MINTERM 2 SOLUTIONS

1-) a) Let event C be the connection between A and R:

C = 5, NS2 N (S3 NS4) US5) where Sk is the event "switch Sk conducts (ON)".

P(c) = P(s,ns,n((s,ns,1)us,5)

due to independence of switches:

P(c) = P(s,). P(s2). P((s3ns4)US5)

= P(s3ns4) + P(s-) - P(s3nsins)

P(S3)P(S4) P(S3)P(S4)P(S5)

So,  $P(c) = p^2 \left[ p + p^2 - p^3 \right] = \left[ p^3 + p^4 - p^5 \right]$ 

() Since each instant operation is independent: P (connection over a period of 10 intents) = 910

> So: 910 > 0.9 9>(0.9)10

c) Yi-St If there is a connection

(Check: Y:=1:1) X,11 X2,1 and (Xs,1 X4,1 + Xs,-X3,1/4,8)

(Zz, i Suit + Es, - Ezi Sh, i Kji)=1 It Tz Kulson OR Ks; ison V



Alternative formal solution:  $\int X | Y = \int X | Y (x,y)$   $\int J Y (y)$ , fy(y)= ftx,y) dx First find { E, y (x,y) : Since joint pdf is uniform,  $f_{8,y}(x,y) = g_{area}$  if  $(x,y) \in B$  shaded region B. Area of B = \frac{1.2}{2} + \frac{1.2}{2} = 2 1x, (x,y) = \ 1/2 1/(x,y) \in B 0 relse 6-y Then find  $d_y(y) = \int \frac{1}{2} dx + \int \frac{1}{2} dx$  $= \left(\frac{y+2}{2} - y\right) + \left(\frac{6-y}{2} - 2\right) = (2-y) \cdot \frac{1}{2}$ for ye (0,2) 4 ∈ [0,2) division by a is adjustible else if y[0,2) and x ∈ [3, 42] 4/2,64  $f_{X|Y=y}$   $f_{X}$   $f_{X}$  else Plot for y=1 198/A=1 11 4 else 3/2 5/2 × 1817= (x) = 8(x-2) 1 7=2

6) \hat{\hat{\hat{X}}} mms \( \frac{1}{2} \) = \( \frac{1}{2} \) \ Lx (x) is already found in (a): Fary soludron: Note that  $\int_{X_1Y_2}^{(x)} y \in [0,2)$ Center of symmetry is:  $\int_{X_1Y_2}^{(x)} y \in [0,2)$ For a symmetric pdf, the center of symetry is xmuse /y=y= 6+y , y∈ [0,2] Alternative formal solution:  $E \left\{ X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \int X \left[ Y=y \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \int X \int X \left[ X \int I(x) dx \right] = \int X \int I(x) dx = \left( \frac{X}{2-y} dx + \int \frac{X}{2-y} dx \right)$   $\int X \int I(x) dx = \int X \int I(x) dx$  $= \frac{1}{2-y} \left[ \frac{x^2}{2} \right]^{\frac{1}{2}} + \frac{x^2}{2} \right]^{\frac{1}{2}}$ = 6+9 (= X MMSE

j

c) if Y=y and 
$$X > \widehat{X} \Rightarrow Z_1 = X - \widehat{X}$$

found in part (6)

Therefore  $Z_1$  is the shifted version of  $X$ .

 $X_1$  when  $X > \widehat{X}$  condition is given, uniformly distributed in the interval  $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ .

Shifting that region to the left thy  $\widehat{X} = 6 + y$ 

gives:

$$\underbrace{ \begin{cases} 2-y \\ 4 \end{cases}}_{1} = \underbrace{ \begin{cases} 6-y \\ 2 \end{cases}}_{4} = 6 + y \\ 4 \end{aligned}}_{1}$$

Therefore:

$$\underbrace{ \begin{cases} 2-y \\ 4 \end{cases}}_{2} = \underbrace{ \begin{cases} 6-y \\ 4 \end{cases}}_{4} = \underbrace{ \begin{cases} 2-y \\ 4 \end{cases}}_{4} = \underbrace{ \begin{cases} 2$$

d) Using a similar approach as M (c):

If Y=g and  $X \angle \hat{X} \Rightarrow Z_2 = \hat{X} - X$   $\Rightarrow Z_2 \text{ is uniform in: } \left[ -\frac{y+2}{2} + \frac{6+y}{4} - y + \frac{6+y}{4} \right]$ 

$$= \left[\frac{2-y}{4}, \frac{6-3y}{4}\right] \xrightarrow{\text{Thursfore}} \left[\frac{1}{2} \left(\frac{1}{2}\right)\right]$$

$$= \left[\frac{2-y}{4}, \frac{6-3y}{4}\right] \xrightarrow{\frac{2-y}{2-y}} \left[\frac{1}{2} \left(\frac{1}{2}\right)\right]$$

$$= \left[\frac{2-y}{4}, \frac{6-3y}{4}\right] \xrightarrow{\frac{2-y}{4}} \left(\frac{6-3y}{4}\right)$$

$$= \left[\frac{2-y}{2-y}, \frac{6-3y}{4}\right]$$

$$= \left$$

e) Using total probability:  $\int_{\mathcal{I}} (z) = \int_{\mathcal{I}} (z) \cdot P(X > \hat{X}) + \int_{\mathcal{I}} (z) P(X < \hat{X})$ area of the area of the triangle of the distributed of the fourt poly.  $\int_{\mathcal{I}} (z) = \int_{\mathcal{I}} (z) \cdot P(X > \hat{X}) + \int_{\mathcal{I}} (z) P(X < \hat{X})$   $= \int_{\mathcal{I}} (z) \cdot P(X < \hat{X}) + \int_{\mathcal{I}} (z) P(X < \hat{X})$   $= \int_{\mathcal{I}} (z) \cdot P(X$ 

So:  

$$\frac{1}{2}(z) = \frac{1}{2}(z) = \frac{1}{2}(z)$$



Alternative solutions for 3-a and 3-6:8) Since the process is Poisson, Interactival times are exponentially distributed  $P_{T}(t) = \lambda e^{-\lambda \tau}$ ,  $\lambda = 0.5$ a) No arrival M 3 hours = Interarrival
time is > 3h.  $P(t>3) = \begin{cases} \lambda e^{-\lambda z} = 0.5 e^{-0.5t} \end{cases}^{\infty}$ = \e-1.5 b) P- (3 < t < 5) = 50.5e-0.5t dt - 0.5 e-0.5t - 0.5 e-0.5t - 1.5 e-2.5 c) If waiting time is >3, only 1 arrivel

will be observed o: Therefore waiting time 13 <3. = 2 arrivels in the first 3 hours:

$$P_{X}(2) = e^{-1.55} (1.5)^{2} = e^{-1.5} \frac{2.25}{2} \left[ \frac{9}{8} e^{-1.5} \right]$$

$$N = \{0.5\} \cdot 3 = 1.5$$

E { successes | waitty time < 3 }. P ( watty time < 3) + E Sucaenes | waltery time 7,38. P(w. time 73) (Total expectation) E & success wastry time 23 = E & X | 7 < 3 = 1.5 P} waiting time < 3? = {0-se-0:st dt = 0.se-0.st | 3 -0.s | 0 =1-6-1.2 ESSUCAN worthy time >3 =1 There is always only one observation

if t 7,3h, so Esconstant ]=1 P { wouldny time >13} = 1-(1-e-1.5) = e-1.5 So: E \success = 1.5 (1-e-1.5) +1.e-1.5

 $= 1.5(1-e^{-1.5}) + 1.e^{-1.5}$   $= 1.5 - 0.5e^{-1.5}$ 

e) Poisson process = waiting times are exponentially distributed; menorilen: past will not affect. the future = fresh start

-s "Already wasted for 6 hours" will not (10) affect the statistics of what will happen from now on. Therefore, expected value of waiting "after the first 6 hours" is the same as the unconditional waiting time:  $E373 = \int t d_7(t) dt = \int t e^{-3t} dt$  $= \frac{1}{2} = \frac{1}{0.5} = 2 \text{ hours}$ =) Eq Lotal waiting time ]= 6+2=18 hours 4-) a) discrete random variable X takes integer values k=1,2--00. Therefor Y takes values 2,4,6,8 when k=1,2,3,4, since Y=2X. for k=5,6. -00, Y is always 10 So P \ Y=10 } = P \ X = 5 or 6 or \_\_\_\_\_\_ =1-P3 & C[1,2,3,47] = 1 - [P+P(1-P)+P(1-P)2+P(1-P)3]=(1-P)4

Py (k) = 
$$\begin{cases} (1-p)^{\frac{k}{2}} p & k=2,4,6,8 \end{cases}$$

$$(1-p)^{\frac{k}{2}} & k=10 \end{cases}$$

$$0 & else (other integer k's)$$

$$+ Note: P_{\mathbb{Z}}(k) = (1-p)^{\frac{k}{2}} p \quad is a geometric r.v.$$

$$= number of trials until first succen.$$

$$So: P(k > k_0) means no succenses in the first  $k_0$  attempts. =  $(1-p)^{\frac{k}{2}-1}$ 

$$first k_0 = attempts. = (1-p)^{\frac{k}{2}-1}$$

$$= a + \frac{1}{2} \Rightarrow a = \frac{1}{2}$$

$$(1-p)^{\frac{k}{2}} = a + \frac{1}{2} \Rightarrow a = \frac{1}{2}$$

$$= a + \frac{1}$$$$

16(x)=e-x=y 4 1/2 e-x  $dy(y)|dy| = \int_{\overline{X}} (x)|dx|$ probability of probability of DE Hus Interval YE this interval intervals do not include the impulse for this case  $\int_{Y} f(y) = \left| \frac{dx}{dy} \right| \int_{X} f(x)$  $y = e^{-x} \rightarrow \frac{dy}{dx} = -e^{-x} = -y \rightarrow \left| \frac{dx}{dy} \right| = \frac{1}{x}$ x=-dny -> fx(x)=fx(-dny) a dy(s) = - y dx (-dns) = - y · - 2 em = - 1/2.7 So: Combining the impulsive and component found non impulsive for yEp,17