

Research

- Project Biped by Jonathan Dowdall
 - Fobo and Foba : static balanced
 - Rofi: static but with accelerometer feedback to smooth walking
 - http://www.projectbiped.com

Rofi vs Fobo

	FoBo	Rofi
Static/Dynamic	Static	Partially Dynamic
FeedBack	None	Accelerometer
"Brain"	Arduino Uno	Android
Degrees of Freedom	8	12
Sensors	Ultrasonic Range	Ultrasonic Range, Accelerometer (Android)
Batteries	1 at center	2, one at each foot
Plastic	193cc, 206g (about 1/5 spool)	ABS plastic 1.75mm, 1kg
Build Time	18 hours: 16 hours printing + 2 hours assembly	30 hours: 25 hours printing + 5 hours assembly
Size	9.5cm x 15.25cm x 24cm (4.5" x 6" x 9.5")	17.75cm x 11.45cm x 30.5cm (7" x 4.5" x 12")

DareL-Next Generation Biped Robot

- Dynamic Android Robot, Engineered in Long beach
- Take elements from RoFi and improve upon them to build dynamic balanced walking robot.

Requirements

- Complete and implement Rofi according to Jonathon Dowdall's specifications.
- Design and Implement DareL, creating a fully dynamic biped robot

Block Diagram Level 2

Interface Capabilities of our Integrated System

Analog

Analog					IR
Arduino	ATMega2560	To Call Pin	USB Host Shield	Servos	Sensors
PIN 0	PIN 97	PFO (ADCO)			
PIN 1	PIN 96	PF1 (ADC1)			
PIN 2	PIN 95	PF2 (ADC2)			
PIN 3	PIN 94	PF3 (ADC3)			
PIN 4	PIN 93	PF4 (ADC4/TCK)			
PIN 5	PIN 92	PF5 (ADC5/TMS)			Data Signal
PIN 6	PIN 91	PF6 (ADC6/TD0)			
PIN 7	PIN 90	PF7 (ADC7/TDI)			
PIN 8	PIN 89	PK0 (ADC8/PCINT16)			
PIN 9	PIN 88	PK1 (ADC9/PCINT17)	INT		
PIN 10	PIN 87	PK2 (ADC10/PCINT18)	SS		
PIN 11	PIN 86	PK3 (ADC11/PCINT19)			1
PIN 12	PIN 85	PK4 (ADC12/PCINT20)			
PIN 13	PIN 84	PK5 (ADC13/PCINT21)			
PIN 14	PIN 83	PK6 (ADC14/PCINT22)			
PIN 15	PIN 82	PK7 (ADC15/PCINT23)			

Interface Capabilities of our Integrated System (Cont.)

PWM (Pulse With Modulation)

			USB Host	IR
<u>Arduino</u>	ATMega2560	To Call Pin	Shield Servos	Sensors
		PB7		
PIN 13	PIN 26	(OCOA/OC1C/PCINT7)		
PIN 12	PIN 25	PB6 (OC1B/PCINT6)		
PIN 11	PIN 24	PB5 (OC1A/PCINT5)		
PIN 10	PIN 23	PB4 (OC2A/PCINT4)		
PIN 9	PIN 18	PH6 (OC2B)		
PIN 8	PIN 17	PH5 (OC4C)		
PIN 7	PIN 16	PH4 (OC4B)		
PIN 6	PIN 15	PH3 (OC4A)		
PIN 5	PIN 5	PE3 (OC3A/AIN1)		
PIN 4	PIN 1	PG5 (OCOB)		
PIN 3	PIN 7	PE5 (OC3C/INT5)		
PIN 2	PIN 6	PE4 (OC3B/INT4)		

Interface Capabilities of our Integrated System (Cont.)

Communication

		•			IR
Arduino	ATMega2560	To Call Pin	USB Host Shield	Servos	Sensors
PIN 1	PIN 3	PE1 (TXD0)			
PIN 0	PIN 2	PEO (RXDO/PCINT8)			
PIN 14	PIN 64	PJ1 (TXD3/PCINT10)			
PIN 15	PIN 63	PJO (RXD3/PCINT9)			
PIN 16	PIN 13	PH1 (TXD2)			
PIN 17	PIN 12	PH0 (RXD2)			
PIN 18	PIN 46	PDE (TXD1/INT3)			
PIN 19	PIN 45	PD2 (RXD1/INT2)			
PIN 20	PIN 44	PD1 (SDA/INT1)			
PIN 21	PIN 43	PD0 (SCL/INT0)			

Interface Capabilities of our Integrated System (Cont.)

Digital				Ī			
Arduino	ATMega2560	To Call Pin	USB Host Shield	Servos			IRsensors
PIN 22	PIN 78	PA0 (AD0)		Control Sig	nal (Ankle)		
PIN 23	PIN 77	PA1 (AD1)					
PIN 24	PIN 76	PA2 (AD2)		Control Sig	nal (Lower L	eg)	
PIN 25	PIN 75	PA3 (AD3)					
PIN 26	PIN 74	PA4 (AD4)		Control Sig	mal (Knee)		
PIN 27	PIN 73	PA5 (AD5)					
PIN 28	PIN 72	PA6 (AD6)		Control Sig	nal (Middle	Leg)	
PIN 29	PIN 71	PA7 (AD7)					
PIN 30	PIN 60	PC7 (A15)		Control Sig	nal (Upper L	eg)	
PIN 31	PIN 59	PC6 (A14)					
PIN 32	PIN 58	PC5 (A13)		Control Sig	mal (Hip)		
PIN 33	PIN 57	PC4 (A12)					
PIN 34	PIN 56	PC3 (A11)					
PIN 35	PIN 55	PC2 (A10)					
PIN 36	PIN 54	PC1 (A9)					
PIN 37	PIN 53	PC0 (A8)					
PIN 38	PIN 50	PD7 (T0)					
PIN 39	PIN 70	PG2 (ALE)					
PIN 40	PIN 52	PG1 (/RD)		Control Sig	nal (Ankle)		
PIN 41	PIN 51	PG0 (/WR)					
PIN 42	PIN 42	PL7		Control Sig	nal (Lower L	eg)	
PIN 43	PIN 41	PL6					
PIN 44	PIN 40	PL5 (OC5C)		Control Sig	nal (Knee)		
PIN 45	PIN 39	PL4 (OC5B)					
PIN 46	PIN 38	PL3 (OC5A)		Control Sig	nal (Middle	Leg)	
PIN 47	PIN 37	PL2 (T5)					
PIN 48	PIN 36	PL1 (ICP5)		Control Sig	nal (Upper L	eg)	
PIN 49	PIN 35	PLO (ICP4)					
PIN 50	PIN 22	PB3 (MISO/PCINT3)	Connected via ICSP (MIS	O) Control Sig	nal (Hip)		
PIN 51	PIN 21	PB2 (MOSI/PCINT2)	Connected via ICSP (MOS	SI)			
PIN 52	PIN 20	PB1 (SCK/PCINT1)	Connected via ICSP (SCK))			
PIN 53	PIN 19	PBO (/SS/PCINTO)					
GND			GND	GND			GND
AREF							
5V PIN			PWR	PWR			PWR

ATmega2560 Pin Configuration(TQFP -pinout)

ATmega2560 Schematic

Arduino™Mega 2560 Reference Design

Relations Designs ARE PROVIDED "AS IS" AND "WITH ALL FALLTS". Ardsino DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLIDING BUT NOT LIMITED TO, MY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

riulno may riske chargies to apecifications and product descriptions at any time, without notice. The Customer must not ey on the absence or crassrateration drany features or instructions maked "heavested" or "undefined." Artifution reserves uses for future statistics and shall have no respeciability whatesover for conflicts or incompatibilities artising from feture sharques to

Block Diagram for the ATmega2560

USB Host Shield 2.0 Pin Configuration

Software Requirements-Rofi and DareL

Top-Top Level

- Establish bi-directional connection between Arduino and Android
- Program Android application that sends commands to move servos with Accelerometer and Gyro feedback.

Hardware + Software

- Arduino (C++)
 - Servo library
 - Microbridge library
- Eclipse (Java)
 - Microbridge library
 - Android SDK

- Arduino Mega 2560
- USB Host Shield
- Archos Android Tablet
- USB Micro B to USB A cable

How It Works

- Create a server that listens to a port on the Android device via TCP (Programmed in Java)
- Arduino client connects to the port via TCP (Programmed in C++)
- Android Debug Bridge forwards TCP request connecting Arduino & Android

Current Status of Android/Arduino Interface

- Android Application
 - Communication with
 Arduino via microbridge
 success
 - Accelerometer values successfully accessed in Android

To Do

- Send Arduino gyro values to Android
- Program sensor filter with Accelerometer & Gyro in Java
- Program PID controller with sensor feedback in Java
- Correlate servo movement with PID output and send commands to Arduino

Sensors-Gyroscope

- A gyroscope measures angular velocity, through integration we can get angle.
- The Gyroscope is accurate from the start but over time suffers from the drift effect

Complementary Filter

- Through using the complementary filter, we plan on mixing, combining, and then estimating the data received from the Gyroscope and Accelerometer
- A complementary filter will compensate for the gyroscope drift effect and the accelerometer vibration error giving an accurate reading.
- It is a simplified version of the Kalman filter

Example

- Red accelerometer
- Green Gyro
- Blue Kalman filter
- Black complementary filter
- Yellow the second order complementary filter

Sensors-IR Ranger

- We plan to replace the ultrasonic sensor with an IR ranger for DareL, possibly Rofi
- Will improve accuracy over ultrasonic sensor by reducing the "field of view"

References

- " A Comparison of Complementary and Kalman Filtering" by WALTER T. HIGGINS, JR.
- http://www.ocf.berkeley.edu/~tmtong/kalman.php
- http://web.mit.edu/scolton/www/filter.pdf
- http://robottini.altervista.org/kalman-filter-vscomplementary-filter
- Sensors Powerpoint found in EE 444 reference page by Professor Hill

DareL Next Generation 3d Modeling

Objectives For New Design:

- Main objective: move toward Dynamic Balance
 - Raise center of gravity by moving the batteries out of the feet
 - Re-design the foot
 - To address lack of battery
 - Narrower foot-print (instability)
 - "Organic Curves"
- Secondary Objective: Incorporate internal phone sensors
 - Re-design "Head"
 - Re-orient phone to take advantage of back camera (if available)
 - Devise mount system to adapt to size of available phone (upgrade capable)
 - Make room for Batteries, Ultrasonic/IR sensor, Gyro (if available)
 - "Organic Curves"

Execution of Objectives

- Parts List:
 - Uniform Foot
 - Head Bottom
 - Phone Bracket Left
 - Phone Bracket Right
 - Head Sides
 - Head Top
 - Head Dome
 - + Body Riser from Original ROFI

Uniform Foot

- Same model for both left and right
- Thicker walls around bearing holes
- Narrower Footprint
- "Organic Curves"

New Head

Head Bottom

- Attaches to Original ROFI "Body Riser"
- Arduino Mega Mounts
- Battery body stops
- Slot mount for Ultra Sonic Range Finder
- Sliding Phone Bracket
 Mounts

Sliding Phone Bracket

- 2 Piece Bracket
- Adjusts from 48mm-105mm wide
- 60mm side walls support phone in a vertical orientation
- Non-slip inserts
- "Organic Curves"

Head Sides

- Shell pieces attach with 'tongue-and-groove' plus screws
- Holes to accommodate
 - Ultra Sonic RF "eyes"
 - Servo Power Switch
 - Servo Power Fuse
 - Arduino Power
 - Arduino USB

Head Top

- Attaches to Head Sides and Head Dome via Tabs and screws
- Notch to accommodate
 USB from USB shield

Head Dome

 Attaches to Head Sides and Head Top via grooves and screws

Looking Forward

- Phone with Back or Front Camera
- Phone with internal Gyro
- Use Phone camera for Range Finder
- Entire assembly may be rotated 180° for phone with Front Camera

Other Models

- Archos7 Phone
- Arduino Mega 2560
- Arduino USB Shield
- ROFI Battery
- Ultrasonic RF

Control Issues

- Implement then improve on PID controller.
- Learn Solidworks to model the robot, bypassing the need for messy mathematical computations.
- Look into feasibility of redesigning knee joint to a more realistic model.
- Model with inverted pendulum approach.

Schedule (Level 1)

	Team Biped											
	Task Name	Start	Finish	Duration	% Complete	Sep 2012 9/16 9/23	9/30 10/7 10/14 10/21 10/	Nov 2012 728 11/4 11/11 11/18 11/2	Dec 2012 5 12/2 12/9 12/16			
1	Get FoBa working	9/17/2012	9/27/2012	9d	100%	91	9/27/2012					
2	Order/Received Rofi Parts	9/26/2012	10/15/2012	14d	100%	€	166	$\overline{}$				
3	Print RoFi Parts	10/8/2012	11/8/2012	24d	75%							
4	Build RoFi	11/9/2012	11/13/2012	3d	80%			•				
5	Implement RoFi	11/14/2012	11/26/2012	9d	50%							
6	Design Next Generation RoFi Body Modifications	10/3/2012	11/15/2012	32d	33.33%							
7	Improve Android "Brain" elements	10/16/2012	11/22/2012	28d	11%							
8	Print/Order Parts for Next Generation	11/8/2012	11/16/2012	7d	0%							
9	Build Next Generation	11/19/2012	11/26/2012	6d	0%							
10	Implement Next Generation*	11/27/2012	12/6/2012	8d	0%			•				

Schedule (Level 2)

	Team Biped											
						i i		******* ******* *******				
	Tosk Nome	Stort	F/m/sh	Duration	% Complete	Olwisian	Member					
1	Get Foßs working	9/17/2012	9/27/2012	9d	100%	NA.	Sean Copp (PM)	9/27/2012				
2	Download fobs poser	9/17/2012	9/18/2012	2d	100%			<u></u>				
3	Mechanical	9/19/2012	9/21/2012	3d	100%			<u> </u>				
4	Get it walking	9/24/2012	9/27/2012	4d	100%			- 3				
5	Order/Received Rofi Parts	9/26/2012	10/15/2012	14d	100%	NA.	Sean Copp (PM)	10/15/2012				
6	Print RoFi Parts	10/8/2012	11/8/2012	24d	75%	3D Printing		♦				
7	Build RoFi	11/9/2012	11/13/2012	3d	80%			↓				
8	Prepare the Servos	11/9/2012	11/12/2012	2d	100%	Control	Isawo Rominez	<₽>				
9	Make the legs	11/9/2012	11/12/2012	2d	75%	All	AV	₽				
10	Make the Body	11/13/2012	11/13/2012	1d	50%	All	AV	•				
11	Implement RoFi	11/14/2012	11/26/2012	9d	50%			₹				
12	Get Software Working	11/14/2012	11/16/2012	3d	100%	MCI/Sensors	Kevin Nguyen/ Bryant Tram	O 3 67				
13	Calibration	11/19/2012	11/28/2012	8d	50%	Control	Isauro Romirez	-				
14	Test/Walking	11/29/2012	12/3/2012	3d	0%	All	AV					
15	Design Next Generation RoFi Body Modifications	10/3/2012	11/15/2012	32d	33.33%			———				
16	Features (IR Sensors)	10/3/2012	11/15/2012	32d	50%	3D-Modeling/ Sensors	Bryant Tram/Mike Pluma					
17	Solidworks (Generate Model)	10/3/2012	11/15/2012	32d	50%	3D-Modeling	Mike Pluma	○				
18	Refine model w/ what we have learned from Rofi	10/3/2012	11/15/2012	32d	0%	3D-Modeling	Mike Pluma	○ *** ∨				
19	Improve Android "Brain" elements	10/16/2012	11/22/2012	28d	11%			◯				
20	Implement Gyrascope	11/15/2012	11/22/2012	6d	0%	MC3/Sensors	Kevin Nguyen/ Bryant Tram	O N				
21	Voice command	11/5/2012	11/19/2012	11d	0%	MC3/Sensors	Kevin Nguyen/ Bryant Tram	○ ** V				
22	Phone camara	11/5/2012	11/19/2012	11d	0%	MC3/Sensors	Kevin Nguyen/ Bryant Tram	O_₩_V				
23	Medium IR sensor	11/5/2012	11/19/2012	11d	0%	MC3/Sensors	Kevin Nguyen/ Bryant Tram	○ ** ∨				
24	Coding	10/16/2012	10/30/2012	11d	50%	MC3/Sensors	Kevin Nguyen/ Bryant Tram					
25	Print/Order Parts for Next Generation	11/8/2012	11/16/2012	7d	0%	3D Printing		○※ ⑤				
26	Build Next Generation	11/19/2012	11/26/2012	6d	0%			↓™ G				
27	Software	11/19/2012	11/26/2012	6d	0%	MC3/Sensors	Kevin Nguyen/ Bryant Tram					
28	Mechanical	11/22/2012	11/26/2012	3d	0%	All	AV	□ ■✓				
29	Implement Next Generation*	11/27/2012	12/6/2012	8d	0%			↓				
30	Software	11/27/2012	12/6/2012	8d	0%	MC3/Sensors		○ ** ∨				
31	Calibration	11/27/2012	12/6/2012	8d	0%	Control	Isaura Romirez	□* *▼				
32	Testing	11/27/2012	12/6/2012	8d	0%	All	AV	□. ₩ ∨				

RoFi Cost-Parts

ltem		Description	Provider	Part Number	Price	Qnty	Shipping	Total Cost	Running Cos
Break Av	Jau	Used to connect	SparkFunk	COM-10095	\$4.95	1	\$3.64	\$8.59	\$ 8.59
Right An		Servos to	Electronics	55.1.10000	¥ 100		70.01	70.00	70.00
3x40	gie	Arduino	Liedionios						
0.10		HIGGINO							
55g/10kg	g/.20 sec	Servos for the	HobbyKing	MG996R/6221	\$50.34	6	\$9.99	\$60.33	\$68.92
		leg joints							
UBEC-5	0_HV	Power supply	Hobby Partz	07E32-ExceedRC	\$23.75	1			
(High Vo		r-ower supply	11000by Faltz	_UBEC-5A-V1	Ψ23.13	'			
Ultimate				_objec on vi					
Oldinate	DEC,								
Gens Ac	e 4mm	Battery to wire	Hobby Partz	98P-4mmBanana	\$1.99	2			
Banana	Battery			For-Battery					
Connect	tor								
IDTVO	1	0	H-LL. D-A-	70D 10042	41.00	-			
JR TX 2.		Apator for battery	Hobby Partz	79P-10043	\$1.90	1			
banana	plug	and Rofi							
adaptor									
Hitec Se	rvo	Extension wires	Hobby Partz	79P-10066	\$1.80	3	11.98 + tax	\$50.08	\$ 119.00
extentio	nlead	for the servos				_			
150mm (
	Bearing	Bearings for	VXB Bearings	623ZZ10	\$16.60	1	\$6.07	\$22.67	\$141.67
Shielded		the leg joints							
Miniatur									
Bearings	5								
USB Hos	st Shield	USB Host Shield	Circuits@Home		\$25.00	1	\$5.50	\$30.50	\$172.17
		for Arduino							
		For3D printing	Maker Farm Inc	1kgBlackPLA175	\$39.00	2.2lb (1kg)			
Black PL	.A Filamen	parts							
2 215 (16	a) 1.75mm	For 3D printing	Maker Farm Inc	1kgYellowPLA175	\$39.00	2.2lb (1kg)	\$17.15	\$95.15	\$267.32
Yellow P		parts	riakerr ammic	ikgrellowi EH113	¥33.00	2.2ID (IKg)	Ψ11.13	400.10	₩201.32
Filament		pares							
Archos 2		Android "Brain"	Amazon.com	Archos 28 4 GB	\$56.30	1	\$0+tax	\$61.23	\$ 328.55
Internet i	Tablet			Internet Tablet					
(Black)				(Black)					
Arduino	Меда	Microcontroller	Amazon.com	Arduino Mega	\$51.95	1	\$0	\$51.95	\$ 380.50
2560 R3		1-licrocontroller	Alliazori.com	2560 R3	Ψ31.33	'	40	\$31.33	4 300.30
2300 N3	1			2300 H3					
TOTAL	COST			-					\$380.50
POSSII	BLE UNE	XPECTED EXPE	NSES					1 \$50	\$ 430.50
		_							0.000 50
RANGE	OF COS	ST							\$430.50

Main Support Issues

ROFI Parts							
Part	Quantity	Color	PLA/ABS	Print Date	Notes (etc)	Needed	Finalized
Foot	•	Black	ABS	sirac and steve	maker	0	2
Servo Band	4	Yellow	PLA	10/9/12 PF	Robot Company	0	4
Servo Wrap Lower Right	1	Yellow	PLA	10/14/12 PF REDONE	Robot Company	0	1
Servo Wrap Lower Left	1	Yellow	PLA	10/14/2012 PF REDONE	Robot Company	0	1
Servo Wrap Upper Right	1	Yellow	PLA	10/14/12 PF		1	0
Servo Wrap Upper Left	1	Yellow	PLA	10/14/12 PF	Robot Company	0	1
Knee Frame	2	Yellow	PLA	10/10/12 PF	Robot Company	0	2
Heel	2	Yellow	PLA	10/15/12 PF	Maker/Robot Company	0	0
Bearing Bar	4	Black	PLA			4	0
Bearing Frame	1	Black	PLA	10/15/12 PF		1	0
Side Knee Bracket	4	Black	PLA		maker	0	4
Center Bracket	1	Black	PLA	10/15/12 PF	maker	0	1
Body Riser	1	Black	PLA	10/17/12 PF	maker	0	1
Body Panel RIGHT	1	Black	ABS			1	0
Body Panel BACK	1	Black	ABS			1	0
Body Panel FRONT	1	Black	ABS			1	0
Body Panel LEFT	1	Black	ABS			1	0
Body Strut	1	Black	ABS			1	0
Servo Bracket - Left	2	Black	ABS		maker	0	2
Servo Bracket - Right	2	Black	ABS		maker	0	2
Body Panel Top	1	black	ABS		maker	0	1

Measures of Success

- Successful Rofi Operation
- Next Generation (DareL)
 - Dynamic walking
 - Walk up an incline
 - Respond to impulse

Conclusion

- Rofi is moving much slower than anticipated, but will be completed by end of semester.
- Unforeseen issues have limited the viability of implementing full functionality of DareL. In the event we are unable to complete DareL's main objectives, our goal will be to provide resources and documentation to enable the success of next semester's biped robot group.