Generation of German Text Controlled by Sentiment and Keywords

Paulina Aleksandra Żal

Master's Thesis

Master of Science in Applied Information and Data Science
School of Business

Lucerne University of Applied Sciences and Arts

Wettingen AG, 22nd of December 2023

Author: Paulina Aleksandra Żal

paulina.zal@stud.hslu.ch

Supervisor: Dr. Guang Lu

guang.lu@hslu.ch

Co-Supervisor: Dr. Nianlong Gu

nianlong@ini.ethz.ch

Management Summary

The introduction of transformer models into Natural Language Processing (NLP) led to Pre-trained Language Models (PLM), which are constantly becoming more attractive for a variety of today's use cases. Due to their power, these models can be employed in Controllable Text Generation (CTG) to exert precise control over attributes like sentiment or topic, advancing text customization in various applications. While proficient, the probabilistic nature of those models may lead to outputs not precisely aligned with user intent. Emerging methods such as Fine-Tuning and Plug-and-Play Models (PPLMs) empower users to steer text generation, aiming for more tailored outputs, particularly in marketing and content creation domains.

This thesis contributes by refining text generation techniques, ensuring outputs adhere to predefined guidelines related to both topic and sentiment. The aim is to modify a pre-trained GPT-2 model in German, enabling it to produce paragraphs derived from an input sequence, a sentiment token, and a specific keyword set.

The pipeline consists of Supervised Fine-Tuning (SFT), optimization with Reinforcement Learning (RL), and a Logit Modification mechanism. SFT is utilized to adapt the GPT-2 model to generate text concerning the specified sentiment token. RL optimizes the model and improves the text generation in terms of sentiment. The model is rewarded by scores from a Sentiment Discriminator that was previously created. In the last step a logit modification mechanism from Pascual et al. (2020) is adapted and tested with different decoding strategies.

SFT and RL show promising results in generating sentiment-based text. However, implementing keyword control mechanisms reduces the performance in terms of keyword utilization compared to the GPT-2. The human assessment indicates that texts generated with sentiment tokens exhibit moderate fluency and coherence. The introduction of keyword control negatively impacts fluency and coherence. Using the method may save time and effort during the creative process of content creation. However, the proposed pipeline is not yet suitable for practice, as it faces some limitations in generating coherent and fluent texts with a specific set of keywords. The author believes that keyword control could be improved within the SFT and RL processes to achieve a balanced emphasis on both sentiment and keywords in Fine-Tuning models.

Keywords. Natural Language Processing, Controllable Text Generation, Pre-trained Language Models, Supervised Fine-Tuning, Reinforcement Learning

Contents

List of Figures							
Li	st of	Tables	7				
Li	st of	Code	9				
Li	st of	Abbreviations	10				
A	cknov	vledgements	11				
			12				
1		oduction					
	1.1	Background					
	1.2	Topic Definition and Thesis Objective					
	1.3	Related Work					
	1.4 1.5	Research Questions					
2	The	oretical Fundamentals	16				
	2.1	Transformers Architecture					
		2.1.1 Attention Mechanism					
		2.1.2 Encoder					
		2.1.3 Decoder					
	2.2	Pre-trained Language Models					
		2.2.1 GPT					
		2.2.2 BERT					
	2.3	Text Generation					
		2.3.1 Controllable Text Generation					
		2.3.2 Plug-and-Play Language Models					
	2.4	Decoding Strategies					
		2.4.1 Greedy Search					
		2.4.2 Top- k					
		2.4.3 Top- p					
		2.4.4 Beam Search					
	2.5	Reinforcement Learning	. 26				
3	Research Design and Data						
	3.1	Workflow					
	3.2	Data	. 28				
		3.2.1 Dataset Description	. 28				

		3.2.2	Data Cleaning	29				
	3.3	Auton	nated Evaluation Metrics	30				
		3.3.1	Classification Metrics	30				
		3.3.2	Perplexity	31				
		3.3.3	SLOR	32				
		3.3.4	Flesch Reading Ease	32				
		3.3.5	Coherence Score	32				
		3.3.6	Success Rate	33				
	3.4	Sentin	nent Classification	33				
	3.5	Fine-T	Tuning	34				
	3.6	Proximal Policy Optimization						
	3.7	Logits	Modification Mechanism	36				
	3.8	Huma	n Evaluation	37				
4	Exp	Experiments						
	4.1	Data (Combination and Preprocessing	39				
	4.2	Sentin	nent Discriminator	39				
		4.2.1	Data Processing	39				
		4.2.2	BERT model with Convolutional Neural Network	40				
		4.2.3		41				
	4.3	Sentin	nent Control	42				
		4.3.1	Supervised Fine-Tuning	42				
		4.3.2	Reinforcement Learning Optimization	43				
	4.4	Keywo	ord Control	46				
		4.4.1	Logit Modification Mechanism	46				
		4.4.2	Decoding Strategies	47				
	4.5	Survey	V Design	48				
5	Res	${ m ults}$	5	50				
4	5.1	Perfor	mance of Sentiment Discriminator	51				
	5.2	Evalua	ation of Sentiment Control	51				
		5.2.1	Evaluation of Supervised Fine-Tuning	52				
		5.2.2	Results of Reinforcement Learning	54				
		5.2.3	Improvement of Sentiment Control During Training	56				
	5.3	Perfor	mance of Keyword Control	56				
		5.3.1	Evaluation Based on Nouns	56				
		5.3.2	Evaluation Based on Sentiment-Carrying Adjectives	58				
		5.3.3	Evaluation of Different Control Inputs	59				

	5.4	Analysis of Survey Results						
		5.4.1	Selection of Models	60				
		5.4.2	Demographics	60				
		5.4.3	Inter-Annotator Agreement	61				
		5.4.4	Evaluation of Cronbach Alpha	61				
		5.4.5	Evaluation of Mutual Influence of Keyword and Sentiment Control	l 61				
		5.4.6	Influence of Fine-Tuning on Sentiment Control	63				
		5.4.7	Influence of Decoding Strategy and Keyword Control	64				
6	Discussion							
	6.1	Resear	rch Question 1	66				
	6.2	.2 Research Question 2						
	6.3	Resear	rch Question 3	68				
	6.4	Resear	rch Question 4	69				
7	Conclusion and Outlook							
	7.1	Concl	usion	70				
	7.2	Outlo	ok	71				
\mathbf{R}_{0}	eferei	nces		7 3				
\mathbf{A}	ppen	dix A	Function for Logit Modification	80				
$\mathbf{A}_{]}$	ppen	dix B	Beam Search	82				
\mathbf{A}	ppen	dix C	Examples of Generated Texts	84				
	C.1	Texts	Generated by Different Models with Negative Sentiment Token .	84				
	C.2	Texts	Generated by Different Models with Positive Sentiment Token .	85				
\mathbf{A}	ppen	dix D	Survey	87				
$\mathbf{A}_{]}$	ppen	dix E	Texts Evaluated in the Survey	90				
$\mathbf{A}_{]}$	ppen	dix F	Likert Scale Interpretation, Categories and Items	94				
$\mathbf{A}_{]}$	ppen	dix G	Functions for SLOR and Coherence Score	96				
$\mathbf{A}_{]}$	ppen	dix H	Evaluation of Survey's Items	98				
\mathbf{A}	ppen	dix I	Influence of Human Intervention on Text Quality	102				
Declaration of Originality								
Declaration of the use of Generative AI								