Let V be a vector space and π an endomorphism of V.

a. Prove that π is a projection if and only if $\mathrm{id}_V - \pi$ is a projection, where id_V is the identity endomorphism of V.

a endomorphism is a function that has domain equal to the co-domain, meaning that π maps elements of V into elements of V.

suppose π is a projection, then by definition of projection applying π twice is the same as π

$$\operatorname{id}_V(oldsymbol{x}) = oldsymbol{x}$$
 $\pi(oldsymbol{x}) = oldsymbol{\pi}_U(oldsymbol{x})$ $\operatorname{id}_V(oldsymbol{x}) - \pi(oldsymbol{x}) = oldsymbol{x} - \pi_U(oldsymbol{x})$ $(\operatorname{id}_V(oldsymbol{x}) - \pi(oldsymbol{x})) \circ (\operatorname{id}_V(oldsymbol{x}) - \pi(oldsymbol{x}))$ $\operatorname{id}_V(oldsymbol{x} - \pi_U(oldsymbol{x})) = oldsymbol{x} - \pi_U(oldsymbol{x}))$ $(\operatorname{id}(oldsymbol{x}) - \pi_U(oldsymbol{x}))(\pi(oldsymbol{x}) - \pi_U(oldsymbol{x}))$ $(\operatorname{id}(oldsymbol{x}) - \pi_U(oldsymbol{x}))$

as the projection of $\boldsymbol{y} = \boldsymbol{x} - \pi_U(\boldsymbol{x})$ is orthogonal to each basis vector of U, so $<\boldsymbol{e_i}, \boldsymbol{y}> = 0, \forall e_i \in U$ so indeed if we assume π as projection $\mathrm{id}_V - \pi$ is also a projection.

first half is done.

$$(\mathrm{id}_V(\boldsymbol{x}) - \pi((\boldsymbol{x}))) \circ (\mathrm{id}_V(\boldsymbol{x}) - \pi(\boldsymbol{x})) = \mathrm{id}(\boldsymbol{x}) - \pi(\boldsymbol{x})$$

is our premise

now consider $x = 2\pi(x)$

$$\pi(\boldsymbol{x}) \circ \pi(\boldsymbol{x}) = \pi(\boldsymbol{x})$$

so $\pi(x)$ is indeed a projection

so as both halves have been proven we arrive at the desired conclusion

b. Assume now that π is a projection. Calculate $\operatorname{im}(\operatorname{id}_V - \pi)$ and $\ker(\operatorname{id}_V - \pi)$ as function of $\operatorname{im}(\pi)$ and $\ker(\pi)$

remember that image is defined as

$$\{w \in V | \exists v \in V : f(v) = w\}$$

and kernel

$$\{v\in V|\ f(v)=\mathbf{0}\}$$

Figure 1: diagram of the problem

 $\begin{aligned} &\text{note that} < \operatorname{id}_V - \pi, \pi > = 0, \text{ as such } \operatorname{id}_V - \pi \text{ is the orthogonal complement of } \pi, \text{ but } \pi(\operatorname{id}_V - \pi) = \mathbf{0}, \text{ so } \operatorname{im}(\operatorname{id}_V - \pi) \cup \{\mathbf{0}\} = \ker(\pi) \Rightarrow \operatorname{im}(\operatorname{id}_V - \pi) = \ker(\pi) \setminus \{\mathbf{0}\} \\ &\text{and } (\operatorname{id}_V - \pi)(\pi) = \mathbf{0} \Rightarrow \ker(\operatorname{id}_V - \pi) = \operatorname{im}(\pi) \cup \{\mathbf{0}\} \end{aligned}$