Conformal prediction

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Lei, G'Sell, Rinaldo, Tibshirani, Wasserman (2018)
 Distribution-free predictive inference for regression.
 JASA,113:1094-1111
- Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
- A Tutorial on Conformal Prediction
 https://www.youtube.com/watch?v=nql000Lu_iE (Part 1);
 https://www.youtube.com/watch?v=TRx4a2u-j7M (Part 2);
 https://www.youtube.com/watch?v=37HKrmA5gJE (Part 3)

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Suppose we have fitted a Gaussian linear model based on the training data (\mathbf{y}, \mathbf{X}) , obtaining the estimates

$$\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}, \quad \hat{\sigma}^2 = \|\mathbf{y} - \mathbf{X} \hat{\beta}\|^2 / (n - p)$$

There are (at least) two levels at which we can make predictions

- 1. A *point prediction* is a single best guess about what a new Y will be when X = x
- 2. A prediction interval

$$C_{\alpha}(x) = x^t \hat{\beta} \pm t_{n-p}^{1-\alpha/2} \hat{\sigma} \sqrt{x^t (\mathbf{X}^t \mathbf{X})^{-1} x + 1}$$

for Y|X = x with $(1 - \alpha)$ conditional coverage guarantee, i.e.

$$P(Y \in C_{\alpha}(x)|X=x) = 1 - \alpha$$

where the probability is with respect to the training data $(X_1, Y_1), \ldots, (X_n, Y_n)$, and the new response Y at a fixed test point X = x

 $f(x) = \frac{1}{4}(x+4)(x+1)(x-2)$

Model miss-specification

 $1-\alpha=90\%$, marginal coverage $\approx 93\%$

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Marginal and conditional coverage

- -(X, Y) ∈ $\mathbb{R}^p \times \mathbb{R}$ follows some *unknown* joint distribution P_{XY}
- Training $(X_1, Y_1), \ldots, (X_n, Y_n)$ and test (X_{n+1}, Y_{n+1}) i.i.d. (X, Y)
- C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha \quad \forall P_{XY}$$

where the probability is w.r.t. $(X_1, Y_1), \dots, (X_n, Y_n)$ and (X_{n+1}, Y_{n+1})

- C_{α} satisfies distribution-free conditional coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_{n+1} = x) \ge 1 - \alpha \quad \forall P_{XY}, \ \forall x$$

where the probability is w.r.t. $(X_1, Y_1), \ldots, (X_n, Y_n)$, and Y_{n+1} at a fixed test point $X_{n+1} = x$

Figure 10: Prediction sets with various notions of coverage: no coverage, marginal coverage, or conditional coverage (at a level of 90%). In the marginal case, all the errors happen in the same groups and regions in X-space. Conditional coverage disallows this behavior, and errors are evenly distributed.

From: Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Conformal prediction

Conformal prediction (Vovk, Gammerman, Saunders, Vapnik, 1996-1999) is a general framework for constructing prediction intervals by using *any* algorithm with finite sample and distribution-free *exact* marginal coverage, i.e.

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha \qquad \forall P_{XY}$$

Two main versions:

- Full conformal prediction
- Split conformal prediction

Algorithm 1 Full conformal prediction

Require: Training
$$(x_1, y_1), \ldots, (x_n, y_n)$$
, test x_{n+1} , algorithm $\hat{\mu}$, level

1: for $y \in \mathcal{Y}$ do

2:

3:

4:

5:

6:

7: end for

$$\alpha$$
, grid of values $\mathcal{Y} = \{ v, v', v'', \ldots \}$

Frid of values
$$\mathcal{V} = \{v, \sqrt{1}, \sqrt{1}, \dots, \sqrt{1}, \sqrt{1}, \dots \}$$

Compute $R^y = |y - \hat{\mu}^y(x_{n+1})|$

8: $C_{\alpha}(x_{n+1}) = \{ y \in \mathcal{Y} : R^{y} < R_{\alpha}^{y} \}$

$$(x_1),\ldots,(x_n,y_n),$$

Compute $R_{\alpha}^{y} = R_{(k)}^{y}$ with $k = \lceil (1 - \alpha)(n+1) \rceil$

Train
$$\hat{\mu}^{y}(x) = \hat{\mu}(x; (x_1, y_1), \dots, (x_n, y_n), (x_{n+1}, y))$$

$$(x_1, y_1), \dots, (x_n, y_n), (x_{n+1}, y))$$

- $\hat{\mu}^y(x_i)$ for $i = 1$

Compute
$$R_i^y = |y_i - \hat{\mu}^y(x_i)|$$
 for $i = 1, ..., n$

Sort $R_1^{\gamma}, \ldots, R_n^{\gamma}$ in increasing order: $R_{(1)}^{\gamma} \leq \ldots \leq R_{(n)}^{\gamma}$

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$. This is the only assumption of the method
- The prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : R^{y} \le R_{\alpha}^{y} \},$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

if and only if $\alpha \in \{1/(n+1), 2/(n+1), \dots, n/(n+1)\}$

- Informally, the null hypothesis that the random variable Y_{n+1} will have the outcome y, i.e.

$$H_y: Y_{n+1} = y$$

is rejected when $R^y > R^y_\alpha$

Nonparametric Statistics

- Machine Learning has strong historical roots in Nonparametric Statistics
- K-Nearest Neighbors was introduced by two statisticians (students of Jerzy Neyman), Evelyn Fix and Joseph Hodges (Fix and Hodges, 1951)
- Conformal Prediction turns out to have roots in Permutation Testing (Fisher, 1925; Efron, 2021)

Prediction interval for Y_{n+1} (Vovk et al., 2005)	Confidence interval for Δ (Lehmann, 1963)
Supervised learning Training set $(X_1, Y_1), \ldots, (X_n, Y_n)$ Test point (X_{n+1}, Y_{n+1})	Two-sample location shift model $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} F(x)$ $Y_1, \ldots, Y_m \overset{\text{i.i.d.}}{\sim} F(y-\Delta)$
$H_{y}:Y_{n+1}=y$	$H_d:\Delta=d$
$(x_1, y_1), \ldots, (x_n, y_n), (x_{n+1}, y)$	$x_1,\ldots,x_n,y_1-d,\ldots,y_m-d$
$\hat{C} = \{ y : p_y^* > \alpha \}$	$\hat{C} = \{d: p_d^* > \alpha\}$

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Algorithm 2 Split conformal prediction

Require: Training $(x_1, y_1), \ldots, (x_n, y_n), x_{n+1}$, algorithm $\hat{\mu}$, validation sample size m, level α

- 1: Split $\{1, \ldots, n\}$ into L of size w and I of size m = n w
- 2: Train $\hat{\mu}_L(x) = \hat{\mu}(x; (x_l, y_l), l \in L)$
- 3: Compute $R_i = |y_i \hat{\mu}_L(x_i)|$ for $i \in I$
- 4: Sort $\{R_i, i \in I\}$ in increasing order: $R_{(1)} \leq \ldots \leq R_{(m)}$
- 5: Compute $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m+1) \rceil$

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : |y - \hat{\mu}_{L}(x_{n+1})| \le R_{\alpha} \}$$

= $[\hat{\mu}_{L}(x_{n+1}) - R_{\alpha}, \hat{\mu}_{L}(x_{n+1}) + R_{\alpha}]$

$$= [\hat{\mu}_L(x_{n+1}) - R_{\alpha}, \hat{\mu}_L(x_{n+1}) + R_{\alpha}]$$

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$
- The prediction interval

$$C_{\alpha}(x_{n+1}) = [\hat{\mu}_I(x_{n+1}) - R_{\alpha}, \hat{\mu}_I(x_{n+1}) + R_{\alpha}]$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

- if and only if $\alpha \in \{1/(m+1), 2/(m+1), \dots, m/(m+1)\}$
- Note that in computing the critical value $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m + 1) \rceil$, we need to have $k \le m$, which happens if $\alpha \ge 1/(m+1)$ (otherwise if k > m we need to set $R_{\alpha} = +\infty$)

Random Forest

Smoothing splines

Conformity scores

In the previous algorithm we used a statistic, called *conformity* score, which is the absolute value of the residual

$$R_i = |y_i - \hat{\mu}_L(x_i)|, \quad i \in I$$

where $\hat{\mu}_L$ is an estimator of $\mathbb{E}(Y \mid X)$ based on $\{(X_i, Y_i), i \in L\}$

– The oracle knows the conditional distribution of $Y \mid X$. The oracle prediction interval

$$C_{\alpha}^{*}(x) = [q^{\alpha/2}(x), q^{1-\alpha/2}(x)]$$

where $q^{\gamma}(x)$ is the γ -quantile of $Y \mid X = x$, guarantees exact conditional coverage

$$P(Y \in C_{\alpha}^{*}(X)|X = x) = 1 - \alpha \quad \forall x$$

Suppose that

$$\left(\begin{array}{c} Y \\ X \end{array}\right) \sim N\left(\left(\begin{array}{cc} \mu_y \\ \mu_x \end{array}\right), \left(\begin{array}{cc} \sigma_y^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_x^2 \end{array}\right)\right)$$

then the conditional distribution of $Y \mid X = x$ is

$$(Y|X=x) \sim N\left(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x-\mu_x), \sigma_y^2(1-\rho^2)\right)$$

from which we can compute the quantile $q^{\gamma}(x)$

 $C_{\alpha}^{*}(x) = [q^{\alpha/2}(x), q^{1-\alpha/2}(x)]$ as a function of x

Prediction intervals in linear models

Marginal and conditional coverage

Conformal prediction

Split conformal prediction

Conformal quantile regression

- Compute conformity scores

$$R_i = \max \left\{ \hat{q}_L^{\gamma}(X_i) - Y_i, Y_i - \hat{q}_L^{1-\gamma}(X_i) \right\}, \quad i \in I$$

where \hat{q}_L^γ is an estimator of the γ -quantile of $Y\mid X$ based on $\{(X_i,Y_i),i\in L\}$

- Sort $\{R_i, i \in I\}$ in increasing order, obtaining $R_{(1)} \leq \ldots \leq R_{(m)}$, and compute $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m+1) \rceil$
- Compute the prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : \max \left\{ \hat{q}_{L}^{\gamma}(x_{n+1}) - y, y - \hat{q}_{L}^{1-\gamma}(x_{n+i}) \right\} \le R_{\alpha} \}$$

$$= [\hat{q}_{L}^{\gamma}(x_{n+1}) - R_{\alpha}, \hat{q}_{L}^{1-\gamma}(x_{n+1}) + R_{\alpha}]$$
or $C_{\alpha}(x_{n+1}) = \emptyset$ if $R_{\alpha} < (1/2)(\hat{q}_{L}^{\gamma}(x_{n+1}) - \hat{q}_{L}^{1-\gamma}(x_{n+1}))$

$$X_i \sim \textit{U}(0, 2\pi), \epsilon_i \sim \textit{N}(0, 1), Y_i = \sin(X_i) + \frac{\pi |X_i|}{20} \epsilon_i$$