NE 155/255 Numerical Simulations in Radiation Transport

Geometry, Collisions, and Scoring

Kelly L. Rowland

November 13, 2019

1/17

Kelly L. Rowland

NE 155/255

November 13, 2019

1 / 17

Major Components of MC Algorithm

- **PDFs**: the physical/mathematical system must be described by a set of pdfs.
- Random number generator: a source of random #s uniformly distributed on the unit interval.
- Sampling rule: prescription for sampling the pdf (given having random #s)
- Scoring: the outcomes must be accumulated/<u>tallied</u> for quantities of interest
- **Error estimation**: an estimate of the statistical error (<u>variance</u>) of the solution
- Variance Reduction: methods for reducing the variance and computation time simultaneously
- Parallelization: efficient use of computers

2/17

Kelly L. Rowland NE 155/255 November 13, 2019 2 / 17

Outline

- ① Determining next event location
 - Sampling flight path
 - Distance to boundary
 - Next event selection
- 2 Collision Physics
 - Sampling target nuclide
 - Sampling reaction type
 - Sampling exit direction
 - Sampling exiting particles
- Scoring

Notes derived from Rachel Slaybaugh, Jasmina Vujic, and Paul Wilson.

3/17

Kelly L. Rowland

NE 155/255

November 13, 2019

3 / 17

Learning Objectives

- 1 Understand basic tracking of particles through a geometry
 - Understand the steps necessary for tracking particles
 - Understand the use of mean free path
 - Sample the distance to the next physics event
 - Determine next event
- 2 Understand what sampling needs to happen after a collision
- 3 Understand how to translate interactions into a score

Kelly L. Rowland NE 155/255 November 13, 2019 4 / 1

Monte Carlo for Transport

Kelly L. Rowland NE 155/255 November 13, 2019 5 / 17

Possible Futures for a Particle

After we've gotten to Circle B, we have a neutral particle:

- At point (x_p, y_p, z_p)
- Moving in direction (u, v, w)
- With energy E

What are possible next events?

Figure 1: Collisionfig/Surface Crossing

Kelly L. Rowland NE 155/255 November 13, 2019 6 / 17

Sampling Distance to Collision

Collisions are probabilistic

- Note that Σ_t , the total macroscopic cross section, will be a function of space if we have multiple materials
- Along a particular path, the probability of a collision at distance s
 from the start:

$$onumber egin{aligned}
onumber
ho_c(s)ds &= \Sigma_t(s)e^{-\Sigma_t(s)s}ds \
onumber \ P_c(s) &= \int_0^s \Sigma_t(s)e^{-\Sigma_t(s)s'}ds' = -e^{-\Sigma_t(s)s'}|_0^s = 1 - e^{-\Sigma_t(s)s} \end{aligned}$$

• The cross section, $\Sigma_t(s)$, is piecewise constant, but changing

7/17

Kelly L. Rowland

NE 155/255

November 13, 2019

7 / 17

Sampling Distance to Collision

• Variable transformation: measure distance in units of mean free path:

$$n = \Sigma_t(s)s$$
, $dn = \Sigma_t(s)ds$

We'll start with the PDF and integrate to get the CDF

$$p_c(n)dn = e^{-n}dn$$

$$P_c(n) = \int_0^n e^{-n'}dn' = -e^{-n'}|_0^n = 1 - e^{-n}$$

Importantly, this is now independent of the material

8/17

Sampling Distance to Collision

Randomly sample to determine number of mean free paths until next collision, n_c

- $g(n_c)dn_c = e^{-n_c}dn_c$
- $G(n_c)dn_c = 1 e^{-n_c}$
- Directly invert to get: $n_c = -\ln(1-\xi)$ [note $(1-\xi)$ is equivalent to ξ]
- In the absence of material boundaries $(\Sigma_t \neq f(s))$, the distance to a collision, s_c , is

$$s_c = \frac{n_c}{\Sigma_t}$$

9/17

Kelly L. Rowland

NE 155/255

November 13, 2019

9 / 17

Calculating Distance to Boundary

- Usually have more than one material
- Distance to boundary is deterministic
- ullet Algebra to determine distance between point and surface, s_b
- Convert it to units of mean free path for the current cell's material,

$$n_b = s_b \Sigma_t$$

Geometry Representations

- Combinatorial Surfaces
 - Define surfaces
 - Boolean operations combine surfaces to create cells
- Combinatorial Solids
 - Choose solid objects
 - Boolean operations combine objects to create regions
- B-Rep (Vertex-Edge)
 - Each object is a single set of vertices and edges connecting them

We're skipping how to find s_b , just know that we can find it using the internal geometry representation

11/17

Kelly L. Rowland

NE 155/255

November 13, 2019

11 / 17

Option A: Collision

$n_b > n_c$:

- Boundary is further away than collision
- Collision occurs
- Using physics models and/or cross-sections
 - Sample target nuclide
 - Sample reaction type
 - Sample new direction
 - Sample new energy
 - Sample exiting particles
- Some of these may depend on one another
- Repeat
 - Sample new n_c following collision
 - Calculate new n_b in new direction

Kelly L. Rowland NE 155/255 November 13, 2019 12 / 17

Option B: Cell Boundary

 $n_b < n_c$:

- Boundary is closer than collision
- Boundary crossing occurs
- Move particle along ray
 - Update $n_c = n_c n_b$
- **DO NOT SAMPLE** for new *n_c*
- Calculate new n_b in new cell
 - New set of boundaries
 - New value of Σ_t

13/17

Kelly L. Rowland

NE 155/255

November 13, 2019

13 / 17

So You Had a Collision?

• Sample target nuclide for a mixture with J nuclides

$$\Sigma_t = \sum_{j=1}^J N_j \sigma_{t,j}$$

• Discrete PDF to determine which nuclide is hit

$$p_j = \frac{\sum_{t,j}}{\sum_t}$$

• Sample reaction type for an nuclide with R types of reactions

$$\Sigma_{t,j} = \sum_{r=1}^{R} \Sigma_{r,j}$$

• Discrete PDF to determine which reaction occurs

$$p_r = \frac{\sum_{r,j}}{\sum_{t,j}}$$

14/17

Kelly L. Rowland

NE 155/255

Outcome of Reaction

- Particle maybe absorbed
- Particle may continue its history in a different direction and/or with a different energy
- Energy-angle distributions are tabulated in different formats
 - Scattering laws have analytic forms with parameters in data tables (Direct inversion or rejection sampling)
 - Tabulated data that describes a piecewise analytic interpolation (Hybrid sampling; we skipped this)

15/17

Kelly L. Rowland

NE 155/255

November 13, 2019

15 / 17

Using a Scattering Angle

Scattering angles are defined relative to the original direction (considered as the z-axis)

- ullet Polar angle, heta, determined by sampling from data
- Azimuthal angle, ϕ , determined by sampling isotropically
- The new direction is $(\sin(\theta)\cos(\phi),\sin(\theta)\sin(\phi),\cos(\theta))$

$$= \left(\sqrt{1 - \mu^2}\cos(\phi), \sqrt{1 - \mu^2}\sin(\phi), \mu\right)$$

16/17

Summary of Part I

We've developed a general sense of using MC for neutron transport

- Basic Algorithm
- We can determine if particles have collisions or cross boundaries
- After a collisions we need to determine many things associated with the collisions (target, reaction, direction, energy)
- Repeat analysis for collisions/crossing until particle **terminates**

17/17

Kelly L. Rowland NE 155/255 November 13, 2019 17 / 17