8.7: Complex and Hermitian Conjugate

Alex L.

October 19, 2024

Definition: (Complex Conjugate of a Matrix) The complex conjugate of a matrix is found by taking the complex conjugate of each component. It is denoted A^* .

If A is real, then $A^* = A$

Definition: (Hermitian Conjugate of a Matrix) The hermitian conjugate of a matrix is found by taking the complex conjugate of the transpose of a matrix, and is denoted A^{\dagger}

$$A^{\dagger} = (A^*)^T = (A^T)^*$$

 $A^\dagger = (A^*)^T = (A^T)^*$ If A is real, then $A^\dagger = A^T$

The inner product of two vectors in an orthonormal basis, $\langle a|b\rangle=a^{\dagger}b$, or the matrix product of the hermitian conjugate of a times b.

If the basis is not orthonormal, then $\langle a|b\rangle=a^{\dagger}Gb$, where G is the matrix with components $G_{ij}=\langle \mathbf{e}_i|\mathbf{e}_j\rangle$