μ**A741**

FREQUENCY-COMPENSATED OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A741 is a high performance monolithic Operational Amplifier constructed using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Military (741) ±22 V Commercial (741C) ±18 V Internal Power Dissipation (Note 1) Metal Can 500 mW DIP 670 mW Mini DIP 310 mW Flatpak 570 mW Differential Input Voltage ±30 V Input Voltage (Note 2) ±15 V Storage Temperature Range Metal Can, DIP, and Flatpak -65° C to $+150^{\circ}$ C Mini DIP -55°C to +125°C Operating Temperature Range -55°C to +125°C Military (741) Commercial (741C) 0° C to $+70^{\circ}$ C Lead Temperature (Soldering) Metal Can, DIP, and Flatpak (60 seconds) 300°C Mini DIP (10 seconds) 260°C **Output Short Circuit Duration (Note 3)** Indefinite

Notes on following pages.

741 **ELECTRICAL CHARACTERISTICS** (V_S = ± 15 V, T_A = 25° C unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage		R _S ≤ 10 kΩ		1.0	5.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		MΩ
Input Capacitance				1.4		pF
Offset Voltage Adjustment Range				±15		mV
Large Signal Voltage Gain		R _L ≥ 2 kΩ, V _{OUT} = ±10 V	50,000	200,000		
Output Resistance				75		Ω
Output Short Circuit C	urrent			25		mA
Supply Current				1.7	2.8	mA
Power Consumption				50	85	mW
Transient Response	Risetime	V_{IN} = 20 mV, R_L = 2 k Ω , C_L \leq 100 pF		0.3		μs
(Unity Gain)	Overshoot			5.0		%
Slew Rate		R _L ≥ 2 kΩ		0.5		V/µs

Input Offset Voltage	R _S ≤ 10 kΩ		1.0	6.0	mV
Innut Office Courses	T _A = +125°C	•	7.0	200	nA
Input Offset Current	T _A = -55°C		85	500	nA
Input Bias Current	T _A = +125°C		0.03	0.5	μΑ
	T _A = -55° C		0.3	1.5	μΑ
Input Voltage Range		±12	±13		V
Common Mode Rejection Ratio	R _S ≤ 10 kΩ	70	90		dB
Supply Voltage Rejection Ratio	R _S ≤ 10 kΩ		30	150	μV/V
Large Signal Voltage Gain	R _L ≥ 2 kΩ, V _{OUT} = ±10 V	25,000			
Output Valence States	R _L ≥ 10 kΩ	±12	±14		V
Output Voltage Swing	R _L ≥ 2 kΩ	±10	±13		V
Sun also Ourseast	T _A = +125°C		1.5	2.5	mA
Supply Current	T _A = -55° C		2.0	3.3	mA
Paris Carrier	T _A = +125°C		45	75	mW
Power Consumption	T _A = -55° C		60	100	mW

TYPICAL PERFORMANCE CURVES FOR 741

٧

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741

741C

ELECTRICAL CHARACTERISTICS (V_S = ±	$15 V, T_{\Delta} = 25$	°C unless otherwise specified)
--	-------------------------	--------------------------------

 $R_L \geqslant 2 \; k\Omega$

PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		R _S ≤ 10 kΩ		2.0	6.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nΑ
Input Resistance			0.3	2.0		MΩ
Input Capacitance				1.4		pF
Offset Voltage Adjustm	ent Range			±15		mV
Input Voltage Range			±12	±13		V
Common Mode Rejection	on Ratio	R _S ≤ 10 kΩ	70	90		dB
Supply Voltage Rejection	on Ratio	R _S ≤ 10 kΩ		30	150	μV/V
Large Signal Voltage Ga	in	$R_L \geqslant 2 \text{ k}\Omega$, $V_{OUT} = \pm 10 \text{ V}$	20,000	200,000		
0		R _L ≥ 10 kΩ	±12	±14		V
Output Voltage Swing		R _L ≥ 2 kΩ	±10	±13		V
Output Resistance				75		Ω
Output Short Circuit Co	urrent			25		mA
Supply Current				1.7	2.8	mA
Power Consumption				50	85	mW
Transient Response (Unity Gain)	Risetime	V _{IN} = 20 mV, R _L = 2 kΩ, C _L ≤ 100 pF		0.3		μs
	Overshoot			5.0		%
Slew Rate		R _L ≥ 2 kΩ		0.5		V/μs
The following specif	ications apply	for 0°C ≤ T _A ≤ +70°C:				
Input Offset Voltage					7.5	mV
Input Offset Current					300	nA
Input Bias Current					800	nA
Large Signal Voltage Ga	in	R _L ≥ 2 kΩ, V _{OUT} = ±10 V	15,000			
	····					

TYPICAL PERFORMANCE CURVES FOR 741C

±10

Output Voltage Swing

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

±13

NOTES:

- Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for the Metal Can, 8.3 mW/°C for the DIP, 5.6 mW/°C for the Mini DIP and 7.1 mW/°C for the Flatpak.
 For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
 Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.

TYPICAL PERFORMANCE CURVES FOR 741

INPUT RESISTANCE
AS A FUNCTION OF
AMBIENT TEMPERATURE

10.0

5.0

0.1

-60

-20

20

60

100

140

TEMPERATURE - C

TEMPERATURE - C

CURRENT -

OFFSET (

TYPICAL PERFORMANCE CURVES FOR 741C

TYPICAL PERFORMANCE CURVES FOR 741 AND 741C (Cont'd)

OUTPUT RESISTANCE

FREQUENCY CHARACTERISTICS
AS A FUNCTION OF
SUPPLY VOLTAGE

TRANSIENT RESPONSE TEST CIRCUIT

VOLTAGE OFFSET NULL CIRCUIT

COMMON MODE REJECTION RATIO AS A FUNCTION OF

VOLTAGE FOLLOWER
LARGE-SIGNAL PULSE RESPONSE

TYPICAL APPLICATIONS

UNITY-GAIN VOLTAGE FOLLOWER

$$R_{1N}$$
 = 400 $M\Omega$

 R_{OUT} < < 1 Ω

B.W. = 1 MHz

NON-INVERTING AMPLIFIER

GAIN	R ₁	R ₂	B.W.	R _{IN}
10	1 kΩ	9 kΩ	100 kHz	400 MΩ
100	100 Ω	9.9 kΩ	10 kHz	280 MΩ
1000	100 Ω	99.9 kΩ	1 kHz	80 MΩ

INVERTING AMPLIFIER

GAIN	R ₁	R ₂	B.W.	R _{IN}
1	10 kΩ	10 kΩ	1 MHz	10 kΩ
10	1 kΩ	10 kΩ	100 kHz	1 kΩ
100	1 kΩ	100 kΩ	10 kHz	1 kΩ
1000	100 Ω	100 kΩ	1 kHz	100 Ω

CLIPPING AMPLIFIER

$$\frac{\mathsf{E}_{\mathsf{OUT}}}{\mathsf{E}_{\mathsf{IN}}} = \frac{\mathsf{R}_{\mathsf{2}}}{\mathsf{R}_{\mathsf{1}}} \mathsf{if} \; \big| \; \mathsf{E}_{\mathsf{OUT}} \; \big| \leqslant \mathsf{V}_{\mathsf{Z}} + \mathsf{0.7} \; \mathsf{V}$$

where V_Z = Zener breakdown voltage

3

TYPICAL APPLICATIONS (Cont'd)

SIMPLE INTEGRATOR

$$E_{OUT} = -\frac{1}{R_1C_1}\int E_{IN}dt$$

SIMPLE DIFFERENTIATOR

$$E_{OUT} = -R_2C_1 \frac{dE_{IN}}{dt}$$

LOW DRIFT LOW NOISE AMPLIFIER

 $\label{eq:Voltage Gain = 10^3} % \begin{subarray}{l} \begin{suba$

HIGH SLEW RATE POWER AMPLIFIER

NOTCH FILTER USING THE μ A741 AS A GYRATOR

μΑ741Α • μΑ741Ε

FREQUENCY COMPENSATED OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A741A and E are high performance monolithic Operational Amplifiers constructed using the Fairchild Planar* epitaxial process. They are intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741A and E ideal for use as voltage followers. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. Electrical characteristics are identical to MIL-M-38510/10101.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ±22V Internal Power Dissipation (Note 1) Metal Can 500 mW DIP 670 mW Flatpak 570 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Storage Temperature Range -65°C to +150°C Operating Temperature Range Military (741A) -55°C to +125°C Commercial (741E) 0°C to +70°C Lead Temperature (Soldering, 60 seconds) 300°C **Output Short Circuit Duration (Note 3)** Indefinite

Notes on following pages.

CONNECTION DIAGRAMS 8-LEAD METAL CAN (TOP VIEW) PACKAGE OUTLINE 5B **ORDER INFORMATION** TYPE PART NO. 741A **741AHM** 741EC **741EHC** 14-LEAD DIP (TOP VIEW) **PACKAGE OUTLINE 6A** ORDER INFORMATION PART NO. TYPE 741A **741ADM** 741EC 741EDC 10-LEAD FLATPAK (TOP VIEW) PACKAGE OUTLINE 3F ORDER INFORMATION PART NO TYPE

741A

741AFM

^{*}Planar is a patented Fairchild process.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741Α • μΑ741Ε

741A

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS		MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$R_S \le 50\Omega$			0.8	3.0	mV
Average Input Offset	Voltage Drift					15	μV/°C
Input Offset Current					3.0	30	nA
Average Input Offset	Current Drift					0.5	nA/∘C
Input Bias Current					30	80	nA
Power Supply Reject	ion Ratio	V _S = +10, -	-20 ; $V_S = +20$, $-10V$, $R_S = 50\Omega$		15	50	μV/V
Output Short Circuit	Current			10	25	35	mA
Power Dissipation		V _S = ±20V			80	150	mW
Input Impedance		V _S = ±20V		1.0	6.0		MΩ
Large Signal Voltage	Gain	$V_S = \pm 20V$,	R _L = 2kΩ, V _{OUT} = ±15V	50			V/mV
Transient Response	Rise Time				0.25	0.8	μs
(Unity Gain)	Overshoot				6.0	20	%
Bandwidth (Note 4)				.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V		0.3	0.7		V/μs
The following	specifications apply	for -55° C \leq T _A \leq	≨ +125° C				
Input Offset Voltage					** 1	4.0	mV
Input Offset Current						70	nA
Input Bias Current						210	nA
Common Mode Rejec	tion Ratio	$V_S = \pm 20 V$,	V_{IN} = ±15V, R_S = 50 Ω	80	95		dB
Adjustment For Inpu	t Offset Voltage	V _S = ±20V		10			mV
Output Short Circuit	Current			10		40	mA
Power Dissipation		V _S = ±20V	_55°C			165	mW
Power Dissipation		VS - ±20V	+125°C			135	mW
Input Impedance		V _S = ±20V		0.5			МΩ
Output Voltage Swing		V- = +00V	$R_L = 10k\Omega$ $R_L = 2k\Omega$	±16			V
		VS = ±20V,	R _L = 2kΩ	±15			V
Lorgo Cianal Malia	C-i-	$V_S = \pm 20V$,	R _L = 2kΩ, V _{OUT} = ±15V	32			V/mV
Large Signal Voltage	Gain	V _S = ±5V, F	$V_S = \pm 5V, R_1 = 2k\Omega, V_{OUT} = \pm 2V$				V/mV

NOTES

- 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mW/°C for the Metal Can, 8.3mW/°C for the DIP and 7.1mW/°C for the Flatpak.

 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

 3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.

- 4. Calculated value from: BW(MHz) = $\frac{0.35}{\text{Rise Time (}\mu\text{s})}$

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741Α • μΑ741Ε

741E

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$R_S \le 50\Omega$		0.8	3.0	mV
Average Input Offset	Voltage Drift				15	μV/°C
Input Offset Current				3.0	30	nA
Average Input Offset	Current Drift				0.5	nA/°C
Input Bias Current				30	80	nA
Power Supply Reject	ion Ratio	$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$		15	50	μV/V
Output Short Circuit	Current		10	25	35	mA
Power Dissipation		V _S = ±20V		80	150	mW
Input Impedance		V _S = ±20V	1.0	6.0		MΩ
Large Signal Voltage	Gain	$V_S = \pm 20V, R_L = 2k\Omega, V_{OUT} = \pm 15V$	50			V/mV
Transient Response	Rise Time			0.25	0.8	μs
(Unity Gain)	Overshoot			6.0	20	%
Bandwidth (Note 4)			.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V	0.3	0.7		V/µs
The following	specifications apply	for 0° C \leq T _A \leq 70° C				
Input Offset Voltage					4.0	mV
Input Offset Current					70	nA
Input Bias Current					210	nA
Common Mode Rejec	tion Ratio	$V_S = \pm 20V$, $V_{IN} = \pm 15V$, $R_S = 50\Omega$	80	95		dB
Adjustment For Inpu	t Offset Voltage	V _S = ±20V	10			mV
Output Short Circuit Current			10		40	mA
Power Dissipation		V _S = ±20V			150	mW
Input Impedance		V _S = ±20V	0.5			MΩ
		$V_S = \pm 20V$, $R_L = 10k\Omega$ $R_1 = 2k\Omega$	±16			V
Output Voltage Swing		$VS = \pm 20V$, $R_L = 2k\Omega$	±15			V
Laura Cianal Matrice	C-i-	$V_S = \pm 20V, R_L = 2k\Omega, V_{OUT} = \pm 15V$	32			V/mV
Large Signal Voltage	Gain	$V_S = \pm 5V$, $R_L = 2k\Omega$, $V_{OUT} = \pm 2V$	10			V/mV

VOLTAGE OFFSET NULL CIRCUIT

TRANSIENT RESPONSE TEST CIRCUIT

って

TYPICAL PERFORMANCE CURVES FOR 741A AND 741E

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741Α • μΑ741Ε

TYPICAL PERFORMANCE CURVES FOR 741A

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT RESISTANCE AS A FUNCTION OF

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS A FUNCTION OF

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL PERFORMANCE CURVES FOR 741E

INPUT BIAS CURRENT AS A FUNCTION OF

INPUT RESISTANCE AS A FUNCTION OF

INPUT OFFSET CURRENT AS A FUNCTION OF

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

FREQUENCY CHARACTERISTICS
AS A FUNCTION OF AMBIENT TEMPERATURE

