Maintaining Data Privacy in Association Rule Mining

Shariq Rizvi

Indian Institute of Technology, Bombay

Joint work with:

Jayant Haritsa

Indian Institute of Science

A Typical Web-Service Form

Birthday:	[selectione] 🔽 , (Month Day, Year)
Current Email (Optional):	
First Name:	Last Name:
Language & Content:	English - United States
Zip/Postal Code:	Gender: —
Industry:	[Select Industry]
Title:	[Select a Title] 💌
Specialization:	[Select a Specialization] 💌
	_

The Good Side

- Better aggregate models
 - "Action movies released in July rarely bomb at the box office"
- Improved customer services
 - "amazon.com: If you are buying *Macbeth*, you may want to read *The Count of Monte Cristo*"

The Dark Side

Breach of data privacy

Major Illnesses	YES	NO
Myopia	V	
Lung Cancer	V	
Diabetes		V

Insurance premium for the children may be increased because lung cancer is suspect to genetic transmission.

The Dark Side (contd)

Discovery of sensitive models

90% of all PhD students don't do research!

The Nuclear Power Equivalence

How do we get all the good without suffering from the bad?

Our Focus

Addressing privacy concerns in the context of *Boolean Association Rule Mining*

Association Rules

- Co-occurrence of events:
 - On supermarket purchases, indicates which items are typically bought together
 80 percent of customers purchasing coffee also purchased milk.

Coffee \Rightarrow Milk (0.8)

To ensure statistical significance, need to also compute the "support" – coffee and milk are purchased together by 60 percent of customers.

Coffee \Rightarrow Milk (0.8,0.6)

Frequent Itemsets

- T = set of transactions
- I = set of items
- sup_{min} User–specified threshold

"X? I is *frequent* if more than *sup_{min}* transactions in **T**, support **X**"

Privacy and BAR Mining

- Preventing discovery of sensitive rules
 - Atallah et al [KDEX 1999]
 - Saygin, Verykios, Clifton [SIGMOD Record 2001]
 - Dasseni, Verykios [IHW 2001]
 - Saygin et al [RIDE 2002]

Privacy!

Data Mining Algorithm

- Preventing disclosure of data
 - Our work
 - Concurrent work by Evfimievski et al [KDD 2002]

Requirements for Mining with Data Privacy

- High Privacy
 - User-visibility of privacy
- Highly accurate models
- Efficiency
 - Data aggregation-time efficiency
 - Mining-time efficiency

Conflicting Goals

The Game Plan

Outline

- Privacy by data distortion
- Mining the distorted database (MASK)
- Experimental Evaluation
- Run-time Optimizations
- Conclusions, Limitations and Future Work

Distortion Procedure

- View the database as a matrix of Os and 1s
 - Os represent absence of the item in the transaction
 - ▶ 1s represent presence of the item in the transaction

Global data swapping? (privacy not "user-visible")

Data perturbation?

 Independently flip some entries in the matrix. Don't flip with probability p, flip with probability 1-p (p=0.1 – 90% flips)

Torvald's Dilemma

Original Customer Tuple

Diapers	Insulin	Diet Coke	MS Office
0	1	0	0

Privacy Breach Measure

Reconstruction probability of a '1' in the ith column

Reconstruction Probability of a '1'

$$R(p, s_i) = \frac{s_i p^2}{s_i p + (1 - s_i)(1 - p)} + \frac{s_i (1 - p)^2}{s_i (1 - p) + (1 - s_i) p}$$

s_i = support for item *i* p = distortion parameter

 $R(p,s_i)$ for given s_i

Privacy Measure

$$P(p, s_i) = (1 - R(p, s_i)) \times 100$$

 $P(p,s_{i}) \text{ for } s_{i}=0.01$

Data Distortion and Psychology

diapers	Insulin	Diet Coke	MS Office	
1	1	0	1	• • • • • • •

90% distortion

10% distortion

More visible distortion P Happier Customer?

Outline

- Privacy by data distortion
- Mining the distorted database (MASK)
- Experimental Evaluation
- Run-time Optimizations
- Conclusions, Limitations and Future Work

MASK

(Mining Associations with Secrecy Konstraints)

- 1. F=?
- 2. Cands=Set of all items
- 3. Length=1
- 4. While Cands??
- 1. Count 2^{Length} components for each c? Cands
 - 2. Reconstruct the support for each c? Cands
 - Add all frequent itemsets to F
 - Cands=Apriori-Gen(Cands)
 - Length=Length+1
 - 5. Return F

Counters

- 2ⁿ counters for an n-itemset
- $\{c_{00}, c_{01}, c_{10}, c_{11}\}$ for a 2-itemset
- {c₀₀₀, c₀₀₁, c₀₁₀, c₀₁₁, c₁₀₀, c₁₀₁, c₁₁₀, c₁₁₁} for a *3*-itemset

MASK

(Mining Associations with Secrecy Konstraints)

- 1. F=?
- 2. Cands=Set of all items
- 3. Length=1
- 4. While Cands??

- 1. Count 2^{Length} components for each c? Cands
- 2. Reconstruct the support for each c? Cands
 - Add all frequent itemsets to F
 - Cands=Apriori-Gen(Cands)
 - Length=Length+1
 - 5. Return F

Support Reconstruction for 1-itemsets

$$\begin{bmatrix} \mathbf{p} & \mathbf{1} \cdot \mathbf{P} \\ \mathbf{1} \cdot \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1^D \\ \mathbf{c}_0^D \end{bmatrix} = \begin{bmatrix}$$

Support Reconstruction for an *n*-itemset

$$C = M^{-1}C^{D}$$

```
    C = Original 2<sup>n</sup> Counts
    C<sup>D</sup>= Distorted 2<sup>n</sup> Counts
    (eg. counts for 00, 01, 10, 11 for a 2-itemset)
```

$$\mathbf{M} = \{\mathbf{m}_{i,j}\}$$

 $m_{i,j}$ = probability that a tuple of the form j distorts to a tuple of the form i

eg. $m_{1,2}$ for a 3-itemset is the probability that a "010" tuple distorts to a "001" = $p \times (1-p) \times (1-p)$

The Big Picture

- User-visible Privacy
- Value of p is pre-decided
- Data-miner gets both the distorted data and p
- Reconstruction of supports

Outline

- Privacy by data distortion
- Mining the distorted database (MASK)
- Experimental Evaluation
- Run-time Optimizations
- Conclusions, Limitations and Future Work

Error Metrics

Support Error

$$r = \frac{1}{|F|} \sum_{f} \frac{|rec_\sup_{f} - act_\sup_{f}|}{act_\sup_{f}} \times 100$$

Identity Error

$$s^+ = \frac{|R - F|}{|F|} \times 100$$
 $s^- = \frac{|F - R|}{|F|} \times 100$ (false positives) (false negatives)

R=reconstructed set of frequent itemsets F=actual set of frequent itemsets

The Setup

- Scaled Real Dataset (BMS-WebView)
 - > 500 items
 - 0.6 million tuples
- Synthetic Dataset (IBM Almaden)
 - > 1000 items
 - 1 million tuples
- Experiments across p & sup_{min} values
- Low sup_{min} values are tough nuts

Results with p=0.9, $sup_{min}=0.25\%$

Level	[F]	?	s ⁻	S ⁺
1	249	5.9	4.0	2.8
2	239	3.9	6.7	7.1
3	73	2.6	11.0	9.6
4	4	1.4	0	25.0

Results with p=0.7, $sup_{min}=0.25\%$

Level	F	?	S	S ⁺
1	249	19.0	7.2	15.7
2	239	33.6	20.1	1907.5
3	73	32.9	30.1	2308.2
4	4	7.6	50.0	400.0

Effect of Relaxation p=0.9, $\sup_{min}=0.25\%$

10% relaxation in sup_{min}

Level	[F]	?	S	S ⁺
1	249	6.1	1.2	0.4
2	239	4.0	1.3	23.4
3	73	2.9	0	45.2
4	4	1.4	0	75.0

Summary of Experiments

- "Window of opportunity": around p=0.9 (symmetrically 0.1)
- Unusable Models as p? >0.5
- Significant loss of privacy as p? >1, 0
- Most identity errors occur near the sup_{min} boundary
- Low errors at higher levels

Outline

- Distortion and Reconstruction
- Privacy Metric
- MASK Algorithm
- Experimental Evaluation
- Run-time Optimizations
- Conclusions, Limitations and Future Work

Linear Number of Counters

- Each row of M₂ⁿ_{x2}ⁿ in C = M⁻¹C^D has only n+1 distinct entries
- Example (n = 2): $count(11) = a_0 count^D(00) + a_1 count^D(01) + a_2 count^D(10) + a_3 count^D(11)$ $a_1 = a_2$
- Only n+1 counters for an n-itemset

Cutting Down on Counting

Example (pass 2):

- $count^D(00) + count^D(01) + count^D(10) + count^D(11) = dbsize$
- Disregard '00' counts since 01, 10 and 11 are already being counted
- Speeds up pass 2 in experimental runs (p~0.9) by a factor of 4

Outline

- Distortion and Reconstruction
- Privacy Metric
- MASK Algorithm
- Experimental Evaluation
- Run-time Optimizations
- Conclusions, Limitations and Future Work

Conclusions

- Simple probabilistic distortion of data: "User-visible"
- Achieves conflicting goals of privacy and model accuracy
- Optimizations significantly reduce time and space complexity

Limitations

- Even with the optimizations, the time complexity is high compared to standard (non-privacy-preserving) mining
- Does not take into account the re-interrogation of data with mining results [KDD02]

Future Work

- Improvements in running time
- Refinement of privacy estimates
- Extensions to generalized and quantitative association rules

Take Away

Like Reagan to Gorbachev on monitoring nuclear reductions:

" Trust but verify",
our motto is

"Trust, but distort"