

VinMin = 4.5V VinMax = 5.5V Vout = 12.0V Iout = 0.1A Device = LM27313XMF/NOPB Topology = Boost Created = 5/23/16 4:32:29 AM BOM Cost = \$0.80 BOM Count = 9 Total Pd = 0.18W

WEBENCH® Design Report

Design: 1181001/2 LM27313XMF/NOPB LM27313XMF/NOPB 4.5V-5.5V to 12.00V @ 0.1A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cf	Kemet	C0805C181K5GACTU Series= C0G/NP0	Cap= 180.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Cin	MuRata	GRM188R61A225KE34D Series= X5R	Cap= 2.2 uF ESR= 9.637 mOhm VDC= 10.0 V IRMS= 1.24283 A	1	\$0.02	0603 5 mm ²
3.	Cout	MuRata	GRM21BC81E475KA12L Series= X6S	Cap= 4.7 uF ESR= 5.166 mOhm VDC= 25.0 V IRMS= 2.03531 A	1	\$0.02	0805 7 mm ²
4.	D1	ON Semiconductor	MBR0520LT1G	VF@Io= 385.0 mV VRRM= 20.0 V	1	\$0.06	SOD-123 13 mm ²
5.	L1	Taiyo Yuden	CBC2518T100M	L= 10.0 μH DCR= 360.0 mOhm	1	\$0.06	CBC2518 10 mm ²
6.	Rfbb	Vishay-Dale	CRCW040213K3FKED Series= CRCWe3	Res= 13.3 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	Rfbt	Vishay-Dale	CRCW0402118KFKED Series= CRCWe3	Res= 118.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
8.	Rp	Yageo America	RC0603FR-0751KL Series= ?	Res= 51.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9.	U1	Texas Instruments	LM27313XMF/NOPB	Switcher	1	\$0.60	8
							DRV00054 15 mm ²

Operating Values

Opo	raining varaco			
#	Name	Value	Category	Description
1.	Cin IRMS	46.437 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	146.432 mA	Current	Output capacitor RMS ripple current
3.	lin Avg	306.61 mA	Current	Average input current
4.	L lpp	160.86 mA	Current	Peak-to-peak inductor ripple current
5.	BOM Count	9	General	Total Design BOM count
6.	FootPrint	67.0 mm ²	General	Total Foot Print Area of BOM components
7.	Frequency	1.6 MHz	General	Switching frequency
8.	Pout	1.2 W	General	Total output power
9.	Total BOM	\$0.8	General	Total BOM Cost
10.	D1 Tj	36.208 degC	Op_Point	D1 junction temperature
11.	Vout Actual	12.143 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
12.	Duty Cycle	67.47 %	Op_point	Duty cycle
13.	Efficiency	86.973 %	Op_point	Steady state efficiency
14.	IC Tj	39.909 degC	Op_point	IC junction temperature
15.	IOUT_OP	100.0 mA	Op_point	lout operating point
16.	VIN_OP	4.5 V	Op_point	Vin operating point
17.	Vout p-p	2.004 mV	Op_point	Peak-to-peak output ripple voltage
18.	Cin Pd	20.781 μW	Power	Input capacitor power dissipation
19.	Cout Pd	110.771 μW	Power	Output capacitor power dissipation
20.	Diode Pd	30.137 mW	Power	Diode power dissipation
21.	IC Pd	110.103 mW	Power	IC power dissipation
22.	L Pd	38.276 mW	Power	Inductor power dissipation
23.	Total Pd	179.739 mW	Power	Total Power Dissipation
24.	Vout Tolerance	1.816 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

2001911 11119410							
#	Name	Value	Description				
1.	lout	100.0 m	Maximum Output Current				
2.	VinMax	5.5	Maximum input voltage				
3.	VinMin	4.5	Minimum input voltage				
4.	Vout	12.0	Output Voltage				
5.	base_pn	LM27313	Base Product Number				
6.	source	DC	Input Source Type				
7.	Та	30.0	Ambient temperature				

Design Assistance

1. LM27313 Product Folder: http://www.ti.com/product/LM27313: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.