Interface 3: Semester 3

Alex - Markell - Ben

Wiring Design: Arduino

Materials required:

- Arduino Mega
- 5mm LED Bulbs
- 220Ω or 330Ω Resistors
- Power Supply (Battery or Computer)
- Breadboard
- Male to Female Jumper Wires
- Camera

Wired Communication: Digital Read

- 1 pin = 1 function
- Measure Volts
- Limited Functions
- Limited Data Transfer
- Easy Implementation
- Great for Simple Events
 (e.g., turn on/off LED)
- Simple signal communication (e.g., LED is on/off)
- Fast

Wired Communication: UART

- Error Checking Possible
- Involved Implementation
- Can send bytes, strings, and structured data
- High Data Capacity
- Scalable
- Fast

Wireless Communication: Bluetooth

- Short Range (~10m)
- Low Bandwidth (~9600 to 115200 bps)
- Lower Latency
- Can't transmit video
- Pain in the tuchus

Wireless Communication: WiFi

- Better Range (~50m)
- Higher Bandwidth (1-10 Mpbs)
- More complex Protocol
- Better Security
- Universal Integration
- Supports video-friendly protocols
 (TCP/UDP/HTTP/RTSP)

Big Q: Wired or Wireless?? FPE??

Wireless

- While Wired can be convenient, it is also a fire hazard

- We will use Wireless connection (WiFi) that will control the serial monitors

similar to how we used UART Communic

- Webcam integration will be possible if

Droid Cam doesn't end up working

Contributions

Alex

• This prezentation

- Developed Guides for Wired and Wireless Connections
- Bluetooth vs WiFi research
- Managed and submitted orders to Gemstone
- Tracked finances and expenditures
- Researched and contacted experts (Dr. Ketelhut) for proposal presentation
- FPE Communications

Markell

- Wired Connection:
 Digital Read
 Assistance
- Bluetooth Connection

Ben

- Wired Connection: Digital Read
- Wired Connection:
 UART
- Bluetooth Connection
- Humidity/Temperature
 Sensor