Programação Funcional 13^a Aula — Definição de tipos

Pedro Vasconcelos DCC/FCUP

2014

Declarações de sinónimos

Podemos dar um nome novo a um tipo existente usando uma declaração de sinónimo.

Exemplo (do prelúdio-padrão):

```
type String = [Char]
```

Declarações de sinónimos (cont.)

As declarações de sinónimos são usadas para melhorar legibilidade de programas.

Exemplo: no jogo da Vida definimos sinónimos:

```
type Pos = (Int,Int) -- coluna,linha
type Cells = [Pos] -- colónia
```

Assim podemos escrever

```
isAlive :: Cells -> Pos -> Bool
em vez de
```

isAlive :: [(Int,Int)] -> (Int,Int) -> Bool

Declarações de sinónimos (cont.)

As declarações de sinónimos também podem ter parâmetros.

Exemplo: associações entre chaves e valores.

Declarações de sinónimos (cont.)

Os sinónimos podem ser usados noutras definições:

```
type Pos = (Int,Int)
type Cells = [Pos] -- OK
```

Mas não podem ser usados recursivamente:

Declarações de novos tipos

Podemos definir novos tipos de dados usando declarações data.

Exemplo (do prelúdio-padrão):

data Bool = True | False

Declarações de novos tipos (cont.)

- A declaração data enumera as alternativas separadas por barras verticais.
- Cada alternativa deve ter um construtor (ex.: True e False).
- O nome dos tipos e construtores deve ser começar por uma letra maiúscula.
- Cada construtor só pode ser usado num único tipo.

Declarações de novos tipos (cont.)

Podemos definir funções sobre novos tipos usando padrões.

Exemplo: um tipo para as direções ortogonais (esquerda, direita, cima, baixo).

```
data Dir = Esq | Dir | Cima | Baixo
```

Vamos definir algumas funções...

Declarações de novos tipos (cont.)

```
contraria :: Dir -> Dir
contraria Esq = Dir
contraria Dir = Esq
contraria Cima = Baixo
contraria Baixo = Cima
mover :: Dir -> Pos -> Pos
mover Esq (x,y) = (x-1,y)
mover Dir (x,y) = (x+1,y)
mover Cima (x,y) = (x,y+1)
mover Baixo (x,y)=(x,y-1)
```

-- direção contrária

-- deslocar numa direção

Construtores com parâmetros

Os construtores podem também ter parâmetros.

Exemplo:

Construtores com parâmetros (cont.)

- Os construtores podem ter diferentes números de parâmetros
- Os parâmetros podem ser de tipos diferentes
- Podemos usar os construtores de duas formas:

```
como funções para construir um valor
```

```
Circ :: Float -> Figura
Rect :: Float -> Float -> Figura
```

em padrões no lado esquerdo de equações

```
area (Circ r) = pi*r^2
area (Rect w h) = w*h
```


Igualdade e conversão em texto

Por omissão um novo tipo não tem métodos de igualdade ou conversão para texto.

O interpretador dá erro se tentarmos mostrar ou comparar valores:

```
> Circ 2
ERROR: No instance for (Show Figura)...
> Rect 2 1 == Rect 1 2
ERROR: No instance for (Eq Figura)...
```

Igualdade e conversão em texto (cont.)

Podemos definir igualdade e conversão para texto automaticamente usando "deriving":

Exemplo de uso:

```
> Circ 2
Circ 2.0
> Rect 2 1 == Rect 1 2
False
```

A igualdade é *sintática*: dois valores são iguais se e só se têm o mesmo construtor e argumentos.

Novos tipos com parâmetros

As declarações de novos tipos também podem ter parâmetros.

Exemplo:

Tipos recursivos

As declarações data podem ser recursivas.

Exemplo: os números naturais.

data Nat = Zero | Suc Nat

Alguns valores de Nat:

```
      Zero
      -- zero

      Suc Zero
      -- um

      Suc (Suc Zero)
      -- dois

      Suc (Suc (Suc Zero))
      -- três
```

Em geral: *n* é obtido aplicado *n* vezes Succ a Zero.

```
Suc (Suc (... (Suc Zero)...)) -- n aplicações
```

Usando recursão, podemos definir funções que convertem entre inteiros e naturais:

Podemos usar as funções de conversão para somar naturais.

```
add :: Nat -> Nat -> Nat
add n m = int2nat (nat2int n + nat2int m)
```

Em alternativa, podemos definir a soma usando recursão sobre naturais.

```
add :: Nat -> Nat -> Nat
add Zero m = m
add (Suc n) m = Suc (add n m)
```

Estas duas equações traduzem as seguintes igualdades algébricas:

$$0 + m = m$$

 $(1 + n) + m = 1 + (n + m)$

Exemplo:

```
add (Suc (Suc Zero)) (Suc Zero)
=
   Suc (add (Suc Zero) (Suc Zero))
=
   Suc (Suc (add Zero (Suc Zero)))
=
   Suc (Suc (Suc Zero))
```

Árvores sintáticas

Podemos representar expressões por uma árvore sintática em que os operadores são os nós e as constantes são as folhas.

Exemplo:

Árvores sintáticas (cont.)

As árvores podem ser representadas em Haskell por um tipo recursivo.

```
data Expr = Val Int -- constante | Soma Expr Expr -- n\acute{o} + | Mult Expr Expr -- n\acute{o} ×
```

A árvore no slide anterior é:

```
Soma (Val 1) (Mult (Val 2) (Val 3))
```

Árvores sintáticas (cont.)

Exemplos de funções sobre árvores de expressões.

```
-- contar o número de folhas
tamanho :: Expr -> Int
tamanho (Val n) = 1
tamanho (Soma e1 e2) = tamanho e1 + tamanho e2
tamanho (Mult e1 e2) = tamanho e1 + tamanho e2
-- calcular o valor
valor :: Expr -> Int
valor (Val n) = n
valor (Soma e1 e2) = valor e1 + valor e2
valor (Mult e1 e2) = valor e1 * valor e2
```

Árvores binárias

Também podemos usar árvores binárias para facilitar a organização e pesquisa de informação.

Árvores binárias (cont.)

Podemos representar árvores binárias de inteiros por um tipo recursivo.

```
data Arv = Folha Int
| No Arv Int Arv
```

A árvore no slide anterior seria representa por:

```
No (No (Folha 1) 3 (Folha 4))
5
(No (Folha 6) 7 (Folha 9))
```

Árvores binárias (cont.)

Podemos agora definir uma função recursiva para procurar um valor numa árvore.

Árvores binárias (cont.)

Numa árvore ordenada todos os nós têm valores inferiores na sub-árvore esquerda e superiores na sub-árvore direira. Nesse caso podemos simplificar a pesquisa:

Esta definição é mais eficiente: percorre apenas os nós num caminho da raiz até uma folha em vez de todos os nós da árvore.