CTAGCATCTA	TGTGTAGTGG	TTGTAGTGGC	ACAGTAAATT	TGGCCACCTG	9660
ATTAAAGGTG	ATATTCTCAC	CACAACATAA	AACAACAAGA	AAACAAAGCG	TACCTTCTCT	9720 -
CCTGAGTTTA	AACTGGAATG	CGCCCAACTT	ATCGTTGATA	ACGGTTACTC	ATACCGGGAA	9780

-159-

(GCTACTGAAG	CTATGAATGT	TGGTTTCTCT	ACTCTGGAGG	CATGGGTACG	TCAGCTCAGA	9840
(CGGGAACGTC	AGGAGATCAC	GCCTTCTGCT	GCAGCACCAC	TCACATCAGA	GCAGCAACGT	9900
Ž	ATTCGTGAGC	TGGAAAAGCA	GGTGCGTCGT	CTGGAGGAAC	AAAATACGAT	ATTAAAAAAG	9960
(GCTACCGCGC	TCTTGATATC	AGACTTCCTG	AATAGTTACC	GATAATCGGG	AAACTCAGAG	10020
(CGCATTATCC	GGTGGTCACA	CTCTGCCATG	TGTTCAGGGT	TCATCGCAGT	AGCTACAGAT	10080
	ACTGGAAAAA	CCGTCCTGAA	AAACCAGATG	GGCTGTATTA	CACAGTCAGG	TACTTGAGCT	10140
	ACATGGCATC	AGCCACGGTT	CGGCCGGAGC	AAGAAGCATC	GCCACAATGG	CAACCCGGAG	10200
	AGGCTACCAG	ATGGGACGCT	GGCTTGCTGG	CAGGCTCATG	AAAGAGCTGG	GGTTGGTCAG	10260
	CTGTCAGCAG	CCGACTCACC	GGTATAAACG	TGGTGGTCAT	GAACATGTTG	CTATCCCTAA	10320
	AAGCAACAGC	AAACAGCGAC	CACTGGGGAG	CCCTGCATTG	CGGGATTGTA	TTGTTCAGCG	10380
	GGCCATGCTG	ATGGCGATGG	GGCCGAGGAG	AGTGATTTTC	ATACGCTCTC	ATATGGTTTT	10440
	CGACTTGTGC	GAAATGTCCA	CTACGCGATC	CGCACGGTGA	AACTGCAACT	CACCGACTTC	10500
	AGGGGAAACT	CGGGGCCGCT	GGGTAATCTC	ACATAAAAGT	TCTTCGGTGT	CATAAACAAC	10560
	GAGAGTATTT	GATTCCTTTA	TGGTGGCCTG	GTGCAGAGCT	GCCCTTTCCC	AGGACCTCCA	10620
	TATAATTTT	GTAGCGGCAG	TCAGTGGCAC	ACTCAGTTAA	CTACTTTCAC	TTCAGTGACT	10680
	TTGAATGAGT	CAGGGCTGCC	GTTAAAGGTG	TTAATGAAGG	CTTGTATTTT	CCACTTCTGG	10740
	CCTGGTTCAA	GATTGGATGC	TGTGTCGATT	GTTTGACCGA	TAACGACTCC	ATCTTTTAAN	10800
	AGATTAAATT	TTACATAAGC	ATTTTTGACA	ACAGAGTTTG	ATTTATTTNC	AGCATAACCC	10860
	ACAATTGCCT	TCGTCCCACT	TGGGGTGTTI	TCCACATGAA	GGTTAG		10906

(2) INFORMATION FOR SEQ ID NO: 64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7430 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

ATGGTTATTT	TTATTTCCTG	CACCTTGCTT	CATTTGAAAT	AAAAACATAT	GCATACGACG	60
CTGCCATTGA	GCAGAAAAAT	ACAGGAATTA	ATGTTATGAG	TTAACCATAA	TACCTGTGTT	120
ATGAATATCT	GACATAAACA	AGAACAATTC	ATATCTTCTG	TATTCAGCAG	AAAATAATAA	180
GTTCGTCTGC	CATTCTCAAA	CTTATTCTTC	GGAATACGTT	GTTTCATGAA	AGAAGGGCC	240
GGAATAAAAG	CTGGTCACCG	TAATGCTAAT	ATTAATGCAG	ACTACCGCCT	TCTGGAATTA	300
ACAGTCATCA	ACCAGCACAA	ACCATTAGCA	ATCAAACAAA	TTTTAATTAA	CAAAATTTTA	360 -
GCTAATACAA	TTACTGCATT	AACCACTCTG	CAGTTTGCCT	TCTCAATAAG	TTACAGATGC	420

-160-

CAAACAATAC	TCTTTTATAT	GTTATAACAT	AACACAAACA	ATAAATAAAG	AACAGACGGC	480
ACTCCATTTC	TCCACGTAAG	TGAGCCATCA	GAATCGCTTA	TGAATGTGTA	CGGCAGACGT	540
ATACTCGTGT	TTTACTGCAG	CAACCGGAGC	AAAAGTTGCA	CTTCCACAGC	CTGGGTTAAG	600
TTTTTCATGC	TTGTGGGCTC	GTCCTCCCTC	CATTTCCACC	GCGGGCAAAC	AAGGCCATCT	660
TTTGTCTGGC	CACACAGCAG	ATGGAGAGTC	GAATTATGCT	GTCTGACGAC	ACCGGGAACA	720
AATATGCCAT	GCCTTCGCAC	AATGAACCCG	GGCATCATCG	TTTTATCTTT	ATAATCGAGA	780
CAGGTATGAG	GGAAAGTCGG	ATGATAAGCA	GATAGTGAGT	GAGGCGCTGG	AACATGGCGC	840
TCTGGCAAGA	GAAGTGTCAC	AGGTTACCTG	ATGATATGGG	GCAACCTGAT	ATCTACTTAC	900
TTTTTTGCCT	ACTCTCTTAC	TTCATGCCAG	CAGCGAGGGT	ATCGACATTG	TGTTTGAACG	960
CTGCCGTGTA	GGTAGCAGCG	AGGCCGCTAC	TGTCGGTAAG	TGCTTCCGGA	TAAAGCTCTC	1020
стсссдсттд	TGCACCACTG	GCATTGGCGA	TTTGTTTCAC	CAAACGGGGA	TCTGTCTGGT	1080
TTTCGATAAA	GTACAATTTT	ACGTGCTCTC	TCTTAATTTG	ATTAATCAGT	TTCGCCACAT	1140
TTTTACTGCT	AGCTTCCGAC	TCAGTGGAGT	ACCCCACTGG	CGACAGAAAG	CGAACCCCGT	1200
AGGCGGCAGC	GAAATACCCA	AACGCATCAT	GACTGGTCAG	TACTTTACGT	TTTTCTCTTG	1260
GAATAGCAGC	AAACGTCTGC	GTGGCGTAAT	TATCCAGTTG	CTTCAACTGC	TGGATATAGC	1320
TGTCACCCTG	TTTTCGATAA	TCGCTGGCGT	GCTCCGGGTC	TGCTTTGCTC	AGGCCATTGA	1380
CAATGTTGTG	AGCATAGACA	ATACCGTTTT	TCATGCTGTT	CCAGGCGTGC	GGATCAGTGA	1440
TGGTGATCCC	ATCCTCTTTC	ATTTTCAGTG	TATCTATTCC	GTTAGACGCG	GTAATTACCT	1500
CACCTCTGTA	GCCAGAGGCT	TTCACCAGAC	GGTCCAGCCA	TCCCTCCAGT	CCCAATCCAT	1560
TGACAAAGAC	AACATCCGCC	TGTGCCAGCG	TTTTGCTGTC	TTTCGKCGAC	GGTTCAAATT	1620
CATGTGGATC	ACCATCCGGT	TGCACCAGAT	CAGTGACATG	AACGTATGGG	CCGCCAATCT	1680
GGCTGACCAT	ATCGCCCAGT	ACCGAGAAAC	TTGCCACCAC	ATTCAACTCT	TTTGCAATCA	1740
CCAGTGGGCT	CACTAGTAGG	CTGGACAGTG	CCACAACCAA	AATGGACCGT	TTCATCTTTC	1800
CTCCTTCATC	TCGTTGCTAT	GTGTAAAAAC	ACTTCTTGTC	AGCGACATCT	GCATAACATG	1860
CCGCCATTAG	AGCCAAACAG	AACTGAAAAG	CAGAAAAACA	GAGTGCTCGT	GAGGATGACT	1920
GCAGGACCTG	CAGGCAAATC	AGCGTAATAA	GACCAGATCA	GTCCAACCAG	ACTGGCGCAG	1980
GTACCAATAC	CCACTGCAGC	TAACAACATG	ATGGACAGAC	GTTGACTCCA	GAAACGCGCG	2040
CTGGCAGCCG	GTAACATCAT	AATACCGACT	GTCATCAGGG	TGCCAAGTAG	CTGGAAACCT	2100
GCCACCAGAT	TGAGTACCAC	CATTGACAAA	AACAGGCAGT	GGATCAGCGC	CCGCGACCGA	2160
CGTGACAGAA	A CTTTCAGGAA	AGTGACATCA	AACGACTCAA	TCACCAGCAC	CCGGTAGATC	2220
AACGCCAGT	CCAGAACCGA	ACCGGAACTA	ATTATGCCGA	TAGTGATCAG	AGCATTGGCG	2280 -
TCAATAGCCA	A GAATGGAACC	GAACAGCACA	. TGCAGCAGGT	CGACACTGGA	GCCACGCAAA.	2340

GAGACCAGGG	TGACGCCAAG	TGCCAGCGAG	CCGAGGTAAA	ACCCGGCGAA	ACTGGCGTCT	2400
TCTCTCAATC	CAGTGCGGCG	GCTGACCACA	CCAGACAACA	TCGCCACAGA	CAGCCCGGCA	2460
ATGAAGCCAC	CGACTCCCAT	CGCAACCAGC	GACATGCCCG	ATACCAGGTA	GCCAATTGCT	2520
ACTCCCGGCA	ACACCGCATG	GGACAGTGCA	TCACCGATCA	GGCTCATACG	GCGCAGTAGC	2580
AAAAAACAGC	CAAGTGGCGC	GGCGCTCAGG	GTCAACGCCA	GACATCCGAC	CAGCGCCCGA	2640
CGCATAAAAC	CGAAATCGCC	AAATGGCTCG	CACAACAGGT	GCAGTAACAT	CATGGCAGCA	2700
GCCCCTGCTG	CGGTGGCGTG	GCTGCAGCCG	TGAGGGAATG	GAGTATATCG	GCACTTCTCC	2760
CCCATCGGTG	GCCTTCCGCA	CTGAGCATCA	GTACATGAGG	AAAGTATTTT	TCTACCTGTT	2820
CCATGTCATG	CAACACCGCA	AGAATTGTAC	GTCCTTCCAG	ATGTAGCTGC	CGAATAACAA	2880
CCAGCAGAGT	ACGGATAGTC	TGAATATCAA	TGCCAGTAAA	TGGTTCATCC	AGCAGAATAA	2940
CCGACGGCTG	CATCACCAGC	AGTCGTGCGA	ACAGTACGCG	CTGTAACTGA	CCACCGGAAA	3000
GTGTGCCGAT	GTGCATCGGC	GAAAATTCTG	TCATACCGAC	GGTATCCAGC	GCTTCGATAG	3060
CTTTTTTCG	CCATAGACCG	GAAATACGAC	CGAACATCCC	GCTGTGTGGA	ATACATCCCA	3120
TCAGCACCAG	ATCGTTAACA	CTCAGTGGAA	ACTGGCGATC	AAATTCAGTC	AATTGGGGCA	3180
AATAACCTAA	CTGGCGTTGC	CCCTGCGGTG	CCATGCAGAA	GCAACCACCC	AGAGGTGGCA	3240
GCAGACCGGC	CAACGTTTTA	AGCAAGGTGG	ATTTACCTGT	GCCATTCGCT	CCGATAATGG	3300
CAGTCAGTGA	ACCGGTGTCA	AAACATCCAT	TCAGCGTACC	CAGCGGGTGC	TGTCCCGAAT	3360
AGCCAAATGC	CAGTGAATGT	AATGCGATCA	TGTCAGTACC	ACCGCCCAGG	AAATAAGAGT	3420
CCATAACAGT	r ACCAGCAGCA	CACCGACGAT	ACCCAGTCGG	GCTATTGCGG	AAAAAGCATA	3480
AAGACTGAC	CACAGTATCCC	CCATCAAAAT	TGTTATAGTA	TAACATTATT	GCTTTATGGG	3540
TGCCGATGAT	I AGGTAAGAAA	ATGTGTCATO	G GCTTCTGCAG	G CGTAAGCATA	CAGCGAGAGC	3600
AGTATTGACA	A GGGATGCGTI	AGTCATTTAC	CAGTGTAAT	G CGCTAAATAG	NTGCGCGGAA	3660
TAGTAGATC	A CTTTGAGGG	ACTCAGCCC	G GATTGTGCGC	TCTGATCAAT	CGCCAAATCA	3720
AAACAAATC	A CCAACCGAAG	TGAGCAATG	C CGATCATAGO	C ACCAATTTCC	CGTGACGAAC	3780
GACACCGGA'	T GCAGAAAGC	C ATCCATAAA	A CACACGATA	A AAATTATGCC	CGCAGACTGA	3840
CTGCCATGC	T GATGCTGCA	CGGGGCAAC	C GTATCAACG	A CGTTGCCAGA	ACGCTCTGCT	3900
GCACCCGTT	C ATCTGTTGG	A TGCTGGATT	A ACTGGTTAC	r aaaatcatto	CCTGCCGGGC	3960
GTGCCCATC	G CTGGCCATT	T GAGCATATC	T GCACACTGT	r ACGTGAGCTG	GTAAAACATT	4020
CTCCCGACG	A CTTTGGCTA	C AAGCGTTCA	C GCTGGAATA	C AGAACTGCT	GCAATAAAAA	4080
ATCAATGAG	A TAACCGGTT	G CCTGTTAAA	T GCCGGAACC	G TTCGCCGTT	GTTGCCGTCT	4140
GCGGGGATA	G TGTGGCTAA	G GGTTGTGCC	A GCTCTGCGT	A TCCGTGACC	C GCATAAAGAT	4200
GAAAAGATG	G CAGCAATCC	A TAAGGCACT	G GACGAATGC	A GCACAGAGC	A TCCGGTCTTT	4260

-162-

TATGAAGATG	AAGTGGATAT	CCATCTTAAT	CCCAAAATCG	GCGCTGACTG	GCAGTTACGC	4320
GGACAGCAAA	ACGGGTGATC	ACGCCGGGAC	AGAATGAAAA	ATATTATCTG	GCCGGAGCGC	4380
TGCACTGCAG	GACAGGTTAA	AGTCAGCCAT	GTGGGCGGCA	ACCGCAAAAA	TTCGGTGCTG	4440
TTCATCAGTC	TGCTGAAGCG	GCTTAAAGCG	ACATACTGTC	GAGCGAAAAC	CAGCACGCTG	4500
ATCGTGGGCA	ACAACATTAT	CCACAAAAGC	CGGGAAACAC	AGCGCTGGCT	GAAGGAGAAC	4560
CCGAAGTTCA	GGGGCATTTA	TCAGCCGGTT	TACTCGCCAT	GSGTGAACCA	TGTTGAACGG	4620
CTATGGCAGA	CACTTCTCGA	CACAATAATG	TGTAATCATC	AGTACCGCTC	AATGTGGCAA	4680
CTGGTGAAAA	AAGTTCGCCA	TTTTATGGAA	ACCGTCAGCC	CATTCCCGTA	GGGGAACATG	4740
GGCTGGCAAA	AGTGTAGCGG	TATTAGGAGC	AGCTATTTAG	GAGAACAGCT	CGCTGACCCG	4800
GTTGACTATG	ACTCAAGCCC	ATGACGAAGA	TAGCTTTCTG	GATCAACATC	GTTCAGTCTG	4860
CACGTCCCAA	TCCAGCCACC	AGCCACCAGC	CACCAGCCAC	CAGCCACCAG	CCACCAGCCA	4920
CCAGCCAGGC	TACAGTGCCA	TCCCGACCTC	CCCACGTAAA	CCCAGGGACA	GGCTAAAGGC	4980
AGAAAATGGG	GAAGGCAGTA	TGACTCTCCG	TGACACAGAT	GCGGGTACCT	GATGGGAGTG	5040
AGATCATCTT	CCCCTCCCGG	TCAGTTCCCG	GATCAACACC	GTGAGCAGCT	CTGGCGAAGG	5100
TTTTTCCAGC	GTCATTTTAC	CGTAACGAAA	TTCAACCTTA	CAGGAACTGG	CACAGACTGT	5160
GCACTAAGTG	GCAGTGGATA	AAAGCGGAGT	AAGAGCCGCC	ACAGGCTCTT	TCTGCTCATC	5220
AGGCATTATC	TCAACAGGTA	ATAATTCAAC	GCCAGCGCCA	GAAGAGGTTG	TTACCGGAAG	5280
ACGCCGCGCC	CCCCTTCGTT	CAGCCAGAGC	CTGAGCCATT	TGACCAGGAG	GTTATCATTG	5340
ATATCGTGTT	CCTGGTCAAT	ACGGGCAACA	GAGGTGCCTA	CGACGTTTTT	TCAGTTCGGT	5400
TATCTATTGA	CTTAACTCTT	TGGCCAGTAA	TGCTGCAGCC	CCCGTGCCAT	GAATAAACGA	5460
GTGGTCGCAG	ACCACGCAAC	ATGCAACATC	ATTCAGATCC	CCCGCTAATA	TTACAGGTAA	5520
TTCAGAATCA	GCAATACTTT	TCCCGACCAT	TAAAAGTTCT	GAGTCACGAT	CAGTTGACTC	5580
ATCACTTTCA	GTCGGGCTCG	GTGGAACAGG	ATGAAGACAA	TGTAATCTTA	TTCTCAAACC	5640
TTCTGGCATA	TGAACTATCA	TATTCATGGA	GGGAATTTCC	TTGTCCACTA	AATACTGTAT	5700
TTCTGCATCA	CTTAAAA T CA	TCCAGGAATA	TACATGCATG	CCATATAAAT	TTTCTTTCGG	5760
GCATTTCAGG	GAGTATGGAA	ACACTTCATC	CAGAGGTGAT	AGTTTCTGTT	CCCACCATAA	5820
GTTTGTTTCA	AGAAGAACAA	GTATATCAGG	TTTTTCTTTA	TTTATAAGTT	CAAGAATGGG	5880
TATATATTT	TTATTGGTCA	TAAGAACATT	GAATACCAGT	ATACTTAAAC	CCAGAAATCC	5940
ATCAGAGTCC	TTTATTTCCT	TTACCTGCTT	CTTGCCAATT	ACTGTATAAG	GAATTATCCA	6000
TACCAACTGG	TAAGCGACAC	AAATTAAACT	TATTATCCCA	ACAAACAACT	CTGTAAATAA	6060
GTCAAGAAAA	ACAACAGACA	GAAAAACATT	CAAAGTACAC	AGCAAAAGTA	TCTGTAGTCG	6120 -
GGGAAAATCC	CATCCCCCGA	CAACCCATGA	TGTATTACCG	GAAACAGGGA	TAAAAGTTAT	6180

GACTGCCAG.	A AGGATAGCAG	TAAAAATAAA	AACACAAGTT	ATCACAAATC	GCTCCTTGTT	6240
CTGAACCGG	A ACACAAAACT	GTCATATACG	TTTCAAAAGT	AAAAATACAC	TGCTGCCACA	6300
AGATTTACA	G CGTAACCGGA	CAGCATATCC	TGATTACGGA	CAATCCATGA	AACCGCCTCA	6360
CCAGAAGCG	T CCATCACATC	CGTTTTTTCC	CTGTTTTATA	TTCCCCGAAA	CATTTTATTT	6420
TCAGGAATC	T CCGGGCCTTT	ATCCCGCATC	ATTGCAAAAT	GGCATCTGAA	TCGATCATGA	6480
TTTGGCATC	C ATCTCCGATC	ACAGTTTGGC	ATCACAATCG	ATCACGATTT	GGCATGCTTC	6540
CGATCATTG	A TTAGCATCCT	GCCAGTCACT	CCGGGAATTA	ACTCTTTTCG	CCACAGTCTT	6600
CATTGCCGT	G TTTAAACCAA	TGGAGACGGC	AATGTCCAAA	AAGAGAATAT	CCAGGAGCAC	6660
TATGGATAC	C TGTTTTAAGA	TCCTTCAGCT	CAAGTTCGAC	CAGAAGCTGG	CTAACCGTTG	6720
TATCGGACT	T GCAAAACACC	AATGGGGATT	GATCTCTATT	TTGCGACACA	GACGCATTAT	6780
CAATACATO	G ATGGTGCGAT	CAAATACCTC	AGTGGTCTCA	CCGTGGATCA	AATCCAGCAA	6840
TTGCTCACA	AG ATTAAGACTC	GTCGGGAGTT	TTGAGCCAAC	ACCAGCAGTA	ACCCATATTC	6900
ACCTTGAGT	G AAATCTACAG	GCTGTTGATG	AGCATCAACC	AGCACGTAAC	GGTCCGGGAT	6960
CAAGTGTC	CA GCCGTTAAAA	AAACCACTCT	ACTACCCTGC	TCGACCTAAG	CCTCGGCGTT	7020
CAGCCGCCT	rg AACGGGTATG	GCAAGGGTGA	AAAGAAACAG	CATCCCCACA	GTACCGACCA	7080
GACGACAG	GA TGATGCTGGA	ACAGAAAGCA	TTCGCACCTC	TCTTAGAATT	AGACAGTGCG	7140
TACAGGATA	AC GTAAGACAGO	GTGACGGGGC	GGCGATAAAC	TCTATTTACA	AAGCTGAAAA	7200
TTTTCTGAG	CG ATGAAAAACI	ATTCAACAAG	GTTATCTGAG	GCGTTAAAAT	AACCAGCTCG	7260
ATTAACGA	CT AACTTGAGGT	GAATATGAAT	TTAAAAAATT	TAATTTTAAG	TACTGTTTTA	7320
TCAATCGC'	TA GTTGTCATGO	C CCTGGCTGTA	GGTAATTCTC	CAAATAGCGC	TATCTAACCT	7380
TCATGTGG	GR AAACACCCC	AGTGGGGACS	AAGGSCAATT	GGTGGGGTTA		7430

(2) INFORMATION FOR SEQ ID NO: 65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6681 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

AGATTATTCT	GGCTCAGATT	CATTTTTCAT	CAGTCGCTTT	CCCCTATAAA	CCGTAAGGTT	60
CCATAGTGTC	GACGCTCTCG	CTTAATTCCC	ATATCGTCGA	TAGTCTTATT	AGCCGCTTCT	120
GTCAGGTCAG	AAAAAGTATC	ACGCTTCTTT	GGGAGTTCAA	GTCAGATTTC	TCGCCGTCGG	180
GCGATGCGCT	CAAAATGTTT	GTCTGTATGG	GGTCGCTTCA	TCACGTCAAG	CCATCGCGCT	240-
GCCGCTCTCC	GCCAGAGTAC	AAGCTCTTCC	AGTTGTTCTG	CTTTTTATCT	TATCTGTGGC	300

-164-

GATGCAGTAT	CCTCCTCCGT	TIGIGIAAAT	CGTTGAGTGG	TGAATCACGC	AAAGGGCTT	36.0
CTTTTTTCTG	ATCTATCCCC	ATATTCTTTA	GCGTTCTGGT	CGCAGCATCT	CTGATGTCGC	420
AGACACTGAA	CCTTTGTATT	TTCCATGATC	TTGTGGAGTT	TTCGATACAT	CTGCTCCGAT	480
GCTGGGTTAT	AAAGATCCGC	TCTTTATCAT	CCTTGGCTTG	TGTAAGCAAT	TCTCCCCAAC	540
GTTCTGCTGC	ACGCCGCCAT	AACTCTCTTC	TTTCCAGTTC	CTCAGCTTTT	TCATCATGTA	600
CCATTCGTGT	ATCCCCGTTT	ATCCAGTCTG	AACCGCACCG	GGTTTCCTGG	AGAATGTTTT	660
CTCTGTGAAC	TCAGGCTGCC	AGATCATCGT	TTCCGATGGA	AGCATAATAA	GCTTTTTCTG	720
CTTCTGCCGG	ARGAATATGG	CCCAGCTTTT	CCAGCAATCG	TCGATTGTCA	TACCAGTCCA	780
CCCACGTTAG	TGTGGCCAGC	TCCACTTCTG	TCCGTTTTTT	CCAGCTCTTA	CGGTTATTAC	840
CTCCGTTTTG	TAAAGACCAT	TGATGCTCTC	CGCCATTGCG	TCGTCATACG	AGTCGCCTGT	900
ACTCCCTGTT	GATGCCAGTA	ATCCGGCTTC	CTTAAGCCGT	TGCGGACACA	TAATGAGAGC	960
CTTTATCGCT	GTAATTGTCA	ACGACGGATG	AAAAGTGATC	CACTTATATC	TCCACCAACG	1020
GCCCAATATT	GATCCACCGT	TTTACTCAGG	ATTAGCTTCT	GCTATAACCC	CGGCCTTTCG	1080
TTTCTGTCTG	AGTCGATAGC	TTTCTCCTTT	GATTTGAACG	ACATG T GAGT	GGTGTAAGAT	1140
ACGGTCCAGC	ATCGCTGAGG	TCAGTGCTGC	ATCACCGGCG	AACGTTTGAT	CCCACTGCCC	1200
GAACGGCAGA	TTGGATGTCA	GGATCATTGC	GCTCTTTTCG	TAACGTTTAG	CGATGACCTG	1260
GAAGAACAGC	TTTGCTTCTT	CCTGACTGAA	CGGCAGATAG	CCTATTTCAT	CAATGATGAG	1320
CAGGCGGGG	GCCATTACTC	CACGCTGAAG	CGTCGTTTTA	TAACGGCCCT	GACGTTGTGC	1380
CGTAGATAAC	TGAAGTAACA	GATCTGCTGC	TGTTGTGAAG	CGAACTTTGA	TACCTGCACG	1440
GACTGCTTCA	TAGCCCATCG	CTATTGCCAG	ATGGGTTTTC	CCCACACCTG	ATGGCCCCAG	1500
TAATACGATA	TTTTCATTAC	GTTCTATGAA	GCTGAGTGAG	CGTAACGACT	GGAGTTGCTT	1560
CTGCGGTGCT	CCGGTGGCGA	ATGTGAAGTC	ATACTCTTCG	AACGTTTTCA	CCGCCGGGAA	1620
GGCTGCCATT	CGGGTATACA	TCGCCTGTTT	ACGTTGATGA	CGTGCCAGTT	TTTCTTCATG	1680
AAGCAGATGC	TCCAGGAAGT	CCATATAACT	CCATTCCTGG	TCTACTGCCT	GTTGTGACAG	1740
CGCAGGCGCT	GCGCTTATAA	GGCTTTCCAG	TTGCAACTGC	CCGGCGAGCG	CCATCAGTCG	1800
TTGATGTTGC	AGTTCCATCA	TCACGCCACT	CCTCTGCAGA	ATGAGTCGTA	GATGGAGAGT	1860
GGATGATGCA	GGGGGTGTTT	GTCGAAGTTC	ACCAGATTTT	CATCAAGATG	CACGTCATAC	1920
TCTTTTTCT	CCGGAGCAGT	GCCAGCATGG	ACTGCTGTCT	TCGAGCCAGC	GATCGCAGGG	1980
ACGGGCCTGG	ATTGTTTCAT	GCTTTCGTTG	GTTAGCGACA	TCGTGCAGCC	AGCGCAGACC	2040
GTGGCGGTTG	GCTGTTTCAA	CATCGACAGT	GATCCCCATC	GGGCGCAGGC	GAGTCATTAG	2100
TGGGATGTAA	AAACTGTTAC	GGGTGTACTG	CACCATCCGT	TCCACCTTAC	CTTTAGTCTG	2160
TGCCCTGAAG	GGGCGACACA	GTCGGGGAGA	GAAGCCCATC	TCCTTGCCGA	ACTGCCACAG	2220

CGAAGGATGG	AACCGGTGCT	GACCGGTCTG	ATATGCGTCA	CGTTGCAGAA	CCACAGTTTT	2280
CATATTGTCA	TACAACACTT	CGCGCGGCAC	ACCACCAAAG	AAGCGGAACG	CATTACGATG	2340
GCAGGTCTCC	AGCGTGTCAT	AACGCATATT	GTCAGTGAAT	TCGATGTACA	GCATTCGGCT	2400
GTATCCGAGA	ACAGCAACGA	ACACGTGAAG	CGGTGAGCGA	CCATTACGCA	TAGTGCCCCA	2460
GTCAACCTGC	ATCTGTCGTC	CGGGTTCAGT	TTCGAACCGA	ACGGCAGGCT	CCTGCTCCTG	2520
AGGAACCGAG	AGAGAACGAA	TGAATGCCCT	GAGAATGGTC	ATTCCGCCAC	GATATCCCTG	2580
GTCTCTGATC	TCGCGAGCGA	TTACCGTTGC	CGGGATTTTG	TAAGGATGAG	CATCGGCGAT	2640
GCGTTGACGA	ATATAATCCC	GGTATTCATC	CAGGAGTGAA	GCAACAGCAG	GTCGCGGCGT	2700
ATATTTTGGC	GGCTCAGATT	TTGCCTGCAA	ATAACGTTTA	ACCGTATTGC	GGGAGATCCC	2760
CAGTTCTCTG	GCAATCGCCC	GGCTACTCAT	TCCCTGCTTG	TGCAGGATTT	TAATTTCCAT	2820
AACTGTCTCA	AAAGTGACCA	TAAACTCTCC	TGAATCAGGA	GAGCAGATTA	CCCCCTGGAT	2880
CTGATTTCAG	GCGTTGGGTG	TGGATCACTA	TTGCACCGTT	CGTGACAGTA	ATGGATTGTG	2940
TCAGACGGAC	GACGGGCCCA	TAACGCCTGC	TCCAGTGCAT	CCAGCACGAA	TGTTGTTTCC	3000
ATGGACGATG	AGACTCGCCA	TCCCACGATG	TATCCGGCGA	ACACATCAAT	GATGAACGCC	3060
ACATAAACAA	AGCCCCGCCA	TGTGCTTATC	CCGGTAAAAT	CAGCTACCCA	CAACTGGTCC	3120
GGGCGTTCTG	CGATGAACTG	ACGGTTTACA	CCGTTGCATG	CGGCAACAGC	TTTCCGGCTG	3180
ATTGTCATGC	GAACCTTTTG	CAAACCCCAT	ATATTTCAGA	CGATACCGTT	CAACGGTAGT	3240
GAACCCACCA	. TCACCGCTCC	CGGTATCCCG	CTCATGCTGG	TATACCCAGA	CATGCAGGGG	3300
TTCCAGCGTA	CAGCCAATCI	TTGGGGCAAT	GGAACAAATT	GACGCCCACT	ACGAGTCATA	3360
CGACTTTCCA	GAACAATACG	GAGCGCCCGC	TGACGGACCA	CCAAAGAGCC	GCCATTATTC	3420
TTATTACCTT	TAACTAATAA	TGCCAATTCA	GACCCAAACA	CGGCATCATT	CGCTTCAGCC	3480
TCTGCGCCAT	TAATTAATGO	CAGGACTTGG	TCAAGAAAGC	GTTGCGCTTC	GTTTACATCT	3540
GTTGCTTGTC	C GCAGGTAATA	A AGGTATTCGI	TCAACAAACT	CGGAACGTGA	TAAAGGCTGA	3600
TGCTCCAGCA	AAACCTCAA	G CATTGCGGGC	C CGCAACAAAC	GACGCTCAGC	ATCAACATTG	3660
GGAAACTTAA	A CCTCAATGG	C ATATGTGGCA	A AAATACTTAA	GTTGCTCCTI	AAGCCCCAAA	3720
TTAGGCATA	A GAGAATCAA	TGAGCCAGAG	GCCACTGCAG	CGCTTGATTC	AATTGTTTCT	3780
ACATACTCG	r aggaaggta	C AACAACATC	r ggagccaate	TTTTAAGCTC	ATGGAGTTGA	3840
CGGATAATC	G GGGATAGAA	CTCATCAGG	A TTACTGAACC	: AATCAGTGGA	CCAAATACGG	3900
CTAATTCTC	C ACCCCAAAC	G CTCCAAAAC	C TCTTGACGCA	AACGATCAC	GGCAGATTTA	3960
GCTGAATGA	T AAGCCGCAC	C ATCGCACTC	T ATACCCATTA	AGTAACAAC	CGGATCTTCT	402
ACCGACAGA'	T CAATAAAGA	A TCCTGCAAC	C CCACCTGAGO	TTCACACTCA	A AACCCAGCGT	408
GATTGAGTG	C TTCCATTAT	A GCAACCTCA	A AGTCACTATO	CGGAGCCCT	G CCCGTATACG	414

-166-

TCGTGAGGGA	ATCTAATTTG	CCACTTTCGG	CAAACTGTAA	AAAACCTTTC	AACGAAATAA	4200
CACCAAATTT	ACTGGTTTCA	CTCGTCAATA	CATCTTCAGA	ACGCATTGAA	CTAAACACAT	4260
GCATCCGTTT	CTTTGATCGA	GTTAAAAGCA	CATTCAAGCG	GCGCCAGCMA	ACATCGGAAT	4320
TGACAGGCCC	AAAGCGTTAA	TAAACCTTTC	CACCATGCTC	AGAAGGTCCA	CAGGTAAAGG	4380
AAATAAAGAT	TACATCACGC	TCATCACCTT	GAACGTTCTC	AAGTTTTTTC	ACAAAAAGTG	4440
GCTCTTCCAT	GGCATATAAG	CCATCAATTG	CATCGTTAAA	TTCAGTGCGA	TTTCGGCGCA	4500
ATTCATCAAT	AGCGCGCTCA	ATCTGATCGC	GTTGCCTGGA	ACTCATGGCC	ACTACCCCAA	4560
GAGATTCATC	CAGCCGGTGT	TGCGCATGAT	GAAGTACAGC	CTCAGCAACT	GCTTGGGCTT	4620
CTTCAATATT	GTGTTGATTA	GAGCAACGAC	CTTTTGATAC	ATAAGTAAAT	TTGATTCCAT	4680
ACTCTGGAGA	CTCAGCATTT	GGAGAAGGGA	ATATCACCAA	ATCACTGTTA	TAAAAATGGC	4740
GGTTAGAGTA	TGCAATTAAC	TTTTCGTGTC	GTGAACGATA	GTGCCAATGC	AAACGTCTCA	4800
TAGGAAACAG	TGGCAAAGCA	GCATCCAAAA	TGCCGTCAGT	ATCACTTAAA	GCCGCGACAT	4860
CATCGTCATC	TTCTCCGGCG	GAACTTCGAT	CTGAAGTGGC	ACACTGAATT	TGGCCACCTG	4920
AACAGAGGTG	ATATGCTCAC	CTCAGAACAA	CACAGGTGCT	CCAATGAAAA	AAAGGAATTT	4980
CAGCGCAGAG	TTTAAACGCG	AATCCGCTCA	ACTGGTTGTT	GACCAGAACT	ACACGGTGGC	5040
AGATGCCGCC	AAAGCTATGG	ATATCGGCCT	TTCCACAATG	ACAAGATGGG	TCAAACAACT	5100
GCGTGATGAG	CGTCAGGGCA	AAACACCAAA	AGCCTCTCCG	ATAACACCAG	AACAAATCGA	5160
AATACGTGAG	CTGAGGAAAA	AGCTACAACG	CATTGAAATG	GAGAATGAAA	TATTAAAAAA	5220
GGCTACCGCG	CTCTTGATGT	CAGACTCCCT	GAACAGTTCT	CGATAATCGG	GAAACTCAGA	5280
GCGCATTATC	CTGTGGTCAC	ACTCTGCCAT	GTGTTCGGGG	TTCATCGCAG	CAGCTACAGA	5340
TACTGGAAAA	ACCGTCCTGA	AAAACCAGAC	GGCAGACGGG	CTGTATTACG	CAGTCAGGTA	5400
CTTGAGTTGC	ATAACATCAG	CCATGGTTCT	GCCGGGGCAA	GAAGCATCGC	CACAATGGCA	5460
ACCCGGAGAG	GCTACCAGAT	GGGGCGCTGG	CTTGCCGGCA	GGCTCATGAA	AGAACTGGGA	5520
CTGGTCAGTT	GCCAGCAGCC	TGCGCACCGT	TATAAACGAG	GTGGTCGTGA	ACATGTCACT	5580
ATCCCGAATC	ACCTTGGGCG	GCAGTTCGCA	GTGACAGAGC	CAAATCAGGT	ATGGTGCGGC	5640
GACGTGACGT	ACATCTGGAC	GGGGAAACGT	TGGGCATACC	TTGCCGTTGT	TCTCGACCTG	5700
TTTGCAAGGA	AACCGGTAGG	TTGGGCAATG	TCGTTCTCTC	CGGACAGCAG	ACTGACCATC	5760
AAAGCGCTGA	AAATGGCCTA	GGAAATCCGC	AGTAAACCAG	CCGGGGTAAT	GTTCCACAGC	5820
GATAGTAATA	ATGCCGGTAT	CAGTTTTTAT	CATCACTCTG	TTTGCTGTTT	AACCAGACTG	5880
GTGTGATTAC	TGATGCAGTG	AAGACCTTCC	CGCATCCTGA	CTCACACAGC	GATCGACCCT	5940
TTGTGTCCTG	CCCTGGACCT	GTCGGTTGCC	GGAAGCGCCT	TCATGCGAGG	CGTCTCCTCA	6000 -
CCGATGCGCG	TGACTCAAGA	AGGGCCTGAC	GGTTTGTCTC	GTTACTGTCC	TGTCCGGGTT	6060

-167-

ATCTGTCTGG	AGATTCAACT	CTGTTTCCTC	ACAGGAGCTC	TGTTATGGCA	GGTAAAGTTA	6120
CGGAAACCGC	TGTTGTGGGT	GGCGTGGATA	CACATAAAGA	TCTGCACGTT	GCCGCTGTCG	6180
TAGATCAGAA	CAATAAAGTT	CTGGGGACCC	AGTTTTTCTC	CACAATACGG	CAAGGTTACC	6240
GGCAGATGCT	GGCATGGATG	ACTTCGTTTG	GGGCATTAAA	GCGAATTGGT	GTTGAGTGTA	6300
CTGGCACCTA	TGGATCAGGT	CTGCTTCGCT	ATTTACAGAA	TGCCGGGTTA	GACGTTCTTG	6360
AGGTGACTGC	GCCAGATCGG	ATGGAGCGAC	GCAAACGGGG	TAAAAGTGAC	ACGATTGATG	6420
CTGAATGTGC	CGCTCACGCC	GCATTCTCCC	GAATAAGAAC	CGTCACACCC	AAAACGCGCA	6480
ATGGCATGAT	TGAGTCTCTG	CGGGTATTAA	AAACTTGCCG	AAAAACAGCA	ATATCAGCCC	6540
GCAGAGTCGC	TCTCCAGATT	ATCCATTCCA	ATATTATCTC	TGCCCCGGAT	GAATTACGTG	6600
AACAGCTCAG	AAATATGACG	CGCATGCAGC	TCATCAGGAC	TCTGGGATCC	TGGCGGCCTG	6660
ATGCCAGTGA	ATACCGCAAT	G				6681

(2) INFORMATION FOR SEQ ID NO: 66:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1342 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

TATTCGCGCA	TACGCGTTGC	ACATGTTCTT	TTGGCGAACG	ATCATCGGCA	ATACAGAGTT	60
CCCAATGGGG	ATAGCTTTGA	GCCAGGACAG	AATCCAGACA	GGCACGCAMG	TAGATCTCCG	120
CTGGATTATA	AACAGGAATC	ACAATAGATA	TAACTGGAGG	GTGAGTCATA	CTGGCAAGCA	180
TCAGACTCAC	CWCTTCKTTG	CCAGGCAACG	AAGGTAATTC	CACCGTTTCT	ATCCATTCCT	240
CATAACCGAC	AGAAGACGGG	GTAACGCTGA	ACGTYTCGTT	ATAGAATGCT	TGCAGGCGCT	300
CTATTGACAT	ATCGCCATTG	TSCATCAATA	TGGATTTTWT	GATTTTTTCT	AGCGGCATGT	360
CACGATAGCT	TTGGTGTTCT	TTTTGAATGC	GAGCCAATAG	TGCAGACTCG	ACTACTTTCA	420
CATCAACAGC	CGCTATTTCA	AACTGATTAA	TTGCAAATTT	TGCTGCCTGT	TCTAATGGAT	480
CAAATCGTAA	TGCACAAGAG	GCGATTCCAG	ATAGAACAAC	GACTGACGCT	GACCGCTCGT	540
TTATATGGCA	ACGTTACTGT	TTCAAACTCA	TTGAACCCTT	TACCTGTATC	CAAATRTAAC	600
TTAGCTAATC	CTTGCTTTGG	TTGGGCAATT	AATAGAGATA	TTAAATTGAT	ACCATCCCTT	660
GCTAATATTT	GAGAGCTGCT	CCAAATCAAT	AATGAAAAAT	GGATCATTTC	CCTCTGCAAC	720
CCAACTTTGT	GAATTATCTA	TATCTATCGA	GAGCTGATTT	GTTGCCAGAT	AGGGCAGCAC	780
AACTGTATTT	TGCATTTTAC	TCACTGCAGG	AGAAACGTCC	CATGCTTCGC	ATGGTTTCCT	840
ACCAAGTAAC	ATCCCATAAC	GCTTAAAATG	TTCTCTTGCT	GACAACCCGG	TCTGTTTCAC	900

-168-

ATCCAAATAG	TTATGCAGAT	ACCAATGTTC	ATCAAAGTGA	GCTAGCAACT	CGTCTTGGTG	960
ATTTTTAACC	ATCACTTTTA	TTCTCCCTTA	TTGACAGGCA	GGCAACTGCG	CTGCTCAAAC	1020
TTCCCATACA	TAATGTAATG	AAGCAGCGGA	TTAATGCCTC	CTTGGGCCAC	ATCCGGATAG	1080
GTTTGCAAAT	ACCAGCGAGT	ATCAAACTGC	TCACTAGGGC	TATAACCTTT	ATCCGCCCCC	1140
ACGCTAATAA	AATGCTCAAG	AGCTGAGAGC	CCAGTGTCTG	CAACCTCTGG	GTAGCGATGT	1200
TGATACCAGA	GTTCATCAAA	CAATCCTGAA	GCGGCAANTA	CTCCGCGGCA	CTCTCTGTAG	1260
CTGTTGTTCT	GGATGGAGTC	TCCTCCTTAA	ATGTTCTGCC	AAGAGCACGA	ACTGGGGCTG	1320
TAATCTTCCA	AGAGACGGTT	CT				1342

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1580 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

CGAAGGAAGC	AGTNTGCNGC	CTGCGCTGGC	GGAGTTGCGC	CTGTTCCCAC	CGATGATGCT	60
GTACATGAAT	CCTCCGGCGA	ACAGAGCGGT	GAACTGGAAA	CCATGCTTGA	ACAGGCCGCG	120
GTCAATCAGG	AACGGGAATT	TGATACCCAG	GTGGGGCTGG	CGTTAGGGCT	GTTTGAGCCG	180
GCGCTGGTGG	TGATGATGGC	GGGCGTGGTG	CTGTTTATCG	TCATCGCCAT	CCTCGAGCCG	240
ATGCTGCAAC	TGAACAATAT	GGTTGGAATG	TAATTTACGG	AGTTATCACA	TGAATTCGTT	300
ATCCCGCACA	CAAAAACCAC	GGGCAGGTTT	TACCCTGCTG	GAAGTGATGG	TGGTGATTGT	360
TATTCTTGGC	GTCCTGGCAA	GTCTGGTGGT	GCCTAACCTG	TTGGGCAACA	AAGAGAAARC	420
CGATCGGCAA	AAAGCCATCA	GCGATATCGT	GGCGCTGGAG	AATGCGCTGG	ATATGTACCG	480
ACTGGATAAC	GGGCGTTATC	CGACCACTGA	GCAGGGGCTT	GAGGCGCTGA	TCCAGCAACC	540
GGCCAATATG	GCGGATTCCC	GTAACTACCG	TACCGGTGGA	TACATTAAAC	GACTGCCAAA	600
GGATCCGTGG	GGCAATGATT	ATCAGTATCT	CAGCCCGGGT	GAAAAAGGGC	TGTTTGATGT	660
TTATACCCTG	GGGGCAGATG	GTCAGGAAAA	TGGGGAGGGC	GCTGGCGCAG	ATATCGGTAA	720
CTGGAATTTG	CAGGAGTTTC	AGTAATCAGT	GCCTGAACGC	GGATTCACAC	TTCTGGAAAT	780
CATGCTGGTG	ATTTTCCTTA	TCGGCCTTGC	CAGTGCGGGC	GTGATACAGA	CGTTTGCGAC	840
CGCTTCAGAG	CCGCCTGCGA	AAAAAGCGGC	GCAGGATTTT	CTGACTCGCT	TTGCGCAGTT	900
TAAGGACAGG	GCAGTGATCG	AAGGGCAAAC	ACTCGGTGTG	CTAATCGACC	CGCCTGGCTA	960
TCAGTTTATG	CAGCGTCGTC	ACGGACAGTG	GCTACCCGTT	TCTGCGACCC	GCTTATCGAC	1020 -
ACAGGTTACG	GTGCCAAAAC	AGGTGCAGAT	GCTGTTACAA	CCCGGCAGTG	ATATCTGGCA	1080

-169-

GAAGGAGTAT	GCGCTGGAGC	TGCAACGTCG	TCGCCTGACG	CTGCACGATA	TTGAACTGGA	1140
GTTGCAAAAA	GAGGCGAAAA	AGAAGACGCC	ACAGATCCGT	TTTTCGCCTT	TTGAACCCGC	1200
CACGCCGTTT	ACGCTGCGCT	TCTACTCAGC	GGCGCAAAAC	GCATGTTGGG	CGGTAAAACT	1260
GGCACACGAT	GGCGCGTTAT	CCCTCAGTCA	ATGTGATGAG	AGGATGCCAT	GAAGCGTGGA	1320
TTTACCTTGC	TGGAAGTGAT	GCTCGCGCTG	GCGATTTTTG	CGCTGGCTGC	CACGGCGGTG	1380
TTACAGATTG	CCAGCGGCGC	GCTGAGTAAT	CAGCACGTTC	TTGAGGAAAA	AACGGTAGCG	1440
GGCTGGGTAG	CTGAAAACCA	GACCGCACTG	CTCTACCTGA	TGACCCGCGA	ACAACGGGCG	1500
GTCAGGCACC	AGGGCGAGAG	CGATATGGCA	GGAAGCCGCT	GGKTCTGGCG	AACCACACCA	1560
CTGAATACCG	GTAATGCGCT					1580

(2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3241 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

CTTAACCATT ACCCAGCATT	TGGTAGTTAA	ATAGTCGTTA	AAAGCATAAA	ACATGGACAT	60
TGTGCCATCC CAGCTAAAGC	ATCCATTACC	GCCTGACAGG	GATAAAAATA	AAAAAGCAGG	120
GAACCATTTT TTCATCAGAA	ATCACTTCCG	TAATTACAGT	TATTCATTTA	GGTATGACTC	180
AGTTATAAAT CATGCTCATA	CTGGCCGTGG	TCTGGRAATC	CCCGCCATTC	AGTATCCCGC	240
TGCCATTACG AAAGGGCACT	GAAGTAAAGG	TGAACGTTGA	ACGTGCTGTG	TCCAGACCTG	300
CTGTCACTCC GTAACCATTT	CCTGAACCAT	TACCTAATAT	AAGAGGTGTT	GACATTCCTT	360
TTCCCTGATA CAGCGCTATA	CCAAAATGAG	TTATATTTGT	TGCCAGTACA	TTATTCTGAC	420
CTCCTCCCAT AGTATTTCCC	GTAACTTTTA	TCCAGAGAGA	GCCACTCTTA	TACGGACAGG	480
ATATGCTTAT GGTTTTTGTG	ACTTCACCAC	GTGAGTTGTC	CACGTGCTCA	GGATTAATAT	540
TCCCAAAATC AACAACAATA	TTCTGCCCGT	TATTAATGGT	GCATGGGGG	ATATAAACAT	600
TCCCCCTGAT GTTAATCTGC	ACATCAGCCA	GTACAGCGAC	CGATGTCAGA	AGCAACGATA	660
TAAATAATGA TAAACGAATC	ATTCCCCTCC	GGAGAGCGGT	ACAGAAAACA	TTTTATTTTA	720
CGAGATATAA AATTAACGTA	TTTTAGTTGA	TACTATTACG	AATATGATGC	AACCAGCGTT	780
GCTGTTGCAG AGAAAGGACC	GGCTATCAAA	TTCTGCATAT	TCCCTTTATA	TCCAAGTTTG	840
GCATGAAGTG ATATAGTTTT	ATCTGCATTA	. TTACCTGTGA	TTTTTCCGGG	CGTAAATGGA	900
GTCCCTAAAG TTATCGCAGT	CCCAATATTI	CCTGCATTAC	TGTTATAAAG	ATAAACGAGT	960
AACCCATCAG AAGATGTGTT	TGATGTATTC	TGAACTAAAA	TAGCATTGTT	ATAAGTGTTT	1020

-170-

GTTGCCGTTA	TCGTAACCTT	CATTGTTCCC	AGATTATAGG	GACACCGCAT	ATTCACAGTA	1380
AACTCTTTTT	CGTGATTTCC	ATTTTGACTC	AGGGTCTGAA	TCTCTACATC	CTGCCAGTCA	1140
ACAGTTGTGT	TGCTTACAGT	ACAGGCAGGA	ATAATCAGTT	TTCCTCTGAA	GGTCAGATTA	1200
TCAACTGCAT	GTACATGCTG	AGACATTAAC	ACTGCCCCCA	GCATTACCGG	AAGACACAAA	1260
CCTCTTATCT	TTTTCATCTG	AAATATCCTG	TACAAAAATT	TTGCTAACGA	TATGTCAATT	1320
CAAACGTGGC	TGTTGCTTCA	TAATCACCGG	GTACCACACT	CTTCGTCCGC	AGGCTTCCGG	1380
CGTTGCCACA	ACATACGCGC	CGAAAGGAAG	CTCAAGACTG	TTTCCGGTAA	CCTTTTCCCC	1440
CTGGCCTTTG	TTATGGGAGG	TGCCGGGTTT	CAGCAGACTG	CTGCCATCGG	TGTCCAGCAG	1500
TGCAATGCCT	AACCGGCCAG	CATTCACTCC	GGTTACCTTC	AGATGGCCCG	GGAGGGCGCC	1560
TCTTCCGTCC	CCTTAAAGGT	CAGGGTCACA	ATTTTGCCAA	CTGCTGTTGC	ATGGCAGTTT	1620
TCCAGCCTGA	TGACAAACGA	CTCTGTCGGC	GAACGTCCGG	GCGGATACCA	GAAATCCCTG	1680
GACGCCCGGG	TTTTGAAGAC	GACATGTTTA	TTCAGACTGT	CACCGGACAC	ATGGCAGGGT	1740
CTGTCAAGCA	GATTACCCCT	GAATGCCACA	TCTGAGGCTA	TTGCCTGTCC	GGCAGACAGT	1800
GCGGCAAACA	GTAAAAGAGC	GCCTGTGCTT	TTTATCATCA	CATTCCCTTA	CTCATATTTT	1860
ATGCTCAGAC	GCAGCATGGC	CGGATTGCTC	CTGGCATCAG	AATACTCACC	CTCCTGTGTC	1920
GCCCTTTTCC	TCCAGGCGGC	CAGCATCTCC	TCCTGCCGCC	GGTCAGGCCG	GCACAGTAAA	1980
AAGGTATCAC	CATCGTGTAT	AACAAGATGG	TCACAGCCGG	ATAGCTTACG	GTCAGGAAGT	2040
AAAGCACTTC	CGCTTCCGGG	ACCGGTTACC	AGTGAGCCGG	AGACTGTCAT	CGCAACGCCC	2100
CGTTTTCCGG	GCTGAAGTGC	ACCACCGTCC	CCACATCCTG	CCAGCCTCAG	CATCAGAGGT	2160
GCTCCGGCTG	CCGCAGAGTG	ATTTTCCGGC	CGGAGGYTTA	ACGGCACCTC	ATTACTCACC	2220
AGCGTGCAGG	GTGAGGACAG	CAGTGCACCA	CTGACGGTCA	GGCTTCCGGT	GCGTCCCCC	2280
CGTTCATTTA	. TCCGGTAATG	ACGCAACTCA	TCTGCAGTAA	AGACGTCATC	GTATATACCC	2340
CGCTCTTCAG	CCCGCAGGAA	AGTATGGATG	AAACCACTCA	GCGACAGTGC	AATAAGATAC	2400
AGTACTGCTG	TTGTTTTATT	CACAACCATA	ATATCCCACC	CGCATTTAAC	CGTTATTGCG	24 60
GTACATTATT	TCTCTTTTT	CACAGAGCAA	CGGCTACCAT	TACAGATAAA	CGACAGTACC	2520
GGGCGACCAC	CATAGTCATT	AATATAAGAC	AGATAAGGGG	TATTATAATT	TGCCGATTTT	2580
ACTGTCTGCT	CTGAACGGGG	AGACAGCATO	ACGGTTTCAA	ACTCACCTTC	CTCTGCCTGC	2640
TTTTCACTTC	CTCCCAGACC	CAATAACAGTG	ACATAATAGG	GCGTTGGGTT	TTCAATACGA	2700
TACCCACCGC	TGACTITGTI	CAGAATTAAC	TGGTCCTGCC	ATACTTCATT	TGGTCTGGTT	2760
TTAATTGCTC	CCGGGCGATA	A AAAAAGCTTT	ATTTTGGTCT	GTAAGGCTAT	CTGCAGTACA	2820
TTGGCCTTTT	CACTCCTCGC	G CGGTATTTCC	CTGAGATTAA	AATAAAACAG	TGATTCCCTG	2880
TCCTGAGGAA	A GTTTACTGAT	ATCCGGTGTC	GTACTCAGCC	TGACCATGCT	TTTCGCACCC	2940

_	1	7	1	
		,		

GGCTCAAGGC	GCTGAACCGG	AGGGGTGGCA	ATAACCGGCC	CTGTAATAAT	TTTTTCCTGA	3000
TTTTCATTTT	CTATCCATGC	CTGAGCAAGA	TAGGGCAGTT	GTTTGTTATC	ATTGGAGATA	3060
TCAAGCGTCA	TTGACTTCTC	ACTCCCGTCA	AACACCGCGC	GGGTTCTGTC	CAGCGAAACA	3120
GCAGCGTCTG	CCCCGGATAT	AACAAACAGG	GGGATGGCAG	CCATCAGAAT	CTTTTTTCGA	3180
ATCATACTTA	ATTTCCACAT	TCTGTAATTT	CACCTGGTCC	GGAAAATGGC	ATAACCGCAT	3240
Т						3241

(2) INFORMATION FOR SEQ ID NO: 69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 398 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

AACGTGGATC	TCCAGCTGAT	CGGTGCCGTA	TTCCAGGTCG	TAAGTTTCAC	TGATGGTTTC	60
	TTGCCCGGTT					120
	AACAAGAAGC					180
	TCAACCAGCA					240
					TTTGATGCTA	300
					GCTTGTTACG	360
	CGGCGCGTTT					398
010011101011						

(2) INFORMATION FOR SEQ ID NO: 70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17710 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

CAGTTNCNGT	TCTCATAGAC	AGATTGATAA	AATCGTAAAC	AGCCCCTAGC	ATTCCCGTTT	60
CCTTTGCACA	CATATTCAGG	CACGGGGATA	AAGTATAAAG	AATGTCGTAC	TGCTGCTACC	120
AGAGCAATAT	TCCCCCCTGA	TGGCCGTATC	AGAGATAGTA	TGCCGGTATT	TTGCGGGTGG	180
TTCCCGTCAG	GTTATCGTGT	ACCTCCACGG	TCGTAGTCAC	CACCGGCATT	CCGGCYTTTC	240
TCAGCCTCAA	AACATCAGCT	GCAATACGCT	GACTGCCGAA	CCAGAACAGG	CCGTCCAGTG	300
CAGTCACCAG	CAACCCCGCC	TCCAGCGCAT	GCTTCAGCCG	TTCACGGGGC	GCTTTCACTT	360 -
CCCGGGCAAT	CTGCTGGTAT	GGCGATGATG	TGTTTTCATT	CCCAATCACC	CGGCGAATAC	420

-172-

GATGAGACAG	ATGATACCGG	TATGTATCCG	GCACACCGGA	AAGGCTGGCC	TTCAGGCTGT	480
ACACGCAGCC	AAATCGTTTA	TCATTGAACA	CCACATTTTT	CTGGCTGATG	CCCCATTCTT	540
CACGCAGCGC	GGCAATCAGT	TGTGGTGTAC	GGGTAAGCAA	CAAGCGAAAA	GGCAGTTCAA	600
AACTGGTGAC	ATAATCCACA	TTCAACAGGG	CAATGCGAAG	TCGTTCTTCT	GGTCCGGCTT	660
CTGTCTGCCG	GCACTCCTCC	AGGACATCCT	GCCACTGCAG	GCGAAGACGG	GAAGACTCAT	720
TCAGTTCTGT	AAAGCAGTAT	TTATCCGCCA	GATAGTCAAT	TCGTGTATGC	ATACTGAAGA	780
GTATTCCGTA	TAAAGATTCA	GCTGGCAAAA	CTTTATCAGT	CTGTAAAAAC	TAACGGAAGA	840
GTCGATATTT	CTCCCGACAA	TCACCGGATG	ATTGTTGCAA	TACCTCGTGG	CATCAGAGAC	900
TGAACAGCAG	TTTTTAACGC	AACGTATTGC	TCTGATGTAT	CAGGCCGGAC	AACCCGAAAA	960
CAGCCTTCCA	CCCGGCATTG	TCCGCCAGCG	CTTATCACCG	GCCAGGTCTG	TTGCAGTAAA	1020
TCCGCCACTT	GCGAACATGC	TTCATCAACT	GTGACACTGG	CCCGCGGATG	GCAAATGCTC	1080
GTCTGGCTGA	GCAGCAACAG	GCATCGCATT	GTTGCTCCTC	TATGTTGTTC	CCGCAACCAG	1140
CGTAATACCA	CCGGCGAGGA	TGGACAGGCA	GTGTGATTAC	GCTCCGTAAT	ACGTTCGTGC	1200
ACCCGTCGGT	GAAAGGAACT	ACAGAATGTC	TGAATCTGTT	GCCCGTTGAT	GTATCCTTCT	1260
GTCGAATGAA	GTGTGAAGTG	GATTGCCAGC	AGATGCGGCC	AGTGATCCAC	CGCCTGCTGA	1320
ACAAAACGCC	GGATTTCCCC	CGGCTCTGAA	AGTAAGGCTT	CGGTTATTTG	CACTATTTTA	1380
TCTCTGTTGA	ATTTGGTTAA	GTCGGTGCAG	ACGCATCAAC	ACAAGTACGG	TTCGATGCAA	1440
ACAGCTGTGA	CTGGCAATAT	GAAAGGAATG	ATGAATCAGT	CAGGATGACA	AAGTGCCGGC	1500
TGACCGGAGG	GGACGCAGGA	AGATTCACGG	GGGGACCAGC	ACCAGGGAAC	AGCGCCACAA	1560
TACCAGCGCT	GACACGTTGA	ACATTGCCAG	CGTACCGGTA	TCACAACACG	TTTCATACTT	1620
CTGCCCCCGT	GATTCTTCGA	TTCGTTACTG	TATCTACTGT	GACACTTCGC	TTTTATACCT	1680
GCGGCTGGAT	CGGCCCGGCT	TGATGAATCT	TCACTGATCA	GCTTATAAAA	CCCTCTGTCG	1740
GTCATACCGG	TGAAACTGGT	GATATAGTTC	ATGTCAATCA	GGGAATTATC	GGCACGCAGA	1800
AATACGCTGT	CGTGGCTTGT	TGTAGTCAAC	ATGGTCAGAA	TGTCCTCTGT	GAGATTTATG	1860
AAGATTGTGC	GAATGCGGGG	AATCTACTGA	GCTGTGCTTT	CAGAACTGGC	CTGTTACGGG	1920
AKRSCAGGGA	TTACCGGCGG	GGTAACGGGC	TTCCGGATCA	TACACACCAC	GATTATCGCG	1980
GACAAAATCA	CTGAACGCCC	ATATCACCTC	TTTAAGTATG	TCTTCGCAGC	CCGGTACATG	2040
ACGATCCAGC	GCCACATCCC	GAGTGGTACT	ACTTTGATGC	GCCCGGTGAC	ACAAAGCCCG	2100
GATTGTTCCA	GACATCCTGA	ATCAAACGCC	CCAGATTAGG	GGCGTCGAAA	TATGCCTCTC	2160
TGACCATTAT	ATTCCGGTGT	ACAGGTAGCA	GGTCAGAAGT	GACAATGCGT	CACCTGACGT	2220
TAAAAGTCAC	TACACCCAAG	ATGACGTTCA	ACAGCACCAT	GCGATTCAAT	GTAAGCCCGG	2280
GCTGTCTGTT	CCAGTACACC	AGGCTCAGCG	TTGTATGTGT	TAGCTGCATC	AAATACCAAC	2340

-173-

GACAGCACTT	CAGGATACAC	AACCAGATGT	GTAATGGAGT	TATCTTCACC	CAATACTTTT	2400
CCCCACGCCT	GCTCAATCAG	ATTTCTGAGA	ACCACCACCT	CACGACTCTT	ACACCAGACA	2460
TCGTTATTAA	GTAGCAGCAC	CATAAGATAA	GGAGTGGTAT	CGTTAGTCAC	AGCCTCCCTA	2520
CTCCAGAGAT	AATATAAAGG	GGTGGGCTCA	ACAGATTTAT	CTTTACGTCG	CTTACACTGC	2580
AAATATTCAG	AAATGAGTCT	ATGCAGTTCA	CCAGTAAAAT	CCGCCATCAG	AGAGGGAATG	2640
GCCTTATTAA	TACCAGGGCA	AGGTATTAAT	TTAAATTGTA	ATAATTTAAT	TTCAGGATGT	2700
GTGGCTGCAG	CCCGATACAG	AGTTGCAAGG	ACACACTTTT	GCCAGAGGGC	GTTACTGGAA	2760
AGCTTAACGT	TTGATTCTGT	ATACATAATA	AATCACCTTA	CAGTTACAAC	AGGTCAAAAA	2820
CCGCTGTAGC	CAGAGTTACG	CTGGCCTGAT	GCTTTAGTAC	CGGGCTTCGT	CAGATAATCC	2880
AGACGCTCCA	ATAAGCGCTG	ATACTGCTCA	GGGAAATCAG	GATCATGAAT	ATCCTGGATG	2940
TCACGTCCAT	TAGCAGGGAA	ATGAATAACG	CAGCCCCCTG	GATTAACAAT	GCAGAAATCG	3000
TCCTGAGGTA	CTGATCAATA	CGGAGAGGAC	TCTCGCGTGT	GGTTTATTGA	CACCACAGTG	3060
CAGATTCGGC	GAATCCGCGA	TCACGGTGCG	ATTTCGTTCC	ACAGCACACA	ATCATGACCC	3120
CGGGTTTTAT	TCAGGTAAGC	AGGATTGCGG	ATATCCGGTG	TCGCGCCTTT	CTGTCACGAA	3180
CGGGGTAGGT	GCGAAACACC	GGATAAAATG	CAGGCTGGCA	ATACCTCTGA	ACGCCCTGCG	3240
CAGAGCGGAT	ATTTTGGATT	AAGTACTCGC	ACCTCCGCAG	TCCTGAAACA	AGTCTGGCTG	3300
GTAGCTGTAA	ACAGACTTCG	TACATGTTGC	TCTGGAATAG	ATCCCCGTGC	CACAGGCTTC	3360
GCAGAACTTT	TTCCCGGGAA	AATGCTGCCC	GCACATCACA	CAATGCCACT	CCAGCACGAC	3420
CGGTAATGGC	GATAGAAACA	. TCGCCATATC	CTCAATGTAA	GGGTGGGACT	TTTCCGGATT	3480
CAGCACCACG	CAGGCCGCCT	TCTGTTGCGC	GCTCAGGGCA	TGTAAATCGT	GCTCAAACCA	35 4 0
CGCCCCTGF	GCATCTGTCT	GCAAAATCAA	CCGACCACGA	CAGGAAAGGC	AGAAACAATG	3600
CCTGATATTT	CTGCTAAGGC	TGAGGCCGCA	CTGATAATGT	GTTCACCCGG	CGTGATCCCC	3660
AGCCCCGTTT	TTATACCGTT	CATTCAGCCA	CTCCCTCCTC	CACTGAAGTGC	CCTGTATGGC	3720
AGTGAGTGCA	A GTACCGCTCC	CCATAATAAT	CGTGGTGACA	TTGTCTGCAG	TGCCAGCTGG	3780
CTTTACGCA	C CACGGGTAA	GCATCCGGTA	A CGAATTTCTG	CAGACGCTTA	ATCAGTTGTA	3840
TTTCTCTGC	G CTCCGGTCTC	ACATAAGGG	CACTGTTGACC	GTGCTCCGTC	AGCCCGTCGT	3900
CAGTGTGTT	C AAACCAGGG	A AGTTCAGTG	CGTATTGCGG	ATGGTATCT	AGCGCACTGC	3960
CGCAAAGGT	G GCAGGTGTAG	G CGGTCGTAA	G GTGCAGTCTC	TGCGGTACGC	GCAGCGGTCA	4020
GACGTCCGT'	T GCCATCAAA	r gcgagaaaa	G ATTTTGCGTA	A CATAGTATA	GTTCCTTACC	4080
GCCAGACGA	C ACGCAGGCG	r cagcgtccc	T TTACGGGCAC	G CGTGGGCAG	GTGTGAATGG	4140
CGGTACAGT	T AAGGGGGGG	G TGGAAAATG	G GCGGGCTGT	r GTTACAGCAG	TGTGGATGTC	4200
ACATCATGG	C GTACCAACG	T AAAAATAA	T CAGCAGGCC	C GGATACATCO	TTGTCGCCGG	4260

-174-

ACATCAGCCC	GTCCTGCTGG	TTTTGCCGGG	CTCAGCCCCG	ACTGCAGCCG	AAATTACGCT	4320
CACCAGTGGC	GTGAGCTTTG	GTATGTTCCT	TCGCCAGATA	GTCAGCACGT	TCCAGCACCT	4380
GCTGAAAGCC	AGTGTCATCA	CCGCGTTCCA	GCCACACCGC	CGGCGTGTCA	GGAAAATGCG	4440
CCAACGTGGC	ATAAGGCCCG	GCATCCACCC	CCAGGGCACT	GCACCAGGCN	TGWTTAATCA	4500
TCCCGGCCAG	TGACCCCGGA	TCGCGGTAAT	CGCCGGCACG	ACACCAGGTA	TCCCGGTTGA	4560
CCAGCAGCAG	GAGGTGATAG	TGTTTTTTGC	CCCTGAGTAC	CCCGAACTCC	CGGGCCCAGG	4620
CGTAATGCAG	GGTGGTGGGA	TGCACGCGTT	TACCTTCACG	NCGTTACGCT	TCTGGTAAGC	4680
GTCGATTCGG	GCTTTCAGGG	CATTGATGAA	GCGGGATATC	ACAGCCGCGT	CCGTAGCTGC	4740
CGGTACATCC	GGGAGACGCA	GATCAACCCG	AAGTGCCGTC	AGGCGGGGAT	GAACATTCAG	4800
TGCGTGCCGC	ACCGTCTCAC	GAATACGTTG	CTGCCAGAAG	GGGTTGTATT	TGTAGGTCAT	4860
GGTTAAATCT	CCGTATGGTT	CATACGGAAT	AGCCACGTCG	TAAAAAATGC	GCAGAGCCCC	4920
TGACGTGGCC	ACCGACAGAA	CACGGCCTCA	GGCGCGTTGT	GATAACCCAG	CTATCGTTTC	4980
CGGACTGACG	GTTGAATTTC	CTGCGTTGTT	TTCTTAATGT	AAAAAACCTG	CTACGGGTAA	5040
GGCTGTGAGG	AGGAAGTGAT	GGTGATACGC	AAAAAGAAGT	GCAGGGACTG	CGGAGAAGCG	5100
ACAGAGCATA	ACACGGTATG	TTGCCCACAC	TGCGGTTCTG	TCGATCCCTT	CGGCTATTAC	5160
CGCAATACAG	ACAGAATATT	CACCCTCCTG	ATGGTCCTGC	TGGTTGTGGT	TCTGCTGATG	5220
ACGGCTGCGG	TCAGCGTGTA	TGTGCTGTGG	TAGTCGGAGG	GGCAGGGAGC	AGACGATGAC	5280
GTAAAATATC	TCCGGTGCTC	AGATATCACG	GCCGGTCAGA	CCGCAAACCA	ACGGTTAATC	5340
GTAACCGGAT	CAGGCAAATG	TGTGATTAGC	CCCCTGGCGC	TCATACCCGC	ACCGCAGACC	5400
ACCTTAAGTA	CTTCCCGCCC	GACACCATTC	CCTGCTCCCG	GATAATTTGT	TGTCGCTATA	5460
CCGCTTAACA	TCACCGATAC	CACACCGGCG	CAGATAGCAC	CGGATTCATT	GTAGAGATGA	5520
CTTAAGGTTC	AGGTAACATA	TTTCCAGACA	GAAGCGGGAA	CACGATCGTA	AAGTTTGTTC	5580
ATGGTCAGTT	CTGCCAGCCG	GTGATCAACC	GCAGAGTTGA	AATTTTCCAG	CTCCGCCGGG	5640
GTGAGTTTAT	ACCGTGCGTG	GGAAATCACT	TTTTCCAGTG	TCTCCCGGGA	TGAACAACGA	5700
CGGAACTGAT	ACAGCCAGTC	TTCTTTGGTT	TTTACTTCCA	TTCGTCTCTC	GTTACTTTAT	5760
GCTGCGGTTA	ACAGGATGCC	GTCAGTATAC	CGCATGCAGA	CACTCTCCCG	CTCCCCCGCT	5820
TGCTGCGATA	CAACTTAACG	TTTCAGGAAT	CCAGTCATCG	CACCGGGAAA	GGCTTTCTGG	5880
TGACAGGAAA	CGTCAGGAAC	AGGAGTTTCT	CAGACTCCCA	CTCATCGGAT	CAGGCTCAGA	5940
CAGGATTATT	AATACGCTCA	GTTCATGTGT	CATATACAGG	GCATCGGGGA	TGAATATATG	6000
GGTATAACTC	AGAGCCTGTA	CTACAGCTTT	CACTGCTGAC	TGATTTTACG	TATCAGCGTT	6060
CATGTATCTG	CACTCTGATA	TAGAATACTT	CTACCGGAGC	TACTCTTACG	TTAGCTCACT	6120 -
CTCACATCAG	GCAACATCAC	TTATTCAGCT	CACTTACCTC	TTACCACTCA	CTACTTCTTT	6180

-175-

AATATTTATA	TATCAATCAG	ACAGCCTTAT	CCCCCCGGTA	ATATCTGTTG	CCTTCCCGCC	6240
AGCCACAGGC	TTATTCACCA	CAACCACCTC	CGATAACAAC	TCTGCAATTA	TCAGAACGCC	6300
TGCTTCTCTC	CCTGTCCTCA	CGAAAACTAT	CCCCTCTTTA	TCGCGCGTGC	GTGCGGAAGC	6360
ATCTTTTCGC	AACAACCACC	CGGGATTCCG	CTACGGCTCT	GCCATCGCAA	TCCCCCCGTT	6420
TATCTCCGGA	CAGCCACATT	CCCGATTATT	TTTTACGTTT	CTCCCCGGTT	GTTATGCCGG	6480
TGAAGGTGGT	GCGTCGTTTT	CATCACCACA	CCGGTTGCGA	TTAACAACAT	CCGGAGGAAC	6540
ATTCTCA T GA	CCACACCCTT	TTCACTGATG	GATGACCAGA	TGGTCGACAT	GGCGTTTATC	6600
ACTCAACTGA	CCGGCCTGAG	CGATAAGTGG	TTTTACAAAC	TCATCCAGGA	CGGAGCCTTT	6660
CCGGCCCCCA	TCAAACTGGG	CCGCAGCTCC	CGCTGGCTGA	AAAGTGAAGT	GGAAGCCTGG	6720
CTGCAGGCGC	GTATTACACA	GTCCCGTCCG	TAATTTCTGC	CCCTTATCCG	TTCACCCGCA	6780
GCAGACGCCT	CCCCGGCCTG	CCGTTGACAT	TCTGCTGCCT	GTTTTATCCC	CGTGAGGAAT	6840
ATGAAAATGA	AACAACAGTA	CCAGACCCGC	TACGAATGGC	TCCACGAAAG	CTACCAGAAA	6900
TGGCTGACCG	GCTTCAMCCG	GCACGCCGTA	TCCTGGGGCG	TGTGTCATCC	GAATATCTAC	6960
TATTTCCATA	ATCTGACGCC	CGGGTGGGTG	TCATTCAACG	GCGAACAGTC	GGAGATTGCC	7020
ATTGTTCCCG	GCAGTCTGCA	CCGGCTGATT	TATGGTCATG	ACAAACGGGC	CATGCCGCCC	7080
CTGGATGAT	ATCTGGTGGT	GAATTTATGC	ACCAGTGAGA	ATCTGCTGGT	TCATCATCCG	7140
ATGCTGGAAG	GCATTCTGCT	GTCTGAGTGC	ACGCGCCTGC	ATAAAAAATC	ACTGGCGAAC	7200
AAACTGATCA	A GTATATTCCG	TCAGTTTGAC	GGCACGGAGC	TGCGTCTCAA	ACTGGTCTGG	7260
CTTTGCTGG	r ttgatttaai	GACCGGAAAC	TGCCTTGACG	ACTGGACGGA	GAACCTGNAA	7320
CGGAAATCA	G AAAAAGAGCT	GGAGAAATGG	ATCATTGAGC	GCCAGAACCG	GAACGCACCG	7380
CTGACGAAT	C TGATGGATCA	GTACGTGCTC	CTGGCATTCC	GCACAACGGT	TGACGATAGC	7440
CGCAACTGA'	r grcrgcatgo	TGCCSGCTGA	A AGCCATATTO	ACGGGGCAGG	GACGCCCCTG	7500
CTTCCGCAA	C AATCCGGGG	T AATGGCGACG	TACGCCTGCA	GAGTGTGTTC	ATCGTTGTCA	7560
CAGCCGGAC	A AGGTGAATA	CCTTGATGAT	r GCGGGGATGA	ACCTGCTGGT	CCACCGCGCT	7620
GTCACTCAG.	A CGCGTCAGC	G TGTATGGAC	G CCCCGATCGA	ATGGTTCTTC	CGCCAGAGTG	7680
CACAGAAAT	G AGGCACGGA	A CGTTACCTG	A AGGGTGACCO	GCACGGACT	G CAACTTGTTG	7740
CCATTGATG	G CGCACAAGT	C ACATACAGC	A GAATGTCGT	ACCGCACCT	r accggtgaag	7800
CGAAACGGT	G CTGCCCCAC	T CCACCACCA'	r cccgga taa 0	C GCCATTACGO	C TGTCTGATAA	7860
GCGCTTTTA	C AGCGCAAAT	C TGGTGCAGA	A AAGCGTAAA	G CTGACCTGC	C GGAGCAGGAT	7920
GTGGGCATG	T TGCGGGCTT	A CAACCTGAT.	A CGGCATGAG	G CACTAAAAG	C AGCATCAGAA	7980
ATCAGCCTG	A GTTCGCGTT	C CGGTTTATC	C CGACAGAGA	G GACAGTGCC	G GGCAACACGG	8040
TGTCACCGG	G GAGCATCCC	G AAACGACCG	G AGCATCTGC	G GGATGCTCT	g TAAGTGGTGT	8100

-176-

TAAGGTGGGC GGTTAAGGTA	TCAAAAAAAT	CGTTATCCTG	TGAAAGACAG	TGCGCTCTGC	8160
TGAAGTGAAC GTCACTGCCG	GGAAGCATCG	GGTTTCGCTA	CCGGACAGTC	GCGGTAACGC	8220
GTTTACCGGC ATCTGTCTGT	GTGGCAGGGA	TGGCTGATAT	TGTCGGTTAT	ACCAGCGGCA	8280
GGTGCGTCCT GTTATCTGTA	AAATCAGGGC	GTGCCGGTAC	ACAACGCCTC	GTTGATGCCG	8340
GTCACTGAAC GAATCATCCT	CTGACGAAAA	CAACCGTCGA	TACAACGCCG	GCGTAAAAAG	8400
AAAACCGGAA ACCATCTTGT	GCACGACAGG	TACTCAGGGG	GGTATAACGC	CTGCGCACCA	8460
TCACATCCGG GAACAGGGCT	GCTCCTCAGT	GTCTTCGTGT	GGCGAAGCAT	CTGCAACCGG	8520
ACGGTACTGC CCTCAGAGCA	ATCTCCCTGC	TGCAGTGCAC	AGAGTAAGCC	GGAAAGCTGG	8580
TGAATGCCGC CATGACACAC	TGCGACGTGG	AGAAACAAAC	GACACACTCC	GTCCGCAGTA	8640
ACACTGAAGG TAGTCCCGCA	AACCTCAGAC	TTCTTCCTGC	ACGTTATCAG	CGGACTGAAC	8700
CCCGGTCAGC CACTTAAACC	TGCTAATCGT	GTTGCTGCAT	ACCCGCCCGG	CCGGAAGGTG	8760
TTATGAAGCC CGCCACCGGA	GCGCTTCTGC	AAATATCCGG	GGAGATAAAA	TTTTCGTGAC	8820
AGGATGACGG TCGTGCTGCA	GACGTAAAGC	CGCAGGAGCG	GACACGACAG	ACAGTGTTCA	8880
CTGTGGCGTC CTTTGCCGTC	GGTATCGTGC	TCACGCTGAG	GTCCCGGGGG	TACACCTGAC	8940
GACAAATACC TGCGATTCCC	GGGACGGTCT	GTTCTCCGTA	AAATAAAGAA	AATGCGGGAT	9000
GCCTCCCGGA CTGCAGAGAA	GAGGGATTGA	CAGACAGTGT	ATATTGCGTA	CGATTACAGG	9060
GGAAAAACAC AGTAAATATG	GAGGTCAGGT	CCGAAAACAA	CCTACGAAAT	TTCTATGAAA	9120
AACGATTGAA AAAATCATCA	AATTCAGTTC	GTTTTTCTAT	GGTAATTTTT	AAACACTCCC	9180
GATGATAACC TGTTGTATGT	GCATGTGGGG	AACGCACCGA	AAACATCAGA	ATCATCTGAA	9240
AAAAACAACG AACACACCAG	AAAAACAGGA	GCAACCATAA	CGAAGCAACA	TATTGATTTT	9300
AAACAGAATT TAAGGTTAAC	AGACAAAAA	CACTTTCAAC	TGAAGGAGAA	ATATACACTG	9360
GCGACAGTGC AGGGTTTTTC	ATGCAAAAAA	AATGAGCTTT	TATCTCCGGC	GCATACTGAC	9420
CGGGATGCAG CCATGACAGA	GCAAAAACCA	TTAAATATCA	GGAGGTTAAA	CACACAAAAA	9480
GCTGACATGC ATCAGGGAGC	AATCCCTCAC	AACAGAGGCT	GAGCGGCAAC	GCTTCCTCAC	9540
AGGACGGCAT TCCTGAAAGG	ACAGGCAGCC	ACGGCTTTTT	ACTGCCCGTA	TCCGGTATAT	9600
TTATCTGCCG TGACGTGCAG	AGGATTTTGT	GTTTCCGGAA	ATCAGGAAAA	CAGGAGAACC	9660
GCGGGAGATA TGATGGAAAA	AGAACCGGAT	GATATCTGCG	CAGACTGTCC	GAATATTGAT	9720
GCAATAAAAC GGCACAAACA	ACAGGCCGGA	GCCATCAGGG	AATACACTGA	GTGGTTAAAA	9780
AAACAACCGC GTGCTTCTTA	CTTTTTTCTC	TTCCGGTTGT	ACGCATACCT	TCAGAATGAA	9840
GTGATATCCC GAAAACAAAA	ACATTCGCTC	ACCAGCGATA	ACAGCCATCC	CCCGGAATCT	9900
GATGTCACCC CTCCGGATTT	AACCCTTCCC	CGTCGCTACT	ACTGTGATTA	CGGTTACACG	9960 -
CCCTACCCCA TGATGGGCGG	ACAGATGTCT	GTTTTTGCCA	CAACGTCAGA	AACCACCAGT	10020

-177-

-177-	* *
TCGACGAATG CAGTCCCCGG AAACGCAGTT ACCGGGAATG AGACTGAAAA GCATGAAAAC	10080
GCGGTACCGG CGACATTCCC CGTCAGCCGT TCTGCAATGC CCCCGGAACC TCTGCGGTTT	10140
GCCACGGGTT TTCCATCGCA ACCACTGCTT GCCGGTCCCC GGGAAAAGCC GATGCGCACC	10200
GTGCATCCTG ACATCCACAG CGAAATTATA TGGTTCTGCT CCACTTACCT GCTGAAATCC	10260
GGACCACAGA TTACGAAGAC GATTATCAAC TCAGTATTCT CTGAATGGGC CCGCATCAGC	10320
AATGATTACC CCTCCCCTT TTCGTGGGTG GACAGCAGGG ACAGTGAACA GTGTGACTGG	10380
TTATGGAACG CCATGCAGCT CCGGTGTGTG GGAACCCCGC TGAATCCCCT TACCCCGGAG	10440
CAGAAATACT GGTTTGCCTG CGCCACGTTT GATAACTGGG AGGGCTGGAA TGAGCAACAG	10500
ATACAGTTTT TACTGAAAAG TAATCCCAGA CGAAACAGAG CGAAGTTTAC GGTCACCTTC	10560
GGCCCTCCCT GGATTCAGCA TAAAGCCATT CTTCTTGATG AGCTGAAGAG TGCCCGGGAG	10620
CAACAAAAA GGCGCGATGA ACGCGCTGAT GGTTCCGTCC CGCTGAAACT GTCCGGAAAA	10680
ATCCACAAAC ACCTTGAAAG TATTGCCCGG AGTCGTGGTA TCCCCCCAAA AAAACTGCTG	10740
AATGAAATGA TTGAGCAGGC GTACCAGGAC TCAGTGGTGA ACAGCCGGAA TAAACCACTG	10800
ATTTAAAATA ATTTCAGACA GATATTATCT CCGTGAATCC CCCGCCACCT TTCCGGTGCG	10860
CGGGGTTTTG TCTTTTTCA CCGGGAATAC ATGTATGAAT CCGTCTGATG CCATTGAGGC	10920
AATTGAAAAA CCGCTCCCT CCCTGCCTTA CTCGCTTTCC CGTCACATCC TGGAACATCT	10980
GCGCAAACTC ACCCGTCACG AACCCGTGAT TGGCATTATG GGTAAAAGCG GGGCCGGTAA	11040
ATCCTCACTC TGTAATGCAC TGTTTCAGGG GGAGGTCACC CCGGTCAGTG ATGTTCACGC	11100
CGGCACCCGG GAAGTGCGGC GCTTCCGTCT GAGTGGCCAT GGTCACAACA TGGTTATCAC	11160
TGACCTGCCC GGGGTGGGCG AGAGCNGGGA CAGGGATGCA GAGTATGAAG CCCTGTACCG	11220
TGACATICTG CCTGAACTGG ACCTGGTACT GTGGCTGATT AAAGCCGATG ACCGTGCCCT	11280
GTCTGTGGAT GAGTATTTCT GGCGACACAT CCTGCAACGC GGACATCAGC AGGTGCTGTT	11340
TGTGGTGACG CAGGCCGACA AAACGGAGCC CTGCCATGAA TGGGATATGG CCGGCATTCA	11400
GCCCTCTCCC GCACAGGCAC AGAACATTCG CGAAAAAACG GAGGCGGTAT TCCGTCTGTT	11460
CCGGCCTGTA CATCCGGTTG TGGCCGTATC GGCCCGCACC GGCTGGGAAC TGGATACGCT	11520
GGTCAGTGCA CTCATGACAG CGCTTCCCGA CCATGCCGCC AGTCCCCTGA TGACCCGACT	11580
GCAGGACGAG CTGCGCACGG AGTCTGTCCG CGCTCAGGCC CGTGAACAGT TTACCGGTGC	11640
GGTGGACCGG ATATTTGACA CAGCGGAGAG CGTCTGTGTT GCCTCTGTTG TCCGTACGGC	11700
CCTGCGCGCT GTTCGTGACA CCGTGGTCTC TGTTGCCCGC GCGGTATGGA ACTGGATCTT	11760
CTTCTGAACC TGTTGTGGAT GATGTCCTCC CTGCCTCTGA GTCTGCTCAC AAAAGCGCTG	11820
TTTTCGTTAC TGTCTCTTT GTCCGTGCAA TAGCTCAATA ATAGAATAAA GCGATCGATA	11880 -
ACTATTTCAT CGATCGTTTA TATCGATCGA TATGCTAATA ATAACCTTTA TTACCAACAT	11940

-178-

GCGCAGATAC	GCACAGACAG	ACATTCAGGG	GACGACAGAA	CAACACTTCA	GAAACTCCCG	12000
TCAGCCGGAC	CTCCGGCACT	GTAACCCTTT	ACCTGCCGGT	ATCCACATCT	GTGGATACCG	12060
GCTTTTTTAT	TCACCCTCAC	TCTGATTAAG	GAAATGCTGA	TGAAACGACA	TCTGAATACC	12120
TGCTACAGGC	TGGTATGGAA	TCACATTACG	GGCGCTTTCG	TGGTTGCCTC	CGAACTGGCC	12180
CGCGCACGGG	GTAAACGTGG	CGGTGTGGCG	GTTGCACTGT	CTCTTGCCGC	GGTCACGTCA	12240
CTCCCGGTGC	TGGCTGCTGA	CATCGTTGTG	CACCCGGGTG	AAACAGTGAA	TGGCGGAACA	12300
CTGGTAAACC	ATGACAACCA	GTTTGTATCC	GGAACAGCTG	ATGGCGTGAC	TGTCAGTACC	12360
GGGCTTGAGC	TGGGGCCGGA	CAGTGACGAA	AACACCGGCG	GGCAATGGAT	AAAAGCGGGT	12420
GGCACAGGCA	GAAACACCAC	TGTCACCGCA	AATGGTCGTC	AGATTGTGCA	GGCAGGAGGA	12480
ACTGCCAGTG	ATACGGTTAT	TCGTGATGGC	GGAGGGCAGA	GCCTTAACGG	ACTGGCGGTG	12540
AACACCACGC	TGGATAACAG	AGGTGAGCAG	TGGGTACACG	GGGGAGGGAA	AGCAGACGGT	12600
ACAATTATTA	ACCAGGATGG	TTACCAGACC	ATAAAACATG	GCGGACTGGC	AACCGGAACC	12660
ATCGTCAACA	CCGGTGCAGA	AGGTGGTCCG	GAGTCTGAAA	ATGTGTCCAG	CGGTCAGATG	12720
GTCGGAGGGA	CGGCTGAATC	CACCACCATC	AACAAAAATG	GCCGGCAGGT	TATCTGGTCT	12780
TCGGGGATGG	CACGGGACAC	CCTCATTTGC	GCTGGTGGTG	ACCAGACGGT	ACACGGAGAG	12840
GCACATAACA	CCCGACTGGA	GGGAGGTAAC	CAGTATGTAC	ACAACGGTGG	CACGGCAACA	12900
GAGACGCTGA	TAAACCGTGA	TGGCTGGCAG	GTGATTAAGG	AAGGAGGAAC	TGCCGCGCAT	12960
ACCACCATCA	ACCAGAAAGG	AAAGCTGCAG	GTGAATGCCG	GCGGTAAAGC	GTCTGATGTC	13020
ACCCAGAACA	CGGGCGGAGC	ACTGGTTACC	AGCACTGCTG	CAACCGTCAC	CGGCACAAAC	13080
CGCCTGGGAG	CATTCTCTGT	TGTGGAGGGT	AAAGCTGATA	ATGTCGTACT	GGAAAATGGC	13140
GGCCGTCTGG	ATGTGCTGAC	CGGACACACA	GCCACCAGAA	CCCGTGTGGA	TGATGGCGGA	13200
ACGCTGGATG	TCCGCAACGG	TGGCACCGCC	ACCACCGTAT	CCATGGGGGA	TGGCGGTATA	13260
CTGCTGGCCG	ATTCCGGTGC	CGCTGTCAGT	GGTACCCGGA	GCGACGGAAC	GGCATTCCGT	13320
ATCGGGGGCG	GTCAGGCGGA	TGCCCTGATG	CTGGGAAAAG	GCAGTTCATT	CACGCTGAAC	13380
GCCGGTGATA	CGGCCACGGA	TACCACGGTA	AATGGCGGAC	TGTTCACCGC	CAGAGGGGC	13440
ACGCTGGCGG	GCACCACCAC	ACTGAATAAC	GGTGCCACGC	TTACCCTTTC	CGGGAAAACG	13500
GTGAATAACG	ATACCCTGAC	CATCCGTGAA	GGTGATGCAC	TCCTGCAGGG	AGGCGCTCTT	13560
ACCGGTAACG	GCAGGGTGGA	AAAATCAGGA	AGTGGCACAC	TCACTGTCAG	CAACACCACA	13620
CTCACCCAGA	AAACCGTCAA	CCTGAATGAA	GGCACGCTGA	CGCTGAACGA	CAGTACCGTC	13680
ACCACGGATA	TCATCGCTCA	TCGCGGCACG	GCCCTGAAGC	TGACCGGCAG	CACCGTGCTG	13740
AACGGTGCCA	TTGACCCCAC	GAATGTCACC	CTCGCCTCCG	GTGCCATCTG	GAATATCCCC	13800
GATAACGCCC	CGGTTCAGTC	AGTAGTGGAT	GACCTCAGCC	ATGCCGGACA	GATTCATTTC	13860

-179-

ACCTCCGCCC	GCACAGGGAA	GTTCGTACCG	GCAACTCTGC	AGGTGAAAAA	CCTGAACGGA	13920
CAGAATGGCA	CCATCAGCCT	GCGTGTACGC	CCGGATATGG	CGCAGAACAA	TGCTGACAGA	13980
CTGGTCATTG	ACGGTGGCAG	GGCAACCGGA	AAAACCATCC	TGAATCTGGT	GAACGCCGGC	14040
AACAGTGCGT	CGGGGCTGGC	GACCACCGGT	AAGGGGATTC	AGGTGGTTGA	AGCCATT AA C	14100
GGTGCCACCA	CGGAGGAAGG	GGCCTTTGTC	CAGGGGAATA	TECTGCAGGC	CGGGGCCTTT	14160
AACTACACCC	TCAACCGGGA	CAGTGATGAG	AGCTGGTATC	TGCGCAGTGA	AGAACGTTAT	14220
CGTGCTGAAG	TCCCCCTGTA	TGCCTCCATG	CTGACACAGG	CAATGGACTA	TGACCGGATT	14280
CTGGCAGGCT	CCCGCAGCCA	TCAGACCGGT	GTAAGCGGTG	AAAATAACAG	CGTCCGTCTC	14340
AGCATTCAGG	GCGGTCATCT	CGGGCACGAT	AACAACGGTG	GTATTGCCCG	TGGGGCCACG	14400
CCGGAAAGCA	GCGGCAGCTA	TGGCTTCGTC	CGTCTGGAGG	GTGACCTGCT	CAGAACAGAG	14460
GTTGCCGGTA	TGTCTGTGAC	CGCGGGGGTA	TATGGTGCTG	CTGGCCATTC	TTCCGTTGAT	14520
GTTAAGGATT	ATGACGGTTC	CCGCGCCGGC	ACGGTCCGGG	ATGATGCCGG	CAGCCTGGGC	14580
GGATACCTGA	ATCTGGTACA	CACCTCCTCC	GGCCTGTGGG	CTGACATTGT	GGCACAGGGA	14640
ACCCGCCACA	GTATGAAAGC	GTCATCGGAC	AATAACGACT	TCCGCGCACG	GGGCCGGGC	14700
TGGCTGGGCT	CACTGGAAAC	CGGTCTGCCC	TTCAGTATCA	CTGACAATCT	GATGCTGGAG	14760
CCACGACTGC	AGTACACCTG	GCAGGGGCTC	TCCCTGGATG	ACGGTAAGGA	CAACGCCGGT	14820
TATGTGAAGT	TCGGGCATGG	CAGTGCACAA	CATGTGCGTG	CCGGTTTCCG	TCTGGGCAGC	14880
CACAACGATA	TGACCTTTGG	TGAAGGCACC	TCATCCCGTG	ACACCCTGCG	TGACAGTGCA	14940
AAACACAGTG	TGCGTGAACT	GCCGGTGAAC	GGGTGGGTAC	AGCCTTCTGT	TATCCGCACC	15000
TTCAGCTCCC	GGGGAGACAT	GAGCATGGGT	' ACAGCCGCAG	CCGGCAGTAA	CATGACGTTC	15060
TCACCGTCCC	GGAATGGCAC	GTCACTGGAG	CTGCAGGCCG	GACTGGAAGC	CCGTGTCCGG	15 1 20
GAAAATATCA	CCCTGGGCGT	TCAGGCCGGT	TATGCCCACA	GCGTCAGCGG	CAGCAGCGCT	15180
GAAGGTTATA	ACGGCCAAGC	CACACTGAAT	GTGACCTTCT	GATAATTCGG	CATTGTCTCT	15240
CTGTGGTCCC	GGTCATCAT	ACCGGGACCC	GGACAGGTGC	AAACGCTTCA	GTGCCACATT	15300
CACTGGCATT	CACAATAACA	A TGATATTCAT	CACGGAGTGA	CTATGTTACA	GATAGTCGGT	15360
GCGCTGATTO	TGCTGATCG	CAGGATTTGCC	ATTCTTCGCC	TTTTGTTCAG	AGCATTAACC	15420
AGCACAGCG	CTGCGCTGG	C AGGGTTCATA	A TTGCTGTGTC	TGTTCGGCCC	GGCTTTACTG	15480
GCTGGCTATA	A TCACTGAACO	CATAACCCG	G TTATTCCATA	TTCGCTGGCT	GGCAGGCGTA	15540
TTTCTGACGA	A TTGCCGGAA	r GGTCATCAG	C TTCATGTGGG	GACTTGATGG	TAAACATATC	15600
GCACTGGAG	G CTCATACCT	TGACTCTGT	A AAATTTATTO	TGACCACCGC	TCTCGCCGCT	15660
GGTCTGCTG	G CTCTTCCCG	r gcagataag	A ACCATTCAGO	AGAACGGGCT	CACACCAGAA	15720
GATATCAGO	A AGGAAATTA	A CGGGTATTA	C TGCTGTTTT	r ATACTGCTTI	TTTCCTTATG	15780

-180-

GCGTGTTCTG	CATACGCACC	ATTGATCGCA	TTGCAGTTCG	ATATTTCACC	CTCACTGATG	15840
TGGTGGGGCG	GGTTGTTGTA	CTGGCTGGCT	GCATTAGTGA	CGCTGCTATG	GGCGCCCAGC	15900
CAGATCCAGG	CGCTGAAAAA	ACTGACCAGT	GCCATCAGCC	AGACACTGGA	AGAACAACCG	15960
GTGCTCAACA	GTAAATCGTG	GCTGACCAGT	TTGCAAAACG	ATTACAGCCT	TCCTGACTCA	16020
CTGACGGAGC	GCATCTGGCT	CACGCTCATT	TCACAACGGA	TTTCCCGGGG	AGAACTGAGG	16080
GAATTTGAAC	TGGCAGACGG	AAACTGGCTA	CTGGACAATG	CCTGGTATGA	AAGAAACATG	16140
GCGGGTTTCA	ACGAAAAGCT	GAGAGAGAGC	CTGTCATTTA	CCCCTGATGA	ACTGAAAACC	16200
CTCTTCCGGA	ACCGCCTGAA	TTTATCACCG	GAAGCGAATG	ACGATTTTCT	CGATCGTTGC	16260
CTGGACGGCG	GTGACTGGTA	CCCCTTTTCA	GAAGGCCGCC	GTTTTGTATC	ATTCCACCAC	16320
GTGGATGAGC	TTCGTATCTG	TGCCTCCTGC	GGGCTGACAG	AAGTACATCA	TGCCCCGGAA	16380
AATCATAAGC	CGGATCCGGA	ATGGTACTGC	TCCTCTCTTT	GTCGCGAAAC	AGAAACACTG	16440
TGTCAGGACA	TTTATGAACG	TTCTTACACC	GGTTTTATTT	CCGATGCAAC	GGCGAATGGT	16500
CTGATTCTCA	TGAAACTGCC	GGAAACCTGG	AGTACAAATG	AGAAAATGTT	TGCTTCCGGA	16560
GGGCAGGGAC	ATGGGTTTGC	CGCTGAACGG	GGAAACCATA	TTGTCGACAG	AGTCCGTCTG	16620
AAAAACGCAC	GGATCCTCGG	TGATAATAAT	GCCAAAAATG	GAGCAGACAG	ACTGGTCAGC	16680
GGAACAGAAA	TCCAGACGAA	ATATTGTTCA	ACTGCAGCCC	GTAGCGTCGG	TGCGGCATTC	16740
GACGGACAGA	ACGGACAGTA	TCGTTACATG	GGAAATCATG	GTCCCATGCA	ACTGGAAGTC	16800
CCCGTGATCA	GTATGCCGGC	GCTGTGGAAA	CCATGAAGAA	TAAGATCCGC	GAAGGTAAAG	16860
TACCCGGTGT	AACCGATCCC	GAAGAAGCGT	CCCGGCTGAT	TCGTCGGGGA	CATCTGACTT	16920
ATACCCAGGC	CCGTAATATC	ACCCGGTTCG	GGACCATCGA	ATCGGTCACT	TATGATATTG	16980
CCGAGGGGTC	GGTTGTCAGT	CTGGCGGCCG	GAGGGATCAG	TTTTGCCCTG	ACGGCATCGG	17040
TCTTCTGGCT	CAGCACCGGC	GATCGCGATG	CTGCCCTGCA	GACAGCTGCT	GTCCAGGCAG	17100
GAAAAACCTT	CACCCGCACA	CTGGCTGTCT	ACGTCACAAC	CCAGCAACTT	CACCGGCTCA	17160
GTGTTGTTCA	GGGTATGCTG	AAGCATATTG	ATTTTTCGAC	GGCCAGCCCG	ACTGTCCGGC	17220
AGGCGCTTCA	GAAGGGGACC	GGTGCAGGAA	ATATCAGTGC	CCTGAACAAA	GTGATGAAGG	17280
GGTCGCTGGT	GACATCTCTG	GCACTGGTAG	CTGTCACAAC	CGGCCCTGAC	ATGATCAAAA	17340
TGTTGCGGGG	ACGGATCTCC	GGTGCGCAGT	TCATCAGGAA	TCTTGCCGTG	GCATCTTCCT	17400
GTGTGGCAGG	TGGTGCTGTC	GGGTCAGTGG	CGGGCGGGAT	ATTGTTCAGT	CCACTGGGAC	17460
CATTTGGTGC	ACTGACAGGG	CGTGTGGTTG	GCGGTGTTCT	GGGGGGAATG	ATTGCCTCCG	17520
CTGTATCAGG	AAAAATTGCC	GGAGCGCTGG	TTGAAGAAGA	TCGCGTCAAA	ATTCTGGCAA	17580
TGATTCAGGA	GCAGGTGACA	TGGCTTGCCG	GCAGTTTCCT	GCTGACCGGA	CATGAGATTG	17640
AAAATCTGAA	CGCGAATCTG	GCCCGTGTTA	TCGATCAGAA	TGCTNCTGGA	GATCATTTTC	17700

PCT/US97/21347 **ŴO 98/22575**

-181-

17710 GCCGCCGGTA

- (2) INFORMATION FOR SEQ ID NO: 71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1803 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

AATAACCAAT	AGATGCTTAA	GTTTACGATA	TGCCTCAACC	CGCGTCTGCT	CTAAGCTGAT	60
AAGGCCAGTT	TTGTAGAGAT	CCGCTGCCAA	GGTTGCCTGC	GTTTGCACAT	CCATGTAACC	120
GGCGGTGATT	TCATTCATGG	CATCGTTATC	TTGACCAGTC	AGCTTAGCAC	GCTCCTGTTC	180
AAGCTGCTTG	GTTAGGGCGT	CAACTCGGCT	CTGTAATGAG	ACTACGGCCG	GTGCGGTTTC	2 4 0
CTTCATATAG	CTGCGCAGTT	GTTTTAGCTC	CGCCTGTTGA	CGCACCAGCT	CTCCTTCAAT	300
CTGGCTGACC	ACTCCCAAGC	GTGCGCTGCT	GGTAGATTCA	GGGCTGAGAA	GTTGGTGGCT	360
ATTCTGAAAT	GCTAATACTT	TAGCTTTTTC	ATCCTGTAAG	CGTTGATATG	CTCTATTTAC	420
TTCTTTTTCA	ACAAAGGCCA	ATTGTTCGAG	CGCAACCTGA	TGACCTAATT	TGTTAATAAA	480
ACGCTCCGAT	TCTTTGAGCA	TTAACTCAAC	AACTCGCTGA	CCGTATTGGG	GATCAAATGT	540
CTGCAACTCA	ACGGTAAGTA	CTCCTGATAA	TTCATCAAGG	TGTAACGTCA	AATGTTTGCG	600
GTAATAATCA	AGAAAATCTT	CCCTACTGAC	TCCCTTATGC	AACCGCGAGA	AATAATCTGC	660
ACTATCACTC	TGGAAATGTG	CTTTAAGTGC	AAGTTCTTTG	TCCAACTTGG	CCAGCATATC	720
CCATGACTTC	ATATAATCCT	GAACGAGTAA	TATATCCTGA	TGATTACTAC	CACCTATCCC	780
TAACATTGAT	AACGCATCAG	GCAACATTTT	AACTTGATCG	GCTTGTTTAA	TCATTAATTC	840
AGCCCGGSTC	ACATAACGAT	CGGAAGCAAT	GAAGCCAAAA	TAGAGCACTG	CGATAGAAAA	900
GCAGATAACI	' ACCCAAAGAA	AACTGCCTAG	CTGTAAACTT	TTCTTCCACG	AGCGGTGTAC	960
AATTTGATAT	CCTCTCGAAT	CAATCAAAAA	TAGTTTTGGA	TTATTGCTCA	GTTTTCTTAA	1020
CTTTCGCGTA	A AGGCGAGATA	TTGAGGATGA	AGAATTCGGA	GATGTCATAA	TCAGTTGCTG	1080
CTCAAAGTGA	A CTGGTAAATT	TTGATGGCAT	CATCAATATT	ATCAAAAACT	TCTAATTTAC	1140
CATCACGTA	A CAAGATGCCC	ATATCGCATT	GTTGTCGTAG	ATTTTTCATA	TCATGCGAAA	1200
CCATAATCA	A ACTAGCTGT	TCTCGCTTT	TGTTAAATAC	ATCAATACAT	TTTTGTTTAA	1260
AACGTGCAT	C ACCTACTGA	G GTAATTTCAT	CGGTAAGATA	A TATATCAAAA	TCAAAAGCCA	1320
TACTAACAG	C AAAAGAAAA	TTTGATTTC	A TGCCGCTAGA	A GTATGTTTT	ATAGGCAGCT	1380
CATAATGTT	G TCCAATTTC	A GAAAACTCT	TAACCCACTO	TTCTACGGG	CTTGTATCGC	1440
GTACACCAT	G AATGCGGCA	A ACAAATCGC	G TGTTTTCACO	G ACCAGTCATA	A CTACCTTGAA	1500

PCT/US97/21347 WO 98/22575

-182-

ATCCCCCAGO	TAGTGCTAGA	GGCCAAGATA	CTCGGCAGAG	ACGAGTTACT	TTCCCCCTGT	1560
TAGGCGTATC	CATCCCTCCT	AACAAACGTA	ACAAAGTAGA	TTTYCCKGCT	CCATKGATAC	1620
CTAGAATACC	TATATTACGG	TCCCTTGGTA	GCTCAATATT	TACATTCCTC	AGGACATAAT	1680
TTCGTCCAAA	TTTAGTTGGA	TAATATTTTG	ATACATTATC	AAGAATAATC	ATTTTTCTTA	1740
ACGCTAACTA	GCAATCAATT	GGCGATGCCG	TAATCGGTAA	CAACTCATAG	CAAAAGTGAG	1800
CAA						1803

(2) INFORMATION FOR SEQ ID NO: 72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1283 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

NGGACCCAAG	GTAAAAACNG	GTAAAAAAAA	CMATTGACCG	ATTAAACTTT	ATTTCTCTGC	60
CCGCATTAGT	CTGGAGAGAG	GATGGATGTC	ATTTAATTT	NACTAAAGTC	AGTAAAGAAG	120
CAAACAGATA	TCTTATTTTT	GATCTGGAGC	AGCGAAATCC	CCGTGTTCTC	GAACAGTCTG	180
AGTTTGAGGC	GTTATATCAG	GGGCATATTA	TTCTTATTGC	TTCCCGTTCT	TCTGTTACCG	240
GGAAACT GGC	AAAATTTGAC	TTTACCTGGT	TTATTCCTGC	CATTATAAAA	TACAGGAAAA	300
TATTTATTGA	AACCCTTGTT	GTATCTGTTT	TTTTACAATT	ATTTGCATTA	ATAACCCCCC	360
TTTTTTTCA	GGTGGTTATG	GACAAAGTAT	TAGTACACAG	GGGGTTTTCA	ACCCTTAATG	420
TTATTACTGT	CGCATTATCT	GTTGTGGTGG	TGTTTGAGAT	TATACTCAGC	GGTTTAAGAA	480
CTTACATTTT	TGCACATAGT	ACAAGTCGGA	TTGATGTTGA	GTTGGGTGCC	AAACTCTTCC	540
GGCATTTACT	GGCGCTACCG	ATCTCTTATT	TTGAGAGTCG	TCGTGTTGGT	GATACTGTTG	600
CCAGGGTAAG	AGAATTAGAC	CAGATCCGTA	ATTTCCTGAC	AGGACAGGCA	TTAACATCTG	660
TTCTGGACTT	ATTATTTTCA	TTCATATTTT	TTGCGGTAAT	GTGGTATTAC	AGCCCAAAGC	720
TTACTCTGGT	GATCTTATTT	TCGCTGCCCT	GTTATGCTGC	ATGGTCTGTT	TTTATTAGCC	780
CCATTTTGCG	ACGTCGCCTT	GATGATAAGT	TTTCACGGAA	TGCGGATAAT	CAATCTTTCC	840
TGGTGGAATC	AGTCACGGCG	ATTAACACTA	TAAAAGCTAT	GGCAGTCTCA	CCTCAGATGA	900
CGAACATATG	GGACAAACAA	TTGGCAGGAT	ATGTTGCTGC	AGGCTTTAAA	GTGACAGTAT	960
TAGCCACCAT	TGGTCAACAA	GGAATACAGT	TAATACAAAA	GACTGTTATG	ATCATCAACC	1020
TGTGGGTTGG	GGTGCACACC	TGGTTATTTC	CGGGGATTTA	AGTATTGGTC	AGTTAATTGC	1080
TTTTAATATG	CTTGCAGGTC	AGATTGTTGC	ACCGGTTATT	CGCCTTGCAC	AAATCTGGCA	1140
GGATTTCCAG	CAGGTTGGTA	TATCAGTTAC	CCGCCTTGGT	GATGTGCTTA	ACTCTCCAAC	1200

PCT/US97/21347 **WO 98/22575**

-183-

TGAARTTCAT	CATGGGAAAC	TGGSATTACC	GGRAATTAAW	GGTGATATCA	CTTTTCGTAA	1260
TATCCGGTTT	CGCTATAAGC	CTG				1283

- (2) INFORMATION FOR SEQ ID NO: 73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6836 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

TCAACCTGAC	CAACCACTAG	AATCAACTCA	CGTCCGTCGT	TAGGGGGCTC	ATATTCTTGT	60
			GATGATTGTA			120
			TACGTAGTGA			180
			GGGTCAATCG			240
						300
- '			AAACCATCTT			
			ACCTGTTCAT			360
ACAGTACGAA	CAAAACAAAG	TTCATCTGCC	AAATACGCAC	AAAATGTGCG	TATAAAAGCA	420
CGCTTCCACA	GAGAAAAACC	AACGAGATAA	AGACGACGCC	AAGGTTTGGG	CTCTACCTGC	480
TGCTGAGCCA	AAATCGCTAC	AACATCTTCT	ACCTCACAAC	GTTTTCCCAA	TATAGGATCT	540
AAATAACGCG	GATAACGGAT	CAACGCCGCC	GCAACTAAGC	GGGGCAATGA	AATAGATGAA	600
ACGCCTTCGG	CTGACATTGC	TTCTTCACGG	CGTATACAAC	GTTTACTGTC	ATGCGTTAAC	660
CCCCACCCAG	CATAAAATGG	CATACCGAAG	CAATATACAG	GTTTGCCCAA	CAGCAACGCT	720
TCCAAAGCCA	ACCTGCGATG	AAACTGTGTA	CACCGCATCC	ACCATACGAA	TTATTCTATG	780
CGGATGGCAA	GTTCACTCAC	CACCTCAACA	TCAGCCAGTC	GAGGATCACG	CCCCACTAAA	840
CGTGCTAACA	CGCCGCTTTT	TTTGCTAAAG	CGTGTATCTG	GGTGTGTTCG	CAACAATAGA	900
CGCGCATTAC	GGTGATTACG	GCGAGCCTCG	ACCACCATAG	AAACAAAATC	AGCTTCGCAA	960
GCAAGAGCC	CAGAAATTGA	CAAGTCTCCC	GCTACTTGAT	CCACAAGCAA	AATACGCGGT	1020
CTTGGATCAT	CCAGTAAACG	TGCTAAGTTI	GAATGAGCCG	TGAGGTGAAT	AACTCAGGTT	1080
GTATATGTG	r cggtaaatci	CAAAGAAGGCC	CGTCAGTAGC	ACGGGACAGA	GCCATTAAAT	1140
GTATGCTCA	G TGCTATTGG	G TATAGCAGTI	ATACTTGGTG	ATTCCTAAAC	GCAAAATATC	1200
MGAGATCAG	A TGCTCCAGC	G CGCGCAAAG1	AAAGCCGTAT	CCAACAGGTT	CCAATAATAA	1260
GCTGTTCTA	A TTGACTCGT	C TGATGTGCAT	CATAATATAT	CCCCAGAGGG	TCAGCAATAA	1320
GAGAAACCG	C CTTTCCTCC	T TTTGCTGGG	r gcccgatat <i>a</i>	A GCCAATAAAA	CCATCTTCAA	1380
GTTGCCAAT	A AGATATTCC	T AACTCTTGAG	G CTTTCTGTT	AATCTGCTTA	GTATTAGATT	1440

-184-

TTTTTCCCCA	GCCAACTAAA	ACGTCATTTT	TAGAAAAAGC	CTCGTCTCCT	TTCATATAAA	1500
GCAATGGGTG	ACCAAGCATA	GGCTCAATAT	TATTTTYTCT	GGCAAGAATC	CCTTTCGATC	1560
CCGTATATAA	ATACATGTTG	TCTCTGTGAA	CTGAAGATTC	TCTACAATGG	TGTATAAAGT	1620
GTGATTTAGA	TGAACAGCTC	TGCGCTCTCT	AATGACTTTG	CAATACTATC	TTTTGCTGAA	1680
GTGAGAATGT	CCGCCTTTAA	CTCGGGCCAC	CTAATACCAA	TTGTAGGATC	ATTCCATGCA	1740
ATGCCTCTAT	CACTGGCAGG	GGCATAATAA	TTAGTTGTTT	TATACAAAAA	TTCGGCCGAT	1800
TCAGTCAGTG	TTACAAAACC	ATGGGCAAAT	CCTTCCGGAA	TCCATAATGT	CGTTTGTTTT	1860
CCCCTGAAAG	ATGAACGCCA	ACCCATTGTC	CGRAGCTCGG	TGAGCTTTTG	CGAATATCTA	1920
CCGCAACATC	AAACACTTCA	CCGGCTACAC	AACGCACTAA	CTTGCCCTGG	GCATGGGGAG	1980
GTAACTGATA	GTGCAAGCCA	CGCAGTACCC	CTTTAGAAGA	TTTTGAGTGA	TTATCCTGCA	2040
CAAAGGTAAC	TGGATATCCT	ACAGCCTCTT	CAAACAACTT	GTGATTAAAA	CTCTCAAAGA	2100
AAAAACCACG	CTCATCTCCA	AATACTTTTG	GCTCAAAAAT	AAGCACACCA	GGAATTGCTG	2160
TCTTGATTAC	ATTCATCTAT	ATGCCCACAT	TTAATTAAAT	ATTTTTAGGG	GAAGCATATT	2220
CCCTCCCCCT	TCTCAATTAC	ATCACGCCTT	ATCAATCATT	TTTAATAAAT	ATTGCCCATA	2280
GGCGTTTTTT	GCCAACGGAG	CAGCAAGYTC	ACGAACCTGG	TCGGCACTAA	TAAACTTCTG	2340
GCGATAAGCA	ATCTCTTCCG	GACAAGCCAC	TTTCAATCCC	TGACGCGTCT	CGATGGTCTG	2400
AATAAAGTTA	CTCGCTTCAA	TTAGGCTTTC	GTGGGTACCG	GTATCAAGCC	AGGCATAACC	2460
ACGCCCCATC	ATTGCCACCG	ATAGATTGCC	TTGCTCCAGG	TAAATACGGT	TCACATCGGT	2520
GATTTCCAAC	TCACCACGCG	GCGATGGCTT	GAGACCCTTG	GCAACGTCCA	CAACGCTGTT	2580
GTCGTAGAAA	TAGAGGCCGG	TGACTGCGTA	STACTCTTAG	GCTCCAGTGG	TTTTTCTTCC	2640
AGTGAAATAG	CGGTACCTTG	ATTATCAAAT	TCGACCACTC	CATAACGTTC	CGGGTCGTGC	2700
ACATGATAGG	CAAATACAGT	AGCACCGGTC	TCTTTGGCCG	CGGCTGCCTC	CAACTGTTTC	2760
TGTAGGTCAT	GACCGTAGAA	GATGTTATCC	CCCAGCACCA	GTGCACACGG	GGCTGAACCA	2820
ATGAATTCTT	CACCTAGAAT	AAAAGCTTGT	GCCAACCCGT	CTGGGCTTGG	CTGAACCTCA	2880
TATTGTAAAT	TCAGTCCCCA	GTGGCTGCCA	TCACCCAGCA	ATCGCTGAAA	GGANGGAGTA	2940
TCTTGTGGAG	TGCTAATGAT	CAAAATATCG	CGAATTCCAG	CCAGCATCAG	GGTGCTCAGC	3000
GGCCGCAGTA	CTGGATCATC	GGCTTGTCAT	AGATGGGCAA	CAACTGCTTG	CTCACCGCCA	3060
TAGTAACCGG	ATAGAGACGT	GTACCAGATC	CACCGGCCAG	AATAATACCT	TTACGTTTAG	3120
TCATGATGCT	TGTTTCTTAT	TTTTAAATTA	CATAAGAATA	AAGTGGCTTG	AGCCGCGCCT	3180
TTCTGTTTTA	TCCTCACCTG	TGGTTTACTT	CCCCATGATC	TCAGTCAACA	TCCGCTCAAC	3240
ACCGACTGAC	CAGTCCGGCA	AAACCAGATC	AAATGTACGC	TGGAATTTTT	TAGTATCAAG	3300
TCGGGAATTA	TGAGGGCGTT	TCGCCGGGGT	CGGAAAGGCG	CCTGTCGGCA	CTGCATTAAG	3360

-185-

CTGTGTGACT	GCCAGTTCAA	CTCCTGCGTC	TCTGGCTTTG	TCAAACACCA	ACCGGGCGTA	3420
GTCAAACCAA	GTGGTAGTAC	CGGAGGCAGC	CAAATGGTAC	AGCCCGGCAA	CGTCGGGTTT	3480
GCTCTGTGCA	ACTCGGATTG	CATGGGCGGT	ACAATCGGCC	AGCAACTCAG	CTCCAGTTGG	3540
AGCGCCAAAC	TGATCATTAA	TGACCGATAT	CTCGCGACGC	TCTTTGCCAA	GACGCAGCAT	3600
AGTTTTGGCG	AAGTTGGCAC	CGCGCGCAGC	ATAAACCCAA	CTGGTACGAA	AGATAAGGTG	3660
ACGTGAGCAG	AGTGCCGCAC	CGTGTTCCCC	TGCCAGCTTG	GTTTCGCCAT	AGACGTTGAG	3720
CGGGGAAATC	ACATCGGTTT	CCACCCAAGG	ACGTTCACCA	CTTCCATCGA	AAACATAGTC	3780
GGTGGAATAA	TGTACTAGCC	ACGCACCTAA	TGCTTCAGCT	TCTTTGGCAA	TAACCGCCAC	3840
ACTAGTTGCA	TTGAGTAACT	CGGCAAATTC	CCGCTCACTC	TCCGCTTTGT	CGACTGCAGT	3900
ATGGGCCGCT	GCGTTAACAA	TCACATCCGG	CTTGACGAGA	CGTACCGTTT	CAGCCACCCC	3960
TGCAGAATTG	CTAAAATCAC	CGCAATAGTC	GGTGGAGTCA	AAATCAACGG	CAGTGATGTG	4020
CCCCAGAGGC	GCCAATGCAC	GCTGCAGCCC	CCATCCACTT	TCTGGCCACA	CCAGACTCGC	4080
CAGCAAAAAA	GTGAGTGCTG	TCAATAACTC	AACCAGCGGA	TAACGCTTGC	TGATTTTCGC	4140
CTGACAGTCG	CGGCAGCGCC	CTTTGAGCAT	CAACCATGAG	AGCAGCGGAA	TATTGTCACG	4200
AACGCGGATG	GTCTGCTGGC	AATGCGGACA	GTGCGAACGC	GGTAGCGCAA	GGCTTATTTT	4260
TGACTGCGCA	CTCGGCATTT	CACCATGAAA	CTCCGCCATT	TGTTGGCGCA	GCATGATGGG	4320
GTAACGCCAA	ATCACCACAT	TCAAAAAACT	GCCGATGATC	AATCCTCCGA	CGGTTGCCAG	4380
TATGGGCATC	GCCGCGGGGT	ATTGCTGAAA	AACATCAAAA	AGCATGGTTA	AAGGTTATTT	4440
GTTGTAACTT	GCCGGATGCG	GGCCTGCGGG	TGTATGCCAT	ACGGCTTTCC	TTCAGGCCCG	4500
ATGCGCCTTA	TTTCATGCCG	GATGCGGCGC	GAGCGCCTTA	TCCGGCATAC	AGGCTTACTC	4560
AGCTGACATC	TTATGCTCGG	TAACCTGATT	AATGGTTTCC	GGCCCTTGCT	GCGGTTTCGG	4620
CAGATTAAGC	GCCGCCAGTG	TCTCGTAAGC	CGACTGGCTC	ACACCGCCCT	CGAAGTTCAT	4680
CTCGCTCGCT	CCCGGCAACT	GGTAAGCATT	CGCGCCCGGA	TTCCATTTCT	TAAAGAACTC	4740
CGAAAGATCC	GTCTGGGCGA	CCCAGGATGC	ACACAGCATC	AGCTTGTCGG	CAGCGTTACC	4800
GTTGGATTCG	GCACAGTAAT	TTCTTTCGCC	AAACTTGGTT	TTGCCAACCT	CATCGCCGCG	4860
TGCTTTACGG	TGCATCAACT	GGAACAGGTT	CCAGCCTTTC	ATCCCTTCAC	GATCGCTGTA	4920
GAACTTAGGC	AGGTCACCTT	CTGGATACCA	CTGTTTGATA	TCAAAGTTTT	TCTCTGCCCA	4980
CTCTTTCAGC	TGTGCGTACA	TCAGCAGACG	GTCACCCGCA	CCGCCGCGCG	CCCATGCCTG	5040
ACCGTTGCTC	TCCTCCAGAT	ATTCCGGCGC	GACGGTAATG	TCGTCAGCGA	CACGGTTCAT	5100
CTTGCCGAGA	TAGCGATCCT	GCATGTACAG	CGCCAGCACG	TTGTTCGCTA	CTTCAGTTGC	5160
GCCAGGAACA	GTCAGCGGCG	TTTCGGCGGC	GTTGTGACCA	ACTTCGTGCC	AGATCAGCCA	5220
GTCGTTCAGC	GGCGTCGTCG	GCAGCGTGGT	GCTGTTCGTC	GAGAAGCTGC	TGTTCATTAC	5280

PCT/US97/21347 WO 98/22575

-186-

CGGATAACCA	GAGTGCGCAT	CACCGATGGA	GATCTGCACA	TOSTTGGTGA	AACGATGCTT	5340
GTGGCCCGTC	AAGTTTTTAT	AGGTAAACAT	CCGGTGCTTA	COGTOTTCAT	CATTACGACC	5400
GTAGAAGTCA	TTCATCGAGC	TGGCAAAGGT	ATCCAGATCT	TTAGCGAATT	CTGCTACGCC	5460
ACCAGTGAAA	TTGCTGGCCT	CAAGGTTOTT	CTTCGGCGTG	GTGTAGACGA	AAGCGTCTGA	5520
CTCCAGCTCG	CCCAACGGCG	CAGGGGAGTT	CAGAGCGTTT	TTCCATGCGC	CATCTTTATA	5580
GAACGGCGCT	TTCACCACAC	CAGTAAAGGT	GAATTCGGCT	GACTCATTCT	GTGGGCTGTT	5640
GCCCTTGATA	TAAATCAGAC	CACCGTAAGG	AACCGTAAAC	TTCACCTCAC	CATTGGCTTT	5700
CAGCTCATAG	GTTTTCGTCA	CTTTTGGCGG	ACGGTTCAGA	GCGACTTCAT	GCTTCTCACG	5760
TCCGGTAAGG	TCGTCGGCCA	GCGCCACGGT	GACAGTCACA	GGAACTGATG	CAGAAGACTC	5820
AATGGTGACC	TCTTTCTGAG	CCGGAGCCCA	CAGGCCAGTA	GACTGCATGT	TACCCGCAAA	5880
CCATTTGGTC	GGATTCGAGT	ACAGGCTGAT	GGTTTCAGTA	ACCTTCTCAC	CTTCTGCCGA	5940
TACCGCTCCC	GGATACTTCT	CGACATCAAC	TTTGATGTTC	AGATCCCACC	AGGAACGACC	6000
CAGCATCAGG	CGCGTCAGCG	GTTTTTCCAT	ATAGTTGAGC	GGATAGCTCG	GGTTCATCAT	6060
GCCCGCTTTA	TTAACGCTCT	TCTCGCCGTA	GATCATGTTG	TTATCGACCA	GCGATTTTTT	6120
CAGCTCATCA	GAAACACTGC	GTGCCGCCAG	TATAGGCATC	GTTGGCGTAG	CAGTTCAGGA	6180
ACTCGGTGAA	CGTTTTAAAG	CCCAGCTCGT	CATCCTTGTC	GTTTTCATAG	CGATATTCAA	6240
TTTTATTCCA	CAGCCAGACC	GACATGTTCT	GGTACAGACG	TTCCAGATCG	ACGCTGCTCA	6300
GACGCTCACC	TTTGCGACCA	TTGGTCCGGA	AGTAGAGCTC	ATGCTGATAC	AGACGCTGAA	6360
TGTTGGTGCC	TAAATCCGCA	GCCTGCACCA	TCGCTTTTGC	CGTGTCGGCG	TTAAGGCTTA	6420
GTTGCGTATA	CTGTGGAACA	TACATGCCAC	CAGTAACCGG	AACCCCCGTG	CCAGGACGAT	6480
ATTCCAGACA	GTTGACCTCG	TAGTGGTAAG	TTGGGTCCTT	ACACTCCTTT	AATCCAGGAA	6540
ACTTCTCAAA	GATTTTTGCC	TTCGCAGCCT	TCAGAGAATC	CTCTGTTTTA	TGATCGGCCT	6600
CATCAATAAA	GGCATAACGC	GTTTCCTGTT	TGCCATCTAC	ATCTTCCAGC	CAGCTGGCAA	6660
CTTCCAGCTT	CGGTTTGTCA	TCAGGTTTGT	TTTCTACCTG	ATATTTCCAC	TTAACTTCCC	6720
CTGTCTTACT	ATCGATGGTG	TACGGCAGCG	CACCATCTAC	GGCAGGATAA	CGTTCATAGA	6780
CCCAAATGCC	CGTTGCGCGC	TGCTGACGAA	CGCGGTTCGG	ATACCCTTGC	GGATCC	6836

(2) INFORMATION FOR SEQ ID NO: 74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1332 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

-187-

GAAAAACNC	GCCGTATATT	AGCCCGCGCG	GAAAAAGCCC	CGTNACGGGC	AAACGCAGCA	60
AGGTTTTATC	CCAGCGCAGG	CGCATGGCAG	GATTTTTGAG	TAGCCGTTGC	CCCAGCACCA	120
GAAGCCCCAG	CAATCCCGCC	AGCCAGTAAA	CGCCGCTGGT	CTGTAACGTG	TCGCTCATGG	180
CGATGAGCGT	GCGGGTGGAG	GCGGGCAGCG	CGTGTCCGAG	ATGATCAAAC	TGTTCGATGA	240
TTTTTGGCAC	CACTGCCGTC	AGCAAAATAG	TGACCACGCC	CGTTGCCACC	ACCAGCAGTA	300
CCAGCGGGTA	GAGCATGGCC	TGCAGCAGGC	GTGAATTTCC	AGNACCTGCC	GCTGTTACGG	360
TGTAACCCGC	CAGGCGATTG	AGCACCACGT	CGAGATGTCC	GGATTTTTCT	CCGGCAGCAA	420
CCATCGAACA	AAACAGGGAA	TCAAAGACGC	GGGGATGTTC	GCGCAGGCTG	TCCGACAGGK	480
TGTAACYTTC	CTGAATCCGC	TGCGCAGCGC	CATTCCGAGG	CTTTTTACAT	GCAGTTTTTC	540
ACTTTGCTCA	CTGACCGCCT	GTAAGCAGGT	TTCCAGCGGC	ATTGCTGCCT	GTACCAGCGT	600
TGCCAGTTGG	CGCGTGAACA	GCGC AGATC	TGCCGCCGCC	ACGCGACGAT	GTGCGTGCCG	660
CCGACGCTGC	AACATCCCCC	CTGTCGAAGT	ATTCATCCGG	GCTTCAATAT	GCACGGGGAT	720
AAGCTCTTTA	CCGCGCAACA	ACTGGCGGGC	ATGACGCGCG	GAATCCGCCT	CAATCATACC	780
TTTGGTTTTG	CGACCATTAC	GCTCCAGCGC	CTGATAGTAA	AACAGTGCCA	TTACGCCTCC	840
ATGGTTACCC	GCAGAACTTC	ATCGAGAGAG	GTTTCTCCGG	CGAGCACTTT	CTCAATGCCG	900
TTGCTGCGGA	TACCCGCAGA	GTGTTGTCGG	ACATAACGTT	CCAGCTCCAG	CTCCCCGGCC	960
TGACGGTGGA	TCAAATCACG	CAATGTGGCA	TCCACCACGA	TCAGCTCATG	GATGGCAGTC	1020
CGTCCGCGAA	AACCTTTGTG	ATTACAGGCG	GGACAGCCCT	GTGGATGGTA	CAGAGTGACG	1080
GTACGGGCGT	CGGTAATTCC	CAGCAGGCGT	TTTTCTTCGT	CGGTGGCAGG	CGCGGCCTGA	1140
CGGCAGTCGG	AGCACAGCGT	GCGGACCAGT	CGCTGCGCCA	TCACGCCCGT	CAGACTGGAA	1200
GAGAGCAGGA	AAGGCTCCAC	GCCCATATCC	TGCAAACGTG	TGATCGCCCC	CACCGCTGTG	1260
TTGGTATGCA	GCGTGGAAAG	TACCAGGTGT	CCGGTCAGTG	AAGCCTGAAC	AGCGATTTCT	1320
GCGGTTTCGG	TA					1332

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4407 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

CCCAACGTTT ATCGTATTC ATTAAAGTCC CTTGCCCGAT GCTATCTCGA GTTACATGAC 60

GAAATCGCTG ATTTGGATGT CATGATTGCG GCAATTGTCG ATGARCTGGC GCCTGAACTG 120
ATTAAACGTA ATGCTATTGG ATACGAAAGC STTCGCAGTT GCTGATCACG GCAGGAGACA 180

ATCCCCAACG	ATTAAGATCA	GAATCAGGTT	TTGCGGCACT	GTGTGGTGTC	AGCCCTGTTC	240
CCGTATCTTC	AGGAAAAACG	AATCGTTATC	GACTTAACCG	GGGTGGAGAT	CGTGCTGCAA	300
ATAGTGCACT	TCACATCATT	GCCATCGGAC	GTTTGCGAAC	TGACGATAAA	ACGAAGGAAT	360
ATGTCGCCAG	ACGAGTAGCG	GAAGGGCATA	CAAAAATGGA	AGCAATACGC	TGCCTGAAGC	420
GCTATATCTC	ACGCGAAGTT	TATACATTAC	TGCGTAATCA	AAACAGGCAG	CTCAACAGCA	480
TCCCGATAAC	GGCTTGACTC	TTAGAAGGGC	GTCCAGGGCA	GCCACTATAC	AAGCAGGCAG	540
TTCCGGCAGT	TACTGTGGCG	TTACCAGATC	AAACAGAGTC	TGAGTCGACG	AGGAAATTGC	600
TGGGATAACA	GCCCGATGGA	GCGCTTCTTC	AGGAGTCTGA	AAAACGAGTG	GATACCGGTG	660
ACGGGTTACA	TGAACTTCAG	CGATGCTGCC	CATGAAATAA	CGGACTATAT	CGTTGGGTAT	720
TACAACGCGC	TCAGGCCGCA	CGAATATAAC	GGTGGGTTGC	CACCAAATGA	ATCGGAAAAC	780
CGATACTGGA	AAAACTCTAA	AGCGGTGGCC	AGTTTTTGTT	GACCACTACA	TTTAGTGCGA	840
CACGGGAAGC	GCGATATGAA	CGATACGATA	CATCAATGGT	TTATTGCGGT	GATAACCTGA	900
AGGGTGAGAT	TGAGGCTATT	TATAATAGTC	TTGAGAGGCG	TCAGGTTTAG	AGCAGGAATG	960
CTGAGTAGCC	ATCTTATCGA	TTGTTTTCGA	GCGTAAGATG	GCTGAATGGA	ATGGCTATTA	1020
TTGCACAGTC	CTTAATTATA	ACATTCATAC	CGACATGATT	ATCTTCTGTC	CGGAAGAATC	1080
AGAGGCTGCG	GTTTCAGACT	GTCTGCCGGT	ACATTCCTCT	CTCCGTTAAA	AACCATAACG	1140
GGTTCATTAT	CTTCGTCTGT	CAGCAGATTG	AATGGCGGTA	TATTTTCAGT	ACGAATGCCG	1200
GTCAGCCACT	GAAAAATACC	TGCGAAATGA	CGGGCACTGA	TTTTTCTGCT	GACGGACTGA	1260
TGAGACGTGA	TGTCACTGGC	GGTAATAATC	AGGGGAACGC	TGTAGCCTCC	CTGCACATGA	1320
CCATCATGAT	GAACAGGATT	AGCACTGTCG	CTGACCGACA	GACCATGGTC	AGAAAAGTAA	1380
AGCATGGCAA	AATGACGGGA	ATGCCGGCGA	AGGATACCAT	CAAGCTGCCC	GAGAAAGTTA	1440
TCCCAGTTTA	CTGATGCTGG	CGAGGTAACA	GGCAATTTTT	CGGGGATACT	GCCCCAGGTA	1500
ATGATTCGGC	CAGGAGTTAA	GCCGGTCACA	CGGGTTCGGA	TGAGACCCCA	TCATGTGCAG	1560
GAATATCACT	TCGGAGAGGA	TTTATCCGCC	AGTGCACGTT	CTGTTTCCTG	TAACAACAAC	1620
ATGTCATCCG	TTTTACGGGA	AGCAAAGCTG	CCTTTCTTGA	GGAAAACGGT	ATGCTCCGCA	1680
TCAGAAGCAA	TAACAGAGAT	GCGTGTATCA	TGCTCCCCCA	GCTTTCCCTG	ATTGGATATC	1740
CACCATGTGC	TGTATCCTGC	TTTTGCTGCC	AGCGCCACCA	CGTTGTTGCC	GGAGTCAGGG	1800
TTCTGCTCAT	AGTCATAAAT	CAGTGTCCGG	CTCAGGGAAG	GTACGGTACT	GGCTGCTGCC	1860
GATGTATAGO	CGTCAATAAA	TAAACCGGGA	GCAGTATTCA	GCCACGGTGT	GGTTGGCACG	1920
GGATAGCCAT	ATACCGACAT	ATAATCCCTG	CGCACACTCT	CACCAGTGAC	GATAACAATC	1980
GTGTCATACA	ACGGTACACC	CGGCAGGATT	TTCCAGTTGT	CAGCCCCGTG	CTGATTCAGT	2040
TGTTTATAAC	GCTGCATTTC	ACGCAATGTG	TCAGTTGTCC	CCACAACAGT	TCCTTTAACC	2100

-189-

ATCCGCAACG GCCAGCTGTT TACTGAGCAT AATACGAACA GCAGCAGTGC CAGCCAGTTA	2160
CGGTGACCGC GGTGGTGTGT TCGCCAGAAA ATCACCATGA ATACCAGAAT CGCGGCACTG	2220
ACCAGAAAAT GATAAACAGG AATCATCCCG GTAAACTCCG CTGCCTCATC AGTTGTGGTC	2280
TGCAGCAACG CAACAATAAA ACTGTTGTTG ATTTTACCGT ACGTCATACC GGCAGGCGCA	2340
TACAGTGCAC AACAGAACAG AAATAACAGC GCTGTAATGG ATGTGAGGGT ATTTCTGTGT	2400
GCAAGAAGCA GAAGAAAGAA CAGCAGCAAC ACATTCCCGG TGGTATTCTT CTCAGTGTAT	2460
CCGCATGCAA TTGTGGTTAT GACAGAAACA ACAAAAAAGA ATAAAAACAA TATAATCCTG	2520
AGAGTGTTGC CCGGACAAAA CAGTTTTCTG ATATTCATCG GAGTATATCG ACAACATTAT	2580
TATGAAGAGA ACAGGATAAT AAAAATCAGA AGTTATCTGT GAAACAGATA ACAGACANCC	2640
CTGCAGTATA ATATTACTGC AGGGTGTTCC TTTTTAATTA CAGAAATACG TAATTATCTT	2700
AATTGCAGAA ATATGCGCAA TTATCGTTCA GAAGCAGTGT CGTCAGAAGT TATAAGTCAC	2760
ACCAAGCAGG ATGTCATGAC TTTTAACATC AACCTCTGAT TTATATTTAT CCCCTTCTGT	2820
ATCCTTGTAA TACAGGGAGG ATTTACCAGC ATCCAGATAG CGATAGCTGA GGTCAAGAGC	2880
GATATCCGGG GTTACGTCAT AGCGAACACC GGCCCCAATG CTCCATGCGA AGTTGTCAGC	2940
AGAGCCTGAG CGTGATATAG AATAACGCAC TCGCTCACCG TAGCCATAAT CCCAACTACC	3000
GCTACCTGTT GATTCCTGAT GAATTCTGGC GTAACCAATT CCGGCAGACA CCCATGGCGT	3060
AAATGCACTG TCGTTTCTGA AATCATAGTA CGCATTCAGC ATCAGGCTGT TGACTGACAC	3120
CTCATTCTTC AGGTCACTAT GTCCCGCGTG GTCCTTATAG AGGTTGTATG TTGTGTCAGC	3180
TTTTCCACGG GCGTAAAACT CCAGTTCTGT ACGCACAGGA ATACTGAACT GCGGATGCAA	3240
GTCATAACCA AACGCTATAC CTCCACTGAA TACCGTGTTA TGGCCATCCC CCCCCTATAC	3300
TTTGATGTTT CCTCTTTATT TTCGGACAGG AAACTCTGGT CAGAAAGAGA TACTGCTGAA	3360
GTACCTGCTT TACCGGTCAG ATAAAAACCG CTTTTACCTT CCTCAGCACC CGCATTTGCT	3420
GCAANCATAC AGGCAGCGGT AACTGCTGAA ACAGCAAAAA CTTTTTTCAT TTCAATTAAC	3480
TCCATTATTT CACTATTTTT GTAAATAGCA CTCCTAATAT TTTAAAACCA GTCAAAAGAT	3540
AGTATCAAGC AAATTATTCA TGTCTAATGA ACAGATAAAA TCGACTATGT GTCGGCAAGA	3600
CTCTGCTCCA CCGATATTCC TCTTATTTCC GCCTCGATGA AATACCCCCG TTACCTTATT	3660
TGTACCCCTT ATAATGGGAT GTTGGCCAGC CAGACCCGGC ATGATTAGTT CTCCCTGTCG	3720
ACTATGCTCC GGGAGGGATG TCACCGGGTC TGGTGAGGCG CGGATAACCG CTAATAGGGG	3780
AAGGTCAGGT ATTTTACACC GGGACCGTCA GGGCAAGATA ACGAAAGCCA GCTCCCCGCA	3840
TGAACTGACG CCAGATAGTT TCTGTCCATT GCTGCTTTTC TCATCTTACG TCTTAACCCT	3900
GCCTTGAATA CCTTATCTCT CGTCAAAATA TTAATAGCGA TATGCCGTAT CCCTGAAAAT	3960
AATCCCGCTG CGTTTCCTCT TCTTACTTGC AGTCGTCTTC ATTCATTACC ACGTCCAGAC	4020

-190-

GCCATGCAGC	TTATTCTCCA	CGTGCCAGTG	ATTTCGGATC	GCTGTGACGA	ACTTCTCTGC	4080
GGTTAAATCA	GCAGAACTGA	TATAATATCT	GACCATTATT	TOTGACTOTT	GCTTTTGTTC	4140
TGCTATTATT	GACCGAAAGG	AGACTGCCAG	GCATATTTTT	TCAGCCCTTT	CCATTCAAAC	4200
GTGAATTCAA	TCAGCTCATC	AGGGACNTCG	CCAAACCATA	TGAAGACGGG	ATCCTNCTCT	4260
GCCGTGACTC	TTGTCACTAA	TTGCGTAACA	GTCATGCTCN	GGGATAATTA	AATCTTTCAG	4320
CGGAAATAAA	AAGATTATCA	GATATGGGGA	TGACACCACA	GCACCGCTGA	GGCCAGTATG	4380
GATAAACCAT	GTACCTTATT	AACCAAA				4407

(2) INFORMATION FOR SEQ ID NO: 76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 824 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

TTTTTTGCAA	GAGAATTTCC	CTGAACCTGA	AGCTCATCAT	CGCCATCTCC	GCCGTTCAGG	60
TAATTATTAC	CTGCTCCCCC	AATTAACTTA	TCGTTGCCAT	CACCGCCATA	GAGCTGGTCA	120
TCTCCGTTTC	CACCACTCAG	TGTGTCATTA	CCTTTATCAC	CATATAAGCG	GTCATTCCCG	180
TCATTTCCTT	CTATATGGTC	ATCACCATCC	GCGCCATGGA	AGATATCAGC	AAATTTACTG	240
CCAAAAAACT	TGTCGGCACG	CGTGGTCCCA	ATAAGTTCTT	CCACGGAATA	TAAGTTATCA	300
GTCTCTGTTA	AATTTTTACC	ATTGATATGA	GTGAATTCAT	AACTCCGATA	TTGCGTTTTT	360
TCAGTTCTTT	TTCCAACTGA	AACCTCCTGC	TCCTTCACAA	CTTCCTGTAA	AACCTTAACA	420
TCACCACCAA	GTACACGTGT	TACCGTGTAA	TTACCCGCTT	CGGTTGCTTT	TGTGCCATCA	480
ATGGTCAGAT	AACCGGTGTC	TGTTTTATCA	TAATAAACAA	CATCATGTCC	TTTACCTGCG	540
TAGATATTGG	CTGAGCCGGC	AGATAAAAAG	ACCTTATCAT	CCCCGTCTCC	CAGGTGTGAC	600
TCAATACGAA	TTTCCCGATA	CTGGTTATTA	CCGACTGATG	CATGCTGAAT	CAGGTTAGAG	660
TAATCATATA	CAGACCCCTT	GTCCTGNAAC	CCCCTTCACC	GTCCATTTAT	CAACACCCTT	720
GACTAATAAC	TCGGTAATAT	ATTCATATTT	TCCGGACTGC	CTCCTTTCAC	GAATTTCCTC	780
ACCGGGAGTT	TAACAATGGG	CGTAACNAAT	TTGCAATAAC	GTGG		824

(2) INFORMATION FOR SEQ ID NO: 77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 550 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

382

-191-							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:							
GNGGCCGCAG TACTGGATCA TCACCGAAGT TTCGCGCGGA AAAGCGTTAG AGAAAGATCT	60						
AATGCTTCAT GATGGTGATG GACTTTTCCT GATGGTGAAA TCCAGCGGGA AATGCTCTGG	120						
CGTTTCCGTT ATCAACATTC GACAACAAAG CAGCGGACAA TGATGGGACT CGGTGTCTTT	180						
TCCACACTTT CACTTGCTGA TACCCGAGGG CTAAGAGTGG ATTATATTTC CTTATTAGCC	240						
AACAGAATCG ACCCGCAAAT TCAAGCTAAA GCCGTAGACG AAGAGCAATA TTTGAAAAAGG	300						
TGGGCACCTA CGTTACCAAT ACTGGCTTAA TGGCTACATA CGGCGGTCAG GGTCAGTTTA	360						
CGCTTACAAA ATATAAAACA ATTTGATACA AAATATTCCT CTTATTCTAA ATAAAAGTAT	420						
CTTGAAAACC TTCCAACTGG AAGGTAGATT GAATTTATGC TAAACATAAA GAGGAATTGC	480						
TTATGAATTA CGTTATCCGC ACTACCACCG TCGTCTTTAG TCTCATGCTG GGCAGGTTAC	540						
GCAACTGCTG	550						
(2) INFORMATION FOR SEQ ID NO: 78:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:							
CACTAAAGGC CCTGGATGTT TTTCGCTCAT TAGTAGACAT CTCGCTGATA ACGGCGCTCT	60						
ACGCGCACTC ACTTAAAAAT TCATCCGCCG CTTCGGTGTC CATGCCACCA AATTCGGCAA	120						
TCACTTCCAG AAGTGCCTGC TCAACGTCTT TCGCCATGCG ATTAGCGTCG CCGCAGACAT	180						
AAATGTGGGC ACCATCATTG ATCCAGCGCC ACAGCTCCGC GCCCTGTTCG CGCAGTTTGT	240						
CTTGTACGTA AACTTTTTCT TTTTGATCGC GCGACCAGGC AAGATCGATA CGTGTCAGCA	300						
CGCCATCTTT GACGTAGCGC TGCCAMTCCA MCTGGTACAG GAAGTCTTCC GTAAAGTGCG	360						

(2) INFORMATION FOR SEQ ID NO: 79:

GATTACCAAA GAACAGCCAG TT

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3576 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79: TAAATCAGCA GAACTGATAT AATATCTGAC CATTATTTCT GACTCTTGCT TTTGTTCTGC 60 -TATTATTGAC CGAAAGGAGA CTGCCAGGCA TATTTTTTCA GCCCTTTCCA TTCAAACGTG 120

-192-

MATICARICA	GCICATCAGG	MACHICOCMA	ACAMIAIGAA	GACGGATTIC	1101010000	180
TGACTCTTGT	CACTAATTGC	GTAACAGTCA	TGCTCTGGAT	TATTTAATTC	TTTCAGCGAA	240
AATAAAAGAT	TATCAGATAT	GGGATGACAC	ACAGCACCGC	TGAGCAAGTA	TGTATAACCA	300
TGTACTTATA	ACAAAAGGAG	ACGTAAGAAG	GGGAACGGGT	ATCAGAGGGC	CAATCAAAGC	360
AGGTATAATG	AACGCCAGTA	TAATTGTCCG	CAACCCAGAA	ATATATTATT	GAACTGGTTA	420
TCTCCTGCGA	ATGCATATAC	TGCAACGGCC	GTTAAAATAG	CATTATATCC	ATAAAGCCCG	480
GCAGAGATTT	TATCAGGAGA	AAGCTCAGGA	ATACAGAATG	ATACCACCAC	ACTCAGAAAC	540
GAAGCGACAA	CCGTAATCAT	CAGTAGTTTC	CGGCTCCCTG	CAAGTAGTCC	CAGCATAACA	600
AGAATACCGC	CGACAGCATC	AGGAAACATA	AAAATCTCCA	TAAAGCTACC	AGACAATGCC	660
ACCGGATAGT	TTTTCAGCAA	AACAGAACCT	GCACTTCGCC	CGAAGGTACT	GACATATCAT	720
GAGGCATTAT	TCCGGAATGT	AATAACCACG	TAGCGATAAT	AAAGGGGGCG	GTCAATACGG	780
GTAACCCTCT	GAGCACTGAC	GACAACAGGG	GAGTAAACAA	AACAATACCA	AGAGTTCCGA	840
CGATAAGTAC	AGCAATTCCG	GAGACTGACA	CAGGGACAAG	CATGCCACAG	GCTATGCCAT	900
ACAGAACAGC	ATTATATCCC	CATATACCTT	CATTAATCTC	CTCATCAGGA	TACCGCAAAC	960
ACCAGGCAAA	GAACGGAGAA	AGTGCTGCAC	TGATGGCTGA	GAAATACAGT	ATTTCGGGGT	1020
GCCCCATATT	AAAAGAGGCT	ATTCCAGTCG	CCAAAAAAAA	GAACAAGCCA	GAAACAACAT	1080
TGTTCTGTAA	TAATACCTGT	GAATACCCCT	TACTAAAGGC	GGTTATCACC	TGTTTTACTC	1140
TCATGTAAAA	TGTCACACAC	ACCTCATACA	TAAACCATTC	TCCGCTTCTG	CGGGACAGTA	1200
CCGCCCCTGA	CTCCACCTCA	CAGCGGATTG	TGTATTTTTA	AACAATCACA	GTCTTCTCAT	1260
ATACTTTCCA	TTCTGAAGCT	TATCTCTTCC	TCCGTGATAA	GCTTCCGTCG	CGGGATGTGT	1320
TATACGCCCT	GTAAGACAGT	TATAAAGGAC	ATCAATGCCA	TAGTTAATGA	YTACCGAATT	1380
CCGGTGGATA	GTCAGTACTG	GTTTGCCACA	AAACAGTGCA	GTCACACATG	ACAGGAGAAG	1440
ATATGAGCCG	GATACCGCTG	CTCTGAGACT	TAACGCTCAT	GTAAACTTTC	TGTTACAGAT	1500
TCTTCCAGGG	ACTAAGAAGA	TAACTGANTT	ACGTTCGCAT	TCCAGTSTTT	ATTTCTGCAG	1560
TGACAGCCAT	ACCCGAGCTT	AATGGAATGT	GCTTATTCCC	GGTTGACAAA	TCATTCTCTT	1620
CAACAGAAAC	AATGACATTA	AAAACGAGTC	CCAGTTTCTG	GTCTTCTATT	GCATCTAAAT	1680
TTATATTTT	TACCTTACCC	ACCAGATAAC	CATATCGGGT	GTAAGGAAAA	GCCTCCACTT	1740
TAATGATGGC	ATTCTGCCCG	ACGTTAATAA	AACCAATATC	TTTATTTTGT	ACCAGAGCAG	1800
TAACCTCCAG	CGTGTCATCT	TCCGGAACGA	TGACCATCAG	TGTTTCCGCT	GTTGTAACAA	1860
CCCCACCTTC	AGTATGAACC	TTCAGTTGCT	GAACTTTTCC	CGAAACAGGG	GCCCTGATTA	1920
CTGAAGCCTG	TTGACGCTCT	TCATTTTTCT	CTAACTCCAG	AGTTAATAAC	TCAATGCTGT	1980
CTGTTGTTTG	TCTTAGCTTG	TCTAAAATTT	CATTTTTAAA	AAGCTGCGTG	ACAAGCTGAT	2040

-193-

Į	ATTCTTCTTT	TGCAGACAAT	ATCTCACTCT	CAATTTGCTC	CAGTTGCGAT	TTATAAACCC	2100
(STAATTCATT	TGCTGCCTCA	ACATATTTAT	TCTCCTGCTC	AAGTACAGCA	TGTTTTGCAA	2160
,	TTGCCTGTTT	ATGCAACAGG	CTCCTGAAAT	CATCCAGACG	GCTTTTTTCA	ACCCTCGATA	2220
(CATTTTCATA	ACGGTTTATA	CGGGCAAGTA	TTGTTAAWCG	CTCTGCTCTT	TTCTTATCCA	2280
(GATTCAGTTC	TTTTTGATAC	TTCTGATTTT	GCCATGTGGA	AAACTGTTCT	TTTATCAAAG	2340
Î	AAGTTAAACG	CAGTACTTCC	TCTTCAGATA	CATTCTGAAA	ATAAGGCTCA	TCAGGAAGTT	2400
	rcagttcagg	AAGTTTATTT	AATTCAATTG	ACCGGCTCAG	AATTTGATAC	CGAATTTGTT	2460
(CCAGCCTGGC	CTGTAACAGT	GATGACTGCG	TTTTTAACGT	ATCAGCTTCA	GCTCCCAGCG	2520
•	CTGTAAGCTT	TAATAACACA	TCCCCTTTCC	GGACTGACTC	TCCTTCTTTT	ACGAYAATTT	2580
	CTTTAACTAT	CGAGTTTTCA	ATAGGTTTAA	TTTCTTTNTA	CGCCCACTGA	GTGTTAATTT	2640
	CCCATTTGCA	GTGGCAACAA	TTTCCACCTG	GCCTAAAACA	GATAAAATGA	AAGCAATAAC	2700
	CAGAAACCCC	ATAATAAAAT	AAGCAACCAG	ACGCGGCCGT	CTGGATACCG	GCGTTTCAAT	2760
	TAATTCCAGA	TGAGCGGGTA	AGAATTCATT	TTCGTCCTTT	TCACGTACCG	GAGTATCTAA	2820
	CTGCTTCCGG	ATTTTCCATG	TTTCACTCCA	GACAAGTTTA	TAGCGCAACA	GGAACTCGCT	2880
	GAACCCCATT	AACCATGTTT	TCATATTCTT	CTGTTCTTTC	TGTTAGTCTG	ACTGTAACTG	2940
	ATATAAGTAA	CTGTATAAAC	TTTCCGGTTC	AGAAAGCAGC	TCCTTATGTT	TACCCTGTTC	3000
	AACAATTTTC	CCTTTTTCCA	TGACAATAAT	GCGGTCTGCA	TTTTTTACTG	TAGACAGACG	3060
	ATGAGCAATG	ATTATAACCG	TTCTGCCCTT	ACATATTTTG	TGCATATTGC	GCATGATGAC	3120
	ATGCTCCGAC	TCATAATCCA	GAGCACTGGT	TGCTTCATCA	AAGATGAGTA	TTTTAGGGTT	3180
	GTTCACCAGC	GCCCTTGCAA	. TTGCGATGCG	TTGACGTTGA	CCTCCGGATA	ATCCTGCCCC	3240
	CTGTTCCCCG	ACAATGGTGT	TATACCCCTC	ACGCAATTCA	GAAATAAAAT	CATGAGCACC	3300
	TGSTAATTTC	GCTGCATAAA	TAACTTTTTC	GACGGACATG	CCAGGATTAG	CCAGTGAAAT	3360
	ATTATCAATA	ATACTGCGAT	TAAGCAGCAC	ATTGTCCTGC	AACACAACCC	CCACCTGACG	3420
	ACGTAACCAG	TTAGGATCG	CCAACGCAAG	S ATCATGTCC	A TCAATTAAGA	CCTGGCCATT	3480
	TTCAGGAATA	TAAAAACGTI	GAATTAATTI	r AGTTAATGT0	CTTTTTCCTC	AACCAGAACG	3540
	TCCGACAATA	CCAATAACC	r cccccrgcri	r AATACT			3576

(2) INFORMATION FOR SEQ ID NO: 80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3541 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

-194-

TCAGCCCGGT	GAGCGGGTTT	GACAATTCCG	CASTGACCAT	TGGGCTAAGG	GTTATCAGGT	60
GGGGTTAAGG	AAATGGCAAA	ACCTACCCC	GTCCAAACTC	CAGTCGCTGC	ACATTCACCA	120
TCCCTGGCTT	CTCACCTGCG	CTGACATCAA	TTTGTGTCAC	CCGCAGCGCA	TATTTTTCAT	180
CCAGTGCTTT	TAACCAGTTC	AGCAGGTCAT	TAAACACCAC	AGGTTCTATC	CAGACCTGGA	240
TATTCTCCCC	GCGCTCGGCA	ATCCGTTTGA	TGACCACCGA	GTGCGCGGAA	GCTGTCACTG	300
ATGACCCGCG	ATACCTGTGC	TGGCGTTGTC	GTGCCGGATT	TTCGCGCCGC	AATAATATCC	360
GGCGCGGCGC	TCTTCAGTCG	CGCGTTCATC	GCCACCAGCT	GCTGCAACAT	CGTCTCCTGT	420
TGCTCAATCC	GTTCGCTCAA	CGGCTGCCAG	ATGAGAACGT	AATATCCGGC	GCTAAACAGG	480
AACACTACCG	CTGCCAGTAA	CATGCCTTTT	TCACGCGGCG	AACGCCCCGC	CAGGTGTTGT	540
GTCAGCCAGT	GTTCGCCACG	GCTTAACTGG	CGTTCACGCC	ATTGCTGAAA	ATAGTGAATA	600
AATTTATCGC	GTAACATGTT	ATTTCCTCCG	CAACGTTACG	CCGCCGGAAA	CCGCATCACC	660
CTCTTTCTGT	AACGCGTCCT	GTTGCACAAC	ATAATCTGCC	GCCAGTGCGC	TACGAGTTTA	720
TCGAAGCTGG	CAAAGTTCGC	AGCCCGTAGC	TGGAGGTGAA	GCGTCTGGCG	TTTTTGATCA	780
AAGGTGAAAC	ACGCATTTCG	ATGTCGGTAA	GTGACGCTGA	TTTCAGGGTA	CTGGCGATCG	840
CTGACAATTC	TGCGAGCAGC	CGGGTATCGT	CGGTCTGTGG	GCGATATTTT	TTCAGCGCCA	900
TCGTCACCTG	AGAGCGTAAA	TTCACAATCC	GCTTCTGCTC	CGGGAATAGC	GTTAAGAACT	960
GTTTCTCCGC	CTGGGTGCGG	CTTTGCGCCA	CCTGTTCGCT	GACGCTCCAT	AACGTCACGC	1020
CCCGTTCCAC	TACCAGCGCA	ACCAGAATCA	ACAATATCGG	CAGAATCATC	ACCCGCCAGC	1080
GCGCCCACTG	TTTTCGGTAG	CTGACACGAG	GCTGCCACGG	CCCTGTTAGC	AGGTTCCCTT	1140
CCGGTTCGCC	ATAAGTGGTA	ATGGCGGGCA	GAGCGTAACG	GTCAGCGTTC	GGCGTCTGCA	1200
CCAGCCCATG	CAGACAGTTC	TTCCGGTGCA	ATGCCGACCA	CGGTTAGTGA	AAGCGGTAAA	1260
TCCTGCTCAT	TGAGCTGTGC	TCGGAACATG	ACCGGAGCCA	GCGCCGCCC	GGCGCTCCAT	1320
CCCCGGCATT	CATCGATGCG	GMAGATAACC	CGTTGCGCAT	CGCCAGCCAT	AAACCC ACA A	1380
GGAATGGACA	TCCAGTCCGG	CGCGACGATA	GCGCGGGTGA	TGCCGTTTGC	CTGCAACCAC	1440
TGCGCAATGT	TGCGCATATG	CTGCTGGTGA	ATCACAGCTA	CGGTTGCCAG	TTGCTGGTCG	1500
ATTTTCAACG	GGGCGAAATG	CAGTTCATCG	ATATCCTGGT	TCAGCTCTTC	TTCCAGCAAG	1560
GCGGGCAGAA	TCGTCGGTAT	CTGCTTGCGG	GGCACATCAG	GCAGTTCAAC	CTGCCAGACG	1620
CTGATCCATT	CGCCGGGAAT	GTAGAGTCGA	ATCGCATCAG	TTTGCAGCCA	TTGCTGGAGA	1680
CATTCATCAG	CAACGTCAGG	CCAGATGCCG	CACTCCACGT	CGGCGGTACG	ACGCTGCCAA	1740
CGGATGGGAG	CGGAAMGNCA	. AAGCGGGAAA	AAAATCTCAA	GCATGGAACT	CACTCACTTT	1800
СТССТСТСТС	ATGCCAGAGA	ACAGAAAAGI	GTTGTGGGCC	CATGCGGACA	ATTAACG AA T	1860 -
TCATCGTCAG	TTCAATCTCA	A TTCACGGTGA	A TATCTGAACG	CAGCCAGAAG	TAATTGCTGT	1920

PCT/US97/21347 **WO 98/22575**

-195-

CCACGCTCAG GACG	GTTTTT AG	CTGTTTTT '	TAGTACGCTC	ATCGACGTCA	GCAAGTAACG	1980
GCTGTGCAAG AAAC	TGATCG AC	CATCTTCCC .	AGCCCTTCGC	ATGACGTTGT	TGTAATAACG	2040
CTCGCGCCTG AACA	AGGGCTT AA	ACCACGGGT	CAAACAGCGC	CTCAAGAATC	ACACTTTGCG	2100
TGACGTCTAA GGTA	ATTGATG TI	GATTTGCT	GGCGGGTCAT	CGGCAGCGCA	CAGACCAGCG	2160
GTTTCAGTTT TTG	ATAAAGC CC	CGGCGTCCA	TTCCCTGCAC	CACGCGCATC	TCGCTGATAT	2220
CAGCCAGCGG TTG	ATTAGCG GC	CGTAAAACG	GCACCGAACG	GGCGAGATAC	TCGCTGTCTT	2280
CACGGCCCAG ACG	CGTCTGC AC	CGCTGCGGT	CTTCGTCAAT	AAACTCCCAC	AGGCTTTCGG	2340
CTATCAGTTC GGC	CCGATAA G	CAGGCACAT	CCAGGCGCGT	GATCAGGGCA	ATCAGTTGTT	2400
GTACCGCGAG CGG	ACGCGAC GO	CCGTCGTCG	GCTGAGCGAG	GGCATTCAGG	TTAAAGCAAG	2460
CCTGTGCGTC ACG	CAGAGTG A	CGGCGATTT	GCCCTGCGGC	AGTGGGAAAA	AACGCGGGCC	2520
GGAAGCCCNA CGT	GCGCCAG A	TGCACGCGC	TTTTCATTTT	TCAGGCTCAG	ACTGAGTGCG	2580
CTCAACGCCA GGC	TTTCCGC A	CTGGCGCTG	TACCACAGCG	CCTGCTGGTA	CTCCTGCTGG	2640
TGCGCGTTCG CCC	AAGTTGT T	TCTGCATCC	GCCCGGAAAG	CGTGATGGTC	ACCAGCATCA	2700
TAACCGCCAG CAA	TACCAGC A	.CCACGACCA	GTGCCATTCC	GCGTTTTGGT	GGTGAGGTGA	2760
TCATGATAAT TGC	GGCCCGC G	TAACAACCA	GATGCGTTCA	ATTTCGCCCC	ATTGTGGCGA	2820
ATGCAGGGTT ATG	SCGTACTG C	CACGGGGAT	CGCCTGCACT	GATGACCAGC	TCTCCTGCCA	2880
GCGCGTGCCG TCC	STAGAACT G	CAAACGGAG	CGAATCCGCC	GGGATTAATT	TTTGCGTTGT	2940
TGGCTTCACG CTC	SCCTGCCG C	CATCGGTCAG	TGGCCAGGCT	AACCGTTCGA	GATAACCACC	3000
ATGAATGCGG TA	ACCGACGG T	TGAGCAGATT	ACTGCGCGGC	AGACGCATCA	ACGGATTAAC	3060
CACGCCGCCA CG	racaaaac c	CATCCCTTC	ACTCTCAGAC	GCCAGCACGC	CAGCGCCCGC	3120
CAGTAACGCT RG	TTCACGCT (GCCCTGATC	GCCTCTTACC	GGACGCGGCA	TCATTTGTGT	3180
CAGATCGTGG GT	CAGAAAAC 1	TCATCGTTTG	CTGCATGAGG	TTTAGTTTT	GATCGTGTCC	3240
GGCGACGGCG CT	ATTCACGC (GTGTAACCCG	TTTGTCACC	r GCTGCGCCA1	CATTGCCAGT	3300
GAGGCAAAAA TG	GCTATTGC (CACCAGCATI	TCCAGTAAC	G TGAAACCAGO	GCGAGTCCTT	3360
CTCACTGTTG GT	CTCCCACG	GCGCTAAACC	ANGCGCGTC	G TGACTGAAT	C ACTGACGAAA	3420
AGTCNTCATG AA	GACTGACT	TCAATATCC	A CNGCATGGA	G CAGCGCATTA	A NCGGTATTCA	3480
GTGGTGTTGG TT						3540
C						3541

(2) INFORMATION FOR SEQ ID NO: 81:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1234 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

-196-

(xi) S	SEQUENCE DES	SCRIFTION: S	SEQ ID NO: 8	31:		
GTACTGGACA	TCTTTGATGA	ACAAGCTCCT	CAGTGTAAAT	TGTACGTCTC	TGATCGTAAT	60
CTTCCTGAGG	GCGTTGAACA	TCTATCCGCT	GAATTTATAC	CCTATACTCC	TGAGTCGGCA	120
GATTTTCTGA	TTCAACGTTT	TTTCTCTGAA	ACTATCCATA	TTGAAAGTGC	AATTGTTGTT	180
ACAGCACTTA	AAATTGCCAA	TCAGATTGCT	CTATCTCAAA	ATGAGACCAA	GAATGTGTAT	240
CTGCTTGGAT	TTGATTTTAC	GATAAAGGGG	GGGTTCACTA	GCAAGATCCC	CTGCGCAGCC	300
TTGCATGCCG	AACCAGAATA	TCAAGAGCGA	ATTATCAGTA	GTCAAGAACA	GCTATTGCAG	360
ATGCTCCTTG	CAGAAAAAAC	ACGCCTGAAT	ATCAATATCA	ATCATGTTGG	TAATAAGCCT	420
TACAGCGTAT	ATTCTGTTGA	TGCATTTAAT	CAAGTGTTCG	CTGCCCGCCA	TCGTGGAGTC	480
GTGCTGCCCA	CACATGCCCA	GATTTCCACT	ACATCATCAC	AAAATGGGGT	GAAGGTGATC	540
GCAGAGATTA	CTACTAATCA	CTTTGGTGAT	ATGGACCGAT	TGAAGTCAAT	GATTGTAGCG	600
GCCAAGCAGG	CAGGGGCTGA	CTATATCAAA	CTGCAGAAGC	GTGATGTTGA	AAGTTTCTAT	660
AGCAGGGAGA	AGCTGGAGTC	ACCGTACAAC	TCTCCTTTTG	GCACCACCTT	TAGGGACTAT	720
CGGCATGGCA	TTGAACTCAA	TGAAGAGCAA	TTTTCCTTTG	TCGACTCTTT	CTGTAAAGAG	780
ATTGGTATCG	GCTGGTTTGC	TTCTATTTTA	GATATGCCCT	CGTATGAGTT	CATTCGGCAA	840
TTTGAACCAG	ATATGATCAA	GCTACCATCA	ACTATATCTG	AACATAAAGA	TTATTTGGCT	900
GCTGTTGCTT	CTGATTTTAC	TAAAGATGTA	GTAATTTCAA	CTGGTTATAC	TGATGAGGCC	960
TATGAGCGTT	TTAYCCTKGA	TAACTTTACC	AAGGTTAGAA	ATATTTATCT	GCTGCAATGC	1020
ACCTCGGCTT	ATCCCACACC	GAATGAAGAT	ACCCAGCTAG	GTGTGATAAG	ACATTATTAT	1080
AATTT GGCGA	AAAAGGATCC	ACGTATTATT	CCTGGTTTTT	CCAGCCATGA	TATTGGTAGC	1140
CTTTGTTCCA	TGATGNTGTC	GCAGCCGGTG	CAAAAATGAT	TGAAAAGCAT	GTTAAATTTG	1200
GCAATGTGGC	TTGGTCTCAC	TTTGATGAAG	TTGC			1234

(2) INFORMATION FOR SEQ ID NO: 82:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6313 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:

ATGGGACCTT	TCTTCAATGA	TGTTGCCGAG	TGGTTAGAGT	CATTAGGTCG	TAACGCTGTG	50
AATGTTGTAT	TCAATGGAGG	AGATCGTTTT	TACTGCCGTC	ATCGACACTA	TCTGGCTTAT	120
TACCAAACGC	CGAAAGAATT	TCCTGGTTGG	TTACGAGATA	TCCACCGGCA	ATTTGACTTT	180

-197-

GATACCATTC	TCTGTTTTGG	TGACTGCCGT	CCATTGCACA	AAGAAGCAAA	ACGTTGGGCG	240
AAGTCTAAAG	GGATCCGCTT	TCTGGCATTT	GAAGAAGGAT	ATTTACGTCC	GCAATTTATT	300
ACTGTTGAAG	AGGACGGTGT	AAACGCGTAT	TCATCGCTGC	CGCGCGATCC	TGACTTTTAT	360
CGTAAATTAC	CAGATATGCC	TGCACCACAT	GTTGAGAACT	TAAAACCCTC	GACGATGAAA	420
CGTATTGGTC	ATGCAATGTG	GTATTACCTG	ATGGGATGGC	ATTACCGACA	TGAATTCACT	480
CGCTACCGTC	ATCACAAATC	ATTTTCTCCT	TGGTATGAGG	CTCGTTGCTG	GGGGCGTGCG	540
TACTGGCGTA	ACTATTTTAC	AAAATAATGC	AACGTAATGT	ATTGGCTCGG	TTAGTGAATG	600
ATCTGGACCA	ACGTTACTAT	CTTGTTATTT	TACAAGTTTA	TAATGATAGC	CAAATTCGTA	660
ATCACAGTAA	TTATAATGAT	GTGCGTGATT	ATATTAACGA	AGTTGTATAT	TCATTTTCGC	720
ATAAGGCACC	GAAAGAGAGT	TATTTGGTGA	TCAAACACCA	TCCGATGGAT	CGCGGTCACA	780
GACTCTATCG	ACCATTAATT	AAGCGGTTGA	GTAAGGAATA	TGGCTTAGGC	GAGCGAGTCA	840
TATACGTACA	CGATCTCCCA	ATGCCGGAAT	TATTACGCCA	TGCAAAAGCG	GTTGTGACAA	900
TTAACAGTAC	AGTGGGGATC	TCTGCACTGA	TTCATAACAA	ACCACTCAAA	GTGATGGGTA	960
ATGCTCTGTA	CGACATCAAG	GGGTTGACGT	ATCAAGGGCA	TTTGCACCAA	TTCTGGCAGG	1020
CCGATTTTAA	ACCAGATATG	AAACTGTTTA	AGAAGTTTCG	TGAATATTTA	TTGATGAAGA	1080
CGCAAATTAA	TGCTGTTTAT	TATGGTGTAA	AATCAAAAAG	CAATAGAAGG	TCCGCATTCC	1140
TAAACGGTAG	CAGATGATGG	TTTTCATGGG	CGTTTCAGGT	TACTCAATCA	GCCAACAACC	1200
GCAGCGAAAA	CCCTGCTTTC	TCGACCAGTT	CAGGCCGGTT	TTACCTCCAA	TGCTTTCCGT	1260
CAGAACTGAG	ATTTCAGCCA	GTTGCCGGAT	AAGTGTGTCG	ATTTGCAGCA	GTATACTTTT	1320
TCGTACAGCC	CAGAATGTGGC	AGACTGAGGI	GGAATAGATA	ACGTCCGTAT	GCCCGCTCAC	1380
CACCTCCGGG	G CGGGAGTGTG	G TGGTATCTGA	A CATCATCATI	TTTCCTTTCT	GTTTATAAAT	1440
GAAAACGCCA	A GCCGTGTTCA	A GGCTGACGTO	CAGGGAAGTGA	A AATCGGGTGA	A GTGATCTTCA	1500
CTGGTTCTG	G TGCAAAAGTI	ACTGTTGGCC	CAGGGTACGG	ATACCCTCCC	TGGCCTGTTC	1560
GATACAGGG	C AACAGTGCT	G CCGAATCTG	TTTATCCTCA	A TCGTTGTCGA	A AGATAATTCC	1620
CGATTCGCA	G TCGATATTG	r cctgcagcc	A CGTAATCAGA	A ATATCCAGC	G CTGTTTCCGT	1680
GGTTAATGA	T TTCATGTTG	r GAATTTCCG	G ATTACCAGT	C GAAAGTGGG	I AAACCTGGCA	1740
GACATCTGG	C ACTGGCATCO	C AGATGAATG	A GACTGACAC	C ATAACGCCG	G ATGAGTGTGA	1800
CGACCAGAC	G ACGGAACGT	A ACAGATAAC	C GGTACCGGT	A AAATGAATC	C ATTCTGATTC	1860
ACCAAAGTC	A CTGGTCTGG	T GTAACAGCG	A GTACAGCCA	G GCGTTGTCC	T TTTCCGTGAT	1920
ATGTGCGGT	A CTGCAGCGT	a TGCCGGAAA	G AGTCGTAAA	C GGTTGTGGA	G TGCAGGTTGA	1980
CTGTTGGTC	A GATTCATCC	A CCACGCGGA	G TGAATAACC	G TTTTCAGCG	A CCTTGTTAAT	2040
CAGTTCAGC	G AGATTAATA	C CATCGACGT	C AACGACAAT	G CGCCCCATA	T TCAGTGCCTG	2100

-198-

TACGTTAACG C	TGTCGGCTT	CCGGCGTCAG	GGAAAGTTTC	ATTGTTTCAC	CTCCGGGTGC	2160
TTACCCAGGA T	TTATTATA	TACCGCTCTG	TAATTGTCGC	GGGTCATCAG	GCCGGTCGCC	2220
CTGCGAGCCC G	GAGGATATC	GATGCTGTTT	ATTAACTGAG	AGCGGGTACA	GGCGCTGAAT	2280
CCCGGCTG3T C	GGTACGCAC	CAGCGCGTAT	TTTTCCACGA	GAAAGTTCAC	CGCATCACAC	2340
AGTGAAATGC C	TGCCTCAAT	ATGCTGCTCG	ATCACACGTT	CATCGGCAAA	CGGTGTGTCA	2400
TTCAGTGTGA G	GCCGTAGTG	CTGGTCCAGC	AGTCGGGACA	GAAGTATCTG	CCAGATTTCA	2460
ACAGGAGACG G	GCGAGAACT	GGCCGCCTGC	CCGGGTAATA	CAGGTAATGT	TTTCATACTG	2520
AAGATTTTCC T	'GATATGCAG	ТАДАДАТ	GGGAAAGTGG	CGTGGTGAAA	ACACCAGGCC	2580
GTAGCAGAAG G	CTATTCTGG	AGAGTTAATT	TTTCATTTCG	GGCGTCGGAT	AAACAGCCAG	2640
ATAAACGTAA C	CACAACTGC	TGAGGGTATC	GGCTTTGCAG	GTCAGCCCTT	TTGCATACAG	2700
CGTGACGGTA T	CGCTGATGGC	GGGGATTCAG	TTCACCGCTG	GTGAGCATGA	GTTCCAGTTG	2760
TTTCATCAGC A	AGCGGAAAGG	CCTGGTCCAG	GTGGTACGCA	TCTGCATTGC	TGTATAGGCC	2820
TCTGATACCG G	SCGCGGTCGG	CAAGGTAATG	CAACCGGTTA	CCCTCCTGCA	CCAGACGTGC	2880
CCCGAAACAG G	GCGTCACGG	TGCAGGGCAG	CCCCCACCAG	GGGCGGTCGT	GATTGTCGTC	2940
GGGAAGTGTT G	STCCCGGGGA	GTGTGTCTGA	CACGATAAAA	TCCCTACAGA	AAATCGGCTA	3000
AGAATGCTCC G	GTATTGGCG	ATAATTCTGC	TCATCAGAAT	TCCCACTCAG	TTCAGGGTGA	3060
CGCTCATCAG C	CCGGACATAC	GGGCCAAAAC	TGTCCTTACG	GCGTTCAGCA	AACACGGCCA	3120
GCACACCGGG A	AATATCCTGT	ACTTCACGAC	CGGTATACGC	CTCAGCACTG	CCGTGCCAGC	3180
GGTACTTACC (GTGCAGAAC	GGAAATAGAC	GGGATGCAGG	ATGCTGTTGG	TGAATACGCA	3240
TGGCTTCACC A	ACGGGTGATG	ATTTTCATAA	TGGGATACCT	CTGAAGACAG	AAGATAAAAG	3300
TGAAAACAGG T	TGTGATGTGG	TTGTGACGGT	GACGGGTTAA	AGCAGACCGT	GTTCCGCAAA	3360
GGAGAAAACC	rgactgccac	CAACTATCAG	ATGGTCCGGT	ACCCGGATAT	CCACCAGGGC	3420
CAGTGCCTGT A	ACCAGACGTT	CCGTGATAAG	GCGGTCTGCC	TTACTGGGGG	TGACTTCACC	3480
GGACGGGTGA T	TTGTGTGCCA	GTACCACGGC	GGCGGCATTG	TGGTACAGGG	CGCGTTTAAT	3540
CACTTCCCGG	GGATGGACTT	CCGTGCGGTT	GATGGTGCCG	GTGAAGAGGG	TTTCACCGGC	3600
AATCAGCTGA	TTCTGGTTGT	TCAGATACAG	TACCCGGAAC	TCTTCACGCT	CCAGTCCCGC	3660
CATCTTCAGA 2	ATCAGCCATT	CCCGTGCCGC	ACGGGTGGAG	GTGAAGGCCA	CGCCGGGTTC	3720
ATGAAGATGG (CGGTCCAGGG	TTTTCAGGGC	CCGCAGAATG	AGACTGCGCT	CGCCGGGCGT	3780
CATCTCTCCG	GGCAGAAAGG	AAAGTTGTTG	CATTGTGCTT	CTCTCCATTC	AGTCGATGAT	3840
GCGCATAATG	GCGCTGCATT	CCGGATGCTG	CAGGGCGTAA	TCCCGCAACC	GGTAATAATG	3900
GATCGTCATG	GCATAACACT	CCGTACGACA	. GGCATGATGA	CTGTACGTCA	TCAGACAGGC	3960 -
GGCAATGCCG	GCGGCTTCCG	GGCTCATTTC	AGCGCGGTTA	CCGTTCATGG	CATTGAACAG	4020

-199-

TACCCAGTTT	TCGTCATCAT	CGTCATCCGG	TTCGGGTGCC	ATAAATGCCC	CGCCGTTGTT	4080
CAGGGTGTAC	AGATTCCAGA	TACCACCGCA	GTAGTCTTCG	CACAGACGGT	CCATCCAGCC	4140
GAAGACACGG	GGCTCCAGGG	TCACCCACTG	TGGAATGAGG	CCAAAGTGCT	GCGGCCAGAA	4200
GCTGATGCGC	TGTTCATCAG	GGACTATGGT	GGCAACCAGC	TGAGGCTGGT	CATTCCCTGA	4260
TGCAGCGGTT	ACGGAAACAG	AAGGAGTGGT	GGAATTATGC	AAGACGGTTG	TCATGAGATT	4320
ATTCCTTATA	AAAAGTAAAT	GAATGGAAGA	AACCCCGGGG	GAAGGGACAG	ACGTGAGTCA	4380
GAACTGCGCT	TTCAGGGAAA	CGGCATCAGC	GCATACTCTC	CAGCAGCGTT	TCAGCCATCA	4440
CCCACAATGC	GCGGTTGAGC	TTAATGTCGG	TGTCGATGCT	GTGAATGGCA	CGGGTATGGA	4500
TACGTTTTCC	TCTGGCACTG	CGACCGGAAA	TTCCGCCTTT	CAGCATATTC	TCCTGAATGG	4560
TCTGATAAGC	ACTCCACAGG	TCCTTACCGT	AATCCTCCCG	GCGTCGTGGT	GTCAGAATGT	4620
CGGCGGTGGT	GACGGGCTGA	TGTTCGTCAC	CATAACGGTA	AGTCAGTGCC	GCCTGTGCCA	4680
GCGCCTGGCG	TGCCGGTGGC	GGCAGAATCA	GCGACTGCAT	GGCATCACGC	TTTTCCTCAA	4740
TCCGGTCAAA	AACCCCCACC	ACCTCGTAAG	CCCCTTCAAT	AACTTTCTCC	ACCACATTTC	4800
CCCGGTGCGG	AACACGCACT	TCCCCCAGAG	ACTGACCACA	GACGCATCCG	TTCTGGCAGA	4860
CGAACCTGAA	GTAACCCGGC	AGCATCTGGT	AGCTGGAGGT	ACCGTCATGA	GAGTTGAGCA	4920
GAATAATTTC	AGGGACATGT	TCTCCGTTTA	TCTCTCCGGC	CCGCCGCAGA	CGCAGCATGT	4980
GTTTGGTGTA	TTCCCGGCGG	TCCGGGTCAC	GTACGCGGGT	CTGGCAGGCG	AAGAATGGCT	5040
GAAAGCCTTC	CCGCTGCAGG	CTTTCCAGTA	. CGGTGATGGT	GGGGATGTAC	GTATAGCGTT	5100
CACTGCGGGA	GGTATGCCGG	TCTTCACCGA	AAATACCCGG	TACATGGTGC	ATCAGTTCTT	5160
CGTGTGTCAG	G CGGACGGTCA	CGGCGTATCT	GGTTCGCATA	ACCAAAACGA	CTGGCTAGTC	5220
GCATAATTT	CTCCTTATCO	GTGGTTAAGA	TTTACTGGTG	; TAATAAATGA	AAAAGCCACG	5280
TCTCCCGGAC	AAGACGCGG	CTGACAGATO	S AAATGAATGA	CGTTTATTGT	CTGAGAAGCC	5340
CTTAACTGGG	GAGCTGAGTA	TTAAGCTGT	TTCCGGCATC	ACCAGCGCA	A CTGACCTTCA	5400
GCATTACGG	A TAACCAGCC	GGAATATGT	CCCTGGTCAT	CTTCAGTAA	A CACATTGCGG	546 0
TAAGCTGTTA	A TGACAGCAA	CGCCTGCCC	TATGAGAAA	ATCCTTCAG	CAGGACATAC	5520
TCTGTGTGTA	A ACCCGGCATA	A TCTGGTTTC	r cctgataaa:	r AGCCTCTGC	C ATACGTTGTG	5580
GCAGAGGCT	G AAGCATGAA	A CTGACTTCA	G GGATCAGTTA	A ACATTTTTT	CGGAAACGGT	5640
AATCAGCAG'	T GGATGGTAG	r CCTGGGGAT	C GAAAACCGA	r aacggcaga	TGACACGATG	5700
GCCGTTACT	T TCTTCAGTT	G CTTTAATGA	TTCGGTTGT	G GCGACATTT	T CCACGCACTC	5760
CGTTTCCAG	A AATGCGTCT	G TGGTTCGCG	T GGCATTACT	g TCACCAAAG	G CTTCCGTTTC	5820
CATTTTTCT	G GTCACCAGC	G TCTGACCAT	A TTTGTCTTT	g AGTTGCAGA	G TGATGGTGAG	5880
GGGGCCAAA	T CCTTCATCG	T TTCCGCCAT	T ATCCAGCCG	g aactggtaa	G CACAAATATT	5940

-200-

TCCCGGGAGC	CATATCGTAT	CTGTATTGCG	TATACTGATG	TAACGTTGAT	CCTGTGCCCG	6000
GAGTGGGGCA	GACCACGTTA	ACCCCAGAAT	GAAGGCGGTA	ATCATGCAGG	TTTTGAACAG	6060
GTGAATCATG	GTATTTACCT	CTCTGAGTCA	TGACGATTAC	ACTGACAAAT	CAGGTGATAA	6120
AACGTAAAAG	GCGCAGAATA	GCCGTTATGC	CGGTAACTCC	GGGGGTAATG	TTTCTTCCAG	6180
TCGGTTAACC	ATATTGCCGA	GATGGGATGC	ATCATATTCC	ATGACGGGGC	GTTGCCTGAT	6240
GATACTGACC	ACCAGTGGTT	TGATTAACAT	GTTGGTCGCG	GCCCGTTGTT	GTATACCGGC	6300
GGCGAAAATG	ATC					6313

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 432 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

CGTTGGCCGC	TTGCGCAGAT	AAAAGCGCGG	ATATTCAGAC	GCCAGCACCG	GCTGCAAATA	60
CGTCTATTTC	AGCAACACAA	CAACCAGCTA	TCCAGCAACC	GAATGTCTCC	GGTACCGTCT	120
GGATCCGTCA	GAAAGTCGCA	CTGCCGCCTG	ATGCTGTGCT	GACCGTGACA	CTTTCTGACG	180
CGTCGTTAGC	CGATGCACCG	TCAAAAGTGT	GGCGCAGAAA	GCGGTGCGTA	CTGAAGGTAA	240
ACAGTCACCA	TTCAGCTTTG	TTCTGTCATT	TAACCCGGCA	GATGTTCAGC	CGAACGCGCG	300
TATTCTGTTG	AGTGCGGCGA	TTACCGTGAA	TGACAAACTG	GTATTTATCA	CCGATACCGT	360
TCAGCCGGTG	ATCAACCAGG	GCGGAACTAA	AGCCGACCTG	ACATTGGTGC	CGGTACAGCA	420
AACCGCCGTG	CC					432

(2) INFORMATION FOR SEQ ID NO: 84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3494 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

60	GGAATAGCTG	ACTGAATGAA	TAGAACATGA	AATCTGTCTA	CGATTTTATC	GGGCTGATTA
120	GGTGGTTACC	GGTTGGCAGA	AACCGGAACC	ACTGGCGGAT	GTTATGCCGG	GCAGAGAGAG
180	ACGGCATACA	TGCGCTGAAC	TTTCCTGGGA	TTATATGAAC	AGGACAGCTT	CGTAAATTGC
240	AAAGTGGATT	TGAGAATTAA	TCTCCGGGGA	TCCGGGCTTG	AGAGTGGTTT	GTGAACACCC
300	ATACGCCGCT	ATTTATAAGA	AGGGATTTCC	GATTTCCTGC	AGCGCGGCGT	ATGCTGCTAT

-201-

TCGGGGAATC	TCCGGTTCTC	CTGAGAGTTA	CGATTGTTTT	TTTACTCAAA	TCCACAACAC	360
CTGAACTGGA	ACTTGTGTTG	CATCCCTGAT	TGTTACTCTG	CAGGAAACAT	CTTTTTTACC	420
ATCAAAGGAT	GACTGTTTTC	CTTTCTCCCC	TCCGTAAAAC	ACAACTTCGA	TCACATTTCT	480
GACATTTTTT	CCAGATTTTA	CATAACAGGA	TTGTTTCTGT	ATGTTTTTTA	TCTGGTGTAA	540
ATTTCAGCAC	TGACATTCCG	CTTACGTTAA	TTTACACTGA	ATACCCCACG	AGGAGAATAT	600
GCAGCACCGG	CAGGATAACT	TACTGGCGAG	CAGAACGTCG	TTGCCTGGTA	TGGTTTCCGG	660
TCAGTGCGCA	TTTAAGCTCC	GCACTTTCTC	TCCGGTGGCA	CGCTATTTTT	CCCTCCTCCC	720
CTGCCTTTGT	ATTCTTTCGT	TTTCGTCTCC	GGCAGCCATG	CTGTCTCCGG	GTGACCGCAG	780
TGCAATTCAG	CAGCAACAGC	AACAGTTGCT	GGATGAAAAC	CAGCGCCAGC	GTGATGCGCT	840
GAAGCGCAGT	GCGCCGCTGA	CTGTCATACC	GTCTCCGGAA	ATGTCTGCCG	GTACTGAAGG	900
TCCCTGCTTT	ACGGTGTCAC	GCATTGTTGT	CCGTGGGGCC	ACCCGACTGA	CGTCTGCAGA	960
AACCGACAGA	CTGGTGGCAC	CGTGGGTGAA	TCAGTGTCTG	AATATCACGG	GGCTGACCGC	1020
GGTCACGGAT	GCCGTGACGG	ACAGCTATAT	ACGCCGGGGA	TATATCACCA	GCCGGGCCTT	1080
TCTGACAGAG	CAGGACCTTT	CAGGGGGCGT	ACTGCACATA	ACGGTCATGG	AAGGCAGGCT	1140
GCAGCAAATC	CGGGCGGAAG	GCGCTGACCT	TCCTGCCCGC	ACCCTGAAGA	TGGTTTTCCC	1200
GGGAATGGAG	GGGAAGGTTC	TGAACCTGCG	GGATATTGAG	CAGGGGATGG	AGCAGATTAA	1260
TCGTCTGCGT	ACGGAGCCGG	TACAGATTGA	AATATCGCCC	GGTGACCGTG	AGGGATGGTC	1320
GGTGGTGACA	CTGACGGCAT	TGCCGGAATG	GCCTGTCACA	GGGAGTGTGG	GCATCGACAA	1380
CAGCGGGCAG	AAGAATACCG	GTACGGGGCA	GTTAAATGGT	GTCCTTTCCT	TTAATAATCC	1440
TCTGGGGCTG	GCTGACAACT	GGTTTGTCAG	CGGGGGACGG	AGCAGTGACT	TTTCGGTGTC	1500
ACATGATGCG	G AGGAATTTTG	CCGCCGGTGT	CAGTCTGCCG	TATGGCTATA	CCCTGGTGGA	1560
TTACACGTAT	TCATGGAGTG	ACTATCTCAG	CACCATTGAT	AACCGGGGCT	GGCGGTGGCG	1620
TTCCACGGGA	A GACCTGCAGA	CTCACCGGCT	GGGACTGTCG	CATGTCCTGT	TCCGTAACGG	1680
GGACATGAAG	G ACAGCACTGA	CCGGAGCTGC	AGCACCGCAT	TATTCACAAT	TATCTGGATG	1740
ATGTTCTGCT	TCAGGGCAGC	AGCCGTAAAC	TCACTTCATI	TTCTGTCGGG	CTGAATCACA	1800
CACACAAGTT	r TCTGGGGGGI	GTCGGAACAC	TGAATCCGGI	: ATTCACACGG	GGGATGCCCT	1860
GGTTCGGCG	C AGAAAGCGAG	CACGGGAAAA	A GGGGAGACCT	GCCCGTAAAT	CAGTTCCGGA	1920
AATGGTCGG	r gagtgccag	r TTTCAGCGC	CCGTCACGGA	A CAGGGTGTGG	TGGCTGACCA	1980
GCGCTTATG	C CCAGTGGTC	A CCGGACCGT	TTCATGGTG	r GGAACAACTO	AGCCTCGGGG	2040
GCGAGAGTT	C AGTGCGTGG	C TTTAAGGAG	C AGTATATCT	C CGGTAATAAC	GGTGGTTATC	2100
TGCGAAATG	A GCTGTCCTG	G TCTCTGTTC	T CCCTGCCATA	A TGTGGGAAC	GTCCGTGCAG	2160
TGACTGCAC	T GGACGGTGG	C TGGCTGCAC	T CTGACAGAG	A TGACCCGTA	TCGTCCGGCA	2220

-202-

CGCTGTGGGG	TGCTGCTGCC	GGGCTCAGCA	CCACCAGTGG	CCATGTTTCC	GGTTCGTTCA	2280
CTGCCGGACT	GCCTCTTGTT	TACCCGGACT	GGCTTGCCCC	TGACCATCTC	ACGGTTTACT	2340
GGCGCGTTGC	CGTCGCGTTT	TAAGGGATTA	TTACCATGCA	TCAGCCTCCC	GTTCGCTTCA	2400
CTTACCGCCT	GCTGAGTTAC	CTTATCAGTA	CGATTATCGC	CGGGCAGCCG	TTGTTACCGG	2460
CTGTGGGGGC	CGTCATCACC	CCACAAAACG	GGGCCGGAAT	GGATAAAGCG	GCAAATGGTG	2520
TGCCGGTCGT	GAACATTGCC	ACGCCGAACG	GGGCCGGGAT	TTCGCATAAC	CGGTTTACGG	2580
ATTACAACGT	CGGGAAGGAA	GGGCTGATTC	TCAATAATGC	CACCGGTAAG	CTTAATCCGA	2640
CGCAGCTTGG	TGGACTGATA	CAGAATAACC	CGAACCTGAA	AGCGGGCGGG	GAAGCGAAGG	2700
GTATCATCAA	CGAAGTGACC	GGCGGTAACC	GTTCACTGCT	GCAGGGCTAT	ACGGAAGTGG	2760
CCGGCAAAGC	GGCGAATGTG	ATGGTTGCCA	ACCCGTATGG	TATCACCTGT	GACGGCTGTG	2820
GTTTTATCAA	CACGCCGCAC	GCGACGCTCA	CCACAGGCAG	ACCTGTGATG	AATGCCGACG	2880
GCAGCCTGCA	GGCGCTGGAG	GTGACTGAAG	GCAGTATCAC	CATCAATGGC	GCGGGCCTGG	2940
ACGGCACCCG	GAGCGATGCC	GTATCCATTA	TTGCCCGTGC	AACGGAAGTG	AATGCCGCGC	3000
TTCATGCGAA	GGATTTAACT	GTCACTGCAG	GCGCTAACCG	GATAACTGCA	GATGGTCGCG	3060
TCAGTGCCCT	GAAGGGCGAA	GGTGATGTGC	CGAAAGTTGC	CGTTGATACC	GGCGCGCTCG	3120
GTGGAATGTA	CGCCAGGCGT	ATTCATCTGA	CCTCCACTGA	AAGTGGTGTC	GGGGTTAATC	3180
TTGGTAACCT	TTATGCCCGC	GATGGCGATA	TCACCCTGGA	TGCCAGCGGC	AGACTGACTG	3240
TCAACAACAG	TCTCGCCACG	GGGGCCGTCA	CTGCAAAAGG	TCAGGGCGTC	ACCTTAACCG	3300
GCGACCATAA	AGCGGGAGGT	AACCTGAGCG	TCACAGCCGG	AGCGATATCG	TTCTCAGCAA	3360
TGGAACGCTT	AACAGCGACA	AGGACCTCAG	CCTNGACCGC	CGGCGGCAGA	AATTCACTCA	3420
ACAGAATGAA	AAACTGACTG	CCGGCCGGGA	TGTAACGCTT	GCCGCGAAAA	AACATCACAC	3480
AGGGTTACCG	GCCA					3494

(2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9319 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

GNCCCAAGCT	TAGGTTCGCG	GCCGCAGTAC	TGGATCTATT	GCCAGCTTCA	CCGCCAGACT	60
GTCAGTCAGT	ACATCACCGT	ATTTCTGCTG	GCAGGTTGCC	GGGCGGCTGC	ACAGTCACTG	120
ATCAGTTGCT	TCTGCTGTGC	CGTACTCAAC	TCTTCGTACT	TTTTGATAAT	ACCGCCGCAG	180-
TCACCGCCTT	TCGCCTGACA	GGACTTCATT	TCAGCAGAGC	AGGCATCTAT	CTGCTTATTG	240

CTCAGGTAGT	TATTCTCAAC	AACAACCACA	GGGGATTAGA	AGCCTTTTAG	CCTGAAATAT	300
TTTGCGAGAG	CACATCCAAT	ACCAATAAAT	GAGCCAATCA	CACATCCGAT	AAACAAAACA	360
TGCCGAATCT	CTTTCAAACT	AATTTTAAA	TTACCTGTTA	TCAACCACTC	CACCAAAGAA	420
AAAAACACAT	CAATACATAG	GAATGACACC	ACTATAGAAA	GAAATGCGAT	TATAAAAATA	480
ATAAACAATT	CTGATAAGTG	CTGAGAATTG	CCGCTCATTT	TTTCACCTCC	GGAATGTAAG	540
ACTCAATCTT	TTTACCTTCA	TACTCAGAAG	CAAAAGAAGC	CGACACATCC	CCAGCTATAC	600
CAGGAATCCT	ACTGGGTGTC	ATTTCTTTTG	ATAGCCCCAA	TTCTCCTTTA	ATATCGGTAT	660
ATTTTTGAAG	TGTTGGATTA	AATTTCGGGT	CCCAGCCGTC	TTTTAACCAG	TTAGCACCAC	720
TATTAATGCC	CCATGAAAGG	CCTTTACCAA	TGCCATATCC	AATAGCAGAA	CCAGCACCAT	780
TGATCAACGC	ACCAGATGTT	GGGGCTTTTC	CTTCGAGCCA	GTTTCCTAAT	GCTCCTCCAG	840
TTGCATTCCA	GCCAACTGTG	CCTACAACTC	CATTCCCTGC	ACTAATCACA	TTAACCCAAC	900
CACCGATAAT	CGCTGTTGTA	GGATCTATAG	TTCCATCCGT	CAGATAGCTA	ACACCTGCAT	960
TAGCTCCTGC	CCCTAATCCC	CACATGGCCT	GAGCACCGCC	AGTAAGAGAG	CTACACTACC	1020
AGTGGCCAAC	GCTCCGGCAT	ACGCTTTATT	GACTGCTTCT	CCTCGCTTAC	AGGCTTCACC	1080
GCCTGGGGCA	TCGTTACAGG	AAAGTACATC	TGCGCCATGC	GTCTGAGCAG	CTTTGCTCTG	1140
CTCGGACTCT	GTGCCACCAA	CCAGGTTATT	CTCAGCAATG	TTCTTCCCGA	CACCAGCCCC	1200
AGCAGCCGCG	CCAGCCACAT	CGCCACTGGC	AATGCCGCCA	GCCATACCCG	CTGACAGCGT	1260
TGCCAGCGTG	CTTACGGTTT	GCTTCTGATC	TTCTGTCAGT	TTCGACGGAT	CTACGTCCGG	1320
ATAGAGGCTT	TTCGCAATGG	CTGACGAGAT	CACTTCACCA	GTACCCGCAC	CAATTGCGCC	1380
TGCTGCCGCA	CTGTTGCCCT	GAAGGGCTGC	TGTCACACCA	CCGAGAATGG	CATGGGCAAT	1440
GGCTTTTGCC	GCTGTATTGI	CATCAATACC	CGCGTGATGA	CCGATGATGT	TCGCCAGCTC	1500
CGGCGCCGAA	GCTCCGGCCA	GAGCACCTGC	TAAATTACCC	CCCGCCAGCC	CCTGAAGTGC	1560
AGCCGTTGCA	GCCTGGATAC	CGCGCTGCAT	ATCGCTGCCG	GTACCATACI	TTTCCTGTTC	1620
CTTTTTGTAT	TCCGGCGTAI	CACGCAGTT	TGCCAGATAT	GCCTGCCGCI	GTTCTTCCGT	1680
CGCATCCGCC	GGAACAGGC	CATATTTATO	CTGCGCAGCT	TCAACGCATI	CAGTTCCCCC	1740
TGCGTCCGC	G CAATATCCG	CACCTGACT	CCTATGTCAC	TGATAAGCCC	CACTGTCTGC	1800
AGACGCCTC	r GCTCCTTCT	CTTGTCAAA	T ATCGGGCTGA	A TACTGTCAT	AGCGTGCGCA	1860
GGGTCACGG	C TCAGGTTCG	C CAGATTCTG	C TTCTGATTG	CCCTGTCCC	G GATGGTGATA	1920
GTGCCTTCT	G CCACTGCGG	C CTGAGTCGT	r ccttccgca	r GTCCGCTGT	ACCTCCGGCG	1980
GATATCATG	C CACCCGGCA	T GTTACCCTG.	A AATTTATCC	C CGAAGCTGC	C ACCACCGCTC	2040
AGACTGATT	C CACTGTGAC	T GACTTTATA	A TCCGCTTCG	r TGTGAAGGT	C ACTGAACCCC	2100
AGCGTTCCG	G TATCCAGGT	G GTTTTTATC	C GGTGTGGCA	G TGGAGGCAA	T CACCGCACCA	2160

-204-

TCCAGTTGGG	TATGTTTACC	CACTGTGATG	TCGAAGCCGC	CGTCACCGGC	AAACATTCCG	2220
GTTTGTTCAG	CAACGGAGTC	AAAGCGGCTC	TTCATCTTAT	CCCGGGAGGC	AGCGATGTAA	2280
CCTGAGCCGG	TCATGGAGCC	AAAGGTAAAA	CTGCCGCCGG	CASCCACGCT	GGTCTGTTTA	2340
CTGTCGTACT	TACTGGTGTC	CTGCTGGCTG	CTTATCAGCA	GGTCGTGGCC	CACATCGGCG	2400
ATAATCCTGT	TGCCGTTGAC	CTGAGCACCG	TTCAGTACCG	TATCCCGACC	ACTGTTGATG	2460
GTGACGGTTT	TACCGCTGTC	TGTTGTGGTT	TCAGTCCACT	CAGTACCGTT	ACCTTTCTCG	2520
CTGCCTTTTG	CCGCATTAAC	GCTGGCAAAG	ACACTGATAC	CGGCACCTTT	ACCTGCACCG	2580
ATACTGACAC	CCACGCCACC	GCCACTGCTG	CTGTTCCTGC	CCGTTGTTTT	TTGTGTGTTT	2640
GCCGCGCCAC	TCAACAGAAC	ATCATTCGCA	GCATCCAGGT	TTGTGTTACC	ACCGGCCTTA	2700
AGCTGGCTTC	CGGCAATCAC	AATATCTCCG	CGGTTATCGC	CCCTGTTTTT	ACCGGTTGCG	2760
ACAACAGACA	GATTATTCCC	GGCATTCAGC	GTACTGCCGG	ATACTGTGTC	ACTTTCAGAA	2820
TGTTGTTGTG	ATTTCGATTT	CTGGGTGGTG	AGCGACAGGC	TGACTCCCGT	CGCATTCGGG	2880
TCACCGGTTG	CGGAGGCCAT	TGCCGCAGCC	TGTCCGGCCT	GCACACCAGA	CAGCGCTGTC	2940
TTTGTAGCCT	GCAGGGTTTT	CAGACGGCTG	TCACTGCTCT	CCTTCGTCTC	CTGTGCACTG	3000
GTGACCGCAT	TATTGATGGC	ACTGCCCACT	GTGCCGGAAA	GGGCAACCGT	CAGCCCGCTT	3060
TTCTTCTGCT	CAAATTTTTC	GTCCACAGTA	CGACGGTCAT	GCCCGGGTC	AACCACCACA	3120
CTGTCACCGG	TAATGCTGAT	ATCCCGGTTC	GCAATCACAT	CCGAACCGCT	GATATGAGCC	3180
TGTTTGCCCG	CGGTAATACT	GACATTACCG	GCAGTGGAGC	CGATGGTACT	GGCACTCTGA	3240
CTCTGCGTTG	TCCCGGCCTC	GCGGCGGTCG	TGCGTTGTCT	TACTGCTGCC	AATGGTGAAG	3300
CCAATACCGC	CGGTACCCAT	CAGACCGGAT	TTCTTCGTTT	CCTTAAAGCG	CCAGGACGTA	3360
TCTGTACTGG	TGGCAGCAAG	AACATCAACA	TGGTTACCCG	CCGCCAGTGA	CACATCCCGG	3420
TCAGCCACCA	CATCCGAACC	CTCTACCGTC	AGGTTATCAC	CGGCGTTAAC	GGTCACGCGG	3480
TTCCCCGACA	GCAGGGAACC	TGYTTCACGG	GAGGCACTGT	CCTCACTGAT	GGTGTGGGTG	3540
GTTTTCTTAC	TGAGAAAACC	TCCGCTTTTT	TTCTTCGTTT	CCAGATAGTG	ATAGTCACTT	3600
TCTGTCGCCG	TGGTCAGGGC	AACATCACGA	CCGGCATTCA	CGCTGATATT	GCCGGTTGCG	3660
GTAACGGATG	ACGCAACAGC	GGTGATATCC	CGTCCTGCGG	TGACGGTGGT	GTCACCACCK	3720
CTGGCGATTT	CCGTTCCCTG	CTGACGGACT	GTCTCGTTAA	TCTCTTTCTT	TTTCTTCGAC	3780
GTATAGCTGT	CGCCTGCGCC	GGCAGACTCT	GCCACCAGGT	TCACATCACG	TCCGCCCCGG	3840
ATGACCACGT	TATTTTCCGC	AGCCATACCG	GCAGCCTGAC	TGGCAATATC	ACGACCGGCA	3900
ACAAGGAGGA	GGTTATCGCC	CGCCGTCACC	GTGGACACAG	CTGCGTGGCT	TTCATGACTT	3960
TCTGACCTGC	CGTTGCGACT	GTTTTTGCTT	TCCCTGACTG	CATTCAGACT	CAGGTCGTTA	4020 -
CCTGCAGAAA	GCAGGGCGCT	GTGCCCGGCA	GAAACAGAGG	ATGCTGTGAC	ATCCAGATTA	4080

-205-

TGGCCTGCAG	CCATCGCCAG	GTTACCGCCG	GCGCTGATGC	TGCTGCCCTG	TGAGGTGGTG	4140
GATGATGAAC	TGTTGTCATC	AGTGTGCCAG	AAACCGGACT	GACTTTTGCT	CCCGCTTATC	4200
AGGTTTACGG	CAATGTTGAT	GTCATTACCC	GCAGACATTC	CAAGGTCTCC	ACCGGACGAG	4260
ACCGTTGCCC	CGGTAATATC	AATGTTTTTC	CCTGCATCCA	GTGAAAGTGA	ATCAGTGCCT	4320
TTAATGGTCG	CAACCGGACC	GGTGTCCGTA	CCGCTGAGAT	GCACACCACC	ATATCGGCTG	4380
TCACTGCCCG	CATTCCATTG	CTGACGCCGG	GTGATATTGC	TGATGTTGCC	ACTCACGCTT	4440
TCCAGTTGTA	CGGTTTTACC	GCTGATGACT	GAGCTGATAT	TGCTGATATC	CCCGATGGCG	4500
CTCAGGTCCA	GGCTACCGCC	CGCGCTTATC	AGCCCTGCAT	TCAGGTTGTC	GATATAGCCG	4560
GTACTGTCGA	GCGAAAGGTC	GTTCTGTGCG	TTGATGCTGC	CGCCGCTGTT	GGTGATATTG	4620
CCGTCCGCAA	GCTGCACGTT	GTTCCCGCTG	ATAACGCTGC	CGTTATGCAG	GGTGATATCT	4680
TCCGGCGACA	GATACAGTTT	CGGGACCATG	ACTGTCTGTC	CGTTGATGGT	GACTGACTCC	4740
CACCACAGCA	TGCTGCCGTC	AAGCTGAGCA	ATCTGTTCAG	CTGTCAGCGC	CACACCAAAC	4800
TCTAATCCCA	GTCCTTTCTG	TTGTCTGGCC	GCGTTATCCA	TCAGATACCG	CATCTGTTCC	4860
GTGTCTGAAC	CCAGTCCGTT	GAGATAACGT	GAACCCGTCC	GGCTCAGCAC	CGCGTTACTG	4920
ACATACCGGG	TATCAAAGAC	CGCATCCCCC	AGGAAACGAT	AATCTTTTTC	CGGTTTCAGC	4980
CCGAGGCGGT	CAAGAAAATA	CGATGAGCCC	AGAAACTGTT	TTTCATCGGT	ATACGACGGA	5040
GCCGTTTCAC	GTGGCGCCTG	ACCCGGTTTC	GCTCCAAGAA	GCTCATACAG	TCCGGCAAAC	5100
AAATGGCTGT	CCACCTGTCC	GAGACCATCC	AGTTTCGGGT	TCACCGTAAT	CAGATACGGA	5160
CTGTCCGGGT	CCGTGGACGG	AACCAGGTAT	CCATTGTTGC	CGGAAGGCAG	TGGCCAGTCA	5220
TCACTGATAC	CGGTCTGACC	GGTCAGTGGC	GAACCTCCGG	CAATATTTT	CAGGGCACCT	5280
GCCAGTTCAT	CGTGCCATTG	GCGGAGAGCCA	ACCACCACCG	GCTCATACTG	CTGCAGCGCT	5340
GTCTGTGTCA	A GACTGTCTCC	GCCGGTCTGC	TGACTTAACG	TATTCAGTAC	AGGTGCAGAG	5400
ACCACCGGAC	TGACACTACO	TGCATGTGCA	GTGGTTGTTC	: CGTTATTGAT	ACTGCTGGTA	5460
AAACGGGTCT	TAACATCCC	C GCCCGCCTG#	A ATAACGGAAT	AATACGTCTT	ACCGGGCGTG	5520
TAATCTTTT	r cccggccato	CAGTGAAAA1	CTGATGGTAT	TGTTTTCAAA	A TTCCGGTGAC	5580
AGCAGGGGC	A GTTTATCCA	G AGAGCCTGT1	r GCATAGCTAC	CGTAAAACGT	TTTCGGGTCG	5640
TAGCGGTATA	A CCAGATATTO	C ATTCTCTGT	C CCCGTCTGCC	AGCTCTGAT	GCTTAACTCT	5700
CTGCCCGAG	A GTGCGATAT	C CCCATTCGC	C AGGATAAATO	ACGCCCGGT	T TTCCAGTCGT	5760
TCAGCCTCA	G CAGAAAGAT	T ACGCCCTGAG	C GCAATGCGGG	CTGCCGGAT	r atcagcaccg	5820
GTTACTGTT	G TGATGTTCT	G GCTGCTGAG	A AAGCGCTGTC	G TGGCACTGT	C AGCAAACGGA	5880
GCGTAATAA	T AAAGCGTAT	C CATTGTGAT	A TTGCATGCC	C CGTGCCCGT	r GCAGGGCGTA	5940
CCGTGCTGA	т тттсаастт	c acgggtgaa	A TAGCCATAGO	C TGCCGTCAG	g AAGAAGGGAA	6000

-206-

AGGGGAATAT	CAACCAGAGC	ATTTCCCATT	CCCTGAATGG	ATGAGGGGTT	AGTCCGGGTT	6060
GTTGTTGTGG	CAGAAAATCC	CTCCCGCTGG	TTCAGAAGAT	GCCCGGTTCT	TACAACAATA	6120
TCGCCCTGAT	GCGTCTCAAT	ATTCCCGGAA	GTATTGATAA	TCTCTGTGTT	TGCACCGCCG	6180
GAAGCATCCT	TCTGTACCCA	CAGACTGTTG	CCGGCCAGGA	TATCACCATG	CTGGTTATGC	6240
AGACGGTCTG	TAAACAGCTT	CAGGTTATTC	CCCGCATAAA	TCAGCGCACT	GTTCAGCAGG	6300
GTACCGGCCA	CATTCATTGT	CAGACTGCCT	GCCGTGCCGG	TAAAACCACT	GATGGTGATA	6360
TCACTCCGGC	TGTTCAGACT	CACATCGCCA	CCGGCCTGAA	GTGAACCCGG	TGCGTTAAGG	6420
AAAAGACGCT	GTGCGCTGAA	AACACTGTTG	CCTTTACCGG	CAGTCAGCGT	TCCATTGTTG	6480
GTGAATGCCT	CTCCGGCACC	GAGCACCATG	GCATCACCCT	GCATGACACC	GCCGTTGGTG	6540
ATGGCATTTT	GCGACGTGAC	GGAAAGGGTT	TTCCCTGCGG	CCAGGGTACC	GTAATTCGTG	6600
AGGGCAGCAA	TCAGTTTCAG	TGTGACATCA	CCGGTGGCCA	CCACCTGCCC	CTGACCACTG	6660
AAGTCCTGAG	CGTCAAGCAG	CAGGTTGCCT	GCACTGTACA	GCCGCCCTGT	ACCATTTTGC	6720
AGCAGTGAAC	TGCCCTTGAC	GCCAAGCCCG	GAGGTTCCCA	GCAGGGTACC	GCTGTTGCTG	6780
AATGTGTGGT	AATTCACCAG	CAGGTCCGCA	CCCTGAAGCG	TACCGGTATT	ATTCAGCGTG	6840
GTTCCTTTAA	CGTCGGCACT	GCCGGTGGCA	AGTACGCGTC	CGCCGTTGAC	AGTATTCACC	6900
ACATCCAGCA	GCAGGGTGGC	AGCCTGTACC	AGTCCGCTGC	CGGTGTTCGC	CAGCACCTGC	6960
GCCGTCAGCG	TGAGGTTACT	GCCGGAGAGG	ATTTTGCCGT	CGTTCTGCAG	ACGGTCAGTG	7020
GCGTTCAGGG	AAACCCCGCC	ACCACCCTGT	ATCGTGCCCT	GGTTACTCAG	GGTCGCAGTA	7080
CTGACATTCA	GTGCATTCCG	GCTCATCAGA	ACACCACCGG	AACGGTTGTT	CACGCCACCG	7140
GAGGCGGCCA	GCGTCAGCGT	TTCGCCCTGC	AGATGCCCGC	CGTTTGTGAG	TTGTCCTGCC	7200
GTGATGGTGG	TGGCATTTCC	CTGTAATTGC	CCGTCGTTTG	TGACACTGTC	TGCCTTCAGC	7260
GTCAGCACAC	CTGCACTGAG	CAGTTTTCCG	CTCGCGTGAT	TGTGCAGCGT	CTGATTCACC	7320
GTGAGCGTGA	GAGCATCCAC	ACCGGTGATG	TCACCCGCAC	TGGTCAGTGA	GTTCGCCTTC	7380
AGGGTCAGAT	TTTTTGCAAT	CCATTGTCCG	CTGTTGCTTA	AATTCAGTGC	ACTGAGCGCC	7440
ATTTCACCGT	TCGAGGTGAC	TTTGCTGCCT	GCTGTGCTGA	CGAGCTCACC	CGTCAGACGT	7500
GCAGTCAGGC	TGTCAGCCGC	CTGGATCGCC	CCGCTGTTTG	CCAGACTGTC	TGCGGTGATC	7560
AGCACCCGTT	TGCCCTGCCA	GTGTCCGGAA	CTGGTAATAC	TGCCTGCGGT	GATTGTCAGA	7620
TCGCCGCTGG	TCAGCAATGA	ACCTCCGTTA	TTCATCAGCG	CAGGTTGAGG	GGATGCCATA	7680
CGGGCGGCAA	GCGTCAGCGC	GGCTATCCCG	GTGAGCGTGC	CACTGTTGGT	GACACTGTTC	7740
TGGCGAATCG	TGACATGGTT	ACCCTGGACA	GTGCCGCTGT	TATCCAGTGA	GTTTCCATCA	7800
AGGGAGAGCG	TGCCGGCCGA	AAGCAGACTG	CCCCGGTTGT	CCATGGTGGC	TGCTTTCAGC	7860 -
GTGGTGTCAC	CCTGGCTCAT	GATATCGCCG	GTACTGGTCA	ACTGACCGGT	TGCCGAAGCA	7920

-207-

						7000
GTAAGGTTAC	CGGTTGCCAG	CACGGAACCA	CTGTTCGCCC	AGTTGTCCCG	CYTGCACGGT	7980
GAGATTCTGT	CCCTGCGTGG	TCCTGCGGTA	TGCAGTGTTT	TACCCCGGAG	GGTGAGGTCG	8040
CCCGCCGTCA	GCCAGCGCCC	GTTACTACCC	TGTGAGAGGG	TGTCGCCAGC	AAGCGCCAGT	8100
GCACCGGCGC	CCTGCAACAG	GCCGTCACCA	TCCAGCGTGG	TCGCCCTGAC	GCTCAGCGTG	8160
TCAGCGATGA	TTTTTCCCGG	ATTGCTGAGG	GAGACAGCAT	TTAACATTAA	ACCATTATCA	8220
CCGGTGATAA	GCCCGCTGTT	GCGGATGTCC	GGTATATCCA	GCGTCAGGTC	TGCAGCACTG	8280
TACAGCGTGC	CGTTCTGCTG	ATTATCAAGC	CTCTGTGTGT	TAACGGTAAG	TGAGGCCTCC	8340
CCCTGCAACA	GACCGCTGTT	GGTCAGGGTC	TGTGACTGTG	TATTCAGGGC	GGAACCAACA	8400
AGTACGCCGC	TGCTGGTCAG	TTCCGGCGCA	CTGAGGCTGA	GCGACGGGGC	ACTGCTTTTC	8 4 60
CCGCTGTGGG	TGAGCTTTTC	ACTGGCGTTC	ACCACCATGG	TCTGTTGTGC	TGCCTGCGTA	8520
CCTGCAAGAC	GTGCATCTCT	GGCGTTGATG	CTGAGATTTT	TACCGCTCTG	AAGCTGTGCG	8580
CCCGCTGCGG	TACTCAGTTT	GTCTGCCTGA	ACCCGGAGGG	TGTCACCGGC	ACTGTTTTCC	8640
CCGTCCAGCG	CCACTGTTGT	CACATTCAGC	GTCATCGCAG	CATCGCTGTG	GGTGACCGAT	8700
TTTTTACCGG	AGCTCAGCGC	CTGCGCACTG	ACCGTCAGCC	CTTTGCCGCC	GGACAGCACA	8760
CCGTTCTGTG	TCACATCCTG	CGCCTTCAGC	ACCAGTACAT	CATCGCTCAC	CAGCGAACCT	8820
GTACTGGTCA	GTTTCCCACT	GGCCGTGATA	TCCACTTTGC	CCTTCGCGCC	AGTGCGGCCG	8880
CTCTGGGTAA	AGTCGCGGGT	ATTCACGGTC	AGGGGACCGC	CACTGAGCAG	GGAGCCACTG	8940
TTGCTGAGCG	TTGTACTGCC	GAGCGTCAGG	GAAGCCCCCT	GAACAGCACC	ACTGTTATTC	9000
AGCGTGCCGG	CATCGAGTCC	CGCATGACCT	TTCGCCAGCA	ATATTCCGTC	CTGTGTCAGC	9060
GTGGTGGCGC	TGGCCGTGAG	ATTCTGCCCG	GCGGTTATCT	GTCCCTGTGT	TGTCAGCGTG	9120
TCACTGGCGA	CAGTCACGAT	ATCGCGGGCC	GCGTTAATCT	GGCTGGCGGT	ATCCTGTGTG	9180
ATGTTTTTCG	CGGCAAGCGT	TACATCCCG	CCGGCAGTCA	A GTTTTTCATT	CTGTTGAGTG	9240
ATTCTGCCGC	CGGCGGTCAG	GCTGAGGTC	TTGTCGCTG1	TAAGCGTTCC	ATTGCTGAGA	9300
ACGATAATCG	CTCCGGGCT					9319

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 551 base pairs
- (E) TYPE: nucleic acid (C) STRANDEDNESS: double
- (E) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

ATGAGGCGAT TAAAGCAACA TTGGGCAGTG ATAATGCCCC CACCCAGCCA CCTAACGCAG 60-CGAAGAGTAA TACATCGCCC ATGCCTAATG CTTCTTTACG CAGAACTATT CCGGCTATCC 120

AGCGSAGGGA	GTAAAAAGTG	ATAAATCCCA	CCAGTACGCC	GGTAACTGCG	TCTTGTAGCG	180
TTAACGGACT	CTGTTGCGCC	CATGCTGCAA	TCAGCCCGGT	CCACAATACG	CCCTGAGTAA	240
AAACATCGGG	CAGCCATTGG	TTGTCGAGGT	CAATGACGCT	CGCGGCAATC	AGCCAGGCGG	300
ATAATATCAT	CACCGCCAGC	CCCCATCCAC	TTTCTGGCCA	CACCAGACTC	GCCAGCAAAA	360
AAGTGAGTGC	TGTCAATAAC	TCAACCAGCG	GATAACGTTG	CTGATTTTCG	CCTGACAGTC	420
GCGGCAGCCC	TTTGAGCATC	AACCATGAGA	GCAGCGGAAT	ATTGTCACGA	ACGCGGATGG	480
TCTGCTGGCA	ATGCGGGACA	GTTGCGAACC	GGGTTAGCCA	AGGGCTTTAT	TTTTTGGACT	540
GCGGCACTCG	G					551

(2) INFORMATION FOR SEQ ID NO: 87:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 595 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

CATTTACCAA	ACCCCGTTCG	AATATCTTAT	CTATTGCCCA	TCTCATATTA	AATATAACCG	60
ATAATTTGGT	GGATACTAAT	AGTAATTACC	TTGTTATTGA	AAATATAATT	ATTGTTATTT	120
TTAGCCTCAT	TAATTAAATT	GAAAAATCCT	CTCTAATTTT	TGTCAGATTA	GGGCTGTAGA	180
AAGGATCGAG	TTCAAGATGT	TTACCCCATT	TGCTTTTCAT	AAAGTCCACT	TCCCTGGCAA	240
ATCTGGCTAG	TTTCTCCGGT	GAATCTTCGG	CTCCTCGACT	AATCGATTCA	TAGTGGTAAA	300
GCTCGGCATA	AGGTGTCCAG	AGATTACGAT	ACCCCGCTTC	GNGTACTTTC	AGACAGAAGT	360
CCACATCATT	AAAAGCAACA	TGCAGATTCT	CTTCATCCAA	CCCGGCAACT	TCCTCATAAA	420
TATCTTTGCG	AATAAGCAGG	CAAGCCGCCG	TGACGGCCGA	GAGAGTTTGT	GTCAACAACA	480
AACGGCTGAA	ATAGCCCGGA	TGGTGGCGAG	GATAATGTTT	ATGGGAGTGT	CCAGCTACAC	540
CACCAATACC	GAGAATCACT	CCGCCATGTT	GTAAAAGTAT	CATTACTGTN	ATAGG	595

(2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 399 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

TGGCAGTTGA ACAGAT	TTTC ACATCAGCA	A CAGATTAGCG	AACGGGACTT	GGCATTAGCC	60 -
GAGCGTTTTA GTGAAN	GTTT AGCTCTAAC	A CGTCTATTAG	AAGAGCGCAC	GCAGNATTAT	120

-209-

CACTGAACTA	GAGATTGAAA	AACAATTGCT	TACCACCAAG	TTGTCTGGCG	TAGAGCAGCA	180
GTTAAGGGCT	GAGCAAGAGT	CGCTTCAGCA	GGCCCAGTCT	GCATTGCTCT	CAGCAGCAAA	240
AGAAAAGCAA	CATCAACTTG	ATGAGTTGGA	ATCGGTGCTC	AATGAGCGGT	ACAGTGAGAT	300
TGCAACCTTA	ACCCGTTGGC	TGGAAGAACG	TGATCAGGCA	CTCCTTAGTG	CAGCAAGTGA	360
ACAACAACAG	ACCAATGANA	CCATATAGAG	CTCAGCCAG			399

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1013 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

ATACTCTGCT	TGTTGAGCAG	CCATTACGTC	GCTTTGTGAC	GCAATATTAG	ACTCGTGCAC	60
TGCTATTAGT	TGAGTCAGTT	CATCACATTG	TTTAGAAGCC	GCAGCCAAAG	CAAGAGTTTG	120
CTCATCTATG	CTTTGCTGCA	ATGTTTGTTG	CACAAGTTGC	CCTTCTTCCA	GCTGTTGCTG	180
TAGATTTGCA	CTTACCTTTT	TCAGTGCATC	ATATTCCAAG	CCTAACGTAT	CGTGCTGTGC	240
TTCCAGTAAT	CCATAAGCAT	GCTGCAACTG	GTTTTTAGTT	TGCTGCTCAC	CGTCAAGCTG	300
TTGCTGCAAT	GCATTAGCCT	GCTGTTGCAA	CAAGTTCACC	ATATTGTCTC	GCTCGGCCAG	360
TGTACGAACC	TGTGTATCCT	GGATATGTAG	CGCTTGTTCC	AACTGAAGCT	GTAATTCGGT	420
AATTTGCCGC	GAATGTTCGC	TCAATGCTCT	GTTGCTCTTG	CTGAGCGCGA	GAGTAAGGTG	480
AGATGCACGC	TGTGTTTCTT	CACTCAATTG	TAACGTCAGG	GTATTGACCT	GTTGCTCCAG	540
TTGATGGCGA	GCTTGCTCCT	GGCTCGTGAT	GCGACTCTGT	TGCTGCTCTA	GTTGATGCAG	600
AGCTGTATGC	AACTCATCGT	TGGCTTGTAT	TCGCTCCTGC	GACCATACAC	TCAAGTTTGT	660
TTGGGCCTCA	TTGAGCTGTT	CTTGCAATAA	TGCCACCTCA	GATGTCAGCG	AATTGATATG	720
TTGCTGGGCA	AAAGATAGCT	CATCAGATTG	CACTTGAGCA	TGTGCAAGCT	GCTTTTCCAT	780
TTCTAATATG	CTGTTATGTT	GTGCAGTAAT	GCGCTCGGCA	AGACGCCCCC	TTTCCAATGC	840
CTGCTGTTCT	ACCAATAGCT	GCCGTTCAGC	CTGAATGTCA	TCTTGTTGTG	TAGACAACTG	900
ACGTTTTAAC	TGGGAATTCT	CCCAACTCTC	GCTACAAGAT	TTNCCCAAAC	GACAAAAGAT	960
GTCTTGGACT	TGTNTGGGTT	ACACGAGCAT	TTTCTGAGGA	TTTTATACCA	ATN	1013

(2) INFORMATION FOR SEQ ID NO: 90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

-210-

	(жі) 9	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 9	90:		
GATAI	CCACA	TCGAGACGTT	TGAAAAGAGT	CTGGTGATCC	GTTTTCGTGT	TGACGGCACA	60
TTACA	ATGAAA	TGCTGCGTCC	GGGGCGCAAA	CTGGCCTCGC	TGCTGGTGTC	GCGTATCAAG	120
GTGA:	rggcgc	GGCTGGACAT	TGCCGAAAAG	CGCGTGCCGC	AGSATGGACG	TATTGCGCTG	180
TTGCT	rgggcg	GCCGGGCGAT	TGACGTGCGT	GTATCAACCA	TGCCTTCCGC	CTGGGGGGAA	240
CGGG:	rggtgc	TGCGACTGCT	GGACAAAAAC	CAGGCTCGCC	TGACGCTGGA	GCGTCTGGGT	300
AATT	STCTCG	AACTGACTGC	GCAGTTGCGC	CACTGTTACA	CAAACCGCAC	GGCATTTTTC	360
TGGT	GACGGG	GCCGACCGGT	TCCGGCAAAA	GCACCACGCT	GTACGCTGGA	TTGCAGGAGC	420
TGAA	CAACCA	CTCGCGTAAC	ATTCTCACGG	TTGAAGACCC	TATCGAATAC	ATGATTGAAG	480
GGAT(CGGTCA	GACGCAGGTT	AACACCCGCG	TCGGCATGAC	ATTCGCCCGT	GGCCTGCGCG	540
CAAT	rttgcg	TCAGGACCCG	GATGTGGTGA	TGGTCSGTGA	AATCCGCGAT	ACCGAAACCG	600
CAGA	AATCGC	TGTTCAGGCT	TCAACTGGAC	CGGACACCTG	GGNACTTTCN	ACGCTGGNAT	660
ACCA	AAAAA	AGGGGTGGGG	GGATTATAC				689

(2) INFORMATION FOR SEQ ID NO: 91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1281 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

€O	GCTGCCAGAC	GAAGANTCCC	GCGGGCCTCG	CCATCAGCTG	CCGAGATCTT	CTCAGCAGAA
120	AGGGCGCGTT	CTCAGCGTAA	GTCGATTTGC	ATTCGGCCTC	CGCTGTTCAA	CGCATTCAGC
180	GGAGGATCTC	GGATGCACAT	GAGCGACAAC	GCAAAACAGA	TGCAGCTCCT	CAGCCCCCGT
240	AGGGCAGACG	CTGAAACTAT	AAACCGACGG	CCACCAGGCT	TCGCACCATG	CAGCGACGCT
300	CCCGGCATTA	AACGCGTTCT	AGGCACCATT	CCTGTGCTAC	GCGGTGGTTT	CACGGTGTTA
360	CGCTGCGCAG	CAGGCAATAT	TGATTTTGCG	CGGTAAGGCC	GAACTTCTGG	AGGAACGCAC
420	CGCATGTAGT	TTGCTCGGCG	CGCGGTAGAT	CCCTGCTCAT	CAGGCTTAAG	TGTGCGGCAT
480	GTCGGGCGGA	ACGCAGAATG	CCATACCGTC	CCGTCTGCCG	CTGCGACACA	TATATTTGCG
540	AGGTTACCAA	CGATTTAAAC	TATCCGCCGT	TTTTCTTTT	CAGGTTACGT	TAAACACCAT
600	CTGGTCGTCC	TTTCTCCCGC	CTCGCCACGC	AGCGGCACTT	ATCGCCCAGC	TCAACGGGAT
660	TTTCAGTTTG	ACACGGTGGT	TCGTTAGCCA	TAGCTCACCA	CAAGCACAAT	ATCAGACCGC
720	TTCCTGCTCA	CCTTCGACAC	TGTCCTTCCA	GAGGCTGGTC	ACACCACGTC	CGCTCACCAA

-211-

ATCACCATCT	GTACCGCGTT	TCCTTCGTTA	ATCTGCGGCG	TGACTTTCAG	CATGATGCCG	780
ACTTTTTTCC	TCTCTACCGT	GTTGAAAGGA	TTGCTGTTAT	TGGAGCCAAC	GGTAGATCCA	840
GTTAATACCG	GAACGTCCTG	GCCCACCATG	AAGAAGGCTT	CCTGGTTGTC	CAGCGTGGTG	900
ATGCTCGGCG	TGGAGAGCAC	GTTCGAGCTG	GAGTCGTTTT	TGACCGCCTG	TACCAGCGCC	960
ATCCAGTCGC	CTTTCAMCAC	GCCAACCGCC	GTACCGCTAA	AGCCAGAAAG	AAGCTGAGCA	1020
AGCGTGGAGA	GATCGCCGTT	AGTATCCGGA	TTTATGGTGG	TAGCGCCGTT	TTCACTGATC	1080
ACCGTGGAGC	CTTTCTGCGG	TTTTGCYTGA	GAAATCGTGC	GCCCAGCGTA	CCAATAGGGA	1140
TCTGCGTACC	GTTAGCAAAC	TGCATTAATC	CGGCATCTTT	CGACGCCCAC	TGCACGCCGA	1200
AATTGATAAT	TCACCTTCGG	CAACTTCCAC	GATCAACGCC	TCGACATGTA	CCTGAGCACG	1260
GCGAATATCC	AGTTGTTCAA	T				1281

(2) INFORMATION FOR SEQ ID NO: 92:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 421 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

CAATATTAGC	GCACGGCACC	AAAGGTGATG	AATGAGCAGG	CTGRAATATT	ATTTTCCCGC	60
GGTGCAGAAA	TCCTTGTTCT	TGGTTGTACA	GAAATTCCGG	TTATTCTGGC	GCAACGTTAA	120
AGAGCAGCCT	TCCCGCTATA	TTGACTCACG	GCGTCACTCG	TTCGTGCCGG	AATAAAATGG	180
TACGAAAATC	GTGTCGGTAA	ACATTATCTT	TTAACCCAAT	AATCATTTAA	ATCGCAGCCA	240
GAAAGTTATT	CGCTTTTAAC	TGAATTATAT	TTATAACGGA	GAACATTATG	GTTTGGCTGG	300
AAATTATCGT	AGTACTTGGT	GCAATAKTTT	TTGGTATTCG	CCAGGGGGGA	ATCGGTATTG	360
GTTTATGTGG	CGGGCTTGGG	CTTGCCATTC	TGACTCTGGG	ACTTGGTCTG	CCTATGGGGG	420
G						421

(2) INFORMATION FOR SEQ ID NO: 93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1018 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:

GTTAACAATG GCGTAACAAA	TTTCAATAAC	GTAGAAGATT	TGCTGTCAGA	AAGGTCAATA	60 -
TTTCCTTTCA ATGGGTCAAA	GACTTGCTTC	TGGAATTCAT	CCGGTTTTTT	CTCCAGACGT	120

-212-

TTTCCTTCTT	CATAATAGTC	AATATAACTT	TTACCACTGA	GTGTTTTGKC	YCCATTTCTG	180	
GTGACACCAG	CTAACTCACC	TATCAGCGTA	TCCCMATGTT	GCTGGGTAAT	GAGGACTGAT	240	
CTTTCAACAG	AATACTCTTT	ATTATACTGA	GATAATATTT	TAAAGTTATC	TTCTAAAAAT	300	
GCAGCATGGC	GGGCATCATA	TCCCATTTTC	AAAGTAATTT	TTGCCGTGTT	TTTTCTCCCA	360	
TTCAGCAATA	ACATCGGCCA	TTTTACTGGC	GACATGTTCA	AACATTGCCT	GTTTTGAAGC	420	
CTCAAGGATG	CCTGAAATTA	TCCCCGTAAC	AGCCCCTACC	AGCGCGCTTA	CCGGTGCACC	480	
AACCAGAGAT	GTCGTTGCAG	CAGCACTAAT	ACCTGAAGAT	ACTGAAGCCA	GAACAGTGCT	540	
TATCGTTGTT	AACGATGCAT	CAATAGCTCC	TGTTTCTTTG	TGGAAAGCAG	CAAGTAAACT	600	
GTCACCATCG	TATCCAAGTT	TTTTGAATCG	TTGTGAATAC	TCCTCTATTT	TATTGGCACG	660	
TTTAAACTTA	TOGGCAATGG	ACAGGAATGA	GAGGGGACTA	ATTGCCAGTG	TCACAACAGA	720	
AGCAATTAAA	CCGGCAGCAG	CAGCAGATGT	AGATAACCCC	TGTGCTGCAC	GCTGTGCGAY	780	
NAATATATTG	AGAAATACCT	TTTCCAACAT	TACCCAGTAC	TTTCGTTGTT	AATTCAACAC	840	
CTGCTGCAGC	TTTAGTTCCG	GTATCTGCAT	CTGCATTGCT	CAGAATGAAA	CTTGCTGAAA	900	
TCGCAGATAA	AATACCCGAT	ACAGTATCTA	ACCCTGCACC	GATATTATCA	AGGTTAGGTA	960	
AATTCTGTAA	CTTATTACCA	ACACCGTTCN	GGNCTGTTGG	TATTGGGATA	ATACACTT	1018	
(2) INFORMATION FOR SEQ ID NO: 94:							

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 400 base pairs
- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

GGCAATGTTC AAATCGATAT TGTGCAGCAC CTGGGTTGGG CCAAAGTGCT TGGAGACGTT 60 TTTAAATTCA ATCACAGGAT TTTCATCCTT CTTTCCAGAC GACGCAGAAT AAAGCTCAGC 120 ACCAGGGTAA TAATCAGATA GAACACCGCC ACGGCGCTCC AGATCTCAAG GGCGCGGAAG 180 TTACCGGCAA TAATTTCTTG CCCCTGACGG GTCAGTTCCG CCACGCCGAT CACAATAAAC 240 AGCGAGGTGT CTTTAATGCT GATGATCCAC TGGTTACCCA GCGGCGGCAG CATACGACGC 300 GTGCCAGCGG TAAAATGACG TAGCGAATGG TTTCCCMACG TGAAAGACCG AGCGCCAGTC 360 400

- (2) INFORMATION FOR SEQ ID NO: 95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1857 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-213-

(xi) S	EQUENCE DES	CRIPTION: S	SEQ ID NO: 9	95:		
CGTGTTCCCC	TGGCCNGCTT	GGTTTCGCCA	TAGACGTTGA	GCGGGGAAAT	CACATCGGTT	60
TCCACCCAAG	GACGTTCACC	ACTTCCATCG	AAAACATAGT	CGGTGGAATA	ATGTACTAGC	120
CACGCACCTA	ATGCTTCAGC	TTCTTTGGCA	ATAACCGCCA	CACTAGTTGC	ATTGAGTAAC	180
TCGGCAAATT	CCCGCTCACT	CTCCGCTTTG	TCGACTGCAG	TATGGGCCGC	TGCGTTAACA	240
ATCACATCCG	GCTTGACGAG	ACGTACCGTT	TCAGCCACCC	CTGCAGAATT	GCTAAAATCA	300
CCGCAATAGT	CGGTGGAGTC	AAAATCAACG	GCAGTGATGT	GCCCCAGAGG	CGCCAATGCA	360
CGCTGCAGCT	CCCATCCTAC	CTGACCATTT	TTGCCAAACA	ACAGAATATG	CATCAGGTAC	420
GCTCCCTATA	GTTTTGTTCA	ATCCAGGATT	GGTAGGCACC	ACTCTTGACG	TTGTTAATCC	480
ATTGTTGATT	ATCCAGATAC	CACTGCACGG	TCTTGCGAAT	ACCAGACTCA	AAAGTCTCCT	540
CTGGCTGCCA	ATCCAACGCA	GCGCTCATCT	TGCAAGCATC	AATCGCATAT	CGGCGATCGT	600
GTCCGGGGCG	ATCCGCCACA	TAAGTAATTT	GATCGCGATA	AGAGCCAGCT	TTCGGTACCA	660
TCTCGTCAAG	CAGATCACAA	ATAGTATGTA	CTACATCCAG	GTTCTGCTTC	TCGTTGTGAC	720
CGCCTATGTT	ATAAGTCTCC	CCGACCAAGC	CAGTGGTCAC	TACCTTGTAG	AGTGCTCGTG	780
CATGATCTTC	CACATACAAC	CAGTCACGAA	TTTGGTCACC	TTTACCATAA	ACCGGCAGCG	840
GCTTGCCATC	CAGCGCATTG	AGGATCACTA	GCGGGATCAG	CTTCTCGGGA	AAGTGGTAAG	900
GGCCATAGTT	GTTGGAGCAG	TTAGTGACAA	TGGTTGGCAG	GCCGTACGTA	CGGTACCAAG	960
CACGCACCAG	ATGATCGCTG	GAAGCCTTGG	AGGCAGAATA	GGGACTGCTA	GGAGCGTAGG	1020
AGGTAGTTTC	GGTAAAGAGC	GGCAATGCCT	CACCGGAGGC	TACTTCATCC	GGATGGGGCA	1080
GATCGCCATA	TACTTCATCG	GTAGAAATAT	GGTGGAAGCG	AAAGGCCGCC	TTGCTCAACT	1140
CGCCCAGACT	GCTCCAATAG	GCGCGAGCCG	CTTCCAGCAA	TGTATAGGTG	CCTACGATAT	1200
TGGTTTCGAT	AAAGTCGGCT	GGCCCTGTGA	TAGAACGATC	AACATGGCTT	TCAGCAGCCA	1260
GATGCATCAC	GGCATCTGGC	TGGTGCAGAG	CAAACACCCG	ATCCAACTCA	GCACGATTAC	1320
AGATATCAAC	TTGTTCAAAC	GAATAACGCT	CACTTGACGA	TACACTGGCC	AAAGATTCCA	1380
AATTGCCAGC	ATAGGTGAGT	TTATCCAGAT	TGATAACGGA	GTCTCCAGTA	TCACTAATGA	1440
TATGACGCAC	CACGGCAGAG	CCGANAAAAC	CAGCACCGCC	AGTAACGAGA	ATCTTCATAT	1500
ATTTCGCTCT	CTTATTTTAC	AATTAATAGO	TATTAAAAAT	AAACTTGTTG	ACTCCGATAT	1560
ATTAGAAATA	TCGGGATACC	GAACTAAATA	TTTTTATATG	CTTTTGCCAA	GCAGACTCTA	1620
TATCCACCCT	GTATCACTAT	GCTTTCTGGC	C ATACAATATC	CCATCATTGA	CACAATGATA	1680
AACATATAAA	TAAAGAAAAT	TTTAAATCAT	ataaccaaat	TACTTTCATT	TATTATCAAT	1740
AAGTATTTTG	ATAAGAATAC	CTATACCAC	GGGAGCCCC	: TGAAACATAA	TATTAGCGAA	1800

-214-

GAATGATAAC	TGATAGTTAC	CATCTTAGAG	ATAAAAACTT	ATTTGTGTGG	CGGGATG	1857

- (2) INFORMATION FOR SEQ ID NO: 96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs

 - (E) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

AGCTCTTTCG	TGTAAAATAA	AATACAGCAT	ATCCTATATA	GCTTACAATC	ATTAAATGAA	60
GTCGCCAATA	TTTATATGTT	TTATCAATAT	CAGCTTGACT	CATTGTTATT	TCTTTGTCAG	120
GAGACTCTGA	AAATATGGAC	ATATATAACC	TCTTTTATTA	TGAAATATTT	TCAATAATAA	180
TAATCCGTTA	GTAATCCTAT	CATAGGGTAA	TGTCTCATCA	TGTTAAAATG	ATCACATTTA	240
TAATCATGTC	AAAAAGAACA	ACAGAAAAA	TCATATAAAA	TCAATTAAAT	ATAATTGCCA	300
CATATTGTTG	TTATTWAAAC	ATTGGTGGTG	AATTTAAAGC	GAGAACAGTT	TGTAACAGTG	360
ACTCCTTGCA	GACTAAGTTA	GAGTCTCCTT	CTAAAATTAG	ACGGWKTTCT	ATTGATGGAT	420
AATAGTAAGC	GCACCGTGAA	KGACGTGGGG	TAAAAATTAG	TTTACAGATT	GAGTGACATT	480
CCAGGGCAAC	AACTCTTTCA	CGCGGTTGGC	AGGCCAGGTG	TTGATTACAC	TGATCACGTG	540
GCGTACATTA	CCGGACTCGA	TTCCGTTAAG	TTTGCAGCTA	CCGATCAGGC	TGTACATCAC	600
TGCCGCACTC	TCGCCTCCAC	CATCAGAGCC	GAAGAACATG	TAGTTACGCC	GCCCCAGTGC	660
AATACCCGGA	GGCGTTTTCA	CACAGGTTAT	TGTCGATCTC	CACCCAGCCA	TTGCGGCAGT	720
ATTCGTTCAG	AGCGTCCCAT	TGCTTCAGCA	GATAGGTGAA	CGCTTTCGCT	GTATCCGAGT	780
GGCGCGACAG	TGCTCATCTG	CCCCTGGAGC	CACTCATACA	ACGACTGCAT	TAGCGGTACC	840
GTTCTGGCTT	TTCTGACCGC	CAGTCGCTCT	TCTGCCGGAC	TGCCGCGGAT	CTCAGCCTCG	900
ATAGCGTACA	GTTCACCGAT	ACGCTGCAGG	GCTTCCGTGG	TGATGTCAGG	TGGCGCTCTT	960
GCATGCACAT	CGTGGATTTT	TCTCCGGGCA	TGGGCCATAC	AAGCCGCTTC	GGTTACCTGA	1020
CCGCTTTCGT	AAAGAGCATT	GTAACCCGCA	TATGCATCGG	CCTGCAGGAT	ACCTCTGTAG	1080
TCCGCCAGAT	GTTGCTGTGG	GTGGATGCCT	TTGCGGTCGG	GAGAGTAT		1128

- (2) INFORMATION FOR SEQ ID NO: 97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

-215-

GTTTGCTTAC	GAACCGTGAA	ATATGACGGT	CCCATATAAC	TGCCTGATAC	TTGTATATCA	60
TATACTTGTG	CATGCATGTC	ATCATTAAAA	AGTACTTTGT	CACCGTCTTT	AAGTTGAAGA	120
CGTGTAAAAT	CTTTATACGG	CAAGTAGACG	GAAAACGGGC	GCTTTCCCTG	TCGCCAATCA	180
CACCGACATG	ACTGACTTTT	GCGAGAGGAA	GTGCATAATT	CACCAATTCA	GAGCCTAATG	240
CATTGCGCTG	GGTAAGCTCA	AATCGGAATG	GGTTTCGAAC	CTTTCCCGCA	ACATTGATCA	300
TTGGACCTTG	TTGCTCAACT	GAAAATCACA	TCTTGATCTT	TTAATGCCAG	CTTCGGGAGT	360
TTCCCATACC	GTATGAAATC	ATAAAGATCA	ATTTGCKGTG	NTTACTGCTA	TTTTGTGCGT	420
GAACACCTTA	ATTTTTGCG					439

(2) INFORMATION FOR SEQ ID NO: 98:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 906 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

TATTCGTAAT	TAGTTATAAA	CAGATGATGT	AAACACCAGT	TGACTAGAGT	CAATCTTATA	60
CTGGCAACAT	CTATGATTAA	TTTGTGTGGT	TATAATTTTA	AATATCTTAT	ATTTATGGGC	120
TATTATTGAT	ATCTGTCAGA	GTATCAATAA	TAGAAGGTAA	TTGTTTTACA	TACTATCAAC	180
TTTTGGATAA	CGTTTTAAAA	TGCACCTTGC	ACATCGTATT	TTATTATTTT	CACTAATCTT	240
TTTTATAACG	GCCTGCGCAC	ATGATCCAAA	ACAAGTTGAA	GCCTCTCGTC	CATTGGTAAC	300
AGCGATTAAT	TCTTCTTATT	CTCTTATTCC	TGAAGATTTG	CAGGCACCAT	TAAATAACCA	360
AGATCAAGGC	ACGACATTCA	ACAAAAATGG	CGTAATTTAT	ACTATTGAGG	AAAGGTATAT	420
ATCGGCTTTA	GGTTCTCAAT	GCATAAAGTT	AAGTTATGCG	ATGAATAAAA	ATTATTCAAA	480
GCGAAGTGTT	GTATGTAAAG	AGAATAACAA	GTGGTATCAA	GTACCTCAGT	TGGAACAAAC	540
ATCAGTTAGC	ACTTTGCTTA	TTGAAGAATA	AAGTTGAAGG	TAGACGGTTA	GAAAATAATG	600
AAAATTTCGC	AACTTAGCAC	TCTTCTCTTT	CTTATTTCTG	CATCAGCATT	CGCCGCAATA	660
GAGCAAAATC	AATCTAATGG	TTCACATTTA	GATTATGATC	TTGCTGCCTC	GACAGGAGAG	720
TCTCGGAAAA	TGCTAGCAGA	CATCACTGGA	CAGCCTAATA	CAACCTCCAC	AACAGGAAGC	780
TTCACACAAC	AGAATCGTAA	TGGGATGTTG	CTTCCAGGAG	AGTCAGATGT	ACGAAAATTA	840
CTGCCGCAAT	CTGAAGCAGG	CTTACCTCCT	CCGTATGGTG	CTAATTTATT	TGCCGGAGGC	900
TATGAA						906

(2) INFORMATION FOR SEQ ID NO: 99:

(i) SEQUENCE CHARACTERISTICS:

-216-

(A) LENGTH: 1395 base pairs(B) TYFE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

GCGGCCTGAT	ATATGCCGTT	ATTACAAAAA	GAGGATCAAC	CACACTGCCT	TTTGGACCGT	60
GTTTAAGTCT	GGGCGGTATA	GCAACACTTT	ATCTACAGGC	ATTGTTTTAA	TGATAACCAC	120
GTCATTATCA	AAGTGACATT	TTAACTCTTA	TTAATAACCT	TAGAGATTAT	TTACCATGTC	180
GATAAAACAA	ATGCCAGGGA	GGGTATTAAT	ATCGCTATTG	TTGAGCGTTA	CAGGATTATT	240
AAGTGGCTGT	GCCAGCCATA	ATGAAAATGC	CAGTTTACTG	GCGAAAAAAC	AGGCGCAAAA	300
TATCAGCCAA	AACCTGCCGA	TTAAATCTGC	GGGATATACC	TTAGTGCTGG	CGCAAAGTAG	360
TGGCACGACG	GTAAAAATGA	CCATTATCAG	CGAATCGGGT	ACTCAGACCA	CGCAGACACC	420
TGACGCCTTT	TTAACCAGCT	ATCAACGACA	AATGTGCGCT	GACCCAACGG	TGAAATTAAT	480
GATCACCGAG	GGAATTAATT	ACAGCATAAC	GATTAATGAT	ACACGTACAG	GTAACCAGTA	540
TCAGCGGAAA	CTGGATCGTA	CCACCTGTGG	AATAGTCAAA	GCATAACGTC	GGGTAGATAT	600
AAATTGGCGC	GGGTTGTTTT	TCGTGACGCA	CGAATTTATC	TCATTCAATG	GCTGACAAAA	660
ATTCGTCACA	CTCTTAACCA	GAGACAATCT	CTTAATACAG	ACAAAGAGCA	TCTGCGCAAA	720
ATTGCACGCG	GGATGTTCTG	GCTGATGCTG	CTTATTATTT	CTGCAAAAGT	GGCGCATTCA	780
CTCTGGCGCT	ATTTCTCCTT	TTCTGCGGAA	TATACGGCGG	TTTCCCCATC	GGCGAATAAA	840
CCGCTCCGTG	CGRATGCAAA	AGCGTTCGAT	AAAAATGACG	TGCAATTAAT	CAGCCAGCAA	900
AACTGGTTTG	GCAAATATCA	GCCCGTCGCC	ACGCCGGTAA	AACAACCCGA	ACCTGCACCT	960
GTGGCCGAAA	CGCGTCTTRR	TGTGGTGTTG	CGTGGGATCG	CCTTTGGTGC	CAGACCCGGC	1020
GCGGTTATTG	AAGAAGGTGG	TAAACAGCAG	GTCTATTTGC	AGGGTGAACG	CTTGGCTCGC	1080
ACAACGCAGT	GATTGAGGAA	ATCAACCGCG	ACCATGTGAT	NTGCGCTATC	AGGGAAAAAT	1140
AGAGCGCCTG	AGCCTGGCTG	AAGAGGAGCG	TTCCACCGTT	GCCGCGACCA	ACAAAAAAGC	1200
TGTCAGTGAC	GAAGCAAAGC	AAGCTGTTGC	TGAACCTGCT	GTCAGTGCGC	CAGTTGAGAT	1260
CCCNGCTGCC	GTGCGTCAGG	CACTGGCGAA	AGATCCGCAG	ATTTTTAAAA	ACTATATCCA	1320
GCTTACGCCT	GTGCGTAAGG	AAGGGATTGT	CGGTTATGCA	GTGAAACCGG	GGGCAGATCG	1380
TTCTCTGTTC	GATGC					1395

(2) INFORMATION FOR SEQ ID NO: 100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

-217-

(D) TOPOLOGY: linear

	(xi) S	SEQUENCE DES	SCRIPTION: S	SEQ ID NO: 1	100:		
CACTT	GAATA	AAACTGACAC	CGTTTACCTC	CATAATAGTG	AGCATAGCCG	CCATTGCGGC	60
CTGAT	CGGCG	AACCGGAAAT	CGCAACCTGC	GAACGACAAC	CGAACCGGCA	AGCGTGCGGG	120
AAGGA	CGGAT	ACCGGACTCT	TTCGCCACTT	CAGCAATCAC	CGGCAGCGTG	GAAAAAACAA	180
TAAAC	CCAGT	ACCGGCCATA	ATGGTCATAG	ACCAGGTGAT	AATCGGCGCG	ATTATGTTGA	240
TATAT	TTCGG	GTTACGCCGC	ATAAAATTAC	CAGCGACGGT	ACCAGATAAT	CCATTCCCCT	300
GCGGC	CTGTA	AGGCTGAGGC	CGCCACAACA	ACGGTCATAA	TAATCAGGAT	CACGTCGACT	360
GGCGG	CGACC	CCATAGGCAG					380

(2) INFORMATION FOR SEQ ID NO: 101:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 995 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

C	TTTACGGTT	TAATAGGGGA	ANGCCGACTG	GATGNAAAAA	TGGAATCTGG	AGCCCAGAAT	60
A	AATCTGAAT	TTAATGTGGA	CTGGATATGC	TCCAATAACC	CCGGCAGGGA	GTCATCTGTG	120
C	GAAGATATT	TGCGTTATGC	TGTAATATAA	TAATTCAATG	TATTTCAGGA	ACAGTAATAT	180
P	CTACAGTTT	CTACTTTCTT	GTATTTAATA	AATTGTTCCG	CATCGCTAAA	AGCAGGTCTT	240
Τ	CAGAAGCCA	CAAGAATTCT	GTGGTCCCAG	TATTTTTAGT	TATCCTATTT	TTATATCTAA	300
C	CTTGTAATAC	TTACAGCATT	TTCATTCATC	CTAATGGAAG	GCTGTAATAA	TCTTTGAGCT	360
T	CAGAAACATC	AAAATTATGC	ATCTCATTAA	TTTTGTCAGT	CACACGACCT	CTGGTAAAAA	420
7	CAAAACCCCC	AGAAATATGC	CATTTCTAGG	GGGGGCGTAA	GAATCAATAT	ATTTTAGTGT	480
7	GTTACATTT	AGCTCTTAGC	TCTTAGCTCT	TAGCTCTTAG	CTCTTAGCTC	TTAGCGTTTG	540
7	AGTTTCATC	GCAATGAGTA	AAAGGACAAC	AAGAATAAGT	GATAACGTTA	AGAGAAGAGC	600
I	ATAGAAACCA	TTCCAGTGGT	ATATTTCTAT	TATTTTAGAC	AATGGATAGC	CAGCCGCGGA	660
(CGCACCAAGA	TATGCGAATA	AACTAACAAA	ACCAGTAGAA	GCACCAGATG	CATATTTATG	720
,	IGAGTTTTCA	GCAGCTGCCA	TTGCGATCAG	AAATTGTGGC	CCAAAGATAA	AGAAGCCAGT	780
(GATGAAAAAT	AATAACGAAA	AAACATATTT	ACTATCAATA	GAAACCAACC	ATAGACATGC	840
Ì	AGAAGCAATG	ATTATACCAA	TTGTATAAAT	AACATTCATT	TGAGAGCGAT	TGCCCTTAAA	900 -
(CAGAATATCT	GATCCCCATC	CAGCTACGAT	AGCACCAAAA	AAGCCTCCAA	CCTCAAACAT	960

-218-

CATTACTGTT GCATTTGCTG TTAGCAAGTC ATATT					
(2) INFORMATION FOR SEQ ID NO: 102:					
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear					
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:					
TAAAAGCGAC TCCATGTGAA ATTTCTGTTT GTCGTTTTTT CCCCGTTGTA GCGGCTCTGC	60				
TCCTGGCTTC CCTGATAGTC AGCCCGCAGG CGCCAGGGCC CCAGATTCCC CCCCACAGTC	120				
CCGTTATAAC TGAACTGATG AGAGTCTCCT CCCTGATAAT TACGGGAAAC CGTCCCGTTG	180				
AGGTTATAAT CCAGCATCAG TCCGGGAATG CCGTCGTCCC AGCGTGAGGG AGGCAGCCAG	240				
GTGGCATCAG AATACTCAAG CCAGGCCTGC GGCATATTGA TGCGTAATAC GCCCGCTCCG	300				
GTATCAGGAC GAATATCCAC TCCCGGCAAC CCATGAAAAT CCGCACACTG ACCATCATGC	360				
CAGTAAACAA CTTTATCCAG AGATTCTGCT GTTAACCCCA TCAGTCTGAC CATATCTGAT	420				
GTCAGACAGC TGCGGCAATT TTTTTTCTGC CTTATCTCCT GACAACGCAG GTTCAACAAA	480				
TGAMATCTGT AACGATGCGG GAGAAATACT TTGCCCGTTA ACAATCACAT CCAGAAGATA	540				
TTGCCCCGGC AGAACATAGC CGGCTTCTGA AAAACGGGTG AAGTCAATAT TTTTCTTGTC	600				
CGCTGCGTCA AGTACATCTG TATTAAACTC AACGGCACTG GCTGCGTTAC AAAACAGAGA	660				
CAACAATATC ACACAGGTAA TATTGTTGAC TGCAAAAGGT ATTCTGTCTT TCATTCCACG	720				
CATCACCAGA TTCACAAAAA AGATAAATAA CCGGACATCT CACCGGAGTG ACTCACTCAT	780				
AATCGACCCG GAATCCCAGC ACAGCAAAAT AATTTCC	817				
(2) INFORMATION FOR SEQ ID NO: 103:					
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 709 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear					
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:					
TTTTTGTCAG AGCGTTCACT CTCTGGCTGG ATGATTTCGG CTCGGGAAAT GCAGGCTTAA	60				
TGTGGGGACT GTCGGGGATG TTTGAACGGG TAAAAATAAG TCATGAGTTT TTTCATTATG	120				
TCCTGAAAAA CGGGTGTGCA ATGCCACTTC TCCGTGCTGT GGCAGACACT GTTGCCTGTC	180				
ACAACAGAGG CGTGATACTC GAAGGTGTTG AAAATGAAGC GTTGTTCCGT ATTGCCAGAG	240				
ACATGAATGT CCAGGGCTGT CAGGGATGGC TCTACAGGCG TGTGGGGGTT GATGAATTAT	300				

-219-

CCGCGCTTAT	TCAGCAGTAT	GAATAATCCT	TTTTCACAGA	CTGGTCAGCT	GTCAACATTT	360
ATGTTTTTT	ATCTGCGGGA	ATTTATCCGT	CTGCCTGTCG	GGACTACTCT	GTCATACAGA	420
AATCAGGCCA	GAATAAATTG	TTGTGGAAAG	GTGAGATTTA	CCGGATGACT	GATGTGCTCT	480
TGTGCACAGG	TATACAGGCA	GTGTGTTTCC	AGTATATGGA	AAATG ATTA A	ATGAATAACA	540
CAGACTTATT	AGAAAAAATC	ATCAGGCATC	AACAAAACAA	AGATCCTGCA	TATCCTTTCC	600
GGGAACATCT	TTTGATGCAA	CTCTGTATCC	GTGTAAACAA	AAAAATACAG	AACAGTACAT	660
CTGAGTTTTT	TGGTGCATAT	GGTATAAATC	ACTCAGTATA	TATGGTTCT		709

(2) INFORMATION FOR SEQ ID NO: 104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 485 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

TCATCAAGGG	ACGGGGCATA	TCTGGATGCG	ACAGGGCAAA	CCAACCACTG	AGAATCCAAC	60
CTGCCAAAGC	CTGACCAGGA	AGTCCGACGT	TAAAGAAACC	AGCTCGACTG	GCAACGGCAA	120
AACCAAGACC	AATCAAGACC	AGAGGACCCA	TAGCACGGAA	GATTTCTCCA	ATCCCACGCA	180
GACTGCCAAA	GGCTGTATAG	AACAATTCTT	CGTAGCCCCA	AATAGCATCA	TAACCGAAGA	240
TCCACATGAC	AATGGCTCCG	AGTAAAATTC	CTAGGAATAC	AGAAATCAAG	GGAACCGAAA	300
TTTGTTGTAA	TTTTTTAGAC	ATCACTCTTC	TCCTTTCCCA	AGTTYCCACC	AGCCATCAAG	360
ACACCAAGTT	CTTGTTTATT	GGTTGTTTCT	GGTGATACAA	TACCTTGAAT	CTTACCATCG	420
TGGATAACGG	CAATACGGTC	TGAGACGTTT	AAAATCTCAT	CCAATTCAAA	GCTGACNACA	480
AGGAC						485

(2) INFORMATION FOR SEQ ID NO: 105:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 459 base pairs
 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

AGCAGAATAG	GCAACATCAC	CACGCCGACA	AACAGCGAGA	AGAGAATGAC	GCCAGCCGCC	60
AGGAACACCA	GCTCATAGCG	CGCCGGGAAG	ACGTTACCAT	CCGGCAAGAG	CAGCGGGATA	120
GAGAGCACAC	CGGCCAGAGT	GATCGCCCCA	CGCACCCCGG	CGAAAGACGC	GATCAGGATT	180 -
TCTCGTGTGG	TCCACGAACC	AAACTCCATC	GGCTTCTTCT	TCAGGAAGCG	GTTGCTGAAC	240

-220-

TTTTTCATCG	TCCACAGCCA	GCCGAAACGG	ACCAGCATCA	GCGCCGCATA	TATCAGAATA	300
ATATTGGTAA	ACAGCATCIA	GATTTCGACG	TTAGGGTCGA	TTTCTTGCTG	GCCATCAGCG	360
GACGTCTTCC	AGRATTACCC	GGCAGCTGCA	GACCTTAACA	GCAGGGAACA	CCATGGCCGT	420
TTTAAGGACA	ATTTCNAGCA	TOGGCCCANG	TGCTGTTTT			459

(2) INFORMATION FOR SEQ ID NO: 106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 908 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

TTAATAGCAC	TAATACTGTC	CTGCTCTATT	CCGCTGACAT	TTTCAGTCAG	CTGCTGTATG	60
GGATGGGTTA	CCCAAAACCA	GACCAGCATA	CCTGACAAGA	GACCGCATAT	CACTACCAGA	120
AACAGCGACC	AGTACAGTGC	ATTCCATAGT	GCCTTTGTCC	AGGCTGTATC	AGTAAGAGCA	180
TTAAGTTCCT	CTCCCTGTAA	AATAATATAC	AGATATCCTT	TCGGTTCATC	ACTCTGGTAA	240
AGCGGTGCGG	TACTGAAAAC	TTTTTGCTTA	TTTACACTTC	GGGGATCATC	ACCATAT A CG	300
GGCCAGACAC	TGCCGGAGAG	AAATTTTTC	AACGGTGCAA	TATTGATATA	CCGGCGTTTG	360
AGATGACCCG	GAGGGCGGCC	TCCACAAGCA	GTCGCCCTTC	CGGTGAAACC	ATATACAGCT	420
CCACACTGGG	ATTAAGCGTC	ATCAGACGCT	CAAACAGACT	CGTTAATGTC	CGGTGTTACC	480
AGACAAAACA	AGCATCGCAA	GACGCCACAA	ACGGTGCGCT	TACTTAAATA	AGCCGGTTAC	540
AGGTGAAAAA	TCACGTCCTG	ATATTCAAAT	GTTTTTTCAG	GTCATATTTT	AGCAGGACAC	600
TACCAGCACC	TAACAGCAGC	ACATCTTTTA	TAACAAAACT	GTCAACTTTC	CCCAGTTGTG	660
GTAACAGGCT	GAGCGTGGTT	ATTCCTGTAA	CAATAACGAT	AATATCTCCC	AGTACACCAG	720
CAGCAGGCCT	GAAGAAACCG	ATAATCAATG	CCAGAAATGT	GATAGTTTCC	ACTATGCCGA	780
GGAAATAGCT	CCCTCCATGA	ATACCAAATA	TAATATACAG	GATATTCAGC	CAGGTGGGAT	840
ATATCAGGGG	CTTGAGAGCC	ATAACTTCAA	AATCAAACCA	TTTATAAGTC	CCAAAAAGCA	900
TTAAATT						908

(2) INFORMATION FOR SEQ ID NO: 107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1057 base pairs
 - (E) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - ([]) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

-221-

CGGGCTAACC	CAATATGCTT	TATTAACCCG	GGATAATTAC	CCTGTTGCAT	ATTGTAGTTG	60
GGCTAATTTA	AGTTTAGAAA	ATGAAATNAA	ATATCTTAAT	GATGTTACTT	CATTAGTCGC	120
AGAAGACTGG	ACTTCTGGTG	ATCGTAAATG	GTTCATTGAC	TGGATTGCTC	CTTTCGGGGA	180
TAACGGTGCC	CTGTACAAAT	ATATGCGAAA	AAAATTCCCT	GATGAACTAT	TCAGAGCCAT	240
CAGGGTGGAT	CCCAAAACTC	ATGTTGGTAA	AGTATCAGAA	TTTCACGGAG	GTAAAATTGA	300
TAAACAGTTA	GCGAATAAAA	TTTTTAAACA	ATATCACCAC	GAGTTAATAA	CTGAAGTAAA	360
AAACAAGTCA	GATTTCAATT	TTTCATTAAC	AGGTTAAGAG	GTAATTAAAT	GCCAACAATA	420
ACCGCTGCAC	AAATTAAAAG	CACACTGCAG	TCTGCAAAGC	AATCCGCTGC	AAATAAATTG	480
CACTCAGCAG	GACAAAGCAC	GAAAGATGCA	TTAAAAAAAG	CAGCAGAGCA	AACCCGCAAT	540
GCGGAAAACA	GACTCATTTT	ACTTATCCCT	AAAGATTATA	AAGGGCAGGG	TTCAAGCCTT	600
AATGACCTTG	TCAGGACGGC	AGATGAACTG	GGAATTGAAG	TCCAGTATGA	TGAAAAGAAT	660
GGCACGGCAA	TTACTAAACA	GGTATTCGGC	ACAGCAGAGA	AACTCATTGG	CCTCACCGAA	720
CGGGGAGTGA	CTATCTTTGC	ACCACAATTA	GACAAATTAC	TGCAAAAGTA	TCAAAAAGCG	780
GGTAATAAAT	TAGGCGGCAG	TGCTGAAAAT	ATAGGTGATA	ACTTAGGAAA	GGCAGGCAGT	840
GTACTGTCAA	CGTTTCAAAA	TTTTCTGGGT	ACTGCACTTT	CCTCAATGAA	AATAGACGAA	900
CTGATAAAGA	AACAAAAATC	TGGTGGCAAT	GTCAGTTCTT	CTGAACTGGG	CAAAAGCGAG	960
TATTGAGCTA	ATCAACCAAC	TCGTGGGACA	CAGCTGGCCA	GCCTTTAATA	ATAATGTTNA	1020
ACTCATTTTC	TCAACAACTC	AATAAGCTGG	GGAAGTG			1057

(2) INFORMATION FOR SEQ ID NO: 108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

TACCGGGCCC	CCCCTCGAGG	TCGACGGTAT	CGATAAGCTT	GATATCGAAT	TCCTGCAGCC	60
CGGGGGATCC	ACTAGTTCTA	GAGCGGCCGC	CACCGCGGTG	GAGCTCCAGC	TTTTGTTCCC	120
TTTAGTGAGG	GTTAATTTCG	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	180
ATTGTTATCC	GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	240
GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	300
AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	360
GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	420
GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	480

-222-

4								
GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA	540							
AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCT GACGAGCATC ACAAAAATCG	600							
ACGCTCAAGT CAGAGGTGGC GAAACCCGAC AGGACTATAA AGATACCAGG CGTTTCCCCC	660							
TGGAAGCTCC CTCGTGCGCT CTCCTGTTTC CGACCCTGCC GCTTTACCGG ATANCTGTNC	720							
GGCTTTCTCC CTTCGGGAAG CGTGGCGCTT TC	752							
(2) INFORMATION FOR SEQ ID NO: 109:								
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:								
CTTGGGTAAT NGACCTCATA TCCCTCCGCC AAAAAAGGAT CTACATGCGA TTTTGCGAAG	60							
CCAGCGTTGA TTGTAGGCGA GAGAATGGTT CTGTTGTTTT GGTACATTTC AGTTGTCATG	120							
GATTTCACAA ATGTAGCATG ACCTTTCACC TGTCCAAGAG ACTGCAACAC CATCTGTCCA	180							
AAACAATAAA TAGGAATCAA ACAGGCTACC AACATCAACA AGTATCCCAA TAAGGCTCGT	240							
AGTTTAGTCC TTGACATGAC GCCCCTCCAA TTGCTTTTCT AGTCCTTTGA CAATCCGTCG	300							
ATTACGATAC ACGCGATACA GCAAGAGAAG GATGACCGCC ATCGCTCCTA GTAATAACCA	360							
CAACCAGAAT TGCCCACGCT CTCTCACCGC TCGATTCCGC TCTGCAATTG GTGCCGTATA	420							
CGGAATCCGC TTCCCACGTA CCAACAGACG ATGACTGTTA ATCCTATACG GTGTACNAGT	480							
CAACCA	486							
(2) INFORMATION FOR SEQ ID NO: 110:								
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 313 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:								
TTACGCNTTC AACCAGGTCT TCTGGTTTAC CAACGCCCAT CAGGTAACGC GGTTTGTCTG	60							
CCGGAATTTG CGGGCATACA TGCTCCAGAA TGCGGTGCAT ATCTGCTTTC GGCTCACCCA	120							
CAGCCAGACC GCCGACAGCG TACCATCAAA ACCGATATCT ACCAGACCTT TAACAGAAAT	180							
ATCACGTAAA TCTTCGTAAA CGCTGCCCTG GATGATACCA AACAGCGCAT TTTTGTTTCC	240							
GAGACTGTCA AAACGCTCAC GGCTACGTCG CCCAACGCAG AGACATCTCC ATGGAGCGTT	300							
TTGCGTAATC CCA	313							

PCT/US97/21347

-223-

(2) INFORMATION FOR SEQ ID NO: 111:

WO 98/22575

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1613 base pairs
- (E) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

CGGAAATCCC	AGTAATTCCA	TCCTCANATA	TTCCACTCAN	CCTCACTGTA	ACAAAGTTTC	60
TTCGAATAAT	AAAAATCATG	CTTTCTGTTA	TCAACGGAAA	GGTATTTTTA	TTCTCTGTGT	120
TTGCTTTATT	TGTGAAATTT	AGTGAATTTG	CTTTTTGTTG	GCTTTATNTG	ATGTGTGTCA	180
CATTTTGTGT	GTTATTTTC	TGTGAAAAGA	AAGTCCGTAA	AAATGCATTT	AGACGATCTT	240
TTATGCTGTA	AATTCAATTC	ACCATGATGT	TTTTATCTGA	GTGCATTCTT	TTTGTTGGTG	300
TTTTATTCTA	GTTTGATTTT	GTTTTGTGGG	TTAAAAGATC	GTTTAAATCA	ATATTTACAA	360
CATAAAAMMC	TAAATTTAAC	TTATTGCGTG	AAGAGTATTT	CCGGGCCGGA	AGCATATATC	420
CAGGGGCCCG	ACAGAAGGGG	GAAACATGGC	GCATCATGAA	GTCATCAGTC	GGTCAGGAAA	480
TGCGTTTTTG	CTGAATATAC	GCGAGAGCGT	ACTGTTGCCC	GGCTCTATGT	CTGAAATGCA	540
ТТТТТТТТТ	CTGATAGGTA	TTTCTTCTAT	TCACAGTGAC	AGGGTCATTC	TGGCTATGAA	600
GGACTATCTG	GTAGGTGGGC	ATCCCGTAAG	GAGGTCTGCG	AGAAATACCA	GATGAATAAT	660
GGGTATTTCA	GTACAACACT	GGGGAGACTT	ATACGGCTGA	ATGCTCTTGC	AGCAAGGCTT	720
GCACCTTATT	' ATACAGATGA	GTCGTCGGCA	TTTGACTAAA	TTATGGCATT	CCGGAGTTTC	780
TGGAAGATAA	AAAAAGAAGC	CCTTATCAGA	AAGCAGACAG	GTTATATCAG	TATTCTGTCG	8 4 0
ATAAATAACO	TGCCCTGAAA	ATACGAGAAT	ATTATTTGTA	TTGATCTGGT	TATTAAAGGT	900
AATCGGGTCA	A TTTTAAATTG	CCAGATATCT	CTGGTGTGTT	CAGTAATGAA	AAAGAGGTTG	960
TTATTTATGA	TTAAGTCGGT	TATTGCCGGT	GCGGTRCTAT	GGCAGTGGTG	TCTTTTGGTG	1020
TAAATGCTG	TCCAACTATT	CCACAGGGGC	AGGGTAAAGT	AACTTTTAAC	GGAACTGTTG	1080
TTGATGCTC	ATGCAGCATT	TCTCAGAAAT	CAGCTGATCA	GTCTATTGAT	TTTGGACAGC	1140
TTTCAAAAA	G CTTCCTTGAG	GCAGGAGGTG	TATCCAAACC	AATGGACTTA	GATATTGAAT	1200
TGGTTAATT	G TGATATTACT	GCCTTTAAA	GTGGTAATGG	CGCCAAAAA	GGGACTGTTA	1260
AGCTGGCTT	r TACTGGCCCG	ATAGTTAATO	GACATTCTGA	TGAGCTAGAI	' ACAAATGG T G	1320
GTACGGGCA	C AGCTATCGTA	GTTCAGGGG	CAGGTAAAAA	CGTTGTCTTC	GATGGCTCCG	1380
AAGTGATGC	r aataccctg <i>i</i>	AAGATGGTGA	AAACGTGCTG	CATTATACTO	G CTGTTGTTAA	1440
GAAGTCGTC.	A GCCGTTGGT	CCGCTGTTA	TGAAGGTGCC	TTCTCAGCAG	TTGCGAATTT	1500
CAACCTGAC	T TATCAGTAA:	r ACTGATAAT	C CGGTCGGTA	ACAGCGGAAA	A TATTCCGCTG	1560

-224-

22 (
TTTATTTCTC AGGGTATTTA TCATGAGACT GCGATTCTCT GTTCCACTTT TCT	1613										
(2) INFORMATION FOR SEQ ID NO: 112:											
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 930 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:											
NTAGTCCATG GCCCCATGGA GCGAANTCCA AAGTGTGGAT ATTGTCGTTT TAATTCATCC	60										
CAAAAGCTGA AATACGCCAA AACCCACGTT CCCTAACATT GGTATCATGC ATAATGACCA	120										
CAGCONTICA GAAAGCTITG GCAACCAGCT TICAAAATCA TGGGTACCGC TICAAACGTA	180										
TGCAAACCAT CAATATGAAG CAGATCAATG CTACCTTGTG AAAAATGCTC TAACGCTTGG	240										
TCAAATGTAC TGCGAATGAG AGTAGAAAAA CCTGAATAGT GCTGTTGATT ATATTCTGAT	300										
ACTTGCCTGT AAACTTCTTC GCCATACAGC CCCGCATGTT CATCTCCCCC CCAGGTATCA	360										
ACGGCAAAGC AGCATGTTTC TAAATCTAGT TTAGAGACTG CTTGGCAAAA TGAGAAATAA	420										
GAACTTCCAT AATGAGTTCC CAGCTCAACA ATATTTCTTG GCCGCAGTGT GTCAACTAAC	480										
CAGAAAGCAA AAGGAATGTG TTCTAGCCAA GCAGATTGTG CAAGGTATGT AGGACACCAN	540										
AAAAGAGATG GTTTGAAAAT GAAATTCAAT TCCCTGCCAA TATCAGTGAT GGGATATAAC	600										
TCACGATTCT CTACTAACTG ACTAATTTTT TGACTATCCA TTGAGGAAAA CTCACATGTA	660										
TTTATAGAAT TAAATCAAGA AACCTGAAAA TACCTATAGT GCGGTAACTT ATTAACTAAC	720										
ATTTAAATAT TAACAATACA CTTGGAAATA TTAGTTAAAA ATAAATCATT ATGATTTCTC	780										
ATCAATCCTG GTGCTCACGC AAAGTTGCCA GCCCCATAAT AATAAGACCA TAGAACAAGC	840										
AAAGTAATAC ACCCACAGTC GCAAGATTAT AGAATCGCCG TGGATATTCG GCATCTTCCG	900										
CTAAAGTTGG TTGGGTAATA ACCAATAGAT	930										
(2) INFORMATION FOR SEQ ID NO: 113:											
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 659 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear											
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:											
ACGATATCCC CCCTCTGCTT TTGAGAGGCA ATCTGCTTTA ATACATGATT CATCACAACA	60										
CCTCTTGCTG CGCTTTGATC TTAATTTTAT ATTTTTGGGT AGGGAAAAGT AATTGCCCCT	120										
GATACGGCTC ACCATTTACC AACGTTTCAC AGCTATGTTC CAGAGCTAAA TTAAGACCTG	180										

-225-

GTAGAATATC	CCAGCAATTC	ACCCCTTTGA	CATTTTCAAA	GCTGTCATAA	GCACCGGNNA	240
AGGGGGGCC	AACATGTTAT	ACATGGAGCA	GCCAATGATA	CGATATTCAA	AGCCCTCTTC	300
CAGTTGCATC	AGATCCTGCT	TGGTAASGGA	GGAAGAGAGG	CCACGAATAC	GAGAGCGATG	360
ATGTGTAATC	GGCATACCTG	TGATATGAAG	ATCATTCAAT	TCAGGTAAGA	AGATGCAGGA	420
CTCTTGATGT	TTCCCCTCGG	TGTAAATGCT	GATACCAATG	CCCCACTCTT	TGAGCCCAGA	480
GACAAAGTTT	TCTGTGCCAT	CAATTGGATC	TAGAACAATG	TAAGAACCTT	TGGGATTCCA	540
CTCAATATCT	CCTAAAGGGG	CTAATTCCTC	TGAAATTAGC	ACATGCCCTG	GTAGATGCTT	600
TCTACAGAGT	TCGAAAACTA	TATCTTGAAC	TTTTAGATCC	AGTACTGCGG	CCGCGATCC	659

(2) INFORMATION FOR SEQ ID NO: 114:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 556 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

CCCGGATATA	CATCAGGAGA	AATTGGAGCA	GCAATTGGAT	GCGCCATTAA	TGCCTGGTTA	60
GGGATCCCCG	CATGTGGGCA	CGCAAATGGC	TCAGAATATG	ATCGACCTTC	ACCAGATAAA	120
CCAAATCTGA	GCGAACCATT	TATCCCAAGA	CCCACGTATG	ACGCTTCACT	TCATTCCTGG	180
CATGGCGGAT	ACTGAGTAAA	TCATCCTGAA	TCATTATGTT	CAACATCATC	AATTCTCCGG	240
ACTTGTTGTC	AGATGTCCGG	AGAATATTAA	CCTTTTCTTC	AGAAACAGAW	TGATCAAGAA	300
TCACACTCCT	TCTTTAAGAG	GATTTTATCC	AGAAAACTGA	CTTTCTTCTA	TCAAAATMAC	360
AGTATCCTGT	TTTATCAGGA	ATAATCTTTA	CCTCCGGTAT	CATTCCCATA	ATCAGATATC	420
AGAAAAATGT	GCCAGTAATT	TTTTACTGAT	GACTTCAAAC	ATTTCACATT	CATCACACGT	480
CAGATTACTC	CAAAGTTCTT	TCAGATATGT	GTTCTGCGCC	AGAGTGAGTC	TCTGAATAAA	540
AAACATACCT	TCAGAC					556

(2) INFORMATION FOR SEQ ID NO: 115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 503 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

TACCTGTTTG T	IGGAATTTGA	CCCAGAAGTG	ATTCATACCA	CGACTATCAA	CGCGACCCGN	60
GTGTNCAGCC A	ACTTCGTGCG	CTTTGGCGTN	CGCAGCGATA	GTCCCATCGG	CGGTTATTCA	120

-226-

220	
TCAGCTATCG GTATATAAAC CGAAAGACAT TGTCGATTCC GGCAACCCCT TATCCGGGTG	180
ATAAGGTGAT TATTACCGAA GCGCGTTCGA AGGCTTTCAG GCCATTTTCA CCGAACCCGA	240
TGGTGAGGCT CGCTCCATGC TATTGCTTAA TCTTATTAAT AAAGAGATTA AGCACAGTGT	300
GAAGAATACC GAGTTCCGCA AACTCTAAAA CGCAATCCCA AACAGTGTTT TGACATTAGC	360
ATCCGTGGTG GCAGCCAGCC ATGCGGCATC TTCTCCACGC CAGTGCGCAA TACGTTGCAA	420
AATATGGGGC AGATGGGCTG GCTCGTTGCG CCGGGATGAN GGCTTTGGCG TGAGATCGCG	480
AGGGAGCAGA TACGGNGCAT CAG	503
(2) INFORMATION FOR SEQ ID NO: 116:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
TTTAACATCA AAATTACCTG CAGCTGAAAT GATTTTGCTG ATTTCATTAA TTAATGGATT	60
AAGATTACCC TGACTTCCAT AGGCTAATGC ATCATTCCCA TACACATAAC TTGCCTTATT	120
ATTACTCTGT TGATACTNAA GTGCCTTTTT AAGGGAATCT GGTGTGATTA CCCTGCCGTC	180
TTTATCAAAA ATCTGCTCTA TCTGGTGATT AGAGATATCA CCTGACTCTT TTTCAAACCA	240
GTTTTTAAAT GTAATACCAT TTTTGTGGCC AATGGAAAGA ACATTACCTT CAGCTTTATA	300
CATGATGAGG TCATTACCTT CTCGCCTGAA GGCCACATCC CGGAAATCAA TATCAGCCAA	360
ACTGAGTTTA TCGTCTTTCC CCCCATCATC GTCAATAATA TGATGGCCAT ATCCTGAAAG	420
ATAACGATAA ATA	433
(2) INFORMATION FOR SEQ ID NO: 117:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 302 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
GCGCTCTGTT CCCGTTCCTG TTCATCACCA TCGCCTGTGG TGCGGTATCT GGCTTCCACG	60
CGCTGATCTC TTCCGGTACG ACGCCAAAAC TGCTGGCTAA TGAAACCGAC GCGCGTTTCA	120
TCGGCTACGG CGCAATGCTG ATGGAGTCCT TCGTGGCGAT TATGGCGCTG GTTGCTGCGT	180
CCATCATCGA ACCGGGTCTT TACTTCGCGA TGAACACCCC GCCTGCTGGC CTTGGCATCA	240
CCATGCCTAA CCTGCATGAA ATGGGGTGGC GAGAACGCGN CGGATTCATC ATGGCGCANT	300

PCT/US97/21347

-227-

GA	302
(2) INFORMATION FOR SEQ ID NO: 118:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 656 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
AATTAATAAG CCAAATACTA CATCACGTAA TACTTGCAAA GAAGTGCGTG GAGTTTGACT	60
AATAATGGGT TTGTCCATTA ATACTTACCC AAATAATCGG CTCATTATAG CAACGAGCCT	120
CCGATTAAAA TTTAAAATAC TCAATCATTT AATAGCAACG TTAGCAGCTA CAGCGATTTG	180
ATAAATAATT TGTGTGATAT CTTTAAATGA TTGCATGGTT TTGCTATCAA CCTGAGGTAG	240
AACCAATATC TGATCCCCG GTTGTACTTT ACCTTGCCCT TTAAATTCTA CAAGACCATT	300
TGCATGTACA ATAGCAATTC GCTTGTCGTT AGCTCGCTCA GTAAAACCTC CGGCCCATGC	360
AACATAATCA TCCAAATTAG CATCGGCATT ATATACTACT GCTTGTGGCA TCAACACTTC	420
ACCCCCCACT TGAATAAGAT CAGTCTTATT TGGAATAACT ATTTGATCGC CTTGTTCTAA	480
TTGGATAWTG GCAATAACAC CTTTATCTGC AACTACTACT TTACCAAGCG GTKGAACTTT	540
ACGAGCCTTT YCAACAAACT GCATCACTAA CTCTGCTTCT TTAGCACGTA TATTCGCCTC	600
ACCATCAGAT CGCGCGGGTG TGGTAAANTT CATACGTTCC AAGCGGTTTA GAGATT	656
(2) INFORMATION FOR SEQ ID NO: 119:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	
ATATGTTATC TGGATCCAGA TAAAGAGCGT TCTTGACCCG CTATATCCAG ACAGGTCAGT	60
TACACCCTGT CCGGAAAAAC TGATCGGAAT AACAACAGTA TATTTTCTAA TACACTGGCA	120
AATGGTGCCG GCGGTGTGGG GATTCAGCTT CTGGATAGCG CTGGTAATGC GGTTGCTGCT	180
GGACAGAAGA AATATCTGGG ACAGGTAGGA CCATCAACAT CTCTCAATAT TGGATTAAGG	240
GCATCTTATG CACTGACCAA TGGACAGACT CCACCTACTC CCGGACGAGT TCAGGCGTTA	300
GTTGATGTTA CCTTCGAGTA TAATTAGGAA TGTCGGGGAT GGGCTATCCC CGATATTATT	360
GCAGGATTAG TCTGTGATAC AGATATACAG CCCATATGAA CAACTGTTTG CATATAAA	420 -
AATGATGATA ATTTTA	436

-228-

(2) INFORMATION	FOR SEQ	ID NO:	120:
-----------------	---------	--------	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 559 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

AATTAATAA	TTTGGAGGGA	TCAGTTTTCT	GATAATGTTC	TGTTATTAAA	ACATTATCCC	60
ATGGGGCGTA	GTTATATCAA	TTAGCAGGAT	CTTATGAGTT	AACTAACATC	AGTTTTGAAT	120
TTTTAATGGG	GGTAATTTAT	CTTTTACTAA	ATTTTTA	ACTATTAATA	TAGCATCATG	180
GTTGTTACGG	TTTGTTTTAA	TTCTATTTTA	TAATGTGCTA	TATATTGTAT	TTTTGTGCTT	240
AGATAAATAT	GTTTTTTCAT	TACTTTAGTG	ATGTTAATAT	TTTGCGTGTA	GTAAAAATCA	300
TTGTTATAAC	AAATGTCACT	GTTGCTATAC	TTTGCTGAAC	TGTTTATCGG	TCATTTTGAT	360
TCAATCACTG	GTTCTATATT	TTTTAATAAC	CGTTCTGTAG	CGATTAATAT	ATTGCTCTCC	420
AGAGGATACA	CTATATGAAA	TATATTAAAA	GTCATTAATT	TTNATTCAAT	GTTGTTTAGA	480
GTTATGTTCA	GTGTTTGGNA	ATAGGATGTG	TTTCTAAACC	GTCTTGGGTT	CTATAATAAA	540
TTCTATTCTT	ANAGGTTTT					559

(2) INFORMATION FOR SEQ ID NO: 121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 481 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

CATGTCCCTT	CCTGAATACT	GGGGAGAAGA	GCACGTATGG	TGGGACGGCA	GGGCTGCTTT	60
TCATGGTGAG	GTTGTCAGAC	CTGCCTGTAC	TCTGGCGATG	GAAGACGCCT	GGCAGATTAT	120
TGATATGGGG	GAAACCCCGG	TACGGATTTA	CAGAATGGTT	TCTCCGGACC	TGAAAGAAAA	180
TTCAGCCTCC	GGCTCAGGAA	TTGTGAATTT	AACAGTCAGG	GTGGGAACCT	TTTCTCTGAT	240
TCCCGGATAA	GGGTGACTTT	CGATGGCGTC	CGGGGTGAAA	CGCCGGATAA	GTTTAATTTA	300
TCCGGTCAGG	CAAAAGGCAT	TAATCTGCAG	ATAGCTGATG	TCAGGGGAAA	TATTGCCCGG	360
GCAGGAAAAG	TAATGCCTGC	AATACCATTG	ACGGGTAATG	AAGAAGCGCT	GGATTACACC	420
CTCAGAATTG	TGAGAACGGA	AAAAAACTTG	AAGCCGGAAA	TTATTTTGCT	GTCTGGGATT	480
A						481 -

(2) INFORMATION FOR SEQ ID NO: 122:

-229-

(i)	SEQUE	ENCE C	HAF	ACT E	ERI	STI	CS:	
	(Λ)	LENGT	Η:	535	ba	se	pair	S
	(B)	TYPE:	ทบ	clei	C	aci	.d	
	(C)	STRAN	DEL	NESS	3:	dou	ıble	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

CCATATAGTG ACTTCATTGA ACAAAATGTA AATGGAATCT TGCTGGAGAA TGACCCACAT 60 ATATGGATAA AAGCTCTTTC ATTACTTGTT AGTGCAGATC ATAAACGTAG CGAGTTGGCG 120 TTCAATGCTA AAAAATATGC TTGTAAAATT GTAGGTGTCG AGTAAAAAGA TATTTTTATT 180 TAATTGGTGC TATTGAATGT TTAAAAATCG AACTGATTGG TGTTTTAATA TTAATCATAG 240 GTTATGATGC AAAAATATAT TAGGCATTGC CTGCTTCAAT TAACTTGAGA GTGTAAGTTG 300 AATTGAAATA TGGTTATATG ATAAAGCAAT ATATGTTAAT ACATATGTCA ACCGAAAATG 360 CCATTATGTG TTTTTTACTT TATCTGTAAC GACACAATAT ATAAAATAAG GCTAATAATC 420 AAAACGCTTT TTAATTTGAT TGTTTTGAAT CAAGTGACTA AGAAATTCTC TTGCTGCAAA 480 TAACTCCCTT AGTGATTTTT TTTGAGTCTA TTTTATTCTC TGGGCATGGT CATGC 535

(2) INFORMATION FOR SEQ ID NO: 123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

CCGGCCCCAT AATGATGGTT TTATTAAGGT TAGCGCCGAC GGTTTCGATG AACGATTTCA 60

GGTCGGTATC TTTAAAATTA GCGGTGAAAG TGGCTTCTTC CGCCCAGACC GGTGAACTGC 120

ATAATGCCGC TGCCAGCACC AGCGGCAGTA AACGCTTTTT TGTTTTGAGG CCAGTTGTCT 180

TCTTACGCCA GACCGACAAC GTCATATCAC GCCAAAACAC GATGAATGAT TCTCCTGGAT 240

TAAATGCGGT TAGCGCAGCG CGATGGAAAT GTCGTGGCGC GCACCCTTGC GTAAAACCGT 300

AAGTTGAATG GAATCCATTG AAGGTAACTG CCGCATCAGA GCAATCATTG CTCGTGGATC 360

AGTGAAATCC TGCTGATTTA GCGCAAATGC GATATCGCCT TCCTTAAAAC CG 412

(2) INFORMATION FOR SEQ ID NO: 124:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 576 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-230-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
TAGCCTGTTC AGCGTATATT TGGGATGAGA AGCCAAAGTG GCTTTGGTGG TGTCCCAGCC	60
CAGGTTTTTA TTACTGCTGG TTATTTACCT TTCATGTTTT TCAATAAAGT TGTGACTCAG	120
TTGAAATCTG CTGTCAATGC TAATATGGGA CTTTTTTGTT ATAGACAAGT GACTCCTTTT	180
GCAACTTTTA TAGCACGTTT TATGCTAGAA ACAATGGTGG GCATGATTGT CGGTATAATC	240
CTAGTACTAG GATTATTGTG GTTTGGCTTT GATGCAATAC CTGCGGATCC ATTGCAAGTG	300
ATCCTTGGTT ATTCTCTTCT GATGCTGTTT TCTTTTTCTC TTGGTATTGT ATTTTGTGTT	360
ATTTGTAATT KRGCGARAGA GGCAGATAAA TTTCTTAGCT TGTTAATGAT GCCTTTGATG	420
TTTATCTCTT GTGTTATGTT TCCTCTTGCT ACTATTCCCC CTCAATATCA GCATTGGGTT	480
TTTATGGAAT CCACTTGTGC ATGCTGTAGA ACTAATCCGA AGGGCATGGG ATATCTGGGT	540
TATCGTAGTC CTGATGTAAG TTGGGCGTAT CTGTCG	576
(2) INFORMATION FOR SEQ ID NO: 125:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125: TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT	60
	60 120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT	
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG	120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT	120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	120 132
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA	120 132
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA ATAATGATAT TACAGCACAA TACCGTCTGG CAAAACTTTA TGAACAAGGT AACGGTGTAA	120 132 60 120
TTACCAAGCA GGATCTGATG CAACTGGAAG AAGGCTTTGA ATATCGTATC ATTGGCTGCT CCATGTATAA CATGTTGGCC GCCGTACGCG GTGCCTATGA CAGCTTTGAA AATGTCAAAG GGGTGAATTG CT (2) INFORMATION FOR SEQ ID NO: 126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 542 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126: GATTAGGGGT CACTCAGGAT TATAAAAAAG CGGCAGAATA CTATAAAAAA GGTGATAAAA ATAATGATAT TACAGCACAA TACCGTCTGG CAAAACTTTA TGAACAAGGT AACGGTGTAA AACGTGATTA TCAACAAGCG ATAAACCTTT ACCTTAAACA TATCAACAGA ATGGATCACA	120 132 60 120 180

	$\overline{}$	~	1	
_	Z)	1	-

-231-	
ACATGGCGGA ATTCCCCTAT TCTTTGTTGG CGCTTACAAC AGACTATATT CCGCCATATC	420
TGTCTTTATT GTGTATAAAC CATCGATACT GATGTTTGAT AGTGCTAAAT AATCATTGGC	480
GCAATCACAA AGCCTAATGC CACTCCAGCA ATAATTCCCC CCAACCCAGG CAGCATAAAT	540
GG	542
(2) INFORMATION FOR SEQ ID NO: 127:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
GAACCACTTA GCGGCAGCTA TCGGGAATCG CCTGCTGAAA GACGGTCAGA CAGTGATTGT	60
GGTTACCGTG GCTGATGTTA TGAGTGCCCT GCACGCCAGC TATGACGATG GGCAGTCAGG	120
CGAAAAATTT TTGCGGGAAC TGTGCGAAGT GGATCTGCTG GTTCTTGATG AAATTGGCAT	180
TCAGCGCGAG ACGAAAAACG AAGCAGGTGG TACTGCACCA GATTGTTGAT CGCCGGACAG	240
CGTCGATGCG CACGTGGGGA TRCTGACAAA CCTGAACTAT GAGGCCATGA AAACATTGCT	300
CGGCGARCGG ATTATGGATC RCATGACCAT GAACGGCGGG CGATGGGTGA ATTTTAACTG	360
GGAGACTGGC GTCCGAATGT CG	382
(2) INFORMATION FOR SEQ ID NO: 128:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
CGTCCCGCAC CCGGAAATGG TCAGCGAACC AATCAGCAGG GTCATCGCTA GAAATCATCC	60
TTAGCGAAAG CTAAGGATTT TTTTTATCTG AATTCTAGCC AGATCCCCGC TGATTTATGC	120
TGGTTA	126
(2) INFORMATION FOR SEQ ID NO: 129:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 258 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

-232-	
ACCCCCAGCC TAGCTGGGGG TTTTCTGTGC ACAAAAATC CCGGCATAAT GGCCGGGATT	60
TGCGAGCTTT CCCACTATTT CTTGATTCCT AAACGGAACA TATCAGTTGG GAATAAAGGT	120
TGTATTATCA CTTCATCATT ANAAATGAAT AATTTGGGCG ATAAAGCTGT TACGTCATAG	180
ATATTTTCAG CGATTAATCT TAGANTTGAC CTAAAAACTG GAATACTTGC ATCATCTGCA	240
AAGACAAACA TGTCATCG	258
(2) INFORMATION FOR SEQ ID NO: 130:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 399 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
AACCAGCGGT TCGCATCATC TCATCCCACT GACTCTCCGC TTTTGACAGA TCTGCATATC	60
CTCGGGCCAA CTTATCCAGT ACTCCGTAGT TTGCCGATTT ATTCACCCGC CAGAACACCG	120
CCTCACCTGC ATCGGCAAGC CGGGGGGAAA ACTGATACCC CAGTAGCCAG AACAGACCGA	180
AAATAATATC GCTGCTACCC GCAGTGTCTG TCATGATTTC AACTGGATTC AGCCCTGTCT	240
GCTGCTCAAG AAGTCCTTCC AGTACAAAAA TCGAATCCCG TAATGTACCG GGTACCACAA	300
TGCCATGGAA CCCAGAGTAC TGATCAGATA CGAATTATAC CAGGTGATGC CTCGTCCAGA	360
ACCAAAATAT TTTCTGTTAG ATCCTGAGTT GATGGTCTT	399
(2) INFORMATION FOR SEQ ID NO: 131:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 745 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
AAATAACATC AACATACATT TGACTCGCGG GGGAAACGTT TACGGAGTCT TCATACTGGC	60
ACTITITAT GCTGCTGACT ACTCTTCGTC ATCGCCATCA ACATGCGCAC GAATCAGCGC	120
CATAAACGGT TTGCCAAAGC GTTCCAGCTT GCGCATCCCA ACGCCGTTAA CGCTGAGCAT	180
TTCGCTGGCG GTGATCGGCA TCTGTTCAGC CATCTCAATC AAGGTTGCGT CGTTAAACAC	240
CACGTACGGC GGGACATTAC TTTCATCGGC TATCGATTTA CGCAGTTTGC GTAATTNGGC	300
GAACAGTTTG CGATCATAGT TGNCGCCGAN CGATNTCTGC ATCGCTTTCG GTTTGAGCGC	360
CACGATACGO GGCACGGCAA TTGCAAAGAG GATTCGCCGC GCAGCACCGG GCGCGCGCC	420
TCTGTCAGTT GTAGGGCAGA ATGCTGGGCA ATATTTTGCG TCACCAGGCC GAGGTGAATC	480

PCT/US97/21347

-233-	
AGCTGGCGGA TCACGCTCAC CCAATGTTCA TGGCTTTTAT CACGGCCCAT GCCATAGACT	540
TTCAGTTTGT CATGACCATA GTCGCGGATA CGCTGGTTAT TAGCACCACG AATCACTTCC	600
ACCACATAAC CCATCCCAAA CCGCTGATTC ACACGACCAA TGGTGGAAAG GGCAATCTGA	660
GCATCGGTTG AACCGTCGTA CTGTTTCGGC GGATCGAGGC AGATATCGCA GTTCNCCGCA	720
CGGCTCCTGA CGCCCTTCGC CAAAA	745
(2) INFORMATION FOR SEQ ID NO: 132:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 439 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:	
AGAATGGCGG CTTCTTGCCC CCCTTTGCCC CGGTCCTGAC TAGCATGGCT GGAGTCCAGT	60
GTCCAGGCCA CGACCATGCT CATCATGGAA GCAGCTTTTG TAGTACANTC GCAGCTTATT	120
TTCCTGGAAC GAAATGTCTG GCATCGTGGT GCATAACATA ACCCCCAATG CCCAGCAGAT	180
GCACAGAAGG TTCTAGAATC GCCCACTGAT ATCCCATACA AAATTTACCA AAACGTGTTC	240
GTATTTCTCG TATAAATAAT GTCTCTATGG TGACGTTCTA GACTTCAAAC CCACTTTTTG	300
AATTTGATGA TGTGCTCCTA ATCTCTTCAG GAATGTAACG CCCTTGGTTT ACAGCTACCA	360
ATACACTGGA GGTATACTTA TCTGCAACTG GATGAACTAG ATGTACTTGA GCAAACATTT	420
CATAAGCTCG ACGACAGTT	439
(2) INFORMATION FOR SEQ ID NO: 133:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
CTGGAAAGCG ACGTTGATGG ATTAATGCAG TCGGTAAAAC TGAACGCTGC TCAGGCAAGG	60
CAGCAACTTC CTGATGACGC GACGCTGCGC CACCAANTCA TGGAACGTTT GATCATGGAT	120
CAAMTCATCC TGCAGATGGG GCAGAAAATG GGAGTGAAAA TCTCCGATGA GCAGCTGGAT	180
CAGGCGATTG CTAACATCGC GAAACAGNAC AACATGACGC TGGATCAGAT GCGCACCGTC	240
TGGCTTACGA TGGACTGAAC TACAACACCT ATCGTAACCA GATCCGCAAA GAGATGATTA	300
TOTOTICA ACT. COCTARCARO GAGGTGCGTC GTCGNATCAC CATCCTGCCG	350

(2) INFORMATION FOR SEQ ID NO: 134:

(i) SEQUENCE CHARACTERISTICS:

-234-

(A) LENGTH: 400 mase pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
CCCCAAGATT GCTAACAAAT GCGCGTTGTT CATGCCGGAT GCGGCGTGAC CGCCTTATCC	60
GGCCTACGAA ACCGCAAGAA TTCAATATAT TGCAGGAGCG GTGTAGGCCT GATAAGCGTA	120
GCGAWTCAGG CAGTTTTGCC TTTGCCCGCA ACCTTAGGGG ACATTTAGCG ACCCCATTTA	180
TTTCTCACTT TTCCGCCTCA TCATCGCGCG TTAATTTCTT TCATGAATCA CGCTTTACAA	240
TATCCAGCGC GCGCANAACG GTACTGGCAG GGATCTGAAT TTTCCTCCAG CAGCACAATC	300
AAATCGACAG CCAGTTTGAC ATCGTCAAGG GGCATTTTCC CAGTGACATA ATCTCTCCAT	360
TGCTAAGCGG GTTAAAACGC GCTAACCTGT TTCGATTTTT	400
(2) INFORMATION FOR SEQ ID NO: 135:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 463 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135: 	
CTATCCTTAT GACCACCCAA CTACNTCATT TACACCCAAA CCAGCGATCT GAATAAAGAA	60
GCGATTGCCC AGTTACGACT GGGCGGAAAA TGCGCGTAAG GATGAAGTAA AGTTTCAGTT	120
GAGCCTGGCA TTTCCCTGTG GCGTGGGATT TTAGGCCCGA ACTCGGTGTT GGGTGCGTCT	180
TATACGCAAA AATCCTGGTG GCAACTGTCC AATAGCGAAG AGTCTTCACC GTTTCGTGAA	240
ACCAACTACG AACCGCAATT GTTCCTCGGT TTTGCCACCG ATTACCGTTT TGCAGGTTGG	300
ACTGCGCGAT GTGGAGATGG GGTATAACCA CGACTCTAAA CGGGCGTTCC GACCCGACCT	360
CCCGCAGCTG GAACCGCCTT TATACTCGCC TGATGGCAGA AAACGGTAAC TGGCTGGTAG	420
AAGTGAAGCC GNGGTATGTG GTGGGTAATA CTGACGATAA CCC	4 63
(2) INFORMATION FOR SEQ ID NO: 136:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 584 pase pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

~	2	5	
- /	٠,	`	_

TTGGTCAGCC	GTACCTGAAT	GGGGGCTGAT	GCCCGGCTGG	TTAATGGCAG	GTGGTCTGAT	60
CGCCTGGTTT	GTCGGTTGGC	GCAAAACACG	CTGATTTTTT	CATCGCTCAA	GGCGGGCCGT	120
GTAACGTATA	ATGCGGCTTT	GTTTAATCAT	CATCTACCAC	AGA-GGAACAT	GTATGGGTGG	180
TATCAGTATT	TGGCAGTTAT	TGATTATTGC	CGTCATCGTT	GTACTGCTTT	TTGGCACCAA	240
AAAGCTCGGC	TCCATCGGTT	CCGATCTTGG	TGCGTCGATC	AAAGGCTTTA	AAAAAGC AA T	300
GAGCGATGAT	GAACCAAAGC	AGGATAAAAC	CAGTCAGGAT	GCTGATTTTA	CTGCGAAAAC	360
TATCGCCGAT	AAGCAGGCGG	ATACGAATCA	GGAACAGGCT	AAAACAGAAG	ACGCGAAGCC	420
TACGNTAAAG	AGCAGGTGTA	ATCCGTGTTT	GATATCGGTT	TTAGCGNACT	GCTATTGGTG	480
TTCATCATCG	GCCTCGTCGT	TCTGGGGGCG	CAACGACTGC	CTGTGGCGGT	AAAAACGGTA	540
GCGGGCTGGA	TTCGCGCGTT	GCGTTCACTG	GCGACAACGG	TGCA		584

(2) INFORMATION FOR SEQ ID NO: 137:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 527 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

GCAGGCAGGA	GGAACTGCCC	AGTGATACGG	TTATTCGTGA	TGGCGGAGGG	CAGAGCCTTA	60
ACGGACTGGC	GTTGAACACC	ACGCTGGATA	ACAGAGTTGA	GCATTGGNTA	CACGGGGGAG	120
GGAAAGCAGA	CGTTACAATT	ATTAACCAGG	ATGTTTACCC	AGACCATAAA	ACATGGCGGA	180
TTGGCAACCG	NAACCATCGT	CAACACCGTT	GCAGAAGKTG	GTCCGGAGTC	TGAAAATGTG	240
TCCAGCGGTC	AGATGGTCGG	AGGGACGGCT	GAATCCACCA	CCATCAACAA	AAATGGCCGG	300
CAGTTATCTG	GTCTTCGGGG	ATGGCACGGG	ACACCCTCAT	TTGCGCTGGT	GGTGACCAGA	360
CGGTACACGG	AGAGGCACAT	AACACCCGAC	TGGAGGGAGG	TTAACCAGTA	TGTACACAAC	420
GGTGGCACGG	CAACAGAGAC	GCTGATAAAC	CGTGATGGCT	GGCAGGTGAT	TAAGGAAGGA	480
GGGAACTGCC	GGCGCATTAC	CACCATCAAN	CCNGAAAAGG	GAAANCT		527

(2) INFORMATION FOR SEQ ID NO: 138:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

GTCAGTCTCT GGGGGAAGTG CGTGTTCCGA CCGGGGAAAT GTGGTGGAGA AAGTTATTGA 60

	_	_	_	
	$^{\prime}$	7	4	
_	_	٠,	"	-

250	÷
AGGGGCTTAC GAGGTGGTGG GGGTTTTTGA CCGGATTGAG GAAAAGCGTG ATGCCATGCA	120
GTCGCTGATT CTGCCGCCAC CGGACGCCAG GCGCTGGCAC AGGCGGCACT GACTTACCGT	180
TATGGTGACG AACMTCARCC CGTCACCACC GCCGACATTC TGACACCACG ACGCCGGGAR	240
GATTACGGTA AGGACCTGTG GAGTGCTTAT CAGACCATTC AGGAGAATAT GCTGAAAGGC	300
GGAATTTCCG GTCGCAGTGC CAGAGGAAAA CGTATCCATA CCCGTGCCAT TCACAGCATC	360
GACACCGACA TTAAGCTCAA CCGCGCATTG TGGGTGATGG CTGAAACGCT GCTGGAGAGT	420
ATGCGCTGAT GCCGTTTCCN T	441
(2) INFORMATION FOR SEQ ID NO: 139:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 398 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
CGAGCGAGAT GAACTTCGAG GGCGGTGTGA GCCAGTCGGC TTACGAGACA CTGGCGGCGC	60
TTAATCTGCC GAAACCGCAG CAAGGGCCGG AAACCATTAA TCAGGTTACC GAGCATAAGA	120
TGTCAGCTGA GTAAGCCTGT ATGCCGGATA AGGCGCTCGC GCCNATTCCG ATGAAATAAG	180
GCGCATCGGG CCTGAAGGAA AGCCGTATGN ATACACCCGC AGCCCGCATC CGGCAAGTTA	240
CAACAAATAA CCTTTAACCA TGCTTTTTGA TGTTTTTCAG CAATACCCCG CGGCGATGCC	300
CATACTGGCA ACCGTCGGGA GGGATTGATC ATCGGCAGTT TTTTGAATGT GGTGATTTGG	360
GCGTTACCCC ATCATGCTGC GCCAACAAAT GGCGGAGT	398
(2) INFORMATION FOR SEQ ID NO: 140:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 580 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:	
GCCGAACAGA CACAGCAATA TGAACCCTGC CAGCGCAGAC GCTTGCTGAT TAATGCTCTG	60
AACAAAAGGC GAAGAATGGC AAATCCTGCG ATCAGCAAAG TCAGCGCACC GACTATCTGT	120
AACATAGTCA CTCCGTGATG AATATCATGT GTATTGTGAA TGCCAGTGAA TGTGGCACTG	180
AAGCGTTTGC ACCTGTCCGG GTCCCGGTCA TGATGACCGS AACAGAGAGA CAATGCCGAA	240
TTATCAGAAG GTCACATTCA GTGTGGCTTG GCCGTTATAA CCTTCAGCGC TGCTGCCGCT	300
GACGCTGTGG GCATAACCGG CCTGAACGCC CAGGGTGATA TTTTCCCGGA CACGGGCTTC	360

-237-	
CAGTCCGGCC TGCAGCTCCA GTGACGTGCC ATTCCGGGAC GGTGAGAACG TCATGTTACT	420
GCCGGCTGCG GCTGTACCCA TGCTCATGTC TCCCCGGGAG CTGAAGGTGC GGATAACAGA	480
AGGCTGTACC CACCCGTTCA CCGGCAGTTC ACGCACACTG TGTTTTGCAC TGTCACGCAA	540
GGTGTCACGG GATGAGGTGC CTTCANCAAA AGGTCATATT	580
(2) INFORMATION FOR SEQ ID NO: 141:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 446 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
TGCGGACATC CAGCGTTCCG CCATCATCCA CACGGGTTCT GGTGGCTGTG TGTCCGGTCA	60
GCACATCCAG ACGGCCGCCA TTTTCCAGTA CGACATTATC AGCTTTACCC TCCACAACAG	120
AGAATGCTCC CAGGCGGTTT GTGCCGGTGA CGGTTGCAGC AGTGCTGGTA ACCAGTGCTC	180
CGCCCGTGTT CTGGGTGACA TCAGACGCTT TACCGCCGGC ATTCACCTGC AGCTTTCCTT	240
TCTGGTTGAT GGTGGTATGC GCGGCAGTTC CTCCTTCCTT AATCAMCTGC CAGCCATCAC	300
GGTTTATCAG CGTCTCTGTT GCCGTGCCAA CGTTGTGTAC ATACTGGTTA MCTCCCTCCA	360
GTCGGGTGTT AWGTGSCTCT CCGTGTANCG TCTGGTCANC AACAACGCAA ATGANGGTGT	420
CCCGTGCCAT CCCCGAAGAC CAGTAA	446
(2) INFORMATION FOR SEQ ID NO: 142:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
TGAATACGTT AAGTCAGCAG ACCGGCGGAG ACAGTCTGAC ACAGACAGCG CTGCAGCAGT	60
ATGAGCCGGT GGTGGTTGGC TCTCCGCAAT GGCACGATGA ACTGGCAGGT GCCCTGAATA	120
ATATTGCCGG AGTTCGCCAC TGACCGGTCA GACCGGTATC AGTGATGACT GGCCACTGCC	180
TTCCGTCAAC AATGGATACC TGGTTCCGTC CACGGACCCG GACAGTCCGT ATCTGATTAC	240

GGTGAACCCG AAACTGGATR GTCTCGGACA GGTGGACAGC CATTTGTTTN CCGGACTGTA

TGAGCTTCTT GGAGCGAAAC CGGGTCA

300 327

-238-

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page5, line8				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution				
American Type Culture Collection (ATCC)				
Address of depositary institution (including postal code and country) 12301 Parklawn Drive				
Rockville, Maryland 20852 United States of America				
Date of deposit	Accession Number			
September 23, 1996	97726			
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet			
DNA plasmid PAI-l				
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)				
The indications listed below will be submitted to the International Number of Deposit*)	l Bureau later (specify the general nature of the indications e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	l l ·			
Authorized officer	Authorized officer			