PARTE A

1. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{n^2}{1+n} x^n$$

A: x = 1.99 B: $x = -\sqrt{2}$ C: N.A. D: $x = \pi$ E: x = -1.99

- 2. Lo sviluppo di Taylor di grado 3 relativo al punto $x_0=0$ della funzione $y(x)=\sin(x^2)$ vale A: $1+2\cos(x^2)x+o(x^3)$ B: $x-\frac{x^3}{3!}+o(x^3)$ C: $1+x^2+o(x^5)$ D: N.A. E: $x^2+o(x^3)$
- 3. inf min sup e max della funzione $x \sin(x)$ per $x \in (-\pi/2, \pi/2)$ valgono A: $\{-1, N.E., 1, N.E.\}$ B: $\{0, 0, \pi/2, N.E.\}$ C: $\{0, 0, \pi/2, \pi/2\}$ D: $\{0, N.E., 1, N.E.\}$ E: N.A.
- 4. Date le funzioni $f(x) = \log(x+1)$ e $g(x) = x^2$ la funzione composta g(f(x)) risulta definita in

A: \mathbb{R} B: $(-1, +\infty)$ C: $(-\infty, 0)$ D: $(-\infty, -1) \cup (1, +\infty)$ E: N.A.

5. Il limite

$$\lim_{x \to 0} \frac{3^{x^2} - 1}{\sin(x)\sin(2x)}$$

vale

A: 2 B: log(1/3) C: N.A. D: 1/2 E: 1/3

- 6. Data $f(x) = e^{|x|} |1 x|$. Allora f'(2) è uguale a A: N.A. B: N.E. C: $-2e^2$ D: $2e^2$ E: 0
- 7. L'integrale

$$\int_0^1 \frac{e^{3x} - 1}{e^{3x} - 3x} \, dx$$

vale

A: $\log ((e^3 - 3)^{1/3})$ B: $1 - \frac{\log(3)}{3}$ C: N.E. D: 0 E: N.A.

- 8. L'argomento principale del numero complesso $i \frac{e^{i27\pi}}{e^{-i54\pi}}$ è uguale a A: $\pi/4$ B: $\pi/2$ C: N.A. D: 0 E: $-\pi/2$
- 9. Sia y'' y = 0, y(0) = 1 y'(0) = 0, allora y'(1) vale A: N.A. B: $\frac{e^2 + 1}{2e}$ C: $\frac{e^2 - 1}{2e}$ D: $-\sin(1)$ E: $\sin(1)$
- 10. Quante sono, al variare di $q\in\mathbb{R}$ le soluzioni reali dell'equazione $\mathrm{e}^x=-x+q$ A: 1 se q>0, nessuna se $q\leq 0$ B: 1 C: N.A. D: nessuna E: 2

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

1 luglio 2016

(Cognome)	(Nome)	(Numero di matricola)

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

1 luglio 2016

PARTE B

1. Studiare al variare di $\lambda \in \mathbb{R}$ la funzione

$$f(x) = \log|x + \lambda| - \lambda$$

Calcolare per $\lambda=1$ e x>0, l'area della porzione di piano finita compresa tra l'asse delle x e il grafico della f.

Soluzione. Il dominio della funzione è $D = \{x \neq -\lambda\}$ e in D la funzione risulta continua e derivabile (essendo composizione di funzioni derivabili per ogni $x \neq -\lambda$, dove la funzione non è definita). Inoltre

$$f(x) = \begin{cases} \log(x+\lambda) - \lambda & \text{se } x > -\lambda \\ \log(-x-\lambda) - \lambda & \text{se } x < -\lambda \end{cases}$$

е

$$\lim_{x \to -\lambda} f(x) = -\infty \qquad \lim_{x \to \pm \infty} f(x) = +\infty, \qquad \forall \lambda \in \mathbb{R}.$$

Calcolando la derivata prima si ha

$$f'(x) = \frac{1}{x+\lambda}$$

che è positiva per $x > -\lambda$ e inoltre

$$f''(x) = -\frac{1}{(x+\lambda)^2} < 0,$$

quindi la funzione è concava nelle due semirette $\{x < -\lambda\}$ e in $\{x > -\lambda\}$, ma si osservi che non è globalmente concava. Il grafico approssimativo è quindi il seguente

La regione di piano in questione è delimitata dai punti $x_1 = 0$ dal punto di intersezione con l'asse delle x che è $x_2 = e - 1$ (in tale intervallo la funzione f è negativa e quindi

$$A = \int_0^{e-1} |\log|x+1| - 1| \, dx = -\int_0^{e-1} (\log((x)+1) - 1) \, dx = e - 2$$

Figura 1: f(x) per $\lambda = 1$

2. Trovare le soluzioni di

$$y''(x) - y(x) = -x.$$

Esistono soluzioni limitate su tutto \mathbb{R} ?

Esistono soluzioni con un asintoto obliquo $\phi(x) = x \text{ per } x \to +\infty$?

Esistono soluzioni limitate inferiormente su tutto \mathbb{R} ?

Soluzione. Troviamo intanto le soluzioni di y'' - y = 0. L'equazione associata ha la forma $\lambda^2 - 1 = 0$, quindi $\lambda = \pm 1$. Lo spazio delle soluzioni dell'omogenea si scrive come

$$y_0(x) = Ae^x + Be^{-x}$$
, con $A, B \in \mathbb{R}$.

Si vede immediatamente che una soluzione particolare è $y_f(x)=x$, quindi la soluzione generale dell'equazione data è

$$y(x) = Ae^x + Be^{-x} + x$$
, con $A, B \in \mathbb{R}$.

Vediamo che

$$\lim_{x \to \infty} y(x) = \left\{ \begin{array}{ll} \infty & \quad \text{se } A \ge 0 \\ -\infty & \quad \text{se } A < 0 \end{array} \right.$$

quindi non esistono soluzioni limitate su tutto \mathbb{R} .

Perchè la soluzione abbia un asintoto obliquo a destra, basta scegliere A=0, infatti $\lim_{x\to\infty}Be^{-x}=0$ per ogni $B\in\mathbb{R}.$

Per trovare se esistano soluzioni limitate inferiormente vediamo che

$$\lim_{x \to -\infty} y(x) = \begin{cases} \infty & \text{se } B > 0 \\ -\infty & \text{se } B \le 0. \end{cases}$$

Allora se $A \ge 0$ e B > 0 abbiamo $\lim_{x \to \pm \infty} y(x) = +\infty$. Questo, unito allla continuità di y(x) ci dice che scegliendo $A \ge 0$ e B > 0 otteniamo soluzioni limitate.

3. Dire per quali $x \in \mathbb{R}$ converge la serie

$$\sum_{n=1}^{\infty} n(x-1) |\log(x) - 1|^n$$

Soluzione.

Vediamo immediatamente che per x=1 la serie diventa identicamente nulla, quindi converge (a zero).

Per $x \neq 1$ usiamo il criterio della radice, ottenendo

$$\lim_{n \to \infty} \sqrt[n]{n(x-1)|\log(x) - 1|^n} = |\log(x) - 1|$$

Quindi se $|\log(x) - 1| < 1$ ovvero se

$$1 < x < e^2$$

la serie converge, mentre se

$$x > e^2$$
 oppure $x < 1$

la serie diverge.

Sappiamo già che per x=1 la serie converge, mentre per $x=e^2$ la serie diventa

$$\sum_{n} n(e^2 - 1) = +\infty.$$

Concludendo, la serie converge se e solo se $1 \le x < e^2$.

4. Data la funzione

$$f(x) = \begin{cases} \frac{\int_0^x \sin^2(t) dt}{x^2} & x > 0\\ a & x = 0\\ x^2 + bx & x < 0 \end{cases}$$

Si determini per quali $a,b\in\mathbb{R}$ la funzione è continua e per quali $a,b\in\mathbb{R}$ la funzione è derivabile.

Calcolare, se esiste, la retta tangente al grafico nel punto $x_0 = \pi$, al variare di $a, b \in \mathbb{R}$,

Soluzione. La funzione è sicuramente continua e derivabile se $x \neq 0$ ed è rilevante studiare il comportamento solo in 0. Abbiamo che

$$\lim_{x \to 0^-} f(x) = 0$$

quindi intanto per avere la continuità da sinistra condizione necessaria è a=0. La funzione è continua se

$$\lim_{x \to 0^+} f(x) = 0$$

e tale limite è una forma indeterminata del tipo $\frac{0}{0}$. Usando l'Hopital si ha

$$\lim_{x \to 0^+} \frac{\sin^2(x)}{2x} = 0,$$

quindi f è continua se a=0. Per la derivabilità (che ha senso studiare solo se a=0) la derivata sinistra in zero vale

$$f'_{-}(0) = b.$$

La derivata destra è uguale a $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \frac{\int_0^x \sin^2(t)\,dt}{x^3}$ che di nuovo è una forma indeterminata risolvibile con l'Hopital

$$\lim_{x \to 0^+} \frac{\sin^2(x)}{3x^2} = \frac{1}{3},$$

quindi la funzione è derivabile se $b = \frac{1}{3}$.

La retta tangente nel punto $x_0 = \pi$ vale

$$\phi(x) = f(\pi) + \phi'(\pi)(x - \pi)$$

calcoliamo $f(\pi)$

$$f(\pi) = \frac{\int_0^{\pi} \sin^2(t) \, dt}{\pi^2} = \frac{1}{2\pi},$$

mentre

$$f'(\pi) = \frac{\pi^2 \sin^2(\pi) - 2\pi \int_0^{\pi} \sin^2(t) dt}{\pi^4} = -\frac{1}{\pi^2}.$$

dove abbiamo usato che $\int \sin^2(x) dx = \frac{1}{2}(x - \cos(x)\sin(x)).$