Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

Классификация текстовых данных

Студент Сухоруких А.О.

Группа М-ИАП-22

Руководитель Кургасов В.В.

Цель работы

Получить практические навыки решения задачи классификации текстовых данных в среде Jupiter Notebook. Научиться проводить предварительную обработку текстовых данных, настраивать параметры методов классификации и обучать модели, оценивать точность полученных моделей.

Задание кафедры

- 1) Загрузить выборки по варианту из лабораторной работы №2
- 2) Используя GridSearchCV произвести предварительную обработку данных и настройку методов классификации в соответствие с заданием, вывести оптимальные значения параметров и результаты классификации модели (полнота, точность, f1-мера и аккуратности) с данными параметрами. Настройку проводить как на данных со стеммингом, так и на данных, на которых стемминг не применялся.
- 3) По каждому пункту работы занести в отчет программный код и результат вывода.
- 4) Оформить сравнительную таблицу с результатами классификации различными методами с разными настройками. Сделать выводы о наиболее подходящем методе классификации ваших данных с указанием параметров метода и описанием предварительной обработки

Вариант 2 RF, MNB, SVM

Ход работы

- 1) Загрузить выборки по варианту из лабораторной работы №2
- pandas предоставляет специальные структуры данных и операции для манипулирования числовыми таблицами и временными рядами.
- numpy поддерживает многомерные массивы, высокоуровневые математические функций, предназначенные для работы с многомерными массивами
- pyplot это коллекция функций в стиле команд, которая позволяет использовать matplotlib почти так же, как MATLAB
- nltk пакет библиотек и программ для символьной и статистической обработки естественного языка, написанных на языке программирования Python.
- sklearn включает все алгоритмы и инструменты, которые нужны для задач классификации, регрессии и кластеризации, методы оценки производительности модели машинного обучения.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.model selection import train_test_split
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfTransformer
from sklearn.pipeline import Pipeline
from sklearn.naive bayes import MultinomialNB
from nltk.stem import *
from nltk import word_tokenize
import itertools
```

Рисунок 1 – Необходимые библиотеки

```
Bыгрузка данных из датасета

categories = ['comp.windows.x', 'rec.sport.baseball', 'rec.sport.hockey']
remove = ['headers', 'footers', 'quotes']
twenty_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42, categories=categories, remove=remove)
twenty_test = fetch_20newsgroups(subset='test', shuffle=True, random_state=42, categories=categories, remove=remove)

v 2.2s
```

Рисунок 2 – Выгрузка данных по варианту

2) Используя GridSearchCV произвести предварительную обработку данных и настройку методов классификации в соответствие с заданием, вывести оптимальные значения параметров и результаты классификации модели (полнота, точность, f1-мера и аккуратности) с данными параметрами. Настройку проводить как на данных со стеммингом, так и на данных, на которых стемминг не применялся.

```
%%time
parameters = {
         'vect__max_features': (1000,5000,10000),
'vect__stop_words': ('english', None),
'tfidf__use_idf': (True, False),
         'clf n neighbors': (1, 3, 5, 10),
    'vect__max_features': (1000,5000,10000),
         'clf__criterion': ('gini', 'entropy'),
'clf__max_depth': [*range(1,5,1), *range(5,101,20)]
          'vect__max_features': (1000,5000,10000),
         'vect stop words': ('english', None),
         'clf_loss': ['squared_hinge'],
'clf_penalty': ('l1', 'l2')
         'vect max features': (1000,5000,10000),
         'clf_loss': ['hinge'],
'clf_penalty': ['l2']
for clf, param in parameters.items():
    text clf = Pipeline([
         ('vect', CountVectorizer()),
         ('tfidf', TfidfTransformer()),
         ('clf', eval(clf)())
    gs[clf] = GridSearchCV(text_clf, param, n_jobs=-1, error_score=0.0)
    gs[clf].fit(X = twenty train['data'], y = twenty train['target'])
6m 58.8s
```

Рисунок 3 – Сетки параметрического поиска

На данном рисунке представлено параметры и ограничения по которым будет проводится поиск по сетке

3) Оформим сравнительную таблицу с результатами классификации различными методами.

comp.windows.x	0.75	0.56	0.64	395	
rec.sport.baseball	0.43	0.57	0.49	397	
rec.sport.hockey	0.51	0.48	0.49	399	
2					
accuracy			0.53	1191	
macro avg	0.56	0.53	0.54	1191	
weighted avg	0.56	0.53	0.54	1191	
	precision	recall	f1-score	support	
comp.windows.x	0.87	0.80	0.83	395	
rec.sport.baseball	0.63	0.81	0.71	397	
rec.sport.hockey	0.82	0.64	0.72	399	
accuracy			0.75	1191	
macro avg	0.77	0.75	0.75	1191	
weighted avg	0.77	0.75	0.75	1191	
	precision	recall	f1-score	support	
	0.00	0.00	0.00	205	
comp.windows.x	0.98	0.93	0.96	395	
rec.sport.baseball	0.85	0.90	0.87	397	
rec.sport.hockey	0.90	0.88	0.89	399	
accuracy			0.91	1191	
accuracy macro avg	0.91	0.91	0.91	1191	
weighted avg	0.91	0.91	0.91	1191	
weighted avg	0.51	0.51	0.51	1131	

Рисунок 4 — Итоговая таблица

Из полученных данных мы видим, что наиучшую классификацию показал метод наивного байсевского классфикатора с вероятностью 0,96

Вывод

В ходе выполнения данной лаборатоной работы были получены практические навыки решения задачи классификации текстовых данных в среде Jupiter Notebook. Научились проводить предварительную обработку текстовых данных, настраивать параметры методов классификации и обучать модели, оценивать точность полученных моделей.