Università degli studi di Catania Corso di laurea triennale in Fisica Esame di Meccanica Analitica Appello del 28.02.2020

Un sistema materiale rigido, posto in un piano verticale Π , é costituito da una sbarra omogenea pesante AB di massa m e lunghezza L e da un disco omogeneo pesante Γ di massa 2m, centro G e raggio r. L'asta AB é rigidamente saldata sul disco Γ , lungo un suo raggio, in maniera tale che l'estremo A coincida con il centro del disco. Il disco Γ é vincolato a rotolare senza strisciare, lungo il bordo interno di una guida circolare γ di raggio $R=3\,r$ fissa nel piano verticale, in maniera tale che quando Γ si trova nella posizione più bassa (vedi figura) il vettore B-A sia verticale ascendente. Sul sistema oltre alla forza peso agisce la forza elastica

$${F = -k(G - P), G}$$
 con $k > 0$

essendo P il punto fisso di intersezione della guida circolare γ con l'asse delle x positive, come in figura. Supponendo che valgano le relazioni $k=m\,g/r$ e $L=(12/\sqrt{2})\,r$ e scegliendo come coordinata lagrangiana l'angolo ϑ che la direzione di \overrightarrow{OG} forma con la verticale discendente (vedi figura), si chiede di determinare

- 1. Le configurazioni di equilibrio del sistema, studiandone la stabilità.
- 2. Scrivere l'equazione di moto, determinando gli eventuali integrali primi.
- 3. Studiare i moti in prima approssimazione attorno ad una configurazione di equilibrio stabile per il sistema.

