## การเคลื่อนที่ในแนวเส้นตรง

ตำแหน่ง; 
$$x = 3t^2 + 2t + 2$$
ความเร็ว;  $v = \frac{d}{dt}(3t^2 + 2t + 2)$ 

$$= 6t + 2$$
 $a = \frac{dv}{dt}$ 

$$= \frac{d}{dt}(6t + 2)$$

$$= 6$$



$$x = 3t^{2} + 2t + 2$$

$$v = 6t + 2$$

$$a = 6 \text{ m/s}^{2}$$
Differentiate



$$x = 3t^2 + 2t + 2 \longrightarrow v = 6t + 2 \longrightarrow a = 6$$

$$v = \frac{dx}{dt} = 6t + 2$$

$$a = \frac{dv}{dt} = 6$$

$$dx = (6t + 2)dt$$

$$dv = 6dt$$



ผลรวม 
$$\int$$
  $=$   $\sum$ 

$$1. \int du = u + C$$

$$2. \int kdu = ku + C$$

$$3. \int u^n du = \frac{u^{n+1}}{n+1} + C$$

1. รถยนต์เคลื่อนที่ในแนวเส้นตรงด้วยความเร่ง 6 m/s<sup>2</sup>

ที่เวลา  $\mathbf{t} = \mathbf{0}$  รถอยู่ที่ตำแหน่ง  $\mathbf{x}_0 = \mathbf{2} \, \mathbf{m}$ , มีความเร็ว  $\mathbf{v}_0 = \mathbf{2} \, \mathbf{m}/\mathbf{s}$ 

ให้หา ตำแหน่ง และ ความเร็วที่ **t = 1 s** 



## Solution

$$\frac{dv}{dt} = 6$$

$$dv=6dt$$
 การเปลี่ยนแปลงในช่วงสั้นๆ



## คิดทั้งหมด ต้องรวมการเปลี่ยนแปลงในช่วงสั้น ๆ

$$\int dv = \int 6dt$$

$$v + C_1 = 6 \int dt$$

$$v + C_1 = 6(t + C_2)$$

$$v=6t+6C_2-C_1$$
 $v=6t+C...(1)$ 
จากโจทย์  $t=0$  ,  $v_0=2$  m/s
จาก (1) จะได้ ;  $2=6(0)+C$ 
 $C=2$ 
ดังนั้น  $v=6t+2...(1)$ 

$$v = 6t + 2 \dots (1)$$

$$v = \frac{dx}{dt}$$

$$dx = vdt$$



$$dx = (6t + 2)dt$$
 การเปลี่ยนแปลงในช่วงสั้นๆ

คิดทั้งหมด ต้องรวมการเปลี่ยนแปลงในช่วงสั้น ๆ

$$\int dx = \int (6t+2)dt$$

$$\int dx = \int (6t+2)dt$$
  $x+c_1=6\int tdt+2\int dt$   $x+c_1=6\left[rac{t^2}{2}+c_2
ight]+2[t+c_2]$   $x+c_1=3t^2+6c_2+2t+2c_3$   $x=3t^2+2t+c$  ... (2)

ที่เวลา 
$$t = 1 s$$
;  
 $x = 3(1)^2 + 2(1) + 2 = 7 m$   $\triangleleft$   
 $v = 6(1) + 2 = 8 m/s$   $\triangleleft$