Corrège' succint du partiel du 18 octobre 2020

Exercice 1:

- 1.) On prent prendre for: x -> MX (1-x).
- 2.) a.) $u_n = \frac{1}{m}$ b.) $u_m = \frac{(-1)^n}{n}$ c.) u_m neted per vero 0 ninon = 0, done oni. 3) a.) Our car $\sqrt{u_n v_n} \leq \frac{1}{2} \left(u_m + v_m \right)$ b.) Non en present $u_m = v_n = \frac{(-1)^m}{n}$.
- 4.) a.) Voir le cours
 - b.) Ferine |fn(xm)-f(x00)| = |fn(xm)-f(xm)|+ |f(xm)-f(x00)| < | fm-f | 00 + | f(xn) - f(x00) |

Comme for CVU vers f, fest continue par ai) donc |f(xm)-f(xw)|->0. Par. CUU, Ilfa-fllos -0. Amor fa(xa) -> f(xoo).

Exercu 2: Iai, meIN*.

- 1.) Par croisonce comparée, x lu(x) -10 quad x -10. Il faut prendre Un(0) = 0.
- 2) Si x=1, Mn(1) = 0. Sixon |xmanlux| 5||xmlux| = 0. Done un
- 3.) Etudians $\|x^m \ln x\|_{\infty}$. On a $(x^m \ln x)' = x^{m-1}(n \ln x + 1)$ donc $\|x^m \ln x\|$ attent son sup en $e^{-\frac{1}{2}}h$. On en destint $\|x^m \ln x\|_{\infty} = \frac{1}{ne}$. Anni un coo mi any tend ver O.

Exercice 3:

- 1') $a_m = \frac{(-1)^m}{n^{3/3}} + \frac{1}{n^{2/3}} + o\left(\frac{1}{n^{2/3}}\right)$, comm $\frac{1}{n^{2/3}} + o\left(\frac{1}{n^{2/3}}\right) \sim \frac{1}{n^{2/3}}$, le STG un est DV.
- 2') $b_m^{1/2} = \frac{1}{1+n^2} \rightarrow 0$ donc le STG b_n converge par Cauchy.
- $G_n = (1 + \ln(1 + \frac{1}{n}))^{\frac{1}{2}} 1 \frac{1}{n} = (1 + \frac{1}{n} + O(\frac{1}{n^2}))^{\frac{1}{2}} 1 \frac{1}{n}$

3.)
$$C_n = (1 + \ln(1 + \frac{1}{n}))^{\frac{1}{2}} - 1 - \frac{1}{n} = (1 + \frac{1}{n} + 0(\frac{1}{n^2})) - 1 - \frac{1}{n}$$

$$= 1 + \frac{1}{2n} + 0(\frac{1}{n^2}) - 1 - \frac{1}{n} = (\frac{1}{2} - \frac{1}{\beta}) \cdot \frac{1}{n} + 0(\frac{1}{n^2})$$
Use ST6 C_n diverge m : $\frac{1}{\beta} + \frac{1}{2}$.

- Exercise 4 1)a) On a |an un | & |u|oo (an) donc par comparaisan, n'he 5TG (an) Or, alors la 8TG anum aussi
 - bi) On a anua = lante in un ou l'an a cint an = lante in. Prenche Un = e-ion convient. C'ab ausa' un = da
 - c.) Si Elant converge alos an rénfié P. Si Elant divenge alos an renfié P. Si Elant divenge alos an renfié P. Si Elant divenge alos an renfié pas P con il exerte un top anum et le TG d'une serve drengeli. tum an reinfer P mi Ipm < 00.

- 2:) a) i·) $a_n = \sum_{k=0}^{n-1} (a_{k+1} a_{k}) + a_0$ donc a_n converge so le STE $a_{k+1} a_k$ converge, a qui et le ais air elle est abs. conv.
- ii) C'et la transformation d'Abel du cours.
- iii) the UN converge can be STG un converge. Par i), an a une limite. Donc an UN auson. De plus [(m-an+1)[Un] | | |an-an+1||U| done le STG (an-an+1)Un est convergent. Celu conclut.
- bil 4) On peut prendre En ventjant le construction nuverte:

Si $A_m = \sum_{k=0}^{\infty} \mathcal{E}_k a_k$ avec $\mathcal{E}_{k \leq m}$ dejà construit, also $\mathcal{E}_{m+1} = \frac{1}{2} \mathcal{E}_m$ ni $A_m \geq m$ et $\mathcal{E}_{m+n} = \mathcal{E}_m$ since.

Ni) En = 1 par Bertrand.

- et donc $\mathcal{E}_{n} | a_{n} = \mathcal{E}_{n} | a_{n} |$ est le \mathcal{T}_{0} d'une serie \mathcal{C}_{V} .
- ii) Par l'abounde, n° I (an) deverge alors 26i) donne En telle que s'an) est le TG d'une serve DV. Abourde.
- di) i) Supposas que un r'at pas bonnes. On a alos une extractor telle que Mb+1 = mini (m> mb / |an|> 2 k+1). En posant Mrb = 1/2 le 1 suon, an la alors I Ube coo et | Mme and |> 1 de sonte que anun ne tend par vers 0 et donc le 5T6 an un diverge. Contradict.

(ii) Par Abel de nouveau, $\sum_{k=1}^{n} \mathcal{E}_{k} \left(a_{k+1} - a_{k} \right) = \sum_{k=1}^{n} \left(\mathcal{E}_{k-1} - \mathcal{E}_{k} \right) a_{k} + \mathcal{E}_{n} a_{n+1} - \mathcal{E}_{0} a_{0}$ permet de conclure comme au 2a') iii').

in) C'est mediat par 20.) ii).

e) On a prouvé que les soutes névijeur de sont exactement alles telles que $\Sigma |a_{m+1}-a_m| < \sigma$.