Data on Obesity from the Muscatine Coronary Risk Factor Study.

Source: Table 10 (page 96) in Woolson and Clarke (1984).

With permission of Blackwell Publishing.

Reference: Woolson, R.F. and Clarke, W.R. (1984). Analysis of categorical incomplete longitudinal data. Journal of the Royal Statistical Society, Series A, 147, 87-99.

Description:

The data are from the Muscatine Coronary Risk Factor (MCRF) study, a longitudinal survey of school-age children in Muscatine, Iowa. The MCRF study had the goal of examining the development and

persistence of risk factors for coronary disease in children. In the MCRF study, weight and height measurements of five cohorts of children, initially aged 5-7, 7-9, 9-11, 11-13, and 13-15 years, were

obtained biennially from 1977 to 1981. Data were collected on 4856 boys and girls. On the basis of a comparison of their weight to age-gender specific norms, children were classified as obese or not obese.

Variable List:

Gender (0=Male,1=Female), Obesity Status 1977, Obesity Status 1979, Obesity Status 1981, Count in Age Cohort 1, Count in Age Cohort 2, Count in Age Cohort 3, Count in Age Cohort 4, Count in Age Cohort 5.

Note: Obesity Status (1=Obese, 0=Non-Obese, .=Missing). We are only going to look at those with complete data.

```
data obesity wide;
input Gender OB77 OB79 OB81 CT1 CT2 CT3 CT4 CT5;
datalines;
0 1 1 1 8 20 25 16
                     15
0 1 1 0 1
           7
               9
                  11
                       6
0 1 0 1 1
          9
               7
                  4
                      0
              7 13
0 1 0 0 0 8
                      8
0 0 1 1 7
          8 10
0 0 1 0 3
                      2
          8
              8
                  8
0 0 0 1 9 15 11
                  7
 0 0 0 90 150 152 119 101
1 1 1 1 8 21
              27
                  14
                     15
1 1 1 0 1
              8
          6
1 1 0 1 2
              0
                      0
1 1 0 0 2
          2 12
1 0 1 1 4 19
                      3
              8
1 0 1 0 2 13
                   7
             10
1 0 0 1
       8
          14
              6
1 0 0 0 75 154 148 129 91
proc print data=obesity wide (obs=5);
run;
```

We Obs	Gender	OB77	OB79	OB81	CT1	CT2	СТ3	CT4	CT5
1	0	1	1	1	8	20	25	16	15
2	0	1	1	0	1	7	9	11	6
3	0	1	0	1	1	9	7	4	0

We Obs	Gender	OB77	OB79	OB81	CT1	CT2	СТ3	CT4	CT5
4	0	1	0	0	0	8	7	13	8
5	0	0	1	1	7	8	10	3	7

```
data obesity;
set obesity wide;
  array OBCT(1:5) CT1-CT5;
  array Coh(1:5) (6 8 10 12 14);
  array AYear(1:3) (1977 1979 1981);
  array OBYR(1:3) OB77 OB79 OB81;
  if n_eq 1 then cum_ct = 0;
* if cum_ct eq . then cum_ct=lag(ID);
  do i=1 to 5;
  Cohort = Coh[i];
  CT tot = OBCT[i] *3;
  do \bar{j}=1 to 3;
  age = Coh[i]+2*(j-1);
  year = AYear[j];
  OB = OBYR[j];
  do k=1 to OBCT[i];
  ID = cum ct + k;
  output;
   end;
  end;
 * cum_ct = cum_ct + OBCT[i];
  end;
  drop CT1-CT5 Coh1-Coh5 AYear1 - AYear3 i j;
proc print data=obesity (obs=30);
```

Obs	Gender	OB77	OB79	OB81	Cohort	CT_tot	age	year	ОВ	k
1	0	1	1	1	6	24	6	1977	1	1
2	0	1	1	1	6	24	6	1977	1	2
3	0	1	1	1	6	24	6	1977	1	3
8	0	1	1	1	6	24	6	1977	1	8
9	0	1	1	1	6	24	8	1979	1	1
10	0	1	1	1	6	24	8	1979	1	2
16	0	1	1	1	6	24	8	1979	1	8
17	0	1	1	1	6	24	10	1981	1	1
18	0	1	1	1	6	24	10	1981	1	2
19	0	1	1	1	6	24	10	1981	1	3
20	0	1	1	1	6	24	10	1981	1	4

```
proc sort data=obesity;
by Gender OB77 OB79 OB81 cohort;
run;
data obesity2;
set obesity;
by Gender OB77 OB79 OB81 cohort;
if first.cohort then group id+1;
if last.cohort then CT tot = CT tot; else CT tot = 0;
drop OB77 OB79 OB81;
run;
proc sort data=obesity2;
by group id;
run;
data obesity3;
set obesity2;
tot+CT_tot;
drop CT_tot;
run;
data obesity4;
set obesity3;
ID = lag1(tot) + k;
if group id = 1 then ID = k;
drop group_id tot k;
run;
proc sort data=obesity4;
by ID;
run;
proc print data=obesity4 (obs=30);
run;
```

Obs	Gender	Cohort	age	year	ОВ	ID
1	0	6	6	1977	0	1
2	0	6	8	1979	0	1
3	0	6	10	1981	0	1
4	0	6	6	1977	0	2
5	0	6	8	1979	0	2
6	0	6	10	1981	0	2
7	0	6	6	1977	0	3
8	0	6	8	1979	0	3
9	0	6	10	1981	0	3
10	0	6	6	1977	0	4
11	0	6	8	1979	0	4

Obs	Gender	Cohort	age	year	ОВ	ID
12	0	6	10	1981	0	4
13	0	6	6	1977	0	5
14	0	6	8	1979	0	5
15	0	6	10	1981	0	5
16	0	6	6	1977	0	6
17	0	6	8	1979	0	6
18	0	6	10	1981	0	6
19	0	6	6	1977	0	7

```
proc sort data=obesity4;
by Cohort year;
run;

proc means data=obesity4 mean noprint;
by Cohort year;
var OB;
output out=mndat mean=mn N=samp;
run;

proc print data=mndat;
var Cohort year mn samp;
run;
```

Obs	Cohort	year	mn	samp
1	6	1977	0.10407	221
2	6	1979	0.15385	221
3	6	1981	0.21267	221
4	8	1977	0.17174	460
5	8	1979	0.22174	460
6	8	1981	0.24348	460
7	10	1977	0.21205	448
8	10	1979	0.23438	448
9	10	1981	0.20982	448
10	12	1977	0.20110	363
11	12	1979	0.20661	363
12	12	1981	0.17355	363
13	14	1977	0.20144	278

Obs	Cohort	year	mn	samp
14	14	1979	0.21223	278
15	14	1981	0.19065	278


```
proc sort data=obesity4;
by cohort age;
run;

proc means data=obesity4 mean noprint;
by cohort age;
```

```
var OB;
output out=mndat2 mean=mn N=samp;
run;

proc gplot data=mndat2;
plot mn*age=Cohort/ legend=legend1;
run;
quit;
```



```
proc sort data=obesity4;
by cohort age gender;
run;

proc means data=obesity4 mean noprint;
by cohort age gender;
var OB;
output out=mndat4 mean=mn N=samp;
run;

proc gplot data=mndat4;
where gender = 0;
plot mn*age=Cohort/ legend=legend1;
run;
quit;
proc gplot data=mndat4;
where gender = 1;
```

```
plot mn*age=Cohort/ legend=legend1;
run;
quit;
```



```
data mn_logit;
set mndat4;
logit_mn = log(mn/(1-mn));
run;

proc gplot data=mn_logit;
where gender = 0;
plot logit_mn*age=Cohort/ legend=legend1;
run;
quit;
```


proc gplot data=mn_logit; where gender = 1; plot logit_mn*age=Cohort/ legend=legend1; run; quit;


```
proc genmod data=obesity4 DESCENDING;
class ID gender (param=ref);
model OB = gender age age*age gender*age gender*age*age/d=bin link=logit;
repeated subject=ID/type=exch corrw modelse covb;
output out=full_mod pred=pred;
run;
quit;
```

Model Information					
Data Set	WORK.OBESITY4				
Distribution	Binomial				
Link Function	Logit				
Dependent Variable	ОВ				

Number of Observations Read	5310
Number of Observations Used	5310
Number of Events	1070
Number of Trials	5310

Class Level Information					
Class Value Variables					
Gender	0	1			
	1	0			

Response Profile				
Ordered Value	ОВ	Total Frequency		
1	1	1070		
2	0	4240		

PROC GENMOD is modeling the probability that OB='1'.

Parameter Information						
Parameter	Effect	Gender				
Prm1	Intercept					
Prm2	Gender	0				
Prm3	age					
Prm4	age*age					
Prm5	age*Gender	0				
Prm6	age*age*Gender	0				

GEE Model Information						
Correlation Structure	Exchangeable					
Subject Effect	ID (1770 levels)					
Number of Clusters	1770					
Correlation Matrix Dimension	3					
Maximum Cluster Size	3					
Minimum Cluster Size	3					

	Covariance Matrix (Model-Based)								
	Prm1	Prm2	Prm3	Prm4	Prm5	Prm6			
Prm1	0.38017	-0.38017	-0.06001	0.002293	0.06001	-0.002293			
Prm2	-0.38017	0.73490	0.06001	-0.002293	-0.11645	0.004468			
Prm3	-0.06001	0.06001	0.009921	-0.000392	-0.009921	0.0003919			
Prm4	0.002293	-0.002293	-0.000392	0.0000160	0.0003919	-0.000016			
Prm5	0.06001	-0.11645	-0.009921	0.0003919	0.01934	-0.000767			
Prm6	-0.002293	0.004468	0.0003919	-0.000016	-0.000767	0.0000314			
		Cova	riance Matrix (Empirical)					
	Prm1	Prm2	Prm3	Prm4	Prm5	Prm6			
Prm1	0.42984	-0.42984	-0.06884	0.002656	0.06884	-0.002656			
Prm2	-0.42984	0.79942	0.06884	-0.002656	-0.12879	0.005008			
Prm3	-0.06884	0.06884	0.01152	-0.000458	-0.01152	0.0004585			
Prm4	0.002656	-0.002656	-0.000458	0.0000188	0.0004585	-0.000019			
Prm5	0.06884	-0.12879	-0.01152	0.0004585	0.02174	-0.000874			
Prm6	-0.002656	0.005008	0.0004585	-0.000019	-0.000874	0.0000362			

Wo	Working Correlation Matrix							
	Col1	Col1 Col2 C						
Row1	1.0000	0.5452	0.5452					
Row2	0.5452	1.0000	0.5452					
Row3	0.5452	0.5452	1.0000					

Exchangeable Wo	orking Correlation
Correlation	0.5452275473

GEE Fit Criteria					
QIC	5329.8048				
QICu	5326.1063				

Analysis Of GEE Parameter Estimates								
	Empirical Standard Error Estimates							
Parameter		Estimate	Standard Error	95% Confidence Limits		Z	Pr > Z	
Intercept		-3.7998	0.6556	-5.0847	-2.5148	-5.80	<.0001	
Gender	0	-0.1091	0.8941	-1.8615	1.6433	-0.12	0.9029	
age		0.3803	0.1073	0.1699	0.5906	3.54	0.0004	
age*age		-0.0141	0.0043	-0.0226	-0.0056	-3.25	0.0012	
age*Gender	0	0.0421	0.1474	-0.2469	0.3311	0.29	0.7751	
age*age*Gender	0	-0.0026	0.0060	-0.0143	0.0092	-0.42	0.6712	

	Analysis Of GEE Parameter Estimates								
	Model-Based Standard Error Estimates								
Parameter		Estimate	Standard Error	95% Confidence Limits		z	Pr > Z		
Intercept		-3.7998	0.6166	-5.0082	-2.5913	-6.16	<.0001		
Gender	0	-0.1091	0.8573	-1.7893	1.5711	-0.13	0.8987		
age		0.3803	0.0996	0.1850	0.5755	3.82	0.0001		
age*age		-0.0141	0.0040	-0.0219	-0.0062	-3.52	0.0004		
age*Gender	0	0.0421	0.1391	-0.2304	0.3147	0.30	0.7620		
age*age*Gender	0	-0.0026	0.0056	-0.0135	0.0084	-0.46	0.6486		
Scale		1.0000							

Note: The scale parameter was held fixed.

```
proc sort data=full_mod;
by cohort age gender;
run;

data full2;
set full_mod;
by cohort age gender;
drop_var = 0;
if first.gender then drop_var = 1;
if drop_var = 1;
drop drop_var OB;
run;
```

Obs	Gender	Cohort	age	year	ID	pred
1	0	6	6	1977	1	0.12207
2	1	6	6	1977	2692	0.11665

Obs	Gender	Cohort	age	year	ID	pred
3	0	6	8	1979	1	0.16888
4	1	6	8	1979	2692	0.16004
5	0	6	10	1981	1	0.20634
6	1	6	10	1981	2692	0.19722
7	0	8	8	1977	271	0.16888
8	1	8	8	1977	2917	0.16004
9	0	8	10	1979	271	0.20634
10	1	8	10	1979	2917	0.19722
11	0	8	12	1981	271	0.22554
12	1	8	12	1981	2917	0.22061
13	0	10	10	1977	721	0.20634
14	1	10	10	1977	3379	0.19722
15	0	10	12	1979	721	0.22554
16	1	10	12	1979	3379	0.22061
17	0	10	14	1981	721	0.22215
18	1	10	14	1981	3379	0.22565
19	0	12	12	1977	1177	0.22554
20	1	12	12	1977	3823	0.22061
21	0	12	14	1979	1177	0.22215
22	1	12	14	1979	3823	0.22565
23	0	12	16	1981	1177	0.19692
24	1	12	16	1981	3823	0.21140

```
proc print data=full2;
run;
data merg_dat;
merge full2 mndat4;
by cohort age gender;
drop _TYPE_ _FREQ_;
run;
proc print data=merg_dat;
run;
```

Obs	Gender	Cohort	age	year	ID	pred	mn	samp
1	0	5	5	1977	1	0.11152	0.08403	119
2	1	5	5	1977	2692	0.11831	0.12745	102

Obs	Gender	Cohort	age	year	ID	pred	mn	samp
3	0	5	6	1979	1	0.14432	0.15966	119
4	1	5	6	1979	2692	0.14612	0.14706	102
5	0	5	7	1981	1	0.17615	0.21008	119
6	1	5	7	1981	2692	0.17275	0.21569	102
7	0	7	7	1977	271	0.17615	0.19556	225
8	1	7	7	1977	2917	0.17275	0.14894	235
9	0	7	8	1979	271	0.20366	0.19111	225
10	1	7	8	1979	2917	0.19603	0.25106	235
11	0	7	9	1981	271	0.22397	0.23111	225
12	1	7	9	1981	2917	0.21409	0.25532	235
13	0	9	9	1977	721	0.22397	0.20961	229
14	1	9	9	1977	3379	0.21409	0.21461	219
15	0	9	10	1979	721	0.23507	0.22707	229
16	1	9	10	1979	3379	0.22555	0.24201	219
17	0	9	11	1981	721	0.23590	0.23144	229
18	1	9	11	1981	3379	0.22953	0.18721	219
19	0	11	11	1977	1177	0.23590	0.24309	181
20	1	11	11	1977	3823	0.22953	0.15934	182
21	0	11	12	1979	1177	0.22638	0.20994	181

```
proc gplot data=merg_dat;
where gender = 0;
plot (pred mn)*age=Cohort/legend=legend1;
run;
quit;
```



```
proc genmod data=obesity4 DESCENDING;
class ID gender cohort (param=ref);
model OB = cohort gender age age*age gender*age gender*age*age/d=bin link=logit type3;
repeated subject=ID/type=exch corrw modelse covb;
output out=full_mod pred=pred;
run;
quit;
```

Model Information						
Data Set	WORK.OBESITY4					
Distribution	Binomial					
Link Function	Logit					
Dependent Variable	ОВ					

Number of Observations Read	5310
Number of Observations Used	5310
Number of Events	1070
Number of Trials	5310

Class Level Information								
Class	Value	De	sign V	/ariab	les			
Gender	0	1						
	1	-1						
Cohort	6	1 0		0	0			
	8	0	1	0	0			
	10	0	0	1	0			
	12	0	0	0	1			
	14	0	0	0	0			

Response Profile					
Ordered Value	ОВ	Total Frequency			
1	1	1070			
2	0	4240			

PROC GENMOD is modeling the probability that OB='1'.

Parameter Information								
Parameter	Effect	Gender	Cohort					
Prm1	Intercept							
Prm2	Cohort		6					
Prm3	Cohort		8					
Prm4	Cohort		10					
Prm5	Cohort		12					
Prm6	Gender	0						
Prm7	age							
Prm8	age*age							
Prm9	age*Gender	0						
Prm10	age*age*Gender	0						

 $\label{local-algorithm} \textbf{Algorithm converged}.$

GEE Model Information						
Correlation Structure	Exchangeable					
Subject Effect	ID (1770 levels)					
Number of Clusters	1770					
Correlation Matrix Dimension	3					

GEE Model Information					
Maximum Cluster Size	3				
Minimum Cluster Size	3				

	Covariance Matrix (Model-Based)										
	Prm1	Prm2	Prm3	Prm4	Prm5	Prm6	Prm7	Prm8	Prm9	Prm10	
Prm1	0.21167	-0.03564	-0.02176	-0.01320	-0.01117	-0.005258	-0.02999	0.001105	0.0007406	-0.000024	
Prm2	-0.03564	0.04838	0.02316	0.02075	0.01824	-0.001339	0.001028	0.0000158	0.0001674	-5.538E-6	
Prm3	-0.02176	0.02316	0.03104	0.02038	0.01826	-0.000295	-0.000891	0.0000811	0.0000749	-3.396E-6	
Prm4	-0.01320	0.02075	0.02038	0.02853	0.01784	-0.000506	-0.001792	0.0001035	0.0000836	-3.379E-6	
Prm5	-0.01117	0.01824	0.01826	0.01784	0.02921	-0.000503	-0.001494	0.0000764	0.0000899	-3.424E-6	
Prm6	-0.005258	-0.001339	-0.000295	-0.000506	-0.000503	0.18236	0.0008185	-0.000028	-0.02895	0.001113	
Prm7	-0.02999	0.001028	-0.000891	-0.001792	-0.001494	0.0008185	0.005125	-0.000203	-0.000119	3.942E-6	
Prm8	0.001105	0.0000158	0.0000811	0.0001035	0.0000764	-0.000028	-0.000203	8.3829E-6	4.0271E-6	-1.285E-7	
Prm9	0.0007406	0.0001674	0.0000749	0.0000836	0.0000899	-0.02895	-0.000119	4.0271E-6	0.004818	-0.000191	
Prm10	-0.000024	-5.538E-6	-3.396E-6	-3.379E-6	-3.424E-6	0.001113	3.942E-6	-1.285E-7	-0.000191	7.8547E-6	

	Covariance Matrix (Empirical)										
	Prm1	Prm2	Prm3	Prm4	Prm5	Prm6	Prm7	Prm8	Prm9	Prm10	
Prm1	0.23049	-0.03967	-0.02268	-0.01248	-0.01178	-0.01235	-0.03326	0.001242	0.001851	-0.000062	
Prm2	-0.03967	0.05100	0.02459	0.02147	0.01856	-0.004847	0.001347	0.0000106	0.0007051	-0.000026	
Prm3	-0.02268	0.02459	0.03202	0.02116	0.01865	0.0008781	-0.001050	0.0000936	-0.000117	2.5958E-6	
Prm4	-0.01248	0.02147	0.02116	0.02946	0.01818	-0.001844	-0.002084	0.0001175	0.0002943	-0.000012	
Prm5	-0.01178	0.01856	0.01865	0.01818	0.02905	-0.002783	-0.001447	0.0000739	0.0005728	-0.000026	
Prm6	-0.01235	-0.004847	0.0008781	-0.001844	-0.002783	0.19680	0.002018	-0.000069	-0.03181	0.001241	
Prm7	-0.03326	0.001347	-0.001050	-0.002084	-0.001447	0.002018	0.005777	-0.000232	-0.000302	0.0000102	
Prm8	0.001242	0.0000106	0.0000936	0.0001175	0.0000739	-0.000069	-0.000232	9.7048E-6	9.8683E-6	-3.09E-7	
Prm9	0.001851	0.0007051	-0.000117	0.0002943	0.0005728	-0.03181	-0.000302	9.8683E-6	0.005390	-0.000217	
Prm10	-0.000062	-0.000026	2.5958E-6	-0.000012	-0.000026	0.001241	0.0000102	-3.09E-7	-0.000217	9.0429E-6	

Working Correlation Matrix								
	Col1 Col2 Col3							
Row1	1.0000	0.5446	0.5446					
Row2	0.5446	1.0000	0.5446					
Row3	0.5446	0.5446	1.0000					

Exchangeable Wo	orking Correlation
Correlation	0.5446473868

GEE Fit Criteria					
QIC	5338.9232				
QICu	5328.0878				

Analysis Of GEE Parameter Estimates										
Empirical Standard Error Estimates										
Parameter		Estimate	Standard Error	95% Cor Lim		Z	Pr > Z			
Intercept		-3.9598	0.4801	-4.9008	-3.0188	-8.25	<.0001			
Cohort	6	0.0382	0.2258	-0.4044	0.4808	0.17	0.8657			
Cohort	8	0.1436	0.1789	-0.2071	0.4943	0.80	0.4223			
Cohort	10	0.0367	0.1716	-0.2997	0.3730	0.21	0.8309			
Cohort	12	-0.1257	0.1704	-0.4598	0.2083	-0.74	0.4608			
Gender	0	-0.0525	0.4436	-0.9219	0.8170	-0.12	0.9059			
age		0.4065	0.0760	0.2575	0.5555	5.35	<.0001			
age*age		-0.0152	0.0031	-0.0213	-0.0091	-4.89	<.0001			
age*Gender	0	0.0210	0.0734	-0.1229	0.1649	0.29	0.7745			
age*age*Gender	0	-0.0013	0.0030	-0.0072	0.0046	-0.43	0.6691			

Analysis Of GEE Parameter Estimates								
Model-Based Standard Error Estimates								
Parameter Estimate Error Limits Z Pr >							Pr > Z	
Intercept		-3.9598	0.4601	-4.8615	-3.0581	-8.61	<.0001	
Cohort	6	0.0382	0.2199	-0.3929	0.4693	0.17	0.8621	
Cohort	8	0.1436	0.1762	-0.2017	0.4889	0.81	0.4151	
Cohort	10	0.0367	0.1689	-0.2944	0.3677	0.22	0.8282	
Cohort	12	-0.1257	0.1709	-0.4607	0.2093	-0.74	0.4620	
Gender	0	-0.0525	0.4270	-0.8894	0.7845	-0.12	0.9022	
age		0.4065	0.0716	0.2662	0.5468	5.68	<.0001	

Analysis Of GEE Parameter Estimates							
Model-Based Standard Error Estimates							
Parameter Estimate Error Limits Z Pr > Z							
age*age		-0.0152	0.0029	-0.0209	-0.0096	-5.26	<.0001
age*Gender	0	0.0210	0.0694	-0.1150	0.1571	0.30	0.7619
age*age*Gender	0	-0.0013	0.0028	-0.0068	0.0042	-0.46	0.6465
Scale		1.0000			•		

Note: The scale parameter was held fixed.

Score Statistics For Joint Tests For GEE					
Source	DF	Chi-Square	Pr > ChiSq		
Cohort	4	3.13	0.5355		
Gender	1	0.01	0.9054		
age	1	28.86	<.0001		
age*age	1	24.53	<.0001		
age*Gender	1	0.08	0.7744		
age*age*Gender	1	0.18	0.6702		

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests. The joint test for an effect is a test that all the parameters associated with that effect are zero. Such joint tests might not be equivalent to Type 3 effect tests under GLM parameterization.

```
proc sort data=full mod;
by cohort age gender;
run;
data full2;
set full mod;
by cohort age gender;
drop var = 0;
if first.gender then drop var = 1;
if drop_var = 1;
drop drop_var OB;
run;
data merg_dat;
merge full2 mndat4;
by cohort age gender;
drop _TYPE_ _FREQ_;
run;
proc gplot data=merg_dat;
where gender = 0;
plot (pred mn) *age=Cohort/legend=legend1;
run;
quit;
```



```
proc genmod data=obesity4 DESCENDING;
class ID gender (param=ref);
model OB = gender age age*age/d=bin link=logit type3;
repeated subject=ID/type=exch corrw modelse covb;
run;
quit;
```

Model Information				
Data Set	WORK.OBESITY4			
Distribution	Binomial			
Link Function	Logit			
Dependent Variable	ОВ			

Number of Observations Read	5310
Number of Observations Used	5310
Number of Events	1070
Number of Trials	5310

Class Level Information					
Class Value Variables					
Gender	0	1			
	1	0			

Response Profile				
Ordered Value	ОВ	Total Frequency		
1	1	1070		
2	0	4240		

PROC GENMOD is modeling the probability that OB='1'.

Parameter Information						
Parameter Effect Gender						
Prm1	Intercept					
Prm2	Gender	0				
Prm3	age					
Prm4	age*age					

GEE Model Information				
Correlation Structure	Exchangeable			
Subject Effect	ID (1770 levels)			
Number of Clusters	1770			
Correlation Matrix Dimension	3			
Maximum Cluster Size	3			
Minimum Cluster Size	3			

Covariance Matrix (Model-Based)						
	Prm1	Prm2	Prm3	Prm4		
Prm1	0.18629	-0.005137	-0.02911	0.001117		
Prm2	-0.005137	0.009760	0.0000303	-1.173E-6		
Prm3	-0.02911	0.0000303	0.004833	-0.000192		
Prm4	0.001117	-1.173E-6	-0.000192	7.8518E-6		

Covariance Matrix (Empirical)						
	Prm1 Prm2 Prm3 Prm4					
Prm1	0.20108	-0.004622	-0.03203	0.001246		
Prm2	-0.004622	0.009802	-0.000047	1.1928E-6		
Prm3	-0.03203	-0.000047	0.005413	-0.000218		
Prm4	0.001246	1.1928E-6	-0.000218	9.0233E-6		

Working Correlation Matrix					
	Col1	Col2	Col3		
Row1	1.0000	0.5448	0.5448		
Row2	0.5448	1.0000	0.5448		
Row3	0.5448	0.5448	1.0000		

Exchangeable Working Correlation			
Correlation	0.5447884924		

GEE Fit Criteria			
QIC	5325.5632		
QICu	5321.5477		

Analysis Of GEE Parameter Estimates							
Empirical Standard Error Estimates							
Parameter		Estimate	Standard Error	95% Confidence Limits		Z	Pr > Z
Intercept		-3.8571	0.4484	-4.7360	-2.9782	-8.60	<.0001
Gender	0	0.0065	0.0990	-0.1876	0.2005	0.07	0.9478
age		0.4014	0.0736	0.2572	0.5456	5.46	<.0001
age*age		-0.0154	0.0030	-0.0212	-0.0095	-5.11	<.0001

Analysis Of GEE Parameter Estimates							
Model-Based Standard Error Estimates							
Parameter		Estimate	Standard Error	95% Confidence Limits		Z	Pr > Z
Intercept		-3.8571	0.4316	-4.7031	-3.0112	-8.94	<.0001
Gender	0	0.0065	0.0988	-0.1872	0.2001	0.07	0.9477
age		0.4014	0.0695	0.2651	0.5377	5.77	<.0001
age*age		-0.0154	0.0028	-0.0208	-0.0099	-5.48	<.0001
Scale		1.0000		•			

Note: The scale parameter was held fixed.

Score Statistics For Type 3 GEE Analysis				
Source	DF	Chi-Square	Pr > ChiSq	
Gender	1	0.00	0.9478	
age	1	33.80	<.0001	
age*age	1	29.30	<.0001	