

Jiabo Xu | Video-to-video Translation and Relevant Research on Medical Images

Dec. 2019

Contents

- Introduction to Image-to-image translation
- Introduction to Video-to-video translation
- Transformation from synthetic colonoscopy videos to real ones.

Special cases:

Monocular depth estimation (Godard, 2018)

Semantic segmentation(Richter, 2016)

Colorization (Zhang, 2016)

Neural style transfer (Gatys, 2016)

DATA SIRO

General cases: following images all from pix2pix (Isola, 2016) and cycleGAN (Zhu, 2017)

Domain transformation

Semantic segmentation

Pose transfer

Photo inpainting

How to achieve it?

Variants of Generative adversarial network (Goodfellow, 2014)

$$L_{adv}(G, D) = E_{y \sim Pdata(y)}[\log D(y)] + E_{x \sim Pdata(x)}[1 - \log D(G(x))]$$

$$G^* = \arg\min_{G} \max_{D} L_{adv}(G, D)$$

Pix2Pix

- Paired dataset
- Conditional GAN

CycleGAN

- Unpaired dataset
- Cycle-consistent loss

Why need it?

- SO COOL!
- Integrate miscellaneous tasks
- Domain transformation

S+U GAN (Shrivastava, 2017)

source image (GTA5)

adapted to Cityscape

CyCADA (Hoffman, 2017)

Vid2Vid(Wang, 2018): requires paired videos

RecycleGAN (Bansal, 2018): video retargeting

Difficulties compared with image-to-image translation

- 1. How to use temporal information to improve single frame quality?
- 2. How to make generated frames as consistent as the input?

results from cycleGAN

results from vid2vid

How to tackle it in unspervised cases?

- Cycle-consistent loss (CycleGAN)
- 3-D convolution (BashKirova, 2018)
- Optical flow Mocycle-gan (Chen, 2019)
- Other priors (CyCADA)

3D-conv + cyclegan

Transformation from synthetic colonoscopy video into real ones via optical temporal consistent GAN

Jiabo Xu, Ali Armin, Saeed Anwar, Nick Barnes

Introduction

Medical images different from general ones:

- No general objects at all → hard to use pretrained model of general image. e.g. ImageNet
- Patient-specific → hard to create robust models
- Confidential → less amount of dataset
- Hard to label → less supervised tasks

Domain transformation:

Transform labelled synthetic data into real-alike ones → labelled real dataset

Introduction

Colonoscopy data we have:

- Infinite synthetic data and corresponding annotations
- 2700 real data without labels

optical flow

real

Methodology

Methodology

Cycle structure like cycleGAN

$$\begin{split} L_{cyc} &= E_{S_n \sim P_{data}(S)} ||G_{self} \big(G_{next}(S_n) \big) - S_{n+1}||_1 + \\ &\qquad \qquad E_{R_n \sim P_{data}(R)} ||G_{next} \left(G_{self}(R_n) \right) - R_{n+1}||_1 \end{split}$$

Learn to predict the future frame

$$L_{idt} = E_{R_n \sim P_{data}(R)} \varphi(G_{next}(R_n) - R_{n+1}) + E_{S_n \sim P_{data}(S)} \varphi(G_{self}(S_n) - S_n)$$

Optical flow loss

$$L_{op} = E_{S_n \sim P_{data}(S)} || P(G_{next}(S_n), G_{next}(S_{n+1})) - f_{S_{n+1}, S_{n+2}} ||_1$$

Overall loss

$$L = L_{adv} + \lambda L_{cvc} + \beta L_{idt} + \sigma L_{op}$$

Experiments

Training details:

- 1400 cleaned real data, sample same size from 8000 synthetic data
- 200 epoch; batch-size 4; resize to (256, 256)
- Adam Learning rate = 2e-4, betas=(0.5, 0.999)
- $\lambda = 150, \beta = 75, \sigma = 0.1$
- Generator: resnet-6blocks; Discriminator: Patch-GAN (Li, 2016)
- Identity loss function: perceptual loss (Johnson, 2016); output layer: 2nd
- 4 Nvidia P100 on Bracewell for 24 hours

Experiments

Evaluations on:

- Image quality (Qualitative)
- Frame consistency / Annotation preservation (Quantitative)

Quantitative Metric:

End point error to predicted(EPE-pred) -- only for comparison

$$EPE_{pred} = ||f'_{R'_{n},R'_{n+1}} - f'_{S_{n},S_{n+1}}||_{1}$$

Conditioning on PWCnet to avoid optical flow estimation error.

Experiments -- Ablation Study

Model structure

- CycleGAN (baseline)
- CycleGAN + op
- TCGAN
- TCGAN + op (proposed)

Loss function

- Perceptual Loss
- L1

 $\sigma = 0.1 \text{ or } 5 \text{ or } 10$

(weight of L_{op})

Generator: res6, res9, unet

TCGAN + op: other parameters following the training detail

Experiments -- Ablation Study

Model structures

Base parameters: resnet6, temp + op, x2, sig0.1

Network

x2 means output of second conv block of pretrained vgg

x0 means the image itself.

Experiments -- Ablation Study

Approach	EPE-Pred	real-alike	no mask-noise	no bright-spot
synthetic	0	F	-	-
l1	1.38	Т	F	Т
unet	1.30	Т	F	Т
res9	0.59	Т	F	F
sig10	0.40	F	-	-
sig5	0.38	Т	Т	F
cyclegan	0.27	F	-	-
cyclegan+op	0.61	F	-	-
TCGAN	2.41	Т	F	Т
TCGAN+op	0.35	Т	Т	F

Experiments -- Other models

All those models fail to achieve the goal:

Deep Residual U-net CycleGAN(Oda, 2019)

· Irrational mask noise

RecycleGAN (Bansal, 2018)

Cannot preserve structures

Style transfer (Gatys, 2016)

Only for art!

Experiments

Our model is very robust on the whole dataset rather than single videos

Conclusion & Future Work

Contribution:

- Proposed an innovative model that successfully transforms our synthetic colonoscopy video into realistic ones while preserve the structure.
- Create a labelled synthetic-real colonoscopy dataset which can be use for supervised tasks directly.

Future work:

Generalize the performance on CT colonoscopy videos.

Improve supervised-task performance by using the generated dataset