Robust Risk Measurement and Model Risk in Worst Case Scenarios

July 26, 2024

Prithwish Maiti Zhao Qu Zhijiang Yang

Mentor: Dr. Cagatay Karan, First Citizen Bank

Team Members

Prithwish Maiti psmaiti@ncsu.edu

Zhao Qu zqu6@ncsu.edu

Zhijiang Yang zyang54@ncsu.edu

What is Robust Risk Measurement?

Assess vulnerabilities to models and their potential impact

Quantify the worst case error in measuring model performance

Go beyond parameter sensitivity to consider the effect of changes in probability law

Philosophy of Robust Risk Measurement

How is the Analysis Feasible?

The solutions to the above mentioned optimization problems can be derived.

Closed form solutions of Relative Entropy

$$m^*(\theta, a) = \frac{exp(\theta V_a(X))}{E[exp(\theta V_a(X))]}$$

$$a^*(\theta) = arg \inf_{\theta} = \frac{1}{\theta} \log E[exp(\theta V_a(X))]$$

$$\inf_{\theta>0} H(\theta) + \frac{\eta}{\theta} = \frac{1}{\theta} \log E[exp(\theta V_{a^*(\theta)}(X))] + \frac{\eta}{\theta}$$

$$m^* (\theta, \alpha, a) = \left(\theta(\alpha - 1) V_a(X) + c(\theta, \alpha, a)\right)^{\frac{1}{\alpha - 1}}$$

$$where \ c(\theta, \alpha, a) \ can \ be \ solved \ using \ E[m^* (\theta, \alpha, a)] = 1$$

$$a^*(\theta) = \arg\min_{a} \frac{\alpha - 1}{\alpha} E\left[\left(\theta(\alpha - 1)V_a(X) + c(\theta, \alpha, a)\right)^{\frac{1}{\alpha - 1}} V_a(X)\right]$$

$$+ \frac{c(\theta, \alpha, a)}{\theta \alpha(1 - \alpha)}$$

Implicit solution in the case of α -divergence for m*

NC STATE UNIVERSITY

- \rightarrow Generally $\underset{\alpha}{arg \ inf \ H(\theta) \rightarrow \infty}$
- → Analyse the relationship between Entropy(or divergence) and Risk

 Measurement.
- This is possible because the constant η does not appear in the solution and is derived from the obtained m*.

Fig 1- Entropy vs Risk plotted as locus points; the Risk measurement = P(L>x) {Prob. of Loss}

Applications

Investigate the idea of robustness in 3 difference risk measurements

01	Portfolio Variance	Entropy vs Model RiskEmpirical Example
02	Conditional Value At Risk	Relative EntropyHeavy-tail Case
03	Portfolio Credit Risk	Gaussian Copula ModelRobustness and Model Error

Portfolio Variance

- →Assumption Multivariate normal distribution with mean and standard deviation estimated from historical data.
- →Risk measurement does not align with the model.

Alternate distribution deviating with mean or variance constraints

Mean-Variance Objective

$$\inf_{a} - E\left[-a^{T}X - \frac{\varsigma}{2}a^{T}(X - E(X))(X - E(X))^{T}a\right]$$

1. $a = [a_1, a_2, ..., a_n]$ with constraints:

$$a_1 + a_2 + ... + a_n = 1,$$
 $0 < a_i < 1, i = 1,2,3,...,n$

- 2. Find the optimal portfolio using computing algorithms
- 3. This portfolio weights in called the **Nominal Portfolio**

Robust Portfolio Calculation

1) Constrained mean- optimal decision parameter

$$a*(\theta) = arg \min_{a \in \mathcal{A}(\theta)} \frac{1}{\theta} E \left[exp \left[\theta \left(V_a(X) - \lambda^T X \right) \right] \right] + \lambda^T \mu$$
$$= arg \min_{a \in \mathcal{A}(\theta)} \frac{1}{\theta} \frac{1}{\sqrt{\|I - \theta \gamma aa^T \Sigma\|}} + a^T \mu$$

- 2) Along with the sum and bound constraints define the positive definite constraint- $(\Sigma^{-1} \theta \gamma aa^T > 0)$ to solve this optimization. The resulting portfolio is called **Robust Portfolio**.
- 3) $\Sigma^{-1} \downarrow$ hence covariance \uparrow .

Experiment 1- Synthetic Data

 $\mu_i = 0.1$, $\sigma_i = 0.3$, $\varrho_{ii} = 0.25$, i,j = 1,2,3,..10, i.e, for 10 stocks.

Fig 1: Performance of NP and RP in both the scenarios

Fig2: Including Model error caused by parameter perturbations

Experiment 2 - Empirical Data

Realized_variance 2x Std error	9.21e-04 (7.58e-04, 10.84e-04)	Realized_variance 2x Std error	9.65e-04 (7.94e-04, 11.4e-04)
forcasted_variance 2x Std error	1.44e-04 3.19e-05	forcasted_variance 2x Std error	2.34e-04 3.18e-05
theta_ = 200 (with Model error)	1.45e-04 (1.12e-04, 1.78e-04)	theta_ = 200 (with Model error)	2.58e-04 (1.81e-04 3.34e-04)
theta_ = 400 (with Model error)	1.45e-04 (1.13e-04, 1.76e-04)	theta_ = 400 (with Model error)	2.65e-04 (1.76e-04 3.54e-04)
theta_ = 700 (with Model error)	1.44e-04 (1.12e-04, 1.77e-04)	theta_ = 700 (with Model error)	2.63e-04 (1.82e-04 3.46e-04)

Outline: Conditional Value at Risk

Conditional Value at Risk

Definition:

$$CVaR_{\beta} = E[X|X > VaR_{\beta}]$$

Objective Function:

$$\min_{a} \left\{ \frac{1}{1-\beta} E[(x-a)^{+}] + a \right\}$$

Double Exponential Distribution

Double Exponential Distribution DE(μ , b):

- μ: Location parameter
- b: Scale parameter

Preconditions and Parameters:

- Confidence Level β
- Uncertainty Parameter θ
- Likelihood ratio m

Double Exponential Distribution

Modified CVaR

$$CVaR_{\beta,\theta} = a^*(\theta) + \frac{1}{\frac{1}{b} + \frac{\theta}{1 - \beta}}$$

Relative Entropy

$$\begin{split} &\eta(\theta) = E\Big[m^*_{a^*(\theta),\theta} \log m^*_{a^*(\theta),\theta}\Big] \\ &= \theta \frac{E\Big[V_{a^*(\theta)} \exp\Big(\theta V_{a^*(\theta)}(X)\Big)\Big]}{E\Big[\exp\Big(\theta V_{a^*(\theta)}(X)\Big)\Big]} \\ &- \log E\Big[\exp\Big(\theta V_{a^*(\theta)}(X)\Big)\Big] \\ &= \theta \kappa'_{a^*(\theta)}(\theta) - \kappa_{a^*(\theta)}(\theta) \end{split}$$

Double Exponential Distribution

Heavy-Tail Case

Optimal likelihood ratio: $m_{\theta,a}^*(X) = (\theta(\alpha-1)V_a(X) + c(\theta,\alpha,a))^{\frac{1}{\alpha-1}}$

Generalized Pareto distribution

$$f(x) = \frac{1}{b} \left(1 + \frac{\xi_{gp}}{b_{gp}} x \right)^{-\frac{1}{\xi_{gp}} - 1}$$
, for $x \ge 0$, some $b_{gp} > 0$ and $\xi_{gp} > 0$

Generalized Extreme Value distribution

$$f(x) = \frac{1}{\xi_{\text{gev}}} (1 + \xi_{\text{gev}} x)^{-\frac{1}{\xi_{\text{gev}}} - 1} \exp\left(-(1 + \xi_{\text{gev}} x)^{-\frac{1}{\xi_{\text{gev}}}}\right),$$
for $x \ge 0$ and $\xi_{\text{gev}} > 0$

Heavy-Tail Case

Outline: Portfolio Credit Risk

Gaussian Copula Model(Vaciek)

single-factor homogeneous model

$$X_i = \rho Z + \sqrt{1 - \rho^2} \epsilon_i$$

$$Y_i = I(X_i > x_i)$$

$$Loss: c_i$$

- Z as a broad risk factor that affects all obligors
- ε_i is an idiosyncratic risk associated with the i-th obligor only
- Z and ε_i are independent normal variables

Worst Case Scenario: Numerical Experiments

parameter θ is:

The worst-case change of measure at parameter
$$\theta$$
 is:
$$\sum_{i=0}^{n} exp(\theta I) / N \text{ is a normalization constant.}$$

$$m_{\theta}^{*} \sim exp(\theta I_{L>x})$$

$$m_{i}^{\theta} = \frac{exp(\theta I_{i})}{\sum_{i=1}^{n} exp(\theta I_{i})/N}$$

• Takes
$$x = 5$$
, which yields $P(L > x) = 3.8\%$.

$$\widetilde{p} = m^* p$$

The results are based on simulation with $N = 10^6$ samples. 21

Estimate Mean and Std of Variables Under m*

Distribution of Parameters ($\varepsilon_{\rm i}$, Z) under worst case measurement:

$$\mu_{\tilde{z}} = \frac{1}{N} \sum_{i=1}^{N} z_{i} \times m^{*}_{i} \qquad \mu_{\tilde{\varepsilon}_{i}} = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i} \times m^{*}_{i}$$

$$cov(\varepsilon, z) = cov(m^{*}\varepsilon, m^{*}z)$$
m* is not a constant

Generate new variables then estimate mean and std:

$$\tilde{X}_{i} = \rho \tilde{Z} + \sqrt{1 - \rho^{2}} \tilde{\varepsilon}_{i}$$

Observations

Parameter Estimation- Worst Case Model

Worst Case Scenarios with $\theta = 0.5$ and 2

Distribution Behaviour- Worst Case Model

Summary

- The vulnerability of a model has far reaching implications
- Parameter perturbations may miss out some scope of model error which can be covered by Robust risk measurement.

Future Study

- Find better solvers and optimization tools. This will also solve the problem of the empirical example
- 2) Design a portfolio of bonds along with the structure of their default probabilities. Analysis the change in distribution in the worst-case scenario.

Thank You!

Q&A