MIDTERM #1 SOLUTIONS

July 21, 2014 Total Time Allowed: 1.5 hours

- 1. Closed book exam.
- 2. You can use a calculator. NO cell phone or computer.
- 3. If you put down the wrong answer, partial credits will be given only if you show the correct steps.
- 4. Points will be taken off for answers without units.

Name:	
Student ID: _	
Signature:	

QUESTIONS

1- For the circuit given below, use <u>superposition</u> to find the power dissipated on 6Ω resistance.

1. Apply the 2A-source, turn off the 24V-source:

Nodal analysis:

KCL eqn. for node 1:
$$\frac{v_1}{2} - 2 + \frac{v_1 - v_2}{6} = 0 \implies 4v_1 - v_2 = 12$$
 (1)

KCL eqn. for node 2:
$$\frac{v_2 - v_1}{6} + 2 + 3i_{01} + \frac{v_2}{8} = 0$$

$$i_{01} = \frac{v_1 - v_2}{6} \implies 8v_1 - 5v_2 = -48$$
 (2)

(1) & (2)
$$\Rightarrow v_1 = 9 \text{ V}$$
 $v_2 = 24 \text{ V}$ $i_{01} = \frac{9 - 24}{6} = -2.5 \text{ A}$

2. Apply the 24V -source, turn off the 2A -source:

$$i_0 = i_{01} + i_{02} = 0.5$$
 A

2- Given the circuit shown in the figure, find the values of v_{GS} and v_{o} .

$$V_G=6V$$
 $V_{GS}=6-V_S$
 $V_o=V_s=2.10-3.V_{GS}.1k$
 $V_s=2.(6-V_s)$
 $V_s=12-2V_S$
 $V_s=4V$
 $V_{GS}=6-4=2V$

3- Use a Δ -to-Y transformation to find the voltages v_1 and v_2 in the circuit given below.

Begin by transforming the Δ -connected resistors $(10\,\Omega, 30\,\Omega, 60\,\Omega)$ to Y-connected resistors. Both the Y-connected and Δ -connected resistors are shown below to assist in using Eqs. 3.44-3.46:

Now use Eqs. 3.44 - 3.46 to calculate the values of the Y-connected resistors:

$$R_1 = \frac{(30)(60)}{10 + 30 + 60} = 18\,\Omega; \quad R_2 = \frac{(60)(10)}{10 + 30 + 60} = 6\,\Omega; \quad R_3 = \frac{(30)(10)}{10 + 30 + 60} = 3\,\Omega$$

The transformed circuit is shown below:

The equivalent resistance seen by the 80 V source can be calculated by making series and parallel combinations of the resistors to the right of the 24 V source:

$$R_{\rm eq} = (28+6) \| (16+18) + 3 = 34 \| 34 + 3 = 17 + 3 = 20 \,\Omega$$

Therefore, the current i in the 80 V source is given by

$$i = \frac{80 \text{ V}}{20 \Omega} = 4 \text{ A}$$

Use current division to calculate the currents i_1 and i_2 . Note that the current i_1 flows in the branch containing the $28\,\Omega$ and $6\,\Omega$ series connected resistors,

while the current i_2 flows in the parallel branch that contains the series connection of the $16\,\Omega$ and $18\,\Omega$ resistors:

$$i_1 = \frac{16+18}{16+18+28+6}(i) = \frac{34}{68}(4 \text{ A}) = 2 \text{ A}, \quad \text{and} \quad i_2 = 4 \text{ A} - 2 \text{ A} = 2 \text{ A}$$

Now use KVL and Ohm's law to calculate v_1 . Note that v_1 is the sum of the voltage drop across the 18Ω resistor, $18i_2$, and the voltage drop across the 3Ω resistor, 3i:

$$v_1 = 18i_2 + 3i = 18(2 \text{ A}) + 3(4 \text{ A}) = 36 + 12 = 48 \text{ V}$$

Finally, use KVL and Ohm's law to calculate v_2 . Note that v_2 is the sum of the voltage drop across the 6Ω resistor, $6i_1$, and the voltage drop across the 3Ω resistor, 3i:

$$v_2 = 6i_1 + 3i = 6(2 \text{ A}) + 3(4 \text{ A}) = 12 + 12 = 24 \text{ V}$$