Algorithms: Design and Analysis - CS 412

Problem Set 02: Asymptotic Analysis

1. Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $\max\{f(n),g(n)\}=\Theta(f(n)+g(n))$.

Proof. We can prove the above by showing that there exists constants $c_1, c_2, n_0 > 0$ such that $\forall n \geq n_0, 0 \leq c_1(f(n) + g(n)) \leq \max\{f(n), g(n)\} \leq c_2(f(n) + g(n))$.

As the functions are asymptotically non-negative, we can assume that for some $n_0 > 0$, $f(n) \ge 0$ and $g(n) \ge 0$. Therefore, $n \ge n_0$. Then

$$f(n)+g(n)\geq \max\{f(n),g(n)\}$$

. Also, since $f(n) \le \max\{f(n), g(n)\}$, and $g(n) \le \max\{f(n), g(n)\}$,

$$f(n) + g(n) \le 2max\{f(n), g(n)\}$$

$$\frac{1}{2}(f(n)+g(n)) \leq \max\{f(n),g(n)\}$$

Then combining the above two inequalities, we get

$$0 \le \frac{1}{2}(f(n) + g(n)) \le \max\{f(n), g(n)\} \le f(n) + g(n) \text{ for } n \ge n_0$$

which follows from the definition of Θ -notation with $c_1 = \frac{1}{2}, c_2 = 1$.

Therefore,
$$max\{f(n), g(n)\} = \Theta(f(n) + g(n)).$$

2. Prove or disprove the statements below.

(a)
$$(n+1)^2 = n^2 + O(n)$$

Expand. $(n+1)^2 = n^2 + 2n + 1$.

Then $n^2 + 2n + 1 = n^2 + O(n)$ since O(n) denotes a function which grows linearly with n, and 2n + 1 is indeed O(n). Hence proved that $(n + 1)^2 = n^2 + O(n)$.

(b)
$$(n + O(\sqrt{(n)}))(n + O(\log(n)))^2 = n^3 + O(\sqrt{n^5})$$

Expand. $(n + O(\sqrt{(n)}))(n^2 + O(n \log n) + O(\log^2 n))$

 $= (n + O(\sqrt(n)))(n^2 + O(n\log n))$

 $= n^3 + O(n^{\frac{3}{2}}\sqrt{n}) + O(n^2\log n) + O(n^{\frac{3}{2}}\log n)$

 $= n^3 + O(n^2 \log n) + O(n^{\frac{3}{2}} \sqrt{n}) + O(n^{\frac{3}{2}} \log n)$

 $= n^3 + O(n^{\frac{5}{2}}) + O(n^2 \log n) + O(n^{\frac{3}{2}} \log n)$

Clearly, the dominating terms are n^3 , followed by $O(n^{\frac{5}{2}})$, and $O(n^{\frac{5}{2}})$ reduces to $O(\sqrt{n^5})$.

Then we get: $n^3 + O(\sqrt(n^5))$ as the dominating terms. Hence proved that the statement is true.

(c) $\exp(O(1)) = O(e^n)$

The term $\exp(O(1))$ implies the constant e, which simplifies to O(e). Obviously O(e) is not equal to $O(e^n)$, since e^n is an exponential function, and e is a constant. Hence disproved.

(d) $n^{\log(n)} = O((\log n)^n)$

 $O((\log n)^n) = O(n \log n)$. For large values of n, $n^{\log n}$ grows faster than $n \log n$. Hence disproved.

(e) $2^{2n} = O(2^n)$

Assume that c and n_0 are positive constants satisfying $0 \le 2^{2n} \le c2^n$ for all $n \ge n_0$. Then $2^{2n} = 2^n \cdot 2^n \le c2^n$, which implies that $c \ge 2^n$. The last inequality, however, does not hold regardless of a value we would choose for c, because 2^n becomes arbitrarily large as n gets large. Hence, disproved.

3. Prove that for any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Proof. By the definition of Θ -notation, $f(n) = \Theta(g(n))$ whenever there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$. This condition can be decomposed into the combination of inequalities $0 \le c_1 g(n) \le f(n)$ and $0 \le f(n) \le c_2 g(n)$, both holding for all $n \ge n_0$. From the former follows $f(n) = \Omega(g(n))$ and from the latter follows f(n) = O(g(n)).

For the proof of the opposite direction, suppose that $f(n) = \Omega(g(n))$ and f(n) = O(g(n)). The former means that there exist positive constants c_1 and n_1 such that $0 \le c_1 g(n) \le f(n)$ for all $n \ge n_1$, and the latter means that there exist positive constants c_2 and n_2 such that $0 \le f(n) \le c_2 g(n)$ for all $n \ge n_2$. Then, by letting $n_0 = \max\{n_1, n_2\}$ and merging both conditions, we get that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$. Thus, $f(n) = \Theta(g(n))$.

4. Prove that for $S \subseteq \mathbb{Z}$,

$$\sum_{k \in S} \Theta(f(k)) = \Theta\left(\sum_{k \in S} f(k)\right)$$

assuming both sums converge.

Proof. The question asks to prove that the sum of Θ of some function is equal to the Θ of the sum of that function.

Let $g_k = \Theta(f(k))$ for our ease, then by the definition, $\exists c_1, c_2, n_0 \ \forall n \geq n_0$ such that

$$\forall_{k \in S} \ g_k = \Theta(f(k)) \iff 0 \le c_1 f_k \le g_k \le c_2 f k$$

Then we need to show that

$$\sum_{k \in S} g_k = \Theta\left(\sum_{k \in S} f(k)\right)$$

Then from the definition of Θ , we sum over k:

$$\sum_{k \in S} a_k f_k \leq \sum_{k \in S} g_k \leq \sum_{k \in S} b_k f_k$$

$$\sum_{k \in S} \min\{a_k\} f_k \leq \sum_{k \in S} g_k \leq \sum_{k \in S} \max\{b_k\} f_k$$

$$\min\{a_k\} \left(\sum_{k \in S} f_k\right) \leq \sum_{k \in S} g_k \leq \max\{b_k\} \left(\sum_{k \in S} f_k\right) \ \forall_{n \geq n_0}$$

$$\implies \sum_{k \in S} g_k = \Theta\left(\sum_{k \in S} f(k)\right)$$

5. Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

Let's determine positive constants c and n_0 such that $0 \le 2^{n+1} \le c2^n$ for all $n \ge n_0$. Since $2^{n+1} = 2 \cdot 2^n$, we can pick c = 2 and $n_0 = 1$. So $2^{n+1} = O(2^n)$.

Now let's assume that c and n_0 are positive constants satisfying $0 \le 2^{2n} \le c2^n$ for all $n \ge n_0$. Then $2^{2n} = 2^n \cdot 2^n \le c2^n$, which implies that $c \ge 2^n$. The last inequality, however, does not hold regardless of a value we would choose for c, because 2^n becomes arbitrarily large as n gets large. Hence, $2^{2n} \ne O(2^n)$.