AULA 6: A MEDIDA DE LEBESGUE EXTERIOR

Lembre-se do conceito de medida de Jordan exterior. Se $E \subset \mathbb{R}^d$ é um conjunto limitado, então

$$\mathbf{m}^{\star,J}(E) = \inf \{ \mathbf{m}(B) \colon E \subset B, B \text{ elementar} \}$$
.

Se E é ilimitado, podemos também definir sua medida de Jordan exterior como $+\infty$. Como um conjunto elementar é uma união finita de caixas, concluímos que

(1)
$$m^{\star,J}(E) = \inf \left\{ \sum_{n=1}^N |B_n| : E \subset \bigcup_{n=1}^N B_n, \text{ onde } B_1, \dots, B_N \text{ são caixas} \right\}.$$

Em outras palavras, a medida de Jordan exterior de E é o custo ínfimo necessário para cobrir E por um número finito de caixas.

Definição 1. Dado um conjunto qualquer $\mathbb{E} \subset \mathbb{R}^d$, definimos sua medida exterior de Lebesgue por

$$\mathbf{m}^{\star}(E) := \inf \left\{ \sum_{n=1}^{\infty} |B_n| : E \subset \bigcup_{n=1}^{\infty} B_n, \text{ onde } \{B_n\}_{n \geq 1} \text{ são caixas} \right\},$$

isto é, o custo ínfimo necessário para cobrir E por uma união enumerável de caixas.

Observação 1. Note que $0 \le m^*(E) \le +\infty$ para todo $E \subset \mathbb{R}^d$.

Além disso, "pagando mais um ϵ ", as caixas B_n na definição anterior podem ser escolhidas todas abertas (ou todas fechadas, ou todas semi fechadas).

Definição 2. Um conjunto $E \subset \mathbb{R}^d$ é chamado negligenciável se $m^*(E) = 0$.

Note que E é negligenciável se e somente se para todo $\epsilon > 0$ existe uma família de caixas (todas abertas, ou todas fechadas, ou todas semi fechadas) tal que

$$E \subset \bigcup_{n=1}^{\infty} B_n$$
 e $\sum_{n=1}^{\infty} |B_n| < \epsilon$.

Exemplo 1. $m^*(\mathbb{R}^d) = +\infty$.

De fato, considere uma cobertura enumerável de \mathbb{R}^n por caixas abertas: $\mathbb{R}^d \subset \bigcup_{n=1}^\infty B_n$. Para cada t>0, o cubo $[0,t]^d$ é um compacto coberto pelas caixas abertas $\{B_n: n\geq 1\}$. Então existe uma subcobertura finita, ou seja, existe $N<\infty$ tal que $[0,t]^d\subset \bigcup_{n=1}^N B_n$. Concluímos que para todo t>0 tem-se

$$t^d = m([0, t]^d) = m^{\star, J}(E) \le \sum_{n=1}^N |B_n| \le \sum_{n=1}^\infty |B_n|,$$

então, tomando t indo para ∞ ,

$$\sum_{n=1}^{\infty} |B_n| = \infty.$$

Como a escolha da cobertura enumerável do espaço \mathbb{R}^d por caixas é arbitrária, segue que $\mathbf{m}^{\star}(\mathbb{R}^d) = +\infty$.

Exemplo 2. $m_2^{\star}(\mathbb{R}) = 0$, onde m_2^{\star} se refere à medida exterior de Lebesgue em \mathbb{R}^2 , e a reta real é vista como subconjunto de \mathbb{R}^2 , ou seja, $\mathbb{R} \equiv \{(x,0) \colon x \in \mathbb{R}\}.$

De fato, dado $\epsilon > 0$, considere as caixas

$$B_n := [-n, n] \times \frac{\epsilon}{2n \cdot 2^n}, \quad n \ge 1.$$

Então,

$$|B_n| = \frac{\epsilon}{2^n}, \quad \mathbb{R} \subset \bigcup_{n=1}^{\infty} B_n, \quad \text{e} \quad \sum_{n=1}^{\infty} |B_n| = \epsilon,$$

portanto, $m_2^{\star}(\mathbb{R}) = 0$.

Exemplo 3. Todo conjunto enumerável tem medida exterior de Lebesgue zero.

De fato, seja

$$E = \{x_1, x_2, \dots, x_n, \dots\} = \bigcup_{n \ge 1} \{x_n\}$$

um conjunto enumerável.

Como um singleton é uma caixa (trivial), com volume zero, segue que

$$m^*(E) \le \sum_{n=1}^{\infty} |\{x_n\}| = 0.$$

Proposição 1. (os "axiomas" da medida exterior de Lebesgue)

- (i) (conjunto vazio) $m^*(\emptyset) = 0$.
- (ii) (monotonicidade) Se $E \subset F$ então $m^*(E) \leq m^*(F)$.
- (iii) (sub aditividade enumerável) Seja $\{E_n\}_{n\geq 1} \subset \mathbb{R}^d$ uma família enumerável de conjuntos. Então,

(2)
$$m^{\star} \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \sum_{n=1}^{\infty} m^{\star}(E_n) .$$

Demonstração. As primeiras duas afirmações são evidentes. Vamos provar a terceira.

Se um dos conjuntos E_n tiver medida exterior $+\infty$, a designaldade (2) seria óbvia (o lado direito seria igual a $+\infty$). Então, vamos supor que $m^*(E_n) < \infty$ para todo $n \ge 1$.

Seja $\epsilon > 0$ (criamos mais um ϵ de espaço; também usaremos o truque $\frac{\epsilon}{2^n}$, já que estamos lidando com uma família enumerável de conjuntos).

Para cada $n \ge 1$ existe uma família enumerável $\{B_n^k\}_{k\ge 1}$ de caixas tal que

$$E_n \subset \bigcup_{k=1}^{\infty} B_n^k$$
 e $\sum_{k=1}^{\infty} |B_n^k| < m^*(E_n) + \frac{\epsilon}{2^n}$.

Portanto,

$$\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n,k>1} B_n^k,$$

que é uma família enumerável de caixas, e

$$\mathbf{m}^{\star} \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \sum_{n,k \geq 1} \left| B_n^k \right| = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left| B_n^k \right| < \sum_{n=1}^{\infty} \left(\mathbf{m}^{\star}(E_n) + \frac{\epsilon}{2^n} \right)$$
$$= \sum_{n=1}^{\infty} \mathbf{m}^{\star}(E_n) + \epsilon.$$

Como ϵ é arbitrário, a desigualdade (2) é satisfeita.

O próximo resultado mostra a relação entre as medidas exterior e interior de Jordan, e a medida exterior de Lebesgue.

Lema 1. Seja $E \subset \mathbb{R}^d$ um conjunto limitado. Então,

$$\mathbf{m}_{\star,J}(E) \le \mathbf{m}^{\star}(E) \le \mathbf{m}^{\star,J}(E)$$
.

Demonstração. A segunda desigualdade acima é óbvia: $m^*(E)$ é o ínfimo do custo total de todas as coberturas enumeráveis (então, inclusive finitas) por caixas, enquanto $m^{*,J}(E)$ é o ínfimo do custo total das coberturas finitas.

Vamos estabelecer a primeira desigualdade. Seja $\epsilon>0$. Então (exercício!) existe um conjunto compacto elementar $K\subset E$ tal que

(3)
$$m_{\star,J}(E) \le m(K) + \epsilon.$$

Considere qualquer família $\{B_n\}_{n\geq 1}$ de caixas abertas tal que $E\subset \bigcup_{n\geq 1}B_n$.

Então $\{B_n\}_{n\geq 1}$ é uma cobertura aberta do conjunto compacto K, e por isso, existe $N<\infty$ tal que $K\subset \bigcup_{n\geq 1}B_N$. Segue que

$$m(K) \le \sum_{k=1}^{N} |B_n| \le \sum_{k=1}^{\infty} |B_n|.$$

Portanto,

$$m_{\star,J}(E) \le \mathrm{m}(K) + \epsilon \le \sum_{k=1}^{\infty} |B_n| + \epsilon,$$

e tomando o ínfimo sobre todas as famílias de caixas $\{B_n\}_{n\geq 1}$ que cobrem E, concluímos o seguinte:

$$m_{\star,J}(E) \le \mathrm{m}^{\star}(E) + \epsilon$$
.

O que implica a desigualdade desejada, já que ϵ é arbitrário.

Conjuntos mensuráveis à Lebesgue: definição, exemplos

Existem várias definições (equivalentes) de mensurabilidade à Lebesgue em \mathbb{R}^d . Escolheremos a definição mais direta, via o "primeiro princípio de Littlewood", que nos permite chegar mais rapidamente a resultados fundamentais sobre a estrutura do espaço de tais conjuntos.

Definição 3. Um conjunto $E \subset \mathbb{R}^d$ é dito mensurável à Lebesgue se E é "quase aberto": para todo $\epsilon > 0$, existe um conjunto aberto U tal que $U \supset E$ e m* $(U \setminus E) < \epsilon$.

Vamos comparar este conceito com o conceito de mensurabilidade à Jordan.

Exercício 1. Seja $E \subset \mathbb{R}^d$ um conjunto limitado.

Então, para todo $\epsilon > 0$ existe um conjunto elementar e aberto U (ou seja, uma união finita de caixas abertas) tal que $U \supset E$ e m*, $J(U \setminus E) < \epsilon$.

É um fato básico de topologia do espaço \mathbb{R}^d que todo conjunto aberto U pode ser escrito como uma união enumerável de caixas abertas (ou seja, de bolas com respeito à distância dada pela norma do máximo). Então, todo conjunto mensurável à Jordan é, necessariamente, mensurável à Lebesgue. O contrário $n\tilde{a}o$ é verdade (como veremos em breve).

¹Podemos chegar a mesma conclusão sem usar este fato de topologia. Pelo exercício anterior, dados E Jordan mensurável e $\epsilon > 0$, existe $U \supset E$ elementar e aberto tal que m^{*,J}($U \setminus E$) < ϵ . Mas, pelo Lema 1, m^{*}($U \setminus E$) ≤ m^{*,J}($U \setminus E$) < ϵ , mostrando que E é quase aberto.

Além disso, de novo pelo Lema 1,

$$m_{\star,J}(E) \le m^{\star}(E) \le m^{\star,J}(E)$$
,

e como E é mensurável à Jordan, $m_{\star,J}(E) = m^{\star,J}(E) = m(E)$.

Concluímos que um conjunto mensurável à Jordan E também é mensurável à Lebesgue e

$$m(E) = \mathbf{m}^{\star}(E),$$

ou seja, a medida de Jordan de E é igual a sua medida exterior de Lebesgue.

Portanto, obtemos uma extensão de um conceito mais básico substituindo um processo finito por um enumerável.

Para um conjunto mensurável à Lebesgue, chamaremos sua medida exterior $m^*(E)$ simplesmente de sua medida (de Lebesgue), e usaremos a notação simplificada m(E) (os comentários acima garantem a consistência desta terminologia e notação).

Observação 2. Todo conjunto aberto é, obviamente, mensurável à Lebesgue.

Observação 3. Todo conjunto negligenciável (isto é, com medida exterior de Lebesgue zero) é mensurável à Lebesgue. Em particular, todo subconjunto de uma conjunto negligenciável é mensurável. Ademais, todo conjunto enumerável é mensurável.

De fato, dados $E \subset \mathbb{R}^d$ com $\mathbf{m}^*(E) = 0$ e $\epsilon > 0$, existe uma família enumerável de caixas abertas $\{B_n\}_{n\geq 1}$ tal que

$$E \subset \bigcup_{n=1}^{\infty} B_n$$
 e $\sum_{n=1}^{\infty} |B_n| < \epsilon$.

Então, $U := \bigcup_{n=1}^{\infty} B_n$ é aberto, $U \supset E$ e como $U \setminus E \subset U$,

$$\mathrm{m}^{\star}(U \setminus E) \leq \sum_{n=1}^{\infty} |B_n| < \epsilon$$
,

mostrando que E é quase aberto.

A seguir, apresentaremos alguns exemplos de conjuntos mensuráveis à Lebesgue que não são mensuráveis à Jordan.

Exemplo 4. O conjunto $E:=\mathbb{Q}\cap[0,1]$ é enumerável, então, pela observação anterior é mensurável à Lebesgue. Por outro lado, como já vimos, não é mensurável à Jordan, apesar de ser limitado.

Exemplo 5. O exemplo anterior é, de certa forma, trivial. Na verdade, existem conjuntos topologicamente mais interessantes que são Lebesgue mas não Jordan mensuráveis. Vamos construir um tal conjunto aberto (e limitado) e a seguir um compacto.

A ideia é "engrossar" o conjunto

$$E := \mathbb{Q} \cap [0,1] = \{q_1, q_2, \dots, q_n, \dots\}$$

do exemplo anterior.

De fato, para cada $n \geq 1$, considere o intervalo aberto

$$I_n := \left(q_n - \frac{r}{2^n}, q_n + \frac{r}{2^n}\right) ,$$

onde $0 < r < \frac{1}{2}$ é uma constante. Defina

$$U:=\bigcup_{n\geq 1}I_n.$$

Então, U é aberto (e em particular, Lebesgue mensurável) e claramente limitado, por exemplo $U \subset [-1, 2]$, mas não é Jordan mensurável. De fato, temos

$$\mathbf{m}^{\star,J}(U) = m^{\star,J}(\overline{U}) \geq m^{\star,J}(\overline{E}) = m^{\star,J}([0,1]) = 1,$$

enquanto, por outro lado temos

$$m_{\star,J}(U) \le m^{\star}(U) \le \sum_{n=1}^{\infty} |I_n| = 2r < 1 \le m^{\star,J}(U),$$

então $\mathbf{m}^{\star,J}(U) \neq \mathbf{m}_{\star,J}(U)$.

Ademais, seja $K := [-1,2] \setminus U$. Então K é um conjunto compacto, portanto Lebesgue mensurável (ainda não provamos isso, vamos aceitá-lo por enquanto). Por outro lado, K não pode ser Jordan mensurável, pois, caso contrário, $U = [-1,2] \setminus K$ seria Jordan mensurável também.

Comentário 1. Uma pergunta natural é por que não definir o conceito de mensurabilidade à Lebesgue seguindo exatamente o mesmo padrão do conceito de mensurabilidade à Jordan, considerando um conceito de medida interior.

Vamos tentar a seguir esse caminho, definindo, analogamente à medida interior de Jordan, a medida interior de Lebesgue de um conjunto E por

$$\mathbf{m}_{\star}(E) := \sup \left\{ \sum_{n=1}^{\infty} |B_n| : \{B_n\}_{n \ge 1} \text{ caixas, } \bigcup_{n \ge 1} B_n \supset E \right\},$$

e a mensurabilidade de E pelo fato de que as suas medidas exterior $m^*(E)$ e interior $m_*(E)$ sejam iguais.

Considere o conjunto

$$F:=[0,1]\setminus\mathbb{Q}.$$

Este conjunto deveria ser mensurável, como diferença de dois conjuntos mensuráveis (um intervalo é um conjunto enumerável). Mas, como F não contém intervalos, sua medida interior $m_{\star}(F) = 0$, enquanto, por outro lado, sua medida exterior deve ser $m^{\star}(F) = 1$. Isto é porque, como $F \subset [0,1] \subset F \cup \mathbb{Q}$, temos

$$1 = m^*([0,1]) \le m^*(F) + m^*(\mathbb{Q}) = m^*(F) \le 1.$$

Portanto, essa abordagem não funciona com sucesso. Uma explanação mais especulativa é que o espaço euclidiano possui subconjuntos densos *enumeráveis*, pois trocando processos finitos por processos enumeráveis abre amplamente as portas, permitindo a entrada de conjuntos muito mais gerais, cuja medida interior não capta bem seus tamanhos.

A partir de agora, salvo indicação ao contrário, mensurabilidade se refere a mensurabilidade por Lebesgue.