Unidad 2.1 Conceptos básicos y enfoque de probabilidad

Módulo 2

Daniel Enrique González Gómez Universidad Javeriana Cali

2021-08-20

AGENDA

- 1. Dudas y preguntas
- 2. Tipos de probabilidad
- 3. Varios

Conceptos básicos

- **Experimento aleatorio**: acción que se puede repetir bajo las mismas condiciones y cuyo resultado no se conoce anticipadamente.
- **Espacio muestral**: conjunto de todos los posibles resultados que puede tomar el experimento aleatorio.
- Evento aleatorios : subconjunto del espacio muestral de nuestro interés

Ejemplo:

• E: En un Banco de sangre se clasifica el tipo de sangre que tiene un donante

•
$$S = \{A+, A-, B+, B-, AB+, AB-, O+, O-\}$$

•
$$A = \{O+\}$$

Enfoques de probabilidad

Clásico :
$$P(A) = \frac{n(A)}{n(S)}$$

Frecuentista :
$$\lim_{n o +\infty} P(A) = \left[rac{ ext{número de veces que ocurre } A}{n}
ight]$$

Subjetivo : $P(A)={
m asignada\ por\ un\ experto\ }$

Tablas cruzadas o de doble entrada

Se realiza una encuesta a un grupo de jóvenes de la universidad con el fin de establecer la calidad de su servicio de internet y su ubicación . Los resultados obtenidos se presentan en la siguiente tabla:

Ubicación	Mala	Buena	Excelente	
Cali	150	240	450	790
Fuera de Cali	140	260	543	903
	290	400	993	1893

Ubicación	Mala	Buena	Excelente
ODICACION	IVIdId	Duella	Excelente
Cali	150	240	450
Fuera de			
Cali	140	260	543

```
m1=matrix(c(150,140,240,260,450,543), nrow = 2)
colnames(m1)=c("Mala","Buena","Excelente")
rownames(m1)=c("Cali","Fuera de Cali")
m1
```

```
## Cali 150 240 450 ## Fuera de Cali 140 260 543
```

NOA: Si tengo una base de datos puedo obtener la tabla con el comando t1=table(variable1, variable2)

Ubicación	Mala	Buena	Excelente
Cali	150	240	450
Fuera de Cali	140	260	543

993 1783

```
## Mala Buena Excelente Sum
## Cali 150 240 450 840
## Fuera de Cali 140 260 543 943
```

290 500

m2=addmargins(m1, c(1, 2))

Sum

	A	\overline{A}	
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
\overline{B}	$P(A \cap \overline{B})$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
	P(A)	$P(\overline{A})$	1.00

Probabilidades simples o marginales

P(A) : probabilidad de que ocurra A

 $P(A^c)$: probabilidad de que NO ocurra A

P(B) : probabilidad de que ocurra B

 $P(B^c)$: probabilidad de que NO ocurra B

Probabilidades conjuntas

 $P(A\cap B)$: probabilidad de que ocurra A y B

 $P(A^c \cap B)$: probabilidad de que NO ocurra A y ocurra B

 $P(A\cap B^c)$: probabilidad de que ocurra A y NO ocurra B

 $P(A^c\cap B^c)$: probabilidad de que NO ocurra A ni B

Ejemplo 1

Se realiza una encuesta a un grupo de jóvenes de la universidad con el fin de establecer la calidad de su servicio de internet y su ubicación . Los resultados obtenidos se presentan en la siguiente tabla:

	290	500	993	1783
Fuera de Cali	140	260	543	943
Cali	150	240	450	840
Ubicación	Mala	Buena	Excelente	

m2

##				Mala	Buena	Excelente	Sum
##	Cali			150	240	450	840
##	Fuera	de	Cali	140	260	543	943
##	Sum			290	500	993	1783

Ubicación	Mala	Buena	Excelente
Cali	150	240	450
Fuera de Cali	140	260	543

```
## Cali 0.0841 0.1346 0.2524 0.4711
## Fuera de Cali 0.0785 0.1458 0.3045 0.5289
## Sum 0.1626 0.2804 0.5569 1.0000
```

round(addmargins(prop.table(m1), c(1, 2)), 4)

Ejemplo 2

Un experimento que busca estudiar la relación que puede existir entre el habito de fumar y la hipertensión arterial encontró que para 180 personas el siguiente resumen. Calcule las probabilides marginales y las probabilidades conjuntas.

	No fumadores	Fumadores moderados	Fumadores empedernidos	
Con				
Hipertensión	21	36	30	
Sin				
Hipertensión	48	26	19	

##		no fu	mador	fumador	moderado	fumador	empedernido	
##	con hipertension	0	.1167		0.2000		0.1667	0.4833
##	sin hipertension	0	.2667		0.1444		0.1056	0.5167
##	Sum	0	.3833		0.3444)	0.2722	1.0000

Probabilidad condicional

Cuando ocurren dos o mas eventos, puede ocurrir que ellos esten relacionados entre si. En estos casos la probabilidad de ocurrencia de un evento **B** cambia cuando ocurre otro evento **A**.

A la probabilidad de que ocurra **B** cuando sabemos que ha ocurrido **A**, se le conoce como **probabilidad condicional de B dado A**

$$P(B|A) = rac{P(A \cap B)}{P(A)}$$

P(A IF) = 30/49

Como se pudrian representar las probabilidad de los siguientes eventos:

	No fumadores	Fumadores moderados	Fumadores empedernidos	
Con				92
Hipertensión	21	36	30	IT
Sin				0 2
Hipertensión	48	26	19	13
	59	62	49	170

- Si sabemos que la persona es un fumador empedernido, cuál será la probabilidad de que padezca de hipertensión
- Sabemos que la persona tiene hipertensión, cuál será la probabilidad de que la persona no sea un fumador
- Cuál será la probabilidad de que una persona padezca de hipertensión, siendo que es un fumador moderado.

$$P(H \mid FM) = \frac{36}{62}$$

	No fumadores	Fumadores moderados	Fumadores empedernidos	
Con				
Hipertensión	21	36	30	
Sin				
Hipertensión	48	26	19	

```
round(addmargins(prop.table(m3), c(1, 2)), 4)
```

Eventos independientes

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = P(B)$$

Cuando la probabilidad de que ocurra **A**, no afecta la probabilidad de **B**, se dice que los eventos **A** y **B** son eventos independientes.

Y se cumple:

$$P(A \cap B) = P(A)P(B)$$

Ejemplo : Verificar si los siguientes eventos representados una tabla de contingencia son independientes: 戻

	No fumadores	Fumadores moderados	Fumadores empedernidos	
Con				
Hipertensión	21	36	30	
Sin				
Hipertensión	48	26	19	

$$P(H) \cdot P(\mp E) = P(H \cap \mp E)$$
? ... HOLON EVENTOU O.4935 \times 0.2722 ? 0.1667 INDEPENDENTES \pm

round(addmargins(prop.table(m3), c(1, 2)), 4)

##	no fumador	fumador moderado	fumador empedernido	Sum
## con hipertension	0.1167	0.2000	0.1667	0.4833
## sin hipertension	0.2667	0.1444	0.1056	0.5167
## Sum	0.3833	0.3444	0.2722	1.0000

Ejemplo 3

Las siguientes figuras representan dos sistemas eléctricos, conectados en diferentes formas. Se tiene información que todos los componentes poseen igual probabilidad de falla (P(F)=0.05). En cada caso determine la probabilidad de funcionamiento de cada sistema

Caso dispositivos en serie:

$$(P(AnB) = P(A) P(B) = 0.95 0.95 = 0.9025)$$

Caso dispositivos en paralelo:

$$(1-P(A'n B')=P(A')*(B')=1-0.05*0.05=0.9975)$$

Por tal razón la fiabilidad del sistema en paralelo es mayor a la del sistema en serie

PROBABIUDNO DE FUNCIONNUIENTO

-[B]- P(N)xP(3)

