CHEM E 465 Reactor Design

Rate Law

| Equilibrium constant

Description	Equations
Equilibrium constant and concentration	$K_c = \prod_i C_i^{ u_i}$
Equilibrium constant and rate constant	$K_i = rac{k_i}{k_{-i}}$
van't Hoff equation $igstar$ $\Delta h_{ ext{rxn}}^{\circ} eq f(T)$	$rac{d \ln K}{dT} = rac{\Delta h_{ m rxn}^{\circ}}{RT^2}$
T dependence of equilibrium constant	$\ln\left(rac{K_2}{K_1} ight) = -rac{\Delta h_{ m rxn}^{\circ}}{R}\left(rac{1}{T_2} - rac{1}{T_1} ight)$

| Rate constant

Equations
$a\mathrm{A} + b\mathrm{B} \stackrel{k}{\longrightarrow} c\mathrm{C} + d\mathrm{D}$
$rac{-r_A}{a}=rac{-r_B}{b}=rac{-r_C}{c}=rac{-r_D}{d}$
$r_A=-kC^a_AC^b_B$
$k \ [=] \ \mathrm{M^{1-n}/s}$
$rac{d \ln k}{dT} = rac{E_a}{RT^2}$
$k = A \exp\left(-rac{E_a}{RT} ight)$
$\ln\left(rac{k_2}{k_1} ight) = -rac{E_a}{R}\left(rac{1}{T_2} - rac{1}{T_1} ight)$
$\ln k = \ln A - rac{E_a}{R} rac{1}{T}$
Increase E_a , increase k 's sensitivity to T
$k \propto \sqrt{T} \exp\left(-rac{E_0}{RT} ight)$
$k \propto T \exp\left(-rac{\Delta H^*}{RT} ight)$

Reactor Design and Sizing

- 1. Reactor design equation (mole balance): $r_i = f(n) = f(X)$
- 2. Rate law: $r_i = f(C_i)$
- 3. Stoichiometry: $C_i = f(X)$
- 4. Combine: $r_i = f(X)$

Description	Equations
General mole balance	\dot{n}_{i0} $-$ out $+$ generation $=$ accumulation \dot{n}_{i0} $ \dot{n}_{i}$ $+$ G_{i} $=$ $\dfrac{dn_{i}}{dt}$
General generation term	$G_i = \int r_i dV$
Spatially uniform generation term	$G_i=r_i V$
Conversion	$X_i \equiv X = rac{n_{i0} - n_i}{n_{i0}} = rac{\dot{n}_{i0} - \dot{n}_i}{\dot{n}_{i0}}$
Mole/flow rate in terms of conversion	$egin{aligned} n_i &= n_{i0}(1-X) \ \dot{n}_i &= \dot{n}_{i0}(1-X) \end{aligned}$
Heterogeneous reaction rate	$r_i = ho_b r_i'$

Reactor	Design Equations	Integral Form
Batch ★ Perfectly mixed	$r_i V = rac{dn_i}{dt} = -n_{i0} rac{dX}{dt}$	$t = \int_{n_{i1}}^{n_{i0}} rac{dn_i}{-r_i V} = n_{i0} \int_0^X rac{dX}{-r_i V}$
CSTR ★ Perfectly mixed, steady-state	$V=rac{\dot{n}_{i0}-\dot{n}_{i}}{-r_{i}}=rac{\dot{n}_{i0}X}{-r_{i}}$	-
PFR ★ Steady state ★ Plug flow, no radial dependence	$r_i = rac{d\dot{n}_i}{dV} = -\dot{n}_{i0}rac{dX}{dV}$	$V = \int_{\dot{n}_i}^{\dot{n}_{i0}} rac{d\dot{n}_i}{-r_i} = \dot{n}_{i0} \int_0^X rac{dX}{-r_i}$
	$r_i'=rac{d\dot{n}_i}{dm}=-\dot{n}_{i0}rac{dX}{dm}$	$m = \int_{\dot{n}_i}^{\dot{n}_{i0}} rac{d\dot{n}_i}{-r_i'} = \dot{n}_{i0} \int_0^X rac{dX}{-r_i'}$
Semi-batch reactor	$r_i = rac{dn_i}{dt} - \dot{n}_{i0} \ V(t)$	-

| Levenspiel plot

Description	Equations
Levenspiel plot	$rac{\dot{n}_{i0}}{-r_i}$ vs. X
CSTR volume	$V=rac{\dot{n}_{i0}X}{-r_i}$ = Area of rectangle
PFR volume	$V=\dot{n}_{i0}\int_{0}^{X}rac{dX}{-r_{i}}$ = Area under Levenspiel plot
Reaction of order > 0	$V_{ m CSTR} > V_{ m PFR}$ (Choose PFR)
Reaction of order < 0	$V_{ m CSTR} < V_{ m PFR}$ (Choose CSTR)

| Reactor choice

Reactor Type	Advantage Disadvantage		Advantage Disadvantage	
		- High labor cost and downtime		
Batch	- High conversion	- Difficult to scale up		
		- Batch-to-batch variability		

Reactor Type	Advantage	Disadvantage	
CSTR	- Good T control	- Hard to get high conversion	
PFR	- Easy maintenance - High conversion per unit volume	- Difficult for T control	

Stoichiometry

| Stoichiometric table

Species	Initial	Change	Remaining
A	n_{A0}	$-n_{A0}X$	$n_A=n_{A0}(1-X)$
В	n_{B0}	$-rac{b}{a}n_{A0}X$	$n_B = n_{A0}(\Theta_B - rac{b}{a}X)$
C	n_{C0}	$rac{c}{a}n_{A0}X$	$n_C = n_{A0}(\Theta_C + rac{c}{a}X)$
D	n_{D0}	$rac{d}{a}n_{A0}X$	$n_D = n_{A0}(\Theta_D + rac{d}{a}X)$
I	n_{I0}	0	$n_I=n_{I0}$
Total	n_{T0}	$\delta n_{A0} X$	$n_T = n_{T0} + \delta n_{A0} X$

Description	Equations
Sample reaction	$\mathrm{A} + rac{b}{a} \mathrm{B} \longrightarrow rac{c}{a} \mathrm{C} + rac{d}{a} \mathrm{D}$
$\frac{\rm total\ mol\ change}{\rm mol\ A\ reacted}$	$\delta = \sum u_i = rac{d}{a} + rac{c}{a} - rac{b}{a} - 1$
$rac{\mathrm{mol}\;\mathrm{Z\;initially}}{\mathrm{mol}\;\mathrm{A\;initially}}$	$\Theta_Z = rac{n_{Z0}}{n_{A0}} = rac{\dot{n}_{Z0}}{\dot{n}_{A0}} = rac{y_{Z0}}{y_{A0}} = rac{C_{Z0}}{C_{A0}}$
$rac{ ext{total mol change for } X = 1}{ ext{mol feed}}$	$arepsilon = y_{A0}\delta = rac{\dot{n}_{Tf} - \dot{n}_{T0}}{\dot{n}_{T0}}$
Concentration	$C_i = rac{n_i}{V} = rac{\dot{n}_i}{\dot{V}}$
Molar fraction	$y_i = rac{\dot{n}_i}{\dot{n}_T}$
Pressure ratio	$p=rac{P}{P_0}$
Description	Equations
Molar flow rate	$\dot{n}_i = \dot{n}_{A0}(\Theta_i - u_i X)$
Concentration \bigstar Constant PVT	$C_i = C_{A0}(\Theta_i - u_i X)$
Volumetric flow rate	$egin{aligned} \dot{V} &= \dot{V}_0 \left(rac{\dot{n}_T}{\dot{n}_{T0}} ight) \left(rac{P_0}{P} ight) \left(rac{T}{T_0} ight) \ &= \dot{V}_0 (1+arepsilon X) \left(rac{P_0}{P} ight) \left(rac{T}{T_0} ight) \end{aligned}$

Description	Equations
Concentration	$egin{aligned} C_i &= rac{\dot{n}_i}{\dot{V}} \ &= C_{A0} \left(rac{\dot{n}_i}{\dot{n}_T} ight) \left(rac{P}{P_0} ight) \left(rac{T_0}{T} ight) \ &= C_{A0} y_i p\left(rac{T_0}{T} ight) \ &= rac{C_{A0}(\Theta_i + u_i X)}{1 + arepsilon X} \left(rac{P}{P_0} ight) \left(rac{T_0}{T} ight) \end{aligned}$

Isothermal Reactor Design

| Batch reactor

Description	Equations
Characteristic reaction time (1st order)	$t_R = rac{1}{k} \ln \left(rac{1}{1-X} ight)$
Characteristic reaction time (2nd order)	$t_R = rac{1}{kC_{A0}}rac{X}{1-X}$
Total time	Total = Fill + Heat + Reaction + Clean

| CSTR

		Description	Equations	
		Space time	$ au = rac{V}{\dot{V}} = rac{C_{A0}X}{-r_A}$	
	Damkohler number		$\mathrm{Da} = rac{-r_{A0}V}{\dot{n}_{A0}}$ $= rac{\mathrm{rate\ at\ entrance}}{\mathrm{molar\ flow\ at\ entrance}}$ $= rac{\mathrm{reaction\ rate}}{\mathrm{convective\ mass\ transp}}$	
	Damkohler	number and conversion	${f Da} < 0.1, X < 0.1 \ {f Da} > 10, X > 0.9$	
Reaction, Reactor	Damkohler number Da_i	Space time $ au$		Concentration C_i
1st order, single CSTR	$\tau k = \frac{X}{1 - X}$	$rac{X}{k(1-X)}$	$rac{ au k}{1+ au k}$	$rac{C_{A0}}{1+ au k}$
2nd order, single CSTR	$ au k C_{A0}$	$\frac{X}{kC_{A0}(1-X)^2}$	$\frac{1+2\mathrm{Da}_2-\sqrt{1+4\mathrm{Da}_2}}{2\mathrm{Da}_2}$	$C_{A0}\frac{-1+\sqrt{1+4\mathrm{Da}_2}}{2\mathrm{Da}_2}$
1st order, CSTR series	-	-	$1 - \frac{1}{(1 + \mathrm{Da}_1)^n}$	$rac{C_{A0}}{(1+\mathrm{Da}_1)^n}$

Description	Equations
Reactor volume for 2nd order gas phase rxn	$V = rac{\dot{V}_{A0}}{kC_{A0}} \left[2arepsilon (1+arepsilon) \ln (1-X) + arepsilon^2 X + rac{(1+arepsilon)^2 X}{1-X} ight]$
Ergun equation	$rac{dP}{dz} = rac{G}{ ho g_c D_P} \left(rac{1-\phi}{\phi^3} ight) \left[rac{150(1-\phi)\mu}{D_P} + 1.75G ight]$
Porosity (void fraction)	$\phi = rac{ ext{void volume}}{ ext{total bed volume}}$
PBR pressure drop	$rac{dP}{dz} = -eta_0 \left(rac{P_0}{P} ight) \left(rac{T}{T_0} ight) \left(rac{\dot{n}_T}{\dot{n}_{T0}} ight)$
Packed bed property	$eta_0 = rac{G(1-\phi)}{ ho_0 g_c D_P \phi^3} \left[rac{150(1-\phi) \mu}{D_P} + 1.75 G ight] [=] rac{ ext{Pa}}{ ext{m}}$
Bulk density of catalyst	$ ho_b = ho_c (1-\phi)$
Catalyst mass	$m=(1-\phi)A_cz ho_c=A_cz ho_b$
Ergun equation for packed bed (multiple reaction)	$rac{dp}{dm} = -rac{lpha}{2p}rac{T}{T_0}rac{\dot{n}_T}{\dot{n}_{T0}}$
	$lpha=rac{2eta_0}{A_c ho_c(1-\phi)P_0}[=]{ m kg}^{-1}$
Ergun equation for packed bed (single reaction)	$rac{dp}{dm} = -rac{lpha}{2p}(1+arepsilon X)rac{T}{T_0}$
System of pressure and conversion ODEs	$egin{cases} rac{dX}{dm} = F_1(X,p) & ext{Reactor design} \ rac{dp}{dm} = F_2(X,p) & ext{Ergun equation} \end{cases}$
Pressure ratio $\bigstar arepsilon = 0 ext{or} arepsilon X \ll 1$, isothermal	$p=\sqrt{1-lpha m}=\sqrt{1-rac{2eta_0}{P_0}z}$
Pressure drop in pipes	$p = \sqrt{1 - \alpha_p V}$
Pipe factor	$lpha_p = rac{4fG^2}{A_c ho_0P_0D}$

Rate law determination by data

Batch reactors

Description	Equations
Power law	$r_A = -k C_A^lpha C_B^eta$
Integral method	$rac{dC_A}{dt} = -kC_A^lpha$
0th order rxn	$C_A=C_{A0}-kt$
	$egin{aligned} &\lnrac{C_{A0}}{C_A}=kt\ &\ln C_A=\ln C_{A0}-kt \end{aligned}$
2nd order rxn	$rac{1}{C_A}=kt+rac{1}{C_{A0}}$
Differential method	$\ln\left(-rac{dC_A}{dt} ight) = \ln k_A + lpha \ln C_A$

| Differential reactors (PBR)

companie Equations	
$-r_A'=rac{\dot{V}_0C_{A0}-\dot{V}C_{AP}}{\Delta m}=rac{\dot{V}_{A0}X}{\Delta m}=$	$\frac{\dot{V}_P}{\Delta m}$

Multiple reactions

| Batch reactors

Description	Equations
Parallel (competing) reactions	$egin{aligned} \mathbf{A} & \stackrel{k_1}{\longrightarrow} \mathbf{B} \ \mathbf{A} & \stackrel{k_2}{\longrightarrow} \mathbf{C} \end{aligned}$
Series (consecutive) reactions	$\operatorname{A} \xrightarrow{k_1} \operatorname{B} \xrightarrow{k_2} \operatorname{C}$
Independent reactions	$\begin{array}{l} \mathbf{A} \longrightarrow \mathbf{B} + \mathbf{C} \\ \mathbf{D} \longrightarrow \mathbf{E} + \mathbf{F} \end{array}$
Complex reactions	$\begin{aligned} \mathbf{A} + \mathbf{B} &\longrightarrow \mathbf{C} + \mathbf{D} \\ \mathbf{A} + \mathbf{C} &\longrightarrow \mathbf{E} \\ \mathbf{E} &\longrightarrow \mathbf{G} \end{aligned}$
Description	Equations
Instantaneous selectivity based on rate	$S_{D/U} = rac{r_D}{r_U} = rac{ ext{rate of formation of D}}{ ext{rate of formation of U}}$
Overall selectivity based on flow rate	$ ilde{S}_{D/U} = rac{\dot{n}_D}{\dot{n}_U} = rac{n_D}{n_U} = rac{ ext{exit molar flow rate of D}}{ ext{exit molar flow rate of U}}$
Selectivity of CSTR	$S_{D/U} = { ilde S}_{D/U}$
Instantaneous yield based on rate	$Y_D = -rac{r_D}{r_A}$
Overall yield based on flow rate	${ ilde Y}_D=rac{\dot n_D}{\dot n_{A0}-\dot n_A}=rac{n_D}{n_{A0}-n_A}$
Conversion of batch and flow reactor	$X_A=rac{\dot{n}_{A0}-\dot{n}_A}{\dot{n}_{A0}}$
Conversion of semi-batch reactor	$X_{A} = rac{C_{A0}V_{0} - C_{A}V}{C_{A0}V}$
Conversion of semi-batch reactor	$X_B = rac{\dot{n}_{B0}t - C_BV}{\dot{n}_{B0}t}$

| Parallel reactions

Description	Equations
Concentration dependence of instantaneous selectivity	$S_{D/U}=rac{r_D}{r_U}=rac{k_D}{k_U}C_A^{lpha_1-lpha_2}$
$lpha_1 > lpha_2$	$\uparrow C_A, \uparrow S_{D/U}$
$lpha_1 < lpha_2$	$\downarrow C_A, \uparrow S_{D/U}$
Temperature dependence of instantaneous selectivity	$S_{D/U} = rac{r_D}{r_U} rac{k_D}{k_U} = rac{A_D}{A_U} \exp \left(-rac{E_D - E_U}{RT} ight)$
$E_D > E_U$	$\uparrow T, \uparrow S_{D/U}$

De	escription	Equations
E	$E_D < E_U$	$\downarrow T, \uparrow S_{D/U}$

Enzymatic Reactions

Description	Equations
Pseudo-steady-state hypothesis	$r_{A*}=\sum r_{i,A*}=0$

| Mechanism development

Rate law	Mechanism (rule of thumb)
Species concentration in denominator	Species collision with active intermediate
Constant in denominator	Reaction of spontaneous decomposition of active intermediate
Species concentration in numerator	Species produce active intermediate

| Michaelis-Menten kinetics

Description	Equations
Overall reaction	$E + S \longrightarrow E + P$
Reaction mechanism	$egin{aligned} \mathrm{S} + \mathrm{E} & \xrightarrow{\overline{k_1}} \mathrm{ES} \ \mathrm{ES} + \mathrm{W} & \xrightarrow{k_2} \mathrm{P} + \mathrm{E} \end{aligned}$
Enzyme balance	$[E_T] = [E] + [ES]$ $[E] = [E_T] - [ES]$
Pseudo-steady-state approximation	$egin{aligned} r_{ ext{ES}} &= k_1[ext{S}][ext{E}] - k_2[ext{ES}][ext{W}] = 0 \ r_{ ext{ES}} &= k_1[ext{S}]([ext{E}_{ ext{T}}] - [ext{ES}]) - k_{-1}[ext{ES}] - k_2[ext{ES}][ext{W}] = 0 \ [ext{ES}] &= rac{k_1[ext{S}][ext{E}_{ ext{T}}]}{k_1[ext{S}] + k_{-1} + k_2[ext{W}]} \end{aligned}$
Turnover number (# substrates converted to product per unit time on one enzyme at saturation)	$k_{ m cat} = k_2[{ m W}]$
Michaelis-Menten constant (attraction of enzyme of its substrate, [Substrate] which rate of rxn is 1/2 max)	$K_M = rac{k_{ m cat} + k_{-1}}{k_1}$
Maximum rate	$V_{ m max} = k_{ m cat} [{ m E_T}]$
Michaelis-Menten equation Rate of reaction	$egin{aligned} r_{ ext{P}} &= k_2[ext{ES}][ext{W}] \ &= rac{k_1 k_2 [ext{S}][ext{E}_{ ext{T}}][ext{W}]}{k_1 [ext{S}] + k_{-1} + k_2 [ext{W}]} \ &= rac{k_{ ext{cat}} [ext{S}][ext{E}_{ ext{T}}]}{K_M + [ext{S}]} \ &= rac{V_{ ext{max}}[ext{S}]}{K_M + [ext{S}]} \end{aligned}$
Lineweaver-Burk equation	$rac{1}{r_{ m P}} = rac{K_M}{V_{ m max}}rac{1}{[{ m S}]} + rac{1}{V_{ m max}}$
Eadie-Hofstee equation	$r_{ m P} = V_{ m max} - K_M rac{r_{ m P}}{ m [S]}$

$$rac{[\mathrm{S}]}{r_{\mathrm{P}}} = rac{K_M}{V_{\mathrm{max}}} + rac{1}{V_{\mathrm{max}}} [\mathrm{S}]$$

| Product-enzyme complex

Description	Equations
Overall reaction	$E + S \longrightarrow E + P$
Reaction mechanism	$S + E \Longrightarrow ES \Longrightarrow PE \Longrightarrow P + E$
Briggs-Haldane equation	$r_{ ext{P}} = rac{V_{ ext{max}}(ext{[S]} - ext{[P]}/K_C)}{ ext{[S]} + K_{ ext{max}} + K_P ext{[P]}}$

| Batch enzymatic reactor

Description	Equations
Time	$egin{aligned} t &= rac{K_M}{V_{ ext{max}}} \ln \left(rac{[ext{A}]_0}{[ext{A}]} ight) + rac{[ext{A}]_0 - [ext{A}]}{V_{ ext{max}}} \ &= rac{K_M}{V_{ ext{max}}} \ln \left(rac{1}{1-X} ight) + rac{[ext{A}]_0 X}{V_{ ext{max}}} \end{aligned}$
Linearized form	$rac{1}{t} \ln \left(rac{[\mathrm{A}]_0}{[\mathrm{A}]} ight) = rac{V_{\mathrm{max}}}{K_M} - rac{[\mathrm{A}]_0 - [\mathrm{A}]}{K_M t}$

| Enzymatic inhibition

| Competitive inhibition

Description	Equations
Reaction mechanism	$E + S \Longrightarrow ES$ $ES \longrightarrow E + P$ $E + I \Longrightarrow EI \text{ (inactive)}$
Reaction rate	$r_{ ext{P}} = rac{V_{ ext{max}}[ext{S}]}{[ext{S}] + K_M \left[1 + rac{[ext{I}]}{K_I} ight]}$
Lineweaver-Burk form $\uparrow K_I, \uparrow ext{slope}$	$rac{1}{r_{ m P}} = rac{1}{[{ m S}]} \left[rac{K_M}{V_{ m max}} \left[1 + rac{[{ m I}]}{K_I} ight] ight] + rac{1}{V_{ m max}}$

| Uncompetitive inhibition

Description	Equations
Reaction mechanism	$E + S \Longrightarrow ES$ $ES \longrightarrow E + P$ $ES + I \Longrightarrow ESI \text{ (inactive)}$
Reaction rate	$r_{ ext{P}} = rac{V_{ ext{max}}[ext{S}]}{K_M + [ext{S}] \left[1 + rac{[ext{I}]}{K_I} ight]}$

Description	Equations
Lineweaver-Burk form $\uparrow K_I, \uparrow ext{intercept}$	$rac{1}{r_{ ext{P}}} = rac{1}{ ext{[S]}} rac{K_M}{V_{ ext{max}}} + rac{1}{V_{ ext{max}}} \left[1 + rac{ ext{[I]}}{K_I} ight]$

| Noncompetitive (mixed) inhibition

Description	Equations
Reaction mechanism	$E + S \rightleftharpoons ES$ $ES \longrightarrow E + P$ $E + I \rightleftharpoons EI \text{ (inactive)}$ $ES + I \rightleftharpoons ESI \text{ (inactive)}$ $S + EI \rightleftharpoons ESI \text{ (inactive)}$
Reaction rate	$r_{ ext{P}} = rac{V_{ ext{max}}[ext{S}]}{([ext{S}] + K_M)\left[1 + rac{[ext{I}]}{K_I} ight]}$
Lineweaver-Burk form $\uparrow K_I, \uparrow ext{slope}, \uparrow ext{intercept}$	$rac{1}{r_{ m P}} = rac{1}{\left[{ m S} ight]} rac{K_M}{V_{ m max}} \left[1 + rac{\left[{ m I} ight]}{K_I} ight] + rac{1}{V_{ m max}} \left[1 + rac{\left[{ m I} ight]}{K_I} ight]$

Catalytic Reactions

| Reaction mechanisms

Mechanism	Rate Law
$A + * \rightleftharpoons A^*$	$r_{ m A} = k_{ m A} \left[P_{ m A} [^*] - rac{[{ m A}^*]}{K_{ m A}} ight]$
$A^* \rightleftharpoons A + *$	$r_{\mathrm{D}} = k_{\mathrm{D}} \left[\left[\mathrm{A}^* ight] - rac{P_{\mathrm{A}} \left[^* ight]}{K_{\mathrm{D}}} ight]$
$A^* \xrightarrow{k_S} B^*$	$r_{ m S} = k_{ m S} \left[\left[{ m A}^* ight] - rac{\left[{ m B}^* ight]}{K_{ m S}} ight]$
$A^* + * \frac{k_S}{k_{-S}} B^* + *$	$r_{\mathrm{S}} = k_{\mathrm{S}} \left[[\mathrm{A}^*][^*] - rac{[\mathrm{B}^*][^*]}{K_{\mathrm{S}}} ight]$
$\mathrm{A^*} + \mathrm{B^*} \xrightarrow[k_{-\mathrm{S}}]{k_{\mathrm{S}}} \mathrm{C^*} + \mathrm{D^*}$	$r_{\mathrm{S}} = k_{\mathrm{S}} \left[[\mathrm{A}^*][\mathrm{B}^*] - rac{[\mathrm{C}^*][\mathrm{D}^*]}{K_{\mathrm{S}}} ight]$
$\mathrm{A}^* + \mathrm{B}^{*\prime} = \frac{k_\mathrm{S}}{k_\mathrm{-S}} \mathrm{C}^{*\prime} + \mathrm{D}^*$	$r_{\mathrm{S}} = k_{\mathrm{S}} \left[[\mathrm{A}^*] [\mathrm{B}^{*\prime}] - rac{[\mathrm{C}^{*\prime}] [\mathrm{D}^*]}{K_{\mathrm{S}}} ight]$
$\mathrm{A}^{*}+\mathrm{B}\left(\mathrm{g} ight)$ $rac{k_{\mathrm{S}}}{\overline{k_{-\mathrm{S}}}}\mathrm{C}^{*}$	$r_{ m S} = k_{ m S} \left[[{ m A}^*] P_{ m B} - rac{[{ m C}^*]}{K_{ m S}} ight]$
	$A + * \rightleftharpoons A^*$ $A^* \rightleftharpoons A + *$ $A^* \rightleftharpoons B^*$ $A^* + * \rightleftharpoons k_S \Rightarrow B^* + *$ $A^* + B^* \rightleftharpoons C^* + D^*$ $A^* + B^{*\prime} \rightleftharpoons k_S \Rightarrow C^{*\prime} + D^*$