Probabilistic Graphical Models

Tianyu Du

May 22, 2020

1 Graphical Representations

1.1 Factors

Definition 1.1. Let X_1, X_2, \dots, X_k be a set of random variables, then a **factor** ϕ is a mapping from values of these random variables to \mathbb{R} .

$$\phi: Val(X_1, X_2, \cdots, X_k) \to \mathbb{R}$$
 (1)

The set of random variables $\{X_1, X_2, \cdots, X_k\}$ is defined as the **scope** of ϕ .

Definition 1.2. Let ϕ_1 and ϕ_2 be two factors with scopes $\{A, B\}$ and $\{B, C\}$. Then the **factor product** $\phi_1 \times \phi_2$ is a factor with scope $\{A, B, C\}$ defined as

$$\phi_1 \cdot \phi_2(a, b, c) = \phi_1(a, b) \cdot \phi_2(b, c) \tag{2}$$

Definition 1.3. Let ϕ be a factor with scope $\{A, B, C\}$, then marginalizing C from ϕ results in a factor ϕ' with scope $\{A, B\}$ defined as the following:

$$\phi'(a,b) = \sum_{c \in Val(C)} \phi(a,b,c) \tag{3}$$

Definition 1.4. The factor reduction operation restricts $\phi(A, B, C)$ to take only a specific value of C = c, and results in a factor ϕ' with scope $\{A, B\}$.

$$\phi'(a,b) = \phi(a,b,c) \tag{4}$$

1.2 Semantics and Factorization

Definition 1.5. A Bayesian network consists of (i) a directed acyclic graph (DAG) G whose nodes correspond to random variables X_1, \dots, X_n (ii) and a conditional probability distribution $P(X_i|Par_G(X_i))$ for each node X_i . The joint distribution is defined as the factorization

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{Par}_G(X_i))$$
(5)

Definition 1.6. Let G be a graph over X_1, \dots, X_n , then the joint probability P factorizes over G if and only if

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | \operatorname{Par}_G(X_i))$$
(6)

1.3 Pass of Influences in Bayesian Networks

Definition 1.7. A path $X_1 - \cdots - X_k$ in Bayesian network G is **active** if there is no explaining-away structure $X_{i-1} \to X_i \leftarrow X_{i+1}$ in it.

Definition 1.8. Let $Z \subseteq V_G$ be a set of random variables in the Bayesian network, then a path $X_1 - \cdots - X_k$ in G is active conditioned on Z if

- 1. for all explaining-away structure $X_{i-1} \to X_i \leftarrow X_{i+1}$ in the path, X_i or some decedents of X_i are in Z,
- 2. and no other node in the path is in Z.

Definition 1.9. Let $X, Y, Z \subseteq V_G$, if there is no path from X to Y is active conditioned on Z, then X and Y are **d-separated** by Z in graph G denoted as d-sep_G(X, Y|Z).

1.4 Independencies and Factorizations

Definition 1.10. Let X, Y, Z be random variables with distribution P, then $X \perp Y$ if and only if $P(X,Y) = P(X)P(Y), X \perp Y|Z$ if and only if P(X,Y|Z) = P(X|Z)P(Y|Z).

Proposition 1.1. Let X, Y, Z be random variables with distribution P, then $X \perp Y$ if and only if P(X,Y) factorizes as the following

$$P(X,Y) \propto \phi_1(X)\phi_1(Y) \tag{7}$$

and $X \perp Y|Z$ if and only if P(X,Y,Z) factorizes as

$$P(X,Y,Z) \propto \phi_1(X,Z)\phi_1(Y,Z) \tag{8}$$

Proof. Relation (7) follows the definition immediately. Suppose $X \perp Y|Z$, then

$$P(X,Y|Z) = P(X|Z)P(Y|Z) \tag{9}$$

$$\iff P(X,Y,Z) = P(X|Z)P(Y|Z)P(Z) \tag{10}$$

$$P(X,Y,Z) \propto P(X|Z)P(Z)P(Y|Z)P(Z) \tag{11}$$

$$= P(X, Z)P(Y, Z) \tag{12}$$

$$= \phi_1(X, Z)\phi_1(Y, Z) \tag{13}$$

Theorem 1.1 (Factorization \Longrightarrow Independence). If P factorizes over G, and d-sep_G(X, Y|Z) then P satisfies $(X \perp Y|Z)$.

Theorem 1.2. For any random variable X_i in the Bayesian network, X_i is d-separated from all its non-descendants by $\operatorname{Par}_G(X_i)$.

Corollary 1.1. If P factorizes over G, then in P, any variable is independent of its non-descendants given its parents.

Definition 1.11. Let $\mathcal{I}(G)$ denote the collection of independencies implicitly encoded by d-separations in graph G,

$$\mathcal{I}(G) := \{ (X \perp Y|Z) : X, Y, Z \in V \text{ s.t. d-sep}_G(X, Y|Z) \}$$
(14)

2

If a distribution P over V satisfies all independencies in $\mathcal{I}(G)$, then we say that G is an **I-map** (independency map) of P.

That is, the I-map of distribution P is a graphical representation of all (and probably more) independencies of P.

Example 1.1. Let P be a probability distribution and let G be an I-map for P. Let $\mathcal{I}(P)$ and $\mathcal{I}(G)$ denote sets of independencies in P and G. Suppose G is a I-map of P, then all independencies encoded in G are satisfied by P, therefore,

$$\mathcal{I}(G) \subseteq \mathcal{I}(P) \tag{15}$$

Example 1.2. The I-map can be used for two graphs as well. G_1 is a I-map of G_1 if $\mathcal{I}(G_1) \subseteq \mathcal{I}(G_2)$. That is, G_1 is an I-map of G_2 if it does not make independence assumptions that are not true in G_2 .

Theorem 1.3 (Independence \Longrightarrow Factorization). If G is an I-map for P, that is, P adheres all independencies encoded in G, then P factorizes over G.