RECEIVED

JUL 1 5 2002

TECH CENTER 1600/2900

IN THE UNRED STATES PATENT AND TRADEMARK OFFICE

In re application of

Wolfgang M. Franz et al.

Serial No.

09/068,751

filed:

November 14, 1996

for:

Gene Therapeutic Nucleic Acid Working Model and Its Production and

Use for Treating Heart Disease

DECLARATION UNDER RULE 132

I, the undersigned, Wolfgang M. Franz, a citizen of Germany, do hereby depose and declare:

I have graduated in medicine and I was awarded the degree of PhD from the Technical University of Munich, Germany, in 1986.

My major research interest is directed to gene therapy of cardiovascular diseases.

I am co-inventor of the subject matter of U.S. Patent Application No. 09/068,751.

I have carefully read the Office Action dated December 20, 2001 and the specification of the present patent application.

With regard to the Examiner's contention that the specification does not enable any person skilled in the art to make and / or use the invention commensurate in scope with the present claims I would like to provide the following response:

The present application is, to my opinion, the first document disclosing the successful cardiac specific, in particular ventricle specific, gene transfer in neonatal or adult animals by making use of viral vector systems.

In my opinion, a skilled person would have been enabled by the detailed disclosure of the specification to perform the invention, in particular the tissue specific gene transfer in adult or neonatal animals.

The experiments disclosed in the specification illustrate operability of a **functional** regulatory nucleic acid sequence as obtained from the **rat** mlc-2 gene under conditions of somatic gene transfer (see in particular Examples 8 to 11 of the specification).

Meanwhile we were able to locate the corresponding regulatory sequence of the human mlc-2 gene. The obtained nucleotide sequence is attached as

ANNEX I

We have analysed the sequence for potential regulatory elements and could locate sequence motifs **almost identical** to those disclosed in the present specification and considered as vital for the intended purpose. These elements are, in 5'-3' direction, the following: CSS-like sequence, MLE1-box, HF-1a-, HF1b-, HF-2-, HF-3- and E-box. The same sequence motifs have been identified in the specification to play a critical or at least favourable role in the regulation of cardiac specific gene expression.

Said high degree of similarity observed between rat and human regulatory elements is illustrated by the partial sequence alignment attached as

ANNEX II

The rat sequence motifs are shown below the corresponding human sequence motifs. Identical nucleotide residues are identified by a vertical line between both sequences.

On the basis of said additional experimental evidence, I am convinced that a skilled person will not have to practice "trial and error" experimentation in order to provide

viral constructs other than those exemplified in the specification which can be successfully used for cardiac specific, in particular ventricle specific, gene transfer.

I would also expect that a similar favourable cardiac tissue specificity is also observed when the same regulatory elements are inserted in different viral vectors, because cardiac tissue specificity, which, in my opinion is the key for successful and valuable somatic gene transfer to the heart muscle, is mainly influenced by the cardiac tissue specificity of the promoter sequence operatively linked to the gene to be expressed with cardiac specificity.

In this respect, I would like to point to a comparative experiment already disclosed in the present specification. Example 11 describes the differences in cardiac tissue specificity and activity of gene expression observed on the one hand for a recombinant virus vector construct of the present invention, i.e. Ad-mlcLuc, and, on the other hand, for a virus construct carrying, in the same virus, a different muscle derived promoter, i.e. alpha-mhc. Said construct is designated Ad-mhcLuc. As illustrated by Figures 8A and 8B merely Ad-mlcl.uc, i.e. the viral construct of the present invention, provides for a strong and cardiac specific gene expression while Ad-mhcLuc also directs non-specific gene expression. Significant levels of nonspecific gene expression were observed for Ad-mhcLuc in kidney, spleen, liver, diaphragm, lung and intercostal muscle. Moreover, the construct of the invention was three to four times more active in the heart than Ad-mhcLuc. Said experimental evidence supports my point of view that a skilled reader of the present specification will in fact be able to practice, without the need of "trial and error" experimentation, the invention within the scope of the claimed recombinant vectors, carrying a regulatory mlc-2 gene fragment which must be functional, i.e. directs cardiac specific gene expression.

The undersigned declares further that all statements made herein on his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and

that such wilful false statements may jeopardise the validity of this application or any patent issuing thereon.

Munich, 15-06-2002

(Wolfgang M. Franz)

CAGTCTTGAG	TGATGCTGAA	AGGAACCCCT	GAAGTCTACA	AAGAACCAAG	50
TCCTCCCTGG	ATTCTCCAAT	CCCAGGGCCT	TGTCCCTGGT	CTTGGGGGCT	100
CCCTGGGGCA	ACACAACCCA	TTGATGAGAG	AGACTTTGGA	TCTCTGGCTC	150
TCTCAACAGA	CCCCAAGGCC	TAGTCCACAC	CCCACGTGCT	CCACGTCCCA	200
GCAGCCACGT	GGTTCCATGC	CCCATTCAGG	CCGCCATTTC	CCAGAATCCC	250
TAGACACAAT	CTCACTTAAT	CCTCCCAGCA	GCCTTATGGA	GGTGTGTGAT	300
CTČCCTTTTC	CAGGTGAGGA	AACAGGCCCG	AGAGGGTGAG	TGCCCTATTT	350
GACAACCCCT	CTTGCTATCC	AGCCAGAATG	GTTCCTCTAG		400
GGAGGCCTGG	CTGTACAGGT	GTCCCTCAGG	GACACACACC	-	450
TCTGGGGGCC	CAGCCCATCC	TAATCCCCAC	CCCGGGGCTT	CCCACCCCC	500
ATCATACACT	CTCCACATCT	TCTGTGGCTG	CAACAACCTT	TTCACTTGGC	550
CAGTTGGAGC	TACTGACTGC	TCACACAGGG	TTTTAACGAA	AATCTATGGT	600
GTGCCTATTA	GCTAGGGAAA	CATTTATTCI	GGTGTTGTCA	GAGAACCTTG	650
GACAGAAAAG	CTCCTCTTGA	TGTGTGCACT	GCACATATGT	GGATGCGTGT	700
ACATGCACGT	GTCTGTGTGC	CTCTATGCAT	GTGCAGACGT	GTTTTTGTCT	750
GTGCATGCAT	GTGCCTACAC	ACACACATG	A ACACATCTTT	TGTTATTAAA	800
GATCTGTCAG	AAGAGTGTCC	TGGGTAACT	TAACCCATGT	GGGACTGCAG	850

AGAAGAAAA AACCCACACC TTTTTTTGTC ACAGCCATCA ATGGTCCTTG	900
GGTTTGTGTG CCCCCAAATT GAGATTATTT TTCCACCTGA GAAGGGGAGT	950
GAGTGATAGC TACCATTTGC CAGGTCTCAC CTCCTTTTAC CCTCTGGAAA	1000
ACCTAATAAG AAAAGTGATT TCTTTTTTTA AGCTCTGGAA AACTCCAGCC	1050
CCAGGGGGCC TTCTGTTCCT CAAAGCCTCC AAATTCTCCC TGCCTTGAGG	1100
TATGTGCTGT CCCCACTGCC TGGAGCCCCC TTTGCAGACT CTGCTTGGAG	1150
GAGCCCACCT GCGCCCCTGT CTGAGGCTGT CACCTGGCCA CTGCCATGCC	1200
TCTGTCTCAT CCCTGCATGA GATCCGTCAC TGCCTGCAAC TGTCTGGGTT	1250
GTGCATTTGT TTACTTTCTC CTTGTCCATC TTCCCCTCGC ACTTACGCAC	1300
CTCAAGGGAA GGGAATTTGT TGCTTTGCGC TGGGCTCGAT GAAGGGGAAT	1350
GAATGCTGGT TCAGCCATCA GCCCCGCACC CACACTACTG GGAGGGCAGA	1400
GGGACATTCT CCTTCTTAGA GGTGTGGCCT CTGGCACTCA GGCCTGCCAC	1450
CCACGGACAC TAAATAACCA CAATGATTCC AAGCCCCGAG TTCTTGCTCC	1500
CTGAATCCCA AGGCTGTCTT TAAGGGCACA GGAAGATGGC CATCTTTTGT	1550
TGTTTTGGTT TAGTTTGGGG TTTTTTTGGT CTTTGTTTTT GAGATGGAGT	1600
CTTGCTCTGT CGCCCAGGCT GGAGTGCAAT GGCACGATCT CGGCTCACTG	1650
CAACCTCCGC CTCCTGGGTT CAAGCAATCC TCCTGCCTTA GCCTCCCAAG	1700

TAGCTGGGAG TACAGGCATG TGCCACAACG CCCAGCTAAT TTTTGTATTT 1750 TTAGTAGAGA TGGGGTTCTG TCATGTTGGC CAGACTGGTC TTGAACTCCT 1800 GACCTCAGGT GATCTACCCG CCTCGGCCTC CCAAAGTGCT AGGTGTGAGC 1850 CAACATGCCC GTCCTTTTTT TTTTTTTTTT TTTTTTTGAG TCAGAGTCTC 1900 ACTCTGTCGC CCAGGCTGGA GTGCAATGGC GCTATCTCGG CTCACTGCAA 1950 2000 CCTCTGCCTC TCGGCCTCAA GCGATTCTCC TGCCTCAGTC TCCTGAGTAG CTGGGACTAC AGGCCCGCGC CACAACGCCT GGCTAATTTT TGTATTTTTA 2050 GTAGCGACAA GTTTCATCAT GTTGGCCAAG GTCGTCTTGA ACTCCTGACT 2100 CAAGTGATCC ACCCGCCTCA GCCTCTCAAA GTGCTGGCAT TTCAGGTATA 2150 AGCCACTGCA CCCAGCAGGA AAGCTGTCTT CAGTAAAAGT ATTATAAAT 2200 2250 GACACCTTGC ATTCTGAGAG CAGCTGCTGT TTTCAAGGCT CTTAAAGAGC CTGGACTCTG GAGACAAAGG GGCCTCCAGA GGGGTCCACG CCTAGCTCCA 2300 TCACTGTGTG ACCCTGGGCA GCTCACTTCG CCTCTCTGAG CTTTTGTTTC 2350 CGCATCTGTA AAATGGGGGC ATGGATGATG AGGTGGTCCC CACCCTCTAG 2400 2450 GGTGGCTGGA AAATTATGTG TGGGAGCCAT GAGCACATAG TGTCCGGCAC GTGCCAGTGC TCAGTCAATG AGATTTGTCA TTTCTTCAGT CAACAAATAT 2500 2550 TTATTTTTGA GCTGCTGCTG TGTGCATCAT GAGCTGGGAG CTGGGGAGAC

CCACAGATGC TGAAGAAAAT GAGTCAGTGC ACTGTGGGCA GTGTTCGGGA 2650 CTGCCTCACG CTGTGCAGAG AAACAAAGAA GGGAGATCGG AGCGCAGGAG 2700 GTGCGTGGCT GTGTTATTTG TTTGTTTTGA GACAGGGTCT TGCTCTGTCA 2750 CCCAGGCTGG AGTGCAGTGG TGTGATCGTG GCTCACCACA GCCTCAACCT 2800 CCCGGGCCCA AGTGATCCTC CTGTCCCAGC CTCCTGAATA GCTGAGACTA 2850 TAGGCATGCA CCACCACGCA CAGCTATTTT TTTTTCTTTT GCGTAGAGAC 2900 AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC 2950 AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG GCACACAGGT 3150 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 ACCCAGGTAC TGCCTCTTTA ACCTTGAATT CCTTTTTGGG GGCTTACGGGT 3350 TCACCCAGTG GCGAGTGAGC CACCCCTTACT TCCAGAAGAAC GGCATGGGGT 3350	AGTCAGTGGT (GAGGGAAACT	AAAGTGATCC	CTGCCCTCTG	AGCTGACGCT	2600
GTGCGTGGCT GTGTTATTTG TTTGTTTTGA GACAGGGTCT TGCTCTGTCA 2750 CCCAGGCTGG AGTGCAGTGG TGTGATCGTG GCTCACCACA GCCTCAACCT 2800 CCCGGGCCCCA AGTGATCCTC CTGTCCCAGC CTCCTGAATA GCTGAGACTA 2850 TAGGCATGCA CCACCACGCA CAGCTATTTT TTTTTCTTTT GCGTAGAGAC 2900 AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC 2950 AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element 3350 HF-2-Box	CCACAGATGC '	TGAAGAAAAT	GAGTCAGTGC	ACTGTGGGCA	GTGTTCGGGA	2650
CCCAGGCCGA AGTGCAGTGG TGTGATCGTG GCTCACCACA GCCTCAACCT 2800 CCCGGGCCCCA AGTGATCCTC CTGTCCCAGC CTCCTGAATA GCTGAGACTA 2850 TAGGCATGCA CCACCACGCA CAGCTATTT TTTTTCTTTT GCGTAGAGAC 2900 AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC 2950 AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element 3350 HF-3 element MLE1 element 3350	CTGCCTCACG	CTGTGCAGAG	AAACAAAGAA	GGGAGATCGG	AGCGCAGGAG	2700
CCCGGGCCCA AGTGATCCTC CTGTCCCAGC CTCCTGAATA GCTGAGACTA TAGGCATGCA CCACCACGCA CAGCTATTTT TTTTCTTTT GCGTAGAGAC AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	GTGCGTGGCT	GTGTTATTTG	TTTGTTTTGA	GACAGGGTCT	TGCTCTGTCA	2750
TAGGCATGCA CCACCACGCA CAGCTATTT TTTTTCTTTT GCGTAGAGAC 2900 AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC 2950 AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 33000 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	CCCAGGCTGG .	AGTGCAGTGG	TGTGATCGTG	GCTCACCACA	GCCTCAACCT	2800
AGGCATCTCC CTATGTCACC CAGGCTGGTC GCAAACTCCT AGGCTCAAGC 2950 AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	CCCGGGCCCA	AGTGATCCTC	CTGTCCCAGC	CTCCTGAATA	GCTGAGACTA	2850
AATCTTCCCG CCTCGGCCTC CCGCCGTGCT GGGATTTCAG GCATGAGCCA 3000 CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA 3050 CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	TAGGCATGCA	CCACCACGCA	CAGCTATTTT	TTTTTCTTTT	GCGTAGAGAC	2900
CAGTGCCAGC CTTCATGGTT ATTTTAAAGA TGGTGGTCGG GGAGGCTTCA CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	AGGCATCTCC	CTATGTCACC	CAGGCTGGTC	GCAAACTCCT	AGGCTCAAGC	2950
CTCAGGAGAT GACATATGAG CAAAGATGCA GTGAAGGAGG TGAAGGAAGG 3100 AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	AATCTTCCCG	CCTCGGCCTC	CCGCCGTGCT	GGGATTTCAG	GCATGAGCCA	3000
AGCCGTGCGA TGACTGACAG AAAGACATTC CAGGTAGAGG GCACACAGGT 3150 GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	CAGTGCCAGC	CTTCATGGTT	ATTTTAAAGA	TGGTGGTCGG	GGAGGCTTCA	3050
GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAACAGAG CATTTTAGCA 3200 GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 3300 HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350	CTCAGGAGAT	GACATATGAG	CAAAGATGCA	GTGAAGGAGG	TGAAGGAAGG	3100
GCAAAGACCC TGAGGCCAGA TCCAGGCTGA TAAAGACAAG CACAAGTGTC GTCTCCTCTC CCTGCCATTT TTTTTCTCAA AATTGACAAG CACAAGTGTC 3250 CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG 4F-3 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 4F-2-Box	AGCCGTGCGA	TGACTGACAG	AAAGACATTC	CAGGTAGAGG	GCACACAGGT	3150
CCCGGCCCAA GCACCGCAGA GAGCGCGCAG CATCTCTCCC CGTGACCATG HF-3 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG HF-2-Box	GCAAAGACCC	TGAGGCCAGA	TCCAGGCTGA	TAAAACAGAG	CATTTTAGCA	3200
HF-3 element MLE1 element ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG HF-2-Box	GTCTCCTCTC	CCTGCCATTT	TTTTTCTCAA	AATTGACAAG	CACAAGTGTC	3250
ACCCAGCTAC TGCCTCTTTA ACCTTGAATG CCTTTTTGGG GGCTCACGTG 3350 HF-2-Box	CCCGGCCCAA	GCACCGCAGA	GAGCGCGCAG			3300
	ACCCAGCTAC	TGCCTCTT <u>TA</u>	7-3 element ACCTTGAATG			3350
TEACCCAGTG GUGAGTGAGC CACCUITACT TCAGARDARO COO.	TCACCCAGTG	GCGAGTGAGC			GGCATGGGGT	3400

GGGGGGCCT	TAGGTGGTGC	CCGCCTCACC	E-Box TA <u>TGACTG</u> CC	HF-la u AAAAGCGGTC	3450
HF-1b-Box ATGGGGTTAT	TTTTA AACAT	GGGGAGGAAG	TATTTATTGT	TCCTGGGCTG	3500
CAGAGAGCTG	GGCGGAGTGT	GGAATTCTTC	TCGGGAGGCA	GTGCTGGGTC	3550
CTTTCCACCA	TG				

CSS-lik sequence
CAGGGACACACCCCCACTCGACTCTGGGGGCCCAGCC-CATCCTAAT human
HF-3- and MLE1 elements
CTCTT TAACCTTGAATGC CTTTTTGGGGGC TCACGTGTC-A CCCAG human
CTCTT TAACCTTGAAGGC ATTTTTGGGT-C TCACGTGTCCA CCCAG rat HF-3-Box MLE1 Box
HF-2-Element, E-Box, HF-la- and HF-1b- elements
TGAGCCACC CTTACTTCAGAAGAACGGC ATGGGGTGGGG
TGAACGGCT CTTACTTCAGAAGAACGGC ATGGGGTGGGG
CCCGCCTCACCTA TGACTG CCAAAA GCGGTCATG GGGTTATTTTTA human
TCTGCCTCACCTA CAACTG CCAAAA GTGGTCATG GGGTTATTTTTA rat E-Box HF-la-Box HF-lb-Box