WHAT IS CLAIMED IS:

i

1

2

3

- 2 A catalyst composition comprising silver and an alkali metal promoter deposited on a carrier, 3 which alkali metal promoter comprises potassium 5 in a quantity of at least 5 µmole/g, relative to the weight of the catalyst composition; and, an 6 alkali metal selected from the group consisting 7 of lithium, sodium and mixtures thereof in a 8 quantity of at least 1 µmole/g, relative to the 9 10 weight of the catalyst composition.
- The catalyst composition of claim 1, wherein the
 potassium promoter is present at a concentration
 of at least 10 μmole/g, relative to the weight
 of the catalyst composition.
 - 3. The catalyst composition of claim 1, wherein lithium is present at a concentration of at least 5 µmole/g, relative to the weight of the catalyst composition.
- 1 4. The catalyst composition of claim 1, wherein 2 sodium is present at a concentration of at least 5 μ mole/g, relative to the weight of the catalyst composition.
- 5. The catalyst composition of claim 1, wherein lithium and sodium are each present at a

- concentration of at least 10 μ mole/g, relative to the weight of the catalyst composition.
- 6. The catalyst composition of claim 1, wherein the carrier comprises an α -alumina having a BET surface area of 0.1 m²/g to 25 m²/g, and an apparent porosity of from 0.1 ml/g to 1.2 ml/g, measured by water absorption.
 - 7. The catalyst composition of claim 1, wherein the carrier comprises a silver bonded calcium carbonate having a crush strength of at least 22 N.
- 8. The catalyst composition of claim 1, wherein the carrier comprises a silver bonded calcium carbonate wherein the weight ratio of silver to calcium carbonate is from 1:5 to 1:100.
 - 9. The catalyst composition of claim 1, wherein the carrier comprises a silver bonded calcium carbonate having a specific surface area of from 1 m²/g to 20 m²/g.
- 1 10. The catalyst composition of claim 1, wherein the
 2 carrier comprises a silver bonded calcium
 3 carbonate having a specific surface area of from
 4 3 m²/g to 15 m²/g.

1

1

2

3

1

2

- 11. The catalyst composition of claim 1, wherein the

 carrier comprises a silver bonded calcium

 carbonate having an apparent porosity of from

 0.05 ml/g to 2 ml/g.
- 1 12. The catalyst composition of claim 1, wherein the
 2 carrier comprises a silver bonded calcium
 3 carbonate having an apparent porosity of from
 4 0.1 ml/g to 1.5 ml/g.
- 13. The catalyst composition of claim 1, wherein
 the carrier comprises at least 95 %w α-alumina.
- 1 14. A process for preparing an olefin oxide which
 2 process comprises:

reacting an olefin having at least 3 carbon atoms with oxygen in the presence of a catalyst composition comprising silver and an alkali metal promoter deposited on a carrier, which alkali metal promoter comprises potassium in a quantity of at least 5 μ mole/g, relative to the weight of the catalyst composition, and an alkali metal selected from the group consisting of lithium, sodium and mixtures thereof in a quantity of at least 1 μ mole/g, relative to the weight of the catalyst composition.

- I 15. The process of claim 14 which is further
- 2 conducted in the presence of a nitrate or nitrite
- forming compound.
- 1 16. The process of claim 14, wherein the potassium
- 2 promoter is present at a concentration of at
- $1 = 10 \mu \text{mole/g}$
- 1 17. The process of claim 14, wherein lithium is
- 2 present at a concentration of at least 5 μ mole/g.
- 1 18. The process of claim 14, wherein sodium is
- 2 present at a concentration of at least 5 μmole/g.
- 1 19. The process of claim 14, wherein lithium and
- sodium are each present at a concentration of at
- 3 least 10 μmole/g.
- 1 20. The process of claim 14, wherein the carrier
- 2 comprises an α -alumina having a BET surface area
- of $0.1 \text{ m}^2/\text{g}$ to $25 \text{ m}^2/\text{g}$, and an apparent porosity
- 4 of from 0.1 ml/g to 1.2 ml/g, measured by water
- 5 absorption.
- 1 21. The process of claim 14, wherein the carrier
- comprises a silver bonded calcium carbonate
- having a crush strength of at least 22 N.
- 1 22. The process of claim 14, wherein the carrier
- 2 comprises a silver bonded calcium carbonate

- wherein the weight ratio of silver to calcium carbonate is from 1:5 to 1:100.
- The process of claim 14, wherein the carrier comprises a silver bonded calcium carbonate having a specific surface area of from $1 \text{ m}^2/\text{g}$ to $20 \text{ m}^2/\text{g}$.
- 1 24. The process of claim 14, wherein the carrier 2 comprises a silver bonded calcium carbonate 3 having a specific surface area of from $3 \text{ m}^2/\text{g}$ to $15 \text{ m}^2/\text{g}$.
- The process of claim 14, wherein the carrier comprises a silver bonded calcium carbonate having an apparent porosity of from 0.05 ml/g to 2 ml/g.
- 5 26. The process of claim 14, wherein the carrier
 6 comprises a silver bonded calcium carbonate
 7 having an apparent porosity of from 0.1 ml/g to
 8 1.5 ml/g.
- 9 27. The process of claim 14, wherein the carrier 10 comprises at least 95 %w α-alumina.
- 28. A method of making a 1,2-diol or a 1,2-diol
 ether comprising converting an olefin oxide into
 a 1,2-diol or 1,2-diol ether wherein the olefin
 oxide has been obtained by a process comprising
 reacting an olefin having at least 3 carbon atoms

with oxygen in the presence of a catalyst
composition comprising silver and an alkali metal
promoter deposited on a carrier, which alkali
metal promoter comprises potassium in a quantity
of at least 5 μ mole/g, relative to the weight of
the catalyst composition, and an alkali metal
selected from the group consisting of lithium,
sodium and mixtures thereof in a quantity of at
least 1 µmole/g, relative to the weight of the
catalyst composition.