Dynamic programming Longest Common Subsequence

Dynamic programming

It is used, when the solution can be recursively described in terms of solutions to subproblems (*optimal substructure*)

Algorithm finds solutions to subproblems and stores them in memory for later use More efficient than "brute-force methods", which solve the same subproblems over and over again

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: $X = \{A B C B D A B\}, Y = \{B D C A B A\}$

Longest Common Subsequence:

$$X = A B C B D A B$$

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

LCS Algorithm

if |X| = m, |Y| = n, then there are 2^m subsequences of x; we must compare each with Y (n comparisons)

So the running time of the brute-force algorithm is O(n 2^m)

Notice that the LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.

Subproblems: "find LCS of pairs of *prefixes* of X and Y"

LCS Algorithm

First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.

Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively

Define c[i,j] to be the length of LCS of X_i and Y_j Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

5

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

We start with i = j = 0 (empty substrings of x and y)

Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0]=0)

LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

6

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

When we calculate c[i,j], we consider two cases:

First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

Second case: x[i] != y[j]

As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before (i.e. maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_i)$

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                                // for all X<sub>i</sub>
6. for j = 1 to n
                                      // for all Y<sub>i</sub>
             if (X_i == Y_i)
7.
8.
                   c[i,j] = c[i-1,j-1] + 1
             else c[i,j] = max(c[i-1,j], c[i,j-1])
```

LCS Example

We'll see how LCS algorithm works on the following example:

- \square X = ABCB
- \square Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$

$$Y = BDCAB$$

LCS Example (0)

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi						
1	A						
2	В						
3	C						
4	В						

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

LCS Example (1)

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0					
2	В	0					
3	C	0					
4	В	0					

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

LCS Example (2)

	j	0	1	2	3	4	5
i		Yj	(B)	D	C	A	В
0	Xi	0		0	0	0	0
1	(A)	0	0				
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

ABCB BDCAR

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	В	0					

$$if (X_i == Y_j) \\ c[i,j] = c[i-1,j-1] + 1 \\ else \ c[i,j] = max(\ c[i-1,j], \ c[i,j-1])$$

LCS Example (4)

	j	0	1	2	3	4	5
i		Yj	B	D	\mathbf{C}	(\mathbf{A})	В
0	Xi	0	0	0	0 、	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5)

ABCB BDCAR

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	В	0					

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

ABCB BDCAR

	j	0	1	2	3	4	5
i		Yj	(\mathbf{B})	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1				
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

	j	0	1	2	3	4	5
i	_	Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	\bigcirc B	0	1	1	1	1	
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

ABCB

							R
	j	0	1	2	3	4	50
i		Yj	B	\mathbf{D}	C	A	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1,	1
2	$egin{pmatrix} \mathbf{B} \end{pmatrix}$	0	1	1	1	1	2
3	C	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

B

LCS Example (10)

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1 -	1			
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

	j	0	1	2	3	4	5
i		Yj	В	D	(C)	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1,	1	1	2
3	\bigcirc	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12)

ABCB RDCAF

							/ -
	j	0	1	2	3	4	
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1	1	2 -	2	2
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0 🔨	1	1	2	2	2
4	B	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14)

	j	0	1	2	3	4	5
i	_	Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	_1	_2	2	2
4	$oxed{B}$	0	1 -	1	\bigsize 2 -	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (15)

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2 🔨	2
4	(B)	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- □ So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

11/10/2021 26

How to find actual LCS

- □ So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

How to find actual LCS - continued

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- \square So we can start from c[m,n] and go backwards
- □ Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- □ When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0 📉	0	0	0	1	1
2	В	0	1 ←	- 1 ×	1	1	2
3	C	0	1	1	2 ←	- 2 _K	2
4	В	0	1	1	2	2	3

Finding LCS (2)

LCS (reversed order): B C B

LCS (straight order): B C B

(this string turned out to be a palindrome)