.

lemma. For any Cormulas 9, B, V.

1.
$$\alpha \vdash (\beta \rightarrow \alpha)$$

2.
$$\{(\Upsilon \rightarrow \forall), (\alpha \rightarrow \beta)\} \vdash (\Upsilon \rightarrow \beta)$$

5.
$$F(x=y) \rightarrow y=x$$

1.
$$(\alpha \rightarrow (\beta \rightarrow \alpha))$$
 Assumption $(\beta \rightarrow \alpha)$ $(\beta \rightarrow$

2.
$$((\Upsilon \rightarrow (A \rightarrow \beta)) \rightarrow ((\Upsilon \rightarrow \alpha) \rightarrow (\Upsilon \rightarrow \beta))) Ax.2$$

$$(A \rightarrow \beta)$$
Assumption

$$\left(\begin{array}{c} (\Upsilon \rightarrow A) \rightarrow (\Upsilon \rightarrow \beta) \end{array}\right) \qquad \mathcal{M}\beta \qquad .$$

$$(\Upsilon \rightarrow d)$$

$$(\Upsilon \rightarrow P)$$

$$MP$$

3.
$$\{\beta, d \rightarrow (\beta \rightarrow \gamma)\} + (d \rightarrow \gamma)$$

 $(d \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((d \rightarrow \beta) \rightarrow (d \rightarrow \gamma))$ Ax. 2
 β . Assumption
 $(d \rightarrow \beta)$. Lemma 1
 $(d \rightarrow (\beta \rightarrow \gamma))$ Assumption
 $((d \rightarrow \beta) \rightarrow (d \rightarrow \gamma))$ Mp.
 $(d \rightarrow \gamma)$. Mp.
4. Assumption
 $(d \rightarrow \gamma)$. Mp.
4. Assumption
 $(d \rightarrow \gamma)$. $(d \rightarrow \gamma)$ $($

2.)	* ^	•	•	•			. "7	•	• .	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
	(L	aim	• .	2 6	1x b	Y. 4	9.3	H-	A	1 Y	\mathcal{L}_{\cdot}	Ρ.	6	٠	٠	٠	٠	•	٠	٠		٠	٠
		V2	r.H	y . \	ρ.	٠	•			۰	۰	۰	.A	ssun	ηP.	٠	•	•				٠	
		A	X. 6	jy.	Ų.	>	· b	14	q. (X)	•	A	X. 4	1.	0	•	0				0	
		- •		•														•					
													_					•					
														_				•					
		•											_					•					
																		•					
					•			٠		0	•		•	•		0	•						
•	Sinc	ce o	M	0.00	ure	nce	sof	2.2	au	el	4.	in	V2	HY	Y	al	re.	boun	d,	We	. •	•	
													_					•					
		-																•					
																		•					
٠	٠		٠	٠	٠	۰	٠		٠	٠	۰	۰	٠	٠	٠		٠	٠		٠			٠
		6	٠	٠				٠	٠		8		6		٠						٠		٠
	•	•	٠	•	•	۰	•		٠	•	•	•	•	•	۰	•	•	•	۰	٠		٠	

 $M = (\forall x (\forall \rightarrow \uparrow) \rightarrow (\forall \rightarrow \forall x \uparrow))$, where x isn't free in φ . iff if M = YX (4 -> +), and if M = 4, Then M = YX+.

iff if the same be M, if $M = \varphi$, then M = Y(b/x). Observe we substituted $\varphi(x)$ by φ as x is not free in φ . They're the same formulas.

Then MFT (b/x) for any bEM.

The last statement clearly holds. .

This is exactly the contrapositive of thm 4.4.5.

1.) We prove it by induction along the pairing axiom.

Claim. For all n7/1, Given $\chi_1, \chi_2, \ldots, \chi_n$ are sets, so is $U\chi_i$.

. Base Case. N=1. $UX_i=X_i$, already given as a set. .

Induction Step. For n>1, We know both $\bigcup_{i=1}^{n-1} X_i$ and X_n are sets.

Then $UX_i = UX_i \ UX_n$ is a set by pairing axiom.

2) Alverdy given in lemma 5.1.1.