Chương 4: Chọn đường - Routing

Dự án HEDSPI Khoa CNTT- ĐHBK Hà Nội

Giảng viên: Ngô Hồng Sơn Bộ môn Truyền thông và Mạng máy tính

- Tuần trước
 - Giao thức IP
 - Địa chỉ IP và cấu trúc gói tin IP
 - Giao thức ICMP
- Tuần này: Tiếp tục về tầng mạng
 - Thế nào là chọn đường?
 - Chọn đường tĩnh và chọn đường động
 - Giải thuật và giao thức chọn đường

Chọn đường là gì?

Các nguyên lý chọn đường Cơ chế chuyển tiếp gói tin Quy tắc "Longest matching"

- Khi một máy trạm gửi một gói tin IP tới một máy khác
 - Nếu địa chỉ đích nằm trên cùng một đường truyền vật lý: Chuyển trực tiếp
 - Nếu địa chỉ đích nắm trên một mạng khác: Chuyến gián tiếp qua bộ định tuyến (chọn đường)

- Cơ chế để máy trạm hay bộ định tuyến chuyển tiếp gói tin từ nguồn đến đích
- Các thành phần của chọn đường
 - Bảng chọn đường
 - Thông tin chọn đường
 - Giải thuật, giao thức chọn đường

- Thiết bị chuyển tiếp các gói tin giữa các mạng
 - Là một máy tính, với các phần cứng chuyên dụng
 - Kết nối nhiều mạng với nhau
 - Chuyển tiếp gói tin dựa trên bảng chọn đường
- Có nhiều giao diện
- Phù hợp với nhiều dạng lưu lượng và phạm vi của mạng

Một số ví dụ...

BUFFALO BHR-4RV

PLANEX GW-AP54SAG

YAMAHA RTX-1500

Cisco 2600

Router ngoại vi

Hitachi GR2000-1B

Juniper M10

Cisco 3700

Foundry Networks NetIron 800

Router co trung

Cisco CRS-1

Router mang truc

http://www.cisco.com.vn

http://www.juniper.net/

http://www.buffalotech.com

Bảng chọn đường

- Chỉ ra danh sách các đường đi có thế, được lưu trong bộ nhớ của router
- Các thành phần chính của bảng chọn đường
 - Địa chỉ đích/mặt nạ mạng
 - Router ké tiép

Bảng chọn đường và cơ chế chuyển tiếp (1)

Lưu ý quy tắc: No routes, no reachability!

- Giả sử một địa chỉ mạng đích lại có nhiều hơn một mục trong bảng chọn đường
- Địa chỉ đích : 11.1.2.5
- Router kế tiếp nào sẽ được sử dụng?

Network	Next hop
11.0.0.0/8	А
11.1.0.0/16	В
11.1.2.0/24	С

Địa chỉ đích:

11.1.2.5 = 00001011.00000001.00000010.00000101 Đường đi 1:

"Longest matching" là gì? Tại sao phải cần quy tắc này?

Bảng chọn đường và cơ chế chuyển tiếp (2)

Network	Next-hop
10.0.0.0/24	А
172.16.0.0/24	С
192.168.0.0/24	Direct

Q. Mô tả bảng chọn đường trên C

Nếu C nối vào Internet?

Internet

Đường đi mặc định

- Nếu đường đi không tìm thấy trong bảng chọn đường
 - Đường đi mặc định trỏ đến một router kết tiếp
 - Trong nhiều trường hợp, đây là đường đi duy nhất
- 0.0.0.0/0

Là một trường hợp đặc biệt, chỉ tất cả các đường đi
 Router A

Kết hợp đường đi (Routing aggregation)

- Có bao nhiêu mạng con trên mạng Internet?
- Sẽ có rất nhiều mục trong bảng chọn đường?
- Các mạng con kế tiếp với cùng địa chỉ đích có thể được tổng hợp lại để làm giảm số mục trong bảng chọn đường.

- Ví dụ về Viettel
 - Không gian địa chỉ IP: khá lớn
 - 203.113.128.0-203.113.191.255
 - Để kết nối đến một mạng con của Vietel (khách hàng): Chỉ cần chỉ ra đường đi đến mạng Viettel
- Đường đi mặc định chính là một dạng của việc kết hợp đường
 - 0.0.0.0/0

Ví dụ về bảng chọn đường – máy trạm

C:\Documents and Settings\hongson>netstat -rn Route Table

Interface List

0x1MS TCP Loopback interface

0x2 ...08 00 1f b2 a1 a3 Realtek RTL8139 Family PCI Fast Ethernet NIC -

Active Routes:

Network	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.1.1	192.168.1.34	20
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.1.0	255.255.255.0	192.168.1.34	192.168.1.34	20
192.168.1.34	255.255.255.255	127.0.0.1	127.0.0.1	20
192.168.1.255	255.255.255.255	192.168.1.34	192.168.1.34	20
224.0.0.0	240.0.0.0	192.168.1.34	192.168.1.34	20
255.255.255.255	255.255.255.255	192.168.1.34	192.168.1.34	1

Default Gateway: 192.168.1.1

Ví dụ về bảng chọn đường – Router (trích)


```
#show ip route
Prefix Next Hop
203.238.37.0/24 via 203.178.136.14
203.238.37.96/27 via 203.178.136.26
203.238.37.128/27 via 203.178.136.26
203.170.97.0/24 via 203.178.136.14
192.68.132.0/24 via 203.178.136.29
203.254.52.0/24 via 203.178.136.14
202.171.96.0/24 via 203.178.136.14
```

Chọn đường tĩnh và chọn đường động

Chọn đường tĩnh Chọn đường động Ưu điểm – nhược điểm

Vấn đề cập nhật bảng chọn đường

- Sự thay đổi cấu trúc mạng: thêm mạng mới, một nút mạng bị mất điện
- Sự cần thiết phải cập nhật bảng chọn đường
 - Cho tất cả các nút mạng (về lý thuyết)
 - Thực tế, chỉ một số nút mạng phải cập nhật

Network	Next- hop
192.168.0.0/24	В
172.16.0.0/24	В

Network	Next- hop
10.0.0.0/24	А
172.16.0.0/24	С

Network	Next- hop
10.0.0.0/24	В
192.168.0.0/24	В

172.16.1.0/24

B

172.16.1.0/24

- Chọn đường tĩnh
 - Các mục trong bảng chọn đường được sửa đổi thủ công bởi người quản trị
- Chọn đường động
 - Tự động cập nhật bảng chọn đường
 - Bằng các giao thức chọn đường

Chọn đường tĩnh

- Khi có sự cố:
 - Không thể nối vào
 Internet kể cả khi có tồn
 tại đường đi dự phòng
 - Người quản trị mạng cần thay đổi

Bảng chọn đường của 10.0.0.1 (1 phần)

Prefix	Next-hop
0.0.0.0/0	10.0.0.3

Internet 10.0.0.3 10.0.0.2 Next-hop 10.0.0.3 10.0.0.1 Next-hop 10.0.0. 22

Chọn đường động

Đặc điểm của chọn đường tĩnh

- Uu
 - Ön định
 - An toàn
 - Không bị ảnh hưởng bởi các yếu tố tác động
- Nhược
 - Cứng nhắc
 - Không thể sử dụng tự động kết nối dự phòng
 - Khó quản lý

- Uu
 - Dễ quản lý
 - Tự động sử dụng kết nối dự phòng
- Nhược
 - Tính an toàn
 - Các giao thức chọn đường phức tạp và khó hiểu
 - Khó quản lý

Các giải thuật và giao thức chọn đường

Giải thuật Dijkstra và Bellman-Ford Giao thức dạng link-state và dạng distance-vector

- Đồ thị với các nút (bộ định tuyến) và các cạnh (liên kết)
- Chi phí cho việc sử dụng mỗi liên kết c(x,y)
 - Băng thông, độ trễ, chi phí, mức độ tắc nghẽn...
- Giả thuật chọn đường: Xác định đường đi ngắn nhất giữa hai nút bất kỳ

Cây đường đi ngắn nhất - SPT

- SPT Shortest Path Tree
- Các cạnh xuất phát từ nút gốc và tới các lá
- Đường đi duy nhất từ nút gốc tới nút v, là đường đi ngắn nhất giữa nút gốc và nút v
- Mỗi nút sẽ có một SPT của riêng nút đó

- Tập trung
 - Thu thập thông tin vào một nút mạng
 - Sử dụng các giải thuật tìm đường đi trên đồ thị
 - Phân bổ bảng chọn đường từ nút trung tâm tới các nút
- Phân tán
 - Mỗi nút tự xây dựng bảng chọn đường riêng
 - Giao thức chọn đường: Link-state hoặc distancevector
 - Được sử dụng phổ biến trong thực tế

- Thông tin chọn đường là cần thiết để xây dựng bảng chọn đường
- Tập trung hay phân tán?
 - Tập trung:
 - Mỗi router có thông tin đầy đủ về trạng thái của mạng
 - Giải thuật dạng "link state"
 - Phân tán:
 - Các nút chỉ biết được trạng thái của liên kết vật lý tới nút kế bên
 - Liên tục lặp lại việc tính toán và trao đổi thông tin với nút kế bên
 - Giải thuật dạng "distance vector"
 - "Bạn của bạn cũng là bạn"

Giải thuật Dijkstra's

- Mỗi nút đều có sơ đồ và chi phí mỗi link
 - Quảng bá "Link-state"
 - Mỗi nút có cùng thông tin
- Tìm đường đi chi phí nhỏ nhất từ một nút ('nguồn') tới tất cả các nút khác
 - dùng để xây dựng bảng chọn đường

- G = (V, E): Đồ thị với tập đỉnh V và tập cạnh E
- c(x,y): chi phí của liên kết x tới y; = ∞ nếu không phải 2 nút kế nhau
- d(v): chi phí hiện thời của đường đi từ nút nguồn tới nút đích. v
- p(v): nút ngay trước nút v trên đường đi từ nguồn tới đích
- T: Tập các nút mà đường đi ngắn nhất đã được xác định

• Init():

```
Với mỗi nút v, d[v] = \infty, p[v] = NIL
d[s] = 0
```

 Improve(u,v), trong dó (u,v) u, v là một cạnh nào đó của G

```
if d[v] > d[u] + c(u,v) then d[v] = d[u] + c(u,v)p[v] = u
```

Dijsktra's Algorithm

```
    Init();
    T = Φ;
    Repeat
    u: u ∈ T | d(u) là bé nhất;
    T = T U {u};
    for all v ∈ neighbor(u) và v ∉ T
    update(u,v);
    Until T = V
```


Dijkstra's algorithm: Ví dụ

Step	Т	d(v),p(v)	d(w),p(w)	d(x),p(x)	d(y),p(y)	d(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2,u	3,y			4,y
3	uxyv 🕶		3,y			4,y
4	uxyvw 🕶					4,y
5	uxyvwz 🕶					

Giải thuật dạng distance-vector (1)

Phương trình Bellman-Ford (quy hoach động)

Định nghĩa

d_x(y) := chi phí của đường đi ngắn nhất từ x tới y

Ta có

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

cho tất cả các v là hàng xóm của x

Dễ thấy,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F eq. cho ta biết:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Nút nào làm giá trị trên nhỏ nhất → Lựa chọn là nút kế tiếp trong bảng chọn đường

ý tưởng cơ bản:

- DV: Vector khoảng cách, tạm coi là đường đi ngắn nhất của từ một nút tới những nút khác
- Mỗi nút định kỳ gửi DV của nó tới các nút bên cạnh
- Khi nút x nhận được 1 DV, nó sẽ cập nhật DV của nó qua pt Bellman-ford
- Với một số điều kiện, ước lượng D_x(y)
 sẽ hội tụ dần đến giá trị nhỏ nhất d_x(y)

Mỗi nút:

Chờ (Thay đổi trong DV của nút bên cạnh)

Tính lại ước lượng DV

Nếu DV thay đổi, *Báo* cho nút bên cạnh

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

<u>nút x</u>

chi phí tới

chi phí tới

		X	у	Z		
	X	0	2	7	$\overline{}$	
ć	У	∞ (∞		, 2,
—	Z	∞ (×	∞		+
t v						

$$D_{x}(z) = \min\{c(x,y) + D_{y}(z), c(x,z) + D_{z}(z)\}$$

$$= \min\{2+1, 7+0\} = 3$$

<u>nút y</u>

chi phí tới

	X	У	Z
Χ	8	∞	∞ /
у	2	0	1
7			

$$D_{x}(y) = \min\{c(x,y) + D_{y}(y), c(x,z) + D_{z}(y)\}$$

= \min\{2+0, 7+1\} = 2

 $D_{x}(z) = \min\{c(x,y) +$ $D_y(z)$, $c(x,z) + D_z(z)$ = min{2+1, 7+0} = 3

<u>nút x</u>

chi

X

Ζ

X

Ζ

chi phi tời	chi phi tới
x y z	x y z
0.2.7	v 0 2 3

chi phí tới

х у

2 0

 $\infty \infty$

Ζ

	X	у	Z	
X	0	2	7	

chi phí tới chi phí tới

ţ

<u>nút z</u>

ţ

chi phí tới

	on pin to							
	X	У	Z	/				
Х	8	∞	∞					
У	8	∞	∞	//				
Z	7	1	0	4				

chi phí tới

\bigwedge		X	У	Z	
4	X	0	2	7	
Ç	У	2	0	1	//
—	Z (3	1	0	\prec

chi phí tới

So sánh các giải thuật LS và DV

Thông điệp trao đổi

- LS: n nút, E cạnh, O(nE) thông điệp
- DV: Chỉ trao đổi giữa các hàng xóm
 - Thời gian hội tụ thay đổi

Tốc độ hội tụ

- LS: Thuật toán: O(n²) cần O(nE) thông điệp
- DV: Thay đổi

Sự chắc chắn: Giải sử một router hoạt động sai

<u>LS:</u>

- nút gửi các chi phí sai
- Mỗi nút tính riêng bảng chọn đường -> có vẻ chắc chắn hơn

DV:

- DV có thể bị gửi sai
- Mỗi nút tính toán dựa trên các nút khác
 - Lỗi bị lan truyền trong mạng

- Nguyên lý của bài toán chọn đường
- Tĩnh vs. động, tập trung vs. phân tán
- Link-state vs. distance-vector

Tuần tới: Các giao thức chọn đường trên Internet

- Chọn đường phân cấp
- RIP
- OSPF
- BGP