第5章 快速傅立叶变换(FFT)

主要讨论FFT算法以及具体的实现方法

§ 5.1 DFT 的运算特点和规律

§ 5.2 <u>基2-FFT算法</u>

§ 5.3 IDFT的快速算法(IFFT)

§ 5.4 实序列的FFT算法

第5章小结

§ 5.1 DFT 的运算特点和规律

一、直接计算DFT计算量 (a+jb)(c+jd)=(ac-bd)+j(ad+bc)

 $X(k) = \sum_{k=0}^{N-1} x(n)W_N^{kn} = \sum_{k=0}^{N-1} \{(\text{Re}x \cdot \text{Re}W - \text{Im}x \cdot \text{Im}W) + j(\text{Re}x \cdot \text{Im}W + \text{Im}x \cdot \text{Re}W)\}$

计算一个k值(如k=0)的X(k)运算量:

N次 复数乘 (N-1)次 复数加

或4N次 实数乘 2N+2(N-1)=4N-2次 实数加

全部计算N个X(k) (k=0,1,...N-1)

N2 次 复数乘

N(N-1)次 复数加

或4N2次 实数乘

N(4N-2)次 实数加

结论:直接计算N点DFT的计算量和N²成正比

例如: 10点 DFT 100次 复数乘 1024点 DFT 1,048,576次 复数乘, 即100多万次复数乘运算

$\left[W_{\scriptscriptstyle N}^{\,nk}=W_{\scriptscriptstyle N}^{\,n(N+k)}=W_{\scriptscriptstyle N}^{\,k(N+n)}\right.$ 1.周期性 $\begin{cases} W_N^0 = W_N^{rN} = 1 \end{cases}$ $W_N^{-nk} = W_N^{n(N-k)} = W_N^{k(N-n)}$ $\begin{cases} W_N^{(k+\frac{N}{2})} = -W_N^k \end{cases}$ 2.对称性 $W_N^{\frac{1}{2}} = -W_N^0 = -1$ 如何利用 W_N 因子的周期性和对称性等,导出一个高效的快速算法? $\left[W_{N}^{nk}=W_{mN}^{mnk}=W_{N/m}^{nk/m}\right]$

1965年 Cooley & Tukey 奠定 FFT基础,把长序列短分解

二、 W_N 因子的特性

使得乘法计算量由 N^2 次降为 $\frac{N}{2}\log_2 N$ 次

3.可约性 $\left\{W_{N}^{N/2}=-1
ight.$

 $W_N^{(k+N/2)} = -W_N^k$

以1024点为例,计算量降为5120次,仅为原来的 4.88%

4. 正交性 $\sum_{k=0}^{N-1} W_N^{kn} = \frac{1-W_N^{nN}}{1-W_N^{n}} = \frac{1-e^{-\frac{j-2\pi}{N}nN}}{1-e^{-\frac{j-2\pi}{N}n}} = \begin{cases} N & \stackrel{\cong}{=} n = rN, r$ 为整数 $0 & \stackrel{\cong}{=} n$ 为其它

三、 结论

快速傅里叶变换(FFT: Fast Fourier Transform) 就是 在这些特性基础上发展起来的:

- (1) 利用DFT旋转因子的对称性、周期性和可约性等特性,合 并DFT运算中的某些项;
- (2)将长序列分解为短序列,从而减少其运算量。
- (3) 因合并与分解方法的不同产生了多种FFT算法。 如果将序列x(n)的长度N取为2的整数幂次方 $N=2^{M}(M$ 为正

整数),这种FFT运算称为基--2FFT算法。基--2FFT算法可以 按抽取方法的不同分为:

按时间抽取 (DIT: Decimation-in-time) FFT算法

按频率抽取 (DIF: Decimation-in-frequency) FFT算法。

§ 5.2 基2-FFT算法

5.2.1 按时间抽取(DIT)的基2-FFT算法

5.2.2 <u>按频率抽取(DIF)的基2-FFT算法</u>

§ 5. 2. 1 按时间抽取 (DIT) 的基2-FFT算法 (库利-图基算法)

一、算法原理(时域奇偶分,频域前后分)

DFT计算公式为;
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

设DFT长度N, $N=2^{M}$, M为自然数,序列x(n)不够长可以补零 为N,将长度为N的序列x(n)按时间顺序,奇偶分解为越来越短 的子序列, 称为按时间抽取(DIT: Decimation-In-Time)的FFT 算法,也称Cooley-Tukey算法。

1、第一次分解:

将x(n)按奇、偶分成两组,可得各长为N/2的两个新序列

$$x(n) \longrightarrow \begin{cases} x_1(r) = x(2r) \\ x_2(r) = x(2r+1) \end{cases} r = 0, 1, \dots \frac{N}{2} - 1$$

$$x(n)$$
的DFT为 $X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn} = \sum_{n=0} x(n)W_N^{kn} + \sum_{n=0} x(n)W_N^{kn}$ $W_N^{2kr} = W_{N/2}^{kr}$ $X_1(k) = \sum_{n=0}^{N/2-1} x(2r)W_{N/2}^{kr}$ $X_2(k) = \sum_{n=0}^{N/2-1} x(2r+1)W_{N/2}^{kr}$ $X_2(k) = \sum_{n=0}^{N/2-1} x(2r+1)W_{N/2}^{kr}$

X(k)后半 (N/2) 部分? k = 0,1,...,N/2-1

 $X_1(k)$ 和 $X_2(k)$ 的长度也是N/2;

 $X(k+\frac{N}{2}) = X_1(k+\frac{N}{2}) + W_N^{k+\frac{N}{2}} X_2(k+\frac{N}{2}) = X_1(k) - W_N^k X_2(k)$

$$W_N^{(k+\frac{N}{2})} = W_N^{\frac{N}{2}} W_N^k = -W_N^{\frac{N}{2}}$$

这样,将一个N点DFT分解成2个N/2点DFT($X_1(k)$ 和 $X_2(k)$),只 要求出N/2点的 $X_1(k)$ 和 $X_2(k)$,即可求出k=0,1,2,...,N-1区间全 部X(k)值,这正是FFT能大量节省计算量的关键所在。

2、蝶形运算

一个蝶形运算:几次复数乘?几次复数加?

一次复数乘、两次复数加

计算一个X(k) 的运算信号流图:

用下面的蝶形图也可清楚地说明这种运算。

一次时域分解后计算一个N点DFT的计算量?

一个N点
$$X$$
(k) $\left\{egin{array}{ll} X_{1}(k), X_{2}(k) & \mbox{两个N/2点DFT} & \mbox{复数乘} & 2 \times (N/2)^{2} \\ \mbox{复数m} & 2 \cdot \frac{N}{2} (\frac{N}{2} - 1) \\ \mbox{N/2个 碟形运算} & \mbox{复数 $m \cdot 2 \cdot \frac{N}{2}} \\ \mbox{复数} & \mbox{2} \cdot \frac{N}{2} \end{array}\right.$ 计算一个N点DFT:$

计算一个N点DFT:

复数乘
$$2\times(N/2)^2+N/2=N(N+1)/2$$

复数加
$$2 \cdot \frac{N}{2} (\frac{N}{2} - 1) + 2 \cdot \frac{N}{2} = N^2 / 2$$

运算量减少近一半

3、进一步分解(第二次分解)

将 $x_1(r)$ 按奇偶分解成两个N/4长的子序列 $x_3(l)$ 和 $x_4(l)$

$$x_1(r) \longrightarrow \begin{cases} x_3(l) = x_1(2l) \\ x_4(l) = x_1(2l+1) \end{cases} \quad l = 0,1,...\frac{N}{4} - 1$$

$$X_{1}(k) = \sum_{l=0}^{N/4-1} x_{1}(2l)W_{N/2}^{2kl} + \sum_{l=0}^{N/4-1} x_{1}(2l+1)W_{N/2}^{k(2l+1)}$$

$$= X_{3}(k) + W_{N/2}^{k}X_{4}(k) \qquad k = 0, 1, \dots \frac{N}{4} - 1$$

于是
$$\begin{cases} X_1(k) &= X_3(k) + W_{N/2}^k X_4(k) \\ X_1(k+N/4) &= X_3(k) - W_{N/2}^k X_4(k) \end{cases} \qquad k = 0,1,...\frac{N}{4} - 1$$

同样将 $x_2(r)$ 按奇偶分解成两个N/4长的子序列 $x_5(l)$ 和 $x_6(l)$

$$\begin{array}{c} x_2(r) \longrightarrow \begin{cases} x_5(l) = x_2(2l) \\ x_6(l) = x_2(2l+1) \end{cases} \qquad l = 0,1,...\frac{N}{4} - 1 \end{array}$$

$$\begin{cases} X_2(k) &= X_5(k) + W_{N/2}^k X_6(k) \\ X_2(k+N/4) &= X_5(k) - W_{N/2}^k X_6(k) \end{cases} \qquad k = 0, 1, \dots \frac{N}{4} - 1$$

4、N=8点DFT的第三次分解(2点DFT的计算) 当N=8, 最后剩下的是4个N/4=2的2点DFT, 2点DFT也可以用蝶型运算来完成,以 $X_3(k)$ 为例:

$$\begin{split} X_3(k) &= \sum_{l=0}^{N/4-1} x_3(l) W_{N/4}^{lk} = \sum_{l=0}^{1} x_3(l) W_{N/4}^{lk}, k = 0, 1 \\ &\because x_3(0) = x(0), x_3(1) = x(4), W_{N/4}^1 = W_{N/4}^1 W_{N/4}^0 = -W_{N/4}^0 \\ &\therefore \begin{cases} X_3(0) = x_3(0) W_{N/4}^0 + W_{N/4}^0 x_3(1) = x(0) + W_N^0 x(4) \\ X_3(1) = x_3(0) W_{N/4}^0 + W_{N/4}^1 x_3(1) = x(0) - W_N^0 x(4) \end{cases} \end{split}$$

$$X_3(0) = x(0) + x(4)$$

 $X_3(1) = x(0) - x(4)$

$$X_3(0) = x(0) + x(4)$$
 同理 $X_4(0) = x(2) + x(6)$

$$X_4(1) = x(2) - x(6)$$

2点的DFT只有加减运算

第一次次分解,将N点的DFT分解成两个N/2点的DFT和 N/2个蝶形运算

第二次分解,将每个N/2点的DFT分解成两个N/4点的 DFT和N/4个蝶形运算

依次类推,经过M次分解,最后将N点DFT分解成N/2个2点 DFT

→ M次分解

按照这种方法不断划分下去,直到最后剩下的是2 点只有加减运算的DFT为止。

二、算法讨论

1. 级的概念

此算法以2为基,写作 $N=2^M$ (不够长,补零延伸)

上述DIT-FFT算法过程,将N点DFT先分成两个N/2点 DFT,再.....直至N/2个两点DFT。每分解一次,称 为一"级"运算。 $N=2^M$ 点DFT可以分成M级,从左 到右依次是1,2,...,M级,每级有N/2个蝶形

$$M = \log_{2} N$$

2. DIT-FFT与DFT算法运算量比较

FFT: 全部 "蝶形" 数=
$$\frac{N}{2}M = \frac{N}{2}\log_2 N$$

运算量 $\left\{ egin{array}{lll} e$ 都 <<N2,十分高效

DFT:复数乘法次数 N2,

复数加法次数 N(N-1)

例如,N=210=1024时

运算效率:
$$\frac{N^2}{(N/2)\log_2 N} = \frac{1048576}{5120} = 204.8$$

2 原位计算:

 $N=2^M$ 点的FFT共进行M 级运算,每级由N/2个蝶形运算组成

设 N个存贮单元 A(0) A(1) A(2) A(3) A(4) A(5) A(6)A(7)存入数据 x(0)

每次运算结果存入 x(0) A(0) 原输入数据占用的 x(4) A(1) x(4)

这种利用同一 存贮单元存贮 蝶形计算输入 输出数据的方 法称为原位(同址)计算

原位计算可节省大量内存, 使设备成本降低。

3 码位倒置:

由DIT一FFT流图可以看出,变换后的输出 X(k) 依照自然顺 序排列,输入序列x(n)不再是原来的自然顺序,这是由于对 x(n)作奇偶抽取所产生的。

对N=8, 其自然序号n是 0, 1, 2, 3, 4, 5, 6, 7

x(n)第一次按奇偶分:

0, 2, 4, 6 | 1, 3, 5, 7

偶数、奇数组再作奇偶分: 0,4 | 2,6 | 1,5 | 3,7

把这种序号的排列顺序称之为倒位序

		二进制倒置码		
n	$n_2 n_1 n_0$	$n_0 n_1 n_2$	ĥ	
0	000	000	0	
1	001	100	4	
2	010	010	2	
3	011	110	6	
4	100	001	1	
5	101	101	5	
6	110	011	3	
7	111	111	7	
先按自然	变址运算	将顺序码的		
顺序输入	又址运并	二进制位倒	→	倒位序
炒刀'相八		一匹阿亚因		
		.且.		

n	x(n)	X(k) k
0	000	000 0
4	100	001 1
2	010	010 2
6	110	011 3
1	001	100 4
5	101	101 5
3	011	110 6
7	111	111 7
		⋖

第十六次作业:

5.1 画出N=4点的按时间抽取基2-FFT算法的 完整流图。

5.2; 5.3;

§ 5.2.2 按频率抽取(DIF)的基2-FFT算法 (桑德-图基算法)

一、算法原理(时域前后分,频域奇偶分)

设DFT长度N, $N=2^M$, M为自然数, 序列x(n)不够长可以补零为N, 将长度为N的序列x(n)分成前后两段:

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{kn} = \sum_{n=0}^{N-1} x(n) W_{N}^{kn} + \sum_{n=-N-1}^{N-1} x(n) W_{N}^{kn}$$

令后者的n=m+N/2,得:

$$\sum_{n=\frac{N}{2}}^{N-1} x(n) W_N^{kn} = \sum_{m=0}^{\frac{N}{2}-1} x(m + \frac{N}{2}) W_N^{km} W_N^{k\frac{N}{2}}$$

$$\underline{\underline{m} = n} \sum_{n=0}^{\frac{N}{2}-1} W_N^{k\frac{N}{2}} x(n + \frac{N}{2}) W_N^{kn}$$

方法二: 直接调用FFT子程序计算IFFT的方法:

优点: 利用共轭变换的方法,不修改FFT的程序和参数.

$$x(n) = IDFT[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$

$$x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) W_N^{kn}$$

$$\therefore x(n) = \left[x^{*}(n)\right]^{*} = \frac{1}{N} \left[\sum_{k=0}^{N-1} X^{*}(k) W_{N}^{kn}\right]^{*} = \frac{1}{N} \left\{DFT[X^{*}(k)]\right\}^{*}$$

不足: 做两次复共轭运算

§ 5.4 实序列的FFT算法

法1 设 $x_1(n)$ 、 $x_2(n)$ 为两个N点实序列,用一个N点FFT同时计算两个N点实序列的DFT,一个作为实部,另一个作为虚部,计算完后再把输出按奇、偶、虚、实特性加以分离,具体步骤如下:

步骤1: 构造复序列y (n): $y(n) = x_1(n) + jx_2(n)$

步骤2: 求y(n)的N点FFT,记为Y(k):Y(k)=FFT[y(n)]

步骤3: 根据对称性求出X₁(k)和X₂(k)

$$X_1(k) = Y_{ep}(k) = \frac{Y(k) + Y^*(N-k)}{2}$$

$$X_2(k) = Y_{op}(k) = \frac{Y(k) - Y^*(N-k)}{2j}$$

法2 若只有一个N点实序列 x(n),可以将其分解为两个N/2点 实序列,记为 $x_1(r)$ 和 $x_2(r)$,然后仿照方法1计算两个N/2 的 X_1 (k)和 X_2 (k),最后根据对称性求出X (k)。具体步骤 如下:

步骤1: 将N点实序列 x(n)分解成两个N/2点的实序列,分解方法采用按时间奇偶抽取方法:

$$x_1(r) = x(2r)$$

 $x_2(r) = x(2r+1)$ $r = 0, 1, 2 \dots, N/2 - 1$

步骤2: 构造复序列y(r): $y(r) = x_1(r) + jx_2(r)$

$$r = 0, 1, 2 \cdots, N/2 - 1$$

步骤3: 求y (r)的N/2点FFT,记为Y(k):

 $Y(k)=FFT[y(r)]_{N/2}$

步骤4: 根据对称性求出X₁(k)和X₂(k)

$$X_{1}(k) = Y_{ep}(k) = \frac{Y(k) + Y^{*}(\frac{N}{2} - k)}{2}$$

$$X_{2}(k) = Y_{op}(k) = \frac{Y(k) - Y^{*}(\frac{N}{2} - k)}{2j}$$
The first first fixed with the first fixed of the first fixed of the fixed f

步骤5: 按DIT-FFT算法的碟形公式求出X(k)

$$\begin{split} X(k) &= X_{1}(k) + W_{N}^{k} X_{2}(k) \\ X(k + \frac{N}{2}) &= X_{1}(k) - W_{N}^{k} X_{2}(k) \\ k &= 0, 1, ..., N/2 - 1 \end{split}$$

第5章小结

DFT与FFT快速算法的运算量比较

FFT 算法的基本特点:

1.蝶形单元; 2.原位计算; 3.级的概念; 4.码位倒置;

会画DIT-FFT与DIF-FFT的4、8点运算流图。

第十七次作业:

5.1画出N=4点的按频率抽取基2-FFT算法的 完整流图。

5.4; 5.5

补充题:

采用FFT算法,可用循环卷积完成线性卷积。计算线性卷积x(n)*h(n),试写采用快速卷积的计算步骤(注意说明点数)。