FIGURA	ÁREA Y CENTROIDE	MOMENTO DE INERCIA	PRODUCTO DE INERCIA	FIGURA	ÁREA Y CENTROIDE	MOMENTO DE INERCIA	PRODUCTO DE INERCIA	
Y Rectángulo h X	$A = bh$ $\overline{X} = \frac{b}{2}$ $\overline{Y} = \frac{h}{2}$	$I_X = \frac{bh^3}{3}$; $I_Y = \frac{b^3h}{3}$ $I_{X_C} = \frac{bh^3}{12}$; $I_{Y_C} = \frac{b^3h}{12}$	$I_{XY} = \frac{b^2 h^2}{4}$ $I_{X_C Y_C} = 0$	Y Cuarto de Círculo	$A = \frac{\pi R^2}{4}$ $\bar{X} = \bar{Y} = \frac{4R}{3\pi}$	$I_X = I_Y = \frac{\pi R^4}{16}$ $I_{X_C} = I_{Y_C} = \frac{R^4}{144\pi} 9\pi^2 - 64$	$I_{XY} = \frac{R^4}{8}$ $I_{xcyc} = \frac{R^4}{72\pi} 9\pi - 32$	
Triángulo A A A A A A A A A A A A A	$A = \frac{bh}{2}$ $\overline{X} = \frac{a+b}{3}$ $\overline{Y} = \frac{h}{3}$	$I_{X} = \frac{bh^{3}}{12}; I_{X_{C}} = \frac{bh^{3}}{36}$ $I_{Y} = \frac{bh}{12}(b^{2} + ab + a^{2})$ $I_{Y_{C}} = \frac{bh}{36}(b^{2} - ab + a^{2})$	$I_{XY} = \frac{bh^2}{24}(2a+b)$ $I_{X_CY_C} = \frac{bh^2}{72}(2a-b)$	Y Enjuta Parabólica h a	$A = \frac{ah}{3}$ $\overline{X} = \frac{3a}{4}$ $\overline{Y} = \frac{3h}{10}$	$I_{X} = \frac{ah^{3}}{21}$ $I_{X_{C}} = \frac{37ah^{3}}{2100}$ $I_{Y} = \frac{a^{3}h}{5} I_{Y_{C}} = \frac{a^{3}h}{80}$	$I_{XY} = \frac{a^2 h^2}{12}$ $I_{X_C Y_C} = \frac{a^2 h^2}{120}$	PLANAS
Círculo Y R	$A = \pi R^2$ $\overline{X} = R$ $\overline{Y} = R$	$I_X = I_Y = \frac{5\pi R^4}{4}$ $I_{X_C} = I_{Y_C} = \frac{\pi R^4}{4}$	$I_{XY} = \pi R^4$ $I_{X_C Y_C} = 0$	Y Sector Circular α R	$A = \alpha R^{2}$ $\overline{X} = \frac{2RSen\alpha}{3\alpha}$ $\overline{Y} = 0$	$I_{X} = I_{X_{C}} = \frac{R^{4}}{4}(\alpha - Sen\alpha Cos\alpha)$ $I_{Y} = \frac{R^{4}}{4}(\alpha + Sen\alpha Cos\alpha)$ $I_{Y_{C}} = \frac{R^{4}}{4}(\alpha + Sen\alpha Cos\alpha)$	$I_{XY} = 0$ $I_{X_C Y_C} = 0$ $-\left(\frac{2Rsen\alpha}{3\alpha}\right)^2 \cdot \alpha R^2$	LAS FIGURAS PL
Semi-círculo R X	$A = \frac{\pi R^2}{2}$ $\overline{X} = R$ $\overline{Y} = \frac{4R}{3\pi}$	$I_{X} = \frac{\pi R^{4}}{8}; I_{Y} = \frac{5\pi R^{4}}{8}$ $I_{X_{C}} = \frac{R^{4}(9\pi^{2} - 64)}{72\pi}$ $I_{Y_{C}} = \frac{\pi R^{4}}{8}$	$I_{XY} = \frac{2R^4}{3}$ $I_{X_CY_C} = 0$	CENTROIDES DE LINEA	Y Cuarto de Circunferencia	$L = \frac{\pi R}{2}$	$\overline{X} = \overline{Y} = \frac{2R}{\pi}$	PROPIEDADES DE
Semi-elipse	$A = \frac{\pi ab}{2}$ $\overline{X} = a$ $\overline{Y} = \frac{4b}{3\pi}$	$I_{X} = \frac{\pi ab^{3}}{8} ; I_{Y} = \frac{5\pi a^{3}b}{8}$ $I_{X_{C}} = \frac{ab^{3}}{72\pi} (9\pi^{2} - 64)$ $I_{Y_{C}} = \frac{\pi a^{3}b}{8}$	$I_{XY} = \frac{2a^2b^2}{3}$ $I_{X_CY_C} = 0$		Semi-círcunferencia Y R X	$L = \pi R$	$\overline{X} = 0$ $\overline{Y} = \frac{2R}{\pi}$	PRO
Semi-parábola b a	$A = \frac{2ab}{3}$ $\overline{X} = \frac{3a}{5}$ $\overline{Y} = \frac{3b}{8}$	$I_X = \frac{2ab^3}{15}$; $I_Y = \frac{2a^3b}{7}$ $I_{xc} = \frac{19ab^3}{480}$; $I_{yc} = \frac{8a^3b}{175}$	$I_{XY} = \frac{a^2b^2}{6}$ $I_{XCYC} = \frac{a^2b^2}{60}$		Arco de Circunferencia	$L=2\alpha R$	$\overline{X} = \frac{R Sen\alpha}{\alpha}$ $\overline{Y} = 0$	