Untitled27

```
In [113]:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
In [114]:
df=pd.read csv('business.retailsales.csv')
In [115]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1775 entries, 0 to 1774
Data columns (total 6 columns):
                      Non-Null Count
     Column
                                       Dtype
- - -
                      -----
     -----
                      1767 non-null
 0
     Product Type
                                       object
                                       int64
 1
     Net Quantity
                      1775 non-null
 2
     Gross Sales
                      1775 non-null
                                       float64
 3
     Discounts
                      1775 non-null
                                       float64
                      1775 non-null
 4
     Returns
                                       float64
     Total Net Sales 1775 non-null
                                       float64
dtypes: float64(4), int64(1), object(1)
memory usage: 83.3+ KB
In [116]:
df.dropna()
Out[116]:
```

	Product Type	Net Quantity	Gross Sales	Discount s	Returns	Total Net Sales
0	Art & Sculptur e	34	14935.0	-594.00	- 1609.00	12732.0 0
1	Basket	13	3744.0	-316.80	0.00	3427.20
2	Basket	12	3825.0	-201.60	-288.00	3335.40
3	Basket	17	3035.0	-63.25	0.00	2971.75
4	Art &	47	2696.8	-44.16	0.00	2652.64

	Product Type	Net Quantity	Gross Sales	Discount s	Returns	Total Net Sales
	Sculptur					
	e					
1770	Kitchen	0	28.0	-2.81	-25.19	0.00
1771	Jewelry	0	28.0	0.00	-28.00	0.00
1772	Basket	0	116.0	-23.20	-92.80	0.00
1773	Kitchen	0	16.5	0.00	-16.50	0.00
1774	Kitchen	-1	0.0	0.00	-106.25	-106.25

1767 rows × 6 columns

In [117]:

sales = df.groupby('Product Type').sum().sort_values('Gross
Sales').reset_index()
sales

Out[117]:

	Product	Net	Gross	Discount		Total Net
	Type	Quantity	Sales	S	Returns	Sales
0	Gift Baskets	1	19.50	0.00	0.00	19.50
1	Easter	1	38.00	-3.80	0.00	34.20
2	Textiles	43	1889.00	-112.90	-97.00	1679.10
3	Furnitur e	27	2034.00	-169.04	0.00	1864.96
4	One-of- a-Kind	12	2180.00	-71.99	0.00	2108.01
5	Fair Trade Gifts	110	2258.00	-53.33	0.00	2204.67
6	Skin Care	101	2609.50	-37.70	0.00	2571.80
7	Music	98	2643.50	-82.19	-142.41	2418.90
8	Recycle d Art	99	3792.80	-88.64	0.00	3704.16
9	Kids	140	3838.00	-116.66	0.00	3721.34
10	Accessor	84	3892.40	-107.02	0.00	3785.38

	Product Type	Net Quantity	Gross Sales	Discount s	Returns	Total Net Sales
	ies					
11	Soapsto ne	199	4795.50	-96.91	-69.50	4629.09
12	Christm as	575	15476.0 0	-345.19	-670.00	14460.8 1
13	Kitchen	809	16096.0 0	-431.11	-328.07	15336.8 2
14	Home Decor	404	27114.5 5	-991.21	-423.35	25699.9 9
15	Jewelry	991	31048.0 0	-965.85	-509.20	29572.9 5
16	Art & Sculptur e	1427	90316.6 0	- 2955.82	- 2879.93	84480.8 5
17	Basket	1461	143815. 50	- 4584.42	- 4439.69	134791. 39

In [118]:

y=sales['Total Net Sales']
x=sales['Product Type'] plt.boxplot(y) plt.legend(x)
plt.title("total sales of different types of products")

Out[118]:

Text(0.5, 1.0, 'total sales of different types of products')

In [119]:

```
x=sales['Total Net Sales']
y=sales['Product Type']
sns.barplot(x=x,y=y)
plt.rcParams["figure.figsize"]=(20,40)
plt.title("distribution of netsales according to the product type")
Out[119]:
```


In [126]:

```
products=sales['Product Type']
x_axis = np.arange(len(products))
x=sales['Total Net Sales']
y=sales['Gross Sales']
plt.bar(x_axis -0.2,x, width=0.4, label = 'Total Net Sales')
plt.bar(x_axis +0.2,y , width=0.4, label = 'Gross Sales')
plt.xticks(x_axis, products)
plt.legend()
plt.show()
plt.rcParams["figure.figsize"]=(20,20)
```


In [130]:

```
x=df['Net Quantity']
y=df['Gross Sales']
sns.scatterplot(x=x,y=y)
plt.title('gross sales quantity of each product')
```

Out[130]:

Text(0.5, 1.0, 'gross sales quantity of each product')

In [136]: y=sales['Product Type'] x=sales['Net Quantity'] plt.pie(x,labels = y,startangle=180,autopct='%.1f%%',radius=1) plt.show()

In [137]:

```
y=sales['Product Type']
x=sales['Discounts']
sns.scatterplot(x,y)
plt.rcParams['figure.figsize'] = [5,5]
```

C:\Users\91728\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [147]:

```
y=sales['Product Type']
x=sales['Returns']
sns.lineplot(x,y)
plt.rcParams['figure.figsize'] = [10,7]
```

C:\Users\91728\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In []: