Help:数学公式

维基百科,自由的百科全书

这是元维基上帮助文件副本的中文翻译,请参看元维基上的帮助文件后再修改本文。

本文在元维基的原文是: meta:Help:Formula

2003年1月始,维基百科开始使用TEX标记来处理数学公式。它会根据用户的设定以及公式的复杂程度,自动生成PNG图像或者简单的HTML标记。

数学记号应该放在$...$标记中。关于 $T_E X$ 显示的讨论或者您有任何建议,请到英文维基百科的相关页面(直接点击本页左方的链接)。

目录

- 1 函数、符号及特殊字符
 - 1.1 声调/变音符号
 - 1.2 标准函数
 - 1.3 模代数
 - 1.4 微分
 - 1.5 集合
 - 1.6 运算符
 - 1.7 逻辑符号
 - 1.8 根号
 - 1.9 关系符号
 - 1.10 几何符号
 - 1.11 箭头
 - 1.12 特殊符号
- 2上标、下标及积分等
- 3 分数、矩阵和多行列式
- 4字体
 - 4.1 希腊字母
 - 4.2 黑板粗体
 - 4.3 正粗体
 - 4.4 斜粗体
 - 4.5 斜体数字
 - 4.6 罗马体
 - 4.7 哥特体
 - 4.8 手写体4.9 希伯来字母
- 5括号
- 6 空格
- 7顏色
- 8 小型數學公式
- 9 強制使用PNG
- 10 注释
- 11 外部鏈接

函数、符号及特殊字符

声调/变音符号		
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}	$\hat{a}\hat{a}\hat{a} ilde{a}$	
\check{a} \bar{a} \ddot{a} \dot{a}	ăāää	
标准函数	k	
\sin a \cos b \tan c	$\sin a \cos b \tan c$	
\sec d \csc e \cot f	$\sec d \csc e \cot f$	

\arcsin h \arccos i \arctan j	$\arcsin h \arccos i \arctan j$
\sinh k \cosh l \tanh m \coth n\!	$\sinh k \cosh l \tanh m \coth n$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\operatorname{sh} o \operatorname{ch} p \operatorname{th} q$
$\verb \operatorname{arsinh}r\ , operatorname{arcosh}s\ , operatorname{artanh}t$	$\operatorname{arsinh} r \operatorname{arcosh} s \operatorname{artanh} t$
\lim u \limsup v \liminf w \min x \max y\!	$\lim u \lim \sup v \lim \inf w \min x \max y$
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!	$\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g$
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n	$\deg h \gcd i \operatorname{Pr} j \det k \operatorname{hom} l \arg m \dim n$
模代数	
s_k \equiv 0 \pmod{m}	$s_k \equiv 0 \pmod{m}$
a\bmodb	$a \bmod b$
微分	
$linear_continuous_contin$	$\nabla \partial x dx \dot{x} \ddot{y} dy / dx \frac{dy}{dx} \frac{\partial^2 y}{\partial x_1 \partial x_2}$
集合	
\forall \exists \empty \emptyset \varnothing	$\forall\exists\emptyset\emptyset\varnothing$
\in \ni \not \in \notin \subset \subseteq \supset \supseteq	€∋∉∉⊂⊆⊃⊇
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus	n∩uU\.
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup	
运算符	
+ \oplus \bigoplus \pm \mp -	+ ⊕ ⊕ ± ∓ −
\times \otimes \bigotimes \cdot \circ \bullet \bigodot	$\times \otimes \bigotimes \cdot \circ \bullet \bigodot$
\star * / \div \frac{1}{2}	$\star * / \div \frac{1}{2}$
逻辑符号	
\land (or \and) \wedge \bigwedge \bar{q} \to p	$\wedge \wedge \wedge \bar{q} \to p$
\lor \vee \bigvee \lnot \neg q \And	
根号	
\sqrt{x} \sqrt[n]{x}	$\sqrt{x}\sqrt[n]{x}$
关系符号	
<pre>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{{}}{{=}}</pre>	~≈≃≅ ≐def
< \le \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto	<≤≪≫≥>≡≢≠ or ≠∞
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox	
几何符号	

rka4¢\$e\$ex

≱≹⋧≩≩⋧⋧⊁挫⋩

\nsim \nshortmid

\subsetneq

\succneqq

\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq

\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq

\varsubsetneq \subsetneqq \varsubsetneqq \ngtr

\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \ntriangleright \ntrianglerighteq \nsupseteq	ネネ≈≇n₩₩₽₽₽
\nsupseteqq \varsupsetneqq \supsetneqq \varsupsetneqq	⊉ ⊋⊋⊋
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus	$\jmath\sqrt* \oplus \Diamond \triangle \bigtriangledown \ominus$
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq	⊘ ⊙ ⊝II ≺≻ <u>≺</u> ≻
\dashv \asymp \doteq \parallel	ld≍≐∥
\ulcorner \urcorner \llcorner	r-1
\Coppa\coppa\varcoppa\Digamma\Koppa\koppa\Sampi\Stigma\stigma\varstigma	የየየFየ _ካ እላፐናፍ

上标、下标及积分等

功能	语法	效果
上标	a^2	a^2
下标	a_2	a_2
组合	a^{2+2}	a^{2+2}
NY D	a_{i,j}	$a_{i,j}$
结合上下标	x_2^3	x_{2}^{3}
前置上下标	{}_1^2\!X_3^4	$_{1}^{2}X_{3}^{4}$
导数 (HTML)	x'	x'
导数 (PNG)	x^\prime	x'
导数 (错误)	x\prime	x'
导数点	\dot{x}	\dot{x}
4 35.77	\ddot{y}	\ddot{y}
	\vec{c}	\vec{c}
	\overleftarrow{a b}	\overleftarrow{ab}
回里	\overrightarrow{c d}	\overrightarrow{cd}
	\widehat{e f g}	\widehat{efg}
上弧 (註:正確應該用\overarc,但在這裡行不通。要用建議的語法作爲 解決辦法。)(使用\overarc時需要引入{arcs}套件。)	\overset{\frown} {AB}	\widehat{AB}
上划线	\overline{h i j}	hij
下划线	\underline{k l m}	\underline{klm}
	\overbrace{1+2+\cdots+100}	$1+2+\cdots+100$
上括号	\begin{matrix} 5050 \\ \overbrace{ 1+2+\cdots+100 } \end{matrix}	$\overbrace{1+2+\cdots+100}^{5050}$
	\underbrace{a+b+\cdots+z}	$a+b+\cdots+z$
下括号	<pre>\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}</pre>	$\underbrace{a+b+\cdots+z}_{26}$
求和	\sum_{k=1}^N k^2	$\sum_{k=1}^{N} k^2$
	\begin{matrix} \sum_{k=1}^N k^2 \end{matrix}	$\sum_{k=1}^{N} k^2$
求积	\prod_{i=1}^N x_i	$\prod_{i=1}^{N} x_i$
	\begin{matrix} \prod_{i=1}^N x_i	

	\end{matrix}	$\prod_{i=1}^{N} x_i$
上积	\coprod_{i=1}^N x_i	$\prod_{i=1}^{N} x_i$
	<pre>\begin{matrix} \coprod_{i=1}^N x_i \end{matrix}</pre>	$\coprod_{i=1}^{N} x_i$
	\lim_{n \to \infty}x_n	$\lim_{n\to\infty} x_n$
极限	<pre>\begin{matrix} \lim_{n \to \infty}x_n \end{matrix}</pre>	$\lim_{n\to\infty} x_n$
积分	\int_{-N}^{N} e^x dx	$\int_{-N}^{N} e^x dx$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\int_{-N}^{N} e^x dx$
双重积分	\iint_{D}^{W} dxdy	$\iint_{D}^{W} dx dy$
三重积分	\iiint_{E}^{V} dxdydz	$\iiint_{E}^{V} dx dy dz$
四重积分	\iiiint_{F}^{U} dxdydzdt	$\iiint_F^U dx dy dz dt$
闭合的曲綫、曲面积分	$\int \int C x^3 dx + 4y^2 dy$	$ \oint_C x^3 dx + 4y^2 dy $
交集	\bigcap_1^{n} p	$\bigcap_{1}^{n} p$
并集	\bigcup_1^{k} p	$\bigcup_{1}^{k} p$

分数、矩阵和多行列式

功能	语法	效果
分数	\frac{2}{4}=0.5	$\frac{2}{4} = 0.5$
小型分数	\tfrac{2}{4} = 0.5	$\frac{2}{4} = 0.5$
大型分数 (嵌套)	\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a	$\frac{2}{c + \frac{2}{d + \frac{2}{4}}} = a$
大型分数 (不嵌 套)	$\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a$	$\frac{2}{4} = 0.5 \qquad \frac{2}{c + \frac{2}{d + \frac{2}{4}}} = a$
二项式系数	\dbinom{n}{r}=\binom{n}{n-r}=C^n_r=C^n_{n-r}	$\binom{n}{r} = \binom{n}{n-r} = C_r^m = C_{n-r}^m$
小型二项式系数	\tbinom{n}{r}=\tbinom{n}{n-r}=C^n_r=C^n_{n-r}	$\binom{n}{r} = \binom{n}{n-r} = C_r^n = C_{n-r}^n$
大型二项式系数	\binom{n}{r}=\dbinom{n}{n-r}=C^n_r=C^n_{n-r}	$\binom{n}{r} = \binom{n}{n-r} = C_r^n = C_{n-r}^n$
	\begin{matrix} x & y \\ z & v \end{matrix}	x y z v
		1

	\begin{vmatrix} x & y \\ z & v \end{vmatrix}	$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$
	\begin{Vmatrix} x & y \\ Z & v \end{Vmatrix}	$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$
矩阵	\begin{bmatrix} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$
	\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}	$ \begin{cases} x & y \\ z & v \end{cases} $
	\begin{pmatrix} x & y \\ z & v \end{pmatrix}	$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$
	\bigl(\begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
条件定义	<pre>if(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}</pre>	$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ 3n+1, & \text{if } n \text{ is odd} \end{cases}$
	\begin{align} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{align}	$f(x) = (m+n)^{2}$ = $m^{2} + 2mn + n^{2}$
多行等式	\begin{alignat}{3} if(x) & = (m-n)^2 \\ if(x) & = (-m+n)^2 \\ & = m^2 - 2mn + n^2 \\ \end{alignat}	$f(x) = (m - n)^{2}$ $f(x) = (-m + n)^{2}$ $= m^{2} - 2mn + n^{2}$
多行等式 (左对 齐)	\begin{array}{\cl} \z &= & a \\ \f(x,y,z) &= & x + y + z \\end{array}	$ \begin{array}{rcl} z & = & a \\ f(x,y,z) & = & x+y+z \end{array} $
多行等式 (右对 齐)	\begin{array}{lcr} z &= & a \\ f(x,y,z) &= & x + y + z \end{array}	$ \begin{array}{rcl} z & = & a \\ f(x,y,z) & = & x+y+z \end{array} $
长公式换行	<pre>$f(x) \!$ $= \sum_{n=0}^\infty a_n x^n$ $= a_0+a_1x+a_2x^2+\cdots$</pre>	$f(x) = \sum_{n=0}^{\infty} a_n x^n$ = $a_0 + a_1 x + a_2 x^2 + \cdots$

方程组	\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \\ end{cases}	$\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}$
数组	\begin{array}{ c c c } a & b & S \\ \hline \06061\\ \06161\\ 18681\\ 18180\\ i&180\\ end{array}	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

字体

希腊字母

斜体小写希腊字母一般用于在方程中显示变量。

正体希腊字母				
特徴	語法	效果	注释/外部链接	
	\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta	ΑΒΓΔΕΖΗΘ	ΑΒΓΔΕΖΗΘ	
大写字母	\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi	ΙΚΛΜΝΞΟΠ	ΙΚΛΜΝΞΟΠ	
	\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega	ΡΣΤΥΦΧΨΩ	ΡΣΤΥΦΧΨΩ	
	\alpha \beta \gamma \delta \epsilon \zeta \eta \theta	$\alpha\beta\gamma\delta\epsilon\zeta\eta\theta$		
小写字母	\iota \kappa \lambda \mu \nu \xi \omicron \pi	ικλμνξοπ		
	\rho \sigma \tau \upsilon \phi \chi \psi \omega	ρστυφχψω		
	\Epsilon\epsilon\varepsilon	$E\epsilon\varepsilon$		
	\Theta\theta\vartheta	$\Theta\theta\vartheta$		
	\Kappa\kappa\varkappa	Κκμ		
异体字母	\Pi\pi\varpi	$\Pi\pi\varpi$		
	\Rho\rho\varrho	$P\rho\varrho$		
	\Sigma\sigma\varsigma	$\Sigma \sigma \varsigma$		
	\Phi\phi\varphi	$\Phi\phi\varphi$		
已停用字母	\digamma	F	F ^[1]	

	粗体希腊字母		
特徵	語法	效果	
	\boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta}	ΑΒΓΔΕΖΗΘ	
大写字母	\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi}	ΙΚΛΜΝΞΟΠ	
	\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega}	ΡΣΤΥΦΧΨΩ	
	\boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta}	$\alpha \beta \gamma \delta \epsilon \zeta \eta \theta$	
小写字母	\boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi}	ικλμνξοπ	
	\boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega}	$ ho\sigma au v\phi\chi\psi\omega$	
	\boldsymbol{\Epsilon\epsilon\varepsilon}	$\mathrm{E}\epsilon\varepsilon$	
	\boldsymbol{\Theta\theta\vartheta}	$\Theta\theta\vartheta$	
	\boldsymbol{\Kappa\kappa\varkappa}	$K\kappa \varkappa$	
异体字母	\boldsymbol{\Pi\pi\varpi}	$\Pi\pi\varpi$	
	\boldsymbol{\Rho\rho\varrho}	$P\rho\varrho$	
	\boldsymbol{\Sigma\sigma\varsigma}	$\Sigma \sigma \varsigma$	
	\boldsymbol{\Phi\phi\varphi}	$\Phi\phiarphi$	
已停用字母	\boldsymbol{\digamma}	F	

```
黑板粗体
```

```
语法
```

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}

效果

ABCDEFGHIJKLMNOPQRSTUVWXYZ

黑板粗体 (Blackboard bold) 一般用于表示数学和物理学中的向量或集合的符号。 备注:

1. {花括号}中只有使用大写拉丁字母才能正常显示,使用小写字母或数字会得到其他符号。

正粗体

语法

\mathbf{012...abc...ABC...}

效果

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

备注

花括号{}内只能使用拉丁字母和数字,不能使用希腊字母如\alpha等。

斜粗体

语法

\boldsymbol{012...abc...ABC...\alpha \beta \gamma...}

效果

0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω

备注

使用\boldsymbol{}可以加粗所有合法的符号。

斜体数字

语法

\mathit{0123456789}

效果

0123456789

罗马体

语法

\mathrm{012...abc...ABC...}或\mbox{}或\operatorname{}

效果

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz

备注

罗马体可以使用数字和拉丁字母。

哥特体

语法

\mathfrak{012...abc...ABC...}

效果

o123456789 abcdefghijtlmnopqrstuvwrnz ABCDEFGHJALMNOPQRGTUVWXYZ

备注

哥特体可以使用数字和拉丁字母。

手写体

语法

\mathcal{ABC...}

效果

$\mathcal{ABCDEFGHIJKLMNOPSTUVWXYZ}$

备注

手写体仅对大写拉丁字母有效。

希伯来字母

语法

\aleph\beth\gimel\daleth

效果

דנבא

括号

功能	语法	显示
短括号	(\frac{1}{2})	$(\frac{1}{2})$
长括号	\left(\frac{1}{2} \right)	$\left(\frac{1}{2}\right)$

您可以使用 \left 和 \right 来显示不同的括号:

功能	语法	显示
圆括号,小括号	\left(\frac{a}{b} \right)	$\left(\frac{a}{b}\right)$
方括号,中括号	\left[\frac{a}{b} \right]	$\left[\frac{a}{b}\right]$
花括号,大括号	\left\{ \frac{a}{b} \right\}	$\left\{\frac{a}{b}\right\}$
角括号	\left \langle \frac{a}{b} \right \rangle	$\left\langle \frac{a}{b} \right\rangle$
单竖线,绝对值	\left \frac{a}{b} \right	$\left \frac{a}{b}\right $
双竖线,范	\left \ \frac{a}{b} \right \	$\left\ \frac{a}{b} \right\ $
取整函数	\left \lfloor \frac{a}{b} \right \rfloor	$\left\lfloor \frac{a}{b} \right\rfloor$
取顶函数	\left \lceil \frac{c}{d} \right \rceil	$\left\lceil \frac{c}{d} \right\rceil$
斜线与反斜线	\left / \frac{a}{b} \right \backslash	$\left \frac{a}{b} \right $
	\left \uparrow \frac{a}{b} \right \downarrow	$\left \frac{a}{b} \right $
上下箭头	\left \Uparrow \frac{a}{b} \right \Downarrow	$\left\ \frac{a}{b} \right\ $
	\left \updownarrow \frac{a}{b} \right \Updownarrow	$\left(\frac{a}{b} \right)$
混合括号	\left [0,1 \right) \left \langle \psi \right	$egin{array}{c} [0,1) \ \langle \psi \end{array}$
单左括号	\left \{ \frac{a}{b} \right.	$\left\{\frac{a}{b}\right\}$
单右括号	\\left.\\frac{a}{b} \right\\}	$\left\{\frac{a}{b}\right\}$

备注:

■ 可以使用 \big, \Big, \bigg, \Bigg 控制括号的大小,比如代码

显示:

$$\left(\left[\left\{\langle\,|\|x\||\,\rangle\right\}\right]\right)$$

空格

注意TrX能够自动处理大多数的空格,但是您有时候需要自己来控制。

功能	语法	显示	宽度
2个quad空格	\alpha\qquad\beta	α β	2m
quad空格	\alpha\beta	α β	m
大空格	\alpha\ \beta	αβ	$\frac{m}{3}$
中等空格	\alpha\;\beta	αβ	$\frac{2m}{7}$
小空格	\alpha\beta	$\alpha \beta$	$\frac{m}{6}$
没有空格	\alpha\beta	$\alpha\beta$	0
紧贴	\alpha\!\beta	οβ	$-\frac{m}{6}$

顏色

語法

字體顏色: {\color{色調}表達式}背景顏色: {\pagecolor{色調}表達式}

支援色調表

Colors supported

Apricot	Aquamarine	Bittersweet	Black
Blue	BlueGreen	BlueViolet	BrickRed
Brown	BurntOrange	CadetBlue	CarnationPink
Cerulean	CornflowerBlue	Cyan	Dandelion
DarkOrchid	Emerald	ForestGreen	Fuchsia
Goldenrod	Gray	Green	GreenYellow
JungleGreen	Lavender	LimeGreen	Magenta
Mahogany	Maroon	Melon	MidnightBlue
Mulberry	NavyBlue	OliveGreen	Orange
OrangeRed	Orchid	Peach	Periwinkle
PineGreen	Plum	ProcessBlue	Purple
RawSienna	Red	RedOrange	RedViolet
Rhodamine	RoyalBlue	RoyalPurple	RubineRed
Salmon	SeaGreen	Sepia	SkyBlue
SpringGreen	Tan	TealBlue	Thistle
Turquoise	Violet	VioletRed	White
WildStrawberry	Yellow	YellowGreen	YellowOrange

^{*}註:輸入時第一個字母必需以大寫輸入,如\color{OliveGreen}。

{\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}

$$x^2 + 2x - 1$$

x {\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

小型數學公式

當要把分數等公式放進文字中的時候,我們需要使用小型的數學公式。此功能並不常用。

10 的
$$f(x) = 5 + \frac{1}{5} \stackrel{?}{\underset{}{\sim}} 2^{\circ}$$

■ ★並不好看。

10 的 $f(x)=5+\frac{1}{5}$ 是 2。

■ 【好看些了。

可以使用

\begin{smallmatrix}...\end{smallmatrix}

或直接使用{{Smallmath}}模板。

 ${\{Smallmath|f= f(x)=5+\backslash frac\{1\}\{5\} \}\}}$

強制使用PNG

假設我們現在需要一個PNG圖的數學公式。 若輸入 2x=1 的話:

2x = 1

↑這並不是我們想要的。

若你需要強制輸出一個PNG圖的數學公式的話,你可於公式的最後加上\,(小空格,但於公式的最後是不會顯示出來)。

輸入 2x=1 \,的話:

2x = 1

↑以PNG圖輸出。

你也可以使用\,\!,這個亦能強制使用PNG圖像。

閱讀更多:Help:Displaying a formula#Forced PNG rendering

注释

1. ^ 念作Waw或Digamma

外部鏈接

- 一個介紹TEX的PDF文檔(英文): http://www.ctan.org/tex-archive/info/gentle/gentle.pdf
- 完整的參考列表 (英文) : http://wso.williams.edu/how/lshort2e/node61.html
- 手画公式输出LATEX: http://webdemo.visionobjects.com/equation.html

維基百科求助页面

維基計劃的求助目錄

一元維基(簡體·繁體)·維基百科·維基新聞·維基語錄·維基詞典·維基教科書·維基文庫·维基共享资源·維基物種· 維基學院·维基数据·MediaWiki

元維基 (https://meta.wikimedia.org/wiki/Special:Allpages?from=&namespace=12) ·

維基百科 (https://zh.wikipedia.org/w/index.php?title=Special:Allpages&from=&namespace=12) · 維基新聞 (https://zh.wikinews.org/wiki/zh:Special:Allpages?from=&namespace=12)。 維基語錄 (https://zh.wikiquote.org/wiki/zh:Special:Allpages?from=&namespace=12)・ 維基詞典 (https://zh.wiktionary.org/wiki/zh:Special:Allpages?from=&namespace=12)・ 維基計劃的求助頁面 維基教科書 (https://zh.wikibooks.org/wiki/zh:Special:Allpages?from=&namespace=12) · 維基文庫 (https://zh.wikisource.org/wiki/zh:Special:Allpages?from=&namespace=12) 維基共享資源 (https://commons.wikimedia.org/wiki/Special:Allpages?from=&namespace=12)・ 維基物種 (https://species.wikimedia.org/wiki/Special:Allpages?from=&namespace=12): 維基學院 (https://en.wikiversity.org/wiki/Special:Allpages?from=&namespace=12)・ MediaWiki (https://www.mediawiki.org/wiki/Special:Allpages?from=&namespace=12) 閱讀 ■链接・搜索・分类・章节・名字空间・URL・跨语言链接・打印页面・随机页面・特殊页面・閱讀生物分類框 访问、登入和参数设置 访问·登录·参数设置·自定义设置·用户页·电子邮件确认 **跟踪更改** 页面历史·差异·链入页面·链出更改·最近更改·增强的最近更改·监视列表·编辑摘要·用户贡献·小修改 创建新頁面·編輯页面·列表·表格·图像·模板·模板入门·HTML·页面更名·特殊字符·回退·脚注·國際標準書號·签名· 繁簡處理·重定向 变量·魔术字·默认参数·解析器函数(時間序號·隨機功能)·替换引用·计算·**数学公式**·简易时间线语法·输入框· 高级 自訂首頁·小測·擴展·LiquidThreads·层叠样式表(CSS)·模板數據

取自"http://zh.wikipedia.org/w/index.php?title=Help:数学公式&oldid=30475344"

- 本页面最后修订于2014年3月1日(星期六)13:03。
- 本站的全部文字在知识共享署名-相同方式共享3.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款) Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是在美国佛罗里达州登记的501(c)(3)免税、非营利、慈善机构。