香港考試及評核局香港中學文憑考試

化學 試卷二

(樣本試卷)

考試時間:一小時本試卷必須用中文作答

考生須知

- (一) 在本試卷內選答兩題。
- (二) 每題佔 20 分。
- (三) 答案須寫在所提供的答題簿內。
- (四) 本試題簿的底頁印有週期表。考生可從該週期表中得到元素的原子序及相對原子質量。

考試結束前不可 將試卷攜離試場

選答兩題。

(1) 工業化學

(a) 在酸性溶液中,氯酸根離子 (CIO_3 ⁻) 緩慢地把氯離子氧化成氯。以下是在 25° C 取得的動力學數據:

$[ClO_3^-(aq)]$ /mol dm $^{-3}$	$[Cl^{-}(aq)]$ /mol dm $^{-3}$	$[H^+(aq)]$ /mol dm $^{-3}$	初速 /mol dm ⁻³ s ⁻¹			
0.08	0.15	0.20	1.0×10^{-5}			
0.08	0.15	0.40	4.0×10^{-5}			
0.16	0.15	0.40	8.0×10^{-5}			
0.08	0.30	0.20	2.0×10^{-5}			

- (i) 寫出該反應的平衡反應式。
- (ii) 求每一種反應物的反應級數。
- (iii) 求在這温度的速率常數。
- (iv) 若把溫度提升 10° C ,反應速率變爲原速率的兩倍,推算該反應的活化能。 (氣體常數 $R=8.31 \ JK^{-1} mol^{-1}$)

(10分)

- (b) 寫出在工業上由氮製備硝酸的各個化學反應和進行這些反應的條件。 (6分)
- (c) 以下方程式表示利用 2-溴-2-甲基丙烷製成甲基丙烯的反應:

- (i) 根據綠色化學,計算這反應的原子效益。
- (ii) 若要進行綠色生產過程,除原子效益外,舉出科學家還須考慮 的其他兩項因素。 (4 分)

(2) 物料化學

(a) 化合物 A 具液晶的習性,其結構顯示如下:

- (i) 苯甲酸與膽固醇縮合可生成化合物 A,繪出膽固醇的結構。
- (ii) 「真液體」與「液晶」有什麼差異?
- (iii) 簡單描述在螺旋相液晶內分子的排列。
- (iv) 概述螺旋相液晶在液晶顯示 (LCD) 的功用。

(10分)

- (b) 塑膠可按它們的受熱性質分成熱塑性塑膠和熱固性塑膠。
 - (i) 利用鍵合和結構的概念,解釋爲什麼熱塑性塑膠和熱固性塑膠 受熱時呈現不同的習性。
 - (ii) 聚乙烯(PE)是熱塑性塑膠,常用來製造購物袋。
 - (I) 寫出從單體生成 PE 的化學方程式。
 - (II) 寫出 PE 的重複單位。
 - (iii) 有些科學家建議使用聚乳酸(PLA) 製造購物袋以取代 PE,如此有助減少環境問題。PLA的部分結構如下:

- (I) 繪出用來製造 PLA 的單體的結構。
- (II) 寫出該單體的系統名稱。
- (III) 寫出製造 PLA 聚合反應類別的名稱。
- (IV) 從化學角度解釋爲什麼棄置 PLA 與棄置 PE 相比,前者對環境造成的害處較小。

(10分)

47

(3) 分析化學

(a) 化合物 G 的相對分子質量是 58 , 其質量組成如下:

C: 62.1% H: 10.3% O: 27.6%

下面給出化合物 G 的紅外線光譜和質譜。

特徵紅外吸收波數域 (伸展式)

鍵合	化合物類別	波數域/cm ⁻¹
C=C	烯	1610 至 1680
C=O	醛、酮、羧酸及其衍生物	1680 至 1800
C≡C	炔	2070 至 2250
C≡N	腈	2200 至 2280
О–Н	帶「氫鍵」的酸	2500 至 3300
С–Н	烷、烯及芳烴	2840 至 3095
О–Н	帶「氫鍵」的醇及酚	3230 至 3670
N–H	胺	3350 至 3500

- (i) 推算化合物 G 的分子式。
- (ii) 從所給的光譜資料,以及從 (i) 所求出的分子式,推定化合物 **G** 的結構式。
- (iii) 提出一個實驗(附詳細步驟)以支持你在 (ii) 所推定化合物 G 的結構。

(10分)

- (b) 在一個測定某牌子烈酒所含乙醇濃度的實驗裏,把 $10.0~{\rm cm}^3$ 這烈酒的樣本稀釋至 $250.0~{\rm cm}^3$ 。抽取數份體積爲 $25.0~{\rm cm}^3$ 經稀釋的烈酒。把 $25.0~{\rm cm}^3$ 的的 $0.156~{\rm M}~{\rm K}_2{\rm Cr}_2{\rm O}_7({\rm aq})$ 和過量稀 $H_2{\rm SO}_4$ 加進每份中,並讓混合物置於室溫一整夜。在每一混合物中,加入適當的指示劑,然後用 $0.118~{\rm M}~({\rm NH}_4)_2{\rm Fe}({\rm SO}_4)_2({\rm aq})$ 滴定混合物中過量的 ${\rm K}_2{\rm Cr}_2{\rm O}_7$ 。平均滴定值爲 $12.23~{\rm cm}^3$ 。
 - (i) 寫出在酸性條件下,乙醇與重鉻酸根離子反應的方程式。
 - (ii) 舉出<u>兩項</u> (NH₄)₂Fe(SO₄)₂的性質,以使其在容量分析中可作爲基本標準。
 - (iii) 提出一個方法以測試乙醇的氧化過程是否已經完成。
 - (iv) 計算這牌子烈酒所含乙醇的濃度(以 $\,$ mol d $\,$ m $^{-3}$ 爲單位)。 (10 分)

試卷完

PERIODIC TABLE 週期表

GROUP 族

	✓ atomic number 原子序																
														0			
				l ≜ H													2 He
I	II	1		1.0]							III	IV	V	VI	VII	4.0
3	4											5 B	6	7	8	9	10
Li	Be												C	N	О	F	Ne
6.9	9.0												12.0	14.0	16.0	19.0	20.2
11	12		relative atomic mass 相對原子質量										14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.5	87.6	88.9	91.2	92.9	95.9	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89 **	104	105													
Fr	Ra	Ac	Rf	Db													
(223)	(226)	(227)	(261)	(262)]												

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)