Kursus 02402/02323 Introducerende Statistik

Forelæsning 12: Inferens for andele

Per Bruun Brockhoff

DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby – Danmark

e-mail: perbb@dtu.dk

Oversigt

- Intro
- Konfidensinterval for én andel
 - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- Hypotesetest for én andel
 - Eksempel 1 fortsat
- Konfidensinterval og hypotesetest for to andele
 - Eksempel 2
 - Hypotesetest for flere andele
 - Eksempel 2 fortsat
- Analyse af antalstabeller

Oversigt

- Intro
- - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- - Eksempel 2
 - - Eksempel 2 fortsat

Forskellige analyse/data-situationer

Gennemsnit for kvantitative data:

- Hypotesetest/KI for én middelværdi (one-sample)
- Hypotesetest/KI for to middelværdier (two samples)
- Hypotesetest/KI for flere middelværdier (K samples)

Forskellige analyse/data-situationer

Gennemsnit for kvantitative data:

- Hypotesetest/KI for én middelværdi (one-sample)
- Hypotesetest/KI for to middelværdier (two samples)
- Hypotesetest/KI for flere middelværdier (K samples)

I dag: Andele:

- Hypotesetest/KI for én andel
- Hypotesetest/KI for to andele
- Hypotesetest for flere andele
- Hypotesetest for flere "multi-categorical" andele

Estimation af andele

ullet Estimation af andele fås ved at observere antal gange x en hændelse har indtruffet ud af n forsøg:

$$\hat{p} = \frac{x}{n}$$

$$\hat{p} \in [0;1]$$

Oversigt

- - Konfidensinterval for én andel
 - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- - Eksempel 2
- - Eksempel 2 fortsat

DTU Compute

Method 7.3

Såfremt der haves en stor stikprøve, fås et $(1-\alpha)\%$ konfidensinterval for p

$$\frac{x}{n} - z_{1-\alpha/2} \sqrt{\frac{\frac{x}{n}(1-\frac{x}{n})}{n}}$$

Method 7.3

Såfremt der haves en stor stikprøve, fås et $(1-\alpha)\%$ konfidensinterval for p

$$\frac{x}{n} - z_{1-\alpha/2} \sqrt{\frac{\frac{x}{n}(1-\frac{x}{n})}{n}}$$

Hvordan?

Følger af at approximere binomialfordelingen med normalfordelingen.

Method 7.3

Såfremt der haves en stor stikprøve, fås et $(1-\alpha)\%$ konfidensinterval for p

$$\frac{x}{n} - z_{1-\alpha/2} \sqrt{\frac{\frac{x}{n}(1-\frac{x}{n})}{n}}$$

Hvordan?

Følger af at approximere binomialfordelingen med normalfordelingen.

As a rule of thumb

the normal distribution gives a good approximation of the binomial distrinution if np and n(1-p) are both greater than 15

Middelværdi og varians i binomialfordelingen, eNote2:

$$E(X) = np$$

$$Var(X) = np(1-p)$$

This means that

$$E(\hat{p}) = E(\frac{X}{n}) = \frac{np}{n} = p$$

$$Var(\hat{p}) = Var(\frac{X}{n}) = \frac{1}{n^2} Var(X) = \frac{p(1-p)}{n}$$

Venstrehåndede:

p = Andelen af venstrehåndede i Danmark

og/eller:

Kvindelige ingeniørstuderende:

p = Andelen af kvindelige ingeniørstuderende

Venstrehåndede:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{10/100(1-10/100)}{100}} = 0.03$$
$$0.10 \pm 1.96 \cdot 0.03 \Leftrightarrow 0.10 \pm 0.059 \Leftrightarrow [0.041, 0.159]$$

Venstrehåndede:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{10/100(1-10/100)}{100}} = 0.03$$

 $0.10 \pm 1.96 \cdot 0.03 \Leftrightarrow 0.10 \pm 0.059 \Leftrightarrow [0.041, 0.159]$

Bedre "small sample" metode - "plus 2-approach": (Remark 7.7)

Anvend samme formel på $\tilde{x} = 10 + 2 = 12$ og $\tilde{n} = 104$:

$$\sqrt{\frac{\tilde{p}(1-\tilde{p})}{\tilde{n}}} = \sqrt{\frac{12/104(1-12/104)}{104}} = 0.031328$$

 $0.1154 \pm 1.96 \cdot 0.03132 \Leftrightarrow 0.1154 \pm 0.0614 \Leftrightarrow [0.054, 0.177]$

"Margin of Error" på estimat

Margin of Error

med $(1-\alpha)\%$ konfidens bliver

$$ME = z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

hvor et estimat af p fås ved $p = \frac{x}{n}$

Bestemmelse af stikprøvestørrelse

Method 7.12

Såfremt man højst vil tillade en Margin of Error ME med $(1-\alpha)\%$ konfidens, bestemmes den nødvendige stikprøvestørrelse ved

$$n = p(1-p)\left[\frac{z_{1-\alpha/2}}{ME}\right]^2$$

Bestemmelse af stikprøvestørrelse

Method 7.12

Såfremt man højst vil tillade en Margin of Error ME med $(1-\alpha)\%$ konfidens, og p ikke kendes, bestemmes den nødvendige stikprøvestørrelse ved

$$n = \frac{1}{4} \left[\frac{z_{1-\alpha/2}}{ME} \right]^2$$

idet man får den mest konservative stikprøvestørrelse ved at vælge $p=rac{1}{2}$

Venstrehåndede:

Antag vi ønsker ME = 0.01 (med $\alpha = 0.05$) - hvad skal n være?

Venstrehåndede:

Antag vi ønsker ME = 0.01 (med $\alpha = 0.05$) - hvad skal n være?

Antag $p \approx 0.10$:

$$n = 0.1 \cdot 0.9 \left(\frac{1.96}{0.01}\right)^2 = 3467.4 \approx 3468$$

Venstrehåndede:

Antag vi ønsker ME = 0.01 (med $\alpha = 0.05$) - hvad skal n være?

Antag $p \approx 0.10$:

$$n = 0.1 \cdot 0.9 \left(\frac{1.96}{0.01}\right)^2 = 3467.4 \approx 3468$$

UDEN antagelse om størrelsen af p:

$$n = \frac{1}{4} \left(\frac{1.96}{0.01} \right)^2 = 9604$$

Oversigt

- - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- Hypotesetest for én andel
 - Eksempel 1 fortsat
- - Eksempel 2
- - Eksempel 2 fortsat

Trin ved Hypoteseprøvning

- 1. Opstil hypoteser og vælg signifikansniveau α
- 2. Beregn teststørrelse
- Beregn p-værdi (eller kritisk værdi)
- 4. Fortolk p-værdi og/eller Sammenlign p-værdi og signifikansniveau og drag en konklusion
- (Alternativ 4. Sammenlign teststørrelse og kritisk værdi og drag en konklusion)

Hypotesetest for én andel

Vi betragter en nul- og alternativ hypotese for én andel p:

$$H_0: p=p_0$$

$$H_1: p \neq p_0$$

Man vælger som sædvanligt enten at acceptere H_0 eller at forkaste H_0

Beregning af teststørrelse

Theorem 7.9 og Method 7.10

Såfremt stikprøven er tilstrækkelig bruges teststørrelsen: $(np_0 > 15 \text{ og})$ $n(1-p_0) > 15$

$$z_{\text{obs}} = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$$

Under nulhypotesen gælder at den tilsvarende tilfældige variabel Z følger en standard normalfordeling, dvs. $Z \sim N(0, 1^2)$

Test ved brug af p-værdi (Method 7.10)

Find p-værdien (evidence mod nulhypotesen):

- If two-sided: $2P(Z > |z_{obs}|)$
- If one-sided "less": $P(Z < z_{obs})$
- If one-sided "greater": $P(Z > z_{obs})$

Test ved brug af kritisk værdi (Method 7.10)

Afhængig af den alternative hypotese fås følgende kritiske værdier

Alternativ	Afvis		
hypotese	nul-hypotese hvis		
$p < p_0$	$z_{obs} < -z_{1-lpha}$		
$p > p_0$	$z_{obs} > z_{1-\alpha}$		
$p \neq p_0$	$z_{obs} < -z_{1-lpha/2}$		
	eller $z_{obs} > z_{1-\alpha/2}$		

Er halvdelen af alle danskere venstrehåndede?

$$H_0: p = 0.5, \ H_1: p \neq 0.5$$

Er halvdelen af alle danskere venstrehåndede?

$$H_0: p = 0.5, \ H_1: p \neq 0.5$$

Teststørrelse:

$$z_{\text{obs}} = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{10 - 100 \cdot 0.5}{\sqrt{100 \cdot 0.5(1 - 0.5)}} = -8$$

Er halvdelen af alle danskere venstrehåndede?

$$H_0: p = 0.5, \ H_1: p \neq 0.5$$

Teststørrelse:

$$z_{\text{obs}} = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{10 - 100 \cdot 0.5}{\sqrt{100 \cdot 0.5(1 - 0.5)}} = -8$$

p-værdi:

$$2 \cdot P(Z > 8) = 1.2 \cdot 10^{-15}$$

Der er meget stærk evidence imod nulhypotesen - vi kan forkaste denne (med $\alpha = 0.05$).

Evt med kritisk værdi i stedet:

$$z_{0.975} = 1.96$$

Idet $z_{\rm obs} = -8$ er (meget) mindre end -1.96 kan vi forkaste hypotesen.

Oversigt

- - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- Konfidensinterval og hypotesetest for to andele
 - Eksempel 2
- - Eksempel 2 fortsat

Method 7.14

$$(\hat{p}_1 - \hat{p}_2) \pm z_{1-\alpha/2} \cdot \hat{\sigma}_{\hat{p}_1 - \hat{p}_2}$$

hvor

$$\hat{\sigma}_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Rule of thumb:

Både $n_i p_i \ge 10$ and $n_i (1 - p_i) \ge 10$ for i = 1, 2.

Hypotesetest for to andele, Method 7.17

Two sample proportions hypothesis test

Såfremt man ønsker at sammenligne to andele (her vist for et tosidet alternativ)

$$H_0: \quad p_1 = p_2$$

$$H_1: \quad p_1 \neq p_2$$

Fås teststørrelsen:

$$z_{\text{obs}} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}, \quad hvor \quad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Og for passende store stikprøver:

Brug standardnormalfordelingen igen.

Sammenhæng mellem brug af p-piller og risikoen for hjerteinfarkt

I et studie (USA, 1975) undersøgte man dette. Fra et hospital havde man indsamlet følgende stikprøve

	Infarkt	Ikke infarkt
p-piller	23	34
Ikke p-piller	35	132

Er der sammenhæng mellem brug af p-piller og sygdomsrisiko

Udfør et test for om der er sammenhæng mellem brug af p-piller og risiko for hjerteinfarkt. Anvend signifikansniveau $\alpha=5\%$

Sammenhæng mellem brug af p-piller og risikoen for hjerteinfarkt

	Infarkt	Ikke infarkt	Total
p-piller	23	34	$n_1 = 57$
Ikke p-piller	35	132	$n_2 = 167$
	x = 58		n = 224

Estimater i hver stikprøve

$$\hat{p}_1 = \frac{23}{57} = 0.4035, \ \hat{p}_2 = \frac{35}{167} = 0.2096$$

Fælles estimat:

$$\hat{p} = \frac{23 + 35}{57 + 167} = \frac{58}{224} = 0.2589$$

Oversigt

- - - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- - Eksempel 2
- Hypotesetest for flere andele
 - Eksempel 2 fortsat

Sammenligning af c andele

I nogle tilfælde kan man være interesseret i at vurdere om to eller flere binomialfordlinger har den samme parameter p, dvs. man er interesseret i at teste nul-hypotesen

$$H_0: p_1 = p_2 = \dots = p_c = p$$

mod en alternativ hypotese at disse andele ikke er ens

Tabel af observerede antal for k stikprøver:

	stikprøve 1	stikprøve 2	 stikprøve c	Total
Succes	x_1	x_2	 x_c	\overline{x}
Fiasko	$n_1 - x_1$	n_2-x_2	 $n_c - x_c$	n-x
Total	n_1	n_2	 n_c	\overline{n}

Fælles (gennemsnitlig) estimat:

Under nul-hypotesen fås et estimat for p:

$$\hat{p} = \frac{x}{n}$$

Fælles (gennemsnitlig) estimat:

Under nul-hypotesen fås et estimat for p:

$$\hat{p} = \frac{x}{n}$$

"Brug" dette fælles estimat i hver gruppe:

såfremt nul-hypotesen gælder, vil vi forvente at den j'te gruppe har e_{1i} successer og e_{2i} fiaskoer, hvor

$$e_{1j} = n_j \cdot \hat{p} = \frac{n_j \cdot x}{n}$$

$$e_{2j} = n_j(1 - \hat{p}) = \frac{n_j \cdot (n - x)}{n}$$

Generel formel for beregning af forventede værdier i antalstabeller:

$$e_{ij} = \frac{(i\text{'th row total}) \cdot (j\text{'th column total})}{(total)}$$

Beregning af teststørrelse - Method 7.19

Teststørrelsen bliver

$$\chi_{\text{obs}}^2 = \sum_{i=1}^2 \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

hvor o_{ij} er observeret antal i celle (i,j) og e_{ij} er forventet antal i celle (i,j)

Find p-værdi eller brug kritisk værdi - Method 7.19

Stikprøvefordeling for test-størrelse:

 χ^2 -fordeling med (c-1) frihedsgrader

Kritisk værdi metode

Såfremt $\chi^2_{\rm obs} > \chi^2_{\rm o}(c-1)$ forkastes nul-hypotesen

Rule of thumb for validity of the test:

Alle forventede værdier $e_{ij} \geq 5$.

De OBSERVEREDE værdier o_{ij}

Observerede	Infarkt	Ikke infarkt	
p-piller	23	34	
Ikke p-piller	35	132	

Beregn de FORVENTEDE værdier e_{ij}

Forventede	Infarkt	Ikke infarkt	Total
p-piller			57
Ikke p-piller			167
Total	58	166	224

Brug "reglen" for forventede værdier fire gange, f.eks. :

$$e_{22} = \frac{167 \cdot 166}{224} = 123.76$$

De FORVENTEDE værdier e_{ij}

Forventede	Infarkt	Ikke infarkt	Total
p-piller	14.76	42.24	57
Ikke p-piller	43.24	123.76	167
Total	58	166	224

Teststørrelsen:

$$\chi^2_{\text{obs}} = \frac{(23 - 14.76)^2}{14.76} + \frac{(34 - 42.24)^2}{42.24} + \frac{(35 - 43.24)^2}{43.24} + \frac{(132 - 123.76)^2}{123.76} = 8.33$$

Kritisk værdi:

[1] 3.8415

Konklusion:

Vi forkaster hulhypotesen - der ER en signifikant forhøjet sygdomsrisiko i p-pille gruppen.

Oversigt

- - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- - Eksempel 2
- - Eksempel 2 fortsat
- Analyse af antalstabeller

Analyse af antalstabeller

En 3×3 tabel - 3 stikprøver, 3-kategori udfald

	4 uger før	2 uger før	1 uge før
Kandidat I	79	91	93
Kandidat II	84	66	60
ved ikke	37	43	47
	$n_1 = 200$	$n_2 = 200$	$n_3 = 200$

Er stemmefordelingen ens?

$$H_0: p_{i1} = p_{i2} = p_{i3}, i = 1, 2, 3.$$

Analyse af antalstabeller

En 3×3 tabel - 1 stikprøve, to stk. 3-kategori variable:

	dårlig	middel	god
dårlig	23	60	29
middel	28	79	60
god	9	49	63

Er der uafhængighed mellem inddelingskriterier?

$$H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$$

Beregning af teststørrelse – uanset type af tabel

I en antalstable med r rækker og c søjler, fås teststørrelsen

$$\chi_{\text{obs}}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

hvor o_{ij} er observeret antal i celle (i,j) og e_{ij} er forventet antal i celle (i,j)

Generel formel for beregning af forventede værdier i antalstabeller:

$$e_{ij} = \frac{(i'\mathsf{th} \ \mathsf{row} \ \mathsf{total}) \cdot (j'\mathsf{th} \ \mathsf{column} \ \mathsf{total})}{(total)}$$

Find p-værdi eller brug kritisk værdi - Method 7.21

Stikprøvefordeling for test-størrelse:

 χ^2 -fordeling med (r-1)(c-1) frihedsgrader

Kritisk værdi metode

Såfremt $\chi^2_{obs} > \chi^2_{\alpha} \mod (r-1)(c-1)$ frihedsgrader forkastes nul-hypotesen

Rule of thumb for validity of the test:

Alle forventede værdier $e_{ij} \geq 5$.

Efteråret 2014

Oversigt

- - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- - Eksempel 1 fortsat
- - Eksempel 2
 - - Eksempel 2 fortsat

R: prop.test - een andel

```
# TESTING THE PROBABILITY = 0.5 WITH A TWO-SIDED ALTERNATIVE
# WE HAVE OBSERVED 518 OUT OF 1154
# WITHOUT CONTINUITY CORRECTIONS
prop.test(518, 1154, p = 0.5, correct = FALSE)
##
    1-sample proportions test without continuity correction
##
  data: 518 out of 1154, null probability 0.5
  X-squared = 12.066, df = 1, p-value = 0.0005135
  alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.42039 0.47769
## sample estimates:
##
         р
## 0.44887
```

DTU Compute

R: prop.test - to andele

```
#READING THE TABLE INTO R
pill.study<-matrix(c(23, 34, 35, 132), ncol = 2, byrow = TRUE)
colnames(pill.study) <- c("Blood Clot", "No Clot")</pre>
rownames(pill.study) <- c("Pill", "No pill")</pre>
# TESTING THAT THE PROBABILITIES FOR THE TWO GROUPS ARE EQUAL
prop.test(pill.study, correct = FALSE)
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: pill.study
   X-squared = 8.3288, df = 1, p-value = 0.003902
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.052395 0.335461
## sample estimates:
## prop 1 prop 2
```

DTU Compute

0.40351 0.20958

R: chisq.test - to andele

```
# CHI2 TEST FOR TESTING THE PROBABILITIES FOR THE TWO GROUPS ARE EQUAL
chisq.test(pill.study, correct = FALSE)
##
   Pearson's Chi-squared test
##
## data: pill.study
## X-squared = 8.3288, df = 1, p-value = 0.003902
#IF WE WANT THE EXPECTED NUMBERS SAVE THE TEST IN AN OBJECT
chi <- chisq.test(pill.study, correct = FALSE)</pre>
#THE EXPECTED VALUES
chi$expected
          Blood Clot No Clot
## Pill 14.759 42.241
## No pill 43.241 123.759
```

DTU Compute

R: chisq.test - antalstabeller

```
#READING THE TABLE INTO R
poll < -matrix(c(79, 91, 93, 84, 66, 60, 37, 43, 47), ncol = 3, byrow = TRUE)
colnames(poll) <- c("4 weeks", "2 weeks", "1 week")</pre>
rownames(poll) <- c("Cand1", "Cand2", "Undecided")</pre>
#COLUMN PERCENTAGES
colpercent<-prop.table(poll, 2)
colpercent
          4 weeks 2 weeks 1 week
##
## Cand1
            0.395 0.455 0.465
## Cand2
        0.420 0.330 0.300
## Undecided 0.185 0.215 0.235
```

DTU Compute

R: chisq.test - antalstabeller

```
# Plotting percentages
par(mar=c(5,4,4.1,2)+0.1)
barplot(t(colpercent), beside = TRUE, col = 2:4, las = 1,
        ylab = "Percent each week", xlab = "Candidate",
        main = "Distribution of Votes")
legend( legend = colnames(poll), fill = 2:4,"topright", cex = 0.5)
par(mar=c(5,4,4,2)+0.1)
```

Distribution of Votes

R: chisq.test - antalstabeller

```
#TESTING SAME DISTRIBUTION IN THE THREE POPULATIONS
chi <- chisq.test(poll, correct = FALSE)</pre>
chi
##
   Pearson's Chi-squared test
##
## data: poll
## X-squared = 6.962, df = 4, p-value = 0.1379
#EXPECTED VALUES
chi$expected
##
            4 weeks 2 weeks 1 week
## Cand1 87.667 87.667 87.667
## Cand2
        70.000 70.000 70.000
## Undecided 42.333 42.333 42.333
```

DTU Compute

Oversigt

- Intro
- Konfidensinterval for én andel
 - Eksempel 1
 - Bestemmelse af stikprøvestørrelse
 - Eksempel 1 fortsat
- Hypotesetest for én andel
 - Eksempel 1 fortsat
- Konfidensinterval og hypotesetest for to andele
 - Eksempel 2
 - Hypotesetest for flere andele
 - Eksempel 2 fortsat
- Analyse af antalstabeller

