BOP: Modular Platform for Learned Query Optimizer Research

Gautam Mittal, Zongheng Yang

Query — Execution Plan

Query execution plan space is exponentially large and often relies on human-engineered cost models to generate the best plan.

Expert Bootstrapping

Deep reinforcement learning agent learns an initial policy π_0 from a human-engineered (expert) model.

Why is this necessary?

The cost of executing poor plans can result in queries that take hours to complete.

Value Iteration

Use π_0 to learn an optimal policy through retraining agent based on generated plans + latency.

System Architecture

Encoding Plans as Sequences

Query Encoding

Flexibility of system allows for novel improvements to featurization and cost model.

Histogram-based Selectivity Estimation

Naru: Deep Unsupervised Cardinality Estimation

Evaluation

Workload: JOB (70 queries)

Model: Transformer

Featurization:
Positional
embeddings +
pre-order
encoding +
hist. estimation

Please send us feedback: gbm@berkeley.edu, zongheng@cs.berkeley.edu

Vaswani et al. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000–6010.