

Processamento Gráfico Introdução e Conceitos Básicos

Prof^a Rossana Baptista Queiroz

27 de fevereiro de 2014

APRESENTAÇÃO GERAL

Apresentação Geral

- Eu! fellowsheep@gmail.com
 - Bacharel em Ciência da Computação pela
 Unisinos
 - Mestre em Ciência da Computação pela PUCRS
 - Área de Pesquisa: <u>Animação Facial em Tempo</u> <u>Real</u>

fellowsheep on Steam

- Página da disciplina no Moodle
 - www.moodle.unisinos.br
 - Conferir semanalmente!!!

Conhecendo a turma

- Vocês!
 - Semestre? (teoricamente 2º)
 - Já desenvolveu algo em/para jogos?
 - O que?
 - Portfólio pessoal...
 - Expectativas na área...

Objetivos da Disciplina

Conhecer os principais conceitos de Processamento Gráfico e suas sub-áreas

Conhecer a API gráfica OpenGL

Implementar soluções de pequenos problemas usando os conceitos da área, a API gráfica OpenGL e estruturas de dados adequadas

O que faremos no semestre??

- Conceitos básicos de
 - Computação Gráfica
 - Modelagem
 - Animação
 - Rendering
 - Processamento de Imagens
 - Realidade Virtual
 - Interfaces
 - Visão Computacional
- Uma introdução à API gráfica OpenGL
- Implementação de sistemas interativos de Computação Gráfica
 - Enriquecendo o portfolio... [©]

O que faremos neste semestre??

- Aulas teóricas e práticas
- É apenas a primeira... ©
 - Computação Gráfica
 - Realidade Virtual
 - Animação Computadorizada
 - Técnicas Avançadas de Computação Gráfica
 - Técnicas de otimização
 - ... e de certa forma, Física para Jogos...

Referências Recomendadas

Referências Técnicas

OpenGL

- COHEN, Marcelo, MANSSOUR, Isabel. OpenGL: uma abordagem prática e objetiva. São Paulo: Novatec, 2006. 478 p.
- SHREINER, Dave et al. OpenGL Programming Guide: The Official Guide to Learning OpenGL. Reading, MA: Addison-Wesley, 5 edition, 2005. 896 p.

Cronograma

Consultem <u>SEMPRE</u> o cronograma na página!

Avaliação

Grau A

- Exercícios variados: peso 6.0
- Trabalho prático (implementação dirigida): peso 4.0

Grau B

- Exercícios variados: peso 5.0
- Trabalho prático : peso 5.0

Grau C

Prova substitutiva do Grau A OU do Grau B

Avaliações... uma regrinha

- "Fator depreciação"
 - Apenas 1 semana de tolerância
 - Trabalho entregue na semana "extra" valerá apenas 60% da nota total dele
- De preferência, SEMPRE entreguem alguma coisa
 - Melhor "um pouco de nota" do que "nenhuma nota"
 - Aproveitem BEM as aulas em laboratório ©

DÚVIDAS? COMENTÁRIOS?

PROCESSAMENTO GRÁFICO

- Processamento gráfico:
 - É o processamento de informações visuais, tanto para geração de imagens, quando obtenção de dados.
 - Exemplos:
 - Geração de filmes através de computador
 - Correção de olhos vermelhos em fotos
 - Aplicação de filtros de imagens
 - Geração de desenhos animados no computador

- Detecção e reconhecimento de objetos em imagens
- Geração de cenas em jogos 2D e 3D
- Modelagem de sólidos baseado em física
- Modelos 3D para prototipação de matrizes.
- Simulação de ambientes nocivos
- Visualização de gráficos sobre dados
- Etc.

- Imagine um sistema de computador no qual o usuário possui recursos avançados de matemática para produzir modelos baseados em física.
- Imagine que o mesmo pode definir através de números quaisquer propriedades que forem necessárias para representar o modelo físico.

- Como poderia o usuário trabalhar desta forma sem ter um visualização do modelo criado? O quão difícil é para usuário interagir com este sistema "manual"?
- Processamento gráfico é a área da Ciência da Computação que trata deste tipo de problema.

Ela busca tratamento/geração de dados visuais. Imagem ou representação gráfica de modelos.

- Divide-se em duas grandes áreas (ou linhas de pesquisa):
 - Processamento de imagens:
 - Tratamento de imagens
 - Visão computacional
 - Computação Gráfica:
 - Síntese de imagens
 - Pipeline processo ou cadeia de renderização:
 - Pipeline 2D
 - Pipeline 3D

• Esquema conceitual:

Esquema conceitual:

Esquema conceitual:

• Um outro esquema interessante...

- Processamento de imagens visa a obtenção de informações da imagem para produção de dados a respeito da mesma ou modificação da imagem
- Tratamento de imagens:
 - Trata da geração de novas imagens a partir de imagens de entrada. A rigor não extrai informações da imagem.
 - Exemplos de aplicativos comerciais:
 - GIMP (software livre), Adobe Photoshop, Paint Shop Pro, ...

Tratamento de imagens:

Para efeitos artísticos ou correção/destaque de cores da imagem

Filtro de imagem que troca uma cor por outra

Filtro de imagem aplica efeitos de foto envelhecida

• Tratamento de imagens:

Para correção, melhoria ou destaque de informações relevantes da imagem

Filtro de correção gama

Visão Computacional

- Visão Computacional
 - É um processo de analisar a imagem e obter dados que possuem algum significado.
 - Exige um alto processamento computacional para extrair dados de uma imagem.
 - Normalmente, implica em percorrer todos os pontos da imagem e, para cada ponto, analisar a sua vizinhança.
 - Exemplo: detecção de rostos, robótica, reconhecimento de placas de veículos, autenticação baseada em imagens, etc.

Visão Computacional

Algoritmo de detecção de regiões (pixels conectados) com a tonalidade da pele

Detecção de pele usando Redes Neurais Artificiais (Bittencourt & Osório, 2002)

Visão Computacional

INS:1457

Sistema de detecção

Resultado: INS1457 - Fulano de Tal - AUTORIZADO

Sistema de reconhecimento de placas e autenticação de veículos para condomínios: Câmera fotografa o veículo e sistema faz a detecção e o reconhecimento dos números da placa.

- É um processo de sintetizar imagens a partir de um conjunto de dados.
 - Transformação de dados em imagem. Dados são a parte do modelo, são a descrição da cena ou imagem a ser sintetizada.
- O processo de síntese de dados em imagem requer um alto custo computacional.
- A CG está intimamente ligada a idéia de se obter o "melhor resultado" com o menor custo computacional possível. Este paradoxo fomenta as pesquisas na área.
 - Muitos algoritmos são criados com este intuito: Algoritmos de compressão de imagens, redução de malha poligonal, representação de objetos em mapas ou cenários de jogos, mapeamento de texturas,

• •

• Computação Gráfica não é só 3D, é 2D também.

Modelagem Geométrica

- Modelagem em CG:
 - Os dados ou modelos em CG são:

 Pontos são conectados para formarem polígonos, quem são conectados para formar algum objeto...

Modelagem em CG:

- O custo computacional para gerar o "teapot" do exemplo anterior é pequeno, pois o objeto possui poucos polígonos e quase nenhum detalhe de preenchimento/sombreamento.
- Como seria o custo para gerar um objeto como este? São mais de 77 mil pontos e aproximadamente 25 mil polígonos! Requer muito processamento. E este não é modelo muito detalhado; modelo mais perfeccionistas possuem milhões de pontos.
- Veremos algoritmos de recorte e preenchimento de polígono, que são utilizados de forma a otimizar o custo computacional.

Renderização

Renderização

- Uma imagem é uma distribuição de energia luminosa num meio bidimensional (o plano do filme fotográfico, por exemplo)
- Dados uma descrição do ambiente 3D e uma câmera virtual, calcular esta energia em pontos discretos (tirar a fotografia)
- Resolver equações de transporte de energia luminosa através do ambiente!!

Renderização

- É a técnica pela qual obtemos uma imagem gerada a partir de um modelo
- Este modelo é uma descrição de uma cena e pode conter informações sobre geometria, cores, propriedades e texturas de objetos, iluminação e sombreamento
 - Tipos de modelos conhecidos?

Rendering – Exemplo

Rendering – Exemplo

Rendering – Exemplo

Renderização

Animação

Animação

- Modelar Ações dos objetos, ou seja, como objetos se MOVEM
- Como representar movimento de objetos?
- Como especificar movimento (interativamente ou através de um programa)?
- Animação Baseada em Física/regras
- Atores Autônomos
- Captura de movimento
- Onde a IA encontra a Animação?

Técnicas de Animação

Terzopoulos, D. 1999. Artificial life for computer graphics. *Commun. ACM* 42, 8 (Aug. 1999), 32-42.

Cognitiva

Comportamental

Física

Cinemática

Geométrica

- Outros assuntos a serem tratados durante o semestre:
 - Câmera sintética: processo de renderização de objetos numa cena.
 - Representação de mundos virtuais: mundos ou mapas de jogos digitais.
 - Visões de jogos 2D e 3D, como são programados efeitos para simular realismo.
 - Animação com sprites
 - Entre outros tópicos

Esquema conceitual da CG:

- Frame buffer: É uma porção de memória usada para criar o pixel map que será enviado para o monitor.
 - 1024x768x24 = 2,25 Mb
 - 1024x768x16 = 1,5 Mb
 - 800x600x24 = 1,37 Mb
 - 320x200x8 = 62,5 Kb
 - \blacksquare 140x140x1 = 2,4 Kb
- ✓ Double buffering: técnica que utiliza um buffer auxiliar para criar imagem enquanto um buffer é desenhado (alternância). Usado para evitar o flicker (tremer a imagem)

 Esquema conceitual da CG: Dados 2D/3D OpenGL/GLUT/SDL/DirectX Modelo da Aplicação Sistema Gráfico Aplicação Manipula dados e define o que será desenhado e aonde.

- Aplicações em CG:
 - Interfaces gráficas
 - Gráficos interativos em negócios, ciência e tecnologia
 - Cartografia (principalmente na área de geoprocessamento)
 - Medicina
 - CAD (Computer-Aided Design) / CAM(Computer-Aided Manufacturing)
 - Sistemas multimídia

- Aplicações em CG:
 - Simulação e animação para visualização científica
 - Entretenimento
 - Cinema e ...
 - ... Jogos Digitais!

RenderPark

gCAD3D

Leandro Tonietto 52

O Senhor dos Anéis - As Duas Torres

Half Life 2

King Kong

- Cinema vs. Jogos
 - Como criar bons gráficos em tempo real?
 - Tempo real: acima de 30 quadros por segundo
 - Tempo interativo: menos de 30 fps, mas possível de interagir na aplicação
 - Geração vs. Uso de modelos/animações prédefinidas
 - Variabilidade
 - Improviso

Vídeos

- <u>Skyrim</u>
- Uncharted 3

Referências bibliográficas

- 1. WRIGHT Jr., Richard S.; LIPCHAK, Benjamin; HAEMEL, Nicholas. **OpenGL Superbible: Comprehensive Tutorial and Reference**. 4ed.: Addison-Wesley. 2007.
- FOLEY, J.D. et al. Computer graphics: principles and practice. Reading: Addison-Wesley, 1990.
- 3. TONIETTO, Leandro; WALTER, Marcelo. **Análise de Algoritmos para Chroma-key**. Unisinos, 2000.
- BITTENCOURT, João. Apresentação de introdução ao processamento gráfico. Disponível para download no site da disciplina.
- Notas de Aula do Professor Leandro Tonietto (http://professor.unisinos.br/ltonietto/jed/pgr/pgr2011
 02.html
- 6. Notas de Aula da Professora Soraia R. Musse (PUCRS)