

Transporter protein classification by structured prediction and multiple kernel

Hongyu Su

Helsinki Institute for Information Technology HIIT Department of Computer Science Aalto University

October 7, 2015

Feature extraction

- BLAST features
 - Identify database sequences that are similar to a query sequence via BLAST search.
 - 'Similarity' is defined as BLAST score (statistically significant matches).
 - ▶ In practice, we build a sequence database with all TCBB sequences.
- ► Features computed from INTERPROSCAN
 - ▶ Identify sequence signatures via scanning many signature databases.
 - ▶ 18 databases of 3 'big categories': Families, domains, sites, repeats; structural domain; other sequence features.
- ► Position-specific-score-matrix (PSSM)
 - RPSBLAST: identify sequence profiles via scanning 8 profile database, profile is defined by PSSM.
 - ▶ PSIBLAST: search a profile against a sequence database
 - (a) build a PSSM profile for a query sequence.
 - (b) search a profile against the database or compute similarity of two profiles.

Summary of features

▶ BLAST features: similarity matrix in which elements are BLAST scores.

► INTERPROSCAN features

ĺ	Туре	Dim	Туре	Dim	Туре	Dim
Ì	Protein Domain	145	Hapmap	209	SMART	240
ı	Protein Family	512	PRINTS	579	Panther	4070
	Gene3D	611	PIRSF	283	PfamA	2025
	Prosite Profile	282	TIGRFAM	769	Prosite Patterns	285
ı	Coil	1	TMHMM	1	Phobius	7
	SignalP1	2	SignalP2	2	SignalP3	1

PSSM features

Type	Dim	Type	Dim					
CDD	47363	Pfam	14837					
COG	4825	KOG	4875					
SMART	1013	PRK	10885					
TiGRFAM	4488	CDD NCBI	11273					

Multiple kernel learning (MKL)

- ▶ A collection of p feature maps $\{\varphi_k(\mathbf{x})\}_{k=1}^p$ is on hand.
- ▶ We use MKL to combine these feature maps.
- ▶ Input kernels $\{K_1, \dots, K_p\}$ and target kernel $K_y = YY^T$.
- ► Uniform kernel combination (UNIF)

$$K_{\text{UNIF}} = \sum_{k=1}^{p} \frac{1}{p} K_k^c,$$

Centred kernel alignment (ALIGN)

$$K_{\text{ALIGN}} = \sum_{k=1}^{p} \alpha_k K_k^c, \quad \alpha_k = \frac{\langle K_k^c, K_y^c \rangle_F}{||K_k^c||_F ||K_y^c||_F}$$

► Two stage MKL (ALIGNF)

$$\mathcal{K}_{\text{ALIGNF}} = \sum_{i=1}^{p} \beta_k \mathcal{K}_k^c, \quad \max_{\beta} \frac{\langle \mathcal{K}_{\text{ALIGNF}}^c, \mathcal{K}_{\mathbf{y}}^c \rangle_F}{||\mathcal{K}_{\text{ALIGNF}}||_E ||\mathcal{K}_{\mathbf{y}}^c||_E}, \qquad \text{s.t. } \sum_{i=1}^{p} \beta_k^2 = 1, \beta_k \geq 0, \ \forall k.$$

Experiments

Discussion

