Farshod Mosh | Math 1B

HONORS PROJECT

Howon Kim

Computer + Math Introduction

Numerical Analytics

Discrete Mathematics

02

O3 Numerical Integration Simpson's rule

Simpson's rule 04
Implementation in C++

Computer + Math Do you know Wolfram Alpha?

integrate mosh

≡ Examples **⊃** Random

☆ 😑

Interpreting as: integrate

Assuming "integrate" refers to a computation | Use as a general topic or referring to a mathematical definition or a word instead

function to integrate: sin(x)

Also include: domain of integration | variable

Indefinite integral:

☑ Step-by-step solution

$$\int \sin(x) \, dx = -\cos(x) + \text{constant}$$

Plots of the integral:

Second Second

(x from -26.4 to 26.4)

Second Second

Computer + Math Definite integral from Wolfram Alpha

Definite integral over a half-period:

$$\int_0^{\pi} \sin(x) \, dx = 2$$

Definite integral mean square:

$$\int_0^{2\pi} \frac{\sin^2(x)}{2\pi} \, dx = \frac{1}{2}$$

More digits

02

Numerical Analytics Discrete Mathematics

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis (as distinguished from discrete mathematics)

Symbolic Computation

$$x^2 - 5 = 0$$

$$x^2 = 5$$

$$x = \pm \sqrt{5}$$

Numerical Analytics

$$x^2 - 5 = 0$$

x = (0.00000, infinite)

until it finds the answer

03

Numerical Integration

Approximate Integration

midpoint rule or rectangle rule.

2 trapezoidal rule.

3 Newton-Cotes formulas (Simpson's rule)

midpoint rule or rectangle rule.

trapezoidal rule.

Newton-Cotes formulas (Simpson's rule)

Simpson's Rule | Integration

$$A = \int_{-h}^{h} (ax^{2} + bx + c) dx$$

$$= \left(\frac{ax^{3}}{3} + \frac{bx^{2}}{2} + cx\right)\Big|_{-h}^{h}$$

$$= \frac{2ah^{3}}{3} + 2ch$$

$$= \frac{h}{3} (2ah^{2} + 6c)$$

Simpson's Rule | (-h, y0), (0, y1), (h, y2)

$$y_0 = ah^2 - bh + c$$
$$y_1 = c$$
$$y_2 = ah^2 + bh + c$$

Simpson's Rule | Add them up

$$y_0 + 4y_1 + y_2 = (ah^2 - bh + c) + 4c + (ah^2 + bh + c) = 2ah^2 + 6c.$$

$$A = \frac{h}{3}(y_0 + 4y_1 + y_2) = \frac{\Delta x}{3}(y_0 + 4y_1 + y_2).$$

$$=\frac{h}{3}\left(2ah^2+6c\right)$$

Simpson's Rule | Add them up

$$\int_a^b f(x) \, dx.$$

$$x_0 = a, \quad x_1 = a + \Delta x, \quad x_2 = a + 2\Delta x, \quad \dots, \quad x_n = a + n\Delta x = b.$$

$$y_0 = f(x_0), \quad y_1 = f(x_1), \quad y_2 = f(x_2), \quad \dots, \quad y_n = f(x_n).$$

Simpson's Rule | Graphical Explanation

Simpson's Rule | Derive Formula

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} (y_0 + 4y_1 + y_2) + \frac{\Delta x}{3} (y_2 + 4y_3 + y_4) + \dots + \frac{\Delta x}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 4y_{n-1} + y_n \right)$$

Simpson's Rule | Prove

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 4y_{n-1} + y_n \right)$$

Simpson's Rule | Example

$$4x^5 + 5x^4 + 8x^3 + 2x^2 + 4$$

Plots:

Lower limit : I a = I

dx = (5-1) / 10

Upper limit : 5 b = 5

(upper limit - lower limit) / size

Dividing size : 10 n = 10

```
==== ENTER THE FUNCTION =====
Enter the highest exponent : 5
Enter the coefficient of X^5 : 4
Enter the coefficient of X^4 : 5
Enter the coefficient of X^3 : 8
Enter the coefficient of X^2 : 2
Enter the coefficient of X^1 : 0
Enter the coefficient of X^0 : 4
==== SIMPSON'S METHOD CALCULATION START =====
Enter the 'n' (even number) : 10
Enter the upper limit: 5
Enter the lower limit: 1
==== SIMPSON'S METHOD CALCULATION PROCESSING =====
dx = 0.4
x = 1
              y = 23
              y = 4 * 70.593
x = 1.4
                               = 282.372
              y = 2 * 185.207
x = 1.8
                               = 370.413
x = 2.2
              y = 4 * 422.137
                               = 1688.55
                               = 1723.74
x = 2.6
              y = 2 * 861.871
x = 3
              y = 4 * 1615
                               = 6460
              y = 2 * 2827.14
                               = 5654.27
x = 3.4
              y = 4 * 4683.83
x = 3.8
                               = 18735.3
              y = 2 * 7415.48
                               = 14831
x = 4.2
              y = 4 * 11302.3
                               = 45209
x = 4.6
x = 5
              y = 16679
==== SIMPSON'S METHOD CALCULATION RESULT =====
```

The result of this integration is 14887.6

integrate 4x^5+5x^4+8x^3+2x^2+4 from 1 to 5

> C Random

Definite integral:

More digits

Demo