Math 4301 Mathematical Analysis I

<u>Lecture 4</u>

Topic: Cluster Points

• Cluster Points

Definition Let $\{x_n\}$ be a sequence of real numbers and $x \in \mathbb{R}$. We say that x is a *cluster point* of $\{x_n\}$, if for all $\epsilon > 0$, the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite.

• Let $\{x_n\}$ be a real sequence and C be the set of all cluster points of $\{x_n\}$, i.e.

$$C = \{x : x \text{ is a cluster point of } \{x_n\}\}.$$

Example: Find the set C of all cluster points of the sequence

$$x_n = (-1)^n + \frac{1}{n}.$$

• Clearly,

$$C = \{-1, 1\}.$$

• Notice that

$$x_n = \left\{ \begin{array}{ccc} 1 + \frac{1}{2k} & if & n = 2k \\ -1 + \frac{1}{2k-1} & if & n = 2k-1 \end{array} \right., \ k \in \mathbb{N}.$$

• Therefore, there are two subsequences $\{x_{2k}\}$ and $\{x_{2k-1}\}$ of $\{x_n\}$, such that

$$x_{2k} \to 1$$
 and $x_{2k-1} \to -1$.

• Since for $\epsilon > 0$, there are

$$N_1, N_2 \in \mathbb{N}$$
,

such that, for $k > N_1$

$$|x_{2k} - 1| < \epsilon$$

and, for $k > N_2$

$$|x_{2k-1} - (-1)| < \epsilon$$

• It follows that sets

$$\{n \in \mathbb{N} : |x_n - 1| < \epsilon\}$$

is infinite (since $2k \in \{n \in \mathbb{N} : |x_n - 1| < \epsilon\}, k > N_1$) and

$$\{n \in \mathbb{N} : |x_n + 1| < \epsilon\}$$

is also infinite (since $(2k-1) \in \{n \in \mathbb{N} : |x_n+1| < \epsilon\}, k > N_2$).

• Therefore, we know that

$$-1, 1 \in C$$
.

• We show that if $x \neq \pm 1$, then x is not a cluster point of $\{x_n\}$.

• Define

$$\epsilon = \frac{1}{2}\min\left\{\left|x-1\right|,\left|x+1\right|\right\} > 0$$

• Since $x_{2k} \to 1$ and $x_{2k-1} \to -1$, there are

$$N_1, N_2 \in \mathbb{N}$$
,

such that, if $k > N_1$, then

$$|x_{2k} - 1| < \epsilon$$

and if $k > N_2$, then

$$|x_{2k-1} - (-1)| < \epsilon$$
.

• Therefore, if $n > \max\{N_1, N_2\}$, then

$$|x_n - 1| < \epsilon \text{ or } |x_n + 1| < \epsilon.$$

• Hence, if $n > \max\{N_1, N_2\}$ and n is even then

$$|x_n - x| = |(x_n - 1) + (1 - x)| \ge ||x_n - 1| - |1 - x||.$$

 \bullet Since

$$|x_n - 1| < \epsilon \le \frac{1}{2} |x - 1| < |x - 1|,$$

so

$$|x_n - x| \ge ||x_n - 1| - |1 - x|| = |1 - x| - |x_n - 1|$$

> $|1 - x| - \epsilon \ge |1 - x| - \underbrace{\frac{1}{2}|1 - x|}_{\ge \epsilon} = \frac{1}{2}|1 - x| \ge \epsilon.$

• Analogously, one shows that

$$n > \max\{N_1, N_2\}$$

and n is odd then

$$|x_n - x| \ge \epsilon$$
.

- We showed that, if $n > \max\{N_1, N_2\}$, then $|x_n x| \ge \epsilon$.
- Therefore, the set

$${n \in \mathbb{N} : |x_n - x| < \epsilon}$$
 is finite

- Consequently, x is not a cluster point of $\{x_n\}$.
- Therefore,

$$C = \{-1, 1\}.$$

Theorem Let $\{x_n\}$ be a sequence of real numbers and $x \in \mathbb{R}$.

1. x is a cluster point of $\{x_n\}$ iff

for every $\epsilon > 0$ and for every $N \in \mathbb{N}$, there is $n \in \mathbb{N}$, such that

$$n > N$$
 and $|x_n - x| < \epsilon$.

2. x is a cluster point of $\{x_n\}$ iff there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that,

$$x_{n_k} \to x \text{ as } k \to \infty.$$

- 3. $x_n \to x$ as $n \to \infty$ iff every subsequence of $\{x_n\}$ converges to x.
- 4. $x_n \to x$ as $n \to \infty$ iff the sequence is bounded and x is its only cluster point.
- 5. $x_n \to x$ as $n \to \infty$ iff every subsequence of $\{x_n\}$ has a further subsequence that converges to x.

Proof. We prove each of the statements (1-5).

• For statement (1): x is a cluster point of $\{x_n\}$ iff for every $\epsilon > 0$ and for every $N \in \mathbb{N}$, there is $n \in \mathbb{N}$, such that

$$n > N$$
 and $|x_n - x| < \epsilon$.

- **Assume** that x is a cluster point of $\{x_n\}$ and let $\epsilon > 0$ be given and $N \in \mathbb{N}$.
- Since x is a cluster point of $\{x_n\}$, by the definition the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite.

 \bullet Since N is a finite number and

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite, there is

$$n \in \{n \in \mathbb{N} : |x_n - x| < \epsilon\},$$

such that

$$n > N$$
, so $|x_n - x| < \epsilon$.

- Conversely, let $\epsilon > 0$ be given.
- We need to show that

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite.

• Then for $N_1 = 1$, there is $n_1 > N_1$, such that,

$$|x_{n_1} - x| < \epsilon.$$

• Take $N_2 = n_1$, then there is $n_2 > N_2 = n_1$ (i.e. $n_1 < n_2$), such that

$$|x_{n_2} - x| < \epsilon.$$

• If we repeat the above construction, we obtain a sequence of natural numbers

$$n_1 < n_2 < n_3 < \dots,$$

such that

$$|x_{n_k} - x| < \epsilon, \ k = 1, 2, \dots$$

ullet It follows that

$$n_k \in \{n \in \mathbb{N}: |x_n-x|<\epsilon\}, \text{ so } \{n_k: k=1,2,\ldots\} \subseteq \{n \in \mathbb{N}: |x_n-x|<\epsilon\}$$

so $\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$ is infinite and thus,

• x is a cluster point.

For statement (2): x is a cluster point of $\{x_n\}$ iff there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that,

$$x_{n_k} \to x \text{ as } k \to \infty.$$

- **Assume** that x is a cluster point.
- By (1), for every $\epsilon > 0$ and $N \in \mathbb{N}$, there is n > N, such that

$$|x_n - x| < \epsilon.$$

 \bullet We construct a subsequence $\left\{ x_{n_{k}}\right\}$ of $\left\{ x_{n}\right\} ,$ such that,

$$x_{n_k} \to x$$
.

• Let

$$\epsilon_k = \frac{1}{k}, \text{ for } k = 1, 2, ...$$

• Take $\epsilon_1 = \frac{1}{1}$ and $N_1 = 1$, then there is $n_1 > N_1$, such that

$$|x_{n_1} - x| < \frac{1}{1}$$

• Take $\epsilon_2 = \frac{1}{2}$ and $N_2 = n_1$, then there is $n_2 > N_2$, such that

$$|x_{n_2} - x| < \frac{1}{2}$$

and then by induction,

if $\epsilon_k = \frac{1}{k}$, taking $N_k = n_{k-1}$, there is $n_k > N_k$, such that

$$|x_{n_k} - x| < \frac{1}{k}$$

• We constructed a sequence of natural numbers

$$n_1 < n_2 < ...,$$

such that

$$|x_{n_k} - x| < \frac{1}{k}.$$

- Clearly, $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$.
- We show now that $x_{n_k} \to x$.
- Let $\epsilon > 0$ be given.
- There is $K \in \mathbb{N}$, such that

$$0 < \epsilon_K = \frac{1}{K} < \epsilon.$$

• Since, for k > K, $\epsilon_k < \epsilon_K$, then, for k > K,

$$|x_{n_k} - x| < \epsilon_k = \frac{1}{k} < \frac{1}{K} = \epsilon_K < \epsilon.$$

It follows that $\{x_{n_k}\}$ converges to x.

- Conversely, suppose that $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ that converges to x.
- We show that x is a cluster point of $\{x_n\}$.
- By assumption, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that

$$x_{n_k} \to x \text{ as } k \to \infty.$$

• Therefore, if $\epsilon > 0$ be given, there is $K \in \mathbb{N}$, such that, for all k > K,

$$|x_{n_k} - x| < \epsilon.$$

• Therefore, if k > K

$$n_k \in \{ n \in \mathbb{N} : |x_n - x| < \epsilon \}$$

Hence,

$$\{n_k : k > K\} \subseteq \{n \in \mathbb{N} : |x_n - x| < \epsilon\},$$

so

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite, and

- by the definition, x is a cluster point of {x_n}.
 For statement (3): x_n → x as n → ∞ iff every subsequence of {x_n} converges to x.
- Assume that $x_n \to x$ as $n \to \infty$ and suppose that $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$.
- Let $\epsilon > 0$ be given.

• Since $x_n \to x$, then there is $N \in \mathbb{N}$, such that, for

$$n > N, |x_n - x| < \epsilon.$$

• Notice that if

$$n_1 < n_2 < n_3 < \dots$$

is a sequence of natural numbers, then $n_k \geq k$, for all k = 1, 2, ...

- Indeed, clearly $n_1 \geq 1$.
- Since $n_2 > n_1$, then

$$n_2 > n_1 \ge 1$$
,

so $n_2 \geq 2$.

• By induction, if $n_k \ge k$, then $n_{k+1} > n_k \ge k$, so

$$n_{k+1} \ge k+1.$$

• Therefore, if k > N, then

$$n_k \ge k > N$$
,

so

$$|x_{n_k} - x| < \epsilon.$$

 \bullet It follows that

$$x_{n_k} \to x \text{ as } k \to \infty.$$

- Conversely, suppose that $\{x_n\}$ is not convergent to x.
- We construct a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that $\{x_{n_k}\}$ does not converge to x.
- If $\{x_n\}$ is not convergent to x, then there is $\epsilon > 0$, such that, for every $N \in \mathbb{N}$, there is n > N, such that

$$|x_n - x| \ge \epsilon$$
.

• Using the above condition, we take

$$N_1 = 1,$$

the we get $n_1 > N_1$, such that

$$|x_{n_1} - x| \ge \epsilon$$

• Taking $N_2 = n_1$, there is $n_2 > N_2 = n_1$ (i.e. $n_1 < n_2$) such that

$$|x_{n_2} - x| \ge \epsilon$$

• Inductively, we construct a sequence of natural numbers

$$n_1 < n_2 < n_3 < \dots$$

such that

$$|x_{n_k} - x| \ge \epsilon$$
, for all $k = 1, 2, ...$

- We see that such a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ cannot converge to x.
- Contradiction since we assumed that every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to x.
- Therefore, it must be

$$x_n \to x$$
.

For statement (4): $x_n \to x$ as $n \to \infty$ iff the sequence is bounded and x is its only cluster point.

- Assume that $x_n \to x$ as $n \to \infty$.
- By previous theorem $\{x_n\}$ is bounded.
- Since $x_n \to x$, by (3), every $\{x_{n_k}\}$ subsequence of $\{x_n\}$, converges to x, i.e. $x_{n_k} \to x$, as $k \to \infty$.
- In particular, there is subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to x, so by (2), x is a cluster point of $\{x_n\}$.
- Moreover, if y is a cluster point of $\{x_n\}$, then by (2), there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to y.
- Since $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ and $x_n \to x$, by (3), $x_{n_k} \to x$ as $k \to \infty$.
- Since limit of a convergent sequence is unique, it follows that

$$y = x$$
.

- Therefore, $\{x_n\}$ has a unique cluster point x and, as we showed it before, $\{x_n\}$ is bounded.
- Conversely, assume that $\{x_n\}$ has a unique cluster point x and $\{x_n\}$ is bounded.
- We show that every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to x, so by (3)

$$x_n \to x$$
.

- Let $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$ and assume that $x_{n_k} \nrightarrow x$ as $k \to \infty$.
- Since $x_{n_k} \to x$ as $k \to \infty$, there is $\epsilon > 0$, such that, for every $K \in \mathbb{N}$, there is k > K, such that

$$|x_{n_k} - x| \ge \epsilon$$

• Let K = 1, then there is $k_1 > 1$, such that

$$\left| x_{n_{k_1}} - x \right| \ge \epsilon$$

• Let $K = k_1$, then there is $k_2 > k_1$, such that

$$\left| x_{n_{k_2}} - x \right| \ge \epsilon$$

and by induction.

• Let $K = k_l$, then there is

$$k_{l+1} > k_l > \dots > k_1,$$

such that

$$\left| x_{n_{k_{l+1}}} - x \right| \ge \epsilon$$

• We obtained a subsequence $\{x_{n_{k_l}}\}$ of $\{x_{n_k}\}$, such that, for all l=1,2,...

$$\left| x_{n_{k_l}} - x \right| \ge \epsilon.$$

- Since $\{x_n\}$ is bounded, $\{x_{n_k}\}$ is also bounded, so also $\{x_{n_{k_l}}\}$ is bounded.
- By Bolzano-Weierstrass theorem, $\left\{x_{n_{k_l}}\right\} \text{ has a convergent subsequence } \left\{x_{n_{k_{l_j}}}\right\}.$
- Let $x_{n_{k_{l_i}}} \to y$, as $j \to \infty$.
- Since $\left\{x_{n_{k_{l_j}}}\right\}$ is a subsequence of $\left\{x_{n_{k_l}}\right\}$, for all j=1,2,...

$$\left| x_{n_{k_{l_j}}} - x \right| \ge \epsilon$$

- Therefore, $y \neq x$.
- Since $\left\{x_{n_{k_{l_j}}}\right\}$ is a subsequence of $\left\{x_{n_{k_l}}\right\}$, $\left\{x_{n_{k_l}}\right\}$ is a subsequence of $\left\{x_n\right\}$, $\left\{x_{n_{k_{l_j}}}\right\}$ is a subsequence of $\left\{x_n\right\}$.
- By (2), y is a cluster point of $\{x_n\}$ and $y \neq x$.
- Contradiction since we assumed that $\{x_n\}$ has a unique cluster point.
- Therefore, we showed that every subsequence of $\{x_n\}$ converges to x.
- By (3), x_n → x.
 For statement (5): x_n → x as n → ∞ iff
 every subsequence of {x_n} has a further subsequence that converges to x.
- Assume that $x_n \to x$ as $n \to \infty$.

- By (3), every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to x.
- In particular, by (3) each subsequence of $\{x_{n_k}\}$ converges to x.
- Thus, every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has a further subsequence that converges to x.
- Conversely, assume that every subsequence $\{x_{n_k}\}$ of a sequence $\{x_n\}$ has a subsequence $\{x_{n_{k_l}}\}$ that converges to x.
- We show that $\{x_n\}$ is bounded and x is a unique cluster point of $\{x_n\}$.
- If $\{x_n\}$ is unbounded, then $\{x_n\}$ has a subsequence $\{x_{n_k}\}$, such that

$$x_{n_k} \to \infty \text{ or } x_{n_k} \to -\infty.$$

- Such a subsequence has no further subsequence $\left\{x_{n_{k_{l}}}\right\}$ that converges to x.
- Therefore, $\{x_n\}$ is bounded.
- Suppose that $y \neq x$ is a cluster point of $\{x_n\}$, then by (2) there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that

$$x_{n_k} \to y$$
.

- Since $\{x_{n_k}\}$, converges, by (3) every subsequence $\{x_{n_{k_l}}\}$ of $\{x_{n_k}\}$ also converges to y. Contradiction.
- Therefore y = x and x is the unique cluster point of $\{x_n\}$.
- Since $\{x_n\}$ is bounded and it has a unique cluster point, by (4), it follows that

$$x_n \to x \text{ as } n \to \infty.$$

This finishes our proof. ■

• Example: Find the set C of all cluster points of the sequence

$$x_n = \sin\left(\frac{n\pi}{2}\right), \ n = 1, 2, \dots$$

• Notice that

$$x_n = \sin\left(\frac{n\pi}{2}\right) = \begin{cases} 0 & \text{if } n = 2k\\ 1 & \text{if } n = 4k+1\\ -1 & \text{if } n = 4k+3 \end{cases}$$

• Therefore, we can show that

$$C = \{-1, 0, 1\}$$
.

Exercise: Show (using the method as above) that

$$C = \{-1, 0, 1\}$$
.

Example: Construct a sequence $\{x_n\}$ such that its set of cluster points is

$$C = \{x_1, x_2, ..., x_m\}.$$

Hint: Consider sequence

$$x_{n} = \begin{cases} x_{1} + \frac{1}{n} & if & n = mk \\ x_{2} + \frac{1}{n} & if & n = mk + 1 \\ \vdots & \vdots & \vdots \\ x_{m} + \frac{1}{n} & if & n = mk + (m - 1) \end{cases}$$

Show that

$$C = \{x_1, x_2, ..., x_m\}$$
.

Example: Construct a sequence $\{x_n\}$ such that its set of cluster points is

$$C = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \left\{ 0 \right\}.$$

Hint: Consider set

$$\left\{\frac{1}{n} + \frac{1}{k} : n, k \in \mathbb{N}\right\}.$$

One can define a sequence $\{x_m\}$, such that

$$x_m = \frac{1}{n} + \frac{1}{k}$$

(for m there will be unique k and n).

Show that

$$C = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\}$$

for this sequence.

Example: Construct a sequence $\{x_n\}$ such that its set of cluster points is

$$C = [0, 1]$$
.

Hint: Consider sequence of all rational numbers form the interval [0,1]. Show that such a sequence has the set of all cluster points precisely [0,1].

Upper and Lower Limits

Example: As we showed, the set of its cluster points of the sequence

$$x_n = \left(-1\right)^n + \frac{1}{n}$$

and we showed that

$$C = \{-1, 1\}$$

is the set of all of its cluster points.

• Recall, for a real sequence $\{x_n\}$ let C be the set of its all cluster points i.e.

$$C = \{x : x \text{ is a cluster point of } \{x_n\}\}.$$

• We define the upper and the lower limits of $\{x_n\}$ as follows. **Definition** For a real $\{x_n\}$ sequence,

the *limit superior* of $\{x_n\}$ is defined as follows.

Let C be the set of cluster points of $\{x_n\}$:

If $C \neq \emptyset$ and $\{x_n\}$ is bounded from above, then

$$\limsup (x_n) = \sup (C).$$

If $C = \emptyset$ and $\{x_n\}$ is bounded from above, then

$$\limsup (x_n) = -\infty.$$

If $\{x_n\}$ is not bounded above, then

$$\limsup (x_n) = +\infty.$$

Definition For a real $\{x_n\}$ sequence,

the *limit inferior* of $\{x_n\}$ is defined as follows.

Let C be the set of cluster points of $\{x_n\}$:

If $C \neq \emptyset$ and $\{x_n\}$ is bounded from below, then

$$\lim\inf\left(x_{n}\right)=\inf\left(C\right).$$

If $C = \emptyset$ and $\{x_n\}$ is bounded from below, then

$$\lim\inf\left(x_n\right) = +\infty$$

If $\{x_n\}$ is not bounded below, then

$$\lim\inf\left(x_{n}\right)=-\infty.$$

• Example: Let $x_n = (-1)^n$.

As we showed it before, the set of cluster points is

$$C = \{-1, 1\},\$$

and since $\{x_n\}$ is bounded,

• therefore, by the definition

$$\limsup (x_n) = \sup \{-1, 1\} = 1 \text{ and }$$

 $\liminf (x_n) = \inf \{-1, 1\} = -1.$

Example: Let $x_n = n$.

• Clearly $\{x_n\}$ is not bounded above.

• Therefore,

$$\lim\sup (x_n) = +\infty.$$

• Moreover, since $\{x_n\}$ is bounded below and the set of cluster points of $\{x_n\}$ is empty, i.e.

$$C = \emptyset$$
,

• It follows that

$$\lim\inf\left(x_{n}\right)=+\infty.$$

- Indeed $C = \emptyset$, since for $x \in \mathbb{R}$.
- If x < 1, then we take for

$$\epsilon = |1 - x| > 0$$

and we see that

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

$$= \{n \in \mathbb{N} : |n - x| < \epsilon\}$$

$$= \emptyset$$

so x is not a cluster point of (x_n) .

• If $x \geq 1$, then by the Archimedean property of \mathbb{R} and the principle of well-order for \mathbb{N} , there is the a unique $m \in \mathbb{N}$, such that

$$m < x < (m+1)$$
.

• Then if

$$0 < \epsilon < \min\{|x - m|, |(m + 1) - x|\}$$

the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\} = \{n \in \mathbb{N} : |n - x| < \epsilon\}$$

$$\subseteq \{m\}$$

so it is finite,

• hence x is not a cluster point of (x_n) .

Example: If $x_n = -n$,

then (x_n) is not bounded below, so

$$\lim\inf\left(x_{n}\right)=-\infty.$$

Since (x_n) is bounded above and the set of all of its cluster points C is empty, i.e.

$$C = \emptyset$$

• Therefore

$$\lim\sup\left(x_{n}\right)=-\infty.$$

• To show that the set of all cluster points of (x_n) is empty we can use a similar argument as we used in the proof in the previous example.

Example: Let

$$x_n = \begin{cases} 1 + \frac{1}{k} & if & n = 5k \\ 1 - \frac{1}{k} & if & n = 5k + 1 \\ 0 & if & n = 5k + 2 \\ -1 + \frac{1}{k} & if & n = 5k + 3 \\ -1 - \frac{1}{k} & if & n = 5k + 4 \end{cases}$$

• One can show that the set C of all cluster points of $\{x_n\}$ is

$$C = \{-1, 0, 1\}$$
.

• Indeed, we see that

$$\lim_{k \to \infty} x_{5k} = \lim_{k \to \infty} x_{5k+1} = -1$$

$$\lim_{k \to \infty} x_{5k+2} = 0$$

$$\lim_{k \to \infty} x_{5k+3} = \lim_{k \to \infty} x_{5k+4} = 1.$$

• Therefore, by theorem,

$$C\supseteq \{-1,0,1\}.$$

• If $x \notin \{-1, 0, 1\}$, then

$$\epsilon = \frac{1}{3}\min\{|x-1|, |x|, |x+1|\} > 0.$$

• One argues that the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is finite (we leave this to show as an exercise).

• Therefore, we see that

$$C = \{-1, 0, 1\}$$
.

• Notice that

$$-2 \le x_n \le 2$$
, so $|x_n| \le 2$, for all $n \in \mathbb{N}$.

• Therefore, $\{x_n\}$ is bounded above and below, so

$$\liminf \{x_n\} = \inf C = \inf \{-1, 0, 1\} = -1 \text{ and}$$
$$\limsup \{x_n\} = \sup C = \sup \{-1, 0, 1\} = 1.$$

13