Аннотация

Лекции по линейной алгебре 2 семестра потока бакалавров ВМК МГУ. Лектор — Полосин Алексей Андреевич. Составитель — Андрей Тихонов (tiacorpo@gmail.com).

Оглавление

1	Kon	иплексные числа
	1.1	Основные понятия
	1.2	Алгебраическая форма записи комплексных чисел
	1.3	Комплексная плоскость
	1.4	Сопряженная матрица
	1.5	Тригонометрическая форма записи комплексных чисел
	1.6	Решение уравнений $z^n=a$ при натуральных n
	1.7	Стурктура корней n -й степени из 1
2	Лин	нейные пространства над произвольным полем
	2.1	Основные понятия
	2.2	Линейная зависимость. Ранг и база системы векторов.
	2.3	Базис и его размерность
	2.4	Линейные подпространства. Линейная оболочка
	2.5	Сумма и пересечение линейных подпространств

Глава 1

Комплексные числа

1.1 Основные понятия

Определение. Комплексными числами называются упорядоченые пары вещественных чисел $(a,b),\ a,b\in\mathbb{R}.$

Правила:

1.
$$(a,b) = (c,d) \Leftrightarrow \begin{cases} a = c \\ b = d \end{cases}$$

2.
$$(a,b) + (c,d) = (a+c,b+d)$$

3.
$$(a,b)(c,d) = (ac - bd, bc + ad)$$

4.
$$(a,0) \equiv a \in \mathbb{R}$$

Следствия:

1. Вычитание:
$$(a, b) - (c, d) = (a - b, c - d)$$

2. Деление:
$$\frac{(a,b)}{(c,d)} = \frac{(a,b)(c,-d)}{(c,d)(c,-d)} = \frac{(ac+bd,bc-ad)}{(c^2+d^2,0)}$$

Замечание.

(c, -d) называется комплексным сопряженным к (c, d).

Коммутативность, ассоциативность, дистрибутивность вытекают из свойств \mathbb{R} .

Замечание.

$$(0,0) = 0, (1,0) = 1$$

1.2 Алгебраическая форма записи комплексных чисел

 $(0,1)^2 = (0,1)(0,1) = (-1,0).$

i = (0,1) – мнимая единица, $i^2 = -1$.

(a,b)=a(1,0)+b(0,1)=a1+bi=a+bi – алгебраическая форма записи комплексного числа.

$$z \in \mathbb{C} = (a, b) = a + bi, (a, -b) = \overline{z}$$

 $a=Re\ z$ — вещественная часть, $b=Im\ z$ — мнимая часть. Свойства:

1.
$$\overline{\overline{z}} = z$$

2.
$$z\overline{z}=(a^2+b^2,0)=|z^2|;\;|z|=\sqrt{a^2+b^2}$$
 – модуль комплексного числа

$$3. \ \overline{z} = z \iff Im \ z = 0$$

4. Re
$$z = \frac{z+\overline{z}}{2}$$
, Im $z = \frac{z-\overline{z}}{2}$

5.
$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$

1.3 Комплексная плоскость

Тут не будет картинки

1.4 Сопряженная матрица

```
A = (a_{kl}) \in \mathbb{C}^{m \times n}
A^* = (\overline{a}_{kl}) \in \mathbb{C}^{m \times n} – сопряженная к A матрица.
```

1.5 Тригонометрическая форма записи комплексных чисел

```
r = |z| = \sqrt{a^2 + b^2}
a = Re \ z = r \cos \phi
b = Im \ z = r \sin \phi
\phi = arg z – аргумент z
z_1=z_2\Leftrightarrow \begin{cases} |z_1|=|z_2| \\ arg\ z_1=arg\ z_2+2\pi k,\ k\in\mathbb{Z} \end{cases} z=r(\cos\phi+i\sin\phi) – тригонометрическая форма записи комплексного числа
```

Утверждение. $||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$

 $z_1 z_2 = r_1(\cos\phi_1 + i\sin\phi_1)r_2(\cos\phi_2 + i\sin\phi_2) = r_1 r_2(\cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2 + i(\sin\phi_1\cos\phi_2 + \sin\phi_2\cos\phi_1)) = r_1 r_2(\cos\phi_1 + i\sin\phi_1)r_2(\cos\phi_2 + i\sin\phi_2) = r_1 r_2(\cos\phi_1 + i\sin\phi_1)r_2(\cos\phi_2 + i\sin\phi_2) = r_1 r_2(\cos\phi_1 + i\sin\phi_1)r_2(\cos\phi_1 + i\cos\phi_1 + i(i\phi\phi_1 + i\phi\phi_1)r_2(i\phi\phi_1 + i\phi\phi_1)r_2(i\phi\phi_1 + i\phi\phi_1 + i\phi\phi_1 + i\phi\phi_1)r_2(i\phi\phi_1 + i\phi\phi_1 + i\phi\phi_1 + i\phi\phi_1)r_2(i\phi\phi_1 + i\phi\phi_1 + i\phi\phi_1$ $= r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2)) |z_1 z_2| = |z_1||z_2|$

Следствие. $z^n = r^n(\cos n\phi + i\sin n\phi)$ – формула Муавра $n = 0 \Rightarrow z \neq 0$

Решение уравнений $z^n = a$ при натуральных n1.6

Определение. Решение уравнения $z^n = a$ называется корнем n-й степени из $a \ (z, a \in \mathbb{C})$

 $a=0 \Rightarrow |a|=0 \Rightarrow |z|=0 \Rightarrow z=0$, других корней нет. Пусть теперь $a \neq 0$.

Утверждение. У уравнения существует ровно п попарно различных корней.

Доказательство.

$$z = r(\cos\phi + i\sin\phi)$$

$$z^{n} = r^{n}(\cos(n\phi) + i\sin(n\phi)) = a = \rho(\cos\Theta + i\sin\Theta)$$

Сравним модули: $r^n = \rho \Rightarrow r = \rho^{\frac{1}{n}} = \sqrt[n]{\rho}$

Сравниваем три части:

$$n\phi = \Theta + 2\pi k, \ k \in \mathbb{Z}$$

$$n\phi = \Theta + 2\pi k, \ k \in \mathbb{Z}$$

$$\phi = \frac{\Theta + 2\pi k}{n}$$

$$\phi_k = \frac{\Theta}{n} + \frac{2\pi k}{n}, \ k = \overline{0, n-1}$$

Стурктура корней n-й степени из 11.7

 $z^n = a$

Пусть z_0 - любой корень этого уравнения. Тогда для $\varepsilon=z/z_0$ получим:

$$z = z_0 \varepsilon, \ z^n = z_0^n \varepsilon^n = a \varepsilon^n = a \Rightarrow \varepsilon^n = 1$$

Следовательно, $z_k = z_0 \varepsilon_k$, где $\varepsilon_k^n = 1$.

$$\varepsilon_k^n = 1, \ \varepsilon_0 = 1, \ \varepsilon_1 = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}, \ \varepsilon_k = (\varepsilon_1)^k \ (mod \ n), \ \varepsilon_k\varepsilon_e = \varepsilon_{k+e} \ (mod \ n)$$

Глава 2

Линейные пространства над произвольным полем

2.1 Основные понятия

Определение. Полем называется состоящее из не менее чем двух элементов множество с введенными на нем двумя операциями – "сложением" и "умножением" – обладающими следующими свойствами:

1.
$$a + b = b + a$$

2.
$$(a+b)+c=a+(b+c)$$

3.
$$\exists 0: a+0=a$$

4.
$$\forall a \exists (-a): a + (-a) = 0$$

5.
$$ab = ba$$

6.
$$(ab)c = a(bc)$$

7.
$$\exists 1: 1a = a$$

8.
$$\forall a \neq 0 \exists \frac{1}{a} = a \frac{1}{a} = 1$$

9.
$$(a+b)c = ac + bc$$

Замечание. Элементы поля называются числами.

Определение. Пусть заданы множество $\mathbb V$ и поле $\mathbb P$. Множество $\mathbb V$ называется линейным (векторным) пространством над полем $\mathbb P$, если в $\mathbb V$ определены две операции: сложение двух элементов в $\mathbb V$ (внутренний закон композиции: $\mathbb V \times \mathbb V \mapsto \mathbb V$) и умножение элементов $\mathbb V$ на элементы $\mathbb P$ (внешний хакон композиции: $\mathbb V \times \mathbb P \mapsto \mathbb V$), удовлетворяющие следующим аксиомам: $\mathbb V$ а, $b,c\in\mathbb V$, $\mathbb V$ $\alpha,\beta\in\mathbb P$:

1.
$$a + b = b + a$$

2.
$$(a+b)+c=a+(b+c)$$

3.
$$\exists \Theta : a + \Theta = \Theta$$

4.
$$\forall \ a \ \exists \ (-a) : a + (-a) = \Theta$$

5.
$$\alpha(\beta a) = (\alpha \beta)a$$

6.
$$1a = a$$

7.
$$(\alpha + \beta)a = \alpha a + \beta a$$

8.
$$\alpha(a+b) = \alpha a + \alpha b$$

Элементы линейного пространства называются векторами.

Определение. Векторы называются коллинеарными, если они различаются лишь числовыми множителями.

2.2 Линейная зависимость. Ранг и база системы векторов.

Пусть \mathbb{V} - линейное пространство над полем \mathbb{P} . Будем рассматривать конечные (т.е. состоящие из конечного числа векторов) системы векторов из \mathbb{V} .

Определение. Линейная зависимость

Определение. Базой системы векторовназывается ее линейно независимая подсистема, через которую линейно выражается любой вектор системы.

Теорема 1. Любая линейно независимая подсистема данной системы является ее базой, и, наоборот, всякая база является максимальной линейно независимой подсистемой.

Доказательство. Пусть a_1,\dots,a_k - система векторов, а a_1,\dots,a_r - кк максимальная линейно независимая подсистема, $r \leq k$. Тогда необходимо доказать, что любой вектор $a_j (j=\overline{1,k})$ линейно выражается через a_1,\dots,a_k . Если $j \leq r$, то Капитан Очевидность отдыхает. Если j > r, то подсистема a_1,\dots,a_r,a_j линейно зависима $\Rightarrow \exists \alpha_1,\dots,\alpha_r,\alpha_j$, что $\alpha_1a_1+\dots+\alpha_ra_r+\alpha_ja_j=\Theta$. Если $\alpha_j=0$, то a_1,\dots,a_r линейно зависима - противоречие $\Rightarrow \alpha_j \neq 0$ и $a_j=0$

$$-rac{lpha_1}{lpha_j}a_1-\ldots-rac{lpha_r}{lpha_j}a_r$$
, ч.т.д.

В обратную сторону: необходимо доказать, что база является максимальной линейно независимой подсистемой.

Из определения базы вытекает, что при добавлении к ней любого вектора системы она становится линейно зависимой, так как вновь добавленый вектор выражается через векторы базы.

Следствие. Все базы данной системы состоят из одинакового числа векторов. Это число есть число векторов в максимальной линейно независимой подсистеме. Оно называется рангом системы: $rg(a_1, \ldots, a_k)$.

Определение. Две системы векторов называются эквивалентными, если каждый вектор одной системы линейно выражается через вектора другой системы, и наоборот.

Следствие. Всякая система эквивалентна своей базе.

Теорема 2. Если любой вектор a_1,\ldots,a_k выражается через векторы b_1,\ldots,b_m , то $rg(a_1,\ldots,a_k) \leq rg(b_1,\ldots,b_m)$

Доказательство. Заменим системы их базисами и воспользуемся соответствующей теоремой из предыдущего семестра. □

Следствие. 1. Ранги эквивалентных систем совпадают.

2. Базы эквивалентных систем состоят из одинакового числа векторов.

2.3 Базис и его размерность

Определение. Говорят, что система векторов (не обязательно линейно независимая) порождает линейное пространство \mathbb{V} , если любой вектор из \mathbb{V} представим в виде линейной комбинации векторов этой системы.

Определение. Упорядоченая система векторов называется базисом, если она линейно независима и порождает пространство \mathbb{V} .

Теорема 3. Любые два базиса состоят из одинакового числа векторов.

Доказательство. Это утверждение вытекает из эквивалентности двух базисов и следствия 1 теоремы 2.

Определение. Количество векторов в базисе называется размерностью пространства \mathbb{V} : $dim\ \mathbb{V}$. Если оно конечно, то ространство называется конечномерным, иначе - бесконечномерным.

Теорема 4. В n-мерном пространстве любую линейно независимую систему из k векторов $(0 \le k < n)$ можно дополнить до базиса.

Доказательство. Пусть векторы e_1, \ldots, e_k построены, k < n. Выберем вектор e_{k+1} так, чтобы векторы $e_1, \ldots, e_k, e_{k+1}$ были лнейно независимы. И так далее до получения требуемого результата.

Свойтсва:

$$x = x_1e_1 + \ldots + x_ne_n$$

 $y = y_1e_1 + \ldots + y_ne_n$
 $\alpha x + \beta y = (\alpha x_1 + \beta y_1)e_1 + \ldots + (\alpha x_n + \beta y_n)e_n$
Переход к другому базису:

 $e = (e_1, \dots, e_n)$ – строка из векторов

$$x_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 – вектор-столбец координат разложения x по базису e .

$$x = ex_e = fx_f = eQx_f \implies x_e = Qx_f$$

Перейдем к другому базису: f = eQ, Q – матрица перехода.

2.4 Линейные подпространства. Линейная оболочка.

Определение. Подмножество \mathbb{L} линейного пространства \mathbb{V} называется поддпространством (линейного пространства \mathbb{V}), если оно само является линейным пространством относительно операций, введеных в \mathbb{V} .

Определение. Линейной оболочкой векторов a_1, \ldots, a_k называется множество всевозможных линейных комбинаций этих векторов. Обозначение: $\mathcal{L}(a_1, \ldots, a_k)$. В этосм случае говорят, что линейная оболочка натянута на векторы a_1, \ldots, a_k .

Утверждение. $\mathcal{L}(a_1,\ldots,a_k)$ – nodnpocmpancmeo npocmpancmeo \mathbb{V} .

Теорема 5. Две системы векторов эквивалентны тогда и только тогда, когда их линейные оболочки совпадают.

Доказательство. Пусть a и b - две эквивалентные системы, тогда $\mathcal{L}(b) \subset \mathcal{L}(a)$ и $\mathcal{L}(a) \subset \mathcal{L}(b) \Rightarrow \mathcal{L}(a) = \mathcal{L}(b)$.

Следствие.

- 1. Линейная оболочка системы векторов совпадает с линейной оболочкой базы этой системы.
- 2. $\dim \mathcal{L}(a_1, ..., a_k) = rg(a_1, ..., a_k)$

Теорема 6. Если $\mathbb{W} \subset \mathbb{V}$, то dim $\mathbb{W} < dim \mathbb{V}$, причем если dim $\mathbb{W} = dim \mathbb{V}$, то $\mathbb{W} = \mathbb{V}$

Доказательство. Предположим противное. Если $dim \ \mathbb{W} > dim \ \mathbb{V}$, то в \mathbb{V} существует болльше линейно независимых векторов, чем его размерность. Противоречие.

Если $dim \ \mathbb{W} = dim \ \mathbb{V}$, то в качестве базиса \mathbb{V} можно взять базис $\mathbb{W} \Rightarrow \mathbb{V} = \mathbb{W}$.

2.5 Сумма и пересечение линейных подпространств.

Два способа задания линейного подпространства: $\mathcal{L}()$ и СЛАУ.

Определение. Суммой подпространств $\mathbb{L}_1, \ldots, \mathbb{L}_k$ пространства \mathbb{V} называется множество всевозможных векторов вида $x = x_1, \ldots, x_k$, где $x_1 \in \mathbb{L}_1, \ldots, x_k \in \mathbb{L}_k$.

Обозначение: $\mathbb{L}_1 + \ldots + \mathbb{L}_k$, или $\bigcup_{j=1}^k \mathbb{L}_j$, или $\sum_{j=1}^k \mathbb{L}_j$.

Определение. Пересечением подпространств $\mathbb{L}_1, \dots, \mathbb{L}_k$ пространства \mathbb{V} называется множество всевозможных векторов, принадлежащих всем этим подпространствам одновременно.

Обозначение: $\mathbb{L}_1 \cap \ldots \cap \mathbb{L}_k$, или $\bigcap_{j=1}^k \mathbb{L}_j$.

Теорема 7. Сумма и пересечение подпространств является подпространством.

Доказательство. Сумма: очевидно, что сложение м умножение не выводят из пространства. Пересечение: тоже очевидно.

Замечание. Сумма подпространств есть наименьшее подространство, содержащее эти подпространства. Пересечение подпространств есть наибольшее подпространство, содержащееся в этих подпространствах.

Теорема 8. Сумма подпространств есть линейная оболочка совокупности базисов этих подпространств.

Доказательство. Пусть e - базис \mathbb{L}_1, \ldots, f - базис \mathbb{L}_k , тогда $\mathbb{L}_1 + \ldots + \mathbb{L}_k \in \mathcal{L}(e, \ldots, f)$ и $\mathcal{L}(e, \ldots, f) \in \mathbb{L}_1 + \ldots + \mathbb{L}_k$ \square

Cnedcmeue. $dim(\mathbb{L}_1 + \ldots + \mathbb{L}_k) = rg(e, \ldots, f)$

Теорема 9. Для любых двух подпространств \mathbb{L}_1 , \mathbb{L}_2 справедливо равенство: $dim(\mathbb{L}_1 + \mathbb{L}_2) = dim \mathbb{L}_1 + dim \mathbb{L}_2 - dim(\mathbb{L}_1 \cap \mathbb{L}_2)$

oоказательство.