Generierung von Zügen in GO

Seminar:

Knowledge Engineering und Lernen in Spielen

Datum:

15.06.2004

Vortragender:

Lars Both

Übersicht

- Einführung
 - GO Regeln
- Abstraktion
 - Steine
 - Blöcke
 - Ketten
 - Gruppen
- Evaluation
 - Leben und Tod
 - Augen

- Gruppensicherheit
- Territorien
- Zugfindung
 - Zuggeneratoren
 - Globale Suche
 - Zugentscheidung
- Zusammenfassung

Regeln

Regeln + Freiheiten

Regeln + Verbotene Züge I

Regeln + Verbotene Züge II

Problematik

- Verzweigungsfaktor ~ 200 pro Halbzug
 - 10⁶⁰⁰ Knoten im Suchbaum
 - "brute-force" Suche unmöglich
- Klaffende Lücke zwischen Brettaufbau und Zugfindung
 - Statische Evaluation unmöglich
 - Hohe Exaktheit schwer zu erreichen

Abstraktion, Ebene 1 – Steine

- Verteilung der Steine
- Eingabereihenfolge
 - Nächster Spieler
 - Vermeiden von Ko Situationen

Abstraktion, Ebene 2 – Blöcke

- Benachbarte Steine bilden Blöcke
- Identifikation von Blöcken
 - Einfache Graphensuche.

Abstraktion, Ebene 3 – Ketten

- Ketten sind nicht trennbare Blöcke gleicher Farbe
- Identifikation von Ketten
 - Heuristik
 - Besitzen 2 Blöcke zwei oder mehr gemeinsame Freiheiten, dann gehören sie der selben Kette an.
 - Mustererkennung
 - nächste Folie.
 - Suche
 - Ziel-orientierte lokale Suche.

Abstraktion, Ebene 3 - Ketten Mustererkennung

Abstraktion, Ebene 4 – Gruppen

- strategische Einheiten von Steinen
 - Ketten der eigenen Farbe
 - Tote Blöcke der gegnerischen Farbe
 - Freie Felder

Evaluation

- Blöcke, Gruppen Leben und Tod
 - Blöcke
 - Zahl der Freiheiten ermitteln
 - Status wird durch lokale Suche ermittelt.
 - Gruppen
 - Augenzahl
 - Bibliotheken
 - Heuristik
 - Vorausschau
- Territorien
 - Einfluß

Evaluation - Augen

- Klassifikation Heuristik
 - 'full eye-point'
 - 'partial eye-point'
 - 'false eye-point'
 - Herabstufungsregel

Evaluation - Augen

- Ermitteln der Augenzahl der Augenregionen
 - Ablesbar aus Tabelle:

```
Länge äussere Grenze
Augen
      1.5
8 (square-four)
8 (curved-four)
8 (andere Form)
```

Evaluation – Augen, Beispiel

Evaluation - Gruppensicherheit

- · Augenzahl, Potential
- Fähigkeit zur Expansion
- Fähigkeit zur Flucht
- Mit Nachbarn zu verbinden
- Sicherheit angrenzender feindlicher Gruppen

Evaluation – Vorausschau

- Ermitteln des Status einer Gruppe
 - 2 Vorausschauen

 - Verwertbar: $\{L|L\}$, $\{W|W\}$, $\{W|L\}$, $\{L|W\}$
 - Gehen direkt ein in Evaluation
 - Nicht: $\{?|?\}, \{W|?\}, \{?|L\}$
 - Rechenzeit verschwendet
- Teil der langsamen Evaluation von Indigo

Evaluation - Territorien

- Territorium
 - Innere Punkte und Gefangene
 - Berücksichtigung der Gruppensicherheit
- Potentielles Territorium (Moyo)
 - "Lebende" Steine üben Einfluß
 - Abschätzung
 - Akkurate Evaluation hat Komplexität vom Spiel

Zuggeneratoren

- Nur plausible Züge
- GO Intellect hat ~ 20 Generatoren
 - Zielorientiert
 - ProtectGroup
 - EdgeExtension
 - ..
 - Zugfindung durch..
 - .. Mustererkennung
 - . .. lokale Suche

Zuggeneratoren – lokale Suchen

- Auch zum Analysieren der Brettkonfiguration
 - ,,capturing search"
 - "semeai search"
 - "connection search"
 - "life-and-death search"
 - ,,territory-surrounding search"
- Heuristik, Evaluation jeweils unterschiedlich

Globale Suche

Zugkandidaten werden gewichtet

- GO Intellect: Zugwert, Dringlichkeit

- GNU GO: Zugbegründungen

- Nur Top-Züge werden ausprobiert
 - < 10 Züge
 - Nur Züge mit Wert größer als Durchschnitt (GO Intellect)

Globale Suche – GO Intellect

- Topzüge ausprobieren
 - Minimal 2 Halbzüge
 - Nur Evalution stabiler Knoten
 - Stabil
 - Sonst weiter expandieren
 - Bis zu maximaler Suchtiefe
 - Evaluation + Dringlichkeit legen Zug fest

Mittelspiel - Indigo

- Baumsuche benötigt akkurate Evaluation
 - schwierig zu finden

Mittelspiel - Indigo

- Indigo benutzt Schablonen um..
 - .. gegnerische Steine zu trennen.
 - .. eigene Steine zu verbinden.
- Adäquate Modellierung mit "8-Connections"
- Schablonen haben assoziierte Dringlichkeiten

Zielstabilität

- Ziel: Verbinden der 2 Steine
- Konter von Weiß
- Schwarz spielt auf neues Ziel
- Weiß trennt die schwarzen Blöcke
- Ansatz in INDIGO verdoppeln der Dringlichkeit

Zugentscheidung - Indigo

- 3 Methoden zur Zuggenerierung
 - "urgent"
 - 8-Connections
 - Verifikation mit Suche und schneller Evaluation
 - ,,calm"
 - selektive Suche mit schneller Evaluation
 - ,,life-and-death"
 - Langsame Evaluation (Suche)
- Darüberliegende Ebene entscheidet

Zusammenfassung

- Evaluation eines GO-Spiels
- Zuggeneratoren
 - Expertenwissen
 - Zielorientiert
- Zugfindung beispielhaft für:
 - Indigo
 - GO Intellect

Quellen

- K.-H. Chen: Some Practical Techniques for Global Search in Go. International Computer Games Journal 23(2), 2000.
- K.-H. Chen: Computer Go: Knowledge, Search, and Move Decision. International Computer Games Journal 24(4), 2001.
 - http://www.epp.infonomics.nl/FdAW/chen/go.htm
- B. Bouzy: The Move-Decision Strategy of INDIGO. International Computer Games Journal 26(1):14-27, 2003.
 - http://www.math-info.univ-paris5.fr/~bouzy/publications/MyBouzy-ICGAJournal.pdf
- GNU GO
 - http://www.gnu.org/software/gnugo/devel.html