ABSTRACT INTEGRATION

May 21, 2022

The Concept of Measurability

1.2 Definition

- (a) A collection τ of subsets of a set X is said to be a *topology* in X if τ has the following three properties:
 - (i) $\emptyset \in \tau$ and $X \in \tau$.
 - (ii) If $V_i \in \tau$ for $i = 1, \dots, n$, then $V_1 \cap \dots \cap V_n \in \tau$.
 - (ii) If V_{α} is an arbitrary collection of members of τ (finite, countable, or uncountable), then $\bigcup_{\alpha} V_{\alpha} \in \tau$.
- (b) If τ is a topology in X, then X is called a topological space, and the members of τ are called the open sets in X.
- (c) If X and Y are topological spaces and if f is a mapping of X into Y, then f is said to be *continuous* provided that $f^{-1}(V)$ is an open set in X for every open set V in Y.

1.3 Definition

- (a) A collection $\mathfrak M$ of subsets of a set X is said to be a σ -algebra in X if $\mathfrak M$ has the following properties:
 - (i) $X \in \mathfrak{M}$.
 - (ii) If $A \in \mathfrak{M}$, then $A^c \in \mathfrak{M}$, where A^c is the complement of A relative to X.
 - (iii) If $A = \bigcup_{n=1}^{\infty} A_n$ and if $A_n \in \mathfrak{M}$ for $n = 1, 2, 3, \dots$, then $A \in \mathfrak{M}$.
- (b) If \mathfrak{M} is a σ -algebra in X is called a *measureable space*, and the members of \mathfrak{M} are called the *measurable sets* in X.
- (c) If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be measurable provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y.

1.4 Comments on Definition 1.2

The definition of continuity given in Sec. 1.2(c) is a global one. Frequently it is desirable to define continuity locally: A mapping f of X into Y is said to be **continuous** at the point $x_0 \in X$ if to every neighborhood V of $f(x_0)$ there corresponds a neighborhood W of x_0 such that $f(W) \subset V$.

1.5 Proposition

Let X and Y be topological spaces. A mapping of X into Y is continuous if and only if f is continuous at every point of X.

1.6 Comments on Definition 1.3

Let \mathfrak{M} be a σ -algebra in a set X. Referring to Properties (i) to (iii) of Definition 1.3(a), we immediately derive the following facts.

- (a) Since $\emptyset = X^c$, (i) and (ii) imply that $\emptyset \in \mathfrak{M}$.
- (b) Taking $A_{n+1} = A_{n+2} = \cdots = \emptyset$ in (iii), we see that $A_1 \cup A_2 \cup \cdots \cup A_n \in \mathfrak{M}$ if $A_i \in \mathfrak{M}$ for $i = 1, \dots, n$.
- (c) Since

$$\bigcap_{n=1}^{\infty} A_n = (\bigcup_{n=1}^{\infty} A_n^c)^c,$$

M is closed under the formation of countable (and also finite) intersections.

(d) Since $A - B = B^c \cap A$, we have $A - B \in \mathfrak{M}$ if $A \in \mathfrak{M}$ and $B \in \mathfrak{M}$. The prefix σ refers to the fact that (iii) is required to hold for all *countable* unions of members of \mathfrak{M} . If (iii) is required for finite unions only, then \mathfrak{M} is called an algebra of sets.

1.7 Theorem

Let Y and Z be topological spaces, and let $q: Y \to Z$ be continuous.

- (a) If X is a topological space, if $f: X \to Y$ is continuous, and if $h = g \circ h$, then $h: X \to Z$ is continuous.
- (b) If X is a measurable space, if $f: X \to Y$ is continuous, and if $h = g \circ h$, then $h: X \to Z$ is measurable.

Stated informally, continuous functions of continuous functions are continuous; continuous functions of measurable functions are measurable.

1.8 Theorem

Let $\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ be real $\underline{measurable}$ functions on a measurable space $\underline{\mathbf{X}}$, let $\underline{\Phi}$ be a continuous mapping of the plane into a topological space Y, and define

$$h(x) = \Phi(u(x), v(x))$$

for $x \in X$. Then $h: X \to Y$ is measurable.

1.9 Corollaries of Theorems 1.7 and 1.8

- (a) If f = u + iv, where u and v are real measurable functions on X, then f is a complex measurable function on X.
- (b) If f = u + iv is a complex measurable function on X, then u, v and |f| are real measurable functions on X.
- (c) If f and g are complex measurable functions on X, then so are f + g and fg.
- (d) If E is a measurable set in X and if

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

then χ_E is a measurable function.

(e) If f is a complex measurable function on X, there is a complex measurable function α on X such that $|\alpha| = 1$ and $f = \alpha |f|$.

1.0 Theorem

If \mathcal{F} is any collection of subsets of X, there exists a smallest σ -algebra \mathfrak{M}^* in X such that $\mathcal{F} \subset \mathfrak{M}^*$.

1.11 Borel Sets

Let X be a topological space. By Theorem 1.10, there exists a smallest σ -algebra \mathcal{R} in X such that every open set in X belongs to \mathcal{R} . The members of \mathcal{R} are called Borel sets of X.

Consider the measurable space (X, \mathcal{R}) . If $f: X \to Y$ is a continuous mapping of X, where Y is any topological sapee, then it is evident from the definitions that $f^{-1}(V) \in \mathcal{R}$ for every open set V in Y. In other words, every continuous mapping of X is Borel measurable.

Borel measurable mappings are often called *Borel mappings*, or *Borel functions*.

1.12 Theorem

Suppose \mathfrak{M} is a σ -algebra in X, and Y is a topological space. Let f map X into Y.

- (a) If Ω is the collection of all sets $E \subset Y$ such that $f^{-1}(E) \in \mathfrak{M}$, then Ω is a σ -algebra in Y.
- (b) If f is measurable and E is a *Borel set* in Y, then $f^{-1}(E) \in \mathfrak{M}$.
- (c) If $Y = [-\infty, +\infty]$ and $f^{-1}((a, \infty]) \in \mathfrak{M}$ for every real α , then f is measurable.
- (d) If f is measurable, if Z is a topological space, if $g: Y \to Z$ is a Borel mapping, and if $h = g \circ f$, then $h: X \to Z$ is measurable.

1.13 Defitnion

Let $\{a_n\}$ be a sequence in $[-\infty, +\infty]$, and put

$$b_k = \sup\{a_k, a_{k+1}, a_{k+2}, \dots\}$$
 $(k = 1, 2, 3, \dots)$ (1)

and

$$\beta = \inf\{b_1, b_2, b_3, \cdots\}. \tag{2}$$

We call β the *upper limit* of $\{a_n\}$, and write

$$\beta = \lim_{n \to \infty} \sup \ a_n \tag{3}$$

The *lower limit* is defined analogously: simply interchange sup and inf in (1) and (2). Note that

$$\lim_{n \to \infty} \inf \ a_n = -\lim_{n \to \infty} \sup \ (-a_n) \tag{4}$$

If $\{a_n\}$ converges, then evidently

$$\lim_{n \to \infty} \sup \ a_n = \lim_{n \to \infty} \inf \ a_n = \lim_{n \to \infty} a_n \tag{5}$$

Suppose $\{f_n\}$ is a sequence of extended-real functions on a set X. Then $\sup_n f_n$ are the functions defined on X by

$$(\sup_{n} f_n)(x) = \sup_{n} (f_n(x)), \tag{6}$$

$$(\lim_{n \to \infty} \sup f_n)(x) = \lim_{n \to \infty} \sup (f_n(x)) \tag{7}$$

If

$$f(x) = \lim_{n \to \infty} f_n(x) \tag{7}$$

the limit being assumed to exist at every $x \in X$, then we call f the pointwise limit of the seuqence $\{f_n\}$.

1.14 Theorem

If $f_n: X \to [-\infty, +\infty]$ is measurable, for $n = 1, 2, 3, \dots$, and

$$g = \sup_{n>1} f_n, h = \lim_{n\to\infty} \sup f_n,$$

then g and h are measurable.

Corollaries

- (a) The <u>limit</u> of every <u>pointwise converge</u> sequence of <u>complex measurable</u> functions is <u>measurable</u>.
- (b) If f and g are measurable (with range in $[-\infty, +\infty]$), then so are max $\{f, g\}$ and min $\{f, g\}$. In particular, this is true of the functions

$$f^+ = \max\{f, 0\} \text{ and } f^- = -\min\{f, 0\}.$$

Proposition

If f = g - h, $g \ge 0$, and $h \ge 0$, then $f^+ \le g$ and $f^- \le h$.

Simple Functions

1.16 Definition

A complex function s on a measurable space X whose range consists of only finitely many points will be called a *simple function*. Among these are the nonnegative simple functions, whose range is a finite subset of $[0, \infty)$. Note that we explicitly exclude ∞ from the values of a simple function.

If $\alpha_1, \dots, \alpha_n$ are the distinct values of a simple function s, and if we set $A_i = x : s(x) = \alpha_i$, then clearly

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

where χ_{A_i} is the characteristic function of A_i , as defined in Sec. 1.9(d).

It is also clear that s is measurable if and only if each of the sets A_i is measurable.

1.17 Theorem

Let $f: X \to [0, \infty]$ be measurable. There exist simple measurable functions s_n on X such that

- (a) $0 \le s_1 \le s_2 \le \dots \le f$.
- (b) $s_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$.

Elementary Properties of Measures

1.18 Definition

(a) A positive measure is a function μ , defined on a σ -algebra \mathfrak{M} , whose range is in $[0, \infty]$ and which is countably additive. This means that if A_i is a disjoint countable collection of members of \mathfrak{M} , then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

- (b) A measure space is a measurable space which has a positive measure defined on the σ -algebra of its measurable sets.
- (c) A complex measure is a complex-valued countably additive function defined on a σ -algebra.

1.19 Theorem

Let μ be a positive measure on a σ -algebra \mathfrak{M} . Then,

- (a) $\mu(\varnothing) = 0$
- (b) $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$ if A_i, \cdots, A_n are pairwise disjoint members of \mathfrak{M} .
- (c) $A \subset B$ implies $\mu(A) \leq \mu(B)$ if $A \in \mathfrak{M}$, $B \in \mathfrak{M}$
- (d) $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcup_{n=1}^{\infty} A_n, A_n \in \mathfrak{M}$, and

$$A_1 \subset A_2 \subset A_3 \cdots$$
.

(e) $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcap_{n=1}^{\infty} A_n$, $A_n \in \mathfrak{M}$,

$$A_1 \supset A_2 \supset A_3 \supset \cdots$$
,

and $\mu(A_1)$ is finite.

Arithmetic in $[0, \infty]$

Sums and products of measurable functions into $[0, \infty]$ are measurale.

Integration of Positive Functions

In this section, \mathfrak{M} will be a σ -algebra in a set X and μ will be a positive measure on \mathfrak{M} .

1.23 Definition

If $s: X \to [0, \infty)$ is a measurable simple function, of the form

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},\tag{1}$$

where $\alpha_1, \dots, \alpha_n$ are the distinct values of s (compare Definition 1.16), and if $E \in \mathfrak{M}$, we define

$$\int_{E} s d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E) \tag{2}$$

The convention $0 \cdot \infty = 0$ is used here; it may happen that $\alpha_i = 0$ for some i and that $\mu(A_i \cap E) = \infty$.

If $f: X \to [0, \infty]$ is measurable, and $E \in \mathfrak{M}$, we define

$$\int_{E} f d\mu = \sup \int_{E} s d\mu,\tag{3}$$

the supremum being taken over all simple measurable functions s such that $0 \le s \le f$.

The left member of (3) is called the Lebesgue integral of f over E, with respect to the measure μ . It is a number in $[0, \infty]$.

The following propositions are immediate consequence of the definitions. The functions and sets occurring in them are assumed to be measurable:

- (a) If $0 \le f \le g$, then $\int_E f d\mu \le \int_E g d\mu$.
- (b) If $A \subset B$ and $f \geq 0$, then $\int_A f d\mu \leq \int_B f d\mu$.
- (c) If $f \geq 0$ and c is a constant, $0 \leq c < \infty$, then

$$\int_{E} cf d\mu = c \int_{E} f d\mu.$$

- (d) If f(x) = 0 for all $x \in E$, then $\int_E f d\mu = 0$, even if $\mu(E) = \infty$.
- (e) If $\mu(E) = 0$, then $\int_E f d\mu = 0$, even if $f(x) = \infty$ for every $x \in E$.
- (f) If $f \ge 0$, then $\int_E f d\mu = \int_{\mathcal{X}} \chi_E f d\mu$.

1.25 Proposition

Let s and t be nonnegative measurable simple functions on X. For $E \in \mathfrak{M}$, define

$$\varphi(E) = \int_{E} s d\mu. \tag{1}$$

Then φ is a measure on \mathfrak{M} . Also

$$\int_{X} (s+t)d\mu = \int_{X} sd\mu + \int_{X} td\mu. \tag{2}$$

1.26 Lebesgue's Monotone Convergence Theorem

Let $\{f_n\}$ be a sequence of measurable functions on X, and suppose that

- (a) $0 \le f_1(x) \le f_2(x) \le \cdots \le \infty$ for every $x \in X$,
- (b) $f_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$.

Then f is measurable, and

$$\int_X f_n d\mu \to \int_X f d\mu \quad as \ n \to \infty.$$

1.27 Theorem

If $f_n: X \to [0, \infty]$ is measurable, for $n = 1, 2, 3, \dots$, and

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \qquad (x \in X),$$

then

$$\int_X f d\mu = \sum_{n=1}^n \int_X f_n d\mu.$$

Corollary

If $a_{ij} \geq 0$ for i and $j = 1, 2, 3, \dots$, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

1.28 Fatou's Lemma

If $f_n: X \to [0, \infty]$ is measurable, for each positive integer n, then

$$\int_X (\lim_{n \to \infty} \inf f_n) d\mu \le \lim_{n \to \infty} \inf \int_X f_n d\mu.$$

1.29 Theorem

Suppose $f: X \to [0, \infty]$ is measurable, and

$$\varphi(E) = \int_{E} f d\mu \qquad (E \in \mathfrak{M}).$$

Then φ is a measure on \mathfrak{M} , and

$$\int_X g d\varphi = \int_X g f d\mu$$

for every measurable g on X with range in $[0, \infty]$.

Integration of Complex Functions

As before, μ will in this section be a positive measure on an arbitary measurable space X.

1.30 Definition

We define $L^1(\mu)$ to be the collection of all complex measurable functions f on X for which

$$\int_{Y} |f| d\mu < \infty.$$

The members of $L^1(\mu)$ are called <u>Lebesgue integrable</u> functions (with respect to μ) or <u>summable functions</u>.

1.31 Definition

If f = u + iv, where u and v are real measurable functions on X, and if $f \in L^1(\mu)$, we define

$$\int_{E} f d\mu = \int_{E} u^{+} d\mu - \int_{E} u^{-} d\mu + i \int_{E} v^{+} d\mu - i \int_{E} v^{-} d\mu$$

for every measurable set E.

1.32 Theorem

Suppose f and $g \in L^{-1}(\mu)$ and α and β are complex numbers. Then $\alpha f + \beta g \in L^{1}(\mu)$, and

$$\int_X (\alpha f + \beta g) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu.$$

1.33 Theorem

If $f \in L^1(\mu)$, then

$$|\int_X f d\mu| \leq \int_X |f| d\mu.$$

1.34 Lebesgue's Dominated Convergence Theorem

Suppose $\{f_n\}$ is a sequence of complex measurable functions on X such that

$$f(x) = \lim_{n \to \infty} f_n(x)$$

exists for every $x \in X$. If there is a function $g \in L^1(\mu)$ such that

$$|f_n(x)| \le g(x)$$
 $(n = 1, 2, 3, \dots; x \in X),$

then $f \in L^1(\mu)$,

$$\lim_{n\to\infty} \int_X |f_n - f| d\mu = 0,$$

and

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$$

1.35 Definition

If μ is a measure on a σ -algebra \mathfrak{M} and if $E \in \mathfrak{M}$, the statement "P holds almost everywhere on E" (abbreviated to "P holds a.e. on E") means that there exists an $N \in \mathfrak{M}$ such that $\mu(N) = 0, N \subset E$, and P holds at every point of E - N. This concept of a.e. depends of course very strongly on the given measure, and we shall write "a.e. $[\mu]$ " whenever clarity requires that the measure be indicated.

The transitivity $(f \sim g \text{ and } g \sim h \text{ implies } f \sim h)$ is a consequence of the fact that the union of two sets of measure 0 has measure 0.

1.36 Theorem

Let (X, \mathfrak{M}, μ) be a measure space, let \mathfrak{M}^* be the collection of all $E \subset X$ for which there exist sets A and $B \in \mathfrak{M}$ such that $A \subset E \subset B$ and $\mu(B - A) = 0$, and define $\mu(E) = \mu(A)$ in this situation. Then \mathfrak{M}^* is a σ -algebra, and μ is a measure on \mathfrak{M}^* .

1.38 Theorem

Suppose $\{f_n\}$ is a sequence of complex measurable functions defined a.e. on X such that

$$\sum_{n=1}^{\infty} \int_{X} |f_n| d\mu < \infty.$$

Then the series

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

converges for almost all x, $f \in L^1(\mu)$, and

$$\int_{X} f d\mu = \sum_{n=1}^{\infty} \int_{X} f_n d\mu$$

1.39 Theorem

- (a) Suppose $f: X \to [0, +\infty]$ is measurable, $E \in \mathfrak{M}$, and $\int_E f d\mu = 0$. Then f = 0 a.e. on E.
- (b) Suppose $f \in L^1(\mu)$ and $\int_E f d\mu = 0$ for every $E \in \mathfrak{M}$. Then f = 0 a.e. on X.
- (c) Suppose $f \in L^1(\mu)$ and

$$|\int_X f d\mu| = \int_X |f| d\mu.$$

Then there is a constant α such that $\alpha f = |f|$ a.e. on X.

1.40 Theorem

Suppose $\mu(X) < \infty$, $f \in L^1(\mu)$, S is a closed set in the complex plane, and the averages

$$A_E(f) = \frac{1}{\mu(E)} \int_E f d\mu$$

lie in S for every $E \in \mathfrak{M}$ with $\mu(E) > 0$. Then $f(x) \in S$ for almost all $x \in X$.

1.41 Theorem

Let $\{E_k\}$ be a sequence of measurable sets in X, such that

$$\sum_{k=1}^{\infty} \mu(E_k) < \infty.$$

Then almost all $x \in X$ lie in at most finitely many of the sets E_k .