Analog IC Design Lab 08

Negative Feedback

PART 1: Feedback with Behavioral OTA

Figure 1 Schematic behavioral.

Figure 2 Schematic testbench.

• Set the simulation parameters as below. Note that we set the DC gain and unity gain frequency (GBW) like those of the 5T OTA designed in the previous lab.

Description	Variable	Value
Feedback capacitance	CF	4p
Input capacitance	CIN	4p, 12p
Load capacitance	CL	as in Lab 07

Transconductance of behavioral model	GM	as in Lab 07
DC gain of behavioral model	Av	as in Lab 07
UGF of behavioral model	wu¹	as in Lab 07
Output cap of behavioral model	COUT	GM/wu
Output res of behavioral model	ROUT	Av/GM
AC stimulus magnitude	VINAC	1
Transient stimulus peak	VP	50m
Transient stimulus frequency	FIN	1k
Bias current	IB	as in Lab 07
CM input voltage	VICM	At the middle of the CMIR

From LAB07 $GM = 206 \mu S$ $A_V = 70.73$ $W_U = 6.429 MHZ$

Closed loop gain vs frequency

Figure 3 plot VOUT vs frequency.

¹ Note that $\omega_u = 2\pi f_u = 2\pi \times GBW$.

Figure 4 plot VOUT in dB vs frequency.

Figure 5 Results from simulator.

Hand analysis:

DC gain:

•
$$C_{in}=4pF$$
 $\beta=\frac{C_f}{C_{in}+C_f}=0.5$, A_{OL} from previous $lab=70.73$ so
$$A_{CL}=\frac{A_{OL}}{1+\beta A_{OL}}=\frac{70.73}{1+0.5*70.73}=1.945=5.778~dB.$$

•
$$C_{in}=12pF$$
 $\beta=\frac{C_f}{C_{in}+c_f}=0.25$, A_{OL} from previous $lab=70.73$ so
$$A_{CL}=\frac{A_{OL}}{1+\beta A_{OL}}=\frac{70.73}{1+0.25*70.73}=3.786=11.56~dB.$$

Bandwidth:

•
$$C_{in} = 4pF$$
 $\beta = \frac{C_f}{C_{in} + C_f} = 0.5$, A_{OL} from previous $lab = 70.73$ and $W_{OL} = 90.66KHZ$.
 $W_{CL} = W_{OL} * (1 + \beta A_{OL}) = 90.66K * (1 + 0.5 * 70.73) = 3.297MHZ$.

•
$$C_{in} = 12pF$$
 $\beta = \frac{C_f}{C_{in} + C_f} = 0.25$, A_{OL} from previous $lab = 70.73$ and $W_{OL} = 90.66KHZ$
 $W_{CL} = W_{OL} * (1 + \beta A_{OL}) = 90.66K * (1 + 0.25 * 70.73) = 1.694MHZ.$

GBW:

•
$$C_{in} = 4pF$$
 $GBW = gain * bandwidth = 1.945 * 3.297M = 6.413MHZ$

•
$$C_{in} = 12pF$$
 $GBW = gain * bandwidth = 3.786 * 1.694M = 6.413MHZ$

	Simulation	Hand analysis	Simulation	Hand analysis
	$C_{IN}=4p$	$C_{IN}=4p$	$C_{IN}=12p$	$C_{IN}=12p$
DC gain	1.945	1.945	3.786	3.786
DC gain dB	5.778	5.778	11.56	11.56
Bandwidth	3.305M	3.297M	1.699M	1.694M
GBW	6.444M	6.413M	6.449M	6.413M

• Comment on the difference between the results for the two values of CIN.

As shown from previous analysis that by increasing capacitance the value of feedback factor decreases due to capacitive divider which increases the value of closed-loop gain, but cannot reach to ideal value of closed-loop gain because open-loop gain is a finite gain, but GBW is the same in two cases because as gain decrease bandwidth increase by the same ratio which keep GBW constant.

Loop gain vs frequency

Figure 6 plot Vout vs frequency in STB analysis.

Figure 7 plot loop gain vs frequency in STB analysis.

Figure 8 results from simulators.

DC loop gain Hand analysis:

•
$$C_{in}=4pF$$
 $\beta=\frac{c_f}{c_{in}+c_f}=0.5$, A_{OL} from previous $lab=70.73$ so $A_{LG}=\beta*A_{OL}=0.5*70.73=35.37=30.97dB$

•
$$C_{in}=12pF$$
 $\beta=\frac{c_f}{c_{in}+c_f}=0.25$, A_{OL} from previous $lab=70.73$ so $A_{LG}=\beta*A_{OL}=0.25*70.73=17.68=24.95dB$

GBW loop gain Hand analysis:

•
$$C_{in} = 4pF$$
 $GBW = bandwidth * A_{LG} = 90.66K * 35.37 = 3.21MHZ$

•
$$C_{in} = 12pF$$
 $GBW = bandwidth * A_{LG} = 90.66K * 17.68 = 1.603MHZ$

	Simulation	Hand analysis	Simulation	Hand analysis
	$C_{IN}=4p$	$C_{IN}=4p$	$C_{IN} = 12p$	$C_{IN} = 12p$
DC gain	35.37	35.37	17.68	17.68
GBW	3.224M	3.21M	1.612M	1.603M

• Comment on the differences between the results for the two values of CIN.

As shown from previous analysis that by increasing capacitance the value of feedback factor decreases due to capacitive divider which increases the value of closed-loop gain but cannot reach to ideal value of closed-loop gain because open-loop gain is a finite gain, which increase GBW because BW of LG is constant as open-loop BW.

Gain Desensitization

Figure 9 Plot VOUT vs open loop gain.

At
$$A_{OL}=50K$$
 $A_{CL}=2(ideal)$.
At $A_{OL}=5$ $A_{CL}=1.923$.
$$percentage\ change=\frac{A_{CL_ideal}-A_{CL_Actual}}{A_{CL_Ideal}}*100=4\%.$$

Comment: from previous analysis as shown that closed-loop gain not affected by variations of open-loop gain, and only depend on capacitive divider loads so this give a stable gain with PVT variations.

PART 2: Feedback with Real 5T OTA

Figure 10 schematic of 5T-OTA.

Closed loop gain vs frequency

Figure 11 plot VOUT vs frequency.

Figure 12 plot VOUT vs frequency in db.

Figure 13 results from simulator.

	Part 1	Part 2	Part 1	Part 2
	$C_{IN}=4p$	$C_{IN}=4p$	$C_{IN} = 12p$	$C_{IN}=12p$
DC gain	1.945	1.947	3.786	3.784
DC gain dB	5.778	5.786	11.56	11.56
Bandwidth	3.305M	2.353M	1.699M	1.06M
GBW	6.444M	4.591M	6.449M	4.019M

• You will notice that the bandwidth, and consequently the GBW are much smaller than Part 1. Why? in part 1 I used an ideal switch which acted as an ideal buffer which had no loading effects which resulted in a much higher BW, however in the real OTA the is a loading effect which was modelled as the Cout, so it did affect the BW and therefore affected the GBW, feedback capacitance contributes loading effect all this increase total capacitance and decrease BW.

Loop gain vs frequency

Figure 14 plot loop gain vs frequency.

Figure 15 plot loop gain in dB vs frequency and results.

Figure 16 results from simulator.

	Part 1	Part 2	Part 1	Part 2
	$C_{IN}=4p$	$C_{IN}=4p$	$C_{IN}=12p$	$C_{IN}=12p$
DC gain	35.37	33.26	17.68	17.11
DC gain dB	30.97	30.44	24.95	24.66
Bandwidth	90.95K	68.37K	90.59K	58.38K
GBW	3.224M	2.28M	1.612M	1.001M
UGF	3.225M	2.3M	1.609M	997.3K

• You will notice that the unity gain frequency is much smaller than Part 1. Why? Comment.

The loop gain is nearly unchanged, while BW is affected by the loading which affected the UGF. The negative feedback of the real OTA presented a loading effect, feedback capacitance contributes loading effect all this increase total capacitance which translated in a decrease in the BW, so it led to a decrease in UGF.

Gain Desensitization

Figure 17 plot closed and open loop gain vs temperature.

For closed loop gain:

$$\begin{array}{c} {\rm At~T=\text{-}40~\textit{A}_{\textit{CL}}=1.945} \\ {\rm At~T=100~\textit{A}_{\textit{CL}}=1.948} \\ percentage~change~=\frac{\textit{A}_{\textit{CL_ideal}}-\textit{A}_{\textit{CL_Actual}}}{\textit{A}_{\textit{CL_Ideal}}}=~0.15\% \end{array}$$

For open loop gain

$$\begin{array}{c} {\rm At\,T}=\text{-}40\,A_{OL}=32.0319\\ {\rm At\,}T=100\,A_{OL}=34.3077\\ \\ percentage\,change=\frac{A_{OL_ideal}-A_{OL_Actual}}{A_{OL_Ideal}}=6\% \end{array}$$

Comment: From previous analysis has shown that closed-loop gain is insensitive to temperature change as it depends on ratio of capacitive divider despite loop gain which affected by changing temperature as shown.

Transient analysis

Figure 18 transient analysis.

Figure 19 results.

As shown that the ration between output voltage to differential voltage is nearly equivalent to open loop gain $A_{OL} = \frac{V_{OUT}}{V_{dif}} = \frac{194.2m}{2.775m} = 69.982$. $i~have~A_{OL} = 70.73$

Figure 20 transient plots at FIN equal bandwidth.

Figure 21 results.

As shown that the ration between output voltage to differential voltage is nearly equivalent to closed loop gain $A_{CL} = \frac{V_{OUT}}{V_{dif}} = \frac{138.2m}{72.61m} = 1.903.i \ have \ A_{CL}.ideal\ equal\ to\ 2$

	FIN=1KHZ	FIN=closed loop bandwidth
Input peak to peak	99.79m	99.78m
Output peak to peak	194.2m	138.2m
Diff peak to peak	2.775m	72.61m