無線電波與調變

cory@gms.tku.edu.tw

Outlines

- 電磁波的二三事
- 基本調變方式
- 近代行動通訊系統架構

生活中常見的波動/射線

- 震波、聲波
- ■電磁波
 - 無線電波(RF)
 - 紅外線
 - 可見光
 - 紫外線
 - *X*射線
 - V射線
- ■粒子射線
 - α射線 (氦的原子核)
 - β射線 (電子)
 - ...

電磁波(Electromagnetic)

■ 弗萊明右手定則

電磁波(Electromagnetic)

無線電波段

頻率	波長	ITU代號	備註/用途
3 – 30 Hz	$10^5 - 10^4 \text{ km}$	ELF	實驗性質水下通訊
30 – 300 Hz	$10^4 - 10^3 \text{km}$	SLF	(交流電週波)
300 – 3000 Hz	$10^3 - 10^2 \text{km}$	ULF	
3 – 30 kHz	100 – 10 km	VLF	
30 – 300 kHz	10 – 1 km	LF	長波,海事通訊
300 – 3000 kHz	1000 – 100 m	MF	中波,AM廣播
3 – 30 MHz	100 – 10 m	HF	短波,廣播、無線電通訊
30 – 300 MHz	10 – 1 m	VHF	無線電通訊、FM廣播、電視、助導航設施
300 – 3000 MHz	1000 – 100mm	UHF	微波,電視、行動電話、IoT、衛星通訊
3 – 30 GHz	100 – 10 mm	SHF	行動網路、無線網路/IoT、雷達、衛星通訊
30 – 300 GHz	10 – 1 mm	EHF	雷達、行動網路、無線網路/IoT、衛星通訊

實作

■發射

- 早期使用電弧火花
- 近代射頻電路使用振盪元件
- 訊號放大後經天線元件發射

■接收

- 天線元件在響應範圍將電磁波轉為電氣訊號
- 經過濾波、訊號放大後得到特定頻率上的訊號

這和數位電路上的時脈(clock)是不一樣的

電磁波的強度

- ■磁場強度(通常用於低頻)
 - mGs
- ■電場強度
 - V/m
- ■功率密度
 - W/m², mW/cm², μW/m²
- 通訊上常用的單位
 - dB:實際上應為dBc,對應載波的強度
 - dBm: 與mW對應的強度 (1 dBm = 1.2589254118 mW)
- ■不同波段單位的對應關係
 - 1 W/m² = 683.002 lux (綠色光、波長555nm)
 - Gy = J / kg, $Sv = Gy * Q_{radiation} * Q_{tissue}$

$$L_{ ext{dB}} = 10 \log_{10} \left(rac{P_1}{P_0}
ight)$$

通訊上常用的量測值

RSSI

Received Signal Strength Indication 接收到的訊號強度

SNR

Signal to Noise Ration 訊號與雜訊強度的比值

SINR

Signal to Interference + Noise Ratio 訊號與雜訊加上干擾訊號的強度比值

無線電波訊號傳輸

無線電波訊號傳輸

- ■大尺度衰落
 - 傳輸距離、遮蔽物造成的功率損失
 - 考量發射功率、發射/接收天線增益、波長
- 小尺度衰落
 - 多路徑、通道特性、都卜勒擴散造成的功率損失
 - 考量環境狀況、訊號角度、移動速度
- 多天線
 - SIMO, MISO, MIMO

我們需要害怕電磁波嗎?

- 非游離輻射波段
 - 無線電波、紅外線、可見光、大部分紫外線
 - 沒有劑量問題,只有功率問題
 - 造成的損傷是當下的
 - 熱效應、強光對眼睛的傷害、紫外線(UVA、UVB)造成曬傷...
 - WHO IARC所列第2B級致癌因子
 - 似乎有一些相關性,但找不到證據
 - 咖啡也曾經在這一類
 - 由環保單位訂定管理規範

非游離輻射 Non-ionizing Radiation

我們需要害怕電磁波嗎?

- 游離輻射波段
 - 部分UVC、X射線、γ射線
 - ■有劑量問題
 - 染色體/DNA中的原子被游離後效應會持續一段時間)
 - WHO IARC所列第1級致癌因子
 - 低劑量的影響沒有呈現統計意義
 - 法令規範門檻都低於統計上有意義的門檻
 - α射線、β射線也是游離輻射,但不屬於電磁波
 - 穿透力差,但在人體內的殺傷力較大
 - 由原子能單位訂定管理規範

游離輻射 Ionizing Radiation

Outlines

- 電磁波的二三事
- 基本調變方式
- 近代行動通訊系統架構

離散調變(pulse \ on-off)

- ■單純開啟或關閉、一小段時間內發送的位置、簡短編碼內容
- ■案例
 - 傳統電報
 - UWB (Ultra Wide Band)
 - 光通訊

調幅

調幅

- 最早出現的連續調變技術
- AM 廣播
- ■部分無線電對講機
- ■目前多發展為正交振幅調變(QAM)

調頻

調頻

- •FM廣播
- ■無線電(語音)通訊
- AMPS、GSM系統
- Bluetooth
- Frequency Shift Keying (FSK)

條相

條相

- 5G NR, LTE, WiMAX, Wi-Fi
- PHS
- Bluetooth
- Zigbee
- Phase Shift Keying (PSK)

QAM(Quadrature Amplitude Modulation)

QAM(Quadrature Amplitude Modulation)

- 5G NR, LTE, WiMAX, Wi-Fi
- 電視(影像)、數位電視

Outlines

- 電磁波的二三事
- 基本調變方式
- 近代行動通訊系統架構

行動通訊系統基本架構

Core Network

- ■機房端
- 允入控制
- ■各種資源管理
- ■管理連線session
- ■常見名稱
 - Packet Core (UMTS, IP網路部分)
 - EPC, Evolved Packet Core (LTE)
 - 5GC, 5G Core Network (5G)

Base Station

- ■提供無線資源管理與排程
- 以隧道模式連接UE與核心網路
- ■管理cell概念
 - 每個cell有其cell ID
 - Macro cell
 - Small cell / Femtocell
- ■常見名稱
 - 基地台、基站
 - Node B (UMTS)
 - eNB, E-UTRAN Node B or Evolved Node B (LTE)
 - gNB, next generation Node B (5G)

RAN Management

- Radio Access Network
- 基站管理
 - 運作狀態
 - 運端遙控
 - ■設定值調整
 - 軟體/韌體更新

Data/Service Network

- Internet存取(Gateway)
- ■語音、影像、多媒體...等服務

User Equipment

- ■儲存網路識別、認證資訊
- •搜尋網路
- ■向網路註册
- ■建立資料通道