AE: AEROSPACE ENGINEERING

EE25BTECH11018-Darisy Sreetej

Q.1 – Q.25 carry one mark each.

1) The constraint A^2	= A on any square ma	atrix A is satisfied for		
a) the identity matb) the null matrix	•	c) both the identd) no square mat	•	the null matrix
	on of the differential 6	equation $\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = 0$) is	(GATE AE 2012)
a) $Ae^{-t} + Be^{2t}$ b) $Ae^{-2t} + Be^{-t}$		c) $Ae^{-2t} + Be^t$ d) $Ae^t + Be^{2t}$		
3) An aircraft in trim	amed condition has zer	ro pitching moment at		(GATE AE 2012)
a) its aerodynamicb) its centre of gra		c) 25% of its med) 50% of its wi	•	c chord
4) In an aircraft, con	stant roll rate can be j	produced using ailerons by	applying	(GATE AE 2012)
a) a step inputb) a ramp input		c) a sinusoidal ind) an impulse in	-	
5) For a symmetric a	irfoil, the lift coefficie	ent for zero degree angle o	of attack is	(GATE AE 2012)
a) -1.0	b) 0.0	c) 0.5	d) 1.0	
a) the freestream Ib) the freestream Ic) the Mach numb	number of an airfoil is Mach number is sonic Mach number is supers her somewhere on the her everywhere on the	sonic airfoil is unity		(GATE AE 2012)
7) The shadowgraph a) the variation of b) the first derivati c) the second deriv	flow visualization tech the value of density in ve of density with res- vative of density with	hnique depends on	te	(GATE AE 2012)
	pse used as earth-Mar			(GATE AE 2012)

a) apogee at earth and perigee at Mars c) apogee at Mars and perigee at earth b) both apogee and perigee at earth d) both apogee and perigee at Mars (GATE AE 2012) 9) The governing equation for the static transverse deflection of a beam under an uniformly distributed load, according to Euler-Bernoulli (engineering) beam theory, is a a) 2nd order linear homogenous partial differential equation b) 4th order linear non-homogenous ordinary differential equation c) 2nd order linear non-homogenous ordinary differential equation d) 4th order nonlinear homogenous ordinary differential equation (GATE AE 2012) 10) The Poisson's ratio, ν of most aircraft grade metallic alloys has values in the range a) $-1 \le v \le 0$ b) $0 \le v \le 0.2$ c) $0.2 \le v \le 0.4$ d) $0.4 \le v \le 0.5$ (GATE AE 2012) 11) The value of k for which the system of equations x + 2y + kz = 1; 2x + ky + 8z = 3 has no solution is a) 0 b) 2 c) 4 d) 8 (GATE AE 2012) 12) If u(t) is a unit step function, the solution of the differential equation $m\frac{d^2x}{dt^2} + kx = u(t)$ in Laplace domain is a) $\frac{1}{s(ms^2 + k)}$
b) $\frac{1}{ms^2 + k}$ c) $\frac{s}{ms^2 + k}$
d) $\frac{1}{s^2(ms^2 + k)}$ (GATE AE 2012) 13) The general solution of the differential equation $\frac{dy}{dx} - 2\sqrt{y} = 0$ is c) $\sqrt{y} - \sqrt{x} + C = 0$ d) $\sqrt{y} - x + C = 0$ a) $y - \sqrt{x} + C = 0$ b) y - x + C = 0(GATE AE 2012) 14) During the ground roll manoeuvre of an aircraft, the force(s) acting on it parallel to the direction of motion a) is thrust alone. d) are thrust, drag and a part of both weight and b) is drag alone. lift.

(GATE AE 2012)

- 15) An aircraft in a steady climb suddenly experiences a 10% drop in thrust. After a new equilibrium is reached at the same speed, the new rate of climb is
 - a) lower by exactly 10%.

c) lower by less than 10%.

b) lower by more than 10%.

c) are both thrust and drag.

d) an unpredictable quantity.

16) In an aircraft, the dive manoeuvre can be initiated by

(GATE AE 2012)

a) reducing the engineb) reducing the angle of			generating a nose do increasing the engine	-	
17) In an aircraft, elevator	control effectiveness dete	ermi	ines		(GATE AE 2012)
a) turn radius.b) rate of climb.			forward-most location aft-most location of		•
18) The Mach angle for a	flow at Mach 2.0 is				(GATE AE 2012)
a) 30°	b) 45°	c)	60°	d) 90°	
19) For a wing of aspect (where C_L is the lift contains the second contains the se		tical	l lift distribution, the	induced	(GATE AE 2012) drag coefficient is
a) $\frac{C_L}{\pi AR}$	b) $\frac{C_L^2}{\pi AR}$	c)	$\frac{C_L}{2\pi AR}$	d) $\frac{C_A^2}{\pi A R}$	$\frac{2}{R^2}$
20) Bernoulli's equation is	s valid under steady state.				(GATE AE 2012)
 a) only along a streamline in inviscid flow, and between any two points in potential flow. b) between any two points in both inviscid flow and potential flow. c) between any two points in inviscid flow, and only along a streamline in potential flow. d) only along a streamline in both inviscid flow and potential flow. 					
21) The ratio of flight spec	ed to the exhaust velocity	for	maximum propulsion	n efficier	(GATE AE 2012) ncy is
a) 0.0	b) 0.5	c)	1.0	d) 2.0	
22) The ideal static pressu	re coefficient of a diffuse	r w	ith an area ratio of 2.0) is	(GATE AE 2012)
a) 0.25	b) 0.50	c)	0.75	d) 1.0	
(GATE AE 2012) 23) A rocket is to be launched from the bottom of a very deep crater on Mars for earth return. The specific impulse of the rocket, measured in seconds, is to be normalized by the acceleration due to gravity at					
a) the bottom of the crb) Mars standard "sea			earth's standard sea the same depth of th		on earth.
24) In a semi-monocoque of	construction of an aircraft	win	g, the skin and spar w	ebs are t	(GATE AE 2012) the primary carriers

a) shear stresses due to an aerodynamic moment component alone.b) normal (bending) stresses due to aerodynamic forces.c) shear stresses due to aerodynamic forces alone.d) shear stresses due to aerodynamic forces and a moment component.

				(GATE AE 2012)
25)	_	ment measured for a visc e damping factor in % is		egree of freedom system is
	a) 0.5	b) 1.0	c) 1.5	d) 2.0
26)	The integration $\int_0^1 x^3 dx$ 2012)	c computed using trapezo	oidal rule with $n = 4$ interpolation	(GATE AE 2012) rvals is (GATE AE
27)	An aircraft has a stead	y rate of climb of 300 m this aircraft to climb from	•	m/s at $2500 m$ altitude. The m altitude is (GATE
28)	An airfoil generates a	re are $100 kPa$ and $290 K$	_	of $60 m/s$. If the ambient as constant is $287 J/kg \cdot K$, (GATE AE 2012)
	weight of $25 g/mol$ and The value of theoretical	I ratio of specific heats 1 . I c^* (in m/s) is	.2. The universal gas con	ne products have molecular astant is $8314 J/kg \cdot mol \cdot K$. (GATE AE 2012)
30)	The corresponding natural of vibration of the first initial velocities is	iral frequencies are 0.45 h	Hz and 1.247 Hz . The map an initial displacement	$\{1 \ 0.5\}^T$ and $\{1 \ -0.675\}^T$. aximum amplitude (in mm) of $\{2 \ 1\}^T$ (in mm) and zero (GATE AE 2012)
31)	The n^{th} derivative of the			
	a) $\frac{(-1)^n n!}{(x+3)^{n+1}}$	b) $\frac{(-1)^{n+1}n!}{(x+3)^{n+1}}$	c) $\frac{(-1)^n(n+1)!}{(x+3)^n}$	d) $\frac{(-1)^n n!}{(x+3)^n}$
32)	The volume of a solid straight line $y = 1$, about		ne region between semi-	(GATE AE 2012) circle $y = 1 - \sqrt{1 - x^2}$ and
	a) $\pi^2 - \frac{4}{3}\pi$	b) $4\pi^2 - \frac{1}{3}\pi$	c) $\pi^2 - \frac{3}{4}\pi$	d) $\frac{\pi}{4}\pi^2 - \pi$
33)	One eigenvalue of the r	matrix $A = \begin{pmatrix} 2 & 7 & 105 & 2 \end{pmatrix}$	2 251 6 5) is -9.33. C	(GATE AE 2012) One of the other eigenvalues
	a) 18.33	b) -18.33	c) 18.33 – 9.33 <i>i</i>	d) 18.33 + 9.33 <i>i</i>
34)	If an aircraft takes off	with 10% less fuel in co	mparison to its standard	(GATE AE 2012) configuration, its range is
	a) lower by exactly 109b) lower by more than		c) lower by less than 1d) an unpredictable qua	

(GATE AE 2012) 35) An aircraft has an approach speed of 144 kmph with a descent angle of 6.6° . If the aircraft load factor is 1.2 and constant deceleration at touch down is 0.25g ($g = 9.81 \text{ m/s}^2$), its total landing distance approximately every $a_1 = 15 \text{ m/s}^2$. approximately over a 15 m high obstacle is

a) 1830 m	b) 1380 m	c) 830 m	d) 380 m		
(SSL). Further, pull of	f 5 N holds the speed at 9	0 m/s without re-trimmir	(GATE AE 2012) 00 m/s at standard sea level ag at SSL (air density = 1.22 /s TAS without re-trimming,		
a) 1.95 N upward for b) 1.95 N downward f		c) 1.85 N upward for d) 1.75 N downward f			
· ·	we with a wave angle β is ream of the shock to its r	_	(GATE AE 2012) angle of θ . The ratio of the		
a) $\sin(\beta - \theta)$	b) $\cos(\beta - \theta)$	c) $\sin(\theta - \beta)$	d) $\cos(\theta - \beta)$		
are followed by a C-I a) diffuser throat large b) diffuser throat large c) diffuser throat of the	O diffuser to swallow the er than the nozzle throat an er than the nozzle throat an er same size as the nozzle to	starting shock. Here, we and the shock located just the shock located down throat and the shock located throat located th			
range of flow rates. I	If the bluff-body diameter	r in the flowmeter is 20	O.2 is a constant over a wide mm and the piezo-electric e velocity of the flow would		
a) 0.1 m/s	b) 1 m/s	c) 10 m/s	d) 100 m/s		
(GATE AE 2012) 40) The stagnation temperatures at the inlet and exit of a combustion chamber are 600 K and 1200 K, respectively. If the heating value of the fuel is 44 MJ/kg and specific heat at constant pressure for air and hot gases are 1.005 kJ/kg.K and 1.147 kJ/kg.K respectively, the fuel-to-air ratio is					
a) 0.0018	b) 0.018	c) 0.18	d) 1.18		
41) A solid propellant of density 1800 kg/m ³ has a burning rate law $r = 6.65 \times 10^{-3} p^{0.45}$ mm/s, where p is pressure in Pascals. It is used in a rocket motor with a tubular grain with an initial burning area of 0.314 m ² . The characteristic velocity is 1450 m/s. What should be the nozzle throat diameter to achieve an equilibrium chamber pressure of 50 bar at the end of the ignition transient?					
a) 35 mm	b) 38 mm	c) 41 mm	d) 45 mm		
		<u> </u>	(GATE AE 2012) 40 bar with a nozzle throat kidizer ratio of the propellant		

is 1.8, and the fuel density is 900 kg/m³, what should be the minimum fuel tank volume for a burn

time of 8 minutes

a) 1.65 m^3	b) 1.75 m^3	c) 1.85 m^3	d) 1.95 m^3	
expended instant attained by the	taneously at an equivalent	exhaust velocity of 3000	(GATE AE 2012 of its initial mass. If all of it in mass, what would be the altitude and assume acceleration due to	
a) 315 km	b) 335 km	c) 365 km	d) 385 km	
satisfies compati		ected to uniform tensile	(GATE AE 2012 panel of size $l \times l$ automatically stress, σ_o , on all four edges, the	
a) $\alpha = \sigma_o/2$; $\beta = 0$ b) $\alpha = \sigma_o$; $\beta = 0$		c) $\alpha = 0$; $\beta = \sigma_{o}$, d) $\alpha = 0$; $\beta = \sigma_{o}$,		
•		_	(GATE AE 2012 nanged from fixed-fixed to fixed s the original frequency, where	
a) $\frac{1}{2}$	b) 2	c) $\frac{1}{\sqrt{2}}$	d) $\sqrt{2}$	
	ystem is viscously damped the system is undergoing		(GATE AE 2012 constant c . The energy dissipated os $\omega_d t$ is given by	
a) $\pi c \omega_d X^2$	b) $\pi \omega_d X^2$	c) $\pi c \omega_d^2 X$	d) $\pi c \omega_d^2 X^2$	
47) Buckling of the	fuselage skin can be dela	yed by	(GATE AE 2012	
a) increasing intob) placing stiffenc) reducing skin	ers farther apart	d) placing stiffene pressure	ers farther and decreasing interna	
Comment Data	0		(GATE AE 2012	
 Common Data Questions Common Data for Questions 48 and 49: A wing and tail are geometrically similar, while tail area is one-third of the wing area and distance between two aerodynamic centres is equal to wing semi-span (b/2). In addition, following data is applicable: ε_a = 0.3, C_L = 1.0, C_{Lε} = 0.08 / deg., c̄ = 2.5 m, b = 30 m, C_{Mac} = 0, η_t = 1. The symbols have their usual aerodynamic interpretation. 48) The maximum distance that the centre of gravity can be behind aerodynamic centre without destabilizing the wing-tail combination is 				
a) 0.4 m	b) 1.4 m	c) 2.4 m	d) 3.4 m	
49) The angle of inc	eidence of tail to trim the	wing-tail combination fo	(GATE AE 2012 r a 5% static margin is	

	a) -1.4°	b) -0.4°	c) 0.4°	d) 1.4°
50)	walls and spins at 60 ry radially relative to the p	pm about its own axis. F pipe surface at a velocity	luid is pumped out of the of 1 m/s. [Neglect the e	(GATE AE 2012) 10 mm diameter has porous e pipe such that it emerges effect of gravity.] 0.5 m from the pipe axis?
	a) 0.01 m/s	b) 0.1 m/s	c) 1 m/s	d) 10 m/s
51)	What is the tangential of	component of the fluid's	velocity at the same radi	(GATE AE 2012) al location as above?
	a) 0.01 m/s	b) 0.03 m/s	c) 0.10 m/s	d) 0.31 m/s
52)	temperature of 15°C and velocity of 120 m/s. In 18° to the axial direction	nd stagnation pressure 10 let guide vanes direct the on. The rotor turning angued constant through the s	0 kPa enters an axial costs absolute velocity to the le is 27° and the mean be	(GATE AE 2012) and 53: Air at a stagnation empressor with an absolute e rotor inlet at an angle of lade speed is 200 m/s. The
	a) 25.5°	b) 38.5°	c) 48.5°	d) 59.5°
53)	If the mass flow rate is	1 kg/s, the power requir	ed to drive the compress	(GATE AE 2012)
	a) 50.5 kW	b) 40.5 kW	c) 30.5 kW	d) 20.5 kW
54)	diameter and 10 mm w compression.	all thickness) is made of t_t at yield, based on the t_t	a material with $ \sigma_y = 50$	(GATE AE 2012) spherical vessel (1 m inner 00 MPa in both tension and , if the vessel is floating in
	a) 500 MPa	b) 250 MPa	c) 100 MPa	d) 20 MPa
55)		d (internal pressure = 0) a criterion (assuming elast		(GATE AE 2012) pressure, yielding according
	a) occurs at about halfb) occurs at about doub		c) occurs at about the s d) never occurs.	same pressure Y p
				(GATE AE 2012)

General Aptitude (GA) Questions
Q.56 - Q.60 carry one mark each.

56) Choose the most appropriate alternative from the options given below to complete the following sentence: I ... to have bought a diamond ring.

	a) have a liking	b) should have liked	c) would like	d) may like
57)	Choose the most approsentence: Food prices.	-	m the options given below	(GATE AE 2012) to complete the following
	a) have raised	b) have been raising	c) have been rising	d) have arose
58)	sentence: The administr	rators went on to impl		(GATE AE 2012) to complete the following nable measure, arguing that ence.
	a) reflective	b) utopian	c) luxuriant	d) unpopular
59)		•	m the options given below ught him timid, his came	(GATE AE 2012) to complete the following as a surprise.
	a) intrepidity	b) inevitability	c) inability	d) inertness
60)	The arithmetic mean of numbers is	f five different natural	numbers is 12. The larges	(GATE AE 2012) t possible value among the
	a) 12	b) 40	c) 50	d) 60
	0.01 0.05			(GATE AE 2012)
61)	that A hits the convict	B, fire once each at is three times the prob	<u>-</u>	ng convict. The probability ict. If the probability of the is
	a) 0.14	b) 0.22	c) 0.33	d) 0.40
62)	The total runs scored to following table:	by four cricketers P, G	Q, R, and S in years 2009	(GATE AE 2012) and 2010 are given in the
	ronowing tuble.	Player P Q R S	7 2009 2010 802 1008 765 912 429 619 501 701	
	The player with the lov	vest percentage increa	se in total runs is	
	a) P	b) Q	c) R	d) S
63)	If a prime number on c	livision by 4 gives a r	remainder of 1, then that nu	(GATE AE 2012) amber can be expressed as

- a) sum of squares of two natural numbers
- b) sum of cubes of two natural numbers
- c) sum of square roots of two natural numbers
- d) sum of cube roots of two natural numbers

(GATE AE 2012)

64) Two points (4, p) and (0, q) lie on a straight line having a slope of 3/4. The value of (p - q) is

a) -3

b) 0

c) 3

d) 4

(GATE AE 2012)

65) In the early nineteenth century, theories of social evolution were inspired less by Biology than by the conviction of social scientists that there was a growing improvement in social institutions. Progress was taken for granted and social scientists attempted to discover its laws and phases. Which one of the following inferences may be drawn with the greatest accuracy from the above passage?

Social scientists

- a) did not question that progress was a fact.
- b) did not approve of Biology.

- c) framed the laws of progress.
- d) emphasized Biology over Social Sciences.

(GATE AE 2012)

GATE 2012 - Answer Key - Paper : AE

Paper	Question no.	Key	Paper	Question no.	Key
AE	1	С	AE	36	В
AE	2	С	AE	37	A
AE	3	В	AE	38	В
AE	4	D	AE	39	В
AE	5	В	AE	40	В
AE	6	С	AE	41	В
AE	7	С	AE	42	В
AE	8	С	AE	43	D
AE	9	В	AE	44	A
AE	10	С	AE	45	A
AE	11	С	AE	46	A
AE	12	A	AE	47	A
AE	13	D	AE	48	В
AE	14	D	AE	49	A
AE	15	В	AE	50	A
AE	16	С	AE	51	Marks to All
AE	17	С	AE	52	Marks to All
AE	18	A	AE	53	Marks to All
AE	19	В	AE	54	D
AE	20	A	AE	55	С
AE	21	С	AE	56	С
AE	22	Marks to All	AE	57	С
AE	23	С	AE	58	D
AE	24	D	AE	59	A
AE	25	D	AE	60	С
AE	26	0.26 to 0.27	AE	61	A
AE	27	13 to 14	AE	62	В
AE	28	1.1 to 1.2	AE	63	A
AE	29	1430 to 1440	AE	64	С
AE	30	2	AE	65	A
AE	31	A			
AE	32	A			
AE	33	A			
AE	34	В			
AE	35	Marks to All			