CLAIMS

What is claimed is:

5

- 1. An organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (a) a polymeric charge transport composition having the formula

where Y_1 and Y_2 are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group;

10 R, R', R'', R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average value of at least 2; and

(b) a charge generating compound.

20

25

15

2. An organophotoreceptor according to claim 1 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_cR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino

group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

3. An organophotoreceptor according to claim 1 wherein Z comprises a -(CH₂)_k-group, where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group

5

10

15

20

- 4. An organophotoreceptor according to claim 1 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxathine group, a phenoxathine group, a dibenzo(1,4)dioxine group, and a thianthrene group.
- 5. An organophotoreceptor according to claim 1 wherein X_2 and Y_2 are, each independently, a bond and T_2 is H.
- 6. An organophotoreceptor according to claim 5 wherein Ar comprises an carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a phenazine group, a phenothiazine group, a phenoxazine group, a phenoxathiine group, a dibenzo(1,4)dioxine group, or a thianthrene group; X_1 comprises a methylene group; Y_1 is a -CR₁=N-NR₂-group where R_1 and R_2 comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group; and Z is O, S, an NR₅ group, or a CO₂ group where R_5 is H, an alkyl group, an alkenyl group, or an aromatic group.
- 30 7. An organophotoreceptor according to claim 5 wherein Ar comprises a carbazole group, a julolidine group, or an (N,N-disubstituted)arylamine group; Y₁ is a -CR₃=N-

N=CR₄- group where R_3 and R_4 comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group; X_1 is a -(CH₂)₃- group, where two of the methylene groups are replaced by O, and an aromatic group respectively; and Z is O, S, an NR₅ group, or a CO₂ group where R_5 is H, an alkyl group, an alkenyl group, or an aromatic group.

- 8. An organophotoreceptor according to claim 1 wherein X_2 and Y_1 are, each independently, a bond; Y_2 is a -CR₁=N-NR₂- group where R₁ and R₂ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group; T₂ is an aromatic group; X₁ is a -O-CH₂- group; Ar is an (N,N-disubstituted)arylamine group, a carbazole group, or a julolidine group; and Z is O, S, an NR₅ group, or a CO₂ group where R₅ is H, an alkyl group, an alkenyl group, or an aromatic group.
- 9. An organophotoreceptor according to claim 1 wherein X₂, Y₁ and Y₂ are, each independently, a bond; T₂ is H; Ar comprises a bis[(N,N-disubstituted)amino]aromatic group; X₁ is a -O-CH₂- group; and Z is O, S, an NR₅ group, or a CO₂ group where R₅ is H, an alkyl group, an alkenyl group, or an aromatic group.
- 20 10. An organophotoreceptor according to claim 1 wherein Y₁ and Y₂ are, each independently, a bond; T₂ is a thiiranyl group; X₁ and X₂ are, each independently, a -CH₂-group; Ar comprises a bicarbazole group; and Z is O, S, an NR₅ group, or a CO₂ group where R₅ is H, an alkyl group, an alkenyl group, or an aromatic group.
- 25 11. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises a second charge transport material.
 - 12. An organophotoreceptor according to claim 11 wherein the second charge transport material comprises an electron transport compound.

5

- 13. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises a polymer binder.
- 14. An electrophotographic imaging apparatus comprising:
 - (a) a light imaging component; and

5

10

- (b) an organophotoreceptor oriented to receive light from the light imaging component, the organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (i) a polymeric charge transport composition having the formula

where Y_1 and Y_2 are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group;

R, R', R'', R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average value at least 2; and

- (ii) a charge generating compound.
- 25 15. An electrophotographic imaging apparatus according to claim 14 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally

replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

5

10

15

20

16. An electrophotographic imaging apparatus according to claim 14 wherein Z comprises a -(CH₂)_k- group, where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group

17. An electrophotographic imaging apparatus according to claim 14 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxazine group, a phenoxazine group, a phenoxathiine group, a dibenzo(1,4)dioxine group, and a thianthrene group.

- 18. An electrophotographic imaging apparatus according to claim 14 wherein the photoconductive element further comprises a second charge transport material.
- 25 19. An electrophotographic imaging apparatus according to claim 12 further comprising a toner dispenser.
 - 20. An electrophotographic imaging process comprising:
- (a) applying an electrical charge to a surface of an organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:

(i) a polymeric charge transport composition having the formula

*
$$X_1$$
 X_1
 X_2
 X_2
 X_3
 X_1
 X_1
 X_1
 X_1
 X_1
 X_2
 X_3
 X_4
 X_1
 X_1
 X_2
 X_3

where Y_1 and Y_2 are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group;

R, R', R'', R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

10 Ar comprises an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average value at least 2; and

- (ii) a charge generating compound;
- (b) imagewise exposing the surface of the organophotoreceptor to radiation to dissipate charge in selected areas and thereby form a pattern of charged and uncharged areas on the surface;
 - (c) contacting the surface with a toner to create a toned image; and
 - (d) transferring the toned image to a substrate.

20

25

5

21. An electrophotographic imaging process according to claim 20 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino

group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

22. An electrophotographic imaging process according to claim 20 wherein Z comprises a -(CH₂)_k- group, where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group

5

10

- 23. An electrophotographic imaging process according to claim 20 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxatine group, a phenoxatine group, a phenoxatine group, a dibenzo(1,4)dioxine group, and a thianthrene group.
- 24. An electrophotographic imaging process according to claim 20 wherein the photoconductive element further comprises a second charge transport material.
 - 25. An electrophotographic imaging process according to claim 20 wherein the photoconductive element further comprises a polymer binder.
- 25 26. A polymeric charge transport composition having the formula:

where Y_1 and Y_2 are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group;

R, R', R'', R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group;

Z is a bridging group; and

n is a distribution of integers between 1 and 100,000 with an average value at least 2.

- 27. A polymeric charge transport composition according to claim 26 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 28. A polymeric charge transport composition according to claim 26 wherein Z comprises a - $(CH_2)_k$ group, where k is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_g group, a CR_h group, a CR_iR_j group, or a SiR_kR_l where R_g, R_h, R_i, R_j, R_k, and R_l are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group

5

15

20

- 29. A polymeric charge transport composition according to claim 26 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxatine group, a phenoxatine group, a dibenzo(1,4)dioxine group, and a thianthrene group.
- 30. A charge transport material having the formula:

where Y₁ and Y₂ are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group where R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

 T_1 comprises a thiiranyl group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group; and

Z' comprises a reactive functional group that can covalently bond with the thiiranyl group under appropriate reaction conditions.

20

25

5

10

31. A charge transport material according to claim 30 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_eR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

- 32. A charge transport material according to claim 30 wherein Z' is selected from the group consisting of a hydroxyl group, a thiol group, an amino group, and a carboxyl group.
- 33. A charge transport material according to claim 30 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxathie group, a phenoxathie group, a dibenzo(1,4)dioxine group, and a thianthrene group.

34. A method for forming a polymeric charge transport composition, the method comprising the step of polymerizing a charge transport material having the formula:

where Y₁ and Y₂ are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group where R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₁ comprises a thiiranyl group;

10

20

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group; and

- Z' comprises a reactive functional group that can covalently bond with the thiranyl group under appropriate reaction conditions.
 - 35. A method for forming a polymeric charge transport composition according to claim 34 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 0 and 20, inclusive, and one or more of the methylene

groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_cR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.

- 36. A method for forming a polymeric charge transport composition according to claim 34 wherein wherein Z' is selected from the group consisting of a hydroxyl group, a thiol group, an amino group, and a carboxyl group.
- 37. A method for forming a polymeric charge transport composition according to claim 34 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxaine group, a phenoxazine group, a phenoxathiine group, a dibenzo(1,4)dioxine group, and a thianthrene group.
- 38. A method for forming a polymeric charge transport composition according to claim 34 wherein the polymerizing step is initiated by the adjustment of the pH, the temperature, the concentration, or a combination thereof.
- 39. A method for forming a polymeric charge transport composition, the method comprising the step of co-polymerizing an acid anhydride and a charge transport material having the formula:

$$T_2$$
 X_2
 Ar
 X_1
 X_1
 X_1

where Y₁ and Y₂ are, each independently, a bond, a -CR₁=N-NR₂- group, or a -CR₃=N-N=CR₄- group where R₁, R₂, R₃, and R₄ comprise, each independently, H, an

15

20

25

alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or a part of a ring group;

 X_1 and X_2 are, each independently, a linking group;

T₁ comprises a thiiranyl group;

T₂ comprises a thiiranyl group, H, an alkyl group, an alkenyl group, or an aromatic group;

Ar comprises an aromatic group; and

Z' comprises a reactive functional group that can covalently bond with the thiiranyl group under appropriate reaction conditions.

10

15

5

- 40. A method for forming a polymeric charge transport composition according to claim 39 wherein X_1 and X_2 comprise, each independently, a bond or a -(CH₂)_m- group, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, B, Si, P, C=O, O=S=O, a heterocyclic group, an aromatic group, an NR_a group, a CR_b group, a CR_cR_d group, or a SiR_cR_f where R_a, R_b, R_c, R_d, R_e, and R_f are, each independently, a bond, H, a hydroxyl group, a thiol group, a carboxyl group, an amino group, an alkyl group, an alkoxy group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 41. A method for forming a polymeric charge transport composition according to claim 39 wherein wherein Z' is selected from the group consisting of a hydroxyl group, a thiol group, an amino group, and a carboxyl group.
- 42. A method for forming a polymeric charge transport composition according to claim 39 wherein Ar is selected from the group consisting of a carbazole group, a julolidine group, an (N,N-disubstituted)arylamine group, a bis[(N,N-disubstituted)amino]aromatic group, a bicarbazole group, a phenoxine group, a phenoxazine group, a phenoxathiine group, a dibenzo(1,4)dioxine group, and a thianthrene group.