Concours National Commun

Mathématiques II

AQALMOUN Mohamed agrégé de mathématiques CPGE Khouribga

L'objet de ce problème est d'établir le résultat suivant dû à FARAHAT et LEDERMAN en 1958 :

Pour tout polynôme unitaire P de degré $n\geq 2$ à coefficient dans \mathbb{K} $(K=\mathbb{R} \text{ ou }\mathbb{C})$ et toute matrice $N\in\mathcal{M}_{n-1}(\mathbb{K})$ dont le polynôme minimal est de degré n-1, il existe une matrice $M\in\mathcal{M}_n(\mathbb{K})$ telle que N soit une sous-matrice de M et que le polynôme caractéristique de M soit égal à $(-1)^n P$

La troisième partie du problème utilise le résultat de la seconde; la dernière partie utilise les résultats de première et de la troisième partie.

Notations et rappels

Dans tout ce problème , \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . On note $\mathbb{K}[X]$ la \mathbb{K} -algèbre des polynômes à coefficient dans \mathbb{K} et, pour tout $m \in \mathbb{N}$, $\mathbb{K}_m[X]$ désigne le \mathbb{K} -sous espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré $\leq m$.

Pour tout couple (n,p) d'entiers naturels non nuls, on note $\mathcal{M}_{n,p}(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices à coefficients dans \mathbb{K} , à n lignes et p colonne; $\mathcal{M}_{n,n}(\mathbb{K})$ est noté simplement $\mathcal{M}_n(\mathbb{K})$, c'est la \mathbb{K} -algèbre des matrices carrées d'ordre n à coefficient dans \mathbb{K} ; on note aussi I_n (resp. 0_n) la matrice identité (resp. la matrice nulle) de $\mathcal{M}_n(\mathbb{K})$.

Si $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on note tA la matrice transposée de A et rg(A) son rang; si de plus n=p, la trace de A est noté Tr(A) et son déterminant est noté det(A) ou |A|.

Le polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est noté π_A est sont polynôme caractéristique est noté χ_A ; on rappelle que, pour tout $\lambda \in \mathbb{K}$, $\chi_A = \det(A - \lambda I_n) = |A - \lambda I_n|$.

Si $A \in \mathcal{M}_n(\mathbb{K})$, la comatrice de A est noté A; on rappelle que $A^t A = {}^t A A = |A|I_n$.

Première partie : Expression d'un déterminant

- 1. (a) On suppose ici que la matrice B est inversible
 - i. En effectuant un produit matriciel par blocs, déterminer $w \in \mathcal{M}_{n,1}(\mathbb{K})$ et $\lambda \in \mathbb{K}$ tels que

$$\left(\begin{array}{cc} B & v \\ {}^{t}u & b \end{array}\right) = \left(\begin{array}{cc} B & 0 \\ {}^{t}u & 1 \end{array}\right) \left(\begin{array}{cc} I_n & w \\ {}^{t}u & \lambda \end{array}\right)$$

- ii. Exprimer le déterminant $\left| \begin{array}{cc} B & 0 \\ {}^t u & 1 \end{array} \right|$ en fonction du déterminant de la matrice B
- iii. Exprimer l'inverse B^{-1} de B en fonction de sa comatrice \widetilde{B} et de son déterminant |B|.
- iv. Montrer que

$$\left| \begin{array}{cc} B & v \\ {}^{t}u & b \end{array} \right| = b|B| - {}^{t}u^{t}\widetilde{B}v \quad (1)$$

- (b) On revient au cas général et on ne suppose plus que la matrice B est inversible.
 - i. Montrer qu'il existe $\varepsilon > 0$ tel que pour tout $x \in]0, \varepsilon[$, la matrice $B_x = B xI_n$ est inversible.
 - ii. Si m est un entier ≥ 1 , montrer que les applications $A \to {}^t A$ et $A \to |A|$,définie sur $\mathcal{M}_n(\mathbb{K})$,sont continues.

On admet que l'application $A \to \widetilde{A}$, définie sur $\mathcal{M}_n(\mathbb{K})$, est aussi continue.

iii. Montrer alors que la formule (1) ci-dessus est encore valable dans ce cas.

Deuxième partie : Réunion de sous-espaces vectoriels

Soit E un \mathbb{K} espace vectoriel non nécessairement de dimension finie; os suppose un entier naturel $r \geq 2$ et des sous espaces vectoriels $F_1, F_2, ..., F_r$ de E tels que

$$E = F_1 \cup F_2 \cup ... \cup F_r$$

- 2. (a) Si r=2, montrer que $E=F_1$ ou $E=F_2$. On pourra raisonner par l'absurd et considérer, après en avoir justifier l'existence, un vecteur x_1+x_2 où x_1 et x_2 sont tels que $x_2\in E\setminus E_1$ et $x_1\in E\setminus E_2$
 - Dans la suite de cette partie , on suppose $r \geq 2$ et on pose $F = F_1 \cup F_2 \cup ... \cup F_{r-1}$
 - (b) On suppose ici que $E \neq F$ et $E \neq F_r$, et on considère deux vecteurs $x \in E \setminus F$ et $y \in E \setminus F_r$.
 - i. Justifier que $x \in F_r$ et montrer que , pour tout $\lambda \in \mathbb{K}$, $y + \lambda x \notin F_r$
 - ii. En déduire que pour tout $\lambda \in \mathbb{K}$, $y + \lambda x \in F$ puis montrer alors qu'il existe deux scalaires α et β distincts, et un entier k compris entre 1 et r-1, tels que $y + \alpha x \in F_k$ et $y + \beta x \in F_k$.
 - iii. Trouver une contradiction et conclure.
 - (c) Montrer qu'il existe un entier $i \in \{1, ..., r\}$ tel que $E = F_i$

Troisième partie : À propos du polynôme minimal d'une matrice

Soit $n \in \mathbb{N}^*$. Si $A \in \mathcal{M}_n(\mathbb{K})$ et $P = \sum_{k=0}^m a_k X^k \in \mathbb{K}[X]$, avec $m \in \mathbb{N}$, P(A) désigne la matrice $\sum_{k=0}^m a_k A^k$

avec la convention $A^0 = I_n$; P est dit un polynôme annulateur de A si P(A) = 0. On rappelle que le polynôme minimal π_A de A est le polynôme unitaire de degré minimal annulateur de A,c'est le générateur unitaire de l'idéal des polynômes annulateurs de A.

- 3. (a) Montrer que le polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est de degré $\leq n$
 - (b) Montrer que le degré du polynôme minimal d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est égal à n si, et seulement si, $(I_n, ..., A^{n-1})$ est une famille libre de $\mathcal{M}_n(\mathbb{K})$.
 - (c) Soit $A \in \mathcal{M}_n(\mathbb{K})$; pour tout $\overrightarrow{\in} \mathcal{M}_{n,1}(\mathbb{K})$, on pose

$$I_{A,v} = \{ P \in \mathbb{K}[X]; P(A)v = 0 \}$$

- i. Si $v \in \mathcal{M}_{n,1}(\mathbb{K})$, montrer que $I_{A,v}$ est un idéal de $\mathbb{K}[X]$, puis en déduire qu'il existe un unique polynôme unitaire de $\mathbb{K}[X]$ engendrant cet idéal. Dans la suite du problème, ce polynôme sera noté $\pi_{A,v}$.
- ii. Montrer que, pour tout $v \in \mathcal{M}_{n,1}(\mathbb{K})$, $\pi_{A,v}$ divise π_A puis en déduire que l'ensemble $\{\pi_{A,w}; w \in \mathcal{M}_{n,1}(\mathbb{K})\}$ est fini.

On considère donc un entier $r \in \mathbb{N}^*$ et des vecteurs $v_1,...,v_r$ de $\mathcal{M}_{n,1}(\mathbb{K})$ tels que

$$\{\pi_{A,w}; w \in \mathcal{M}_{n,1}(\mathbb{K})\} = \{\pi_{A,v_1}, ..., \pi_{A,v_r}\}.$$

On pose enfin $F_k = \{v \in \mathcal{M}_{n,1}(\mathbb{K}) ; \pi_{A,v_k}(A)v = 0\}, k \in \{1,...,r\}.$

iii. Vérifier que, pour tout $k\in\{1,...,r\}$, F_k est un sous espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{K})$ et justifier que

$$\mathcal{M}_{n,1}(\mathbb{K}) = F_1 \cup ... \cup F_r$$

- iv. Montrer alors qu'il existe $w \in \mathcal{M}_{n,1}$ tel que $\pi_{A,w} = \pi_A$
- (d) Déterminer un vecteur $e \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que $\pi_{A,w} = \pi_A$ où A est la matrice définie par

$$A = \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix} , (a, b, c) \in \mathbb{R}^3$$

(e) Soit $A \in \mathcal{M}_n(\mathbb{K})$.On considère les assertions (i), (ii) et (iii) suivantes dont on veut montrer qu'elle sont équivalentes :

- (i) Le polynôme minimal π_A de la matrice A est de degré n.
- (ii) Il existe $v \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que ,pour tout $x \in \mathbb{K}^n$, il existe $u \in \mathcal{M}_{n,1}(\mathbb{K})$ vérifiant

$$x = ({}^{t}uv, {}^{t}uAv, ..., {}^{t}uA^{n-1}v)$$

- (iii) Pour tout $x \in \mathbb{K}^n$, il existe $(u,v) \in (\mathcal{M}_{n,1}(\mathbb{K}))^2$ tel que $x = ({}^tuv, {}^tuAv, ..., {}^tuA^{n-1}v)$ Comme il est évident que l'assertion (ii) entraı̂ne l'assertion (iii) , il suffit de montrer que l'assertion (i) entraı̂ne (ii) et que l'assertion (iii) entraı̂ne (i)
 - i. Montrer que l'assertion (i) entraîne l'assertion (ii). On pourra considérer la matrice de $\mathcal{M}_n(\mathbb{K})$ dont les colonnes sont les vecteurs $v, Av, ..., A^{n-1}v$, pris dans cet ordre, ou v est un vecteurs bien choisi dans $\mathcal{M}_{n,1}(\mathbb{K})$
 - ii. Montrer que l'assertion (iii) entraı̂ne l'assertion (i) . On pourra utiliser la caractérisation de la question 3.2

Quatrième partie : Démonstration du résultat proposée

Dans cette parte , on se donne un entier $n \geq 2$, un polynôme $P = X^n + \sum_{k=1}^n c_k X^{n-k} \in \mathbb{K}[X]$, unitaire de degré n, et une matrice $B \in \mathcal{M}_{n-1}(\mathbb{K})$ dont le polynôme minimal est de degré n-1. On se propose de montrer l'existence d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\chi_A = (-1)^n P$ et dont B soit une sous matrice ; pour cela , on cherche A sous la forme $\begin{pmatrix} B & v \\ {}^t u & b \end{pmatrix}$, où les inconnues $b \in \mathbb{K}$ et $u,v \in \mathcal{M}_{n-1,1}(\mathbb{K})$ sont à déterminer en fonction des coefficients des données P et B

4. (a) Justifier que si A répond à la question alors le coefficient b de la matrice A est entièrement déterminer et en donner l'expression en fonction des coefficients des données P et B

Dans la suite on écrit
$$\chi_B = (-1)^{n-1} \sum_{k=0}^{n-1} \alpha_k X^{n-1-k}$$
 avec $\alpha_0 = 1$, et on pose $b = \alpha_1 - c_1$.

On cherche à justifier l'existence $u,v\in\mathcal{M}_{n-1,1}(\mathbb{K})$ tels que la matrice A répond à la question.

- (b) Une famille de polynômes : On pose $U_p = \sum_{k=0}^{n-2-p} \alpha_k X^{n-2-k-p}$, $p \in \{0,...,n-2\}$.
 - i. Montrer que $(U_0,...,U_{n-2})$ est une famille libre de $\mathbb{K}_{n-2}[X]$
 - ii. Montrer que tout $Q \in \mathbb{K}_{n-2}[X]$ peut s'écrire $Q = \sum_{k=0}^{n-2} {}^t y B^k z U_k$ avec $y,z \in \mathcal{M}_{n-1,1}$
- (c) Expression d'une matrice :
 - i. Montrer que, pour tout $(x,\lambda) \in \mathbb{K}^2$, $\chi_B(x) \chi_B(\lambda) = (-1)^{n-1}(x-\lambda)\sum_{p=0}^{n-2} U_p(x)\lambda^p$
 - ii. En déduire que , pour tout $x\in\mathbb{K}$, $\chi_B(x)I_{n-1}=(-1)^n(B-xI_{n-1})\sum_{p=0}^{n-2}U_p(x)B^p$
 - iii. Montrer que la transposée de la comatrice de $(B-xI_{n-1})$ vaut $(-1)^n\sum_{p=0}^{n-2}U_p(x)B^p$, pour tout $x\in\mathbb{K}$
- (d) **Résolution du problème** : A désigne toujours la matrice ci-dessus avec $b = \alpha_1 c_1$
 - i. Montrer que pour tout $x \in \mathbb{K}$,

$$\chi_A(x) = (-1)^n (x^n + (\alpha_1 - b)x^{n-1} + H(x)) - (-1)^n \sum_{p=0}^{n-2} U_p(x)^t u B^p v$$

où les coefficients de H ne dépendent que du scalaire b et des coefficients de χ_B .

- ii. Montrer que $\chi_A=(-1)^nP$ si, et seulement si, $H-\sum_{k=2}^n c_kX^{n-k}=\sum_{p=0}^{n-2}{}^tuB^pvU_p$
- iii. Justifier alors l'existence d'au moins deux vecteurs u et v de $\mathcal{M}_{n-1,1}(\mathbb{K})$ tels que la matrice A répond au problème posé.

Fin de l'épreuve