

Deep Learning: Lecture 4

Lecturer: Dr. Giant

Copyright Policy

All content included on the Site or third-party platforms as part of the class, such as text, graphics, logos, button icons, images, audio clips, video clips, live streams, digital downloads, data compilations, and software, is the property of BitTiger or its content suppliers and protected by copyright laws.

Any attempt to redistribute or resell will result in the appropriate legal action being taken.

We thank you in advance for respecting our copyrighted content.

Agenda

- Recurrent Neural Network (RNN)
- Long Short-Term Memory (LSTM)
- RNN Codelab
- Linear Regression in TensorFlow
- TensorBoard

Recurrent Neural Network (RNN)

Let's Book a Ticket

Joseph: I would like to reach Hsinchu on November 24th

Destination: Hsinchu

Time of arrival: November 24th

Let's Book a Ticket (cont'd)

Solving slot filling by a feedforward neural network (FFNN)

Input: a word represented as a vector

Output: probability distribution that the input word belonging to the slots

Let's Book a Ticket: Problem

Neural network needs memory!

Network with Memory

Recurrent Neural Network

Probability of "reach" in each slot

Probability of "Hsinchu" in each slot

Probability of "on" in each slot

Recurrent Neural Network (cont'd)

The values stored in the memory are different.

Prob. of "reach" in each slot

Prob. of "Hsinchu" Prob. of "leave" in each slot

in each slot

Prob. of "Hsinchu" in each slot

Recurrent Neural Network: Deeper!

Long Short-Term Memory (LSTM)

Long Short-Term Memory: Concept

Long Short-Term Memory: Details

- Activation function f of gates is usually a sigmoid function
 - Between 0 and 1
- Mimic open and closed gates

Long Short-Term Memory: Simple Example

Long Short-Term Memory: Implementation

- An LSTM cell includes:
 - o f (forget)
 - o i (<u>i</u>nput)
 - o (<u>o</u>utput)
 - o a memory C
- Notice the σ on gates

Gated Recurrent Unit (GRU)

- Similar with LSTM
 - But simpler (only 2 gates,z and r)
- GRU is also designed to fight vanishing gradient

[Source: Chung et al., arXiv'14]

LSTM v.s. GRU: Which is Better?

- No clear winner
- Use sample/parameter ratio to choose
- If you have A LOT of data, use LSTM.

How to Learn RNN (LSTM, GRU)?

Learning RNN is Difficult

RNN-based network is not always easy to learn

Learning RNN: Steep Loss Surface

Learning RNN: Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

[Source: Hung-Yi Lee, http://www.slideshare.net/tw_dsconf/ss-62245351]

Linear Regression

Tensorboard

- How to invoke?
 - tensorboard --logdir="/YOUR/DIRECTORY/" --port=3101
- Add metrics of interests to "tf.summary"
- E.g., tf.summary.scalar('mean', mean)

Questions?

The Lifelong Learning Platform of Silicon Valley