2023BDA CONTEST

일시 2023년 6월 4일

팀명 프라모델

후원 CJ제일제당

CONTENIS -

1 데이터 분석 및 시각화 변수 시각화 가설 검증을 통한 데이터 해석

모델링

 사용한 방식

 결과 분석

 O 2
 데이터 전처리

 파생 변수 생성

 칼럼 정규화

의의 및 한계점 모델링이 가지는 의미와 예상 활용 방안 한계점 & 보완사항

01 데이터 분석 및 시각화

변수 시각화 가설 검증을 통한 데이터 해석

분석 과제

Track 2: 모델링 고도화

2023년도 1월 CJ 더마켓 고객 주문 데이터를 활용하여 프라임 회원 예측 모델링 진행

- 임직원 임직원 데이터셋 사용
- 일반 회원 전체 데이터셋 (임직원 + 일반회원) 사용
- ∴ 성능적 향상을 얻을 수 있을 것으로 예상

본선 데이터 확인

	scd	product_name	net_order_qty	net_order_amt	gender	age_grp	employee_yn	order_date	prime_yn
0	20230124153976	잔칫집 식혜 240ml 30입	1	9.803170	F	2	Υ	20230124	N
1	20230124155563	백설 한입쏙 비엔나 120g*2	1	8.256607	М	3	Υ	20230124	N
2	20230125158386	비비고 왕교자 1.05kg	1	9.348449	F	4	N	20230125	N
3	20230126164638	고메 바삭쫄깃한 탕수육 900g	1	9.667259	F	4	N	20230126	Υ
4	20230125159705	햇반 매일잡곡밥210g	20	9.994653	М	4	N	20230125	Υ

● 9개변수, 45875 행으로 이루어진 고객 주문 데이터

독립 변수

주문 번호, 제품명, 주문 수량, 주문 금액, 성별, 연령대, 임직원 유무

- * 고객의 한 가지 주문을 상품별로 행을 구분하여 중복값 존재
- → 고유값이 실질적인 1월 주문건수로 총 10653개

종속 변수

프라임 회원 유무

칼럼 분포 확인 프라임/임직원

• • • 프라임 회원은 혜택을 받아 일반 회원보다 동일 상품을 저렴하게 구매했을 것이다

상품별 주문 수량 & 주문 금액 평균

임직원	프라임	주문 수량 평균	주문 금액 평균
CJ 임직원	Y	1.8321	9.3528
	N	1.7007	9.3977
이바 취이	Y	1.7213	8.8739
일반 회원	N	1.5808	9.0347

- **주문 수량 평균** 임직원 / 비임직원 모두 프라임 회원 주문 수량이 높음
- **주문 금액 평균** 임직원 / 비임직원 모두 프라임 회원 주문 금액이 저렴함

프라임 회원은 혜택을 받아 일반 회원보다 동일 상품을 저렴하게 구매했을 것이다

● 상품명과 주문 수량별로 묶어 주문 금액 평균 구하기

• 프라임 회원

8	_ar	um t _.	_pr	ime
	1	10.	.220	281
	1	10.	.914	124
		8.	.910	623
		9.	.708	680
		9.	.879	576
		9.	.514	658
	1	11.	.043	706
		9.	.126	706
		9.	.649	498
	1	10.	.410	456

• 일반 회원

	product_name	net_order_qty	net_order_amt_nonprime
(L	생동) 비비고 테이블 특 선물세트 (특양지곰 탕700gx2개+특설렁탕700gx1개)	1	10.270577
	(냉동) 비비고 테이블 특설렁탕 700g	1	8.980387
	(냉동) 비비고 테이블 특설렁탕 700g	2	9.713655
	(냉동) 비비고 테이블 특설렁탕 700g	5	10.896758
	(냉동) 비비고 테이블 특설렁탕 700gx2개	1	9.875140
	행복한콩 폭신폭신 두부볼 750g	3	10.263118
	헬씨누리 침향환 환심 10환	1	9.562475
	헬씨누리 침향환 환심 10환X6입(1BOX)_패 밀리데이	1	11.091499
	훈제대란 20구	1	9.255307
	훈제대란 20구	2	10.052812

프라임 회원은 혜택을 받아 일반 회원보다 동일 상품을 저렴하게 구매했을 것이다

상품명과 주문 수량별로 묶어 주문 금액 평균 구하기

동일 상품에 대해 프라임 회원이 일반 회원보다 저렴하게 구매하는 경향이 있다.

- * 1월 프라임회원 혜택 7% 무제한 할인 존재
- ∴ 'is_price_lower_than_avg' 변수로 추가 예정

30~40대 회원 중 프라임 회원이 많을 것이다

• 연령층별 분포

수입이 안정적이며 신선식품몰을 애용하는 30~40대층 수입이 적은 10대와 온라인 활용률이 낮은 60대 이상층

• 연령층별 프라임 회원 수

• 연령층별 프라임 회원 비율

여성 회원 중 프라임 회원이 많을 것이다

• 프라임 회원 성별 분포

여성과 남성의 프라임 수는 크게 차이 없으나, 임직원 중에는 남성이, 일반 회원은 여성 프라임 회원이 많다.

프라임 회원은 프라임이 아닌 회원보다 총 주문 품목 개수가 많을 것이다

프라임 회원과 일반 회원의 상품별 주문 수량 비교

프라임	수량 1개	수량 2개 이상
프라임 회원	17,502 (52%)	7,152 (58%)
일반 회원	16,078 (48%)	5,143 (42%)

조문 건당 총 주문 상품 개수

프라임	평균 개수	중위값
프라임 회원	8개	5개
일반 회원	6개	47H

평균과 중위값 모두 프라임 회원이 더 많음

둘 다 프라임 회원의 비율이 높으나 2개 이상일 때 프라임 회원과 일반 회원 간의 차이가 큼

• • 프라임 회원은 프라임이 아닌 회원보다 총 주문 품목 개수가 많을 것이다

총 주문 수량 별 프라임/ 일반 회원 구성 비율

• 프라임 회원

	net_order_qty	cnt	prime_yn	prop	cummulative_prop
0	1	1062	Υ	19.943662	19.943662
1	2	649	Υ	12.187793	32.131455
2	3	459	Υ	8.619718	40.751174
3	4	372	Υ	6.985915	47.737089
4	5	370	Υ	6.948357	54.685446
5	6	294	Υ	5.521127	60.206573
6	7	230	Υ	4.319249	64.525822
7	8	207	Υ	3.887324	68.413146
8	9	157	Υ	2.948357	71.361502
9	10	201	Υ	3.774648	75.136150
10	11	147	Υ	2.760563	77.896714

• 일반 회원

	net_order_qty	cnt	prime_yn	prop	cummulative_prop
0	1	1183	N	22.203453	22.203453
1	2	707	N	13.269520	35.472973
2	3	505	N	9.478228	44.951201
3	4	491	N	9.215465	54.166667
4	5	421	N	7.901652	62.068318
5	6	324	N	6.081081	68.149399
6	7	248	N	4.654655	72.804054
7	8	214	N	4.016517	76.820571
8	9	140	N	2.627628	79.448198
9	10	183	N	3.434685	82.882883
10	11	117	N	2.195946	85.078829

프라임 회원은 프라임이 아닌 회원보다 총 주문 품목 개수가 많을 것이다

총 주문 수량 별 프라임/ 일반 회원 비율 분포

수량 ▼ - 비프라임 회원 비율 ↑

수량 ▲ - 프라임 회원 비율 ↑

∴ 'tot_qty_9' 변수 추가

구매 품목 중 인기 상품의 비중이 높은 회원은 프라임 회원일 확률이 높을 것이다

• 인기 상품 추정

상품명 개수를 count해서 상위 100개 상품을 1월의 인기상품으로 정의

• 인기 상품 구매 고객

9	가설	검증

∴ 'pop_product' 변수 추가

가설과 반대로, 일반 회원이 인기 상품을 구매하는 경향이 있다.

임직원	인기 상품 구매	프라임 회원 비율
CJ 직원	O	59% 41%
UJ 역전	X	63% 37%
OTHE \$101	0	54% 43%
일반 회원	X	49% 51%

가설 검증 6 & 변수 정리

프라임 회원의 최종 구매 금액이 일반 회원보다 높을 것이다

• 최종 구매 금액 도출

동일 주문 번호끼리 더하여 구매 금액의 총합 계산 'tot_amt' 변수 추가

프라임	최소 구매 금액	최대 구매 금액
프라임 회원	7.11	488.5
일반 회원	6.55	369.4

차이가큼

V

가설 검증 과정에서 생성된 4가지 변수

1. is_price_lower_than_avg

2. tot_qty_9

3. pop_product

4. tot_amt

추가 파생 변수 생성 변수 별 전처리

날짜 파생 변수 생성

날짜 관련 추가 분석 진행

- 기존 'order_date' 변수 분해
 - (1) (20230101+4)%31 = 1을 활용하여 'date' 변수 생성
 - (2) date % 7 을 통해 0~6까지 분류한 'date_of_week' 변수 생성
 - → 1:일, 2:월,3:화,4:수,5:목,6:금,0:토
 - * 기존 order_date 변수 삭제

- 1월 간 <mark>3번</mark>의 상승 하락 주기 확인
 - → 1/1 ~ 1/2, 1/13 ~ 1/17, 1/25 ~ 1/31
 - ∴ 구매량이 압도적으로 많은 *날짜 파생 변수* 생성
- 1월에 존재하는 *공휴일 변수* 생성
 - → 설날 혹은 새해 첫날 (1/1)

상품명 파생 변수 생성

브랜드 및 카테고리 변수 생성

 Task 1.

 홈페이지에서

 브랜드 크롤링

ጨ & ₩

크롤링한 브랜드를 이용해 브랜드별 구매 빈도 수가 특정값 이상이면 '인기 브랜드' 로 정의

:. *인기 브랜드 구매 여부* 관련 더미 변수 생성

크롤링한 카테고리 별 category dictionary 제작

밥 | 찬 | 딤섬 | 스낵 | 돈 | 햄 | 소스 | 건강 | 신선 | 음료

'. *카테고리별 상품 주문 수량* 나타내는 변수 생성

Task 2.

상품 분류 **카테고리** 크롤링

상품명 파생 변수 생성

이벤트 관련 변수 생성

Step 01 정규표현식 활용 대괄호로 묶여있는 이벤트 정보 추출

임직원 / 일반 회원 분리하여 개별 적용 이벤트 확인

Step 03

할인 / 한정 행사 파생 변수 추가

● 'sale' - 증정 | 할인 | 특가 | ONLY | 침착맨 'limit' - 한정

임직원 / 일반 회원 분리 거래수 100건 이상 행사 변수 생성

Step 02

임직원 대상 행사 별도 분리하여 파생 변수 생성

Step 04

• 'em_e' - 패밀리데이 | 행사 | 오특

Step 05 임직원 / 일반 회원 대상 이벤트 리스트 각각 분리된 데이터셋에 파생 변수로 추가

기타 변수 생성 및 전처리

추가 변수 생성

● 상품명에서 'box' 검출하여 *'box'* 파생 변수 생성

- 여러 개를 묶어 한 번에 묶어 판매하는 상품을 검출하는 'multi' 변수
 - → 상품명 n (개, 인분, 번들, ea, 입) 포함

- 최종 구매 상품 종류 개수를 구분하는 'product_cnt' 변수
- → 한 가지 상품이 여러 개 포함 될 수 있기 때문

- 한 가지 상품에 대한 구매 수량이 37개 이상인 주문 건을 검출하는 'bulk' 변수
- → 37 이상 데이터들은 2023 설선물 세트와 유관

기타 전처리

- 형식이 다른 상품명 표기 형식 동일화
- → 상품명과 수량/ 금액으로 비교하여 통일

- boolean형 변수 주문번호로 그룹화하여 sum 적용
- → 이벤트 상품 / 박스 상품 등 구매 건수 도출

- 모델링을 위해 연령대 / 요일 변수 더미 변수로 변형
- → True / False 혹은 Y / N 나타내는 데이터 1,0 형식 통일

- scd 별 / 행별 파생변수 종합된 데이터 프레임 생성하여 train, test셋 분리
- → 임직원 유무에 따라 데이터 셋 분리

03 모델링

모델링에 사용한 방식 분석 결과 해석

Modeling 사용라이브러리소개

• 머신 러닝 워크플로우를 자동화하는 오픈 소스 라이브러리

: 분류, 회귀, 클러스터링 등 다양한 Task에서 사용하는 모델들을 동일한 환경에서 한 줄의 코드로 실행

	Description	Value
0	Session id	6473
1	Target	prime_yn
2	Target type	Binary
3	Original data shape	(4713, 53)
4	Transformed data shape	(4713, 53)
5	Transformed train set shape	(3299, 53)
6	Transformed test set shape	(1414, 53)
7	Ordinal features	19
8	Numeric features	33
9	Categorical features	19
10	Preprocess	True

Baseline Code

Random Forest

분류에 널리 사용되는 의사결정 나무의 과적합 한계를 극복하기 위한 앙상블 모델

Baseline Model 성능 확인

• 랜덤 포레스트 모델에서의 특징 중요도

임직원 데이터

모델링 분석 결과

• F1 Score 기준 상위 5개 모델

Model	Accuracy	AUC	Recall	F1
XGBoost	0.7760	0.8524	0.8178	0.8144
Gradient Boosting Classifier	0.7754	0.8572	0.7905	0.8086
Light GBM	0.7693	0.8544	0.8087	0.8081
Random Forest	0.7596	0.8413	0.8072	0.8013
Logistic Regression	0.7545	0.8222	0.7638	0.7887

일반 직원 데이터

모델링 분석 결과

• F1 Score 기준 상위 5개 모델

Model	Accuracy	AUC	Recall	F1
Light GBM	0.7513	0.8362	0.6780	0.6931
XGBoost	0.7422	0.8308	0.6634	0.6832
Gradient Boosting Classifier	0.7467	0.8305	0.6486	0.6826
LDA	0.7275	0.7817	0.6686	0.6731
Ridge Classifier	0.7268	0.0000	0.6657	0.6715

상위 5개 모델 블렌딩

모델링 분석 결과

• 임직원 데이터 예측

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7848	0.8642	0.7904	0.8414	0.8151	0.5585	0.5600
1	0.7697	0.8480	0.8283	0.7961	0.8119	0.5153	0.5160
2	0.7955	0.8724	0.8081	0.8443	0.8258	0.5784	0.5792
3	0.7788	0.8663	0.8161	0.8161	0.8161	0.5386	0.5386
4	0.7602	0.8462	0.7828	0.8115	0.7969	0.5046	0.5050
Mean	0.7778	0.8594	0.8051	0.8219	0.8132	0.5391	0.5398
Std	0.0121	0.0104	0.0166	0.0184	0.0094	0.0271	0.0273

• 일반 회원 데이터 예측

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7596	0.0000	0.6800	0.7301	0.7041	0.5021	0.5030
1	0.7728	0.0000	0.7114	0.7389	0.7249	0.5316	0.5318
2	0.7344	0.0000	0.6447	0.6988	0.6706	0.4487	0.4497
3	0.7653	0.0000	0.6934	0.7333	0.7128	0.5147	0.5153
4	0.7341	0.0000	0.6304	0.7051	0.6657	0.4460	0.4480
Mean	0.7532	0.0000	0.6720	0.7212	0.6956	0.4886	0.4896
Std	0.0161	0.0000	0.0302	0.0161	0.0234	0.0350	0.0345

() 4의의 및 한계점

모델링이 가지는 의미와 예상 활용 방안 한계점 & 보완사항

프라모델 조의 강점

모델링이 가지는 의미와 예상 활용 방안

한계점과 보완사항

- 일반 회원 데이터에서는 프라임 예측을 위한 뚜렷한 특징을 찾지 못 했음
 → 임직원에 비해 낮은 예측 결과로 이어짐
- 초기에 계획한 전처리 사항 중 시간 문제로 분석하지 못한 내용이 있음
 →무게, 배송 기한 등에 대해 처리하지 못함
- 고객 식별 정보, 프라임 회원 지속 기간 등의 데이터가 추가 되거나 장기간의 데이터를 사용한다면 보완할 수 있을 것 으로 예상됨
- 추가적인 시간이 주어진다면 분석해볼만 한 가치가 있을 것으로 예상됨