# Thapar Institute of Engineering & Technology, Patiala

Department of Electronics and Communication Engineering

## **UEC639 – Digital Communication**

B. E. (Third Year): Semester-VI (ENC)

## **Solution of Tutorial-1**

Q1 Determine the Fourier transform of the following signal and its highest frequency component

$$x(t) = \frac{Sin(at)}{(\pi t)}$$

#### **Solution**

To determine the F.T of given function, we have to use duality property.

Let define a rectangular function as -

$$x(t) = p_a(t) = \begin{cases} 1 & |t| < a \\ 0 & |t| > a \end{cases}$$

The Fourier transform of this function is

$$X(\omega) = \int_{-\infty}^{\infty} p_a(t)e^{-j\omega t} dt = \int_{-a}^{a} e^{-j\omega t} dt = \frac{2\sin a\omega}{\omega} = 2a \frac{\sin a\omega}{a\omega}$$

$$\mathscr{F}[p_a(t)] = \frac{2}{\omega} \sin a\omega$$

From duality property

$$\mathscr{F}\left[\frac{2}{t}\sin \,at\right] = 2\pi p_a(-\omega)$$

Thus.

$$X(\omega) = \mathscr{F}\left[\frac{\sin at}{\pi t}\right] = \frac{1}{2\pi}\mathscr{F}\left[\frac{2}{t}\sin at\right] = p_a(-\omega) = p_a(\omega)$$

where,  $p_a(\omega)$  is defined as

$$p_a(\omega) = \begin{cases} 1 & |\omega| < a \\ 0 & |\omega| > a \end{cases}$$



**Q2** Find the Nyquist rate and Nyquist interval for the following signals

(i) 
$$x_1(t) = 10 \sin(2000 \pi t) \cos(6000 \pi t)$$

Solution

Expand the function x1(t) using trigonometric identity of 2 Sin(A) Cos(B)

$$x_1(t) = 10 Sin(2000 \pi t) Cos(6000 \pi t)$$

$$x_1(t) = 5 \left[ Sin(8000 \pi t) + Sin(4000 \pi t) \right]$$

Highest frequency component is  $\omega_m=2~\pi~f_m=8000~\pi$ 

$$f_m = 4000 \; Hz$$

Nyquist Rate =  $2 f_m$  = 8000 Hz = 8 kHz.

(ii) 
$$x_2(t) = Sin(200 \pi t) / \pi t$$

Solution

$$\frac{\sin at}{\pi t} \leftrightarrow p_a(\omega) = \begin{cases} 1 & |\omega| < a \\ 0 & |\omega| > a \end{cases}$$

Highest frequency component is = 100 Hz

Hence Nyquist rate = 2 \* 100 = 200 Hz;

Nyquist Interval = 1/200 sec;

(iii) 
$$x_3(t) = \left(\frac{\sin(200 \pi t)}{\pi t}\right)^2$$

#### **Solution**

$$F[Sinc^{2}(at)] = \frac{1}{|a|} tri(\frac{f}{a})$$

The F.T of given signal is triangular function with highest frequency component 200 Hz.

Hence the Nyquist rate = 2 \* 200 Hz = 400 Hz3

| Q3 | Express the sampling expression for low-pass signal in time-domain. Using this expression, derive the |
|----|-------------------------------------------------------------------------------------------------------|
|    | sampling expression for low-pass signal in frequency-domain.                                          |



Multiplication in time domain is convalent to the Conv. of their respective 1-T  $g(t) \ge G(f)$   $g(t) = G_g(f)$  $S_{T_{i}}(t) \geq S_{f_{i}}(f) = f_{i} \sum S(f_{-m}f_{i})$  $G_{1}(f) = F[g(t)] = F[g(t) \times f(f)]$  rulliplication = G(f) = F[g(t)] = F[g(t)] + F[g(t)] = G(f) = F[g(t)] + F[g(t)]= G(f) & Es S(f-mf) Convolution After Interchanging the order of summation  $G_{p}(f) = f_{r} \sum_{n} G(f) \otimes f(f-mf_{r})$ Now applying the property of dela fives H (Sig(f) = f, Z (f-mfg) #

spectrum of sempled signel lampling in time domain - Periodic spectrum in freq Q4 Derive the reconstruction equation (sampling theorem) to obtain the continuous-time signal from its sampled version. Discuss about the interpolation function. # Interpolation formula for reconstructing the Oxiginal lignal g(t) from g(t) g(n) Sompled light  $g(t) = \sum_{s} g(nT_s) \exp(-j2\pi f nT_s)$ Sampled light  $g(t) = \sum_{s} g(nT_s) S(t-nT_s)$ Goff =  $\sum_{s} g(nT_s) \exp(-j2\pi nf T_s)$ Goff =  $\sum_{s} g(nT_s) \exp(-j2\pi nf T_s)$ Complex Fourier series representation of  $G_g(f)$ Let  $g(t) \Rightarrow$  finite energy signed with G(f)defined for  $-W \geq f \geq W$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text{for } f \neq 0$   $G(f) = 0 \quad \text$ 163(f) t1=2W (m) Fr= 2W overlating <2W



The bandpass sampling theorem states that if a bandpass signal m(t) has a spectrum of bandwidth  $\omega_B (= 2\pi f_B)$  and an upper frequency limit  $\omega_u (= 2\pi f_u)$ , then m(t) can be recovered from  $m_s(t)$  by bandpass filtering if  $f_s = 2f_u/k$ , where k is the largest integer not exceeding  $f_u/f_B$ . All higher sampling rates are not necessarily usable unless they exceed  $2f_u$ .

Sol

(a)

$$m(t) = 10 \cos 2000\pi t \cos 8000\pi t$$
  
=  $5 \cos 6000\pi t + 5 \cos 10000\pi t$   
 $f_M = 5000 \text{ Hz} = 5 \text{ kHz}$ 

Thus,  $f_s = 2f_M = 10 \text{ kHz}.$ 

(b) 
$$f_u = f_M = 5 \text{ kHz and } f_B = (5-3) = 2 \text{ kHz.}$$

$$\frac{f_u}{f_B} = \frac{5}{2} = 2.5 \rightarrow k = 2$$

Based on the bandpass sampling theorem,

$$f_s = \frac{2f_u}{k} = 5 \text{ kHz}$$