CSC0056: Data Communication

Real-Time Data Communications

Instructor: Chao Wang 王超

Department of Computer Science and Information Engineering

References

- Industrial Internet Reference Architecture v1.9 (https://www.iiconsortium.org/IIRA.htm)
- Chao Wang, Christopher Gill, and Chenyang Lu. *Real-Time Middleware for Cyber-Physical Event Processing*. ACM Transactions on Cyber-Physical Systems 3, 3, Article 29 (August 2019) (https://wangc86.github.io/pdf/tcps-cpep.pdf)
- Gomaa, Hassan. Real-Time Software Design for Embedded Systems. Cambridge University Press, 2016.

2020/12/15

Industrial Internet of Things (IIoT)

 Synergizing sensing, analytics, and control Cloud Cloud computing for high capacity Edge computing for timely response Machine learning **Database** training **Real-time event processing** Private cloud for training and storage Edge 2 Edge 1 Edge N Emergency response, IIoT Condition monitoring, Applications services Predictive maintenance, • • • Wireless sensor network (e.g., in a wind farm)

Low-latency data communications

- Low latency is an essential feature in many networked applications
- Example: emergency notification
 - Fire
 - Flood
 - •
- Example: acute weather prediction and notification
 - Earthquake and tsunami
 - Volcanic eruption
 - Tornado

Low-latency → Real-time

• Conceptually, in data communication, fast enough is good enough

- Deadline: a way to specify what we meant by fast enough
- Soft deadlines vs. hard deadlines
 - Missing a soft deadline is not desirable but may be acceptable
 - Missing a hard deadline will lead to disastrous consequences
- Soft/hard real-time system: a system that meets soft/hard deadlines

Real-time data communications

- For networked applications, people often specify end-to-end deadline for data communications
 - From "data created by a sensor" (one end)
 to "data received by an application" (the other end)
- From one end of the system to the other end:
 - Sender
 - Link(s) between sender and intermediary
 - Intermediary (messaging broker/event service/edge computing)
 - Link(s) between intermediary and receiver
 - Receiver

Real-time data communications

- For networked applications, people often specify end-to-end deadline for data communications
 - From "data created by a sensor" (one end)
 to "data received by an application" (the other end)
- From one end of the system to the other end:
 - Sender
 - Link(s) between sender and intermed:
 - Intermediary
 - Link(s) between intermediary and receiv
 - Receiver

We may assume that links are reliable and have bounded latency (using what we have learned in this course, for example).

Data communication intermediaries

- Purposes:
 - Decoupling senders and receivers
 - Simplifying senders and receivers
- Example intermediary: TAO, MQTT, NSQ, ...

O_i: operations (filtering, transformation, encryption, ...)

Outline of lecture 15

- A review of flow control (Section 6.5.1 in particular)
- Timing aspects of data communications
- Real-time data communications
- Case study: Real-time event processing

Industrial Internet of Things (IIoT)

- Synergizing sensing, analytics, and control
 - Cloud computing for high capacity

A model for event processing

- Latency requirements
- Temporal semantics:
 - Absolute time consistency on an event's elapse time since creation
 - Relative time consistency on the difference between event's creation time

 | IloT devices | IloT event service | IloT applications |

O_i: operations (filtering, transformation, encryption, ...)

Real-time cyber-physical event processing

Processing in the order of priorities propagated from application:

- Temporal semantics enforcement
 - Absolute time consistency

 Relative time consistency: track both the earliest and the latest event creations per operator

Processing architecture

2020/12/15

Latency performance

99th percentile latency (unit: ms)

Priority	Service	Number of middle-priority streams				
		3	6	9	12	15
High	Flink	3.8 ± 0.1	5.9 ± 0.2	12.6 ± 0.4	52.6 ± 4.1	448.9 ± 171.7
9	CPEP	0.8 ± 0.0	0.7 ± 0.0	0.7 ± 0.0	0.7 ± 0.0	0.7 ± 0.0
Middle	Flink	4.5 ± 0.1	6.4 ± 0.2	11.3 ± 0.4	28.9 ± 0.5	107.9 ± 18.1
	CPEP	1.6 ± 0.0	1.8 ± 0.0	2.2 ± 0.0	2.5 ± 0.0	3.0 ± 0.1
Low	Flink	5.2 ± 0.3	7.4 ± 0.2	15.5 ± 0.6	43.3 ± 1.3	679.8 ± 274.0
	CPEP	3.7 ± 0.3	4.8 ± 0.2	6.8 ± 0.6	10.6 ± 1.0	33.4 ± 0.2

CPEP maintained high-priority latency performance as workload increased.

CPEP differentiated latency according to priority level.

Benefits of shedding inconsistent events

Improve the throughput of consistent events.

Save CPU utilization.

2020/12/15

Dependability issues in computing systems

What if some of the network components may fail to work?

 How to keep applications running properly while fixing the underlying network problems?

Will fault-tolerance affect the performance of a data network?
 In which ways? How to amend it?