Bài 4. Tổng và hiệu của hai vectơ

A. Lý thuyết

1. Tổng của hai vectơ

1.1. Định nghĩa

– Với ba điểm bất kì A, B, C, vector \overrightarrow{AC} được gọi là tổng của hai vector \overrightarrow{AB} và \overrightarrow{BC} , kí hiệu là $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.

– Cho hai vecto \vec{a} và \vec{b} . Lấy một điểm A tùy ý, vẽ $\overrightarrow{AB} = \vec{a}$ và $\overrightarrow{BC} = \vec{b}$.

Vector \overrightarrow{AC} được gọi là tổng của hai vector \overrightarrow{a} và \overrightarrow{b} . Ta kí hiệu tổng của hai vector \overrightarrow{a} và \overrightarrow{b} là \overrightarrow{a} + \overrightarrow{b} . Vậy \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b} .

Phép lấy tổng của hai vecto còn được gọi là phép cộng vecto.

Ví dụ: Cho hình chữ nhật ABCD tâm O. Tính:

- a) $\overrightarrow{OA} + \overrightarrow{DC}$
- b) $\overrightarrow{BC} + \overrightarrow{OA}$

Hướng dẫn giải:

a) Vì ABCD là hình chữ nhật nên AB // CD và AB = CD.

$$\Rightarrow \overrightarrow{DC} = \overrightarrow{AB}$$
.

$$\Rightarrow \overrightarrow{OA} + \overrightarrow{DC} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$
.

b) Vì A, O, C thẳng hàng (O là trung điểm của đường chéo AC)

$$\Rightarrow \overrightarrow{OA} = \overrightarrow{CO}$$
.

$$\Rightarrow \overrightarrow{BC} + \overrightarrow{OA} = \overrightarrow{BC} + \overrightarrow{CO} = \overrightarrow{BO}.$$

1.2. Quy tắc hình bình hành

Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

Ví dụ: Chứng minh quy tắc hình bình hành.

Hướng dẫn giải:

Ta có:
$$\overrightarrow{AD} = \overrightarrow{BC}$$
.

Suy ra:
$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

1.3. Tính chất

Với ba vecto tùy ý \vec{a} , \vec{b} , \vec{c} ta có:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (tính chất giao hoán);

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (tính chất kết hợp);

$$\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$$
 (tính chất của vecto-không).

Chú ý: Tổng ba vecto $\vec{a} + \vec{b} + \vec{c}$ được xác định theo một trong hai cách sau:

$$(\vec{a} + \vec{b}) + \vec{c}$$
 hoặc $\vec{a} + (\vec{b} + \vec{c})$.

Ví dụ: Cho 5 điểm tùy ý A, B, C, D, E. Chứng minh rằng:

a)
$$\overrightarrow{CD} + \overrightarrow{EC} + \overrightarrow{DA} + \overrightarrow{BE} = \overrightarrow{BA}$$
.

b)
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EA} = \overrightarrow{CB} + \overrightarrow{ED}$$
.

Hướng dẫn giải:

a) Ta có:

$$\overrightarrow{CD} + \overrightarrow{EC} + \overrightarrow{DA} + \overrightarrow{BE}$$

$$= \overrightarrow{CD} + \overrightarrow{DA} + \overrightarrow{BE} + \overrightarrow{EC}$$
 (áp dụng tính chất giao hoán)

$$= \left(\overrightarrow{CD} + \overrightarrow{DA}\right) + \left(\overrightarrow{BE} + \overrightarrow{EC}\right) \qquad \text{(áp dụng tính chất kết hợp)}$$

$$= \overrightarrow{CA} + \overrightarrow{BC}$$
 (áp dụng quy tắc cộng vecto)

$$= \overrightarrow{BC} + \overrightarrow{CA}$$
 (áp dụng tính chất giao hoán)

=
$$\overrightarrow{BA}$$
 (áp dụng quy tắc cộng vecto) (đpcm).

$$V$$
ây $\overrightarrow{CD} + \overrightarrow{EC} + \overrightarrow{DA} + \overrightarrow{BE} = \overrightarrow{BA}$.

b) Ta có:

$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EA}$$

$$= \left(\overrightarrow{AC} + \overrightarrow{CB}\right) + \overrightarrow{CD} + \left(\overrightarrow{ED} + \overrightarrow{DA}\right) \qquad \text{(áp dụng quy tắc cộng vecto)}$$

$$= \overrightarrow{CB} + \overrightarrow{ED} + \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}$$
 (áp dụng tính chất giao hoán)

$$= \overrightarrow{CB} + \overrightarrow{ED} + \left(\overrightarrow{AC} + \overrightarrow{CD}\right) + \overrightarrow{DA} \text{ (áp dụng tính chất kết hợp)}$$

$$= \overrightarrow{CB} + \overrightarrow{ED} + \overrightarrow{AD} + \overrightarrow{DA}$$
 (áp dụng quy tắc cộng vecto)

$$= \overrightarrow{CB} + \overrightarrow{ED} + \left(\overrightarrow{AD} + \overrightarrow{DA}\right) \qquad (\text{áp dụng tính chất kết hợp})$$

$$= \overrightarrow{CB} + \overrightarrow{ED} + \overrightarrow{AA}$$

$$= \overrightarrow{CB} + \overrightarrow{ED} + \overrightarrow{0}$$
 (vecto có điểm đầu và điểm cuối trùng nhau là vecto-không)

$$= \overrightarrow{CB} + \overrightarrow{ED}$$
 (áp dụng tính chất vecto-không) (đpcm).

2. Hiệu của hai vectơ

2.1. Hai vecto đối nhau

Định nghĩa: Vectơ có cùng độ dài và ngược hướng với vectơ \vec{a} được gọi là vectơ đối của vecto \vec{a} , kí hiệu là $-\vec{a}$. Hai vecto \vec{a} và $-\vec{a}$ được gọi là hai vecto đối nhau.

Quy ước: Vecto đối của vecto $\vec{0}$ là vecto $\vec{0}$.

Nhận xét:

+)
$$\vec{a}$$
 + $(-\vec{a})$ = $(-\vec{a})$ + \vec{a} = $\vec{0}$

- +) Hai vector \vec{a} , \vec{b} là hai vector đối nhau khi và chỉ khi $\vec{a} + \vec{b} = \vec{0}$.
- +) Với hai điểm A, B, ta có: $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$.

Lưu ý: Cho hai điểm A, B. Khi đó hai vector \overrightarrow{AB} và \overrightarrow{BA} là hai vector đối nhau, tức là $\overrightarrow{BA} = -\overrightarrow{AB}$.

Chú ý:

- I là trung điểm của đoạn thẳng AB khi và chỉ khi $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.
- -G là trọng tâm của tam giác ABC khi và chỉ khi $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Ví dụ: Cho hình vuông ABCD có tâm O. Tìm vecto đối của các vecto \overrightarrow{AB} , \overrightarrow{AO} .

Hướng dẫn giải:

$$+$$
 Vì $|\overrightarrow{BA}| = |\overrightarrow{AB}| = AB$ và \overrightarrow{BA} ngược hướng với \overrightarrow{AB}

$$\Rightarrow \overrightarrow{BA} = -\overrightarrow{AB}$$

 $\Rightarrow \overrightarrow{BA}$ là vecto đối của vecto \overrightarrow{AB} .

+ Vì AB = CD, AB // CD (ABCD là hình vuông)

 \Rightarrow $|\overrightarrow{AB}| = |\overrightarrow{CD}|$ và \overrightarrow{CD} ngược hướng với \overrightarrow{AB}

$$\Rightarrow \overrightarrow{CD} = -\overrightarrow{AB}$$

 $\Rightarrow \overrightarrow{CD}$ là vecto đối của vecto \overrightarrow{AB} .

Vì A, O, C là ba điểm thẳng hàng và OA = OC (ABCD là hình vuông)

 \Rightarrow \overrightarrow{AO} ngược hướng với \overrightarrow{CO} và $\left|\overrightarrow{AO}\right| = \left|\overrightarrow{CO}\right|$

$$\Rightarrow \overrightarrow{CO} = -\overrightarrow{AO}$$

 $\Rightarrow \overrightarrow{CO}$ là vecto đối của \overrightarrow{AO} .

Vậy \overrightarrow{BA} , \overrightarrow{CD} là vecto đối của vecto \overrightarrow{AB} và \overrightarrow{CO} là vecto đối của \overrightarrow{AO} .

2.2. Hiệu của hai vectơ

Hiệu của hai vector \vec{a} và \vec{b} , kí hiệu là $\vec{a} - \vec{b}$, là tổng của vector \vec{a} và vector đối của vector \vec{b} , tức là $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Phép lấy hiệu của hai vecto được gọi là phép trừ hai vecto.

Nhận xét: Với ba điểm bất kì A, B, O ta có: $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$.

Ví dụ: Cho 4 điểm A, B, C, D phân biệt. Chứng minh rằng:

$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{DC} - \overrightarrow{BC}$$

Hướng dẫn giải:

Ta có:

$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{DB}$$
 (áp dụng quy tắc về hiệu hai vecto) (1)

$$\overrightarrow{DC} - \overrightarrow{BC} = \overrightarrow{DC} + \left(-\overrightarrow{BC} \right) = \overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB} \qquad (\text{vector } \overrightarrow{d} \hat{\text{o}} i) \ (2)$$

 $T\dot{u}$ (1) $v\dot{a}$ (2) suy ra: $\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{DC} - \overrightarrow{BC}$ (\vec{d} pcm).

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Cho hình vuông ABCD tâm O. Tính tổng $\overrightarrow{AB} + \overrightarrow{CB}$ và $\overrightarrow{CO} + \overrightarrow{AD}$.

Hướng dẫn giải:

+ Vì ABCD là hình vuông nên AB // DC và AB = DC.

$$\Rightarrow \overrightarrow{AB} = \overrightarrow{DC}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{DC} + \overrightarrow{CB}$$

Áp dụng quy tắc cộng hai vectơ ta có:

$$\overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB}$$

Do đó, $\overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{DB}$.

+ Vì A, O, C cùng nằm trên một đường thẳng và OA = OC (O là tâm hình vuông ABCD).

$$\Rightarrow \overrightarrow{CO} = \overrightarrow{OA}$$

$$\Rightarrow \overrightarrow{CO} + \overrightarrow{AD} = \overrightarrow{OA} + \overrightarrow{AD}$$

Áp dụng quy tắc công hai vectơ ta có:

$$\overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OD}$$

$$V\hat{a}y \overrightarrow{CO} + \overrightarrow{AD} = \overrightarrow{OD}$$
.

Bài 2. Cho tam giác ABC có G là trọng tâm của tam giác.

Tính độ dài vecto $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$.

Hướng dẫn giải:

Vì G là trọng tâm tam giác ABC nên ta áp dụng quy tắc trọng tâm có:

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$

$$\Rightarrow \left| \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} \right| = \left| \overrightarrow{0} \right| = 0$$

Vậy độ dài vector $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ là 0.

B.2 Bài tập trắc nghiệm

Câu 1. Cho ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng?

- A. $\overrightarrow{CA} \overrightarrow{BA} = \overrightarrow{BC}$;
- B. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$;
- C. $\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CB}$;
- D. $\overrightarrow{AB} \overrightarrow{BC} = \overrightarrow{CA}$.

Hướng dẫn giải

Đáp án đúng là: C

Xét các đáp án:

- Đáp án A. Ta có $\overrightarrow{CA} \overrightarrow{BA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB} = -\overrightarrow{BC}$. Vậy A sai.
- Đáp án B sai vì $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \Longrightarrow \overrightarrow{BC} = \overrightarrow{AC} \overrightarrow{AB} \ne \overrightarrow{AC} + \overrightarrow{AB}$.
- Đáp án C. Ta có $\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$. Vậy C đúng.

Câu 2. Cho 5 điểm bất kỳ A, B, C, D, E. Tính tổng $\overrightarrow{CD} + \overrightarrow{EC} + \overrightarrow{DA} + \overrightarrow{BE}$.

- A. \overrightarrow{BC} ;
- B. \overrightarrow{CA} ;
- C. \overrightarrow{EC} ;
- D. \overrightarrow{BA} .

Hướng dẫn giải

Đáp án đúng là: D

$$\overrightarrow{CD} + \overrightarrow{EC} + \overrightarrow{DA} + \overrightarrow{BE}$$

$$= (\overrightarrow{CD} + \overrightarrow{DA}) + (\overrightarrow{BE} + \overrightarrow{EC})$$
 (tính chất giao hoán và kết hợp)

$$= \overrightarrow{CA} + \overrightarrow{BC}$$
 (quy tắc ba điểm)

$$= \overrightarrow{BC} + \overrightarrow{CA}$$
 (tính chất giao hoán)

$$= \overrightarrow{BA}$$
.

Câu 3. Cho hình bình hành ABCD tâm O. Khi đó, $\overrightarrow{OA} + \overrightarrow{BO} = ?$

A.
$$\overrightarrow{OC} + \overrightarrow{OB}$$
;

B.
$$\overrightarrow{AB}$$
;

C.
$$\overrightarrow{OC} + \overrightarrow{DO}$$
;

$$\overrightarrow{D}$$
. $\overrightarrow{\overrightarrow{CD}}$.

Hướng dẫn giải:

Đáp án đúng là: D.

Áp dụng tính chất giao hoán và quy tắc ba điểm cho ba điểm A, O, B ta có: $\overrightarrow{OA} + \overrightarrow{BO} = \overrightarrow{BO} + \overrightarrow{OA} = \overrightarrow{BA}$.

Xét hình bình hành ABCD có: $\overrightarrow{BA} = \overrightarrow{CD}$

$$\overrightarrow{Vay} \overrightarrow{OA} + \overrightarrow{BO} = \overrightarrow{CD}$$
.