Name: Rajat Jaiswal Entry Number: 2017CS50415

1. Suppose $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times m}$ are two square matrices, and $\mathbf{C} = \mathbf{A}\mathbf{B}$. Let the singular values of the three matrices be $a_1 \geq \cdots \geq a_m$, $b_1 \geq \cdots \geq b_m$, and $c_1 \geq \cdots \geq c_m$ respectively. Prove that $a_1b_1 \geq c_1 \geq \max(a_1b_m, a_mb_1)$, and similarly, $\min(a_1b_m, a_mb_1) \geq c_m \geq a_mb_m$.

Solution: For, $A = U_A \Sigma_A V_A^*$ We know that $||A||_2 = max_x \frac{||Ax||_2}{||x||_2} = ||\Sigma_A||_2 = max_i \{a_i\} = a_1$. This comes from Theorem 3.1 of Trefethen and Bau. And is also illustrated in Theorem 5.3. It is because 2-norm is unitarily invariant and essentially it becomes the norm of the diagonal matrix in the SVD. Similarly, $min_x \frac{||Ax||_2}{||x||_2} = max_i \{a_i\} = a_m$. Using submultiplicativity of induced p-norms,

$$||C||_2 = ||AB||_2 \le ||A||_2 \cdot ||B||_2 \implies ||C||_2 \le ||A||_2 \cdot ||B||_2$$

$$\implies c_1 \le a_1 \cdot b_1, \qquad \therefore ||A||_2 = a_1, ||B||_2 = b_1, ||C||_2 = c_1$$

We know that, $\max_x \{f(x) \cdot g(x)\} \ge \max_x \{f(x)\} \cdot \min_x \{g(x)\} : g(x) \ge \min_x \{g(x)\}$. Bx is just a linear transformation of x, and is a vector.

$$\begin{split} \|C\|_2 &= \max_x \frac{\|ABx\|_2}{\|x\|_2} = \max_x \frac{\|ABx\|_2 \cdot \|Bx\|_2}{\|Bx\|_2 \cdot \|x\|_2} \geq \max_x \left\{ \frac{\|ABx\|_2}{\|Bx\|_2} \right\} \cdot \min_x \left\{ \frac{\|Bx\|_2}{\|x\|_2} \right\} \\ &\implies c_1 \geq a_1 \cdot b_m, \qquad \because \|C\|_2 = c_1, \max_x \left\{ \frac{\|ABx\|_2}{\|Bx\|_2} \right\} = a_1, \min_x \left\{ \frac{\|Bx\|_2}{\|x\|_2} \right\} = b_m \end{split}$$

Similarly,

$$\begin{split} \|C\|_2 &= \max_x \frac{\|ABx\|_2}{\|x\|_2} = \max_x \frac{\|ABx\|_2 \cdot \|Bx\|_2}{\|Bx\|_2 \cdot \|x\|_2} \geq \max_x \left\{ \frac{\|Bx\|_2}{\|x\|_2} \right\} \cdot \min_x \left\{ \frac{\|ABx\|_2}{\|Bx\|_2} \right\} \\ &\implies c_1 \geq b_1 \cdot a_m, \qquad \therefore \|C\|_2 = c_1, \\ \min_x \left\{ \frac{\|ABx\|_2}{\|Bx\|_2} \right\} = a_m, \\ \max_x \left\{ \frac{\|Bx\|_2}{\|x\|_2} \right\} = b_1. \end{split}$$

These two gives us the relation, $c_1 \ge max(a_1b_m, b_1a_m)$ and hence, $a_1b_1 \ge c_1 \ge max(a_1b_m, b_1a_m)$.

Similarly, we can also say that $\min_{x} \{f(x) \cdot g(x)\} \ge \min_{x} \{f(x)\} \cdot \min_{x} \{g(x)\}.$

$$\begin{aligned} \min_{x} \frac{\|ABx\|_{2}}{\|x\|_{2}} &= \min_{x} \frac{\|ABx\|_{2} \cdot \|Bx\|_{2}}{\|Bx\|_{2} \cdot \|x\|_{2}} \geq \min_{x} \left\{ \frac{\|ABx\|_{2}}{\|Bx\|_{2}} \right\} \cdot \min_{x} \left\{ \frac{\|Bx\|_{2}}{\|x\|_{2}} \right\} \\ &\implies c_{m} \geq a_{m} \cdot b_{m}, \qquad \because \min_{x} \frac{\|ABx\|_{2}}{\|x\|_{2}} = c_{m}, \\ \min_{x} \left\{ \frac{\|ABx\|_{2}}{\|Bx\|_{2}} \right\} &= a_{m}, \\ \min_{x} \left\{ \frac{\|Bx\|_{2}}{\|x\|_{2}} \right\} = b_{m} \end{aligned}$$

Similarly, it can be said that $\min_x \{f(x) \cdot g(x)\} \le \min_x \{f(x)\} \cdot \max_x \{g(x)\} : g(x) \le \max_x \{g(x)\}$.

$$\min_{x} \frac{\|ABx\|_{2}}{\|x\|_{2}} = \min_{x} \frac{\|ABx\|_{2} \cdot \|Bx\|_{2}}{\|Bx\|_{2} \cdot \|x\|_{2}} \leq \min_{x} \left\{ \frac{\|ABx\|_{2}}{\|Bx\|_{2}} \right\} \cdot \max_{x} \left\{ \frac{\|Bx\|_{2}}{\|x\|_{2}} \right\}$$

$$\implies c_{m} \leq a_{m} \cdot b_{1}, \qquad \because \min_{x} \frac{\|ABx\|_{2}}{\|x\|_{2}} = c_{m}, \min_{x} \left\{ \frac{\|ABx\|_{2}}{\|Bx\|_{2}} \right\} = a_{m}, \max_{x} \left\{ \frac{\|Bx\|_{2}}{\|x\|_{2}} \right\} = b_{1}$$

$$\min_{x} \frac{\|ABx\|_{2}}{\|x\|_{2}} = \min_{x} \frac{\|ABx\|_{2} \cdot \|Bx\|_{2}}{\|Bx\|_{2} \cdot \|x\|_{2}} \leq \max_{x} \left\{ \frac{\|ABx\|_{2}}{\|Bx\|_{2}} \right\} \cdot \min_{x} \left\{ \frac{\|Bx\|_{2}}{\|x\|_{2}} \right\}$$

Continued on next page.

$$\implies c_m \leq a_1 \cdot b_m, \qquad \because \min_x \frac{\|ABx\|_2}{\|x\|_2} = c_m, \max_x \left\{ \frac{\|ABx\|_2}{\|Bx\|_2} \right\} = a_1, \min_x \left\{ \frac{\|Bx\|_2}{\|x\|_2} \right\} = b_m$$

These two gives us the relation, $c_m \leq min(a_1b_m, b_1a_m)$ and hence, $a_mb_m \leq c_m \leq min(a_1b_m, b_1a_m)$.

2. Let S be a subspace of \mathbb{C}^m . In the lectures, we defined its orthogonal complement as a subspace T such that $S \cap T = \{0\}, S + T = \mathbb{C}^m$, and $S \perp T$. Show that this is precisely the set $\{\mathbf{v} \in \mathbb{C}^m : \mathbf{u}^*\mathbf{v} = 0 \, \forall \mathbf{u} \in S\}$

Solution: We are given S, a subspace and T, its orthogonal complement. Define $T' = \{ \mathbf{v} \in \mathbb{C}^m : \mathbf{u}^* \mathbf{v} = 0 \, \forall \mathbf{u} \in S \}$. We need to show that T = T'.

- Let $x \in T$ and by definition $x \in \mathbb{C}^m$. We know that, $\mathbf{u}^*x = 0, \forall \mathbf{u} \in S, \because T \perp S \& x \in T$. \therefore by definition of $T', x \in T'$. $\Longrightarrow T \subseteq T'$.
- Let $x \in T'$ and $\therefore S + T = \mathbb{C}^m$ and are complement to each other, $\exists s_0 \in S, \exists t_0 \in T$, which are projection of x in S and T respectively, such that $x = s_0 + t_0$. $\therefore \mathbf{u}^* x = 0, \ \forall \mathbf{u} \in S$ $\implies \mathbf{u}^* s_0 + \mathbf{u}^* t_0 = 0, \ \therefore t_0 \in T, \mathbf{u}^* t_0 = 0 \implies \mathbf{u}^* s_0 = 0$. Since this is true $\forall \mathbf{u} \in S, \implies s_0 = 0$. $\implies x = t_0 \in T$, hence $x \in T \implies T' \subseteq T$.

Hence
$$T = T'$$
.

- 3. Consider a linearly independent set of n real vectors $x_1, \dots, x_n \in \mathbb{R}^m$. Suppose another set of vectors $y_1, \dots, y_n \in \mathbb{R}^m$ is "congruent" to it, in the sense that all lengths and distances are equal: $||x_i||_2 = ||y_i||_2$ for all i, and $||x_i x_j||_2 = ||y_i y_j||_2$ for all $i \neq j$. Define the matrices $\mathbf{X} = [x_1, \dots, x_n]$, and $\mathbf{Y} = [y_1, \dots, y_n]$.
 - (a) Prove that the reduced QR factorizations of \mathbf{X} and \mathbf{Y} have the same $\hat{\mathbf{R}}$.

Solution: Given, $||x_i - x_j||_2 = ||y_i - y_j||_2$. Also, $||x_i - x_j||_2^2 = (x_i - x_j)^T \cdot (x_i - x_j)$. \therefore All the vectors are real valued. This gives us that,

 $\langle .,. \rangle$ denotes inner product. $\langle x_i, x_i \rangle = \langle y_i, y_i \rangle$ is already given to be true in the question. Let $X' = X^T X$ and $Y' = Y^T Y$. x_i denote i^{th} column of X, $X'_{ij} = x_i^T \cdot x_j = \langle x_i, x_j \rangle$ Similarly, $Y'_{ij} = y_i^T \cdot y_j = \langle y_i, y_j \rangle$, using $\langle x_i, x_j \rangle = \langle y_i, y_j \rangle$, we get, $X'_{ij} = Y'_{ij} \Longrightarrow X' = Y'$.

Let reduced QR factorization of $X = Q_x R_x$, and of $Y = Q_y R_y$, where Q_x, Q_y are orthonormal matrices (column wise).

$$\begin{split} X' &= Y' \implies X^T X = Y^T Y \\ &\implies R_x^T Q_x^T Q_x R_x = R_y^T Q_y^T Q_y R_y \\ &\implies R_x^T R_x = R_y^T R_y, \because Q_y^T Q_y = Q_x^T Q_x = I. \\ &\implies R_x = R_y. \because R_x, R_y \text{ are upper triangular matrices.} \end{split}$$

This can be easily shown for upper triangular matrices by multiplying and comparing element wise. $r_{x11}^2 = r_{y11}^2 \implies r_{x11} = r_{y11}$. Similarly, $r_{x11} \cdot r_{x12} = r_{y11} \cdot r_{y12} \implies r_{x12} = r_{y12}$, and so on.

(b) Give an algorithm to find an orthogonal matrix **Q** such that $\mathbf{Q}x_i = y_i$ for all i.

Solution: Let full QR factorization of $X = Q_{fx}R_{fx}$, and of $Y = Q_{fy}R_{fy}$, where Q_{fx}, Q_{fy} are orthonormal square matrices (column wise) of size $m \times m$. This means that $Q_{fx}^TQ_{fx} = Q_{fx}Q_{fx}^T = I$. From part (a) we know that, $R_x = R_y$. In full QR factorization, R_{fx} is constructed from R_x by extending the last m-n rows of R_x with zeros so that R_x extends to R_{fx} of size $m \times n$, and similarly R_{fy} is constructed from R_y , hence $R_{fx} = R_{fy}$.

Given that $\mathbf{Q}x_i = y_i, \ \forall i$. So we can easily extend this and see that $\mathbf{Q}[x_1, x_2, \cdots, x_n] = \mathbf{Q}[x_1, x_2, \cdots, x_n]$ $[y_1, y_2, \cdots, y_n] \implies \mathbf{QX} = \mathbf{Y}.$

$$\mathbf{QX} = \mathbf{Y}$$

$$\implies \mathbf{Q}Q_{fx}R_{fx} = Q_{fy}R_{fy}$$

$$\implies \mathbf{Q}Q_{fx} = Q_{fy} : R_{fx} = R_{fy} \text{ and are upper triangular matrices}$$

$$\implies \mathbf{Q} = Q_{fy}Q_{fx}^T : Q_{fx}Q_{fx}^T = I$$

Algorithm 1 Solving for $\mathbf{QX} = \mathbf{Y}$

- 1: function Getq(X,Y)
- $Q_{fx}, R_{fx} \leftarrow fullQR(X)$
- $Q_{fy}, R_{fy} \leftarrow full QR(Y)$ $Q \leftarrow Q_{fy} \cdot Q_{fx}^{T}$ 3:
- 4:
- return Q 5:
- 6: end function
- Running time analysis: Full QR factorization using Gram-Schmidt takes $O(mn^2)$ time. Taking the transpose and matrix multiplication takes $O(m^3)$ time. Hence the overall algorithm takes $O(m(m^2 + n^2))$ time. $m \ge n$, we can say the overall running time is $O(m^3)$.
- 4. Consider a matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ and a vector $v \in \mathbb{C}^m$. Let $\mathbf{F} = \mathbf{I} 2 \frac{vv^*}{v^*v}$.
 - (a) Show that $\mathbf{FA} = \mathbf{A} + vw^*$ for some vector w. Find the asymptotic operation count for both ways of computing **FA**: (i) first computing **F** and then performing matrix multiplication, vs. (ii) first computing w, then vw^* , and then matrix addition.

Solution: Given
$$\mathbf{F} = \mathbf{I} - 2\frac{vv^*}{v^*v} \implies \mathbf{F}\mathbf{A} = \mathbf{A} - 2\frac{vv^*\mathbf{A}}{v^*v} = \mathbf{A} + v\frac{-2v^*\mathbf{A}}{v^*v} \implies w^* = \frac{-2v^*\mathbf{A}}{v^*v}.$$

Hence such a vector w exists, and $w = \frac{-2\mathbf{A}^*v}{v^*v}$

- (i) Computing v^*v takes O(m) flops and computing vv^* takes $O(m^2)$ flops and division of vv^* by v^*v and then subtraction it from I takes $O(m^2)$ flops, hence computing F takes $O(m^2)$ flops. Multiplication of **F** with **A** means multiply $m \times m$ matrix with $m \times n$ matrix which takes $O(m^2n)$ flops, hence overall this way takes $O(m^2n)$ flops.
- (ii) For computing w, we need to compute v^*v which takes O(m) flops, and \mathbf{A}^*v which takes O(nm)flops. Computing vw^* will take O(mn) flops and then adding vw^* to **A** also takes O(mn) flops, hence this way overall computation of **FA** takes O(mn) flops.
- (b) Suppose we use an approximate vector \tilde{v} and obtain $\tilde{\mathbf{F}} = \mathbf{I} 2\frac{\tilde{v}\tilde{v}^*}{\tilde{v}^*\tilde{v}}$ instead. Show that if $\frac{\|\tilde{v} v\|_2}{\|v\|_2} = \frac{\|\tilde{v} v\|_2}{\|v\|_2}$ $O(\epsilon_m)$, then $\|\tilde{\mathbf{F}} - \mathbf{F}\|_2 = O(\epsilon_m)$, and $fl(\tilde{\mathbf{F}}\mathbf{A}) = \mathbf{F}(\mathbf{A} + \delta \mathbf{A})$ for some $\delta \mathbb{A}$ with $\frac{\|\delta A\|_2}{\|A\|_2} = O(\epsilon_m)$.

Solution: Take $\tilde{v} = v(1 + \epsilon_1), \epsilon_1 \leq \epsilon_m$. Let's say inner product of two vectors produce an error of $\epsilon_3 \leq \epsilon_m$, and subtraction of two matrices produces an error of $\epsilon_4 \leq \epsilon_m$.

$$\implies \tilde{\mathbf{F}} = \left(\mathbf{I} - 2 \cdot \frac{vv^*(1+\epsilon_1)^2(1+\epsilon_3)}{v^*v(1+\epsilon_1)^2(1+\epsilon_3)}\right) (1+\epsilon_4). \text{ Also, } (1+\epsilon)^{-1} = (1+\epsilon') \text{ such that } \epsilon, \epsilon' \leq \epsilon_m,$$
 and we will ignore all terms of $O(\epsilon_m^2)$.

$$\implies \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} = \left\| \mathbf{I}\epsilon_{4} - 2 \cdot \frac{vv^{*}}{v^{*}v} \left((1 + 2\epsilon_{1} + \epsilon_{3} + \epsilon_{4} + 2\epsilon_{1}' + \epsilon_{3}') - 1 \right) \right\|_{2}$$

Now, We will use submultiplicativity of induced 2-norm, and $||v^*||_2 = ||v||_2$ and $|v^*v| = ||v||_2^2$

$$\Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} \leq \|\mathbf{I}\epsilon_{4}\|_{2} + 2\left(2\epsilon_{1} + \epsilon_{3} + \epsilon_{4} + 2\epsilon_{1}^{'} + \epsilon_{3}^{'}\right) \cdot \left\|\frac{vv^{*}}{v^{*}v}\right\|_{2}$$

$$\Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} \leq \epsilon_{4} + \frac{2\left(2\epsilon_{1} + \epsilon_{3} + \epsilon_{4} + 2\epsilon_{1}^{'} + \epsilon_{3}^{'}\right)}{\|v\|_{2}^{2}} \cdot \|vv^{*}\|_{2}$$

$$\Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} \leq \epsilon_{4} + \frac{2\left(2\epsilon_{1} + \epsilon_{3} + \epsilon_{4} + 2\epsilon_{1}^{'} + \epsilon_{3}^{'}\right)}{\|v\|_{2}^{2}} \cdot \|v\|_{2} \cdot \|v^{*}\|_{2}$$

$$\Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} \leq \epsilon_{4} + \frac{2\left(2\epsilon_{1} + \epsilon_{3} + \epsilon_{4} + 2\epsilon_{1}^{'} + \epsilon_{3}^{'}\right)}{\|v\|_{2}^{2}} \cdot \|v\|_{2}^{2}$$

$$\Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} \leq 15 \cdot \epsilon_{m} \Rightarrow \|\tilde{\mathbf{F}} - \mathbf{F}\|_{2} = O(\epsilon_{m})$$

Let's call $\beta = (2\epsilon_1 + \epsilon_3 + \epsilon_4 + 2\epsilon_1' + \epsilon_3') = O(\epsilon_m)$. fl(.) introduces error of $\epsilon_5 \leq \epsilon_m$

$$\tilde{\mathbf{F}} = \mathbf{I}(1 + \epsilon_4) - 2(1 + \beta) \frac{vv^*}{v^*v}.$$

$$\mathbf{F^2} = \left(\mathbf{I} - 2\frac{vv^*}{v^*v}\right) \left(\mathbf{I} - 2\frac{vv^*}{v^*v}\right) = \mathbf{I} + 4\frac{\|v\|_2^2vv^*}{\|v\|_2^4} - 4\frac{vv^*}{\|v\|_2^2} = \mathbf{I}. \ \|\mathbf{F}\|_2 \le \|\mathbf{I}\|_2 + 2\frac{\|v\|_2 \cdot \|v^*\|_2}{\|v\|_2^2} = 3.$$

$$\implies \tilde{\mathbf{F}}\mathbf{A} = \mathbf{A}(1 + \epsilon_4) - 2(\mathbf{A} + \mathbf{A}\beta) \frac{vv^*}{v^*v}.$$

$$\implies fl(\tilde{\mathbf{F}}\mathbf{A}) = \mathbf{A}(1+\epsilon_4)(1+\epsilon_5) - 2(\mathbf{A}+\mathbf{A}\beta)(1+\epsilon_5)\frac{vv^*}{v^*v}.$$

Let
$$(1 + \epsilon_4)(1 + \epsilon_5) = 1 + \epsilon_6, \epsilon_6 = O(\epsilon_m)$$
 and $(1 + \beta)(1 + \epsilon_5) = 1 + \epsilon_7, \epsilon_7 = O(\epsilon_m)$

$$= 1 + \epsilon_{6}, \epsilon_{6} = O(\epsilon_{m}) \text{ and } (1 + \beta)(1 + \epsilon_{5}) = 1 + \epsilon_{7}, \epsilon_{7} = O(\epsilon_{m})$$

$$\implies fl(\tilde{\mathbf{F}}\mathbf{A}) = \mathbf{F}\mathbf{A} + \mathbf{A} \left(\epsilon_{6} - 2\epsilon_{7} \frac{vv^{*}}{v^{*}v}\right).$$

$$\implies \delta \mathbf{A} = \mathbf{F}\mathbf{A} \left(\epsilon_{6} - 2\epsilon_{7} \frac{vv^{*}}{v^{*}v}\right) \qquad \because \mathbf{F}^{2} = \mathbf{I}.$$

$$\implies \delta \mathbf{A} = \mathbf{F}\mathbf{A} \left(\epsilon_{6} - 2\epsilon_{7} \frac{vv^{*}}{v^{*}v}\right).$$

$$\implies \|\delta \mathbf{A}\|_{2} \le \left(\epsilon_{6} + 2\epsilon_{7} \frac{\|v\|_{2} \cdot \|v^{*}\|_{2}}{\|v\|_{2}^{2}}\right) \|\mathbf{F}\|_{2} \|\mathbf{A}\|_{2}.$$

$$\implies \|\delta \mathbf{A}\|_{2} \le \left(\epsilon_{6} + 2\epsilon_{7}\right) \cdot 3 \cdot \|\mathbf{A}\|_{2}.$$

$$\implies \|\delta \mathbf{A}\|_{2} \le 3 \cdot (\epsilon_{6} + 2\epsilon_{7}).$$

$$\implies \frac{\|\delta \mathbf{A}\|_{2}}{\|\mathbf{A}\|_{2}} = O(\epsilon_{m}).$$

- 5. Suppose we want to find the general least-squares solution to the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{C}^{m \times n}$ has m > n and rank(A) = r < n. Let the full SVD of \mathbf{A} be $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$.
 - (a) Give an explicit formula for the unique vector $y \in range(\mathbf{A})$ which minimizes $||b y||_2$.

Solution: We want to minimize $||b-y||_2$, so we need a point $y \in range(\mathbf{A})$ to b, so that norm of r = b - y is minimized. It is clear geometrically that this will occur when y = Pb, where $P \in \mathbb{C}^{m \times m}$ that maps \mathbb{C}^m onto $range(\mathbf{A})$. To minimize r, $r \perp range(\mathbf{A})$. This has also been claimed in Trefethan and Bau(Chapter 11) and can be seen in the figure below.

Figure 1: Minimizing $||b-y||_2$ in terms of orthogonal projections (Source: Trefethan and Bau).

Therefore, y = Pb. Now we need to construct P. We are given the full SVD of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$. But it is also given that A has rank r < n. As proved in chapter 6 of Trefethan and Bau, the projector matrix P for $range(\mathbf{A})$ can be obtained by $P = \hat{\mathbf{U}} \hat{\mathbf{U}}^*$, where $\hat{\mathbf{U}}$ comes from reduced SVD of $\mathbf{A} = \hat{\mathbf{U}} \hat{\mathbf{\Sigma}} \hat{\mathbf{V}}^*$.

We are given the full SVD of **A** and also given the rank r, we can construct $\hat{\mathbf{U}}$ from **U** by taking the first r columns of **U** which is what we do in reduced SVD. Let $\mathbf{U_r}$ be the matrix $\mathbf{U}[:,:\mathbf{r}]$ which is the first r columns of **U**. Then by construction of reduced SVD $\hat{\mathbf{U}} = \mathbf{U_r}$. Hence $P = \mathbf{U_r}\mathbf{U_r^*}$.

$$\implies y = \mathbf{U_r} \mathbf{U_r^*} \mathbf{b}.$$

(b) Find the general solution of the least-squares problem, i.e. all vectors x for which $||b - \mathbf{A}x||_2$ is minimal. Which of these vectors minimizes $||x||_2$?

Solution: The approach for the solution has been taken form here. We are given $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$, where \mathbf{U} and \mathbf{V} are unitary square matrices of size $m \times m$ and $n \times m$ respectively. We know that 2-norm is unitarily invariant, $\implies \|b - \mathbf{A}x\|_2 = \|\mathbf{U}^*(b - \mathbf{A}x)\|_2$, Define $\mathbf{Z} = \mathbf{V}^*x$.

$$\begin{aligned} \|b - \mathbf{A}x\|_2 &= \|\mathbf{U}^*b - \mathbf{\Sigma}\mathbf{V}^*x)\|_2, \ \because \mathbf{A} &= \mathbf{U}\mathbf{\Sigma}\mathbf{V}^*, \mathbf{U}^*\mathbf{U} &= \mathbf{I} \\ \|b - \mathbf{A}x\|_2^2 &= \Sigma_{i=1}^r \left(\sigma_i z_i - u_i^* b\right)^2 + \Sigma_{i=r+1}^n \left(u_i^* b\right)^2 \end{aligned}$$

To minimize $||b - \mathbf{A}x||_2^2$, we get, $\sigma_i z_i = u_i^* b$, $\forall i \in [1, 2, \dots, r] \implies z_i = \frac{u_i^* b}{\sigma_i}$, $\forall i \in [1, 2, \dots, r]$ and $z_i = \text{arbitrary } \forall i \in [r+1, r+2, \dots, n]$. And $\min(||b - \mathbf{A}x||_2^2) = \sum_{i=r+1}^n (u_i^* b)^2$. We took, $\mathbf{Z} = \mathbf{V}^* x$, hence $x = \mathbf{V}\mathbf{Z}$, where \mathbf{Z} is as constructed. $x = [x_1, x_2, \dots, x_n]$, where $x_i = \sum_{k=1}^n V_{ik} z_k$, z_k as above. $x = \mathbf{V}\mathbf{Z} \implies ||x||_2 = ||\mathbf{V}\mathbf{Z}||_2 = ||\mathbf{Z}||_2$. Since 2-norm is unitarily invariant. $||\mathbf{Z}||_2$ is minimum when

$$z_i = 0, \ \forall i \in [r+1, r+2, \cdots, n],$$
 and not arbitrary and hence $min(\|x\|_2) = \sqrt{\sum_{i=1}^r \left(\frac{u_i^* b}{\sigma_i}\right)^2}.$

In such a case for minimum $||x||_2$, $x = [x_1, x_2, \dots, x_n]$, where $x_i = \sum_{k=1}^r V_{ik} z_k = \sum_{k=1}^r V_{ik} \left(\frac{u_k^* b}{\sigma_k}\right)$

6. Consider the set P_n of all polynomials of degree $\leq n$ with complex coefficients. Any such polynomial pcan be represented as a coefficient vector $[p] \in \mathbb{C}^{n+1}$ via

$$p(x) = a_0 + a_1 x + \dots + a_n x^n \iff [p] = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}$$

Suppose we define an inner product on polynomials as $(p,q) = \int_{-1}^{1} \overline{p(x)} q(x) dx$. Thus two polynomials p, q are orthogonal if $\int_{-1}^{1} \overline{p(x)} q(x) dx = 0$.

(a) Show that there exists a Hermitian matrix **G** such that $(p,q) = [p]^* \mathbf{G}[q]$ for all polynomials $p, q \in P_n$.

Solution: Proof by construction. Let $p(x) = \sum_{i=0}^{n} a_i x^i$, $q(x) = \sum_{i=0}^{n} b_i x^i$.

$$\overline{p(x)}q(x) = \sum_{i,j} a_i^* b_j x^{i+j}.$$

 $\overline{p(x)}q(x) = \sum_{i,j} a_i^* b_j x^{i+j}.$ In case i+j is odd, the term $a_i^* b_j$ won't contribute in integral as that term will become $0(\because \text{limits})$ are -1 and 1), and when i + j is even $a_i^* b_j$ will be multiplied by 2 and divided by (i + j + 1).

So matrix G of size $(n+1) \times (n+1)$ [indexing from 0] is, $G_{ij} = \begin{cases} 0 & \text{when i+j is odd} \\ \frac{2}{i+j+1} & \text{when i+j is even} \end{cases}$

G is hermitian because $G^* = G$, $G_{ij} = \frac{2}{i+j+1} = \frac{2}{j+i+1} = G_{ji}$ when i+j is even, and when i+j is odd $G_{ij} = G_{ji} = 0$, and since G is real-valued, the complex conjugate remains the same. G_{ij} is essentially multiplied by i^{th} element of $[p]^*$ i.e. a_i^* and j^{th} element of [q] i.e. b_j , and finally everything is summed over and hence $[p]^*G[q] = \int_{-1}^1 \overline{p(x)}q(x) dx = (p,q)$

(b) If $p, q \in P_n$ are two nonzero polynomials, what does it mean to project q orthogonally onto the subspace $\langle p \rangle$ with respect to this inner product? Give an algebraic definition of orthogonal projection, and a formula for the corresponding matrix that acts on the coefficient vector [q].

Solution: The subspace of p, $\langle p \rangle$ is defined as $\{k \cdot p | k \in \mathbb{C}\}$. When q is projected orthogonally on $\langle p \rangle$ it means there is a component of q on $\langle p \rangle$ say $(k' \cdot p)$ for some $k' \in \mathbb{C}$, and a component orthogonal to $\langle p \rangle$ which will be $(q - k' \cdot p)$. Since $(k' \cdot p)$ and $(q - k' \cdot p)$ are orthogonal to each other $\therefore (k' \cdot p, q - k' \cdot p) = 0.$

$$\Longrightarrow (k' \cdot p, \ q) - (k' \cdot p, \ k' \cdot p) = 0$$

$$\Longrightarrow \overline{k'} \cdot (p, \ q) = \overline{k'} k' \cdot (p, \ p) = 0$$

$$\Longrightarrow \overline{k'} \cdot (p, \ q) = \overline{k'} k' \cdot (p, \ p) = 0$$

$$\Longrightarrow k' = \frac{(p, q)}{(p, p)}$$

Hence the projection of [q] on $\langle p \rangle$ is $\left([p] \cdot \frac{(p,q)}{(p,p)}\right)$ and orthogonal projection is $\left([q] - [p] \cdot \frac{(p,q)}{(p,p)}\right)$.

We know that, $(p,q) = [p]^* \mathbf{G}[q]$, using that we get, $[p] \cdot \frac{(p,q)}{(p,p)} = \frac{[p][p]^* \mathbf{G}[q]}{[p]^* \mathbf{G}[p]} = \frac{[p][p]^* \mathbf{G}}{[p]^* \mathbf{G}[p]} \cdot [q]$.

Hence the projection matrix for $\langle p \rangle$ acting on the coefficient vector [q] is $\frac{[p][p]^*\mathbf{G}}{[p]^*\mathbf{G}[p]}$

(c) Given a set of polynomials p_1, \dots, p_k , we can now apply a Gram-Schmidt procedure to obtain a set of orthogonal polynomials (cf. Trefethen and Bau 7). Design and implement such an algorithm as a function $\mathbf{Q} = \mathtt{orthogonalizePolynomials}(P)$, which takes a matrix \mathbf{P} containing the coefficients of the polynomials $[p_j]$ as columns, and returns an analogous matrix \mathbf{Q} for the orthogonal polynomials.

Apply your function to an identity matrix (representing the polynomials $(1, x, x^2, \dots)$, and verify that the coefficients you obtain represent multiples of the Legendre polynomials.

Solution: Submitted $q6_2017CS50415.py$ file. The function was tested on an identity matrix of size 5. The matrix Q obtained was as follows:

[0.70710678]	0.00000000	-0.79056942	0.00000000	0.79549513	
0.00000000	1.22474487	0.00000000	-2.80624304	0.00000000	
0.00000000	0.00000000	2.37170825	0.00000000	-7.95495129	
0.00000000	0.00000000	0.00000000	4.67707173	0.00000000	
0.00000000	0.00000000	0.00000000	0.000000000	9.28077650	

[0.00000000 0.00000000 0.00000000 9.28077650] As evident, the columns are the multiples of the Legendre polynomials. For e.g, Column 3 represents the polynomial $Q(x) = 2.37170825x^2 - 0.79056942$, which is equivalent to $1.58113883(\frac{3}{2}x^2 - \frac{1}{2}) = 1.58113883 \cdot P_3(x)$.