Social Media Classification Project

1. Import packages

```
import os
import numpy as np
import pandas as pd
import re
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
import matplotlib.pyplot as plt
import seaborn as sns
import string
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

First, import packages that I am going to use in this project.

2. Load data

```
df_complaint = pd.read_csv("/Users/kira/Desktop/CIS434 Social Media/Final Project/data/complaint1700.csv")
df_noncomplaint = pd.read_csv("/Users/kira/Desktop/CIS434 Social Media/Final Project/data/noncomplaint1700.csv")

df_complaint['sentiment'] = 1
    df_noncomplaint['sentiment'] = 0

df = pd.concat([df_complaint,df_noncomplaint],axis=0)

punctuation = [char for char in string.punctuation if char!='?']
    def remove_punc_stopwords(text):
        word_list = nltk.word_tokenize(text)
        not.in_punc = [word for word in word_list if word.lower() not in punctuation]
        return [word.lower() for word in not_in_punc if word.lower() not in stopwords.words(['english','french','spanish','portuguese'])]
```

Load the data that professor uploaded on blackboard and tag the sentiment of each tweet. 1 as negative and 0 as positive.

3. Create Term-Document Matrix(TDM) ¶

```
from sklearn.feature_extraction.text import CountVectorizer
tdm_transformer = CountVectorizer(analyzer=remove_punc_stopwords).fit(df['tweet'])
df_tdm = tdm_transformer.transform(df['tweet'])

from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer = TfidfTransformer().fit(df_tdm)
df_tfidf = tfidf_transformer.transform(df_tdm)
```

Create the TDM.

4. Model Training and Selection

4.1 Split the data

```
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report
from sklearn.model_selection import KFold, cross_val_score, GridSearchCV
from sklearn.metrics import accuracy_score, roc_curve, auc, roc_auc_score
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomPorestClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from scipy.sparse import hstack

# create a pipeline to convert the data into tfidf form
pipeline = Pipeline({
    ('bow', CountVectorizer(analyzer=remove_punc_stopwords)), # strings to token integer counts
    ('tfidf', TfidfTransformer())])

# Specify X and y
X = pipeline.fit_transform(df.tweet)
y = df.sentiment
# Train test split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1,random_state=1)
```

In order to train the model, firstly I split the data into training set and validation set. Training set is used to build model and validation set is used to tune the hyperparameter to evaluate the best model.

4.2 evaluation functions

```
def gridSearchCV(model, params):
    @param
               model: sklearn estimator
              params (dict): Dictionary of possible parameters
    @param
    @return cv_results (DataFrame)
    model_cv = GridSearchCV(model, param_grid=params, scoring='roc_auc', cv=5)
    model_cv.fit(X_train, y_train)
cv_results = pd.DataFrame(model_cv.cv_results_)[['params', 'mean_test_score']].sort_values(['mean_test_score'],asc
ending=False)
    return cv_results
def evaluate(model):
    1. Plot ROC AUC of the test set
    2. Return the best threshold
    model.fit(X_train, y_train)
    probs = model.predict_proba(X_test)
preds = probs[:,1]
    fpr, tpr, threshold = roc_curve(y_test, preds)
roc_auc = auc(fpr, tpr)
    print(f'AUC: {roc_auc:.4f}')
    # Find optimal threshold
    rocOf = pd.DataFrame({'fpr': fpr, 'tpr':tpr, 'threshold':threshold})
rocDf['tpr - fpr'] = rocDf.tpr - rocDf.fpr
optimalThreshold = rocDf.threshold[rocDf['tpr - fpr'].idxmax()]
    print(optimalThreshold)
     # Get accuracy over the test set
    y_pred = np.where(preds >= optimalThreshold, 1, 0)
     accuracy = accuracy_score(y_test, y_pred)
    print(f'Accuracy: {accuracy*100:.2f}%')
```

gridSearchCV function is used to interate through different hyperparameters to tune the model. Evaluate function is used to evaluate the performance of each model.

4.3.1 Naive Bayesion

The first model I trained is Naive Bayesion. By tuning 'alpha' and 'fit_prior', I found the best hyperparameters for this model, and evaluated this model's performance.

4.3.2 Random Forest

```
params1 = {'bootstrap': [True, False]}
params2 = {\max_depth': [None,1,2,5,8,10,20,30,40,50,60,70,80,90,100]}
params3 = {\n_estimators': [2,4,6,8,10,12,14,16,18,20,30,40,50,60,70,80,90,100]}
params4 = {'max_features': [None,1,2,5,8,10,20,30,40,50,60,70,80,90,100]}
rfc = RandomForestClassifier(random_state=1)
print(gridSearchCV(rfc, params1))
                  params mean_test_score
  {'bootstrap': False}
                                   0.767762
   {'bootstrap': True}
                                   0.766037
rfc = RandomForestClassifier(random_state=1,bootstrap=False)
print(gridSearchCV(rfc, params2))
                  params mean_test_score
      { 'max_depth': 90}
                                   0.780487
11
       { 'max_depth': 70}
                                   0.777657
14
     { 'max_depth': 100}
                                   0.777026
10
      {'max_depth': 60}
                                  0.774856
9
      {'max_depth': 50}
                                   0.773707
12
       { 'max_depth': 80}
                                  0.773058
    {'max depth': None}
                                   0.767762
0
      { 'max_depth': 30}
                                  0.765512
      { 'max_depth': 40}
                                   0.764232
      {'max_depth': 20}
                                   0.745030
      { 'max_depth': 10}
                                   0.706911
4
       {'max_depth': 8}
                                   0.689439
        {'max_depth': 5}
{'max_depth': 2}
3
                                  0.647626
                                   0.575075
                                 0.527678
       {'max_depth': 1}
```

```
rfc = RandomForestClassifier(random state=1,bootstrap=False,max depth=90)
  print(gridSearchCV(rfc, params3))
                     params mean_test_score
  16
       {'n estimators': 90}
                                    0.812094
      {'n_estimators': 100}
  17
                                    0.812069
                                    0.810814
  15
       {'n_estimators': 80}
       {'n_estimators': 70}
                                    0.810357
  14
  13
       {'n_estimators': 60}
                                     0.809247
       {'n_estimators': 50}
  12
                                     0.806923
       {'n_estimators': 40}
                                     0.805249
       {'n_estimators': 30}
  10
                                     0.801320
  9
       {'n_estimators': 20}
                                     0.795087
  8
       {'n_estimators': 18}
                                     0.793189
  7
       {'n_estimators': 16}
                                     0.792039
  6
       {'n estimators': 14}
                                     0.789643
       {'n_estimators': 12}
  5
                                     0.784776
       {'n_estimators': 10}
                                     0.780487
        {'n_estimators': 8}
  3
                                     0.774214
  2
        {'n_estimators': 6}
                                     0.760836
        {'n_estimators': 4}
                                    0.744637
  1
  0
        {'n_estimators': 2}
                                     0.696660
rfc = RandomForestClassifier(random_state=1,bootstrap=False,max_depth=90,n_estimators=90)
  print(gridSearchCV(rfc, params4))
                      params mean_test_score
  8
        {'max_features': 40}
                                     0.818822
  10
        {'max_features': 60}
                                      0.814319
        {'max_features': 50}
  9
                                      0.813710
  7
        {'max_features': 30}
                                      0.812109
  14
       {'max_features': 100}
                                      0.811849
  11
        {'max_features': 70}
                                      0.811779
        {'max_features': 80}
                                      0.811688
  12
  6
        {'max_features': 20}
                                      0.811094
        {'max_features': 90}
  13
                                      0.810468
  5
        {'max_features': 10}
                                      0.800087
         {'max features': 8}
                                      0.798953
  3
         {'max_features': 5}
                                      0.777705
         {'max features': 2}
                                      0.749813
         {'max_features': 1}
                                      0.724272
  1
      {'max_features': None}
                                      0.685222
 rfc = RandomForestClassifier(random_state=1,bootstrap=True,max_depth=90,n_estimators=90,max_features=40)
 evaluate(rfc)
 AUC: 0.8057
```

Next, using the same process, I found the best Random forest model.

0.488788321880853 Accuracy: 75.88%

4.3.3 SVM

```
params1 = {'C': [0.001,0.01,0.1,1,3,10,20,30,40,50],
'kernel':['linear', 'rbf', 'poly']}
params2 = {'gamma':[0.001,0.01,0.1,1,10,100]}
params3 = {'degree':[0,1,2,3,4,5,6,7,8,9,10,20,30,40,50]}
svc = SVC()
print(gridSearchCV(svc, params1))
                                        params mean_test_score
           {'C': 1, 'kernel': 'linear'}
                                                            0.820981
         {'C': 0.01, 'kernel': 'poly'}
{'C': 30, 'kernel': 'poly'}
5
                                                            0.813005
                                                            0.812924
23
            {'C': 10, 'kernel':
17
                                        'poly'}
                                                             0.812867
29
            {'C': 50, 'kernel': 'poly'}
                                                            0.812848
            {'C': 40, 'kernel': 'poly'}
26
                                                            0.812809
          {'C': 0.1, 'kernel':
                                                            0.812795
8
                                       'poly'}
    {'C': 0.1, 'kernel': 'poly'}
    {'C': 20, 'kernel': 'poly'}
    {'C': 3, 'kernel': 'poly'}
    {'C': 1, 'kernel': 'linear'}
    {'C': 3, 'kernel': 'linear'}
    {'C': 3, 'kernel': 'linear'}

20
                                                             0.812782
14
                                                            0.812768
11
                                                            0.812750
                                                            0.802755
6
12
                                                            0.801027
0
                                                            0.798804
              {'C': 3, 'kernel': 'rbf'}
{'C': 1, 'kernel': 'rbf'}
13
                                                            0.798804
                                                            0.798804
10
             {'C': 1, kernel': 'rbf'}

{'C': 10, 'kernel': 'rbf'}

{'C': 40, 'kernel': 'rbf'}

{'C': 50, 'kernel': 'rbf'}

{'C': 30, 'kernel': 'rbf'}
                                                             0.798776
16
25
                                                             0.798774
28
                                                            0.798774
                                                            0.798774
22
      {'C': 0.01, 'kernel': 'linear'}
                                                             0.798772
3
        {'C': 20, 'kernel': 'rbf'}
{'C': 0.01, 'kernel': 'rbf'}
{'C': 0.001, 'kernel': 'rbf'}
{'C': 0.1, 'kernel': 'rbf'}
19
                                                            0.798759
4
                                                            0.798561
                                                            0.798554
1
                                                             0.798405
       {'C': 0.1, 'kernel': 'rbf'}
{'C': 10, 'kernel': 'linear'}
{'C': 20, 'kernel': 'linear'}
{'C': 40, 'kernel': 'linear'}
{'C': 50, 'kernel': 'linear'}
{'C': 30, 'kernel': 'linear'}
{'C': 0.001, 'kernel': 'poly'}
15
                                                            0.786872
18
                                                            0.785597
24
                                                            0.785571
27
                                                            0.785571
21
                                                            0.785571
                                                            0.775101
 svc = SVC(C=1,kernel='linear')
 print(gridSearchCV(svc, params2))
                   params mean test score
     {'gamma': 0.001}
                                        0.820981
       {'gamma': 0.01}
                                         0.820981
        {'gamma': 0.1}
                                         0.820981
           {'gamma': 1}
                                         0.820981
          {'gamma': 10}
                                         0.820981
 5
        {'gamma': 100}
                                         0.820981
 svc = SVC(C=1,kernel='linear',gamma=0.001)
 print(gridSearchCV(svc, params3))
                  params mean test score
        {'degree': 0}
                                        0.820981
 0
        {'degree': 1}
                                        0.820981
 1
        {'degree': 2}
                                        0.820981
 3
        {'degree': 3}
                                        0.820981
 4
        {'degree': 4}
                                        0.820981
 5
        {'degree': 5}
                                        0.820981
 6
        {'degree': 6}
                                        0.820981
        {'degree': 7}
 7
                                        0.820981
        {'degree': 8}
 8
                                        0.820981
         {'degree': 9}
                                        0.820981
 9
 10
      {'degree': 10}
                                        0.820981
       {'degree': 20}
                                        0.820981
 11
       {'degree': 30}
                                        0.820981
 12
 13
       {'degree': 40}
                                        0.820981
     {'degree': 50}
 svc = SVC(random_state=1,C=1,kernel='linear',gamma=0.001,degree=0,probability=True)
 evaluate(svc)
 AUC: 0.8258
 0.5256810441625582
 Accuracy: 78.24%
```

The best SVM model.

In the end, we can see that linear SVM model with C=1, gamma=0.001, degree=0 shows the best accuracy at 78.24%.

I chose this as the Final model.

5. Final Model

```
df_test = pd.read_csv("/Users/kira/Desktop/CIS434 Social Media/Final Project/data/tweet_test.csv")
df_test = df_test.drop(['tid_not_to_be_used', 'airline', 'tag'], axis=1)

final_model = SVC(random_state=1,C=1,kernel='linear', gamma=0.001,degree=0,probability=True)
final_model.fit(X,y)

SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=0, gamma=0.001, kernel='linear',
    max_iter=-1, probability=True, random_state=1, shrinking=True, tol=0.001,
    verbose=False)

final_X = pipeline.transform(df_test.tweet)
    predictions = final_model.predict_proba(final_X)[:,1]
    y_pred = np.where(predictions >= 0.15, 1, 0)

output = pd.DataFrame({
    'id':df_test.id,
        'tweet':df_test.tweet,
        'pred':y_pred
})
```

```
res = output[output['pred']==0]
res = res[['id','pred','tweet']]
res = res.reset_index(drop=True)
res
```

tweet	pred	id	
Shoutout to Crystal at @JetBlue for helping us	0	564	0
.@richardbranson .@rmchrQB .@VirginAmerica Air	0	620	1
On @jetblue heading to Vegas for my first @ABC	0	2291	2
Can't wait to fly @JetBlue #TrueBlue	0	2338	3
When did @AlaskaAir become the most expensive	0	2523	4
Best way to leave @FlyTPA @JetBlue be right ba	0	170610	288
So sad @united https://t.co/2JP5WXlpd7	0	170650	289
Hey you guys, @JetBlue is the best. Seriously	0	172276	290
@Charalanahzard that's why you never use @Amer	0	172719	291
@AbdulNasirJ @HussainKamani @united Prophet fu	0	172913	292

293 rows × 3 columns

This the dataframe containing the prediction generated by my final model. The outcome is stored in 'pred' column.

```
res = res.drop(['pred'],axis=1)

res.to_csv(r'/Users/kira/Desktop/CIS434 Social Media/Final Project/Geng_Luo.csv',sep=',')

my_eval = pd.read_csv("/Users/kira/Desktop/CIS434 Social Media/Final Project/my_eval.csv")

my_eval

my_eval

0     1
1     0
2     1
3     1
4     0
```

Then, I kept only positive tweets and dropped the column 'pred' and saved the dataframe as csv file to self-eveluate the result. Self-evaluated result is saved into my_eval.csv file, so I read csv as dataframe again and added column my_eval into the dataframe.

```
res['my_eval'] = my_eval
res = res[['id','my_eval','tweet']]
res
```

1	564	0
0	/20	
	620	1
1	2291	2
1	2338	3
0	2523	4
1	170610	288
1	170650	289
1	172276	290
1	172719	291
0	172913	292
 1 1 1	3	170610 170650 172276 172719

res.to_csv(r'/Users/kira/Desktop/CIS434 Social Media/Final Project/Geng_Luo.csv',sep=',')

Final accuracy was 74.4%.

293 rows × 3 columns