Bioquímica Geral

Sumário

ENZIMAS: Cinética enzimática

- As reacções catalisadas por enzimas exibem uma cinética de saturação (Curvas de saturação hiperbólicas e sigmoidais)
- Esquema cinético simples para uma reacção enzimática.
- Modelo de Michaelis-Menten
 - •Hipóteses restritivas (condição de velocidade inicial, estado estacionário, rápido equilíbrio)
 - Expressão matemática do modelo
 - •Significado físico dos parâmetros do modelo (V_M e K_M)
 - •Determinação experimental dos parâmetros $V_{\rm M}$ e $K_{\rm M}$
- Enzimas cataliticamente perfeitas

Sumário (continuação)

Cinética enzimática

Inibição reversível e irreversível

Modelos cinéticos para inibição reversível: inibição competitiva, incompetitiva e não-competitiva. Referência ao Modelo geral de Webb. Determinação dos parâmetros cinéticos dos modelos.

Efeito do pH na actividade enzimática

Como escolher um modelo de pH adequado aos resultados experimentais? Modelos cinéticos para enzimas com 1 e 2 graus de protonação. Gráficos das fracções molares das várias formas em função do pH. Estimativa dos valores de pKa do modelo.

Cinética enzimática a dois substratos

Notação de Cleland. Mecanismo sequencial ordenado e sequencial ao acaso. Mecanismo não sequencial (Ping Pong)

Cinética Enzimática

Estuda a velocidade das reacções catalisadas por enzimas e a forma como esta varia com a concentração do substrato, condições do meio (T, pH...) e na presença de inibidores ou activadores.

Aspecto prático:

No laboratório vamos medir velocidades da reacção em diferentes condições.

Aspecto teórico:

Vamos construir modelos matemáticos que se ajustam aos resultados experimentais. Estes modelos caracterizam-se por depender de parâmetros que têm um significado físico definido.

A informação obtida pode:

- ser útil do ponto de vista experimental (aplicações práticas das enzimas).
- fornecer pistas acerca dos mecanismos e dos aminoácidos envolvidos na catálise.

Como vou obter velocidades no laboratório?

Medindo o aparecimento do produto em função do tempo

$$v = \frac{d[P]}{dt}$$

• Medindo o desaparecimento do substrato em função do tempo

$$v = -\frac{d[S]}{dt}$$

Curvas de evolução temporal : concentração P vs tempo

velocidade instantânea:

$$v = \frac{d[P]}{dt}$$

As curvas de evolução são, normalmente lineares até *≅* 20% de conversão de substrato em produto.

A velocidade da reacção (declive das curvas de evolução) diminui com o tempo até se atingir o equilíbrio:

 i) A reacção inversa torna-se cada vez mais importante com a acumulação do produto.

No equilíbrio a velocidade de conversão de S em P iguala a velocidade de conversão de P em S e v=0.

- i) A enzima torna-se instável no decurso da reacção;
- ii) O grau de saturação da enzima pelo substrato diminui à medida que o substrato é consumido;
- iii) Os produtos da reacção inibem a enzima;
- iv) Qualquer combinação dos factores anteriores.

velocidades iniciais, v_0

Determinação experimental da velocidade inicial

[P] em função do tempo (exponencial)

Determinação experimental da velocidade inicial: $v_0 = (d[P]/dt)_0$

Determinam-se as tangentes na origem das curvas [P] vs tempo, para diferentes valores de concentração de substrato. A concentração total de enzima (E_T) tem que ser constante.

v_o em função de [substrato] (Hipérbole)

$$v_o = f([S]_o)$$
 exibe saturação

As reacções catalisadas por enzimas exibem uma cinética de saturação

Vo=f([S]) curva Hiperbólica

Enzima Michaeliana (obedece à cinética de Michaelis-Menten) Vo=f([S]) curva Sigmoidal

Enzima Alostérica

Nesta disciplina só vamos estudar a cinética de enzimas Michaelianas!

Uma cinética de saturação implica a existência de um complexo enzima-substrato

Esquema cinético simples para uma reacção enzimática

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

- 4 variáveis: 4 concentrações: [S], [P], [E] e [ES] (unidades M)
- 4 parâmetros: 4 constantes de velocidade:

2 constantes de primeira ordem (k₁, e k₂) (unidades: s⁻¹)

2 constantes de segunda ordem (k₁ e k₋₂) (unidades: M⁻¹ s⁻¹)

Nota: Só se podem comparar constantes com as mesmas unidades (para comparar as constantes é necessário transformar as constantes de segunda ordem em constantes de pseudo-primeira ordem: k_1 [S] e k_2 [P])

- 4 equações diferenciais descrevem a variação temporal das 4 espécies (Rever noções de cinética química!)
- 2 equações de balanço de massa:

substrato: $[S_o]=[S]+[ES]+[P]$

enzima: ET=[E]+[ES]

Para simplificar a análise vamos considerar duas hipóteses restritivas:

1 – condição de velocidade inicial (v_o)

as velocidades são determinadas a partir da tangente na origem da curva [P] vs. tempo. Nestas condições pode-se desprezar a reacção de conversão de produto em ES porque a concentração de produto é muito baixa.

2 – Hipótese de estado estacionário ([S_o]>>>ET)

Se a concentração de substrato for muito superior à concentração de enzima, a concentração do intermediário ES é sempre muito baixa e pode considerar-se constante ao longo do tempo (d[ES]/dt = 0).

No laboratório é necessário garantir que as experiências são feitas nestas condições!

Modelo geral
$$k_1 \longrightarrow ES \xrightarrow{k_2} E+P$$

$$k_{-1} \longrightarrow ES \xrightarrow{k_2} E+P$$

Hipótes es restritivas: Condição de velocidade inicial ([P] ≈ 0) e hipótese de estado estacionário (d[ES]/dt=0)

Modelo cinético de Michaelis-Menten

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

Equações simplificadas:

Equações diferenciais:

$$\frac{d[F]}{dt} = k_{cat} [ES]$$
 velocidade inicial
$$\frac{d[ES]}{dt} = k_1 [E] [S] - (k_{-1} [ES] + k_{cat} [ES]) = 0$$

Balanço de massas:
$$[S]_0 = [S] \quad \text{(porque } [S] >>>> E_T \text{ e } [P] \approx 0 \text{)}$$

$$E_T = [E] + [ES]$$

Dedução da equação de velocidade do modelo de Michaelis-Menten

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

Objectivo:

Expressar v_o em função dos parâmetros do modelo (k_1, k_{-1}, k_{cat}) e de quantidades conhecidas $([S_o] e E_T)$.

Vamos utilizar a expressão da velocidade inicial, a hipótese do estado estacionário e as equações de balanço de massa da enzima e do substrato.

$$v_0 = \left(\frac{d[P]}{dt}\right)_0 = k_{cat}[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - (k_{-1} + k_{cat})[ES] = 0$$

$$ET = [E] + [ES]$$

$$[S_0] = [S]$$

Dedução da equação de velocidade do modelo de Michaelis-Menten

$$v_0 = \left(\frac{d[P]}{dt}\right)_0 = k_{cat}[ES]$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_{cat}}{\rightarrow} E + P$$

$$\begin{cases} k_1[E][S] = (k_{-1} + k_{cat})[ES] \\ [S] = [S]_0 \end{cases}$$

$$E_T = [E] + [ES]$$

$$\begin{cases} k_1[E][S] = (k_{-1} + k_{cat})[ES] \\ [S] = [S]_0 \\ E_T = [E] + [ES] \end{cases} \qquad \begin{cases} [E] = [ES] \frac{k_{-1} + k_{cat}}{k_1} \frac{1}{[S]_0} \\ E_T = [ES] \frac{K_M}{[S]_0} + [ES] \end{cases} \qquad [ES] = \frac{E_T}{1 + \frac{K_M}{[S]_0}}$$
Substituindo na expressão de v_0

definindo

$$K_M = \frac{k_{-1} + k_{cat}}{k_1}$$

$$V_{M} = k_{cat} E_{T}$$

Equação de Michaelis-Menten

K_M constante de Michaelis-Menten **V_M velocidade máxima**

$$v_0 = \frac{V_M [S]_0}{K_M + [S]_0}$$

Representação gráfica da equação de Michaelis-Menten: hipérbole rectangular

$$v_0 = \frac{V_M [S]_o}{K_M + [S]_o}$$

 $oldsymbol{K_M}$ unidades de concentração $oldsymbol{V_M}$ unidades de velocidade

Reacção de 1ª ordem

$$[S_o] << K_M v_o = (V_M/K_M) [S_o]$$

Reacção de ordem zero $[S_o] >> K_M v_o = V_M$

Significado físico dos parâmetros V_M e K_M

$$V_{M} = k_{cat} E_{T}$$

Variação de V_M

V_M depende da concentração da enzima. Corresponde a v_o quando toda a enzima está saturada com substrato, i.e. quando [S]>>>KM.

$$K_M = \frac{k_{-1} + k_{cat}}{k_1}$$

Variação de K_M

 K_{M} é uma *medida* da afinidade entre a enzima e o substrato. Quanto maior K_{M} menor afinidade.

Determinação experimental de V_M e K_M

1. Ajuste directo do modelo de Michaelis-Menten recorrendo a regressões não-lineares:

TABLE 3.3 Results for the Nonlinear Least-Squares Fit of Experimental Data to the Michaelis-Menten Model

Best-fit values			
V	81.1		
K	38.62		
Std. error			
V	2.727		
K	3.315		
95% Confidence intervals			
V	75.66-86.54		
<i>K</i>	32.00-45.23		
Goodness of fit			
Degrees of freedom	73		
r^2	0.934		
Absolute sum of squares	2022		
SD x	5.263		
Runs test			
Points above curve	29		
Points below curve	41		
Number of runs	40		
p Value (runs test)	0.915		
Deviation from model	Not significant		
Data			
Number of x values	15		
Number of y replicates	5		
Total number of values	75		
Number of missing values	0		

Determinação experimental de V_M e K_M

Linearizações da equação de Michaelis-Menten

A - Lineweaver Burk

B - Eadie Hofstee

$$\mathbf{v}_{o} = -\mathbf{K}_{M} \frac{\mathbf{v}_{o}}{[S]_{o}} + \mathbf{V}_{M}$$

Linearização de

C - Hanes Woolf

$$\frac{[S]_{o}}{V_{o}} = \frac{K_{M}}{V_{M}} + \frac{1}{V_{M}} [S]_{o}$$

Método directo

D - Cornish Bowden

$$V_{M} = V_{o} + \frac{V_{o}}{[S]_{o}} K_{M}$$

Valores de K_M e k_{cat} para várias enzimas

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

enzima	substrato	K _M μM
Chymotrypsin	Acetyl-L-tryptophanamide	5000
Lysozyme	Hexa-N-acetylglucosamine	6
β-Galactosidase	Lactose	4000
Threonine deaminase	Threonine	5000
Carbonic anhydrase	CO_2	8000
Penicillinase	Benzylpenicillin	50
Pyruvate carboxylase	Pyruvate	400
	HCO ₃ -	1000
	ATP	60
Arginine-tRNA synthetase	Arginine	3
357	tRNA	0.4
	ATP	300

k _{cat} Enzima	Turnover number (per second)
Carbonic anhydrase	600,000
3-Ketosteroid	280,000
isomerase	
Acetylcholinesterase	25,000
Penicillinase	2,000
Lactate	1,000
dehydrogenase	
Chymotrypsin	100
DNA polymerase I	15
Tryptophan syntheta	se 2
Lysozyme	0.5

 K_M está relacionado com a formação de ES, K_M elevado \rightarrow fraca afinidade entre E e S k_{cat} está relacionado com a velocidade de catálise, k_{cat} elevado \rightarrow reacção mais rápida

Enzimas cataliticamente perfeitas:

k_{cat}/K_M aproxima-se do *limite da difusão: 10*⁸ – 10⁹ s⁻¹M⁻¹

$$\frac{k_{cat}}{K_{M}} = \frac{k_{cat}}{\underbrace{k_{-1} + k_{cat}}} = \frac{k_{cat}}{k_{-1} + k_{cat}} k_{1} < k_{1}$$

O limite de k_{cat}/K_M é o valor de k_1 .

Este valor não pode ser superior ao da constante de velocidade do encontro da enzima com o substrato que é controlado pela difusão.

Enzyme	$k_{\rm cat}/K_{ m M}({ m s}^{-1}{ m M}^{-1})$
Acetylcholinesterase	1.6×10^{8}
Carbonic anhydrase	8.3×10^{7}
Catalase	4×10^{7}
Crotonase	2.8×10^{8}
Fumarase	1.6×10^{8}
Triose phosphate isomerase	2.4×10^{8}
β-Lactamase	1×10^{8}
Superoxide dismutase	7×10^{9}

Estado estacionário vs. Rápido equilíbrio

Estado estacionário d[ES]/dt = 0

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

Se $k_{-1} >>> k_{cat}$ considera-se que a adição de substrato está em rápido equilíbrio e o modelo pode ser simplificado. Nestas condições [ES] está relacionada com as concentrações de enzima livre e substrato pela constante de dissociação $K_{\rm S}$.

Rápido equilíbrio

$$E + S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E + P$$

$$K_S = \frac{\begin{bmatrix} E \end{bmatrix} \begin{bmatrix} S \end{bmatrix}}{\begin{bmatrix} ES \end{bmatrix}} = \frac{k_{-1}}{k_1}$$

 $K_S = \frac{\lfloor E \rfloor \rfloor S \rfloor}{\lceil E_S \rceil} = \frac{k_{-1}}{k}$ A hipótese de rápido equilíbrio é mais restritiva do que a hipótese de estado estacionário. \rightarrow Modelo com menos parâmetros. A hipótese de rápido equilíbrio **não** pode ser garantida na prática.

Estado estacionário

$$K_M = \frac{k_{-1} + k_{cat}}{k_1}$$

Rápido equilíbrio

$$K_M = \frac{k_{-1}}{k_1} = K_S$$

Nota:

A hipótese restritiva de rápido equilíbrio corresponde a um caso particular de estado estacionário, em que a concentração do intermediário não só é constante (d[ES]/dt = 0), como é igual ao valor definido pela constante de equilíbrio de dissociação ([ES]=[E][S]/K_S).

Esta hipótese é mais restritiva do que apenas estado estacionário, e permite maiores simplificações nos modelos cinéticos (substituem-se duas constantes de velocidade (k_1 , k_{-1}) por uma constante de equilíbrio, K_S). Nos modelos de inibição e pH vamos utilizar sempre a hipótese restritiva de rápido equilíbrio.

Como se trata de um caso particular de estado estacionário, é sempre necessário garantir no laboratório a condição de estado estacionário ([S]>>> E_T). No entanto, é impossível garantir que $k_{-1}>>>k_{cat}$ o que faz com que não seja possível garantir na prática a validade da hipótese restritiva de equilíbrio rápido.

TPC

Deduzir a equação de Michaelis-Menten utilizando a hipótese restritiva de rápido equilíbrio. Chegar às expressões de V_M e K_M para o modelo:

$$E + S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E + P$$

em que K_S =[E][S]/[ES] é a constante de dissociação do complexo ES e k_{cat} é a constante de velocidade de formação do produto.

Cinética enzimática: Inibição

- A inibição da actividade enzimática constitui um importante mecanismo de regulação nos sistemas biológicos.
- Muitas drogas e agentes tóxicos actuam inibindo a actividade de enzimas.
- Inibidores específicos podem ser utilizados para ajudar a elucidar mecanismos catalíticos.

Inibição irreversível

O inibidor liga-se fortemente à enzima e dissocia-se muito lentamente.

Alguns inibidores irreversíveis são drogas potentes.

Ex. penicilina (modifica covalentemente a enzima transpeptidase), aspirina (inibe a enzima ciclooxigenase).

Podem utilizar-se inibidores irreversíveis para determinar quais são os aminoácidos do centro activo importantes para a catálise:

Reagentes específicos para certos grupos funcionais que podem estar no centro activo (Cis-SH, Ser-OH, ...)(ex. iodoacetamida, DIPF)

Marcadores de afinidade semelhantes ao substrato mas ligam-se irreversivelmente (ex. bromoacetol fosfato, TPCK).

Inibidores suicidas substratos modificados que ao reagir dão origem a um intermediário que inactiva irreversivelmente a enzima.

Inibição reversível

Caracteriza-se por uma rápida dissociação do complexo enzima-inibidor.

Inibição competitiva: o inibidor é estruturalmente semelhante ao substrato e liga-se no centro activo impedindo a ligação do substrato.

Um inibidor competitivo diminui a velocidade de catálise porque reduz a proporção de moléculas de enzima ligadas ao substrato. É possível reverter este tipo de inibição aumentando a concentração do substrato.

Inibição não-competitiva: inibidor e substrato podem estar simultâneamente ligados à enzima porque se ligam a sítios diferentes.

Um inibidor não competitivo diminui a velocidade de catálise porque diminui o número de *turnover* (k_{cat}).

Inibição incompetitiva: o inibidor incompetitivo só se liga a uma molécula de enzima que tem substrato ligado.

Um inibidor incompetitivo afecta simultâneamente a velocidade de catálise e a afinidade da enzima para o substrato.

Inibição mista: Situações em que há combinações dos mecanismos anteriores.

Modelação matemática da cinética enzimática na presença de inibidores reversíveis:

- Inibição competitiva
- inibição não-competitiva
- inibição incompetitiva

Referência ao modelo geral de Webb, que é válido para todos os tipos de inibição reversível, incluindo diferentes tipos de inibição mista.

Inibição competitiva

$$v = \frac{V_M[S]}{K_M + [S]}$$

$$V_{M}^{'}=V_{M}$$

$$K_{M}' = K_{S} \left(1 + \frac{[I]}{K_{i}} \right)$$

Na presença do inibidor apenas um dos parâmetros é afectado:

A velocidade máxima não se altera.

$$(V_M'=V_M)$$

 A afinidade da enzima para o substrato é menor.

$$(K_M'>K_M)$$

Inibição competitiva

$$E + S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E + P$$

$$\downarrow K_i$$

$$EI$$

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes de dissociação para S e I)

Equações de partida:

$$v = k_{cat}[ES]$$

$$K_S = \frac{[E][S]}{[ES]}$$

$$K_I = \frac{\begin{bmatrix} E \end{bmatrix} \begin{bmatrix} I \end{bmatrix}}{\begin{bmatrix} EI \end{bmatrix}}$$

$$E_T = [E] + [EI] + [ES]$$

$$E_T = \left[E\left(1 + \frac{I}{K_I} + \frac{S}{K_S}\right)\right] \longrightarrow \left[E\right] = \frac{E_T}{\left(1 + \frac{I}{K_I} + \frac{S}{K_S}\right)}$$

$$v = k_{cat} \frac{[S]}{K_S} [E] = \frac{k_{cat} E_T \frac{[S]}{K_S}}{1 + \frac{[I]}{K_I} + \frac{[S]}{K_S}} = \frac{k_{cat} E_T [S]}{K_S \left(1 + \frac{[I]}{K_I}\right) + [S]}$$

$$v = \frac{V_{M}[S]}{K_{M} + [S]}$$

$$V_{M}^{'} = k_{cat}E_{T} = V_{M}$$

$$K_{M}^{'} = K_{S}\left(1 + \frac{[I]}{K_{I}}\right)$$

Inibição não-competitiva

$$v = \frac{V_M'[S]}{K_M' + [S]}$$

$$V_{M}' = \frac{V_{M}}{\left(1 + \frac{[I]}{K_{i}}\right)}$$

$$K_{M}^{'}=K_{S}$$

Na presença do inibidor apenas um dos parâmetros é afectado:

A velocidade máxima é menor.

$$(V_M' < V_M)$$

 A afinidade da enzima para o substrato não se altera.

$$(K_M'=K_M)$$

Inibição não-competitiva

$$E + S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E + P$$

$$\downarrow I \qquad \qquad \downarrow K_I \qquad \qquad \downarrow K_I$$

$$EI + S \xrightarrow{K_S} ESI$$

$$K_S$$

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes de dissociação para S e I)

Equações de partida:

$$v = k_{cat} [ES]$$

$$K_{S} = \frac{\llbracket E \rrbracket \llbracket S \rrbracket}{\llbracket ES \rrbracket} = \frac{\llbracket EI \rrbracket \llbracket S \rrbracket}{\llbracket ESI \rrbracket}$$

$$K_I = \frac{\llbracket E \rrbracket \llbracket I \rrbracket}{\llbracket EI \rrbracket} = \frac{\llbracket ES \rrbracket \llbracket I \rrbracket}{\llbracket ESI \rrbracket}$$

$$E_T = [E] + [EI] + [ES] + [ESI]$$

$$E_{T} = \left[E\left(1 + \frac{I}{K_{I}} + \frac{S}{K_{S}} + \frac{I}{K_{I}}\frac{S}{K_{S}}\right) \qquad \left[E\right] = \frac{E_{T}}{\left(1 + \frac{I}{K_{I}} + \frac{S}{K_{S}} + \frac{I}{K_{I}}\frac{S}{K_{S}}\right)}$$

$$v = k_{cat} \frac{[S]}{K_S} [E] = \frac{k_{cat} E_T \frac{[S]}{K_S}}{1 + \frac{[I]}{K_I} + \frac{[S]}{K_S} + \frac{[I]}{K_I} \frac{[S]}{K_S}} = \frac{k_{cat} E_T [S]}{K_S \left(1 + \frac{[I]}{K_I}\right) + \left[S \left(1 + \frac{[I]}{K_I}\right)\right)}$$

$$v = \frac{\frac{k_{cat}E_T}{\left(1 + \frac{[I]}{K_I}\right)}[S]}{\left(1 + \frac{[I]}{K_I}\right)} \qquad v = \frac{V_M[S]}{K_M' + [S]} \qquad V_M' = \frac{V_M}{\left(1 + \frac{[I]}{K_I}\right)} \qquad K_M' = K_S$$

Inibição incompetitiva

E + I
$$\longrightarrow$$
 E + P

 $\kappa_{i} \parallel$

ESI \longrightarrow

$$v = \frac{V_M[S]}{K_M + [S]}$$

$$V_{M}' = \frac{V_{M}}{\left(1 + \frac{[I]}{K_{i}}\right)}$$

$$K_{M}' = \frac{K_{S}}{\left(1 + \frac{[I]}{K_{i}}\right)}$$

Na presença do inibidor ambos os parâmetros são afectados :

• A velocidade máxima é menor.

$$(V_M' \leq V_M)$$

 Há uma aumento aparente da afinidade da enzima para o substrato

$$(K_M' < K_M)$$

Inibição incompetitiva

$$E + S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E + P$$

$$I \\ \downarrow K_i \\ ESI$$

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes de dissociação para S e I)

Equações de partida:

$$v = k_{cat}[ES]$$

$$K_S = \frac{[E][S]}{[ES]}$$

$$K_{I} = \frac{[ES][I]}{[ESI]}$$

$$E_T = [E] + [ES] + [ESI]$$

$$E_{T} = \left[E\left(1 + \frac{\left[S\right]}{K_{S}} + \frac{\left[I\right]}{K_{I}}\frac{\left[S\right]}{K_{S}}\right) \longrightarrow \left[E\right] = \frac{E_{T}}{\left(1 + \frac{\left[S\right]}{K_{S}} + \frac{\left[I\right]}{K_{I}}\frac{\left[S\right]}{K_{S}}\right)}$$

$$v = k_{cat} \frac{[S]}{K_S} [E] = \frac{k_{cat} E_T \frac{[S]}{K_S}}{1 + \frac{[S]}{K_S} + \frac{[I]}{K_I} \frac{[S]}{K_S}} = \frac{k_{cat} E_T [S]}{K_S + [S] \left(1 + \frac{[I]}{K_I}\right)}$$

$$v = \frac{\frac{k_{cat}E_T}{\left(1 + \frac{[I]}{K_I}\right)}[S]}{\frac{K_S}{\left(1 + \frac{[I]}{K_I}\right)} + [S]}$$

$$v = \frac{V_M[S]}{K_M + [S]}$$

$$V_{M}' = \frac{V_{M}}{\left(1 + \frac{[I]}{K_{I}}\right)}$$

$$K_{M}' = \frac{K_{S}}{\left(1 + \frac{[I]}{K_{I}}\right)}$$

Representação de Lineweaver-Burk para os 3 tipos de inibição reversível

Inibição competitiva

Rectas cruzam no eixo dos YY

$$V_{M}^{'}=V_{M}$$

$$K_{M}' = K_{S} \left(1 + \frac{[I]}{K_{I}} \right)$$

Inibição incompetitiva

Rectas paralelas

$$V_{M}' = \frac{V_{M}}{\left(1 + \frac{[I]}{K_{I}}\right)}$$

$$K_{M}' = \frac{K_{S}}{\left(1 + \frac{[I]}{K_{I}}\right)}$$

Inibição não competitiva

Rectas cruzam no eixo dos XX

$$V_{M}' = \frac{V_{M}}{\left(1 + \frac{[I]}{K_{I}}\right)}$$

$$K_{M}^{'}=K_{S}$$

Modelo Geral de Webb

Definem-se 11 tipos de inibição reversível, dependendo dos valores de α e β .

$$E + S \xrightarrow{K_{S}} ES \xrightarrow{k_{cat}} E + P$$

$$\downarrow I \qquad \qquad \downarrow I$$

$$\downarrow K_{I} \qquad \qquad \downarrow \alpha K_{I}$$

$$EI + S \xrightarrow{\alpha K_{S}} ESI \xrightarrow{\beta k_{cat}} E + P$$

Os 3 casos de inibição simples descritos no início correspondem a casos particulares do modelo geral de Webb:

Inibição competitiva pura: $\alpha \to \infty$ (β indeterminado porque o complexo ESI nunca se forma) $E+S \xrightarrow{K_S} ES \xrightarrow{k_{cat}} E+P$ + I $\downarrow K_i$ EI

Linearizações e método directo CB para os 3 tipos de inibição

Tipo de inibição	Lineweave r Burk	Eadie Ho fstee	Hane s-Woo lf	Cornish Bowd en
$V_{M}^{\cdot} = V_{M} \frac{1}{1 + \frac{[I]_{o}}{\alpha K_{I}}}$ $K_{M}^{\cdot} = K_{M} \frac{1 + \frac{[I]_{o}}{K_{I}}}{1 + \frac{[I]_{o}}{\alpha K_{I}}}$	$\frac{1}{v_{o}} = \frac{K_{M}^{,}}{V_{M}^{,}} \frac{1}{[S]} + \frac{1}{V_{M}^{,}}$	$\mathbf{v}_{o} = -\mathbf{K}_{M}^{,} \frac{\mathbf{v}_{o}}{[\mathbf{S}]} + \mathbf{V}_{M}^{,}$	$\frac{[S]}{v_o} = \frac{K_M^{,}}{V_M^{,}} + \frac{1}{V_M^{,}}[S]$	$V_{M}^{,} = V_{o} + \frac{V_{o}}{[S]} K_{M}^{,}$
$\begin{array}{c} \text{competitiva} \\ \text{competitiva} \\ \alpha \rightarrow \infty \\ \text{V}_{M}^{,} = \text{V}_{M} \\ \text{K}_{M}^{,} > \text{K}_{M} \end{array}$	1/V	v / [S]	[S]/ v	V' M
$\begin{array}{c} \text{incompetitiva} \\ \alpha \rightarrow 0, K_{\mathrm{I}} \rightarrow \infty \\ \alpha \ K_{\mathrm{I}} = cons \ tan \ te \\ V_{\mathrm{M}}^{\cdot} < V_{\mathrm{M}} \\ K_{\mathrm{M}}^{\cdot} < K_{\mathrm{M}} \end{array}$	1/V 1/[S]	v / [S]	[S]/ V	V' M K' M
Não-competitiva $\alpha = 1$ $V_{M}^{,} < V_{M}$ $K_{M}^{,} = K_{M}$	1/V 1/[S]	v / [S]	[S]/ V	V' M K' M

Efeito do pH na actividade enzimática

As proteínas são sensíveis ao pH. A maior parte das enzimas apenas está activa numa gama relativamente estreita de valores de pH.

Efeitos do pH na actividade enzimática:

- Ligação do substrato à enzima
- Actividade catalítica
- lonização do substrato
- Estrutura da proteína (desnaturação a pH extremos)

O estudo da dependência da actividade com o pH pode dar informação acerca dos valores de pKa dos aminoácidos do centro activo.

Modelação matemática do efeito do pH na cinética enzimática

- modelos com 1 grau de protonação
- modelos com 2 graus de protonação

Como escolher um modelo de pH?

O número de parâmetros de um modelo nunca deve ser superior ao necessário para explicar os resultados experimentais.

Curvas de actividade deste tipo necessitam apenas de um grupo ionizável: modelo com 1 grau de protonação (dois pK_a: um para a enzima livre e outro para a enzima ligada a S). Se a actividade for elevada a pH baixo a forma da enzima activa é a forma protonada (EHS), se a actividade for elevada a pH básico a forma activa da enzima é a forma desprotonada (ES).

Curvas de actividade deste tipo necessitam de dois grupos ionizáveis: modelo com 2 graus de protonação (4 pK_a: dois para a enzima livre e dois para a enzima ligada a S). Neste caso apenas a forma com um grau de protonação intermédio dá origem a produto.

EH₂S

ES

Apenas a espécie protonada dá produto

As curvas de actividade com o pH reflectem as populações das espécies que dão origem a produto

Modelos com 1 grau de protonação

em situação de substrato saturante [S]>>>K_S

Parâmetros do modelo:

 K_{a1} (constante de equilíbrio), nesta simulação p K_{a1} =6 k_{cat} (constante de velocidade)

Apenas a espécie desprotonada dá produto

Cálculo das populações

Modelo com 1 grau de protonação

Condições de substrato saturante

$$E_T = [ES] + [ESH]$$

$$E_T = [ES] + [ES] \frac{[H^+]}{K_{a1}}$$

$$E_T = [ES] \left(1 + \frac{[H^+]}{K_{a1}} \right)$$

$$\chi_{ES} = \frac{[ES]}{E_T} = \frac{[ES]}{[ES] \left(1 + \frac{[H^+]}{K_{a1}}\right)} = \frac{1}{\left(1 + \frac{[H^+]}{K_{a1}}\right)}$$

$$\chi_{ES} = \frac{[ESH]}{E_{T}} = \frac{[ES]\frac{[H^{+}]}{K_{a1}}}{[ES]\left(1 + \frac{[H^{+}]}{K_{a1}}\right)} = \frac{\frac{[H^{+}]}{K_{a1}}}{\left(1 + \frac{[H^{+}]}{K_{a1}}\right)}$$

ESH
$$\stackrel{K_{a1}}{\longleftrightarrow}$$
 ES + H⁺

$$K_{a1} = \frac{[ES][H^+]}{[ESH]}$$
 A constante de acidez é uma constante de dissociação

dissociação

Quando [ESH]=[ES] o valor pH=pK_{a1}

Determinação do valor de pK_{a1} a partir das curvas de V_{M} ' em função do pH

Modelos com 1 grau de protonação

em situação de substrato saturante [S]>>>K_S

Quando [ESH] = [ES] o valor de $V_{\rm M}$ ' é igual a metade do seu valor máximo, porque apenas uma destas espécies dá origem a produto. Nesse ponto pH= pK_{a1}

$$\begin{array}{ccc}
 & \xrightarrow{K_{a1}} & \text{ESH} & \xrightarrow{K_{a2}} & \text{ES} \\
 & \downarrow & & \downarrow & \\
 & \downarrow & & \downarrow & \\
 & & \downarrow & & \downarrow & \\
 & & & \downarrow & & \\
 & & & & \downarrow & \\
 & & \downarrow & \downarrow & \downarrow & \\
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow &$$

As curvas de actividade com o pH reflectem as populações das espécies que dão origem a produto

Modelos com 2 graus de protonação

em situação de substrato saturante [S]>>>K_S

Parâmetros do modelo:

 K_{a1} ; K_{a2} (constantes de equilíbrio), nesta simulação pK_{a1} =6 e pK_{a2} =10

k_{cat} (constante de velocidade)

 β (coeficiente adimensional)

Cálculo das populações

Modelo com 2 graus de protonação

Condições de substrato saturante

$$E_{T} = [ES] + [ESH] + [ESH_{2}]$$

$$E_{T} = [ES] + [ES] \frac{[H^{+}]}{K_{a2}} + [ES] \frac{[H^{+}]}{K_{a2}} \frac{[H^{+}]}{K_{a1}}$$

$$E_{T} = [ES] \left(1 + \frac{[H^{+}]}{K_{a2}} + \frac{[H^{+}]^{2}}{K_{a1}K_{a2}}\right)$$

$$\chi_{ES} = \frac{[ES]}{E_T} = \frac{[ES]}{[ES] \left(1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}}\right)} = \frac{1}{\left(1 + \frac{[H^+]}{K_{a2}} + \frac{[H^+]^2}{K_{a1}K_{a2}}\right)}$$

$$\chi_{ESH} = \frac{[ESH]}{E_{T}} = \frac{[ES]\frac{[H^{+}]}{K_{a2}}}{[ES]\left(1 + \frac{[H^{+}]}{K_{a2}} + \frac{[H^{+}]^{2}}{K_{a1}K_{a2}}\right)} = \frac{\frac{[H^{+}]}{K_{a2}}}{\left(1 + \frac{[H^{+}]}{K_{a2}} + \frac{[H^{+}]^{2}}{K_{a1}K_{a2}}\right)}$$

$$\chi_{ESH_{2}} = \frac{[ESH_{2}]}{E_{T}} = \frac{[ESH_{2}]}{[ES]\left(1 + \frac{[H^{+}]}{K_{a2}} + \frac{[H^{+}]^{2}}{K_{a1}K_{a2}}\right)} = \frac{\frac{[H^{+}]^{2}}{K_{a1}K_{a2}}}{\left(1 + \frac{[H^{+}]}{K_{a2}} + \frac{[H^{+}]^{2}}{K_{a1}K_{a2}}\right)}$$

$$ESH_{2} \xrightarrow{K_{a1}/[H^{+}]} ESH \xrightarrow{K_{a2}/[H^{+}]} ES$$

$$K_{a1} = \frac{[ESH][H^{+}]}{[ESH_{a}]} K_{a2} = \frac{[ES][H^{+}]}{[ESH]}$$

Quando

[ESH₂]=[ESH] o valor pH=pK_{a1} [ESH]=[ES] o valor pH=pK₂

Determinação dos valores de p K_a e de β a partir das curvas de V_M ' em função do pH

Modelos com 2 graus de protonação

em situação de substrato saturante [S]>>>K_S

Quando $[ESH_2] = [ESH]$ o valor de V_M ' é igual a metade do seu valor máximo, porque apenas a espécie ESH dá origem a produto. Nesse ponto pH= pK_{a1}

Quando [ESH] = [ES] o valor de V_M ' é igual $0.5 V_M + 0.5 \beta V_M$, porque a espécie ESH dá origem a produto com k_{cat} e ES dá produto com βk_{cat} . Nesse ponto pH= p K_{a2}

ESH₂ ESH

Cinética enzimática a dois substratos

Nos sistemas biológicos a maior parte das reacções envolve 2 substratos e 2 produtos:

$$A + B \leftrightarrows P + Q$$

Os mecanismos que envolvem 2 substratos dividem-se em dois grupos:

- mecanismo sequencial, quando a adição de todos os substratos se dá antes da libertação de qualquer produto
 - i) ordenado, dá-se a interacção do substrato com a enzima seguida da libertação de produto de uma forma ordenada;
 - ii) ao acaso (*random*), a interacção dos substratos com a enzima e libertação de produto não tem qualquer ordem estabelecida
- 2. mecanismo não-sequencial ou Ping Pong, quando há libertação de produtos antes da interacção de todos os substratos com a enzima.

estes mecanismos podem ainda ser subclassificados de acordo com a molecularidade dos passos cataliticamente importantes:

uni (unimolecular), bi (bimolecular), ter (termolecular), e quat (tetramolecular) ⇔ adição/libertação de substrato ou produto

Cinética enzimática a dois substratos

Notação de Cleland

Mecanismo Sequencial ordenado:

A ordem pela qual os 2 substratos se ligam é fixa. Forma-se um complexo ternário entre a enzima e os dois substratos que é convertido na enzima e nos dois produtos. A ordem pela qual os produtos são libertados também é fixa. Ex. *lactato desidrogenase*

Mecanismo Sequencial ao acaso:

A ordem pela qual os 2 substratos se ligam é aleatória. Forma-se um complexo ternário entre a enzima e os dois substratos que é convertido na enzima e nos dois produtos. A ordem pela qual os produtos se libertam é também aleatória. Ex. cinase da creatina

Cinética enzimática a dois substratos

Notação de Cleland

Mecanismo Não-Sequencial (Ping Pong):

Neste tipo de mecanismo dá-se a libertação de um ou mais produtos antes da ligação de todos os substratos à enzima. A enzima aparece temporariamente numa forma modificada, entre a ligação do primeiro substrato e a libertação do primeiro produto e a ligação do segundo substrato.

Ex. aminotransferase

ANEXOS

i) inibição

Inibição: Modelo de Webb

$$E + S \xrightarrow{K_{S}} ES \xrightarrow{k_{cat}} E + P$$

$$\downarrow I \qquad \qquad \downarrow I$$

$$\downarrow K_{I} \qquad \qquad \downarrow \alpha K_{I}$$

$$EI + S \xrightarrow{\alpha K_{S}} ESI \xrightarrow{\beta k_{cat}} E + P$$

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes) de dissociação para S e I)

Equações de partida:

$$v = k_{cat}[ES] + \beta k_{cat}[ESI]$$

$$K_{S} = \frac{[E \parallel S]}{[ES]} \qquad K_{I} = \frac{[E \parallel S]}{[EI]}$$

$$\alpha K_{S} = \frac{[EI \parallel S]}{[ESI]} \qquad \alpha K_{I} = \frac{[ES \parallel I]}{[ESI]}$$

$$E_{T} = [E] + [EI] + [ES] + [ESI]$$

$$E_{T} = \left[E\left(1 + \frac{I}{K_{I}} + \frac{S}{K_{S}} + \frac{I}{K_{I}} \frac{S}{\alpha K_{S}}\right) \quad \left[E\right] = \frac{E_{T}}{\left(1 + \frac{I}{K_{I}} + \frac{S}{K_{S}} + \frac{I}{K_{I}} \frac{S}{\alpha K_{S}}\right)}$$

$$v = k_{cat} \frac{[S]}{K_S} \left[E \left(1 + \beta \frac{[I]}{\alpha K_I} \right) = \frac{k_{cat} E_T \frac{[S]}{K_S} \left(1 + \beta \frac{[I]}{\alpha K_I} \right)}{1 + \frac{[I]}{K_I} + \frac{[S]}{K_S} + \frac{[I]}{\alpha K_I} \frac{[S]}{K_S}}$$

$$v = \frac{k_{cat}E_{T}\left(1 + \beta \frac{[I]}{\alpha K_{I}}\right)[S]}{K_{S}\left(1 + \frac{[I]}{K_{I}}\right) + \left[S\left(1 + \frac{[I]}{\alpha K_{I}}\right)\right]} \qquad \frac{k_{cat}E_{T}\left(1 + \beta \frac{[I]}{\alpha K_{I}}\right)}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)}[S]$$
Rearranjando na forma de hipérbole
$$v = \frac{k_{cat}E_{T}\left(1 + \beta \frac{[I]}{\alpha K_{I}}\right)}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)}$$

$$v = \frac{V_M[S]}{K_M + [S]}$$

$$v = \frac{\frac{\left[I\right]}{\left(1 + \frac{[I]}{\alpha K_I}\right)}}{\left(1 + \frac{[I]}{K_I}\right) + [S]}$$

$$= \frac{1}{K_{S} \left(\frac{\left(1 + \frac{[I]}{K_{I}}\right)}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)} + [S] \right)}$$

$$V_{M}^{'} = V_{M} \frac{\left(1 + \beta \frac{[I]}{\alpha K_{I}}\right)}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)} \qquad K_{M}^{'} = K_{S} \frac{\left(1 + \frac{[I]}{K_{I}}\right)}{\left(1 + \frac{[I]}{\alpha K_{I}}\right)}$$

Parâmetros V_M' e K_M' da equação de Michealis- Menten

$$v_{o} = \frac{V'_{M}[S]_{o}}{K'_{M} + [S]_{o}}$$

$$V'_{M} = V_{M} \frac{1 + \beta \frac{[I]_{o}}{\alpha K_{I}}}{1 + \frac{[I]_{o}}{\alpha K_{I}}}$$

$$K'_{M} = K_{S} \frac{1 + \frac{[I]_{o}}{K_{I}}}{1 + \frac{[I]_{o}}{\alpha K_{I}}}$$

Tipos de inibição dependente de β

1.
$$\beta = 0$$
 – inibição linear
$$\frac{V_{M}}{V'_{M}} = 1 + \frac{[I]_{o}}{\alpha K_{I}}$$

2. $0 < \beta < 1$ – inibição hiperbólica

$$\frac{V_{M}}{V'_{M}} = \frac{1 + \frac{[I]_{o}}{\alpha K_{I}}}{1 + \beta \frac{[I]_{o}}{\alpha K_{I}}}$$

- 3. $\beta = 1$ I não é inibidor $V'_{M} = V_{M}$
- 4. $\beta > 1$ I é activador (ou segundo Substrato)

			Va		
Incompetitiva parcial hiperbó- lica (0<α<1, 0<β<1, α=β)	1/v 1/ 1	v 1 v/(s)	[S]/v I [S]	v/vi) s	1/v s
Não competitiva pura/competitiva parcial (1 < α < ∞, β = 0)	1/(5)	v	[S]/v [S]	v/vi	1/v) s
Mista não competitiva/in competitiva $(\alpha < 1, \beta = 0)$	1/v I	v 1 v/ 5	[S]/v	v/vi 1 (I)	1/v s
Mish hipubolice (0<α<1, 0<β<1, α<β)	1/v	v/s 100 1	[S]/v 17 17 17 17 17 17 17 1	v/vi 1 s	1/v s [I]
Mish hiperbolice (0<α<1,0<β<1, α>β)	1/v 1	v/ s	[S]/v I	v/vi s	1/v s
Mista hiperbólica $\left(\text{parcial} \right)$ $\left(1 < \alpha < \infty, 0 < \beta < 1 \right)$	1/v 1/(S)	v 1 v/(S)	[S]/v [S]	v/vi l	1/v s

Inibições lineares $\beta=0$; variação de V_M/V'_M , K'_M/K_M com [I]

É possível distinguir os 11 tipos de inibição estudando a variação de V_M/V_M ', K_M '/ K_M e V_MK_M '/ V_M ' K_M em função da concentração de inibidor.

Inibições hiperbólicas β≠0 ; variação de V_M/V′_M, K′_M/K_M com [1]

ANEXOS

ii) pH

Modelo completo – 1 grau de protonação na enzima

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes de dissociação para S e H⁺)

Equações de partida:

$$v = k_{cat}[ES]$$

$$K_{S} = \frac{[E][S]}{[ES]}$$

$$K_{a1} = \frac{\llbracket E \rrbracket H^+ \rrbracket}{\llbracket EH \rrbracket}$$
 $K_{a2} = \frac{\llbracket ES \rrbracket H^+ \rrbracket}{\llbracket EHS \rrbracket}$

$$E_T = [E] + [EH] + [ES] + [EHS]$$

Tanto a enzima livre como a enzima ligada ao substrato podem estar protonadas ou

desprotonadas. A velocidade depende de dois valores de pK_a : pK_{a1} (enzima livre); pK_{a2} (enzima ligada ao substrato).

$$v = \frac{k_{cat}E_T \frac{\left[S\right]}{K_S}}{\left(1 + \frac{\left[H^+\right]}{K_S}\right) + \frac{\left[S\right]}{K_S}\left(1 + \frac{\left[H^+\right]}{K_S}\right)} \quad \longrightarrow \quad v = \frac{V_M^{'}\left[S\right]}{K_M^{'} + \left[S\right]}$$

$$V_{M}^{'} = V_{M} \frac{1}{\left(1 + \frac{H^{+}}{K_{a2}}\right)}$$

$$K_{M}^{'} = K_{S} \frac{\left(1 + \frac{H^{+}}{K_{a1}}\right)}{\left(1 + \frac{H^{+}}{K_{a2}}\right)}$$

$$\frac{V_{M}^{'}}{K_{M}^{'}} = \frac{V_{M}}{K_{S}} \frac{1}{\left(1 + \frac{H^{+}}{K_{A2}}\right)}$$

Modelo completo – 2 graus de protonação na enzima

Tanto a enzima livre como a enzima ligada ao substrato podem estar protonadas ou desprotonadas.

A velocidade depende de quatro valores de pK_a : pK_{a1} e pK_{a2} (enzima livre); pK_{a3} e pK_{a4} (enzima ligada ao substrato).

Hipóteses restritivas:

- Velocidades iniciais
- Rápido equilíbrio (definem-se constantes de dissociação para S e H⁺)

Equações de partida:

$$v = k_{cat}[EHS]$$

$$K_{S} = \frac{\llbracket EH \rrbracket \llbracket S \rrbracket}{\llbracket EHS \rrbracket} \quad \alpha_{1}K_{S} = \frac{\llbracket E \rrbracket \llbracket S \rrbracket}{\llbracket ES \rrbracket} \quad \alpha_{2}K_{S} = \frac{\llbracket EH_{2} \rrbracket \llbracket S \rrbracket}{\llbracket EH_{2}S \rrbracket}$$

$$K_{a1} = \frac{\begin{bmatrix} E \end{bmatrix} H^{+}}{\begin{bmatrix} EH \end{bmatrix}}$$
 $K_{a3} = \frac{\begin{bmatrix} ES \end{bmatrix} H^{+}}{\begin{bmatrix} EHS \end{bmatrix}}$

$$K_{a2} = \frac{\begin{bmatrix} EH \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}}{\begin{bmatrix} EH_2 \end{bmatrix}}$$
 $K_{a4} = \frac{\begin{bmatrix} EHS \end{bmatrix} \begin{bmatrix} H^+ \end{bmatrix}}{\begin{bmatrix} EH_2S \end{bmatrix}}$

$$E_T = [E] + [EH] + [EH_2] + [ES] + [EHS] + [EH_2S]$$

microreversibilidade:
$$\alpha_1 = \frac{K_{a1}}{K_{a3}}$$
 $\alpha_2 = \frac{K_{a4}}{K_{a2}}$

Determinação experimental dos valores de pKa do centro activo

$$v = \frac{k_{cat}E_{T} \frac{[S]}{K_{S}}}{\left(\frac{K_{a1}}{[H^{+}]} + 1 + \frac{[H^{+}]}{K_{a2}}\right) + \frac{[S]}{K_{S}} \left(\frac{K_{a3}}{[H^{+}]} + 1 + \frac{[H^{+}]}{K_{a4}}\right)}$$

Os valores de pKa podem ser determinados a partir de gráficos $V_{\rm M}'/V_{\rm M}$; $K_{\rm M}'/K_{\rm S}$ e $V_{\rm M}'K_{\rm S}/V_{\rm M}K_{\rm M}'$ em função do pH

Rerranjando na forma de hipérbole

$$v = \frac{V_M'[S]}{K_M' + [S]}$$

$$V_{M}^{'} = V_{M} \frac{1}{\left(1 + \frac{K_{a3}}{H^{+}}\right)^{+} \frac{H^{+}}{K_{a4}}}$$

$$K_{M}^{'} = K_{S} \frac{\left(1 + \frac{K_{a1}}{H^{+}}\right)^{+} \frac{H^{+}}{K_{a2}}}{\left(1 + \frac{K_{a3}}{H^{+}}\right)^{+} \frac{H^{+}}{K_{a4}}}$$

$$\frac{V_{M}^{'}}{K_{M}^{'}} = \frac{V_{M}}{K_{S}} \frac{1}{\left(1 + \frac{K_{a1}}{H^{+}}\right)^{+} \frac{H^{+}}{K_{a2}}}$$

Modelo completo com 2 graus de protonação e 2 complexos a dar produto

V'_M depende dos pKas das formas ligadas S

$$\frac{V_{M}^{\prime}}{V_{M}} = \left(\frac{1 + \beta \frac{[H^{\dagger}]}{K_{4}}}{1 + \frac{K_{3}}{[H^{\dagger}]} + \frac{[H^{\dagger}]}{K_{4}}}\right)$$

K'_M depende de todos os pKas

$$\frac{K_{M}^{\prime}}{K_{S}} = \begin{pmatrix} 1 + \frac{K_{1}}{[H^{+}]} + \frac{[H^{+}]}{K_{2}} \\ 1 + \frac{K_{3}}{[H^{+}]} + \frac{[H^{+}]}{K_{4}} \end{pmatrix}$$

V'_M /K'_M depende dos pKas das formas livres e ligadas

$$\frac{\frac{V_{M}^{\prime}}{V_{M}}}{\frac{K_{M}^{\prime}}{K_{S}}} = \left(\frac{1 + \beta \frac{\left[H^{+}\right]}{K_{4}}}{1 + \frac{K_{1}}{\left[H^{+}\right]} + \frac{\left[H^{+}\right]}{K_{2}}}\right)$$

ANEXOS

iii) Dois substratos

Mecanismo sequencial

A determinação experimental dos parâmetros do modelo envolve a realização de ensaios em que se varia a concentração de um dos substratos mantendo a outra constante e vice-versa. As constantes de dissociação K_A e K_B , α e k_{cat} determinam-se rearranjando a equação (v=f([A]) para [B]=cte. e v=f([B]) para [A]=cte) e fazendo as representações gráficas adequadas.

$$v_{o} = \frac{V_{M} \frac{[A]_{o}}{K_{A}} \frac{[B]_{o}}{\alpha K_{B}}}{1 + \frac{[A]_{o}}{K_{A}} + \frac{[B]_{o}}{K_{B}} + \frac{[A]_{o}[B]_{o}}{\alpha K_{A}K_{B}}}$$

[A] constante

$$v_0 = \frac{V_M^A [A]_o}{K_M^A + [A]_o}$$

$$v_0 = \frac{V_M^B [B]_o}{K_M^B + [B]_o}$$

$$V_{M}^{A} = V_{M} \frac{\frac{[B]_{o}}{\alpha K_{B}}}{\left(1 + \frac{[B]_{o}}{\alpha K_{B}}\right)}$$

$$V_{M}^{A} = V_{M} \frac{\frac{[B]_{o}}{\alpha K_{B}}}{\left(1 + \frac{[B]_{o}}{\alpha K_{B}}\right)} \qquad V_{M}^{B} = V_{M} \frac{\frac{[A]_{o}}{\alpha K_{A}}}{\left(1 + \frac{[A]_{o}}{\alpha K_{A}}\right)}$$

$$K_{M}^{A} = K_{A} \frac{\left(1 + \frac{[B]_{o}}{K_{B}}\right)}{\left(1 + \frac{[B]_{o}}{\alpha K_{B}}\right)}$$

$$K_{M}^{A} = K_{A} \frac{\left(1 + \frac{[B]_{o}}{K_{B}}\right)}{\left(1 + \frac{[B]_{o}}{\alpha K_{B}}\right)} \qquad K_{M}^{B} = K_{B} \frac{\left(1 + \frac{[A]_{o}}{K_{A}}\right)}{\left(1 + \frac{[A]_{o}}{\alpha K_{A}}\right)}$$