ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗ ΜΝΗΜΗΣ

Άσκηση 1.

Δίνεται μία μνήμη μεγέθους 64Mbytes. οργανωμένη σε 32 chips. Το μέγεθος λέξης είναι 1 byte.

1) Να δώσετε το πλήθος των bit που απαιτούνται για τη διευθυνσιοδότηση αυτής της μνήμης και τον τρόπο χρησιμοποίησής τους.

Λύση

64 MB είναι 64 x 2^{10} KB ή 64 x 2^{20} bytes ή 2^6 x 2^{20} bytes ή 2^{26} bytes Άρα 64 MB = 2^{26} bytes και επειδή η λέξη είναι 1 byte, έχουμε 2^{26} x1= 2^{26} λέξεις. Έχουμε και 26 bits διευθυνσιοδότηση. Η χρήση τους είναι: CS: 5 bits (32 = 2^5 chips) WS: 26 - 5 = 21 bits

2) Να σχεδιάσετε το word select με αποκωδικοποιητές 7 x 128

Λύση

21/7 = 3 επίπεδα $2^{21}/2^7 = 2^{14}$ αποκωδικοποιητές 7x128 επιπέδου 2 $2^{14}/2^7 = 2^7$ αποκωδικοποιητές 7x128 επιπέδου 1 $2^7/2^7 = 1$ αποκωδικοποιητής 7x128 επιπέδου 0

3) Να επαναλάβετε το ερώτημα 1, αν το μέγεθος λέξης είναι 2 bytes.

Λύση

Εφόσον το μήκος της λέξης αλλάζει, θα αλλάξει και το πλήθος των λέξεων. $2^{26}/2^1 = 2^{25}$ λέξεις των 2 bytes.

Άρα θα έχουμε διεύθυνση των 25 bits με 5bits για CS και 20bits για WS

4) Να επαναλάβετε το ερώτημα 2, αλλά χρησιμοποιώντας αποκωδικοποιητές 5 x 32.

Λύση

21= 5+5+5+6 άρα θα έχουμε 4 επίπεδα

 $2^{21}/2^{5} = 2^{16}$ αποκωδικοποιητές 5x32 επιπέδου 3

 $2^{16}/2^{5} = 2^{11}$ αποκωδικοποιητές 5x32 επιπέδου 2

 $2^{11}/2^{5} = 2^{6}$ αποκωδικοποιητές 5x32 επιπέδου 1

 $2^{6}/2^{6} = 1$ αποκωδικοποιητής 6x64 επιπέδου 0

Άσκηση 2

Δίνεται μία μνήμη μεγέθους 256 Mbytes, οργανωμένη σε 64 chips. Το μέγεθος λέξης είναι 4 bytes.

1) Πόσες λέξεις διαθέτει αυτή η μνήμη;

Λύση

Χωρητικότητα μνήμης = μέγεθος λέξης μνήμης * πλήθος λέξεων =>

Πλήθος λέξεων =χωρητικότητα μνήμης / μέγεθος λέξης μνήμης=

$$\frac{256 * 2^{10} * 2^{10}}{2^2} = \frac{2^{28}}{2^2} = 2^{26} \lambda \acute{\epsilon} \xi \epsilon \iota \varsigma$$

2) Πόσες λέξεις διαθέτει καθένα από τα chips;

Λύση

$$\frac{2^{26} \lambda \acute{\epsilon} \xi εις}{64 chips} = \frac{2^{26}}{2^6} = 2^{20} \lambda \acute{\epsilon} \xi εις κάθε chip$$

3) Ποιο το μέγεθος του CS και καθενός από τα WS;

Λύση

CS: 6*64

WS: 20 * 1048576

Ευστάθιος Ιωσηφίδης

4) Σχεδιάστε ένα WS χρησιμοποιώντας αποκωδικοποιητές 6 x 64.

Λύση

20 = 6 + 6 + 6 + 2 άρα θα έχουμε 4 επίπεδα. $2^{20}/2^6 = 2^{14}$ αποκωδικοποιητές 6x64 επιπέδου 3 $2^{14}/2^6 = 2^8$ αποκωδικοποιητές 6x64 επιπέδου 2 $2^8/2^6 = 2^2$ αποκωδικοποιητές 6x64 επιπέδου 1 1 αποκωδικοποιητής 2x4 επιπέδου 0

5) Δείξτε την αποκωδικοποίηση της λέξης μνήμης με διεύθυνση 262.145

Λύση

Διεύθυνση	CS	WS	WS	WS	WS
		Επίπεδο 0	Επίπεδο 1	Επίπεδο 2	Επίπεδο 3
262.145	000000	01	000000	000000	000001

CS: 000000 επιλέγεται το Chip 0

WS (επίπεδο 0): $01 \rightarrow επιλέγεται ο DEC1 του επιπέδου 1 (64-127)$

WS (επίπεδο 1): $000000 \rightarrow επιλέγεται ο DEC64 του επιπέδου 2 (4096-4159)$

WS (επίπεδο 3): $000000 \rightarrow επιλέγεται ο DEC4096 του επιπέδου 3 (262144 - 262207)$

WS (επίπεδο 3): 000001 → επιλέγεται η έξοδος D1 262145

Άσκηση 3

1. Πόσα chips με πλήθος 2²⁰ λέξεις χρειάζονται για να κατασκευάσουμε μία μνήμη 128Mbytes, αν το μέγεθος λέξης είναι 8 bytes;

Λύση

Μνήμη 128MB = 2^{27} bytes Μήκος λέξης 8 bytes = 2^3 bytes $2^{27}/2^3 = 2^{24}$ πλήθος λέξεων Αφού κάθε chip χωράει 2^{20} λέξεις, άρα θα έχουμε $2^{24}/2^{20} = 2^4 = 16$ chip

2. Να σχεδιάσετε το CS αυτής της μνήμης με αποκωδικοποιητές 2 x 4

Λύση

Θέλουμε 4x16 ενώ έχουμε 2x4 αποκωδικοποιητές. Άρα θα έχουμε 2 επίπεδα (4=2+2) με: 2² αποκωδικοποιητές 2x4 στο επίπεδο 1 αποκωδικοποιητή 2x4 στο επίπεδο 0

3. Να σχεδιάσετε ένα WS αυτής της μνήμης με αποκωδικοποιητές 5 x32

Λύση

 $2^{20} / 2^5 = 2^{15}$ αποκωδικοποιητές 5x32 επιπέδου 3

 $2^{15}/2^{5} = 2^{10}$ αποκωδικοποιητές 5x32 επιπέδου 2

 $2^{10} / 2^{5} = 2^{5}$ αποκωδικοποιητές 5x32 επιπέδου 1

 $2^{5}/2^{5} = 1$ αποκωδικοποιητής 5x32 επιπέδου 0

4. Δείξτε την αποκωδικοποίηση της λέξης μνήμης με διεύθυνση 262.145

Λύση

Δισύθινασο	CS	WS	WS	WS	WS
Διεύθυνση		Επίπεδο 0	Επίπεδο 1	Επίπεδο 2	Επίπεδο 3
262.145	0000	01000	00000	00000	00001

CS: 0000 επιλέγεται το Chip 0

WS (επίπεδο 0): 01000 \rightarrow επιλέγεται ο DEC8 του επιπέδου 1 (256-287)

WS (επίπεδο 1): 00000 \rightarrow επιλέγεται ο DEC256 του επιπέδου 2 (8192-8223)

WS (επίπεδο 3): $00000 \rightarrow επιλέγεται ο DEC8192 του επιπέδου 3 (262144)$

WS (επίπεδο 3): 000001 \rightarrow επιλέγεται η έξοδος D_{262145} άρα αποκωδικοποιείται η λέξη

μνήμης με διεύθυνση 262145