UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljeni Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1.	Uvod	4
2.	Sestavljeni Poissonov proces	5
2.1.	Osnovne lastnosti	5
2.2.	Rodovne funkcije	6
2.3.	Porazdelitev CPP	7
2.4.	CPP kot martingal	10
3.	Cramér-Lundbergov model	10
3.1.	Predpostavke in omejitve modela	10
3.2.	Verjetnost propada	11
3.3.	Aproksimacije	11
3.4.	Uporaba modela na podatkih	11
Slovar strokovnih izrazov		11
Literatura		11

Sestavljeni Poissonov proces in njegova uporaba v financah POVZETEK

Compound Poisson process and its application in finance

Abstract

Prevod zgornjega povzetka v angleščino.

Math. Subj. Class. (2020): 60G07 60G20 60G51

\newline

Ključne besede: slučajni procesi, sestavljeni Poissonov proces, Cramér-Lundbergov model

 $\mathbf{Keywords:}$ stochastic processes, compound Poisson process, Cramér-Lundberg model

KAJ JE PORAZDELITEV PROCESA? KAKŜNA JE TV VLDGA POGDJA (ADLAG? PRUŽINA PURAZPĒLITĒV KONĪNIH NABOROV

(X, X, , , , , , Y,) . ČE ŽĒLIMO, DA PROCĒS OBSTAJA,

MORA BITI DRUŽIMA USTRĒZNO USKLAJĒNA,

1. UVOD

Uvodni tekst in motivacija za študiranje procesa, nakaži da boš obravnaval Cramer-Ludenbergov model

Slika 1. Primer trajektorije sestavljenega Poissonovega procesa

Definicija 1.1. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (E, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih elementov $X_t : \Omega \to E$, ki so (\mathcal{F}, Σ) -merljivi za vsak $t \in T$.

družina slučajnih elementov $X_t: \Omega \to E$, ki so (\mathcal{F}, Σ) -merljivi za vsak $t \in T$. **Opomba 1.2.** <u>Držali se bomo konvencije, da T predstavlja čas, torej $T = [0, \infty)$ in da slučajne spremenljivke zavzemajo vrednosti v realnih števili, torej $(E, \Sigma) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, kjer $\mathcal{B}_{\mathbb{R}}$ predstavlja Borelovo σ -algebro na \mathbb{R} .</u>

Definicija 1.3. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t>0}$.

Πυζοῖε ΝΑΝΕἰτῖε ΑΥ (ΕΥ) 20 Ρυλίῖε; Τακ. (αλλο ς Ινῖα΄ς πί μιτος γ Ικλανω... νεκλονω elementu Opomba 1.4. Na slučajni proces lahko gledamo tudi kot na predpis, ki namizvorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t\geq 0}: [0,\infty) \to \mathbb{R}$.

Definicija 1.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek procesa $X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima neodvisne prirastke, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki

$$X_{t_2} - X_{t_1}, \ X_{t_3} - X_{t_2}, \ \dots, \ X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

MORDA PRIDE PRAV EKVIVALENIMA KARAKIERIZACIJA, DA JE $X_{t_{n+1}} - X_{t_{n}}$ NEODVISEN DD $(X_{t_{n}}, X_{t_{n}}, X_{t_{n}})$

Definicija 1.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 1.7. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t\geq 0}$ definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v \mathbb{N}_0 pravimo *Poissonov proces* z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $N_0 = 0$ P-skoraj gotovo.
- (2) $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke,
- (3) Za $0 \le s < t$ velja $N_t N_s \sim \text{Pois}(\lambda(t-s))$,

TO SI ZASLUŽI BITI TEDITEV, SAJ TO VI RAVNO OČITIVO IZ DEFINICIJE!

Opomba 1.8. Vidimo, da v definiciji ne zahtevamo, da so skoki procesa le +1. To sledi iz...

Definicija 1.9. Naj bo $(N_t)_{t\geq 0}$ Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih (med sabo in N_t) in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljeni Poissonov proces $(S_t)_{t\geq 0}$ definiran kot

$$S_t = \sum_{i=1}^{N_t} X_i.$$

Opomba 1.10. Vidimo, da je sestavljeni Poissonov proces posplošitev homogenega Poissonovega procesa, saj če za X_i vzamemo konstantno funkcijo $X_i = 1$ za vsak i, dobimo ravno HPP. Bolj v splošnem, če za X_i postavimo $X_i = \alpha$, potem velja $S_t = \alpha N_t$.

V nadaljevanju bomo homogen Poissonov proces z intenzivnostjo $\lambda > 0$ označevali s $HPP(\lambda)$ ali naborom slučajnih spremenljivk $(N_t)_{t\geq 0}$ (angl. Homogeneous Poisson Process), sestavljeni Poissonov proces pa s CPP ali naborom slučajnih spremenljivk $(S_t)_{t\geq 0}$ (angl. Compound Poisson Process), kjer bo vsota sledila $HPP(\lambda)$.

2. Sestavljeni Poissonov proces

Povzetek poglavja/krajsi uvod

2.1. Osnovne lastnosti.

Trditev 2.1. CPP ima neodvisne in stacionarne prirastke.

Dokaz. Za nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ lahko slučajne spremeljivke $S_{t_i} - S_{t_{i-1}}$ zapišemo kot

$$S_{t_i} - S_{t_{i-1}} = \sum_{j=N_{t_{i-1}}+1}^{N_{t_i}} X_j.$$

NEDDVISNOST SKRIVA VRSTO CERL

TA DOKAZ BOVA KASNEJE ŠE MACO

Ð

SPLACA SE POGLEDATI POLOJNO PORAZDELITEV $S_{t_{1}}$ - $S_{t_{n}}$ GLEDE NA $(S_{t_{1}}, S_{t_{2}}, ..., S_{t_{n}}, [N_{t_{n}} = k_{1}, N_{t_{n}} = k_{n}])$.

DODELALA.

Neodvisnost prirastkov sledi po neodvisnosti X_i od X_j za $i \neq j$ in N_t . Naj bo h > 0in s < t. Potem velja

$$S_{t+h} - S_{s+h} = \sum_{j=N_{s+h}+1}^{N_{t+h}} X_j$$

Vsota ima $N_{t+h} - N_{s+h}$ členov. Ker za HPP velja $N_{t+h} - N_{s+h} \sim N_t - N_s$, je

$$\sum_{j=N_{s+h}+1}^{N_{t+h}} X_j = \sum_{j=N_s+1}^{N_t} X_j = S_t - S_s.$$

Trditev 2.2. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bosta $\mu = \mathbb{E}[X_i] < \infty$ pričakovana vrednost $in \ \sigma^2 = Var[X_i] < \infty \ varianca \ slučajnih \ spremenljivk \ X_i \ za \ vsak \ i. \ Potem \ sta \ za$ $t \geq 0$ pričakovana vrednost in varianca S_t enaki

$$\mathbb{E}[S_t] = \mu \lambda t$$
 in $Var[S_t] = \lambda t (\sigma^2 + \mu^2)$.

Dokaz. Po formuli za popolno pričakovano vrednost velja $\mathbb{E}[S_t \mid N_t]$. Torej

$$\begin{split} \text{SPLATA SE OPARI NASLEDNJE:} & \mathbb{E}\left[S_{t}\right] = \sum_{k=0}^{\infty} \mathbb{E}\left[S_{t}|N_{t}=k\right] \mathbb{P}\left(N_{t}=k\right) \\ \text{CE JE } & \text{T}_{t} = \text{X}_{t} + \text{X}_{t} + \dots + \text{X}_{t} \\ \text{JE } & \text{SE POLOJNU NA N}_{t} = \text{L} \\ \text{PORAZDELJENA ENARO KOT T}_{t} & = \sum_{k=0}^{\infty} \mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right] \mathbb{P}\left(N_{t}=k\right) \\ \text{PORAZDELJENA ENARO KOT T}_{t} & = \sum_{k=0}^{\infty} k \mathbb{E}\left[X_{i}\right] \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \\ \text{TARO DOBIND LESS IN LES$$

Prek formule $\operatorname{Var}[S_t] = \mathbb{E}\left[\operatorname{Var}[S_t \mid N_t]\right] + \operatorname{Var}\left[\mathbb{E}\left[S_t \mid N_t\right]\right]$ računamo

$$\mathbb{E}\left[\operatorname{Var}\left[S_{t}\mid N_{t}\right]\right] = \mathbb{E}\left[\operatorname{Var}\left[X_{i}\right]N_{t}\right] = \sigma^{2}\lambda t$$

in

(*)

$$\operatorname{Var}\left[\mathbb{E}\left[S_{t}\mid N_{t}\right]\right] = \operatorname{Var}\left[\mathbb{E}\left[X_{i}\right]N_{t}\right] = \mu^{2}\lambda t,$$
saj $N_{t} \sim \operatorname{Pois}(\lambda t)$. Skupaj dobimo $\operatorname{Var}\left[S_{t}\right] = \lambda t \left(\sigma^{2} + \mu^{2}\right)$.

2.2. Rodovne funkcije.

Trditev 2.3. Naj bo $(S_t)_{t>0}$ CPP. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem ima za $t \geq 0$ momentno-rodovna $funkcija M_{S_t} obliko$

$$M_{S_{\bullet}}(u) = e^{\lambda t(M_X(u)-1)}$$
.

 $M_{S_t}(u) = e^{\lambda t(M_X(u)-1)},$ Modoce Raje formulirajie za

 $kjer\ M_X\ ozna\check{c}uje\ momentno{ ext{rod}}ovno\ funkcijo\ X.$ KARA KTERISTIČIVU FUNK (1)0.

- MORDA MAREDITE DODATEK, V KATEDETI BI DEFINIDALI RODOVNE, [FTOTTENTAN RODOVNE] IN KADAKTERISTIČNE FUNKCIJE
 TER FORTINIDALI NEKAJ KLJUČNIH IZREKOV, ŠE ZLASTI:
 - * IZREK O ENOLICNOSTI
 - * NJECOVO OKBEPITEV NA KONNEBCENCO, 11- TENJEN ISBER O ROMINUTLE II

*
$$S = Y_1 + X_2 + \dots + Y_N$$
, RIER SO X_1, X_2, \dots IN NEDDVISNE:

$$\zeta_S(n) = \zeta_N(\zeta_X(n))$$

$$\phi_S(n) = \zeta_N(\phi_X(n))$$

Dokaz. Velja;

 $t \ge 0$ in dobimo

$$M_{S_t}(u) = \mathbb{E}\left[\exp\left[uS_t\right]\right] = \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_t} X_i\right]\right]$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_t} X_i \mid N_t = k\right]\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{k} X_i\right]\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{uX}\right]^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= e^{-\lambda t} + e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(M_X(u)\lambda t)^k}{k!}$$

$$= e^{\lambda t(M_X(u)-1)}$$

$$(1)$$

V SLOVENŠČINI JE TO MILO NERODIVO.

Hitro lahko vidimo, da sta karakteristi<mark>e</mark>na in rodovna funkcija *CPP* enaki

$$\varphi_{S_t}(u) = e^{\lambda t(\varphi_X(u)-1)}$$
 in $G_{S_t}(u) = e^{\lambda t(G_X(u)-1)}$,

saj v splošnem velja, da je karakteristična funkcija neke slučajne spremenljivke Y v delivenska njeni momentno rodovni funkciji izvrednoteni v iu, torej $\varphi_Y(u) = G_Y(iu)$. Rodovna pa izverdnotena v $\ln(u)$, torej $G_Y(u) = M_Y(\ln(u))$, če obstajata. V nadaljevanju bomo uporabljali predvsem karakteristično funkcijo CPP, saj je ta vedno definirana za vsak $u \in \mathbb{R}$. Prav nam bo prišla tudi naslednja povezava med karakteristično funkcijo CPP in rodovno funkcijo $HPP(\lambda)$.

Trditev 2.4. Naj bosta $(S_t)_{t\geq 0}$ CPP in $(N_t)_{t\geq 0}$ HPP(λ) neodvisna. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem za fiksen $t\geq 0$ velja

$$arphi_{S_t}(u) = G_{N_t}\left(arphi_X(u)
ight).$$
 S karakteristično funkcijo y.

Dokaz. Po enačbi (1) iz trditve 2.3 velja, da je $\varphi_{S_t}(u)$ enaka

$$\varphi_{S_t}(u) = \sum_{k=0}^{\infty} \varphi_X(u)^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= G_{N_t}(\varphi_X(u)).$$

2.3. Porazdelitev CPP. Sedaj se posvetimo vprašanju, kako je porazdeljena slučajna spremenljivka S_t za $t \geq 0$. Iz definicije $HPP(\lambda)$ vemo, da je N_t za $t \geq 0$ porazdeljena kot Poissonova slučajna spremenljivka s parametrom λt . Fiksiramo TALE SICER TRADICIONALNA IDENTIFIKACIJA PORAZDELITVE S KUMULATIVNO PORAZDELITVENO FUNKCIJO SE MI MALO UPIRAL ALI NI BOLLE IZPELJATI, DA

24 VSAKO BORELOVO MNOŽICO BER VELJA

POVECAJTE OULEPAJE, PREDUALM biggl (IN bigg) $\mathbb{P}(S_{\mathbf{t}} \in \mathcal{B}) = \sum_{k=0}^{\infty} \frac{(\lambda k)^k}{k!} e^{-\lambda k} \mathbb{P}(Y_{\mathbf{t}} \in \mathcal{B}) = \mathbb{P}(S_t \leq x) = \sum_{k=0}^{\infty} \mathbb{P}(F_t \leq x \mid N_t = k) \mathbb{P}(N_t = k)$

KIER JE I' LOBUSDELIEWY FNYKO

KOT VSOJA Ł NEDDVISNIH KOPIJ

 $= \sum_{k=0}^{\infty} \mathbb{P}(\sum_{k=0}^{k} X_i \le x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$

SLUČAJNE SPREMENLINVE X7, POMISLITE, $\sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t},$ DANES, EU MATIO RAČUNALNIKE, NI TAKA TRACEDIJA, ČE NIMATIO SKLEDIJA, ČE NIMATIO POMISLICANI JE I Name i posebne primere, je zgornji izraz za praktične namene ne-izračunljiv in nam ne DACUNAMO se agornji itrat ne da izratit s stilenjeno formulo. pomaga veliko. TAKO LAHKU

TAKOJ DOBITE Zgled 2.5. Če pogledamo primer, ko so X_1, X_2, \ldots neodvisne enako porazdeljene slučajne spremenljivke, porazdeljene kot X

9052010 SCUCASNIH

 $X \sim \text{Gamma}(a)$

$$f_X(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x}$$

SPREMENLIVE ς.

s parametrom a > 0, lahko pridemo do razmeroma eksplicitne porazdelitve CPP. Gostota k-te konvolucije $X_1 + \cdots + X_k$ ima formulo

 $f_{X_1+\dots+X_k}(x)=\frac{1}{\Gamma(na)}x^{na-1}e^{-x}.$ Za $t\geq 0$ in $x\geq 0$ torej velja

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \sum_{k=0}^{\infty} \dots$$

 \Diamond

Trditev 2.6. Naj bo $N \sim Pois(\lambda)$ za $\lambda > 0$ in $X_1, X_2, \dots X_n$ neodvisne s.s. (neodvisne med sabo in od N) enako porazdeljene kot

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \dots & \frac{\lambda_n}{\lambda} \end{pmatrix},$$

za poljubne $a_1, a_2, \ldots, a_n \in \mathbb{R}$ in $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}^+$ za katere velja $\sum_{i=1}^n \lambda_i = \lambda_i$ Potem velja ODLOVADJA

TERICI NEDDVISNIH $\sum_{i=1}^n a_i Y_j \sim \sum_{i=1}^N X_j, \qquad \text{ordiviry process}$ HPP-JEV

kjer so $Y_1, \ldots Y_n$ neodvisne s.s. porazdeljene kot $Pois(\lambda_1), \ldots, Pois(\lambda_n)$.

Dokaz. S $\varphi_{Z_n}(u)$ označimo karakteristično funkcijo s.s. $Z_n:=a_1Y_1+a_2Y_2+\cdots+a_nY_n$ in s $\varphi_Z(u)$ karakteristično funkcijo s.s. $Z:=\sum_{j=1}^N X_j$. Po neodvisnosti velja

$$\varphi_{Z_n}(u) = \prod_{j=1}^n \varphi_{Y_j}(a_j u)$$

$$\mathbb{P}(S_{\xi} \in B) = \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \int_{B} \frac{1}{\Gamma(k\lambda)} x^{k\alpha-1} e^{-x} dX_{\lambda}(x) =$$

$$= \int_{B} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} \frac{1}{\Gamma(k\lambda)} x^{k\alpha-1} e^{-x} dX_{\lambda}(x)$$

$$= \int_{B} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} \frac{1}{\Gamma(k\lambda)} x^{k\alpha-1} e^{-x} dX_{\lambda}(x) =$$

$$\int_{B} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \int_{B} \frac{1}{\Gamma(k\lambda)} x^{k\alpha-1} e^{-x} dX_{\lambda}(x) =$$

$$= \prod_{j=1}^{n} \exp \left[\lambda_j \left(e^{a_j i u} - 1 \right) \right]$$
$$= \exp \left[\sum_{j=1}^{n} \lambda_j \left(e^{a_j i u} - 1 \right) \right].$$

Po trditvi 2.4 velja

$$\varphi_{Z}(u) = G_{N} (\varphi_{X}(u))$$

$$= \exp \left[\lambda (\varphi_{X}(u) - 1)\right]$$

$$= \exp \left[\lambda \left(\sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda} e^{a_{j}iu} - 1\right)\right]$$

$$= \exp \left[\sum_{j=1}^{n} \lambda_{j} (e^{a_{j}iu} - 1)\right] = \varphi_{Z_{n}}(u).$$

Ker se karakteristični funkciji φ_{Z_n} in $\varphi_{Z'}$ ujemata, sledi da sta Z_n in Z enako porazdeljeni.

Posledica 2.7. Naj bo $(a_n)_{n\in\mathbb{N}}$ poljubno zaporedje realnih števil in $(\lambda_n)_{n\in\mathbb{N}}$ zaporedje pozitivnih realnih števil, za katere velja $\sum_{n=1}^{\infty} \lambda_n = \lambda$ in

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \dots \end{pmatrix}. \qquad \begin{array}{c} \text{OMENTIE, DA SO 2, IN 2 } \hat{I} \text{ACO} \\ \text{Koi V PREJSNJI POSLEDICL.} \end{array}$$

Potem velja

TO BE BOLD

MOGORE RAJE -

$$\sum_{j=1}^{n} a_j Y_j \stackrel{\text{d}}{=} \sum_{j=1}^{N} Y_j . \qquad \sum_{j=1}^{n} a_j Y_j \stackrel{\text{d}}{\longrightarrow} \sum_{j=1}^{N} X_j, \text{ TELE DESME STRAWL NISO 2A VSE}$$

Dokaz.Ker velja $\varphi_{Z_n}(u)\xrightarrow{n\to\infty}\varphi_Z(u)$ za vsak $u\in\mathbb{R},$ po Lévijevem izreku o zveznosti sledi, da $Z_n \xrightarrow[n \to \infty]{d} Z$. Xi niso diskretno

SLOVENSKO. Kaj pa v primeru, ko so X_i zvezno porazdeljene? Tedaj se problema lotimo na sledeč način. Definiramo $F_n(x) := F(\frac{m}{n})$ kjer je F(x) porazdelitvena funkcija slučajne spremenljivke Z_n in $m = \min\{k \in \mathbb{Z} \mid \frac{k}{n} > F_n(x)\}$.

SLIKA 2. Aproksimacija $F ext{ s } F_n$

DUDAJIE ZE POSLEDICO, KI BO POVEDALA, KAKO SE 10 MANIFESTIRA NA CPP

Kot je razvidno iz slike 2, je $F_n(x)$ stopničasta funkcija, ki aproksimira porazdelitveno funkcijo F(x). Velja $F_n \xrightarrow{n \to \infty} F$ povsod kjer je F zvezna.

2.4. CPP kot martingali,

Definicija 2.8. Slučajni proces X_t prilagojen glede na filtracijo $(\mathcal{F}_t)_{t\geq 0}$ martingal, če velja

$$\mathbb{E}\left[X_t \mid \mathcal{F}_s\right] = X_s$$

za vsak 0 < s < t.

Pokažimo, da v splošnem CPP ni martingal. IM_{ℓ} ZA PROCES, KI KVEČJEMU MAQAŠIA, ID Trditev 2.9. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda>0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke z $\mathbb{E}[X_i] = \mu$ za vsak i. Potem je S_t martingal natanko tedaj, ko je $\mu=0$.

Dokaz. Naj bo $0 \le s \le t$. Potem velja

$$\mathbb{E}[S_t \mid \mathcal{F}_s] = \mathbb{E}[S_t - S_s + S_s \mid \mathcal{F}_s]$$
$$= \mathbb{E}[S_t - S_s] + \mathbb{E}[S_s \mid \mathcal{F}_s]$$
$$= \mu \lambda (t - s) + S_s$$

Enakost $\mu \lambda(t-s) + S_s = S_s$ velja $\iff \mu \lambda(t-s) = 0 \iff \mu = 0.$

Opomba 2.10. Seveda, če velja $\mu \geq 0$, potem je S_t submartingal, če pa $\mu \leq 0$, je S_t supermartingal.

Trditev 2.11. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke $z \mathbb{E}[X_i] = \mu$ za vsak i, Potem je proces

martingal.glede no filtrecije...

 $S_t - \mu \lambda t$ 2A \P_{S} (AHKO UZMTEMO NARAUNO FILTRACIJO, LAHKO PA TUDI $_{T}$ -ALGEBPO, GENERIRANU 2 DOGODKI

Dokaz. Naj bosta $0 \le s < t$. Prirastek $S_t - S_s$ je neodvisen od \mathcal{F}_s in ima pričakovano vrednost $\mu \lambda(t-s)$. Torej

Torej
$$\mathbb{E}\left[S_{t} - \mu\lambda t \mid \mathcal{F}_{s}\right] = \mathbb{E}\left[S_{t} - S_{s}\right] + S_{s} - \mu\lambda t$$

$$= \mu\lambda(t - s) + S_{s} - \mu\lambda t$$

$$= S_{s} - \mu\lambda s.$$

$$S_{1} - \mu\lambda t \mid \mathcal{F}_{s} = \mathcal{F}_{s} \mid \mathcal{F}_{s} \mid$$

3. Cramér-Lundbergov model

zgodovinski uvod in uporaba

3.1. Predpostavke in omejitve modela.

Definicija 3.1. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bodo X_i n.e.p. s.s. z enako porazdelitvijo kot X in $\mathbb{E}[X] = \mu$ ter $Var[X] = \sigma^2$. Potem proces tveganja v Cramér-Lundbergovem modelu definiramo kot

$$U_t = u + ct - S_t$$

kjer je $u \ge 0$ začetni kapital zavarovalnice in c > 0 stopnja prihodkov iz premij.

3.2. Verjetnost propada. Propad bomo definirali kot dogodek, ko bo vrednost procesa tveganja postala negativna.

Definicija 3.2. Za 0 < $T \leq \infty$ je Verjetnost propada v Cramér-Lundbergovem modelu definirana kot

$$\psi(u,T) = \mathbb{P}(U_t < 0 \text{ za nek } T \ge t > 0),$$

če gledamo proces na končnem intervalu in kot

$$\psi(u) = \mathbb{P}(U_t < 0 \text{ za nek } t > 0),$$

če gledamo proces na neskončnem intervalu. Označimo še

$$\tau(T) = \inf\{t \mid T \ge t \ge U_t < 00\},\$$

kot *čas propada*, kjer se držimo konvencije, da je inf $\emptyset = \infty$ in pišemo $\tau = \tau(\infty)$ za čas propada na neskončnem intervalu.

Seveda takoj lahko opazimo, da je $\mathbb{E}[U_t] = u + ct - \mathbb{E}[S_t] = u + ct - \mu \lambda t$. Kar nam da prvo intuicijo o stopnji prihodkov premij c.

- 3.3. Aproksimacije.
- 3.4. Uporaba modela na podatkih...

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, (2004).
- [2] S.M. Ross, Stochatic Processes: Second Edition, Wiley, (1996).
- [3] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, (1997).