Public-Key Encryption

601.642/442: Modern Cryptography

Fall 2020

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

• Sampling function: \exists a PPT Gen s.t. $\mathsf{Gen}(1^n)$ outputs $(i,t) \in \mathcal{I}$

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

- Sampling function: \exists a PPT Gen s.t. $\mathsf{Gen}(1^n)$ outputs $(i,t) \in \mathcal{I}$
- Sampling from domain: \exists a PPT algorithm that on input i outputs a uniformly random element of \mathcal{D}_i

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

- Sampling function: \exists a PPT Gen s.t. $\mathsf{Gen}(1^n)$ outputs $(i,t) \in \mathcal{I}$
- Sampling from domain: \exists a PPT algorithm that on input i outputs a uniformly random element of \mathcal{D}_i
- Evaluation: \exists PPT that on input $i, x \in \mathcal{D}_i$ outputs $f_i(x)$

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

- Sampling function: \exists a PPT Gen s.t. $\mathsf{Gen}(1^n)$ outputs $(i,t) \in \mathcal{I}$
- Sampling from domain: \exists a PPT algorithm that on input i outputs a uniformly random element of \mathcal{D}_i
- Evaluation: \exists PPT that on input $i, x \in \mathcal{D}_i$ outputs $f_i(x)$
- Hard to invert:: \forall n.u. PPT adversary \mathcal{A} , \exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[i \leftarrow \mathsf{Gen}\left(1^{n}\right), x \leftarrow \mathcal{D}_{i}, y \leftarrow f_{i}(x) : f_{i}\left(\mathcal{A}\left(1^{n}, i, y\right)\right) = y\right] \leqslant \mu(n)$$

2 / 6

Definition (Trapdoor OWPs)

A collection of trapdoor permutations is a family of permutations $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ satisfying the following properties:

- Sampling function: \exists a PPT Gen s.t. $\mathsf{Gen}(1^n)$ outputs $(i,t) \in \mathcal{I}$
- Sampling from domain: \exists a PPT algorithm that on input i outputs a uniformly random element of \mathcal{D}_i
- Evaluation: \exists PPT that on input $i, x \in \mathcal{D}_i$ outputs $f_i(x)$
- Hard to invert:: \forall n.u. PPT adversary \mathcal{A} , \exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[i \leftarrow \mathsf{Gen}\left(1^{n}\right), x \leftarrow \mathcal{D}_{i}, y \leftarrow f_{i}(x) : f_{i}\left(\mathcal{A}\left(1^{n}, i, y\right)\right) = y\right] \leqslant \mu(n)$$

• Inversion with trapdoor: \exists a PPT algorithm that given (i, t, y) outputs $f_i^{-1}(y)$

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

• $\operatorname{\mathsf{Gen}}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \operatorname{\mathsf{Gen}}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\mathsf{Gen}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \mathsf{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\mathsf{Enc}(pk, m)$: Pick $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\mathsf{Gen}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \mathsf{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\mathsf{Enc}(pk, m)$: Pick $r \overset{\$}{\leftarrow} \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- Dec $(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\operatorname{\mathsf{Gen}}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \operatorname{\mathsf{Gen}}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\mathsf{Enc}(pk, m)$: Pick $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- Dec $(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

(Gen, Enc, Dec) is IND-CPA secure public-key encryption scheme

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\mathsf{Gen}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \mathsf{Gen}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\mathsf{Enc}(pk, m)$: Pick $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- Dec $(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

(Gen, Enc, Dec) is IND-CPA secure public-key encryption scheme

• Think: Proof?

Let $\mathcal{F} = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations

- $\operatorname{\mathsf{Gen}}(1^n)$: $(f_i, f_i^{-1}) \leftarrow \operatorname{\mathsf{Gen}}_T(1^n)$. Output $(pk, sk) \leftarrow ((f_i, h_i), f_i^{-1})$
- $\mathsf{Enc}(pk, m)$: Pick $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$. Output $(f_i(r), h_i(r) \oplus m)$
- Dec $(sk, (c_1, c_2))$: $r \leftarrow f_i^{-1}(c_1)$. Output $c_2 \oplus h_i(r)$

Theorem (PKE from Trapdoor Permutations)

(Gen, Enc, Dec) is IND-CPA secure public-key encryption scheme

- Think: Proof?
- How to build trapdoor permutations?

Candidate Trapdoor Permutations

Definition (RSA Collection)

RSA = $\{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ where:

- $\mathcal{I} = \{(N, e) \mid N = p \cdot q \text{ s.t. } p, q \in \Pi_n, e \in \mathbb{Z}_{\Phi(N)}^* \}$
- $\bullet \ \mathcal{D}_i = \{x \mid x \in \mathbb{Z}_N^*\}$
- $\mathcal{R}_i = \mathbb{Z}_N^*$
- $\mathsf{Gen}(1^n) \to ((N, e), d)$ where $(N, e) \in \mathcal{I}$ and $e \cdot d = 1 \mod \Phi(N)$
- $\bullet \ f_{N,e}(x) = x^e \mod N$
- $\bullet \ f_{N,d}^{-1}(y) = y^d \mod N$

Candidate Trapdoor Permutations

Definition (RSA Collection)

RSA = $\{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in \mathcal{I}}$ where:

- $\mathcal{I} = \{(N, e) \mid N = p \cdot q \text{ s.t. } p, q \in \Pi_n, e \in \mathbb{Z}_{\Phi(N)}^* \}$
- $\bullet \ \mathcal{D}_i = \{x \mid x \in \mathbb{Z}_N^*\}$
- $\mathcal{R}_i = \mathbb{Z}_N^*$
- $\mathsf{Gen}(1^n) \to ((N, e), d)$ where $(N, e) \in \mathcal{I}$ and $e \cdot d = 1 \mod \Phi(N)$
- $f_{N,e}(x) = x^e \mod N$
- $\bullet \ f_{N,d}^{-1}(y) = y^d \mod N$
- Think: Why is $f_{N,e}$ a permutation?

Candidate Trapdoor Permutations (contd.)

Definition (RSA Assumption)

For any n.u. PPT adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{c} p, q \stackrel{\$}{\leftarrow} \Pi_n, \ N = p \cdot q, \ e \stackrel{\$}{\leftarrow} \mathbb{Z}_{\Phi(N)}^*, \\ y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*; \ x \leftarrow \mathcal{A}(N, e, y) \end{array} \right] \leqslant \mu(n)$$

Candidate Trapdoor Permutations (contd.)

Definition (RSA Assumption)

For any n.u. PPT adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{c} p, q \stackrel{\$}{\leftarrow} \Pi_n, \ N = p \cdot q, \ e \stackrel{\$}{\leftarrow} \mathbb{Z}_{\Phi(N)}^*, \\ y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*; \ x \leftarrow \mathcal{A}(N, e, y) \end{array} : \ x^e = y \mod N \right] \leqslant \mu(n)$$

• Think: RSA assumption implies the factoring assumption

Candidate Trapdoor Permutations (contd.)

Definition (RSA Assumption)

For any n.u. PPT adversary \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[\begin{array}{c} p, q \stackrel{\$}{\leftarrow} \Pi_n, \ N = p \cdot q, \ e \stackrel{\$}{\leftarrow} \mathbb{Z}_{\Phi(N)}^*, \\ y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*; \ x \leftarrow \mathcal{A}(N, e, y) \end{array} \right] \leqslant \mu(n)$$

• <u>Think</u>: RSA assumption implies the factoring assumption

Theorem

Assuming the RSA assumption, the RSA collection is a family of trapdoor permutations

Food for Thought

- Direct (more efficient) constructions of PKE (e.g., El-Gamal)
- Stronger security notions:
 - Indistinguishability under chosen-ciphertext attacks (IND-CCA) [Naor-Segev],[Dolev-Dwork-Naor],[Sahai]
 - Circular security/key-dependent message security [Boneh-Halevi-Hamburg-Ostrovsky]
 - Leakage-resilient encryption [Dziembowski-Pietrzak], [Akavia-Goldwasser-Vaikuntanathan]
- Weaker security notions:
 - Deterministic encryption [Bellare-Boldyreva-O'Neill]