Inverse Problems 1: Convolution and Deconvolution

Lesson 3: III-posedness in Inverse problems

Rashmi Murthy

University of Helsinki

September 10, 2019

Convolution and Deconvolution

Continuous Model

$$f: \mathbb{R} \to \mathbb{R},$$

$$p: [-\gamma, \gamma] \to \mathbb{R},$$

$$\int_{-\gamma}^{\gamma} p(x) dx = 1; p * f : \mathbb{R} \to \mathbb{R},$$

$$(p*f)(x) = \int_{-\gamma}^{\gamma} p(y)f(x-y)dy$$

Discrete Model

$$f = (f_1, ... f_n) \in \mathbb{R}^n,$$

 $p = (p_{\nu}, p_{-\nu}) \in \mathbb{R}^{2\nu+1},$

$$\sum^{\nu} p_{\ell} = 1; p * f \in \mathbb{R}^{n},$$

$$(p*f)_i = \sum_{i=1}^{\nu} p_{\ell} f_{i-\ell}$$

Forward Map

- The core of an inverse problem is the forward map $\mathcal{A}:\mathcal{D}(\mathcal{A}) o Y$.
- $\mathcal{D}(\mathcal{A}) \subset X$ and Y are suitable Hilbert spaces called model space and data space.
- $\mathcal{D}(\mathcal{A}) \subset X$ is the domain of definition of the bounded linear operator \mathcal{A}
- Constructing the model space and data space and the forward map is not a trivial task.
- Physical process, Technical properties of the measurement device, geometry of the measurement and possible limitations in the data set must be considered.

Hadamard's condition for a well-posed problem

A problem is well-posed if the following conditions hold:

- The solution exists
- The solution is unique
- The solution depends continuously on the data.

III-posed inverse problem: Given any noisy data $m = Af + \epsilon$, recover f

Well posed and III-posed problems

- 1. If the forward map $\mathcal{A}: X \to Y$ is bijective and allows a continuous inverse \mathcal{A}^{-1} , then Naive inversion satisfies all the Hadamard's condition and we are dealing with a well-posed problem.
- Ill-posed inverse problem will have one of the Hadamard conditions not satisfied.
 - If the nosiy data does not belong to the range of the forward map, then the first Hadamard condition is violated.
 - If two quantities in model space $f,g\in\mathcal{A}$ give the same measurement, that is Af=Ag, then Hadamard's second condition is not satisfied.
 - If the forward map does not allow for a continious inverse, then Hadamard's third condition is violated.
 - The solution does not depend continuously on the data.

Illustration of the linear forward map

Continuous Case

- Let L(X,Y) denote the space of bounded linear mappings from a normed linear space X to normed linear space Y
- For a linear operator $\mathcal{A}:U\subset X\to V\subset Y$, the conditions of well-posedness imply:
 - \triangleright \mathcal{A} is surjective (onto),
 - \triangleright \mathcal{A} is injective (one-to-one)
 - \triangleright \mathcal{A}^{-1} is continuous

A few theorems for the continuous case

Theorem

Let X and Y be Banach spaces. If $\mathcal{A} \in L(X, \mathcal{Y})$ is bijective, then $\mathcal{A}^{-1} \subset L(X, \mathcal{Y})$

So then when will a continuous case of inverse problem does not have the inverse?

Theorem

Let X and Y be Banach spaces. Suppose $\mathcal{A}:U\subset X\to Y$ is a compact linear operator, and dim U is not finite. Then the problem $\mathcal{A}f=m$ is ill-posed.

Theorem

Let $\mathcal{A}: H \to H$ be a linear operator and $K_n \in \mathcal{L}(H,H)$ a sequence of compact operators. If $K_n \to \mathcal{A}$ in the operator norm, then \mathcal{A} is a compact operator.

Theorem

Let $(\mathcal{A}f)(x) = \int_{\Omega} K(x,y)f(y)dy$ with Kernel $K \in L^2(\Omega \times \Omega)$. Then $\mathcal{A} \in L(L^2(\Omega), L^2(\Omega))$ is compact.

The singular value expansion

Consider Fredholm integral equation of the first kind, where we wish to find f(t)

$$\int_0^1 K(s,t)f(t)dt = g(s), \quad 0 \le s \le 1, \quad ||K||_{L^2([0,1]\times[0,1])}^2 \le C$$

The Singular Value Expansion (SVE) theorem states that any Kernel, K with $\|K\|_{L^2} < \infty$ can be written as

$$K(s,t) = \sum_{i=1}^{\infty} \mu_i u_i(s) v_i(t)$$

Here u_i and v_i are the singular functions of K and μ_i are the singular values of K.

Properties of the Singular values and Singular Functions

- Singular functions are orthonormal. That is $\langle u_i, u_j \rangle = \int_0^1 u_i(s) u_j(s) ds = 1$ if i = j
- The singular values satisfy:

$$\mu_1 \ge \mu_2 \ge \dots \ge 0; \quad \sum_{i=1}^{\infty} \mu_i^2 = \|K\|_{L^2}$$

And

$$\int_0^1 K(s,t)v_i(t)dt = \mu_i u_i(s)$$

$$\langle v_i, f \rangle v_i(t) = \frac{1}{-} \langle u_i, g \rangle v_i$$

$$\langle V_i, r \rangle V_i(t) = \frac{1}{\mu_i} \langle u_i, g \rangle V_i$$
The solution $f(t)$ to the Fredholm integral

$$\langle v_i, v_j v_i(\varepsilon) - \frac{1}{\mu_i} \langle u_i, g_j v_i(\varepsilon) \rangle$$

• The solution f(t) to the Fredholm integral equation is given by

 $f(t) = \sum_{i=1}^{\infty} \langle v_i, f \rangle v_i(t)$

 $=\sum_{i=1}^{\infty}\frac{1}{\mu_i}\langle u_i,g\rangle v_i(t)$

 $\langle v_i, f \rangle v_i(t) = \frac{1}{\mu_i} \langle u_i, g \rangle v_i(t)$

Algebra shows that

A few things to note about the singular values and singular functions.

 Behaviour of the singular values and the singular functions depends on the Kernel, K(s,t)

• Smoother the Kernel K(s,t), faster the singual values μ_i decay.

• The smaller the μ_i , more oscillatory the functions u_i and v_i will be.

• The factor $\frac{1}{u_i}$ amplifies highly oscillatory contributions in g.

Ill-posedness in terms of singular values

If there exists a real number $\alpha > 0$ such that the singular values satisfy $\mu_n = \mathcal{O}(n^{-\alpha})$, then α is the degree of ill-posedness.

- 1. If $0 < \alpha \le 1$, the problem is mildly ill-posed.
- **2.** If $\alpha > 1$,the problem is moderately ill posed.
- 3. If $\mu_n = O(e^{-\alpha n})$, then the problem is severely ill-posed.

For the Fredholm integral equation to have a solution, g must satisfy

$$\sum_{i=1}^{\infty} \left(\frac{\left\langle u_i, g \right\rangle}{\mu_i} \right)^2 < \infty$$