CLAIMS

What is claimed is:

- 1 3. The method of claim 1, wherein the measured physical property is any one of 2 the following: voltage, current, power dissipation, time to discharge, and time to charge.
- 1 4. The method of claim 1, further comprising:
- 2 incrementing a counter after each iteration, wherein the counter stores the number of 3 completed iterations.
- 1 5. The method of claim 1, further comprising:
- 2 repeating the steps of measuring and comparing for a second predetermined number
- 3 of iterations, if after each iteration the measurement exceeds the first range; and
- 4 halting the sense, if after the second predetermined number of iterations the
- 5 measurement still exceeds the first range.

1 6. A method for testing for needed recalibration of a sense amplifier during a 2 sense of a resistance value of a selected memory cell, the method comprising: 3 defining an average time value indicative of averaged time values for each of a selected set of memory cells, wherein the resistance of each cell of the selected set of cells is 4 5 connected in series with a selected pre-charged capacitance, and with present operating 6 parameters of the memory cell array applying; 7 determining a time value indicative of the discharge time of the selected capacitance 8 upon connection to the resistance of the selected memory cell; 9 calculating a difference value by comparing the time value to the average time value; halting the sense of the selected memory cell if the difference value exceeds a first 10 11 range; 12 redetermining the time value and recalculating the difference value if the difference 13 value is within the first range but exceeds a second range; 14 recalibrating the sense amplifier if the recalculated difference value still exceeds the 15 second range; and 16 proceeding with the sense operation if the difference value or the recalculated 17 difference value is within the second range. 1 7. The method of claim 6, wherein the step of redetermining the time value and 2 recalculating the difference value is performed one time before the step of calibrating is 3 performed. 1 8. The method of claim 6, wherein the step of redetermining the time value and 2 recalculating the difference value is performed at least one time before the step of calibrating 3 is performed.

1	9. A method for increasing the quality of sensing during a read on a memory cell,			
2	the method comprising:			
3	sensing a parameter of the memory cell;			
4	comparing the parameter to a threshold to determine whether the parameter is valid;			
5	enabling a sensing procedure upon determining the parameter is valid; and			
6	enabling a response procedure upon determining the parameter is not valid.			
1	10. The method of claim 9, wherein the response procedure comprises:			
2	halting the read; and			
3	facilitating recalibration of sensing equipment configured to perform the sensing.			
1	11. The method of claim 10, wherein the response procedure further comprises:			
2	reattempting the sense prior to recalibration of the sensing equipment to test for false			
3	negatives.			
-				
1	12. The method of claim 10, wherein the response procedure further comprises:			
2	reattempting the read upon recalibration.			
1	13. The method of claim 9, wherein the sensing procedure is a triple-sensing			
2	destructive read procedure.			
1	14. The method of claim 9, wherein the memory cell is a memory cell of a			
2	magnetoresistive random access memory (MRAM) device.			

1		15.	The method of claim 9, wherein the parameter is the resistance of the memory		
2	cell.				
1		16.	The method of claim 9, wherein comparing the parameter to a threshold		
2	compr	ises:			
3		compa	ring the parameter to a variable threshold.		
1		17.	A sensing system for sensing a state of a memory cell, the system comprising:		
2		means	for sensing a parameter of the memory element;		
3		means	for comparing the parameter to a first range to determine whether the		
4	parame	parameter is valid;			
5		means	for performing a sensing procedure upon determining the parameter is valid;		
6	and				
7		means	for performing a response procedure upon determining the parameter is not		
8	valid.				
1		18.	The system of claim 17, wherein the means for performing the response		
2	proced	ure com	nprises:		
3		means	for comparing the parameter to a second range, whereby the second ranges		
4	indicat	es an er	roneous memory cell;		
5		means	for initiating the means for sensing to repeat sensing of the memory cell; and		
6		means	for facilitating recalibration of the means for sensing if the repeat sensing of		
7	the me	mory ce	ell determines the sensing to still be invalid.		

1	19. The system of claim 18, further comprising:			
2	means for tracking a number of iterations of sensing and re-sensing performed by the			
3	means for sensing; and			
4	means for terminating re-sensing upon reaching a predetermined number of iterations			
5	of re-sensing.			
1	20. A program for sensing a state of a memory element, the program being stored			
2	on a computer-readable medium, the program comprising:			
3	logic configured to enable sensing of a parameter of the memory element;			
4	logic configured to compare the parameter to a first range and second range to			
5	determine whether the parameter is valid;			
6	logic configured to enable a sensing procedure upon determining the parameter is			
7	valid;			
8	logic configured to re-enable sensing of the parameter of the memory element upon			
9	determining the parameter is invalid; and			
10	logic configured to facilitate recalibration of sensing equipment configured to perform the			
11	sensing, upon re-sensing the parameter for a predetermined number of iterations.			