Determinants of HIV

M. Moellenkamp and N. Rosemberg

December 4th, 2014

Presentation Outline

- Research Question & Motivation
- Theoretical Framework
- Methodology
- Descriptive Statistics
- Findings
- Conclusion & Limitations

Research Question & Motivation

Research Question: Are community level factors significant determinants of HIV/AIDS incidence rates?

- Understand why some countries failed to achieve MDG 6A
 - MDG 6: "Combat HIV/AIDS, Malaria and other diseases"
 - Target 6A: "Have halted by 2015 and begun to reverse the spread of HIV/AIDS"
- 2 Explore disease-specific determinants of health

Theoretical Framework - Determinants of Health

Source: Dahlgren and Whitehead, 1991

Methodology and Dataset

Model

$$I_{it} = \beta_0 + \beta_1 S E_{it} + \beta_2 W L C_{it} + \beta_3 S C N_{it} + \beta_4 I L F_{it} + \epsilon_{it}$$

Datasets

 We will use the World Development Indicators (WDI) for the independent variables and a dataset from UNAIDS for the HIV/AIDS prevalence rate.

Methodology

- Model 1: Logistic Regression & Predicted Probabilities
- Model 2: Pooled OLS Regression & Fixed Effects

Distribution of HIV Incidence Rates

HIV Incidence Rates over Time

Interesting Cases for HIV Incidence Rates

GDP per capita in Selected Countries

Access to Water in Selected Countries

Health Care Expenditure in Selected Countries

Female Schooling in Selected Countries

Female Unemployment in Selected Countries

Imputed Missing Values

Logistic Regression Results - Model 1

	Value	Std. Error	t-stat	p-value
(Intercept)	-39.3143259	7.4270082	-5.2934271	0.0000005
IGDPpc	0.3845245	0.3442224	1.1170818	0.2654575
I Rural	-2.5659362	0.5810321	-4.4161692	0.0000179
ICO2	-0.6193159	0.2321263	-2.6680131	0.0115859
IHCexpend	0.8783105	0.3869075	2.2700786	0.0233140
IWater	-2.3033408	0.8432343	-2.7315550	0.0063406
ISanitation	0.8983929	0.2828859	3.1758143	0.0015027
ILifeExpect	19.4598437	1.7854897	10.8988833	0.0000000
IDPT	-0.8351185	1.0032896	-0.8323804	0.4052830
IMeasles	1.9263237	1.1528840	1.6708738	0.0950275
Inverse	1.8553161	0.2595490	7.1482315	0.0000000
IFemSchool	-5.8755427	0.7578465	-7.7529461	0.0000000

Predicted Probabilities - Female School Enrollment

Predicted Probabilities - Female Unemployment

Simple Linear Regression Results - Model 2

	Value	Std. Error	t-stat	p-value
(Intercept)	7.7351785	1.5745651	4.9125808	0.0000009
IGDPpc	0.0122734	0.0723305	0.1696857	0.8652696
IRural	0.1932816	0.1372891	1.4078439	0.1593651
ICO2	0.1066236	0.0319394	3.3383054	0.0008928
IHCexpend	0.4294569	0.1083464	3.9637390	0.0000905
lWater	-0.3678844	0.1852977	-1.9853691	0.0477825
ISanitation	0.0583937	0.0696813	0.8380112	0.4020485
ILifeExpect	-3.5022405	0.3449838	-10.1518975	0.0000000
IDPT	0.6049810	0.2468089	2.4512125	0.0142977
IMeasles	-0.0886252	0.2442630	-0.3628269	0.7167633
Inverse	-0.4246932	0.0481448	-8.8211639	0.0000000
IFemSchool	0.5738221	0.1615113	3.5528291	0.0010261

Conclusions & Limitations - Model 1

- Logistic Regression Results of Model 1 (all countries)
 - Generally in line with hypothesis
 - Most of the variables are statistically significant
 - Only Immunisation Variables and GDP per capital are not significant
- Predicted Probabilities of Model 1 (selected countries)
 - Direction of effect of Female School Enrollment matches initial assumptions for all case studies
 - Direction of effect of Female Unemployment does not match initial assumptions for any case study

Conclusions & Limitations - Model 2

- Linear Regression of Model 2 (countries with incidence above mean)
 - Significance of some variables changes
 - Female School Enrollment and Female Unemployment remain highly significant
 - Effect of Female Schooling becomes positive (!)
- Fixed Effects Regression of Model 2 (countries with incidence above mean)
 - Significance of some variables changes compared to simple linear model
 - Female School Enrollment and Female Unemployment become insignificant
 - Immunisation rates for DPT & Measles become highly significant (!)