

MASTER SEMINAR: DATA SCIENCE & OPTIMIZATION

THE FUTURE OF MULTI-VARIANT PRODUCTION: CAR SEQUENCING

Aleksandra Petrenko & Ninh Tran 24th Jan 2024

Motivation: Why car sequencing?

- Customers require more customer-tailored products => the variety of product models is growing
- How to produce various model without cost-intensive work overloads?
- Common approaches: Car Sequencing (CS) and Mixed-Model
 Sequencing (MMS) => CS is easier to implement

- 1 INTRODUCTION TO SEQUENCING
- 2 RESEARCH QUESTIONS
- 3 MATHEMATICAL MODEL
- 4 LITERATURE REVIEW
- 5 THE FUTURE OF CAR SEQUENCING
- 6 CONCLUSION REMARKS

INTRODUCTION TO SEQUENCING

- In production planning, sequencing **defines optimal orders** when various products are being produced at a production line in order to **minimize setup costs or avoid work overload**
- Assume there are 2 types of car (orange and black) processed intermixed in a line
- Comparing between 2 sequences, which sequence would not generate work overload?

INTRODUCTION TO SEQUENCING

- Sequencing theory is a mathematical model that turns manufacturing goals into objective functions, incorporating other constraints such as labor utility and capital capacity
- There are two common approaches: car sequencing (CS) and mixed-model sequencing (MMS)

- Derives explicit method for calculating workload. Therefore, objective function is to minimize total work generated
- Tedious effort in collecting operation data

S

- Based on an **implicit rule** H_0 : N_0 which restricts the number of successive models with long processing time. Therefore, objective function is to **minimize total number** of violations in each subsequence
- Easy to implement

RESEARCH QUESTIONS

Our work tries to answer the following research questions:

- What are the advantages of car sequencing compared to mixed-model sequencing?
- What are the sequencing rules that generate a result as good as mixed-model sequencing?
- What are the recent trends in literature about car sequencing?
- What are the suggestions for future research?
- In which industries could car sequencing still be applied?

Problem formulation

- Assume that there are 2 models of cars that are processed intermixed in a production line
 - Black model (a car without feature "O", with shorter processing time p = 2)
 - Orange model (a car that requires a feature/option "O", with longer processing time p = 7)
- The problem concerns the order of car to avoid work overload
- What is the design of one workstation on a production line?
 - Conveyor used to place the models moves from left to right
 - Operators return to the left border to proceed the next product

Left-border station

Right-border station

Processing time

Problem formulation

- How does work overload incur at the workstation?
 - A workstation is set up as described:
 - T cycles (T = 9)
 - Border length $I_k(I = 8)$
 - Movement of cars within the workstation:
 - A black car enters a station
 - After handling, operator comes back and continue until finish the 5th car
 - However, he cannot finish the 6th car and work overload incur
 - We assume it is compensated and the line continue until the end

Problem formulation

- A feasible sequence
 - B B O B O O B B B is not feasible as work overload incurs
 - 2 orange models should not enter the line consecutively
- Car sequencing rule H_o: N_o
 - H_o restricts the number of models with option O that could be processed consecutively without generating work overload
 - N_o is H_o plus other models (w/o
 O) to get the operators back to left-border station

Assumptions of mathematical model

- Workflow is from left to right
- Operators can work only in their workstation
- Product models move at a constant speed
- All workstations are set up successively
- The products are processed as long as they meet the operators within the stations
- The operator has sufficient time to return to proceed next model
- Demand and processing time are deterministic and remain constant
- Work overload will be compensated and therefore no line stoppage

Introduction to variables of the mathematical models

- Settings: consider a production line with K workstations (index k), T cycle (index t), M models (index m) cycle time c and 2 models with 2 processing time
 - p_o^+ , longer processing time, for model with option O
 - p_o^- , shorter processing time, for model w/o O
- The model is based on Golle et. al., (2014) and describes a car sequencing model with **multiple sequencing rules** (MSR) in which **each rule is assigned a weighting factor** λ_0

$$\lambda_0 = p_o^+ - c$$

Introduction to variables of the mathematical models

v₀ calculates the number of successive models with option O in a sequence

$$\mathbf{v}_{0} = \sum_{t=1}^{T-N_{o}^{q}+1} \min \left\{ 1; \max \left\{ \sum_{t'=t}^{t+N_{o}^{q}-1} \sum_{m \in M} \alpha_{om} . x_{mt'} - H_{o}^{q}; 0 \right\} \right\}$$

 $H_o^q:N_o^q$ is the rule in sequencing rule \mathbf{q}^{th}

 a_{om} is a binary variable. 1 if model contains option o, 0 otherwise $x_{mt'}$ is a binary variable. 1 if model is produced in slot t, 0 otherwise

Processing time

Introduction to variables of the mathematical models

• Define the number of rules (Q)

 Q_o amounts to $q_o^{max} - q_o^{min} + 1$ with

$$q_o^{min} = \left| \frac{l_o - c}{p_o^+ - c} \right| \forall o \in O \tag{1}$$

$$q_o^{max} = \left[\frac{T(c - p_o^-) + (l_o - c)}{p_o^+ - p_o^-} \right] \forall o \in O$$
 (2)

Then, $\forall q_o \in [q_o^{min}, q_o^{max}]$, MSR generates a rule $H_o^{q_o - q_o^{min} + 1}: N_o^{q_o - q_o^{min} + 1}$ with

$$H_o^{q_o - q_o^{min} + 1} = q_o \,\forall o \in O \tag{3}$$

$$N_o^{q_o - q_o^{min} + 1} = H_o^{q_o - q_o^{min} + 1} + \left[\frac{q_o \cdot (p_o^+ - c) + (l_o - p_o^+)}{c - p_o^-} \right] \forall o \in O$$
 (4)

 q_o^{min}

 q_o^{max}

Maximum number of successive models containing option o without inducing work overload, equals H_o Maximum number of models with option o that can occur in a sequence of length T without work overload

Numerical example:

Assume that l_o = 20 and there are two car models, with two processing time p_o^+ = 15 and p_o^- = 5 respectively. The cycle time is 10 and we assume that the length of the sequence T = 12

From (1) and (2) we derive $q_o^{min}=2$ and $q_o^{max}=7$, which indicates that we would have 6 sequencing rules

From (3) and (4), we get $H_o^1: N_o^1=2:$ 3, $H_o^2: N_o^2=3:4$, $H_o^3: N_o^3=4:5$, $H_o^4: N_o^4=5:6$, $H_o^5: N_o^5=6:7$ and $H_o^6: N_o^6=7:8$

Introduction to variables of the mathematical models

How does multiple sequencing rules per station work?
 It follows sliding window. Assume we have a sequence of total 8 cars as and examine the rule of H_o²: N_o² = 3:4 (under a subsequence of 4 cars, there are maximum of 3 orange cars that can be processed consecutively to avoid work overload)

Numerical example:

Assume that l_o = 20 and there are two car models, with two processing time p_o^+ = 15 and p_o^- = 5 respectively. The cycle time is 10 and we assume that the length of the sequence T = 12

From (1) and (2) we derive $q_o^{min}=2$ and $q_o^{max}=7$, which indicates that we would have 6 sequencing rules

From (3) and (4), we get $H_o^1: N_o^1 = 2:$ $3, H_o^2: N_o^2 = 3:4, H_o^3: N_o^3 = 4:5,$ $H_o^4: N_o^4 = 5:6, H_o^5: N_o^5 = 6:7$ and $H_o^6: N_o^6 = 7:8$

Introduction to model objective functions

Objective functions

$$\text{minimize } obj^{w} = \sum\nolimits_{o \in O} \lambda_{o} \; \frac{1}{Q_{o}} \sum\nolimits_{q \in Q_{o}} v_{oq}$$

(minimize total number of violations with weighting factors)

subject to

$$\sum_{t=1}^{T} x_{mt} = d_m$$

 $(d_m \text{ demand, total production output needs to meet demand)}$

$$\sum_{m \in M} x_{mt} = 1 \ \forall t = 1, \dots, T$$

(each slot in the sequence contains exactly 1 model)

LITERATURE REVIEW

Advantages of car sequencing compared to mixed-model sequencing

- Based on Golle et. el., 2014 and Louis et. al., 2023 car sequencing are considered
 - Easy to apply and execute in practice
 - Less effort in constructing the mathematical model and data collection process
 - The evaluation of sequence is faster
- However, all previous studies shown that
 - MMS generates less overload than CS for assembly workers (using both real-case industry data and random instances)

LITERATURE REVIEW

Selection of sequencing rules

- Based on Golle et. al., 2014, there are 2 scenarios of misclassifying in CS
 - A sequence is feasible in CS but not feasible in MMS
 - Sequencing rules are not strict enough to eliminate circumstances where work overload would happen
 - Additional costs to deal with unforeseen work overload if it is incurred
 - A sequence is infeasible in CS but feasible in MMS
 - Car sequencing is unnecessarily strict that no sequence could fulfill
 - The elimination of feasible solutions would potentially lead to the removal of optimal solution or in the worst case, no feasible sequences could be found
- The quality of CS rules are based on the **percentage of misclassification**. The lower, the better

LITERATURE REVIEW

18

Selection of sequencing rules

- There are 3 sequencing rules that have been used for previous research studies
 - One sequencing rule (introduced by Golle et al., 2014)
 - Multiple sequencing rules (MSR) per station (introduced by Golle et al., 2014)
 - **Unique** sequencing ratio (USR) per station (introduced by Lesert, Alpan, and Frein 2011)
- Finding from Louis et. el., 2023 and Golle et al., 2014
 - MMS always achieve the best results compared to CS
 - With industry real-case data:
 - CS with MSR method are as good as MMS when cars on one sequence are limited
 - Otherwise, MMS helps achieve better results than CS
 - Among 3 sequencing rules, USR gave the best results

Literature selection: Methodology

- SCOPUS database
- Journals with ranking from A+ to B according to VHB-JOURQUAL rating for operations research
- Period from 2004 to 2023 inclusively
- ROADEF'05 challenge in 2005 initiated by Renault company (mostly papers of 2008) => the period reduced to 2010-2023
- Excluding Estellon and Gardi (2013)
- => 12 highly rated papers

Literature table (I)

Titl	Title		Problem formulation			Contribution					
				Options				Comparison	Sequencing	Instance	
				per	Solution	Algorithm	Bounds	of CS and	rules	space	
Paper	Year	Problem type	Objective function	station	method	type	improved	MMS	creation	analysis	
		CS with	minimize the cost								
		sequence-	function involving								
		dependent	costs associated								
		setups and	with additional		MIP solved						
Giard and		utility	utility workers and		with ILOG-	exact					
Jeunet	2010	workers	setup costs	2, colors	Cplex 9.0	algorithm	-	-	-	-	
Golle et											
al.	2010	CS	-	multiple	-	-	-	-	X	-	
					sequencin						
					g tool of						
					an						
Lesert et			minimize the		automotiv						
al.	2011	CS	number of violations	multiple	e company	-	-	-	X	-	
			minimize the sum of								
			absolute differences			both	tight lower				
			between actual and		iterated	heuristic or	bounds,				
		combined CS	ideal positions of		beam	exact	upper				
Yavuz	2013	and LS	variant copies	2	search	algorithm	bounds	-	-	-	

Literature table (II)

Title	9		Problem formulation	Contribution						
				Options				Comparison	Sequencing	Instance
		Problem		per	Solution	Algorithm	Bounds	of CS and	rules	space
Paper	Year	type	Objective function	station	method	type	improved	MMS	creation	analysis
			minimize the number of							
			(weighted) violations with 3							
			objective functions: 1) sliding		MIP					
			window (Gravel et al., 2005), 2)		solved					
			Fliedner and Boysen (2008)		with			V		
Golle et			function, 3) Bolat and Yano		CPLEX	exact		Х		
al.	2014	CS	(1992) function	2	12.2	algorithm	-	CS is worse	-	-
			minimize the number of							
			(weighted) violations with 3							
			objective functions: 1) sliding			both				
			window (Gravel et al., 2005), 2)		iterated	heuristic or	lower			
Golle et			Fliedner and Boysen (2008)		beam	exact	bounds			
al.	2015	CS	function	2	search	algorithm	improved	-	-	-
					column		lower,			
Jahren			minimize the weighted sum of		generatio		upper			
and			2 objectives: ratio costs and		n based	exact	bounds			
Achá	2018	industrial CS	paint changes	2, colors	algorithm	algorithm	improved	-	-	-

Literature table (III)

Title		Problem formulation			Contribution						
								Comparison	Sequencing	Instance	
				Options	Solution	Algorithm	Bounds	of CS and	rules	space	
Paper	Year	Problem type	Objective function	per station	method	type	improved	MMS	creation	analysis	
			minimize sum of								
			absolute differences		constraint						
			between actual and		propagation,						
Yavuz and		combined CS	ideal positions of		branch-and-						
Ergin	2018	and LS	variant copies	2	bound	heuristic	-	-	-	-	
			min the sum of upper								
			over- and under-		large						
Thiruvady			assignments (see		neighborhood						
et al.	2020	CS	Bautista et al., 2008)	2	search	heuristic	-	-	-	-	
					1) branch-and-						
					bound for small						
					instances, 2) a						
					sampling-based						
		CS, robust			adaptive large						
		against short-			neighborhood	1) exact					
		term	minimize the		search heuristic	algorithm	lower				
Hottenrott		sequence	expected number of		for large	2)	bounds				
et al.	2021	alterations	violations	2, colors	instances	heuristic	improved	-	-	-	

Literature table (IV)

Tit	tle	Problem formulation			Contribution						
				Options				Comparison	Sequencing	Instance	
		Problem		per	Solution	Algorithm	Bounds	of CS and	rules	space	
Paper	Year	type	Objective function	station	method	type	improved	MMS	creation	analysis	
					adaptive large						
					neighborhood						
			minimize the sum of		search, MIP						
			upper over- and		with lazy						
			under-assignments		constraints	1) heuristic					
Sun et			(see Bautista et al.		solved with	2) exact					
al.	2022	CS	2008)	2	Gurobi	algorithm	-	-	-	X	
		CS,						V			
Louis		industrial	minimize the number	2 or				X			
et al.	2023	CS	of violations	multiple	-	-	-	CS is worse	-	-	

Literature trends and future research

Trends	Future research
Modifications of CS	Incorporating uncertainty (e. g. robust CS)
Multiple options: the early 2010-s, then less interest	Revisiting the topic
Case studies in automotive industry	Applications in other industries
Development of well-performing algorithms (e. g. ROADEF'05)	Focus on other aspects
CS vs. MMS – MMS is better	Deployment of MMS in companies: cases
Sequencing rules generation – popularity in the early 2010-s, then less interest	Revisiting the topic
Instance space analysis	Further features of hard instances, new benchmark instances, improvement of existing algorithms

Industries selection: Methodology

- Google Scholar and SCOPUS databases
- Keywords "mixed-model assembly", "sequencing", "case study", excluding keywords "car", "automotive", "truck", "motorbike"
- No restriction on journals and paper ratings

Industries found

- Boiler manufacturing (Hwang and Katayama, 2010): E. g. various fan seals, fan motors, burners, air conditioners, etc.
- Food processing (Savsar et al., 2017): E. g. a salad line with different core and additional ingredients
- GPU cards (Wang et al., 2023)
- Hydraulic pumps (Rauf et al., 2020): E. g. different valves, levers
- Industrial air-dryers (Faccio et al., 2016)
- Industrial machines manufacturing (Rabbani et al., 2015)

Industries found

- Off-Highways systems manufacturing (Tiacci and Mimmi, 2018): E. g. the presence/absence of the Power Take Off (PTO) and/or quick couplers
- Plastic bag manufacturing (Mamun et al., 2012): E. g. presence/absence of different prints, various U-panels, etc.
- Turbocharger assembly (Yadav et al., 2020)
- Wooden furniture (Nouri and Abdul-Nour, 2019): E. g. presence/absence of reclining sofa backs, cabinet handles, different colors, etc.

Conclusion

- Sequencing is the task of defining the optimal job orders to minimize costs and work overload
- Mixed-model and car sequencing are the two common methods
- Among all sequencing rules, unique sequencing ratio per station delivered optimal results
- Methodology of searching papers was proposed
- Literature was classified by problem formulation and contribution
- Literature trends and future research directions were identified
- Industries where sequencing can be applied were identified

Thank you! Any questions?

References

Bautista, J., Pereira, J., & Adenso-Díaz, B. (2008). A beam search approach for the optimization version of the car sequencing problem. *Annals of Operations Research*, 159, 233-244.

Bolat, A., & Yano, C. A. (1992). A surrogate objective for utility work in paced assembly lines. *Production Planning & Control*, 3(4), 406-412.

Estellon, B., & Gardi, F. (2013). Car sequencing is NP-hard: a short proof. Journal of the Operational Research Society, 64(10), 1503-1504.

Faccio, M., Gamberi, M., & Bortolini, M. (2016). Hierarchical approach for paced mixed-model assembly line balancing and sequencing with jolly operators. *International journal of production research*, *54*(3), 761-777.

Fliedner, M., & Boysen, N. (2008). Solving the car sequencing problem via branch & bound. European Journal of Operational Research, 191(3), 1023-1042.

Giard, V., & Jeunet, J. (2010). Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line. *International Journal of Production Economics*, 123(2), 290-300.

Golle, U., Boysen, N., & Rothlauf, F. (2010). Analysis and design of sequencing rules for car sequencing. *European Journal of Operational Research*, 206(3), 579-585.

Golle, U., Rothlauf, F., & Boysen, N. (2014). Car sequencing versus mixed-model sequencing: A computational study. *European Journal of Operational Research*, 237(1), 50-61.

Golle, U., Rothlauf, F., & Boysen, N. (2015). Iterative beam search for car sequencing. Annals of Operations Research, 226, 239-254.

Gravel, M., Gagne, C., & Price, W. L. (2005). Review and comparison of three methods for the solution of the car sequencing problem. *Journal of the Operational Research Society*, *56*(11), 1287-1295.

Hottenrott, A., Waidner, L., & Grunow, M. (2021). Robust car sequencing for automotive assembly. European Journal of Operational Research, 291(3), 983-994.

References

Hwang, R., & Katayama, H. (2010). Integrated procedure of balancing and sequencing for mixed-model assembly lines: a multi-objective evolutionary approach. *International Journal of Production Research*, 48(21), 6417-6441.

Jahren, E., & Achá, R. A. (2018). A column generation approach and new bounds for the car sequencing problem. Annals of Operations Research, 264, 193-211.

Lesert, A., Alpan, G., Frein, Y., & Noire, S. (2011). Definition of spacing constraints for the car sequencing problem. *International Journal of Production Research*, 49(4), 963-994.

Louis, A., Alpan, G., Penz, B., & Benichou, A. (2023). Mixed-model sequencing versus car sequencing: comparison of feasible solution spaces. *International Journal of Production Research*, 61(10), 3415-3434.

Mamun, A. A., Khaled, A. A., Ali, S. M., & Chowdhury, M. M. (2012). A heuristic approach for balancing mixed-model assembly line of type I using genetic algorithm. *International Journal of Production Research*, *50*(18), 5106-5116.

Nouri, K., & Abdul-Nour, G. (2019). Optimization via Computer Simulation of a Mixed Assembly Line of Wooden Furniture-A Case Study. *Procedia Manufacturing*, 39, 956-963.

Rabbani, M., Sadri, S., Manavizadeh, N., & Rafiei, H. (2015). A novel bi-level hierarchy towards available-to-promise in mixed-model assembly line sequencing problems. *Engineering Optimization*, 47(7), 947-962.

Rauf, M., Guan, Z., Sarfraz, S., Mumtaz, J., Shehab, E., Jahanzaib, M., & Hanif, M. (2020). A smart algorithm for multi-criteria optimization of model sequencing problem in assembly lines. *Robotics and Computer-Integrated Manufacturing*, *61*, 101844.

Savsar, M., Elsaadany, A. K., Hassneiah, R., & Alajmi, A. (2017). Analysis of a manual mixed-model assembly line in food processing industry: a case study. In *International Conference on Industrial Engineering and Operations Management* (pp. 5689-5695).

References

Sun, Y., Esler, S., Thiruvady, D., Ernst, A. T., Li, X., & Morgan, K. (2022). Instance space analysis for the car sequencing problem. *Annals of Operations Research*, 1-29.

Thiruvady, D., Morgan, K., Amir, A., & Ernst, A. T. (2020). Large neighbourhood search based on mixed integer programming and ant colony optimisation for car sequencing. *International Journal of Production Research*, 58(9), 2696-2711.

Tiacci, L., & Mimmi, M. (2018). Integrating ergonomic risks evaluation through OCRA index and balancing/sequencing decisions for mixed model stochastic asynchronous assembly lines. *Omega*, 78, 112-138.

Wang, K. J., Eunike, A., Kurniawan, I., Ardi, R., & Chiu, J. M. (2023). Autonomous agent-based simulation modelling – A case study on a flexible GPU-card final assembly line. *Robotics and Autonomous Systems*, *169*, 104511.

Yadav, A., Verma, P., & Agrawal, S. (2020). Mixed model two-sided assembly line balancing problem: an exact solution approach. *International Journal of System Assurance Engineering and Management*, 11(Suppl 2), 335-348.

Yavuz, M. (2013). Iterated beam search for the combined car sequencing and level scheduling problem. *International journal of production research*, *51*(12), 3698-3718.

Yavuz, M., & Ergin, H. (2018). Advanced constraint propagation for the combined car sequencing and level scheduling problem. *Computers & Operations Research*, 100, 128-139.