Movie Predictions

Project Team Members:

Shikha Verma (Team Leader): A20408401

Ayushi Patel: A20407392 Mayur Mehta: A20405901 Abhilash Bhurse: A20404893

1. Project Proposal

A formal description of the project with a stated research goal.

A movie is not only for entertaining users, but also for a film company to make great profits. There are lot of factors needed for a movie to be a commercial success. The goal of this project is to derive such insights which help making an informed decision for the future generations of movies. For this project, we take IMDB movie dataset from Kaggle website and would like to analyze what kind of movies are more successful or obtained a higher IMDB score than others. The IMDB scores are taken as response variables and would try to obtain predictions based on analyzing them. The results from this project can help the companies to understand the factors of successful movie and answer some interesting questions which are stated below

• A specific question or set of questions that the project seeks to address.

- i. Which countries are producing most movies?
- ii. What are the important factors that make a movie more successful than others?
- iii. Which type of movies are profitable in future?
- iv. What kind of movies are most produced?
- v. What genres are the most produced?
- vi. Do IMDB ratings affect the revenue of a movie?

A proposed methodology/approach to the analysis that will be performed.

- First, we will perform preprocessing of data, i.e cleaning the data and preparing it for analysis and predict some outcomes from the data and plot them on graph to derive predictive results for future
- After cleaning of data, data analysis on dataset is performed which can be given as follows

i. Data Preparation:

Data Import:

- We will be importing the data in R import library.
- 5043 observations of 28 variables, spanning across 100 years in 66 countries.

Data Cleaning:

- Removal of spurious characters from the movie title, genre and plot keyword.
- Remove the duplicates in the data, using then "movie title" column
- To compare financial columns across movies and countries, currency columns are converted in to USD.

Due: October 03, 2018

ii. Exploratory Data Analysis:

Diverse set of packages, functions and graphical methods will be used to explore the movies dataset, methods included bar chart to statistical heavy distribution fitting

Genre Analysis:

- Cleaning of the Variables
- Frequency Analysis
- Association Analysis

Country:

- Explore the country Variables
- Exploring the budget varies by each country
- Exploring the gross revenue
- Analysis on languages used

IMDB Score Analysis:

- Analysis on mean and the variation in movie score
- Data Distribution
- Analysis of relationship between IMDB score, revenue and budget of the movie
- Analysis of overall profitability
- A metric or set of metrics which will measure analysis results.
- For the frequently used, the differences between values which are predicted by a model and the values observed is measured by Root mean square error metric.
- > To measure the difference between two continuous variables, Mean absolute error metric will be used.
- Precision, Recall and F1 metrics will be used to determine the performance feature

2. Project Outline

• Literature review and related work - existing projects, references, papers, and relevant articles, etc.

Data Repository:

https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

https://www.kaggle.com/orgesleka/imdbmovies

Supplemental Resources:

 $\underline{http://rstudio-pubs-static.s3.amazonaws.com/337246_91de37b30146468ab2b2684fc570baf5.html}$

https://data.world/data-society/imdb-5000-movie-dataset

https://webpage.pace.edu/rp84697n/cs641/Portfolio/U01382090 Rakesh Movie%20Report.pdf

Related Work:

https://cseweb.ucsd.edu/classes/wi17/cse258-a/reports/a095.pdf

http://cs229.stanford.edu/proj2011/YooKanterCummingsPredictingMovieRevenuesUsingImdbData.pdf

Due: October 03, 2018

Due: October 03, 2018

 All data sources and reference data with descriptions - dataset type (documents, trial data, etc.), dataset size (number of observations, number of dimensions), feature descriptions, other notes (missing data, processing issues, etc.), etc.

Data Set Characteristics: Multivariate

Associated Tasks: Regression Number of Observations: 5043

Number of Columns: 28 Missing Values? : Yes

Area: Entertainment Industry

Column Name	Size	Description	Data Type	Other Notes
color	5043	It depicts if the movie is made in color or not	String	Valid Entries: 5024 Mismatched Entries: 19 Unique values: 2
director_name	5043	The name of the director of the movie	String	Valid Entries: 4939 Mismatched Entries: 104 Unique values: 2398
num_critic_for_reviews	5043	The number of critics for reviewing	Numeric	Valid Entries: 4993 Mismatched Entries: 50
duration	5043	The running duration of movie	Numeric	Valid Entries: 5028 Mismatched Entries: 15
director_facebook_likes	5043	The likes on Facebook for director	Numeric	Valid Entries: 4939 Mismatched Entries: 104
actor_3_facebook_likes	5043	The number of likes on Facebook for Actor 3	Numeric	Valid Entries: 5020 Mismatched Entries: 23
actor_2_name	5043	The name of the Actor 2 starring in movie	String	Valid Entries: 5030 Mismatched Entries: 13 Unique Values: 3032
actor_1_facebook_likes	5043	The number of likes on Facebook for Actor 1	Numeric	Valid Entries: 5036 Mismatched Entries: 7
gross	5043	The gross income of movie	Numeric	Valid Entries: 4159 Mismatched Entries: 884
genres	5043	The genre of film	String	Valid Entries: 5043 Mismatched Entries: 0
actor_1_name	5043	The name of Actor 1 starring in movie	String	Valid Entries: 5036 Mismatched Entries: 7 Unique Values:2097
movie_title	5043	The title of movie	String	Valid Entries: 4939 Mismatched Entries: 104 Unique Values: 4917
num_voted_users	5043	The number of users who voted	Numeric	Valid Entries: 5043 Mismatched Entries: 0
cast_total_facebook_likes	5043	The total number of likes on Facebook by the cast	Numeric	Valid Entries: 5043 Mismatched Entries: 0

• Data processing and pipeline - cleaning, imputing, transformation, outlier detection, etc.

- Data import Importing the data from kaggle data source.
- > Data Cleaning removing characters from keyword like movie title, genre & plot columns and duplicates.
- > Data preview and Analysis based on Data Description after replacing the missing values with suitable value.
- Categorical distribution based on genre, country, IMDB

Data stylized facts - distributional analysis, clustering, dimensionality reduction, etc. Some basic example graphs that represent our IMDB movie dataset from Kaggle and will implement more analyzed graphs as the project proceeds

Due: October 03, 2018

Due: October 03, 2018

- (i) Movie release years in histogram
- (ii) Average of IMDB scores of different genres

 Model selection - feature selection requirements, classification/regression approaches, reference/baseline model, etc.

Regression and Predicting Model.

This model has a goal to predict if the movie is good or bad based on the IMDB score given by the users and profitability analysis of movie to predict the values for future references. Also, as the project proceeds we will compare different attributes (Linear Regression, KNN, etc.) in model to deliver accurate results

Software packages, applications, libraries, and associated tools, etc.

Libraries/Packages:

tibble, DT, knitr, tm, ggplot2, wordcloud, dplyr, fitdistrplus, plotly, plyr will be used for the project.

Softwares:

RStudio, R

Project Management and Source Control:

Kaggle Dataset/Website, Some analysis pdfs and GitHub