Detection of Gravitational Waves Using Neural Networks

Shikha Bangar

Motivation:

2015: Detection of Gravitational Waves

Motivation:

2015: Detection of Gravitational Waves

Goal:

Detection of Gravitational Waves using Neural Networks

Data

Neural Network Model

Results and Discussion

Data:

- Detect GW signals from the mergers of binary black holes
- GW time-series data from a network of Earth-based detectors LIGO Hanford, LIGO Livingston, and Virgo

Data:

- Files 786002 files, Size 77.38 GB
- Each data sample (npy file) contains 3 time series (1 for each detector) and each spans 2 sec and is sampled at 2,048 Hz.

id	target	path
0 00000e74ad	1	/content/g2net-gw/train/0/0/0/00000e74ad.npy
1 00001f4945	0	/content/g2net-gw/train/0/0/0/00001f4945.npy
2 0000661522	0	/content/g2net-gw/train/0/0/0/0000661522.npy
3 00007a006a	0	/content/g2net-gw/train/0/0/0/00007a006a.npy
4 0000a38978	1	/content/g2net-gw/train/0/0/0/0000a38978.npy

target = 0

target = 1

target = 0

target = 1

Using machine learning is important

Data:

- Spectrogram
- CQT constant quality factor transform

Selecting a model - optimization

Simple Deep Neural Network (DNN)

Selecting a model - optimization

Convolution Neural Network (CNN):

Convolution Neural Network (CNN):

Model: "CNN model2"

Layer (type)	Output Shape	Param #	
	(None, 54, 191, 32)		
Pool_01 (MaxPooling2D)	(None, 27, 95, 32)	0	
Dropout_01 (Dropout)	(None, 27, 95, 32)	0	
Conv_02 (Conv2D)	(None, 25, 93, 32)	9248	
Pool_02 (MaxPooling2D)	(None, 12, 46, 32)	0	
Dropout_02 (Dropout)	(None, 12, 46, 32)	0	
Conv_03 (Conv2D)	(None, 10, 44, 32)	9248	
Pool_03 (MaxPooling2D)	(None, 5, 22, 32)	0	
Flatten (Flatten)	(None, 3520)	0	
Dense_01 (Dense)	(None, 64)	225344	
Dense_02 (Dense)	(None, 1)	65	
Output (Dense)	(None, 1)	2	

Total params: 244,227 Trainable params: 244,227 Non-trainable params: 0

Optimization:

Convolution Neural Network (CNN):

```
Model: "sequential 1"
```

Non-trainable params: 0

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 54, 191, 64)	640
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 27, 95, 64)	0
conv2d_3 (Conv2D)	(None, 25, 93, 32)	18464
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 12, 46, 32)	0
flatten_1 (Flatten)	(None, 17664)	0
dense_1 (Dense)	(None, 1)	17665
Total params: 36,769 Trainable params: 36,769		

Optimization:

Type
DNN (simple)
DNN (complicated)
CNN (simple)
CNN (complicated)
EffNet

Discussion - Limitations

- Computational Resources
- Management of large data
- Noisy data

Conclusion:

- GW data is very noisy and hence using machine learning techniques
- Data time series is converted into the images via CQT
- CNN works better than DNN
- More advanced techniques transfer learning (Efficient Net)
- Future work Use the quantum version of neural networks

