Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	ε
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.0 Алгоритм функции main	8
3.1 Алгоритм метода f1 класса cl	8
3.2 Алгоритм метода f2 класса cl	g
3.3 Алгоритм метода result класса cl	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	11
5 КОД ПРОГРАММЫ	14
5.0 Файл main.cpp	14
6 ТЕСТИРОВАНИЕ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который вычисляет значение целочисленного арифметического выражения, состоящего из трех последовательных операции. Операция деления заменена на операцию вычисления целочисленного остатка.

Объект обладает следующей функциональностью:

- выполняет первую операцию выражения, в качестве параметров передается первый целочисленный параметр, символ операции (+,-,*,%), второй целочисленный параметр;
- вычисляет вторую и далее операцию, в качестве параметров передается символ операции (+,-,*,%), второй целочисленный параметр;
- возвращает значение вычисленного выражения (значение можно получить после выполнения трех операции).

Написать программу, которая:

- 1. Создает объект.
- 2. Вводит значения аргументов для первой операции.
- 3. Выполняет первую операцию.
- 4. Вводит значение аргументов для второй операции.
- 5. Выполняет вторую операцию.
- 6. Вводит значение аргументов для третьей операции.
- 7. Выполняет третью операцию.
- 8. Выводит результат.

1.1 Описание входных данных

Первая строка:

«целое число в десятичном формате», «символ операции», «целое число в

десятичном формате»

Вторая строка:

«символ операции» «целое число в десятичном формате»

Третья строка:

«символ операции» "«целое число в десятичном формате»

1.2 Описание выходных данных

Первая строка, с первой позиции:

«значение выражения»

2 МЕТОД РЕШЕНИЯ

```
Для решения задачи понадобится: объект класса cl условный оператор if операторы (+,-,*,%)
```

Класс cl:

Поля:

доступные элементы с типом int a, int b, char symbol скрытый элемент с типом int answer

Методы:

открытые:

f1(int a, char symbol, int b) - выполняет операцию (действие +, -, *, %). f2(char symbol, int b) - выполняет операцию (действие +, -, *, %).

result() - возвращает итоговое значение

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.0 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

No	Предикат	Действия	N₂
			перехода
1		ввод значения аргументов для первой операции	2
2		создание объекта	3
3		вызов метода f1, для выполнения операции	4
4		ввод значение аргументов для второй операции	5
5		вызов метода f2, для выполнения операции	6
6		ввод значение аргументов для третьей операции	7
7		вызов метода f2, для выполнения операции	8
8		вывод результата метода result	Ø

3.1 Алгоритм метода f1 класса cl

Функционал: вычисление первой операции над числами.

Параметры: int a, char symbol, int b.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода f1 класса cl

No	Предикат	Действия	N₂
			перехода
1	знак операции равен "+"	сложение a + b и присваиваем значение в answer	Ø
			2
2	знак операции равен "-"	вычитание a - b и присваиваем значение в answer	Ø
			3
3	знак операции равен "*"	умножение a * b и присваиваем значение в answer	Ø
			4
4	знак операции равен "%"	деление на остаток а % b и присваиваем значение в	Ø
		answer	
			Ø

3.2 Алгоритм метода f2 класса cl

Функционал: вычисление второй и далее операций над числами.

Параметры: char symbol, int b.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода f2 класса cl

No	Предикат	Действия	No
			перехода
1	знак операции равен "+"	прибавление к answer значение b	Ø
			2
2	знак операции равен "-"	вычитание к answer значение b	Ø
			3
3	знак операции равен "*"	умножение к answer значение b	Ø
			4
4	знак операции равен "%"	деление на остаток к answer значение b	Ø

Nº	Предикат	Действия	N₂
			перехода
			Ø

3.3 Алгоритм метода result класса cl

Функционал: возврат значения.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода result класса cl

-	No	Предикат	Действия	No
				перехода
	1		возврат значения answer	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.0 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace std;
class cl
private:
      int answer = 0;
public:
      void f1(int a, char symbol, int b);
      void f2(char symbol, int b);
      int result();
      int a, b;
      char symbol;
};
void cl::f1(int a, char symbol, int b)
      if (symbol == '+')
      {
            answer = a + b;
      }
      else if (symbol == '-')
            answer = a - b;
      else if (symbol == '*')
            answer = a * b;
      else if (symbol == '%')
            answer = a \% b;
      }
}
void cl::f2(char symbol, int b)
      if (symbol == '+')
```

```
answer += b;
      else if (symbol == '-')
      {
            answer -= b;
      else if (symbol == '*')
      {
            answer *= b;
      }
      else if (symbol == '%')
            answer %= b;
      }
}
int cl::result()
      return answer;
}
int main()
{
      int a, b;
      char symbol;
      cin >> a >> symbol >> b;
      cl object;
      object.f1(a, symbol, b);
      cin >> symbol >> b;
      object.f2(symbol, b);
      cin >> symbol >> b;
      object.f2(symbol, b);
      cout << object.result();</pre>
      return(0);
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

	Входные данные	Ожидаемые выходные	Фактические выходные
		данные	данные
2	+ 2	8	8
+	2		
+	2		

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).