SEQUENCE LISTING

<110> Skånemejerier AB

<120> NEW ENZYME AND ITS USE

<130> 75086

<150> US 60/320,139

<151> 2003-04-24

<150> US 60/481,598

<151> 2003-11-05

<160> 18

<170> PatentIn version 3.2

<210> 1

<211> 458

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 1

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu 1 5 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys
20 25 30

Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp 35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala 50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe 65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr 100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile 115. 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly

130 135 140

Gly Asn Val Thr Tyr Gln Gly Val Ala Val Thr Arg Ser Arg Lys Glu 145 150 150

- Gly Ile Ala His Asn Tyr Lys Asn Glu Thr Glu Trp Arg Ala Asn Ile 165 170 175
- Asp Thr Val Met Ala Trp Phe Thr Glu Glu Asp Leu Asp Leu Val Thr
 180 185 190
- Leu Tyr Phe Gly Glu Pro Asp Ser Thr Gly His Arg Tyr Gly Pro Glu 195 200 205
- Ser Pro Glu Arg Arg Glu Met Val Arg Gln Val Asp Arg Thr Val Gly 210 220
- Tyr Leu Arg Glu Ser Ile Ala Arg Asn His Leu Thr Asp Arg Leu Asn 225 230 235 240
- Leu Ile Ile Thr Ser Asp His Gly Met Thr Thr Val Asp Lys Arg Ala 245 250 255
- Gly Asp Leu Val Glu Phe His Lys Phe Pro Asn Phe Thr Phe Arg Asp 260 265 270
- Ile Glu Phe Glu Leu Leu Asp Tyr Gly Pro Asn Gly Met Leu Leu Pro 275 280 285
- Lys Glu Gly Arg Leu Glu Lys Val Tyr Asp Ala Leu Lys Asp Ala His 290 295 300
- Pro Lys Leu His Val Tyr Lys Lys Glu Ala Phe Pro Glu Ala Phe His 305 310 315 320
- Tyr Ala Asn Asn Pro Arg Val Thr Pro Leu Leu Met Tyr Ser Asp Leu 325 330 335
- Gly Tyr Val Ile His Gly Arg Ile Asn Val Gln Phe Asn Asn Gly Glu 340 345 350
- His Gly Phe Asp Asn Lys Asp Met Asp Met Lys Thr Ile Phe Arg Ala 355 360 365
- Val Gly Pro Ser Phe Arg Ala Gly Leu Glu Val Glu Pro Phe Glu Ser . 370 375 380

Val His Val Tyr Glu Leu Met Cys Arg Leu Leu Gly Ile Val Pro Glu 385 390 395 400

Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr Glu 405 410 415

Ser Ala Leu Pro Pro Asp Ala Leu Leu Val Ala Asp Gly Pro Cys Leu 420 425 430

Pro Ser Leu Ser Gln Ala Lys Gly Cys Met Pro Leu Ser Pro Ala Ala 435 440 445

Pro Thr Pro Ala Trp Leu Leu Trp Cys Trp
450
455

<210> 2

<211> 1701

<212> DNA

<213> Unknown

<220>

<223> Unknown

·<400> 2

gtccatctgg aaggcccagc atgagaggcc cggccgtcct cctcactgtg gctctggcca 60

cgctcctggc tcccggggcc ggagcaccgg tacaaagtca gggctcccag aacaagctgc

tcctggtgtc cttcgacggc ttccgctgga actacgacca ggacgtggac acccccaacc

tggacgccat ggcccgagac ggggtgaagg cacgctacat gacccccgcc tttgtcacca 240

tgaccagccc ctgccacttc accctggtca ccggcaaata tatcgagaac cacggggtgg

ttcacaacat gtactacaac accaccagca aggtgaagct gccctaccac gccacgctgg 360

gcatccagag gtggtgggac aacggcagcg tgcccatctg gatcacagcc cagaggcagg

gcctgagggc tggctccttc ttctacccgg gcgggaacgt cacctaccaa ggggtggctg

tgacgcggag ccggaaagaa ggcatcgcac acaactacaa aaatgagacg gagtggagag 540

cgaacatcga cacagtgatg gcgtggttca cagaggagga cctggatctg gtcacactct 600

acttcgggga gccggactcc acgggccaca ggtacggccc cgagtccccg gagaggaggg 660

agatggtgcg gcaggtggac cggaccgtgg gctacctccg ggagagcatc gcgcgcaacc 720

acctcacaga ccgcctcaac ctgatcatca catccgacca cggcatgacg accgtggaca 780

aacgggctgg cgacctggtt gaattccaca agttccccaa cttcaccttc cgggacatcg 840

agtttgagct cctggactac ggaccaaacg ggatgctgct ccctaaagaa gggaggctgg

agaaggtgta cgatgccctc aaggacgccc accccaagct ccacgtctac aagaaggagg 960

cgttccccga ggccttccac tacgccaaca accccagggt cacacccctg ctgatgtaca 1020

gcgaccttgg ctacgtcatc catgggagaa ttaacgtcca gttcaacaat ggggagcacg 1080

gctttgacaa caaggacatg gacatgaaga ccatcttccg cgctgtgggc cctagcttca 1140

gggcgggcct ggaggtggag ccctttgaga gcgtccacgt gtacgagctc atgtgccggc 1200

tgctgggcat cgtgcccgag gccaacgatg ggcacctagc tactctgctg cccatgctgc 1260

acacagaatc tgctcttccg cctgatgctc tgctggtcgc ggacggaccc tgcctcccca 1320

gcttatccca ggccagaggc tgcatgccac tgtccccggc agcgccaacc cctgcttggc 1380

tgttatggtg ctggtaataa gcctgcagcc caggtccaaa gcccccggcg agccggtccc

ataaccggcc ccctgcccct gcccctgctc ctgctcctcc ccttcgggcc ccctcctcct 1500

gcaaaacccg ctcccgaagc ggcgctgccg tctgcagcca cgcgggggcg cgcgggagtc

ttctgcgggc gctggaacct gcagacccgg cctcggtcag ctgggagggg cccgcccgg

cacaaagcac ccatgggaat aaaggccaag ccgcgacagt cagcaaaaaa aaaaaaaaa 1680

aaaaaaaaa aaaaaaaaa a 1701

<210> 3

<211> 18

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 3

Ala Phe Val Thr Met Thr Ser Pro Cys His Phe Thr Leu Val Thr Gly
1 10 15

Lys Tyr

<210> 4

<211> 458

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 4

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu 1 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys 20 25 30

Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp 35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala 50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe 65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr 100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile
115 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly 130 135 140

Gly 145	Asn	Val	Thr	Tyr	Gln 150	Gly	Val	Ala	Val	Thr 155	Arg	Ser	Arg	Lys	Glu 160
Gly	Ile	Ala	His	Asn 165	Tyr	Lys	Asn	Glu	Thr 170	Glu	Trp	Arg	Ala	Asn 175	Ile
Asp	Thr	Val	Met 180	Ala	Trp	Phe	Thr	Glu 185	Glu	Asp	Leu	Asp	Leu 190	Val	Thr
Leu	Tyr	Phe 195	Gly	Glu	Pro	Asp	Ser 200	Thr	Gly	His	Arg	Tyr 205	Gly	Pro	Glu
	Pro 210	Glu	Arg	Arg	Glu	Met 215	Val	Arg	Gln	Val	Asp 220	Arg	Thr	Val	Gly
Tyr 225		Arg	Glu	Ser	Ile 230	Ala	Arg	Asn	His	Leu 235		Asp	Arg	Leu	Asn 240
Leu	Ile	Ile	Thr	Ser 245	Asp	His	Gly	Met	Thr 250	Thr	Val	Asp	Lys	Arg 255	Ala
Gly	Asp	Leu	Val 260	Glu	Phe	His	Lys	Phe 265		Asn	Phe	Thr	Phe 270	Arg	Asp
Ile	Glu	Phe 275	Glu	Leu	Leu	Asp	Tyr 280	Gly	Pro	Asn	Gly	Met 285	Leu	Leu	Pro
_		_	Arg		Glu	Lys 295	Val	Tyr	Asp	Ala	Leu 300	Lys	Asp	Ala	His
					Tyr 310						Pro	Glu	Ala	Phe	His 320
Tyr	Ala	Asn	Asn	Pro 325	Arg	Val	Thr	Pro	Leu 330		Met	Tyr	Ser	Asp 335	Leu
Gly	Tyr	Val	Ile 340		Gly	Arg	Ile	Asn 345		Gln	Phe	Asn	Asn 350	Gly	Glu
His	Gly	Phe 355		Asn	Lys			Asp				Ile 365	Phe	Arg	Ala
Val	Gly 370	Pro	Ser	Phe	Arg	Ala 375		Leu	Glu	Val	Glu 380	Pro	Phe	Glu	Ser
Ual	មុខ	\/ = 1	ጥ ህጉ	Glu	T.e.r	Met	Cvs	Ara	Leu	Leu	Glv	Ile	Val	Pro	Glu

Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr Glu 405 410 415

Ser Ala Leu Pro Pro Asp Gly Arg Pro Thr Leu Leu Pro Lys Gly Arg

Ser Ala Leu Pro Pro Ser Ser Arg Pro Leu Leu Val Met Gly Leu Leu 435

Gly Thr Val Ile Leu Leu Ser Glu Val Ala 450 455

<210> 5

<211> 1878

<212> DNA

<213> Unknown

<220>

<223> Unknown

<220>

<221> misc_feature

<222> (905)..(905)

<223> n is a, c, g, or t

<400> 5

gtccatctgg aaggcccagc atgagaggcc cggccgtcct cctcactgtg gctctggcca 60

cgctcctggc tcccggggcc ggagcaccgg tacaaagtca gggctcccag aacaagctgc

tcctggtgtc cttcgacggc ttccgctgga actacgacca ggacgtggac acccccaacc

tggacgccat ggcccgagac ggggtgaagg cacgctacat gacccccgcc tttgtcacca 240

tgaccagccc ctgccacttc accctggtca ccggcaaata tatcgagaac cacggggtgg

ttcacaacat gtactacaac accaccagca aggtgaagct gccctaccac gccacgctgg 360

gcatccagag gtggtgggac aacggcagcg tgcccatctg gatcacagcc cagaggcagg 420

gcctgagggc tggctccttc ttctacccgg gcgggaacgt cacctaccaa ggggtggctg

tgacgcggag ccggaaagaa ggcatcgcac acaactacaa aaatgagacg gagtggagag

cgaacatcga cacagtgatg gcgtggttca cagaggagga cctggatctg gtcacactct 600 acttcgggga gccggactcc acgggccaca ggtacggccc cgagtccccg gagaggaggg 660 agatggtgcg gcaggtggac cggaccgtgg gctacctccg ggagagcatc gcgcgcaacc 720 acctcacaga ccgcctcaac ctgatcatca catccgacca cggcatgacg accgtggaca 780 aacgggctgg cgacctggtt gaattccaca agttccccaa cttcaccttc cgggacatcg 840 agtttgagct cctggactac ggaccaaacg ggatgctgct ccctaaagaa gggaggctgg 900 agaangtgta cgatgccctc aaggacgccc accccaagct ccacgtctac aagaaggagg 960 cgttccccga ggccttccac tacgccaaca accccagggt cacacccctg ctgatgtaca 1020 gcgaccttgg ctacgtcatc catgggagaa ttaacgtcca gttcaacaat ggggagcacg 1080 gctttgacaa caaggacatg gacatgaaga ccatcttccg cgctgtgggc cctagcttca 1140 gggcgggcct ggaggtggag ccctttgaga gcgtccacgt gtacgagctc atgtgccggc 1200 tgctgggcat cgtgcccgag gccaacgatg ggcacctagc tactctgctg cccatgctgc 1260 acacagaatc tgctcttccg cctgatggaa ggcctactct cctgcccaag ggaagatctg 1320 ctctcccgcc cagcagcagg cccctcctcg tgatgggact gctggggacc gtgattcttc 1380 tgtctgaggt cgcataacgc cccatggctc aaggaagccg ccgggagctg cccgcaggcc 1440 ctgggccggc tgtctcgctg cgatgctctg ctggtcgcgg acggaccctg cctccccagc 1500 ttatcccagg ccagaggctg catgccactg tccccggcag cgccaacccc tgcttggctg 1560 ttatggtgct ggtaataagc ctcgcagccc aggtccagag cccccggcga gccggtccca 1620

taaccggccc cctgccctg cccctgctcc tgctcctccc cttcgggccc cctcctcctg

caaaacccgc tcccgaagcg gcgctgccgt ctgcagccac gcgggggcgc gcgggagctc

1680

1740

tgcgggcgct ggaacctgca gacccggcct cggtcagctg ggaggggccc gccccggcac 1800

aaaaaaaaa aaaaaaaa 1878

<210> 6

<211> 415

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 6

Met Arg Gly Pro Ala Val Leu Leu Thr Val Ala Leu Ala Thr Leu Leu 1 5 10 15

Ala Pro Gly Ala Gly Ala Pro Val Gln Ser Gln Gly Ser Gln Asn Lys 20 25 30

Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp Gln Asp 35 40 45

Val Asp Thr Pro Asn Leu Asp Ala Met Ala Arg Asp Gly Val Lys Ala 50 55 60

Arg Tyr Met Thr Pro Ala Phe Val Thr Met Thr Ser Pro Cys His Phe 65 70 75 80

Thr Leu Val Thr Gly Lys Tyr Ile Glu Asn His Gly Val Val His Asn 90 95

Met Tyr Tyr Asn Thr Thr Ser Lys Val Lys Leu Pro Tyr His Ala Thr 100 105 110

Leu Gly Ile Gln Arg Trp Trp Asp Asn Gly Ser Val Pro Ile Trp Ile 115 120 125

Thr Ala Gln Arg Gln Gly Leu Arg Ala Gly Ser Phe Phe Tyr Pro Gly 130 135 140

Gly Asn Val Thr Tyr Gln Gly Val Ala Val Thr Arg Ser Arg Lys Glu 145 150 155 160

Gly Ile Ala His Asn Tyr Lys Asn Glu Thr Glu Trp Arg Ala Asn Ile

165 170 175

Asp Thr Val Met Ala Trp Phe Thr Glu Glu Asp Leu Asp Leu Val Thr 180 185 190

- Leu Tyr Phe Gly Glu Pro Asp Ser Thr Gly His Arg Tyr Gly Pro Glu 195 200 205
- Ser Pro Glu Arg Arg Glu Met Val Arg Gln Val Asp Arg Thr Val Gly 210 215 220
- Tyr Leu Arg Glu Ser Ile Ala Arg Asn His Leu Thr Asp Arg Leu Asn 225 230 235 240
- Leu Ile Ile Thr Ser Asp His Gly Met Thr Thr Val Asp Lys Arg Ala 245 250 255
- Gly Asp Leu Val Glu Phe His Lys Phe Pro Asn Phe Thr Phe Arg Asp 260 265 270
- Ile Glu Phe Glu Leu Leu Asp Tyr Gly Pro Asn Gly Met Leu Leu Pro 275 280 285
- Lys Glu Gly Arg Leu Glu Lys Val Tyr Asp Ala Leu Lys Asp Ala His 290 295 300
- Pro Lys Leu His Val Tyr Lys Lys Glu Ala Phe Pro Glu Ala Phe His 305 310 315 320
- Tyr Ala Asn Asn Pro Arg Val Thr Pro Leu Leu Met Tyr Ser Asp Leu 325 330 335
- Gly Tyr Val Ile His Gly Arg Ile Asn Val Gln Phe Asn Asn Gly Glu 340 345 350
- His Gly Phe Asp Asn Lys Asp Met Asp Met Lys Thr Ile Phe Arg Ala 355 360 365
- Val Gly Pro Ser Phe Arg Ala Gly Leu Glu Val Glu Pro Phe Glu Ser 370 375 380
- Val His Val Tyr Glu Leu Met Cys Arg Leu Leu Gly Ile Val Pro Glu 385 390 395 400
- Ala Asn Asp Gly His Leu Ala Thr Leu Leu Pro Met Leu His Thr 405 410 415

```
<210> 7
<211> 10
<212> PRT
<213> Unknown
<220>
<223> Unknown
<400> 7
Phe Val Thr Met Thr Ser Pro Cys His Phe
                                  10
<210> 8
<211> 8
<212> PRT
<213> Unknown
<220>
<223> Unknown
<400> 8
Phe Val Thr Met Thr Ser Pro Cys
               5
1
<210> 9
<211> 7
<212> PRT
<213> Unknown
<220>
<223> Unknown
<400> 9
Pro Thr Lys Thr Phe Pro Asn
        . 5
<210> 10
<211> 27
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 10
ggcccagcat gagaggcccg gccgtcc
27
<210> 11
<211> 27
<212> DNA
```

<213> Unknown

```
<220>
<223> Unknown
<400> 11
ggacggccgg gcctctcatg ctgggcc
27
<210> 12
<211> 20
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 12
taatacgact cactataggg
20
<210> 13
<211> 18
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 13
tccgagatct ggacgagc
18
<210> 14
<211> 40
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 14
ggcccgagac ggggtgaagg cacgctacat gacccccgcc
40
<210> 15
<211> 23
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 15
tggcccgtgg agtccggctc ccc
23
```

```
<210> 16
<211> 15
<212> PRT
<213> Unknown
<220>
<223> Unknown
<400> 16
Lys Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asn Tyr Asp
                                                     15
                               · 10
1
<210> 17
<211> 31
<212> DNA
<213> Unknown
<220>
<223> Unknown
<400> 17
atggatccat gagaggcccg gccgtcctcc t
31
<210> 18
<211> 31
<212> DNA
<213>
      Unknown
<220>
<223> Unknown
<400> 18
acgtcgactt accagcacca taacagccaa g
```