A Graph Auto-Encoder for Haplotype Assembly and Viral Quasispecies Reconstruction

Ziqi Ke and Haris Vikalo

Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

Fragment Matrix

BACKGROUND

- Haplotype assembly
 - Reconstructing haplotypes, ordered lists of single nucleotide polymorphisms on an individual's chromosomes, from high-throughput DNA sequencing data
 - Applications: diagnosis of genetic diseases, personalized medicine
- Viral quasispecies reconstruction
 - Reconstructing a priori unknown number of viral sequences in a population and estimating their relative frequencies
 - Applications: antiviral vaccine designs, discovery of new pharmaceutical products

- Most prior works are based on branch-and-bound schemes, integer linear programming, dynamic programming, matrix factorization, Bayesian inference and so on
- Our approach: the first neural network-based learning framework, GAEseq, to both haplotype assembly and viral quasispecies reconstruction problems

PROBLEM FORMULATION

- Notation
- H: the haplotype matrix
- $R: \mathsf{the} \ \mathsf{SNP} \ \mathsf{fragment} \ \mathsf{matrix}$
- Z: an approximation of the read-origin matrix
- $\boldsymbol{\Omega}$: the set of informative entries in the SNP fragment matrix
- \mathcal{P}_{Ω} : the projection operator denoting the sampling of haplotypes by reads
- Solve the NP-hard problem with required level of accuracy

$$\min_{Z,\mathcal{H}} rac{1}{2} ||\mathcal{P}_{\Omega}(\mathcal{R} - Z\mathcal{H})||_F^2$$

- Evaluation metrics
 - Minimum error correction (MEC) score:

$$MEC = \sum_{i=1}^{m} \min_{j=1,2,...,k} HD(R_{i:}, H_{j:})$$

Correct phasing rate:

$$CPR = 1 - \frac{1}{kn} \left(\min \sum_{i=1}^{k} HD(H_{i:}, \mathcal{M}(H_{i:})) \right)$$

where k is the number of haplotypes and n is the haplotype length.

A GRAPH AUTO-ENCODER

- An undirected bipartite graph $G = (V, E, \mathcal{W})$
 - ightharpoonup The set of read nodes $r_i \in \mathcal{A}$ and the set of SNP nodes $s_j \in \mathcal{B}$ form the set of vertices
 - ightharpoonup The weights $w\in\{1,2,3,4\}=\mathcal{W}$ assigned to edges $(r_i,w,s_j)\in E$ are the discrete values used to represent nucleotides

- Read origin detection via graph encoder
 - SNP nodes to read nodes layer

$$M_{(2i+1)} = \sigma(\sum_{w=1}^{4} D_s^{-1} A_w^T M_{(2i)} W_w^{(2i+1)} + B_w^{(2i+1)})$$

Read nodes to SNP nodes layer

$$M_{(2i)} = \sigma(\sum_{w=1}^{4} D_r^{-1} A_w M_{(2i-1)} W_w^{(2i)} + B_w^{(2i)})$$

Dense layer

- Haplotype decoder
 - \triangleright Majority voting based on the approximation of the read-origin matrix Z

ALGORITHMS

Algorithm 2 Graph auto-encoder for viral quasispecies re-**Algorithm 1** Graph auto-encoder for haplotype assembly construction 1: **Input:** SNP fragment matrix R, the number of experi-1: **Input:** SNP fragment matrix R, the number of experiments n_{exp} and the number of haplotypes k ments n_{exp} , the MEC improvement rate threshold η and 2: **Output:** Reconstructed haplotypes H the estimated initial number of components k_0 3: while $n_{exp} \neq 0$ do 2: Output: Reconstructed viral haplotypes H and the in-Initialize $W_w^{(i)}$, $B_w^{(i)}$, W_d and B_d using Xavier iniferred frequencies 3: Initial $\tau \leftarrow 0$, MECflag $\leftarrow 0$ and $k_{\tau} \leftarrow k_0$ tialization where $w \in \{1, 2, 3, 4\}$ and $i \in \{1, 2\}$ 4: while $\tau = 0$ or $k_{\tau} = k_{\tau} - 1$ do for $n_{epoch} = 1$ to 100 do for $k \in \{k_{\tau}, k_{\tau} + 1\}$ do $M_{(1)} \leftarrow \sigma(\sum_{w} D_s^{-1} A_w^T R W_w^{(1)} + B_w^{(1)})$ Run Algorithm 1 with k $M_{(2)} \leftarrow \sigma(\sum_{w} D_r^{-1} A_w M_{(1)} W_w^{(2)} + B_w^{(2)})$ end for if $MECimpr(k_{\tau}) \leq \eta$ then $O \leftarrow \sigma(M_{(2)}W_d + B_d)$ $k_{\tau+1} \leftarrow \lfloor (k_{\tau} + \max\{1, k_i\})/2 \rfloor, \{i \in \{1, \dots, \tau\text{-}1\} : k_i \leq k_{\tau}\}; \text{MECflag} \leftarrow 1$ $Z_{ij} \leftarrow \frac{e^{\beta O_{ij}}}{\sum_{i=1}^{k} e^{\beta O_{ij}}} \text{ with } \beta = 200$ Calculate \mathcal{H} by majority voting if MECflag = 0 then $\mathcal{L} \leftarrow \frac{1}{2}||\mathcal{P}_{\Omega}(\mathcal{R} - Z\mathcal{H})||_F^2$ Record reconstructed haplotypes and the MEC $\frac{12}{13}$: $k_{\tau+1} \leftarrow 2k_{\tau}$ score $|(k_{\tau} + \min k_i)/2|, \{i \in$ Update $W_w^{(i)}$, $B_w^{(i)}$, W_d and B_d using Adam Optimizer where $w \in \{1, 2, 3, 4\}$ and $i \in \{1, 2\}$ end if end for end if $n_{exp} \leftarrow n_{exp} - 1$ $\tau \leftarrow \tau + 1$ 16: end while 18: end while 17: Output the reconstructed haplotypes H corresponding to 19: Output the viral quasispecies H with $k = k_{\tau} + 1$ and the

RESILITS

inferred frequencies

• Performance comparison on Solanum Tuberosum semi-experimental data

the lowest MEC score

Coverage		MEC		CPR	
		Mean	SD	Mean	SD
15	GAEseq	8.200	4.686	0.822	0.048
	HapCompass	100.700	66.150	0.763	0.046
	H-PoP	28.700	32.667	0.783	0.066
	AltHap	59.100	28.125	0.709	0.054
25	GAEseq	8.400	4.719	0.831	0.081
	HapCompass	124.800	132.156	0.810	0.063
	H-PoP	33.800	47.434	0.798	0.046
	AltHap	92.600	83.649	0.756	0.068
35	GAEseq	10.700	3.234	0.857	0.087
	HapCompass	217.400	174.135	0.775	0.072
	H-PoP	41.700	53.971	0.823	0.094
	AltHap	164.000	101.583	0.754	0.093

Performance comparison on gene-wise reconstruction of real HIV-1 data

CONCLUSIONS

- Designed a graph auto-encoder for both haplotype assembly and viral quasispecies
- Benchmarking tests on simulated and experimental data demonstrate that GAEseq achieves good performance even at low sequencing coverage
- Studies on real HIV-1 data illustrate that GAEseq outperforms existing state-of-the-art methods in viral quasispecies reconstruction.