Question Number	Scheme	Marks
1a)	Allocate a number between 1 and N (or equiv) to each pupil.	M1
	Use <u>random number tables</u> , <u>computer or calculator</u> to select 15 <u>different</u> numbers between 1 and 120 (or equiv).	B1
	Pupils corresponding to these numbers become the sample.	B1 (3)
(b)	Allocate numbers $1-64$ to girls and $1-56$ to boys. Idea of different sets for boys and girls	M1
	Select $\frac{64}{120} \times 15 = 8$ random numbers between $1 - 64$ for girls attempt find no	M1
	Select 7 random numbers between 1 – 56 for boys. Both 7 and 8	A1 (3)
2a)		B1
	$H_0: \rho = 0 ; H_1: \rho > 0$ both and ρ	B1
	5% CV – PMCC <u>0.6215</u>	
	0.572 < 0.6215 / not in critical region / not significant	M1
	No evidence of <u>positive</u> correlation	A1
	Spearman <u>0.6429</u>	B1
	Evidence of <u>positive</u> correlation	B1 (6)
(b)	No evidence to suggest that as <u>Statistics marks increased</u> Geography marks increased. Context and not correlation	B1
	Evidence that students <u>ranked highly in Statistics were also</u> ranked <u>ranked highly in Geography</u>	B1 (2)

Question Number	Scheme	Marks
3a)	$H_0: \mu_A = \mu_B; H_1: \mu_B > \mu_A$ both and μ	B1
	$z = \pm \frac{249 - 251}{\sqrt{\frac{2.5^2}{10} + \frac{2.3^2}{15}}}$ $249,251 \text{ accept}$ $\sqrt{\frac{2.5}{10} + \frac{2.3}{15}} \text{ for M}$	M1
	$\sqrt{\frac{250}{10} + \frac{25}{15}}$	A1
	$= \pm 2.0227$ awrt ± 2.02	A1
	$CV = \pm 1.6449$ or $P(Z \ge 2.02) = 0.0212 - 0.0217$, or $P(Z \le 2.02) = 0.9788 - 0.9783$	B1
	$ \begin{array}{c} -2.0227 < -1.6449 \ \ \text{or} \ \ 2.0227 > 1.6449 \ \ , \\ \text{or} \ \ 0.0212 - 0.0217 < 0.05 \end{array} \qquad \qquad \text{comparison and consistency needed} $	M1
	or $0.9788 - 0.9783 > 0.95$	
	There is evidence that the <u>mean amount of coffee</u> dispensed by B <u>is greater</u> than A.	A1√ (7)
b)	Machine B amounts are normally distributed.	B1 (1)

Question Number	Scheme		Marks	
4a)	$\bar{x} = 75.3$		B1	
	$s^2 = \frac{1}{9} \left\{ 57455 - \frac{753^2}{10} \right\}$		M1	
	$=83.78^{\circ}$, $83\frac{71}{90}$, 83.8	awrt 83.8	A1	(3)
		1.96	B1	
b)		value, may use 83.8 for M	M1 A1√ on z only	
	(73.0, 76.6)	awrt 73.0,76.6	A1, A1	(5)
c)	Journey times independent			
	Sample large enough to use central limit theorem	any 2	B1,B1	
	Same distribution / population			(2)

Question Number	Scheme	Marks
5.		M1 convert % to freq
	Never	A1 (26, 91, 30, 132)
	Sometimes	A 1 (1/2 79)
	Regularly Totals	A1 (143, 78)
	Totals	
	Males	B1
	30	
	132	B1
	78 240	
	240	
	Females	
	26	
	143	
	91	M1
	260	A1 at least 3sf
	56	
	275	
	169	
	500	B1; B1√
		,
	H ₀ : No association (independent) between gender and exercise	
	H1: association (not independent) between gender and exercise	M1 A1
		A1√
	Expected Values	
		(12)
	Never	
	Sometimes	
	Regularly	
	Totals	
	Males	
	26.88	
	132	
	81.12	
	240	
	Females	
	29.12	
	143	
	87.88	

MARK SCHEME

260

 $\alpha = 0.05$ $\underline{v = 2}$; $CV \chi^2 > \underline{5.991}$

 $\Sigma \frac{(O-E)^2}{E} OR \quad \Sigma \frac{O^2}{E} - N = 0.9271$

answers in range 0.90 - 0.95

Not in critical region – no evidence of association between gender and exercise

Question Number		Scheme		Marks	
6a)	<i>X</i> ∼ B(3,1/6)		bino 3, 1/6	B1 B1	(2)
b)	X Prob	Expected freq	prob – must show working and use B(3,p) or may be implied by correct answer	M1	
	$0 \qquad \left(\frac{5}{6}\right)^3$	144.68	expected	M1	
	$1 3 \times \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right)$	86.81			
	$2 3 \times \left(\frac{5}{6}\right) \left(\frac{1}{6}\right)^2$	17.36	awrt 145,86.8,17.4,1.15/1.16	B2 (-1 ee)	
	$\left(\frac{1}{6}\right)^3$	1.15 (1.16)			
	H_0 : Binomial model is a good fit both, no ditto H_1 : Binomial model is not a good fit		B1		
	Amalgamate 3 with another group		M1		
	$\alpha = 0.01 \text{ v} = 2 \text{ ; CR } \chi^2 > \underline{9.210}$		B1 ; B1√		
	$\sum_{E} \frac{(O-E)^2}{E} OR \sum_{E} \frac{O^2}{E} - R$ 8.70 or	V = 8.6894	answers in range 8.67 –	M1 A1	
	Evidence that Binomial	is a good model.		A1√	(11)

Question Number	Scheme	Marks	
6.c)	Estimate p Degrees of freedom reduced by 1	B1 B1	(2)
	Special case		, ,
	Use of B(3,0.192) in part (b)		
	Expected frequencies	M1	
	131.8785 94.01242 22.339	M1	
	1.769	В0	
	H_0 : Binomial model is a good fit both, no ditto H_1 : Binomial model is not a good fit	B1	
	Amalgamate 3 with another group	M1	
	$\alpha = 0.01 \text{ v} = 1 \text{ ; CR } \chi^2 > 6.635$	B1 ; B1√	
	$\Sigma \frac{(O-E)^2}{E} OR \ \Sigma \frac{O^2}{E} - N \text{ in range 5.45 -5.50}$	M1 A1	
	Evidence that Binomial is a good model.	A1√	(11)

Question Number	Scheme	Marks
7a)	E(D) = E(A) - 3E(B) + 4E(C)	M1
	= 20	A1
	Var(D) = Var(A) + 9Var(B) + 16Var(C) Use of a ² Var X Adding 3 Var ie 4 +	M1 M1
	=341	A1
	$P (D < 44) = P \left(z < \frac{44 - 20}{\sqrt{341}} \right)$ standardising their mean and sd	M1, A1√
	= P (z < 1.30) awrt 1.30	A1
b)	= 0.9032	A1 (9)
	E(X) = 20	B1
	Var(X) = Var(A) + 3Var(B) + 16 Var(C) + and 16 3 Var(B)	M1 M1
	= 287	A1
	$P(X>0) = P\left(z > \frac{-20}{\sqrt{287}}\right)$ standardising their mean and sd	M1
	= P (z > -1.18) awrt -1.18	A1
	= 0.8810	A1 (7)