Math

Chapter 9

Accuracy and Precision

- Accuracy: how correct
 Accuracy is limited
- Precision: how many digits
 - Precision could be noise

Mass of an electron	Is it precise?	Is it accurate?
12.12345124 kg	Stupidly so	No
10 ⁻³⁰ kg	No	Far more so than 12 kg, and accurate enough for most conversations
9.109 x 10 ⁻³¹ kg	Yes	Even more so
9.1090000001 x 10 ⁻³¹ kg	Uselessly so	Same accuracy as the previous answer
$(9.1092 + /- 0.0002) \times 10^{-31} \text{ kg}$	Yes	Yes, best answer yet

Speedy Operations

- Bit operation
- Addition, subtraction
- Multiplication
- Division
- Modulo
- Case25.math

Speedy Operations

Bad

```
for (i=0; i<100; i++) {
  if ((i%10) == 0) {
    printf("%d percent done.", i);
  }
}</pre>
```

Good

```
for (i=0; i<100; i++) {
  if (!(i & 0x07)) { // this will print out every 8th pass
    printf("%d percent done.", i);</pre>
```

Some Magic Numbers

- Powers of 2
 - Multiplication and division
 - Convert to bit shifting
- Unsigned numbers
 - Faster in math operations
 - No signs to track or extend
- Constants
 - Constants as #define are operands.
 Constants as const are variables.

Common Arithmetic

- Arithmetic operations
 - Average
 - Variance / Deviation
 - Sine / Cosine / Tangent
 - Logarithm
 - Exponentiation
- Methods
 - Direct calculation
 - Polynomial approximation
 - Lookup table + interpolation

Average

Average with a rolling window

```
newAverage = lastAverage + (newSample/length) - (oldestSample/length);
```

- Problems
 - Overflow
 - Underflow: division precision

```
newAverage = lastAverage + ((newSample- oldestSample)/length);
```

- If the difference is smaller than length, the new average will be the same.

Problems

- Overflow
 - Addition of 2^m n-bit numbers
 - (n+m)-bit result
 - 11+13=24
 - Integer multiplication
- Underflow: division precision
 - Integer division
 - n-bit number divided by 2^m
 - (n-m)-bit result
 - 59/4=14

Division Precision

Proper Average

- Case26.average
- Have a struct
 - ave
 - sum
 - length
- sum = sum + (newSample oldestSample)
- ave = sum / length
- Notes:
 - Precision of samples
 - Precision of lastSum

Proper Average

- The solution is easy to state:
 - Large values should be divided by much smaller ones.
 - They shouldn't be similar in magnitude.
- Choose a proper length of window
 - Addition can cause overflow
 - Division can cause underflow
- Scale numbers but choose a proper scale
 - Multiplication can cause overflow
- Know and depend upon a range of input values so that you can make sure your accuracy is not degraded by the lack of precision.

Standard Deviation

- Standard deviation
- Variance

```
• Don't do square root \sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \quad \sigma = \sqrt{\frac{1}{N-1} (\sum_{i=1}^{N} x_i^2) - \bar{x}^2}
```

```
uint16 GetVariance(int16 t* samples, uint16 t numSamples, int16 t mean) {
  uint32 t sumSquares = 0;
  int32 t tmp;
 uint32 t i = numSamples;
 while (i--) {
    tmp = *samples - mean;
    samples++;
    sumSquares += tmp*tmp;
 return (sumSquares/(numSamples-1));
```

12/05/17

Variance

```
struct sVar {
  int32 t sum;
  uint64 t sumSquares;
  uint16 t numSamples;
};
void AddSampleToVariance (stuct sVar *var, int16 t newSample) {
  var->sum += newSample;
  var->sumSquares += newSample*newSample;
  var->numSamples++;
uint16 t GetVariance(struct sVar *var, int16 t *average) {
  uint16 t variance;
  // This method also outputs average
  *average = var->sum/var->numSamples;
  variance = (var->sumSquares - (var->sum * (*average)))
                       /(var->numSamples-1);
  // get ready for the next block
  var->sum = 0; var->numSamples = 0; var->sumSquares = 0;
  return variance;
```

Variance

Two-pass variance

```
struct sVar {
         int16 t mean;
         int32 t M2;
         uint16 t numSamples;
       };
       void AddSampleToVariance(struct sVar *var, int16 t newSample) {
         int16 t delta = newSample - var->mean;
         var->numSamples++;
         var->mean += delta/var->numSamples;
         var->M2 += delta * (newSample - var->mean); // uses the new mean
       uint16 t GetVariance(struct sVar *var, int16 t *average) {
         uint16 t variance = var->M2/var->numSamples;
         *average = var->mean; // running average already calculated
         // get ready for the next block
         var->numSamples =0; var->mean = 0; var->M2 = 0;
         return variance;
12/05/17
```

Variance

- Case27.variance
 - Classical
 - Integer vs double
 - Single passGood vs bad
 - Two pass
 - Good vs bad

Divide a Constant

Divide 6Divide 7?

Table 9-1. Approximating 1/6 with a power-of-two divisor

Multiplier	Divisor	Equivalent shift	Result	% Error
1	6	None	0.166666667	0
3	16	4	0.1875	12.5
5	23	5	0.15625	6.2
11	64	6	0.171875	3.1
21	128	7	0.164063	1.5
43	256	8	0.167969	0.78
85	512	9	0.166016	0.39
171	1024	10	0.166992	0.19
341	2048	11	0.166504	0.09
683	4096	12	0.166748	0.04

Factor Polynomial

• 3 multi + 2 add

$$y = A*x + B*x + C*x;$$

Power + multi + add

2 add + 1 multi

$$y = (A + B + C)*x;$$

• 3 mtlti + 2 add

$$A*x^3+B*x^2+Cx ==> ((Ax+B)x+C)x$$

Tyler seriesSine

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

$$\sin(x) \approx x - Ax^3 + Bx^5 - Cx^7, where \ A = \frac{1}{3!}, B = \frac{1}{5!}, C = \frac{1}{7!}$$
$$\sin(x) = x * (1 - x^2(A + x^2(B - Cx^2)))$$
$$\sin(x) = x * (1 - x^2\left(\frac{1}{3!} + x^2\left(\frac{1}{5!} - \frac{1}{7!}x^2\right)\right))$$

Taylor Series: Sine

Taylor Series: Sine

Scale Input

Sine

- Scale x by 1024.
- All polynomial factors need to be scaled too.
 - 1/3! * 1024 = 171
 - 1/5! * 1024 = 8 or 9 (8.533)
 - 1/7! * 1024 = 1/5

```
xSq = (x*x) >> 10; // right-shift by 10 is equal to divide by 1,024
tmp = - DivideSevenFactorial(xSq);
tmp = (xSq * (INVERSE_FIVE_FACTORIAL + tmp)) >> 10;
tmp = (xSq * (-INVERSE_THREE_FACTORIAL + tmp)) >> 10;
sinX = x - ((x * tmp)>>10);
```

Scale Input

Taylor Series: Sine

- Case28.taylor
 - Polynomial
 - Divide constants
 - 1/6 = 683/4096
 - 1/120 = 546/65536
 - 1/5040 = 13/65536
 - Scale input (and output)
 - 1024x
 - Polynomial scale
 - Factors divided by scale
 - Factors divided by scale*scale

Lookup Table

```
const int16 t sinLookup[] = {
                                         const int16 t sinLookup[] = {
     -58, // x = -3200
                                          3, // \times @ -3145, for range
     -335, // x = -2800
                                           -487, // x @ -2633, for range
     -676, // x = -2400
                                           -853, // x @ -2121, for range
     -910, // x = -2000
                                           -1000, // x @ -1609, for range
     -1000, // x = -1600
                                           -890, // x @ -1097, for range
     -933, // x = -1200
                                           -553, // x @ -585, for range
     -718, // x = -800
                                          -73, // \times @ -73, for range
     -390, // x = -400
                                          425, // x @ 493, for range
     0, // x = 0
                                          813, // x @ 951, for range
     389, // x = 400
                                          994, // x @ 1463, for range
     717, // x = 800
                                          919, // x @ 1975, for range
     932, // x = 1200
                                          608, // x @ 2487, for range
     999, // x = 1600
                                          142, // x @ 2999, for range
     909, // x = 2000
                                        };
     675, // x = 2400
     334, // x = 2800
                                      uint8 t index = (x - (-3145 - 256)) >> 9;
     -59 // x = 3200
                                      y = sinLookup[index];
uint8_t index = (x - (-3200))/400; 3369, Qijun Gu
```

y = sinLookup[index];

Lookup Table

- Scale of input
 - 1000x
- Scale of output
 - 1000x (1024x)
- Step size : determine # of entries
 - 200
 - Power of 2
 - Variable
- Position of entries
 - Left
 - Center

Lookup Table

Linear Interpolation

```
struct sPoint {
   int16 t x;
   int16 t y
 };
// This linear interpolation code does:
// y = p0.y + ((x-p0.x)*(p1.y-p0.y))/(p1.x-p0.x);
// but in a bit-safe way.
int16 t Interpolate(struct sPoint p0, struct sPoint p1, int16 t x) {
  int16 t y;
  int32 t tmp; // start and end with int16s, but can need a larger intermediate
  tmp = (x - p0.x);
  tmp *= (p1.y - p0.y);
  tmp /= (p1.x - p0.x);
  y = p0.y + tmp; // now safe to go back to 16 bits
  return (y);
```

12/05/17

Example: Linear Interpolation

- Table 1: (step size 200)
 - x = 2100
 - x = 300
 - Errors
- Table 2: (step size 256)
 - x = 2100
 - x = 300
 - Errors
- Uniform step size is not always good.
 - Smaller steps on curves
 - Larger steps on straight lines

Explicit Lookup Table

- A table has both inputs and outpusVariable step sizes to improve accuracy

Explicit Lookup Table

•
$$Y = C_0 + C_1 X + C_2 X^2 + ...$$

- 1st tayler item
 - Linear interpolation
- 2nd tayler item
 - Error on linear interpolation
 - Bigger c2, larger error
 - Bigger c2, more curve
- Bigger step size along straight lines
- Smaller step size along curves

Explicit Lookup Table

```
int SeachLookupTable(int32 t target, struct sPoint const *table, int tableSize) {
  int i;
  int bestIndex = 0;
  for (i=0; i<tableSize; i++) {
    if (target > table[i].x) {
      bestIndex = i;
    } else {
      return bestIndex;
  return bestIndex;
index = SeachLookupTable (x, sinLookup, sizeof(sinLookup));
if (index+1 < sizeof(sinLookup)) {</pre>
  y = interpolate(x, sinLookup[index], sinLookup [index + 1]);
} else {
  y = interpolate(x, sinLookup[index-1], sinLookup [index]);
```

Fake Floating Numbers

Binary scaling

```
struct sFakeFloat {
  int32_t num; // numerator
  int8_t shift; // right-shift values (use negative for left-shift)
}
floatingPointValue = num >> shift; // in the actual code

struct sFakeFloat oneFourth = {1, 2};
struct sFakeFloat four = {1, -2};
```

Precision

Table 9-2. Representing the number 12.345 using binary scaling

Numerator	Number of bits needed in numerator	Denominator shift values	Equivalent floating-point number	Error
12	4	0	12	0.345
25	5	1	12.5	0.155
99	7	3	12.375	0.030
395	9	5	12.34375	0.00125
12641	14	10	12.34472656	0.000273
12944671	24	20	12.34500027	2.67E-07
414229463	29	25	12.345	1.19E-09
1656917852	31	27	12.345	1.19E-09

Operations

- Addition (Subtraction)
 - Left shift the larger númber
 - Both numbers have the same shift
 - Add two numbers
 - Keep the shift
- Multiplication (Division)
 - Multiply two numbers
 - Add two shifts
 - Right shift the result to make the result in range.
- Case30.fakefloat