Lab 15: Number Theory

CSCI104

Why Number Theory

- Relevant for a lot of things but especially for hash tables
- If we want to maintain hash table efficiency and minimize collisions
- ⇒ We want to be able to prove certain properties of different hashing techniques

Definitions

```
m|n implies an integer k such that n=km
a \equiv b \pmod{m} means a is congruent to b mod m, which suggests m|a-b|
 a \equiv b \pmod{m} and c \equiv d \pmod{m} means:
                               ac \equiv bd \pmod{m}
                            a+c \equiv b+d \pmod{m}
gcd(a,b) is the greatest common divisor of a,b an integer d such that d|a and d|b
           If gcd(a,b) = 1 then a and b are "co-prime"
```

Open Addressing (Probing)

If h(k) is occupied with another key, then probe

Let i be number of failed probes, table size m

Linear Probing

 $h(k,i) = (h(k)+i) \mod m$

Quadratic Probing

 $h(k,i) = (h(k)+i^2) \mod m$

- If h(k) occupied, then check $h(k)+1^2$, $h(k)+2^2$, $h(k)+3^2$, ...

Double Hashing

Pick a second hash function $h_2(k)$ in addition to the primary hash function, $h_1(k)$

- $h(k,i) = [h_1(k) + i*h_2(k)] \mod m$

Quadratic Probing

Property: If your hash table has a prime size m, the first m/2 probes are guaranteed to go to distinct locations.

Proof by contradiction: Suppose the i-th and j-th probe were to the same locations (where j < i <= m/2), then

⇒
$$(h(k)+i^2)$$
 % m = $(h(k)+j^2)$ % m
 $(h(k)+i^2)$ - $(h(k)+j^2)$ %m = 0 % m
 (i^2-j^2) = mq (for some q)
⇒ m | (i^2-j^2)
m | $(i+j)*(i-j)$

Since m is prime it must divide one of (i+j) or (i-j) But i,j \leq m/2, and i \neq j, so 0 < i-j, and i+j < m

Since m is prime, you can't divide m over (i+j) and (i-j)

Double Hashing

With a table of prime size p, and a secondary hash function that returns a number k in the range [1, p-1]

Probe positions would be: h, h+k, h+2k, h+3k, ...

Property: the first **p** locations will all be unique

Proof: (exercise) Try a proof by contradiction like the one for Quadratic probing

Fermat's Little Theorem

For prime number p and integer a that is not a multiple of p $a^{p-1} \equiv 1 \pmod p$

Then for any number n, if we can find some number a such that

$$a^{n-1} \not\equiv 1 \pmod{n}$$

 \Rightarrow n is NOT a prime number

Fermat's test says tries a bunch of a's to see if a number n is prime

Fermat's Test and Modular Exponentiation

Because the numbers we want to test are possibly very big and would cause integer overflow, we take advantage of exponents

$$b^{23} = b^{16} \cdot b^4 \cdot b^2 \cdot b^1 = b^{2^4} \cdot b^{2^2} \cdot b^{2^1} \cdot b^{2^0}$$

So we will implement a function to do:

117 ²	7 mod $5=2^2$	27 mod 5 =	$(2^{16}\cdot 2^8$	$\cdot 2^2 \cdot 2^1$	mod 5

1	N[i]	x (after iter i)	r (after iter i)	
initially		1	117%5=2	$\equiv 2^1 \mod 5$
0	1 (a0 = LSB)	1*2=2 mod 5	2*2=4 mod 5	$\equiv 2^2 \mod 5$
1	1	2*4=3 mod 5	2*2=1 mod 5	$\equiv 2^4 \mod 5$
2	0	3 (no change)	1*1=1 mod 5	$\equiv 2^8 \mod 5$
3	1	3*1=3 mod 5	1*1=1 mod 5	$\equiv 2^{16} \mod 5$
4	1 (a1 = MSB)	3*1=3 mod 5		

Modular Exponentiation

```
// suppose N is given in binary as a vector of bools
// in reverse order
int modularExponentiation(vector<bool> N, int b, int m) {
   int x = 1, r = b % m;
   for (int i = 0; i < N.size(); i++) {
      if ( N[i] == true ) x = (x * r) % m;
      r = (r * r) % m;
   }
   return x;
}</pre>
```

Checkoff

Two proofs:

- 1) If p is a prime number, b & c integers, and p | bc \Rightarrow p | b or p | c
- 2) Double hashing with a table size P will guarantee P distinct values

One coding exercise:

1) Modular exponentiation function & Fermat's Primality Test