Numerical Analysis

gouziwu

April 29, 2019

Contents

1	Cha	ap1 Mathematical Preliminaries	2
	1.1	1.2 Roundoff Errors and Computer Arithmetic	2
	1.2	1.3 ALgorithms and Convergence	3
2	Cha	ap2 Solutions of equations in one variable	3
	2.1	2.1 Bisection method	3
	2.2	2.2 Fixed-Point Iteration	3
	2.3	2.3 Newton's method	4
	2.4	2.4 Error analysis for iterative methods	4
3	Cha	ap3 Interpolation and polynomial approximation	6
	3.1	3.1 Interpolation and the Lagrange polynomial	6
	3.2	3.2 Divied differences	7
	3.3	Additional Newton Interpolation	7
		3.3.1 Simple idea	7
		3.3.2 Basis transformation	8
	3.4	3.3 Hermite interpolation	8
	3.5	3.4 Cubic spline interpolation	9
4	Cha	ap6 Direct Methods for Solving Linear Systems	11
	4.1	6.1 Linear Systems of Equations	11
	4.2	6.2 Pivoting Strategies	
	4.3	6.5 Matrix Factorization	
	4.4	6.6 Special Types of Matrices	

5	Cha	ap7 Iterative techiniques in Matrix algebra	13
	5.1	7.1 Norms of vectors and matrices	13
	5.2	7.2 Eigenvalues and Eigenvectors	14
	5.3	7.3 Iterative techniques for solving linear systems	15
	5.4	7.4 Error bounds and iterative refinement	16
6	cha	p9 Approximating Eigenvalues	18
	6.1	9.3 the power method	18

1 Chap1 Mathematical Preliminaries

1.1 1.2 Roundoff Errors and Computer Arithmetic

Truncation Error: the error involved in using a truncated, or finite, summation to approximate the sum of an infinite series

Roundoff Error: the error produced when performing real number calculations. It occurs because the arithmetic performed in a machine involves numbers with only a finite number of digits.

Suppose
$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}...\times 10^n$$
, then
$$fl(y) = \begin{cases} 0.d_1d_2...d_k \times 10^n & \text{chopping} \\ chop(y+5\times 10^{n-(k+1)}) = 0.\delta_1\delta_2...\delta_k \times 10^n & \text{Rounding} \end{cases}$$

Definition 1.1. If p* is an approximation to p, the absolute error is |p-p*|, and the relative error is $\frac{|p-p*|}{|p|}$, provided that $p \neq 0$

Definition 1.2. The number p* is said to approximate p to t significant digits if t is the largest nonnegative integer for which $\frac{|p-p*|}{|p|} < 5 \times 10^{-t}$

chopping
$$\left|\frac{y-fl(y)}{y}\right| = \left|\frac{0.d_1d_2...d_kd_{k+1}...\times 10^n - 0.d_1d_2...d_k\times 10^n}{0.d_1d_2...d_kd_{k+1}\times 10^n}\right| = \left|\frac{0.d_{k+1}...}{0.d_1d_2...}\right| \times 10^{-k} \leqslant \frac{1}{0.1} \times 10^{-k} = 10^{-k+1}$$

rounding
$$\left| \frac{y - fl(y)}{y} \right| \le \frac{0.5}{0.1} \times 10^{-k} = 0.5 \times 10^{-k+1}$$

Finite digit arithmetic

- $x \oplus y = fl(fl(x) + fl(y))$
- $x \otimes y = fl(fl(x) \times fl(y))$
- $x \ominus y = fl(fl(x) fl(y))$
- $x \oplus y = fl(fl(x) \div fl(y))$

1.2 1.3 ALgorithms and Convergence

An algorithm that satisfies that small changes in the initial data produce correspondingly small changes in the final results is called **stable**; otherwise it is **unstable**. An algorithm is called **conditionally stable** if it is stable only for certain choices of initial data.

Suppose that E > 0 denotes an initial error and En represents the magnitude of an error after n subsequent operations. If $E_n \approx CnE_0$, where C is a constant independent of n, then the growth of error is said to be **linear**. If $E_n \approx C^n E_0$, for some C > 1, then the growth of error is called **exponential**

Suppose $\{\beta_n\}_{n=1}^{\infty}$, $\lim_{n\to\infty} \beta_n = 0$, $\{\alpha_n\}_{n=1}^{\infty}$, $\lim_{n\to\infty} \alpha_n = \alpha$. If a positive constant K exists with $|\alpha_n - \alpha| \leq K|\beta_n|$ for large n, then $\{\alpha_n\}_{n=1}^{\infty}$ converges to with rate, or order, of convergence $O(\beta_n)$

Suppose $\lim_{h\to 0}G(h)=0, \lim_{h\to 0}F(h)=L$ and $|F(h)-L|\leqslant K|G(h)|$ for sufficiently small h, then we write F(h)=L+O(G(h))

2 Chap2 Solutions of equations in one variable

2.1 2.1 Bisection method

Theorem 2.1. Intermediate Value Theorem If $f \in C[a,b]$, $K \in (f(a), f(b))$, then there exists a number $p \in (a,b)$ for which f(p) = K

Theorem 2.2. Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The bisection method generates a sequence $\{p_n\}, n = 0, 1, \ldots$ approximating a zero p of f with

$$|p_n - p| \leqslant \frac{b - a}{2^n}, \quad when \ n \geqslant 1$$

2.2 Fixed-Point Iteration

$$f(x) = 0 \stackrel{\text{equivalent}}{\longleftrightarrow} x = f(x) + x = g(x)$$

Theorem 2.3. Fixed-Point Theorem Let $g \in C[a, b]$ be s.t. $g(x) \in [a, b]$ for all $x \in [a, b]$. Suppose that g' exists on (a, b) and that a constant 0 < k < 1 exists with $|g'(x)| \le k$ for all $x \in (a, b)$ (hence g' can't converge to 1). Then for any number p_0 in [a, b], the sequence defined by $p_n = g(p_{n-1}), n \ge 1$ converges to the unique point p in [a, b]

Corollary 2.1.
$$|p_n - p| \leq \frac{1}{1-k} |p_{n+1} - p_n|$$
 and $|p_n - p| \leq \frac{k^n}{1-k} |p_1 - p_0|$

2.3 Newton's method

Linearize a nonlinear function using Taylor's expansion

Let $p_0 \in [a, b]$ be an approximation to p s.t. $f'(p_0) \neq 0$, hence $f(x) = f(p_0) + f'(p_0)(x - p_0) + \frac{f''(\xi_x)}{2!}(x - p_0)^2$, then $0 = f(p) \approx f(p_0) + f'(p_0)(p - p_0) \rightarrow p \approx p_0 - \frac{f(p_0)}{f'(p_0)} p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$, for $n \geq 1$

Theorem 2.4. Let $f \in C^2[a,b]$. If $p \in [a,b]$ is s.t. f(p) = 0, $f'(p) \neq 0$, then there exists a $\delta > 0$ s.t. Newton's method generates a sequence $\{p_n\}, n \in \mathbb{N}\setminus\{0\}$ converging to p for any initial approximation $p \in [p-\delta, p+\delta]$.

2.4 2.4 Error analysis for iterative methods

Definition 2.1. Suppose $\{p_n\}(n=0,1,...)$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants α and λ exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}(n=0,1,\ldots)$ converges to p of order α , with asymptotic error constant λ

Theorem 2.5. Let p be a fixed point of g(x). If there exists some constant $\alpha \ge 2$ s.t. $g \in C^{\alpha}[p-\delta, p+\delta]$, $g'(p) = \cdots = g^{\alpha-1}(p) = 0$ and $g^{\alpha}(p) \ne 0$. Then the iterations with $p_n = g(p_{n-1})$, $n \ge 1$ is of order α

$$p_{n+1} = g(p_n) = g(p) + g'(p)(p_n - p) + \dots + \frac{g^{\alpha}(\xi_n)}{\alpha!}(p_n - p)^{\alpha}$$

Theorem 2.6. Let $g \in C[a,b]$ be s.t. $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose in addition that g' is continuous on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a,b], the sequence

$$p_n = g(p_{n-1}), \quad \text{for } n \geqslant 1$$

converges only linearly to the unique fixed point in [a, b]

Proof.

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} \frac{|g(p_n) - p|}{|p_n - p|}$$
$$= \lim_{n \to \infty} \frac{|g'(\xi)(p_n - p)|}{|p_n - p|}$$
$$= |g'(p)|$$

Theorem 2.7. Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g" is continuous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ s.t. for $p_0 \in [p-\delta, p+\delta]$, the sequence defined by $p_n = g(p_{n-1})$, when $n \ge 1$ converges at least quadratically to p. Moreover, for sufficiently large values of n,

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2$$

Proof. Choose $k \in (0,1), \delta > 0$ s.t. $[p-\delta, p+\delta] \subseteq I$ and |g'(x)| < k and g'' is continuous.

$$g(x) = g(p) + g'(p)(x - p) + \frac{g''(\xi)}{2}(x - p)^2$$

Hence $g(x) = p + \frac{g''(\xi)}{2}(x-p)^2$. $p_{n+1} = g(p_n) = p + \frac{g''(\xi_n)}{2}(p_n-p)^2$. Thus $p_{n+1} - p = \frac{g''(\xi_n)}{2}(p_n-p)^2$. We get

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{g''(p)}{2}$$

Definition 2.2. A solution p of f(x) = 0 is a zero of multiplicity m of f if for $x \neq p$, $f(x) = (x - p)^m q(x)$ where $\lim_{x \to p} q(x) \neq 0$

Theorem 2.8. The function $f \in C^m[a,b]$ has a zero of multiplicity m at p in (a,b) if and only if

$$0 = f(p) = f'(p) = \dots = f^{(m-1)}(p), \quad but \ f^{(m)}(p) \neq 0$$

To handle the problem of multiple roots of a function f is to define $\mu(x) = \frac{f(x)}{f'(x)}$.

If p is a zero of f of multiplicity m with $f(x) = (x-p)^m q(x)$, then

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1} q(x) + (x-p)^m q'(x)}$$
$$= (x-p) \frac{q(x)}{mq(x) + (x-p)q'(x)}$$

And $q(x) \neq 0$.

Now Newton's method:

$$g(x) = x - \frac{\mu(x)}{\mu'(x)}$$

$$= x - \frac{f(x)/f'(x)}{(f'(x)^2 - f(x)f''(x))/f'(x)^2}$$

$$= x - \frac{f(x)f'(x)}{f'(x)^2 - f(x)f''(x)}$$

3 Chap3 Interpolation and polynomial approximation

3.1 3.1 Interpolation and the Lagrange polynomial

$$P_{n}(x) = \sum_{i=0}^{n} L_{n,i}(x)y_{i}. \text{ Find } L_{n,i}(x) \text{ for } i = 0, \dots, n \text{ s.t. } L_{n,j}(x_{j}) = \delta_{ij}.$$

$$\delta_{ij} \text{ Kronecker delta. Each } L_{n,i} \text{ has n roots } x_{0}, \dots, \hat{x_{i}}, \dots, x_{n}. L_{n,j}(x) = C_{i}(x - x_{0}) \dots (x - x_{i}) \dots (x - x_{n}) = C_{i} \prod_{\substack{j \neq i \\ j = 0}}^{n} (x - x_{j}). L_{n,j}(x_{i}) = 1 \rightarrow C_{i} = \prod_{\substack{j \neq i \\ j = 0}}^{n} \frac{1}{x_{i} - x_{j}}. \text{ Hence } L_{n,i}(x) = \prod_{\substack{j \neq i \\ j = 0}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Theorem 3.1. If x_0, x_1, \ldots, x_n are n+1 distinct numbers and f is a function whose values are given at these numbers, then the n-th Lagrange interpolating polynomial is unique

Analyze the remainder. Suppose $a \le x_0 < x_1 < \cdots < x_n \le b$ and $f \in C^{n+1}[a,b]$. Consider $R_n(x) = f(x) - P_n(x)$. $R_n(x)$ has at least

n+1 roots =>
$$R_n(x) = K(x) \prod_{i=0}^n (x - x_i)$$
. For any $x \neq x_i$. Define $g(t) = R_n(t) - K(x) \prod_{i=0}^n (t - x_i)$. $g(x)$ has n+2 distinct roots $x_0 \dots x_n x$. Hence $g^{(n+1)}(\xi_x) = 0, \xi_x \in (a,b)$. $f^{(n+1)}(\xi_x) - Pn^{(n+1)}(\xi_x) - K(x)(n+1)! = R_n^{(n+1)}(\xi_x) - K(x)(n+1)!$. Thus $R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$.

Definition 3.1. Let f be a function defined at x_0, \ldots, x_n and suppose m_1, \ldots, m_k are k distinct integers with $0 \le m_i \le n$ for each i. The Lagrange polynomial that agrees with f(x) at the k points x_{m_1}, \ldots, x_{m_k} denoted by $P_{m_1, m_k}(x)$

Theorem 3.2. Let f be defined at x_0, \ldots, x_k and let x_i and x_j be two distinct numbers in this set. Then

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k(x)} - (x - x_i)P_{0,\dots,i-1,i+1,\dots,k(x)}}{x_i - x_j}$$

describes the k-th Lagrange polynomial that interpolates f at the k+1 points x_0, \ldots, x_k

 $\begin{array}{c} x_0 \& P_0 \& \& \& \\ \mathbf{Neville's\ Method\ n} & x_1 \& P_1 \& P_{0,1} \& \& \\ x_2 \& P_2 \& P_{1,2} \& P_{0,1,2} \& \\ x_3 \& P_3 \& P_{2,3} \& P_{1,2,3} \& \$ P_{0,1,2,3} \$ \end{array}$

3.2 Divied differences

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j} (i \neq j, x_i \neq x_j). \ f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}.$$

3.3 Additional Newton Interpolation

3.3.1 Simple idea

Given x_0, \ldots, x_n

- 1. Fitting x_0 first: $f(x) \approx f_0, f_0 = f(x_0)$
- 2. Add one more point x_1 , $f_1 = f(x_1)$

$$f(x) \approx f_0 + \alpha_1(x - x_0), \alpha_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

3. More points $f(x) \approx f_0 + \alpha_1(x - x_0) + \alpha_2(x - x_0)(x - x_1)$

The pattern and coefficients.
$$f(x) = \sum_{i=0}^{n} \alpha_i \prod_{j=0}^{j < i} (x - x_j) = \sum_{i=0}^{n} \alpha_i N^{(i)}(x)$$

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} N^{(0)}(x_0) & N^{(1)}(x_0) & \dots & N^{(n)}(x_0) \\ N^{(0)}(x_1) & N^{(1)}(x_1) & \dots & N^{(n)}(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ N^{(0)}(x_n) & N^{(1)}(x_n) & \dots & N^{(n)}(x_n) \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$N^{(i)}(x_k) = \begin{cases} 0 & k < i \\ \prod_{j=0}^{j < i} (x_k - x_j) & k \ge i \end{cases} \text{ with } N^{(0)}(x) = 1. \text{ Newton interpo-}$$

lation matrix is lower triangular. Lagrange matrix is identity.

3.3.2 Basis transformation

$$\begin{pmatrix} 1 \\ (x - x_0) \\ (x - x_0)(x - x_1) \\ \vdots \end{pmatrix} = (?) \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \end{pmatrix}$$

Hence $(\Phi_B)^T = (T_A^B)^T (\Phi_A)^T$. $\Phi_B = \Phi_A T_A^B$

$$(\Phi_A)(\alpha_A) = (f) = (\Phi_B)(\alpha_B)$$

$$= (\Phi_A)(T_A^B)(\alpha_B)$$

$$\Rightarrow$$

$$(\alpha_A) = (T_A^B)(\alpha_B)$$

$$(\alpha_B) = (T_A^B)^{-1}(\alpha_A)$$

$$= (T_B^A)(\alpha_A)$$

3.4 3.3 Hermite interpolation

Find the osculating polynomial P(x) s.t. $P(x_i) = f(x_i), P'(x_i) = f'(x_i), \dots, P^{(m_i)}(x_i) = f^{(m_i)}(x_i)$ for all $i = 0, 1, \dots, n$.

Just the Taylor polynomial $P(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(m_0)}(x_0)}{m_0!}(x - x_0)^{m_0}$ with remainder $R(x) = f(x) - \varphi(x) = \frac{f^{(m_0+1)}(\xi)}{(m_0+1)!}(x - x_0)^{(m_0+1)}$

 $m_i = 1$ gives Hermite polynomial

Example 3.1. Suppose $x_0 \neq x_1 \neq x_2$. Given $f(x_0), f(x_1), f(x_2), f'(x_1)$ find the polynomial P(x) s.t. $P(x_i) = f(x_i), P'(x_1) = f'(x_1)$ and analyze the errors.

Proof. $P_3(x) = \sum_{i=0}^{2} f(x_i)h_i(x) + f'(x_1)\hat{h}_1(x)$ where $h_i(x_j) = \delta_{ij}, h'_i(x_i) = 0, \hat{h}_i(x_i) = 0, \hat{h}'_i(x_1) = 1.$

• $h_0(x)$. Has roots x_1, x_2 and x_1 is a multiple root. $h_0(x) = C_0(x - x_1)^2(x - x_2)$ and $h_0(x_0) = 1 \Longrightarrow C_0$

• $\hat{h}_1(x)$ has root $x_0, x_1, x_2 \Longrightarrow \hat{h}_1(x) = C_1(x - x_0)(x - x_1)(x - x_2)$

In general, given $x_0, \ldots, x_n; y_0, \ldots, y_n$ and y'_0, \ldots, y'_n . The Hermite polynomial $H_{2n+1}(x)$ satisfies $H_{2n+1}(x_i) = y_i$ and $H'_{2n+1}(x_i) = y'_i$

Solution.
$$H_{2n+1}(x) = \sum_{i=0}^{n} y_i h_i(x) + \sum_{i=0}^{n} y'_i \hat{h}_i(x)$$

3.5 3.4 Cubic spline interpolation

Piecewise linear interpolation. Approximate f(x) by linear polynomials on each subinterval $[x_i, x_{i+1}]$.

$$f \approx P_1(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} y_i + \frac{x - x_i}{x_{i+1} - x_i} y_{i+1}$$
 for $x \in [x_i, x_{i+1}]$

Let $h = \max |x_{i+1} - x_i|$. Then $P_1^h(x) \xrightarrow{uniform} f(x)$ as $h \to 0$ However, this is no longer smooth.

Hermite piecewise polynomials. Given $x_0, \ldots, x_n; y_0, \ldots, y_n, y'_0, \ldots, y'_n$, construct the Hermite polynomial of degree 3 with y and y' on the two endpoints of $[x_i, x_{i+1}]$

Cubic Spline.

Definition 3.2. Given a function f define on [a,b] and a set of nodes $a = x_0 < x_1 < \cdots < x_n = b$, cubic spline interpolant S for f is a function that satisfies the following conditions

- S(x) is a cubic polynomial, denoted by $S_i(x)$ on the subinterval $[x_i, x_{i+1}]$ for each i = 0, ..., n-1
- $S(x_i) = f(x_i)$ for each i = 0, ..., n
- $S_{i+1}(x_{i+1}) = S_i(x_{i+1})$

- $S'_{i+1}(x_{i+1}) = S'_i(x_{i+1})$
- $S''_{i+1}(x_{i+1}) = S''_{i}(x_{i+1})$

Method of Bending moment. Let $h_j = x_j - x_{j-1}$ and $S(x) = S_j(x)$ for $x \in [x_{j-1}, x_j]$. Then S_j'' is a polynomial of degree 1, which can be determined by the values of f on 2 nodes.

Assume $S''_{j}(x_{j-1}) = M_{j-1}, S''_{j}(x_{j}) = M_{j}$. Then for all $x \in [x_{j-1}, x_{j}],$ $S''_{j}(x) = M_{j-1} \frac{x_{j}-x}{h_{j}} + M_{j} \frac{x-x_{j-1}}{h_{j}}$. Hence we get

$$S'_{j}(x) = -M_{j-1} \frac{(x_{j} - x)^{2}}{2h_{j}} + M_{j} \frac{(x - x_{j-1})^{2}}{2h_{j}} + A_{j}$$

$$S_{j}(x) = M_{j-1} \frac{(x_{j} - x)^{3}}{6h_{j}} + M_{j} \frac{(x - x_{j-1})^{3}}{6h_{j}} + A_{j}x + B_{j}$$

Solve this by $S_j(x_{j-1}) = y_{j-1}, S_j(x_j) = y_j$, we get

$$A_{j} = \frac{y_{j} - y_{j-1}}{h_{j}} - \frac{M_{j} - M_{j-1}}{6}h_{j}$$

$$A_{j}x + B_{j} = (y_{i-1} - \frac{M_{j-1}}{6}h_{j}^{2})\frac{x_{j} - x}{h_{j}} + (y_{j} - \frac{M_{j}}{6}h_{j}^{2})\frac{x - x_{j-1}}{h_{j}}$$

Now solve for M_j : Since S' is continuous at x_j

$$[x_{j-1}, x_j] : S'_j(x) = -M_{j-1} \frac{(x_j - x)^2}{2h_j} + M_j \frac{(x - x_{j-1})^2}{2h_j} + f[x_{j-1}, x_j] - \frac{M_j - M_{j-1}}{6} h_j$$

$$[x_j, x_{j+1}] : S'_{j+1}(x) = -M_j \frac{(x_{j+1} - x)^2}{2h_{j+1}} + M_{j+1} \frac{(x - x_j)^2}{2h_{j+1}} + f[x_j, x_{j+1}] - \frac{M_{j+1} - M_j}{6} h_{j+1}$$

From
$$S'_j(x_j) = S'_{j+1}(x_j)$$
, let $\lambda_j = \frac{h_{j+1}}{h_j + h_{j+1}}$, $\mu_j = 1 - \lambda_j$, $g_j = \frac{6}{h_j + h_{j+1}} (f[x_j, x_{j+1}] - f[x_{j-1}, x_j])$ we get

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = g_i \text{ for } 1 \le i \le n-1$$

$$\begin{pmatrix} \mu_1 & 2 & \lambda_1 \\ & \ddots & \ddots & \ddots \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \end{pmatrix} \begin{pmatrix} M_0 \\ \vdots \\ \vdots \\ M_n \end{pmatrix} = \begin{pmatrix} g_1 \\ \vdots \\ g_{n-1} \end{pmatrix}$$

And
$$S'(a) = y'_0, S'(b) = y'_n$$

4 Chap6 Direct Methods for Solving Linear Systems

4.1 6.1 Linear Systems of Equations

Gaussian elimination with backward substitution

4.2 6.2 Pivoting Strategies

Problem: small pivot element may cause trouble

Paritial Pivoting: Determine the smallest pk s.t. $|a_{pk}^{(k)}| = \max_{k \leq j \leq n} |a_{ik}^{(k)}|$ and interchange the pth and the kth rows

Scaled Partial Pivoting:

- 1. Define a scale factor s_i for each row as $s_i = \max_{1 \leq i \leq n} |a_{ij}|$
- 2. Determine the smallest $p \ge k$ s.t. $\frac{|a_{pk}^{(k)}|}{s_p} = \max_{k \le i \le n} \frac{|a_{ik}^{(k)}|}{s_i}$ and interchange the pth and the kth rows

Complete Pivoting: Search all the entries a_{ij} to find the entry with the largest magnitude

4.3 6.5 Matrix Factorization

 $m_{ik} = a_{ik}/a_{kk}$

$$L_{k} = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & \\ & & -m_{k+1,k} & & \\ & & \vdots & \ddots & \\ & & -m_{n,k} & & 1 \end{pmatrix}$$

Hence

$$L_{1}^{-1}L_{2}^{-1}\dots L_{n-1}^{-1} = \begin{pmatrix} 1 & & & 0 \\ & & 1 & & \\ & & & \ddots & \\ m_{i,j} & & & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \dots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

A = LU

4.4 6.6 Special Types of Matrices

Strictly Diagonally Dominant Matrix.
$$|a_{ii}| > \sum_{\substack{j=1, \ j \neq i}}^{n} |a_{ij}|$$
 for each $i =$

 $1, \ldots, n$

Theorem 4.1. A strictly diagonally dominant matrix A is nonsingular. Moreover, Gaussian elimination can be performed without row or column interchanges, and the computations will be stable w.r.t. the growth of roundoff errors

Choleski's Method for Positive Definite Matrix:

Definition 4.1. A matrix A is positive definite if ti's symmetric and if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every n-dimensional vector $\mathbf{x} \neq 0$

Lemma 4.1. A is positive definite

- 1. A^{-1} is positive definite as well, and $a_{ii} > 0$
- 2. $\sum |a_{ij}| \leq \max |a_{kk}|$; $(a_{ij})^2 < a_{ii}a_{jj}$ for each $i \ j$
- 3. Each of /A's leading principal submatrices $A_k/$ has a positive determinant

$$U = \begin{pmatrix} u_{ij} \\ \end{pmatrix} = \begin{pmatrix} u_{11} \\ & \ddots \\ & & u_{nn} \end{pmatrix} \begin{pmatrix} 1 & u_{ij}/u_{ii} \\ & 1 \\ & & 1 \end{pmatrix} = D\tilde{U}$$

A is symmetric, hence

$$L = \tilde{U}^t, A = LDL^t$$

Let

$$D^{1/2} = \begin{pmatrix} \sqrt{u_{11}} & & \\ & \ddots & \\ & & \sqrt{u_{nn}} \end{pmatrix}, \tilde{L} = LD^{1/2/}, A = \tilde{L}\tilde{L}^t$$

Crout Reduction for tridiagonal Linear System

$$\begin{pmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix}$$

$$A = \begin{pmatrix} \alpha_1 & & & \\ \gamma_2 & \ddots & & \\ & \ddots & \ddots & \\ & & \gamma_n & \alpha_n \end{pmatrix} \begin{pmatrix} 1 & \beta_1 & & \\ & \ddots & \ddots & \\ & & \ddots & \beta_{n-1} \\ & & & 1 \end{pmatrix}$$

5 Chap7 Iterative techniques in Matrix algebra

5.1 7.1 Norms of vectors and matrices

Definition 5.1. A vector norm on \mathbb{R}^n is a function $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ with following properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \alpha \in \mathbb{C}$

1.
$$||\mathbf{x}|| \le 0$$
; $||\mathbf{x}|| = 0 \iff \mathbf{x} = \mathbf{0}$

$$2. ||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||$$

$$3. ||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||$$

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|. \ ||\mathbf{x}_p|| = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

Definition 5.2. A sequence $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n converge to \mathbf{x} w.r.t the norm $||\cdot||$ if given any $\epsilon > 0$ there exists an integer $N(\epsilon)$ s.t. $||\mathbf{x}^{(k)} - \mathbf{x}|| < \epsilon$ for all $k \ge N(\epsilon)$

Theorem 5.1. The sequence of vectors $\{\mathbf{x}^{(k)}\}$ converges to $\mathbf{x} \in R^n$ w.r.t. $||\cdot||$ if and only if $\lim_{k\to\infty} \mathbf{x}_i^{(k)} = x_i$ for each i = 1, 2, ..., n

Definition 5.3. If there exist positive constants C_1, C_2 s.t. $C_1||\mathbf{x}||_B \le ||\mathbf{x}||_A \le C_2||\mathbf{x}|_B|$. Then $||\cdot||_A, ||\cdot||_B$ are equivalent

Theorem 5.2. All the vector norm in \mathbb{R}^n are equivalent

Definition 5.4. A matrix norm on the set of $n \times n$:

1.
$$||\mathbf{A}|| \ge 0$$
; $||\mathbf{A}|| = 0 \iff \mathbf{A} = \mathbf{0}$

2.
$$||\alpha \mathbf{A}|| = |\alpha| \cdot ||\mathbf{A}||$$

3.
$$||\mathbf{A} + \mathbf{B}|| \le ||\mathbf{A}|| + ||\mathbf{B}||$$

4.
$$||AB|| \le ||A|| \cdot ||B||$$

Frobenius Norm:
$$||\mathbf{A}||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$
Natural Norm: $||\mathbf{A}||_p = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_p}{||\mathbf{x}||_p} = \max_{\mathbf{z} \neq \mathbf{0}} ||\mathbf{A}\frac{\mathbf{z}}{||\mathbf{z}||}|| = \max_{||\mathbf{x}||_p = 1} ||\mathbf{A}\mathbf{x}||_p$

$$||\mathbf{A}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|, ||\mathbf{A}||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|, ||\mathbf{A}||_{2} = \sqrt{\lambda_{\max}(\mathbf{A}^{T}\mathbf{A})}$$

5.2 7.2 Eigenvalues and Eigenvectors

spectral radius.

Definition 5.5. The spectral radius $\rho(A)$ of a matrix A is defined as $\rho(A) = \max |\lambda|$ where λ is an eigenvalue of A

Theorem 5.3. If A is an $n \times n$ matrix, then $\rho(A) \leq ||A||$ for any natural norm

Proof.
$$|\lambda| \cdot ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| \cdot ||x||$$

Definition 5.6. We call an $n \times n$ matrix A convergent if for all $i, j = 1, \ldots, n$ $\lim_{k \to \infty} (A^k)_{ij} = 0$

5.3 7.3 Iterative techniques for solving linear systems

Jacobi iterative method.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \implies \begin{cases} x_1 = \frac{1}{a_{11}}(-a_{12}x_2 - \dots - a_{1n}x_n + b_1) \\ x_2 = \frac{1}{a_{22}}(-a_{21}x_1 - \dots - a_{2n}x_n + b_2) \\ \dots \\ x_1 = \frac{1}{a_{nn}}(-a_{n2}x_1 - \dots - a_{nn-1}x_{n-1} + b_n) \end{cases}$$

In matrix form,

$$A = \begin{pmatrix} D & -U & -U \\ -L & D & -U \\ -L & -L & D \end{pmatrix}$$

$$Ax = \mathbf{b} \Leftrightarrow (D - L - U)x = \mathbf{b}$$

$$\Leftrightarrow Dx = (L + U)x + \mathbf{b}$$

$$\Leftrightarrow x = \underbrace{D^{-1}(L + U)}_{T_j}x + \underbrace{D^{-1}}_{c_j}\mathbf{b}$$

. T_j is Jacobi iterative matrix. $\boldsymbol{x}^{(k)} = T_j \boldsymbol{x}^{(k-1)} + \boldsymbol{c}_j$ *Gauss-Seidel iterative method*

$$\boldsymbol{x}^{(k)} = D^{-1}(L\boldsymbol{x}^{(k)} + U\boldsymbol{x}^{(k-1)}) + D^{-1}\boldsymbol{b}$$

$$\Leftrightarrow (D - L)\boldsymbol{x}^{(k)} = U\boldsymbol{x}^{(k-1)} + \boldsymbol{b}$$

$$\Leftrightarrow \boldsymbol{x}^{(k)} = \underbrace{(D - L)^{-1}U\boldsymbol{x}^{(k-1)}}_{T_q} + \underbrace{(D - L)^{-1}\boldsymbol{b}}_{\boldsymbol{c}_g}$$

convergence of iterative methods

Theorem 5.4. the following are equivalent:

- 1. A is a convergent matrix
- 2. $\lim_{n\to\infty} ||A^n|| = 0$ for some natural norm
- 3. $\lim_{n\to\infty} ||A^n|| = 0$ for all natural norms
- 4. $\rho(A) < 1$
- 5. $\lim_{n\to\infty} A^n x = \mathbf{0}$ for every x

$$e^{(k)} = x^{(k)} - x^* = (Tx^{(k-1)} + c) - (Tx^* + c) = T(x^{(k-1)} - x^*) = Te^{(k-1)} \Rightarrow e^{(k)} = T^k e^{(0)}. ||e^{(k)} \le ||T|| \cdot ||e^{(k-1)}|| \le \cdots \le ||T||^k \cdot ||ble^{(0)}||$$

Theorem 5.5. For any $\mathbf{x}^{(0)} \in R^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ for each k, converges to the unique solution of $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$

$$\rho(T) < 1 \Longrightarrow (I - T)^{-1} = \sum_{j=0}^{\infty} T^j$$

Theorem 5.6. If ||T|| < 1 for any natural matrix norm and \mathbf{c} is a given vector, then the sequence $\{\boldsymbol{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\boldsymbol{x}^{(k)} = T\boldsymbol{x}^{(k-1)} + \mathbf{c}$ converges for any $\boldsymbol{x}^{(0)} \in R^n$ to a vector \boldsymbol{x} . And the following error bounds hold

1.
$$\| \boldsymbol{x} - \boldsymbol{x}^{(k)} \| \le \|T\|^k \| \boldsymbol{x} - \boldsymbol{x}^{(0)} \|$$

2.
$$\| \boldsymbol{x} - \boldsymbol{x}^{(k)} \| \leq \frac{\|T\|^k}{1 - \|T\|} \| \boldsymbol{x}^{(1)} - \boldsymbol{x}^{(0)} \|$$

Theorem 5.7. If A is a strictly diagonally dominant, then for any choice of $\mathbf{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converges to the unique solution

relaxation methods.
$$x_i^{(k)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_i^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}) = x_i^{(k-1)} + \frac{r_i^{(k)}}{a_{ii}}$$
 and relaxation method is $x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_i^{(k)}}{a_{ii}}$

Theorem 5.8. (kahan) If $a_{ii} \neq 0$ for each i. Then $\rho(T_{\omega}) \geqslant |\omega - 1|$.

This implies the SOR method can converge only if $0 < \omega < 2$

Theorem 5.9. (Ostrowski-Reich) If A is positive definite and $0 < \omega < 2$, the SOR converges

Theorem 5.10. If A is positive definite and tridiagonal, then $\rho(T_g) = (\rho(T_j))^2 < 1$, and the optimal choice of ω for the SOR method is $\omega = \frac{2}{1+\sqrt{1-(\rho(T_j))^2}}$. With this choice of ω , we have $\rho(T_\omega) = \omega - 1$

5.4 7.4 Error bounds and iterative refinement

Assume that A is accurate and **b** has the error $\delta \mathbf{b}$, then $\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$

Theorem 5.11. Suppose \tilde{x} is an approximation to the solution of Ax = b A is nonsingular matrix. Then for any natural norm,

$$||\boldsymbol{x} - \tilde{\boldsymbol{x}}|| \leq ||\boldsymbol{r}|| \cdot ||A^{-1}||$$

and if $x \neq 0, b \neq 0$,

$$\frac{||\delta \boldsymbol{x}||}{||\boldsymbol{x}||} \leqslant ||\boldsymbol{A}|| \cdot ||\boldsymbol{A}^{-1}|| \cdot \frac{||\delta \boldsymbol{b}||}{||\boldsymbol{b}||}$$

Proof. $r = b - A\tilde{x} = Ax - A\tilde{x}$ and A is nonsingular. Hence $x - \tilde{x} = A^{-1}r$. Since $\frac{||A^{-1}r||}{||r||} \le ||A^{-1}||$, $||x - \tilde{x}|| = ||A^{-1}x|| \le ||A^{-1}|| \cdot ||r||$. Also $||b|| \le ||A|| \cdot ||x||$. So $1/||x|| \le ||A||/||b||$ □

Theorem 5.12. If a matrix B satisfies ||B|| < 1 for some natural norm, then

- 1. $I \pm B$ is nonsingular
- 2. $||(I \pm B)^{-1}|| \le \frac{1}{1 ||B||}$

Assume **b** is accurate, A has the error δA , then $(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$. Hence $\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \leq \frac{||A^{-1}|| \cdot ||\delta A||}{1 - ||A^{-1}|| \cdot ||\delta A||} = \frac{||A|| \cdot ||A^{-1}||}{1 - ||A|| \cdot ||A^{-1}|| \cdot ||\delta A||}$

condition number $\mathbf{K}(\mathbf{A})$ is $||A|| \cdot ||A^{-1}||$

Theorem 5.13. Suppose A is nonsingular and $||\delta A|| \leq \frac{1}{||A^{-1}||}$. The solution $\mathbf{x} + \delta \mathbf{x}$ to $(A + \delta A)(\mathbf{x} + \delta \mathbf{x})$ approximates the solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$ with the error estimate

$$\frac{||\delta \boldsymbol{x}||}{||\boldsymbol{x}||} \le \frac{K(A)}{1 - K(A)||\delta A||/||A||} (\frac{||\delta A||}{||A||} + \frac{||\delta \boldsymbol{b}||}{||\boldsymbol{b}||})$$

note:

- 1. If A is symmetric, then $K(A)_2 = \frac{\max |\lambda|}{\min |\lambda|}$
- 2. $K(A)_p \ge 1$ for all natural norm
- 3. $K(\alpha A) = K(A)$ for any $\alpha \in R$
- 4. $K(A)_2 = 1$ if A is orthogonal
- 5. $K(RA)_2 = K(AR)_2 = K(A)_2$ for all orthogonal matrix R_

iterative refinement:

Theorem 5.14. Suppose \mathbf{x}^* is an approximation to the solution of $A\mathbf{x} = \mathbf{b}$, A is nonsingular matrix and $\mathbf{r} = \mathbf{b} - A\mathbf{x}$. Then for any natural norm, $||\mathbf{x} - \mathbf{x}^*| \le ||\mathbf{r}|| \cdot ||A^{-1}||$, and if $\mathbf{x}, \mathbf{b} \ne \mathbf{0}$

$$\frac{||\boldsymbol{x} - \boldsymbol{x}^*||}{||\boldsymbol{x}||} \leqslant K(A) \frac{||\boldsymbol{r}||}{||\boldsymbol{b}||}$$

refinement

- 1. Ax = b = approximation x_1
- 2. $r_1 = b Ax_1$
- 3. $Ad_1 = r_1 => d_1$
- 4. $x_2 = x_1 + d_1$

6 chap9 Approximating Eigenvalues

6.1 9.3 the power method

the original method Assumptions: A is an $n \times n$ matrix with eigenvalues satisfying $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n| \ge 0$

$$\boldsymbol{x}^{(0)} = \sum_{j=1}^{n} \beta_j \boldsymbol{v}_j, \quad \beta_1 \neq 0$$

$$\boldsymbol{x}^{(1)} = A\boldsymbol{x}^{(0)} = \sum_{j=1}^{n} \beta_j \lambda_j \boldsymbol{v}_j$$

$$\boldsymbol{x}^{(2)} = A\boldsymbol{x}^{(1)} = \sum_{j=1}^{n} \beta_j \lambda_j^2 \boldsymbol{v}_j$$

. . .

$$oldsymbol{x}^{(k)} pprox \lambda_1^k eta_1 oldsymbol{v}_1, \quad \lambda_1 pprox rac{oldsymbol{x}_i^{(k)}}{oldsymbol{x}_i^{(k-1)}}$$

Normalization. Suppose $||\boldsymbol{x}||_{\infty} = 1$. Let $||\boldsymbol{x}^{(k)}||_{\infty} = |x_{p_k}^{(k)}|$. Then $\boldsymbol{u}^{(k-1)} = \frac{\boldsymbol{x}^{(k-1)}}{|x_{p_{k-1}}^{(k)}|}$ and $\boldsymbol{x}^{(k)} = A\boldsymbol{u}^{(k-1)}$. Then $\boldsymbol{u}^{(k)} = \frac{\boldsymbol{x}^{(k)}}{|x_{p_k}^{(k)}|} \to \boldsymbol{v}_1$. $\lambda_1 \approx \frac{\boldsymbol{x}_i^{(k)}}{\boldsymbol{u}_i^{(k-1)}} = \boldsymbol{x}_{p_{k-1}}^{(k)}$ Note:

- 1. the method works for **multiple** eigenvalues $\lambda_1 = \lambda_2 = \cdots = \lambda_r$
- 2. the method fails to converge if $\lambda_1 = -\lambda_2$
- 3. Aitken's Δ^2 can be used

Rate of convergence. $x^{(k)} = Ax^{(k-1)} = \lambda_1^k \sum_{j=1}^n \beta_j (\frac{\lambda_j}{\lambda_1})^k v_j$. Make

 $|\lambda_2/\lambda_1|$ as small as possible. Assume $\lambda_1 > \lambda_2 \geqslant \cdots \geqslant \lambda_n, |\lambda_2| > |\lambda_n|$. Let B = A - pI, then $|\lambda I - A| = |\lambda I - (B + pI)| = |(\lambda - p)I - B|$. Hence $\lambda_A - p = \lambda_B$. Since $\frac{|\lambda_2 - p|}{|\lambda_1 - p|} < \frac{|\lambda_2|}{|\lambda_1|}$. The iteration is fast

Inverse power method. If A has $|\lambda_1| \geqslant |\lambda_2| \geqslant \cdots > |\lambda_n|$, then A^{-1} has $|\frac{1}{\lambda_n}| > |\frac{1}{\lambda_{n-1}}| \geqslant \cdots \geqslant |\frac{1}{\lambda_1}|$