北京科技大学 2014-2015 学年 第二学期 计算机组成原理 模拟试卷

•		选择题 (本题共 15 小题,每小题 2 分,共计 30 分) 冯•诺依曼机工作的基本方式的特点是() A. 多指令流单数据流 B. 按地址访问并顺序执行指令 C. 堆栈操作 D. 存储器按内容选择地址
	2.	变址寻址方式中,操作数的有效地址等于() A 基值寄存器内容加上位移量 B 堆栈指示器内容加上位移量 C 变址寄存器内容加上位移量 D 程序记数器内容加上位移量
	3.	指令系统采用不同寻址方式的目的是() A. 实现存贮程序和程序控制 B. 缩短指令长度,扩大寻址空间,提高编程灵活性 C. 可直接访问外存 D. 提供扩展操作码的可能并降低指令译码的难度
	4.	下列哪种寻址方式对实现程序浮动提供了支持()A. 寄存器寻址B. 变址寻址C. 相对寻址D. 基址寻址
	5.	数据的移码表示的范围和()的表示范围相同 A. 原码 B. 补码 C. 反码 D.
	6.	计算机系统中采用补码运算的目的是为了() A. 提高运算速度 B. 简化运算器设计。 C. 提高运算的精度。 D. 与手工运算保持一致

7. 微程序控制器中,机器指令与微指令的关系是。
A. 每一条机器指令由一条微指令来执行
B. 每一条机器指令由一段微指令编写的微程序来解释执行
C. 每一条机器指令组成的程序可由一条微指令来执行
D. 一条微指令由若干条机器指令组成
8. 假定下列字符码中有奇偶校验位,但没有数据错误,采用偶校校验的字
符码是。
A 11001011 B 11010110 C 11000001 D 11001001
9. 用 32 位字长(其中 1 位符号位)表示定点小数补码,所能表示的数值范
围是。
A $\begin{bmatrix} -1, & 1-2^{-32} \end{bmatrix}$ B $\begin{bmatrix} -1, & 1-2^{-31} \end{bmatrix}$
$C \left[- (1 - 2^{-31}), 1 - 2^{-31} \right]$ D [0, 1]
10. 为确定下一条微指令的地址,通常采用断定方式,其基本思想是。
A. 用程序计数器 PC 来产生后继微指令地址
B. 用微程序计数器 µ PC 来产生后继微指令地址
C. 通过微指令顺序控制字段由设计者指定或由设计者指定的判别字段
控制产生后继微指令地址
D. 通过指令中指定一个专门字段来控制产生后继微指令地址
11. 在浮点数加减法, 当结果的尾数(用变形补码表示)具有下列哪个形式
的时候,需要左规()
A. 00. 1XX···X
В. 11.1XX•••Х
C. 01.1XX···X
D. 10.1XX···X
12. 在 CPU 中跟踪指令后继地址的寄存器是。
A 主存地址寄存器 B 程序计数器 C 指令寄存器 D 状态条件寄存
器
13. 主存储器和 CPU 之间增加 cache 的目的是。
A. 解决 CPU 和主存之间的速度匹配问题
B. 扩大主存贮器容量
C. 扩大 CPU 中通用寄存器的数量
D. 既扩大主存贮器容量,又扩大 CPU 中通用寄存器的数量
14. 在定点数运算中产生溢出的原因是 。
A. 运算过程中最高位产生了进位或借位
B. 参加运算的操作数超出了机器表示的范围
(C) 寄存器的位数太少,不得不舍弃最底有效位
(D) 机器字长和硬件限制

15. 在取指周期中,是按照的内容访问主存,以读取机器指令。	
A 指令寄存器 IR	
B 程序状态字寄存器 PSW	
C 程序计数器 PC	
D 主存数据缓冲寄存器 MBR	
二、 填空题 (本题共 15 空,每空 1 分,共计 15 分)	
16. 在堆栈寻址中, 专用寄存器 SP 称为栈指针, 其内容为: .	
17. CPU 执行一段程序时,cache 完成存取的次数为 3800 次,主存完成存取	又
的次数为 200 次,已知 cache 存取周期为 50ns, 主存为 250ns, 求 cache	e/
主存系统的效率和平均访问时间。	
18. 一条微指令通常至少包含以下两大部分信息,和微地址字段。	微
指令可分类为垂直型(或脉冲型)微指令和微指令。	
19. 列举 PWS 寄存器(程序状态字)中一种常见的标志位。	
20. 控制存储器隶属于。	
21. 规格化浮点数的表示范围与精度分别取决于和。	
22. 在微指令中,微操作控制字段的作用是。	
23. 对于奇校验码,代码 10000011 的校验位为:。	
24. 己知[X] _* =0. 10100,则[-X] _* =。	
25. CPU 的四个主要功能是:指令控制,,时间控制和。	
26. 存储器的技术指标有存取速度,	
三、判断题(本题共 5 小题,每小题 1 分,共计 5 分)	
27. ()指令格式通常由操作码字段和地址码字段组成。	
28. () 如果某计算机指令系统中没有除法指令,该计算机就不能实现陷	È
法运算。	
29. () 主存与 cache 的直接相连地址映射,命中率高,成本低。	,
30. ()移码表示法主要用于表示浮点数的阶码 E,以利于比较两个指数	
的大小和对阶操作,其中对阶操作是将较小的阶码向较大的阶码看齐。	
31. () Cache 是 CPU 的组成部分。	
四、简答题(本题共 4 小题,共计 22 分)	
32. 简述组合逻辑控制器的设计步骤。(5分)	
33. 三级逻辑时序系统分别是指什么?请简述它们之间的关系。(6分)	
55. — 纵之冉时	
34. 写出 4 位先行进位链的表达式(5 分)	

35. 画出微指令控制器框图 (6分)

五、计算题(本题共4小题,共计28分)

36. (6分)将(100.25) 10转化为短浮点数格式:

0	1 8	9 31
数符	阶码	尾数

37. (6分)设乘法器的宽度为5位,用原码一位乘法计算X×Y:(求出乘积与符号)

X=0.11011, Y=-0.11111

38. (6分)设有一台计算机,其指令长度为16位,指令格式如下

15	11	10	8	7	6	5		0
	OP			N	1		D	\neg

其中 OP 为操作码,占 5 位:R 为寄存器编号,占 3 位,可有 8 个寄存器; M 为寻址方式,占 2 位,与 D 一起决定源操作数,规定如下:

M=00,为立即寻址,D为立即数;

M=01,为相对寻址,D为位移量;

M=10,为变址寻址,D为位移量;

该指令的功能是(R) ← (R) op (M/D);

假定要执行的指令为加法指令(即 op 为+), 存放在 001000 单元中, D 的值为 02, 该指令执行前存储器和有关寄存器的存储情况如图(a) 所示, 其中地址码和数据是八进制表示。

在以下几种情况下,该指令执行后,RO和PC的内容为?

- (1) M=00
- (2) M=01
- (3) M=10

39. (10 分)某计算机的数据通路下图所示,其中 M—主存, MBR—主存数据寄存器, MAR—主存地址寄存器, R0-R3—通用寄存器, IR—指令寄存器, PC—程序计数器(具有自增能力), C、D—暂存器, ALU—算术逻辑单元,移位器—左移、右移、直通传送。所有双向箭头表示信息可以双向传送。

请按数据通路图画出"ADD(R1), (R2)+"指令的指令周期流程图。 该指令的含义是两个数进行求和操作。其中源操作地址在寄存器 R1中, 目的操作数寻址方式为自增型寄存器间接寻址。