# Introduction to Data Science Lecture 2 Data Preparation

# Data Science is about checking assumptions

| Week 1 Week 2             |               | Week 3 | Week 4                                       | Week 5                  | Week 6        | 1     |
|---------------------------|---------------|--------|----------------------------------------------|-------------------------|---------------|-------|
| Saturday, August 30       |               |        |                                              |                         |               |       |
| Burnley FC<br>Man United  | 0             | Final  | Man City Stoke City Newcastle Crystal Palace |                         | 0<br><b>1</b> | Final |
| QPR<br>Sunderland         | <b>1</b><br>0 | Final  |                                              |                         | 3<br>3        | Final |
| Swansea City<br>West Brom | 3<br>0        | Final  |                                              | West Ham<br>Southampton |               | Final |
| Everton<br>Chelsea        | 3<br>6        | Final  |                                              |                         |               |       |
| Sunday, August 31         |               |        |                                              |                         |               |       |
| Aston Villa<br>Hull City  | 2<br>1        | Final  | Tottenhar<br>Liverpoo                        |                         | 0<br>3        | Final |
| Leicester City<br>Arsenal | 1             | Final  |                                              |                         |               |       |

| English Prem<br>Scores & Schedule | ier League             |                              |                    |  |  |  |  |  |
|-----------------------------------|------------------------|------------------------------|--------------------|--|--|--|--|--|
| < 'eek 1 Week 2                   | Week 3 We              | ek 4 Week 5 W                | eek 6 Weel >       |  |  |  |  |  |
| Saturday, September 13            | Saturday, September 13 |                              |                    |  |  |  |  |  |
| Arsenal<br>Man City               | 4:45 AM                | Sunderland<br>Tottenham      | 7:00 AM            |  |  |  |  |  |
| Stoke City<br>Leicester City      | 7:00 AM                | Crystal Palace<br>Burnley FC | 7:00 AM            |  |  |  |  |  |
| Chelsea<br>Swansea City           | 7:00 AM                | West Brom<br>Everton         | 7:00 AM            |  |  |  |  |  |
| Southampton<br>Newcastle          | 7:00 AM                | Liverpool<br>Aston Villa     | 9:30 AM            |  |  |  |  |  |
| Sunday, September 14              |                        |                              |                    |  |  |  |  |  |
| Man United<br>QPR                 | 8:00 AM                |                              |                    |  |  |  |  |  |
| Monday, September 15              |                        |                              |                    |  |  |  |  |  |
| Hull City<br>West Ham             | 12:00 PM               |                              |                    |  |  |  |  |  |
|                                   |                        | All times a                  | re in Pacific Time |  |  |  |  |  |

# The Big Picture



#### Data Preparation overview

#### ETL

- We need to extract data from the source(s)
- We need to load data into the sink
- We need to transform data at the source, sink, or in a staging area

- Sources: file, database, event log, web site, HDFS...
- Sinks: Python, R, SQLite, RDBMS, NoSQL store, files, HDFS...

#### Data Preparation overview

- Process model
  - The construction of a new data preparation process is done in many phases
    - Data characterization
    - Data cleaning
    - Data integration
  - We must efficiently move data around in space and time
    - Data transfer
    - Data serialization and deserialization (for files or network)

#### Data Preparation overview

#### Workflow

- The transformation pipeline or workflow often consists of many steps
  - For example: Unix pipes and filters
  - \$ cat data\_science.txt | wc | mail -s "word count" myname@some.com
- If the workflow is to be used more than once, it can be scheduled
  - Scheduling can be time-based or event-based
  - Use publish-subscribe to register interest (e.g. Twitter feeds)
- Recording the execution of a workflow is known as capturing lineage or provenance

#### The Businessperson

- Data Sources
  - Web pages
  - Excel
- ETL
  - Copy and paste
- Data Warehouse
  - Excel
- Business Intelligence and Analytics
  - Excel functions
  - Excel charts
  - Visual Basic?!

#### The Programmer

- Data Sources
  - Web scraping, web services API
  - Excel spreadsheet exported as CSV
  - Database queries
- ETL
  - wget, curl, Beautiful Soup, lxml
- Data Warehouse
  - Flat files
- Business Intelligence and Analytics
  - Numpy, Matplotlib, R, Matlab

#### The Enterprise

- Data Sources
  - Application databases
  - Intranet files
  - Application server log files
- ETL
  - Informatica, IBM DataStage, Ab Initio, Talend
- Data Warehouse
  - Teradata, Oracle, IBM DB2, Microsoft SQL Server
- Business Intelligence and Analytics
  - Business Objects, Cognos, Microstrategy
  - SAS, SPSS, R

# The Web Company

- Data Sources
  - Application databases
  - Logs from the services tier
  - Web crawl data
- ETL
  - Flume, Sqoop, Pig, Crunch, Oozie
- Data Warehouse
  - Hadoop/Hive, Spark/Shark
- Business Intelligence and Analytics
  - Custom dashboards: Argus, BirdBrain
  - -R

# Data Sources at Web Companies

- Examples from Facebook
  - Application databases
  - Web server logs
  - Event logs
  - API server logs
  - Ad server logs
  - Search server logs
  - Advertisement landing page content
  - Wikipedia
  - Images and video

#### **Tabular Data**

- What is a table?
  - A table is a collection of rows and columns
  - Each row has an index
  - Each column has a name
  - A cell is specified by an (index, name) pair
  - A cell may or may not have a value

#### **Tabular Data**

#### • Fortune 500

|    | Α    | В                               | С       | D      | E    | F              | G                      | Н        | 1                                       |
|----|------|---------------------------------|---------|--------|------|----------------|------------------------|----------|-----------------------------------------|
| 1  | rank | company                         | cik     | ticker | sic  | state_location | state_of_incorporation | revenues | profits                                 |
| 2  | 1    | Wal-Mart Stores                 | 104169  | WMT    | 5331 | AR             | DE                     | 421849   | 16389                                   |
| 3  | 2    | Exxon Mobil                     | 34088   | XOM    | 2911 | TX             | NJ                     | 354674   | 30460                                   |
| 4  | 3    | Chevron                         | 93410   | CVX    | 2911 | CA             | DE                     | 196337   | 19024                                   |
| 5  | 4    | ConocoPhillips                  | 1163165 | COP    | 2911 | TX             | DE                     | 184966   | 11358                                   |
| 6  | 5    | Fannie Mae                      | 310522  | FNM    | 6111 | DC             | DC                     | 153825   | -14014                                  |
| 7  | 6    | General Electric                | 40545   | GE     | 3600 | CT             | NY                     | 151628   | 11644                                   |
| 8  | 7    | Berkshire Hathaway              | 1067983 | BRKA   | 6331 | NE             | DE                     | 136185   | 12967                                   |
| 9  | 8    | General Motors                  | 1467858 | GM     | 3711 | MI             | MI                     | 135592   | 6172                                    |
| 10 | 9    | Bank of America Corp.           | 70858   | BAC    | 6021 | NC             | DE                     | 134194   | -2238                                   |
| 11 | 10   | Ford Motor                      | 37996   | F      | 3711 | MI             | DE                     | 128954   | 6561                                    |
| 12 | 11   | Hewlett-Packard                 | 47217   | HPQ    | 3570 | CA             | DE                     | 126033   | 8761                                    |
| 13 | 12   | AT&T                            | 732717  | T      | 4813 | TX             | DE                     | 124629   | 19864                                   |
| 14 | 13   | J.P. Morgan Chase & Co.         | 19617   | JPM    | 6021 | NY             | DE                     | 115475   | 17370                                   |
| 15 | 14   | Citigroup                       | 831001  | С      | 6021 | NY             | DE                     | 111055   | 10602                                   |
| 16 | 15   | McKesson                        | 927653  | MCK    | 5122 | CA             | DE                     | 108702   | 1263                                    |
| 17 | 16   | Verizon Communications          | 732712  | VZ     | 4813 | NY             | DE                     | 106565   | 2549                                    |
| 18 | 17   | American International Group    | 5272    | AIG    | 6331 | NY             | DE                     | 104417   | 7786                                    |
| 19 | 18   | International Business Machines | 51143   | IBM    | 3570 | NY             | NY                     | 99870    | 14833                                   |
| 20 | 19   | Cardinal Health                 | 721371  | CAH    | 5122 | ОН             | ОН                     | 98601.9  | 100000000000000000000000000000000000000 |
| 21 | 20   | Freddie Mac                     | 37785   | FMC    | 2800 | PA             | DE                     | 98368    | -14025                                  |

#### **Tabular Data**

Fortune 500



# Tabular Data (csv)

Fortune 500

```
0 0
                                    Fortune 500 with ticker and EDGAR - Plus Ticker and EDGAR.txt
rank,company,cik,ticker,sic,state_location,state_of_incorporation,revenues,profits
1, Wal-Mart Stores, 104169, WMT, 5331, AR, DE, 421849, 16389
2,Exxon Mobil,34088,X0M,2911,TX,NJ,354674,30460
3, Chevron, 93410, CVX, 2911, CA, DE, 196337, 19024
4,ConocoPhillips,1163165,COP,2911,TX,DE,184966,11358
5, Fannie Mae, 310522, FNM, 6111, DC, DC, 153825, -14014
6,General Electric,40545,GE,3600,CT,NY,151628,11644
7,Berkshire Hathaway,1067983,BRKA,6331,NE,DE,136185,12967
8,General Motors,1467858,GM,3711,MI,MI,135592,6172
9,Bank of America Corp.,70858,BAC,6021,NC,DE,134194,-2238
10, Ford Motor, 37996, F, 3711, MI, DE, 128954, 6561
11, Hewlett-Packard, 47217, HPQ, 3570, CA, DE, 126033, 8761
12,AT&T,732717,T,4813,TX,DE,124629,19864
13,J.P. Morgan Chase & Co.,19617,JPM,6021,NY,DE,115475,17370
14, Citigroup, 831001, C, 6021, NY, DE, 111055, 10602
15, McKesson, 927653, MCK, 5122, CA, DE, 108702, 1263
16, Verizon Communications, 732712, VZ, 4813, NY, DE, 106565, 2549
17, American International Group, 5272, AIG, 6331, NY, DE, 104417, 7786
18.International Business Machines,51143,IBM,3570,NY,NY,99870,14833
19,Cardinal Health,721371,CAH,5122,OH,OH,98601.9,642.2
20,Freddie Mac,37785,FMC,2800,PA,DE,98368,-14025
21,CVS Caremark,64803,CVS,5912,RI,DE,96413,3427
22,UnitedHealth Group,731766,UNH,6324,MN,MN,94155,4634
23, Wells Fargo, 72971, WFC, 6021, CA, DE, 93249, 12362
24, Valero Energy, 1035002, VLO, 2911, TX, DE, 86034, 324
25, Kroger, 56873, KR, 5411, OH, OH, 82189.4, 1116.3
26, Procter & Gamble, 80424, PG, 2840, OH, OH, 79689, 12736
27, AmerisourceBergen, 1140859, ABC, 5122, PA, DE, 77954, 636.7
28, Costco Wholesale, 909832, COST, 5331, WA, WA, 77946, 1303
29, Marathon Oil, 101778, MRO, 2911, TX, DE, 68413, 2568
30.Home Depot,354950,HD,5211,GA,DE,67997,3338
```

#### Protein Data Bank

```
HEADER APOPTOSIS
                                                05-OCT-10 3IZA
TITLE STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX
COMPND MOL ID: 1;
COMPND 2 MOLECULE: APOPTOTIC PROTEASE-ACTIVATING FACTOR 1;
COMPND
        3 CHAIN: A, B, C, D, E, F, G;
COMPND
        4 SYNONYM: APAF-1;
COMPND
        5 ENGINEERED: YES
SOURCE MOL ID: 1;
SOURCE 2 ORGANISM SCIENTIFIC: HOMO SAPIENS;
        3 ORGANISM COMMON: HUMAN;
SOURCE
        4 ORGANISM TAXID: 9606;
SOURCE
SOURCE
        5 GENE: APAF1, KIAA0413;
SOURCE 6 EXPRESSION SYSTEM: SPODOPTERA FRUGIPERDA;
SOURCE 7 EXPRESSION SYSTEM TAXID: 7108;
SOURCE 8 EXPRESSION SYSTEM STRAIN: SF21;
      9 EXPRESSION SYSTEM VECTOR TYPE: INSECT VIRUS;
SOURCE
       10 EXPRESSION SYSTEM PLASMID: PFASTBAC1
SOURCE
         APOPTOSOME, APAF-1, PROCASPASE-9 CARD, APOPTOSIS
KEYWDS
EXPDTA ELECTRON MICROSCOPY
AUTHOR S.YUAN, X.YU, M.TOPF, S.J.LUDTKE, X.WANG, C.W.AKEY
REVDAT 1 03-NOV-10 3IZA 0
          0.3 - NOV - 10 3TZA
SPRSDE
                             3TYT
       AUTH S.YUAN, X.YU, M.TOPF, S.J.LUDTKE, X.WANG, C.W.AKEY
JRNL
        TITL STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX
JRNL
      REF STRUCTURE
                                               V. 18 571 2010
JRNL.
```

# Internet of Things: Example measurements



#### Tabular Data from Sensors

#### Challenges

- May be many missing fields (a particular sensor may not produce all types of output).
- Device may go offline for a while.
- Device may be damaged (permanently or intermittently).
- Timestamps usually critical but may not be accurate.
- Other meta-data (location, device ID) may have errors.

#### Log Files – Example Apache Web Log

Processes, usually daemons, create logs e.g., httpd, mysqld, syslogd

- 66.249.65.107 - [08/Oct/2007:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
- 111.111.111.111 - [08/Oct/2007:11:17:55 -0400] "GET / HTTP/1.1" 200 10801 "http://www.google.com/search?q=log+analyzer&ie=utf-8&oe=utf-8 &aq=t&rls=org.mozilla:en-US:official&client=firefox-a" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
- 111.111.111.111 - [08/Oct/2007:11:17:55 -0400] "GET /style.css HTTP/1.1" 200 3225 ""http://www.loganalyzer.net/" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

#### Syslog – A Standard for System Messages

- Developed by Eric Allman (at Berkeley) as part of the Sendmail project
- Standardized by the IETF in RFC 3164 and RFC 5424
- Listens on port 514 using UDP
- Puts data in /var/log/messages by default



# Syslog

#### dhcp-47-129:DataScienceF14> syslog -w 10

- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] <Warning>: -[EDAMAccounting read:]: unexpected field ID 23 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] <Warning>: -[EDAMUser read:]: unexpected field ID 17 with type 12. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAuthenticationResult read:]: unexpected field ID 6 with type 11. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAuthenticationResult read:]: unexpected field ID 7 with type 11. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] <Warning>: -[EDAMAccounting read:]: unexpected field ID 19 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] <Warning>: -[EDAMAccounting read:]: unexpected field ID 23 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] <Warning>: -[EDAMUser read:]: unexpected field ID 17 with type 12. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMSyncState read:]: unexpected field ID 5 with type 10. Skipping.
- Feb 3 15:18:49 dhcp-47-129 com.apple.mtmd[47] <Notice>: low priority thinning needed for volume Macintosh HD (/) with 18.9 <= 20.0 pct free space

#### "Splunking"

- Grab data from many machines
- Index it
- Check for unusual events:
  - Disk problems
  - Network congestion
  - Security attacks
- Monitor Resources
  - Network
  - Memory usage
  - Disk use, latency
  - Threads
- Dashboard for cloud administration.



### Some Questions

1) How Many Characters are there in a Tweet?

2) How Many Bytes are there in a Tweet (msg)?

#### **Tweet JSON Format**



#### Tweet JSON Format

So how do we process the JSON from Twitter?

Stay tuned, but first some concepts from the XML world...

### XML, DOM and SAX

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- bookstore.xml -->
<bookstore>
 <book ISBN="0123456001">
   <title>Java For Dummies</title>
   <author>Tan Ah Teck</author>
   <category>Programming</category>
   <year>2009
   <edition>7</edition>
   <price>19.99</price>
 </book>
```

### XML, DOM and SAX

XML is a text format that encodes DOM (Document-Object Models) which is a data structure e.g. for Web pages.

The DOM is tree-structured:



### XML, DOM and SAX

- The DOM is an easy object to work with: all the data in the object is accessible by links.
- The problem is that I might not care about most of the data, and I might not be able to fit the DOM for a large object in RAM.



#### SAX

SAX (Simple API for XML) is an alternative "lightweight" way to process XML.

A SAX parser generates a stream of events as it parses the XML file. The programmer registers handlers for each one.

It allows a programmer to handle only parts of the data structure.

#### SAX

```
<?xml version="1.0" encoding="UTF-8"?>
                                       Document Header
<!-- bookstore.xml --> Comment
<br/>
Start-element "bookstore"
 <title>Java For Dummies</title>
                                   Start-element "title"
                                   End-element "title"
   <author>Tan Ah Teck</author>
   <category>Programming</category>
   <year>2009</year>
   <edition>7</edition>
   <price>19.99</price>
 </book> End-element "book"
```

#### What about JSON?

Most JSON parsers construct the "DOM" directly.

But there are a few SAX-style parsers:

- Jackson
- JSON-simple

#### What about HTML?

- Common Crawl, about 5 billion web pages, between 0.2-0.5% of Google's web crawl.
- 60 TB, hosted on Amazon S3, also available for download.
- Includes link data, page rank.
- In ARC (Internet Archive) File format.
- So there's plenty of data, and there are many crawlers for targeted exploration...
  - HTTrack, ...

# HTML Tag Soup

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"</p>
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<a href="http://www.w3.org/1999/xhtml">
<head><!-- types/widgets/pages/common/page.tmpl home/index v3.html generated by index v3 on Wed 29</p>
Feb 2012 11:04:41 PM PST -->
<title>San Francisco Bay Area &mdash; News, Sports, Business, Entertainment, Classifieds: SFGate</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="description" content="Find local news & Description of the Content of
sports scores, real estate, jobs, cars, food & p; wine, travel, entertainment, events and more on SFGate.com.
Connect to the Bay Area community." />
<meta name="keywords" content="San Francisco, San Francisco Bay Area, news, local events, breaking news,
world news, San Francisco Chronicle, SFGate" />
<meta property="fb:page id" content="105702905593" />
<meta property="fb:admins" content="653226748,658759748" />
<!--/widgets/sitewide/css/all/inc.html widgets/pages/common/post write mtime/css inc.tmpl -->
<!-- generated by sitewidecss on Thu 16 Feb 2012 10:41:53 AM PST -->
k rel="stylesheet" type="text/css" title="SFGate" media="all"
href="http://imgs.sfgate.com/css1329417713/sitewide/css/sitewide.css"/>
<!-- sitewide/css/all/inc.html end css inc.tmpl -->
```

# **HTML Tools - Parsing**

- "Beautiful Soup"
   <u>http://www.crummy.com/software/BeautifulSoup/</u>
   a Python API for handling real HTML. DOM or SAX interfaces.
- "TagSoup"
   http://ccil.org/~cowan/XML/tagsoup/
   provides a Sax interface, i.e. a streaming parse, to Java applications. Can transform to a format you want using XSLT.
- Taggle, part of the Arabica toolset
   <a href="http://www.jezuk.co.uk/cgi-bin/view/arabica/code">http://www.jezuk.co.uk/cgi-bin/view/arabica/code</a>
   is a version of TagSoup written in C++. You probably want to use this if you have a lot of data.

#### Web Services

Most large web sites today actively discourage screenscraping to get their content, and provide Web Service APIs instead.

This is the "right" way to get data from online sources.

#### Web Services

#### **W3C** definition:

a "Web service" as "a software system designed to support interoperable machine-to-machine interaction over a network".

#### Two kinds:

- XML-based RPC-style messages: WSDL and SOAP
- REST-style stateless interactions, URLs encode state

Can run over different transports, but usually HTTP

# Examples

- Twitter: REST API and streaming API with JSON content. Provides sampling, searching and filtering capabilities.
- Amazon: has a "product advertising API" in XML with a WSDL spec. Includes product search, reviews etc.
- Livejournal: RSS/Atom + custom XML/RPC. Search by keyword, topic, follow friend links.
- Netflix: Javascript, Atom and REST interfaces.
- Ebay: Many APIs for searching, buying and posting. WSDL descriptions, client code in Java and .NET
- Flickr: Comprehensive API set, free for non-commercial use. REST, XML-RPC, SOAP, with client code in many languages.
- vBulletin: REST interface, most actions supported

## Web Services

XML-RPC, requires a request-response cycle. Often longer

"conversations."



Host I Host II

#### WSDL and SOAP

- Conceptually a Remote-Procedure-Call system, like CORBA, Java RMI etc.
- But RPC often has to pass through multiple layers of firewalls, causing many problems as security increased in the 1990s.
- Web services typically use HTTP as a transport, which runs almost anywhere, provides security and simple GET-POST methods. So HTTP-based RPC was a natural choice.
- SOAP uses XML messages, is human-readable, easy to process from any programming language, and relatively robust to version slippage.

### **SOAP** is

#### SOAP covers the following four main areas:

- A message format for one-way communication describing how a message can be packed into an XML document.
- A **description** of how a SOAP message should be transported using HTTP (for Web-based interaction) or SMTP (for e-mail-based interaction).
- A set of rules that must be followed when processing a SOAP message and a simple classification of the entities involved in processing a SOAP message.
- A set of conventions on how to turn an RPC call into a SOAP message and back.

# Soap Message

Typically an XML element containing header and body elements

#### SOAP RPC

SOAP RPC messages typically encode arguments that are presented to the calling program as parameters and return values:



# Soap RPC

```
POST /travelservice
SOAPAction: "http://www.acme-travel.com/flightinfo"
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
<SOAP:Envelope xmlns:SOAP=</pre>
    "http://schemas.xmlsoap.org/soap/envelope/">
  (SOAP: Body)
    <m:GetFlightInfo
     xmlns:m="http://www.acme-travel.com/flightinfo"
     SOAP: encodingStyle=
        "http://schemas.xmlsoap.org/soap/encoding/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema"
     xmlns:xsi=
        "http://www.w3.org/2001/XMLSchema-instance">
      <airlineName xsi:type="xsd:string">UL
      </airlineName>
        <flightNumber xsi:type="xsd:int">506
        </flightNumber>
    </m:GetFlightInfo>
  </SOAP:Body>
</SOAP:Envelope>
```

# Soap Response

```
HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
<SOAP:Envelope xmlns:SOAP=</pre>
   "http://schemas.xmlsoap.org/soap/envelope/">
  (SOAP: Body>
   <m:GetFlightInfoResponse
       xmlns:m="http://www.acme-travel.com/flightinfo"
       SOAP: encodingStyle=
          "http://schemas.xmlsoap.org/soap/encoding/"
       xmlns:xsd="http://www.w3.org/2001/XMLSchema"
       xmlns:xsi=
          "http://www.w3.org/2001/XMLSchema-instance">
     <flightInfo>
       <gate xsi:type="xsd:int">10</gate>
       <status xsi:type="xsd:string">ON TIME</status>
     </flightInfo>
   </m:GetFlightInfoResponse>
 </soap:Body>
</SOAP:Envelope>
```

#### **REST**

REpresentation State Transfer

Stateless Client/Server Protocol: Principles

1. Each message in the protocol contains all the information needed by the receiver to understand and/or process it. This constraint attempts to "keep things simple" and avoid needless complexity

- 2. Set of Uniquely Addressable Resources
  - "Everything is a Resource" in a RESTful system
  - Requires universal syntax for resource identification (e.g. URI)

#### **REST**

- 3. Set of Well-Defined Operations that can be applied to all resources
  - In context of HTTP, the primary methods are
  - POST, GET, PUT, DELETE
  - these are similar (but not exactly) to the database notion of
  - CRUD (Create, Read, Update, Delete)

- 4. The use of Hypermedia both for Application Information and State Transitions
  - Resources are typically stored in a structured data format that supports hypermedia links, such as XHTML or XML

# REST example

This documentation is a representation used for the User resource It might live at <a href="http://www.example.org/users/jane/">http://www.example.org/users/jane/</a>

- If a user needs information about Jane, they GET this resource
- If they need to modify it, they GET it, modify it, and PUT it back
- The href to the Location resource allows savvy clients to gain access to its information with another simple GET request

Implication: Clients cannot be "thin"; need to understand resource formats

#### REST vs. RPC

In RPC systems, the design emphasis is on verbs

- What operations can I invoke on a system?
- getUser(), addUser(), removeUser(), updateUser(), getLocation(), updateLocation(), listUsers(), listLocations(), etc.

In REST systems, the design emphasis is on **nouns** 

- User, Location
- In REST, you would define XML representations for these resources and then apply the standard methods to them

## **Files**

- What is a file?
  - A file is a named sequence of bytes
    - Typically stored as a collection of pages (or blocks)
  - A filesystem is a collection of files organized within an hierarchical namespace
    - Responsible for laying out those bytes on physical media
    - Stores file metadata
    - Provides an API for interaction with files
  - Standard operations
    - open()/close()
    - seek()
    - read()/write()

# **Files**

- Hierarchical namespace
  - / is known as the root of a filesystem
  - On Linux, the Filesystem Hierarchy Standard specifies which files live where
    - System executables in /usr/bin
    - Log files in /var/log
  - Permissions can be applied to all files beneath a directory
  - Files are not always arranged in a hierarchical namespace
    - Content-addressable storage (CAS)
    - Often used for large multimedia collections

#### File Formats

- Considerations for a file format
  - Data model: tabular, hierarchical, array
  - Physical layout
  - Field units and validation
  - Metadata: header, side file, specification, other?
  - Plain text or binary
  - Encoding: ASCII, UTF-8, other?
  - Delimiters and escaping
  - Compression, encryption, checksums?
  - Schema evolution

#### File Performance

#### Read/Write time (180 MB tabular file)

|                    | Read Time<br>(Text) | Write Time<br>(Text) | Read Time<br>(Binary) | Write Time<br>(Binary) |
|--------------------|---------------------|----------------------|-----------------------|------------------------|
| Pandas<br>(Python) | 88 secs             | 107 secs             | **                    | **                     |
| Scala/Java         | 12 secs             | 30 secs              | 0.5-2* secs           | 0.5-2* secs            |

<sup>\*\*</sup> Pandas doesn't have a default binary file I/O library – you can use Python, but performance depends on what you pick.

<sup>\* 2</sup> seconds is the time for sustainable read/write. May be faster due to caching

# File Performance - Compression

#### Read/Write time (180 MB tabular file, Scala/Java)

| Binary File                    | Read Time | Write Time | File Size |
|--------------------------------|-----------|------------|-----------|
| Gzip level 6<br>(Java default) | 1-2 secs  | 11 secs    | 35 MB     |
| Gzip level 3                   | 1-2 secs  | 4 secs     | 37 MB     |
| Gzip level 1                   | 1-2 secs  | 2 secs     | 38 MB     |
| LZ4 fast                       | 1-2 secs  | 1-2 secs   | 63 MB     |

| Text File                 | Read Time | Write Time | File Size |
|---------------------------|-----------|------------|-----------|
| Gzip level 6<br>(default) | 1-2 secs  | 22 secs    | 32 MB     |
| Gzip level 3              | 1-2 secs  | 14 secs    | 35 MB     |
| Gzip level 1              | 1-2 secs  | 12 secs    | 39 MB     |
| LZ4 fast                  | 1-2 secs  | 11 secs    | 63 MB     |