Formal_Logic_1

Truth Table

р	q	r	p∧q	q⊕r	(p ∧ q)∨ r	(q ⊕ r) ∧ p	Р
Т	Т	Т	Т	F	Т	F	F
Т	Т	F	Т	Т	Т	T	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	F	F	F	Т
F	Т	F	F	Т	F	F	Т
F	F	Т	F	Т	F	F	F
F	F	F	F	F	F	F	Т

LHS of P RHS of P

LHS	RHS	LHS->RHS
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

The premise is true \wedge the conclusion is false -- if then is false

Logical Analysis

The only time P: LHS -> RHS is false (F) is when LHS \wedge RHS are F Logically analyze the problem \wedge see what is needed based on the above statement.

Logical Equivelence

$$P = \neg(LHS) \lor (RHS)$$

$$= [\neg(p \land q) \land (\neg r)] \lor [((q \land (\neg r)) \lor (\neg q \land r)) \lor p]$$

$$= [(\neg p) \lor (\neg q) \land (\neg r)] \lor [(q \land (\neg r) \land p) \lor (\neg q \land r) \land p]$$

$$= [\neg \ p \land \neg \ r] \lor [\neg \ q \land \neg \ r] \lor [q \land \neg \ r \land p] \lor [\neg \ q \land r \land p]$$

This leads to the same result as the above table, similar to algebra $f \lor f \lor mal$ logic

Compound propositions $P \land Q$ are described in terms of atomic propositions p, q, r, ... are logically equivalent. This is written as

$$P \equiv Q(\vee P <==>Q)$$

if $P \wedge Q$ has identical truth values this means...

- Every assignment that makes P = F makes Q = F
- Every assignment that makes P = T makes Q = T

Definition

A proposition R is a tautology if it is always T, i.e., no matter the truth values of the atomic proposition R is $T - p \lor \neg p - (p \land q) -> p - p \lor q$