

Planetary orbits are elliptical

What is an ellipse?

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

An ellipse has two foci

From: gomath.com/geometry/ellipse.php

Area and Perimeter of Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Perimeter =
$$2\pi \frac{a^2 + b^2}{a}$$

Area =
$$\pi$$
 ab

Metric mishap causes loss of Mars orbiter (Sept. 30, 1999)

How to calculate arc length

Let $f:[0,1]\to\mathbb{R}^2$ be given by $t\mapsto (x(t),y(t))$.

Circumference of an ellipse

We can parametrize the points of an ellipse in the first quadrant by $f: [0, \pi/2] \to (a \sin t, b \cos t)$.

Circumference =
$$4 \int_0^{\pi/2} \sqrt{a^2 \cos^2 t + b^2 \sin^2 t} dt.$$

Observe that if a = b, we get $2\pi a$.

We can simplify this as follows.

Let $\cos^2 \theta = 1 - \sin^2 \theta$.

The integral becomes

$$4a \int_0^{\pi/2} \sqrt{1 - \lambda \sin^2 \theta} d\theta$$

Where $\lambda = 1 - b^2/a^2$.

We can expand the square root using the binomial theorem:

$$4a \int_0^{\pi/2} \sum_{n=0}^{\infty} {1/2 \choose n} (-1)^n \lambda^n \sin^{2n} \theta d\theta.$$

We can use the fact that $2 \int_0^{\pi/2} \sin^{2n} \theta d\theta = \pi \frac{(1/2)(1/2)+1)\cdots((1/2)+(n-1))}{n!}$

The final answer

The circumference is given by

$$2\pi a F(1/2, -1/2, 1; \lambda)$$

where

$$F(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{n!(c)_n} z^n$$

is the hypergeometric series and

$$(a)_n = a(a+1)(a+2)\cdots(a+n-1).$$

We now use Landens transformation:

$$F(a,b,2b;\frac{4x}{(1+x)^2}) = (1+x)^{2a}F(a,a-b+1/2,b+1/2;x^2).$$

We put
$$a = -1/2, b = 1/2$$
 and $x = (a - b)/(a + b)$.

The answer can now be written as $\pi(a+b)F(-1/2,-1/2,1;x^2)$.

Approximations

- In 1609, Kepler used the approximation $\pi(a+b)$. The above formula shows the perimeter is always greater than this amount.
- In 1773, Euler gave the approximation $2\pi\sqrt{(a^2+b^2)/2}$.
- In 1914, Ramanujan gave the approximation $\pi(3(a+b) \sqrt{(a+3b)(3a+b)})$.

What kind of number is this?

For example, if a and b are rational, is the circumeference irrational?

In case a = b we have a circle and the circumference $2\pi a$ is irrational.

In fact, π is transcendental.

What does this mean?

This means that π does not satisfy an equation of the type $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$ with a_i rational numbers.

In 1882, Ferdinand von Lindemann proved that π is transcendental.

1852-1939

This means that you can't square the circle!

- There is an ancient problem of constructing a square with straightedge and compass whose area equals π .
- Theorem: if you can construct a line segment of length α then α is an algebraic number.
- Since π is not algebraic, neither is $\sqrt{\pi}$.

Some other interesting numbers

• The number e is transcendental.

This was first proved by Charles Hermite

(1822-1901) in 1873.

Is $\pi + e$ transcendental?

Answer: unknown.

Is πe transcendental?

Answer: unknown.

Not both can be algebraic!

- Here's a proof.
- If both are algebraic, then

$$(x-e)(x-\pi) = x^2 - (e+\pi)x + \pi e$$
 is a quadratic polynomial with algebraic coefficients. This implies both e and π are algebraic, a contradiction to the theorems of Hermite and Lindemann.

Conjecture:

 π and e are algebraically independent.

But what about the case of the ellipse?

Is the integral $\int_0^{\pi/2} \sqrt{a^2 \cos^2 t + b^2 \sin^2 t} dt$ transcendental if a and b are rational?

Yes.

This is a theorem of Theodor Schneider (1911-1988)

Lets look at the integral again.

Putting $u = \sin t$ the integral becomes

$$\int_0^1 \sqrt{\frac{a^2 - (a^2 - b^2)u^2}{1 - u^2}} du.$$

Set
$$k^2 = 1 - b^2/a^2$$
:

The integral becomes

$$a \int_0^1 \sqrt{\frac{1-k^2u^2}{1-u^2}} du.$$

Put
$$t = 1 - k^2 u^2$$
:

$$\frac{1}{2} \int_{1-k^2}^{1} \frac{tdt}{\sqrt{t(t-1)(t-(1-k^2))}}$$

Elliptic Integrals

Integrals of the form

$$\int \frac{dx}{\sqrt{x^3 + a_2 x^2 + a_3 x + a_4}}$$

are called elliptic integrals of the first kind.

Integrals of the form

$$\int \frac{xdx}{\sqrt{x^3 + a_2x^2 + a_3x + a_4}}$$

are called elliptic integrals of the second kind.

Our integral is of the second kind.

Elliptic Curves

The equation $y^2 = x(x-1)(x-(1-k^2))$ is an example of an elliptic curve.

One can write the equation of such a curve as $y^2 = 4x^3 - ax - b.$ p_3 $p_4 = p_1 + p_2$

Elliptic Curves over C

Let L be a lattice of rank 2 over \mathbb{R} .

This means that $L = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$

We attach the Weierstrass \wp -function to L:

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \omega \in L} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

The \wp function is doubly periodic:

This means

$$\wp(z) = \wp(z + \omega_1) = \wp(z + \omega_2).$$

$e^{2\pi i} = 1$

The exponential function is periodic since $e^z = e^{z+2\pi i}$.

The periods of the exponential function consist of multiples of $2\pi i$.

That is, the period "lattice" is of the form $\mathbb{Z}(2\pi i)$.

The Weierstrass function

The \wp -function satisfies the following differential equation: $(\wp,(z))^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$, where $g_2 = 60 \sum_{0 \neq \omega \in L} \omega^{-4}$ and $g_3 = 140 \sum_{0 \neq \omega \in L} \omega^{-6}$.

This means that $(\wp(z), \wp'(z))$ is a point on the curve $y^2 = 4x^3 - g_2x - g_3$.

The Uniformization Theorem

Conversely, every complex point on the curve $y^2 = 4x^3 - g_2x - g_3$ is of the form $(\wp(z), \wp'(z))$ for some $z \in \mathbb{C}$.

Given any $g_2, g_3 \in \mathbb{C}$, there is a \wp function such that $(\wp'(z))^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$.

Even and Odd Functions

Recall that a function f is even if f(z) = f(-z).

For example, z^2 and $\cos z$ are even functions.

A function is called odd if f(z) = -f(-z). For example z and

For example, z and $\sin z$ are odd functions.

$$\wp(z)$$
 is even since $\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \omega \in L} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$

$$\wp'(z)$$
 is odd since $\wp'(z) = -\frac{2}{z^3} - 2\sum_{0 \neq \omega \in L} \left(\frac{1}{(z-\omega)^3}\right)$.

Note that
$$\wp'(-\omega/2) = -\wp'(\omega/2)$$

This means $\wp'(\omega/2) = 0$.

In particular

$$\wp'(\omega_1/2) = 0$$

$$\wp'(\omega_2/2) = 0 \text{ and }$$

$$\wp'((\omega_1 + \omega_2)/2) = 0.$$

$$[\wp'(z)]^2 = 4[\wp(z)]^3 - g_2\wp(z) - g_3,$$

This means the numbers $\wp(\omega_1/2), \wp(\omega_2/2), \wp((\omega_1 + \omega_2)/2)$ are roots of the cubic $4x^3 - g_2x - g_3 = 0$.

One can show these roots are distinct. In particular, if g_2, g_3 are algebraic, the roots are algebraic.

Schneider's Theorem

If g_2, g_3 are algebraic and \wp is the associated Weierstrass \wp -function, then for α algebraic, $\wp(\alpha)$ is transcendental. Since $\wp(\omega_1/2)$, $\wp(\omega_2/2)$ are algebraic It follows that the periods ω_1, ω_2 must be transcendental when g_2, g_3 are algebraic.

This is the elliptic analog of the Hermite-Lindemann theorem that says if α is a non-zero algebraic number, then e^{α} is transcendental.

Note that we get π transcendental by setting $\alpha = 2\pi i$

Why should this interest us?

Let
$$y = \sin x$$
.

Then

$$\left(\frac{dy}{dx}\right)^2 + y^2 = 1.$$

Let
$$y = \wp(x)$$
.

Then

$$\left(\frac{dy}{dx}\right)^2 = 4y^3 - g_2y - g_3.$$

Thus
$$\frac{dy}{\sqrt{1-y^2}} = dx$$
.

Thus
$$\frac{dy}{\sqrt{4y^3 - g_2 y - g_3}} = dx$$
.

Integrating both sides, we get $\int_0^{\sin b} \frac{dy}{\sqrt{1-u^2}} = b.$

Integrating both sides, we get
$$\int_{\wp(\omega_1/2)}^{\wp((\omega_1+\omega_2)/2)} \frac{dy}{\sqrt{4y^3-g_2y-g_3}} = \frac{\omega_2}{2}$$

Let's look at our formula for the circumference of an ellipse again.

$$\int_{1-k^2}^1 \frac{tdt}{\sqrt{t(t-1)(t-(1-k^2))}}$$

where

$$k^2 = 1 - \frac{b^2}{a^2}$$
.

The cubic in the integrand is not in Weierstrass form.

It can be put in this form.

But let us look at the case $k = 1/\sqrt{2}$.

Putting t = s + 1/2, the integral becomes

$$\int_0^{1/2} \frac{2s+1}{\sqrt{4s^3-s}} ds$$
.

The integral

$$\int_0^{1/2} \frac{ds}{\sqrt{4s^3 - s}}$$
 is a period of the elliptic curve
$$y^2 = 4x^3 - x.$$

But what about

$$\int_0^{1/2} \frac{sds}{\sqrt{4s^3 - s}}$$
?

Let us look at the Weierstrass ζ -function:

$$\zeta(z) = \frac{1}{z} + \sum_{0 \neq \omega \in L} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).$$

Observe that $\zeta'(z) = -\wp(z)$.

ζ is not periodic!

- It is "quasi-periodic".
- What does this mean?

$$\zeta(z+\omega) = \zeta(z) + \eta(\omega).$$

Put $z = -\omega/2$ to get $\zeta(\omega/2) = \zeta(-\omega/2) + \eta(\omega)$. Since ζ is an odd function, we get $\eta(\omega) = 2\zeta(\omega/2)$.

This is called a quasi-period.

What are these quasi-periods?

Observe that

$$\zeta(\omega_1/2) = \zeta(-\omega_1/2 + \omega_1) = \zeta(-\omega_1/2) + \eta(\omega_1)$$

But ζ is odd, so $\zeta(-\omega_1/2) = -\zeta(\omega_1/2)$ so that $2\zeta(\omega_1/2) = \eta(\omega_1)$.

Similarly,
$$2\zeta(\omega_2/2) = \eta(\omega_2)$$

Since η is a linear function on the period lattice, we get

$$2\zeta((\omega_1 + \omega_2)/2) = \eta(\omega_1) + \eta(\omega_2).$$

Thus
$$d\zeta = -\wp(z)dz.$$
 Recall that
$$d\wp = \sqrt{4\wp(z)^3 - g_2\wp(z) - g_3}dz.$$

Hence,
$$d\zeta = -\frac{\wp(z)d\wp}{\sqrt{4\wp(z)^3 - g_2\wp(z) - g_3}}$$

We can integrate both sides from
$$z = \omega_1/2$$
 to $z = (\omega_1 + \omega_2)/2$ to get $\eta_2 = 2 \int_{e_1}^{e_2} \frac{x dx}{\sqrt{x^3 - g_2 x - g_3}}$ where $e_1 = \wp(\omega_1)$ and $e_2 = \wp((\omega_1 + \omega_2)/2)$.

Hence, our original integral is a sum of a period and a quasi-period.

Are there triply periodic functions?

- In 1835, Jacobi proved that such functions of a single variable do not exist.
- Abel and Jacobi constructed a function of two variables with four periods giving the first example of an abelian variety of dimension 2.

1804-1851

What exactly is a period?

- These are the values of absolutely convergent integrals of algebraic functions with algebraic coefficients defined by domains in Rⁿ given by polynomial inequalities with algebraic coefficients.
- For example π is a period.

$$\pi = \int \int_{x^2 + y^2 < 1} dx dy$$

Some unanswered questions

- Is e a period?
- Probably not.
- Is $1/\pi$ a period?
- Probably not.
- The set of periods 𝒯 is countable but no one has yet given an explicit example of a number not in 𝒯.

$N\subseteq \mathcal{Z}\subseteq \mathcal{Q}\subseteq \mathcal{A}\subseteq \mathcal{P}$

