CONFIDENCE ESTIMATION FOR ATTENTION-BASED SEQUENCE-TO-SEQUENCE MODELS FOR SPEECH RECOGNITION

Qiujia Li^{1*}, David Qiu², Yu Zhang², Bo Li², Yanzhang He², Philip C. Woodland¹, Liangliang Cao², Trevor Strohman²

¹ University of Cambridge, UK, ² Google LLC, USA

 $^1 \\ \{q1264,pcw\} \\ @eng.cam.ac.uk, \\ ^2 \\ \{qdavid,ngyuzh,boboli,yanzhanghe,llcao,strohman\} \\ @google.com, \\ (qdavid,ngyuzh,boboli,yanzhanghe,llcao,strohman) \\ (qdavid,ngyuzh,boboli,yanzhanghe,llcao,strohman,bobo$

[1. 소개]

- * 일반적으로 사용되는 정규화 방법이 softmax 기반 confidence score에 어떤 영향을 미치는가
- * end-to-end model의 overconfident behaviour 소개
- * CEM 소개

[2. 서 론]

HMM-based System

[2. 서론]

Confidence Score

e.g) semi-supervised, active learning 과정에서 높은 confident hypothesis 공간을 가진 utteranc가 ASR performance 향상을 위해 선택됨

e.g) 인공지능 대화 시스템에서 "잘 듣지 못했어요", "이해하지 못했어요" 등의 반응을 하도록 작동함

attention-based seq2seq using auto-regressive-decoder

성능은 좋지만, 특정 decoder 구조, 또는 heuristic한 방법을 사용하지 않으면 word posterior probability를 계산하기 어렵다 (비용 多)

[2. 서 론]

[Greedy한 접근법]

decoder의 각 토큰에 대해서 decode의 각 step마다 softmax probability를 취하면 confidence score를 얻을 수 있지 않을까?

[2. 서론]

threshold=0, 즉 모든 utterance가 통과될 경우 HMM 과 attention-based seq2seq의 성능은 비슷 x 축 : confidence score threshold (이 threshol을 넘는 score를 가진 utterance가 선택됨)

y 축 : Word Error Rate of filtered subset

HMM의 경우 threshold값이 증가할수록 WER이 단조롭게 감소하는 모습

threshold값의 상승이 항상 WER의 감소로 이어지지 않는다!

⇒즉, softmax probabilities는 overconfident 하다!

[3. C E M – 용어 정리]

 $x_{1:L}$: Input Utterance

 $e_{1:L} = Encoder(x_{1:L})$: Encoder ○ Output

 $a_t = Attention(a_{t-1}, d_{t-1}, e_{1:L})$: t번째 decoding step의 attention 값

 $d_t = Decoder(a_{t,} d_{t-1,} EMB_{(y_{t-1})})$: t번째 decoding step의 Decoder output

y: label token (grapheme(자소) / word piece)

 $EMB_{(\gamma_t)}$: current label token embedding

[Confidence Score] : 주어진 Token(알파벳, 음소 등의 단위)이 정답일 확률 (recognizer가 output token이 정답에 확실하다고 생각할수록 1에 가까움)

[trade – off] : attention-based seq2seq의 모델이 깊고 커질수록 성능은 올라가지만, output으로 내놓은 sequence의 calibration behaviour(보정 작업)의 투명도는 낮아진다

[proposition] : 모델의 성능은 유지하면서 높은 퀄리티의 confidence score을 얻는 방법인 CEM을 제안한다

[CEM]: Confidence Estimation Module

[3. C E M – 용어 정리]

 $x_{1:L}$: Input Utterance(입으로 낸 음성)

 $e_{1:L} = Encoder(x_{1:L})$: Encoder □ Output

 $a_t = Attention(a_{t-1}, d_{t-1}, e_{1:L})$: t번째 decoding step의 attention 값

 $d_t = Decoder(a_{t,} d_{t-1,} EMB_{(y_{t-1})})$: t번째 decoding step의 Decoder output

y: label token (grapheme(자소) / word piece)

 $EMB_{(\gamma_t)}$: current label token embedding

[3. C E M - 훈련 방법]

well-trained LAS Model

hypothesis_sequence_0

hypothesis_sequence_1

hypothesis_sequence_2

...

hypothesis_sequence_n-1

n-best hypotheses

각 hypothesis sequence와 ground truth sequence간의 edit distance 계산해 alignment 얻기

alignment에서 올바른 token은 1로, (정답에 대해서)바뀌거나 (정답에는 없는) 새로 삽입된 토큰에 대해서는 0으로 지정된다면 이를 confidence score로 사용할 수 있다!

- 1. ground_truth_i = "A B C D"
- 2. hypothesis_sequence_i = "A C C D"
- 3. binary_target_sequence c_i = [1, 0, 1, 1]

이렇게 얻은 c 를 target으로 해서 CEM의 output인 p와의 binary cross entropy를 minimize 하도록 CEM을 훈련한다 (이 때 훈련 중에는 attention-based seq2seq 모델의 파라미터는 고정)

$$\mathcal{L}(\mathbf{c}, \mathbf{p}) = -\frac{1}{T} \sum_{t=1}^{T} \left(c_t \log(p_t) + (1 - c_t) \log(1 - p_t) \right).$$

$$Total_Loss$$

$$= \sum_{k=0}^{n-1} L_k(c, p)$$

[4. 실 험 세 팅 - metrics]

각 hypothesis와 ground truth 사이의 alignment - Levenshtein Distance -

	j	0	1	2	3	4	5	6	7	8
i		ϵ	C	A	T	G	A	C	T	G
0	ϵ	0	0	0	0	0	0	0	0	0
1	T	1	1	1	0	1	1	1	0	1
2	A	2	2	1	1	1	1	2	1	1
3	C	3	2	2	2	2	2	1	2	2
4	T	4	3	3	2	3	3	2	1	2
5	G	5	4	4	3	2	3	3	2	1

confidence score의 quality 측정 - normalized cross-entropy -

$$\text{NCE}(\mathbf{c}, \mathbf{p}) = \frac{H(\mathbf{c}) - H(\mathbf{c}, \mathbf{p})}{H(\mathbf{c})}$$

- p: 각 토큰에 대해 구한 confidence socre array
- c: 각 토큰의 confidence score target array
- H(c): target sequenc의 entropy
- H(c, p): target과 confidence score사이의 binary cross-entropy
- confidence score가 인식된 단어가 얼마나 정확할 확률에 가까운지 측정

keyword spotting을 위한 임계값 작동 표현 - P-R Curve의 AUC(area under the curve) -

일반적으로 임계값이 증가하면 FP가 감소, FN이 증가 = 높은 precision, 낮은 recall 둘 사이의 trade-off는 왼쪽 상단 모서리에서부터 오른쪽 하단 모서리로 이어지는 하양 곡선을 만듦.

AUC(max = 1)는 confidence estimator의 quality를 측정하는 데에 사용. 두 confidence estimator가 동일한 AUC 값을 가지더라도 다른 NCE값을 가질 수 있음

[4. 실 험 세 팅 – baseline]

LAS

Encoder

Conv Layer
with
max pool (s=2)

Conv Layer
with
max pool (s=2)

bi-LSTM (1024 units)

bi-LSTM (1024 units)

bi-LSTM (1024 units)

Decoder

uni-LSTM (1024 units)
uni-LSTM (1024 units)

Adam (0.001)

[5. 실험결과 - Softmax Probabilities]

large model일수록 강력한 정규화 작업이 "state-of-the-art"급의 성능을 얻을 수 있게 해준다

- Augmenting Input Feature

: SpecAugment

- 모델 가중치 manipulating

: dropout, EMA, weight noise

output target modifying

: label smoothing

[각 regularisation tech를 제거했을 때의 WER, AUC, NCE value]

	WER↓	AUC ↑	NCE ↑
baseline	7.5/21.6	0.976/0.912	-0.195/ 0.131
dropout	7.8/22.0	0.977/0.916	-0.204/ 0.130
– EMA	8.2/24.8	0.974/0.903	-0.189/ 0.120
 label smoothing 	10.6/24.6	0.985/0.950	0.106/-0.131
 weight noise 	12.9/25.8	0.978/0.925	-0.459/-0.012
 SpecAugment 	10.8/34.3	0.952/0.911	0.012/ 0.160

^{*} WER은 예상대로 정규화 작업이 빠질 때마다 값이 안 좋아짐

^{*} AUC와 NCE가 동일하게 변하는 추세를 보이지는 않음

^{*} Augmenting Input Feature와 Model Weight Manipulating이 적어도 one metric에 대해서는 confidence performance를 올려주는 듯 (disentanglement 적용한 관련 추가 실험 필요)

^{*} softmax probabilites는 confidence score로 사용할 수는 있지만, (특히 output target이 modifed되는 경우의) regularisation techniques에 강하게 영향을 받는다

[5. 실 험 결 과 - CEM]

[각 regularisation tech를 제거했을 때의 WER, AUC, NCE value]

		AUC ↑	NCE↑ (w/o PWLM)	NCE↑ (w/ PWLM)
token	softmax	0.976/0.912	-0.195/0.131	0.166/0.172
	CEM	0.990/0.958	0.189/0.019	0.344/0.275
word	softmax	0.981/0.927	-0.180/0.139	0.269/0.195
	CEM	0.990/0.962	0.192/0.039	0.350/0.270

Table 2: Comparison of confidence scores between using softmax probabilities and using the CEM on the baseline model. The first row corresponds to the baseline in Table 1.

Fig. 3: Precision-recall curves for token-level confidence scores on LibriSpeech test-clean and test-other sets.

- * CEM이 훈련되는 동안에 negative sample에 대해서 WER을 더 증가시키기 위해 더 강력한 SpecAugment(T=50)이 적용됨
- * 각 utterance에 대해 8-best hypotheses가 바로 생성되고 target과 aligned된다
- * CEM이 추가되면서 기존 LAS에 비해 0.4%가 증가된 파라미터를 가짐
- * confidence score가 token/workd accuracy와 더 잘 match되게 하기 위해 PWLMs(Piece-wise Linear Mappings)를 dev-clean/dev-other에 대해 측정하였고 test-clean/test-other에 적용됨

[Intensity Transformation] https://juyoungit.tistory.com/187

* PWLM은 monotonic(단조롭기) 때문에 confidence score의 relative order는 변경되지 않고, AUC가 유지되는 동안 NCE가 향상될 수 있음

[5. 실험결과 - CEM]

[각 regularisation tech를 제거했을 때의 WER, AUC, NCE value]

		AUC ↑	NCE↑ (w/o PWLM)	NCE ↑ (w/ PWLM)
token	softmax	0.976/0.912	-0.195/0.131	0.166/0.172
	CEM	0.990/0.958	0.189/0.019	0.344/0.275
word	softmax	0.981/0.927	-0.180/0.139	0.269/0.195
	CEM	0.990/0.962	0.192/0.039	0.350/0.270

Table 2: Comparison of confidence scores between using softmax probabilities and using the CEM on the baseline model. The first row corresponds to the baseline in Table 1.

LibriSpeech test-clean and test-other sets.

- * softmax 그래프에서는 몇몇 incorrect token에 대해 overconfident한 모습을 보임
- * CEM은 그에 반해 적절한 trade-off가 일어났음을 볼 수 있으며 동일한 metrics에 대해서 더 적절한 confidence estimator임을 알 수 있음

^{*} AUC는 token/world level에 대해서 동시에 향상됨을 확인

^{*} softmax 와 달리, NCE 값은 CEM을 사용했을 때 항상 positive

^{*} PWLM을 적용하니, CEM은 더 높은 NCE value를 가지게 되었음

[5. 실 험 결 과 - languate model과 fusion했을 때의 성능]

		WER ↓	AUC ↑	NCE ↑
baseline	softmax CEM	7.5/21.6	0.981/0.927 0.990/0.962	0.269/0.195 0.350/0.270
+ LM	softmax CEM	6.8/19.8	0.981/0.928 0.991/0.966	0.103/0.109 0.337/0.263

Table 3: ASR and word-level confidence performance for models with and without RNNLM shallow fusion (with PWLM).

^{*} confidence estimation을 위한 LM info를 얻기 위해, CEM의 input에 current token에 대한 LM probability가 추가되었다

^{*} WER의 경우 약 8~9%의 성능 향상이 있었지만, AUC에서는 눈에 띌만한 성능 향상이 없었음

^{*} LM이 추가되었을 때 CEM의 confidence estimation의 quality가 상승하긴 함

[5. 실험결과-최종분석]

		WER↓	AUC ↑	NCE ↑
baseline	softmax CEM	18.7	0.935 0.970	0.230 0.280
+ LM	softmax CEM	17.7	0.933 0.965	0.159 0.266

Table 4: ASR and confidence performance on WSJ eval92. PWLM is estimated on LibriSpeech dev-other set. LM used is trained on LibriSpeech LM corpus as in Sec. 4.3.

- * CEM 훈련 때 사용한 데이터와 ASR 훈련 때 사용한 데이터가 같으므로 train-set에 대해서는 more confident
- * train set과 test set의 다른 distribution은 더 많은 augmentation과 dev set에서 측정한 PWLMs을 적용하면 완화시킬 수 있음
- * 하지만 여전히 다른 distribution을 가지는 domain의 데이터에 대해서는 얼마나 잘 일치할지는 모르는 일

[5. 실 험 결 과 - 최 종 분 석]

[Confidence Score로 filtering한 utterances에 대한 WER 그래프]

Fig. 4: WERs of filtered utterances w.r.t. confidence thresholds for softmax and CEM with LM shallow fusion.

- * Confidence Score는 semi-supervised learning에서 ASR performance를 향상시키기 위해 unlabelled data를 선택하는 것에 사용됨
- * 먼저 speech recogniser가 제한된 data로 훈련되고, 이후에 모델의 훈련에 noisy label로서 사용될 수 있는 unlabelled 된 data를 transcribe함.
- * 하지만 이러한 automatic transcription은 model에 손상을 줄 수 있음 => confidence score를 사용해 semi-supervised training에 사용할 데이터를 filtering
- * 만약 confidence score가 WER과 강력하게 연관되었다면, higher threshold는 낮은 WER의 subset도 잘 걸러낼 수 있을 것
- * (b) 그래프에서 알 수 있듯이, CEM으로 측정된 confidence score는 WER과 더욱 잘 match되고 있음을 알 수 있음