Výroková logika - Cheat sheet

Martin Všetička

3. prosince 2008, 22:46

Zkratky:

(A & B) je zkratka za $\neg (A \rightarrow \neg B)$

 $(A \vee B)$ je zkratka za $(\neg A \rightarrow B)$

 $(A \leftrightarrow B)$ je zkratka za $(A \to B)$ & $(B \to A)$

Axiomy:

(A1)
$$A \rightarrow (B \rightarrow A)$$

(A2)
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

(A3)
$$(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$

Věty:

(V1)
$$\vdash A \rightarrow A$$

(V2)
$$\vdash \neg A \rightarrow (A \rightarrow C)$$
 (C je cokoliv!)

(V3)
$$\vdash \neg \neg A \rightarrow A$$

$$(V4) \vdash A \rightarrow \neg \neg A$$

(V5)
$$\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 (s A3 tvoří ekvivalenci)

(V6)
$$\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$$

$$(\mathbf{V7}) \vdash (\neg A \rightarrow A) \rightarrow A$$

DNF & CNF prerekvizity:

(de Morgan (i)) $\vdash \neg (A \& B) \leftrightarrow (\neg A \lor \neg B)$

(de Morgan (ii)) $\vdash \neg (A \lor B) \leftrightarrow (\neg A \& \neg B)$

(distributivnost (i)) $\vdash (A \& (B \lor C) \leftrightarrow ((A \& B) \lor (A \& C))$

(distributivnost (ii)) $\vdash (A \lor (B \& C) \leftrightarrow ((A \lor B) \& (A \lor C))$

Věty & Lemmata:

(VD)
$$T \vdash A \to B \Leftrightarrow T \cup \{A\} \vdash B$$

$$(\mathbf{KF})$$
 $T \vdash A \& B \Leftrightarrow T \vdash A \land T \vdash B$

(KI)
$$T \vdash A \leftrightarrow B \Leftrightarrow T \vdash A \to B \land T \vdash B \to A$$

(Věta o důkazu sporem) $T \vdash A \Leftrightarrow T \cup \{\neg A\}$ je sporná.

(Lemma o důkazu rozborem případů) Nechť T je množina formulí a A,B,C jsou formule. Potom platí:

$$T, A \lor B \vdash C \Leftrightarrow T, A \vdash C \land T, B \vdash C$$

(Věta o kompaktnosti) Množina formulí T je splnitelná, právě když je splnitelná každá její konečná podmnožina $T'\subseteq T$

(Věta o bezespornosti a splnitelnosti) Je-li T množina formulí, potom platí:

T je bezesporná $\Leftrightarrow T$ je splnitelná.

(Věta o úplnosti) Nechť T je množina formulí a A je libovolná formule. Potom platí:

$$T \vdash A \Leftrightarrow T \vDash A$$

Lemmata o modelech teorií:

Ekvivalentní teorie T je ekvivalentní s $S \Leftrightarrow M(T) = M(S)$

Dokazatelnost $T \vdash A \Leftrightarrow M(T) \subseteq M(A)$

Rozšíření teorie T' je rozšíření teorie $T \Leftrightarrow M(T') \subseteq M(T)$