(Make sure you finish in 35-40 mins)

- 1. Which one of the following is syntactically equivalent to $(\forall x. x < y \rightarrow z > y) [x + z / z]$?
 - a. $\forall x. x < y \rightarrow z > y$
 - b. $\forall x. x < y \rightarrow (x+z) > y$
 - c. $\forall u. u < y \rightarrow z > y$
 - d. $\forall u. u < y \rightarrow (x + z) > y$
- 2. While calculating $sp(x \le y, \text{ if } x = z \text{ then } x \coloneqq z + 1 \text{ else } z \coloneqq y \text{ fi})$, what is the collection of variables that we need to age?
 - a. $\{x, y, z\}$
 - b. $\{x, y\}$
 - c. $\{x, z\}$
 - d. $\{x\}$
- 3. We know that $\tau \models sp(p,S)$, then which one of the following must be true?
 - a. For some state $\sigma \models p$, it is the case that $M(S, \sigma) \bot = \{\tau\}$.
 - b. For some state $\sigma \models p$, it is the case that $\tau \notin M(S, \sigma) \bot$.
 - c. For some state $\sigma \models p$, it is the case that $\tau \in M(S, \sigma) \bot$.
 - d. For some state $\sigma \vDash p$, it is the case that $\bot \in M(S, \sigma)$.
- 4. Which one of the following is semantically equivalent to (b[i] = 1)[1/b[k]]? You may assume that i and k are both valid indices of array b.
 - a. $i = k \lor b[i] = 1$
 - b. $i \neq k \lor b[i] = 1$
 - c. $i = k \lor b[k] = 1$
 - $d. \quad i \neq k \lor b[k] = 1$
- 5. Under total correctness, create a full proof outline for the following minimal proof outline. Remember that each triple and each implication you use in the proof outline must be provable.

$$\{p\}$$
 if $x < 0$ then $x := x \div y$ else $x := sqrt(x)$ fi $\{b[x] > y\}$

6.	The following program calculates the sum $2^0 + 2^1 + 2^2 + \cdots + 2^k$, where $k > 0$. We want to store the sum in a
	variable x and show that $x = 2^{k+1} - 1$ in the postcondition. Create a full proof outline under total correctness
	of this program by fulfilling the missing conditions and statements.

 $\{k > 0\} \ x \coloneqq 1; \{ _ _ _ \}$; $\{ _ _ _ \}$ while $i \neq k$ do $\{ _ _ _ _ \}$ $\{ x \coloneqq x + 2^i; \}$ $\{ _ _ _ _ \}$ od

$$\{x = 2^{i+1} - 1 \land 0 \le i \le k \land __{}\}$$

 $\{x = 2^{k+1} - 1\}$

7. Given the following two threads written in proof outlines:

$$S_1 \equiv \{x = 0\} \ y := x + 2 \ \{y = 2\}$$

 $S_2 \equiv \{x < 0\} \ z := 0 \ \{z > x\}$

Do these two threads interfere with each other? Show your work.