

GT23L32S4W 标准汉字字库芯片

用户手册 DATASHEET

■ 字型:11X12、15X16、24X24、32X32 点阵

■ 字符集:GB2312

■ 输入法码表:全拼输入法

■ 排置方式:横置横排

■ 总线接口:SPI 串行总线

PLII 精简地址并行总线

■ 芯片形式: SO20W 封装

VER 3.0

2008-Q2

目 录

1 概述	
1.1 芯片特点	3
1.2 字库内容	3
2 引脚描述与接口连接	5
2.1 引脚配置	
2.2 SPI 接口引脚描述	
2.3 SPI 接口与主机接口电路示意图	
2.4 PLII 接口引脚描述	
2.5 PLII 接口与主机接口电路示意图	
2.6 PLII 总线接口寻址说明	
3 操作指令	
3.1 SPI 接口模式下操作	
3.2 PLII 接口模式下操作	
4 电气特性	
4.1 绝对最大额定值	
4.2 DC 特性	
4.3 AC 特性	
5 封装尺寸:SO20W	
6 字库调用方法	18
6.1 汉字点阵排列格式	18
6.2 汉字点阵字库地址表	26
6.3 字符在芯片中的地址计算方法	27
7 附录	33
7.1 GB2312 1 区字符 (846 字符)	33
7.2 8× 16 点国标扩展字符(126 字符)	36

1 概述

GT23L32S4W是一款内含11X12点阵、15X16点、24X24点阵、32X32点阵的汉字库芯片,支持GB2312 国标汉字(含有国家信标委合法授权)及SCII字符。排列格式为横置横排。用户通过字符内码,利用本手册提供的方法计算出该字符点阵在芯片中的地址,可从该地址连续读出字符点阵信息。

本字库芯片内含全拼输入法的码本,另外配合本公司的输入法程序,可实现数字小键盘 IT 产品的汉字输入。

1.1 芯片特点

数据总线: SPI 串行总线接口

PLII 精简地址并行总线接口

点阵排列方式:字节横置横排

● 访问速度:SPI 时钟频率:20MHz(max.)

PLII 访问速度: 130ns(max.) @3.3V

工作电压: 3.3V ±10%

电流:

工作电流:12mA 待机电流:10uA 封装:SO20W

尺寸 (SO20W): 12.80mmX10.30mm

1.2 字库内容

分类	字库内容	编码体系(字符集)	字符数
	11X12 点 GB2312 标准点阵字库	GB2312	6763+846
	15X16 点 GB2312 标准点阵字库	GB2312	6763+846
	24X24 点 GB2312 标准点阵字库	GB2312	6763+846
汉字字符	32X32 点 GB2312 标准点阵字库	GB2312	6763+846
W1-10	6X12 点国标扩展字符	GB2312	126
	8X16 点国标扩展字符	GB2312	126
	12X24 点国标扩展字符	GB2312	126
	16X32 点国标扩展字符	GB2312	126
ASCII 字符	5X7 点 ASCII 字符	ASCII	96
	7X8 点 ASCII 字符	ASCII	96
	6X12 点 ASCII 字符	ASCII	96
	8X16 点 ASCII 字符	ASCII	96
	8X16 点粗体 ASCII 字符	ASCII	96
	12 点阵不等宽 ASCII 方头(Arial)字符	ASCII	96

GT23L32S4W 标准点阵汉字字库芯片用户手册

	12 点阵不等宽 ASCII 白正(Times New Roman)字符	ASCII	96
	16 点阵不等宽 ASCII 方头(Arial)字符	ASCII	96
	16 点阵不等宽 ASCII 白正(Times New Roman)字符	ASCII	96
	24 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	96
	24 点阵不等宽 ASCII 白正 (Times New Roman) 字符	ASCII	96
	32 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	96
	32 点阵不等宽 ASCII 白正 (Times New Roman) 字符	ASCII	96
输入法码表	全拼输入法码表	GB2312	

字型样张

11X12 点 GB18030 汉字

啊 阿 埃 挨 哎 唉 哀 能 癌 蔼 矮 艾 碍 爱 監 则 吧 笆 八 疤 巴 拔 跋 靶 把 耙 坝 霸 罢 爸 帮 梆 榜 勝 绑 棒 磅 蚌 镑 傍 旁 苞 胞 包 褒 备 惫 焙 被 奔 苯 本 笨 崩 綳 甭 泵 蹦 迸 逼 边编 贬 扁 便 变 卞 辨 辩 辩 遍 标 彪 膘 表

24X24 点 GB18030 汉字

啊阿埃挨哎唉哀皑癌蔼矮 艾碍爱隘鞍氨安俺按暗岸 胺案肮昂盎凹敖熬翱袄傲

16 点阵不等宽 ASCII 方头字符

!"#\$%&'()*+,-./0123456789:;<=>?@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijkImnopqrstuvwxyz{|}~

15X16 点 GB18030 汉字

啊 阿 埃 挨 哎 唉 哀 皑 癌 蔼 矮 艾 碍 傲 奥 懊 澳 芭 捌 扒 叭 吧 笆 八 疤 巴 搬 扳 般 颁 板 版 扮 拌 伴 辦 半 办 绊 保 堡 饱 宝 抱 报 暴 豹 鲍 爆 杯 碑 悲

32X32 点 GB18030 汉字

啊阿埃挨哎唉哀皑 矮艾碍爱隘鞍氨安

16 点阵不等宽 ASCII 白正字符

!"#\$%&'()*+ ,-./0123456789;;<=>?@ABC

DEFGHUKLMNO PQRSTUVWXYZ[\]^_`

abcdefghijklmnopqrstuvwxyz{|}~

2 引脚描述与接口连接

2.1 引脚配置

SO20W	名称				
SO20W	口彻	GT21L(SPI 接口)	GT22L(PLII 接口)		
1	SPI_SO/D0	Serial data output	Data Outputs		
2	VSS	Ground			
3	OE#	No Connection	Output Enable Input		
4	D1	No Connection	Data Outputs		
5	D2	No Connection	Data Outputs		
6	D3	No Connection	Data Outputs		
7	VCC	Power Supply(3.3V)			
8	VSS	Ground			
9	VSS	Ground			
10	D7	No Connection	Data Outputs		
11	D6	No Connection	Data Outputs		
12	VSS	Ground			
13	SPI_CLK	Serial clock input	No Connection		
14	SPI_HOLD#/PLII_WE	Hold(to pause the device)	Write Enable Input		
15	D4	No Connection	Data Outputs		
16	D5	No Connection	Data Outputs		
17	SPI/PLII SEL	SPI/PLII SELECT			
17		NC: SPI	GND: PLII		
18	PLII_A1	No Connection	Address Inputs		
19	SPI_CS#/PLII_CS#	Chip enable input	Chip Enable Input		
20	SPI_SI/PLII_A0	Serial data input	Address Inputs		

2.2 SPI 接口引脚描述

串行数据输出(SO):该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。 串行数据输入(SI):该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。

串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(CS#): 所有串行数据传输开始于CE#下降沿, CE#在传输期间必须保持为低电平, 在两条指令之间保持为高电平。

集通数码科技 - 5 - www.genitop.com

线挂起输入(HOLD#):

该信号用于片选信号有效期间暂停数据传输,在总线挂起期间,串行数据输出信号处于高阻态,芯片不对串行数据输入信号和串行时钟信号进行响应。

当HOLD#信号变为低并且串行时钟信号(SCLK)处于低电平时,进入总线挂起状态。当HOLD#信号变为高并时串行时钟信号(SCLK)处于低电平时,结束总线挂起状态。

2.3 SPI 接口与主机接口电路示意图

SPI 与主机接口电路连接可以参考下图 (#HOLD 管脚建议接 2K 电阻 3.3V 拉高)。

HOST CPU 主机 SPI 接口电路示意图

若是采用系统电压为 5V 的,则需要进行电平转换匹配连接 GT23 芯片,可以参考下图(#HOLD 管脚建议接 2K 电阻 3.3V 拉高)。

2.4 PLII 接口引脚描述

Pin name	I/O	描述		
A[10]	I	地址寄存器寻址		
D[70]	I/O	地址输入/数据输出		
CE#	I	片选信号输入,低有效		
OE#	I	"输出使能"信号输入,OE# 为低时输出使能		
WE#	I	"写使能"信号输入,WE# 为低时写使能		

2.5 PLII 接口与主机接口电路示意图

SPI/PLII_SEL(管脚内部有 100K 上拉电阻)接地,字库芯片选择 PLII 接口模式,与主机接口电路连接可以参考下图。

集通数码科技 - 7 - www.genitop.com

2.6 PLII 总线接口寻址说明

在 PLII 总线模式下,芯片内部有 3 个地址寄存器,主机需要把要读取数据的地址写入这 3 个地址寄存器,然后再从数据寄存器中读出数据。主机每读一次数据寄存器,芯片内部的地址寄存器会自动增一,从而使主机只写一次首地址,就可以连续读取数据。

A1 A0 (地址线)	读写操作	对应地址寄存器
0 0	写	地址寄存器 0 [ADDR7:0]
0 1	写	地址寄存器 1 [ADDR15:8]
1 0	写	地址寄存器 2 [ADDR20:16]
0 0	读	数据寄存器 [DATA7:0]

集通数码科技 - 8 - www.genitop.com

3操作指令

3.1 SPI 接口模式下操作

3.1.1 指令参数

Instruction Set

Instruction	Description	Instruction Code(One-Byte)		Address Bytes	Dummy Bytes	Data Bytes
READ	Read Data Bytes	0000 0011	03 h	3	_	1 to
FAST_READ	Read Data Bytes at Higher Speed	0000 1011	0B h	3	1	1 to

所有对本芯片 SPI 接口的操作只有 2 个,那就是 Read Data Bytes (READ "一般读取")和 Read Data Bytes at Higher Speed (FAST_READ "快速读取点阵数据")。.

3.1.2 Read Data Bytes (一般读取)

Read Data Bytes 需要用指令码来执行每一次操作。READ 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是1个字节的命令字(03h)和3个字节的地址和通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 读取字节数据后,则把片选信号(CS#)变为高,结束本次操作。

如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚(SO)移位输出。

图: Read Data Bytes (READ) Instruction Sequence and Data-out sequence

集通数码科技 - 9 - www.genitop.com

3.1.3 Read Data Bytes at Higher Speed (快速读取点阵数据)

Read Data Bytes at Higher Speed 需要用指令码来执行操作。READ_FAST 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(0B h)和 3 个字节的地址以及 一个字节 Dummy Byte 通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上 升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚(SO)移位输出。例:读取一个 15x16 点阵汉字需要 32Byte,则连续 32 个字节读取后结束一个汉字的点阵数据读取操作。

如果不需要继续读取数据,则把片选信号(CS#)变为高,结束本次操作。

图: Read Data Bytes at Higher Speed (READ_FAST) Instruction Sequence and Data-out sequence

集通数码科技 - 10 - www.genitop.com

3.2 PLII 接口模式下操作

在PLII模式下,字库芯片内部有3个地址保持寄存器,HOST 读字库芯片时,字库芯片把地址寄存器对应字库芯片地址内容送给HOST,并且HOST每读取一个字节后,字库芯片内部会把地址寄存器的值增1。当地址寄存器越过最大地址时自动归零。字库芯片可以对地址寄存器进行写操作。字库芯片上电时,内部硬件把地址寄存器清零。

3.2.1 信号描述

Pin name	I/O	描述
A[10]	I	地址寄存器寻址
D[70]	I/O	地址输入/数据输出
CE#	I	片选信号输入,低有效
OE#	I	"输出使能"信号输入,OE# 为低时输出使能
WE#	I	"写使能"信号输入,WE# 为低时写使能

真值表

Mode	CE#	OE#	WE#	D[70]
Other	Н	Х	Х	High-Z
Read	L	L	Н	Data Out
write	L	Н	L	Addr In

3.2.2 读操作

读字库芯片内部的点阵字库数据时, HOST 写字库芯片的 3 个地址寄存器,字库芯片把对应地址的数据送给 HOST。在 OE#和 CE#同时为低电平、WE#为高电平的情况下, HOST 可以从数据总线(D[7..0])读出字库芯片的个字节的数据。当出现 OE# 或 CE# 中的一个信号变高,则字库芯片内部在此时刻把地址寄存器增1,并保持地址寄存器的值。

集通数码科技 - 11 - www.genitop.com

3.2.3 写操作

字库芯片内部有 3 个地址保持寄存器, HOST 读字库芯片时需要把地址写到字库芯片中。在 WE#和 CE#同时为低电平、OE#为高电平的情况下, HOST 可以通过数据总线(D[7..0])写 1 个字节数据到字库芯片。

写周期时序波形图(WE#控制的时序)

集通数码科技 - 12 - www.genitop.com

4电气特性

4.1 绝对最大额定值

Symbol	Parameter	Min.	Max.	Unit	Condition
T _{OP}	Operating Temperature	0	70		
T _{STG}	Storage Temperature	-65	125		
VCC	Supply Voltage	-0.3	3.6	V	
V_{IN}	Input Voltage	-0.5	VCC+0.5	V	
GND	Power Ground	0	0	V	

4.2 DC 特性

Condition: $T_{OP} = 0$ to 70 , GND=0V

Symbol	Parameter	Min.	Max.	Unit	Condition
I _{DD}	VCC Supply Current(active)		12	mA	
I _{SB}	VCC Standby Current		10	uA	
V_{IL}	Input LOW Voltage	-0.3	0.6	V	
V_{IH}	Input HIGH Voltage	2.2	VCC+0.3	V	
V_{OL}	Output LOW Voltage		0.4 (I _{OL} =1.6mA)	V	VCC 2.0.2.0V
V _{OH}	Output HIGH Voltage	0.8VCC (I _{OH} =-0.4mA)		V	VCC=3.0-3.6V
I _{LI}	Input Leakage Current	0	+10	uA	
I_{LO}	Output Leakage Current	0	+10	uA	

 $Note: I_{\text{IL}}: Input \ LOW \ Current$, $I_{\text{IH}}: Input \ HIGH \ Current$,

 I_{OL} : Output LOW Current , I_{OH} : Output HIGH Current ,

4.3 AC 特性

4.3.1 SPI接口模式下 AC 特性

Condition: $T_{OP} = 0$ to 70 , VCC= 3.0V to 3.6V

Symbol	Alt.	Parameter	Min.	Max.	Unit
Fc	Fc	Clock Frequency	D.C.	20	MHz
tсн	tclh	Clock High Time	20		ns
tcL	tcll	Clock Low Time	20		ns
tclch		Clock Rise Time(peak to peak)	0.1		V/ns
tchcl		Clock Fall Time (peak to peak)	0.1		V/ns
tslch	tcss	CS# Active Setup Time (relative to SCLK)	5		ns
tchsl		CS# Not Active Hold Time (relative to SCLK)	5		ns
tdvch	tosu	Data In Setup Time	2		ns
tchdx	tdH	Data In Hold Time	5		ns
t CHSH		CS# Active Hold Time (relative to SCLK)	5		ns
t shch		CS# Not Active Setup Time (relative to SCLK)	5		ns
t shsl	tсsн	CS# Deselect Time	100		ns
t shqz	tois	Output Disable Time		9	ns
t clqv	t∨	Clock Low to Output Valid		9	ns

集通数码科技 - 13 - www.genitop.com

t clqx	tho	Output Hold Time	0		ns
t HLCH		HOLD# Setup Time (relative to SCLK)	5		ns
t сннн		HOLD# Hold Time (relative to SCLK)	5		ns
t ннсн		HOLD Setup Time (relative to SCLK)	5		ns
t CHHL		HOLD Hold Time (relative to SCLK)	5		ns
t hhqx	tLZ	HOLD to Output Low-Z		9	ns
t HLQZ	tHZ	HOLD# to Output High-Z		9	ns

4.3.2 PLII 接口模式下 AC 特性

4.3.2.1 读周期时间特性

Symbol	Parameter	Min.	Max.	Unit
TRC	Read Cycle Time	130	-	ns
TAA	Address Access Time	-	110	ns
TACS	Chip Select Access Time	-	110	ns
TOE	Output Enable to Output Valid	1	100	ns
TCHZ	Chip Deselect to Output in High-Z	-	10	ns
TOHZ	Output Disable to Output in High-Z	-	10	ns

4.3.2.2 写周期时间特性

Symbol	Parameter	Min.	Max.	Unit
TWC	Write Cycle Time	130		ns
TAW	Address Valid to End-of-Write	120		ns
TCW	Chip Select to End-of-Write	100		ns
TWP	Write Pulse Width	100		ns
TDW	Dada to Write Time Overlap	30		ns
TDH	Data Hold from Write Time	5		ns

集通数码科技 - 15 - www.genitop.com

写周期时序波形图(CE#控制的时序)

集通数码科技 - 16 - www.genitop.com

5 封装尺寸: SO20W

单位: mm

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
A	_	_	2.70	
Al	0.10	0.20	0.30	
A2	2.10	2.30	2.50	
A3	0.92	1.02	1.12	
b	0.35	_	0.44	
b1	0.34	0.37	0.39	
с	0.26	_	0.31	
cl	0.24	0.25	0.26	
D	12.60	12.80	13.00	
Е	10.10 10.30		10.50	
El	7.30	7.50	7.70	
e	1.27BSC			
L	0.70	0.85	1.00	
Ll	1.40BSC			
θ	0	_	8°	

6字库调用方法

6.1 汉字点阵排列格式

每个汉字在芯片中是以汉字点阵字模的形式存储的,每个点用一个二进制位表示,存 1 的点,当显示时可以在屏幕上显示亮点,存 0 的点,则在屏幕上不显示。点阵排列格式为横置横排:即一个字节的高位表示左面的点,低位表示右面的点(如果用户按 word mode 读取点阵数据,请注意高低字节的顺序),排满一行的点后再排下一行。这样把点阵信息用来直接在显示器上按上述规则显示,则将出现对应的汉字。

6.1.1 11X12 点汉字排列格式

11X12 点汉字的信息需要 24 个字节 (BYTE 0 – BYTE 23)来表示。该 11X12 点汉字的点阵数据是横置横排的,其具体排列结构如下图:

6.1.2 15X16 点汉字排列格式

15X16 点汉字的信息需要 32 个字节 (BYTE 0 – BYTE 31)来表示。该 15X16 点汉字的点阵数据是横置横排的,其具体排列结构如下图:

集通数码科技 - 18 - www.genitop.com

6.1.3 24X24 点汉字排列格式

24X24 点汉字的信息需要 72 个字节 (BYTE 0 – BYTE 71) 来表示。该 24X24 点汉字的点阵数据是横置横排的,其具体排列结构如下图:

6.1.4 32X32 点汉字排列格式

32X32 点汉字的信息需要 128 个字节(BYTE 0 – BYTE 127)来表示。该 32X32 点汉字的点阵数据是横置横排的,其具体排列结构如下图:

6.1.5 5X7 点 ASCII 字符排列格式

5X7 点 ASCII 的信息需要 8 个字节(BYTE 0 – BYTE7)来表示。该 ASCII 点阵数据是横置横排的, 其具体排列结构如下图:

集通数码科技 - 19 - www.genitop.com

6.1.6 7X8 点 ASCII 字符排列格式

7X8 点 ASCII 的信息需要 8 个字节(BYTE 0 – BYTE7)来表示。该 ASCII 点阵数据是横置横排的, 其具体排列结构如下图:

6.1.7 6X12 点字符排列格式

适用于此种排列格式的字体有:

6X12 点 ASCII 字符

6X12 点国标扩展字符

6X12 点字符的信息需要 12 个字节(BYTE 0 – BYTE11)来表示。该点阵数据是横置横排的,其具体排列结构如下图:

集通数码科技 - 20 - www.genitop.com

6.1.8 8X16 点字符排列格式

适用于此种排列格式的字符有:

8X16 点 ASCII 字符

8X16 点国标扩展字符

8X16 点特殊字符

8X16 点字符的信息需要 16 个字节 (BYTE 0 – BYTE15)来表示。该点阵数据是横置横排的,其具体排列结构如下图:

6.1.9 12X24 点字符排列格式

适用于此种排列格式的字符有:

12X24 点 ASCII 字符

12X24 点国标扩展字符

12X24 点字符的信息需要 72 个字节(BYTE 0 – BYTE 71)来表示。但是由于该字符为标准的 24X24 点格式,而存储空间是按照 12X24点 BYTE 取整进行存储的(即 72 BYTES),注意在排版时作相应的调整。

6.1.10 12 点阵不等宽字符排列格式

适用于此种排列格式的字体有:

12 点阵不等宽 ASCII 方头 (Arial) 字符

12 点阵不等宽 ASCII 白正 (Times New Roman) 字符

12 点阵不等宽字符的信息需要 26 个字节 (BYTE 0 - BYTE25) 来表示。

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-25 存放横置横排点阵数据。

不等宽字符的点阵存储宽度是以 BYTE 为单位取整的,根据不同字符宽度会出现相应的空白区。根 BYTE0~ BYTE1 所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

集通数码科技 - 22 - www.genitop.com

6.1.11 16 点阵不等宽字符排列格式

适用于此种排列格式的字体有:

- 16 点阵不等宽 ASCII 方头 (Arial)字符
- 16 点阵不等宽 ASCII 白正 (Times New Roman)字符
- 16 点阵不等宽字符的信息需要 34 个字节 (BYTE 0 BYTE 33) 来表示。

■ 存储格式

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-33 存放横置横排点阵数据。具体格式见下图:

■ 存储结构

不等宽字符的点阵存储宽度是以 BYTE 为单位取整的,根据不同字符宽度会出现相应的空白区。根 BYTE0~ BYTE1 所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

集通数码科技 - 23 - www.genitop.com

例如:ASCII 方头字符 B

0-33BYTE 的点阵数据是: 00 0C 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63

63 63 63 63 67 3E 1C 00 00 00 00 00

其中:

BYTE0~ BYTE1: 00 0C 为 ASCII 方头字符 B 的点阵宽度数据,即:12 位宽度。字符后

面有 4 位空白区,可以在排版下一个字时考虑到这一点,将下一个字的起始位置前移。(见下图)

BYTE2-33: 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63 63 63 63 63 67 3E 1C

6.1.12 24 点阵不等宽字符排列格式

适用于此种排列格式的字体有:

24 点阵不等宽 ASCII 方头 (Arial) 字符

24 点阵不等宽 ASCII 白正 (Times New Roman) 字符

24 点阵不等宽字符的信息需要 74 个字节 (BYTE 0 - BYTE73) 来表示。

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-73 存放点阵数据。

不等宽字符的点阵存储宽度是以 BYTE 为单位取整的,根据不同字符宽度会出现相应的空白区。根 BYTE0~ BYTE1 所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

集通数码科技 - 24 - www.genitop.com

6.1.13 32 点阵不等宽字符排列格式

适用于此种排列格式的字体有:

- 12 点阵不等宽 ASCII 方头 (Arial) 字符
- 12 点阵不等宽 ASCII 白正 (Times New Roman) 字符

32 点阵 ASCII 方头字符的信息需要 130 个字节 (BYTE 0 - BYTE129) 来表示。

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-129 存放点阵数据。

不等宽 ASCII 字符的存储结构是以宽度为 BYTE 取整的,根据不同字符宽度会出现相应的空白区。根据 BYTE0~ BYTE1 所存放点阵的宽度数据,可以对还原下一个字的显示或排版留作参考。

集通数码科技 - 25 - www.genitop.com

6.2 汉字点阵字库地址表

		Ī			+- / / / / / /	/> -LE-> 1
	字库内容	编码体系	码位范围	字符数	起始地址	参考算法
1	11X12 点 GB2312 标准点阵字库	GB2312	A1A1-F7FE	6763+846	0000	6.3.1.1
2	15X16 点 GB2312 标准点阵字库	GB2312	A1A1-F7FE	6763+846	2C9D0	6.3.1.2
3	24X24 点 GB2312 标准点阵字库	GB2312	A1A1-F7FE	6763+846	68190	6.3.1.3
4	32X32 点 GB2312 标准点阵字库	GB2312	A1A1-F7FE	6763+846	EDF00	6.3.1.4
5	6X12 点国标扩展字符	GB2312	A1A1-ABC0	126	1DBE00	6.3.1.5
6	6X12 点 ASCII 字符	ASCII	20~7F	96	1DBE00	6.3.2.3
7	12 点阵不等宽 ASCII 方头(Arial)字符	ASCII	20~7F	96	1DC400	6.3.2.7
8	12 点阵不等宽 ASCII 白正字符	ASCII	20~7F	96	1DCDC0	6.3.2.8
9	8X16 点国标扩展字符	GB2312	A1A1-ABC0	126	1DD780	6.3.1.6
10	8X16 点 ASCII 字符	ASCII	20~7F	96	1DD780	6.3.2.4
11	5X7 点 ASCII 字符	ASCII	20~7F	96	1DDF80	6.3.2.1
12	7X8 点 ASCII 字符	ASCII	20~7F	96	1DE280	6.3.2.2
13	16 点阵不等宽 ASCII 方头(Arial)字符	ASCII	20~7F	96	1DE580	6.3.2.9
14	16 点阵不等宽 ASCIII 白正字符	ASCII	20~7F	96	1DF240	6.3.2.10
15	12X24 点国标扩展字符	GB2312	A1A1-ABC0	126	1DFF00	6.3.1.8
16	12X24 点 ASCII 字符	ASCII	20~7F	96	1DFF00	6.3.2.5
17	24 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	20~7F	96	1E22D0	6.3.2.11
18	24 点阵不等宽 ASCII 白正字符	ASCII	20~7F	96	1E3E90	6.3.2.12
19	16X32 点国标扩展字符	GB2312	A1A1-ABC0	126	1E5A50	6.3.1.9
20	16X32 点 ASCII 字符	ASCII	20~7F	96	1E5A50	6.3.2.6
21	32 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	20~7F	96	1E99D0	6.3.2.13
22	32 点阵不等宽 ASCII 白正字符	ASCII	20~7F	96	1ECA90	6.3.2.14
23	保留区				1EFB50	
29	输入法码表	GB2312			1F36F0	
32	保留区				1F7CC8	

6.3 字符在芯片中的地址计算方法

用户只要知道字符的内码,就可以计算出该字符点阵在芯片中的地址,然后就可从该地址连续读出 点阵信息用于显示。

6.3.1 汉字字符的地址计算

6.3.1.1 11X12 点 GB2312 标准点阵字库

参数说明:

GBCode表示汉字内码。

MSB 表示汉字内码GBCode 的高8bits。

LSB 表示汉字内码GBCode 的低8bits。

Address 表示汉字或ASCII字符点阵在芯片中的字节地址。

BaseAdd: 说明点阵数据在字库芯片中的起始地址。

计算方法:

BaseAdd=0x0:

if(MSB >=0xA1 && MSB <= 0Xa9 && LSB >=0xA1)

Address = (MSB - 0xA1) * 94 + (LSB - 0xA1))*24 + BaseAdd;

else if(MSB >=0xB0 && MSB <= 0xF7 && LSB >=0xA1)

Address = ((MSB - 0xB0) * 94 + (LSB - 0xA1) + 846)*24 + BaseAdd;

6.3.1.2 15X16 点 GB2312 标准点阵字库

参数说明:

GBCode表示汉字内码。

MSB 表示汉字内码GBCode 的高8bits。

LSB 表示汉字内码GBCode 的低8bits。

Address 表示汉字或ASCII字符点阵在芯片中的字节地址。

BaseAdd: 说明点阵数据在字库芯片中的起始地址。

计算方法:

BaseAdd=0x2C9D0;

if(MSB >=0xA1 && MSB <= 0Xa9 && LSB >=0xA1)

Address = ((MSB - 0xA1) * 94 + (LSB - 0xA1))*32 + BaseAdd;

else if(MSB >=0xB0 && MSB <= 0xF7 && LSB >=0xA1)

Address = ((MSB - 0xB0) * 94 + (LSB - 0xA1) + 846)*32 + BaseAdd;

6.3.1.3 24X24 点 GB2312 标准点阵字库

参数说明:

GBCode表示汉字内码。

MSB 表示汉字内码GBCode 的高8bits。

LSB 表示汉字内码GBCode 的低8bits。

Address 表示汉字或ASCII字符点阵在芯片中的字节地址。

BaseAdd: 说明点阵数据在字库芯片中的起始地址。

计算方法:

BaseAdd=0x68190;

if(MSB >=0xA1 && MSB <= 0Xa9 && LSB >=0xA1)

Address = ((MSB - 0xA1) * 94 + (LSB - 0xA1))*72 + BaseAdd;

else if(MSB >=0xB0 && MSB <= 0xF7 && LSB >=0xA1)
Address = ((MSB - 0xB0) * 94 + (LSB - 0xA1)+ 846)*72+ BaseAdd;

6.3.1.4 32X32 点 GB2312 标准点阵字库

参数说明:

GBCode表示汉字内码。

MSB 表示汉字内码GBCode 的高8bits。

LSB 表示汉字内码GBCode 的低8bits。

Address 表示汉字或ASCII字符点阵在芯片中的字节地址。

BaseAdd: 说明点阵数据在字库芯片中的起始地址。

计算方法:

BaseAdd=0XEDF00:

if(MSB >=0xA1 && MSB <= 0Xa9 && LSB >=0xA1)

Address = ((MSB - 0xA1) * 94 + (LSB - 0xA1))*128+ BaseAdd;

else if(MSB >=0xB0 && MSB <= 0xF7 && LSB >=0xA1)

Address = ((MSB - 0xB0) * 94 + (LSB - 0xA1) + 846)*128 + BaseAdd;

6.3.1.5 6X12 点国标扩展字符

说明:

BaseAdd:说明本套字库在字库芯片中的起始字节地址。

FontCode:表示字符内码(16bits)

ByteAddress:表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DBE00

if (FontCode>= 0xAAA1) and (FontCode<=0xAAFE) then

ByteAddress = (FontCode-0xAAA1) * 12+BaseAdd

Else if(FontCode>= 0xABA1) and (FontCode<=0xABC0) then

ByteAddress = (FontCode-0xABA1 + 94) * 12+BaseAdd

6.3.1.6 8X16 点国标扩展字符

说明:

BaseAdd: 说明本套字库在字库芯片中的起始字节地址。

FontCode:表示字符内码(16bits)

ByteAddress:表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DD780

if (FontCode>= 0xAAA1) and (FontCode<=0xAAFE) then

ByteAddress = (FontCode-0xAAA1) * 16+BaseAdd

Else if(FontCode>= 0xABA1) and (FontCode<=0xABC0) then

ByteAddress = (FontCode-0xABA1 + 94) * 16+BaseAdd

6.3.1.7 8X16 点 GB2312 特殊字符

说明:

BaseAdd:说明本套字库在字库芯片中的起始字节地址。

FontCode:表示字符内码(16bits)

ByteAddress:表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1F2870

if (FontCode >= 0xACA1) and (FontCode <=0xACDF) then ByteAddress = (FontCode-0xACA1) * 16+BaseAdd

6.3.1.8 12X24 点国标扩展字符

说明:

BaseAdd: 说明本套字库在字库芯片中的起始字节地址。

FontCode:表示字符内码(16bits)

ByteAddress:表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DFF00

if (FontCode>= 0xAAA1) and (FontCode<=0xAAFE) then
ByteAddress = (FontCode-0xAAA1) * 48+BaseAdd

Else if(FontCode>= 0xABA1) and (FontCode<=0xABC0) then ByteAddress = (FontCode-0xABA1 + 94) * 48+BaseAdd

6.3.1.9 16X32 点国标扩展字符

说明:

BaseAdd: 说明本套字库在字库芯片中的起始字节地址。

FontCode:表示字符内码(16bits)

ByteAddress:表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1E5A50

if (FontCode>= 0xAAA1) and (FontCode<=0xAAFE) then ByteAddress = (FontCode-0xAAA1) * 64+BaseAdd

Else if(FontCode>= 0xABA1) and (FontCode<=0xABC0) then ByteAddress = (FontCode-0xABA1 + 94) * 64+BaseAdd

6.3.2 ASCII 字符的地址计算

6.3.2.1 5X7 点 ASCII 字符

参数说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DDF80

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 8+BaseAdd

6.3.2.2 7X8 点 ASCII 字符

参数说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。

Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DE280

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 8+BaseAdd

6.3.2.3 6X12 点 ASCII 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DBE00

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 12+BaseAdd

6.3.2.4 8X16 点 ASCII 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DD780

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 16+BaseAdd

6.3.2.5 12X24 点 ASCII 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DFF00

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 48+BaseAdd

6.3.2.6 16X32 点 ASCII 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1E5A50

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 64+BaseAdd

6.3.2.7 12 点阵不等宽 ASCII 方头(Arial)字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DC400

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 26 + BaseAdd

6.3.2.8 12 点阵不等宽 ASCII 白正 (Times New Roman)字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DCDC0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) *26 + BaseAdd

6.3.2.9 16 点阵不等宽 ASCII 方头 (Arial) 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DE580

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 34 + BaseAdd

6.3.2.10 16 点阵不等宽 ASCII 白正 (Times New Roman) 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1DF240

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 34 + BaseAdd

6.3.2.11 24 点阵不等宽 ASCII 方头(Arial)字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd: 说明该套字库在芯片中的起始地址。

Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1E22D0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 74 + BaseAdd

6.3.2.12 24 点阵不等宽 ASCII 白正 (Times New Roman)字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1E3E90

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 74+ BaseAdd

6.3.2.13 32 点阵不等宽 ASCII 方头 (Arial) 字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1E99D0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 130 + BaseAdd

6.3.2.14 32 点阵不等宽 ASCII 白正 (Times New Roman)字符

说明:

ASCIICode:表示 ASCII码(8bits)

BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x1ECA90

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 130 + BaseAdd

7 附录

7.1 GB2312 1 区字符 (846 字符)

GB2312 标准点阵字符 1 区对应码位的 A1A1~A9EF 共计 846 个字符;

GB2312 1 区

集通数码科技 - 33 - www.genitop.com

GB2312 1区

集通数码科技 - 34 - www.genitop.com

GB2312 1 区

集通数码科技 - 35 - www.genitop.com

7.2 8×16 点国标扩展字符(126 字符)

内码组成为 AAA1~ABC0 共计 126 个字符

集通数码科技 - 36 - www.genitop.com