MATH 307

Assignment #9

Due Friday, March 25, 2022

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

1. Suppose V is finite-dimensional and $P \in \mathcal{L}(V)$ is such that (1) $P^2 = P$ and (2) every vector in null P is orthogonal to every vector in range P. Prove that there exists a subspace U of V such that $P = P_U$.

Hint: For $v \in V$, write v = Pv + (v - Pv).

- 2. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if $P_U T P_U = T P_U$.
- 3. In \mathbb{R}^4 , let

$$U = \text{span}((0,0,1,1),(1,2,1,1)).$$

Find $u \in U$ such that ||u - (1, 3, 5, 4)|| is as small as possible.

- 4. Assume $T \in \mathcal{L}(V)$ for a complex vector space V. Prove that T is self-adjoint if and only if all eigenvalues for T are real.
- 5. If $T \in \mathcal{L}(V)$ is self-adjoint and if $T^2v = 0$, then Tv = 0
- 6. Suppose $T \in \mathcal{L}(V, W)$. Prove that
 - (a) T is injective if and only if T^* is surjective.
 - (b) T is surjective if and only if T^* is injective.
- 7. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.
- 8. Suppose $T \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self-adjoint.