(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-150118 (P2003-150118A)

(43)公開日 平成15年5月23日(2003.5.23)

(51) Int.Cl. ⁷		識別記号		F I				5	:-7]-}*(参考)	
G 0 9 G	3/30			G 0	9 G	3/30		K	3 K O O 7	
	3/20	611				3/20		611A	5 C O 8 O	
		612						612F		
		624						624B		
		641						641A		
			審查請求	未請求	請求	項の数 9	OL	(全 15 頁)	最終頁に続	
(21)出願番号		特願2001-348413(P2001-348413)		(71)出顧人		000005	000005821			
				松下電	松下電器産業株式会社					
(22)出顧日		平成13年11月14日(2001			大阪府	門真市	大字門真1006	番地		
				(72)発明者 前田			智之			
						大阪府	門真市	大字門真1006	番地 松下電器	
						産業株	式会社	内		
				(72)	発明者	高原	博司			
						大阪府	門真市:	大字門真1006	番地 松下電器	
						産業株	式会社	勺		
				(74)	人郵升	100097	445			
						弁理士	岩橋	文雄 (外	2名)	
									最終質に続く	

(54) 【発明の名称】 EL表示装置とその駆動方法および情報表示装置

(57)【要約】

【課題】 有機EL素子を用いた表示バネルにおいて、 すぐれた動画表示性能と高コントラスト表示を実現す る。

【解決手段】 ソースドライバIC18から、所定のn倍の輝度でEL素子16が発光するように画素に電流プログラムする。プログラムされた電流はコンデンサ14に保持される。EL素子16は、1フレームの1/nの期間点灯するようにTFT11dを制御する。したがって、平均輝度は、所定輝度となる。nの値は2以上6以下にする。

【特許請求の範囲】

【請求項1】 画素がマトリックス状に配置され、前記 画素に書き込む画像データを印加するソース信号線を有 するEL表示装置の駆動方法であって、

1

前記ソース信号線に前記画素の輝度の略N倍となる画像 データを書き込む第1の動作と、

前記画素に書き込んだ画像データに対応する電流を、画 素のEL素子に印加する第2の動作と、

前記電流を所定期間、遮断する第3の動作とを実施し、 前記Nの値が、1.2以上6以下であることを特徴とす 10 るEL表示装置の駆動方法。

【請求項2】 所定期間は、1フレームまたは1フィー ルドの1/Nよりも短い時間であることを特徴とする請 求項1記載のEL表示装置の駆動方法。

【請求項3】 Nは、1.2以上6以下であることを特 徴とする請求項1記載のEL表示装置の駆動方法。

【請求項4】 マトリックス状に画素が配置された有機 EL表示装置にあって、

各画素に形成されたEL素子と、

前記EL素子に印加する電流を供給する駆動用トランジ 20

前記駆動用トランジスタのゲート端子に接続されたコン デンサと、

前記コンデンサに電圧を印加する第1のスイッチング素 子と、

前記EL素子に流す電流をオンオフする第2のスイッチ ング素子と、

前記スイッチング素子を選択するゲートドライバ回路

前記コンデンサに書き込む電圧を設定するソースドライ バ回路とを具備し、

前記ソースドライバ回路は、前記EL素子に流す電流が 所定値のN倍となるように、前記コンデンサに書き込む 電圧を設定し、

前記電圧は、前記ゲートドライバ回路が選択した第1の スイッチング素子の画素に印加され、

前記第2のスイッチング素子は、1フレームのうちの所 定期間、前記EL素子に流れる電流と遮断し、

前記Nの値は1.2以上6以下であることを特徴とする E L 表示装置。

【請求項5】 マトリックス状に画素が配置された有機 EL表示装置にあって、

各画素に形成されたEL素子と、

前記EL素子に印加する電流を供給する駆動用トランジ スタと、

前記駆動用トランジスタのゲート端子に接続されたコン

前記コンデンサに電圧を印加する第1のトランジスタ素 子と、

前記EL素子に流す電流をオンオフする第2のトランジ 50 【0002】

スタ素子と、

前記トランジスタ素子を選択するゲートドライバ回路

前記コンデンサに書き込む電圧を設定するソースドライ バ回路とを具備し、

前記ソースドライバ回路は、前記EL素子に流す電流が 所定値のN倍となるように、前記コンデンサに書き込む 電圧を設定し、

前記電圧は、前記ゲートドライバ回路が選択した第1の トランジスタグ素子の画素に印加され、

前記第2のトランジスタ素子は、1フレームのうちの所 定期間、前記EL素子に流れる電流と遮断し、また、前 記コンデンサ容量C1と、前記第1のトランジスタ素子 のゲート-ソース容量C2との比率は、C1:C2=2 00:1以上C1:C2=20:1以下であることを特 徴とするE L表示装置。

【請求項6】 各画素に形成されたEL素子と、前記E L素子に印加する電流を供給する駆動用トランジスタ と、前記駆動用トランジスタのゲート端子に接続された コンデンサと、前記コンデンサに電圧を印加する第1の トランジスタ素子と、前記EL素子に流す電流をオンオ フする第2のトランジスタ素子と、前記トランジスタ素 子を選択するゲートドライバ回路と、前記コンデンサに 書き込む電圧を設定するソースドライバ回路とを有する EL表示パネルと、

アンテナと、

音声復調回路と、

キー入力回路を具備する携帯情報端末。

【請求項7】 請求項4または請求項5に記載のEL表 30 示装置と、

映像信号処理回路と、

印加電圧調整手段を具備することを特徴とする情報表示

【請求項8】 画素がマトリックス状に配置され、前記 画素に書き込む画像データを印加するソース信号線を有 するEL表示装置であって、

前記EL表示装置は、各画素のEL素子に印加する電流 と大きさと、前記EL素子に流れる電流の印加と遮断を 制御することにより、表示輝度が調整され、

前記EL素子への電流印加時間と遮断時間を変化させる 40 ことにより輝度を変化させることを特徴とするEL表示 装置。

【請求項9】 音声復調機能を具備することを特徴とす る請求項8記載のEL表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明の主として自発光で画 像を表示するEL表示装置とこれらを用いた携帯電話な どの情報表示装置などに関するものである。

3

【従来の技術】従来のEL表示装置はEL素子に電力を 供給する電源線と駆動用の薄膜トランジスタ、駆動用ト ランジスタを駆動するための電荷を保持する蓄積容量、 前記蓄積容量に電圧を記憶させるためのスイッチング素 子と素子を操作するゲート信号線を有している。スイッ チング素子を切り替えることによりソース信号線に流れ る電圧を任意の画素の蓄積容量に記憶させ、電源線の電 圧を駆動用薄膜トランジスタにより電流に変化させEL 素子を発光させていた。

【0003】しかし、この表示装置では駆動用の薄膜ト 10 ランジスタ素子の特性のばらつきが画面に表示され、画 面の均一性が極めて悪いという問題があった。前記トラ ンジスタの特性のばらつきを解消するための回路を図1 2に示す。

【0004】図12の回路は各画素にEL素子121を 有し、EL素子に電力を供給する電源線122と電源線 をオンオフするためのスイッチング素子123bと素子 を操作するゲート信号線124aを有する。EL素子1 21には駆動用薄膜トランジスタ123aがつながって おり、駆動用薄膜トランジスタ123aによりEL素子 20 121に流れる電流を制御する。駆動用薄膜トランジス タ123aには駆動電圧を保持するための蓄積容量12 5とソース信号線126に流れる電流を蓄積容量125 に書きこむためのスイッチング素子123c, 123d とスイッチング素子を制御するためのゲート信号線12 4 b を有する。

【0005】図12の回路の駆動法はソース信号線12 6に所望の電流を流し、スイッチング素子123bを非 導通、123c,123dを導通状態にし駆動用薄膜ト ランジスタ123aにソース信号線126と同等の電流 30 が流れるように蓄積容量125に電荷を蓄える。電荷を 蓄えた後にスイッチング素子123c.123dを非導 通、123bを導通させることにより蓄積容量に蓄えら れた電荷に応じて電源線122よりEL素子121に電 流を流す。

【0006】この駆動法はEL素子121に流したい電 流をそのまま書きこむことにより駆動用薄膜トランジス タの特性のばらつきを補正することができる。

【0007】しかし、この駆動法に関しても電流により に電流で記憶させるため蓄積容量への書きこみ時間が大 きくなり、書きこみ不足が起こるなどの問題がある。 [0008]

【発明が解決しようとする課題】先に記載したとおり、 電流により蓄積容量に記憶させる駆動方法は消費電力や 蓄積容量への書きこみ時間の問題がある。

[0009]

【課題を解決する手段】所定のN倍の輝度でEL素子1 21が発光するように画素に電流プログラムする。EL

ング素子123bを制御する。したがって平均輝度、平 均印加電流は所定のものとなるが画素にプログラムする 電流がN倍のため、蓄積容量125への書きこみ時間は 短縮され、書きこみ不足が解消される。

【0010】また、Nが2以上6以下で平均印加電流に 対する平均輝度が上昇し、所定の輝度を出すための消費 電力が低減できる。

[0011]

ている。

(3)

【発明の実施の形態】本明細書において各図面は理解を 容易にまたは/および作図を容易にするため、省略また は/および拡大縮小した箇所がある。たとえば、図1の 回路ブロックでは説明に必要な部分のみを図示してい る。また、同一番号または、記号等を付した箇所は同一 もしくは類似の形態もしくは材料あるいは機能もしくは 動作を有する。

【0012】低消費電力でかつ高表示品質であり、更に 薄型化が可能な表示パネルとして、有機エレクトロルミ ネッセンス(EL)素子の複数をマトリクス状に配列し て構成される有機EL表示パネルが注目されている。 【0013】有機EL表示パネルは、画素電極としての 透明電極が形成されたガラス板(アレイ基板)上に、電 子輸送層、発光層、正孔輸送層などからなる少なくとも 1層の有機機能層(EL層)、及び金属電極(反射膜) が積層されたものである。透明電極(画素電極)陽極 (アノード) にプラス、金属電極(反射電極)の陰極 (カソード) にマイナスの電圧を加え、すなわち、透明 電極及び金属電極間に直流を印加することにより、有機 機能層(EL層)が発光する。良好な発光特性を期待す ることのできる有機化合物を有機機能層に使用すること

【0014】有機EL素子による画像表示パネルの回路 図を図1に示す。画像表示パネルは映像信号を入力する ためのソースドライバー18部と入力された映像信号を 表示するためのゲートドライバー19部で構成される。 ソースドライバー18部では水平同期信号HDにあわせ て階調データに変換された1ライン分の映像信号を各ソ ース信号線11に流す。

によって、EL表示パネルが実用に耐えうるものになっ

【0015】ゲートドライバー19部は映像信号を画素 駆動することで消費電力が大きくなることや、蓄積容量 40 に書きこむためのゲート信号線12と入力された映像信 号を保持して有機EL素子16を点灯しつづけるための ゲート信号線12の二種類のゲート信号線12を操作す ることにより画素にソース信号線11に流れる映像信号 を書きこみ,有機EL素子16を発光させる。

【0016】図2に画素の詳しい構成を示す。この画素 は駆動トランジスタ(以後、TFTと呼ぶ)17aと3 つのスイッチング素子としてのTFT17b、17c、 17dとそのTFTを操作するゲート信号線12、それ と有機EL素子16aとコンデンサ14a、そして電源 素子は1フレームの1/N時間点灯するようにスイッチ 50 供給ライン15aとソース信号供給ライン11によって

40

構成されている。TFT17は素子の種類によっても変 わるが、ここでは素子につながるゲート信号線12がH iで非導通、Lowで導通となる。

5

【0017】続いてこの画素が点灯する仕組みについて 説明する。携帯電話およびモニターなどの表示部の各画 素の大きさは横100μm、縦250μm程度であり、 100カンデラ/平方メートルの輝度を得るためのソー ス信号線11に必要な電流値は表示色及び外部量子効率 により異なるがおよそ 1 μ A程度である。有機 E L素子 16に対し1μΑを流すにはソースドライバ18側は電 10 流源10から電流値を1μAを流すようにする。

【0018】選択行ではゲート信号線1にTFT17が 導通する信号、ゲート信号線2には非導通の信号を印加 し、非選択行では逆にゲート信号線12aに非導通信 号、ゲート信号線12bに導通信号を印加する。

【0019】これにより、選択行(この例では1行目と する) においては、ソース信号線11の電流がTFT1 7 b、TFT17cを通じて画素内部に流れる。画素内 の電流経路はTFT17aを通してEL電源線15aと つながっているのみであるため、TFT17aにも1μ 20 Aの電流が流れ、コンデンサ14aにはこの時のゲート 電圧分の電荷が蓄積される。非選択期間になると、17 dが導通し、17b、17cは非導通となるため、選択 期間でコンデンサ14aに蓄積された電荷に基づいて1 7 a に流れる電流が規定され、E L素子16 a に 1 μ A の電流が流れる。これにより有機EL素子を発光させる ことができる。

【0020】つまり、ゲート信号線12aをアクティブ (ON電圧を印加)とすることによりTFT17bおよ びTFT17cを通して、TFT17aにEL素子16 30 に流すべき電流値を流す。TFT17aのゲートとドレ イン間を短絡するようにTFT17bがオンし、コンデ ンサ14に前記電流値を流すようにTFT17aのゲー ト電圧(あるいはドレイン電圧)を記憶する。

【0021】なお、コンデンサ(コンデンサ)14は 0.2pF以上の容量とすることが好ましい。他の構成 として、TFTのチャンネル容量を用いる構成も例示さ れる。つまり、コンデンサ14と別途設けず、TFT1 7 a のチャンネル幅Wと一定以上の大きさとする構成で

【0022】TFT17cのリークによる輝度低下を防 止する観点、表示動作を安定化させるための観点からは このように別途コンデンサを構成するほうが好ましい。 なお、コンデンサ(コンデンサ)14の大きさは、0. 2 p F以上2 p F以下とすることがよく、中でもコンデ ンサ (コンデンサ) 14の大きさは、0.4pF以上 1.2pF以下とすることがよい。

【0023】なお、コンデンサ14は隣接する画素間の 非表示領域におおむね形成することがこのましい。―般 的に、フルカラー有機ELを作成する場合、有機EL層 50 FT17bとTFT17cとを個別に制御できるように

をメタルマスクによるマスク蒸着で形成するためマスク 位置ずれによるEL層の形成位置が発生する。位置ずれ が発生すると各色の有機EL層が重なる危険性がある。 そのため、各色の隣接する画素間の非表示領域は10μ 以上離れなければならない。この部分は発光に寄与しな い部分となる。したがって、コンデンサ14をこの領域 に形成することは開口率向上のために有効な手段とな

【0024】次に、ゲート信号線12aを非アクティブ (OFF電圧を印加)、ゲート信号線12bをアクティ ブとして、電流の流れる経路を前記第1のTFT17a 並びにEL素子16に接続されたTFT17 dならびに 前記EL素子16を含む経路に切り替えて、記憶した電 流を前記EL素子16に流すように動作する。

【0025】図1ではすべてのTFTはPチャンネルで 構成している。Pチャンネルは多少NチャンネルのTF Tに比較してモビリティが低いが、耐圧が大きくまた劣 化も発生しにくいので好ましい。しかし、本発明はEL 素子16構成をPチャンネルで構成することのみに限定 するものではない。Nチャンネルのみで構成してもよ い。また、NチャンネルとPチャンネルの両方を用いて 構成してもよい。

【0026】なお、TFT17b、17cは同一の極性 で構成し、かつNチャンネルで構成し、TFT17aお よびTFT1dはPチャンネルで構成することが好まし い。一般的にPチャンネルTFTはNチャンネルTFT に比較して、信頼性が高い、キンク電流が少ないなどの 特長があり、電流を制御することによって目的とする発 光強度をえるEL素子に対しては、TFT17aをPチ ャンネルにする効果が大きい。

【0027】本発明のEL素子16構成は2つのタイミ ングにより制御される。第1のタイミングは必要な電流 値を記憶させるタイミングである。このタイミングでT FT17bならびにTFT17cがONすることによ り、ソース信号線11より所定の電流Ⅰ1が書き込まれ る。これによりTFT17aはゲートとドレインが接続 された状態となり、このTFT17aとTFT17cを 通じて電流 I 1 が流れる。従って、TFT17aのゲー トーソースの電圧は 1 1 が流れるような電圧 V 1 とな

【0028】第2のタイミングはTFT17aとTFT 17 cが閉じ、TFT17 dが開くタイミングである。 TFT17aのソース-ゲート間の電圧V1は保持され たままとなる。この場合、TFT17aは常に飽和領域 で動作するため、IIの電流は一定となる。

【0029】なお、TFT17aのゲートとTFT17 cのゲートは同一のゲート信号線12aに接続してい る。しかし、TFT17aのゲートとTFT17cのゲ ートとを異なるゲート信号線12に接続してもよい(T

する)。つまり、1画素のゲート信号線は3本となる(図1の構成は2本である)。TFT17aのゲートのON/OFFタイミングとTFT17cのゲートのON/OFFタイミングを個別に制御することにより、TFT17のばらつきによるEL素子16の電流値バラツキをさらに低減することができる。

【0030】第1のゲート信号線12aと第2のゲート信号線12bとを共通にし、第3および第4のTFTが異なった導電型(NチャンネルとPチャンネル)とすると、駆動回路の簡略化、ならびに画素の開口率を向上さ 10せることが出来る。

【0031】この動作を実際の波形で見ると図3のようになる。水平同期信号HDに対応してゲート12aのゲート制御信号32aは立下る。このときに、コンデンサ14に映像信号に応じた電荷が蓄積される。そして次の水平同期信号の前にこの選択行の入力期間が終わりゲート制御信号32aは立ち上がる。それに対応して有機EL素子16につながるTFT17を同通させるためゲート13aのゲート制御信号33aは立ち下がる。これにより電源供給ライン15からコンデンサ14に応じた電20流が有機EL素子16に流れて発光する。そしてゲート波形33aは次にこの行の信号入力期間がくるまでLowを保ち続け、有機EL素子の点灯状態を保つ。

【0032】しかし、実際のソース信号線11には配線容量などによる浮遊容量20が存在する。ソース信号線11の配線抵抗と浮遊容量20が存在すると、ソース信号線11の配線抵抗と浮遊容量20の時定数で決まる波形のなまりが観測される。電流値により階調表示を行う場合、この波形なまりはソース信号線に流れる電流値によっても異なり、電流値が小さいほど立ち上がり、立ち下がりに時30間がかかる。例えば配線容量が100pF、配線抵抗500オームの時、電流源10の電流値を変化させたときにソース信号線11の電流値及び接点1001の電流値が0、24 μ Aから40 π Aへ変化するのに必要な時間は300 μ 秒、40 π Aから0、24 π Aへ変化するのに必要な時間は250 π

【0033】低電流領域では単位時間あたりの電荷の移動量が少ないため浮遊容量20にたまった電荷を充放電することが難しいためである。これによりソース信号線11に流れる電流値が低いと映像信号を書きこむために40必要な時間が長くなる。このため従来の電流による階調表示方法では、1水平走査期間の最小時間は300μ秒必要である。これでは、携帯電話のように走査線数が220本の場合1フレームは10Hz程度で駆動させる必要があり、TFT17のオフ特性によっては、コンデンサ14の電荷量が変化し、EL素子16に流れる電流が変化することによるフリッカが発生する。

【0034】そこでとの問題を解決するために、図4に に限定するものではなく、N1倍の電流値を画素のTF 示すようなソース信号線11に通常のn倍の電流を通常 T17に書き込み、EL素子16のオン時間を1/n の1/n 時間印加するn倍パルス駆動を使用する。この 50 倍 (N1とN2とは異なる) でもよいことは言うまでも

駆動法により通常よりも高い電流を書けることによりコンデンサへの書きこみ時間を短縮できる。ソース信号線に n 倍の電流を流すと有機EL素子にも n 倍の電流が流れるため、ゲート制御信号を53aとなるように出力してFT17dの導通時間を1/n にすることにより、有機EL素子16に1/nの期間だけ電流を印加し平均印加電流は変化しないようにする。

【0035】ソース信号線11の電流値変化に要する時間 t は浮遊容量20の大きさをC、ソース信号線11の電圧をV、ソース信号線11に流れる電流をIとすると t = C・V/Iであるため電流値を10倍大きくできる ことは電流値変化に要する時間が10分の1近くまで短くできる。またはソース容量20が10倍になっても所定の電流値に変化できるということを示す。従って、短い水平走査期間内に所定の電流値を書きこむためには電流値を増加させることが有効である。

【0036】入力電流を10倍にすると出力電流も10倍となり、ELの輝度が10倍となるため所定の輝度を得るために、図1のTFT17dの導通期間を従来の10分の1とし、発光期間を10分の1とすることで、所定輝度を表示するようにした。

【0037】つまり、ソース信号線11の寄生容量20 の充放電を十分に行い、所定の電流値を画素のTFT1 7aにプログラムを行うためには、ソースドライバ18 から比較的大きな電流を出力する必要がある。しかし、 このように大きな電流をソース信号線11に流すとこの 電流値が画素にプログラムされてしまい、所定の電流に 対し大きな電流がEL素子16に流れる。たとえば、1 0倍の電流でプログラムすれば、当然、10倍の電流が EL素子16に流れ、EL素子16は10倍の輝度で発 光する。所定の発光輝度にするためには、EL素子16 に流れる時間を1/10にすればよい。このように駆動 することにより、ソース信号線11の寄生容量を十分に 充放電できるし、所定の発光輝度を得ることができる。 【0038】なお、10倍の電流値を画素のTFT17 a (正確にはコンデンサ14の端子電圧を設定してい る) に書き込み、EL素子16のオン時間を1/10に するとしたがこれは一例である。場合によっては、10 倍の電流値を画素のTFT17aに書き込み、EL素子 16のオン時間を1/5にしてもよい。逆に10倍の電 流値を画素のTFT17aに書き込み、EL素子16の オン時間を2倍にする場合もあるであろう。本発明は、 画素への書き込み電流を所定値以外の値にし、EL素子 16に流れる電流を間欠状態にして駆動することに特徴 がある。本明細書では説明を容易にするため、N倍の電 流値を画素のTFT17に書き込み、EL素子16のオ ン時間を1/N倍にするとして説明する。しかし、これ に限定するものではなく、N1 倍の電流値を画素のTFT17に書き込み、EL素子16のオン時間を1/N2

(6)

ない。なお、間欠する間隔は等間隔に限定するものでは ない。

【0039】また、説明を容易にするため、1/Nを1 F(1フィールドまたは1フレーム)を基準にしてこの 1Fを1/Nにするとして説明する。しかし、1画素行が選択され、電流値がプログラムされる時間(通常、1 水平走査期間(1H))があるし、また、走査状態によっては誤差も生じる。したがって、以上の説明はあくまでも説明を容易にするための便宜状の問題だけであり、これに限定するものではない。

【0040】有機(無機)EL表示装置は、CRTのように電子銃で線表示の集合として画像を表示するディスプレイとは表示方法が基本的に異なる点にも課題がある。つまり、EL表示装置では、1F(1フィールドあるいは1フレーム)の期間の間は、画素に書き込んだ電流(電圧)を保持する。そのため、動画表示を行うと表示画像の輪郭ぼけが発生するという課題が発生する。

【0041】本発明では、1F/Nの期間の間だけ、E L素子16に電流をながし、他の期間(1F(N-1) /N)は電流を流さない。この駆動方式を実施し画面の 20 一点を観測した場合を考える。この表示状態では1Fご とに画像データ表示、黒表示(非点灯)が繰り返し表示 される。つまり、画像データ表示状態が時間的に飛び飛び表示(間欠表示)状態となる。動画データ表示を、この間欠表示状態でみると画像の輪郭ぼけがなくなり良好な表示状態を実現できる。つまり、CRTに近い動画表示を実現することができる。また、間欠表示を実現するが、回路のメインクロックは従来と変わらない。したがって、回路の消費電力が増加することもない。

【0042】液晶表示パネルの場合は、光変調をする画 30像データ(電圧)は液晶層に保持される。したがって、 黒挿入表示を実施しようとすると液晶層に印加しているデータを書き換える必要がある。そのため、ソースドライバIC18の動作クロックを高くし、画像データを黒表示データとを交互にソース信号線11に印加する必要がある。したがって、黒挿入(黒表示などの間欠表示)を実現しょうとすると回路のメインクロックをあげる必要がある。また、時間軸伸張を実施するための画像メモリも必要になる。

【0043】図1などに示す本発明のEL表示パネルの画素構成では、画像データはコンデンサ14に保持されている。このコンデンサ14の端子電圧に対応する電流をEL素子16に流す。したがって、画像データは液晶表示パネルのように光変調層に保持されているのではない。

【0044】本発明はスイッチングのTFT17dなどをオンオフさせるだけでEL素子16に流す電流を制御する。

【0045】つまり、EL素子16に流れる電流Iwを 化してもその変化に追従することができず、動画ボケと オフしても、画像データはそのままコンデンサ14の保 50 なっていた(画像の輪郭ボケ)。しかし、本発明では画

持されている。したがって、次のタイミングでTFT1 7 dなどをオンさせ、EL素子16に電流を流せば、その流れる電流は前に流れていた電流値と同一である。本発明では黒挿入(黒表示などの間欠表示)を実現しょうとすると際においても回路のメインクロックをあげる必要がない。また、時間軸伸張を実施する必要もないための画像メモリも不要である。また、有機EL素子16は電流を印加してから発光するまでの時間が短く高速応答である。そのため、動画表示に適し、さらに間欠表示を10 実施することのより従来のデータ保持型の表示パネル(流見ましなが、FL によれば)の関係でするで

(液晶表示パネル、ELバネルなど)の問題である動画 表示の問題を解決できる。

【0046】たとえば、ゲート信号線12bは従来導通期間が1F(電流プログラム時間を0とした時、通常プログラム時間は1Hであり、EL表示装置の画素行数は少なくとも100行以上であるので、1Fとしても誤差は1%以下である)とし、N=10とするとすれば、最も変化に時間のかかる階調0から階調1へもソース容量が20pF程度であれば75μ秒程度で変化できる。これは、2型程度のEL表示装置であればフレーム周波数が60Hzで駆動できることを示している。

【0047】更に大型の表示装置でソース容量20が大きくなる場合はソース電流を10倍以上にしてやればよい。一般にソース電流値をN倍にした場合、ゲート信号線12b(TFT17d)の導通期間を1F/Nとすればよい。これによりテレビ、モニター用の表示装置などにも適用が可能である。

【0048】以上のように、TFT17dを本来オンす る時間(約1F)の1/Nの期間だけオンさせ、他の期 間(N-1)/N期間はオフさせれば、1F全体の平均 輝度は所定の輝度となる。この表示状態は、CRTが電 子銃で画面を走査しているのと近似する。異なる点は、 画像を表示している範囲が画面全体の1/N(全画面を 1とする)が点灯している点である(CRTでは、点灯 している範囲は1画素行(厳密には1画素である)。 【0049】本発明では、この1/Nの画像表示領域7 1が図8に示すように画面21の上から下に移動する。 本発明では、1F/Nの期間の間だけ、EL素子16に 電流が流れ、他の期間(1 F・(N-1)/N)は電流 を流れない。したがって、画像は間欠表示となる。しか し、人間の目には残像により画像が保持された状態とな るので、全画面が均一に表示されているように見える。 【0050】この表示状態では1Fごとに画像データ表 示71、黒表示(非点灯)72が繰り返し表示される。 つまり、画像データ表示状態が時間的に飛び飛び表示 (間欠表示) 状態となる。液晶表示パネル (本発明以外 のEL表示パネル)では、1Fの期間、画素にデータが 保持されているため、動画表示の場合は画像データが変 化してもその変化に追従することができず、動画ボケと

像を間欠表示するため、画像の輪郭ぼけがなくなり良好な表示状態を実現できる。つまり、CRTに近い動画表示を実現することができる。

11

【0051】また、EL表示装置では黒表示は完全に非点灯であるから、液晶表示パネルを間欠表示した場合のように、コントラスト低下もない。また、図1に示すようにTFT17dをオンオフ操作するだけで、間欠表示を実現することができる。これは、コンデンサ14に画像データがメモリされているためである。つまり、各画素16に、画像データは1Fの期間中は保持されている。この保持されている画像データに相当する電流をEL素子16に流すか否かをTFT17dの制御により実現しているのである。

【0052】したがって、間欠表示を実現する場合としない場合では、1画素を構成するTFT17の個数に変化はない。つまり、画素構成はそのままで、ソース信号線11の寄生容量20の影響と除去し、良好な電流ブログラムを実現している。その上、CRTに近い動画表示を実現しているのである。

【0053】また、ゲートドライバ回路の動作クロック 20 はソースドライバ回路18の動作クロックに比較して十分に遅いため、回路のメインクロックが高くなるということはない。また、Nの値の変更も容易である。

【0054】画像表示方向(画像書き込み方向)は、1フィールド目では画面の上から下方向とし、つぎの第2フィールド目では画面の下から上方向としてもよい。さらに、1フィールド目では画面の上から下方向とし、一旦全画面を黒表示(非表示)72とした後、つぎの第2フィールド目では画面の下から上方向としてもよい。図2に図示するように、ゲート信号線12a(1)にオン30電圧(Vg1)が印加され、画素が選択される。この時、ゲート信号線12b(1)にはオフ電圧(Vgh)が印加される。したがって、スイッチングTFT17b および17cがオンし、TFT17dはオフ状態である。

【0055】ソース信号線11にはプログラム電流Iwが流れる。このプログラム電流IwはTFT17aによって供給される。(電流Idd=Iw)。この電流Iddが流れることにより、ソース信号線11の電位が所定電圧となり、TFT17aのゲート端子電圧Vgが電流 40プログラムされる。電流プログラムされた電流とはIw電流である。つまり、TFT17aはプログラム電流Iwが流れるようにVg電圧が設定される。他の言い方をすれば、ソース信号線11の電位が画素にプログラムされたとも言うことができる。つまり、画素の動作状態としては電圧(が)プログラムされたとも言うことができる。

【0056】1H(1水平走査期間)後、ゲート信号線 の黒電流を流すようにプログラムされる。つまり、EL12a(1)にはオフ電圧(Vgh)が印加され、TF 素子16には微小な電流しか流れないようにプログラム T17b、TFT17cがオフし、コンデンサ14aに 50 される。そのため、本発明のEL表示パネルは黒浮きが

プログラム電流 I wを流すのに必要な電圧が保持される。また、ゲート信号線 1 2 b (1)にオン電圧(Vg1)が印加され、TFT17dがオンする。したがって、Ie(=Iw)電流がEL素子16に流れ、EL素子16がプログラムされた電流(Ie)で点灯する。【0057】以上が、以前にも説明した電流プログラム方式の動作である。しかし、実際には動作を異なる。EL素子16に流れる電流 I eは、I wよりも小さくなっているからである。

【0058】まず、TFTのPチャンネルの動作について説明をする。PチャンネルTFTはゲート端子電圧V8がマイナス側にあるほど大きなオン電流が流れる。V0、では完全にオフする。オン電流はV0、V1、V2、V3 を値によって異なる。V4、V5 をがった。なよそV7 までは、V8 をがった。V8 をが流(V9 をできる。V9 で V9 をできる。V9 を

【0059】もう1つ重要な事項は、各素子の電位を素子の端子間の容量問題がある。TFT17bのゲートーソース端子間には容量がある。CO容量は、TFT17bのW/Lが $6/6\mu$ mのダブルゲートの場合、0.01~0.03pF程度である。CO3 μ 0.05 μ 0.0

【0060】画素が選択されると、ゲート信号線12aがVghからVglに変化するため、突き抜け容量によって、ゲート信号線12aの電位が突き抜ける。この突き抜けによりVg電圧は+方向にシフトする。

【0061】次に、TFT17aがソースドライバ回路 18が吸収する電流 I wに等しい電流を流す。しかし、 黒表示の場合、TFT17aが流す電流の値は小さい。 一例として30nA以下である。このような電流では、ソース信号線18の寄生容量を1H期間内に十分に充放電することができない。したがって、ソース信号線18の電位を1H期間内に所定電圧にすることができない。 つまり、Vg電圧も低く、黒表示に必要な電圧とすることができない。

【0062】したがって、TFT17aはEL素子16に、本来の黒表示よりも大きな電流を流す。そのため、EL素子16は所望値よりも明るく発光する。したがって、EL表示パネルでは、黒浮きが発生し、高コントラスト表示を実現できない。

【0063】しかし、ゲート信号線12aがオン電圧(vg1)からオフ電圧(Vgh)に変化するため、再び、突き抜け容量により突き抜け電圧が発生する。この突き抜け電圧により、Vg電圧は、必要とする黒表示電圧にシフトする。したがって、TFT17aは全く電流を流さないようにプログラムされるか、もしくは所望値の黒電流を流すようにプログラムされる。つまり、EL素子16には微小な電流しか流れないようにプログラムされる。そのため、木登明のFL表示パネルは思済さが

なく、高コントラスト表示を実現できる。このVg電圧 は1フィールド(1フレーム)、つまり、次に画素が選 択され、書き換えられるまで保持される。

【0064】図4に図示するn倍のパルスを印加する方 式では、EL素子16に印加する電流が大きくなり、そ のため、EL素子16に発生する端子電圧も高くなる。 したがって、ゲート信号線12の振幅値も大きくしなけ れば、EL素子16を駆動することができない。ゲート 信号線12の振幅値が高くなると、突き抜け容量を介し て発生する突き抜け電圧も大きくなる。そのため、本発 10 明では、良好な黒表示を実現できる。この効果はn=2 以上で顕著をなる。したがって、発明では、nは2以上 とすることが好ましい。

【0065】また、図12の回路についてもスイッチン グ素子123bを非導通、123c, 123dを導通す ることにより、ソース信号線126に流れる電流を蓄積 容量125に書きこむことができる。スイッチング素子 123c, 123dを非導通、123bを導通させると とにより蓄積容量125に蓄えられた電荷に応じて電源 線122よりEL素子121に電流を流す。

【0066】したがってソース信号線に流れる電流をN 倍にすると蓄積容量に書きこむ電流がN倍になる。ま た、スイッチング素子123bの1フレームの導通時間 を1/NにすることでEL素子に流れる時間が1フレー ムの1/Nになるので、図12の回路に関しても同様の 駆動法を使用することが可能である。

【0067】本発明は突き抜け電圧をうまく利用して、 良好な黒表示を実現している。該当の画素行が選択さ れ、ゲート信号線12aにオン電圧が印加されると、ゲ ート信号線の電圧が突き抜けてVg電圧がより、白表示 30 をなる方向にシフトしてしまう。しかし、この突き抜け た電圧は、ソース信号線18からの電圧により短時間に 充電される。特に、TFT17aのゲート端子電圧が低 下する方向であるので、TFT17aがより電流を流す 方向になり、短時間に充電されるのである。したがっ て、ゲート信号線12aにオン電圧が印加されたときの 突き抜けは全く問題とならない。

【0068】1Hの期間後、該当の画素行が非選択さ れ、ゲート信号線12aにオフ電圧が印加されると、ゲ ート信号線12aには、Vgh電圧が印加され、突き抜 40 け電圧が発生する。この突き抜け電圧により、TFT1 7aのゲート端子電圧が目標の黒表示電圧に到達する。 【0069】以上のように本発明は、ゲート信号線12 aの電圧変動を突き抜け容量を介してTFT17aに供 給し、EL素子16に流れる電流を制御している。との 制御は特に、黒表示を実現するのに有効である。

【0070】今度は、EL素子16に白表示の電流を流 している場合について考察する。画素が選択されると、 白表示の電流が流れるようにTFT17aのゲート端子

素子16に流れる。

(8)

【0071】図4に図示するn倍のパルスを印加する方 式では、EL素子16に印加する電流が大きい。EL素 子16に大きな電流を流すためには、TFT17aのゲ ート端子電圧Vgを低くする必要がある。もちろん、ソ ース信号線11の電位も低くなる。

【0072】したがって、白表示では、Vgが低い電位 でプログラムされる。しかし、突き抜け容量を介して発 生する突き抜け電圧は黒表示の場合と同一である。一 方、n=1以上の場合は、n=1の場合と比較して、ソ ース信号線11の電位は低くなっているから白表示輝度 は増加する。したがって、図6に図示するように、n= 2で輝度が高くなる。

【0073】図6にn倍パルス駆動使用時のnを変化さ せたときの輝度の変化を示す。この図で言う輝度とはn を変化させたときの輝度を有機EL素子16の両端に流 れる電流値で割ったものであり(つまり、平均輝度)、 グラフは通常駆動の輝度を1としたときの各バルス駆動 の輝度比を表している。

【0074】この図6からnは1以上6以下の時に通常 20 (n=1)より輝度が高くなっていることがわかる。し かし、nが6以上となると、輝度は低下する。これは、 図7に示すように有機EL素子にかかる電流と発光する 輝度の関係は完全な比例関係ではなく、ある電流値以上 からはグラフが曲線を描くことがわかっている(つま り、単位電流に対する発光効率が低下する)。このた め、nを大きくし有機EL素子に印加する電流が大きく なりすぎると有機EL素子自体の発光効率が悪くなり平 均印加電流が同じでも輝度が低くなってしまう。

【0075】これより、有機EL素子の駆動法はnが1 以上6以下パルス駆動を使用すると平均印加電流に対す る輝度が上がる。また、図4に図示するようにn倍のパ ルス駆動で画像を表示すると、n=2以上で黒表示が良 好となり、表示コントラストが向上する。また、動画表 示性能も飛躍的に向上する。

【0076】また、TFT17dをオンオフすることに より、EL素子16に流れる電流はオンオフされる。し たがって、画像表示領域71は図8で図示するように画 面の上下方向に走査された状態となる。この時、黒表示 の部分がEL素子16をオフした領域である。

【0077】黒表示部16が画面の全領域に占める割合 は20%以上あると、動画表示性能が格段に向上する。 特に50%の時とすることにより改善効果は高い。 黒表 示領域16が20%とは、N=1.2である。したがっ て、動画表示性能の改善を目的とする場合は、Nは1. 2以上6以下とすればよい。さらには、Nは1.5以上 6以下とすることが好ましい。

【0078】なお、N=5を越えるとフレームレートの 周波数の観点からフリッカが目立つ場合がある。したが にプログラムされる。このプログラムされた電流がEL 50 って、好ましくは、Nは1.2以上5以下とすればよ

(9)

い。さらには、Nは1.5以上5以下とすることが好ま しい。

【0079】また、保持用の容量C1(14a)と、T FT11bのゲート-ソース容量(C2)の比率は、C 1:C2=200:1以上、C1:C2=20:1以下 の範囲となるようにすることが好ましい。この範囲にす ることにより、黒表示時にTFT11aに流れる電流が 最適となる。

【0080】図9は本発明の形態のうちの少なくとも1 つの形態を用いた表示装置92に復調装置、アンテナ9 1、ボタン94を取り付け、筐体93でもって携帯情報 端末にしたものである。

【0081】表示パネル92を携帯電話などの情報表示 装置に使用する場合、ドライバICを表示バネルの一辺 に実装することが好ましい(なお、このように一辺にド ライバICを実装する形態を3辺フリー構成(構造)と 呼ぶ。従来は、表示領域のX辺にゲートドライバICが 実装され、Y辺にソースドライバICが実装されてい た)。画面の中心線が表示装置の中心になるように設計 し易く、また、ドライバICの実装も容易となるからで 20 ある。なお、ゲートドライバ回路を高温ポリシリコンあ るいは低温ポリシリコン技術などで3辺フリーの構成で 作製してもよい(つまり、図1のゲートドライバとソー スドライバのうち、少なくとも一方をポリシリコン技術 で基板に直接形成する)。

【0082】一般的に、携帯電話などの情報表示装置で は、表示色数よりも低消費電力化が優先される。表示色 数を増加させる回路の動作周波数が高くなる、あるいは EL素子16に印加する電圧(電流)波形の変化が多く なるなど理由から、消費電力が増加する。したがって、 あまり表示色数を多くすることはできない。この課題に 対して、本発明は画像データを誤差拡散処理あるいはデ ィザ処理を行って画像を表示する。

【0083】図9で説明した本発明の携帯電話では図示 していないが、筐体の裏側にCCDカメラを備えてい る。CCDカメラで撮影し画像は即時に表示パネルの表 示画面に表示できる。CCDカメラで撮影したデータ は、表示画面92に表示することができる。CCDカメ ラの画像データは24ビット(1670万色)、18ビ ット(26万色)、16ビット(6.5万色)、12ビ 40 ット(4096色)、8ビット(256色)をキー入力 94で切り替えることができる。

【0084】表示データが12ビット以上の時は、誤差 拡散処理を行って表示する。つまり、CCDカメラから の画像データが内蔵メモリの容量以上の時は、誤差拡散 処理などを実施し、表示色数を内蔵メモリの容量以下と なるように画像処理を行う。

【0085】また、図11に示すように電流をN1倍に して印加時間を1/N2とするときN1>N2の関係が 成り立つとEL素子に流れる平均印加電流が増加し、平 50 VAフィルム(板)などが例示される。その他エンジニ

均輝度が上昇する。例えばN2=2N1とすると同じ輝 度で発光する時間が2倍になることからEL素子が発光 する平均輝度は2倍になる。よって印加する電流量と印 加時間の関係を変えることによりEL素子の平均輝度を 変化させることが可能である。このことを利用して図り に示すような携帯情報機器において表示パネル92を一 面発光させることにより照明機器として利用することも 可能である。

【0086】この照明機器はキー入力94により携帯情 報機器としての表示画面と、照明機器としての表示画面 に切り替えることが可能である。

【0087】しかし、照明機器として利用しようとした 場合、携帯情報機器の表示画面の輝度では、一メートル 以上前方を照らすには不充分である。本発明の駆動方法 を使用して携帯情報機器を表示させている場合、所定の 電流よりも高い電流を印加し、遮断時間を設けることに よりEL素子に印加される平均電流を制御している。そ こでキー入力94により電流を遮断させる時間を変化さ せるとELに印加される平均電流が増加し、表示パネル 92の輝度が増加する。これにより1メートル以上遠方 を照らすことも可能な任意に輝度を変化させることので きる照明機器としての利用が可能である。

【0088】図10は本発明の形態のうちの少なくとも 1つの形態を用いた表示装置101に映像信号入力10 6と映像信号処理回路104をとりつけ、筐体107で もってテレビにしたものである。

【0089】図10のテレビでは、画面の表面を保護フ ィルム(保護板でもよい)で被覆している。これは、表 示パネル92の表面に物体があたって破損することを防 止することが1つの目的である。保護フィルムの表面に はAIRコートが形成されており、また、表面をエンボ ス加工することにより表示パネル92に外の状況(外 光)が写り込むことを抑制している。

【0090】保護フィルムと表示パネル92間にビーズ などを散布することにより、一定の空間が配置されるよ うに構成されている。また、保護フィルムの裏面に微細 な凸部を形成し、この凸部で表示パネル92と保護フィ ルム間に空間を保持させる。このように空間を保持する ことにより保護フィルムからの衝撃が表示パネル92に 伝達することを抑制する。

【0091】また、保護フィルムと表示パネル92間に アルコール、エチレングリコールなど液体あるいはゲル 状のアクリル樹脂あるいはエポキシなどの固体樹脂など の光結合剤を配置または注入することも効果がある。界 面反射を防止できるとともに、前記光結合剤が緩衝材と して機能するからである。

【0092】保護フィルムをしては、ポリカーボネート フィルム(板)、ポリプロピレンフィルム(板)、アク リルフィルム(板)、ポリエステルフィルム(板)、P アリング樹脂フィルム (ABSなど) を用いることがで きることは言うまでもない。また、強化ガラスなど無機 材料からなるものでもよい。保護フィルムを配置するか わりに、表示パネル92の表面をエポキシ樹脂、フェノ ール樹脂、アクリル樹脂で0.5mm以上2.0mm以 下の厚みでコーティングすることも同様の効果がある。 また、これらの樹脂表面にエンボス加工などをすること も有効である。

17

【0093】また、保護フィルムあるいはコーティング 材料の表面をフッ素コートすることも効果がある。表面 10 についた汚れを洗剤などで容易にふき落とすことができ るからである。また、保護フィルムを厚く形成し、フロ ントライトと兼用してもよい。

【0094】画面は4:3に限定されるものではなく、 ワイド表示ディスプレイでもよい。解像度は1280× 768ドット以上にすることが好ましい。ワイド型をす ることにより、DVD映画やテレビ放送など、横長表示 のタイトルや番組をフルスクリーンで楽しむことができ る。表示パネルの明るさは300cd/m'(カンデラ /平方メートル)にすることが好ましい。さらに好まし(20)るく、周辺部を暗くするガウス分布を容易に構成でき くは、表示パネルの明るさは500cd/m²(カンデ ラ/平方メートル)にすることが好ましい。また、イン ターネットや通常のパソコン作業に適した明るさ(20 0 c d/m²) で表示できるように切り替えスイッチを 設置している。

【0095】したがって、使用者は表示内容あるいは使 用方法により、最適に画面の明るさにすることができ る。さらに動画を表示しているウインドウだけを500 cd/m'にして、その他の部分は200cd/m'にす る設定も用意している。テレビ番組をディスプレイの隅 30 に表示しておいて、メールをチェックするといった使い 方にも柔軟に対応する。 スピーカーはタワー型の形状 になり、前方向だけではなく、空間全体に音が広がるよ うに設計されている。

【0096】本発明の実施例で説明した技術的思想はビ デオカメラ、プロジェクター、立体テレビ、プロジェク ションテレビなどに適用できる。また、ビューファイン ダ、携帯電話のモニター、PHS、携帯情報端末および そのモニター、デジタルカメラおよびそのモニターにも 適用できる。

【0097】また、電子写真システム、ヘッドマウント ディスプレイ、直視モニターディスプレイ、ノートパー ソナルコンピュータ、ビデオカメラ、電子スチルカメラ にも適用できる。また、現金自動引き出し機のモニタ 一、公衆電話、テレビ電話、パーソナルコンピュータ、 腕時計およびその表示装置にも適用できる。

【0098】さらに、家庭電器機器の表示モニター、ポ ケットゲーム機器およびそのモニター、表示パネル用バ ックライトあるいは家庭用もしくは業務用の照明装置な どにも適用あるいは応用展開できることは言うまでもな 50 んだ携帯情報端末の図

い。照明装置は色温度を可変できるように構成すること が好ましい。これは、RGBの画素をストライブ状ある いはドットマトリックス状に形成し、これらに流す電流 を調整することにより色温度を変更できる。また、広告 あるいはポスターなどの表示装置、RGBの信号器、警 報表示灯などにも応用できる。

【0099】また、スキャナの光源としても有機ELバ ネルは有効である。RGBのドットマトリックスを光源 として、対象物に光を照射し、画像を読み取る。もちろ ん、単色でもよいことは言うまでもない。また、アクテ ィブマトリックスに限定するものではなく、単純マトリ ックスでもよい。色温度を調整できるようにすれば画像 読み取り精度も向上する。

【0100】また、液晶表示装置のバックライトにも有 機EL表示装置は有効である。EL表示装置(バックラ イト)のRGBの画素をストライプ状あるいはドットマ トリックス状に形成し、これらに流す電流を調整すると とにより色温度を変更でき、また、明るさの調整も容易 である。その上、面光源であるから、画面の中央部を明 る。また、R、G、B光を交互に走査する、フィールド シーケンシャル方式の液晶表示パネルのバックライトと しても有効である。また、バックライトを点滅しても黒 挿入することにより動画表示用液晶表示バネルのバック ライトとしても用いることができる。

[0101]

【発明の効果】本発明の表示バネル、表示装置等は、高 画質、良好な動画表示性能、画面面内の均一表示を実現 できる。

【0102】なお、本発明を用いれば、低消費電力の情 報表示装置などを構成できるので、電力を消費しない。 また、小型軽量化できるので、資源を消費しない。ま た、髙精細の表示バネルであっても十分に対応できる。 したがって、地球環境、宇宙環境に優しいこととなる。 【図面の簡単な説明】

【図1】本発明の表示装置の構成を示した図

【図2】本発明の形態による画素、ソース信号線及び電 源を示した図

【図3】水平走査期間内でのゲート制御信号のタイミン 40 グを示した図

【図4】N倍パルス駆動における印加する電流値と印加 時間の関係図

【図5】N倍パルス駆動使用時における水平走査期間内 でのゲート制御信号のタイミングを示した図

【図6】N倍バルス駆動使用時のNの変化と平均印加電 流に対する輝度の関係図

【図7】有機EL素子の印加電流と輝度の関係図

【図8】本発明の表示バネルの表示状態を示した図

【図9】本発明の実施の形態における表示装置を組み込

20

19

【図10】本発明の実施の形態における表示装置を組み 込んだテレビを示した図

【図11】本発明の実施の形態の動作を説明する図

【図12】従来の有機EL素子の駆動回路をしめした図 【符号の説明】

10 電流源

11 ソース信号線

12,13 ゲート信号線

*14 コンデンサ

15 EL電源線

16 有機EL素子

17 TFT

18 ソースドライバ

19 ゲートドライバ

31,51 水平同期信号HD

* 32,33,52,53 ゲート制御信号

【図1】

【図2】

【図3】

【図4】

【図5】

【図8】

【図10】

【図9】

【図12】

フロントページの続き

(51)Int.Cl.'		識別記 号	FΙ		テーマコード(参考)
G09G	3/20	6 4 2	G09G	3/20	6 4 2 A
		680			6 8 0 T
H 0 5 B	33/14		H 0 5 B	33/14	A

F ターム(参考) 3K007 AB02 AB05 AB17 BA06 BB07 DB03 GA04 5C080 AA06 BB05 DD05 DD26 EE28 FF11 JJ01 JJ02 JJ03 JJ04 JJ05 JJ06 KK07 KK47