ITCS 531: Number Theory 1 - Prime numbers

Rob Egrot

Prime numbers

- ▶ Prime numbers the elementary particles of arithmetic.
- ▶ I.e. they cannot be divided into smaller pieces, and they are the building blocks for all other numbers.
- Mathematicians have been fascinated by prime numbers for thousands of years.
- ► There are many simple questions about them that need very advanced techniques from abstract mathematics to solve.

Gaps between primes

- For example, do you know if there are an infinite number of primes p such that p + 2 is also prime?
- Nobody does (this is the twin prime conjecture).
- ▶ First proved there is *any* finite number *k* with an infinite number of pairs of primes whose difference is less than *k* in 2013.
- ▶ The first proof by Yitang Zhang has k around 70,000,000, but this has been reduced to 246.
- ▶ More relevant in computer science, prime numbers and their properties give us important techniques for encryption.

Digression - fruit

Digression - solution

Simplest solution:

- Brute force search will fail.
- Need heavy mathematics.
- More at: https://www.quora.com/ How-do-you-find-the-integer-solutions-to-frac-x-y+ z-+-frac-y-z+x-+-frac-z-x+y-4/answer/Alon-Amit.

Notation for sets

- ▶ \mathbb{N} is the set **natural numbers**, so $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- $ightharpoonup \mathbb{Z}$ is the set of **integers**, so $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
- ▶ Q is the set of **rational numbers**. Q can be thought of as the set of fractions of two integers.
- ightharpoonup
 igh
- Every real number that is not rational is irrational.
- ▶ If X is a set and x is an element, we use $x \in X$ to say that x is a member of X.

What is a prime number?

- ▶ Given two integers $a, b \in \mathbb{Z}$, we say a divides b if there is $c \in \mathbb{Z}$ with b = ac.
- \blacktriangleright We write $a \mid b$ if a divides b.
- ▶ If a does not divide b we write $a \nmid b$.

Definition 1 (Prime number)

 $n \in \mathbb{N}$ is *prime* if n > 1 and, whenever $a, b \in \mathbb{N}$, if ab = n then either a = 1 and b = n or vice-versa.

- ▶ We use P for the set of prime numbers.
 - So $\mathbb{P} = \{2, 3, 5, 7, 11, \ldots\}.$
- Numbers that are not prime are **composite**.

What is to be done

In this class we will prove two important results about prime numbers which were known to the ancient Greeks.

Theorem 2 (Fundamental Theorem of Arithmetic)

Every natural number greater than 1 can be expressed as a product of primes. Moreover, this product is unique up to reordering.

Theorem 3

The set of prime numbers is infinite.

We will need some facts about numbers

Digression - why prove?

- Modern mathematicians are obsessed with proof.
- ► This goes back to the Ancient Greeks, e.g. as seen in e.g. Euclid.
- Some Greeks had a religious interest in mathematics (e.g. Pythagoras and his school).
- Other earlier cultures applied mathematics, e.g. in Egypt, Mesopotamia, China.
- But these cultures did not emphasize theoretical proof over observation.
- So why is proof so valued today?

Digression - the road to modern mathematics

- ► This is actually a modern phenomena.
- ► Although Western mathematics is inspired by Ancient Greece, till the mid 19th century proofs were often not rigorous at all.
- As math becomes more complicated, more precision is needed for understanding.
- Also, even easy to understand things that look true turn out to be false.
- E.g. "there are no positive integers a, b, c such that $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 4$ ".
- Experiments with 'small' numbers will tell you this is true, but we know it is false.

Division of sums

Lemma 4

Let $a, b_1, \ldots, b_n \in \mathbb{Z}$. Then, if $a|b_i$ for all $i \in \{1, \ldots, n\}$, we have $a|(b_1 + \ldots + b_n)$.

- ▶ For each $i \in \{1, ..., n\}$ there is k_i with $b_i = k_i a_i$ (by definition of $a|b_i$).
- So $b_1 + \ldots + b_n = k_1 a + \ldots + k_n a = (k_1 + \ldots + k_n)a$.
- And so $a|(b_1 + \ldots + b_n)$ as claimed.
- ▶ Is the converse true?
- ▶ I.e. if $a|(b_1 + \ldots + b_n)$ is it always true that $a|b_i$ for all $i \in \{1, \ldots n\}$?
- No. e.g. 2|(1+3), but 2 doesn't divide either 1 or 3.

Another lemma

Lemma 5

Let $a, b, c \in \mathbb{Z}$. Then if a|b and a|(b+c) then a|c.

- ▶ By definition there are $x, y \in \mathbb{Z}$ with xa = b and ya = b + c.
- ▶ So combining these we get ya = xa + c.
- And so (y x)a = c, and so $a \mid c$ by definition.

Yet another lemma

Lemma 6

Given $a, b \in \mathbb{N}$ with a < b, if c is the highest common factor of a and b, then c is also the highest common factor of b - a and a.

- ▶ By definition there are $x, y \in \mathbb{N}$ with xc = a and yc = b.
- So (y-x)c = b-a, and so c|(b-a).
- ▶ I.e. c is a common factor of b a and a, and we must show it is the largest such factor.
- ▶ If d|(b-a) and d|a, then by lemma 4 we must have d|b.
- ▶ And so $d \le c$ as c is the highest common factor of a and b.
- ▶ So c is the highest common factor of b a and a as required.

The Euclidean algorithm

Proposition 7 (Euclid's algorithm)

Given $a, b \in \mathbb{N}$ with a < b we can find $\mathsf{HCF}(a, b)$ by computing:

In which case the HCF is r_n .

The Euclidean algorithm - proof

- ▶ The algorithm must terminate, because $r_i < r_{i-1}$, so at some point must reach zero.
- r₀ is found by subtracting a from b multiple times.
- So, if c is the HCF of a and b, then it is also the HCF of a and b-a, and of a and b-2a etc. (lemma 6).
- ▶ So also of a and r_0 , as $r_0 = b x_0 a$.
- ▶ By the same logic, the HCF of a and r_0 must also be the HCF of r_0 and r_1 .
- Continuing this thought process we see that the HCF of a and b must also be the HCF of r_{n-1} and r_n .
- ▶ This can only be r_n , as $r_n < r_{n-1}$.

The Euclidean algorithm - another proof

- $ightharpoonup r_n$ divides r_{n-1} .
- ▶ So r_n also divides r_{n-2} (lemma 4).
- ▶ Similarly r_n divides r_{n-3} etc.
- ightharpoonup So $r_n|a$ and $r_n|b$.
- ▶ If d|a and d|b then $d|r_0$ (lemma 5).
- Similarly $d|r_1$ etc.
- ightharpoonup So $d|r_n$.
- ▶ I.e. r_n is HCF of a and b.

The extended Euclidean algorithm

Corollary 8 (Bézout's identity)

If $a, b \in \mathbb{N}$ and $\mathsf{HCF}(a, b) = d$, then there are $x, y \in \mathbb{Z}$ such that d = xa + vb.

- Use Euclid's algorithm in reverse.
- Start with $d = r_n = r_{n-2} x_n r_{n-1}$ in the last step and work backwards.
- E.g. the first two steps of this calculation give us:

$$r_n = r_{n-2} - x_n r_{n-1}$$

= $r_{n-2} - x_n (r_{n-3} - x_{n-1} r_{n-2})$.

- \blacktriangleright Define $b=r_{-2}$, and $a=r_{-1}$.
- For all i we replace r_i with a term containing r_{i-1} and r_{i-2} .
- \triangleright We end up with only a and b, and no other r_i values.

Division by primes

Lemma 9

Let $p \in \mathbb{P}$ and let $a, b \in \mathbb{N} \setminus \{0\}$. Then, if p|ab, either p|a or p|b.

Proof.

- ▶ Suppose p|ab and $p \nmid a$.
- ▶ Then HCF(p, a) = 1, so by corollary 8 there are $x, y \in \mathbb{Z}$ with xp + ya = 1.
- ▶ But since xp + ya = 1 it follows that xpb + yab = b, and since p|xpb and p|yab, by lemma 4 we must have p|b.
- ▶ A similar argument proves that if $p \nmid b$ then we must have $p \mid a$.

This result generalizes to $p|a_1...a_n \implies p|a_i$ for some $i \in \{1,...,n\}$. You can prove this using induction.

Almost ready

- ▶ We are almost ready to prove theorems 2 and 3.
- ▶ We just need one more idea.

The well-ordering principle

Lemma 10 (Well-ordering principle)

If $X \subseteq \mathbb{N}$ and $X \neq \emptyset$, then X has a smallest element. In other words, every non-empty subset of natural numbers has a smallest member.

- ▶ Since X has at least one element we can pick $x \in X$.
- X has a finite number of elements less than or equal to x.
- ▶ One of these must be smaller than all the others.

Induction

- ► The well-ordering principle is essentially mathematical induction.
- ▶ I.e. From "true for 0" and "true for n implies true for n + 1" conclude "true for all natural numbers".
- ▶ Well-ordering says that if a statement is *not* true for some natural number, then there must be a smallest natural number *k* where it is not true.
- ➤ To apply well-ordering usually prove that it's impossible for this smallest k to exist for some statement.
- ► Then can conclude that the set of natural numbers for which the statement of interest is true is empty.
- I.e. the negation of the statement is true for all natural numbers.

Proving theorem 2

- ► There are two parts to this.
- Existence: we must show that for all n > 1 a prime factorization exists.
- ▶ Uniqueness: we must show that any two prime factorizations of *n* must be the same up to reordering.
 - ▶ E.g. $2 \times 7 \times 2 \times 5$ is a reordering of $2 \times 2 \times 5 \times 7$.

Proving existence

- ▶ Suppose $n \in \mathbb{N}$ and has no prime factorization.
- ► Then by the well-ordering principle suppose *n* is the smallest such number.
- ► If n is prime then n is its own prime factorization (contradiction).
- So n is composite.
- ▶ But then n = ab for some non-trivial factors a and b.
- By minimality of n, both a and b have prime factorizations.
- These combine to give a prime factorization of *n*.
- l.e. if $a = p_1 \dots p_k$ and $b = q_1 \dots q_m$ then $n = p_1 \dots p_k q_1 \dots q_m$.
- Contradiction.

Proving uniqueness

- Suppose n has 2 distinct factorizations as $p_1 \dots p_k$ and $q_1 \dots q_m$.
- By well-ordering we assume that n is minimal with this property.
- ▶ Here p_i and q_j are primes (which may be repeated) for all $1 \le i \le k$ and $1 \le j \le m$.
- ▶ p_1 is not equal to q_i for any $i \in \{1, ..., m\}$.
 - Otherwise we could divide both factorizations by p_1 to obtain a number smaller than n.
 - But unique factorization would fail for this new number.
 - ► This would contradict minimality of *n*.
- ightharpoonup But $p_1|n$, and so $p_1|q_1\dots q_m$.
- ▶ So by lemma 9 we must have $p_1|q_j$ for some j.
- As q_i is prime this means $p_1 = q_i$, which cannot happen.

Proving theorem 3

- Suppose there are only a finite number of primes.
- ▶ Let the set of primes is $\{p_1, \ldots, p_n\}$.
- ▶ Then consider the number $k = (\prod_{i=1}^{n} p_i) + 1$.
- ▶ By the existence part of theorem 2 we know there must be a prime number p dividing k.
- Since $\{p_1, \ldots, p_n\}$ contains all the primes we must have $p = p_j$ for some $j \in \{1, \ldots, n\}$.
- ▶ But $p_j|k$ and $p_j|\prod_{i=1}^n p_i$.
- ▶ So by lemma 5 we must have $p_j|1$.
- Contradiction.
- So the set of primes must be infinite.