Finding Needles in Images: Can Multimodal LLMs Locate Fine Details?

Parth Thakkar1* Ankush Agarwal1* Prasad Kasu1 Pulkit Bansal1,2 Chaitanya Devaguptapu¹

¹Fujitsu Research of India ²Indian Institute of Technology, Patna

Motivation

MLLMs excel at global understanding but miss fine details

They perform well on overall document comprehension but often fail to locate small, specific regions needed to answer fine-grained queries.

Fine-grained information is key in real-world scenarios

Practical use cases like spotting prices in menus or footnotes in articles, require identifying tiny yet critical details in complex layouts.

Current benchmarks overlook fine-grained reasoning

Existing datasets focus on global understanding and don't explicitly test models' ability to reason about localized, detailed information.

Contributions

- •NiM Challenge & Benchmark: We introduce the Needle in an Image (NiM) task and release NiM-Benchmark to evaluate MLLMs on fine-grained detail localization across diverse document types.
- •Spot-IT Method: We propose Spot-IT, a plug-and-play approach that enhances fine-grained reasoning via question-guided dynamic attention, requiring no model changes.
- •SOTA Results: Spot-IT achieves up to 21.05% improvement over GPT-4o, setting new baselines for fine-grained detail extraction in DocVQA.

Evaluation of Spot-IT on existing benchmarks

Methods	ArxiVQA	DUDE			
	Acc.(†)	EM(†)	F1(†)	ANLS(†)	
Close	d-Source LLN	As (zero-sh	not)		
GPT-40	0.52	0.42	0.56	0.55	
GPT-4o-mini	0.47	0.34	0.50	0.47	
Gem-1.5-Flash	0.53	0.30	0.42	0.42	
GPT-40+OCR	0.41	0.34	0.47	0.47	
GPT-40+CoT	0.51	0.43	0.57	0.58	
GPT-40+Ours	0.60	0.45	0.60	0.60	
GPT-4o-mini+Ours	0.52	0.41	0.55	0.52	
Gem-1.5-Flash+Ours	0.54	0.34	0.47	0.45	
Oper	-Source LLM	ls (zero-sh	ot)		
Llama-3.2-VL-11B	0.41	0.13	0.23	0.18	
Qwen2-7B	0.44	0.21	0.32	0.28	
Llama-3.2+OCR	0.38	0.05	0.19	0.08	
Llama-3.2+CoT	0.42	0.11	0.23	0.17	
Llama-3.2+Ours	0.44	0.19	0.29	0.24	
Qwen2-7B+Ours	0.44	0.27	0.37	0.32	

Spot-IT evaluation results compared with baselines adapted from M3DocRAG.

NiM Benchmark: Examples

Query: For which console is Call of Duty Legacy Edition game available?

Query: "What is The price of Chips & Gravy

Spot-IT: Algorithm

Algorithm 1 Spot-IT: Query-Guided Attention for Document Understanding

Ensure: Answer a to the query

- 1: Clean q to obtain q_c ; Segment I into $n \times n$ grid $\{P_{i,j}\}$
- 2: $v_q \leftarrow L(q_c)$
- 3: for each patch $P_{i,j}$ do

$$v_{i,j} \leftarrow L(P_{i,j}); s_{i,j} \leftarrow \frac{v_{i,j} \cdot v_q}{\| \cdot \|_{1} + \| \cdot \|_{1}}$$

4: end for

5: $(i^*, j^*) \leftarrow \arg\max_{i,j} s_{i,j}; p \leftarrow \frac{\exp(s_{i^*,j^*})}{\sum_{i,j} \exp(s_{i,j})}$ 6: $x^* \leftarrow \frac{(2i^*-1)H}{2n}, y^* \leftarrow \frac{(2j^*-1)W}{2n}$

7: $\sigma \leftarrow \frac{1}{1 + \exp(-10(p - 0.2))}$; $M(x, y) \leftarrow \exp\left(-\sqrt{\frac{(x - x^*)^2 + (y - y^*)^2}{2\sigma^2}}\right)$

9: $a \leftarrow L(q, I')$

Avg Length

10: return a

Require: Document image I, query q, grid size n, Multi-modal LLM L

- $v_{i,j} \leftarrow L(P_{i,j}); s_{i,j} \leftarrow \frac{v_{i,j} \cdot v_q}{\|v_{i,j}\| \|v_q\|}$

$$\begin{array}{cccc}
v_{i,j} & \leftarrow L(\Gamma_{i,j}), & s_{i,j} & \leftarrow \|v_{i,j}\| \|v_q\| \\
\text{nd for}
\end{array}$$

- 8: $I'(x,y) \leftarrow (1 \alpha M(x,y))I(x,y) + \alpha M(x,y)H(x,y)$

NiM Benchmark: Evaluation

Model	GPT-40			GPT-40-mini		Gemini-1.5-Flash		Qwen2-7B				
	EM	F1	ANLS	EM	F1	ANLS	EM	$\mathbf{F1}$	ANLS	EM	F1	ANLS
Baseline	0.38	0.48	0.56	0.29	0.38	0.46	0.22	0.28	0.37	0.07	0.10	0.19
Ours	0.46	0.56	0.62	0.35	0.44	0.50	0.27	0.34	0.40	0.11	0.15	0.22

Performance remains modest, underscoring the benchmark's difficulty and the need for improved models.

Avg Length

1.92

Key Takeaways

- MLLMs lack precision Current models struggle to locate and reason about small, detail-rich regions in complex documents.
- Human-model gap persists Humans outperform MLLMs in accuracy for fine-grained document tasks, though with higher latency.
- Improvement areas Future work should enhance semantic similarity methods, and introduce more fine grained complex reasoning tasks.

NiM Benchmark: Statistics

Dataset Statistics Domains Categories 6 6 Pages/Images 2,970 Questions 1,180 **Document Categories:** (22)Academic Papers (32)Newspapers Magazines Lecture Shots (50)(17)Web Shots (100)(60)Menus Question Statistics **Answer Statistics** Max Length Max Length 26 19

10.96

NiM Benchmark: Accuracy vs Time

