ENGG 201 - Chapter 3 — Bravais Lattices + Solid Density

M.S. Kallos

April, 2016

Solids

- Crystalline solids have a high degree of organization in the arrangement of their atoms/molecules
- Same arrangement repeats in all 3 directions
- Smallest repeating unit that can be used to make this arrangement is called the "unit cell"
- Unit cell = box

Unit Cell (2D Example)

Simple pattern of packed molecules:

Unit Cell (dark square):

Bravais Lattice Basics (1)

Figure 3-9 Axes in Crystals

- Different angles
- Different side lengths

Bravais Lattice Basics (2)

Table 3-7 The Fourteen Bravais Lattices

System	Lengths of Sides	Angles Between Surfaces
Cubic		
Simple Face-Centered Body-Centered	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$
Triclinic	a ≠ b ≠ c	$\alpha \neq \beta \neq \gamma$
Monoclinic		
Simple Base-Centered	a ≠ b ≠ c	$\alpha = \gamma = 90^{\circ} \neq \beta$
Orthorhombic		
Simple Base-Centered Body-Centered Face-Centered	a # b # c	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal		
Simple Body-Centered	a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal	a≠c	$\alpha = \beta = 90^{\circ}, \gamma = 12^{\circ}$

Figure 3-10 The Fourteen Bravais Lattices

Simple Cubic

($0\,0\,1$) Simple cubic (sc)

Body Centered Cubic (BCC)

(0 0 1)c Body centered cubic (bcc)

Face Centered Cubic (FCC)

(101)c Face centered cubic (fcc)

Hexagonal Close Packing (HCP)

HCP Density the same as FCC

Atomic Dimensions and Density

 Packing of Molecules Influences Density (number of molecules in a given volume)

ENGG 201 W2016

Atomic Dimensions and Density

- Use the Unit Cell as a basis
 - Mass
 - Know the mass of each atom
 - Know the number of atoms in a unit cell
 - Volume
 - Know size of the molecules
 - Know the size of the unit cell (based on packing arrangement)
- We can calculate the density of the solid
 - Density of unit cell = Density of bulk solid
 - Density = mass/volume

Relationship Between Variables

Density

ρ

Substance / Mass

• m (from M)

Size of Atom / Volume

• σ (or d)

Structure

• Formula for Density

ENGG 201 W2016

Three Cubic Arrangements

ENGG 201 W2016 13

General Approach

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)}$$

mass of unit cell = (number of atoms in unit cell * mass of each atom)

$$mass \ of \ atom = \frac{Molar \ Mass}{Avogadro's \ Number} \qquad \begin{array}{l} number \ of \ atoms \ in \ unit \ cell \\ = depends \ on \ structure \ (BCC, FCC, etc) \end{array}$$

volume of unit cell = f(arrangement and size of the atoms)

 $size\ of\ atom=collision\ diameter, or\ closest\ interatomic\ distance$

Symbols

Unit Cell

Atom

Atom

$$M = Molar Mass$$

m = mass of one atom

n = number of atoms in unit cell

 $r = atomic \ radius$

d = atomic diameter

 $a = length \ of \ side \ of \ unit \ cell$

$$m = \frac{M}{N_A}$$

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)}$$
 = density of solid

Simple Cubic - Density

n=1, NUMBER OF ATOMS IN THE UNIT CELL VOLUME = d3 DENSITY = -M_3

$$m = \frac{M}{N_A}$$

- Mass of Unit Cell
- Number of atoms in unit cell
 = 1/8 x 8 corners = 1
- Mass = n*m = 1m

- Volume of Unit Cell
- Length of side of unit cell
 = a = d
- Volume of unit cell
 = a³ = d³

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = \frac{m}{d^3}$$

m = mass of one atomd = atomic diameter

FCC - Density

- Volume of Unit Cell
- Length of side of unit cell

$$= a = \sqrt{2}d$$

Volume of unit cell

$$= a^3 = 2\sqrt{2}d^3$$

 \boldsymbol{a}

$$(2d)^2 = (a)^2 + (a)^2$$

$$4d^2 = 2a^2$$

$$\sqrt{2}d = a$$

FCC (FACE - CENTERED CUBIC)

$$n = 4$$

VOLUME = $2\sqrt{2}d^3$

DENSITY = $\sqrt{\frac{2}{d^3}}$ = 1.414 $\frac{m}{d^3}$

- Mass of Unit Cell
- Number of atoms in unit cell
 = (1/8 x 8 corners) + (1/2 x 6 sides) = 4
- Mass = n*m = 4m

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = \frac{4m}{2\sqrt{2}d^3}$$

HCP Density the same as FCC

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = 1.414 \frac{m}{d^3}$$

m = mass of one atomd = atomic diameter

 \boldsymbol{a}

BCC - Density

- Volume of Unit Cell
- Length of side of unit cell

$$= a = \frac{2}{\sqrt{3}}d$$

Volume of unit cell

$$= a^3 = \frac{8}{3\sqrt{3}}d^3$$

$$(x)^2 = (a)^2 + (a)^2$$

$$x^2 = 2a^2$$

$$\sqrt{2}a = x$$

$$(2d)^2 = (x)^2 + (a)^2$$

$$4d^2 = 2a^2 + a^2$$

$$4d^2 = 3a^2$$

$$a = \frac{2}{\sqrt{3}}d$$

a

BCC - Density

BCC (BODY - CENTERED CUBIC)

$$n = 2$$

VOLUME = $\frac{8}{3\sqrt{3}} d^3$

DENSITY = $\frac{3\sqrt{3}m}{4d^3}$ = 1.299 $\frac{m}{d^3}$

http://en.wikipedia.org/wiki/Atomic packing factor

- Mass of Unit Cell
- Number of atoms in unit cell
 = (1/8 x 8 corners) + (1 middle) = 2
- Mass = n*m = 2m

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = \frac{2m}{\frac{8}{3\sqrt{3}}d^3}$$

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = 1.299 \frac{m}{d^3}$$

m = mass of one atomd = atomic diameter

Relationship Between Variables

Density

• ρ

Substance / Mass

• m (from M)

Size of Atom / Volume

• σ (or d)

$$\rho = \frac{mass (of unit cell)}{volume (of unit cell)} = X \frac{m}{d^3}$$

Structure

• Formula for Density

Void Fraction

- Unit cell has atoms + empty space
- Void fraction = fraction of unit cell that is empty space
- General formula:

$$Void\ Fraction = rac{volume\ of\ unit\ cell\ -volume\ of\ atoms}{volume\ of\ unit\ cell}$$

• Remember: atoms are spheres $(4/3\pi(d/2)^3)$

Graphite vs. Diamond

($0\ 0\ 1$) Graphite (C)

- Both graphite and diamond are C
- Arrangement of atoms can greatly influence properties (not just density)

Summary

?

FCC (FACE - CENTERED CUBIC)

n = 4

VOLUME = $2\sqrt{2}d^3$ DENSITY = $\sqrt{\frac{2}{d^3}}$ = 1.414 $\frac{m}{d^3}$

Harpers Weeksly, June 29, 1861 - page 401

 $\frac{BCC}{n=2} \text{ (BODY-CENTERED CUBIC)}$ $VOLUME = \frac{8}{3\sqrt{3}} d^{3}$ $DENSITY = \frac{3\sqrt{3}m}{4 d^{3}} = 1.299 \frac{m}{d^{3}}$