Отчёт по лабораторной работе №6

лабораторная работа №6

Ле Тиен Винь

Содержание

Цель работы	. 1
Выполнение лабораторной работы	
Задание	. 1
1. Введение теоремы	.2
2. Построии график распространения рекламы, математическая модель которой описывается следующим уравнением:	
2.1. dndt = 0.65 + 0.0002 tntN - nt	.2
$2.2. dndt = 0.0003 + 0.9tntN - nt \dots$.3
2.3.dndt = 0.1 * sin2 * t + 0.2 * cos3 * ttntN - nt	.4
IV. Вывол	. 5

Цель работы

Изучаем модель боевых действий и построим графики изменения численности войск армии X и армии У для каждого случая

Выполнение лабораторной работы

Формула для выбора варианта: (1032215241%70)+1 = 2 вариант.

Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.65 + 0.0002(t)n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.0003 + 0.9(t)n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.1 * sin(2 * t) + 0.2 * cos(3 * t)(t)n(t))(N - n(t))$$

При этом объем аудитории N=1000, в начальный момент о товаре знает 2 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

III. Выполнение задания

1. Введение теоремы

Модель рекламной кампании имеет вид:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

где,

- $\frac{dn}{dt}$ скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить.
- t время, прошедшее с начала рекламной кампании.
- n(t) число уже информированных клиентов.
- N общее число потенциальных платежеспособных покупателей.
- $\alpha_1(t) > 0$ характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).
- $\alpha_2(t)$ функция, описывающая сарафанное радио

2. Построии график распространения рекламы, математическая модель которой описывается следующим уравнением:

2.1.
$$\frac{dn}{dt} = (0.65 + 0.0002(t)n(t))(N - n(t))$$

Введём в Scilab:

• Начальные условия, соответствующие заданию:

```
t0=0; //начальный момент времени x0=2; // количество людей, знающих о товаре в момент t0 N=1000; // максимальное количество людей, которых может заинтересовать товар t=0:0.1:30; // временной промежуток
```

• Функция, отвечающая за платную рекламу и функция, описывающая сарафанное радио:

```
// Функция, отвечающая за платную рекламу function g=k(t); g=0.65; endfunction // Функция, описывающая сарафанное радио: function v=p(t);
```

```
v=0.0002;
endfunction
```

• Уравнение, описывающее распространение рекламы:

```
function dx=f(t,x);
dx=(k(t)+p(t)*x)*(N-x);
endfunction
```

• Решение и график решения:

```
x=ode(x0,t0,t,f);
plot(t,x);
```

После этого, мы получим результат:

В этом случае, мы введём начальные условия, соответствующие заданию, задаём временной промежуток от 0 до 3, чтобы видеть график видно. Затем введём функцию, отвечающую за платную рекламу и функцию, описывающую сарафанное радио. Введём уравнение, описывающее распространение рекламы и решение уравнения.

После этого, мы получим результат:

В результате указывается в момент t=0.1 скорость распространения рекламы будет иметь максимальное значение.

2.3.
$$\frac{dn}{dt} = (0.1 * sin(2 * t) + 0.2 * cos(3 * t)(t)n(t))(N - n(t))$$

Мы задаём временной промежуток от 0 до 3, и остальные введём как в части 2.1 и 2.2. Мы получим результат:

IV. Вывод

После лабораторной работе я познакомился с моделью рекламной компании и получил навыки по построению график этой модели.