

Capstone Project on Coronavirus Tweet Sentiment Analysis

by

Muktesh Singh

Problem Statement

 Analysing various sentiments of COVID_19 tweets during the period March 2020 to April 2020.

 Build a classification model to predict the sentiment of COVID-19 tweets.

Sentiment Analysis

- Sentiment analysis is a natural language processing technique to find emotions related to the public/customers opinion (text data). It may be positive, negative, neutral etc.
- It helps different stake holders to understand the public/customers mindset and their requirement.
- For example government can make policies based on public reaction on new strain, food scarcity, panic attacks etc during COVID.

Data Summary

Details of dataset – coronavirus tweets.csv

- Number of rows 41156
- Number of columns 5
- Datatypes int64 and object
- Only Location column has some null values

Null Values

```
(class 'pandas.core.frame.DataFrame')
                                               UserName
RangeIndex: 41157 entries, 0 to 41156
Data columns (total 6 columns):
                                               ScreenName
    Column
                 Non-Null Count Dtype
                                               Location
    UserName
            41157 non-null int64
   ScreenName 41157 non-null int64
                                               TweetAt
   Location 32567 non-null object
             41157 non-null object
3 TweetAt
                                               OriginalTweet
    OriginalTweet 41157 non-null object
    Sentiment
                 41157 non-null object
                                               Sentiment
dtypes: int64(2), object(4)
memory usage: 1.9+ MB
```


Exploratory Data Analysis

Sentiment distribution of tweets

	Sentiment	Number_of_Tweets
0	Positive	11422
1	Negative	9917
2	Neutral	7713
3	Extremely Positive	6624
4	Extremely Negative	5481

Top 20 Date with Highest Number of Tweets

Top 20 Location with **Highest** Number of Tweets

Top 50 Hashtags

Top 50 Positive Hashtags

Top 50 Negative Hashtags

Top 50 Neutral Hashtags

Top 50 Extremely Positive Hashtags

Top 50 Extremely Negative Hashtags

Insights from EDA

- From sentiment distribution of tweets it is clear that 27.8% of the tweets are positive followed by negative(24.1%).
- 20th March 2020 was the date with highest number of tweets.
- London was the city with most of number of tweets twitted by people on twitter.
- #coronavirus is the most used hashtags by a large margin in all the sentiments.
- Few hashtags are common in all the sentiments but many hashtags are different for different sentiments.

Data Preprocessing

- The raw data extracted from twitter contains so much noise. If we apply
 machine learning algorithm to this data the model will give inaccurate
 results. To resolve this problem we need to perform the following steps
 - 1) Remove usernames
 - 2) Remove URLs
 - 3) Remove punctuation, special characters
 - 4) Remove stop words
 - 5) Lemmatization

Original tweet v/s Clean tweet

Clean_Tweet	OriginalTweet	
	@MeNyrbie @Phil_Gahan @Chrisitv https://t.co/iFz9FAn2Pa and https://t.co/xX6ghGFzCC and https://t.co//2NizdxNo8	0
advice talk neighbour family exchange phone number create contact list phone number neighbour school employer chemist gp set online shopping account po adequate supply regular med order	advice Talk to your neighbours family to exchange phone numbers create contact list with phone numbers of neighbours schools employer chemist GP set up online shopping accounts if poss adequate supplies of regular meds but not over order	1
coronavirus australia woolworths give elderly disabled dedicated shopping hour amid covid outbreak	Coronavirus Australia: Woolworths to give elderly, disabled dedicated shopping hours amid COVID-19 outbreak https://t.co/binCA9Vp8P	2
food stock one empty please panic enough food everyone take need stay calm stay safe covid france covid covid coronavirus confinement confinementotal confinementgeneral	My food stock is not the only one which is empty\r'r'n\r'r'nPLEASE, don't panic, THERE WILL BE ENOUGH FOOD FOR EVERYONE if you do not take more than you need. \r'r'nStay calm, stay safe.\r'r'n\r'r\n#COVID19france #COVID_19 #COVID19 #coronavirus #confinement #Confinementotal #ConfinementGeneral https://t.co/zrlG0Z520j	3
ready go supermarket covid outbreak paranoid food stock litterally empty coronavirus serious thing please panic cause shortage coronavirusfrance restezchezvous stayathome confinement	Me, ready to go at supermarket during the #COVID19 outbreak.\rinnin'n'nNot because i'm paranoid, but because my food stock is litterally empty. The #coronavirus is a serious thing, but please, don't panic. It causes shortage\rinnin'n'n#CoronavirusFrance #restezchezvous #StayAtHome #confinement https://t.co/usmual.q72n	4

Model Training

Converting Text to Matrix

We cannot pass the textual data directly to the ML algorithm. These words need to then be encoded as integers, or floating-point values. We can do it using following methods

1) Count Vectorizer Method

Count vectorizer convert a collection of text documents to matrix of integers. Where each integer represents the frequency of the word token in that document.

2) TF-IDF Method

TF-IDF method represents not only the count of the word token in the document it also reflect how important a word is to a document in collection of corpus.

- TF = (Number of times term t appears in a document)/(Number of terms in the document)
- IDF = log(N/n), where, N is the total number of documents and n is the number of documents the term t has appeared in.
- TF-IDF = TF*IDF

Different Models Used

- 1. Naive Bayes Classifier
- 2. Random Forest Classifier
- 3. Logistic Regression
- 4. XGBOOST
- 5. Support Vector Machine Classifier

Naive Bayes Classifier

Binary Classification

training accuracy Score : 0.868883826879271						training accuracy Score : 0.7303264996203492 Validation accuracy Score : 0.4866375121477162				
Validation accuracy Score : 0.791666666666666666666666666666666666666						precision	recall	f1-score	support	
						Extremely Negative	0.41	0.58	0.48	784
	0	0.70	0.73	0.72	2955	Extremely Positive	0.43	0.57	0.49	982
	1	0.85	0.83	0.84	5277	Negative	0.51	0.44	0.48	2303
						Neutral	0.40	0.65	0.49	942
accurac	су			0.79	8232	Positive	0.59	0.42	0.49	3221
macro av	/g	0.77	0.78	0.78	8232	accuracy			0.49	8232
weighted av	/g	0.79	0.79	0.79	8232	macro avg weighted avg	0.47 0.51	0.53 0.49	0.49 0.49	8232 8232

Random Forest Classifier

Binary Classification

Training accu	iracy Score	: 0.99	98785117691	L723	training accuracy S	core : 0	99978739	55960517	
Validation ac	curacy Score	: 0.835	88435374149	966	Validation accuracy	Score: 0.	565597667	638484	
	precision		f1-score	support		precision	recall	f1-score	support
					Extremely Negative	0.39	0.69	0.49	615
0	0.72	0.82	0.77	2721	Extremely Positive	0.36	0.73	0.48	646
1	0.90	0.84	0.87	5511	Negative	0.53	0.51	0.52	2047
					Neutral	0.81	0.61	0.69	2054
accuracy			0.84	8232	Positive	0.64	0.51	0.57	2870
macro avg	0.81	0.83	0.82	8232	accuracy			0.57	8232
weighted avg	0.84	0.84	0.84	8232	macro avg	0.54	0.61	0.55	8232
					weighted avg	0.61	0.57	0.58	8232

Logistic Regression

Binary Classification

Training accurac	•		55353075176		training accuracy Score : 0.929081245254366 Validation accuracy Score : 0.6137026239067055				
Validation accuracy Score : 0.8654033041788144 precision recall f1-score support					,	precision		f1-score	support
					Extremely Negative	0.61	0.67	0.64	1006
0	0.77	0.85	0.81	2794	Extremely Positive	0.61	0.69	0.65	1162
1	0.92	0.87	0.90	5438	Negative	0.55	0.57	0.56	1921
					Neutral	0.72	0.65	0.68	1712
accuracy			0.87	8232	Positive	0.60	0.57	0.58	2431
macro avg	0.85	0.86	0.85	8232					
weighted avg	0.87	0.87	0.87	8232	accuracy			0.61	8232
					macro avg	0.62	0.63	0.62	8232
					weighted avg	0.62	0.61	0.61	8232

XGBOOST

Binary Classification

Training accura	-		11996962794 6744412050		training accuracy Score : 0.49281700835231584 Validation accuracy Score : 0.47922740524781343				
	precision		f1-score	support		precision	recall	f1-score	support
0	0.27	0.04	0 53	1261	Extremely Negative	0.39	0.59	0.47	716
0	0.37	0.84	0.52	1361	Extremely Positive	0.40	0.68	0.51	784
1	0.96	0.72	0.82	6871	Negative	0.38	0.45	0.41	1666
					Neutral	0.58	0.46	0.52	1948
accuracy			0.74	8232	Positive	0.58	0.43	0.49	3118
macro avg	0.67	0.78	0.67	8232					
weighted avg	0.86	0.74	0.77	8232	accuracy			0.48	8232
					macro avg	0.47	0.52	0.48	8232
					weighted avg	0.51	0.48	0.48	8232

Support Vector Machine Classifier

Binary Classification

Training accur	acy Score	: 0.95	90888382687	7928	training accuracy Score : 0.9100075930144267				
Validation acc	uracy Score	: 0.838	80709426627	794	Validation accuracy	Score: 0.	599854227	4052479	
	precision		f1-score	support		precision	recall	f1-score	support
0	0.67	0.06	0.76	2403	Extremely Negative	0.47	0.70	0.56	732
0	0.67	0.86	0.76		Extremely Positive	0.53	0.77	0.62	909
1	0.94	0.83	0.88	5829	Negative	0.55	0.54	0.54	2024
					Neutral	0.72	0.63	0.67	1748
accuracy			0.84	8232	Positive	0.67	0.55	0.60	2819
macro avg	0.81	0.85	0.82	8232					
weighted avg	0.86	0.84	0.84	8232	accuracy			0.60	8232
					macro avg	0.59	0.64	0.60	8232
					weighted avg	0.62	0.60	0.60	8232

Models in terms of Test Accuracy

Binary Classification

Model	Test accuracy
Logistic Regression	0.865403
Support Vector Machines	0.838071
Random Forest	0.835884
Naive Bayes	0.791667
XGBoost	0.739674

Test accuracy	Model
0.616861	Support vector machine
0.613703	Logistic Regression
0.560253	RANDOM FOREST CLASSIFIER
0.551020	Extreme Gradient Boosting
0.509840	Stochastic Gradient Descent-SGD Classifier
0.489189	Naive Bayes Classifier

Hyperparameter Tuning for Top Model

Binary Classification for Logistic Regression

training accura	-		56492027334 28182701652	
ı	orecision	recall	f1-score	support
0	0.78	0.85	0.81	2837
1	0.92	0.87	0.89	5395
accuracy			0.87	8232
macro avg	0.85	0.86	0.85	8232
weighted avg	0.87	0.87	0.87	8232

Tuned Parameter C=1.623 Where C is Regularization strength

Multi Class Classification for Support Vector Classifier

training accuracy S		.81372817		
Validation accuracy	precision		f1-score	support
Extremely Negative	0.53	0.69	0.60	838
Extremely Positive	0.57	0.75	0.65	1016
Negative	0.56	0.56	0.56	1980
Neutral	0.78	0.62	0.69	1937
Positive	0.63	0.59	0.61	2461
accuracy			0.62	8232
macro avg	0.61	0.64	0.62	8232
weighted avg	0.63	0.62	0.62	8232

Tuned Parameter C=3, gamma=0.01 Where C is Regularization strength and gamma is Kernel Coefficient

TF-IDF for Top Model

Binary Classification for Logistic Regression

Multi Class Classification for Support Vector Classifier

training ac Validation	-		86529992406 54810495626		training accuracy Score : 0.9624601366742597 Validation accuracy Score : 0.6058066083576288				
	precisio		f1-score	support		precision	recall	f1-score	support
					Extremely Negative	0.47	0.74	0.57	698
	0 0.7	0 0.87	0.77	2474	Extremely Positive	0.50	0.78	0.61	845
	1 0.9	4 0.84	0.88	5758	Negative	0.61	0.54	0.58	2234
					Neutral	0.66	0.68	0.67	1497
accurac	у		0.85	8232	Positive	0.69	0.54	0.61	2958
macro av	g 0.8	2 0.85	0.83	8232					
weighted av	g 0.8	6 0.85	0.85	8232	accuracy			0.61	8232
weighted av	6	0.05	0.03	0232	macro avg	0.59	0.65	0.61	8232
					weighted avg	9.63	0.61	0.61	8232

Confusion Matrix and ROC Curve for Top 2 Binary Classification Model

Confusion matrix for Logistic Regression

Confusion matrix for Support Vector Machine

ROC Curve for Logistic Regression

ROC Curve for Support Vector Machine

Conclusion

- Started with loading the dataset, followed by EDA which gives important insights of the data and helps in feature selection.
- After EDA, we extracted and cleaned the important features and pre-process it to a matrix of numbers so that it can be passed to ML algorithms.
- We manipulated the multiclass target variable to binary variable.
- We applied multiple ML algorithms for both multiclass and binary classification models and evaluated it with different matrices like accuracy score, precision, Recall, f1 score etc.
- Finally, we got SVC model as best multiclass classifier model with 61.1% test accuracy and logistic regression model as best binary classifier model with 86.5% test accuracy.

Challenges

- The dataset contained lots of noise or irrelevant data such as usernames, URLs etc.
- Since it is a multi class classification problem with 5 classes, model becomes more complex then binary classification.
- The number of observations of all the five classes are not balanced due to which the accuracy of multi class classification is baised towards the majority class.
- After manipulating the multi class target variable to a binary class variable the accuracy is increased but information about the various class is lost.