Discovering Hidden Prerequisites

Anumat Srivastava, Lowell Bander, Paul Jayazeri

MATH 191 Topics in Data Science, UCLA

December 1, 2015

Outline

Introduction

Our Work Serial Rank Rank Centrality

Summary and conclusion

Introduction

- The objective is to use ranking algorithms to discover hidden prerequisites in the Math and Computer Science curriculums
- We have access to data containing 13,000+ students' GPA's and the order in which they have taken their classes
- We will be using the rank centrality and serial rank algorithms to rank the courses
- By contrasting the different orderings of classes taken for high gpa students vs. low gpa students, we should be able to find courses that should precede other courses

Introduction

Our Work Serial Rank Rank Centrality

Summary and conclusion

Serial Rank

► For Serial Rank, we use a matrix C of size n x n of pairwise comparisons (where n is the number of courses offered by the CS/Math departments), defined as follows:

$$C_{ij} = \begin{cases} 1 & \text{if course i is taken before course j (or i=j)} \\ 0 & \text{for i and j are tied or have no available comparison} \\ -1 & \text{if course j is taken before course i} \end{cases}$$

The pairwise similarity matrix is constructed as follows

$$S_{ij}^{match} = \sum_{k=1}^{n} (\frac{1 + C_{ik}C_{jk}}{2})$$

Then compute the Laplacian matrix $L_S = diag(S1) - S$ and finally computing and sorting the Fiedler vector of S will give the ranking.

Serial Rank

- For Serial Rank, we shall split the data into sets of high gpa students and low gpa students.
- Then we build similarity matrices for each student in both sets as described in the previous slide
- We combine all the similarity matrices into 1 normalized similarity matrix for each set and look at the pairwise difference of each entry in the two matrices.
- If the difference is large, the course taken by the high gpa students should be a prerequisite to the course taken by the low gpa students!
- We then use these two similarity matrixes to rank courses according to the algorithm described.

Rank Centrality

Outline

Introduction

Our Work Serial Rank Rank Centrality

Summary and conclusion

Summary of our work

We hope to discover some hidden prerequisites in the curriculums and improve the experience for future UCLA students by presenting our findings to the respective departments