Тряп-2

Волынцев Дмитрий 676 гр.

18 сентября 2017

1

$$\Sigma = \{a, b\}$$

$$q_0 = A$$

$$q_f = H$$

Положим в Q множество $\{q_0\}$: $Q = \{\{q_0\}\}$

Пока Q не пусто, достанем множество состояний q_i из Q и для каждого $q_i{}^j$ из q_i и каждого σ из Σ получим $q_i{}^{res}$, которое положим в Q, если оно не встречалось раньше:

	q	a	b
q_0	$\{A\}$	{ <i>D</i> }	$\{B,D\}$
q_1	{D}	Ø	<i>{H}</i>
q_2	$\{B,D\}$	{D}	$\{H\}$
q_3	$\{H\}$	$\{B,H\}$	{ <i>B</i> }
q_4	$\{B,H\}$	$\{B,D,H\}$	{ <i>B</i> }
q_5	{ <i>B</i> }	{D}	Ø
q_6	$\{B,D,H\}$	$\{B,D,H\}$	$\{B,H\}$

Таким образом:

$$Q^R = \{\{A\}, \{B\}, \{D\}, \{H\}, \{B, D\}, \{B, H\}, \{B, D, H\}\}$$

$$F^R = \{\{H\}, \{B, H\}, \{B, D, H\}\}\ (\text{tak kak } q_f = H)$$

Теперь строим автомат по таблице:

Минимизируем получившийся автомат. Для этого достроим автомат так, чтобы из каждого состояния существовал переход по a и по b. Для этого добавим переходы в зацикленные нетерминальные состояния (чтобы какие-либо новые слова не принимались, при этом принимались все старые) из состояний q_1 (по a) и q_5 (по b):

Получили эквивалентный автомат, который можно минимизировать. Разобьем множество состояний Q на F и $Q \setminus F$

Тогда разбиение $\Pi = \{q_3, q_4, q_6\}, \{q_0, q_1, q_2, q_5, q_7, q_8\}$

Теперь разобьем каждое Q_i из Π , если

 $\exists q_1,q_2\in Q_i,\sigma\in\Sigma\hookrightarrow\exists Q_1,Q_2\in\Pi:Q_1\neq Q_2\delta(q_1,\sigma)\in Q_1,\delta(q_2,\sigma)\in Q_2$ Тогда:

 $A = \{q_6\}$ (из F, оба перехода в терминальные состояния)

 $B = \{q_3, q_4\}$ (из F, по одному переходу (по a) в терминальное состояние)

 $C = \{q_1, q_2\}$ (из $Q \backslash F$, по одному переходу (по b) в терминальное состояние)

 $D = \{q_0, q_5, q_7, q_8\}$ (из $Q \setminus F$, нет переходов в терминальные состояния) Заметим, что по алгоритму мы должны разбить эти множества еще раз:

 $A = \{q_6\}$ (остался без изменений)

 $B_1 = \{q_4\}$ (переход в A)

 $B_2 = \{q_3\}$ (переход в B_1)

 $C_1 = \{q_1\}$ (переход в D)

 $C_2 = \{q_2\}$ (переход в C_1)

Следом изменятся и остальные множества:

 $D_1 = \{q_0\}$ (переход в C_2)

 $D_2 = \{q_5\}$ (переход в D_3)

 $D_3 = \{q_7, q_8\}$ (остались в одном множестве, т.к. из них нет переходов) Как видно, у такого автомата будет 8 - 1 = 7 состояний (т.к. в конце мы должны убрать "мертвое" состояние D_3). У изначального автомата также было 7 состояний, а это значит, что он не нуждается в минимализации.

2

 $((ab)^*|c)^*(b^*a|(bc)^*)$

3

- 1) Рассмотрим состояния q и p ($q \neq p$) в ДКА. Пусть левые языки этих состояний пересекаются, то есть $L_l(q) \cap L_l(p) = \{v\}$. После принятия v автоматом мы оказываемся либо в состоянии q или p. Значит из какогото состояния на пути в терминальное существует несколько различных переходов по одному из символов v, следовательно автомат недетерминированный противоречие.
- 2)
- 3) Пусть автомат \mathcal{A} недетерминированный. Тогда детерминированный автомат $d(\mathcal{A})$ определяется следующим образом:
- а) Детерминированному состоянию соответствует множество недетерминированных состояний: для каждого $q' \in Q'$ имеем $q' \subseteq Q$
- б) Начальное состояние в $d(\mathcal{A})$ множество начальных состояний автомата \mathcal{A} , Состояние в детерминированном автомате является терми-

нальным тогда и только тогда, когда оно содержится хотя бы в одном недетерминированном состоянии. Пусть q' — состояние детерминированного автомата и $a \in \Sigma$. Если переход из q' по символу a определен, тогда по построению: $\delta'(q',a) = \bigcup_{a \in a'} \delta(q,a)$.

4

Построим автомат C по таким правилам: Состояниями автомата C будут пары состояний автоматов A и B

$$Q_C = Q_A \times Q_B$$

$$q_{0C} = (q_{0A}, q_{0B})$$

$$F_C = F_A \times F_B$$

Если $q_C = (q_A, q_B)$, то $\delta(q_C, a) = (\delta(q_A, a), \delta(q_B, a))$

При $F = \{(q,p)|q \in F_A$ или $p \in F_B\}$ автомат распознает язык $L = L_A \cap L_B$. Для любых 2-х состояний (q,p) и (q',p') автомата C и любого входного слова v это слово переводит (q,p) в (q',p') тогда и только тогда, когда оно переводит q в q' в автомате A и p в p' в автомате B.

5

1) aa^*b^*

Т.к. у первого множителя стоит условие n > 0, то в язык не может входить пустое слово ε , значит мы обязаны иметь как минимум 1 букву a в начале. В то же время n неограничен, следовательно конкатенируем с a^* . У второго множителя стоит условие $n \ge 0$, значит он представляет из себя любую комбинацию b^* , включая ε . Что же касается декартова произведения, то это все пары из a и b. Значит мы можем конкатенировать aa^* и b^* и получим требуемое регулярное выражение.

 $a^{'}\in\{a^{5n+1}|n\geq0\}^*$ (т.к. при n=0 левая и правая части совпадают) $\{a^{3n}|n>0\}\in a^*$ (т.к. на месте a^* может стоять a^{3n})

$$\Rightarrow \{a^{3n}|n>0\}\cap \{a^{5n+1}|n\geq 0\}^*=\{a^{3n}|n>0\}$$