· E-transform: & discrete-time Fourier transform (DIFI)

· 基本公式: $\chi[3] = \sum_{n=0}^{\infty} \chi[n] \overline{\epsilon}^n$ 其中 $\overline{\epsilon} = e^{i\alpha}$ (為複數)

ex:
$$\chi[n] = \begin{cases} 1 , n=1 \\ 3 , n=4 \end{cases}$$
 $\Rightarrow \chi[3] = |2^{-1} + 32^{-4}$ $= \frac{1}{2} + \frac{3}{24}$ $= \frac{2^{3} + 3}{2^{4}}$

· Region of Convergence: 夏成燕勤等比,令分母絕對值70,再取灰集即可ex: 又[3] = 后 an zin = 1+ 盘 + ai + m = 公比為 盘

由無窮等比可和 $\chi[3] = \frac{1}{|-\frac{1}{2}|}$,所以ROL為 $|\frac{Q}{|-\frac{1}{2}|}$ $|-\frac{1}{2}|$

特性:

中線性: 2{0x[n]+by[n]} = ax(3)+bY(3)

Э時間平移: X[N-m] = Z™X(3)

⑨ 頻季放大: $\Lambda^{n}\chi[n] = \chi(\frac{3}{\Lambda})$

④ 時間倒數: $\chi[-n] = \chi(\frac{1}{3})$

5 Modulation: (ω s Ω n) χ $[n] = \frac{1}{2} \left[\chi(\ell^{i\omega} z) + \chi(\bar{\ell}^{i\omega} z) \right] \Rightarrow i\omega \tau_{i} \eta_{i}!!$ $(\sin\Omega_n)\chi[n] = \frac{1}{2}[\chi(\ell^{i\omega}z) - \chi(\ell^{i\omega}z)]$

⑤ Accumulation: 令y[n] 為disevete time signal ×(n] 的總和, 且對於 n=-1,-レッ, ×[n]=0

$$y(n) = \sum_{k=0}^{N} \chi(k) \Rightarrow \gamma(2) = \frac{3}{3-1} \chi(3)$$

- 1 Convolution: $\chi(n) * h(n) = \chi(3)H(3)$
- 3 471A: X(0) = Lim X(3) 然値: X(0)= Lim (1-81) X(E)
- ① $Z\{NX[n]\} = -3\frac{d}{dx}X(x) \Rightarrow 徽分後 x (-2)$

· R 2 - transform:

- 力能除 ●直接用長除法
- ② 不能除 ⇒ 化盛部分分式再看出原函数是誰

(-		+ x[-m]
3. Frequency scaling	$a^ex[n]$	$X\left(\frac{z}{a}\right)$
4. Time reversal	x[-n]	$X\left(\frac{1}{z}\right)$
5. Multiplication by n	nx[n]	$-z\frac{d}{dz}X(z)$
i. Multiplication by n ²	$n^{\bullet}x[n]$	$z\frac{d}{dz}X(z) + z^2\frac{d^2}{dz^2}X(z)$
. Modulation		
Multiplication by $e^{i\Omega_P}$	$e^{j\Omega_{0}}x[n]$	$X(e^{-j\Omega_0}z)$
Multiplication by $\cos \Omega n$	$(\cos\Omega n)x[n]$	$\frac{1}{2} \left[X(e^{j\Omega}z) + X(e^{-j\Omega}z) \right]$
Multiplication by $\sin \Omega n$	$(\sin\Omega n)x[n]$	$\frac{j}{2} \Big[X(e^{j\Omega}z) - X(e^{-j\Omega}z) \Big]$
. Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{z}{z-1}X(z)$
. Convolution	x[n]* $h[n]$	X(z)H(z)
. Initial value	$x[0] = \lim_{z \to \infty} X(z)$	
. Final value	$x[\infty] = \lim_{z \to 1} (1 - z^{-1})X(z)$	

x[n]	X(z)	ROC
1. $\delta[n]$	1	All z
2. $\delta[n-m]$	$\frac{1}{z^m}$	$z \neq 0$
3. <i>u</i> [<i>n</i>]	$\frac{z}{z-1}$	z > 1
4. $a^nu[n]$	$\frac{\overline{z}}{z-a}$	z > a
5. nu[n]	$\frac{z}{(z-1)^2}$	z > 1
6.(n+1)u[n]	$\frac{z^2}{(z-1)^2}$	z > 1
$7. \ n^2 u[n]$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
8. na"u[n]	$\frac{az}{(z-a)^2}$	z > a
9. $(n+1)a^n$	$\frac{z^2}{(z-a)^2}$	z > a
10. $n^2 a^n u[n]$	$\frac{az(z+a)}{(z-a)^3}$	z > a
11. exp[-anT]	$\frac{z}{z - \exp[-aT]}$	$ z > e^{-c}$
12. $\cos \Omega n \ u[n]$	$\frac{z^2 - z\cos\Omega}{z^2 - 2z\cos\Omega + 1}$	z > 1
13. $\sin \Omega n \ u[n]$	$\frac{z\sin\Omega}{z^2 - 2z\cos\Omega + 1}$	z > 1
14. $a^n(\cos\Omega n) u[n]$	$\frac{z^2 - za\cos\Omega}{z^2 - 2za\cos\Omega + a^2}$	- z > a

4666

· Discrete - Time Fourier transform (DIFI):

$$\cdot \chi(\Omega) = F\{\chi(n)\} = \sum_{n=-\infty}^{\infty} \chi(n)e^{-\frac{1}{2}\Omega n} \Rightarrow Z-\text{transform } \emptyset \ \mathcal{Z} = \ell e^{\frac{1}{2}\Omega}$$

· 特性:

$$\Phi \chi(-n) \Rightarrow \chi(-\Omega)$$

$$\emptyset$$
 χ (μ) = χ (

$$\frac{1}{1-e^{-\beta \alpha}}\chi(\Omega) + \pi\chi(0) \sum_{k=-\infty}^{\infty} \delta(\Omega - 2n\pi)$$

· ITFI:

$$\chi(n) = F^{-1}\{\chi(n)\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi(n) e^{jnn} dn$$

Energy =
$$\sum_{n=-\infty}^{\infty} \chi(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\chi(\Omega)| d\Omega$$

χ[½]=χ[m],	if	n=km.	m為int.
•			

TABLE 6.1

Property

3. Time-shift

Conjugation

Properties of Discrete-Time Fourier Transfo

x[n] $ax_1[n] + bx_2[n]$

 $x_1[n]*x_2[n]$

 $x_1[n]x_2[n]$

Frequency Domain

 $X(\Omega + 2\pi) = X(\Omega)$ $aX_1(\Omega) + bX_2(\Omega)$ $aX_1(\Omega) + bX_2(\Omega)$

 $X(\Omega - \Omega_0)$ $X(-\Omega)$ $X^*(-\Omega)$

 $j\frac{dX\Omega}{\Omega}$

 $X_1(\Omega)X_2(\Omega)$

 $X(\Omega)$

 $\int_{-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$

 $\frac{\pi}{i} \sum_{i}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)$

 $\frac{1}{2\pi}X_1(\Omega) \otimes X_2(\Omega)$

 $E_x = \frac{1}{2\pi} \int_{0}^{2\pi} |X(\Omega)|^2 d\Omega$

 $\frac{1}{1-e^{-j\Omega}}X(\Omega) + \pi X(0)\sum^{\infty}\delta(\Omega - 2n\pi)$

2. Shifted impulse
$$\delta[n-k]$$
 $e^{-j\Omega k}$

3. Unit step $u[n]$ $\frac{1}{1-e^{-j\Omega}} + \pi \sum_{n=-\infty}^{\infty} \delta(\Omega - 2n\pi), \quad |\Omega| \le \pi$

4. Shifted unit step $-u[-n-1]$ $\frac{1}{1-e^{-j\Omega}} - \pi \sum_{n=-\infty}^{\infty} \delta(\Omega - 2n\pi), \quad |\Omega| \le \pi$

5. DC signal 1, for all n $2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$

6. Gated function $u[n] - u[n-k]$ $\frac{\sin(k\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(k-1)/2}$

7. Exponential $a^nu[n]$ $\frac{1}{1-ae^{-j\Omega}} |a| \le 1$

8. Weighted exponential $na^nu[n]$ $\frac{ae^{-j\Omega}}{(1-ae^{-j\Omega})^2} |a| \le 1$
 $(n+1)a^nu[n]$ $\frac{1}{(1-ae^{-j\Omega})^2} |a| \le 1$

9. Two-sided exponential a^{bid} $\frac{1-a^2}{1+a^2-2a\cos\Omega} |a| < 1$

10. Complex sinusoid $e^{j\Omega_{pn}}$ $2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$

 $\sin \Omega_0 n$

· Piscrete Fourier Transform (DFT): N為點的個數

$$\chi(k) = F[\chi(n)] = \sum_{k=0}^{N-1} \chi(n) e^{-\frac{i}{2}\pi nk/N} = k(k) + \frac{i}{2}I(k)$$

$$R(k) = \frac{1}{2} = \chi[0] + \sum_{n=1}^{k-1} \chi[n] \underline{\omega} \frac{1 \pi n k}{N}$$

$$I(k) = \frac{1}{N} \frac{2}{N} = -\sum_{n=1}^{N-1} \chi(n) \frac{2nNk}{N}$$

TABLE 6.3 Properties of the DFT

Cosine wave

Sine wave

11.

Property	Time Domain	Frequency Domai
1. Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
2. Time-shifting	x[n-m]	$e^{-j2\pi km}X(k)$
3. Frequency-shifting (modulation)	$e^{-j2\pi k_0 n/N} x[n]$	$X(k-k_0)$
4. Time reversal	x[-n]	X(-k)
5. Conjugation	$x^*[n]$	$X^*(-k)$
6. Time-convolution	$x_1[n] \otimes x_2[n]$	$X_1[k]X_2[k]$
7. Frequency-convolution	$x_1[n]x_2[n]$	$\frac{1}{N}X_1[k]\otimes X_2[k]$

8. Parseval's relation
$$E_x = \sum_{n=0}^{N-1} |x[n]|^2 \qquad E_x = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

· IDFT:

$$\chi(u) = \lfloor (\chi(k)) = \frac{1}{\sqrt{\sum_{k=0}^{N-1} \chi(k)}} \frac{j_{2\pi N} k/N}{j_{2\pi N} k/N}$$

· Circular (pariodic) Lonvolution:有限點的LONV

 $y[n] = \chi[n] \otimes h[n] = \sum_{k=1}^{n} \chi[k] h[n-k] \Rightarrow Y[k] = \chi[k] H[k]$

外圈和始為順時針,內國為逆時針

9 Ch5

- 得血業轉換: 拉普拉斯的 5 用拟代替

 - $\chi(u) = \int_{-\infty}^{\infty} \{\chi(u)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(u) e^{\frac{1}{2}i\omega t} du$
 - · # Fourier

$$\emptyset F\{N(t)\} = \pi \{(\omega) + \frac{1}{4\omega}$$

·特性:

③時間午後: F{x(t-a)}= でがx(w)

●頻学子移: F{cinot (t)}= X(W+W)

5 time convolution: [{x(+) * h(x)} = X(+)H(w)

の時間微分: ド{x(b)}= (jw) X(w)

① 時間積分: $F\{\int_{-\infty}^{t}\chi(u)dt\} = \frac{1}{i\omega}\chi(u) + \pi\chi(u)\xi(u)$

@ Modulation: F { cos(wot) X(t)} = = [X(w+w0) + X(w-w0)] $F\left\{\sin(\omega \circ t) \chi(t)\right\} = \frac{4}{2} \left[\chi(\omega + \omega_0) - \chi(\omega - \omega_0)\right]$

· Amplitude modulation (AM): 不同頻率的豐加 (高頻載波+低頻資訊)

 $W = \frac{2\pi}{T} = 2\pi f$

· upper sideband = fc + fo } 其中 fc 為 carrier 頻季(高), fo 為資訊頻季(個)
· lower sideband = fc - fo

" Sampling:

· Nyquist frequency: 最小取樣頻平fs

·fs》2W,其中以為被取樣訊號的頻息 bandwith

·若將杉倒數,可得最大取樣週期了

· oversampled: 取旅fs > Nyquist f

· undersampled: PALTS < Nyquise f

· (ii) $F\{\gamma_1(t)\gamma_2(t)\} = \frac{1}{2\pi}\chi_1(u) * \chi_2(u)$