

- () Preliminary Specifications
- (\checkmark) Final Specifications

Module	15.6"FHD Color TFT-LCD	
Model Name	G156HAN02.302	
Note	LED backlight with driving circuit design	

Customer	Date
Checked & Approved by	Date
Customer's sign	ı back page

Approved by	Date	
Sean Lin	<u>03/20/2020</u>	
Prepared by	Date	
<u>Sandy Su</u>	03/20/2020	
General Display Business Division / AU Optronics corporation		

G156HAN02.3

AU OPTRONICS CORPORATION

Contents

1. Handling Precautions	4
2. General Description	
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 Absolute Ratings of TFT LCD Module	10
4.2 Absolute Ratings of Environment	10
5.1 TFT LCD Module	11
5.2 Backlight Unit	
6. Signal Interface Characteristic	16
6.1 Pixel Format Image	16
6.2 Signal Description	17
6.3 The Input Data Format	19
6.4 Interface Timing	20
6.5Power ON/OFF Sequence	21
7. Panel Reliability Test	22
8. Mechanical Characteristics	23
8.1 LCM Outline Dimension (Front View)	23
8.2 LCM Outline Dimension (Rear View)	24
9. Label and Packaging	25
9.1 Shipping Label (on the rear side of TFT-LCD display)	25
9.2 Carton Package	26
9.3 Shipping Package of Palletizing Sequence	26
10. Safety	27
10.1 Sharp Edge Requirements	27
10.2 Materials	27
10.3 Capacitors	27
10.4 National Test Lab Requirement	27
11. Handling guide	28

G156HAN02.3

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description	New Description
1.0	2020/03/20	All	Final Edition Release for Customer	

G156HAN02.3

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

G156HAN02.3

AU OPTRONICS CORPORATION

2. General Description

G156HAN02.3 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:9 FHD, 1920(H) x 1080(V) screen and 16.7M colors (RGB 8-bits) with LED backlight driving circuit. All input signals are LVDS interface compatible.

G156HAN02.3 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition

Items	Unit	Specifications				
Screen Diagonal	[mm]	15.6"				
Active Area	[mm]	344.16 x 193.	59			
Resolution		1920 x 3(RGB) x 1080			
Pixel Pitch	[mm]	0.17925 x 0.17	7925			
Pixel Arrangement		R.G.B. Vertico	al Stripe			
Display Mode		AHVA, Normo	ally Black			
Nominal Input Voltage VDD	[Volt]	+3.3 (Typ.)				
LCD Power Consumption	[Watt]	2.11 (Max.)				
Backlight Power Consumption	[Watt]	10.4 (Max.)				
Weight	[Grams]	600 (Typ), 660	O (Max)			
Physical Size			Min.	Тур.	Max.	
Include bracket		Length	363.3	363.8	364.3	
	[mm]	Width	215.4	215.9	216.4	
		Thickness		8.8		
Electrical Interface		2 ch LVDS				
Surface Treatment		Anti-glare, 3H	1			
Support Color		16.7M colors (RGB 8-bits)				
Temperature Range Operating Storage (Non-Operating)	[°C]	-20 to +70 -20 to +70				
RoHS Compliance		Yes				

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature)

Item		Unit	Conditions	Min.	Тур.	Max.	Note
White Luminance	e	cd/m²	d/m ² I _{LED} =50mA Center average		500	-	1, 2
Luminance Unifo	rmity	%	9 Points	75	80		1,2,3
Contrast Ratio				700	1000	-	1, 4
Response Time		msec	Rising + Falling	-	25	35	1, 5
Viewing Angle		degree	Horizontal (Right) CR = 10 (Left)	80	89	-	
			Vertical (Upper) CR = 10 (Lower)	80 80 80	89 89 89	-	1,6
Red		Rx		0.589	0.639	0.689	
	Ry Gx Gy Gy Gy Gy Gy Gy			0.283	0.333	0.383	
Color /				0.252	0.302	0.352	
Chromaticity				0.574	0.624	0.674	
(CIE 1931) Blue		Bx	CIE 1931	0.107	0.157	0.207	4
	RIUE	Ву		0.008	0.058	0.108	
		Wx		0.263	0.313	0.363	
	White	Wy		0.279	0.329	0.379	
Color Gamut		%		-	72	-	

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

10 with 50cm viewing distance **Aperture**

Test Point Center Environment < 1 lux

Note 2: 9 points position

Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance. And measured by TOPCON SR-3

$$\delta$$
 w9 =
$$\frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}}$$

Note 4: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 5: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 6:. Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inches wide Color TFT/LCD module.

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD Drive	VDD	-0.3	+4.0	[Volt]

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating	TOP	-20	+70	[°C]
Operation Humidity	HOP	5	95	[%RH]
Storage Temperature	TST	-20	+70	[°C]
Storage Humidity	HST	5	95	[%RH]

Note: Maximum Wet-Bulb should be 39 °C and no condensation.

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	1.75	2.11	[Watt]	All White Pattern (VDD=3.3V, at 60Hz),Note
IDD	IDD Current	-	0.53	0.64	[A]	All White Pattern (VDD=3.3V, at 60Hz) Note 2
IRush	Inrush Current	-	-	2000	[mA]	Note 1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	All White Pattern (VDD=3.3V, at 60Hz)

Note 1: Maximum Measurement Condition: White Pattern at 3.3V driving voltage. (Pmax=V3.3 x lwhite)

Typical Measurement Condition: Mosaic Pattern

Note 2 : Current fuse is built in a module. Current capacity of power supply for VDD should be larger than 1.5A, so that the fuse can be opened at the trouble of electrical circuit of module.

Note 3: Measure Condition

5.1.2 LVDS DC Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold			+100	[mV]	VCM=1.2V
VTL	Differential Input Low Threshold	-100			[mV]	VCM=1.2V
VID	Input Differential Voltage	100		600	[mV]	
VICM	Differential Input Common Mode Voltage	1.0	1.2	1.5	[V]	VTH/VTL=+-100mV

Note: LVDS Signal Waveform.

Single-end Signal

Differential Signal

G156HAN02.3

AU OPTRONICS CORPORATION

5.2.1 LED Backlight Unit: Driver Connector

Connector Name / Designation	Lamp Connector
Manufacturer	Entery
Connector Model Number	3808K-F05N-02 or compatible
Mating Model Number	H208K-D05N-22B or compatible

Pin No.	Symbol	Description	
Pin1	VLED	12V input	
Pin2	GND	GND	
Pin3	VLED_EN	5V-ON,0V-OFF	
Pin4	VPWM_EN	PWM	
Pin5	NA	NC	

5.2.3 Parameter guideline for LED

Following characteristics are measured under a stable condition using an inverter at 25°C (Room temperature)

LED characteristics

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption	PLED	-	8.3	10.4	[Watt]	(Ta=25°C), Note 1 Vin =12V
LED Life-Time	N/A	50,000	-	-	Hour	(Ta=25°C), Note 2,3

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: If G156HAN02.3 module is driven at high ambient temperature & humidity condition. The operating life will be reduced.

Note 3: Operating life means brightness goes down to 50% initial brightness. Min. operating life time is estimated data.

G156HAN02.3

AU OPTRONICS CORPORATION

G156HAN02.3₀₂ Rev 1.0

Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	10.8	12	13.2	[Volt]	
LED Enable Input High Level		2.5		5.5	[Volt]	
LED Enable Input Low Level	VLED_EN	0		0.7	[Volt]	Define as
PWM Logic Input High Level		2.5		5.5	[Volt]	Connector
PWM Logic Input Low Level	VPWM_EN	0		0.7	[Volt]	Interface (Ta=25°C)
PWM Input Frequency	FPWM	200	1K	15K	Hz	
PWM Duty Ratio	Duty	10		100	%	

Note 1: Recommanded system pull up/down resistor no bigger than 10kohm.

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1				1920
1st Line	R G B	R G B		R G B	R G B
	1			•	
			1		
					:
			•		.
			•	•	
			•		:
1080th Line	R G B	R G B		R G B	RGB

G156HAN02.3

AU OPTRONICS CORPORATION

6. 2 Signal Description

The module uses a LVDS receiver embedded in AUO's ASIC. LVDS is a differential signal technology for LCD interface and a high-speed data transfer device.

6.2.1 TFT LCD Module: LVDS Connector

TFT-LCD Connector	Manufacturer	P-TWO	STM
TFT-LCD Connector	Part Number	187034-3009	MSBKT2407P30HB
Mating Connector	Manufacturer	JAE or Equivalent	
Mating Connector	Part Number	FI-X30HL (Locked Type)	

PIN#	Symbol	Description	Remark
1	RxO0-	Negative LVDS differential data input (Odd data)	
2	RxO0+	Positive LVDS differential data input (Odd data)	
3	RxO1-	Negative LVDS differential data input (Odd data)	
4	RxO1+	Positive LVDS differential data input (Odd data)	
5	RxO2-	Neaative LVDS differential data input (Odd data)	
6	RxO2+	Positive LVDS differential data input (Odd data)	
7	GND	Ground	
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)	
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)	
10	RxO3-	Negative LVDS differential data input (Odd data)	
11	RxO3+	Positive LVDS differential data input (Odd data)	
12	RxE0-	Negative LVDS differential data input (Even data)	
13	RxE0+	Positive LVDS differential data input (Even data)	
14	GND	Ground	
15	RxE1-	Negative LVDS differential data input (Even data)	
16	RxE1+	Positive LVDS differential data input (Even data)	
17	GND	Ground	
18	RxE2-	Negative LVDS differential data input (Even data)	
19	RxE2+	Positive LVDS differential data input (Even data)	
20	RxECLK-	Negative LVDS differential clock input (Even clock)	
21	RxECLK+	Positive LVDS differential clock input (Even clock)	
22	RxE3-	Negative LVDS differential data input (Even data)	
23	RxE3+	Positive LVDS differential data input (Even data)	
24	GND	Must Connect to GND	
25	NC	No connection (for AUO test only. Do not connect)	
26	NC	No connection (for AUO test only. Do not connect)	
27	NC	No connection (for AUO test only. Do not connect)	

G156HAN02.3

AU OPTRONICS CORPORATION

28	VDD	Power Supply Input Voltage
29	VDD	Power Supply Input Voltage
30	VDD	Power Supply Input Voltage

Note 1: Input signals shall be low or High-impedance state when VDD is off.

6.2.2 Connector Illustration

LVDS (CN1):

BLU Power in (CN2):

AU OPTRONICS CORPORATION

6.3 The Input Data Format

RXCLKIN			<i>[</i>
RXINO _	90 R5	R4 R3 R2	R1 R0
RXIN1	B1 B0	G5 G4 G3	G2 G1 X
RxIN2	DE	B5 B4	B3 B2 X
RxIN3	RSV B7	B6 G7 G6	R7 R6

Note1: Please follow PSWG.

Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark	
R7	Red Data 7	Red-pixel Data	
R6	Red Data 6		
R5	Red Data 5	8Bits LVDS input	
R4	Red Data 4	·	
R3	Red Data 3	MSB: R7 ; LSB: R0	
R2	Red Data 2		
R1	Red Data 1		
R0	Red Data 0		
G7	Green Data 7	Green-pixel Data	
G6	Green Data 6		
G 5	Green Data 5	8Bits LVDS input	
G4 Green Data 4			
G3	Green Data 3	MSB: G7; LSB: G0	
G2	Green Data 2		
G 1	Green Data 1		
G0	Green Data 0		
B7	Blue Data 7	Blue-pixel Data	
B6	Blue Data 6		
B5	Blue Data 5	8Bits LVDS input	
B4	Blue Data 4		
B3	Blue Data 3	MSB: B7 ; LSB: B0	
B2	Blue Data 2		
B1	Blue Data 1		
B0	Blue Data 0		
RxCLKIN	LVDS Data Clock		
DE	Data Enable Signal	When the signal is high, the pixel data shall be valid to be displayed.	

Note: Output signals from any system shall be low state or High-impedance state when VDD is off.

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1920x1080 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	Frame Rate		-	60	-	Hz
Clock fre	equency	1/T _{Clock}	68.5	70.5	73	MHz
	Period	Tv	1104	1116	1080+A	
Vertical	Active	TvD		1080		T Line
Section	Blanking	Т∨в	24	36	Α	
	Period	TH	1050	1052	960+B	
Horizontal	Active	T _{HD}		960		T Clock
Section	Blanking	Тнв	90	92	В	

Note1: The above is as optimized setting

Note2: The maximum clock frequency = [(960 + B)*(1080+A)*60] < 74.5MHz

Note3: Horizontal related parameters must be constant without variation (H_Sync_Width (THW),

H_Front_Porch(THF) and H_Back_Porch(THP) must be constant on each scan line).

Note4: On vertical blank area, H_Sync_Width (THW) and H_Total(TH) must be same as on the V_Active

area.

Note5 : Vertical related parameters must be constant without variation. (V_Sync_Width(TVW), V Front Porch(TvF) and V Back Porch(TVP) must be constant on each video field).

Note6 : The DE timings also must be constant without variation (H/V timing requirements are as same as previous. Blank timing must also be constant).

6.4.2 Input Timing Diagram

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be High-impedance state or low level when VDD is off.

Power ON/OFF sequence timing

		Value				
Parameter	Min.	Тур.	Max.			
T1	0.5		10	[ms]		
T2	30	40	50	[ms]		
Т3	200	-fide		[ms]		
T4	0.5	Co.	10	[ms]		
Т5	10			[ms]		
Т6	10			[ms]		
Т7	0			[ms]		
Т8	10			[ms]		
Т9			10	[ms]		
T10	110			[ms]		
T11	0	16	50	[ms]		
T12			10	[ms]		
T13	1000			[ms]		

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

7. Panel Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 50°C, 80%RH, 300h	Note 2
High Temperature Operation	Ta= 70°C, Dry, 300h (For panel surface temp.)	
Low Temperature Operation	Ta= -20°C, 300h	
High Temperature Storage	Ta= 70°C, 300h	
Low Temperature Storage	Ta= -20°C, 300h	
Thermal Shock Test	Ta= -20°C to 60 °C, Duration at 30 min, 100 cycles	
	Test method: Non-Operation	
	Acceleration: 1.5 G	
Vibration	Frequency: 10 - 200 - 10Hz	
	Sweep: Sine wave vibration;	
	30 minutes each axis (X, Y, Z)	
	Test method: Non-Operation	
Mechanical Shock	Acceleration: 50 G; Wave: Half-sine	
Meenamea snock	Active time: 20 ms	
	Direction: ±X,±Y,±Z (one time for each axis)	
Drop Test Height: 46 cm, package test		
ESD	Contact: ±8 KV	Note 1
	Air: ±15 KV	

Note 1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. Self-recoverable. No data lost, No hardware failures.

Note 2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.
- No function failure occurs. Mura shall be ignored after high temperature reliability test

8. Mechanical Characteristics

8.1 LCM Outline Dimension (Front View)

Note:

- 1. Tolerance without specified to be +/-0.5mm.
- 2. Torque of M3 user hole should be within 4Kg-cm and re-screw 10times.

8.2 LCM Outline Dimension (Rear View)

9. Label and Packaging

9.1 Shipping Label (on the rear side of TFT-LCD display)

Note 2: For RoHS compatible products, AUO will add RoHS for identification.

Note 3: For China RoHS compatible products, AUO will add 69 for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

9.2 Carton Package

Max capacity: 16 TFT-LCD module per carton

Max weight: 13.2 Kg per carton

Outside dimension of carton: 450mm(L)*375mm(W)*319mm(H)

Pallet size: 1150 mm * 910 mm * 132mm

Box stacked

Module by air: (2*3)*4 layers, one pallet put 24 boxes, total 384pcs module

Module by sea: (2 *3) *4 layers+(2 *3) *1 layers, two pallet put 30 boxes, total 480pcs

module

Module by sea_HQ: (2 *3) *4 layers+(2 *3) *2 layers, two pallet put 42 boxes, total 576 pcs

module

9.3 Shipping Package of Palletizing Sequence

10. Safety

10.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

10.2 Materials

10.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

10.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

10.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition U.S.A. Information Technology Equipment

11. Handling guide

This is a LCD model, and please be cautious when pulling it out of package or assembling it onto platform. Careless handlings, e.g. twist, bending, pressing, or collision, will result malfunction of LCD models.

(1) Handling method notice

Do not lift and hold the panel with Single hand at right or left side from tray.

Lift and hold the panel up with both hands from tray.

(2) On the table notice

Do not press edge of panel to avoid glass broken.

Do not press the surface of the panel to avoid the glass broken or polarizer scratch.

Do not put anything or tool on the panel to avoid the glass broken or polarizer scratch.

(3) Cable assembly notice

Do not insert the connector with single hand and touching the PCBA.

Insert the connector by pushing right and left edge.