CPIT210

Assignment 1

Due Date: 11/10/2020

Name: Elaf Yousef Aloufi		
I D: 1911265		
Section: VAR		

Problem 1

Given the Boolean function:

$$F(w,x,y,z) = xy'z + x'y'z + w'xy + wx'y + wxy$$

• Obtain the truth table of the function.

The indices respectively: {13,5,9,1,7,6,11,10,15,14}.

W	Χ	Υ	Z	XY'Z	X'Y'Z	W'XY	WX'Y	WXY	F
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	1
0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	0	1	0	0	1
0	1	1	1	0	0	1	0	0	1
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	1
1	0	1	0	0	0	0	0	0	1
1	0	1	1	0	0	0	1	0	1
1	1	0	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0	1
1	1	1	0	0	0	0	0	1	1
1	1	1	1	0	0	0	0	1	1

• Draw the logic diagram using the original Boolean expression using the simulator.

 Simplify the function to a minimum number of literals using Boolean algebra. (If simplification done using simulator and algebra 1point bonus)

```
1. XY'Z + X'Y'Z + W'XY + WX'Y + WXY + WXY
```

4.
$$Y'Z + XY + WY$$

^{2.} Y'Z(X + X') + XY(W + W') + WY(X + X')

^{3.} Y'Z.1 + XY.1 + WY.1

 Obtain the truth table of the function from the simplified expression and show that it is the same as the one in part (a)

The indices are the same. $\{13,5,9,1,7,6,11,10,15,14\}$

W	Χ	Υ	Z	Y'Z	XY	WY	F
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	1	0	0	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	1
1	0	0	0	0	0	0	0
1	0	0	1	1	0	0	1
1	0	1	0	0	0	1	1
1	0	1	1	0	0	1	1
1	1	0	0	0	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1
1	1	1	1	0	1	1	1

 \underline{F} in table (A) is the same as \underline{F} in the simplified expressions table

Simplified Expression

 Draw the logic diagram, using simulator from the simplified expression and compare the total number of gates with the diagram of part (b).

The original function: <u>has 9 gates</u> 5 AND gates, 3 NOT gates and one OR gate.

The simplified function: <u>has 5 gates</u> 3 AND gates, 1 NOT gate and one OR gate.

Problem 2

- 1. Consider the following circuit: F= X'Y' +YZ'+XYZY'
 - a. Represent the circuit as Sum Of Product.

$$= X'Y' + YZ'$$

$$= X'Y' (Z+Z') + YZ' (X+X')$$

$$\sum (0,1,2,6) = + X'Y'Z' + X'Y'Z + X'YZ' + XYZ'$$

b. Represent the circuit as Product Of Sum

$$= X'YZ + XY'Z' + XY'Z + XYZ$$

$$\prod (3,4,5,7) = (X+Y'+Z') (X'+Y+Z) (X'+Y+Z') (X'+Y+Z')$$

c. Find the complement of the circuit.

$$= (X+Y) (Y'+Z) (X'+Y'+Z'+Y)$$

2. Convert each of the following to the other canonical form:

a.
$$F(x,y,z) = \sum (1,3,6)$$

$$F(x,y,x) = \prod (0,2,4,5,7)$$

b.
$$F(A, B,C,D) = \prod (0,2,4,7,9,13)$$

$$F(x,y,x) = \sum (1,3,5,6,8,10,11,12,14,15)$$