Mathématiques générales : TD4 (corrigés1)

Exercice 10 (Corr): On définit sur \mathbb{R} la relation $x\mathcal{R}y$ si et seulement si $x^2 - y^2 = x - y$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
 - -Réfléxivité. Soit $x \in \mathbb{R}$. On a $x^2 x^2 = 0 = x x$, donc $x\mathcal{R}x$.
 - -Symétrie. Soient $x, y \in \mathbb{R}$ tels que $x\mathcal{R}y$, c'est-à-dire $x^2 y^2 = x y$. En multipliant par -1 la dernière égalité, on obtient $y^2 x^2 = y x$. Ainsi $y\mathcal{R}y$.
 - -Transitivité. Soient $x, y, z \in \mathbb{R}$ tels que $x\mathcal{R}y$ (c'est-à-dire $x^2 y^2 = x y$) et $y\mathcal{R}z$ ((c'est-à-dire $y^2 z^2 = y z$)). On a $x^2 z^2 = (x^2 y^2) + (y^2 z^2) = (x y) + (y z) = x z$, donc $x\mathcal{R}z$.
- 2. Pour chaque $x \in \mathbb{R}$, déterminer la classe d'équivalence de x. Fixons $x \in \mathcal{R}$. Soit $y \in \mathbb{R}$. Alors $y \in [x] \Leftrightarrow x^2 - y^2 = x - y \Leftrightarrow (x - y)(x + y) - (x - y) = 0 \Leftrightarrow (x - y)(x + y - 1) = 0 \Leftrightarrow x - y = 0 \text{ ou } x + y - 1 = 0 \Leftrightarrow y = 0 \text{ ou } y = 1 - x$. D'où

Exercice 13(Corr):

 $[x] = \{x, 1 - x\}.$

Montrer que la relation \mathcal{R} définie sur \mathbb{R} par : $x\mathcal{R}y$ si et seulement si $xe^y = ye^x$ est une relation d'équivalence.

- -Réfléxivité.Soit $x \in \mathbb{R}$. On a $xe^x = xe^x$, donc $x\mathcal{R}x$.
- -Symétrié. Soient $x, y \in \mathbb{R}$ tels que $x\mathcal{R}y$, c'est-à-dire $xe^y = ye^x$. On a $ye^x = xe^y$, donc $y\mathcal{R}x$.
- -Transitivité. Soient $x, y, z \in \mathbb{R}$ tels que $x\mathcal{R}y$ (c'est-à-dire $xe^y = ye^x$) et $y\mathcal{R}z$ (c'est-à-dire $ye^z = ze^y$). On a $(xe^y)(ye^z) = (ye^x)(ze^y)$ et en divisant par ye^y , on obtient $xe^z = ze^x$. Donc $x\mathcal{R}z$.

Exercice 14(corr): Dire si les relations suivantes sont réflexives, symétriques, antisymétriques, transitives:

- 1. $E = \mathbb{Z}$ et $x\mathcal{R}y \ x = -y$,
 - $-\mathcal{R}$ n'est pas réfléxive car $1 \neq -1$ ou encore non $(1\mathcal{R}1)$.
 - - \mathcal{R} est symétrique. En effet, soient $x,y\in E$ tels que $x\mathcal{R}y$, i.e. x=-y. On a y=-x, donc $y\mathcal{R}x$.
 - $-\mathcal{R}$ n'est antisymétrique. En effet, $1\mathcal{R}-1$ et $-1\mathcal{R}1$ mais $-1\neq 1$.
 - $-\mathcal{R}$ n'est pas transitive. En effet $1\mathcal{R}-1$ et $-1\mathcal{R}1$ mais $\operatorname{non}(1\mathcal{R}1)$ car $1\neq -1$.
- 2. $E = \mathbb{R}$ et $x\mathcal{R}y$ si et seulement si $\cos^2 x + \sin^2 y = 1$.
 - $-\mathcal{R}$ est réfléxive. En effet, pour tout $x \in \mathbb{R}$, on a toujours $\cos^2(x) + \sin^2(x) = 1$, donc $x\mathcal{R}x$.
 - - \mathcal{R} est symétrique. En effet, soient $x, y \in \mathbb{R}$ tels que $x\mathcal{R}y$, I.e. $\cos^2(x) + \sin^2(y) = 1$. On a $1 = (1 \sin^2(y)) + (1 \cos^2(x)) = \cos^2(y) + \sin^2(x)$, donc $y\mathcal{R}x$.
 - $-\mathcal{R}$ n'est pas antisymétrique. En effet $0\mathcal{R}\pi$ (car $\cos^2(0) + \sin^2(\pi) = 1$) et $\pi\mathcal{R}0$ (car $\cos^2(\pi) + \sin^2(0) = 1$) mais $0 \neq \pi$.
 - - \mathcal{R} est transitive. En effet soient $x,y,z\mathcal{R}$ tels que $x\mathcal{R}y$ et y^{\ddagger} , i.e. $\cos^2(x) + \sin^2(y) = 1$ et $\cos^2(y) + \sin^2(z) = 1$. En faisant la somme, on obtient $\cos^2(x) + \sin^2(y) + \cos^2(y) + \sin^2(z) = 2$. Or $\sin^2(y) + \cos^2(y) = 1$, donc $\cos^2(x) + \sin^2(z) = 2 (\sin^2(y) + \cos^2(y)) = 2 1 = 1$. Ainsi $x\mathcal{R}z$.
- 3. $E = \mathbb{N}$ et $x\mathcal{R}y$ si et seulement si $\exists p, q \geq 1, y = px^q$ (p et q sont des entiers).
 - - \mathcal{R} est réfléxive. En effet, soit $x \in \mathbb{N}$. On a $x = 1 \times x^1$ (p = q = 1), donc $x\mathcal{R}x$.
 - $-\mathcal{R}$ n'est pas symétrique. En effet $2\mathcal{R}6$ car $6=3\times 2^1$ (p=3) et q=1) mais on ne peut pas écrire $2=p\times 6^q$ (car 6 ne divise pas 2) donc $6\mathcal{R}2$.
 - $-\mathcal{R}$ est antisymétrique. En effet, soient $x,y\in\mathbb{N}$ tels que $x\mathcal{R}y$ et $y\mathcal{R}x$. En particulier x

```
divise y et y divise x. Donc x=y.

-\mathcal{R} est transitive. En effet, soient x,y,z\in\mathbb{N} tels que x\mathcal{R}y et y\mathcal{R}z. On peut écrire y=px^q et z=p'y^{q'}, donc z=p'y^{q'}=p'(px^q)=p'p^qx^{qq'} avec p'p^q\geq 1 et qq'\geq 1. Donc x\mathcal{R}z.
```

Quelles sont parmi les exemples précédents les relations d'ordre et les relations d'équivalence? -La seule relation d'équivalence est la relation 2. et la seule relation d'ordre est la 3.