Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners

Zhenzhen Bao Lei Wang Jian Guo Dawu Gu

Crypto 2017 August 21 Santa Barbara, CA, USA

Security Requirements for Hash Functions

- **Ollision resistance**: It should be computationally difficult to find two messages M and M' such that $\mathcal{H}(M) = \mathcal{H}(M')$.
- **Preimage resistance**: Given a target V, it should be computationally difficult to find a message M such that $\mathcal{H}(M) = V$.
- **Second-preimage resistance**: Given a message M, it should be computationally difficult to find another message $M' \neq M$ such that $\mathcal{H}(M') = \mathcal{H}(M)$.

Underlying Construction - Iterative Hash Functions

• The Merkle-Damgård construction (MD) [Mer90; Dam90]: Padding and dividing $M = m_1 || m_2 || \dots || m_L$, where m_L is encoded with the length the message |M|:

$$x_0 = IV \quad x_i = h(x_{i-1}, m_i) \quad \mathcal{H}(M) = h(x_{L-1}, m_L)$$

An Approach to Construct a Secure Hash Function - Hash Combiner

Hash Combiner

- Security amplification the combiner is more secure than its underlying hash functions;
- Security robustness
 the combiner is secure as long as any one of its underlying hash
 functions is secure

Hash Combiners - Parallel

• Concatenation combiner: $\mathcal{H}(M) = \mathcal{H}_1(M) \| \mathcal{H}_2(M)$

• XOR combiner: $\mathcal{H}(M) = \mathcal{H}_1(M) \oplus \mathcal{H}_2(M)$

Hash Combiners - Cascade

Research on Hash Combiners

Security of classical hash combiners

- Generic attacks: upper bound;
- Security proofs: lower bound;

Research on Hash Combiners

Security of classical hash combiners

- Generic attacks: upper bound;
- Security proofs: lower bound;

the main focus of this work

Expected Security of Hash Combiners Before 2004

	Digest Size	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal <i>H</i>	n	$2^{n/2}$	2^n	2^n
Ideal $\mathcal{H}_1 \ \mathcal{H}_2$	2 <i>n</i>	2^n	2^{2n}	2^{2n}
Ideal $\mathcal{H}_1 \oplus \mathcal{H}_2$	n	$2^{n/2}$	2"	2^n

birthday bound half of digest size

full digest size

Joux's Multi-collisions (JM [Jou04])

• Get 2^k -multicollision by successively applying birthday attack k times.

$$x_0 \overset{m_1}{\longleftrightarrow} m_2 \overset{m_k}{\longleftrightarrow} x_k \equiv x_0 \overset{k}{\longleftrightarrow} x_k$$

Security Status of MD Hash Combiners in 2004

	Collision	Preimage	Second Preimage
	Resistance	Resistance	Resistance
Ideal ${\cal H}$	$2^{n/2}$	2^n	2^n
$MD \mathcal{H}$	$2^{n/2}$	2 ⁿ	2^n
Ideal $\mathcal{H}_1 \ \mathcal{H}_2$	2 ⁿ	2^{2n}	2^{2n}
$\mathbb{M} \mathcal{H}_1 \ \mathcal{H}_2$	([Jou04] JM) $\not \mathbb{Z}^n$ $\approx 2^{n/2}$	$([Jou04] JM) \cancel{2}^{2n}$ $\approx 2^n$	$([Jou04] JM) 2^{2n}$ $\approx 2^{n}$
Ideal	$2^{n/2}$	2^n	2^n
$\mathcal{H}_1 \oplus \mathcal{H}_2$	4	2	2
$ ext{MD}\mathcal{H}_1\oplus\mathcal{H}_2$	$2^{n/2}$	2^n	2^n

Kelsey-Schneier's Expandable Message (EM [KS05])

• Get 2^k -multicollision with length cover the whole range of $[k, k+2^k-1]$ by successively applying birthday attack k times.

Second Preimage Attack Using Expandable Message [KS05]

- Step 1: Start from *IV*, build an expandable message and end up at arbitrary state *x*.
- Step 2: Start from x and try different m' until $h(x, m') = x_p$ (for each trail $Pr(succeed) = L/2^n$).
- Step 3: Select message \bar{m} of appropriate length p-1 and output $M' = \bar{m}||m'||m_{p+1}||\dots||m_L$.

Security Status of MD Hash in 2005

	Collision	Preimage	Second Preimage
	Resistance	Resistance	Resistance
Ideal ${\cal H}$	$2^{n/2}$	2^n	2^n
$MD \mathcal{H}$	$2^{n/2}$	2^n	([KS05] EM) 2 ⁿ 2 ⁿ /L
Ideal $\mathcal{H}_1 \ \mathcal{H}_2$	2 ⁿ	2^{2n}	2^{2n}
$\mathbb{M} \mathcal{D} \mathcal{H}_1 \ \mathcal{H}_2$	([Jou04] JM) $\not \mathbb{Z}^n$ $\approx 2^{n/2}$	$([Jou04] JM) 2^{2n}$ $\approx 2^{n}$	$([Jou04] JM) \cancel{2}^{2n}$ $\approx 2^n$
Ideal $\mathcal{H}_1 \oplus \mathcal{H}_2$	$2^{n/2}$	2^n	2^n
$\operatorname{MD} \mathcal{H}_1 \oplus \mathcal{H}_2$	$2^{n/2}$	2^n	2^n

A Primary Second Preimage Attack Against Concatenation Combiner

Simultaneous Expandable Message (Parallel) (SEM [Din16])

The Functional Graph (FG) of Random Mapping: Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

The Functional Graph (FG) of Random Mapping: Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

• Starting from a random point x_0

The Functional Graph (FG) of Random Mapping: Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

• Iterate:
$$x_1 = f(x_0), x_2 = f(x_1), \dots$$

The Functional Graph (FG) of Random Mapping:

Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

- Starting from a random point x_0
- Iterate: $x_1 = f(x_0), x_2 = f(x_1), \dots$
- Before N and $\approx \sqrt{N}$ iterations, we will find a value x_j equal to one of x_0, x_1, \dots, x_{j-1} .

The Functional Graph (FG) of Random Mapping: Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

- Starting from a random point x_0
- Iterate: $x_1 = f(x_0), x_2 = f(x_1), \dots$
- Before N and $\approx \sqrt{N}$ iterations, we will find a value x_j equal to one of x_0, x_1, \dots, x_{j-1} .
- We say collision x_j is an α -node and the path $x_0 \to x_1 \to \cdots \to x_{j-1} \to x_j$ connects to a cycle.

The Functional Graph (FG) of Random Mapping: Let $f \in \mathcal{F}_N$, $x \to f(x)$, FG of f is a directed graph, nodes are $[0 \dots N-1]$ and edges are $\langle x, f(x) \rangle$

- Starting from a random point x_0
- Iterate: $x_1 = f(x_0), x_2 = f(x_1), \dots$
- Before N and $\approx \sqrt{N}$ iterations, we will find a value x_j equal to one of x_0, x_1, \dots, x_{j-1} .
- We say collision x_j is an α -node and the path $x_0 \to x_1 \to \cdots \to x_{j-1} \to x_j$ connects to a cycle.
- Starting from all possible points, paths confluence and form into trees; trees grafted on cycles form components; components forms a functional graph.

Properties of Functional Graph [FO90]

[PSW12; LPW13; PW14; Guo+14; DL14]

- ② # Cyclic nodes: $\sqrt{\pi N/2} = 1.2 \cdot 2^{n/2}$
- # Image points: $(1 - e^{-1})N = 0.62 \cdot 2^n$
- **1** # k-th iterate image points: $(1 \tau_k)N$, where the τ_k satisfy the recurrence $\tau_0 = 0$, $\tau_{k+1} = e^{-1+\tau_k}$.
- Maxinum cycle length: $0.78 \cdot 2^{n/2}$.
- Maxinum tail length: $1.74 \cdot 2^{n/2}$.
- **o** Maxinum rho length: $2.41 \cdot 2^{n/2}$.
- **2** Largest tree size: $0.48 \cdot 2^n$.
- Largest component size: $0.76 \cdot 2^n$.

Functional Graph Corresponding to Underlying Compression Functions

Deep Iterates in Functional Graph (FGDI [Din16])

- It is easy to get a large set of deep iterates: $T: 2^k, M: 2^k, D: 2^k$
- A deep iterate has a relatively high probability to be reached from a randomly selected starting node.

Second Preimage Attacks on Concatenation Combiner Using Deep Iterates in FG [Din16]

Preimage Attacks on XOR Combiner Using Deep Iterates in FG [Din16]

(Second) Preimage Attack on Concatenation and XOR Combiner [Din16]

Simultaneous Expandable Message and Deep Iterates in FG (SEM+FGDI [Din16])

	Collision	Preimage	Second Preimage
	Resistance	Resistance	Resistance
Ideal <i>H</i>	$2^{n/2}$	2^n	2^n
$MD \mathcal{H}$	$2^{n/2}$	2 ⁿ	2^n $2^n/L$
Ideal $\mathcal{H}_1 \ \mathcal{H}_2$	2 ⁿ	2^{2n}	2^{2n}
$\mathbb{M} \mathcal{H}_1 \ \mathcal{H}_2$	$pprox 2^n pprox 2^{n/2}$	2^{2n} $pprox 2^n$	$pprox 2^{2n} pprox 2^{3n/4}$
Ideal	2"/2	2 ⁿ	2^n
$\mathcal{H}_1 \oplus \mathcal{H}_2$	_ ′	4	_
MD	$2^{n/2}$	$pprox 2^n \ pprox 2^{2n/3}$	$\approx 2^{2n/3}$
$\mathcal{H}_1 \oplus \mathcal{H}_2$	Z ''	$pprox 2^{2n/3}$	$pprox 2^{2n/3}$

Functional Graph Multi-cycles (FGMC [Our's])

Cyclic Node and Multi-cycles in Functional Graph:

- It is easy to locate the largest cycle: Repeat the cycle search algorithm a few times $T: 2^{\frac{n}{2}}, M: 1, D: 2^{\frac{n}{2}}$
- It is effortless to loop around the cycles to correct differences between the distances to the target nodes.

Functional Graph Multi-cycles (FGMC [Our's])

$$\begin{split} f_1^{d_1}(x_r) &= \bar{x}, \ f_1^{L_1}(\bar{x}) = \bar{x} & \Rightarrow & f_1^{d_1+i\cdot L_1}(x_r) = \bar{x} \ \text{for} \ \forall \ i \\ f_2^{d_2}(y_r) &= \bar{y}, \ f_2^{L_2}(\bar{y}) = \bar{y} & \Rightarrow & f_2^{d_2+j\cdot L_2}(y_r) = \bar{y} \ \text{for} \ \forall \ j \\ & & \qquad \qquad \Downarrow \\ \exists \ (i,j) \text{ s.t. } d_1 - d_2 = j\cdot L_2 - i\cdot L_1 & \Rightarrow & \exists \ d \text{ s.t. } f_1^d(x_r) = \bar{x}, f_2^d(y_r) = \bar{y} \end{split}$$

Functional Graph Multi-cycles (FGMC [Our's])

$$f_{1}^{d_{1}}(x_{r}) = \bar{x}, \ f_{1}^{L_{1}}(\bar{x}) = \bar{x} \quad \Rightarrow \quad f_{1}^{d_{1}+i\cdot L_{1}}(x_{r}) = \bar{x} \text{ for } \forall i$$

$$f_{2}^{d_{2}}(y_{r}) = \bar{y}, \ f_{2}^{L_{2}}(\bar{y}) = \bar{y} \quad \Rightarrow \quad f_{2}^{d_{2}+j\cdot L_{2}}(y_{r}) = \bar{y} \text{ for } \forall j$$

$$\Downarrow$$

$$\exists (i, j) \text{ s.t. } d_{1}-d_{2} = j\cdot L_{2}-i\cdot L_{1} \quad \Rightarrow \quad \exists d \text{ s.t. } f_{1}^{d}(x_{r}) = \bar{x}, f_{2}^{d}(y_{r}) = \bar{y}$$

correctable distance bias

- Step 1

 \mathcal{H}_1

$$IV_1$$
 •—mmmmm $\tilde{\chi}$

$$IV_2$$
 •—mmmmmm—•

$$\mathcal{H}_2$$

Preimage Attacks on XOR Combiner Using Multiple Cycles in FG

Hash Combiners - Cascade

• Zipper Hash [Lis07]: $\mathcal{H}(M) = \mathcal{H}_2(\mathcal{H}_1(IV, M), \overline{M})$

Simultaneous Expandable Message (Cascade)

$$T: n \cdot 2^k + n^2 \cdot 2^{\frac{n}{2}}, M: n^2 + k \cdot n, D: 2^{\frac{n}{2}}(n+k)$$

$$C = 1$$

$$x'_0 = \bar{x}$$

$$xp_1$$

$$m_1$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m_2$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m$$

Upper Bounds vs Lower Bounds (Ignoring the factor *n*)

$\mathcal{H}_1 \ \mathcal{H}_2$	Collision Resistance	Preimage Resistance	2nd Preimage Resistance
Ideal	2 ⁿ	2^{2n}	2^{2n}
MD T	$([Jou04] JM)$ $2^{n/2}$	([Jou04] JM) 2"	([Din16] SEM+FGDI) 2 ^{3n/4}
MD ⊥	$2^{n/2}$ [HS08]	$2^{n/2}$ [HS08]	2^{n/2} [HS08]
HAIFA ⊤	$([Jou04] JM)$ $2^{n/2}$	([Jou04] JM) 2"	([Jou04] JM) 2"
HAIFA ⊥	$2^{n/2}$ [HS08]	$2^{n/2}$ [HS08]	2^{n/2} [HS08]
$oxed{\mathcal{H}_1 \oplus \mathcal{H}_2}$	Collision Resistance	Preimage Resistance	2nd Preimage Resistance
Ideal	$2^{n/2}$	2^n	2 ⁿ
MD T	Birthday $2^{n/2}$	([Din16] SEM+FGDI) 2 ^{2n/3} ([Our's] SEM+FGMC) 2 ^{5n/8}	([Din16] SEM+FGDI) 22n/3 ([Our's] SEM+FGMC) 25n/8
MD ⊥	$2^{n/2}$ [HS08]	$2^{n/2}$ [HS08]	2^{n/2} [HS08]
HAIFA ⊤	Birthday $2^{n/2}$	([LW15] IS) 2 ^{5n/6}	([LW15] IS) 2 ^{5n/6}
HAIFA ⊥	$2^{n/2}$ [HS08]	$2^{n/2}$ [HS08]	2 ^{n/2} [HS08]

Upper Bounds vs Lower Bounds (Ignoring the factor *n*)

Hash Twice	Collision Resistance	Preimage Resistance	2nd Preimage Resistance
Ideal ⊤	$2^{n/2}$	2 ⁿ	2 ⁿ
MD T	$2^{n/2}$	2 ⁿ	([And+09] EM+JM+DIA) 2 ^{2n/3}
MD ⊥	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
HAIFA ⊤	$2^{n/2}$	2^n	2^n
HAIFA ⊥	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
Zipper Hash	Collision Resistance	Preimage Resistance	2nd Preimage Resistance
11		_	Resistance
Ideal ⊤	$2^{n/2}$	2^n	2 ⁿ
11	$2^{n/2}$ $2^{n/2}$	2 ⁿ	2 ⁿ ([Our's] SEM+JM+FGMC) 2 ^{3n/5}
Ideal T		_	([Our's] SEM+JM+FGMC)
Ideal T MD T	$2^{n/2}$	2 ⁿ	2 ⁿ ([Our's] SEM+JM+FGMC) 2 ^{3n/5}

Trade-offs Between the Message Length and the Attack Complexity

Trade-offs Between the Message Length and the Attack Complexity

Thanks for your attention!

References I

- [Mer90] Ralph C. Merkle. "One Way Hash Functions and DES". In: Advances in Cryptology CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. Vol. 435. Lecture Notes in Computer Science. New York, NY: Springer New York, 1990, pp. 428-446. ISBN: 978-0-387-34805-6. DOI: 10.1007/0-387-34805-0_40. URL: http://dx.doi.org/10.1007/0-387-34805-0
- [Dam90] Ivan Bjerre Damgård. "A Design Principle for Hash Functions". In: Advances in Cryptology CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. Vol. 435. Lecture Notes in Computer Science. New York, NY: Springer New York, 1990, pp. 416–427. ISBN: 978-0-387-34805-6. DOI: 10.1007/0-387-34805-0_39. URL: http://dx.doi.org/10.1007/0-387-34805-0_39.
- [Lis07] Moses Liskov. "Constructing an Ideal Hash Function from Weak Ideal Compression Functions". In: Selected Areas in Cryptography: 13th International Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised Selected Papers. Ed. by Eli Biham and Amr M. Youssel, Vol. 4356. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 358–375. ISBN: 978-3-540-74462-7. DOI: 10.1007/978-3-540-74462-7_25. URL: http://dx.doi.org/10.1007/978-3-540-74462-7_25.
- [Jou04] Antoine Joux. "Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions". In:

 **Advances in Cryptology CRYPTO 2004: 24th Annual International Cryptology Conference, Santa Barbara,

 *California, USA, August 15-19, 2004. Proceedings. Ed. by Matt Franklin. Vol. 3152. Lecture Notes in Computer

 *Science (LNCS). Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 306–316. ISBN: 978-3-540-28628-8.

 *DOI: 10.1007/978-3-540-28628-8_19. URL:

 http://dx.doi.org/10.1007/978-3-540-28628-8_19.
- [KS05] John Kelsey and Bruce Schneier. "Second Preimages on n-Bit Hash Functions for Much Less than 2" Work". In:

 Advances in Cryptology EUROCRYPT 2005: 24th Annual International Conference on the Theory and
 Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings. Ed. by
 Ronald Cramer. Vol. 3494. Lecture Notes in Computer Science (LNCS). Berlin, Heidelberg: Springer Berlin
 Heidelberg, 2005, pp. 474–490. ISBN: 978-3-540-32055-5. DOI: 10.1007/11426639_28. URL:
 http://dx.doi.org/10.1007/11426639_28.

References II

- [Din16] Itai Dinur. "New Attacks on the Concatenation and XOR Hash Combiners". In: Advances in Cryptology EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9665. Lecture Notes in Computer Science. Berlin, Heidelberg. Springer Berlin Heidelberg, 2016, pp. 484–508. ISBN: 978-3-662-49890-3. DOI: 10.1007/978-3-662-49890-3. 19. URL: http://dx.doi.org/10.1007/978-3-662-49890-3. 19.
- [PSW12] Thomas Peyrin, Yu Sasaki, and Lei Wang. "Generic Related-Key Attacks for HMAC". In: Advances in Cryptology ASIACRYPT 2012: 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science. Berlin, Heidelberg, Springer Berlin Heidelberg, 2012, pp. 580–597. ISBN: 978-3-642-34961-4. DOI: 10.1007/978-3-642-34961-4_35. URL: http://dx.doi.org/10.1007/978-3-642-34961-4_35.
- [LPW13] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. "New Generic Attacks against Hash-Based MACs". In: Advances in Cryptology - ASIACRYPT 2013: 19th International Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. Ed. by Kazue Sako and Palash Sarkar. Vol. 8270. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–20. ISBN: 978-3-642-42045-0. DOI: 10.1007/978-3-642-42045-0_1. URL: http://dx.doi.org/10.1007/978-3-642-42045-0_1.
- [PW14] Thomas Peyrin and Lei Wang. "Generic Universal Forgery Attack on Iterative Hash-Based MACs". In: Advances in Cryptology EUROCRYPT 2014: 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 147–164. ISBN: 978-3-642-55220-5. Doi: 10.1007/978-3-642-55220-5_9. URL: http://dx.doi.org/10.1007/978-3-642-55220-5_9.

References III

- [Guo+14] Jian Guo et al. "Updates on Generic Attacks against HMAC and NMAC". In: Advances in Cryptology CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 131–148. ISBN: 978-3-662-44371-2. DOI: 10.1007/978-3-662-44371-2. 8. URL: http://dx.doi.org/10.1007/978-3-662-44371-2. 8.
- [DL14] Itai Dinur and Gaëtan Leurent. "Improved Generic Attacks against Hash-Based MACs and HAIFA". In:

 Advances in Cryptology CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August
 17-21, 2014, Proceedings, Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in
 Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 149–168. ISBN: 978-3-662-44371-2.

 DOI: 10.1007/978-3-662-44371-2_9. URL:
 http://dx.doi.org/10.1007/978-3-662-44371-2_9.
- [FO90] Philippe Flajolet and Andrew M. Odlyzko. "Random Mapping Statistics". In: Advances in Cryptology EUROCRYPT '89: Workshop on the Theory and Application of Cryptographic Techniques Houthalen, Belgium, April 10–13, 1989 Proceedings. Ed. by Jean-Jacques Quisquater and Joos Vandewalle. Vol. 434. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 329–354. ISBN: 978-3-540-46885-1. DOI: 10.1007/3-540-46885-4. 34. URL: http://dx.doi.org/10.1007/3-540-46885-4. 34.
- [HS08] Jonathan J. Hoch and Adi Shamir. "On the Strength of the Concatenated Hash Combiner When All the Hash Functions Are Weak". In: Automata, Languages and Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II. Ed. by Luca Aceto et al. Vol. 5126. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 616–630. ISBN: 978-3-540-70583-3. DOI: 10.1007/978-3-540-70583-3_50. URL: http://dx.doi.org/10.1007/978-3-540-70583-3_50.

References IV

- [LW15] Gaëtan Leurent and Lei Wang. "The Sum Can Be Weaker Than Each Part". In: Advances in Cryptology EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 345–367. ISBN: 978-3-662-46800-5. DOI: 10.1007/978-3-662-46800-5_14. URL: http://dx.doi.org/10.1007/978-3-662-46800-5_14.
- [And+09] Elena Andreeva et al. "Herding, Second Preimage and Trojan Message Attacks beyond Merkle-Damgård". In: Selected Areas in Cryptography: 16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers. Ed. by Michael J. Jacobson, Vincent Rijmen, and Reihaneh Safavi-Naini. Vol. 5867. Lecture Notes in Computer Science (LNCS). Berlin, Heidelberg; Springer Berlin Heidelberg, 2009, pp. 393-414. ISBN: 978-3-642-05445-7. DOI: 10.1007/978-3-642-05445-7_25. URL: http://dx.doi.org/10.1007/978-3-642-05445-7