Les calculatrices sont autorisées.

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 6 pages.

Notations:

On note:

• N : l'ensemble des entiers naturels,

• R : l'ensemble des nombres réels,

• e : le nombre réel dont le logarithme népérien est égal à 1.

Pour x appartenant à \mathbb{R} , on note |x| la valeur absolue de x.

Pour tout entier naturel n, on note n! la factorielle de n avec la convention 0!=1.

Si j et n sont deux entiers naturels <u>fixes</u> tels que $0 \le j \le n$, on note:

- [j,n] l'ensemble des entiers naturels k vérifiant $j \le k \le n$,
- $\binom{n}{j}$ le nombre de parties ayant j éléments d'un ensemble de n éléments.

On rappelle que pour tout entier nature j élément de [0,n] on a : $\binom{n}{j} = \frac{n!}{j!(n-j)!}$.

Si f est une fonction k fois dérivable sur un intervalle I (avec $k \ge 1$) on note f' (resp. $f^{(k)}$) sa fonction dérivée (resp. sa fonction dérivée k -ième).

Si u est une application de \mathbb{N} dans \mathbb{R} , donc une suite réelle, on utilise la notation usuelle : $u(n)=u_n$ pour tout n appartenant à \mathbb{N} .

Soit x un nombre réel, on rappelle que s'il existe un nombre entier p qui vérifie $|p-x| < \frac{1}{2}$ alors p est l'entier le plus proche de x.

Objectifs:

L'objet du problème est d'une part d'établir, pour tout entier naturel non nul, un lien entre l'entier naturel β_n le plus proche de $e^{-1}n!$ et le nombre γ_n d'éléments sans point fixe du groupe symétrique \mathcal{F}_n et d'autre part, d'étudier l'écart $\delta_n = e^{-1}n! - \beta_n$.

Dans la partie I on étudie β_n et on le caractérise grâce à une récurrence, dans la partie II on étudie γ_n et on établit un lien avec β_n . La partie III est consacrée à une estimation de δ_n puis à une étude des deux séries $\sum_{n\geq 0} \delta_n$ et $\sum_{n\geq 1} \frac{|\delta_n|}{n}$.

PARTIE I

Les suites α et β

On définit la suite α par $\alpha_0 = 1$ et la relation de récurrence :

pour tout
$$n$$
 de \mathbb{N} : $\alpha_{n+1} = (n+1)\alpha_n + (-1)^{n+1}$.

On rappelle que pour tout x réel, la série $\sum_{n\geq 0} \frac{x^n}{n!}$ est convergente, et que $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$; en particulier

pour
$$x=-1$$
:
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = e^{-1}.$$

Pour
$$n \in \mathbb{N}$$
, on note: $\beta_n = n! \sum_{k=0}^n \frac{\left(-1\right)^k}{k!}$ et $\rho_n = \sum_{k=n+1}^{+\infty} \frac{\left(-1\right)^k}{k!}$.

I.1/ Étude de la suite α .

- **I.1.1**/ Expliciter α_k pour k dans [0,4].
- **I.1.2**/ Montrer que α_n est un entier naturel pour tout n de \mathbb{N} .

I.2/ Étude de la suite β .

- **I.2.1**/ Expliciter β_k pour k dans [0,4].
- **I.2.2**/ Montrer que β_n est un entier relatif pour tout n de \mathbb{N} .
- **I.2.3**/ Expliciter $\beta_{n+1} (n+1)\beta_n$ en fonction de n, pour tout n de \mathbb{N} .
- **I.2.4**/ Comparer les deux suites α et β .

I.3/ Étude de ρ_n .

- **I.3.1**/ Préciser le signe de ρ_n en fonction de l'entier naturel n.
- **I.3.2**/ Etablir, pour tout entier naturel n, l'inégalité suivante : $n! |\rho_n| \le \frac{1}{n+1}$. L'inégalité est-elle stricte ?
- **I.3.3**/ Déduire de ce qui précède que pour tout entier naturel $n \ge 1$, β_n est l'entier naturel le plus proche de $e^{-1}n!$.

I.4/ Étude d'une fonction.

On désigne par f la fonction définie et de classe C^1 (au moins) sur l'intervalle]-1; 1[à valeurs réelles, vérifiant les deux conditions :

$$f(0)=1$$
 et pour tout x de $]-1$; $1[: (1-x)f'(x)-x f(x)=0$.

- **I.4.1**/ Justifier l'existence et l'unicité de la fonction f. Expliciter f(x) pour tout x de]-1; 1[.
- **I.4.2**/ Justifier l'affirmation : « f est de classe C^{∞} sur]-1 ; 1[».
- **I.4.3**/ Expliciter (1-x)f(x), puis exprimer pour tout entier naturel n: $(1-x)f^{(n+1)}(x)-(n+1)f^{(n)}(x)$ en fonction de n et de x.
- **I.4.4**/ En déduire une relation, valable pour tout entier naturel n, entre β_n et $f^{(n)}(0)$.

PARTIE II

La suite γ

Dans cette partie, on désigne par n un entier naturel. Pour $n \ge 1$ on note :

- \mathcal{I}_n l'ensemble des permutations de [1,n],
- γ_n le nombre d'éléments de \mathcal{I}_n sans point fixe (τ appartenant à \mathcal{I}_n est sans point fixe si pour tout k de $[\![1,n]\!]$, on a $\tau(k) \neq k$).

Pour n=0 on adopte la convention : $\gamma_0 = 1$.

- **II.1**/ Calculer γ_1 et γ_2 .
- II.2/ Classer les éléments de \mathcal{F}_3 selon leur nombre de points fixes et calculer γ_3 .
- II.3/ On suppose dans cette question que n=4.
 - **II.3.1**/ Quel est le nombre d'éléments τ appartenant à \mathcal{I}_4 ayant deux points fixes ?
 - **II.3.2**/ Quel est le nombre d'éléments τ appartenant à \mathcal{I}_4 ayant un point fixe ?
 - **II.3.3**/ Calculer γ_4 .

II.4/ Relation entre les γ_k .

- **II.4.1**/ Rappeler sans justification le nombre d'éléments de \mathcal{F}_n .
- **II.4.2**/ Si $0 \le k \le n$, combien d'éléments de \mathcal{F}_n ont exactement k points fixes ?
- **II.4.3**/ Etablir pour tout entier naturel n la relation : $\sum_{k=0}^{n} \binom{n}{k} \gamma_k = n!$.

II.5/ On considère la série entière $\sum_{n\geq 0} \frac{\gamma_n}{n!} x^n$ et l'on pose $g(x) = \sum_{n=0}^{+\infty} \frac{\gamma_n}{n!} x^n$ lorsque la série converge.

II.5.1/ Montrer que le rayon de convergence de cette série entière est supérieur ou égal à 1.

II.5.2/ Pour tout x de]-1; 1[, on pose $h(x) = g(x)e^{x}$.

Justifier l'existence du développement en série entière de la fonction h sur]-1; 1[et expliciter ce développement.

II.5.3/ Expliciter g(x) pour tout nombre réel x de]-1; 1[. En déduire la valeur du rayon de convergence de la série $\sum_{n>0} \frac{\gamma_n}{n!} x^n$.

II.5.4/ Comparer les deux suites β et γ .

II.5.5/ La fonction g est-elle définie en 1 ?

II.5.6/ La fonction g est-elle définie en -1?

II.5.7/ Calculer γ_8 .

PARTIE III

Sur
$$\delta_n = e^{-1}n! - \beta_n$$

Pour tout entier nature n on note :

- $\delta_n = e^{-1}n! \beta_n$.
- $J_n = \int_0^1 x^n e^x dx$.
- $v_n = (-1)^{n+1} J_n$.

III.1/ La série
$$\sum_{n>0} v_n$$
.

III.1.1/ Quelle est la limite de J_n lorsque n tend vers $+\infty$?

III.1.2/ Établir la convergence de la série $\sum_{n\geq 0} v_n$.

III.2/ Estimation intégrale de δ_n .

III.2.1/ Justifier, pour tout nombre réel x et pour tout entier naturel n, l'égalité :

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt$$
 (1).

III.2.2/ Déduire de (1) l'expression de δ_n en fonction de v_n .

III.3/ Sur la série
$$\sum_{n>0} \delta_n$$
.

Justifier la convergence de la série $\sum_{n\geq 0} \delta_n$; la convergence est-elle absolue ?

III.4/ Sur la série
$$\sum_{n\geq 1} \frac{\left|\delta_n\right|}{n}$$
.

III.4.1/ Justifier la convergence de la série $\sum_{n\geq 1} \frac{\left|\delta_n\right|}{n}$.

III.4.2/ On pose
$$A = -\int_{0}^{1} e^{x} \ln(1-x) dx$$
.

 $\textbf{III.4.2.1} / \text{ Justifier la convergence de l'intégrale impropre } A \ .$

III.4.2.2/ Exprimer la somme $\sum_{n=1}^{+\infty} \frac{|\delta_n|}{n}$ en fonction de l'intégrale A.

III.4.3/ Justifier la convergence de la série $\sum_{n\geq 0} \frac{\left(-1\right)^n}{n!(n+1)^2}$ et expliciter la somme

$$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n}{n! \left(n+1\right)^2} \text{ en fonction de } \sum_{n=1}^{+\infty} \frac{\left|\delta_n\right|}{n}.$$

III.4.4/ Expliciter un nombre rationnel $\frac{p}{q}$ vérifiant $\left|\sum_{n=1}^{+\infty} \frac{\left|\delta_n\right|}{n} - \frac{p}{q}\right| \le \frac{1}{600}$.

Fin de l'énoncé.