NICH PARTIES NICHTON

Ma2201/CS2022 Quiz 0100

Discrete Mathematics

A Term,	MMXVII
---------	--------

Print Name: ______ Sign: _____

1. (4 points) Let <i>A</i>	$A = \{a, b, c\}$ be a set and let $R \subseteq \mathcal{P}(A) \times \mathcal{P}(A)$ define	d by
	$R = \{(X, Y) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid b \in X \cap Y\}$	

- . Label the following TRUE or FALSE.
 - The relation R is transitive.
- ♣ TRUE: If $(X,Y) \in R$ and $(Y,Z) \in R$, then $b \in X \cap Y$ and $b \in Y \cap Z$, so b is in all three sets and $b \in X$ and $b \in Z$, and $b \in X \cap Z$, so $(X,Z) \in R$.
 - $\underline{}$ The relation R is symmetric.

 - $\underline{}$ The relation R is reflexive.
 - ♣ FALSE: This requires every subset to be related to itself. But $b \notin \emptyset \cap \emptyset$ so $(\emptyset, \emptyset) \notin R$.♣
 - ____ The equivalence class of \emptyset is $\{\emptyset\}$.
- \clubsuit FALSE: Since the relation is not an equivalence relation, not being symmetric, there are no equivalence classes. But even beyond that, we just noted that \emptyset is not related to itself, and in fact, it is related to no elements. \clubsuit
- 2. (4 points) Let $A = \{a, b, c\}$ be a set and let the relation $S \subseteq \mathcal{P}(A) \times \mathcal{P}(A)$ defined by $S = \{(X, Y) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid \text{There exists and onto function } X \to Y\}$
- . Label the following TRUE or FALSE
 - The relation S is transitive.
- ♣ TRUE: If $(X,Y) \in S$ and $(Y,Z) \in S$, then there exists $f: X \to Y$ and $g: Y \to Z$ both onto. and g(f(x)) is an onto function $gf: X \to Z$, so $(X,Z) \in S$ ♣.
- ____ The relation S is symmetric. \clubsuit FALSE: There is an onto function $\{a,b\} \to \{a\}$ sending both elements to a. But there is no onto function $\{a\} \to \{a,b\}$. \clubsuit
 - $_$ The relation S is reflexive.
- \clubsuit TRUE: The identity function which maps every element to itself, is also an onto map from $X \to X$.
 - ____ The equivalence class of $\{a,b,c\}$ has three elements.
- ♣ FALSE: There are no equivalence classes, just as before. But besides that, $(\{a,b,c\},X) \in S$ is true for 7 sets X, and only one of those $\{a,b,c\}$ itself is it true that $(X,\{a,b,c\} \in S)$.
- 3. (2 points) Let $B = \{a, b, c, d\}$. Find a relation $T \subseteq B \times B$ which is both an equivalence relation and a functional relation.
- ♣ For a relation be a function, each element of the first set, the domain, must be related to exactly one element in the second set, the target. For a relation to be an equivalence relation, each element must be related to itself. So the only relation that can satisfy both conditions is: $T = \{(a, a), (b, b), (c, c), (d, d)\}$. This is an equivalence relation, and there are four equivalence classes: $\{a\}, \{b\}, \{c\}, \text{ and } \{d\}$. ♣