Unit 2 Atomic Structure SG

Atomic Models Scientists

- Dalton
 - Based atomic theory on law of definite & multiple proportions (same proportions of mass)
 - E.g. H2O always consists of hydrogen & oxygen in 1:8 ratio
 - Five points of his atomic theory
 - All matter is composed of atoms
 - Dalton said that atoms are also indivisible and indestructible
 - FALSE. Can be divided into proton, neutron, electron in nuclear reaction
 - Atoms of a given element are identical
 - FALSE, as isotopes exist
 - Atoms of different elements are different
 - Atoms combine in simple whole-number ratios to form compounds
 - Atoms are rearranged in chemical reactions, not created/destroyed
- Thomson
 - He discovered the **electron** in the plum pudding model
 - Plum pudding model: atoms made up of + charged "soup" with embedded electrons like "plums."
- Rutherford
 - Gold foil experiment, found that atoms had small dense + charged nucleus
 - Atom mostly empty space except <u>nucleus</u>, almost all mass in the nucleus and all the (+) charges are in it
 - o Do not draw multiple protons/neutrons in the center though. Do not draw orbits either.

Those were not found at his time.

- Bohr
 - Bohr model: proposed that electrons orbit the nucleus in <u>specific energy levels</u> or shells at set distances. Electrons can jump between these levels by absorbing or emitting energy in discrete amounts (quanta)

Close to nucleus = ground state

Periodic Table Basics Notes

- Mendeleyev's Periodic Table of the Elements
 - Organized elements by mass and properties
 - Things that he did that others did not:
 - Left space blank for elements whose properties did not match in between two known elements
 - estimated the atomic masses and properties of the unknown elements based on the trends observed in neighboring elements
 - made accurate predictions of previously unknown elements
- Element Symbols
 - Atomic #: # of protons
 - Chemical symbol: 1-2 letter code for name
 - First letter = uppercase, second (if exists) = lowercase

- Atomic mass: average mass of one atom
- Parts of the Periodic Table: Sections

- 0
- Main group elements
- Transition metals
- Lanthanides & Actinides (inner transition metals)
- Elements in the same **group/family** (column!) have the same **PROPERTIES**
- Elements in the same **period** (row!) have similar *ELECTRON STRUCTURES*

- Elements are ordered in the current periodic table according to the total # of protons / increasing atomic number, rather than by mass
- The atomic number of an atom determines which element it is
 - Atoms are made up for protons, electron, and neutrons
 - Elements are a pure substance that only have one type of atom
 - Types of atoms that have the same atomic # / number of protons
- Periodic table numbering

- O © 2021 PathwaysToChemistry.com Dr. Anne O'Connor
- o Groups numbered 1, 2, ... 18. Can also be done 1A, 2A, 3A, ..., 8A
- o Periods numbered 1-7.
- Periodic Table families

0

Alkali metals, alkaline earth metals, transition metals, chalcogens, halogens, noble gasses, lanthanides & actinides

• Metals, Nonmetals, and Metalloids

- Most elements exist as metals
- Properties on the Periodic Table

0

- @ room temp (25 deg C), most elements are solids, some elements are gasses, and a few elements are liquids
- Reactivity

0

0

- Francium = most reactive on left side, fluorine most reactive on right side
- Noble gasses are very unreactive

Subatomic Particles Notes

Definitions

- Atom = smallest unit of an element that retains the chemical properties of that element
- Isotope = atoms of same element, but different masses (same # of protons, but different # of neutrons)
- Ion = atoms of the same element with an overall net charge (same # of protons, different # of electrons)
 - Cations positively charged ion, anion = negatively charged ion
 - Atoms are neutral by definition, but ions have charge
- Molecule = a group of atoms covalently bonded together
 - An example = sugar
 - Salts = ionically bonded, so it is **NOT** a molecule
- The Subatomic Particles

 \overline{C}

particle	symbol	location	charge	relative mass (amu)
proton	p^+	nucleus	+1	1 amu (1.67*10^-24 g)
neutron	n^0	nucleus	0	1 amu (1.67*10^-24 g)
electron	e^-	Electron cloud	-1	0 amu (9.11*10^-28 g)

- Electrons have *negligible mass* compared to the mass of the nucleus
- Atomic number # of protons, sets the identity of the element
- Mass number # of protons + # of neutrons (always a whole #)
 - NOT the same as atomic mass
 - NOT on the periodic table
- Atomic/Nuclide symbol

- •
- X = element symbol (identified by the # of protons)
- Z = atomic number (# of protons)
- a = mass number (# of protons + # of neutrons)
- b = charge (# protons # electrons)
- o Isotope name: [element name]-[mass number] + (ion, if necessary)
 - E.g. magnesium-24 ion, carbon-14, etc.

$$^{23}_{11}Na^{1+}$$

- Example:
 - Atomic # / proton # = 11, mass # = 23, hence # of neutrons = 23 11 = 12. The charge is
 1+ so there are a total of 11-1=10 electrons. Name = sodium-23 ion.

Mass Spectroscopy (not on the test)

Model 1 - Sorting by Mass

•

- o Ionization: electrons knocked off sample particles to form +1 ions.
- Acceleration: lons move through a series of charged plates to form a narrow beam of high speed particles with equal KE
- Deflection: Ions attracted to the negative side of an EM field causing separation of the mixture based on mass and charge.
- Detection: ions collide with a metal plate and electrons transfer from metal to ion
- When injecting a sample into mass spectrometer the atoms/molecules turn into + ions
 - + ions because they are deflected by the + side in deflection, and in ionization they are attracted to the (-) plate
- mixture becomes deflected because mixture is separated based on mass and charge
 - Lighter ions are deflected more

Average Atomic Mass

(0.7899)(23.9850 amu) + (0.1000)(24.9858 amu) + (0.1101)(25.9826 amu) =

- Use a weighted average
 - o for example, if there is 78.99% abundance of 23.9850 amu isotope, you do 0.7899*23.9850.
 - Final answer = 4 s.f., because 0.7899 = least # of sig figs (4)
 - o If multiplication AND addition (e.g. 0.04*1.000+0.05*1.200 = round final ans to 2 sig figs because 0.04 has the least # of sig figs (2)).
 - If you round using s.f. every step you will still get full credit. Review sig figs!!!
- An isotope with a higher weighting towards it (e.g. 80% vs 20% for the other isotope), will be the more abundant naturally occurring isotope on Earth

Nuclear Reactions and Decay

- Forces Inside the Nucleus
 - Force pushing nucleus apart = proton-proton electrostatic repulsion
 - Force holding nucleus together = strong nuclear force (attracts all protons and neutrons / nucleons together)
 - Neutrons: the glue that holds the nucleus together
 - Experience no repulsions but experience the strong nuclear force
 - In a large neutron, the strong nuclear force works across neighbors. EM repulsion can
 work across any distance, even large ones, but strong nuclear force cannot. Hence, we
 cannot have a nucleus that is too big.
- What is a nuclear reaction
 - Involves changes in the # of protons and neutrons inside an atom's nucleus
 - Change in # of proton -> new element, change in # of neutron -> new isotope
 - Large amounts of energy released, often in the form of heat
- Nuclear vs chemical reactions
 - Chemical reactions generally only involve the electrons, not the nucleus
- What happens when an isotope is unstable
 - You have radioactive decay that is **spontaneous**, meaning occurring by itself
 - It is also constant/always happening
 - Isotope is unstable when it has the wrong ratio of protons:neutrons, or if it is just too big
 - Radioisotopes try to get a more stable state through radioactive decay.
 - o All elements past bismuth (atomic number 83) are radioactive. No stable isotopes exist
- Types of Radioactive Decay
 - Alpha Particle/Decay

$$_{2}^{4}\text{He}$$
 or $_{2}^{4}\alpha$

- Combination of 2 protons, 2 neutrons
 - o A helium ion
- Only very large nuclei undergo alpha decay
- It changes the nucleus by decreasing mass # by 4, atomic # by 2, thereby changing the identity of the element
- Alpha particles have LOW penetrating power (can be stopped by clothing/paper)
- Beta Particle/Decay

- Beta particle ejected from nucleus when the nucleus had too many neutrons relative to protons
- Neutrons turn into a proton (adds one proton to the nucleus) and an electron (ejected @ a high speed, called a beta particle)

- Causes the atomic # to go up by 1 (as you add one proton), and the mass # does not change as neutron -> proton + electron, as lessened by 1 neutron is countered by the addition of 1 proton
 - electron has negligible mass and neutron and proton have almost the same mass, hence atomic mass also does not change that much
- MODERATE penetrating power
- Gamma Particle/Decay

- Occurs AFTER a nucleus undergoes alpha/beta decay
- Nucleus with excess energy decays into atom with lesser energy
 - emits the excess energy in the form of gamma rays
 - Gamma rays are high energy photons
 - Pure energy, no charge, no mass
 - Particles of EM radiation
- Does not change the atomic #, mass #, or the identity of the element
- Has a HIGH penetrating power
- In a nuclear reaction...
 - Sum of mass number of ALL reactants = Sum of mass number of ALL products
 - Sum of atomic number of ALL reactants = Sum of atomic number of ALL products
- Nuclear Reactions
 - Fission
 - Starts when an unstable nucleus is hit by a neutron at high speed, and then the large, unstable nucleus splits into smaller, lighter nuclei and releases a lot of energy, often in the form of heat
 - Neutron, high speed + Large atom -> smaller atoms + electrons + energy
 - Triggers a chain reaction, as released neutrons from one fission event can go on to hit other nuclei which causes them to also undergo fission
 - Used for controlled chain reaction such as in nuclear power plants
 - Also used for uncontrolled chain reactions, such as the nuclear bomb, which releases as much energy as quickly as possible
 - Fusion
 - Combines small nuclei to form a larger nuclei
 - Releases massive amounts of energy, but also requires very high temp/pressure
 - 2 smaller atoms -> larger atom + energy
 - Fusion occurs in stars like the sun, in hydrogen bombs, and theorized for future nuclear power plants to be more efficient than fission

Half-Life

• Half-life = the amount of time it takes for half of the radioactive nuclei in a given sample of an isotope to decay into its products