

BCA (Part - III) Term End Examination, 2017-18

Find the eigenvelIV - Paper - VII ven gie och bnid

Numerical Analysis

Time: Three Hours] [Maximum Marks: 100

[Minimum Pass Marks: 33

Note: Answer all questions. All questions carry equal marks.

1. Find a root of the following equation, using the Bisection method correct to three decimal places:

$$x^3 - x - 11 = 0$$

and the cubic polynerical which takes the

Using Regula-Falsi method, find the real root of the following equation correct to four decimal places:

$$x^4 - x - 10 = 0$$

Solve the equation, using Gauss-Jordan method:

$$x + 4y - z = -5$$

$$x + y - 6z = -12$$

$$3x - y - z = 4$$

$$OR$$

Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

3. The following table gives the values of x and *y* :

x	1.2	2.1	2.8	4.1	4.9	6.2
y	4.2	6.8	9.8	13.4	15.5	19.6

Find the value of x corresponding to y = 12, using Lagrange's formula.

Find the cubic polynomial which takes the following values: Using Reputs Vales in the distribut.

* x **	0	- 1111-1	2	3 of 3d1 to
f(x)	1	2	1	10 decimal property

Hence or otherwise evaluate f(4).

4. Given that:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 1.1$.

OR

Apply Simpson's $\frac{1}{3}$ rule to evaluate $\int_{1}^{4} \frac{dx}{x}$ using six sub-interval and hence find an approximate value of $\log_e 4$.

5. Apply Runge-Kutta method to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0.

OR

Apply Milne's method to find a solution of the differential equation $\frac{dy}{dx} = x - y^2$ in the range $0 \le x \le 1$ with y(0) = 0. (Take h = 0.2)