EC2104 Lecture 4 - Integration

ling

Section 1

Integration

Integration

Indefinite integrals

If
$$F'(x) = f(x)$$
, then $\int f(x)dx = F(x) + C$. Given $A = F(0) + C \Rightarrow C = A - F(0)$

Definite integrals

When F'(x) = f(x) for all $x \in (a, b)$, the definite integral of f over [a, b] is $\int_a^b f(x)dx = F(b) - F(a)$

Integration as Area Under Curve

Let A(t) be a function measures the area under the graph of f over the interval $[a,t] \Rightarrow A(t) = \int_a^b f(t)dt$

Integration as Area Under Curve

Integration as Area Under Curve

Consider: Find area under the curve for f(x) = cos(x) for $x \in [0, \pi]$

Note:

- When finding area under a curve, one need to know which area are under the x axis
- For area under the x axis, take $\int f(x) dx$ instead

Wrong method:

$$\int_0^\pi \cos(x)dx = \sin(\pi) - \sin(0) = 0$$

Correct method:

$$\int_0^{\pi/2} \cos(x) dx - \int_{\pi/2}^{\pi} \cos(x) dx = \sin(\pi/2) - \sin(0) - \sin(\pi) + \sin(\pi/2) = 2$$

Section 2

Techniques in integration

Techniques in integration

Anti-differentiation

$$\int f(x)dx = F(x) + C$$

Integration by Substitution

$$\int f(g(x))\frac{dg(x)}{dx}dx = \int f(u)du = F(g(x)) + C$$

- Differentials: $du = \frac{du}{dx}dx = g'(x)dx$, where u = g(x)
- Integration by Parts

$$\int f(x)\frac{dg(x)}{dx} = f(x)g(x) - \int g(x)\frac{df(x)}{dx}dx$$

Leibniz Integral Rule (next slide)

Leibniz Integral Rule

Leibniz Integral Rule

$$\frac{d}{dt}\int_{a(t)}^{b(t)}f(x,t)dx = \int_{a(t)}^{b(t)}\frac{\partial}{\partial t}f(x,t)dx + f(b(t),t)\frac{db(t)}{dt} - f(a(t),t)\frac{da(t)}{dt}$$

• If a(t), b(t) are constants

$$\frac{d}{dt} \int_{a}^{b} f(x,t) dx = \int_{a}^{b} \frac{\partial}{\partial t} f(x,t) dx$$

Variable limit form

$$\frac{d}{dt} \int_{a(t)}^{b(t)} f(x) dx = f(b(t)) \frac{db(t)}{dt} - f(a(t)) \frac{da(t)}{dt}$$

Remarks: when to use Leibniz Integral Rule

Remarks: when to use Leibniz Integral Rule

Now, there are only so few techniques we have learnt to solve analytical solutions in integration. If all else failed, try Leibniz integration.

Question ask to evaluate

$$\int_0^1 \frac{t^3 - 1}{\ln(t)} dt$$

- Substitution?
 - Try sub $x = ln(t) \Rightarrow dt = tdx$. However, how to express x as a function of $t^3 1$?
 - Try sub $x = t^3 1 \Rightarrow dt = dx/3t$. However, how to express x as a function o $\ln(t)$?
- ② By Parts? $uv' = uv \int u'v$
 - Try let $u = 1/\ln(t)$, $v' = t^3 1 \Rightarrow u' = -\frac{1}{t \ln(t)^2}$, $v = 3t^2$. However, how to solve $\int -\frac{3t^2}{t \ln(t)^2}$?
 - Try let $u=t^3-1, v'=1/\ln(t) \Rightarrow u'=3t^2$. However, what is $\int \frac{1}{\ln(t)}$?

Remark: using Leibniz Integration Rule correctly

Remark: using Leibniz Integration Rule correctly

Question ask to evaluate

$$\int_0^1 \frac{t^3 - 1}{\ln(t)} dt$$

- **1** Check if question is in the functional form we desire: $\frac{d}{dx} \int f(x,t) dt$
 - Note current expression is $\int f(t)dt$
- ② If needed, fill in the missing ingredients
 - Want f(x, t), have $f(t) \Rightarrow$ introduce x
 - Want $\frac{d}{dx}$, have only $\int f(x,t)dt \Rightarrow$ solve for the differentiated result instead
- Ohoose the right ingredients to fill
 - What if we use $g(x) := \int_0^1 \frac{t^3 x}{\ln(t)} dt \Rightarrow g'(x) = \int_0^1 \frac{\partial}{\partial x} \frac{t^3 x}{\ln(t)} dt = \int_0^1 -\frac{1}{\ln(t)} dt = 0$
 - Then g(x) = C, C = ?

Integrating infinite bounds

Integrating infinite bounds

To solve

$$\int_0^\infty f(x)dx$$

- **1** Express ∞ as s
 - i.e. $\int_0^s f(x) dx$
- 2 Solve the integration in terms of the symbol s
 - i.e. $\int_0^s f(x) dx = F(s) F(0)$
- 3 Take limit to infinity
 - i.e. $\lim_{s\to\infty} F(s) F(0)$

Note:

•
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx$$