Understanding models via their training data

Understanding black-box predictions via influence functions.
Koh and Liang, ICML 2017.

Prior work: Focus on test data

Prior work: Focus on test data

Which parts of the test input most affect the model's prediction?

[Ruth Fong's interpretability tutorial, 2019]

Class activation maps [Zhou et al., 2016]
Concept activation vectors [Kim et al., 2018]
DeConvNet [Zeiler & Fergus, 2014]
Deep Taylor decomposition [Montavon et al., 2017]
DeepLIFT [Shrikumar et al., 2017]
Deletion game [Fong & Vedaldi, 2017]
Conception additive models [Corvers et al., 2015]

Generalized additive models [Caruana et al., 2015] Gradients [Baehrens et al., 2010]

Gradients [Daemens et al., 2010]

Guided BackProp [Springenberg et al., 2015]

Grad-CAM [Selvaraju et al., 2016]

Integrated Gradients [Sundararajan et al., 2017]

Layer-wise relevance propagation [Bach et al., 2015]

LIME [Ribeiro et al., 2016]

Saliency maps [Simonyan et al., 2014]

SHAP [Lundberg et al., 2017]

SmoothGrad [Smilkov et al., 2017]

. .

. . .

Our work: Link model to training data

Example: Dataset debugging

 $oldsymbol{z}_{test}$, $oldsymbol{\widehat{ heta}}$ pprox

Loss on (original)

Change in loss on after removing
$$\ell\left(\boldsymbol{z}_{test}, \boldsymbol{\hat{\theta}}_{-\boldsymbol{z}_{train}}\right) - \ell\left(\boldsymbol{z}_{test}, \boldsymbol{\hat{\theta}}\right) \approx \mathbf{V}$$

Doesn't require retraining!

Change in loss on after removing

$$\ell\left(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}}_{-\boldsymbol{z}_{train}}\right) - \ell\left(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}}\right) \approx \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}}\right)^{T} \boldsymbol{H}_{\widehat{\boldsymbol{\theta}}}^{-1} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{z}_{train}, \widehat{\boldsymbol{\theta}}\right)$$

Gradient of loss on

Gradient of loss on

Inverse of the Hessian

A little bit more technical details ...

Training data $\longrightarrow \widehat{\boldsymbol{e}} \longrightarrow \ell(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}})$

A little bit more technical details ...

Training data

$$\longrightarrow \widehat{\boldsymbol{\theta}} \longrightarrow \ell(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}})$$

$$\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}\Big|_{\epsilon=0} \qquad \frac{dL(z_{\text{test}}, \hat{\theta}_{\epsilon,z})}{d\epsilon}\Big|_{\epsilon=0}$$

$$= \nabla_{\theta}L(z_{\text{test}}, \hat{\theta})^{\top} \frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}\Big|_{\epsilon=0}$$

$$\hat{\theta}_{\epsilon,z} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z, \theta)$$

From classical to modern settings

Jaeckel, 1972. The infinitesimal jackknife.

Hampel, 1974. The influence curve and its role in robust estimation.

Cook, 1977. Detection of influential observations in linear regression.

• • •

From classical to modern settings

Small datasets
Low-dimensional

Large datasets
High-dimensional

Difficult to compute

$$\nabla_{\theta} \ell \left(\boldsymbol{z}_{test}, \widehat{\boldsymbol{\theta}} \right)^{T} \boldsymbol{H}_{\widehat{\boldsymbol{\theta}}}^{-1} \nabla_{\theta} \ell \left(\boldsymbol{z}_{train}, \widehat{\boldsymbol{\theta}} \right)$$

We use tools from 2nd-order optimization & stochastic estimation [Pearlmutter, 1994; Martens, 2010, Agarwal et al., 2017]

Removing single points

Each point represents removing one training example

Actual change in test loss

Understanding Models via Their Training Data

Where can you apply influence functions?

Impact

Robustness

Training set biases

[Ren et al., 2018]

Inference reliability

[Broderick et al., 2021]

Cross-validation

[Stephenson et al., 2020]

Memorization

[Feldman, 2019]

Applications

Data distillation

[Wang et al., 2020]

Data valuation

[Jia et al., 2019]

Active learning

[Gudovskiy et al., 2020]

Data debugging

[Guo et al., 2021]

Fairness & security

Algorithmic bias

[Verma et al., 2021]

Data labor

[Arrieta-Ibarra, 2018]

Privacy

[Shokri et al., 2021]

Data poisoning

[Chen et al., 2017]

Limitations

- What assumptions on the models are needed to calculate influence functions?
- Can you calculate influence functions for a neural network with the recipe described earlier?

$$\left. rac{dL(z_{ ext{test}}, \hat{ heta}_{\epsilon,z})}{d\epsilon}
ight|_{\epsilon=0}$$

Training data

ining data
$$\longrightarrow$$
 $\widehat{m{\Theta}}$ \longrightarrow $\ell(m{z}_{test},\widehat{m{ heta}})$

$$\hat{\theta}_{\epsilon,z} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z, \theta)$$

Limitations

- What assumptions on the models are needed to calculate influence functions?
- Can you calculate influence functions for a neural network with the recipe described earlier?

If Influence Functions are the Answer, Then What is the Question?

Juhan Bae*†, Nathan Ng†‡ Alston Lo† Marzyeh Ghassemi‡ Roger Grosse†

Non-convexity Non-convergence

$$\hat{\theta}_{\epsilon,z} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta) + \epsilon L(z, \theta)$$

Summary

- Link model behavior to training data
- Efficient to calculate
- Many applications

Limitations when applying to complex models