Amendments to the Claims

Please amend the Claims as follows:

1. (Currently Amended) A compound of Formula I:

$$R^7$$
 R^8
 R^9
 R^1
 R^4
 R^2
 R^2

Ι

where:

 R^1 is hydrogen, fluoro, or (C_1-C_3) alkyl;

R², R³, and R⁴ are each independently hydrogen, methyl, or ethyl;

R⁵ is hydrogen, fluoro, methyl, or ethyl;

 R^6 is $-C \equiv C - R^{10}$, $-O - R^{12}$, $-S - R^{14}$, or $-NR^{24}R^{25}$;

R⁷ is hydrogen, halo, cyano, (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, (C₂-C₆)alkenyl optionally substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl,

 (C_1-C_6) alkoxy optionally substituted with 1 to 6 fluoro substituents, (C_1-C_6) alkylthio optionally substituted with 1 to 6 fluoro substituents, $Ph^1-(C_0-C_3)$ alkyl, $Ph^1-(C_0-C_3)$ alkyl-O-, or

 Ph^{1} -(C_{0} - C_{3})alkyl-S-;

R⁸ is hydrogen, halo, cyano, or –SCF₃;

R⁹ is hydrogen, halo, eyano, CF₃, SCF₃, or (C₁-C₃)alkoxy optionally substituted with 1 to 6 fluoro substituents;

 R^{10} is $-CF_3$, ethyl substituted with 1 to 5 fluoro substitutents, (C_3-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ar^1-(C_0-C_3)$ alkyl,

 $Ph^1\hbox{-}(C_0\hbox{-}C_3) alkyl, \ or \ 3\hbox{-}(C_1\hbox{-}C_4) alkyl\hbox{-} 2\hbox{-}oxo\hbox{-}imidazolidin\hbox{-} 1\hbox{-}yl\hbox{-}(C_1\hbox{-}C_3) alkyl;$

 $R^{12} \text{ is Ph}^2\text{-}(C_1\text{-}C_3) \text{alkyl, } Ar^2\text{-}(C_1\text{-}C_3) \text{alkyl, } (C_1\text{-}C_6) \text{alkyl-S-}(C_2\text{-}C_6) \text{alkyl, } (C_3\text{-}C_7) \text{cycloalkyl-S-}(C_2\text{-}C_6) \text{alkyl, } phenyl-S\text{-}(C_2\text{-}C_6) \text{alkyl, } phenylcarbonyl\text{-}(C_1\text{-}C_3) \text{alkyl, } Ph^2\text{-}S\text{-}(C_2\text{-}C_6) \text{alkyl, } phenylcarbonyl\text{-}(C_1\text{-}C_3) \text{alkyl, } Ph^2\text{-}S\text{-}(C_2\text{-}C_6) \text{alkyl, } (C_3\text{-}C_7) \text{cycloalkyl-OC(O)-}(C_3\text{-}C_6) \text{alkyl, } phenyloxycarbonyl\text{-}(C_3\text{-}C_6) \text{alkyl, } Ph^2\text{-}OC(O)\text{-}(C_3\text{-}C_6) \text{alkyl, } Ph^2\text{-}OC(O)\text{-}(C_3\text{-}C_6) \text{alkyl, } Ph^1\text{-}NH-S(O)\text{-}(C_2\text{-}C_4) \text{alkyl-NH-C(O)-}(C_2\text{-}C_4) \text{alkyl-NH-C(O)$

- R¹³ is (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, Ph¹, Ar², or (C₁-C₃)alkoxy optionally substituted with 1 to 6 fluoro substituents, Ph¹-NH- or N-linked Het¹;
- R¹⁴ is Ar² which is not N-linked to the sulfur atom, Ph², R¹⁵-L-, tetrahydrofuranyl, tetrahydropyranyl, or phenyl-methyl substituted on the methyl moiety with a substituent selected from the group consisting of (C₁-C₃)-*n*-alkyl substituted with hydroxy, (C₁-C₃)alkyl-O-(C₁-C₂)-*n*-alkyl, (C₁-C₃)alkyl-C(O)-(C₀-C₂)-*n*-alkyl, and (C₁-C₃)alkyl-O-C(O)-(C₀-C₂)-*n*-alkyl,
 - wherein when R¹⁴ is Ph² or Ar², wherein Ar² is pyridyl, then R¹⁴ may also, optionally be substituted with phenyl-CH=CH- or phenyl-C≡C-,
 - said phenyl-CH=CH- or phenyl-C≡C- being optionally further substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and
 - wherein when Ar² is pyridyl, the pyridyl may alternatively, optionally be substituted with R²⁸R²⁹N-C(O)-, and optionally further substituted with one methyl, -CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and
 - wherein the tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, or with one or two groups independently selected from methyl and -CF₃;
- R¹⁵ is -OR¹⁶, cyano, –SCF₃, Ph², Ar², quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, phthalimido, benzothiophenyl optionally substituted at the 2-position with phenyl or benzyl, benzothiazolyl optionally substituted with phenyl or benzyl, 2-oxo-dihydroindol-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-dihydroindol-5-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-imidazolidin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydropyrimidinyl optionally substituted at the 3 or 4 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydroquinolin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, 2-oxo-tetrahydroquinolin-1-yl optionally substituted at the 3 position with gem dimethyl or (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents,

2-oxo- dihydrobenzimidazol-1-yl optionally substituted at the 3 position with gem dimethyl or (C_1-C_6) alkyl optionally further substituted with 1 to 6 fluoro substituents, $-NR^{17}R^{18}$, $-C(O)R^{22}$, or a saturated heterocyle selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl, tetrahydrofuranyl, and tetrahydropyranyl,

wherein Ph² and Ar² when Ar² is pyridyl, may also optionally be substituted with phenyl-CH=CH- or phenyl-C≡C-,

said phenyl-CH=CH- and phenyl-C≡C- being optionally further substituted on the phenyl moiety with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and

wherein Ar^2 may alternatively, optionally be substituted with a substituent selected from the group consisting of (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, Het^1 - (C_0-C_3) alkyl, pyridyl- (C_0-C_3) alkyl, and phenyl- (C_0-C_3) alkyl, and optionally further substituted with one methyl, $-CF_3$, cyano, or $-SCF_3$ substituent, or with 1 to 2 halo substituents.

said pyridyl-(C₀-C₃)alkyl and phenyl-(C₀-C₃)alkyl optionally being further substituted with 1-3 substituents independently selected from halo, -CH₃, -OCH₃, -CF₃, -OCF₃, -CN, and -SCF₃, and

wherein when Ar^2 is pyridyl, the pyridyl may alternatively, optionally be substituted with $R^{28}R^{29}N$ -C(O)-, or (C₁-C₆)alkyl-C(O)- optionally substituted with 1 to 6 fluoro substituents, and may be optionally further substituted with one methyl,

-CF₃, cyano, or -SCF₃ substituent, or with 1 to 2 halo substituents, and wherein when Ar^2 is thiazolyl, the thiazolyl may alternatively, optionally be substituted with (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl-NH-, and

wherein the pyrrolidinyl, piperidinyl, morpholinyl, and thiomorpholinyl is substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom, or is N-substituted with a substituent selected from the group consisting of

 $(C_1-C_6) alkyl carbonyl, (C_1-C_6) alkyl sulfonyl, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-C(O)-, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S(O)_2-, Ph^1-(C_0-C_3) alkyl-C(O)-, and Ph^1-(C_0-C_3) alkyl-S(O)_2-, and$

may optionally be further substituted with 1 or 2 methyl or -CF₃ substituents, and when oxo-substituted, may optionally be further N-substituted with a substituent selected from the group consisting of

 (C_1-C_6) alkyl optionally further substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, and $Ph^1-(C_0-C_3)$ alkyl, and

wherein tetrahydrofuranyl and tetrahydropyranyl may optionally be substituted with an oxo substituent, and/or with one or two groups independently selected from methyl and –CF₃;

- L is branched or unbranched $(C_1\text{-}C_6)$ alkylene, except when R^{15} is -NR¹⁷R¹⁸ or Ar²-N-linked to L, in which case L is branched or unbranched $(C_2\text{-}C_6)$ alkylene, and when L is methylene or ethylene, L may optionally be substituted with gem-ethano or with 1 to 2 fluoro substituents, and when R^{15} is Ph^2 , Ar^2 , or a saturated heterocycle, L may alternatively, optionally be substituted with a substituent selected from the group consisting of hydroxy, cyano, -SCF₃, $(C_1\text{-}C_6)$ alkoxy optionally further substituted with 1 to 6 fluoro substituents, $(C_1\text{-}C_6)$ alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents, $(C_1\text{-}C_6)$ alkylcarbonyloxy optionally further substituted with 1 to 6 fluoro substituents, $(C_3\text{-}C_7)$ cycloalkyl- $(C_0\text{-}C_3)$ alkyl-O-, $(C_3\text{-}C_7)$ cycloalkyl- $(C_0\text{-}C_3)$ alkyl-O-C(O)-, and $(C_3\text{-}C_7)$ cycloalkyl- $(C_0\text{-}C_3)$ alkyl-C(O)-O-;
- R^{16} is hydrogen, (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_1-C_6) alkylcarbonyl, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl- (C_0-C_3) alkyl, or $Ar^2-(C_0-C_3)$ alkyl, or $Ar^2-(C_0-C_3)$ alkyl- (C_0-C_3) alkyl- (C_0-C_3)
- $R^{17} \text{ is } (C_1\text{-}C_4) \text{alkyl optionally substituted with 1 to 6 fluoro substituents}, \textit{t-butylsulfonyl}, \\ (C_3\text{-}C_7) \text{cycloalkyl} (C_0\text{-}C_3) \text{alkyl-C(O)-, } (C_3\text{-}C_7) \text{cycloalkyl} (C_0\text{-}C_3) \text{alkyl-sulfonyl}, Ph^1\text{-}(C_0\text{-}C_3) \text{alkyl-C(O)-, } Ph^1\text{-}(C_0\text{-}C_3) \text{alkylsulfonyl}, Ar^2\text{-}(C_0\text{-}C_3) \text{alkyl-C(O)-, } Ar^2\text{-}(C_0\text{-}C_3) \text{alkylsulfonyl}, R^{19}OC(O)\text{-, or } R^{20}R^{21}NC(O)\text{-;} \\ R^{20}R^{21}NC(O)\text{-, or } R^{20}R^{21}NC(O)\text{-;} \\ R^{20}R^{21}R^{21}NC(O)\text{-;} \\ R^{20}R^{21}R$
- R¹⁸ is hydrogen or (C₁-C₄)alkyl optionally substituted with 1 to 6 fluoro substituents, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached form Het¹ where Het¹ is substituted with oxo- on a carbon atom adjacent to the ring nitrogen atom, or R¹⁷ and R¹⁸, taken together with the nitrogen atom to which they are attached, form an aromatic heterocycle selected from the group consisting of pyrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, and 1,2,4-triazolyl,

said aromatic heterocycle optionally being substituted with 1 to 2 halo substituents, or substituted with 1 to 2 (C₁-C₄)alkyl substituents optionally further substituted with

- 1 to 3 fluoro substituents, or mono-substituted with fluoro, nitro, cyano, $-SCF_3$, or (C_1-C_4) alkoxy optionally further substituted with 1 to 3 fluoro substituents, and optionally further substituted with a (C_1-C_4) alkyl substituent optionally further substituted with 1 to 3 fluoro substituents;
- R^{19} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $Ph^1-(C_0-C_3)$ alkyl,
- R^{20} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, $Ar^2-(C_0-C_3)$ alkyl, or $Ph^1-(C_0-C_3)$ alkyl,
- R^{21} is hydrogen or (C_1-C_4) alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{20} and R^{21} , taken together with the nitrogen atom to which they are attached, form Het^1 ;
- R^{22} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, R^{23} -O-, Ph^1 - (C_0-C_3) alkyl, Ar^2 - (C_0-C_3) alkyl, or $R^{32}R^{33}N$ -;
- R^{23} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, $Ph^1-(C_0-C_3)$ alkyl, or $Ar^2-(C_0-C_3)$ alkyl;
- $R^{24} \text{ is } (C_1\text{-}C_6) \text{alkoxy} (C_2\text{-}C_5) \text{alkyl optionally substituted with 1 to 6 fluoro substituents,} \\ (C_1\text{-}C_6) \text{alkylthio} (C_2\text{-}C_5) \text{alkyl optionally substituted with 1 to 6 fluoro substituents,} \\ (C_3\text{-}C_7) \text{cycloalkyl} (C_0\text{-}C_1) \text{alkyl-O-} (C_1\text{-}C_5) \text{alkyl,} (C_3\text{-}C_7) \text{cycloalkyl} (C_0\text{-}C_1) \text{alkyl-S-} (C_1\text{-}C_5) \text{alkyl,} \\ \text{phenyl} (C_1\text{-}C_3) \text{ n-alkyl, Ph}^2\text{-}(C_1\text{-}C_3)\text{-}n\text{-alkyl, Ar}^2(C_0\text{-}C_3) \text{ n-alkyl, phenyl} (C_0\text{-}C_1) \text{alkyl-O-} \\ (C_1\text{-}C_5) \text{alkyl, phenyl} (C_0\text{-}C_1) \text{alkyl-S-} (C_1\text{-}C_5) \text{alkyl, Ph}^1\text{-}(C_0\text{-}C_1) \text{alkyl-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl,} \\ \text{Ph}^1\text{-}(C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, pyridyl-} (C_0\text{-}C_1) \text{alkyl-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{alkyl, or Ar}^3 (C_1\text{-}C_2) \text{alkyl,} \\ \text{pyridyl-} (C_0\text{-}C_1) \text{alkyl-NH-C}(O) \text{NH-} (C_2\text{-}C_4) \text{a$
 - where Ar³ is a bi-cyclic moiety selected from a group consisting of indanyl, indolyl, dihydrobenzofuranyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzo[1,3]dioxolyl, naphthyl, dihydrobenzopyranyl, quinolinyl, isoquinolinyl, and benzo[1,2,3]thiadiazolyl,
 - said Ar^3 optionally being substituted with $(C_1\text{-}C_6)$ alkyl optionally further substituted with 1 to 6 fluoro substituents, phenyl $(C_0\text{-}C_1)$ alkyl optionally further substituted with 1 to 6 fluoro substituents, or substituted with $(C_3\text{-}C_7)$ cycloalkyl $(C_0\text{-}C_3)$ alkyl, or substituted with 1-3 substituents independently selected from the group consisting of halo, oxo, methyl, and -CF₃,
 - said phenyl(C_1 - C_3) n-alkyl, Ph^2 -(C_1 - C_3) n-alkyl, or $Ar^2(C_0$ - C_3) n-alkyl optionally being substituted on the n-alkyl moiety when present with (C_1 - C_3)alkyl, dimethyl, gem-ethano, 1 to 2 fluoro substituents, or (C_1 - C_6)alkyl-C(O)-,

```
said Ar^2(C_0-C_3) n-alkyl being alternatively optionally substituted with a substituent
                   selected from the group consisting of (C_3-C_7) cycloalkyl-(C_0-C_3) alkyl,
                   \text{Het}^1-(C<sub>0</sub>-C<sub>3</sub>)alkyl, pyridyl-(C<sub>0</sub>-C<sub>3</sub>)alkyl, phenyl-(C<sub>0</sub>-C<sub>3</sub>)alkyl, pyridyl-
                   (C_0-C_3)alkyl-NH-, phenyl-(C_0-C_3)alkyl-NH-, (C_1-C_6)alkyl-S-, and
                   (C_3-C_7)cycloalkyl-(C_0-C_3)alkyl-S-, and optionally further substituted with one
                   methyl, -CF<sub>3</sub>, cyano, or -SCF<sub>3</sub> substituent, or with 1 to 2 halo substituents,
                       said pyridyl-(C<sub>0</sub>-C<sub>3</sub>)alkyl and phenyl-(C<sub>0</sub>-C<sub>3</sub>)alkyl optionally being further
                            substituted with 1-3 substituents independently selected from halo, -CH<sub>3</sub>,
                            -OCH<sub>3</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -CN, and -SCF<sub>3</sub>, and
              said Ph<sup>2</sup>-(C<sub>1</sub>-C<sub>3</sub>) n-alkyl and Ar<sup>2</sup>(C<sub>0</sub>-C<sub>3</sub>) n-alkyl where Ar<sup>2</sup> is pyridyl, also optionally
                   being substituted on the phenyl or Ar<sup>2</sup> moiety, respectively, with phenyl-CH=CH-
                   or phenyl-C≡C-,
                       said phenyl-CH=CH- or phenyl-C=C- being optionally further substituted with
                             1 to 3 substituents independently selected from the group consisting of
                            halo, cyano, -SCF<sub>3</sub>, (C<sub>1</sub>-C<sub>6</sub>)alkyl optionally further substituted with 1 to 6
                            fluoro substituents, and (C<sub>1</sub>-C<sub>6</sub>)alkoxy optionally further substituted with 1
                            to 6 fluoro substituents, and
              said Ar^2(C_0-C_3) n-alkyl where Ar^2 is pyridyl, alternatively, optionally being substituted
                   with (C<sub>1</sub>-C<sub>6</sub>)alkvl-C(O)- or R<sup>28</sup>R<sup>29</sup>N-C(O)-, and optionally further substituted with
                   one methyl, -CF<sub>3</sub>, cyano, or -SCF<sub>3</sub> substituent, or with 1 to 2 halo substituents,
              said phenyl(C_0-C_1)alkyl-O-(C_1-C_5)alkyl, or phenyl(C_0-C_1)alkyl-S-(C_1-C_5)alkyl
                   optionally being substituted on the phenyl moiety with (C_1-C_2)-S(O)_2, or with 1 to
                   5 independently selected halo substituents, or with 1 to 3 substituents
                   independently selected from the group consisting of halo, cyano, -SCF<sub>3</sub>,
                   (C<sub>1</sub>-C<sub>6</sub>)alkyl optionally further substituted with 1 to 6 fluoro substituents, and
                   (C_1-C_6)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and
              said pyridyl-(C<sub>0</sub>-C<sub>1</sub>)alkyl-C(O)NH-(C<sub>2</sub>-C<sub>4</sub>)alkyl and
                   pyridyl-(C<sub>0</sub>-C<sub>1</sub>)alkyl-NH-C(O)NH-(C<sub>2</sub>-C<sub>4</sub>)alkyl optionally being substituted on the
                   pyridyl moiety with methyl, -CF<sub>3</sub>, or 1 to 3 halo substituents;
R<sup>25</sup> is hydrogen, (C<sub>1</sub>-C<sub>3</sub>)alkyl optionally substituted with 1 to 6 fluoro substituents, or allyl;
R<sup>26</sup> is hydrogen, (C<sub>1</sub>-C<sub>4</sub>)alkyl optionally substituted with 1 to 6 fluoro substituents,
    (C_3-C_7)cycloalkyl(C_0-C_3)alkyl, Ph^1-(C_0-C_3)alkyl, or Het^2-(C_0-C_3)alkyl;
```

- R^{27} is hydrogen or (C_1-C_4) alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{26} and R^{27} , taken together with the nitrogen atom to which they are attached, form Het¹;
- R^{28} is (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl- (C_0-C_3) alkyl, tetrahydropyran-3-yl (C_0-C_3) alkyl, tetrahydropyran-4-yl (C_0-C_3) alkyl, tetrahydrofuranyl (C_0-C_3) alkyl, $Ph^1-(C_0-C_2)$ n-alkyl, or $Ar^2-(C_0-C_2)$ n-alkyl, said $Ph^1-(C_0-C_2)$ n-alkyl and $Ar^2-(C_0-C_2)$ n-alkyl optionally being substituted on the alkyl moiety when present with (C_1-C_3) alkyl, dimethyl, or gem-ethano;
- R^{29} is hydrogen or (C_1-C_3) alkyl;
- R^{30} is hydrogen, (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl, $Ph^1-(C_0-C_3)$ alkyl, or $Ar^2(C_0-C_3)$ alkyl,
- R³¹ is hydrogen or (C₁-C₆)alkyl optionally substituted with 1 to 6 fluoro substituents, or R³⁰ and R³¹, taken together with the nitrogen atom to which they are attached, form Het¹, said Het¹ also optionally being substituted with phenyl optionally further substituted with 1 to 3 halo substituents;
- R^{32} and R^{33} are each independently hydrogen or (C_1-C_6) alkyl optionally substituted with 1 to 6 fluoro substituents, or R^{32} and R^{33} , taken together with the nitrogen atom to which they are attached, form Het¹, or R^{32} is $Ph^1(C_0-C_1)$ alkyl provided that R^{33} is hydrogen;
- Ar¹ is an aromatic heterocycle substituent selected from the group consisting of furanyl, thiophenyl, thiazolyl, oxazolyl, isoxazolyl, pyridyl, and pyridazinyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, -CF₃, -O-CF₃, nitro, cyano, and trifluoromethylthio;
- Ar² is an aromatic heterocycle substituent selected from the group consisting of pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, furanyl, oxazolyl, isoxazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, thiophenyl, thiazolyl, isothiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyridazinyl, and benzimidazolyl, any of which may optionally be substituted with 1 to 3 substituents independently selected from the group consisting of halo, cyano, –SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents, and wherein pyridyl and pyridazinyl may also optionally be substituted with (C₁-C₆)alkylamino optionally further substituted with 1 to 6 fluoro substituents, (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, or (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-amino;

- Het¹ is a saturated, nitrogen-containing heterocycle substituent selected from the group consisting of azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, and homothiomorpholinyl, any of which may optionally be substituted with (C_1-C_6) alkyl or with 2 methyl substituents;
- Het² is a saturated, oxygen-containing heterocycle substituent selected from the group consisting of tetrahydrofuranyl, tetrahydropyranyl, and oxepinyl, any of which may optionally be substituted with (C₁-C₆)alkyl or with 2 methyl substituents;
- Ph¹ is phenyl optionally substituted with 1 to 5 independently selected halo substituents, or with 1 to 3 substituents independently selected from the group consisting of halo, cyano, -SCF₃, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents;

Ph² is phenyl substituted with:

- a) 1 to 5 independently selected halo substituents; or
- b) 1 to 3 substituents independently selected from the group consisting of halo, cyano, –SCF₃, nitro, hydroxy, (C₁-C₆)alkyl optionally further substituted with 1 to 6 fluoro substituents, and (C₁-C₆)alkoxy optionally further substituted with 1 to 6 fluoro substituents; or
- c) 0, 1, or 2 substituents independently selected from the group consisting of halo, cyano, -SCF₃, methyl, -CF₃, methoxy, -OCF₃, nitro, and hydroxy, together with one substituent selected from the group consisting of
 - i) (C_1-C_{10}) alkyl optionally further substituted with 1 to 6 fluoro substituents or mono-substituted with hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyl-C(O)-, (C_1-C_6) alkyl-S(O)-, (C_3-C_7) cycloalkyl (C_0-C_3) alkyloxy, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S(O)-, (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S(O)₂-, (C_3-C_7) cycloalkyl-S(O)₂-, (C_3-C_7) cycloalkyl-S(O)-, (C_3-C_7) cycloalk
 - ii) C_1 - C_{10})alkoxy- $(C_0$ - C_3)alkyl optionally further substituted with 1 to 6 fluoro substituents, and optionally further substituted with hydroxy,
 - iii) (C₁-C₆)alkyl-C(O)-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
 - iv) carboxy,
 - v) (C₁-C₆)alkoxycarbonyl optionally further substituted with 1 to 6 fluoro substituents,

- vi) (C₁-C₆)alkyl-C(O)-(C₀-C₃)-O- optionally further substituted with 1 to 6 fluoro substituents,
- vii) (C₁-C₆)alkylthio-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- viii) (C₁-C₆)alkylsulfinyl-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- ix) (C₁-C₆)alkylsulfonyl-(C₀-C₃)alkyl optionally further substituted with 1 to 6 fluoro substituents,
- x) (C_1-C_6) alkylsulfonyl- (C_0-C_1) alkyl-O- optionally further substituted with 1 to 6 fluoro substituents,
- xi) (C₃-C₇)cycloalkyl(C₀-C₃)alkyl, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xii) (C₃-C₇)cycloalkyl(C₀-C₃)alkyl-O-, optionally further substituted on the cycloalkyl with 1 to 4 substituents selected from methyl and fluoro,
- xiii) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-C(O)-,
- xiv) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-O-C(O)-,
- xv) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl-S- (C_0-C_3) alkyl,
- xvi) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-S(O)-(C_0-C_3)$ alkyl,
- xvii) (C_3-C_7) cycloalkyl (C_0-C_3) alkyl $-S(O)_2-(C_0-C_3)$ alkyl,
- xviii) Ph¹-(C₀-C₃)alkyl, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents,
- xix) Ph¹-(C₀-C₃)alkyl-O-, optionally substituted on the alkyl moiety with 1 to 2 fluoro substituents
- $Ph^1-(C_0-C_3)alkyl-C(O)-$
- xxi) Ph^1 - $(C_0$ - $C_3)$ alkyl-O-C(O)-,
- xxii) Ph^1 -(C₀-C₃)alkyl-C(O)-(C₀-C₃)alkyl-O-,
- xxiii) Ph^1 -(C_0 - C_3)alkylthio,
- xxiv) Ph¹-(C₀-C₃)alkylsulfinyl,
- xxv) Ph^1 - $(C_0$ - C_3)alkylsulfonyl,
- xxvi) $Ar^2(C_0-C_3)$ alkyl,
- xxvii) Ar²(C₀-C₃)alkyl-O-
- xxviii) Ar²-(C₀-C₃)alkyl-S-,
- xxix) $Ar^2(C_0-C_3)alkyl-C(O)-,$

$$Ar^2(C_0-C_3)$$
alkyl- $C(S)$ -,

xxxi)
$$Ar^2$$
-(C_0 - C_3)alkylsulfinyl,

xxxii)
$$Ar^2$$
-(C_0 - C_3)alkylsulfonyl,

xxxvi)
$$\text{Het}^2$$
-(C₀-C₃)alkyl,

$$R^{26}R^{27}N_{-}$$

xli)
$$R^{28}R^{29}-N-(C_1-C_3)alkoxy$$
,

xlii)
$$R^{28}R^{29}N-C(O)-,$$

xliii)
$$R^{28}R^{29}N-C(O)-(C_1-C_3)alkyl-O-,$$

xliv)
$$R^{28}R^{29}N-C(S)-$$
,

$$R^{30}R^{31}N-S(O)_{2}$$

or a pharmaceutically acceptable salt thereof, subject to the following provisos:

- a) no more than two of R¹, R², R³, R⁴, and R⁵ may be other than hydrogen;
- b) when R² is methyl, then R¹, R³, R⁴, and R⁵ are each hydrogen;
- c) when R^3 is methyl, then R^2 and R^4 are each hydrogen;
- d) when R³ is methyl, R⁷ and R⁸ are each OH, and R¹, R², R⁴, R⁵, and R⁹ are
- each hydrogen, then R⁶ is other than cyclohexylthio, furanylthio, or
- phenylthio; and
- e) When R¹² is Ar² (C₁-C₃)alkyl, then R⁷ is other than hydrogen or R⁹ is other

than chloro.

- 2. (Original) A compound according to Claim 1 wherein R^7 is selected from halo, -CN, and CF_3 .
- 3. (Currently Amended) A compound according to either Claim 1 or Claim 2 wherein R^7 is chloro.

- 4. (Currently Amended) A compound according to any one of Claims 1 to 3 Claim 1 wherein R^6 is $-C \equiv C R^{10}$.
- 5. (Currently Amended) A compound according to any one of Claims 1 to 3 Claim 1 wherein R⁶ is -O-R¹².
- 6. (Currently Amended) A compound according to any one of Claims 1 to 3 Claim 1 wherein R⁶ is -S-R¹⁴.
 - 7. (Original) A compound according to Claim 6 wherein R⁶ is -S-L-R¹⁵.
 - 8. (Original) A compound according to Claim 7 wherein R¹⁵ is Ph² or Ar².
- 9. (Currently Amended) A compound according to any one of Claims 1 to 3 Claim 1 wherein R^6 is $-NR^{24}R^{25}$.
 - 10. (Original) A compound according to Claim 9 wherein R²⁴ is Ph²-(C₁-C₃) *n*-alkyl-.
 - 11. (Original) A compound according to Claim 9 wherein R²⁴ is Ar²-(C₁-C₃) *n*-alkyl-.
- 12. (Currently Amended) A compound according to any one of Claims 9 to 11 Claim 9 wherein R^{24} is $Ph^2-(C_1-C_3)$ *n*-alkyl- or $Ar^2-(C_1-C_3)$ *n*-alkyl-, and R^{25} is hydrogen.
 - 13. (Cancelled)
 - 14. (Cancelled)
- 15. (Currently Amended) A compound according to any one of Claims 1 to 14 Claim $\underline{1}$ wherein R^1 , R^2 , R^3 , R^4 , R^5 , and R^8 , are each hydrogen.

16. (Currently Amended) A pharmaceutical composition comprising a compound according to any one of Claims 1 to 15 Claim 1 as an active ingredient in association with a pharmaceutically acceptable carrier, diluent or excipient.

17. (Cancelled)

- 18. (Original) A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 19. (Original) The method of Claim 18, where the mammal is human.
- 20. (Original) A method for the treatment of obsessive compulsive disorder in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 21. (Original) The method of Claim 20, where the mammal is human.
- 22. (Original) A method for the treatment of depression in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 23. (Original) The method of Claim 22, where the mammal is human.
- 24. (Original) A method for the treatment of anxiety in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound according to Claim 1.
 - 25. (Original) The method of Claim 24, where the mammal is human.
 - 26. 37 (Cancelled)