Normalization And Schema Refinement

For Vaccination or Other Health Drives Database

Prepared By

Hiten Padaliya (201901401) Satyam Bhut (201901408) Dhairya Rupala (201901419) Jenish Rathod (201901435)

Organization

Dhirubhai Ambani Institute of Information and Communication Technology

Original Design of Database

Relational Schema

Table Schema

Inventory(Inventory_id, inventory_name, inventory_city, inventory_vaccineTypes, inventory_stock)

Administrator(admin_id, admin_name,admin_gender, admin_city)

Center_id, center_name, center_address, center_city, center_vaccineStock)

Slots(**slot_id**, slot_centerID, slot_startTime, slotendTime, slot_numVaccines, slot_date)

Manager(<u>manager</u> <u>id</u>, manager_centerID, manager_name, manager_gender)

Order_details(order_id, admin_id, manager_id, vaccineType, numOf_vaccines)

Employee(<u>employee_id</u>, employee_centerID, employee_name, employee_gender)

Users(<u>user_id</u>, user_centerID, user_slotID, user_name, user_gender, user_age, user_address, user_city, user_vaccine, user_isVaccinated)

Documentation of Normalization & Schema Refinement

Functional Dependencies:

Administrator

Primary Key = admin_id

Admin_id -> admin_name

Admin_id -> admin_gender

Admin_id -> admin_city

Center

Primary key = center_id

Center_id -> center_name

Center_id -> center_address

Center_id -> center_city

Center_id -> center_vaccineStock

Employee

Primary key = employee_id

Foreign key = employee_centerID

Employee_id -> employee_name

Employee_id -> employee_gender

Manager

Primary key = manager_id

Foreign key = manager_centerID

Manager_id -> manager_name

Manager_id -> manager_gender

Order details

Primary key = order_id

Foreign key = admin_id, manager_id

Order_id -> vaccine_type

Order_id -> numOf_vaccines

Inventory

Primary key = Inventory_id

Inventory_id -> inventory_name

Inventory_id -> inventory_city

Inventory_id -> inventory_vaccineTypes

Inventory_id -> inventory_stock

Slots

Primary key = slot_id

Foreign key = slot_centerID

Slot_id -> slot_startTime

Slot_id -> slot_endTime

Slot_id -> slot_numVaccines

Slot_id -> slot_date

Users

Primary key = user_id

Foreign key = user_centerID, user_slotID

User_id -> user_name

User_id -> user_gender

User_id -> user_age

User_id -> user_address

User_id -> user_city

User_id -> user_vaccine

User_id -> user_isVaccinated

Normalization to 1NF:

In 1NF form in each and every relation of the Database, there should not be any repeating columns within a row or not multivalued columns.

Here, in our database design, all the listed attributes in the relations are atomic, also wherever we have the address attribute in the relation, we stored the address in a single string. We are also considering only one entry of each of the attributes. So the above database design is the 1NF normalized form.

Normalization to 2NF:

In the 2NF normalized form, each and every relationship should be in the 1NF form also there should not be any partial dependencies in the relations. Partial dependency means that no nonprime attributes are dependent on any proper subset of the candidate key of the relation.

For any database design relations with only one Primary key (not composite) are already in the 2NF form.

Here from the above functional dependencies, it is clear that this database design has no composite primary keys, hence no partial dependencies. So this design is already in the 2NF normalized form.

Normalization to 3NF

For the relations to be in the 3NF, all the relations at first have to be 2NF form, and for the 3NF there should not be any transitive functional dependencies in the relations for the non-prime attributes. So there are not any functional dependencies such as non-prime -> non-prime. So this database design is already in the 3NF normalized form.

Normalization to BCNF

For the relation to be in BCNF form, iff all the functional dependencies have a super key as its left-hand side, no non-prime attribute can be on the left-hand side. In our database, all the functional dependencies have a primary key(i.e prime attribute) as their left-hand side. Also, all the foreign keys included in all the relations are the primary keys of the referenced tables.

Update, **Delete Anomalies**

Relation/Schema	Update	Delete
Inventory	It'll not affect the relation	It'll not affect the relation
Administrator	It'll update the foreign keyed entries of the order_detail relation.	It'll delete the foreign keyed entries of the order_detail relation.
Center	It'll update the slot, employee, manager, and user relations.	It'll delete the foreign keyed entries of all the relations except users.
Slots	It'll update the users foreign keyed entries.	It'll set the null value to the foreign keyed entries of the users relation.
Manager	It'll update the foreign keyed entries of the order_detail relation.	It'll delete the foreign keyed entries of the order_detail relation.
Order_details	It'll not affect the relation	It'll not affect the relation
Employee	It'll not affect the relation	It'll not affect the relation
Users	It'll not affect the relation	It'll not affect the relation

 $\ensuremath{\textbf{NOTE}}$ – Here there are no insertion anomalies in any of the relations.

DDL Scripts:

• Inventory Table

```
CREATE TABLE Inventory
(
    inventory_id int not null,
    inventory_name varchar(100) not null,
    inventory_city varchar(100) not null,
    inventory_vaccineTypes varchar(200) not null,
    inventory_stock Int not null default 0,
    primary key (inventory_id),
    check(inventory_stock>=0)
);
```

• Administrator Table

```
CREATE TABLE Administrator
(
        admin_id int not null,
        admin_name varchar(50) not null,
        admin_gender varchar(6) not null,
        admin_city varchar(30) not null,
        primary key (admin_id),
        check(admin_gender in ('Female','Male'))
);
```

• Center Table

```
create Table Center
(
    center_id int not null,
    center_name varchar(50) not null,
    center_address varchar(200) not null,
    center_city varchar(30) not null,
    center_vaccineStock int not null default 0,
    primary key (center_id),
    check(center_vaccineStock>=0)
);
```

```
Slots Table
      CREATE TABLE Slots
             slot_id int not null,
             slot_centerID int,
             slot_startTime varchar not null default '00:00',
             slot_endTime varchar not null default '00:00',
             slot_numVaccines int not null default 0,
             Slot_date varchar not null default '00.00.0000',
             check (slot_numVaccines>=0),
             primary key (slot_id),
             foreign key (slot_centerID) references Center(center_id) on delete cascade on
update cascade
      );

    Manager Table

      CREATE TABLE Manager
             manager_id int not null,
             manager_centerID int,
             manager_name varchar(50) not null,
             manager_gender varchar(6) not null,
             primary key (manager_id),
             foreign key (manager_centerID) references Center(center_id) on delete cascade on
update cascade,
             check(manager_gender in ('Female','Male'))
      );
   • Order_details Table
      CREATE TABLE Order_details
             order_id int not null,
             admin_id int,
             manager_id int,
             vaccineType varchar(200),
             numOf_vaccines int default 0,
             primary key (order_id),
```

foreign key (admin_id) references administrator(admin_id) on delete cascade on update cascade,

foreign key (manager_id) references manager(manager_id) on delete cascade on update cascade);

• Employee Table

```
CREATE TABLE Employee

(

employee_id int not null,

employee_centerID int,

employee_name varchar(50) not null,

employee_gender varchar(6) not null,

primary key (employee_id),

foreign key (employee_centerID) references Center(center_id) on delete cascade

on update cascade,

check(employee_gender in ('Female', Male'))

);
```

Users Table

```
CREATE TABLE Users
(
    user_id int not null,
    user_centerID int,
    user_slotID int,
    user_name varchar(50) not null,
    user_gender varchar(6) not null,
    user_age int,
    user_address varchar(200) not null,
    user_city varchar(30) not null,
    user_vaccine varchar(200) default null,
    user_isVaccinated char(1) default 'N',

primary key (user_id),
    foreign key (user_centerID) reference
```

foreign key (user_centerID) references Center(center_id) on delete set null on update cascade,

```
foreign key (user_slotID) references Slots(slot_id) on delete set null on update cascade,

check(user_gender in ('Female','Male')),
check(user_age>0),
check (user_isVaccinated in ('Y','N','y',n'))
);
```

Creation of Tables

.

Inventory Data

Center Data

Slots Data

Order Details Data

Employee Data

Users Data

Final Table Schema

Inventory(Inventory_id, inventory_name, inventory_city, inventory_vaccineTypes, inventory_stock)

Administrator(admin_id, admin_name, admin_gender, admin_city)

Center(<u>center_id</u>, center_name, center_address, center_city, center_vaccineStock)

Slots(**slot id**, slot_centerID, slot_startTime, slotendTime, slot_numVaccines)

Manager(manager_id, manager_centerID, manager_name, manager_gender)

Order_details(order_id, admin_id, manager_id, vaccineType, numOf_vaccines)

Employee(<u>employee_id</u>, employee_centerID, employee_name, employee_gender)

Users(<u>user_id</u>, user_centerID, user_slotID, user_name, user_gender, user_age, user_address, user_city, user_vaccine, user_isVaccinated)