Technician License Course Chapter 9

Lesson Module 18 – Safety and Amateur Radio

Electrical Injuries

- Shocks and burns.
- Low voltages can cause enough current to create problems.
- Equipment today uses lower voltage than tube equipment but it can still cause burns.

Effects of Electric Current in the Human Body		
Current	Reaction	
Below 1 milliampere	Generally not perceptible	
1 milliampere	Faint tingle	
5 milliamperes	Slight shock felt; not painful but disturbing. Average individual can let go. Strong involuntary reactions can lead to other injuries.	
6-25 milliamperes (women) 9-30 milliamperes (men)	Painful shock, loss of muscular control*; the freezing current or "can't let-go" range.	
50-150 milliamperes	Extreme pain, respiratory arrest, severe muscular contractions. Death is possible.	
1000-4300 milliamperes	Rhythmic pumping action of the heart ceases. Muscular contraction and nerve damage occur; death likely.	
10,000 milliamperes	Cardiac arrest, severe burns; death probable	
* If the extensor muscles are excited by the shock, the person may be thrown away from the		

^{*} If the extensor muscles are excited by the shock, the person may be thrown away from the power source.

Source: W.B. Kouwenhoven, "Human Safety and Electric Shock," Electrical Safety Practices, Monograph, 112, Instrument Society of America, p 93. November 1968.

Electrical Safety

- Avoiding contact is the most effective way of practicing electrical safety
- Unplug equipment before working on it
- Keep one hand in your pocket
- Make sure equipment is grounded
- Use power from GFCI-protected circuits

Mitigating Electrical Hazards

- If working on live equipment is required:
 - Remove jewelry
 - Avoid unintentional touching of circuitry
 - Never bypass safety interlocks
 - Discharge high-voltage points and components to ground
 - Capacitors can store charge after power is off
 - Storage batteries are dangerous when shorted

Responding to Electrical Injury

REMOVE POWER!

- Have ON/OFF switches and circuit breakers clearly marked.
- Install an emergency master power switch and make sure your family knows how to use it.
- Call for help.
- Learn CPR and first aid.

Electrical Grounding and Circuit Protection

- Make sure your station wiring meets code
- Most ham equipment does not require special wiring or circuits
 - Use 3-wire power cords
 - Use circuit breakers, circuit breaker outlets, or Ground Fault Circuit Interrupter (GFCI) circuit breakers or outlets
 - Use proper fuse or circuit breaker size
 - Don't overload single outlets or circuits

Grounding & Bonding at RF

- RF burns from "hot spots" at high RF voltage
 - Do not cause serious injury at ham power level
 - Prevent by bonding (connecting) equipment together with heavy wire or strap – braided strap not recommended at RF
 - Prevent by keeping people away from antennas and radial or counterpoise wires
- Ground equipment for AC safety

Lightning Protection

- Ground antennas and towers to local code
 - Use 8-ft ground rod for each tower leg
 - Bond rods to tower leg and the other rods
- Ground connections should be as short as possible
- Use lightning arrestors on a single ground plate where cables enter the house
- Unplug and disconnect equipment (including telephones and computers) and feed lines if lightning is expected

RF Exposure

- Electromagnetic radiation (EMR) is not the same as radioactivity much lower energy
- RF energy heats body tissues
 - Heating depends on the RF intensity and frequency.
 - If precautions are taken, RF exposure is minimal and not dangerous.

RF Intensity

- Power Density
 - Watts per square centimeter (w/cm²)
- Higher power density means higher RF exposure
- RF absorption varies with frequency because of body part size
- Safe exposure levels have been established by the FCC

Maximum Permissible Exposure (MPE)

RF Environment

Controlled Environment.

- You know where people are standing in relation to your antenna and you can do something about it.
- Higher power density is allowed because you can make adjustments if needed.

Uncontrolled Environment.

- You have no control of people near your antenna.
- Lower power density is allowed because you cannot control or adjust the exposure of people.

Duty Cycle and Duty Factor

- Duty cycle is the percentage of time that a transmitter is on during the evaluation period, from 0 to 100%
 - Duty cycle = 100 x (time on / total time)
- Duty factor is the same as duty cycle, but given as a number from 0 to 1.0
- Higher duty cycle or factor means higher average power density and exposure

Mode Duty Cycle

 Accounts for the different characteristics of the transmitted signal's waveform

Operating Duty Factor of Modes Common		
Mode	Duty Cycle	
Conversational SSB	20%	
Conversational SSB	40%	
SSB AFSK	100%	
SSB SSTV	100%	
Voice AM, 50% modulation	50%	
Voice AM, 100% modulation	25%	
Voice AM, no modulation	100%	
Voice FM	100%	
Digital FM	100%	
ATV, video portion, image	60%	
ATV, video portion, black screen	80%	
Conversational CW	40%	
Carrier	100%	

Operating Duty Factor of Modes Common

RF Exposure Evaluation

- All fixed stations must perform an exposure evaluation.
 - Use online calculator (easiest)
 - Model exposure with software (difficult)
 - Measure RF power density (most difficult)
- At lower power levels, no evaluation is required. Varies with frequency example: below 50 W at VHF.
- Re-evaluate exposure when station equipment or operating frequencies change.

Reducing RF Exposure

- Relocate or reorient antennas
- Raise the antenna
- Reduce antenna gain
- Reduce RF power output
- Change to a lower duty cycle mode

Mobile Safety

- Mobile Installations
 - Secure all equipment
 - Place equipment where you can operate it safely while driving
 - Know local rules for use of communications equipment while driving
 - May need hands-free microphone

Power Line Safety

- Keep antennas well away from power lines
- Check for power lines before installing antennas in trees
- Provide a minimum of 10 feet of clearance if antenna falls
- Never attach antennas or guy lines to utility poles or structures

Tower Work

- Basic tower safety
 - Proper clothing, hard hat and eye protection
 - Use a proper climbing harness, not a lineman's belt or rock-climbing gear
 - Don't climb a crank-up tower supported only by its lift cable – block and secure it first
 - Use a gin pole to lift heavy items
 - Don't work alone use a ground crew

Practice Questions

Which of the following is a safety hazard of a 12 voltage storage battery?

- A. Touching both terminals with the hands can cause electrical shock
- B. Shorting the terminals can cause burns, fire, or an explosion
- C. RF emissions from the battery
- D. All of these choices are correct

T0A01 HRLM (9-3)

Which of the following is a safety hazard of a 12 voltage storage battery?

- A. Touching both terminals with the hands can cause electrical shock
- B. Shorting the terminals can cause burns, fire, or an explosion
- C. RF emissions from the battery
- D. All of these choices are correct

T0A01 HRLM (9-3)

How does current flowing through the body cause a health hazard?

- A. By heating tissue
- B. It disrupts the electrical functions of cells
- C. It causes involuntary muscle contractions
- D. All of these choices are correct

T0A02 HRLM (9-2)

How does current flowing through the body cause a health hazard?

- A. By heating tissue
- B. It disrupts the electrical functions of cells
- C. It causes involuntary muscle contractions
- D. All of these choices are correct

T0A02 HRLM (9-2)

What is connected to the green wire in a three-wire electrical AC plug?

- A. Neutral
- B. Hot
- C. Safety ground
- D. The white wire

T0A03 HRLM (9-4)

What is connected to the green wire in a three-wire electrical AC plug?

- A. Neutral
- B. Hot
- C. Safety ground
- D. The white wire

T0A03 HRLM (9-4)

What is a good way to guard against electrical shock at your station?

- A. Use three-wire cords and plugs for all AC powered equipment
- B. Connect all AC powered station equipment to a common safety ground
- C. Use a circuit protected by a ground-fault interrupter
- D. All of these choices are correct

T0A06 HRLM (9-3)

What is a good way to guard against electrical shock at your station?

- A. Use three-wire cords and plugs for all AC powered equipment
- B. Connect all AC powered station equipment to a common safety ground
- C. Use a circuit protected by a ground-fault interrupter
- D. All of these choices are correct

T0A06 HRLM (9-3)

Which of these precautions should be taken when installing devices for lightning protection in a coaxial cable feed line?

- A. Include a parallel bypass switch for each protector so that it can be switched out of the circuit when running high power
- B. Include a series switch in the ground line of each protector to prevent RF overload from inadvertently damaging the protector
- C. Keep the ground wires from each protector separate and connected to station ground
- D. Ground all of the protectors to a common plate which is in turn connected to an external ground

T0A07 HRLM (9-5)

Which of these precautions should be taken when installing devices for lightning protection in a coaxial cable feed line?

- A. Include a parallel bypass switch for each protector so that it can be switched out of the circuit when running high power
- B. Include a series switch in the ground line of each protector to prevent RF overload from inadvertently damaging the protector
- C. Keep the ground wires from each protector separate and connected to station ground
- D. Ground all of the protectors to a common plate which is in turn connected to an external ground

T0A07 HRLM (9-5)

What safety equipment should always be included in home-built equipment that is powered from 120V AC power circuits?

- A. A fuse or circuit breaker in series with the AC "hot" conductor
- B. An AC voltmeter across the incoming power source
- C. An inductor in series with the AC power source
- D. A capacitor across the AC power source

T0A08 HRLM (9-4)

What safety equipment should always be included in home-built equipment that is powered from 120V AC power circuits?

A. A fuse or circuit breaker in series with the AC "hot" conductor

- B. An AC voltmeter across the incoming power source
- C. An inductor in series with the AC power source
- D. A capacitor across the AC power source

T0A08 HRLM (9-4)

What kind of hazard might exist in a power supply when it is turned off and disconnected?

- A. Static electricity could damage the grounding system
- B. Circulating currents inside the transformer might cause damage
- C. The fuse might blow if you remove the cover
- D. You might receive an electric shock from the charged stored in large capacitors

T0A11 HRLM (9-3)

What kind of hazard might exist in a power supply when it is turned off and disconnected?

- A. Static electricity could damage the grounding system
- B. Circulating currents inside the transformer might cause damage
- C. The fuse might blow if you remove the cover
- D. You might receive an electric shock from the charged stored in large capacitors

T0A11 HRLM (9-3)

When should members of a tower work team wear a hard hat and safety glasses?

- A. At all times except when climbing the tower
- B. At all times except when belted firmly to the tower
- C. At all times when any work is being done on the tower
- D. Only when the tower exceeds 30 feet in height

T0B01 HRLM (9-13)

When should members of a tower work team wear a hard hat and safety glasses?

- A. At all times except when climbing the tower
- B. At all times except when belted firmly to the tower
- C. At all times when any work is being done on the tower
- D. Only when the tower exceeds 30 feet in height

 TOB01 HRLM (9-13)

What is a good precaution to observe before climbing an antenna tower?

- A. Make sure that you wear a grounded wrist strap
- B. Remove all tower grounding connections
- C. Put on a climbing harness and safety glasses
- D. All of the these choices are correct

T0B02 HRLM (9-13)

What is a good precaution to observe before climbing an antenna tower?

- A. Make sure that you wear a grounded wrist strap
- B. Remove all tower grounding connections
- C. Put on a climbing harness and safety glasses
- D. All of the these choices are correct

T0B02 HRLM (9-13)

Under what circumstances is it safe to climb a tower without a helper or observer?

- A. When no electrical work is being performed
- B. When no mechanical work is being performed
- C. When the work being done is not more than 20 feet above the ground
- D. Never

T0B03 HRLM (9-14)

Under what circumstances is it safe to climb a tower without a helper or observer?

- A. When no electrical work is being performed
- B. When no mechanical work is being performed
- C. When the work being done is not more than 20 feet above the ground
- D. Never

T0B03 HRLM (9-14)

Which of the following is an important safety precaution to observe when putting up an antenna tower?

- A. Wear a ground strap connected to your wrist at all times
- B. Insulate the base of the tower to avoid lightning strikes
- C. Look for and stay clear of any overhead electrical wires
- D. All of these choices are correct

T0B04 HRLM (9-12)

Which of the following is an important safety precaution to observe when putting up an antenna tower?

- A. Wear a ground strap connected to your wrist at all times
- B. Insulate the base of the tower to avoid lightning strikes
- C. Look for and stay clear of any overhead electrical wires
- D. All of these choices are correct

T0B04 HRLM (9-12)

What is the purpose of a gin pole?

- A. To temporarily replace guy wires
- B. To be used in place of a safety harness
- C. To lift tower sections or antennas
- D. To provide a temporary ground

T0B05 HRLM (9-14)

What is the purpose of a gin pole?

- A. To temporarily replace guy wires
- B. To be used in place of a safety harness
- C. To lift tower sections or antennas
- D. To provide a temporary ground

T0B05 HRLM (9-14)

What is the minimum safe distance from a power line to allow when installing an antenna?

- A. Half the width of your property
- B. The height of the power line above ground
- C. 1/2 wavelength at the operating frequency
- D. So that if the antenna falls unexpectedly, no part of it can come closer than 10 feet to the power wires

T0B06 HRLM (9-12)

What is the minimum safe distance from a power line to allow when installing an antenna?

- A. Half the width of your property
- B. The height of the power line above ground
- C. 1/2 wavelength at the operating frequency
- D. So that if the antenna falls unexpectedly, no part of it can come closer than 10 feet to the power wires

T0B06 HRLM (9-12)

Which of the following is an important safety rule to remember when using a crank-up tower?

- A. This type of tower must never be painted
- B. This type of tower must never be grounded
- C. This type of tower must never be climbed unless it is in the fully retracted position
- D. All of these choices are correct

T0B07 HRLM (9-14)

Which of the following is an important safety rule to remember when using a crank-up tower?

- A. This type of tower must never be painted
- B. This type of tower must never be grounded
- C. This type of tower must never be climbed unless it is in the fully retracted position
- D. All of these choices are correct

T0B07 HRLM (9-14)

What is considered to be a proper grounding method for a tower?

- A. A single four-foot ground rod, driven into the ground no more than 12 inches from the base
- B. A ferrite-core RF choke connected between the tower and ground
- C. Separate eight-foot long ground rods for each tower leg, bonded to the tower and each other
- D. A connection between the tower base and a cold water pipe

T0B08 HRLM (9-13)

What is considered to be a proper grounding method for a tower?

- A. A single four-foot ground rod, driven into the ground no more than 12 inches from the base
- B. A ferrite-core RF choke connected between the tower and ground
- C. Separate eight-foot long ground rods for each tower leg, bonded to the tower and each other
- D. A connection between the tower base and a cold water pipe

T0B08 HRLM (9-13)

Why should you avoid attaching an antenna to a utility pole?

- A. The antenna will not work properly because of induced voltages
- B. The utility company will charge you an extra monthly fee
- C. The antenna could contact high-voltage power wires
- D. All of these choices are correct

T0B09 HRLM (9-12)

Why should you avoid attaching an antenna to a utility pole?

- A. The antenna will not work properly because of induced voltages
- B. The utility company will charge you an extra monthly fee
- C. The antenna could contact high-voltage power wires
- D. All of these choices are correct

T0B09 HRLM (9-12)

Which of the following is true concerning grounding conductors used for lightning protection?

- A. Only non-insulated wire must be used
- B. Wires must be carefully routed with precise right-angle bends
- C. Sharp bends must be avoided
- D. Common grounds must be avoided

T0B10 HRLM (9-4)

Which of the following is true concerning grounding conductors used for lightning protection?

- A. Only non-insulated wire must be used
- B. Wires must be carefully routed with precise right-angle bends
- C. Sharp bends must be avoided
- D. Common grounds must be avoided

T0B10 HRLM (9-4)

Which of the following establishes grounding requirements for an amateur radio tower or antenna?

- A. FCC Part 97 Rules
- B. Local electrical codes
- C. FAA tower lighting regulations
- D. Underwriters Laboratories' recommended practices

 TOB11 HRLM (9-4)

Which of the following establishes grounding requirements for an amateur radio tower or antenna?

- A. FCC Part 97 Rules
- B. Local electrical codes
- C. FAA tower lighting regulations
- D. Underwriters Laboratories' recommended practices

 TOB11 HRLM (9-4)

Which of the following is good practice when installing ground wires on a tower for lightning protection?

- A. Put a loop in the ground connection to prevent water damage to the ground system
- B. Make sure that all bends in the ground wires are clean, right angle bends
- C. Ensure that connections are short and direct
- D. All of these choices are correct

T0B12 HRLM (9-4)

Which of the following is good practice when installing ground wires on a tower for lightning protection?

- A. Put a loop in the ground connection to prevent water damage to the ground system
- B. Make sure that all bends in the ground wires are clean, right angle bends
- C. Ensure that connections are short and direct
- D. All of these choices are correct

T0B12 HRLM (9-4)

What type of radiation are VHF and UHF radio signals?

- A. Gamma radiation
- B. Ionizing radiation
- C. Alpha radiation
- D. Non-ionizing radiation

T0C01 HRLM (9-5)

What type of radiation are VHF and UHF radio signals?

- A. Gamma radiation
- B. Ionizing radiation
- C. Alpha radiation
- D. Non-ionizing radiation

T0C01 HRLM (9-5)

Which of the following frequencies has the lowest Maximum Permissible Exposure limit?

A. 3.5 MHz

B. 50 MHz

C. 440 MHz

D. 1296 MHz

T0C02 HRLM (9-7)

Which of the following frequencies has the lowest Maximum Permissible Exposure limit?

A. 3.5 MHz

B. 50 MHz

C. 440 MHz

D. 1296 MHz

T0C02 HRLM (9-7)

What is the maximum power level that an amateur radio station may use at VHF frequencies before an RF exposure evaluation is required?

- A. 1500 watts PEP transmitter output
- B. 1 watt forward power
- C. 50 watts PEP at the antenna
- D. 50 watts PEP reflected power

T0C03 HRLM (9-9)

What is the maximum power level that an amateur radio station may use at VHF frequencies before an RF exposure evaluation is required?

- A. 1500 watts PEP transmitter output
- B. 1 watt forward power
- C. 50 watts PEP at the antenna
- D. 50 watts PEP reflected power

T0C03 HRLM (9-9)

What factors affect the RF exposure of people near an amateur station antenna?

- A. Frequency and power level of the RF field
- B. Distance from the antenna to a person
- C. Radiation pattern of the antenna
- D. All of these choices are correct

T0C04 HRLM (9-9)

What factors affect the RF exposure of people near an amateur station antenna?

- A. Frequency and power level of the RF field
- B. Distance from the antenna to a person
- C. Radiation pattern of the antenna
- D. All of these choices are correct

T0C04 HRLM (9-9)

Why do exposure limits vary with frequency?

- A. Lower frequency RF fields have more energy than higher frequency fields
- B. Lower frequency RF fields do not penetrate the human body
- C. Higher frequency RF fields are transient in nature
- D. The human body absorbs more RF energy at some frequencies than at others

T0C05 HRLM (9-6)

Why do exposure limits vary with frequency?

- A. Lower frequency RF fields have more energy than higher frequency fields
- B. Lower frequency RF fields do not penetrate the human body
- C. Higher frequency RF fields are transient in nature
- D. The human body absorbs more RF energy at some frequencies than at others

T0C05 HRLM (9-6)

Which of the following is an acceptable method to determine that your station complies with FCC RF exposure regulations?

- A. By calculation based on FCC OET Bulletin 65
- B. By calculation based on computer modeling
- C. By measurement of field strength using calibrated equipment
- D. All of these choices are correct

T0C06 HRLM (9-9)

Which of the following is an acceptable method to determine that your station complies with FCC RF exposure regulations?

- A. By calculation based on FCC OET Bulletin 65
- B. By calculation based on computer modeling
- C. By measurement of field strength using calibrated equipment
- D. All of these choices are correct

T0C06 HRLM (9-9)

What could happen if a person accidentally touched your antenna while you were transmitting?

- A. Touching the antenna could cause television interference
- B. They might receive a painful RF burn
- C. They might develop radiation poisoning
- D. All of these choices are correct

T0C07 HRLM (9-6)

What could happen if a person accidentally touched your antenna while you were transmitting?

- A. Touching the antenna could cause television interference
- B. They might receive a painful RF burn
- C. They might develop radiation poisoning
- D. All of these choices are correct

T0C07 HRLM (9-6)

Which of the following actions might amateur operators take to prevent exposure to RF radiation in excess of FCC-supplied limits?

- A. Relocate antennas
- B. Relocate the transmitter
- C. Increase the duty cycle
- D. All of these choices are correct

T0C08 HRLM (9-10)

Which of the following actions might amateur operators take to prevent exposure to RF radiation in excess of FCC-supplied limits?

- A. Relocate antennas
- B. Relocate the transmitter
- C. Increase the duty cycle
- D. All of these choices are correct

T0C08 HRLM (9-10)

How can you make sure your station stays in compliance with RF safety regulations?

- A. By informing the FCC of any changes made in your station
- B. By re-evaluating the station whenever an item of equipment is changed
- C. By making sure your antennas have low SWR
- D. All of these choices are correct

T0C09 HRLM (9-9)

How can you make sure your station stays in compliance with RF safety regulations?

- A. By informing the FCC of any changes made in your station
- B. By re-evaluating the station whenever an item of equipment is changed
- C. By making sure your antennas have low SWR
- D. All of these choices are correct

T0C09 HRLM (9-9)

Why is duty cycle one of the factors used to determine safe RF radiation exposure levels?

- A. It affects the average exposure of people to radiation
- B. It affects the peak exposure of people to radiation
- C. It takes into account the antenna feed line loss
- D. It takes into account the thermal effects of the final amplifier

T0C10 HRLM (9-7)

Why is duty cycle one of the factors used to determine safe RF radiation exposure levels?

- A. It affects the average exposure of people to radiation
- B. It affects the peak exposure of people to radiation
- C. It takes into account the antenna feed line loss
- D. It takes into account the thermal effects of the final amplifier

T0C10 HRLM (9-7)

What is the definition of duty cycle during the averaging time for RF exposure?

- A. The difference between the lowest power output and the highest power output of a transmitter
- B. The difference between the PEP and average power output of a transmitter
- C. The percentage of time that a transmitter is transmitting
- D. The percentage of time that a transmitter is not transmitting

T0C11 HRLM (9-7)

What is the definition of duty cycle during the averaging time for RF exposure?

- A. The difference between the lowest power output and the highest power output of a transmitter
- B. The difference between the PEP and average power output of a transmitter
- C. The percentage of time that a transmitter is transmitting
- D. The percentage of time that a transmitter is not transmitting

T0C11 HRLM (9-7)

How does RF radiation differ from ionizing radiation (radioactivity)?

- A. RF radiation does not have sufficient energy to cause genetic damage
- B. RF radiation can only be detected with an RF dosimeter
- C. RF radiation is limited in range to a few feet
- D. RF radiation is perfectly safe

T0C12 HRLM (9-5)

How does RF radiation differ from ionizing radiation (radioactivity)?

- A. RF radiation does not have sufficient energy to cause genetic damage
- B. RF radiation can only be detected with an RF dosimeter
- C. RF radiation is limited in range to a few feet
- D. RF radiation is perfectly safe

T0C12 HRLM (9-5)

If the averaging time for exposure is 6 minutes, how much power density is permitted if the signal is present for 3 minutes and absent for 3 minutes rather than being present for the entire 6 minutes?

- A. 3 times as much
- B. 1/2 as much
- C. 2 times as much
- D. There is no adjustment allowed for shorter exposure times

T0C13 HRLM (9-7)

If the averaging time for exposure is 6 minutes, how much power density is permitted if the signal is present for 3 minutes and absent for 3 minutes rather than being present for the entire 6 minutes?

- A. 3 times as much
- B. 1/2 as much
- C. 2 times as much
- D. There is no adjustment allowed for shorter exposure times

T0C13 HRLM (9-7)

