POLITECHNIKA GDAŃSKA Wydział Elektroniki, Telekomunikacji i Informatyki

Projekt z SANGN

Studia dzienne inżynierskie

Semestr 6 48,5pkt/50pkt

Kierunek: Elektronika i Telekomunikacja

Grupa dziekańska: Telekomunikacja 2

Grupa projektowa: Zestaw 29

1. Imię Nazwisko: Mateusz Miler

2. Imię Nazwisko: Daniel Gogoliński

Data oddania projektu: 20.04.2020

Zadanie 1. Obliczanie zasobów na stykach PSTN/ISDN/GSM z IP (dla węzłów brzegowych i = 1, 2 i 3).

Dane wejściowe:

Tab. 1.1. Natężenia ruchu oferowanego

Brama(GWi)	Ai [Erl]	,
1	180	V
2	340	✓
3	460	_/

Tab.1.2. Intensywność pakietów w sieci IP

DostępIPi	Klasa ruchu RT	Klasa ruchu NRT
i	$\lambda_{\mathrm{IP}_{-i}}^{\mathrm{RT}}$ [1/s]	$\lambda_{ ext{IP}_i}^{ ext{NRT}}$ [1/s]
1	11000	12000 🗸
2	13000	16000 🗸
3	17000 🗸	14000 🗸

Tab. 1.3. Charakterystyka klas ruchu

Klasa ruchu	Parametry opisujące klasę ruchu
ID 11001 (DE	(1) (1) (1) (2)
IP – VBR1 (RT - mowa)	śr. dł. pakietu (l _{RT} =1 √ B), kodek G.729,.stos protokołów
	(RTP/UDP/IP/SDH), T _{pak} =20m/s
IP – VBR2 (NRT)	śr. dł. pakietu (l _{NRT} = 1600B), stos protokołów (TCP/IP/SDH)
PSTN/ISDN/GSM na	kodek G.711, stos protokołów (RTP/UDP/IP/SDH),
VBR1 (RT)	$T_{\text{pak}_G.711}=1$

Macierze współczynników zainteresowań ruchu dla klasy RT i NRT:

$$WZ^{RT} = \begin{bmatrix} 0 & 0.1 & 0.4 & 0.2 & 0.2 & 0.1 \\ 0.2 & 0 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.1 & 0.1 & 0 & 0.4 & 0.2 & 0.2 \\ 0.1 & 0.2 & 0.2 & 0 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.1 & 0.2 & 0 & 0.2 \\ 0.2 & 0.3 & 0.2 & 0.2 & 0.1 & 0 \end{bmatrix},$$

Drogi połączeniowe (ruting) w domenie DiffServ

<u>Zad. 2: Obliczenia parametrów jakościowych na ustalonej drodze – IPLR, IPDT, IPDV</u>_{max}

Droga połączeniowa dla ruchu klasy RT {RB1, RR1, RR2, RR3, RB2} Droga połączeniowa dla klasy NRT {RV5, RR1, RB4}

Wartości przyjęte do obliczeń: K1=4, K2=31, C=150

Zadanie 1.

Obliczenia N_{INi} oraz N_{DSP_INi}

Tabela 1.1. Zestawienie wyników dla N_{INi} przy założeniu dopuszczalnego prawdopodobieństwa straty B = 0,002 ✓

Brama(GWi)	Ai [Erl]	N _{INi}	
1	180	212	V
2	340	381	V
3	460	506	V

Tabela 1.2. Zestawienie wyników N_{PCM30/32 INi}

Brama(GWi)	NPCM30/32_INi	
1	8	V
2	13	\
3	17	,

Tabela 1.3. Zestawienie wyników N_{R INi}

Brama(GWi)	N_{R_INi}	
1	240	
2	390	\
3	510	
		」∖

Tabela 1.4. Zestawienie wyników N_{DSP_INi} , przy założeniu $n_{DSP} = 4$

Brama(GWi)	N_{DSP_INi}	
1	60	/
2	98	/
3	128	/

Obliczenia Nouti oraz Ndsp_outi

$$\lambda_{G.729} = 50[1/S] \checkmark$$

Tabela 1.5. Zestawienie wyników dla A_{OUT,PSTN d}

GW	$\lambda^{ m RT}_{ m i}$	$\lambda_{\mathrm{G.729}}$	$\sum { m wz}^{ m RT}_{ m k,PSTN_d} \cdot { m A}_{ m IN,k}$	$A_{OUT,PSTN_d}$	
(i)	76 1	7 4G./29	k	[Erl]	
1	11000	50	$0.2 \cdot A_{2,1} + 0.1 \cdot A_{3,1} + 0.1 \cdot A_{4,1} + 0.2 \cdot A_{5,1} + 0.2 \cdot A_{6,1}$	256	
			/ / / / /		
2	13000	50	$0.1 \cdot A_{1,2} + 0.1 \cdot A_{3,2} + 0.2 \cdot A_{4,2} + 0.3 \cdot A_{5,2} + 0.3 \cdot A_{6,2}$	288	
					/
3	17000	50	$0.4 \cdot A_{1,3} + 0.2 \cdot A_{2,3} + 0.2 \cdot A_{4,3} + 0.1 \cdot A_{5,3} + 0.1 \cdot A_{6,3}$	278	V

Tabela 1.6. Zestawienie wyników N_{OUTi} przy założeniu dopuszczalnego prawdopodobieństwa straty $B=0{,}002$

Brama(GWi)	$A_{OUT,PSTN_d}$	N _{OUTi}
1	256	293
2	288	327
3	278	316

Tabela 1.7. Zestawienie wyników dla N_{PCM30/32 OUTi}

Brama(GWi)	N _{PCM30/32_OUTi}	
1	10	/
2	11	/
3	11	✓

Tabela 1.8. Zestawienie wyników N_{R OUTi}

Brama(GWi)	N _{R_OUTi}	
1	300	✓
2	330	✓
3	330	✓

Tabela 1.9. Zestawienie wyników N_{DSP_OUTi}, przy założeniu n_{DSP} = 4

Brama(GWi)	N _{DSP_OUTi}	
1	75	V
2	83	/
3	83	/

Obliczenia
$$c_{IP_i}^{RT}$$
 $\lambda_{G.711} = 100[1/s]$
 $b_{cal_G.711} = 960 \text{ b}$
 $\sqrt{}$
 $\lambda_{G.729} = 50 \text{ [1/s]}$
 $\sqrt{}$
 $b_{cal_G.729} = 400 \text{ b}$

Tabela 1.10. Zestawienie przepływności strumieni RT przyjętych do obliczeń

$c^{RT}_{1,2}[Mb/s]$	2,304	$e^{RT}_{2,1}[Mb/s]$	7,488 🗸	$c^{RT}_{3,1}[Mb/s]$	4,896 🗸
$c^{RT}_{1,3}[Mb/s]$	9,216 🗸	$c^{RT}_{2,3}[Mb/s]$	7,488	$c^{RT}_{3,2}[Mb/s]$	4,896
$c^{RT}_{1,4}[Mb/s]$	0,960	$c^{RT}_{2,4}[Mb/s]$	1,560 🗸	$c^{RT}_{3,4}[Mb/s]$	4,080
$c^{RT}_{1,5}[Mb/s]$	0,960 🗸	$c^{RT}_{2,5}[Mb/s]$	1,560 🗸	$c^{RT}_{3,5}[Mb/s]$	2,040 🗸
$c^{RT}_{1,6}[Mb/s]$	0,480	$c^{RT}_{2,6}[Mb/s]$	1,560 🗸	$c^{RT}_{3,6}[Mb/s]$	2,040 🗸

$c^{RT}_{4,1}[Mb/s]$	0,440	$e^{RT}_{5,1}[Mb/s]$	1,040 🗸	$c^{RT}_{6,1}[Mb/s]$	1,360 🗸
$c^{RT}_{4,2}[Mb/s]$	0,880	$c^{RT}_{5,2}[Mb/s]$	1,560 🗸	$c^{RT}_{6,2}[Mb/s]$	2,040
$c^{RT}_{4,3}[Mb/s]$	0,880	$c^{RT}_{5,3}[Mb/s]$	0,520 🗸	$c^{RT}_{6,3}[Mb/s]$	1,360
$c^{RT}_{4,5}[Mb/s]$	1,320	$c^{RT}_{5,4}[Mb/s]$	1,040 🗸	$c^{RT}_{6,4}[Mb/s]$	1,360
$c^{RT}_{4,6}[Mb/s]$	0,880	$c^{RT}_{5,6}[Mb/s]$	1,040	$c^{RT}_{6,5}[Mb/s]$	0,680 🗸

Tabela 1.11. Sumaryczne przepływności strumieni RT oferowanych na GW

Brama (GWi)	Kierunek A Ab. – B Ab. [Mb/s]	Kierunek B Ab. – A Ab. [Mb/s]
1	C1,2 + C RT C1,4 + CRT C1,5 + CRT	CRT - CRT - CRT + CRT + CRT
2	C2,4 + C2,3 + C2,4 + C2,5 + C2,6	C1,2 + C 2T + C 2T + C 27 + C 6,2
3	CET + CET + CRT + CET + CRT C3,6	C1,3 + C2,3 7 C4,3 + C2,3 + C87 6,3

Tabela 1.12. Zestawienie wyników dla kierunku A Ab.-B.Ab oraz B.Ab.-A.Ab.

Brama	Kierunek A Ab. – B Ab.	Kierunek B Ab. – A Ab.	$c^{RT}_{IP_i}$
(GWi)	[Mb/s]	[Mb/s]	[Mb/s]
1	13,9 🗸	15,2	29,1 🗸
2	19,7 🗸	11,7 🗸	31,3
3	18 🗸	19,5 🗸	37,4

15pkt/15pkt

$\underline{\textbf{Zad. 2: Obliczenia parametrów jakościowych na ustalonej drodze-IPLR, IPDT,}\\ \underline{\textbf{IPDV}_{max}}$

Tabela 2.1. Zestawienie przepływności strumieni RT oferowanych na łącza na zadanej drodze

Łącze	Przepływności dla strumienia klasy RT [Mb/s]
RB1_RR1	C12+ C13+ C14+ C15+ C16+ C21+ C31+ C41+ C61+ C61
RR1_RR2	C12 + C13 + C16 + C21 + C81 + C81 + C61
RR2_RR3	C16 + C46 + C56 + C61 + C64 + C65 + Crt1,2
RR3_RB2	$C_{12}^{R7} + C_{32}^{R7} + C_{62}^{R7} + C_{23}^{R7} + C_{26}^{R7}$

Tabela 2.2. Zestawienie przepływności strumieni klasy RT oraz natężenia ruchu oferowane na łącza na zadanej drodze

Łącze	Przepływność strumienia klasy RT [Mb/s]	Natężenie ruchu A ^{RT} klasy RT oferowane na łącze
RB1_RR1	29,1 🗸	0,1943
RR1_RR2	25,7 🗸	0,1716
RR2_RR3	5,8 — 8,1	0,0387
RR3_RB2	18,3 🗸	0,1219

0,054

Tabela 2.3. Zestawienie wyników parametrów jakościowych klasy RT na łączach na zadanej drodze

Łącze	IPLR	$E(T_{ocz})[s]$	$E(T_{nad})[s]$	$E(T_{prop})[s]$	IPDT [s]
RB1_RR1	2.2309 e-04	1.334133 e-06	6.4 66	1.5 e-04	1.5793 41 e-04
RR1_RR2	1.2335 e-04	1 √21056 e-06	6.4 06	3.5 -04	3.577211 e-04
RR2_RR3	8.3 091 e-08	2.574 <u>17</u> 5 e-07	6.4 -06	3.5 04	3.5 6 574 e-04
RR3_RB2	2 654 e-05	8.8 7/ 467 e-07	6.4 -06	3.0 e-04	3.07 2 877 e-04
		7/10)		

© S. Kaczmarek, M. Mrynarczuk, M. Narloch, /2020.03

3,655035e-07

4,354314e-07

Tabela 2.4. Zestawienie wyników parametrów jakościowych klasy RT na łączach na zadanej drodze

Łącze	IPDT _{max} [s]	IPDT _{min} [s]	IPDV _{max} [s]
RB1_RR1	1.194 6 7e-04	6.4 06	1.130 6 7 e-04
RR1_RR2	1.194 8 67e-04	6. V e-06	1.13 % 67 e-04
RR2_RR3	1.194667e-04	6.4-06	1.130667 e-04
RR3_RB2	1.194667e-04	6. 49- 06	1.130 8 67 e-04

47 - 15pkt 42 x, czyli 13,5pkt/15pkt

Parametry jakościowe klasy RT na zadanej drodze:

IPLR = 3,7018 e-04
$$\checkmark$$

IPDT = 1,1796 e-03 = 1,1796 ms \checkmark
IPDV_{max} = 4,5226 e-04 = 452,26 μ s \checkmark

Tabela 2.5. Przepływności strumieni NRT obciążające dane łącze na zadanej drodze.

Łącze	Przepływności dla strumienia	Sumaryczna	Przepływności	Sumaryczna
	klasy RT [Mb/s]	przepływność	dla strumienia	przepływność
		strumienia	klasy NRT	dla strumienia
		klasy RT	[Mb/s]	klasy NRT
		[Mb/s]		[Mb/s]
	—	,		,
RB5_RR1	C51 - C54 + C15 + C45	4.36 🗸	C54	83. % 8
	./			
RR1_RB4	C14 + C84 + C41 + C45	3.76	C 54	83 \ 68

Tabela 2.6. Natężenia ruchu oferowane na łącza na zadanej drodze.

Łącze	Natężenie ruchu A ^{RT} klasy RT oferowane na łącze	Natężenie ruchu A ^{NRT} klasy NRT oferowane na łącze
RB5_RR1	V 0.02906667	0.5765449
RR1_RB4	0.0250667	0.5741794

Tabela 2.7. Zestawienie wyników parametrów jakościowych klasy NRT na łączach na zadanej drodze

Łącze	IPLR	$E(T_{ocz})[s]$	$E(T_{nad})[s]$	$E(T_{prop})[s]$	IPDT [s]
RB5_RR1	9.40 X e-09	Y ,19 e-4	8,7466 e-05	9 ,5 e-04	4,565547 e-04
RR1_RB4	8.29 37 e-09	1 ,18 e-4	8,7466 e-05	√2 e-04	4,054073 e-04

Tabela 2.8. Zestawienie wyników parametrów jakościowych klasy NRT na łączach na zadanej drodze

Łącze	IPDT _{max} [s]	IPDT _{min} [s]	IPDV _{max} [s]
RB5_RR1	2,8 <mark>8</mark> 2725 e-03	8,74666 / e-05	2,795258 🗸 03
RR1_RB4	2 x 70897 e-03	8,746 66 7 e-05	2,783430 03

Parametry jakościowe klasy NRT na zadanej drodze:

15pkt/15pkt

IPLR = 1,7701 e-08
IPDT = 8,6196 e-04 = 861,96
$$\mu$$
s
IPDV_{max} = 5,5786 e-03 = 5,5786 ms \checkmark

Wnioski i uwagi:

5pkt/5pkt

Wykazano, że klasa NRT, przeznaczona do transmisji danych ma znacznie niższy współczynnik IPLR. Oznacza to, że ma znacznie mniejsze prawdopodobieństwo straty, czego właśnie oczekuje się od klasy przeznaczonej do transferu danych. Najprawdopodobniej tak korzystny wynik jest zapewniony poprzez dłuższe od klasy RT bufory.

Obie klasy wykazały bardzo podobny czas opóźnienia pakietów, nie mniej jednak trzeba przyznać, że klasa RT ma nieco większe opóźnienia od klasy NRT, co było małym zaskoczeniem.

Zmienność opóźnienia klasa RT miała dwa razy mniejszą od klasy NRT, co potwierdza oczekiwania, gdyż usługi czasu rzeczywistego potrzebują stabilnego pod względem opóźnień połączenia.

Badany przypadek jest dosyć optymistyczny, gdyż obie klasy spełniają klasę 0 QoS.

Jakość usług QoS Tabela 1. Wytyczne dla klas IP QoS [1] 0 1 3 5 2 4 IPTD Opóźnienie pakietu [ms] 400 100 400 1000 U IPDV Zmienność opóźnienia [ms] 50 U U Ü **IPLR** Współczynnik strat 10-3 10-3 U 10-3 10-3 **IPER** Współczynnik błędnych pakietów 10-4 10-4 10-4 10-4 10-4 Ü