Theoretische Informatik: Blatt 6

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 16

Wir wollen zeigen, dass $L_{q_i} \notin \mathcal{L}_R$, also nicht rekursiv ist. Dazu machen wie einen Widerspruchsbeweis. Annahme: L_u sei rekursiv. Wir zeigen $L_u \leq_R L_{q_i}$.

Algorithums B für L_U w = Kod(M) # x $Concatw' = \text{Kod}(M) \# x \# 0^i$ $Syntax \text{ des Zustands } q_{accept}$ $des Zustands q_{accept}$

Für ein Wort w entscheiden wir zuerst ob die Syntax einem Wort in L_u entspricht. Falls nein, ist $w \notin L_u$. Falls ja, wählen wir als i die Nummer des Zustands q_accept in der Kodierung von M und erzeugen daraus w'. Fall die Anzahl Zustände de TM M nicht $\geq i+1$ ist, verwerfen wir w, ansonsten fahren wir fort, wie folgt: Da eine TM aus q_{accept} nicht mehr herausgeht, ist $w \in L_u$, falls M_{q_i} w' akzeptiert, also M den i-ten Zustand erreicht. Falls M_{q_i} w' verwirft akzeptiert M also w nicht.