КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Факультет комп'ютерних наук та кібернетики Кафедра теорії та технологій програмування

3BIT

з дисципліни «Екологічні економічні процеси та їх моделювання» до лабораторної роботи №3 варіант 2

Виконала: студентка групи МІ-3 Баклан Аліса

Постановка задачі

- **2.1.** Економіка країни розбита на дві виробничі галузі (промисловість та сільське господарство). За минулий рік повний випуск промислових виробництв у вартісній формі був розподілений таким чином:
- 600 млн. грн. для виробничих потреб промисловості;
- 450 млн. грн. для виробничих потреб сільського господарства;
- 1200 млн. грн. для споживання населення (згідно попиту на цю продукцію).

В той же час повний випуск сільськогосподарської продукції (у вартісній формі) був розподілений таким чином:

- 450 млн. грн. для виробничих потреб промисловості;
- 400 млн. грн. для виробничих потреб сільського господарства;
- 700 млн. грн. для споживання населення (згідно попиту на цю продукцію).

Розрахувати ціни на промислову та сільськогосподарську продукцію, якщо відомо, що додана вартість в цінах складає: 0.3 – для промисловості; 0.5 – для сільського господарства.

2.2. Знайти власні числа матриці А, коефіцієнти характеристичного поліному, її число Фробеніуса, правий та лівий вектори Фробеніуса. Зробити висновок про продуктивність даної матриці:

$$\mathbf{A} = \begin{pmatrix} 0.4 & 0.4 & 0.2 \\ 0.2 & 0.5 & 0.4 \\ 0.1 & 0.1 & 0.2 \end{pmatrix}$$

Для цієї матриці знайти матрицю повних витрат В. Дослідити на збіжність суму ряду $E + A + A^2 + ... + A^N$ до матриці повних витрат (критерій збіжності — величини елементів відповідних матриць відрізняються менше, ніж на 0.01). Знайти вектор кінцевого випуску, якщо вектор кінцевого споживання продукції y = (100; 70; 80)T.

Виконання роботи

Заповнимо умову в таблицю Excel.

Випуск\ Витрати	Розподіл випу	ску між галузя		
, млн грн	пром	c/r	Споживання	Валовий продукт (випуск)
пром	600	450	1200	2250
c/r	450	400	700	1550
Додана вартість в цінах	0,3	0,5		

Знаходимо валовий продукт використовуючи функцію суми по рядках. Тепер нам треба знайти технологічну матрицю А. Кожен її елемент - коефіцієнт прямих виробничих (матеріальних) витрат визначається формулою $a_{ij} = x_j/x_{ij}$. Щоб розрахувати ціни на промислову та сільськогосподарську продукцію, скористаємося моделлю врівноважених цін (моделлю ціноутворення):

$$p = pA + s$$

$$pE = pA + s$$

$$p(E-A) = s$$

$$p = s(E-A)^{-1}$$

Тобто щоб знайти вектор цін, помножимо вектор $s=(0.3\ ,\, 0.5)$ на матрицю $(E\text{-}A)^{\text{-}1}$.

Матриця А	aij = xj/xij		Матриця (E-A) [^] (-1)		
0,266666667	0,290322581		6	9	18,6
0,2	0,258064516		2	7	68,2
		пром	c/r		
	Ціни	34,2	39,6	8	

Перейдемо до наступного пункту. Заповнимо матрицю А. Щоб знайти характеристичний многочлен матриці і знайти власні числа, треба обчислити $\det(A-\lambda E)=0$. Характеристичний поліном:

$$(0.4 - \lambda) \cdot (0.5 - \lambda) \cdot (0.2 - \lambda) + 0.4 \cdot 0.4 \cdot 0.1 + 0.2 \cdot 0.1 \cdot 0.2 - 0.2 \cdot (0.5 - \lambda) \cdot 0.1 - 0.4 \cdot (0.2 - \lambda) \cdot 0.2 - 0.4 \cdot 0.1 \cdot (0.4 - \lambda)$$

$$= -\lambda^{3} + 1.1 \cdot \lambda^{2} - 0.24 \cdot \lambda + 0.018$$

Власні числа можна знайти вручну, або ж використовуючи "Розв'язувач". Якщо розв'язків декілька, то різні власні числа можна отримати при зміні початкового значення клітинки параметра.

В даному випадку лише одне власне число ϵ дійсним, отже воно і буде числом Фробеніуса.

За критерієм продуктивності моделі «витрати-випуск», для продуктивності моделі Леонтьєва необхідно і достатньо, щоб фробеніусове число λ_A матриці A задовольняло нерівність: $\lambda_A < 1$. Отже наша модель є продуктивною.

Щоб знайти правий та лівий вектори Фробеніуса, нам треба розв'язати такі задачі:

Правий:
$$Av = \lambda v$$
 $(A - \lambda E)v = 0$

Лівий:
$$w^T A = \lambda w^T$$
 $A^T w = \lambda w$ $(A^T - \lambda E) w = 0$

Ці задачі зводяться до систем лінійних рівнянь, які можемо розв'язати за допомогою "Розв'язувача" Ехсеl. Щоб це зробити, треба додати відповідні обмеження із "=", вибрати шукані v = (x1,x2,x3) як параметри, що підбираються. Сама задача розв'язувача не буде мати значення, можемо залишити максимізацію. Вказуючи суму x1,x2,x3 як 1, ми отримаємо єдиний розв'язок, при чому нормований.

Α-Ελ	-0,439715523	0,4	0,2	1,61802E-08	0	
	0,2	-0,339715523	0,4	9,95537E-07	0	
	0,1	0,1	-0,639715523	4,26986E-09	0	
Правий вектор	0,444152138	0,420658168	0,135186694	0,999997	1	
Α^Τ-Ελ	-0,439715523	0,2	0,1	7,9119E-09	0	
	0,4	-0,339715523	0,1	9,42924E-09	0	
	0,2	0,4	0,839715523	0,495079738	0	
Лівий вектор	0,260327268	0,405029756	0,334639976	0,999997	1	

Знайдемо матрицю повних витрат В за формулою $(E - A)^{-1}$ В Excel ϵ функція щоб знайти обернену матрицю.

Матр	иця повних вит	рат		E-A	
2,950819672	2,786885246	2,131147541	0,6	-0,4	-0,2
1,639344262	3,770491803	2,295081967	- 0,2	0,5	-0,4
0,573770492	0,819672131	1.803278689	-0,1	-0.1	0.8

Перевіримо збіжність ряду $E + A + A^2 + ... + A^N$ до матриці повних витрат. Для цього рахуємо суму матриць, поки найбільше відхилення не стане менше точності 0,01.

									Матри	ця повних в	витрат	
Α	0,4	0,4	0,2	E	1	0	0		2,95082	2,78689	2,13115	
	0,2	0,5	0,4		0	1	0		1,63934	3,77049	2,29508	
	0,1	0,1	0,2		0	0	1		0,57377	0,81967	1,80328	
A^2	0,26	0,38	0,28	Сума	1,66	0,78	0,48	Різниця	1,29082	2,00689	1,65115	Похибка
	0,22	0,37	0,32		0,42	1,87	0,72		1,21934	1,90049	1,57508	2,00689
	0,08	0,11	0,1		0,18	0,21	1,3		0,39377	0,60967	0,50328	
3	0,208	0,322	0,26		1,868	1,102	0,74		1,08282	1,68489	1,39115	
	0,194	0,305	0,256		0,614	2,175	0,976		1,02534	1,59549	1,31908	1,68489
	0.064	0.097	0,08		0,244	0,307	1,38		0,32977	0,51267	0,42328	

Методами Excel "розтягуємо" відповідні таблиці.

Отримаємо задовільний результат на 33-ій ітерації.

	5 7									
	0,00033	0,00052	0,00043	0,57202	0,81696	1,80103	0,00175	0,00272	0,00224	
	0,00104	0,00161	0,00133	1,63391	3,76204	2,2881	0,00543			0,00892
33 (0,00109	0,0017	0,00141	2,94508	2,77796	2,12378	0,00573	0,00892	0,00737	
	0,0004	0,00062	0,00051	0,57169	0,81644	1,80061	0,00208	0,00323	0,00267	
		0,00192	The state of the s	1,63288	3,76043		0,00647			0,01063
32	0,0013	0,00203	0,00168	2,94399	2,77626	2,12237	0,00683	0,01063	0,00878	

Знайдемо вектор кінцевого випуску, якщо вектор кінцевого споживання продукції $c = (100; 70; 80)^T$.

Розв'яжемо рівняння x = Ax + c, $x \ge 0$

$$x = Ax + c$$
, $x \ge 0$

$$(E-A)x = c$$

Підберемо шуканий вектор розв'зувачем.

E-A					
0,6	-0,4	-0,2	100	100	
-0,2	0,5	-0,4	70	70	
-0,1	-0,1	0,8	80	80	
x 660,6557377	611,4754098	259,0163934	1531,147541		