Q.1 The value of capacitor C_1 (in Milli-Farads) for which maximum power will be dissipated in the load resistor R_1 is ------

(answer only as an integer)

Your answer:

3

Q.2

The power dissipated in load resistor R_L (in milli-watts) is.....

(8V refers to peak value. Give answer as an integer)

Your answer:

2

Q.3 Match the phase responses (A,B,C,D) to the transfer functions (H1,H2,H3,H4)

$$H1(\omega) = \frac{\left(j \times \frac{\omega}{10^3}\right)}{\left(1 + j \times \frac{\omega}{10^3}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^4}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^5}\right)}$$

$$H2(\omega) = \frac{\left(1 + j \times \frac{\omega}{10^3}\right)}{\left(1 + j \times \frac{\omega}{10^2}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^4}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^6}\right)}$$

$$H3(\omega) = \frac{\left(1 + j \times \frac{\omega}{10^3}\right)}{\left(1 + j \times \frac{\omega}{10^2}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^4}\right)} \times \frac{1}{\left(1 + j \times \frac{\omega}{10^5}\right)}$$

$$H4(\omega) = \frac{\left(1+j\times\frac{\omega}{10^2}\right)}{\left(1+j\times\frac{\omega}{10^3}\right)} \times \frac{1}{\left(1+j\times\frac{\omega}{10^4}\right)} \times \frac{1}{\left(1+j\times\frac{\omega}{10^5}\right)}$$

$$H_1 \rightarrow D; H_2 \rightarrow A; H_3 \rightarrow C; H_4 \rightarrow B$$
 $H_1 \rightarrow B; H_2 \rightarrow A; H_3 \rightarrow C; H_4 \rightarrow D$
 $H_1 \rightarrow D; H_2 \rightarrow C; H_3 \rightarrow A; H_4 \rightarrow B$
 $H_1 \rightarrow B; H_2 \rightarrow C; H_3 \rightarrow A; H_4 \rightarrow D$

Q.4

For the circuit shown, the closest estimates of the magnitude of the transfer function $\frac{V_O(\omega)}{I_S(\omega)}$ at $\omega=10$ and $\omega=10^6$ rad/s in dB are

40dB, 0dB

20dB, -40dB

0dB, -40dB

0dB, -20dB

20dB -20dB

output voltage V_O of the amplifier circuit shown below.

C

Α

 D

В

Score: Will be uploaded after end date.