Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Departamento de Ciências Exatas - DCEX

Disciplina: Cálculo Numérico Prof.: Luiz C. M. de Aquino

Lista de Exercícios VII

1. Determine um spline natural cúbica que interpole os pontos da tabela abaixo:

2. Considere uma função f da qual são conhecidos os seguintes pontos:

- (a) Faça um esboço desses pontos no plano cartesiano. A partir desse esboço, analise qual o grau do polinômio que parece se ajustar a estes pontos.
- (b) Utilize o Método dos Mínimos Quadrados para determinar o polinômio que melhor se ajusta a estes pontos (considerando o grau analisado no item (a)).
- 3. Sobre certa função f são conhecidos os pontos $(x_k, f(x_k))$, com k = 0, 1, 2, ..., n. Suponha que seja aplicado o Método dos Mínimos Quadrados para determinar a função $\phi(x) = ag_1(x) + bg_2(x)$ que melhor se ajusta a f. Deduza que os coeficientes a e b são a solução do sistema de equações:

$$\begin{cases} c_{11}a + c_{12}b = d_1 \\ c_{21}a + c_{22}b = d_2 \end{cases},$$

onde
$$c_{ij} = \sum_{k=0}^{n} g_i(x_k)g_j(x_k)$$
 e $d_i = \sum_{k=0}^{n} g_i(x_k)f(x_k)$.

4. Considere os polinômios:

$$p_0(x) = 1; p_1(x) = x; p_2(x) = \frac{1}{2}(3x^2 - 1).$$

- (a) Verifique que $\int_{-1}^{1} p_i(x) p_j(x) dx = 0$, sempre que $i \neq j$.
- (b) Utilize o Método dos Mínimos Quadrados para determinar $\phi(x) = a_0 p_0(x) + a_1 p_1(x) + a_2 p_2(x)$ que melhor se ajusta a função definida por $f(x) = \left(x \frac{1}{2}\right)^4$ no intervalo [-1, 1].
- 5. Considere a função definida por $g_k(x) = \text{sen}(k\pi x)$, onde $k \in \mathbb{N}^*$.

(a) Prove que
$$\int_{-1}^{1} g_i(x)g_j(x) dx = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
.

(b) Utilize o Método dos Mínimos Quadrados para determinar $\phi(x) = \sum_{k=1}^{\infty} a_k g_k(x)$ que melhor se ajusta a função definida por f(x) = x no intervalo [-1; 1].

Gabarito

$$\phi(x) = 1,3815x^2 - 1,9159x + 0,87686.$$
 [3] Sugestão: Defina $D(a,b) = \sum_{i=0}^{n} [f(x_i) - \phi(x_i)]^2$. Em seguida,

analise o sistema
$$\begin{cases} \frac{\partial D}{\partial a} = 0 \\ \frac{\partial D}{\partial b} = 0 \end{cases}$$
. [4] (a)
$$\int_{-1}^{1} p_0(x) p_0(x) dx = 2, \int_{-1}^{1} p_0(x) p_1(x) dx = 0,$$

analise o sistema
$$\begin{cases} \frac{\partial D}{\partial a} = 0 \\ \frac{\partial D}{\partial b} = 0 \end{cases}$$
. [4] (a) $\int_{-1}^{1} p_0(x)p_0(x) dx = 2$, $\int_{-1}^{1} p_0(x)p_1(x) dx = 0$,
$$\int_{-1}^{1} p_0(x)p_2(x) dx = 0$$
, $\int_{-1}^{1} p_1(x)p_1(x) dx = \frac{2}{3}$, $\int_{-1}^{1} p_1(x)p_2(x) dx = 0$, $\int_{-1}^{1} p_2(x)p_2(x) dx = \frac{2}{5}$. (b) $\phi(x) = -\frac{13}{560} - \frac{17}{10}x + \frac{33}{14}x^2$. [4] (a) Sugestão: caso $i = j$, use a identidade trigonométrica sen ${}^2\alpha = \frac{1}{2}(1 - \cos 2\alpha)$; caso $i \neq j$, use a identidade sen $\alpha \operatorname{sen} \beta = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$; em ambos os casos, lembre-se que $\operatorname{sen}(k\pi) = 0$ quando $k \in \mathbb{Z}$. (b) $\phi(x) = \frac{2}{\pi} \operatorname{sen}(\pi x) - \frac{1}{\pi} \operatorname{sen}(2\pi x) + \frac{2}{3\pi} \operatorname{sen}(3\pi x) - \frac{1}{2\pi} \operatorname{sen}(4\pi x)$.