Business Forecasting Project

Introduction

A supply chain organization is trying to plan labor for the upcoming year at one manufacturing location. We will look at 5 years of previous sales figures to help the team anticipate where there may be labor constraints in 2022. Note data is not real sales, figures are simulated for this proof of concept.

Import Data

Pdata is imported into R. Pdata is monthly sales data from 2016-2021

Plot and Infer

Looking at the time series as a whole, from 2016 thru 2021 the appears to be a significant shift in 2018.

Central Tendency

Decomposition

Decomposition Plot

February and September have the highest seasonal indexes.


```
$figure
[1] -526224.8 1700490.0 -144098.3 888660.2
[5] -799539.3 426711.7 -748391.8 -1110811.8
[9] 1615914.7 -460286.3 -363775.2 -478649.0
```

Historically January and February are higher months and June and July are lower.

Seasonally adjusted does not have many big fluctuations.

```
> plot(recent_project_ts)
> lines(seasadj_recent, col="Red")
```


Naïve Method

Forecasts from Naive method

Naïve Residuals plot

Histogram of naive_recent\$residuals

Naïve forecast accuracy

MA Forecast

Time series plot


```
> ma3_fcst=ma(recent_project_ts,order=3)
> ma6_fcst=ma(recent_project_ts,order=6)
> ma12_fcst=ma(recent_project_ts,order=12)
```

```
> plot(recent_project_ts)
> lines(ma3_fcst, col="Red")
> lines(ma6_fcst, col="Blue")
> lines(ma12_fcst, col="Green")
```

