ACT_3

October 9, 2023

1 ACT 3

1.0.1 Team Number: 7

1.0.2 Team Members: Jacob Silva

1.0.3 Juliana Steele

1.0.4 Joel Hurtado

1.0.5 Read the data into your software system

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.linear_model import Lasso
import seaborn as sns

# the file is saved in the main folder. You should be able to run by adding the
file to the envrionment
data = pd.read_excel('ACT_03_Data.xlsx')
data
```

[]:		Id	MSZoning	FireplaceQu	GAR	SalePrice	BATH	Age	TSF
	0	614	RL	NaN	0	147000	1.0	0	1120
	1	1454	RL	NaN	0	84500	1.0	0	1140
	2	429	RL	NaN	628	195400	2.0	0	1208
	3	508	FV	NaN	676	208300	2.0	0	1218
	4	1022	RL	NaN	632	194000	2.0	0	1220
		•••	•••						
	1455	1133	RM	NaN	205	117500	2.0	127	2210
	1456	305	RM	Ex	870	295000	3.0	128	3493
	1457	748	RM	Gd	864	265979	1.5	129	2640
	1458	1138	RL	NaN	0	94000	1.0	135	1020
	1459	1350	RM	NaN	0	122000	2.0	136	2153

[1460 rows x 8 columns]

1.0.6 Produce a scatter plot of SalePrice and TSF.

```
[]: plt.scatter(data['SalePrice'], data['TSF'])
plt.show()
```


1.0.7 Produce a scatter plot of SalePrice and Age.

```
[]: plt.scatter(data['SalePrice'], data['Age'])
plt.show()
```



```
[]: plt.scatter(data['Age'], data['SalePrice'])
plt.show()
```



```
[]: saleprice_data = data['SalePrice'] #taking the log was not useful
Age_data = data['Age']

log_saleprice_data = np.log(saleprice_data)
log_Age_data = np.log(Age_data)
plt.scatter(log_saleprice_data,log_Age_data)
plt.show()
```

/usr/local/lib/python3.10/dist-packages/pandas/core/arraylike.py:402:
RuntimeWarning: divide by zero encountered in log
 result = getattr(ufunc, method)(*inputs, **kwargs)

1.0.8 Split data into two subsets, a training set and a validation set. The training set has approximately 80% of the data.

1.0.9 Build the first multiple regression model with four numerical predictors TSF, Age, BATH, and GAR (Model I)

```
[]: from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold
```

```
X = data[['TSF', 'Age', 'BATH', 'GAR']]
y = data['SalePrice']
X_train_1, X_test_1, y_train_1, y_test_1 = train_test_split(X, y, test_size=0.
→2, random_state=42)
model = LinearRegression()
model.fit(X_train_1, y_train_1)
y_pred = model.predict(X_test_1)
y_pred_train = model.predict(X_train_1)
mse = mean_squared_error(y_test_1, y_pred)
r2 = r2_score(y_test_1, y_pred)
print(f'Mean Squared Error (MSE): {mse}')
print(f'R-squared (R2): {r2}')
print()
print()
print()
X_train_1 = sm.add_constant(X_train_1)
model = sm.OLS(y_train_1, X_train_1).fit()
print(model.summary())
kf = KFold(n_splits=5, shuffle=True, random_state=42)
mse_scores = []
r2_scores = []
for train_index, test_index in kf.split(X):
   X_train_cv, X_test_cv = X.iloc[train_index], X.iloc[test_index]
   y_train_cv, y_test_cv = y.iloc[train_index], y.iloc[test_index]
   X_train_cv = sm.add_constant(X_train_cv)
   model_cv = sm.OLS(y_train_cv, X_train_cv).fit()
   X_test_cv = sm.add_constant(X_test_cv)
   y_pred_cv = model_cv.predict(X_test_cv)
   mse_cv = mean_squared_error(y_test_cv, y_pred_cv)
   r2_cv = r2_score(y_test_cv, y_pred_cv)
```

```
mse_scores.append(mse_cv)
    r2_scores.append(r2_cv)
mean_mse_cv = np.mean(mse_scores)
mean_r2_cv = np.mean(r2_scores)
# Define and train the regression model
model = LinearRegression()
model.fit(X_train_1, y_train_1)
# Make predictions on the testing set
# Calculate residuals for the training set
residuals_train = y_train_1 - y_pred_train
# Calculate ASE for the training set
sse_train = np.sum(residuals_train**2)
ase_scores = sse_train / len(y_train_1)
print(f'ASE for Training Set: {ase_scores}')
mean_ase_cv = np.mean(ase_scores)
data ASE = {
    'K-fold': ['1','2','3','4','5'],
    'Cross-Validation MSE Scores':[__
 _mse_scores[0],mse_scores[1],mse_scores[2],mse_scores[3],mse_scores[4]],
    'Mean Cross-Validation MSE': [mean_mse_cv]*5,
    'Cross-Validation R2 Scores':
 [12] scores[0], r2_scores[1], r2_scores[2], r2_scores[3], r2_scores[4]],
    'Mean Cross-Validation R2': [mean_r2_cv]*5,
    'Average Squared Error (ASE)': [ase_scores]*5
}
ASE_model_1 = pd.DataFrame(data_ASE)
model_1_table = pd.DataFrame(data_ASE)
style_dict = {
    'text-align': 'center',
    'border': '1px solid black'
}
model_1_table.reset_index(drop=True, inplace=True)
model_1_table = model_1_table.reset_index(drop=True)
styled_Table_model_1 = model_1_table.style.set_properties(**style_dict)
```

styled_Table_model_1

Mean Squared Error (MSE): 2632874083.439605

R-squared (R2): 0.5447171052964432

OLS Regression Results

========				:=====:	====			
Dep. Varial	SalePrice			R-sq	uared:	0.716		
Model:	OLS			Adj. R-squared:			0.715	
Method:	Least Squares			F-st	atistic:	732.4		
Date:		Tue, 10 Oct 2023		2023	Prob (F-statistic):			7.37e-316
Time:		01:27:52		27:52	Log-	Likelihood:		-14112.
No. Observa	ations:	1168		1168	AIC:		2.823e+04	
Df Residual	ls:	1163		1163	BIC:			2.826e+04
Df Model:				4				
Covariance	Type:	1	nonro	bust				
========	coei	std	err		===== t	P> t	[0.025	0.975]
const	5.171e+04	1 6036	 . 094	8	 .567	0.000	3.99e+04	6.36e+04
TSF	105.2914	1 4	.066	25	.893	0.000	97.313	113.270
Age	-920.4186	5 54	. 521	-16	.882	0.000	-1027.389	-813.449
BATH	-1.91e+04	3419	.567	-5	.587	0.000	-2.58e+04	-1.24e+04
GAR	80.9210	7	.361	10	.993	0.000	66.479	95.363
Omnibus:	=======		342	 2.586	==== Durb	in-Watson:		1.953
Prob(Omnibus):		0.000		Jarque-Bera (JB):			6036.936	
Skew:		0.880		0.880	Prob(JB):			0.00
Kurtosis:			13	3.998	Cond	. No.		8.36e+03
========								

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.36e+03. This might indicate that there are strong multicollinearity or other numerical problems.

ASE for Training Set: 1828356162.4328048

[]: <pandas.io.formats.style.Styler at 0x7fa56e672e30>

#Build the second multiple regression model with four numerical predictors and two categorical predictors (Model II)

[]: import statsmodels.api as sm

```
X 2 = pd.get_dummies(data[['TSF', 'Age', 'BATH', 'GAR', 'FireplaceQu', _

'MSZoning']], columns=['MSZoning','FireplaceQu'], drop_first=True)

y = data['SalePrice']
X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X_2, y, test_size=0.
→2, random_state=42)
model_2 = LinearRegression()
model_2.fit(X_train_2, y_train_2)
y_pred_2 = model_2.predict(X_test_2)
# Calculate SSE for the training set
y_pred_train = model_2.predict(X_train_2)
sse_train = ((y_test_2 - y_pred_2) ** 2).sum()
# Calculate the number of data points
n_train = len(y_train_2)
# Calculate ASE for the test set and training set
ase_scores_2 = sse_train / n_train
print(f'ASE for Training Set: {ase_scores_2}')
mse_2 = mean_squared_error(y_test_2, y_pred_2)
r2_2 = r2_score(y_test_2, y_pred_2)
print(f'Mean Squared Error (MSE): {mse}')
X_2 = sm.add_constant(X_2)
model_2 = sm.OLS(y, X_2).fit()
summary = model_2.summary()
print(summary)
kf = KFold(n_splits=5, shuffle=True, random_state=42)
mse_scores_2 = []
r2\_scores\_2 = []
for train_index, test_index in kf.split(X_2):
    X_train_cv_2, X_test_cv_2 = X_2.iloc[train_index], X_2.iloc[test_index]
    y_train_cv_2, y_test_cv_2 = y.iloc[train_index], y.iloc[test_index]
    X_train_cv_2 = sm.add_constant(X_train_cv_2)
    model_cv_2 = sm.OLS(y_train_cv_2, X_train_cv_2).fit()
```

```
X_test_cv_2 = sm.add_constant(X_test_cv_2)
   y_pred_cv_2 = model_cv_2.predict(X_test_cv_2)
   mse_cv_2 = mean_squared_error(y_test_cv_2, y_pred_cv_2)
   r2_cv_2 = r2_score(y_test_cv_2, y_pred_cv_2)
   mse scores 2.append(mse cv 2)
   r2_scores_2.append(r2_cv_2)
mean_mse_cv_2 = np.mean(mse_scores_2)
mean_r2_cv_2 = np.mean(r2_scores_2)
mean_ase_cv_2 = np.mean(ase_scores_2)
data_ASE_2 = {
   'K-fold': ['1','2','3','4','5'],
    'Cross-Validation MSE Scores':[_
 ⇒mse_scores_2[0],mse_scores_2[1],mse_scores_2[2],mse_scores_2[3],mse_scores_2[4]],
    'Mean Cross-Validation MSE': [mean mse cv 2]*5,
    'Cross-Validation R2 Scores':
 →[r2_scores_2[0],r2_scores_2[1],r2_scores_2[2],r2_scores_2[3],r2_scores_2[4]],
    'Mean Cross-Validation R2': [mean_r2_cv_2]*5,
    'Average Squared Error (ASE)': [ase_scores_2]*5
}
ASE_model_2 = pd.DataFrame(data_ASE_2)
model_2_table = pd.DataFrame(data_ASE_2)
style_dict = {
    'text-align': 'center',
    'border': '1px solid black'
}
model_2_table.reset_index(drop=True, inplace=True)
model_2_table = model_2_table.reset_index(drop=True)
styled_Table_model_2 = model_2_table.style.set_properties(**style_dict)
styled_Table_model_2
```

ASE for Training Set: 612833834.7511606

Mean Squared Error (MSE): 2632874083.439605

OLS Regression Results

==========	========	=========	=========	.=======	.=======	
Dep. Variable:		SalePrice	R-squared:			0.706
Model:	Adj. R-squared:		0.703			
Method:	F-statistic:		289.3			
Date:		10 Oct 2023				0.00
Time:	140,		Log-Likeli			-17651.
No. Observation	g •	1460	_	iioou.		533e+04
Df Residuals:	ь.	1447				540e+04
		12	DIG.		0.0	7406104
Df Model:						
Covariance Type		nonrobust				
	=======	========	========	=======		
==				5 . 1. 1	F0 005	
	coei	std err	t	P> t	[0.025	
0.975]						
const	1.988e+04	1.51e+04	1.317	0.188	-9738.277	
4.95e+04						
TSF	85.9443	3.688	23.301	0.000	78.709	
93.179						
Age	-805.6540	52.817	-15.254	0.000	-909.260	
-702.048						
BATH	-9457.0258	3062.585	-3.088	0.002	-1.55e+04	
-3449.444						
GAR	74.7712	6.815	10.971	0.000	61.402	
88.140						
MSZoning_FV	3.455e+04	1.52e+04	2.278	0.023	4793.530	
6.43e+04	0.1000.01	1.020.01	2.2.0	0.020	1100.000	
MSZoning_RH	2 4650+04	1 750+04	1.404	0.160	-9776.439	
5.91e+04	2.4000104	1.700.04	1.404	0.100	3110.403	
MSZoning_RL	3.791e+04	1.4e+04	2.712	0.007	1.05e+04	
6.53e+04	3.791e+04	1.40+04	2.712	0.007	1.056+04	
	0.04-104	1 /1-10/	0.010	0 044	907 900	
MSZoning_RM	2.846+04	1.41e+04	2.019	0.044	807.209	
5.6e+04	0004 5855	FF.40.400	0.000	0 545	4 04 .04	
FireplaceQu_Fa	2801.5755	7740.198	0.362	0.717	-1.24e+04	
1.8e+04						
FireplaceQu_Gd	2.287e+04	3001.796	7.620	0.000	1.7e+04	
2.88e+04						
FireplaceQu_Po	-6004.0568	9825.249	-0.611	0.541	-2.53e+04	
1.33e+04						
$FireplaceQu_TA$	524.6274	3221.184	0.163	0.871	-5794.062	
6843.317						
0						
Omnibus:		393.258	Durbin-Wat		05	1.501
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	25	588.481
Skew:		0.268	Prob(JB):			0.00
Kurtosis:		23.502	Cond. No.		4	.67e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.67e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- []: <pandas.io.formats.style.Styler at 0x7fa56e517730>

#Build the third multiple regression model with all predictors using stepwise selection. (Model III)

```
[]: X = pd.get_dummies(
                           data[['TSF', 'Age', 'BATH', 'GAR', 'FireplaceQu', _
      columns=['MSZoning','FireplaceQu']
                         )
     y = data['SalePrice']
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # step-wise with forward selection
     def forward_selection(data, target):
        selected_features = []
        remaining_features = list(data.columns)
        while remaining_features:
            best_pvalue = float('inf')
            best_feature = None
             for feature in remaining_features:
                 model = sm.OLS(target, sm.add_constant(data[selected_features +_
      ⇔[feature]])).fit()
                 pvalue = model.pvalues[feature]
                 if pvalue < best_pvalue:</pre>
                     best_pvalue = pvalue
                    best_feature = feature
             if best_pvalue < 0.05: # Adjust the significance level as needed
                 selected_features.append(best_feature)
                 remaining_features.remove(best_feature)
             else:
                 break
        return selected_features
```

OLS Regression Results

===========		========	========				
Dep. Variable: SalePrice			R-squared:		0.740		
Model:	Adj. R-squ	ared:	0.739				
Method:	Le	ast Squares	F-statisti	.c:	471.9		
Date:	Tue,	10 Oct 2023	Prob (F-st	atistic):		0.00	
Time:		01:28:04	Log-Likeli	hood:	-14060.		
No. Observation	ns:	1168	AIC:		2.814e+04		
Df Residuals:		1160	BIC:		2.8	318e+04	
Df Model:		7					
Covariance Type	e:	nonrobust					
==		========	========		========		
	coef	std err	t	P> t	[0.025		
0.975]	5501	204 011	3	1.101	[0.020		
const	4.606e+04	6440.229	7.152	0.000	3.34e+04		
5.87e+04							
TSF	92.9307	4.076	22.801	0.000	84.934		
100.927							
Age	-836.4845	54.283	-15.410	0.000	-942.988		
-729.981							
GAR	74.8727	7.079	10.577	0.000	60.984		
88.761							
FireplaceQu_Gd	2.284e+04	2873.402	7.948	0.000	1.72e+04		
2.85e+04	7 004 :04	0070 530	7 040	0.000	F 00 :04		
FireplaceQu_Ex 9.17e+04	7.231e+04	9879.562	7.319	0.000	5.29e+04		
BATH	-1.306e+04	3330.641	-3.923	0.000	-1.96e+04		
-6529.908	1.0006.04	0000.041	0.920	0.000	1.306.04		
	7870.8759	3101.107	2.538	0.011	1786.469		
1.4e+04	1010.0109	0101.101	2.000	0.011	1100.409		
1.10.01							

 Omnibus:
 379.695
 Durbin-Watson:
 1.968

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7450.335

 Skew:
 0.996
 Prob(JB):
 0.00

 Kurtosis:
 15.212
 Cond. No.
 1.36e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.36e+04. This might indicate that there are strong multicollinearity or other numerical problems.

ASE for Training Set: 1672286859.904567

1.0.10 Backward Elimination

```
[]: def backward_elimination(X_train, y_train, significance_level=.6):
    num_predictors = X_train.shape[1]
    for i in range(num_predictors):
        model = sm.OLS(y_train, X_train).fit()
        p_values = model.pvalues[1:]
        max_p_value = p_values.max()
        if max_p_value > significance_level:
            max_p_value_index = p_values.idxmax()
            X_train = X_train.drop(max_p_value_index, axis=1)
        else:
            break
        return model

final_model = backward_elimination(X_train, y_train)

print(final_model.summary())
```

OLS Regression Results

______ Dep. Variable: SalePrice R-squared: 0.741 Model: OLS Adj. R-squared: 0.739 Method: Least Squares F-statistic: 276.0 Tue, 10 Oct 2023 Prob (F-statistic): Date: 0.00 Time: 01:28:10 Log-Likelihood: -14057. No. Observations: 1168 AIC: 2.814e+04 BIC: Df Residuals: 1155 2.821e+04 Df Model: 12 Covariance Type: nonrobust ______

==

0.0753	coef	std err	t	P> t	[0.025	
0.975]						
TSF	92.7919	4.212	22.031	0.000	84.528	
101.056						
Age	-807.8424	56.161	-14.384	0.000	-918.032	
-697.653 BATH	-1.396e+04	3366.568	-4.147	0.000	-2.06e+04	
-7356.160	-1.3300+04	3300.300	-4.147	0.000	-2.000+04	
GAR	75.0921	7.124	10.540	0.000	61.114	
89.070						
MSZoning_C	2.242e+04	1.52e+04	1.476	0.140	-7386.549	
5.22e+04						
MSZoning_FV	5.511e+04	8477.244	6.500	0.000	3.85e+04	
7.17e+04						
MSZoning_RH	4.608e+04	1.21e+04	3.797	0.000	2.23e+04	
6.99e+04 MSZoning_RL	5.369e+04	5812.316	9.236	0.000	4.23e+04	
6.51e+04	5.309e+04	3612.310	9.230	0.000	4.230+04	
MSZoning_RM	4.41e+04	6812.595	6.473	0.000	3.07e+04	
5.75e+04						
FireplaceQu_Ex	7.386e+04	1.01e+04	7.312	0.000	5.4e+04	
9.37e+04						
${\tt FireplaceQu_Fa}$	7232.4047	8285.344	0.873	0.383	-9023.606	
2.35e+04						
FireplaceQu_Gd	2.382e+04	3233.922	7.365	0.000	1.75e+04	
3.02e+04	04.47 0000	0540 440	0.644	0 544	4744 400	
FireplaceQu_TA 9038.567	2147.0836	3512.443	0.611	0.541	-4744.400	
9036.307	=========	=========		:=======		=====
Omnibus:		393.223	Durbin-Wat	son:		1.974
Prob(Omnibus):		0.000	Jarque-Ber	ca (JB):	76	67.884
Skew:		1.052	Prob(JB):			0.00
Kurtosis:		15.375	Cond. No.		2.	32e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

#Build the last multiple regression model with all predictors using LASSO selection (Model IV)

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u

→random_state=42)
```

```
alpha = 1.0
     lasso_model = Lasso(alpha=alpha)
     lasso_model.fit(X_train, y_train)
     y_pred = lasso_model.predict(X_test)
     y_pred_train = lasso_model.predict(X_train)
     sse_train = ((y_train - y_pred_train) ** 2).sum()
     # Calculate the number of data points
     n_train = len(y_train)
     # Calculate ASE for the test set and training set
     ase_train = sse_train / n_train
     print(f'ASE for Training Set: {ase_train}')
     mse = mean_squared_error(y_test, y_pred)
     r2 = r2_score(y_test, y_pred)
     print(f"Mean Squared Error: {mse}")
     print(f"R-squared: {r2}")
     selected_features = [feature for feature, coef in zip(X.columns, lasso_model.
     ocoef ) if coef != 0]
     num_selected_predictors = np.sum(lasso_model.coef_ != 0)
     print(f"Number of Selected Predictors: {num_selected_predictors}")
     adjusted_r2 = 1 - ((1 - r2) * (n_train - 1) / (n_train - 1)
      →num_selected_predictors - 1))
     print(f"Adjusted R-squared: {adjusted_r2}")
    ASE for Training Set: 1663397596.6416483
    Mean Squared Error: 2319402961.3982716
    R-squared: 0.5989232827762649
    Number of Selected Predictors: 13
    Adjusted R-squared: 0.5944050875215782
[]: # Calculate residuals
     residuals = y_test - y_pred
     # Create a residual plot
     plt.figure(figsize=(8, 6))
     sns.scatterplot(x=y_pred, y=residuals)
     plt.axhline(y=0, color='r', linestyle='--') # Add a horizontal line at y=0 for
     ⊶reference
     plt.xlabel('Predicted Values')
     plt.ylabel('Residuals')
```

```
plt.title('Residual Plot')
plt.show()
```


#After completion of this activity, complete the following table

```
styled_Table
```

[]: <pandas.io.formats.style.Styler at 0x7fa56b6f6620>

2 What is the best model using the criterion of your choice?

Here we can compare the ASE between the models and typically we want to focus on the lower errors. Here model 2-4 have around the same ASE so we should hone in on them. As far as R^2, the higher the number, the better we can explain the variance of the dependant variable due to the independant variables. Here 3 has the slight advantage around 0.741 which means the around 74% of the variance of dependant variables can be explained by the independant variables. Since we are looking at 2-4, it looks like the Step-wise model is the best model.

3 Find the predicted value for each house in the table below:

```
[]: data_points = [
        [3000, 10, 2.5, 600, 0, 0, 0, 1, 0, 1, 0, 0, 0],
        [3000, 10, 2.5, 600, 0, 0, 0, 1, 0, 0, 0, 0, 1],
        [3000, 10, 3, 600, 0, 0, 0, 0, 1, 1, 0, 0, 0],
        [3000, 15, 3, 600, 0, 0, 0, 0, 1, 0, 0, 0, 1],
        [3200, 20, 4, 800, 0, 0, 0, 0, 1, 1, 0, 0, 0]
]

predicted_prices = []

for data_point in data_points:
    predicted_sale_price = final_model.predict(sm.add_constant([data_point]))
    predicted_prices.append(predicted_sale_price[0])

for i, predicted_price in enumerate(predicted_prices):
    print(f'Predicted_Sale_Price_for_House_{i} + 1): {predicted_price}')
```

Predicted Sale Price for House 1: 407992.24428484426 Predicted Sale Price for House 2: 336281.29243558727 Predicted Sale Price for House 3: 391426.84970698575 Predicted Sale Price for House 4: 315676.6859179327 Predicted Sale Price for House 5: 402963.80919305363