NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES

CL 203-Database Systems

Lab Session 04

Data Definition Language (DDL) statements are used to define the database structure or schema.

- o CREATE to create objects in the database
- o ALTER alters the structure of the database
- o DROP delete objects from the database
- TRUNCATE remove all records from a table, including all spaces allocated for the records are removed
- o RENAME rename an object

HOW TO CREATE A TABLE?

SYNTAX;

CREATE TABLE TABLE_NAME

(

Column_name1 data_type [DEFAULT value],

Column_name2 data_type [DEFAULT value],

Column_name3 data_type [DEFAULT value],

• • • • •

Ex:

CREATE TABLE customer

(Cust_id NUMBER(2),

LastName VARCHAR2(14),

The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is specified.


```
FirstName VARCHAR2(14),
Address VARCHAR2(20),
Telno NUMBER(20)
);
```

Use command DESC to confirm the creation of the table.

Constraints

1. NOT NULL:

The NOT NULL constraint enforces a column to NOT accept NULL values. This means that NOT NULL constraint enforces a field to always contain a value.

Ex:

CREATE TABLE customer

```
(Cust_id NUMBER(2) NOT NULL,
```

LastName VARCHAR2(14),

FirstName VARCHAR2(14) NOT NULL,

Address VARCHAR2(20),

Telno NUMBER(20)

);

2. UNIQUE:

The UNIQUE constraint uniquely identifies each record in a database table. The **UNIQUE** and **PRIMARY KEY** constraints both provide a guarantee for uniqueness for a column or set of columns.

Ex:

CREATE TABLE customer

(Cust_id NUMBER(2) NOT NULL UNIQUE,

LastName VARCHAR2(14),

FirstName VARCHAR2(14) NOT NULL,

Address VARCHAR2(20),

```
Telno NUMBER(20) UNIQUE
);

Naming of a Unique Constraints and for defining a constraint on multiple columns:

CREATE TABLE customer
(Cust_id NUMBER(2) NOT NULL,

LastName VARCHAR2(14),

FirstName VARCHAR2(14) NOT NULL,

Address VARCHAR2(20),

Telno NUMBER(20),

CONSTRAINT uc_CidTelnum UNIQUE (Cust_id,telno)
);
```

ADDING UNIQUE CONSTRAINT IN AN ALREADY EXISTING TABLE;

ALTER TABLE Customer ADD UNIQUE (FirstName);

TO DROP A UNIQUE CONSTRAINT:

ALTER TABLE Customer
DROP CONSTRAINT uc_CidTelnum;

3. PRIMARY KEY:

- The PRIMARY KEY constraint uniquely identifies each record in a database table.
- Primary keys must contain unique values.
- A primary key column cannot contain NULL values.
- Each table should have a primary key, and each table can have only ONE primary key.

Ex: In EMP table, **empno** is the primary key, which is unique for all customers. If I wish to relate two tables, primary key plays a vital role. Let's Explore How:

PRIMARY KEY CONSTRAINT ON CREATE TABLE:

CREATE TABLE customer

(Cust_id NUMBER(2) NOT NULL PRIMARY,

```
LastName VARCHAR2(14),

FirstName VARCHAR2(14) NOT NULL,

Address VARCHAR2(20),

Telno NUMBER(20)

);
```

APPLYING NAMING ON PRIMARY KEY CONTRAINTS AND FOR DEFINING CONSTRAINTS ON MULTIPLE COLUMNS:

```
CREATE TABLE customer

(Cust_id NUMBER(2) NOT NULL,

LastName VARCHAR2(14),

FirstName VARCHAR2(14) NOT NULL,

Address VARCHAR2(20),

Telno NUMBER(20),

CONSTRAINTS pk_custidlname PRIMARY KEY( cust_id,LastName)
```

PRIMARY KEY Constraint on ALTER TABLE

ALTER TABLE customer ADD PRIMARY KEY (cust_Id)

);

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY KEY constraint on multiple columns,

ALTER TABLE customer
ADD CONSTRAINT pk_custidlname PRIMARY KEY (Cust_id,LastName)

To DROP a PRIMARY KEY Constraint

ALTER TABLE customer DROP CONSTRAINT pk_custidlname

4. FOREIGN KEY:

A FOREIGN KEY in one table points to a PRIMARY KEY in another table. Let say we have two tables here, Emp & Dept. Note that DEPTNO column in DEPT table points to column "DEPTNO" in EMP table.

DEPT		EMP		
DEPTNO	DNAME	EMPNO	DEPTNO	ENAME
10 20 30	ACCOUNTS RESEARCH SALES	7782 7934 7876 7902 7900	10 10 20 20 30	CLARK MILLER ADAMS FORD JAMES
			<u> </u>	

[&]quot;DEPTNO" column is a PRIMARY KEY in DEPT Table "DEPTNO" column is a FORIEGN KEY in EMP Table

The FOREIGN KEY constraint is used to prevent actions that would destroy links between tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the foreign key column, because it has to be one of the values contained in the table it points to.

FOREIGN KEY Constraint on CREATE TABLE

```
CREATE TABLE EMP3
(
EMPNO NUMBER(4) NOT NULL PRIMARY KEY,
DEPTNO NUMBER(7,2) NOT NULL,
ENAME VARCHAR2(9) NOT NULL,
CONSTRAINT FK_EMP_DEPTNO FOREIGN KEY (DEPTNO) REFERENCES
DEPT(DEPTNO)
);
```

FOREIGN KEY Constraint on ALTER TABLE

ALTER TABLE EMP3 ADD FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO)

Now name this foreign key by yourself using alter table;

Now write a command to drop this foreign key constraint;

5. Check Constraints:

Specifies a condition that must be true

```
CREATE TABLE EMP3
```

(

EMPNO NUMBER(4) NOT NULL **CHECK(EMPNO>0)** PRIMARY KEY,

DEPTNO NUMBER(7,2) NOT NULL,

ENAME VARCHAR2(9) NOT NULL,

CONSTRAINT FK_EMP_DEPTNO FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO)

);

To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns;

```
CREATE TABLE EMP3
```

(

EMPNO NUMBER(4) NOT NULL PRIMARY KEY,

DEPTNO NUMBER(7,2) NOT NULL,

ENAME VARCHAR2(9) NOT NULL,

CONSTRAINT FK_EMP_DEPTNO FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO)

CONSTRAINT chk_EMP CHECK (EMPNO>0 AND DEPTNO='20')

);

6. DEFAULT CONSTRAINT:

The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is specified.

```
CREATE TABLE EMP3
(
EMPNO NUMBER(4) NOT NULL,
DEPTNO NUMBER(7,2) NOT NULL,
ENAME VARCHAR2(9) NOT NULL,
HIRE_DATE DATE DEFAULT GETDATE ()
):
```

DEFAULT Constraint on ALTER TABLE

ALTER TABLE EMP3
MODIFY hire_date DEFAULT GETDATE ()

To DROP a DEFAULT Constraint

ALTER TABLE EMP3
ALTER COLUMN HIRE_DATE DROP DEFAULT

Example:

The EMP table is being created specifying various constraints:-

```
CREATE TABLE DEPT (

DEPTNO NUMBER(2) constraint DEPT_DEPTNO_PK PRIMARY KEY,

DNAME VARCHAR2(14),

LOC VARCHAR2(13),

CONSTRAINT DEPT_DNAME_UK UNIQUE(DNAME)

);
```

CREATE TABLE EMP3 (

EMPNO NUMBER(4) CONSTRAINT EMP_EMPNO_PK PRIMARY KEY,

ENAME VARCHAR2(10) NOT NULL,

JOB VARCHAR2(9),

MGR NUMBER(4),

HIREDATE DATE DEFAULT SYSDATE,

SAL NUMBER(7, 2),

COMM NUMBER(7, 2),

DEPTNO NUMBER(7, 2) NOT NULL,

CONSTRAINT EMP_DEPTNO_CK CHECK (DEPTNO BETWEEN 1 AND 50),

CONSTRAINT EMP_DEPTNO_FK FOREIGN KEY (DEPTNO)

REFERENCES DEPT(DEPTNO)

);

DROP STATEMENT:

The DROP TABLE statement is used to delete a table.

DROP TABLE table_name;

To DROP DATABASE:

The DROP DATABASE statement is used to delete a database.

DROP DATABASE database_name;

What if we only want to delete the data inside the table, and not the table itself?

TRUNCATE TABLE table_name

The ALTER TABLE Statement

• TO ADD A COLUMN IN A TABLE

ALTER TABLE table_name ADD column_name datatype

• TO CHANGE THE DATA TYPE OF A COLUMN IN A TABLE

ALTER TABLE table_name MODIFY column_name datatype

• TO DELETE A COLUMN IN A TABLE

ALTER TABLE table_name DROP COLUMN column_name

• TO RENAME TABLE NAME

RENAME table_name TO table_name

ACTIVITY

Consider the following schema, in the form of normalized relations, to represent information about employees, grades, training and projects in an organization.

EMPLOYEE

Empno (eg 6712)

Name

Designation (e.g. Database Developer)

Qualification Joindate

GRADE

Designation

Grade (1-20)

TotalPosts

PostsAvailable (<= TotalPosts)

PROJECT

PID (eg P812)

Title

Client

Duration (in weeks)

Status (New, In Progress, Complete)

TRAINING

Tcode (eg T902)

Title

StartDate

EndDate

EMP_PROJECT

Empno

PID

Performance (Excellent, Good, Fair, Bad,

Poor)

EMP TRAINING

Empno

Tcode

Attendance (%)

- 1. Develop a script file **EMPLOYEE.SQL** to create tables for the above schema. Implement all necessary integrity constraints including primary and foreign keys. (NOTE: All **check** constraints should be at table level)
- 2. Write SQL statements to add:
 - Gender column to **EMP** table. The only possible values are Male and Female.
 - Instructor Name column to **TRAINING** table.
 - Salary column to **GRADE** table.

BEST OF LUCK