NATIONAL UNIVERSITY OF SINGAPORE

CS5340 - Uncertainty Modeling in Al

(Semester 1 : AY2018/19)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your Student Number only. Do not write your name.
- 2. This assessment paper contains **FOUR** questions and comprises **SIX** printed pages.
- 3. Students are required to answer ALL questions.
- 4. Students should write the answers for each question on a new page.
- 5. Students can bring in **ONE A4 summary sheet**.
- 6. Non-programmable electronic calculators are allowed.

Figure 1.1 shows a Markov Random Field (MRF) with two random variables X_1 and X_2 , where $x_i \in \{0,1\}$. Furthermore, let $\phi_1(x_1)$ and $\phi_2(x_2)$ denote the unary potentials, and $\psi_{12}(x_1, x_2)$ denotes the pairwise potential. Given the observations over 14 trials as shown in Table 1.1, find the unknown value of $\psi_{12}(x_1 = 0, x_2 = 0)$ in the potential tables shown in Table 1.2. Show all your workings clearly.

Figure 1.1

Trial Number	Outcomes	
Trial Number	X_1	X ₂
1	0	0
2	1	0
3	1	1
4	1	0
5	0	0
6	0	1
7	1	1
8	0	0
9	1	0
10	1	1
11	0	0
12	0	0
13	1	0
14	1	1

Table 1.1

<i>X</i> ₁	$\phi_1(x_1)$	
0	2	
1	1	

X_2	$\phi_2(x_2)$	
0	1	
1	2	

X_1	X ₂	$\psi_{12}(x_1,x_2)$
0	0	$\psi_{12}(x_1=0,x_2=0)$
0	1	1
1	0	2
1	1	2

Table 1.2

Figure 2.1 shows a Bayesian network with five random variables X_1, X_2, X_3, X_4, X_5 , where $x_i \in \{0,1\}$ for i = 1, 2, 4, and $x_i \in \{0,1,2\}$ for i = 3, 5.

Figure 2.1

- (a) Write down all the conditional independences given by the Bayesian network. (5 marks)
- (b) Write down the factorized expression of the joint probability given by the Bayesian network.

 (1 mark)
- (c) Convert the Bayesian network into a factor graph. Draw the factor graph and write down the expression of each factor clearly in your answer.

 (6 marks)
- (d) Table 2.1 gives the probability tables of the Bayesian network, find the conditional probability $p(x_1|x_3=1,x_2)$. Show all your workings clearly.

X_1	X ₂	X_3	$p(x_3 x_1,x_2)$
0	0	0	0.3
0	0	1	0.4
0	1	0	0.9
0	1	1	0.08
1	0	0	0.05
1	0	1	0.25
1	1	0	0.5
1	1	1	0.3

X_1	$p(x_1)$
0	0.6

X ₂	$p(x_2)$	
0	0.7	

X_3	X_4	$p(x_4 x_3)$
0	0	0.1
1	0	0.4
2	0	0.99

Table 2.1

(13 marks)

Figure 3.1 shows a graphical model with six binary-state latent random variables $Z = \{Z_1, Z_2, Z_3, Z_4, Z_5, Z_6\}$, $z_i \in \{0,1\}$, and six binary-state observed random variables $X = \{X_1, X_2, X_3, X_4, X_5, X_6\}$, $x_i \in \{0,1\}$. Table 3.1 gives the pairwise potentials $\phi(z_i, z_j)$, $\forall ij \in \mathcal{E}_Z$ and conditional probability $p(x_i|z_i)$ for i = 1, ... 6, where \mathcal{E}_Z denotes all the edges between the latent random variables in the graphical model. Find the configuration of Z that maximizes the joint probability p(X, Z).

(Hint: convert the graphical model into a factor graph, where the respective pairwise potential and conditional probability are represented as a single factor.)

Figure 3.1

Z_i	Z_{j}	$\phi(z_i, z_j)$
0	0	0
0	1	2
1	0	2
1	1	0

X_i	Z_i	$p(x_i z_i)$
0	0	0.9
0	1	0.05
1	0	0.1
1	1	0.95

Table 3.1

The Bayesian network shown in Figure 4.1 has five random variables X_1, X_2, X_3, X_4, X_5 , where $x_i \in \{0,1,2\}$ for i = 1, 2 and $x_i \in \{0,1\}$ for i = 3, 4, 5.

Figure 4.1

(a) Given the following numbers drawn from a uniform distribution $u \sim U(0,1)$:

$$u = [0.4387 \ 0.4898 \ 0.7513 \ 0.4984 \ 0.2760],$$

generate one set of samples from the joint distribution $p(x_1, x_2, x_3, x_4, x_5)$ using Gibbs sampling. Use $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$ as the initialization. Show all your workings clearly.

(15 marks)

- (b) Table 4.1 shows 10 sets of samples drawn from Gibbs sampling. Ignoring the burn-in effect and initialization, find the approximation for the following probabilities using the generated samples:
 - i. $p(x_2)$
 - ii. $p(x_3, x_5)$
 - iii. $p(x_3, x_4 = 1, x_5 = 1)$
 - iv. $p(x_3|x_2=1)$

Sample #	X_1	X 2	<i>X</i> ₃	X4	Xs
0	0	0	0	0	0
1	2	0	1	1	0
2	2	0	0	1	0
3	0	0	0	1	1
4	1	1	1	0	0
5	2	2	1	1	0
6	2	0	1	0	1
7	1	2	0	0	0
8	2	1	0	0	0
9	1	0	1	1	0
10	1	0	1	1	1

Table 4.1

(10 marks)

--End--