

## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <a href="http://about.jstor.org/participate-jstor/individuals/early-journal-content">http://about.jstor.org/participate-jstor/individuals/early-journal-content</a>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

## A NOTE ON THE FITTING OF PARABOLAS

## By John Rice Miner

BIOLOGICAL LABORATORY, MAINE AGRICULTURAL EXPERIMENT STATION<sup>1</sup>
Communicated by Raymond Pearl, November 28, 1916

The formulae given by Pearson<sup>2</sup> (pp. 12–16) and Elderton<sup>3</sup> (pp. 30–31) for the fitting of parabolas by the method of moments assume the origin at the mid-point of the range. It being often more convenient to take the origin one unit below the first ordinate, as in working by the method of least squares, I have, at the suggestion of Dr. Raymond Pearl, worked out the formulae which result from such choice of origin.

Let l be the range for which the parabola

$$y = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

is to be fitted to the observations, and  $M_r = S(yxr)$  where the summation includes the values of x and y for every observation.

Then

$$M_{r} = \int_{\frac{1}{2}}^{l+\frac{1}{2}} \left(c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{n}x^{n}\right) x^{r} dx$$

$$= \frac{c_{0}}{r+1} \left[ \left(l + \frac{1}{2}\right)^{r+1} - \left(\frac{1}{2}\right)^{r+1} \right] + \frac{c_{1}}{r+2} \left[ \left(l + \frac{1}{2}\right)^{r+2} - \left(\frac{1}{2}\right)^{r+2} \right] + \dots$$

$$+ \frac{c_{n}}{r+n+1} \left[ \left(l + \frac{1}{2}\right)^{r+n+1} - \left(\frac{1}{2}\right)^{r+n+1} \right]$$

Substituting  $r = 0, 1, 2, \ldots, n$  in this formula we have n + 1 simultaneous equations from the solution of which we may express the c's in terms of the moments and certain functions of l.

(i). 
$$y = c_0 + c_1 x$$
,  
 $c_0 = K_1 M_0 - K_2 M_1$ ,  
 $c_1 = -K_2 M_0 + K_3 M_1$ ,

where

$$K_1 = \frac{1}{l^3}(4l^2 + 6l + 3), K_2 = \frac{6}{l^3}(l+1), K_3 = 12/l^3.$$

(ii). 
$$y = c_0 + c_1 x + c_2 x^2$$
,  
 $c_0 = K_4 M_0 - K_5 M_1 + K_6 M_2$ ,  
 $c_1 = -K_5 M_0 + K_7 M_1 - K_8 M_2$ ,  
 $c_2 = K_6 M_0 - K_8 M_1 + K_9 M_2$ ,

$$K_{4} = \frac{9}{l^{5}} \left( l^{4} + 4l^{3} + 7l^{2} + 5l + \frac{5}{4} \right), \quad K_{5} = \frac{9}{l^{5}} (l+1) (4l^{2} + 10l + 5),$$

$$K_{6} = \frac{30}{l^{5}} \left( l^{2} + 3l + \frac{3}{2} \right), \quad K_{7} = \frac{12}{l^{5}} (16l^{2} + 30l + 15),$$

$$K_{8} = \frac{180}{l^{5}} (l+1), \quad K_{9} = 180/l^{5}.$$

(iii). 
$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$
,  
 $c_0 = K_{10} M_0 - K_{11} M_1 + K_{12} M_2 - K_{13} M_3$ ,  
 $c_1 = -K_{11} M_0 + K_{14} M_1 - K_{15} M_2 + K_{16} M_3$ ,  
 $c_2 = K_{12} M_0 - K_{15} M_1 + K_{17} M_2 - K_{18} M_3$ ,  
 $c_3 = -K_{13} M_0 + K_{16} M_1 - K_{18} M_2 + K_{19} M_3$ ,

where

$$K_{10} = \frac{1}{4l^{7}} (64l^{6} + 480l^{5} + 1680l^{4} + 2840l^{3} + 2460l^{2} + 1050l + 175),$$

$$K_{11} = \frac{15}{2l^{7}} (l+1) (16l^{4} + 96l^{3} + 188l^{2} + 140l + 35),$$

$$K_{12} = \frac{15}{l^{7}} (16l^{4} + 104l^{3} + 192l^{2} + 140l + 35),$$

$$K_{13} = \frac{70}{l^{7}} (l+1) (2l^{2} + 10l + 5),$$

$$K_{14} = \frac{75}{l^{7}} (16l^{4} + 72l^{3} + 120l^{2} + 84l + 21),$$

$$K_{15} = \frac{900}{l^{7}} (l+1) \left(3l^{2} + 7l + \frac{7}{2}\right),$$

$$K_{16} = \frac{420}{l^{7}} (4l^{2} + 10l + 5), \qquad K_{17} = \frac{180}{l^{7}} (36l^{2} + 70l + 35),$$

$$K_{18} = \frac{4200}{l^{7}} (l+1), \qquad K_{19} = 2800/l^{7}.$$

The values of the K's for values of l up to 30 are given in Table II.

The fitting of the following observations, given by Thiele<sup>4</sup> (p. 12) and used by Pearson<sup>2</sup> to illustrate his formulae for fitting parabolas, will serve as an example. Table I shows the calculations to obtain the moments and the resulting parabolas. It is obvious that these data are in no way suited to graduation by parabolas, being really a unimodal frequency distribution. They will, however, serve for illustration of method.

The origin for moments is taken at X = 6 and the successive moments corrected by Sheppard's formula ( $\lambda$ )<sup>5</sup> (p. 276).

TABLE I

| X                                     | l y | x  | yx        | yx²    | yx <sup>3</sup> | Parabolas |               |       |  |  |  |  |
|---------------------------------------|-----|----|-----------|--------|-----------------|-----------|---------------|-------|--|--|--|--|
| · · · · · · · · · · · · · · · · · · · |     |    | <i>5.</i> | J      | J.2             | 1st       | 2nd           | 3rd   |  |  |  |  |
| 7                                     | 3   | 1  | 3         | 3      | 3               | 57.5      | 11.0          | -14.1 |  |  |  |  |
| 8                                     | 7   | 2  | 14        | 28     | 56              | 54.3      | 30.9          | 32.2  |  |  |  |  |
| 9                                     | 35  | 3  | 105       | 315    | 945             | 51.2      | 46.6          | 62.2  |  |  |  |  |
| 10                                    | 101 | 4  | 404       | 1,616  | 6,464           | 48.0      | 58.1          | 78.4  |  |  |  |  |
| 11                                    | 89  | 5  | 445       | 2,225  | 11,125          | 44.9      | 65.4          | 83.1  |  |  |  |  |
| <b>12</b> .                           | 94  | 6  | 564       | 3,384  | 20,304          | 41.7      | 68.5          | 78.9  |  |  |  |  |
| 13                                    | 70  | 7  | 490       | 3,430  | 24,010          | 38.5      | 67.5          | 68.0  |  |  |  |  |
| 14                                    | 46  | 8  | 368       | 2,944  | 23,552          | 35.4      | 62.2          | 53.0  |  |  |  |  |
| 15                                    | 30  | 9  | 270       | 2,430  | 21,870          | 32.2      | 52.8          | 36.2  |  |  |  |  |
| 16                                    | 15  | 10 | 150       | 1,500  | 15,000          | 29.1      | 39.1          | 20.0  |  |  |  |  |
| 17                                    | 4   | 11 | . 44      | 484    | 5,324           | 25.9      | 21.3          | 6.8   |  |  |  |  |
| 18                                    | 5   | 12 | 60        | 720    | 8,640           | 22.8      | -0.7          | -0.8  |  |  |  |  |
| 19                                    | 1   | 13 | 13        | 169    | 2,197           | 19.6      | <b>-2</b> 6.9 | -0.7  |  |  |  |  |
| Totals                                | 500 |    | 2,930     | 19,248 | 139,490         |           |               |       |  |  |  |  |

$$M_0 = 501.031015$$
  $M_2 = 19190.3584$   $l = 13$   $M_1 = 2929.06288$   $M_3 = 138630.787$  (i).  $c_0 = 0.344561M_0 - 0.0382340M_1 = 60.6459$   $c_1 = -0.0382340M_0 + 0.00546199M_1 = -3.15791$  (ii).

$$\begin{array}{rclcrcl} c_0 &=& 0.935607 M_0 & - & 0.275217 M_1 & + & 0.0169273 M_2 & = & -13.1046 \\ c_1 &=& -0.275217 M_0 & + & 0.100481 M_1 & - & 0.00678709 M_2 & = & \\ & & & & 26.1762 & & & \end{array}$$

$$c_2 = 0.0169273M_0 - 0.00678709M_1 + 0.000484792M_2 = -2.095379$$

(iii).

$$c_0 = 2.158569M_0 - 1.173878M_1 + 0.172060M_2 - 0.00738727M_3$$
  
= -79.062

$$c_1 = -1.173878M_0 + 0.760838M_1 - 0.120782M_2 + 0.00542834M_3$$
  
= 75.0781

$$c_2 = 0.172060M_0 - 0.120782M_1 + 0.0201633M_2 - 0.000937074M_3$$
$$= -10.53703$$

$$c_3 = -0.00738727M_0 + 0.00542834M_1 - 0.000937074M_2 + 0.0000446226M_3 = 0.401978$$

<sup>&</sup>lt;sup>1</sup> Papers from the Biological Laboratory of the Maine Agricultural Experiment Station No. 106.

<sup>&</sup>lt;sup>2</sup> Pearson, K., Biometrika, Cambridge, 2, 1902, (1-23).

<sup>&</sup>lt;sup>3</sup> Elderton, W. P., Frequency Curves and Correlation, London, 1907, pp. 172.

<sup>&</sup>lt;sup>4</sup> Thiele, T. N., Forelaesninger over Almindelig Iagttagelslaere, Kjφbenhavn, 1889.

<sup>&</sup>lt;sup>5</sup> Pearson, K., Biometrika, Cambridge, 1, 1902, (265-303).

TABLE II
ALUES OF THE R'S FOR VALUES OF I FROM 2 TO 30

|                                                | K10            | 21.503281 | 12.710160 | 8.5//150  | 6.293770  | 4.888443   | 3.297417   | 2.814296   | 2.446523    | 1 027824    | 1.739302    | 1.582725    | 1.450834    | 1.241451     | 1.157134     | 1.083170            | 1.017803     | 0.907601     | 0.860762     | 0.818402          | 0.779919                                | 0.744814     | 0.712667       | 0.683124      |  |
|------------------------------------------------|----------------|-----------|-----------|-----------|-----------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|---------------------|--------------|--------------|--------------|-------------------|-----------------------------------------|--------------|----------------|---------------|--|
| -                                              | K9             | 0.740741  | 0.0576000 | 0.0231481 | 0.0107098 | 0.00549316 | 0.00180000 | 0.00111766 | 0.000723380 | 0.000484/92 | 0.000334082 | 0.000171661 | 0.000126773 | 0.0000932399 | 0.0000562500 | 0.0000440733        | 0.0000349268 | 0.0000276056 | 0,0000184320 | 0.0000151498      | 0.0000125445                            | 0.0000104588 | 0.000000877572 | 0.00000740741 |  |
|                                                | Ks             | 2.962963  | 0.345600  | 0.162037  | 0.0856786 | 0.0494385  | 0.0304832  | 0.0134119  | 0.00940394  | 0.000/8/09  | 0.00302023  | 0.00291824  | 0.00228192  | 0.00180994   | 0.00118125   | 0.000969614         | 0.000803317  | 0.0006/1189  | 0.000479232  | 0.000409044       | 0.000351246                             | 0.000303306  | 0.000263271    | 0.000229630   |  |
| то 30                                          | K1             | 12.296296 | 2.169600  | 1.189815  | 0.720414  | 0.468384   | 0.321292   | 0.169959   | 0.129196    | 0.100481    | 0.0796700   | 0.0525398   | 0.0435171   | 0.0364464    | 0.0263063    | 0.0226273           | 0.0196033    | 0.0170948    | 0.0132280    | 0.0117269         | 0.0104446                               | 0.00934251   | 0.00839017     | 0.00756296    |  |
| VALUES OF THE K'S FOR VALUES OF l FROM 2 TO 30 | K6             | 2.407407  | 0.398400  | 0.214120  | 0.127625  | 0.0819397  | 0.0556318  | 0.0289660  | 0.0218822   | 0.0169273   | 0.0133594   | 0.00874043  | 0.00721552  | 0.00602519   | 0.00308239   | 0.00371318          | 0.00321036   | 0.00279429   | 0.00244700   | 0.00190761        | 0 00169664                              | 0.00151566   | 0.00135950     | 0.00122407    |  |
| HE K'S FOR VAU                                 | Ks             | 10.518519 | 2.678400  | 1.693287  | 1.160945  | 0.842926   | 0.638622   | 0.401686   | 0.329608    | 0.275217    | 0.233190    | 0.173490    | 0.151862    | 0.134026     | 0.119147     | 0.0959433           | 0.0867984    | 0.0788982    | 0.0720271    | 0.0607225         | 0.0560413                               | 0.0518804    | 0.0481655      | 0.0448352     |  |
| VALUES OF T                                    | K4             | 9.935185  | 3.819600  | 2.827836  | 2.223493  | 1.821876   | 1.537913   | 1.32/013   | 1.038674    | 0.935607    | 0.850682    | 0.779570    | 0.667349    | 0.622348     | 0.582942     | 0.517241            | 0.489582     | 0.464698     | 0.442194     | 0.403092          | 000386                                  | 0.380002     | 0.355798       | 0.342389      |  |
|                                                | K <sub>3</sub> | 1.500000  | 0.187500  | 0.0555556 | 0.0349854 | 0.0234375  | 0.0164609  | 0.0120000  | 0.00694444  | 0.00546199  | 0.00437318  | 0.00355556  | 0.00244250  | 0.00205761   | 0.00174953   | 0.00150000          | 0.00112697   | 0.000986274  | 0.000868056  | 0.000/68000       | *************************************** | 0.000009663  | 0.000343047    | 0.00044444    |  |
|                                                | K2             | 2.250000  | 0.468750  | 0.194444  | 0.139942  | 0.105469   | 0.0823045  | 0.0660000  | 0.0451389   | 0.0382340   | 0.0327988   | 0.0284444   | 0.0219825   | 0.0195473    | 0.0174953    | 0.0157500           | 0.0129602    | 0.0118353    | 0.0108507    | 0.00998400        |                                         | 0.00853528   | 0.00738038     | 0.00688889    |  |
|                                                | K1             | 3.875000  | 1.421875  | 0.847222  | 0 702624  | 0.599609   | 0.522634   | 0.463000   | 0.376736    | 0.344561    | 0.317420    | 0.294222    | 0.256667    | 0.241255     | 0.227584     | 0.215375 $0.204406$ | 0 194497     | 0.185502     | 0.177300     | 0.169792 0.162893 |                                         | 0.156531     | 0.15004/       | 0.140111      |  |
|                                                | 1              | 2 %       | 4 v       | , 9       | 1         | - ∞        | 6          | 11         | 12          | 13          | 14          | 15          | 1.7         | 18           | 19           | 20                  | 33           | 23           | 24           | 22                |                                         | 27           | 8 6            | 30            |  |

TABLE II-Continued

| 1                  | , ,      |                                     |                                                                       |                                                                              |                                                                                   |                                                                                      |                                                                      |
|--------------------|----------|-------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| -                  | K19      | 0.170898<br>0.0358400<br>0.0100023  | 0.00339994<br>0.00133514<br>0.000585410<br>0.000280000<br>0.000143684 | 0.0000781429<br>0.0000446226<br>0.0000265621<br>0.0000163877<br>0.0000104308 | 0.00000682363<br>0.00000457352<br>0.00000313244<br>0.00000218750<br>0.00000155462 | 0.00000112253<br>0.00000822362<br>0.000000610491<br>0.000000458752<br>0.000000348614 | 0.000000267677<br>0.000000207516<br>0.000000162320<br>0.000000128029 |
|                    | K18      | 1.281738<br>0.322560<br>0.105024    | 0.0407993<br>0.0180244<br>0.00878116<br>0.00462000<br>0.00258632      | 0.00152379<br>0.000937074<br>0.000597646<br>0.000393306<br>0.000265986       | 0.000184238<br>0.000130345<br>0.0000939732<br>0.0000689063<br>0.0000513023        | 0.0000387274<br>0.0000296050<br>0.0000228934<br>0.0000178913<br>0.0000141189         | 0.0000112425<br>0.00000902695<br>0.0000730440<br>0.0000595336        |
|                    | K17      | 9.78818<br>2.960640<br>1.125900     | 0.500302<br>0.248823<br>0.134766<br>0.0780300                         | 0.0304372<br>0.0201633<br>0.0137817<br>0.00967638<br>0.00695430              | 0.00510120<br>0.00381010<br>0.00289189<br>0.00222680<br>0.00173705                | 0.00137102<br>0.00109375<br>0.000881109<br>0.000716194<br>0.000586964                | 0.000484727<br>0.000403131<br>0.000337474<br>0.000284239             |
| ps                 | K16      | 2.794189<br>0.833280<br>0.313572    | 0.138208<br>0.0682926<br>0.0367930<br>0.0212100<br>0.0129100          | 0.00821672<br>0.00542834<br>0.00370142<br>0.00259336<br>0.00186034           | 0.00136234<br>0.00101601<br>0.000770110<br>0.000592266<br>0.000461488             | 0.000363869<br>0.000290006<br>0.000233421<br>0.000189579<br>0.00015255               | 0.000128124<br>0.000106487<br>0.0000890893<br>0.0000749931           |
| IABLE 11—Continued | $K_{15}$ | 21.835327<br>7.845120<br>3.454540   | 1.744171<br>0.971389<br>0.582379<br>0.369765<br>0.245792              | 0.169630<br>0.120782<br>0.0883023<br>0.0660333<br>0.0503568                  | 0.0390650<br>0.0307661<br>0.0245572<br>0.0198376                                  | 0.0133568<br>0.0111114<br>0.00931844<br>0.00787282<br>0.00669688                     | 0.00573245<br>0.00493549<br>0.00427229<br>0.00371681                 |
| T.                 | Кы       | 50.267029<br>21.543360<br>11.020287 | 6.338558<br>3.961551<br>2.633735<br>1.836457<br>1.329925              | 0.993184<br>0.760838<br>0.595470<br>0.474636<br>0.384331                     | 0.315508<br>0.262152<br>0.220159<br>0.186662<br>0.159620                          | 0.137551<br>0.119365<br>0.104245<br>0.0915717<br>0.0808698                           | 0.0717710<br>0.0639863<br>0.0572869<br>0.0514902                     |
|                    | K13      | 1.644897<br>0.564480<br>0.239805    | 0.117638<br>0.0639868<br>0.0376126<br>0.0234850<br>0.0153886          | 0.0104887<br>0.00738727<br>0.00534894<br>0.00396583<br>0.00300121            | 0.00231219<br>0.00180963<br>0.00143622<br>0.00115418<br>0.000937977               | 0.000770030<br>0.000637989<br>0.000533035<br>0.000448774<br>0.000380503              | 0.000324719<br>0.000278782<br>0.000240680<br>0.000208864             |
|                    | $K_{12}$ | 13.200989<br>5.478720<br>2.732071   | 1.539282<br>0.945761<br>0.619821<br>0.426953<br>0.305961              | 0.226412<br>0.172060<br>0.133710<br>0.105906<br>0.0852712                    | 0.0696446<br>0.0575996<br>0.0481693<br>0.0406832<br>0.0346664                     | 0.0297764<br>0.0257619<br>0.0224359<br>0.0196572<br>0.0173180                        | 0.0153349<br>0.0136501<br>0.0121901<br>0.0109362                     |
|                    | Ku       | 31.684113<br>15.802560<br>9.211168  | 5.942932<br>4.115850<br>3.002575<br>2.278939<br>1.784351              | 1.432497<br>1.173878<br>0.978564<br>0.827653<br>0.708755                     | 0.613490<br>0.536035<br>0.472243<br>0.419102<br>0.374382                          | 0.336404<br>0.303885<br>0.275833<br>0.251470<br>0.230180                             | 0.211468<br>0.194938<br>0.180263<br>0.167177                         |
|                    | 1        | 420                                 | 7<br>8<br>9<br>10                                                     | 12<br>13<br>14<br>15                                                         | 17<br>18<br>19<br>20<br>21                                                        | 22<br>23<br>24<br>25<br>26                                                           | 27 29 30 30                                                          |