Solución a la tarea del 13 de mayo de 2016

a)
$$f(x) = \begin{cases} -x^2, & x \le 1\\ 2x + 1, & x > 1 \end{cases}$$

TROZO 1

$$f(x) = -x^2 \to \begin{cases} a = -1\\ b = 0\\ c = 0 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot (-1)} = 0$$

$$v_y = f(v_x) = f(0) = -0^2 = 0$$

$$V = (0,0)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para $x \le 1$

				v	
x	-3	-2	-1	0	1
f(x)	-9	-4	-1	0	7

TROZO 2

$$f(x) = 2x + 1$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

х	1	2
f(x)	3	5

 $Dom\big(f(x)\big)=\mathbb{R}$

 $Im(f(x)) = (-\infty, 0] \cup (3, +\infty)$ Creciente: $(-\infty, 0) \cup (1, +\infty)$ Decreciente: (0, 1)

Discontinuidades: x = 1

 $Max. \rightarrow (0,0)$ *Corte ejeX*: (0,0) *Corte ejeY*: (0,0)

b)
$$f(x) = \begin{cases} -2, & x < -2\\ x+3, & -2 < x < 0\\ x^2 - 2x, & x > 0 \end{cases}$$

$$f(x) = -2$$

Se trata de una función constante, que se representa gráficamente con una recta paralela al eje X a la altura de y=-2

TROZO 2

$$f(x) = x + 3$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

x	-2	0
f(x)	1	3

TROZO 3

$$f(x) = x^2 - 2x \rightarrow \begin{cases} a = 1 \\ b = -2 \\ c = 0 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-(-2)}{2 \cdot 1} = \frac{2}{2} = 1$$

$$v_y = f(v_x) = f(1) = 1^2 - 2 \cdot 1 = -1$$

$$V = (1, -1)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para x>0

		v			
x	0	1	2	3	4
f(x)	0	-1	0	3	8

 $Dom(f(x)) = \mathbb{R} - \{-2, 0\}$

 $Im(f(x)) = \{-2\} \cup [-1, +\infty)$

Creciente: $(-2,0) \cup (1,+\infty)$ Decreciente: (0,1)

Decreciente: (0,1)Constante: $(-\infty, -2)$

Discontinuidades: $x = \{-2, 0\}$

 $Min. \rightarrow (1, -1)$ $Corte\ ejeX: (2, 0)$

$$c) f(x) = \begin{cases} -x, & x < 0 \\ x^2, & x > 0 \end{cases}$$

$$f(x) = -x$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

x	-2	0
f(x)	2	0

TROZO 2

$$f(x) = x^2 \to \begin{cases} a = 1\\ b = 0\\ c = 0 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 1} = 0$$
$$v_y = f(v_x) = f(0) = 0^2 = 0$$
$$V = (0,0)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para x>0

	v			
x	0	1	2	3
f(x)	0	1	4	9

 $Dom(f(x)) = \mathbb{R} - \{0\}$ $Im(f(x)) = (0, +\infty)$ $Creciente: (0, +\infty)$

Decreciente: $(-\infty, 0)$ Discontinuidades: x = 0

d)
$$f(x) = \begin{cases} x+4, & x < 1 \\ x^2 - 4x, & x \ge 1 \end{cases}$$

$$f(x) = x + 4$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

х	0	1
f(x)	4	5

TROZO 2

$$f(x) = x^{2} - 4x \to \begin{cases} a = 1 \\ b = -4 \\ c = 0 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-(-4)}{2 \cdot 1} = \frac{4}{2} = 2$$

$$v_y = f(v_x) = f(2) = 2^2 - 4 \cdot 2 = -4$$

$$V = (2, -4)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para $x \ge 1$

		v			
x	1	2	3	4	5
f(x)	-3	-4	-3	0	9

 $Dom\big(f(x)\big)=\mathbb{R}$ $Im\big(f(x)\big)=\mathbb{R}$

Creciente: $(-\infty, 1) \cup (2, +\infty)$ Decreciente: (1, 2)

Discontinuidades: x = 1

 $Min. \rightarrow (2, -4)$ Corte ejeX: (4,0)Corte ejeY:(0,4)

e)
$$f(x) = \begin{cases} -x+1, & x < 0 \\ -x^2 + 1, & x > 0 \end{cases}$$

$$f(x) = -x + 1$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

x	-1	0
f(x)	0	1

TROZO 2

$$f(x) = -x^{2} + 1 \to \begin{cases} a = -1 \\ b = 0 \\ c = 1 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot (-1)} = 0$$

$$v_y = f(v_x) = f(0) = -0^2 + 1 = 1$$

$$V = (0, 1)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para x>0

	υ			
x	0	1	2	3
f(x)	1	0	-3	-8

 $Dom\big(f(x)\big)=\mathbb{R}-\{0\}$

 $Im(f(x)) = (-\infty, 1)$

Creciente: $(-\infty, 0)$ Decreciente: $(0, +\infty)$

Discontinuidades: x = 0

 $Max. \rightarrow (0, 1)$

Corte ejeX: (-1,0)(1,0)