Suppose that f_n converges to f pointwise on some $D \subseteq \mathbb{R}$. For each of the following statements, find a counter example disproving the claim.

- 1. If each f_n is uniformly continuous, then f is uniformly continuous.
- 2. If each f_n is bounded, then f is bounded.
- 3. If each f_n has a finite number of discontinuities, then f has a finite number of discontinuities.

Proof:

1. Define $f_n(x) = x^n$ and D = [0, 1]. For all n, $f_n(x)$ is continuous over the closed interval [0, 1], so $f_n(x)$ is uniformly continuous.

Note that $f_n(x)$ converges pointwise to

$$f(x) = \begin{cases} 1 & x = 1 \\ 0 & else \end{cases}$$

which is not continuous.

2. Define

$$f_n(x) = \begin{cases} n & x > n \\ x & -n \le x \le n \\ -n & x < -n \end{cases}$$

Define f(x) = x. Note that f_n converges to f pointwise by choosing $N \ge |x_0|$. Finally, for each n, f_n is bounded by n, and f is unbounded.

3. Define

$$f_n(x) = \begin{cases} 1 & x = n \\ 0 & else \end{cases}$$

Define f(x) = 0. Note that, for each n, $f_n(x)$ has exactly one discontinuities, and $f_n(x)$ converges to f(x) pointwise by choosing $N \ge x_0$. Finally, f(x) does not have any discontinuities.