

- Welcome
- Introduction: Machine Learning concepts
- Module 1. The Predictive Modeling Pipeline
- Module 2.Selecting the best model
- Module 3.Hyperparameter tuning
- Module 4.Linear Models
- Module 5.Decision tree models
- Module 6.Ensemble of models
- Module 7.
 Evaluating model
 performance

Search courses

In this wrap-up quiz you will need to write some code in order to answer quiz questions:

- an empty notebook is available just below to write your code
- quiz questions are located after the notebook here
- the button Open Notebook at the bottom right of the screen allows you to open the notebook in full page at any time
- + Click here to see a demo video of the notebook user interface

model with simple baselines Quiz M7

Choice of crossvalidation

Quiz M7

Nested crossvalidation

Quiz M7

Classification metrics

Quiz M7

Regression metrics

Quiz M7

Wrap-up quizWrap-up quiz

Main take-away

- Conclusion
- Appendix

IVIOUUIE / - VVIAP-UP WUIZ

Importing Data

_			:	1
- 1	111	-		
	Jυ	L.	_	

	heart- rate	cadence	speed	acceleration	slope
2020-08-18 14:43:19	102.0	64.0	4.325	0.0880	-0.033870
2020-08-18 14:43:20	103.0	64.0	4.336	0.0842	-0.033571
2020-08-18 14:43:21	105.0	66.0	4.409	0.0234	-0.033223
2020-08-18 14:43:22	106.0	66.0	4.445	0.0016	-0.032908
2020-08-18 14:43:23	106.0	67.0	4.441	0.1144	0.000000

In [33]: data.describe()

Out[33]:

	heart-rate	cadence	speed	acceleratio
count	38254.000000	38254.000000	38254.000000	38254.000000
mean	141.385616	72.896876	8.203325	-0.002056
std	16.562215	25.235907	2.603563	0.225916
min	66.000000	0.000000	0.000000	-2.384600
25%	131.000000	73.000000	6.579000	-0.074400
				Powered

Open the dataset bike_rides.csv with the following commands:

₂7

A detailed description of this dataset is given in the appendix. As a reminder, the problem we are trying to solve with this dataset is to use measurements from cheap sensors (GPS, heart-rate monitor, etc.) in order to predict a cyclist power. Power can indeed be recorded via a cycling power meter device, but this device is rather expensive.

Instead of using blindly machine learning, we will first introduce some flavor of classic mechanics: the Newton's second law.

$$P_{meca} = (rac{1}{2}
ho.\,SCx.\,Va^2 + C_r.\,mg.\coslpha + mg.\sinlpha + ma)V_d$$

where ρ is the air density in kg.m $^{-3}$, S is frontal surface of the cyclist in m 2 , C_x is the drag coefficient, V_a is the air speed in m.s $^{-1}$, C_r is the rolling coefficient, m is the mass of the rider and bicycle in kg, g is the standard acceleration due to gravity which is equal to 9.81 m.s $^{-2}$, α is the slope in radian, V_d is the rider speed in m.s $^{-1}$, and a is the rider acceleration in m.s $^{-2}$.

This equation might look a bit complex at first but we can explain with words what the different terms within the parenthesis are:

- the first term is the power that a cyclist is required to produce to fight wind
- the second term is the power that a cyclist is required to produce to fight the rolling resistance created by the tires on the floor
- the third term is the power that a cyclist is required to produce to go up a hill if the slope is positive. If the slope is negative the cyclist does not need to produce any power to go forward
- the fourth and last term is the power that a cyclist requires to change his speed (i.e. acceleration).

$$P_{meca} = eta_1 V_d^3 + eta_2 V_d + eta_3 \sin(lpha) V_d + eta_4 a V_d$$

This model is closer to what we saw previously: it is a linear model trained on a non-linear feature transformation. We will build, train and evaluate such a model as part of this exercise. Thus, you need to:

- create a new data matrix containing the cube of the speed, the speed, the speed multiplied by the sine of the angle of the slope, and the speed multiplied by the acceleration. To compute the angle of the slope, you need to take the arc tangent of the slope (alpha = np.arctan(slope)). In addition, we can limit ourself to positive acceleration only by clipping to 0 the negative acceleration values (they would correspond to some power created by the braking that we are not modeling here).
- using the new data matrix, create a linear predictive model based on a sklearn.preprocessing.StandardScaler and a sklearn.linear_model.RidgeCV;
- use a sklearn.model_selection.ShuffleSplit cross-validation strategy with only 4 splits (n_splits=4) to evaluate the generalization performance of the model. Use the mean absolute error (MAE) as a generalization performance metric. Also, pass the parameter return_estimator=True and return_train_score=True to answer the subsequent questions. Be aware that the ShuffleSplit strategy is a naive strategy and we will investigate the consequence of making this choice in the subsequent questions.

Question 1 (1/1 point)

What is the mean value of the column containing the information of $\sin(\alpha)V_d$?

○ a) about -3

O b) about -0.3

O c) about -0.03

You have used 1 of 1 submissions

Question 2 (1/1 point)

On average, the Mean Absolute Error on the test sets obtained through cross-validation is closest to:

- a) 20 Watts
- b) 50 Watts
- c) 70 Watts
- d) 90 Watts

Hint 1: pass | scoring="neg_mean_absolute_error" | to the cross_validate | function to compute the (negative of) the requested metric.

Hint 2: it is possible to replace the negative acceleration values by 0 using data["acceleration"].clip(lower=0)

You have used 1 of 1 submissions

Question 3 (1/1 point)

Given the model $P_{meca}=eta_1V_d^3+eta_2V_d+eta_3\sin(lpha)V_d+eta_4aV_d$ that you created, inspect the weights of the linear models fitted during cross-validation and select the correct statements:

- $leve{ }$ a) $eta_1 < eta_2 < eta_3$
- \Box b) $\beta_3 < \beta_1 < \beta_2$

\square d) $eta_1 < 0$
\Box e) $eta_2 < 0$
\Box f) $eta_3 < 0$
\Box g) $eta_4 < 0$
lacksquare h) All eta s are > 0

Select all answers that apply

You have used 1 of 2 submissions

Question 4 (1/1 point)

Now, we will create a predictive model that uses all data, including available sensor measurements such as cadence (the speed at which a cyclist turns pedals measured in rotation per minute) and heart-rate (the number of beat per minute of the heart of the cyclist while exercising). Also, we will use a non-linear regressor, a sklearn.ensemble.HistGradientBoostingRegressor. Fix the number of maximum iterations to 1000 (max_iter=1_000) and activate the early stopping (early_stopping=True). Repeat the previous evaluation using this regressor.

On average, the Mean Absolute Error on the test sets obtained through cross-validation is closest to:

O a) 20 Watts	
b) 40 Watts	
O c) 60 Watts	الا لا

You have used 1 of 1 submissions

Question 5 (1/1 point)

Comparing both the linear model and the histogram gradient boosting model and taking into consideration the train and test MAE obtained via cross-validation, select the correct statements:

☐ a) the generalization performance of the histogram gradient-boosting model is limited by its underfitting
b) the generalization performance of the histogram gradient-boosting model is limited by its overfitting
c) the generalization performance of the linear model is limited by its underfitting
 d) the generalization performance of the linear model is limited by its overfitting

Select all answers that apply

Hint: look at the values of the train_score and the test_score collected in the dictionaries returned by the cross_validate function.

You have used 2 of 2 submissions

Question 6 (1/1 point)

In the previous cross-validation, we made the choice of using a Shufflesplit cross-validation strategy. It means that randomly selected samples were selected as testing set ignoring any time dependency between the lines of the dataframe.

Hint 1: You can check the unique day in the DatetimeIndex (the index of the dataframe data). Indeed, we assume that on a given day the rider went cycling at most once per day.

Hint 2: You can access to the date and time of a DatetimeIndex using df.index.date and df.index.time, respectively.

You have used 1 of 1 submissions

Question 7 (1/1 point)

We would like to have a cross-validation strategy that evaluates the capacity of our model to predict on a completely new bike ride: the samples in the validation set should only come from rides not present in the training set. Therefore, we can use a LeaveOneGroupOut strategy: at each iteration of the cross-validation, we will keep a bike ride for the evaluation and use all other bike rides to train our model.

Thus, you concretely need to:

• create a variable called <code>group</code> that is a 1D numpy array containing the index of each ride present in the dataframe. Therefore, the length of <code>group</code> will be equal to the number of samples in <code>data</code>. If we had 2 bike rides, we would expect the indices 0 and 1 in <code>group</code> to differentiate the bike ride. You can use <code>pd.factorize</code> to encode any Python types into integer indices.

evaluate both the linear and histogram gradient boosting models with this strategy.
Using the previous evaluations (with the LeaveOneGroupOut strategy) and looking at the train and test errors for both models, select the correct statements:
a) the generalization performance of the gradient-boosting model is limited by its underfitting
b) the generalization performance of the gradient-boosting model is limited by its overfitting
c) the generalization performance of the linear model is limited by its underfitting
☐ d) the generalization performance of the linear model is limited by its overfitting
✓
Select all answers that apply
You have used 1 of 2 submissions
Question 8 (1/1 point)
In this case we cannot compare cross-validation scores fold-to-fold as the folds are not aligned (they are not generated by the exact same strategy). Instead, compare the mean of the cross-validation test errors in the evaluations of the linear model to select the correct statement.
When using the ShuffleSplit strategy, the mean test error:
a) is greater than the LeaveOneGroupOut mean test error by

more than 3 Watts, i.e. ShuffleSplit is giving over-pessimistic

results

You have used 1 of 1 submissions

Question 9 (1/1 point)

Compare the mean of the cross-validation test errors in the evaluations of the **gradient-boosting model** to select the correct statement.

When using the ShuffleSplit strategy, the mean test error:

- O a) is greater than the LeaveOneGroupOut mean test error by more than 3 Watts, i.e. ShuffleSplit is giving over-pessimistic results
- O b) differs from the LeaveOneGroupOut mean test error by less than 3 Watts, i.e. both cross-validation strategies are equivalent
- c) is lower than the LeaveOneGroupOut mean test error by more than 3 Watts, i.e. ShuffleSplit is giving over-optimistic results

You have used 1 of 1 submissions

Question 10 (1/1 point)

Compare more precisely the errors estimated through cross-validation and select the correct statement:

a) in general, the standard deviation of the train and test errors increased using the LeaveOneGroupOut cross-validation

es 🔎

You have used 1 of 1 submissions

Question 11 (1/1 point)

Now, we will go more into details by picking a single ride for the testing and analyse the predictions of the models for this test ride. To do so, we can reuse the LeaveOneGroupOut cross-validation object in the following manner:

```
cv = LeaveOneGroupOut()
train_indices, test_indices = list(cv.split(data, target,
groups=groups))[0]

data_linear_model_train = data_linear_model.iloc[train_indices]
data_linear_model_test = data_linear_model.iloc[test_indices]

data_train = data.iloc[train_indices]
data_test = data.iloc[test_indices]

target_train = target.iloc[train_indices]
target_test = target.iloc[test_indices]
```

Now, fit both the linear model and the histogram gradient boosting regressor models on the training data and collect the predictions on the testing data. Make a scatter plot where on the x-axis, you will plot the measured powers (true target) and on the y-axis, you will plot the predicted powers (predicted target). Do two separated plots for each model.

By analysing the plots, select the correct statements:

 $\ \square$ b) the linear regressor tends to over-predict samples with high power

d) the histogram gradient boosting regressor tends to underpredict samples with high power
$\hfill \Box$ e) the histogram gradient boosting regressor tends to overpredict samples with high power
f) the histogram gradient boosting makes catastrophic predictions for samples with power close to zero

Select all answers that apply

You have used 1 of 2 submissions

Question 12 (1/1 point)

Now select a portion of the testing data using the following code:

```
time_slice = slice("2020-08-18 17:00:00", "2020-08-18 17:05:00")

data_test_linear_model_subset = data_linear_model_test[time_slice]
data_test_subset = data_test[time_slice]
target_test_subset = target_test[time_slice]
```

It allows to select data from 5.00 pm until 5.05 pm. Used the previous fitted models (linear and gradient-boosting regressor) to predict on this portion of the test data. Draw on the same plot the true targets and the predictions of each model.

By using the previous plot, select the correct statements:

\bigcirc	a) the linear	model is more	accurate th	nan the h	nistogram
gra	dient boostir	ng regressor			

 b) the histogram gradient boosting regressor is more accurate than the linear model

Search courses

rou nave usea i oj i submissions

١	/(\cap	ı	J	R)	F	χ	Р	F	R	1	F	١	J	C	F

According to you, the 'Wrap-up Quiz' of this module was:

Too easy, I got bored O Adapted to my skills O Difficult but I was able to follow Too difficult Submit To follow this lesson, I spent: less than 30 minutes O 30 min to 1 hour O 1 to 2 hours O 2 to 4 hours O more than 4 hours I don't know

Submit

FORUM (EXTERNAL RESOURCE)

			30010110001000	V
T New Iopid	C Ţ			
ome > M7. Eval	luating model perform	nance > M7. Wran	n-up quiz 7	
horo are r	ao mara M7 W	Iran un quis	z 7 topics. Ready t	to ctor
	versation?	rrap-up quiz	i i topics. Ready i	io star
i ilew com	rersation:			

About...

Help and Contact

Terms and conditions

