A Functional Carbon Emissions Analysis

Sam Lee, Everett Andrew

Brigham Young University

April 2025

Outline

- Introduction
- Methodology
- Results
- 4 Conclusion

Motivation: The Climate Imperative

"It's time to stop burning our planet, and start investing in the abundant renewable energy all around us."

— António Guterres, United Nations Secretary-General

Motivation: Emissions in 2023

Figure: Log per capita CO₂ emissions in 2023

- ▶ Emissions per capita remain highest in the Global North
- Heterogeneous distribution
- ▶ What policies are effective?
- ▶ When are the effects realized?

Literature Review: Using FDA to Model Carbon Emissions

► FLM to model log CO₂ emissions using electricity consumption and GDP (Elayouty and Abou-Ali, 2023)

Research Question

Main Question

How does a country's share of renewable energy consumption affect its carbon emissions over time, holding other macroeconomic and political covariates constant?

► Emissions Database for Global Atmospheric Research (EDGAR): Annual country-level CO₂ emissions per capita (1970-2023)

- ► Emissions Database for Global Atmospheric Research (EDGAR): Annual country-level CO₂ emissions per capita (1970-2023)
- ▶ World Bank: Functional Macroeconomic Controls (1990-2020)
 - Percent renewable energy consumption (out of total energy consumption)
 - ▶ GDP per capita, Human Development Index, Inflation

- ► Emissions Database for Global Atmospheric Research (EDGAR): Annual country-level CO₂ emissions per capita (1970-2023)
- ▶ World Bank: Functional Macroeconomic Controls (1990-2020)
 - Percent renewable energy consumption (out of total energy consumption)
 - ▶ GDP per capita, Human Development Index, Inflation
- World Governance Indicators:
 - Measures of corruption, government effectiveness, rule of law, etc. (1996-2023)

- ► Emissions Database for Global Atmospheric Research (EDGAR): Annual country-level CO₂ emissions per capita (1970-2023)
- ▶ World Bank: Functional Macroeconomic Controls (1990-2020)
 - Percent renewable energy consumption (out of total energy consumption)
 - ▶ GDP per capita, Human Development Index, Inflation
- World Governance Indicators:
 - Measures of corruption, government effectiveness, rule of law, etc. (1996-2023)
- ▶ Final dataset includes **178 countries** over **34 years** (1990–2023).

Data: Carbon Emissions Across Countries

Figure: Log-transformed CO₂ emissions per capita across 178 countries

Data: Renewable Energy Consumption Over Time

Figure: Percent of total energy consumption from renewable sources

Data: Summary Statistics

Variable	Min	Median	Mean	Max	%Missing
Key Variables					
log CO ₂ Emissions (Metric Tons per Capita)	-6.0992	0.7331	0.4728	5.1559	0.00
GDP per Capita	0.4942	13.1340	21.4102	179.2007	0.00
Renewable Share (%)	0.00	21.62	31.44	98.30	0.36
Human Development Index (HDI)	0.2120	0.6960	0.6703	0.9670	7.27
Inflation (%)	-31.57	4.59	35.46	26 762.02	1.32
Interest Rate (%)	-97.69	5.88	5.97	139.96	39.07
Unemployment Rate (%)	0.04	6.66	7.98	38.80	41.70
Governance Indicators					
Corruption Index	-1.85	-0.26	-0.03	2.46	0.76
Government Effectiveness	-2.44	-0.15	-0.01	2.47	1.06
Political Stability	-3.31	0.04	-0.04	1.96	0.36
Rule of Law	-2.59	-0.19	-0.04	2.12	0.00
Regulation Quality	-2.55	-0.14	-0.01	2.31	0.99
Voice and Accountability	-2.31	-0.02	-0.05	1.80	0.00

- ► Variables with 0–10% missingness were imputed using functional mean imputation
- ► Covariates with > 10% missingness excluded

- Covariate values from any time can influence outcomes at t
 - Violates basic temporal causality
 - ▶ Future policy shouldn't predict past emissions

- Covariate values from any time can influence outcomes at t
 - Violates basic temporal causality
 - ▶ Future policy shouldn't predict past emissions
- Overfit by "fitting noise" from future information

- Covariate values from any time can influence outcomes at t
 - Violates basic temporal causality
 - ▶ Future policy shouldn't predict past emissions
- Overfit by "fitting noise" from future information
- Solution?

Methodology: Historical Functional Linear Model (HFLM)

Canonical HFLM

$$y_i(t) = \beta_0(t) + \int_{s_0(t)}^t x_i(s) \, \beta(s,t) \, ds + \varepsilon_i(t)$$

- Enforce temporal causality: predictor values must precede the outcome $(s \le t)$ (Malfait & Ramsay, 2003)
- ho $s_0(t)=\max(0,t-\delta)$ ensures a lag window
 - ightharpoonup Fix δ or estimate through cross-validation

Methodology: Triangular Support

Figure: Triangular Support (Malfait & Ramsay, 2003)

Covariate values influence the response only within the triangle $s \in [t - \delta, t], s \le t$

Methodology: Application

HFLM with Penalized Tensor B-Splines

$$\log y_i(t) = \beta_0(t) + \sum_{k=1}^{10} \sum_{m=1}^{M} b_{km} \int_{s_0(t)}^{T_k} x_{ki}(s) \phi_m(s,t) \, ds + \varepsilon_i(t)$$

- Nomenclature:
 - ▶ Log per capita CO_2 Emissions in country i at time t: $\log y_i(t)$
 - ▶ 10 covariates (GDP, HDI, WGI, etc.) with different supports, T_k
 - Propose 20 year lag: $\delta = 20$
 - $\beta_k(s,t)$ smoothed using a penalized B-spline basis
- Riemann sum approximation

Methodology: Implementation in R

- pffr() from the refund package
- lacksquare limits function enforces triangular support: $s \in [t-\delta,t]$

Results: Functional $R^2(t)$

Figure: $R^2(t)$ comparing historical and traditional function-on-function models

- Both models fit extremely well
- Traditional model overfits by using post-t covariate values (non-causal)

Results: Effect of Renewable Energy Consumption

Figure: Estimated $\hat{\beta}_1(s,t)$ surface for the share of renewable energy consumption

- Strong negative region along diagonal: recent renewables ⇒ lower emissions
- ▶ Effect greatest around 1995-2010 and 2005-2020
- Structural lags in renewable energy capital?

Results: Country-Level Comparison

- Trends predicted well
- Under-fit intercept?
- ▶ HFLM more noisy?
 - ▶ Reimann sum integration
 - ▶ Less data ⇒ higher variance

Conclusions & Policy Implications

▶ Renewable energy share has a persistent, long-run negative effect on CO₂ emissions

- Effects linger 5-10 years
 - Policy implications: Investments today shape emissions a decade from now

▶ Traditional function-on-function models inflate $R^2(t)$

Conclusion: Limitations & Future Work

Limitations

- ▶ Spatial correlation: Country-level errors not independent
- Sparse covariates: Some covariates inconsistently reported
- Renewable energy consumption is a ratio
 - ▶ A country can increase renewable share without reducing emissions if total energy demand rises
- Bias: Penalized intercept may distort level fits

Conclusion: Limitations & Future Work

Limitations

- Spatial correlation: Country-level errors not independent
- Sparse covariates: Some covariates inconsistently reported
- Renewable energy consumption is a ratio
 - ▶ A country can increase renewable share without reducing emissions if total energy demand rises
- Bias: Penalized intercept may distort level fits

Future Work

- Spatio-functional models
- ▶ Uncertainty quantification: Bootstrap over $\beta_k(s,t)$

Thank You!

Questions?

https://github.com/SamLeeBYU/CO2-FDA