Interactions

David Puelz

Two categorical variables

A categorical and a quantitative variable

Two quantitative variables

What is an interaction?

Definition

An interaction is an additional term in a regression model that allows the slope of one variable to depend on the value of another.

Two categorical variables

A categorical and a quantitative variable

Two quantitative variables

• Tenure seems to matter for student evaluations, as does gender

- Tenure seems to matter for student evaluations, as does gender
- But does the effect of tenure seem to be different for men than for women?

- Tenure seems to matter for student evaluations, as does gender
- But does the effect of tenure seem to be different for men than for women?
- In other words, does the effect of one variable (i.e., its slope coefficient) depend on the value of another?

- Tenure seems to matter for student evaluations, as does gender
- But does the effect of tenure seem to be different for men than for women?
- In other words, does the effect of one variable (i.e., its slope coefficient) depend on the value of another?
- This is what interactions let us model

The algebra of interactions

The idea is to add a term that is the product of the two variables:

$$\boldsymbol{\hat{Y}} = \boldsymbol{\hat{\beta}}_{\text{O}} + \boldsymbol{\hat{\beta}}_{\text{I}}(\text{male}) + \boldsymbol{\hat{\beta}}_{\text{2}}(\text{tenured}) + \boldsymbol{\hat{\beta}}_{\text{3}}(\text{male})(\text{tenured})$$

The algebra of interactions

The idea is to add a term that is the product of the two variables:

$$\boldsymbol{\hat{Y}} = \boldsymbol{\hat{\beta}}_0 + \boldsymbol{\hat{\beta}}_1(male) + \boldsymbol{\hat{\beta}}_2(tenured) + \boldsymbol{\hat{\beta}}_3(male)(tenured)$$

For female professors, male = 0, so the β_1 and β_3 terms cancel out:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_2(tenured)$$

The algebra of interactions

The idea is to add a term that is the product of the two variables:

$$\boldsymbol{\hat{Y}} = \boldsymbol{\hat{\beta}}_{\text{O}} + \boldsymbol{\hat{\beta}}_{\text{I}}(\text{male}) + \boldsymbol{\hat{\beta}}_{\text{2}}(\text{tenured}) + \boldsymbol{\hat{\beta}}_{\text{3}}(\text{male})(\text{tenured})$$

For female professors, male = 0, so the β_1 and β_3 terms cancel out:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_2(tenured)$$

For male professors, male = 1, so we get both a different intercept and a different slope for tenured:

$$\hat{Y} = (\hat{\beta}_0 + \hat{\beta}_1) + (\hat{\beta}_2 + \hat{\beta}_3)(tenured)$$

```
model1 <- lm(eval ~ gender * tenure, data=profs)
summary(model1)

Call:
lm(formula = eval ~ gender * tenure, data = profs)

Residuals:
    Min    1Q    Median    3Q    Max
-1.89028 -0.36000    0.00972    0.40972    1.00972</pre>
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.86000 0.07585 50.890 < 2e-16 ***
gendermale 0.53615 0.10623 5.047 6.48e-07 ***
tenureyes 0.05517 0.08796 0.627 0.530813
gendermale:tenureyes -0.46105 0.12083 -3.816 0.000154 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.5363 on 459 degrees of freedom Multiple R-squared: 0.07173, Adjusted R-squared: 0.06567 F-statistic: 11.82 on 3 and 459 DF, p-value: 1.795e-07

• In a model with an interaction term X_1X_2 , you must also keep the main effects: the variables that are being interacted together

- In a model with an interaction term X_1X_2 , you must also keep the main effects: the variables that are being interacted together
- The main effect of X_1 represents the predicted increase in Y for a 1-unit change in X_1 , holding X_2 constant at zero

- In a model with an interaction term X_1X_2 , you must also keep the main effects: the variables that are being interacted together
- The main effect of X₁ represents the predicted increase in Y for a 1-unit change in X₁, holding X₂ constant at zero
- In other words, the main effect gendermale represents the predicted advantage for men in student evaluation scores, among professors without tenure

- In a model with an interaction term X_1X_2 , you must also keep the main effects: the variables that are being interacted together
- The main effect of X₁ represents the predicted increase in Y for a 1-unit change in X₁, holding X₂ constant at zero
- In other words, the main effect gendermale represents the predicted advantage for men in student evaluation scores, among professors without tenure
- You can also include other variables in the model that are not being interacted

Two categorical variables

A categorical and a quantitative variable

Two quantitative variables

Does beauty matter more for men, or for women?

- We found that for the same level of attractiveness, male professors tend to get higher evaluation scores than female professors
- But what if the effect of beauty depend on gender?

Does beauty matter more for men, or for women?

Another way to think about it—what if these regression lines didn't have to be parallel?

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.89085 0.03878 100.337 < 2e-16 ***
beauty 0.08762 0.04706 1.862 0.063294 .
gendermale 0.19510 0.05089 3.834 0.000144 ***
beauty:gendermale 0.11266 0.06398 1.761 0.078910 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.5361 on 459 degrees of freedom Multiple R-squared: 0.07256, Adjusted R-squared: 0.0665 F-statistic: 11.97 on 3 and 459 DF, p-value: 1.47e-07

Two takeaways:

• Beauty seems to matter more for men than for women!

Two takeaways:

- Beauty seems to matter more for men than for women!
- The gender gap is largest for good-looking professors

Two categorical variables

A categorical and a quantitative variable

Two quantitative variables

NBA data

Basketball-Reference.com provides detailed data on NBA teams and players. We'll look at team data for 4 seasons ending in 2016; each of these metrics is the average across the season:

- **PTS**: Total points
- **PCT3P**: Percentage of 3-point shots made
- N3PA: Number of 3-point shots attempted

There are 30 NBA teams \times 4 seasons = 120 cases in this file.

NBA data

In basketball, there are three ways to score:

- 1 point for free throws made after a foul by the other team
- 2 points for shots made inside the 3-point line
- 3 points for shots made outside the 3-point line

The more 3-pointers you attempt, the more you tend to score:


```
model1 <- lm(PTS ~ N3PA, data=nba)
summary(model1)
Call:
lm(formula = PTS ~ N3PA, data = nba)
Residuals:
    Min 1Q Median
                             3Q
                                   Max
-11.2454 -2.5114 0.0549 2.2252 8.6405
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 86.19204 1.77464 48.569 < 2e-16 ***
N3PA
          Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.496 on 118 degrees of freedom
Multiple R-squared: 0.3614, Adjusted R-squared: 0.356
F-statistic: 66.77 on 1 and 118 DF, p-value: 3.889e-13
```

• $R^2 = 36\%$, so we can explain 36% of the variance in total points based only on knowing the number of 3-point attempts.

- $R^2 = 36\%$, so we can explain 36% of the variance in total points based only on knowing the number of 3-point attempts.
- This means that **most** of the variance (64%) in total points is **not** explained by the number of 3-point attempts.

- $R^2 = 36\%$, so we can explain 36% of the variance in total points based only on knowing the number of 3-point attempts.
- This means that **most** of the variance (64%) in total points is **not** explained by the number of 3-point attempts.
- Let's add another variable to our model why might 3-point percentage be useful as another predictor?

```
model2 <- lm(PTS ~ N3PA + PCT3P, data=nba)
summary(model2)
Call:
lm(formula = PTS ~ N3PA + PCT3P, data = nba)
Residuals:
    Min
           10 Median 30
                                 Max
-8.3487 -2.1392 -0.0791 1.8691 9.1904
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.00493 5.61396 11.045 < 2e-16 ***
N3PA 0.56467 0.07587 7.442 1.82e-11 ***
PCT3P 0.73415 0.16292 4.506 1.57e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.241 on 117 degrees of freedom
Multiple R-squared: 0.4558, Adjusted R-squared: 0.4465
F-statistic: 49 on 2 and 117 DF, p-value: 3.478e-16
```

Can we do even better?

It would make sense that the **impact** of the number of 3-pointers taken on total points would **depend on** how well the team shoots the 3!

Can we do even better?

It would make sense that the **impact** of the number of 3-pointers taken on total points would **depend on** how well the team shoots the 3!

This sounds like an interaction — let's make a model with an interaction between the two predictors!

```
model3 <- lm(PTS ~ N3PA * PCT3P, data=nba)
summary(model3)
Call:
lm(formula = PTS ~ N3PA * PCT3P, data = nba)
Residuals:
   Min
          10 Median 30 Max
-7.2629 -2.2757 0.1148 1.9698 9.3756
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
-2.11904 1.32903 -1.594 0.113561
N3PA
PCT3P -0.98410 0.86465 -1.138 0.257400
N3PA:PCT3P 0.07561 0.03739 2.023 0.045423 *
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.199 on 116 degrees of freedom
Multiple R-squared: 0.4743, Adjusted R-squared: 0.4608
```

F-statistic: 34.89 on 3 and 116 DF, p-value: 3.798e-16

Model 3 corresponds to the regression equation

$$\widehat{PTS} = 122.85 - 2.12 \cdot N_3PA - 0.98 \cdot PCT_3P + 0.08 \cdot N_3PA \cdot PCT_3P.$$

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N3PA} - \text{0.98} \cdot \text{PCT3P} + \text{0.08} \cdot \text{N3PA} \cdot \text{PCT3P}.$$

We interpret the coefficients as follows:

• **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N3PA} - \text{0.98} \cdot \text{PCT3P} + \text{0.08} \cdot \text{N3PA} \cdot \text{PCT3P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N}_3\text{PA} - \text{o.98} \cdot \text{PCT}_3\text{P} + \text{o.08} \cdot \text{N}_3\text{PA} \cdot \text{PCT}_3\text{P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.
- PCT3P (-0.98) is the predicted increase in total points for each additional percentage point of 3-point shooting accuracy, when N3PA = 0.

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N}_3\text{PA} - \text{o.98} \cdot \text{PCT}_3\text{P} + \text{o.08} \cdot \text{N}_3\text{PA} \cdot \text{PCT}_3\text{P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.
- PCT3P (-0.98) is the predicted increase in total points for each additional percentage point of 3-point shooting accuracy, when N3PA = 0.
- N3PA · PCT3P (0.08) can be interpreted in two ways:

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N}_3\text{PA} - \text{o.98} \cdot \text{PCT}_3\text{P} + \text{o.08} \cdot \text{N}_3\text{PA} \cdot \text{PCT}_3\text{P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.
- PCT3P (-0.98) is the predicted increase in total points for each additional percentage point of 3-point shooting accuracy, when N3PA = 0.
- N3PA · PCT3P (0.08) can be interpreted in two ways:

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N3PA} - \text{0.98} \cdot \text{PCT3P} + \text{0.08} \cdot \text{N3PA} \cdot \text{PCT3P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.
- PCT3P (-0.98) is the predicted increase in total points for each additional percentage point of 3-point shooting accuracy, when N3PA = 0.
- N3PA · PCT3P (0.08) can be interpreted in two ways:
 - the increase in the *slope coefficient* for N3PA for each 1-unit increase of PCT3P.

$$\widehat{\text{PTS}} = 122.85 - 2.12 \cdot \text{N3PA} - \text{0.98} \cdot \text{PCT3P} + \text{0.08} \cdot \text{N3PA} \cdot \text{PCT3P}.$$

- **Intercept** (122.85) is our prediction of total points when N3PA = PCT3P = 0. (Meaningless in this context!)
- N3PA (-2.12) is the predicted increase in total points for each additional 3-pointer taken, when PCT3P = 0.
- PCT3P (-0.98) is the predicted increase in total points for each additional percentage point of 3-point shooting accuracy, when N3PA = 0.
- N3PA · PCT3P (0.08) can be interpreted in two ways:
 - the increase in the slope coefficient for N3PA for each 1-unit increase of PCT3P.
 - the increase in the *slope coefficient* for PCT3P for each 1-unit increase of N3PA.

Num 3-point shots attempted

$$\widehat{PTS} = 122.85 - 2.12 \cdot N3PA - 0.98 \cdot PCT3P + 0.08 \cdot N3PA \cdot PCT3P.$$

• How many points per game do you predict for a team that shoots 3-pointers at the NBA average rate (35.4) and that takes 30 3-pointers per game?

$$\widehat{PTS} = 122.85 - 2.12 \cdot N3PA - 0.98 \cdot PCT3P + 0.08 \cdot N3PA \cdot PCT3P.$$

- How many points per game do you predict for a team that shoots
 3-pointers at the NBA average rate (35.4) and that takes 30
 3-pointers per game?
- How bad would a team have to shoot the 3 before taking 3-point shots start to have a negative impact on total points?

Num 3-point shots attempted

When should you use interactions in a model?

- Choose interactions by thinking about what you are trying to model: if you suspect that the impact of one variable depends on the value of another, try an interaction term between them!
- But remember: Interactions make a model more complex to analyze and explain, so unless you have a good substantive reason it's usually only worth doing so when you get a substantial bump in R²/decrease in residual standard error by including the interaction