Fundamentals of Computational Math IS 605 Spring 2016

The following are the recommended optional textbooks for the course. You don't need to purchase these text books but you may want to do so in order to get deeper into the material.

Linear Algebra: Introduction to Linear Algebra, Fourth Edition. by Gilbert Strang. **Probability & Statistics: The Art of Probability for Scientists & Engineers**. by Richard W. Hamming.

The course will provide an overview of the commonly used mathematical techniques in Data Analytics & Statistics. A lot of emphasis will be given to computational techniques and implementing math in programs. Students will be expected to do a fair bit of hands-on programming. We'll be primarily using R as our programming environment. All assignments will need to be submitted in as R-Markdown documents. Students can expect to walk away with a good understanding of the kinds of math they'll need to be successful in the exciting area of Data Analytics.

By the end of the course, you'll be able to understand and compute:

Linear Algebra

- . Trace, determinant, rank
- . Factorization of matrices
- . Linear systems of equations
- . Eigenvalues and Eigenvectors

Probability

- . Expectation of random variables
- . Independence and dependence of random events
- . Conditional probabilities
- . Contingency tables and using them to calculate various probabilities
- . Bayes theorem and applying it to real-life situations

Univariate and multivariate calculus

- . Differentiation: chain rule, power rule
- . Integration: by parts, uv substitution
- . Gradients

Numerical Linear Algebra

- . Solving Linear system of equations using Matlab
- . Principles of Least squares
- . Matrix inversion
- . Singular value decomposition

Statistics

- . Regression analysis
- . Common Distributions
- . Central limit theorem
- . Maximum Likelihood

- . Type I & Type II errors
- . Bias-Variance trade-off
- . Tests: Student's t-test, Chi^2
- . Frequentist vs Bayesian viewpoints

Numerical methods

- . Polynomial approximation
- . Fourier approximation
- . Root finding
- . Integration
- . Ordinary Differential Equation

Assignments & Grading:

Assignments	There will be weekly homework assignments. Each assignment will contribute about 4 points towards your final grade. The homework will be a combination of R programming & mathematical derivation work.	60%
Final Exam	There will be a final exam in this course and will contribute to roughly 40% of the grade. The final exam will feature a miniproject and several small & medium sized questions. The final exam will be a comprehensive review of the course.	40%
Forum participation	Forum participation is encouraged. Please reach out to discuss the assignments and topics with the class participants. This is where interesting related material will be posted that will help you deepen your understanding of the material	

The Course schedule will be as follows:

Week of	Meeting	Topics	Assignment (due Sunday)
Jan 30		Vectors, Matrices & Systems of Equations	
Feb 6		Trace, Determinant, Factorization of Matrices	Assignment 1 Due. Linear Systems of Equations in Octave
Feb 13		Eigenvalues & Eigenvectors	Assignment 2 Due. LU Decomposition
Feb 20		Matrix Inversion & Singular Value Decomposition	Assignment 3 Due. Eigenvectors
Feb 27		Least Squares	Assignment 4 Due. SVD
Mar 6		Random variables & Probability	Assignment 5 Due. Write Octave program to solve a regression problem
Mar 13		Expectation, conditional probability	Assignment 6 Due. Independent or Dependent variables?
Mar 20		Bayes Theorem & Contigency tables	Assignment 7 Due. Calculate the mean of an infinite stream of numbers
Mar 27		Central Limit Theorem & Common Distributions	Assignment 8 Due. Bayes Rule.
Apr 3		Page Rank	Assignment 9 Due. Simulate central limit theorem
Apr 17		Regression Analysis, Maximumum Likelihood Estimate, Type I & Type II errors	Assignment 10 Due: Page Rank
Apr 24		Bias Variance Tradeoff	Assignment 11 Due: Regression Analysis & Cross Validation
May 1		Univariate & Multivariate Calculus	Assignment 12 Due. K-Means (will examine bias-variance tradeoff)
May 8		Taylor Series Approximations	Assignment 13 Due. Numerical differentiation
May 15		Gradient Descent & LBFGS	Assignment 14 Due: Taylor Series
May 20			Assignment 15 Due. Gradient descent

Week of	Meeting	Topics	Assignment (due Sunday)
May 18		Final Exam	
		Final Exam will be released on 15 May	Final Exam due back on 24 May

Quality of Performance	Letter Grade	Range %	GPA
Excellent - work is above and beyond class expectations	A	93-100	4
Excellent - work is above and beyond class expectations	A-	90-92.9	3.7
Good - work is above average	B+	87 - 89.9	3.3
Satisfactory	В	83 - 86.9	3
Below Average	B-	80 - 82.9	2.7
Poor	C+	77 - 79.9	2.3
Poor	C+	70 - 76.9	2
Failure	F	< 70	0

Relevant Software and Other Tools:

Students should have R Studio & R installed in their computers. Relevant libraries that are required will be posted in the assignments and course materials. Students are expected to submit R-Markdown files for their assignments.

My Contact Information:

Instructor: Larrry Fulton

Email: lawrence.fulton@sps.cuny.edu; lfulton159@gmail.com

Meetup: I will post a schedule of meetups online.