import numpy as np
import pandas as pd
data=pd.read_csv('/Users/bbkpa/Downloads/churn_data.csv')

t[1]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
	1	5575-	Male	0	No	No	34	Yes	No	DSL	Yes
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No
	7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes
	7039	2234-	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No
	7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service		Yes
	7041	8361-	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No
	7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes

7043 rows x 21 columns

data=data.drop(columns=["customer|D"])

Out[2]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBack
	0	Female	0	Yes	No	1	No	No phone service	DSL	No)
	1	Male	0	No	No	34	Yes	No	DSL	Yes	
	2	Male	0	No	No	2	Yes	No	DSL	Yes	١
	3	Male	0	No	No	45	No	No phone service	DSL	Yes	
	4	Female	0	No	No	2	Yes	No	Fiber optic	No	
	7038	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes	
	7039	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No	١
	7040	Female	0	Yes	Yes	11	No	No phone service		Yes	
	7041	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No	
	7042	Male	0	No	No	66	Yes	No	Fiber optic	Yes	

7043 rows × 20 columns

In [3]: data.shape

Out[3]: (7043, 20)

data['SeniorCitizen'].value_counts()

```
0 5901
1 1142
Name: count, dtype: int64

import matplotlib.pyplot as plt
import seaborn as sns
```

To check data type and null values in each column

Out[4]: SeniorCitizen

```
data.info()
       <class "pandas.core.frame.DataFrame">
       RangeIndex: 7043 entries, 0 to 7042
       Data columns (total 20 columns):
       # Column
                               Non-Null Count Dtype
            gender
        0
                               7043 non-null
                                                object
            SeniorCitizen
                               7043 non-null
                                                int64
        2
            Partner
                               7043 non-null
                                                object
            Dependents
                               7043 non-null
                                                object
        4
            tenure
                               7043 non-null
                                                int64
            PhoneService
                               7043 non-null
                                                object
        6
                               7043 non-null
            MultipleLines
                                                object
                               7043 non-null
            InternetService
                                                object
        8
            OnlineSecurity
                               7043 non-null
                                                object
            OnlineBackup
                               7043 non-null
                                                object
        10 DeviceProtection
                               7043 non-null
                                                object
        11 TechSupport
                               7043 non-null
                                                object
                               7043 non-null
        12 StreamingTV
                                                object
        13 StreamingMovies
                               7043 non-null
                                                object
        14 Contract
                               7043 non-null
                                                object
        15 PaperlessBilling
                               7043 non-null
                                                object
        16 PaymentMethod
                               7043 non-null
                                                object
        17
           MonthlyCharges
                               7043 non-null
                                                float64
        18 TotalCharges
                               7043 non-null
                                               obiect
        19 Churn
                               7043 non-null
                                                object
       dtypes: float64(1), int64(2), object(17)
       memory usage: 1.1 + MB
        data.columns
Out[7]: Index(['gender', 'SeniorCitizen', 'Partner', 'Dependents', 'tenure',
                'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity',
                'OnlineBackup', 'DeviceProtection', 'TechSupport', "StreamingTV",
                'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'],
               dtype='object')
        data['gender'].unique()
Out[8]: array(["Female", 'Male'], dtype=object)
```

To check number of categories in each categorical column

```
numerical_col=["SeniorCitizen", "tenure", "MonthlyCharges"]
for col in data.columns:
   if col not in numerical_col:
     print(col, data[col].unique())
     print("-"*100)
```

gender ["Female" 'Male'] Partner ['Yes' 'No'] Dependents ['No' 'Yes'] PhoneService ['No' 'Yes'] MultipleLines ['No phone service' 'No' 'Yes'] InternetService ['DSL' 'Fiber optic' 'No'] OnlineSecurity ['No' 'Yes' 'No internet service'] OnlineBackup ['Yes' 'No' 'No internet service'] DeviceProtection ['No' 'Yes' 'No internet service'] TechSupport ['No' 'Yes' 'No internet service'] StreamingTV ['No' 'Yes' 'No internet service'] StreamingMovies ['No' 'Yes' 'No internet service'] Contract ['Month-to-month' 'One year' 'Two year'] PaperlessBilling ['Yes' 'No'] PaymentMethod ['Electronic check' 'Mailed check' 'Bank transfer (automatic)" 'Credit card (automatic)'] TotalCharges ['29.85' '1889.5' '108.15' ... '346.45' '306.6' '6844.5'] Churn ['No' 'Yes'] data[data['TotalCharges']==" "]

Out[10]:

:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBack
	488	Female	0	Yes	Yes	0	No	No phone service	DSL	Yes	
	753	Male	0	No	Yes	0	Yes	No	No	No internet service	No inter serv
	936	Female	0	Yes	Yes	0	Yes	No	DSL	Yes	Υ
	1082	Male	0	Yes	Yes	0	Yes	Yes	No	No internet service	No inter serv
	1340	Female	0	Yes	Yes	0	No	No phone service	DSL	Yes	Υ
	3331	Male	0	Yes	Yes	0	Yes	No	No	No internet service	No inter serv
	3826	Male	0	Yes	Yes	0	Yes	Yes	No	No internet service	No inter serv
	4380	Female	0	Yes	Yes	0	Yes	No	No	No internet service	No inter serv
	5218	Male	0	Yes	Yes	0	Yes	No	No	No internet service	No inter serv
1	6670	Female	0	Yes	Yes	0	Yes	Yes	DSL	No	`
	6754	Male	0	No	Yes	0	Yes	Yes	DSL	Yes	`

len(data[data['TotalCharges']==" "])

Out[11]: 11

We are replacing empty value in total charges column with 0

data['TotalCharges']=data['TotalCharges'].replace(" ",0.0) data.isnull().sum()

```
Out[13]: gender
         SeniorCitizen
                              0
         Partner
                              0
         Dependents
                              0
         tenure
                              0
          PhoneService
                              0
          MultipleLines
                              0
          InternetService
                              0
         OnlineSecurity
          OnlineBackup
                              0
         DeviceProtection
                              0
         TechSupport
                              O
         StreamingTV
         StreamingMovies
                              0
         Contract
                              0
          PaperlessBilling
                              0
                              0
          PaymentMethod
          MonthlyCharges
                              0
         TotalCharges
                              0
                              0
         Churn
          dtype: int64
         data['TotalCharges']=data['TotalCharges'].astype('float64')
         data.info()
        <class "pandas.core.frame.DataFrame">
        RangeIndex: 7043 entries, 0 to 7042
        Data columns (total 20 columns):
         # Column
                               Non-Null Count Dtype
             gender
                               7043 non-null
         0
                                                object
             SeniorCitizen
                                7043 non-null
                                                int64
         1
         2
             Partner
                                7043 non-null
                                                object
         3
             Dependents
                                7043 non-null
                                                object
         4
             tenure
                                7043 non-null
                                                int64
             PhoneService
                                7043 non-null
                                                object
             MultipleLines
                                7043 non-null
         6
                                                object
                                7043 non-null
         7
             InternetService
                                                object
         8
                                7043 non-null
             OnlineSecurity
                                                object
             OnlineBackup
                                7043 non-null
                                                object
         10 DeviceProtection
                                7043 non-null
                                                object
                                7043 non-null
         11 TechSupport
                                                object
                                7043 non-null
         12 StreamingTV
                                                object
         13 StreamingMovies
                               7043 non-null
                                                object
         14 Contract
                                7043 non-null
                                                object
         15 PaperlessBilling
                                7043 non-null
                                                object
            PaymentMethod
                                7043 non-null
                                                object
         16
             MonthlyCharges
         17
                                7043 non-null
                                                float64
            TotalCharges
         18
                                7043 non-null
                                                float64
         19 Churn
                                7043 non-null
                                                object
        dtypes: float64(2), int64(2), object(16)
        memory usage: 1.1 + MB
```

Exploratory Data Analysis

plot_histogram(data, "tenure")

0

Histogram of all the numerical columns in the dataset

```
import warnings
warnings.filterwarnings('ignore')
def plot_histogram(data,column):
    plt.figure(figsize=(7,4))
    sns.histplot(x=data[column],kde=True)
    plt.title(f"Distribution of {column}")
     # calculating each column mean and column median
    col_mean=data[column].mean()
    col_med=data[column].median()
    # drawing a horizontal line of col_mean and median
plt.axvline(col_mean,color="red",linestyle="---',label='Mean')
    plt.axvline(col_med,color="green",linestyle="-',label='Median')
    plt.legend()
    plt.show()
```


In [20]: plot_histogram(data, "MonthlyCharges")

In [21]: plot_histogram(data, 'TotalCharges')

Boxplot of all the numerical columns in the dataset (checking for outliers)

```
def plot_boxplot(data,column):
    plt.figure(figsize=(6,4))
    sns.boxplot(data=data,y=data[column],color="green")
    plt.title(f"boxplot of {column}")
```

plt.show()

In [23]: plot_boxplot(data,'tenure')

In [24]: plot_boxplot(data,'MonthlyCharges')

In [25]: plot_boxplot(data, 'TotalCharges')

Countplot of all the categorical columns in the dataset

```
numerical_coll=["tenure", "MonthlyCharges", "TotalCharges"]
for col in data.columns:
    if col not in numerical_coll:
        ax=sns.countplot(data=data,x=data[col])
        for p in ax.patches:
            ax.text(p.get_x() + p.get_width()/2,p.get_height(),str(p.get_height()),fontsize=12,color='black',ha='
```

plt.title(f"Count of {col}")
plt.show()

Insights

- 1. by above countplot we can see the number of customers are more having no parther like-wife ,spouse
- 2. the number of customers are more having no dependents like-family, children
- 3. the number of customers are more having phone service with telecom company
- 4. the number of customers are more compare to others having no multiple lines (home phone, mobile phone)
- 5. fibre optic type of internet service are most compare to dsl and no
- 6. there are not much difference between customers who subscribe and unsubscribe streaming movies/streaming tv services provided by telecom company
- 7. mostly customers wants to month_to_month contract with telecom company(like they can cancel their plans from company within a month)

8. payment done by customers using electronic check are most compare to mailed _check,credit_card and bank transfer

Countplot of each categorical column (having customer's churn and not churn)

```
In [33]:
    for col in data.columns:
        if col not in numerical_coll:
            sns.set_palette(['orange'])

            g=sns.FacetGrid(data,col='Churn',height=4,aspect=1)

            g.map(sns.countplot,col)
            plt.xticks(rotation='vertical')
            plt.title(f"countplot of {col} for different churns")

            plt.show()
```


Insights

- 1. customers who left the company generally having phone service
- 2.the churned customer is in higher in number who doesn't have tech support
- 3. Most of the customers left the company having Fibre optic type of internet service
- 4. Mostly customers left the company due to havinhg no online security such as ,antivirus software, firewall protection
- 5.cutomers who left the telecom company mostly of them having no device protection(if their mobile phone damage,lost then they have to buy phone)
- 6.the customers who churned from the company mainly done payment via electronic check
- 7.the customers who left the company generally was of month_to_month contract

Kdeplot of tenure numerical column (having customer's churn and not churn)

Most of the churned customers having tenure is in between (0-20) unit

In []

Kdeplot of Monthly Charges numerical column (having customer's churn and not churn)

sns.kdeplot(data=data,x='MonthlyCharges',hue='Churn',fill=True)

Out[43]: <Axes: xlabel='MonthlyCharges', ylabel='Density'>

Most of the customers left the company due to high monthly charges

Kdeplot of Monthly Charges numerical column (having customer's churn and not churn)

```
sns.kdeplot(data=data,x='TotalCharges',hue='Churn',fill=True)3

Out[44]: <Axes: xlabel='TotalCharges', ylabel='Density'>
```


Customers who left the company ,most of them having total charges in between (0-2000)

	data . sample(5)											
5]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBack	
	1210	Male	0	Yes	Yes	17	Yes	No	Fiber optic	No		
	6038	Female	0	Yes	Yes	70	Yes	Yes	Fiber optic	Yes	,	
	3394	Male	0	No	No	26	Yes	Yes	DSL	Yes	`	
	2678	Male	0	No	No	30	Yes	No	No	No internet service	No inter serv	
	137	Female	0	Yes	Yes	64	Yes	No	No	No internet service	No inter serv	

To find all object columns in the dataset

Transforming all categories into numerical

```
from sklearn.preprocessing import LabelEncoder
for col in object_col:
    le=LabelEncoder()
    data[col]=le.fit_transform(data[col])

data.sample(10)
```

Out[38]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBack
	5974	1	0	1	1	10	1	0	2	1	
	3444	1	0	1	0	36	0	1	0	2	
	911	0	1	0	0		1	2	1	0	
	6227	1	0	0	0		1	0	0	0	
	6717	1	1	1	0		1	2	1	0	
	5577	1	0	0	0		1	0	2	1	
	308	1	1	1	1	38	1	2	1	0	
	3307 1783	0	0	1	1	48	1	0	0	0	
	1603	0	0	0	0		1	2	0	2	
	data['OnlineSecurity'] . value_counts()										
Out[39]:	Onli	neSecu	ırity								
	0 2	3498 2019									
	1 Nam	1526	t, dtype: int64	1							
			upport'] . valu		:s()						
Out[40]:	Tech	Support									
	0 2	3473 2044									
	1 Nam	1526 e: count	t, dtype: int64	1							
			(columns=[<mark>'Ch</mark>								
	y=da	ita[<mark>'Ch</mark> ı mple(5)	urn']	um)							
Out[41]:	2697	0									
	6694 3613										
	2037 445	0 1									
	Nam	e: Churr	n, dtype: int32	2							
	traiı	ning a	and test d	ata							
	from s	klearn.m	odel_selection i	mport trai	n_test_split x_	train,x_te	est,y_train,y_test	=train_test_spli	t(x,y,test_size=0.2	2,random_state=	42)
		n.shape									
	x_tes	t . shape									
Out[43]:	(140	9, 19)									
	y_tra	in . valu	ie_counts()								
Out[44]:											
	0	4138 1496									
			t, dtype: int64								
	from	imblear	n.over_sampli	ng impo	rt SMOTE						
	x_tra	in_smo	E(random_state te,y_train_sm te . value_cou	ote=sm	ote . fit_resaı	mple(x_	train,y_train)				
Out[46]:											
	0 1	4138 4138									

Model Training

Name: count, dtype: int64

4138

```
from xgboost import XGBClassifier
         models={ "DecisionTree": DecisionTreeClassifier(random_state=42),
                  "RandomForest":RandomForestClassifier(random_state=42),
                  "xgboost":XGBClassifier(random_state=42)}
         cv_scores=[]
         for model_name,model in models.items():
             print(model_name)
             print(model)
             print('-'*50)
        DecisionTree
        DecisionTreeClassifier(random_state=42)
        RandomForest
        RandomForestClassifier(random\_state=42)
        xaboost
        XGBClassifier(base_score=None, booster=None, callbacks=None,
                      colsample_bylevel=None, colsample_bynode=None,
                      colsample_bytree=None, device=None, early_stopping_rounds=None,
                      enable_categorical=False, eval_metric=None, feature_types=None,
                      gamma=None, grow_policy=None, importance_type=None,
                      interaction_constraints=None, learning_rate=None, max_bin=None,
                      max_cat_threshold=None, max_cat_to_onehot=None,
                      max_delta_step=None, max_depth=None, max_leaves=None,
                      min_child_weight=None, missing=nan, monotone_constraints=None,
                      multi_strategy=None, n_estimators=None, n_jobs=None,
                      num_parallel_tree=None, random_state=42, ...)
         from sklearn.metrics import accuracy_score
         from sklearn.model_selection import cross_val_score
         cv_scores={}
         for model_name,model in models.items():
             score=cross_val_score(model,x_train_smote,y_train_smote,cv=5,scoring="accuracy")
             cv_scores[model_name]=score
             print(f"{model} croos_validation_accuracy:{np.mean(score):.2f}")
             print('-'*50)
        DecisionTreeClassifier(random_state=42) croos_validation_accuracy:0.78
        RandomForestClassifier (random\_state=42) \quad croos\_validation\_accuracy: 0.84
        XGBClassifier(base_score=None, booster=None, callbacks=None,
                      colsample_bylevel=None, colsample_bynode=None,
                      colsample_bytree=None, device=None, early_stopping_rounds=None,
                      enable_categorical=False, eval_metric=None, feature_types=None,
                      gamma=None, grow_policy=None, importance_type=None,
                      interaction_constraints=None, learning_rate=None, max_bin=None,
                      max_cat_threshold=None, max_cat_to_onehot=None,
                      max_delta_step=None, max_depth=None, max_leaves=None,
                      min_child_weight=None, missing=nan, monotone_constraints=None,
                      multi_strategy=None, n_estimators=None, n_jobs=None,
                      num_parallel_tree=None, random_state=42, ...) croos_validation_accuracy:0.83
         cv_scores
out[52]: {'DecisionTree': array([0.68115942, 0.71903323, 0.81752266, 0.84350453, 0.84350453]),
           "RandomForest": array([0.72705314, 0.76676737, 0.90453172, 0.89244713, 0.89848943]),
          'xgboost': array([0.71074879, 0.75226586, 0.90271903, 0.89123867, 0.89909366])}
         cv_scores={}
         for model_name,model in models.items():
             score=cross_val_score(model,x_train,y_train,cv=5,scoring="accuracy")
             cv_scores[model_name]=score
             print(f''\{model\}\ croos\_validation\_accuracy:\{np.mean(score):.2f\}'')
             print('-'*50)
```

```
colsample_bylevel=None, colsample_bynode=None,
                        colsample_bytree=None, device=None, early_stopping_rounds=None,
                        enable_categorical=False, eval_metric=None, feature_types=None,
                        gamma=None, grow_policy=None, importance_type=None,
                        interaction_constraints=None, learning_rate=None, max_bin=None,
                        max_cat_threshold=None, max_cat_to_onehot=None,
                        max_delta_step=None, max_depth=None, max_leaves=None,
                        min_child_weight=None, missing=nan, monotone_constraints=None,
                        multi_strategy=None, n_estimators=None, n_jobs=None,
                        num_parallel_tree=None, random_state=42, ...) croos_validation_accuracy:0.78
           from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
           y_test.value_counts()
           Churn
           0
                1036
                 373
           Name: count, dtype: int64
           rfc=RandomForestClassifier(n_estimators=350,max_features=0.6,max_samples=0.6)
           rfc.fit(x_train_smote,y_train_smote)
  Out[56]:
                                        RandomForestClassifier
           RandomForestClassifier(max_features=0.6, max_samples=0.6, n_estimators=350)
           Prediction, Confusion Matrix and Classification Report of the data
           y_pred=rfc.predict(x_test)
           print(accuracy_score(y_test,y_pred))
           print(confusion_matrix(y_test,y_pred))
           print(classification_report(y_test,y_pred))
          0.7735982966643009
          [[861 175]
           [144 229]]
                                     recall f1-score
                       precision
                                                        support
                     0
                             0.86
                                       0.83
                                                 0.84
                                                           1036
                             0.57
                                       0.61
                                                 0.59
                                                            373
                                                 0.77
                                                           1409
              accuracy
             macro avg
                             0.71
                                       0.72
                                                 0.72
                                                           1409
          weighted avg
                             0.78
                                       0.77
                                                 0.78
                                                           1409
          from sklearn.ensemble import GradientBoostingClassifier
          gb = Gradient Boosting Classifier (n\_estimators = 20, learning\_rate = 0.5)
          gb.fit(x_train_smote,y_train_smote)
Out[58]: -
                               GradientBoostingClassifier
          GradientBoostingClassifier(learning_rate=0.5, n_estimators=20)
          y_pred1=gb.predict(x_test) accuracy_score(y_pred,y_test)
Out[59]: 0.7735982966643009
```

XGBClassifier(base_score=None, booster=None, callbacks=None,

 $Loading\ [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js$

Conclusion of the Churn Rate Analysis Project:

The exploratory data analysis (EDA) of telecom customer churn provided valuable insights into customer behavior and factors influencing churn. The key takeaways from the project include:

1. Data Preprocessing and Cleaning:

- o The dataset contained 7043 entries with 20 columns.
- o Null values in the TotalCharges column were identified and replaced with 0.
- Data types were corrected to ensure proper analysis, including converting categorical variables into numerical form using label encoding.

2. Key Insights from EDA:

- Most customers preferred month-to-month contracts, indicating a desire for flexibility.
- Customers who churned were more likely to have Fiber Optic internet service, suggesting potential issues with service satisfaction or pricing.
- **Electronic checks** were the most common payment method used by customers who left the company, hinting at a possible correlation between payment method and churn.
- o Customers without tech support and online security services were more likely to leave.
- Tenure and monthly charges played a significant role in churn, with many customers leaving within the first 0-20 months.

3. Model Training and Evaluation:

- o Several machine learning models were trained, including:
 - **Decision Tree** (cross-validation accuracy: ~73%)
 - Random Forest (cross-validation accuracy: ~79%)
 - XGBoost (cross-validation accuracy: ~78%)
- SMOTE (Synthetic Minority Over-sampling Technique) was used to balance the dataset, improving model performance.
- The Random Forest model achieved an accuracy of **77.36%**, with a precision of **86%** for non-churn and **57%** for churn cases.
- The Gradient Boosting model provided comparable results, showing that boosting techniques can further enhance predictive performance.

4. Key Factors Influencing Churn:

- o Customers with low tenure and high monthly charges were more likely to churn.
- Lack of additional services such as online security, tech support, and device protection contributed to higher churn rates.
- o Customers with dependents and partners were less likely to leave, indicating customer stability.

5. **Recommendations**:

- o Offer incentives or discounts to customers with short tenure to increase retention.
- o Improve service offerings for Fiber Optic users to address potential concerns.
- o Educate customers about the benefits of additional services like online security and device protection.
- o Encourage alternative payment methods to reduce churn among electronic check users.