Universidad Centroccidental "Lisandro Alvarado" Decanato de Ciencias y Tecnología

Unidad I: Introducción a la Programación

Tema 3: Programación

Coordinación de Introducción a la Computación Prof. Gisela Parra

Contenido:

El Software.

- Definición
- Clasificación según su función:
 - ✓ Sistemas Operativos.
 - ✓ Programas de Aplicación.
 - ✓ Lenguajes de Programación.
- Tipos de Lenguajes de Programación:
 - ✓ De Máquina.
 - ✓ De Bajo Nivel Ensamblador.
 - ✓ De Alto Nivel Intérpretes/Compilador.
- Pasos para la Ejecución de un Programa.
- > Interacción Programa-Computador
- Interacción Humano Computador
- Instrucciones de Programas y el CPU
- Los Datos en la memoria RAM

Contenido:

2. Algoritmos.

- Definición y Características.
- **Tipos:**
 - ✓ Lenguaje Natural.
 - ✓ Seudolenguaje.
 - ✓ Lenguaje Formal.
- Ejemplos de Algoritmos en Lenguaje Natural como solución a Problemas Cotidianos.

3. Programación.

- > Definición.
- Símbolos básicos de carácter múltiple
- > Tipos de Datos.
- **Elementos básicos**
 - ✓ Identificadores
- ✓ Constantes
 - ✓ Variables
- Operadores y su Orden de Evaluación
- Expresiones
 - ✓ Aritméticas
 - √ Lógicas
- Sistemas Numéricos
- Proposiciones
 - ✓ Asignación y almacenamiento
 - ✓ De Bifurcación y Toma de decisiones
 - ✓ Programación Iterativa

Unidad I :Introducción a la Computación.

Definición:

- Es el proceso de diseñar, codificar, depurar y mantener el código fuente de programas computacionales. El código fuente es escrito en un lenguaje de programación.
- El propósito de la programación es crear programas que exhiban un comportamiento deseado.
- El proceso de escribir código requiere frecuentemente conocimientos en varias áreas distintas, además del dominio del lenguaje a utilizar, algoritmos especializados y lógica formal.

Símbolos básicos de Carácter Múltiple

Operaciones Básicas Lectura / Escritura

Entrada:

leer identificador

Ejemplo:

leer nota

Salida:

escribir "Mensaje" **escribir** Identificador

Ejemplo:

escribir "La nota es:" escribir nota

Ó

escribir "La nota es: ", nota

Unidad I :Introducción a la Computación.

Operaciones Básicas Asignación

Formato:

Identificador2 = Identificador1

Ejemplos:

nombreAlumno = nombre Se asigna el contenido de la variable nombre a la variable nombreAlumno

Identificador = valor Ejemplo:

nota = 20

Se asigna el valor 20 a la variable Nota

area = lado*lado

Unidad I :Introducción a la Computación.

Tipos de Datos:

entero: Números sin punto decimal.

Ejemplos: 234 567 100

real: Contienen punto decimal.

Ejemplos: 234.78 567.56 100.12

alfanumérico: Cualquier valor contenido en la tabla ASCII

ó combinación de letras y números.

Ejemplos: José, @gmail.com, #EstudianteUCLA,

V-12345678

lógico: verdadero, falso

Ejemplo: True, False

3. Programación Dato e Información

Elementos Básicos:

Identificador

Dato Variable

Dato e Información:

Dato Constante

Dato	Información
 Representación Simbólica No tienen sentido semántico No transmiten Mensaje Describen situaciones, hechos 	 Conjunto de Datos procesados Conjunto de Datos organizados Tienen un significado Transmiten un mensaje Permite la toma de decisiones Favorece a la resolución de problemas Incrementa el conocimiento
Ejemplo: 18	Ejemplo: 18 es la nota obtenida en el primer parcial de Cálculo.

Unidad I :Introducción a la Computación.

Identificador

- Palabra definida por el usuario para denotar cualquier dato o elemento de un algoritmo, se utiliza para referenciar cualquier dirección de memoria donde se van a almacenar los datos.
- El identificador de una variable debe contener la primera letra en minúscula y si es compuesto por dos palabras la inicial de la segunda palabra se indica en mayúscula, este <u>tipo de notación es denominado</u> <u>dromedaryCase.</u> En caso de constantes se indica todo el nombre en mayúscula.

Reglas para los Identificadores

- Debe comenzar por una letra en minúscula, tal como lo expresa la notación dromedaryCase.
- Puede ser combinación de letras y dígitos
- No debe llevar espacios en blanco
- No se debe utilizar los operadores aritméticos *,-,+,/,%, ni palabras reservadas.
- No deben tener el mismo nombre que otras variables cuyas declaraciones aparezcan en el mismo ámbito.
- Usar nombres legibles y referentes a lo que se va a utilizar

Dato Variable

El contenido cambia, se modifica o transforma medida que se ejecuta un programa.

Ejemplos:

entero numeroHijos

real sueldo, promedio

lógico encontrado

alfanum cedulaEmpleado

Dato Constante

El valor no se modifica durante toda la ejecución del programa.

Formato:

const tipo NOMBRE = valor

Ejemplos:

```
const real PI = 3.1416
const entero MESES = 12
```

Operadores y su Orden de Evaluación

Expresiones Aritméticas: Son expresiones o fórmulas que se plantean para lograr encontrar la solución de un problema matemático.

Operadores y Significado:

OPERADORES ARITMETICOS						
Operador	Descripción	Ejemplo	Resultado			
+	Suma	c=3+5	c=8			
8	Resta	c = 4 - 2	c = 2			
-	Negación	c = -7	c = -7			
	Multiplicación	c=3 * 6	c = 18			
**	Potenciación	c = 2 ** 3	c = 8			
1	División	c=7.5/2	c = 3.75			
//	División entera	c=7.5//2	c = 3.0			
%	Módulo	c=8%3	c=2			

Las expresiones aritméticas son evaluadas de acuerdo a la prioridad

de sus operadores:

Prioridad	Orden de evaluación
1. ()	
2.*/,%	Lo primero que aparezca de izquierda a derecha
3. +,-	Lo primero que aparezca de izquierda a derecha

Determinar el valor de las siguientes expresiones aritméticas:

Actividad Propuesta

Determinar el valor de las siguientes expresiones aritméticas:

- a) (4+40/5)%3
- b) 13-(26+2*5)/4%3
- c) 3*10+4*(8+4*7-10*3)/6
- d) 10%5
- e) 6+2*(9+3)/3-3%2
- f) (4+40/5)%3
- g) 13-(26+2*5)/4%3

Linealidad en las Expresiones Aritméticas

Toda expresión algebraica debe ser representada en forma lineal para ser procesada en un lenguaje de programación

Ejemplo:

$$\frac{3x+y}{z}=(3*x+y)/z$$

Expresiones Lógicas

Las expresiones lógicas son operaciones que dan como resultado dos posibles valores falso (F) o verdadero (V). Los operadores lógicos básicos son NOT (no), AND (y) y OR (o)

N	OT (~)			AND (^)			OR	
а	~a	а	b	a AND b	а	b	a OR b	
F	V	F	F	F	F	F	F	
V	F	F	V	F	F	٧	V	
		V	F	F	٧	F	V	
		V	V	V	٧	٧	V	

$$(A-1) AND (M \le 1)OR(C == 0)$$

 $(A > B)OR(F! = (C+3))$

Prioridad de los Operadores Lógicos y Relacionales

Al igual que los operadores aritméticos, los operadores lógicos y relacionales presentan un orden de prioridad, la siguiente tablea resume dicho orden

Prioridad	Operación		
1	<, >, <=, >=, ==, !=		
2	NOT		
3	AND		
4	OR		

$$(A! = 1) AND (M \le 1)AND ((M >= 0)OR NOT (C == 1))$$
$$((A > B)OR(F! = 1))AND (M < N)$$
$$(1 > 0)OR(-3 <= -5)AND(-5 > -1)AND (100 == 1000)OR (1! = 0)$$

Sistemas Numéricos:

Un sistema numérico es un conjunto de reglas que permiten representar un número con una cantidad finita de símbolos. El número de símbolos que utiliza un sistema numérico se denomina base.

Sistema Numérico Decimal:

Base = 10

Compuesto de 10 dígitos (0 al 9)

Sistema Binario:

Base = 2

Compuesto por 2 dígitos(0 y 1)

Sistemas Numéricos

Conversión de Binario a Decimal

Se enumeran las posiciones del número binario de derecha a izquierda comenzando desde 0. El resultado se obtiene multiplicando el digito binario por la base del sistema elevado a la posición en la que se encuentra.

 $(0100\ 0000)_2 = @$ Unidad I :Introducción a la Computación.

Sistema Numérico Binario:

Conversión de Decimal a Binario

Para obtener el equivalente se divide sucesivamente entre 2 hasta que el cociente sea 1. El número binario equivalente se forma tomando el último cociente y todos los residuos obtenidos, desde el último al primero.

Sistema Numérico Binario

Realizar las siguientes conversiones:

a.
$$(38)_{10} = (?)_2$$

$$(38)_{10} = (0010\ 0110)_2$$

Sistema Numérico Binario

Realizar las siguientes conversiones:

b.
$$(00100101)_2 = (?)_{10}$$

Sistema Numérico Binario

Realizar las siguientes conversiones:

b.
$$(00100101)_2 = (?)_{10}$$

Ejercicios Propuestos

Convertir al sistema que se le indica:

- a. (67)10 = (?)2
- b. (112)10 = (?)2
- c. (38)10 = (?)2
- d. (00101100)2 = (?)10
- e. (01011111)2= (?)10
- f. (00010000)2 = (?)10

Proposiciones de Asignación y Almacenamiento

Operador de asignación (←)

variable ← expresión aritmética, variable o una constante

Ejemplo:

```
Edad1 \leftarrow 15
Edad2 \leftarrow 30
Edad3 \leftarrow Edad2
```

Suma ← Edad1+Edad2+Edad3
(¿Qué valor se almacena en Suma?)

Proposiciones de Bifurcación y Toma de Decisiones

Selectiva Simple: Se utiliza cuando la opción que se va a efectuar depende de la evaluación de sólo una condición.

si Condición entonces

acción

sino

acción;

Ejemplo:

si Nota ≥ 48 entonces

escribir "El estudiante aprobó"

sino

escribir "El estudiante reprobó"

Programación Iterativa

Se emplean las **estructuras iterativas** cuando necesitamos que un proceso se repita una cantidad de veces, podríamos repetir el proceso manualmente pero obviamente este algoritmo no sería el óptimo.

Estructuras:

MIENTRAS

PARA

Fin_mientras

Fin_para

Programación Iterativa
Mientras
Fin_mientras

Ejemplo

- El problema es calcular la suma de los números naturales desde 1 hasta n.
- Inicio
- Entero i,n,Suma
- Leer(n)
- i=1
- Suma =0
- MIENTRAS (i<=n)</p>
- Suma=Suma+i
- i=i+1
- Fin mientras
- Escribir (Suma)
- Fin

Programación Iterativa
PARA
Fin_para

Ejemplo

- El problema es calcular la suma de los números naturales desde 1 hasta n.
- Inicio
- Entero i, n, Suma
- Leer(n)
- i=1
- Suma =0
- PARA i=1 hasta n hacer
- Suma=Suma+i
- Fin_para
- Escribir (Suma)
- Fin

Universidad Centroccidental "Lisandro Alvarado" Decanato de Ciencias y Tecnología

Unidad I: Introducción a la Programación

Tema 3: Programación

Coordinación de Introducción a la Computación Prof. Gisela Parra