Chapter 4

Logistic Regression

Contents

4	$\mathbf{Log}_{\mathbf{i}}$	istic Regression	1
	4.1	Generative Classifiers	2
	4.2	Discriminative Classifiers	3
	4.3	Generative vs Discriminative Classifiers	3
	4.4	Learning a Logistic Regression Classifier	4
	4.5	Logistic Regression	4
	4.6	LR Example	4
	4.7	Sentiment Classification	5
	4.8	Training Logistic Regression	6
	4.9	Cross-Entropy Loss	6
	4.10	Minimizing Cross-Entropy Loss	7
	4.11	Optimizing a Convex/Concave Function	8
		Gradients	8
	4.13	Gradient Descent for Logistic Regression	8
	4.14	Learning Rate	9
	4.15	Batch Training	9
	4.16	Understanding the Sigmoid	9
	4.17	Regularization	9
	4.18	L1 Regularization	10
	4.19	L2 Regularization	10
	4.20	Example – Spam Recognition	10
	4.21	Training Phase	11
	4.22	Testing Phase	14
	4.23	Multinomial Logistic Regression	15
	4.24	Conclusion	15

4.1 Generative Classifiers

If we are distinguishing cat from dog images using a Generative Classifier, we build a model of what is in a cat image.

- Knows about whiskers, ears, eyes.
- Assigns a probability to any image to determine how cat-like is that image?

Similarly, build a model of what is in a dog image. Now given a new image, run both models and see which one fits better.

4.2 Discriminative Classifiers

If we are distinguishing cat from dog images using a Discriminative Classifier.

- Just try to distinguish dogs from cats.
 - Oh look, dogs have collars.
 - Ignore everything else.

4.3 Generative vs Discriminative Classifiers

	Discriminative model	Generative model		
Goal	Directly estimate $P(\boldsymbol{y} \boldsymbol{x})$	Estimate $P(\boldsymbol{x} \boldsymbol{y})$ to then deduce $P(\boldsymbol{y} \boldsymbol{x})$		
What's learned	Decision boundary	Probability distributions of the data		
Illustration				
Examples	Examples Regressions, SVMs GDA, Naive Bayes			

Figure 4.1: Differences between Generative and Discriminative classifiers.

Generative Classifiers (Naïve Bayes) –

- Assume some functional form for conditional independence.
- Estimate parameters of P(D|h), P(h) directly from training data.
- Use Bayes' rule to calculate P(h|D).

Why not learn P(h|D) or the decision boundary directly? Discriminative Classifiers (Logistic Regression) –

- Assume some functional form for P(h|D) or for the decision boundary.
- Estimate parameters of P(h|D) directly from training data.

4.4 Learning a Logistic Regression Classifier

Given n input-output pairs –

- 1. A feature representation of the input. For each input observation x_i , a vector of features $[x_1, x_2, \ldots, x_d]$.
- 2. A classification function that computes y, the estimated class, via P(y|x), using the sigmoid of softmax functions.
- 3. An objective function for learning, like cross-entropy loss.
- 4. An algorithm for optimizing the objective function, like stochastic gradient ascent/descent.

4.5 Logistic Regression

Logistic Regression assumes the following function form for P(y|x):

$$P(y = 1|x) = \frac{1}{1 + e^{-(\sum_{i} w_{i}x_{i} + b)}}$$

$$P(y = 1|x) = \frac{1}{1 + e^{-(\sum_{i} w_{i}x_{i} + b)}}$$

$$= \frac{e^{(\sum_{i} w_{i}x_{i} + b)}}{e^{(\sum_{i} w_{i}x_{i} + b)} + 1}$$

$$P(y = 0|x) = 1 - \frac{1}{1 + e^{(\sum_{i} w_{i}x_{i} + b)}}$$

$$= \frac{1}{e^{(\sum_{i} w_{i}x_{i} + b)} + 1}$$

$$\frac{P(y = 1|x)}{P(y = 0|x)} = e^{(\sum_{i} w_{i}x_{i} + b)} > 1$$

$$\Rightarrow \sum_{i} w_{i}x_{i} + b > 0$$

Logistic Regression is a linear classifier. Turning a probability into a classifier using the logistic function:

$$y_{LR}$$

$$\begin{cases} 1 & \text{if } P(y=1|x) \ge 0.5 & \leftarrow w_i x_i + b \ge 0 \\ 0 & \text{otherwise} & \leftarrow w_i x_i + b < 0 \end{cases}$$

4.6 LR Example

Suppose we are doing binary sentiment classification on movie review text, and we would like to know whether to assign the sentiment class position = 1 or negative = 0 to the following review:

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was is so enjoyable? For one thing, the case is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.

Figure 4.2: LR Example.

x_1	$count(positive lexicon words \in doc)$	3
x_2	$count(negative lexicon words \in doc)$	2
x_3	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	ln(word count of doc)	ln(66) = 4.19

Figure 4.3: Feature vector for the LR Example.

4.7 Sentiment Classification

Let's assume for the moment that we've already learned a real-valued weight for each of these features, and that the 6 weights corresponding to the 6 features are [2.5, -5.0, -1.2, 0.5, 2.0, 0.7], while b = 0.1.

$$P(+ve|x) = P(y = 1|x)$$

$$= \frac{1}{1 + e^{(\sum_{i} w_{i}x_{i} + b)}}$$

$$= \frac{1}{1 + e^{-(2.5(3) + (-5)(2) + (-1.2)(1) + 0.5(3) + 2.0(0) + 0.7(4.19) + 0.1)}}$$

$$= 0.30$$

$$P(-ve|x) = P(y = 0|x)$$

$$= 1 - P(y = 1|x)$$

$$= 1 - 0.70$$

$$= 0.30$$

Since P(+ve|x) > P(-ve|x), the output sentiment class is positive.

4.8 Training Logistic Regression

We'll focus on binary classification. We parameterize (w_i, b) as θ :

$$P(y_{i} = 0 | x_{i}, \theta) = \frac{1}{e^{\sum_{i} w_{i} x_{i} + b} + 1}$$

$$P(y_{i} = 1 | x_{i}, \theta) = \frac{e^{\sum_{i} w_{i} x_{i} + b} + 1}{e^{\sum_{i} w_{i} x_{i} + b} + 1}$$

$$P(y_{i} | x_{i}, \theta) = \frac{e^{y_{i} \sum_{i} w_{i} x_{i} + b} + 1}{e^{\sum_{i} w_{i} x_{i} + b} + 1}$$

How do we learn parameters θ ?

4.9 Cross-Entropy Loss

- We want to know how far is the classifier output \hat{y} from the true output y. Let's call this difference $L(\hat{y}, y)$.
- Since there are only 2 discrete outcomes (0 or 1), we can express the probability P(y|x) from our classifiers as:

$$P(y|x) = \hat{y}^y \cdot (1 - \hat{y})^{1-y}$$

- Goal: maximize the probability of the correct label P(y|x).
- Maximize:

$$P(y|x) = \hat{y}^y \cdot (1 - \hat{y})^{1-y}$$
$$\log(P(y|x)) = \log(\hat{y}^y \cdot (1 - \hat{y})^{1-y})$$
$$= y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$

• We want to minimize the cross-entropy loss:

Minimize:
$$L_{CE}(\hat{y}, y) = -\log P(y|x)$$

 $= -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$
 $\min_{\theta} L_{CE}(\hat{y}, y) = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$
 $= -[y \log \left(\frac{e^{\sum_{i} w_{i}x_{i} + b}}{1 + e^{\sum_{i} w_{i}x_{i} + b}}\right) + (1 - y) \log \left(1 - \frac{e^{\sum_{i} w_{i}x_{i} + b}}{1 + e^{\sum_{i} w_{i}x_{i} + b}}\right)]$
 $= -[y \left(\sum_{i} w_{i}x_{i} + b - \log(1 + e^{\sum_{i} w_{i}x_{i} + b})\right) + (1 - y)(-\log(1 + e^{\sum_{i} w_{i}x_{i} + b}))]$
 $= -[y \left(\sum_{i} w_{i}x_{i} + b\right) - \log(1 + e^{\sum_{i} w_{i}x_{i} + b})]$
 $= \log(1 + e^{\sum_{i} w_{i}x_{i} + b}) + y \left(\sum_{i} w_{i}x_{i} + b\right)$

4.10 Minimizing Cross-Entropy Loss

$$\min_{\theta} L_{CE}(\hat{y}, y)$$

- Minimizing loss function $L_{CE}(\hat{y}, y)$ is a convex optimization problem.
- Convex function have a global minimum.
- Concave function have a global maxima.

Figure 4.4: An example of a convec and concave function.

4.11 Optimizing a Convex/Concave Function

- Maximum of a concave function is equivalent to the minimum of a convex function.
- Gradient Ascent is used for finding the maximum of a concave function.
- Gradient Descent is used for finding the minimum of a convex function.

4.12 Gradients

• The gradient of a function is a vector pointing in the direction of the greatest increase in a function.

Gradient Ascent: Find the gradient of the function at the current point and move in the same direction.

Gradient Descent: Find the gradient of the function at the current point and move in the opposite direction.

4.13 Gradient Descent for Logistic Regression

- Let us represent $\hat{y} = f(x, \theta)$
- Gradient:

$$\nabla_{\theta} L(f(x,\theta),y) = \left[\frac{\partial L(f(x,\theta),y)}{\partial b}, \frac{\partial L(f(x,\theta),y)}{\partial w_1}, \frac{\partial L(f(x,\theta),y)}{\partial w_2}, \dots, \frac{\partial L(f(x,\theta),y)}{\partial w_d} \right]$$
(4.1)

• Update Rule:

$$\Delta \theta = \eta \cdot \nabla_{\theta} L(f(x, \theta), y)$$

$$\theta_{t+1} = \theta_t - \eta \cdot \frac{\partial}{\partial (w, b)} L(f(x, \theta), y)$$
(4.2)

Gradient descent algorithm will iterate until $\Delta \theta < \epsilon$.

$$L_{CE}(f(x,\theta),y) = \log\left(1 + e^{\sum_{i} w_{i} x_{i} + b}\right) - y\left(\sum_{i} w_{i} x_{i} + b\right)$$

$$\theta_{t+1} = \theta_{t} - \eta \cdot \frac{\partial}{\partial(w,b)} L(f(x,\theta),y)$$

$$= \theta_{t} - \eta \cdot x_{i} \left[\frac{e^{\sum_{i} w_{i} x_{i} + b}}{1 + e^{\sum_{i} w_{i} x_{i} + b}} - y\right]$$

$$= \theta_{t} - \eta \cdot x_{i} \left[\hat{P}(y = 1 | x, \theta_{t}) - y\right]$$

4.14 Learning Rate

- η is a hyperparameter.
- Large $\eta \Rightarrow$ Fast convergence but larger residual error. Also, possible oscillations.
- Small $\eta \Rightarrow$ Slow convergence but small residual error.

4.15 Batch Training

- Stochastic gradient descent is called stochastic because it chooses a single random example at a time, moving the weights to improve performance on that single example.
- This results in very choppy movements, so it's common to compute the gradient over batches of training instances rather than a single instance.
- Training data: $\{x_i, y_i\}_{i=i...n}$ where $x_i = (x_{i1}, x_{i2}, ..., x_{id})$, n is the total instances in a batch and d is the dimension of an instance.

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \times \sum_{i=1}^n xij \left[\frac{1}{1 + e^{-\theta^T \mathbf{x}}} - y_i \right]$$

$$\tag{4.3}$$

4.16 Understanding the Sigmoid

- Large weights lead to overfitting.
- Penalizing larger weights can reduce overfitting.

4.17 Regularization

- Regularization is used to avoid overfitting.
- The weights for features will attempt to perfectly fit details of the training set, modeling even noisy data that just accidentally correlate with the class. The problem is called overfitting.
- A good model should generalize well from the training data to the unseen test set, but a model that overfits will have poor generalization.
- To avoid overfitting, a new regularization term $R(\theta)$ is added to the loss function.

$$\min_{\theta} L_{reg}(\hat{y}, y) = -\frac{1}{n} \sum_{i=1}^{n} [y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})] + \lambda R(\theta)$$
 (4.4)

4.18 L1 Regularization

- L1 Regularization is also called Lasso Regularization.
- Uses the L1 norm (Manhattan distance) of the weights.

$$R(\theta) = ||\theta||_1 = \sum_{j=0}^{d} |\theta_j|$$

$$\min_{\theta} L_{reg}(\hat{y}, y) = -\frac{1}{n} \sum_{i=1}^{n} \left[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \right] + \lambda \sum_{i=0}^{d} |\theta_{i}|$$
 (4.5)

4.19 L2 Regularization

- L2 Regularization is also called Ridge Regularization.
- Uses the square of the L2 (Euclidean) norm of the weights.

$$R(\theta) = ||\theta||_2^2 = \sum_{j=0}^d \theta_j^2$$

$$\min_{\theta} L_{reg}(\hat{y}, y) = -\frac{1}{n} \sum_{i=1}^{n} \left[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \right] + \lambda \sum_{j=0}^{d} \theta_{j}^{2}$$
(4.6)

4.20 Example – Spam Recognition

Let us apply logistic regression on the spam email recognition problem, assuming $\eta = 3.0$ and starting with $\theta_{w,b} = [0,0,0,0,0,0]$.

	and	vaccine	the	of	nigeria	y
Email a	1	1	0	1	1	1
Email b	0	0	1	1	0	0
Email c	0	1	1	0	0	1
Email d	1	0	0	1	0	0
Email e	1	0	1	0	1	1
Email f	1	0	1	1	0	0

Table 4.1

1 entails that a word (i.e., "and") is present in an email (i.e. "Email a") and 0 entails that a word is absent in an email.

 x_2 = vaccine $x_4 = of$ $x_0 = 1$ $x_1 =$ and $x_3 =$ the x_5 = nigeria y Email **a** Email **b** Email \mathbf{c} Email \mathbf{d} Email \mathbf{e} Email **f**

Table 4.2

The column x_0 was added to account for this bias b.

$$x = [x_0, x_1, x_2, x_3, x_4, x_5], \, \theta = [b, w_1, w_2, w_3, w_4, w_5]$$

4.21 Training Phase

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \times \sum_{i=1}^n x_{ij} \left[\frac{1}{1 + e^{-\theta^T \mathbf{x}}} - y_i \right]$$

- 1) Calculate the factor $-\theta^T \mathbf{x}$ for every example in the dataset.
- 2) Calculate the factor $\sum_{i=1}^{n} x_{ij} \left[\frac{1}{1+e^{-\theta^T \mathbf{x}}} y_i \right]$ for every example in the dataset, for every θ
- 3) Compute every θ

Table 4.3

x	y	$ heta^T\mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T \mathbf{x}}} - \mathbf{y}\right) x_0$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left \left(\frac{1}{1+e^0} - 1 \right) \times 1 \right = -0.5$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 1 = 0.5$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left \left(\frac{1}{1+e^0} - 1 \right) \times 1 \right = -0.5$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 1 = 0.5$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 1 = 0.5$

$$\sum_{i=1}^{6} x_{i0} \left[\frac{1}{1 + e^{\theta^{T} \mathbf{x}}} - y_i \right] = -0.5 + 0.5 - 0.5 + 0.5 - 0.5 + 0.5$$
$$= 0.0$$

Table 4.4

x	y	$\theta^T \mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T}\mathbf{x}}-\mathbf{y}\right)x_1$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{1}\right) \times 1 = 0.5$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{0}\right) \times 1 = 0.5$

$$\sum_{i=1}^{6} x_{i1} \left[\frac{1}{1 + e^{\theta^{T} \mathbf{x}}} - y_i \right] = -0.5 + 0 + 0 + 0.5 - 0.5 + 0.5$$
$$= 0.0$$

Table 4.5

x	y	$ heta^T\mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T \mathbf{x}}} - y\right) x_2$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left \left(\frac{1}{1+e^0} - 1 \right) \times 1 \right = -0.5$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$

$$\sum_{i=1}^{6} x_{i2} \left[\frac{1}{1 + e^{\theta^{T_x}}} - y_i \right] = -0.5 + 0 - 0.5 + 0 + 0 + 0$$
$$= -1.0$$

Table 4.6

x	y	$\theta^T \mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T \mathbf{x}}}-y\right)x_3$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 1 = 0.5$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{0}\right) \times 1 = 0.5$

$$\sum_{i=1}^{6} x_{i3} \left[\frac{1}{1 + e^{\theta^{T} \mathbf{x}}} - y_i \right] = 0 + 0.5 - 0.5 + 0 - 0.5 + 0.5$$
$$= 0.0$$

Table 4.7

x	y	$ heta^T\mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T \mathbf{x}}} - y\right) x_4$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{1}\right) \times 1 = 0.5$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{1}\right) \times 1 = 0.5$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - \frac{0}{1}\right) \times 1 = 0.5$

$$\sum_{i=1}^{6} x_{i4} \left[\frac{1}{1 + e^{\theta^{T} \mathbf{x}}} - y_i \right] = -0.5 + 0.5 + 0 + 0.5 + 0 + 0.5$$
$$= 1.0$$

Table 4.8

x	y	$\theta^T \mathbf{x}$	$\left(\frac{1}{1+e^{-\theta^T \mathbf{x}}}-y\right)x_5$
[1, 1, 1, 0, 1, 1]	1	$[0,0,0,0,0,0] \times [1,1,1,0,1,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 0, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,0,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 0, 1, 1, 0, 0]	1	$[0,0,0,0,0,0] \times [1,0,1,1,0,0] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 0 = 0$
[1, 1, 0, 0, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,0,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$
[1, 1, 0, 1, 0, 1]	1	$[0,0,0,0,0,0] \times [1,1,0,1,0,1] = 0$	$\left(\frac{1}{1+e^0} - 1\right) \times 1 = -0.5$
[1, 1, 0, 1, 1, 0]	0	$[0,0,0,0,0,0] \times [1,1,0,1,1,0] = 0$	$\left(\frac{1}{1+e^0} - 0\right) \times 0 = 0$

$$\begin{split} \sum_{i=1}^{6} x_{i5} \left[\frac{1}{1 + e^{\theta^{T} \mathbf{x}}} - y_{i} \right] &= -0.5 + 0 + 0 + 0 - 0.5 + 0 \\ &= -1.0 \end{split}$$

$$\theta_{1} = \theta_{0} - \frac{\eta}{n} \times \sum_{i=1}^{n} x_{ij} \left[\frac{1}{1 + e^{-\theta^{T} \mathbf{x}}} - y_{i} \right]$$

$$= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} - \frac{3}{6} \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

4.22 Testing Phase

Let us test logistic regression on the spam email recognition problem using the $\theta = [0, 0, 0.5, 0, -0.5, 0.5]$.

 $\theta^T \mathbf{x}$ **Predicted Class** y $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 1, 1, 0, 1, 1] = 0.5$ 1 [1, 1, 1, 0, 1, 1]1 0.622459331 $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 0, 0, 1, 1, 0] = -0.5$ [1, 0, 0, 1, 1, 0]0.377540669 0 $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 0, 1, 1, 0, 0] = 0.5$ 1 [1, 0, 1, 1, 0, 0]1 0.622459331 $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 1, 0, 0, 1, 0] = -0.5$ 0.377540669 [1, 1, 0, 0, 1, 0]0 0 $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 1, 0, 1, 0, 1] = 0.5$ 0.622459331 [1, 1, 0, 1, 0, 1]1 1 [1, 1, 0, 1, 1, 0] $[0, 0, 0.5, 0, -0.5, 0.5] \times [1, 1, 0, 1, 1, 0] = -0.5$ 0.377540669 0 0

Table 4.9

No Misclassification

4.23 Multinomial Logistic Regression

- The loss function for multinomial logistic regression generalizes the loss function for binary logistic regression from 2 to K classes.
- The true label y is a vector with K elements, each corresponding to a class, with $y_c = 1$ if the correct class is c, with all other elements of y being 0.
- The classifier will produce an estimate vector with K elements \hat{y} , each element \hat{y}_k of which represents the estimated probability $P(y_k = 1|x)$.

$$SOFTMAX(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^K \exp z_j} \quad 1 \le i \le K$$

$$(4.7)$$

$$L_{CE}(\hat{y}, y) = -\sum_{k=1}^{K} y_k \log(\hat{y}_k)$$
 (4.8)

$$L_{CE}(\hat{y}, y) = -\log(\hat{y}_c)$$

$$= -\log\left(\frac{e^{\sum_{i=1}^{d} w_c x_i + b_c}}{\sum_{j=1}^{K} e^{\sum_{i=1}^{d} w_j x_i + b_j}}\right)$$
(4.9)

$$\frac{\partial L_{CE}}{\partial (w_k, b_k)} = x_i \left[\frac{e^{\sum_{i=1}^d w_k x_i + b_k}}{\sum_{j=1}^K e^{\sum_{i=1}^d w_j x_i + b_j}} - y_k \right]$$
(4.10)

4.24 Conclusion

Logistic Regression –

• is a discriminative classifier,

- is a linear classifier,
- optimizes by minimizing the cross-entropy loss via gradient descent,
- trains parameters:
 - begins with initial weight vector,
 - modifies it iteratively to minimize the loss function.