Performance Analyses of Electron Bombardment Ion Thrusters

John J. Murray¹

The University of Alabama, Tuscaloosa, AL, 35487

Two ion bombardment thrusters are considered. The theoretical mercury ion thruster is analyzed for accelerating and accelerating-decelerating configurations; thrust, specific impulse, and output power are determined. The NASA-developed J-Series thruster is then analyzed to determine the efficiencies associated with a 5210 W xenon configuration, and calculated values are compared with experimentally determined values.

Nomenclature

 ε_0 = permittivity of free space (8.85 x 10⁻¹² C²/Nm²)

 η_p = power efficiency

 η_u = propellant efficiency

 I_{sp} = specific impulse

 P_e = output power

R = ratio of net voltage to total voltage

V_a = screen potential

Equations and Methods

To find the thrust of an electron bombardment thruster, the equation

$$\frac{F}{A} = \frac{8}{9} \varepsilon_0 \left(\frac{V_a}{L}\right)^2 \tag{19-15}$$

from the notes will be used. To determine the specific impulse, the equation

$$I_{sp} = \frac{u_e}{g} = \frac{\sqrt{\left(2\left(\frac{q}{m}\right)V_a\right)}}{g} \tag{19-16}$$

is used. To round out the performance metrics, engine power can be found by

¹ M.S. Candidate, Department of Aerospace Engineering and Mechanics, The University of Alabama.

$$\frac{P_e}{A} = \frac{4}{9} \, \varepsilon_0 \left(\frac{2q}{m}\right)^{\frac{1}{2}} \left(\frac{V_a^{\frac{5}{2}}}{L^2}\right) \tag{19-17}$$

I. Mercury Electron Bombardment Thruster

A. Acceleration Grid

Given a 30 cm diameter mercury electron bombardment thruster with a screen potential of 1400 V, a grounded accelerator grid with 7 mm spacing, the thrust can be found by Equation 19-15 to be

$$F = \pi (0.15)^2 \frac{8}{9} \varepsilon_0 \left(\frac{1400}{0.007} \right)^2 = \mathbf{0.0222} \ N$$

The specific impulse of the engine is found to be

$$I_{sp} = \frac{\sqrt{\left(2\left(\frac{1.602\times10^{-19}}{3.33\times10^{-25}}\right)1400\right)}}{9.81} = 3,740 \text{ s}$$

and the power generated is

$$P_e = \pi (0.15)^2 \frac{4}{9} \varepsilon_0 \left(\frac{2(1.602 \times 10^{-19})}{3.33 \times 10^{-25}} \right)^{\frac{1}{2}} \left(\frac{1400^{\frac{5}{2}}}{0.007^2} \right) = 408.2 W$$

B. Accel-Decel Grids

The addition of a grounded decelerator grid changes the problem—in this new scenario, the once-grounded accelerator grid now holds -500 V. Net voltage is then 1900 V, while total voltage is 900 V.

Equation 15 becomes

$$F = \pi (0.15)^2 \frac{8}{9} \varepsilon_0 \left(\frac{1900}{0.007} \right)^2 \left(\frac{1900}{900} \right)^{-\frac{3}{2}} = \mathbf{0.0259} \, \mathbf{N}$$

While the new forms for specific impulse and power give the following:

$$I_{sp} = \frac{\sqrt{\left(2\left(\frac{1.602x10^{-19}}{3.33x10^{-25}}\right)1900\right)}}{9.81} = 4358 \, s$$

$$P_e = \frac{Fu_e}{2} = \frac{0.0259\left(\sqrt{\left(2\left(\frac{1.602x10^{-19}}{3.33x10^{-25}}\right)1900\right)}\right)}{2} = 553.7 W$$

II. Extended Mercury Electron Bombardment Thruster

If the spacecraft in Part I experienced a solar event that charged its accelerator grid to +200 V, the performance would be as follows:

$$F = \pi (0.15)^2 \frac{8}{9} \varepsilon_0 \left(\frac{1200}{0.007}\right)^2 = \mathbf{0.01634} \, N \, (\mathbf{26.4\% \, decrease})$$

In the case of a similar acceleration-deceleration thruster, the thrust performance would then be

$$F = \pi (0.15)^2 \frac{8}{9} \varepsilon_0 \left(\frac{1200}{0.007}\right)^2 \left(\frac{1200}{1600}\right)^{-\frac{3}{2}} = \mathbf{0.0252} \ N \ (\mathbf{2.7\% \ decrease})$$

III. J-Series Thruster

Working with a 5210 W J-series thruster with xenon propellant, it is of great utility to know its operating efficiencies in various configurations. Given as background information on the thruster are the following data:

	TABLE III THRUSTER PERFORMANCE XENON PROPELLANT								
Beam voltage, V	Beam current, A	Discharge voltage, V	Discharge power per beam ampere, W/A	Measured propellant efficiency	Thrust loss factor	Thruster input power, W	Thrust, N	Specific impulse, sec	Thruster efficiency
1020 1030 1110 1110 1110 1200 1200 1200	1.35 1.44 2.55 2.69 2.87 3.75 3.88 4.06 4.16	38.4 45.2 36.1 38.1 42.9 27.9 28.7 31.2 33.5	209 228 158 166 190 177 190 196 205	0.875 .933 .905 .954 1.019 .915 .947 .991	0.954 .941 .954 .943 .916 .954 .947 .934	1710 1850 3280 3490 3790 5210 5440 5730 5920	0.069 .072 .134 .140 .145 .204 .210 .217	3290 3480 3560 3710 3850 3740 3840 3970 4030	0.646 .662 .716 .734 .727 .724 .731 .741

1200 4.16 33.5 205 1.

Assumes neutralizer flow rate of 0.1 eq. amp.

BASSUMES neutralizer power of 40 watts

Source: Rawlin, Vincent K., "Operation of the J-Series Thruster Using Inert Gas," prepared for the Sixteenth International Electric Propulsion Conference, New Orleans, LA, 1982.

The first, power efficiency, is determined by

$$\eta_p = \frac{\frac{1}{2}mu_e^2}{\left(\frac{1}{2}\right)mu_e^2 + e_i + e_L}$$

Knowing that exit velocity is related to beam voltage by

$$u_e = \sqrt{2\frac{q}{m}V_a} = \sqrt{\frac{2(1.602x10^{-19})}{2.18x10^{-25}}(1200)} = 42.0 \text{ km/s}$$

and the energy loss per ion is given as 116 eV (1.859 $\times 10^{-17}$ J), and the ionization energy of xenon is 12.13 eV (1.943 $\times 10^{-18}$ J, *source: WolframAlpha*), it can be determined that, for single ionization,

$$\eta_p = \frac{\frac{1}{2}(2.18x10^{-25})(4.2x10^4)^2}{\frac{1}{2}(2.18x10^{-25})(4.2x10^4)^2 + 1.859 x10^{-17} + 1.943 x 10^{-18}} = \mathbf{0.904}$$

Given a case of a second ionization, an additional 116 eV would be lost and the transition energy of xenon from its first to second ionization state would have to be considered (2^{nd} state is 21.21 eV, or 3.398 x 10^{-18} J), the power efficiency would then become

$$\eta_p = \frac{\frac{1}{2}(2.18x10^{-25})\big(4.2x10^4\big)^2}{\frac{1}{2}(2.18x10^{-25})(4.2x10^4)^2 + 2(1.859x10^{-17}) + (3.398 - 1.943)x10^{-18}} = \mathbf{0}.833$$

Propellant efficiency is nominally found as the ratio of beam current to total current

$$\eta_u = \frac{J_B}{J_{TOT}}$$

where total current is (using values from Table III)

$$\left(\frac{P}{V_a}\right) = \frac{5210}{1200} = 4.34 A$$

propellant efficiency is then found to be

$$\eta_u = \frac{3.75}{4.34} = 0.86$$

This is only for a single ionization case, however. To account for a second ionization, the ion current ratio must be accounted for, given by consulting Figure 7 from the lecture notes, below.

At a xenon propellant efficiency of 0.86, the ratio is found to be approximately 0.4. Using this to find the correction factor for propellant efficiency,

$$\beta = \frac{1 + \frac{0.4}{2}}{1 + 0.4} = 0.857 \rightarrow \eta_u = 0.737$$

Finally, this allows for the calculation of overall efficiency

$$\eta_t = \eta_p \eta_u = \mathbf{0.614}$$

Compared to the NASA technical report values:

	Calculated	Experimental (Rawlin)
η_u	0.737	0.724
η_p	0.860	0.915
η_t	0.614	0.662