Projet de Probabilité

Exercice 4 Fonction Caracteristique

1) Pour un Veiteur gaussien X de moyenne b et de motice de Variance V, montrer que: $\widehat{\Phi}_{X}(U) = e^{\langle u,b \rangle - \frac{1}{2}\langle u, Vu \rangle}$

Soit $X = \begin{pmatrix} x_1 \\ x_d \end{pmatrix}$ un Veiteur alcatoire de d-dimension

de veeteur moyenne b= (b) et de matrice de vær V. Soit u un vecteur de Rd

Φ_x(u) = E(eⁱzu, x >) = E(eⁱu, x₁+-ux)
(*)

On pose Y= M1 X1+ + Md Xd

On sait que y et gaussienne car combinaison linéaire des composantes d'un vecteur gaussien.

Cherchons ses Caracteriotiques

E(Y) = E(MX1+ --- + MdXd) = ME(X1)+---+ Ud E(Xd)

E(Y) = U1 b1++ Mdxd = Mtb= < U1b>

Var (Y) = Var (M, X1+ -- + Md Xd)

Van (y) = \(\int \int \text{ui var (xi)} + 2 \(\int \text{ui uj cov (xi, xj)} \)

or on sait: $\forall t \in \mathbb{R} \quad \forall y(t) = \mathbb{E}(e^{ity}) = e^{it} \mathbb{E}(y) - \frac{t^2}{2} var(y)$

Aimi
$$\phi_{X}(U) = E(e^{iY}) = G_{Y}(1) d'aprèo (*)$$
 $G_{X}(U) = e^{iE(Y)} - \frac{1}{2} var(Y)$
 $= e^{iU^{\dagger}b} - \frac{1}{2} var(Y)$

En calculant $\langle u, v_{U} \rangle$ on a

 $\langle u, v_{U} \rangle = \langle u_{1} ... u_{d} \rangle$
 $\int_{cov(Xd, Xi)}^{var(X_{1})} var(Xd) \rangle$
 $\int_{i=1}^{d} u^{\dagger} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$
 $\int_{i=1}^{d} u^{\dagger} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

ainoi $G_{X}(u) = e^{i\langle u, v_{U} \rangle} - 2\langle u, v_{U} \rangle$
 $\int_{i=1}^{d} u^{\dagger} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

All $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

ainoi $G_{X}(u) = e^{i\langle u, v_{U} \rangle} - 2\langle u, v_{U} \rangle$
 $\int_{i=1}^{d} u^{\dagger} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

All $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

All $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger} u^{\dagger} u^{\dagger} var(Xi) \rangle$

Another que $\int_{i=1}^{d} var(Xi) + 2\sum_{i=1}^{d} u^{\dagger} u^{\dagger}$

3) Pour une V.a. reelle, supposons que E[IXIP] 200 pour un certain entier p 7, 1. Montrer que Ex et p fois derivable et $\Phi_{\mathbf{x}}^{(\mathbf{k})}(\mathbf{0}) = i^{\mathbf{k}} \mathbb{E}[\mathbf{x}^{\mathbf{k}}], \text{ pour } \mathbf{k} = 1, ..., p$ - I ci on part de ce qu'on appelle transformée de Fourier On suppose que X admet une fonction de densité dans ce cas f(x) = (21) I reitx EIXIY <+00 = 2 x -> (ix) eitx g(x) et uniformement integralde et d'après les prop de la derivation mus le signe integrale, f_x est pfois derivable et $CP_{x}(t) = \int_{-\infty}^{+\infty} (ix)^{(k)} e^{itx} f(x) dx$ $Q_{x}^{(k)}(t) = E((ix)^{k} e^{itx})$