This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

j

THIS PAGE BLANK (USPTO)

(1) Veröffentlichungsnummer: 0 453 396 A1

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91810192.4

(51) Int. Cl.5: C09D 7/12

2 Anmeldetag : 21.03.91

30) Priorität: 30.03.90 CH 1056/90

(3) Veröffentlichungstag der Anmeldung: 23.10.91 Patentblatt 91/43

84 Benannte Vertragsstaaten : BE DE ES FR GB IT NL

(1) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH)

(72) Erfinder: Valet, Andreas, Dr. Im Bruckacker 18 W-7859 Eimeldingen (DE)

- (54) Lackzusammensetzungen.
- Es werden Lackzusammensetzungen beschrieben, die neben einem 2-Hydroxyphenylbenztriazol-UV-Absorber auch einen UV-Absorber aus der Gruppe der 2-Hydroxyphenyltriazine, 2-Hydroxybenzophenone und/oder der Oxalanilide bzw. neben einem 2-Hydroxyphenyltriazin auch ein 2-Hydroxybenzophenon und/oder Oxalanilid enthalten.

Die vorliegende Erfindung betrifft neue Lackzusammensetzungen, welche Mischungen verschiedener UV-Absorber enthalten.

Die Einflüsse von Luftsauerstoff, Feuchtigkeit und vor allem UV-Licht führen in Lacken zu einem Abbau des Polymermaterials. Dies äussert sich z.B. in Rissbildungen, Glanzverlust, Farbtonänderungen, Delaminierung und Blasenbildung. Bekanntlich kann man solche Vorgänge in Lacken durch Verwendung geeigneter Stabilisatoren verzögern.

Es wurde nun gefunden, dass auch gewisse Kombinationen von UV-Absorbern unterschiedlicher chemischer Struktur in der Lage sind, die Bildung der genannten Schäden in Lacken weitgehend verhindern zu können.

Gegenstand der vorliegenden Erfindung sind somit Lackzusammensetzungen, die als UV-Absorber eine Mischung aus mindestens einem 2-Hydroxyphenylbenztriazol und mindestens einem 2-Hydroxyphenyltriazin enthalten sowie Lackzusammensetzungen, die eine Mischung aus mindestens einem 2-Hydroxyphenyltriazin und mindestens einem 2-Hydroxybenzophenon und/oder Oxalanilid enthalten.

Bevorzugte Lackzusammensetzungen sind dadurch gekennzeichnet, dass das 2-Hydroxyphenylbenztriazol der Formel

(1a)
$$R_3$$
 N N R_2 oder

das 2-Hydroxyphenyltriazin der Formel

das 2-Hydroxybenzophenon der Formel

55

10

15

20

25

30

das Oxalanilid der Formel

5

20

25

30

40

45

50

entspricht, worin

in den Verbindungen der Formel (1a)

R₁ Wasserstoff, Alkyl mit 1 bis 24 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Cycloalkyl mit 5 bis 8 Kohlenstoffatomen oder ein Rest der Formel

$$R_4$$

$$C \longrightarrow C_n H_{2n+1-m} M_m \text{ ist, worin } R_4 \text{ und } R_5$$

$$R_5$$

unabhāngig voneinander Alkyl mit je 1 bis 5 Kohlenstoffatomen sind, oder R_4 zusammen mit dem Rest C_nH_{2m1-m} einen Cycloalkylrest mit 5 bis 12 Kohlenstoffatomen bildet, m 1 oder 2, n eine ganze Zahl von 2 bis 20 und M ein Rest der Formel -COOR $_6$ ist, worin R_6 Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxyalkyl mit 1 bis 20 Kohlenstoffatomen im Alkyl- und Alkoxyteil oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil ist,

 R_2 Wasserstoff, Halogen, Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, und

R₃ Wasserstoff, Chlor, Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen oder -COOR₆, worin R₆ die angegebene Bedeutung hat, bedeutet, wobei mindestens einer der Reste R₁ und R₂ von Wasserstoff verschieden ist, in den Verbindungen der Formel (1b)

T Wasserstoff oder Alkyl mit 1 bis 6 Kohlenstoffatomen,

 T_1 Wasserstoff, Chlor oder Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen, n 1 oder 2 und T_2 , wenn n 1 ist, Chlor oder ein Rest der Formel -OT $_3$ oder

$$-N$$
 T_4
 T_5

und wenn n 2 ist, ein Rest der Formel

oder -O- T_9 -O- ist, worin T_3 Wasserstoff, gegebenenfalls durch 1 bis 3 Hydroxylgruppen oder durch -OCO T_6 substituiertes Alkyl mit 1 bis 18 Kohlenstoffatomen, durch -O- oder -N T_6 -ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl oder -OCO T_6 substituiert ist, gegebenenfalls durch Hydroxyl und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, gegebenenfalls durch Hydroxyl substituiertes Alkenyl mit 2 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil oder ein Rest der Formel -CH₂CH(OH)- T_7 oder

ist, T₄ und T₅ unabhängig voneinander Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch -O- oder -NT₆-ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen, Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen bedeuten, T₆ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, T₇ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, gegebenenfalls durch Hydroxyl substituiertes Phenyl, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Cycloalkyl mit 5 bis 10 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, T₉ Alkylen mit 2 bis 8 Kohlenstoffatomen, Alkenylen mit 4 bis 8 Kohlenstoffatomen, Alkinylen mit 4 Kohlenstoffatomen, Cyclohexylen, durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 18 Kohlenstoffatomen oder einen Rest der Formel -CH₂CH(OH)CH₂Off₁₁OCH₂CH(OH)CH₂- oder -CH₂-C(CH₂OH)₂-CH₂-, T₁₀ gegebenenfalls durch -O-

Formel -CH₂CH(OH)CH₂OT₁₁OCH₂CH(OH)CH₂- oder -CH₂-C(CH₂OH)₂-CH₂-, T₁₀ gegebenenfalls durch -Oein- oder mehrfach unterbrochenes Alkylen mit 2 bis 20 Kohlenstoffatomen oder Cyclohexylen, T₁₁ Alkylen mit 2 bis 8 Kohlenstoffatomen, durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 18 Kohlenstoffatomen, 1,3- oder 1,4-Cyclohexylen, 1,3- oder 1,4-Phenylen ist, oder T₁₀ und T₈ zusammen mit den beiden Stickstoffatomen einen Piperazinring darstellen,

in den Verbindungen der Formel (2)

u 1 oder 2 ist, und r eine ganze Zahl von 1 bis 3 bedeutet, die Substituenten Y_1 unabhängig voneinander Wasserstoff, Hydroxyl, Halogenmethyl, Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxy mit 1 bis 18 Kohlenstoffatomen oder Halogen bedeuten, Y2, wenn u 1 ist, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, Halogen, unsubstituiertes oder durch Alkyl oder Alkoxy mit je 1 bis 18 Kohlenstoffatomen oder Halogen substituiertes Phenoxy, durch -COOH, -COOY8, -CONH2, -CONHY9, -CONY₉Y₁₀, -NH₂, -NHY₉, -NY₉Y₁₀, -NHCOY₁₁, -CN und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen, durch ein oder mehrere Sauerstofftatome unterbrochenes und gegebenenfalls durch Hydroxyl oder Alkoxy mit 1 bis 12 Kohlenstoffatomen substituiertes Alkyl mit 4 bis 20 Kohlenstoffatomen, Alkenyl mit 3 bis 6 Kohlenstoffatomen, Glycidyl, gegebenenfalls durch Hydroxyl, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder -OCOY11 substituiertes Cyclohexyl, unsubstituiertes oder durch Hydroxyl, Chlor und/oder Methyl substituiertes Phenylalkyl mit 1 bis 5 Kohlenstoffatomen im Alkylteil, -COY₁₂ oder -SO₂Y₁₃ bedeutet, oder Y₂ wenn u 2 ist. Alkylen mit 2 bis 16 Kohlenstoffatomen, Alkenylen mit 4 bis 12 Kohlenstoffatomen, Xylylen, durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkylen mit 3 bis 20 Kohlenstoffatomen, -CH₂CH(OH)CH₂-O-Y₁₅-OCH₂CH(OH)CH₂, -CO-Y₁₆-CO-, -CO-NH-Y₁₇-NH-CO- oder -(CH₂)_m-CO₂-Y₁₈-OCO-(CH₂)_m- ist, worin m 1, 2 oder 3 ist, Y₈ Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen, durch ein oder mehrere Sauerstoff- oder Schwefelatome oder -NT₆- unterbrochenes und-/oder durch Hydroxyl substituiertes Alkyl mit 3 bis 20 Kohlenstoffatomen, durch -P(O)(OY14)2, -NY9Y10 oder -OCOY11 und/oder Hydroxyl substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen, Glycidyl oder Phenylalkyl mit 1 bis 5 Kohlenstoffatomen im Alkylteil bedeutet, Y9 und Y10 unabhängig voneinander Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxyalkyl mit 3 bis 12 Kohlenstoffatomen, Dia-Ikylaminoalkyl mit 4 bis 16 Kohlenstoffatomen oder Cyclohexyl mit 5 bis 12 Kohlenstoffatomen bedeuten, oder Y₉ und Y₁₀ zusammen Alkylen, Oxaalkylen- oder Azaalkylen mit je 3 bis 9 Kohlenstoffatomen bedeuten, Y₁₁ Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 2 bis 18 Kohlenstoffatomen oder Phenyl, Y12 Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 2 bis 18 Kohlenstoffatomen, Phenyl, Alkoxy mit 1 bis 12 Kohlenstoffatomen, Phenoxy, Alkylamino mit 1 bis 12 Kohlenstoffatomen oder Phenylamino, Y₁₃ Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenyl, Alkylphenyl mit 1 bis 8 Kohlenstoffatomen im Alkylrest, Y14 Alkyl mit 1 bis 12 Kohlenstoffatomen oder Phenyl, Y₁₅ Alkylen mit 2 bis 10 Kohlenstoffatomen, Phenylen oder eine Gruppe -Phenylen-M-Phenylen-,

10

15

25

30

worin M -O-, -S-, -SO₂-, -CH₂- oder -C(CH₃)₂- ist, Y₁₈ Alkylen, Oxaalkylen oder Thiaalkylen mit je 2 bis 10 Kohlenstoffatomen, Phenylen oder Alkenylen mit 2 bis 6 Kohlenstoffatomen, Y₁₇ Alkylen mit 2 bis 10 Kohlenstoffatomen, Phenylen, Alkylphenylen mit 1 bis 11 Kohlenstoffatomen im Alkylteil und Y₁₈ Alkylen mit 2 bis 10 Kohlenstoffatomen oder durch Sauerstoff ein- oder mehrfach unterbrochenes Alkylen mit 4 bis 20 Kohlenstoffatomen ist,

in den Verbindungen der Formel (3)

v eine ganze Zahl von 1 bis 3 und w 1 oder 2 ist, und die Substituenten Z unabhängig voneinander Wasserstoff, Halogen, Hydroxyl oder Alkoxy mit 1 bis 12 Kohlenstoffatomen sind, und

in den Verbindungen der Formel (4)

10

20

25

35

40

50

55

x eine ganze Zahl von 1 bis 3 ist, und die Substituenten L unabhängig voneinander Wasserstoff, Alkyl, Alkoxy oder Alkylthio mit je 1 bis 22 Kohlenstoffatomen, Phenoxy oder Phenylthio bedeuten.

In den Verbindungen der Formel (1a) kann R₁ Wasserstoff oder Alkyl mit 1 bis 24 Kohlenstoffatomen bedeuten, wie Methyl, Aethyl, Propyl Butyl, Hexyl, Octyl, Nonyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl, Nonadecyl und Eicosyl sowie entsprechende verzweigte Isomere. Ferner kann R₁ neben Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, wie z.B. Benzyl, auch Cycloalkyl mit 5 bis 8 Kohlenstoffatomen, z.B. Cyclopentyl, -hexyl und -octyl oder auch ein Rest der Formel

sein, worin R_4 und R_5 unabhängig voneinander Alkyl mit je 1 bis 5 Kohlenstoffatomen, insbesondere Methyl bedeuten, oder R_4 mit dem C_nH_{2n+1-m} -Rest einen Cycloalkylrest mit 5 bis 12 Kohlenstoffatomen bildet, wie z.B. Cyclohexyl, Cyclooctyl und Cyclodecyl. M bedeutet ein Rest der Formel -COOR₆, worin R_6 neben Wasserstoff auch Alkyl mit 1 bis 12 Kohlenstoffatomen oder Alkoxyalkyl mit je 1 bis 20 Kohlenstoffatomen im Alkyl- und Alkoxyteil bedeutet. Als Alkylreste R_6 kommen die für R_1 aufgezählten in Frage. Geeignete Alkoxyalkylgruppen sind z.B. - $C_2H_4OC_2H_5$, - $C_2H_4OC_8H_{17}$ und - $C_4H_8OC_4H_9$. Als Phenylalkyl mit 1 bis 4 Kohlenstoffatomen bedeutet R_6 beispielsweise Benzyl, Cumyl, α -Methylbenzyl oder Phenylbutyl.

 R_2 kann neben Wasserstoff und Halogen, z.B. Chlor und Brom, auch Alkyl mit 1 bis 18 Kohlenstoffatomen bedeuten. Beispiele solcher Alkylreste sind in den Definitionen von R_1 angegeben. R_2 kann femer Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, z.B. Benzyl, α -Methylbenzyl und Cumyl bedeuten.

Mindestens einer der Reste R₁ und R₂ muss von Wasserstoff verschieden sein.

 R_3 ist neben Wasserstoff oder Chlor auch Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen, z.B. Methyl, Butyl, Methoxy und Aethoxy, und auch -COOR $_6$.

In den Verbindungen der Formel (1b) bedeutet T Wasserstoff oder Alkyl mit 1 bis 6 Kohlenstoffatomen, wie Methyl und Butyl, T_1 ist neben Wasserstoff oder Chlor auch Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen, beispielsweise Methyl, Methoxy und Butoxy, und T_2 ist, wenn n 1 ist, Chlor oder ein Rest der Formel - OT_3 oder - NT_4T_6 . Hierin ist T_3 Wasserstoff oder Alkyl mit 1 bis 18 Kohlenstoffatomen (vgl. Definition von R_1). Diese Alkylreste können mit 1 bis 3 Hydroxylgruppen oder durch einen Rest - $OCOT_6$ substituiert sein. Des weiteren kann T_3 Alkyl mit 3 bis 18 Kohlenstoffatomen bedeuten (vgl. Definition von R_1), welches durch -O- oder - NT_6 -ein- oder mehrfach unterbrochen ist und gegebenenfalls durch Hydroxyl oder - $OCOT_6$ substituiert ist. In der Bedeutung von Cycloalkyl ist T_3 z.B. Cyclopentyl. -hexyl oder -octyl. T_3 kann ferner Alkenyl mit 2 bis 18 Kohlenstoffatomen bedeuten. Geeignete Alkenylreste leiten isch von den in den Definitionen von R_1 aufgezählten Alkylreste ab. Diese Alkenylreste können durch Hydroxyl substituiert sein. Als Phenylalkyl ist T_3 z.B. Benzyl, Phenyläthyl, Cumyl, α -Methylbenzyl oder Benzyl. Ferner kann T_3 ein Rest der Formel - $CH_2CH(OH)$ - T_7 oder

Wie T_3 können T_4 und T_5 , neben Wasserstoff unabhängig voneinander Alkyl mit 1 bis 18 Kohlenstoffatomen oder durch -O- oder -NT $_6$ - ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen bedeuten.

Ferner können T_4 und T_5 Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, wie z.B. Cyclopentyl, -hexyl und -octyl bedeuten. Beispiele für Alkenylgruppen T_4 und T_5 sind in den Erläuterungen von T_3 zu finden. In der Bedeutung von Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil sind T_4 und T_5 z.B. Benzyl oder Phenylbutyl. Schliesslich können diese Substituenten auch Hydroxyalkyl mit 1 bis 3 Kohlenstoffatomen bedeuten.

Wenn n 2 ist, bedeutet T2 einen zweiwertigen Rest der Formel

$$-N-T_{10}-N-$$
|
 T_{6}
 T_{6}

oder -O-Tg-O-.

5

10

15

20

25

30

45

50

55

T₆ (siehe auch oben) bedeutet neben Wasserstoff, Alkyl, Cycloalkyl, Alkenyl, Aryl oder Phenylalkyl, wobei Beispiele für solche Reste oben bereits angegeben sind.

Ausser Wassestoff den oben genannten Phenylalkylresten und langkettigen Alkylresten kann T_7 Phenyl oder Hydroxyphenyl sowie - CH_2OT_8 bedeuten, wobei T_8 einer der aufgezählten Alkyl-, Alkenyl-, Cycloalkyl-, Aryl- oder Phenylalkylreste sein kann.

Der zweiwertige Rest T_9 kann Alkylen mit 2 bis 8 Kohlenstoffatomen bedeuten, wobei solche Reste auch verzweigt sein können. Dies trifft auch für die Alkenylen- und Alkinylenreste T_9 zu. Neben Cyclohexylen kann T_9 auch ein Rest der Formel -CH₂CH(OH)CH₂OT₁₁OCH₂CH(OH)CH₂- oder -CH₂-C(CH₂OH)₂-CH₂- bedeuten.

T₁₀ ist ein zweiwertiger Rest und bedeutet neben Cyclohexylen auch Alkylen mit 2 bis 20 Kohlenstoffatomen, das gegebenefalls durch -O- ein- oder mehrfach unterbrochen ist. Geeignete Alkylenreste leiten sich von den in den Definitionen von R₁ genannte Alkylresten ab.

T₁₁ bedeutet ebenfalls einen Alkylenrest. Er enthält 2 bis 8 Kohlenstoffatome oder, wenn er durch -O- einoder mehrfach unterbrochen ist, 4 bis 10 Kohlenstoffatome. Ferner ist T₁₁ 1,3- oder 1,4-Cyclohexylen oder 1,3oder 1,4-Phenylen.

Te und Tio können zusammen mit den beiden Stickstoffatomen auch einen Piperazinning darstellen,

Beispiele für Alkyl-, Alkoxy-, Phenylalkyl-, Alkylen-, Alkenylen-, Alkoxyalkyl- und Cycloalkylreste sowie Alkylthio-, Oxaalkylen- oder Azoalkylenreste in den Verbindungen der Formeln (2), (3) und (4) können den obigen Ausführungen entnommen werden.

Die UV-Absorber der Formeln (1a), (1b), (2), (3) und (4) sind an sich bekannt und beispielsweise mit ihrer Herstellung in EP-A-323,408, EP-A-57,160, US Patent Application Serial No. 07/446,369 (Prio.: 5.12.89), US-A-4,619,956, DE-A-31 35 810 und GB-A-1,336,391 beschrieben. Bevorzugte Substituentenbedeutungen und Einzelverbindungen können den genannten Dokumenten entnommen werden. Sie können nach üblichen, an sich bekannten Methoden in Lacke bzw. Lackzusammensetzungen eingearbeitet werden. In der Regel betragen die Mengenverhältnisse 0,01 bis 5, insbesondere 0,02 bis 3,0 Gew.-% (aller eingesetzter) UV-Absorber, bezogen auf die Lackzusammensetzung, wobei die zu wählenden Mengen an UV-Absorber von der Natur der Lackzusammensetzung und den Anforderungen an ihre Stabilität abhängig sein können. Die einzelnen UV-Absorberkomponenten können einzeln oder als Gemisch den entsprechenden Lackzusammensetzungen zugefügt werden. Den Zweischichtlacken kann die Zugabe zur Unterschicht und/oder Obeschicht erfolgen. Bevorzugt enthält die Oberschicht die UV-Absorbermischungen. Den Lackzusammensetzungen können auch die üblichen weiteren Zusätze wie Antioxidantien, Korrosionsschutzmittel und weitere Lichtschutzmittel hinzugefügt werden, ohne dass die Schutzwirkung der erfindungsgemäss eingesetzten UV-Absorbermischungen dadurch beeinträchtigt wird.

Die erfindungsgemässen Lackzusammensetzungen können jede beliebige Art von Lacken umfassen, z.B. pigmentierte oder unpigmentierte Lacke oder Metalleffektlacke sein. Sie können ein organisches Lösungsmittel enthalten oder lösungsmittelfrei sein oder wässrige Lacke sein.

Beispiele für Lacke mit speziellen Bindemitteln sind die folgenden:

- 1. Lacke auf Basis von kalt- oder heiss-vernetzbaren Alkyd-, Acrylat-, Polyester-, Epoxid- oder Melaminharzen oder Mischungen solcher Harze, gegebenenfalls mit Zusatz eines sauren Härtungskatalysators;
- 2. Zweikomponenten-Polyurethanlacke auf Basis von hydroxylgruppenhaltigen Acrylat-, Polyester- oder Polyetherharzen und aliphatischen oder aromatischen Polyisocyanaten;
- 3. Einkomponenten-Polyurethanlacke auf Basis von blockierten Polyisocyanaten, die während des Einbrennens deblockiert werden;
- 4. Zweikomponentenlacke auf Basis von (Poly)ketiminen und aliphatischen oder aromatischen Polyisocyanaten:
- 5. Zweikomponentenlacke auf Basis von (Poly)ketiminen und einem ungesättigten Acrylatharz oder einem Polyacetoacetatharz oder einem Methylacrylamidoglykolatmethylester,

- 6. Zweikomponentenlacke auf Basis von carboxyl- oder aminogruppenhaltigen Polyacrylaten und Polyepoxiden;
- 7. Zweikomponentenlacke auf Basis von anhydridgruppenhaltigen Acrylatharzen und einer Polyhydroxyoder Polyaminokomponente;
- 8. Zweikomponentenlacke auf Basis von (Poly)oxazolidinen und anhydridgruppenhaltign Acrylatharzen oder ungesättigten Acrylatharzen oder aliphatischen oder aromatischen Polyisocyanaten.
- 9. Zweikomponentenlacke auf Basis von ungesättigten Polyacrylaten und Polymalonaten;
- 10. thermoplastische Polyacrylatlacke auf Basis von thermoplastischen Acrylatharzen oder fremdvernetzenden Acrylatharzen in Kombination mit veretherten Melaminharzen;
- 11. Lacksysteme auf Basis von siloxanmodifizierten Acrylatharzen.
- 12. Lacksysteme auf Basis von fluormodifizierten Acrylatharzen.

Die Lacke können auch strahlenhärtbare Lacke sein. In diesem Fall besteht das Bindemittel aus monomeren oder oligomeren Verbindungen, die ethylenische Doppelbindungen enthalten und durch Bestrahlung mit aktinischem Licht oder mit Elektronenstrahlen in eine vernetzte hochmolekulare Form übergehen. Meist handelt es sich hierbei um ein Gemisch solcher Verbindungen.

Die Lacke können als Einschicht- oder Zweischichtlacke appliziert werden, wobei die erfindungsgemässen Stabilisatoren vorzugsweise der unpigmentierten obersten Schicht zugesetzt werden.

Die Lacke können auf die Substrate (Metall, Plastik, Holz etc.) nach den üblichen Verfahren aufgebracht werden, beispielsweise durch Streichen, Besprühen, Giessen, Tauchen oder Elektrophorese. Besonders bevorzugt stellen die erfindungsgemässen Zusammensetzungen Lacke für Kraftfahrzeuge dar. Geeignete Lacksysteme und Bindemittel sind z.B. in den US-A-4,314,933, 4,344,876, 4,426,471, 4,426,472 und 4,429,077 beschrieben.

Die vorliegende Erfindung betrifft auch Lackfilme, die durch Aufbringen auf eine Oberfläche und Härtung erhältlich ist.

Erfindungsgemäss werden Lackzusammensetzungen bevorzugt, in denen das Molverhältnis von 2-Hydroxyphenylbenztriazol zu 2-Hydroxyphenyltriazin, 2-Hydroxybenzophenon und/oder Oxalanilid in der UV-Absorbermischung 3:1 bis 1:3, und insbesondere 2: 1 bis 1:2 beträgt.

Weitere bevorzugte Lackzusammensetzungen enthalten als UV-Absorber eine Mischung aus mindestens einem 2-Hydroxyphenylbenztriazol und mindestens einem 2-Hydroxyphenyltriazin. Des weiteren sind solche Zusammensetzungen von Interesse, die mindstens ein 2-Hydroxyphenyltriazin und mindestens ein 2-Hydroxybenzophenon und/oder Oxalanilid enthalten.

In den UV-Absorbermischungen haben sich solche UV-Absorber der Formel (1a) besonders bewährt, worin der Substituent R_1 oder R_2 in ortho- oder para-Stellung zur Hydroxylgruppe steht.

Dies trifft auch für UV-Absorber der Formel (1a) zu worin R_1 Wasserstoff, Alkyl mit 1 bis 20 Kohlenstoffatomen, R_2 Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, und R_3 Wasserstoff, Chlor oder Alkyl mit 1 bis 4 Kohlenstoffatomen ist, besonders für solche UV-Absorber aus dieser Gruppe, worin R_1 in ortho-Stellung zur Hydroxylgruppe steht und Wasserstoff, Alkyl mit 4 bis 12 Kohlenstoffatomen ist, R_2 in para-Stellung zur Hydroxylgruppe steht und Alkyl mit 1 bis 6 Kohlenstoffatomen oder Cumyl und R_3 Wasserstoff oder Chlor ist, und insbesondere für solche UV-Absorber der Formel (1a), worin R_1 Alkyl mit 8 bis 12 Kohlenstoffatomen, R_2 Alkyl mit 4 bis 6 Kohlenstoffatomen und R_3 Wasserstoff ist.

Geeignete UV-Absorber der Formel (1b) sind dadurch gekennzeichnet, dass T Alkyl mit 1 bis 6 Kohlenstoffatomen, Ti Wasserstoff, Chlor oder Alkyl mit 1 bis 4 Kohlenstoffatomen, n 1 oder 2 und T_2 , wenn n 1 ist, einer der Reste der Formel -OT $_3$ oder

$$-N$$
 T_5

und wenn n 2 ist, ein Rest der Formel -O-T₉-O- oder

$$-N-T_{10}-N-T_{10}$$

ist, worin T₃ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen oder durch -O- ein- oder mehrfach unterbroche-

10

15

20

25

30

35

40

45

50

nes Alkyl mit 3 bis 18 Kohlenstoffatomen ist, T_4 und T_5 unabhängig voneinander Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen oder Hydroxyalkyl mit 1 bis 3 Kohlenstoffatomen sind, T_6 Wasserstoff oder Alkyl mit 1 bis 6 Kohlenstoffatomen ist, und T_9 und T_{10} Alkylen mit 2 bis 8 Kohlenstoffatomen, Alkenylen mit 4 bis 8 Kohlenstoffatomen oder durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 4 bis 18 Kohlenstoffatomen ist, worin jene UV-Absorber mit Vorteil eingesetzt werden, in denen T Alkyl mit 1 bis 4 Kohlenstoffatomen, T_1 Wasserstoff oder Chlor und T_2 einer der Reste der Formel -OT $_3$ oder -O- T_9 -O- ist, worin T_3 Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen oder ein Rest der Formel

und T₉ Alkylen mit 2 bis 8 Kohlenstoffatomen oder ein rest der Formel

$$-(-OC_2H_4-)_{4-8}-O-$$

ist

10

15

20

In besonders geeigneten Verbindungen der Formel (1b) ist T₃ Alkyl mit 1 bis 12 Kohlenstoffatomen oder ein Rest der Formel

$$-(OC_2H_4)_{4-8}-H$$
.

Von den UV-Absorbern der Formel (2) werden solche bevorzugt, worin die Substituenten Y₁ Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen oder Halogen bedeuten, Y₂, wenn u 1 ist, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -COOY₈, -CONY₉Y₁₀, und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen, Glycidyl oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil ist, oder Y₂, wenn u 2 ist, Alkylen mit 2 bis 16 Kohlenstoffatomen, Alkenylen mit 4 bis 12 Kohlenstoffatomen, Xylylen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkylen mit 3 bis 20 Kohlenstoffatomen ist, wobei die Substituenten Y₈ bis Y₁₁ die oben angegebenen Bedeutungen haben. Insbesondere kommen hiervon jene UV-Absorber in Frage, in denen die Substituenten Y₁ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Chlor sind, Y₂, wenn u 1 ist, unsubstituiertes oder durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -COOY₈, -CONY₉Y₁₀, und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen, Glycidyl oder Benzyl ist, oder Y₂, wenn u 2 ist, Alkylen mit 6 bis 12 Kohlenstoffatomen, Butenylen, Xylylen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substi-

und Y₁₁ Alkyl mit 1 bis 8 Kohlenstoffatomen oder Alkenyl mit 2 oder 3 Kohlenstoffatomen ist.

Eine weitere zur Verwendung in Lackzusammensetzungen besonders geeignete Gruppe von Verbindungen der Formel (2) ist dadurch gekennzeichnet, dass u 1 und r 2 ist, Y₁ Alkyl mit 1 bis 4 Kohlenstoffatomen und Y₂ Alkyl mit 1 bis 12 Kohlenstoffatomen oder durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -CO-OY₈ und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen ist, worin Y₈ Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen oder durch ein oder mehrere Sauerstoffatome unterbrochenes und/oder durch Hydroxyl substituiertes Alkyl mit 3 bis 20 Kohlenstoffatomen und Y₁₁ Alkenyl 2 bis 18 Kohlenstoffatomen ist.

tuiertes Alkylen mit 3 bis 20 Kohlenstoffatomen ist, wobei Y₈ Alkyl mit 4 bis 12 Kohlenstoffatomen, Alkenylen mit 12 bis 18 Kohlenstoffatomen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkyl mit 6 bis 20 Kohlenstoffatomen, ist, Y₉ und Y₁₀ Alkyl mit 4 bis 8 Kohlenstoffatomen sind,

Bevorzugt hiervon sind solche Verbindungen, worin Y_2 Alkyl mit 1 bis 8 Kohlenstoffatomen oder durch Hydroxyl, Alkoxy mit 12 bis 15 Kohlenstoffatomen, -COOY $_8$ und/oder -OCOY $_{11}$ substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen ist, worin Y_8 Alkyl mit 8 bis 12 Kohlenstoffatomen, Alkenyl mit 12 bis 18 Kohlenstoffatomen oder durch ein Sauerstoffatom unterbrochenes und Hydroxyl substituiertes Alkyl mit 5 bis 10 Kohlenstoffatomen und Y_{11} Alkenyl 2 bis 8 Kohlenstoffatomen ist, und insbesondere jene Verbindungen, worin Y_1 Methyl und Y_2 ein Octylrest oder durch Hydroxyl, Alkoxy mit 13 oder 15 Kohlenstoffatomen, -COOY $_8$ und/oder -OCOY $_{11}$ substituiertes Alkyl mit 1 bis 3 Kohlenstoffatomen ist, worin Y_8 ein Decyl- oder Octadecenylrest oder durch Hydroxyl substituiertes und ein Sauerstoffatom unterbrochenes Alkyl mit 7 Kohlenstoffatomen und Y_{11} Propenyl ist.

Von Interesse sind auch solche UV-Absorber der Formel (3), worin v und w unabhängig voneinander 1 oder 2 sind, und die Substituenten Z unabhängig voneinander Wasserstoff, Halogen oder Alkoxy mit 1 bis 12 Kohlenstoffatomen sind, sowie solche UV-Absorber der Formel (4), worin x und y unabhängig voneinander 1 oder 2 sind, und die Substituenten L unabhängig voneinander Wasserstoff oder Alkyl oder Alkoxy mit je 1 bis 12 Kohlenstoffatomen sind.

Es hat sich als vorteilhaft erwiesen, in Kombination mit erfindungsgemässen UV-Absorbermischungen mindestens ein weiteres Lichtschutzmittel aus der Klasse der gehinderten Amine zu verwenden, insbesondere eine

Verbindung, die mindestens einen Rest der Formel

10

15

5

enthält, worin R Wasserstoff oder vorzugsweise Methyl ist. Diese Verbindungen sind aus einer Vielzahl von Publikationen bekannt.

Es handelt sich dabei um Derivate von Polyalkylpiperidinen, insbesondere von 2,2,6,6-Tetramethylpiperidin. Bevorzugt tragen diese Verbindungen in 4-Stellung des Piperidinringes einen oder zwei polare Substituenten oder ein polares Spiro-Ringsystem. Es kann sich bei diesen Verbindungen um niedermolekulare oder oligomere oder polymere Verbindungen handeln.

Von Bedeutung sind insbesondere die folgenden Klassen von Polyalkylpiperidinen.

a) Verbindungen der Formel III,

20

25

30

45

50

55

worin n eine Zahl von 1 bis 4, vorzugsweise 1 oder 2 bedeutet, R Wasserstoff oder Methyl bedeutet, R21 Wasserstoff, Oxyl, Hydroxyl, C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₇-C₁₂-Aralkyl, C₁-C₁₈-Alkoxy, C₅-C₈-Cycloalkoxy, C₇-C₈-Phenylalkoxy, C₁-C₈-Alkanoyl, C₃-C₅-Alkenoyl, C₁-C₁₈-Alkanoyloxy, Benzyloxy, Glycidyl oder eine Gruppe -CH $_2$ CH(OH)-Z, worin Z Wasserstoff, Methyl oder Phenyl ist, bedeutet, wobei R $_{21}$ vorzugsweise H, C₁-C₄-Alkyl, Allyl, Benzyl, Acetyl oder Acryloyl ist und R₂₂, wenn n 1 ist, Wasserstoff, gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochenes C1-C18-Alkyl, Cyanethyl, Benzyl, Glycidyl, einen einwertigen Rest einer aliphatischen, cycloaliphatischen, araliphatischen, ungesättigten oder aromatischen Carbonsäure, Carbaminsäure oder Phosphor enthaltenden Säure oder einen einwertigen Silylrest, vorzugsweise einen Rest einer aliphatischen Carbonsäure mit 2 bis 18 C-Atomen, einer cycloaliphatischen Carbonsäure mit 7 bis 15 C-Atomen, einer α,β-ungesättigten Carbonsäure mit 3 bis 5 C-Atomen oder einer aromatischen Carbonsäure mit 7 bis 15 C-Atomen bedeutet, wenn n 2 ist, C₁-C₁₂-Alkylen, C₄-C₁₂-Alkenylen, Xylylen, einen zweiwertigen Rest einer aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Dicarbonsäure, Dicarbaminsäure oder Phosphor enthaltenden Säure oder einen zweiwertigen Silylrest, vorzugsweise einen Rest einer aliphatischen Dicarbonsäure mit 2 bis 36 C-Atomen, einer cycloaliphatischen oder aromatischen Dicarbonsäure mit 8 - 14 C-Atomen oder einer aliphatischen, cycloaliphatischen oder aromatischen Dicarbaminsäure mit 8 - 14 C-Atomen bedeutet, wenn n 3 ist, einen dreiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen Tricarbonsäure, einer aromatischen Tricarbaminsäure oder einer Phosphor enthaltenden Säure oder einen dreiwertigen Silylrest bedeutet und wenn n 4 ist, einen vierwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen Tetracarbonsäure bedeutet.

Bedeuten etwaige Substituenten C₁-C₁₂-Alkyl, so stellen sie z.B. Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethyl-hexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl dar.

In der Bedeutung von C₁-C₁₈-Alkyl kann R₂₁ oder R₂₂ z.B. die oben angeführten Gruppen und dazu noch beispielsweise n-Tridecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl darstellen.

Wenn R₂₁ C₃-C₈-Alkenyl bedeutet, so kann es sich z.B. um 1-Propenyl, Allyl, Methallyl, 2-Butenyl, 2-Pentenyl, 2-Hexenyl, 2-Octenyl, 4-tert- Butyl-2-butenyl handeln.

R₂₁ ist als C₃-C₈-Alkinyl bevorzugt Propargyl.

Als C_7 C_{12} Aralkyl ist R_{21} insbesondere Phenethyl und vor allem Benzyl.

R₂₁ ist als C₁-C₈-Alkanoyl beispielsweise Formyl, Propionyl, Butyryl, Octanoyl, aber bevorzugt Acetyl und als C₃-C₅-Alkenoyl insbesondere Acryloyl.

Bedeutet R_{22} einen einwertigen Rest einer Carbonsäure, so stellt es beispielsweise einen Essigsäure-, Capronsäure-, Stearinsäure-, Acryl- säure-, Methacrylsäure-, Benzoe- oder β -(3,5-Di-tert.-butyl-4-hydroxy-phenyl)-propionsäurerest dar.

Bedeutet R₂₂ einen zweiwertigen Rest einer Dicarbonsäure, so stellt es beispielsweise einen Malonsäure-, Bernsteinsäure-, Glutarsäure-, Adipinsäure-, Korksäure-, Sebacinsäure-, Maleinsäure-, Itaconsäure-, Phthalsäure-, Dibutylmalonsäure-, Dibenzylmalonsäure-, Butyl-(3,5-di-tert.-butyl-4-hydroxybenzyl)-malonsäure-oder Bicycloheptendicarbonsäurerest dar.

Stellt R_{22} einen dreiwertigen Rest einer Tricarbonsäure dar, so bedeutet es z.B. einen Trimellitsäure-, Citronensäure- oder Nitrilotriessigsäurerest.

Stellt R₂₂ einen vierwertigen Rest einer Tetracarbonsäure dar, so bedeutet es z.B. den vierwertigen Rest von Butan-1,2,3,4-tetracarbonsäure oder von Pyromellitsäure.

Bedeutet R_{22} einen zweiwertigen Rest einer Dicarbaminsäure, so stellt es beispielsweise einen Hexamethylendicarbaminsäure- oder einen 2,4-Toluylen-dicarbaminsäurerest dar.

Bevorzugt sind Verbindungen der Formel III, worin R Wasserstoff ist, R₂₁ Wasserstoff oder Methyl ist, n 1 ist und R₂₂ C₁-C₁₈-Alkyl ist oder n 2 ist und R₂₂ der Diacylrest einer aliphatischen Dicarbonsäure mit 4-12 C-Atomen ist.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

- 1) 4-Hydroxy-2,2,6,6-tetramethylpiperidin
- 2) 1-Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
- 3) 1-Benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
- 4) 1-(4-tert.-Butyl-2-butenyl)-4-hydroxy-2,2,6,6-tetramethylpiperidin
- 5) 4-Stearoyloxy-2,2,6,6-tetramethylpiperidin
- 6) 1-Ethyl-4-salicyloyloxy-2,2,6,6-tetramethylpiperidin
- 7) 4-Methacryloyloxy-1,2,2,6,6-pentamethylpiperidin
- 8) 1,2,2,6,6-Pentamethylpiperidin-4-yl-β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionat
- 9) Di-(1-benzyl-2,2,6,6-tetramethylpiperidin-4-yl)-maleinat
- 10) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-succinat
- 11) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-glutarat
- 12) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-adipat
- 13) Di-(2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 14) Di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-sebacat
 - 15) Di-(1,2,3,6-tetramethyl-2,6-diethyl-piperidin-4-yl)-sebacat
 - 16) Di-(1-allyl-2,2,6,6-tetramethylpiperidin-4-yl)-phthalat
 - 17) 1-Hydroxy-4-β-cyanoethyloxy-2,2,6,6-tetramethylpiperidin
- 18) 1-Acetyl-2,2,6,6-tetramethylpiperidin-4-yl-acetat
 - 19) Trimellithsäure-tri-(2,2,6,6-tetramethylpiperidin-4-yl)-ester
 - 20) 1-Acryloyl-4-benzyloxy-2,2,6,6-tetramethylpiperidin
 - 21) Diethylmalonsäure-di(2,2,6,6-tetramethylpiperidin-4-yl)-ester
 - 22) Dibutyl-malonsäure-di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-ester
- 23) Butyl-(3,5-di-tert.-butyl-4-hydroxybenzyl)-malonsäure-di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-ester
 - 24) Di-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 25) Di-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat
 - 26) Hexan-1',6'-bis-(4-carbamoyloxy-1-n-butyl-2,2,6,6-tetramethylpiperidin)
 - 27) Toluol-2',4'-bis-(4-carbamoyloxy-1-n-propyl-2,2,6,6-tetramethylpiperidin)
- 45 28) Dimethyl-bis-(2,2,6,6-tetramethylpiperidin-4-oxy)-silan
 - 29) Phenyl-tris(2,2,6,6-pentamethylpiperidin-4-oxy)-silan
 - 30) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl)-phosphit
 - 31) Tris-(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl)phosphat
 - 32) Phenyl-[bis-(1,2,2,6,6-pentamethylpiperidin-4-yl)]-phosphonat
- 50 33) 4-Hydroxy-1,2,2,6,6-pentamethylpiperidin
 - 34) 4-Hydroxy-N-hydroxyethyl-2,2,6,6-tetramethylpiperidin
 - 35) 4-Hydroxy-N-(2-hydroxypropyl)-2,2,6,6-tetramethylpiperidin
 - 36) 1-Glycidyl-4-hydroxy-2,2,6,6-tetramethylpiperidin
 - b) Verbindungen der Formel IV,

55

5

10

15

20

25

30

35

worin n die Zahl 1 oder 2 bedeutet, R und R₂₁ die unter (a) angegebene Bedeutung haben, R₂₃ Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₅-Hydroxyalkyl, C₅-C₇-Cycloalkyl, C₇-C₈-Aralkyl, C₂-C₁₈-Alkanoyl, C₃-C₅-Alkenoyl, Benzoyl oder eine Gruppe der Formel

ist und R_{24} wenn n 1 ist, Wasserstoff, C_1 - C_{18} -Alkyl, C_3 - C_8 -Alkenyl, C_5 - C_7 -Cycloalkyl, mit einer Hydroxy-, Cyano-, Alkoxycarbonyl- oder Carbamidgruppe substituiertes C_1 - C_4 -Alkyl, Glycidyl, eine Gruppe der Formel -CH₂-CH(OH)-Z oder der Formel -CONH-Z ist, worin Z Wasserstoff, Methyl oder Phenyl bedeutet; wenn n 2 ist, C_2 - C_{12} -Alkylen, C_6 - C_{12} -Arylen, Xylylen, eine -CH₂-CH(OH)-CH₂-Gruppe oder eine Gruppe -CH₂-CH(OH)-CH₂-O-D-O- bedeutet, worin D C_2 - C_{10} -Alkylen, C_6 - C_{15} -Arylen, C_6 - C_{12} -Cycloalkylen ist, oder vorausgesetzt, dass R_{23} nicht Alkanoyl, Alkenoyl oder Benzoyl bedeutet, R_{24} auch einen zweiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen Dicarbonsäure oder Dicarbaminsäure oder auch die Gruppe -CO- bedeuten kann, oder R_{23} und R_{24} zusammen, wenn n 1 ist, den zweiwertigen Rest einer aliphatischen, cycloaliphatischen oder aromatischen 1,2- oder 1,3-Dicarbonsäure bedeuten können.

Stellen etwaige Substituenten C_1 - C_{12} - oder C_1 - C_{18} -Alkyl dar, so haben sie die bereits unter (a) angegebene Bedeutung.

Bedeuten etwaige Substituenten C₅-C₇-Cycloalkyl, so stellen sie insbesondere Cyclohexyl dar.

Als C₇-C₈-Aralkyl ist R₂₃ insbesondere Phenylethyl oder vor allem Benzyl. Als C₂-C₅-Hydroxyalkyl ist R₂₃ insbesondere 2-Hydroxyethyl oder 2-Hydroxypropyl.

R₂₃ ist als C₂-C₁₈-Alkanoyl beispielsweise Propionyl, Butyryl, Octanoyl, Dodecanoyl, Hexadecanoyl, Octadecanoyl, aber bevorzugt Acetyl und als C₃-C₅-Alkenoyl insbesondere Acryloyl.

Bedeutet R₂₄ C₂-C₈-Alkenyl, dann handelt es sich z.B. um Allyl, Methallyl, 2-Butenyl, 2-Pentenyl, 2-Hexenyl oder 2-Octenyl.

R₂₄ als mit einer Hydroxy-, Cyano-, Alkoxycarbonyl- oder Carbamidgruppe substituiertes C₁-C₄-Alkyl kann z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Cyanethyl, Methoxycarbonylmethyl, 2-Ethoxycarbonylethyl, 2-Amino-carbonylpropyl oder 2-(Dimethylaminocarbonyl)-ethyl sein.

Stellen etwaige Substituenten C_2 - C_{12} -Alkylen dar, so handelt es sich z.B. um Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen, Hexamethylen, Octamethylen, Decamethylen oder Dodecamethylen.

Bedeuten etwaige Substituenten C₆-C₁₅-Arylen, so stellen sie z.B. o-, m- oder p-Phenylen, 1,4-Naphthylen oder 4,4'-Diphenylen dar.

Als C₈-C₁₂-Cycloalkylen ist insbesondere Cyclohexylen zu nennen.

Bevorzugt sind Verbindungen der Formel V, worin n 1 oder 2 ist, R Wasserstoff ist, R_{21} Wasserstoff oder Methyl ist, R_{23} Wasserstoff, C_1 - C_{12} -Alkyl oder eine Gruppe der Formel

50

5

10

15

20

25

30

35

40

ist und R₂₄ im Fall von n=1 Wasserstoff oder C₁-C₁₂-Alkyl ist, und im Fall von n=2 C₂-C₈-Alkylen ist.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

- 37) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylen-1,6-diamin
- 38) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-hexamethylen-1,6-di-acetamid
- 39) Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-amin
 - 40) 4-Benzoylamino-2,2,6,6-tetramethylpiperidin
 - 41) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dibutyl-adipamid
 - 42) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dicyclohexyl-2-hydroxypropylen-1,3-diamin
 - 43) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-p-xylylen-diamin
 - 44) N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-succindiamid

CH_a

CH₃ - N

CH₃

CH3

CH3 -1

CH₃

CH₃

45) N-(2,2,6,6-Tetramethylpiperidin-4-yl)-β-aminodipropionsäure-di-(2,2,6,6-tetramethylpiperidin-4-yl)-ester

CH2-CH(OH)-CH2-

- CH2- CH(OH)- CH2- O

CH3 - C - CH2

46) Die Verbindung der Formel

15

5

10

20

25

30

35

47) 4-(Bis-2-hydroxyethyl-amino)-1,2,2,6,6-pentamethylpiperidin

CH₃

48) 4-(3-Methyl-4-hydroxy-5-tert.-butyl-benzoesäureamido)-2,2,6,6-tetra-methylpiperidin

C₄H₉

- 49) 4-Methacrylamido-1,2,2,6,6-pentamethylpiperidin
- 49) (a) bis (c) Die Verbindungen der Formel

40

45

50

CH₃ CH₃ CH₃ CH₃

(IV) (a),

worin Ro Wasserstoff, Methyl oder Acetyl ist.

(c) Verbindungen der Formel (V)

5

10

15

20

25

30

35

40

45

50

55

$$\begin{bmatrix} RCH_2 & CH_3 & R \\ R_{21} - N & CH_3 & CH_3 \end{bmatrix}$$

$$\begin{bmatrix} RCH_2 & CH_3 & CH$$

worin n die Zahl 1 oder 2 bedeutet, R und R_{21} die unter (a) angegebene Bedeutung haben und R_{25} , wenn n 1 ist, C_2 - C_8 -Alkylen oder -Hydroxyalkylen oder C_4 - C_{12} -Acyloxyalkylen, wenn n 2 ist, die Gruppe (- CH_2)₂ $C(CH_2$ -)₂ bedeutet.

Bedeutet R₂₅ C₂-C₈-Alkylen oder -Hydroxyalkylen, so stellt es beispielsweise Ethylen, 1-Methyl-ethylen, Propylen, 2-Ethyl-propylen oder 2-Ethyl-2-hydroxymethylpropylen dar.

Als C₄-C₂₂-Acyloxyalkylen bedeutet R₂₅ z.B. 2-Ethyl-2-acetoxymethyl-propylen.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

- 50) 9-Aza-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecan
- 51) 9-Aza-8,8,10,10-tetramethyl-3-ethyl-1,5-dioxaspiro[5.5]undecan
- 52) 8-Aza-2,7,7,8,9,9-hexamethyl-1,4-dioxaspiro[4.5]decan
- 53) 9-Aza-3-hydroxymethyl-3-ethyl-8,8,9,10,10-pentamethyl-1,5-dioxaspiro [5.5]undecan
- 54) 9-Aza-3-ethyl-3-acetoxymethyl-9-acetyl-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecan
- 55) 2,2,6,6-Tetramethylpiperidin-4-spiro-2'-(1',3'-dioxan)-5'-spiro-5"-(1",3"-dioxan)-2"-spiro -4"'-(2"',2"',6"',6"'-tetramethylpiperidin).
- (d) Verbindungen der Formeln VIA, VIB und VIC

$$R_{21} - N$$

$$R_{22} - N$$

$$R_{21} - N$$

$$R_{22} - N$$

$$R_{21} - N$$

$$R_{22} - N$$

$$R_{23} - N$$

$$R_{31} - N$$

$$R_{31} - N$$

$$R_{32} - N$$

$$R_{32} - N$$

$$R_{31} - N$$

$$R_{32} - N$$

$$R_{33} - N$$

$$R_{34} - N$$

$$R_{34} - N$$

$$R_{$$

$$\begin{bmatrix}
RCH_2 & CH_3 & R & T_1 \\
O - C - T_2 & CH_3 & CH_3
\end{bmatrix}$$

$$C - N - H_{27}$$

$$C - N - H_{27}$$

$$C - N - H_{27}$$

worin n die Zahl 1 oder 2 bedeutet, R und R_{21} die unter (a) angegebene Bedeutung haben, R_{26} Wasserstoff, C_1 - C_{12} -Alkyl, Allyl, Benzyl, Glycidyl oder C_2 - C_6 -Alkoxyalkyl ist und R_{27} , wenn n 1 ist, Wasserstoff, C_1 - C_{12} -Alkyl, C_3 - C_5 -Alkenyl, C_7 - C_9 -Aralkyl, C_5 - C_7 Cycloalkyl, C_2 - C_4 -Hydroxyalkyl, C_2 - C_6 -Alkoxyalkyl, C_6 - C_{10} -Aryl, Glycidyl

oder eine Gruppe der Formel - $(CH_2)_p$ -COO-Q oder der Formel - $(CH_2)_p$ -O-CO-Q ist, worin p 1 oder 2 und Q C₁-C₄-Alkyl oder Phenyl sind, wenn n 2 ist, C₂-C₁₂-Alkylen, C₄-C₁₂-Alkenylen, C₆-C₁₂-Arylen, eine Gruppe -CH₂-CH(OH)-CH₂-O-D-O-CH₂-CH(OH)-CH₂-, worin D C₂-C₁₀-Alkylen, C₆-C₁₅-Arylen, C₆-C₁₂-Cycloalkylen ist, oder eine Gruppe -CH₂CH(OZ')CH₂-CH(OZ')CH₂)₂- bedeutet, worin Z' Wasserstoff, C₁-C₁₈-Alkyl, Allyl, Benzyl, C₂-C₁₂-Alkanoyl oder Benzoyl ist, T₁ und T₂ unabhängig voneinander Wasserstoff, C₁-C₁₈-Alkyl oder gegebenenfalls durch Halogen oder C₁-C₄-Alkyl substituiertes C₆-C₁₀-Aryl oder C₇-C₉-Aralkyl bedeuten oder T₁ und T₂ zusammen mit dem sie bindenden C-Atom einen C₅-C₁₂-Cycloalkanring bilden.

Bedeuten etwaige Substituenten C₁-C₁₂-Alkyl, so stellen sie z.B. Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethyl-hexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl dar.

Etwaige Substituenten in der Bedeutung von C₁-C₁₈-Alkyl können z.B. die oben angeführten Gruppen und dazu noch beispielsweise n-Tridecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl darstellen.

Bedeuten etwaige Substituenten C₂-C₈-Alkoxyalkyi, so stellen sie z.B. Methoxymethyl, Ethoxymethyl, Propoxymethyl, tert.-Butoxymethyl, Ethoxy- ethyl, Ethoxypropyl, n-Butoxyethyl, tert.-Butoxyethyl, Isopropoxyethyl oder Propoxypropyl dar.

Stellt R_{27} C_3 - C_5 -Alkenyl dar, so bedeutet es z.B. 1-Propenyl, Allyl, Methallyl, 2-Butenyl oder 2-Pentenyl. Als C_7 - C_9 -Aralkyl sind R_{27} , T_1 und T_2 insbesondere Phenethyl oder vor allem Benzyl. Bilden T_1 und T_2 zusammen mit dem C-Atom einen Cycloalkanring, so kann dies z.B. ein Cyclopentan-, Cyclohexan-, Cyclooctan- oder Cyclododecanring sein.

Bedeutet R₂₇ C₂-C₄-Hydroxyalkyl, so stellt es z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Hydroxybutyl oder 4-Hydroxybutyl dar.

Als C_6 - C_{10} -Aryl bedeuten R_{17} , T_1 und T_2 insbesondere Phenyl, α - oder β -Naphthyl, die gegebenenfalls mit Halogen oder C_1 - C_4 -Alkyl substituiert sind.

Stellt R_{27} C_{27} -Alkylen dar, so handelt es sich z.B. um Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen, Hexamethylen, Octamethylen, Decamethylen oder Dodecamethylen.

Als C₄-C₁₂-Alkenylen bedeutet R₂₇ insbesondere 2-Butenylen, 2-Pentenylen oder 3-Hexenylen.

Bedeutet R₂₇ C₆-C₁₂-Arylen, so stellt es beispielsweise o-, m- oder p-Phenylen, 1,4-Naphthylen oder 4,4'-Diphenylen dar.

Bedeutet Z' C₂-C₁₂-Alkanoyl, so stellt es beispielsweise Propionyl, Butyryl, Octanoyl, Dodecanoyl, aber bevorzugt Acetyl dar.

D hat als C₂-C₁₀-Alkylen, C₆-C₁₅- Arylen oder C₆-C₁₂-Cycloalkylen die unter (b) angegebene Bedeutung. Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind folgende Verbindungen:

56) 3-Benzyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decan-2,4-dion

57) 3-n-Octyl-1,3,8-trlaza-7,7,9,9-tetramethylspiro[4.5]decan-2,4-dion

58) 3-Allyi-1,3,8-triaza-1,7,7,9,9-pentamethylspiro[4.5]decan-2,4-dion

59) 3-Glycidyl-1,3,8-triaza-7,7,8,9,9-pentamethylspiro[4.5]decan-2,4-dion

60) 1,3,7,7,8,9,9-Heptamethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion

61) 2-Iso-propyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro-[4.5]decan

62) 2,2-Dibutyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro-[4.5]-decan

63) 2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]-heneicosan

64) 2-Butyl-7,7,9,9-tetramethyl-1-oxa-4,8-diaza-3-oxo-spiro-[4,5]decan

65) 8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4,5]-decan-2,4-dion oder die Verbindungen der folgenden Formeln:

10

15

20

25

30

35

40

45

50

(e) Verbindungen der Formel VII, die ihrerseits bevorzugt sind,

worin n die Zahl 1 oder 2 ist und R28 eine Gruppe der Formel

30
$$-E-(A)_3 \qquad CH_2R$$

$$CH_3 \quad CH_2R$$

$$CH_3 \quad CH_2R$$

bedeutet, worin R und R_{21} die unter (a) angegebene Bedeutung haben, E-O- oder - NR_{21} - ist, A C_2 - C_6 -Alkylen oder - $(CH_2)_3$ -O- und x die Zahlen O oder 1 bedeuten, R_{29} gleich R_{28} oder eine der Gruppen - $NR_{31}R_{32}$, - OR_{33} , - $NHCH_2OR_{33}$ oder - $N(CH_2OR_{33})_2$ ist, R_{30} , wenn n=1 ist, gleich R_{28} oder R_{29} , und wenn n=2 ist, eine Gruppe -E-B-E- ist, worin B gegebenen- falls durch - $N(R_{31})$ - unterbrochenes C_2 - C_6 -Alkylen bedeutet, R_{11} C_1 - C_{12} -Alkyl, Cyclohexyl, Benzyl oder C_1 - C_4 -Hydroxyalkyl oder eine Gruppe der Formel

ist, R_{32} C_1 - C_{12} -Alkyl, Cyclohexyl, Benzyl, C_1 - C_4 -Hydroxyalkyl und R_{33} Wasserstoff, C_1 - C_{12} -Alkyl oder Phenyl bedeuten oder R_{31} und R_{32} zusammen C_4 - C_5 -Alkylen oder -Oxaalkylen, beispielsweise

5

10

15

20

25

40

45

oder eine Gruppe der Formel

sind oder auch R_{31} und R_{32} jeweils eine Gruppe der Formel

CH₃ CH₃

CH₃

CH₄H₉

N

CH₃

CC₄H₉

N

CC₄H₉

N

CC₄H₉

N

CC₄H₉

CCC₄

bedeuten.

5

10

25

30

35

40

45

50

Bedeuten etwaige Substituenten C₁-C₁₂-Alkyl, so stellen sie beispielsweise Methyl, Ethyl, n-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Undecyl oder n-Dodecyl dar.

CH_a

CH₃

Bedeuten etwaige Substituenten C₁-C₄-Hydroxyalkyl, so stellen sie z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxybutyl oder 4-Hydroxybutyl dar.

Bedeutet A C_2 - C_6 -Alkylen, so stellt es beispielsweise Ethylen, Propylen, 2,2-Dimethylpropylen, Tetramethylen oder Hexamethylen dar.

Stellen R_{31} und R_{32} zusammen C_4 - C_5 -Alkylen oder Oxaalkylen dar, so bedeutet dies z.B Tetramethylen, Pentamethylen oder 3-Oxapentamethylen.

Beispiele für Polyalkylpiperidin-Verbindungen dieser Klasse sind die Verbindungen der folgenden Formeln:

70)

$$H_{3}C$$
 $H_{3}C$
 $H_{3}C$

55
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

72)
$$\lim_{R \to \infty} R = -NH-CH_2CH_2CH_2 - O \longrightarrow H_3C \longrightarrow CH_3$$

$$mit R = C_4H_9 - N$$

$$C_4H_9 - N$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

CH3

CH3

$$mit R = C_4H_9 \longrightarrow N$$

$$C_4H_9 \longrightarrow N$$

$$CH_3 \longrightarrow CH_3$$

CH3

5

(f) Oligomere oder polymere Verbindungen, deren wiederkehrende Struktureinheit einen 2,2,6,6-Tetraal-kylpiperidinrest der Formel III enthält, insbesondere Polyester, Polyäther, Polyamide, Polyamine, Polyurethane, Polyharnstoffe, Polyaminotriazine, Poly(meth)acrylate, Poly(meth)acrylamide und deren Copolymere, die solche Reste enthalten.

Beispiele für 2,2,6,6-Polyalkylpiperidin-Lichtschutzmittel dieser Klasse sind die Verbindungen der folgenden Formeln, wobei m eine Zahl von 2 bis etwa 200 bedeutet.

55

35

CH3 CH3

83)
$$\begin{array}{c} CH_3 & C_2H_5 \\ \hline \\ CH_3 & C_2H_5 \\$$

94)
$$(CH_2)_6$$
 $N - CH_2 - C - \frac{1}{m}$ CH_3 C

Von diesen Verbindungsklassen sind die Klassen a), d), e) und f) besonders geeignet, insbesondere die

Verbindungen Nr. 10, 13, 14, 23, 24, 28, 29, 63, 65, 75, 77, 81, 84, 92 und 93. Verbindungen der Formel

 $\begin{array}{c}
C_{12}H_{25} \\
O \\
N \\
CH_{3}C
\end{array}$ $\begin{array}{c}
C_{12}H_{25} \\
CH_{3} \\
CH_{3}
\end{array}$

worin R Wasserstoff, Methyl oder Acetyl ist, haben in Kombination mit den erfindungsgemäss verwendeten UV-Absorbermischungen zu besonders guten Resultaten geführt.

Das folgende Beispiel erläutert die Erfindung weiter, ohne sie darauf zu beschränken. Teile und Prozente beziehen sich auf das Gewicht, sofern nicht anders angegeben.

Beispiel 1: Die UV-Absorber der Formeln

20

25

35

40

5

10

15

30 O — CH₂-CHOHCH₂-OCO-C(CH₃)=CH₂

45 und

55

50

werden in einem Zweischicht-Metalliclack geprüft.

Die UV-Absorber werden in 10 g Xylol eingearbeitet und in den in der nachfolgenden Tabelle zugegebenen Mengen (% reiner UV-Absorber, jeweils bezogen auf Festkörperbestandteile des Lackes) einem Klarlack der

folgenden Zusammensetzung zugefügt:

	Uracron [®] XB (DSM Resin BV) (50 %)	59,2	Teile
5	Cymel® 327 (Cyanamid Corp.) (90 %)	11,6	Teile
	Butylglykolacetat	5,5	Teile
	Xylol -	19,4	Teile
10	Butanol	3,3	Teile
	Baysilon [®] A (Bayer AG) (1 % in Xylol)	1,0	Teil

Der Klarlack wird mit einem Gemisch aus Xylol/Butanol/Butylglykolacetat (13:6: 1) auf Spritzfähigkeit verdünnt und auf ein vorbereitetes Substrat (coil coat beschichtetes Aluminiumblech, Automobilfiller, silbermetallic Basislack) gespritzt und bei 130°C 30 Minuten eingebrannt. Es resultiert eine Trockenschichtdicke von 40-50 µm Klarlack.

Die Proben werden einer beschleunigten Bewitterung unterworfen.

Resultate einer 1600stündigen Bewitterung der Proben in einem Xenon-Weatherometer (CAM 159, Atlas 20 Corp.) sind in der Tabelle 1 zusammengefasst.

Tabelle 1:

25	Probe mit UV-Absorber der Formel	DOI (%) nach ASTM E 430
30	1,5 % (100)	67
	1,5 % (101)	41
35	0.75 % (100) und 0,75 % (101)	87
	1,5 % (100)	67
40	1,5 % (102)	47
40	0.75 % (100) und 0,75 % (102)	75

Die mit den UV-Absorbermischungen stabilisierten Proben weisen eine höhere Beständigkeit gegen Bewitterung auf als Proben, die nur einen einzigen UV-Absorber in gleicher Menge enthalten.

Beispiel 2: Man wiederholt Beispiel 1 mit den Verbindungen der Formeln (100) und (101), und unterwirft entsprechende Proben auch einer zwölfmonatigen Freibewitterung in Florida. Tabelle 2 zeigt die erhaltenen Ergebnisse:

55

50

45

Tabelle 2

10

15

Probe mit UV-Absorber der Formel	DOI (%bezügl. Ausgangswert) 12 Monate Florida
1,5 % (100)	90
1,5 % (101)	90
0.75 % (100) und 0,75 % (101)	95

Beispiel 3: Ein 2K-PUR-Klarlack wird aus den folgenden Komponenten hergestellt:

20	Macrinal [®] SM 510 (60 %)	75	Teile
20	Butylglykolacetat	15	Teile
	Solvesso [®] 100	6,1	Teile
	Methylisobutylketon	3,6	Teile
25	Zinkoctoat (8 %ige toluolische Lösung)	0,1	Teil
	Byk [®] 300	0,2	Teile
		100.0	Teile
30		100,0	16116

Diesem Klarlack werden die zu prüfenden UV-Absorber in den angegebenen Mengen, gelöst in 10 ml Xylol zugegeben. Nach Hinzufügen von 30 Teilen Desmodur® N75 als Härter wird mit Xylol auf Spritzfähigkeit verdünnt, der fertige Lack auf ein vorbereitetes Substrat (coil coat beschichtetes Aluminiumblech, Automobilfüller, silbermetallic Basislack) appliziert und bei 90°C 30 Minuten eingebrannt. Es resultiert eine Trockenfilmdicke von ca. 40-50 μm.

Die Proben werden in einem Xenon-Weatherometer (Fa. Atlas; CAM 159; KFA-Methode) bewittert und der 20° Glanz (DIN 67530) gemessen.

50

40

45

Tabelle 3

5	Probe mit UV-Absorber der Formel	20° Glanz nach 800 Stunden
10	1,6 % (100)	30
	1,6 % (103)	48
	1,6 % (104)	50
15	1,6 % (105)	38
	1,6 % (103) und (105) im Gewichtsverhältnis 1:2	60
20	1,6 % (103) und (104) im Gewichtsverhältnis 1:2	76 2
	1,6 % (100) und (105) im Gewichtsverhältnis 2:1	55 1
25	I'll have and Freelighton and a	Visited (incl. US-tor)

[% bezogen auf Festkörper des Klarlacks (incl. Härter)]

Die Verbindungen der Formeln (103), (104) und (105) besitzen die folgende Struktur.

mit Polyäthylenglykol vom Molgewicht 300.

Beispiel 4: Proben gemäss Beispiel 3 mit Verbindungen der Formeln (103), (106) und (107) als UV-Absorber werden einer UVCON-Bewitterung (Atlas, UVB-313, 8 Stunden UV-Belichtung bei 70°C, 4 Stunden Kondensation bei 50°C) unterworfen. Anschliessend ermittelt man den 20° Glanz (DIN 67530) nach 1600 Stunden Bewitterung.

Tabelle 4

25	Probe mit UV-Absorber der Formel	20° Glanz nach 1600 Stunden
30	1,6 % (103)	4
	1,6 % (106)	1
0.5	1,6 % (107)	8
35	1,6 % (103) und (107) im Gewichtsverhältnis 1:2	30
40	1,6 % (106) und (107) im Gewichtsverhältnis 2:1	39

[% bezogen auf Festkörper des Klarlacks (incl. Härter)]

Die Verbindungen der Formeln (106) und (107) besitzen die folgende Struktur:

55

45

5

10

15

O —
$$CH_2CH_2COO(CH_2)_8CH=CH(CH_2)_7CH_3$$

OH

OH

 CH_3
 N
 CH_3
 CH_3
 CH_3
 CH_3

Beispiel 5: Man wiederholt Beispiel 4 mit den Verbindungen der Formeln (108) und (109) als UV-Absorber.

Tabelle 5

Probe mit UV-Absorber der Formel	20° Glanz nach 1600 Stunden
1,5 % (108)	Riss* nach 1200 Stunden
1,5 % (109)	4
0,75 % (108) und 0,75 % (109)	43

[% bezogen auf Festkörper des Klarlacks (incl. Härter)]
* [Rissbildung nach TNO-Skala]

Die Verbindungen der Formeln (108) und (109) besitzen die folgende Struktur:

40 (108) N N CHCH₃-
$$C_2H_5$$

Beispiel 6: Das Lacksystem gemäss Beispiel 2 wird mit den Verbindungen der Formeln (105), (106) und (109) als UV-Absorber auf Uniprime (Fa. PPG; ED 3150) beschichtete Aluminiumbleche appliziert und wie folgt bewittert: QUV (Q-Panel; UVA-340; 8 Stunden UV-Belichtung bei 70°C; 4 Stunden Kondensation bei 50°C). Danach wird die Veränderung des Yellowness-Index (ΔΥΙ, ASTM D 1925) und der Farbabstand ΔΕ (DIN 6174; bewittert/unbewittert) ermittelt.

Tabelle 6

Probe mit UV-Absorber der Formel	Δ YI nach 500	ΔE Stunden
1,5 % (106)	4,0	0,8
1,5 % (105)	4,8	1,3
1,5 % (109)	7,1	1,9
0,75 % (106) und 0,75 % (105)	2,3	0,3
0,75 % (106) und 0,75 % (109)	1,7	0,2

[% bezogen auf Festkörper des Klarlacks (incl. Härter)]

Beispiel 7: Man stellt einen Klarlack folgender Zusammensetzung her:

50

25

30

35

40

45

	Uracron [®] 2263 XB (50 %)	54,5	Teile	
	Cymel [®] 327 (90 %)	16,3	Teile	
5	Butylglykolacetat	5,5	Teile	
	Xylol	19,4	Teile	
	n-Butanol	3,3	Teile	
10	Baysilon [®] A (1 % in Xylol)	1	Teil	
		100,0	Teile	-

Die zu prüfenden UV-Absorber der Formeln (103) und (110) werden, gelöst in 10 g Xylol, in diesen Klarlack eingearbeitet. Mit einer Mischung aus Xylol, Butanol und Butylglykolacetat (Gewichtsverhältnis 13:6:1) wird der Klarlack auf Spritzfähigkeit verdünnt und auf ein Glasplättchen appliziert. Nach dem Einbrennen (130°C, 30 Minuten) resultiert eine Trockenfilmdicke von etwa 20 μm. Nach einer UVCON-Bewitterung (Atlas; UVB-313; 8 Stunden UV-Bestrahlung bei 70°C, 4 Stunden Kondensation bei 50°C) wird mittels UV-Spektroskopie der Verlust an UV-Absorber bestimmt.

Tabelle 7

15

20

25

30

35

40

Probe mit UV-Absorber der Formel	λmax	Verlust an UV-Absorber nach 1000 Stunden
2 % (103)	342	30 %
2 % (110)	338	21 %
1 % (103) und 1 % (110)	339	16 %

[% bezogen auf Klarlackfestkörper]

Die Verbindung der Formel (110) besitzt folgende Struktur.

Beispiel 8: Das Lacksystem gemäss Beispiel 7 mit den Verbindungen der Formeln (103) und (110) als UV-Absorber wird auf Uniprime (Fa. PPG; ED 3150) beschichtete Aluminiumbleche appliziert und einer UVCON-Bewitterung wie in Beispiel 7 beschrieben ausgesetzt. Danach wird an den Proben der Gitterschnitt gemäss DIN 53151 mit anschliessendem Bandabreisstest ausgeführt. Die Gitterschnittbewertung erfolgt ebenfalls nach DIN 53151.

Tabelle 8

3	U	

15

5

Probe mit UV-Absorber der Formel	Bewertung
2 % (103)	G [3 - 4
2 % (110)	G + 1 - 2
1 % (103) und 1 % (110)	GţO

[% bezogen auf Klarlackfestkörper]

25

30

35

20

Patentansprüche

- Lackzusammensetzung, dadurch gekennzeichnet, dass sie als UV-Absorber eine Mischung aus mindestens einem 2-Hydroxyphenylbenztriazol und mindestens einem 2-Hydroxyphenyltriazin enthält.
 - Lackzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass sie als UV-Absorber eine Mischung aus mindestens einem 2-Hydroxyphenylbenztriazol und mindestens einem 2-Hydroxyphenyltriazin, 2-Hydroxybenzophenon und/oder Oxalanilid enthält.
 - Lackzusammensetzung, dadurch gekennzeichnet, dass sie als UV-Absorber eine Mischung aus mindestens einem 2-Hydroxyphenyltriazin und mindestens einem 2-Hydroxybenzophenon und/oder Oxalanilid enthält.
- 4. Lackzusammensetzung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das 2-Hydroxyphenylbenztriazol der Formel

oder

55

das 2-Hydroxyphenyltriazin der Formel

$$(2) \qquad \qquad (Y_1)_{\overline{r}} \qquad (Y_1)_{\overline{r}} \qquad (Y_2)_{\overline{r}} \qquad (Y_3)_{\overline{r}} \qquad (Y_4)_{\overline{r}} \qquad (Y_4)_{\overline{r}$$

das 2-Hydroxybenzophenon der Formel

und das Oxalanilid der Formel

entspricht, worin

in den Verbindungen der Formel (1a)

R₁ Wasserstoff, Alkyl mit 1 bis 24 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Cycloalkyl mit 5 bis 8 Kohlenstoffatomen oder ein Rest der Formel

55

5

10

15

20

25

40

45

unabhängig voneinander Alkyl mit je 1 bis 5 Kohlenstoffatomen sind, oder R₄ zusammen mit dem Rest C_nH_{2n+1-m} einen Cycloalkylrest mit 5 bis 12 Kohlenstoffatomen bildet, m 1 oder 2, n eine ganze Zahl von 2 bis 20 und M ein Rest der Formel -COOR₆ ist, worin R₆ Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxyalkyl mit je 1 bis 20 Kohlenstoffatomen im Alkyl- und Alkoxyteil oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil ist,

R₂ Wasserstoff, Halogen, Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, und

 R_3 Wasserstoff, Chlor, Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen oder -COOR₆, worin R_6 die angegebene Bedeutung hat, bedeutet, wobei mindestens einer der Reste R_1 und R_2 von Wasserstoff verschieden ist.

in den Verbindungen der Formel (1b)

T Wasserstoff oder Alkyl mit 1 bis 6 Kohlenstoffatomen, T₁ Wasserstoff, Chlor oder Alkyl oder Alkoxy mit je 1 bis 4 Kohlenstoffatomen, n 1 oder 2 und T₂, wenn n 1 ist, Chlor oder ein Rest der Formel -OT₃ oder

$$-N$$
 T_5

und wenn n 2 ist, ein Rest der Formel

$$-N-T_{10}-N |$$
 T_{6}
 T_{6}

oder -O-T₉-O- ist, worin T₃ Wasserstoff, gegebenenfalls durch 1 bis 3 Hydroxylgruppen oder durch -OCOT₆ substituiertes Alkyl mit 1 bis 18 Kohlenstoffatomen, durch -O- oder -NT₆- ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl oder -OCOT₆ substituiert ist, gegebenenfalls durch Hydroxyl und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, gegebenenfalls durch Hydroxyl substituiertes Alkenyl mit 2 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil oder ein Rest der Formel -CH₂CH(OH)-T₇ oder

ist, T₄ und T₆ unabhängig voneinander Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch -O- oder -NT₆- ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen, Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen bedeuten, T₆ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Cycloalkyl mit 5 bis 12 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, T₇ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, gegebenenfalls durch Hydroxyl substituiertes Phenyl, Phenylalkyl mit 1 bis 4

5

10

15

20

25

30

35

40

45

50

Kohlenstoffatomen im Alkylteil oder -CH₂OT₈, T₈ Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen, Cycloalkyl mit 5 bis 10 Kohlenstoffatomen, Phenyl, mit Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Phenyl, oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, T₉ Alkylen mit 2 bis 8 Kohlenstoffatomen, Alkenylen mit 4 bis 8 Kohlenstoffatomen, Alkinylen mit 4 Kohlenstoffatomen, Cyclohexylen, durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 18 Kohlenstoffatomen oder einen Rest der Formel -CH₂CH(OH)CH₂OT₁₁OCH₂CH(OH)CH₂- oder -CH₂-C(CH₂OH)₂-CH₂-, T₁₀ gegebenenfalls durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 20 Kohlenstoffatomen oder Cyclohexylen, T₁₁ Alkylen mit 2 bis 8 Kohlenstoffatomen, durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 18 Kohlenstoffatomen, 1,3- oder 1,4-Cyclohexylen, 1,3- oder 1,4-Phenylen ist, oder T₁₀ und T₈ zusammen mit den beiden Stickstoffatomen einen Piperazinring darstellen,

in den Verbindungen der Formel (2)

5

10

15

20

25

30

35

40

45

50

55

u 1 oder 2 ist, und r eine ganze Zahl von 1 bis 3 bedeutet, die Substituenten Y1 unabhängig voneinander Wasserstoff, Hydroxyl, Halogenmethyl, Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxy mit 1 bis 18 Kohlenstoffatomen oder Halogen bedeuten, Y2, wenn u 1 ist, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, Halogen, unsubstituiertes oder durch Alkyl oder Alkoxy mit je 1 bis 18 Kohlenstoffatomen oder Halogen substituiertes Phenoxy, durch -COOH, -COOY8, -CONH2, -CONHY₉, -CONY₉Y₁₀, -NH₂, -NHY₉, -NY₉Y₁₀, -NHCOY₁₁, -CN und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen, durch ein oder mehrere Sauerstofftatome unterbrochenes und gegebenenfalls durch Hydroxyl oder Alkoxy mit 1 bis 12 Kohlenstoffatomen substituiertes Alkyl mit 4 bis 20 Kohlenstoffatomen, Alkenyl mit 3 bis 6 Kohlenstoffatomen, Glycidyl, gegebenenfalls durch Hydroxyl, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder -OCOY11 substituiertes Cyclohexyl, unsubstituiertes oder durch Hydroxyl, Chlor und/oder Methyl substituiertes Phenylalkyl mit 1 bis 5 Kohlenstoffatomen im Alkylteil, -COY₁₂ oder -SO₂Y₁₃ bedeutet, oder Y₂ wenn u 2 ist, Alkylen mit 2 bis 16 Kohlenstoffatomen, Alkenylen mit 4 bis 12 Kohlenstoffatomen, Xylylen, durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkylen mit 3 bis 20 Kohlenstoffatomen, -CH2CH(OH)CH2-O-Y15-OCH2CH(OH)CH2, -CO- $Y_{16}-CO-, -CO-NH-Y_{17}-NH-CO- \ oder \ -(CH_2)_m-CO_2-Y_{18}-OCO-(CH_2)_m- \ ist, \ worin \ m \ 1, \ 2 \ oder \ 3 \ ist, \ Y_8 \ Alkyl \ mit$ 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen, durch ein oder mehrere Sauerstoffoder Schwefelatome oder -NT6- unterbrochenes und/oder durch Hydroxyl substituiertes Alkyl mit 3 bis 20 $Kohlenstoffatomen, durch - P(O)(OY_{14})_2, -NY_9Y_{10} \ oder - OCOY_{11} \ und/oder \ Hydroxyl \ substituiertes \ Alkyl \ mit$ 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen, Glycidyl oder Phenylalkyl mit 1 bis 5 Kohlenstoffatomen im Alkylteil bedeutet, Y9 und Y10 unabhängig voneinander Alkyl mit 1 bis 12 Kohlenstoffatomen, Alkoxyalkyl mit 3 bis 12 Kohlenstoffatomen, Dialkylaminoalkyl mit 4 bis 16 Kohlenstoffatomen oder Cyclohexyl mit 5 bis 12 Kohlenstoffatomen bedeuten, oder Y₉ und Y₁₀ zusammen Alkylen, Oxaalkylenoder Azaalkylen mit je 3 bis 9 Kohlenstoffatomen bedeuten, Y11 Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 2 bis 18 Kohlenstoffatomen oder Phenyl, Y12 Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 2 bis 18 Kohlenstoffatomen, Phenyl, Alkoxy mit 1 bis 12 Kohlenstoffatomen, Phenoxy, Alkylamino mit 1 bis 12 Kohlenstoffatomen oder Phenylamino, Y₁₃ Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenyl, Alkylphenyl mit 1 bis 8 Kohlenstoffatomen im Alkylrest, Y14 Alkyl mit 1 bis 12 Kohlenstoffatomen oder Phenyl, Y15 Alkylen mit 2 bis 10 Kohlenstoffatomen, Phenylen oder eine Gruppe -Phenylen-M-Phenylen-, worin M -O-, -S-, -SO₂-, -CH₂- oder -C(CH₃)₂- ist, Y_{16} Alkylen, Oxaalkylen oder Thiaalkylen mit je 2 bis 10 Kohlenstoffatomen, Phenylen oder Alkenylen mit 2 bis 6 Kohlenstoffatomen, Y17 Alkylen mit 2 bis 10 Kohlenstoffatomen, Phenylen, Alkylphenylen mit 1 bis 11 Kohlenstoffatomen im Alkylteil und Y₁₈ Alkylen mit 2 bis 10 Kohlenstoffatomen oder durch Sauerstoff ein- oder mehrfach unterbrochenes Alkylen mit 4 bis 20 Kohlenstoffatomen ist,

in den Verbindungen der Formel (3)

v eine ganze Zahl von 1 bis 3 und w 1 oder 2 ist, und die Substituenten Z unabhängig voneinander Wasserstoff, Halogen, Hydroxyl oder Alkoxy mit 1 bis 12 Kohlenstoffatomen sind, und in den Verbindungen der Formel (4)

x eine ganze Zahl von 1 bis 3 ist, und die Substituenten L unabhängig voneinander Wasserstoff, Alkyl, Alkoxy oder Alkylthio mit je 1 bis 22 Kohlenstoffatomen, Phenoxy oder Phenylthio bedeuten.

- 5. Lackzusammensetzung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass in der Mischung das 2-Hydroxyphenylbenztriazol zu 2-Hydroxyphenyltriazin bzw. das 2-Hydroxyphenylbenztriazol zu 2-Hydroxyphenyltriazin, 2-Hydroxyphenon und/oder Oxalaniid bzw. das 2-Hydroxyphenyltriazin zu 2-Hydroxyphenon und/oder Oxalaniid im Molverhältnis von 3:1 bis 1:3, insbesondere 2:1 bis 1:2 vorliegt.
- Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass sich der Substituent R₁ oder R₂ in den Verbindungen der Formel (1a) in ortho- oder para-Stellung zur Hydroxylgruppe befindet.

- 7. Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel (1a) R₁ Wasserstoff, Alkyl mit 1 bis 20 Kohlenstoffatomen, R₂ Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, und R₃ Wasserstoff, Chlor oder Alkyl mit 1 bis 4 Kohlenstoffatomen ist.
- 8. Lackzusammensetzung nach Anspruch 7, dadurch gekennzeichnet, dass R₁ in ortho-Stellung zur Hydro-xylgruppe steht und Wasserstoff, Alkyl mit 4 bis 12 Kohlenstoffatomen ist, R₂ in para-Stellung zur Hydro-xylgruppe steht und Alkyl mit 1 bis 6 Kohlenstoffatomen oder Cumyl und R₃ Wasserstoff oder Chlor ist.
- Lackzusammensetzung nach Anspruch 8, dadurch gekennzeichnet, dass R₁ Alkyl mit 8 bis 12 Kohlenstoffatomen, R₂ Alkyl mit 4 bis 6 Kohlenstoffatomen und R₃ Wasserstoff ist.
 - 10. Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel (1b) T Alkyl mit 1 bis 6 Kohlenstoffatomen, T₁ Wasserstoff, Chlor oder Alkyl mit 1 bis 4 Kohlenstoffatomen, n 1 oder 2 und T₂, wenn n 1 ist, einer der Reste der Formel -OT₃ oder

$$-N$$
 T_5

und wenn n 2 ist, ein Rest der Formel -O-T9-O- oder

$$-N-T_{10}-N T_{6}$$
 T_{6}

ist, worin T_3 Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, oder durch -O- ein- oder mehrfach unterbrochenes Alkyl mit 3 bis 18 Kohlenstoffatomen ist, T_4 und T_5 unabhängig voneinander Wasserstoff, Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 8 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen sind, T_6 Wasserstoff oder Alkyl mit 1 bis 6 Kohlenstoffatomen ist, und T_9 und T_{10} Alkylen mit 2 bis 8 Kohlenstoffatomen, Alkenylen mit 4 bis 8 Kohlenstoffatomen oder durch -O- ein- oder mehrfach unterbrochenes Alkylen mit 2 bis 18 Kohlenstoffatomen sind.

11. Lackzusammensetzung nach Anspruch 10, dadurch gekennzeichnet, dass T Alkyl mit 1 bis 4 Kohlenstoffatomen, T₁ Wasserstoff oder Chlor und T₂ einer der Reste der Formel -OT₃ oder -O-T₉-O- ist, worin T₃ Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen oder ein Rest der Formel

$$-(OC_2H_4)_{4-8}-H$$

und T₉ Alkylen mit 2 bis 8 Kohlenstoffatomen oder ein Rest der Formel

$$-(OC_2H_4)_{4-8}-O-i$$

ist.

12. Lackzusammensetzung nach Anspruch 11, dadurch gekennzeichnet, dass T₂ ein Rest der Formel -OT₃ und T₃ Alkyi mit 1 bis 12 Kohlenstoffatomen oder ein Rest der Formel

$$-(OC_2H_4)_{LR}-H$$

ist.

13. Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel

5

15

20

25

30

35

40

45

50

- (2) die Substituenten Y_1 Wasserstoff, Alkyl mit 1 bis 12 Kohlenstoffatomen oder Halogen bedeuten, Y_2 wenn u 1 ist, Alkyl mit 1 bis 18 Kohlenstoffatomen, durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -COOY $_8$, -CONY $_9$ Y $_{10}$, und/oder -OCOY $_{11}$ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen, Glycidyl oder Phenylalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil ist, oder Y $_2$, wenn u 2 ist, Alkylen mit 2 bis 16 Kohlenstoffatomen, Alkenylen mit 4 bis 12 Kohlenstoffatomen, Xylylen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkylen mit 3 bis 20 Kohlenstoffatomen, ist wobei die Substituenten Y $_8$ bis Y $_{11}$ die in Anspruch 3 angegebenen Bedeutungen haben.
- 14. Lackzusammensetzung nach Anspruch 13, dadurch gekennzeichnet, dass die Substituenten Y₁ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Chlor sind, Y₂, wenn u 1 ist, unsubstituiertes oder durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -COOY₈, -CONY₉Y₁₀, und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen, Glycidyl oder Benzyl ist, oder Y₂, wenn u 2 ist, Alkylen mit 6 bis 12 Kohlenstoffatomen, Butenylen, Xylylen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkylen mit 3 bis 20 Kohlenstoffatomen ist, wobei Y₈ Alkyl mit 4 bis 12 Kohlenstoffatomen, Alkenylen mit 12 bis 18 Kohlenstoffatomen oder durch ein oder mehrere -O- unterbrochenes und/oder durch Hydroxyl substituiertes Alkyl mit 6 bis 20 Kohlenstoffatomen, ist Y₉ und Y₁₀ unabhängig voneinander Alkyl mit 4 bis 8 Kohlenstoffatomen sind, und Y₁₁ Alkyl mit 1 bis 8 Kohlenstoffatomen oder Alkenyl mit 2 oder 3 Kohlenstoffatomen ist.
- 15. Lackzusammensetzung nach Anspruch 13, dadurch gekennzeichnet, dass u 1 und r 2 ist, Y₁ Alkyl mit 1 bis 4 Kohlenstoffatomen und Y₂ Alkyl mit 1 bis 18 Kohlenstoffatomen oder durch Hydroxyl, Alkoxy mit 1 bis 18 Kohlenstoffatomen, -COOY₈ und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 12 Kohlenstoffatomen ist, worin Y₈ Alkyl mit 1 bis 18 Kohlenstoffatomen, Alkenyl mit 3 bis 18 Kohlenstoffatomen oder durch ein oder mehrere Sauerstoffatome unterbrochenes und/oder durch Hydroxyl substituiertes Alkyl mit 3 bis 20 Kohlenstoffatomen und Y₁₁ Alkenyl 2 bis 18 Kohlenstoffatomen ist.
 - 16. Lackzusammensetzung nach Anspruch 15, dadurch gekennzeichnet, dass Y₂ Alkyl mit 1 bis 8 Kohlenstoffatomen oder durch Hydroxyl, Alkoxy mit 12 bis 15 Kohlenstoffatomen, -COOY₈ und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen ist, worin Y₈ Alkyl mit 8 bis 12 Kohlenstoffatomen, Alkenyl mit 12 bis 18 Kohlenstoffatomen oder durch ein Sauerstoffatom unterbrochenes und Hydroxyl substituiertes Alkyl mit 5 bis 10 Kohlenstoffatomen und Y₁₁ Alkenyl 2 bis 8 Kohlenstoffatomen ist.
 - 17. Lackzusammensetzung nach Anspruch 15 und 16, dadurch gekennzeichnet, dass Y₁ Methyl und Y₂ ein Octylrest oder durch Hydroxyl, Alkoxy mit 13 oder 15 Kohlenstoffatomen, -COOY₈ und/oder -OCOY₁₁ substituiertes Alkyl mit 1 bis 3 Kohlenstoffatomen ist, worin Y₈ ein Decyl- oder Octadecenylrest oder durch Hydroxyl substituiertes und ein Sauerstoffatom unterbrochenes Alkyl mit 7 Kohlenstoffatomen und Y₁₁ Propenyl ist.
- 18. Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel
 40 (3) v und w unabhängig voneinander 1 oder 2 sind, und die Substituenten Z unabhängig voneinander Wasserstoff, Halogen oder Alkoxy mit 1 bis 12 Kohlenstoffatomen sind.
 - Lackzusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass in den Verbindungen der Formel
 x und y 1 oder 2 ist, und die Substituenten L unabhängig voneinander Wasserstoff oder Alkyl mit je 1 bis 12 Kohlenstoffatomen sind.
 - 20. Lackzusammensetzung nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass sie zusätzlich mindestens ein gehindertes Amin enthält, insbesondere ein solches, das mindestens einen Rest der Formel

55

5

10

15

30

35

45

enthält, worin R Wasserstoff oder Methyl ist.

- 21. Verwendung einer Mischung aus den Verbindungen der Formeln (1a) und/oder (1b) und den Verbindungen der Formeln (2), (3) und/oder (4) in Lacken.
- 22. Verwendung einer Mischung aus den Verbindungen der Formeln (1a) und/oder (1b) und den Verbindungen der Formel (2) in Lacken.
- 23. Verwendung einer Mischung aus den Verbindungen der Formel (2) und den Verbindungen der Formeln (3) und/oder (4) in Lacken.
 - 24. Verwendung nach Anspruch 21, 22 oder 23, worin die Lacke Ein- oder Zweischichtenlacke sind.
 - 25. Verwendung nach Anspruch 21, 22 oder 23, worin die Lacke strahlenhärtbare Lacke sind.
 - 26. Verwendung nach Anspruch 21, 22 oder 23, dadurch gekennzeichnet, dass die Mischung in Kombination mit mindestens einem sterisch gehinderten Amin, insbesondere einem solchen Amin eingesetzt wird, das mindestens einen Rest der Formel

enthält, worin R Wasserstoff oder Methyl ist.

 Lackfilm, erhältlich durch Aufbringen einer Lackzusammensetzung gemäss Anspruch 1 oder 3 auf eine Oberfläche und Härtung der aufgebrachten Lackzusammensetzung.

5

15

20

25

30

35

40

45

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 91 81 0192

	EINSCHLÄGIG			
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruck	KLASSIFIKATION DER ANMELDUNG (Int. CL5)
Y	FR-A-2 619 814 (SA * Ansprüche 1-8 *	NDOZ)	1-3	C 09 D 7/12
Y	US-A-3 268 474 (W. * Anspruch 1; Spalt	B. HARDY) e 2, Formula II *	1-3	
Y	DE-A-3 320 615 (SA * Ansprüche 1-3,5 *	NDOZ)	1-3	
Y	FR-A-2 607 494 (SA * Anspruch 1 *	NDOZ)	1-3	
A	EP-A-0 180 548 (CI * Anspruch 1 *	BA-GEIGY)	10-12	
A,D	EP-A-0 200 190 (AM * Anspruch 1 *	ERICAN CYANAMID CO.)	20	
				RECHERCHIERTE
	*			SACHGEBIETE (Int. CL5
				C 09 D
Der vo	rliegende Recherchenbericht wurd	de für alle Patentansprüche erstelkt		
	Recherchemort	Abschlußeistum der Recherche		Prider
DE	EN HAAG	05-08-1991	Busc	AGLIONE Y.

EPO PORM 1503 00.82 (P0403)

- Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument
- & : Mitgüed der gleichen Patentfamille, übereinstimmendes Dokument

THIS PAGE BLANK (USPTO)