Seria 14 06.06.2021

Restanță Structuri algebrice în informatică

_	\sim		
1.	Se	consideră.	permutareas

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 5 & 13 & 9 & 16 & 11 & 15 & 8 & 14 & 12 & 3 & 1 & 10 & 4 & 6 & 7 & 2 \end{pmatrix} \in S_{16}.$$

Ordinul lui σ^{2021} este:

A | 16

B | 60

|C|2021

 $D \mid 41$

Valoarea lui $\hat{k} \in \mathbb{Z}_{26}$ astfel încât să aibă loc egalitatea $\widehat{17}^{-9} \cdot \hat{k} \cdot \widehat{7}^{2020} = \widehat{3}^{-13}$ în \mathbb{Z}_{26} este: $\widehat{\square}$

 $|D|\hat{1}$

3. Numărul elementelor de ordin 6 din grupul produs direct $(\mathbb{Z}_{24} \times \mathbb{Z}_{36}, +)$ este egal cu:

D alt răspuns

Subgrupul generat de elementele $\frac{\widehat{14}}{36}$, $\frac{\widehat{95}}{100}$, $\frac{\widehat{46}}{150}$ din grupul factor $(\mathbb{Q}/\mathbb{Z},+)$ are:

|B|27000

C 540000

D alt răspuns

Care dintre următoarele subgrupuri sunt normale?

(1) $H_1 = \left\{ \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \mid \beta \in \mathbf{R} \right\} \subseteq G_1 = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \alpha^{-1} \end{pmatrix} \mid \alpha, \beta \in \mathbf{R}, \ \alpha > 0 \right\}$, unde G_1 este grup în raport cu operația de înmulțire uzuală a matricelor.

- (2) H_2 este subgrupul elementelor de ordin 2 din grupul produs direct $(\mathbb{Z}_{11}, +) \times (S_3, \circ)$.
- (3) H_3 este grupul generat de permutările de ordin par din S_4 .

 $A \mid H_1 \text{ si } H_2$

 $\mid \mathbf{B} \mid H_1 \text{ si } H_3$

 $C \mid H_2 \text{ si } H_3$

D toate

Care dintre următoarele funcții nu sunt morfisme de grupuri?

(1) $f_1: (\mathbb{R}_+^*, \cdot) \mapsto (G, *), f_1(x) = \sqrt{x+1}$ unde $G = (1, \infty)$ este grup in raport cu operatia $x * y = \sqrt{x^2y^2 - x^2 - y^2 + 2}$.

- (2) $f_2: (S_5, \cdot) \mapsto (S_5, \cdot), f_2(\tau) = \tau^{-1}$ pentru orice $\tau \in S_5$.
- (3) $f_3: (S_3, \circ) \mapsto (S_3, \circ), f_3(\sigma) = \sigma^2$ pentru orice $\sigma \in S_3$.

 $|\mathbf{A}| f_1 \text{ si } f_2$

 $\boxed{\mathrm{B}} f_1 \mathrm{\ si\ } f_3$

 $C \mid f_2 \text{ si } f_3$

D toate

Fie permutarea

Ecuatia $\tau^{2011} = \sigma$ are :

A o solutie

B 15 soluții

C nicio soluție

D alt răspuns

Numărul permutărilor de ordin 3 din S_6 este egal cu:

|A|80

B | 120

|C|40

D | 75

9.	Care	dintre	următoarele	submultimi	nu sunt	subinele?
υ.	Carc	umuc	urmatoartic	Submunim	nu sunt	submer.

- (1) Mulţimea A a tuturor fracţiilor pozitive împreună cu 0, ca submulţime a inelului $(\mathbb{Q}, +, \cdot)$.
- (2) Mulţimea $B = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$ ca submulţime a inelului $(M_2(\mathbb{R}), +, \cdot)$.
- (3) Mulţimea C a tuturor funcţiilor care iau un număr finit de valori nenule împreună cu funcţia nulă, ca submulţime a inelului tuturor funcţiilor definite pe intervalul [0,1] cu valori în \mathbb{R} (inel în raport cu operaţiile uzuale de adunare şi înmulţire a funcţiilor).

A toate

B A şi B

C B și C

D niciuna

10. Care dintre următoarele submulțimi nu reprezintă un ideal al inelului de polinoame $\mathbb{Z}[X]$?

- (1) I_1 , mulțimea polinoamelor care au termenul liber nul.
- (2) I_2 , mulțimea polinoamelor care au coeficienții termenilor de grad par egali cu 0.
- (3) I_3 , mulțimea polinoamelor P(X) cu proprietatea că P'(0)=0.

 $\boxed{\mathbf{A}} I_1 \text{ şi } I_2$

 $\boxed{\mathrm{B}} I_1$ şi I_3

 $\boxed{\mathbb{C}}$ I_2 şi I_3

D toate