

SÍLABO

REDES Y CONECTIVIDAD I (CCNA I CISCO) ÁREA CURRICULAR: TECNOLOGÍAS DE INFORMACIÓN

CICLO: Electivo de Especialidad (Ing. Computación y Sistemas)

SEMESTRE ACADÉMICO: 2017-I

Electivo complementario (Ing. Electrónica)

I. CÓDIGO DEL CURSO : 090675E2040

II. CRÉDITOS : 04

III.REQUÍSITOS : 09127905040 Servidores y Sistemas Operativos

(Ing. Computación y Sistemas)

132 créditos aprobados (Ing. Electrónica)

IV.CONDICIÓN DEL CURSO : Electivo de Especialidad (Ing. Computación y Sistemas)

Electivo Grupo Complementario (Ing. Electrónica)

V. SUMILLA

El curso es teórico-práctico; contribuye a que el estudiante acceda a los fundamentos básicos de las redes, a la comprensión de los modelos de referencia y al desarrollo de estrategias para la resolución de problemas básicos de conectividad. En el curso se desarrollan contenidos y actividades mediante los siguientes temas:

Conceptos básicos de comunicaciones, análisis y operación del proceso de comunicación a nivel de capas, control de acceso al medio, división en subredes y aplicación de la división en subredes en topologías con dispositivos de comunicación.

VI. FUENTES DE CONSULTA

Bibliográficas

- · Stallings, W. (2011). Data and Computer Communications, 8/E. Publisher: Prentice Hall.
- · Stallings, W. (2009). Business Data Communications, 6/E. Publisher: Prentice Hall+
- · Molina, F. (2009). Redes locales. España. Editorial Ra-Ma.
- · Ariganello, E. (2008). Técnicas de configuración de routers Cisco. España: Editorial Ra-Ma.
- · Martínez; M. Raya Cabrera, J. (2008) Redes locales. Instalación y configuración básica. España: Editorial Ra-Ma.

Electrónicas

· Cisco Systems (2017): Cisco Networking Academy. Recuperado de: de: http://cisco.netacad.net

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. CONCEPTOS BÁSICOS DE COMUNICACIONES

OBJETIVOS DE APRENDIZAJE:

- Describir las redes, tipos y componentes.
- Conocer los modos de configuración de los equipos de comunicación.

PRIMERA SEMANA

Primera sesión

Introducción a las redes. Tamaño de las redes. Componentes de la red. Tipos de red.

Segunda sesión

Internet. Tecnologías de acceso a internet.

SEGUNDA SEMANA

Primera sesión

La red convergente. Arquitectura de red como soporte. Tendencias. Amenazas y soluciones de seguridad.

Segunda sesión

Introducción a sistemas operativos de equipos de comunicación. Método de acceso. Modos de configuración. Criterios para elección de un switch. Protección de acceso a dispositivos. Laboratorio con simulador de red.

TERCERA SEMANA

Primera sesión

Archivos de configuración. Direccionamiento IP de dispositivos. Configuración de interfaces. Pruebas de conectividad. Primera práctica calificada.

Segunda sesión

Protocolos y comunicaciones de red. Establecimiento de reglas. Concepto de Protocolos.

UNIDAD II. ANÁLISIS Y OPERACIÓN DEL PROCESO DE COMUNICACIÓN A NIVEL DE CAPAS

OBJETIVOS DE APRENDIZAJE:

- Describir los modelos de referencia.
- Explicar el proceso de comunicación, apoyándose en modelos de referencia.

CUARTA SEMANA

Primera sesión

Suites de protocolos. Estándares y normas.

Segunda sesión

Modelos basados en capas. Proceso de comunicación de mensajes. Dirección de red.

QUINTA SEMANA

Primera sesión

Acceso a la red. Conexión a la red. Capa física. Principios fundamentales de la capa física. Característica de los medios de cobre. Seguridad de los medios de cobre.

Segunda sesión

Propiedades del cableado UTP. Propiedades del cableado de fibra óptica. Propiedades de los medios inalámbricos. Capa de enlace de datos. Topología física y lógica. La trama. Segunda práctica calificada.

SEXTA SEMANA

Primera sesión

Direccionamiento MAC. Introducción a ARP. Aspectos básicos de los puertos de un switch. Capa de red. Características del protocolo IP.

Segunda sesión

Encabezado de IPv4. Limitaciones de IPv4. Reenvío de host. Laboratorio con simulador de red. Evaluación de entrada del curso de libre enrolamiento: Internet de Todo.

UNIDAD III. DIRECCIONAMIENTO IP Y DIVISIÓN EN SUBREDES

OBJETIVOS DE APRENDIZAJE:

- Describir los routers, características y funcionalidades.
- Describir el funcionamiento de los protocolos de la capa de transporte: TCP y UDP.
- Conocer el direccionamiento IP, sus clases, privado y público.
- Aplicar el proceso para realizar el cálculo más apropiado para la división en subredes
- Diseñar topologías de red.

SÉPTIMA SEMANA

Primera sesión

Encabezado de IPv6. Limitaciones de IPv6. Enrutamiento. Tabla de enrutamiento de router IPv4

Routers como computadoras. Laboratorio con simulador de red.

Segunda sesión

Características y componentes de los routers. Cisco IOS. Gateway predeterminado en un host. Laboratorio con simulador de red.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión

Capa de transporte. Protocolos TCP y UDP.

Segunda sesión

Confiabilidad de TCP. Comparación de baja sobrecarga y confiabilidad UDP. Aplicaciones que emplean TCP y UDP.

DÉCIMA SEMANA

Primera sesión

Asignación de direcciones IP. Direccionamiento IP. Direccionamiento público y privado.

Segunda sesión

Necesidad de utilizar IPv6. Tipos de direcciones IPv6. Mensajes ICMPv4 e ICMPv6. Pruebas de ping y traceroute. Laboratorio con simulador de red.

UNDÉCIMA SEMANA

Primera sesión

División de redes IP en subredes. Motivos para la división en subredes. División básica en subredes. Laboratorio con simulador de red.

Segunda sesión

Máscaras de subred de longitud variable (VLSM). Planificación del direccionamiento de la red. División en subredes mediante la ID de subred. Tercera práctica calificada.

UNIDAD IV. CAPA DE APLICACIÓN Y CONSIDERACIONES PARA REDES PEQUEÑAS

OBJETIVOS DE APRENDIZAJE:

- Conocer los protocolos más empleados en la capa de aplicación.
- Conocer las categorías de amenazas a la seguridad de la red.
- Conocer el proceso de recuperación de configuración de router y de switch.
- Solucionar problemas de conectividad, mediante la interpretación de comandos.

DUODÉCIMA SEMANA

Primera sesión

Capa de Aplicación. Modelos OSI y TCP/IP, nuevo análisis. Redes punto a punto. Protocolos de la capa de aplicación. Servicio de nombres de dominio. Protocolo de transferencia de archivos. Evaluación de avance del curso de libre enrolamiento: Internet de Todo.

Segunda sesión

Internet de las cosas. Es una red. Topologías de redes pequeñas.

DECIMOTERCERA SEMANA

Primera sesión

Aplicaciones comunes en redes pequeñas. Escalamiento de redes pequeñas.

Segunda sesión

Categorías de amenazas a la seguridad de la red. Copias de seguridad, actualizaciones y parches. Introducción a la protección de dispositivos. Primera práctica de Laboratorio (Curso de libre enrolamiento).

DECIMOCUARTA SEMANA

Primera sesión

Proceso de recuperación de configuración de router y de switch. Interpretación de resultados del comando ping. Interpretación de resultados del comando tracert. Exposición de Casos de Estudio.

Segunda sesión

Repaso de comandos show comunes. Comando ipconfig. Sistemas de archivos del router. Creación de copias de seguridad y restauración. Exposición de Casos de Estudio.

DECIMOQUINTA SEMANA

Primera sesión

Segunda práctica de Laboratorio (Examen de Habilidades).

Segunda sesión

Cuarta práctica calificada (Examen final web).

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- **Método de Demostración Ejecución.** Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. EQUIPOS Y MATERIALES

- Equipos: Computadora, ecran y proyector multimedia.
- **Materiales**: Manual Universitario, material docente, prácticas dirigidas de laboratorio, textos bases y complementarios (ver fuentes de consultas).
- Software: Simulador Packet Tracer version 7.0.0.0306

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE+EP+EF)/4

Donde:

PF = Promedio Final.

PE = Promedio de Evaluaciones.

EP = Examen Parcial (escrito)

EF = Examen Final (escrito)

PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3 PL = (Lb1+Lb2+Lb3+Lb4)/4

Lb1...Lb4 = Práctica de laboratorio

Donde: Donde:

P1...P4 = Práctica calificada

MN = Menor nota

W1 = Trabajo 1

PL = Promedio de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	R	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R	
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería		

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

K = Clave K =	= relacionado	
Componente	Resultados del Estudiante	
Ciencias básicas y de Computación	A. Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas	R
Análisis en Computación	b. Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución	K
Diseño en Computación	c. Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas	
Práctica de la Computación	i. Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación	
	j. Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación	
	e. Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social	
Habilidades genéricas	d. Habilidad para trabajar con efectividad en equipos para lograr una meta común	R
	f. Habilidad para comunicarse con efectividad con un rango de audiencias	
	g. Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad	
	h. Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional	R

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	0	4

- b) Sesiones por semana: Dos sesiones.c) Duración: 6 horas académicas de 45 minutos

XIV. PROFESOR DE CURSO

Ing. Wu Chong, José Antonio.

XV. FECHA

La Molina, marzo de 2017.