Неравенство Коши-Буняковского

Опр: 1. Длиной $a \in V$ будем называть $\sqrt{(a,a)} \ge 0$, обозначение |a|.

Теорема 1. (**Неравенство Коши-Буняковского**) Пусть V - линейное пространство над \mathbb{K} , тогда будет верно следующее неравенство:

$$\forall a, b \in V, |(a, b)| \le |a| \cdot |b|$$

где |(a,b)| - модуль скаларного произведения, а |a|,|b| - длины векторов a и b.

- \square Докажем теорему для двух случаев (1) $\mathbb{K} = \mathbb{R}$ и (2) $\mathbb{K} = \mathbb{C}$. Пусть $a, b \in V$ произвольные.
- $(1)\ \forall t\in\mathbb{R}$ возьмем $a+tb\Rightarrow(a+tb,a+tb)=(a,a)+2t(a,b)+t^2(b,b)\geq0.$ Возможно два случая:
 - а) $b = 0 \Rightarrow (a, b) = 0, |b| = 0 \Rightarrow |0| = 0 \le |a| \cdot 0 = 0 \Rightarrow$ неравенство выполняется;
 - b) $b \neq 0 \Rightarrow (b,b) > 0, D = 4(a,b)^2 4(a,a) \cdot (b,b) \le 0 \Leftrightarrow (a+tb,a+tb) \ge 0$. Таким образом:

$$(a,b)^2 \le (a,a)\cdot(b,b) \Leftrightarrow |(a,b)| \le \sqrt{(a,a)}\cdot\sqrt{(b,b)} = |a|\cdot|b|$$

требуемое неравенство выполняется;

(2) $\forall t \in \mathbb{C}$ возьмем $a + tb \Rightarrow (a + tb, a + tb) = (a, a) + (a, tb) + (tb, a) + |t|^2 \cdot (b, b)$, поскольку верно следующее:

$$(\lambda a, b) = \overline{(b, \lambda a)} = \overline{\lambda} \cdot \overline{(b, a)} = \overline{\lambda} \cdot (a, b), \ t \cdot \overline{t} = |t|^2, \ (tb, tb) = t \cdot \overline{t}(b, b) = |t|^2 \cdot (b, b) \Rightarrow$$
$$\Rightarrow (a + tb, a + tb) = (a, a) + t \cdot \overline{(a, b)} + \overline{t} \cdot \overline{(a, b)} + |t|^2 \cdot (b, b)$$

Подберем $t : t \cdot (a,b) \in \mathbb{R}$. Вспомним, что $z = |z|e^{i\varphi} \Rightarrow (a,b) = |(a,b)|e^{i\varphi} \Rightarrow t = se^{-i\varphi}$, где $s \in \mathbb{R}$, тогда:

$$\begin{split} t\cdot(a,b) &= |(a,b)|se^{-i\varphi}e^{i\varphi} = s|(a,b)| \Rightarrow |t| = |s|\cdot|e^{-i\varphi}| = |s| \Rightarrow |t|^2 = |s|^2 = s^2 \\ \overline{t}\cdot\overline{(a,b)} &= |\overline{(a,b)}|e^{-i\varphi}\overline{s}e^{i\varphi} = |(a,b)|s \Rightarrow \\ \Rightarrow (a+tb,a+tb) = (a,a) + 2s\cdot|(a,b)| + s^2\cdot(b,b) \in \mathbb{R} \end{split}$$

Все элементы принадлежат $\mathbb{R} \Rightarrow D \leq 0 \Leftrightarrow |(a,b)|^2 \leq (a,a) \cdot (b,b) = |a|^2 \cdot |b|^2$.

Следствие 1. $\forall a,b \in V$ в Евклидовом случае $-1 \leq \frac{(a,b)}{|a|\cdot |b|} \leq 1$.

Опр: 2. <u>Углом между</u> a и b называется $\varphi_{ab} = \arccos\left(\frac{(a,b)}{|a|\cdot|b|}\right)$, в частности, если (a,b) = 0, то $a \perp b$.

Следствие 2. (**Неравенство треугольника**) Пусть V - линейное пространство над полем $\mathbb{K} = \mathbb{C},$ тогда верно:

$$\forall a, b \in V, |a+b| \le |a| + |b|$$

$$\forall a, b \in V, |a+b| \le |a|+|b| \Leftrightarrow (a+b,a+b) \le (|a|+|b|)^2 = |a|^2 + |b|^2 + 2|a| \cdot |b| \Leftrightarrow (b,a) + (a,b) \le 2|a| \cdot |b| \Leftrightarrow \overline{(a,b)} + (a,b) \le 2|a| \cdot |b|$$

поскольку $z\in\mathbb{C}\Rightarrow z=(a,b)=\mathrm{Re}\,(a,b)+i\cdot\mathrm{Im}\,(a,b)\Rightarrow\overline{(a,b)}+(a,b)=2\,\mathrm{Re}\,(a,b)$ и $\mathrm{Re}\,z\leq|z|,$ тогда:

$$\overline{(a,b)} + (a,b) \le 2|a|\cdot|b| \Leftrightarrow 2\operatorname{Re}(a,b) \le 2|a|\cdot|b| \Leftrightarrow \operatorname{Re}(a,b) \le |(a,b)| \le |a|\cdot|b|$$

где в последнем слагаемом мы применили неравенство Коши-Буняковского.

Лемма 1. Пусть $a_1, \ldots, a_n \neq 0$ и ортогональны (взаимно перпендикулярны). Тогда a_1, \ldots, a_n - линейно независимы.

 \Box $\lambda_1 a_1 + \ldots + \lambda_n a_n = 0$, обе части умножим на a_i (скалярно) $\Rightarrow (a_i, \lambda_1 a_1 + \ldots + \lambda_n a_n) = (a_i, 0) = 0$, распишем второй аргумент подробнее:

$$\lambda_1(a_i, a_1) + \ldots + \lambda_i(a_i, a_i) + \ldots + \lambda_n(a_i, a_n) = \lambda_i \cdot |a_i|^2 = 0$$

Поскольку $\forall i = \overline{1,n}, \ a_i \neq 0 \Rightarrow |a_i|^2 \neq 0 \Rightarrow \lambda_i = 0 \Rightarrow a_1, \ldots, a_n$ - линейно независимы.

Опр: 3. Система векторов a_1, \ldots, a_n называется <u>ортогональной</u>, если все $a_i \neq 0$ и $a_i \perp a_j$, $\forall i \neq j$.

Опр: 4. Система векторов a_1, \ldots, a_n называется <u>ортонормированной</u>, если она ортогональна и длина каждого вектора равна единице: $|a_1| = \ldots = |a_n| = 1$.

Ортогонализация Грама-Шмидта

Теорема 2. (Процесс ортогонализации) Пусть e_1, \ldots, e_n - линейно независимы, тогда существует ортогональная система векторов a_1, \ldots, a_n такая, что $\langle a_1, \ldots, a_k \rangle = \langle e_1, \ldots, e_k \rangle$, $\forall k$.

 \square Пусть e_1, \ldots, e_n линейно независимый набор векторов, образуют цепочку линейных подпространств:

$$V_1 = \langle e_1 \rangle, \ V_2 = \langle e_1, e_2 \rangle, \dots, V_n = \langle e_1, \dots, e_n \rangle, \ V_1 \subset V_2 \subset \dots \subset V_n, \ \dim V_i = i$$

Осуществим процесс ортогонализации по шагам:

- (1) Пусть $a_1 = e_1$, $a_2 = e_2 + \lambda e_1 \Rightarrow (a_1, a_2) = 0 \Leftrightarrow (e_1, e_2 + \lambda e_1) = 0 \Leftrightarrow (e_1, e_2) + \lambda (e_1, e_1) = 0$, тогда λ можно найти только в случае, если $(e_1, e_1) \neq 0$. Поскольку e_1, \ldots, e_n линейно независимы, то $e_1 \neq 0$, следовательно $(e_1, e_1) = |e_1|^2 \neq 0$. Получается, что $a_1 \perp a_2$, $\langle a_1, a_2 \rangle = \langle e_1, e_2 \rangle = V_2$.
- (2) Пусть a_1 , a_2 уже найдены, ищем a_3 в виде: $a_3 = e_3 + \alpha a_1 + \beta a_2$, тогда рассмотрим систему:

$$\begin{cases} (a_1, a_3) &= 0 \\ (a_2, a_3) &= 0 \end{cases} \Leftrightarrow \begin{cases} (a_1, e_3 + \alpha a_1 + \beta a_2) &= (a_1, e_3) + \alpha(a_1, a_1) + \beta(a_1, a_2) &= 0 \\ (a_2, e_3 + \alpha a_1 + \beta a_2) &= (a_2, e_3) + \alpha(a_2, a_1) + \beta(a_2, a_2) &= 0 \end{cases}$$

Поскольку $a_1 \perp a_2$, то $(a_1, a_2) = (a_2, a_1) = 0$ и $(a_1, a_1) \neq 0$, $(a_2, a_2) \neq 0 \Rightarrow$ получим систему вида:

$$\begin{cases} (a_1, e_3) + \alpha(a_1, a_1) = 0 \\ (a_2, e_3) + \beta(a_2, a_2) = 0 \end{cases}$$

Она имеет решение \Rightarrow мы нашли a_3 . $V_3 = \langle e_1, e_2, e_3 \rangle$

(3) Пусть мы нашли таким образом a_1, \ldots, a_k . Рассматриваем $a_{k+1} = e_{k+1} + \lambda_1 a_1 + \ldots + \lambda_k a_k \Rightarrow$ получим систему:

$$\begin{cases} (a_1, a_{k+1}) &= (a_1, e_{k+1}) + \lambda_1(a_1, a_1) + \ldots + \lambda_k(a_1, a_k) &= 0 \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ (a_k, a_{k+1}) &= (a_k, e_{k+1}) + \lambda_1(a_k, a_1) + \ldots + \lambda_k(a_k, a_k) &= 0 \end{cases}$$

Поскольку $\forall i = \overline{1, k}, (a_k, a_k) \neq 0$ и $\forall i \neq j, i, j = \overline{1, k}, (a_i, a_j) = 0$, то получим следующую систему:

$$\begin{cases} (a_1, e_{k+1}) + \lambda_1(a_1, a_1) &= 0 \\ \vdots &\vdots &\vdots \\ (a_k, e_{k+1}) + \lambda_k(a_k, a_k) &= 0 \end{cases}$$

Решение этой системы существует, если $|a_1| \neq 0, \ldots, |a_k| \neq 0$. Надо проверить, что ни на каком шаге мы не сможем получить $a_i = 0$. Пусть $a_1 = e_1 \neq 0$ и $a_i = e_i + \mu_1 a_1 + \ldots + \mu_{i-1} a_{i-1} = 0$. Воспользуемся тем, что $\langle a_1, \ldots, a_{i-1} \rangle = \langle e_1, \ldots, e_{i-1} \rangle$, тогда:

$$\mu_1 a_1 + \ldots + \mu_{i-1} a_{i-1} = \nu_1 e_1 + \ldots + \nu_{i-1} e_{i-1} \Rightarrow e_i + \nu_1 e_1 + \ldots + \nu_{i-1} e_{i-1} = 0$$

Тогда e_1, \ldots, e_i - линейно зависимы \Rightarrow получили противоречие с e_1, \ldots, e_n - линейно независимы.

Как выглядит матрица перехода от e_1, \ldots, e_n к a_1, \ldots, a_n ?

$$a_{k+1} = e_{k+1} + \lambda_1 a_1 + \dots + \lambda_k a_k \Rightarrow C = \begin{pmatrix} 1 & * & \dots & * & * \\ 0 & 1 & \dots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Таким образом, матрица перехода C - верхнетреугольная.

Опр: 5. Пусть $L \subset V$ - линейное подпространство. Ортогональным дополнением L^{\perp} к L назовем следующее множество:

$$\{a \in V \colon (a,b) = 0, \, \forall b \in L\}$$

Лемма 2. Ортогональное дополнение является линейным подпространством.

- □ Проверим свойства подпространства:
 - (1) $\forall a_1, a_2 \in L^{\perp}, \forall b \in L, (a_1 + a_2, b) = (a_1, b) + (a_2, b) = 0 \Rightarrow a_1 + a_2 \in L^{\perp};$

$$(2) \ \forall a \in L^{\perp}, \ \forall b \in L, \ \lambda \in \mathbb{K} \Rightarrow (\lambda \cdot a, b) = \begin{cases} \lambda \cdot (a, b), \ \mathbb{K} = \mathbb{R} \\ \overline{\lambda} \cdot (a, b), \ \mathbb{K} = \mathbb{C} \end{cases} = \begin{cases} 0, \ \mathbb{K} = \mathbb{R} \\ 0, \ \mathbb{K} = \mathbb{R} \end{cases} \Rightarrow \lambda \cdot a \in L^{\perp};$$

Лемма 3. $V = L \oplus L^{\perp}$;

Выберем произвольный базис в $L: e_1, \ldots, e_k$ и дополним его до базиса $V: e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$. Применим процесс ортогонализации Грама-Шмидта \Rightarrow получим $a_1, \ldots, a_k, a_{k+1}, \ldots, a_n$ - ортогональный базис $V \Rightarrow \langle e_1, \ldots, e_k \rangle = \langle a_1, \ldots, a_k \rangle \Rightarrow a_1, \ldots a_k$ - ортогональный базис L.

Покажем, что a_{k+1},\ldots,a_n - базис L^{\perp} .

- $(1) \ \forall i>k, \ a_i \in L^\perp \ \text{поскольку} \ a_i \in L^\perp \Leftrightarrow \forall b \in L, \ (a_i,b)=0, \ \text{проверим:}$ $b \in L \Rightarrow b = \lambda_1 a_1 + \ldots + \lambda_k a_k \Rightarrow (a_i,b) = (a_i,\lambda_1 a_1 + \ldots + \lambda_k a_k) = \lambda_1 (a_i,a_1) + \ldots + \lambda_k (a_i,a_k) = 0$ в силу того, что $\forall j = \overline{1,k}, \ \forall i>k, \ (a_i,a_j)=0.$ Таким образом $\forall a_i \colon i>k \Leftrightarrow a_i \in L^\perp;$
- (2) Линейная независимость: очевидно по построению;
- (3) Максимальность: Пусть $a \in L^{\perp} \subset V \Rightarrow$ разложим a по базису V:

$$a = \alpha_1 a_1 + \ldots + \alpha_k a_k + \alpha_{k+1} a_{k+1} + \ldots + \alpha_n a_n$$

Учитывая, что $a \in L^{\perp} \Leftrightarrow \forall b \in L$, (a,b) = 0, подставим a_i , $i \leq k$ вместо b, тогда получим:

$$\Rightarrow \forall a \in L^{\perp}, \ a = \alpha_{k+1} a_{k+1} + \ldots + \alpha_n a_n$$

Следовательно, получили максимальность;

Таким образом, a_{k+1}, \ldots, a_n - базис в L^{\perp} . Покажем, что $V = L + L^{\perp}$:

$$\forall v \in V \Rightarrow v = v_1 a_1 + \ldots + v_k a_k + v_{k+1} a_{k+1} + \ldots + v_n a_n$$

$$v_1^L = v_1 a_1 + \ldots + v_k a_k \in L, \ v_2^{L^{\perp}} = v_{k+1} a_{k+1} + \ldots + v_n a_n \in L^{\perp}, \ v = v_1^L + v_2^{L^{\perp}}$$

Покажем, что $V = L \oplus L^{\perp}$. Сумма прямая, если $L \cap L^{\perp} = \{0\}$, пусть $a \in L \cap L^{\perp}$, тогда:

$$\forall b \in L, (a,b) = 0 \Leftrightarrow a \in L^{\perp} \Rightarrow b = a \in L \Rightarrow (a,a) = 0 \Leftrightarrow a = 0$$

Лемма 4. Пусть $V = L_1 \oplus L_2$, тогда $\forall a \in V$, $\exists !$ разложение $a = a_1 + a_2$, где $a_1 \in L_1$, $a_2 \in L_2$.

 \square (От противного): Пусть $a=a_1+a_2=b_1+b_2,\,a_1,b_1\in L_1,\,a_2,b_2\in L_2\Rightarrow (a_1-b_1)=(a_2-b_2),$ где $(a_1-b_1)\in L_1$ и $(a_2-b_2)\in L_2$. Поскольку $V=L_1\oplus L_2$, то $L_1\cap L_2=\{0\}$, следовательно:

$$a_1 - b_1 = 0 = a_2 - b_2 \Rightarrow a_1 = b_1, a_2 = b_2$$

Ортогональные проекции

Пусть $L \subset V$, $a \in V$, $a = a_1 + a_2$, где $a_1 \in L$, $a_2 \in L^{\perp}$. $a \mapsto a_1 \in L$, $a \mapsto a_2 \in L^{\perp}$ - слагаемые определяются однозначно.

Опр: 6. Ортогональной проекцией $a \in V$ назовем $a_1 \in L$, обозначение a_{\parallel} .

Опр: 7. Ортогональной составляющей $a \in V$ назовем $a_2 \in L^{\perp}$, обозначение a_{\perp} .

Таким образом $\forall a \in V, a = a_{\parallel} + a_{\perp}.$

Рис. 1: Ортогональная проекция.