Week 1: Proofs and Pancakes

Response by: njb2b

Problem 7: Writeup

Definition 1 A rational number is a fraction $\frac{a}{b}$ where a and b are integers.

Show $\sqrt{2}$ is irrational.

Proof.

For a rational number $\frac{a}{b}$, without loss of generality we may suppose that a and b are integers which share no common factors, as otherwise we could remove any common factors (i.e. suppose $\frac{a}{b}$ is in simplest terms). To say $\sqrt{2}$ is irrational is equivalent to stating that 2 cannot be expressed in the form $(\frac{a}{b})^2$. Equivalently, this says that there are no integer values for a and b satisfying

$$a^2 = 2b^2 \tag{1}$$

We argue by *reductio ad absurdum* (proof by contradiction). Assume toward reaching a contradiction that Equation 1 holds for a and b being integers without any common factor between them. It must be that a^2 is even, since $2b^2$ is divisible by 2, therefore a is even. If a is even, then for some integer c

$$a = 2c$$

$$a^{2} = (2c)^{2}$$

$$2b^{2} = 4c^{2}$$

$$b^{2} = 2c^{2}$$

therefore, b is even. This implies that a and b are both even, and thus share a common factor of 2. This contradicts our hypothesis, therefore our hypothesis is false. \Box

