Ì

-11

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-127855

(43) Date of publication of application: 18.05.1999

(51)Int.CI.

C12N 15/09 CO7K 16/24 C12P 21/08 // A61K 39/395

(21)Application number: 09-293994

(71)Applicant: JAPAN ENERGY CORP

(22)Date of filing:

27.10.1997

(72)Inventor: ONO ISAO

IHARA SEIJI

TAKEKOSHI MASATAKA TAKEKOSHI FUMIKO

(54) RECOMBINANT-TYPE ANTI-HUMAN TNF-ALPHA HUMAN MONOCLONAL ANTIBODY

(57)Abstract:

PROBLEM TO BE SOLVED: To produce the subject antibody having high purity suitable for an experimental reagent or a clinical application by applying a gene recombination technique by using a host Escherichia coli.

SOLUTION: This recombinant-type anti-human TNF-α human monoclonal antibody is composed of an H chain having an amino acid sequence of formula I and acting as an H chain of anti-human TNF-α human monoclonal Fab antibody and an L chain having an amino acid sequence of formula II and acting as an L chain of anti-human TNF- α human monoclonal Fab antibody. The recombinant-type anti-human TNF- α human monoclonal antibody is obtained by selecting and collecting a cDNA of the human antibody from a human B lymphocytes cell producing an anti-human TNF- α human antibody such as an antihuman TNF-α human monoclonal antibody producing 1D5 strain (EBV transformed B lymphocytes oligo clone), introducing the cDNA into a manifestation vector producing a human Fab antibody in an Escherichia coli by a gene recombination and culturing its transforming bacterium.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration?

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-127855

(43)公開日 平成11年(1999)5月18日

(51) Int.Cl. ⁸	識別記号	FΙ
C12N 15/09	9	C 1 2 N 15/00 A
CO7K 16/2	4 ZNA	C 0 7 K 16/24 Z N A
C 1 2 P 21/0	8	C 1 2 P 21/08
// A 6 1 K 39/39	95	A 6 1 K 39/395 N
		審査請求 未請求 請求項の数5 OL (全22頁)
(21)出願番号	特願平9-293994	(71)出願人 000231109
		株式会社ジャパンエナジー
(22)出願日	平成9年(1997)10月27日	東京都港区虎ノ門二丁目10番1号
		(72)発明者 小野 魁
		東京都小平市学園西町3-1-26
		(72)発明者 井原 征治
		神奈川県秦野市下大槻410 下大槻団地2
		-14-301
		(72)発明者 竹腰 正隆
		神奈川県伊勢原市大住台3-9-1 ベル
		フララーズ大住台 2 -501
		(74)代理人 弁理士 平木 祐輔 (外2名)
		最終頁に続く

(54) 【発明の名称】 組換え型抗ヒトΤΝF-αヒトモノクローナル抗体

(57) 【要約】

【課題】 宿主大腸菌により生産することができるヒト TNF-αに対する組換え型ヒトモノクローナル抗体、 並びに該組換え型抗体を構成するL鎖とH鎖をそれぞれ コードするDNAの提供。

【解決手段】 配列番号1に示すアミノ酸配列(I)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNFー α ヒトモノクローナルFab 抗体のH鎖として機能するH鎖、及び配列番号3に示すアミノ酸配列(I)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNFー α ヒトモノクローナルFab 抗体のL鎖として機能するL鎖からなる組換え型抗ヒトTNFー α ヒトモノクローナル抗体、並びに該抗体のH鎖とL鎖のアミノ酸配列をそれぞれコードするDNA。

【特許請求の範囲】

【請求項1】 配列番号1に示すアミノ酸配列(I)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNF $-\alpha$ ヒトモノクローナルFab 抗体のH鎖として機能するH鎖、及び配列番号3に示すアミノ酸配列(II)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNF $-\alpha$ ヒトモノクローナルFab 抗体のL鎖として機能するL鎖からなる組換え型抗ヒトTNF $-\alpha$ ヒトモノクローナル抗体。

1

【請求項2】 配列番号1に示すアミノ酸配列(I)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNF-αヒトモノクローナルFab 抗体のH鎖として機能する抗体のH鎖をコードするDNA。

【請求項3】 配列番号2に示す塩基配列で示されるc DNAである請求項2記載のDNA。

【請求項4】 配列番号3に示すアミノ酸配列(II)又はこの配列において1もしくは複数のアミノ酸残基が付 20 加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNF $-\alpha$ ヒトモノクローナルFab 抗体のL鎖として機能する抗体のL鎖をコードするDNA。

【請求項5】 配列番号4に示す塩基配列で示されるcDNAである請求項4記載のDNA。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ヒトTNFーαに対する組換え型ヒトモノクローナル抗体、並びに該組換え型抗体を構成するL鎖とH鎖をそれぞれコードするD 30 NAに関する。この組換え型抗体は、前記のL鎖とH鎖をそれぞれコードするDNAを宿主大腸菌においてヒト Fab 抗体の産生を行う発現ベクター中に遺伝子組換えにより導入した発現ベクターを用いて、大腸菌により生産されるものである。

[0002]

【従来の技術】他の哺乳動物の抗体がその哺乳動物のBリンパ球細胞により産生されるのと同様に、ヒト抗体はヒトのBリンパ球細胞が産生する。原理的には、目的とするヒト抗体を産生するBリンパ球細胞を選別し、ハイグリドーマ細胞として、目的とするモノクローナル抗体をこのハイブリドーマ細胞を培養することで得ることができる。しかしながら、ヒト細胞を用いたこの種のハイブリドーマ細胞作製の場合、細胞融合に利用されるヒト抗体を産生するBリンパ球細胞試料等の充分な提供が望めず、現実的ではない。そのため、幾つかの代替え技術の開発が進められており、例えば、提供された元となるヒト抗体を産生するBリンパ球細胞にEpstein-Barrウイルス(EBウイルス)を感染させ、不死化処理を施し、この細胞を増殖させ、その細胞群から目的とするモノクロ50

ーナル抗体を産生するB 細胞をクローニングする方法等 が適用される。

【0003】但し、この不死化処理を施した細胞群からシングルクローンを選別すること自体必ずしも成功するものでもなく、また、EBウイルスに感染した細胞の培養により生産されるヒト抗体は、臨床応用に適合するものとするためには、該EBウイルスによる汚染を除くため、煩雑な精製操作が不可欠なものとなる。あるいは、研究目的の試薬として利用する場合にも、該EBウイルスによる汚染は不都合な場合が多く、更には、生産性自体決して高いものとはいえないのが現状である。これらの制約から脱するために、元となるヒト抗体を産生するBリンパ球細胞より、抗体遺伝子を採取し、宿主大腸菌においてヒトFab 抗体の産生を行う発現ベクターを利用して、目的とする抗体遺伝子を組み込んだ菌株を用いて、組換え型抗体を安定かつ大量に生産する技術が模索されている。

[0004] $E + TNF - \alpha$ (tumor necrosis factor α :腫瘍壊死因子 α) は、主として活性化マクロファー ジ細胞が産生する細胞障害活性をもつ蛋白質因子であ る。特に、腫瘍細胞に対して際だった細胞障害活性を示 すものであるが、通常の免疫反応においても産生されて おり、炎症性疾患においても、組織細胞の損傷を引き起 こす一つの要因として作用している。この内因性の蛋白 質因子に対する抗体が存在することは確認されており、 何らかの調節機構の一翼を担っていると考えられる。従 って、抗ヒトTNFーαヒト抗体も、他のヒト抗体と同 様に臨床応用の可能性について基礎的な検討がなされて いる。その目的に適合する高い純度を有して、かつモノ クローナル化された抗ヒトTNF-αヒト抗体の安定供 給が望まれている。しかしながら、現状では、他のヒト 抗体の多くと同様、抗ヒトΤΝFーαヒトモノクローナ ル抗体の充分な供給はなされておらず、遺伝子組換え技 術を用いた抗ヒトTNFーα組換え型ヒト抗体、その生 産方法の開発が望まれている。

[0005]

【発明が解決しようとする課題】本発明は、前記の課題を解決するもので、本発明の目的は、遺伝子組換え技術を利用して、宿主大腸菌により生産することができるヒトTNFー α に対する組換え型にトモノクローナル抗体を提供すること、並びに該組換え型抗体を構成するした。 世代のは、近には組換え型抗体を構成することにある。即ち、抗ヒトTNFー α ヒト抗体を産生するヒトBリンパ球細胞から、該ヒト抗体のcDNAを選別・採取するとともに、このcDNAを大腸菌においてヒトFab抗体の産生を行う発現ベクター中に遺伝子組換えにより導入し、得られる形質転換菌の培養により目的とする、ヒトTNFー α に対するヒトFab 抗体を得ることを目的とするものである。

[0006]

【課題を解決するための手段】本発明者らは、前記の目 的をもって、鋭意研究を進め、大腸菌においてFab 抗体 を産生する発現ベクターpFab-His2 にヒト抗体のL鎖及 びH鎖をコードする遺伝子を組換え導入することで、大 腸菌に組換え型ヒトFab 抗体を生産させることが可能で あることを確認した。更に、好意により提供を受けた健 常人の血液試料からヒトBリンパ球細胞を分離し、EBウ イルスを感染させ、不死化処理を施し、この細胞群を培 養して、抗ヒトΤΝΓ-αヒト抗体を産生する細胞株を 選別することができた。次いで、前記の細胞株からヒト 抗体をコードする c DNA複数を採取し、その塩基配列 を解明するとともに、該cDNAを大腸菌の組換えFab 抗体発現系に組み込みヒトFab 抗体を生産させ、そのう ちの一つが抗ヒトTNF-αヒト抗体を産生する菌株で あることを見出した。即ち、大腸菌の組換えFab 抗体発 現系を利用して、抗ヒトΤΝFーαヒト抗体を産生する 細胞株からクローニングを行い、抗ヒトΤΝΓ-αヒト モノクローナル抗体を産生する菌株を選別し、更には、 該クローンに組み込まれているcDNAが抗ヒトTNF -αヒトFab抗体のL鎖及びH鎖をコードすることが判 った。これら一連の研究により得られた知見に基づき、 本発明を完成させるに至った。

【0007】即ち、本発明の組換え型抗ヒトTNF-α ヒトモノクローナル抗体は、配列番号1に示すアミノ酸 配列(1)又はこの配列において1もしくは複数のアミ ノ酸残基が付加、欠失もしくは置換されたアミノ酸配列 を有し、抗ヒトTNF-αヒトモノクローナルFab 抗体 のH鎖として機能するH鎖、及び配列番号3に示すアミ ノ酸配列(II)又はこの配列において1もしくは複数の アミノ酸残基が付加、欠失もしくは置換されたアミノ酸 30 配列を有し、抗ヒトTNF-αヒトモノクローナルFab 抗体のL鎖として機能するL鎖からなる、宿主大腸菌に より産生される組換え型ヒトFab 抗体であり、より具体 的には、前記のH鎖及びL鎖をコードするDNAを大腸 菌においてFab 抗体の産生が可能な発現ベクター系に遺 伝子組換えにより導入した該組換え型抗ヒトTNFーα ヒトFab 抗体発現ベクターにより形質転換された大腸菌 により生産される組換え型ヒトFab 抗体である。

【0008】また、本発明の抗ヒトTNFーαヒトモノクローナル抗体のH鎖をコードするDNAは、配列番号 401に示すアミノ酸配列(I)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNFーαヒトモノクローナルFab 抗体のH鎖として機能する抗体のH鎖をコードするDNA、好ましくは配列番号2に示す塩基配列で示されるcDNAである。一方、抗ヒトTNFーαヒトモノクローナル抗体のL鎖をコードするDNAは、配列番号3に示すアミノ酸配列(II)又はこの配列において1もしくは複数のアミノ酸残基が付加、欠失もしくは置換されたアミノ酸配列を有し、抗ヒトTNFーαヒト 50

モノクローナルFab 抗体のL鎖として機能する抗体のL鎖をコードするDNA、好ましくは配列番号4に示す塩 基配列で示されるcDNAである。なお、発現系においては、前記のH鎖をコードするDNAとL鎖をコードす

ては、前記のH鎖をコードするDNAとL鎖をコードするDNAは一対として、ヒトFab 抗体に翻訳されるものである。

[0009]

【発明の実施の形態】本発明の抗ヒトTNFーαヒトモノクローナル抗体、そのH鎖及びL鎖をコードするDNA、並びにそれらの調製方法についてより詳しく説明する。天然の抗体である免疫グロブリン(Ig)は、L鎖とH鎖のヘテロ二量体が二対結合した4本鎖のポリペプチドからなり、全体として、H鎖のC末端側のサブドメインであり、抗体活性はないが補体結合能を有する結晶性のFc領域と、抗原結合部位を形成しており、H鎖の残部とそれとジスルフィド結合により結合しているL鎖からなる2つの等しいFab 領域からなりたっている。

【0010】本発明の組換之型ヒトFab 抗体は、前記の Fab 領域部分に相当するもので、Fc領域を構成するH鎖 のC末端側のサブドメインを欠いたH鎖の残部とそれと ジスルフィド結合により結合しているL鎖のみから構成 されている。従って、前記のアミノ酸配列(I)は、本・来のH鎖のC末端側のサブドメインを欠いた部分のペプチド鎖を示すものである。なお、アミノ酸配列(II) は、L鎖全体のペプチド鎖を示すものである。

【0011】一方、免疫グロブリンのH鎖には、 γ 鎖、 α 鎖、 μ 鎖、 δ 鎖及び ϵ 鎖の5種が存在するが、本発明の組換之型ヒトFab 抗体のH鎖は、 μ 鎖に分類されるものであり、同じく、L鎖には、 κ 鎖と λ 鎖の2種が存在するが、本発明の組換之型ヒトFab 抗体のL鎖は、 κ 鎖に分類されるものである。この分類は、L鎖において、その配列可変部分は、抗原に依存して主要部分のアミノ酸配列が変化するが、残る定常部分はアミノ酸配列が保存されており、この定常部分は κ 鎖と λ 鎖とでそれぞれ特徴的であり、同一種内では一致することを利用して、 κ 鎖であることの確認がなされる。また、H鎖においても、その配列可変部分は、抗原に依存して主要部分のアミノ酸配列が変化するが、残る定常部分の各鎖の種類に特徴的かつ普遍的なアミノ酸配列を利用して、その分類がなされる。

【0012】本発明では、健常人から提供された血液試料から、リンパ球を分別し、EBウイルスを感染させ、トランスフォームした細胞株群を作製し、次いで、これから、抗ヒトTNFー α ヒトモノクローナル抗体産生株1D5株 (EBV transformed B lymphocytes oligo clone)を選抜して、この細胞株を元となるBリンパ球細胞として用いた。このヒト抗体を産生するBリンパ球細胞から抽出した全RNAから、RT-PCR法を適用して、このL鎖における、 κ 鎖と λ 鎖の2種を分別するアミノ酸配列に着目して、それぞれを選択的に増幅可能なPCRプライマ

ーを用いて、予め κ 鎖と λ 鎖の区別をして、それぞれの c DNAを調製・増幅した。同じく、H鎖に関しても、 γ 鎖と μ 鎖に分類されるもののみを、それぞれ予め区別 するPCRプライマーを用いて、選択的に c DNAを調製・増幅した。

【0013】その結果得られる個々の種類のcDNA、 即ち、L鎖に関しては、κ鎖とλ鎖の2種、H鎖に関し ても、γ鎖とμ鎖の2種について、その塩基配列をそれ ぞれ解読するため、cDNAの両端をそれぞれ制限酵素 で切断した後、汎用のシークエンシングベクターにクロ ーニングして、個々のクローンについて当該 c DNA断 片の塩基配列を解読した。なお、その際、シークエンシ ングベクターの既知塩基配列からシークエンシングを始 め、+鎖及び-鎖の双方の塩基配列を解読して、互いに 相補的であることを確認することで、読み間違いのない ことを確かめた。この抗ヒトTNF-αヒトモノクロー ナル抗体産生株1D5 株 (EBV transformed B lymphocyte s oligo clone) から、L鎖をコードするcDNAとし て、λ鎖のものが1種、κ鎖のものが3種、H鎖をコー ドするcDNAとして、γ鎖のものが1種、μ鎖のもの 20 が1種、それぞれ存在することが判明し、該1D5 株は実 際にオリゴクローンであったことが確認された。

【0014】分離されたL鎖をコードするcDNA、具 体的には、λ鎖のものが1種、κ鎖のものが3種、H鎖 をコードする c DNA、具体的には、y鎖のものが1 種、μ鎖のものが1種から、L鎖をコードするcDNA とH鎖をコードするcDNAの各組み合わせについて、 大腸菌においてFab 抗体を産生する発現ベクターpFab-H is2 にクローニングして、発現ベクターを作製した。図 1に示すとおり、発現ベクターpFab-His2 はすでに報告 30 されているヒトFab のファージディスプレー用発現ベク ターpRPLS/Fab-I (特開平8-116978号公報等を 参照)を制限酵素Not 1 とEcoRI で切断してGene IIIを 除去した後、6個のヒスチジンをコードするDNA断片 を挿入したプラスミドである。図1に示す発現ベクター pFab-His2のクローニングサイトを利用して、L鎖をコ ードするcDNAは、制限酵素NheI とAsc I の間に、 H鎖をコードするcDNAは、制限酵素Sfi I 切断部位 とNot 1 切断部位の間に、それぞれ置換挿入される。

【0015】この複数種の発現ベクターをそれぞれ宿主 40 大腸菌JM109 株に導入して、発現ベクター内のマーカー 遺伝子であるアンピシリン耐性遺伝子を用いて、アンピシリンプレート上でコロニーを形成させ、各クローンを分離した。得られたコロニーから、無作為にコロニーを拾い出し、培養してイソプロピルー1ーチオーβーDーガラクトシド(IPTG)を添加し、Fab 抗体産生を誘導した。その後、集菌し、凍結融解により菌体を破砕し、遠心により不溶性画分を分離し、上清を採取した。Fab 抗体は、可溶性蛋白質として、この上清に回収されており、ヒトTNFーαに対する反応性を有するFab 抗体の 50

有無を調べた。

[0016]前記の上清について、ヒトTNFー α を抗 原とし、検出用抗体として、Fab 特異的抗ヒトIgG 抗体 を用いてELISA 法で評価したところ、L鎖をコードする c DNAとして、κ鎖3種類のうち、1種類のものと、 H鎖をコードする c DNAとして、μ鎖1種類のものと を組み合わせたクローンのみにヒトΤΝFーαに対する 反応性が確認された。上述した通り、この組み合わせに ついても、無作為に拾い出した12個のコロニーに対し て、前記の評価を行ったが、ヒトTNF $-\alpha$ に対する反 応性が明確に識別されるクローンが4 株存在していた。 このクローン4 株について、再度組換えベクター内に組 み込まれているκ鎖をコードするDNAとμ鎖をコード するDNAの塩基配列のシークエンシングを行ったとこ ろ、互いに一致しており、それぞれ、図4に示す塩基配 列(II)及び図3に示す塩基配列(I)であった。従っ て、これらのクローン4株は、組換え型モノクローナル 抗体である抗ヒトTNF-αヒトFab 抗体を産生する菌 株であり、該ヒトFab 抗体は、図3に示すとおり、H鎖 $(\mu鎖)$ として、塩基配列 (I) のDNAから翻訳され る前記のアミノ酸配列(I)を持ち、図4に示すとお り、L鎖として、塩基配列(II)のDNAから翻訳され る前記のアミノ酸配列(II)を持つものであることが判 明した。

6

【0017】なお、図3及び図4において、抗原のヒト $TNF-\alpha$ との結合に係わる相補性決定領域(complementarity determining region; CDR) を配列中に表記した。この組換え型モノクローナル抗体である抗ヒト $TNF-\alpha$ ヒトFab 抗体を産生する菌株を作製する手順について、以下に具体的に述べる。

【0018】 (1) 全RNAの採取

【0019】(2) RT-PCR法によるL鎖をコードするc DNAとH鎖をコードするcDNAの作製 前記(1) で調製した全RNAから逆転写反応により、 cDNAを作製し、次いで、PCR 法を応用して、L鎖を

c DNAを作製し、次いで、PCR 法を応用して、L鎖をコードするc DNAとH鎖をコードするc DNAをそれぞれ独立に増幅した。このRT-PCR法の操作には、市販のキット; 宝酒造製のRNA PCR Kit を用い、具体的な操作は該キットの標準プロトコールに準じた。先ず、添付さ

れる逆転写反応液 20μ 1 当たり、全RNA抽出液 2μ 1 を用い、逆転写プライマーとして、ランダム9mer のプライマーを利用して、cDNAを調製した。

【0020】PCR 増幅に用いたプライマーを下記表1に示す。 κ 鎖をコードする c DNAのPCR 増幅には、5'側プライマーとして、VK3aF5プライマーを、3'側プライマーとして、VKC3プライマーをそれぞれ用いた。また、 μ 鎖をコードする c DNAのPCR 増幅には、5'側プライマーとして、VH3aF5プライマーとVH3bF5プライマーの二種

PCR 増幅用プライマー VK3aF5プライマー 5'-COGCTAGCGMCATYCAGWTGACCCAGTCTCC-3'

VKC3プライマー 5'-TTGGCGCCCACTCTCCCCTGTTGAAGCTCTT-3'

VH3aF5プライマー 5'-AAGGCCCAACCGGCCATGGCCSARGTGCAGCTGKTGGAGTCTGG-3'

VH3bF5プライマー 5'-AAGGCCCAACCGGCCATGGCCCCAGTGTGAGGTGCAGCTGGTGG-3'

FDM プライマー 5'-COECGCCCCCCAGCTCAGCAATCACTGGAAGAGG-3'

R: A又はG, Y: C 又はT, W: A 又はT, S: G 又はC, K: G 又はT, M: A 又はC

【0022】得られたPCR 産物は、市販の精製キット; QIAGEN製QIAquick PCR Purification Kit を用いて精製 し、TE緩衝液(10 mM トリス塩酸, pH 8.0/1 mM EDTA) 100μ1 で溶出回収した。

【0023】得られた μ 鎖をコードする c DNAのPCR 産物は、先ず、 $10 \times NEB2$ 緩衝液 $11 \mu 1$ 、制限酵素Sfi I $100 \text{ U}/10 \mu 1$ を加え、50 Cで3時間反応させた。次いで、 $10 \times NEB2$ 緩衝液 $11 \mu 1$ 、制限酵素Not I $100 \text{ U}/10 \mu 1$ を加え、37 Cで3時間反応させた。両端をそれぞれ制限酵素で切断した、 μ 鎖をコードするDNA断片は、0.8 %アガロースゲルを用いた電気泳動により、約690 bp近辺のバンドとして分離したものを切り出し回収した。これを、市販の精製キット;QIAGEN製 $QIAquick Gel Extraction Kit を用いて精製し、<math>\mu$ 鎖をコードするDNA断片をTE緩衝液 $20 \mu 1$ で溶出回収した。

【0024】同様に、得られた κ 鎖をコードするcDN AのPCR 産物は、先ず、 $10\times NEB2$ 緩衝液 $11\mu1$ 、制限酵素Asc I 100 U/5 $\mu1$ を加え、37%で3時間反応させた。次いで、 $10\times NEB2$ 緩衝液 $11\mu1$ 、制限酵素Nhe I 100 U/ $10\mu1$ を加え、37%で3時間反応させた。両端をそれぞれ制限酵素で切断した、 κ 鎖をコードするDNA断片は、0.8%アガロースゲルを用いた電気泳動により、約660 bp近辺のバンドとして分離したものを切り出し回収した。これを、市販の精製キット;QIAquick Gel Extraction Kit を用いて精製し、 κ 鎖をコードするDNA断片をTE緩衝液 $20\mu1$ で溶出回収した。

【0025】 (3) 発現ベクターの構築並びに該発現ベクターの導入による形質転換大腸菌の作製 前記 (2) で採取された、両端に制限酵素による切断を 施した μ 鎖をコードする DNA断片と κ 鎖をコードする 50

を混合したものを、3'側プライマーとして、FDM プライマーを、それぞれ用いた。それぞれ独立にPCR 反応を行い、個別に選択的な増幅産物を得た。なお、PCR 反応は、全液量 $100~\mu$ l とし、先に調製した c DNAに対して、増幅用プライマー量は $600~\mu$ l 用い、Touch down PCR法のプロトコールに従い反応を行った。

8

[0021]

【表1】

DNA断片は、大腸菌内でFab 抗体の発現に利用されるベクター系;pFab-His2 ベクター内のそれぞれのクローニングサイトに下記する手順で組み込んだ。即ち、 κ 鎖(L鎖)をコードする c DNAを、制限酵素Nhe I 切断部位とAsc I 切断部位の間に、 μ 鎖(H鎖)をコードする c DNAを、制限酵素Sfi I 切断部位とNot I 切断部位の間に、それぞれ組み込んだ。組み込むDNA断片は二種類あるので、先ず、 κ 鎖をコードするDNA断片を組み込んだベクターを構築し、次いで、更に μ 鎖をコー

ドするDNA断片を組み込み、二鎖の遺伝子がともに組

み込まれた発現ベクターを得た。なお、用いた発現ベクターpFab-His2 は、発明者らにより第45回日本ウイルス学会総会アプストラクトp.71(1997)に報告されている。図1に示すとおり、該発現ベクターpFab-His2 は、マーカー遺伝子としてアンピシリン耐性遺伝子(Ampr)を有しており、H鎖並びにL鎖をコードするDNAを挿入するクローニングサイトとして、二種のペクテート溶解リーダー配列の下流に制限酵素Nhe I とAsc I の切断部位及び制限酵素Sfi I とNot 1 の切断部位を持ち、この遺伝子の発現は、tac プロモーター(Ptac)により行われる。

【0026】(3-1) κ鎖をコードするDNA断片の組 み込み

導入ベクターpFab-His2 10μ g/100 μ 1 は、先ず、 $10\times$ NEB2緩衝液 11μ 1 、制限酵素Asc I 50 U/2.5 μ 1 を加え、37℃で1時間反応させた。次いで、 $10\times$ NEB2緩衝液 11μ 1 、制限酵素Nhe I 50 U/5 μ 1 を加え、37℃で1時間反応させた。この二種の制限酵素で切断した、pFab-His2 に相当するDNA断片は、0.8 %アガロースゲルを用いた電気泳動により、3.5 kbp のバンドとして分離し

20

たものを切り出し回収した。これを、市販の精製キット;QIAquick Gel Extraction Kit を用いて精製し、目的とする $3.5~{
m kbp}$ のDNA断片をTE緩衝液 $50~{
m \mu l}$ で溶出回収した。

【0027】得られたpFab-His2 に相当するDNA断片 $90 \text{ ng/3} \mu 1$ と前記の κ 鎖をコードするDNA断片 $30 \text{ ng/6} \mu 1$ とを混合し、市販のライゲーションキット;宝 酒造製TaKaRa Ligation Kit Ver.2 の I 液 $9 \mu 1$ を加え、16℃で30分間ライゲーション反応を行った。ライゲーション後、反応液に水 $18\mu 1$ 、ベーリンガーマンハイム製分子生物学用ポリエチレングリコール $1\mu 1$ 、3 Mm 酢酸ナトリウム $3.6 \mu 1$ 、エタノール $80\mu 1$ を加え、-30℃で15分間放置した。放置後、4 ℃、15,000 rpmで $10分間遠心した。この遠心により、目的とする環化されたベクターは沈殿に回収される。沈殿物を風乾した後、水<math>5\mu 1$ に再溶解して、50℃で5分間暖めた。この環化されたベクターで大腸菌を形質転換し、得られた組換え菌を培養することで、多量のプラスミドベクターを調製した。

【0028】具体的には、予め温めた環化したベクター 液 5 μ1 を用いて、市販のコンピテントセル;ライフテ クノロジーズ製大腸菌コンピテントセルDH5 α F'T 50 μ l にelectropolation 法を適用して導入した。electrop olation 法は、2 mm幅のキュベットを用い、電圧2.5 kV の条件を用いた。通電後、大腸菌はキュベットから室温 にした培地 SOC (2% Bacto tryptone/0.5% Bacto yeast extract/10 mM NaC1/2.5 mM KC1/10 mM MgSO4/10mM Mg Cl2/20 mM Glucose) 1 mlで洗い出し・回収した。膜再 生のため、37℃で1時間振とう培養した。その後、37℃ に温めたSB(Super Broth)培地(Tryptone 30 g/l 、 Yeast extract 20 g/l、3ーモルホリノプロパンスルホ ン酸(MOPS) 10 g/l 、pH 7.0) 10 ml (アンピシリン: 50μg/ml添加) を加えた。この際、一部菌液それぞれ10 μ1 と100 μ1 を採取し、タイトレーションのためにプ レートに播いた。残る菌液は、37℃で一夜振とう培養し た。このタイトレーションの結果、コロニーサイズは、 7.7 ×10³ であった。培養した菌体を回収し、市販のプ ラスミド分離キット;QIAGEN Plasmid Midi Kit を用い てプラスミドを抽出し、TE緩衝液 100μ1 で溶出回収し た。前記の培養菌体からの、目的とするプラスミドの回 40 収量は6 μg であった。

【0029】(3-2) μ鎖をコードするDNA断片の組 み込み

回収された κ 鎖をコードするDNA断片が組み込まれたプラスミドベクター $2\mu g/100 \mu 1$ に、先ず、 $10 \times NEB2$ 緩衝液 $11\mu 1$ 、制限酵素Sfi I $20 U/1\mu 1$ を加え、50 % で 1 時間反応させた。次いで、 $10 \times NEB2$ 緩衝液 $11\mu 1$ 、制限酵素Not I20 $U/2\mu 1$ を加え、37 %で 1 時間反応させた。この二種の制限酵素で切断した、pFab- $His2 + \kappa$ 鎖に相当するDNA断片は、0.8 %アガロースゲルを用 50

いた電気泳動により、 $4.2~{\rm kbp}$ のバンドとして分離したものを切り出し回収した。これを、市販の精製キット; QIAquick Gel Extraction Kit を用いて精製し、目的とする $4.2~{\rm kbp}$ のDNA断片をTE緩衝液 $50~{\mu}$ 1 で溶出回収した。

【0030】得られたpFab-His2 + κ 鎖に相当するDN A断片80 ng/2 μ 1 と μ 鎖をコードするDN A断片30 n g/2 μ 1 と μ 36をコードするDN A断片30 n g/2 μ 1 とを混合し、市販のライゲーションキット;Ta KaRaLigation Kit Ver.2 の I 液 9 μ 1 を加え、16℃で30分間ライゲーション反応をさせた。ライゲーション後、反応液に水8 μ 1、ベーリンガーマンハイム製分子生物学用ポリエチレングリコール1 μ 1、3 M 酢酸ナトリウム1.6 μ 1、エタノール70 μ 1を加え、-30℃で15分間放置した。放置後、4 ∞ 、15,000 rpmで10分間遠心した。この遠心により、目的とする環化されたベクターは沈殿に回収される。沈殿物を風乾した後、水 5 μ 1 に再溶解して、50℃で5分間暖めた。この環化されたベクターで大腸菌を形質転換し、得られた組換え菌を培養することで、多量のプラスミドベクターを調製した。

【0031】具体的には、予め温めた環化したベクター液 $5\mu1$ を用いて、市販のコンピテントセル;大腸菌コンピテントセルDH5 α F'T $50\mu1$ Celectropolation 法を適用して導入した。electropolation 法は、2 mm幅のキュベットを用い、電圧2.5kVの条件を用いた。通電後、大腸菌はキュベットから室温にした培地SOC 1 mlで洗い出し・回収した。膜再生のため、37 $^{\circ}$ でで1時間振とう培養した。その後、37 $^{\circ}$ に温めたSB培地10 ml (アンピシリン 50 μ g/ml添加)を加えた。この際、一部菌液それぞれ $10\mu1$ と100 $\mu1$ を採取し、タイトレーションのためにプレートに播いた。残る菌液は、37 $^{\circ}$ で一夜振とう培養した。

【0032】このタイトレーションの結果、コロニーサイズは、 1.1×10^4 であった。培養した菌体を回収し、市販のプラスミド分離キット;QIAGEN Plasmid Midi Kitを用いてプラスミドを抽出し、TE緩衝液 $600\,\mu$ 1 で溶出回収した。前記の培養菌体からの、目的とするプラスミド、即ち、 κ 鎖をコードするDNA断片及び μ 鎖をコードするDNA断片がともに組み込まれたベクターの回収量は $30\,\mu$ g であった。

【0033】(4)単一クローンの選別 前記(3)において作製したpFab-His2 に κ 鎖をコード するDNA断片及び μ 鎖をコードするDNA断片がとも に組み込まれたプラスミドを大腸菌JM109 株に導入し て、形質転換株を作製し、当該発現ベクターから抗ヒト

 $TNF-\alpha$ ヒトFab 抗体を産生するクローンを採取した

【0034】具体的には、該発現ベクター1 ngを市販の大腸菌JM109 株のコンピテントセル(東洋紡製) $100~\mu$ 1 に加えた。次いで、30分間氷上に静置した後、42℃、1 分間のヒートショックを加えた後、再び3分間氷上に

静置した。培地SOC を1 mlを加え、37℃で1時間振とう 培養した後、アンピシリンプレート上に各プレート当た り、前記の培養菌液50μ1 ずつを播き、一晩培養しコロ ニーを出現させた。翌日、前記のアンピシリンプレート 上、プレート1枚当たり数十~百数十個のコロニーが出 現していた。

【0035】これらのクローンの抗ヒトTNF-αヒトFab 抗体の産生能を調べ、産生能の高い単一クローンを選別するため、12個のコロニーを無作為に拾い出し、先ず、それぞれSB培地2 ml (20 mM 塩化マグネシウム、アンピシリン50μg/ml添加) 中、37℃で6時間振とう培養した。その後、発現を誘導するため、IPTGを終濃度0.05 mM となる量添加して、30℃で一晩振とう培養した。

【0036】翌日、培養液から、大腸菌を遠心(1,500 × g、15分間) で集菌した。集めた大腸菌は、0.2 mlの リン酸緩衝液(PBS) (1mg/mlリゾチーム、1×complet e;ベーリンガー社製プロテアーゼ阻害剤カクテルを添 加) に懸濁し、室温で30分間放置した後、freezing-tha wing (ドライアイスーエタノール液と37℃の温水に交互 に5分間ずつ浸す処理)を計4回繰り返して、菌体を破 砕した。遠心 (エッペンドルフチューブ内で、15,000 r pm、10分間)後、上清を回収した。産生される組換え型 ヒトFab 抗体は、可溶性であるため、この上清に回収さ れる。市販のヒトTNF-α (生化学工業#200457、5 μg/ml)を抗原として用いて、該上清中に含まれる抗ヒ トTNF-α抗体濃度をELISA 法で定量した。ELISA プ レートは、ヒトTNFーα液を50μ1/wellずつコーティ ングし、翌日PBS -0.05% Tween20300μl/wellで3回 洗浄した後、各クローンから得た上清試料50μ1 ずつを 二連で反応させた。室温で1時間反応させた後、PBS -0.05% Tween20 300 µ 1/wellで3回洗浄して、未反応の 抗体を除去した。酵素標識抗体として、市販のペルオキ シダーゼ標識抗ヒトIgG (Fab 特異的) 抗体 (SIGMA 製、#A 0293) をPBS -0.05% Tween20で1:1,000 に希 釈した溶液50μ1/wellを加えて、反応させた。室温で1 時間反応させた後、PBS -0.05% Tween20 300 µ 1/well で3回洗浄して、未反応の酵素標識抗体を除去した。検 出には、標識のペルオキシダーゼ量を、市販の基質;ラ イフテクノロジーズ製のTMB-ELISA を50μ1/well加え、 室温で30分間放置後、650 nmの吸光度をマイクロプレー トリーダーで測定した。発色量OD650 m が0.3 以上を示 すものは、抗ヒトTNF-αヒトFab 抗体の産生能が高 い陽性クローンと判定した。評価を試みた12個のコロニ ーのうち、陽性クローン4個が存在していた。この4個 のクローンから、発現ベクターを再度抽出して、 κ 鎖を コードするDNA断片及びμ鎖をコードするDNA断片 の存在を確認し、また、その塩基配列の再シークエンシ ングを行ったところ、4つのクローンは当然のことなが ち、全く同じ塩基配列であった。即ち、上述の塩基配列 (I) 及び塩基配列 (II) に示されるものであった。

【0037】従って、この4つのクローンは、遺伝子は全く同じであり、同一の菌株であることになる。この一つ E. coli JM109/p1D5-1 は、工業技術院生命工学工業技術研究所に受託番号 FERM P-16443 として寄託されている。この菌株中に保持されている抗ヒト $TNF-\alpha$ ヒトFab 発現ベクターp1D5-1の概略図を図2に示す。

【0038】本発明の組換え型抗ヒトTNF-αヒトモ ノクローナル抗体は、具体的には、上述するとおり該寄 託されている菌株により産生される組換え型抗体である が、そのH鎖が前記アミノ酸配列(I)で示され、かつ L鎖が前記アミノ酸配列(II)で示されるものである限 り、これ以外の菌株により産生されるものであっても同 じ反応性を示すものである。具体的には、前記の菌株中 に保持されている発現ベクターを抽出し、別の菌株の大 腸菌、例えば、JM101, JM105, HB101 株等に導入した形 質転換菌株によっても、同じく生産することができる。 更には、発現ベクター中に組換えられている遺伝子情 報、即ち、前記塩基配列(Ⅰ)並びに塩基配列(Ⅱ)の みでなく、宿主大腸菌内で前記アミノ酸配列(Ⅰ)並び にアミノ酸配列 (II) のペプチド鎖に翻訳される限り、 同じアミノ酸に翻訳される他のコドンに置き換えられて いてもよい。この種の改変は、元となる塩基配列が判明 しているので、常法に従い、適宜等価なコドンに変換す ることができ、対応するDNAは、いずれも700 bp以下 であるので、DNA合成法を適用することもでき、ある いは、PCR 法を適用した改変導入の手段を用いることも できる。

【0039】また、本発明の組換之型ヒトFab 抗体は、本来そのH鎖は、前記アミノ酸配列(I)の μ 鎖であり、L鎖は、前記アミノ酸配列(I)の κ 鎖であるが、実質的にこのアミノ酸配列を保つものも、本発明の組換之型ヒトFab 抗体に含まれる。具体的には、H鎖のC末端が更に伸長されているもの、即ち、Fc領域に至る間のアミノ酸配列が更に付加されたものであってもよく、また、L鎖並びにH鎖において、その配列可変部分は、抗原に依存するので保持されねばならないが、残る定常部分のアミノ酸配列は、天然のヒト免疫グロブリンの μ 鎖並びに κ 鎖においても許容されている範囲で種々の改変が存在してもよい。これらの付加、欠失又は置換による改変は、既に報告されている幾つかのヒト免疫グロブリンの遺伝子情報を元にして容易に行うことができる。

【0040】例えば、図4に示す本発明の組換え型ヒト Fab 抗体の κ 鎖のアミノ酸配列を基に、抗体の特異的な 反応性に関与する相補性決定領域(CDR) のアミノ酸配列 を保持する限り、それ以外の部分は、図5及び図6に示す別種のヒト抗体の κ 鎖のアミノ酸配列と対比・参照して、そこに存在するアミノ酸配列と一部を置き換えることもできる。

【0041】本発明の組換え型ヒトFab 抗体は、宿主大 腸菌により産生されるものであるので、汎用の手段によ

を選抜して、この細胞株を元となるBリンパ球細胞とし て用いた。

14

り容易に不純物、汚染蛋白質等の除去ができ、極めて純 度の高いものを得ることができる。実験試薬として利用 する際には、通常の抗体試料と同様に標準力価、あるい は、標準濃度の溶液とするのがよい。また、臨床応用す る際には、従来のヒト抗体と同様の精製を施した上で、

目的に応じた溶液組成物に調製するとよい。なお、生産 に用いる細胞が、大腸菌であるので、精製の操作は、従 来の医療用の組換え蛋白質の精製に利用される手法に準 じることができ、技術的な困難さは、動物細胞により生 産する際に較べて、格段に少ないものである。

[0042]

【実施例】以下に、本発明の組換え型抗ヒトTNFーα ヒトモノクローナル抗体、それに用いるκ鎖をコードす るDNA断片及びμ鎖をコードするDNA断片とその遺 伝子情報、並びにこの組換え型ヒトモノクローナル抗体 を産生する大腸菌株の作製に関して、具体例を挙げて詳 しく説明する。

【0043】本例では、健常人から提供された血液試料 から、リンパ球を分別し、EBウイルスを感染させ、トラ ンスフォームした細胞株群を作製し、次いで、これか ら、抗ヒトTNF-αヒトモノクローナル抗体産生株1D

【0044】ヒト抗体においては、抗原結合部位に当た る可変領域を除き、それ以外の部分は本質的に同一であ ることが既に報告されており、その性質を利用して、本 例では、産生するBリンパ球細胞から抽出した全RNA から、RT-PCR法を適用して、このL鎖における、κ鎖と λ鎖の2種を分別するアミノ酸配列に着目して、それぞ れを選択的に増幅可能なPCR プライマーを用いて、予め κ 鎖と λ 鎖の区別をして、それぞれのcDNAを調製・ 増幅した。同じく、H鎖に関しても、 γ 鎖と μ 鎖に分類 されるもののみを、それぞれ予め区別するPCR プライマ ーを用いて、選択的にcDNAを調製・増幅した。 具体 的には、κ鎖とλ鎖をコードするcDNAをそれぞれ選 択的に増幅するためのプライマー、γ鎖とμ鎖をコード する c D N A をそれぞれ選択的に増幅するためのプライ マーは、それぞれ下記の表2と表3に示すものを用い た。また、全RNAから逆転写によりcDNAを調製す る際には、ランダム9 mer を用いた。

[0045] 【表2】

```
5 株 (EBV transformed B lymphocytes oligo clone )
                                                  κ鎖と λ鎖をコー
κ鎖5 側ブライマ
                            VKIF5 5-COGCTAGOGMCATYCAGVTGACCCAGTCTCC-3
VK2aF5 5-COGCTAGOGATRTTGTGATGACYCAGVCTCC-3
VK3aF5 5-COGCTAGOGMCATYCAGVTGACCCAGTCTCC-3
                                       5-CCCCTAGCGACATCGWGHTGACCCAGTCTCC-3
                             ×鎖3'側プライマー
水3' 5-TTGGCGCCCACACTCTCCCCTGTTGAAGCTCTT-3
                             λ鎖5'側プライラ
                                       5-COSCTAGCCAGTCTGYSCTGACTCAGCCW-3
5-COSCTAGCCAGTCTGTGYTGACGCAGCCG-3
5-COSCTAGCMACKTTATAYTGACTCAACCG-3
                            VL1bF5
                            VI.2aF5
                                      5-COGCTAGCCAGACTGTGGTAACYCAGCAG-3
5-COGCTAGCTCCTATGWGCTGACTCAGCCA-3
5-COGCTAGCTCTTCTGAGCTGACTCAGGAC-3
                             VL2bF5
                            VL3bF5
                            え鎖3°側プライマー
VLC3 5-TTGECGCGCCTGAAMATKCTGTAGSGGCCACTGT-3
```

R: A又は G, Y: C又は T, W: A又は T, S: G又は C, K: G又は T, M: A又は C, H: A又は C又は T

[0046]

```
γ鎖とμ鎖をコードする c DNA をそれぞれ選択的に増幅するためのプライマー
γ鎖及びμ鎖5'側プライマー
//HaF5 5-AAGCCCCAACCGCCA IGGCCAAGCTGCAGCTGTGCAGTCIGG-3
            5-AAGGCCCAACCGGCCATGGCCCAGRTYCAGCTGGTGCAGTCTGG-3
5-AAGGCCCAACCGGCCATGGCCCAGSTTCAGCTGCAGSAGTCRGG-3
VH2aF5
             5-AAGGCCCAACCGGCCATGGCCSARGTGCAGCTGKTGGAGTCTGG-3
VH3aF5
VH3aF5 5-AAGSCCCAACCGCCATGGCCCCAGTGTAAGTTCAGCTGGTGG-3
VH4cF5 5-AAGSCCCAACCGGCCATGGCCCCAGTGCAGCTACAGSAGTTGGGG-3
ア銀3"側プライマー
FDG1H3 5-CCGCGCCGCCGCTGTGGAGTTTTGTCACAAAGATTT-3
            5-COCCGCCCCTTTGCCCTCAACTGTCTTGTCCAC-3
5-COCCGCCCCTGTGTGAGTTGTGTCACCAAGTGG-3
FDG2H3
FDG4H3 5-CCGCGGCCGCTGGGGGACCATATTTGGACTCAAC-3
             5-COCCGCCCCCAGCTCAGCAATCACTGGAAGAGG-3
```

R: A又は G, Y: C又は T, W: A又は T, S: G又は C, K: G又は T, M: A又は C, H: A又は C又は T

【0047】その結果、この抗ヒトTNF-αヒトモノ クローナル抗体産生株1D5 株 (EBVtransformed B lymph ocytes oligo clone)から、L鎖をコードするcDN Aとして、λ鎖のものが1種、κ鎖のものが3種、H鎖 50 をコードする c D N A として、 γ 鎖のものが 1 種、 μ 鎖 のものが1種、それぞれ存在することが判明し、該1D5 株は実際にオリゴクローンであったことが確認された。 【0048】分離されたし鎖をコードするcDNA、具

体的には、λ鎖のものが1種、κ鎖のものが3種、H鎖 をコードする c DNA、具体的には、 y 鎖のものが 1 種、μ鎖のものが1種から、L鎖をコードするcDNA とH鎖をコードするcDNAの各組み合わせについて、 大腸菌においてFab 抗体を産生する発現ベクターpFab-H is2 にクローニングして、それぞれ発現ベクターを作製 した。この複数種の発現ベクターをそれぞれ宿主大腸菌 JM109 株に導入して、用いた発現ベクター内のマーカー 遺伝子;アンピシリン耐性遺伝子を用いて、アンピシリ ンプレート上でコロニーを形成させ、各クローンを分離 10 した。得られたコロニーから、無作為にコロニーを拾い 出し、培養してIPTGを添加し、Fab 抗体産生を誘導し た。その後、集菌し、凍結融解により菌体を破砕し、遠 心により不溶性画分を分離し、上清を採取した。Fab 抗 体は、可溶性蛋白質として、この上清に回収されてお り、ヒトTNFーαに対する反応性を有するFab 抗体の 有無を調べた。

【0049】前記の上清について、ヒト $TNF-\alpha$ を抗原とし、検出用抗体として、Fab 特異的抗ヒトIgG 抗体を用いてELISA 法で評価したところ、L鎖をコードする cDNAとして、 κ 鎖3種類のうち、1種類のものと、H鎖をコードする cDNAとして、 μ 鎖1種類のものとを組み合わせたクローンのみにヒト $TNF-\alpha$ に対する反応性が確認された。この組換え型モノクローナル抗体である抗ヒト $TNF-\alpha$ ヒトFab 抗体を産生する菌株を作製する手順について、以下に具体的に述べる。

【0050】(1)全RNAの採取

健常人のリンパ球細胞をEBウイルスでトランスフォームした細胞群から、抗ヒトTNF- α ヒト抗体を産生する細胞株を選別した。このオリゴクローン;抗ヒトTNF- α ヒトモノクローナル抗体産生株1D5 株の細胞10 6 ce lls から、市販の全RNA採取・精製キット;QIAGEN製RNeasyを用いて、全RNAを採取した。なお、詳細な操作手順は、該キットの標準プロトコールに従い、最終的に全RNAを水50 μ 1 に抽出した液を得た。含まれる全RNA量を、0D260 mm (波長260nmにおける吸光度;RNA分子による吸収)値から算定したところ、58 ng/ μ 1であった。

【0051】 (2) RT-PCR法によるL鎖をコードする c DNAとH鎖をコードする c DNAの作製 前記 (1) で調製した全RNAから逆転写反応により、 c DNAを作製し、次いで、PCR 法を応用して、L鎖をコードする c DNAをそれ ぞれ独立に増幅した。このRT-PCR法の操作には、市販のキット;宝酒造製のRNA PCR Kit を用い、具体的な操作は該キットの標準プロトコールに準じた。先ず、添付される逆転写反応液 $20\mu1$ 当たり、全RNA抽出液 $2\mu1$ を用い、逆転写プライマーとして、ランダム9merのプライマーを利用して、c DNAを調製した。

【0052】 κ鎖をコードする c DNA のPCR 増幅に

は、5'側プライマーとして、前述した表 1 のVK3aF5プライマーを、3'側プライマーとして、表 1 のVKC3プライマーを、また、 μ 鎖をコードする c DNAのPCR 増幅には、5'側プライマーとして、表 1 のVH3aF5プライマーと VH3bF5プライマーの二種を混合したものを、3'側プライマーとして、表 1 のFDM プライマーを、それぞれ用いた。それぞれ独立にPCR 反応を行い、個別に選択的な増幅産物を得た。なお、PCR 反応は、全液量 $100~\mu$ I とし、先に調製した c DNAに対して、増幅用プライマー量は各100pmol 用い、Touch down PCR法のプロトコールに従い反応を行った。

【0053】得られたPCR 産物は、市販の精製キット; QIAGEN製QIAquick PCR Purification Kit を用いて精製 し、TE緩衝液(10 mM トリス塩酸, pH 8.0/1 mM EDTA) 100 µ 1 で溶出回収した。得られた µ 鎖をコードする c DNAのPCR 産物は、先ず、10×NEB2緩衝液11μ1、制 限酵素Sfi I 100 U/10μ1 を加え、50℃で3時間反応さ せた。次いで、10×NEB2緩衝液11μ1、制限酵素Not I 100 U/10μ1 を加え、37℃で3時間反応させた。両端を それぞれ制限酵素で切断した、 μ 鎖をコードするDNA 断片は、0.8 %アガロースゲルを用いた電気泳動によ り、約690 bp近辺のバンドとして分離したものを切り出 し回収した。これを、市販の精製キット;QIACEN製QIAq uick Gel Extraction Kit を用いて精製し、μ鎖をコー ドするDNA断片をTE緩衝液 20 μ1 で溶出回収した。 【0054】同様に、得られたκ鎖をコードするcDN AのPCR 産物は、先ず、10×NEB2緩衝液11μl 、制限酵 素Asc Ι 100 U/5 μ1 を加え、37℃で3時間反応させ た。次いで、10×NEB2緩衝液11μ1 、制限酵素Nhe I 10 0 U/10μ1 を加え、37℃で3時間反応させた。両端をそ れぞれ制限酵素で切断した、κ鎖をコードするDNA断 片は、0.8 %アガロースゲルを用いた電気泳動により、 約660 bp近辺のバンドとして分離したものを切り出し回 収した。これを、市販の精製キット;QIAquick Gel Ext raction Kit を用いて精製し、κ鎖をコードするDNA 断片をTE緩衝液 20 µ1 で溶出回収した。

【0055】(3)発現ベクターの構築並びに該発現ベクターの導入による形質転換大腸菌の作製

前記(2)で採取された、両端に制限酵素による切断を 施したμ鎖をコードするDNA断片とκ鎖をコードするDNA断片とκ鎖をコードする DNA断片は、大腸菌内でFab 抗体の発現に利用される ベクター系;pFab-His2 ベクター内のそれぞれのクローニングサイトに下記する手順で組み込んだ。組み込むDNA断片は二種類あるので、先ず、κ鎖をコードするDNA断片を組み込んだベクターを構築し、次いで、更に μ鎖をコードするDNA断片を組み込み、二鎖の遺伝子がともに組み込まれた発現ベクターを得た。図1に示す 該発現ベクターpFab-His2 は、マーカー遺伝子としてアンピシリン耐性遺伝子(Ampr)を有しており、H鎖並び にL鎖をコードするDNAを挿入するクローニングサイ

【0059】(3-2) μ鎖をコードするDNA断片の組

18

トとして、二種のペクテート溶解リーダー配列の下流に 制限酵素Nhe I とAsc I の切断部位及び制限酵素Sfi I とNot I の切断部位を持ち、この遺伝子の発現は、tac プロモーター(Ptac)により行われる。

【0056】(3-1) κ鎖をコードするDNA断片の組 み込み

導入ベクターpFab-His2 10μ g/ 100μ 1 は、先ず、 $10\times$ NEB2緩衝液 11μ 1 、制限酵素Asc I 50 U/2. 5μ 1 を加え、37℃で1時間反応させた。次いで、 $10\times$ NEB 2緩衝液 11μ 1 、制限酵素Nhe I 50 U/ 5μ 1 を加え、37℃で1時間反応させた。この二種の制限酵素で切断した、pFab-His2 に相当するDNA断片は、0.8 %アガロースゲルを用いた電気泳動により、3.5 kbp のバンドとして分離したものを切り出し回収した。これを、市販の精製キット;QIAquick Gel Extraction Kit を用いて精製し、目的とする3.5 kbp のDNA断片をTE緩衝液 50 μ 1 で溶出回収した。

【0057】得られたplab-His2 に相当するDNA断片 90 ng/3 μ 1 と前記の κ 鎖をコードするDNA断片30 ng/6 μ 1 とを混合し、市販のライゲーションキット;宝 酒造製TaKaRa Ligation Kit Ver.2 の 1 被 9 μ 1 を加え、16℃で30分間ライゲーション反応を行った。ライゲーション後、反応液に水18 μ 1、ベーリンガーマンハイム製分子生物学用ポリエチレングリコール1 μ 1、3 M 酢酸ナトリウム3.6 μ 1、エタノール80 μ 1を加え、-30℃で15分間放置した。放置後、4 ℃、15,000 rpmで10分間遠心した。この遠心により、目的とする環化されたベクターは沈殿に回収される。沈殿物を風乾した後、水 5 μ 1 に再溶解して、50℃で5分間暖めた。この環化されたベクターで大腸菌を形質転換し、得られた組換え菌を培養することで、多量のプラスミドベクターを調製した。

【0058】具体的には、予め温めた環化したベクター被 5μ 1 を用いて、市販のコンピテントセル; ライフテクノロジーズ製大腸菌コンピテントセルDH5 α F'T 50μ 1 にelectropolation 法を適用して導入した。electropolation 法は、 $2\min$ のキュベットを用い、電圧 $2.5\,k$ Vの条件を用いた。通電後、大腸菌はキュベットから室温にした培地 SOC(市販品、LIFE TECHNOLOGIES 社製)1 mlで洗い出し・回収した。膜再生のため、37℃で1時間 40 振とう培養した。その後、37℃に温めたSB培地10 ml

(アンピシリン: $50\mu g/ml$ 添加)を加えた。この際、一部菌液それぞれ $10\mu l$ と $100\mu l$ を採取し、タイトレーションのためにプレートに播いた。残る菌液は、 37° でで一夜振とう培養した。このタイトレーションの結果、コロニーサイズは、 7.7×10^3 であった。培養した菌体を回収し、市販のプラスミド分離キット; QIAGEN Plasmid Midi Kit を用いてプラスミドを抽出し、TE緩衝液 $100\mu l$ で溶出回収した。前記の培養菌体からの、目的とするプラスミドの回収量は $6\mu g$ であった。

み込み 回収された κ 鎖をコードするD N A 断片が組み込まれた プラスミドベクター $2\mu g/100$ μ 1 に、先ず、 $10\times NEB2$ 緩衝液 11μ 1、制限酵素Sfi I 20 $U/1\mu$ 1 を加え、50 で 1 時間反応させた。次いで、 $10\times NEB2$ 緩衝液 11μ 1、制限酵素Not I20 $U/2\mu$ 1 を加え、37 で 1 時間反応させた。この二種の制限酵素で切断した、pFab-His2 + κ 鎖に相当するD N A 断片は、0.8 % アガロースゲルを用いた電気泳動により、4.2 kbp のバンドとして分離したものを切り出し回収した。これを、市販の精製キット;QI Aquick Gel Extraction Kit を用いて精製し、目的とする4.2 kbp のD N A 断片をTE 緩衝液 50 μ 1 で溶出回収した。

【0060】得られたpFab-His2 + κ 鎖に相当するDN A断片80 ng/2 μ 1 と μ 鎖をコードするDN A断片30 ng/2 μ 1 と μ 鎖をコードするDN A断片30 ng/2 μ 1 とを混合し、市販のライゲーションキット; Ta KaRaLigation Kit Ver.2 の I 液 9 μ 1 を加え、16 で30分間ライゲーション反応をさせた。ライゲーション 後、反応液に水8 μ 1、ベーリンガーマンハイム製分子生物学用ポリエチレングリコール1 μ 1、3 M 酢酸ナトリウム1.6 μ 1、エタノール70 μ 1 を加え、-30 で15分間放置した。放置後、4 で、15,000 rpmで10 分間遠心した。この遠心により、目的とする環化されたベクターは沈殿に回収される。沈殿物を風乾した後、水 5 μ 1 に再溶解して、50 で 5 分間暖めた。この環化されたベクターで大腸菌を形質転換し、得られた組換え菌を培養することで、多量のプラスミドベクターを調製した。

 $[0\ 0\ 6\ 1]$ 具体的には、予め温めた環化したベクター被 $5\ \mu 1$ を用いて、市販のコンピテントセル;大腸菌コンピテントセルDH5 α F'T $50\ \mu 1$ にelectropolation 法を適用して導入した。electropolation 法は、2 mm幅のキュベットを用い、電圧2.5kVの条件を用いた。通電後、大腸菌はキュベットから室温にした培地 SOC(市販品、LIFE TECHNOLOGIES 社製)1 mlで洗い出し・回収した。膜再生のため、37℃で1 時間振とう培養した。その後、37℃に温めたSB培地10 ml (アンピシリン 50 μ g/ml添加)を加えた。この際、一部菌液それぞれ $10\ \mu 1$ と採取し、タイトレーションのためにプレートに播いた。残る菌液は、37℃で一夜振とう培養した。

【0062】このタイトレーションの結果、コロニーサイズは、 1.1×10^4 であった。培養した菌体を回収し、市販のプラスミド分離キット;QIAGEN Plasmid Midi Kitを用いてプラスミドを抽出し、TE緩衝液 600μ 1 で溶出回収した。前記の培養菌体からの、目的とするプラスミド、即ち、 κ 鎖をコードするDNA断片及び μ 鎖をコードするDNA断片及び μ 00回収量は 30μ 10 であった。

【0063】(4)単一クローンの選別

前記(3)において作製したpFab-His2にκ鎖をコード

するDNA断片及びμ鎖をコードするDNA断片がともに組み込まれたプラスミドを大腸菌JM109 株に導入して、形質転換株を作製し、当該発現ベクターから抗ヒトTNF-αヒトFab 抗体を産生するクローンを採取した。

【0064】具体的には、該発現ベクター1 ngを市販の大腸菌JM109 株のコンピテントセル(東洋紡製)100 μ1に加えた。次いで、30分間氷上に静置した後、42℃、1分間のヒートショックを加えた後、再び3分間氷上に静置した。培地 SOC(市販品、LIFE TECHNOLOGIES 社製)1 mlを加え、37℃で1時間振とう培養した後、アンピシリンプレート上に各プレート当たり、前記の培養菌液50μ1 ずつを播き、一晩培養しコロニーを出現させた。翌日、前記のアンピシリンプレート上、プレート1枚当たり数十~百数十個のコロニーが出現していた。

【0065】これらのクローンの抗ヒトTNF-αヒトFab 抗体の産生能を調べ、産生能の高い単一クローンを選別するため、12個のコロニーを無作為に拾い出し、先ず、それぞれSB培地2 ml (20 mM 塩化マグネシウム、アンピシリン50μg/ml添加)中、37℃で6時間振とう培養した。その後、発現を誘導するため、IPTCを終濃度0.05 mM となる量添加して、30℃で一晩振とう培養した。

【0066】翌日、培養液から、大腸菌を遠心(1,500... ×g、15分間) で集菌した。集めた大腸菌は、0.2 mlの リン酸緩衝液(PBS) (1mg/mlリゾチーム、1×complet e;ベーリンガー社製プロテアーゼ阻害剤カクテルを添 加) に懸濁し、室温で30分間放置した後、freezing-tha wing (ドライアイスーエタノール液と37℃の温水に交互 に5分間ずつ浸す処理)を計4回繰り返して、菌体を破 砕した。遠心 (エッペンドルフチューブ内で、15,000 r рт、10分間)後、上清を回収した。産生される組換え型 ヒトFab 抗体は、可溶性であるため、この上清に回収さ れる。市販のヒトTNF-α(生化学工業#200457、5 μ g/ml) を抗原として用いて、該上清中に含まれる抗ヒ トTNF-α抗体濃度をELISA 法で定量した。ELISA プ レートは、ヒトTNFーα液を50μl/wellずつコーティ ングし、翌日PBS -0.05% Tween20300μl/wellで3回 洗浄した後、各クローンから得た上清試料50μ1 ずつを 二連で反応させた。室温で1時間反応させた後、PBS ー 0.05% Tween20 300 μ l/wellで3回洗浄して、未反応の 抗体を除去した。酵素標識抗体として、市販のペルオキ シダーゼ標識抗ヒトIgG (Fab 特異的) 抗体 (SIGMA 製、#A 0293) をPBS -0.05% Tween20で1:1,000 に希 釈した溶液50μ1/wellを加えて、反応させた。室温で1 時間反応させた後、PBS -0.05% Tween20 300 μ l/well で3回洗浄して、未反応の酵素標識抗体を除去した。検 出には、標識のペルオキシダーゼ量を、市販の基質;ラ イフテクノロジーズ製のTMB-ELISA を50μ1/well加え、 室温で30分間放置後、650 nmの吸光度をマイクロプレー トリーダーで測定した。発色量OD650 nm が0.3 以上を示 50 すものは、抗ヒトTNFー α ヒトFab 抗体の産生能が高い陽性クローンと判定した。評価を試みた12個のコニーのうち、陽性クローン4個が存在していた。この4個のクローンから、発現ベクターを再度抽出して、 κ 鎖をコードするDNA断片及び μ 鎖をコードするDNA断片及び μ 鎖をコードするDNA断片及び μ 鎖をコードするDNA断片及び μ 数の再シークエンがら、全く同じ塩基配列であった。即ち、上述の塩基配列(II)に示されるものであった。くて、 2 及び塩基配列(II)に示されるものであった。 具体的には、これらの4つのクローンが保有している発現ベクターは、図2に概略図を示す抗ヒトTNFー α とトである現のクローンは、遺伝子は全く同じであり、同の菌株であることになる。

【0067】なお、前記手順に準じて、残りの分離され たL鎖をコードするcDNA、具体的には、λ鎖のもの が1種、κ鎖のものが2種、H鎖をコードするcDN A、具体的には、y鎖のものが1種から、L鎖をコード するcDNAとH鎖をコードするcDNAの各組み合わ せについて、大腸菌においてFab 抗体を産生する発現べ クター系; pFab-His2 ベクターにクローニングして、そ れぞれ組換えベクターを作製し、それぞれ宿主大腸菌JM _109 株に導入して、用いた発現ベクターpFab-His2 内の マーカー遺伝子;アンピシリン耐性遺伝子を用いて、ア ンピシリンプレート上でコロニーを形成させ、各クロー ンを分離した。しかしながら、これらの組換え菌は、Fa b 抗体を産生するものが存在したが、ヒトTNFーαに 対する反応性を前記の方法で評価したところ、いずれも 反応性を有するものではなかった。なお、同時に分離さ れた残るκ鎖の2種について、参考のため、その塩基配 列並びにそこにコードされるアミノ酸配列を図5と図6 に示す。これらのκ鎖を有するFab 抗体は、ヒトTNF αに対する反応性を有するものではなかった。

[0068]

【発明の効果】本発明の組換え型抗ヒトTNFー α ヒトモノクローナル抗体は、宿主大腸菌により産生されるヒトFab 抗体であるので、大量かつ安定に生産でき、加えて、汎用の手段により容易に不純物、汚染蛋白質等の除去ができ、極めて純度の高いものとすることができる。そのため、実験試薬としての利用、更には臨床応用に適するものである。また、該ヒトFab 抗体のH鎖とL鎖をそれぞれコードするDNAは、宿主大腸菌による産生に利用されるのは当然のことであるが、その塩基配列情報に基づき、種々のプライマーの作製にも応用できる。

[0069]

【配列表】

配列番号:1

配列の長さ:223 配列の型:アミノ酸 トポロジー:直鎖状

```
22
```

```
配列の種類:タンパク質
                 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
                                   5
                                                     10
                 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                                                 25
                 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                                             40
                 Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
                                                            60
                                        55
                 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
                                                         75
                                     70
                 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                                     90
                                  85
                 Ala Lys Asp Ser Gly Asp Leu Ala Phe Asp Ile Trp Gly Gln Gly Thr
                                                105
                 Met Val Thr Val Ser Ser Gly Ser Ala Ser Ala Pro Thr Leu Phe Pro
                                            120
                 Leu Val Ser Cys Glu Asn Ser Pro Ser Asp Thr Ser Ser Val Ala Val
                                      135
                 Gly Cys Leu Ala Gln Asp Phe Leu Pro Asp Ser Ile Thr Phe Ser Trp
                                                        155
                - Lys-Tyr Lys Asn Asn Ser Asp Ile Ser Ser Thr Arg Gly Phe Pro Ser
                                                    170
                                 165
                  Val Leu Arg Gly Gly Lys Tyr Ala Ala Thr Ser Gln Val Leu Leu Pro
                                                185
                 Ser Lys Asp Val Met Gln Gly Thr Asp Glu His Val Val Cys Lys Val
                                            200
                  Gln His Pro Asn Gly Asn Lys Glu Lys Asn Val Pro Leu Pro Val
                                         215
                                                            220
                                                      鎖の数:二本鎖
【0070】配列番号:2
                                                      トポロジー:直鎖状
配列の長さ:669
                                                      配列の種類:cDNA to mRNA
配列の型:核酸
                  配列
                  CAA GTG CAG CTG GTG GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG
                                                                                   48
                  Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
                                                     10
                  TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT AGC TAT
                  Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
                              20
                  GGC ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAG TGG GTG
                                                                                   144
                  Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
                  GCA GTT ATA TCA TAT GAT GGA AGT AAT AAA TAC TAT GCA GAC TCC GTG
                                                                                   192
                  Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
                                          55
                  AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACG CTG TAT
                                                                                   240
```

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

CTG CAA ATG AAC AGC CTG AGA GCT GAG GAC ACG GCT GTG TAT TAC TGT

75

288

```
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
                                      90
                 85
GCG AAA GAT TCC GGT GAC CTT GCT TTT GAT ATC TGG GGC CAA GGG ACA
                                                                    336
Ala Lys Asp Ser Gly Asp Leu Ala Phe Asp Ile Trp Gly Gln Gly Thr
                                105
            100
ATG GTC ACC GTC TCT TCA GGG AGC GCA TCC GCC CCA ACC CTT TTC CCC
                                                                    384
Met Val Thr Val Ser Ser Gly Ser Ala Ser Ala Pro Thr Leu Phe Pro
                             120
CTC GTC TCC TGT GAG AAT TCC CCG TCG GAT ACG AGC AGC GTG GCC GTT
                                                                    432
Leu Val Ser Cys Glu Asn Ser Pro Ser Asp Thr Ser Ser Val Ala Val
                        135
GGC TGC CTC GCA CAG GAC TTC CTT CCC GAC TCC ATC ACT TTC TCC TGG
                                                                    480
Gly Cys Leu Ala Gln Asp Phe Leu Pro Asp Ser Ile Thr Phe Ser Trp
                    150
                                         155
AAA TAC AAG AAC AAC TCT GAC ATC AGC AGC ACC CGG GGC TTC CCA TCA
                                                                    528
Lys Tyr Lys Asn Asn Ser Asp Ile Ser Ser Thr Arg Gly Phe Pro Ser
                                     170
CTC CTG AGA GGG GGC AAG TAC GCA GCC ACC TCA CAG GTG CTG CCT
                                                                    576
Val Leu Arg Gly Gly Lys Tyr Ala Ala Thr Ser Gln Val Leu Leu Pro
                                185
TCC AAG GAC GTC ATG CAG GGC ACA GAC GAA CAC GTG GTG TGC AAA GTC
                                                                    624
Ser Lys Asp Val Met Gln Gly Thr Asp Glu His Val Val Cys Lys Val
 - --- - 195- --- --- ---
                             200
CAG CAC CCC AAC GGC AAC AAA GAA AAG AAC GTG CCT CTT CCA GTG
                                                                    669
Gln His Pro Asn Gly Asn Lys Glu Lys Asn Val Pro Leu Pro Val
```

【0071】配列番号:3

配列の長さ:214 配列の型:アミノ酸 トポロジー:直鎖状

220

配列の種類:タンパク質

Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 10 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 40 Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Val Arg Phe Ser Gly 55 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Leu Gln Arg Asp Asn Trp Pro Trp 90 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 120 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 140 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 155 150 145

26

		2.	,														
	Glu	Ser	Val	Thr	G1u 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser	
	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr	
	Ala	Cys	G1u 195		Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser	
	Phe		Arg	Gly	Glu	Cys											
[0070] XIXIX	д.,	210								鉛	の数	–	本錐	í			
【0072】配列番	75 : 4	4							10		ポロ						
配列の長さ:642 配列の型:核酸											· !列の					RNA	
配列の生、核酸	配列	í								•							
			GTG	ATG	ACG	CAG	TCT	CCA	GCC	ACC	CTG	TCT	TTG	TCT	CCA	GGG	48
			Val														
	1				5					10					15		
			GCC														96
	Glu	Arg	Ala	Thr . 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Tyr	
	TTA	GCC	TGG		CAA	CAG	AAA	CCT	GGC	CAG	GCT	CCC	AGG	CTC	CTC	ATC	144
			Trp														
			35	•				40					45				
			GCA														192
·	Tyr	Asp 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Val 60	Arg	Phe	Ser	Gly	
	۸CT		TCT	- 000	ΔCΔ	GAC		ACT	стс	ACC	ATC		AGC	СТА	GAG	CCT	240
			Ser														
	65	013	001	0.7	••••	70					75					80	
		GAT	TTT	GCA	GTT	TAT	TAC	TGT	CTT	CAG	CGT	GAC	AAC	TGG	CCG	TCC	288
			Phe														
		_			85					90					95		
			GGC														336
	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr			Ala	
				100					105				mmo	110		004	204
	CCA	TCT	GTC	TTC	ATC	TTC	CCG	CCA	TCT	GAT	GAG	CAG	116	AAA	101	Class	384
	Pro	Ser	Val	Phe	He	Phe	Pro		Ser	Asp	GIU	GIN	125		Sei	Gry	
	ACT	ccc	115 TCT	CTT	CTC	ፐርር	ሮፐር	120	ΔΔΤ	AAC	TTC	ТАТ			GAG	GCC	432
			Ser														
		130					135					140					
			CAG														480
	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu		Ser	Gly	Asn	Ser		
	145					150					155		~		ото	160	500
			GTC														528
	Glu	Ser	Val	Thr			Asp	Ser	Lys			lhr	lyr	5er		5er	
					165			COT	CAC	170		A A A	CAC	A A A	175 crc	ገልፐ	576
			CTG														310
	Ser	Ihr	Leu	1hr 180		ser	ьys	ита	лsр 185		Giu	Lys	1113	190		. y i	
	ርርር	ተርሶ	GAA			САТ	CAG	GGC			TCG	CCC	GTC			AGC	624
		. 100	OAA	17 .	TO C	II.	C1-				200					_	

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser

TTC AAC AGG GGA GAG TGT Phe Asn Arg Gly Glu Cys 642

28

210

27

195

【0073】配列番号:5

配列の長さ:642 配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

205

配列	
GAC ATC CAG TTG ACC CAG TCT CCT TCC ACC CTG TCT GCA TCT GTA GG	
Asp Ile Gln Leu Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gl	у
1 5 10 15	
GAC AGA GTC ACC ATC ACT TGC CGG GCC AGT CAG AGT ATT AGT AGC TG	
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tr	P
20 25 30	°C 144
TTG GCC TGG TAT CAG CAG AAA CCA GGG AAA GCC CCT AAG CTC CTG AT	
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Il	е
35 40 45	C 192
TAT AAG GCG TCT AGT TTA GAA AGT GGG GTC CCA TCA AGG TTC AGC GC Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gl	
	J
AGT GGA TCT GGG ACA GAA TTC ACT CTC ACC ATC AGC AGC CTG CAG CC	T 240
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pr	
-	30
GAT GAT TIT GCA ACT TAT TAC TGC CAA CAG TAT AAT AGT TAT TCT CC	GG 288
Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Ser Ar	
85 90 95	
ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC AAA CGA ACT GTG GCT GC	CA 336
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Al	a
100 105 110	
CCA TCT GTC TTC ATC TTC CCG CCA TCT GAT GAG CAG TTG AAA TCT GC	
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gl	ı y
115 120 125	
ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC TTC TAT CCC AGA GAG GC	
Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Al	a
130 135 140	400
AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC CAA TCG GGT AAC TCC CA	
Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gl	in 60
145	
CAG ACT CTC ACA GAG CAG GAC AGC AAG GAC ACC TAC AGC CTC AC	
Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Se 165 170 175	-1
AGC ACC CTG ACG CTG AGC AAA GCA GAC TAC GAG AAA CAC AAA GTC TA	AC 576
Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Ty	
180 185 190	, .
GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC TCG CCC GTC ACA AAG AG	GC 624
Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Se	
195 200 205	
TTC AAC AGG GGA GAG TGT	642
Phe Asn Arg Gly Glu Cys	
210	,

240

```
トポロジー:直鎖状
【0074】配列番号:6
                                                     配列の種類:タンパク質
配列の長さ:214
配列の型:アミノ酸
                 配列
                 Asp Ile Gln Leu Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
                                                    10
                 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Trp
                                                 25
                 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
                                            40
                 Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly
                                         55
                 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
                                                        75
                                     70
                 Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Ser Arg
                                 85
                                                     90
                 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
                                                105
                 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
                                           120
                 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
                                                           140
                 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
                                                       155
                                    150
                 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
                                                    170
                 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
                                                185
                 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
                                            200
                                                               205
                         195
                 Phe Asn Arg Gly Glu Cys
                     210
                                                      鎖の数:二本鎖
 【0075】配列番号:7
                                                      トポロジー:直鎖状
配列の長さ:660
                                                      配列の種類:cDNA to mRNA
配列の型:核酸
                  配列
                  GAA ATT GTG TTG ACG CAG TCT CCA GAC TCC CTG GCT GTG TCT CTG GGC
                                                                                   48
                  Glu Ile Val Leu Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
                                   5
                                                     10
                   1
                  GAG AGG GCC ACC ATC AAC TGC AAG TCC AGC CAG AGT GTT TTA TAC AGC
                                                                                   96
                  Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
                  TCC AAC AAG AAG AAC TAC CTA GCT TGG TAC CAG CAG AAA CCA GGA CAG
                                                                                  144
                  Ser Asn Lys Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
                          35
                  CCT CCT AAG CTG CTC ATT TAC TGG GCA TCT ACC CGG GAA TCC GGG GTC
                                                                                  192
                  Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
```

CCT GAC CGA TTC AGT GGC AGC GGG TCT GAG ACA GAT TTC ACC CTC ACC

Pro Asp Arg Phe Ser Gly Ser Gly Ser Glu Thr Asp Phe Thr Leu Thr

```
75
                                      70
                  65
                 ATC AGC AGC CTG CAG CCT GAA GAT GTG GCA GTT TAT TAC TGT CAG GAA
                                                                                    288
                 lle Ser Ser Leu Gln Pro Glu Asp Val Ala Val Tyr Tyr Cys Gln Glu
                 TAT TAT ACT ATT CCT CGG ACT TTT GGC CAG GGG ACC AAG CTG GAG ATC
                                                                                    336
                 Tyr Tyr Thr Ile Pro Arg Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
                                                 105
                 AAA CGA ACT GTG GCT GCA CCA TCT GTC TTC ATC TTC CCG CCA TCT GAT
                                                                                    384
                 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
                                             120
                                                                                    432
                 GAC CAG TTG AAA TCT GGA GCT GCC TCT GTT GTG TGC CTG CTG AAT AAC
                 Asp Gln Leu Lys Ser Gly Ala Ala Ser Val Val Cys Leu Leu Asn Asn
                 TTC TAT CCC AGA GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC
                                                                                    480
                 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
                                     150
                                                         155
                 CAA TCG GGT AAC TCC CAG GAG AGT GTC ACA GAG CAG GAC AGC AAG GAC
                                                                                    528
                 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
                                                                         175
                                 165
                                                     170
                 AGC ACC TAC AGC CTC AGC AGC ACC CTG ACG CTG AGC AAA GCA GAC TAC
                                                                                    576
                 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
                                                                     190
                                                 185
                 GAG AAA CAC AAA CTC TAC GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC
                                                                                    624
                 Glu Lys His Lys Leu Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
                                             200
                                                                                    660
                 TCG CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG TGT
                 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                                         215
                                                        トポロジー:直鎖状
【0076】配列番号:8
                                                       配列の種類:タンパク質
配列の長さ:220
配列の型:アミノ酸
                 Glu Ile Val Léu Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
                                                      10
                                   5
                   1
                 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
                                                  25
                  Ser Asn Lys Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
                  Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
                                          55
                  Pro Asp Arg Phe Ser Gly Ser Gly Ser Glu Thr Asp Phe Thr Leu Thr
                                      70
                  Ile Ser Ser Leu Gln Pro Glu Asp Val Ala Val Tyr Tyr Cys Gln Glu
                                                      90
                  Tyr Tyr Thr Ile Pro Arg Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
                                                 105
                  Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
                                             120
```

Asp Gln Leu Lys Ser Gly Ala Ala Ser Val Val Cys Leu Leu Asn Asn

135

130

140

215

【図面の簡単な説明】

【図1】Fab 抗体発現ベクターpFab-His2 の構造を示す図。

210

【図2】本発明の組換え型抗ヒトTNFー α ヒトFab 抗体の発現ベクターp1D5-1の構造を模式的に示す図。

【図3】本発明の組換え型抗ヒト $TNF-\alpha$ ヒトFab 抗体のH鎖のアミノ酸配列(I)とそれをコードする cD NAの塩基配列(I)を示す図。

【図4】本発明の組換え型抗ヒトTNFーαヒトFab 抗 体のL鎖のアミノ酸配列(II)とそれをコードするcD NAの塩基配列(II)を示す図。

220

【図5】細胞株1D5 株(EBV transformed B lymphocyte s oligo clone)から採取された κ 鎖をコードするcD NA三種の一つの塩基配列及びそれがコードするアミノ酸配列を示す図。

【図6】細胞株1D5 株 (EBV transformed B lymphocyte s oligo clone) から採取された κ鎖をコードする c D N A 三種の他一つの塩基配列及びそれがコードするアミノ酸配列を示す図。

【図1】

【図3】

1	CAAGTGCAGCTGGTGGAGTCTGGGGGGGGGCGTCCCTGAGACTCCGAAGTGCAGGTCCCTGAGACTCCCAAGTGCAGCTGCAGAGTCCCTGAGACTCCCAAGTGCAGAGTCCCTGAGACTCCCAAGTGCAGAGTCCCTGAGACTCCCAAGTGCAGAGTCCCTGAGACTCCCAAGTGCAGAGTCCCTGAGACTCCCTGAGACTCCCAAGTCCCAAGTCCCTGAGACTCCTGAGACTCTAGACTAACTA	60
	GlnValGinLeuValGiuSerGiyGiyGiyValValGina 10017.mggd220 am ga	
61	TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCT	120
	SerCysAlaAlaSerGlyPheThrPheSerSerTyrGlyMetHisTrpValArgGlnAla	
	CDR1	
101	CCAGGCAAGGGGCTGGAGTGGCAGTTATATCATATGATGGAAGTAATAAATA	180
121	Procled and language to the control of the control	
	CDR2	
	The second secon	240
181	GCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTAT AlaAspSerValLysGlyArgPheThrIleSerArgAspAsnSerLysAsnThrLeuTyr	210
	Alangpatvathyaasyntathetatatatatata	
241	CTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGATTCC	300
74T	LeuGlnMetAsnSerLeuArgAlaGluAspThrAlaValTyrTyrCysAlaLysAspSer	
	^^^^^	
301	GGTGACCTTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGGGAGC	360
	GlyAspLeuAlaPheAspIleTrpGlyGlnGlyThrMetValThrValSerSerGlySer	
	CDR3 CH1	
	GCATCCGCCCCAACCCTTTTCCCCCTCGTCTCCTGTGAGAATTCCCCGTCGGATACGAGC	420
361	AlaSerAlaProThrLeuPheProLeuValSerCysGluAsnSerProSerAspThrSer	
421	AGCGTGGCCGTTGGCTCGCACAGGACTTCCTTCCCGACTCCATCACTTTCTCCTGG	480
421	SerValAlaValGlyCysLeuAlaGlnAspPheLeuProAspSerIleThrPheSerTrp	
481	AAATACAAGAACAACTCTGACATCAGCAGCACCCGGGGCTTCCCATCAGTCCTGAGAGGG	540
401	LysTyrLysAsnAsnSerAspIleSerSerThrArgGlyPheProSerValLeuArgGly	
541	GGCAAGTACGCAGCCACCTCACAGGTGCTGCTGCCTTCCAAGGACGTCATGCAGGGCCACA	60
772	GlyLysTyrAlaAlaThrSerGlnValLeuLeuProSerLysAspValMetGlnGlyThr	-
	GACGAACACGTGGTGTGCAAAGTCCAGCACCCCAACGGCAACAAAGAAAAGAACGTGCCT	66
601	GACGAACACGTGGTGTGCAAAGTCLAGCACCCCAACGGCAACHISCIBLISCIB	
	USTOTEMENT AND	
661	CTTCCAGTG 669	
	LeuProVal	

【図4】

1	CAAATTGTGATGACGCAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGGGCCACC	60
	GluTleValMetThrGlnSerProAlaThrLeuSerLeuSerProGlyGluArgAlaThr	
61	CTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCT	120
	LeuSerCysArgAlaSerGlnSerValSerSerTyrLeuAlaTrpTyrGlnGlnLysPro	
	CDR1	
121	GGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGTC	180
	GlyGlnAlaProArgLeuLeulleTyrAspAlaSerAsnArgAlaThrGlyIleProVal	
	000000000000000000000000000000000000000	
	CDR2	
181	AGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCT	240
	ArgPheSerGlySerGlyThrAspPheThrLeuThrlleSerSerLeuGluPro	
		300
241	GAAGATTTTGCAGTTTATTACTGTCTTCAGCGTGACAACTGGCCGTGGACGTTCGGCCAA GluAspPheAlaValTyrTyrCysLeuGlnArgAspAsnTrpProTrpThrPheGlyGln	
	GIOAEPPREATEVETTY TYLCYS DEGULAR SAMPLE PROPERTY OF THE PROPER	
	CDR3	
301	GGGACCAAGGTGGAAATCAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCA	360
301	GlyThrLysValGluIleLysArgThrValAlaAlaProSerValPheIlePheProPro	
	CP	
361	TCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTAT	420
	SerAspGluGlnLeuLysSerGlyThrAlaSerValValCysLeuLeuAsnAsnPheTyr	
		480
421	CCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAG ProArgGluAlaLysValGlnTrpLysValAspAsnAlaLeuGlnSerGlyAsnSerGln	400
	ProArgGluAlabysvalGinTrpbysvalAspAsiAtabecolloctory	
481	GAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACG	540
	GluSerValThrGluGlnAspSerLysAspSerThrTyrSerLeuSerSerThrLeuThr	
	CTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGC	600
541	LeuSerLysAlaAspTyrGluLysHisLysValTyrAlaCysGluValThrHisGlnGly	
	mannan mil nesyminals of a mannal moore of a man	
601	CTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT 642	
	LeuSerSerProValThrLysSerPheAsnArgGlyGluCys	

【図5】

10	20	30	40	50	60
CACATOCACTT	CACCCAGTCTCC	TTCCACCCTC	PCTGCATCTG:	PACGAGACAG	AGTCACC
AspileGlnLe	uThrGlnSerPr	oSerThrLeu!	SerAlaSerVa	alGlyAspArı	TVALTER
70	80	90	100	110	120
ATCACTTGCCG	GCCAGTCÁGAG gAlaSerGlnSe	rileserser	rmieualati	OTVIGINGLE	LVSPro
Henneyshi	gritabei				-
130	140	150	160	170	180
COCABACCITIC	ייים ביים איים מיים מיים מיים מיים מיים מיים מ	CTATARGGCG	PCTAGTTTAG	AAGTGGGGT	CCATCA
GlyLysAlaPro	oLysLeuLeuIl	eTyrLysAla:	SerSerLeuG]	userGlyVa	lProSer
190	200	210	220	230	240
AGGTTCAGCGG	CACTCCATCTGG ySerGlySerGl	CACAGAATTC	ACTCTCACCAI	CAGCAGCCT(SCAGCCT IG1nPTO
ArgPheSerGi	yserGlyserGl	ymigiupne.	IIII Dearm 11	reser ser se.	
		222	280	290	300
250	260 аасттаттастс	270 CCAACAGTAT	ANTAGTTATTO	TCGGACGTT	GGCCAA
AspAspPheAl	aThrTyrTyrCy	sGlnGlnTyx	AsnSerTyrSe	erArgThr Phe	-GlyGln
310	320	330	340	350	360
GGGACCAAGGT	GGAAATCAAACG	AACTGTGGCT	CACCATCIG	CTTCATCTT	CCGCCA
GlyThrLysVa	lGluIleLysAr	gThrValA132	Marroserva	Thuerrehm	SPLOPIO
				*10	420
370	380 GTTGAAATCTGG	390 ************************************	400 ===================================	410 GCEGAATAAC	
SerAspGluGl	nLeuLysSerGl	yThrAlaSer\	valValCysLe	uLeuAsnAsı	PheTyr
					•
430	440	450	460	470	480
CCCACACACACCC	CAAACTACACTG	GAAGGTGGATI	AACGCCCTCCA	ATCGGGTAAC	TCCCAG
ProArgGluAl:	aLysValGlnTr	pLysValAsp/	ASDA LaLeuGI	Insergryasi	rzerem
490	500 AGAGCAGGACAG	510	520	530 ~~accaccac	540 CTGACG
GAGAGIGICAC GluSerValTh	AGAGCAGGACAG rGluGlnAspSe	rlysaspser	ThrTyrSerLe	nSerSerTh	LeuThr
	-	•			
550	560	570	580	590	600
CHCACCAAACC	AGACTACGAGAA	ACACAAAGTC	PACGCCTGCG	AGTCACCCAT	CAGGGC
LeuSerLysAl	aAspTyrGluLy	sHisLysVall	IYTA1 aCYSG1	MATTITHE	зещету
		-0-			
610	620 CCTCACAAAGAG	630	640 Эсасастст		
TeuSerSerPr	ovalThrLysSe	rPheAsnArd	GlyGluCys		
L. GOCK COLL I A	, 000				

【図6】

30 40 20 GAAATTGTGTTGACGCAGTCTCCAGACTCCCTGGCTGTCTCTCTGGGCGAGAGGGCCCACC ${\tt GluIleValLeuThrGlnSerProAspSerLeuAlaValSerLeuGlyGluArgAlaThr}$ 100 80 90 ATCAACTGCAACTCCAGCCAGAGTGTTTTATACAGCTCCAACAAGAAGAACTACCTAGCT ${\tt IleAsnCysLysSerSerGlnSerValLeuTyrSerSerAsnLysLysAsnTyrLeuAlau}$ 160 150 TOOTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCTCATTTACTGGGCATCTACCCGG TrpTyrGlnGlnLysProGlyGlnProProLysLeuLeuIleTyrTrpAlaSerThrArg 230 200 210 220 GAATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGAGACAGATTTCACCCTCACC GluSerGlyValProAspArgPheSerGlySerGlySerGluThrAspPheThrLeuThr 290 250 260 270 280 ATCAGCAGCCTGCAGCCTGAAGATGTGGCAGTTTATTACTGTCAGGAATATTATACTATT IleSerSerLeuGlnProGluAspValAlaValTyrTyrCysGlnGluTyrTyrThrIle 340 350 320 330 CCTCCGACTTTTCGCCACGCGACCAAGCTGGAGATCAAACGAACTGTGGCTCCACCATCT ${\tt ProArgThrPheGlyGlnGlyThrLysLeuGluIleLysArgThrValAlaAlaAlaProSer}$ 370 380 400 GICTICATCTTCCCGCCATCTGATGACCAGTTGAAATCTGGAGCTGCCTCTGTTGTGTGC ValPheIlePheProProSerAspAspGlnLeuLysSerGlyAlaAlaSerValValCys 450 440 CTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTC LeuLeuAsnAsnPheTyrProArgGluAlaLysValGlnTrpLysValAspAsnAlaLeu 510 520 530 490 500 CANTCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCACAGCACCTACAGC GlnSerGlyAsnSerGlnGluSerValThrGluGlnAspSerLysAspSerThrTyrSer 570 580 590 CTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAACTCTACGCCTGC LeuSerSerThrLeuThrLeuSerLyaAlaAspTyrGluLyaHisLyaLeuTyrAlaCya

630

GAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT GluValThrHisGlnGlyLeuSerSerProValThrLysSerPheAsnArgGlyGluCys

620

フロントページの続き

(72) 発明者 竹腰 史子

神奈川県伊勢原市大住台3-9-1 ベルフララーズ大住台2-501