Qual Prep Page 1

b)
$$\psi: M \times M \rightarrow M$$

 $(a, b) \rightarrow a \cdot b$
 $\psi(a,b) = e(id)$

C)
$$f(x,y) = y^2 - (x-1)(x-a)x$$
, $f = 0$, find what values of a make 0 be a regular value

of is a 1x2 matrix,
$$PEMa = f^{-1}(0)$$

of $3f = (3f, 3f)$ of $3f = 5ing$.
if $3f \neq 0$ or $3f \neq 0$

1) If
$$\frac{\partial f}{\partial x} = 0$$
, $\alpha = \{\text{Set } i\}$

if o is critical

$$\int_{-1}^{2} \int_{-1}^{2} \int_{0}^{2} \int_{$$

$$|a+|$$
 at $a=|y^2=x(x-1)^2$

 $y^{2} = \chi^{2}(\chi - 1)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

Qual Prep Page

Sato, at a=0
$$y^2 = \chi^2(\chi-1)$$

[at 1 at a=1 $y^2 = \chi(\chi-1)^2$

No.

b) $\int_{M} d(x \wedge \beta) = \int_{\partial M} x \wedge \beta$

$$= \int_{N_0} x \wedge \beta + \int_{N_1} x \wedge \beta \qquad (Stoke's)$$

$$= \int_{N_0} i^*(x) \wedge i^*(\beta) + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= 0$$

$$\Rightarrow \int_{M} d(x \wedge \beta) = \int_{M} d(x \wedge \beta) + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} i^*(x) \wedge i^*(\beta) + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} i^*(x) \wedge i^*(\beta) + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_0} x \wedge \beta + \int_{N_2} i^*(x) \wedge i^*(\beta)$$

$$= \int_{N_0} x \wedge \beta + \int_{N_0} x \wedge \beta$$

C) W - CX is closed. Want to Show (find a C', s.t.) W - CX is exact. $\int_{S^1} x = 2\pi + 0 \implies x \text{ not exact}$ $(W - CX) \neq 0$

$$\int_{S}^{\infty} (w - Cx) \neq 0$$

$$= \int_{S}^{\infty} w - 2\pi C \neq 0 \Rightarrow C = 2\pi \int_{S}^{\infty} w$$

Qual Prep Page 3

then $\int_{S^1} (w - c\alpha) = 0$, moreover $w - c\alpha$ is closed $\int_{Y} (w - c\alpha) = 0 \quad \text{for any } \text{y in } \mathbb{R}^2/\sqrt{90}$ where y closed $\text{y is random,} \implies w - c\alpha \text{ is exact.}$

D= ker W, Λ ker Wz.

If exists α , β s.t. $dw_1 = \alpha \Lambda W_1 + \beta \Lambda W_2$ $\alpha = \sum_{i=1}^{n} \alpha_i w_i$ $Can you find <math>\alpha_i$'s β_i 's $dw_1(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}) \frac{n(n-1)}{2} many eqns.$