ECE 780 To 8 Project Bug Algorithms using Neural Networks

Andreas Stöckel

Computational Neuroscience Research Group Centre for Theoretical Neuroscience

July 24th, 2017

Motivation

- ► In class, we mostly talked about path planning using *global* information.
- ▶ Often, robotic and biological agents alike are restricted to *local*, *sensor-based* information.

Source: Wikimedia Commons

Motivation

- ► In class, we mostly talked about path planning using *global* information.
- ▶ Often, robotic and biological agents alike are restricted to *local*, *sensor-based* information.
- ► Bug algorithms (Lumelsky and Stepanov 1987) are a simplistic class of local planing algorithms/policies.

Source: Wikimedia Commons

Motivation

- ► In class, we mostly talked about path planning using *global* information.
- ▶ Often, robotic and biological agents alike are restricted to *local*, *sensor-based* information.
- ► Bug algorithms (Lumelsky and Stepanov 1987) are a simplistic class of local planing algorithms/policies.
- ∼→ Can these algorithms be implemented in a biological, neural substrate?

Source: Wikimedia Commons

PART I Bug Algorithms

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

Robot

► Knows direction towards goal (absolute and relative)

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

Robot

► Knows direction towards goal (absolute and relative)

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

- ► Knows direction towards goal (absolute and relative)
- Knows the straight line distance to the goal

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

- ► Knows direction towards goal (absolute and relative)
- Knows the straight line distance to the goal
- ► Has no knowledge of obstacles (no map)

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

- ► Knows direction towards goal (absolute and relative)
- Knows the straight line distance to the goal
- ► Has no knowledge of obstacles (no map)
- ► Has a contact sensor

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

- ► Knows direction towards goal (absolute and relative)
- ► Knows the straight line distance to the goal
- ► Has no knowledge of obstacles (no map)
- Has a contact sensor
- Moves in straight lines or along obstacle boundaries

Environment

- Start location \vec{p}_{start} , goal location \vec{p}_{goal}
- ▶ Polygonal obstacles O_1, \ldots, O_n

- ► Knows direction towards goal (absolute and relative)
- ► Knows the straight line distance to the goal
- ► Has no knowledge of obstacles (no map)
- Has a contact sensor
- Moves in straight lines or along obstacle boundaries
- ► Has memory to store distances and angles

media/video/demo_bug_direct_success.mp4

The Bug 0 algorithm

```
    while not at goal do
    move towards the goal
    if hit an obstacle then
    while not able to move towards the goal do
    follow obstacle boundary CCW
    end while
    end if
    end while
```

- Algorithm solely depends on goal direction
- \ominus The algorithm may fail...

Source: Lectures on Robotic Planning and Kinematics, Bullo and Smith, 2016

The Bug 2 algorithm

```
1: \alpha \leftarrow \text{goal direction}
 2: while not at goal do
         move towards the goal
 3:
         if hit an obstacle then
 4:
              d_{\text{hit}} \leftarrow \text{distance to goal}
 5:
              while distance to goal \geq d_{\rm hit} and
 6:
                      goal direction \neq \alpha do
 7:
                  follow obstacle boundary
 8:
              end while
 9:
         end if
10:
11: end while
```

- \oplus If $ec{p}_{
 m goal}$ is reachable from $ec{p}_{
 m start}$, the algorithm will find a path
- → Not always better than Bug 1

Source: Lectures on Robotic Planning and Kinematics, Bullo and Smith, 2016

PART II

Spiking Neural Networks and the Neural Engineering Framework

Textbook Biological Model Neuron

Leaky Integrate and Fire Neuron

- ightharpoonup Input spikes induce current J in cell body
- ► Cell body modelled as dynamical system in continuous time

$$\tau \dot{u}(t) = J - u(t)$$
 $u(t) \leftarrow 0 \text{ if } u(t) = 1$

Leaky Integrate and Fire Neuron

- ightharpoonup Input spikes induce current J in cell body
- ► Cell body modelled as dynamical system in continuous time

$$\tau \dot{u}(t) = J - u(t)$$
 $u(t) \leftarrow 0 \text{ if } u(t) = 1$

⚠ Not your usual artificial neural network! Intrinsic dynamics! Spike noise!

The Neural Engineering Framework (NEF)

- Systematic way of building spiking neural networks
- Principle 1: Populations of spiking neurons represent \vec{x}
- Principle 2: Connections between populations compute $f(\vec{x}) = \vec{y}$
- Principle 3: Self-connections implement dynamics $\mathrm{d}/\mathrm{d}t\,\vec{x}=g(\vec{x})$

Chris Eliasmith and Charles H. Anderson, Neural Engineering, 2003

Nengo

▶ Nengo: Python software implementation of the NEF, available on GitHub (Bekolay et al., Nengo: A Python tool for building large-scale functional brain models, Frontiers in Neuroinformatics, 2014)


```
import nengo
    import numpy as np
    model = nengo.Network()
    with model:
        stim = nengo.Node(
             lambda t: t - 1)
        a = nengo.Ensemble(
             n_neurons=400, dimensions=1)
10
        b = nengo.Ensemble(
11
12
             n_neurons=400, dimensions=1)
13
14
        nengo.Connection(stim, a)
        nengo.Connection(a, b,
15
             function=np.sign)
16
```

PART III

Implementation and Results

Simulator Environment

Body & Environment

- Discrete simulation $\Delta t = 10 \, \mathrm{ms}$
- Disk-shaped robot
- Robot slides along obstacles

Sensors

- ightharpoonup Distance d, contact sensor
- Absolute and relative orientation (unit vectors $\vec{\alpha}_a$, $\vec{\alpha}_r$)
- Radar for obstacle boundary following

Motor System

- Non-holonomic2-DOF drive
- Relative control vector $\vec{v} = (v_x, v_y)$

Basic Behaviours: Move Towards Goal & Follow Obstacle

Move Towards Goal

ightharpoonup Connect relative direction vector $\vec{\alpha}_r$ to the motor control output \vec{v}

Follow Obstacle

- ▶ Rotate radar vectors by $\approx 45^{\circ}$
- Weighted sum of radar vectors; smaller distance, more weight

Basic Behaviours: Move Towards Goal & Follow Obstacle

Move Towards Goal

ightharpoonup Connect relative direction vector $\vec{\alpha}_r$ to the motor control output \vec{v}

Follow Obstacle

- ▶ Rotate radar vectors by $\approx 45^\circ$
- Weighted sum of radar vectors; smaller distance, more weight

Basic Behaviours: Move Towards Goal & Follow Obstacle

Move Towards Goal

ightharpoonup Connect relative direction vector $\vec{\alpha}_r$ to the motor control output \vec{v}

Follow Obstacle

- ▶ Rotate radar vectors by $\approx 45^{\circ}$
- Weighted sum of radar vectors; smaller distance, more weight

Bug 0: Reference Implementation

```
def behave(self, sensors, motor):
        # State transition
        if self.t follow > 1.0:
            self.follow obstacle *= 0.5
        elif sensors.hit obstacle():
            self.follow obstacle += 1.0 * self.dt coarse
        else:
            self.follow obstacle -= self.follow obstacle * self.dt coarse
 9
        # Behaviour implementation
10
        if self.follow_obstacle > 0.25:
11
            common.follow obstacle(sensors, motor, self.radius)
12
            self.t follow += self.dt coarse
13
14
        else:
            self.t follow = 0
15
16
            common.move towards goal(sensors, motor)
```

Bug 0: Neural Network

Bug 0: State over Time

Bug 0: State over Time

Bug 0: State over Time

Bug 0: Distance Plot


```
1: \alpha \leftarrow \text{goal direction}
 2: while not at goal do
         move towards the goal
 3:
         if hit an obstacle then
 4:
              d_{\text{hit}} \leftarrow \text{distance to goal}
 5:
              while distance to goal \geq d_{\rm hit} and
 6:
                     goal direction \neq \alpha do
 7:
                  follow obstacle boundary
 8:
              end while
 9:
         end if
10:
11: end while
```

- ► Simulator/Neural network: Executes algorithm "tick-wise"
- → Translate to state machine

```
1: \alpha \leftarrow \text{goal direction}
 2: while not at goal do
         move towards the goal
 3:
         if hit an obstacle then
 4:
              d_{\text{hit}} \leftarrow \text{distance to goal}
 5:
              while distance to goal \geq d_{\rm hit} and
 6:
                      goal direction \neq \alpha do
 7:
                  follow obstacle boundary
 8:
              end while
 9:
         end if
10:
11: end while
```

- Simulator/Neural network: Executes algorithm "tick-wise"
- → Translate to state machine

States:

- 1. MEM_DIR: Memorize direction
- 2. MOVE: Move towards goal
- 3. MEM_DIST: Memorize distance
- 4. FOLLOW: Follow obstacle outline

```
1: \alpha \leftarrow \text{goal direction}
 2: while not at goal do
         move towards the goal
 3:
         if hit an obstacle then
 4:
              d_{\text{hit}} \leftarrow \text{distance to goal}
 5:
              while distance to goal \geq d_{\rm hit} and
 6:
                     goal direction \neq \alpha do
 7:
                  follow obstacle boundary
 8:
              end while
 9:
         end if
10:
11: end while
```

- ► Simulator/Neural network: Executes algorithm "tick-wise"
- → Translate to state machine

States:

- 1. MEM_DIR: Memorize direction
- 2. MOVE: Move towards goal
- 3. MEM_DIST: Memorize distance
- 4. FOLLOW: Follow obstacle outline

State Transition Table:

$$\epsilon \rightarrow 1, \quad 1 \rightarrow 2, \quad 2 \rightarrow 3, \quad 4 \rightarrow 2$$

```
1: \alpha \leftarrow \text{goal direction}
 2: while not at goal do
        move towards the goal
 3:
         if hit an obstacle then
 4:
              d_{\text{hit}} \leftarrow \text{distance to goal}
 5:
              while distance to goal \geq d_{\rm hit} and
 6:
                     goal direction \neq \alpha do
                  follow obstacle boundary
 8:
              end while
 9:
         end if
10:
11: end while
```

- Simulator/Neural network: Executes algorithm "tick-wise"
- → Translate to state machine

States:

- 1. MEM_DIR: Memorize direction
- 2. MOVE: Move towards goal
- 3. MEM_DIST: Memorize distance
- 4. FOLLOW: Follow obstacle outline

State Transition Table:

$$\epsilon \rightarrow 1, \quad 1 \rightarrow 2, \quad 2 \rightarrow 3, \quad 4 \rightarrow 2$$

→ How to implement this as a spiking neural network?

Bug 2: State Transition Network

Bug 2: State over Time

Bug 2: Distance Plot

Conclusion

Biological Plausibility

- Given the sensors, neurobiological implementation plausible, only few thousand neurons required
- Many of the sensors map to biological systems:
 - ► radar ↔ structure from motion
 - ightharpoonup contact \leftrightarrow tactile sensors
 - ▶ distance and direction ↔ olfactory system in insects
- Yet, the given implementation must not be seen as a biological model!

Conclusion

Biological Plausibility

- Given the sensors, neurobiological implementation plausible, only few thousand neurons required
- Many of the sensors map to biological systems:
 - ► radar ↔ structure from motion
 - ▶ contact ↔ tactile sensors
 - ▶ distance and direction ↔ olfactory system in insects

Yet, the given implementation must not be seen as a biological model!

Lessons

- ► Implementing the simulator: doing CG right is hard...
- Implementation of Bug 0 as neural network quite trivial and works well.
- ► Implementation of *Bug 2* suffers from noise/chaotic behaviour.

Conclusion

Biological Plausibility

- Given the sensors, neurobiological implementation plausible, only few thousand neurons required
- Many of the sensors map to biological systems:
 - ightharpoonup radar \leftrightarrow structure from motion
 - ▶ contact ↔ tactile sensors
 - ► distance and direction ↔ olfactory system in insects

Yet, the given implementation must not be seen as a biological model!

Lessons

- ► Implementing the simulator: doing CG right is hard...
- Implementation of Bug 0 as neural network quite trivial and works well.
- ► Implementation of *Bug 2* suffers from noise/chaotic behaviour.

Challenges

- Plenty of magic constants in both reference and neural implementation
- State transition network

Thank you for your attention!

The Bug 1 algorithm

```
1: while not at goal do
      move towards the goal
2:
      if hit an obstacle then
3:
4:
          at the same time
             circumnavigate the obstacle
5:
             track minimum distance to goal
6:
          follow boundary back to minimum
7:
      end if
8:
9: end while
```

- ⊕ One can show that this algorithm is *complete*
- \ominus Relatively complex, paths are far from optimal

Source: Lectures on Robotic Planning and Kinematics, Bullo and Smith, 2016

Spiking Neural Networks: Why Bother?

► Can implement linear algebra and dynamical systems in spiking neural networks

Spiking Neural Networks: Why Bother?

- ► Can implement linear algebra and dynamical systems in spiking neural networks
- ⇒ Why not just use the mathematical description?

Spiking Neural Networks: Why Bother?

- ► Can implement linear algebra and dynamical systems in spiking neural networks
- ⇒ Why not just use the mathematical description?

ENGINEERING
Use neuromorphic hardware

Spikey Neuromorphic Chip Source: Electronic Visions Group, KIP Heidelberg

COMPUTATIONAL NEUROSCIENCE
Build biologically constrained models of cognition

Human Connectome. Data by Horn A. et al., 2014 Source: Wikimedia Commons