The-Elements-of-Statistical-Learning 学习笔记

李奥林

mrliaolin@outlook.com

目录

第一章	Model Inference and Averaging	1	2.1	Generalized Additive Models	5	
1.1	Introduction	1	2.2	Tree-Based Methods		
1.2	The Bootstrap and Maximum Likelihood Methods			2.2.1 Background	5	
				2.2.2 Regression Trees		
	1.2.1 A Smoothing Example .	1		2.2.3 Classification Trees	5	
	1.2.2 Maximum Likelihood			2.2.4 Other issues	5	
	Inference	1		2.2.5 Spam Example(Continued)	6	
	1.2.3 Bootstrap versus Maxi-		2.3	Missing Data	6	
	mum Likelihood	1	** — *			
1.3	Bayesian Methods		第三章	Boosting and Additive Trees	7	
1.4			3.1	Boosting Methods	7	
	Bootstrap and Bayesian Inference	2		3.1.1 Outline of This Chapter	7	
1.5	The EM Algorithm	2	3.2	Boosting Fits an Additive Model	7	
	1.5.1 Two-Component Mix-		3.3	Forward Stagewise Additive		
	ture Model	2		Modeling	7	
	1.5.2 The EM Algorithm in		3.4	Exponential Loss and AdaBoost	7	
	General	2	3.5	Why Exponential Loss?	7	
	1.5.3 EM as a Maximization-		3.6	Loss Functions and Roubustness	7	
	Maximization Procedure	3	3.7	'Off-the-Shelf' Procedures for		
1.6	MCMC for Sampling from the Posterior			Data Mining		
			3.8			
1.7	Bagging(装袋)	3	3.9	8	8	
	1.7.1 Example: Trees with		3.10	Numerical Optimization via		
	Simulated Data	3		8	8	
1.8	Model Averaging and Stacking .	4		1	8	
1.9	Stochastic Search: Bumping			C	8	
£				3.10.3 Implementation of		
	育二章 Additive Models, Trees, and Re-			8	8 9	
lated Methods		5	3.11	Right-Sized Trees for Boosting .		

目录

3.12	Regularization		9	3.13.2	Partial	Dependence	
3.13	3.12.1	Shrinkage	9		Plots		9
	3.12.2	Subsampling	9	3.14 illust	llustrations		
	Interpretation						
	3.13.1	Relative Importance of		3.14.1	Californi	ia Housing	9
		Predictor Variables	9	3.14.2	New Zea	land Fish	ç

iv

第一章

Model Inference and Averaging

本章为《The elements of Statistical Learning》第8章的笔记。

1.1 Introduction

1.2 The Bootstrap and Maximum Likelihood Methods

1.2.1 A Smoothing Example

自助法提供了一种评估不确定性的直接计算方法(置信区间)。

- 非参数自助法 (与最小二乘法的置信区间类似)
- 参数自助法(对每个预测的 y 值加一个高斯噪声,参数为噪声的方差,此时估计出的函数的置信区间与最小二乘法的完全相同)

1.2.2 Maximum Likelihood Inference

参数自助法与最小二乘法是一致的,因为模型具有加法高斯误差。一般地,参数自助 法并非与最小二乘法一致,而是与极大似然一致。

1.2.3 Bootstrap versus Maximum Likelihood

1.3 Bayesian Methods

在用于推理的贝叶斯方法中, $\Pr(\mathbf{Z}|\theta)$ 是采样模型,先验分布是 $\Pr(\theta)$,反映我们看到数据之前的关于 θ 的知识,后验分布为 $\Pr(\theta|\mathbf{Z})$ 是我们看到数据之后关于 θ 更新的知识。

与标准的"频率论"方法的区别是使用先验分布来表达看到数据之前的不确定性,并 在看到数据之后允许残余的不确定性以后验分布形式来表示。

1.4 Relationship Between the Bootstrap and Bayesian Inference

自助法分布为我们的参数提供了一个(近似的)非参数的、无信息的后验分布。

1.5 The EM Algorithm

1.5.1 Two-Component Mixture Model

1.5.2 The EM Algorithm in General

公式 $E(\ell_0(\theta'; \mathbf{T})|\mathbf{Z}, \hat{\theta}^{(j)})$ 的定义是

$$E(\ell_0(\theta'; \mathbf{T})|\mathbf{Z}, \hat{\theta}^{(j)}) = \sum_{\mathbf{Z}^m} \ell_0(\theta'; \mathbf{T}) \Pr(\mathbf{Z}^m | \mathbf{Z}, \hat{\theta}^{(j)})$$
(1.1)

根据条件概率的链式法则

$$Pr(x_2, ..., x_n | x_1) = \prod_{i=2}^n Pr(x_i | x_1, ..., x_{i-1})$$
(1.2)

得 $Pr(\mathbf{Z}^m, \mathbf{Z}|\theta') = Pr(\mathbf{Z}^m|\theta') Pr(\mathbf{Z}|\mathbf{Z}^m, \theta')$,即

$$Pr(\mathbf{Z}|\theta') = \frac{Pr(\mathbf{Z}^m, \mathbf{Z}|\theta')}{Pr(\mathbf{Z}^m|\mathbf{Z}, \theta')}$$
(1.3)

用对数似然函数表示, $\ell(\theta'; \mathbf{Z}) = \ell_0(\theta'; \mathbf{Z}^m, \mathbf{Z}) - \ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z})$,其中 ℓ_1 基于条件概率密度 $\Pr(\mathbf{Z}^m | \mathbf{Z}, \theta')$ 。关于参数 θ 支配的 $\mathbf{T} | \mathbf{Z}$ 取条件期望,得

$$\ell(\theta'; \mathbf{Z}) = \mathbf{E}[\ell_0(\theta'; \mathbf{T}) | \mathbf{Z}, \theta] - \mathbf{E}[\ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z}) | \mathbf{Z}, \theta]$$

$$\equiv Q(\theta', \theta) - R(\theta', \theta)$$
(1.4)

其中, $R(\theta',\theta)$ 的定义是

$$R(\theta', \theta) = \sum_{\mathbf{Z}^m} \ell_1(\theta'; \mathbf{Z}^m | \mathbf{Z}) \Pr(\mathbf{Z}^m | \mathbf{Z}, \theta)$$
(1.5)

is the expectation of a log-likelihood of a density(indexed by θ'), with respect to the same density indexed by θ , 当 $\theta' = \theta$ 时,作为 θ' 的函数取最大值。因而,当极大化 $Q(\theta',\theta)$ 时,可以得出

$$\ell(\theta'; Z) - \ell(\theta; Z) = [Q(\theta', \theta) - Q(\theta, \theta)] - [R(\theta', \theta) - R(\theta, \theta)]$$

$$\geq 0$$
(1.6)

1.5.3 EM as a Maximization-Maximization Procedure

One does not need to maximize with respect to all of the latent data parameters at once, but could instead maximize over one of them at a time, 而可以在 M 步轮流一次极大化它们中的一个。

1.6 MCMC for Sampling from the Posterior

MCMC(Markov chain Monte Carlo) 马尔科夫链蒙特卡洛方法。

1.7 Bagging(装袋)

Bagging(Bootstrap aggregation) 对自助法样本集上的预测求平均,从而降低方差。真实装袋估计的定义是 $\mathbf{E}_{\hat{p}}\hat{f}^*(x)$,其中 \hat{p} 表示经验分布,即从实际总体中而不是数据中抽取样本。

仅当原来的估计是非线性的,或者是数据的自适应函数时,装袋估计与 $\hat{f}(x)$ 不同。 对于数模型来说,类概率估计为在末端节点中的类比例,Bagging 平均类概率通常可 降低方差。

1.7.1 Example: Trees with Simulated Data

由于预测子的相关性,这些树具有较高的方差。Bagging 成功地光滑了这种方差,从而降低了检验误差。

Bagging 可以降低均方误差,因为平均可以降低不稳定过程(如树)的方差,而保持偏倚不变。参考知乎:为什么说 bagging 是减少 variance,而 boosting 是减少 bias,由于子集样本集的相似性以及使用的是同种模型,因此各模型有近似相等的 bias 和 variance。由于 $E[\sum x_i/n] = E[x_i]$,以 bagging 后的 bias 和单个子模型的接近,一般来说不能显著降低 bias。另一方面,若各子模型独立, $var(\sum x_i/n) = var(x_i)/n$,此时可以显著降低 variance。

训练样本是从P分布中抽取的不相关的样本(不重复),而自助样本也是从P中采样得到的。

当 bag 一个模型时,模型中任何简单结构都将失去。如 bagged 树已不再是树,对于模型的解释,这显然是一个缺点。

由 bag 计算的期望类概率不能在任何一个 single replication 上实现,在这种其意义上, bag 一定程度上增大了各基分类器的模型空间。对于该例子 (single split 分类器 bag 拟合双 向拟合 $x_1 + x_2 = 1$) 或者其它例子,模型需要放大时,bag 没有帮助。

1.8 Model Averaging and Stacking

从非参数的贝叶斯角度分析,估计子的自助法值可看作对应参数的近似后验值,从这个角度看,bagged 值是一个后验贝叶斯均值 ($\mathbf{E}(Y|X=x)$),因而可以减小均方误差。训练样本的估计对应于后验众数 (结构经验损失?)。

有时直接取均值的方法不能成功,原因是没考虑模型的复杂性,即没将模型置于相同的的立足点。

Stacked generalization 或者 stacking,则可以解决该问题。通过使用交叉验证预测 $\hat{f}_m^{-i}(x)$,可以避免将不合理的高权值赋予具有高复杂度的模型。通过限定权值非负并且和为 1 可以得到更好的结果。stacking 通常将导致更好的预测,但可解释性不如从 M 个模型中选取一个好。

1.9 Stochastic Search: Bumping

第二章

Additive Models, Trees, and Related Methods

2.1 Generalized Additive Models

- 2.2 Tree-Based Methods
- 2.2.1 Background
- 2.2.2 Regression Trees
- 2.2.3 Classification Trees

不同的节点非纯度度量 $Q_m(T)$,包括交叉熵或者 deviance(散离)。 交叉熵和基尼指数对结点概率的改变更加敏感,相对于错误率来说。

2.2.4 Other issues

Categorical Predictors

The Loss Matrix

观测的误分类后果对于某些类要比其他类严重。为了把损失引入到建模过程中,可以把 Gini 指数修改成 $\sum_{k \neq k'} L_{kk'} \hat{p}_{mk} \hat{p}_{mk'}$ 。该方法对多分类比较有效,对于二分类,系数不起作用,更好的办法是给 k 类中的样本加权 $L_{kk'}$ 。对于多分类来说,仅当 $L_{kk'}$ 与 k' 无关时才能使用。观测加权的作用是改变类的先验概率。

Missing Predictor Values

Why Binary Splits

多路分裂会很快地把数据分裂成碎片,导致下一层的数据不足。而且多路分裂也可以 由一系列二叉分裂组成。

Other Tree-Building Procedures

CART(classification and regression tree)

Linear Combination Splits

线性组合分裂可能增强树的预测能力,但可能破坏其可解释性。在计算方面,分裂点 搜索的离散性阻碍了权值光滑优化的使用。

Instability of Trees

树的方差较大,数据的一个较小变化将导致一系列完全不同的分裂,使得解释有些不稳定。这种不稳定性的主要原因是过程的分层本性,顶层分裂中的错误被传播到下面的所有分裂。

Lack of Smoothness

可以看到预测面缺乏光滑性 (分层)。在 0/1 损失的分类中,因为类概率估计中的偏倚的影响有限,因而不会产生太大伤害。然而,可能降低回归处理的性能。

Difficulty in Capturing Additive Structure

2.2.5 Spam Example(Continued)

交叉验证误差率由一系列 α 值来标引,而不是树的大小,因为对于同一个 α ,不同折生成的树可能大小不一样。(图 9.4 的交叉验证结果只被 α 值索引,测试结果既可被 α ,又可被剪枝后的树的大小索引)

医学分类问题中,术语敏感性 (sensitivity)(1 预测为 1)和特效性 (specificity)(0 预测为 0)用来刻画规则。

更好的方法不是仅在节点中修改贝叶斯规则(更改损失权重),而是在树增长过程中 考虑不相等损失。

ROC 曲线下面的面积也被称为 c-statistic, 当考虑一个额外的预测子加在标准模型上的影响时, 其可能不是一个合理的度量。新的预测子可能在模型散离度的改变上影响很大, 而在 c-statistic 上只会小量的增大。另一方面, c-statistic 在分析额外预测子对独立样本的分类的改变上有用。

2.3 Missing Data

第三章

Boosting and Additive Trees

3.1 Boosting Methods

- 3.1.1 Outline of This Chapter
- 3.2 Boosting Fits an Additive Model
- 3.3 Forward Stagewise Additive Modeling

3.4 Exponential Loss and AdaBoost

训练集误分类率大约在 250 次迭代后平稳下来,但是指数损失保持递减,因为它对估计类概率的变化更为敏感。

3.5 Why Exponential Loss?

对于加法建模,指数损失的主要吸引力在于计算。它引出简单的模再加权 AdaBoost 算法。

定义 $Y' = (Y+1)/2 \in \{0,1\}$, 将 $\{-1,1\}$ 转换成 $\{0,1\}$ 。

3.6 Loss Functions and Roubustness

尽管应用于总体联合分布时指数损失和二项式散离产生相同的解,但都是 population (总体) 意义上的,对于有穷数据集就不相同了。

Robust Loss Functions for Classification

在训练过程中,指数损失标准主要影响具有大的负边缘值的观测。二项式散离对这样的观测的影响相对较小,并更均匀地对所有数据散步这种影响。因此,在噪声处理中,它

的健壮性更强。

Robust Loss Functions for Regression

在拟合过程中,有限样本上的平方误差损失更重视具有较大绝对残差的观测。这样,它极其缺乏健壮性,而且对于长尾误差分布,特别是对于严重的误差度量值("异常值"),它的性能会大幅度下降。

3.7 'Off-the-Shelf' Procedures for Data Mining

3.8 Example: Spam Data

3.9 Boosting Trees

提到的式子 (10.27) 对 (10.26) 的近似、是指 \tilde{L} 对 L 的近似?

3.10 Numerical Optimization via Gradient Boosting

3.10.1 Steepest Descent

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$
(3.1)

最速下降可以看作一个非常贪心的策略,因为在方向 $-\mathbf{g}_m$, $L(\mathbf{f})$ 在 $\mathbf{f} = \mathbf{f}_{m-1}$ 上下降最快。

3.10.2 Gradient Boosting

逐步前向提升也是一种非常贪心的策略,树预测 $T(x_i; \Theta_m)$ 类似于负梯度的分量。两者之间的主要区别是树分量 $\mathbf{t}_m = (T(x_1; \Theta_m), \cdots, T(x_N; \Theta_m))$ 不是独立的,它们被限制为一个 J_m 端点决策树的预测,而负梯度是无约束的最大下降方向。

使用梯度提升(利用负梯度拟合树),而不是残差进行拟合,主要原因是梯度提升可以针对特定的损失函数。

3.10.3 Implementation of Gradient Boosting

最原始的实现为 MART(multiple additive regression trees),即多重加法回归树。

3.11 Right-Sized Trees for Boosting

对于很多实际当中遇到的问题, 低阶交互效应趋于占支配地位。 基于树逼近的交互效应受树大小的限制。

3.12 Regularization

- 3.12.1 Shrinkage
- 3.12.2 Subsampling

3.13 Interpretation

3.13.1 Relative Importance of Predictor Variables

3.13.2 Partial Dependence Plots

f(X) 对 X_S 的偏依赖的定义是:

$$f_S(X_S) = \mathbf{E}_{X_C} f(X_S, X_C) \tag{3.2}$$

它并不是忽略 X_C 的作用,而是考虑 X_C 的平均作用后的结果。

条件期望:

$$E(f(X_S, X_C)|X_S) = \sum_{X_C} f(X_S, X_C) \Pr(X_c|X_S)$$
(3.3)

它是仅用 X_S 的函数对 f(X) 的最佳最小二乘方逼近。

3.14 illustrations

3.14.1 California Housing

3.14.2 New Zealand Fish

抓住的尺寸大小有过多的 0,针对此有 zero-inflated Poisson 模型,一个更简单的方法是:

$$E(Y|X) = E(Y|Y > 0, X) \cdot \Pr(Y > 0|X)$$
(3.4)