Using Symbolic Regression to Analyse Plasma Data

Estêvão Gomes (D. Carvalho, L. O. Silva)

How PySR works:

Analysis with PySR:

^[1] M. Cranmer, arXiv preprint arXiv:2305.01582 (2023)

^[2] E. P. Alves and F. Fiuza, Phys. Rev. Research 4, 033192 (2022)

Using Symbolic Regression to Analyse Plasma Data

Estêvão Gomes (D. Carvalho, L. O. Silva)

How PySR works:

Analysis with PySR:

PySR [1] can be useful to fit complex expressions we know nothing about to simulated data:

$$\partial_t f = -v \partial_x f + \frac{e}{m_e} E \partial_v f$$

Simulated Two-Stream Instability [2]

Computationally slower but supports less knowledge about the fit. Better for uninformed analysis.

^[1] M. Cranmer, arXiv preprint arXiv:2305.01582 (2023)

^[2] E. P. Alves and F. Fiuza, Phys. Rev. Research 4, 033192 (2022)

Using Symbolic Regression to Analyse Plasma Data

Estêvão Gomes (D. Carvalho, L. O. Silva)

How PySR works:

Analysis with PySR:

PySR [1] can be useful to fit complex expressions we know nothing about to simulated data:

$$\partial_t f = -v \partial_x f + \frac{e}{m_e} E \partial_v f$$

50	100	150	200
3/10	4/10	8/10	10/10

N° right equations per n° of iterations

Computationally slower but supports less knowledge about the fit. Better for uninformed analysis.

^[1] M. Cranmer, arXiv preprint arXiv:2305.01582 (2023)

^[2] E. P. Alves and F. Fiuza, Phys. Rev. Research 4, 033192 (2022)