FORM PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER (REV. 10-2000) K0448/7012 TRANSMITTAL LETTER TO THE UNITED STATES US APPLICATION NO (If known, see 37 CFR 1 5) DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371 INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED PCT/JP00/03639 05 June 2000 (05.06.00) 04 June 1999 (04.06.99) TITLE OF INVENTION CRYSTAL OF RIBOSOMAL RECYCLING FACTOR (RRF) PROTEIN AND APPLICATION THEREOF ON THE BASIS OF THREE-DIMENSIONAL STRUCTURAL DATA OBTAINED FROM THE CRYSTAL APPLICANT(S) FOR DO/EO/US KAJI, Akira and LILJAS, Anders Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: 1. \boxtimes This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 2. 3. Ø This is an express request to promptly begin national examination procedures (35 U.S.C. 371(f)). 4. \boxtimes The US has been elected by the expiration of 19 months from the earliest claimed priority date (PCT Article31). 5. Ø A copy of the International Application as filed (35 U.S.C. 371(c)(2)). b. $\ \square$ has been transmitted by the International Bureau. c. □ is not required, as the application was filed in the United States Receiving Office (RO/US). An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)). b. \square has been transmitted by the International Bureau. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)). a. \square are attached hereto (required only if not transmitted by the International Bureau). \square have been communicated by the International Bureau. c. \square have not been made; however, the time limit for making such amendments has NOT expired. d. Mave not been made and will not be made. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(C)(5)). Items 11. To 16. Below concern document(s) or information included: 11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 13. \boxtimes A FIRST preliminary amendment. 14. A SECOND or SUBSEQUENT preliminary amendment. 15. A substitute specification. 16. A change of power of attorney and/or address letter. A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C.1.821-1.825. 17. \boxtimes A second copy of the published international application under 35 U.S.C. 154(d)(4). 18. \square 19. 🗆 A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4). 20. Other items or information: Copy of PCT/RO/101 form w/ English Translation Copy of PCT/RO/101 form as filed Verification of Translation of Application as Filed (English) with Sequence Listing Verification of Translation of International Preliminary Examination Report (English) Copy of International Search Report Copy of PCT/IB/301,304,308,332 Application Data Sheet under 37 C.F.R. section 1.76 Statement under 37 C.F.R. section 1.821(f) (w/ hard copy & diskette) Applicants claim small entity size Express Mail Label No. EL819462077US Date Mailed: December 4, 2001

U.S. APPLICATION NO OF INDIVIDUAL APPLICATION PCT//P00/03639				ATTORNEY'S DOCKET NUMBER K0448/7012	
21. ⊠ The following fees are submitted:				CALCULATIONS PTO USE ONLY	
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):					
Neither international preliminary examination fee (37 CFR 1.482)					į.
nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1000.00					
and international be					
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$860.00					
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but but international search fee paid to USPTO (37 CFR 1.445(a)(2)).paid to USPTO \$710.00					
International preliminary examination fee paid to USPTO (37 CFR 1.482) But all claims did not satisfy provisions of PCT Article 33(1)-(4) \$690.00					
International preliminary examination fee paid to USPTO (37 CFR 1.482)					
and all claims satisfied provisions of PCT Article 33(1)-(4) \$100.00					
ENTER APPROPRIATE BASIC FEE AMOUNT = 860.00				0000	
Surcharge of \$130.00 for furnishing the oath or declaration later than \(\sigma \) 20 \(\sigma \) 30				\$860.00	
instruction in the earliest claimed priority date (37 CFR 1.492(e)). ©LAIMS NUMBER FILED NUMBER EXTRA RATE				ļ	L
Fotal Claims	28-20 =	NUMBER EATRA	X \$18.00	\$144.00	
Independent Claims	4-3 =	i	X \$80.00	\$80.00	
MULTIPLE DEPENDENT CLAIM(S) (if applicable) +\$270.00			\$		
TOTAL OF ABOVE CALCULATIONS =				\$1084.00	
Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by				\$	
対象: ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				\$542.00	
Processing fee of \$130.00 for furnishing the English translation later than \Box 20 \Box 30				\$	
months from the earliest claimed priority date (37 CFR 1.492(f)).					
TOTAL NATIONAL FEE =				\$542.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate coversheet (37 CFR 3.28, 3.31). \$40.00 per property +				\$	
TOTAL FEES ENCLOSED =				\$542.00	
## C C C C C C C C C C C C C C C C C C				Amount to be:	\$
1 77				refunded	
charged \$					
a. ⊠ A check in the amount of \$ 542.00 To cover the above fees is enclosed.					
b. Please charge my Deposit Account No In the amount of \$ To cover the above fees. A duplicate copy of this sheet is enclosed.					
c. The commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 23/2825. A duplicate of this sheet is enclosed.					
d. Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card information should					
not be included on this form. Provide credit card information and authorization on PTO-2038. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b) must be filed					
and granted to restore the application to pending status.					
SEND ALL CORRESPONDENCE TO SIGNATURE SEND ALL CORRESPONDENCE TO					
SEND ALL CORRESPONDENCE TO SIGNATURE					
WOLF, GREENFIELD & SACKS, P.C. John R. Van Amst				terdam	
600 Atlantic Avenue					
Boston, Massachusetts 02210					į
Tel: (617) 720-3500 40,212					
			REGISTRATION NO		ļ
CUSTOMER NUMI					

Form PTO-1390 (REV 11-2000)

Mailing by Express Mail Label No. EL819462077US Date of Deposit: December 4, 2001

ATTORNEY'S DOCKET NO. K0448/7012 (JRV)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant

KAJI et al.

Int'l Application No.

PCT/JP00/03639

Int'l Filing Date
Earliest Priority Date

5 June 2000 (05.06.00) 4 June 1999 (04.06.99)

For

CRYSTAL OF RIBOSOMAL RECYCLING FACTOR (RRF)

PROTEIN AND APPLICATION THEREOF ON THE BASIS OF THREE-DIMENSIONAL STRUCTURAL DATA OBTAINED

FROM THE CRYSTAL

Box PCT

Commissioner for Patents Washington, DC 20231

PRELIMINARY AMENDMENT

Sir:

Please amend the application as follows:

In the Specification

Please add the following section as the first section of the specification following the title. A copy of the new section is provided on a separate page attached hereto.

Related Applications

This application is a national stage filing under 35 U.S.C. § 371 of PCT application PCT/JP00/03639, filed June 5, 2000.

In the Claims

Please cancel claims 25-27, 29-46, 50 and 51 without prejudice.

Please amend the claims as follows. Applicants have included herewith pages showing markups of the claims with insertions and deletions indicated by underlining and bracketing, respectively.

- 3.(amended) The method according to claim 1, wherein the RRF protein crystal is bipyramidal.
- 4.(amended) The method according to claim 1, wherein the RRF protein crystal has a space group $P4_12_12_1$ or a space group $P4_32_12$.
- 5.(amended) The method according to claim 1, wherein the RRF protein crystal has a size of $0.3 \times 0.3 \times 0.5$ mm.
- 6.(amended) The method according to claim 1, wherein the RRF protein crystal has respective unit lattices of a size of a=b=47.3Å and c=297.6Å.
- 7.(amended) The method according to claim 1, wherein the RRF protein crystal is characterized by a structure coordinate described in Table 7.
- 8.(amended) The method according to claim 1, wherein the RRF protein crystal is derived from Thermotoga maritima.
- 9.(amended) The method according to claim 1, wherein the RRF protein crystal is orthorhombic.
- 10.(amended) The method according to claim 1, wherein the RRF protein crystal has a space group $P2_12_12$.
- 11.(amended) The method according to claim 1, wherein the RRF protein crystal has a size of 30 \times 50 \times 250 μm .

- 12.(amended) The method according to claim 1, wherein the RRF protein crystal is derived from strain X.
- 13.(amended) The method according to claim 1, wherein the RRF protein crystal is crystallized by a drop-like vapour diffusion method.
- 14.(amended) The method according to claim 1, wherein the RRF protein crystal is a heavy atom derivative and the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.
- 15.(amended) The method according to claim 14, wherein the heavy atom derivative is formed by reaction of a compound selected from the group consisting of thyromethal, gold thiomalate, uranyl acetate and lead chloride.
- 16.(amended) The method according to claim 1, wherein the RRF protein crystal is a heavy atom derivative of platinum or mercury.
- 17.(amended) The method according to claim 1, wherein the RRF protein is a monomer.
- 18.(amended) The method according to claim 1, wherein the RRF protein is characterized by amino acid displacement according to Table 5 or Table 6.
- 19.(amended) The method according to claim 1, wherein a compound characterized by the chemical entity bound to the active site, accessory binding site or pocket is an inhibitor to the RRF protein.
- 20.(amended) The method according to claim 19, wherein the inhibitor is a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor to the RRF protein.
- 21.(amended) The method according to claim 1, comprising determining orientation of a ligand at the active site or accessory binding site of the RRF protein.

And it is the standing of the

22.(amended) The method according to claim 1, wherein the structure coordinate is a structure coordinate of the RRF protein according to Table 7.

47.(amended) The method according to claim 1, wherein the pocket of the RRF protein is a pocket in the vicinity of C-terminal positioned on a folded part separating two domains of the RRF protein.

48.(amended) The method according to claim 1, wherein the compound inhibits binding of the RRF protein to ribosome or inhibits behavior of the RRF protein on the ribosome.

49.(amended) The inhibitor to an RRF protein, obtained by the method according to claim 19.

Remarks

Applicant has amended the specification to add priority claim information for the above-identified U.S. national stage application. Applicant has amended the claims to adjust claim dependencies, to correct typographical errors, and to reduce filing fees. No new matter has been added. Copies of the new section and amended claims are attached hereto on separate pages.

Respectfully submitted,

John R. Van Amsterdam, Reg. No. 40,212

Attorneys for Applicants

WOLF, GREENFIELD & SACKS, P.C.

600 Atlantic Avenue

Boston, MA 02210-2211

(617) 720-3500

Attorney Docket No. K0448/7010 Date: 4 December 2001

X12/04/01

New Section Added

Related Applications

This application is a national stage filing under 35 U.S.C. § 371 of PCT application PCT/JP00/03639, filed June 5, 2000.

Amended Claims

- 3.(amended) The method according to claim 1 [or 2], wherein the RRF protein crystal is bipyramidal.
- 4.(amended) The method according to [any one of] claim[s] 1 [to 3], wherein the RRF protein crystal has a space group P4₁2₁2₁ or a space group P4₃2₁2.
- 5.(amended) The method according to [any one of] claim[s] 1 [to 4], wherein the RRF protein crystal has a size of $0.3 \times 0.3 \times 0.5$ mm.
- 6.(amended) The method according to [any one of] claim[s] 1 [to 5], wherein the RRF protein crystal has respective unit lattices of a size of a=b=47.3Å and c=297.6Å.
- 7.(amended) The method according to [any one of] claim[s] 1 [to 6], wherein the RRF protein crystal is characterized by a structure coordinate described in Table 7.
- 8.(amended) The method according to claim[s] 1 [to 7], wherein the RRF protein crystal is derived from Thermotoga maritima [Maritima].
- 9.(amended) The method according to [any one of] claim 1 [or 2], wherein the RRF protein crystal is orthorhombic.

10.(amended) The method according to [any one of] claim[s] 1, [2 and 9,] wherein the RRF protein crystal has a space group P2₁2₁2.

11.(amended) The method according to [any one of] claim[s] 1 [to 2 and 9 to 10], wherein the RRF protein crystal has a size of $30 \times 50 \times 250 \ \mu m$.

12.(amended) The method according to [any one of] claim[s] 1 [to 2 and 9 to 11], wherein the RRF protein crystal is derived from strain X.

13.(amended) The method according to [any one of] claim[s] 1 [to 12], wherein the RRF protein crystal is crystallized by a drop-like vapour diffusion method.

14.(amended) The method according to [any one of] claim[s] 1 [to 13], wherein the RRF protein crystal is a heavy atom derivative and the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.

15.(amended) The method according to [any one of] claim[s 1 to] 14, wherein the heavy atom derivative is formed by reaction of a compound selected from the group consisting of thyromethal, gold thiomalate, uranyl acetate and lead chloride.

16.(amended) The method according to [any one of] claim[s] 1, [2 and 9 to 12,] wherein the RRF protein crystal is a heavy atom derivative of platinum or mercury.

17.(amended) The method according to [any one of] claim[s] 1 [to 16], wherein the RRF protein is a monomer.

18.(amended) The method according to [any one of] claim[s] 1 [to 8, 13 to 15 and 17], wherein the RRF protein is characterized by amino acid displacement according to Table 5 or Table 6.

- 19.(amended) The method according to [any one of] claim[s] 1 [to 18], wherein a compound characterized by the chemical entity bound to the active site, accessory binding site or pocket is an inhibitor to the RRF protein.
- 20.(amended) The method according to [any one of] claim[s 1 to] 19, wherein the inhibitor is a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor to the RRF protein.
- 21.(amended) The method according to [any one of] claim[s] 1 [to 20], comprising determining orientation of a ligand at the active site or accessory binding site of the RRF protein.
- 22.(amended) The method according to [any one of] claim[s] 1 [to 8, 13 to 15 and 17 to 21], wherein the structure coordinate is a structure coordinate of the RRF protein according to Table 7.
- 47.(amended) The method according to [any one of] claim[s] 1 [to 22], wherein the pocket of the RRF protein is a pocket in the vicinity of C-terminal positioned on a folded part separating two domains of the RRF protein.
- 48.(amended) The method according to [any one of] claim[s] 1 [to 22], wherein the compound inhibits binding of the RRF protein to ribosome or inhibits behavior of the RRF protein on the ribosome.
- 49.(amended) The inhibitor to an RRF protein, obtained by the method according to [any one of] claim[s] 19 [to 23, 47 and 48].

alberto

CRYSTAL OF RIBOSOMAL RECYCLING FACTOR (RRF) PROTEIN AND APPLICATION

THEREOF ON THE BASIS OF THREE-DIMENSIONAL STRUCTURAL DATA OBTAINED

FROM THE CRYSTAL

[TECHNICAL FIELD]

The present invention relates to a crystal of ribosomal recycling factor (hereinafter referred to as RRF). The present invention also relates to the steric structure of the RRF protein obtained by X-ray diffraction of the crystal. Further, the present invention relates to the determination of the structure of RRF mutants, homologues and so forth and technology for the development of bactericides, fungicides and herbicides of next generation by application of the RRF protein on the basis of the structural data and mechanism action of the RRF protein.

[BACKGROUND ART]

Protein biosynthesis is a function indispensable for the biological activities of all cells and consists of four steps, i.e., "initiation", "extension", "termination" and "ribosome recycling". The final step in the protein biosynthesis (the fourth step) terminates with the release and dissociation of a termination complex composed of messenger RNA, transfer RNA and ribosome individually in order for the ribosome to be recycled in the next "initiation" step. In <u>Escherichia coli</u>, which is a procaryote, it is known that

the ribosomal "recycling" is catalyzed by a ribosome recycling factor (hereinafter referred to as RRF), and an elongation factor G (hereinafter referred to as EFG), or a release factor 3. The process of the ribosomal "recycling" is introduced in the general remarks by Dr. Janosi et al. (1996 Adv. Biophys. 32:121-201) and the general remarks by Kaji et al. (Biochem, Biophys., Res Communs., 250 1-4, Protein, Nucleic Acid and Enzyme, Vol. 44, No. 7, 83-84 (1999)).

Since the possibility that in eucaryotes, the dissociation of a protein translation termination complex is catalyzed by a factor other than RRF is suggested and since the mRNA of eucaryotes is monocistronic whereas that of procaryotes is polycistronic (Kozak 1987, Mol. Cell Biol. 7:3438-3445; Das et al 1984, Nucleic Acids Res. 12:4757-4768; Schoner et al. 1986 Proc. Natl. Acad. Sci. U.S.A. 83:8506-8510; Sprengel et al. 1985 Nucleic Acids Res. 13:893-909), in eucaryotes, even if the dissociation of ribosome from mRNA is inhibited, this does not influence the downstream cistron. Thus, the fourth step, that is, the dissociation of protein translation termination complex, that corresponds to the final step of protein biosynthesis in eucaryotes is considered to be different from that in procaryotes and hence there is an expectation as a target of especially a new type of antibiotic.

On the other hand, presently a large number of antibacterial agents have been developed and among them there are those that exhibit very high bactericidal effect. However, the antibacterial agents

thus obtained include a lot of whose site of action remain unclear. Thus far, the development has centered on a method in which those antibacterial agents that exhibit activity are used as a material for random screening and while establishing a structure-activity relationship the one having a further utility is being developed. However, this requires an immensity of time and labor.

Accordingly, in recent years, formation of database is being attempted with a view to eliminating this problem and efficiently finding an inhibitor. On the basis of it, a rational drug design method is being studied and developed. An example of this includes an inhibitor of protease, which is an anti-HIV agent, recently put into market. The protease of HIV has been crystallized and its protein structure has been known. On the basis of the structure and three-dimensional structural amino acid sequence of the active site, one having the highest affinity for this site has been selected from known compounds by use of a computer and its inhibitory activity has been measured. By making a eutectic between the one having activity and the target protein and performing measurement of a three-dimensional structure, an anticipation of a compound that binds better can be made and hence, this is synthesized and its inhibitory activity is measured. Then, by making a eutectic between this substance and the target protein again and repeating the above-mentioned process, an extremely effective substance can be obtained.

Note that a large number of strains that have acquired a resistance to the conventional antibiotics as described above have been reported and a quick development of a novel antibiotic targeting the site that can directly control the growth of bacteria is needed. Accordingly, the present inventors have paid attention to the possibility that the above-mentioned RRF can be a new target of bactericides and advanced their study extensively. This idea has been being in the limelight.

[DISCLOSURE OF THE INVENTION]

Concerning RRF, the present inventors have thus far identified several kinds of gene sequences with regards to beginning with Escherichia coli, not only procaryotes but also eucaryotes (Japanese Patent Application Laid-open No. Hei 3-200797, PCT/JP98/00734, Japanese Patent Application No. Hei 10-150493). Therefore, up to secondary structures can be presumed from the amino acid sequences obtained therefrom. However, in the present state of the art, it has not reached that the actual protein structure can be identified from the secondary structures. In an actual protein, respective amino acid residues mutually act and undergo various modifications as the case may be to form its protein structure. Therefore, once the steric structure of a protein is discovered, it is possible to create a substance that can serve as a ligand thereof and in this sense, in order to create a useful antibiotic, the determination

of three-dimensional structure by crystallization will have an extremely important significance.

Therefore, an object of the present invention is to clarify the steric structure of RRF and contribute to the development of various antibacterial agents, antifungal agents and herbicides.

[BRIEF DESCRIPTION OF THE DRAWINGS]

[Fig. 1] is a photograph showing an XRRF protein crystal.

[Fig. 2] is a photograph showing an X-ray diffraction pattern of an XRRF protein crystal.

Details of diffraction pattern: xf1 to 1200 of 1200, yf 1 to 1200 of 1200

Direction of diffraction pattern: xf to the right, yf up

File order of data: -xf + yf

Maximum pixel value: 65535

Limit of scale: minimum = 1, maximum = 1,200, black indicates high value of diffraction intensity.

[Fig. 3] is a photograph showing of rendering by a ribbon of RRF. As shown in the drawing, it consists of two domains, one consisting of three helices and the second domain being a complex of a β -sheet and a coil helix.

[Fig. 4] is a photograph of a space-packing model of RRF.

[Fig. 5] is a schematic explanatory drawing showing a hypothesis on the function mechanism of RRF.

[Fig. 6] is a graph showing that the release of transfer RNA from a termination complex is inhibited by various inhibitors. The error bar indicates standard deviation.

[Fig. 7] is a graph by Lineweaver-Burk plot showing inhibition of ribosome release in the presence of a varied concentration of transfer RNA.

[Fig. 8] is a graph showing binding of RRF to ribosome is inhibited in the presence of paromomycicin. The error bar indicates standard deviation.

[DESCRIPTION OF REFERENCE NUMERALS]

1...Ribosome, 2...transfer RNA, 3...messenger RNA, 4...RRF, 5...EFG, 6...termination complex.

In consideration of the present status as described above, the present inventors have advanced study on RRF, during which they have been successful in obtaining a crystal of RRF and identifying its steric structure for the first time. They have further advanced the study and, as a result, completed the present invention.

Therefore, the present invention relates to an RRF protein crystal, a method of preparing thereof and a steric structure.

More specifically, the present invention relates to the method for designing a compound capable of binding to an active site or an accessory binding site of an RRF protein which comprises computationally evaluating a chemical entity of the RRF protein on the basis of a structure coordinate obtained from an RRF protein crystal.

Also, the present invention relates to the method in which the RRF protein crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.

Also, the present invention relates to the method in which the RRF protein crystal is bipyramidal.

Further, the present invention relates to the method in which the RRF protein crystal has a space group $P4_12_12_1$ or a space group $P4_32_12$.

Also, the present invention relates to the method in which the RRF protein crystal has a size of $0.3 \times 0.3 \times 0.5$ mm.

Also, the present invention relates to the method in which the RRF protein crystal has respective unit lattices of a size of $a=b=47.3 \text{\AA}$ and $c=297.6 \text{\AA}$.

Further, the present invention relates to the method in which the RRF protein crystal is characterized by a structure coordinate described in Table 7.

Also, the present invention relates to the method in which the RRF protein crystal is derived from Thermotoga Maritima.

Also, the present invention relates to the method in which the RRF protein crystal is orthorhombic.

Also, the present invention relates to the method in which

the RRF protein crystal has a space group P2₁2₁2.

Also, the present invention relates to the method in which the RRF protein crystal has a size of 30 \times 50 \times 250 μm .

Also, the present invention relates to the method in which the RRF protein crystal is derived from strain X.

Further, the present invention relates to the method in which the RRF protein crystal is crystallized by a drop-like vapour diffusion method.

Also, the present invention relates to the method in which the RRF protein crystal is a heavy atom derivative and the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.

Also, the present invention relates to the method in which the heavy atom derivative is formed by reaction of a compound selected from the group consisting of thyromethal, gold thiomalate, uranyl acetate and lead chloride.

Further, the present invention relates to the method in which the RRF protein crystal is a heavy atom derivative of platinum or mercury.

Also, the present invention relates to the method in which the RRF protein is a monomer.

Also, the present invention relates to the method in which the RRF protein is characterized by amino acid displacement according to Table 5 or Table 6.

Further, the present invention relates to the method in which a compound characterized by the chemical entity bound to the active site, accessory binding site or pocket is an inhibitor to the RRF protein.

Also, the present invention relates to the method in which the inhibitor is a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor to the RRF.

Also, the present invention relates to the method comprising determining orientation of a ligand at the active site or accessory binding site of the RRF protein.

Further, the present invention relates to the method in which the structure coordinate is a structure coordinate of the RRF protein according to Table 7.

Also, the present invention relates to the method in which the pocket of the RRF protein is a pocket in the vicinity of C-terminal positioned on a folded part separating two domains of the RRF protein.

Further, the present invention relates to the above-mentioned method in which the above-mentioned compound inhibits binding of the RRF protein to ribosome or inhibits the behavior of the RRF protein on ribosome.

The present invention also relates to an inhibitor of the RRF protein obtained by the above-mentioned method.

Also, the present invention relates to a method for searching a compound that can inhibit the activity of the RRF protein based

on the activity of inhibiting the binding of the RRF protein to ribosome or the activity of inhibiting the behavior of the RRF protein on ribosome.

Further, the present invention relates to an inhibitor of the RRF protein obtained by the above-mentioned method.

Also, the present invention relates to a method for determining the three-dimensional structure of RRF protein, including the steps of clarifying the crystal form of mutants, homologues or co-complexes of the RRF protein by molecular replacement.

The present invention also relates to an RRF protein crystal which is orthorhombic.

Also, the present invention relates to the RRF protein crystal having a space group P2₁2₁2 and size of 30 \times 50 \times 250 μm .

Also, the present invention relates to the RRF protein crystal in which the RRF is derived from strain X.

Also, the present invention relates to the RRF protein crystal which is bipyramidal.

Further, the present invention relates to the RRF protein crystal in which the RRF protein crystal has a space group $P4_12_12_1$ or a space group $P4_32_12_1$.

Also, the present invention relates to the RRF protein crystal having a size of 0.3 \times 0.3 \times 0.5 mm.

Also, the present invention relates to the RRF protein crystal having respective unit lattices of a size of a=b=47.3Å and c=297.6Å.

Also, the present invention relates to the RRF protein crystal characterized by amino acid displacement according to Table 5 or Table 6.

Further, the present invention relates to the RRF protein crystal characterized by a structure coordinate according to Table 7.

Also, the present invention relates to the RRF protein crystal derived from Thermotoga Maritima.

Also, the present invention relates to the RRF protein crystal crystallized by a drop-like vapour diffusion method.

Further, the present invention relates to the RRF protein crystal in which the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.

Also, the present invention relates to an RRF protein in which amino acid in an active site is selected from the group consisting of Arg 110, Arg 129 and Arg 132 of SEQ. ID. NO. 1.

Also, the present invention relates to the RRF protein in which at least one amino acid in the active site or accessory active site is replaced by at least one amino acid selected from the group consisting of naturally occurring amino acids, non-natural amino acids, selenocysteine and selenomethionine.

Further, the present invention relates to the RRF protein in which a hydrophilic amino acid or a hydrophobic amino acid in the

active site or accessory active site is replaced.

Also, the present invention relates to the RRF protein in which at least one cysteine amino acid is replaced by an amino acid selected from the group consisting of selenocysteine and selenomethionine.

Also, the present invention relates to the RRF protein in which at least one methionine amino acid is replaced by an amino acid selected from the group consisting of selenocysteine or selenomethionine.

Further, the present invention relates to the RRF protein in which the RRF protein is in a crystal form.

Also, the present invention relates to the RRF protein having a specific activity higher or lower than that of a wild type enzyme.

Also, the present invention relates to the RRF protein having a varied substrate specificity.

Further, the present invention relates to use of the RRF protein for measuring binding interaction between a compound and the RRF protein.

Further, the present invention relates to the RRF protein in which at lest one amino acid residue on a surface of the RRF protein, in the surface or in the vicinity thereof is replaced and a change in surface charge by one or more charge units occurs.

Now that presently it is presumed that RRF is an ideal target of antibacterial agents, the three-dimensional structure of RRF clarified by the present invention is extremely important in the industry since it directly associated with the development of antibacterial agents and the like. In addition, in consideration of the fact that the primary structures of RRFs of many pathogens are very close to each other (for example, the RRF of <u>Pseudomonas aeruginosa</u> has 60% homology to that of <u>Escherichia coli</u>), also concerning the three-dimensional structure of RRF of other pathogens, its clarification becomes extremely easy by the data of the three-dimensional structure of the RRF according to the present invention. Therefore, also in order to develop species-specific antibacterial agents, the present invention is extremely useful in the development of next generation antibiotics, fungicides and dezymotizing agents on the basis of RRF inhibition, in particular as an index upon developing antibacterial agents by rational drug design.

The terms used in the present specification are defined as follows.

"RRF protein" means an RRF protein having an enzyme activity in an ordinary state.

"Naturally occurring amino acid" means an L-isomer of a naturally occurring amino acid. The naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophane, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, γ -carboxyglutamic acid, arginine, ornithine and

lysine. Unless specifically indicated, amino acids in the present specification are L-forms.

"Non-natural amino acid" means an amino acid that is not naturally found in proteins. As examples of the non-natural amino acid used in the present specification, there can be cited racemi mixtures of selenocysteine and selenometionine. Further, the non-natural amino acid includes D- or L-forms of norleucine, para-nitrophenylalanine, homophenylalanine, para-fluorophenylalanine, 3-amino-2-benzylpropyionic acid, and homoarginine, and D-phenylalanine.

"Positively charged amino acid" includes any optional naturally occurring amino acid or non-natural amino acids having a positively charged side chain under normal physiological conditions. As examples of the positively charged naturally occurring amino acid, there can be cited arginine, lysine and histidine.

"Negatively charged amino acid" includes any optional naturally occurring amino acid or non-natural amino acids having a negatively charged side chain under normal physiological conditions. As examples of the negatively charged naturally occurring amino acid, there can be cited aspartic acid and glutamic acid.

"Hydrophobic amino acid" means any optional amino acid that has a relatively water-insoluble, uncharged and nonpolar side chain.

Examples of the naturally occurring hydrophobic amino acid are alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophane and methionine.

"Hydrophilic amino acid" means any optional amino acid that has a relatively water-soluble, uncharged and polar side chain. Examples of the naturally occurring hydrophilic amino acid are serine, threonine, tyrosine, asparagine, glutamine, and cysteine.

"Mutant" refers to an RRF polypeptide characterized by substitution of at least one amino acid in the RRF sequence of wild type <u>E. coli</u> (that is, polypeptide showing the biological activity of wild type RRF). Such a mutant can be obtained by the expression of cDNA of RRF in which mutation has occurred in the sequence encoded thereby, for example, by oligonucleotide specific induction. The RRF mutant can be obtained by a general biosynthetic method by Noren, C.J. et al. (Science, 224, p182-188 (1989)) by site specific incorporation of non-natural amino acids to the RRF protein.

Selenocysteine or selenomethionine is incorporated by wild type or mutant type RRF by the expression of cDNA encoding the RRF in auxotrophic <u>E. coli</u> strain. In this method, the wild type or mutant type RRF cDNA does not contain one (or both) of natural cysteine and natural methionine and can be expressed in a host on a growth medium enriched with selenocysteine or selenomethionine (or both). Further, selenomethionine can be incorporated into a wild type or mutant type RRF by a methionine metabolism inhibiting method (Van

Dyne, G.D. et al., J. M. B., 229 pp105 (1993)).

"Change in surface charge" means a change in at least one charge unit of a mutant polypeptide at a physiological pH in comparison with the wild type RRF. This can be obtained by mutation of at least one amino acid of the wild type RRF into an amino acid having a side chain having a charge different from that of the wild type side chain at a physiological pH. The change in surface charge can be determined by measuring the isoelectric point of the polypeptide having a substituted amino acid and comparing it with the isoelectric point of the wild type RRF molecule.

"Change in substrate specificity" refers to a change in substrate of the mutant RRF in comparison with the wild type RRF. The substrate specificity (species specificity) is determined by separating ribosome, tRNA and EF-G from a pathogen and based on whether or not they can be used as substrates for RRF of \underline{E} . \underline{Coli} and RRF mutants.

"Kinetic form" refers to the state of an enzyme in a free form or in a non-bound form, or the state of an enzyme bound to a chemical entity either at its active site or an accessory active site.

"Competitive" inhibitor is an inhibitor that inhibits the RRF activity by binding to the same kinetic form of RRF as that to which the substrate of RRF binds, and therefore, by directly competing with the active site of RRF.

"Uncompetitive" inhibitor is an inhibitor that inhibits RRF

by binding to a different kinetic form of RRF from that to which the substrate binds.

"Noncompetitive" inhibitor is an inhibitor that binds to either the free form or substrate-bound form of RRF.

"Homologue" means a protein that has at least 30% amino acid sequence homology with RRF or any optional function domain of RRF.

"Co-complex" means RRF, mutant or homologue of RRF bound to a chemical entity or compound through a covalent bond or non-covalent bond.

" β -Sheet" refers to a conformation of polypeptide chain extending in an expanded zigzag conformation. Polypeptide chain portions extending in parallel all extend in the same direction. The polypeptide chains extending in anti-parallel extend in the direction opposite to the direction of the parallel lines.

"Active site" or "active site portion" refers to any optional site or all sites in RRF as below. The substrate-binding site is a site to which ribosome and its complex binds and at which decomposition of the substrate occurs. The active site is in the vicinity of at least amino acid residue 110, 129, and 132 by use of SEO. ID. No. 1.

"Structure coordinate" refers to a mathematical coordinate obtained according to a formula relating to the pattern obtained by the diffraction of X-ray monochromatic bean by an atom (dispersion center) of RRF molecule in the form of crystal. The dispersion data

is used for calculating an electron density map of the repeating unit of crystal and the electron density map is used for establishing the positions of respective atoms in the unit lattice of crystal.

"Heavy atom derivative" refers to a chemically modified form of RRF protein crystal. In making it, in actuality, the crystal is dipped in a solution containing a heavy metal atom salt or an organometal compound that can diffuse through the crystal and bind to the surface of a protein (for example, lead chloride, gold thiomaleate, thyromethal or uranyl acetate). The position or positions of bound heavy metal atom or atoms can be determined by X-ray diffraction analysis of the dipped crystal. Then, using the data, phase data used for constructing the three-dimensional structure of an enzyme are prepared. One skilled in the art will understand that the set of structure coordinate determined by X-ray crystallography has a standard error. For the purpose of the present invention, any set of structure coordinates of RRF, RRF homologue or RRF mutant having a root-mean-square value deviation of protein backbone atoms (N, $C\alpha$, C and 0) of less than 0.75 Å when superposed on the structure coordinates enumerated in Table 7 should be considered the same.

"Unit lattice" refers to a block of a fundamental parallelohexahedron. Total volume of the crystal can be constructed by repeated regular stacking of such blocks.

"Space group" refers to an arrangement of objective elements

of a crystal.

"Molecular substitution" refers to a method including a step of orienting and positioning another molecule whose structure coordinates (for example, the structure coordinates shown in Table 7) are known in the unit lattice of an unknown crystal to thereby prepare a provisional model of RRF crystal whose structure coordinates are unknown such that the observed diffractive pattern of the unknown crystal can be optimally explained. Then, a phase is calculated based on this model and synthesized with the observed amplitude to obtain an approximate Fourier synthesis of the structure whose coordinates are unknown. Then, application to a purified substance enables one to finally obtain an accurate structure of the unknown crystal. By use of the structure coordinates of RRF of the present invention and by use of molecular substitution, the structure coordinates of a mutant, homologue, or co-complex or different crystal structure of RRF can be determined.

In examples of the present invention, crystallization and structural analyses were performed using strain X derived RRF and <a href="https://doi.org/10.2016/nc.2016/n

"Pocket" refers to a hollow that is present on an RRF protein

surface and also includes in addition to a binding pocket that is present on a binding site or accessory binding site of an RRF protein, other pockets that do not participate in binding to a substrate and so forth upon the expression of the activity of RRF.

The present invention provides for the first time the crystals of RRF of strain X and of <u>Thermotoga Maritima</u> RRF and the structures of RRF determined therefrom. On the other hand, the crystal of <u>Thermotoga Maritima</u> RRF was formed from an ammonium sulfate solution. The crystal has space group P4₃2₁2 of a bipyramid type. The unit lattice of the crystal has a=b=47.3Å, c=297.6Å. The structure coordinate of RRF is shown in Table 7. The crystal packing indicates that RRF is a monomer.

Fig. 3 shows an illustration of <u>Thermotoga Maritima</u> RRF by a ribbon. Helices A, B, C, D, E, and F indicate helices that exist from N-terminal toward C-terminal. β -Sheets 1, 2, 3, 4, 5, and 6 are numbers of β -sheets that exist from N-terminal toward C-terminal. As shown in the figure, RRF consists of 2 domains, one consisting of 3 helices and the 2nd domain being a complex of β -sheet coil and a helix. The active site mounts on the E and F helices in the figure and in order to maintain the activity, it is important to retain the three-dimensional structure of the domain including the helices B, C, and D and β -sheets 1, 2, 3, 4, and 5.

Fig. 4 represents a space-packing model of Thermotoga Maritima RRF and N and C indicate N-terminal and c-terminal, respectively.

The gray color represents a carbon atom, red represents an oxygen atom, violet represents an N atom. The number shows the SEQ. ID. Number of amino acid sequence and 1 designates N-terminal.

Thus, based on the data concerning the three-dimensional structure of RRF elucidated by the present inventors, the identification of the active site and accessory binding site of an enzyme has been made possible for the first time. It has revealed together with the results of RRF gene mutation described later that there is a high possibility that the active site portion contains at least amino acid residues Arg 110, Arg 129 and Arg 132 of SEQ. ID. NO. 1.

The present invention for the first time makes it possible to use a molecular design technology in which chemical entity and compound are designed, selected and synthesized with respect to RRF. The chemical entity and compound include inhibitory compounds that can bind to all or a portion of the active site or accessory-binding site of RRF. Upon approaches made possible by the present invention, a compound binding to an enzyme is designed and the structure coordinate of RRF is used in order to modify the physical properties (for example, solubility) of the compound in various methods. For example, the present invention makes it possible to design a compound that acts as a competitive inhibitor of RRF by binding all or a portion of the active sites of RRF. The present invention also makes it possible to design a compound that

acts as an uncompetitive inhibitor of RRF. These inhibitors can bind to all or a portion of the accessory binding sites of the RRF that has already bound to the substrate and can be more potent than the competitive inhibitor that binds only to the active site of RRF and more nonspecific. Similarly, noncompetitive inhibitors that inhibit RRF by binding thereto can be designed by use of structure coordinate obtained by the present invention regardless of whether it is bound or not bound to another chemical entity.

A second design approach is to confirm an RRF crystal based on molecules composed of various chemical bodies in order to determine an optimal site for the interaction between an RRF inhibitor candidate and RRF. For example, high resolution X-ray diffraction data recovered from a crystal that is saturated with a solvent makes it possible to determine the position of solvent molecules of each type. Then, a small molecule that strongly binds to these sites can be designed and synthesized and tests on its inhibitory activity can be performed (Travis, J., Science, 262, p1374 (1993)).

The present invention is useful in designing improved analogue of an RRF inhibitor or designing a novel class of inhibitors based on reaction intermediate of RRF and RRF inhibitor co-complex in the reaction of other compound that binds to substrate or RRF with the RRF. This provides a novel means for designing an RRF inhibitor having both high specificity and high stability.

Another approach that is made possible and facilitated by the

present invention is to perform screening by use of a computer on a chemical entity or compound that can bind to RRF entirely or partially. In this screening, the property of conformity of such a chemical entity or compound to the binding site can be judged by either shape complementarity or estimated interaction energy (Meng, E.C. et al. J. Comp. Chem., 13, 505-524 (1992)).

In the case where RRF can be crystallized in more than one crystal form, structure coordinate or a part of it of RRF as provided by the present invention is particularly important for the analysis of the structure of other crystal form of RRF. The structure coordinate or a part of it of RRF can also be used for the analysis of the structure of an RRF mutant, the structure of an RRF co-complex, or the structure of the crystal form of any other optional protein having a significantly homologous amino acid sequence to any optional functional domain of RRF.

One of the methods that can be used for this purpose is molecular substitution. In this method, whether or not an unknown crystal structure is the crystal form of another form of RRF, RRF mutant or RRF co-complex or any other optional protein having an amino acid sequence that is significantly homologous to any optional functional domain of RRF can be determined by use of the structure coordinate of RRF of the present invention as provided in Table 7. This method provides accurate structural form about an unknown crystal more quickly and efficiently than trying to determine such

data from the beginning.

Furthermore, according to the present invention, RRF mutants can be crystallized by way of its co-complexes with known RRF inhibitors. Then, a series of crystal structures of such complexes can be analyzed by molecular substitution and compared with the crystal structure of wild type RRF. Therefore, a promising site for modification among various binding sites of the enzyme can be identified. Based on the data, a means for determining the most effective binding interaction (for example, an increased hydrophobic interaction) between RRF and the chemical entity or compound is provided.

All the above-mentioned complexes can be studied by use of a known X-ray diffraction technology and made precise so as to have an R value of about 0.20 or less in comparison with 2 to 3 Å resolution X-ray data by use of a computer software (for example, X-POLAR, Yale University, 1992, distributed by Molecular Simulation, Inc) (for example, Blundel & Johnson, Protein Crystallography, Academic Press (1967), Methods in Enzymology, Vol. 114, 115, H.W. Wycoff et al., Academic Press (1985)). Therefore, the data can be used for optimizing an RRF inhibitor and more importantly, can be used for designing a novel RRF inhibitor and synthesize it. The structure coordinate of RRF provided in the present invention facilitates the identification of related protein, enzyme or nucleic acids imilar to RRF in function, structure or both of them. This enables more

proper presumption of active site, binding site and so forth of RRF itself and the above-mentioned similar protein and the like, which leads to a novel antibacterial agents, herbicide or fungicide.

In designing a compound that binds to or inhibits the RRF of the present invention, generally two elements must be considered. First, the compound must physically and structurally bind to the RRF. As the non-covalent bond intermolecular interaction important for the binding of RRF to its substrate, there can be cited hydrogen bond, van der Waals force and hydrophobic interaction.

Secondly, the compound must be one on which a conformation that enables binding to the RRF can be supposed. A specified part of a compound may not directly participate in binding to the RRF but the part can still influence the whole conformation of the molecule. This also gives a considerable influence on the effectiveness. As the necessary conditions of such a conformation, there can be cited three-dimensional structure and orientation as a whole of a chemical entity or compound relating to all or a part of binding sites (for example, active site or accessory binding site of RRF), or distance between functional groups of a compound containing some chemical bodies that directly interact with the RRF.

Potential inhibitory effect or binding effect of a chemical compound on the RRF can be analyzed before the compound is actually synthesized and tested by use of a computer modeling technology. In the case where a theoretical structure of a predetermined compound

suggests the existence of insufficient interaction and binding between the compound and the RRF, the synthesis and test of the compound can be avoided. However, in the case where the computer modeling suggests strong interaction, the molecule can be synthesized and its inhibitory capability can be tested by the method of Hirashima and Kaji (Biochemistry, 11, 4037 (1972)) or a method using an oligonucleotide, and in vivo screening (Japanese Patent Application No. Hei 10-158643). By this method, the synthesis of compounds that are ineffective can be avoided.

The inhibitory compounds of the RRF or other bound compounds of the RRF can be evaluated by a computer and chemical bodies or fragments can be designed by a means of a series of steps of screening and selecting their ability of binding to respective binding pockets or other regions of the RRF.

There may be used one of methods of screening the chemical bodies or fragments on their ability of binding to respective binding pockets of RRF, more particularly the binding site or accessory binding site of the RRF, or to other pockets not participating in binding to the substrate or the like upon expression of the activity of the RRF. This process can be started by visual study of the active site, for example, upon computer screening based on the RRF coordinate in Table 7. For example, as shown in the sketch by a ribbon in Fig. 3, the RRF that has a form of "L"-shape has a pocket in the vicinity of C-terminal positioned at the "L"-shaped bent portion that

separates the two domains. A compound bound to the pocket can be a leading candidate of an inhibitory compound to the RRF. The above-mentioned pocket can be readily observed by preparing a space-packing model based on the RRF coordinate shown in Table 7 by use of a software of Rasmol et al. The pocket is positioned between the two domains of the RRF and hence, it suggested the possibility that it participates in the activity of the RRF through adjustment of the angle between the domains. Then, the selected fragment or chemical entity can be positioned in various orientations or can couple to the respective binding pockets of the RRF. The coupling can be achieved by use of software such as Quanta and Sybyl and thereafter, minimization of energy and molecular kinetics are performed by use of a standard molecular mechanism force field (for example, CHARMM, AMBER).

A specialized computer program can aid the process of selecting a fragment or chemical entity. Examples of the programs include the followings:

The following program is available from Oxford University, oxford, UK: GPID (Goodford, P. J., "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)), and the following is available from Molecular Simulations, Burlington, MA: MCSS (Miranker, A or M. Karplus "Functionality Map of Binding Sites: A Multiple Copy Simultaneous Search Method.",

Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)).

As for AUTODOCK (Goodsell, D. S. and A. J. Olsen, "Automated Docking of of Substrates to Proteins by Simulated Annealing", Proteins: Structure Function and Genetics, 8 pp. 195-202, it is available from Scripps Research Institute La Jolla, CA, and as for DOCK (Kuntz, I, D. et al, "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp 269-288 (1982)), it is available from University of California, San Francisco, CA.

Once a proper chemical entity or fragment is selected, the chemical entity or fragment can be assembled into a single compound or inhibitor. The assembling can be performed by way of visual study of interrelationship fragments in a three-dimensional image displayed on a computer screen with respect to the structure coordinate of the RRF. Then, model construction is performed by a manual by use of software such as Quanta or Sybyl.

As examples of useful programs that can help one skilled in the art in the case where respective chemical bodies or fragments are contacted, there can be cited the followings:

The following program is available from the University of California, Berkeley, CA: CAVEAT (Bartlett, P. A. et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", Molecular Recognition in Chemical and Biological Problems", Royal Chem, Soc., 78, pp. 182-196 (1989)). A region of 3D Database systems such as MACCS-3D (MDL Information Systems, San

Diego, CA is generally explained in Martin, Y. C., "3D database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992). As for HOOK, it is available from Molecular Simulations, Burlington, MA.

Instead of constructing an RRF inhibitor from one fragment or chemical entity at a time in a stepwise manner as described above, the inhibitory compound or other RRF bound compound can be designed wholly or anew by use of the active site (or one containing some parts of a known inhibitor as needed) from the RRF. As these methods there can be cited the followings:

The following program is available from Biosym Technologies, San Diego, CA: LUDI (Bohm, H. J., "The Computer Program LUDI: "A New Method for the de novo Design of Enzyme Inhibitors", J. Comp, Aid, Molec, Design, 6 pp. 61-78(1992). As for LEGEND (Nishibata, Y. and A. Itai, tetrahedron, 47, p.8985 (1991), it is available from Molecular Simulations Burlington, MA. As for LeapFrog, it is available from Tripos Associates, St. Louis, MO.

Other molecular modeling can be used in the present invention. For example, the following should be referred: Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, p883-894 (1990) by Cohen, N. C., et al. or Navia, M. A. and M. A. Murcko, The Use of Structural Information in Drug Design, Current Opinions in Structural Biology, 2, p. 202-210(1992).

Once a compound is designed or selected by the above-mentioned

method, the effectiveness in that the compound can bind to the RRF can be tested by computer evaluation and then optimized. For example, for a compound that is designed or selected so as to function as an RRF inhibitor, preferably a volume must be studied that does not overlap the volume occupied by the active site in the case where it binds to a natural substrate. An effective RRF inhibitor must preferably show a relatively small difference in the energy between its bound state and free state (that is, in a small binding stress). Therefore, the most effective RRF inhibitor must be designed with a binding stress of not exceeding about 10 kcal/mol, preferably about 7 kcal/mol. The RRF inhibitor can interact with an enzyme in a similar conformation having an overall binding energy of more than 1. In such cases, the stress of binding is in a difference between the energy of the free compound and the average energy of conformations observed in the case where the inhibitor binds to the enzyme.

The compound designed or selected such that it binds to the RRF can be optimized by use of a computer in such a manner that preferably it does not have a repulsive electrostatic interaction with the target enzyme. As such a noncomplementary (for example, static charge) interaction, there can be cited repulsive charge-charge interaction, dipole-dipole interaction and charge-dipole interaction. Specifically, totaling all the electrostatic interaction between the inhibitor when it is bound

to the RRF and the enzyme, neutral or preferable contribution is made to the enthalpy of bond.

Specified computer software for evaluating the stress and electrostatic interaction of a compound can be utilized in this field of art. As examples of program designed for such uses, there can be cited Gaussian 92 C, M. J. Frisch, Gaussian, Inc., Pittsburgh, PA 1992; AMBER, version 4.0 P. A. Kollman, University of California, San Francisco, 1994; QUANTA/CHARMM Molecular Simulations, Inc., San Diego, CA 1994 and so forth. These programs can be practiced by use of a general computer such as Silicon Graphics IRIS 4d/35 or IBM RISC/6000 Model 1550 or the like. Other hardware and software are known to one skilled in the art.

Once an RRF bound compound is optimally selected or designed as described above, then substitution of some of atoms or side chains of the compound is performed in order to improve or modify the binding properties thereof. Generally, first substitution is conservative. That is, the substituent has substantially the same size, shape, hydrophobicity and charge as the original group. Those compounds of which it is known to change conformation in the art must be avoided. The chemical compounds thus substituted are analyzed of their effectiveness for conformity with the RRF in the same manner as the method by use of a computer as described above.

The present invention also makes it possible to make mutants of the RRF and elucidate their crystal structure. More specifically,

the present invention makes it possible to determine a desired site for mutation by the active site, accessory binding site and position of interface of the RRF on the basis of the crystal structure of the RRF.

For example, mutation may be directed to a specified site or combination out of sites of wild type RRF, that is, active site or accessory binding site only. Alternatively, for the induction of mutation, the position on the interface site is selected. Similarly, only the position on or near the enzyme surface may be substituted to generate a change in surface charge by 1 or more charge unit in comparison with the wild type enzyme. Alternatively, the amino acid residue of the RRF may be selected on the basis of its hydrophilic or hydrophobic property.

Such mutants are characterized by any of the different properties as compared with the wild type RRF. For example, such mutants may have a change in surface charge by 1 or more charge units or an increased stability to dissociation of subunits. Alternatively, such mutants may have a change in substrate specificity as compared with the wild type RRF or specific activity higher or lower than that of the wild type RRF.

The RRF mutant that is prepared by the present invention can be prepared by many methods. For example, the wild type RRF sequence can be mutated at a site that has been identified to be desirable for mutation by utilizing the present invention by use of an oligonucleotide-specific mutation induction or other conventional technical (for example, depletion or the like) means. Alternatively, mutants of RRF can be made by site-specific substitution of a specified amino acid by an amino aid that does not naturally occur. Furthermore, the RRF mutants can be made by substitution of a specified cysteine or methionine residue by selenocysteine or selenomethionine. This is achieved by growing a host organism that can express either a wild type polypeptide or a mutant polypeptide on a growth medium that does not contain natural methionine or cysteine (or both) but is enriched with selenocysteine or selenomethionine (or both).

Mutation can be introduced in a DNA sequence encoding the RRF by use of synthetic oligonucleotides. The oligonucleotides include nucleotide sequence adjacent to a desired mutation site. Mutation can be made in a sequence of the full-length DNA sequence of RRF, RRF of other organism or shortened or elongated (deleted or added) RRF sequences.

According to the present invention, mutant RRF DNA sequences made by the above-mentioned method or substitute methods known in the art can be expressed by use of an expression vector. As is well known in the art, the expression vector contains an element that is typically independent of the host genome and enables self replication in the host cell and one or more phenotype markers for the purpose of selection. The expression vector also contains before or after an insert of a DNA sequence surrounding a desired RRF mutant

code sequence, a promoter, an operator, a ribosome-binding site, and a translation-starting signal and optionally a control sequence encoding a repressor gene and a stop signal. In some embodiments, in the case where secretion of produced mutant is desired, the nucleotide encoding the signal sequence may be inserted before the RRF mutant encoding sequence. For the expression under control of the control sequence, a desired DNA sequence must be operatively coupled to the control sequence. That is, it must have a suitable start signal before a DNA sequence maintaining a suitable leading frame that encodes the RRF mutant and enables the expression of this sequence under control by the control sequence and production of a desired product encoded by the RRF sequence.

A wide variety of well-known expression vectors that can be utilized are useful for expressing the mutated RRF encoding sequence of the present invention. These include vectors composed of segments of chromosomal DNA sequences, non-chromosomal DNA sequences and synthetic DNA sequences, such as, for example, various known derivatives of SV40, known bacteria plasmids (for example, E. coli derived plasmids such as col E1, pCR1, pBR322, pMB9 and derivatives thereof), plasmids of a wider host spectrum (for example, RP4), phage DNA (for example, many derivatives of λ phage (for example, NM989) and other DNA phages (for example, M13 and filamentous single strand DNA phage)), yeast plasmids such as 2μ plasmid or its derivatives, and vectors obtained by combination of plasmid and

phage DNA (for example, plasmid modified in order to utilize phage DNA or other expression control sequences). In a preferred embodiment of the present invention, the present inventors utilize <u>E. coli</u> vector.

Furthermore, any of a wide variety of expression control sequences that controls the expression of a DNA sequence when operatively coupled to the DNA sequence is used in a vector in order to express the mutated DNA sequence of the present invention. As such a useful expression control sequence, there can be cited, for example, early promoter and later promoter of SV40 for animal cells, lac system, trp system, TAC system or TRC system, major operator region and promoter region (all for $\underline{E.\ coli}$) of λ phage control region of fd coat protein, promoter of 3-phosphoglycerate kinase or other sugar decomposing enzyme, promoter of acid phosphatase (for example, Pho5), promoter of yeast α -mating factor for yeast, and other sequences known to control gene expression of prokaryote cell, eucaryote cell or virus and combinations thereof. In a preferred embodiment of the present invention, the present inventors utilize $\underline{E.\ coli}$ expression.

A wide variety of species of hosts are also useful for the production of mutant RRF according to the present invention. As such a host, there can be cited, for example, bacteria such as <u>E. coli</u>, <u>Bacillus</u> and <u>Streptomyces</u>, fungi such as yeast, animal cells such as CHO cell and COS-1 cell, plant cells and transgenic host

cells. In a preferred embodiment of the present invention, the host cell is E. coli.

It should be understood that when all the expression vectors and expression systems express the mutant DNA sequence of the present invention and produce modified RRF or RRF mutants, they do not always function in the same manner. Not all the hosts use the same expression system to equally function well. However, one skilled in the art can make selection from these vectors, expression control sequences and hosts without performing experiments or departing from the scope of the present invention. For example, the matter that is important when selecting vectors is the ability of a vector to replicate in a predetermined host. The number of copy of vector, ability of controlling the number of copy, and expression of other proteins to be encoded by the vector such as an antibiotic marker must also be taken into consideration.

Upon selecting the expression control sequence, various factors must be taken into consideration. These are, for example, relative strength of the system, its controlling power, conformity of DNA sequence encoding the modified RRF of the present invention, in particular conformity with respect to potential secondary structure.

The host must be selected in consideration of conformity with the selected vector, the toxicity of the modified RRF to the host, the ability of secreting a mature product, the ability of properly folding the protein, fermentation requirement, easiness of purification of the modified RRF from the host, and safety. Among these parameters, one skilled in the art can select various vector/expressioncontrol system/host combinations that can produce a useful amount of mutant RRF.

The mutant RRF produced in these systems can be purified various conventional steps and strategies including steps and strategies used for purifying the wild type RRF.

Once RRF mutation is made at a desired position (that is, active site or accessory binding site), the mutant can be tested on any one of some objective properties.

For example, the mutant may be screened on a change in charge at a physiological pH. This can be determined by the isoelectric point of the mutant RRF in comparison with the isoelectric point (pI) of the wild type parent. The isoelectric point can be measured by gel electrophoresis by the method of Wellner, D., Analyt. Chem., 43, p597 (1971). The mutant in which surface charge has changed is an RRF polypeptide having a substituted amino acid positioned at a surface of the enzyme and a changed pI as provided by the structural data of the present invention.

Furthermore, the mutant may be screened with respect to specific activity that is high or low as compared with the wild type RRF. The mutant is measured of its activity by use of the method of Hirashima and Kaji and the assay by use of oligonucleotide (cited

above). The mutant can be tested on a change in RRF substrate specificity by measuring the RRF reaction as described above.

Furthermore, an object of the present invention includes a mutant having increased safety. The RRF mutant having increased safety includes one that exhibits no loss of enzyme activity.

Hereinafter, the present invention will be illustrated in detail by examples. The examples shown below are merely for the purpose of detailed explanation thereof but by no means are meant to exclude other methods.

[EXAMPLES]

Example 1. Crystallization of RRF protein of strain X by drop-like vapour diffusion technique

 $5~\mu l$ of a solution containing 4 mg/ml to 8 mg/ml of RRF protein of strain X, 50 mM Tris hydrochloride, pH 8.5, 70-100 mM of sulfuric acid salt and 14% to 18% of polyethylene glycol was converted into droplets and equilibrated in a liquid pool containing a crystallizing reagent having a higher concentration than that of the droplets. The equilibration was performed until the vapour pressure of droplets became identical to the vapor pressure of the liquid pool due to diffusion of the volatile medium (water or organic solvent). When the equilibration occurred due to water exchange (from the droplets to the liquid pool) the volume of the droplets was changed. As a result, the concentrations of all the media in the droplets changed.

In case of the medium having a higher vapour pressure than that of water, exchange from the liquid pool to the droplets occurred. In the instant example, the glass vessel that the RRF protein solution contacted was used after its surface was subjected to hydrophobic treatment. By dialysis against a buffer composed of 100 mM of Tris hydrochloride, pH 8.5, 150 mM to 200 mM of sulfuric acid salt, 28% to 36% of polyethylene glycol, XRRF crystal was obtained. The crystal grew to a size of 30 \times 50 \times 250 μm over 1 to 3 weeks. The results are shown in Fig. 1.

Example 2. Three-dimensional structure of RRF by X-ray diffractive analysis

As a means for determining the RRF three-dimensional structure, a multiple isomorphous replacement procedure was used. This is a standard method necessary for obtaining diffusion data of a heavy atom from isomorphous protein crystal. A difference between the unreplaced one and the isomorph was calculated from the positions of the heavy atom to form a Patterson map. In preparing a protein model, the data on initial protein phase necessary for the calculation of electron density diagram were calculated by use of several kinds of derivatives.

The X-ray diffraction data of the refrigerated crystal were collected in BL71 by MaxII synchrotron (Sweden, Lund).

The native crystal was diffracted at a resolution of 2.6Å.

Because of the problem of mosaicity of 1.5 or more, a resolution of 2.9Å or less was thus far used. This typical diffraction pattern is shown in Fig. 2.

The native data analysis was completed and Rsym was found 1.0. The statistical data are shown in Fig. 1.

The crystal has a=98.5Å, b=106.7Å, and c=66.7Å and belongs to $P2_12_12$.

The asymmetric unit includes 2 to 4 molecules and there are translations of 0.5, 0.33 and 0.5 between the molecules. Data of two derivatives were obtained and the derivative of platinum diffracted at 4.0Å and the derivative of mercury diffracted at 3.8Å. Statistical study of native data

Table showing summary of diffractive intensity and R-factor indicated in terms of the size of shell (resolution)

Value of R (as a linear function) = 3D SUM (ABS(I-<I>>))/SUM (I)

Value of R (as a quadratic function) = 3D SUM $((I-\langle I \rangle)**2)$ / SUM (I**2)

 $\chi^2 = 3D SUM ((I-\langle I \rangle)**2) / (error **2*N/(N-1))$

For all calculations of addition, calculation was performed only on values measured twice or more.

Table	1						
Lower and up limit shell	per	Diffract intensit		<u>Average</u>	Normal	Linear multiplier	Quadratic multiplier
Angstr	om	<u>Average</u>	Error	Stat. value	χ^2 value	R-factor	R-factor
Lower	Upper						
limit 30.0	limit 7.12	814.6	36.6	18.5	0.709	0.033	0.032
7.12	5.67	227.1	16.7	13.5	1.012	0.084	0.072
5.67	4.95	266.0	19.0	15.3	0.983	0.083	0.075
4.95	4.50	417.3	25.3	18.4	1.052	0.070	0.064
4.50	4.18	394.0	25.5	19.6	1.239	0.087	0.086
4.18	3.93	330.4	24.4	19.7	1.064	0.093	0.088
3.93	3.74	296.1	24.6	20.9	1.286	0.125	0.219
3.74	3. 58	283.8	25.5	22.0	1.275	0.142	0.221
3.58	3.44	207.5	23.2	21.2	1.314	0.170	0.192
3.44	3.32	173.2	22.5	21.1	1.278	0.193	0.298
3.32	3.22	151.8	22.1	20.9	1.414	0.222	0.231
3.22	3.12	130.4	21.7	20.8	1.560	0.265	0.280
3.12	3.01	108.3	20.6	19.9	1.552	0.306	0.307
3.04	2.97	92.2	19.9	19.2	1.655	0.334	0.315
2.97	2.90	74.9	19.2	18.7	1.632	0.411	0.416
Total		268.4	23.2	19.3	1.259	0.119	0.102
refle	ction						

Example 3. Crystal structure of RRF of Thermotoga Maritima

RRF cDNA of <u>Thermotoga Maritima</u> was cloned in an expression vector (PET1650) and expressed in <u>E. coli</u> by addition of IPTG. As a result, <u>Thermotoga Maritima</u> RRF accumulated in the host cells at a high level. The cells were mechanically destroyed and purified

by a method which is modified from the method of Hirashima and Kaji (Biochemistry, $\underline{11}$, 4037, (1972)) to obtain Thermotoga Maritima RRF. The crystal of RRF was grown by vapour diffusion. Mixing 5-10 μ l of the RRF solution with the same amount of reservoir liquid (00.1 M of sodium acetate, 2.0 M of ammonium sulfate (pH 5.5), 5 mM of DTT, and 10% of glycerol), equilibrating the mixture with 600 μ l of the above-mentioned reservoir liquid at 25°C, and streaking this liquid for 24 hours to accelerate crystal formation resulted in the appearance of crystal after 15 hours. Then, after 3 days, this grew into a crystal of bipyramid type of 0.3 \times 0.3 \times 0.5 mm.

It is possible for one skilled in the art to properly modify the above-described crystallization conditions.

All the X-ray dataset (2.55Å resolution) were collected in a Mar 345 Image Plate Detector by use of MAXII synchrotron in BEAMLINE BL711. Merge, scale, indexing and integration of data were performed by use of programs of VDS and Xscale (Kabsch, W. J. Appl. Crystallography 26 795 (1993)). MAD data (multiwarelength anomalous dispersion data) were performed in BEAMLINE BM14 ESRF at a wavelength of 0.9184 to 0.978 and 0.9788 Å and collected by use of a Mar 345 Image Plate Detector. The data were processed by use of Mosflm (Leslie, A. G. W. in Crystallographic computing oxford Univ Press (1990)), and scale and merge were performed in Scala (CCP4).

For the position of selenium atom in the RRF, shelx program

(sheldrick, G. M. Acta Cryst. A46 P467 (1998)) was used and a normalized structural factor was used. A heavy atom (selenium) parameter was made precise by use of MIphase (CCP4). Trial made to obtain electron density maps based on both space groups P4₁2₁2 and P4₃2₁2 revealed that correct space group was P4₃2₁2. An average merit value indicated a resolution of 0.66Å to 4.0Å. Table 2 shows the crystal data of <u>Thermotoga Maritima</u> RRF.

Table 2

Data collection

The highest resolution shell, 2.65 - 2.55 Å

Resolution 30-2.55

Total observations 79947 (7119)
Unique reflections 11927 (1261)
Average redundancy 6.7 (5.6)
R_{sym} (%) 0.049 (0.156)
Data completeness (%) 99.8 (99.1)
I/sigma(I) 26.4 (8.9)

 $R_{\text{merge}} = (\sum \big| \, I - \langle \, I \, \rangle \, \big| \, / \sum I \,) \text{ where I is the observed intensity and } \langle \, I \, \rangle \text{ is}$ the average intensity of symmetry-related reflections.

Values in parentheses refer to the values at maximum resolution.

The map was improved by solvent flattering and phase expansion (CCD4-collaborative conpurity project #4, A suite of program for protein crystallography Daiesburg Laboratory, Warrington, WA4 4. AD UK (1979) and it was successful in tracing a complete polypeptide chain. Precision ((CNS) ranger A. T. et al., Acta Cryst D54 p905 (1998)) of the position of model construction program (Jones, A.T. et al., Acta Cryst. A47 PP110 (1991)) and phase combination were

repeated to thereby enable all the side chains to be introduced into the model. Rigid body and positional precision were performed and further simulated annealing was carried out. This model was compared with the crystal data (native data) to reach a final model only by use of the phase of the model.

The model of the RRF of the present invention has an R factor (25.3%) for all the observed data on X- and Y-axes. Root-mean-square value deviation from ideal bond length and bond angle are 0.01Å and 2.0Å, respectively.

Table 3 shows results of statistical processing of <u>Thermotoga</u>

<u>Maritima</u> RRF crystal data.

Table 3

Data collection statistics

Dataset (wavelength Å)	Peak (0.9786)	Inflection (0.9788)	Remote (0.9184)
Resolution (Å)	2.9	2.9	2.9
Completeness (%)	99	98	98
Rsym (%)	7.0	7.0	7.2
Cullis R-centric	0.67	0.56	
Cullis R-anomalous	0.60	0.77	0.78

Table 4 shows phasing of Thermotoga Maritima RRF.

Table 4 shows Phasing of Thermotoga Maritima RRF

Table 4
Resolution

Phasing						
Resolution bin (Å)	30-11.5	11.5 - 8.1	8.1 - 6.2	6.2 - 5.1	5.1 - 4.3	4.3 - 3.7
FOM	0.704	0.732	0.745	0.683	0.623	0.58
Mean FOM	0.66					

2. Presumption of the active site of RRF

To presume the position of active site in the RRF molecule, a series of RRF mutants were produced. Mutation induction was performed by use of a PCR method that involved many errors to introduce mutation (Janosi et al., EMBO J. <u>17</u> 1141 (1998)).

Isolation of a plasmid having frr (gene encoding RRF) having a lethal gene mutation was performed as follows. PMIX described in Janosi et al., EMBO J. 17 1141 (1998) was used. To explain briefly, pMIX is a plasmid obtained by causing various gene mutations to occur in frr and introducing the frr into a chloramphenicol-resistant plasmid. In this example, Escherichia coli LJ4 (recA-) was used as a host. Since this bacterium has on chromosome frr inactivated by frame shift, so that the Escherichia coli keeps life by means of wild type frr on pPEN(1560) (Janosi et al., EMBO J. 17 1141 (1998)). PPEN(1560) includes kanamycin resistant factor and sucrose sensitivity gene.

The <u>Escherichia coli</u> was transformed with pMIX and selected with chloramphenicol resistance as a marker. Since frr is indispensable to bacteria, the bacteria having a lethal mutation in pMIX cannot live without having the above-mentioned pPEN1560. Therefore, bacteria having both plasmids, pMIX and pPEN1560 were searched. Incidentally, the both plasmids, pMIX and pPEN1560 do not usually live together since they are incompatible. However, they live together if they are driven by necessity (necessity of antibiotic marker and frr) as described above.

To select such an Escherichia coli, the transformant was inoculated on a plate containing CM and sucrose, and further was replicaplated on a plate containing CM and KM. Selecting a bacterium that grows in the latter but does not grow in the former enables selection of a bacterium that has pPEN1560 and lethal frr in pMIX. Since this bacterium has pPEN1560, it cannot grow on a plate containing sucrose. Out of 153 transformants thus obtained respective plasmids were purified with which Escherichia coli DH5α (having wild type frr) was transformed. Since this bacterium has wild type frr as described above, it does not require pPEN1560 (kanamycin resistance). Therefore, selecting chloramphenicol— and kanamycin—sensitive Escherichia coli DH5α enables selection of Escherichia coli having a lethal mutation and having pMIX.

From the thus obtained and <u>Escherichia coli</u>, plasmids were isolated and Kpn1-HindIII fragment (0.9 kb, frr) was taken out and

DNA sequence determination by a common method was performed. The results are shown in Table 5.

Table 5 Genetic mutations inactivating RRF⁺

	mann	חווז מוותר	circ mananons machinaling KKF	CKF.				
Mutational class Allele	Allele	Number	er Nucle	Nucleotide change	Change in the	Change in the primary sequence of DDE	Ce of DDE	Motor
		of)	0	Primited y sequen	ICC OI UNI	Soloni
		isolates	SS					
Single AA change	frr146		T(152)C		I on (51) Dao			
	frr160	-	T(161)C		Leu(54)Pro			1
	frr161	_	T(194)C		I eu(65)Pro			í
	frr109	—	T(99)C	T(194)C	I en(65)Pro			; ; ;
	frr106	~	C(123)T		Arg(110) His			Ser(33)silent
	fril 119	က	C(-91)A		Arp(129)Cvs			val(41)silent
Class A	frr114	_	C(394)G	`	Arg(132)(Fly			promoter involved
	frr132	_	C(394)T		Arg(132)Cvs			ı
	frr133		G(395)A		Arg(132)His			ı
	frr138	1	G(395)A		Arg(132)(Cln			ı
	frr124	2	T(524)C		Leu(175)Pro			ı
:	frr149	2	C(447)T	T(524)C	I eu(175)Pro			: 677
Double AA change frr165	frr165	H	G(28)A	A(490)C	Glu(10)Lys	Th. (164) D.		Ser(149)silent
	frr113	-	G(28)C	(28)C G(162)A A(490)C	Gln(10)I vs	Thr(164)Pro		
Class B	frr112	-	T(38)C	T(512)C	Ord(13)Thr	1.01(104)rro 110(171\774		Leu(154)silent
	frr116	7	T(107)A		1 en (36)Gla	TE(1/1)1III		
	frr118	_	A(269)G		Asn(90)Ser	Arg(110)Lys		
Triple AA change	frr134	1	T(14)C		Ile(5)Thr	Ser(35)Giv	I on/64/Cit.	1
Class C	frr141		G(88)A	T(97)Ć C(394)T	Gly(30)Ser	Ser(33)Pro	Arg(132)Cys	
C-terminal	frr127	1	G(52)T	T(416)C	Glu(18)ston (17	A A Long DDE		
truncation via	frr123		A(76)T		Lys(26)stop (25 AA long RDE)	(1) AA long RRF)		+mutation beyond stop
early stop	frr158	 1	C(135)G			(44 AA long RRE)		1
	frr125	1	C(157)T			(52 AA long RRE)		1
	frr162	_	T(24)C	C(157)T		(52 A A long DDE)		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Class D	frr140	_	A(196)T	T(206)C G(309)T	_	AA long RRF)		Asp(s)silent
	frr110	₩.	C(218)A		Ser(73)stop (72 AA long RRF)	AA long RRF)		To increasions ocyonic stop
	frr131	 -	C(-6)A C(218)A	(218)A	Ser(73)stop (72 AA long RRF)	AA long RRF)		SD-initiation engage involved
	frr108	⊶ ,	G(364)T	A(540)G	Glu(122)stop (12	Glu(122)stop (121 AA long RRF)		-
	Jrr11.7		A(430)T		Lys(144)stop (14	Lys(144)stop (143 AA long RRF)		1

	frr136	-	T(336)C A(430)T	Lys(144)stop (145	3 AA long RRF)	Asp(112)silent
	fr 159	—	T(-46)C A(508)T	Lys(170)stop (169 AA long RRF)	AA long RRF)	+mutation between promoter and SD
	frr 142	3	G(514)T	Glu(172)stop (171	(171 AA long RRF)	
C-terminal	frr115	2	A(103)G C(157)T	Ser(35)Gly (Glu(53)stop (52 AA long RRF)	1
truncation & single fr151	frr151	1	(A11)G G(364)T	Asp(4)Gly (Glu(122)stop (121 AA long RRF)	1
AA change	frr140	1	A(61)G C(367)T	Lys(21)Glu (Glu(123)stop (122 AA long RRF)	1
	frr166	 1	A(61)G G(162)A C(367)T		Gln(123)stop (122 AA long RRF) Leu(154)silent	Leu(154)silent
Class E	frr121	_	A(445)G C(469)T	_	Gln(157)stop (156 AA long RRF)	
	frr152	1	C(467)T C(469)T	Ser(156)Phe (Gln(157)stop (156 AA long RRF)	1
	frr139	1	C(467)T C(469)T C(555)T	Ser(156)Phe (Gln(157)stop (156 AA long RRF) mutation beyond stop	mutation beyond stop
C-terminal	frr170	1	T(5)del	Stop at nt 50-52	(16 AA long RRF)	Ser(3) to (Cys(16) changed
truncation preceded	fr-101	 -	G(40)del	Stop at nt 50-52	(16 AA long RRF)	Asp(14) to $Cys(16)$ changed
by frame-shift	frr169	-	A(70)del	Stop at nt 170-172		Ile(24) to Ser(56) changed
	frr143	_	A(79)del	Stop at nt 170-172	(56 AA long RRF)	Ile(27) to Ser(56) changed
	frr129	_	C(75)del	Stop at nt 170-172	(56 AA long RRF)	Ser(25) to Ser(56) changed
frr126	frr126	_	C(101)del A(419)T	Stop at nt 170-172		Ser(35) to Ser(56) changed
						+mutation beyond stop
Class F	frr105	-	T(170)del A(359)T T(492)C	Stop at nt 176-178	(58 AA long RRF)	Val(57) to Thr(58) changed
				1		+2 mutations beyond stop
	frr147	_	CG(82-83)del	Stop at nt 210-212	(69 AA long RRF)	Arg(28) to Val(69) changed
	fr153		AT(199-200)C		8 (88 AA long RRF)	Ile(67) to Gly(88) changed
	frr107		A(333)del	Stop at nt 338-340	(112 AA long RRF)	Asp(112) changed
	fr103		C(362)del			Ala(121) to Lys(138) changed
	frr137	П	A(346)del A(363)GA(501)G		3 (138 AA long RRF)	Ile(116) to Lys(138) changed
						+mutation in shifted sequence
						+mutation beyond stop
	frr 145	 1	A(389)del	Stop at nt 416-418	3 (138 AA long RRF)	Asn(130) to Lys(138) changed
	frr135	-	A(511)del	Stop at nt 545-547		Ile(168) to Glu(181) changed

[†]In description of nucleotide and amino acid changes, the positions of change are indicated by a number in parenthesis preceded by description of the wild-type nucleotide or amino acid and followed by mutated ones. The amino acids are described by their three letter codes. Abbreviations: AA=amino acid; del=deletion

As shown in this table, 61 strains were obtained. These had 53 different genotypes. It was confirmed that the thus separated plasmid having a lethal gene did not function as frr by use of LJ4 having temperature-sensitive RFF (Janosi et al., EMBO 17 1141 (1998)). All the obtained plasmids were not able to support the growth of LJ4 at 42°C.

Then, a method of separating amino acid mutation that does not influence the function of frr from the structural gene of frr will be described. For this purpose, LJ4 was used as a host. Since the frr on chromosome of this host does not function as described above, it can exist at 27°C by means of plasmid pKH6 having frr14.

Since this <u>Escherichia coli</u> lives by means of frr14 (that encodes temperature-sensitive RRF), naturally it is temperature-sensitive. When the <u>Escherichia coli</u> was grown at 27°C at a natural reversion rate, one that was grown at 42°C were obtained in a ratio of 4.2×10^{-6} . Of the <u>Escherichia coli</u> one that becomes temperature-sensitive again by replacing the plasmid with one having tsfrr(pKH6) was selected and the DNA sequence of the frr portion was determined by a common procedure. In all the frrs thus obtained, the gene mutation Val 117 Asp of frr returned to wild type valine. Several kinds of them showed mutation at amino acid sites other than the 117-position. The mutations showed no influence on the function of frr. The mutations are shown in Table 6.

Table 6 Genetic mutations reverting the temperature sensitivity of RRF^{\dagger}

		1									
Phenotype Number Nucleotide in po	Number Nucleotid	Nucleotid		~	sition			Amino a	Amino acid in position	n	Notes
jo	jo										
isolates 350 457	350 4	4	457		458	511	513	117	153	171	
wt NA T G	T	T G	ß	1	A	A	Ţ	Val	Asp	Ile	{222}
	A G				Ą	Ą	<u>[</u>	Asp	Asp	Ile	{2785}
					¥	Ą	⊣	Val	Asp	Ile	1
3 T T				7	4	<u>L</u>	⊢	Val	Tyr	\mathbf{Phe}	ı
1 T T				7	√	⊱	Ą	Val	Tyr	Leu	1
3 T G				•	Ą	⊢	Ą	Val	Asp	Len	,
1 T G				•	¥	Ą	Ą	Val	Asp	Ile	Ile(171)silent
4 T G	4 T G	T G	G		ပ	T	Т	Val	Ala	Phe	

[†]Amino acids are represented by their 3-letter codes. Abbreviations: NA=not applicable; wt=wild-type; ts=temperature senitive; tr=temperature resistant

3. Presumption of function mechanism of RRF

From the sketch by ribbon of RRF shown in Fig. 2, the space packing model shown in Fig. 3 and so forth, it revealed that the RRF has a shape and size similar to transfer RNA (Selmer, M., Al-Karadaghi, s., Hirokawa, G., Kaji, A. & Liljas, A., Science 286, 2349-2352 (1999)). Therefore, the possibility is suggested that the RRF expresses protein translation termination complex releasing activity by showing a behavior similar to that of transfer RNA. Specifically, a model as shown in Fig. 5 is suggested on the function mechanism of the RRF.

First, an RRF 4 binds to the aminoacyl site (A site) of a termination complex 6 (a) composed of transfer RNAs 2a, 2b, a messenger RNA 3 and a ribosome 1. To the RRF 4, an EFG 5 with GTP binds. Also, to the peptidyl site (P site) and exit site (E site) of the ribosome 1, the transfer RNAs 2a, 2b bind, respectively (b). Then, ribosome-dependent hydrolysis of GTP and translocation of RRF4 bound to the A site to the P site are caused by the EFG 5. At the same time, release of the transfer RNA 2b bound to the E site and release of the transfer RNA 2a bound to the P site via the movement to the E site take place and finally two molecules of transfer RNA are released (c). Finally, subsequent to the release of the RRF 4 and of the EFG 5 from the ribosome 1, the ribosome 1 is released from the messenger RNA 3 to complete the dissociation of the termination complex 6 (d).

To verify the hypothesis on the basis of this model, the following experiments were performed.

Example 4. Inhibition of the RRF activity by aminoglycosides

Aminoglycosides such as streptomycin, paromomycin, and gentamycin are known to inhibit themselves from binding to the A site of the transfer RNA by binding to the A site of ribosome (Moazed, D. & Noller, H. F., Nature 327, 389-394 (1987); Fourmy, D., Yosizawa, S. & Publisi, J. D., J. Mol. Biol., 277, 333-345 (1988)); Yoshizawa, S., Fourmy, D. & Publisi, J. D., EMBO J., 17, 6437-6448 (1988)). Therefore, according to the model in Fig. 5, the above-mentioned aminoglycosides should inhibit the binding of RRF to the A site and if such a binding is inhibited, the dissociation process of termination complex due to the RRF should also be inhibited. Accordingly, whether the dissociation process of termination complex is inhibited or not in the presence of the above-mentioned aminoglycosides was examined by use of the amount of transfer RNA released from the ribosome and the amount of ribosome released from the messenger RNA as indices.

The release of deacylating transfer RNA from ribosome was examined by the following method.

Polysome (Hirashima, A. & Kaji, A., J. Mol. Biol., 65, 43-58 (1972)) obtained from <u>E. coli</u> Q13 strain treated with tetracycline (0.6 to 1.8 A_{260} unit) was incubated in 550 μ l of buffer R (10 mM Tris-Cl, pH 7.4, 8.2 mM magnesium sulfate, 80 mM ammonium chloride,

and 0.14 mM ditiothritol (DTT)) in the presence of 275 µM of puromycin, 0.2 nmole of RRF, 0.2 nmole of EFG (Kaziro, Y., Inoue-Yokosawa, N. & Kawakita, M., E. coli J. Biochem. 72, 853-863 (1972)) and 0.37 mM of GTP at 30°C for 15 minutes. Then, as the aminoglycosides, streptomycin, paromomycin or gentamycin was added in an amount of 200 μM , 100 μM or 100 μM , respectively. Then, by centrifugation at 330 G for 40 minutes by use of Microcon 100 (produced by Millipore, trade name), the released transfer RNA was separated from the termination complex. Then, to the above-mentioned Microcon 100, 550 μl of buffer J (10 mM Tris-Cl, pH 7.6, 10 mM magnesium sulfate, 50 mM ammonium chloride, and 0.5 mM DTT) was poured and the mixture was centrifuged to wash the filter once. The combination of the washing solution and filtrate was centrifuged at 14,000 G for 15 minutes twice by use of Microcon 30 (produced by Millipore, trade name) to concentrate it to 14 µl. Then, the concentrated transfer RNA was aminoacylated with 0.15 µCi of 14C-amino acid mixture (produced by Amersham, 52 mCi per 1 mg of carbon atom) dissolved in 30 µl of a buffer solution (50 mM Tris-Cl, pH 7.8, 10 mM magnesium acetate, 6 mM β -mercaptoethanol, 3 mM ATP, 5 mM phosphoenolpyruvic acid, 138 μg of pyruvate kinase, 33.3 μg of aminoacyl transfer RNA synthetase (Monmose, K. & Kaji, A., Arch. Biochem. Biophys., 111, 245-252 (1965)). The thus obtained radioactivity that is insoluble in cold trichloroacetic acid (4°C) corresponds to 14C-aminoacyl transfer RNA and the amount thereof was calculated on the basis of the

radioactivity of a known amount of transfer RNA labeled by the same method. The aminoglycosides used are produced by Sigma Co. Also, the termination complex was obtained from natural polysome of E. coli treated with puromycin (Hirashima, A. & Kaji, A., J. Biol. Chem., 248, 7580-7587 (1973)). It has been known that each ribosome in the isolated polysome in the stage of after completion of translocation and generally bear two molecules of transfer RNA (Remme, J., Margus, T., Villems, R. & Nierhaus, K. H. Eur. J. Biochem. 183, 281-284 (1989)); Stark, H. et al., Cell 88, 19-28 (1977)).

The results are shown in Fig. 6. In Fig. 6, positive control is a value obtained when RRF, EFG and GTP were added without adding aminoglycosides while negative control is a value obtained when none of aminoglycosides, RRF, EFG and GTP was added.

The release of ribosome from messenger RNA was examined by the following method.

The above-mentioned polysome (0.5 to 0.8 A_{260} unit) was incubated in 270 μ l of buffer R in the presence of 275 μ M of puromycin, 1 nmole of purified RRF (Hirashima, A. & Kaji, A., Biolchemistry, 11, 4037-4044 (1972)), 1 nmole of EFG³², 0.37 mM of GTP and aminoglycosides at 30°C for 15 minutes. As the aminoglycosides, streptomycin, paromomycin or gentamycin was added in an amount of 100 μ M, 5 μ M or 5 μ M, respectively. Then on 5 ml of sucrose with a density gradient of 15 to 30% in the buffer J, the above-mentioned incubated buffer solution was stacked and centrifuged under the

conditions of 40,000 rpm for 75 minutes at 4°C by use of Beckman SW50.1. The absorbance at 254 nm was monitored by an ISCO UA-6 detector and the concentration of free 70S ribosome was measured. The results are shown in Table 7. The values in Table 7 were expressed in percentage of the concentration of free 70S ribosome in the presence of aminoglycosides to the concentration of free 70s ribosome in the case where no glycoside was added (control). In control, about 42% of total ribosome (occupying approximately 90% of polysome) was converted into monosome by the RRF.

Table 7 Release of ribosome from mRNA by RRF and EF-G in the presence of various inhibitors

Inhibitor	Concentration	Release of ribosome
		from mRNA by RRF
		(percentage to control)
Control	-	100*
Paromomycin	5 μ m	16.5
Gentamycin	5 μ m	0
Streptomycin	100 μ m	9.9
Thiostreptone	20 <i>µ</i> m	0
Viomycin	50 µm	0
Fusiginic acid	200µm	0
GMPPCP	370μm****	0

From Fig. 6, it can be seen that in the presence of the aminoglycosides, the release of transfer RNA was inhibited to a value identical to or less than that of the negative control. Also, from Table 7, it can be seen that in the presence of the aminoglycosides, the release of ribosome was also inhibited. These results strongly suggest that coupling of the RRF to the A site of ribosome is necessary for the expression of the activity of RRF. Therefore, it can be considered that the substance that inhibits binding of the A site of the RRF can be a potent candidate of an RRF inhibitor.

Example 5. Inhibition of RRF activity by thiostreptone and viomycin

Thiostreptone and viomycin are both EFG inhibitors and are known to inhibit the translocation of transfer RNA (Pestka, S., Biochem. Biophys. Res. Commun. 40, 667-674 (1970); Rondnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Nature 385, 37-41 (1997); Rodnina, M. V., et al., Proc. Natl. Acad. Sci. USA 96, 9586-9590 (1999)). Therefore, according to the model in Fig. 5, thiostreptone and viomycin must inhibit the translocation of the RRF bound to the A site to the P site. If so, the release of transfer RNA from the P site and E site that must have occurred along with the translocation and further the process of release of the termination complex by the RRF must be inhibited. Accordingly, whether or not the dissociation process of termination complex is inhibited or not in the presence of thiostreptone or viomycin was examined by use of the amount of transfer RNA released from ribosome and the amount of ribosome released from messenger RNA as indices.

The release of transfer RNA from ribosome was examined in the same manner as in Example 4 except that thiostreptone (produced by Sigma Co.) or viomycin (produced by ICN Co.) was added in place of the amidoglycosides. Thiostreptomycin or viomycin was added in an amount of 100 μ M or 200 μ M, respectively. The results are shown in Fig. 6.

Also, the release of ribosome from messenger RNA was examined in the same manner as in Example 4 except that thiostreptone or

viomycin was added in place of the amidoglycosides and that in the casewhere thiostreptone was added, DMSO was added to 0.06% in reaction compounds. Thiostreptomycin or viomycin was added in an amount of 20 μ M or 50 μ M, respectively. The results are shown in Table 7.

From Fig. 6, it can be seen that in the presence of thiostreptone or viomycin, the release of transfer RNA was inhibited to a value identical to that of the negative control. Also, from Table 7, it can be seen that in the presence of thiostreptone or viomycin, the release of ribosome was completely inhibited. These results strongly suggest that the translocation of the RRF bound to the A site to the P site is necessary for the expression of the activity of RRF. Therefore, it can be considered that the substance that inhibits the translocation of the RRF can be a potent candidate of an RRF inhibitor.

Example 6. Inhibition of termination complex release by GMPPCP and fusidic acid

It has been known that GMPPCP and fusidic acid are both EFG inhibitors and inhibits the release of termination complex by fixing EFG to ribosome after the translocation of transfer RNA while allow the occurrence of translocation of transfer RNA only once (Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, Y., J. Biol. Chem. 249, 4321-4323 (1974); Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W., Nature, 385, 37-41 (1997); Bodley, J. W., Zieve,

F. J., Lin, L., & Zieve, S. T., J. Biol. Chem., 245, 5656-5661 (1970); Kuriki, Y., Inoue, N. & Karizo, Y., Biochim. Biophys. Acta, 224, 487-497 (1970)). Therefore, according to the model in Fig. 5, GMPPCP and fusidic acid allow the translocation of the RRF bound to the A site to the P site, so that they must not inhibit the releasse of transfer RNA from the P site and E site that takes place along with the translocation. On the other hand, since GMPPCP and fusidic acid inhibit the release of termination complex, they must inhibit the release of ribosome from messenger RNA. Accordingly, whether or not the release of transfer RNA from ribosome and release of ribosome from messenger RNA are inhibited or not in the presence of GMPPCP or fusidic acid was examined.

The release of transfer RNA from ribosome was examined in the same manner as in Example 4 except that GMPPCP or fusidic acid was added in place of the amidoglycosides and that in the case where GMPPCP was added, the experiment was performed in the absence of GTP. GMPPCP or fusidic acid was added in an amount of 370 μ M or 200 μ M, respectively. The results are shown in Fig. 6.

Also, the release of ribosome from messenger RNA was examined in the same manner as in Example 4 except that GMPPCP (produced by Sigma Co.) or fusidic acid (produced by ICN Co.) was added in place of the amidoglycosides and that in the case where GMPPCP was added, the experiment was performed in the absence of GTP. GMPPCP or fusidic acid was added in an amount of 370 μ Mor 200 μ M, respectively.

The results are shown in Table 7.

From Fig. 6, it can be seen that even when GMPPCP or fusidic acid was added, the release of transfer RNA was at a value identical to that of the positive control, so that the release of transfer RNA is not inhibited. On the other hand, from Table 7, it can be seen that GMPPCP or fusidic acid completely inhibits the release of ribosome (Igarashi, K., Ishitsuka, H. & Kaji, A., Biochim. Biophys. Res. Commun., 37, 499-504 (1969); Hirashima, A. & Kaji, A., J. Mol. Biol., 65, 43-58 (1972); Ogawa, K. & Kaji, A., Eur. J. Biochem., 58, 411-419 (1975); Karimi, R., Pavlov, M. Y., Buckingham, R. H. & Ehrenberg, M., Molecular cell, 3, 601-609 (1999)).

These results more strongly suggest the possibility that the RRF expresses termination complex release activity by showing a similar behavior to that of transfer RNA and furthermore, the fact that the release of transfer RNA and the release of ribosome can be separately inhibited supports the model shown in Fig. 5 in which the release of termination complex proceeds stepwise by the EFG and RRF.

Example 7. Inhibition of RRF activity by the presence of excessive deacylating transfer RNA

It was strongly suggested by example 4 that it is necessary that the RRF binds to the A site of ribosome for the expression of the activity of the RRF. Accordingly, if excess of transfer RNA exists, RRF and transfer RNA competitively bind to the A site of ribosome and as a result the dissociation of termination complex will must be inhibited. To confirm this point, inhibition of dissociation of termination complex in the presence of varied concentration of transfer RNA was examined.

Polysome (0.5 to 1 A₂₆₀ unit) was incubated in the presence of varied amounts between 0 and 1,000 pmole of RRF, EFG, and GTP, and a varied amount between 0 and 10 nmole of transfer RNA. Then, after performing sucrose density gradient centrifugation (density gradient: 15 to 30%), absorbance at 254 nm was measured to thereby measure the amount of free ribosome. The graph by Lineweavwe-Burk plot prepared on the basis of the measurement results is shown in Fig. 7. The vertical axis represents a reciprocal of the percentage of the amount of free ribosome in the presence of a varied amount of transfer RNA to the amount of free ribosome in the absence of transfer RNA.

In the graph in Fig. 7, the vertical intercept is constant regardless of the amount of transfer RNA and K_m increases as the amount of transfer RNA increases, so that it can be seen that transfer RNA competitively inhibits the activity of RRF.

Example 8. Inhibition by paromomycin of binding of RRF to ribosome

On the basis of the results in Example 4 and Example 7, the following experiments were performed in order to directly confirm

that paromomycin used in Example 4 inhibits binding of RRF to ribosome.

First, less than 1 pmole of ³⁵S labeled histidine tagged RRF (³⁵S-His-RRF) was incubated in a buffer solution (50 mM Tris-Cl, pH 7.6, 10 mM magnesium acetate, 30 mM potassium chloride, and 1 mM DTT) in the presence of 10 pmole of washed ribosome and a varied concentration of paromomycin at 30 °C for 10 minutes. After removing free ³⁵S-His-RRF by microconcentration, the amount of ribosome-bound ³⁵S-His-RRF was measured by radioactivity. The ³⁵S-His-RRF was prepared by purifying in vitro His-RRF expressed by in the presence of ³⁵S-labeled methionine by use of Ni²⁺ beads. The results are shown in Fig. 8. The binding ratio of RRF is a value calculated by taking the amount of RRF bound to ribosome in the absence of paromomycin as 100%.

From Fig. 8, it can be seen that the binding ratio of RRF decreases depending on the concentration of paromomycin. Therefore, paromomycin is considered to inhibit the activity of RRF by inhibiting the binding of the RRF to ribosome.

Table 8
Structure cooedinates of RRF

	ATOM T	уре	<u>Resid</u>	<u>ue #</u>	<u>x</u>	<u>Y</u>	<u>z</u>	<u>occ</u>	<u>B</u>
MOTA	1	СВ	VAL	2	10.355	24.444	73.500	1.00	50.36
ATOM	2	CG1	VAL	2	11.185	25.300	72.669	1.00	50.36
ATOM	3	CG2	VAL	2	9.102	25.267	74.125	1.00	50.36
ATOM	4	С	VAL	2	8.502	23.777	72.304	1.00	83.11
ATOM	5	О	VAL	2	8.267	24.906	71.890	1.00	83.11
MOTA	6	N	VAL	2	10.415	23.206	71.242	1.00	83.11
MOTA	7	CA	VAL	2	9.881	23.282	72.625	1.00	83.11
MOTA	8	N	ASN	3	7.567	22.901	72.348	1.00	72.42
ATOM	9	CA	ASN	3	6.364	23.543	72.193	1.00	72.42
ATOM	10	СВ	ASN	3	5.458	22.851	71.191	1.00	77.31
ATOM	11	CG	ASN	3	4.541	23.842	70.630	1.00	77.31
ATOM	12	OD1	ASN	3	3.368	23.859	70.934	1.00	77.31
ATOM	13	ND2	ASN	3	5.109	24.802	69.910	1.00	77.31
ATOM	14	С	ASN	3	6.085	23.280	73.622	1.00	72.42
ATOM	15	О	ASN	3	6.652	22.357	74.186	1.00	72.42
MOTA	16	N	PRO	4	5.407	24.244	74.267	1.00	41.97
MOTA	17	CD	PRO	4	4.846	25.501	73.729	1.00	61.56
MOTA	18	CA	PRO	4	5.121	24.010	75.681	1.00	41.97
ATOM	19	СВ	PRO	4	3.981	24.999	75.973	1.00	61.56
ATOM	20	CG	PRO	4	3.931	25.973	74.808	1.00	61.56
ATOM	21	С	PRO	4	4.632	22.521	75.634	1.00	41.97

MOTA	22	0	PRO	4	4.781	21.774	76.617	1.00 41.97
MOTA	23	N	PHE	5	4.080	22.114	74.491	1.00 37.43
ATOM	24	CA	PHE	5	3.593	20.751	74.270	1.00 37.43
MOTA	25	СВ	PHE	5	2.898	20.648	72.912	1.00 36.55
ATOM	26	CG	PHE	5	1.608	21.414	72.832	1.00 36.55
MOTA	27	CD1	PHE	5	1.285	22.160	71.693	1.00 36.55
MOTA	28	CD2	PHE	5	0.697	21.370	73.868	1.00 36.55
ATOM	29	CE1	PHE	5	0.081	22.866	71.612	1.00 36.55
ATOM	30	CE2	PHE	5	-0.505	22.072	73.792	1.00 36.55
ATOM	31	CZ	PHE	5	-0.815	22.815	72.652	1.00 36.55
ATOM	32	С	PHE	5	4.720	19.724	74.322	1.00 37.43
ATOM	33	0	PHE	5	4.603	18.687	74.974	1.00 37.43
ATOM	34	N	ILE	6	5.812	19.998	73.620	1.00 41.88
АТОМ	35	CA	ILE	6	6.946	19.073	73.616	1.00 41.88
ATOM	36	СВ	ILE	6	7.997	19.477	72.561	1.00 41.38
ATOM	37	CG2	ILE	6	9.276	18.658	72.740	1.00 41.38
ATOM	38	CG1	ILE	6	7.410	19.266	71.162	1.00 41.38
MOTA	39	CD1	ILE	6	8.209	19.943	70.059	1.00 41.38
MOTA	40	С	ILE	6	7.585	19.045	74.997	1.00 41.88
MOTA	41	0	ILE	6	7.926	17.982	75.516	1.00 41.88
ATOM	42	N	LYS	7	7.738	20.222	75.592	1.00 47.17
MOTA	43	CA	LYS	7	8.309	20.333	76.923	1.00 47.17
ATOM	44	СВ	LYS	7	8.293	21.792	77.371	1.00 68.01
ATOM	45	CG	LYS	7	8.925	22.024	78.727	1.00 68.01

ATOM	46	CD	LYS	7	8.706	23.444	79.215	1.00 68.01
ATOM	47	CE	LYS	7	9.525	23.709	80.466	1.00 68.01
ATOM	48	NZ	LYS	7	8.752	24.480	81.480	1.00 68.01
ATOM	49	С	LYS	7	7.451	19.496	77.872	1.00 47.17
ATOM	50	o	LYS	7	7.963	18.740	78.701	1.00 47.17
ATOM	51	N	GLU	8	6.137	19.639	77.732	1.00 39.77
ATOM	52	CA	GLU	8	5.175	18.920	78.555	1.00 39.77
ATOM	53	СВ	GLU	8	3.758	19.392	78.230	1.00 50.17
ATOM	54	CG	GLU	8	2.678	18.705	79.047	1.00 50.17
ATOM	55	CD	GLU	8	1.291	18.857	78.443	1.00 50.17
ATOM	56	OE1	GLU	8	0.319	18.370	79.058	1.00 50.17
ATOM	57	OE2	GLU	8	1.170	19.456	77.351	1.00 50.17
ATOM	58	С	GLU	8	5.269	17.406	78.349	1.00 39.77
ATOM	59	0	GLU	8	5.227	16.637	79.311	1.00 39.77
ATOM	60	N	ALA	9	5.385	16.979	77.095	1.00 39.35
ATOM	61	CA	ALA	9	5.487	15.558	76.790	1.00 39.35
ATOM	62	СВ	ALA	9	5.452	15.336	75.294	1.00 32.04
ATOM	63	С	ALA	9	6.764	14.965	77.375	1.00 39.35
MOTA	64	0	ALA	9	6.751	13.859	77.905	1.00 39.35
MOTA	65	N	LYS	10	7.872	15.690	77.285	1.00 37.72
MOTA	66	CA	LYS	10	9.120	15.182	77.840	1.00 37.72
MOTA	67	СВ	LYS	10	10.277	16.113	77.514	1.00 61.11
MOTA	68	CG	LYS	10	10.990	15.829	76.231	1.00 61.11
АТОМ	69	CD	LYS	10	12.171	16.770	76.124	1.00 61.11

	ATOM	70	CE	LYS	10	12.574	17.020	74.678	1.00 61.11
	ATOM	71	NZ	LYS	10	13.323	18.307	74.569	1.00 61.11
	ATOM	72	С	LYS	10	9.037	15.051	79.358	1.00 37.72
	ATOM	73	0	LYS	10	9.508	14.073	79.939	1.00 37.72
	MOTA	74	N	GLU	11	8.462	16.064	79.996	1.00 33.88
	ATOM	75	CA	GLU	11	8.310	16.076	81.445	1.00 33.88
	ATOM	76	СВ	GLU	11	7.601	17.353	81.879	1.00 67.13
	ATOM	77	CG	GLU	11	8.505	18.337	82.587	1.00 67.13
	ATOM	78	CD	GLU	11	8.166	19.783	82.266	1.00 67.13
	ATOM	79	OE1	GLU	11	6.969	20.147	82.296	1.00 67.13
	ATOM	80	OE2	GLU	11	9.107	20.558	81.989	1.00 67.13
	MOTA	81	С	GLU	11	7.529	14.860	81.929	1.00 33.88
	ATOM	82	0	GLU	11	7.989	14.119	82.792	1.00 33.88
	ATOM	83	N	LYS	12	6.349	14.648	81.365	1.00 39.27
	MOTA	84	CA	LYS	12	5.528	13.518	81.766	1.00 39.27
	ATOM	85	СВ	LYS	12	4.137	13.637	81.143	1.00 39.81
	MOTA	86	CG	LYS	12	3.424	14.898	81.559	1.00 39.81
	MOTA	87	CD	LYS	12	2.028	14.985	80.996	1.00 39.81
	MOTA	88	CE	LYS	12	1.299	16.195	81.576	1.00 39.81
	MOTA	89	NZ	LYS	12	-0.138	16.215	81.177	1.00 39.81
	MOTA	90	С	LYS	12	6.140	12.168	81.415	1.00 39.27
	MOTA	91	0	LYS	12	6.132	11.245	82.230	1.00 39.27
•	ATOM	92	N	MET	13	6.680	12.054	80.206	1.00 33.90
	ATOM	93	CA	MET	13	7.278	10.794	79.780	1.00 33.90

ATOM	94	СВ	MET	13	7.651	10.852	78.307	1.00 28.84
ATOM	95	CG	MET	13	6.478	10.988	77.344	1.00 28.84
ATOM	96	SD	MET	13	6.965	10.623	75.666	1.00 28.84
ATOM	97	CE	MET	13	5.331	10.780	74.827	1.00 28.84
ATOM	98	С	MET	13	8.508	10.455	80.620	1.00 33.90
ATOM	99	o	MET	13	8.751	9.289	80.918	1.00 33.90
ATOM	100	N	LYS	14	9.266	11.468	81.007	1.00 36.32
ATOM	101	CA	LYS	14	10.454	11.270	81.829	1.00 36.32
ATOM	102	СВ	LYS	14	11.207	12.592	81.957	1.00 65.45
ATOM	103	CG	LYS	14	12.582	12.500	82.550	1.00 65.45
ATOM	104	CD	LYS	14	12.746	13.568	83.609	1.00 65.45
ATOM	105	CE	LYS	14	14.212	13.894	83.838	1.00 65.45
ATOM	106	NZ	LYS	14	14.426	14.645	85.109	1.00 65.45
ATOM	107	С	LYS	14	10.008	10.798	83.206	1.00 36.32
ATOM	108	0	LYS	14	10.636	9.943	83.824	1.00 36.32
ATOM	109	N	ARG	15	8.911	11.358	83.681	1.00 38.00
ATOM	110	CA	ARG	15	8.416	10.992	84.979	1.00 38.00
MOTA	111	СВ	ARG	15	7.311	11.927	85.390	1.00 88.37
ATOM	112	CG	ARG	15	7.456	12.225	86.815	1.00 88.37
ATOM	113	CD	ARG	15	6.197	11.885	87.496	1.00 88.37
ATOM	114	NE	ARG	15	5.468	13.131	87.703	1.00 88.37
MOTA	115	CZ	ARG	15	4.230	13.240	88.152	1.00 88.37
MOTA	116	NH 1	ARG	15	3.586	12.163	88.540	1.00 88.37
ATOM	117	NH2	ARG	15	3.650	14.435	88.213	1.00 88.37

ATOM	118	С	ARG	15	7.932	9.557	85.018	1.00 38.00
ATOM	119	0	ARG	15	8.193	8.825	85.982	1.00 38.00
ATOM	120	N	THR	16	7.236	9.156	83.963	1.00 33.54
ATOM	121	CA	THR	16	6.738	7.794	83.844	1.00 33.54
ATOM	122	СВ	THR	16	6.013	7.603	82.499	1.00 26.11
ATOM	123	OG1	THR	16	4.716	8.216	82.562	1.00 26.11
ATOM	124	CG2	THR	16	5.899	6.117	82.148	1.00 26.11
ATOM	125	С	THR	16	7.931	6.841	83.902	1.00 33.54
ATOM	126	0	THR	16	7.956	5.911	84.704	1.00 33.54
MOTA	127	N	LEU	17	8.932	7.102	83.067	1.00 33.14
ATOM	128	CA	LEU	17	10.119	6.269	83.019	1.00 33.14
ATOM	129	СВ	LEU	17	11.101	6.824	81.990	1.00 34.14
MOTA	130	CG	LEU	17	12.339	5.962	81.742	1.00 34.14
MOTA	131	CD1	LEU	17	11.951	4.644	81.086	1.00 34.14
MOTA	132	CD2	LEU	17	13.301	6.728	80.857	1.00 34.14
MOTA	133	С	LEU	17	10.783	6.171	84.390	1.00 33.14
ATOM	134	0	LEU	17	11.261	5.107	84.779	1.00 33.14
ATOM	135	N	GLU	18	10.802	7.268	85.135	1.00 32.45
ATOM	136	CA	GLU	18	11.419	7.237	86.454	1.00 32.45
ATOM	137	СВ	GLU	18	11.607	8.661	86.990	1.00 59.96
ATOM	138	CG	GLU	18	12.984	9.224	86.630	1.00 59.96
ATOM	139	CD	GLU	18	13.076	10.747	86.698	1.00 59.96
ATOM	140	OE1	GLU	18	12.049	11.401	86.979	1.00 59.96
ATOM	141	OE2	GLU	18	14.185	11.287	86.460	1.00 59.96

ATOM	142	С	GLU	18	10.617	6.370	87.427	1.00 32.45
MOTA	143	О	GLU	18	11.190	5.687	88.282	1.00 32.45
MOTA	144	N	LYS	19	9.295	6.370	87.279	1.00 28.05
MOTA	145	CA	LYS	19	8.453	5.563	88.149	1.00 28.05
MOTA	146	СВ	LYS	19	6.976	5.900	87.953	1.00 77.52
MOTA	147	CG	LYS	19	6.557	7.201	88.607	1.00 77.52
MOTA	148	CD	LYS	19	5.099	7.151	89.044	1.00 77.52
MOTA	149	CE	LYS	19	4.700	8.412	89.804	1.00 77.52
ATOM	150	NZ	LYS	19	3.354	8.277	90.440	1.00 77.52
ATOM	151	С	LYS	19	8.673	4.085	87.883	1.00 28.05
ATOM	152	0	LYS	19	8.729	3.275	88.813	1.00 28.05
ATOM	153	N	ILE	20	8.797	3.732	86.608	1.00 37.89
ATOM	154	CA	ILE	20	9.015	2.343	86.236	1.00 37.89
MOTA	155	СВ	ILE	20	9.029	2.170	84.707	1.00 33.33
ATOM	156	CG2	ILE	20	9.407	0.744	84.348	1.00 33.33
MOTA	157	CG1	ILE	20	7.665	2.572	84.131	1.00 33.33
MOTA	158	CD1	ILE	20	6.488	1.863	84.752	1.00 33.33
MOTA	159	С	ILE	20	10.339	1.851	86.799	1.00 37.89
MOTA	160	0	ILE	20	10.406	0.793	87.421	1.00 37.89
ATOM	161	N	GLU	21	11.392	2.628	86.583	1.00 35.03
ATOM	162	CA	GLU	21	12.708	2.250	87.075	1.00 35.03
ATOM	163	СВ	GLU	21	13.729	3.337	86.732	1.00 30.62
ATOM	164	CG	GLU	21	13.803	3.617	85.237	1.00 30.62
ATOM	165	CD	GLU	21	14.648	4.828	84.908	1.00 30.62

ATOM	166	OE 1	l GLU	21	14.706	5.755	85.736	1 00	30 62
,	100	011	CEO	21	14.700	3.733	03.730	1.00	30.02
ATOM	167	OE2	2 GLU	21	15.239	4.866	83.815	1.00	30.62
ATOM	168	С	GLU	21	12.628	2.055	88.578	1.00	35.03
MOTA	169	0	GLU	21	13.327	1.228	89.154	1.00	35.03
ATOM	170	N	ASP	22	11.746	2.821	89.206	1.00	38.35
ATOM	171	CA	ASP	22	11.560	2.756	90.643	1.00	38.35
ATOM	172	СВ	ASP	22	10.706	3.946	91.088	1.00	38.81
ATOM	173	CG	ASP	22	10.825	4.230	92.567	1.00	38.81
ATOM	174	OD1	ASP	22	11.961	4.281	93.066	1.00	38.81
MOTA	175	OD2	ASP	22	9.784	4.416	93.230	1.00	38.81
MOTA	176	С	ASP	22	10.888	1.427	90.999	1.00	38.35
MOTA	177	О	ASP	22	11.355	0.698	91.875	1.00	38.35
MOTA	178	N	GLU	23	9.804	1.104	90.302	1.00	29.14
MOTA	179	CA	GLU	23	9.094	-0.142	90.546	1.00	29.14
MOTA	180	СВ	GLU	23	7.875	-0.235	89.633	1.00	47.44
MOTA	181	CG	GLU	23	6.846	0.839	89.933	1.00	47.44
ATOM	182	CD	GLU	23	5.624	0.775	89.039	1.00	47.44
ATOM	183	OE1	GLU	23	4.619	1.425	89.368	1.00	47.44
ATOM	184	OE2	GLU	23	5.654	0.085	88.005	1.00	47.44
ATOM	185	С	GLU	23	10.008	-1.349	90.338	1.00	29.14
ATOM	186	О	GLU	23	10.007	-2.283	91.142	1.00	29.14
MOTA	187	N	LEU	24	10.796	-1.327	89.266	1.00	38.04
ATOM	188	CA	LEU	24	11.716	-2.423	88.981	1.00	38.04
ATOM	189	СВ	LEU	24	12.360	-2.229	87.614	1.00	26.06

ATOM	190	CG	LEU	24	11.366	-2.262	86.456	1.00 26.06
MOTA	191	CD1	LEU	24	12.097	-1.999	85.165	1.00 26.06
ATOM	192	CD2	LEU	24	10.657	-3.604	86.415	1.00 26.06
ATOM	193	С	LEU	24	12.805	-2.520	90.039	1.00 38.04
MOTA	194	0	LEU	24	13.360	-3.586	90.288	1.00 38.04
ATOM	195	N	ARG	25	13.097	-1.393	90.666	1.00 38.24
ATOM	196	CA	ARG	25	14.117	-1.324	91.690	1.00 38.24
ATOM	197	СВ	ARG	25	14.552	0.128	91.846	1.00 32.35
ATOM	198	CG	ARG	25	15.401	0.400	93.059	1.00 32.35
ATOM	199	CD	ARG	25	15.612	1.890	93.266	1.00 32.35
ATOM	200	NE	ARG	25	15.485	2.205	94.680	1.00 32.35
MOTA	201	CZ	ARG	25	14.386	2.692	95.246	1.00 32.35
MOTA	202	NH1	ARG	25	13.310	2.945	94.516	1.00 32.35
ATOM	203	NH2	ARG	25	14.352	2.872	96.557	1.00 32.35
ATOM	204	С	ARG	25	13.648	-1.884	93.036	1.00 38.24
ATOM	205	О	ARG	25	14.452	-2.427	93.795	1.00 38.24
ATOM	206	N	LYS	26	12.352	-1.762	93.323	1.00 37.23
ATOM	207	CA	LYS	26	11.792	-2.239	94.590	1.00 37.23
ATOM	208	СВ	LYS	26	10.685	-1.287	95.047	1.00 39.64
ATOM	209	CG	LYS	26	11.150	0.165	95.116	1.00 39.64
ATOM	210	CD	LYS	26	10.163	1.079	95.826	1.00 39.64
ATOM	211	CE	LYS	26	8.877	1.234	95.054	1.00 39.64
ATOM	212	NZ	LYS	26	8.005	2.257	95.699	1.00 39.64
ATOM	213	С	LYS	26	11.258	-3.672	94.522	1.00 37.23

ATOM	214	O	LYS	26	10.856	-4.257	95.529	1.00 37.23
ATOM	215	N	MET	27	11.270	-4.218	93.318	1.00 33.15
ATOM	216	CA	MET	27	10.814	-5.566	93.008	1.00 33.15
ATOM	217	СВ	MET	27	11.078	-5.799	91.535	1.00 37.03
ATOM	218	CG	MET	27	9.999	-6.456	90.761	1.00 37.03
ATOM	219	SD	MET	27	10.710	-6.822	89.162	1.00 37.03
ATOM	220	CE	MET	27	10.529	-8.604	89.133	1.00 37.03
ATOM	221	С	MET	27	11.586	-6.625	93.797	1.00 33.15
ATOM	222	0	MET	27	12.817	-6.535	93.910	1.00 33.15
ATOM	223	N	ARG	28	10.891	-7.632	94.332	1.00 34.95
ATOM	224	CA	ARG	28	11.600	-8.700	95.047	1.00 34.95
ATOM	225	СВ	ARG	28	10.653	-9.617	95.831	1.00 37.05
ATOM	226	CG	ARG	28	11.379	-10.784	96.563	1.00 37.05
ATOM	227	CD	ARG	28	11.935	-11.825	95.587	1.00 37.05
ATOM	228	NE	ARG	28	12.853	-12.803	96.172	1.00 37.05
MOTA	229	CZ	ARG	28	12.485	-13.830	96.935	1.00 37.05
MOTA	230	NH1	ARG	28	11.205	-14.023	97.227	1.00 37.05
ATOM	231	NH2	ARG	28	13.397	-14.685	97.381	1.00 37.05
MOTA	232	C	ARG	28	12.284	-9.524	93.976	1.00 34.95
MOTA	233	0	ARG	28	11.663	-9.932	92.999	1.00 34.95
MOTA	234	N	THR	29	13.560	-9.792	94.176	1.00 38.90
ATOM	235	CA	THR	29	14.324	-10.557	93.211	1.00 38.90
ATOM	236	СВ	THR	29	15.137	-9.563	92.332	1.00 35.61
MOTA	237	OG1	THR	29	14.492	-9.442	91.059	1.00 35.61

	ATOM	238	CG	2 THR	29	16.569	-9.97	92.161	1.00 35.61
	ATOM	239	С	THR	29	15.184	-11.578	93.952	1.00 38.90
	ATOM	240	0	THR	29	15.051	-11.739	95.164	1.00 38.90
	ATOM	241	N	GLY	30	16.041	-12.288	93.233	1.00 39.05
	ATOM	242	CA	GLY	30	16.877	-13.287	93.870	1.00 39.05
	ATOM	243	C	GLY	30	17.824	-12.818	94.961	1.00 39.05
	MOTA	244	0	GLY	30	18.097	-13.571	95.894	1.00 39.05
	MOTA	245	N	LYS	31	18.327	-11.591	94.864	1.00 44.38
	ATOM	246	CA	LYS	31	19.276	-11.095	95.859	1.00 44.38
	ATOM	247	СВ	LYS	31	20.463	-10.413	95.166	1.00 96.17
	ATOM	248	CG	LYS	31	20.425	-8.883	95.169	1.00 96.17
	ATOM	249	CD	LYS	31	19.350	-8.309	94.249	1.00 96.17
	MOTA	250	CE	LYS	31	19.212	-6.796	94.447	1.00 96.17
	ATOM	251	NZ	LYS	31	20.346	-6.211	95.237	1.00 96.17
	MOTA	252	С	LYS	31	18.665 -	-10.138	96.876	1.00 44.38
	MOTA	253	0	LYS	31	17.769	-9.360	96.553	1.00 44.38
	ATOM	254	N	PRO	32	19.162 -	-10.176	98.121	1.00 38.22
	MOTA	255	CD	PRO	32	20.333 -	-10.942	98.583	1.00 38.30
	ATOM	256	CA	PRO	32	18.663	-9.308	99.190	1.00 38.22
	ATOM	257	СВ	PRO	32	19.512	-9.720	100.391	1.00 38.30
	MOTA	258	CG	PRO	32	20.805 -	-10.115	99.765	1.00 38.30
•	ATOM	259	С	PRO	32	18.823	- 7.833	98.853	1.00 38.22
2	ATOM	260	0	PRO	32	19.905	-7.386	98.482	1.00 38.22
į	ATOM	261	N	SER	33	17.734	-7.082	98.981	1.00 37.83

ATOM	262	CA	SER	33	17.753	-5.655	98.705	1.00 37.83
ATOM	263	СВ	SER	33	17.385	-5.392	97.245	1.00 42.16
ATOM	264	OG	SER	33	17.475	-4.009	96.959	1.00 42.16
ATOM	265	С	SER	33	16.785	-4.914	99.626	1.00 37.83
ATOM	266	O	SER	33	15.588	-5.189	99.634	1.00 37.83
ATOM	267	N	PRO	34	17.302	-3.967	100.425	1.00 31.79
ATOM	268	CD	PRO	34	18.736	-3.767	100.705	1.00 21.38
ATOM	269	CA	PRO	34	16.450	-3.202	101.343	1.00 31.79
MOTA	270	СВ	PRO	34	17.413	-2.226	102.022	1.00 21.38
MOTA	271	CG	PRO	34	18.762	-2.426	101.353	1.00 21.38
MOTA	272	С	PRO	34	15.304	-2.485	100.653	1.00 31.79
ATOM	273	0	PRO	34	14.306	-2.134	101.285	1.00 31.79
ATOM	274	N	ALA	35	15.435	-2.301	99.346	1.00 38.20
ATOM	275	CA	ALA	35	14.432	-1.607	98.561	1.00 38.20
ATOM	276	СВ	ALA	35	14.956	-1.386	97.157	1.00 17.23
ATOM	277	С	ALA	35	13.072	-2.287	98.506	1.00 38.20
ATOM	278	0	ALA	35	12.067	-1.630	98.221	1.00 38.20
ATOM	279	N	ILE	36	13.024	-3.593	98.765	1.00 43.48
ATOM	280	CA	ILE	36	11.751	-4.315	98.723	1.00 43.48
MOTA	281	СВ	ILE	36	11.950	-5.840	98.563	1.00 35.86
ATOM	282	CG2	ILE	36	12.611	-6.150	97.237	1.00 35.86
ATOM	283	CG1	ILE	36	12.815	-6.383	99.691	1.00 35.86
ATOM	284	CD1	ILE	36	13.127	-7.851	99.539	1.00 35.86
ATOM	285	С	ILE	36	10.902	-4.072	99.962	1.00 43.48

ATOM	286	0	ILE	36	9.721	-4.402	99.979	1.00 43.48
ATOM	287	N	LEU	37	11.502	-3.493	100.995	1.00 45.44
ATOM	288	CA	LEU	37	10.775	-3.214	102.222	1.00 45.44
АТОМ	289	СВ	LEU	37	11.697	-3.364	103.431	1.00 37.85
ATOM	290	CG	LEU	37	12.257	-4.779	103.613	1.00 37.85
ATOM	291	CD1	LEU	37	13.166	-4.833	104.832	1.00 37.85
MOTA	292	CD2	LEU	37	11.108	-5.760	103.761	1.00 37.85
ATOM	293	С	LEU	37	10.169	-1.822	102.205	1.00 45.44
MOTA	294	o	LEU	37	9.378	-1.474	103.075	1.00 45.44
ATOM	295	N	GLU	38	10.533	-1.029	101.206	1.00 35.29
MOTA	296	CA	GLU	38	10.024	0.327	101.086	1.00 35.29
MOTA	297	СВ	GLU	38	10.727	1.047	99.938	1.00 35.02
ATOM	298	CG	GLU	38	12.126	1.507	100.291	1.00 35.02
ATOM	299	CD	GLU	38	12.859	2.111	99.118	1.00 35.02
ATOM	300	OE1	GLU	38	12.198	2.705	98.240	1.00 35.02
ATOM	301	OE2	GLU	38	14.103	2.005	99.084	1.00 35.02
ATOM	302	С	GLU	38	8.525	0.376	100.881	1.00 35.29
ATOM	303	0	GLU	38	7.898	1.409	101.088	1.00 35.29
ATOM	304	N	GLU	39	7.940	-0.744	100.485	1.00 43.94
ATOM	305	CA	GLU	39	6.503	-0.787	100.259	1.00 43.94
MOTA	306	СВ	GLU	39	6.211	-1.291	98.846	1.00 81.69
MOTA	307	CG	GLU	39	6.456	-0.239	97.771	1.00 81.69
MOTA	308	CD	GLU	39	5.420	0.872	97.802	1.00 81.69
MOTA	309	OE1	GLU	39	4.242	0.586	97.505	1.00 81.69

ATOM	310	OE	2 GLU	39	5.777	2.027 98.125	1.00 81.69
ATOM	311	С	GLU	39	5.783	-1.642 101.289	1.00 43.94
ATOM	312	0	GLU	39	4.582	-1.860 101.187	1.00 43.94
ATOM	313	N	ILE	40	6.519	-2.130 102.279	1.00 39.98
ATOM	314	CA	ILE	40	5.914	-2.929 103.332	2 1.00 39.98
ATOM	315	СВ	ILE	40	6.874	-4.032 103.844	1.00 36.67
ATOM	316	CG:	2 ILE	40	6.193	-4.855 104.920	1.00 36.67
ATOM	317	CG:	l ILE	40	7.284	-4.952 102.694	1.00 36.67
MOTA	318	CD:	l ILE	40	6.116	-5.618 102.010	1.00 36.67
MOTA	319	С	ILE	40	5.591	-1.969 104.478	1.00 39.98
ATOM	320	0	ILE	40	6.490	-1.467 105.153	1.00 39.98
MOTA	321	N	LYS	41	4.305	-1.705 104.682	1.00 42.16
ATOM	322	CA	LYS	41	3.877	-0.797 105.732	1.00 42.16
ATOM	323	СВ	LYS	41	2.794	0.146 105.205	1.00 51.75
ATOM	324	CG	LYS	41	3.189	0.926 103.966	1.00 51.75
ATOM	325	CD	LYS	41	1.962	1.566 103.350	1.00 51.75
MOTA	326	CE	LYS	41	2.274	2.250 102.032	1.00 51.75
ATOM	327	NZ	LYS	41	3.149	3.440 102.204	1.00 51.75
ATOM	328	С	LYS	41	3.346	-1.535 106.954	1.00 42.16
ATOM	329	0	LYS	41	2.775	-2.625 106.861	1.00 42.16
ATOM	330	N	VAL	42	3.527	-0.902 108.104	1.00 36.81
ATOM	331	CA	VAL	42	3.099	-1.440 109.377	1.00 36.81
ATOM	332	СВ	VAL	42	4.351	-1.856 110.199	1.00 34.57
ATOM	333	CG1	VAL	42	4.204	-1.477 111.654	1.00 34.57

ATOM	334	CG	VAL	42	4.578	-3.349 110.051	1.00 34.57
ATOM	335	С	VAL	42	2.313	-0.330 110.067	1.00 36.81
ATOM	336	0	VAL	42	2.684	0.836 109.975	1.00 36.81
АТОМ	337	N	ASP	43	1.218	-0.676 110.734	1.00 42.28
ATOM	338	CA	ASP	43	0.416	0.329 111.424	1.00 42.28
ATOM	339	СВ	ASP	43	-1.006	-0.189 111.671	1.00 62.32
MOTA	340	CG	ASP	43	-1.902	0.849 112.335	1.00 62.32
MOTA	341	OD 1	ASP	43	-2.036	1.970 111.797	1.00 62.32
ATOM	342	OD2	ASP	43	-2.484	0.547 113.398	1.00 62.32
MOTA	343	С	ASP	43	1.099	0.650 112.743	1.00 42.28
MOTA	344	0	ASP	43	0.885	-0.027 113.744	1.00 42.28
MOTA	345	N	TYR	44	1.927	1.686 112.729	1.00 35.94
ATOM	346	CA	TYR	44	2.673	2.111 113.908	1.00 35.94
ATOM	347	СВ	TYR	44	4.131	2.369 113.524	1.00 28.29
ATOM	348	CG	TYR	44	5.058	2.554 114.707	1.00 28.29
ATOM	349	CD1	TYR	44	5.766	3.746 114.883	1.00 28.29
ATOM	350	CE1	TYR	44	6.611	3.920 115.961	1.00 28.29
ATOM	351	CD2	TYR	44	5.230	1.533 115.650	1.00 28.29
ATOM	352	CE2	TYR	44	6.081	1.699 116.738	1.00 28.29
ATOM	353	CZ	TYR	44	6.769	2.893 116.881	1.00 28.29
MOTA	354	ОН	TYR	44	7.623	3.064 117.938	1.00 28.29
MOTA	355	С	TYR	44	2.069	3.372 114.511	1.00 35.94
ATOM	356	0	TYR	44	2.100	4.439 113.898	1.00 35.94
MOTA	357	N	TYR	45	1.528	3.240 115.718	1.00 38.53

ATOM	358	CA	TYR	45	0.889	4.347 116.424	1.00 38.53
MOTA	359	СВ	TYR	45	1.935	5.289 117.025	1.00 41.05
MOTA	360	CG	TYR	45	2.617	4.715 118.244	1.00 41.05
MOTA	361	CD	LTYR	45	3.728	3.879 118.120	1.00 41.05
MOTA	362	CE	l TYR	45	4.337	3.317 119.241	1.00 41.05
ATOM	363	CD2	2 TYR	45	2.144	4.998 119.532	1.00 41.05
ATOM	364	CE2	TYR	45	2.745	4.438 120.662	1.00 41.05
ATOM	365	CZ	TYR	45	3.851	3.610 120.506	1.00 41.05
ATOM	366	ОН	TYR	45	4.461	3.056 121.610	1.00 41.05
ATOM	367	С	TYR	45	-0.086	5.148 115.573	1.00 38.53
ATOM	368	0	TYR	45	0.015	6.370 115.489	1.00 38.53
ATOM	369	N	GLY	46	-1.028	4.449 114.945	1.00 42.43
MOTA	370	CA	GLY	46	-2.034	5.107 114.128	1.00 42.43
MOTA	371	С	GLY	46	-1.673	5.501 112.705	1.00 42.43
MOTA	372	0	GLY	46	-2.542	5.949 111.957	1.00 42.43
ATOM	373	N	VAL	47	-0.416	5.327 112.313	1.00 41.54
MOTA	374	CA	VAL	47	0.010	5.700 110.969	1.00 41.54
MOTA	375	СВ	VAL	47	0.992	6.898 111.037	1.00 35.99
ATOM	376	CG1	VAL	47	1.674	7.109 109.689	1.00 35.99
ATOM	377	CG2	VAL	47	0.237	8.148 111.451	1.00 35.99
ATOM	378	С	VAL	47	0.663	4.580 110.155	1.00 41.54
ATOM	379	0	VAL	47	1.623	3.958 110.604	1.00 41.54
ATOM	380	N	PRO	48	0.146	4.309 108.943	1.00 40.25
MOTA	381	CD	PRO	48	-1.000	4.969 108.294	1.00 34.00

ATOM	382	CA	PRO	48	0.709	3.259 108.080	1.00 40.25
ATOM	383	СВ	PRO	48	-0.119	3.372 106.804	1.00 34.00
ATOM	384	CG	PRO	48	-1.437	3.928 107.293	1.00 34.00
ATOM	385	С	PRO	48	2.156	3.665 107.849	1.00 40.25
ATOM	386	0	PRO	48	2.420	4.700 107.237	1.00 40.25
MOTA	387	N	THR	49	3.096	2.855 108.316	1.00 32.23
ATOM	388	CA	THR	49	4.495	3.232 108.207	1.00 32.23
ATOM	389	СВ	THR	49	5.047	3.475 109.622	1.00 26.24
ATOM	390	OG1	THR	49	4.090	4.237 110.368	1.00 26.24
MOTA	391	CG2	? THR	49	6.375	4.212 109.574	1.00 26.24
ATOM	392	С	THR	49	5.434	2.271 107.485	1.00 32.23
ATOM	393	0	THR	49	5.561	1.108 107.867	1.00 32.23
ATOM	394	N	PRO	50	6.086	2.742 106.407	1.00 39.12
ATOM	395	CD	PRO	50	5.650	3.818 105.506	1.00 28.33
ATOM	396	CA	PRO	50	6.999	1.833 105.718	1.00 39.12
ATOM	397	СВ	PRO	50	7.593	2.691 104.595	1.00 28.33
MOTA	398	CG	PRO	50	6.843	3.998 104.624	1.00 28.33
ATOM	399	С	PRO	50	8.045	1.349 106.709	1.00 39.12
ATOM	400	0	PRO	50	8.515	2.111 107.545	1.00 39.12
MOTA	401	N	VAL	51	8.404	0.076 106.603	1.00 34.69
ATOM	402	CA	VAL	51	9.356	-0.539 107.511	1.00 34.69
ATOM	403		VAL	51	9.576	-2.006 107.122	1.00 36.79
ATOM	404	CG1	VAL	51	10.622	-2.623 108.005	1.00 36.79
ATOM	405	CG2	VAL	51	8.264	-2.773 107.254	1.00 36.79

ATOM	406	С	VAL	51	10.714	0.138 107.685	1.00 34.69
ATOM	407	О	VAL	51	11.158	0.336 108.817	1.00 34.69
ATOM	408	N	ASN	52	11.375	0.493 106.585	1.00 43.32
ATOM	409	CA	ASN	52	12.694	1.124 106.670	1.00 43.32
ATOM	410	СВ	ASN	52	13.256	1.391 105.274	1.00 45.16
MOTA	411	CG	ASN	52	12.336	2.247 104.434	1.00 45.16
MOTA	412	OD1	ASN	52	11.261	1.808 104.033	1.00 45.16
ATOM	413	ND2	2 ASN	52	12.747	3.475 104.172	1.00 45.16
ATOM	414	С	ASN	52	12.698	2.423 107.458	1.00 43.32
ATOM	415	0	ASN	52	13.754	3.003 107.684	1.00 43.32
ATOM	416	N	GLN	53	11.522	2.883 107.868	1.00 41.50
MOTA	417	CA	GLN	53	11.415	4.120 108.635	1.00 41.50
ATOM	418	СВ	GLN	53	10.109	4.841 108.305	1.00 32.22
ATOM	419	CG	GLN	53	10.163	5.659 107.035	1.00 32.22
ATOM	420	CD	GLN	53	8.818	6.244 106.664	1:00 32.22
ATOM	421	OE1	GLN	53	8.030	6.641 107.531	1.00 32.22
ATOM	422	NE2	GLN	53	8.551	6.320 105.363	1.00 32.22
ATOM	423	С	GLN	53	11.465	3.823 110.118	1.00 41.50
ATOM	424	0	GLN	53	11.719	4.713 110.937	1.00 41.50
ATOM	425	N	LEU	54	11.230	2.559 110.454	1.00 35.24
ATOM	426	CA	LEU	54	11.230	2.113 111.842	1.00 35.24
MOTA	427	СВ	LEU	54	9.949	1.328 112.132	1.00 27.96
ATOM	428	CG	LEU	54	8.637	2.050 111.839	1.00 27.96
MOTA	429	CD1	LEU	54	7.462	1.130 112.101	1.00 27.96

ATOM	430	CD2	2 LEU	54	8.555	3.294 112.70	2 1.00 27.96
ATOM	431	С	LEU	54	12.427	1.223 112.144	1.00 35.24
ATOM	432	0	LEU	54	12.525	0.660 113.238	3 1.00 35.24
ATOM	433	N	ALA	55	13.341	1.091 111.188	3 1.00 26.03
ATOM	434	CA	ALA	55	14.481	0.218 111.41	1 1.00 26.03
ATOM	435	СВ	ALA	55	14.038	-1.244 111.29	4 1.00 26.69
ATOM	436	С	ALA	55	15.638	0.457 110.479	1.00 26.03
ATOM	437	0	ALA	55	15.495	1.068 109.422	2 1.00 26.03
ATOM	438	N	THR	56	16.798	-0.025 110.89	7 1.00 37.20
ATOM	439	CA	THR	56	17.994	0.075 110.083	7 1.00 37.20
ATOM	440	СВ	THR	56	19.261	0.167 110.946	5 1.00 41.17
ATOM	441	OG1	THR	56	19.399	-1.027 111.72	6 1.00 41.17
MOTA	442	CG2	THR	56	19.177	1.357 111.879	9 1.00 41.17
MOTA	443	С	THR	56	18.009	-1.238 109.317	7 1.00 37.20
MOTA	444	0	THR	56	17.785	-2.313 109.890	1.00 37.20
MOTA	445	N	ILE	57	18.244	-1.160 108.017	1.00 53.27
ATOM	446	CA	ILE	57	18.268	-2.364 107.214	1.00 53.27
ATOM	447	СВ	ILE	57	17.193	-2.321 106.131	1.00 37.44
ATOM	448	CG2	ILE	57	17.215	-3.612 105.33	0 1.00 37.44
ATOM	449	CG1	ILE	57	15.828	-2.101 106.78	9 1.00 37.44
ATOM	450	CD1	ILE	57	14.665	-2.037 105.810	0 1.00 37.44
ATOM	451	С	ILE	57	19.632	-2.521 106.579	1.00 53.27
ATOM	452	0	ILE	57	20.124	-1.626 105.899	1.00 53.27
ATOM	453	N	SER	58	20.248	-3.668 106.820	1.00 58.33

MOTA	454	CA	SER	58	21.571	-3.954	106.287	1.00 58.33
ATOM	455	СВ	SER	58	22.609	-3.776	107.395	1.00 54.61
ATOM	456	OG	SER	58	22.130	-4.320	108.610	1.00 54.61
MOTA	457	С	SER	58	21.619	-5.371	105.735	1.00 58.33
MOTA	458	0	SER	58	20.691	-6.142	105.952	1.00 58.33
MOTA	459	N	ILE	59	22.696	-5.719	105.047	1.00 52.33
ATOM	460	CA	ILE	59	22.809	-7.036	104.463	1.00 52.33
ATOM	461	СВ	ILE	59	23.345	-6.880	103.002	1.00 41.35
MOTA	462	CG2	ILE	59	23.395	-8.205	102.308	1.00 41.35
ATOM	463	CG1	ILE	59	22.416	-5.923	102.242	1.00 41.35
MOTA	464	CD1	ILE	59	22.248	-6.171	100.721	1.00 41.35
MOTA	465	С	ILE	59	23.718	-7.878	105.353	1.00 52.33
MOTA	466	O	ILE	59	24.936	-7.696	105.361	1.00 52.33
ATOM	467	N	SER	60	23.109	-8.762	106.143	1.00 60.00
ATOM	468	CA	SER	60	23.886	-9.591	107.064	1.00 60.00
ATOM	469	СВ	SER	60	23.010	-10.539	107.912	1.00 60.63
ATOM	470	OG	SER	60	22.600	-11.739	107.279	1.00 60.63
ATOM	471	С	SER	60	24.778	-10.428	106.252	1.00 60.00
ATOM	472	0	SER	60	25.950	-10.189	106.125	1.00 60.00
ATOM	473	N	GLU	61	24.235	-11.488	105.732	1.00 87.30
ATOM	474	CA	GLU	61	25.102	-12.210	104.852	1.00 87.30
ATOM	475	СВ	GLU	61	25.179	-13.704	105.187	1.00 88.30
ATOM	476	CG	GLU	61	23.932	-14.400	105.050	1.00 88.30
ATOM	477	CD	GLU	61	24.112	-15.569	104.196	1.00 88.30

ATOM	478	OE	l GLU	61	23.382 -15.647 103.202 1.00 88.30
ATOM	479	OE2	2 GLU	61	24.982 -16.404 104.514 1.00 88.30
ATOM	480	С	GLU	61	24.601 -11.951 103.471 1.00 87.30
ATOM	481	0	GLU	61	23.600 -11.303 103.276 1.00 87.30
ATOM	482	N	GLU	62	25.450 -12.404 102.552 1.00 61.89
ATOM	483	CA	GLU	62	25.257 -12.362 101.100 1.00 61.89
ATOM	484	СВ	GLU	62	26.426 -13.116 100.473 1.00 60.63
ATOM	485	CG	GLU	62	27.704 -12.340 100.884 1.00 60.63
MOTA	486	CD	GLU	62	28.278 -12.647 102.306 1.00 60.63
MOTA	487	OE1	GLU	62	27.634 -13.284 103.188 1.00 60.63
ATOM	488	OE2	GLU	62	29.433 -12.215 102.521 1.00 60.63
MOTA	489	С	GLU	62	23.847 -12.744 100.622 1.00 61.89
ATOM	490	0	GLU	62	23.455 -12.418 99.550 1.00 61.89
ATOM	491	N	ARG	63	23.074 -13.357 101.491 1.00 43.14
ATOM	492	CA	ARG	63	21.691 -13.788 101.154 1.00 43.14
ATOM	493	СВ	ARG	63	21.592 -15.314 101.038 1.00 76.81
MOTA	494	CG	ARG	63	22.506 -15.940 100.016 1.00 76.81
MOTA	495	CD	ARG	63	21.645 -16.662 99.020 1.00 76.81
ATOM	496	NE	ARG	63	22.409 -17.245 97.930 1.00 76.81
ATOM	497	CZ	ARG	63	21.892 -17.540 96.743 1.00 76.81
MOTA	498	NH1	ARG	63	20.610 -17.305 96.498 1.00 76.81
ATOM	499	NH2	ARG	63	22.663 -18.049 95.793 1.00 76.81
MOTA	500	С	ARG	63	20.705 -13.359 102.198 1.00 43.14
ATOM	501	0	ARG	63	19.544 -13.764 102.165 1.00 43.14

ATOM	502	N	THR	64	21.161	-12.500 103.109	1.00 37.34
MOTA	503	CA	THR	64	20.310	-12.052 104.183	3 1.00 37.34
MOTA	504	СВ	THR	64	20.799	-12.615 105.553	3 1.00 39.55
ATOM	505	OG1	THR	64	20.904	-14.040 105.50	5 1.00 39.55
MOTA	506	CG2	THR	64	19.819	-12.237 106.662	2 1.00 39.55
ATOM	507	С	THR	64	20.118	-10.553 104.378	1.00 37.34
ATOM	508	0	THR	64	21.053	-9.760 104.271	1.00 37.34
ATOM	509	N	LEU	65	18.880	-10.188 104.695	1.00 39.85
ATOM	510	CA	LEU	65	18.516	-8.812 104.998	1.00 39.85
MOTA	511	СВ	LEU	65	17.236	-8.403 104.271	1.00 33.79
MOTA	512	CG	LEU	65	17.295	-7.751 102.896	1.00 33.79
MOTA	513	CD1	LEU	65	15.874	-7.601 102.368	3 1.00 33.79
MOTA	514	CD2	LEU	65	17.989	-6.408 102.997	1.00 33.79
MOTA	515	С	LEU	65	18.225	-8.806 106.489	1.00 39.85
MOTA	516	O	LEU	65	17.402	-9.585 106.956	1.00 39.85
MOTA	517	N	VAL	66	18.902	-7.950 107.238	1.00 42.65
ATOM	518	CA	VAL	66	18.649	-7.864 108.666	1.00 42.65
MOTA	519	СВ	VAL	66	19.958	-7.878 109.478	1.00 46.94
MOTA	520	CG1	VAL	66	19.654	-7.792 110.951	1.00 46.94
MOTA	521	CG2	VAL	66	20.718	-9.152 109.203	1.00 46.94
ATOM	522	С	VAL	66	17.904	-6.558 108.909	1.00 42.65
ATOM	523	0	VAL	66	18.366	-5.487 108.514	1.00 42.65
ATOM	524	N	ILE	67	16.740	-6.669 109.543	1.00 31.17
MOTA	525	CA	ILE	67	15.890	-5.526 109.844	1.00 31.17

ATOM	526	СВ	ILE	67	14.441	-5.790 109.421	1.00 22.89
ATOM	527	CG2	2 ILE	67	13.618	-4.516 109.546	1.00 22.89
ATOM	528	CG1	ILE	67	14.401	-6.336 107.987	1.00 22.89
ATOM	529	CD1	ILE	67	13.024	-6.819 107.571	1.00 22.89
ATOM	530	С	ILE	67	15.888	-5.308 111.345	1.00 31.17
ATOM	531	0	ILE	67	15.204	-6.032 112.073	1.00 31.17
ATOM	532	N	LYS	68	16.639	-4.309 111.806	1.00 42.20
ATOM	533	CA	LYS	68	16.719	-4.005 113.229	1.00 42.20
ATOM	534	СВ	LYS	68	18.180	-3.819 113.623	1.00 56.36
ATOM	535	CG	LYS	68	18.405	-3.640 115.105	1.00 56.36
ATOM	536	CD	LYS	68	19.850	-3.923 115.458	1.00 56.36
ATOM	537	CE	LYS	68	20.079	-3.792 116.952	1.00 56.36
ATOM	538	NZ	LYS	68	19.129	-4.626 117.749	1.00 56.36
ATOM	539	С	LYS	68	15.913	-2.768 113.634	1.00 42.20
MOTA	540	О	LYS	68	16.306	-1.636 113.360	1.00 42.20
ATOM	541	N	PRO	69	14.763	-2.970 114.283	1.00 39.13
MOTA	542	CD	PRO	69	14.029	-4.240 114.428	1.00 36.24
MOTA	543	CA	PRO	69	13.936	-1.837 114.709	1.00 39.13
MOTA	544	СВ	PRO	69	12.530	-2.410 114.649	1.00 36.24
MOTA	545	CG	PRO	69	12.750	-3.805 115.143	1.00 36.24
ATOM	546	С	PRO	69	14.320	-1.409 116.123	1.00 39.13
MOTA	547	0	PRO	69	14.665	-2.247 116.950	1.00 39.13
ATOM	548	N	TRP	70	14.274	-0.112 116.406	1.00 35.31
ATOM	549	CA	TRP	70	14.625	0.359 117.742	1.00 35.31

ATOM	550	СВ	TRP	70	14.990	1.843 117.719	1.00 54.18
MOTA	551	CG	TRP	70	14.618	2.524 116.449	1.00 54.18
MOTA	552	CD2	TRP	70	13.375	3.187 116.177	1.00 54.18
MOTA	553	CE2	TRP	70	13.461	3.663 114.844	1.00 54.18
ATOM	554	CE3	TRP	70	12.220	3.423 116.922	1.00 54.18
MOTA	555	CD1	TRP	70	15.371	2.620 115.312	1.00 54.18
MOTA	556	NE1	TRP	70	14.671	3.305 114.345	1.00 54.18
ATOM	557	CZ2	TRP	70	12.400	4.366 114.251	1.00 54.18
ATOM	558	CZ3	TRP	70	11.174	4.121 116.329	1.00 54.18
ATOM	559	СН2	TRP	70	11.276	4.587 115.003	1.00 54.18
ATOM	560	С	TRP	70	13.477	0.111 118.713	1.00 35.31
ATOM	561	0	TRP	70	13.690	0.011 119.913	1.00 35.31
ATOM	562	N	ASP	71	12.259	0.018 118.194	1.00 38.62
ATOM	563	CA	ASP	71	11.097	-0.252 119.036	1.00 38.62
ATOM	564	СВ	ASP	71	9.897	0.580 118.587	1.00 33.95
ATOM	565	CG	ASP	71	8.667	0.323 119.436	1.00 33.95
ATOM	566	OD1	ASP	71	8.604	-0.741 120.086	1.00 33.95
ATOM	567	OD2	2 ASP	71	7.754	1.174 119.445	1.00 33.95
MOTA	568	С	ASP	71	10.785	-1.740 118.869	1.00 38.62
ATOM	569	0	ASP	71	10.037	-2.142 117.972	1.00 38.62
MOTA	570	N	LYS	72	11.361	-2.553 119.741	1.00 42.47
ATOM	571	CA	LYS	72	11.190	-3.990 119.661	1.00 42.47
MOTA	572	СВ	LYS	72	11.903	-4.650 120.843	1.00 41.13
ATOM	573	CG	LYS	72	13.420	-4.457 120.777	1.00 41.13

ATOM	574	CD	LYS	72	13.964	-5.079 119.500	1.00 41.13
ATOM	575	CE	LYS	72	15.041	-4.235 118.810	1.00 41.13
ATOM	576	NZ	LYS	72	16.328	-4.168 119.527	1.00 41.13
ATOM	577	С	LYS	72	9.774	-4.530 119.516	1.00 42.47
ATOM	578	0	LYS	72	9.600	-5.690 119.148	1.00 42.47
MOTA	579	N	SER	73	8.759	-3.719 119.781	1.00 36.48
MOTA	580	CA	SER	73	7.390	-4.212 119.631	1.00 36.48
ATOM	581	СВ	SER	73	6.401	-3.336 120.403	1.00 49.51
ATOM	582	OG	SER	73	6.288	-2.045 119.832	1.00 49.51
MOTA	583	С	SER	73	7.030	-4.206 118.153	1.00 36.48
MOTA	584	0	SER	73	6.006	-4.745 117.750	1.00 36.48
MOTA	585	N	VAL	74	7.891	-3.593 117.352	1.00 41.78
ATOM	586	CA	VAL	74	7.690	-3.487 115.910	1.00 41.78
MOTA	587	СВ	VAL	74	8.562	-2.340 115.332	1.00 35.01
ATOM	588	CG1	VAL	74	8.640	-2.425 113.811	1.00 35.01
ATOM	589	CG2	VAL	74	7.982	-1.009 115.754	1.00 35.01
MOTA	590	С	VAL	74	7.997	-4.791 115.176	1.00 41.78
ATOM	591	O	VAL	74	7.475	-5.032 114.085	1.00 41.78
ATOM	592	N	LEU	75	8.842	-5.626 115.778	1.00 35.55
ATOM	593	CA	LEU	75	9.212	-6.914 115.191	1.00 35.55
ATOM	594	СВ	LEU	75	10.063	-7.707 116.180	1.00 30.58
ATOM	595	CG	LEU	75	11.420	-7.091 116.509	1.00 30.58
ATOM	596	CD1	LEU	75	12.024	-7.786 117.707	1.00 30.58
ATOM	597	CD2	LEU	75	12.338	-7.213 115.288	1.00 30.58

MOTA	598	С	LEU	75	7.968	-7.725 114.828	1.00 35.55
ATOM	599	0	LEU	75	7.830	-8.220 113.714	1.00 35.55
ATOM	600	N	SER	76	7.057	-7.850 115.777	1.00 35.44
ATOM	601	CA	SER	76	5.843	-8.601 115.540	1.00 35.44
ATOM	602	СВ	SER	76	4.954	-8.545 116.782	1.00 41.93
ATOM	603	OG	SER	76	3.829	-9.382 116.623	1.00 41.93
ATOM	604	С	SER	76	5.087	-8.062 114.321	1.00 35.44
ATOM	605	0	SER	76	4.649	-8.831 113.462	1.00 35.44
MOTA	606	N	LEU	77	4.951	-6.738 114.251	1.00 39.58
ATOM	607	CA	LEU	77	4.246	-6.078 113.152	1.00 39.58
ATOM	608	СВ	LEU	77	4.097	-4.577 113.446	1.00 32.60
ATOM	609	CG	LEU	77	3.248	-4.216 114.681	1.00 32.60
ATOM	610	CD1	LEU	77	3.301	-2.715 114.936	1.00 32.60
ATOM	611	CD2	LEU	77	1.808	-4.676 114.476	1.00 32.60
ATOM	612	С	LEU	77	4.941	-6.277 111.805	1.00 39.58
ATOM	613	0	LEU	77	4.288	-6.510 110.787	1.00 39.58
MOTA	614	N	ILE	78	6.263	-6.181 111.792	1.00 38.16
MOTA	615	CA	ILE	78	6.996	-6.362 110.553	1.00 38.16
MOTA	616	СВ	ILE	78	8.501	-6.146 110.753	1.00 31.39
MOTA	617	CG2	LILE	78	9.240	-6.525 109.478	1.00 31.39
MOTA	618	CG1	ILE	78	8.773	-4.691 111.153	1.00 31.39
ATOM	619	CD1	ILE	78	10.212	-4.413 111.518	1.00 31.39
MOTA	620	С	ILE	78	6.779	-7.774 110.031	1.00 38.16
MOTA	621	0	ILE	78	6.590	-7.985 108.833	1.00 38.16

MOTA	622	N	GLU	79	6.802 -8.737 110.942 1.00 34.51
ATOM	623	CA	GLU	79	6.618 -10.136 110.599 1.00 34.51
ATOM	624	СВ	GLU	79	6.802 -10.982 111.857 1.00 43.51
MOTA	625	CG	GLU	79	6.587 -12.471 111.665 1.00 43.51
ATOM	626	CD	GLU	79	6.869 -13.261 112.931 1.00 43.51
ATOM	627	OE1	GLU	79	6.782 -14.505 112.889 1.00 43.51
ATOM	628	OE2	GLU	79	7.178 -12.642 113.972 1.00 43.51
ATOM	629	С	GLU	79	5.243 -10.387 109.987 1.00 34.51
MOTA	630	О	GLU	79	5.115 -11.058 108.961 1.00 34.51
ATOM	631	N	LYS	80	4.215 -9.846 110.625 1.00 41.03
MOTA	632	CA	LYS	80	2.845 -9.994 110.153 1.00 41.03
ATOM	633	СВ	LYS	80	1.905 -9.247 111.090 1.00 63.82
ATOM	634	CG	LYS	80	0.758 -10.055 111.630 1.00 63.82
MOTA	635	CD	LYS	80	1.056 -10.548 113.035 1.00 63.82
ATOM	636	CE	LYS	80	-0.230 -10.873 113.785 1.00 63.82
MOTA	637	NZ	LYS	80	0.064 -11.206 115.204 1.00 63.82
MOTA	638	С	LYS	80	2.695 -9.401 108.753 1.00 41.03
ATOM	639	О	LYS	80	2.128 -10.022 107.847 1.00 41.03
MOTA	640	N	ALA	81	3.198 -8.177 108.601 1.00 39.91
MOTA	641	CA	ALA	81	3.131 -7.437 107.351 1.00 39.91
ATOM	642	СВ	ALA	81	3.738 -6.065 107.535 1.00 28.92
ATOM	643	С	ALA	81	3.831 -8.161 106.216 1.00 39.91
ATOM	644	0	ALA	81	3.358 -8.145 105.077 1.00 39.91
ATOM	645	N	ILE	82	4.966 -8.782 106.516 1.00 31.35

MOTA	646	CA	ILE	82	5.691	-9.509	105.490	1.00 31.35
ATOM	647	СВ	ILE	82	7.103	-9.899	105.959	1.00 31.86
ATOM	648	CG2	2 ILE	82	7.746	-10.830	104.943	1.00 31.86
ATOM	649	CG1	LILE	82	7.948	-8.634	106.151	1.00 31.86
ATOM	650	CD1	ILE	82	9.372	-8.905	106.571	1.00 31.86
ATOM	651	С	ILE	82	4.919	-10.759	105.095	1.00 31.35
ATOM	652	О	ILE	82	4.763 -	-11.041	103.904	1.00 31.35
ATOM	653	N	ASN	83	4.420	-11.503	106.080	1.00 44.39
MOTA	654	CA	ASN	83	3.660	-12.712	105.778	1.00 44.39
MOTA	655	СВ	ASN	83	3.253	-13.449	107.064	1.00 33.35
MOTA	656	CG	ASN	83	4.427	-14.137	107.747	1.00 33.35
MOTA	657	OD1	ASN	83	5.289	-14.727	107.092	1.00 33.35
MOTA	658	ND2	ASN	83	4.454	-14.078	109.075	1.00 33.35
MOTA	659	С	ASN	83	2.411 -	-12.393	104.949	1.00 44.39
ATOM	660	o	ASN	83	1.936 -	-13.236	104.186	1.00 44.39
MOTA	661	N	ALA	84	1.888 -	-11.178	105.086	1.00 41.69
MOTA	662	CA	ALA	84	0.698 -	-10.777	104.334	1.00 41.69
ATOM	663	СВ	ALA	84	-0.061	-9.684	105.090	1.00 35.44
ATOM	664	С	ALA	84	1.026 -	10.294	102.919	1.00 41.69
ATOM	665	O	ALA	84	0.147 -	10.231	102.059	1.00 41.69
MOTA	666	N	SER	85	2.285	-9.945	102.673	1.00 47.02
ATOM	667	CA	SER	85	2.681	-9.478	101.346	1.00 47.02
MOTA	668	СВ	SER	85	3.952	-8.645	101.439	1.00 37.52
ATOM	669	OG	SER	85	5.037	-9.457	101.836	1.00 37.52

ATOM	670	С	SER	85	2.931 -10.663 100.421 1.00 47.02
MOTA	671	0	SER	85	2.773 -11.815 100.820 1.00 47.02
ATOM	672	N	ASP	86	3.330 -10.380 99.188 1.00 55.10
ATOM	673	CA	ASP	86	3.600 -11.438 98.226 1.00 55.10
ATOM	674	СВ	ASP	86	2.856 -11.159 96.913 1.00 66.61
MOTA	675	CG	ASP	86	3.232 -9.821 96.292 1.00 66.61
MOTA	676	OD1	ASP	86	4.108 -9.119 96.841 1.00 66.61
MOTA	677	OD2	2 ASP	86	2.647 -9.468 95.244 1.00 66.61
ATOM	678	С	ASP	86	5.093 -11.593 97.955 1.00 55.10
MOTA	679	0	ASP	86	5.492 -12.136 96.921 1.00 55.10
MOTA	680	N	LEU	87	5.916 -11.127 98.889 1.00 40.02
MOTA	681	CA	LEU	87	7.368 -11.201 98.741 1.00 40.02
MOTA	682	СВ	LEU	87	8.056 -10.528 99.931 1.00 53.14
ATOM	683	CG	LEU	87	7.867 -9.019 100.053 1.00 53.14
ATOM	684	CD1	LEU	87	8.549 -8.512 101.314 1.00 53.14
ATOM	685	CD2	LEU	87	8.446 -8.348 98.815 1.00 53.14
ATOM	686	С	LEU	87	7.924 -12.612 98.596 1.00 40.02
ATOM	687	0	LEU	87	8.967 -12.812 97.967 1.00 40.02
ATOM	688	N	GLY	88	7.233 -13.588 99.176 1.00 39.77
MOTA	689	CA	GLY	88	7.722 -14.951 99.109 1.00 39.77
MOTA	690	С	GLY	88	8.924 -15.046 100.028 1.00 39.77
MOTA	691	0	GLY	88	9.905 -15.733 99.740 1.00 39.77
ATOM	692	N	LEU	89	8.848 -14.319 101.138 1.00 36.60
ATOM	693	CA	LEU	89	9.907 -14.303 102.124 1.00 36.60

MOTA	694	СВ	LEU	89	10.522 -12.909 102.221 1.00 41.00
MOTA	695	CG	LEU	89	11.343 -12.412 101.033 1.00 41.00
MOTA	696	CD1	LEU	89	11.804 -10.996 101.312 1.00 41.00
MOTA	697	CD2	LEU	89	12.539 -13.321 100.797 1.00 41.00
ATOM	698	С	LEU	89	9.348 -14.720 103.477 1.00 36.60
MOTA	699	o	LEU	89	8.186 -14.464 103.792 1.00 36.60
ATOM	700	N	ASN	90	10.185 -15.368 104.275 1.00 32.75
ATOM	701	CA	ASN	90	9.774 -15.834 105.585 1.00 32.75
MOTA	702	СВ	ASN	90	9.973 -17.343 105.682 1.00 37.39
ATOM	703	CG	ASN	90	9.128 -18.104 104.682 1.00 37.39
ATOM	704	OD1	ASN	90	7.902 -18.176 104.813 1.00 37.39
MOTA	705	ND2	. ASN	90	9.776 -18.671 103.670 1.00 37.39
ATOM	706	С	ASN	90	10.593 -15.141 106.651 1.00 32.75
ATOM	707	О	ASN	90	11.804 -15.323 106.731 1.00 32.75
ATOM	708	N	PRO	91	9.941 -14.330 107.484 1.00 35.24
ATOM	709	CD	PRO	91	8.503 -14.012 107.514 1.00 26.32
ATOM	710	CA	PRO	91	10.657 -13.620 108.543 1.00 35.24
ATOM	711	СВ	PRO	91	9.597 -12.670 109.088 1.00 26.32
ATOM	712	CG	PRO	91	8.339 -13.443 108.899 1.00 26.32
ATOM	713	С	PRO	91	11.212 -14.545 109.621 1.00 35.24
ATOM	714	o	PRO	91	10.577 -15.528 110.004 1.00 35.24
ATOM	715	N	ILE	92	12.406 -14.224 110.099 1.00 39.44
ATOM	716	CA	ILE	92	13.050 -14.988 111.156 1.00 39.44
ATOM	717	СВ	ILE	92	14.442 -15.457 110.736 1.00 30.73

ATOM	718	CG2	ILE	92	15.044 -16.318 111.833	1.00 30.73
ATOM	719	CG1	ILE	92	14.357 -16.256 109.440	1.00 30.73
MOTA	720	CD1	ILE	92	15.720 -16.628 108.899	1.00 30.73
MOTA	721	С	ILE	92	13.199 -14.016 112.323	1.00 39.44
ATOM	722	О	ILE	92	14.117 -13.200 112.347	1.00 39.44
MOTA	723	N	ASN	93	12.291 -14.109 113.287	1.00 37.86
ATOM	724	CA	ASN	93	12.275 -13.220 114.441	1.00 37.86
ATOM	725	СВ	ASN	93	10.818 -12.947 114.804	1.00 26.31
ATOM	726	CG	ASN	93	10.660 -11.871 115.856	1.00 26.31
ATOM	727	OD1	ASN	93	11.627 -11.440 116.482	1.00 26.31
ATOM	728	ND2	ASN	93	9.426 -11.431 116.059	1.00 26.31
ATOM	729	С	ASN	93	13.015 -13.760 115.668	1.00 37.86
ATOM	730	o	ASN	93	12.538 -14.690 116.321	1.00 37.86
ATOM	731	N	ASP	94	14.166 -13.174 115.995	1.00 43.86
ATOM	732	CA	ASP	94	14.926 -13.613 117.167	1.00 43.86
ATOM	733	СВ	ASP	94	16.429 -13.647 116.866	1.00 48.91
ATOM	734	CG	ASP	94	17.003 -12.274 116.625	1.00 48.91
MOTA	735	OD1	ASP	94	18.236 -12.162 116.455	1.00 48.91
MOTA	736	OD2	2 ASP	94	16.220 -11.305 116.603	1.00 48.91
MOTA	737	С	ASP	94	14.661 -12.696 118.366	1.00 43.86
ATOM	738	0	ASP	94	15.416 -12.690 119.339	1.00 43.86
MOTA	739	N	GLY	95	13.589 -11.914 118.286	1.00 38.45
ATOM	740	CA	GLY	95	13.233 -11.031 119.381	1.00 38.45
MOTA	741	С	GLY	95	14.025 -9.743 119.451	1.00 38.45

ATOM	742	О	GLY	95	13.756 -8.886 120.293 1.00 38.45	
ATOM	743	N	ASN	96	15.008 -9.606 118.569 1.00 49.36	
ATOM	744	CA	ASN	96	15.841 -8.410 118.525 1.00 49.36	
ATOM	745	СВ	ASN	96	17.296 -8.751 118.860 1.00 40.40	
ATOM	746	CG	ASN	96	18.208 -7.532 118.808 1.00 40.40	
MOTA	747	OD1	ASN	96	19.369 -7.620 118.399 1.00 40.40	
MOTA	748	ND2	2 ASN	96	17.686 -6.388 119.232 1.00 40.40	
MOTA	749	С	ASN	96	15.789 -7.849 117.116 1.00 49.36	
MOTA	750	0	ASN	96	15.489 -6.679 116.901 1.00 49.36	
ATOM	751	N	VAL	97	16.079 -8.716 116.158 1.00 44.00	
ATOM	752	CA	VAL	97	16.105 -8.340 114.759 1.00 44.00	
MOTA	753	СВ	VAL	97	17.561 -8.390 114.253 1.00 36.85	
MOTA	754	CG	L VAL	97	17.828 -9.690 113.506 1.00 36.85	
ATOM	755	CG2	2 VAL	97	17.843 -7.197 113.413 1.00 36.85	
MOTA	756	С	VAL	97	15.223 -9.276 113.923 1.00 44.00	
ATOM	757	0	VAL	97	14.713 -10.279 114.422 1.00 44.00	
MOTA	758	N	ILE	98	15.033 -8.938 112.653 1.00 37.43	
ATOM	759	CA	ILE	98	14.240 -9.772 111.758 1.00 37.43	
MOTA	760	СВ	ILE	98	12.936 -9.084 111.332 1.00 38.61	
ATOM	761	CG:	2 ILE	98	12.439 -9.659 110.012 1.00 38.61	
ATOM	762	CG:	1 ILE	98	11.885 -9.281 112.420 1.00 38.61	
ATOM	763	CD	1 ILE	98	10.495 -8.910 111.987 1.00 38.61	
ATOM	764	С	ILE	98	15.036 -10.105 110.515 1.00 37.43	
MOTA	765	О	ILE	98	15.270 -9.236 109.677 1.00 37.43	

ATOM	766	N	ARG	99	15.458 -11.365 110.410	1.00 30.52
MOTA	767	CA	ARG	99	16.232 -11.822 109.263	1.00 30.52
ATOM	768	СВ	ARG	99	17.137 -13.004 109.625	1.00 50.62
ATOM	769	CG	ARG	99	18.429 -12.643 110.328	1.00 50.62
ATOM	770	CD	ARG	99	19.445 -13.758 110.162	1.00 50.62
АТОМ	771	NE	ARG	99	18.996 -15.003 110.777	1.00 50.62
ATOM	772	CZ	ARG	99	19.434 -16.213 110.440	1.00 50.62
ATOM	773	NHI	LARG	99	20.340 -16.363 109.479	1.00 50.62
ATOM	774	NH2	2 ARG	99	18.962 -17.277 111.074	1.00 50.62
MOTA	775	С	ARG	99	15.307 -12.244 108.151	1.00 30.52
ATOM	776	0	ARG	99	14.242 -12.809 108.385	1.00 30.52
ATOM	777	N	LEU	100	15.729 -11.957 106.932	1.00 33.80
MOTA	778	CA	LEU	100	14.973 -12.307 105.743	1.00 33.80
ATOM	779	СВ	LEU	100	14.399 -11.042 105.117	1.00 34.63
MOTA	780	CG	LEU	100	12.890 -10.941 104.938	1.00 34.63
MOTA	781	CD	1 LEU	100	12.167 -11.437 106.178	1.00 34.63
MOTA	782	CD	2 LEU	100	12.542 -9.493 104.636	1.00 34.63
MOTA	783	С	LEU	100	16.011 -12.928 104.829	1.00 33.80
MOTA	784	0	LEU	100	16.829 -12.225 104.247	1.00 33.80
ATOM	785	N	VAL	101	16.006 -14.248 104.725	1.00 40.27
ATOM	786	CA	VAL	101	16.989 -14.911 103.887	1.00 40.27
ATOM	787	СВ	VAL	101	17.377 -16.271 104.470	1.00 42.80
ATOM	788	CG	1 VAL	101	18.462 -16.902 103.621	1.00 42.80
ATOM	789	CG	2 VAL	101	17.867 -16.097 105.888	1.00 42.80

ATOM	790	С	VAL	101	16.481 -15.087 102.467	1.00 40.27
ATOM	791	0	VAL	101	15.288 -15.295 102.248	1.00 40.27
АТОМ	792	N	PHE	102	17.396 -14.988 101.506	1.00 42.62
AIOM	132	14	E 1117	102		
ATOM	793	CA	PHE	102	17.065 -15.120 100.091	1.00 42.62
ATOM	794	СВ	PHE	102	17.504 -13.870 99.325	1.00 35.61
ATOM	795	CG	PHE	102	16.807 -12.614 99.755	1.00 35.61
MOTA	796	CD1	PHE	102	17.012 -12.089 101.026	1.00 35.61
MOTA	797	CD2	PHE	102	15.936 -11.955 98.889	1.00 35.61
ATOM	798	CE1	PHE	102	16.365 -10.926 101.427	1.00 35.61
ATOM	799	CE2	PHE	102	15.286 -10.793 99.284	1.00 35.61
ATOM	800	CZ	PHE	102	15.498 -10.280 100.553	1.00 35.61
ATOM	801	С	PHE	102	17.758 -16.330 99.481	1.00 42.62
MOTA	802	o	PHE	102	18.853 -16.210 98.938	1.00 42.62
ATOM	803	N	PRO	103	17.123 -17.509 99.542	1.00 35.91
MOTA	804	CD	PRO	103	15.787 -17.769 100.101	1.00 36.33
ATOM	805	CA	PRO	103	17.710 -18.739 98.983	1.00 35.91
ATOM	806	СВ	PRO	103	16.665 -19.811 99.313	1.00 36.33
ATOM	807	CG	PRO	103	15.900 -19.221 100.488	1.00 36.33
ATOM	808	С	PRO	103	17.961 -18.650 97.472	1.00 35.91
ATOM	809	O	PRO	103	17.379 -17.803 96.789	1.00 35.91
ATOM	810	N	SER	104	18.833 -19.516 96.958	1.00 42.91
ATOM	811	CA	SER	104	19.119 -19.556 95.524	1.00 42.91
						1 00 41 07
MOTA	812	СВ	SER	104	19.973 -20.773 95.166	1.00 41.87
MOTA	813	OG	SER	104	21.321 -20.599 95.559	1.00 41.87

ATOM	814	С	SER	104	17.779 -19.6	63 94.820	1.00 42.91
ATOM	815	0	SER	104	16.993 -20.5	75 95.089	1.00 42.91
ATOM	816	N	PRO	105	17.494 -18.7	35 93.905	1.00 35.96
ATOM	817	CD	PRO	105	18.214 -17.4	90 93.571	1.00 31.16
MOTA	818	CA	PRO	105	16.195 -18.8	29 93.228	1.00 35.96
ATOM	819	СВ	PRO	105	16.084 -17.4	93 92.488	1.00 31.16
ATOM	820	CG	PRO	105	17.542 -17.0	62 92.303	1.00 31.16
MOTA	821	с	PRO	105	15.989 -20.0	37 92.322	1.00 35.96
ATOM	822	0	PRO	105	16.929 -20.5	69 91.726	1.00 35.96
ATOM	823	N	THR	106	14.740 -20.4	72 92.249	1.00 50.79
ATOM	824	CA	THR	106	14.354 -21.5	96 91.410	1.00 50.79
ATOM	825	СВ	THR	106	13.050 -22.2	37 91.919	1.00 55.41
МОТА	826	OG1	THR	106	11.965 -21.3	18 91.742	1.00 55.41
ATOM	827	CG2	THR	106	13.166 -22.5	82 93.399	1.00 55.41
ATOM	828	С	THR	106	14.110 -21.0	29 90.015	1.00 50.79
MOTA	829	0	THR	106	13.845 -19.8	33 89.865	1.00 50.79
ATOM	830	N	THR	107	14.187 -21.8	71 88.990	1.00 61.13
MOTA	831	CA	THR	107	13.973 -21.3	66 87.643	1.00 61.13
ATOM	832	СВ	THR	107	14.421 -22.4	03 86.562	1.00 71.51
ATOM	833	OG1	THR	107	15.405 -21.8	800 85.707	1.00 71.51
ATOM	834	CG2	THR	107	13.244 -22.8	863 85.713	1.00 71.51
ATOM	835	С	THR	107	12.515 -20.9	60 87.454	1.00 61.13
MOTA	836	0	THR	107	12.166 -20.3	21 86.471	1.00 61.13
ATOM	837	N	GLU	108	11.663 -21.3	11 88.405	1.00 63.04

ATOM	838	CA	GLU	108	10.262 -20.940	88.297	1.00 63.04
MOTA	839	СВ	GLU	108	9.377 -21.956	89.023	1.00 93.70
MOTA	840	CG	GLU	108	8.021 -22.149	88.359	1.00 93.70
ATOM	841	CD	GLU	108	7.250 -23.329	88.922	1.00 93.70
MOTA	842	OE1	GLU	108	6.636 -23.184	90.001	1.00 93.70
MOTA	843	OE2	GLU	108	7.266 -24.406	88.286	1.00 93.70
MOTA	844	С	GLU	108	10.077 -19.544	88.891	1.00 63.04
ATOM	845	0	GLU	108	9.144 -18.822	88.526	1.00 63.04
ATOM	846	N	GLN	109	10.968 -19.173	89.808	1.00 42.84
ATOM	847	CA	GLN	109	10.924 -17.854	90.429	1.00 42.84
МОТА	848	СВ	GLN	109	11.763 -17.824	91.710	1.00 42.35
ATOM	849	CG	GLN	109	11.132 -18.557	92.890	1.00 42.35
ATOM	850	CD	GLN	109	11.971 -18.472	94.156	1.00 42.35
ATOM	851	OE1	GLN	109	13.094 -18.964	94.204	1.00 42.35
ATOM	852	NE 2	GLN	109	11.423 -17.842	95.186	1.00 42.35
ATOM	853	С	GLN	109	11.473 -16.836	89.434	1.00 42.84
ATOM	854	О	GLN	109	10.866 -15.794	89.200	1.00 42.84
ATOM	855	N	ARG	110	12.624 -17.148	88.846	1.00 37.85
ATOM	856	CA	ARG	110	13.237 -16.258	87.873	1.00 37.85
ATOM	857	СВ	ARG	110	14.464 -16.909	87.244	1.00 51.08
ATOM	858	CG	ARG	110	15.598 -17.191	88.202	1.00 51.08
MOTA	859	CD	ARG	110	16.692 -17.973	87.495	1.00 51.08
MOTA	860	NE	ARG	110	17.755 -18.390	88.405	1.00 51.08
ATOM	861	CZ	ARG	110	18.663 -17.569	88.927	1.00 51.08

MOTA	862	NH1	ARG	110	18.644 -16.275	88.629	1.00 51.08
MOTA	863	NH2	ARG	110	19.592 -18.042	89.751	1.00 51.08
ATOM	864	С	ARG	110	12.224 -15.946	86.783	1.00 37.85
ATOM	865	0	ARG	110	11.986 -14.782	86.457	1.00 37.85
MOTA	866	N	ALA	111	11.623 -16.992	86.224	1.00 49.18
ATOM	867	CA	ALA	111	10.634 -16.817	85.168	1.00 49.18
ATOM	868	СВ	ALA	111	10.130 -18.172	84.682	1.00 35.40
MOTA	869	С	ALA	111	9.473 -15.978	85.689	1.00 49.18
ATOM	870	o	ALA	111	8.913 -15.158	84.961	1.00 49.18
ATOM	871	N	LYS	112	9.119 -16.175	86.954	1.00 39.11
ATOM	872	CA	LYS	112	8.023 -15.416	87.545	1.00 39.11
ATOM	873	СВ	LYS	112	7.687 -15.945	88.940	1.00 85.43
ATOM	874	CG	LYS	112	6.573 -15.162	89.618	1.00 85.43
АТОМ	875	CD	LYS	112	6.468 -15.473	91.105	1.00 85.43
ATOM	876	CE	LYS	112	5.400 -14.606	91.768	1.00 85.43
ATOM	877	NZ	LYS	112	5.303 -14.821	93.242	1.00 85.43
ATOM	878	С	LYS	112	8.380 -13.936	87.642	1.00 39.11
ATOM	879	0	LYS	112	7.586 -13.076	87.268	1.00 39.11
ATOM	880	N	TRP	113	9.578 -13.649	88.146	1.00 31.83
ATOM	881	CA	TRP	113	10.042 -12.274	88.299	1.00 31.83
ATOM	882	СВ	TRP	113	11.368 -12.237	89.075	1.00 25.54
ATOM	883	CG	TRP	113	11.256 -12.810	90.459	1.00 25.54
ATOM	884	CD2	TRP	113	12.278 -13.490	91.203	1.00 25.54
MOTA	885	CE2	TRP	113	11.711 -13.879	92.434	1.00 25.54

ATOM	886	CE	3 TRP	113	13.618 -13.816	90.945	1.00 25.54
ATOM	887	CD	1 TRP	113	10.149 -12.803	91.253	1.00 25.54
ATOM	888	NE:	1 TRP	113	10.411 -13.443	92.439	1.00 25.54
ATOM	889	CZ	2 TRP	113	12.434 -14.574	93.412	1.00 25.54
АТОМ	890	CZ.	3 TRP	113	14.342 -14.510	91.927	1.00 25.54
ATOM	891	CH:	2 TRP	113	13.744 -14.881	93.140	1.00 25.54
ATOM	892	С	TRP	113	10.202 -11.542	86.966	1.00 31.83
ATOM	893	0	TRP	113	9.883 -10.362	86.868	1.00 31.83
ATOM	894	N	VAL	114	10.694 -12.235	85.944	1.00 37.08
ATOM	895	CA	VAL	114	10.873 -11.619	84.631	1.00 37.08
MOTA	896	СВ	VAL	114	11.568 -12.588	83.636	1.00 25.80
ATOM	897	CG:	l VAL	114	11.544 -12.001	82.229	1.00 25.80
ATOM	898	CG2	VAL	114	13.006 -12.844	84.067	1.00 25.80
MOTA	899	С	VAL	114	9.504 -11.247	84.078	1.00 37.08
MOTA	900	0	VAL	114	9.323 -10.198	83.456	1.00 37.08
MOTA	901	N	LYS	115	8.540 -12.122	84.314	1.00 37.76
ATOM	902	CA	LYS	115	7.177 -11.911	83.861	1.00 37.76
MOTA	903	СВ	LYS	115	6.345 -13.151	84.189	1.00 60.43
MOTA	904	CG	LYS	115	5.206 -13.437	83.232	1.00 60.43
ATOM	905	CD	LYS	115	3.844 -13.292	83.904	1.00 60.43
ATOM	906	CE	LYS	115	2.935 -14.479	83.591	1.00 60.43
MOTA	907	NZ	LYS	115	1.512 -14.209	83.953	1.00 60.43
MOTA	908	С	LYS	115	6.613 -10.682	84.580	1.00 37.76
MOTA	909	0	LYS	115	5.863 -9.895	83.999	1.00 37.76

ATOM	910	N	LYS	116	6.988	-10.519	85.847	1.00 44.68	
ATOM	911	CA	LYS	116	6.528	-9.392	86.649	1.00 44.68	
	912	СВ	LYS	116	6.848	-9.639	88.124	1.00 47.83	
AIOM	712	CD	шо	110					
MOTA	913	CG	LYS	116	6.427	-8.510	89.052	1.00 47.83	
ATOM	914	CD	LYS	116	6.846	-8.804	90.480	1.00 47.83	
ATOM	915	CE	LYS	116	6.582	-7.623	91.400	1.00 47.83	
MOTA	916	NZ	LYS	116	7.136	-7.862	92.768	1.00 47.83	
MOTA	917	С	LYS	116	7.174	-8.081	86.184	1.00 44.68	
ATOM	918	o	LYS	116	6.527	-7.029	86.162	1.00 44.68	
ATOM	919	N	ALA	117	8.450	-8.142	85.816	1.00 31.99	
ATOM	920	CA	ALA	117	9.152	-6.959	85.345	1.00 31.99	
ATOM	921	СВ	ALA	117	10.615	-7.272	85.121	1.00 21.76	
ATOM	922	С	ALA	117	8.525	-6.491	84.043	1.00 31.99	
ATOM	923	o	ALA	117	8.311	-5.302	83.832	1.00 31.99	
ATOM	924	N	LYS	118	8.222	-7.443	83.173	1.00 40.71	
ATOM	925	CA	LYS	118	7.632	-7.137	81.883	1.00 40.71	
ATOM	926	СВ	LYS	118	7.499	-8.421	81.063	1.00 61.77	
ATOM	927	CG	LYS	118	7.281	-8.200	79.577	1.00 61.77	
АТОМ	928	CD	LYS	118	7.510	-9.495	78.812	1.00 61.77	
111011	720	02							
MOTA	929	CE	LYS	118	7.974	-9.237	77.381	1.00 61.77	
ATOM	930	NZ	LYS	118	8.495	-10.490	76.749	1.00 61.77	
ATOM	931	С	LYS	118	6.271	-6.474	82.027	1.00 40.71	
ATOM	932	o	LYS	118	5.953	-5.529	81.312	1.00 40.71	
ATOM	933	N	GLU	119	5.462	-6.956	82.956	1.00 33.86	

ATOM	934	CA	GLU	119	4.140	-6.377	83.111	1.00 33.86
ATOM	935	СВ	GLU	119	3.274	-7.279	83.991	1.00 64.63
MOTA	936	CG	GLU	119	1.788	-7.224	83.639	1.00 64.63
MOTA	937	CD	GLU	119	1.530	-7.160	82.133	1.00 64.63
MOTA	938	OE1	GLU	119	0.818	-6.227	81.703	1.00 64.63
ATOM	939	OE2	GLU	119	2.032	-8.028	81.381	1.00 64.63
MOTA	940	С	GLU	119	4.245	-4.962	83.674	1.00 33.86
ATOM	941	o	GLU	119	3.429	-4.095	83.362	1.00 33.86
ATOM	942	N	ILE	120	5.270	-4.730	84.487	1.00 30.00
MOTA	943	CA	ILE	120	5.500	-3.420	85.063	1.00 30.00
MOTA	944	СВ	ILE	120	6.656	-3.458	86.100	1.00 30.15
ATOM	945	CG2	ILE	120	7.168	-2.049	86.372	1.00 30.15
ATOM	946	CG1	ILE	120	6.176	-4.116	87.398	1.00 30.15
АТОМ	947	CD1	ILE	120	7.292	-4.435	88.385	1.00 30.15
ATOM	948	С	ILE	120	5.882	-2.461	83.935	1.00 30.00
ATOM	949	0	ILE	120	5.408	-1.325	83.882	1.00 30.00
ATOM	950	N	VAL	121	6.741	-2.927	83.035	1.00 35.95
ATOM	951	CA	VAL	121	7.188	-2.105	81.923	1.00 35.95
ATOM	952	СВ	VAL	121	8.459	-2.707	81.278	1.00 26.65
MOTA	953	CG1	VAL	121	8.765	-2.014	79.968	1.00 26.65
MOTA	954	CG2	. VAL	121	9.636	-2.547	82.230	1.00 26.65
MOTA	955	С	VAL	121	6.094	-1.913	80.869	1.00 35.95
MOTA	956	0	VAL	121	6.014	-0.854	80.230	1.00 35.95
ATOM	957	N	GLU	122	5.261	-2.934	80.674	1.00 34.93

				100	4 160	-2.822	79.718	1.00 34.93
ATOM	958	CA	GLU	122	4.169	-2.022	79.710	
MOTA	959	СВ	GLU	122	3.357	-4.114	79.647	1.00 40.08
MOTA	960	CG	GLU	122	3.868	-5.140	78.652	1.00 40.08
MOTA	961	CD	GLU	122	3.852	-4.634	77.226	1.00 40.08
MOTA	962	OE1	GLU	122	4.946	-4.398	76.666	1.00 40.08
MOTA	963	OE2	GLU	122	2.747	-4.469	76.667	1.00 40.08
ATOM	964	С	GLU	122	3.260	-1.697	80.191	1.00 34.93
ATOM	965	0	GLU	122	2.807	-0.877	79.397	1.00 34.93
ATOM	966	N	GLU	123	2.992	-1.665	81.491	1.00 32.96
ATOM	967	CA	GLU	123	2.138	-0.630	82.043	1.00 32.96
ATOM	968	СВ	GLU	123	1.928	-0.843	83.547	1.00 59.85
ATOM	969	CG	GLU	123	0.992	-1.999	83.912	1.00 59.85
ATOM	970	CD	GLU	123	-0.405	-1.850	83.318	1.00 59.85
ATOM	971	OE1	GLU	123	-0.950	-0.726	83.334	1.00 59.85
ATOM	972	OE2	GLU	123	-0.970	-2.860	82.843	1.00 59.85
MOTA	973	С	GLU	123	2.732	0.753	81.785	1.00 32.96
MOTA	974	О	GLU	123	2.006	1.695	81.462	1.00 32.96
MOTA	975	N	GLY	124	4.052	0.870	81.920	1.00 39.02
MOTA	976	CA	GLY	124	4.707	2.147	81.690	1.00 39.02
ATOM	977	С	GLY	124	4.549	2.599	80.249	1.00 39.02
MOTA	978	o	GLY	124	4.365	3.783	79.972	1.00 39.02
ATOM	979	N	LYS	125	4.620	1.643	79.328	1.00 35.24
MOTA	980	CA	LYS	125	4.474	1.925	77.909	1.00 35.24
MOTA	981	СВ	LYS	125	4.620	0.661	77.098	1.00 34.74

	MOTA	982	CG	LYS	125	5.913	-0.048	77.285	1.00 34.74
	MOTA	983	CD	LYS	125	5.958	-1.196	76.321	1.00 34.74
	MOTA	984	CE	LYS	125	7.363	-1.576	76.003	1.00 34.74
	MOTA	985	NZ	LYS	125	7.313	-2.617	74.961	1.00 34.74
	MOTA	986	С	LYS	125	3.097	2.466	77.638	1.00 35.24
	MOTA	987	0	LYS	125	2.926	3.440	76.893	1.00 35.24
	MOTA	988	N	ILE	126	2.104	1.794	78.215	1.00 32.74
	ATOM	989	CA	ILE	126	0.725	2.208	78.047	1.00 32.74
	ATOM	990	СВ	ILE	126	-0.219	1.320	78.864	1.00 29.38
	ATOM	991	CG2	ILE	126	-1.642	1.859	78.801	1.00 29.38
	MOTA	992	CG1	ILE	126	-0.154	-0.112	78.335	1.00 29.38
	MOTA	993	CD1	ILE	126	-1.019	-1.088	79.110	1.00 29.38
	MOTA	994	С	ILE	126	0.628	3.650	78.522	1.00 32.74
,	MOTA	995	О	ILE	126	-0.019	4.475	77.885	1.00 32.74
	ATOM	996	N	ALA	127	1.302	3.956	79.626	1.00 29.45
	ATOM	997	CA	ALA	127	1.284	5.309	80.166	1.00 29.45
	MOTA	998	СВ	ALA	127	2.028	5.356	81.501	1.00 24.11
	MOTA	999	С	ALA	127	1.922	6.273	79.170	1.00 29.45
	ATOM	1000	o	ALA	127	1.434	7.386	78.978	1.00 29.45
	ATOM	1001	N	ILE	128	3.013	5.847	78.536	1.00 32.93
	ATOM	1002	CA	ILE	128	3.691	6.687	77.552	1.00 32.93
	MOTA	1003	СВ	ILE	128	4.936	5.983	76.957	1.00 23.94
	ATOM	1004	CG2	ILE	128	5.442	6.742	75.725	1.00 23.94
	ATOM	1005	CG1	ILE	128	6.031	5.871	78.021	1.00 23.94

ATOM	1006	CD1	ILE	128	6.454	7.190	78.612	1.00 23.94
ATOM	1007	С	ILE	128	2.732	7.015	76.413	1.00 32.93
ATOM	1008	0	ILE	128	2.524	8.173	76.077	1.00 32.93
ATOM	1009	N	ARG	129	2.142	5.985	75.826	1.00 31.09
АТОМ	1010	CA	ARG	129	1.221	6.190	74.731	1.00 31.09
ATOM	1011	СВ	ARG	129	0.764	4.844	74.183	1.00 31.49
ATOM	1012	CG	ARG	129	1.917	3.977	73.731	1.00 31.49
ATOM	1013	CD	ARG	129	1.471	2.930	72.738	1.00 31.49
ATOM	1014	NE	ARG	129	2.600	2.124	72.292	1.00 31.49
ATOM	1015	cz	ARG	129	2.977	0.984	72.858	1.00 31.49
ATOM	1016	NH1	ARG	129	2.300	0.510	73.894	1.00 31.49
ATOM	1017	NH2	ARG	129	4.040	0.326	72.396	1.00 31.49
ATOM	1018	С	ARG	129	0.016	7.040	75.110	1.00 31.09
MOTA	1019	О	ARG	129	-0.590	7.665	74.242	1.00 31.09
MOTA	1020	N	ASN	130	-0.348	7.069	76.389	1.00 30.83
MOTA	1021	CA	ASN	130	-1.489	7.881	76.786	1.00 30.83
MOTA	1022	СВ	ASN	130	-1.981	7.517	78.193	1.00 39.26
ATOM	1023	CG	ASN	130	-2.935	6.328	78.185	1.00 39.26
ATOM	1024	OD1	ASN	130	-3.616	6.075	77.188	1.00 39.26
ATOM	1025	ND2	ASN	130	-3.005	5.610	79.301	1.00 39.26
ATOM	1026	С	ASN	130	-1.083	9.340	76.732	1.00 30.83
ATOM	1027	О	ASN	130	-1.826	10.185	76.230	1.00 30.83
ATOM	1028	N	ILE	131	0.108	9.627	77.247	1.00 30.20
MOTA	1029	CA	ILE	131	0.635	10.981	77.229	1.00 30.20

ATOM	1030	СВ	ILE	131	2.061	11.008	77.807	1.00 27.12
ATOM	1031	CG2	ILE	131	2.740	12.339	77.485	1.00 27.12
ATOM	1032	CG1	ILE	131	2.003	10.728	79.310	1.00 27.12
MOTA	1033	CD1	ILE	131	3.357	10.540	79.955	1.00 27.12
ATOM	1034	С	ILE	131	0.655	11.475	75.780	1.00 30.20
ATOM	1035	О	ILE	131	0.271	12.607	75.493	1.00 30.20
MOTA	1036	N	ARG	132	1.094	10.610	74.869	1.00 30.22
ATOM	1037	CA	ARG	132	1.149	10.943	73.452	1.00 30.22
MOTA	1038	СВ	ARG	132	1.653	9.744	72.649	1.00 38.82
MOTA	1039	CG	ARG	132	1.395	9.844	71.152	1.00 38.82
MOTA	1040	CD	ARG	132	1.837	8.584	70.433	1.00 38.82
ATOM	1041	NE	ARG	132	1.578	8.664	69.003	1.00 38.82
MOTA	1042	CZ	ARG	132	0.370	8.586	68.441	1.00 38.82
MOTA	1043	NH1	ARG	132	-0.718	8.412	69.185	1.00 38.82
ATOM	1044	NH2	ARG	132	0.245	8.714	67.125	1.00 38.82
MOTA	1045	С	ARG	132	-0.221	11.359	72.926	1.00 30.22
ATOM	1046	0	ARG	132	-0.356	12.389	72.271	1.00 30.22
ATOM	1047	N	ARG	133	-1.236	10.549	73.213	1.00 41.63
MOTA	1048	CA	ARG	133	-2.593	10.829	72.757	1.00 41.63
ATOM	1049	СВ	ARG	133	-3.498	9.635	73.059	1.00 50.13
ATOM	1050	CG	ARG	133	-4.978	9.972	73.139	1.00 50.13
MOTA	1051	CD	ARG	133	-5.837	8.757	72.843	1.00 50.13
MOTA	1052	NE	ARG	133	-5.188	7.531	73.287	1.00 50.13
ATOM	1053	CZ	ARG	133	-5.005	7.195	74.560	1.00 50.13

ATOM	1054	NH1	ARG	133	-5.432	7.992	75.537	1.00 50.13
MOTA	1055	ин2	ARG	133	-4.373	6.066	74.854	1.00 50.13
MOTA	1056	С	ARG	133	-3.209	12.105	73.328	1.00 41.63
MOTA	1057	0	ARG	133	-3.878	12.844	72.611	1.00 41.63
MOTA	1058	N	GLU	134	-2.989	12.366	74.612	1.00 37.67
MOTA	1059	CA	GLU	134	-3.550	13.559	75.234	1.00 37.67
ATOM	1060	СВ	GLU	134	-3.257	13.580	76.738	1.00 95.55
ATOM	1061	CG	GLU	134	-1.777	13.566	77.082	1.00 95.55
ATOM	1062	CD	GLU	134	-1.425	14.478	78.245	1.00 95.55
ATOM	1063	OE 1	GLU	134	-0.804	13.991	79.218	1.00 95.55
MOTA	1064	OE2	GLU	134	-1.763	15.682	78.179	1.00 95.55
ATOM	1065	С	GLU	134	-2.996	14.826	74.594	1.00 37.67
ATOM	1066	o	GLU	134	-3.747	15.736	74.254	1.00 37.67
MOTA	1067	N	ILE	135	-1.678	14.874	74.431	1.00 35.92
ATOM	1068	CA	ILE	135	-1.016	16.031	73.850	1.00 35.92
ATOM	1069	СВ	ILE	135	0.513	15.905	73.985	1.00 39.63
ATOM	1070	CG2	ILE	135	1.200	17.111	73.381	1.00 39.63
ATOM	1071	CG1	ILE	135	0.875	15.794	75.464	1.00 39.63
ATOM	1072	CD1	ILE	135	2.359	15.720	75.741	1.00 39.63
ATOM	1073	С	ILE	135	-1.382	16.183	72.386	1.00 35.92
ATOM	1074	O	ILE	135	-1.687	17.281	71.920	1.00 35.92
ATOM	1075	N	LEU	136	-1.354	15.072	71.665	1.00 41.46
ATOM	1076	CA	LEU	136	-1.682	15.081	70.254	1.00 41.46
ATOM	1077	СВ	LEU	136	-1.679	13.655	69.711	1.00 34.36

ATOM	1078	CG	LEU	136	-0.757	13.364	68.526	1.00 34.36
ATOM	1079	CD1	LEU	136	0.525	14.169	68.631	1.00 34.36
ATOM	1080	CD2	LEU	136	-0.460	11.869	68.494	1.00 34.36
MOTA	1081	С	LEU	136	-3.030	15.745	70.004	1.00 41.46
MOTA	1082	0	LEU	136	-3.172	16.506	69.056	1.00 41.46
MOTA	1083	N	LYS	137	-4.020	15.484	70.850	1.00 45.83
ATOM	1084	CA	LYS	137	-5.318	16.109	70.634	1.00 45.83
MOTA	1085	СВ	LYS	137	-6.449	15.330	71.326	1.00 74.57
ATOM	1086	CG	LYS	137	-6.404	15.320	72.835	1.00 74.57
ATOM	1087	CD	LYS	137	-7.364	14.283	73.409	1.00 74.57
ATOM	1088	CE	LYS	137	-8.739	14.854	73.707	1.00 74.57
ATOM	1089	NZ	LYS	137	-9.587	13.839	74.405	1.00 74.57
ATOM	1090	С	LYS	137	-5.311	17.559	71.087	1.00 45.83
MOTA	1091	0	LYS	137	-6.112	18.355	70.611	1.00 45.83
MOTA	1092	N	LYS	138	-4.421	17.911	72.008	1.00 38.48
MOTA	1093	CA	LYS	138	-4.343	19.298	72.434	1.00 38.48
ATOM	1094	СВ	LYS	138	-3.485	19.450	73.689	1.00 46.05
MOTA	1095	CG	LYS	138	-4.322	19.614	74.943	1.00 46.05
MOTA	1096	CD	LYS	138	-3.486	19.890	76.177	1.00 46.05
ATOM	1097	CE	LYS	138	-2.736	18.654	76.639	1.00 46.05
ATOM	1098	NZ	LYS	138	-2.026	18.906	77.934	1.00 46.05
АТОМ	1099	c	LYS	138	-3.751	20.104	71.278	1.00 38.48
ATOM	1100	0	LYS	138	-4.104	21.266	71.070	1.00 38.48
ATOM	1101	N	ILE	139	-2.859	19.476	70.518	1.00 31.21

MOTA	1102	CA	ILE	139	-2.255	20.128	69.366	1.00 31.21
ATOM	1103	СВ	ILE	139	-1.038	19.329	68.845	1.00 30.83
ATOM	1104	CG2	ILE	139	-0.604	19.859	67.490	1.00 30.83
ATOM	1105	CG1	ILE	139	0.124	19.430	69.840	1.00 30.83
ATOM	1106	CD1	ILE	139	1.240	18.448	69.571	1.00 30.83
ATOM	1107	С	ILE	139	-3.311	20.222	68.264	1.00 31.21
MOTA	1108	o	ILE	139	-3.432	21.249	67.600	1.00 31.21
ATOM	1109	N	LYS	140	-4.077	19.147	68.081	1.00 37.01
MOTA	1110	CA	LYS	140	-5.129	19.105	67.068	1.00 37.01
MOTA	1111	СВ	LYS	140	-5.858	17.765	67.111	1.00 60.99
MOTA	1112	CG	LYS	140	-6.134	17.149	65.751	1.00 60.99
MOTA	1113	CD	LYS	140	-4.888	16.462	65.195	1.00 60.99
MOTA	1114	CE	LYS	140	-5.206	15.633	63.949	1.00 60.99
ATOM	1115	NZ	LYS	140	-4.049	14.793	63.505	1.00 60.99
MOTA	1116	С	LYS	140	-6.136	20.223	67.322	1.00 37.01
MOTA	1117	O	LYS	140	-6.665	20.828	66.383	1.00 37.01
MOTA	1118	N	GLU	141	-6.402	20.485	68.599	1.00 32.47
MOTA	1119	CA	GLU	141	-7.335	21.527	68.994	1.00 32.47
ATOM	1120	СВ	GLU	141	-7.497	21.545	70.512	1.00 56.18
ATOM	1121	CG	GLU	141	-8.789	20.933	71.011	1.00 56.18
MOTA	1122	CD	GLU	141	-8.646	20.300	72.394	1.00 56.18
MOTA	1123	OE1	GLU	141	-8.088	20.951	73.310	1.00 56.18
MOTA	1124	OE2	GLU	141	-9.102	19.146	72.562	1.00 56.18
ATOM	1125	С	GLU	141	-6.797	22.862	68.527	1.00 32.47

ATOM	1126	0	GLU	141	-7.491	23.630	67.860	1.00 32.47
ATOM	1127	N	ASP	142	-5.548	23.135	68.887	1.00 43.49
ATOM	1128	CA	ASP	142	-4.911	24.379	68.504	1.00 43.49
ATOM	1129	СВ	ASP	142	-3.510	24.449	69.105	1.00 40.36
ATOM	1130	CG	ASP	142	-3.523	24.880	70.557	1.00 40.36
ATOM	1131	OD1	ASP	142	-4.599	24.852	71.180	1.00 40.36
MOTA	1132	OD2	ASP	142	-2.455	25.246	71.082	1.00 40.36
ATOM	1133	С	ASP	142	-4.860	24.497	66.987	1.00 43.49
ATOM	1134	0	ASP	142	-5.002	25.592	66.443	1.00 43.49
ATOM	1135	N	GLN	143	-4.667	23.374	66.302	1.00 38.41
ATOM	1136	CA	GLN	143	-4.634	23.401	64.848	1.00 38.41
ATOM	1137	СВ	GLN	143	-4.197	22.045	64.270	1.00 36.16
MOTA	1138	CG	GLN	143	-4.584	21.868	62.799	1.00 36.16
MOTA	1139	CD	GLN	143	-4.063	20.585	62.152	1.00 36.16
ATOM	1140	OE1	GLN	143	-3.863	19.562	62.814	1.00 36.16
ATOM	1141	NE 2	GLN	143	-3.869	20.632	60.843	1.00 36.16
ATOM	1142	С	GLN	143	-6.025	23.757	64.329	1.00 38.41
ATOM	1143	0	GLN	143	-6.161	24.502	63.362	1.00 38.41
ATOM	1144	N	LYS	144	-7.060	23.238	64.981	1.00 41.80
ATOM	1145	CA	LYS	144	-8.428	23.511	64.549	1.00 41.80
MOTA	1146	СВ	LYS	144	-9.405	22.591	65.283	1.00 70.22
MOTA	1147	CG	LYS	144	-10.807	22.637	64.711	1.00 70.22
MOTA	1148	CD	LYS	144	-11.689	21.509	65.226	1.00 70.22
MOTA	1149	CE	LYS	144	-13.040	21.518	64.514	1.00 70.22

ATOM	1150	NZ	LYS	144	-13.922	20.387	64.915	1.00 70.22
ATOM	1151	С	LYS	144	-8.840	24.982	64.730	1.00 41.80
ATOM	1152	0	LYS	144	-9.540	25.542	63.885	1.00 41.80
AIOM	1132	O	по	111	3.310	201012		
ATOM	1153	N	GLU	145	-8.404	25.616	65.814	1.00 32.59
ATOM	1154	CA	GLU	145	-8.753	27.020	66.029	1.00 32.59
ATOM	1155	СВ	GLU	145	-8.406	27.480	67.435	1.00 54.82
ATOM	1156	CG	GLU	145	-8.937	26.652	68.554	1.00 54.82
ATOM	1157	CD	GLU	145	-8.574	27.273	69.878	1.00 54.82
ATOM	1158	OE 1	GLU	145	-8.448	26.529	70.874	1.00 54.82
ATOM	1159	OE 2	GLU	145	-8.418	28.515	69.915	1.00 54.82
ATOM	1160	С	GLU	145	-7.997	27.933	65.078	1.00 32.59
ATOM	1161	0	GLU	145	-8.346	29.108	64.938	1.00 32.59
ATOM	1162	N	GLY	146	-6.938	27.406	64.463	1.00 27.98
ATOM	1163	CA	GLY	146	-6.153	28.200	63.539	1.00 27.98
ATOM	1164	С	GLY	146	-4.874	28.738	64.154	1.00 27.98
ATOM	1165	o	GLY	146	-4.094	29.421	63.487	1.00 27.98
ATOM	1166	N	LEU	147	-4.654	28.437	65.429	1.00 31.04
		_				00 006	66 100	1 00 31 04
MOTA	1167	CA	LEU	147	-3.451	28.896	66.108	1.00 31.04
ATOM	1168	СВ	LEU	147	-3.506	28.528	67.590	1.00 33.77
ATOM	1169	CG	LEU	147	-4.561	29.240	68.439	1.00 33.77
ATOM	1170	CD1	LEU	147	-4.518	28.698	69.852	1.00 33.77
ATOM	1171	CD2	LEU	147	-4.293	30.738	68.437	1.00 33.77
MOTA	1172	С	LEU	147	-2.211	28.269	65.481	1.00 31.04
ATOM	1173	0	LEU	147	-1.216	28.947	65.227	1.00 31.04

ATOM	1174	N	ILE	148	-2.285	26.965	65.239	1.00 38.27
ATOM	1175	CA	ILE	148	-1.182	26.213	64.658	1.00 38.27
ATOM	1176	СВ	ILE	148	-0.917	24.931	65.461	1.00 29.04
MOTA	1177	CG2	ILE	148	0.141	24.102	64.778	1.00 29.04
ATOM	1178	CG1	ILE	148	-0.503	25.287	66.884	1.00 29.04
ATOM	1179	CD1	ILE	148	-0.470	24.104	67.811	1.00 29.04
ATOM	1180	С	ILE	148	-1.517	25.811	63.236	1.00 38.27
ATOM	1181	0	ILE	148	-2.359	24.936	63.021	1.00 38.27
ATOM	1182	N	PRO	149	-0.872	26.446	62.243	1.00 34.71
ATOM	1183	CD	PRO	149	0.123	27.528	62.327	1.00 39.35
ATOM	1184	CA	PRO	149	-1.157	26.094	60.849	1.00 34.71
ATOM	1185	СВ	PRO	149	-0.294	27.079	60.053	1.00 39.35
ATOM	1186	CG	PRO	149	0.821	27.421	60.993	1.00 39.35
MOTA	1187	С	PRO	149	-0.806	24.633	60.592	1.00 34.71
MOTA	1188	o	PRO	149	0.086	24.083	61.236	1.00 34.71
MOTA	1189	N	GLU	150	-1.518	24.010	59.657	1.00 45.51
MOTA	1190	CA	GLU	150	-1.319	22.602	59.315	1.00 45.51
ATOM	1191	СВ	GLU	150	-1.953	22.304	57.960	1.00 61.98
MOTA	1192	CG	GLU	150	-1.981	20.829	57.631	1.00 61.98
MOTA	1193	CD	GLU	150	-2.892	20.505	56.460	1.00 61.98
MOTA	1194	OE 1	GLU	150	-2.978	19.313	56.086	1.00 61.98
MOTA	1195	OE 2	GLU	150	-3.524	21.438	55.915	1.00 61.98
ATOM	1196	С	GLU	150	0.127	22.106	59.316	1.00 45.51
АТОМ	1197	О	GLU	150	0.452	21.141	60.001	1.00 45.51

ATOM	1198	N	ASP	151	0.994	22.753	58.549	1.00 41.19
MOTA	1199	CA	ASP	151	2.392	22.340	58.486	1.00 41.19
MOTA	1200	СВ	ASP	151	3.152	23.242	57.517	1.00 62.06
MOTA	1201	CG	ASP	151	2.710	23.042	56.088	1.00 62.06
MOTA	1202	OD1	ASP	151	3.050	23.886	55.232	1.00 62.06
ATOM	1203	OD2	ASP	151	2.025	22.033	55.817	1.00 62.06
ATOM	1204	С	ASP	151	3.096	22.322	59.845	1.00 41.19
MOTA	1205	0	ASP	151	3.879	21.416	60.131	1.00 41.19
MOTA	1206	N	ASP	152	2.825	23.316	60.683	1.00 40.51
MOTA	1207	CA	ASP	152	3.461	23.366	61.998	1.00 40.51
MOTA	1208	СВ	ASP	152	3.259	24.736	62.642	1.00 57.97
MOTA	1209	CG	ASP	152	3.931	25.841	61.865	1.00 57.97
MOTA	1210	OD1	ASP	152	3.460	26.168	60.760	1.00 57.97
MOTA	1211	OD2	ASP	152	4.942	26.379	62.354	1.00 57.97
ATOM	1212	С	ASP	152	2.908	22.282	62.910	1.00 40.51
ATOM	1213	0	ASP	152	3.598	21.794	63.799	1.00 40.51
MOTA	1214	N	ALA	153	1.656	21.907	62.678	1.00 34.68
MOTA	1215	CA	ALA	153	1.012	20.881	63.472	1.00 34.68
MOTA	1216	СВ	ALA	153	-0.485	20.867	63.185	1.00 29.15
MOTA	1217	С	ALA	153	1.633	19.532	63.130	1.00 34.68
ATOM	1218	0	ALA	153	1.885	18.707	64.010	1.00 34.68
MOTA	1219	N	LYS	154	1.895	19.314	61.848	1.00 39.97
MOTA	1220	CA	LYS	154	2.484	18.057	61.424	1.00 39.97
ATOM	1221	СВ	LYS	154	2.539	17.971	59.899	1.00 79.16

ATOM	1222	CG	LYS	154	1.176	17.724	59.270	1.00 79.16
ATOM	1223	CD	LYS	154	1.238	17.768	57.753	1.00 79.16
MOTA	1224	CE	LYS	154	-0.150	17.675	57.135	1.00 79.16
ATOM	1225	NZ	LYS	154	-0.105	17.865	55.654	1.00 79.16
ATOM	1226	С	LYS	154	3.861	17.813	62.014	1.00 39.97
ATOM	1227	О	LYS	154	4.124	16.716	62.498	1.00 39.97
ATOM	1228	N	ARG	155	4.740	18.813	62.005	1.00 39.62
MOTA	1229	CA	ARG	155	6.075	18.588	62.560	1.00 39.62
ATOM	1230	СВ	ARG	155	7.053	19.698	62.160	1.00 60.09
ATOM	1231	CG	ARG	155	6.945	20.956	62.975	1.00 60.09
ATOM	1232	CD	ARG	155	8.256	21.723	62.990	1.00 60.09
ATOM	1233	NE	ARG	155	8.047	23.093	63.448	1.00 60.09
MOTA	1234	CZ	ARG	155	7.654	23.432	64.674	1.00 60.09
MOTA	1235	NH1	ARG	155	7.434	22.501	65.594	1.00 60.09
ATOM	1236	NH2	2 ARG	155	7.447	24.709	64.972	1.00 60.09
MOTA	1237	С	ARG	155	6.028	18.462	64.081	1.00 39.62
MOTA	1238	0	ARG	155	6.890	17.831	64.693	1.00 39.62
MOTA	1239	N	LEU	156	5.014	19.067	64.686	1.00 37.71
MOTA	1240	CA	LEU	156	4.840	19.002	66.131	1.00 37.71
MOTA	1241	СВ	LEU	156	3.717	19.951	66.556	1.00 41.73
MOTA	1242	CG	LEU	156	3.959	20.955	67.691	1.00 41.73
MOTA	1243	CD1	LEU	156	5.447	21.194	67.929	1.00 41.73
ATOM	1244	CD2	LEU	156	3.258	22.257	67.324	1.00 41.73
ATOM	1245	С	LEU	156	4.473	17.558	66.471	1.00 37.71

ATOM	1246	O	LEU	156	4.996	16.982	67.420	1.00 37.71
ATOM	1247	N	GLU	157	3.578	16.981	65.673	1.00 38.40
ATOM	1248	CA	GLU	157	3.140	15.606	65.867	1.00 38.40
ATOM	1249	СВ	GLU	157	2.013	15.278	64.885	1.00 42.33
ATOM	1250	CG	GLU	157	0.741	16.056	65.182	1.00 42.33
ATOM	1251	CD	GLU	157	-0.137	16.281	63.961	1.00 42.33
MOTA	1252	OE 1	GLU	157	-1.113	17.060	64.072	1.00 42.33
ATOM	1253	OE 2	GLU	157	0.145	15.690	62.896	1.00 42.33
MOTA	1254	С	GLU	157	4.312	14.644	65.687	1.00 38.40
MOTA	1255	О	GLU	157	4.451	13.682	66.443	1.00 38.40
MOTA	1256	N	ASN	158	5.157	14.912	64.694	1.00 42.65
MOTA	1257	CA	ASN	158	6.323	14.072	64.437	1.00 42.65
MOTA	1258	СВ	ASN	158	7.060	14.549	63.187	1.00 53.78
MOTA	1259	CG	ASN	158	6.273	14.298	61.923	1.00 53.78
ATOM	1260	OD1	ASN	158	6.565	14.868	60.868	1.00 53.78
MOTA	1261	ND2	ASN	158	5.268	13.432	62.016	1.00 53.78
MOTA	1262	С	ASN	158	7.274	14.100	65.627	1.00 42.65
MOTA	1263	0	ASN	158	7.824	13.068	66.021	1.00 42.65
MOTA	1264	N	GLU	159	7.468	15.282	66.203	1.00 41.03
MOTA	1265	CA	GLU	159	8.352	15.400	67.350	1.00 41.03
MOTA	1266	СВ	GLU	159	8.517	16.865	67.760	1.00 80.12
MOTA	1267	CG	GLU	159	9.384	17.043	68.999	1.00 80.12
MOTA	1268	CD	GLU	159	10.772	16.430	68.852	1.00 80.12
ATOM	1269	OE1	GLU	159	11.367	16.051	69.889	1.00 80.12

ATOM	1270	OE 2	GLU	159	11.270	16.337	67.708	1.00 80.12
ATOM	1271	С	GLU	159	7.803	14.579	68.516	1.00 41.03
MOTA	1272	0	GLU	159	8.551	13.882	69.200	1.00 41.03
MOTA	1273	N	ILE	160	6.496	14.656	68.737	1.00 37.16
MOTA	1274	CA	ILE	160	5.878	13.896	69.810	1.00 37.16
MOTA	1275	СВ	ILE	160	4.369	14.254	69.961	1.00 41.43
MOTA	1276	CG2	LE	160	3.548	13.011	70.247	1.00 41.43
ATOM	1277	CG1	ILE	160	4.173	15.224	71.130	1.00 41.43
ATOM	1278	CD1	ILE	160	4.867	16.538	70.976	1.00 41.43
ATOM	1279	С	ILE	160	6.040	12.413	69.502	1.00 37.16
ATOM	1280	О	ILE	160	6.320	11.607	70.386	1.00 37.16
ATOM	1281	N	GLN	161	5.875	12.056	68.236	1.00 40.44
ATOM	1282	CA	GLN	161	6.007	10.667	67.824	1.00 40.44
ATOM	1283	СВ	GLN	161	5.642	10.518	66.348	1.00 47.39
ATOM	1284	CG	GLN	161	5.636	9.082	65.878	1.00 47.39
ATOM	1285	CD	GLN	161	4.721	8.211	66.716	1.00 47.39
ATOM	1286	OE1	GLN	161	5.116	7.136	67.178	1.00 47.39
АТОМ	1287	NE2	GLN	161	3.489	8.667	66.914	1.00 47.39
ATOM	1288	С	GLN	161	7.435	10.171	68.064	1.00 40.44
ATOM	1289	0	GLN	161	7.643	9.034	68.498	1.00 40.44
ATOM	1290	N	ALA	162	8.416	11.029	67.785	1.00 32.94
АТОМ	1291	CA	ALA	162	9.810	10.670	67.986	1.00 32.94
ATOM	1292	СВ	ALA	162	10.719	11.759	67.434	1.00 30.93
ATOM	1293	С	ALA	162	10.056	10.465	69.478	1.00 32.94

ATOM	1294	0	ALA	162	10.733	9.511	69.876	1.00 32.94
ATOM	1295	N	LEU	163	9.492	11.350	70.299	1.00 31.29
ATOM	1296	CA	LEU	163	9.629	11.256	71.759	1.00 31.29
ATOM	1297	СВ	LEU	163	8.952	12.438	72.446	1.00 44.08
ATOM	1298	CG	LEU	163	9.756	13.730	72.562	1.00 44.08
MOTA	1299	CD1	LEU	163	8.899	14.794	73.242	1.00 44.08
MOTA	1300	CD2	LEU	163	11.026	13.467	73.362	1.00 44.08
MOTA	1301	С	LEU	163	9.016	9.970	72.298	1.00 31.29
MOTA	1302	O	LEU	163	9.566	9.337	73.197	1.00 31.29
MOTA	1303	N	THR	164	7.867	9.601	71.746	1.00 30.16
ATOM	1304	CA	THR	164	7.175	8.389	72.147	1.00 30.16
MOTA	1305	СВ	THR	164	5.812	8.280	71.431	1.00 32.81
MOTA	1306	og1	THR	164	4.972	9.360	71.849	1.00 32.81
MOTA	1307	CG2	THR	164	5.125	6.972	71.766	1.00 32.81
ATOM	1308	С	THR	164	8.033	7.163	71.825	1.00 30.16
MOTA	1309	0	THR	164	8.212	6.290	72.674	1.00 30.16
MOTA	1310	N	ASP	165	8.567	7.093	70.609	1.00 36.74
MOTA	1311	CA	ASP	165	9.405	5.954	70.237	1.00 36.74
MOTA	1312	СВ	ASP	165	9.809	6.009	68.764	1.00 43.20
MOTA	1313	CG	ASP	165	8.627	6.038	67.838	1.00 43.20
MOTA	1314	OD1	ASP	165	7.598	5.410	68.157	1.00 43.20
MOTA	1315	OD2	ASP	165	8.733	6.683	66.781	1.00 43.20
MOTA	1316	С	ASP	165	10.669	5.957	71.081	1.00 36.74
ATOM	1317	0	ASP	165	11.175	4.910	71.468	1.00 36.74

ATOM	1318	N	GLU	166	11.180	7.148	71.360	1.00 35.71
ATOM	1319	CA	GLU	166	12.379	7.271	72.159	1.00 35.71
ATOM	1320	СВ	GLU	166	12.782	8.744	72.247	1.00 54.57
ATOM	1321	CG	GLU	166	13.811	9.057	73.318	1.00 54.57
ATOM	1322	CD	GLU	166	14.165	10.542	73.381	1.00 54.57
ATOM	1323	OE1	GLU	166	14.607	11.010	74.458	1.00 54.57
ATOM	1324	OE2	GLU	166	14.010	11.233	72.346	1.00 54.57
ATOM	1325	С	GLU	166	12.131	6.678	73.549	1.00 35.71
MOTA	1326	0	GLU	166	12.978	5.958	74.083	1.00 35.71
ATOM	1327	N	PHE	167	10.966	6.957	74.128	1.00 32.84
ATOM	1328	CA	PHE	167	10.664	6.437	75.455	1.00 32.84
ATOM	1329	СВ	PHE	167	9.675	7.349	76.181	1.00 33.04
MOTA	1330	CG	PHE	167	10.337	8.524	76.824	1.00 33.04
MOTA	1331	CD1	PHE	167	10.602	9.677	76.093	1.00 33.04
MOTA	1332	CD2	PHE	167	10.806	8.435	78.127	1.00 33.04
MOTA	1333	CE1	PHE	167	11.330	10.732	76.650	1.00 33.04
MOTA	1334	CE2	PHE	167	11.536	9.483	78.695	1.00 33.04
MOTA	1335	CZ	PHE	167	11.802	10.633	77.949	1.00 33.04
MOTA	1336	С	PHE	167	10.205	4.992	75.492	1.00 32.84
MOTA	1337	О	PHE	167	10.456	4.295	76.471	1.00 32.84
MOTA	1338	N	ILE	168	9.534	4.536	74.439	1.00 29.66
MOTA	1339	CA	ILE	168	9.129	3.141	74.378	1.00 29.66
MOTA	1340	СВ	ILE	168	8.321	2.835	73.090	1.00 23.21
ATOM	1341	CG2	LLE	168	8.154	1.336	72.914	1.00 23.21

ATOM	1342	CG1	ILE	168	6.956	3.527	73.151	1.00 23.21
ATOM	1343	CD1	ILE	168	6.045	3.006	74.261	1.00 23.21
ATOM	1344	С	ILE	168	10.441	2.357	74.333	1.00 29.66
ATOM	1345	0	ILE	168	10.576	1.314	74.963	1.00 29.66
ATOM	1346	N	GLU	169	11.409	2.876	73.584	1.00 31.65
ATOM	1347	CA	GLU	169	12.714	2.233	73.460	1.00 31.65
ATOM	1348	СВ	GLU	169	13.622	3.015	72.512	1.00 93.52
MOTA	1349	CG	GLU	169	13.972	2.279	71.237	1.00 93.52
ATOM	1350	CD	GLU	169	15.263	2.784	70.617	1.00 93.52
ATOM	1351	OE1	GLU	169	16.259	2.029	70.623	1.00 93.52
ATOM	1352	OE2	GLU	169	15.287	3.936	70.133	1.00 93.52
MOTA	1353	С	GLU	169	13.399	2.133	74.811	1.00 31.65
MOTA	1354	0	GLU	169	13.927	1.084	75.166	1.00 31.65
ATOM	1355	N	LYS	170	13.397	3.233	75.557	1.00 29.27
ATOM	1356	CA	LYS	170	14.020	3.262	76.869	1.00 29.27
MOTA	1357	СВ	LYS	170	13.933	4.665	77.479	1.00 37.44
MOTA	1358	CG	LYS	170	14.604	5.778	76.681	1.00 37.44
MOTA	1359	CD	LYS	170	14.878	6.964	77.592	1.00 37.44
MOTA	1360	CE	LYS	170	15.005	8.291	76.849	1.00 37.44
MOTA	1361	NZ	LYS	170	16.177	8.363	75.931	1.00 37.44
MOTA	1362	С	LYS	170	13.345	2.258	77.799	1.00 29.27
MOTA	1363	0	LYS	170	13.999	1.647	78.646	1.00 29.27
MOTA	1364	N	LEU	171	12.034	2.090	77.651	1.00 41.19
ATOM	1365	CA	LEU	171	11.309	1.134	78.481	1.00 41.19

MOTA	1366	СВ	LEU	171	9.802	1.224	78.237	1.00 27.02
ATOM	1367	CG	LEU	171	8.903	1.952	79.251	1.00 27.02
MOTA	1368	CD1	LEU	171	9.643	2.164	80.555	1.00 27.02
MOTA	1369	CD2	LEU	171	8.446	3.275	78.696	1.00 27.02
MOTA	1370	С	LEU	171	11.789	-0.271	78.153	1.00 41.19
ATOM	1371	0	LEU	171	12.092	-1.059	79.048	1.00 41.19
ATOM	1372	N	ASP	172	11.872	-0.577	76.863	1.00 35.05
MOTA	1373	CA	ASP	172	12.321	-1.890	76.435	1.00 35.05
MOTA	1374	СВ	ASP	172	12.324	-2.001	74.907	1.00 41.75
MOTA	1375	CG	ASP	172	10.923	-2.075	74.324	1.00 41.75
MOTA	1376	OD1	ASP	172	10.790	-2.135	73.080	1.00 41.75
ATOM	1377	OD2	ASP	172	9.954	-2.077	75.111	1.00 41.75
MOTA	1378	C	ASP	172	13.711	-2.152	76.962	1.00 35.05
MOTA	1379	0	ASP	172	14.037	-3.283	77.336	1.00 35.05
MOTA	1380	N	GLU	173	14.533	-1.110	77.003	1.00 32.93
MOTA	1381	CA	GLU	173	15.892	-1.278	77.491	1.00 32.93
MOTA	1382	СВ	GLU	173	16.706	-0.007	77.306	1.00 41.86
MOTA	1383	CG	GLU	173	18.142	-0.213	77.734	1.00 41.86
MOTA	1384	CD	GLU	173	18.999	1.008	77.563	1.00 41.86
ATOM	1385	OE 1	GLU	173	18.671	1.847	76.688	1.00 41.86
ATOM	1386	OE2	GLU	173	20.009	1.112	78.294	1.00 41.86
ATOM	1387	С	GLU	173	15.873	-1.630	78.965	1.00 32.93
ATOM	1388	0	GLU	173	16.495	-2.601	79.400	1.00 32.93
MOTA	1389	N	VAL	174	15.160	-0.811	79.726	1.00 31.38

ATOM	1390	CA	VAL	174	15.023	-0.990	81.156	1.00 31.38
ATOM	1391	СВ	VAL	174	14.087	0.108	81.715	1.00 34.37
ATOM	1392	CG1	VAL	174	13.572	-0.277	83.053	1.00 34.37
ATOM	1393	CG2	VAL	174	14.846	1.426	81.815	1.00 34.37
ATOM	1394	С	VAL	174	14.506	-2.401	81.488	1.00 31.38
MOTA	1395	o	VAL	174	14.896	-2.997	82.492	1.00 31.38
MOTA	1396	N	PHE	175	13.631	-2.943	80.648	1.00 32.64
MOTA	1397	CA	PHE	175	13.136	-4.290	80.895	1.00 32.64
ATOM	1398	СВ	PHE	175	11.999	-4.661	79.947	1.00 30.70
MOTA	1399	CG	PHE	175	11.718	-6.133	79.920	1.00 30.70
ATOM	1400	CD1	PHE	175	11.187	-6.770	81.038	1.00 30.70
ATOM	1401	CD2	PHE	175	12.056	-6.898	78.810	1.00 30.70
MOTA	1402	CE1	PHE	175	11.001	-8.159	81.056	1.00 30.70
MOTA	1403	CE2	PHE	175	11.878	-8.280	78.811	1.00 30.70
ATOM	1404	CZ	PHE	175	11.348	-8.916	79.938	1.00 30.70
MOTA	1405	С	PHE	175	14.262	-5.296	80.695	1.00 32.64
MOTA	1406	О	PHE	175	14.444	-6.196	81.509	1.00 32.64
MOTA	1407	N	GLU	176	15.002	-5.150	79.597	1.00 36.36
ATOM	1408	CA	GLU	176	16.120	-6.039	79.290	1.00 36.36
MOTA	1409	СВ	GLU	176	16.826	-5.595	78.011	1.00 49.35
MOTA	1410	CG	GLU	176	16.862	-6.649	76.921	1.00 49.35
MOTA	1411	CD	GLU	176	17.554	-7.935	77.348	1.00 49.35
MOTA	1412	OE1	GLU	176	18.722	-7.869	77.793	1.00 49.35
ATOM	1413	OE2	GLU	176	16.929	-9.015	77.232	1.00 49.35

ATOM	1414	С	GLU	176	17.125	-6.050	80.428	1.00 36.36
ATOM	1415	0	GLU	176	17.603	-7.110	80.832	1.00 36.36
MOTA	1416	N	ILE	177	17.444	-4.866	80.942	1.00 35.83
MOTA	1417	CA	ILE	177	18.398	-4.740	82.033	1.00 35.83
ATOM	1418	СВ	ILE	177	18.606	-3.259	82.422	1.00 29.26
MOTA	1419	CG2	? ILE	177	19.370	-3.163	83.737	1.00 29.26
ATOM	1420	CG1	ILE	177	19.358	-2.525	81.303	1.00 29.26
ATOM	1421	CD1	ILE	177	20.851	-2.863	81.233	1.00 29.26
MOTA	1422	C	ILE	177	17.936	-5.513	83.265	1.00 35.83
MOTA	1423	0	ILE	177	18.738	-6.162	83.946	1.00 35.83
MOTA	1424	N	LYS	178	16.643	-5.448	83.554	1.00 34.13
ATOM	1425	CA	LYS	178	16.112	-6.147	84.707	1.00 34.13
MOTA	1426	СВ	LYS	178	14.687	-5.684	85.003	1.00 28.12
MOTA	1427	CG	LYS	178	14.188	-6.109	86.376	1.00 28.12
MOTA	1428	CD	LYS	178	15.059	-5.482	87.469	1.00 28.12
MOTA	1429	CE	LYS	178	14.588	-5.848	88.857	1.00 28.12
MOTA	1430	NZ	LYS	178	15.375	-5.118	89.878	1.00 28.12
ATOM	1431	С	LYS	178	16.117	-7.645	84.444	1.00 34.13
MOTA	1432	0	LYS	178	16.470	-8.440	85.325	1.00 34.13
ATOM	1433	N	LYS	179	15.719	-8.028	83.232	1.00 34.54
ATOM	1434	CA	LYS	179	15.682	-9.435	82.865	1.00 34.54
ATOM	1435	СВ	LYS	179	15.233	-9.610	81.419	1.00 32.56
ATOM	1436	CG	LYS	179	15.201	-11.056	80.963	1.00 32.56
ATOM	1437	CD	LYS	179	14.889	-11.124	79.487	1.00 32.56

ATOM	1438	CE	LYS	179	14.908	-12.551	78.949	1.00 32.56
MOTA	1439	NZ	LYS	179	14.654	-12.572	77.478	1.00 32.56
MOTA	1440	С	LYS	179	17.064	-10.035	83.044	1.00 34.54
MOTA	1441	0	LYS	179	17.202	-11.146	83.554	1.00 34.54
ATOM	1442	N	GLU	180	18.085	-9.297	82.623	1.00 32.37
ATOM	1443	CA	GLU	180	19.455	-9.765	82.765	1.00 32.37
MOTA	1444	СВ	GLU	180	20.427	-8.792	82.106	1.00 44.31
MOTA	1445	CG	GLU	180	20.288	-8.756	80.608	1.00 44.31
ATOM	1446	CD	GLU	180	21.035	-7.609	79.980	1.00 44.31
MOTA	1447	OE1	GLU	180	20.809	-7.366	78.779	1.00 44.31
MOTA	1448	OE2	glu	180	21.841	-6.951	80.677	1.00 44.31
MOTA	1449	С	GLU	180	19.793	-9.908	84.232	1.00 32.37
ATOM	1450	0	GLU	180	20.371	-10.898	84.635	1.00 32.37
ATOM	1451	N	GLU	181	19.422	-8.920	85.035	1.00 35.90
MOTA	1452	CA	GLU	181	19.708	-8.966	86.465	1.00 35.90
ATOM	1453	СВ	GLU	181	19.124	-7.738	87.160	1.00 47.46
ATOM	1454	CG	GLU	181	19.444	-7.662	88.642	1.00 47.46
ATOM	1455	CD	GLU	181	18.738	-6.511	89.342	1.00 47.46
ATOM	1456	OE1	GLU	181	17.501	-6.522	89.412	1.00 47.46
ATOM	1457	OE2	GLU	181	19.419	-5.589	89.823	1.00 47.46
ATOM	1458	С	GLU	181	19.125 -	-10.230	87.096	1.00 35.90
ATOM	1459	0	GLU	181	19.771 -	-10.892	87.910	1.00 35.90
MOTA	1460	N	ILE	182	17.899 -	-10.555	86.709	1.00 38.32
ATOM	1461	CA	ILE	182	17.210 -	-11.717	87.243	1.00 38.32

ATOM	1462	СВ	ILE	182	15.724 -11.673	86.870	1.00 31.34
MOTA	1463	CG	2 ILE	182	15.056 -13.010	87.194	1.00 31.34
MOTA	1464	CG	1 ILE	182	15.051 -10.513	87.595	1.00 31.34
MOTA	1465	CD	1 ILE	182	13.680 -10.173	87.047	1.00 31.34
MOTA	1466	С	ILE	182	17.798 -13.040	86.773	1.00 38.32
MOTA	1467	0	ILE	182	17.841 -13.997	87.541	1.00 38.32
ATOM	1468	N	MET	183	18.249 -13.094	85.520	1.00 47.57
ATOM	1469	CA	MET	183	18.819 -14.318	84.957	1.00 47.57
ATOM	1470	СВ	MET	183	18.614 -14.370	83.444	1.00 45.73
ATOM	1471	CG	MET	183	17.174 -14.221	82.994	1.00 45.73
ATOM	1472	SD	MET	183	16.076 -15.382	83.795	1.00 45.73
ATOM	1473	CE	MET	183	16.837 -16.936	83.323	1.00 45.73
MOTA	1474	С	MET	183	20.299 -14.434	85.261	1.00 47.57
ATOM	1475	0	MET	183	20.777 -15.516	85.583	1.00 47.57
MOTA	1476	N	GLU	184	21.026 -13.325	85.128	1.00 64.62
ATOM	1477	CA	GLU	184	22.455 -13.295	85.437	1.00 64.62
MOTA	1478	СВ	GLU	184	23.104 -12.016	84.885	1.00100.23
ATOM	1479	CG	GLU	184	22.781 -11.669	83.422	1.00100.23
ATOM	1480	CD	GLU	184	23.213 -12.733	82.429	1.00100.23
ATOM	1481	OE1	GLU	184	24.282 -13.344	82.642	1.00100.23
ATOM	1482	OE2	GLU	184	22.490 -12.945	81.426	1.00100.23
ATOM	1483	С	GLU	184	22.528 -13.313	86.974	1.00 64.62
ATOM	1484	0	GLU	184	23.295 -12.582	87.596	1.00 64.62
MOTA	1485	N	PHE	185	21.677 -14.170	87.538	1.00 64.82

ATOM	1486	CA	PHE	185	21.470	-14.427	88.968	1.00 64.82
ATOM	1487	СВ	PHE	185	21.845	-15.885	89.308	1.00100.63
ATOM	1488	CG	PHE	185	23.303	-16.226	89.133	1.00100.63
ATOM	1489	CD1	PHE	185	24.222	-15.967	90.146	1.00100.63
ATOM	1490	CD2	PHE	185	23.744	-16.877	87.984	1.00100.63
ATOM	1491	CE1	PHE	185	25.554	-16.363	90.018	1.00100.63
ATOM	1492	CE2	PHE	185	25.074	-17.272	87.854	1.00100.63
ATOM	1493	CZ	PHE	185	25.975	-17.015	88.872	1.00100.63
MOTA	1494	С	PHE	185	22.019	-13.492	90.040	1.00 64.82
MOTA	1495	0	PHE	185	21.202	-13.108	90.910	1.00 64.82
ATOM	1496	OT	PHE	185	23.222	-13.161	90.023	1.00100.63
ATOM	1497	ОН2	WAT	1	7.314	-7.392	118.599	1.00 28.51
ATOM	1498	ОН2	WAT	2	20.141	-10.167	116.646	1.00 41.71
ATOM	1499	ОН2	WAT	3	-0.839	7.103	71.695	1.00 38.40
MOTA	1500	ОН2	TAW	4	20.724	-12.318	113.141	1.00 36.06
MOTA	1501	ОН2	WAT	5	13.214	7.193	109.995	1.00 34.42
ATOM	1502	ОН2	WAT	6	-4.563	25.067	61.299	1.00 35.61
ATOM	1503	ОН2	WAT	7	9.162	-10.160	92.783	1.00 40.02
ATOM	1504	ОН2	WAT	8	15.821	7.078	82.761	1.00 45.31
ATOM	1505	ОН2	WAT	9	15.568	0.183	88.102	1.00 24.68
ATOM	1506	ОН2	WAT	10	17.031	-3.108	93.557	1.00 33.93
MOTA	1507	ОН2	WAT	11	-5.066	12.003	70.605	1.00 31.32
ATOM	1508	ОН2	WAT	12	17.672	-16.020	114.048	1.00 36.87
ATOM	1509	ОН2	WAT	13	7.862	-1.817	71.942	1.00 33.70

ATOM	1510	OH2 V	WAT 14	8.138	-13.701	94.980	1.00 33.33
ATOM	1511	OH2 V	WAT 15	11.279	0.783	115.697	1.00 32.56
ATOM	1512	он2 Т	WAT 16	16.003	6.468	88.212	1.00 29.59
ATOM	1513	OH2 V	WAT 17	8.553	-16.970	109.277	1.00 43.42
ATOM	1514	OH2 V	VAT 18	18.461	-2.485	119.281	1.00 42.15
АТОМ	1515	OH2 V	VAT 19	6.746	-17.081	107.102	1.00 37.19
ATOM	1516	OH2 V	VAT 20	2.389	-1.792	87.493	1.00 33.97
ATOM	1517	OH2 V	VAT 21	16.366	-2.230	89.109	1.00 26.69
ATOM	1518	OH2 V	VAT 22	5.158	-12.795	87.845	1.00 43.81
ATOM	1519	OH2 V	VAT 23	5.761	7.139	104.779	1.00 36.64
ATOM	1520	OH2 V	VAT 24	10.078	-21.141	83.981	1.00 45.96
MOTA	1521	OH2 V	VAT 25	1.702	29.020	57.574	1.00 39.21
MOTA	1522	OH2 V	VAT 26	21.863	-2.142	99.878	1.00 44.34
ATOM	1523	OH2 V	VAT 27	17.198	13.784	85.530	1.00 51.52
MOTA	1524	он2 и	VAT 28	-0.400	2.402	82.821	1.00 35.70
MOTA	1525	OH2 W	VAT 29	13.686	5.872	89.473	1.00 44.84
MOTA	1526	OH2 W	7AT 30	17.457	-13.476	113.108	1.00 33.62
MOTA	1527	OH2 W	JAT 31	16.228	-0.207	73.422	1.00 40.99
ATOM	1528	OH2 W	7AT 32	19.350	1.763	107.228	1.00 41.09
MOTA	1529	OH2 W	JAT 33	21.908	-12.207	93.466	1.00 47.34
MOTA	1530	OH2 W	JAT 34	2.605	-3.562	103.490	1.00 38.48
ATOM	1531	OH2 W	/AT 35	-2.900	25.786	57.810	1.00 32.08
ATOM	1532	OH2 W	JAT 36	9.098	-15.151	82.349	1.00 38.27
MOTA	1533	OH2 W	JAT 37	-12.293	25.412	66.878	1.00 41.13

ATOM	1534	ОН2	WAT	38	15.500	-8.451	95.623	1.00 36.30
ATOM	1535	ОН2	WAT	39	-2.144	0.572	109.124	1.00 41.18
ATOM	1536	ОН2	WAT	40	1.366	0.844	117.806	1.00 43.55
ATOM	1537	OH2	WAT	41	-3.862	8.488	66.607	1.00 42.64
ATOM	1538	ОН2	WAT	42	14.848	-25.238	90.334	1.00 44.95
ATOM	1539	ОН2	WAT	43	21.959	-4.948	118.899	1.00 44.58
ATOM	1540	ОН2	WAT	44	8.447	-16.493	95.999	1.00 57.34
ATOM	1541	ОН2	WAT	45	-3.320	18.594	80.730	1.00 44.65
MOTA	1542	ОН2	WAT	46	4.042	3.465	70.117	1.00 42.29
MOTA	1543	OH2	WAT	47	0.370	-3.250	110.892	1.00 34.03
MOTA	1544	OH2	WAT	48	1.694	-13.510	110.447	1.00 43.12
MOTA	1545	он2	WAT	49	16.216	-2.085	84.867	1.00 29.17
MOTA	1546	OH2	WAT	50	15.797	-7.322	122.289	1.00 49.41
MOTA	1547	OH2	WAT	51	18.922	-12.474	79.878	1.00 42.31
MOTA	1548	он2	TAW	52	-5.107	22.838	73.181	1.00 38.51
ATOM	1549	OH2	TAW	53	14.563	4.864	98.821	1.00 32.28
ATOM	1550	ОН2	WAT	54	13.994	-16.023	105.563	1.00 44.24
MOTA	1551	он2	WAT	55	-4.133	13.720	66.033	1.00 53.29
ATOM	1552	ОН2	WAT	56	10.183	28.544	75.646	1.00 56.33
ATOM	1553	он2 т	WAT	57	-3.774	-9.836	113.284	1.00 59.77
ATOM	1554	OH2	WAT	58	17.629	0.775	96.137	1.00 37.95
ATOM	1555	ОН2 1	WAT	59	6.043	1.046	121.396	1.00 35.94
ATOM	1556	ОН2	WAT	60	4.946	-12.576	116.234	1.00 49.56
ATOM	1557	он2 т	TAW	61	-4.890	3.540	80.417	1.00 46.86

ATOM	1558	OH2 WAT	62	-1.025	-13.655	106.259	1.00 39.99	
ATOM	1559	OH2 WAT	63	10.494	2.348	70.136	1.00 40.25	
ATOM	1560	OH2 WAT	64	0.561	-14.185	101.707	1.00 47.94	
ATOM	1561	OH2 WAT	65	4.913	-11.710	91.331	1.00 52.16	
ATOM	1562	OH2 WAT	66	3.448	29.483	61.850	1.00 33.98	
MOTA	1563	OH2 WAT	. 67	2.424	5.726	69.262	1.00 57.07	
MOTA	1564	OH2 WAT	. 68	24.893	-19.561	96.089	1.00 55.67	
MOTA	1565	OH2 WAT	69	-0.538	31.270	63.339	1.00 29.89	
MOTA	1566	OH2 WAT	70	-4.671	6.956	69.710	1.00 49.13	
MOTA	1567	OH2 WAT	71	16.579	2.427	107.056	1.00 41.13	
MOTA	1568	OH2 WAT	72	16.449	-0.978	120.834	1.00 51.89	
ATOM	1569	OH2 WAT	73	3.860	-5.877	90.214	1.00 44.03	

CLAIMS

- 1. A method for designing a compound capable of binding to an active site, an accessory binding site or a pocket of an RRF protein, which comprises computationally evaluating a chemical entity of RRF protein on the basis of a structure coordinate obtained from an RRF protein crystal.
- 2. The method according to claim 1, wherein the RRF protein crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.
- 3. The method according to claim 1 or 2, wherein the RRF protein crystal is bipyramidal.
- 4. The method according to any one of claims 1 to 3, wherein the RRF protein crystal has a space group $P4_12_12_1$ or a space group $P4_32_12_1$.
- 5. The method according to any one of claims 1 to 4, wherein the RRF protein crystal has a size of $0.3 \times 0.3 \times 0.5$ mm.
- 6. The method according to any one of claims 1 to 5, wherein the RRF protein crystal has respective unit lattices of a size of a=b=47.3Å and c=297.6Å.

- 7. The method according to any one of claims 1 to 6, wherein the RRF protein crystal is characterized by a structure coordinate described in Table 7.
- 8. The method according to claims 1 to 7, wherein the RRF protein crystal is derived from <a href="https://doi.org/10.1001/jhap.1001/jha
- 9. The method according to any one of claim 1 or 2, wherein the RRF protein crystal is orthorhombic.
- 10. The method according to any one of claims 1, 2 and 9, wherein the RRF protein crystal has a space group $P2_12_12$.
- 11. The method according to any one of claims 1 to 2 and 9 to 10, wherein the RRF protein crystal has a size of 30 \times 50 \times 250 μm
- 12. The method according to any one of claims 1 to 2 and 9 to 11, wherein the RRF protein crystal is derived from strain X.
- 13. The method according to any one of claims 1 to 12, wherein the RRF protein crystal is crystallized by a drop-like vapour diffusion method.

- 14. The method according to any one of claims 1 to 13, wherein the RRF protein crystal is a heavy atom derivative and the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.
- 15. The method according to any one of claims 1 to 14, wherein the heavy atom derivative is formed by reaction of a compound selected from the group consisting of thyromethal, gold thiomalate, uranyl acetate and lead chloride.
- 16. The method according to any one of claims 1, 2 and 9 to 12, wherein the RRF protein crystal is a heavy atom derivative of platinum or mercury.
- 17. The method according to any one of claims 1 to 16, wherein the RRF protein is a monomer.
- 18. The method according to any one of claims 1 to 8, 13 to 15 and 17, wherein the RRF protein is characterized by amino acid displacement according to Table 5 or Table 6.
- 19. The method according to any one of claims 1 to 18, wherein a compound characterized by the chemical entity bound to the active site, accessory binding site or pocket is an inhibitor to the RRF

protein.

- 20. The method according to any one of claims 1 to 19, wherein the inhibitor is a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor to the RRF.
- 21. The method according to any one of claims 1 to 20, comprising determining orientation of a ligand at the active site or accessory binding site of the RRF protein.
- 22. The method according to any one of claims 1 to 8, 13 to 15 and 17 to 21, wherein the structure coordinate is a structure coordinate of the RRF protein according to Table 7.
- 23. A method for determining a three-dimensional structure of an RRF protein, comprising elucidating crystal form of a mutant, homologue or co-complex of the RRF protein by molecular replacement.
- 24. An RRF protein crystal which is orthorhombic.
- 25. The RRF protein crystal according to claim 24, having a space group $P2_12_12$.
- 26. The RRF protein crystal according to claim 24 or 25, having

a size of 30 \times 50 \times 250 μm .

- 27. The RRF protein crystal according to any one of claims 24 to 26, wherein the RRF is derived from strain X.
- 28. The RRF protein crystal which is bipyramidal.
- 29. The RRF protein crystal according to claim 28, wherein the RRF protein crystal has a space group $P4_12_12_1$ or a space group $P4_32_12_2$.
- 30. The RRF protein crystal according to claim 28 or 29, having a size of $0.3 \times 0.3 \times 0.5$ mm.
- 31. The RRF protein crystal according to any one of claims 28 to 30, having respective unit lattices of a size of $a=b=47.3\text{\AA}$ and $c=297.6\text{\AA}$.
- 32. The RRF protein crystal according to any one of claims 28 to 31, characterized by amino acid displacement according to Table 5 or Table 6.
- 33. The RRF protein crystal according to any one of claims 28 to 32, characterized by a structure coordinate according to Table 7.

- 34. The RRF protein crystal according to any one of claims 28 to 33, derived from <u>Thermotoga Maritima</u>.
- 35. The RRF protein crystal according to any one of claims 24 to 34, crystallized by a drop-like vapour diffusion method.
- 36. The RRF protein crystal according to any one of claims 24 to 35, wherein the crystal is any crystal of the RRF protein itself, an RRF protein mutant, an RRF protein homologue or an RRF protein co-complex.
- 37. An RRF protein, wherein amino acid in an active site is selected from the group consisting of Arg 110, Arg 129 and Arg 132 of SEQ. ID. NO. 1.
- 38. The RRF protein according to claim 37, wherein at least one amino acid in the active site or accessory active site is replaced by at least one amino acid selected from the group consisting of naturally occurring amino acids, non-natural amino acids, selenocysteine and selenomethionine.
- 39. The RRF protein according to claim 37, wherein a hydrophilic amino acid or a hydrophobic amino acid in the active site or accessory active site is replaced.

- 40. The RRF protein according to claim 37, wherein at least one cysteine amino acid is replaced by an amino acid selected from the group consisting of selenocysteine and selenomethionine.
- 41. The RRF protein according to claim 37, wherein at least one methionine amino acid is replaced by an amino acid selected from the group consisting of selenocysteine or selenomethionine.
- 42. The RRF protein according to any one of claims 37 to 38, wherein the RRF protein is in a crystal form.
- 43. The RRF protein according to claim 37, having a specific activity higher or lower than that of a wild type enzyme.
- 44. The RRF protein according to claim 37, having a varied substrate specificity.
- 45. Use of an RRF protein according to claim 37 for measuring binding interaction between a compound and the RRF protein.
- 46. The RRF protein according to claim 37, wherein at lest one amino acid residue on a surface of the RRF protein, in the surface or in the vicinity thereof is replaced and a change in surface charge

by one or more charge units occurs.

- 47. The method according to any one of claims 1 to 22, wherein the pocket of the RRF protein is a pocket in the vicinity of C-terminal positioned on a folded part separating two domains of the RRF protein.
- 48. The method according to any one of claims 1 to 22, wherein the compound inhibits binding of the RRF protein to ribosome or inhibits behavior of the RRF protein on the ribosome.
- 49. The inhibitor to an RRF protein, obtained by the method according to any one of claims 19 to 23, 47 and 48.
- 50. A method for searching a compound that can inhibit activity of an RRF protein on the basis of its activity of inhibiting binding of the RRF protein to ribosome or its activity of inhibiting behavior of the RRF protein on the ribosome.
- 51. An inhibitor to an RRF protein, obtained by the method according to claim 50.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Í

Fig. 6

Fig. 7

Fig. 8

DECLARATION FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am an original, first and joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled:

CRYSTAL OF RIBOSOMAL RECYCLING FACTOR (RRF) PROTEIN AND APPLICATION THEREOF ON THE BASIS OF THREE-DIMENSIONAL STRUCTURAL DATA OBTAINED FROM THE CRYSTAL

the specification of which is attached hereto unless the following is checked:

[X] was filed on June 5, 2000, as PCT International Application No.PCT/JP00/03639, bearing attorney docket No. K0448/7012.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or section 365(a) of any PCT International application designating at least one country other than the United States listed below and have also identified below any foreign application for patent or inventor's certificate or PCT International application having a filing date before that of the application on which priority is claimed:

Prior Foreign PCT International Application(s) and any priority claims under 35 U.S.C. §§119 and 365(a),(b):

200(4),(0).			Priority Claimed
11-158637	Japan	04/06/99	
(Number)	(Country-if PCT, so indicate)	(DD/MM/YY Filed)	YES NO
(Number)	(Country-if PCT, so indicate)	(DD/MM/YY Filed)	[][] YES NO
(Number)	(Country-if PCT, so indicate)	(DD/MM/YY Filed)	[][] YES NO
I hereby claim the bene application(s) listed belo	efit under Title 35, United States Code, ow:	§119(e) of any United State	es provisional
	(Application Number)	(filing date)	

Serial	No.:	

(Application Number)

(filing date)

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT International application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

(Application No.)	(filing date)	(status-patented, pending, abandoned)
(Application No.)	(filing date)	(status-patented, pending, abandoned)
PCT International Applications des	ignating the United States:	
(PCT Appl. No.) (U.S. status-patented pending abandoned	Ser. No.) (PCT filing date)	

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

Robert M. Abrahamsen	40,886	Jason M. Honeyman	31,624	Stanley Sacks	19,900
John N. Anastasi	37,765	Robert E. Hunt	39,231	Christopher S. Schultz	37,929
Gary S. Engelson	35.128-	Ronald J. Kransdorf	20.004	Alan B. Sherr	42,147
Neil P. Ferraro	39,188	Peter C. Lando	34,654	Robert A. Skrivanek, Jr.	41,316
Thomas G. Field		Helen C. Lockhart	39,248	Paul D. Sorkin	39,039
	45,596		·		
Stephen R. Finch	42,534	Matthew B. Lowrie	38,228	Alan W. Steele	45,128
Edward R. Gates	_ 31,616	William R. McClellan	<u>. 29,409</u>	Mark Steinberg	40,828
Richard F. Giunta	36,149	Daniel P. McLoughlin	46,066	Joseph Teja, Jr.	45,157
Peter J. Gordon	35, <u>16</u> 4	James H. Morris	34,681	John R. Van Amsterdam	<u>40,212</u>
John C. Gorecki	38,471	M. Lawrence Oliverio	30,915	Michael G. Verga	-39,410
William G. Gosz	27.787	Timothy J. Oyer	_36,628	Robert H. Walat	46,324
Lawrence M. Green	= 29 ,38 4	Edward F. Perlman	<u> 28,105</u>	Lisa E. Winsor	44,405
George L. Greenfield	_17,756	Michael J. Pomianek	46,190	David Wolf	<u>17,52</u> 8
James M. Hanifin, Jr.	39,213	Elizabeth R. Plumer	_36.637	Douglas R. Wolf	36,971
Therese A. Hendricks	30,389	Randy J. Pritzker	35,986	Ivan D. Zitkovsky	37,482
Steven J. Henry	27,900	Robert E. Rigby, Jr.	<u>36,90</u> 4		·
•		Edward J. Russavage	43,069		

Address all telephone calls to John R. Van Amsterdam at telephone no. (617) 720-3500. Address all correspondence to:

c/o Wolf, Greenfield & Sacks, P.C.,
Federal Reserve Plaza
600 Atlantic Avenue
Boston, MA 02210-2211

Serial No.:

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment,

or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Inventor's signature

Full name first or sole inventor:

Citizenship:

Residence:

Post Office Address:

<u>Akira</u> KAJI

Japan Tokyo, Japan S

1-9, Daimoncho 1-chome, Higashikurume-shi,

TOKYO 203-0011 JAPAN

Inventor's signature

Full name second or joint inventor:

Citizenship:

Residence:

Post Office Address:

Anders LILJAS

Sweden
Lund, SWEDEN

Box 124, Department of Biophysics,

Lund University, S-221, Lund, SWEDEN

SEQUENCE LISTING

<110> KAJI, Akira LILJAS, Anders

<120> CRYSTAL OF RIBOSOMAL RECYCLING FACTOR (RRF) PROTEIN AND APPLICATION THEREOF ON THE BASIS OF THREE-DIMENSIONAL STRUCTURAL DATA OBTAINED FROM THE CRYSTAL

<130> K0448/7012 (JRV) <140> PCT/JP00/03639 <141> 2000-06-05 <150> JP 11-158637 1999-06-04 <151> <160> 1 <170> PatentIn ver. 3.0

<210> 1 <211> 185 <212> PRT

<213> Thermotoga maritima

Ile Lys Lys Glu Glu Ile Met Glu Phe

<400> 1

Met Val Asn Pro Phe Ile Lys Glu Ala Lys Glu Lys Met Lys Arg Thr Leu Glu Lys Ile Glu Asp Glu Leu Arg Lys Met Arg Thr Gly Lys Pro 25 Ser Pro Ala Ile Leu Glu Glu Ile Lys Val Asp Tyr Tyr Gly Val Pro 40 Thr Pro Val Asn Gln Leu Ala Thr Ile Ser Ile Ser Glu Glu Arg Thr 55 Leu Val Ile Lys Pro Trp Asp Lys Ser Val Leu Ser Leu Ile Glu Lys 70 75 Ala Ile Asn Ala Ser Asp Leu Gly Leu Asn Pro Ile Asn Asp Gly Asn 90 Val Ile Arg Leu Val Phe Pro Ser Pro Thr Thr Glu Gln Arg Glu Lys Trp Val Lys Lys Ala Lys Glu Ile Val Glu Glu Gly Lys Ile Ala Ile 120 Arg Asn Ile Arg Arg Glu Ile Leu Lys Lys Ile Lys Glu Asp Gln Lys 135 Glu Gly Leu Ile Pro Glu Asp Asp Ala Lys Arg Leu Glu Asn Glu Ile 150 155 Gln Lys Leu Thr Asp Glu Phe Ile Glu Lys Leu Asp Glu Val Phe Glu 165 170

AND THE STATE OF T

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

□ Page(s)	of		were not present
for scanning.		(Document title)	
	,		
□ Page(s)	of		were not
present			
for scanning.		(Document title)	

Scanned copy is best available. Towning we very tark