# EIE/ENE 334 Microprocessors



#### Lecture 4:

Arithmetic for Computers

Week #04/05: Dejwoot KHAWPARISUTH

Adapted from *Computer Organization and Design, 4<sup>th</sup> Edition*, Patterson & Hennessy, © 2009, Elsevier (MK)

http://webstaff.kmutt.ac.th/~dejwoot.kha/

#### Introduction:

- How are negative numbers represented?
- What is the largest number that can be represented by a computer word?
- What happens if an operation creates a number bigger than that can be represented?
- What about fractions and real number?
- How by hardware to add, subtract, multiply, or divide numbers?



#### COMPUTER ORGANIZATION AND DESIGN



The Hardware/Software Interface

# **Chapter 3**

### **Arithmetic for Computers**

# **Arithmetic for Computers**

- Operations on integers
  - Addition and subtraction
  - Multiplication and division
  - Dealing with overflow
- Floating-point real numbers
  - Representation and operations



# **Integer Addition**

Example: 7 + 6



- Overflow if result out of range
  - Adding +ve and –ve operands, no overflow
  - Adding two +ve operands
    - Overflow if result sign is 1
  - Adding two –ve operands
    - Overflow if result sign is 0



#### **Addition and Subtraction:**

#### Example:



#### **Addition and Subtraction:**

#### Example: Addition

$$58_{\text{ten}} = 0011 \ 1010$$
 $-23_{\text{ten}}^{\text{ten}} = 1110 \ 1001$ 
 $35_{\text{ten}} = 10010 \ 0011$ 
 $26_{\text{ten}} = 0001 \ 1010$ 
 $-34_{\text{ten}} = 1101 \ 1110$ 
 $-8_{\text{ten}} = 1111 \ 1000$ 



#### **Addition and Subtraction:**

#### Example: Addition

$$127_{\text{ten}} = 0111 \ 1111$$

$$2_{\text{ten}}^{\text{ten}} = 0000 \ 0010$$

$$-129_{\text{ten}} = 1000 \ 0001 = -127_{\text{ten}}$$

$$-128_{\text{ten}} = 1000 \ 0000$$

$$-3_{\text{ten}}^{\text{ten}} = 1111 \ 1101$$

$$-131_{\text{ten}} = 1 \ 0111 \ 1101 = 125_{\text{ten}}$$

Not OK: Overflow! ... How to detect

### **Detecting Overflow**

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
  - overflow when adding two positives yields a negative
  - or, adding two negatives gives a positive
  - or, subtract a negative from a positive and get a negative
  - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A B
  - Can overflow occur if B is 0 ?
  - Can overflow occur if A is 0 ?

### **Overflow conditions:**

| operation | Operand A | Operand B | Result   |
|-----------|-----------|-----------|----------|
| A+B       | $\geq 0$  | $\geq 0$  | < 0      |
| A+B       | < 0       | < 0       | $\geq 0$ |
| A-B       | $\geq 0$  | < 0       | < 0      |
| A-B       | < 0       | $\geq 0$  | ≥ 0      |

#### **Effects of Overflow**

- An exception (interrupt) occurs
  - Control jumps to predefined address for exception
  - Interrupted address is saved for possible resumption
- Details based on software system / language
  - example: flight control vs. homework assignment
- Don't always want to detect overflow
  - new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends!

note: sltu, sltiu for unsigned comparisons

### MIPS: exception

MIPS detect overflow with exception. The address of the instruction that overflowed is saved in a register and the computer jumps to a predefined address to invoke the appropriate routine for that exception

EPC: Exception Program Counter contains
the address of the instruction that cause
the exception

# **Dealing with Overflow**

- Some languages (e.g., C) ignore overflow
  - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
  - Use MIPS add, addi, sub instructions
  - On overflow, invoke exception handler
    - Save PC in exception program counter (EPC) register
    - Jump to predefined handler address
    - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action



# Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

- +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
  - Subtracting two +ve or two –ve operands, no overflow
  - Subtracting +ve from –ve operand
    - Overflow if result sign is 0
  - Subtracting –ve from +ve operand
    - Overflow if result sign is 1



# **Arithmetic for Multimedia**

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
  - Use 64-bit adder, with partitioned carry chain
    - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
  - SIMD (single-instruction, multiple-data)
- Saturating operations
  - On overflow, result is largest representable value
    - c.f. 2s-complement modulo arithmetic
  - E.g., clipping in audio, saturation in video



#### **Questions?:**

#### [3.10] Page 230

Find the shortest sequence of MIPS instructions to determine if there is a carry out from the addition of two registers, say, register \$t3 and \$t4. Place a 0 or 1 in register \$t2 if the carry out is 0 or 1, respectively. (Hint: It can be done in two instructions

#### **Questions?:**

[3.10]

#### Sol:

```
addu $t2,$t3,$t4
sltu $t2,$t2,$t4
or
addu $t2,$t3,$t4
sltu $t2,$t3,$t4
sltu $t2,$t3,$t4
```

# Multiplication

Start with long-multiplication approach



Length of product is the sum of operand lengths





### Multiplication: hardware I



# **Multiplication: Example**

 $2_{ten} \times 3_{ten}$ 

| Iteration | Step                        | Multiplier | Multiplicand | Product   |  |
|-----------|-----------------------------|------------|--------------|-----------|--|
| 0         | Initial values              | 0011       | 0000 0010    | 0000 0000 |  |
| 1         | 1a: 1 ⇒ Prod = Prod + Mcand | 0011       | 0000 0010    | 0000 0010 |  |
|           | 2: Shift left Multiplicand  | 0011       | 0000 0100    | 0000 0010 |  |
|           | 3: Shift right Multiplier   | 0001       | 0000 0100    | 0000 0010 |  |
| 2         | 1a: 1 ⇒ Prod = Prod + Mcand | 0001       | 0000 0100    | 0000 0110 |  |
|           | 2: Shift left Multiplicand  | 0001       | 0000 1000    | 0000 0110 |  |
|           | 3: Shift right Multiplier   | 0000       | 0000 1000    | 0000 0110 |  |
| 3         | 1: 0 ⇒ No operation         | 0000       | 0000 1000    | 0000 0110 |  |
|           | 2: Shift left Multiplicand  | 0000       | 0001 0000    | 0000 0110 |  |
|           | 3: Shift right Multiplier   | 0000       | 0001 0000    | 0000 0110 |  |
| 4         | 1: 0 ⇒ No operation         | 0000       | 0001 0000    | 0000 0110 |  |
|           | 2: Shift left Multiplicand  | 0000       | 0010 0000    | 0000 0110 |  |
|           | 3: Shift right Multiplier   | 0000       | 0010 0000    | 0000 0110 |  |

# **Optimized Multiplier**

Perform steps in parallel: add/shift



- One cycle per partial-product addition
  - That's ok, if frequency of multiplications is low



### Multiplication: algorithm II



# Multiplication: example II

# $2_{ten} \times 3_{ten}$

| Iteration | Step                | Multiplicand (Md) | Product (P) |
|-----------|---------------------|-------------------|-------------|
| 0         | Initial values      | 0010              | 0000 0011   |
| 1         | 1a: 1 > P=P+Md      | 0010              | 0010 0011   |
|           | 2: Shift right P.   | 0010              | 0001 0001   |
| 2         | 1a: 1 > P=P+Md      | 0010              | 0011 0001   |
|           | 2: Shift right P.   | 0010              | 0001 1000   |
| 3         | 1: 0 > no operation | 0010              | 0001 1000   |
|           | 2: Shift right P.   | 0010              | 0000 1100   |
| 4         | 1: 0 > no operation | 0010              | 0000 1100   |
|           | 2: Shift right P.   | 0010              | 0000 0110   |

# **Faster Multiplier**

- Uses multiple adders
  - Cost/performance tradeoff



- Can be pipelined
  - Several multiplication performed in parallel



# **MIPS Multiplication**

- Two 32-bit registers for product
  - HI: most-significant 32 bits
  - LO: least-significant 32-bits
- Instructions
  - mult rs, rt / multu rs, rt
    - 64-bit product in HI/LO
  - mfhi rd / mflo rd
    - Move from HI/LO to rd
    - Can test HI value to see if product overflows 32 bits
  - mul rd, rs, rt
    - Least-significant 32 bits of product -> rd



# **MIPS: Multiplication**

| Instruction       | Example        | Meaning             |  |
|-------------------|----------------|---------------------|--|
| multiply          | mult \$s2,\$s3 | Hi,Lo = \$s2 x \$s3 |  |
| multiply unsigned | mult \$s2,\$s3 | Hi,Lo = \$s2 x \$s3 |  |
| mov from Hi       | mfhi \$s1      | \$s1 = Hi           |  |
| mov from Lo       | mflo \$s1      | \$s1 = Lo           |  |

### **Division**



*n*-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
  - If divisor ≤ dividend bits
    - 1 bit in quotient, subtract
  - Otherwise
    - 0 bit in quotient, bring down next dividend bit
- Restoring division
  - Do the subtract, and if remainder goes < 0, add divisor back</li>
- Signed division
  - Divide using absolute values
  - Adjust sign of quotient and remainder as required



# **Division Hardware**



# **Division: Example**

# 7<sub>ten</sub> by 2<sub>ten</sub>

| Iteration | Step                      | Quotient | Divisor   | Remainder         |
|-----------|---------------------------|----------|-----------|-------------------|
| 0         | Initial values            | 0000     | 0010 0000 | 0000 0111         |
| 1         | 1: Rem=Rem-Div            | 0000     | 0010 0000 | <b>1</b> 110 0111 |
|           | 2b: Rem<0,+Div,sll Q,Q0=0 | 0000     | 0010 0000 | 0000 0111         |
|           | 3:shift Div Right         | 0000     | 0001 0000 | 0000 0111         |
| 2         | 1: Rem=Rem-Div            | 0000     | 0001 0000 | <b>1</b> 111 0111 |
|           | 2b: Rem<0,+Div,sll Q,Q0=0 | 0000     | 0001 0000 | 0000 0111         |
|           | 3:shift Div Right         | 0000     | 0000 1000 | 0000 0111         |
| 3         | 1: Rem=Rem-Div            | 0000     | 0000 1000 | 1111 1111         |
|           | 2b: Rem<0,+Div,sll Q,Q0=0 | 0000     | 0000 1000 | 0000 0111         |
|           | 3:shift Div Right         | 0000     | 0000 0100 | 0000 0111         |

# **Division: Example**

# 7<sub>ten</sub> by 2<sub>ten</sub>

| Iteration | Step                      | Quotient | Divisor   | Remainder         |
|-----------|---------------------------|----------|-----------|-------------------|
| 3         | 1: Rem=Rem-Div            | 0000     | 0000 1000 | <b>1</b> 111 1111 |
|           | 2b: Rem<0,+Div,sll Q,Q0=0 | 0000     | 0000 1000 | 0000 0111         |
|           | 3:shift Div Right         | 0000     | 0000 0100 | 0000 0111         |
| 4         | 1: Rem=Rem-Div            | 0000     | 0000 0100 | 0000 0011         |
|           | 2a: Rem>=0,sll Q,Q0=1     | 0001     | 0000 0100 | 0000 0011         |
|           | 3:shift Div Right         | 0001     | 0000 0010 | 0000 0011         |
| 5         | 1: Rem=Rem-Div            | 0001     | 0000 0010 | 0000 0001         |
|           | 2a: Rem>=0,sll Q,Q0=1     | 0011     | 0000 0010 | 0000 0001         |
|           | 3:shift Div Right         | 0011     | 0000 0001 | 0000 0001         |

# **Optimized Divider**



- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
  - Same hardware can be used for both



### **Division: algorithm II**



### **Division: Example**

 $7_{ten}$  by  $2_{ten}$ 

| Iteration | Step                        | Divisor | Remainder        |
|-----------|-----------------------------|---------|------------------|
| 0         | Initial values              | 0010    | 0000 0111        |
|           | Shift Rem left 1            | 0010    | 0000 1110        |
| 1         | 2: Rem=Rem-Div              | 0010    | <b>1110</b> 1110 |
|           | 3b: Rem<0,+Div,sll R,R0=0   | 0010    | 0001 1100        |
| 2         | 2: Rem=Rem-Div              | 0010    | <b>1111</b> 1100 |
|           | 3b: Rem<0,+Div,sll R,R0=0   | 0010    | 0011 1000        |
| 3         | 1: Rem=Rem-Div              | 0010    | 0001 1000        |
|           | 3a: Rem>=0,sll R,R0=1       | 0010    | 0011 0001        |
| 4         | 1: Rem=Rem-Div              | 0010    | 0001 0001        |
|           | 3a: Rem>=0,sll R,R0=1       | 0010    | 0010 0011        |
|           | Shift left half Rem Right 1 | 0010    | 0001 0011        |

### **Faster Division**

- Can't use parallel hardware as in multiplier
  - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision)
   generate multiple quotient bits per step
  - Still require multiple steps



### **Division: Signed Division**

Dividend = Quotient x Divisor + Remainder

Checking:  $7 = 3 \times 2 + 1$ 

Remainder = Dividend - (Quotient x Divisor) = 
$$-7-(-3 \times +2)=-1$$

Checking: 
$$-7 = -3 \times 2 + (-1)$$

### **Division: Signed Division**

Dividend = Quotient x Divisor + Remainder

```
Ex: -7 + +2: Quotient = -4, Remainder = +1
```

Checking: 
$$-7 = -4 \times 2 + (+1)$$

but ...

the dividend and remainder must have the same signs.

### **Division: Signed Division**

Ex: 
$$+7 \div -2$$
: Quotient = ...,

### **Division: Signed Division**

Quotient 
$$= -3$$
,

Remainder = 
$$+1$$

Checking: 
$$+7 = -3 \times -2 + (+1)$$

Ex: 
$$-7 \div -2$$
: Quotient = +3,

Remainder 
$$= -1$$

Checking: 
$$-7 = +3 \times -2 + (-1)$$

### **MIPS Division**

- Use HI/LO registers for result
  - HI: 32-bit remainder
  - LO: 32-bit quotient
- Instructions
  - div rs, rt / divu rs, rt
  - No overflow or divide-by-0 checking
    - Software must perform checks if required
  - Use mfhi, mflo to access result



### **MIPS: Division**

| Instruction     | Example       | Meaning            |
|-----------------|---------------|--------------------|
|                 |               | Lo = \$s2 / \$s3,  |
| divide          | div \$s2,\$s3 | Hi = \$s2 mod \$s3 |
|                 |               | Lo = \$s2 / \$s3,  |
| divide unsigned | div \$s2,\$s3 | Hi = \$s2 mod \$s3 |
| mov from Hi     | mfhi \$s1     | \$s1 = Hi          |
| mov from Lo     | mflo \$s1     | \$s1 = Lo          |

### Floating Point (a brief look)

- We need a way to represent
  - numbers with fractions, e.g., 3.1416
  - very small numbers, e.g., .00000001
  - very large numbers, e.g.,  $3.15576 \times 10^9$
- Representation:
  - sign, exponent, significand:  $(-1)^{sign} x$  significand x  $2^{exponent}$
  - more bits for significand gives more accuracy
  - more bits for exponent increases range
- IEEE 754 floating point standard:
  - single precision: 8 bit exponent, 23 bit significand
  - double precision: 11 bit exponent, 52 bit significand

# Floating Point

- Representation for non-integral numbers
  - Including very small and very large numbers
- Like scientific notation



In binary

$$\bullet$$
 ±1. $xxxxxxxx_2 \times 2^{yyyy}$ 

Types float and double in C



## Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
  - Portability issues for scientific code
- Now almost universally adopted
- Two representations
  - Single precision (32-bit)
  - Double precision (64-bit)



## **IEEE Floating-Point Format**

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit  $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
  - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
  - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
  - Ensures exponent is unsigned
  - Single: Bias = 127; Double: Bias = 1203



# Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
  - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
  - Fraction:  $000...00 \Rightarrow \text{significand} = 1.0$
  - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
  - exponent: 11111110
     ⇒ actual exponent = 254 127 = +127
  - Fraction: 111...11 ⇒ significand ≈ 2.0
  - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$



## **Double-Precision Range**

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
  - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
  - Fraction:  $000...00 \Rightarrow \text{significand} = 1.0$
  - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

  - Fraction: 111...11 ⇒ significand ≈ 2.0
  - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$



## Floating-Point Precision

- Relative precision
  - all fraction bits are significant
  - Single: approx 2<sup>-23</sup>
    - Equivalent to 23 x log<sub>10</sub>2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
  - Double: approx 2<sup>-52</sup>
    - Equivalent to 52 x log<sub>10</sub>2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision



### **FP: Floating-Point Representation**

three advantages: (normalized form)

- simplifies exchange of data
- simplifies the floating point arithmetic algorithms
- increases the accuracy of the numbers that can be stored in a word

Binary numbers in scientific notation:

$$1.XXX_{two} \times 2^{YYYY}$$

Ex: 
$$1.0_{\text{two}} \times 2^{-1} = 0.5_{\text{ten}}$$

## Floating-Point Example

- Represent –0.75
  - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
  - S = 1
  - Fraction =  $1000...00_2$
  - Exponent = -1 + Bias
    - Single:  $-1 + 127 = 126 = 011111110_2$
    - Double:  $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00



## Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction =  $01000...00_2$
- Fxponent =  $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$



### **FP: Floating-Point Representation**

IEEE 754: (sign and magnitude representation)

$$(-1)^{S} \times (1+F) \times 2^{E}$$

$$\rightarrow$$
 (-1)<sup>S</sup> x (1+(s1 x 2<sup>-1</sup>)+(s2 x 2<sup>-2</sup>)+(s3 x 2<sup>-3</sup>)+...) x 2<sup>E</sup>

| Single   | precision | Double   | e precision | Object represented       |
|----------|-----------|----------|-------------|--------------------------|
| Exponent | Fraction  | Exponent | Fraction    | Object represented       |
| 0        | 0         | 0        | 0           | 0                        |
| 0        | Nonzero   | 0        | Nonzero     | +- denormalized number   |
| 1-254    | Anything  | 1-2046   | Anything    | +- floating-point number |
| 255      | 0         | 2047     | 0           | +- infinity              |
| 255      | Nonzero   | 2047     | Nonzero     | NaN (Not a Number)       |

### **FP: Exponent**

IEEE 754: uses a bias of 127 for single precision.

Ex: -1 represented by -1+127<sub>ten</sub> or 
$$126_{ten} = 0111 \ 1110_{two}$$
  
+1 represented by +1+127<sub>ten</sub> or  $128_{ten} = 1000 \ 0000_{two}$ 

and a bias 1023 for double precision.

IEEE 754: (sign and magnitude representation)

$$(-1)^S \times (1+F) \times 2^{(Exponent-Bias)}$$

Why bias notation?, overflow, underflow

### **FP: Floating-Point Representation**

Why bias notation?

Negative exponents pose a challenge to simplified sorting. The desirable notation must therefore represent the most negative exponent as  $00...00_{two}$  and the most positive as  $11...11_{two}$ . This is called biased notation.

### **FP: Floating-Point Representation**

IEEE 754: (sign and magnitude representation)

$$(-1)^{S} \times (1+F) \times 2^{E}$$

A single precision floating point:  $2.0_{\text{ten}} \times 10^{-38} \leftrightarrow 2.0_{\text{ten}} \times 10^{38}$ 

| 31 | 30 29 28 27 26 25 24 23 | 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | ) |
|----|-------------------------|------------------------------------------------------------|---|
| S  | Exponent (E)            | Fraction (F)                                               |   |

8 bits 23 bits

A double precision floating point:  $2.0_{\text{ten}} \times 10^{-308} \leftrightarrow 2.0_{\text{ten}} \times 10^{308}$ 

| 31 | 30 29 28 27 26 25 24 23 22 21 20 | 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|----|----------------------------------|---------------------------------------------------|
| S  | exponent                         | fraction                                          |

11 bits 20 bits

fraction (continued)

### **FP: Example**

Ex: Show the IEEE 754 binary representation of -0.75<sub>ten</sub> in single and double precision.

Sol: 
$$-0.75_{\text{ten}} = -0.11_{\text{two}} = -1.1_{\text{two}} \times 2^{-1}$$

a single precision number: 
$$(-1)^S \times (1+F) \times 2^{(Exponent-127)}$$

$$= (-1)^{1} \times (1+.1000\ 0000\ 0000\ 0000\ 0000\ 000) \times 2^{(126-127)}$$

| 31 | 30 2                | 29 2 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---------------------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| S  | s exponent fraction |      |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|    | 126                 |      |    |    |    |    |    |    |    |    |    |    |    |    |    | 0.1 |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 1  | 0                   | 1    | 1  | 1  | 1  | 1  | 1  | Λ  | 1  | Λ  | Λ  | Λ  | Λ  | Λ  | Λ  | Λ   | Λ  | Λ  | Λ  | Λ  | Λ  | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | n |

### **FP: Example**

a double precision number:  $(-1)^S \times (1+F) \times 2^{(Exponent-1023)}$ 

$$-1.1_{\text{two}} \times 2^{-1}$$

 $= (-1)^{1} \times (1+.1000\ 0000\ 0000\ 0000\ 0000\ ...) \times 2^{(1022-1023)}$ 

| 31 | 30 29 28 27 26 25 24 23 22 21 20 | 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
|----|----------------------------------|---------------------------------------------------|
| S  | exponent                         | fraction                                          |

1022 0.1

| 1 | 0                    | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   | fraction (continued) |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 0 | 0                    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

### **FP: Example**

#### Ex: What decimal number is represented by this number?

| , | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|   | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Sol:

a single precision number: 
$$(-1)^{S} \times (1+F) \times 2^{(Exponent-127)}$$
  
=  $(-1)^{1} \times (1+.25) \times 2^{(129-127)}$   
=  $-1.25 \times 2^{2}$   
=  $-5.0$ 

## Floating-Point Addition

- Consider a 4-digit decimal example
  - $\bullet$  9.999 × 10<sup>1</sup> + 1.610 × 10<sup>-1</sup>
- 1. Align decimal points
  - Shift number with smaller exponent
  - $\bullet$  9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup>
- 2. Add significands
  - $\mathbf{9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1}$
- 3. Normalize result & check for over/underflow
  - $\bullet$  1.0015 × 10<sup>2</sup>
- 4. Round and renormalize if necessary
  - $1.002 \times 10^2$



## Floating-Point Addition

- Now consider a 4-digit binary example
  - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
  - Shift number with smaller exponent
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
  - $1.000_2 \times 2^{-4}$ , with no over/underflow
- 4. Round and renormalize if necessary
  - $-1.000_2 \times 2^{-4}$  (no change) = 0.0625



### FP: Addition 4-binary digit

$$0.5_{\text{ten}} = 1.000_{\text{two}} \times 2^{-1}$$

$$-0.4375_{\text{ten}} = -1.110_{\text{two}} \times 2^{-2}$$

Step 1: align the binary point of the number with the smaller exponent.

$$-1.110_{\text{two}} \times 2^{-2} = -0.111_{\text{two}} \times 2^{-1}$$

Step 2: the addition of the significands:

$$1.000_{\text{two}} \times 2^{-1} + (-0.111_{\text{two}} \times 2^{-1}) = 0.001_{\text{two}} \times 2^{-1}$$

### **FP: Addition**

Step 3: put it into normalized form and check for overflow or underflow

$$0.001_{\text{two}} \times 2^{-1} = 1.000_{\text{two}} \times 2^{-4}$$

Since  $-126 \le -4 \le 127$ , there is no overflow or underflow.

Step 4: round the number

$$1.000_{\text{two}} \times 2^{-4}$$

### **FP Adder Hardware**

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - Slower clock would penalize all instructions
- FP adder usually takes several cycles
  - Can be pipelined



### **FP Adder Hardware**





### **FP: Multiplication**

Ex: 
$$(1.000_{\text{two}} \times 2^{-1}) \times (1.110_{\text{two}} \times 2^{-2})$$

Step 1: adding the exponents.

$$-1+(-2) = -3$$

with the bias notation: -1+127 = 126 and -2+127 = 125

adding the exponents:  $126+125-127 = 124 \longrightarrow -3$ 

### **FP: Multiplication**

#### Step 2: the multiplication of the significants:

```
\begin{array}{c}
1000 \\
\times \ \frac{1110}{0000} \\
1000 \\
1000 \\
1110000 \\
\text{two}
\end{array}

\begin{array}{c}
1.110000 \\
\text{two}
\end{array}
```

### **FP: Multiplication**

Step 3: normalize, check for overflow or underflow

$$(127 \ge -3 \ge -126)$$
 or (bias notation:  $254 \ge 124 \ge 1$ )

$$1.110_{\text{two}} \times 2^{-3}$$

Step 4: assume that the significant is only 4 digits, so round the number

$$1.110_{\text{two}} \times 2^{-3}$$

Step 5: sign the product:

$$-1.110_{\text{two}} \times 2^{-3}$$

### **FP Arithmetic Hardware**

- FP multiplier is of similar complexity to FP adder
  - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
  - Addition, subtraction, multiplication, division, reciprocal, square-root
  - FP ↔ integer conversion
- Operations usually takes several cycles
  - Can be pipelined



### **FP Instructions in MIPS**

- FP hardware is coprocessor 1
  - Adjunct processor that extends the ISA
- Separate FP registers
  - 32 single-precision: \$f0, \$f1, ... \$f31
  - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
    - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
  - Programs generally don't do integer ops on FP data, or vice versa
  - More registers with minimal code-size impact
- FP load and store instructions
  - lwc1, ldc1, swc1, sdc1
    - e.g., ldc1 \$f8, 32(\$sp)



### **FP Instructions in MIPS**

- Single-precision arithmetic
  - add.s, sub.s, mul.s, div.s
    - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
  - add.d, sub.d, mul.d, div.d
    - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
  - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
  - Sets or clears FP condition-code bit
    - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
  - bc1t, bc1f
    - e.g., bc1t TargetLabel



## FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
  lwc2  $f18, const9($gp)
  div.s  $f16, $f16, $f18
  lwc1  $f18, const32($gp)
  sub.s  $f18, $f12, $f18
  mul.s  $f0, $f16, $f18
  jr  $ra
```



## FP Example: Array Multiplication

- $X = X + Y \times Z$ 
  - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2



## FP Example: Array Multiplication

#### MIPS code:

```
li $t1, 32
                  # t1 = 32 (row size/loop end)
   li $s0, 0
                  # i = 0; initialize 1st for loop
L1: li $s1, 0
                  # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(f2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```





# FP Example: Array Multiplication

•••

```
\$11 \$t0, \$s0, 5  # \$t0 = i*32 (size of row of y)
addu $t0, $t0, $s2  # $t0 = i*size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0  # $t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, 0(t2) # x[i][j] = f4
addiu \$s1, \$s1, 1 # \$j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu $s0, $s0, 1
                    # $i = i + 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```



### **FP: Accurate Arithmetic**

#### Rounding with Guard Digits:

Ex: 
$$2.56_{\text{ten}} \times 10^{0} + 2.34_{\text{ten}} \times 10^{2}$$

with guard and round bit:



2.3400 + <u>0.0256</u> 2.3656



without:

## **MIPS: FP operands**

#### MIPS floating point Operands

| Name                   | Example                | Comments                                     |
|------------------------|------------------------|----------------------------------------------|
| 22 registers           | \$f0, \$f1, \$f2,,     | MIPS floating-point registers are used in    |
| 32 registers           | \$f31                  | pairs for double precision numbers           |
|                        | Managam ([O]           | Accessed only by data transfer instructions. |
|                        | Memory[0],             | M IPS uses byte addresses, so sequential     |
| 2 <sup>30</sup> memory |                        | words differ by 4. Memory holds data         |
| words                  | Memory[4],,            | structures, such as arrays, and spilled      |
|                        | Memory                 | registers, such as those saved on            |
|                        | [4 2 9 3 9 6 7 2 9 2 ] | procedure calls                              |

## MIPS: FP assembly language

#### **Arithmetic**

| Instruction        | Example              | Meaning        | Comments                 |
|--------------------|----------------------|----------------|--------------------------|
| FP add single      | add.s \$f2,\$f4,\$f6 | \$f2=\$f4+\$f6 | FP add(single precision) |
| FP subtract single | sub.s \$f2,\$f4,\$f6 | \$f2=\$f4-\$f6 | FP sub(single precision) |
| FP multiply single | mul.s \$f2,\$f4,\$f6 | \$f2=\$f4x\$f6 | FP mul(single precision) |
| FP divide single   | div.s \$f2,\$f4,\$f6 | \$f2=\$f4/\$f6 | FP div(single precision) |
| FP add double      | add.d \$f2,\$f4,\$f6 | \$f2=\$f4+\$f6 | FP add(double precision) |
| FP subtract double | sub.d \$f2,\$f4,\$f6 | \$f2=\$f4-\$f6 | FP sub(double precision) |
| FP multiply double | mul.d \$f2,\$f4,\$f6 | \$f2=\$f4x\$f6 | FP mul(double precision) |
| FP divide double   | div.d \$f2,\$f4,\$f6 | \$f2=\$f4/\$f6 | FP div(double precision) |

## MIPS: FP assembly language

#### Data transfer & Conditional branch

| Instruction         | Example             | Meaning                      | Comments                   |
|---------------------|---------------------|------------------------------|----------------------------|
| load word copr.1    | lwc1 \$f1,100(\$s2) | \$f1=Memory[\$s2+100]        | 32-bit data to FP register |
| store word copr.1   | swc1 \$f1,100(\$s2) | Memory[\$s2+100]=\$f1        | 32-bit data to memory      |
| branch on FP true   | halt 25             | If (cond==1) goto            | PC-relative branch if FP   |
| branch on FF true   | bclt 25             | PC+4+100                     | cond.                      |
| branch on FP false  | bclf 25             | If (cond==0) goto            | PC-relative branch if not  |
| branch on FF laise  |                     | PC+4+100                     | cond.                      |
| FP compare single   | c.lt.s \$f2,\$f4    | if $(\$f2 < \$f4)$ cond = 1; | FP compare less than       |
| (eq,ne,lt,le,gt,ge) | C.II.S \$12,\$14    | else cond = 0                | single precision           |
| FP compare double   | alt d ¢f2 ¢f4       | if $(\$f2 < \$f4)$ cond = 1; | FP compare less than       |
| (eq,ne,lt,le,gt,ge) | c.lt.d \$f2,\$f4    | else cond = 0                | single precision           |

# Interpretation of Data

### **The BIG Picture**

- Bits have no inherent meaning
  - Interpretation depends on the instructions applied
- Computer representations of numbers
  - Finite range and precision
  - Need to account for this in programs



# **Associativity**

- Parallel programs may interleave operations in unexpected orders
  - Assumptions of associativity may fail

|   |           | (x+y)+z  | x+(y+z)   |
|---|-----------|----------|-----------|
| X | -1.50E+38 |          | -1.50E+38 |
| У | 1.50E+38  | 0.00E+00 |           |
| Z | 1.0       | 1.0      | 1.50E+38  |
|   |           | 1.00E+00 | 0.00E+00  |

 Need to validate parallel programs under varying degrees of parallelism



### Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
  - IEEE 754 keeps two extra bits, guard and round
  - four rounding modes
  - positive divided by zero yields "infinity"
  - zero divide by zero yields "not a number"
  - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
  - see text for description of 80x86 and Pentium bug!

### **Chapter Three Summary**

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
  - two's complement
  - IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines
- Algorithm choice is important and may lead to hardware optimizations for both space and time (e.g., multiplication)

### x86 FP Architecture

- Originally based on 8087 FP coprocessor
  - 8 x 80-bit extended-precision registers
  - Used as a push-down stack
  - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
  - Converted on load/store of memory operand
  - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
  - Result: poor FP performance



# **x86 FP Instructions**

| Data transfer                                  | Arithmetic                                                                               | Compare                           | Transcendental                            |
|------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ | FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT | FICOMP<br>FIUCOMP<br>FSTSW AX/mem | FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X |

### Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed



## **Streaming SIMD Extension 2 (SSE2)**

- Adds 4 × 128-bit registers
  - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
  - 2 × 64-bit double precision
  - 4 × 32-bit double precision
  - Instructions operate on them simultaneously
    - Single-Instruction Multiple-Data



# **Right Shift and Division**

- Left shift by i places multiplies an integer by 2<sup>i</sup>
- Right shift divides by 2<sup>i</sup>?
  - Only for unsigned integers
- For signed integers
  - Arithmetic right shift: replicate the sign bit
  - e.g., -5 / 4
    - $\blacksquare$  11111011<sub>2</sub> >> 2 = 111111110<sub>2</sub> = -2
    - Rounds toward -∞
  - c.f.  $11111011_2 >>> 2 = 001111110_2 = +62$



# Who Cares About FP Accuracy?

- Important for scientific code
  - But for everyday consumer use?
    - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
  - The market expects accuracy
  - See Colwell, The Pentium Chronicles



# **Concluding Remarks**

- ISAs support arithmetic
  - Signed and unsigned integers
  - Floating-point approximation to reals
- Bounded range and precision
  - Operations can overflow and underflow
- MIPS ISA
  - Core instructions: 54 most frequently used
    - 100% of SPECINT, 97% of SPECFP
  - Other instructions: less frequent

