Réductions algébriques

Polynômes d'endomorphismes et de matrices

Polynôme d'endomorphismes

<u>Définition</u>: Soient $u \in \mathcal{L}(E)$, $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$

On appelle évaluation (ou valeur) de P en u l'endomorphisme $P(u) \in \mathcal{L}(E)$ défini par :

$$P(u) = \sum_{k=0}^{d} a_k u^k$$

Propriété : Soit $u \in \mathcal{L}(E)$, $P, Q \in \mathbb{K}[X]$, $\lambda \in \mathbb{K}$

Alors $(\lambda P + Q)(u) = \lambda P(u) + Q(u)$

$$(P \times Q)(u) = P(u) \circ Q(u)$$

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$, alors $\mathbb{K}[u]$ est stable par addition, multiplication par un scalaire et composition.

Polynômes annulateurs

Définition : On appelle polynôme annulateur de $u \in \mathcal{L}(E)$ tout $P \in \mathbb{K}[X]$ tel que :

$$P(u) = 0_{\mathcal{L}(E)}$$

Théorème: 🕏

Soit $u \in \mathcal{L}(E)$. Les valeurs propres de u figurent parmi les racines (dans \mathbb{K}) de tout polynôme annulateur de u, c'est-à-dire :

Si
$$P \in \mathbb{K}[X]$$
 est annulateur de u , $Sp(u) \subset \{\lambda \in \mathbb{K} \mid P(\lambda) = 0\}$

Théorème de Cayley-Hamilton : Soient E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$. Le polynôme caractéristique \mathcal{X}_u de u est annulateur de u, c'est-à-dire :

$$\mathcal{X}_u = 0_{\mathcal{L}(E)}$$

Polynômes de matrices

 $\underline{\text{D\'efinition}:} \operatorname{Soient} A \in M_n(\mathbb{K}), P = \textstyle\sum_{k=0}^d a_k X^k \in \mathbb{K}[X]$

On appelle évaluation (ou valeur) de P en A la matrice $P(A) \in M_n(\mathbb{K})$ définie par :

$$P(A) = \sum_{k=0}^{d} a_k A^k \in M_n(\mathbb{K})$$

<u>Propriété</u>: Soit $A \in M_n(\mathbb{K})$, $P, Q \in \mathbb{K}[X]$, $\lambda \in \mathbb{K}$

Alors
$$(\lambda P + Q)(A) = \lambda P(A) + Q(A)$$

$$(P \times Q)(A) = P(A) \times Q(A) = Q(A) \times P(A)$$

 $\underline{\text{D\'efinition}}: \text{On dit que } M \in M_n(\mathbb{K}) \text{ est un polyn\^ome en } A \in M_n(\mathbb{K}) \text{si } \exists p \in \mathbb{K}[X] \text{ tel que } M = P(A):$

$$\mathbb{K}[A] = \{ P(A) \mid P \in \mathbb{K} \}$$

<u>Définition</u>: On appelle polynôme annulateur de $A \in M_n(\mathbb{K})$ tout $P \in \mathbb{K}[X]$ tel que :

$$P(A) = 0_{M_n(\mathbb{K})}$$

Propriété : 🕏

Soient $A, B \in M_n(\mathbb{K})$. Si A et B sont semblables, elles ont les mêmes polynômes annulateurs.

<u>Théorème</u>: Soient $A \in M_n(\mathbb{K}), P \in \mathbb{K}[X]$

Si P est annulateur de A, alors

$$Sp(a) \subset {\lambda \in \mathbb{K}, P(\lambda) = 0}$$

<u>Théorème de Cayley-Hamilton</u>: Soit $A \in M_n(\mathbb{K})$. \mathcal{X}_A est annulateur de A.

Polynôme minimal

Note : E est un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}$

Définition: (polynôme minimal)

Soit $u \in \mathcal{L}(E)$. Il existe un unique polynôme $\Pi_u \in \mathbb{K}[X]$ tel que :

- (i) Π_u est annulateur de u
- (ii) Π_u est unitaire
- (iii) $\forall P \in \mathbb{K}[X]$ non nul annulateur de u, $\deg(\Pi_u) \leq \deg P$

Le polynôme Π_u est appelé polynôme minimal de u

Remarque: cette définition se transpose aux matrices.

Théorème : **★**

Soit $u \in \mathcal{L}(E)$. Π_u divise tout polynôme annulateur de u

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. Les valeurs propres de u sont exactement les racines dans \mathbb{K} de Π_u , ie :

$$Sp(u) = \{\lambda \in \mathbb{K}, \Pi_u(\lambda) = 0\}$$

Remarque : ce théorème se transpose aux matrices

Réductions & polynômes annulateurs

E est un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}$

Théorème de Bézout : Soient $P,Q \in \mathbb{K}[X]$

P et Q sont premiers entre eux

 \Leftrightarrow

$$\exists V, W \in \mathbb{K}[X]$$
, tel que $PV + QW = 1$

<u>Lemme des noyaux</u>: Soient $u \in \mathcal{L}(E)$, $P,Q \in \mathbb{K}[X]$ premiers entre eux. Alors

$$\ker((P \times Q)(u)) = \ker(P(u)) \oplus \ker(Q(u))$$

<u>Corollaire</u>: Soit $u \in \mathcal{L}(E)$, $m \in \mathbb{N}^*$, P_1 , ..., $P_m \in \mathbb{K}[X]$ 2 à 2 premiers entre eux, alors

$$\ker\left(\left(\prod_{k=1}^{m} P_k\right)(u)\right) = \bigoplus_{k=1}^{m} \ker\left(P_k(u)\right)$$

Diagonalisabilité

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) u est diagonalisable
- (ii) Il existe un polynôme annulateur de u scindé à racines simples sur $\mathbb K$
- (iii) Π_u est scindé à racines simples sur \mathbb{K}

Réduction d'un endomorphisme induit

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$ et F un sev de E stable par u.

- 1) Le sev F est stable par tout polynôme en u et $\forall P \in \mathbb{K}[X], (P(u))_E = P(u_F)$
- 2) Le polynôme minimal de u_F divise Π_u , ie $\Pi_{u_F}|\Pi_u$

<u>Théorème</u>: Soient $u \in \mathcal{L}(E)$ et F un sev de E stable par u.

Si u est diagonalisable, alors u_F l'est également.

<u>Théorème</u>: Soient $u, v \in \mathcal{L}(E)$ diagonalisables tels que $u \circ v = v \circ u$.

Alors il existe une base de E qui diagonalise u et v en même temps

On l'appelle base de codiagonalisation.

<u>Propriété</u>: Soient $A, B \in M_n(\mathbb{K})$ diagonalisables dans $M_n(\mathbb{K})$ telles que AB = BA.

Alors $\exists P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ et $P^{-1}BP$ sont diagonales.

Trigonalisabilité

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre

- (i) u est trigonalisable
- (ii) Il existe un polynôme annulateur qui est scindé sur K.
- (iii) Le polynôme minimal Π_u de u est scindé sur \mathbb{K} .