Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} \cdot 0.5 = 1$	3p
	$1 - \frac{1}{2} : 0, 5 = 1 - 1 = 0$	2p
2.	$x_1 + x_2 = 8$, $x_1 x_2 = 15$	2p
	$2(x_1 + x_2) - x_1 x_2 = 2 \cdot 8 - 15 = 1$	3 p
3.	5x + 1 = 36	3 p
	x = 7, care verifică ecuația	2p
4.	Mulțimea A are 8 elemente, deci sunt 8 cazuri posibile	1p
	Numerele divizibile cu 2 din mulțimea A sunt 2, 4, 6 și 8, deci sunt 4 cazuri favorabile	2p
	nr. cazuri favorabile 4 _ 1	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{8} = \frac{1}{2}$	2p
5.	$AB = \sqrt{(0-6)^2 + (8-0)^2} =$	3p
	=10	2p
6.	$\cos B = \frac{AB}{BC} \Rightarrow \frac{\sqrt{2}}{2} = \frac{AB}{3\sqrt{2}}$	3p
	AB=3	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 \\ -2 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot (-2) =$	3p
	=1-0=1	2p
b)	$A \cdot A = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} \Rightarrow A \cdot A + I_2 = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 2 & 0 \\ -4 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = 2A$	2p
c)	$ \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} a-2 & b \\ c+1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a-2 & b \\ -2(a-2)+c+1 & -2b+1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	2p
	a=3, b=0, c=1	3 p
2.a)	$1 \circ (-3) = 1 \cdot (-3) + 3 \cdot 1 + 3 \cdot (-3) + 6 =$	3 p
	=-3+3+(-9)+6=-3	2p
b)	$x \circ y = xy + 3x + 3y + 9 - 3 =$	2p
	= x(y+3)+3(y+3)-3=(x+3)(y+3)-3, pentru orice numere reale x şi y	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 2

-				-
	c)	$(x+3)(x+3)-3 \le x \Leftrightarrow (x+3)(x+2) \le 0$	3 p	
		$x \in [-3, -2]$	2p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (2x^3)' - (3x^2)' + 7' =$	2p
	$=6x^2-6x=6x(x-1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to 2} \frac{f(x) - 11}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) =$	3p
	$= 6 \cdot 2 \cdot 1 = 12$	2p
c)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 1$	2p
	$x \in [0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = 6$, obţinem $f(x) \ge 6$, pentru orice $x \in [0, +\infty)$	1p
2.a)	$\int_{-1}^{1} (f(x) - 3x) dx = \int_{-1}^{1} (x^2 + 3x - 3x) dx = \int_{-1}^{1} x^2 dx =$	2p
	$=\frac{x^3}{3}\Big _{-1}^1 = \frac{2}{3}$	3p
b)	$\int_{0}^{1} (f(x) - x^{2}) e^{x} dx = \int_{0}^{1} (x^{2} + 3x - x^{2}) e^{x} dx = 3 \int_{0}^{1} x e^{x} dx = 3 \left(x e^{x} \middle _{0}^{1} - \int_{0}^{1} e^{x} dx \right) =$	3p
	$=3(x-1)e^{x}\Big _{0}^{1}=3$	2p
c)	$g(x) = 3(x+3) \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} 9(x+3)^{2} dx = 9\pi \cdot \frac{(x+3)^{3}}{3} \Big _{1}^{2} =$	3p
	$=183\pi$	2 p