Data Visualization

Gina Lucia Muñoz Salas

Data growth

Data collection

Data : $(r_1, r_2, r_3, ..., r_n)$

Attributes : $(v_1, v_2, v_3, ..., v_m)$

Data types

Ordinal

- Binary
- Discretes
- Continuous

Nominal

- Categorical
- Ranked
- Text

Data structures

MRI: Density - 3 spatial attributes - 3D grid

Financial data: n attributes - temporal attribute - no geometric structure

Census: n attributes - spatial attribute - temporal attribute

Social media - ?

Data processing

USER INTERACTION/COLLABORATION AND CONTROL ANALYSIS COMPUTATIONAL AND SYNCRONIZATION TOOLS

Data processing

Metadata

Info for interpretation (references, units, symbols, resolution)

Statistical analysis

Outliers, similar groups, redundance

Mean, SD

Incomplete data

Remove instances

Sentry value

Substitute value

Normalization

Follow statistical property

Unit data

[0,1]

Standardization

Re Sampling

Interpolation

Reduction

Dimensionality Reduction

Dimensionality Reduction techniques

Principal Component Analysis - PCA

$$Y_{ij} = \mathbf{e}_{j}^{T} \mathbf{X} = e_{1j} X_{i1} + e_{2j} X_{i2} + \dots + e_{pj} X_{ip}$$

Multidimensional Scaling - MDS

Distance information between instances in the original space for mapping data

into a Cartesian space

Self Organizing maps

Dimensionality Reduction techniques

Least Square Projection (LSP)

- Initially maps control points into a visual space
- Projects all the remaining points by a Laplacian mapping

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Probability distributions over pairs of instances in high-dimensional and visual space
- Minimize Kullback Leibler divergence between the two distributions with respect to positions of points in the mapping.

Type Mapping

Id	Age	Chest Pain	Chol.
1	63	Typical	233
2	67	Asymptom	286
3	37	Non anginal	250
4	44	Non typical	263

ld	Age	Typical	Asymptom	Non anginal	Non typical	Chol
1	63	1	0	0	0	233
2	67	0	1	0	0	286
3	37	0	0	1	0	250
4	44	0	0	0	1	263

Id	Age	Chest Pain	Chol
1	63	Typical	233
2	67	Asymptomatic	286
3	37	Non anginal	250
4	44	Non typical	263

Id	Age	Age Range	Chest Pain	Chol
1	63	60+	Typical	233
2	67	60+	Asymptomatic	286
3	37	25-39	Non anginal	250
4	44	40-59	Non typical	263

Distances and Similarities

Ordinal Data

Minkowski family

$$L_p(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{k=1}^m |x_{ik} - x_{jk}|^p\right)^{\frac{1}{p}}$$

Non negative $\forall \mathbf{x}_i, \mathbf{x}_j \in \mathbf{X}, \ \delta(\mathbf{x}_i, \mathbf{x}_j) \geq 0$

Identity $\forall \mathbf{x}_i, \mathbf{x}_i \in \mathbf{X}, \ \mathbf{x}_i = \mathbf{x}_i \Leftrightarrow \delta(\mathbf{x}_i, \mathbf{x}_i) = 0$

Simmetry $\forall \mathbf{x}_i, \mathbf{x}_i \in \mathbf{X}, \ \delta(\mathbf{x}_i, \mathbf{x}_i) = \delta(\mathbf{x}_i, \mathbf{x}_i)$

Triangle inequality $\forall \mathbf{x}_i, \mathbf{x}_i, \mathbf{x}_k \in \mathbf{X}, \ \delta(\mathbf{x}_i, \mathbf{x}_k) \leq \delta(\mathbf{x}_i, \mathbf{x}_j) + \delta(\mathbf{x}_j, \mathbf{x}_k)$

Binary distances

	1	0
1	р	q
0	r	S

```
d_{ii} = (q+r)/t (simple matching)
d_{ii} = (q+r)/(p+q+r) (Jaccard's distance)
d_{ii} = (q+r) (Hamming distance)
d_{ii} = (p+s)/t (simple matching coefficient)
d_{ii} = p/t
d_{ij} = p/(p+q+r) (Jaccard's corfficient)
d_{ij} = 2p/(2p+q+r)
d_{ij} = 2(p+s)/(2(p+s)+q+r)
d_{ii} = p/(q+r)
d_{ij} = (p+s)/(q+r)
```

Mixed distances - Gower

CATEGORICAL

$$D(p_k, q_k) = \begin{cases} 0, p_k = q_k \\ 1, p_k \neq q_k \end{cases}$$

NUMERICAL

$$D(p_u, q_u) = \frac{|p_u - q_u|}{R_u}$$

AGGREGATION

$$D(p,q) = \frac{1}{n} \sum_{i=1}^{n} D(p_i, q_i)$$

Mixed distance - Hierarchy

$$D(p,q) = d_p + d_q - 2d_{LCP(p,q)}$$

AGGREGATION

$$D(p,q) = \left(\sum_{i=1}^{n} w_i (D(p_i,q_i))^L\right)^{1/L}$$

Data Visualization

Gina Lucia Muñoz Salas

