

1. Find the scattering parameter matrix of the following network.

Assume
$$Z_{01} = 50\Omega$$
, $Z_{02} = 25\Omega$, $Z = 10\Omega$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0}$$
 $S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$

$$S_{12} = \frac{V_1^-}{V_2^+}\Big|_{z=0}$$
 $S_{22} = \frac{V_2^-}{V_2^+}\Big|_{z=0}$

2. Find the scattering parameter matrix of the following network.

Assume
$$Z_{01}=50\Omega$$
, $Z_{02}=25\Omega$, $Z=10\Omega$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+} \Big|_{z=0} \qquad S_{22} = \frac{V_2^-}{V_2^+} \Big|_{z=0}$$

3. Find the scattering parameter matrix of the following network.

Assume $Z_{01} = 50\Omega$, $Z_{02} = 25\Omega$, $Z_{1} = 80\Omega$, $Z_{2} = 120\Omega$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+}\Big|_{z=0}$$
 $S_{22} = \frac{V_2^-}{V_2^+}\Big|_{z=0}$

4. Find the scattering parameter matrix of the following network.

Assume $Z_{01}=50\Omega$, $Z_{02}=25\Omega$, $Z_{1}=25\Omega$, $Z_{2}=10\Omega$, $Z_{3}=40\Omega$

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{z=0} \qquad S_{21} = \frac{V_2^-}{V_1^+} \Big|_{z=0}$$

$$S_{12} = \frac{V_1^-}{V_2^+} \Big|_{z=0} \qquad S_{22} = \frac{V_2^-}{V_2^+} \Big|_{z=0}$$