МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ЛЕКЦІЯ 14. Штучний інтелект в розробці відеоігор: методи, застосування та виклики

Львів -- 2025

Лекція курсу "Штучний інтелект в ігрових застосунках" 2025-14

Вступ

У цій лекції ми розглянемо застосування штучного інтелекту в розробці відеоігор. Штучний інтелект (ШІ) відіграє критичну роль у створенні сучасних ігор, забезпечуючи реалістичну поведінку неігрових персонажів, генерацію контенту та адаптивний ігровий процес. Ми дослідимо різні методи та технології ШІ, що використовуються в ігровій індустрії, їх еволюцію з часом та майбутні тенденції.

Розуміння принципів та технік ШІ в іграх є важливим не лише для розробників, але й для дослідників та студентів, оскільки ігри часто слугують випробувальним майданчиком для нових алгоритмів та методів штучного інтелекту, які згодом можуть бути застосовані в інших галузях.

Ця лекція базується на останніх дослідженнях та практиках у сфері ігрового штучного інтелекту, а також розглядає етичні аспекти та майбутні напрямки розвитку цієї технології в контексті ігрової індустрії.

Огляд штучного інтелекту в відеоіграх

Штучний інтелект у відеоіграх відрізняється від загального ШІ тим, що його основна мета — створити ілюзію інтелектуальної поведінки, а не обов'язково досягти справжнього інтелекту. Ігровий ШІ зосереджений на забезпеченні захоплюючого та реалістичного досвіду для гравців, часто симулюючи людську поведінку та прийняття рішень.

Ключові аспекти ШІ в відеоіграх

- 1. **Поведінка неігрових персонажів (NPC)**: ШІ керує діями та реакціями персонажів, з якими взаємодіє гравець.
- 2. **Процедурна генерація контенту**: Алгоритми ШІ автоматично створюють ігрові рівні, музику, квести та інші елементи.
- 3. **Адаптивна складність**: ШІ аналізує продуктивність гравця та відповідно налаштовує рівень складності.
- 4. **Прийняття тактичних рішень**: Особливо важливо в стратегічних іграх та іграх з бойовими системами.
- 5. **Навігація та пошук шляху**: Алгоритми для визначення оптимальних маршрутів у віртуальному середовищі.

Історія ШІ в відеоіграх

Розвиток штучного інтелекту в іграх тісно пов'язаний з еволюцією самої ігрової індустрії та обчислювальних технологій.

Ранні роки (1950-1970)

Перші комп'ютерні ігри, такі як шахи та хрестики-нулики, були фактично експериментами з ранніми алгоритмами ШІ. В 1950-х роках Клод Шеннон описав алгоритми для комп'ютерних шахів, а Артур Самуель розробив шашкову програму, яка могла вчитися на досвіді.

У цей період ШІ в іграх базувався на простих правилах та детермінованих системах. Проте, навіть ці ранні реалізації заклали основу для більш складних систем ШІ в майбутньому.

Розвиток (1980-1990)

У 1980-х та 1990-х роках, з появою домашніх комп'ютерів та ігрових консолей, ШІ в іграх став більш складним. Ігри на кшталт Рас-Мап представили примітивні, але ефективні алгоритми переслідування для керування привидами.

Стратегічні ігри, такі як Civilization та SimCity, запровадили більш складні системи прийняття рішень та симуляції. З'явилися перші експерименти з машинним навчанням та генетичними алгоритмами в ігровому контексті.

Сучасна ера (2000-теперішній час)

Сучасні ігри використовують різноманітні техніки ШІ, включаючи:

- Поведінкові дерева та скінченні автомати: Для моделювання поведінки NPC
- Нейронні мережі: Для навчання поведінки противників та адаптації до стилю гравця
- Генеративні змагальні мережі (GAN): Для процедурної генерації контенту
- **Метод Монте-Карло для пошуку дерева (МСТS)**: Особливо ефективний у настільних іграх з високою складністю, як-от Go
- Навчання з підкріпленням: Для створення адаптивних агентів, які вдосконалюються з часом

Застосування ШІ в сучасних відеоіграх

Комп'ютерні симуляції настільних ігор

Настільні ігри, такі як шахи, шашки та Go, були одними з перших, де застосовувався ігровий ШІ. Вони залишаються важливою сферою дослідження та розробки алгоритмів ШІ.

Сучасні алгоритми включають:

- 1. Мінімакс з альфа-бета відсіканням: Класичний алгоритм для ігор з повною інформацією
- 2. **Метод Монте-Карло для пошуку дерева (MCTS)**: Використовується в AlphaGo та інших сучасних системах
- 3. Нейронні мережі: Для оцінки позицій та прогнозування оптимальних ходів

Проривом у цій сфері став AlphaGo від DeepMind, який переміг світового чемпіона з Go в 2016 році, показавши потенціал глибокого навчання в ігровому ШІ.

Застосування в сучасних відеоіграх

Сучасні відеоігри використовують різноманітні техніки ШІ для різних аспектів ігрового процесу:

Бойовий ШІ в відеоіграх

Бойовий ШІ відповідає за керування противниками під час бойових сцен. Він включає:

- Тактичне позиціонування: Розміщення ворогів для ефективного нападу або захисту
- Групові тактики: Координація дій між кількома NPC
- Прогнозування дій гравця: Передбачення та реакція на ходи гравця
- **Динамічне налаштування складності**: Адаптація рівня складності на основі продуктивності гравця

Наприклад, серія ігор F.E.A.R. стала відомою своїм інноваційним ШІ, який використовував планування цілей для створення складних тактичних маневрів ворожих солдатів.

Процедурна генерація контенту

Процедурна генерація контенту (PCG) використовує алгоритми для автоматичного створення ігрових елементів:

Процедурно генеровані рівні

Алгоритми створюють ігрові рівні, карти та середовища:

- Генерація на основі шуму: Використання функцій шуму Перліна для створення природних ландшафтів
- Генерація на основі агентів: Симуляція природних процесів для створення реалістичних світів
- Генетичні алгоритми: Еволюційний підхід до створення та оптимізації рівнів
- **Генерація на основі правил**: Використання заздалегідь визначених правил для створення послідовних структур

Ігри, як Minecraft, No Man's Sky та Dwarf Fortress, широко використовують процедурну генерацію для створення практично безмежних світів.

Процедурно генерована музика та звук

ШІ також використовується для створення динамічного звукового супроводу:

- Адаптивна музика: Змінюється залежно від дій гравця та ігрових ситуацій
- Процедурна композиція: Алгоритмічне створення музичних тем та варіацій
- Генерація звукових ефектів: Динамічне створення звуків на основі подій у грі

Метод Монте-Карло для пошуку дерева

Метод Монте-Карло для пошуку дерева (MCTS) став важливим алгоритмом в ігровому ШІ, особливо для ігор з високою розгалуженістю дерева рішень, як-от Go.

MCTS працює шляхом:

- 1. Вибір: Вибір найперспективнішого вузла на основі балансу між дослідженням та використанням
- 2. Розширення: Додавання нового вузла до дерева
- 3. Симуляція: Проведення випадкової симуляції від нового вузла до кінця гри

4. Зворотне поширення: Оновлення значень вузлів на основі результату симуляції

MCTS особливо ефективний, коли традиційні алгоритми мінімакс не спрацьовують через високу складність гри.

Застосування ШІ за межами NPC

ШІ в іграх використовується не лише для керування поведінкою персонажів:

- **Адаптивна складність**: Автоматичне налаштування рівня складності гри на основі здібностей гравця
- Аналіз поведінки гравця: Вивчення ігрового стилю для персоналізованих рекомендацій
- Динамічна генерація сюжету: Створення адаптивних наративів, що реагують на дії гравця
- Оптимізація ресурсів: Розумне використання обчислювальних ресурсів для підтримки плавності гри

Наприклад, Left 4 Dead використовує систему "Al Director", яка керує розміщенням ворогів, предметів та подій у грі, щоб створити динамічний і постійно напружений досвід.

Неігрові персонажі (NPC)

Неігрові персонажі (NPC) є одним з найбільш помітних застосувань ШІ в іграх. Вони створюють враження живого, населеного світу і часто є ключовим елементом ігрового досвіду.

Наративні та ігрові ролі

NPC виконують різні функції в іграх:

- Сюжетні персонажі: Рухають наратив уперед, надаючи квести та інформацію
- Противники: Кидають виклик гравцеві через бойові зіткнення
- Супутники: Допомагають гравцеві у виконанні завдань
- Фонові персонажі: Створюють відчуття живого, населеного світу
- Торговці та постачальники послуг: Забезпечують ігрову економіку та прогресію

Досягнення в ШІ неігрових персонажів

Сучасні технології покращили реалістичність та складність NPC:

- 1. Поведінкові дерева: Ієрархічна структура для моделювання складної поведінки
- 2. Скінченні автомати: Моделювання різних станів NPC та переходів між ними
- 3. Системи навігації та пошуку шляху: Алгоритми для реалістичного руху у віртуальному просторі
- 4. Емоційні моделі: Симуляція емоційних реакцій для більшої переконливості
- 5. Процедурна анімація: Динамічна генерація рухів залежно від середовища
- 6. Діалогові системи на основі ШІ: Генерація природних розмов та реакцій

Виклики в розробці NPC

Незважаючи на значний прогрес, розробники стикаються з рядом викликів при створенні переконливих NPC:

- **Ефект моторошної долини**: Чим ближче NPC до людської поведінки, тим помітнішими стають недоліки
- Обчислювальні обмеження: Балансування між складністю ШІ та продуктивністю гри
- Передбачуваність: Створення NPC, які не стають занадто передбачуваними з часом
- Симуляція соціальної динаміки: Моделювання складних соціальних взаємодій між NPC
- **Адаптивність**: Створення NPC, які можуть адаптуватися до непередбачуваних дій гравця

ШІ, що "шахраює"

Цікавим аспектом ігрового ШІ є концепція "шахрайського ШІ" — системи, які отримують переваги, недоступні гравцеві, щоб забезпечити певний рівень виклику або ігрового досвіду.

Приклади "шахрайства" ШІ:

- **Додаткова інформація**: ШІ має доступ до інформації, яка має бути недоступною (наприклад, положення схованого гравця)
- Динамічні ресурси: Надання ШІ додаткових ресурсів, коли він програє
- Гумова стрічка: Штучне підвищення продуктивності відстаючих противників (часто використовується в гоночних іграх)
- Скоригована точність: Зниження точності ШІ, коли він має занадто велику перевагу

Хоча "шахрайство" ШІ часто критикується, воно може бути ефективним інструментом ігрового дизайну, щоб забезпечити збалансований та приємний досвід. Ключовим аспектом є те, щоб таке "шахрайство" було непомітним для гравця та відповідало загальному ігровому досвіду.

Приклади використання ШІ в іграх

Нижче наведено приклади інноваційного використання ШІ в популярних іграх:

- 1. **F.E.A.R. (2005)**: Використовує систему планування цілей для створення тактичних маневрів ворогів, таких як використання прикриття та координація атак.
- 2. **Black & White (2001)**: Представила істот з ШІ, які навчалися через підкріплення та демонстрацію, пристосовуючись до стилю гравця.
- 3. **The Sims (2000-теперішній час)**: Використовує складні системи потреб та бажань для моделювання людської поведінки.
- 4. **Left 4 Dead (2008)**: Система "Al Director" динамічно контролює темп гри, розміщення ворогів та предметів.
- 5. **Middle-earth: Shadow of Mordor (2014)**: Система "Nemesis" створює унікальних ворогів з особистостями, які розвиваються на основі взаємодій з гравцем.
- 6. **STALKER: Shadow of Chernobyl (2007)**: Система "A-Life" для симуляції екосистеми, де NPC взаємодіють незалежно від дій гравця.

- 7. **Alien: Isolation (2014)**: ШІ Чужого використовує дві системи одна відстежує положення гравця, інша приймає рішення на основі різних сенсорних вхідних даних.
- 8. **Forza Motorsport (серія)**: Використовує "Drivatar" систему машинного навчання, яка вивчає стиль водіння гравців та відтворює його для створення реалістичних противників.

Генеративний штучний інтелект у відеоіграх

Генеративні моделі ШІ, такі як GPT, DALL-Е та інші, відкривають нові можливості для ігрової розробки:

- Генерація діалогів NPC: Створення динамічних, контекстно відповідних діалогів
- Процедурна генерація наративів: Автоматичне створення сюжетних ліній та квестів
- Художній дизайн та текстури: Генерація ігрових ресурсів на основі текстових описів
- Голосовий синтез: Створення реалістичного озвучування для NPC
- **Розширення існуючого контенту**: Автоматичне створення варіацій для підвищення повторної гральності

Вже є приклади експериментальних ігор, які використовують великі мовні моделі для створення динамічного ігрового контенту та взаємодії з гравцем, хоча ця технологія все ще розвивається.

Досягнення в ігровому ШІ

Останні досягнення в ігровому ШІ включають:

- 1. **Глибоке навчання з підкріпленням**: Системи, як AlphaGo та OpenAl Five, продемонстрували здатність ШІ перевершувати людей у складних іграх.
- 2. **Процедурне генерування, що враховує контент**: Алгоритми, які створюють контент, адаптований до конкретних ігрових ситуацій та переваг гравця.
- 3. **Емоційний ШІ**: Системи, які моделюють емоційні реакції та соціальну динаміку для більш реалістичних NPC.
- 4. **Крос-ігрові та крос-платформні агенти**: ШІ, який може навчатися та адаптуватися до різних ігор та середовищ.
- 5. **Динамічне балансування**: Методи, які автоматично корегують складність гри на основі продуктивності та залученості гравця.

Ці досягнення розмивають межу між дослідницьким та комерційним ігровим ШІ, створюючи більш інтелектуальні, адаптивні та реалістичні ігрові світи.

Висновки

Штучний інтелект відіграє фундаментальну роль у сучасній розробці відеоігор, створюючи реалістичні, захоплюючі та адаптивні ігрові досвіди. Від керування неігровими персонажами до генерації контенту, ШІ розширює можливості ігрових світів та збагачує взаємодію з гравцем.

Ми дослідили історичний розвиток ігрового ШІ, його сучасні застосування та ключові технології. Ми розглянули різні методи, що використовуються для створення інтелектуальної поведінки в іграх, включаючи поведінкові дерева, методи пошуку шляху, процедурну генерацію та машинне навчання.

Особливу увагу ми приділили неігровим персонажам, які є одним з найбільш помітних проявів ШІ в іграх. Ми розглянули їхні наративні та ігрові ролі, а також виклики, пов'язані з їх розробкою.

У міру розвитку технологій ШІ, особливо в галузі машинного навчання та генеративних моделей, ми можемо очікувати ще більш інноваційних застосувань в ігровій індустрії. Майбутні ігри, ймовірно, запропонують безпрецедентний рівень інтерактивності, персоналізації та реалізму.

Проте, разом з цими можливостями з'являються і нові виклики — від технічних обмежень до етичних міркувань щодо використання штучного інтелекту. Успішні розробники ігор повинні балансувати між інноваціями в ШІ та створенням приємного ігрового досвіду, пам'ятаючи, що кінцевою метою ігрового ШІ є посилення задоволення гравця, а не просто демонстрація технологічних можливостей.

Література та додаткові ресурси

- 1. Wikipedia. (2025). Artificial intelligence in video games
- 2. Yannakakis, G. N., & Togelius, J. (2018). Artificial Intelligence and Games
- 3. Rabin, S. (2023). Game Al Pro: Collected Wisdom of Game Al Professionals
- 4. DeepMind. (2021). AlphaGo The Movie
- 5. Togelius, J. (2021). Playing Smart: On Games, Intelligence, and Artificial Intelligence
- 6. Graham, D. (2025). Procedural Content Generation in Games
- 7. Bartle, R. (2023). Al and Games: A Match Made in Digital Heaven
- 8. Graft, K. (2024). The Future of AI in Gaming
- 9. Schreier, J. (2025). How Al is Transforming Video Game Development