

Analytische Evaluation

Ilhan Aslan, Chi Tai Dang, Björn Bittner, Katrin Janowski, Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Wiederholung - Arten von Evaluationstechniken

- Empirische Evaluation mit Nutzern
- Analytische Evaluation mit:
 - Usability Experten
 - Experten der Domäne
 - Mitgliedern des Projektteams

Analytische Evaluation

Analytische Evaluation

- Identifiziert grundlegende bzw. offensichtliche Probleme
- Arten von analytischen Evaluationstechniken:
 - Inspektionsbasierte Evaluation:
 Durchlaufen der Tasks und Überprüfung anhand von Richtlinien und Checklisten
 - Modellbasierte Evaluation:
 Durchlaufen der Tasks anhand von empirisch ermittelten Modellen

Analytische Evaluation: Inspektionstechniken

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Inspektionstechniken – Methoden

Guideline-based:

 Überprüfung anhand von Richtlinien und Prinzipien (z.B. Heuristiken und Checklisten)

Walkthrough-based:

- Simulation einer Nutzerstudie
- Durchlaufen der definierten Tasks durch die Experten

Kombination:

- Durchlaufen der definierten Tasks durch die Experten
- Überprüfung anhand von Richtlinien und Prinzipien (z.B. Heuristiken und Checklisten)

Inspektionstechniken

- Inspektionen werden oft informell durchgeführt
 - Regelmäßig während der Entwicklungsphase (Design und Implementierung)
 - Typischerweise vor echten Nutzerstudien
- Hilfreiche inspektionsbasierte Evaluationen sind
 - klar und eindeutig dokumentiert!
 - wichtig, um die Qualit\u00e4t des Prototypen zu verbessern
- Hilfreiche inspektionsbasierte Evaluationen bieten
 - klare Beschreibungen vorhandener Probleme und eventuell auch deren Bedeutung
 - direkten Input für Änderungen und eventuell auch konkrete Vorschläge für Verbesserungen

Guideline-Based Inspektionen

- Beispiele:
 - Expertenreview
 - Heuristische Evaluation
 - Checklist Review

 Anwendung der Methoden je nach Budget und Nutzen in dem jeweiligen Projekt

Guideline-Based Inspektionen – Expertenreview

- Werkzeug zum Finden von Problemen anhand von:
 - speziellen Prinzipien und Guidelines
 - Wissen und Erfahrung der Usability-Experten
- Strukturierter Ansatz
 - Hauptaufgabe ist es Probleme zu finden
 - Teilnehmer:
 - müssen offensiv sein
 - kommunizieren die Probleme
 - können Lösungen vorschlagen
 - Aber: Entscheidungen über Änderungen trifft das Team

Guideline-Based Inspektionen – Expertenreview

Meist werden viele Experten eingesetzt, um alle Fehler zu finden

- > Sehr umfassende Überprüfung der Nutzerschnittstelle
- Ausführliche Dokumentation mit Fehlerbeschreibung und möglichen Lösungsschritten
- Meistens teuer und aufwendig durchzuführen!

- Discountmethode des Expertenreviews
- Grundlegende Idee:
 - 5 Experten reichen, um 75% der Usability-Probleme zu finden!!!
 - Wenige Leute evaluieren das Interface und bewerten es anhand von Usability-Prinzipien (Heuristiken)
 - Entweder reine Inspektion anhand von Heuristiken oder auch task-basierter Durchlauf
 - Erzeugung einer Problemliste, deren Punkte bewertet werden

Beispiel: Zehn Usability Heuristiken von Nielsen

- 1. Sichtbarkeit des Systemstatus
- 2. Match zwischen System und realer Welt
- 3. Nutzerkontrolle und –freiheit
- Konsistenz und Standards
- 5. Fehlervermeidung
- 6. Erkennen anstatt Erinnern
- 7. Flexibilität und Effizienz der Nutzung
- 8. Ästhetisches und minimalistisches Design
- 9. Hilfe für den Nutzer zur Erkennung, Bewertung und Behebung von Fehlern
- 10. Hilfe und Dokumentation

Ablauf

- Nacheinander jede Heuristik einzeln betrachten und danach das System evaluieren.
- Zu jeder Heuristik kurz schildern welche Probleme in welchem Zusammenhang auftreten
- Beurteilung und Dringlichkeit der Probleme anhand vorgegebener Bewertungskriterien (siehe n\u00e4chste Folien)
- Optional: Vorschlag einer Verbesserung oder Lösung

Bewertung der Probleme

- Drei Faktoren:
 - 1. Auftreten: Wo tritt das Problem auf? (z.B. Startseite)
 - 2. Häufigkeit: Wie oft tritt das Problem auf?
 - 3. Auswirkung: Wie wirkt sich das Problem aus? (z.B. Systemabsturz)
- Helfen für jedes einzelne Problem der Heuristik herauszufinden wie wichtig es ist es zu lösen
- Bieten direktes Feedback

Bewertung der Probleme

- Werte f
 ür die Beurteilung eines Problems:
 - 0: Kein Usability-Problem
 - 1: Kosmetisches Problem
 - 2: Geringes Problem: Geringe Priorität
 - 3: Grosses Problem: Wichtig zu beheben (hohe Priorität)
 - 4: Usability Katastrophe: Unbedingt vor dem Release zu beheben!!

Beispiel

- Heuristik 7: Flexibilität und Effizienz der Nutzung
- Problem: umständlicher Funktionswechsel
 - a) Bewertungsfaktoren:
 - a) Auftreten: Um eine andere Funktion auszuwählen, musste umständlich der Weg über "Zurück" -> "Zurück" -> "andere Funktion" gewählt werden.
 - b) Häufigkeit: Dies wurde bei beiden möglichen Funktionen festgestellt. Diese Funktionen werden häufig genutzt.
 - c) Auswirkung: Die Bedienung ist ineffizient. Dies kann bei häufigerer Nutzung zu Unzufriedenheit beim Nutzer führen.
 - b) Verbesserungsvorschlag:
 Verwendung einer Roadmap => schnellere Navigation möglich,
 da z.B. auch die vorvorherige Seite ausgewählt werden kann.
 - c) Bewertung: 3

Fazit:

- Billiger als Expertenreview
- Schnell und einfach anhand der Heuristiken
- Klares Feedback für das Team durch Bewertungen und eventuelle Lösungsvorschläge

Guideline-Based Inspektionen – Evaluation anhand von Checklisten

Checklisten basieren auf Prinzipien oder Richtlinien

- Oft in Oberkategorien eingeteilt (z.B. Navigation, Content)
- Überprüfung der Einhaltung bzw. Nichteinhaltung
- Information zum Problem über Kommentare

Guideline-Based Inspektionen – Evaluation anhand von Checklisten

Fazit:

- Sehr schnell anzuwendende Methode
- Wenig Fehler möglich
- Aber: Wenige Informationen über
 Gewichtungen und Lösungen der Probleme

Guideline-Based Inspektionen

Fazit:

- Ergebnisse hängen stark von Erfahrung und Wissen des Evaluators ab
- Schnelle Ergebnisse bzw. schnelles Feedback
- Aber: keine nutzerspezifischen Probleme in der realen Nutzung zu erkennen!

Walkthrough-Based Inspektionen

- Nutzung von Szenarien für die Inspektion
- Oft in Kombination mit Walkthrough-Methoden:
 - Simulation einer empirischen Evaluation
 - Durchlaufen der Nutzerschnittstelle anhand von Tasks
 - Hineinversetzen in die Nutzer
 - Führt zu realistischeren Ergebnissen
 - Beispiel:
 - Cognitive Walkthrough

Walkthrough-Based Inspektionen - Cognitive Walkthrough

- Einer oder mehrere Evaluatoren durchlaufen verschiedene Tasks
- Durchführung:
 - Definition der grundlegenden Informationen
 - Wer werden die Nutzer des Systems sein?
 - > Personas
 - Welche Tasks sollen analysiert werden?
 - ➤ Szenarios
 - Was sind die korrekten Aktionssequenzen für diese Tasks?
 - > Taskmodellierung (z.B. Hierarchische Taskanalyse)
 - Wie ist die Nutzerschnittstelle definiert?
 - ➤ Prototyp

Walkthrough-Based Inspektionen - Cognitive Walkthrough

- 2. Während des Walkthroughs an jeder Stelle Beantwortung der folgenden Fragen:
 - Wird der Nutzer erkennen welche Aktionsmöglichkeiten vorhanden sind?
 - Wird der Nutzer wissen welche Aktionsmöglichkeit er nutzen muss, um dem Ziel einen Schritt näher zu kommen?
 - Wird der Nutzer den möglichen Aktionen die richtigen Auswirkungen zuordnen können?
 - Wenn die richtige Aktion ausgeführt wurde, wird der Nutzer sofort den Systemfortschritt erkennen können und dass er dem Ziel einen Schritt näher gekommen ist?

Vergleiche 7 Handlungsschritte von Norman!!

Walkthrough-based Inspektion

Fazit:

- Man muss sich in den Nutzer hineinversetzen können.
- Viel Wissen über den Nutzer nötig
- Fehlinterpretationen unausweichlich
- Während der Entwicklung von neuen Features/Tasks sinnvoll

Abschließende Einschätzung

- Analytische Methoden sind VOR den Nutzertests sinnvoll
 - Erkennen und Beheben grober Probleme der Usability
 - Nutzer in empirischen Studien nicht unnötig abgelenkt
- Analytische Methoden sind typischerweise billiger und schneller durchzuführen als empirische Methoden.

ABER!!

- Kein Ersatz f
 ür Nutzertests, sondern nur Ergänzung
- Tatsächliche nutzerspezifische Probleme NUR durch Tests mit Nutzern aus der Zielgruppe erkennbar
- Allerdings lieber analytische Methoden als gar keine Usability-Tests

Evaluation mit Nutzern und Experten

_

Pluralistic Walkthrough

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Pluralistic Walkthrough

Grundlagen:

- Gruppendiskussion mit Usability-Experten, Entwicklern und Nutzern
- Durchlaufen der Nutzerschnittstelle anhand von Tasks
- Fragestellungen ähnlich wie bei Cognitive Walkthrough
- Meist mit Papierprototypen oder Storyboards während Konzeptbzw. Entwicklungsphase
- Teilweise auch als Qualitätskontrolle oder bei der Überarbeitung bestehender Systeme (Re-Design)

Pluralistic Walkthrough

Ablauf:

- 1. Usability-Experten übernehmen Moderation
- 2. Entwickler geben kurze Einleitung in die Anwendung
- Nutzer führen alleine einen vorgegebenen Task mit dem Prototypen aus (Aufschreiben der Aktionen)
- 4. Entwickler "simulieren" Hilfefunktionen
- Usability-Experten präsentieren nach jedem Durchlauf die möglichen "Lösungen"
- 6. Anschließende Diskussion:
 - a) Nutzer präsentieren und diskutieren aufgetretene Probleme
 - b) Entwickler dürfen erst gegen Ende der Diskussion einsteigen
 - c) Usability-Experten können Problemlösungen vorstellen
 - 7. Nächster Task

Pluralistic Walkthrough

Fazit:

- Evaluation in einer sehr frühen Entwicklungsphase möglich
- Kein interaktiver Prototyp vorausgesetzt
- Entwickler erhalten bessere Einsicht in die tatsächliche Nutzung ihrer Ideen bzw. Konzepte
- Viele sehr qualifizierte Erkenntnisse
- Auftretende Fragen können direkt geklärt werden.
- Änderungen können direkt vor Ort und im Konsens besprochen werden
- Entwickler müssen offen gegenüber Kommentaren sein!