

Amendments to the Claims

Claim 1 (Currently Amended) A kit for implanting in a duct, the kit comprising:

a tubular endoprosthesis; and

a prosthetic valve configured to be implanted in, and withdrawn from said tubular ~~endoprothesis endoprosthesis~~;

wherein said prosthetic valve comprises:

a resilient carrier frame that is radially deformable in an elastic manner relative to a central axis of said tubular ~~endoprothesis endoprosthesis~~ between a deployed position in which said resilient carrier frame rests against said tubular ~~endoprothesis endoprosthesis~~, and a folded position, said resilient carrier frame being biased towards the deployed position by its resiliency;

a flexible shutter connected to said resilient carrier frame, said flexible shutter being deformable between an obstruction position in which said flexible shutter is extended transverse to the central axis of said tubular ~~endoprothesis endoprosthesis~~ and a release position in which said flexible shutter is contracted transverse to the central axis of said tubular ~~endoprothesis endoprosthesis~~ to allow a fluid to flow through said resilient carrier frame; and

integrated centripetal compression means for compressing said resilient carrier frame from the deployed position towards the folded position,

wherein said integrated centripetal compression means comprises a clamp having at least two branches connected together at a common region located along a central axis of said resilient carrier frame in the deployed position, each branch having a connection segment connected to said flexible shutter and a drive segment for centripetally compressing said resilient carrier frame towards the folded position, and

wherein the common region is located at a distance from said connection segments of said branches, said drive segments are located between said connection segments and the common region, axially apart from said connection segments, and said drive segments are spaced axially away from said flexible shutter.

Claim 2 (Previously Presented) The kit according to claim 1, wherein said flexible shutter comprises a pouch having an end wall.

Claim 3 (Previously Presented) The kit according to claim 2, wherein said pouch includes an evacuation orifice formed in said end wall.

Claim 4 (Previously Presented) The kit according to claim 2, wherein said end wall of said pouch is generally hemispherical.

Claim 5 (Cancelled)

Claim 6 (Previously Presented) The kit according to claim 1, wherein said resilient carrier frame is fork-shaped, each of said branches is elastically deformable, and said branches are welded together at the common region such that said drive segments and said connection segments are located on a first side of the common region.

Claim 7 (Currently Amended) The kit according to claim 1, wherein said at least two branches of said clamp has is two branches.

Claim 8 (Currently Amended) The kit according to claim 1, wherein said at least two branches of said clamp has is three branches.

Claim 9 (Previously Presented) The kit according to claim 1, wherein
said flexible shutter comprises a pouch having an end wall; and
said prosthetic valve further comprises a plurality of threads respectively connecting each
of said branches to said end wall of said pouch.

Claim 10 (Cancelled)

Claim 11 (Previously Presented) The kit according to claim 1, wherein said tubular endoprosthesis is adapted to be positioned against an inside surface of the duct.

Claim 12 (Currently Amended) A method for implanting a kit according to claim 1 in the duct, the method comprising:

implanting the tubular endoprosthesis in the duct by an endoluminal technique; and
removably implanting the prosthetic valve inside the tubular—endoprothesis
endoprosthesis by the endoluminal technique.

Claim 13 (Currently Amended) The method according to claim 12, further comprising:
compressing the prosthetic valve to the folded position by the integrated centripetal compression means;
removing the prosthetic valve from the tubular—endoprothesis
endoprosthesis in a transluminal manner; and
implanting a new prosthetic valve in the tubular endoprosthesis by the endoluminal technique.

Claim 14 (Cancelled)

Claim 15 (Previously Presented) The kit according to claim 18, wherein said constriction strand forms a closed loop.

Claim 16 (Previously Presented) The kit according to claim 1, wherein said resilient carrier frame, said flexible shutter, and said integrated centripetal compression means are shaped and arranged such that contacting said centripetal compression means causes said resilient carrier frame to be compressed toward the folded position for removal or adjustment.

Claim 17 (Previously Presented) The kit according to claim 1, wherein said drive segments are curved to be convex inwardly toward said flexible shutter.

Claim 18 (Currently Amended) A kit for implanting in a duct, the kit comprising:
a tubular endoprosthesis; and
a prosthetic valve configured to be implanted in, and withdrawn from said tubular—endoprothesis
endoprosthesis;
wherein said prosthetic valve comprises:

a resilient carrier frame that is radially deformable in an elastic manner relative to a central axis of said tubular-endoprothesis endoprosthesis between a deployed position in which said resilient carrier frame rests against said tubular-endoprothesis endoprosthesis, and a folded position, said resilient carrier frame being biased towards the deployed position by its resiliency;

a flexible shutter connected to said resilient carrier frame, said flexible shutter being deformable between an obstruction position in which said flexible shutter is extended transverse to the central axis of said tubular-endoprothesis endoprosthesis and a release position in which said flexible shutter is contracted transverse to the central axis of said tubular-endoprothesis endoprosthesis to allow a fluid to flow through said resilient carrier frame; and

integrated centripetal compression means for compressing said resilient carrier frame from the deployed position towards the folded position,

wherein said resilient carrier frame comprises a resilient wire mesh, and said integrated centripetal compression means comprises a constriction strand permanently engaged around said resilient wire mesh, and

wherein said resilient wire mesh is a resilient tubular wire mesh, and said constriction strand extends around a circumference of said resilient tubular wire mesh for compressing said resilient carrier frame.