Lista de Exercícios

Vetores e Geometria Analítica

Maxwell Aires da Silva

Departamento de Matemática Centro de Ciências e Tecnologias (CCT) Universidade Estadual da Paraíba (UEPB)

> Setembro de 2020 Campina Grande - PB

Sumário

1	Exe	ercícios	s para a Unidade I	1
	1.1	Exerci	ícios para a 1ª Avaliação	1
		1.1.1	Exercícios da Aula 01 (O Conceito de Vetor)	1
		1.1.2	Exercícios da Aula 02 (A Noção de Distância)	3
		1.1.3	Exercícios da Aula 03 (Operações entre Vetores)	4
		1.1.4	Exercícios da Aula 04 (A Norma de um Vetor)	5
		1.1.5	Exercícios da Aula 05 (O Produto Escalar)	7
		1.1.6	Exercícios da Aula 06 (Ângulo e Projeção Ortogonal)	8
	1.2	Exerci	ícios para a 2ª Avaliação	10
		1.2.1	Exercícios da Aula 07 (A Reta no Plano)	10
		1.2.2	Exercícios da Aula 08 (A Circunferência)	12
		1.2.3	Exercícios da Aula 09 (A Parábola)	13
		1.2.4	Exercícios da Aula 10 (A Elipse)	14
		1.2.5	Exercícios da Aula 11 (A Hipérbole)	15
2	Exercícios para a Unidade II			
	2.1	Exerci	ícios para a 1ª Avaliação	17
		2.1.1	Exercícios da Aula 12 (Vetores no Espaço)	17
		2.1.2	Exercícios da Aula 13 (O Produto Vetorial)	20
		2.1.3	Exercícios da Aula 14 (O Produto Misto)	22
		2.1.4	Exercícios da Aula 15 (A Reta no Espaço)	24
	2.2	Exerci	ícios para a 2ª Avaliação	25
		2.2.1	Exercícios da Aula 16 (A Equação do Plano)	25
		2.2.2	Exercícios da Aula 17 (Distâncias no Espaço)	27
		2.2.3	Exercícios da Aula 18 (A Esfera)	28
		2.2.4	Exercícios da Aula 19 (Superfícies de Revolução)	30
		2.2.5	Exercícios da Aula 20 (Superfícies Quádricas)	32

iv Sumário

Capítulo 1

Exercícios para a Unidade I

1.1 Exercícios para a 1ª Avaliação

1.1.1 Exercícios da Aula 01 (O Conceito de Vetor)

Exercício 1.1. Sabendo que $d(P,Q) = \sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2}$, calcule a distância entre os pontos dados a sequir

(a)
$$P = (3, -1)$$
 e $Q = (6, 3)$;

(b)
$$P = (-3, 7)$$
 e $Q = (6, 19)$;

(c)
$$P = (-5, 4)$$
 e $Q = (1, 12)$;

(d)
$$P = (12, -1) \in Q = (4, 7);$$

(e)
$$P = (-4, 5)$$
 e $Q = (2, -8)$;

(f)
$$P = (2, 2)$$
 e $Q = (1, -1)$;

(g)
$$P = (4, 12) \in Q = (0, 3);$$

(h)
$$P = (0,0)$$
 e $Q = (1,1)$;

(i)
$$P = (1,1) \in Q = (-1,-1);$$

(j)
$$P = (5,11) e Q = (13,-6);$$

(k)
$$P = (-4, 9)$$
 e $Q = (12, -15)$.

Exercício 1.2. Mostre que $AB \equiv CD$ se, e somente se, ABDC é um paralelogramo.

Exercício 1.3. Mostre que $AB \equiv CD$ se, e somente se, AD e BC possuem o mesmo ponto médio.

Exercício 1.4. Sejam $A = (a_1, a_2)$; $B = (b_1, b_2)$, $C = (c_1, c_2)$ e $D = (d_1, d_2)$. Então, $AB \equiv CD$ se, e somente se,

$$(b_1 - a_1, b_2 - a_2) = (d_1 - c_1, d_2 - c_2).$$

Exercício 1.5. Sejam A, B, C e D pontos do plano. Mostre que $AB \equiv CD$ se, e somente se, $AC \equiv BD$.

Exercício 1.6. Sejam $A, B \in C$ pontos do plano. Mostre que existe um único ponto D do plano tal que $AB \equiv CD$.

Exercício 1.7. Dados A, B pontos do plano, mostre que $AB \equiv AB$.

Exercício 1.8. Dados A, B, C e D pontos do plano, mostre que

$$AB \equiv CD \Rightarrow CD \equiv AB$$
.

Exercício 1.9. Dados A, B, C, D, E e F pontos do plano, mostre que se $AB \equiv CD$ e $CD \equiv EF$, então $AB \equiv EF$.

Exercício 1.10. Baseado na noção de Equipolência entre segmentos, defina o que é um vetor.

Exercício 1.11. Sejam A = (1, 2); B = (3, -2) e C = (-2, 0). Determine D = (x, y) tal que $AB \equiv CD$.

Exercício 1.12. Sejam A = (-1, -1) e B = (2, 3). Determine o ponto D = (x, y) tal que $AB \equiv CD$ quando C é o ponto:

- (a) C = (2, 1);
- (b) C = (-2, 0);
- (c) C = (1, 2);
- (d) C = (1, 1);
- (e) C = (2,3).

1.1.2 Exercícios da Aula 02 (A Noção de Distância)

Exercício 1.13. Sabendo que $|x| = \sqrt{x^2}$, mostre que

(a) Se
$$a > 0$$
, $|x| \le a \Leftrightarrow -a \le x \le a$, $\forall a \in \mathbb{R}_+$ e $\forall x \in \mathbb{R}$;

(b) Se
$$a>0,\ |x|\geq a \Leftrightarrow x\geq a$$
 ou $x\leq -a$ quaisquer que sejam $a\in\mathbb{R}_+$ e $x\in\mathbb{R};$

(c)
$$|x \cdot y| = |x| \cdot |y|, \ \forall \ x, y \in \mathbb{R};$$

(d)
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, \ \forall \ x, y \in \mathbb{R} \ \mathrm{e} \ y \neq 0.$$

Exercício 1.14. Mostre que $|x+y| \le |x| + |y|$, $\forall x, y \in \mathbb{R}$.

Exercício 1.15. Mostre que $|x - y| \le |x| + |y|, \ \forall \ x, y \in \mathbb{R}$.

Exercício 1.16. Mostre que $|x-y| \ge ||x|-|y||$, $\forall x,y \in \mathbb{R}$.

Exercício 1.17. Mostre que $|x - y| \ge |x| - |y|, \ \forall \ x, y \in \mathbb{R}$.

Exercício 1.18. Encontre todos os valores de x tais que

(a)
$$|3x + 4| \le 8$$
;

(b)
$$|x^2 - 4| \le 2$$
;

(c)
$$|x-2| < 1$$
;

(d)
$$|x-2| \ge 1$$
;

(e)
$$|x-2|=1$$
;

(f)
$$|x^2 - 4| > 2$$
;

(g)
$$|3 - 2x^2| < 9$$
;

(h)
$$|4x + 17| > \sqrt{3}$$
;

(i)
$$|3x^2 - 5x| > 10$$
;

(j)
$$|-x^2+3|=\pi$$
;

(k)
$$|5x - 17| = -1$$
;

(1)
$$|9 - 13x| = -\sqrt{7}$$
.

1.1.3 Exercícios da Aula 03 (Operações entre Vetores)

Exercício 1.19. Determine x para que se tenha $\overrightarrow{AB} = \overrightarrow{CD}$, sendo

$$A = (x, 1), B = (4, x + 3), C = (x, x + 2) e D = (2x, x + 6).$$

Exercício 1.20. *Sendo* $\vec{u} = (3, -1)$ *e* $\vec{v} = (1, 2)$, *determine:*

- (a) $\vec{u} + \vec{v}$;
- (b) $\vec{u} \vec{v}$;
- (c) $\vec{v} \vec{u}$;
- (d) $2\vec{u} + 3\vec{v}$;
- (e) $5\vec{v} \frac{1}{2}\vec{u}$;
- (f) $\frac{3}{7}\vec{u} \frac{1}{4}\vec{v}$;
- (g) $\frac{1}{3}\vec{u} + \frac{2}{5}\vec{v}$;
- (h) $-\frac{1}{3}\vec{v} \frac{1}{7}\vec{u}$.

Exercício 1.21. Dados os vetores $\vec{u} = (2, -1)$ e $\vec{v} = (1, 3)$, determine um vetor \vec{w} tal que

- (a) $3(\vec{u} + \vec{w}) 2(\vec{v} \vec{w}) = \vec{0};$
- (b) $\frac{1}{2}[3(\vec{u}+\vec{w})-4(\vec{v}-\vec{w})] = 5[\vec{u}-3\vec{w}+4(3\vec{v}-2\vec{w})].$

Exercício 1.22. Sejam A_1, A_2, \ldots, A_n pontos do plano. Mostre que

$$\vec{A_1 A_2} + \vec{A_2 A_3} + \dots + \vec{A_n A_1} = \vec{0}.$$

Exercício 1.23. Determine o ponto A=(x,y) do plano no eixo OX de modo que os vetores $\vec{u}=(1,3)$ e $\vec{v}=\vec{AB}$ sejam múltiplos um do outro, quando:

- (a) B = (2, -2);
- (b) B = (0, 2);
- (c) B = (-3, 2).

1.1.4 Exercícios da Aula 04 (A Norma de um Vetor)

Exercício 1.24. Dados A = (2, y) e B = (3, 3), determine o valor de $y \in \mathbb{R}$ para que

$$||\vec{AB}|| = \sqrt{5}.$$

Exercício 1.25. Dados A=(x,-4) e B=(2,7), determine o valor de $x\in\mathbb{R}$ para que

$$||\vec{AB}|| = 13.$$

Exercício 1.26. Dados B = (3,4) e $||\vec{AB}|| = 2$, determine o valor máximo e o valor mínimo que a primeira coordenada de A pode assumir.

Exercício 1.27. Se $\vec{u} = (x, 0)$ e $\vec{v} = (0, x)$, mostre que

$$||\vec{u} + \vec{v}|| = |x|\sqrt{2}.$$

Exercício 1.28. Mostre que

- (a) $||\vec{u}||\vec{v}$ e $||\vec{v}||\vec{u}$ têm a mesma norma;
- (b) Se $||\vec{u}|| = ||\vec{v}||$ então $(\vec{u} + \vec{v}) \perp (\vec{u} \vec{v})$.

Exercício 1.29. Sabendo que $||\vec{u}|| = \sqrt{x^2 + y^2}$, mostre que

- (a) $||\vec{u}|| = 0 \Leftrightarrow \vec{u} = \vec{0};$
- (b) $||\vec{u}|| > 0$, $\forall \vec{u} \in \mathbb{R}^2 {\{\vec{0}\}};$
- (c) $||\alpha \cdot \vec{u}|| = |\alpha| \cdot ||\vec{u}||, \ \forall \ \alpha \in \mathbb{R} \ e \ \forall \ \vec{u} \in \mathbb{R}^2;$
- (d) $||\alpha \cdot \vec{u}|| = \vec{0} \Leftrightarrow \alpha = 0$ ou $\vec{u} = \vec{0}$.

Exercício 1.30. Sabendo que $\vec{v} = \alpha \vec{u}$, mostre que

$$||\vec{u} + \vec{v}|| = |1 + \alpha| \cdot ||\vec{u}||.$$

Exercício 1.31. Um vetor é dito Normalizado se $||\vec{u}|| = 1$. Mostre que todo vetor não nulo pode ser normalizado, isto é, existe um vetor com mesma direção e mesmo sentido que o vetor original, mas de norma 1.

Exercício 1.32. Mostre que o vetor $\vec{u} = \left(\cos\frac{\pi}{3}, \sin\frac{\pi}{3}\right)$ é um vetor unitário.

Exercício 1.33. Mostre que o vetor $\vec{u} = (\cos \pi, \sin \pi)$ é um vetor unitário.

Exercício 1.34. Mostre que o vetor $\vec{u} = (\cos \theta, \sin \theta)$ é um vetor unitário.

Exercício 1.35. Normalize

- (a) $\vec{u} = (3,4)$;
- (b) $\vec{u} = (2, -3);$
- (c) $\vec{u} = (5,6)$;
- (d) $\vec{u} = (8, 10)$;
- (e) $\vec{u} = (-3, -4)$;
- (f) $\vec{u} = (9, 12)$;
- (g) $\vec{u} = (\sqrt{3}, \sqrt{6});$
- (h) $\vec{u} = (1, \sqrt{2});$
- (i) $\vec{u} = (\pi, 2\pi);$
- (j) $\vec{u} = \left(\frac{1}{5}, -\frac{3}{7}\right)$.

Exercício 1.36. Mostre que $\vec{u}=(x,y)$ é unitário apenas quando -1 < x < 1 e -1 < y < 1.

Exercício 1.37. Mostre que se x > 1, y > 1, x < -1 ou y < -1 o vetor $\vec{u} = (x, y)$ $n\tilde{a}o$ é unitário.

Exercício 1.38. Determine vetores \vec{u} e \vec{v} tais que

$$||\vec{u}||^2 + ||\vec{v}||^2 = ||\vec{u} + \vec{v}||^2.$$

Exercício 1.39. Determine vetores \vec{u} e \vec{v} tais que

$$||\vec{u}||^2 + ||\vec{v}||^2 = ||\vec{u} - \vec{v}||^2.$$

Exercício 1.40. Mostre a Identidade do Paralelogramo

$$2(||\vec{u}||^2 + ||\vec{v}||^2) = ||\vec{u} + \vec{v}||^2 + ||\vec{u} - \vec{v}||^2.$$

Exercício 1.41. Interprete geometricamente a Identidade do Paralelogramo.

1.1.5 Exercícios da Aula 05 (O Produto Escalar)

Exercício 1.42. *Sendo* $\vec{u} = (3,4)$ *e* $\vec{u} = (-1,2)$. *Determine:*

- (a) $\vec{u} \cdot \vec{u}$;
- (b) $\vec{u} \cdot \vec{v}$;
- (c) $\vec{v} \cdot \vec{u}$;
- (d) $\vec{v} \cdot \vec{v}$.

Exercício 1.43. Mostre que

- (a) $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$, $\forall \vec{u} \in \mathbb{R}^2$;
- (b) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}, \ \forall \ \vec{u}, \vec{v} \in \mathbb{R}^2$;
- (c) $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}, \ \forall \ \vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2;$
- (d) $(\alpha \vec{u}) \cdot \vec{v} = \alpha(\vec{u} \cdot \vec{v}), \ \forall \ \alpha \in \mathbb{R} \ e \ \forall \ \vec{u}, \vec{v} \in \mathbb{R}^2.$

Exercício 1.44. Mostre que $\vec{u} \cdot \vec{u} = ||\vec{u}||^2, \ \forall \ \vec{u} \in \mathbb{R}^2.$

Exercício 1.45. Mostre que se \vec{u} , \vec{v} são vetores unitários, então $\vec{u} \cdot \vec{v} = \cos \theta$, em que θ é o ângulo entre tais vetores.

Exercício 1.46. Mostre que, se \vec{u} e \vec{v} são vetores unitários, então

$$|\vec{u} \cdot \vec{v}| < 1.$$

Exercício 1.47. Mostre a Desigualdade de Cauchy-Schwarz

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \cdot ||\vec{v}||.$$

Exercício 1.48. Mostre que $||\vec{u}||^2 + ||\vec{v}||^2 \ge 2\vec{u} \cdot \vec{v}, \ \forall \ \vec{u}, \vec{v} \in \mathbb{R}^2$.

Exercício 1.49. Usando a Desigualdade de Cauchy-Schwarz, mostre que

$$\frac{x+y}{2} \ge \sqrt{xy}.$$

Exercício 1.50. Usando a Desigualdade de Cauchy-Schwarz, mostre que

$$|\sin\theta + \cos\theta| \le \sqrt{2}.$$

Exercício 1.51. Mostre que

$$||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||, \ \forall \ \vec{u}, \vec{v} \in \mathbb{R}^2.$$

Exercício 1.52. Se \vec{u} e \vec{v} unitários, mostre que

$$||\vec{u} + \vec{v}|| \le 2.$$

1.1.6 Exercícios da Aula 06 (Ângulo e Projeção Ortogonal)

Exercício 1.53. Explique o porquê de usar a razão $\cos \theta$ para calcular ângulos entre vetores, ao invés da razão $\sin \theta$.

Exercício 1.54. Dado o vetor $\vec{u} = (x, y)$, mostre que os vetores $\vec{v} = (-y, x)$ e $\vec{w} = (y, -x)$ são perpendiculares a \vec{u} e que $||\vec{u}|| = ||\vec{v}|| = ||\vec{w}||$.

Exercício 1.55. Verifique que os pontos A = (2,7), B = (2,-6) e C = (5,-6) são os vértices de um triângulo retângulo.

Exercício 1.56. Dados os vetores \vec{u} , \vec{v} e \vec{w} tais que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$ e além disso, $||\vec{u}|| = 3$, $||\vec{v}|| = 5$ e $||\vec{w}|| = 7$. Determine o ângulo entre \vec{u} e \vec{v} .

Exercício 1.57. *Sejam* $\vec{u} = (2,4)$ *e* $\vec{v} = (-3,5)$. *Determine:*

- (a) $||\vec{u}||$;
- (b) $||\vec{v}||$;
- (c) $\vec{u} \cdot \vec{v}$;
- (d) O ângulo entre \vec{u} e \vec{v} ;
- (e) $\operatorname{proj.}_{\vec{v}}(\vec{u})$.

Exercício 1.58. Determine o ângulo entre os vetores \vec{u} e \vec{v} e proj_{\vec{v}}(\vec{u}), em que

(a)
$$\vec{u} = \left(\frac{3}{2}, \frac{\sqrt{3}}{4}\right) \in \vec{v} = (2, 5);$$

(b)
$$\vec{u} = (-3, 2) \text{ e } \vec{v} = (2, 2);$$

(c)
$$\vec{u} = (2, -5) \ e \ \vec{v} = (-1, 1);$$

(d)
$$\vec{u} = (2,7) \text{ e } \vec{v} = (-3,0);$$

(e)
$$\vec{u} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right) e \vec{v} = \left(\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right);$$

(f)
$$\vec{u} = \left(\frac{2}{3}, \frac{5}{4}\right) \in \vec{v} = (3, 7);$$

(g)
$$\vec{u} = (-1, 12) \text{ e } \vec{v} = (5, 4);$$

(h)
$$\vec{u} = (2, -8) \text{ e } \vec{v} = (-2, -6);$$

(i)
$$\vec{u} = (6, 1) \text{ e } \vec{v} = (5, 4).$$

Exercício 1.59. Seja $\vec{u} = (2, -1)$. Determine um vetor \vec{v} tal que $\vec{u} \perp \vec{v}$ e $||\vec{v}|| = 5$.

Exercício 1.60. Se $proj_{\vec{v}}(\vec{u}) = (2,1) \ \vec{u} = (4,2) \ e \ ||\vec{v}|| = 6.$ Determine \vec{v} .

Exercício 1.61. Mostre que $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$.

Exercício 1.62. Mostre que se \vec{u}, \vec{v} são unitários com $\vec{v} = (a, b)$, então

$$proj_{\vec{v}}(\vec{u}) = (a\cos\theta, b\cos\theta).$$

Exercício 1.63. Mostre que

(a)
$$\operatorname{proj.}_{\vec{v}}(\alpha \vec{u}) = \alpha \cdot \operatorname{proj.}_{\vec{v}}(\vec{u});$$

(b)
$$\operatorname{proj.}_{\vec{v}}(\vec{u} + \vec{w}) = \operatorname{proj.}_{\vec{v}}(\vec{u}) + \operatorname{proj.}_{\vec{v}}(\vec{w});$$

(c)
$$\vec{w} \cdot \text{proj.}_{\vec{v}}(\vec{u}) = \text{proj.}_{\vec{v}}(\vec{u} \cdot \vec{w}).$$

Exercício 1.64. Mostre que o ângulo entre as projeções $\operatorname{proj.}_{\vec{v}}(\vec{u})$ e $\operatorname{proj.}_{\vec{v}}(\vec{w})$ é igual ao ângulo entre \vec{u} e \vec{w} .

Exercício 1.65. Mostre que se as diagonais de um paralelogramo são perpendiculares então ele é um losango.

Exercício 1.66. Suponha que \overrightarrow{AB} seja o diâmetro de uma circunferência e seja C um outro ponto qualquer dessa circunferência. Mostre que os vetores \overrightarrow{CA} e \overrightarrow{CB} são ortogonais.

Exercício 1.67. Em um triângulo retângulo, a altura relativa à hipotenusa é a média geométrica das projeções ortogonais dos catetos sobre essa hipotenusa. Prove esse fato escolhendo um sistema de coordenadas no qual a hipotenusa esta sobre o eixo OX e o vértice do ângulo reto sobre o eixo OY.

Exercício 1.68. Mostre que dado um vetor \vec{u} não nulo e \vec{v} um vetor qualquer, a projeção proj. \vec{u} sempre existe.

Exercício 1.69. Mostre a projeção proj $_{\vec{v}}(\vec{u})$ sempre que existe é única.

1.2 Exercícios para a 2ª Avaliação

1.2.1 Exercícios da Aula 07 (A Reta no Plano)

Exercício 1.70. Determine as equações paramétricas da reta que

- (a) Contém o ponto A = (-1, 1) e tem a direção do vetor $\vec{u} = (2, 3)$;
- (b) Contém o ponto A = (3, -1) e tem a direção do vetor $\vec{u} = (4, 2)$;
- (c) Contém o ponto A = (-5, 2) e tem a direção do vetor $\vec{u} = (1, 0)$;
- (d) Contém o ponto A = (7, -2) e tem a direção do vetor $\vec{u} = (0, -4)$;
- (e) Contém o ponto A = (2, -1) e tem a direção do vetor $\vec{u} = (-3, 11)$.

Exercício 1.71. Determine a equação cartesiana da reta que contém os pontos

(a)
$$A = (2,3)$$
 e $B = (3,-5)$;

(b)
$$A = (3,4) e B = (5,10);$$

(c)
$$A = (-1,3) \in B = (3,-5);$$

(d)
$$A = (2, 2) \in B = (7, 7);$$

(e)
$$A = (0,0)$$
 e $B = (3,-24)$;

(f)
$$A = (2, 2) \in B = (3, 5)$$
;

(g)
$$A = (-1, 4) \in B = (-3, -12)$$
;

(h)
$$A = (2,1)$$
 e $B = (1,2)$;

(i)
$$A = (-5, 9)$$
 e $B = (6, 0)$;

(j)
$$A = (0,0)$$
 e $B = (-5,-5)$.

Exercício 1.72. Escreva as equações paramétricas da reta que contém o ponto A = (1,2) e faz com a reta r: y = -2x + 4 um ângulo de 60° .

Exercício 1.73. Dados os vetores $\vec{u}=(1,5)$ e $\vec{v}=(4,1)$, escreva as equações paramétricas e cartesianas das retas que contém as diagonais do paralelogramo definido por \vec{u} e \vec{v} .

Exercício 1.74. Mostre que

(a)

$$x = 3 + 2t$$

$$y = 7 - 5t$$

são equações paramétricas da reta definida pelos pontos A = (3,7) e B = (5,2).

- (b) Que valores devem ser atribuídos a t para se obter os pontos A e B?
- (c) Que valores de t dão os pontos A e B?
- (d) Localize na reta os pontos para os quais t > 1 e t < 0.

Exercício 1.75. Determine a interseção da reta y = 2x - 1 com a reta definida pelos pontos A = (2, 1) e B = (0, 0).

Exercício 1.76. Determine o menor ângulo entre as retas:

(a)
$$2x + 3y = 1$$
 e $y = -5x + 8$;

(b)
$$x + y + 1 = 0$$

е

$$x = 1 - 2t$$

$$y = 2 + 5t$$

Exercício 1.77. Sejam A, B e Opontos do plano. Mostre que

(a) Um ponto P pertence ao segmento AB se, e somente se, existe $t \in [0,1]$, tal que:

$$\vec{OP} = (1 - t)\vec{OA} + t\vec{OB}; \tag{1.1}$$

- (b) Em particular, mostre que o ponto médio do segmento AB é obtido fazendo $t=\frac{1}{2};$
- (c) Mostre que a equação (1.1) é uma equação vetorial paramétrica da reta r que passa pelos pontos A e B, quando consideramos o parâmetro t percorrendo toda a reta real.

1.2.2 Exercícios da Aula 08 (A Circunferência)

Exercício 1.78. Determine a equação reduzida e geral da circunferência cujo centro é o ponto C = (2, -3) e o raio é R = 5.

Exercício 1.79. Determine a equação reduzida e geral da circunferência cujo centro \acute{e} o ponto C=(1,1) e o raio \acute{e} R=7.

Exercício 1.80. Determine a equação reduzida e geral da circunferência cujo centro \acute{e} o ponto C = (7,3) e o raio \acute{e} R = 1.

Exercício 1.81. Determine a equação reduzida e geral da circunferência cujo centro é o ponto C = (-5, -2) e o raio é $R = \sqrt{5}$.

Exercício 1.82. Determine o centro e o raio da circunferência cuja equação geral é dada por $x^2 + y^2 - 2x - 2y + 1 = 0$.

Exercício 1.83. Determine o centro e o raio da circunferência cuja equação geral é dada por $x^2 + y^2 - 2x + 8y + 8 = 0$.

Exercício 1.84. Determine o centro e o raio da circunferência cuja equação geral é dada por $x^2 + y^2 - 10x + 2y + 8 = 0$.

Exercício 1.85. Determine o centro e o raio da circunferência cuja equação geral é dada por $x^2 + y^2 - 2x = 0$.

Exercício 1.86. Determine as equações paramétricas da circunferência cujo centro é o ponto C = (4,9) e o raio é R = 2.

Exercício 1.87. Determine as equações paramétricas da circunferência cujo centro é o ponto C = (1, 1) e o raio é $R = \pi$.

Exercício 1.88. Determine as equações paramétricas da circunferência cujo centro é o ponto C = (-2,0) e o raio é $R = \sqrt{3}$.

Exercício 1.89. Determine as equações paramétricas da circunferência cujo centro é o ponto $C = (\sqrt{2}, \sqrt{5})$ e o raio é $R = \sqrt{3}$.

Exercício 1.90. Determine as equações paramétricas da circunferência cuja equação geral é dada por $x^2 + y^2 - x + 3y - 2 = 0$.

Exercício 1.91. Determine as equações paramétricas da circunferência cuja equação geral é dada por $x^2 + y^2 - 2x - 2y + 1 = 0$.

1.2.3 Exercícios da Aula 09 (A Parábola)

Exercício 1.92. Determine a equação da parábola em que F = (3,0) e V = (0,0).

Exercício 1.93. Determine a equação da parábola em que F = (5,7) e V = (-3,7).

Exercício 1.94. Determine a equação da parábola em que F = (5,3) e V = (5,7).

Exercício 1.95. Determine a equação da parábola em que F = (-4, -9) e V = (0, -9).

Exercício 1.96. Determine a equação da parábola em que F = (2,0) e V = (-2,0).

Exercício 1.97. Determine o vértice, o foco e a reta diretriz da parábola cuja equação é dada por:

$$3x^2 = 7y.$$

Exercício 1.98. Determine o vértice, o foco e a reta diretriz da parábola cuja equação é dada por:

$$7y^2 = -15x.$$

Exercício 1.99. Determine o vértice, o foco e a reta diretriz da parábola cuja equação é dada por:

$$y^2 - 2y = 5x + 39.$$

Exercício 1.100. Determine o vértice, o foco e a reta diretriz da parábola cuja equação é dada por:

$$x^2 - 10x = -3y + 14.$$

Exercício 1.101. Determine o vértice, o foco e a reta diretriz da parábola cuja equação é dada por:

$$y^2 - 4y - 8x - 20 = 0.$$

Exercício 1.102. Determine as equações paramétricas da parábola cuja equação cartesiana é dada por

$$y^2 - 4y - 8x - 20 = 0.$$

Exercício 1.103. Determine as equações paramétricas da parábola cuja equação cartesiana é dada por

$$y^2 - 2y = 5x + 39.$$

Exercício 1.104. Determine as equações paramétricas da parábola cuja equação cartesiana é dada por

$$x^2 - 10x = -3y + 14.$$

Exercício 1.105. Prove que numa parábola o comprimento da corda que contém o foco e é perpendicular ao eixo focal é duas vezes a distância do foco à reta diretriz.

1.2.4 Exercícios da Aula 10 (A Elipse)

Exercício 1.106. Determine a equação da elipse em que $F_1 = (-6,0), F_2 = (6,0), V_1 = (-10,0)$ e $V_2 = (10,0)$.

Exercício 1.107. Determine a equação da elipse em que $F_1 = (-12, 0), F_2 = (12, 0), V_1 = (-20, 0)$ e $V_2 = (20, 0)$.

Exercício 1.108. Determine a equação da elipse em que $F_1 = (-5, 1), F_2 = (7, 1), V_1 = (-9, 1)$ e $V_2 = (11, 1)$.

Exercício 1.109. Determine a equação da elipse em que $F_1 = (-2, 2), F_2 = (-2, 8), V_1 = (-2, 0)$ e $V_2 = (-2, 10)$.

Exercício 1.110. Determine a equação da elipse em que $F_1 = (3, 4), F_2 = (3, 16), V_1 = (3, 2)$ e $V_2 = (3, 18)$.

Exercício 1.111. Determine o centro, os focos e os vértices da elipse cuja equação é dada por

 $\frac{x^2}{9} + \frac{y^2}{4} = 1.$

Exercício 1.112. Determine o centro, os focos e os vértices da elipse cuja equação é dada por

 $\frac{x^2}{16} + \frac{y^2}{24} = 1.$

Exercício 1.113. Determine o centro, os focos e os vértices da elipse cuja equação é dada por

 $\frac{(x-5)^2}{100} + \frac{(y+2)^2}{50} = 1.$

Exercício 1.114. Determine o centro, os focos e os vértices da elipse cuja equação é dada por

 $\frac{(x+2)^2}{144} + \frac{(y-7)^2}{225} = 1.$

Exercício 1.115. Determine o centro, os focos e os vértices da elipse cuja equação é dada por $2x^2 + y^2 = 20$.

Exercício 1.116. Determine o centro, os focos e os vértices da elipse cuja equação é dada por $5x^2 + 3y^2 - 10x + 42y + 137 = 0$.

Exercício 1.117. Determine as equações paramétricas da Elipse cuja equação cartesiana é dada por

 $\frac{(x+2)^2}{144} + \frac{(y-7)^2}{225} = 1.$

Exercício 1.118. Determine as equações paramétricas da Elipse cuja equação cartesiana é dada por $5x^2 + 3y^2 - 10x + 42y + 137 = 0$.

1.2.5 Exercícios da Aula 11 (A Hipérbole)

Exercício 1.119. Determine a equação da hipérbole em que $F_1 = (-25,0), F_2 = (25,0), V_1 = (-20,0)$ e $V_2 = (20,0)$.

Exercício 1.120. Determine a equação da hipérbole em que $F_1 = (-11, 0), F_2 = (11, 0), V_1 = (-8, 0)$ e $V_2 = (8, 0)$.

Exercício 1.121. Determine a equação da hipérbole em que $F_1 = (-4, 2), F_2 = (8, 2), V_1 = (-1, 2)$ e $V_2 = (5, 2)$.

Exercício 1.122. Determine a equação da hipérbole em que $F_1 = (3, 7), F_2 = (3, 3), V_1 = (3, 0)$ e $V_2 = (3, 10)$.

Exercício 1.123. Determine a equação da hipérbole em que $F_1 = (0,5), F_2 = (10,5), V_1 = (2,5)$ e $V_2 = (8,5)$.

Exercício 1.124. Determine o centro, os focos e os vértices da hipérbole cuja equação é dada por

$$\frac{x^2}{9} - \frac{y^2}{7} = 1.$$

Exercício 1.125. Determine o centro, os focos e os vértices da hipérbole cuja equação é dada por

$$\frac{y^2}{25} - \frac{x^2}{20} = 1.$$

Exercício 1.126. Determine o centro, os focos e os vértices da hipérbole cuja equação é dada por

$$\frac{(x-2)^2}{80} - \frac{(y+2)^2}{50} = 1.$$

Exercício 1.127. Determine o centro, os focos e os vértices da hipérbole cuja equação é dada por

$$\frac{(y+3)^2}{400} - \frac{(x-8)^2}{169} = 1.$$

Exercício 1.128. Determine o centro, os focos e os vértices da hipérbole cuja equação é dada por $3x^2 - 2y^2 - 12y - 30 = 0$.

Exercício 1.129. Determine as equações paramétricas da hipérbole cuja equação cartesiana é dada por

$$\frac{x^2}{9} - \frac{y^2}{7} = 1.$$

Exercício 1.130. Determine as equações paramétricas da hipérbole cuja equação cartesiana é dada por

$$\frac{(x-5)^2}{36} - \frac{(y+3)^2}{64} = 1.$$

Exercício 1.131. Determine as equações paramétricas da hipérbole cuja equação cartesiana é dada por $3x^2 - 2y^2 - 6x - 16y - 35 = 0$.

Capítulo 2

Exercícios para a Unidade II

2.1 Exercícios para a 1ª Avaliação

2.1.1 Exercícios da Aula 12 (Vetores no Espaço)

Exercício 2.1. Calcule a distância entre os pontos dados a seguir:

(a)
$$P = (3, 2, 1)$$
 e $Q = (2, 3, 5)$;

(b)
$$P = (-3, 7, 0) \in Q = (2, 1, 2);$$

(c)
$$P = (5, 0, 0) \in Q = (1, 1, 1);$$

(d)
$$P = (1, -1, -1)$$
 e $Q = (-1, 1, 1)$;

(e)
$$P = (-4, 0, 3)$$
 e $Q = (2, -8, -7)$;

(f)
$$P = (2, 2, 2)$$
 e $Q = (1, -1, 1)$;

(g)
$$P = (3, 1, 3) \in Q = (0, 3, 3)$$
;

(h)
$$P = (0, 0, 0)$$
 e $Q = (1, 1, 1)$;

(i)
$$P = (1, -2, -5)$$
 e $Q = (-1, 3, -7)$;

(j)
$$P = (-4, 8, 10)$$
 e $Q = (12, 2, -32)$;

(k)
$$P = (\sqrt{2}, 3, -1)$$
 e $Q = (2, \sqrt{5}, -4)$.

Exercício 2.2. Se os pontos $A=(-a,-a,-a),\ B=(a,-a-a),\ C=(-a,-a,a)$ e D=(a,a,a) são vértices de um cubo, determine os outros vértices.

Exercício 2.3. Calculando distâncias, mostre que

(a) Se
$$A = (3, -1, 2)$$
 $B = (0, -4, 2)$ e $C = (-3, 2, 1)$, então o $\triangle ABC$ é isósceles;

(b) Se
$$A = (3, -1, 6)$$
 $B = (-1, 7, -2)$ e $C = (1, -3, 2)$, então o $\triangle ABC$ é retângulo.

Exercício 2.4. Descreva e represente graficamente os seguintes conjuntos de pontos:

(a)
$$A = \{(x, y, z) \in \mathbb{R}^3 ; x = y = 0\};$$

(b)
$$B = \{(x, y, z) \in \mathbb{R}^3 ; x = 2 \text{ e } y = 3\};$$

(c)
$$C = \{(x, y, z) \in \mathbb{R}^3 ; z = 1\};$$

(d)
$$D = \{(x, y, z) \in \mathbb{R}^3 ; x = 0\};$$

(e)
$$E = \{(x, y, z) \in \mathbb{R}^3 ; x^2 + y^2 = 1\}.$$

Exercício 2.5. Dados os vetores $\vec{u} = (2, -3, 1), \ \vec{v} = (2, 2, 0) \ e \ \vec{w} = (1, -3, 4).$ Determine:

- (a) $\vec{u} \cdot \vec{v}$;
- (b) $\vec{u} \cdot \vec{w}$;
- (c) $\vec{v} \cdot \vec{w}$;
- (d) O ângulo entre \vec{u} e \vec{v} ;
- (e) O ângulo entre \vec{u} e \vec{w} ;
- (f) O ângulo entre \vec{v} e \vec{w} .

Exercício 2.6. Sabendo que $d(P,Q) = \sqrt{(x_Q - x_P)^2 + (y_Q - y_P)^2 + (z_Q - z_P)^2}$ em que $P = (x_P, y_P, z_P)$ e $Q = (x_Q, y_Q, z_Q)$. Mostre que:

(a)
$$d(P,Q) \ge 0$$
;

(b)
$$d(P,Q) = d(Q,P)$$
;

(c)
$$d(P,Q) = 0 \Leftrightarrow P = Q$$
;

(d)
$$d(P,R) \le d(P,Q) + d(Q,R)$$
, em que $R = (x_R, y_R, z_R)$.

Exercício 2.7. Dados os pontos A = (3, 2, 2), B = (1, 0, 0), C = (2, 3, -1), D = (0, 1, 1) e E = (0, -2, 1). Determine:

- (a) $\vec{AB} + \vec{CD}$;
- (b) $\vec{AE} \vec{ED} + \vec{EB}$;
- (c) $\vec{AB} + \vec{BA}$;
- (d) $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EA}$;
- (e) $\vec{CE} + 3\vec{DA}$;
- (f) $2(\vec{AD} 2\vec{CA}) \vec{DA}$;
- (g) $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE}$;
- (h) $\vec{AB} \vec{BC} + 2\vec{CD} 5\vec{DE} + \frac{1}{2}\vec{EA}$;
- (i) $\frac{2}{3}\vec{CE} + \frac{1}{5}\vec{EA}$;
- (j) $3\vec{DA} + 5\vec{AE} \frac{1}{10}\vec{DC} + \sqrt{2}\vec{AD}$.

Exercício 2.8. Calcule $proj_{\vec{v}}(\vec{u})$ em que

(a)
$$\vec{u} = (1, 1, -1)$$
 e $\vec{v} = (0, -1, -2)$;

(b)
$$\vec{u} = (0, 2, 3) \text{ e } \vec{v} = (1, 1, 1);$$

(c)
$$\vec{u} = (1, 0, 1)$$
 e $\vec{v} = (0, 1, 0)$.

Exercício 2.9. Sejam α β e γ os ângulos que o vetor não nulo $\vec{u}=(x,y,z)$ faz com os vetores $\vec{i}=(1,0,0),\ \vec{j}=(0,1,0)$ e $\vec{k}=(0,0,1),$ respectivamente. Mostre que

(a)
$$\cos \alpha = \frac{x}{||\vec{u}||};$$

(b)
$$\cos \beta = \frac{y}{||\vec{u}||};$$

(c)
$$\cos \gamma = \frac{z}{||\vec{u}||}$$
.

Exercício 2.10. Sejam α β e γ os ângulos que o vetor não nulo $\vec{u} = (x, y, z)$ faz com os eixos coordenados OX OY e OZ, respectivamente. Mostre que

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

2.1.2 Exercícios da Aula 13 (O Produto Vetorial)

Exercício 2.11. Mostre que

- (a) $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u});$
- (b) $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$;
- (c) $\vec{w} \times (\vec{u} + \vec{v}) = \vec{w} \times \vec{u} + \vec{w} \times \vec{v}$;
- (d) $(\alpha \vec{u}) \times \vec{v} = \alpha (\vec{u} \times \vec{v})$.

Exercício 2.12. Sejam \vec{u} e \vec{v} são vetores múltiplos um do outro, mostre que

$$\vec{u} \times \vec{v} = \vec{0}$$
.

Exercício 2.13. A recíproca do exercício anterior é verdadeira? Se sim, prove. Caso contrário, exiba um contraexemplo.

Exercício 2.14. Sejam \vec{u} e \vec{v} vetores no espaço. Mostre que

$$||\vec{u} \times \vec{v}||^2 = ||\vec{u}||^2 ||\vec{v}||^2 - (\vec{u} \cdot \vec{v})^2.$$

Exercício 2.15. Mostre que $||\vec{u} \times \vec{v}|| = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \sin \theta$ em que θ é o ângulo entre \vec{u} e \vec{v} .

Exercício 2.16. Mostre que $||\vec{u} \times \vec{v}|| \ge ||\vec{u}|| \cdot ||\vec{v}||$.

Exercício 2.17. Sejam \vec{u} e \vec{v} vetores unitários e perpendiculares entre si. Mostre que

$$||\vec{u} \times \vec{v}|| = 1.$$

Exercício 2.18. Calcule a área do paralelogramo cujos lados adjacentes são representados por \vec{u} e \vec{v} .

- (a) $\vec{u} = (1, 0, 0) \in \vec{v} = (-1, 0, 1);$
- (b) $\vec{u} = (0, 2, 3) \text{ e } \vec{v} = (1, 1, 1);$
- (c) $\vec{u} = (1, 1, -1) \in \vec{v} = (1, -2, 3);$
- (d) $\vec{u} = (-1, -1, -1)$ e $\vec{v} = (1, 1, 2)$;
- (e) $\vec{u} = (2, -1, 0)$ e $\vec{v} = (3, 1, 5)$.

Exercício 2.19. Determine a área do triângulo determinado pelos pontos dados a seguir:

(a)
$$A = (2, -1, 7), B = (-3, 5, 8) \in C = (1, 0, 3);$$

(b)
$$A = (5, 2, 10), B = (5, -3, 0) \in C = (2, -1, 5);$$

(c)
$$A = (5, -1, -8), B = (2, 10, -8) \in C = (3, -1, -3);$$

(d)
$$A = (7, -1, 0), B = (0, 0, 0) \in C = (2, 10, 13);$$

(e)
$$A = (5, -1, 4), B = (-1, 3, 7) \in C = (-4, 2, 5).$$

Exercício 2.20. Sabendo que dois vetores são ortogonais quando o produto escalar entre estes é zero. Mostre que

(a)
$$(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$
;

(b)
$$(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$$
.

Exercício 2.21. Mostre que

(a)
$$(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times (\vec{v} \times \vec{w});$$

(b)
$$(\vec{i} \times \vec{j}) \times \vec{j} = -\vec{i};$$

(b)
$$\vec{i} \times (\vec{j} \times \vec{j}) = \vec{0}$$
.

Exercício 2.22. Dados os vetores $\vec{u} = (2, 1, -1)$ e $\vec{v} = (1, -1, a)$. Determine o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a:

- (a) $\sqrt{62}$;
- (b) 100;
- (b) $\sqrt{30}$.

Exercício 2.23. Dados os vetores $\vec{u} = (2, 1, -1)$ e $\vec{v} = (1, a, 1)$. Determine o valor de a para que a área do triângulo determinado por \vec{u} e \vec{v} seja igual a:

- (a) $\sqrt{62}$;
- (b) 100;
- (b) $\sqrt{30}$.

2.1.3 Exercícios da Aula 14 (O Produto Misto)

Exercício 2.24. Determine o produto misto $\vec{u} \cdot (\vec{v} \times \vec{w})$ em que:

(a)
$$\vec{u} = (3, -1, 4), \vec{v} = (5, 0, 3) \text{ e } \vec{w} = (2, 5, 2);$$

(b)
$$\vec{u} = (2, 0, -1), \vec{v} = (3, 10, -1) \text{ e } \vec{w} = (4, -1, 0);$$

(c)
$$\vec{u} = (5, -2, 2), \vec{v} = (0, 4, -3) \text{ e } \vec{w} = (8, 0, -1);$$

(d)
$$\vec{u} = (2, 2, 2), \vec{v} = (3, 1, -3) \text{ e } \vec{w} = (-2, 1, 4);$$

(e)
$$\vec{u} = (5, 8, 10), \vec{v} = (1, 1, -1) \text{ e } \vec{w} = (2, 9, -6).$$

Exercício 2.25. Determine o volume do paralelepípedo determinado pelos vetores dados a seguir:

(a)
$$\vec{u} = (1, -1, 3), \vec{v} = (2, 0, -1) \text{ e } \vec{w} = (0, 3, -5);$$

(a)
$$\vec{u} = (3, -1, 4), \vec{v} = (5, 0, 3) \text{ e } \vec{w} = (2, 5, 2);$$

(b)
$$\vec{u} = (6, -6, 2), \vec{v} = (5, 4, 5) \text{ e } \vec{w} = (9, -7, 0);$$

(c)
$$\vec{u} = (7, -3, 0), \vec{v} = (6, 1, 3) \text{ e } \vec{w} = (2, -10, 2);$$

(d)
$$\vec{u} = (6, 2, 9), \vec{v} = (-5, 2, 1) \text{ e } \vec{w} = (3, 1, 3);$$

(e)
$$\vec{u} = (2, -7, 5), \vec{v} = (2, 5, 5) \text{ e } \vec{w} = (2, 6, 15).$$

Exercício 2.26. Sejam $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$. Mostre que

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}.$$

Exercício 2.27. Sejam $\vec{u}, \vec{v}, \vec{x}, \vec{w} \in \mathbb{R}^3$. Mostre que

$$(\vec{u} + \vec{x}) \cdot (\vec{v} \times \vec{w}) = \vec{u} \cdot (\vec{v} \times \vec{w}) + \vec{x} \cdot (\vec{v} \times \vec{w}).$$

Exercício 2.28. Sejam $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ e $\alpha \in \mathbb{R}$. Mostre que

$$\alpha \vec{u} \cdot (\vec{v} \times \vec{w}) = \alpha [\vec{u} \cdot (\vec{v} \times \vec{w})].$$

Exercício 2.29. Mostre que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$ se, e somente se, $\vec{u}, \vec{v}, \vec{w}$ são vetores coplanares.

Exercício 2.30. Mostre que $\vec{0} \cdot (\vec{v} \times \vec{w}) = 0$.

Exercício 2.31. Se $\vec{w} = \alpha \vec{v}$, mostre que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$.

Exercício 2.32. Determine o valor de $m \in \mathbb{R}$ tal que os vetores \vec{u}, \vec{v} e \vec{w} sejam coplanares, em que $\vec{u} = (2, m, 0), \ \vec{v} = (1, -1, 2)$ e $\vec{w} = (-1, 3, -1)$.

Exercício 2.33. Verifique se os pontos A = (1, 2, 4), B = (-1, 0, -2), C = (0, 2, 2) e D = (-2, 1, -3) são coplanares.

Exercício 2.34. Determine o valor de $m \in \mathbb{R}$ para que o volume do paralelepípedo determinado pelos vetores $\vec{u} = (3, m, -2), \ \vec{v} = (1, -1, 0) \ e \ \vec{w} = (2, -1, 2) \ seja$

$$\mathcal{V}(\mathcal{T}) = 16 \ u.v.$$

Exercício 2.35. Verifique se os pontos dados a seguir são coplanares. Em caso negativo, determine o produto misto entre os vetores encontrados.

(a)
$$A = (2, -1, 2), B = (5, 3, 0), C = (3, 3, 1) \in D = (3, -1, 1);$$

(b)
$$A = (7, 2, 0), B = (2, 1, 4), C = (1, 2, 4) \in D = (3, 2, 1);$$

(c)
$$A = (1, 2, 3), B = (-1, 3, -7), C = (5, -1, 3) \in D = (1, 4, -8);$$

(d)
$$A = (5, -1, 7), B = (5, 3, 0), C = (0, 1, -1) \in D = (3, -1, 1);$$

(e)
$$A = (-7, 9, -2), B = (3, 3, 3), C = (-6, 9, 10) \in D = (4, -11, 18).$$

Exercício 2.36. Sejam $\vec{u} = (a_1, b_1, c_1), \ \vec{v} = (a_2, b_2, c_2) \ e \ \vec{w} = (a_3, b_3, c_3)$ vetores não nulos e não coplanares do espaço. Mostre que o volume do tetraedro \mathcal{T} determinado por esses vetores é

$$\mathcal{V}(\mathcal{T}) = \frac{1}{6}\vec{u} \cdot (\vec{v} \times \vec{w}).$$

Exercício 2.37. Determine o valor de $m \in \mathbb{R}$ para que o volume do tetraedro determinado pelos vetores $\vec{u} = (2, 1, -4), \ \vec{v} = (m, -1, -3)$ e $\vec{w} = (-3, 1, -2)$ seja

$$\mathcal{V}(\mathcal{T}) = 3 \ u.v.$$

Exercício 2.38. Seja \mathcal{T} um tetraedro tal que $\mathcal{V}(\mathcal{T}) = 6$ u.v. e tais que três de seus vértices são os pontos A = (-2, 4, -1), B = (-3, 2, 3) e C = (1, -2, -1). Determine o quarto vértice desse tetraedro sabendo que este encontra-se no eixo OY.

Exercício 2.39. Seja \mathcal{A} uma matriz de ordem 3×3 cujas linhas são as coordenadas do vetor $\vec{u}, \vec{v} \in \vec{w}$, respectivamente. Mostre que

$$|\det \mathcal{A}| \le ||\vec{u}|| \cdot ||\vec{v}|| \cdot ||\vec{w}||.$$

2.1.4 Exercícios da Aula 15 (A Reta no Espaço)

Exercício 2.40. Determine as equações paramétricas da reta que passa pelo ponto P e é paralela ao vetor \vec{v} , ambos indicados nos itens a seguir:

(a)
$$P = (2, 3, 5)$$
 e $\vec{v} = (3, -1, 2)$;

(b)
$$P = (1, 1, 1) e \vec{v} = (2, -6, 0);$$

(c)
$$P = (-3, 10, -9) \text{ e } \vec{v} = (-2, 5, 13);$$

(d)
$$P = (5, -1, 0)$$
 e $\vec{v} = (4, 0, -2)$;

(e)
$$P = (-8, 0, 2)$$
 e $\vec{v} = (0, 1, 1)$;

(e)
$$P = (-9, 1, 3)$$
 e $\vec{v} = (2, 2, 2)$;

(f)
$$P = (3, 3, 3)$$
 e $\vec{v} = (-5, -5, -5)$;

(g)
$$P = (0, 4, -7) e \vec{v} = (2, 5, 0);$$

(h)
$$P = (-6, -1, 4) \in \vec{v} = (1, 2, 3);$$

(i)
$$P = (-3, 2, -1)$$
 e $\vec{v} = (4, -5, 6)$.

Exercício 2.41. Determine a posição relativa entre as retas r_1 e r_2 com as seguintes propriedades: A reta r_1 passa pelo ponto $P_1 = (0, 1, 0)$ e é paralela ao vetor $\vec{v}_1 = (2, 1, 1)$ e a reta r_2 passa pelo ponto $P_2 = (0, 1, 2)$ e é paralela ao vetor $\vec{v}_2 = (1, 1, 0)$.

Exercício 2.42. Determine a posição relativa entre as retas r_1 e r_2 com as seguintes propriedades: A reta r_1 passa pelo ponto $P_1 = (0,1,0)$ e é paralela ao vetor $\vec{v}_1 = (0,-2,4)$ e a reta r_2 passa pelo ponto $P_2 = (3,4,0)$ e é paralela ao vetor $\vec{v}_2 = (-2,1,1)$.

Exercício 2.43. Determine a posição relativa entre as retas r_1 e r_2 com as seguintes propriedades: A reta r_1 passa pelo ponto $P_1 = (0, 2, 5)$ e é paralela ao vetor $\vec{v}_1 = (1, -3, 2)$ e a reta r_2 passa pelo ponto $P_2 = (3, 4, 0)$ e é paralela ao vetor $\vec{v}_2 = (2, -6, 4)$.

Exercício 2.44. Mostre que a equação de uma reta no espaço pode ser expressa por

$$r: \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c},$$

em que $P = (x_0, y_0, z_0)$ é um ponto dessa reta e $\vec{v} = (a, b, c)$ é um vetor paralelo a ela, com $a, b, c \neq 0$.

2.2 Exercícios para a 2ª Avaliação

2.2.1 Exercícios da Aula 16 (A Equação do Plano)

Exercício 2.45. Determine a equação do plano que contém o ponto dado e é ortogonal ao vetor dado:

(a)
$$A = (3, -1, 4)$$
 e $\vec{u} = (5, 0, 3)$;

(b)
$$A = (2, 5, 7) e \vec{u} = (8, 5, 4);$$

(c)
$$A = (0, -1, 7)$$
 e $\vec{u} = (3, 0, -2);$

(d)
$$A = (2, -10, 3) e \vec{u} = (4, -1, 6);$$

(e)
$$A = (4, -1, 9)$$
 e $\vec{u} = (-8, 2, 0)$;

(f)
$$A = (1, 0, 0) \in \vec{u} = (2, -2, 1);$$

(g)
$$A = (3, 2, 1) e \vec{u} = (1, 0, -1);$$

(h)
$$A = (2, -2, 5)$$
 e $\vec{u} = (3, 2, 1)$;

(i)
$$A = (-1, 4, 7)$$
 e $\vec{u} = (2, -2, -3)$;

(h)
$$A = (0, 4, -2)$$
 e $\vec{u} = (1, -2, 6)$.

Exercício 2.46. Obtenha as equações paramétricas dos planos π_1 , π_2 e π_3 , em que:

- (a) π_1 é o plano que contém os pontos A = (1, 1, 4), B = (6, 5, 4) e C = (-2, 0, 2);
- (b) π_2 é o plano que contém o ponto D=(1,1,1) e é paralelo aos vetores de coordenadas u=(2,3,-2) e v=(4,3,-2);
- (c) π_3 é o plano que contém os pontos E = (1, 2, 0), F = (4, 6, 1) e é paralelo ao vetor de coordenadas w = (4, 3, -2).

Exercício 2.47. Determine um vetor \vec{n} que seja ortogonal ao plano π que contém os pontos dados a seguir:

(a)
$$A = (2, 3, -1), B = (1, 1, 1) \in C = (3, -1, 5);$$

(b)
$$A = (5, 2, -10), B = (3, 0, 2) \in C = (-5, 4, 1).$$

Exercício 2.48. Determine um vetor \vec{n} unitário que seja ortogonal ao plano π que contém os pontos dados a seguir:

(a)
$$A = (4, 2, 2), B = (6, -1, 6) \in C = (4, 0, 2);$$

(b)
$$A = (5, 1, 3), B = (-1, -1, -1) \in C = (2, 5, 0);$$

(c)
$$A = (0, 6, -2), B = (2, 0, 4) \in C = (-3, 5, 0);$$

(d)
$$A = (7, -1, -5), B = (3, 10, -3) \in C = (2, -5, 9);$$

(e)
$$A = (-8, 8, 1), B = (4, 7, -3) \in C = (2, 5, 4);$$

(f)
$$A = (-6, 3, 0), B = (-9, 1, 2) \in C = (0, 3, -2);$$

(g)
$$A = (8, -1, 2), B = (-4, 5, 0) e C = (10, -10, 10);$$

(h)
$$A = (11, -2, 5), B = (9, 0, -9) \in C = (3, 4, 5);$$

(i)
$$A = (0, -1, 2), B = (2, -1, 0) \in C = (0, -1, 2);$$

(j)
$$A = (13, 2, -1), B = (1, 2, 3) \in C = (15, 12, -7).$$

Exercício 2.49. Determine as equações paramétricas do plano que contém o ponto P e é paralelo aos vetores \vec{u} e \vec{v} dados a seguir:

(a)
$$P = (4, 2, 2), \ \vec{u} = (6, -1, 6) \ e \ \vec{v} = (4, 0, 2);$$

(b)
$$P = (5, 1, 3), \ \vec{u} = (-1, -1, -1) \ \text{e} \ \vec{v} = (2, 5, 0);$$

(c)
$$P = (0, 6, -2), \vec{u} = (2, 0, 4) \in \vec{v} = (-3, 5, 0);$$

(d)
$$P = (7, -1, -5), \vec{u} = (3, 10, -3) \in \vec{v} = (2, -5, 9);$$

(e)
$$P = (-8, 8, 1), \ \vec{u} = (4, 7, -3) \ \text{e} \ \vec{v} = (2, 5, 4);$$

(f)
$$P = (4, 2, 2), \ \vec{u} = (6, -1, 6) \ e \ \vec{v} = (4, 0, 2);$$

(g)
$$P = (5, 1, 3), \ \vec{u} = (-1, -1, -1) \ \text{e} \ \vec{v} = (2, 5, 0);$$

(h)
$$P = (5, 1, 3), \ \vec{u} = (-1, -1, -1) \ \text{e} \ \vec{v} = (2, 5, 0).$$

2.2.2 Exercícios da Aula 17 (Distâncias no Espaço)

Exercício 2.50. Determine a distância do ponto P=(2,1,3) ao plano π cuja equação é dada a seguir:

(a)
$$\pi : x - 2y + z = 1$$
;

(b)
$$\pi : x + y - z = 0;$$

(c)
$$\pi : x - 5z = 8$$
;

(d)
$$\pi : 3x + 2y + 5z = 4$$
;

(e)
$$\pi: x - 5y + 8z = 11$$
.

Exercício 2.51. Determine a distância do ponto P = (5, 4, -7) à reta r cujas equações paramétricas são dadas a seguir:

(a)

$$x = 1 + 5t$$

$$y = 2 - t$$

$$z = t$$

(b)

$$x = 3 - 2t$$

$$y = 4 + 3t$$

$$z = 1 + t$$

(c)

$$x = -1 - t$$

$$y = 5 + t$$

$$z = 2t$$

(d)

$$x = -t$$

$$y = 9 - t$$

$$z = 5 - 5t$$

Exercício 2.52. Mostre que se $\vec{n} = (a, b, c)$ é unitário, então a distância do plano $\pi : ax + by + cz = d$ à origem vale |d|.

2.2.3 Exercícios da Aula 18 (A Esfera)

Exercício 2.53. Seja uma esfera cujo centro é C=(2,7,5) e o raio mede $\rho=8$. Determine a equação reduzida e geral dessa esfera.

Exercício 2.54. Seja uma esfera cujo centro é C=(3,7,0) e o raio mede $\rho=5$. Determine a equação reduzida e geral dessa esfera.

Exercício 2.55. Seja uma esfera cujo centro é C = (-1, 1, 5) e o raio mede $\rho = 11$. Determine a equação reduzida e geral dessa esfera.

Exercício 2.56. Seja uma esfera cujo centro é C=(3,4,5) e o raio mede $\rho=7$. Determine a equação reduzida e geral dessa esfera.

Exercício 2.57. Seja uma esfera cujo centro é $C = (\pi, \sqrt{2}, 3)$ e o raio mede $\rho = \sqrt{5}$. Determine a equação reduzida e geral dessa esfera.

Exercício 2.58. Determine o centro e o raio da esfera cuja equação geral é dada por

$$S: x^2 + y^2 + z^2 - 2x - 2y - 2z + 2 = 0.$$

Exercício 2.59. Determine o centro e o raio da esfera cuja equação geral é dada por

$$S: x^2 + y^2 + z^2 - 6x + 8y - 4z - 71 = 0.$$

Exercício 2.60. Determine o centro e o raio da esfera cuja equação geral é dada por

$$S: x^2 + y^2 + z^2 + 4x + 10y + 12z + 16 = 0.$$

Exercício 2.61. Determine o centro e o raio da esfera cuja equação geral é dada por

$$S: x^2 + y^2 + z^2 - 8x - 14y + 2z + 65 = 0.$$

Exercício 2.62. Determine o centro e o raio da esfera cuja equação geral é dada por

$$S: x^2 + y^2 + z^2 - 2\sqrt{2}x + 2\pi y + 26z + 164 + \pi^2 = 0.$$

Exercício 2.63. Determine as equações das esferas de raio $r = \sqrt{17}$, com centro no plano $\pi: 2x + y + z = 3$, que contém os pontos A = (2,3,1) e B = (4,1,3).

Exercício 2.64. Determine as equações paramétricas da esfera em que C=(2,5,-1) e $\rho=7$.

Exercício 2.65. Determine as equações paramétricas da esfera em que C=(3,7,4) e $\rho=\sqrt{\pi}$.

Exercício 2.66. Determine as equações paramétricas da esfera em que C=(-2,9,-1) e $\rho=\sqrt{17}$.

Exercício 2.67. Determine as equações paramétricas da esfera cuja equação reduzida é dada a seguir:

(a)
$$S: (x-3)^2 + (y+7)^2 + (z+1)^2 = 16;$$

(b)
$$S: (x - \sqrt{10})^2 + (y - \pi)^2 + (z + \ln 3)^2 = 12;$$

(c)
$$S: (x-10)^2 + (y-20)^2 + (z-30)^2 = 40;$$

(d)
$$S: (x-3)^2 + (y-2)^2 + (z-1)^2 = 4;$$

(e)
$$S: (x-5)^2 + (y+9)^2 + (z-13)^2 = 200.$$

Exercício 2.68. Determine as equações paramétricas da esfera cuja equação geral é dada a seguir:

(a)
$$S: x^2 + y^2 + z^2 - 2x - 4z + 1 = 0;$$

(b)
$$S: x^2 + y^2 + z^2 - 2x - 4y - 2z - 10 = 0;$$

(c)
$$S: 2x^2 + 2y^2 + 2z^2 - 2x + 6y - 6 = 0$$
;

(d)
$$S: x^2 + y^2 + z^2 - 3 = 0;$$

(e)
$$S: x^2 + y^2 + z^2 + 2x - y - 1 = 0$$
.

Exercício 2.69. Um ponto $P=(\rho,\theta,\varphi)$ dado em coordenadas esféricas é dado a seguir. Determine as coordenadas desse ponto em coordenadas cartesianas.

(a)
$$P = \left(3, \frac{\pi}{6}, \frac{\pi}{4}\right)$$
;

(b)
$$P = \left(5, \frac{\pi}{4}, \frac{\pi}{2}\right);$$

(c)
$$P = \left(8, \frac{\pi}{3}, \frac{\pi}{6}\right)$$
;

(d)
$$P = \left(1, \frac{2\pi}{3}, \frac{\pi}{3}\right);$$

(e)
$$P = \left(\sqrt{2}, \frac{\pi}{2}, \frac{2\pi}{3}\right);$$

(f)
$$P = \left(\sqrt{5}, \frac{\pi}{4}, \frac{3\pi}{4}\right)$$
.

2.2.4 Exercícios da Aula 19 (Superfícies de Revolução)

Exercício 2.70. Determine a equação cartesiana da superfície de revolução obtida pela rotação da curva C em torno dos eixos indicados.

(a)

$$y = -x^3 + 1$$
$$z = 0$$

e giro em torno do eixo OX e do eixo OY;

(b)

$$x^2 + 2z^2 - 6x = 5$$
$$z = 0$$

e giro em torno do eixo OX e do eixo OY;

(c)

$$y + 2z = 0$$
$$z = 0$$

e giro em torno do eixo OY e do eixo OZ.

Exercício 2.71. Escreva uma equação da superfície gerada pela rotação da elipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1, \ z = 0$$

- (a) Em torno do eixo OX;
- (b) Em torno do eixo OY.

Exercício 2.72. Escreva uma equação da superfície gerada pela rotação da elipse

$$\frac{y^2}{h^2} + \frac{z^2}{c^2} = 1, \ x = 0$$

- (a) Em torno do eixo OY;
- (b) Em torno do eixo OZ.

Exercício 2.73. Tome uma elipse que está sobre o plano OXZ, isto é,

$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1;$$

Construa os possíveis Elipsoides de Revolução a partir desta elipse.

Exercício 2.74. Tome uma hipérbole que está sobre o plano YZ, isto é,

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1;$$

Construa os possíveis hiperboloides de Revolução a partir desta hipérbole.

Exercício 2.75. Determine a equação da superfície de revolução gerada pela rotação da Elipse de equação

$$\frac{x^2}{9} + \frac{y^2}{4} = 1, \quad z = 0$$

- (a) Em torno do seu eixo maior;
- (b) Em torno do seu eixo menor.

Exercício 2.76. Determine a equação da superfície de revolução gerada pela rotação da Elipse de equação

$$\frac{x^2}{5} + \frac{y^2}{16} = 1, \quad z = 0$$

- (a) Em torno do seu eixo maior;
- (b) Em torno do seu eixo menor.

Exercício 2.77. Determine a equação da superfície de revolução gerada pela rotação da Hipérbole de equação

$$\frac{y^2}{16} - \frac{z^2}{9} = 1, \quad x = 0$$

- (a) Em torno do seu eixo maior;
- (b) Em torno do seu eixo menor.

Exercício 2.78. Determine a equação da superfície de revolução gerada pela rotação da Hipérbole de equação

$$\frac{y^2}{25} - \frac{x^2}{4} = 1, \quad z = 0$$

- (a) Em torno do seu eixo maior;
- (b) Em torno do seu eixo menor.

Exercício 2.79. Determine a equação da superfície de revolução gerada pela rotação da Hipérbole de equação

$$\frac{x^2}{20} - \frac{y^2}{36} = 1, \quad z = 0$$

- (a) Em torno do seu eixo maior;
- (b) Em torno do seu eixo menor.

2.2.5 Exercícios da Aula 20 (Superfícies Quádricas)

Exercício 2.80. Verifique que a esfera de equação

$$S: x^2 + y^2 + z^2 = \rho^2$$

pode ser vista como uma superfície de revolução em torno do eixo OY.

Exercício 2.81. Verifique que a esfera de equação

$$S: x^2 + y^2 + z^2 = \rho^2$$

pode ser vista como uma superfície de revolução em torno do eixo OX.

Exercício 2.82. Verifique que o elipsoide de equação

$$\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

pode ser visto como uma superfície de revolução em torno do eixo OX.

Exercício 2.83. Verifique que o elipsoide de equação

$$\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

pode ser visto como uma superfície de revolução em torno do eixo OY.

Exercício 2.84. Identifique e tente fazer um esboço da quádrica cuja equação cartesiana é dada a seguir:

(a)
$$4x^2 - y^2 + 8z^2 = 16$$
;

(b)
$$4x^2 + y^2 - 8z^2 = 16$$
;

(c)
$$x^2 + 2y^2 - z^2 = 0$$
;

(d)
$$x^2 + y + z^2 = 0$$
;

(e)
$$x^2 + 2y^2 - z^2 = 0$$
;

(f)
$$x^2 + (y-1)^2 = 1$$
;

(g)
$$(x+3)^2 + (y+5)^2 = 1$$
;

(h)
$$(x+4)^2 + y^2 = 3$$
;

(i)
$$z = x^2 + 2$$
;

(j)
$$z = y^2 + 3$$
.