

Semester 1 Examinations 2016/2017

Exam Code(s) Exam(s)	4BS2, 4BMS2 Bachelor of Science (Hons), Mathematical Science (Hons)
Module Code(s) Module(s)	MA416/MA538 Rings
Paper No. Repeat Paper	1 No
External Examiner(s) Internal Examiner(s)	Prof. Mark Lawson Prof. Dane Flannery.
Instructions:	Students should attempt ALL questions. (All questions carry equal marks.)
Duration No. of Pages Discipline(s)	2 hours 3 (including title page). Mathematics
Course Co-ordinator(s)	Wathernaties

- 1. (a) Justify that each of the following is a ring. Also state whether the ring is commutative, and whether it contains a 1.
 - (i) $n\mathbb{Z} = \{na \mid a \in \mathbb{Z}\}$ where n is any integer, under ordinary addition and multiplication of integers.
 - (ii) The set of 3×3 matrices with entries in a field $\mathbb F$ and zeros everywhere below the main diagonal, under ordinary addition and multiplication of matrices.
 - (iii) The set of rational numbers $\frac{m}{n}$, where $m \in \mathbb{Z}$ and n is a power of a fixed prime $p \in \mathbb{Z}$, under ordinary addition and multiplication of rational numbers.

[8 marks]

- (b) Let I be an ideal of a ring R. Define addition and multiplication on the set $R/I = \{r + I \mid r \in R\}$ of cosets of I in R that turn R/I into a ring (explain why each binary operation is well-defined). [5 marks]
- (c) Let $\phi: R \to S$ be a ring homomorphism. Prove that
 - (i) ker ϕ is an ideal of R
 - (ii) $\phi(R) = \{\phi(r) \mid r \in R\}$ is a subring of S isomorphic to $R/\ker \phi$. [7 marks]
- 2. (a) State, with justification, whether each of the following pairs of rings are isomorphic (demonstrate an isomorphism if one exists).
 - (i) $\mathbb{Z} \oplus \mathbb{Z}$ and \mathbb{Z} .
 - (ii) $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ and \mathbb{Z}_6 .
 - (iii) \mathbb{C} and the subring $\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ of Mat $(2, \mathbb{R})$. [7 marks]
 - (b) Let $n \in \mathbb{Z}$, $n \geq 2$. Prove that the following are equivalent: \mathbb{Z}_n is an integral domain; \mathbb{Z}_n is a field; n is prime. [7 marks]
 - (c) Let R be an integral domain.
 - (i) Show that if I is a maximal ideal of R then R/I is a field.
 - (ii) Is a maximal ideal of R necessarily a prime ideal of R? Why? [6 marks]

3. (a) Let R be a UFD. Prove that the irreducible elements of R are precisely the prime elements of R.

[7 marks]

- (b) Prove that $\mathbb{Z}[\sqrt{-5}]$ is an integral domain that is not a UFD (unique factorization domain). [8 marks]
- (c) Do 6 and $2 + 2\sqrt{-5}$ have a greatest common divisor in $\mathbb{Z}[\sqrt{-5}]$? Why? [5 marks]
- **4.** (a) Let R be an integral domain, and a_1, \ldots, a_n be non-zero elements of R. Prove that $\ell \in R$ is a least common multiple of the a_i s if and only if $a_1 R \cap \cdots \cap a_n R = \ell R$. [6 marks]
 - (b) Let R be a PID (principal ideal domain), S be any integral domain, and $\phi:R\to S$ be a ring epimorphism. Show that either ϕ is an isomorphism or S is a field. [8 marks]
 - (c) Prove that $\mathbb{Z}[x]$ is not a PID, by showing that the ideal generated by 2 and x in $\mathbb{Z}[x]$ is not principal. [6 marks]
- 5. (a) What is the ACC (ascending chain condition) in a commutative ring? Let R be a PID. Prove that each non-zero element of R that is not a unit can be expressed as a product of finitely many irreducibles (assume that R satisfies the ACC).
 - $[10 \,\,\mathrm{marks}]$
 - (b) (i) Define Euclidean domain (ED). Explain why \mathbb{Z} and $\mathbb{F}[x]$ for any field \mathbb{F} are EDs.
 - (ii) Prove that every ED is a PID.
 - (iii) Give an example of a PID that is not an ED.

[10 marks]