RELATED RATES Questions on slide 68 and 78 of worksheets (NG)

· Bosically dy equations that are related to each other

Example: Slide 78 worksheets (NG) - 01, 3, 4, 8

The three related rates w

$$0.05 \times \left(-\frac{10}{L^2}\right) = \frac{dR}{dt}$$

$$\frac{-0.5}{1^2}$$
 = dR \rightarrow the gradient function
of R against time

$$R = 10$$

$$1 - 0.S = rate of change of R$$

$$S = 10$$

$$2^{2}$$

$$\frac{C}{C} = \frac{-0.5}{2} = -0.125 \rightarrow Ann$$

$$\frac{C}{C} = 2$$
Rate of change of R when R = 5

03. base Area = Ttr² = 100π

Volume = (height)(100π)

10 cm

1.15cm = H

1

dHc = 0.127cm

Every second, water rises 1.15cm and falls 0.127cm simultaneously +1.15-0.127 = 1.023 cm

Aus: The water level is changing at 1.02 cm/s	
~· M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Different way of doing it	
Gain) <u>dV</u> = 360 (Net); <u>dV</u> = 320;	
dt <u>ldt</u>	
<u>AH</u> = ??	
(655) dV = 40	
$dt V = \pi r^2 H$	
$H \pi \Omega O I = V$	
$ \pi 001 = V6 $	
JH !	
dH x dV = dV	
dt dh dt	
<u>14</u> × 100π = 320	
St	
<u>dH = 320</u>	
π001 4b	
<u>4H</u> = 1.018	
at	
= 1.02 cm per second -> loughly the	
same surver an	
previous approach	
\wedge	
Q4.	
βο° τ΄	
← r →	
a) tau 30° = 1 tau 30° = r	
<u> </u>	
<u>h</u> = r → shown	
$\sqrt{3}$	
b) Volume of cone = T/r2h	
3	
= 12. <u>71</u>	
$= \left(\frac{h}{\sqrt{3}}\right)^2 \cdot \frac{\pi h}{3}$	
$\sqrt{3}$	

$= h^2 \cdot \pi h$
3 3
$V = \pi h^3 \rightarrow \text{shown}$
9
c) Rate at which height of pile is increasing when h= 20cm.
$\frac{dV}{dV} = 3(\pi) h^2 \qquad (Given) \left[\frac{dV}{dV} = 1000 \right]$
dh 9 dt
; , , , , , , , , , , , , , , , , , , ,
$\frac{dV}{dh} = \frac{\pi h^2}{3}$
$\frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt}$
ah at at
$\frac{\pi h^2}{}$ × $\frac{dh}{}$ = 1000
3 dt
$\frac{dh}{dt} = \frac{3000}{\pi h^2} = \frac{3000}{\pi 20^2}$
$\frac{dt}{dt} \frac{\pi h^2}{\pi h^2} = \frac{\pi 20^2}{1.44 \text{ cm/s}} \rightarrow \text{Am}$
h: 20 Rate of change
of height when
height = 20 cm
QS. AC = BC = 13cm
P///////\@
$A \xrightarrow{\text{local }} B$
a) 13 / Ratio of S remains constant because
12 similar triangles
P/4 12 PQ = 24
<u> </u>
حے ما اک
$\frac{y = 5x}{12}$
PQ = 2(5x)

$PQ = Sx \longrightarrow she$	oun,
6	
6) Shaded Area	dA = - Sx dA = ??
= AARC - AROC	dre 6 de
$= 10 \times 12 - 5 \times 2$	
$\frac{2}{120} - \frac{5x^2}{120}$	dr = 0.5 dt
2 12	: <u>at</u>
= 720 - Sx2	
(2 (2	$\frac{dA}{dA} \times \frac{dx}{dx} = \frac{dA}{dA}$
$A = S(144 - 5x^2) \longrightarrow Shown$	dr dt dt
	-Sn x 0.5 = dA
$A = 60 - \frac{5}{2}x^2$	6 at
12	-2.5x . da
$\frac{dA}{dx} = -\frac{5}{5}x$	6 dt
	dA = -2.S(6) = -2.Scm2/s
	dt
	71 = 6
	Zate of decrease
	of shaded area
from slide 68 worksheets (NG)	
Q1. (dv = 4)	
at = 4, at = 1, dt	
, <u>art 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </u>	
3r 4	dr x dV = dv
	dt dr dt
$V = \frac{1}{3} \cdot \pi c^2 \cdot \frac{3c}{4}$	dr v 3712 = 4
3 4 = πr².3×	dt 4
\2	<u>dr</u> = 16
= <u>3π</u> x r³	dr = 16 dt 37112
(2	
V = <u>T</u> r ³	r = 4
dv = 371 r2	<u>- 16</u>
dr 4	3π(4)²
	= \K
	<u>dr</u> = 1
	dt st - Am
	dt 371 -> Ann Rate of change

02.
$$pv = 240$$

when $p = 60$ | $dp = 5$ | $dv = 240$ | $dt = 10$ | $dv = 10$ | $dt = 10$

$$\frac{dv \times dp}{dt} = \frac{dp}{dt} \qquad 60v = 240$$

$$\frac{dv}{dt} = \frac{5v^2}{240} = \frac{5(16)}{-240}$$

$$= -\frac{80}{240}$$

$$= -\frac{1}{3} \frac{3}{5} \frac{4m}{4}$$

03. 6 dv . 3 i

$$V = \frac{1}{3}\pi x^{2}(18-x)$$
 $\frac{dx}{dt} = ??$

$$U = \frac{18\pi x^2 - \pi x^3}{3} \frac{dU}{dx} \times \frac{dx}{dt} = \frac{dU}{dt}$$

$$\frac{dV = 12\pi x - \pi x^{2}}{dx} = \frac{(12\pi x - \pi x^{2})}{dt} = 3$$

dr	ء 3	
dt	12712.	- 17 π 2°
		= 3
	ス=2	24m - 4n

= <u>3</u> 2071 = 0.0477

J Aus

$$\frac{A}{dA} = \pi c^2$$

b)
$$\frac{dA}{dr} \times \frac{dr}{dt} = \frac{dA}{dt}$$

$$2\pi r \times \frac{dr}{dt} = 5$$

$$\frac{dr}{dt} = \frac{S}{2\pi r} = \frac{S}{2\pi 10}$$

$$= \frac{S}{2\pi 10}$$

$$\frac{1}{20\sqrt{\pi}} \rightarrow \underline{Aw}$$