Noise Produced by Turbulent Flow Into a Rotor:

Users Manual for Atmospheric Turbulence Prediction and Mean Flow and Turbulence Contraction Prediction

J. C. Simonich and B. Caplin

United Technologies Research Center East Hartford, CT

Contract NAS1-17763

June 1989

Langley Research Center Hampton, Virginia 23665-5225 FOR ATMOSPHERIC TURBULENCE PREDICTION A MEAN FLOW AND TURBULENCE CONTRACTION PREDICTION Final Report (In: tod

Unclas 1 0231743

84-2415

Table of Contents

Rotor Mean Flow Programs

	Subroutine	ROTMAN	1
	Subroutine	ROTDE	9
	Subroutine	ROTFNE1	0
	Subroutine	ROTFNK1	.1
	Subroutine	ROTIND1	.2
	Subroutine	ROTODE1	. 4
	Subroutine	ROTOUT1	7
	Subroutine	ROTSTP1	9
	Subroutine	ROTTRP2	!2
	Subroutine	ROTVEL2	:3
	Subroutine	ROTVIN	:7
·			
tmosph	eric Turbul	ence Properties Programs	
	Subroutine	ABL2	:9
	Subroutine	ABLFNT	32
	Subroutine	ABLFST	}3
	Subroutine	ABLFUN	34
	Subroutine	ABLNTL	35
	Subroutine	ABLSTA	37
	Subroutine	ABLUNS	39

ROUTINE - ROTMAN

PURPOSE - THIS PROGRAM COMPUTES STREAMLINES, TIME LINES AND TURBULENCE DEFORMATION TENSORS FOR THE FLOW THROUGH A HELICOPTER ROTOR MOVING IN THE ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

NOTE: EITHER METERS OR FEET CAN BE USED FOR INPUT AS LONG AS THE USER IS CONSISTENT THROUGHOUT THE INPUTS.

USER PARAMETERS

TITLE

NSS

NISO

ISTR, ITIME

XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX

ALPHA, VO, MU , OMR,

VINF

RERROR, AERROR, DS

RECPOL

NT NR,

OR NX, NY, NZ

OR X1, X2, Y1, Y2, Z1, **Z2** R2

ΙH

NAME	TYPE	DESCRIPTION
TITLE	ALPHA	60 ALPHA ALPHANUMERIC TITLE
NSS	Ī	RELATIVE TIME STEP RESOLUTION
NISO	Ī	NUMBER OF STREAMLINES TO COMPUTE
ISTR	Ī	FLAG FOR OUTPUTING A STREAMLINE FILE
	_	FOR PLOTTING
		O FOR NO OUTPUT FILE
		1 FOR STREAMLINE FILE
ITIME	Ī	FLAG FOR OUTPUTING A DEFORMATION TENSOR FILE
	_	O FOR NO OUTPUT FILE
		1 FOR DEFORMATION TENSOR FILE
		(NOTE: EITHER ISTR OR ITIME CAN BE 1 BUT
		NOT BOTH AT THE SAME TIME)
XMIN	RD	STREAMLINE DOMAIN LIMIT (PROGRAM WILL
		STOP IF IT ATTEMPTS TO COMPUTE OUTSIDE
		OF THIS DOMAIN)
XAMX	RD	STREAMLINE DOMAIN LIMIT
YMIN	RD	STREAMLINE DOMAIN LIMIT
XMMX	RD	STREAMLINE DOMAIN LIMIT
ZMIN	RD	STREAMLINE DOMAIN LIMIT
ZMAX	RD	STREAMLINE DOMAIN LIMIT
MU	RD	ROTOR ADVANCE RATIO
OMR	RD	ROTOR TIP SPEED (ROTATIONAL FREQUENCY
		TIMES RADIUS)
ALPHA	RD	ROTOR TIP PATH PLANE ANGLE OF ATTACK
Vo	RD	INDUCED VELOCITY AT THE ROTOR
R	RD	ROTOR RADIUS
VINF	RD	V COMPONENT VELOCITY TO BE ADDED TO

*			HOVER CASE TO SIMULATE VERTICAL ASCENT
*			OR DESCENT
*	RERROR	RD	RELATIVE ERROR ALLOWED IN ODE SOLVER
*	AERROR	RD	ABSOLUTE ERROR ALLOWED IN ODE SOLVER
*	. DS	RD	DELTA DISTANCE BETWEEN STREAMLINES USED TO COMPUTE THE DEFORMATION TENSOR, IN
*			RADIUS UNITS
*	RECPOL	ALPHA	COORDINATE SPECIFICATION TRIGGER
*	RECPUL	ALPHA	'P' FOR POLAR SPECIFICATION OF
±			STREAMLINE STARTING COORDINATES
*	•	•	'C' FOR CARTESIAN SPECIFICATION OF
*	•		STREAMLINE STARTING COORDINATES
*	NX	I	NUMBER OF X COORDINATE SPECIFICATION
*			POINTS
*	NY	I	NUMBER OF Y COORDINATE SPECIFICATION
*	NG.	I	POINTS NUMBER OF Z COORDINATE SPECIFICATION
* *	NZ	1	POINTS
- k ·	X 1	RD	MINIMUM X VALUE FOR CARTESIAN
	A.L	ND	SPECIFICATION
* ·	X2	RD	MAXIMUM X VALUE FOR CARTESIAN
*			SPECIFICATION
*	Yl	RD	MINIMUM Y VALUE FOR CARTESIAN
* '			SPECIFICATION
k	¥2	RD	MAXIMUM Y VALUE FOR CARTESIAN
•		5.5	SPECIFICATION
•	Zl	RD	MINIMUM Z VALUE FOR CARTESIAN
-	22	RD	SPECIFICATION MAXIMUM Z VALUE FOR CARTESIAN
- *	NR	I	NUMBER OF RADIAL SPECIFICATION POINTS
k	NT	Ī	NUMBER OF ANGULAR SPECIFICATION POINTS
±	R2	RD	MAXIMUM RADIUS FOR POLAR SPECIFICATION
t	IH	I	O FOR HOMOGENOUS CASE
± .			1 FOR NONHOMOGENOUS CASE
k		•	
* O	UTPUT		
R ▲	DAMA MEMBE	B BAMMAR/	DAMAMIL TO MINT - 1
*	TITLE	n noinur(ROTOT1) IF TIME = 1
*	NR,NT,IH		
±	R2,ALPHA	R	
*	STRENG	,	
*	TSAV, ZZP	(1),ZZP(2), ZZP(3), XTSAV, YTSAV, ZTSAV
±			L2,YSL2,ZSL2
*	USAV, VSA	V,WSAV	1
*	X1A1,X2A		FOR FIRST
*	X1A2, X2A	•	STREAMLINE
*	X1A3,X2A		 > PPD (3) VMC/U VMC/U PMC/U I
* •	•), ZZP(3), XTSAV, YTSAV, ZTSAV
# *	USAV, VSA		L2,YSL2,ZSL2
 •	XIAI,X2A	•	FOR SECOND
±	X1A2, X2A	,	STREAMLINE
*	X1A3, X2A		
+	•		·

*	NAME	TYPE	DESCRIPTION
*			
*	TITLE	ALPHA	60 CHARACTER ALPHANUMERIC TITLE
*	NR	Ī	NUMBER OF RADIAL SPECIFICATION POINTS
*	NT	I	NUMBER OF ANGULAR SPECIFICATION POINTS
*	IH	I	O FOR HOMOGENOUS CASE
±			1 FOR NONHOMOGENOUS CASE
*	R2	RD	MAXIMUM RADIUS FOR POLOR SPECIFICATION
*	ALPHA	RD	SEE USER PARAMETER INPUT
*	R	RD	SEE USER PARAMETER INPUT
*	STRENG	RD	VORTEX CIRCULATION STRENGTH
*	TSAV	RD	STREAMLINE DRIFT TIME
*	ZZP(1)	RD	U VELOCITY COMPONENT IN RADII/SEC
*	ZZP(2)	RD	V VELOCITY COMPONENT IN RADII/SEC
*	ZZP(3)	RD	W VELOCITY COMPONENT IN RADII/SEC
±	XTSAV	RD	DOWNSTREAM X COORDINATE OF STREAMLINE IN
*			ROTOR PLANE
*	YTSAV	RD	DOWNSTREAM Y COORDINATE OF STREAMLINE IN
±			ROTOR PLANE
*	ZTSAV	RD	DOWNSTREAM Z COORDINATE OF STREAMLINE IN
*			ROTOR PLANE
*	XSLl	RD	DOWNSTREAM X COORDINATE OF STREAMLINE IN
*			STANDARD COORDINATE SYSTEM
*	YSLl	RD	DOWNSTREAM Y COORDINATE OF STREAMLINE IN
*			STANDARD COORDINATE SYSTEM
*	ZSLl	RD	DOWNSTREAM Z COORDINATE OF STREAMLINE IN
*			STANDARD COORDINATE SYSTEM
*	XSL2	RD	UPSTREAM X COORDINATE OF STREAMLINE IN
•			STANDARD COORDINATE SYSTEM
*	YSL2	RD	UPSTREAM Y COORDINATE OF STREAMLINE IN
±			STANDARD COORDINATE SYSTEM
*	ZSL2	RD	UPSTREAM Z COORDINATE OF STREAMLINE IN
•	2041		STANDARD COORDINATE SYSTEM
*	USAV	RD	UPSTREAM U VELOCITY COMPONENT IN
*			RADII/SEC
*	VSAV	RD	UPSTREAM V VELOCITY COMPONENT IN
*			RADII/SEC
±	WSAV	RD	UPSTREAM W VELOCITY COMPONENT IN
*	14 PO 17 4		RADII/SEC
•	X1A1, ETC	Rħ	DEFORMATION TENSOR
*	AINI, EIC		was dubinis and sameding
•			

DATA MEMBER ROTNOP(ROTOT2) IF ISTR = 1

TITLE

NISO, NSS

XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX

XPLOT1, YPLOT1, ZPLOT1

XPLOT2, YPLOT2, ZPLOT2

XPLOT3, YPLOT3, ZPLOT3

	NAME	TYPE	DESCRIPTION
	TITLE	ALPHA	60 CHARACTER ALPHANUMERIC TITLE
	NISO	I	NUMBER OF STREAMLINES TO COMPUTE
	NSS	I	RELATIVE TIME STEP RESOLUTION
	XMIN	RD	STREAMLINE DOMAIN LIMIT
	XMAX	RD	STREAMLINE DOMAIN LIMIT
	YMIN	RD	STREAMLINE DOMAIN LIMIT
	YMAX	RD	STREAMLINE DOMAIN LIMIT
٠	ZMIN	RD	STREAMLINE DOMAIN LIMIT
	XPLOT	RD	X STREAMLINE COORDINATE (RADII)
	YPLOT	RD	Y STREAMLINE COORDINATE (RADII)
	ZPLOT	RD	Z STREAMLINE COORDINATE (RADII)
			•

LOCAL VARIABLES

		TYPE	
	ABSERR		ABSOLUTE ERROR ALLOWED IN ODE SOLVER (CHANGED BY ODE)
	COSA	RD	COSINE OF ALPHA
	COSNA	RD	COSINE OF NEGATIVE ALPHA
	DR	RD	STEP SIZE FOR RADIUS
	D T	RD	STEP SIZE IN TIME FOR EACH INTEGRATION
			ALONG THE STREAMLINE
	DTHETA	RD	STEP SIZE FOR POLAR ANGLE
	DX		SIZE OF THE STEP IN THE X DIRECTION
	DY		SIZE OF THE STEP IN THE Y DIRECTION
	DZ	RD	SIZE OF THE STEP IN THE Z DIRECTION
	Ī	I .	DO LOOP COUNTER
	IARRAY	I	STORAGE AREA FOR INTEGER VARIABLES BEING
			READ IN FROM DATA MEMBER
	IDIR	I	DIRECTION FOR STREAMLINE CALCULATION
			1 FOR FORWARD IN TIME
			-1 FOR BACKWARD IN TIME
	IFLAG	I	ERROR FLAG FROM ROUTINE ODE
	IFMT	I	INDICATOR OF DATA MEMBER RECORD FORMAT
	INFILE	NAME	INPUT FILE NAME
	IPASS	Ţ	COUNTER FOR STREAMLINE CALCULATION PASSES
	ITYPE	Ī	DATA TYPE CODE FOR USER PARAMETER
	IWORK	I	INTEGER WORK ARRAY FOR SUBROUTINE ODE
	J	Ī	DO LOOP COUNTER
	K	I	DO LOOP COUNTER
	L	I	NUMBER OF POINTS IN DEFORMATION TENSOR
	MEXIST	I	INDICATOR IF DATA MEMBER EXISTS
		I	
	NEL	I	NUMBER OF ARRAY ELEMENTS
	NEQN	Ī	NUMBER OF SIMULTANEOUS EQUATIONS TO BE
			SOLVED BY SUBROUTINE ODE (3 STREAMLINE
			EQUATIONS)
	NERROR	I	ERROR COUNTER FOR CALLS TO ODE
•	PI	RD	3.14159
	RAD	RD	RADIUS OF A POINT ON THE ROTOR DISK
	RARRAY		STORAGE AREA FOR REAL VARIABLES, BEING
			READ IN FROM DATA MEMBER

		F. F.	per artin perop ittoung th app sature
*	RELERA	RD	RELATIVE ERROR ALLOWED IN ODE SOLVER
*			(CHANGED BY ODE)
*	ROTOT1	RD	ARRAY CONTAINING DATA MEMBER NAME ROTNOP(ROTOT1)
*	ROTOT2	RD	ARRAY CONTAINING DATA MEMBER NAME ROTNOP(ROTOT2)
*	SINA	RD	SINE OF ALPHA
*	SINNA	RD	SINE OF NEGATIVE ALPHA
*	STIME	RD	STREAMLINE DRIFT TIME
±	T	RD	CURRENT TIME IN CALLS TO THE ODE SOLVER
*	THETA	RD	POLAR ANGLE OF A POINT ON THE ROTOR DISK
*	TOUT	RD	ENDING TIME FOR CURRENT TIME STEP
t		N.D	INTEGRATION
*	TT	RD	DUMMY VARIABLE (TIME) - NOT USED IN THIS
*	1.1	N D	ROUTINE BUT REQUIRED FOR COMPATIBILITY
			WITH SUBROUTINE ODE
*		D.D.	
*	UINF	RD	HORIZONTAL COMPONENT OF FREESTREAM VELOCITY
*	UOUT	RD	X COMPONENT OF VELOCITY
*	VOUT	RD	Y COMPONENT OF VELOCITY
*	WORK	RD	REAL WORK ARRAY FOR SUBROUTINE ODE
*	WOUT	RD	Z COMPONENT OF VELOCITY
*	X	RD	CURRENT X COORDINATE OF STREAMLINE
*			POINT IN NORMAL CARTESIAN COORDINATES
*	XI	RD	ANGLE OF THE ROTOR WAKE FROM THE
*			VERTICAL DIRECTION
*	XSL	RD	X COORDINATE OF STARTING STREAMLINE AT
*			ROTOR DISK
*	ХT	RD	X COORDINATE OF THE CURRENT POINT IN
*	**		THE 'TILTED' COORDINATE SYSTEM
•	Y	RD	CURRENT Y COORDINATE OF STREAMLINE
	I	K D	POINT IN NORMAL CARTESIAN COORDINATES
*	YSL	RD	Y COORDINATE OF STARTING STREAMLINE AT
*	120	עא	
	1100	2.0	ROTOR DISK
*	YT	RD	Y COORDINATE OF THE CURRENT POINT IN
*	_		THE 'TILTED' COORDINATE SYSTEM
•	Z	RD	CURRENT Z COORDINATE OF STREAMLINE
*			POINT IN NORMAL CARTESIAN COORDINATES
*	ZSL	RD	Z COORDINATE OF STARTING STREAMLINE AT
* -			ROTOR DISK
*	ZT	RD	Z COORDINATE OF THE CURRENT POINT IN
*			THE 'TILTED' COORDINATE SYSTEM
*	22	RD	ARRAY OF LENGTH 3 CONTAINING CURRENT
*			STREAMLINE POSITION COMPONENTS X,Y,Z
*			
* (COMMON BLOC	KS	
*	/ROTCA/		
±		NF, VINF. X	I,R,ALPHA,PI,IDIR - described above
*	= , -	- , , ···	, , ,
*	/ROTCB/		
*	•	- יי יווחע	described above
*	0001,1001	, 4001, 1	actorized above
*	/ROTCC/		
*		COCHA CT	What doggardhad about
	CUSA, SINA	,CUSNA,SI	NNA - described above

FUNCTIONS

- 1. NONDIMENSIONALIZES ALL LENGTH UNITS BY DIAMETER
- 2. SETS UP SPECIFICATION OF STREAMLINE STARTING POINTS ON

ROTOR DISK

- 3. CALLS ROTIND TO CALCULATE VORTEX STRENGTH
- 4. OPENS DISK FILES TO SAVE STREAMLINE COORDINATES AND DISTORTION TENSORS
- 5. CALULATES VELOCITIES AND DISTORTION TENSORS

SUBPROGRAMS CALLED

ROTIND, ROTVEL, ROTODE, XSTORE, XFETCH, MMPUTR, MMCLOS, MMOPWD, XASKP, XGETP

CALLING SUBPROGRAMS
ANOP EXECUTIVE

ERRORS

NON-FATAL

- 1. CAN'T FIND VARIABLE IN USER PARAMETER TABLE
- 2. STIFF MATRIX RETURN FROM ROTODE
- 3. ERROR FROM MEMBER MANAGER

FATAL

NONE

ENTRY

CONVERT ANGLES FROM DEGREES TO RADIANS
COMPUTE TRANSFORMATION PARAMETERS
NONDIMENSIONALIZE LENGTH UNITS BY DIAMETER
COMPUTE UINF AND XI FROM INPUT
COMPUTE TIME STEP SIZE FOR STREAMLINE INTEGRATION
IF RECPOL .EQ. C

THEN

COMPUTE CARTESIAN STREAMLINE STARTING POINTS ON THE ROTOR DISK

ELSE

COMPUTE POLAR COORDINATE STREAMLINE STARTING POINTS ON THE ROTOR DISK

		•	
*		ENDIF	
*	CALL ROT	IND FOR	COMPUTE THE WAKE VORTEX STRENGTH
*		IF ISTR	.EQ. 1
*			THEN
*			OPEN A FILE TO SAVE STREAMLINE COORDINATES
*			WRITE PRELIMINARY OUTPUT PARAMETERS
*		ENDIF	
*		IF ITIME	E .EQ. 1
*			THEN
±			OPEN A FILE TO SAVE THE DISTORTION TENSORS
*			WRITE PRELIMINARY OUTPUT PARA RECPOL .EQ. C
*			THEN
*			COMPUTE CARTESIAN STREAMLINE STARTING POINTS
*			ON THE ROTOR DISK
*		ELSE	
*			COMPUTE POLAR COORDINATE STREAMLINE STARTING
*			POINTS ON THE ROTOR DISK
*		ENDIF	
*	CALL RO		COMPUTE THE WAKE VORTEX STRENGTH
•		IF ISTR	
•			THEN
•			OPEN A FILE TO SAVE STREAMLINE COORDINATES
*			WRITE PRELIMINARY OUTPUT PARAMETERS
*		ENDIF	
*		IF ITIM	E .EQ. 1
*			THEN
*			OPEN A FILE TO SAVE THE DISTORTION TENSORS
*			WRITE PRELIMINARY OUTPUT PARAMETERS
*		ENDIF	
*	CALL RO		INTEGRATE STREAMLINE TO NEXT TIME STEP
*		IF IFLAC	J.NE. 2
*			THEN
*			INCREMENT ERROR COUNTER
*		ENDIF	
*		IF NERRO	OR .GT.100
*			THEN
*		5 V D T D	STOP COMPUTATION
*		ENDIF	PREAMLINE POSITION TO DISK FILE
*			ANCE FROM ROTOR IS TOO LARGE
		IF DISIA	
*			THEN STOR COMPUTATION
*		ENDIF	STOP COMPUTATION
*			ITAMIAN SADS AUM AR ABRA AR INMRÉDEM
*		IF CALC	JLATION GOES OUT OF AREA OF INTEREST
			THEN STOP COMPUTATION
*		DWELF	STOP COMPUTATION
* *		ENDIF	15 TO COMPUTE NEXT STREAMLINE
*			TO COMPUTE NEXT STREAMLINE VT PASS COUNTER
*			
* . *			(1,601) (2,602) (3,603) (4,604) ON IPASS WRITE POSITIONS AND VELOCITIES TO DISK
*		201	SET X STREAMLINE STARTING POSITION TO
*			ORIGINAL X STREAMLINE STARTING
* *			POSITION PLUS DS
			10011100 100 00

SET Y STREAMLINE STARTING POSITION TO

	ļ	Ó.	H.	Ι(;]		A	L	1	Y	S	T	Ĥ	E	Â	M	L	I	N I	Ε	3	ï	٩	H	T	I	N	G	P	0	S	[]	'I	ON
S	E'	T	:	Z	9	1	R	E	Al	1L	I	N	E		S	T.	A	R'	r)	[]	10	3	F	0	S	I	T	I) N		T()		
		0	R	1(3]	[]	A	L	7	Z	S	T	R	E	A	M	L	I	NI	E	5	31		R	T	I	N	G	P	0	S	[]	'I	01
S	A١	V.	E	5	37	ľ	ιE	Al	MI	ΙL	N	E		D	R	I	F	ľ	7	r)	[N	1E	2											

602 SET X STREAMLINE STARTING POSITION TO
ORIGINAL X STREAMLINE STARTING POSITION
SET Y STREAMLINE STARTING POSITION TO
ORIGINAL Y STREAMLINE STARTING
POSITION PLUS DS
SET Z STREAMLINE STARTING POSITION TO
ORIGINAL Z STREAMLINE STARTING POSITION
COMPUTE DEFORMATION TENSOR FROM STREAMLINE
DISPLACEMENT

603 SET X STREAMLINE STARTING POSITION TO ORIGINAL X STREAMLINE STARTING POSITION SET Y STREAMLINE STARTING POSITION TO ORIGINAL Y STREAMLINE STARTING POSITION TO ORIGINAL Z STREAMLINE STARTING POSITION PLUS DS COMPUTE DEFORMATION TENSOR FROM STREAMLINE DISPLACEMENT

604 COMPUTE DEFORMATION TENSOR FROM STREAMLINE DISPLACEMENT

5 ENDCASE

ENDDO EXIT

ROUTINE - ROTDE

PURPOSE - NOTDE MERELY ALLOCATES STORAGE FOR ROTODE TO RELIEVE THE USER OF THE INCONVENIENCE OF A LONG CALL LIST. CONSEQUENTLY ROTDE IS USED AS DESCRIBED IN THE COMMENTS FOR ROTODE.

AUTHOR - L.F. SHAMPINE AND M.K. GORDON

THIS CODE IS COMPLETELY EXPLAINED AND DOCUMENTED IN THE TEXT, COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

VARIABLES

Name	Type	Description
NEON	· · · · · · · · · · · · · · · · · · ·	No. of simultaneous eqns.
Y	RD	Soln. vector
T.	RD	Independent variable
TOUT	RD	point at which soln. is desired
RELERR	RD	relative error criterion
ABSERR	RD	absolute error criterion
IFLAG	I	Integration status flag

SUBPROGRAMS CALLED ROTVEL, ROTTRP, ROTSTP

CALLING SUBPROGRAM ROTODE

ROUTINE - ROTFNE

PURPOSE - RETURNS THE VALUE OF THE ELLIPTIC INTEGRAL OF THE SECOND KIND

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
X	RS	ARGUMENT OF ELLIPTIC INTEGRAL

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION	
ROTFNE	 RS	ELLIPTIC INTEGRAL OF THE 2ND KIND	

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
A	RS	"A" COEFICIENTS USED IN FIT TO FUNCTION
ASUM	RS	SUMMATION OF "A" TERMS
В	RS	"B" COEFICIENTS USED IN FIT TO FUNCTION
BSUM	RS	SUMMATION OF "B" TERMS
ХD	RS	MODIFIED ELLIPTIC INTEGRAL ARGUMENT

FUNCTIONS

1. COMPUTES MODIFIED ELIPTIC INTEGRAL OF THE 2ND KIND

SUBPROGRAMS CALLED

NONE

CALLING SUBPROGRAMS ROTVEL

ERRORS

NONE

ENTRY

COMPUTE ELLIPTIC INTEGRAL

ROUTINE - ROTFNK

PURPOSE - RETURNS THE VALUE OF THE ELLIPTIC INTEGRAL OF THE FIRST KIND

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
		ARGUMENT OF RELITPTIC INTEGRAL

OUTPUT

FUNCTION

NAME	TYPE	DESCRIPTION
ROTFNK	RS	ELLIPTIC INTEGRAL OF THE 1ST KIND

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
Α	RS	"A" COEFICIENTS USED IN FIT TO FUNCTION
ASUM	RS	SUMMATION OF "A" TERMS
B BSUM	RS RS	"B" COEFICIENTS USED IN FIT TO FUNCTION SUMMATION OF "B" TERMS
XD	RS	MODIFIED ELLIPTIC INTEGRAL ARGUMENT

FUNCTIONS

1. COMPUTES MODIFIED ELIPTIC INTEGRAL OF THE 1ST KIND

SUBPROGRAMS CALLED

NONE

CALLING SUBPROGRAMS
ROTVEL

ERRORS

NONE

ENTRY

COMPUTE ELLIPTIC INTEGRAL

ROUTINE - ROTIND

PURPOSE - THIS SUBROUTINE CALCULATES THE STRENGTH OF THE WAKE VORTICES IS REQUIRED TO MATCH THE INPUT INDUCED VELOCITY

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

nnnb 1112 5555		DESCRIPTION
V 0	RD	INDUCED VELOCITY

COMMON BLOCK ROTCA

NAME	TYPE	DESCRIPTION
VINF	RD	VERTICAL COMPONENT VELOCITY TO BE ADDED TO HOVER CASE TO SIMULATE VERTICAL ASCENT OR DESCENT

OUTPUT

COMMON BLOCK ROTCA

NAME	TYPE	DESCRIPTION
STRENG	RD	COMBINED VORTEX CIRCULATION STRENGTH
IDIR	I	DIRECTION FOR STREAMLINE CALCULATION
		1 FOR FORWARD IN TIME
		-1 BACKWARD IN TIME

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
ALPHA	RD	ROTOR TIP PATH PLANE ANGLE OF ATTACK
IDIR	I	DIRECTION FOR STREAMLINE CALCULATION
		1 FOR FORWARD IN TIME
		-1 FOR BACKWARD IN TIME
PΙ	RD	3.14159
R	RD	ROTOR RADIUS
Sl	RD.	LEFT HAND SOURCE STRENGTH FOR SECANT METHOD
\$ 2	RD	RIGHT HAND SOURCE STRENGTH FOR SECANT METHOD
SNEW	R D	NEW PREDICTION FOR SOURCE STRENGTH IN SECANT
		METHOD
UINF	RD	HORIZONTAL COMPONENT OF FREESTREAM VELOCITY
V1	RD	LEFT HAND INDUCED VELOCITY FOR SECANT METHOD
V2	RD	RIGHT HAND INDUCED VELOCITY FOR SECANT METHOD
VVINF	RD	ORIGINAL VALUE OF VERTICAL VELOCITY
ΧI	RD	ANGLE OF THE ROTOR WAKE FROM THE
		VERTICAL DERECTION

COMMON BLOCKS

/ROTCA/ STRENG, UINF, VINF, XI, R, ALPHA, PI, IDIR - as described in SUBROUTINE ROTMAN FUNCTIONS 1. CALCULATE COMBINED VORTEX CIRCULATION STRENGTH SUBPROGRAMS CALLED ROTVIN CALLING SUBPROGRAMS ROTMAN **ERRORS** NONE ENTRY SET INITIAL VORTEX STRENGTH SAVE ORIGINAL VERTICAL VELOCITY SET VERTICAL VELOCITY TO ZERO DO WHILE ABS(V2/VO) .GT. 0.001 SET STRENG TO NEW GUESS FOR S2 COMPUTE V2 BY CALLING ROTVIN COMPUTE NEW VORTEX STRENGTH BY SECANT METHOD SET OLD VALUES OF STRENGTH AND INDUCED VELOCITY TO LAST COMPUTED VALUES ENDDO RESET ORIGINAL VERTICAL VELOCITY EXIT

13

ROUTINE - ROTODE

PURPOSE - Integrate a system of first order ODE'S

AUTHOR - L.F. SHAMPINE AND M.K. GORDON

DESCRIPTION

DOUBLE PRECISION SUBROUTINE ROTODE INTEGRATES A SYSTEM OF NEQN FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM:

DY(I)/DT = F(T,Y(1),Y(2),...,Y(NEQN))

Y(I) GIVEN AT T.

THE SUBROUTINE INTEGRATES FROM T TO TOUT. ON RETURN THE PARAMETERS IN THE CALL LIST ARE SET FOR CONTINUING THE INTEGRATION. THE USER HAS ONLY TO DEFINE A NEW VALUE TOUT AND CALL ROTODE AGAIN.

THE DIFFERENTIAL EQUATIONS ARE ACTUALLY SOLVED BY A SUITE OF CODES DE , STEP , AND INTRP . ROTODE ALLOCATES VIRTUAL STORAGE IN THE ARRAYS WORK AND IWORK AND CALLS DE . DE IS A SUPERVISOR WHICH DIRECTS THE SOLUTION. IT CALLS ON THE ROUTINES STEP AND INTRP TO ADVANCE THE INTEGRATION AND TO INTERPOLATE AT OUTPUT POINTS. STEP USES A MODIFIED DIVIDED DIFFERENCE FORM OF THE ADAMS PECE FORMULAS AND LOCAL EXTRAPOLATION. IT ADJUSTS THE ORDER AND STEP SIZE TO CONTROL THE LOCAL ERROR PER UNIT STEP IN A GENERALIZED SENSE. NORMALLY EACH CALL TO STEP ADVANCES THE SOLUTION ONE STEP IN THE DIRECTION OF TOUT . FOR REASONS OF EFFICIENCY DE INTEGRATES BEYOND TOUT INTERNALLY, THOUGH NEVER BEYOND THOUT . AN OPTION IS PROVIDED TO STOP THE INTEGRATION AT TOUT BUT IT SHOULD BE USED ONLY IF IT IS IMPOSSIBLE TO CONTINUE THE INTEGRATION BEYOND TOUT .

THIS CODE IS COMPLETELY EXPLAINED AND DOCUMENTED IN THE TEXT, COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

THIS CODE WAS UPDATED BY DOUG BAXTER ON 1-14-80 TO CORRECT AN ERROR IN THE HANDLING OF IMPROPER PARAMETERS.

THE PARAMETERS REPRESENT:

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED (I Y(*) -- SOLUTION VECTOR AT T (RD (RD T -- INDEPENDENT VARIABLE TOUT -- POINT AT WHICH SOLUTION IS DESIRED (RD RELERR ABSERR -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR LOCAL ERROR TEST (RD). AT EACH STEP THE CODE REQUIRES DABS(LOCAL ERROR) .LE. DABS(Y)*RELERR + ABSERR FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS IFLAG -- INDICATES STATUS OF INTEGRATION (I WORK(*) (RD) -- ARRAYS TO HOLD INFORMATION INTERNAL TO WHICH IS NECESSARY FOR SUBSEQUENT CALLS) IWORK(*) (I

FIRST CALL TO ROTODE --

THE USER MUST PROVIDE STORAGE IN HIS CALLING PROGRAM FOR THE ARRAYS IN THE CALL LIST,

Y(NEQN), WORK(100+21*NEQN), IWORK(5),

DECLARE F IN AN EXTERNAL STATEMENT, SUPPLY THE DOUBLE PRECISION SUBROUTINE F(T,Y,YP) TO EVALUATE

DY(I)/DT = YP(I) = F(T,Y(1),Y(2),...,Y(NEQN))

AND INITIALIZE THE PARAMETERS:

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED

Y(*) -- VECTOR OF INITIAL CONDITIONS

T -- STARTING POINT OF INTEGRATION

TOUT -- POINT AT WHICH SOLUTION IS DESIRED

RELERR, ABSERR -- RELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES IFLAG -- +1,-1. INDICATOR TO INITIALIZE THE CODE. NORMAL INPUT

IS +1. THE USER SHOULD SET IFLAG=-1 ONLY IF IT IS

IMPOSSIBLE TO CONTINUE THE INTEGRATION BEYOND TOUT .

ALL PARAMETERS EXCEPT F, NEQN AND TOUT MAY BE ALTERED BY THE CODE ON OUTPUT SO MUST BE VARIABLES IN THE CALLING PROGRAM.

OUTPUT FROM ROTODE --

NEON -- UNCHANGED

Y(*) -- SOLUTION AT T

T -- LAST POINT REACHED IN INTEGRATION. NORMAL RETURN HAS

T = TOUT .

TOUT -- UNCHANGED

RELERR, ABSERR -- NORMAL RETURN HAS TOLERANCES UNCHANGED. IFLAG=3 SIGNALS TOLERANCES INCREASED

IFLAC = 2 -- NORMAL RETURN. INTEGRATION REACHED TOUT

- = 3 -- INTEGRATION DID NOT REACH TOUT BECAUSE ERROR
 TOLERANCES TOO SMALL. RELERR , ABSERR INCREASED
 APPROPRIATELY FOR CONTINUING
- = 4 -- INTEGRATION DID NOT REACH TOUT BECAUSE MORE THAN 500 STEPS NEEDED
- = 5 -- INTEGRATION DID NOT REACH TOUT BECAUSE EQUATIONS APPEAR TO BE STIFF
- = 6 -- INVALID INPUT PARAMETERS (FATAL ERROR)

THE VALUE OF IFLAG IS RETURNED NEGATIVE WHEN THE INPUT VALUE IS NEGATIVE AND THE INTEGRATION DOES NOT REACH TOUT, I.E., -3, -4, -5.

WORK(*), IWORK(*) -- INFORMATION GENERALLY OF NO INTEREST TO THE USER BUT NECESSARY FOR SUBSEQUENT CALLS.

SUBSEQUENT CALLS TO ROTODE --

SUBROUTINE ROTODE RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE THE INTEGRATION. IF THE INTEGRATION REACHED TOUT, THE USER NEED ONLY DEFINE A NEW TOUT AND CALL AGAIN. IF THE INTEGRATION DID NOT REACH TOUT AND THE USER WANTS TO CONTINUE, HE JUST CALLS AGAIN. THE OUTPUT VALUE OF IFLAG IS THE APPROPRIATE INPUT VALUE FOR SUBSEQUENT CALLS. THE ONLY SITUATION IN WHICH IT SHOULD BE ALTERED IS TO STOP THE INTEGRATION INTERNALLY AT THE NEW TOUT, I.E., CHANGE OUTPUT IFLAG=2 TO INPUT IFLAG=-2. ERROR TOLERANCES MAY BE CHANGED BY THE USER BEFORE CONTINUING. ALL OTHER PARAMETERS MUST REMAIN UNCHANGED.

ROUTINE - ROTOUT PURPOSE - READS IN DATA MEMBERS CREATED BY MODULE ROT AND PRINTS THEM TO STANDARD OUTPUT WITH PAGINATION AUTHOR - BARRY CAPLIN INPUT NAME TYPE DESCRIPTION ARGUMENTS streamline file flag =1 if streamline output was requested IS IT distortion tensor file flag =1 if dist. ten. output vas requested OUTPUT Contents of MEMBERS IO2(IO1M2) and IO2(IO2M1) written to standard output LOCAL VARIABLES DESCRIPTION NAME NAME I MM name array IHDR I IIII header array ΙÀ array for retrieval of integer records SA RS array for retrieval of RD records SUBPROGRAMS CALLED XFETCH, XSTORE, XPLAB, MMOPRD, MMREW, XPAGE, XXPLINE, MMGETR, MMCLOS CALLING SUBPROGRAM ROTMAN ERRORS NON-FATAL 1. MEMBER MANAGER ERROR Entry start: if(streamline output requested) then

```
open streamline output member
          goto read section
       elseif(tensor output requested) then
          open tensor output member
          goto read section
        else
          return
        endif
        read section:
       do until no more records
          read record from member
          write record to standard output
       continue
       set current member read flag to 'no read'
       goto start
     Exit
* * *
```

ROUTINE - ROTSTP

PURPOSE - DOUBLE PRECISION SUBROUTINE ROTSTP
INTEGRATES A SYSTEM OF FIRST ORDER ORDINARY
DIFFERENTIAL EQUATIONS ONE STEP, NORMALLY FROM X TO X+H, USING A
MODIFIED DIVIDED DIFFERENCE FORM OF THE ADAMS PECE FORMULAS. LOCAL
EXTRAPOLATION IS USED TO IMPROVE ABSOLUTE STABILITY AND ACCURACY.
THE CODE ADJUSTS ITS ORDER AND STEP SIZE TO CONTROL THE LOCAL ERROR
PER UNIT STEP IN A GENERALIZED SENSE. SPECIAL DEVICES ARE INCLUDED
TO CONTROL ROUNDOFF ERROR AND TO DETECT WHEN THE USER IS REQUESTING
TOO MUCH ACCURACY.

THIS CODE IS COMPLETELY EXPLAINED AND DOCUMENTED IN THE TEXT, COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

AUTHOR - L.F. SHAMPINE AND M.K. GORDON

```
THE PARAMETERS REPRESENT:
X -- INDEPENDENT VARIABLE
                                       (RD
 Y(*) -- SOLUTION VECTOR AT X
                                       (RD
 YP(*) -- DERIVATIVE OF SOLUTION VECTOR AT X AFTER SUCCESSFUL
                                       (RD
 NEON -- NUMBER OF EQUATIONS TO BE INTEGRATED (I
H -- APPROPRIATE STEP SIZE FOR NEXT STEP. NORMALLY DETERMINED BY
                                       (RD
 EPS -- LOCAL ERROR TOLERANCE. MUST BE VARIABLE (RD
 WT(*) -- VECTOR OF WEIGHTS FOR ERROR CRITERION
                                                  (RD
                                                         ١
 START -- LOGICAL VARIABLE SET .TRUE. FOR FIRST STEP,
                                                       .FALSE.
      OTHERWISE
                                       (LOGICAL*4)
 HOLD -- STEP SIZE USED FOR LAST SUCCESSFUL STEP (RD
 K -- APPROPRIATE ORDER FOR NEXT STEP (DETERMINED BY CODE)
 KOLD -- ORDER USED FOR LAST SUCCESSFUL STEP
 CRASH -- LOGICAL VARIABLE SET .TRUE. WHEN NO STEP CAN BE TAKEN,
      .FALSE. OTHERWISE.
THE ARRAYS PHI, PSI ARE REQUIRED FOR THE INTERPOLATION SUBROUTINE
INTRP. THE ARRAY P IS INTERNAL TO THE CODE. ALL ARE RD
INPUT TO ROTSTP
 FIRST CALL --
THE USER MUST PROVIDE STORAGE IN HIS DRIVER PROGRAM FOR ALL ARRAYS
IN THE CALL LIST, NAMELY
  DIMENSION Y(NEQN), WT(NEQN), PHI(NEQN, 16), P(NEQN), YP(NEQN), PSI(12)
THE USER MUST ALSO DECLARE START AND CRASH LOGICAL VARIABLES
AND F AN EXTERNAL SUBROUTINE, SUPPLY THE SUBROUTINE F(X,Y,YP)
TO EVALUATE
   DY(I)/DX = YP(I) = F(X,Y(I),Y(2),...,Y(NEQN))
AND INITIALIZE ONLY THE FOLLOWING PARAMETERS:
   X -- INITIAL VALUE OF THE INDEPENDENT VARIABLE
   Y(*) -- VECTOR OF INITIAL VALUES OF DEPENDENT VARIABLES
```

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED

H -- NOMINAL STEP SIZE INDICATING DIRECTION OF INTEGRATION
AND MAXIMUM SIZE OF STEP. MUST BE VARIABLE

EPS -- LOCAL ERROR TOLERANCE PER STEP. MUST BE VARIABLE

WT(*) -- VECTOR OF NON-ZERO WEIGHTS FOR ERROR CRITERION

START -- .TRUE.

ROTSTP REQUIRES THE L2 NORM OF THE VECTOR WITH COMPONENTS LOCAL ERROR(L)/WT(L) BE LESS THAN EPS FOR A SUCCESSFUL STEP. THE ARRAY WT ALLOWS THE USER TO SPECIFY AN ERROR TEST APPROPRIATE FOR HIS PROBLEM. FOR EXAMPLE,

HT(L) = 1.0 SPECIFIES ABSOLUTE ERROR,

- = DABS(Y(L)) ERROR RELATIVE TO THE MOST RECENT VALUE OF THE L-TH COMPONENT OF THE SOLUTION.
- = DABS(YP(L)) ERROR RELATIVE TO THE MOST RECENT VALUE OF THE L-TH COMPONENT OF THE DERIVATIVE,
- = DMAX1(WT(L),DABS(Y(L))) ERROR RELATIVE TO THE LARGEST MAGNITUDE OF L-TH COMPONENT OBTAINED SO FAR,
- = DABS(Y(L))*RELERR/EPS + ABSERR/EPS SPECIFIES A MIXED RELATIVE-ABSOLUTE TEST WHERE RELERR IS RELATIVE ERROR, ABSERR IS ABSOLUTE ERROR AND EPS DMAX1(RELERR, ABSERR).

SUBSEQUENT CALLS --

SUBROUTINE ROTSTP IS DESIGNED SO THAT ALL INFORMATION NEEDED TO CONTINUE THE INTEGRATION, INCLUDING THE STEP SIZE H AND THE ORDER K, IS RETURNED WITH EACH STEP. WITH THE EXCEPTION OF THE STEP SIZE, THE ERROR TOLERANCE, AND THE WEIGHTS, NONE OF THE PARAMETERS SHOULD BE ALTERED. THE ARRAY WT MUST BE UPDATED AFTER EACH STEP TO MAINTAIN RELATIVE ERROR TESTS LIKE THOSE ABOVE. NORMALLY THE INTEGRATION IS CONTINUED JUST BEYOND THE DESIRED ENDPOINT AND THE SOLUTION INTERPOLATED THERE WITH SUBROUTINE INTRP. IF IT IS IMPOSSIBLE TO INTEGRATE BEYOND THE ENDPOINT, THE STEP SIZE MAY BE REDUCED TO HIT THE ENDPOINT SINCE THE CODE WILL NOT TAKE A STEP LARGER THAN THE H INPUT. CHANGING THE DIRECTION OF INTEGRATION, I.E., THE SIGN OF H, REQUIRES THE USER SET START = TRUE. BEFORE CALLING ROTSTP AGAIN. THIS IS THE ONLY SITUATION IN WHICH START SHOULD BE ALTERED.

OUTPUT FROM ROTSTP

SUCCESSFUL STEP --

THE SUBROUTINE RETURNS AFTER EACH SUCCESSFUL STEP WITH START AND CRASH SET FALSE. X REPRESENTS THE INDEPENDENT VARIABLE ADVANCED ONE STEP OF LENGTH HOLD FROM ITS VALUE ON INPUT AND Y THE SOLUTION VECTOR AT THE NEW VALUE OF X. ALL OTHER PARAMETERS REPRESENT INFORMATION CORRESPONDING TO THE NEW X NEEDED TO CONTINUE THE INTEGRATION.

UNSUCCESSFUL STEP --

WHEN THE ERROR TOLERANCE IS TOO SMALL FOR THE MACHINE PRECISION, THE SUBROUTINE RETURNS WITHOUT TAKING A STEP AND CRASH = .TRUE. .

- AN APPROPRIATE STEP SIZE AND ERROR TOLERANCE FOR CONTINUING ARE
- * ESTIMATED AND ALL OTHER INFORMATION IS RESTORED AS UPON INPUT
- * BEFORE RETURNING. TO CONTINUE WITH THE LARGER TOLERANCE, THE USER
 - JUST CALLS THE CODE AGAIN. A RESTART IS NEITHER REQUIRED NOR
- * DESIRABLE.

ROUTINE - ROTTRP

PURPOSE - THE METHODS IN SUBROUTINE STEP APPROXIMATE THE SOLUTION NEAR X BY A POLYNOMIAL. SUBROUTINE ROTTRP APPROXIMATES THE SOLUTION AT XOUT BY EVALUATING THE POLYNOMIAL THERE. INFORMATION DEFINING THIS POLYNOMIAL IS PASSED FROM ROTSTP SO ROTTRP CANNOT BE USED ALONE.

THIS CODE IS COMPLETELY EXPLAINED AND DOCUMENTED IN THE TEXT, COMPUTER SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM BY L. F. SHAMPINE AND M. K. GORDON.

AUTHOR - L.F. SHAMPINE AND M.K. GORDON

INPUT TO ROTTRP --

ALL FLOATING POINT VARIABLES ARE DOUBLE PRECISION
THE USER PROVIDES STORAGE IN THE CALLING PROGRAM FOR THE ARRAYS IN
THE CALL LIST

DIMENSION Y(NEQN), YOUT(NEQN), YPOUT(NEQN), PHI(NEQN, 16), PSI(12)
AND DEFINES

XOUT -- POINT AT WHICH SOLUTION IS DESIRED.
THE REMAINING PARAMETERS ARE DEFINED IN STEP AND PASSED TO ROTTRP
FROM THAT SUBROUTINE

OUTPUT FROM ROTTRP --

YOUT(*) -- SOLUTION AT XOUT
YPOUT(*) -- DERIVATIVE OF SOLUTION AT XOUT
THE REMAINING PARAMETERS ARE RETURNED UNALTERED FROM THEIR INPUT
VALUES. INTEGRATION WITH STEP MAY BE CONTINUED.

ROUTINE - ROTVEL

PURPOSE - THIS SUBROUTINE CALCULATES THE U, V AND W VELOCITY COMPONENTS AT A POINT (X,Y,Z). THE ROTOR AND WAKE ARE REPRESENTED BY A ARRAY OF 20 RING VORTICES WITH A SUPERIMPOSED FREE STREAM. THE VORTICES ARE SPACED CLOSER TOGETHER NEAR THE ROTOR WHERE GRADIENTS ARE LARGEST. THE VELOCITY AT A POINT IS FOUND BY THE SUPERPOSITION OF THE VELOCITY FIELD FROM EACH OF THE 20 VORTICES PLUS THE FREE STREAM

THE FORMULAS FOR THE VELOCITY FROM A RING VORTEX ARE TAKEN FROM NACA TR 1184, "THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A LIFTING ROTOR AND SOME EXAMPLES OF ITS APPLICATION", BY W. CASTLES, JR, AND J.H. DE LEEUW

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
TT	RD	DUMMY VARIABLE (TIME) - NOT USED IN THIS ROUTINE BUT REQUIRED FOR COMPATIBILITY WITH SUBROUTINE ODE
ZZZ(1) ZZZ(2) ZZZ(3)	RD RD RD	X COORDINATE WHERE VELOCITY IS TO BE FOUND Y COORDINATE WHERE VELOCITY IS TO BE FOUND Z COORDINATE WHERE VELOCITY IS TO BE FOUND

COMMON BLOCK ROTCA

NAME	TYPE	DESCRIPTION
ALPHA	RD	ROTOR TIP PATH PLANE ANGLE OF ATTACK
IDIR	I	DIRECTION FOR STREAMLINE CALCULATION
		1 FOR FORWARD IN TIME
		-1 FOR BACKWARD IN TIME
PI	RD	3.14159
R	RD	ROTOR RADIUS
STRENG	RD	COMBINED VORTEX CIRCULATION STRENGTH
UINF	RD	HORIZONTAL COMPONENT OF FREESTREAM VELOCITY
VINF	RD	VERTICAL COMPONENT VELOCITY TO BE ADDED TO
		OR DESCENT
XI	RD	ANGLE OF THE ROTOR WAKE FROM THE. VERTICAL DIRECTION

COMMON BLOCK ROTCC

NAME	TYPE	DESCRIPTION
COSNA SINNA	RD RD	COSINE OF NEGATIVE ALPHA SINE OF NEGATIVE ALPHA

OUTPUT

NAME	TYPE	D	ESCRIPTION			
222P(1)	ŔD	U	COMPONENT	OF	VELOCITY	• • • •
ZZZP(2)	RD	V	COMPONENT	OF	F VELOCITY	
ZZZP(3)	RD	W	COMPONENT	OF	FVELOCITY	
NAME	туре	Dl	ESCRIPTION		1	
UOUT	RD	X	COMPONENT	OF	VELOCITY	
TUOV	RD	Y	COMPONENT	OF	VELOCITY	
WOUT	RD	2	COMPONENT	ΩF	F VELOCITY	

LO

NAME	TYPE	DESCRIPTION
A	RD	FORMULA FROM CASTLES AND DE LEEUW
В	RD	FORMULA FROM CASTLES AND DE LEEUW
BP	RD	FORMULA FROM CASTLES AND DE LEEUW
C	RD	FORMULA FROM CASTLES AND DE LEEUW
COSA	RD	COSINE OF ALPHA
D	RD	FORMULA FROM CASTLES AND DE LEEUW
D1	RD	NONDIMENSIONAL SHORTEST DISTANCE FROM A POINT P TO A VORTEX RING
D2	ŘD	NONDIMENSIONAL LARGEST DISTANCE FROM A POINT P TO A VORTEX RING
DR	RD	DELTA DISTANCE BETWEEN VORTEX RINGS
DХ	RD	X DISPLACEMENT DISTANCE BETWEEN VORTEX
DY	RD	Y DISPLACEMENT DISTANCE BETWEEN VORTEX
F	ŔĐ	FORMULA FROM CASTLES AND DE LEEUW
FP	RD	FORMULAS FROM CASTLES AND DE LEEUW
I	I	DO LOOP COUNTER
N	I	NUMBER OF VORTEX RINGS (20)
P	RD	EXPONENT IN POWER LAW FOR VORTEX DISPLACEMENT (3)
RI	RD	VORTEX RING DISPLACEMENT PARAMETER
RN	RD	NUMBER OF VORTEX RINGS (20)
RP	RD	RADIAL DISTANCE FROM A POINT P FROM THE
		AXIS OF A VORTEX RING
SINA	RD	SINE OF ALPHA
SS	RD	SINGLE RING VORTEX SOURCE STRENGTH
T	RD	TIME
TAU	RD	FORMULA FROM CASTLES AND DE LEEUW
U	RD	VELOCITY COMPONENT IN THE PLANE OF THE ROTOR
V	RD	VELOCITY COMPONENT PERPENDICULAR TO THE PLANE OF THE ROTOR

	VR	RD	RADIAL COMPONENT OF VELOCITY INDUCED
ŧ			AT A FOINT P BY A VORTEX RING
•	V2	RD	AXIAL COMPONENT OF VELOCITY INDUCED AT
*			A POINT P BY A VORTEX RING
*	W	RD	VELOCITY COMPONENT IN THE PLANE OF THE
t			ROTOR
t	Х	RD	NONDIMENSIONALIZED RADIAL DISTANCE OF A
*	VII	D.D.	POINT FROM THE AXIS OF A VORTEX RING
	XV	RD	INDIVIDUAL RING VORTEX COORDINATE IN TILTED ROTOR COORDINATE SYSTEM
· t	XVIN	RD	X COORDINATE OF INDIVIDUAL RING
· •	XVIN	ND	VORTEX IN NORMAL CARTESIAN COORDINATE
t			SYSTEM (X AXIS ALONG FREE STREAM LINE
t			AT INFINITY)
+	XX	RD	X COORDINATE IN TITLED COORDINATE
t			SYSTEM WHERE VELOCITY IS TO BE FOUND
•	XV	RD	INDIVIDUAL RING VORTEX COORDINATE IN
t			TILTED ROTOR COORDINATE SYSTEM
:	YVIN	RD	Y COORDINATE OF INDIVIDUAL RING
			VORTEX IN NORMAL CARTESIAN COORDINATE
			SYSTEM (X AXIS ALONG FREE STREAM LINE
			AT INFINITY)
	YY	RD	Y COORDINATE IN TITLED COORDINATE
			SYSTEM WHERE VELOCITY IS TO BE FOUND
	Z	RD	NONDIMENSIONALIZED AXIAL DISTANCE OF A
			POINT FROM THE PLANE OF A VORTEX RING
: t	ZP	k D	ZP IS THE DISTANCE OF A POINT P FROM THE PLANE OF A VORTEX RING
t	22	RD	Z COORDINATE IN TITLED COORDINATE
k			SYSTEM WHERE VELOCITY IS TO BE FOUND

COMMON BLOCKS

/ROTCA/

STRENG, UINF, VINF, XI, R, ALPHA, PI, IDIR - described in SUBROUTINE ROTMA

/ROTCB/

UOUT, VOUT, WOUT, T - described in SUBROUTINE ROTMAN

/ROTCC/

COSA, SINA, COSNA, SINNA - described in SUBROUTINE ROTMAN

FUNCTIONS

- 1. CALCULATES DISPLACEMENT OF RING VORTICES
- 2. ROTATE COORDINATE SYSTEM INTO TILTED ROTOR
- 3. CALCULATE VELOCITY CONTRIBUTION FROM INDIVIDUAL RING VORTEX
- 4. SUM CONTRIBUTIONS FROM ALL RING VORTICES
- 5. ROTATE COORDINATE SYSTEM BACK TO NORMAL

SUBPROGRAMS CALLED ROTFNE, ROTFNK

CALLING SUBPROGRAMS ROTODE

ERRORS

NONE

ENTRY SET POSITION OF VORTEX RINGS INITIALIZE VELOCITY CONTRIBUTIONS TO ZERO TRANSFORM INPUT POSITION FROM NORMAL TO TILTED COORDINATES DO WHILE I .LT. N+1 COMPUTE COORDINATES OF CENTER OF VORTEX RINGS TRANSFORM VORTEX POSITIONS TO TILTED COORDINATE COMPUTE SOURCE STRENGTH FOR VORTEX RING COMPUTE NONDIMENSIONAL DISTANCE FROM POINT TO VORTEX RING IF X EQUALS ZERO THEN SET RADIAL COMPONENT TO ZERO COMPUTE SPECIAL CASE AXIAL VELOCITY COMPUTE RADIAL VELOCITY

COMPUTE AXIAL VELOCITY

ENDDO

TRANSFORM VELOCITES FROM TILTED TO NORMAL COORDINATE SYSTEM EXIT

26

ROUTINE - ROTVIN

PURPOSE - THIS SUBROUTINE CALCULATES THE VELOCITY INDUCED THROUGH THE ROTOR AS A FUNCTION OF VORTEX STRENGTH. THE INDUCED VELOCITY IS TAKEN TO BE THE AREA WEIGHTED AVERAGE OF 19 POINTS ON THE ROTOR DISK. THE POINTS ARE EQUALLY SPACED OUT 60 DEGREES APART, AND 2/7, 4/7, AND 6/7 OF THE RADIUS OUT FROM THE CENTER PLUS ONE POINT AT THE CENTER.

AUTHOR - J.C. SIMONICH

INPUT

COMMON BLOCK ROTCA

NAME	TYPE	DESCRIPTION
ΡI	RD	3.14159
R	RD	ROTOR RADIUS

COMMON BLOCK ROTCC

NAME	TYPE	DESCRIPTION
	• • • • • • • •	
COSNA	RD	COSINE OF NEGATIVE ALPHA
SINNA	RD	SINE OF NEGATIVE ALPHA

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
V T	RD	AVERAGE INDUCED VELOCITY
A T	ΝD	AVERAGE INDUCED VEHICLII

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
À	RD	AREA OF ROTOR DISK "PIE" SEGMENT
ALPHA	RS	ROTOR TIP PATH PLANE ANGLE OF ATTACK
COSA	RD	COSINE OF ALPHA
IDIR	I	DIRECTION FOR STREAMLINE CALCULATION
		1 FOR FORWARD IN TIME
		-1 FOR BACKWARD IN TIME
NR	I	NUMBER OF RADIAL SPECIFICATION POINTS
NT	I	NUMBER OF ANGULAR SPECIFICATION POINTS
RAD	RD	RADIUS OF CONTRIBUTING POINT
SINA	RD	SINE OF ALPHA
STRENG	RD	COMBINED VORTEX CIRCULATION STRENGTH
T	RD	POLAR ANGLE
TT	RD	DUMMY VARIABLE (TIME) - NOT USED IN THIS
		ROUTINE BUT REQUIRED FOR COMPATIBILITY
		WITH SUBROUTINE ODE
UINF	RD	HORIZONTAL COMPONENT OF FREESTREAM VELOCITY

```
VINF
               RD
                        VERTICAL COMPONENT VELOCITY TO BE ADDED TO
                        HOVER CASE TO SIMULATE VERTICAL ASCENT
                        OR DESCENT
     XI
                        ANGLE OF THE ROTOR WAKE FROM THE
               RD
                        VERTICAL DIRECTION
                        X COORDINATE WHERE VELOCITY IS TO BE FOUND
     ZZ(1)
               RD
                        Y COORDINATE WHERE VELOCITY IS TO BE FOUND
     ZZ(2)
               RD
                       Z COORDINATE WHERE VELOCITY IS TO BE FOUND
     ZZ(3)
               RD
                        U COMPONENT OF VELOCITY
               RD
     ZZP(1)
                        V COMPONENT OF VELOCITY
               RD
     ZZP(2)
                        W COMPONENT OF VELOCITY
     ZZP(3)
               RD
   COMMON BLOCKS
     /ROTCA/
     STRENG.UINF.VINF.XI.R.ALPHA.PI.IDIR - described in SUBROUTINE ROTMA
     COSA, SINA, COSNA, SINNA - described in SUBROUTINE ROTMAN
   1. CALCULATES AVERAGE INDUCED VELOCITY OVER ROTOR FACE
 SUBPROGRAMS CALLED
   ROTVEL
 CALLING SUBPROGRAMS
   ROTIND
 ERRORS
   NONE
 ENTRY
 SET INDUCED VELOCITY TO ZERO
    DO WHILE NR .LT. 3.
         CALCULATE RADIUS OF POINT
         DO WHILE NT .LT. 4
             CALCULATE POLAR ANGLE OF POINT
             CALCULATE AREA OF SEGMENT
             TRANSFORM FROM POLAR TO CARTESIAN COORDINATES
             CALCULATE THE VELOCITY
         ENDDO
     ENDDO
CALCULATE VELOCITY AT THE CENTER
 ADD CONTRIBUTION OF CENTER TO SUM
COMPUTE AVERAGE AREA WEIGHTED INDUCED VELOCITY
EXIT
```

28

ROUTINE - ABL

PURPOSE - TO CALCULATE THE MEAN AND TURBULENCE PROPERTIES FOR AN ATMOSPHERIC BOUNDARY LAYER

AUTHOR - J.C. SIMONICH

INPUT

USER PARAMETERS

NAME	TYPE	DESCRIPTION	DEFAULT
		ADOCHDADUTA WIND CDDCD (M/C)	3.89
G	RS	GEOSTROPHIC WIND SPEED (M/S)	
${f L}$	RS	MONIN-OBUKHOV STABILITY LENGTH (M)	0.0
		(NOTE: FOR NEUTRAL CONDITIONS, INPUT	
		0.0)	
THETA	RS	GEOGRAPHIC LATITUDE IN DEGREES	45
20 1	RS	ROUGHNESS HEIGHT (M)	0.02M
Z	RS	HEIGHT ABOVE GROUND (M)	100M

OUTPUT

DATA MEMBER ROTNOP(ABLOT1)

NOTE: IF FUNCTION MODULES ROT AND NOP ARE TO BE RUN USING THE OUTPUT FROM FUNCTION MODULE ABL, A LIBRARY FILE MUST BE CREATED CONTAINING DATA MEMBERS ROTNOP(ABLOT1) AND ROTNOP(ROTOT1).

G, LWX, WUINF

NAME	TYPE	DESCRIPTION DEFAULT
G	RS	GEOSTROPHIC WIND SPEED (M/S) 5M/S
LWX	RS	CORRELATION LENGTH SCALE
WUINF	RS	VERTICAL COMPONENT OF THE RMS TURBULENCE
		NORMALIZED BY THE FREE STREAM VELOCITY

LOCAL VARIABLES

		·	
NAME	TYPE	DESCRIPTION	DEFAULT
DELTA	RS	BOUNDARY LAYER THICKNESS (M)	
FC	RS	CORIOLIS PARAMETER = 2 OMEGA SIN (THETA) 1.0E-5
		WHERE OMEGA IS THE ROTATIONAL SPEED	•
		AND THETA IS THE LATITUDE	
IFMT	I	FORMAT CODE FOR DATA MEMBER RECORD	
ISTAT	I	STATUS OF MM CALLS	
K	RS	VON KARMAN'S CONSTANT	0.41
MEXIST	I	STATUS OF DATA MEMBER NAME	
MNR	I	NO. OF VALUES READ FROM DATA MEMBER REC	ORD
P	RS	EXPONENT FOR THE POWER LAW DISCRIPTION	
		OF THE MEAN VELOCITY PROFILE	

PI	RS	3.14159	
USTR	RS	SKIN FRICTION VELOCITY (M/S)	
W15	RS	VERTICAL COMPONENT OF TURBULENCE	
		INTENSITY AT 15% OF THE BOUNDARY LAYER	
		THICKNESS	
ZT	RS	ZT IS THE TROPOPAUSE HEIGHT IN METERS	11000M

FUNCTIONS.

1. CALCULATE THE CORIOLIS PARAMETER, SKIN FRICTION VELOCITY, BOUNDARY LAYER THICKNESS, TURBULENCE INTENSITY, CORRELATION LENGTH SCALE, AXIAL AND RADIAL MACH NUMBERS, AND NORMALIZED TURBULENCE INTENSITY

SUBPROGRAMS CALLED

ABLUNS, ABLNTL, ABLSTA, MMCLOS, MMOPWD, MMPUTR, MMVUM XFETCH, XSTORE, XPSUBT, XPLAB, XPAGE, XASKP, XGETP, XPUTP

CALLING SUBPROGRAMS

ANOP EXECUTIVE

ERRORS

NON-FATAL

- 1. ERROR FINDING DATA MEMBER FOR OUTPUT
- 2. ERROR OPENING DATA MEMBER FOR OUTPUT
- 3. ERROR FINDING PARAMETER IN USER PARAMETER TABLE FATAL

NONE

ENTRY

CALCULATE CORIOLIS PARAMETER

IF L .LT. 0.0 THEN USE UNSTABLE FORMULAE TO:
CALCULATE SKIN FRICTION VELOCITY
CALCULATE BOUNDARY LAYER THICKNESS
CALCULATE TURBULENCE INTENSITY
CALCULATE CORRELATION LENGTH SCALE

ENDIF

IF L .EQ. O.O THEN USE NEUTRAL FORMULAE TO:
CALCULATE SKIN FRICTION VELOCITY
CALCULATE BOUNDARY LAYER THICKNESS
CALCULATE TURBULENCE INTENSITY

±	CALCULATE CORRELATION LENGTH SCALE
*	ENDIF
*	IF L .GT. O.O THEN USE STABLE FORMULAE TO:
*	CALCULATE SKIN FRICTION VELOCITY
*	CALCULATE BOUNDARY LAYER THICKNESS
*	CALCULATE TURBULENCE INTENSITY
*	CALCULATE CORRELATION LENGTH SCALE
*	ENDIF
•	IF Z .GT. 15% OF DELTA THEN
*	INTERPOLATE BETWEEEN THE VALUE AT 15% AND THE T
*	OF THE BOUNDARY LAYER
*	XIT

ROUTINE - ABLENT

PURPOSE - TO CALCULATE THE GEOSTROPHIC DRAG LAW FUNCTION FOR THE NEUTRAL ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION	DEFAULT
FC	RS	CORIOLIS PARAMETER = 2 OMEGA SIN (THET)	1.0E-5
		WHERE OMEGA IS THE ROTATIONAL SPEED	
		AND THET IS THE LATITUDE	
20	RS	ROUGHNESS HEIGHT (M)	0.02M
G	RS	GEOSTROPHIC WIND SPEED (M/S)	5M/S
K	RS	VON KARMAN'S CONSTANT	0.41
USTR	RS	SKIN FRICTION VELOCITY (M/S)	0.1M/S
DELTA	RS	BOUNDARY LAYER THICKNESS (M)	600 M
Α	RS	CONSTANT A IN GEOSTROPHIC DRAG LAW	1.7
В	RS	CONSTANT B IN GEOSTROPHIC DRAG LAW	4.7

OUTPUT

FUNCTION

NAME	TYPE	DESCRIPTION
ABLFNT	RS	GEOSTROPHIC DRAG LAW FUNCTION

FUNCTIONS

1. COMPUTE GEOSTROPHIC DRAG LAW FUNCTION

SUBROUTINES CALLED NONE

CALLING SUBPROGRAMS ABLITL

ERRORS NONE

ENTRY

COMPUTE ABLENT

ROUTINE - ABLEST

PURPOSE - TO CALCULATE THE GEOSTROPHIC DRAG LAW FUNCTION

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION	DEFAULT
			• • • • • • • •
В	RS	CONSTANT B IN GEOSTROPHIC DRAG LAW	1.1
L	RS	MONIN-OBUKHOV STABILITY LENGTH (M)	20M
		(NOTE: FOR NEUTRAL CONDITIONS, INPUT	
		0.0)	
FC	RS	CORIOLIS PARAMETER = 2 OMEGA SIN (THET)	1.0E-5
		WHERE OMEGA IS THE ROTATIONAL SPEED	
		AND THET IS THE LATITUDE	
ZT	RS	ZT IS THE TROPOPAUSE HEIGHT IN METERS	11000M
Z 0	RS	ROUGHNESS HEIGHT (M)	0.02M
G	RS	GEOSTROPHIC WIND SPEED (M/S)	5M/S
K	RS	VON KARMAN'S CONSTANT	0.41

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
ABLFST	RS	GEOSTROPHIC DRAG LAW FUNCTION
DELTA	RS	BOUNDARY LAYER THICKNESS (M)
USTR	RS	SKIN FRICTION VELOCITY (M/S)

FUNCTIONS

- 1. COMPUTE BOUNDARY LAYER THICKNESS
- 2. COMPUTE SKIN FRICTION VELOCITY
- 3. COMPUTE CONSTANT A IN GEOSTROPHIC DRAG LAW
- 4. COMPUTE GEOSTROPHIC DRAG LAW FUNCTION

SUBROUTINES CALLED

NONE

CALLING SUBPROGRAMS
ABLSTA

ERRORS

NONE

ENTRY

COMPUTE DELTA
COMPUTE USTR
COMPUTE A
COMPUTE ABLFST

ROUTINE - ABLFUN

PURPOSE - TO CALCULATE THE GEOSTROPHIC DRAG LAW FUNCTION FOR THE UNSTABLE ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS NAME	TYPE	DESCRIPTION	DEFAULT
L	RS	MONIN-OBUKHOV STABILITY LENGTH (M)	20M
		(NOTE: FOR NEUTRAL CONDITIONS, INPUT	
		0.0)	
FC	RS	CORIOLIS PARAMETER = 2 OMEGA SIN (THET)	1.0E-5
		WHERE OMEGA IS THE ROTATIONAL SPEED	
		AND THET IS THE LATITUDE	
Z 0	RS	ROUGHNESS HEIGHT (M)	0.02M
G	RS	GEOSTROPHIC WIND SPEED (M/S)	5M/S
K ·	RS	VON KARMAN'S CONSTANT	0.41
USTR	RS	SKIN FRICTION VELOCITY (M/S)	0.1M/S
DELTA	RS	BOUNDARY LAYER THICKNESS (M)	600M

OUTPUT

FUNCTION

NAME.	TYPE	DESCRIPTION
ABLFUN	RS	GEOSTROPHIC DRAG LAW FUNCTION

FUNCTIONS

- 1. COMPUTE CONSTANT A IN GEOSTROPHIC DRAG LAW
- 2. COMPUTE CONSTANT B IN GEOSTROPHIC DRAG LAW
- 3. COMPUTE GEOSTROPHIC DRAG LAW FUNCTION

SUBROUTINES CALLED

NONE

CALLING SUBPROGRAMS ABLUNS

ERRORS

NONE

ENTRY

COMPUTE A
COMPUTE B
COMPUTE ABLFUN

ROUTINE - ABLNTL

PURPOSE - TO PREDICT THE BOUNDARY LAYER THICKNESS AND SKIN FRICTION VELOCITY FOR THE NEUTRAL ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION	DEFAULT
FC	Rs	CORIOLIS PARAMETER = 2 OMEGA SIN (THET) WHERE OMEGA IS THE ROTATIONAL SPEED	
20	RS	ROUGHNESS HEIGHT (M)	0.02M
G	RS	GEOSTROPHIC WIND SPEED (M/S)	5M/S
K	RS	VON KARMAN'S CONSTANT	0.41

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
DELTA USTR	RS RS	BOUNDARY LAYER THICKNESS (M) SKIN FRICTION VELOCITY (M/S)

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
A	RS	"CONSTANT" IN GEOSTROPHIC DRAG LAW
В	RS	"CONSTANT" IN GEOSTROPHIC DRAG LAW
Fl	RS	GEOSTROPHIC DRAG LAW FUNCTION EVALUATED AT
		LOWER LIMIT OF B
F3	RS	GEOSTROPHIC DRAG LAW FUNCTION EVALUATED AT
		UPPER LIMIT OF B
USTR1	RS	LOWER LIMIT OF SKIN FRICTION
		VELOCITY IN INTERVAL HALVING
USTR2	RS	UPPER LIMIT OF SKIN FRICTION
		VELOCITY IN INTERVAL HAVLING

FUNCTIONS

- 1. COMPUTE BOUNDARY LAYER THICKNESS
- 2. COMPUTE SKIN FRICTION VELOCITY

SUBPROGRAMS CALLED ABLENT

CALLING SUBPROGRAMS ABLMAN

ERRORS NONE ENTRY

COMPUTE BOUNDARY LAYER THICKNESS

COMPUTE CONSTANTS A AND B IN GEOSTROPHIC DRAG LAW

COMPUTE LOWER AND UPPER LIMITS ON USTR

DO WHILE ABS(F3) LE. 1.0E-4

COMPUTE NEXT GUESS FOR USTR COMPUTE F1 BY CALLING ABLENT

COMPUTE F3 BY CALLING ABLENT

IF FA*F3 IS POSITIVE

THEN USTR1=USTR ELSE USTR2=USTR

ENDDO

ROUTINE - ABLSTA

PURPOSE - TO PREDICT THE BOUNDARY LAYER THICKNESS AND SKIN FRICTION VELOCITY FOR THE STABLE ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

TYPE	DESCRIPTION	DEFAULT
RS	MONIN-OBURHOV STABILITY LENGTH (M)	20M
	(NOTE: FOR NEUTRAL CONDITIONS, INPUT	
	0.0)	
RS	CORIOLIS PARAMETER = 2 OMEGA SIN (THET)	1.0E-5
	WHERE OMEGA IS THE ROTATIONAL SPEED	
	AND THET IS THE LATITUDE	
RS	ZT IS THE TROPOPAUSE HEIGHT IN METERS	11000M
RS	ROUGHNESS HEIGHT (M)	0.02M
RS	GEOSTROPHIC WIND SPEED (M/S)	5M/S
RS	VON KARMAN'S CONSTANT	0.41
	RS RS RS RS RS	RS MONIN-OBURHOV STABILITY LENGTH (M) (NOTE: FOR NEUTRAL CONDITIONS, INPUT 0.0) RS CORIOLIS PARAMETER = 2 OMEGA SIN (THET) WHERE OMEGA IS THE ROTATIONAL SPEED AND THET IS THE LATITUDE RS ZT IS THE TROPOPAUSE HEIGHT IN METERS RS ROUGHNESS HEIGHT (M) RS GEOSTROPHIC WIND SPEED (M/S)

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
DELTA	RS	BOUNDARY LAYER THICKNESS (M)
USTR	RS	SKIN FRICTION VELOCITY (M/S)

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
A	RS	"CONSTANT" IN GEOSTROPHIC DRAG LAW
B1	RS	LOWER LIMIT ON "CONSTANT" B IN
		INTERVAL HALVING
B2	RS	CURRENT GUESS FOR "CONSTANT" B IN
		INTERVAL HALVING
B3	RS	UPPER LIMIT ON "CONSTANT" B IN
		INTERVAL HALVING
В	RS	"CONSTANT" IN GEOSTROPHIC DRAG LAW
C	RS	"CONSTANT" IN GEOSTROPHIC DRAG LAW
F1	RS	GEOSTROPHIC DRAG LAW FUNCTION EVALUATED AT
		LOWER LIMIT OF B
F3	RS	GEOSTROPHIC DRAG LAW FUNCTION EVALUATED AT
		HDDPR LIMIT OF R

FUNCTIONS

- 1. COMPUTE BOUNDARY LAYER THICKNESS
- 2. COMPUTE SKIN FRICTION VELOCITY

SUBPROGRAMS CALLED ABLFST CALLING SUBPROGRAMS ABLMAN **ERRORS** NONE ENTRY COMPUTE CONSTANTS A AND C IN GEOSTROPHIC DRAG LAW COMPUTE LOWER AND UPPER LIMITS ON CONSTANT B DO WHILE ABS(F3) LE. 1.0E-4 10 COMPUTE NEXT GUESS FOR B COMPUTE F1 BY CALLING ABLEST COMPUTE F3 BY CALLING ABLFST IF FA*F3 IS POSITIVE THEN B1=B3 ELSE B2=B3 **ENDDO** EXIT

ROUTINE - ABLUNS

PURPOSE - TO PREDICT THE BOUNDARY LAYER THICKNESS AND SKIN FRICTION VELOCITY FOR THE UNSTABLE ATMOSPHERE

AUTHOR - J.C. SIMONICH

INPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION	DEFAULT
L	RS	MONIN-OBUKHOV STABILITY LENGTH (M) (NOTE: FOR NEUTRAL CONDITIONS, INPUT	20M
FC	RS	0.0) CORIOLIS PARAMETER = 2 OMEGA SIN (THET) WHERE OMEGA IS THE ROTATIONAL SPEED AND THET IS THE LATITUDE	1.02-5
20	RS	ROUGHNESS HEIGHT (M)	0.02M
G K	RS RS	GEOSTROPHIC WIND SPEED (M/S) VON KARMAN'S CONSTANT	5M/S 0.41

OUTPUT

ARGUMENTS

NAME	TYPE	DESCRIPTION
DELTA	RS	BOUNDARY LAYER THICKNESS (M)
USTR	RS	SKIN FRICTION VELOCITY (M/S)

LOCAL VARIABLES

NAME	TYPE	DESCRIPTION
F1	RS	VALUE OF GEOSTROPHIC DRAG LAW
F3	RS	FUNCTION EVALUATED AT LOWER LIMIT OF B VALUE OF GEOSTROPHIC DRAG LAW FUNCTION
USTR1	RS	EVALUATED AT UPPER LIMIT OF B LOWER LIMIT OF SKIN FRICTION
USTR2	RS	VELOCITY IN INTERVAL HALVING UPPER LIMIT OF SKIN FRICTION
		VELOCITY IN INTERVAL HAVLING

FUNCTIONS

- 1. COMPUTE BOUNDARY LAYER THICKNESS
- 2. COMPUTE SKIN FRICTION VELOCITY

SUBPROGRAMS CALLED

ABLFUN

CALLING SUBPROGRAMS ABLMAN

ERRORS
NONE

ENTRY

ENTRY

SET BOUNDARY LAYER THICKNESS

SET LIMITS ON USTR FOR ITERATION

DO WHILE ABS(F3) LE. 1.0E-4

COMPUTE NEXT GUESS FOR USTR

COMPUTE F1 BY CALLING ABLFUN

COMPUTE F3 BY CALLING ABLFUN

IF FA*F3 IS POSITIVE

THEN USTR1=USTR

ELSE USTR2=USTR

ENDDO

EXIT

National Aeronaulics and space Administration	Report Documentation Page	Э		
1. Report No. NASA CR-181791	2. Government Accession No.	3. Recipient's Catalog	y No.	
4. Title and Subtitle		5. Report Date		
Noise Produced by Turbule		June 1989		
Users Manual for Atmosphe Mean Flow and Turbulence	eric Turbulence Prediction and Contraction Prediction	6. Performing Organization Code		
7. Author(s) J. C. Simonich and B. Cap	olin	8. Performing Organization Report No.		
		10. Work Unit No.	·	
		505-63-51		
9. Performing Organization Name and Add	ress			
United Technologies Resea	arch Center	11. Contract or Grant	NO.	
East Hartford, CT 06108		NAS1-17763	·	
		13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address	Constant A lord of the body	Contractor Re	eport	
National Aeronautics and Langley Research Center Hampton, VA 23665-5225	Space Administration	14. Sponsoring Agency Code		
16. Abstract				
spheric turbulence and m diction scheme for nonis port includes descriptio function, programming st	a users manual for a computer ean flow and turbulence contra otropic turbulence ingestion not the various program modu ructure, and the required inputs one module of NASA's ROTONE	ction as part o oise in helicop les and subrout t and output va	f a noise pre- ters. The re- ines, their riables. This	
17. Key Words (Suggested by Author(s))	noise prediction, 18. Distribution Stat	•		
helicopter noise, turbul	ence ingestion Unclassif	ied - Unlimited	i	
noise, rotor noise	Subject (Subject Category 71		
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of pages	22. Price	
Unclassified	Unclassified	44	A03	