

Light is quantized

Light is quantized

What does that mean?

Properties of a photon

$$p = \frac{h}{\lambda} = \hbar k$$

$$E = hf = \hbar \omega$$

$$\omega = ck$$

Compton Effect Question # 37

In Compton scattering, the wavelength of the scattered photon is

- (A) longer than,
- (B) shorter than, or
- (C) equal to the wavelength of the incident photon

Lattice waves are quantized

$$\mathbf{p} = \hbar \mathbf{k}$$

$$E = \hbar \omega$$

Lattice waves are quantized

What does that mean?

$$\mathbf{p} = \hbar \mathbf{k}$$

$$E = \hbar \omega$$

Back to 121 with photons

$$\lambda_i = 1.542 \,\text{Å}$$

$$\lambda_f = 1.566 \,\text{Å}$$

electron after collision: energy E momentum ${\bf p}$

$$E_i = ?$$
 $E_f = ?$ incident photon: energy $\hbar \omega_i$ momentum $\hbar \mathbf{k}_i$

$$\omega = ck$$

$$E = \hbar\omega$$

photon after collision: energy $\hbar\omega_f$ momentum $\hbar\mathbf{k}_f$

Fig. 5-1. The Compton effect. Collision between a photon and an electron.

$$\lambda_{i}=1.542\,\mathrm{\mathring{A}}$$
 electron after collision: energy E momentum \mathbf{p}

7.93 keV

 $E_{i}=?$ $E_{f}=?$

incident photon: energy $\hbar\omega_{i}$ momentum $\hbar\mathbf{k}_{i}$

photon after collision: $E=\hbar\omega$ momentum $\hbar\mathbf{k}_{f}$

Fig. 5-1. The Compton effect. Collision between a photon and an electron.

$$\lambda_i = 1.542 \,\text{Å}$$
 $\lambda_f = 1.566 \,\text{Å}$

$$\lambda_f = 1.566 \, \mathrm{\AA}$$

electron after collision: energy E

momentum **p**

Using conservation of energy, $v_e = ?$

incident photon:

energy $\hbar\omega_i$ momentum $\hbar \mathbf{k}_i$

> photon after collision: energy $\hbar\omega_f$ momentum $\hbar \mathbf{k}_f$

Fig. 5-1. The Compton effect. Collision between a photon and an electron.

$$\lambda_i = 1.542 \,\text{Å}$$

$$\lambda_f = 1.566 \,\text{Å}$$

electron after collision: energy E

momentum **p**

$$6.6 \times 10^6 \text{ m/s}$$

Using conservation of energy, $v_e=?$

incident photon:

energy $\hbar\omega_i$ momentum $\hbar \mathbf{k}_i$

> photon after collision: energy $\hbar\omega_f$ momentum $\hbar \mathbf{k}_f$

Fig. 5-1. The Compton effect. Collision between a photon and an electron.

$$\lambda_i = 1.542 \,\text{Å}$$

$$\lambda_f = 1.566 \,\text{Å}$$

electron after collision: energy E momentum ${\bf p}$

Using conservation of momentum, $v_e = ?$

incident photon:

energy $\hbar\omega_i$ momentum $\hbar\mathbf{k}_i$

photon after collision: energy $\hbar\omega_f$ momentum $\hbar\mathbf{k}_f$

Fig. 5-1. The Compton effect. Collision between a photon and an electron.

Neutron scattering

Neutron scattering 4 38 Close your books for this one.

Which equation is the correct statement for conservation of energy if the incident neutron absorbs a phonon?

D
$$E_f = E_i - \hbar \omega$$

$$\mathbf{E} \ E_f = E_i + \hbar \omega$$

Neutron scattering 4 39 Close your books for this one.

Which equation is the correct statement for conservation of energy if the incident neutron absorbs a phonon?

$$\mathbf{p}_f = \mathbf{p}_i - \hbar \mathbf{k}$$

$$\mathbf{E} \quad \mathbf{p}_f = \mathbf{p}_i + \hbar \mathbf{k}$$

Neutron scattering

Neutron scattering Question #40

 E_f (J)

Neutrons with an energy of 8 zJ

- A. All below are true.
- B. scattered elastically off the crystal
- C. absorbed a phonon
- D. emitted a phonon

Neutron scattering $= 10.2 \times 10^{-21}$

Do Problem 5-5 and vote at pollev.com when you are done.

Neutron scattering $E_f = 10.2 \times 10^{-21}$

Do Problem 5-5 and vote at pollev.com when you are done.

Dispersion in Cu

Dispersion in Cu

$$\mathbf{k} = 4.9 \ \mathring{A}^{-1} \ \hat{i} - \frac{4\pi}{a} = 1.4 \ \mathring{A}^{-1} \ \hat{i}$$

Do Problem 5-7 and vote at pollev.com when you're done.

$$\omega = 2.3 \times 10^{13} s^{-1}$$

$$|k| = 1.1 \text{ Å}^{-1}$$

28° from the [100] direction

Dispersion in Cu

