In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ggplot import mtcars
%matplotlib inline
```

```
C:\Anaconda\lib\site-packages\ggplot\utils.py:81: FutureWarning: pandas.tsli
b is deprecated and will be removed in a future version.
You can access Timestamp as pandas.Timestamp
  pd.tslib.Timestamp,
C:\Anaconda\lib\site-packages\ggplot\stats\smoothers.py:4: FutureWarning: Th
e pandas.lib module is deprecated and will be removed in a future version. T
```

e pandas.lib module is deprecated and will be removed in a future version. T hese are private functions and can be accessed from pandas.lib instead from pandas.lib import Timestamp

C:\Anaconda\lib\site-packages\statsmodels\compat\pandas py:56: FutureWarnin

C:\Anaconda\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarnin
g: The pandas.core.datetools module is deprecated and will be removed in a f
uture version. Please use the pandas.tseries module instead.

from pandas.core import datetools

Mean(Average)

• Mean is defined as the sum of all the observations divided by number of observations. It tells us how our each data point approx look like. The main disadvantage of analysing distribution of the data by mean is, it gets effected by the outliers.

In [3]:

```
mtcars.index = mtcars['name']
mtcars.mean()
```

Out[3]:

mpg	20.090625
cyl	6.187500
disp	230.721875
hp	146.687500
drat	3.596563
wt	3.217250
qsec	17.848750
VS	0.437500
am	0.406250
gear	3.687500
carb	2.812500
dtype:	float64

In [7]:

mtcars.head()

Out[7]:

	name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
name												
Mazda RX4	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

In [8]:

mtcars.mean(axis = 1)

Out[8]:

name	
Mazda RX4	29.907273
Mazda RX4 Wag	29.981364
Datsun 710	23.598182
Hornet 4 Drive	38.739545
Hornet Sportabout	53.664545
Valiant	35.049091
Duster 360	59.720000
Merc 240D	24.634545
Merc 230	27.233636
Merc 280	31.860000
Merc 280C	31.787273
Merc 450SE	46.430909
Merc 450SL	46.500000
Merc 450SLC	46.350000
Cadillac Fleetwood	66.232727
Lincoln Continental	66.058545
Chrysler Imperial	65.972273
Fiat 128	19.440909
Honda Civic	17.742273
Toyota Corolla	18.814091
Toyota Corona	24.888636
Dodge Challenger	47.240909
AMC Javelin	46.007727
Camaro Z28	58.752727
Pontiac Firebird	57.379545
Fiat X1-9	18.928636
Porsche 914-2	24.779091
Lotus Europa	24.880273
Ford Pantera L	60.971818
Ferrari Dino	34.508182
Maserati Bora	63.155455
Volvo 142E	26.262727
dtype: float64	

Median -

• Median is a middle value of a sorted distribution. The median splits the data in half.

In [10]:

```
mtcars.median()
Out[10]:
        19.200
mpg
cyl
         6.000
disp
       196.300
        123.000
hp
         3.695
drat
wt
          3.325
        17.710
qsec
٧s
         0.000
          0.000
gear
          4.000
          2.000
carb
dtype: float64
In [15]:
# Density Plot
norm_data = pd.DataFrame(np.random.normal(size=10000))
```

In [20]:

```
norm_data.plot(kind= 'density', figsize = (7,7))
plt.vlines(norm_data.mean(), ymin=0, ymax=0.4, linewidth = 5.0)
plt.vlines(norm_data.median(), ymin=0, ymax=0.4, linewidth = 4.0, color='yellow')
```

Out[20]:

<matplotlib.collections.LineCollection at 0x195066d6a58>

In this plot mean and median both are on the top of each other because of the symmetric destribution of of the data.

In Skewed distribution the mean tends to sift towards the skewness and median tries to resist the effect of the skewness.

In [34]:

```
skewed_data = pd.DataFrame(np.random.exponential(size=100000))
```

In [37]:

```
skewed_data.plot(kind='density', figsize=(8,8), xlim = (-1, 5))
plt.vlines(skewed_data.mean(),ymin=0,ymax=0.8, linewidth=5)
plt.vlines(skewed_data.median(), ymin=0,ymax=0.8, linewidth = 4, color = 'Red')
```

Out[37]:

<matplotlib.collections.LineCollection at 0x19507097978>

In [40]:

```
normal_data = np.random.normal(size= 50)
outlier_data = np.random.normal(15, size=3)
combined_data = pd.DataFrame(np.concatenate((normal_data, outlier_data), axis = 0))
```

In [42]:

```
combined_data.plot(kind = 'density', figsize=(9,8))
plt.vlines(combined_data.mean(), ymin=0, ymax=0.2, linewidth = 4 )
plt.vlines(combined_data.median(), ymin=0, ymax=0.2, linewidth = 4, color='red')
```

Out[42]:

<matplotlib.collections.LineCollection at 0x195078c0e48>

In []: