

Esercizio Q-Learning

Esempio Q-Learning Update

- 6 stati {s1.... s6}
- Azioni: {su, destra, giù, sinistra}
- Reward istananteo = 0
- ▶ Inizializzo Q(s,a) in rosso.

Esempio Q-Learning Update

$$\gamma = 0.9$$

 $\alpha = 0.1$
 $a(S_2) = down$

0 reward received in the transition

$$\underline{Q}(s_1, a_{right}) = \underline{Q}(s_1, a_{right}) + \alpha \{ r(s_1, a_{right}, s_2) + \gamma \max_{a}, \underline{Q}(s_2, a') - \underline{Q}(s_1, a_{right}) \}
= 72 + \alpha \{0 + 0.9 \max_{a}, \{63, 80, 100\} - \underline{Q}(s_1, a_{right}) \}
= 72 + \alpha (90 - 72) = 72 + 1.8 = 73.8$$

Correzione di
$$Q(s_1, a_{right})$$

Correzione dell'azione in s_2 da down a right

La correzione di $Q(s_1, a_{right})$ va a 0 quando

 $Q(s_1, a_{right}) = 90$

$$Q(s_2, a_{down}) = 80$$

 $Q(s_2, a_{right}) = 100$
 $Q(s_2, a_{left}) = 63$

Esempio Q-Learning Update

$$\gamma = 0.9$$

 $\alpha = 0.1$
 $a(S_2) = down$

0 reward received in the transition

$$\begin{aligned} & \underline{Q}(s_{1}, a_{right}) = 72 + \alpha \left(90 - 72\right) = 72 + 1.8 = 73.8 & \text{trial 1} \\ & \underline{Q}(s_{1}, a_{right}) = 73.8 + \alpha \left(90 - 73.8\right) = 73.8 + 1.62 = 75.42 & \text{trial 2} \\ & \underline{Q}(s_{1}, a_{right}) = 75.42 + \alpha \left(90 - 75.42\right) = 75.42 + 1.458 = 76.878 & \text{trial 3} \\ & \underline{Q}(s_{1}, a_{right}) = 76.878 + \alpha \left(90 - 76.878\right) = 76.878 + 1.3122 = 78.1902 & \text{trial 4} \\ & \underline{Q}(s_{1}, a_{right}) = 78.1902 + \alpha \left(90 - 78.1902\right) = 75.42 + 1.458 = 79.37118 & \text{trial 5} \\ & \underline{Q}(s_{1}, a_{right}) = 79.37118 + \alpha \left(90 - 79.37118\right) = 75.42 + 1.458 = 80.434062 & \text{trial 6} \end{aligned}$$

.

Si ottiene una serie che converge al valore asintotico 90 (asintoticamente)

- Stati: $\{s_1, ..., s_6\}$
- Azioni: {dx. sx, su, giù}
- Reward solo in alcune transizioni (in rosso e cerchiato).
- Stato iniziale: s₁
- Initial selected policy: move clockwise;
- Q(s,a) initially 0;

E.g. videogioco. In G rimango in G - loop

$$\alpha = 1$$
 $\gamma = 0.8$.

• Start at upper left; Initial selected policy: move clockwise; Q(s,a) initially 0; $\gamma = 0.8$. Reward solo nelle transizioni.

$$Q_{k+1}^{\pi}(s_1, E) = Q_k^{\pi}(s_1, E) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s_2, a') - Q_k^{\pi}(s_1, E) \right]$$

Reward istanteo in rosso e cerchiato

$$Q_{k+1}^{\pi}(s_1, E) = 0 + 1[0 + 0.8x0 - 0] = 0$$

E.g. videogioco.
In G rimango in G - loop

Q(s ₁ ,East)	Q(s ₂ ,East)	Q(s ₃ ,South)	Q(s ₄ ,West)
0			

• Start at upper left – move clockwise; table initially 0; $\gamma = 0.8$; $\alpha = 1$

$$Q_{k+1}^{\pi}(s,a) = Q_k^{\pi}(s,a) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s',a') - Q_k^{\pi}(s,a) \right]$$

$$Q_{k+1}^{\pi}(s_3, S) = 0 + 1[0 + 0.8x0 - 0] = 0$$

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	

$$Q_{k+1}^{\pi}(s_4, W) = Q_k^{\pi}(s_4, W) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s_3, a') - Q_k^{\pi}(s_4, W) \right]$$

$$Q_{k+1}^{\pi}(s_4, W) = 0 + 1[10 + 0.8 \times 0 - 0] = 10$$

$$Q_k^{\pi}(s_5, .) \text{ goal}$$

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10
0	0	8	

$$Q_{k+1}^{\pi}(s_4, W) = Q_k^{\pi}(s_4, W) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s_3, a') - Q_k^{\pi}(s_4, W) \right]$$

$$Q_k^{\pi}(s_5,.)$$
 goal

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10
0	0	8	10

$$Q_{k+1}^{\pi}(s_2, E) = Q_k^{\pi}(s_2, E) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s_3, a') - Q_k^{\pi}(s_2, E) \right]$$

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10
0	0	8	10
0	6.4		

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10
0	0	8	10
0	6.4	8	10

Q(S1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	10
0	0	8	10
0	6.4	8	10
5.12	6.4	8	10

• Start at upper left – move clockwise; $\gamma = 0.8$; $\alpha = 1$

$$Q_{k+1}^{\pi}(s_2, S) = Q_k^{\pi}(s_2, S) + \alpha \left[r' + \gamma \max_{a'} Q_k^{\pi}(s_5, a') - Q_k^{\pi}(s_2, S) \right]$$
$$Q_{k+1}^{\pi}(s_2, S) = 0 + 1[10 + 0.8 \times 0 - 0] = 10$$

Mossa ε -greedy in s_2 (invece che a = E, scelgo a = S, cambio azione): calcolo $Q(s_2, S) = r + \gamma \max_{a} \{Q(s5,a')\} = 10 + 0.8 \times 0 = 10$

Q(S1,E)	Q(s2,E)	Q(s2,S)	Q(s3,S)	Q(s4,W)
0	0	0	0	10
0	0	0	8	10
0	6.4	0	8	10
5.12	6.4	10	8	10

Q(S1,E)	Q(s2,E)	Q(s2,S)	Q(s3,S)	Q(s4,W)
0	0	0	0	10
0	0	0	8	10
0	6.4	0	8	10
8	6.4	10	8	10

Esercizio

Simulare l'algoritmo Q-learning per un robot che cammina nell'ambiente in figura (b2 è un muro, entrare in b4 da una penalità di -10, entrare in a4 fornisce una ricompensa di 10).

- Indicare i Q-value dopo i seguenti episodi, usando l'aggiornamento all'indietro (dopo essere arrivati allo stato obiettivo, i Q-value aggiornano in ordine inverso dal goal all'inizio, e γ =0.9)
- 1. a1, a2, a3, b3, b4
- 2. c2, c1, b1, a1, a2, a3, a4
- 3. c4, c3, b3, a3, a4
- ▶ Indicare la policy che esegue l'azione che ha il Q-value più alto. E' ottimale?