Visualizing TPC Data (1999 vs. 2024)

Taylor Hatcher

2025-02-10

```
# Load Data
getwd()

## [1] "/Users/taylorhatcher/Desktop/Repos/WARP2024/Data"

tpcvis <- read.csv("PastPresentFilteredConstantTpc2024.csv")</pre>
```

Historic Data Analysis

Filter Historic Data

```
tpcvis_past <- tpcvis %>%
filter(time.per == "past")
```

Log Scale Growth Rate

Arithmetic Scale Growth Rate

Combined Scale Comparison (Historic Data)

Comparison of 1999 vs. 2024 Data

Logarithmic Scale Comparison

Arithmetic Scale Comparison

Aggregated Data Analysis

Logarithmic Scale Aggregation

Arithmetic Scale Aggregation

```
# Filter na's from rgrlog out
tpcvis_cleancurrent <- tpcvis_current %>% filter(is.finite(rgrlog))
# Temp is a factor for analyzing
tpcvis_cleancurrent$temp <- as.factor(tpcvis_cleancurrent$temp)</pre>
```

Analysis approach

- 1. Fit the mixed model with a quadratic time effect
- 2. Check model fit using summary & ANOVA
- 3. Simulate residuals with DHARMa
- 4. Run residual diagnostics
- 5. Compare models (linear vs. quadratic)
- 6. Refit the final model using REML
- 7. Visualize residuals and predictions using DHARMa

```
library(lme4)

## Loading required package: Matrix

##

## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':

##

expand, pack, unpack
```

Fit mixed model with a quadratic time effect-

rgrlog= response variable, poly(duration, 2) - models duration as a quadratic polynomial, temp is a catergorical fixed effect, $(1 \mid ID)$ random intercept for indivdual

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: rgrlog ~ poly(duration, 2) + temp + (1 | ID)
     Data: tpcvis_cleancurrent
##
##
##
       AIC
                BIC
                     logLik deviance df.resid
## -17939.2 -17875.1
                      8980.6 -17961.2
                                           2502
##
## Scaled residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -5.2955 -0.5331 0.0256 0.4536
                                   5.9891
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
            (Intercept) 4.339e-06 0.002083
```

```
## Residual
                        4.324e-05 0.006576
## Number of obs: 2513, groups: ID, 438
## Fixed effects:
                       Estimate Std. Error t value
                      0.0059939 0.0003614 16.586
## (Intercept)
## poly(duration, 2)1 0.0001093 0.0066297
## poly(duration, 2)2 -0.1604871 0.0066818 -24.019
## temp17
                      0.0069691 0.0004602 15.143
## temp23
                      0.0150547 0.0004537 33.180
## temp29
                      0.0210419 0.0004712 44.653
## temp35
                      0.0250289 0.0005085 49.217
## temp40
                      0.0038415 0.0005672
                                           6.772
## temp41
                     -0.0056523 0.0006952 -8.130
##
## Correlation of Fixed Effects:
##
              (Intr) p(,2)1 p(,2)2 temp17 temp23 temp29 temp35 temp40
## ply(drt,2)1 0.016
## ply(drt,2)2 -0.030 0.000
## temp17
              -0.612 -0.020 0.010
## temp23
              -0.635 -0.021 0.009 0.499
## temp29
              -0.593 -0.023 0.011 0.464 0.477
              -0.645 -0.018  0.007  0.437  0.454  0.420
## temp35
              -0.596 -0.012  0.062  0.391  0.399  0.382  0.395
## temp40
## temp41
              -0.477 -0.005 0.142 0.316 0.324 0.307 0.311 0.296
anova(mod.lmer)
## Analysis of Variance Table
                           Sum Sq Mean Sq F value
                    npar
## poly(duration, 2)
                       2 0.016658 0.008329 192.63
                       6 0.200717 0.033453 773.67
## temp
```

Simulate residuals

plot(sim_res)

```
library(DHARMa)

## This is DHARMa 0.4.7. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')
sim_res <- simulateResiduals(fittedModel = mod.lmer)

print(sim_res)

## Object of Class DHARMa with simulated residuals based on 250 simulations with refit = FALSE . See ?D##
## Scaled residual values: 0.188 0.628 0.664 0.64 0.464 0.572 0.1 0.512 0.192 0.604 0.696 0.828 0.324 0</pre>
```

DHARMa residual

QQ plot residuals

DHARMa residual vs. predicted

Model predictions (rank transformed)

#

Check for uniformity

testUniformity(sim_res)

QQ plot residuals

##

One-sample Kolmogorov-Smirnov test

```
##
## data: simulationOutput$scaledResiduals
## D = 0.082921, p-value = 1.998e-15
## alternative hypothesis: two-sided
```

Check for overdispersion

testDispersion(sim_res)

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

Simulated values, red line = fitted model. p-value (two.sided) = 0.976

```
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.99975, p-value = 0.976
## alternative hypothesis: two.sided
```

Check for outliers

```
testOutliers(sim_res)
```

Outlier test significant

Residuals (outliers are marked red)

```
##
   DHARMa outlier test based on exact binomial test with approximate
##
   expectations
##
## data: sim_res
## outliers at both margin(s) = 56, observations = 2513, p-value =
## 2.587e-11
\#\# alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.01687604 0.02884121
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
##
                                               0.02228412
mod.lmer_linear <- lmer(rgrlog ~ duration + temp + (1 | ID),</pre>
                        data = tpcvis_cleancurrent, REML = FALSE)
anova(mod.lmer_linear, mod.lmer) # Compare linear vs. quadratic
## Data: tpcvis_cleancurrent
## Models:
## mod.lmer_linear: rgrlog ~ duration + temp + (1 | ID)
## mod.lmer: rgrlog ~ poly(duration, 2) + temp + (1 | ID)
##
                           AIC
                                  BIC logLik deviance Chisq Df Pr(>Chisq)
                  npar
## mod.lmer_linear
                     10 -17428 -17370 8724.2
                                               -17448
                     11 -17939 -17875 8980.6
                                               -17961 512.73 1 < 2.2e-16 ***
## mod.lmer
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Simulate residuals

```
sim_res <- simulateResiduals(fittedModel = mod.lmer_final)
# Plot residual diagnostics
plot(sim_res)</pre>
```

DHARMa residual

QQ plot residuals

KS test: p = 0**Deviation** signi ∞ o. Observed ဖ 0 Dispersion est: p= 0.91 Deviation 0.4 0.2 utlier test: p= 0 significant 0.0 0.0 0.4 8.0 Expected

DHARMa residual vs. predicted

Model predictions (rank transformed)

library(ggplot2)

Extract predictions

`geom_smooth()` using formula 'y ~ x'

Observed vs. Predicted Values

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.