(19) **RU**(11) 2 200 582 (13) **C2**

 $^{\varsigma^{\prime}}$ A 61 L 2/02, A 61 K 9/10

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 2001108432/14, 02.04.2001
- (24) Дата начала действия патента: 02.04.2001
- (46) Дата публикации: 20.03.2003
- (56) Ссылки: US 5789570 A, 04.08.1998. RU 2070033 C1, 10.12.1996. RU 34040982 A1, 20.09.1996.
- (98) Адрес для переписки: 117602, Москва, ул.Акад. Анохина, 9, корп.1, кв.355, С.И.Воробьеву
- (71) Заявитель: Воробьев Сергей Иванович
- (73) Патентообладатель: Воробьев Сергей Иванович

(54) СПОСОБ СТЕРИЛИЗАЦИИ ПЕРФТОРУГЛЕРОДНЫХ КРОВЕЗАМЕНИТЕЛЕЙ И РАЗЛИЧНЫХ СРЕД НА ОСНОВЕ ПЕРФТОРУГЛЕРОДНЫХ ЭМУЛЬСИЙ

(57)

Изобретение относится к области медицины. Сущность изобретения заключается в полноценной стерилизации полидисперсных перфторуглеродных эмульсий с различными по размеру частицами, с помощью фильтрационного метода "Кросс-флоу" (динамическая фильтрация) и получению стерильных, нетоксичных, монодисперсных перфторуглеродных эмульсий с диаметром частиц, не превышающим 0,22 мкм, за счет отсечения крупнодисперсных частиц

щадящим способом, при этом эмульсия содержит перфтордекалин (ПФД) 2-26, перфоторметилциклогексилпиперидин (ПФМЦП) 1-13 г, ПФД: ПФМЦП равно 2:1 в концентрации 1-40%, проксанол 1-8%, натрий хлорид 0,60 г, калий хлорид 0,039 г, магний хлорид 0,019 г, натрий гидрокарбонат 0,065 г, натрий фосфат однозамещенный 0,01 г, глюкоза 0,20 г на 100 мл воды. Способ позволяет уменьшить крупные дисперсные частицы и улучшить эмульсии при хранении. 3 з.п.ф-лы.

2

 ∞

S

0

R □

20058

0

N

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 200 582 ⁽¹³⁾ C2

A 61 L 2/02, A 61 K 9/10

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2001108432/14, 02.04.2001

(24) Effective date for property rights: 02.04.2001

(46) Date of publication: 20.03.2003

(98) Mail address: 117602, Moskva, ul.Akad. Anokhina, 9, korp.1, kv.355, S.I.Vorob'evu (71) Applicant: Vorob'ev Sergej Ivanovich

(73) Proprietor: Vorob'ev Sergej Ivanovich

(54) METHOD OF STERILIZING PERFLUOROCARBON BLOOD SUBSTITUTES AND VARIOUS MEDIA BASED OF PERFLUOROCARBON EMULSIONS

(51) Int. Cl. 7

(57) Abstract: FIELD: blood substitutes. SUBSTANCE: invention to perform full-value aims sterilization polydisperse of perfluorocarbon emulsions "cross-flow" different-size particles using filtration technique (dynamic filtration) and thereby obtaining nontoxic sterile monodisperse perfluorocarbon emulsions with particle diameters not superior to 0.22 mcm thanks to separating coarse particles by mild, sparing method. Emulsion contains 2-26

g perfluorodecaline, 1-13 g perfluoromethylcyclohexylpiperidine (ratio of the components being 2:1 and their summary concentration 1-40%), 1-8% proxanol and, g/100 ml water: sodium chloride, 0.60; potassium chloride, 0.039; magnesium chloride, 0.019; sodium hydrocarbonate, 0.065; monosubstituted sodium phosphate, 0.01; and glucose, 0.20. EFFECT: reduced coarse particles and improved quality of emulsion on storage. 4 cl, 4 ex

2

 ∞

S

0

2

双 ⊂

220058

() ()

N

изооретение относится к спосорам стерилизации перфторуглеродных кровезаменителей и различных созданных на основе перфторуглеродных эмульсий, и может быть использовано в медико-биологической и косметической промышленности в качестве стерилизации искусственной крови, рентгеноконтрастных средств, перфузионных сред и других составов, созданных основе на перфторуглеродных эмульсий.

Известно, что медицинское применение различных растворов, составов и сред определяется их стерильностью. Стерилизация инъекционных растворов, применяемых для внутривенного введения, является главным фактором безопасного использования данных растворов в медицинской практике. Известны три классических способа стерилизации:

- 1. Тепловая стерилизация с помощью высокой температуры и повышенного давления;
- 2. Стерилизация с помощью гамма-облучения;
- 3. Стерилизация с помощью ультрафильтрации.

Не все среды или растворы способны выдержать ту или иную стерилизацию. Так, например, обычный физраствор для внутривенного применения стерилизуется тепловой стерилизации методом t=121 °C, давлении 1,2 атм). Некоторые гормональные препараты нельзя подвергать тепповой стерилизации, из-за неустойчивости и потере свойств стерилизуют фильтрацией. Другие препараты, которые нельзя подвергать каким-то жестким внешним механическим воздействиям (температурой, давлением) подвергаются облучению с помощью гамма-лучей.

десятилетие последнее медико-биологической области появился новый класс растворов, сред и составов, созданных на основе перфторуглеродных Перфторуглеродные эмульсии эмульсий. широко применяются в медицине в качестве искусственной перфузионных крови, растворов, сред для культивирования микроорганизмов, составов косметических целей, мазей и бальзамов для наружного и внутреннего применения и т. д. Основой этих сред, растворов и составов является перфторуглеродная эмульсия, которую необходимо стерилизовать, особенно касается перфторуглеродных кровезаменителей.

Z

 ∞

Однако собственно перфторуглероды не растворимы в воде и в других жидкостях, поэтому их можно использовать только в виде эмульсий с определенным размером перфторуглеродных частиц, покрытых слоем эмульгатора (поверхностно-активного вещества), и чем меньше по размеру частица эмульсии, тем лучше, т.к. эмульсии вводятся внутривенно и при крупных размерах могут вызывать эмболию (закупорку) сосудов, что может привести к летальному исходу.

Перфторуглеродные эмульсии представляют собой неустойчивую жидкость, в которой находятся водонерастворимые субмикронные частицы перфторуглеродов (маслянистых веществ), в взвешенном состоянии, покрытые поверхностно-активным веществом. Концентрация нерастворимых

перфторуглеродов в эмульсии составляет от долей процента и почти до ста процентов. Остальная субстанция это - вода с различными водорастворимыми эмульгаторами наполнителями и (поверхностно-активные вещества). Неустойчивость перфторуглеродных субмикронных эмульсий проявляется при воздействии на них любого из перечисленных (температуры, факторов давления, облучения), что проявляется в изменении физико-химических свойств: укрупнение субмикронных частиц эмульсии до микронных размеров, а также в освобождении реакционного иона фтора.

Распределение перфторуглеродных частиц отечественного производства в эмульсии по размерам (по диаметру), определенное с помощью электронно-микроскопического метода, следующее:

частицы с диаметром от 0,0 до 0,1 мкм составляют 75%;

частицы с диаметром от 0,1 до 0,2 мкм - 20%;

частицы с диаметром от 0,2 мкм и выше - 5%.

Известно, что доля частиц размером от 0,2 до 0,5 мкм в зарубежных образцах эмульсий типа "Флюозол-ДА 20%" больше и составляет 7.8%.

Стерилизация перфторуглеродных эмульсий с частицами субмикронного размера (диаметром 0,02-0,2 мкм) методом тепловой стерилизации приводит к резкому укрупнению субмикронных частиц эмульсии до микронных размеров (до 0,3-0,4 мкм), что резко препятствует ее применению в медико-биологической практике.

К недостаткам этого способа относится **у**величение токсичности эмульсии крупнодисперсными частицами. Имеется прямая корреляция между размерами частиц эмульсии и ее токсичностью. Так, Geyer R. (1975) обнаружил, что острая токсичность быстро возрастает с увеличением среднего размера частиц более 0,4 мкм. Этот же автор рекомендует, чтобы в эмульсии не было частиц свыше 0,6 мкм. При изучении острой токсичности японской эмульсии "Флюозол-ДА 20%" было определено, что крупные частицы (1-2 эмульсии мкм) вызывали летальности животных при дозе 50 мл/кг. Уменьшение среднего диаметра частиц эмульсии до 0,1 мкм позволило вводить эмульсию животным до 100 мл/кг без их гибели (Mitsuno T. et al., "Intake and retension of perfluorochemical substance of Fluosol-DA in res human", Proceedings of the 5. Int. Sympos. On Oxygen-Carring Colloidal Blood Substituts, Meinz, March, 1981, p.220).

Стерилизация перфторуглеродных эмульсий методом облучения вызывает отщепление фтор иона с физиологических концентраций 10-5 моля до высоких. нефизиологических 10-4 моля, что также делает применение эмульсий невозможным из-за высокой токсичности (С. И.Воробьев, Химико-фармац. журнал, 1990, 5, стр. 8-9. "Токсическое влияние повышенной концентрации ионов фтора крупнодисперсных перфторуглеродных эмульсий на миокард").

Стерилизация перфторуглеродных эмульсий методом прямой фильтрации через

20

25

45

диаметр пор в фильтре 0,22 мкм вызывает быструю закупорку пор в фильтре частицами эмульсии, диаметр пор которых более 0,2 мкм, а таких частиц в эмульсии, как указано выше, находится от 5 до 7,8%.

настоящее время наиболее распространенным методом стерилизации перфторуглеродных эмульсий является метод "мягкой" тепловой стерилизации, с небольшим временем экспозиции и добавкой в качестве эмульгаторов (для тепловой устойчивости) фосфолипидов яичного желтка или соевых фосфолипидов (Jean G. Riess and Maurice Le Blanc. Preparation of perfluoro-chemical emulsions for biochemical use: principles, materials and methods. Ellis Horwood Series in Biomedicinne, VCH, Blood Substituts, and Medical Preparation, Physiology Applications. 1991. Ch.5, pp.113-115).

Так, недостатком этого способа является, то, что эмульсия после стерилизации становится крупнодисперсной (диаметр частиц увеличивается до 0,3 мкм) и применение ее в медицинской практике при внутривенном ведении становится малоэффективным. Так доказано, наличие крупных частиц размером более 0,2-0,3 мкм, как показано в работах (Мицуно Тока, Кокурицу Кобэ, Медицинский институт, "Практическое использование Япония, искусственной крови", Сидзен, 1981, 36(9), стр.62-69). является причиной, обуславливающей токсичность эмульсий.

Известен способ стерилизации, наиболее близкий к заявляемому способу, который применяется повсеместно, это -статическая фильтрация через мембрану, т. е. направление фильтрации и направление подачи эмульсии совпадают. Этот способ называется "лобовой фильтрацией" или "статической фильтрацией" и не является полностью удовлетворительным, так как при таком способе происходит быстрое засорение фильтра и соответственно резко снижается количество отфильтрованной жидкости. В качестве мембранных фильтров для статической фильтрации широко применяются фильтры зарубежных фирм "Millipor", "Pall", "Zeta plus". Фильтрация через эти фильтры является статической фильтрацией под дифференциальным давлением.

Недостаткам данного способа является то, при традиционной статической фильтрации пол давлением, трансмембранное дифференциальное давление заставляет перфторуглеродную эмульсию протекать перпендикулярно поверхности мембраны со стороны подачи исходного потока. Направление подачи среды и направление фильтрации совпадают. Задержанные крупнодисперсные частицы эмульсии собираются на поверхности и образуют определенной толщины слой или уровень. Это приводит к прогрессирующему снижению скорости потока и в конце концов мембрана полностью забивается частицами эмульсии. При загрязнении мембраны происходит увеличение входящего давления потока, что приводит к усилению воздействия на частицу эмульсии при ее прохождении через поры мембраны, это в свою очередь к снятию эмульгатора (поверхностно-активного вещества) с частицы эмульсии и соответственно слипанию и укрупнению частиц эмульсии, приводящее к

0

S

расслоению перфторуглероднои эмульсии и невозможности ее дальнейшего клинического использования. Этот метод фильтрации наиболее подходит для фильтрации обычных водных растворов, с небольшим количеством ингредиентов, но ни как коллоидных или эмульсионных составов.

Задачей изобретения является полноценная стерилизация полидисперсных перфторуглеродных эмульсий с различными по размеру частицами, с помощью "Кросс-флоу" фильтрационного метода (динамическая фильтрация) и соответственно получению стерильных, нетоксичных. монодисперсных перфторуглеродных эмульсий с диаметром частиц, превышающим 0,22 мкм, за счет отсечения "мягким", крупнодисперсных частиц "щадящим" способом.

Поставленная задача решается тем, что в заявляемом способе стерилизации перфторуглеродных кровезаменителей различных сред, созданных на основе перфторуглеродных эмульсий для медико-биологических целей, включающем стерилизацию с помощью фильтрации, с дифференциальным давлением действующим на поверхность мембраны. изобретению, согласно направление фильтрации И направление подачи перфторуглеродной эмульсии не совпадают они перпендикулярны друг другу. В результате этого перфторуглеродная фильтруемая эмульсия, имеющая следующий состав: перфторде калин (ПФД) - от 2 до 26 г; перфторметилцикло-гексилпиперидин (ПФМЦП) - от 1 до 13 г, (ПФД/ПФМЦП в соотношении 2 : 1, в концентрации от 1 до 40%), проксанола - от 1 до 8%, натрия хлорида - 0,60 г; калия хлорида - 0,039 г; магния хлорида (в пересчете на сухое вещество) - 0,019 г; натрия гидрокарбоната 0,065 г; натрия фосфата однозамещенного (в пересчете на сухое вещество) - 0,02 г; глюкозы - 0,20 г в 100 мл воды инъекционной, протекает через мембраны по узким каналам, образуемым параллельными мембранными уровнями фильтра. При этом только часть исходного перфторуглеродного проходит через мембраны с диаметром пор 0,22 мкм как фильтрат. Основная часть перфторуглеродного потока выходит из системы и вновь рециркулируется в рециркуляционной емкости через узкие каналы. И так продолжается до тех пор. пока вся мелкодисперсная эмульсия не пройдет через фильтр, а крупные частицы эмульсии и механические включения не останутся в рециркуляционной емкости.

Такая фильтрация хорошо известна и называется "Кросс-флоу" (применяется на фирме "Sartorius") и имеет значительное преимущество по сравнению с обычной фильтрацией.

Прерывание ламинарного потока, которое вызывается применением сетки в узких каналах, а также тангенциальный поток жидкости при динамической фильтрации вызывает эффект самоочищения мембраны-модуля. В результате этого не происходит скопление перфторуглеродных частиц или засорения модуля, как это происходит при статической фильтрации, что значительно увеличивает продолжительность использования фильтрационной системы.

Предложенныи спосою стерилизации с помощью динамической фильтрации позволяет уменьшить максимальный размер частиц эмульсии до 0,22 мкм и сделать эмульсии монодисперсными, что значительно улучшает стабильность эмульсий при хранении.

Предложенный способ стерилизации с динамической помощью фильтрации, уменьшает средний размер частиц эмульсии, что очень важно при ее внутривенном введении, т. к. при этом значительно улучшаются реологические свойства натуральной крови и увеличивается площадь газообмена. Так, например, в 400 мл перфторуглеродной эмульсии со средним размером частиц 0,05 мкм, а максимальным размером 0,2 мкм, имеют общую площадь газообмена в 4800 м², при этом общая площадь газообмена у всех эритроцитов в крови с их средним размером 7 мкм значительно меньше и составляет 3500 м². Все это приводит к увеличению процесса переноса кислорода между частицами эмульсии и тканями организмом, за счет большей поверхности газообмена, является важнейшим фактором в обеспечении организма кислородом, поскольку субмикронные частицы со средним размером 0,05 мкм легко проникают туда, куда не может проникнуть эритроцит, размеры которого в 140 раз больше.

Предложенный способ стерилизации с динамической помощью фильтрации позволяет создавать нетоксичные перфторуглеродные кровезаменители низкой степенью побочных реакций, так как полностью отсекаются крупнодисперсные частицы, вызывающие побочные реакции у пациентов. Экспериментально установлено, что по мере возрастания среднего размера частиц и увеличения числа крупнодисперсных частиц в перфторуглеродной эмульсии увеличивается количество побочных реакций при внутривенном введении (Воробьев С.И. с соавт., 1995, 1996, 1997, Склифас А.Н. с соавт. 1998).

Предложенный способ стерилизации с помощью динамической фильтрации позволяет создавать высокие показатели работы, низкий уровень рециркуляции, самую бережную и тонкую обработку перфторуглеродных эмульсий и может использоваться в промышленных масштабах.

双

N

0

S

 ∞

N

Таким образом, предлагаемый способ стерилизации перфторуглеродных кровезаменителей и различных сред на основе перфторуглеродных эмульсий с помощью метода "Кросс-флоу" (динамической фильтрацией) является эффективным и для предпочтительным полноценной стерилизации полидисперсных перфторуглеродных эмульсий с различными по размеру частицами и соответственно получения стерильных, нетоксичных, монодисперсных перфторуглеродных эмульсий с диаметром частиц, превышающим 0,22 мкм, за счет отсечения крупнодисперсных частиц "мягким". "щадящим" способом.

Стерилизационная фильтрация перфторуглеродных кровезаменителей и сред на основе перфторуглеродных эмульсий методом динамической фильтрации.

Пример 1. Перфторуглеродный

кровезаменитель типа "Перфторан-плюс", имеющий следующий состав: перфтордекалин перфторметилциклогексилпиперидин - 6.5 г: (или ПФД/ПФМЦП в соотношение 2 : 1, в концентрации 20%), проксанола - 4%, натрия хлорида - 0,60 г; калия хлорида - 0,039 г; магния хлорида (в пересчете на сухое вещество) - 0,019 г; натрия гидрокарбоната 0,065 г; натрия фосфата однозамещенного (в пересчете на сухое вещество) - 0,02 г; глюкозы - 0,20 г; в 100 мл воды инъекционной; средний размер частиц эмульсии - 0,08 мкм.

Нестерильную перфторуглеродную эмульсию типа "Перфторан-плюс" в количестве 10 л стерилизовали с помощью динамической фильтрации. До и после фильтрации эмульсии были осуществлены следующие контрольные замеры:

1. Средний размер частиц:
до фильтрации - 0,08 мкм;
лосле фильтрации - 0,05 мкм.
2. Стерильность эмульсии:
до фильтрации - не стерильно;
после фильтрации - стерильно.
3. Общий объем:
до фильтрации - 10 л;

до фильтрации - 10 л, после фильтрации - 9,5 л.

4. Максимальный диаметр частиц: до фильтрации - от 0,2 до 0,4 мкм; после фильтрации - не выше 0,22 мкм. Перфторуглеродная эмульсия пригодна к клиническому применению.

30 Перфторуглеродный Пример 2. кровезаменитель типа "Фторан-5", имеющий следующий состав: перфтордекалин - 6,5 г; перфторметилциклогексилпиперидин - 3,3 г; (или ПФД/ПФМЦП в соотношении 2 :1, в концентрации 10%), проксанола - 2%, натрия хлорида - 0,60 г, калия хлорида - 0,039 г; магния хлорида (в пересчете на сухое вещество) - 0,019 г; натрия гидрокарбоната 0,065 г; натрия фосфата однозамещенного (в пересчете на сухое вещество) - 0,02 г; глюкозы - 0,20 г; в 100 мл воды средний размер частиц инъекционной; эмульсии - 0,07 мкм.

Нестерильную перфторуглеродную эмульсию типа "Фторан-5" в количестве 10 л стерилизовали с помощью динамической фильтрации. До и после фильтрации эмульсии были осуществлены следующие контрольные замеры:

Средний размер частиц: до фильтрации - 0,07 мкм; после фильтрации - 0,04 мкм.
 Стерильность эмульсии: до фильтрации - не стерильно; после фильтрации - стерильно.
 Общий объем: до фильтрации - 10 л; после фильтрации - 9,7 л.
 Максимальный диаметр частиц: до фильтрации - от 0,2 до 0,3 мкм; после фильтрации - не выше 0,22 мкм.

Перфторуглеродная эмульсия пригодна к клиническому применению.

Пример 3. Перфторуглеродный кровезаменитель типа "Фторан-2,5", имеющий следующий состав: перфтордекалин - 3,3 г; перфторметилциклогексилпиперидин - 1,6 г; (или ПФД/ПФМЦП в соотношении 2 : 1, в концентрации 5%), проксанола - 1%, натрия хлорида - 0,60 г; калия хлорида - 0,039 г;

50

55

60

магния хлорида (в пересчете на сухое вещество) - 0,019 г; натрия гидрокарбоната 0,065 г; натрия фосфата однозамещенного (в пересчете на сухое вещество) - 0,02 г; глюкозы - 0,20 г; в 100 мл воды инъекционной; средний размер частиц эмульсии - 0,05 мкм.

Нестерильную перфторуглеродную эмульсию типа "Фторан-2,5" в количестве 10 л стерилизовали с помощью динамической фильтрации. До и после фильтрации эмульсии были осуществлены следующие контрольные замеры:

1. Средний размер частиц: до фильтрации - 0,05 мкм; после фильтрации - 0,04 мкм. 2.Стерильность эмульсии: до фильтрации - не стерильно; после фильтрации - стерильно; 3. Общий объем: до фильтрации - 10 л; после фильтрации - 9,7 л. 4. Максимальный диаметр частиц: до фильтрации - от 0,2 до 0,28 мкм; после фильтрации - не выше 0,22 мкм. Посретосуктеропиза, амульския притоги.

Перфторуглеродная эмульсия пригодна к клиническому применению.

Пример 4. Перфторуглеродная среда для внутреннего применения типа "Фторан-20", имеющая следующий состав: перфтордекалин - 26 г, перфторметилциклогексилпиперидин - 13 г, (или ПФД/ПФМЦП в соотношении 2 : 1, в концентрации 40%, проксанола - 8%, натрия хлорида - 0,60 г, в 100 мл воды инъекционной; средний размер частиц эмульсии - 0,08 мкм.

Нестерильную перфторуглеродную среду типа "Фторан-20" в количестве 10 л стерилизовали с помощью динамической фильтрации. До и после фильтрации эмульсии были осуществлены следующие контрольные замеры:

1. Средний размер частиц: до фильтрации - 0,08 мкм; после фильтрации - 0,06 мкм. 2. Стерильность эмульсии:

до фильтрации - не стерильно; после фильтрации - стерильно.

после фильтрации - стерилы 3. Общий объем: до фильтрации - 10 л; после фильтрации - 9,4 л.

0

S

 ∞

N

4. Максимальный диаметр частиц: до фильтрации - от 0,2 до 0,4 мкм; после фильтрации - не выше 0,22 мкм.

Перфторуглеродная эмульсия пригодна к клиническому применению.

Формула изобретения:

1. Способ стерилизации перфторуглеродных кровезаменителей и различных сред, созданных на основе перфторуглеродных эмульсий, для

медико-риологических целеи, включающии стерилизацию с помощью фильтрации с дифференциальным давлением, действующим на поверхность мембраны, отличающийся тем, что направление фильтрации И направление перфторуглеродной эмульсии не совпадают они перпендикулярны друг другу, в результате этого перфторуглеродная фильтруемая эмульсия, имеющая следующий состав: (ПФД) перфтордекалин 2 перфторметилциклогексилпиперидин (ПФМЦП) 1 - 13 г. (соотношение ПФД: ПФМЦП как 2: 1, в концентрации 1 - 40%), проксанол 1 - 8%, натрия хлорид 0,60 г, калия хлорид 0,039 г, магния хлорид (в пересчете на сухое вещество) 0,019 г, натрия гидрокарбонат 0,065 г, натрия фосфат однозамещенный (в пересчете на сухое вещество) 0,02 г, глюкоза 0,20 г, в 100 мл воды инъекционной, протекает через мембраны по узким каналам, образуемым параллельными мембранными 20 уровнями фильтра, при этом только часть исходного перфторуглеродного проходит через мембраны с диаметром пор 0,22 мкм как фильтрат, основная часть перфторуглеродного потока выходит из системы и вновь рециркулируется в рециркуляционной емкости через узкие каналы и так продолжается до тех пор, пока вся мелкодисперсная эмульсия не пройдет через мембрану, а крупные частицы эмульсии и другие механические включения не останутся в рециркуляционной емкости. 30

2. Способ по п. 1, отличающийся тем, что мембраны для фильтрации с диаметром пор 0,22 мкм заменяются на мембраны с большим диаметром пор от 0,45 до 0,65 мкм для получения относительно стерильных и чистых перфторуглеродных эмульсий и сред с высокой концентрацией перфтоуглеродов, пригодных для медико-биологического и косметического использования.

3. Способ по пп. 1 и 2, отличающийся тем, что в качестве фильтровальной среды стерилизуются исходные компоненты перфторуглеродных эмульсий (раствор проксанола, перфторуглероды, солевая композиция, инъекционная вода).

4. Способ по пп. 1-3, отличающийся тем, что в качестве фильтровальной среды стерилизуются перфторуглеродные эмульсии с концентрацией 1 - 95%, состоящие из перфтортрипропиламина (ПФТПА), перфтортрибутиламина (ПФТБА), перфтороктилбромида (ПФОБ), перфтордицилбромида (ПФДБ), перфтордекалина (ПФД),

перфтордекалина (под), перфторметилциклогексиллиперидина (ПФМЦП), их смеси, эмульгированные как проксанолом, так и фосфолипидами яичными и соевыми.

55

60