GRUs (gated recurrent unit)

- 1) ความจำระยะสั้น --> ถูกสร้างจากข้อมูลใหม่ และความจำระยะยาวบางส่วน
- 2) ความจำระยะสั้นที่สำคัญ --> กลายเป็นความจำระยะยาวได้
- 3) ลืมความจำระยะยาวเก่าๆ ได้ (ที่ไม่ได้ใช้)
- 4) ความจำระยะยาว (ใหม่) = เกิดจาก (1) + (2)

h = ความจำระยะยาว

ht = ความจำระยะยาวที่ Time Step(t)

ht-1 =ความจำระยะยาวที่ Time Step(t-1)

Xt = Input ที่ Time Step (t)

W = Weight

1)
$$r_t = simoid (Xt * Wr + h_{t-1} * Ur + br)$$

--> ht-1 (x) rt ; Ex 100% (x) 0.8 = 80% ข้อมูลที่เหลือส่งไป (ความจำระยะยาว)

2)
$$Zt = simoid (Xt*Wz + ht*Uz + Bz)$$

--> 1- = 1- Zt
--> $h_{t-1} \times [1-Zt]$
--> $x = Zt \times ht$

(1

3)
$$h_t = tanh (X_t * W_{ht} + [H_{t-1} * T_t] U_{ht} + B_t)$$

4)
$$(ht \times [1-Zt]) + (Zt \times ht)$$

	TS	_1	TS	_2	TS	_3
	Н	L	Н	L	Н	L
1	1.135	1.132	1.138	1.133	1.14	1.135
2	1.137	1.132	1.136	1.132	1.137	1.133
3	1.137	1.132	1.137	1.132	1.136	1.132
4	1.136	1.128	1.137	1.132	1.137	1.132

$$W_z = \begin{bmatrix} 0.28 & -1.39 & 1.42 \\ 0.49 & 0.13 & 0.67 \end{bmatrix}$$
 $B_r = \begin{bmatrix} 0.14 & -0.67 & 0.31 \end{bmatrix}$

$$U_z = \begin{bmatrix} 1.13 & 0.51 & 0.82 \\ 0.47 & 0.31 & -1.4 \\ 0.23 & 0.77 & 0.13 \end{bmatrix}$$

$$W_{ht} = \begin{bmatrix} 0.14 & 0.28 & 0.51 \\ 0.65 & -0.13 & -1.43 \end{bmatrix} \quad B_{ht} = \begin{bmatrix} 0.21 & 0.81 & 0.33 \end{bmatrix}$$

$$U_{ht} = \begin{bmatrix} -1.31 & 0.18 & 0.65 \\ 0.14 & 0.81 & 0.21 \\ 0.75 & 0.43 & 0.86 \end{bmatrix}$$

	TS_1		
	Н	L	
1	1.135	1.132	
2	1.137	1.132	
3	1.137	1.132	
4	1.136	1.128	

$$X_{TS}_{1} = \begin{bmatrix} 1.135 & 1.132 \\ 1.137 & 1.132 \\ 1.137 & 1.132 \\ 1.136 & 1.128 \end{bmatrix}$$

1)
$$r_t = simoid (Xt * Wr + h_{t-1} * Ur + br)$$

$$R1_{Ts_1} = 6(X_{Ts_1} * Wr + H1_{Ts_0} * Ur + Br)$$

2)
$$Zt = simoid (Xt*Wz + ht*Uz + Bz)$$

--> 1- = 1- Zt
--> $h_{t-1} \times [1-Zt]$
--> $x = Zt \times ht$

$$Z1_Ts_1 = (X_Ts_1 * Wz + H1_Ts_0 * Uz + Bz)$$

3) $h_t = \tanh (X_t * W_{ht} + [H_{t-1} * T_t] U_{ht} + B_t)$

4)
$$(ht \times [1-Zt]) + (Zt \times ht)$$

 $(1) \\ HT1_Ts_1 = tanh (X_Ts_1 * W_{ht} + (H1_Ts_0 * R1_Ts_1) * U_{ht} + B_{ht})$

* เป็นการคูณแบบ ตำแหน่ง ต่อ ตำแหน่ง

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$A * B = \begin{bmatrix} (1)(5) & (2)(6) \\ (3)(7) & (4)(8) \end{bmatrix}$$

TS	_2
Н	L
1.138	1.133
1.136	1.132
1.137	1.132
1.137	1.132

$$R1_Ts_2 = (X_Ts_2 * Wr + H1_Ts_1 * Ur + Br)$$

$$Z1_Ts_2 = (X_Ts_2 * Wz + H1_Ts_1 * Uz + Bz)$$

$$HT1_Ts_2 = tanh (X_Ts_2 * W_{ht} + (H1_Ts_1*R1_Ts_2) * U_{ht} + B_{ht})$$

$$HT1_Ts_2 = (1 - Z1_Ts_2) * H1_Ts_1 + (Z1_Ts_2) * HT1_Ts_2$$