Computational Mechanics by Isogeometric Analysis

Dr. L. Dedè. A.Y. 2015/16

Exercises March 29, 2016

B-splines and NURBS: function spaces

- 1. Let us consider the B-splines function space $\mathcal{B}_h := \operatorname{span} \{B_i(\xi), i = 1, \dots, n_{\mathcal{B}}\}$, with the B-splines basis $\{B_i(\xi)\}_{i=1}^{n_{\mathcal{B}}}$ obtained from the knot vector $\Xi_{\mathcal{B}} = \{0, 0, 1/2, 1, 1\}$. Determine if the function space \mathcal{B}_h is "nested" into the B-splines function space $\mathcal{N}_h := \operatorname{span} \{N_i(\xi), i = 1, \dots, n_{\mathcal{N}}\}$ ($\mathcal{B}_h \subseteq \mathcal{N}_h$) with the basis $\{N_i(\xi)\}_{i=1}^{n_{\mathcal{N}}}$ obtained from the following knot vectors:
 - a) $\Xi_{\mathcal{N}} = \{0, 0, 0, 1/2, 1, 1, 1\};$
 - b) $\Xi_{\mathcal{N}} = \{0, 0, 0, 1/2, 1/2, 1, 1, 1\}.$
- 2. Determine the function $u_h \in \mathcal{B}_h$ which minimizes the errors in the L^2 norm with respect to the function $u(\xi) = \sin(\pi \xi)$. We consider the B-splines function space $\mathcal{B}_h := \operatorname{span} \{B_i(\xi), \ i = 1, \dots, n_{\mathcal{B}}\}$ defined from the B-splines basis $\{B_i(\xi)\}_{i=1}^{n_{\mathcal{B}}}$ obtained from the following knot vectors:
 - a) $\Xi_{\mathcal{B}} = \{0, 0, 0, 1, 1, 1\};$
 - b) $\Xi_{\mathcal{B}} = \{0, 0, 0, 1/2, 1, 1, 1\};$
 - c) $\Xi_{\mathcal{B}} = \{0, 0, 0, 1/2, 1/2, 1, 1, 1\}.$

Hint: determine the control variables $\{d_i\}_{i=1}^{n_{\mathcal{B}}}$ defining the function $u_h(\xi) = \sum_{i=1}^{n_{\mathcal{B}}} B_i(\xi) d_i$.

3. Repeat point 2) for $u(\xi) = \begin{cases} 1 & \text{if } \xi \in (0, 1/2), \\ 0 & \text{if } \xi \in [1/2, 1). \end{cases}$