State Population of Washington

The Data

This is the initial data since 1900 taken from Wolfram Alpha:

The next step is to only get the year and population together and disregard other data. To make the data easier to graph, the population has been scaled down by a factor of one million.

```
In[2]:= StatePop = Table [{StatePops[[j]][[1]][[1]], StatePops[[j]][[2]] / 10.6}, {j, 1, 25}] Out[2]:= {{1900, 0.518103}, {1910, 1.14199}, {1920, 1.35662}, {1930, 1.5634}, {1940, 1.73619}, {1950, 2.37896}, {1960, 2.85321}, {1970, 3.41324}, {1980, 4.13235}, {1990, 4.86669}, {2000, 5.91112}, {2001, 5.98779}, {2002, 6.05619}, {2003, 6.11326}, {2004, 6.18429}, {2005, 6.26128}, {2006, 6.37224}, {2007, 6.46498}, {2008, 6.56607}, {2009, 6.66419}, {2010, 6.72454}, {2011, 6.82211}, {2012, 6.89633}, {2013, 6.97374}, {2014, 7.06153}} Here is a neat table displaying the data:

In[3]:= Text[Grid[Prepend[StatePop, {"Year", "Population (in millions)"}],

Alignment → Center, Dividers → {2 → True}, Spacings → {1, 1}]]
```

Out[3]=	Year	Population (in millions)
	1900	0.518103
	1910	1.14199
	1920	1.35662
	1930	1.5634
	1940	1.73619
	1950	2.37896
	1960	2.85321
	1970	3.41324
	1980	4.13235
	1990	4.86669
	2000	5.91112
	2001	5.98779
	2002	6.05619
	2003	6.11326
	2004	6.18429
	2005	6.26128
	2006	6.37224
	2007	6.46498
	2008	6.56607
	2009	6.66419
	2010	6.72454
	2011	6.82211
	2012	6.89633
	2013	6.97374
	2014	7.06153
	2014	7.06153

Here is the data plotted:

Finding Medians

The next step is to split the data up into three sections. Since there are 25 points, the first and third sections will have 8 points while the middle section will have 9 points:

The next step is the find the median of the x values and median of the y values for each of the three sections, and then store them as a point.

First will be finding and storing median x-values of the points:

```
In[5]:= firstPopX = Table[{StatePop[[j]][[1]]}, {j, 1, 8}];
    secondPopX = Table[{StatePop[[j]][[1]]}, {j, 9, 17}];
    thirdPopX = Table[{StatePop[[j]][[1]]}, {j, 18, 25}];
    MidPointPopX = {Median[firstPopX], Median[secondPopX], Median[thirdPopX] * 1.}
Out[8]= {{1935}, {2002}, {2010.5}}
```

Below is the finding and sorting of medians for the y-values of the three points:

```
In[9]:= firstPopY = Table[{StatePop[[j]][[2]]}, {j, 1, 8}];
    secondPopY = Table[{StatePop[[j]][[2]]}, {j, 9, 17}];
    thirdPopY = Table[{StatePop[[j]][[2]]}, {j, 18, 25}];
    MidPointPopY = {Median[firstPopY], Median[secondPopY], Median[thirdPopY]}
Out[12]= {{1.64979}, {6.05619}, {6.77333}}
```

Now the corresponding x and y values of the medians will be transposed:

In[13]:= TableOfMedians = Transpose[{MidPointPopX, MidPointPopY}];

Initial Phase of Median-Median Line

Now a line will be made that goes through median 1 and 3 and it will be displayed along with median 2:

```
In[14]:= PlotOfMedians =
    ListPlot[{{1935, 1.6497935}, {2002, 6.056186999999995}, {2010.5, 6.77332599999999}}},
    PlotMarkers → {Automatic, 10}, PlotStyle → Green,
    AxesLabel → {"Year", "Population (in millions)"},
    PlotLabel → "Population of Washington Over Time"];
Medians1 = {1935, 1.6497935};
Medians3 = {2010.5, 6.77332599999999};
LineMedians1and3 = Graphics[{RGBColor[1, 0, 0], InfiniteLine[{Medians1, Medians3}]}];
Show[PlotOfMedians, LineMedians1and3, AxesLabel → {"Year", "Population (in millions)"},
    PlotLabel → "Population of Washington Over Time"]
```


Finding the Median-Median Line

To complete the Median-Median Line, this line must be shifted down 1/3 of the way to the second point.

To do this, the slope of LineMedians1 and 3 will be found and fitted to Median 2 and a linear equation will be found. Then the line will be moved down 1/3 of the distance, which will be the "b" value if the linear equation is in the form of y=mx+b.

```
In[20]:= bVal = Solve[1.6497935 == (SlopeOfLine * 1935) + b, b];
      So the b-value is -129.662.
      Solving for b of parallel line through Point 2 by plugging point 2 in:
ln[21]:= bVal2 = Solve[6.056186999999995 == (SlopeOfLine * 2002) + c, c];
      The b-value of this line is -129.802.
      Find difference and divide by 3 and move median line down by this amount and display on graph
      with summary points:
ln[22]:= ShiftDown = ((-129.662 + 129.802) / 3);
      newB = -129.662 - ShiftDown;
      MedianmedianL = Plot[(SlopeOfLine * x) + newB, {x, 1900, 2012}];
      Show[PlotOfMedians, MedianmedianL, AxesLabel \rightarrow {"Year", "Population (in millions)"},
       PlotLabel → "Population of Washington Over Time"]
                      Population of Washington Over Time
      Population (in millions)
            6
Out[25]=
                                                             Year
                                                         2010
               1940
                     1950
                           1960
                                 1970
                                       1980
                                             1990
                                                   2000
      Here is a view of the line with all the data and summary points:
In[26]:= Show[PlotOfMedians, MedianmedianL, PlotOfData,
       AxesLabel → {"Year", "Population (in millions)"},
       PlotLabel → "Population of Washington Over Time"]
                      Population of Washington Over Time
      Population (in millions)
            7
            6
Out[26]=
```

Residuals for Median-Median Line

1970

To plot residuals the residuals must first be calculated and can then be displayed:

Median Median Line Residual Plot

Distance From Median Median Line

Sum of residuals:

ln[33]:= SumOfResids = Total[MedianMedianresids]

Out[33]= 0.867523