Thema: Riemann-Integration im Mehrdimensionalen, Satz von Fubini, Transformationsformel

Abgabe: Präsenzblatt

Besprechung: Dienstag, 22. Oktober 2019

Aufgabe 1. Sei $Q \subset \mathbb{R}^n$ ein Quader und $f:Q \to \mathbb{R}$ Riemann-integrierbar. Dann ist |f| Riemann-integrierbar und

 $\left| \int_{Q} f(x) dx \right| \leqslant \int_{Q} |f(x)| dx.$

Aufgabe 2. Geben Sie eine überabzählbare Teilmenge $K \subset \mathbb{R}$, die Jordan-Nullmenge ist.

Aufgabe 3. Sei $A=B=[0,1]\subset\mathbb{R}$. Definiere $f:A\times B\to\mathbb{R}$ durch

$$f(x,y) := \begin{cases} 1 & \text{falls } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{sonst.} \end{cases}$$

Man zeige: für jedes $x \in A$ ist $f_x(y) := f(x,y) : B \to \mathbb{R}$ Riemann-integrierbar, aber f ist nicht Riemann-integrierbar.

Aufgabe 4. Sei $A=B=[0,1]\subset\mathbb{R}$ und K die Cantormenge. Definiere $f:A\times B\to\mathbb{R}$ durch

$$f(x,y) := \begin{cases} 1 & \text{ falls } x \in A \cap K \text{ und } y \in B \cap \mathbb{Q}, \\ 0 & \text{ sonst.} \end{cases}$$

Man zeige: die Funktion f ist Riemann-integrierbar. Die Funktion $f_x: B \to \mathbb{R}$ (definiert wie oben) ist nur für $x \in A \setminus K$ Riemann-integrierbar, nicht aber für $x \in K$.

Aufgabe 5. Man berechne das Integral

$$\int_{A} \frac{1}{1 + x^2 + y^2} dx dy,$$

wobei $A = \left\{ (x,y) \in \mathbb{R}^2 \mid 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1, 0 < x^2 + y^2 \leqslant 1 \right\}.$

Aufgabe 6. Man berechne das Integral

$$\int_{A} x^2 + y^2 dx dy,$$

wobei $A = \big\{ (x,y) \in \mathbb{R}^2 \; \big| \; 0 \leqslant x, 0 \leqslant y, x+y \leqslant 1 \big\}.$