

Fourier Series through Circuits

1

G V V Sharma*

CONTENTS

1	Fourier Series	1
2	Gibbs Phenomenon	2
3	Filter	2
4	AC-DC Converter	4

Abstract—This manual provides a quick introduction to Fourier series through Python.

1 Fourier Series

1.1 Type the following program in python to obtain g(t). g(t) is a periodic signal called a square wave with amplitude A = 5V and time period T = 20ms.

Solution:

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/1.1.py

1.2 Find the frequency of g(t).

Solution: The frequency of g(t) is given by $f = \frac{1}{T} = 50 \text{ Hz.}$ 1.3 The following expression

$$g(t) = \sum_{n=0}^{\infty} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \quad (1.1)$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. This work was funded by the PMMMNMTT, MHRD, Govt. of India. All content in this manuscript is released under GNU GPL. Free to use for all.

Fig. 1.1: Generating square wave.

is known as the Fourier series expansion of g(t), where $f = \frac{1}{T}$. Find

$$a_n = \frac{2}{T} \int_0^T g(t) \cos 2\pi n f t \, dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \sin 2\pi n f t \, dt$$
(1.2)

Solution:

$$a_0 = \frac{A}{T} \int_0^{T_0} dt$$
 (1.3)

$$=\frac{AT_0}{T}\tag{1.4}$$

and

$$a_n = \frac{2A}{T} \int_0^{T_0} \cos 2\pi n f t \, dt$$
 (1.5)

$$= \frac{A}{\pi n f T} \sin 2\pi n f T_0 \tag{1.6}$$

Similarly,

$$b_n = \frac{2A}{T} \int_0^{T_0} \sin 2\pi n f t \, dt \tag{1.7}$$

$$= \frac{A}{\pi n f T} \left[1 - \cos 2\pi n f T_0 \right] \tag{1.8}$$

2 Gibbs Phenomenon

2.1 Using Python, compute the series

$$\sum_{n=0}^{15} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \qquad (2.1)$$

for A = 5, T = 20ms and a_n , b_n obtained in the previous problem. Comment.

Solution: Type the following program

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/1.4.py

to obtain the following figure. Through this

Fig. 2.1: Gibbs phenomenon.

problem, we find that the square wave can be approximated through an infinite sum of sinusoids. The ripples in Fig. 2.1 occur due to convergence issues and is known as the Gibbs phenomenon.

3 FILTER

3.1 Refer to the circuit in Fig. 3.1. Suppose you are told that C has a resistance given by $\frac{1}{sC}$. Find the ratio H(s) of the output voltage and input voltage using node analysis. The above

Fig. 3.1: Three stage R - C low pass filter circuit

circuit is known as a low pass filter and H(s) is known as the transfer function.

Solution: The equations at the nodes are given by

$$\frac{V_1 - V_i}{R} + sCV_1 + \frac{V_1 - V_2}{R} = 0 {(3.1)}$$

$$\frac{V_2 - V_1}{R} + sCV_2 + \frac{V_2 - V_o}{R} = 0 {(3.2)}$$

$$\frac{V_o - V_2}{R} + sCV_o = 0 {(3.3)}$$

which can be expressed as

$$\begin{pmatrix}
sC + \frac{2}{R} & -\frac{1}{R} & 0 \\
-\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\
0 & -\frac{1}{R} & sC + \frac{1}{R}
\end{pmatrix} \begin{pmatrix}
\frac{V_1}{V_i} \\
\frac{V_2}{V_i} \\
\frac{V_0}{V_i}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{R} \\
0 \\
0
\end{pmatrix} (3.4)$$

Thus,

$$H(s) = \frac{V_o}{V_i} = \frac{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & \frac{1}{R} \\ -\frac{1}{R} & sC + \frac{2}{R} & 0 \\ 0 & -\frac{1}{R} & 0 \end{vmatrix}}{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & 0 \\ -\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\ 0 & -\frac{1}{R} & sC + \frac{1}{R} \end{vmatrix}}$$

$$= \frac{1/R^3}{\left(sC + \frac{1}{R}\right)\left\{\left(sC + \frac{2}{R}\right)^2 - \frac{1}{R^2}\right\} - \frac{1}{R^2}\left(sC + \frac{2}{R}\right)}$$
(3.5)

which can be expressed as

$$H(s) = \frac{1}{(sCR+1)\left\{(sCR+2)^2 - 1\right\} - (sCR+2)}$$

$$= \frac{1}{(sCR+2)^3 - (sCR+2)^2 - 2(sCR+2) + 1}$$

$$= \frac{1}{(sCR)^3 - 5(sCR)^2 + 6sCR + 1}$$
(3.9)

3.2 Substitute $s = j2\pi f$, $j = \sqrt{-1}$ in (3.9) to obtain H(f). H(f) is known as the frequency response. Plot |H(f)| in octave for -20 < f < 20, given that $R = 1 k\Omega$ and $C = 10 \mu F$.

Solution: Type the following code to get Fig. 3.2. You will find that H(f) is a low pass filter.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/2.2.py

Fig. 3.2: Frequency response of the R-C filter

3.3 Find the frequency at which $|H(f)|^2 = \frac{1}{2}$. This frequency is known as the 3-dB bandwidth of H(f).

Solution: Substituting sCR = jx in (3.9),

$$|H(jx)| = \frac{1}{\sqrt{2}}$$
 (3.10)

$$\Rightarrow -jx^3 + 5x^2 + j6x + 1 = \sqrt{2}$$
 (3.11)

$$\Rightarrow x^2(6-x^2)^2 + (1+5x^2)^2 = 2 \tag{3.12}$$

$$\Rightarrow x^6 + 13x^4 + 46x^2 - 1 = 0 \tag{3.13}$$

Letting $y = x^2$, we obtain the cubic equation

$$y^3 + 13y^2 + 46y - 1 = 0 (3.14)$$

The following script gives the 3 dB bandwidth for the filter H by choosing the real root.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/2.3.py

This yields the value $f_{3dB} = 2.3395$ Hz.

3.4 Obtain the 3 dB bandwidth by solving the cubic equation in the previous problem **Solution:** In the above, let $y = z - \frac{13}{3}$. Then the equation becomes

$$\Rightarrow z^3 - (31/3)z - 1015/27 = 0 \tag{3.15}$$

This equation has the theoretical solution evaluated by the following script

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/2.4.py

Note that this script gives the same result as the one in the previous problem.

3.5 Suppose the square wave in Fig. 1.1 is given as input to the filter in Fig. 3.2. Find and plot the filter output.

Solution: Using sinusoidal steady state analysis, if the input to the filter is $\cos 2\pi nft$, the output is given by

$$|H(nf)|\cos\{2\pi nft + \angle H(nf)\}\$$
 (3.16)

Using the principle of superposition, for the input

$$\sum_{n=0}^{\infty} a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \qquad (3.17)$$

the output will be

$$\sum_{n=0}^{\infty} a_n |H(nf)| \cos \left\{2\pi nft + \angle H(nf)\right\} + b_n |H(nf)| \sin \left\{2\pi nft + \angle H(nf)\right\}$$
(3.18)

Suitably modifying the program in Problem 2.1.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/fourier/series/ codes/2.5.py The output of the filter is shown in Fig. 3.5

Fig. 3.5: Output of the R - C filter

3.6 Run the program in problem 3.5 by changing the for loop to

for n in range(2):

Compare this output with the one in Fig. 3.5 by plotting in the same graph.

3.7 Interpret the result in problem 3.5.

Solution: In Fig. 3.2, |H(0)| = 1 and |H(50)| = 10.02. All other values of H are very small. |H(0)| = 1 contributes the DC component and |H(50)| = 0.02 yields the sinusoidal component of 50 Hz. Thus, H(f) filters all higher harmonics in the square wave in Fig. 1.1.

4 AC-DC Converter

4.1 Let

$$x(t) = 16\sin 100\pi t \tag{4.1}$$

Sketch $x_1(t) = |x(t)|$.

4.2 If

$$x_1(t) = \sum_{n=0}^{\infty} a_{1n} \cos 2\pi n f t + b_{1n} \sin 2\pi n f t, \quad (4.2)$$

show that

$$a_{10} = \frac{32}{\pi} \tag{4.3}$$

$$a_{10} = \frac{32}{\pi}$$

$$a_{1n} = \frac{32}{\pi (1 - 4n^2)}, \quad n \ge 1$$
(4.3)

$$b_{1n} = 0 (4.5)$$

find a_{1n} and b_{1n} using (1.2).

4.3 Verify (4.3) using (4.2) through a Python code.

4.4 Given

$$H(s) = \frac{1}{1 + sCR}, \quad R = 1\Omega, C = 1mF, \quad (4.6)$$

sketch |H(f)|.

4.5 Find y(t) in Fig. 4.5 using (3.18) and sketch it.

