Genetic Algorithm Search

ARTIFICIAL INTELLIGENCE 39

Genetic Algorithms

- Formally introduced in the US in the 70s by John Holland.
- GAs emulate ideas from genetics and natural selection and can search potentially large spaces.
- Before we can apply Genetic Algorithm to a problem, we need to answer:
 - How is an individual represented?
 - What is the fitness function?
 - How are individuals selected?
 - How do individuals reproduce?

Genetic Algorithms:

Representation of states (solutions)

 Each state or individual is represented as a string over a finite alphabet. It is also called chromosome which Contains genes.

Genetic Algorithms: Fitness Function

• Each state is rated by the evaluation function called **fitness function**. Fitness function should return higher values for betterstates:

Fitness(X) should be greater than Fitness(Y)!!

GA Parent Selection - RouletteWhee

Roulette Wheel Selection

- Sumthe fitnesses of all the population members, *TF*
- Generate a random number. m. between 0 and TF
- Return the first population member whose fitness added to the preceding population members is greater than or equal to m

Genetic Algorithms: Selection

How are individuals selected?

Roulette Wheel Selection

© Saif ul Islam - 2022 ARTIFICIAL INTELLIGENCE

Genetic Algorithms: Cross-Over and Mutation

How do individuals reproduce?

Genetic Algorithms

Crossover - Recombination

Stochastic Search: Genetic Algorithms **Mutation**

Original offspring

Mutated offspring

With some small probability (the *mutation* rate) flip each bit in the offspring (typical values between 0.1 and 0.001)

Genetic Algorithms

Algorithm:

- Initialize population with p Individualsat random
- 2. For each Individual h compute its fitness
- 3. While max fitness < threshold do Create a new generation Ps
- 4. Return the Individual with highest fitness

Genetic algorithms

Has the effect of "jumping" to a completely different new part of the search space (quite non-local)

Genetic algorithms

Genetic algorithms – Fitness Calculation

Genetic algorithms – Parent Selection (Stochastic Universal Sampling)

Genetic Algorithm (cont.)

© Saif ul Islam - 2022

GA is a good *no clue* approachto problem solving

- GA is superb if:
 - Your space is loaded with lots of weird bumps and local minima.
 - GA tends to spread out and test a larger subset of your space than many other types of learning/optimization algorithms.
 - You don't quite understand the underlying process of your problem space.
 - You have lots of processors
 - GA's parallelize very easily!

Evolvable Circuits

ARTIFICIAL INTELLIGENCE

Antenna for NASA

ARTIFICIAL INTELLIGENCE

Car Design

RTIFICIAL INTELLIGENCE 5

Evolutionary Arts

What is the major challenge?

Evolving Mona Lisa

RTIFICIAL INTELLIGENCE 6