3D Motion

Chandramouli P

Indian Institute of Technology Madras

November 8, 2023

1/29

3D Motion

- General rigid body motion involves rotation and translation
- Position and orientation of frame B attached to the body relative to frame A BodyCoords
 - ullet $\mathbf{p}_{ab} \in \mathbb{R}^3$ is the position of the origin of frame B from A
 - ▶ $\mathbf{R}_{ab} \in SO(3)$ represents orientation of frame B relative to A
- ullet Configuration of the system consists of pair $({f p}_{ab},\,{f R}_{ab})$

- SE stands for Special Euclidean Group
- If \mathbf{q}_a , \mathbf{q}_b are coordinates of point q in frames A and B then
 - $\mathbf{q}_a = \mathbf{p}_{ab} + \mathbf{R}_{ab}\mathbf{q}_b$

Homogenous Coordinates

- We denote pair $(\mathbf{p}_{ab}, \mathbf{R}_{ab})$ by \mathbf{g}_{ab} as shorthand
 - We can then simply write $\mathbf{q}_a = \mathbf{g}_{ab}(\mathbf{q}_b)$
- ullet For a vector on body ${f v}={f s}-{f r}$ we have
 - $\mathbf{g}_*(\mathbf{v}) = \mathbf{g}_{ab}(\mathbf{s}) \mathbf{g}_{ab}(\mathbf{r}) = \mathbf{R}_{ab}\mathbf{v}$
 - So any vector in frame B is transformed by rotation to frame A
- A new representation for transformation of points & vectors
 - Point representation: $\bar{\mathbf{q}} = \begin{bmatrix} q_1 & q_2 & q_3 & 1 \end{bmatrix}^T$
 - $oldsymbol{ar{q}} \in \mathbb{R}^4$; termed homogenous coordinates
 - ▶ Vector representation: $\bar{\mathbf{v}} = \begin{bmatrix} v_1 & v_2 & v_3 & 0 \end{bmatrix}^T$

Rules of Syntax

- Sums and differences of vectors are vectors
- Sum of vector and a point is a point
- Difference between two points is a vector
- Sum of two points is meaningless!!

Homogenous Representation

• Using the homogenous coordinate representation we get

$$ar{\mathbf{q}}_a = egin{cases} \mathbf{q}_a \ 1 \end{pmatrix} = egin{bmatrix} \mathbf{R}_{ab} & \mathbf{p}_{ab} \ \mathbf{0} & 1 \end{bmatrix} egin{bmatrix} \mathbf{q}_b \ 1 \end{pmatrix} = ar{\mathbf{g}}_{ab}ar{\mathbf{q}}_b$$

- The 4×4 matrix $\bar{\mathbf{g}}_{ab}$ is homogenous representation of \mathbf{g}_{ab}
- What is the convenience of such a representation?
 - **Let** \mathbf{g}_{bc} represent the transformation from frame C to B
 - ightharpoonup g_{ab} represent the transformation from frame B to A
 - ▶ Then $\bar{\mathbf{g}}_{ac} = \bar{\mathbf{g}}_{ab}\bar{\mathbf{g}}_{bc}$; simple matrix multiplication

$$ar{\mathbf{g}}_{ac} = egin{bmatrix} \mathbf{R}_{ab}\mathbf{R}_{bc} & \mathbf{R}_{ab}\mathbf{p}_{bc} + \mathbf{p}_{ab} \ \mathbf{0} & 1 \end{bmatrix}$$

Inversion

$$\bar{\mathbf{g}}^{-1} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix}$$

 \bullet We have then $\mathbf{g}^{-1}=(-\mathbf{R}^T\mathbf{p},\,\mathbf{R}^T)$

Example

 Let us consider rotation of a rigid body about a line in z direction

$$\mathbf{R}_{ab} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}; \mathbf{p}_{ab} = \begin{Bmatrix} 0 \\ l_1 \\ 0 \end{Bmatrix}$$

$$\bar{\mathbf{g}}_{ab} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & l_1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Let us look at a simple one link manipulator Rot_Joint
 - Axis of rotation $oldsymbol{\omega} \in \mathbb{R}^3$ and $\|oldsymbol{\omega}\| = 1$
 - q is a point on the axis of rotation
- ullet The velocity of point p at the tip of the link assuming unit angular velocity

$$\dot{\mathbf{p}}(t) = \boldsymbol{\omega} \times (\mathbf{p} - \mathbf{q})$$

The above equation can be converted to homogenous coordinates using

$$\tilde{\boldsymbol{\xi}} = \begin{bmatrix} \tilde{\boldsymbol{\omega}} & \mathbf{v} \\ \mathbf{0} & 0 \end{bmatrix}; \mathbf{v} = -\tilde{\boldsymbol{\omega}} \mathbf{q}$$

- The solution to the above differential equation is then
 - $\mathbf{\bar{p}}(t) = e^{\tilde{\xi}t}\mathbf{\bar{p}}(0)$; $e^{\tilde{\xi}t}$ represents rotation by t radians

- The velocity of a point attached to prismatic joint Pri_Joint
 - $\dot{\bar{\mathbf{p}}}(t) = \mathbf{v}$
- One can again write $\bar{\mathbf{p}}(t) = e^{\tilde{\xi}t}\bar{\mathbf{p}}(0)$ where

$$\tilde{\boldsymbol{\xi}} = \begin{bmatrix} \mathbf{0} & \mathbf{v} \\ \mathbf{0} & 0 \end{bmatrix}$$

- ullet The $ilde{oldsymbol{\xi}}$ matrix is the generalization of $ilde{oldsymbol{\omega}} \in so(3)$
- We define the following group
 - $se(3) = \{ (\mathbf{v}, \, \tilde{\boldsymbol{\omega}}) : \mathbf{v} \in \mathbb{R}^3, \, \tilde{\boldsymbol{\omega}} \in so(3) \}$
 - An element of se(3) is called a twist
- $oldsymbol{\xi}:=(\mathbf{v},\,oldsymbol{\omega})$ represents the twist coordinates with $\xi\in\mathbb{R}^6$

- ullet The exponential transformation $e^{ ilde{\xi} heta}$ is different from other ones
 - ▶ This maps points from their initial coordinates $\mathbf{p}(0) \in \mathbb{R}^3$ to their coordinates after rigid motion is applied
 - $\mathbf{p}(\theta) = e^{\tilde{\boldsymbol{\xi}}\theta}\mathbf{p}(0)$
- This does not map coordinates from one frame to another
- If $\bar{\mathbf{g}}_{ab}(0)$ represents initial configuration of a rigid body relative to frame A then
 - $\mathbf{\bar{g}}_{ab}(\theta) = e^{\tilde{\xi}\theta}\mathbf{\bar{g}}_{ab}(0)$ is the final configuration with respect to frame A
- Exponential map for a twist gives the relative motion of a rigid body

Rigid Body Transformation

- Every rigid transformation can be written as exponential of some twist
 - $\bar{\mathbf{g}} = e^{\tilde{\xi}\theta}$
- The proof of this can be read from Li & Sastry's book

$$\bar{\mathbf{g}} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & -l_2 \sin \alpha \\ \sin \alpha & \cos \alpha & 0 & l_1 + l_2 \cos \alpha \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rigid Body Transformation 2

• We have $\boldsymbol{\omega} = [0 \ 0 \ 1]^T$ and $\boldsymbol{\theta} = \boldsymbol{\alpha}$

$$e^{\tilde{oldsymbol{\xi}} heta} = egin{bmatrix} e^{ ilde{oldsymbol{\omega}} heta} & (\mathbf{I} - e^{ ilde{oldsymbol{\omega}} heta})(oldsymbol{\omega} imes \mathbf{v}) + oldsymbol{\omega} oldsymbol{\omega}^T \mathbf{v} heta \ \mathbf{0} & 1 \end{bmatrix}$$

ullet We need to solve the following equation to get ${f v}$

$$\{(\mathbf{I} - e^{ ilde{oldsymbol{\omega}} heta}) ilde{oldsymbol{\omega}} + oldsymbol{\omega} oldsymbol{\omega}^T heta\}\mathbf{v} = \mathbf{p}_{ab}$$

The above equation becomes

Transformation 3

$$\begin{bmatrix} \sin \alpha & \cos \alpha - 1 & 0 \\ 1 - \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix} \mathbf{v} = \left\{ \begin{array}{c} -l_2 \sin \alpha \\ l_1 + l_2 \cos \alpha \\ 0 \end{array} \right\}$$

The twist coordinates are

$$\xi = \begin{cases} \frac{l_1 - l_2}{2} \\ \frac{(l_1 + l_2)\sin\alpha}{2(1 - \cos\alpha)} \\ 0 \\ 0 \\ 0 \\ 1 \end{cases}; \alpha \neq 0$$

Comments

- Complicated form for the twist coordinates
 - As this is an absolute transformation from frame B to A
- Suppose we define a new relative transformation
 - $\mathbf{g}(\alpha) = \mathbf{g}_{ab}(\alpha)\mathbf{g}_{ab}^{-1}(0)$
 - $\mathbf{g}_{ab}(0)$ is for $\alpha=0$ representing pure translation
- Twist coordinates simplify as $\begin{bmatrix} l_1 & 0 & 0 & 0 & 1 \end{bmatrix}^T$

Velocity of a Rigid Body

- ullet We start by considering pure rotation in \mathbb{R}^3
 - ▶ $\mathbf{R}_{ab}(t) \in SO(3)$ represents trajectory of frame B rotating relative to frame A
 - ⋆ Origin of frame B and A are same
 - ★ Frame B is the body coordinate system and A the spatial or reference coordinate system
 - Any point q on the body has a path in the spatial coordinate system

 - \star Note that \mathbf{q}_b is fixed in frame B
 - Velocity of the point q in frame A is
 - $\mathbf{v}_{q_a}(t) = \frac{d\mathbf{q}_a}{dt} = \dot{\mathbf{R}}_{ab}(t)\mathbf{q}_b$
 - Above representation is inefficient as it requires nine quantities

Rotational Velocity

- Rewrite the velocity equation as below
 - $\mathbf{v}_{q_a}(t) = \dot{\mathbf{R}}_{ab}(t) \mathbf{R}_{ab}^{-1}(t) \mathbf{R}_{ab}(t) \mathbf{q}_b$
- ullet It turns out that $\dot{\mathbf{R}}_{ab}(t)\mathbf{R}_{ab}^{-1}(t)$ is skew-symmetric
 - ▶ Differentiate $\mathbf{R}(t)\mathbf{R}(t)^T = \mathbf{I}$ with respect to time
 - ▶ This yields $\dot{\mathbf{R}}\mathbf{R}^T + \mathbf{R}\dot{\mathbf{R}}^T = \mathbf{0}$
 - Hence $\dot{\mathbf{R}}\mathbf{R}^T = -\mathbf{R}\dot{\mathbf{R}}^T = -(\dot{\mathbf{R}}\mathbf{R}^T)^T$
- ullet Remember for a rotation matrix ${f R}^{-1}={f R}^T$
- We define the instantaneous spatial angular velocity
 - $\qquad \qquad \tilde{\boldsymbol{\omega}}_{ab}^{s}(t) = \dot{\mathbf{R}}_{ab}(t)\mathbf{R}_{ab}^{-1}(t); \ \boldsymbol{\omega}_{ab}^{s}(t) \in \mathbb{R}^{3}$
 - As seen from frame A
- One can define instantaneous body angular velocity

$$\qquad \qquad \boldsymbol{\tilde{\omega}_{ab}^b} = \mathbf{R}_{ab}^{-1}(t)\dot{\mathbf{R}}_{ab}(t)$$

Other Relations

• We have the following relation

$$ullet$$
 $ilde{\omega}_{ab}^b = \mathbf{R}_{ab}^{-1} ilde{\omega}_{ab}^s \mathbf{R}_{ab}$; $oldsymbol{\omega}_{ab}^b = \mathbf{R}_{ab}^{-1} oldsymbol{\omega}_{ab}^s$

ullet Hence one can write the velocity of point q as

$$\mathbf{v}_{q_a} = \tilde{\omega}_{ab}^s \mathbf{R}_{ab} \mathbf{q}_b = \tilde{\omega}_{ab}^s \mathbf{q}_a = \omega_{ab}^s \times \mathbf{q}_a$$

- Velocity in body coordinates as
 - $\mathbf{v}_{q_b} = oldsymbol{\omega}_{ab}^b(t) imes \mathbf{q}_b$

General Motion

- Consider $\mathbf{g}_{ab}(t) \in SE(3)$ to be the trajectory of rigid body
 - Recall this is motion of frame B attached to the body
- ullet As with pure rotation $\dot{\mathbf{g}}_{ab}(t)$ is not directly useful
 - ▶ However $\dot{\mathbf{g}}_{ab}\mathbf{g}_{ab}^{-1}$ and $\mathbf{g}_{ab}^{-1}\dot{\mathbf{g}}_{ab}$ have special significance

$$\dot{\mathbf{g}}_{ab}\mathbf{g}_{ab}^{-1} = \begin{bmatrix} \dot{\mathbf{R}}_{ab} & \dot{\mathbf{p}}_{ab} \\ \mathbf{0} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{ab}^T & -\mathbf{R}_{ab}^T \mathbf{p}_{ab} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{R}}_{ab}\mathbf{R}_{ab}^T & \dot{\mathbf{p}}_{ab} - \dot{\mathbf{R}}_{ab}\mathbf{R}_{ab}^T \mathbf{p}_{ab} \\ \mathbf{0} & 0 \end{bmatrix}$$

This has the form of twist

Twist Coordinates

ullet Analogous to $ilde{\omega}^s_{ab}$ for rotational velocity

$$\qquad \qquad \mathbf{\tilde{V}}_{ab}^{s} = \dot{\mathbf{g}}_{ab}\mathbf{g}_{ab}^{-1}; \ \mathbf{V}_{ab}^{s} = \left\{ \mathbf{v}_{ab}^{s} \right\};$$

$$\mathbf{v}_{ab}^{s} = \dot{\mathbf{p}}_{ab} - \dot{\mathbf{R}}_{ab} \mathbf{R}_{ab}^{T} \mathbf{p}_{ab} ; \quad \mathbf{\tilde{\omega}}_{ab}^{s} = \dot{\mathbf{R}}_{ab} \mathbf{R}_{ab}^{T}$$

ullet The velocity of a point q then is

$$\qquad \qquad \mathbf{v}_{q_a} = \dot{\mathbf{g}}_{ab}\mathbf{q}_b = \dot{\mathbf{g}}_{ab}\mathbf{g}_{ab}^{-1}\mathbf{g}_{ab}\mathbf{q}_b = \tilde{\mathbf{V}}_{ab}^s\mathbf{q}_a$$

$$\mathbf{v}_{q_a} = oldsymbol{\omega}_{ab}^s imes \mathbf{q}_a + \mathbf{v}_{ab}^s$$

- ullet \mathbf{v}^s_{ab} not the velocity of origin of body frame B
- ullet Velocity of point on body passing through origin of frame A at time t

In Body Coordinates

Velocity in body frame

$$\tilde{\mathbf{V}}_{ab}^b = \mathbf{g}_{ab}^{-1}\dot{\mathbf{g}}_{ab} = \begin{bmatrix} \mathbf{R}_{ab}^T\dot{\mathbf{R}}_{ab} & \mathbf{R}_{ab}^T\dot{\mathbf{p}}_{ab} \\ \mathbf{0} & 0 \end{bmatrix}$$

- $oldsymbol{f v}_{q_b} = {f g}_{ab}^{-1} {f v}_{q_a} = ilde{f V}_{ab}^b {f q}_b = oldsymbol{\omega}_{ab}^b imes {f q}_b + {f v}_{ab}^b$
- ullet ${f v}_{ab}^b$ is velocity of origin of frame B with respect to A as seen in B
- The spatial and body frame velocities are related as follows

$$\begin{split} \bullet \quad \tilde{\mathbf{V}}_{ab}^{s} &= \mathbf{g}_{ab} \tilde{\mathbf{V}}_{ab}^{b} \mathbf{g}_{ab}^{-1} \\ \mathbf{V}_{ab}^{s} &= \begin{Bmatrix} \mathbf{v}_{ab}^{s} \\ \boldsymbol{\omega}_{ab}^{s} \end{Bmatrix} = \begin{bmatrix} \mathbf{R}_{ab} & \tilde{\mathbf{p}}_{ab} \mathbf{R}_{ab} \\ \mathbf{0} & \mathbf{R}_{ab} \end{bmatrix} \begin{Bmatrix} \mathbf{v}_{ab}^{b} \\ \boldsymbol{\omega}_{ab}^{b} \end{Bmatrix} \end{split}$$

ullet This transformation is called adjoint transformation with notation \mathbf{Ad}_{a}

Transformations

- Motion of three coordinate frames A, B & C
 - ► Spatial velocities relation: $\mathbf{V}_{ac}^{s} = \mathbf{V}_{ab}^{s} + \mathbf{Ad}_{g_{ab}} \mathbf{V}_{bc}^{s}$
- Proof steps
 - We know that $\mathbf{g}_{ac} = \mathbf{g}_{ab}\mathbf{g}_{bc}$
 - $\qquad \qquad \mathbf{\tilde{V}}_{ac} = \dot{\mathbf{g}}_{ac}\mathbf{g}_{ac}^{-1} = (\dot{\mathbf{g}}_{ab}\mathbf{g}_{bc} + \mathbf{g}_{ab}\dot{\mathbf{g}}_{bc})(\mathbf{g}_{bc}^{-1}\mathbf{g}_{ab}^{-1})$
 - $\qquad \qquad \mathbf{\tilde{V}}_{ac} = \dot{\mathbf{g}}_{ab}\mathbf{g}_{ab}^{-1} + \mathbf{g}_{ab}\tilde{\mathbf{V}}_{bc}\mathbf{g}_{ab}^{-1} = \tilde{\mathbf{V}}_{ab} + \mathbf{g}_{ab}\tilde{\mathbf{V}}_{bc}\mathbf{g}_{ab}^{-1}$
- ullet When converted to twist coordinates $egin{align*} \mathbf{V}^s_{ac} = \mathbf{V}^s_{ab} + \mathbf{Ad}_{g_{ab}} \mathbf{V}^s_{bc} \end{bmatrix}$
- $oldsymbol{f V}_{ac}^b = {f Ad}_{g_{bc}^{-1}} {f V}_{ab}^b + {f V}_{bc}^b$
 - Note that $\mathbf{Ad}_g^{-1} = \mathbf{Ad}_{g^{-1}}$

Two Link Manipulator

We look at an example ►2linkMan

$$\mathbf{V}_{ab}^{s} = \begin{Bmatrix} \mathbf{v}_{ab} \\ \boldsymbol{\omega}_{ab} \end{Bmatrix} \dot{\theta}_{1}; \ \mathbf{v}_{ab} = \begin{Bmatrix} 0 \\ 0 \\ 0 \end{Bmatrix}; \boldsymbol{\omega}_{ab} = \begin{Bmatrix} 0 \\ 0 \\ 1 \end{Bmatrix}$$

$$\mathbf{V}_{bc}^{s} = \begin{Bmatrix} \mathbf{v}_{bc} \\ \boldsymbol{\omega}_{bc} \end{Bmatrix} \dot{\theta}_{2}; \ \mathbf{v}_{bc} = \begin{Bmatrix} l_{1} \\ 0 \\ 0 \end{Bmatrix}; \boldsymbol{\omega}_{bc} = \begin{Bmatrix} 0 \\ 0 \\ 1 \end{Bmatrix}$$

$$\mathbf{V}_{ac}^{s} = \mathbf{V}_{ab}^{s} + \mathbf{Ad}_{g_{ab}} \mathbf{V}_{bc}^{s} = \begin{cases} 0\\0\\0\\0\\1 \end{cases} \dot{\theta}_{1} + \begin{cases} l_{1} \cos \theta_{1}\\l_{1} \sin \theta_{1}\\0\\0\\0\\1 \end{cases} \dot{\theta}_{2}$$

3D Motion

Courtesy: Murray et al., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press

3D Motion

Courtesy: Murray et al., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press

◆ Return

Revolute and Prismatic Joints

Courtesy: Murray et al., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press

Rotation About Axis

Courtesy: Murray et al., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press

◆ Return

28 / 29

Rotation About Axis

Courtesy: Murray et al., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press

29 / 29