TD3A Montage potentiométrique d'un capteur de déplacement rectiligne

La mesure d'un déplacement rectiligne est réalisée à l'aide du capteur et du montage présentés ci-après :

Le capteur est un potentiomètre linéaire de course utile 2l=10 cm et de résistance totale $2R_0$. On désigne par Δx la valeur déplacement du curseur par rapport à la position milieu que l'on prend pour origine de l'axe x (i.e. x=0). Le montage comporte un générateur de tension réel, le capteur et une électronique de mesure. Cette dernière est représentée par son impédance d'entrée R_{app} et permet de mesurer la tension V_{mes} (image de la position du curseur).

1 Étude du montage

- 1. En déduire l'expression des résistances $R_b(\Delta x)$ et $R_h(\Delta x)$ du potentiomètre pour un déplacement Δx du curseur par rapport à l'origine.
- 2. Exprimer V_{mes} en fonction de R_{app} , $R_b(\Delta x)$ et $R_h(\Delta x)$, R_g et V_g .

2 Étude de la fonction V_{mes} et de la sensibilité de la mesure S

- 1. Que devient V_{mes} pour $R_{app} \gg R_0$?
- 2. En déduire la sensibilité de la mesure $S = \frac{\Delta V_{mes}}{\Delta x}$.
- 3. Quelle valeur doit-on donner à R_g pour que cette sensibilité soit maximale ? Que deviennent dans ce cas V_{mes} et S ? Calculer la sensibilité normalisée par rapport à V_g .

3 Application

Afin d'assurer un fonctionnement correct du capteur, le constructeur a fixé une limite de vitesse maximale de déplacement du curseur $v_{max}=0.2~{\rm m.s^{-1}}$. En admettant que le curseur a un mouvement sinusoïdal d'amplitude a = 1 cm autour d'une position x_0 donnée, calculer la fréquence maximale f_{max} des déplacements que l'on peut traduire avec ce système.