

Pesquisa Operacional

20 de agosto de 2024

Prof. Warley Gramacho wgramacho@uft.edu.br

Modelos de Programação Linear

Programação Linear

- ► Teoria matemática: Kantorovich, 1939 (lhe rendeu um Nobel)
- ▶ 1940: Algoritmo Simplex desenvolvido por Dantzig
- ► Técnica poderosa (capaz de modelar muitos problemas)

Programação Linear

Função Objetivo

Minimizar custo,tempo,risco,poluição, . . . ou Maximizar lucro,qualidade,segurança, . . . ou Encontrar qualquer solução viável (que atenda alguns requisitos)

Restrições

Disponibilidade de recursos, Operacionais horários de trabalho, tempo de máquina, . . . Limites venda em escala, . . .

- Materiais disponíveis são combinados para gerar novos produtos com características convenientes;
- Um dos primeiros problemas de otimização linear implementados com sucesso na prática.
- Abordagens:
 - Ração;
 - Ligas metálicas;
 - Composição de filtros de areia.

O Problema da Mistura de Ligas Metálicas

Uma metalúrgica deseja maximizar sua receita bruta. A Tabela abaixo ilustra a proporção de cada material na mistura para a obtenção das ligas passíveis de fabricação. O preço está cotado em Reais por tonelada da liga fabricada. Também em toneladas estão expressas as restrições de disponibilidade de matéria-prima.

	Liga Especial de Baixa Resistên- cia	Liga Especial de Alta Resistência	Disponibilidade de Matéria-prima
Cobre	0,5	0,2	16 Ton
Zinco	0,25	0,3	11 Ton
Chumbo	0,25	0,5	15 Ton
Preço de Venda (R\$ por Ton)	R\$ 3.000	R\$ 5.000	Ton minério Ton liga

Problema da mistura - Pergunta-se

- Como misturar (as quantidades) dos materiais para produzir a liga de menor custo possível?
- ▶ A mistura atende as disponibilidade de matéria-prima?

O Problema da Mistura de Ligas Metálicas

- Escolha da variável de decisão x_i o quantidade em toneladas produzidas da liga especial de baixa resistência (i = 1) e especial de alta resistência (i = 2).
- Elaboração da função objetivo $z = Maximizar \{f(x) = 3.000x_1 + 5.000x_2\}$ Receita bruta em Reais em função da quantidade produzida em toneladas de ligas especiais de baixa e alta resistência.
- Formulação das restrições tecnológicas
 - a) Restrição associada à disponibilidade do cobre: $0.5x_1 + 0.2x_2 \le 16$
 - b) Restrição associada à disponibilidade do zinco: $0,25x_1+0,3x_2 \le 11$
 - c) Restrição associada à disponibilidade do chumbo: $0,25x_1+0,5x_2 \leqslant 15$
 - d) Restrições de não negatividade: $x_1 \ge 0$, $x_2 \ge 0$

Modelo Matemático

Maximizar
$$z = 3.000x_1 + 5.000x_2$$

sujeito a:

$$0, 5x_1 + 0, 2x_2 \le 16$$

 $0, 25x_1 + 0, 3x_2 \le 11$
 $0, 25x_1 + 0, 5x_2 \le 15$
 $x_1 \ge 0, x_2 \ge 0$

Problema da Dieta

Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas de 36 unidades por dia. Uma pessoa tem disponível carne e ovos para se alimentar. Cada unidade de carne contém 8 unidades de vitamina e 6 unidades de proteínas. Cada unidade de ovo contém 4 unidades de vitamina e 6 unidades de proteínas. Cada unidade de carne custa 3 unidades monetárias e cada unidade de ovo custo 2,5 unidades monetárias. Qual a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com menor custo possível ?

Problema da dieta

Variáveis de Decisão

 x_1 quantidade que será comprada de carne x_2 quantidade que será comprada de ovos

Problema da dieta

Variáveis de Decisão

 x_1 quantidade que será comprada de carne x_2 quantidade que será comprada de ovos

Custo de uma solução

Preço da carne: 3 Preço dos ovos: 2,5

 $3x_1 + 2, 5x_2$

A solução tem que satisfazer os requerimentos nutricionais:

Nutriente	Quantidade Mínima
Vitaminas	32
Proteínas	36

restrições

	Carne	Ovos	
vitaminas	$8x_{1}$	$4x_{2}$	≥ 32
proteínas	$6x_{1}$	$6x_{2}$	≥ 36

Modelo Matemático

Minimizar
$$z = 3x_1 + 2.5x_2$$

sujeito a:
 $8x_1 + 4x_2 \ge 32$

$$8x_1 + 4x_2 \geqslant 32$$

$$6x_1+6x_2\geqslant 36$$

$$x_1\geqslant 0,\ x_2\geqslant 0$$

- P. Belfiore and L.P. Fávero, *Pesquisa operacional para cursos de engenharia*, Elsevier Editora Ltda., 2013.
- Maristela Oliveira dos Santos, *Notas de aula de introdução à pesquisa operacional*, Agosto 2010.
- M.C. Goldbarg and H.P.L. Luna, *Otimização combinatória e programação linear:* modelos e algoritmos, CAMPUS RJ, 2005.
- N. MACULAN and M.H.C. Fampa, Otimização linear, EdUnB, 2006.