IN THE CLAIMS:

l	1.	(Currently amended) An apparatus that provides at least one estimated
2		effective age of a product <u>during the entire life of the product</u> , comprising:
3		at least one sensor <u>equipped on the product</u> that provides data about an environmental condition;
4		an environmental condition,
5		a device equipped on the product that uses said data to calculate an
6		age acceleration factor for said product for at least one of said sensors;
7		at least one accumulator equipped on the product that provides the
8		estimated effective age for said product, based upon said age acceleration
9		factor; and
10		a display equipped on the product capable of presenting said
11		estimated effective age to a user of said product.
- 1	- 2.	(Original) The apparatus of claim 1, wherein said sensor includes an analog
2		to digital conversion function, and wherein said device that uses said data t
3		calculate an age acceleration factor is a digital processor.
1	3.	(Original) The apparatus of claim 2, wherein said digital processor is
2		programmed to compute an Arrhenius estimate of said age acceleration.
,	4	(Original) The apparatus of claim 2, wherein said digital processor is
1 2	4.	programmed to compute a Coffin-Manson estimate of age acceleration.
2		programmed to compute a commitment estimate of age accordation.
1	5.	(cancelled) The apparatus of claim 2, wherein said digital processor is
2		programmed to compute a Hallberg-Peck estimate of age acceleration.

1 2	 (Original) The apparatus of claim 2, wherein said accumulator is at least partially implemented in nonvolatile storage.
1	7. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2	ferroelectric memory.
1	8. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2	flash memory.
1	9. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2	hard disk.
1	10. (Original) The apparatus of claim 6, wherein said nonvolatile storage is a
2	volatile memory element, with continuity of power provided by a battery.
1	11. (currently amended) The apparatus of claim 1, wherein said sensor produces
2	an analog voltage output, said analog voltage output varying substantially
- 3	linearly responsive to a change in temperature, wherein said voltage output is
4	said data.
1	12. (currently amended) The apparatus of claim 11, wherein said device that uses
2	said data to calculate an age acceleration factor for said product is a VCO,
3	said VCO producing a VCO output signal having a frequency that varies
4	substantially exponentially responsive to a linear voltage change on an input
5	of the VCO.
1	13. (currently amended) The apparatus of claim 12, wherein said accumulator is
2	a counter; said counter being implemented, at least in part, in a nonvolatile or
3	effectively nonvolatile technology, and wherein said counter is clocked by the
4	VCO output signal.
1	14. (Original) The apparatus of claim 13, wherein said display is electrically

coupled to selected bits of said counter.

1	15. (Currently amended) A method for producing one or more estimates of
2	effective age of a product, during the entire life of the product, comprising
3	the steps of:
4	sensing, using a sensor equipped on the product one or more
5	environmental conditions;
6	computing, using a computer equipped on the product, an age
7	acceleration factor for each of the environmental conditions sensed, using a
8	model that relates the environmental condition to the age acceleration factor
9	computing, using the computer equipped on the product, effective ag
10	values, using said acceleration factors;
11	storing, using a storage equipped on the product, said effective age
12	values into nonvolatile storage; and
13	displaying, using a display equipped on the product, said effective
14	age values to a user of said product on a display.
1	16. (cancelled) The method of claim 15, wherein the step of computing an age
2	acceleration factor comprises the use of the Arrhenius equation, the Hallberg

Peck equation, or the Coffin-Manson equation.

3

1	17. (cancelled) The method of claim 15, wherein the step of computing effective
2	age values further comprises the steps of:
2	time integrating the age acceleration factor for each of the
3	environmental conditions sensed, resulting in an effective age for the product
4	according to each said model;
5	according to each said model,
6	computing a normalized effective age for some or all of the effective
7	ages by dividing the instant effective age by a wall clock age;
8	computing an effective life used value for some or all of the effective
9	ages by dividing the instant effective age by a predetermined estimate of life
10	of the product; and
11	computing an effective life remaining value for some or all of the
12	effective ages by subtracting said effective life used value from "1".
1	18. (Original) The method of claim 15, wherein the step of displaying said
2	effective age values further comprises the steps of:
3	determining if any of said values are outside of predetermined ranges;
4	and
5	alerting the user if any of said values are outside of predetermined
6	ranges by lighting a light, sounding an audible alarm, or presenting said
7	values on said display.
1	19. (New) An apparatus that provides at least one estimated effective age of a
2	product comprising:
3	at least one sensor that provides data about an environmental
4	condition;
5	a device that uses said data to calculate an age acceleration factor for
6	said product for at least one of said sensors;
7	at least one accumulator that provides the estimated effective age for
,	at load, one accumulator that provides the commuted effective ago for

said product, based upon said age acceleration factor; and

a display capable of presenting said estimated effective age to a user of said product;

wherein the at least one sensor includes an analog to digital conversion function, and wherein said device that uses said data to calculate an age acceleration factor is a digital processor wherein said digital processor is programmed to compute a Hallberg-Peck estimate of age acceleration.

1	20. (new) A method for producing one or more estimates of effective age of a
2	product, comprising the steps of:
3	sensing one or more environmental conditions;
4	computing an age acceleration factor for each of the environmental
5	conditions sensed, using a model that relates the environmental condition to
6	the age acceleration factor;
7	computing effective age values, using said acceleration factors;
8	storing said effective age values into nonvolatile storage; and
9	displaying said effective age values to a user of said product on a
10	display;
11	wherein the step of computing an age acceleration factor comprises the use of
11	
12	the Arrhenius equation, the Hallberg-Peck equation, or the Coffin-Manson
13	equation.

1	21. (new) A method for producing one or more estimates of effective age of a
2	product, comprising the steps of:
3	sensing one or more environmental conditions;
4	computing an age acceleration factor for each of the environmental
5	conditions sensed, using a model that relates the environmental condition to
6	the age acceleration factor;
7	computing effective age values, using said acceleration factors;
8	storing said effective age values into nonvolatile storage; and
9	displaying said effective age values to a user of said product on a
10	display;
11	wherein the step of computing effective age values further comprises the
12	steps of:
13	time integrating the age acceleration factor for each of the
14	environmental conditions sensed, resulting in an effective age for the product
15	according to each said model;
16	computing a normalized effective age for some or all of the effective
17	ages by dividing the instant effective age by a wall clock age;
18	computing an effective life used value for some or all of the effective
19	ages by dividing the instant effective age by a predetermined estimate of life
20	of the product; and
21	computing an effective life remaining value for some or all of the
22	effective ages by subtracting said effective life used value from "1".

Gid