光學檢測 Optical Methodologies for Mechanics and Industrial Applications

Chi Hung Hwang chihunghwang@gmail.com

Fringe Skeleton Method

- 1) Intensity distribution
 - 1. Identification of local extrema
 - 2. Fringe sampling points for interpolation
- 2) determination of points with integer or half-integer order of interference
- 3) absolute order has to be identified additionally
- 4) Relatively low accuracy of phase measurements

Processing:

- ① improvement of SNR by spatial and temporal filtering
- ② creation of the skeleton (segmentation)
- ③ improvement of the skeleton shape
- ① numbering the fringes
- ⑤ reconstruction of the phase by interpolation

Phase estimation methods

General Form of Fringe Patterns

$$I(x,y) = a(x,y) + b(x,y)\cos\delta(x,y)$$

Fringe Pattern Averaged/ Background Contrast of the fringes Phase to be Determined

Measurable

Unknown

Unknown

Unknown

Imaging System & Object transmittance, Reflectivity...

Parameters to be Measured

Generating More Information (measureable) for determining unknown parameters

The general scheme of Fringe pattern forming in optical fringe pattern analysis FP FP acquisition modification process FP preprocessing Digital Fringe pattern analysis holography Phase methods Intensity methods (Active methods) (Passive methods) Phase shifting 2D FFT Fringe extrema localization Temporal heterodyning PLL Regularization (constrains) methods Fringe Phase (constrains) unwrapping numbering Absolute Phase determination Phase Phase scaling Kujawinska, Malgorzata, and Wolfgang Osten. "Fringe pattern analysis methods: up-to-date review." International Conference on Applied FP: Fringe Pattern Optical Metrology. Vol. 3407. International Society for Optics and Final result Photonics, 1998.

Direct Method

$$I(x,y) = a(x,y) + b(x,y) \cos \delta(x,y)$$

Fringe Pattern Averaged/ Background Contrast of the fringes Phase to be Determined

Measurable

Unknown

Unknown

Unknown

$$I(x,y) = a(x,y) + b(x,y)\cos\delta(x,y)$$

$$= a(x,y) + \frac{1}{2}b(x,y)e^{i\delta(x,y)} + \frac{1}{2}b(x,y)e^{-i\delta(x,y)}$$

$$\frac{1}{2}b(x,y)(\cos\delta + i\sin\delta) = Re\left[\frac{b(x,y)}{2}e^{i\delta}\right] + Im\left[\frac{b(x,y)}{2}e^{i\delta}\right]$$

$$\delta = \tan^{-1} \frac{Im \left[\frac{b(x, y)}{2} e^{i\delta} \right]}{Re \left[\frac{b(x, y)}{2} e^{i\delta} \right]}$$

Fourier Transform to 2D frequency Domain

$$\mathcal{F}(I(x,y)) = G(f_x, f_y)$$

$$\Rightarrow$$

$$G(f_x, f_y) = A(f_x, f_y) + C(f_x, f_y) + C^*(f_x, f_y)$$

$$G(f_x, f_y)$$

$$G(f_x, f_y)$$

$$C^*(f_x, f_y)$$

Shifting & Inverse Fourier Transform

Direct Method

Phase estimation methods

Temporal Phase Shifting

Phase shift introduced between the test and reference beams as a function of time

Spatial Phase Shifting

- 1) Phase shift data obtained from a single interferogram that requires a carrier pattern of almost straight fringes to either compare phases of adjacent pixels or to separate orders while performing operations in the Fourier domain.
- Simultaneously record multiple interferograms with appropriate relative phase shift differences separated spatially in space.

Temporal phase shifting

The phase modulation needs to generate linear and uniform phases over the field of view during the exposure time of the detector.

$$\varphi = 2\pi f t$$

 $\Rightarrow I(x, y; t) = a(x, y) + b(x, y) \cos(\delta(x, y) + \varphi(t))$ Each image is obtained by integrating over a time interval ΔT

$$\Rightarrow \Lambda_n = \frac{1}{\Delta T} \int_{(n-1)\Delta T}^{n\Delta T} I(x, y; t) dt$$

$$= \frac{1}{a(x,y) + b(x,y)} \frac{1}{\Delta T} \int_{(n-1)\Delta T}^{n\Delta T} \cos(\delta(x,y) + \varphi(t)) dt$$

$$= a(x,y) + b(x,y) \frac{1}{\Delta T} \int_{(n-1)\Delta T}^{n\Delta T} \cos(\delta(x,y) + \varphi(t)) dt$$
$$= a(x,y) + b(x,y) \sin(\pi f \Delta T) \cos\left(\delta + 2\pi \left(n - \frac{1}{2}\right) f \Delta T\right)$$

 φ must be selected according to Shannon theorem thus $\varphi < \pi$

Spatial Phase-Shifting

Phase Stepping

The phase modulation is a step and maintains constant during the integration time of the detector

$$\varphi_n = \frac{2\pi}{N} (n-1) [u(t-(n-1)\Delta T) - u(t-n\Delta T)], n = 1, 2, ...$$

$$\Lambda_n = a(x,y) + b(x,y) \cos(\delta + \varphi_n), n = 1, 2, ...$$

Phase Shifting vs. Phase Stepping

Phase estimation methods

Mechanisms for Phase Shifting/Phase Stepping

Moving Mirror $\delta = 2 \times \lambda/8$

Diffraction Grating

$$\delta = p/4$$

Bragg Cell/ Acousto-optical modulator

Rotating Half-Wave Plate

electro-optic modulator $\varphi = n(E)koL$ $= 2\pi n(E)L/\lambda o$

Geometric Phase Shifter

Classification of phase estimation

Procedures for Extracting Phase Map from Spatial Carrier Fringes

① CapturingFringe PatternsWith Spatial Carrier

$$I(x,y) = a(x,y) + b(x,y)\cos\delta(x,y)$$

③ Fourier transform

$$\mathcal{F}(I(x,y)) = G(f_x, f_y) =$$

$$A(f_x, f_y) + C(f_x, f_y)$$

$$+ C^*(f_x, f_y)$$

Spectrum
Spectrum

$$G'(f_x, f_y)$$
=\begin{cases} C(f_x, f_y); & \|(f_x, f_y) - (0,0)\| \leq \text{R} \\ 0; \text{ otherwise}

② Fringe Pattern Denoising

④ Filtering with bandpass

$$G'(f_x, f_y)$$
=\begin{cases} C(f_x, f_y); & \|(f_x, f_y) - (\mu, \nu)\| \leq \text{R} \\ 0; \text{ otherwise}

© reconstructed phase and Unwrapped

$$\mathcal{F}^{-1}\left(G'(f_x, f_y)\right) = C(x, y)$$
$$= \frac{1}{2}b(x, y)e^{i\delta}$$

$$\Rightarrow \delta(x,y) = \tan^{-1}\left(\frac{ImC(x,y)}{ReC(x,y)}\right)$$

Phase-Measurement Algorithms

# of Frames	Phase Shift	Phase
3	$\pi/2$	$\emptyset = \tan^{-1}(\frac{I_1 - I_2}{I_2 - I_3})$
4	$\pi/2$	$\emptyset = \tan^{-1}(\frac{I_2 - I_4}{I_2 - I_3})$
Carré Equation	$\pi/2$	$\emptyset = \tan^{-1}\left(\frac{\sqrt{3[(I_2 - I_3) - (I_1 - I_4)][(I_2 - I_3) + (I_1 - I_4)]}}{(I_2 + I_3) - (I_1 + I_4)}\right)$
5 (Schwider-Hariharan)	$\pi/2$	$\emptyset = \tan^{-1}(\frac{-2I_2 + 2I_4}{I_1 - 2I_3 + I_5})$
7	$\pi/3$	$\emptyset = \tan^{-1}\left(\frac{\sqrt{3}(I_2 + I_3 - I_5 - I_6)}{-I_1 - I_2 + I_3 + 2I_4 + I_5 - I_6 - I_7}\right)$
8	$\pi/2$	$\emptyset = \tan^{-1}\left(\frac{I_1 + 5I_2 - 11I_3 - 15I_4 + 15I_5 + 11I_6 - 5I_7 - I_8}{I_1 - 5I_2 - 11I_3 + 15I_4 + 15I_5 - 11I_6 - 5I_7 + I_8}\right)$
12	$\pi/3$	$\emptyset = \tan^{-1}\left(\frac{\sqrt{3}(-3I_2 - 3I_3 + 3I_4 + 9I_5 + 6I_6 - 6I_7 - 9I_8 - 3I_9 + 3I_{10} + 3I_{11}}{2I_1 + I_2 - 7I_3 - 11I_4 - I_5 + 16I_6 + 16I_7 - I_8 - 11I_9 - 7I_{10} + I_{11} + 2I_{12}}\right)$
N (synchronous detection)	$\alpha_i = \frac{2\pi i}{N},$ $i = 1,2 \dots$	$\emptyset = -\tan^{-1}\left[\frac{\sum_{i=1}^{N}\sin\alpha_i}{\sum_{i=1}^{N}\cos\alpha_i}\right]$

Topics

- Introduction
- Why optical methodologies?
- Define Requirement-Knowing Limitation of a Method
- Key Elements of Optics
 - Light Source
 - Sensors
 - Optical Lens& Optical Components
- Principle of Basic Interferometry

- Spectrum and Its Applications
- Laser Triangulation Measurement Method
- Moiré Method/ Sampling Moiré Method
- Structured Light and Its Application
- Astigmatic Method and Applications
- Principle of White Light Scanning Interferometer and its Applications
- Principle of Confocal Microscopy and its applications
- Principle of Conoscopic Holography and its applications

	Time of Flight (ToF)	Stereoscopic vision	Fixed structured light	Programmable structured light (DLP)
Location	0	0		0
Identification	0	0	0	0
Measurement & inspection	0	0	0	0
Biometrics				0
UI control / gaming	0		0	
Augmented reality	0	0		0

Comparison of 3D imaging technologies

	Time of Flight (ToF)	Stereoscopic vision	Fixed structured light	Programmable structured light (DLP)
Operational principle	IR pulse, measure light transit time	Two 2D sensors emulate human eyes	Single pattern visible or IR illumination, detects distortion	Multiple pattern visible or IR illumination, detects distortion
Point cloud generation	Direct out of chipset	High SW Processing	Medium SW processing	SW processing scales with # of patterns
Latency	Low	Medium	Medium	Medium
Active illumination	Yes	No	Yes	Yes – customizable spectrum
Low light performance	Good	Weak	Good	Good
Bright light performance	Medium	Good	Medium / weak Depends on illumination power	Medium / weak Depends on illumination power
Power consumption	Medium/high Scales w/ distance	Low	Medium	Medium Scales with distance
Range	Short to long range Depends on laser power & modulation	Mid range Depends on spacing between cameras	Very short to mid range Depends on illumination power	Very short to mid range Depends on illumination power
Resolution	QQVGA, QVGA -> Roadmap to VGA	Camera Dependent	Projected pattern dependent	WVGA to 1080p -> Roadmap to WQXGA
Depth accuracy	mm to cm Depends on resolution of sensor	mm to cm Difficulty with smooth surface	mm to cm	µm to cm
Scanning speed	Fast Limited by sensor speed	Medium Limited by software complexity	Medium Limited by SW complexity	Fast / medium Limited by camera speed

Triangulation

General Mathematical Model for Single Point Measurement

Laser Trackers—Single Point Measurement

Laser scanners

Basic principle:

Depending on the technique used, the 3D laser scanner are defined 'time of flight' (TOF) when calculating the distance according to the time elapsed between the emission of the laser and the reception of the return signal, or 'phase shift based' when the calculation is performed by comparing the phases of the output signal and the return.

(1) pulsed mode, $d = \frac{Ct}{2} \frac{q_2}{q_1 + q_2}$ (2) continuous – wave, $d = \frac{Ct}{2\pi} tan^{-1} \frac{q_3 - q_3}{q_1 - q_2}$

Laser scanners

Grey-Value Range Image Colour-Coded Range Image

Intensity Image

RGB Image Overlay

General Mathematical Model for Light Sheet Illumination

Classification of 2D structured light coding methods

Techniques		Pros	Cons
Stereo vision		No need for active lighting; lowcost; easy to implement	Correspondence between different views and reconstruction of 3D shape with high resolution in real time are difficult
Shape from shading		Able to reconstruct a 3D shape from a single image	Difficult to implement algorithms for 3D shape reconstruction in the real world
Shape from silhouette		Computationally simple; able to reconstruct 3D shapes efficiently	Accuracy is relatively low
Time of flight		Able to provide high accuracy at a reasonable price	Data acquisition time is relatively high
structured light	1D structured light	Able to provide high accuracy; no need for complicated correspondence calculation	Laser scanning is time consuming; equipment is relatively expensive
	2D structured light	No need for scanning or complicated correspondence calculation	Less accurate than 1D structured light technique

Structured Lighting

- The projection of patterns into a scene is called structured lighting.
- The patterns projected onto the objects within the field of view of a camera.
- The distance of object to the camera or the location of an object in space can be determined by analyzing the observed light patterns in the images.
- Structured lighting consists in intersecting the ray I, projected by a light source at point (X,Y,Z) and imaged at point (x,y); with an additional ray I' or an additional plane π which leads to a unique reconstruction of the object point (X,Y,Z).

Applications of Structure Light

Stereo Imaging method

- Need 2 or more views of the scene
- Scene texture used to identify correspondences across views

Coordinate Systems

Geometrical Model

$$\frac{B - |x_r + x_l|}{Z - f} = \frac{B}{Z} \Longrightarrow Z = \frac{fB}{|x_r + x_l|}$$

Stereo Imaging method

Coordinate Systems

Stereo works well on "textured" images

Stereo can fail with lack of texture

Stereo Imaging method

Coordinate Systems

Stereo Vision vs. Structured Light

General Problems for Stereo Vision

- Recovering shape from multiple views of s scene, finding correspondence between images are needed
- Matching correspondence problem is complex
- 3D cannot be reconstructed in image regions without well-defined points

- Avoid problems due to correspondence
- Avoid problems due to surface appearance
- Much more accurate
- Very popular in industrial settings

Coded structured light

Single dot:

- No correspondence problem.
- Scanning both axis.

Single slit:

- No correspondence problem.
- Scanning the axis orthogonal to the slit.

Stripe patterns:

- No scanning.
- Correspondence problem among

Grid, multiple dots:

- No scanning.
- •Correspondence problem among all the imaged features (points, dots, segments,...).

Classes of patterns: Temporal/Spatial/Other

pattern with two-encoded-columns

Coded structured light

Temporal Coding

- 1. Multiple frames are projected to identify scene regions
- 2. Camera pixel's intensity change used for correspondence
- 3. Scene assumed to be static

Spatial Coding

- 1. Coding in a single frame.
- 2. Spatial Coherence can be local or global.
- 3. The minimum number of pixels used to identify the projected code defines the accuracy of details to be recovered in the scene.

Example: 3 binary-

http://cmp.felk.cvut.cz/cmp/demos/RangeAcquisition.html

Binary Coding

Projecting Binary Code w.r.t. frame time

Phase Shifted Structured Light (SL) Systems

- Project patterns to find correspondences between camera and projector
- Phase shifted sinusoidal patterns:
 - Fast capture: 3 shots
 - Simple to decode
 - Insensitive to blur
 - Used in optical metrology

Scene Illuminated with Phase-Shifted Sinusoids

$$\phi(x,y) = \tan^{-1} \left(\frac{\sqrt{3}(I_1(x,y) - I_3(x,y))}{2I_2(x,y) - I_1(x,y) - I_3(x,y)} \right)$$

M periods in sinusoid → Need to unwrap phase

