CLAIMS

What is claimed is:

- 1. In a wireless communication system, a method of performing channel estimation, the method comprising:
 - (a) receiving reference signals having different lengths;
 - (b) processing the reference signals using a fast Fourier transform (FFT); and
 - (c) extending the FFT to a desired length L for more efficient computation.
- 2. The method of claim 1 wherein the FFT is extended to the length L to process a plurality of different burst types associated with the reference signals.
- 3. In a wireless communication system, a method of performing channel estimation, the method comprising:
 - (a) receiving a time domain signal \underline{r} ;
- (b) multiplying, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of the FFT and denoting the resulting sequences as \underline{m}_{w} and \underline{r}_{w} respectively, where \underline{m} is a midamble sequence; and
 - (c) creating a chirp sequence $\underline{\nu}$ based on the chirp waveform.
- 4. The method of claim 3 wherein the chirp waveform is $W^{n^2/2}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$
- 5. The method of claim 4 wherein the chirp sequence $\underline{v} = W^{-(n-P+1)^2/2}$ for n= 0,1,2,...,2P-2.

- 6. A wireless communication system for performing channel estimation, the system comprising:
 - (a) means for receiving reference signals having different lengths;
- (b) means for processing the reference signals using a fast Fourier transform (FFT); and
- (c) means for extending the FFT to a desired length L for more efficient computation.
- 7. The system of claim 6 wherein the FFT is extended to the length L to process a plurality of different burst types associated with the reference signals.
- 8. A wireless communication system for performing channel estimation, the system comprising:
 - (a) means for receiving a time domain signal \underline{r} ;
- (b) means for multiplying, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of the FFT and denoting the resulting sequences as \underline{m}_w and \underline{r}_w respectively, where \underline{m} is a midamble sequence; and
 - (c) means for creating a chirp sequence $\underline{\nu}$ based on the chirp waveform.
- 9. The system of claim 8 wherein the chirp waveform is $W^{n^2/2}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W=e^{-j\frac{2\pi}{P}}$.
- 10. The system of claim 9 wherein the chirp sequence $\underline{v} = W^{-(n-P+1)^2/2}$ for n=0,1,2,...,2P-2.

- 11. A wireless transmit/receive unit (WTRU) for performing channel estimation, the WTRU comprising:
 - (a) means for receiving reference signals having different lengths;
- (b) means for processing the reference signals using a fast Fourier transform (FFT); and
- (c) means for extending the FFT to a desired length L for more efficient computation.
- 12. The WTRU of claim 11 wherein the FFT is extended to the length L to process a plurality of different burst types associated with the reference signals.
- 13. A wireless transmit/receive unit (WTRU) for performing channel estimation, the WTRU comprising:
 - (a) means for receiving a time domain signal \underline{r} ;
- (b) means for multiplying element-to-element the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of the FFT and denoting the resulting sequences as \underline{m}_w and \underline{r}_w respectively, where \underline{m} is a midamble sequence; and
 - (c) means for creating a chirp sequence \underline{v} based on the chirp waveform.
- 14. The WTRU of claim 13 wherein the chirp waveform is $W^{\frac{n}{2}}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$.
- 15. The WTRU of claim 14 wherein the chirp sequence $\underline{v} = W^{-(n-P+1)^2/2}$ for n=0,1,2,...,2P-2.

- 16. A base station (BS) for performing channel estimation, the BS comprising:
- (a) means for receiving reference signals having different lengths;
- (b) means for processing the reference signals using a fast Fourier transform (FFT); and
- (c) means for extending the FFT to a desired length L for more efficient computation.
- 17. The BS of claim 16 wherein the FFT is extended to the length L to process a plurality of different burst types associated with the reference signals.
 - 18. A base station (BS) for performing channel estimation, the BS comprising:
 - (a) means for receiving a time domain signal \underline{r} ;
- (b) means for multiplying element-to-element the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of the FFT and denoting the resulting sequences as \underline{m}_w and \underline{r}_w respectively, where \underline{m} is a midamble sequence; and
 - (c) means for creating a chirp sequence \underline{v} based on the chirp waveform.
- 19. The BS of claim 18 wherein the chirp waveform is $W^{\frac{n^2}{2}}$ for n = 0, 1, 2,...,P-1 where

P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$.

20. The BS of claim 19 wherein the chirp sequence $\underline{v} = W^{-(n-P+1)^2/2}$ for n = 0, 1, 2, ...,2P-2.

- 21. In a wireless communication system, a method for performing channel estimation, the method comprising:
 - (a) receiving a time domain signal <u>r</u>;
- (b) expressing $\underline{r} = \underline{m} \otimes \underline{h}$ in the frequency domain, resulting in an output signal $\underline{R} = \underline{M} \cdot \underline{H}$, where \underline{m} is a midamble sequence, \underline{h} is a channel impulse response, \otimes is a circular convolution operator, \underline{R} is the fast Fourier transform (FFT) of time domain signal \underline{r} , \underline{M} is the FFT of midamble sequence \underline{m} , and \underline{H} is the FFT of channel impulse response \underline{h} , and $\underline{R} = F(\underline{r})$, $\underline{M} = F(\underline{m})$ and $\underline{H} = F(\underline{h})$ where F() is defined as the operator of forward or inverse FFT;
- (c) calculating \underline{H} is calculated by dividing \underline{R} by \underline{M} , where $\underline{R}/\underline{M}$ is the element-to-element division of the corresponding two FFT sequences; and
- (d) estimating the impulse response by inverse FFT of \underline{H} by calculating $\underline{h} = F^{-1}(\underline{H})$ where $F^{-1}()$ is defined as the operator of forward or inverse FFT and $\underline{h} = F^{-1}(F(\underline{r})/F(\underline{m}))$ and $F(\underline{r})/F(\underline{m})$ denotes the element-to-element division of FFT sequences $F(\underline{r})$ and $F(\underline{m})$.
- 22. The method of claim 21 wherein the forward or inverse FFT are exchangeable in the following form: $F^{-1}(\underline{x}) = \frac{1}{P}(F(\underline{x}^*))^*$, wherein P is the length of FFT.
- 23. The method of claim 22 wherein the FFT sequences $F(\underline{r})$ and $F(\underline{m})$ are calculated by extended FFT and divided element-to-element, the method further comprising:
- (e) multiplying, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform and denoting the resulting sequences as \underline{m}_w and \underline{r}_w respectively;
 - (f) creating a chirp sequence based on the chirp waveform;

- (g) zero padding the sequences \underline{m}_{w} , \underline{r}_{w} and \underline{v} in the tail until the length of the sequences achieves L, and denoting the resulting sequences as $\underline{m}_{w,z}$, $\underline{r}_{w,z}$ and \underline{v}_{z} ;
- (h) performing an L-point FFT on $\underline{m}_{W,Z}$, $\underline{r}_{W,Z}$ and \underline{v}_Z each such that $F(\underline{m}_{W,Z})$, $F(\underline{r}_{W,Z})$ and $F(\underline{v}_Z)$;
- (i) multiplying, element-to-element, the FFT of $\underline{m}_{W,Z}$ and $\underline{r}_{W,Z}$ each with FFT of $\underline{\nu}_Z$ such that the products are $F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z)$ and $F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z)$ respectively;
- (j) performing an L-point inverse on the results in step (i) such that $F^{-1}(F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z))$ and $F^{-1}(F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z))$ respectively; and
- (k) dividing, element-to-element, the results in step (j) and denoting the result as \underline{H} such that $\underline{H} = \frac{F^{-1}(F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z)}{F^{-1}(F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z)}$ wherein only the first P elements of sequence \underline{H} are computed and used.
- 24. The method of claim 23 wherein $F(\underline{H}^*)$ is computed by extended FFT and the result is conjugated and scaled, the method further comprising:
 - (l) conjugating the sequence \underline{H} ;
- (m) multiplying, element-to-element, the conjugate sequence \underline{H}^* by the chirp waveform and denoting the result as \underline{H}_w^* ;
- (n) zero padding the conjugate sequences \underline{H}_{w}^{*} in the tail until the length of the sequence achieves L, and denoting the resulting sequence as $\underline{H}_{w,z}^{*}$;
 - (o) performing an L-point FFT on $\underline{H}_{w,z}^*$;
- (p) multiplying, element-to-element, the FFT of $\underline{H}_{w,z}^*$ by FFT of zero-padded chirp sequence $\underline{\nu}_z$ such that the product is $F(\underline{H}_{w,z}^*) \cdot F(\underline{\nu}_z)$;
 - (q) performing L-point inverse FFT on $F(\underline{H}_{w,z}^*) \cdot F(\underline{v}_z)$;

- (r) multiplying, element-to-element, the sequence $F^{-1}(F(\underline{H}_{W,Z}^*)\cdot F(\underline{\nu}_Z))$ by the chirp waveform;
 - (s) conjugating the result in step (r); and
- (t) scaling the result in step (s) by factor $\frac{1}{P}$ to obtain the estimated channel response.
- 25. The method of claim 21 wherein the FFT is extended to a proper length L to process a plurality of different burst types by using a chirp transform algorithm (CTA) to compute F(r) and F(m).
- 26. A wireless communication system for performing channel estimation, the system comprising:
 - (a) means for receiving a time domain signal \underline{r} ;
- (b) means for expressing $\underline{r} = \underline{m} \otimes \underline{h}$ in the frequency domain, resulting in an output signal $\underline{R} = \underline{M} \cdot \underline{H}$, where \underline{m} is a midamble sequence, \underline{h} is a channel impulse response, \otimes is a circular convolution operator, \underline{R} is the fast Fourier transform (FFT) of time domain signal \underline{r} , \underline{M} is the FFT of midamble sequence \underline{m} , and \underline{H} is the FFT of channel impulse response \underline{h} , and $\underline{R} = F(\underline{r})$, $\underline{M} = F(\underline{m})$ and $\underline{H} = F(\underline{h})$ where F() is defined as the operator of forward or inverse FFT;
- (c) means for calculating \underline{H} is calculated by dividing \underline{R} by \underline{M} , where $\underline{R}/\underline{M}$ is the element-to-element division of the corresponding two FFT sequences; and
- (d) means for estimating the impulse response by inverse FFT of \underline{H} by calculating $\underline{h} = F^{-1}(\underline{H})$ where $F^{-1}()$ is defined as the operator of forward or inverse FFT and $\underline{h} = F^{-1}(F(\underline{r})/F(\underline{m}))$ and $F(\underline{r})/F(\underline{m})$ denotes the element-to-element division of FFT sequences $F(\underline{r})$ and $F(\underline{m})$.

- 27. The system of claim 26 wherein the forward or inverse FFT are exchangeable in the following form: $F^{-1}(\underline{x}) = \frac{1}{P}(F(\underline{x}^*))^*$, wherein P is the length of FFT.
- 28. The system of claim 27 wherein the FFT sequences $F(\underline{r})$ and $F(\underline{m})$ are calculated by extended FFT and divided element-to-element, the method further comprising:
- (e) means for multiplying, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform and denoting the resulting sequences as \underline{m}_w and \underline{r}_w respectively;
 - (f) means for creating a chirp sequence based on the chirp waveform;
- (g) means for zero padding the sequences \underline{m}_W , \underline{r}_W and \underline{v} in the tail until the length of the sequences achieves L, and denoting the resulting sequences as $\underline{m}_{W,Z}$, $\underline{r}_{W,Z}$ and \underline{v}_Z ;
- (h) means for performing L-point FFT on $\underline{m}_{w,z}$, $\underline{r}_{w,z}$ and \underline{v}_z each such that $F(\underline{m}_{w,z})$, $F(\underline{r}_{w,z})$ and $F(\underline{v}_z)$;
- (i) means for multiplying, element-to-element, the FFT of $\underline{m}_{W,Z}$ and $\underline{r}_{W,Z}$ each with FFT of $\underline{\nu}_Z$ such that the products are $F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z)$ and $F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z)$ respectively;
- (j) means for performing an L-point inverse on $F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z)$ and $F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z)$ such that $F^{-1}(F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z))$ and $F^{-1}(F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z))$ respectively; and
- (k) means for dividing, element-to-element, $F^{-1}(F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z))$ by $F^{-1}(F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z)) \text{ and denoting the result as } \underline{H} \text{ such that } \underline{H} = \frac{F^{-1}(F(\underline{r}_{W,Z}) \cdot F(\underline{\nu}_Z))}{F^{-1}(F(\underline{m}_{W,Z}) \cdot F(\underline{\nu}_Z))}$ wherein only the first P elements of sequence \underline{H} are computed and used.

- 29. The system of claim 28 wherein $F(\underline{H}^*)$ is computed by extended FFT and the result is conjugated and scaled, the system further comprising:
 - (l) means for conjugating the sequence \underline{H} ;
- (m) means for multiplying, element-to-element, the conjugate sequence \underline{H}^* by the chirp waveform and denoting the result as \underline{H}_W^* ;
- (n) means for zero padding the conjugate sequences \underline{H}_{w}^{*} in the tail until the length of the sequence achieves L, and denoting the resulting sequence as $\underline{H}_{w,z}^{*}$;
 - (o) means for performing L-point FFT on $\underline{H}_{W,Z}^*$;
- (p) means for multiplying, element-to-element, the FFT of $\underline{H}_{W,Z}^*$ by FFT of zero-padded chirp sequence $\underline{\nu}_Z$ such that the product is $F(\underline{H}_{W,Z}^*) \cdot F(\underline{\nu}_Z)$;
 - (q) means for performing an L-point inverse FFT on $F(\underline{H}_{W,Z}^*) \cdot F(\underline{v}_Z)$;
- (r) means for multiplying, element-to-element, the sequence $F^{-1}(F(\underline{H}_{w,z}^*)\cdot F(\underline{\nu}_z))$ by the chirp waveform;
 - (s) means for conjugating the output of means (r); and
- (t) means for scaling the output of means (s) by factor $\frac{1}{P}$ to obtain the estimated channel response.
- 30. The system of claim 25 wherein the FFT is extended to a proper length L to process a plurality of different burst types by using a chirp transform algorithm (CTA) to compute $F(\underline{r})$ and $F(\underline{m})$.