

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по самому важному предмету

«ТеХ-анье теоремки»

Студент 315 группы И.Р. Удовиченко

Руководитель этого безобразия к.ф.-м.н., доцент П. А. Точилин

Формула Остроградского – Гаусса

Пусть D — односвязная область в E^3 (т. е. для любой кусочно-гладкой замкнутой кривой C можно указать ориентированную кусочно-гладкую поверхность G, расположенную в D, для которой C является границей). Пусть $S = \partial D$ — граница этой области, удовлетворяющая условиям:

- 1. Поверхность S кусочно-гладкая двусторонняя полная ограниченная замкнутая и без особых точек.
- 2. Прямоугольную декартову систему координат (далее Π ДСК) можно выбрать так, что для каждой из осей координат любая прямая, параллельная этой оси, будет пересекать поверхность S не более чем в двух точках.

Пусть \vec{n} — единичный вектор внешней нормали к S. Справедлива следующая теорема.

Теорема 1 (формула Остроградского –Гаусса). Пусть \vec{a} — векторное поле, дифференцируемое в области D, удовлетворяющей условиям 1 и 2, и такое что производная по любому направлению непрерывна в $D \cup \partial D = \overline{D}$. Тогда справедлива формула

$$\iiint_{\overline{D}} \vec{a} \, dv = \oiint_{\partial D} \langle \vec{a}, \vec{n} \rangle \, ds \,. \tag{1}$$

$$\underset{\partial unmerpan \, om}{\underbrace{\bigcup_{\partial D} nomo\kappa \, nons}} \underset{vepe3}{\underbrace{\bigcup_{\partial D} nomo\kappa \, nons}}$$

Коротко: интеграл от дивергенции равен потоку.

Доказательство. Все входящие в формулу (1) функции непрерывны, поэтому интегралы в обеих частях равенства существуют.

Заметим, что формула (1) инвариантна относительно выбора ПДСК, так как инвариантно все, что входит в эту формулу. Поэтому достаточно доказать теорему для какой-то одной ПДСК. Выберем ПДСК так, чтобы выполнялось условие 2.

выполнялось условие 2.
Пусть
$$\vec{a} = (P, Q, R)^T$$
, $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)^T$. Тогда, учитывая, что $\cos \alpha \, ds = dy dz$, $\cos \beta \, ds = dz dx$, $\cos \gamma \, ds = dx dy$,

получим

Рис. 1: К доказательству теоремы.

$$\iiint_{\overline{D}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz =$$

$$= \oiint_{\partial D} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) ds =$$

$$= \oiint_{\partial D} \left(P dy dz + Q dz dx + R dx dy \right). \quad (1')$$

Теперь покажем, что

$$I = \iiint_{\overline{D}} \frac{\partial R}{\partial x} dx dy dz = \oiint_{\partial D} R dx dy,$$

для остальных двух пар интегралов показывается аналогично. Обозначим через D' проекцию области D на плоскость Oxy. Через граничные точки D' проведем прямые, параллельные оси Oz. Каждая из этих прямых пересекается с ∂D ровно в одной точке. Множество всех таких точек разделяет ∂D на 2 части, которые мы обозначим через S_1 и S_2 (см. рис. 1). Если мы проведем прямую из внутренности D', параллельную Oz, то она пересечет поверхность в 2 точках: $(x, y, z_1(x, y)) \in S_1$ и

 $(x, y, z_2(x, y)) \in S_2$, причем $z_1(x, y) \geqslant z_2(x, y)$. Так как граница области кусочно-гладкая, то $z_1(x, y)$ и $z_2(x, y)$ — кусочно-гладкие функции в D'. По формуле сведения тройного интеграла к повторному получаем:

$$I = \iint\limits_{D'} \left[\int\limits_{z_2(x,y)}^{z_1(x,y)} \frac{\partial R(x,y,z)}{\partial z} \, dz \right] dxdy = \iint\limits_{D'} R(x,y,z_1(x,y)) \, dxdy -$$

$$- \iint\limits_{D'} R(x,y,z_2(x,y)) = \iint\limits_{S_1} R(x,y,z) \, dxdy +$$

$$+ \iint\limits_{S_2} R(x,y,z) \, dxdy = \iint\limits_{S} R(x,y,z) \, dx.$$

Здесь мы воспользовались тем, что $S = S_1 \cup S_2$ и соотношением

$$-\iint_{D'} R(x, y, z_2(x, y)) = \iint_{S_2} R(x, y, z) dxdy = \iint_{S_2} R\cos\gamma ds,$$

справедливым в силу того, что внешняя нормаль \vec{n} к поверхности S_2 образует тупой угол с осью Oz, поэтому $\cos \gamma < 0$.

4