Calculus 1

Esercizi tutorato 7

1. Calcolare, se esistono, i seguenti limiti:

(a)
$$\lim_{x \to 1} \frac{\sin(\pi x)}{\sin(3\pi x)}$$

(b)
$$\lim_{x\to 0} \left(\frac{\sin(2x)}{x}\right)^{x+1}$$

(c)
$$\lim_{x \to 0} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}$$

(d)
$$\lim_{x \to e} \frac{\ln x - 1}{x - e}$$

(e)
$$\lim_{x \to 0^+} \ln x \cdot \ln(1 + x^2)$$

(f)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$

(g)
$$\lim_{x\to 2} \frac{\sqrt{2+x} - \sqrt{3x-2}}{\sqrt{4x+1} - \sqrt{5x-1}}$$

Soluzioni: (a) 1/3; (b) 2; (c) 1; (d) 1/e; (e) 0; (f) 1/2; (g) 3.

2. Studiare per quali valori di $a, b \in \mathbb{R}$ la funzione f è continua in 0:

$$f(x) = \begin{cases} a\sqrt{x+4} - 6 & \text{per } -4 \le x < 0\\ \ln(bx+1) + 2b & \text{per } x \ge 0. \end{cases}$$

Soluzioni: $a = b + 3, b \in \mathbb{R}$.

3. Calcolare le derivate delle seguenti funzioni:

(a)
$$f(x) = \frac{e^{\cos x}}{(1+x^2)^3}$$

(b)
$$g(x) = \ln\left(\frac{x-1}{x+1}\right)$$

(c)
$$h(x) = x^x$$

(d)
$$u(x) = a^x$$
, per $a > 0$ (sapendo che la derivata di e^x è e^x)

(e)
$$v(x) = (\ln x)^{x^2+1}$$

(f)
$$z(x) = \sin(\log(x^2 + 1))$$

Soluzioni: (a) $-(((1+x^2)\sin x + 6x)e^{\cos x})/(1+x^2)^4$; (b) $2/(x^2-1)$; (c) $x^x(\ln x + 1)$; (d) $a^x \ln a$; (e) $((\ln x)^{x^2}(x^2+2x^2\ln x\ln(\ln x)+1))/x$; (f) $(2x\cos(\log(x^2+1)))/((x^2+1)\ln 10)$.