EISEVIED

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: http://www.elsevier.com/locate/comphumbeh

Full length article

Cognitive plasticity induced by gaze-control technology: Gaze-typing improves performance in the antisaccade task

David Souto a,*, Olivia Marsh , Claire Hutchinson, Simon Judge, Kevin B. Paterson

- ^a Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- ^b School of Health and Related Research, University of Sheffield, Sheffield, UK
- ^c Barnsley Hospital, Barnsley, UK

ARTICLE INFO

Keywords: Human-computer interface Gaze-typing Oculomotor plasticity Inhibitory control Pointing Assistive technology

ABSTRACT

The last twenty years have seen the development of gaze-controlled computer interfaces for augmentative communication and other assistive technology applications. In many applications, the user needs to look at symbols on a virtual on-screen keyboard and maintain gaze to make a selection. Executive control is essential to learning to use gaze-control, affecting the uptake of the technology. Specifically, the user of a gaze-controlled interface must suppress looking for its own sake, the so-called "Midas touch" problem. In a pre-registered study (https://osf.io/2mak4), we tested whether gaze-typing performance depends on executive control and whether learning-dependent plasticity leads to improved executive control as measured using the antisaccade task. Forty-two university students were recruited as participants. After five 30-min training sessions, we found shorter antisaccade latencies in a gaze-control compared to a mouse-control group, and similar error-rates. Subjective workload ratings were also similar across groups, indicating the task in both groups was matched for difficulty. These findings suggest that executive control contributes to gaze-typing performance and leads to learning-induced plasticity.

1. Introduction

The last twenty years have seen the development of advanced gaze-controlled computer interfaces (henceforth gaze-control for short) in the context of augmentative communication and assistive technology applications (Majaranta & Bulling, 2014). Many applications involve selecting keys from a virtual, on-screen, keyboard, which stand for letters, words, phrases, symbols, or icons and allow either computer or environmental control (a.k.a. home automation). A common method of selecting these virtual keys or targets is to maintain gaze on the target for a pre-defined period (termed dwell selection). Here, we focus on gaze-typing and the selection of letters from a virtual on-screen keyboard by dwell time.

For several groups of individuals with severe motor disabilities (Aoki, Hansen, & Itoh, 2009) gaze-control can provide an effective communication tool (Bates, Donegan, Istance, Hansen, & Räihä, 2007). The users of assistive technology to replace or support communication, termed augmentative and alternative communication, have a variety of conditions affecting their ability to speak and motor control (Judge, Enderby, Creer, & John, 2017). This includes conditions such as

amyotrophic lateral sclerosis (ALS) or cerebral palsy (CP). Interfaces based on gaze interaction take advantage of relatively unimpaired eye movement control in those with ALS (Anderson & MacAskill, 2013) and the fact that eye movement control can be less involved in the unintentional movements that are characteristic of cerebral palsy.

Executive control is at the heart of human ability to generate voluntary behavior, allowing us to activate a goal-appropriate response and suppress automatic responses (Munoz & Everling, 2004). Given that executive function is impaired in many neurodegenerative conditions (Anderson & MacAskill, 2013), knowing how it impacts gaze-typing performance and workload would therefore be of considerable interest in the context of cognitive rehabilitation. This can inform decisions regarding the interface design best suited for assistive technology applications. Furthermore, most studies of gaze-typing focus on using words-per-minute and errors as the main measures of interface effectiveness, leaving aside important issues from the point of view of the user such as the cognitive demands associated with gaze-typing. Here we focus on the role of executive function on performance and workload (including cognitive load) in gaze-typing within a healthy population, compared to an equivalent control task.

^{*} Corresponding author. Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Rd, Leicester, LE1 7RH, UK. *E-mail address:* d.souto@le.ac.uk (D. Souto).

1.1. Typing skill acquisition

Manual typing with a physical or on-screen keyboard is an important skill to communicate, and it is consequently mastered by many people, achieving typing speeds of 50-100 words per minute (Logan & Crump, 2011). Typing on a keyboard requires the production of a sequence of finger movements in a specific order. Lashley (1951) noted how the simple chaining of stimulus-response associations is unable to account for the speed at which we can generate a correct sequence of movements. Typing has since been a task of choice for investigating serial order (for a review, Logan, 2020; Macneilage, 1964) and automated control (Norman & Shallice, 1986) in motor skill acquisition. Research on typing indicates that several keystrokes are planned at a time (Soechting & Flanders, 1992), starting from the level of words and syllables (Viviani & Laissard, 1996). Skilled performance would rely on the activation of a central motor schema or motor template, representing a keystroke sequence (Viviani & Laissard, 1996), allowing parallel motor planning, while at the same time allowing movement cancellation depending on tactile feedback. Interestingly, Viviani et al. (1996) note how the work of Bryan and Harter (1896) on morse coding can be understood in the same way, even though requiring a single movement of the finger. In their study, skill development by individual coders appeared to vary in the degree to which they progressed from coding single letters to coding groups of letters and words.

1.2. Skill acquisition and cognitive load

A common thread in theories of sensorimotor skill acquisition is that it implies a transition from conscious, declarative, effortful forms of executive control to more automatic and effortless forms of control (Fitts & Posner, 1967; Posner, 1966; Proctor & Dutta, 1995; Shiffrin & Schneider, 1977). More recently, motor actions have been conceptualized as arising from a competition between two control systems working in parallel, each dominant at different stages in skill acquisition (Haith & Krakauer, 2018; Hardwick, Forrence, Krakauer, & Haith, 2019). One motor control system is slow, effortful and goal-driven and dominates at the beginning of learning, whereas the other is fast, habitual and requires less effort or cognitive load (Haith & Krakauer, 2018). This second control system becomes dominant later in learning. Consistent with this view, after becoming a proficient (manual) typist, paying attention to the hand movement is no longer required and might even hinder performance. Cognitive load corresponds to the extent to which task performance depletes limited mental resources, such as working memory or visual attention. Cognitive load is also an important aspect of instructional theories aimed at improving learning (e.g., mathematics education). This includes the Cognitive Load Theory originally developed by Sweller (2011), and widely applied in the context of human-computer interface usability (Hollender, Hofmann, Deneke, & Schmitz, 2010).

Recent models of motor skill acquisition provide a possible link between faster response selection and a reduced cognitive load with improved skill. The reduction in response times can be seen as a consequence of the "caching" of frequently used computations for rapid use later (Haith & Krakauer, 2018). Here, "caching" is used by analogy with a computer cache, which is a memory reserve allowing for fast retrieval of frequently used information. For instance, when typing the word "poplar", a typist may rapidly access the sequence of movements required to type the syllable "pop" as the computations for these movements have been "cached" as a result of this syllable being produced frequently in the past. This "caching" of computations can therefore speed up the selection of keys in a manual typing task, while also allowing the typist to allocate cognitive resources to other concurrent tasks. This principle may also apply to gaze-typing, so that skill acquisition enables the "caching" of computations for specific sequences of eye movements that can speed up item selection and produce faster and less cognitively costly gaze-typing behavior.

1.3. Gaze-typing and Midas touch

An important aspect of gaze-control using dwell selection, which departs from what we know about normal typing, is the need to avoid looking for the sake of looking. This is known as the "Midas touch" problem (Jacob, 1995). Like King Midas who turned the objects he touched into gold, the user faces the problem of choosing between incompatible action goals. One is to sample sensory information (e.g., touch for the sake of touching) and the other is to act upon the world, such as selecting a virtual object via a "click". Applied to gaze-control, there is an incompatibility between looking to acquire visual information and looking to select a virtual object via gaze. Executive function may therefore play an important role in learning gaze-control. We hypothesize that learning to type with gaze can in turn affect executive control by inducing behavioral and neural plasticity. The term plasticity was introduced by William James (James, 1890) to suggest the tendency of habits not only to be modifiable but also have some permanence, or, put otherwise, for the underlying change in organization to keep its shape (Pascual-Leone, Amedi, Fregni, & Merabet, 2005). In that sense, behavioral plasticity can be defined by a modification of behavior induced by learning, and this modification is subtended by more or less permanent changes in functional brain organization (Pascual-Leone et al., 2005; Spierer, Chavan, & Manuel, 2013).

It is likely that the use of technological devices entails behavioral and neural plasticity at different time scales as indicated by behavioral and physiological changes (Classen, Liepert, Wise, Hallett, & Cohen, 1998). For instance, the use of a smartphone (touchscreen) entails use-dependent neural plasticity in sensory areas representing the fingertips (Gindrat et al., 2015). Adaptive changes can also implicate higher level cognitive skills, such as executive functions that control the selection of task-relevant actions. In another instance, playing video games and media multitasking (routinely switching between media) are associated with the multitasking performance in standardized tasks (Cardoso-Leite, Green, & Bavelier, 2015).

Eye movements have been used to measure executive function and, more specifically, the ability to inhibit or suppress automatic behavior, by using the antisaccade task (Hallett, 1978; Hutton, 2008; Munoz & Everling, 2004). In this paradigm, the parameters of saccades directed away from a peripheral target (called antisaccades) are compared with saccades made in the direction of the target (called prosaccades). Antisaccades require an inversion of the visuomotor transformation, which can be achieved by either suppression of the automatic response (the prosaccade) or through a top-down control signal favouring the correct motor command (Hutton, 2008; Kristjánsson, Chen, & Nakayama, 2001). Because top-down control takes time, antisaccades have a longer latency and sometimes fail to activate the correct response before the "reflexive" saccade reaches an execution threshold, generating an error. Behavioral plasticity is also observed after antisaccade training. Antisaccade training has been shown to reduce antisaccade latencies and error-rates after four short daily practice sessions, whereas prosaccade training increases antisaccades error-rates (Dyckman & McDowell, 2005; see also; Unsworth, Spillers, Brewer, & McMillan, 2011).

Antisaccade reaction times and error-rates (initial saccade towards the target) have been linked to the integrity of frontal eye fields (FEF), basal ganglia, and superior colliculus (Munoz & Everling, 2004). Experience-dependent plasticity has been shown in FEF; for instance, when monkeys are rewarded after making a saccade towards a red target, certain cells within FEF become selective to red (Bichot, Schall, & Thompson, 1996). Moreover, in a population of hemianopic stroke patients, eye movement training over 4 weeks induced changes in baseline activity in FEF and the supplementary eye field (SEF; Nelles et al., 2009). These changes in FEF neuron responses could underlie behavioral effects of learning observed in the antisaccade task. Consistently, in humans, antisaccade training results in reduced activation in frontal areas comprising SEF and FEF, consistent with more efficient top-down control after training (Jamadar, Johnson, Clough, Egan, & Fielding, 2015;

Lee et al., 2013).

1.4. Gaze-typing and executive control

Our principal aim (see pre-registration: https://osf.io/2mak4) was to test the involvement of executive control in learning to type with the eyes.

Our first hypothesis was that asymptotic typing performance in gaze-control remains poorer than with mouse-control after extensive learning, reflecting intrinsic limitations in using gaze as a control modality and a lack of familiarity with using gaze as a pointing device. For instance, the ability to plan a sequences of eye movements is more limited than the ability to plan a sequence of hand movements, perhaps because eye-movements themselves support hand-movement planning (Diamond, Wolpert, & Flanagan, 2017).

Our main goal was to test a second hypothesis that learning to gazetype involves executive control by shifting the balance between goaldriven and stimulus driven control of eye movements. We reasoned that if learning induces a change in the executive control of saccades, it will transfer to all goal-driven saccades, thereby improving antisaccade performance. This is consistent with a view of skill acquisition in which frequent neural computations, such as those necessary to associate an appropriate eye movement with a letter to type, can be "cached" for rapid retrieval, improving performance speed and accuracy (Haith & Krakauer, 2018). Those computations may be sufficiently general to benefit antisaccade task performance, which requires a non-habitual mapping as well between a signal and an eye movement. Because antisaccade performance might improve with repeated testing (i.e., before and after a behavioral intervention), we compared performance across two groups who were training on typing tasks in which a cursor was controlled by either the participant's eye-gaze or their hand. We predicted a larger improvement in antisaccade performance when the eye controls the cursor, compared to when the hand controls the cursor. Because the eye follows naturally the cursor location (Bieg, Chuang, Fleming, Reiterer, & Bülthoff, 2010) both groups are likely to be well matched in terms of eye movement statistics. Consequently, the main difference between the two groups relates to whether gaze controls the cursor, requiring the generation of task-relevant gaze plans and the suppression of task-irrelevant gaze movements, or gaze follows the cursor but has no direct control over it.

We also hypothesized (third hypothesis) that interindividual differences in executive control predict subjective effort (including cognitive load) in performing the gaze-typing task, indicating the importance of goal-driven control of eye movements in performing the task. More specifically, we expected that better antisaccade performance would correlate with a lower subjective effort in gaze-typing.

To test our hypotheses, we took a different approach compared to the previous literature on gaze-typing. In our experiment, participants produced single words without correction, whereas in earlier research participants typically produced full sentences and were allowed corrections (e.g. Majaranta, MacKenzie, Aula, & Räihä, 2006). Our goal in using this paradigm was to characterize skill acquisition in a simple form of gaze-typing task, which highlights the motoric aspects required to produce a single word. We do not address all of our pre-registered hypotheses here, but focus on those hypotheses that concern the transfer of learning to the antisaccade task.

2. Methods

2.1. Participants

There were 42 participants (32 females, aged 18–45 years old). Participants were undergraduate or postgraduate students from the University of Leicester's School of Psychology. They were either given £8 per hour or course credit in compensation for their time. The study was approved by the School of Psychology ethics committee, abiding by

the guidelines of the Declaration of Helsinki.

We recruited two more participants than our target of 20 per group (ending with 21 in the gaze condition and 21 in the mouse condition) before examining the data, as a preemptive measure to reach our target after drop-outs and to replace participants whose eye movement recordings were noisy. An additional three participants were excluded from analysis because their data was incomplete. One participant did not have a reliable eye movement record (missing data on most trials) in the antisaccade task, while two others failed to complete all sessions. A power analysis (using G*Power 3; Erdfelder, Faul, & Buchner, 1996) showed that with this sample size we could detect with sufficient high power (.86) an interaction between group and testing session (mixed ANOVA) of a moderate effect size (0.25).

3. Materials

Stimuli were displayed on a HP P1130 CRT screen, with 1280 x 1024 resolution at 85 Hz. Participants' viewing distance was 61 cm. We tracked the right eye during binocular viewing using a video-based eyetracker (Eyelink 1000, SR Research Ltd, Osgoode, Ontario, Canada). We used the Psychophysics toolbox (PB-3) on MATLAB to display videos, generated using custom scripts. The Eyelink 1000 has an accuracy of 0.15 degrees of visual angle (°) and a precision of 0.01° (RMS) under ideal conditions (Eyelink, 2009). We used an accuracy cutoff of < 0.5° in our experiment. In the mouse-control group a standard infrared computer mouse and a large gaming mousepad were used to control a cursor.

3.1. Data and code availability

The code, including Matlab scripts for implementing the task, and data are available through the Open Science Framework (https://osf. io/e8vba/). The corresponding author welcomes inquiries about how to re-use the interface to fit a specific research purpose.

3.2. Experimental design

We used a mixed-design to test within-subjects change in performance in the antisaccade task before and after a typing task and to test between-subjects performance in gaze- and mouse-typing groups. The *n*th participant was assigned to a group based on whether it was an odd (gaze-control) or even (mouse-control) participant number. We expected eye movement statistics for gaze and mouse-typing to be well matched, since gaze tends to follow the cursor in computer tasks (Bieg, Chuang, Fleming, Reiterer, & Bülthoff, 2010; Ujbanyi, 2018). Groups did not differ significantly in age (gaze-control: 24.8 years old, mouse-control: 23.9 years old) or gender composition (both groups had 16 women and 5 men in them).

To investigate whether user experience and usability improved with gaze-typing, we used the NASA-TLX scale (Hart & Staveland, 1988), which assesses different dimensions of usability using a 6-item rating scale.

We used different tests to control for the influence of language skill on typing. We tested language comprehension with the Mini-NART (McGrory, Austin, Shenkin, Starr, & Deary, 2015; Nelson & Willison, 1982). This contains a list of 23 words with irregular spellings (e.g., "aisle", "labile") which participants read aloud. Word comprehension was measured using the vocabulary test from the Wechsler Adult Intelligence Scale, 4th edition (Wechsler, 2008). We also tested spelling ability with a list of 20 words taken from the Burt and Tate test (Burt & Tate, 2002; Hersch & Andrews, 2012). Finally, because a typing task requires some memorization of the mapping between letters and spatial locations on the keyboard, we measured spatial memory by using an online adaptation of the Corsi block-tapping test (Kessels et al., 2000).

3.3. Typing and antisaccade tasks

The typing task is illustrated in Fig. 1A-B, showing the virtual keyboard and a trial time-course. Participants typed words drawn from a high-frequency word list over five sessions either by moving the cursor with gaze or with the mouse. Letters were about 0.6° wide, had a luminance of 101 cd/m^2 over a gray background (52 cd/m²). Letters were centered on a grid made of 2.8° x 2.8° squares.

The usage of the virtual keyboard in the gaze-control group can be seen in Movie 1 (Movie 1, https://figshare.com/s/4f003b2831c b33507327). We can see how the black cursor changes size depending on the duration that the cursor remains (dwells) within a "key", reverting to the initial size after selection (when reaching the dwell time required for selection). To be precise, the cursor had an initial size of 0.14° , which increased by a small amount (0.03°) every consecutive frame the cursor remained on the key. Once the dwell time required for selection was reached, or the cursor moved to a different key, the key size was reset to its initial value, thereby providing feedback on letter selection.

Whereas most research and practice use fixed dwell times, we adjusted dwell times for selection using an adaptive staircase procedure, starting at a dwell time of 476 ms. Specifically, the dwell time was reduced by 2 frames (23.5 ms) after a correctly written word and increased by 2 frames if a typing error was made (the target and produced word did not match). This procedure enabled us to equate difficulty across participants, equate difficulty across control modes, and to fully describe performance by dwell time, since participants' performance should hover around the same typing error-rate; namely the dwell time for which a correct and incorrect selection become equally likely. Words were of relatively high-frequency (a minimum of 20 occurrences per million words) and were selected from a corpus of English words (http://ucrel.lancs.ac.uk/bncfreq/) to contain no letter repetitions; meaning that each new selection required a movement from the current location on the virtual keyboard. On each trial, target words were selected randomly with replacement from a possible list of 575 words.

Fig. 1. (a) Screenshot (zoomed in) showing the virtual keyboard during the presentation of the target word. We used a familiar QWERTY keyboard layout (UK). The target words and feedback were shown below the keyboard (e.g., the word "cinema"). (b) A trial in the typing task. Words appear beneath the keyboard before typing starts. After pressing the space bar selected letters appear there until six characters have been entered. No correction was allowed.

Movie 2 (https://figshare.com/s/4f003b2831cb33507327) shows typing in the mouse-control group. The control mode was the same as in the gaze-control group, except that the cursor position was controlled by the mouse.

Finally, the cursor position was smoothed using an iterative exponential filter, applied separately for x and y coordinates (i.e., the horizontal and vertical cursor position), such that x(t) = ax(t) + (1-a)x(t-1). The "forgetting" parameter a was set to 0.3. It is equivalent to say that the current sample (x(t), for the horizontal coordinate) is given a 30% weight compared to the past samples in determining the smoothed cursor location. Without this filter, the cursor would move erratically during gaze-typing due to noise in the eyetracker signal, in strong contrast to the mouse-control group.

The antisaccade task used 4 different blocks of 35 trials, and one training trial per instruction type. Block order was balanced across participants. A block started either with an antisaccade instruction ("look in the direction opposite to the peripheral dot") or a prosaccade instruction ("look at the peripheral dot"). A black (6.7 cd/m²) fixation dot (0.28°) and two placeholders (circles of a diameter of 0.56° at a horizontal eccentricity of 7.5° from fixation) were displayed for $500-1500 \, \text{ms}$, followed by a dot (0.56°) randomly allocated to the left or right placeholder location. The target was displayed for 1 s.

3.4. Experimental procedure

The experiment took place in a dimly lit room. Participants maintained head position using a chin- and forehead-rest. Participants were then assigned either to the gaze-typing or mouse-typing groups. Each participant completed 5 x 30-min training sessions in which they were required to type a series of 6-letter words, using a virtual keyboard controlled by eye-gaze or a computer mouse. Instructions were to type the target words as accurately and quickly as possible. The antisaccade task was performed before the typing task and again at the end of all typing sessions.

3.5. Data analysis

We used the *afex* package in R to run a mixed-effects ANOVA testing the effect of test-session and control group on the average saccade latencies and logit-transformed error-rates (e.g. Barton, Pandita, Thakkar, Goff, & Manoach, 2008). Per participant and condition, we excluded trials in which latencies exceeded 3 standard deviations above or below the median latency. At most 3 trials in any condition were excluded by this criterion. Other trials were excluded because no latency could be recovered from the eye-movement record. No participant had less than 57 valid trials in any given condition, out of a maximum of 72 trials.

4. Results

We trained two groups to type with the use of a virtual keyboard; one using gaze to control the cursor and one using a computer mouse. Gazecontrol and mouse-control groups had comparable scores on tests of language and spatial skill, shown in Table 1.

Table 1 Mean and $\pm SD$ on tests of spatial memory and language skills in gaze- and mouse-typing groups.

	Corsi Block	WAIS-IV	Spelling	mini-NART
gaze-control (n = 21)	6.00 ± 1.34	$41.05 \pm \\ 6.97$	$\begin{array}{c} 12.50 \pm \\ 4.16 \end{array}$	13.00 ± 2.73
mouse-control (n =	5.59 \pm	41.23 \pm	$11.95~\pm$	12.14 \pm
21)	1.22	6.62	4.39	3.11
Total	$5.79 \pm$	41.14 \pm	12.21 \pm	12.55 \pm
	1.28	6.70	4.24	2.93

4.1. Better asymptotic performance with mouse-control

We can characterize learning in the typing task in terms of a reduction of dwell times across trials, as shown in Fig. 2A. By using an adaptive procedure in which dwell time is automatically lowered after a successful trial (i.e., a target word typed without errors) and increased following an error, the dwell-time necessarily hovers around the same typing error-rate in both groups (mouse: .499, C.I.:.497-.501; gaze: .510, C.I.: .509-.511). This approach means that the main difference in performance after learning is measured by comparing dwell times, not by comparing typing error-rates. Fig. 2A shows that dwell time decreased rapidly within the first session for both control modes, but more rapidly in the mouse condition. By comparison with gaze-control, the decrease

Fig. 2. (a) Dwell times across trials. (Note dwell time could exceeded 500 ms for a minority of participants.). The shaded area represents the standard error of the mean. Because dwell time can only be a multiple of a frame duration (11.7 ms), values were jittered vertically for display. (b) Histogram for the average dwell time per individual over trials 400–450 in gaze- and mouse-typing groups.

in dwell time also continued in further sessions. The distribution of dwell times on a given trial is clearly different in mouse and gaze-control groups. The average dwell time at the end of learning, for trials 400 to 450 (Fig. 2B) is much longer in the gaze-control condition, with an average of 394 ms [95% C.I.: 346–442]; in contrast to an average of 233 ms [95% C.I.: 213–253] in the mouse-control group. We can note that variability between people is also larger with gaze-typing, as indicated by confidence intervals that are twice as large compared to the mouse-typing group (see also Fig. 2).

4.2. Better performance in the antisaccade task in gaze-vs mouse-control

Our main goal was to test whether learning to gaze-type improves antisaccade performance, as indexed by reaction times and directional error-rates (a saccade in the wrong direction). We ran a mixed-effects ANOVA (test session by control group) on latency and logit-transformed error-rates to test this hypothesis.

Fig. 3A shows individual and group latencies. A trivial finding is that antisaccades take much longer to be executed compared to prosaccades. With antisaccades, but not prosaccades, we can see speeding up in the post-test that is more pronounced for the gaze-typing group (see Fig. 3A-B). With antisaccades, the analysis confirmed an effect of testing session, F(1,40) = 21.124, p < .001. Participants were faster the second time around (first: 250 ms, second: 237 ms). As predicted, this effect was modulated by control mode, F(1,40) = 4.486, p < .040, with a larger decrease in latencies for the gaze-control group (19 ms) compared to the mouse-control group (7 ms). The main effect of control mode was not statistically significant (p = .25).

Fig. 3C shows error-rates for antisaccades and prosaccades. Trivially, error-rates are much higher for antisaccades compared to prosaccades. More important is the fact that error-rates are similar across groups, meaning that the interaction between control mode and testing session observed with antisaccade latencies is not due to a speed-accuracy tradeoff. If anything, the error-rate of antisaccades was lower in the post-test compared to the pre-test in the gaze-control group (11% vs 13%). The mixed-effects ANOVA run on logit-transformed antisaccade errors indicated no main effects of control mode, session, or interaction between factors (all p-values > .38).

Prosaccade latencies were only slightly faster in the second test-session (194 ms vs 192 ms), and no main effect or interaction was found to be statistically significant (all ps>.36). Error-rates were also very similar across test sessions (Fig. 3C-D). The analysis of logit-transformed error-rates indicated no significant effects (all p-values >.29).

4.3. Usability: Effort and antisaccade performance

We considered whether usability improves with control and whether usability relates to executive control as indicated by the antisaccade task performance. The NASA-TLX (Task Load Index) is a widely used measure of subjective workload that has been applied across domains. Fig. 4A breaks down ratings by item, control modes, and testing session. Ratings were mostly stable across sessions for all items. Effort and mental demand were rated notably higher on the post-session in the gaze-control group. The largest difference between groups is seen in temporal demand, with gaze-typing being perceived as less hurried, which is consistent with higher dwelling times in the gaze-typing group. In both control groups people reported relatively high levels of frustration, although this was also the most variable across people, consistent with a task that generates a high-rate of typing errors (around 50%).

To assess usability differences between the two control groups, we averaged the scores of individual items to produce the so-called Raw-TLX (Hart, 2006). We also calculated a weighted average, resulting from an evaluation of the relative importance of each item, which is the standard way of calculating a global workload with the NASA-TLX. Raw-and Weighted-TLX average scores were remarkably similar across

Fig. 3. (a-b) The latency in antisaccade and prosaccade trials in pre- and post-tests, depending on control mode. (b) Pre-test latencies subtracted from post-test latencies (c-d) Error-rates in the antisaccade task, that is the proportion of saccades made in the wrong direction. (d) Pre-test error-rates subtracted from post-test error-rates. (a-d) Error bars represent the standard error of the mean.

control modes as shown in Fig. 4B-C, despite clearly faster typing with the mouse.

We tested for an effect of training session (first or last session) and control mode on global workload (Weighted-TLX or Raw-TLX) by running a mixed-effects ANOVA (session x control mode). We found no significant difference between control modes or training session with either workload measure (all p-values > .33).

We tested the hypothesis (third hypothesis in the pre-registration) that interindividual differences in the antisaccade performance relate to subjective workload—whether the task seemed easier for people with better executive control—by correlating antisaccade latency (i.e., before any typing) and error-rates with global workload in the first session. No correlation was significantly different from zero with either workload measure (all p-values > .38).

Another relevant aspect is the subjective relevance of each performance dimension depending on the control group. The NASA-TLX test involves comparing the importance of each dimension by pairs to yield a factor loading. Fig. 4D shows the average weight given to different dimensions at the start and at the end of training. We note that effort and mental demand appear relatively more important in the gaze-control than mouse-control group. Effort and mental demand have weights of 16% and 26% for the mouse control group, but 26% and 23% in the gaze-control group. This was consistent with effort and mental demand being rated higher in the last session in the gaze-control group.

5. Discussion

We tested changes in voluntary eye-movement control using the antisaccade task before and after learning of a gaze- or mouse-typing task. We hypothesized that gaze-typing would induce adaptation of executive control that would transfer to the antisaccade task. The mouse-typing group served as a control where eye movements are likely produced to the same locations but following the cursor rather than causing the cursor movement. We aimed to show whether executive control contributes to solving the "Midas touch" problem during gaze-typing, in a relatively simple task requiring participants to type single words containing a fixed number of letters.

A central hypothesis was that antisaccade performance would be better after gaze-typing than it is after mouse-typing. Specifically, we expected a greater reduction in reaction times and directional errorrates of antisaccade trials after gaze-typing than after mouse-typing. We found evidence for the expected reduction in reaction times but not for the directional error-rates, perhaps because they were relatively low at around 12%. Error-rates of up to 25% can be observed in a healthy population, likely depending on instructions to prioritize speed (Hutton & Ettinger, 2006). We also found no evidence of a speed-accuracy trade-off; that is, a speeding up of saccade latencies but increased directional error-rates. Learning to type with gaze transferred to the antisaccade task, resulting in a 5% decrease in reaction times, even though the antisaccade task bears little resemblance to the

Fig. 4. (a–d) Usability ratings in the first (S1) and last (S2) sessions in gaze and mouse-typing groups. (a) NASA-TLX ratings per item. (b) Raw-TLX score (average of ratings). (c) Weighted-TLX (d) Factor loadings, indicating the subjective importance of each item.

gaze-typing task, other than both requiring the execution of voluntary saccades. Although we could not confirm a significant difference for prosaccades, the pattern suggests slower prosaccades after training in the gaze-control group. This pattern could be consistent with increased top-down executive control, making the inversion of the visuomotor mapping faster but prosaccades slower, as observed in earlier studies after antisaccade training (Dyckman & McDowell, 2005).

The findings are consistent with rapid experience-dependent plasticity in cortical areas associated with the voluntary control of saccades. A few studies have looked at the effect of gaze-training on brain activity. Speeded reaction times could result from a change in baseline activity in frontal areas, such as FEF (Bichot et al., 1996), which show experience-dependent responses after gaze training (Jamadar, Johnson, Clough, Egan, & Fielding, 2015; Lee et al., 2013; Nelles et al., 2009).

We expected individual differences in antisaccade performance to correlate with subjective effort (including the mental effort item relating to cognitive load) in the gaze-typing task, reflecting the importance of the response selection stage in gaze-typing performance. Consequently, one would also expect task effort to be reduced after training, reflecting an increased automation of the task (Poldrack et al., 2005) and a more efficient suppression of the prepotent response. We found little evidence

in favor of these hypotheses. If those differences exist, they were too small to be detected with our design. We traded the ecological validity of the task for a better matching of control modalities. Accordingly, it may be that executive control correlates better with performance in a more naturalistic task, such as writing with the intention of communicating specific information instead of copying words. In that sense, our tasks are not as demanding as normal communication by gaze-typing. On the other hand, in a normal usage of a gaze-typing system using dwell time (Majaranta & Räihä, 2002), the user would not tolerate a high rate of typing errors (in our experiment the participant is bound to make frequent typing errors as the dwell time is lowered after a success) and would adjust the dwell time to a level where typing errors are rare. The average 350 ms dwell time in our experiment is close to the 395 ms self-selected dwell-time in Mott, Williams, Wobbrock, & Morris (2017), which allowed them to achieve 15 words per minute error-free. Other methods of gaze selection that do not rely on dwell selection have been proposed (Kristensson & Vertanen, 2012) and implemented in commercial systems (e.g. Tobii Dynavox Coummunicator 5, Pittsburg, US). The latter is based on gaze-gestures and uses language models to predict the intended word. Kristensson & Vertanen (2012) suggest that it allows a tripling of writing speed compared to using dwell times, with up to 45

words per minute. While providing a definitive benefit in writing speed, it is not clear whether those systems are more or less taxing on executive function, and it would be of interest to investigate further how they compare in usability and in their ability to induce plasticity in saccade executive control.

5.1. Mouse and gaze-control

To our knowledge, this is the first study comparing cognitive plasticity and subjective workload resulting from gaze-typing against an appropriate control condition. The mouse is the most widely used selection method with personal computing (Slijper, Richter, Over, Smeets, & Frens, 2009) and therefore we can expect its control to be more efficient at the start. The mouse-control group was not only able to tolerate much shorter dwell times (about 150 ms less) compared to gaze-control, but there was also an indication that learning reached a plateau only in the gaze-control group, suggesting that further improvements may be observed in the mouse control group with more sessions.

There are several fundamental differences between controlling hand movements (mouse) and gaze. One of them is that saccades seem to incur a "gratuitous" delay, called oculomotor procrastination by Carpenter (1981), creating a temporal buffer, meaning that delays at the response selection stage do not necessarily mean a delay in saccade latency (Carpenter, 1981). We may speculate that oculomotor procrastination, or the tendency for eye movement latencies to be longer than justified by sensory and decisional delays, could explain why gaze-typing would take longer than mouse-typing, without implying a longer saccade programming time. Another reason could be that during manual movements gaze can have a supportive role; we often look ahead of the mouse target. This is likely done to prepare a precise movement (Bieg, Chuang, Fleming, Reiterer, & Bülthoff, 2010; Smith, Ho, Ark, & Zhai, 2000). The gaze-control group could not, of course, benefit from this strategy. A possible way to disentangle those two proposals would be to compare mouse typing whilst maintaining a fixed gaze at the center of the keyboard. In this condition, if mouse movements remain faster, it is not (only) because they benefit from visual information acquired through gaze.

5.2. Usability

In evaluating a human-computer interface, it is essential to go beyond measures of efficiency of performance. For instance, users may prefer slower input methods, if they afford a lower workload. Subjective workloads were relatively stable at the beginning and end of training and there was no indication of a higher workload for gaze-control over mouse-control; either in global measures or looking specifically at effort and frustration related to the control mode. Importantly, and contrary to the intuition that one would need more time to be proficient with gazetyping (i.e., to use gaze as an effector efficiently) compared to mousecontrol, usability scores were similar at the beginning and end of training. However, the lack of fatigue in the use of extra-ocular muscles (Prsa, Dicke, & Thier, 2010), relative to the muscles of the arm, could be factored in to understand subjective ratings. Eye movement fatigue was also not shown during 5 h of computer use, in a study in which fatigue was operationalized by saccade velocity (Saito, 1992). On the other hand, neither does the operation of a computer mouse generate obvious fatigue, with only measurable levels of physiological fatigue (muscular) after several hours of continuous use (Johnson, Lehman, & Rempel, 1996). Therefore, subjective fatigue in both control modes is likely to reflect aspects beyond muscular fatigue, such as the amount of effortful control that is required. Anecdotally, some participants in the mouse-control group reported frustration with controlling selection by dwell time, which could conflict with their normal experience of selecting virtual objects by clicking with the mouse. Consequently, operating the mouse by dwell time might have generated higher workloads compared to its normal function (by pointing and clicking). In that sense, gaze-typing might generate a higher-workload in comparison to a more familiar point-and-click use of the mouse. Overall, typing workloads allow a rough comparison with other computer tasks, which place it in a similar range to the normal use of a computer (30–60 score; Grier, 2015). This is also comparable to subjective workload measured by the NASA-TLX in other gaze-typing experiments (Hayashi & Kishi, 2014).

5.3. Generalizability

People who use gaze-control (and gaze-typing) as an assistive technology are not representative of the sample in this study. Those using this technology will have various severe disabilities and will have a different age distribution than our sample made of university students. Before investigating these hypotheses in the gaze-typing population, our approach has been to uncover general principles underlying the acquisition of this novel skill. However, we can ask to which extent our findings generalize across the lifespan and in a population affected by neurodegenerative disease such as ALS or congenital conditions such as

There is evidence that, in older adults, the capacity to learn (the ability to show improvements in performance) a motor skill is preserved, even though they can take longer and start with a lower performance baseline than younger adults (Ren, Wu, Chan, & Yan, 2013). On the other end, executive function improves slowly across child development, which translates into faster antisaccade inhibition in adults compared to 10–11-year-olds (Klein & Foerster, 2001). The extent of saccadic adaptation, an indication of plasticity of the visuomotor transformation, was found to be similar between 8 and 20 years old (Salman et al., 2006). The capacity to learn may be similar in tasks that tap into executive function, despite being less mature in children.

It is know that some children with CP can and do use gaze-typing and there has been some investigation into the functional gaze skills of this group which highlights a more complex picture of learning capacity related to gaze control (Griffiths, 2020; Karlsson, Allsop, Dee-Price, & Wallen, 2018). In ALS, there is evidence of a specific deficit in executive function, as indicated by impairments in antisaccade performance with otherwise normal eye movements (Proudfoot et al., 2016; Sharma et al., 2011; Shaunak et al., 1995), but we know of no direct evidence regarding the capacity to learn in relation to executive function.

5.4. Outlook

The finding that gaze-typing induces an improvement in the antisaccade task has a practical implication in the context of evaluating changes in cognitive function over time in neurodegenerative conditions such as ALS. The antisaccade task is routinely used to test executive function. The task has a good test-retest reliability (Wöstmann et al., 2013), which makes it a suitable bio-marker of different psychiatric diseases (Hutton & Ettinger, 2006) and a suitable tool for evaluating change in executive control across time. In ALS, eye-movement tests of cognition allow testing at an advanced stage of the disease (Anderson & MacAskill, 2013; Sharma et al., 2011). ALS patients show elevated error-rates and latencies in the antisaccade task compared to age-matched controls (Proudfoot et al., 2016; Shaunak et al., 1995), but show no significant deterioration over time, within a two-year period (Proudfoot et al., 2016). An intriguing question is whether the use of gaze-control technology in this population impacts on the evaluation of executive function. Gaze-control could prove a useful tool both for rehabilitation but also monitoring of oculomotor function, especially since it is used by many patients with neurodegenerative conditions (Bates et al., 2007). Our study suggests that the antisaccade task could be part of a test battery used to evaluate the usability of gaze-control interfaces in relation to workload and performance.

6. Conclusion

We show that gaze-typing induces plasticity in the executive control of saccades, in line with the importance of avoiding looking for the sake of looking in that task (the "Midas touch" problem). We also show that subjective workload ratings are similar in gaze and mouse-typing, suggesting the mouse-typing task was well-matched for difficulty. This last finding paves the way for understanding specific and general mechanisms involved in gaze interaction.

Author statement

David Souto: writing original draft, conceptualization, methodology, software, grant capture. Olivia March: methodology, software, data curation. Simon Judge: writing, reviewing and editing. Kevin Paterson & Claire Hutchinson: writing, reviewing. editing, conceptualization, grant capture.

Acknowledgements

We thank Mick Donegan and the Special Effects team (Oxford, UK) for commenting on an earlier version of the project. This project was funded by a British Academy Grant SRG\170427 (awarded to DS, KP and CH).

References

- Anderson, T. J., & MacAskill, M. R. (2013). Eye movements in patients with neurodegenerative disorders. *Nature Reviews Neurology*, 9(2), 74–85. https://doi. org/10.1038/nrneurol.2012.273
- Aoki, H., Hansen, J. P., & Itoh, K. (2009). Learning gaze typing: what are the obstacles and what progress to expect. *Universal Access in the Information Society*, 8(4), 297–310. https://doi.org/10.1007/s10209-009-0152-5
- Barton, J. J. S., Pandita, M., Thakkar, K., Goff, D. C., & Manoach, V. D. S. (2008). The relation between antisaccade errors , fixation stability and prosaccade errors in schizophrenia. Experimental Brain Research, 186(2), 273–282. https://doi.org/ 10.1007/s00221-007-1235-2
- Bates, R., Donegan, M., Istance, H. O., Hansen, J. P., & Räihä, K.-J. (2007). Introducing COGAIN: Communication by gaze interaction. *Universal Access in the Information* Society, 6(2), 159–166. https://doi.org/10.1007/s10209-007-0077-9
- Bichot, N. P., Schall, J. D., & Thompson, K. G. (1996). Visual feature selectivity in frontal eye fields induced by experience in mature macaques. *Nature*, 381(6584), 697–699. https://doi.org/10.1038/381697a0
- Bieg, H., Chuang, L. L., Fleming, R. W., Reiterer, H., & Bülthoff, H. H. (2010). Eye and pointer coordination in search and selection tasks. Proceedings of the 2010 Symposium on eye-Tracking research & applications - ETRA '10, (May 2014), 89-92, Article doi: 10.1145/1743666.1743688.
- Bryan, W. L., & Harter, N. (1896). Studies on the telegraphic language: The acquisition of a hierarchy of habits. *Psychological Review*, 3(71), 345–375. https://doi.org/ 10.1126/science.3.71.712-a
- Burt, J. S., & Tate, H. (2002). Does a reading lexicon provide orthographic representations for spelling? *Journal of Memory and Language*, 46(3), 518–543. https://doi.org/10.1006/jmla.2001.2818
- Carpenter, R. H. S. (1981). Oculomotor procrastination. In Dennis F. Fisher, Richard A. Monty, & John W. Senders (Eds.), Eye Movements. London: Roudledge. https://doi. org/10.4324/9781315437415.
- Cardoso-Leite, P., Green, C. S., & Bavelier, D. (2015). On the impact of new technologies on multitasking. *Developmental Review*, 35, 98–112. https://doi.org/10.1016/j. dr.2014.12.001
- Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. *Journal of Neurophysiology*, 79(2), 1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117
- Diamond, J. S., Wolpert, D. M., & Flanagan, J. R. (2017). Rapid target foraging with reach or gaze: The hand looks further ahead than the eye. *PLoS Computational Biology*, 13(7), 1–23. https://doi.org/10.1371/journal.pcbi.1005504
- Dyckman, K. A., & McDowell, J. E. (2005). Behavioral plasticity of antisaccade performance following daily practice. Experimental Brain Research, 162(1), 63–69. https://doi.org/10.1007/s00221-004-2105-9
- Eyelink. (2009). EyeLink ® 1000 user manual. Mississauga, Ontario, Canada. Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, CA: Brooks/Cole.
- Gindrat, A. D., Chytiris, M., Balerna, M., Rouiller, E. M., & Ghosh, A. (2015). Use-dependent cortical processing from fingertips in touchscreen phone users. *Current Biology*, 25(1), 109–116. https://doi.org/10.1016/j.cub.2014.11.026
- Grier, R. A. (2015). How high is high? A meta-analysis of NASA-TLX global workload scores. Proceedings of the Human Factors and Ergonomics Society - Annual Meeting, 59 (1), 1727–1731. https://doi.org/10.1177/1541931215591373

- Griffiths, T. (2020). Access to eye-gaze control technology for children with cerebral palsy. London, UK: University College London. https://discovery.ucl.ac.uk/id/eprint/
- Haith, A. M., & Krakauer, J. W. (2018). The multiple effects of practice: Skill, habit and reduced cognitive load. *Current Opinion in Behavioral Sciences*, 20, 196–201. https://doi.org/10.1016/j.cobeha.2018.01.015
- Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296.
- Hardwick, R. M., Forrence, A. D., Krakauer, J. W., & Haith, A. M. (2019). Time-dependent competition between goal-directed and habitual response preparation. Nature Human Behaviour, 3(12), 1252–1262. https://doi.org/10.1038/s41562-019-0725-0
- Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology, 52, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
- Hayashi, T., & Kishi, R. (2014). Utilization of NASA-TLX for workload evaluation of gazewriting systems. In 2014 IEEE international symposium on multimedia (pp. 271–272). IEEE. https://doi.org/10.1109/ISM.2014.18.
- Hersch, J., & Andrews, S. (2012). Lexical quality and reading skill: Bottom-up and top-down contributions to sentence processing. Scientific Studies of Reading, 16(3), 240–262. https://doi.org/10.1080/10888438.2011.564244
- Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010). Integrating cognitive load theory and concepts of human-computer interaction. *Computers in Human Behavior*, 26(6), 1278–1288. https://doi.org/10.1016/j.chb.2010.05.031
- Hutton, S. B. (2008). Cognitive control of saccadic eye movements. Brain and Cognition, 68(3), 327–340. https://doi.org/10.1016/j.bandc.2008.08.021
- Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. *Psychophysiology*, 43(3), 302–313. https://doi. org/10.1111/j.1469-8986.2006.00403.x
- Jacob, R. J. K. (1995). Eye tracking in advanced interface design. In W. Barfield, & T. A. Furness (Eds.), Virtual environments and advanced interface design (pp. 258–288). NY: Oxford University Press. https://doi.org/10.5555/216164.216178.
- Jamadar, S. D., Johnson, B. P., Clough, M., Egan, G. F., & Fielding, J. (2015). Behavioral and neural plasticity of ocular motor control: Changes in performance and fmri activity following antisaccade training. Frontiers in Human Neuroscience, 9, 1–13. https://doi.org/10.3389/fnhum.2015.00653
- James, W. (1890), Vol. I. The principles of psychology. Henry Holt and Co.
- Johnson, P. W., Lehman, S. L., & Rempel, D. M. (1996). Measuring muscle fatigue during computer mouse use. In Proceedings of 18th annual international conference of the IEEE engineering in medicine and biology society (Vol. 4, pp. 1454–1455). IEEE. https://doi. org/10.1109/IEMBS.1996.647501.
- Judge, S., Enderby, P., Creer, S., & John, A. (2017). Provision of powered communication aids in the United Kingdom. AAC: Augmentative And Alternative Communication, 33 (3), 181–187. https://doi.org/10.1080/07434618.2017.1347960
- Karlsson, P., Allsop, A., Dee-Price, B. J., & Wallen, M. (2018). Eye-gaze control technology for children, adolescents and adults with cerebral palsy with significant physical disability: Findings from a systematic review. *Developmental Neurorehabilitation*, 21(8), 497–505. https://doi.org/10.1080/ 17518423.2017.1362057
- Kessels, R. P. C., van Zandvoort, M. J. E., Postma, A., Kappelle, L. J., & de Haan, E. H. F. (2000). The Corsi block-tapping task: Standardization and normative data. Applied Neuropsychology, 7(4), 252–258. https://doi.org/10.1207/s15324826an0704_8
- Klein, C., & Foerster, F. (2001). Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. *Psychophysiology*, 38(2), 179–189. https://doi.org/10.1017/S0048577201981399
- Kristensson, P. O., & Vertanen, K. (2012). The potential of dwell-free eye-typing for fast assistive gaze communication. In Proceedings of the Symposium on Eye Tracking Research and Applications - ETRA '12 (pp. 241–244). ACM Press. https://doi.org/ 10.1145/2168556.2168605.
- Kristjánsson, A., Chen, Y., & Nakayama, K. (2001). Less attention is more in the preparation of antisaccades, but not prosaccades. *Nature Neuroscience*, 4(10), 1037–1042.
- Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior; the Hixon Symposium (pp. 112–146). New York: Wilaw.
- Lee, J., Park, C., Dyckman, K. A., Lazar, N. A., Austin, B. P., Li, Q., et al. (2013). Practice-related changes in neural activation patterns investigated via wavelet-based clustering answers. Human Brain Mapping, 34(9), 2276–2291. https://doi.org/10.1002/bbm.22066
- Logan, G. D. (2020). Serial order in perception, memory, and action. Psychological Review, 128(1), 1–44. https://doi.org/10.1037/rev0000253
- Logan, G. D., & Crump, M. J. C. (2011). Hierarchical control of cognitive processes. The case for skilled typewriting. In Psychology of learning and motivation - advances in research and theory (1st ed., Vol. 54). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385527-5.00001-2
- Macneilage, P. F. (1964). Typing errors as clues to serial ordering mechanisms in language behaviour. *Language and Speech*, 7(3), 144–159. https://doi.org/10.1177/ 002383096400700302
- Majaranta, P., & Bulling, A. (2014). Eye tracking and eye-based human–computer interaction. In Advances in physiological computing (pp. 39–65). Springer. https://doi. org/10.1007/978-1-4471-6392-3_3.
- Majaranta, P., MacKenzie, I. S., Aula, A., & Räihä, K.-J. (2006). Effects of feedback and dwell time on eye typing speed and accuracy. *Universal Access in the Information* Society, 5(2), 199–208. https://doi.org/10.1007/s10209-006-0034-z

- Majaranta, P., & Räihä, K.-J. (2002). Twenty years of eye typing. In Proceedings of the symposium on eye tracking research & applications - ETRA '02 (pp. 15–22). ACM Press. https://doi.org/10.1145/507072.507076.
- McGrory, S., Austin, E. J., Shenkin, S. D., Starr, J. M., & Deary, I. J. (2015). From "aisle" to "labile": A hierarchical national adult reading test scale revealed by Mokken scaling. Psychological Assessment, 27(3), 932–943. https://doi.org/10.1037/psec0000001
- Mott, M. E., Williams, S., Wobbrock, J. O., & Morris, M. R. (2017). Improving dwell-based gaze typing with dynamic, cascading dwell times. In Conference on Human Factors in Computing Systems Proceedings (pp. 2558–2570). ACM Press. https://doi.org/10.1145/3025453.3025517.
- Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. *Nature Reviews Neuroscience*, 5(3), 218–228. https://doi. org/10.1038/nrn1345
- Nelles, G., Pscherer, A., de Greiff, A., Forsting, M., Gerhard, H., Esser, J., et al. (2009). Eye-movement training-induced plasticity in patients with post-stroke hemianopia. *Journal of Neurology*, 256(5), 726–733. https://doi.org/10.1007/s00415-009-5005-x
- Nelson, H. E., & Willison, Jonathan (1982). In *National adult reading test (NART)*.. Windsor, England: NFER-Nelson.
- Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 1–18). San Diego: Center for Human Information Processing, University of California.
- Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. *Annual Review of Neuroscience*, 28(1), 377–401. https://doi.org/ 10.1146/annurev.neuro.27.070203.144216
- Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., et al. (2005). The neural correlates of motor skill automaticity. *Journal of Neuroscience*, 25(22), 5356–5364. https://doi.org/10.1523/JNEUROSCI.3880-04.2005
- Posner, M. I. (1966). Components of skilled performance. *Science*, *152*(3730), 1712–1718. https://doi.org/10.1126/science.152.3730.1712
- Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance. Thousand Oaks, CA: SAGE Publications.
- Proudfoot, M., Menke, R. A. L., Sharma, R., Berna, C. M., Hicks, S. L., Kennard, C., et al. (2016). Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks. *Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration*, 17(1–2), 101–111. https://doi.org/10.3109/21678421.2015.1054292
- Prsa, M., Dicke, P. W., & Thier, P. (2010). The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. *Journal of Neuroscience*, 30(47), 15834–15842. https://doi.org/10.1523/ jneurosci.3901-10.2010
- Ren, J., Wu, Y. D., Chan, J. S. Y., & Yan, J. H. (2013). Cognitive aging affects motor performance and learning. *Geriatrics and Gerontology International*, 13(1), 19–27. https://doi.org/10.1111/j.1447-0594.2012.00914.x

- Saito, S. (1992). Does fatigue exist in a quantitative measurement of eye movements? Ergonomics, 35(5-6), 607-615. https://doi.org/10.1080/00140139208967840
- Salman, M. S., Sharpe, J. A., Eizenman, M., Lillakas, L., To, T., Westall, C., et al. (2006). Saccadic adaptation in children. *Journal of Child Neurology*, 21(12), 1025–1031. https://doi.org/10.1177/7010.2006.00238
- Sharma, R., Hicks, S., Berna, C. M., Kennard, C., Talbot, K., & Turner, M. R. (2011). Oculomotor dysfunction in amyotrophic lateral sclerosis: A comprehensive review. *Archives of Neurology*, 68(7), 857–861. https://doi.org/10.1001/ archneurol.2011.130
- Shaunak, S., Orrell, R. W., Osullivan, E., Hawken, M. B., Lane, R. J. M., Henderson, L., et al. (1995). Oculomotor function in amyotrophc lateral Sclerosis: Evidence for frontal impairment. *Annals of Neurology*, 38(1), 38–44. https://doi.org/10.1002/ana410380109
- Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. *Psychological Review*, 84(2), 127–190. https://doi.org/10.1037/0033-295X.84.2.127
- Slijper, H., Richter, J., Over, E., Smeets, J., & Frens, M. (2009). Statistics predict kinematics of hand movements during everyday activity. *Journal of Motor Behavior*, 41(1), 3–9. https://doi.org/10.1080/00222895.2009.10125922
- Smith, B. A., Ho, J., Ark, W., & Zhai, S. (2000). Hand eye coordination patterns in target selection. In Proceedings of the symposium on eye tracking research & applications -ETRA '00 (pp. 117–122). ACM Press. https://doi.org/10.1145/355017.355041.
- Soechting, J. F., & Flanders, M. (1992). Organization of sequential typing movements. *Journal of Neurophysiology*, 67(5), 1275–1290. https://doi.org/10.1152/in.1992.67.5.1275
- Spierer, L., Chavan, C. F., & Manuel, A. L. (2013). Training-induced behavioral and brain plasticity in inhibitory control. Frontiers in Human Neuroscience, 7, 1–9. https://doi. org/10.3389/fnhum.2013.00427
- Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation advances in research and theory (Vol. 55, pp. 37–76). Elsevier Inc. https://doi.org/ 10.1016/B978-0-12-387691-1.00002-8.
- Ujbanyi, T. (2018). Examination of eye-hand coordination using computer mouse and hand tracking cursor control. In 9th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2018 - Proceedings (pp. 353–354). IEEE. https://doi. org/10.1109/CogInfoCom.2018.8639882.
- Unsworth, N., Spillers, G. J., Brewer, G. A., & McMillan, B. (2011). Attention control and the antisaccade task: A response time distribution analysis. *Acta Psychologica*, 137(1), 90–100. https://doi.org/10.1016/j.actpsy.2011.03.004
- Viviani, P., & Laissard, G. (1996). Motor templates in typing. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 417–445. https://doi.org/ 10.1037/0096-1523.22.2.417
- Wechsler, D. (2008). Wechsler adult intelligence scale Fourth Edition (WAIS-IV). San Antonio, TX: NCS Pearson.
- Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., & Ettinger, U. (2013).
 Reliability and plasticity of response inhibition and interference control. *Brain and Cognition*, 81(1), 82–94. https://doi.org/10.1016/j.bandc.2012.09.010