



## Ordres, Treillis et Induction

Tous documents sur support papier autorisés. Durée : 2h00 Les deux parties sont indépendantes. Vous devrez rendre les réponses sur 2 copies séparées.

## 1 Partie sur les ordres et les treillis (1h) À rendre sur une copie indépendante



FIGURE 1 – Partie gauche : diagramme de Hasse de l'ordre partiel de divisibilité sur les diviseurs du nombre 12  $(D_{12})$ . Partie centrale : diagramme de Hasse de l'ordre de divisibilité sur les diviseurs de 4  $(D_4)$ . Partie droite : diagramme de Hasse de l'ordre de divisibilité sur les diviseurs de 3  $(D_3)$ .



FIGURE 2 – Diagramme de Hasse  $D_{abcd}$  d'un ordre partiel sur l'ensemble  $\{a,b,c,d\}$ .

Le sujet est librement inspiré de http://pierreaudibert.fr/tra/treillis.pdf.

Question 1. (1,5 point) Dessinez le graphe de la relation d'ordre dont la partie gauche de la figure 1 (diagramme  $D_{12}$ ) est le diagramme de Hasse.

**Question 2.** (2,5 points) Dessinez le diagramme de Hasse de l'ordre  $D_4 \times D_3$ , produit direct des ordres dont les diagrammes de Hasse sont  $D_4$  et  $D_3$ . Puis pour chaque couple (x, y) de l'ordre produit, calculez  $x^*y$ . Comparez  $D_{12}$  à  $D_4 \times D_3$ .

Question 3. (2,5 points) Dans  $D_{12}$ , soit le sous-ensemble  $\{4,6\}$ :

- **a-** Donnez son ensemble de minorants, que l'on notera  $Min(\{4,6\})$ .
- **b-** L'ensemble de minorants  $Min(\{4,6\})$  admet-il un unique plus grand élément (justifiez en indiquant quel(s) est (sont) ce(s) plus grand(s) élément(s)?
- **c-** Donnez son ensemble de majorants, que l'on notera  $Maj(\{4,6\})$ .
- **d-** L'ensemble de majorants  $Maj(\{4,6\})$  admet-il un unique plus petit élément (justifiez)?
- e-  $D_{12}$  est-il le diagramme de Hasse d'un treillis? Justifiez en indiquant comment la définition de treillis s'applique ou non ici.

## Question 4. (2,5 points)

a- Définir deux morphismes d'ordre différents  $m_1$  et  $m_2$  dont le domaine (source) soit l'ordre correspondant au diagramme de Hasse  $D_{abcd}$  de la figure 2 et le co-domaine (cible) soit l'ordre  $D_{12}$  correspondant au diagramme de Hasse de la figure 1 (Partie gauche). Indiquez ensuite comment chacun de ces morphismes projette chaque arc du diagramme de Hasse  $D_{abcd}$  vers un arc du diagramme  $D_{12}$ .

b- Ces morphismes sont-ils des isomorphismes? Justifiez.

Question 5. (1 point) Remarquez que la décomposition de 12 en puissances de nombres premiers est  $2^2 * 3$ . La décomposition de 84 en puissances de nombres premiers est  $2^2 * 3 * 7$ . Comment pourriez-vous obtenir le diagramme de Hasse des diviseurs de 84 par produit de  $D_{12}$  et d'un autre ordre dont vous donnerez le diagramme de Hasse? Dessinez ensuite ce produit.

Partie sur l'induction (1h) À rendre sur une copie indépendante