```
exercise2 (Score: 14.0 / 14.0)

1. Written response (Score: 3.0 / 3.0)

2. Test cell (Score: 1.0 / 1.0)

3. Test cell (Score: 1.0 / 1.0)

4. Test cell (Score: 2.0 / 2.0)

5. Test cell (Score: 3.0 / 3.0)

6. Test cell (Score: 1.0 / 1.0)
```

7. Test cell (Score: 3.0 / 3.0)

Lab 2

- 1. 提交作業之前,建議可以先點選上方工具列的Kernel,再選擇Restart & Run All,檢查一下是否程式跑起來都沒有問題,最後記得儲存。
- 2. 請先填上下方的姓名(name)及學號(stduent_id)再開始作答,例如:

```
name = "我的名字"
student_id= "B06201000"
```

- 3. 四個求根演算法的實作可以參考lab-2 (https://yuanyuyuan.github.io/itcm/lab-2.html),裡面有教學影片也有範例程式可以套用。
- 4. Deadline: 10/9(Wed.)

```
In [1]:
```

```
name = "陳彥宇"
student id = "B05303134"
```

Exercise 2

Kepler's equation

In celestial mechanics, Kepler's equation

$$M = E - e \sin(E)$$

relates the mean anomaly M to the eccentric anomaly E of an elliptical orbit of eccentricity e, where 0 < e < 1, see <u>Wiki website</u> (https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion) for the details.

1. Prove that fixed-point iteration using the iteration function

$$g(E) = M + e \sin(E)$$

is convergent locally.

[Hint: You may use Ostrowski's Theorem mentioned in the lecture note.]

proof.

Since 0 < e < 1, $|g'(E)| = e |\cos(E)| < 1$. Thus, because of the smoothness of g, using Ostrowski's theorem, x_n converges to α , where α is the fixed point of g.

2. Use the fixed-point iteration scheme in "Q.1" to solve Kepler's equation for the eccentric anomaly E corresponding to a mean anomaly $M=\frac{2\pi}{3}$ and an eccentricity e=0.5

Part 0. Import libraries

```
In [2]:
```

```
import matplotlib.pyplot as plt
import numpy as np
```

Part 1. Define the fixed point function

In [3]:

```
(Top)
def fixed_point(
    func,
    x 0.
    tolerance=1e-7,
    max iterations=5,
    report_history=False,
):
    '''Approximate solution of f(x)=0 on interval [a,b] by the secant method.
    Parameters
    func : function
       The target function.
    x_0 : float
        Initial guess point for a solution f(x)=0.
    tolerance: float
        One of the termination conditions. Error tolerance.
    max iterations : (positive) integer
        One of the termination conditions. The amount of iterations allowed.
    report history: bool
        Whether to return history.
    Returns
    solution : float
       Approximation of the root.
       Return history of the solving process if report history is True.
    # 請參考 hands-on 的 fixed point method
    # ===== 請實做程式 =====
    #####################################
    ### Answer the code here
    # Set the initial condition
    x n = x 0
    num_iterations = 0
    ### End answer
    ###################################
    # history of solving process
    if report history:
        history = {'estimation': [], 'error': []}
```

while True: ################################### ### Answer the code here # Find the value of f(x n) $f_of_x_n = func(x n)$ # Evaluate the error error = abs(f of x n - x n)### End answer ################################### if report_history: history['estimation'].append(x n) history['error'].append(error) #################################### ### Answer the code here # Satisfy the criterion and stop if error < tolerance:</pre> print('Found solution after', num iterations, 'iterations.') if report history: return x_n, history else: return x_n # Check the number of iterations if num iterations < max iterations:</pre> num iterations += 1# Find the next approximation solution x n = f of x n# Satisfy the criterion and stop else: print('Terminate since reached the maximum iterations.') if report history: return x n, history else: return x_n ### End answer #################################### # -----

Test your implementaion with the assertion below.

In [4]:

Found solution after 18 iterations.

Part 2. Assign values to variables anomaly mean "M" and eccentricity "e".

$$M = \frac{2\pi}{3} \quad \text{and} \quad e = 0.5$$

```
In [5]:
```

In [6]:

```
M_and_e

print('M =', M)
print('e =', e)

### BEGIN HIDDEN TESTS
assert M == 2*np.pi/3, 'M is wrong!'
assert e == 0.5, 'e is wrong!'
### END HIDDEN TESTS
```

```
M = 2.0943951023931953
e = 0.5
```

Part 3. Define the function of Kepler's equation

Recall Kepler's equation:

$$M=E-e\sin(E).$$

So we let the function $f(E) = E - e \sin(E) - M$, then

$$g(E) = E - f(E) = M + e\sin(E)$$

For the instance:

If we want to implement "sin(x)", we will call np.sin(x) with numpy in python.

In [7]:

```
In [8]:
```

```
test_f_and_g

print('M =', M)

# f(0) = -M, g(0) = M
print('f(0) =', f(0))
print('g(0) =', g(0))

### BEGIN HIDDEN TESTS
from random import random
rd_number = random()
assert f(rd_number) == rd_number - 0.5*np.sin(rd_number) - 2*np.pi/3, 'f is wrong!'
assert g(rd_number) == 2*np.pi/3 + 0.5*np.sin(rd_number), 'g is wrong!'
### END HIDDEN TESTS
```

```
M = 2.0943951023931953

f(0) = -2.0943951023931953

g(0) = 2.0943951023931953
```

Part 4. Plot the function f(E) and g(E)

In [9]:

```
fig, ax = plt.subplots(figsize=(16, 4))
search_range = np.arange(-10, 10, 0.01)
ax.plot(search_range, f(search_range))
ax.set_title(r'$f(E) = E - e\,\sin(E) - M$')
ax.grid(True)
ax.axhline(y=0)
ax.axvline(x=0)
plt.show()
```


In [10]:

```
fig, ax = plt.subplots(figsize=(16, 4))
search_range = np.arange(-10, 10, 0.01)
ax.plot(search_range, g(search_range))
ax.set_title(r'$g(E) = M + e\,\sin(E)$')
ax.grid(True)
ax.axhline(y=0)
plt.ylim(1,3)
plt.show()
```


Part 5. Find the solution of "E"

```
In [11]:
```

Found solution after 15 iterations.

In [12]:

```
the_root_of_E

print('My estimation of root:', root)

### BEGIN HIDDEN TESTS
assert abs(root - 2.425) < 0.002, 'root is wrong!'
### END HIDDEN TESTS</pre>
```

My estimation of root: 2.4234054245671937

3. An " exact " formula for E is known:

$$E = M + 2\sum_{m=1}^{\infty} \frac{1}{m} J_m(me) \sin(mM);$$

where $J_m(x)$ is the Bessel function of the first kind of order m.

Use this formula to compute E. How many terms are needed to produce the value obtained in "Q.2" until convergence?

Part 0. Import package

```
In [13]:
```

```
from scipy.special import jn # Bessel function
```

Part 1. Define the function

For the convenience, we define the function h(m) as

$$h(m) \triangleq \frac{2}{m} J_m(me) \sin(mM)$$

If we want to implement " **Bessel function** " $J_m(x)$, we can call jn(m,x) in Python.

In [14]:

```
In [15]:
```

h

test the function of h
print('h(1) =', h(1))
assert round(h(1), 5) == 0.41962

BEGIN HIDDEN TESTS
from random import random
rd_number = random()
assert h(rd_number) == 2*jn(rd_number, rd_number*0.5)*np.sin(rd_number*(2*np.pi/3))/rd_number, 'h is wron
g!'
END HIDDEN TESTS

```
h(1) = 0.41962127776423175
```

Part 2. Find how many terms we need to achieve the result obtained Q.2 in a tolerance 10^{-7} .

That is to find _numterms such that

$$\left| \text{ root } - \left(M + \sum_{k=1}^{\text{num_terms}} h(k) \right) \right| < 10^{-7}$$

For example, the following cell shows the implmentation with only 1 term.

In [16]:

```
LHS = root
RHS = M + h(1)
error = abs(LHS-RHS)
print('Left hand side is the estimation of root by the fixed-point method:', LHS)
print('Right hand side is the approximation by the formula in only 1 term:', RHS)
print('The error between LHS and RHS:', error)
```

Left hand side is the estimation of root by the fixed-point method: 2.4234054245671937 Right hand side is the approximation by the formula in only 1 term: 2.514016380157427 The error between LHS and RHS: 0.09061095559023347

In [17]:

```
In [18]:
```

```
number_of_term

print('Number of terms to approximate:', num_terms)

### BEGIN HIDDEN TESTS
assert num_terms > 20 , '%d is too few!' % num_terms
### END HIDDEN TESTS
```

Number of terms to approximate: 23