

ソフトウェア設計法及び演習 ソフトウェア工学概論及び演習

大山 勝徳 日本大学 工学部

July, 2015

■休講

連絡(再掲)

□対象: 1組. 休講日: 7/13(月) □対象: 2組. 休講日: 7/6(月)

■補講

□対象: 1組, 補講日: 7/27(月), 1,2限, 113教室 □対象: 2組, 補講日: 7/27(月), 1,2限, 122教室

ソフトウェア設計法及び演習, Lesson12

July, 2015

ソフトウェア設計法及び演習, Lesson12

- 設計演習2のレビュー
- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理
 - ロJava言語による構造化プログラミング
 - ロデシジョンテーブル

- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理
 - ロJava言語による構造化プログラミング
 - ロデシジョンテーブル

レビュー

- □仕様書や設計書, プログラムなどを, 開発者とは 別の人が内容を検討し, 結果をフィードバックす る工程
- □検討項目
 - 仕様や要求を満たしているか
 - ・誤りや不具合の有無
 - ・ 冗長性の有無
- 思い込みによる検討漏れを防ぐなど、「開発者とは別の人」 が実施することが重要

July, 2015

ソフトウェア設計法及び演習, Lesson12

5

レビューと配点

- レポート・レビューの配点に関して レポートの点+α√1 ±α√2
 - ロレポートの点: レポートそのものの点数
 - ・評価全体の20%
 - ロα11:レポートの加点
 - ロα/2: レビューの加点/減点
 - レビューの点はレビューアに付く

レビュー方法(設計演習1と同じ手順)

- 1. レポート提出者(設計者)は, レビュー用紙を 3枚受け取る
- 2 レビュー1
 - 1. 設計者は、共同作業者以外の人にレビューを依頼し、レポートとレビュー用紙1枚を渡す
 - 2. レビューアはレビューを行ない、評価を記載した レビュー用紙とレポートを設計者に返す
- 3. レビュー2, レビュー3を行なう
- 4. 設計者は、レポートとレビュー3枚をまとめ、 提出する

July, 2015

ソフトウェア設計法及び演習, Lesson12

U

- 設計演習2のレビュー
- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理
 - ロJava言語による構造化プログラミング
 - ロデシジョンテーブル

- ■詳細設計
 - ロ構造化設計(モジュール分割)の後の工程
 - ロ各モジュールをプログラム化する作業
- ■モジュールの外部設計
 - ロ呼び出すモジュールのモジュール名やパラメータ など(外部特性)の定義
 - モジュール名
 - 機能
 - ・パラメータリスト
 - 入力変数/出力変数
 - 外部効果

July, 2015

ソフトウェア設計法及び演習, Lesson12

11

詳細設計(モジュールの論理設計)

- ■モジュールの論理(アルゴリズム)設計 ロプログラミング作業のこと
 - (1) アルゴリズムの作成
 - (2) データの定義
 - ロ理解しやすいアルゴリズムでモジュールの コードを表現するために構造化プログラミング
 - 構造化の目的:
 - ・プログラムの構造を明確化する (誤りの発見を容易にする)
 - プログラムの変更を容易にする

詳細設計(モジュールの外部設計)

モジュール外部特性		
特性	説明	プログラム特性
モジュール名	暗証番号確認	checkpw
機能	入力された暗証番号を確認し, エラーであれば, メッセージを 出力し, 再入力を促す	
インタフェース (パラメータリスト)	入力:暗証番号 出力:誤り回数	Checkpw(pwno, wrongno)
入出力変数	暗証番号:英数字,8桁 誤り回数:整数	Pwno char (8), Wrongno int
外部効果	入力:暗証番号 出力:エラーメッセージ	

図 モジュールの外部特性

July, 2015

ソフトウェア設計法及び演習, Lesson12

10

- 設計演習2のレビュー
- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理

July, 2015

- ロJava言語による構造化プログラミング
- ロデシジョンテーブル

構造化プログラミングの提唱

- N.
- Dijkstraの主張(GOTO論争, 1968年)
 - ロプログラムをわかりにくくしているのは不用意に 使うGOTO命令である
 - ロプログラムは基本的な3つの構造単位(順次,選択,繰返し)にそって書けば、GOTO命令なしに書くことができる
 - □GOTOがなくなれば、プログラムは上から下へ自 然に読んで行けるため、わかりやすくなる

July, 2015

ソフトウェア設計法及び演習, Lesson12

13

構造化プログラミング

- ■構造化プログラミングの原理
 - ロ上から下へ自然に読めるプログラムコード
 - ・今日ではgoto文を使用しない
 - □構造化定理
 - 適正プログラム
 - ・制御構造の標準化
 - □段階的詳細化
 - ・一度に詳細化せず、段階的な詳細化を行なう

ソフトウェア設計法及び演習, Lesson12

14

構造化定理

15

■ 構造化定理の要点(1/2)

p.192

- ロ適正プログラム
 - 1つの入り口と1つの出口のみのプログラム制御
 - ・ すべての命令が実行可能(到達不能な行を作らない)
 - 無限ループなし

- □制御構造の標準化
 - 上から下へ自然に読めるプログラムコードの実現

制御構造の標準化

July, 2015

■構造化定理の要点(2/2)

□基本制御構造(順次,選択,繰返し)

段階的詳細化

- ■プログラムの設計時に,処理手順の記述を概 要から徐々に詳細化する
 - ロ最も詳細化された記述はプログラムコードに相当

July, 2015

ソフトウェア設計法及び演習, Lesson12

17

ソフトウェア設計法及び演習, Lesson12

18

19

- 設計演習2のレビュー
- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理
 - ロJava言語による構造化プログラミング
 - ロデシジョンテーブル

段階的詳細化

- ■良い詳細化の条件
 - ロ各命令ごとに独立して詳細化できる
 - □各段階で、詳細を見ずに内容を理解できる
 - □各段階で、詳細さのレベルが統一されている
 - ロ不要な詳細まで表現されていない
- ☑ 処理の流れを「段階的」にバランス良く「詳細化」する

July, 2015

Java言語による構造化プログラミング

- クラスの外部設計と論理設計
 - ロクラスの外部設計後、各メソッドについて 構造化プログラミングを実施できる
 - ロ特に、Javaは構造化プログラミングとオブジェクト 指向プログラミングの両方に適している
 - (1) 選択構造
 - if文, switch文(多分歧選択)
 - (2) 繰返し構造
 - for文. while文. do-while文
 - 繰返しの中断: break, continue

- ■構造化プログラミング
 - 口詳細設計
 - モジュールの外部設計
 - ・モジュールの論理設計
 - □構造化定理
 - ロJava言語による構造化プログラミング
 - ロデシジョンテーブル

■ 基本制御構造の組み合わせ ロどのようなアルゴリズムでも記述できる

July, 2015

ソフトウェア設計法及び演習, Lesson12

21

July, 2015

ソフトウェア設計法及び演習, Lesson12

22

デシジョンテーブルとは

- ■プログラムで判定する必要のある条件とその ときの選択処理の内容(行動)の関係表
 - □条件表題欄と条件記入欄
 - 判定すべき条件の組み合わせを表す
 - □行動表題欄と行動記入欄
 - ・条件記入欄の条件に従って実行すべき行動を表す

条件表題欄	条件記入欄
行動表題欄	行動記入欄

デシジョンテーブルの構成

デシジョンテーブルの具体例

ATMシステムのデシジョンテーブル

July, 2015

ソフトウェア設計法及び演習, Lesson12

July, 2015

ソフトウェア設計法及び演習, Lesson12

24

まとめ

- 設計演習2のレビュー
- ■構造化プログラミング
 - □詳細設計
 - モジュールの外部設計
 - モジュールの論理設計
 - □構造化定理
 - □Java言語による構造化プログラミング
 - ロデシジョンテーブル

25