First Name: \_\_\_\_\_ Last Name: \_\_\_\_ Student ID: \_\_\_\_\_

## Derivatives (1)

**1.** If 
$$f(a) = 0$$
 and  $f'(a) = 15$ , find  $\lim_{h \to 0} \frac{f(a+h)}{5h}$ .

**2.** State the domains of f(x) and f'(x) for each function f(x) whose graph is given below.

a.



b.



**3.** Using the definition of the derivative (First Principle), find f'(x) for each function f(x). State the domain of the functions f(x) and f'(x).

$$a. f(x) = \sqrt{4 - 2x}$$

$$b. f(x) = \frac{1}{x+3}$$

**4.** The derivative of the function  $f(x) = \sqrt{x}$  is  $f'(x) = \frac{1}{2\sqrt{x}}$  for all x > 0. If  $\lim_{h \to 0} \frac{\sqrt{4+h}-2}{h} = \frac{1}{k}$ , then what is the value of k?

- **5.** Draw a possible graph of a function f(x) with the given description.
- a. f is continuous on all of R, but f is not differentiable at x = 1.
- b. f is continuous at all x except for x = 2 and the tangent line to f at the point (0, 2) is a vertical line.

**6.** The tangent line to a curve y = f(x) at x = 2 passes through the points (0, 10) and (3, 40). What are the values of f(2) and f'(2)?

**7.** The tangent line to a curve y = f(x) at x = 1 passes through the point (4, 9). If f(1) = 1, then what is the value of f'(1)?

**8.** The tangent line to a curve y = f(x) at x = 1 has x-intercept  $\frac{1}{2}$  and y-intercept -3. What are the values of f(1) and f'(1)?

**9.** Find the equations of the tangents to the curve  $y = x^2 - 3x$  that pass through the point (-1, 0).

**10.** Find the x and y coordinates of all points on the graph of  $y = (2x - 1)(x^2 + 1)$  where the tangent line is perpendicular to the line  $y = -\frac{1}{2}x + 3$ .

**11.** Given g(2) = 4,  $g'(2) = -\frac{1}{3}$ , h(2) = 3, and f'(2) = 3, find h'(2) if f(x) = g(x)h(x).

**12.** If f, g and h are differentiable at x then so is fgh, find a formula for [f(x)g(x)h(x)]'.