What is claimed is:

An imager comprising:

an array of pixel sensors, each pixel sensor to indicate at least two different primary color components of an image; and

for each pixel sensor, at least two storage locations located in the array to store the indications from the pixel sensor.

1

2

3

4

5

4

5

2. The imager of claim 1, further comprising:

for each pixel sensor, circuitry to, during a first integration interval, couple the pixel sensor to one of the associated storage locations to store one of the indications from the sensor and, during a second integration interval, couple the pixel sensor to another one of the storage locations to store another one of the indications from the sensor.

6

The imager of claim 2, wherein the circuitry includes an analog-to-digital converter to convert the indications from the pixel sensor into a digital format

 $\supset 1^{1}$

- 4. The imager of claim 1, wherein the indications comprise analog signals.
- The imager of claim 1, wherein the indications comprise digital signals.

1	A camera comprising:
2	an array of pixel sensors, each pixel sensor to indicate at least two color
3	components of an image;
4	a programmable color filter substantially covering the array;
5	a controller to control the color filter to cause the pixel sensors to indicate
6	the color components one at a time; and
7	for each pixel sensor, at least two storage locations located in the array to
8	store the indications from the pixel sensor.
	,
1	7. The camera of claim 6, further comprising:
2	for each pixel sensor, circuitry to, during a first integration interval, couple
3	the pixel sensor to one of the associated storage locations to store one of the
4	indications from the sensor and, during a second integration interval, couple the
5	pixel sensor to another one of the storage locations to store another one of the
6	indications from the sensor.
14	The camera of claim 7, wherein the circuitry includes an analog-to-digital
2	converter to convert the indications from the pixel sensor into a digital format.
_1	9. The camera of claim 6, wherein the indications comprise analog signals.

10.

The camera of claim 6, wherein the indications comprise digital signals.

1	11. A method for use with an imager, comprising:
2	during a first integration interval, storing an indication of a first primary
3	color component of an image in a pixel sensor array; and
4	during a second integration interval, storing an indication of a second
5	primary color component of the image in the array, the second primary color
6	component being different from the first primary color component.
1	12. The method of claim 11, further comprising:
2	retrieving the indications of the first and second primary color
3	components from the array after the expiration of the first and second integration
4	intervals.
	(\mathcal{A})
1	13. The method of etam 12, wherein the retrieving further includes:
2	retrieving an indication of a third primary color component of the image
3	from the array after the expiration of the first and second integration intervals, the
4	third primary color being different from the first and second primary color
5	components.
1	14. The method of claim 11, further comprising:
2	during a third integration interval, storing an indication of a third primary
3	color component, the third primary color component being different from the first
4	and second primary color components.
1	The method of claims 11, wherein the not of steming the indication of the
1	15. The method of claim 11, wherein the act of storing the indication of the
2	first primary color component comprises storing a digital signal.

I	16. The method of claim 11, wherein the act of storing the indication of the
2	first primary color component comprises storing an analog signal.
1	17. The method of olaim 11, further comprising:
2	programming a color filter to allow light including the first primary color
3	component to strike the pixel sensors during the first integration interval and
4	allow light including the second primary color component to strike the pixel
5	sensors during the second integration interval.
	ADDDI)
	000
	Po /
	93/\d