Нижегородский государственный университет им. Н.И.Лобачевского

Факультет Вычислительной математики и кибернетики

Параллельные численные методы

Метод прогонки

При поддержке компании Intel

Баркалов К.А., Кафедра математического обеспечения ЭВМ

Содержание

- □ Постановка задачи
- □ Ленточные матрицы
- Метод прогонки (правая и левая прогонки)
- □ Встречная прогонка в двух потоках
- □ Параллельная блочная прогонка
- □ Оценки эффективности
- □ Результаты экспериментов

Постановка задачи

 \square Рассмотрим систему из n линейных алгебраических уравнений вида

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{21}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\dots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

- □ В матричном виде система может быть представлена как A x=b
- \Box $A=(a_{ij})$ есть вещественная матрица размера $n \times n$; b и x вектора из n элементов.
- \Box Будем искать значения вектора неизвестных x, при которых выполняются все уравнения системы.

Ленточные матрицы

 \square Матрица A называется *ленточной*, когда все ее ненулевые элементы находятся вблизи главной диагонали, т.е.

$$a_{ij}$$
=0, если $j > i + k_1$, $i > j + k_2$, где k_1 , $k_2 < n$.

Числа k_1 и k_2 называют шириной верхней и нижней полуленты. Тогда $k_1 + k_2 + 1$ – ширина ленты матрицы.

- □ Важным классом являются трехдиагональные матрицы (при $k_1 = k_2 = 1$).
- Подобные системы уравнений возникают в задаче сплайнинтерполяции, при решении дифференциальных уравнений.
- □ Для решения задач с трехдиагональными матрицами существуют специальные методы.

Трехдиагональные матрицы

a1	c1											f1
b2	a2	c2										f2
	b3	аЗ	сЗ									f3
		b4	a4	c4								f4
			b5	a5	c5							f5
				b6	a6	c6						f6
					b7	a7	c7					f7
						b8	a8	с8				f8
							b9	a9	с9			f9
								b10	a10	c10		f10
									b11	a11	c11	f11
										b12	a12	f12

Метод прогонки (прямой ход)

- \square Предположим, что выполнено $x_{i-1} = \alpha_i x_i + \beta_i$ (1)
- □ Подставим (1) в *i*-е уравнение системы, получим

$$(\alpha_i a_i + c_i) x_i + b_i x_{i+1} = f_i - a_i \beta_i$$
 (2)

 \Box Сравнивая (2) и выражение $x_i = \alpha_{i+1} x_{i+1} + \beta_{i+1}$, получим

$$\alpha_{i+1} = \frac{-b_i}{a_i \alpha_i + c_i} \qquad \beta_{i+1} = \frac{f_i - a_i \beta_i}{a_i \alpha_i + c_i} \tag{3}$$

 \Box Из первого уравнения $c_1x_1 + b_1x_2 = f_1$ находим

$$\alpha_2 = -b_1/c_1, \beta_2 = f_1/c_1.$$

□ Затем вычисляем $lpha_{i+1}$, eta_{i+1} ,используя (3) при i=2,...,n−1.

Метод прогонки (обратный ход)

 \square Определим x_n из последнего уравнения

$$x_{n-1} = \alpha_n x_n + \beta_n$$

$$a_n x_{n-1} + c_n x_n = f_n$$

$$x_n = \frac{f_n - a_n \beta_n}{a_n \alpha_n + c_n}$$

- \square Используя $x_i = \alpha_{i+1} x_{i+1} + \beta_{i+1}$, находим все x_i , i = n-1, ..., 1.
- □ Теорема
- Метод прогонки будет вычислительно устойчивым, если коэффициенты системы уравнений удовлетворяют условиям диагонального преобладания

$$|c_1| \ge |b_1|, |c_n| \ge |a_n|,$$

 $|c_i| > |a_i| + |b_i|, i=2,...,n-1.$

Левая прогонка

- □ Рассмотренный в предыдущем пункте метод прогонки, при котором определение x_i происходит последовательно справа налево, называют правой прогонкой.
- Аналогично выписываются формулы левой прогонки
- □ Прямой ход

$$\xi_{n} = -a_{n}/c_{n}, \ \xi_{i} = \frac{-a_{i}}{c_{i} + b_{i}\xi_{i+1}}, \ \eta_{n} = f_{n}/c_{n}, \ \eta_{i} = \frac{f_{i} - b_{i}\eta_{i+1}}{c_{i} + b_{i}\xi_{i+1}}, \ i = n-1, \dots, 2.$$

□ Обратный ход

$$x_1 = \frac{f_1 - b_1 \eta_2}{b_1 \xi_2 + c_1}$$
, $x_{i+1} = \xi_{i+1} x_i + \eta_{i+1}$, $i = 1, ..., n-1$.

Левая прогонка

- lacksquare Предположим, что $x_{i+1} = \xi_{i+1} x_i + \eta_{i+1}$
- $lue{}$ исключим из i-го уравнение системы переменную x_{i+1}

$$a_{i}x_{i-1} + c_{i}x_{i} + b_{i}(\xi_{i+1}x_{i} + \eta_{i+1}) = f_{i}$$

$$x_{i} = \frac{-a_{i}}{c_{i} + b_{i}\xi_{i+1}} x_{i-1} + \frac{f_{i} - b_{i}\eta_{i+1}}{c_{i} + b_{i}\xi_{i+1}}$$

 \Box Сравнивая с $x_i = \xi_i x_{i-1} + \eta_i$, получаем искомые формулы прямого и обратного хода левой прогонки

Встречная прогонка

- □ Комбинация левой и правой прогонок дает метод *встречной прогонки*, которые допускает распараллеливание на два потока.
- □ Разделим систему между двумя потоками первый будет оперировать уравнениями с номерами $1 \le i \le p$, второй уравнениями $p \le i \le n$, $p = \lceil n/2 \rceil$
- □ В первом потоке по формулам (1.4) вычисляются коэффициенты α_i, β_i , при $1 \le i \le p$; во втором потоке по формулам (1.8) вычисляются коэффициенты $\xi_i, \eta_i, p \le i \le n$.
- \square При i=p проводится сопряжение решений в форме (1.6) и (1.9): находим значение x_p из системы

$$x_{p} = \alpha_{p+1} x_{p+1} + \beta_{p+1}$$
$$x_{p+1} = \xi_{p+1} x_{p} + \eta_{p+1}$$

 \square В первом потоке находим x_i при $1 \le i < p$, а во втором все x_i при $p < i \le n$.

a1	c1											f1
b2	a2	c2										f2
	b3	a3	c3									f3
		b4	a4	c4								f4
			b5	a5	c5							f5
				b6	a6	с6						f6
					b7	a7	c7					f7
						b8	a8	с8				f8
							b9	a9	с9			f9
								b10	a10	c10		f10
									b11	a11	c11	f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
	b3	a3	c3									f3
		b4	a4	c4								f4
			b5	a5	c5							f5
				b6	a6	c6						f6
					b7	a7	c7					f7
						b8	a8	с8				f8
							b9	a9	с9			f9
								b10	a10	c10		f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
		b4	a4	c4								f4
			b5	a5	с5							f5
				b6	a6	с6						f6
					b7	a7	c7					f7
						b8	a8	с8				f8
							b9	a9	с9			f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
			b5	a5	c5							f5
				b6	a6	c6						f6
					b7	a7	c7					f7
						b8	a8	с8				f8
							b9	a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
				a5	c5							f5
				b6	a6	c6						f6
					b7	a7	c7					f7
						b8	a8					f8
							b9	a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
				a5	c5							f5
					a6	c6						f6
					b7	a7						f7
						b8	a8					f8
							b9	a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
				a5	c5							f5
					a6	c6						f6
						a7						f7
						b8	a8					f8
							b9	a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
				a5	c5							f5
					a6							f6
						a7						f7
							a8					f8
							b9	a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

a1	c1											f1
	a2	c2										f2
		a3	c3									f3
			a4	c4								f4
				a5								f5
					a6							f6
						a7						f7
							a8					f8
								a9				f9
								b10	a10			f10
									b11	a11		f11
										b12	a12	f12

- Применим блочный подход к разделению данных: пусть каждый поток обрабатывает $m = \lfloor n/p \rfloor$ строк матрицы A, т.е. k-й поток обрабатывает строки с номерами $1+(k-1)m \le i \le km$. Будем предполагать, что число уравнений в системе кратно числу потоков.
- В пределах полосы матрицы можно организовать исключение поддиагональных элементов матрицы (прямой ход метода). вычитание строки i, умноженной на константу b_{i+1}/a_i , из строки i+1 с тем, чтобы результирующий коэффициент при неизвестной x_i в (i+1)-й строке оказался нулевым

a1	c1											d1
b2	a2	c2										d2
	b3	a3	c3									d3
		b4	a4	c4								d4
'			b5	a5	c5							d5
				b6	a6	c6						d6
					b7	a7	с7					d7
						b8	a8	c8				d8
'							b9	a9	с9			d9
								b10	a10	c10		d10
									b11	a11	c11	d11
										b12	a12	d12

a1	c1											d1
	a2	c2										d2
	b3	a3	c3									d3
		b4	a4	c4								d4
"			b5	a5	c5							d5
			f6		a6	c6						d6
					b7	a7	с7					d7
						b8	a8	с8				d8
							b9	a9	с9			d9
							f10		a10	c10		d10
									b11	a11	c11	d11
										b12	a12	d12

a1	c1											d1
	a2	c2										d2
		a3	c3									d3
		b4	a4	c4								d4
"			b5	a5	c5							d5
			f6		a6	c6						d6
			f7			a7	c7					d7
						b8	a8	с8				d8
"							b9	a9	с9			d9
							f10		a10	c10		d10
							f11			a11	c11	d11
							f12			b12	a12	d12

a1	c1											d1
	a2	c2										d2
		a3	c3									d3
			a4	c4								d4
"			b5	a5	c5							d5
			f6		a6	c6						d6
			f7			a7	c7					d7
			f8				a8	с8				d8
"							b9	a9	с9			d9
							f10		a10	c10		d10
							f11			a11	c11	d11
							f12				a12	d12

- □ Если исключение первым потоком поддиагональных переменных не добавит в матрицу новых коэффициентов, то исключение поддиагональных элементов в остальных потоках приведет к возникновению столбца отличных от нуля коэффициентов: во всех блоках (кроме первого) число ненулевых элементов в строке не изменится, но изменится структура уравнений. Модификации также подвергнутся элементы вектора правой части.
- □ Затем выполняется обратный ход алгоритма каждый поток исключает наддиагональные элементы, начиная с последнего

a1	c1											d1
	a2	c2										d2
		a3		g3								d3
			a4	c4								d4
			b5	a5	c5							d5
			f6		a6	c6						d6
			f7			a7		g7				d7
			f8				a8	с8				d8
							b9	a9	с9			d9
							f10		a10	c10		d10
							f11			a11		d11
							f12				a12	d12

a1	c1											d1	
	a2			g2								d2	
		a3		g3								d3	
			a4	c4								d4	
'			b5	a5	c5							d5	
			f6		a6			g6				d6	
			f7			a7		g7				d7	
			f8				a8	с8				d8	
							b9	a9	с9			d9	
							f10		a10			d10	
							f11			a11		d11	
							f12				a12	d12	

a1	g	g1							d1
a2	g	g2							d2
a3	g	j 3							d3
a	4 c	:4							d4
b	5 a	a5			g5				d5
f6	5	a6			g6				d6
f7	·		a7		g7				d7
f8	3			a8	с8				d8
				b9	a9				d9
				f10		a10			d10
				f11			a11		d11
	ĺ			f12				a12	d12

- □ После выполнения обратного хода матрица стала блочной. Исключим из нее внутренние строки каждой полосы, в результате получим систему уравнения относительно части исходный неизвестных
- □ Данная система будет содержать 2*p* уравнений, и будет трехдиагональной. Ее можно решить последовательным методом прогонки. После того, как эта система будет решена, станут известны значения неизвестных на границах полос разделения данных. Далее можно за один проход найти значения внутренних переменных.

a1	g1			d1
a4	c4			d4
b5	a5	g5		d5
f8	a8	с8		d8
	b9	a9		d9
	f12		a12	d12

- □ После выполнения обратного хода матрица стала блочной. Исключим из нее внутренние строки каждой полосы, в результате получим систему уравнения относительно части исходный неизвестных
- □ Данная система будет содержать 2*p* уравнений, и будет трехдиагональной. Ее можно решить последовательным методом прогонки. После того, как эта система будет решена, станут известны значения неизвестных на границах полос разделения данных. Далее можно за один проход найти значения внутренних переменных.

- □ Рассмотренный способ распараллеливания уже дает хорошие результаты, но можно использовать лучшую стратегию исключения неизвестных.
- □ Прямой ход нового алгоритма будет таким же.
- □ Обратный ход: каждый поток исключает наддиагональные элементы, начиная со своего предпоследнего, и заканчивая последним для предыдущего блока матрицы.

a1	c1											d1	
	a2	c2										d2	
		a3	c3									d3	
			a4	c4								d4	
'			b5	a5	c5							d5	
			f6		a6	с6						d6	
			f7			a7	c7					d7	
			f8				a8	с8				d8	
'							b9	a9	с9			d9	
							f10		a10	c10		d10	
							f11			a11	c11	d11	
							f12				a12	d12	

a1	c1											d1
	a2		g2									d2
		a3	c3									d3
			a4	c4								d4
			b5	a5	c5							d5
			f6		a6		g6					d6
			f7			a7	с7					d7
			f8				a8	с8				d8
							b9	a9	с9			d9
							f10		a10		g10	d10
							f11			a11	c11	d11
							f12				a12	d12

a1			g1									d1
	a2		g2									d2
		a3	c3									d3
			a4	c4								d4
			b5	a5			g5					d5
			f6		a6		g6					d6
			f7			a7	с7					d7
			f8				a8	с8				d8
							b9	a9			g9	d9
							f10		a10		g10	d10
							f11			a11	c11	d11
							f12				a12	d12

a1			g1									d1
	a2		g2									d2
		a3	c3									d3
			a4				g5					d4
			b5	a5			g5					d5
			f6		a6		g6					d6
			f7			a7	с7					d7
			f8				a8				g8	d8
							b9	a9			g9	d9
							f10		a10		g10	d10
							f11			a11	c11	d11
							f12				a12	d12

- Можно сформировать вспомогательную задачу меньшего размера. Исключим из матрицы все строки каждой полосы, кроме последней, в результате получим систему уравнения относительно части исходный неизвестных.
- □ Даная система будет содержать всего *р* уравнений, и также будет трехдиагональной. Ее можно решить последовательным методом прогонки.
- □ После того, как эта система будет решена, станут известны значения неизвестных на нижних границах полос разделения данных. Далее можно за один проход найти значения внутренних переменных в каждом потоке.

a4	g4		d4
f8	a8	g8	d8
	f12	a12	d12

Оценка эффективности

$$S_p = \frac{T_1}{T_p} \approx \frac{n}{2\frac{n}{p} + p} = p \frac{n}{2n + p^2}$$

 \square Для систем с общей памятью n>>p, поэтому

ускорение
$$S_p = p \frac{n}{2n+p^2} \approx \frac{p}{2}$$

□ Сравнение разных видов прогонки т, сек.

□ Ускорение параллельной встречной прогонки

Сравнение параллельной встречной и параллельной блочной прогонки

□ Ускорение параллельной блочной прогонки

Литература

- Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения).
 М.: Высшая школа, 2001.
- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 3. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.

Ресурсы сети Интернет

- Интернет-университет суперкомпьютерных технологий. [http://www.hpcu.ru].
- Intel Math Kernel Library Reference Manual.
 [http://software.intel.com/sites/products/documentation/hpc/mkl/mklman.pdf].

Авторский коллектив

- □ Баркалов Константин Александрович, к.ф.-м.н., старший преподаватель кафедры Математического обеспечения ЭВМ факультета ВМК ННГУ. barkalov@fup.unn.ru
- Коды учебных программ разработаны Маловой Анной и Сафоновой Яной

