Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Estudiante: Luis Angel Quenaya Loza

Código: 241411

Actividad N°03

Gráficas de funciones lineales en Python

Problema 01

Un desarrollador dispone de un máximo de 15 horas semanales para dedicar al desarrollo de front-end (x) y back-end (y). Además, se tienen las siguientes condiciones:

■ Debe dedicar al menos 5 horas al desarrollo de front-end:

$$x \ge 5$$

• El tiempo total invertido no puede superar las 15 horas:

$$x + y \le 15$$

• Las variables no pueden ser negativas:

$$x \ge 0, \quad y \ge 0$$

Por lo tanto, el sistema de restricciones queda representado como:

$$\begin{cases} x \ge 5 \\ x + y \le 15 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

```
def luis_expresion(expr: str) -> str:
    """Convierte la expresi n a una forma v lida en Python."""
    expr = expr.replace(" ", "")
    expr = expr.replace("^", "**")
```

```
expr = expr.replace("-x", "-1*x")
5
       expr = expr.replace("+x", "+1*x")
6
7
       if expr.startswith("x"):
8
            expr = "1*" + expr
9
10
       expr = expr.replace("x", "*x")
11
       expr = expr.replace("**x", "*x")
12
       return expr
13
14
15
   def evaluar(expr, x):
16
       """Eval a la funci n en un valor de x."""
17
18
           return eval(expr)
19
       except:
20
           return None
21
22
23
   def graficar_ascii(func1, xmin=0, xmax=20, ymin=0, ymax=20):
24
       """Dibuja una funci n lineal en consola usando ASCII, mostrando
^{25}
            la regi n factible."""
       for y in range(ymax, ymin - 1, -1):
26
            linea = ""
27
            for x in range(xmin, xmax + 1):
28
                y1 = evaluar(func1, x)
29
30
31
                cond1 = (y1 is not None and round(y1) == y)
32
                cond2 = (x == 5)
33
                cond3 = (x >= 5 \text{ and } y <= -x + 15 \text{ and } y >= 0)
34
35
                if cond1:
36
                     linea += "1"
37
                elif cond2:
38
                     linea += "|"
39
                elif cond3:
40
                     linea += "*"
41
                elif x == 0 and y == 0:
42
                     linea += "+"
43
                elif x == 0:
44
                     linea += ":"
45
                elif y == 0:
46
                     linea += "-"
47
                else:
                     linea += " "
49
            print(linea)
50
```

```
51
       print("\nLeyenda del gr fico:")
52
       print("1 = Recta y = -x + 15 (tiempo total)")
53
       print(" | = Restricci n x = 5 (m nimo front-end)")
54
       print(" * = Zona factible (combinaciones posibles)")
55
       print(" + = Origen (0,0)")
56
58
  print("Modelo de horas del desarrollador")
59
  f1 = "-x+15"
60
61
  f1 = luis_expresion(f1)
62
63
  graficar_ascii(f1)
64
```

Figura 1: Gráfico generado por el programa en Python

Interpretación del gráfico

El gráfico muestra la región factible de asignación de horas entre el desarrollo de **front-** end (x) y back-end (y).

Las restricciones son:

```
x \ge 5, x + y \le 15, x, y \ge 0
```

La recta y = -x + 15 indica el límite del tiempo total, mientras que la línea x = 5 asegura el mínimo de horas en front-end. La zona válida es el triángulo formado entre ambas rectas en el primer cuadrante.

En total, existen **66 combinaciones posibles** de horas que cumplen con estas condiciones.

Problema 02

Un ingeniero de datos administra dos tipos de servidores en la nube: **Servidores A** y **Servidores B**. El costo por hora de Servidor A es de S/3 y el de Servidor B es de S/5. El presupuesto máximo semanal asignado para mantener los servidores es de S/20.

Se requiere determinar cuántas horas puede mantener activos cada tipo de servidor, formular el sistema de restricciones correspondiente y representarlo gráficamente.

Restriciones

Sea x el número de horas de uso de los **Servidores A** y y el número de horas de uso de los **Servidores B**.

Las restricciones son:

$$3x + 5y \le 20$$
$$x \ge 0$$
$$y > 0$$

```
def luis_expresion(expr: str) -> str:
       """Convierte la expresi n en formato Python v lido."""
2
       expr = expr.replace(" ", "")
3
       expr = expr.replace("^", "**")
4
       expr = expr.replace("-x", "-1*x")
       expr = expr.replace("+x", "+1*x")
       if expr.startswith("x"):
           expr = "1*" + expr
       expr = expr.replace("x", "*x")
9
       expr = expr.replace("**x", "*x")
10
       return expr
11
12
  def evaluar(expr, x):
13
       """Eval a la funci n en un valor de x."""
14
15
           return eval(expr)
16
       except:
17
           return None
18
19
  def graficar_ascii(func1, func2, xmin=0, xmax=20, ymin=0, ymax=10):
20
       """Dibuja dos funciones lineales en ASCII con n meros en los
21
          ejes."""
```

```
for y in range(ymax, ymin - 1, -1):
           linea = f''\{y:2\} "
23
           for x in range(xmin, xmax + 1):
24
                y1 = evaluar(func1, x)
25
                y2 = evaluar(func2, x)
26
27
                cond1 = (y1 is not None and round(y1) == y)
28
                cond2 = (y2 is not None and round(y2) == y)
29
30
                if cond1 and cond2:
31
                    linea += "X"
32
                elif cond1:
33
                    linea += "1"
34
                elif cond2:
35
                    linea += "2"
36
                elif x == 0 and y == 0:
37
                    linea += "+"
38
                elif x == 0:
39
                    linea += "|"
40
                elif y == 0:
41
                    linea += "-"
42
                else:
43
                    linea += " "
44
           print(linea)
45
46
47
       eje_x = "
48
       for x in range(xmin, xmax + 1):
49
           if x \% 2 == 0:
50
                eje_x += str(x \% 10)
51
           else:
52
                eje_x += " "
53
       print(eje_x)
54
55
       print("\nLeyenda del gr fico:")
56
       print("1 = Restricci n 3x + 5y = 20")
57
       print("2 = Eje base (y=0)")
58
       print(" X = Intersecci n")
59
       print(" | = Eje Y")
60
       print(" - = Eje X")
61
       print(" + = Origen (0,0)")
62
63
64
  print("Modelo de servidores en la nube")
65
  f1 = "-(3/5)*x + 4"
  f2 = "0"
67
68
```

```
f1 = luis_expresion(f1)
f2 = luis_expresion(f2)
71
72 graficar_ascii(f1, f2)
```

```
Modelo de servidores en la nube
10 I
 9 1
 8
 7
 6
 5
 4 1
 3 | 11
 2 |
      11
        1
 0 222222XX22222222222
   0 2 4 6 8 0 2 4 6 8 0
Leyenda del gráfico:
 1 = Restricción 3x + 5y = 20
 2 = Eje base (y=0)
X = Intersección
 | = Eje Y
 - = Eje X
 + = Origen (0,0)
```

Figura 2: Gráfico generado por el programa en Python

Interpretación del gráfico

El gráfico obtenido representa las combinaciones posibles de horas de uso entre los **Servidores A** (x) y los **Servidores B** (y), teniendo en cuenta el presupuesto máximo semanal de S/20.

La recta:

$$3x + 5y = 20 \iff y = -\frac{3}{5}x + 4$$

marca el límite del gasto.

• Si se usan solo **Servidores** A, el máximo posible es

$$x = \frac{20}{3} \approx 6.6$$
 horas.

• Si se usan solo **Servidores B**, el máximo posible es

$$y = 4$$
 horas.

En la zona bajo la recta y dentro del primer cuadrante se encuentran todas las combinaciones válidas. Por ejemplo:

$$(x = 5, y = 1)$$
 o $(x = 2, y = 2,8)$

son posibles porque no superan el presupuesto.

Problema 03

Un administrador de proyectos tecnológicos organiza su tiempo entre reuniones con stakeholders (x) y trabajo en la documentación técnica (y). Las reuniones requieren al menos 4 horas semanales y la documentación al menos 6 horas. Si dispone de 12 horas para ambas actividades, determine la región factible y analice las combinaciones posibles de tiempo.

Restricciones

Sean x las horas destinadas a reuniones y y las horas para documentación técnica.

$$\begin{cases} x + y \le 12 \\ x \ge 4 \\ y \ge 6 \\ x \ge 0, \quad y \ge 0 \end{cases}$$

```
def luis_expresion(expr: str) -> str:
       """Convierte la expresi n en formato v lido de Python."""
2
       expr = expr.replace("^", "**")
3
       expr = expr.replace("-x", "-1*x")
       expr = expr.replace("+x", "+1*x")
5
       if expr.startswith("x"):
6
           expr = "1*" + expr
7
       expr = expr.replace("x", "*x")
8
       expr = expr.replace("**x", "*x")
9
       return expr
10
11
  def evaluar(expr, x):
12
       """Eval a la funci n en un valor de x."""
13
14
           return eval(expr)
15
       except:
16
           return None
17
18
  def graficar_ascii(func1, func2, xmin=0, xmax=12, ymin=0, ymax=12):
19
       """Dibuja restricciones en ASCII con n meros en los ejes."""
20
```

```
for y in range(ymax, ymin - 1, -1):
           linea = f''\{y:2\} "
22
           for x in range(xmin, xmax + 1):
23
                y1 = evaluar(func1, x)
24
                y2 = evaluar(func2, x)
25
26
                cond1 = (y1 is not None and round(y1) == y)
27
                cond2 = (y2 is not None and round(y2) == y)
28
29
                if cond1:
30
                    linea += "1"
31
                elif cond2:
32
                    linea += "2"
33
                elif x == 0 and y == 0:
34
                    linea += "+"
35
                elif x == 0:
36
                    linea += "|"
37
                elif y == 0:
38
                    linea += "-"
39
                else:
40
                    linea += " "
41
           print(linea)
42
43
       eje_x = "
44
       for x in range(xmin, xmax + 1):
45
            eje_x += str(x \% 10)
46
       print(eje_x)
47
48
       print("\nLeyenda del gr fico:")
49
       print("1 = Restricci n x + y = 12")
50
       print("2 = Restricciones m nimas (x=4, y=6)")
51
       print("| = Eje Y, - = Eje X, + = Origen (0,0)")
52
53
   print("Modelo de tiempo del administrador")
54
  f1 = "-x + 12"
55
  f2 = "0"
56
  f1 = luis_expresion(f1)
58
  f2 = luis_expresion(f2)
59
60
  graficar_ascii(f1, f2)
61
```

Figura

```
Modelo de tiempo del administrador
11 |1
10 | 1
 9
 8
 7
 6
 5
 4
 3
 2
   0123456789012
Leyenda del gráfico:
1 = Restricción x + y = 12
2 = Restricciones mínimas (x=4, y=6)
 = Eje Y, - = Eje X, + = Origen (0,0)
```

Figura 3: Enter Caption

Figura 4: Región factible del Problema 03

Interpretación del gráfico

El gráfico muestra la región de combinaciones posibles de horas para reuniones y documentación. Si solo se realizan reuniones, como mínimo deben ser x=4 horas; si solo se trabaja en documentación, se requieren al menos y=6 horas. La recta x+y=12 marca el límite del tiempo disponible. La zona factible es el área comprendida por estas restricciones, donde se hallan todas las distribuciones válidas de tiempo.

Problema 04

Una empresa de desarrollo de videojuegos produce dos tipos de assets: Modelos 3D (x) y Texturas (y). Cada modelo 3D requiere 2 horas de trabajo y cada textura requiere 3 horas. El equipo de arte dispone de 18 horas semanales. Formule las restricciones, represéntelas gráficamente y determine cuántos assets de cada tipo pueden producirse.

Restricciones

Sean x el número de modelos 3D y y el número de texturas.

$$\begin{cases} 2x + 3y \le 18 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

```
def luis_expresion(expr: str) -> str:
       expr = expr.replace("^", "**")
2
       expr = expr.replace("-x", "-1*x")
3
       expr = expr.replace("+x", "+1*x")
4
       if expr.startswith("x"):
5
            expr = "1*" + expr
6
       expr = expr.replace("x", "*x")
7
       expr = expr.replace("**x", "*x")
       return expr
9
   def evaluar(expr, x):
11
       try:
12
           return eval(expr)
13
       except:
14
           return None
15
16
   def graficar_ascii(func1, func2, xmin=0, xmax=10, ymin=0, ymax=10):
17
       for y in range(ymax, ymin - 1, -1):
18
           linea = f''\{y:2\} "
19
           for x in range(xmin, xmax + 1):
20
                y1 = evaluar(func1, x)
21
                y2 = evaluar(func2, x)
22
23
                cond1 = (y1 is not None and round(y1) == y)
                cond2 = (y2 is not None and round(y2) == y)
25
26
                if cond1:
27
                    linea += "1"
28
                elif cond2:
29
                    linea += "2"
30
                elif x == 0 and y == 0:
31
                    linea += "+"
32
                elif x == 0:
33
                    linea += "|"
34
                elif y == 0:
35
                    linea += "-"
36
                else:
37
                    linea += " "
38
           print(linea)
39
```

```
eje_x = " "
       for x in range(xmin, xmax + 1):
42
           eje_x += str(x \% 10)
43
       print(eje_x)
44
45
       print("\nLeyenda del gr fico:")
46
       print("1 = Restricci n 2x + 3y = 18")
47
       print("2 = Eje base (y=0)")
48
       print("| = Eje Y, - = Eje X, + = Origen (0,0)")
49
50
  print("Modelo de producci n de assets")
51
  f1 = "-(2/3)*x + 6"
52
  f2 = "0"
53
  f1 = luis_expresion(f1)
  f2 = luis_expresion(f2)
56
57
  graficar_ascii(f1, f2)
```

Figura

```
Modelo de producción de assets
10 I
 9 1
 8 I
 7 1
 6 1
 5 | 11
 4 | 1
 3 | 11
 2 |
         1
 1 |
          11
 0 2222222212
   01234567890
Leyenda del gráfico:
1 = Restricción 2x + 3y = 18
2 = Eje base (y=0)
| = Eje Y, - = Eje X, + = Origen (0,0)
```

Figura 5: Región factible del Problema 04

Interpretación del gráfico

El gráfico representa todas las combinaciones de producción de modelos 3D y texturas que respetan las 18 horas disponibles. Si solo se producen modelos 3D, el máximo posible es x = 9; si solo se producen texturas, el máximo es y = 6. La región bajo la recta es el conjunto de combinaciones viables de producción.

Problema 05

Una startup de hardware dispone de un máximo de 50 unidades de componentes electrónicos. Para ensamblar un dispositivo tipo A (x) se necesitan 5 unidades, mientras que para un dispositivo tipo B (y) se requieren 10 unidades. Determine cuántos dispositivos de cada tipo pueden ensamblar sin exceder las 50 unidades, represéntelo gráficamente y explique las combinaciones de producción.

Restricciones

Sean x el número de dispositivos tipo A y y el número de dispositivos tipo B.

$$\begin{cases} 5x + 10y \le 50 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

```
def luis_expresion(expr: str) -> str:
       expr = expr.replace("^", "**")
2
       expr = expr.replace("-x", "-1*x")
3
       expr = expr.replace("+x", "+1*x")
       if expr.startswith("x"):
5
           expr = "1*" + expr
6
       expr = expr.replace("x", "*x")
7
       expr = expr.replace("**x", "*x")
8
       return expr
9
10
  def evaluar(expr, x):
11
12
           return eval(expr)
13
       except:
14
           return None
15
16
  def graficar_ascii(func1, func2, xmin=0, xmax=12, ymin=0, ymax=6):
17
       for y in range(ymax, ymin - 1, -1):
18
           linea = f''\{y:2\} "
19
           for x in range(xmin, xmax + 1):
20
```

```
y1 = evaluar(func1, x)
                y2 = evaluar(func2, x)
22
23
                cond1 = (y1 is not None and round(y1) == y)
24
                cond2 = (y2 is not None and round(y2) == y)
25
26
                if cond1:
27
                    linea += "1"
28
                elif cond2:
29
                    linea += "2"
30
                elif x == 0 and y == 0:
31
                    linea += "+"
32
                elif x == 0:
33
                    linea += "|"
34
                elif y == 0:
35
                    linea += "-"
36
                else:
37
                    linea += " "
38
           print(linea)
39
40
       eje_x = "
41
       for x in range(xmin, xmax + 1):
42
           eje_x += str(x \% 10)
43
       print(eje_x)
44
45
       print("\nLeyenda del gr fico:")
46
       print("1 = Restricci n 5x + 10y = 50")
47
       print("2 = Eje base (y=0)")
48
       print("| = Eje Y, - = Eje X, + = Origen (0,0)")
49
50
  print("Modelo de ensamblaje de dispositivos")
51
  f1 = "-(1/2)*x + 5"
52
  f2 = "0"
53
54
  f1 = luis_expresion(f1)
55
  f2 = luis_expresion(f2)
56
  graficar_ascii(f1, f2)
```

Figura

```
Modelo de ensamblaje de dispositivos

6 |
5 1
4 |111
3 | 1
2 | 111
1 | 1
0 222222221112
0123456789012

Leyenda del gráfico:
1 = Restricción 5x + 10y = 50
2 = Eje base (y=0)
| = Eje Y, - = Eje X, + = Origen (0,0)
```

Figura 6: Región factible del Problema 05

Interpretación del gráfico

El gráfico muestra las combinaciones posibles de dispositivos A y B dentro del límite de 50 componentes. Si solo se ensamblan dispositivos A, el máximo es x=10; si solo se ensamblan dispositivos B, el máximo es y=5. La zona bajo la recta representa todas las combinaciones factibles de producción.