In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df = pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\
df

Out[2]:

		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PI
	0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.889
	1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.040
	2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.270
	3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.850
	4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160
2	26387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450
2	26388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.020
2	26389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.540
2	26390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.910
2	26391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690

226392 rows × 17 columns

In [3]: df1 = df.fillna(0)
 df1

Out[3]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PI
0	2008- 06-01 01:00:00	0.00	0.47	0.00	0.00	0.00	83.089996	120.699997	0.00	16.990000	16.889
1	2008- 06-01 01:00:00	0.00	0.59	0.00	0.00	0.00	94.820000	130.399994	0.00	17.469999	19.040
2	2008- 06-01 01:00:00	0.00	0.55	0.00	0.00	0.00	75.919998	104.599998	0.00	13.470000	20.270
3	2008- 06-01 01:00:00	0.00	0.36	0.00	0.00	0.00	61.029999	66.559998	0.00	23.110001	10.850
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450
226388	2008- 11-01 00:00:00	0.00	0.30	0.00	0.00	0.00	41.880001	48.500000	0.00	35.830002	15.020
226389	2008- 11-01 00:00:00	0.25	0.00	0.56	0.00	0.11	83.610001	102.199997	0.00	14.130000	17.540
226390	2008- 11-01 00:00:00	0.54	0.00	2.70	0.00	0.18	70.639999	81.860001	0.00	0.000000	11.910
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690

226392 rows × 17 columns

```
In [4]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 226392 entries, 0 to 226391
        Data columns (total 17 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
                      226392 non-null
                                       object
             date
         1
             BEN
                      226392 non-null float64
         2
             CO
                      226392 non-null float64
         3
             EBE
                      226392 non-null float64
         4
                      226392 non-null float64
             MXY
         5
             NMHC
                      226392 non-null float64
         6
                      226392 non-null float64
             NO 2
         7
             NOx
                      226392 non-null float64
         8
                      226392 non-null float64
             OXY
         9
             0_3
                      226392 non-null float64
         10 PM10
                      226392 non-null float64
         11 PM25
                      226392 non-null float64
         12 PXY
                      226392 non-null float64
                      226392 non-null float64
         13 SO_2
         14 TCH
                      226392 non-null float64
         15 TOL
                      226392 non-null float64
         16 station 226392 non-null int64
        dtypes: float64(15), int64(1), object(1)
        memory usage: 29.4+ MB
In [5]: |df1.columns
Out[5]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
        3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [6]: df2 = df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [7]: sns.pairplot(df2)

Out[7]: <seaborn.axisgrid.PairGrid at 0x130a32253d0>

In [8]: sns.distplot(df2['0_3'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='0_3', ylabel='Density'>

In [9]: sns.heatmap(df2.corr())

Out[9]: <AxesSubplot:>

Linear Regression

Out[14]:

	Co-efficient
BEN	2.290059
со	0.400020
EBE	1.035683
MXY	0.823381
NMHC	4.476706
NO_2	0.004692
NOx	-0.000773
OXY	-0.095826
O_3	- 0.000748
PM10	0.001484
SO_2	-0.020287
PXY	-0.910980
тсн	-0.109260

```
In [15]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x130bf6da0a0>


```
In [16]: print(lr.score(x_test,y_test))
```

0.7718979516505728

```
In [17]: lr.score(x_train,y_train)
```

Out[17]: 0.7772643081000624

Ridge and Lasso

Out[19]: 0.7772627691767515

```
In [20]: rr.score(x_test,y_test)
```

Out[20]: 0.7718947646020118

Lasso Regression

```
In [21]: ls = Lasso(alpha=10)
    ls.fit(x_train,y_train)
    ls.score(x_train,y_train)
```

Out[21]: 0.0939728549590042

```
In [22]: ls.score(x_test,y_test)
Out[22]: 0.09418802859837905
```

ElacticNET regression

```
In [23]: | from sklearn.linear_model import ElasticNet
         es = ElasticNet()
         es.fit(x_train,y_train)
Out[23]: ElasticNet()
In [24]: print(es.coef_)
         [ 0.77622095 -0.
                                                0.46491494 0.
                                    0.9126162
                                                                         0.00434494
           0.00559674 0.
                                               -0.0035862 -0.
                                                                         0.
           0.11956222]
In [25]:
         print(es.intercept_)
         -0.11045473847242904
In [26]: print(es.score(x_test,y_test))
         0.6332365209822374
In [27]:
         print(es.score(x_train,y_train))
         0.6391083273349589
```

LogisticRegression

```
In [28]: from sklearn.linear_model import LogisticRegression
In [29]: feature_matrix = df2.iloc[:,0:15]
    target_vector = df2.iloc[:,-1]
In [30]: feature_matrix.shape
Out[30]: (226392, 15)
In [31]: from sklearn.preprocessing import StandardScaler
In [32]: fs = StandardScaler().fit_transform(feature_matrix)
```

```
In [33]: logs = LogisticRegression()
         logs.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[33]: LogisticRegression()
In [34]: observation = [[1.4,1.5,1.6,2.7,2.3,3.3,2.3,4.1,2.3,4.2,1.2,2.1,4.3,6,2.2]]
         prediction = logs.predict(observation)
In [35]: |print(prediction)
         [28079099]
In [36]: logs.classes
Out[36]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [37]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test = train_test_split(feature_matrix,target_vector,t
In [38]: |print(logs.score(x_test,y_test))
         0.03900291528019082
In [39]: |print(logs.score(x_train,y_train))
         0.03871297499905347
```

Conclusion

Ridge regression is bestfit model

Ridge regression is best fit model for dataset madrid_2001. The score of x_train,y_train is 0.6997214702742314 and x_test and y_test score is 0.7029800822222487.