WINTER 2011

UNIT 1

Q. 1 a) Obtain principal disjunctive normal form (7) $\uparrow (\neg PR) \land (O \leftrightarrow P)$

b) Show that following is the equivalent formula (6) $P \vee (\neg P \wedge O) \Leftrightarrow P \vee O$

Q. 2 a) Obtain principal disjunctive normal form (7) $P \rightarrow (P \rightarrow Q) \land \neg (\neg Q \lor \neg P)$

 $P \rightarrow (r - r \leftarrow r)$ Trite equivalent forms ofi. $\neg (P \lor Q)$ ii. $\neg (P \land Q)$ iii. $\neg (P \rightarrow Q)$ UNIT 2 **b)** Write equivalent forms of-(6)

(7)

Q. 3 a) Show That

a) Snow That $(x) (P(x) \to (Q(x)) \land (x) (Q(x) \to R(x))$ \Rightarrow (x) (P(x) \rightarrow R(x))

- b) Explain terms statement function variables, quantifier, predicate and predicate formula with example. (6)
- **Q.** 4 a) Show that $(\exists x)$ M(x) follows logically from the premises.

(x)
$$(H(x) \to M(x))$$
 and $(\exists x) H(x)$ (7)

b) i. Which of the following are statements (6)

(1) (x) $(P(x) \vee Q(x)) \wedge R$

(2) (x) $(P(x) \land Q(x)) \land (\exists x) S(x)$ (3) (x) $(P(x) \land Q(x)) \land S(x)$

ii. What do you mean by quantifiers, free and bound variables?

UNIT 3

Q. 5 a) Explain different properties of binary reaction. Any three properties with example. **(7)**

b) Let $X = \{1,2,3,4,5,6\}$ and $R = \{(x,y)/(x>y)\}$

Draw graph of R and give Matrix (6)Q. 6 a) Show whether following reactions are transitive and symmetric. i. $R = \{<1,2>, <2,2>\}$ ii. $R = \{<1,2>, <2,3>, <1,3>, <2,1>\}$ iii. S $\{1,2,3,4\}$ iv. $R = \{<1,2>, <4,3>, <2,2>, <3,1>\}$ (6)**b)** What do you mean by primitive recursive function? Show that f(x,y) = x + y is primitive recursive **(7)** UNIT 4 Q. 7 a) Define terms:i. Subgroup ii. Subgroup iv. Semigroup Homomorphism. iii. Monoid (8)**b)** Design composition table fir algebraic system $(Z_{\neg} + \neg)$ and $(Z_{\neg}, *_{\neg})$ (6)**Q. 8 a)** Find left coset of $\{[0],[3]\}$ in the group $(Z_6, + 6)$ (6)**b)** Find all sub-groups of i. $(Z_9, + 9)'$ ii. $(Z^* \neg X \neg)$ (8)UNIT 5 Q.9 a) Find different properties of Lattices. (6)Find minimum sum of products expression using k maps. i. f (a,b,c,d) = Σ (0,1,2,3,13,15) ii. f (a,b,c,d,e) = Σ (0,1,3,8,9,13,14,15,16, 17.19.14.25.27.31) (8)Q. 10 a) Define terms:-(6)i. Isotonicity. Ii. Sub Lattice iii. lattice Homomorphism. **b)** Obtain minimal expression using k map

i. $f(a,b,c,d) = \Sigma (0,1,2,3,13,15)$ ii. $f(a,b,c,d,e) = \Sigma (9,20,21,29,30,31)$ (8)

UNIT 6

- **Q. 11 a)** Explain with example paths, Reachability, Connectedness. **(6)**
- **b)** Find adjacency matrix for the graph given below. (7)
- **Q. 12 a)** Define terms strong component and weak component of digraph. Find strong components of following digraph. (8)
- aditalypublication. **b)** Find reachable sets of $\{v_1,v_4\}$, $\{v_4,v_5\}$ and $\{v_3\}$ for the diagraph in above Question. (5)