Facial Expression Recognition

Abbas Mammadov, Kaleb Mesfin Asfaw, Zahra Bayramli, Tivan Varghese George

TABLE OF CONTENTS

Introduction and Motivation

- Even though facial expression recognition models already exist, there is room to improve when it comes to real world settings.
- Facial expression
 recognition can
 potentially be very useful
 in the medical,
 psychiatric, legal, and
 leisure industries.

Baseline Dataset

FER2013^[1]

- Collected by Google image search API
- ~36k grayscale images, resized to 48x48 pixel
- 7 facial expressions angry, disgust, fear, happy, sad, surprise, neutral
- Train, validation, test sets ratio –
 80:10:10

Figure: Example images from FER2013 dataset

Related Paper

In-Kyu Choi, Ha-eun Ahn and Jisang Yoo "Facial expression classification using deep CNN" [2]:

- A deep CNN for recognition of 6 expressions
- 10 different datasets
- Cross validation
- Short execution time and good performance (accuracy 93.95 %)

Figure: Proposed CNN architecture

Related Paper

Pramerdorfer, C., Kampel, M. "FER using CNNs: state of the art"[3]

- Ensemble of 8 CNNs from 6 different recent papers
- Test accuracy of 75.2% on FER 2013 dataset

Z. Zhang, P. Luo, C.-C. Loy, and X. Tang, "Learning Social Relation Traits from Face Images":[4]

75.1% of accuracy through fusing data from multiple sources

SMART AI

The Breakthrough

Secret Recipe

- A new benchmark dataset
- Open-source Pretrained Language Models
- Transfer learning

SMART AI

The Challenges

Confusion matrix depicting that FER is unbalanced

Resnet-50 trained only on FER2013

ADDRESSING OVERFITTING - Part 1

Action on our Dataset -> Data Augmentation and Auxiliary Datasets

Augmentation Techniques

- Horizontal Flipping (randomly)
- Rotation between 10 degrees (randomly)
- Translating within 10 pixels of range (using Random Affine)

Using Torchvision Transforms Library

N.B

We also have used the *Transforms* Library to convert the images into tensors of *NORMALIZED PIXELS* (Using ToTensor function).

Auxiliary Datasets

FER2013

AffectNet^[5]

Including only some

from main AffectNet

dataset, which was

colored images.

Data cleaning of

sample (~30k images)

composed of 0.4 million

incorrectly labeled data.

CK+[6]

baseline train set to enlarge the samples for training.

Including ~1000 balance labeled images from CK+ dataset, which is well fitted for Facial Expression Recognition.

Merging it to the

ADDRESSING OVERFITTING - Part 2

Actions on Model -> Hyperparameter Tuning (Regularization)

- Training
- Cross-validation
- Test

Regularization

- L2 Weight decay
- Dropout
- Batch Normalization

Along with SGD (Nesterov) and Adam optimizers

Only with FER2013

-> 80:10:10 Split

- Training
- Cross-validation
- Test

Training and validation loss curves

Cross validation Metrics

	RESNET50	RESNET50(T)	VGG19
Accuracy (%)	61.4	64.4	62.6
Loss (NNL)	1.15	1.06	1.02

FER2013 + CKplus + Affectnet

-> 80:10:10 Split

- Training
- Cross-validation
- Test

Training and validation loss curves

Cross validation Metrics

	RESNET50	RESNET50(T)	EFFICIENTNET
Accuracy (%)	61.4	62.2	67
Loss (NNL)	1.04	1.02	1.36

Data Preprocessing

Obtaining data

Convert csv files into images, and feed the image folders into the data loader using torchvision's inbuilt functions like *ImageFolder*.

Cleaning data

- Check whether our data contains the correct labels.
- If not, make use of pseudo labeled csv files to classify them to their right category.

Model Building, and Fine Tuning

- Examined and compared the performance of a couple of CNN architectures.
- In theory, we only know how the models undergo the forward propagation and the backward propagation process
- However, in this project, we have gained a hands-on experience on fine tuning each of these models we have worked on.

- How to effectively classify our data into train, validation and test sets.
- Able to diagnose overfitting
- Error Analysis Methods
- Saving and loading Models in PyTorch

Model Performance

- We have learnt that a model should be supplied with larger amount of data to prevent overfitting.
- In order to learn from all emotions, it is highly preferable to obtain a dataset with balanced proportion of labels as much as possible
- At last we have indeed saw that ResNet and EfficientNet Architectures are well suited for this task

Summary of Our workflow

References

- 1. https://www.kaggle.com/datasets/msambare/fer2013
- 2. https://www.koreascience.or.kr/article/JAKO201809253681042.pdf?fbclid=lwAR3gnwoUoE_arjog_Klfp8uM4lh92elwMcpChEw9CKooZHwHT8v9Ol19dV5E
- **3.** Pramerdorfer, C., Kampel, M.: Facial expression recognition using convolutional neural networks: state of the art. Preprint arXiv:1612.02903v1, 2016.
- 4. Z. Zhang, P. Luo, C.-C. Loy, and X. Tang, "Learning Social Relation Traits from Face Images," in Proc. IEEE Int. Conference on Computer Vision (ICCV), 2015, pp. 3631–3639.
- 5. https://paperswithcode.com/dataset/affectnet
- 6. https://www.kaggle.com/datasets/shawon10/ckplus

