# STOR 320.1 Data Transformation II

#### Data Transformation II Info

- Finish Reading Chapter 3 and Practice the Code in R4DS
- Covers
  - The Pipe
  - Statistical Summaries
  - Grouped Summaries
  - Helpful Functions
- Builds Off Last Tutorial

### The Pipe

- Useful for Combining Multiple
   Steps of Operations
- Represented by %>%
- Reads as "Then"
- Works Like a Composite Function From Algebra

$$f(x) = 3x + 4$$
  
 $g(x) = 2x$   
 $h = 1$ 

OUT = h %>%  
 $g()$  %>%  
 $f()$ 

OUT = 10

#### The Pipe

#### Chaining with the Pipe

```
`{r,eval=F}
f2e.pipedream =
 # Acknowledge the Original Data
 flights %>%
 # Input Original Data and Perform Mutations
 transmute(dep_hr=dep_time%/%100+(dep_time%%100)/60,
            sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60,
            arr_hr=arr_time%/%100+(arr_time%%100)/60,
            sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60) %>%
 mutate(dep_delay_hr=dep_hr-sched_dep_hr,
       arr_delay_hr=arr_hr-sched_arr_hr) %>%
 mutate(percent_dep_delay_hr=percent_rank(dep_delay_hr)) %>%
 # Input Modified Data and Filter the observations
 filter(percent_dep_delay_hr<0.1|percent_dep_delay_hr>0.9) %>%
 # Input Modified Data and Sort according to percent_dep_delay_hr
 arrange(desc(percent_dep_delay_hr))
```

|                       |                             |                       |                             |                             | <i>□</i> ∧ ×                |
|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|
| dep_hr<br><dbl></dbl> | sched_dep_hr<br><dbl></dbl> | arr_hr<br><dbl></dbl> | sched_arr_hr<br><dbl></dbl> | dep_delay_hr<br><dbl></dbl> | arr_delay_hr<br><dbl></dbl> |
| 23.35000              | 8.166667                    | 1.583333              | 10.33333                    | 15.18333                    | -8.750000                   |
| 22.95000              | 7.983333                    | 1.350000              | 10.43333                    | 14.96667                    | -9.083333                   |
| 22.71667              | 8.500000                    | 1.000000              | 11.10000                    | 14.21667                    | -10.100000                  |
| 23.40000              | 10.266667                   | 1.233333              | 12.45000                    | 13.13333                    | -11.216667                  |
| 19.35000              | 6.250000                    | 21.583333             | 8.70000                     | 13.10000                    | 12.883333                   |

# The Pipe

#### Why use

- Avoid nested functions
- Minimize number of local variables
- Easier to add steps in the sequence

#### Why not to use

- Debug
- Can't handle multiple inputs
- Can't handle complex code structure

# summarize()

Summarizing All Data

Using Graphics





Both the histogram and the boxplot are made from summary statistics.

(Statistical Transformations in Ch. 3)

### summarize()

min

-2.316667

n

326848

Q1

Summarizing All Data



- Summarizing Data by Groups
  - Using Graphics





- Summarizing
   Data by Groups
  - Using Tables

```
origin
 `{r}
group.summary1 = f3e.pipedream %>%
                                                          EWR
                group_by(origin) %>%
                summarize(n=n())
                                                          JFK
group.summary2 =
                                                          LGA
 f3e.pipedream %>%
 group_by(origin) %>%
 summarize(n=n(),
            min=min(dep_delay_hr),
            Q1=quantile(dep_delay_hr, 0.25),
            Q2=quantile(dep_delay_hr, 0.5),
            Q3=quantile(dep_delay_hr, 0.75),
            max=max(dep_delay_hr),
            IQR=Q3-Q1,
            nLow=sum(dep\_delay\_hr<Q1-1.5*IQR),
            propHigh=mean(dep_delay_hr>Q3+1.5*IQR)
```

| origin<br><chr></chr> | <b>n</b><br><int></int> | min<br><dbl></dbl> | <b>Q1</b><br><dbl></dbl> | <b>Q2</b><br><dbl></dbl> | Q3<br><dbl></dbl> | max<br><dbl></dbl> | IQR<br><dbl></dbl> | <b>nL</b> <int></int> | propHigh<br><dbl></dbl> |
|-----------------------|-------------------------|--------------------|--------------------------|--------------------------|-------------------|--------------------|--------------------|-----------------------|-------------------------|
| EWR                   | 117209                  | -0.4166667         | -0.06666667              | -0.01666667              | 0.25              | 4.983333           | 0.3166667          | 0                     | 0.1259204               |
| JFK                   | 108486                  | -2.3166667         | -0.08333333              | -0.01666667              | 0.15              | 4.983333           | 0.2333333          | 2                     | 0.1372988               |
| LGA                   | 101153                  | -0.5500000         | -0.10000000              | -0.05000000              | 0.10              | 4.983333           | 0.2000000          | 7                     | 0.1466491               |

n

117209

108486

101153

- Multiple Groups
  - Using Graphics



- Multiple Groups
  - Using Tables

```
group.summary3 =

f3e_nipedream %>%

group_by(origin,carrier) %>%

summartze(n=n(),

min=min(dep_delay_hr),

Q1=quantile(dep_delay_hr,0.25),

Q2=quantile(dep_delay_hr,0.5),

Q3=quantile(dep_delay_hr,0.75),

max=max(dep_delay_hr),

IQR=Q3-Q1,

nLow=sum(dep_delay_hr<Q1-1.5*IQR),

propHigh=mean(dep_delay_hr>Q3+1.5*IQR)

)
```

| origin     | carrier | n     | min        | Q1         | Q2         | Q3         | max      |
|------------|---------|-------|------------|------------|------------|------------|----------|
| EWR        | 9E      | 1199  | -0.2666667 | -0.1166667 | -0.0833333 | -0.0166667 | 4.416667 |
| EWR        | AA      | 3376  | -0.2500000 | -0.1000000 | -0.0500000 | 0.0500000  | 4.750000 |
| EWR        | AS      | 712   | -0.3500000 | -0.1166667 | -0.0500000 | 0.0500000  | 3.750000 |
| EWR        | B6      | 6446  | -0.3833333 | -0.1166667 | -0.0500000 | 0.1500000  | 4.850000 |
| EWR        | DL      | 4281  | -0.2666667 | -0.0833333 | -0.0333333 | 0.0666667  | 4.966667 |
| EWR        | EV      | 41592 | -0.4166667 | -0.0833333 | -0.0166667 | 0.4333333  | 4.966667 |
| EWR        | MQ      | 2095  | -0.3000000 | -0.1000000 | -0.0333333 | 0.3000000  | 4.950000 |
| EWR        | 00      | 6     | -0.1500000 | -0.1250000 | -0.0166667 | 0.1791667  | 2.183333 |
| EWR        | UA      | 45561 | -0.3000000 | -0.0500000 | 0.0000000  | 0.2000000  | 4.966667 |
| EWR        | US      | 4326  | -0.3166667 | -0.1000000 | -0.0666667 | 0.0000000  | 4.166667 |
| <b>EWR</b> | VX      | 1554  | -0.3333333 | -0.0833333 | -0.0250000 | 0.0833333  | 4.916667 |
| EWR        | WN      | 6061  | -0.2000000 | -0.0333333 | 0.0166667  | 0.3000000  | 4.983333 |
| JFK        | 9E      | 13801 | -0.4000000 | -0.0833333 | -0.0166667 | 0.3333333  | 4.950000 |
| JFK        | AA      | 13617 | -0.2500000 | -0.0666667 | -0.0333333 | 0.0833333  | 4.900000 |
| JFK        | В6      | 41005 | -0.7166667 | -0.0666667 | -0.0166667 | 0.2000000  | 4.966667 |
| JFK        | DL      | 20551 | -0.3000000 | -0.0666667 | -0.0333333 | 0.0833333  | 4.983333 |
| JFK        | EV      | 1315  | -0.3166667 | -0.1000000 | -0.0500000 | 0.2500000  | 4.916667 |

# **Useful Summary Functions**

- Measures of Center
  - mean()
  - median()
  - mode()
- Measures of Spread
  - var()
  - sd()
  - IQR()
  - mad()

- Measures of Rank
  - min()
  - max()
  - quantile()

# **Useful Summary Functions**

- Measures of Position
  - Order Matters
  - first() = x[1]
  - last() = x[length(x)]
  - nth(k) = x[k]
- Counts
  - n()
  - n\_distinct()

- Counts/Proportions for Logical
  - sum()
  - mean()
  - Example
    - sum(x>10)
    - mean(x>10)

- Flight Accuracy
  - Accurate Flight Means
    - Departure Delay = 0
    - Arrival Delay = 0
  - Bad Metric

$$Accuracy = delay_{dep} + delay_{arr}$$
  
 $Accuracy = (delay_{dep} + delay_{arr})/2$ 

Good Metrics

$$Accuracy = |delay_{dep}| + |delay_{arr}|$$
 
$$Accuracy = \sqrt{delay_{dep}^2 + delay_{arr}^2}$$

- Summary Table
  - Step 1: Accuracy Variable
  - Step 2: Grouping
  - Step 3: Summarize Info
    - Mean
    - Standard Error
    - Lower Bound (95% CI)
    - Upper Bound (95% CI)

```
accuracy<-
  f.pipedream3 %>%
  transmute(carrier,origin,
    accuracy=abs(dep_delay_hr)+abs(arr_delay_hr)) %>%
  group_by(carrier,origin) %>%
  summarize(n=n(),
    avg=mean(accuracy,na.rm=T),
    se=sd(accuracy,na.rm=T)/sqrt(n),
    low=avg-2*se,
    high=avg+2*se
)
```

- Sorted by Average Accuracy
  - Best Carriers/Origin

```
head(arrange(accuracy,avg),5)
A tibble: 5 \times 7
          carrier
Groups:
carrier origin
                                           high
                        avg
                                 se
                             <db1> <db1> <db1>
<chr>
        <chr>
                <int> <db1>
US
        EWR
                 4322 0.505 0.0123 0.481 0.530
                2960 0.509 0.0152 0.479 0.539
US
        JFK
US
        LGA
               12517 0.544 0.0121 0.520 0.569
                  342 0.556 0.0362 0.483 0.628
        JFK
HA
                 4367 0.591 0.0173 0.556 0.625
        JFK
UA
```

Worst Carriers/Origin

```
head(arrange(accuracy,desc(avg)),5)
A tibble: 5 \times 7
Groups:
         carrier [4]
carrier origin
                                         low
                                               high
                         avq
                                  se
         <chr>
                 <int> <db1>
                               \langle db 1 \rangle
                                       <db1> <db1>
                                      -0.334 2.61
         EWR
                              0.737
00
                 <u>8</u>086 0.986 0.026<u>5</u>
ΕV
         LGA
                                       0.933 1.04
         LGA
                   542 0.954 0.0597
                                       0.835 1.07
                  3136 0.952 0.0545 0.843 1.06
         LGA
                40571 0.952 0.0125
                                       0.927 0.977
         EWR
```

95% Confidence Intervals



```
ggplot(filter(accuracy,carrier!="00")) +
geom_point(aes(x=carrier,y=avg)) +
geom_errorbar(aes(x=carrier,ymin=low,ymax=high)) +
facet_grid(origin~.)
```

95% Confidence Intervals



