

	ı	
N	om	•
1 7	om	

Entreprise:

Stage de perfectionnement

Fluide frigorigène : maîtriser le principe de fonctionnement d'un circuit frigorifique

Durée : 2 jours

Date:

Lieu:

Nom du formateur :

SOMMAIRE

- Programme de la formation
- Contenu de la formation

Programme de la formation

→ Jour 1

Etape	Objectifs pédagogiques
Accueil	Connaître les attentes des participants et situer chacun Présenter la formation et positionner ce module dans l'offre « fluide frigorigène » AFPA
Introduction	Apprécier le niveau de réflexion des participants sur les enjeux et l'importance de la réglementation
Les caractéristiques de base	Rappeler les grandeurs physiques (P, T, M, H) Schématiser un circuit frigorifique et repérer les grandeurs T0, BP, TK, HP
Repérage des caractéristiques de base	Rechercher et mesurer des grandeurs T0, BP, TK, HP sur un circuit frigorifique en fonctionnement
Repérage des caractéristiques de base (suite)	Analyser les grandeurs mesurées en TP et approfondir vers la désurchauffe, le sous-refroidissement et la surchauffe avec schématisation du circuit
	Repas
Repérage des caractéristiques de base (suite)	Rechercher et mesurer des grandeurs T0, BP, SC, TK, HP, SR sur un circuit frigorifique en fonctionnement
Validation des caractéristiques de base	Analyser les grandeurs mesurées en TP et approfondir vers les valeurs usuelles de fonctionnement avec schématisation du circuit
Le diagramme enthalpique	Définir l'enthalpie Repérer les différents états physiques Repérer les grandeurs T0, BP, SC, Compression, désurchauffe, TK, HP, SR, détente
Les réglettes fluides	Utiliser une réglette pour avoir la relation pression température des fluides azéotropiques et non azéotropiques

Code OSIA:

7

Jour 2

Etape	Objectifs pédagogiques
Présentation de la deuxième journée	Rappeler les acquisitions de la veille et faire le lien avec cette deuxième journée.
Fonctionnement d'un groupe de condensation	Analyser les technologies et le principe de fonctionnement des compresseurs Analyser les technologies et les principes de fonctionnement des condenseurs (air et eau)
Repérage des groupes de condensation	Repérer différentes technologies de compresseurs et condenseurs
Fonctionnement d'un ensemble détendeur / évaporateur	Analyser les technologies et principe de fonctionnement des détendeurs Analyser les technologies et principes de fonctionnement des évaporateurs (air et eau)
	Repas
Repérage des évaporateurs	Repérer différentes technologies de détendeurs et évaporateurs
Réglages	Régler un pressostat BP Régler un pressostat HP Régler un régulateur de pression de condensation Régler une vanne d'aspiration (KVP)
Synthèse	
Evaluation de la formation	Avoir une appréciation des participants sur cette action de formation

Contenu de la formation

Introduction & pré-requis

Commentaires:

Commentaires:

Code OSIA:

Echelles des pressions

Tession Absolue - Flession Telative + 1,015 bar

E chelles des Températures

Température relative °C + 273 = Température Absolue °K

°K Unité du Système International

Code OSIA:

Changements d'états

Changements d'états

La chaleur latente est:

La quantité de chaleur nécessaire pour changer l'état d'un corps.

Cette quantité de chaleur n'entraîne pas une élévation ou un abaissement de la température du corps.

La chaleur sensible est:

La quantité de chaleur nécessaire pour élever ou abaisser la température d'un corps de 1 °C.

Cette quantité de chaleur n'entraîne pas un changement d'état du corps.

La vaporisation d'un liquide ou la condensation d'une vapeur se font à température constante

Lorsque la pression au dessus d'un liquide augmente, sa température de changement d'état augmente aussi.

Lorsque la pression au dessus d'un liquide diminue, sa température de changement d'état diminue aussi.

≥ TP N[¶] :

Repérer les différents éléments sur un circuit frigorifique réel et réaliser les relevés de fonctionnement.

Tableau de relevés :

Relevés à effectuer Durée après démarrage	θο	Ро	θk	Pk
5 min				
10 min				
15 min				
30 min				

> Fonctionnement du condenseur :

> TP N² :

Mettre en fonctionnement les équipements et procéder au relevé des paramètres " θ o" , " θ bulbe" , " θ k ", " θ ref" et " θ sortie condenseur".

Tableau de relevés :

Relevés à effectuer Durée après démarrage	$\boldsymbol{\theta}_{\mathrm{o}}$	$\boldsymbol{\theta}_{b}$	$oldsymbol{ heta}_{\Delta ext{b}}$	$\boldsymbol{\theta}_{k}$	$oldsymbol{ heta}_{ ext{ref}}$	$oldsymbol{ heta}_{lsr}$	Désur- chauffe	$\Delta_{ heta}$ lsr
5 min								
10 min								
15 min								
30 min								

Lecarts de température sur l'air :

Définition du Δ_{T total}:

≥ TP N3:

Mettre en fonctionnement les équipements et procéder au relevé des paramètres " θ o" , " θ ea",

" θ sa " " θ k ", " θ ea" , " θ sa ".

Relevés à effectuer Durée après démarrage	$\theta_{\rm o}$	$ heta_{ ext{ea}}$	$oldsymbol{ heta}_{\sf sa}$	Δ_{Ttotal}	$\Delta_{oldsymbol{ heta}$ air	θ_k	$oldsymbol{ heta}_{ ext{ea}}$	$ heta_{sa}$	Δ_{Ttotal}	$\Delta_{oldsymbol{ heta}$ air
5 min										
10 min										
15 min										
30 min										

Le Circuit Frigorifique $\theta_{o}; P_{o}$ θ_{asp} θ_{asp} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as} θ_{as}

θ ou t : température relative °C ou F

T: température absolue K

Prel: pression relative lue aux manomètres Pabs: pression absolue (Pabs = Prel + 1 en bar)

∆ : écart

P0: Pression d'évaporation (lue au manomètre)

θ0 : Température d'évaporation (lue au manomètre)

Pk: Pression de condensation (lue au manomètre)

θk : Température de condensation (lue au manomètre)

θasp: Température à l'aspiration du compresseur (lue au thermomètre)

Oref: Température au refoulement du compresseur (lue au thermomètre)

θb : Température à la sortie de l'évaporateur (lue au thermomètre)

θlsr : Température du liquide sous refroidi à la sortie du condenseur (lue au thermomètre)

θv : Température du liquide à l'entrée du détendeur (lue au thermomètre)

θae : Température d'air à l'entrée

θas : Température d'air à la sortie

θwe : Température de l'eau à l'entrée

θws : Température de l'eau à la sortie

 $\Delta t1$: Ecart de température total à l'évaporateur ($\theta ae - \theta 0$)

 Δtk : Ecart de température total au condenseur (θk - θae)

 $\theta \Delta b$: Surchauffe à l'évaporateur (θb - $\theta 0$)

 $\theta \Delta lsr$: Sous refroidissement ($\theta k - \theta lsr$)

 $\theta \Delta air$: Ecart de température sur l'air ($\theta ae - \theta as ou \theta as - \theta ae$)

θΔeau : Ecart de température sur l'eau (θwe - θws ou θws - θwe)

≥ TP N⁴ :

Mettez en fonctionnement les équipements et procédez au relevé des paramètres " θ o", " θ ea", " θ sa "

" θk ", " θea" , " θsa ", "θlsr", "θref", "θb", "θasp".

Déterminez les valeurs de : $\Delta t1$, Δtk , $\theta \Delta b$, $\theta \Delta air$, $\theta \Delta lsr$.

Relevés de températures

Ev	aporateur	Condenseur			
$ heta_{as}$:	Ecarts	$ heta_{as}$:	Ecarts		
	$\Delta_{ heta$ air $:$		$\Delta_{ heta$ air $:$		
$ heta_{ae}$:		$ heta_{ae}$:			
θ _o :	$\Delta_{ m t1}$: Surchauffe à l'évaporateur $\Delta_{ m heta b}$:	θ_{k} :	$\Delta_{ heta ext{k}}$: Sous refroidissement $\Delta_{ heta ext{lsr}}$:		
θ_{b} :		$ heta_{lsr:}$	$ heta_{ref}$:		

→ Synthèse des valeurs usuelles :

		Génie Climatique	Froid Commercial	
	To (Po)	+2°C	-	ongel C/-28°C
Evaporateur	Surchauffe (bulbe) °C	5°C ≤ Δθb ≤ 8°C	5°C ≤ Δθb ≤	8°C
	ΔT air °C	6°C ≤ Δθair≤10°C	3°C ≤ Δθair ≤	≤ 5°C
	ΔT total °C	16°C≤ Δt1≤ 20°C	6°C ≤ Δt1 ≤ ′	10°C
	Tk (Pk)	35°C≤ Δθk ≤45°C	35°C≤ Δθk≤ 4	45°C
Condenseur	Sous-Refroidissement °C	4°C ≤ Δθlsr ≤ 7°C	4°C ≤ Δθlsr ≤	≤7°C
	ΔT air °C	5°C ≤ Δθair≤10°C	5°C ≤ Δθair≤	10°C
	ΔT total °C	10°C ≤ Δtk≤ 20°C	10°C ≤ Δtk≤ 2	20°C

≥ Compresseurs

≥ Condenseurs/ Evaporateurs

Détendeurs

> TP N⁶ :

Identifier et analyser les compresseurs du plateau technique :

- Compresseurs à pistons
- Compresseurs type scroll
- Compresseurs rotatifs
- Compresseurs à vis ...

(si disponible démontage d'un compresseur inerte)

Identifier et analyser la composition des condenseurs du plateau technique :

- Condenseurs à air
- Condenseurs à eau perdue avec vanne pressostatique
- Condenseurs à eau recyclée (association avec aéroréfrigérant, T.A.R.)

> TP N% :

Identifier et analyser la composition des évaporateurs du plateau technique :

- Evaporateurs à air
- Evaporateurs fluide frigorigène/eau (multitubulaires / plaques)

Identifier et analyser les détendeurs du plateau technique :

- Capillaires
- Thermostatiques à égalisation interne
- Thermostatiques à égalisation externe
- Electroniques....

(si disponible démontage d'un détendeur)

10497

Le diagramme enthalpique :

Enthalpie:
 Grandeur dont la VARIATION permet d'exprimer la QUANTITE de CHALEUR (kJ ou kCal) mise en jeu pendant une transformation.

Au cours de cette transformation le système thermodynamique reçoit ou fournit du travail mécanique.

L'Enthalpie est très souvent exprimée par rapport à l'unité de masse de fluide mise en jeu dans la transformation kJ/Kg. (Enthalpie massique)

Fluides :

Surchauffe / Sous-Refroidissement

"Latent"

"Sensible"

"Sensible"

Energie Calorifique

Code OSIA : Stage de perfectionnement – Livret participant © AFPA

10 juin 2010 - V3 - DI DBTP

Pressostats

Pressostat HP de protection machine / Froid-Clim

Pressostat BP de protection machine / Froid

 $T_{d\acute{e}clenchement} = T_{\acute{e}t\acute{e}} + \Delta T_{total\ cond} + marge(5K)$

 $P_{\text{d\'eclenchement}} \approx 0.2 \text{ bar}$

 $Différentiel \ de \ T = \Box T_{total \ cond} \ + 3K$

 $T_{enclenchement} = T_{froid} - marge(2 \ a \ 5K)$

 $(T_{froid}$ - plus petite valeur de Tambiante chambre Froide & Textérieure hiver)

Commentaires:

Pressostat BP de protection machine / Clim

Pressostat BP de régulation / Froid

→ Régulateurs de pression

Régulateur de pression de démarrage : $\mathbf{K}\mathbf{v}\mathbf{l}$

Régulateur de pression d'évaporation : Kvp

→ Kit toutes saisons

≥ TP N7 :

Analyser le principe de fonctionnement, les composants, les moyens de réglage des pressostats du plateau technique :

- Pressostats simple de protection machine HP et BP, de régulation, de tirage au vide ...
- Pressostats doubles ...

<u>Identifier, analyser le principe de fonctionnement, les moyens de réglage des régulateurs de pression du plateau technique :</u>

- ☞ KvI
- ☞ Kvp
- Pression de condensation
- « Kit toutes saisons »....

≥ Notes personnelles