

CON

Furkan Ercan, Carlo Condo, Seyyed Ali Hashemi, Warren J. Gross Department of Electrical and Computer Engineering McGill University Montréal, Québec, Canada

October 4, 2017

Motivation

- Polar Codes provably achieve channel capacity
 - ► Adopted in **5G eMBB** control channel
- 5G standardization requires
 - Improved error-correction performance & throughput
 - Reduced power consumption

Motivation

- Successive Cancellation (SC) decoding
 - Long decoding latency
 - Mediocre error-correction performance
- Successive Cancellation List (SCL) decoding
 - Improved error-correction performance
 - Increased latency and power consumption
 - Algorithms to reduce area, power and energy

Focus

Subject decoder algorithms:

- ► SC-List (SCL)
- Simplified SCL (SSCL)
- Fast-SSCL
- Partitioned SCL (PSCL)

Comparison Metrics:

- Error-correction performance
- Power & energy consumption

Polar Codes - Encoding

SCL Decoding

- Split path at each information bit estimation
 - Up to L paths limit complexity
 - A path metric to pick the correct codeword
 - CRC improves error-correction performance

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

$$N = 16, K = 12$$

S. A. Hashemi, C. Condo and W. J. Gross, "Simplified Successive-Cancellation List decoding of polar codes," ISIT. 2016.

S. A. Hashemi, C. Condo and W. J. Gross, "Fast simplified successive-cancellation list decoding of polar codes," WCNCW, 2017.

Partitioned SCL (PSCL)

Divides polar code into P constituent sub-trees of length N/P

Error-Correction Performance Comparison

- Subject SCL-based decoders implemented in hardware and compared against WiMAX LDPC codes
 - ▶ Polar code length *N* ∈ {256, 512} (included in 5G eMBB)
 - ► LDPC code length *N* = 576 (from WiMAX)
- ► Target polar code rates on 5G discussions $R \in \{\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}$.
- ▶ WiMAX LDPC allows $R \in \{\frac{1}{2}, \frac{2}{3}\}$.

SCL vs LDPC - $R = \frac{1}{2}$, $N_{PC} = 512$; $N_{LDPC} = 576$

SCL vs LDPC - $R = \frac{2}{3}$, $N_{PC} = 512$; $N_{LDPC} = 576$

ASIC Implementation for List Decoders

Compare H/W architectures for

- ▶ $R = \frac{1}{2}$: LDPC decoders vs. PSCL
- ▶ $R = \frac{2}{3}$: LDPC decoders vs. SCL/SSCL/Fast-SSCL

ASIC Implementation Results - $N = 512, R = \frac{1}{2}, L = 8$

Algorithm	Area	Power	Energy	T/P
Algorithm	[mm ²]	[mW]	[nJ]	[Mbps]
SCL	1.006	345.39	589.82	254
SSCL	1.314	421.47	356.67	860
Fast-SSCL	1.685	493.43	341.08	1164
PSCL	0.694	205.68	351.25	254

ASIC Results: LDPC vs. SCL

▶ Polar code decoders have 7.7×to 17.1×less area than LDPC decoder implementations

	SCLa	Fast-SSCL ^a	PSCL ^{a,b}	LDPC ^[1]	LDPC ^[2]	LDPC ^[3]
Tech. (nm)	65	65	65	90	180	90
Rate	1/2	1/2	1/2	Any	1/2	Any
Area (mm²)	0.215	0.422	0.191	6.22	N/A	6.25
Area ^d (mm ²)	0.215	0.422	0.191	3.24	N/A	3.26
Power (mW)	75.27	119.68	63.19	528	553	264
Energy (nJ)	128.54	51.01	107.91	1368	232.9	690.6
T/P (Mbps)d	254	1427	254	293	1813	145

^a L = 2, C = 8. ^b P = 2, $(c_0, c_1) = (8, 8)$. ^d Scaled to 65 nm.

^[1] Liu et al. "Design of a Multimode QC-LDPC Decoder Based on Shift-Routing Network," IEEE TCAS-II, 2009.

^[2] Hung et al. "A 1.45Gb/s (576,288) LDPC Decoder for 802.16e standard," IEEE ISSPIT, 2007.

^[3] Liuet al. "An LDPC Decoder Chip Based on Self-Routing Network for IEEE 802.16e Applications," IEEE JSSC, 2008.

ASIC Results: LDPC vs. SCL

 Polar code decoders consume up to 8.75×times less power & 26.8×less energy than LDPC decoder implementations

	SCLa	Fast-SSCL ^a	PSCL ^{a,b}	LDPC ^[1]	LDPC ^[2]	LDPC ^[3]
Tech. (nm)	65	65	65	90	180	90
Rate	1/2	1/2	1/2	Any	1/2	Any
Area (mm²)	0.215	0.422	0.191	6.22	N/A	6.25
Area ^d (mm ²)	0.215	0.422	0.191	3.24	N/A	3.26
Power (mW)	75.27	119.68	63.19	528	553	264
Energy (nJ)	128.54	51.01	107.91	1368	232.9	690.6
T/P (Mbps)d	254	1427	254	293	1813	145
a L = 2, C = 8.		^b $P = 2$, $(c_0, c_1) = (8, 8)$.		^d Scaled to 65 nm.		·

^[1] Liu et al. "Design of a Multimode QC-LDPC Decoder Based on Shift-Routing Network," IEEE TCAS-II, 2009.

^[2] Hung et al. "A 1.45Gb/s (576,288) LDPC Decoder for 802.16e standard," IEEE ISSPIT, 2007.

^[3] Liuet al. "An LDPC Decoder Chip Based on Self-Routing Network for IEEE 802.16e Applications," IEEE JSSC, 2008.

Concluding Remarks

- State-of-the-art SCL-based architectures are evaluated
 - Error-correction performance
 - Area, power, energy consumption
- Compared against WiMAX LDPC code decoders from literature
- Polar code decoders have reduced area, power, energy at matched FER
- Suitable for potential 5G implementations

Thank you for your attention!