Language & Logic 2017/18

Inference Rules

Conjunction (\land)	$\textbf{Disjunction} \ (\lor)$
$\frac{A B}{A \wedge B} \land \text{-introduction}$	$\frac{A}{A \vee B} \vee \text{-introduction} \frac{A}{B \vee A} \vee \text{-introduction}$
$\frac{A \wedge B}{A} \wedge \text{-elimination} \frac{A \wedge B}{B} \wedge \text{-elimination}$	$\frac{A \vee B A \vdash C B \vdash C}{C} \vee -elimination$
$\textbf{Implication} \ (\rightarrow)$	Negation (\neg)
$\frac{A \vdash B}{A \to B} \to \text{-introduction}$	$\frac{A \vdash \bot}{\neg A} \neg \text{-introduction}$
$\frac{A \to B A}{B} \to \text{-elimination}$	$\frac{\neg \neg A}{A} \neg \neg \text{-elimination}$
Universal quantification (\forall)	Existential quantification (\exists)
$\frac{\phi(a)}{\forall x [\phi(x)]} \forall -introduction*$	$\frac{\phi(a)}{\exists x [\phi(x)]} \exists -introduction$
$\frac{\forall x [\phi(x)]}{\phi(a)} \forall \text{-elimination}$	$\frac{\exists x [\phi(x)] \phi(a) \vdash C}{C} $ \(\frac{\frac{\partial}{C}}{T} \)
* For \forall -introduction, a must not occur in any dependency of $\phi(a)$.	*For \exists -elimination, a must not occur in C or any dependency of C except $\phi(a)$.
Identity (=)	
$\frac{1}{a=a}$ =-introduction	
$\frac{a = b \phi(a)}{\phi(b)} = -elimination$	