Intelligent Systems Programming

Lecture 10: Linear Programming I

Beyond Discrete Decision Variables

- Constraint programming
 - Discrete variables
 - No objective
 - Complete
- Local search
 - Discrete variables
 - Any objective function
 - Incomplete
- Linear programming
 - Continuous variables
 - Linear objective function
 - Complete

History of Linear Programming (LP)

- Simplex invented 1947 by Georg B. Danzig
- Expected to be the answer to everything
 - Oil blending
 - Crew assignment
 - Production planning
 - Games
- LP proven to be in P in 1979
- Increasing importance in algorithms

Today's Program

- [10:00-10:50]
 - LP problem examples
 - Definition of LP problems
 - The standard form
 - Geometric interpretation
- [11:00-12:00]
 - Slack form
 - The simplex algorithm
 - Dictionaries
 - Geometric interpretation of the simplex algorithm

Problem Example: Diet Problem

- Choose number of servings of six foods such that:
 - 2000 kcal, 55g protein, 800 mg calcium, and min cost

Food	Serving size	Energy (kcal)	Protein (g)	Calcium (mg)	Cost (cents)	Max servings
Oatmeal	28 g	110	4	2	3	4
Chicken	100 g	205	32	12	24	3
Eggs	2 large	160	13	54	13	2
Milk	237 сс	160	8	285	9	8
Cherry pie	170 g	420	4	22	20	2
Pork w/ beans	260 g	260	14	80	19	2

Decision Variables

- x_1 : number of oatmeal servings
- x_2 : number of chicken servings
- x_3 : number of eggs servings
- x_4 : number of milk servings
- x_5 : number of cherry pie servings
- x_6 : number of pork w/ beans servings

Objective and Constraints

Food	Serving size	Energy (kcal)	Protein (g)	Calcium (mg)	Cost (cents)	Max servings
Oatmeal	28 g	110	4	2	3	4
Chicken	100 g	205	32	12	24	3
Eggs	2 large	160	13	54	13	2
Milk	237 сс	160	8	285	9	8
Cherry pie	170 g	420	4	22	20	2
Pork w/ beans	260 g	260	14	80	19	2

Objective

$$\min 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

Constraints

$$110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$$

$$4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$$

$$2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$$

$$0 \le x_1 \le 4 \quad 0 \le x_2 \le 3 \quad 0 \le x_3 \le 2$$

$$0 \le x_4 \le 8 \quad 0 \le x_5 \le 2 \quad 0 \le x_6 \le 2$$

Definition of LP Problems

Linear function

$$f(x_1,x_2,...,x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$$

1. Objective: maximize/minimize linear function

max
$$f(x_1, x_2, ..., x_n)$$
,
min $f(x_1, x_2, ..., x_n)$

2. Constraints

- a) Linear equations: $f(x_1, x_2, ..., x_n) = b$
- b) Linear inequalities: $f(x_1,x_2,...,x_n) \ge b$ $f(x_1,x_2,...,x_n) \le b$

3. Continuous decision variables: $x_1, x_2, ..., x_n \in \mathbb{R}$

LP Problems in Standard Form

Maximize

$$\sum_{j=1}^{n} c_j x_j$$

Subject to

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

$$(i=1,2,\ldots,m)$$

$$x_j \ge 0$$

$$(j = 1, 2, ..., n)$$

$$a_{ij}, b_i, c_j, x_j \in \mathbb{R}$$

Conversion to Standard Form

Standard Form

Maximize

$$\sum_{j=1}^{n} c_j x_j$$

Subject to

$$\sum_{i=1}^{n} a_{ij} x_j \le b_i$$

$$x_j \ge 0$$

- How do we convert the following to standard form:
 - Minimization rather than maximization ?
 - Larger-than-or-equal constraints (≥) ?
 - Equality constraints (=) ?
 - $-x \le 0$ variables?
 - Free variables (i.e., domain is all reals)?

Geometric Interpretation of LP Problems

Half-Spaces

- Each LP constraint forms a closed halfspace in the coordinate system of the decision variables
- Example 1: $3x_1 + 2x_2 \ge 6$

Half-Spaces

- Each LP constraint forms a closed halfspace in the coordinate system of the decision variables
- Example 2: $x_1 \ge 0$

Constraints form a Polyhedron

 A Polyhedron P is the intersection of finitely many closed halfspaces in some Rⁿ

$$P = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n \mid \sum_{j=1}^n a_{ij} x_j \le b_i \text{ for } i = 1, 2, ..., m\}$$

2D Examples

Section 1

Convexity of Polyhedron

 A polyhedron is a convex set: a line between two points does not leave the set

 How do we define a concave set using linear constraints?

Objective Contours Are Lines

Example:

$$maximize x_1 + x_2$$

Ę.

Geometric Interpretation of LP Problems in 2D

- 1. The constraints is a polyhedron in quadrant I
- 2. Objective contours are lines

The Fundamental Theorem of LP

- Theorem 3.4. Every LP problem in the standard form has the following three properties:
 - 1) If it has no optimal solution, then it is either infeasible or unbounded
 - 2) If it has a feasible solution, then it has a corner point solution
 - 3) If it has an optimal solution, then it has a corner point optimal solution

I I

3D Example

The Simplex Algorithm

Simplex Example

$$5x_1 + 4x_2 + 3x_3$$

Subject to

$$2x_1 + 3x_2 + x_3 \le 5$$

$$4x_1 + x_2 + 2x_3 \le 11$$

$$3x_1 + 4x_2 + 2x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0$$

Slack Variables

 Idea: define slack variables and represent inequalities as equalities with non-negative slack requirements

Slack Variables

Example first constraint:

Original form:

$$2x_1 + 3x_2 + x_3 \le 5$$

Slack form:

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$
$$x_4 \ge 0$$

Slack variable

Standard Form and Slack Form

Standard Form

Maximize

$$5x_1 + 4x_2 + 3x_3$$

Subject to

$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x_3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$
decision variables

Slack Form

Maximize

Z

Subject to

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

slack variables

Grand Strategy of Simplex

Successive improvement

- In each step:
 - Given current feasible solution:

$$\chi_1, \chi_2, \chi_3, \chi_4, \chi_5, \chi_6$$

Find another feasible solution:

$$\overline{\chi_1}, \overline{\chi_2}, \overline{\chi_3}, \overline{\chi_4}, \overline{\chi_5}, \overline{\chi_6}$$

• Such that:

$$\overline{z} > z \Leftrightarrow$$

$$5\overline{x_1} + 4\overline{x_2} + 3\overline{x_3} > 5x_1 + 4x_2 + 3x_3$$

Repeat this a finite number of times to reach an optimal solution

Initial feasible solution

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 5, x_5 = 11, x_6 = 8$$

$$z = 0$$

How much can x_1 increase?

$$x_4 = 5 - 2x_1 - 3x_2 - x_3 \implies x_1 \le \frac{5}{2}$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3 \implies x_1 \le \frac{11}{4}$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3 \implies x_1 \le \frac{8}{3}$$

Answer:
$$\frac{5}{2}$$

Second Iteration

New feasible solution:

$$x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1, x_6 = \frac{1}{2}$$

$$z = \frac{25}{2}$$

 Idea: express variables with positive values in terms of variables with zero values

Second Iteration Cont.

• x_1 can be expressed by rewriting the first equation

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$\Leftrightarrow x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

Second Iteration Cont.

Substitute this expression into the remaining equations:

$$x_5 = 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - x_2 - 2x_3$$

$$x_6 = 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) - 4x_2 - 2x_3$$

$$z = 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4\right) + 4x_2 + 3x_3$$

New System

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 - \frac{3}{2}x_4$$

$$z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}x_4$$

How much can x_3 increase?

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \implies x_3 \le 5$$

$$x_5 = 1 + 5x_2 + 2x_4 \implies x_3 \le \infty$$

$$x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 - \frac{3}{2}x_4 \implies x_3 \le 1$$

Answer: 1

Third Iteration

New solution

$$x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$

 $z = 13$

New system

$$x_3 = 1 + x_2 - 3x_4 - 2x_6$$

 $x_1 = 2 - 2x_2 - 2x_4 + x_6$ Optimal!
 $x_5 = 1 + 5x_2 + 2x_4$
 $z = 13 - 3x_2 - x_4 - x_6$

Terminology

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

Dictionary

Terminology Cont.

Basic
$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$
 variables $x_5 = 11 - 4x_1 - x_2 - 2x_3$ $x_6 = 8 - 3x_1 - 4x_2 - 2x_3$ "The Basis" $z = 5 - 2x_1 - 3x_2 - x_3$ $5x_1 + 4x_2 + 3x_3$

Non-basic variables (n)

Terminology Cont.

Pivot row

*x*₄: leaving variable

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

Pivot column

*x*₁: entering variable

Terminology Cont.

$$\begin{cases} x_4 = 5 - 2x_1 - 3x_2 - x_3 \\ x_5 = 11 - 4x_1 - x_2 - 2x_3 \\ x_6 = 8 - 3x_1 - 4x_2 - 2x_3 \\ z = 5x_1 + 4x_2 + 3x_3 \end{cases}$$

Pivoting

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4}$$

$$x_{6} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} - \frac{3}{2}x_{4}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

Simplex Algorithm

- 1. Compute the dictionary of an initial solution
- 2. Choose a variable x_i with positive coefficient in objective expression (entering variable or pivot column)
- Calculate its maximum increase given that all basic variables must remain non-negative
- 4. Choose an equation for a basic variable x_j that becomes zero when x_i is increased (leaving variable or pivot row)
- 5. Solve it with respect to x_i
- 6. Substitute this new expression for x_i in remaining basic variable expressions in dictionary and in z expression
- 7. Stop if resulting dictionary is optimal (no variable coefficients in z are positive), otherwise goto step 2

Geometric Interpretation of Simplex

Example on Standard Form

Standard Form

Maximize

$$x_1 + x_2$$

Subject to

$$-2x_1 + 3x_2 \le 9$$
$$3x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

Example on Slack Form

Slack Form

Maximize

Z

Subject to

$$x_3 = 9 + 2x_1 - 3x_2$$

 $x_4 = 12 - 3x_1 - 2x_2$
 $z = x_1 + x_2$

$$x_1, x_2, x_3, x_4 \ge 0$$

Immediate Insights

- In a dictionary n non-basic variables are zero
 - \Rightarrow *n* constraints are binding!
 - ⇒ a dictionary corresponds to a corner point of the polyhedron
 - ⇒ Simplex searches in the space of corner points
- In a pivot one variables changes from non-basic to basic (entering variable) and one variable changes from basic to non-basic (leaving variable)
 - ⇒ Simplex pivots to an adjacent corner point

Simplex Step 0

Initial Dictionary

$$x_3 = 9 + 2x_1 - 3x_2$$

$$x_4 = 12 - 3x_1 - 2x_2$$

$$z = x_1 + x_2$$

Basis

$$x_3 = 9$$

$$x_4 = 12$$

Non-Basis

$$x_1 = 0$$

$$x_2 = 0$$

Objective

$$z = 0$$

Entering variable x_1

$$x_3 = 9 + 2x_1 - 3x_2 \implies x_1 \le \infty$$
 $x_4 = 12 - 3x_1 - 2x_2 \implies x_1 \le 4$

1) Solve wrt. x_1

$$x_1 = 4 - \frac{2}{3}x_2 - \frac{1}{3}x_4$$

2) Substitute expression for x_1 into x_3 and z expression

$$x_3 = 9 + 2\left(4 - \frac{2}{3}x_2 - \frac{1}{3}x_4\right) - 3x_2 = 17 - \frac{13}{3}x_2 - \frac{2}{3}x_4$$

$$z = x_1 + x_2 = 4 - \frac{2}{3}x_2 - \frac{1}{3}x_4 + x_2 = 4 + \frac{1}{3}x_2 - \frac{1}{3}x_4$$

Simplex Step 1

New Dictionary

$$x_3 = 17 - \frac{13}{3}x_2 - \frac{2}{3}x_4$$

$$x_1 = 4 - \frac{2}{3}x_2 - \frac{1}{3}x_4$$

$$z = 4 + \frac{1}{3}x_2 - \frac{1}{3}x_4$$

Basis

$$x_1 = 4$$

$$x_3 = 17$$

Non-Basis

$$x_2 = 0$$

$$x_4 = 0$$

Objective

$$z = 4$$

Entering variable x_2

$$x_{3} = 17 - \frac{13}{3}x_{2} - \frac{2}{3}x_{4} \qquad \Longrightarrow \qquad x_{2} \le \frac{51}{13}$$

$$x_{1} = 4 - \frac{2}{3}x_{2} - \frac{1}{3}x_{4} \qquad \Longrightarrow \qquad x_{2} \le 6$$

$$1) \text{ Solve wrt. } x_{2}$$

$$x_{2} = \frac{51}{13} - \frac{3}{13}x_{3} - \frac{2}{13}x_{4}$$

$$x_2 = \frac{51}{13} - \frac{3}{13}x_3 - \frac{2}{13}x_4$$

2) Substitute expression for x_2 into x_1 and z expression

$$x_1 = 4 - \frac{2}{3} \left(\frac{51}{13} - \frac{3}{13} x_3 - \frac{2}{13} x_4 \right) - \frac{1}{3} x_4 = \frac{18}{13} + \frac{4}{39} x_3 - \frac{3}{13} x_4$$

$$z = 4 + \frac{1}{3} \left(\frac{51}{13} - \frac{3}{13} x_3 - \frac{2}{13} x_4 \right) - \frac{1}{3} x_4 = \frac{69}{13} - \frac{1}{13} x_3 - \frac{15}{39} x_4$$

Simplex Step 2

New Dictionary

$$x_2 = \frac{51}{13} - \frac{3}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{18}{13} + \frac{4}{39}x_3 - \frac{3}{13}x_4$$

$$z = \frac{69}{13} - \frac{1}{13}x_3 - \frac{15}{39}x_4$$

Basis

$$x_1 = \frac{18}{13} \cong 1.38$$

$$x_2 = \frac{51}{13} \cong 3.92$$

Non-Basis

$$x_3 = 0$$

$$x_4 = 0$$

Objective

$$z = \frac{69}{13} \cong 5.31$$

I I

3D Example

Something to think about for next week

- Is the slack form always a feasible initial dictionary?
- How will we know if the problem is unbounded?
- Does each pivoting always improve z?
- Does Simplex terminate?