# **CS 3313 Foundations of Computing:**

### **Course Summary**

http://gw-cs3313-2021.github.io

#### **Decidable Problems**

- A problem is decidable if there is an algorithm to answer it.
  - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
  - Put another way, "decidable problem" = "recursive language."
- Otherwise, the problem is undecidable.

- Language is recursive if it is accepted by a TM that halts on all inputs.
- Language is recursively enumerable (r.e.) if it is accepted by a TM
  - TM halts and accepts if the string is in the language
  - However, TM may not halt if the string is not in the language

#### **Undecidable Problems**



#### A key proof technique: Reducability

- Reducibility of a problem A to problem B
- Given two problems A and B,
  - problem A is <u>reducible</u> to problem B if an algorithm for solving B can be used to solve problem A
    - Therefore, solving A cannot be harder than solving B
  - If A is undecidable and A is reducible to B, then B is undecidable
- Idea: If you had a black box that can solve instances of B, can you solve instances of A using calls to this Black box.
  - The black box is the assumed Algorithm for B.

#### Today....

- Review our undecidability results/proofs
  - One more example
- The Post correspondence problem
- Rice's Theorem: Undecidability properties of r.e. languages

#### Our current "collection" of undecidable languages

- 1. We proved that  $L_d$  and  $\overline{L_d}$  are not decidable
- 2.  $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \dots Halting Problem$
- 3. Does M halt on all inputs is undecidable
- 4.  $L_e = \{ \langle M \rangle \mid L(M) = \emptyset \}$  Given any TM M, does M accept empty set.
- 5. Subset: Given two Turing machines is Language accepted by  $M_1$  a subset of language accepted by  $M_2$   $\{ < M1, M2 > | L(M_1) \subseteq L(M_2) \}$
- 6. Blank Tape acceptance:  $\{ < M > | M \text{ halts on blank tape} \}$
- 7. Testing printing of symbol:  $\{ < M > | M \text{ prints out specific symbol a on the tape} \}$

#### Properties of recursively enumerable languages

- L is r.e. if it is accepted by a TM, L=L(M) for some TM M.
- Let P be a set of r.e. languages, each is a subset of  $\{0,1\}^*$  (or any alphabet) P is said to be a property of r.e. languages.
- $\blacksquare$  a set L has property P if L is an element of P
- In terms of properties of the language accepted by a turing machine, let  $L_P = \{ \langle M \rangle \mid L(M) \text{ is in P } \}$
- P is a *trivial property* if P is empty or P consists of all *r.e.* languages
  - All languages satisfy this property or none of them satisfy this property
- P is a *non-trivial property* otherwise.
  - Some languages satisfy this property, and some do not.

#### **Trivial and Non-trivial Properties**

- Non-trivial property: refers to a property satisfied by some but not all r.e. languages
- Trivial property: property satisfied by all or none (of r.e. languages)

- More formally:
- P is a *trivial property* if P is empty or P consists of all *r.e.* languages
- P is a *non-trivial property* otherwise.

#### Rice's Theorem

• Rice's Theorem: Any non-trivial property **P** of r.e. languages is undecidable.

- So how does one use this result.....
  - Observe that this theorem is about r.e. languages -- languages which are accepted by a TM
    - We can give a TM to accept a language in this set of languages
- Ex: Determining if  $\{ < M > | L(M) \text{ is finite} \}$  is undecidable.
- Proof —to apply Rice's theorem, we have to show that this is a non-trivial property..How?
  - Provide a TM  $M_1$  such that  $L(M_1)$  has this property  $-L(M_1)$  is finite.
  - Provide a TM  $M_2$  such that  $L(M_2)$  does not have this property  $-L(M_2)$  is infinite.
  - Therefore the property is non-trivial.

## Properties of CFL languages...and another important Undecidable Problem

#### The Post Correspondence Problem (PCP)

• Given two sequences of n strings on some alphabet  $\Sigma$ , for instance

$$A = w_1, w_2, ..., w_n$$
 and  $B = v_1, v_2, ..., v_n$ 

there is a Post correspondence solution (PC solution) for the pair (A, B) if there is a nonempty sequence of integers

$$i, j, ..., k$$
, such that  $w_i w_j ... w_k = v_i v_j ... v_k$ 

Example: assume A,B are

$$w_1 = 11,$$
  $w_2, = 10111,$   $w_3 = 10$   
 $v_1 = 111$  ,  $v_2, = 10,$   $v_3 = 0$ 

solution for this instance of (A, B) exists: sequence 2113

$$w_2 w_1 w_1 w_3 = 10111111110$$
  
 $v_2 v_1 v_1 v_3 = 10111111110$ 

#### The Undecidability of the Post Correspondence Problem

- The Post correspondence problem is to devise an algorithm that determines, for any (A, B) pair, whether or not there exists a PC solution
- For example, there is no PC solution if A and B consist of  $w_1 = 00$ ,  $w_2$ ,  $w_3 = 001$ ,  $w_3 = 1000$  and  $v_1 = 0$ ,  $v_2$ ,  $w_3 = 11$ ,  $v_3 = 11$
- **Theorem:** the Post correspondence problem (PCP) is undecidable
- result is crucial for showing the undecidability of various problems involving context-free languages

#### **Undecidable Problems for Context-Free Languages**

- The Post correspondence problem is a convenient tool to study some questions involving context-free languages
- The following questions, among others, can be shown to be undecidable
  - Given an arbitrary context-free grammar G, is G ambiguous?
  - Given arbitrary context-free grammars  $G_1$  and  $G_2$ , is  $L(G_1) \cap L(G_2) = \emptyset$ ?
  - Given arbitrary context-free grammars  $G_1$  and  $G_2$ , is  $L(G_1) = L(G_2)$ ?
  - Given arbitrary context-free grammars  $G_1$  and  $G_2$ , is  $L(G_1) \subseteq L(G_2)$ ?

#### **Computability/Decidability - Summary**

- Turing machines are capable of implementing any algorithm that can be implemented on today's von Neumann model of general purpose computers....Turing-Church Thesis
- Non-deterministic and Deterministic Turing machines have the same "power" in terms of what they can solve.
- It is not known is NDTM and DTM are equivalent in time efficiency....the P=NP problem.
- There are problems that cannot be solved using Turing machines – these are undecidable (unsolvable) problems.
  - Reducibility is a technique to show a problem is undecidable by reducing a known undecidable problem to this problem.

#### Automata, Grammars, Languages....structure?

- Different models of automata: DFA, PDA, TM
  - With increasing "power"
- Grammars to define languages....
  - Regular grammar = DFA
  - Context Free Grammar = PDA
- How do they relate to each other.....Chomsky Hierarchy

#### **Grammars: Definition**

- Definition: A grammar G (V,T,P,S) consists of:
  - V variables, T terminals, S start variables
  - P set of production rules
- By placing constraints on the type of production rules we get different classes of grammars
- Unrestricted grammar: Production rule is of the form  $x \rightarrow y$  where  $x, y \in (V \cup T)^+$
- Context Sensitive: |x| < |y|,  $x,y \in (V \cup T)^+$
- Context Free:  $x \in V$  and  $y \in (VUT)^*$
- Regular grammars:  $x \in V$  and at most one variable in y

#### **The Chomsky Hierarchy**

 The linguist Noam Chomsky summarized the relationship between language families by classifying them into four language types, type 0 to type 3 -- the Chomsky Hierarchy



#### **Automata Models and The Chomsky Hierarchy**

- Theorem: If G is a Regular grammar then L(G) is accepted by a DFA.
  - If L is accepted by a DFA then L =L(G) for some regular grammar G.
- Theorem: If G is a context free grammar, then L(G) is accepted by a PDA.
  - If L is accepted by a PDA then L =L(G) for some CFG G
- Theorem: If G is any unrestricted grammar then L(G) is accepted by a Turing machine.
  - All grammars are unrestricted grammars
- Theorem: If G is a context sensitive grammar then L(G) is accepted by a linear bounded automaton
  - A linear bounded automaton is a subclass of Turing machines

#### Other Mathematical Foundations of CS....?

- Automata and computability theory is a big part of foundations of CS
- Other mathematical abstractions and techniques ?
- Computational Logic first order logic
  - Theorem provers
  - Semantics of programs.....reasoning
- Recursive function theory and Lambda-Calculus
  - Foundations of functional programming languages
- Formal Learning theory
  - Rooted in mathematical logic and how recursive functions "learn"

#### This is all old stuff...why bother with foundations..

- Consider one of the high impact fields in CS: Machine learning
- Early machine learning expert systems
  - Ex: Q&A system

Ques: Has Paul done his Christmas Shopping yet

Ans: I don't know if he has bought anything for his mother.

- Today's learning built on Statistical Machine Learning
  - Logical Form: A implies B with probability P
- Problems that are being seen today ?
  - Where is this "probability P" coming from?
- So what's the solution...?
  - Researchers are pushing for considering combination of Reasoning and Statistical ML.

#### CS 3313 Summary: What was it about?

- Theoretical foundations of Computer Science
  - It's also a look at history of CS...Concept of computing existed before the first computer was built...
- Answer/Ask fundamental (abstract) questions:
  - What is computation –i.e., how do you define what an algorithm is?
  - mathematical models for different types of computing machines?
    - Why is this an interesting question ?
  - How do you formally define a language
    - Natural language or Programming language
- Study fundamental limits of computing, and properties of languages
  - Mathematical approach
- Above all: about problem solving using math tools
  - Mathematical puzzles which abstract "real" computational questions

#### Limits of Computation (of automata): Questions

- Can we use a finite state machine to build a compiler?
- Are all properties of a programming language (C) captured by a CFG (i.e, a PDA)?

- Can we design a compiler that will determine for any program, whether the program halts on all inputs
  - Or, will the compiler detect any bugs in the program ?
  - Or, are two programs equivalent? (do they compute the same function)

### Determining the simplest machine to solve a problem...

- Given a problem (language), what is the simplest (efficiency and cost) machine that can solve the problem?
  - DFA (Finite state machine)
  - PDA
  - Turing Machine
- How do you prove it is the simplest?
  - Prove it cannot be implemented on a simpler machine

#### Course Logistics: Final Exam May 4th 5:20pm

- Will try to post updated totals (HW, Quiz) before the Final
  - HW8 due tomorrow...
- Final: 40 points (out of 100 total exam points).
- Contents: Comprehensive but clear focus on Material after Exam 2.
- Format: Part A required, and Part B. Extra Credit
- 90 minutes for Part A (required questions Part A)
- 30 minutes for Part B (extra credit).
- Separate handin for each part.
- Extra Credit is added to your overall exam score so this an opportunity to improve your exam/course grade.
- Will schedule a review session for late next week.

#### Where to next.....

- Junior year: "core CS"
  - Systems Operating systems
    - Project intensive, lots of C and System skills
  - Algorithms
    - Problem solving skills, data structures, theoretical analysis
- These are more intense courses with more depth
  - Require more independent work....
  - Fewer Teaching Assistants (no LAs!)

#### Where to next.....

- Augmenting your skills/knowledge. (summer)
  - Work on independent projects or internships
    - Forming a group and building a project provides structure
  - All your peers in CS are doing this.....classes provide a small part of the overall skillset
  - Examples:
    - programming languages (Python or R or more C?)
    - Software packages
    - Databases learn more MongoDB (or ArangoDB)...you have the skills needed from DB class (Python, AWS,...)
      - Build a simple data analytics application
    - Web development (JavaScript ?)
    - Mobile app dev iOS (?) ... Event driven programming

#### Where to next.....

- Rest, Recuperate, Recharge.....
  - 2020-21 Academic year has been anything but easy!

