Four-Step Design Process

Reference

Kimball, R., Ross, M. (2002). *The data warehouse toolkit, 2nd edition*. New York, NY. John Wiley & Sons, Inc.

ISBN: 0-471-20024-7

Four-Step Design Process

- select the business process to model
- declare the grain of the business process
- choose dimensions that apply to each fact table row
- identify the numeric facts that will populate each fact table row

Selecting the Business Process

- a business process is a natural business activity, supported by a data-collection system
 - raw materials purchasing
 - order management
 - inventory
 - customer relationship management
 - budgeting
 - human resources management

Declare the Grain

- describe exactly what an individual fact table row specifies
 - a line item on a retail sales ticket
 - a boarding pass to get on a flight
 - a daily snapshot of inventory levels for each product in a warehouse
 - a snapshot of account balances at end of each accounting period
 - an individual procurement transaction

Choose the Dimensions

- if the grain is clearly defined, the dimensions are normally easy to determine
- dimensions should supply a rich set of descriptive data for the business process being modeled

Identify the Facts

- to identify the facts, ask "what are we measuring?"
- facts must be compatible with the grain defined in step 2
- typical facts are numeric additive values such as quantity ordered or dollar cost amount

Retail Case Study

- we have a large grocery store chain
 - 100 grocery stores
 - 5-state area
 - each grocery store has many departments: grocery, frozen foods, meat, produce, bakery, floral, health and beauty, ...
 - approximately 60,000 products per store, identified by SKUs

SKUs

- of the 60,000 products in the grocery store, about 55,000 are from outside manufacturers and have a *universal* product code (UPC), which is at the same grain as an SKU
- each different package variation of a product has a separate UPC and therefore also a separate SKU

SKUs

 the grocery store assigns SKUs to these products and sticks scanner labels, containing the SKU, on these products

Data Collection

- when a customer checks out at a cash register, the bar codes are scanned directly to the point-of-sale (POS) system of the grocery store
- data is also collected when vendors make deliveries, and inventory information is kept
- for now, we will only be concerned with POS transactions

The Case Study

- management is interested in studying purchasing habits of customers to determine the most effective marketing strategies
- to this end, they want to build a data warehouse
- the business process to be modeled is customer purchases at POS terminals

Retail Sales Model – 4 Step Process

- business process: customer purchases as modeled by the POS system
- grain: an individual line item on a POS transaction
- dimensions: store, product, date, and transaction
- facts: sales quantity, sales dollar amount, cost dollar amount, profit dollar amount

Dimension Tables

- note that all dimension tables will have a surrogate key
- if the dimension table also exists in the operational database and has a primary key, the primary key value is stored, but it is *not* used as the surrogate key in the date warehouse

Date Dimension Attributes

- date dimension is included in virtually every data mart
- this is necessary because SQL date function does not support many date attributes, such as fiscal periods and holidays
- the date dimension may be relatively small: 10 years worth of days is only 3,650 rows – relatively small for a dimension

A Typical Date Dimension

- may include 50 or more attributes, including SKU (stock-keeping unit) number, product description, department code, department description, brand, weight, package type, and many more
- rich set of attributes makes it easy to drill down through the data

Typical Product Dimension

Product	
PK	ProductKey
	ProductDescription SKUNumber BrandName BrandDescription CategoryName CategoryDescription DepartmentName DepartmentDescription PackageTypeDescription PackageSize FatContent DietType Weight WeightUnitsOfMeasure StorageType ShelfLifeType ShelfWidth ShelfHeight ShelfDepthand more

 however, because merchandise changes and we store historical data for products that are no longer carried, we expect at least 150,000 rows in this table – but perhaps as many as a million

 this means that a department description might be repeated an average of 3,000 times in the product table

 dimension table space requirements are small in comparison to the space required by the fact table

Store Dimension

- -
- a geographic dimension
- a store can be thought of as a location
- stores can be "rolled up" to any geographic attribute, such as zip, state, or city
- stores can also be rolled up to store districts and regions

Store Dimension

Typical Store Dimension

The Transaction Dimension

- information from the transaction that we might want to store includes
 - date
 - store number
 - transaction number
- except for the transaction number, the information that we want to store for transactions is already present in other dimensions

The Transaction Dimension

- this means the only item that needs to be stored in the transaction dimension is the transaction number
- because this dimension has only an identifier-like attribute and no other attributes, the POS transaction dimension is considered to be empty and is not included as a separate dimension table

The Transaction Dimension

- the transaction dimension is referred to as a degenerate dimension
- the POS transaction number is included in the fact table (with notation DD to indicate it is a degenerate dimension) and does not link to any dimension table
- if we do not include the POS transaction number, we cannot pull together all the line items on a particular transaction

The Fact Table

- unlike the dimension tables, the fact table will normally have a composite key that includes the primary keys of the dimension tables
- other attributes may also be part of the primary key of the fact table
- in addition, "facts" are stored in the fact table
- the primary key attributes are not facts

The Fact Table

POSFactTable		
PK,FK1 PK,FK2 PK,FK3 PK	DateKey ProductKEY StoreKey POSTransactionNumber(DD)	
	SalesQuantity SalesDollarAmount CostDollarAmount ProfitDollarAmount	

The Complete Model

- sales quantity, dollar sales amount, cost dollar amount, and profit dollar amount are additive across all dimensions
- for example, consider sales quantity
 - we can add sales quantity for a particular product and a particular date across all stores and the result is meaningful ("the chain sold 375 8-ounce packages of Kraft's shredded Swiss cheese on 1/5/2007")

 we can add sales quantity for a particular store and a particular date across all products and the result is meaningful ("Piggly Wiggly Store 203 sold 3,456 individual items on 1/5/2007")

• we can add sales quantity for a particular store and a particular product across all dates and the result is meaningful ("Piggly Wiggly Store 203 has sold 4,523 8-ounce packages of Kraft's shredded Swiss cheese since it opened"

• we can add sales quantity for all stores and all products across all dates and the result is meaningful ("The stores in the chain have sold a total of 108,234,567 items since the chain opened its first store in 1995")

Semi-Additive Facts

- a semi-additive fact can be added across some, but not all, dimensions
- bank balances are semi-additive
 - you can add across accounts (you can add the amounts of your savings and checking accounts and the total makes sense)
 - you can't add across dates (adding the amounts you have in a savings account today and tomorrow does not give any meaningful information

Non-Additive Facts

- measures of intensity, such as temperatures or blood pressure, for example, are usually non-additive
 - it does not make sense to add the temperatures in Dallas and New York City
 - it does not make sense to add yesterday's and today's high temperature

Calculated Facts

- profit can be calculated by subtracting the cost from the sales
- in operational databases, calculated facts are generally not stored
- in a data warehouse, it is common to store calculated facts – the storage cost is minor and storing it removes the possibility of user error in making the calculation

Things to Avoid

- dimension normalization (snowflaking)
- too many dimensions (centipedes)
 - rule of thumb is to have less than 15 dimensions
 - 25 or more dimensions is almost always wrong

- dimensional tables should use surrogate keys
 - surrogate keys should be meaningless
 - do not use "smart" keys where you can tell something about the contents of the row simply by looking at the key

Surrogate Keys Exceptions

- surrogate keys should be used for the date dimension, but unlike other surrogate keys, the date dimension keys should be assigned in a meaningful, sequential order
- typically, surrogate keys are not assigned to degenerate dimensions
 - in the example in these slides, the actual transaction number is stored in the fact table, instead of a surrogate key

Four-Step Design Process

The End