Лекция 1. Задача UPATH

Рандомизированный алгоритм для UPATH 1

Главный вопрос: **P** = **BPP**? В книжке «Hardness and randomness» есть некоторые результаты на тему того, что из дерандомизации может следовать $P \neq NP$.

Успешные примеры дерандомизации: проверка на простоту (алгоритм AKS), задача **UPATH** или **S-T-CONN** = $\{(G, s, t) : B \}$ неорграфе $G \}$ есть пусть из s в t $\}$.

Теорема 1. $UPATH \in RL$ (randomized logspace).

Доказательство. Запустим блуждание из s на N шагов. Если в блуждании встретится t, сказать, что достижимо, иначе нет.

Предельная частота (hitting time) ребра $P_{uv}=\lim_{n\to\infty}\frac{E\#\{(s_i,s_{i+1})=(u,v)\}}{n}$ (добавим петли, применим теорию марковских процессов).

$$P_{u,v} = \frac{1}{\text{ожидаемое время первой встречи (u, v) после выхода из v}}$$

Аналогично, существует предельная частота вершины.

алогично, существует предельнал частога верини. Так как блуждание равномерно, то $P_{uv}=\frac{1}{\deg u}P_u$ и $P_u=\sum_{t:(t,u)\in E}P_{tu}.$

Тогда $P_{uv} = \frac{1}{\deg u} \sum_{t:(t,u) \in E} P_{tu}$. Из этого следует, что все частоты одинаковы, так если есть максимальная частота, а у какого-то смежного меньше, то получается противоречие с равентсвом. То есть $P_{uv} = \frac{1}{2m}, P_u = \frac{\deg u}{2m}$.

Пусть $t_0 = s, t_1, \dots, t_{k-1}, t_k = t$ — путь из s в t. Рассмотрим вершину t_0 . Среднее время возврата в t_0 не зависит от истории блуждания, поэтому оно ровно такое, как в пределе. Поэтому мы в среднем не менее, чем за $\frac{2m}{\deg u}$ мы будем возвращаться в t_0 и рано или поздно пойдем по ребру (t_0, t_1) . Такими рассуждениями, по неравенству Маркова можно проделать 4kmшагов, чтобы с вероятностью $\geqslant \frac{1}{2}$ прийти в $t_k = t$.

Определение 1. Граф d-регулярный, если степени всех вершин равны d.

Утверждение 1. Существует универсальная последовательность поворотов полиномиальной длины, которая посещает все вершины.

Идея доказательства состоит в следующем: можно сделать случайное блуждание, такое длинное, что доля графов, на которых оно не посещает все вершины крайне мала. Тогда, так как таких графов не более n^{dn} , то можно сделать долю такой маленькой, что найдется последовательность, удовлетворяющая всем графам.