(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-11477

(43)公開日 平成7年(1995)1月13日

(51) Int.Cl.⁶ 識別記号 庁内整理番号 FΙ 技術表示箇所

C 2 5 D 5/10

C 2 3 C 28/02

C 2 5 D 5/12

審査請求 未請求 請求項の数3 FD (全 8 頁)

(21)出願番号 特願平5-178597 (71)出願人 000228165

日本エレクトロプレイテイング・エンジニ 平成5年(1993)6月28日 (22)出願日 ヤース株式会社

東京都中央区日本橋茅場町2丁目6番6号

(72)発明者 髙橋 健二

神奈川県平塚市平塚2丁目33番4号

(74)代理人 弁理士 高月 猛

(54) 【発明の名称】 貴金属めっき品

(57)【要約】

【目的】 広範囲な腐食環境下において良好な耐食性を 示す貴金属めっき品、及びそれに加えて耐熱性や半田ね れ性も具備した貴金属めっき品を提供する。

【構成】 この発明の貴金属めっき品は、素材1の表面 に、Cu-Sn-Zn合金の下地めっき層2を形成し、 その上に貴金属めっき層3を形成してなる貴金属めっき 品において、前記下地めっき層2中のSn比率が25w t%以上であることを要旨としている。

【特許請求の範囲】

【請求項1】 素材の表面に、Cu-Sn-Zn合金の 下地めっき層を形成し、その上に貴金属めっき層を形成 してなる貴金属めっき品において、前記下地めっき層中 のSn比率が25wt%以上であることを特徴とする貴 金属めっき品。

Cu-Sn-Zn合金に代えて、Cu-【請求項2】 S n 合金の下地めっき層を形成した請求項1記載の貴金 属めっき品。

【請求項3】 Niめっき層を形成した請求項1又は2記載の貴金属め っき品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は優れた耐食性を有する貴 金属めっき品に関するものである。

[0002]

【従来の技術】貴金属めっきは価格が高いことから、貴 金属の使用量を減らすために、なるべくめっき厚を小さ を小さくしても、貴金属めっき本来の性能が損なわれな いようにするための研究が行われている。そのための研 究は各分野において様々なテーマで行われているが、本 願発明は下地めっき層の改善に関連して提案されたもの である。貴金属めっきの厚さが O. 5 μm以下の仕様が 多くなっている現状では、下地めっきが貴金属めっき皮 膜に大きな影響を及ぼすと考えられる。

【0003】現在のところ、貴金属めっきの下地めっき としてNiめっきが多用されている。しかし、下地めっ きとしてNiめっきだけを行った場合は、貴金属めっき の厚の減少に伴って耐食性も低下してしまい、前述の如 き貴金属めっき厚を減少させる要請に応じられない。そ こで、本願出願人は、Niめっきに代わる下地めっきと してのブロンズめっき (Cu-Sn-Zn)をすでに発 表している 〔信学技報TECHNICAL REPORT OF IEICE. EMD9 2-72(1992-10) 〕。このブロンズめっきを下地めっきと した場合は、N i めっきに比較して、良好な耐食性が得 られることが判明している。

[0004]

【発明が解決しようとする課題】ところが、このような 40 ブロンズめっきを下地めっきとした貴金属めっき品にあ っても、すべての腐食環境において優れた耐食性を示す ものではなかった。すなわち、耐食性試験としては、 (1) 塩水噴霧試験、(2) 硝酸バッキ試験、(3) S〇2 ・ H2 S混合ガス試験などがあるが、そのうち、(1) 塩水 噴霧試験と(3) SO2 ・H2 S混合ガス試験に関して は、Ni下地めっきに比べて、良好な耐食性を示すもの の、(2) 硝酸バッキ試験に関しては耐食性の改善が見ら れなかった。

【0005】また、Ni下地めっきに代えて、ブロンズ *50*

めっきにした場合は、前述のようにある一定の耐食性が 向上する反面、耐熱性や半田ぬれ性がNi 下地めっきの 場合よりも低下することが判明した。従って、このよう な特性が要求されないめっき品、例えば装飾品等への適 用は好ましいが、リードフレームの如き耐熱性や半田ね れ性が要求される電子部品への適用は不適であった。

【0006】この発明はこのような従来の技術に着目し てなされたものであり、広範囲な腐食環境下において良 好な耐食性を示す貴金属めっき品、及びそれに加えて耐 下地めっき層と貴金属めっき層との間に 10 熱性や半田ねれ性も具備した貴金属めっき品を提供する ものである。

[0007]

【課題を解決するための手段】この発明の貴金属めっき 品は、素材の表面に、Cu-Sn-Zn合金の下地めっ き層を形成し、その上に貴金属めっき層を形成してなる 貴金属めっき品において、前記下地めっき層中のSn比 率が25wt%以上であることを要旨としている。

【0008】すなわち、ブロンズめっき(Cu-Sn-Zn) 中におけるSn比率を変えて耐食試験((1) 塩水 くするための努力がなされている。すなわち、めっき厚 20 噴霧試験、(2) 硝酸バッキ試験、(3) SO $_2$ ・ H_2 S混 合ガス試験)を行ったところ、Sn比率を25wt%以 上にすることにより、(1) 塩水噴霧試験、(2) 硝酸バッ キ試験、(3) S〇2 ・H2 S混合ガス試験の全てにおい て、良好な耐食性が得られる。但し、耐熱性や半田ねれ 性は低下する。従って、装飾品等への用途には適してい るが、電子部品等への用途は不適である。

> 【0009】また、別の発明に係る貴金属めっき品は、 前記Cu-Sn-Zn合金に代えて、Cu-Sn合金の 下地めっき層を形成したものである。下地めっき層中の Sn比率が25wt%以上であれば、Cu-Sn-Zn 合金に代えて、Си-Sn合金の下地めっき層を形成し ても、同等の耐食性が得られる。

> 【0010】更に、別の発明に係る貴金属めっき品は、 前記下地めっき層と貴金属めっき層との間にNiめっき 層を形成したものである。該Niめっき層を形成するこ とにより、前記の如き耐食性と共に、耐熱性や半田ねれ 性も具備した貴金属めっき品が得られる。従って、装飾 品でも、電子部品でも、どのような用途にも適してい る。尚、このNiめっきの厚さは $0.5 \sim 3 \mu m$ が好適 である。

> 【0011】以上において、「素材」とは、42合金や コバール等の鉄・ニッケル合金、真ちゅうやリン青銅等 のCu合金、ABSやエポキシ等のプラスチックが好適 である。尚、素材の表面にレベリング用のCuめっき等 を予め施しておいても良い。

> 【0012】「貴金属めっき」とは、Au、Ag、P d、Rh、Ru、Ptめっき、又はこれらの合金めっき を意味する。

[0013]

【実施例】以下、本発明を実施例に基づいて具体的に説

3

明する。

【0014】実施例1

図1はこの実施例1に係る貴金属めっき品を示す図であ り、Au合金めっきを施したインテリア製品である。素 材1はCu製で、面積4×2cm²、厚さ0.3mmの テストピースである。この素材1の上にCu-Sn-Z n合金の下地めっき層2を形成し、更にこの下地めっき 層2の上に、Au合金による貴金属めっき層3を形成し* *たものである。

【0015】めっき浴条件は以下の表1の通りである。 表1から分かるように、ブロンズめっきの場合は、めっ きを行う浴組成や電流密度により、合金組成が変化す る。尚、この表1は、実施例1だけでなく、後述する実 施例2、3で使用するめっき浴条件も記載してある。

4

[0016]

【表1】

u 台金による貴金属めっき層3を形成し* 【表1】							
85-	項目っき液	めっき液の 概 略	No.	電流密度 (A/du²)	めっき厚 (μm)	比率(wt%) Cu:Sn:Zn	
	(実施例1)	アルカリシアン浴	(1)	3	3	65:30: 5	
	ブロンズめっき		(2)	4	ទះ	71:25: 4	
	(Cu-Sn-Zn)		(3)	2	ဢ	69:24:7	
下		JUV O PEX	(4)	4	3	79:17:4	
地め			(5)	6	3	82:15:3	
っき	(実施例2)		(6)	3	3	70 : 30	
層	ブロンズめっき	アルカリシアン浴	(7)	4	3	75 : 25	
	(Cu-Sn)	光沢外観	(8)	2	3	78 : 22	
			(9)	4	3	82 : 18	
			(10)	6	3	8 5 : 15	
	(比較例) (実施例3) N i めっき	スルファミン酸浴 半光沢外観	an	2	3		
	(実施例1+2)		(12)	2	0. 1		
貴金	で質金めっき	弱酸性シアン浴 金ーコバルト系	(13)	2	0. 3		
上属め			(14)	2	0. 5		
っき			(15)	2	1. 0		
層	(実施例3) 純金めっき	中性シアン浴	ପର	0. 4	0. 5		
	#G3ビベン-3 G	中はノノノ俗	(17)	0. 4	1. 0		

【0017】表1中に記載されためっき浴の具体的組成 は以下の通りである。 〔ブロンズめっき (Cu-Sn-Zn合金)〕 めっき浴組成(アルカリシアン浴)

7

た。

・試験条件 NaCl 5% 温度35℃ 時間7 2 時間

- ・評価方法 試験後の腐食状態を肉眼にて観察した。 (硝酸バッキ試験)
- ・試験方法 3リットルデシケータの底部に硝酸(61 %) 100m1を入れ、上部に試験片をつるした。
- ・試験条件 温度25℃ 時間60分
- ・評価方法 試験後の腐食状態を肉眼にて観察した。

* (SO2・H2S混合ガス試験)

- ・試験方法 山崎精機社製ガス試験機を使用。
- ・試験条件 ガス濃度 SO₂ 10ppm H₂S 3ppm

温度40℃ 湿度75% 時間96時間

・評価方法 試験後の腐食状態を肉眼にて観察した。 結果は以下の表2の通りであった。

【表2】

[0023]

(5)

	硬質金		評	伍		果	<u>-</u>			
試験項目	icelを めっき厚 (μm)	比較例	プロンズめっき(Cu-Sn-Zn合金)下地							
	(µIII)	Ni下地	(5)S n (15wt%)	(4)S n (17 wt%)	(3)S n (24 wt%)	(2)S n (25 wt%)	(1)S n (30 wt%)			
	020 0.1	×	×	×	Δ	0	0			
塩水噴霧	(13) 0.3	×	Δ	Δ	Δ	0	0			
	0.40 0.5	Δ	0	0	0	0	©			
	(15) 1.0	Δ	0	0	0	0	0			
	(12) (0, 1	×	×	×	×	Δ	Δ			
硝酸	(13) 0.3	×	×	×	×	Δ	0			
バッキ	(14) 0.5	Δ	Δ	Δ	Δ	0	0			
	(15) 1.0	Δ	Δ	Δ	Δ	0	0			
	020 0.1	×	0	0	0	0	0			
SO ₂ . II ₂ S 混合ガス	(13) 0.3	×	0	0	0	0	0			
I MAIL IN A	(14) 0.5	×	0	0	0	0	0			
	05 1.0	×	0	0	0	0	0			

評価基準

- ② 変色なし
- わずかに変色
- △ かなり変色
- × 著しく変色

【0024】表2の通り、Sn比率が24wt%以下の 場合は、硝酸バッキ試験ではほとんど耐食性に差異が認 められなかったが、塩水噴霧、SO2・H2 S混合ガス 40 試験では、ブロンズめっきの方がNiめっきより優れた 耐食性を示した。そして、Sn比率が25wt%以上に なると、硝酸バッキ試験も含めた全ての項目において優 れた耐食性を示した。このように、ブロンズめっきの耐 食性がNiめっきよりも優れている理由としては、Au とNiの電位差に比べ、Auとブロンズの電位差が小さ

いことから、局部電池作用によるピンホールを通じての 下地めっきの腐食が抑制されるためと考えられる。

【0025】実施例2

図2はこの実施例2に係る貴金属めっき品を示す図であ り、下地めっき層4をCu-Sn合金にした。それ以外 は、実施例1と同じである。めっき浴条件は前記の表1 の通りである。結果は以下の表3の通りであった。

[0026]

【表3】

	硬質金 めっき厚 (μm)			評	価		果		
試験項目			比較例	ブロンズめっき(Cu-Sn合金)下地					
			Ni下地	(10) S n (15 wt%)	(9)S n (18 wt%)	(8)\$ n (22 wt%)	(7)S n (25 wt%)	(6)S n (30 wt%)	
	(12) 0.	1	×	×	×	Δ	0	0	
塩水噴霧	(13) 0.	3	×	۵	Δ	Δ	0	0	
-301 V 10/19	(140 O.	5	Δ	0	0	0	0	0	
	(15) 1.	0	Δ	0	0	0	0	0	
	(12) ().	1	×	×	×	×	Δ	Δ	
硝酸	(13) 0.	3	×	×	×	×	Δ	0	
バッキ	(14) ().	. 5	Δ	4	Δ	Δ	0	0	
	(15) 1.	0	Δ	Δ	Δ	Δ	0	0	
	0.20 0.	. 1	×	0	0	0	0	٥	
SO ₂ , H ₂ S 混合ガス	(1.3) ().	3	×	0	0	0	0	0	
141G147	(1 4) 0.	. 5	×	0	0	0	0	0	
	(15) 1.	. 0	×	0	0	0	0	0	

評価基準

- ◎ 変色なし
- わずかに変色
- △ かなり変色
- × 著しく変色

【0027】表3の通り、Sn比率を25wt%以上に すると、実施例1と同様に、硝酸バッキ試験も含めた全 30 成した。次に、各評価試験について説明する。 ての項目において優れた耐食性を示した。

【0028】実施例3

図3はこの実施例3に係る貴金属めっき品を示す図であ り、電子部品としてのリードフレームの表面に金めっき を施したものである。素材 5 は 4 2 合金 (Fe/Ni合 金) 製である。この素材5の上にCu-Sn-Zn合金 の下地めっき層2を形成し、更にこの下地めっき層2の 上に、1 μ mのNi めっき層6を形成し、最後にAu (純金) による貴金属めっき層7を形成したものであ

る。尚、Niめっき層6は比較例と同じめっき状態で形

【0029】耐熱性試験

- ・試験方法 米国TRANS TEMP社製電気炉(ゴールドファ ーネス)を使用。
- ·試験条件 温度250℃ 時間60分 大気雰囲気
- ・評価方法 加熱後の腐食状態を肉眼にて観察した。ま た、加熱前後の接触抵抗を測定した。

結果は以下の表4の通りであった。

[0030]

【表4】

で研究 七屋	電流密度	金表面	金めっき	接触抵抗 (mΩ)		
下地めっき層	(A/dm²)		(μm)	加熱前	加熱後	
(比較例) N i めっきのみ	(11) 2	変色なし	06 0.5	1. 6	2.3	
			07) 1.0	1. 4	1. 5	
	(1) 3		(16) 0.5	1. 9	100以上	
	(1, 0		07) 1.0	1. 8	100以上	
	(2) 4		06 0.5	2. 0	100以上	
比較例として (実施例1)			(17) 1.0	1. 9	100以上	
ブロンズめっきのみ	(3) 2	変色 あり	(16) 0.5	2. 0	100以上	
(Cu-Sn-Zn)		2 99	07) 1.0	1. 9	100以上	
	(4) 4		06 0.5	2. 0	100以上	
			07) 1.0	1. 8	100以上	
	(5) 6		06 0.5	1. 8	100以上	
			07) 1.0	2. 2	100以上	
	(1) 3	- 変色 なし -	(16) 0.5	1. 7	2. 2	
			Q7) 1.0	1. 5	1. 9	
	(2) 4		06 0.5	1. 6	2. 4	
(実施例3)			Q7) 1.0	1. 6	2. 0	
ブロンズめっき (Cu-Sn-Zn)	(3) 2		(16) 0.5	1. 7	2. 4	
+ Niめっき			07) 1.0	1. 5	2. 2	
_	(4) 4		060 0.5	1. 6	2. 5	
	~		07) 1.0	1. 4	2. 0	
	(5) 6		(16) 0.5	1. 6	2. 6	
			07) 1.0	1. 6	2. 1	

【0031】表4の通り、加熱前後の接触抵抗を測定し たところ、下地めっき層としてブロンズめっきのみ(実 施例1)を形成した場合は、加熱後の接触抵抗が著しく 増加したが、実施例3のように、下地めっき層をブロン ズめっき+Niめっきにしたところ、Sn比率に係わら 40 の結果が得られる。 ず、従来のNiめっきのみの場合と同様に接触抵抗の増 加がわずかであった。また、加熱後の腐食状態を肉眼で 観察したところ、ブロンズめっきのみ(実施例1)の場 合は、金表面が著しく変色したが、ブロンズめっき+N iめっきの場合は、従来のNiめっきのみの場合と同様 に金表面の変色は確認できなかった。以上のことは、ブ ロンズめっきのみでは、ブロンズの成分であるCu、S n、ZnがNiに比べて金中へ拡散し易く、金表面で酸 化膜を形成するためと思われる。尚、表中において(1) (2) のものは、Sn比率が25wt%以上になるため、

前記の耐熱性と共に耐食性も向上している。加えて、ブ ロンズめっきをCu-Sn-Zn合金に代えて、Cu-Snにしても同等の結果が得られる。また、素材の表面 にレベリング用のCuめっきを予め施しておいても同様

【0032】半田ぬれ性

- ・試験方法 日本アルファメタルズ社製フラックス ソ ルボンド R100-40に浸漬後、日本電熱計器社製半田槽 に2秒間浸漬し、半田ぬれ面積を調べた。
- ·試験条件 半田組成 Sn63% Pb37% 温度 230℃

結果は以下の表5の通りであった。

[0033]

【表5】

50

13

下地めっき層	電流密度 (A/dm²)	半田ぬれ性
(比較例) N i めっきのみ	(1) 2	0
比較例として	(1) 3	×
(実施例1)	(2) 4	×
プロンズめっきのみ (Cu-Sn-Zn)	(3) 2	×
Co on Edy	(4) 4	×
	(5) 6	×
(実施例3)	(1) 3	0
ブロンズめっき	(2) 4	0
(Cu-Sn-Zn)	(3) 2	0
Niめっき	(4) 4	0
	(5) 6	0

半田ぬれ面積 95%以上半田ぬれ面積 95%未満

【0034】表5の通り、半田ぬれ性の試験をしたところ、下地めっき層としてプロンズめっきのみ(実施例 1)を形成した場合は、はじきの現象がみられ、半田ぬれ面積は $30\sim60$ %程度であった。これに対し、実施例3のように、下地めっき層をプロンズめっき+Niめっきにしたところ、従来のNiめっきのみの場合と同様に半田ぬれ面積が95%以上の良好な半田ぬれ性を示した。プロンズめっきのみが、半田ぬれ性に劣る原因とし 30

14

ては、皮膜中の炭素、窒素の吸蔵が考えられる。尚、この表 5 に関しても、(1)(2)のものは、S n 比率が 2 5 w t %以上になるため、前記の半田ぬれ性と共に耐食性も向上している。

[0035]

【発明の効果】請求項1及び2記載の発明に係る貴金属めっき品は、以上説明してきた如き内容のものであって、(1)塩水噴霧試験、(2)硝酸バッキ試験、(3)S〇2・H2S混合ガス試験の全てに関して優れた耐食性を示す。従って、住宅関連用品、仏具、洋食器などのエクステリア(及びインテリア)製品、時計、メガネ、ジュエリー、文具、ボタンなどの装飾品、への用途に適している。

【0036】請求項3記載の発明に係る貴金属めっき品は、前記耐食性に加えて、耐熱性及び半田ぬれ性にも優れるため、接点、コネクター、リードフレーム、プリント基板、などの電子部品への用途に適している。

【図面の簡単な説明】

【図1】第1実施例の貴金属めっき品を示す拡大断面図 20 である。

【図2】第2実施例の貴金属めっき品を示す拡大断面図である。

【図3】第3実施例の貴金属めっき品を示す拡大断面図である。

【符号の説明】

1、5 素材

2、4 下地めっき層

3、7 貴金属めっき層

6 Niめっき層

【図1】

【図3】

【図2】

