son de caractère magnétiques sont

re $\mu_0 H$, exprimé e champ B_0 créé e a été décrit au rbe B(H); on en

n » d'un ferromaaleurs de H une partie à croissance es de H, elle tend « aimantation à état de pureté de les valeurs de lature de 20°C.

+ M_{sat})

H

), b) B(H).

à la température = $\mu_0 H$ de l'ordre étal, la saturation 10^{-5} T, ce qui est

Tableau I. Les aimantations à saturation sont données pour 20°C.

	M_{sat} (A^*m^{-1})	μ ₀ M _{sat} (T)	T_f (K)	(K)
Fer	1,70·10 ⁶	2,14	1 043	1 101
Cobalt	1,40.106	1,76	1 393	1 410
Nickel	0,48.106	0,60	631	650

La courbe représentant B(H) se déduit de la courbe $\mu_0 M(H)$ en y ajoutant la variation linéaire $\mu_0 H$; pour les grandes valeurs de H, elle tend vers une asymptote inclinée d'équation : $B = \mu_0 H + \mu_0 M_{\rm sat}$ (fig. 1 b).

L'aimantation à saturation dépend de la température; elle décroît régulièrement si l'on chauffe le matériau, puis diminue rapidement et s'annule pour une température T_f , appelée « température de Curie ferromagnétique », au-delà de laquelle le matériau n'est plus ferromagnétique mais paramagnétique (fig. 2a):

Fig. 2. a) Variation de l'aimantation à saturation en fonction de la température pour $T < T_f$. b) Inverse de la susceptibilité paramagnétique en fonction de la température pour $T_f < T$.

Pour des températures nettement supérieures à T_f , la susceptibilité paramagnétique χ suit une loi de Curie-Weiss :

$$\chi = \frac{C}{T - T_p},$$

où C est une constante et T_p une température appelée « température de Curie paramagnétique »; elle est légèrement supérieure à T_f (fig. 2 b); les températures T_f et T_p sont données dans le tableau I pour le fer, le cobalt et le nickel.

2-3. Perméabilité magnétique

Par définition la perméabilité magnétique μ est égale, pour les matériaux isotropes, au quotient B/H.