Introduction to Audio Content Analysis

Module 3.5: Feature Dimensionality Reduction

alexander lerch

introduction

overview

corresponding textbook section

Chapter 3 — Instantaneous Features: pp. 66–69

Appendix C — Principal Component Analysis: pp. 199-200

lecture content

- problems of dimensionality
- feature selection
- feature transformation/mapping

learning objectives

- describe potential challenges with high-dimensional feature spaces
- discuss advantages and disadvantages of various methods for feature selection
- summarize PCA as feature transformation method

introduction

overview

corresponding textbook section

Chapter 3 — Instantaneous Features: pp. 66–69

Appendix C — Principal Component Analysis: pp. 199–200

lecture content

- problems of dimensionality
- feature selection
- feature transformation/mapping

learning objectives

- describe potential challenges with high-dimensional feature spaces
- discuss advantages and disadvantages of various methods for feature selection
- summarize PCA as feature transformation method

introduction

dimensionality reduction

problem

- many ML approaches cannot cope with large amounts of irrelevant features
- ML algorithms might degrade in performance

advantages

- reducing storage requirements
- reducing training complexity
- defying the "curse of dimensionality"

disadvantages

- additional workload for reduction
- adding an additional layer of model complexity

introduction dimensionality reduction

problem

- many ML approaches cannot cope with large amounts of irrelevant features
- ML algorithms might degrade in performance

advantages

- reducing storage requirements
- reducing training complexity
- defying the "curse of dimensionality"

disadvantages

- additional workload for reduction
- adding an additional layer of model complexity

introduction dimensionality reduction

problem

- many ML approaches cannot cope with large amounts of irrelevant features
- ML algorithms might degrade in performance

advantages

- reducing storage requirements
- reducing training complexity
- defying the "curse of dimensionality"

disadvantages

- additional workload for reduction
- adding an additional layer of model complexity

introduction dimensionality issues

Georgia Center for Music Tech Techology College of Design

problems of high-dimensional data:

- increase in run-time
- overfitting
- curse of dimensionality
- required amount of training samples

Tech | Technology

College of Design

Georgia

introduction

dimensionality issues

problems of high-dimensional data:

- increase in run-time
- overfitting
- curse of dimensionality
- required amount of training samples
- ⇒ increasing number of input features may *decrease* classification performance

dimensionality issues

overfitting:

- lack of training data
- overly complex model
- ⇒ model cannot be estimated properly
 - required training set size depends on
 - classifier and its parametrization
 - number of classes
 - · . . .
 - rule of thumb: don't bother with training sets smaller than \mathcal{F}'

overfitting:

- lack of training data
- overly complex model
- model cannot be estimated properly

https://en.wikipedia.org/wiki/Overfitting

dimensionality issues

Georgia Center for Music Tech Technology

overfitting:

- lack of training data
- overly complex model
- ⇒ model cannot be estimated properly
 - required training set size depends on
 - classifier and its parametrization
 - number of classes
 -
 - rule of thumb: don't bother with training sets smaller than \mathcal{F}^2

curse of dimensionality:

- increasing dimensionality leads to sparse training data
- neighborhoods of data points become less concentrated model tends to be harder to estimate in higher-dimensional space
- applies to distance-based algorithms
- example (uniformly distributed) data)
 - identify region on axis covering
 - 1% of data
 - 1-D: 1% of x-axis
 - 2-D: 10% of x-axis/y-axis
 - 3-D: 21.5% of
 - x-axis/y-axis/z-axis
 - 10-D: 63%
 - 100-D: 95%

dimensionality reduction introduction

- feature subset selection: discard least helpful features
 - high "discriminative" or descriptive powe
 - non-correlation to other features
 - invariance to irrelevancies
- feature space transformation: map feature space

dimensionality reduction introduction

- feature subset selection: discard least helpful features
 - high "discriminative" or descriptive power
 - non-correlation to other features
 - invariance to irrelevancies
- feature space transformation: map feature space

feature subset selection manual feature selection

Georgia Center for Music Tech Tech College of Design

example scatter plots of pairs of features in a multi-class scenario

introduction

Georgia Center for Music Tech Tech College of Design

- description
 - use the "classifier" itself to evaluate feature performance
- advantages
 - taking into account feature dependencies
 - model dependency
- disadvantages
 - complexity
 - risk of overfitting
- 6 filter methods:
 - description
 - use an objective function
 - advantages
 - easily scalable
 - independent of classification algorithm
 - disadvantages
 - e no interaction with classifier
 - a no feature dependencies

- wrapper methods:
 - description
 - use the "classifier" itself to evaluate feature performance
 - - advantages
 - taking into account feature dependencies
 - model dependency
 - disadvantages
 - complexity
 - risk of overfitting
- filter methods:
 - description

 - use an objective function
 - advantages
 - easily scalable
 - independent of classification algorithm
 - disadvantages
 - no interaction with classifier
 - no feature dependencies

wrapper methods 1/2

- single variable classification:
 - procedure
 - evaluate each feature individually
 - choose the top N
 - complexity
 - ullet subsets to test: ${\cal F}$
 - challenges
 - inter-feature correlation is not considered
 - feature combinations are not considered
- brute force subset selection
 - procedure
 - evaluate all possible feature combinations
 - choose the optimal combination
 - complexity
 - subsets to test: 2³

wrapper methods 1/2

Georgia Center for Music Tech College of Design

o single variable classification:

- procedure
 - evaluate each feature individually
 - choose the top N
- complexity
 - subsets to test: \mathcal{F}
- challenges
 - inter-feature correlation is not considered
 - feature combinations are not considered

brute force subset selection

- procedure
 - evaluate all possible feature combinations
 - choose the optimal combination
- complexity
 - subsets to test: $2^{\mathcal{F}}$

wrapper methods 2/2

Georgia Center for Music Tech | Technology College of Design

- sequential forward selection
 - procedure
 - **1** init: empty feature subset $V_{\rm s} = \emptyset$
 - find feature v_i maximizing objective function

$$v_j = rgmax_{orall j \mid v_j
otin \mathcal{V}_{\mathrm{s}}} J(\mathcal{V}_{\mathrm{s}} igcup v_j)$$

- add feature v_i to \mathcal{V}_s
- go to step 2

wrapper methods 2/2

sequential forward selection

- procedure
 - $oldsymbol{0}$ init: empty feature subset $\mathcal{V}_{\mathrm{s}}=\emptyset$
 - \bigcirc find feature v_i maximizing objective function

$$v_j = rgmax_j J(\mathcal{V}_{\mathrm{s}} \bigcup v_j)$$

- \odot add feature v_j to \mathcal{V}_{s}
- go to step 2

sequential backward elimination

- procedure
 - init: full feature set
 - \bigcirc find feature v_i with the least impact on objective function
 - discard feature v_i
 - go to step 2

feature space transformation PCA introduction

Georgia Center for Music Tech Technology

objective

map features to new coordinate system

$$\boldsymbol{u}(n) = \boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{v}(n)$$

- u(n): transformed features (same dimension as v(n))
- T: transformation matrix $(\mathcal{F} \times \mathcal{F})$

$$extbf{\textit{T}} = \left[egin{array}{cccc} extbf{\textit{c}}_0 & extbf{\textit{c}}_1 & \dots & extbf{\textit{c}}_{\mathcal{F}-1} \end{array}
ight]$$

- properties
 - \circ c_0 points in the direction of highest variance
 - variance concentrated in as few output components as possible
 - c; orthogonal

$$\mathbf{c}^{\mathrm{T}} \cdot \mathbf{c}_{i} = 0 \quad \forall \ i \neq i$$

transformation is invertible

$$v(n) = T \cdot u(n)$$

feature space transformation PCA introduction

Georgia Center for Music Tech Technology

objective

map features to new coordinate system

$$\boldsymbol{u}(n) = \boldsymbol{T}^{\mathrm{T}} \cdot \boldsymbol{v}(n)$$

- u(n): transformed features (same dimension as v(n))
- T: transformation matrix $(\mathcal{F} \times \mathcal{F})$

$$T = [\begin{array}{ccccc} \boldsymbol{c}_0 & \boldsymbol{c}_1 & \dots & \boldsymbol{c}_{\mathcal{F}-1} \end{array}]$$

properties

- c_0 points in the direction of highest variance
- variance concentrated in as few output components as possible

$$\boldsymbol{c}_{i}^{\mathrm{T}} \cdot \boldsymbol{c}_{i} = 0 \quad \forall i \neq i$$

transformation is invertible

$$\mathbf{v}(n) = \mathbf{T} \cdot \mathbf{u}(n)$$

feature space transformation PCA visualization

Georgia **Center for Music** Tech | Technology College of Design

calculation of the transformation matrix

$$R = \mathcal{E}\{(V - \mathcal{E}\{V\})(V - \mathcal{E}\{V\})\}\$$

PCA visualization

Georgia **Center for Music** Tech ₩ **Technology**

feature space transformation

calculation of the transformation matrix

compute covariance matrix R

$$\mathbf{R} = \mathcal{E}\{(V - \mathcal{E}\{V\})(V - \mathcal{E}\{V\})\}\$$

choose eigenvectors as axes for the new coordinate system

pca input

matlab source: matlab/displayPcaExample.m

introduction PCA example

pca output

matlab source: matlab/displayPcaExample.m

introduction PCA example

pca eigenvalues

pca transformation matrix

PCA example

$$\begin{bmatrix} -0.4187 & 0.3467 & -0.4569 & 0.4143 & -0.1271 & -0.5549 \\ -0.3908 & 0.1815 & 0.8136 & -0.0289 & 0.2060 & -0.3304 \\ -0.4516 & 0.3384 & 0.0859 & 0.2413 & -0.2919 & 0.7285 \\ -0.4337 & 0.1699 & -0.3337 & -0.7243 & 0.3747 & 0.0816 \\ 0.3802 & 0.5599 & -0.0381 & 0.2808 & 0.6622 & 0.1524 \\ 0.3679 & 0.6245 & 0.0956 & -0.4071 & -0.5267 & -0.1495 \\ \end{bmatrix}$$

College of Design

pca transformation matrix

PCA example

Tech | Technology

College of Design

summary

Georgia | Center for Music Tech | Technology lecture content

dimensionality problems

- overfitting
- insufficient training data ⇒ feature space sparse

feature selection

- select a subset of features that "performs best"
- wrapper methods use the classifier itself as objective function while filter methods define a separate objective function

• feature transformation

- map feature space into new space and discard irrelevant dimensions
- still requires computation of all features
- dimensions cannot be easily interpreted

