Vorlesung aus dem Sommersemester 2013

Transfinite Beweismethoden

PD. Dr. Schuster

6.06.2013

References

- 1. A. Kertesz, Einführung in die Transfinite Algebra (main reference)
- 2. I. Kaplanski. Set Theory and Metric Spaces, AMS 2001
- 3. G. H. Moore. Zermelo's Axiom of Choice, Springer
- 4. T. Jech. The Axiom of Choice, North-Holland
- 5. H. Rubin, J. E. Rubin. Equivalents of the Axiom of Choice, Vol. I + II
- 6. M. Erne. Einführung in die Ordnungstheorie, 1982
- 7. H. Herrlich. Axiom of Choice, Springer, 2006
- 8. P. Howard, J.E. Rubin. Consequences of the Axiom of Choice, AMS, 1998
- 9. J.L. Bell. The Axiom of Choice, College, 2009

History and Motivation

- 1883: Cantor needed a well-order of ℝ, and considered the existence of such order as a "Denkgesetz".
- 1904: Zermelo proves that every set can be well-ordered, (WO). Zermelo used AC. $ZF \vdash AC \leftrightarrow WO$
- Peano (1890) in a paper about Diff. Eq. explicitly avoids to use CC by using an algorithmic proof instead.
- ≥1904, Zermelo's paper prompted the so-called "Grundlagenkrise".

- 1905: Hamel proved with WO the existence of a basis for \mathbb{R} as a \mathbb{Q} -vector space and he used this result to give the general solution of the functional equation f(x+y) = f(x) + f(y) $(f: \mathbb{R} \to \mathbb{R})$
- WO made possible the use of transfinite induction (TI).
- Zorn (1935) put forward Zorn's Lemma (ZL), to make proofs shorter and more algebraic. (Kuratowski already introduced ZL in 1922)
- Teichmüller (1939) and Tukey (1940), Teichmüller-Tukey Principle (TT)
- Of course we know AC, TT, ZL, WO are equivalent.
- Raoult (1988): Open Induction (OI), equivalent to ZL and makes proofs even shorter.
- Coquand, Bergen (2004): Dependent choice can be replaced by a combinatorial form of OI.
- AC is problematic from a constructive point of view. AC + Pow \vdash EM (Dizconescu, 1970) (EM = Law of excluded middle $(\forall_x (P(x) \lor \neg P(x)))$, Pow = Powerset axiom)
- Gödel 1940: $ZF \not\vdash \bot \to ZF \not\vdash \neg AC$
- Cohen 1963: $\mathbf{ZF} \not\vdash \bot \to \mathbf{ZF} \not\vdash \mathbf{AC}$
- OI is an alternative to AC.
- Hilbert's Programme (HP): Justify the use of ideal objects (e.g. objects constructed by means of ZL or AC) and transfinite methods. Prove with finite methods, that the use of idealistic methods is consistent.
- Revised form of HP (Kreisel and Feferman): Eliminate the use of ideal objects and use only finite and constructive proof methods.
- Successful for a considerable part of commutative algebra (Lombardi, Coquand)

Preliminaries (1).

- Partial order \leq (reflexive, transitive, antisymmetric), (X, \leq) is a poset.
- A chain, or total order or linear order is a partial order satisfying $x \leq y \vee y \leq x$
- On a poset (X, \leq) we talk about minimal/maximal elements. e.g. x is minimal in $X \iff \forall_{y \in X} (y \leq x \to y = x)$ or equiv. $\neg \exists_{y \in X} (y \leq x \land y \neq x)$
- (X, \leq) is a chain, x is minimal (maximal), then we say: x is the least (greatest) element.
- \leq well-founded: every non-empty subset has a minimal element.

- \leq well-order: \leq is well-founded linear order.
- WO: every set can be well-ordered.

Beispiel. (i) \mathbb{N} is well-ordered by \leq

- (ii) $\mathbb{Q}^0_+ = [0, +\infty) \cap \mathbb{Q}$. It is linearly ordered, has least element (0), but it is not well-founded. $(s = (\sqrt{2}, +\infty) \cap \mathbb{Q})$.
- (iii) Transfinite Induction (TI) on a poset X. Every progressive subset S of X equals X.

$$\underbrace{\forall_x [\forall_{y < x} (y \in S) \to (x \in S)]}_{S-\text{progressive}} \to \underbrace{\forall_x (x \in S)}_{X=S}$$

- (iv) If \leq is well-founded order, then TI holds on (X, \leq) . [If S progressive and $S \neq X$, then R = X S is non-empty and therefore it has a minimal element x, so that $x \in S$ since S is progressive. $\{ \}$.]
- (v) On \mathbb{N} , TI rewrites as: $\forall_n [\forall_{m < n} (m \in S) \to n \in S] \to \forall_n (n \in S)$.

Satz (Hamel, 1905). Any linearly independent subset $S \in V$, when V is a vector space over \mathbb{K} can be extended to a base $S' \supset S$.

Beweis. Consider a well-order on V, $\langle V_{\alpha} \mid \alpha \leq \overline{\alpha} \rangle$ ($\overline{\alpha}$ ordinal corresp. to the well-order on V) We can define a (partial) function $f : \overline{\alpha} \to V$:

 $f(\alpha)$ = the least element of V that is not a linear combination of $f(\beta)$ with $\beta < \alpha$ in S

Of course f is not defined, if such an element does not exist.

- f injective
- $f(\overline{\alpha}) \cup S$ is linearly independent. Suppose that a finite linear combination of elements of S and values of f equals 0, and we can assume all coefficients to be non-zero. This combination must induce some element of $f(\overline{\alpha})$, and let α_0 the maximal of the ordinals encountered. Then $f(\alpha_0)$ is a linear combination of S and elements of the form $f(\beta)$ $\beta < \alpha_0$. ξ .

Since $\overline{\alpha}$ has the cardinality of V, f is defined as an initial segment of kind $[0, \alpha)$, with $f(\alpha)$ undefined. This means precisely that every element of V is linear combination of S and $(f(\beta): \beta < \alpha)$

In 1821: Cauchy addressed the following functional equation:

$$f(x+y) = f(x) + f(y)$$
 $f: \mathbb{R} \to \mathbb{R}$

Cauchy proved that all the continuous solutions are linear, of the form $f(x) = c \cdot x$ for some $c \in \mathbb{R}$. Hamel first proved that \mathbb{R} has a \mathbb{Q} -basis.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is additive. Then:

- $f(x_1 + \ldots + x_n) = f(x_1) + \ldots + f(x_n)$
- $f(n \cdot x) = n \cdot f(x)$ for all $n \in \mathbb{N}$
- Since $f(0) = f(0+0) = f(0) + f(0) \to f(0) = 0$. Hence if $n \le 0$, 0 = f(nx + (-n)x) = f(nx) nf(x). So f(nx) = nf(x) for all $n \in \mathbb{Z}$.
- If $q = \frac{m}{n} \in \mathbb{Q}$, then $n \cdot q = m$ so that $n \cdot f(q) = m \cdot f(i)$, so that, posing c = f(i), we have $f(q) = c \cdot q$.

If f is continuous, then $f(x) = c \cdot x$ for all $x \in \mathbb{R}$. (Cauchy's Result). If x is real, $y = \frac{m}{n} \cdot x$, then $f(n \cdot y) = f(m \cdot x) \leadsto f(y) = \frac{m}{n} f(x)$. Hence f is \mathbb{Q} -linear. If we have a basis of \mathbb{R} over \mathbb{Q} , say B, then each h is determined by its values on B.

Satz. If $f: \mathbb{R} \to \mathbb{R}$ is a non-continuous solution f of the Cauchy equation, then it's graph $G(f) = \{(x, f(x)) : x \in \mathbb{R}\}$ is dense in \mathbb{R}^2

Beweis. Let $(x,y) \in \mathbb{R}^2$ and U is a neighborhood of (x,y). Since f is a non- \mathbb{R} -linear solution, there exist $a,b \neq 0$ in \mathbb{R} , such that $\alpha = \frac{f(a)}{a}$ and $\beta = \frac{f(b)}{b}$ are different. This means u = (a,f(a)), v = (b,f(b)) are independent, and therefore are a basis of \mathbb{R} . There exist $p,q \in \mathbb{R}$ such that (x,y) = pu + qv. Since $\overline{\mathbb{Q}^2} = \mathbb{R}^2$, we can find $\overline{p},\overline{q} \in \mathbb{Q}$ such that $\overline{p}u + \overline{q}u \in U$. Therefore $\overline{p}u + \overline{p}v = (\overline{p}a + \overline{q}b, \overline{p}f(a) + \overline{q}f(b)) = (\overline{p}a + \overline{q}b, f(\overline{p}a + \overline{q}b)) \in U \cap G(f)$

Preliminaries (2): Zorn's Lemma. Let (X, \leq) be a poset, $S \subseteq X$, $x \in X$.

- x an upper bound of $S: \forall_{s \in S} (s \leq x)$.
- x least upper bound or supremum of S: $\forall_{u \in X} [\forall_{s \in S} (s \leq u) \leftrightarrow x \leq u]$, that is:
 - (i) x is an upper bound of S. $(x = u, \leftarrow)$.
 - (ii) if $u \in X$ upper bound of S, then $x < u \rightarrow$.
- Common form of Zorn's Lemma: If $X \neq \emptyset$ and every chain $C \subseteq X$ with $C \neq \emptyset$ has an upper bound, then X has a maximal element.
- We could chop $X \neq \emptyset$ together with $X \neq \emptyset$, [\(\emptyset\) is chain], or we can keep $X \neq \emptyset$ and every chain $C \subseteq X$, $C \neq \emptyset$ has a supremum.
- All of this can be reversed: Let (X, \leq) be a poset. $D \subseteq X$ is called *directed*: $\forall_{x,y \in D} \exists_{z \in D} (x \in z \land y \leq z)$.
- Every chain is a directed subset.
- A maximal element of a directed subset is also its greatest element.
- X directed complete: every directed subset $D \subseteq X$, with $D \neq \emptyset$, D has a supremum in X, we write the supremum as $\bigvee D$.
- dcpo: directed complete partial order.

- V Vectorspace, S Subspace. $V, S = \{W : W \leq V\}$ is a dcpo with \leq as partial order with V as V. Exercise!
- A subset of a dcpo X is *closed* if $\bigvee D \in S$ for all $D \subseteq S$ non-empty directed subset.
- S is closed subset of the dcpo (\mathbb{P},\subseteq)
- Here follow two equivalent formulations of Zorn's Lemma:
 - Every dcpo $X \neq 0$ has a maximal element
 - If X is a dcpo, then every closed subset $S \subseteq X$ with $S \neq 0$ has a maximal element.

13.06.2013

Definition. Sei (x, \leq) partielle Ordnung, $D \subseteq X$ gerichtet, wenn jede endliche Teilmenge von D eine obere Schrankeun D hat. Dies ist gleichbedeutend mit $D \neq \emptyset$ und erfüllt die alte Definition, d.h. $\forall_{x,y \in D} \exists_{z \in D} (x \leq z \land y \leq x)$.

Lemma ((Kuratowski-)Zorn (ZL)). Jeder dcpo $X \neq 0$ hat ein maximales Element. Äquivalent: Ist X ein dcpo und $S \subseteq X$ abgeschlossen, $S \neq 0$, so hat S ein max. Element

Definition. Nun sei S eine Menge; $X = \mathbb{P}(S)$ mit \subseteq ; $F, G \subseteq X$. F heißt von endlichem Charakter, wenn für alle $T \subseteq S$ gilt: $T \in F \iff \forall T_0 \subseteq T(T_0 \text{ endlich } \to T_0 \in F)$. G von coendlichem Charakter, wenn für alle $T \subseteq S$ gilt: $T \in G \subseteq \exists_{T_0 \subseteq T}(T_0 \text{ endlich } \land T_0 \in G)$. Falls $X = F \dot{\cup} G$, so gilt: F von endlichem Charakter $\iff G$ von coendlichem Charakter.

Lemma ((Teichmüller-)Tukey (TuL)). Ist S eine Menge, und $F \subseteq \mathbb{P}(S)$, so gilt: $F \neq \emptyset \land F$ von endlichem Charakter $\rightarrow F$ hat maximales Element.

Definition. Wieder sei X dcpo. $F \subseteq X$ abgeschlossen, wenn für jedes gerichtete $D \subseteq X$ gilt: $D \subseteq F \longrightarrow \bigvee D \in F$. G offen, wenn für jedes gerichtete $D \subseteq X$ gilt: $\bigvee D \in G \longrightarrow \bigvee_{X \in X} (x \in D \to x \in F)$ $\exists_{x \in X} (x \in D \land x \in G)$ $(X = F \dot{\cup} G \to F \text{ abg.} \iff G \text{ offen})$

Lemma. Es sei $X = \mathbb{P}(S)$, $F, G \subseteq X$.

- (a) F von endlichem Charakter $\rightarrow F$ abgeschlossen.
- (b) G von coendlichem Charakter \rightarrow G offen.

Beweis. nur (a). Es sei $D \subseteq X$ gerichtet mit $D \subseteq F$. Zu Zeigen: $\bigcup D \in F$. Es sei $T = \bigcup D$ und $T_0 \subseteq T$, T_0 endl. Dazu gibt es endl. $D_0 \subseteq D$ mit $T_0 \subseteq \bigcup D_0$. Da D gerichtet ist, hat D_0 eine obere Schranke $R \in D$. Dann $T_0 \subseteq R \in F$, also $T_0 \in F$, da T_0 endl. und F von endl. Charakter.

Definition. Sei X wieder ein dcpo, $G \subseteq X$. G progressiv, wenn $\forall_{x \in X} [\forall_{y>x} (y \in G) \to x \in G]$

Definition (Offene Induktion (OI)). Ist X ein depo und $G \subseteq X$ offen, so gilt: G progressiv $\to G = X$, d.h.

$$\forall_x [\forall_{y>x} (y \in G) \to x \in G] \to \forall_{x \in X} (x \in G)$$

OIist TI für offen
e $G\subseteq X$ mit Xdcpo.

Definition (Tukey-Induktion (TuI)). Ist S Menge, $G \subseteq \mathbb{P}(S)$, so gilt: G von coendl. Charakter $\wedge G$ progressiv $\to G = \mathbb{P}(S)$

Satz. (a) ZL \iff OI

(b)
$$TuL \iff TuI$$

Beweis. Nur (a). X dcpo, $X = F \dot{\cup} G$, dann: $F = \emptyset \iff G = X$, F abgeschlossen $\iff G$ offen; F hat kein max. El. $\iff G$ progressiv.

ZL für X auch als: $S \subseteq X$ abgeschlossen, hat kein maximales Element $\to S = \emptyset$. OI für X: $G \subseteq X$ offen, progressiv $\to G = X$.

Allgemeine Abhängigkeit

Definition. Es sei S eine Menge, sowie $\lhd \subseteq S \times \mathbb{P}(S)$. Stets seien $a, b, c \in S$ und $U, V, W \in S$. $\lhd \ddot{U}berdeckung(srelation)$, wenn gelten:

- Reflexivität: $a \in U \rightarrow a \triangleleft U$
- Transitivität: $a \triangleleft U \land U \triangleleft V \rightarrow a \triangleleft V$

Wobei $U \triangleleft V$ steht für $\forall_{b \in U} (b \triangleleft V)$.

Bemerkung. Eine Überdeckungsrelation ist das gleiche wie ein Abschlußoperator $U \mapsto U^{\triangleleft}$ auf $\mathbb{P}(S)$, mit den folgenden Axiomen:

- Reflexivität: $U \subseteq U^{\triangleleft}$
- Transitivität: $U \subseteq V^{\triangleleft} \to U^{\triangleleft} \subseteq V^{\triangleleft}$

Korrespondenz $\lhd \leadsto _^{\lhd}$: $Zu \lhd definiere\ U^{\lhd} = \{a \in S : a \lhd U\}.\ a \lhd U \iff a \in U^{\lhd}.$ Alternatives Axiomensystem:

- Reflexivität: wie oben.
- Monotonie: $U \subseteq V \to U^{\triangleleft} \subseteq V^{\triangleleft}$
- Idempotenz: $U^{\triangleleft \triangleleft} \subseteq U^{\triangleleft}$. (mit Refl. sogar =)

 $[R+T \rightarrow M; T \rightarrow I; M+I \rightarrow T]$

Definition. Eine Überdeckungsrelation ⊲ heißt

- unitär oder Schottsch, wenn aus $a \triangleleft U$ folgt: $\exists_{b \in U} (a \triangleleft \{b\})$.
- finitär oder Stonesch, wenn aus $a \triangleleft U$ folgt: $\exists_{U_0 \subseteq U} (U_0 \text{ endlich } \land a \triangleleft U_0)$.

Eine finitäre Überdeckungsrelation \triangleleft heißt Abhängigkeitsrelation, wenn \triangleleft die Abhängigkeitseigenschaft hat, d.h. wenn für alle $a, b \in S, U \subseteq S$ gilt:

$$a \lhd U \cup \{b\} \to a \lhd U \lor b \lhd U \cup \{a\}$$

Ein $U \subseteq S$ heißt $(\lhd -)abhängig$, wenn $\exists_{b \in U} (b \lhd U - \{b\})$. U heißt $(\lhd -)unabhängig$, wenn $\forall_{b \in U} (b \lhd U - \{b\})$.

Bemerkung. U abhängig $\rightarrow U \neq \emptyset$; \emptyset unabhängig.

Beispiel. (a) S Menge; $a \triangleleft U \equiv a \in U$, d.h. $U^{\triangleleft} = U$; Dann \triangleleft unitär und jedes $U \subseteq S$ ist unabhängig.

- (b) S Vektorraum; $U^{\triangleleft} = (U)$ der von U erzeugte Untervektorraum. \triangleleft unitär; "(un)abhängig" ist "linear (un)abhängig" (!)
- (c) $R \subseteq S$ komm. Ringe; für $U \subseteq S$ sei R[U] die Ringadjunktion von U an R in S, d.h.

$$R[U] = \bigcup_{n>0} \{ f(u_1, \dots, u_n) \colon f \in R[X_1, \dots, X_n]; u_1, \dots, u_n \in U \}$$

 $U^{\lhd} = \overline{R[U]}^S$ ganzer Abschluß von R[U] in S, d.h. $a \lhd U \iff a^n = r_1 a^{n-1} + \ldots + r_{n-1}^a + r_n$ für geeignete $n \geq 1; r_1, \ldots, r_n \in R[U]$.

Dann: \lhd finitäre Überdeckungsrelation. R, S Körper, R(U) statt $R[U] \to \lhd$ Abhängigkeitsrelation und " \lhd -(un)abhängigkeit" ist "algebraisch (un)abhängig". Siehe B.L. van der Warden, (Moderne) Algebra I, §64.

Definition. Nun sei \lhd wieder eine allgemeine Abhängigkeitsrelation. U erzeugt S, wenn $S \lhd U$, d.h. $\forall_{b \in S}(b \lhd U)$. U Basis, wenn U unabhängig, und U erzeugt S.

In den Beispielen (b) und (c) ist eine Basis eine Vektorraumbasis bzw. eine Tanszendenzbasis. U ist $maximal\ unabhängig\ genau\ dann,\ wenn\ jedes\ V\subseteq S\ mit\ V\supsetneq U$ abhängig ist (*), sowie U unabhängig ist.

Lemma. U maximal unabhängig $\iff U$ Basis

Beweis. " \Rightarrow " (gilt i.a. nicht für \lhd nur Überdeckungsrelation): Zeige: (*) \land S $/ \lhd U$ \rightarrow U abhängig. Nehme $b \in S$ mit b $/ \lhd U$. Speziell b / U, d.h. $U \subsetneq U \cup \{b\}$. Nach (*) ist $U \cup \{b\}$ abhängig, d.h. es gibt $a \in U \cup \{b\}$ mit $a \lhd (U \cup \{b\}) - \{a\}$. Sofort folgt $a \neq b$ $[a = b \rightarrow b \lhd U \ \ \ \]$. Also $a \lhd (U - \{a\}) \cup \{b\}$. Nach Abhängigkeitseigenschaft ist dann $a \lhd U - \{a\}$, damit U abhängig, da ja $a \in U$ wegen $a \neq b$, oder $b \lhd (U - \{a\}) \cup \{a\}$, d.h. $b \lhd U$. f.

"\(\phi\)": Nur zu Zeigen: (*). Ist $V \supseteq U$, etwa $b \in V - U$, so ist $U - \{b\} = U$ und $b \triangleleft U$, also $b \triangleleft U - \{b\}$ und damit $b \triangleleft V - \{b\}$, also V abhängig.

Satz. Zu jedem unabhängigen $U \subseteq S$ gibt es eine Basis W mit $W \supseteq U$.

Beweis mit ZL. Verwende obiges Lemma. Es sei $G = E \cap F$, wobei $E = \{V \subseteq S : V \supseteq U\}$ und $F = \{V \subseteq S : V$ unabhängig $\}$ ein maximales Element W von G ist die gewünschte Basis. Zu Zeigen: $G \neq \emptyset$ und G dcpo. Nun ist $U \in G$. Ist $D \subseteq G$ gerichtet, so ist $\bigcup D \in E$, da $D \neq \emptyset$, sowie $\bigcup D \in F$, da F abgeschlossen, da F von endl. Charakter (Lemma oben). \square

Typische Anwendung V Vektorraum, $x \in V$. Dann gilt: $\forall_{\varphi inV^*}(\varphi(x) = 0) \to x = 0$.

Indirekter Beweis, mit ZL. Wäre $x \neq 0$, so wäre $U = \{x\}$ unabhängig, also gäbe es (Satz) eine Basis W von V mit $W \supseteq U$; d.h. $x \in W$ Definiere $\varphi \in V*$ durch $\varphi(x) = 1$ und $\varphi \upharpoonright W - \{x\} = 0$. Dann $\varphi(x) \neq 0$. $\not \subseteq V$.