Experiment No. 05

Name of the Exp: Verification of Norton's theorem.

Objective: To verify Norton's theorem with reference to a given circuit theoretically as well as experimentally.

Theory:

The Norton's theorem states that any two terminal linear bilateral network containing sources and passive elements can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N where

- I_N = The short circuit current (ISC) at the two terminals A & B.
- R_N = The resistance looking into the terminals A and B of the network with all sources removed.

Fig-1. Circuit diagram for Norton's theorem.

Apparatus:

- 1. DC power supplies
- 2. Resistors
- 3. Multi meter
- 4. Bread board
- 5. Connecting wires

Procedure:

- 1. Check the values of the resistor using multi-meter (ohm section of multi-meter). Record the values in Table -1.
- 2. Give the connection as per the circuit diagram shown in Fig.1.

Finding I_N & R_N:

- 1. Short the load resistance R_L and find the short circuit current between terminals A & B. This current is Norton current i.e., $I_N = ISC$.
- 2. Replace the voltage sources with short circuits and current sources with open circuit. With R_L removed from the circuit, measure R_N using a multimeter (Ammeter).
- 3. Record the results in Table 2.

Circuit Diagram:

Fig-2. For measuring R_N

Fig-3. For measuring I_N

Fig-4. Norton's equivalence circuit

Fig-5. practical value of measuring I_N

Model calculation:

First, we are going to determine the value of $R_{\rm N}$ from fig-2

$$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = 3\Omega$$

So,
$$R_N = 3\Omega$$

Now we are going to measure the value of $I_{\rm N}$ from fig-3

Just because the R_3 resistance is in series with the point A & B terminal so the current through R_3 is going to be equal to I_N .

$$\frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{9} + \frac{1}{9} = 4.5\Omega$$

$$R_{(2+3)} + R_1 = 13.5\Omega$$

$$I = \frac{V}{R} = \frac{20}{13.5} = 1.481A$$

Using current divider rule we get,

$$I_N = \frac{I \times R_2}{R_2 + R_3} = \frac{1.481 \times 9}{9 + 9} = .74A$$

Observation:

Table-1. Resistor value

Resistors(Ω)	R_1	R_2	R ₃	
Ohm meter	9	9	9	
reading				

Table-2. Result for theoretical & measured value

No. of Observation	$V_s(V)$	$R_{ m N}(\Omega)$		$I_N(A)$	
		TV	MV	TV	MV
	20	3	3	0.74	0.74

Result:

The theoretical & measured values of the circuit are same so it's safe to say that our measurements are correct.

Precautions:

- 1. Check for proper connections before switching ON the supply.
- 2. Take care of the reading of the apparatus.
- 3. The terminal of the resistance should be properly connected.