Lumberyard Demo Setup Instructions

Author: Josh Patterson ipatterson@floe.tv

Instructions

- Download VMWare
- Download a VM image
 - o http://www.thoughtpolice.co.uk/wmware
 - Centos 5.5 is a great choice, 32bit
 - You may want to crank up memory to 2GB for the instance.
- Start your VM in VMWare
- Install Hadoop 0.20 on your VM in pseudo-distributed mode.
 - o To make it easy, we'll use CDH3
 - https://wiki.cloudera.com/display/DOC/ Hadoop+%28CDH3%29+Quick+Start+Guide
 - Easy way to do this:
 - yum -y install hadoop-0.20-conf-pseudo
 - You will need to upgrade Java (as talked about in the instructions)
 - Will also need to add Cloudera's repository
- Install HBase 0.89
 - To make it easy, we'll use Cloudera's repository
 - https://wiki.cloudera.com/display/DOC/HBase+Installation
 - Follow instructions closely
- Build imotif from trunk at
 - http://code.google.com/p/jmotif/
 - A build of this is already included in the lib directory
 - We need this for the latest iSAX indexing commits
 - provides the bulk of the mathematics of the indexing scheme.
 - If you want to build jmotif yourself, you'll need at least ant 1.7 and you'll need to set the following env vars
 - export JUNIT_HOME=<junit_home>
 - export FINDBUGS_HOME=<findbugs_home>
 - export WEKA HOME=<weka home>
 - you'll need a later weka, preferably 3.7.2
 - To build the source:
 - ant
 - To build the jmotif jar (already one pre-built in the lib dir)
 - ant -f jar.build.xml
- Use Git to pull down Lumberyard from github

- o git clone git://github.com/jpatanooga/Lumberyard
- o Build
 - use ant to build the Lumberyard jar
 - anf
- Once we have both jmotif.lib.jar and Lumberyard.jar built, copy both jars into the VM onto the hbase path somewhere.
- To execute the Lumberyard shell, type:
 - hbase tv.floe.lumberyard.hbase.isax.index.shell.Shell <command>
 - To view the help
 - hbase tv.floe.lumberyard.hbase.isax.index.shell.Shell
 - To create an index
 - hbase tv.floe.lumberyard.hbase.isax.index.shell.Shell CreateIndex "my_index"
 - o -base card 4
 - o -dim split 1
 - o -base word len 8
 - o -base ts sample size 16
 - o -split threshold 100
 - Now let's index one of the two DNA files in the data subdir:
 - in the data subdirectory, we have the mitochondrial DNA of both the polar bear and the Hippo. These samples were downloaded from http://www.cs.ucr.edu/~eamonn/iSAX/iSAX.html
 - For a technical demo, let's search our index:
 - hbase tv.floe.lumberyard.hbase.isax.index.shell.Shell
 SearchGenomeIndex "polar_bear" "TGGACTAAATGACTAA"
 - o which should find one result
 - If we search for a slightly different pattern, we'll see its not found:
 - hbase tv.floe.lumberyard.hbase.isax.index.shell.Shell
 SearchGenomeIndex "polar_bear" "TGGACTAAATGACTAG"
- The current demo
 - is built to demonstrate iSAX indexing and iSAX indexing persisted in HBase.
 - is meant to build indexes from a single thread
 - parallel index construction from Map Reduce is coming, requires some distributed lock coordination with something like Zookeeper
 - should not be counted on for more than prototyping purposes
 - is a proof of concept for scalable index construction and search
- Potential Use Cases
 - Genomic pattern matching
 - General timeseries search engine
 - Use variations with Map Reduce
 - Audio search
 - Image pattern search

References

- Based on the original paper by Shieh and Keogh:
 - o http://www.cs.ucr.edu/~eamonn/iSAX.pdf
- iSAX homepage:
 - o http://www.cs.ucr.edu/~eamonn/iSAX/iSAX.html