Guía $N^{\circ}1$: Conceptos Básicos

Cálculo Numérico 521230, 2017-2

Nota: Esta guía complementa la Guía de Laboratorio N°1.

1. Calcular las normas $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ y $\|\cdot\|_2$ de cada uno de los siguientes vectores.

$$\mathbf{u} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 2\\-1\\2\\5 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 1\\-1\\1\\-1\\\vdots\\1\\-1 \end{pmatrix} \in \mathbb{R}^n.$$

- 2. Comprobar los resultados obtenidos del ejercicio anterior utilizando MATLAB. Para \mathbf{w} considere distintos valores de n.
- 3. Considere la sucesión de vectores $\{\mathbf{v}^k\}_{k\in\mathbb{N}}\subset\mathbb{R}^3$ dada por $\mathbf{v}^k=\begin{pmatrix}1\\1/k\\(2k+1)/(5k+4)\end{pmatrix}, n\in\mathbb{N}$. Mostrar que $\{\mathbf{v}^k\}_{k\in\mathbb{N}}$ converge a $\mathbf{v}=\begin{pmatrix}1\\0\\2/5\end{pmatrix}$.

 4. Calcular las normas $\|\cdot\|_1$, $\|\cdot\|_{\infty}$, $\|\cdot\|_2$ y $\|\cdot\|_F$ de cada una de los siguientes matrices. La norma $\|\cdot\|_F$ corresponde
- 4. Calcular las normas $\|\cdot\|_1$, $\|\cdot\|_{\infty}$, $\|\cdot\|_2$ y $\|\cdot\|_F$ de cada una de los siguientes matrices. La norma $\|\cdot\|_F$ corresponde a la norma de Frobenius y se define por $\|\mathbf{A}\|_F := \left(\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2\right)^{1/2}$, donde \mathbf{A} es una matriz de $m \times n$.

$$\mathbf{B} = \begin{pmatrix} 1 & -7 \\ -2 & -3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 2 & 3 \\ 3 & -1 \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} 10^{-4} & 1 \\ -1 & 2 \end{pmatrix}, \quad \mathbf{E} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

- 5. Comprobar los resultados del ejercicio anterior utilizando MATLAB.
- 6. Se define el número de condición de una matriz \mathbf{A} (invertible) como $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$, donde $\|\cdot\|$ es una norma matricial. Calcular $\kappa_1(\mathbf{B})$ y $\kappa_{\infty}(\mathbf{D})$, donde \mathbf{B} y \mathbf{D} son las matrices del problema anterior.
- 7. Comprobar los resultados del ejercicio anterior utilizando MATLAB.
- 8. Sean $\|\cdot\|$ una norma matricial inducida y $\mathbf{A} \in \mathbb{R}^{n \times n}$ tal que $\|\mathbf{A}\| < 1$. Considere un vector $\mathbf{v}_0 \in \mathbb{R}^n$ cualquiera y la sucesión de vectores $\{\mathbf{v}^k\}_{k \in \mathbb{N}} \subset \mathbb{R}^n$ definida por $\mathbf{v}^k = \mathbf{A}\mathbf{v}^{k-1}$ para $k = 1, 2, \ldots$ Mostrar que $\{\mathbf{v}^k\}_{k \in \mathbb{N}}$ converge al vector nulo.
- 9. Sea I la matriz identidad de $n \times n$. Mostrar que $||\mathbf{I}|| = 1$, donde $||\cdot||$ es cualquier norma matricial inducida.
- 10. Sea I la matriz identidad de $n \times n$. Calcular $||\mathbf{I}||_F$. ¿Esto contradice el ejercicio anterior?.
- 11. Sea **A** una matriz invertible y $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$, donde $\|\cdot\|$ es una norma matricial inducida. Mostrar que $\kappa(\mathbf{A}) \geq 1$.