MACHINE LEARNING QUICK REFERENCE: BEST PRACTICES

Topic	Common Challenges	Suggested Best Practice
Data Preparation		
Data collection	Biased data Incomplete data The curse of dimensionality Sparsity	 Take time to understand the business problem and its context Enrich the data Dimension-reduction techniques Change representation of data (e.g. COO)
"Untidy" data	 Value ranges as columns Multiple variables in the same column Variables in both rows and columns	Restructure the data to be "tidy" by using the melt and cast process
Outliers	 Out-of-range numeric values and unknown categorical values in score data Undue influence on squared loss functions (e.g. regression, GBM, and k-means) 	Robust methods (e.g. Huber loss function)Discretization (binning)Winsorizing
Sparse target variables	Low primary event occurrence rate Overwhelming preponderance of zero or missing values in target	Proportional oversamplingInverse prior probabilitiesMixture models
Variables of disparate magnitudes	 Misleading variable importance Distance measure imbalance Gradient dominance	Standardization
High-cardinality variables	Overfitting Unknown categorical values in holdout data	Discretization (binning)Weight of evidenceLeave-one-out event rate
Missing data	Information loss Bias	Discretization (binning)ImputationTree-based modeling techniques
Strong multicollinearity	Unstable parameter estimates	Regularization Dimension reduction
Training		
Overfitting	High-variance and low-bias models that fail to generalize well	RegularizationNoise injectionPartitioning or cross validation
Hyperparameter tuning	Combinatorial explosion of hyper-parameters in conventional algorithms (e.g. deep neural networks, Super Learners)	Local search optimization, including genetic algorithmsGrid search, random search
Ensemble models	Single models that fail to provide adequate accuracy High-variance and low-bias models that fail to generalize well	 Established ensemble methods (e.g. bagging, boosting, stacking) Custom or manual combinations of predictions
Model Interpretation	Large number of parameters, rules, or other complexity obscures model interpretation	 Variable selection by regularization (e.g. L1) Surrogate models Partial dependency plots, variable importance measures
Computational resource exploitation	Single-threaded algorithm implementations Heavy reliance on interpreted languages	 Train many single-threaded models in parallel Hardware acceleration (e.g. SSD, GPU) Low-level, native libraries Distributed computing, when appropriate
Deployment		
Model deployment	Trained model logic must be transferred from a development environment to an operational computing system to assist in organizational decision making processes	Portable scoring code or scoring executables In-database scoring Web service scoring
Model decay	Business problem or market conditions have changed since the model was created New observations fall outside domain of training data	 Monitor models for decreasing accuracy Update/retrain models regularly Champion-challenger tests Online updates

MACHINE LEARNING QUICK REFERENCE: RESOURCES

Publications

Statistical Modeling, The Two Cultures – Leo Breiman

http://projecteuclid.org/euclid.ss/1009213726

Fifty Years of Data Science - David Donoho

http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

Pattern Recognition and Machine Learning – Christopher Bishop

https://www.cs.princeton.edu/courses/archive/spring07/cos424/papers/bishop-regression.pdf

Machine Learning with SAS Enterprise Miner - SAS White Paper

 http://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-with-sas-enterpriseminer-107521.pdf

An Overview of Machine Learning with SAS® Enterprise Miner™ - 2014 SGF Paper (SAS313-2014)

http://support.sas.com/resources/papers/proceedings14/SAS313-2014.pdf

Posts

An Introduction to Machine Learning – Patrick Hall on sas.com

http://blogs.sas.com/content/sascom/2015/08/11/an-introduction-to-machine-learning/

7 Common Mistakes of Machine Learning – Cheng-Tao Chu on KDNuggets

http://www.kdnuggets.com/2015/03/machine-learning-data-science-common-mistakes.html

How to build a deep neural network in SAS Enterprise Miner – Answer on SAS Data Mining community

• https://communities.sas.com/t5/SAS-Communities-Library/How-to-build-a-deep-learning-model-in-SAS-Enterprise-Miner/ta-p/231190

Repos

A curated list of awesome Machine Learning frameworks, libraries and software

github.com/josephmisiti/awesome-machine-learning

Benchmark tests/results for open source implementations of the top machine learning algorithms

github.com/szilard/benchm-ml

Code/materials for integrating SAS with popular open source analytics technologies like Python and R.

github.com/sassoftware/enlighten-integration

Quick reference tables for machine learning best practices and algorithm usage

github.com/sassoftware/enlighten-apply/tree/master/ML tables

Library of SAS Enterprise Miner process flow diagrams to help you learn by example

github.com/sassoftware/dm-flow

