Нейросетевые методы поиска скоплений галактик в микроволновом диапазоне по данным спутника Planck

Кафедра интеллектуальных информационных технологий к.ф.-м.н. Мещеряков А. В., Герасимов С. В., Немешаева Алиса, Москва, 2021

Рентгеновский телескоп eROSITA

- Рентгеновский телескоп eROSITA снимет всё небо и составит 8 карт неба в мягком рентгеновском излучении.
- Ожидается, что eROSITA обнаружит 100 000 скоплений галактик.
- Это будет самый полный каталог скоплений.
- Требуется сравнение с каталогами других диапазонов.

Скопления галактик

- Скопления галактик играют важную роль в задачах определения параметров Вселенной.
- Скопления видимы в рентгеновском диапазоне из-за наличия в их составе горячего газа, излучающего энергию в рентгеновском диапазоне.
- В микроволновом диапазоне скопления галактик проявляются из-за эффекта Сюняева-Зельдовича.
- Скопления состоят из галактик, которые излучают энергию в видимом диапазоне, поэтому для их поиска можно использовать и <mark>оптический</mark> диапазон.
- Кроме того, скопления важны для изучения эволюции галактик.

Микроволновой телескоп Planck

• Planck — астрономический спутник Европейского космического агентства, созданный для изучения вариаций космического микроволнового фона реликтового излучения. Запущен 14 мая 2009 года. В период с сентября 2009 по ноябрь 2010 года «Планк» успешно закончил основную часть своей исследовательской миссии, перейдя к дополнительной, завершившейся 23 октября 2013 года.

Эффект Сюняева-Зельдовича

- Эффект Сюняева-Зельдовича изменение интенсивности микроволнового излучения реликтового фона на горячих электронах межзвёздного и межгалактического газа.
- Микрволновые данные позволяют изучать морфологию распределения тёмной материи в скоплениях, а также их взаимодействие.

Coma Cluster, Planck data

Каталоги скоплений галактик

Каталог/ Свойство	PSZ2	ACT	SPT	MCXC	eRosita	RedMaPPer	Abell
Диапазон	Микроволн.	Микроволн.	Микроволн.	Рентген.	Рентген.	Оптич.	Оптич.
По всему небу	Да	Нет	Нет	Да	Да (но доступна только половина)	Да	Да
Количество объектов	1653	4195	343	1743	~100 000	25325	4073
Количество скоплений	1425						
Методы	MMF, PwS	MMF	MMF				

Обзор существующих решений

		The policy of th		
MMF	PwS	Базовая модель	CNN	Unet
Фильтр в пространстве Фурье, для которого нужно определить условия шума и условия сигнала	Быстрый байесовский метод, позволяющий детектировать объекты скрытые в шуме	Обрабатывает у- карты параметра Комптона и находит максимумы в разных слоях	Свёрточная сеть для классификации (в статье DeepSZ используется архитектура ResNet)	Свёрточная сеть для сегмантции со skip- connection связями
Mulhanda vires	Molhaeide vice	6 19662) 12 366 5 52224	A 20072 97363 Od 864	HFI-карты Planck

Постановка задачи

Исследование и разработка нейросетевых методов сегментации и детекции источников Сюняева-Зельдовича в данных Planck, а также построение наиболее полного каталога скоплений галактик.

- Создание модели сегментации по данным Planck
- Исследование морфологии объектов на картах сегментации
- Создание каталога источников Сюняева-Зельдовича
- Анализ функции отбора каталога и его чистоты
- Сравнение с eROSITA

Формальная постановка задачи

Для данных карт Planck в виде матриц

$$P_{n \times m \times 6} \in R_{n \times m \times 6}$$

найти преобразование в карты сегментации в виде матриц вида

$$S_{n \times m \times 1} \in R_{n \times m \times 1}$$
,

и из этих карт в список детектированных скоплений, который будет наиболее полным по сравнению с выбранными каталогами скоплений галактик.

План доклада

- Обзор
 - Deep Learning for Sunyaev-Zel'dovich Detection in Planck», V. Bonjean, 2019
 - U-net
 - HEALPix
- Построение решения
- Результаты

«Deep Learning for Sunyaev-Zel'dovich Detection in Planck», V. Bonjean, 2019

Автор не опубликовал каталоги и модель, нужно повторить эксперимент

U-net

- Одной из лучших нейросетевых архитектур для сегментации изображений является U-net. Eë ключевой особенностью является наличие skip-connection слоёв, таким образом часть слоёв энкодера конкатенируется со слоями декодера, и при сжатии признаков нейросеть теряет меньше информации об изображении, на котором она обучалась.
- Olaf Ronneberger, Philipp Fischer, Thomas Brox, 2015

Метрики

$$QE = -\frac{1}{N} \sum_{i=1}^{N} y_i * log(p(y_i)) + (1 - y_i) * log(1 - p(y_i))$$

Метрики сегментации:

- Бинарная кросс-энтропия, IoU, Dice Метрики детекции:
- Recall, Precision

$$Recall = \frac{N_{true}}{N_{cat}}$$

$$Precision = 1 - \frac{N_{f alse}}{N_{det}}$$

HEALPix

- HEALPix алгоритм иерархического разбиения сферы.
- Позволяет спроектировать на сферу данные и выбрать для них подходящее разрешение.
- Данные Planck хранятся в качестве изображения сферы, проиндексированного согласно HEALPix.
- HEALPix не искажает площадь объекта, но искажает форму.

План доклада

- Обзор
- Построение решения
 - Обучение модели
 - Активное обучение
 - Детекция
- Результаты

Обучение модели

Активное обучение

Процесс обучения нейросетевых моделей

- Каждая модель обучалась по 50 эпох.
- Время, нужное для завершения одной эпохи: ~4.5 мин.
- Learning rate: 0.0001
- Google Colab Tesla K80

Морфология объектов на картах сегментации

Алгоритм детекции

План доклада

- Обзор
- Построение решения
- Результаты
 - Полученные модели
 - Выбор лучшей модели
 - Сравнение с базовой моделью
 - Сравнение с eROSITA

Полученные модели

No Dotus

активному обучению)

по активному обучению)

PSZ2 + ACT + MCXC (отсеченный

1 √2	Патчи	тренировочные данные	Dropout rate	Аугмент.
1	PSZ2	PSZ2	0.2	Нет
2	PSZ2	PSZZ	0.2	Да
3	PSZ2 + ACT	PSZ2 + ACT	0.2	Нет
4	PSZ2 + ACT (отсеченный по z/M500)	PSZ2 + ACT (отсеченный по	0.1	Да
5	PSZ2	z/M500)	0.1	Да
6	PSZ2	DC72 + ACT (oroquouu iš no	0.2	Да
7	PSZ2 + ACT (отсеченный по активному обучению)	PSZ2 + ACT (отсеченный по активному обучению)	0.2	Да
Q	PSZ2 + ACT (отсеченный по		0.2	Па

PSZ2 + ACT + MCXC (отсеченный

по активному обучению)

0.2

0.2

Да

Да

Выбор лучшей модели

Для анализа моделей считался recall (отношение найденных/общее количество) для различных ground-truth каталогов.

	PSZ2	MCXC	RM	ACT	Abell	fp	all
1	0.90	0.42	0.05	0.20	0.18	13775	16729
2	0.92	0.43	0.06	0.22	0.20	20036	23331
3	0.74	0.35	0.05	0.45	0.15	8966	12239
4	0.90	0.41	0.04	0.19	0.18	14437	17210
5	0.92	0.43	0.06	0.23	0.20	20387	23801
6	0.92	0.44	0.06	0.22	0.20	19654	22985
7	0.93	0.43	0.06	0.23	0.20	18577	21946
8	0.92	0.44	0.06	0.24	0.21	19849	23352

Сравнение с базовой моделью

Базовая модель для поиска скоплений в микроволновых данных: оценка пиков в картах у-параметра (величина эффекта Сюняева-Зельдовича).

	PSZ2	MCXC	RM	ACT	Abell	fp	all
Модель 8	0.92	0.44	0.06	0.24	0.21	21018	23352
Базовая модель	0.74	0.38	0.04	0.19	0.18	11891	13689

Параметры каталога

- area площадь пятна
- min_rad, max_rad, mean минимальное/максимальное/среднее расстояние от центра до внешних пикселей.
- min_pred, max_pred минимальное/максимальное значение маски.

	RA	DEC	area	min_rad	max_rad	mean_rad	min_pred	max_pred
0	287.002617	16.563571	2.0	0.485261	1.124703	0.809056	0.105400	0.111802
1	286.821791	17.169244	1.0	0.000000	1.414214	0.853553	0.108591	0.108591
2	287.105345	15.896636	1.0	0.000000	1.414214	0.853553	0.102907	0.102907
3	278.743982	38.290619	29.0	2.116807	4.716900	3.127882	0.101256	0.756920
4	285.057804	21.935581	31.0	1.811791	4.225424	3.193153	0.108951	0.700417

Чистота выборки

Чтобы определять чистоту полученного каталога, можно использовать один из параметров маски сегментации.

Отношение найденных объектов к ошибочным и их распределение по параметру max_pred.

Исследование функции отбора

Маска сегментации модели позволяет более явно выделить скопления по сравнению с картами у-параметра.

Сравнение с eROSITA

При сравнении различных каталогов с eROSITA были получены следующие результаты: Количество пересечений с:

- Модель 8 2214
- Базовая модель 1828
- PSZ2 603
- redMaPPer 4938

Результаты

- Обучены модели для сегментации данных Planck.
- Создан каталог на основе масок сегментации, исследованы его свойства. Recall на лучшем каталоге превосходит на 18% recall базового каталога по PSZ2 и на 5% по АСТ. Среди объектов eROSITA найдено на 386 объектов больше. Этот каталог важен для сравнения с другими каталогами кандидатов скоплений.
- Проведён анализ чистоты каталога.
- Проведено сравнение с eROSITA.
- Проведён анализ функции отбора каталога. Более 70% лучшего каталога имеют М500 > 4 $*10^{14}_{\odot}$. Исследовано распределение prediction index полученных моделей и чистоты выборки на различных каталогах из разных диапазонов.

Дальнейшие планы

- Статья о полученных каталогах.
- Перейти на детекцию скоплений в других диапазонах излучения (рентгеновский диапазон).