1 考点知识汇总

数学部分近年考察常常与函数,导数,概率,几何,集合,数论等知识综合考察,新高考中难度有较多提升,本次讲义主要从数列与函数综合角度讨论数列应用。

1.1 典型数列递推求通项

定理 1.1 线性递推关系

线性递推关系: $a_n = pa_{n-1} + qa_{n-2} \ (n \ge 3)$ 其特征方程为 $\lambda^2 - p\lambda - q = 0$ 根据特征方程的解,有三种情况:

- (1) $\lambda_1 \neq \lambda_2$,其通项为: $a_n = A\lambda_1^n + B\lambda_2^n$,其中 A, B 为待定系数,根据初始条件 a_1, a_2 进行求解。
- (2) $\lambda_1 = \lambda_2 = \lambda$,其通项为 $a_n = (A + Bn)\lambda^n$ 。
- (3) 将此方程无实数解,即根为共轭复根时, $a_n = r^n(C\cos(n\theta) + D\sin(n\theta))$,其中 C, D 为实数,根据 a_1, a_2 求解,特别地,当 r = 1 时, $\{a_n\}$ 是周期数列,周期是 $\frac{2\pi}{\theta}$ 。

1.2 分式递推关系

定理 1.2 分式递推关系

分式递推关系 $a_{n+1}=\frac{ba_n+c}{da_n+e}$,这里我们利用不动点方程 (x=f(x), x 称为 f(x) 的不动点) $x=\frac{bx+c}{dx+e} \implies dx^2+(e-b)x-c=0$,同样这里有三种情况:

- (1) 不动点方程有两个不相等实根 $x_1 \neq x_2$, $b_n = \frac{a_n x_1}{a_n x_2}$, $\{b_n\}$ 是等比数列,公比可以根据 b_1, b_2 计算。
- (2) 不动点方程有两个相等实根 $x_1 = x_2 = x_0$, $c_n = \frac{1}{a_n x_0}$, $\{c_n\}$ 是等差数列,公差根据 c_1, c_2 计算。
- (3) 不动点有两个共轭复根的时候, $b_n = \frac{a_n x_1}{a_n x_2}$ 是复数等比数列,可以利用 b_1, b_2 求出复公比 $k = r(\cos\theta + i\sin\theta)$,可得: $b_n = b_1 k^{n-1}$,再解出 a_n 即可,特别地,当 r = 1 时, $\{b_n\}$ 为周期数列,周期是 $\frac{2\pi}{\theta}$ 。

1.3 典型数列求和

定理 1.3 平方数数列前n项和

平方数数列前 n 项和:

$$S_n = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

提示

可以采用裂项法:
$$(k+1)^3 - k^3 = 3k^2 + 3k + 1$$

$$\sum_{k=1}^{n} ((k+1)^3 - k^3) = (n+1)^3 - 1 = 3\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + n$$