In [1]:

import pandas as pd

import pandas as po import numpy as np

In [2]: ▶

import matplotlib.pyplot as plt
import seaborn as sns

In [3]:

%matplotlib inline

In [4]: ▶

df=pd.read_csv("USA_Housing.csv")

In [5]: ▶

df.head()

Out[5]:

Addr	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry 674\nLaurabury, 370	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Vi Suite 079∖nL Kathleen, C	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizal Stravenue\nDanieltc WI 0648	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPC 44	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nf AE 09	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
•							- ◀

In [6]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [7]: ▶

df.describe()

Out[7]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [8]:

df.columns

Out[8]:

In [9]:
▶

sns.pairplot(df)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x1d52f87a520>

In [10]:
▶

sns.distplot(df["Price"])

C:\Users\Krishna Reddy\anaconda3\lib\site-packages\seaborn\distributions.py: 2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figur e-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [11]: ▶

df.corr()

Out[11]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

```
In [12]:
```

```
sns.heatmap(df.corr(), annot=True)
```

Out[12]:

<AxesSubplot:>


```
In [13]:

df.columns
```

Out[13]:

```
In [14]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [15]:
```

```
In [16]:
y=df[['Price']]
```

```
In [17]:
                                                                                            H
x_train,x_test,y_train,y_test=train_test_split(x,y ,test_size=0.4, random_state=101)
In [18]:
                                                                                            H
from sklearn.linear_model import LinearRegression
In [19]:
lm=LinearRegression()
In [20]:
                                                                                            H
lm.fit(x_train, y_train)
Out[20]:
LinearRegression()
                                                                                            H
In [21]:
print(lm.intercept_)
[-2640159.79685191]
In [22]:
                                                                                            H
x.columns
Out[22]:
Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Room
       'Avg. Area Number of Bedrooms', 'Area Population'],
      dtype='object')
In [23]:
                                                                                            H
print(lm.coef_)
[[2.15282755e+01 1.64883282e+05 1.22368678e+05 2.23380186e+03
  1.51504200e+01]]
In [24]:
                                                                                            H
prediction=lm.predict(x_test)
```

In [25]: ▶

plt.scatter(prediction,y_test)

Out[25]:

<matplotlib.collections.PathCollection at 0x1d537aabd30>

Out[39]:

82288.22251914957

In [40]:	M
<pre>a=mt.mean_squared_error(y_test,prediction) a</pre>	
Out[40]:	
10460958907.209507	
In [41]:	Н
np.sqrt(a)	
Out[41]:	
102278.82922291156	
In [42]:	Н
<pre>In [42]: mt.explained_variance_score(y_test,prediction)</pre>	H
	H
<pre>mt.explained_variance_score(y_test,prediction)</pre>	H
<pre>mt.explained_variance_score(y_test,prediction) Out[42]:</pre>	H
<pre>mt.explained_variance_score(y_test,prediction) Out[42]: 0.9178179926151797</pre>	
<pre>mt.explained_variance_score(y_test,prediction) Out[42]: 0.9178179926151797</pre>	