特性

- GP8413 通过I2C接口,线性转换成0-5V/0-10V的两路模拟电压输出。
- 一个I2C接口支持8路GP8413并联,通过三位硬件地址A2/A1/A0选择。
- VOUT=5V* DATA/0x7FFF或VOUT=10V*DATA/0x7FFF
- 输入信号范围15Bit, 0x0000-0x7FFF
- 输入I2C信号高电平: 2.7V-5.5V
- 输出电压误差: < 0.2%
- 输出电压线性度误差: 0.01%
- 输出短路保护,输出脚与地短路时芯片进入保护模式停止输出。
- 电源电压: 9V-36V
- 功耗: <5mA
- 启动时间: <2ms
- 工作温度: -40°C to 85°C

描述

GP8413是一个I2C信号转模拟信号转换器,即DAC,此芯片可以将15Bit数字量0x0000-0x7FFF线性转换成两路独立的0-5V/0-10V模拟电压,输出电压误差为0.2%,线性度可达0.01%。

应用

- 通用信号转换
- 马达调速、LED调光
- 逆变器、电源
- 工业模拟信号隔离

1. 管脚定义

管脚名称	管脚功能
SCLK	I2C协议时钟信号
SDA	I2C协议数据信号
VCC	电源
GND	地
V5V	内部LDO,5V输出,必须外接大于1uF电容。
A0	第0位硬件地址
A1	第1位硬件地址
A2	第2位硬件地址
VOUT0	第一路模拟电压输出,必须外接一个0.1uF电容
VOUT1	第二路模拟电压输出,必须外接一个0.1uF电容

表-A 管脚分布

GP8413

SCLK	1 🔾	10		V5V
SDA	2	9		A2
A0	3	8		VOUT0
A1	4	7		VOUT1
VCC	5	6	þ	GND

2. 最大额定参数

工业操作温度	-40 °C to 85 °C
储存温度	-50 °C to 125 °C
输入电压	-0.3 V to VCC + 0.3 V
最大电压	36 V
ESD 保护	> 2000 V

^{*}超过"最大额定值"中列出的参数值可能会造成永久性损坏设备。不保证器件在超出规范中列出的条件下操作。长时间暴露于极端条件下可能影响设备可靠性或功能。

3.1 基本功能 (典型电路)

当芯片在板内电路中使用时可以适当增加电容和TVS对电路进行稳定和保护。

注意:

- 1、V5V上大于1uF电容为必须
- 2、VOUT作为板级接口使用时,加12V单向TVS,反接、浪涌保护。

3.2 与3.3V MCU 接口

MCU输出3.3V的I2C接口连接到GP8413上。

3.3 操作方法

3.3.1 Start、Stop条件、有效数据、数据变换格式

3.3.2 ACK格式

3.3.3 设置下图中红色配置位,地址设置为 02,则对 VOUT0 进行操作。将 15bit DATA 数据分为 DATA0 Low 和 DATA0 High 写 DATA0 Low为低 Byte, DATA0 High 为高 Byte。例如 0-10V 模式,输出相对应的电压为: VOUT=DATA0/0x7FFF*10V。I2C 命令中,包含 3bit 硬件地址位,可以实现 8 片 GP8413 芯片的并接使用。

3.3 操作方法

3.3.4 设置下图中红色配置位, 地址设置为 04, 则对 VOUT1 进行操作。 将 15bit DATA 数据分为 DATA Low 和 DATA High 写入, DATA Low为低 Byte, DATA High 为高 Byte。例如 0-10V 模式, 输出相对 应的电压为: VOUT=DATA/0x7FFF*10V。

3.3.5 设置下图中红色配置位,地址设置为 02,并对 VOUT0 和 VOUT1同时进行操作。 将 15bit DATA0 数据分为 DATA0 Low 和 DATA0 High 写入, DATA0 Low 为低 Byte, DATA0 High 为高 Byte。 例如 0-10V 模式, 输出相对应的电压为:VOUT0=DATA0/0x7FFF*10V。

同理,将 15bit DATA1 数据分为 DATA1 Low 和 DATA1 High 写入,DATA1 Low 为低 Byte,DATA1 High 为高 Byte。例如 0-10V 模式,输出相对应的电压为: VOUT0=DATA1/0x7FFF*10V。

3.3 操作方法

3.3.6 GP8413支持将电压数据保存在芯片内,保证掉电启动后依旧能处于相应的电压输出状态。 通过发送下图所示数据,可以实现写入的数据固化到芯片内部。

4. 器件功能

GP8413是一款高性能双通道DAC芯片(I2C到模拟电压转换器),通过I2C将15BIT数据转换成模拟电压,输出电压范围为0-5V/0-10V,通过芯片内部配置选择。芯片有硬件地址A0A1A2支持单路I2C控制8路GP8413。

GP8413的默认输出电压精度为0.2%,当GP8413芯片作为系统的接口芯片使用,需要在VOUT输出脚上对地接一个0.1uF电容和一个12V的单向TVS,保证芯片的热插拔、静电、反接等保护。

DAC (Digital to Analog Converter)
15bit DAC Dual I2C to 0-10V

5. 交流特性

符号	描述	最小	默认	最大	单位
f _{sclk}	I2C时钟频率			400K	Hz

6. 直流特性

符号	描述	测试条件	最小	典型	最大	单位
VCC	电源电压		9	12	36	V
ICC	电源功耗	VCC @12V 空载		2	5	mA
VOUT	输出电压		0		10	V
ΔVOUT	输出电压误差	与VOUT输出范围的比例			0.2	%
Lout	输出电压线性度			0.1		%
TC	温度系数				50	PPM/°C

7. 订购须知

温度系数	精度	封装	工作温度	订购码
25PPM/°C	0.2%	ESOP10	-40°C-85°C	GP8413-TC25-EW
50PPM/°C	0.2%	ESOP10	-40°C-85°C	GP8413-TC50-EW

8. 封装信息

SYMBOL	MIN	NOM	MAX		
A	1.35	1.50	1.65		
A1	0.05	0.10	0.15		
A2	1.35	1.40	1.50		
A3	0.50	0.60	0.7		
b	0.31	0.35	0.39		
D	4.80	4.90	5.00		
D1	3.20	3.30	3.40		
e	1.0BSC				
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
E2	2.00	2.10	2.20		
L	0.45	0.60	0.80		
L1	1.04REF				
L2	0.25BSC				
R	0.07	-			
R1	0.07	-			
h	0.30	0.40	0.50		
θ	0°		8°		
91	6°	8°	10°		
θ2	6" 8"		10°		
θ3	5° 7°		9°		
94	5°	7°	9°		
NOTES.					

NOTES:
NOTES:
1 All DIMENSIONS REFER TO JEDEC STANDARD
MO-137E
2 DIMENSION D DOES NOT INCLUDE MOLD FLASH
3.DIMENSION B1 DOSE NOT INCLUDE MOLD FLASH
4.FLASH OR PROTRUSION SHALL NOT EXCEED
0.25mm PER SIDE.