

CrossLink Family

Data Sheet

FPGA-DS-02007 Version 1.5

Contents

Ac	,	in This Document	
1.	Gene	ral Description	6
	1.1.	Features	6
2.	Produ	uct Feature Summary	7
3.	Archi	tecture Overview	8
	3.1.	MIPI D-PHY Blocks	9
	3.2.	Programmable I/O Banks	.14
	3.3.	sysI/O Buffers	.15
	3.3.1.		
	3.3.2.	Output Drive Strength	.15
	3.3.3.	On-Chip Termination	.15
	3.4.	Programmable FPGA Fabric	
	3.4.1.	PFU Blocks	.16
	3.4.2.		
	3.5.	Clocking Structure	
	3.5.1.	•	
	3.5.2.	1	
	3.5.3.	O .	
	3.5.4.	•	
	3.5.5.		
	3.6.	Embedded Block RAM Overview	
	3.7.	Power Management Unit	
	3.7.1.		
	3.8.	User I ² C IP	
	3.9.	Programming and Configuration	
		nd Switching Characteristics	
	4.1.	Absolute Maximum Ratings	
		Recommended Operating Conditions	
	4.3.	Power Supply Ramp Rates	
	4.4. 4.5.	Power-On-Reset Voltage Levels	
	4.5. 4.6.	DC Electrical Characteristics	
	4.6. 4.7.	CrossLink Supply Current	
		Power Management Unit (PMU) Timing	
		sysl/O Recommended Operating Conditions	
		sysi/O Single-Ended DC Electrical Characteristics	
	4.10. 4.11.	sysI/O Differential Electrical Characteristics	
	4.11.	•	
	4.11.2		
		CrossLink Maximum General Purpose I/O Buffer Speed	
		CrossLink External Switching Characteristics	
		SysCLOCK PLL Timing	
	4.15.	Hardened MIPI D-PHY Performance	
	4.16.	Internal Oscillators (HFOSC, LFOSC)	
		User I ² C	
		CrossLink sysCONFIG Port Timing Specifications	
		SRAM Configuration Time from NVCM	
		Switching Test Conditions	
5.		it Information	
	5.1.	WLCSP36 Pinout	
	5.2.	ucfBGA64 Pinout	
	5.3.	ctfBGA80/cktBGA80 Pinout	
		•	

5.4. csfBGA81 Pinout	49
5.5. Dual Function Pin Descriptions	51
5.6. Dedicated Function Pin Descriptions	51
5.7. Pin Information Summary	52
6. CrossLink Part Number Description	53
6.1. Ordering Part Numbers	53
References	54
Technical Support	54
Revision History	55
Figures	
Figure 3.1. CrossLink Device Block Diagram	
Figure 3.2. CrossLink sysI/O Banking	
Figure 3.3. MIPI DSI Transmit Interface with Hard D-PHY Module	
Figure 3.4. MIPI CSI-2 Transmit Interface with Hard D-PHY Module	
Figure 3.5. MIPI DSI Receive Interface with Hard D-PHY Module	
Figure 3.6. MIPI CSI-2 Receive Interface with Hard D-PHY Module	
Figure 3.7. CrossLink Device Simplified Block Diagram (Top Level)	
Figure 3.8. CrossLink PFU Diagram	
Figure 3.9. Slice Diagram	
Figure 3.10. Connectivity Supporting LUT5, LUT6, LUT7 and LUT8	
Figure 3.11. CrossLink PLL Block Diagram	
Figure 3.12. CrossLink Clocking Structure	
Figure 3.13. CrossLink Edge Clock Sources per Bank	
Figure 3.14. CrossLink OSCI Component Symbol	
Figure 3.15. CrossLink MIPI D-PHY Block	
Figure 3.16. CrossLink PMU State Machine	
Figure 4.1. Receiver RX.CLK.Centered Waveforms	
Figure 4.2. Receiver RX.CLK.Aligned Input Waveforms	
Figure 4.3. Transmit TX.CLK.Centered Output Waveforms	
Figure 4.4. Transmit TX.CLK.Aligned Waveforms	
Figure 4.5. DDRX71, DDRX141 Video Timing Waveforms	
Figure 4.6. Output Test Load, LVTTL and LVCMOS Standards	43

Tables

Table 2.1. CrossLink Feature Summary	7
Table 3.1. CrossLink Output Support per Bank Basis	14
Table 3.2. CrossLink Input Support per Bank Basis	15
Table 3.3. Drive Strength Values	15
Table 3.4. Slice Signal Descriptions	18
Table 3.5. CrossLink PLL Port Definition	19
Table 3.6. OSCI Component Port Definition	21
Table 3.7. OSCI Component Attribute Definition	21
Table 3.8. sysMEM Block Configurations	22
Table 3.9. CrossLink sysCONFIG Pins	
Table 4.1. Absolute Maximum Ratings 1, 2, 3	
Table 4.2. Recommended Operating Conditions ^{1, 2}	26
Table 4.3. Power Supply Ramp Rates*	27
Table 4.4. Power-On-Reset Voltage Levels 1, 3, 4	27
Table 4.5. DC Electrical Characteristics	28
Table 4.6. CrossLink Supply Current	29
Table 4.7. PMU Timing*	
Table 4.8. sysI/O Recommended Operating Conditions ¹	
Table 4.9. sysI/O Single-Ended DC Electrical Characteristics	
Table 4.10. LVDS/subLVDS1/SLVS200 ^{1, 2}	31
Table 4.11. MIPI D-PHY	
Table 4.12. CrossLink Maximum I/O Buffer Speed	33
Table 4.13. CrossLink External Switching Characteristics 4,5	
Table 4.14. sysCLOCK PLL Timing	
Table 4.15. 1500 Mb/s MIPI_DPHY_X8_RX/TX Timing Table (1500 Mb/s > MIPI D-PHY Data Rate > 1200 Mb/s)*	
Table 4.16. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s $>$ MIPI D-PHY Data Rate $>$ 1000 Mb/s)	
Table 4.17. 1000 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI D-PHY Data Rate > 10 Mb/s)	
Table 4.18. Internal Oscillators	
Table 4.19. User I ² C ¹	
Table 4.20. CrossLink sysCONFIG Port Timing Specifications	
Table 4.21. SRAM Configuration Time from NVCM	
Table 4.22. Test Fixture Required Components, Non-Terminated Interfaces*	
Table 5.1. WLCSP36 Pinout	
Table 5.2. ucfBGA64 Pinout	
Table 5.3. ctfBGA80/cktBGA80 Pinout	
Table 5.4. csfBGA81 Pinout	
Table 5.5. Dual Function Pin Descriptions	
Table 5.6. Dedicated Function Pin Descriptions	
Table 5.7. Pin Information Summary	52

5

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AR	Augmented Reality
ASIC	Application-Specific Integrated Circuit
BGA	Ball Grid Array
CMOS	Complementary Metal Oxide Semiconductor
CSI	Camera Serial Interface
DBI	Display Bus Interface
DDR	Double Data Rate
DPI	Display Pixel Interface
DSI	Display Serial Interface
EBR	Embedded Block RAM
ECLK	Edge Clock
FPGA	Field-Programmable Gate Array
FPD	Flat Panel Display
GPIO	General-Purpose Input/Output
HFOSC	High Frequency Oscillator
НМІ	Human Machine Interface
I ² C	Inter-Integrated Circuit
ISM	Industrial, Scientific, Medical
LFOSC	Low Frequency Oscillator
LUT	Look Up Table
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVTTL	Low Voltage Transistor-Transistor Logic
MIPI	Mobile Industry Processor Interface
NVCM	Non-Volatile Configuration Memory
ОТР	One Time Programmable
PCLK	Primary Clock
PFU	Programmable Functional Unit
PLL	Phase Locked Loops
PMU	Power Management Unit
RAM	Random Access Memory
Rx	Receive
SDR	Single Data Rate
SLVS200	Scalable Low-Voltage Signaling
SPI	Serial Peripheral Interface
TransFR	Transparent Field Reconfiguration
Tx	Transmit
UHD	Ultra-High-Definition
VR	Virtual Reality
WLCSP	Wafer Level Chip Scale Packaging

1. General Description

CrossLink™ from Lattice Semiconductor is a programmable video bridging device that supports a variety of protocols and interfaces for mobile image sensors and displays. The device is based on Lattice mobile FPGA 40-nm technology. It combines the extreme flexibility of an FPGA with the low power, low cost and small footprint of an ASIC.

CrossLink supports video interfaces including MIPI[®] DPI, MIPI DBI, CMOS camera and display interfaces, OpenLDI, FPD-Link, FLATLINK, MIPI D-PHY, MIPI CSI-2, MIPI DSI, SLVS200, SubLVDS, HiSPi and more.

Lattice Semiconductor provides many pre-engineered IP (Intellectual Property) modules for CrossLink. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

The Lattice Diamond® design software allows large complex designs to be efficiently implemented using CrossLink. Synthesis library support for CrossLink devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the CrossLink device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.

Interfaces on CrossLink provide a variety of bridging solutions for smart phone, tablets, wearables, VR, AR, Drone, Smart Home, HMI as well as adjacent ISM markets. The device is capable of supporting high-resolution, high-bandwidth content for mobile cameras and displays at 4 UHD and beyond.

1.1. Features

Ultra-low power

6

- Sleep Mode Support
- Normal Operation From 5 mW to 150 mW
- Ultra small footprint packages
 - 36-ball WLCSP (6 mm²)
 - 64-ball ucfBGA (12 mm²)
 - 80-ball ctfBGA (42 mm²)
 - 80-ball ckfBGA (49 mm²)
 - 81-ball csfBGA (20 mm²)

- Programmable architecture
 - 5936 LUTs
 - 180 Kb block RAM
 - 47 Kb distributed RAM
- Two hardened 4-lane MIPI D-PHY interfaces
 - Transmit and receive
 - 6 Gb/s per D-PHY interface
- Programmable source synchronous I/O
 - MIPI D-PHY Rx, LVDS Rx, LVDS Tx, SubLVDS Rx, SLVS200 Rx, HiSPi Rx
 - Up to 1200 Mb/s per I/O
 - Four high-speed clock inputs
- Programmable CMOS I/O
 - LVTTL and LVCMOS
 - 3.3 V, 2.5 V, 1.8 V and 1.2 V (outputs)
 - LVCMOS differential outputs
- Flexible device configuration
 - One Time Programmable (OTP) non-volatile configuration memory
 - Master SPI boot from external flash
 - Dual image booting supported
 - I²C programming
 - SPI programming
 - TransFR™ I/O for simple field updates
- Enhanced system level support
 - Reveal logic analyzer
 - TraceID for system tracking
 - On-chip hardened I²C block
- Applications examples
 - Dual MIPI CSI-2 to Single MIPI CSI-2 Aggregation
 - Quad MIPI CSI-2 to Single MIPI CSI-2 Aggregation
 - Single MIPI DSI to Single MIPI DSI Repeater
 - Single MIPI CSI-2 to Single MIPI CSI-2 Repeater
 - Single MIPI DSI to Dual MIPI DSI Splitter
 - Single MIPI CSI-2 to Dual MIPI CSI-2 Splitter
 - MIPI DSI to OpenLDI/FPD-Link/LVDS Translator
 - OpenLDI/FPD-Link/LVDS to MIPI DSI Translator
 - MIPI DSI/CSI-2 to CMOS Translator
 - CMOS to MIPI DSI/CSI-2 Translator
 - SubLVDS to MIPI CSI-2 Translator

7

2. Product Feature Summary

Table 2.1 lists CrossLink device information and packages.

Table 2.1. CrossLink Feature Summary

Device	CrossLink
LUTs	5936
sysMEM Blocks (9 Kb)	20
Embedded Memory (Kb)	180
Distributed RAM Bits (Kb)	47
General Purpose PLL	1
NVCM	Yes
Embedded I ² C	2
Oscillator (10 KHz)	1
Oscillator (48 MHz)	1
Hardened MIPI D-PHY	21,2
Packages (Footprint, Pitch)	I/O
36 WLCSP ² (2.535 × 2.583 mm ² , 0.4 mm)	17
64 ucfBGA (3.5 × 3.5 mm², 0.4 mm)	29
80 ctfBGA (6.5 x 6.5 mm ² , 0.65 mm)	37
80 ckfBGA (7.0 x 7.0 mm², 0.65 mm)	37
81 csfBGA (4.5 × 4.5 mm², 0.5 mm)	37

Notes:

- 1. Additional D-PHY Rx interfaces are available using programmable I/O.
- 2. Only one Hardened D-PHY is available in 36 WLCSP package.

3. Architecture Overview

CrossLink is designed as a flexible, chip-to-chip bridging solution which supports a wide variety of applications. The device provides three key building blocks for these bridging applications:

- Up to two embedded Hard D-PHY blocks
- Two banks of flexible programmable I/O supporting a variety of standards including D-PHY Rx, subLVDS, SLVS200, LVDS, and CMOS
- A programmable logic core providing the LUTs, memory, and system resources to implement a wide range of bridging operations

In addition to these blocks, CrossLink also provides key system resources including a Power Management Unit, flexible configuration interface, additional CMOS GPIO, and user I²C blocks.

The block diagram for the device is shown in Figure 3.1.

Figure 3.1. CrossLink Device Block Diagram

Note: I²C and SPI configuration modes are supported. User mode hardened I²C is also supported.

3.1. MIPI D-PHY Blocks

The top side of the device (Figure 3.2) includes two hard MIPI D-PHY quads. The D-PHY can be configured to support both camera interface (CSI-2) and display interface (DSI) applications. Below is a summary of the features supported by the hard D-PHY quads.

- Transmit and Receive compliant to MIPI Alliance Specification for D-PHY Revision 1.1
- High-Speed (HS) and Low-Power (LP) mode support (including built-in contention detect)
- Supports continuous clock mode or low power clock mode
- Up to 6 Gb/s per guad (1500 Mb/s data rate per lane)
- Dedicated PLL for Transmit Frequency Synthesis

Dedicated Serializer and De-Serializer blocks for fabric interfacingLattice Semiconductor provides a set of preengineered IP modules which include the full implementation and control of the hard D-PHY blocks to enable designers to focus on unique aspects of their design.

Figure 3.3 to Figure 3.6 show the signals connected to the fabric and the automatic settings when the hardened D-PHY is configured for the DSI/CSI-2 transmit and receive modes. Refer to CrossLink High-Speed I/O Interface (FPGA-TN-02012) for more information on the Hard D-PHY quads.

Figure 3.2. CrossLink sysI/O Banking

Figure 3.3. MIPI DSI Transmit Interface with Hard D-PHY Module

Figure 3.4. MIPI CSI-2 Transmit Interface with Hard D-PHY Module

Figure 3.5. MIPI DSI Receive Interface with Hard D-PHY Module

Figure 3.6. MIPI CSI-2 Receive Interface with Hard D-PHY Module

3.2. Programmable I/O Banks

CrossLink devices provide programmable I/O which can be used to interface to a variety of external standards on Banks 1 and 2. CrossLink devices also provide dedicated CMOS GPIOs on Bank 0. Bank 0 GPIOs only support Single Data Rate (SDR) interfaces, while Bank 1 and Bank 2 support both SDR and Double Data Rate (DDR) interfaces. The GPIOs on Bank 0 do not include differential signaling capabilities. The location of the three Banks and their associated supplies are shown in Figure 3.2.

Bank 0 features:

- Support for the following single ended standards (ratioed to VCCIO)
 - LVCMOS33
 - LVCMOS25
 - LVCMOS18
 - LVTTL33
- Tri-state control for output
- Input/output register blocks
- Open-drain option and programmable input hysteresis
- Internal pull-up resistors with configurable values of 3.3 k Ω , 6.8 k Ω , and 10 k Ω

Bank 1 and Bank 2 features:

- Built-in support for the following differential standards
 - LVDS Tx and Rx
 - SLVS200 Rx
 - SubLVDS Rx
 - MIPI Rx (both LP and HS receive on a single differential pair)
- Support for the following single ended standards (ratioed to VCCIO)
 - LVCMOS33
 - LVCMOS25
 - LVCMOS18
 - LVCMOS12 (Outputs Only)
 - LVTTL33
- Independent voltage levels per bank based on VCCIO supply
- Input/output gearboxes per LVDS pair supporting several ratios for video interface applications
 - DDRX1, DDRX2, DDRX4, DDRX8 and DDRX71, DDRX141
 - Programmable delay cells to support edge-aligned and center-aligned interfaces
- Programmable differential termination ($\sim 100 \Omega$) with dynamic enable control
- Tri-state control for output
- Input/output register blocks
- Single-ended standards support open-drain and programmable input hysteresis
- Optional weak pull-up resistors

Table 3.1. CrossLink Output Support per Bank Basis

ОUТРUТ	BANK 0	BANK 1	BANK 2
LVCMOS12	_	✓	✓
LVCMOS18	✓	✓	✓
LVCMOS25	✓	✓	✓
LVCMOS33	✓	✓	✓
LVTTL33	✓	✓	✓
LVDS25	_	✓	✓

Table 3.2. CrossLink Input Support per Bank Basis

INPUT	BANK 0	BANK 1	BANK 2
LVCMOS12	_	_	_
LVCMOS18	✓	✓	✓
LVCMOS25	✓	✓	✓
LVCMOS33	✓	✓	✓
LVTTL33	✓	✓	✓
LVDS25	_	✓	✓
MIPI D-PHY	_	✓	✓
SLVS200	_	✓	✓
subLVDS	_	✓	✓

3.3. sysI/O Buffers

The CrossLink sysI/O buffers are distributed across three banks located at the bottom of the CrossLink device as shown in Figure 3.2. The sysI/O buffers support a wide variety of standards to interface to a range of systems including LVDS, subLVDS, LVCMOS, LVTTL, SLVS200 and MIPI. CrossLink supports single-ended buffers on all three banks. Differential I/O is supported on Bank 1 and Bank 2.

3.3.1. Programmable PULLMODE Settings

The CrossLink sysl/O buffers offer multiple programmable value pull-up resistors on the three banks. The pull-up values are programmable on a "per-pin" basis. The default state of the I/O pins prior to configuration is tri-stated with a weak pull-up to V_{CCIOx} . The I/O pins convert to the software user-defined settings after the configuration bitstream has been successfully downloaded to the device. Each syslO buffer can be programmed with a 100 k Ω (weak pull-up), 3.3 k Ω , 6.8 k Ω , 10 k Ω or no pull-up. These pull-up options allow an I²C interface to be place on the majority of the pins on the device. These options are not exclusively for I²C protocol and may be used for other functions.

3.3.2. Output Drive Strength

Each CrossLink output can have its own individual drive strength setting, but is predefined based on the V_{CCIOx} setting. Table 3.3 lists the drive settings for the corresponding I/O type.

Table 3.3. Drive Strength Values

VCCIOx (V)	I/O Type	Drive Strength (mA)
3.3	LVTTL33	8
3.3	LVCMOS33	8
2.5	LVCMOS25	6
1.8	LVCMOS18	4
1.2	LVCMOS12	2

3.3.3. On-Chip Termination

Bank 1 and bank 2 of CrossLink support LVDS, SLVS200 subLVDS and MIPI D-PHY inputs. These two banks support onchip 100 Ω input differential termination between LVDS, SLVS200 and subLVDS pairs. For MIPI D-PHY inputs, the onchip 100 Ω termination is dynamically enabled based on the HSSEL (High Speed Select) signal.

See CrossLink High-Speed I/O Interface (FPGA-TN-02012) and CrossLink sysI/O Usage Guide (FPGA-TN-02016) for details.

3.4. Programmable FPGA Fabric

CrossLink is built around a programmable logic fabric consisting of 5936 four input lookup tables (LUT4) arranged alongside dedicated registers in Programmable Functional Units (PFU). These PFU blocks are the building blocks for logic, arithmetic, RAM and ROM functions. The PFU blocks are connected via a programmable routing network. The Lattice Diamond design software configures the PFU blocks and the programmable routing for each unique design. Interspersed between rows of PFU are rows of sysMEM™ Embedded Block RAM (EBR), with programmable I/O banks, embedded I²C and embedded MIPI D-PHY arranged on the top and bottom of the device as shown in Figure 3.7.

Figure 3.7. CrossLink Device Simplified Block Diagram (Top Level)

3.4.1. PFU Blocks

The core of the CrossLink device consists of PFU blocks. Each PFU block consists of four interconnected slices numbered 0 – 3 as shown in Figure 3.8. Each slice contains two LUTs. All the interconnections to and from PFU blocks are from routing. The PFU block can be used in Distributed RAM or ROM function, or used to perform Logic, Arithmetic or ROM functions.

Figure 3.8. CrossLink PFU Diagram

© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.4.2. Slice

Each slice contains two LUT4s feeding two registers. Each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 3.9 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge triggered or level sensitive clocks.

Each slice has 14 input signals: 13 signals from routing and 1 signal from the carry-chain routed from the adjacent slice or PFU. There are five outputs: four to routing and one to carry-chain (to the adjacent PFU). There are two inter slice/PFU output signals that are used to support wider LUT functions, such as LUT6, LUT7, and LUT8. Table 3.4 and Figure 3.10 list the signals associated with all the slices. Figure 3.8 shows the connectivity of the inter-slice/PFU signals that support LUT5, LUT6, LUT7, and LUT8.

Notes: For Slices 0 and 1, memory control signals are generated from Slice 2 as follows: WCK is CLK
WRE is from LSR
DI[3:2] for Slice 1 and DI[1:0] for Slice 0 data from Slice 2
WAD [A:D] is a 4-bit address from slice 2 LUT input

Figure 3.9. Slice Diagram

FPGA-DS-02007-1.5

© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Figure 3.10. Connectivity Supporting LUT5, LUT6, LUT7 and LUT8

Table 3.4. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	M0	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-in ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6, LUT7 and LUT8 ²
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Inter-PFU signal	FCO	Fast carry chain output ¹

Notes:

- 1. See Figure 3.9 for connection details.
- 2. Requires two adjacent PFUs.

3.5. Clocking Structure

The CrossLink device family provides resources to support a wide range of clocking requirements for programmable video bridging. These resources are described below. For details, refer to CrossLink sysCLOCK PLL/DLL Design and Usage Guide (FPGA-TN-02015).

3.5.1. sysCLK PLL

The CrossLink sysCLK PLL provides the ability to synthesis clock frequencies (See Table 4.14 for input frequency range). The PLL provides features such as dynamic selectable clock input, clock injection delay removal, independent dynamic output enable control, and programmable output phase adjustment. The architecture of the PLL is shown in Figure 3.11 and followed by a description of the PLL blocks.

Figure 3.11. CrossLink PLL Block Diagram

Table 3.5 provides a description of the signals in the PLL block.

Table 3.5. CrossLink PLL Port Definition

Signal	1/0	Description
CLKI	ı	Input clock to PLL
CLKFB	I	Feedback clock
USRSTDBY	I	User port to put the PLL to sleep mode
PHASESEL[1:0]	I	Select the output affected by Dynamic Phase adjustment
PHASEDIR	I	Dynamic phase adjustment direction
PHASESTEP	I	Dynamic phase adjustment step
PHASELOADREG	I	Load dynamic phase adjustment values into PLL
RST	I	Resets the whole PLL
ENCLKOP	I	Enable PLL output CLKOP
ENCLKOS	I	Enable PLL output CLKOS
ENCLKOS2	I	Enable PLL output CLKOS2
ENCLKOS3	I	Enable PLL output CLKOS3
PLLWAKESYNC	I	Enable PLL switching from internal to user feedback path when PLL wake up
CLKOP	0	PLL main output clock
CLKOS	0	PLL output clock
CLKOS2	0	PLL output clock
CLKOS3	0	PLL output clock
LOCK	0	PLL LOCK to CLKI, asynchronous signal. Active high indicates PLL lock

3.5.2. Primary Clocks

The primary clock routing network is made up of low skew clock routing resources with connectivity to every synchronous element of the device. Primary clock sources are selected in the center mux and distributed on the primary clock routing to clock the synchronous elements in the FPGA fabric. CrossLink family of devices provide up to eight unique global primary clocks. Primary clock sources are:

- LVDS PIO pins
- GPIO pins
- PLL outputs
- Clock dividers
- Fabric internally generated clock signal
- Divided down clock from DPHY
- OSCI

The routing clock structure is shown in Figure 3.12.

Figure 3.12. CrossLink Clocking Structure

3.5.3. Edge Clocks

The CrossLink device has Edge Clock (ECLK) at the bottom 2 banks (Bank 1 and Bank 2) of the device (Figure 3.3). The CrossLink device has 2 edge clocks per Programmable I/O bank. These clocks, which have low injection time and skew, are used to clock I/O registers. Edge clock resources are designed for high speed I/O interfaces with high fan-out capability. The sources of edge clocks are:

- Dedicated Clock (PCLK) pins muxed with the DLLDEL output
- PLL outputs (CLKOP and CLKOS)
- Internal nodes

ELCK input MUX collects all clock sources as shown in Figure 3.13 below. There are two ECLK Input MUXs, one on each bank. It drives the ECLK SYNC modules and the ECLK Clock Divider through a 2 to 1 MUX.

© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

21

Figure 3.13. CrossLink Edge Clock Sources per Bank

3.5.4. Dynamic Clock Enables

Each PLL output has a user input signal to dynamically enable/disable its output to provide a glitch free clock. Then the clock enable signal is set to logic '0', the corresponding output clock is held to logic '0'. This allows the user to save power by stopping the corresponding output clock when not in use.

3.5.5. Internal Oscillator (OSCI)

The OSCI element performs multiple functions on the CrossLink device. It is used for configuration and available during user mode. OSCI element has the following features in user mode:

- Always-on low frequency clock output (LFCLKOUT) with nominal frequency of 10 kHz
- High-frequency clock output (HFCLKOUT) with nominal frequency of 48 MHz that can be enabled or disabled using HFOUTEN input
- Programmable output dividers (HFCLKDIV) for 48 MHz, 24 MHz, 12 MHz or 6 MHz HFCLKOUT output
- Both output clocks have a direct connection to primary clock routing
- Figure 3.14, Table 3.6 and Table 3.7 below show the OSCI definitions

Figure 3.14. CrossLink OSCI Component Symbol

Table 3.6. OSCI Component Port Definition

Port Name	I/O	Description
HFOUTEN		High frequency clock output enable
HFCLKOUT	0	High frequency clock output
LFCLKOUT	0	Low Frequency clock output

Table 3.7. OSCI Component Attribute Definition

Defparam Name	Description	Value	Default
HFCLKDIV	Configure HF oscillator output divider	1, 2, 4, 8	1

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-DS-02007-1.5

3.6. Embedded Block RAM Overview

CrossLink devices contain sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-KB RAM with memory core, dedicated input registers and output registers with separate clock and clock enable.

Support for different memory configurations:

- Single Port
- True Dual Port
- Pseudo Dual Port
- ROM
- FIFO (logic wrapper added automatically by design tools)

Flexible customization features:

- Initialization of RAM/ROM
- Memory cascading (handled automatically by design tools)
- Optional parity bit support
- Byte-enable
- Multiple block size options
- RAM modes support optional Write Through or Read-Before-Write modes

For details, refer to CrossLink Memory Usage Guide (FPGA-TN-02017).

Table 3.8. sysMEM Block Configurations

Memory Mode	Memory Size Configurations
	8,192 x 1
	4,096 x 2
Single Port	2,048 x 4
	1,024 x 9
	512 x 18
	8,192 x 1
True Dual Port	4,096 x 2
True Duai Port	2,048 x 4
	1,024 x 9
	8,192 x 1
	4,096 x 2
Pseudo Dual Port	2,048 x 4
	1,024 x 9
	512 x 18
	8,192 x 1
	4,096 x 2
ROM	2,048 x 4
	1,024 x 9
	512 x 18

3.7. Power Management Unit

The embedded Power Management Unit (PMU) allows low-power Sleep State of the device. Figure 3.15 shows the block diagram of the PMU IP.

When instantiated in the design, PMU is always on, and uses the low-speed clock from oscillator of the device to perform its operations.

The typical use case for the PMU is through a user implemented state machine that controls the sleep and wake up of the device. The state machine implemented in the FPGA fabric identifies when the device needs to go into sleep mode, issues the command through PMU's FPGA fabric interface, assigns the parameters for sleep (time to wake up and so on) and issues Sleep command.

The device can be woken up externally using the PMU Wake-Up (USRWKUP) pin, or from the PMU Watch Dog Timer expiry or from I2CO (address decoding detection or FIFO full in one of hardened I²C).

Figure 3.15. CrossLink MIPI D-PHY Block

3.7.1. PMU State Machine

PMU can place the device in two mutually exclusive states – Normal State and Sleep State. Figure 3.16 shows the PMU State Machine triggers for transition from one state to the other.

- Normal state All elements of the device are active to the extent required by the design. In this state, the device is at fully active and performing as required by the application.
 Note that the power consumption of the device is highest in this state.
- Sleep state The device is power gated such that the device is not operational. The configuration of the device and the EBR contents are retained; thus in Sleep mode, the device does not lose configuration SRAM and EBR contents. When it transitions to Normal state, device operates with these contents preserved. The PMU is active along with the associated GPIOs.

The power consumption of the device is lowest in this state. This helps reduce the overall power consumption for the device.

Figure 3.16. CrossLink PMU State Machine

For more details, refer to Power Management and Calculation for CrossLink Devices (FPGA-TN-02018).

3.8. User I²C IP

CrossLink devices have two I^2C IP cores that can be configured either as an I^2C master or as an I^2C slave. The I2C0 core has pre-assigned pins, and supports PMU wakeup over I^2C . The pins for the I2C1 interface are not pre-assigned – user can use any General Purpose I/O pins.

The I²C cores support the following functionality:

- Master and Slave operation
- 7-bit and 10-bit addressing
- Multi-master arbitration support
- Clock stretching
- Up to 1 MHz data transfer speed
- General call support
- Optionally delaying input or output data, or both
- Optional FIFO mode
- Transmit FIFO size is 10 bits x 16 bytes, receive FIFO size is 10 bits x 32 bytes

For further information on the User I²C, refer to CrossLink I2C Hardened IP Usage Guide (FPGA-TN-02019).

3.9. Programming and Configuration

CrossLink is a SRAM-based programmable logic device that includes an internal Non-Volatile Configuration Memory (NVCM), as well as flexible SPI and I²C configuration modes. CrossLink provides four modes for loading the configuration data into the SRAM memory.

- Self-Download (NVCM) mode CrossLink retrieves bitstream from internal NVCM
- Master SPI mode CrossLink retrieves bitstream from an external SPI Flash
- Slave SPI mode System microprocessor writes bitstream to CrossLink through SPI port
- Slave I²C mode System microprocessor writes bitstream to CrossLink through I²C port

CrossLink provides a set of sysCONFIG I/O pins to program and configure the FPGA. The sysCONFIG pins are grouped together to create ports (I²C, SSPI or MSPI) that are used to interact with the FPGA for programming, configuration, and access of resources inside the FPGA. The sysCONFIG pins (Table 3.9) in a configuration group may be active and used for programming the FPGA or they can be reconfigured to act as general purpose I/Os.

Table 3.9. CrossLink sysCONFIG Pins

Pin Name	Associated sysCONFIG Port
CRESETB	Self Download Mode/SSPI/MSPI/I ² C
CDONE	Self Download Mode/SSPI/MSPI/I ² C
SPI_SCK/MCK/SDA	SSPI/MSPI/I ² C
SPI_SS/CSN/SCL	SSPI/MSPI/I ² C
MOSI	SSPI/MSPI
MISO	SSPI/MSPI

As external power ramps up, a Power On Reset (POR) circuit inside the FPGA becomes active. When POR conditions are met, the POR circuit releases an internal reset strobe, allowing the device to begin its initialization process. After CrossLink drives CDONE low, CrossLink enters the memory initialization phase where it clears all of the SRAM memory inside the FPGA. CrossLink remains in initialization state until the CRESETB pin is deasserted or after SSPI/SI²C activation code is received.

- After CRESETB goes from low to high, the Configuration Logic puts the device into master auto booting mode where it boots either from the internal NVRAM or an external SPI boot PROM.
- Holding the CRESETB low postpones the master auto booting event and allows the slave configuration ports (Slave SPI or Slave I²C) to detect a 'Slave Active' condition where the SPI or I²C Master sends an Activation Key code to CrossLink. An external SPI Master or I²C Master needs to write the Activation Key to the FPGA while CRESETB is held LOW and within 9.5 ms from V_{cc} min during power up to enter into one of the slave configuration modes.
- Sources should not drive output to CrossLink until configuration has been completed to ensure CrossLink is in a known state.

In addition to the flexible configuration modes, the CrossLink configuration engine supports the following special features:

- TransFR (Transparent Field Reconfiguration) allowing users to update logic in field without interrupting system operation by freezing I/O states during configuration
- Dual-Boot Support for primary and golden bitstreams provides automatic recovery from configuration failures
- Security and One-Time Programmable (OTP) modes protect bitstream integrity and prevent readback
- 64-bit unique TraceID per device

For more information, refer to CrossLink Programming and Configuration Usage Guide (FPGA-TN-02014).

4. DC and Switching Characteristics

4.1. Absolute Maximum Ratings

Table 4.1. Absolute Maximum Ratings 1, 2, 3

Symbol	Parameter	Min	Max	Unit
V _{cc}	Core Supply Voltage	-0.5	1.32	V
V _{CCGPLL}	PLL Supply Voltage	-0.5	1.32	V
V	Auxiliary Supply Voltage for Bank 1, 2 and NVCM - @ 2.5 V ⁴	-0.5	2.75	V
V _{CCAUX}	Auxiliary Supply Voltage for Bank 1, 2 and NVCM - @ 3.3 V ⁴	-0.5	3.63	V
V _{CCIO}	I/O Driver Supply Voltage for Banks 0, 1, 2	-0.5	3.63	V
_	Input or I/O Transient Voltage Applied	-0.5	3.63	V
V _{CCA_DPHYx} V _{CCPLL_DPHY} V _{CCMU_DPHY1}	MIPI D-PHY Supply Voltages	-0.5	1.32	V
_	Voltage Applied on MIPI D-PHY Pins	-0.5	1.32	V
T _A	Storage Temperature (Ambient)	– 65	150	°C
T _J	Junction Temperature (TJ)	_	+125	°C

Notes:

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with the Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. V_{CCAUX} must be set to 2.5 V when an external I²C Master or SPI Master is used to program CrossLink's NVCM. This restriction is not applicable for read access of the NVCM, such as Self-Download Mode, where the NVCM is already programmed and CrossLink retrieves the bitstream from the NVCM and programs it to the SRAM memory.

4.2. Recommended Operating Conditions

Table 4.2. Recommended Operating Conditions 1, 2

Symbol	Parameter	Min	Max	Unit
V _{cc}	Core Supply Voltage	1.14	1.26	V
V _{CCGPLL}	PLL Supply Voltage	1.14	1.26	V
V	Auxiliary Supply Voltage for Bank 1, 2 and NVCM - @ 2.5 V ³		2.625	V
V _{CCAUX}	Auxiliary Supply Voltage for Bank 1, 2 and NVCM - @ 3.3 V ³	3.135	3.465	V
V _{CCIOO}	I/O Driver Supply Voltage for Bank 0	1.71	3.465	V
V _{CCIO1/2}			3.465	V
T _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C
D-PHY Externa	l Power Supply			
V _{CCA_DPHYx}	Analog Supply Voltage for D-PHY	1.14	1.26	V
V _{CCPLL_DPHYx}	PLL Supply voltage for D-PHY	1.14	1.26	V
V _{CCMU_DPHY1}	Supply for V _{CCA_DPHY1} and V _{CCPLL_DPHY1} on the WLCSP36 package	1.14	1.26	V

Notes:

- 1. For Correct Operation, all supplies must be held in their valid operation range.
- 2. Like power supplies, must be tied together if they are at the same supply voltage. Follow the noise filtering recommendations in CrossLink Hardware Checklist (FPGA-TN-02013).
- V_{CCAUX} must be set to 2.5 V when an external I²C Master or SPI Master is used to program CrossLink's NVCM. This restriction is
 not applicable for read access of the NVCM, such as Self-Download Mode, where the NVCM is already programmed and
 CrossLink retrieves the bitstream from the NVCM and programs it to the SRAM memory.

4.3. Power Supply Ramp Rates

Table 4.3. Power Supply Ramp Rates*

Symbol	Parameter	Min	Max	Unit
t _{RAMP}	Power supply ramp rates for all power supplies	0.6	10	V/ms

^{*}Note: Assume monotonic ramp rates.

4.4. Power-On-Reset Voltage Levels

Table 4.4. Power-On-Reset Voltage Levels 1, 3, 4

Symbol	Parameter	Parameter		Max	Unit
	V _{cc}	0.62	0.93	V	
V _{PORUP}	Power-On-Reset ramp up trip point (Monitoring V _{CC} , V _{CCIOO} , and V _{CCAUX})	V _{CCIOO} ²	0.87	1.50	V
(Monitoring vcc, vccion, and vccaux)	V _{CCAUX}	0.90	1.53	V	
		V _{cc}	_	0.79	V
V _{PORDN} Power-On-Reset ramp down trip point (Monitoring V _{CC} , V _{CCIOO} , and V _{CCAUX})	V _{CCIOO} ²	_	1.50	V	
	(WOTHER VCC, VCCIOO, and VCCAUX)	V _{CCAUX}	_	1.53	V

Notes:

- 1. These POR ramp up trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.
- 2. Only V_{CCIOO} (Config Bank) has a Power-On-Reset ramp up trip point. All other VCCIOs do not have Power-On-Reset ramp up detection.
- 3. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.
- 4. Configuration starts after V_{CC}, V_{CCI00} and V_{CCAUX} reach V_{PORUP}. For details, see t_{CONFIGURATION} time in Table 4.21 on page 42.

4.5. ESD Performance

Refer to the LIFMD Product Family Qualification Summary for complete qualification data, including ESD performance.

4.6. DC Electrical Characteristics

Over recommended operating conditions.

Table 4.5. DC Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{IL} , I _{IH} ^{1, 4, 5}	Input or I/O Leakage	$0 \le V_{IN} \le V_{CCIO}$	-10	_	+10	μΑ
		$V_{CCIO} = 1.8 \text{ V between } 0 \le V_{IN} \le 0.65 * V_{CCIO}$	-3	_	-31	μΑ
I _{PU} ⁴	Internal Pull-Up Current	$V_{CCIO} = 2.5 \text{ V between } 0 \le V_{IN} \le 0.65 * V_{CCIO}$	-8	_	-72	μΑ
		$V_{CCIO} = 3.3 \text{ V between } 0 \le V_{IN} \le 0.65 * V_{CCIO}$	-11	_	-128	μΑ
C_1^2	I/O Capacitance ²	V _{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.2 V, V _{CC} = 1.2 V, V _{IO} = 0 to V _{IH} (MAX)	_	6	-	pF
C ₂ ²	Dedicated Input Capacitance ²	V _{CCIO} = 3.3 V, 2.5 V, 1.8 V, 1.2 V, V _{CC} = 1.2 V, V _{IO} = 0 to V _{IH} (MAX)	_	6	_	pF
C ₃ ²	MIPI D-PHY High Speed I/O Capacitance	$\begin{aligned} &V_{CCIO} = 2.5 V, V_{CC} = 1.2 V, \ V_{CC^*_DPHY} = 1.2 V \ , \ V_{IO} \\ &= 0 \ to \ V_{IH} \ (MAX) \end{aligned}$	_	5	-	pF
V _{HYST} ³	Hysteresis for Single- Ended Inputs	V _{CCIO} = 3.3 V, 2.5 V, 1.8 V V _{CC} = 1.2 V, V _{IO} = 0 to V _{IH} (MAX)	_	200	_	mV

Notes:

- 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.
- 2. $T_A = 25$ °C, f = 1.0 MHz.
- 3. Hysteresis is not available for $V_{CCIO} = 1.2 \text{ V}$.
- 4. Weak pull-up setting. Programmable pull-up resistors on Bank 0 will see higher current. Refer to CrossLink sysl/O Usage Guide (FPGA-TN-02016) for details on programmable pull-up resistors.
- 5. Input pins are clamped to V_{CCIO} and GND by a diode. When input is higher than V_{CCIO} , or lower than GND, the Input Leakage current will be higher than the I_{IL} and I_{IH} .

4.7. CrossLink Supply Current

Over recommended operating conditions.

Table 4.6. CrossLink Supply Current

Symbol	Parameter	Тур	Unit
Normal Operatio	n ¹		
Icc	Vcc Power Supply Current	7	mA
I _{CCPLL}	PLL Power Supply Current	50	μΑ
I _{CCAUX}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Current	3	mA
I _{CCIOx}	Bank x Power Supply Current (per Bank)	60	μΑ
I _{CCA_DPHYx}	V _{CCA_DPHYx} Power Supply Current	8.5	mA
I _{CCPLL_DPHYx}	V _{CCPLL_DPHYx} Power Supply Current	1.5	mA
I _{CCMLL_DPHYx}	V _{CCA_DPHY1} & V _{CCPLL_DPHY1} Power Supply Operation Current for WLCSP36 Package	10	mA
Standby Current ²			
I _{CC_STDBY}	Vcc Power Supply Standby Current	4	mA
I _{CCPLL_STDBY}	PLL Power Supply Standby Current	10	μΑ
I _{CCAUX_STDBY}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Standby Current	0.2	mA
I _{CCIOx_STDBY}	Bank Power Supply Standby Current (per Bank)	6	μΑ
I _{CCA_DPHYx_STDBY}	V _{CCA_DPHYx} Power Supply Standby Current	6	μΑ
I _{CCPLL_DPHYx_STDBY}	V _{CCPLL_DPHYx} Power Supply Standby Current	4	μΑ
I _{CCMLL_DPHYx_STDBY}	V _{CCA_DPHY1} & V _{CCPLL_DPHY1} Power Supply Static Current for WLCSP36 Package	10	μΑ
Sleep/Power Dov	vn Mode Current ³		
I _{CC_SLEEP}	Vcc Power Supply Sleep Current	0.2	mA
I _{CCPLL_SLEEP}	PLL Power Supply Current	10	μΑ
I _{CCAUX_SLEEP}	Auxiliary Power Supply Current for Bank 1, 2 and NVCM Programming Supply Current	20	μΑ
I _{CCIOx_SLEEP}	Bank Power Supply Current (per Bank)	6	μΑ
I _{CCA_DPHY_SLEEP}	V _{CCA_DPHYx} Power Supply Sleep Current	6	μΑ
I _{CCPLL_DPHY_SLEEP}	V _{CCPLL_DPHYx} Power Supply Sleep Current	4	μΑ
I _{CCAMLL DPHYX SLEEP}	V _{CCA_DPHY1} & V _{CCPLL_DPHY1} Power Supply Static Current for WLCSP36 Package	10	μΑ

Notes:

1. Normal Operation

2:1 MIPI CSI-2 Image Sensor Aggregator Bridge design under the following conditions:

- a. $T_J = 25$ °C, all power supplies at nominal voltages.
- b. Typical processed device in csfBGA81 package.
- c. To determine power for all other applications and operating conditions, use Power Calculator in Lattice Diamond design software

2. Standby Operation

A typically processed device in csfBGA81 package with blank pattern programmed, under the following conditions:

- a. All outputs are tri-stated, all inputs are held at either V_{CCIO} , or GND.
- b. All clock inputs are at 0 MHz.
- c. $T_J = 25$ °C, all power supplies at nominal voltages.
- d. No pull-ups on I/O.

3. Sleep/Power Down Mode

2:1 MIPI CSI-2 Image Sensor Aggregator Bridge design under the following conditions:

- a. Design is put into Sleep/Power Down Mode with user logic powers down D-PHY, and enters into Sleep Mode in PMU.
- b. $T_J = 25$ °C, all power supplies at nominal voltages.
- c. Typical processed device in csfBGA81 package.

4. For ucfBGA64 package

- a. V_{CCA_DPHY0} and V_{CCA_DPHY1} are tied together as V_{CCA_DPHYx} .
- b. V_{CCPLL_DPHY0} and V_{CCPLL_DPHY1} are tied together as V_{CCPLL_DPHYx} .

5. For WLCS36 package

- a. V_{CCGPLL} and V_{CCIO1} (Bank 1) are tied together to V_{CC} .
- b. V_{CCPLL_DPHY1} and V_{CCA_DPHY1} are tied together as V_{CCMU_DPHY1} .
- 6. To determine the CrossLink start-up peak current, use the Power Calculator tool in the Lattice Diamond design software.

4.8. Power Management Unit (PMU) Timing

Table 4.7. PMU Timing*

Symbol	Parameter	Device	Max	Unit
t _{PMUWAKE}	Time for PMU to wake from Sleep mode	All Devices	0.5	ms

^{*}Note: For details on PMU usage, refer to Power Management and Calculation for CrossLink Devices (FPGA-TN-02018).

4.9. sysI/O Recommended Operating Conditions

Table 4.8. sysI/O Recommended Operating Conditions¹

Chandand		V _{ccio}	
Standard	Min	Тур	Max
LVCMOS33/LVTTL33	3.135	3.30	3.465
LVCMOS25	2.375	2.50	2.625
LVCMOS18	1.710	1.80	1.890
LVCMOS12 (Output only) ²	1.140	1.20	1.260
subLVDS (Input only)	1.710	1.80	1.890
	2.375	2.50	2.625
	3.135	3.30	3.465
	1.140	1.20	1.260
SLVS200 (Input only) ³	1.710	1.80	1.890
SLVS200 (Input only)	2.375	2.50	2.625
	3.135	3.30	3.465
	1.710	1.80	1.890
LVDS (Input only)	2.375	2.50	2.625
	3.135	3.30	3.465
LVDS (Output only)	2.375	2.50	2.625
MIPI (Input only)	1.140	1.20	1.260

Notes:

- 1. For input voltage compatibility, refer to CrossLink sysI/O Usage Guide (FPGA-TN-02016).
- 2. For VCCIO1 and VCCIO2 only.
- 3. For SLVS200/MIPI interface I/O placement, see the Programmable I/O Banks section.

4.10. sysI/O Single-Ended DC Electrical Characteristics

Table 4.9. sysI/O Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		V _{ol Max}	V _{OH} Min	I _{OL}	I _{OH}
Standard	Min (V)	Max (V)	Min (V)	Max (V)	(V)	(V)	(mA)	(mA)
LVCMOS33/	-0.3	0.8	2.0	V 10.2	0.40	V _{CCIO} – 0.4	8	-8
LVTTL33	-0.3	0.8	2.0	V _{CCIO} +0.2	0.20	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	0.3	0.7	1.7	V .0.2	0.40	V _{CCIO} - 0.4	6	-6
LVCMOS25	-0.3	0.7	1.7	1.7 V _{CCIO} +0.2	0.20	V _{CCIO} – 0.2	0.1	-0.1
11/6140610	0.3	0.25.1/	0.65.1/	V .0.2	0.40	V _{CCIO} - 0.4	4	-4
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	V _{CCIO} +0.2	0.20	V _{CCIO} – 0.2	0.1	-0.1
LVCMOS12					0.40	V _{CCIO} - 0.4	2	-2
(Output only)	_	_	_	_	0.20	V _{CCIO} - 0.2	0.1	-0.1

4.11. sysI/O Differential Electrical Characteristics

4.11.1. LVDS/subLVDS/SLVS200

Over recommended operating conditions.

Table 4.10. LVDS/subLVDS1/SLVS200 1, 2

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{INP} , V _{INN}	Input Voltage	_	0.00	_	2.40	V
V _{CM}	Input Common Mode Voltage	Half the sum of the two inputs	0.05	_	2.35	V
V _{THD(LVDS)}	Differential Input Threshold	VINP - VINN	100	_	_	mV
V _{THD(subLVDS)}	Differential Input Threshold	V _{INP} - V _{INN}	90	_	_	mV
V _{THD(SLVS200)}	Differential Input Threshold	VINP - VINN	70	_	_	mV
i	land Compat	Normal Mode	-10	_	10	μΑ
I _{IN}	Input Current	Standby Mode	-10	_	10	μΑ
V _{OH}	Output High Voltage for V _{OP} or V _{OM}	RT = 100 Ω	_	1.43	1.60	V
V _{OL}	Output Low Voltage for V _{OP} or V _{OM}	RT = 100 Ω	0.90	1.08	_	V
V _{OD}	Output Voltage Differential	$ V_{OP} - V_{OM} $, RT = 100 Ω	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between High and Low	_	_	_	50	mV
V _{OS}	Output Voltage Offset (Common Mode Voltage)	$(V_{OP} + V_{OM})/2$, RT = 100 Ω	1.125	1.250	1.375	V
ΔV _{OS}	Change in V _{OS} between H and L	_	_	_	50	mV
I _{SAB}	Output Short Circuit Current	V _{OD} = 0 V driver outputs shorted to each other	_	_	12	mA

Notes

- Inputs only for subLVDS and SLVS200.
- 2. For SLVS200/MIPI interface I/O placement, see the Programmable I/O Banks section.

4.11.2. Hardened MIPI D-PHY I/Os

Table 4.11. MIPI D-PHY

Symbol	Description	Min	Тур	Max	Unit
	Receiver	•			
High Speed					
V _{CMRX}	Common-Mode Voltage HS Receive Mode	70	_	330	mV
V _{IDTH}	Differential Input High Threshold	_	_	70	mV
V _{IDTL}	Differential Input Low Threshold	-70	_	_	mV
V _{IHHS}	Single-ended input High Voltage	_	_	460	mV
V _{ILHS}	Single-ended Input Low Voltage	-40	_	_	mV
V _{TERM-EN}	Single-ended Threshold for HS Termination Enable	_	_	450	mV
Z _{ID}	Differential Input Impedance	80	100	125	Ω
Low Power					
V _{IH}	Logic 1 Input Voltage	880	_	_	mV
V _{IL}	Logic O Input Voltage, not in ULP State	_	_	550	mV
V _{IL-ULPS}	Logic O Input Voltage, in ULP State	_	_	300	mV
V _{HYST}	Input Hysteresis	25	_	_	mV
	Transmitter				
High Speed					
V _{CMTX}	HS Transmit Static Common Mode Voltage	150	200	250	mV
V _{OD}	HS Transmit Differential Voltage	140	200	270	mV
V _{OHHS}	HS Single-ended Output High Voltage	_	_	360	mV
Z _{OS}	Single-ended Output Impedance	40	50	62.5	Ω
ΔZ_{OS}	Single-ended Output Impedance Mismatch	_	_	10	%
Low Power					
V _{OH}	Output High Voltage	1.1	1.2	1.3	V
V _{OL}	Output Low Voltage	-50	_	50	mV
Z _{OLP}	Output Impedance in LP Mode	110	_	_	Ω

4.12. CrossLink Maximum General Purpose I/O Buffer Speed

Over recommended operating conditions.

Table 4.12. CrossLink Maximum I/O Buffer Speed

Buffer	Description	Max	Unit
Maximum Input Frequency			
LVDS25	LVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	600	MHz
	LVDS, V _{CCIO} = 2.5 V, WLCSP36 package	500	MHz
subLVDS	subLVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	600	MHz
	subLVDS, V _{CCIO} = 2.5 V, WLCSP36 package	500	MHz
MIPI D-PHY (HS) ⁶	MIPI D-PHY, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	600	MHz
	MIPI D-PHY, WLCSP36 package	500	MHz
MIPI D-PHY (LP)	MIPI D-PHY, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	5	MHz
	MIPI D-PHY, WLCSP36 package	5	MHz
SLVS200	SLVS200, VCCIO=2.5 V, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	600	MHz
	SLVS200, VCCIO=2.5 V, WLCSP36 package	500	MHz
LVCMOS33/LVTTL33	LVCMOS/LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVCMOS25D	Differential LVCMOS, V _{CCIO} = 2.5 V	300	MHz
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	300	MHz
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	155	MHz
Maximum Output Frequency			
LVDS25	LVDS, V _{CCIO} = 2.5 V, csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 packages	600	MHz
	LVDS, V _{CCIO} = 2.5 V, WLCSP36 package	500	MHz
LVCMOS33/LVTTL33	LVCMOS/LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVTTL33D	Differential LVTTL, V _{CCIO} = 3.3 V	300	MHz
LVCMOS33D	Differential LVCMOS, 3.3 V	300	MHz
LVCMOS25	LVCMOS, 2.5 V	300	MHz
LVCMOS25D	Differential LVCMOS, 2.5 V	300	MHz
LVCMOS18	LVCMOS, 1.8 V	155	MHz
LVCMOS12	LVCMOS, V _{CCIO1/2} = 1.2 V	70	MHz

Notes:

- 1. These maximum speeds are characterized but not tested on every device.
- 2. Maximum I/O speed for differential output standards emulated with resistors depends on the layout.
- 3. LVCMOS timing is measured with the load specified in Table 4.22.
- 4. Actual system operation may vary depending on user logic implementation.
- 5. Maximum data rate equals two times the clock rate when utilizing DDR.
- 6. This is the maximum MIPI D-PHY input rate on the programmable I/O banks 1 and 2. The hardened MIPI D-PHY input and output rates are described in Hardened MIPI D-PHY Performance section. For SLVS200/MIPI interface I/O placement, see the Programmable I/O Banks section.
- 7. To ensure the MIPI Rx interface is implemented optimally in the FPGA fabric with the Programmable I/Os, follow the guidelines of assigning I/Os to the bank for the MIPI Rx inputs: When an SLVS200/MIPI Rx interface is placed in Bank 1 or 2, do not place LVCMOS outputs on both Banks 1 and 2.

4.13. CrossLink External Switching Characteristics

Table 4.13. CrossLink External Switching Characteristics 4,5

Davamat :::	Description	Oc. allula	-6		
Parameter	Description	Conditions	Min	Max	Unit
Clocks					
Primary Clock					
f _{MAX_PRI}	Frequency for Primary Clock Tree	_	_	150	MHz
tw_pri	Clock Pulse Width for Primary Clock	_	0.8	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Clock	_	_	450	ps
Edge Clock					
f _{MAX_EDGE}	Frequency for Edge Clock Tree	_	_	600	MHz
$t_{W_{\text{EDGE}}}$	Clock Pulse Width for Edge Clock	_	0.783	_	ns
t _{SKEW_EDGE}	Edge Clock Skew Within a Bank	_	_	120	ps
Generic SDR Interface ¹					
General Purpose I/O Pi	n Parameters Using Clock Tree Without PLI	_			
t _{co}	Clock to Output – PIO Input Register	_	_	6.0	ns
t _{SU}	Clock to Data Setup – PIO Input	_	-0.90	_	ns
t _{HD}	Clock to Data Hold – PIO Input Register	_	1.82	_	ns
t _{su_delay}	Clock to Data Setup – PIO Input Register with Input Delay for zero t _{HD}	With data input delay for hold time = 0	1.25	_	ns
t _{HD_DELAY}	Clock to Data Hold – PIO Input Register with Input Delay for zero t _{HD}	With data input delay for hold time = 0	0	_	ns
General Purpose I/O Pi	n Parameters Using Clock Tree With PLL				
t _{co}	Clock to Output – PIO Input Register	_	_	5.2	ns
t _{su}	Clock to Data Setup – PIO Input	_	0.20	_	ns
t _{HD}	Clock to Data Hold – PIO Input Register	_	1.01	_	ns
t _{su_delay}	Clock to Data Setup – PIO Input Register with Input Delay for zero t _{HD}	With data input delay for hold time = 0	1.70	_	ns
thd_delay	Clock to Data Hold – PIO Input Register with Input Delay for zero t _{HD}	With data input delay for hold time = 0	0	_	ns
Generic DDR Interfaces	,2				
	X4 or DDRX2 I/O with Clock and Data Center K.Centered or GDDRX2_RX/TX.ECLK.Center		ins (GDDRX8	_RX/TX.ECL	K.Centered
t _{SU_GDDRX2_4_8_CENTERED}	Input Data Set-Up Before CLK Rising and Falling edges	_	0.167	_	ns
thd_gddrx2_4_8_centered	Input Data Hold After CLK Rising and Falling edges	_	0.167	_	ns
t	Output Data Valid Before CLK Output	Data Rate = 1.2 Gb/s ⁶	0.297 —	ns	
T _{DVB} _GDDRX2_4_8_CENTERED	Rising and Falling edges	Other Data Rates ⁶	-0.120	_	ns+1/2UI
t _{DVA} GDDRX2 4 8 CENTERED	Output Data Valid After CLK Output	Data Rate = 1.2 Gb/s ⁶	6 0.297 —	_	ns
CDVA_GDDKAZ_4_8_CENTEKED	Rising and Falling edges	Other Data Rates ⁶	-0.120	_	ns+1/2UI
		csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 GDDRX2	_	300	MHz
f _{MAX_GDDRX2_4_8_CENTERED}	Frequency for ECLK ³	csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 GDDRX4 and GDDRX8	_	600	MHz
		WLCSP36 GDDRX2	_	250	MHz

Table 4.13. CrossLink External Switching Characteristics ^{4,5}(Continued)

Douguestou	Description	Conditions	-6		Unit
Parameter			Min	Max	Unit
Generic DDR Interfaces	3 ²				
	X4 or DDRX2 I/O with Clock and Data K.Centered or GDDRX2_RX/TX.ECLK.C		se Pins (GDD	RX8_RX/TX.E	CLK.Centere
		WLCSP36 GDDRX4 and GDDRX8	_	500	MHz
Generic DDRX1 I/O wit	h Clock and Data Centered at General	Purpose Pins (GDDRX1_RX	/TX.SCLK.Ce	ntered)	
t _{su_gddrx1_centered}	Input Data Set-Up Before CLK Rising and Falling edges	_	0.917	_	ns
t _{HD_GDDRX1_CENTERED}	Input Data Hold After CLK Rising and Falling edges	_	0.917	_	ns
t _{DVB_GDDRX1_CENTERED}	Output Data Valid Before CLK	Data Rate = 300 Mb/s	1.217		ns
	Output Rising and Falling edges	Other Data Rates	-0.450	_	ns+1/2UI
t _{dva_gddrx1_centered}	Output Data Valid After CLK Output Rising and Falling edges	Data Rate = 300 Mb/s	1.217	_	ns
		Other Data Rates	-0.450	_	ns+1/2UI
f _{MAX_GDDRX1_CENTERED}	Frequency for PCLK ³	_		150	MHz
	X4 or DDRX2 I/O with Clock and Data Aligned or GDDRX2_RX/TX.ECLK.Aligne		PIIIS (GDDK		
t _{SU GDDRX2} 4 8 ALIGNED	Input Data Valid After CLK Rising and Falling edges	1.2 Gb/s ⁶	_	0.188	ns
		Other Data Rates ⁶	I	-0.229	ns+1/2UI
•	Input Data Hold After CLK Rising and Falling edges	Data Rate = 1.2 Gb/s ⁶	0.646	_	ns
thd_gddrx2_4_8_aligned		Other Data Rates ⁶	0.229	_	ns+1/2UI
t _{DIA_GDDRX2_4_8_ALIGNED}	Output Data Invalid After CLK Rising and Falling edges Output	_	_	0.120	ns
t _{DIB_GDDRX2_4_8_ALIGNED}	Output Data Invalid Before CLK Output Rising and Falling edges	_	_	0.120	ns
		csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 GDDRX2	_	300	MHz
		csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64 GDDRX4 and GDDRX8	_	600	MHz
f _{MAX_GDDRX2_4_8_ALIGNED}	Frequency for ECLK ³				
f _{MAX_GDDRX2_4_8_ALIGNED}	Frequency for ECLK ³	WLCSP36 GDDRX2	_	250	MHz

Table 4.13. CrossLink External Switching Characteristics ^{4,5}(*Continued*)

Parameter	Description	Conditions	-6		Unit
		Conditions	Min	Max	Offic
Generic DDR Interface					
Generic DDRX1 I/O w	ith Clock and Data Aligned at General P	urpose Pins (GDDRX1_RX/T	X.SCLK.Aligr	ned)	
tsu gddrx1 aligned	Input Data Valid After CLK Rising and Falling edges	Data Rate = 300 Mb/s	I	0.750	ns
	and raining edges	Other Data Rates	_	-0.917	ns+1/2UI
thd_gddrx1_aligned	Input Data Hold After CLK Rising and Falling edges	Data Rate = 300 Mb/s	2.583	_	ns
	and raiming edges	Other Data Rates	0.916	_	ns+1/2UI
tdia_gddrx1_aligned	Output Data Invalid After CLK Rising and Falling edges Output	_	ı	0.450	ns
tdib_gddrx1_aligned	Output Data Invalid Before CLK Output Rising and Falling edges	_	-	0.450	ns
f _{MAX_GDDRX1_ALIGNED}	Frequency for ECLK ³	_	_	150	MHz
General Purpose I/O I	MIPI D-PHY Rx with 1:8 or 1:16 Gearing	•		·	I
tsu_gddrx_mp	Input Data Set-Up Before CLK	900 Mb/s < Data Rate \leq 1.2 Gb/s & $V_{IDTH} = 140 \text{ mV}$ $V_{IDTL} = -140 \text{ mV}$	0.200	_	UI
		600 Mb/s < Data Rate \leq 900 Mb/s & $V_{IDTH} = 140 \text{ mV}$ $V_{IDTL} = -140 \text{ mV}$	0.150	_	UI
		Data Rate \leq 600 Mb/s & $V_{IDTH} = 70 \text{ mV}$ $V_{IDTL} = -70 \text{ mV}$	0.150 —	UI	
thd_gddrx_mp		900 Mb/s < Data Rate ≤ 1.2 Gb/s & V _{IDTH} = 140 mV V _{IDTL} = -140 mV	0.200 —	UI	
	Input Data Hold After CLK	600 Mb/s < Data Rate \leq 900 Mb/s & $V_{IDTH} = 140 \text{ mV}$ $V_{IDTL} = -140 \text{ mV}$	0.150	_	UI
		Data Rate \leq 600 Mb/s & $V_{IDTH} = 70 \text{ mV}$ $V_{IDTL} = -70 \text{ mV}$	0.150	_	UI
f _{MAX_GDDRX_MP}	Frequency for ECLK ³	csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64	_	600	MHz
		WLCSP36	_	500	MHz

Table 4.13. CrossLink External Switching Characteristics ^{4, 5} *Continued*)

	ink external switching characteristics		_	6		
Parameter	Description	Conditions	Min	Max	Unit	
Generic DDRX71 o	r DDRX141 Inputs (GDDRX71_RX.ECLK or G	DDRX141_RX.ECLK)		_		
	Input Valid Bit "i" switching from	_	_	0.3	UI	
t _{rpbi_dva}	CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	_	_	-0.222	ns+ (i+ 1/2)*UI	
	Input Hold Bit "i" switching from	_	0.7	_	UI	
t _{rpbi_dve}	CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	-	0.222	_	ns+ (i+ 1/2)*UI	
f _{MAX_RX71_141}	DDR71/DDR141 ECLK Frequency ³	csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64, WLCSP36	_	450	MHz	
Generic DDR Inter	faces ²					
Generic DDRX71 O	Outputs with Clock and Data Aligned at Pin (GDDRX71_TX.ECLK)	1	1	1	
t _{tpbi_dov}	Data Output Valid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	-	_	0.143	ns+i*UI	
t _{TPBi_DOI}	Data Output Invalid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	_	-0.143	_	ns+i*UI	
t _{TPBi_skew_UI}	Tx skew in UI	_	_	0.15	UI	
f _{MAX_TX71}	DDR71 ECLK Frequency ³	csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64	_	525	MHz	
		WLCSP36	_	500	MHz	
Generic DDRX141	Outputs with Clock and Data Aligned at Pin	(GDDRX141_TX.ECLK)				
t _{TPBi_DOV}	Data Output Valid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	All Devices	_	0.125	ns+i*UI	
t _{TPBi_DOI}	Data Output Invalid Bit "i" switching from CLK Rising Edge ("i" = 0 to 6, 0 aligns with CLK)	All Devices	-0.125	_	ns+i*UI	
t _{TPBi_skew_UI}	TX skew in UI	All Devices	_	0.15	UI	
f _{MAX_TX141}	DDR141 ECLK Frequency ³	csfBGA81, ctfBGA80, ckfBGA80, ucfBGA64	_	600	MHz	
		WLCSP36	_	500	MHz	

Notes:

- 1. General I/O timing numbers based on LVCMOS 2.5, 0 pF load.
- 2. Generic DDRX8, DDRX71 and DDRX141 timing numbers based on LVDS I/O.
- 3. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.
- 4. These numbers are generated using best case PLL located.
- 5. All numbers are generated with the Lattice Diamond design software.
- 6. Maximum data rate for GDDRX2 mode is 500 Mbps for WLCSP36 package and 600 Mbps for all other packages.

Figure 4.1. Receiver RX.CLK.Centered Waveforms

Figure 4.2. Receiver RX.CLK.Aligned Input Waveforms

Figure 4.3. Transmit TX.CLK.Centered Output Waveforms

© 2015-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 4.4. Transmit TX.CLK.Aligned Waveforms

Transmitter - Shown for one LVDS Channel

Figure 4.5. DDRX71, DDRX141 Video Timing Waveforms

4.14. sysCLOCK PLL Timing

Over recommended operating conditions.

Table 4.14. sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min	Max	Unit
f _{IN}	Input Clock Frequency (CLKI, CLKFB)	_	10	400	MHz
f _{PD}	Phase Detector Input Clock Frequency	_	10	400	MHz
f _{out}	Output Clock Frequency (CLKOP, CLKOS)	_	4.6875	600	MHz
f _{VCO}	PLL VCO Frequency	_	600	1200	MHz
AC Character	istics				
t _{DT}	Output Clock Duty Cycle	_	45	55	%
t _{PH}	Output Phase Accuracy	_	-5	5	%
	Output Clock Period Jitter ³	f _{OUT} ≥ 100 MHz	_	100	ps p-p
		f _{OUT} < 100 MHz	_	0.025	UIPP
1	Outrot Clark Coals to Coals litter 3	f _{OUT} ≥ 100 MHz	ı	200	ps p-p
t _{OPJIT} ¹	Output Clock Cycle-to-Cycle Jitter ³	f _{OUT} < 100 MHz	_	0.05	UIPP
	Outside Clark Phase Litter	f _{PD} > 100 MHz	_	200	ps p-p
	Output Clock Phase Jitter	f_{PD} < 100 MHz	-	0.05	UIPP
t _{SPO}	Static Phase Offset	Divider ratio = integer	-	400	ps p-p
t _{LOCK} ²	PLL Lock-in Time	_	-	15	ms
t _{UNLOCK}	PLL Unlock Time	_	-	50	ns
	Input Clock Pariod Litter	f _{PD} ≥ 20 MHz	_	500	ps p-p
t _{IPJIT}	Input Clock Period Jitter	f _{PD} < 20 MHz	_	0.02	UIPP
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns

Notes:

- 1. Jitter sample is taken over 10,000 samples for Periodic jitter, and 2,000 samples for Cycle-to-Cycle jitter of the primary PLL output with clean reference clock with no additional I/O toggling.
- 2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.
- 3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for $f_{PD} \ge 10$ MHz. For $f_{PD} < 10$ MHz, the jitter numbers may not be met in certain conditions.

4.15. Hardened MIPI D-PHY Performance

Table 4.15. 1500 Mb/s MIPI_DPHY_X8_RX/TX Timing Table (1500 Mb/s > MIPI D-PHY Data Rate > 1200 Mb/s)*

Parameter	Description	Min	Max	Unit
t _{SU_MIPIX8}	Input Data Setup before CLK	0.200	_	UI
t _{HD_MIPIX8}	Input Data Hold after CLK	0.200	_	UI
t _{DVB_MIPIX8}	Output Data Valid before CLK Output	0.300	_	UI
t _{DVA_MIPIX8}	Output Data Valid after CLK Output	0.300	1	UI

^{*}Note: For WLCSP36 package, the MIPI D-PHY f_{max} is 1200 Mb/s, for other packages, f_{max} is 1500 Mb/s.

Table 4.16. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s > MIPI D-PHY Data Rate > 1000 Mb/s)

Parameter	Description	Min	Max	Unit
t _{SU_MIPIX4}	Input Data Setup before CLK	0.200	_	UI
t _{HD_MIPIX4}	Input Data Hold after CLK	0.200	_	UI
t _{DVB_MIPIX4}	Output Data Valid before CLK Output	0.300	_	UI
t _{DVA_MIPIX4}	Output Data Valid after CLK Output	0.300	_	UI

Table 4.17. 1000 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI D-PHY Data Rate > 10 Mb/s)

Parameter	Description	Min	Max	Unit
t _{SU_MIPIX4}	Input Data Setup before CLK	0.150	_	UI
t _{HD_MIPIX4}	Input Data Hold after CLK	0.150	_	UI
t _{DVB_MIPIX4}	Output Data Valid before CLK Output	0.350	_	UI
t _{DVA_MIPIX4}	Output Data Valid after CLK Output	0.350	_	UI

4.16. Internal Oscillators (HFOSC, LFOSC)

Table 4.18. Internal Oscillators

	addic 11201 Internal Commuters							
Parameter	Parameter Description	Min	Тур	Max	Unit			
f _{CLKHF}	HFOSC CLKK Clock Frequency	43.2	48	52.8	MHz			
f _{CLKLF}	LFOSC CLKK Clock Frequency	9	10	11	kHz			
DCH _{CLKHF}	HFOSC Duty Cycle (Clock High Period)	45	50	55	%			
DCH _{CLKLF}	LFOSC Duty Cycle (Clock High Period)	45	50	55	%			

4.17. User I²C

Table 4.19. User I²C ¹

Symbol Parameter		9	STD Mod	e	F.	AST Mod	е	F.	AST Mod	e Plus ²	Lluite
Symbol	raiailletei	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
f _{scl}	SCL Clock Frequency	-	_	100	-	-	400	-	-	1000²	kHz
T _{DELAY}	Optional delay through delay block	_	62	_	_	62	_	_	62	_	ns

Notes:

- 1. Refer to the I²C Specification for timing requirements.
- 2. Fast Mode Plus maximum speed may be achieved by using external pull up resistor on I²C bus. Internal pull up may not be sufficient to support the maximum speed.

4.18. CrossLink sysCONFIG Port Timing Specifications

Over recommended operating conditions.

Table 4.20. CrossLink sysCONFIG Port Timing Specifications

Symbol	Parameter	Min	Max	Unit
All Configuratio	n Mode		•	·
t _{PRGM}	Minimum CRESETB LOW pulse width required to restart configuration (from falling edge to rising edge)	145	_	ns
Slave SPI ¹	•			
f _{CCLK}	SPI_SCK Input Clock Frequency	_	110	MHz
t _{STSU}	MOSI Setup Time	0.5	_	ns
t _{STH}	MOSI Hold Time	2.0	_	ns
t _{STCO}	SPI_SCK Falling Edge to Valid MISO Output	_	13.3	ns
t _{SCS}	Chip Select HIGH Time	25	_	ns
t _{SCSS}	Chip Select Setup Time	0.5	_	ns
t _{SCSH}	Chip Select Hold Time	0.5	_	ns
Master SPI				
f _{CCLK}	MCK Output Clock Frequency	_	52.8	MHz
I ² C ²			·	·
f _{MAX}	Maximum SCL Clock Frequency (Fast-Mode Plus)	_	1	MHz

Notes:

4.19. SRAM Configuration Time from NVCM

Over recommended operating conditions.

Table 4.21. SRAM Configuration Time from NVCM

Symbol	Parameter	Тур	Unit
T _{CONFIGURATION}	POR/CRESET_B to Device I/O Active*	83	ms

^{*}Note: Before and during configuration, the I/Os are held in tristate with weak internal pullups enabled. I/Os are released to user functionality when the device has finished configuration.

Refer to CrossLink Programming and Configuration Usage Guide (FPGA-TN-02014), for timing requirements to enable CrossLink SSPI Mode

^{2.} Refer to the I2C specification for timing requirements when configuring with I²C port.

4.20. Switching Test Conditions

Figure 4.6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are listed in Table 4.22.

^{*}CL Includes Test Fixture and Probe Capacitance

Figure 4.6. Output Test Load, LVTTL and LVCMOS Standards

Table 4.22. Test Fixture Required Components, Non-Terminated Interfaces*

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5 V	_
IVIII and other IVCMOS settings (I > II II > I)	200	20	0 55	LVCMOS 2.5 = V _{CCIO} /2	_
LVTTL and other LVCMOS settings (L ≥ H, H ≥ L)	∞	∞	0 pF	LVCMOS 1.8 = V _{CCIO} /2	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ H)	∞	1 ΜΩ	0 pF	V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z ≥ L)	1 ΜΩ	∞	0 pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H ≥ Z)	∞	100	0 pF	V _{OH} - 0.10	_
LVCMOS 2.5 I/O (L ≥ Z)	100	∞	0 pF	V _{OL} + 0.10	V _{CCIO}

^{*}Note: Output test conditions for all other interfaces are determined by the respective standards.

5. Pinout Information

The pinout tables below correspond to CrossLink LIF-MD6000 Pinout Version 1.4. GND pins are referenced as V_{SS} in Lattice Diamond Software.

5.1. WLCSP36 Pinout

Table 5.1. WLCSP36 Pinout

Pin Number	Pin Function	Bank	Dual Function	Differential
A1	GNDMU_DPHY1	GND	_	_
A2	VCCMU_DPHY1	DPHY1	_	_
A3	DPHY1_DP2	DPHY1	_	True_OF_DPHY1_DN2
A4	DPHY1_DN2	DPHY1	_	Comp_OF_DPHY1_DP2
A5	VCCAUX	VCCAUX	_	_
A6	PB2C	2	MIPI_CLKT2_0	True_OF_PB2D
B1	DPHY1_DP0	DPHY1	_	True_OF_DPHY1_DN0
B2	DPHY1_DP1	DPHY1	_	True_OF_DPHY1_DN1
В3	DPHY1_DP3	DPHY1	_	True_OF_DPHY1_DN3
B4	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3
B5	PB16D	2	PCLKC2_1	Comp_OF_PB16C
В6	PB2D	2	MIPI_CLKC2_0	Comp_OF_PB2C
C1	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0
C2	DPHY1_DN1	DPHY1	_	Comp_OF_DPHY1_DP1
C3	PB52	0	SPI_SS/CSN/SCL	_
C4	VCC	VCC	_	_
C5	PB16C	2	PCLKT2_1	True_OF_PB16D
C6	GND	GND	_	_
D1	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN
D2	PB48	0	PCLKTO_1/USER_SCL	_
D3	PB47	0	PCLKTO_0/USER_SDA	_
D4	CRESET_B	0	_	_
D5	PB16B	2	PCLKC2_0	Comp_OF_PB16A
D6	PB6B	2	_	Comp_OF_PB6A
E1	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP
E2	VCCIO0	0	_	_
E3	GND	GND	_	_
E4	PB50	0	MOSI	_
E5	PB16A	2	PCLKT2_0	True_OF_PB16B
E6	PB6A	2	GR_PCLK2_0	True_OF_PB6B
F1	PB51	0	MISO	_
F2	PB49	0	PMU_WKUPN/CDONE	_
F3	PB53	0	SPI_SCK/MCK/SDA	_
F4	PB12A	2	GPLLT2_0	True_OF_PB12B
F5	PB12B	2	GPLLC2_0	Comp_OF_PB12A
F6	VCCIO2	2	_	_

5.2. ucfBGA64 Pinout

Table 5.2. ucfBGA64 Pinout

Pin Number	Pin Function	Bank	Dual Function	Differential
A1	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN
A2	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP
A3	DPHY1_DP3	DPHY1	_	True_OF_DPHY1_DN3
A4	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3
A5	DPHY0_DN2	DPHY0	_	Comp_OF_DPHY0_DP2
A6	DPHY0_DP0	DPHY0	_	True_OF_DPHY0_DN0
A7	DPHY0_CKP	DPHY0	_	True_OF_DPHY0_CKN
A8	DPHY0_CKN	DPHY0	_	Comp_OF_DPHY0_CKP
B1	DPHY1_DP2	DPHY1	_	True_OF_DPHY1_DN2
B2	DPHY1_DN2	DPHY1	_	Comp_OF_DPHY1_DP2
В3	DPHY1_DP1	DPHY1	_	True_OF_DPHY1_DN1
B4	DPHY1_DN1	DPHY1	_	Comp_OF_DPHY1_DP1
B5	DPHY0_DP2	DPHY0	_	True_OF_DPHY0_DN2
В6	DPHY0_DN0	DPHY0	_	Comp_OF_DPHY0_DP0
В7	DPHY0_DP3	DPHY0	_	True_OF_DPHY0_DN3
В8	DPHY0_DN3	DPHY0	_	Comp_OF_DPHY0_DP3
C1	DPHY1_DP0	DPHY1	_	True_OF_DPHY1_DN0
C2	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0
C3	PB47	0	PCLKTO_0/USER_SDA	_
C4	VCCPLL_DPHYx	DPHY	_	_
C5	VCCA_DPHYx	DPHY	_	_
C6	GNDA_DPHYx	GND	_	_
C7	DPHY0_DP1	DPHY0	_	True_OF_DPHY0_DN1
C8	DPHY0_DN1	DPHY0	_	Comp_OF_DPHY0_DP1
D1	PB34B	1	_	Comp_OF_PB34A
D2	PB34A	1	GR_PCLK1_0	True_OF_PB34B
D3	PB52	0	SPI_SS/CSN/SCL	_
D4	GND	GND	_	_
D5	VCC	VCC	_	_
D6	VCCAUX	VCCAUX	_	_
D7	PB16A	2	PCLKT2_0	True_OF_PB16B
D8	PB12A	2	GPLLT2_0	True_OF_PB12B
E1	PB51	0	MISO	_
E2	CRESET_B	0	_	_
E3	PB48	0	PCLKTO_1/USER_SCL	_
E4	VCC	VCC	_	_
E5	GND	GND	_	_
E6	VCCIO2	2	_	_
E7	PB16B	2	PCLKC2_0	Comp_OF_PB16A
E8	PB12B	2	GPLLC2_0	Comp_OF_PB12A
F1	PB53	0	SPI_SCK/MCK/SDA	_
F2	PB50	0	MOSI	_

Table 5.2. ucfBGA64 Pinout (Continued)

Pin Number	umber Pin Function Bank Dual F		Dual Function	Differential
F3	VCCIO0	0	_	_
F4	VCCIO1	1	_	_
F5	GND	GND	_	_
F6	VCCIO2	2	_	_
F7	PB6A	2	GR_PCLK2_0	True_OF_PB6B
F8	PB6B	2	_	Comp_OF_PB6A
G1	PB38D	1	_	Comp_OF_PB38C
G2	PB38C	1	_	True_OF_PB38D
G3	PB49	0	PMU_WKUPN/CDONE	_
G4	VCCGPLL	VCCGPLL	_	_
G5	PB29B	1	PCLKC1_0	Comp_OF_PB29A
G6	PB29A	1	PCLKT1_0	True_OF_PB29B
G7	PB2D	2	MIPI_CLKC2_0	Comp_OF_PB2C
G8	PB2C	2	MIPI_CLKT2_0	True_OF_PB2D
H1	PB34D	1	MIPI_CLKC1_0	Comp_OF_PB34C
H2	PB34C	1	MIPI_CLKT1_0	True_OF_PB34D
Н3	PB29C	1	PCLKT1_1	True_OF_PB29D
H4	PB29D	1	PCLKC1_1	Comp_OF_PB29C
H5	PB16D	2	PCLKC2_1	Comp_OF_PB16C
H6	PB16C	2	PCLKT2_1	True_OF_PB16D
H7	PB12D	2	_	Comp_OF_PB12C
Н8	PB12C	2	_	True_OF_PB12D

5.3. ctfBGA80/cktBGA80 Pinout

Table 5.3. ctfBGA80/cktBGA80 Pinout

in Number	Pin Function	Bank	Dual Function	Differential		
A1	DPHY1_DN2	DPHY1		Comp_OF_DPHY1_DP2		
A2	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0		
A3	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP		
A4	DPHY1_DN1	DPHY1	_	Comp_OF_DPHY1_DP1		
A5	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3		
A6	DPHY0_DN2	DPHY0	_	Comp_OF_DPHY0_DP2		
A7	DPHY0_DN0	DPHY0	_	Comp_OF_DPHY0_DP0		
A8	DPHY0_CKN	DPHY0	_	Comp_OF_DPHY0_CKP		
A9	DPHY0_DN1	DPHY0	_	Comp_OF_DPHY0_DP1		
A10	DPHY0_DN3	DPHY0	_	Comp_OF_DPHY0_DP3		
B1	DPHY1_DP2	DPHY1	_	True_OF_DPHY1_DN2		
B2	DPHY1_DP0	DPHY1	_	True_OF_DPHY1_DN0		
В3	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN		
B4	DPHY1_DP1	DPHY1	_	True_OF_DPHY1_DN1		
B5	DPHY1_DP3	DPHY1	_	True_OF_DPHY1_DN3		
В6	DPHY0_DP2	DPHY0	_	True_OF_DPHY0_DN2		
B7	DPHY0_DP0	DPHY0	_	True_OF_DPHY0_DN0		
B8	DPHY0_CKP	DPHY0	_	True_OF_DPHY0_CKN		
B9	DPHY0_DP1	DPHY0	_	True_OF_DPHY0_DN1		
B10	DPHY0_DP3	DPHY0	_	True_OF_DPHY0_DN3		
C1	GND	GND	_	_		
C2	GNDA_DPHY1	DPHY1	_	_		
C 9	GNDA_DPHY0	DPHY0	_	_		
C10	GND	GND	_	_		
D1	PB48	0	PCLKTO_1/USER_SCL	_		
D2	VCCPLL_DPHY1	DPHY1	_	_		
D4	VCCA_DPHY1	DPHY1	_	_		
D5	VCCAUX	VCCAUX	_	_		
D6	GNDPLL_DPHYx	GND	_	_		
D7	VCCPLL_DPHY0	DPHY0	_	_		
D9	PB16A	2	PCLKT2_0	True_OF_PB16B		
D10	PB16B	2	PCLKC2_0	Comp_OF_PB16A		
E1	PB34A	1	GR_PCLK1_0	True_OF_PB34B		
E2	PB34B	1	_	Comp_OF_PB34A		
E4	VCC	VCC	_	_		
E5	GND	GND	_	_		
E6	VCC	VCC	_	_		
E7	VCCA_DPHY0	DPHY0	_	_		
E9	PB12A	2	GPLLT2_0	True_OF_PB12B		
E10	PB12B	2	GPLLC2_0	Comp_OF_PB12A		
F1	PB38A	1	_	True_OF_PB38B		
F2	PB38B	1	_	Comp OF PB38A		

Table 5.3. ctfBGA80/cktBGA80 Pinout (Continued)

Pin Number	Pin Number Pin Function		Dual Function	Differential	
F4	VCCIO0	0	_	_	
F5	VCCIO1	1	_	_	
F6	VCCIO2	2	_	_	
F7	VCCIO2	2	_	_	
F9	PB6A	2	GR_PCLK2_0	True_OF_PB6B	
F10	PB6B	2	_	Comp_OF_PB6A	
G1	PB50	0	MOSI	_	
G2	GND	GND	_	_	
G4	VCCIO1	1	_	_	
G5	GND	GND	_	_	
G6	VCCGPLL	VCCGPLL	_	_	
G7	GNDGPLL	GND	_	_	
G9	PB2A	2	_	True_OF_PB2B	
G10	PB2B	2	_	Comp_OF_PB2A	
H1	PB52	0	SPI_SS/CSN/SCL	_	
H2	CRESET_B	0	_	_	
H9	PB2D	2	MIPI_CLKC2_0	Comp_OF_PB2C	
H10	PB2C	2	MIPI_CLKT2_0	True_OF_PB2D	
J1	PB53	0	SPI_SCK/MCK/SDA	_	
J2	PB49	0	PMU_WKUPN/CDONE	_	
J3	PB43D	1	_	Comp_OF_PB43C	
J4	PB38D	1	_	Comp_OF_PB38C	
J5	PB34D	1	MIPI_CLKC1_0	Comp_OF_PB34C	
J6	PB29D	1	PCLKC1_1	Comp_OF_PB29C	
J7	PB29A	1	PCLKT1_0	True_OF_PB29B	
18	PB16D	2	PCLKC2_1	Comp_OF_PB16C	
19	PB6D	2	_	Comp_OF_PB6C	
J10	PB6C	2	_	True_OF_PB6D	
K1	PB51	0	MISO	_	
К2	PB47	0	PCLKTO_0/USER_SDA	_	
К3	PB43C	1	_	True_OF_PB43D	
К4	PB38C	1	_	True_OF_PB38D	
K5	PB34C	1	MIPI_CLKT1_0	True_OF_PB34D	
К6	PB29C	1	PCLKT1_1	True_OF_PB29D	
K7	PB29B	1	PCLKC1_0	Comp_OF_PB29A	
К8	PB16C	2	PCLKT2_1	True_OF_PB16D	
К9	PB12D	2	_	Comp_OF_PB12C	
K10	PB12C	2		True_OF_PB12D	

5.4. csfBGA81 Pinout

Table 5.4. csfBGA81 Pinout

Pin Number	Pin Function	Bank	Dual Function	Differential	
A1	DPHY1_CKP	DPHY1	_	True_OF_DPHY1_CKN	
A2	DPHY1_CKN	DPHY1	_	Comp_OF_DPHY1_CKP	
А3	DPHY1_DP1	DPHY1	_	True_OF_DPHY1_DN1	
A4	DPHY1_DP3	DPHY1	_	True_OF_DPHY1_DN3	
A5	VCCA_DPHY1	DPHY1	_	_	
A6	DPHY0_DN2	DPHY0	_	Comp_OF_DPHY0_DP2	
A7	DPHY0_DN0	DPHY0	_	Comp_OF_DPHY0_DP0	
A8	DPHY0_CKP	DPHY0	_	True_OF_DPHY0_CKN	
A9	DPHY0_CKN	DPHY0	_	Comp_OF_DPHYO_CKP	
B1	DPHY1_DP0	DPHY1	_	True_OF_DPHY1_DN0	
B2	DPHY1_DN0	DPHY1	_	Comp_OF_DPHY1_DP0	
В3	DPHY1_DN1	DPHY1	_	Comp_OF_DPHY1_DP1	
B4	DPHY1_DN3	DPHY1	_	Comp_OF_DPHY1_DP3	
B5	GNDPLL_DPHYx	GND	_	_	
В6	DPHY0_DP2	DPHY0	_	True_OF_DPHY0_DN2	
В7	DPHY0 DP0	DPHY0	_	True_OF_DPHY0_DN0	
В8	DPHY0_DP1	DPHY0	_	True_OF_DPHY0_DN1	
В9	DPHY0_DN1	DPHY0	_	Comp OF DPHY0 DP1	
C1	DPHY1 DP2	DPHY1	_	True_OF_DPHY1_DN2	
C2	DPHY1_DN2	DPHY1	_	Comp_OF_DPHY1_DP2	
C3	GNDA DPHY1	DPHY1	_		
C4	VCCPLL_DPHY1	DPHY1	_	_	
C5	GND	GND	_	_	
C6	VCCPLL DPHY0	DPHY0	_	 -	
C7	GNDA_DPHY0	DPHY0	_	_	
C8	DPHY0_DP3	DPHY0	_	True_OF_DPHY0_DN3	
C9	DPHY0 DN3	DPHY0	_	Comp_OF_DPHY0_DP3	
D1	PB34A	1	GR_PCLK1_0	True_OF_PB34B	
D2	PB34B	1		Comp_OF_PB34A	
D3	VCCA_DPHY1	DPHY1	_	_	
D4	GND	GND	_	_	
D5	VCCAUX	VCCAUX	_	_	
D6	GND	GND	_	_	
D7	VCCA_DPHY0	DPHY0	_	_	
D8	 PB16B	2	PCLKC2_0	Comp_OF_PB16A	
D9	PB16A	2	PCLKT2 0	True_OF_PB16B	
E1	PB38A	1		True_OF_PB38B	
E2	PB38B	1	_	Comp OF PB38A	
E3	VCC	VCC	_	_	
E4	VCC	VCC	_	_	
E5	GND	GND	_	_	
E6	VCCIO2	2		+	

Table 5.4 csfBGA81 Pinout (Continued)

Pin Number	Pin Function	Bank	Dual Function	Differential
E7	PB12B	2	GPLLC2_0	Comp_OF_PB12A
E8	PB6B	2	_	Comp_OF_PB6A
E9	PB6A	2	GR_PCLK2_0	True_OF_PB6B
F1	PB50	0	MOSI	_
F2	PB48	0	PCLKTO_1/USER_SCL	_
F3	VCCIO1	1	_	_
F4	GND	GND	_	_
F5	GNDGPLL	GND	_	_
F6	VCCIO2	2	_	_
F7	PB12A	2	GPLLT2_0	True_OF_PB12B
F8	PB2B	2	_	Comp_OF_PB2A
F9	PB2A	2	_	True_OF_PB2B
G1	PB52	0	SPI_SS/CSN/SCL	_
G2	CRESET_B	0	_	_
G3	VCCIO0	0	_	_
G4	VCCIO1	1	_	_
G5	VCCGPLL	VCCGPLL	_	_
G6	PB29B	1	PCLKC1_0	Comp_OF_PB29A
G7	PB29A	1	PCLKT1_0	True_OF_PB29B
G8	PB2D	2	MIPI_CLKC2_0	Comp_OF_PB2C
G 9	PB2C	2	MIPI_CLKT2_0	True_OF_PB2D
H1	PB53	0	SPI_SCK/MCK/SDA	_
H2	PB49	0	PMU_WKUPN/CDONE	_
Н3	PB43D	1	_	Comp_OF_PB43C
H4	PB38D	1	_	Comp_OF_PB38C
H5	PB34D	1	MIPI_CLKC1_0	Comp_OF_PB34C
Н6	PB29D	1	PCLKC1_1	Comp_OF_PB29C
H7	PB16D	2	PCLKC2_1	Comp_OF_PB16C
Н8	PB6D	2	_	Comp_OF_PB6C
Н9	PB6C	2	_	True_OF_PB6D
J1	PB51	0	MISO	_
J2	PB47	0	PCLKTO_0/USER_SDA	
J3	PB43C	1	_	True_OF_PB43D
J4	PB38C	1	_	True_OF_PB38D
J5	PB34C	1	MIPI_CLKT1_0	True_OF_PB34D
J6	PB29C	1	PCLKT1_1	True_OF_PB29D
J7	PB16C	2	PCLKT2_1	True_OF_PB16D
J8	PB12D	2	_	Comp_OF_PB12C
19	PB12C	2	_	True_OF_PB12D

5.5. Dual Function Pin Descriptions

The following table describes the dual functions available to certain pins on the CrossLink device. These pins may alternatively be used as general purpose I/O when the described dual function is not enabled.

Table 5.5. Dual Function Pin Descriptions

Signal Name	I/O	Description
General Purpose		
USER_SCL	I/O	User Slave I2C0 clock input and Master I ² C0 clock output. Enables PMU wake-up via I2C0.
USER_SDA	I/O	User Slave I2C0 data input and Master I ² C0 data output. Enables PMU wakeup via I2C0.
PMU_WKUPN	_	This pin wakes the PMU from sleep mode when toggled low.
Clock Functions	·	
GPLL2_0[T, C]_IN	I	General Purpose PLL (GPLL) input pads: T = true and C = complement. These pins can be used to input a reference clock directly to the General Purpose PLL. These pins do not provide direct access to the primary clock network.
GR_PCLK[Bank]0	I	These pins provide a short General Routing path to the primary clock network. Refer to CrossLink sysCLOCK PLL/DLL Design and Usage Guide (FPGA-TN-02015) for details.
PCLK[T/C][Bank]_[num]	I/O	General Purpose Primary CLK pads: [T/C] = True/Complement, [Bank] = (0, 1 and 2). These pins provide direct access to the primary and edge clock networks.
MIPI_CLK[T/C][Bank]_0	I/O	MIPI D-PHY Reference CLK pads: [T/C] = True/Complement, [Bank] = (0, 1 and 2). These pins can be used to input a reference clock directly to the D-PHY PLLs. These pins do not provide direct access to the primary clock network.
Configuration	·	
CDONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. Holding CDONE delays configuration.
SPI_SCK	I	Input Configuration Clock for configuring CrossLink in Slave SPI mode (SSPI).
MCK	0	Output Configuration Clock for configuring CrossLink in Master SPI mode (MSPI).
SPI_SS	I	Input Chip Select for configuring CrossLink in Slave SPI mode (SSPI).
CSN	0	Output Chip Select for configuring CrossLink in Master SPI mode (MSPI).
MOSI	I/O	Data Output when configuring CrossLink in Master SPI mode (MSPI), data input when configuring CrossLink in Slave SPI mode (SSPI).
MISO	I/O	Data Input when configuring CrossLink in Master SPI mode (MSPI), data output when configuring CrossLink in Slave SPI mode (SSPI).
SCL	I/O	Slave I ² C clock I/O when configuring CrossLink in I ² C mode.
SDA	I/O	Slave I ² C data I/O when configuring CrossLink in I ² C mode.

5.6. Dedicated Function Pin Descriptions

Table 5.6. Dedicated Function Pin Descriptions

Signal Name	I/O	Description
Configuration		
CRESET_B	I	Configuration Reset, active LOW.
MIPI D-PHY		
DPHY[num]_CK[P/N]	I/O	MIPI D-PHY Clock [num] = D-PHY 0 or 1, P = Positive, N = Negative.
DPHY[num]_D[P/N][lane]	I/O	MIPI D-PHY Data [num] = D-PHY 0 or 1, P = Positive, N = Negative,
		Lane = data lane in the D-PHY block 0, 1, 2 or 3.

5.7. Pin Information Summary

Table 5.7. Pin Information Summary

Dia Torra	CrossLink							
Pin Type	WLCSP36	ucfBGA64	ctfBGA80	ckfBGA80	csfBGA81			
Total General Purpose I/O	17	29	37	37	37			
VCC/VCCIOx/VCCAUX/VCCGPLL	4	8	9	9	10			
GND	2	3	6	6	6			
D-PHY Clock/Data	10	20	20	20	20			
D-PHY VCC	1	2	4	4	4			
D-PHY GND	1	1	3	3	3			
CRESETB	1	1	1	1	1			
Total Balls	36	64	80	80	81			
General Purpose I/O per Bank								
Bank 0	7	7	7	7	7			
Bank 1	0	10	14	14	14			
Bank 2	10	12	16	16	16			
Total General Purpose Single Ended I/O	17	29	37	37	37			
Differential I/O Pairs per Bank								
Bank 0	0	0	0	0	0			
Bank 1	0	5	7	7	7			
Bank 2	5	6	8	8	8			
Total General Purpose Differential I/O Pairs	5	11	15	15	15			

6. CrossLink Part Number Description

6.1. Ordering Part Numbers

Industrial*

Part Number	Grade	Package	Pins	Temp.	LUTs (K)
LIF-MD6000-6UWG36ITR	-6	Lead free WLCSP	36	Industrial	5.9
LIF-MD6000-6UMG64I	-6	Lead free ucfBGA	64	Industrial	5.9
LIF-MD6000-6MG81I	- 6	Lead free csfBGA	81	Industrial	5.9
LIF-MD6000-6JMG80I	-6	Lead free ctfBGA	80	Industrial	5.9
LIF-MD6000-6KMG80I	-6	Lead free ckfBGA	80	Industrial	5.9

^{*}Note: UWG36 package is available in shipments of 5000 pieces/reel (TR), 1000 pieces/reel (TR1K), and 50 pieces/reel (TR50 – for samples only).

References

For more information, refer to the following technical notes:

- CrossLink High-Speed I/O Interface (FPGA-TN-02012)
- CrossLink Hardware Checklist (FPGA-TN-02013)
- CrossLink Programming and Configuration Usage Guide (FPGA-TN-02014)
- CrossLink sysCLOCK PLL/DLL Design and Usage Guide (FPGA-TN-02015)
- CrossLink sysI/O Usage Guide (FPGA-TN-02016)
- CrossLink Memory Usage Guide (FPGA-TN-02017)
- Power Management and Calculation for CrossLink Devices (FPGA-TN-02018)
- CrossLink I2C Hardened IP Usage Guide (FPGA-TN-02019)
- Advanced CrossLink I2C Hardened IP Reference Guide (FPGA-TN-02020)

For package information, refer to the following technical notes:

- PCB Layout Recommendations for BGA Packages (TN1074)
- Solder Reflow Guide for Surface Mount Devices (FPGA-TN-12041, previously TN1076)
- Wafer-Level Chip-Scale Package Guide (TN1242)
- Thermal Management
- Package Diagrams

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- MIPI Standards (D-PHY): www.mipi.org

Technical Support

For assistance, submit a technical support case at www.latticesemi.com/techsupport.

Revision History

Date	Version	Change Summary
July2018	1.5	 Updated Table 4.1. Absolute Maximum Ratings ^{1, 2, 3}. Added footnote 4 to V_{CCAUX} parameters. Updated Table 4.2. Recommended Operating Conditions ^{1, 2}. Added footnote 3 to V_{CCAUX} parameters. Updated Table 4.13. CrossLink External Switching Characteristics ^{4, 5}. Revised ^t_{SU_GDDRX_MP} and ^t_{HD_GDDRX_MP} conditions under I/O MIPI D-PHY Rx with 1:8 or 1:16 Gearing.
February 2018	1.4	 Removed Application Examples section and its associated references throughout the document Updated the Architecture Overview section (general update) Reordered the list of features supported by the hard D-PHY quads Added Figure 3.3 to Figure 3.6 to the MIPI D-PHY Blocks section Updated the Programmable I/O Banks section Added Bank 0 list of features Added Table 3.1, Table 3.2, Table 3.3, and Table 3.4 Updated Programmable FPGA Fabric section Removed FPGA Fabric Overview header Added PFU Blocks section Added Slice section Moved Clocking Overview as a new Clocking Structure (heading 2) section and added contents Moved Embedded Block RAM Overview as a new (heading 2) section and added contents Removed System Resources section Moved Power Management Unit section under Embedded Block RAM Overview Removed Device Configuration section Moved User I2C IP as a new (heading 2) section Added Programming and Configuration section Updated CrossLink Maximum General Purpose I/O Buffer Speed section. Changed LVTTL33/LVCMOS33 to LVCMOS33/LVTTL33 Updated CrossLink External Switching Characteristics section (general update) Placed captions to pinout tables

Date	Version	Change Summary
November	1.3	
2017	1.3	 Added 80-ball ckfBGA (49 mm²) package in Features section Updated note in Table 2.1, Table 2.2, Table 2.3, Table 2.4, Table 2.5, Table 2.6, Table 2.7, Table 2.8, and Table 2.9 Added 80 ckfBGA (7.0 x 7.0 mm², 1 mm) package to Table 2.1. CrossLink Feature Summary
		Updated System Resources section
		 Removed LVCMOS12 (Outputs Only) from CMOS GPIO (Bank 0) section
		Added information in Device Configuration section
		Updated Table 4.1. Absolute Maximum Ratings 1, 2, 3
		Changed symbol from VCCPLL to VCCGPLL
		Removed VCC_DPHY symbol
		Updated Table 4.2. Recommended Operating Conditions 1, 2
		Revised symbols to VCCGPLL.and VCCIO0
		Added row of VCCIO1/2 symbol
		Removed row of VCC_DPHYx symbol
		 Removed VCC_DPHY1 from V_{CCMU_DPHY1} parameter description
		 Added notes to Table 4.8. sysl/O Recommended Operating Conditions¹ and Table 4.20. CrossLink sysCONFIG Port Timing Specifications
		Updated link to the LIFMD Product Family Qualification Summary reference in the ESD Performance section
		• Removed V_{CCIO} = 1.2 V between 0 \leq V_{IN} \leq 0.65 * V_{CCIO} condition from Table 4.5. DC Electrical Characteristics
		Updated Table 4.6. CrossLink Supply Current
		 Updated ICCMLL_DPHYx, ICCMLL_DPHYx_STDBY, and ICCPLL_DPHY_SLEEP parameters
		Moved ICCA_DPHY_SLEEP and updated parameter
		Updated ICCAMLL_DPHYx_SLEEP parameter and unit
		 Updated footnote 4-a, 4-b, and 5-b
		Updated Table 4.12. CrossLink Maximum I/O Buffer Speed
		Added ckfBGA80 package in descriptions
		Changed LVTTL33/LVCMOS to LVTTL33/LVCMOS33
		 Changed V_{CCIO} to V_{CCIO1/2} in LVCMOS12 description
		 Updated the CrossLink External Switching Characteristics section and Table 4.13. CrossLink External Switching Characteristics ^{4, 5}
		 Removed "Over recommended commercial operating conditions."
		 General update of information under Generic DDR Interfaces2 including the addition of "Generic DDRX1 I/O with Clock and Data Centered at General Purpose Pins (GDDRX1_RX/TX.ECLK.Centered)" and "Generic DDRX1 I/O with Clock and Data Aligned at General Purpose Pins (GDDRX1_RX/TX.ECLK.Aligned" rows
		Added ckfBGA80 package in specific conditions
		 Changed T_{REFRESH} to T_{CONFIGURATION} in Table 4.21. SRAM Configuration Time from NVCM Updated Pinout Information section
		Updated section introduction
		Updated WLCSP36 Pinout. Changed C4 bank to VCC
		 Updated vector for information of C1, C2, C9, Updated section to ctfBGA80/cktBGA80 Pinout and revised pin function of C1, C2, C9,
		C10, D6, E5, G2, G5, and G7
		Updated pin function of B5 in csfBGA81 Pinout Lindated Din Information Summary section
		Updated Pin Information Summary section Lindated Crosslink Part Number Description section
		Updated CrossLink Part Number Description section Added LIF NDCOOR CKMCSOL part number to Ordering Part Numbers section.
		Added LIF-MD6000-6KMG80I part number to Ordering Part Numbers section Lindate reference to the Colder Defloy Cuide for Surface Mount Devices decument in
		Update reference to the Solder Reflow Guide for Surface Mount Devices document in References section

Date	Version	Change Summary
June 2017	1.2	 Updated Fabric Resources Used in Table 2.1, Table 2.2, Table 2.3, Table 2.4, Table 2.5, Table 2.6, and Table 2.9 Updated Figure 3.1. CrossLink Device Block Diagram Added row of V_{CCAUX} for 3.3 V in Table 4.1. Absolute Maximum Ratings ^{1, 2, 3} and Table 4.2. Recommended Operating Conditions ^{1, 2} Added row of C₃ to Table 4.5. DC Electrical Characteristics Added rows of I_{CCAMIL_DPHYX}, I_{CCAMIL_DPHYX_STDBY}, and I_{CCAMIL_DPHYX_SLEEP} to Table 4.6. CrossLink Supply Current Updated Max value in Table 4.7. PMU Updated values of subLVDS (Input only) and SLVS200 (Input only), and added row of LVDS (Input only) to Table 4.8. sysl/O Recommended Operating Conditions¹ Updated Table 5.10. LVDS/subLVDS1/SLVS200 Updated parameter descriptions in Table 4.11. MIPI D-PHY Added row of MIPI D-PHY (LP Mode), and updated Max values of subLVDS and SLVS200 in Table 4.12. CrossLink Maximum I/O Buffer Speed Updated conditions in Table 4.13. CrossLink External Switching Characteristics ^{4, 5} Added rows of f_{PD} and f_{VCO} to Table 4.14. sysCLOCK PLL Timing Updated values in Table 4.15. 1500 Mb/s MIPI_DPHY_X8_RX/TX Timing Table (1500 Mb/s > MIPI D-PHY Data Rate > 1200 Mb/s), Table 4.16. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s > MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI_DPHY_Data Rate > 10 Mb/s) Updated Typ values of DCH_{CLKHF} and DCH_{CLKHF} in Table 4.18. Internal Oscillators Added row of T_{DELAY} to Table 4.19. User I²C 1 Updated Symbol and parameter in Table 4.21. SRAM Configuration Time from NVCM Included version number in Pinout Information
March 2017	1.1	 Updated I/O placements on banks containing MIPI interface in Programmable I/O Banks section. Updated DC and Switching Characteristics section: Updated Table 4.4. Power-On-Reset Voltage Levels 1, 3, 4, added row of V_{PORDN} Added Note 5 to Table 4.5. DC Electrical Characteristics Updated Table 4.6. CrossLink Supply Current, added notes Updated max values of V_{THD} and V_{THD(subLVDS)} in Table 4.10. LVDS/subLVDS1/SLVS200 ^{1, 2} Maximum input frequency values of subLVDS and SLVS200 are TBD in Table 4.12. CrossLink Maximum I/O Buffer Speed Updated Table 4.13. CrossLink External Switching Characteristics ^{4, 5} Updated min values of tSU_MIPIX4 and tHO_MIPIX4 in Table 4.16. 1200 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1200 Mb/s > MIPI D-PHY Data Rate > 1000 Mb/s) and Table 4.17. 1000 Mb/s MIPI_DPHY_X4_RX/TX Timing Table (1000 Mb/s > MIPI D-PHY Data Rate > 10 Mb/s) Updated Table 4.20. CrossLink sysCONFIG Port Timing Specifications Updated Pinout Information section Updated CrossLink Part Number Description
July 2016	1.0	Updated document numbers.
May 2016	1.0	First preliminary release.
iviay ZUIU	1.0	Thist premimally release.

7[™] Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com