Cahier d'entraînement

— réponses —

Margarita Philosophica de Gregor Reisch (1503)

Cette gravure représente Claude Ptolémée (100 – 168) aux côtés d'une femme symbolisant l'astronomie.

L'œuvre de Ptolémée, grand astronome, constitue un aboutissement des pratiques scientifiques de l'Antiquité : observation des astres, réflexion mathématique, pratique du calcul et mesures.

Ce cahier d'entraînement a été écrit collectivement par des professeurs en classes préparatoires scientifiques.

Coordination

Colas Bardavid et Jimmy Roussel

Équipe des participants

Stéphane Bargot, Claire Boggio, Cécile Bonnand, Alexis Brès, Geoffroy Burgunder, Erwan Capitaine, Caroline Chevalier, Maxime Defosseux, Raphaëlle Delagrange, Alexis Drouard, Gaelle Dumas, Alexandre Fafin, Jean-Julien Fleck, Aéla Fortun, Florence Goutverg, Chahira Hajlaoui, Mathieu Hebding, Quinot Isabelle, Lucas Henry, Didier Hérisson, Jean-Christophe Imbert, Fanny Jospitre, Tom Kristensen, Emmanuelle Laage, Catherine Lavainne, Maxence Miguel-Brebion, Anne-Sophie Moreau, Louis Péault, Valentin Quint, Alain Robichon, Caroline Rossi-Gendron, Nancy Saussac, Anthony Yip

Le pictogramme • de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). Le pictogramme • du bulldozer a été créé par Ayub IRAWAN (The Noun Project). L'illustration de la couverture vient de WIKIMEDIA.

Version 1.01 — 27 avril 2023

Sommaire

1.	Conversions	1
2.	Signaux	2
3.	Étude des circuits électriques I	3
4.	Étude des circuits électriques II	4
5 .	Étude des filtres	6
6.	Énergie et puissance électriques	8
7.	Amplificateurs linéaires intégrés	10
8.	Sources lumineuses et lois de Snell-Descartes	. 11
9.	Lentilles	. 12
10.	Cinématique	13
11.	Principe fondamental de la dynamique	. 15
12.	Approche énergétique en mécanique	16
13.	Moment cinétique	17
14.	Champ électrique	. 18
15.	Particule dans un champ électromagnétique	20
16.	Champ magnétique	. 21
17.	Induction	23
18.	Gaz parfaits	. 25
19.	Premier Principe	26
20.	Second principe et machines thermiques	27
21.	Statique des fluides	. 29
22.	Fondamentaux de la chimie des solutions	31
23.	Fondamentaux de la chimie en phase gazeuse	32
24.	Réactions chimiques	33
25 .	Cinétique chimique.	35
26.	Chiffres significatifs et incertitudes	36

Fiche nº 1. Conversions

Réponses

1.1 a) $1 \cdot 10^{-1}$ m	1.6 h) $1,67 \cdot 10^6 \mathrm{qg}$	1.13 a) $\boxed{4,43 \cdot 10^{16} \mathrm{m}}$
1.1 b) $2,5 \cdot 10^3 \mathrm{m}$	1.6 i) $9,10 \cdot 10^{-1} \mathrm{rg}$	1.13 b) $\boxed{4,33 \cdot 10^{13} \mathrm{km}}$
1.1 c)	1.6 j) $9,10 \cdot 10^2 \mathrm{qg}$	1.14 a) $10 000 \mathrm{m}^2$
1.1 d) $\boxed{7,2 \cdot 10^{-9} \mathrm{m}}$	1.7 a)	1.14 b) $\boxed{0.01\mathrm{km}^2}$
1.1 e) $ [5,2 \cdot 10^{-12} \mathrm{m}] $	1.7 b)	1.14 c) $\boxed{6.72 \cdot 10^{11} \mathrm{m}^2}$
1.1 f) $1,3 \cdot 10^{-14} \mathrm{m}$	1.7 c)	1.14 d) $\boxed{6.72 \cdot 10^7 \mathrm{ha}}$
1.2 a) $1,50 \cdot 10^5 \mathrm{m}$	1.7 d)	1.14 e)
1.2 b) $7 \cdot 10^{-13}$ m	1.8 a)	1.14 f)
1.2 c)	1.8 b)	1.15 a) oui
1.2 d) $1,20 \cdot 10^{-7}$ m	1.8 c)	1.15 b) oui
1.2 e)	1.8 d)	1.16 a) $1 \cdot 10^3 \mathrm{kg/m^3}$
1.2 f) $\boxed{4,1 \cdot 10^{-10} \mathrm{m}}$	1.8 e)	1.16 b) $625 \mathrm{kg/m^3}$
1.3 a) $7.3 \cdot 10^6 \mathrm{m/s}$	1.8 f)	1.17 a)
1.3 b) $2.6 \cdot 10^7 \mathrm{km/h}$	1.9	1.17 b) $\left[1,6 \times 10^3 \mathrm{kg/m^3}\right]$
1.4 2,4 MJ	1.10 a) $1,03 \times 10^3 \text{TWh}$	1.18 La boule en or
1.5 $5.5 \cdot 10^{-2} \Omega$	1.10 b)	1.19 non
1.6 a)	1.10 d)	1.20 voiture
1.6 b)	1.10 e)	1.21 a)
1.6 c) $1,90 \cdot 10^3 \mathrm{Rg}$	1.10 f)	1.21 b) 1 année-lumière/an
1.6 d)	1.10 g)	1.22 a)
1.6 e)	1.10 h)	1.22 b)
1.6 f) $5,97 \cdot 10^{-3} \text{ Qg}$	1.11 l'or	1.22 c) $1,90 \cdot 10^{-6}$ tr/min
,	1.12 a)	1.22 d) $1,99 \cdot 10^{-7} \text{rad/s}$
1.6 g) $1,67 \cdot 10^3 \mathrm{rg}$	1.12 b) 0,000 000 000 1 m	

Fiche n° 1. Conversions

Fiche nº 2. Signaux

2.1 a) $-\sin(\alpha)$	2.8 a) En retard
2.1 b) $-\sin(\alpha)$	2.8 b)
2.1 c) $\cos(\alpha)$	2.8 c)
2.1 d) $\cos(\alpha)$	2.9 a)
2.2 a)	2.9 b)
2.2 b) $ -2\sin(t+4)\cos(t+4) = -\sin(2t+8) $	2.9 c)
2.2 c) $\cos^2(t) - \sin^2(t) = \cos(2t)$	2.10 a)
2.3 a) $2A\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.10 b) $ \frac{U_0}{\sqrt{2}} $
2.3 b) $2A\sin\left(\frac{\omega_2-\omega_1}{2}t\right)\sin\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.11 a)
	2.11 b)
2.4 $A \sin(\varphi) \cos(\omega t) + A \cos(\varphi) \sin(\omega t)$ 2.5 a) Courbe 2	2.12 a) $ \frac{U_0}{2} $
2.5 b)	2.12 b) $ \frac{U_0}{\sqrt{2}} $
2.5 d) Courbe 1	2.13 a)
2.6 ©	2.13 b)
2.7 a)	2.13 c)
	2.14
$2.7 \text{ b}) \dots \qquad \qquad \boxed{\frac{\pi}{2} \text{ rad}}$	2.15 a)
2.7 c)	2.15 b)
2.7 d)	2.15 c) $2\sin(3.9t - 13x + 0.3\pi)$
$2.7 \; \mathrm{e)} \ldots \qquad \qquad \boxed{\pi \; \mathrm{rad} \cdot \mathrm{s}^{-1}}$	

Fiche n° 3. Étude des circuits électriques I

3.1 b	3.8 b)	3.14 a) $ \frac{E}{R} $
3.2	\overline{R}	$\overline{3E}$
3.3 a)	3.8 c) $\left\lfloor \frac{R}{N} \right\rfloor$	3.14 b) $\left \frac{3E}{4R} \right $
3.3 b)	3.8 d) $R\left(\frac{1-a^2}{3-a^2}\right)$	3.15 a) $\boxed{\frac{ER_1}{R_1 + R_2 + R_3 + R_4}}$
3.4 a)	3.9 a)	
3.4 b)	3.9 b)	3.15 b) $ \frac{E(R_2 + R_3)}{R_1 + R_2 + R_3 + R_4} $
3.4 c)	3.9 c)	3.15 c) $ \frac{-ER_4}{R_1 + R_2 + R_3 + R_4} $
3.5 a) $E - U_1$	3.10 $\boxed{\frac{4R(R+R')}{2R+R'}}$	3.16 a)
3.5 b) $U_1 - E$	3.11 a)	3.16 b)
3.5 c) $E - U_1$		2
3.6 a)	,	3.17 a) $\left[\frac{3}{4}R\right]$
3.6 b)	3.11 c)	3.17 b) $ \frac{3}{4}E $
3.6 c)	3.12 a) $\left \frac{I_0}{3} \right $	
3.7 a) $\left[-\frac{u}{R} \right]$	3.12 b) $\left[\frac{R_2}{R_1 + R_2}I_0\right]$	3.17 c) $\left[-\frac{E}{4} \right]$
$3.7 \text{ b}) \dots $	3.13 a) $\boxed{\frac{1}{4}Ri + Ri_1}$	3.18 a) $\left[\frac{3E}{8R} \right]$
$3.7 \text{ c}) \dots $	3.13 b)	3.18 b)
3.8 a)	4	3.18 c) $\left[-\frac{E}{8R} \right]$

Fiche n^{o} 4. Étude des circuits électriques II

4.1	4.10 b)
4.2 a) $u = L \frac{\mathrm{d}i}{\mathrm{d}t} + L' \frac{\mathrm{d}i}{\mathrm{d}t}$	4.10 c)
(L+L')	4.10 d)
4.2 c) $ \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u}{L} + \frac{u}{L'} $	4.10 e)
	4.11 a)
4.2 d) $\frac{LL'}{L+L'}$	4.11 b)
4.3 L	4.11 c) $\frac{2E}{3R}$
4.4 a) $\frac{\mathrm{d}u}{\mathrm{d}t} = \left(\frac{1}{C} + \frac{1}{C'}\right)i$	4.11 d)
4.4 b) $\frac{CC'}{C+C'}$	4.12 a)
4.4 c) $i = (C + C') \frac{\mathrm{d}u}{\mathrm{d}t}$	4.12 b) $\frac{RC}{2}$
4.4 d)	4.13 a) $\left[\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{E}{L}\right]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.13 b) $\boxed{\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{1}{RC}E}$
4.7 a)	4.13 c)
4.7 b)	4.13 d) $i = \frac{u}{R} + C \frac{du}{dt}$
4.8b	4.13 e) $ \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{2}{RC}u = \frac{E}{RC} $
4.9 a)	4.14 a) $u_C(t) = E(1 - e^{-t/\tau})$
4.9 b)	4.14 b)
4.9 d)	4.14 c) $u_C(t) = \frac{1}{2}E$
4.9 e)	4.15 a)
4.10 a)	

4.15 b)	4.17 a) $ \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC} u = \frac{E}{LC} $
4.15 c)	4.17 b) $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{1}{RC}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC}u = 0$
4.15 d)	4.18 a) $E \times (1 - \cos(\omega_0 t))$
4.15 f)	4.18 b) $\left \frac{E}{L\omega_0} \sin(\omega_0 t) \right $
4.16 b) Q est sans dimension	4.19 a)
4.16 c) $ \frac{1}{\sqrt{LC}} $	4.19 b)
4.16 d) $R\sqrt{\frac{C}{L}}$	4.19 d)
	4.19 e)

Fiche nº 5. Étude des filtres

5.1 a)		5.7 c)
5.1 b)	<u>b/a</u>	5.7 d)
5.1 c)	<u>e</u>	5.7 e)
	(f)	5.7 f)
5.2 a)	R	5.8 a)
5.2 b)		5.8 b)
		5.8 c)
	$ \pi/2$	5.8 d)
5.2 e)	$colonized \frac{1}{C\omega}$	
5.2 f)	$-\pi/2$	$5.9 \text{ a}) \dots \qquad \qquad \boxed{\frac{\frac{1}{3}}{1 + \frac{1}{3jRC\omega} + \frac{jRC\omega}{3}}}$
5.3 a)	$R + \frac{1}{jC\omega}$	5.9 b)
		5.9 c)
5.3 b)	$\frac{RjL\omega}{R+jL\omega}$	5.9 d)
5.3 c)	$RjL\omega$	5.10 a)
)	$R + jL\omega - RLC\omega^2$	5.10 b)
5.3 d)	$\frac{R(1 - LC\omega^2)}{1 - LC\omega^2 + jRC\omega}$	5.10 c) $\boxed{\frac{1}{1 + 3jRC\omega - (RC\omega)^2}}$
5.4	<u>a</u>	5.10 d)
5.5 a)	10 kHz	1
5.5 b)	2,5 V	
5.6		5.10 f)
57 0)	$\dots \qquad \boxed{\frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)}$	5.11 a)
5.7 a)	$\frac{1}{2} \frac{\cos(a+b) + \frac{1}{2} \cos(a-b)}{\cos(2\pi f_p t)}$	5.11 b)
	* ',	(u, v^2)
5.7 b)	· 2	5.11 c) $10 \log \left(1 + \left(\frac{\omega}{\omega_1}\right)\right)$
	$+\cos(2\pi(f_p-f_0)t)$, ,

5.11 d) $10 \log \left(9 + \left(\frac{\omega}{\omega_0}\right)^2\right)$	5.13 a) $\pi/4$
$ \begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	5.13 b)
5.11 e) $20 \log \left(\frac{\omega}{\omega_0}\right) - 10 \log \left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$	5.13 c) $ \frac{\pi}{2} $
(20)	5.14 a)
5.11 f) $20 \log \left(\frac{\omega}{\omega_0} \right) + 10 \log \left(1 + \left(\frac{\omega}{\omega_1} \right)^2 \right)$	5.14 b)
	5.14 c)
5.12 a)	5.15 a)
5.12 b) $\pi/2$	5.15 b)
5.12 c) $\arctan\left(\frac{\omega}{\omega_1}\right)$	5.15 c)
	$5.15 \; \mathrm{d}) \dots +20 \mathrm{dB/d\acute{e}cade}$
5.12 d)	5.16 a)
5.12 e)	5.16 b)
	5.16 c)
5.12 f)	

Fiche nº 6. Énergie et puissance électriques

6.1 a)	6.9 $\ln(2)R_0$
6.1 b)	6.10 a) $\frac{E-e}{R+r}$
6.2 b)	6.10 b)
6.2 c)	6.10 c) $E\frac{E-e}{R+r}$
6.3 b)	6.10 d) $\frac{(E-e)^2}{R+r}$
6.3 c)	6.10 e)
6.5 a) $\frac{2\pi}{\omega}$	6.10 f)
6.5 b)	6.10 g)
6.5 c) $ \frac{u_0 i_0}{2} \cos(\varphi) $	6.11 b)
6.5 d)	6.12 a)
6.6 a)	6.12 b)
6.6 b)	6.13 a)
6.6 d)	6.13 c)
6.7 a) $\frac{E}{r+R}$	6.13 d) CE^2
6.7 b) $E^2 \frac{R}{(r+R)^2}$	6.13 e) $\frac{1}{2}CE^2$
6.8 a) $E^2 \frac{r - R}{(r + R)^3}$	6.13 f) $\frac{1}{2}CE^2$
6.8 b)	6.14 a) $EC\frac{\mathrm{d}u_C}{\mathrm{d}t}$

6.14 b) $\boxed{\frac{\mathrm{d}\left(\frac{1}{2}Cu_C^2(t)\right)}{\mathrm{d}t}}$	6.15 a) $R_u I^2$
6.14 c) $ \frac{d(\frac{1}{2}Li^2(t))}{dt} $	6.15 b) $\frac{E}{\sqrt{(R_G + R_u)^2 + (X_G + X_u)^2}}$
6.14 d)	6.15 c) $ -R_u E^2 \frac{2(X_G + X_u)}{\left((R_G + R_u)^2 + (X_G + X_u)^2 \right)^2} $
6.14 e)	6.15 d) $E^{2} \frac{(R_{G}^{2} - R_{u}^{2}) + (X_{G} + X_{u})^{2}}{\left((R_{G} + R_{u})^{2} + (X_{G} + X_{u})^{2}\right)^{2}}$
6.14 g)	6.15 e)

Fiche nº 7. Amplificateurs linéaires intégrés

7.1 (a) d	7.6 f) $G = -\frac{R_2}{R_1}$	7.11 b)
7.2 a)	7.6 g)	7.11 c)
7.2 c) Faux	7.7	7.12 a) $\alpha + \frac{1}{\alpha}$
7.2 d)	7.8 c'est un temps	7.12 b) $\boxed{\frac{\alpha}{1+\alpha^2}}$
7.3 a) Oui	7.9 a)	$1 + \alpha$
7.3 b) $V^+ = V^-$	7.9 b) v_e	7.12 c) $R_1 = R_2$
7.3 c)	7.9 c) v_s	7.12 d) $\alpha = 1$
7.4 a)	7.9 d) $i_R = i_C$	7.13 a) [$i_1 = i_2$]
7.4 b)	7.9 e) $[\underline{i_C} = -\mathrm{j}C\omega\underline{U_C}]$	7.13 b) $\boxed{\frac{R_1}{R_1 + R_2} v_s}$
7.4 c) 0 V 7.4 d) v_e	7.9 f) $ -\frac{1}{jRC\omega} $	7.13 c)
7.4 e) v_s 7.5 a) Faux	7.9 g) $RC \frac{dv_s}{dt} = -v_e(t)$	7.13 d) $1 + \frac{R_2}{R_1}$
7.5 b) Vrai	7.10 a) $\frac{1}{RC\omega}$	7.13 e)
7.5 c)		7.14 d
7.5 d)	7.10 b) $\left \frac{\pi}{2} \right $	7.15 a) $v_s = v_e$
7.5 e) Faux	. <i>E</i>	7.15 b)
7.6 a) $i_1 = i_2$	7.10 c) $\left[-\frac{E}{RC\omega} \sin(\omega t) \right]$	7.15 c)
7.6 b) $U_1 = v_e$	7.10 d)	$7.15 d) \dots \infty$
7.6 c) $U_2 = -v_s$	7.10 e)	7.16 a) $v_e \over Z_1$
7.6 d) $i_1 = \frac{v_e}{R_1}$	7.10 f)	7.16 b)
7.6 e) $i_2 = -\frac{v_s}{R_2}$	7.11 a) $RC \frac{\mathrm{d}v_s}{\mathrm{d}t} = -v_e$	7.16 c)
112		7.16 e) $C = 10 \mathrm{nF}$
		,

Fiche nº 8. Sources lumineuses et lois de Snell-Descartes

8.1 a)
$$\frac{\pi}{180} \times \alpha_{\text{deg}}$$

8.1 b).....
$$60 \times \alpha_{\text{deg}}$$

8.3 b)
$$\frac{\pi}{2} - i$$

8.3 c)
$$\arcsin\left(\frac{n_1}{n_2}\sin(i)\right)$$

8.3 d) ..
$$\left| \frac{\pi}{2} - \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \right|$$

8.5 a)
$$r - i$$

8.5 b)
$$\pi - 2i$$

8.6 a)
$$(\alpha_1 + \alpha_2) - \pi$$

8.6 b)
$$r + r'$$

8.9 a)
$$\sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}}$$

8.9 b)
$$\cos(\theta_r) > \frac{n_2}{n_1}$$

8.9 c)
$$\sin(\theta_i) < \sqrt{n_1^2 - n_2^2}$$

8.10 b).......
$$3,74 \times 10^{-19}$$
 J

8.12 a)
$$2.26 \times 10^8 \,\mathrm{m \cdot s^{-1}}$$

Fiche nº 9. Lentilles

$9.1 \; \mathrm{a)} \; \ldots \; \boxed{ \mathrm{arctan} \left(rac{\mathrm{AB}}{\mathrm{OA}} ight) }$	9.4 d)	9.11 a) $\left[\frac{-f'^2}{\overline{F'A'}}\right]$
9.1 b) $\arctan\left(\frac{AB}{OA}\right) \times \frac{180}{\pi}$	9.6 a)	9.11 b) $\overline{FA} - f'$
	9.6 b) Incorrect	9.11 c) [réel]
9.1 c)	9.6 c) Incorrect	9.12 a)
9.1 d)	9.6 d)	9.12 b)
9.1 e)	9.7 a)	
9.1 f)	9.7 b)	9.13 a) $\overline{OA} = -5.02 \mathrm{cm}$
		9.13 b) $10.8 \mathrm{m} \times 7.2 \mathrm{m}$
9.2 a) $\left \frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}} \right $		9.14 a)
	9.9 a)	
9.2 b)	9.9 b)	9.14 b)
9.3 a)		9.15 a) $\overline{OA'} = -15 \mathrm{cm}$
9.3 b)	9.10 a) $\left \frac{\overline{OA} \times \overline{OF'}}{\overline{OA} + \overline{OF'}} \right $	9.15 b) virtuelle
9.3 c)		9.15 c)
9.3 d)	9.10 b) $\left \frac{\overline{\mathrm{OA'}} \times f'}{f' - \overline{\mathrm{OA'}}} \right $	9.15 d) droite
9.4 a) $ \frac{A_1B_1}{f'_1} $	f' - OA'	
f_1'	9.10 c) $\left \frac{\overline{OA} \times \overline{OA'}}{\overline{\longrightarrow}} \right $	9.16 a) $\boxed{\frac{D^2 - d^2}{4D}}$
$\overline{A_1B_1}$	$9.10 \text{ c}) \dots \qquad \boxed{\overline{OA} - \overline{OA'}}$	15 <i>D</i>
9.4 b) $\frac{A_1B_1}{f_2'}$	$9.10 \text{ d}) \dots $ après	9.16 b) $ \frac{10D}{64} $
9.4 c)		9.16 c)

Fiche nº 10. Cinématique

10.1 a)	10.9 b) $\sqrt{(a\omega)^2 + b^2}$
10.1 b)	
10.2 a)	10.9 c) $\left[-a\omega^2(\cos(\omega t)\overrightarrow{e_x} + \sin(\omega t)\overrightarrow{e_y}) \right]$
	10.9 d)
10.2 b)	10.10 a) $\left[\cos\theta \overrightarrow{e_x} + \sin\theta \overrightarrow{e_y}\right]$
10.2 c)	10.10 b) $ \overrightarrow{\frac{d\overrightarrow{e_r}}{dt}} = \dot{\theta}(-\sin\theta\overrightarrow{e_x} + \cos\theta\overrightarrow{e_y}) $
10.3	10.10 c) $\overrightarrow{e_x} = \cos\theta \overrightarrow{e_r} - \sin\theta \overrightarrow{e_\theta}$
10.4	10.10 d) $\overrightarrow{e_y} = \sin\theta \overrightarrow{e_r} + \cos\theta \overrightarrow{e_\theta}$
10.5 a) $a(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y})$	10.10 e) $\boxed{\frac{\mathrm{d} \overrightarrow{e_r}}{\mathrm{d} t} = \dot{\theta} \overrightarrow{e_{\theta}}}$
10.5 b) $a\left(\cos(\theta)\overrightarrow{e_x} + \left(\sin(\theta) + \frac{b}{a}\right)\overrightarrow{e_y}\right)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
10.5 c) $a\left(2\cos(\theta)\overrightarrow{e_x} + \left(2\sin(\theta) + \frac{b}{a}\right)\overrightarrow{e_y}\right)$	10.11 b)
10.5 d)	10.11 c) $a\vec{e_r}$
10.6 a) $r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y})$	10.11 d) $2abt^2\overrightarrow{e_{\theta}}$
10.6 b)	10.11 e) $a\vec{e_r} + 2abt^2\vec{e_\theta}$
10.6 c) $r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}) + z\overrightarrow{e_z}$	
10.6 d) $r\vec{e_r} + z\vec{e_z}$	10.12 a) $r_0 e^{-t/\tau} \left(-\frac{1}{\tau} \overrightarrow{e_r} + \omega \overrightarrow{e_\theta} \right)$
10.7 a)	10.12 b) $r_0 e^{-t/\tau} \left(\left(\frac{1}{\tau^2} - \omega^2 \right) \overrightarrow{e_r} - \left(2 \frac{\omega}{\tau} \right) \overrightarrow{e_\theta} \right)$
10.7 b)	10.12 c) orthoradiale
10.7 c) $r \sin(\theta) (\cos(\varphi) \overrightarrow{e_x} + \sin(\varphi) \overrightarrow{e_y}) + r \cos(\theta) \overrightarrow{e_z}$	10.12 d)
10.7 d) $r\vec{e_r}$	10.12 e) $r = r_0 e^{-\theta}$
10.7 e) $\cos(\theta) \overrightarrow{e_r} - \sin(\theta) \overrightarrow{e_\theta}$	10.13 a)
10.8 a)	10.13 b)
10.8 b)	10.13 c)
10.9 a) $a\omega(-\sin(\omega t)\overrightarrow{e_x} + \cos(\omega t)\overrightarrow{e_y}) + b\overrightarrow{e_z}$	
	10.13 d) $\left[\frac{1}{2}at^2 + L\right]$

10.13 e)	10.14 c)	$z = -\frac{g}{2}x^2 + \frac{v_{0z}}{2}x$
10.14 b)	10.15 a)	1,7 s
10.14 b)	10.15 b)	2,9 m

Fiche n° 11. Principe fondamental de la dynamique

11.1 $\frac{p + m_1 v_1 + m_2 v_2}{m_1 + m_2}$	11.9 c)
11.2 a)	11.10 a) $\left[\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}\right]$
	11.10 b) $-\sin(\theta)\overrightarrow{e_x} + \cos(\theta)\overrightarrow{e_y}$
11.2 b) $\left \arctan \left(\frac{mR\omega^2 - T}{mg} \right) \right $	11.10 c) $ \boxed{ -\dot{\theta}\sin(\theta)\vec{e_x} + \dot{\theta}\cos(\theta)\vec{e_y} } $
11.3 a)	11.10 d) $ \boxed{ -\dot{\theta}\cos(\theta)\vec{e_x} - \dot{\theta}\sin(\theta)\vec{e_y} } $
11.3 b)	11.10 e) $ \dot{\theta} \vec{e_{\theta}} $
11.3 c)	11.10 f) $-\dot{\theta}\vec{e_r}$
11.4 a) $a\cos(\alpha)\overrightarrow{e_x} + a\sin(\alpha)\overrightarrow{e_y}$	11.11
11.4 b) $b\sin(\alpha)\overrightarrow{e_x} + b\cos(\alpha)\overrightarrow{e_y}$	11.12 a) $\boxed{\dot{r}\vec{e_r} + r\dot{\theta}\vec{e_{\theta}}}$
11.4 c) $c\cos(\alpha)\overrightarrow{e_x} - c\sin(\alpha)\overrightarrow{e_y}$	11.12 b) $\left[(\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e_\theta} \right]$
11.4 d)	11.13 a)
11.5 a)	11.13 b)
11.5 b) $N\overrightarrow{e_y}$	11.14 a) $ (T'-T)\cos\theta $
11.6 a) $P\cos(\theta)\vec{e_r} - P\sin(\theta)\vec{e_\theta}$	11.14 b) $(T'+T)\sin\theta - F$
11.6 b) $ -T\overrightarrow{e_r} $	11.14 c)
11.6 c) $ [(P\cos(\theta) - T)\vec{e_r} - P\sin(\theta)\vec{e_\theta}] $	11.15
11.7 a) $P\vec{e_x}$	11.16
11.7 b) $ \boxed{-T\cos(\theta)\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y}} $	11.17 a) $P \cos \alpha$
11.7 c) $(P - T\cos(\theta))\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y}$	11.17 b) $ \boxed{-m\frac{\mathrm{d}v}{\mathrm{d}t} + P\sin\alpha} $
11.8 a) $ \left[\left(\frac{1}{2} a_0 t^2 + x_0 \right) \overrightarrow{e_x} - v_0 t \overrightarrow{e_y} + z_0 \overrightarrow{e_z} \right] $	11.18 a) $ \frac{T_1}{2m} $
11.8 b) $a_0 t \overrightarrow{e_x} - v_0 \overrightarrow{e_y}$	11.18 b) $g - \frac{T_2}{m}$
11.8 c)	
11.9 a)	11.18 c) $\left[\frac{g}{3}\right]$
11.9 b)	

Fiche nº 12. Approche énergétique en mécanique

12.1	12.9 a) $ \left[\ddot{z} + \frac{\alpha}{m} \dot{z} + \frac{k}{m} z = g + \frac{k\ell_0}{m} \right] $
12.2 a)	
12.2 b) $mg(x\sin(\alpha) - H)$	12.9 b) $ \zeta + \frac{\alpha}{m}\dot{\zeta} + \frac{k}{m}\zeta = 0 $
12.2 c) $ -mgR\cos(\theta) $	12.10 a)
12.2 d) $mgr(cos(\psi) - 1) + E_0$	12.10 b)
12.3	12.10 c)
12.4 a) $\boxed{\frac{1}{2}k(y-\ell_0)^2 - \frac{k\ell_0^2}{2}}$	12.10 d)
	12.11 a)
12.4 b) $ \frac{1}{2}k\left(\frac{x}{\cos(\beta)} - \ell_0\right)^2 - \frac{1}{2}k\left(\frac{L}{\sin(\beta)} - \ell_0\right)^2 $	12.11 b)
	12.11 c)
12.4 c)	12.11 d)
12.5 a)	12.12 a)
12.5 b)	12.12 b)
12.5 c)	12.12 b)
12.5 d)	12.12 c)
12.5 e)	12.12 d)
12.6	12.12 e)
2	12.12 f)
12.7 a)	12.13 a)
12.7 b) $0.65 \text{rad} = 37^{\circ}$	
,	12.13 b)
12.8 a) $5.8 \mathrm{m\cdot s^{-1}}$	10.10
12.8 b)	12.13 c)
12.8 c)	12.13 d)
	12.14

Fiche nº 13. Moment cinétique

13.1 a)	13.4 e) $\begin{pmatrix} -6 \\ -33 \\ 24 \end{pmatrix}$
13.1 b) $\ \overrightarrow{N}\ \cos(\gamma + \beta)$	(21)
13.1 c) $\ \vec{R}\ \sin(\theta + \alpha)$	13.4 f) $ \begin{bmatrix} -6 \\ -33 \\ 24 \end{bmatrix} $
13.1 d)	
13.1 e)	13.5la Terre13.6 $m r v \sin(\alpha) \vec{e_z}$
13.1 f)	
13.2 a) $\overrightarrow{P} = -\ \overrightarrow{P}\ \overrightarrow{e_y}$	13.7 $\left\lfloor \frac{1}{3} M L^2 \right\rfloor$
13.2 b) $\boxed{\ \overrightarrow{P}\ (-\sin(\theta)\overrightarrow{e_r}-\cos(\theta)\overrightarrow{e_\theta})}$	$13.8 \dots \qquad \qquad \boxed{\frac{1}{12} M L^2}$
13.2 c) $-\ \vec{T}\ \vec{e_y}$	13.9 $\left[\frac{2}{5}MR^2\right]$
13.2 d) $ \vec{T} = \vec{T} (-\cos(\gamma)\vec{e_r} + \sin(\gamma)\vec{e_\theta}) $	12.10 a)
	13.10 a) $\left[-\ell F \sin \alpha \cos \alpha \right]$
13.2 e) $\ \vec{R}\ (\cos(\theta+\alpha)\overrightarrow{e_x}+\sin(\theta+\alpha)\overrightarrow{e_y})\ $	13.10 b) 0
13.2 f) $ [\vec{R} (\cos(\alpha) \vec{e_r} + \sin(\alpha) \vec{e_\theta})] $	13.11 a) $\boxed{\frac{mgL}{2}\cos\alpha\overrightarrow{e_z}}$
13.2 g) $\ \vec{N}\ (-\sin(\beta+\gamma)\vec{e_x}+\cos(\gamma+\beta)\vec{e_y})\ $	(L)
13.2 h) $\ \vec{N}\ (\cos(\beta)\vec{e_r} + \sin(\beta)\vec{e_\theta})\ $	13.11 b) $ -mg\left(\ell - \frac{L}{2}\cos\alpha\right)\overrightarrow{e_z} $
13.3 a) $ \ \vec{P} \ \ \vec{R} \ \cos(\theta + \alpha) \vec{e_z} $	13.11 c)
13.3 b) $ - \ \overrightarrow{T} \ \sin(\gamma) \overrightarrow{e_z} $	13.12 a) $\left \frac{a}{2} \overrightarrow{e_X} + a \overrightarrow{e_Y} \right $
13.3 c) $\ \vec{N}\ \cos(\gamma+\beta)\vec{e_z}$	13.12 b) $\left[\frac{a}{2}\overrightarrow{e_X} + \frac{a}{3}\overrightarrow{e_Y}\right]$
13.4 a)	13.12 c) $P(-\sin\alpha \overrightarrow{e_X} - \cos\alpha \overrightarrow{e_Y})$
(-1)	13.12 d) $F(-\cos\alpha \overrightarrow{e_X} + \sin\alpha \overrightarrow{e_Y})$
13.4 b)	13.12 e) $aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right)\vec{e_z}$
13.4 c)	13.12 f) $aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right) \overrightarrow{e_z}$
13.4 d)	13.12 g) $\boxed{\frac{3P - 6F}{3F + 2P}}$

Fiche nº 14. Champ électrique

14.1 c)
$$\frac{y}{\sqrt{a^2 + y^2}}$$

14.1 d)
$$\frac{\|\vec{F}\|}{\sqrt{a^2 + y^2}} (-a\vec{e_x} + y\vec{e_y})$$

14.3 a)
$$\overrightarrow{e_y}$$

14.3 c)
$$\overrightarrow{e_x}$$

14.4 b)
$$qV_0$$

14.4 c)
$$\sqrt{\frac{2qV_0}{m}}$$

14.4 d)
$$\sqrt{\frac{qV_0}{2m}}$$

14.4 e)
$$\frac{v(a)}{2}$$

14.5 a)
$$\sqrt{(x-a)^2 + y^2}$$

14.5 c)
$$\sqrt{r^2 - 2ax + a^2}$$

14.5 e)
$$\sqrt{r^2 - 2ar\cos(\theta) + a^2}$$

14.5 f)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}}$$

14.5 g).....
$$\sqrt{(x+a)^2+y^2}$$

14.5 h)
$$\sqrt{r^2 + 2ax + a^2}$$

14.5 i).....
$$\sqrt{r^2 + 2ar\cos(\theta) + a^2}$$

14.5 j)
$$-\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}}$$

14.5 k)....
$$\frac{1}{4\pi\varepsilon_0} q \left(\frac{1}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}} - \frac{1}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}} \right)$$

14.6 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2a}{r}\right)$$

14.6 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2}$$

14.6 c)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} \left(1 - \frac{1}{2}\theta^2\right)$$

14.6 d)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2}$$

14.6 e)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(1 + \frac{r^2}{a^2}\right)$$

14.7 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (\sin(2\theta) \overrightarrow{e_r} - 2\cos(2\theta) \overrightarrow{e_\theta})$$

14.8 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$$

14.8 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_{\theta}}$$

14.9 a)
$$\left| \frac{1}{2} E_0 a \right|$$

14.9 b) $ \frac{1}{3} E_0 d $	14.10 b)
14.9 c) $ \frac{2}{3\pi} E_0 d $	14.10 c) $ \frac{16}{5} R^3 \rho_0 $
14.9 d)	14.11 a) $3\pi R^2 h$
14.10 a) $ \frac{8}{3} \pi R^3 \rho_0 $	14.11 b) $\boxed{\frac{4}{5}\pi R^2 h}$
	14.11 c)

Fiche nº 15. Particule dans un champ électromagnétique

Réponses

15.1 a) $6.3 \times 10^{18} \text{eV}$	15.6 a) $\boxed{ q vB\overrightarrow{e_y} }$	15.9 b)
15.1 b)	15.6 b) $qvB\cos(\alpha)\overrightarrow{e_z}$	15.9 c)
15.1 c) $5.0 \times 10^{-19} \mathrm{J}$	15.6 c). $ -qvB(\cos(\alpha)\overrightarrow{e_x} + \sin(\alpha)\overrightarrow{e_y}) $	15.9 d)
15.1 d) violet		15.9 e)
15.2 tau	15.7 a)	
15.3 a)	15.7 b) qEv	15.10 a)
15.3 b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.10 b) $R\dot{\theta}\vec{e_{\theta}}$
	1	15.10 c) $qRB\dot{\theta}\overrightarrow{e_r}$
15.4 a) $-Ex + C$	15.7 d) $\left -\frac{qEv}{2} \right $	15.10 d) $R\ddot{\theta}\vec{e_{\theta}} - R\dot{\theta}^2\vec{e_r}$
15.4 b) $\left \frac{\alpha}{r} + C \right $	$-mv_0$	
15.4 c) $-\beta \ln(r) + C$	15.8 a) $\sqrt{3} \frac{mv_0}{qE}$	15.10 e) $ \frac{mv_0}{ q B} $
	·	
15.4 d) $-\gamma xy + C$	$ \boxed{ 15.8 \text{ b)} \dots \sqrt{3} \frac{m v_0}{q E} }$	15.10 f)
15.5 a) $qE\overrightarrow{e_y}$	15.8 c) $\frac{\pi}{3}$	15.11 a) $q(E - v_0 B) \overrightarrow{e_y}$
15.5 b) $ qE \vec{e_x}$	3	
	15.9 a)	15.11 b) $v_0 = \frac{E}{B}$
15.5 c). $qE(\cos(\beta)\overrightarrow{e_y} - \sin(\beta)\overrightarrow{e_x})$		

Fiche nº 16. Champ magnétique

16.1 oui	16.10 b)
16.1	16.10 c)
16.2d	16.11 a)
16.3 a) $\frac{\mu_0 I}{2\pi d \tan(\alpha)}$	16.11 b)
16.3 b)	R
16.4	16.12 a)
16.5	16.12 b)
16.6 a) $\left[\frac{\mu_0 Ia}{2\pi} \ln \left(\frac{D+a/2}{D-a/2}\right)\right]$	16.12 c) $\frac{\mu_0 I}{4\sqrt{2} R}$
$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \phi &pprox rac{\mu Ia^2}{2\pi D} \end{aligned} \end{aligned}$	16.12 d)
16.6 c)	16.13 a)
	16.13 b)
16.7 a) $B_0(1 + \cos(\alpha))\overrightarrow{e_x} + B_0\sin(\alpha)\overrightarrow{e_y}$	20120 37
16.7 b) $B_0 \sqrt{2(1 + \cos(\alpha))}$	$\frac{\mu_0 nI}{2} \left(\frac{z + \frac{\ell}{2}}{\sqrt{R^2 + \left(z + \frac{\ell}{2}\right)^2}} \right)$
16.7 c)	
16.8 a) $\frac{a}{\cos(\theta)}$	$-\frac{z-\frac{\ell}{2}}{\sqrt{R^2+\left(z-\frac{\ell}{2}\right)^2}}\right)$
16.8 b)	16.14 b) $\frac{\mu_0 nI\ell}{\sqrt{4R^2 + \ell^2}}$
16.8 c) $-\sin(\theta)\overrightarrow{e_x} - \cos(\theta)\overrightarrow{e_y}$	16.14 b) $\frac{7 \sqrt[3]{4R^2 + \ell^2}}{\sqrt{4R^2 + \ell^2}}$
16.8 d) $\boxed{-2B_0 \sin(\theta) \overrightarrow{e_x}}$	16.14 c) $\frac{1}{2} \frac{\sqrt{4R^2 + \ell^2}}{\sqrt{R^2 + \ell^2}}$
16.8 e)	16.14 d)
16.8 f) en $y = \pm a$ 16.9 a) a	16.15 a) $B_0 \frac{\cosh\left(\frac{z}{\delta}\right)}{\cosh\left(\frac{e}{\delta}\right)}$.
16.9 b)	16.15 b) $\frac{B(0)}{B_0} \approx 1$
16.10 a)	<i>D</i> ₀

16.15 c) $\frac{B(0)}{B_0} \approx 9 \times 10^{-5}$ 16.16 a) $r^2 + \frac{\omega_0 r}{Q} + \omega_0^2 = 0$	16.16 e) $B_0 + e^{-\frac{\omega_0}{2Q}t} \left(\lambda \cos\left(\frac{\omega_0}{2Q} \sqrt{4Q^2 - 1} \cdot t\right) + \mu \sin\left(\frac{\omega_0}{2Q} \sqrt{4Q^2 - 1} \cdot t\right) \right)$
16.16 b)	16.16 f) $B_0 \left(1 - e^{-\frac{\omega_0}{Q}t} \left(\cos\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) + \frac{1}{\sqrt{4Q^2 - 1}} \sin\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) \right)$
16.16 c) $\Delta < 0$ 16.16 d) B_0	16.17

Fiche nº 17. Induction

17.1 a)	17.7 a) $i > 0$
17.1 b)	17.7 b) $i < 0$
17.1 c)	17.7 c) $i > 0$
17.1 d)	17.7 d) $i < 0$
17.2 a)	17.7 e) $i < 0$
17.2 b) Oui	17.7 f) $i < 0$
17.2 c)	17.8 a) le flux diminue
17.3 a)	17.8 b) le flux ne varie pas
17.3 b)	17.8 c) le flux diminue
17.3 c)	17.8 d) $i > 0$
17.3 d)	17.8 e)
17.3 e)	17.8 f) $i > 0$
17.4 a)	17.9 a) $B_0 S_0 \omega \sin(\omega t + \varphi)$
17.4 b)	17.9 b)
R_{α^2}	
17.4 c)	$17.9 c) \dots \left[-8B_0 S_0 \omega \cos(\omega t) \sin^3(\omega t) \right]$
Ba^2	17.9 d) $-B_0 S_0 \omega [2\cos(4\omega t) + \cos(2\omega t)]$
17.4 d)	17.10 a)
17.4 e)	17.10 b) $-\frac{IBd}{m}t + v_0$
Ba^2	mv_0^2
17.4 f)	17.10 c)
17.5 a)	17.11 a)
17.5 b)	$I = I \setminus I \setminus I \rightarrow I \rightarrow$
17.5 c)	17.11 b) $IaB\left(\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right)$
17.5 d)	17.11 c) $\boxed{IaB\left(-\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right)}$
17.5 e)	$10.11 c) \dots 10 \left(-\frac{1}{2}e_x + \frac{1}{2}e_y\right)$
$17.5 \text{ f}) \dots \qquad Ba(b-a)$	17.11 d)
17.6	17.12 a $IaB\overrightarrow{e_z}$

17.12 b)	17.12 h) $-Ia^2B\overrightarrow{e_x}$
17.12 c) $-IaB\overrightarrow{e_z}$	17.13 a) $iab\overrightarrow{e_{\theta}}$
17.12 d)	17.13 b) [$iabB\cos\theta$]
17.12 e)	17.13 c) $ \boxed{ -\frac{a}{2} mg \sin \theta } $
17.12 f) $-Ia^2B\overrightarrow{e_x}$	(2ibB)
17.12 g) $Ia^2\overrightarrow{e_z}$	17.13 d) $\arctan\left(\frac{2ibB}{mg}\right)$

Fiche n° 17. Induction

Fiche nº 18. Gaz parfaits

18.1 a)	18.6 a)	18.11 a) $\boxed{\frac{4}{3}\pi r^3}$
18.1 b)	18.6 b)	18.11 b) $\boxed{\frac{4\pi P_0 r^3 + 16\pi \gamma r^2}{3RT_0}}$
18.2 a) $58 \mathrm{g \cdot mol^{-1}}$	18.7 a) MP	$3RT_0$ 18.12 a) $18,2 \mathrm{g \cdot mol^{-1}}$
18.2 b) $1.8 \times 10^2 \mathrm{bar}$	18.7 b)	18.12 b)
18.2 c)	18.8 a) $4\rho_1$ 18.8 b) $3,7\rho_1$	18.13 a) $30.6 \mathrm{g \cdot mol^{-1}}$
18.3 a)	18.9 a) $ \frac{n_2}{n_1} = \frac{P_2}{P_1} $	18.13 b)
18.3 b)		18.14 5,5 kg
18.5 a)	18.9 b) $\frac{2P_1}{P_1 + P_2}V$	18.15 a)
18.5 b)	$egin{array}{ccccc} egin{array}{cccccccccccccccccccccccccccccccccccc$	

Fiche no 19. Premier Principe

19.1 a)	19.9 c)
	19.10268 kJ
19.1 c)	
19.2 a)	19.11 $T_i + \frac{n^2 a}{C_V} \left(\frac{1}{V_f} - \frac{1}{V_i} \right)$
19.2 b)	
19.3 B	19.12 a) $T_i + \frac{Q}{C}$
19.4 a) $-P_0(V_{\text{final}} - V_{\text{initial}})$	19.12 b) $T_i e^{\frac{Q}{A}}$
19.4 b) $\frac{-(P_2 + P_1)(V_{\text{final}} - V_{\text{initial}})}{2}$	
2	19.12 c) $\left[\left(T_i^{\ 3} + \frac{3Q}{B} \right)^{1/3} \right]$
19.5 a) $-nRT_0 \ln \left(\frac{V_f}{V_i} \right)$	19.13 a) $nRT_i \ln \left(\frac{V_f}{V_i} \right)$
19.5 b)	19.13 b) $ \frac{nR}{\gamma - 1} (T_f - T_i) $
19.6 a)	
19.6 b) $18 \times 10^{-3} \mathrm{kcal} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$	19.13 c)
19.7 a) $mc(T_f - T_i)$	19.14 a) $W_1 - Q_1$
19.7 b)	19.14 b)
	19.14 c)
19.8 a)	19.15 $42 \mathrm{J\cdot K^{-1}}$
19.8 b)	19.16 a)
19.8 c) $ \frac{nR\gamma}{\gamma - 1} $	19.16 b) $T_a + (T_0 - T_a)e^{-\frac{ht}{C}}$
19.8 d) $[8.7 \times 10^2 \mathrm{J}]$	19.17
19.9 a)	19.18 a) $ \left\lceil \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} \right\rceil $
19.9 b) $\frac{A}{2}(T_f^2 - T_i^2) + B(T_f - T_i)$	
$\frac{19.9 \text{ b} \cdot \dots \cdot \dots \cdot \frac{1}{2} (1_f - 1_i) + D(1_f - 1_i)}{2}$	19.18 b) $\left[\frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} + \frac{Q}{(m_1 + m_2)c} \right]$

Fiche n^{o} 20. Second principe et machines thermiques

20.1	20.9 c)
20.2	20.10 $nR \ln(2)$
$20.3 \text{ a)} \dots \qquad \boxed{dH = T dS + V dP}$	20.11 a)
20.3 b) $dU = 0$	20.11 b)
$20.3 \text{ c}) \dots \qquad \qquad dS = nR \frac{dV}{V}$	20.11 c)
20.4 a) $dU = \delta W = -P_{\text{ext}} dV$	20.11 d)
20.4 b) $ dU = \delta W = -P dV $	20.11 e) $\boxed{6390\mathrm{J\cdot K^{-1}}}$
20.4 c)	20.12 a) $393 \mathrm{J \cdot K^{-1} \cdot kg^{-1}}$
$20.5 \text{ a)} \dots \qquad \boxed{dS = \delta S_c}$	20.12 b) $447 \mathrm{J\cdot K^{-1}\cdot kg^{-1}}$
20.5 b)	T_{1} T_{2}
20.5 c)	20.12 c) $\frac{m_1c_1I_1 + m_2c_2I_2}{m_1c_1 + m_2c_2}$
20.6 a) $T_f V_f^{\gamma - 1} = T_i V_i^{\gamma - 1}$	20.12 d)
20.6 b) $T_f^{\gamma} P_f^{1-\gamma} = T_i^{\gamma} P_i^{1-\gamma}$	20.12 e) $\Delta S = 7.54 \mathrm{J \cdot K^{-1}}$
	20.12 f)
$20.6 \text{ c}) \dots P_f V_f{}^{\gamma} = P_i V_i{}^{\gamma}$	20.13 a)
20.7 a)	20.13 b)
20.7 b) $x = \frac{\gamma}{(1-\gamma)}$	20.13 c)
20.7 c) $x = \frac{(1-\gamma)}{\gamma}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
20.7 d) $x = \frac{\gamma^2}{(1-\gamma)}$	20.15 a) $\frac{-Q_C}{\text{COP}}$
20.7 e)	20.15 b)
20.8 a)	20.15 c)
20.8 b) $0.31 \mathrm{J\cdot K^{-1}}$	20.15 d) 1.2×10^3 euros
20.9 a)	20.16 a)
20.9 b)	20.16 b) $ \frac{\eta Q_F}{(1-\eta)} $

20.16 c)	20.17 b)
20.16 d)	
20.17 a) $ \frac{1}{P} $	20.17 c)

Fiche n° 21. Statique des fluides

21.1 a) $75 \mathrm{N}\cdot\mathrm{cm}^{-2}$	21.11 b)
21.1 b)	21.11 c)
21.1 c)	$21.11 \mathrm{d)} \dots \qquad \boxed{-\overrightarrow{P_{\mathrm{d}}}}$
21.2	21.12 a)
21.2	21.12 b)
21.3	21.13 a) $[\rho_{s}h - \rho_{\ell}(h-x)]S\vec{g}$
21.4	$21.13 \text{ b}) \dots $ $h\left(\frac{ ho_{\ell}- ho_{ ext{s}}}{ ho_{\ell}} ight)$
21.5 a)	21.13 c)
21.5 b) $p_0 + \rho g(H - h - z_2)$	21.14 a)
21.5 c) $\rho g(H - z_3 \sin(\alpha)) + p_0$	
21.6 a)	21.14 b)
21.6 b) $-\overrightarrow{e_y}$	21.14 c) $h\left(1-\sqrt[3]{\frac{\rho_{\rm s}}{\rho_{\rm e}}}\right)$
21.6 c) $\left[-\frac{1}{2} \left(\sqrt{3} \overrightarrow{e_x} + \overrightarrow{e_y} \right) \right]$	21.15 a)
21.7 a)	21.15 b)
21.7 b)	21.15 c)
21.7 c)	21.16 a) $A\vec{e_z}$
$\sim V$	21.16 b) $By^2\overrightarrow{e_x} + 2Bxy\overrightarrow{e_y} + 2Ce^{2z}\overrightarrow{e_z}$
21.7 d) $\frac{\rho_h v_h}{\rho_e s}$	21.17 a)
21.8 a)	21.17 b)
21.8 b)	21.17 c)
21.9 a)	21.17 d)
21.9 b)	21.18 a) $ \frac{\mathrm{d}p}{\mathrm{d}z} = -\frac{2p}{z_{\mathrm{max}}} $
21.10	21.18 b) $p_0 e^{-2z/z_{\text{max}}}$
21.11 a)	21.19 a)
41.11 a)	Puc

21.19 b)	21.21 a) $ \frac{1}{2} \rho g L h^2 $
21.19 c)	21.21 b) $ \frac{1}{6} \rho g L h^3 $
21.20 a)	21.21 c) $\frac{1}{-h}$
21.20 b) $z = \frac{a}{g}y$	3"

Fiche nº 22. Fondamentaux de la chimie des solutions

22.1 a)	22.11 b) $ \frac{C_1V_1 + C_2V_2}{V_1 + V_2} $
22.1 b)	
22.2 a)	22.12 a)
22.2 b)	$V \times C_m$
22.2 c)	22.12 b) <u>M</u>
22.3 a) 8.01×10^{24}	$22.12 \text{ c}) \dots \qquad V = \frac{m}{C \times M}$
22.3 b)	22.13 a)
22.3 c)	22.13 b) $3,2 \mathrm{g\cdot L^{-1}}$
22.4 Le cuivre	22.14 a)
22.5 a)	22.14 b)
$\textbf{22.5 b})\left[[H_{3}O^{+}] = 10^{-7} mol \cdot L^{-1}\right]$	22.15 a)
22.5 c)	22.15 b)
22.6 a)	22.15 c)
22.6 b) $(a) = H_2A, (b) = HA^- \text{ et } (c) = A^{2-}$	22.16 a)
22.6 c)	22.16 b)
22.6 d) H ₂ A	22.16 c)
22.6 e)	22.17 a)
22.7 a) Le premier	22.17 b)
22.7 b) Le premier	22.17 c)
22.8 a)	22.18 a)
22.8 b) $0.26 \mathrm{mol}\cdot\mathrm{L}^{-1}$	22.18 b)
22.9 a)	22.18 c)
	22.19 a)
22.9 b) $\left \frac{C_1 V_1}{V_1 + V_2} \right $	22.19 b)
22.10 a)	22.19 c)
22.10 b)	22.20 96%
22.11 a)	22.2 1

Fiche nº 23. Fondamentaux de la chimie en phase gazeuse

23.1 $\boxed{\frac{RT}{P}}$	23.9 a) $\boxed{\frac{1}{V_0} \sum_{k=0}^{N} P_k V_k}$	23.12 f) $0.21 \mathrm{bar}$ 23.13 a) $4n - 2\xi$
23.2 a) $12.5 \mathrm{L \cdot mol^{-1}}$ 23.2 b) $24.9 \mathrm{L \cdot mol^{-1}}$	23.9 b)	23.13 b) $ \frac{2n-\xi}{2n} P_i $
23.2 c) $495 \mathrm{L \cdot mol^{-1}}$	23.9 c) $\left[\frac{N(N+1)}{2} P_0 \right]$	23.13 c) $\left[\frac{\xi}{2-\xi}P_i\right]$
23.2 d) $24,9 \mathrm{L} \cdot \mathrm{mol}^{-1}$ 23.3 $\boxed{\mathrm{c}}$	23.9 d) $\frac{Nn_0RT_0}{V_0}$	23.13 d) $ \frac{(n-\xi)}{4n} P_i $
23.4 a)	23.10 a)	23.13 e) $\frac{3(n-\xi)}{4n}P_i$
23.4 b)	23.10 c)	23.14
23.4 c)	23.10 d)	23.15 a)
23.4 d)	23.10 f)	23.15 c)
23.6 a) $0.078 \mathrm{g \cdot L^{-1}}$	23.10 h)	23.15 d) $ \frac{-1}{P_{\text{NH}_3}^2(P^{\circ})^2} $
23.6 b) $24.8 \mathrm{L \cdot mol^{-1}}$ 23.6 c) $2\mathrm{g \cdot mol^{-1}}$	23.11 b)	$ \begin{array}{c c} & F_{\text{N}_2}F_{\text{H}_2} \\ \hline & (P^{\circ})^5 \end{array} $
23.6 d)	23.11 d)	23.16 b) $\left[\frac{(^{2})}{P_{\text{H}_{2}}^{4}P_{\text{O}_{2}}}\right]$
23.7 a) RT 23.7 b) $RT + bP - \frac{a}{V_m} + \frac{ab}{V_m^2}$	23.12 a)	$23.10 \text{ c)} \dots \qquad \boxed{P_{\text{CH}_4} P_{\text{O}_2}^2 C^{\circ}}$
23.7 c)	23.12 c) 2×10^{-4} bar	23.16 d) $ \frac{[\mathrm{H}_2\mathrm{CO}_3]P^{\circ}}{P_{\mathrm{CO}_2}C^{\circ}} $
23.8 a	23.12 d) 9×10^{1} bar 23.12 e) 6×10^{-3} bar	23.17 <u>C</u>

Fiche nº 24. Réactions chimiques

Réponses $2 CO + O_2 = 2 CO_2$ **24.1** d) $S_2O_8^{2-} + 2I^- = 2SO_4^{2-} + I_2$ **24.1** f) $|\operatorname{MnO}_{4}^{-} + 8\operatorname{H}^{+} + 5\operatorname{Fe}^{2+} = 5\operatorname{Fe}^{3+} + \operatorname{Mn}^{2+} + 4\operatorname{H}_{2}\operatorname{O}$ 24.2 24.2 24.2 24.3 24.4 $a(NH_3)_{eq} \times a(H_2O)_{eq}$ **24.5** a)..... $a(NH_4^+)_{eq} \times a(HO^-)_{eq}$ $a(NH_3)_{eq} \times a(H_3O^+)_{eq}$ $a(NH_4^+)_{eq} \times a(H_2O)_{eq}$ $a(\mathrm{HO^-})_{\mathrm{eq}} \times a(\mathrm{H_3O^+})_{\mathrm{eq}}$ $a(H_2O)_{eq}^2$ **24.5** d)..... K_e $10^{4,75}$ 24.5 e)

24.7

24.6 b).....

24.6 d).....

 $5.0 \times 10^{-2} \, \text{mol}$

24.8 b)
24.9 a)
24.9 b)
24.10 a)
24.10 b) $ \xi^2 - \xi(C_1V_1 + C_2V_2) + C_1C_2V_1V_2 - \frac{[C^{\circ}(V_1 + V_2)]^2}{K^{\circ}} = 0 $
24.11 a)
24.11 b)
24.11 c)
24.11 d)
24.11 e) $\left[\xi^2(4K^{\circ}P + P^{\circ}) - \xi(4nK^{\circ}P + nP^{\circ}) + K^{\circ}n^2P = 0\right]$
24.12 a)
24.12 b)
24.13 a)
24.13 b)
24.14 a)
24.14 b)
24.14 c)
24.14 d)
24.15 a)
24.15 b)
24.16 a)
24.16 b)
24.16 c)

Fiche n° 25. Cinétique chimique

25.1 a)	25.7 b)
25.1 b)	25.7 c)
25.1 c)	25.8 a)
	25.8 b)
25.1 d)	25.9 a) $k[A]^2$
25.2 a)	25.9 b)
25.2 b)	25.9 c) $ \frac{[A]_0}{1 + \alpha[A]_0 kt} $
25.2 d)	25.10 a)
25.3 a) Oui : 2 25.3 b) Oui : $\frac{5}{2}$	25.10 b) $ \frac{\ln(2)}{\alpha k} $
25.3 c)	25.10 c)
25.4 a)	25.11 a) 1
25.4 b)	25.11 b) $7,90 \times 10^{-4} \mathrm{s}^{-1}$
25.4 c)	25.12 a)
25.4 d)	25.12 b)
25.5 a) $RT(\ln(A) - \ln(k))$	25.12 c)
25.5 b)	25.12 d)
25.6 a)	25.13 a)
25.6 b) $1.8 \times 10^2 \mathrm{kJ \cdot mol^{-1}}$	25.13 b) $ \ln \left(k \times [H_2]_0^m\right) + n \ln \left([S]_0\right) $
25.6 c) $5.3 \times 10^{11} \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	25.13 c) $n = \frac{1}{2}$
25.7 a) $\left[-\frac{1}{\alpha} \frac{d[A]}{dt} \right]$	25.13 d)

Fiche n^o 26. Chiffres significatifs et incertitudes

26.1 a) 3.15×10^1	26.7 a) $(1,191 \pm 0,035) \mathrm{W}$
26.1 b) $1,9 \times 10^{-3}$	26.7 b) $(1,175 \pm 0,059) \mathrm{W}$
26.1 c)	26.7 c)
26.1 d) $1,600002 \times 10^6$	26.8 a)
26.1 e)	26.8 b)
26.1 f) $\boxed{7,300 \times 10^3}$	26.8 c)
26.1 g) $3,30 \times 10^8$	
26.1 h) $\boxed{7,022 \times 10^{-3}}$	26.9 a) $ \left d \sqrt{\left(\frac{u(\lambda)}{\lambda} \right)^2 + \left(\frac{u(D)}{D} \right)^2 + \left(\frac{u(\ell)}{\ell} \right)^2} \right $
26.2 a)	26.9 b) $(74.4 \pm 4.4) \mu\text{m}$
26.2 b)	26.10 a)
26.2 c)	
26.2 d)	26.10 b)
26.3 a)	26.10 c)
26.3 b)	26.11 $(25,017 \pm 0,092) \text{ cm}$
26.3 c)	26.12
26.4	26.13 a)
26.5 a)	26.13 b)
26.5 b)	26.14 a)
26.5 c)	26.14 b)
26.5 d) 0.910 ± 0.035	26.14 c)
26.6	