Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Mechanics M3 (6679)

January 2007 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
1.	(a) Maximum speed when accel. = 0 (o.e.)	B1 (1)
	(b) $\frac{1}{12}(30 - x) = v \frac{dv}{dx} \text{(acceln} = \dots + \text{attempt to integrate)}$ Use of $v \frac{dv}{dx}$: $\frac{v^2}{2} = \frac{1}{12} \left(30x - \frac{x^2}{2} \right) (+c)$ Substituting $x = 30$, $v = 10$ and finding $c = 12.5$, or limits	M1 ↓ M1 A1 ↓ M1
	$\frac{v^2 = 25 + 5x - \frac{1}{12}x^2}{\text{Also "acceln}} < 0 \text{ for } x > 30.$ (a) Allow "acceln > 0 for $x < 30$, acceln < 0 for $x > 30$." Also "accelerating for $x < 30$, decelerating for $x > 30$." But "acceln < 0 for $x > 30$ " only is B0 (b) 1st M1 will be generous for wrong form of acceln (e.g. $\frac{dv}{dx}$)! 3rd M1 If use limits, they must use them in correct way with correct values Final A1. Have to accept any expression, but it must be for v^2 explicitly (not $\frac{1}{2}v^2$), and if in separate terms, one can expect like terms to be collected. Hence answer in form as above, or e.g. $\frac{1}{12}(300 + 60x - x^2)$; also $100 - \frac{1}{12}(30 - x)^2$	A1 (5)

2.

Height of cone = $\frac{a}{\tan \alpha}$ = 3a

Hence $h = \frac{3}{4}a$

$$\tan \theta = \frac{a}{\frac{3}{4}a} = \frac{4}{3} \Rightarrow \theta = 53.1^{\circ}$$

M1 A1 ↓ M1 ↓ M1 A1

(5)

1st M1 (generous) allow any trig ratio to get height of cone (e.g. using sin)

 $3^{\rm rd}$ M1 For correct trig ratio on a suitable triangle to get θ or complement (even if they call the angle by another name – hence if they are aware or not that they are getting the required angle)

3.	(a) E.P.E. $=\frac{1}{2} \frac{3.6mg}{a} x^2 = \frac{1}{2} \frac{3.6mg}{a} \left(\frac{a}{3}\right)^2$ $= \underline{0.2 mga}$	M1 A1 A1
	(b) Friction = $\mu mg \Rightarrow$ work done by friction = $\mu mg \left(\frac{4a}{3}\right)$	(3) M1 A1
	Work-energy: $\frac{1}{2}m.2ga = \mu mgd + 0.2 mga$ (3 relevant terms)	M1 A1√ ↓
	Solving to find μ : $\mu = 0.6$	M1 A1 (6)
	(b) 1 st M1: allow for attempt to find work done by frictional force (i.e. not just finding friction). 2 nd M1: "relevant" terms, i.e. energy or work terms! A1 f.t. on their work done by friction	

4.	(a) Energy: $\frac{1}{2}m.3ag - \frac{1}{2}mv^2 = mga(1 + \cos\theta)$	M1 A1
	$v^2 = ag(1 - 2\cos\theta) (\textbf{o.e.})$	A1 (3)
	(b) $T + mg\cos\theta = m\frac{v^2}{a}$	M1 A1
	Hence $T = (1 - 3\cos\theta)mg$ (*)	A1 cso (3)
	(c) Using $T = 0$ to find $\cos \theta$	M1
	Hence height above $A = \frac{4}{3}a$ Accept 1.33a (but must have 3+ s.f.)	A1 (2)
	(d) $v^2 = \frac{1}{3} ag$ (o.e.) f.t. using $\cos \theta = \frac{1}{3}$ in v^2	B1√
	consider vert motion: $(v \sin \theta)^2 = 2gh$ (with v resolved)	M1 A1
	$\sin^2 \theta = \frac{8}{9}$ (or $\theta = 70.53$, $\sin \theta = 0.943$) and solve for h (as ka)	↓ M1
	$h = \frac{\frac{4}{27}a}{a} \text{ or } 0.148a \text{ (awrt)}$	A1
	OR consider energy: $\frac{1}{2}m(v\cos\theta)^2 + mgh = \frac{1}{2}mv^2$ (3 non-zero terms) Sub for v , θ and solve for h	M1 A1 ↓ M1
	$h = \frac{\frac{4}{27}a}{a}$ or 0.148 <i>a</i> (awrt)	A1

Question Number	Scheme	Marks
5.	(a)	B1
	$\leftrightarrow T + T\sin\theta = mr\omega^2 \tag{3 terms}$	M1 A1
	$r = h \tan \theta$	B1
	$\frac{mg}{\cos\theta}(1+\sin\theta) = \frac{m\omega^2 h \sin\theta}{\cos\theta} $ (eliminate r)	↓ M1
	$\omega^2 = \frac{g}{h} \left(\frac{1 + \sin \theta}{\sin \theta} \right) $ (*) (solve for ω^2)	↓ M1 A1 (7)
	(b) $\omega^2 = \frac{g}{h} \left(\frac{1}{\sin \theta} + 1 \right) > \frac{2g}{h} \left(\sin \theta < 1 \right) \implies \omega > \sqrt{\frac{2g}{h}} $ (*)	M1 A1 (2)
	(c) $\frac{3g}{h} = \frac{g}{h} \left(\frac{1 + \sin \theta}{\sin \theta} \right) \implies \sin \theta = \frac{1}{2}$	M1 A1
	$T\cos\theta = mg \implies T = \frac{2\sqrt{3}}{3}mg \text{ or } \underline{1.15mg} \text{ (awrt)}$	↓ M1 A1 (4)
	(a) Allow first B1 M1 A1 if assume different tensions (so next M1 is effectively for eliminating r and T .	
	(b) M1 requires a <i>valid</i> attempt to derive an <i>in</i> equality for ω . (Hence putting $\sin \theta = 1$ immediately into expression of ω^2 [assuming this is the critical value] is M0.)	

_		
6.	(a) Moments: $\pi \int_{1}^{2} xy^{2} dx = V \overline{x} \text{ or } \int_{1}^{2} xy^{2} dx = \overline{x} \int_{1}^{2} y^{2} dx$	M1
	$\int_{1}^{2} y^{2} dx = \int_{1}^{2} \frac{1}{4x^{4}} dx = \left[-\frac{1}{12x^{3}} \right]_{1}^{2} = \left[-\frac{7}{96} \right] $ (either)	M1 A1
	$\int_{1}^{2} xy^{2} dx = \int_{1}^{2} \frac{1}{4x^{3}} dx = \left[-\frac{1}{8x^{2}} \right]_{1}^{2} = \left[-\frac{3}{32} \right] $ (both)	A1 ↓
	Solving to find $\bar{x} = \frac{9}{7}$ \Rightarrow required dist $= \frac{9}{7} - 1 = \frac{2}{7}$ m (*)	M1 A1 cso (6)
	(b) $H \qquad S \qquad T$ Mass $(\rho) \frac{2}{3} \pi \left(\frac{1}{2}\right)^{3}, (\rho) \frac{7\pi}{96} \qquad H + S$, ,
	$\left[= \frac{1}{12} (\rho) \pi \right] \qquad \left[= \frac{5}{32} (\rho) \pi \right]$	B1, M1
	Dist of CM from base $\frac{19}{16}$ m $\frac{5}{7}$ m \bar{x}	B1 B1
	Moments: $ \left[= \frac{1}{12} (\rho) \pi \right] \left(\frac{19}{16} \right) + (\rho) \frac{7\pi}{96} \left(\frac{5}{7} \right) = \left[\frac{5}{32} (\rho) \pi \right] \overline{x} $	M1 A1
	$\bar{x} = \frac{29}{30} \text{ m or } 0.967 \text{ m (awrt)}$	A1 (7)
	Allow distances to be found from different base line if necessary	

1		
7.	(a) $A = \frac{\lambda}{0.8}(0.05) = 0.25g$	M1
	$\lambda = \frac{(0.8)(0.25g)}{0.05} = 39.2 \text{ (*)}$	A1 (2)
	x	
	(b) $T = \frac{39.2}{0.8}(x + 0.05)$	M1
	mg - T = ma (3 term equn)	M1
	$0.25g - \frac{39.2}{0.8}(x + 0.05) = 0.25 \ \ddot{x} \text{ (or equivalent)}$	A1
	$\ddot{x} = -196 x$	A1 ↓
	SHM with period $\frac{2\pi}{\omega} = \frac{2\pi}{14} = \frac{\pi}{7}$ s (*)	M1 A1 cso (6)
	(c) $v = 14\sqrt{(0.1)^2 - (0.05)^2}$	M1 A1√
	= 1.21(24) $\approx 1.21 \text{ m s}^{-1}$ (3 s.f.) Accept $7\sqrt{3}/10$	A1 (3)
	(d) Time T under gravity = $\frac{1.21}{g}$ (= 0.1237 s)	B1√
	Complete method for time T' from B to slack.	
	[\uparrow e.g. $\frac{\pi}{28} + t$, where $0.05 = 0.1\sin 14t$	M1 A1
	OR T' , where $-0.05 = 0.1 \cos 14T'$]	
	T'' = 0.1496s	A1
	Total time = $T + T' = 0.273 \text{ s}$	A1 (5)
	(b) 1^{st} M1 must have extn as $x + k$ with $k \neq 0$ (but allow M1 if e.g. $x + 0.15$), or must justify later	(5)
	For last four marks, <i>must</i> be using \ddot{x} (not <i>a</i>)	
	 (c) Using x = 0 is M0 (d) M1 – must be using distance for when string goes slack. Using x = -0.1 (i.e. assumed end of the oscillation) is M0 	