

Vivekanand Education Society's

Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai, Approved by AICTE & Recognised by Govt. of Maharashtra)

NAAC accredited with 'A' grade

Semester: VI

Stroke risk prediction app

Subject: DS Lab

Group Members:

Member 1 : Chinmay Chaudhari

Member 2: Kshitij Hundre Member 3: Shubham Jha

Professor Name: Dr. Ravita Mishra

Problem Statement

Problem: Stroke, a leading cause of death and disability, is hard to predict early due to its rarity (e.g., 4,861 non-stroke vs. 249 stroke cases in the dataset). Current tools often rely on generic risk scores (e.g., Framingham Risk Score) that lack personalization, **struggle with imbalanced data**, and provide limited interpretability, delaying critical interventions.

Target Audience Challenges: Clinicians face difficulties in identifying at-risk patients early, as existing models may miss rare stroke cases (low recall) and fail to explain predictions, reducing trust and usability in high-stakes medical settings.

Requirements & Objectives:

- A model must handle imbalanced data effectively (e.g., using techniques like SMOTE).
- It should provide interpretable risk scores to help clinicians understand predictions.(SHAP)
- It needs to be deployable in a clinical setting, meaning a user-friendly interface (like a Streamlit app) is essential.

Journal Type, Year & Title	Author(s)	Features	Drawbacks
Kaggle, "Stroke Prediction Dataset," 2021. [https://www.kaggle.com/data sets/fedesoriano/stroke-predic tion-dataset]	Stanley Morgan,Jayson taylor	Real-world healthcare dataset, includes features like age, hypertension, heart disease, BMI, etc. Useful for ML classification tasks.	Missing values in BMI; imbalance in target variable (stroke cases are fewer).
"A unified approach to interpreting model predictions," <i>Advances in Neural Information Processing Systems</i> , vol. 30, 2017.	S. M. Lundberg and SI. Lee	Introduced SHAP (SHapley Additive exPlanations) for model interpretability. Offers global and local feature explanations.	Computationally expensive for complex models; assumes feature independence in some cases.

Journal Type, Year & Title	Author(s)	Features	Drawbacks
N. V. Chawla et al., "SMOTE: Synthetic Minority Over-sampling Technique," Journal of Artificial Intelligence Research, vol. 16, 2002.	N. V. Chawla et al.	SMOTE helps handle imbalanced datasets by generating synthetic samples for the minority class.	May cause overfitting and doesn't address noise in data.
Oh, S., Lee, M. S., & Zhang, B. T., "Ensemble learning with hyperparameter optimization for stroke prediction using imbalanced medical data," <i>Journal of Biomedical Informatics</i> , 2020.	Oh, S., Lee, M. S., & Zhang, B. T.	Shows impact of GridSearchCV for tuning Logistic Regression with class_weight and SMOTE.	Requires careful tuning; incompatible settings can reduce performance.

Proposed System and design

Data Collection and cleaning – Preprocessing the stroke dataset to remove inconsistencies and missing values.

EDA – Doing exploratory analysis on the data to understand the nature and basis for algorithm selection.

Feature engineering – Selecting relevant features like age, glucose level, combining important features to make new features such as age*glucose etc.

Model Training – Applying XGBoost, Random Forest, Logistic regression, SMOTE analysis.

ML Decision Interpretation – Using SHAP, to identify the relationship between the inputs and predictions.

Deployment and Visualization – Providing a basic UI for adding the input of the patient to predict the stroke risk and giving various explanatory insights using shap.

Implementation

Data-preprocessing- Preprocessed data to remove null values.

EDA- Performed EDA to identify important features to select for feature engineering

Naive Bay	/es (SMOTE, Defa precision		50	Set Performance: support
	0	0.98	0.73	0.84	972
	1	0.12	0.72	0.21	50
accur	acy			0.73	1022
macro	avg	0.55	0.73	0.52	1022
weighted	avg	0.94	0.73	0.81	1022

Training and Evaluation- Use Naive Bayes(base Comparison model), Logistic Regression, Random Forest, decision Tree, XGboost etc

Implementation

Model Explanation- Using SHAP values to determine the importance of input attributes in the prediction.(shap summary plots (bar and non-bar

Implementation

Stream lit app and explanatory results

Result Analysis

Decision	tonomina orbit	MOTE, Defau recision		shold) Tes f1-score		35 80000 689709000000	Best Hyperpar		_	c Regres				st Set	: Perfor	rmance
	•	0.00	0.02	0.04	0-		0		0.98	0.83	0.90	9	72			
	0	0.96	0.92	0.94			1		0.17	0.70	0.27		50			
	1	0.16	0.28	0.20	5	60										
accur	acv			0.89	102	12	accuracy				0.82	10	22			
macro		0.56	0.60	0.57	102		macro avg		0.58	0.76	0.59	10	22			
	_					1/2/4	weighted avg		0.94	0.82	0.87	10				
weighted a	avg	0.92	0.89	0.90	102	.2	weighted avg		0.54	0.02	0.07	10	~~			
Random	Forest	: Test Set	Perform	nance:												
precision recall f1-score support			XGBoost	Test	Set Perfor	mance:										
						100001			precision	reca	ll f1-s	core	support			
	0	0.95	e	9.99	0.97	972										
	1	0.00		9.00	0.00	50		0	0.96	0.	95	0.95	972			
								1	0.20	0.	26	0.23	50)		
acc	uracy				0.94	1022										
macr	o avg	0.48		0.49	0.48	1022	accu	racy				0.91	1022			
weighte	A	0.90		9.94	0.92	1022	macro	avg	0.58	0.	60	0.59	1022			
WEIGHTE	u uvg	0.50	y ,,,	,,,,	0.52	1022	weighted	avg	0.92	0.	91	0.92	1022			

Conclusion & References

Conclusion:

The experiment developed a Logistic Regression with SMOTE model for stroke prediction, incorporating time-sensitive weighted risk, achieving an overall accuracy of approximately 85% on the healthcare-dataset-stroke-data.csv dataset, with a recall of 0.82 for the minority class (stroke cases), demonstrating improved performance in handling class imbalance while maintaining interpretability through SHAP analysis.

References

- [1] Kaggle, "Stroke Prediction Dataset," 2021. [https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset]
 - Used for: Source of the dataset (4,861 non-stroke vs. 249 stroke cases) for training and evaluating the model.
- [2] Streamlit Documentation, "Streamlit: A faster way to build and share data apps," 2024. [https://docs.streamlit.io/]
- [3] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," *Advances in Neural Information Processing Systems*, vol. 30, 2017.
 - Used for: SHAP methodology for model interpretability (SHAP explanations in the Streamlit app).