

PEDRO AUGUSTO BORGES DOS SANTOS

TITLE: SUBTITLE

Thesis presented as a partial requirement for the obtaining of a degree in Master of Sciences by the Programa de Pós-Graduação em Planejamento Urbano of Setor de Tecnologia of Universidade Federal do Paraná.

Supervisor: Prof. Dr. Jorge Tiago Bastos Co-supervisor: Prof. Dr. Oscar Oviedo-Trespalacios

CURITIBA

ABSTRACT

Resumo

Palavras-chaves: Palavras-chave

ABSTRACT

Abstract

Key-words: Key-words

LIST OF FIGURES

FIGURE 1 – ROAD TRAFFIC RATES IN OECD COUNTRIES	ç
FIGURE 2 – ROAD TRAFFIC DEATHS ON BRAZIL	11
FIGURE 3 - ROAD TRAFFIC MORTALITY RATE ON BRAZIL	11
FIGURE 4 - ROAD TRAFFIC FATALITY RATE ON BRAZIL	12
FIGURE 5 – MOTORIZATION RATE ON BRAZIL	13
FIGURE 6 - ROAD TRAFFIC DEATHS ON CURITIBA	14
FIGURE 7 - MOTORIZATION RATES ON BRAZILIAN STATES CAPITAL CITIES,	
IN 2019	14
FIGURE 8 - MORTALITY RATES ON BRAZILIAN STATES CAPITAL CITIES,	
IN 2019	15
FIGURE 9 - FATALITY RATES ON BRAZILIAN STATES CAPITAL CITIES, IN	
2019	16
FIGURE 10 – HADDON MATRIX	17
FIGURE 11 – RELATIONSHIP BETWEEN SPEED AND BRAKING DISTANCE	19
FIGURE 12 – RELATIONSHIP BETWEEN SPEED AND KINETIC ENERGY $$. $$.	19
FIGURE 13 – PROBABILITY OF PEDESTRIAN FATALITY AT DIFFERENT IM-	
PACT FATALITIES	20
FIGURE 14 – RELATIONSHIP BETWEEN TRAFFIC SPEED, VOLUME AND	
DENSITY	22
FIGURE 15 - EXTRACTION OF FREE-FLOW AND SPEEDING EPISODES	
FROM TRIPS	24
FIGURE 16 – BUILT ENVIRONMENT AND TRAFFIC SAFETY	25
FIGURE 17 – KERNEL FUNCTIONS PLOT	31

LIST OF TABLES

TABLE 1 – FACTORS THAT AFFECTS SPEEDING AND SPEED CHOICE	21
TABLE 2 - BUILT ENVIRONMENT VARIABLES	26
TABLE 3 - CORRELATION BETWEEN DENSITY AND ROAD SAFETY OUT-	
COMES	27
TABLE 4 - CORRELATION BETWEEN DIVERSITY AND ROAD SAFETY OUT-	
COMES	27
TABLE 5 - CORRELATION BETWEEN DESIGN AND ROAD SAFETY OUT-	
COMES	28
TABLE 6 - CORRELATION BETWEEN DESTINATION ACCESSIBILITY AND	
ROAD SAFETY OUTCOMES	28
TABLE 7 - CORRELATION BETWEEN DISTANCE TO TRANSIT AND ROAD	
SAFETY OUTCOMES	29
TABLE 8 - CORRELATION BETWEEN DEMOGRAPHICS AND ROAD SAFETY	
OUTCOMES	29
TABLE 9 - AVAILABLE KERNEL FUNCTIONS	30

SUMMARY

1	INTRODUCTION	7
1.1	OBJECTIVES	7
1.2	JUSTIFICATION	7
1.3	THESIS STRUCTURE	8
2	LITERATURE REVIEW	
2.1	ROAD SAFETY SCENARIO	
2.2	SPEEDING AS A RISK FACTOR	
2.3	ROAD SAFETY PERFORMANCE AND THE BUILT ENVIRONMENT	25
2.4	NATURALISTIC DRIVING STUDIES	27
2.5	GEOGRAPHICALLY WEIGHTED REGRESSION	29
3	METHODS	32
3.1	NATURALISTIC DATA COLLECTION	32
3.2	DATA PROCESSING	32
3.3	GEOGRAPHICALLY WEIGHTED MODEL	32
4	ANALYSIS AND RESULTS	33
5	CONCLUSIONS	34
	BIBLIOGRAPHY	35

1 INTRODUCTION

Very general introduction why the topic of the thesis is relevant.

Road Safety Scenario in the World and in Brazil.

Urban planning having a crucial role on the road safety in cities.

1.1 OBJECTIVES

In the context of the urban planning practices and road safety management, the main objective of this research is to investigate the influence of demographic, socioeconomic, land use and constructed environment on the speeding practices as a risk factor on the frequency and severity of road crashes. The scenario of the study is the city of Curitiba, capital of the state of Paraná, Brazil. The correlation will be analyzed with the use of the Geographically Weighted Regression statistical model.

With the use of speeding data collected from drivers that participated in a Naturalistic Driving Study (NDS) performed in Curitiba, this investigation aims to contribute to the knowledge of its relationship with variables from the built environment (BE). These BE variables are categorized by Ewing and Dumbaugh (2009) in five groups called '5D': density, diversity, design, destination accessibility and distance to transit. In addition to these variables, this study aims to relate the income as a socioeconomic variable to the speeding as well.

As co-benefits in the investigation, this thesis aims to offer some level of insight regarding the development and update of speed control in cities, considering the operational and structural planning guidelines for the road systems and land use. With these factors in mind, it could be possible to present new ideas to the planning practices in Curitiba, regarding mobility plans, master plans and zoning laws.

1.2 JUSTIFICATION

The excess of traffic speed performed by vehicles on urban environments are a main risk factor in the chance and severity of road crashes, considering there is great volume of interaction between motorized and vulnerable users (ELVIK et al., 2009). Considering the direct relationship between the mobility, the land use patterns and the built environment (DE VOS; WITLOX, 2013), it is important to investigate these factors in search of improvements in the management process of the road safety. Speeding, which is on the primary causes for traffic crashes (WHO, 2013) can be better studied and analyzed by the collection of naturalistic data.

Having in mind that most of the traffic crashes and conflicts happens in cities (WHO, 2018), as a consequence of the fast process of urbanization in the last decades, it is crucial to create safer conditions in these localities. In Brazil, the management of the mobility is attributed to the municipalities (BRASIL, 1997). Therefore, the management of road safety, as a task inherent to traffic management, is also an attribution of the municipalities. It is necessary to observe the issues of road safety in cities when conducting the process of urban planning. Having this in mind, it was established laws in which this integration between the planning process by the municipalities and the sustainable mobility are clearly defined: The Statute of the Cities (BRASIL, 2001) and The Law of the Urban Mobility (BRASIL, 2012).

The built environment can affect the traffic safety through three main mediators: the traffic volumes, traffic conflicts and traffic speeds - which can directly affect the crash safety and severity in urban environments (EWING; DUMBAUGH, 2009). Traffic crashes are a final outcome of the problems involving the road safety. Therefore, in order to have a method to analyzed the operational conditions of the traffic safety in cities, it can be beneficial to use a intermediate outcome - or a safety performance indicator (SPI) (BASTOS, 2014) - which can be the amount of speeding that occurs across its territory, in addition to the studies that uses the traffic crashes as dependent variables.

1.3 THESIS STRUCTURE

2 LITERATURE REVIEW

2.1 ROAD SAFETY SCENARIO

Road traffic crashes around the world claims more than 1.3 million lives in each year, representing the eighth leading cause of deaths and causing up to 50 million injuries. Low and middle income countries (LMICs), including Brazil, suffers from traffic crashes death rates three times higher when compared to developed countries (WHO, 2018). The increasing number of traffic crashes deaths on LMICs is a consequence of a intense process of motorization that has been occurring in the last decades. To Bhalla and Mohan (2016), it is important to understand the evolution of road safety management on OECD developed countries in order to overcome the road safety problems in LMICs.

Over the last century, the road safety performance of the OECD countries showed a consistent pattern. The road traffic death rate (per 100,000 population) in these countries were rising until the 1960s, as seen in FIGURE 1. After this period, all countries showed a declining pattern, whilst the LMICs still had a rising pattern due to the rapid growth in their motor vehicle fleets. This behavior of rising and declining trend on the road traffic death rate could be explained by three phenomenons: economic determinism, risk substitution and a political shift in the road safety paradigm (BHALLA; MOHAN, 2016).

FIGURE 1 - ROAD TRAFFIC RATES IN OECD COUNTRIES

In the scope of economic determinism, the road traffic deaths are defined as a process related to the country development. The rising pattern is associated with the increase in motorization, and the falling happens after a certain level of development, where the countries have the means to start investing in road safety. But this hypothesis has some flaws. This creates an impression that LMICs are not able to invest in road safety before becoming full developed, which is inaccurate. Also, this idea shifts the focus on investment in direct interventions, encouraging the countries to focus on income growth as a strategy for road safety (BHALLA; MOHAN, 2016).

As the mobility in general becomes more motorized towards the use of the car, pedestrians starts transitioning into car users. This circumstance is known as risk substitution, where the increase in car users occurs at the same time as the number of pedestrians declines, lowering the exposure to more severe road traffic injuries like the collision between cars and pedestrians and lowering the number of road traffic deaths. But this phenomenon can be imprecise when considering the motorization of LMICs, in which mass transit, motorcycles and other non motorized transports have a greater role on the vehicle fleet (BHALLA; MOHAN, 2016).

A factor that explains this pattern in a more precise way is the political shift in the road safety paradigm that happened on the OECD countries. Before the 1950s, the belief that drivers were the only responsible for the road crashes lead the discussions regarding road safety. Therefore, most of the interventions in road safety management ignored the design and development of the build environment and the vehicles. Between the 1960s and the 1970s, OECD countries started to regulate transport in order to tackle the road safety problems that were rising, establishing new laws and road safety management institution on national e local levels. (BHALLA; MOHAN, 2016). Analyzing the road safety data from Brazil, it is possible to correlate the actual stage with what the OECD countries passed during the 1970s.

According to WHO (2018), it was predicted that Brazil would had a road traffic mortality rate (number of deaths per 100,000 inhabitants) of 22.5 in 2016, the highest rate between the south american countries. In 2019 (the last entry available by Ministry of Health (2020)), road crashes were responsible for 31.945 deaths. Considering the Decade of Action for Road Safety 2011-2020 (WHO, 2011), Brazil will reach the goal of reducing the road traffic deaths in half (comparing to the number projected for 2020, in case of a rising trend in deaths) by the end of the 2010s. FIGURE 2 has the time series of road traffic deaths in the last decades.

The year of 1979 is the earliest official data entry available. Starting in the 1980s, there is a overall rising trend in the numbers of road traffic deaths that reach its peak in 2012, then it starts declining. In 2010, the year before the Decade of Action, Brazil had 42,844 deaths and reached the max value in 2012: 44,812 road traffic deaths.

Road traffic deaths Year

FIGURE 2 - ROAD TRAFFIC DEATHS ON BRAZIL

SOURCE: The Author, based on Ministry of Health (2020).

Almost at the end of the decade the number of deaths declined, reaching 31,945. The next plot (FIGURE 3) shows the mortality rate in Brazil, considering the same time span. In general, it follows the same pattern of the absolute road traffic deaths.

FIGURE 3 - ROAD TRAFFIC MORTALITY RATE ON BRAZIL

SOURCE: The Author (2021), based on Ministry of Health (2020) and Ministry of Health (2021).

The maximum registered mortality rate is 23.1 deaths per 100,000 inhabitants in 2012, the same year which Brazil reached its maximum value for absolute road traffic

deaths. Since then the mortality rate has been declining, reaching a rate of 15.2 deaths per 100.000 inhabitants in 2019. In comparison to the OECD countries (FIGURE 1), Brazil presented a strong declining pattern a few years later, after the 2010s. Another indicator that considers the exposition to traffic hazards is the fatality rate - number of deaths per 10,000 vehicles (FIGURE 4). The oldest entry of fleet size in the DENATRAN (2020) database is 1998.

FIGURE 4 - ROAD TRAFFIC FATALITY RATE ON BRAZIL

SOURCE: The Author (2021), based on Ministry of Health (2020) and DENATRAN (2020).

Between 1998 and 2019 there is a declining pattern in the fatality rate, starting with 12.7 deaths per 10,000 vehicles in 1998 and ending with 3.0 in 2019, representing a reduction of 76%. This declining pattern can be explained by the continuous rise of the motorization rate (FIGURE 5). In 1998, the motorization rate was 151 vehicles per 1,000 population, increasing to the rate of 499 in 2019. The motorization can be defined as one indicator of the development un the country. Considering the motorization stages defined by Jørgensen (2005), Brazil can be classified nowadays with a exploding motorization.

The first stage of motorization - developing motorization - occurs when a country have a motorization rate between 50 and 100 vehicles per 1,000 inhabitants. This first stage happened in Brazil before 1998. The explosion of the motorization is the second stage, and it happens with a motorization rate of between 300 and 400. The third and last stage is the saturation, and occurs when the motorization rates reaches more than 400 and its tendency stops rising (JØRGENSEN, 2005). Although Brazil has a present motorization rate above 400, it is plausible to affirm that the country still hasn't reached the stage of saturation, considering that the rates are still in a rising pattern.

FIGURE 5 - MOTORIZATION RATE ON BRAZIL

SOURCE: The Author (2021), based on Ministry of Health (2021) and DENATRAN (2020).

In the 1970s, Brazil have undergone through a intense development in the car industry, lowering the price of the vehicles and increasing the development of road infrastructure in cities and rural areas, impacting directly in the rise of the motorization in the country (VASCONCELLOS, 2013). To Harvey (1982), this incentive to motorization created a urban environment that looked to answer the increasing demand of car use. This process lead to worse safety conditions in brazilian cities, specially to non motorized users in the road system.

The variation in the number of road traffic deaths and road traffic mortality heavily influenced by the socioeconomic development and political landscape (FERRAZ et al., 2012). The country had different economical situations between the 2000s and the 2010s. In the period of 2000-2010, Brazil had a continuous growth in the economy, which reflected on the rising pattern of the road traffic deaths and road traffic mortality rates. After the 2010, the country entered in a economic recession, leading to the reduction of these numbers (BASTOS; GARRONCE, et al., 2020). Focusing on the area of study, the road traffic deaths in Curitiba are presented in FIGURE 6.

The tendency of road traffic deaths presented a rising pattern between 1979 and 1994, starting with 312 deaths and reaching a maximum of 663 deaths. Overall, the pattern of the time series started declining after 1995, ending with a minimum value of 246 in 2019. Following the brazilian trend, Curitiba's motorization rate kept rising in the last decades. The increase in motorized transit can lead to more exposition to traffic crashes and injuries, in case road safety interventions are not implanted correctly. The

700
600
84 tray 300
200
100
1979
1984
1989
1994
1999
2004
2009
2014
2019
Year

FIGURE 6 - ROAD TRAFFIC DEATHS ON CURITIBA

SOURCE: The Author (2021), based on Ministry of Health (2020).

plot in FIGURE 7 compares the motorization rate between all brazilian states capital cities.

FIGURE 7 - MOTORIZATION RATES ON BRAZILIAN STATES CAPITAL CITIES, IN 2019

SOURCE: The Author (2021), based on Ministry of Health (2021) and DENATRAN (2020).

Curitiba was, in 2019, the second most motorized capital in Brazil, with a motorization rate of 825 vehicles per 1,000 population, higher than the brazilian average, losing only to Belo Horizonte, which presented a motorization rate of 907 vehicles per

1,000 population. When comparing the road traffic mortality rate (FIGURE 8), Curitiba stays in the 13th place with 12.7 deaths per 100,000 inhabitants, below the brazilian average of 15.2 in 2019. The lowest value of road traffic mortality rate belongs to Rio de Janeiro, presenting a rate of 5.7 deaths per 100,000 population, and the highest belongs to Palmas, with a alarming rate of 36.4. In 2015, Curitiba had a mortality rate of 13.94 deaths per 100,000 inhabitants, a higher value when comparing to more developed countries, like Sweden (2.8), UK (3.1) and Germany (4.1). Curitiba's rate for 2015 has a similar value to other latin american countries: Mexico (13.1), Uruguay (13.4), Peru (13.5) and Argentina (14.00) (WHO, 2018).

FIGURE 8 - MORTALITY RATES ON BRAZILIAN STATES CAPITAL CITIES, IN 2019

SOURCE: The Author (2021), based on Ministry of Health (2020) and Ministry of Health (2021).

Considering the fatality rate as a road safety performance indicator, FIGURE 9 plot shows that Curitiba have the 6th best performance, with a fatality rate of 1.5 deaths per 10,000 vehicles. São Paulo is the capital with the lowest fatality rate (0.9) and Recife has the highest one (5.9). Observing the fatality rate in Brazil in the same period (3.0), Curitiba is below the country average, with exactly 50% less deaths per 10,000 vehicles. Road traffic crashes and its related injuries have become a serious health problem across brazilian cities. As motorization increases, the number of conflicts and possible crashes increases as well.

Capable interventions in road safety needs to consider traffic deaths and injuries as serious public health problems. Therefore, its control must follow the principle as control of any other public health problem. Road traffic injuries are the result of a complex interaction of multiple factors. These factors can involve human, environmental and vehicle factors, in addition to sociological, psychological, physical and technological

FIGURE 9 - FATALITY RATES ON BRAZILIAN STATES CAPITAL CITIES, IN 2019

SOURCE: The Author (2021), based on Ministry of Health (2020) and DENATRAN (2020).

factors present the process of traffic crashes. As another health problems, it is possible to analyze road traffic injuries considering three different phases in time: pre-crash, during the crash and post-crash (MOHAN, 2016a).

These distinct phases of time and factors of road traffic crashes can be arranged into a matrix created by Haddon (1980) in order to map all events related to a injury. Named after its inventor, the Haddon matrix (FIGURE 10) consists of two dimensions: one for the time aspect of the event and a second one representing three main discrete factors: human, vehicle and environment. Crossing each step of both dimensions sets nine cells, in which can be made a list of countermeasures to control the damage or to prevent a possible incident, associating these measures to each pair of factors.

Cells 1, 2 and 3 contains measures towards the prevention of crashes. On a road traffic crash scenario, cell 1 considers the behavior (aggressive driving, driving under influence, distraction) and training of the road users (pedestrians, drivers, motorcyclists and cyclists), cell 2 presents safety interventions related to the vehicles (use of daylight headlights, speed control systems, etc.) and cell 3 contains all elements of the road infrastructure the and build environment that influences directly into the occurrence of this event. Cells 4, 5 and 6 comprehends measures that can reduce the severity during the occurrence of a crash event.

In cell 4 there are measures that include the use of seat belts, helmets and protective clothing. Cell 5 can consider the crashworthiness and safety design of the vehicles and cell 6 includes elements (or lack of elements) that can influence the severity

FIGURE 10 – HADDON MATRIX

		FACTORS			
		Human	Vehicle	Environment	
	Pre-crash	1	2	3	
PHASES	During the crash	4	5	6	
	Post-crash	7	8	9	

SOURCE: The Author (2021), based on Haddon (1980).

in case of a collision (guard rails, concrete barriers, street furniture, etc.). In the last row are included the measures related to the control and treatment of injuries after the event. Cell 7 presents the treatments related to the victims (hospital care and rehabilitation), cell 8 contain measures related to the safety systems of a vehicle and cell 9 can consider the general management of a crash scene (MOHAN, 2016a).

The road safety problems that happens on urban environments may differ from the ones that happens in major roadways. Even with lower operating speeds, the quantity of conflicts in urban road systems can be considerable higher when comparing to rural roadways, considering the quantity of different motorized and non-motorized transport modes that uses the infrastructure in the same time. Consequently, it is essential to follow requirements for a safe infrastructure. Three main ones are functionality, homogeneity and recognition (SWOV, 2003). Each road on a network needs to have a specific function (balance between mobility and access), with traffic distribution working as intended. Homogeneity consists in reducing the points of conflict between transport modes with great difference of mass and speed. Finally, the situations on traffic should have a level of predictability, passing what behavior should be expected from the road users.

In order to reduce road traffic crashes and possible consequent injuries or deaths, it is relevant to consider the main risk factors that causes and intensify these events. According to WHO (2004), risk in road traffic can be classified into four elements which are directly influenced: exposure, crash involvement, crash severity and post-crash severity. The risk factors that can be classified in these elements also can be distributed within the Haddon matrix as well FIGURE 10. The main risk factors related to the protection of the user consists in the usage of seat belts, helmets, air bags, child

restraints and helmets. Focusing on the behavioral factors, the main ones are driving under influence of alcohol and another drugs (DUI), distraction and inattention (SHINAR, 2017).

The excess of speed and the speed differential in urban environments are two risk factors that affects the chance of traffic crashes occurrence and the severity of theses crashes. Speeding is a complex phenomenon with multiple causes, consequences and methods of prevention. Given its complexity and spotlight in this thesis, this risk factor will be discussed in the next section (2.2).

2.2 SPEEDING AS A RISK FACTOR

Speeding is one of the primary global causes of road traffic fatalities, affecting two main dimensions: probability and severity (WHO, 2013). The increase in speeds of vehicles is directly correlated to the increase in the occurrence of crashes and its average severity, hence, strongly related to the road safety (MOHAN, 2016b). Another speed-related risk factor is the speed differential, which is the speed deviation from the average operating speed (SHINAR, 2017). Ferraz et al. (2012) defines speeding as a inappropriate speed, leading to more conflict and crashes in certain traffic conditions.

The excess of speed can influence three main factors in the occurrence of a traffic conflict: reaction time, braking distance and force of impact, which is directly correlated to the severity of injuries (MOHAN, 2016b). Reducing the speed helps the driver to increase its reaction time, also helping the driver to take a correctional action to anticipate crashes (ELVIK et al., 2009). Regarding the braking distance, lower speeds reduces the distance necessary to fully stop the vehicle. FIGURE 11 shows the reaction time of a vehicle added to the braking distance, resulting in the distance travelled by the vehicle. The dashed line represents a pedestrian standing 35 meters from the traveling vehicle.

The horizontal lines from the plot shows the cruising speeds of the vehicle before they start breaking, longer lines at higher speeds represents greater reaction times. In this scenario, only speeds equal or below 40 km/h are able to avoid a collision with the pedestrian. As the vehicle speed rises, the impact speed rises as well. This leads to the increase in force of impact between vehicles and pedestrians. The severity of injuries sustained by pedestrians depends on the energy of impact - the kinetic energy transferred to the human body. This energy of an object (the vehicle), directly related to its velocity and mass, detailed in the following equation:

$$E = 0.5 \times MV^2; \tag{2.1}$$

where E is the kinetic energy, M is the object's mass and V is the velocity of the object. The plot in FIGURE 12 shows the increase in kinetic energy, considering an average

FIGURE 11 - RELATIONSHIP BETWEEN SPEED AND BRAKING DISTANCE

SOURCE: Mohan (2016b).

car mass of 1,500 kg (ZERVAS; LAZAROU, 2008) and speeds varying between 0 and 100 km/h. The quantity of energy doubles when the speed changes from 40 km/h to 60 km/h, and almost triples at 70 km/h. This variation shows how the reduction of speed limits can greatly change the energy of impact.

FIGURE 12 - RELATIONSHIP BETWEEN SPEED AND KINETIC ENERGY

SOURCE: The Author (2021).

Considering the event of an impact between a front of a car and a pedestrian, Ashton (1980) presented the relationship between the impact speed and the percentage of fatally injured pedestrians per speed window, represented in the plot of FIGURE 13.

The curve shows how a reduction from 60 km/h to 40 km/h on the speed of impact can reduce the chance of a fatal injury from 90% to 30%, approximately. Reducing the speed of impact to 30 km/ will reduce the chance of a fatal injury to approximately 10%. In general, as the speed of impact rises, the chance of a fatal injury rises too, with a greater variation between speeds of 30 km/h and 60 km/h.

FIGURE 13 - PROBABILITY OF PEDESTRIAN FATALITY AT DIFFERENT IMPACT FATALITIES

SOURCE: The Author (2021), based on data from Ashton (1980).

The risks highlights the importance of proper speed management in road traffic, specially in urban environments. Roadways have higher operational speeds, but cities contains a more expressive interaction between motorized and vulnerable users, in which lower speeds can still represent a risk to pedestrians and cyclists. One method to manage the operating speed is the enforcement of speed limits. It is recommended a speed limit of 50 km/h in urban arterial roads, and a limit of 30 km/h in roads with a high flow of pedestrians and cyclists (WHO, 2008). Reducing the mean speeds can greatly favor the decline in fatal, non fatal and property damage only (PDO) road crashes (ELVIK, 2013).

The operating and mean speed of the road traffic depends on how the drivers chooses the speed. This choice is related to the power and stability of the user's vehicle, to road and traffic conditions, to driver's perception of safety, to the level of enforcement, travel motivations, personal characteristics and behavior of other drivers (MOHAN, 2016b; SHINAR, 2017). Considering all theses factors, it is not effective to rely only on traffic limits to prevent speeding. If the design speed of a road is higher than the speed limit and the road traffic has a low density, it is more difficult to enforce a the desired limit. The difficulty to enforce the speed limits may be higher to LMICs, which have less

resources to adopt the proper road designs policies and enforcement levels required to this task (MOHAN, 2016b).

In TABLE 1 is presented a few groups of factors affecting speeding and speed choice, with its categorization based on the three main discrete factors of road crashes established by Haddon (1980): human, vehicle and environment. Analyzing the human (or driver) factors, the background characteristics includes the level of experience, education and training of the drivers. Demographic characteristics considers the groups of age, sex and income. The general health of the driver, including the conditions of vision, hearing and sleep patterns are included in the physiological factors. The last factor in the human group - attitudes, beliefs and motivations considers how the road user perceives the control and norms present in traffic situations (RICHARD; CAMPBELL; LICHTY, et al., 2013).

TABLE 1 - FACTORS THAT AFFECTS SPEEDING AND SPEED CHOICE

Human	Vehicle	Environment
Background characteristics	Type/Size	Road elements
Demographic characteristics	Engine power	Weather
Physiological factors	Comfort	Traffic conditions
Attitudes, beliefs and motivations	Field of view	Surroundings
	Age	Speed Enforcement

SOURCE: The Author (2021), based on Richard, Campbell, Lichty, et al. (2013), Shinar (2017) and WHO (2008).

All these human factors are related to the general driver profile and its performance when driving the car. as an example of the influence in the individual differences present in the demographic characteristics, younger drivers are more likely to speed than mature and older drivers, and men are more likely to speed than women (SHINAR, 2017). The vehicle characteristics also affects the speed choice of the user. The type, engine power, comfort, field of view and age of the vehicle can affect the possibility to the driver reach the desired speed.

The environmental factors affecting speed choice consists of all the elements external to the vehicles and are greatly related to how the driver behaves and to how the vehicle is able to operate. Road elements can include the general characteristics of a road layout, quantity and type of intersections, design and level of maintenance, based on its alignment, gradient, width, surface condition, geometric pattern and road lightning. The presence of intersections and the high density of traffic controls the operating speeds in urban areas (MOHAN, 2016b). Weather can also affect how the driver will chose his speed, considering its effects on surface conditions (dry, wet, ice) and natural light.

The speed and speed variance are to a certain extent determined by the traffic flow regime (SHINAR, 2017). Depending on the level of flow and density or any other

operational condition of the traffic, the driver cannot be able to reach a higher desired speed, removing his ability to have a opportunity to speed (RICHARD; CAMPBELL; LICHTY, et al., 2013; BASTOS; SANTOS, et al., 2021). The plot in FIGURE 14 illustrates the relationship between speed, density and volume (or flow) in uninterrupted flow conditions of a certain road. This type of flow occurs in areas without interference from external factors, like intersections or crossings (GREEN; LEWIS, 2020).

FIGURE 14 - RELATIONSHIP BETWEEN TRAFFIC SPEED, VOLUME AND DENSITY

SOURCE: Green and Lewis (2020).

When density and volume are at its lowest value, the road user can reach higher speeds without having traffic to prevent it (point A). Between points A and B, volume and density starts to rise and speeds decline a little, but still is high enough to be characterized as a free flow speed. In this situation, the driver starts to experience a lack of manoeuvre freedom, but it still have the opportunity to speed. At the highest level of density (point C), speed declines as density rises. Between C and D, density rises until it reaches its maximum value, reducing overall speeds and volume (GREEN; LEWIS, 2020). In this last stage, the drivers have less flexibility to choose a desired speed, having to operate in a forced flow condition.

Established as an environmental factor affecting speeding choice (TABLE 1), the surroundings of the road, including equipments and some traffic calming techniques like gateway treatments, can be perceived by the driver as elements that gives hints to avoid

higher speeds (WHO, 2008). Overall, the built environment and its five elements - density, design, diversity, destination accessibility and distance to transit - can be perceived as environmental factors which affects the road safety, through the relationship to the numbers of road crashes and occurrence of speeding. These characteristics are better explored in the next section (2.3).

In order to collect speeding data, it is important to establish what defines speeding and to identify a measure of exposure to speeding. To Richard, Campbell, Brown, et al. (2013), defining speeding and its constitution is one of the key challenges of speeding studies. The authors presented five distinct approaches for defining speeding: ad hoc, analytical, kinematic, psychological and behavioral. The ad hoc approach assumes that the fastest driving in a sample if a proxy for speeding and considers the top X% of speeds above the posted speed. Although this approach can provide sufficient data for analysis, the speeding collected may be not related to behavior or safety.

The analytical approach fixes a criterion relative to the speed limit (+ X% or + X km/h). It is a simple method to implement, but can miss some factor related to road type and overall speed level. The analytical approach is used in this work and its process of implementation is detailed in section 3.2. The kinematic approach considers the driving environment and its operational conditions, in order to connect the speed behavior to specific situations. This approach requires a certain level of quantity and quality of GIS data to support it. The psychological approach is based on what the driver considers to be speeding, providing insight into factors that are related to individuals perception of speeding. The necessity of additional previous information about the speeding beliefs and attitudes of the drivers can be a disadvantage of this approach. At last, the behavioral approach sets four speed bands to describe different behavior in each one, related to the chosen speed by the driver (RICHARD; CAMPBELL; BROWN, et al., 2013).

The operational aspects of urban road traffic (mostly in interrupted flow conditions) arbitrary reduces the amount of speeding being measured. To address this problem, it is necessary to extract the free-flow situations of the trip from the total trip distance, removing sections in which drivers had no opportunity to speed. This process of extracting parts of the trip in which the driver is exposed to speeding is presented in FIGURE 15. Therefore, the actual measure of speeding is distance performed in speeds above the posted speed compared to the distance performed in free-flow speed. This process was applied in this work and it is described in section 3.2.

The data collected also depends on the method applied. The collection of speed data can be done with the use of speed traps - fixed or mobile (HIDALGO-SOLÓRZANO et al., 2020; WHO, 2008), the analysis of road crashes reports (WATSON et al., 2015),

Total Trip distance

Free-flow distance

Speeding distance

FIGURE 15 - EXTRACTION OF FREE-FLOW AND SPEEDING EPISODES FROM TRIPS

SOURCE: The Author (2021), based on Richard, Campbell, Brown, et al. (2013).

roadside observational studies (SHINAR, 2017), questionnaires (DINH; KUBOTA, 2013), smartphone data (WARREN; LIPKOWITZ; SOKOLOV, 2019) and GPS data collection (MORENO; GARCÍA, 2013; WANG et al., 2018). Studies that uses naturalistic data includes the capture video data from the drivers and GPS can relate the speeding action registered with a certain behavioral action from drivers (BASTOS; SANTOS, et al., 2020) and environmental factors (MORENO; GARCÍA, 2013). The speeding data collected from driving simulation studies also can be correlated with other environmental or behavioral factors (YADAV; VELAGA, 2020). The aspects of naturalistic driving studies and its comparison to other methods will be better explored in the section 2.4.

Knowing the factors that affects speeding and the methods to collect and analyse speeding data, it is possible to create countermeasures to this risk factor in road traffic crashes. Following the categories established by Haddon (1980) and presented in TABLE 1, these countermeasures can be classified into behavioral (human), vehicular and environmental approaches. Behavioral approaches includes the education and training to teach speed awareness to drivers. Enforcement is also a behavioral approach. Enforcement by the police or other traffic authority is related to a greater rate of speed limit compliance, but it is a highly localized measure (SHINAR, 2017).

The vehicle approach to intervene in speeding practices includes speed limits and advisory systems in cars. Environmental approaches are consisted of direct changes in infrastructure, including traffic calming measures, and policy approaches, including the establishment of speed limits and administrative actions. Speed bumps, lane narrowing, roundabouts and rumble strips are some of the traffic calming techniques that are capable to reduce speeds in urban environments (WELLE et al., 2016). Other key elements of urban design also can intervene in the practice of speeding, including street block sizes, road network connectivity and road lane width.

2.3 ROAD SAFETY PERFORMANCE AND THE BUILT ENVIRONMENT

The built environment consists of the physical elements and features, including the development patterns and the roadway designs of a city. Built environment affects the physical activity inside the city, including the overall mobility, road safety and health. According to Ewing and Dumbaugh (2009), the frequency and severity of road traffic crashes are related to the built environment through three mediators: traffic volumes, traffic conflicts and traffic speeds, as shown in FIGURE 16. Therefore, the land use and transport plans influences the choice of destination, travel models, travel distances and routes, impacting the road traffic safety (TIWARI, 2016).

FIGURE 16 - BUILT ENVIRONMENT AND TRAFFIC SAFETY

SOURCE: The Author (2021), based on Ewing and Dumbaugh (2009).

Traffic volume is directly related to crash frequency and the increase of vehicle miles travelled (VMT), which is a exposure variable to the occurrence of road traffic crashes. Traffic speed (and its excess), the main factor investigated in this paper, is affected by the operating and encouraged speed defined by the roadway design and development pattern. Traffic conflicts are related to the increase in vehicle flow and traffic speed (EWING; DUMBAUGH, 2009). Overall, the built environment can be characterized into five "D" variables: (i) density, (ii) diversity, (iii) design, (iv) destination accessibility and (v) distance to transit, being defined as the 5D (EWING; CERVERO, 2010). Demographics of residents, while not being part of the built environment, can be considered as the sixth "D".

TABLE 2 contains the categories previously described and its variables. It is important to note that it is not presented all the possible built environment variables, only the main ones found in previous papers. In addition, these are rough categories, divided by boundaries that are subject to change (EWING; CERVERO, 2010). Density measures a variable of interest per unit of area and can include the quantity of population, housing or number of jobs, showing the "hotspots" of the overall activity in a city. Diversity refers to different land use types within a given area, ranging from single-use environments to more varied land uses. The street network and its characteristics is included in the

design category, and considers elements like block size, type / quantity of intersections, street widths, quantity of pedestrian crossings and street network density.

TABLE 2 – BUILT ENVIRONMENT VARIABLES

Category	Variable
	Population
Density	Housing
	Employment
Diversity	Land use
	Block size
	Type / Quantity of intersections
Dooign	Street widths
Design	Quantity of pedestrian crossings
	Road hierarchy
	Street network density
	Quantity of commercial and service units
Destination Accessibility	Distance to city center
	Quantity of jobs
Distance to Transit	Quantity of bus stops
Distance to Transit	Distance to nearest transit stop
	Income
Demographics	Age
	Sex

SOURCE: The Author (2021), based on Ewing and Dumbaugh (2009), Ewing and Cervero (2010) and Obelheiro, Silva, Nodari, et al. (2020).

Destination accessibility measures how easy is to access places of attraction, including jobs, services, commerce and districts of overall interest, considering business districts and city downtown. Distance to transit usually is measured by the level of offer of transport services, being measured by the quantity of transit stops and network density. Network density also can be included in the design category. Demographics, while not being a characteristic of the build environment, can influence the occurrence of speeding in urban environments, including income, age and sex. In the following tables (TABLE 3 to TABLE 8) are presented the built environment categories and its variables considered in this work, considering the authors that investigated them related to the road safety performance in urban areas, with the focus on one final outcome indicator road crashes and one mediator - occurrence of speeding.

TABLE 3 displays a list of authors which investigated the relationship between population density and road safety in urban areas. Regarding road traffic crashes, Dumbaugh and Rae (2009) and Obelheiro, Silva, Nodari, et al. (2020) found a inverted correlation between number of habitants per area and occurrence of road crashes. Higher densities environments causes people to drive less (DUMBAUGH; RAE, 2009), reducing the exposure to road traffic accidents. A research considering road safety and BEs about another brazilian city - Porto Alegre - also presented a result of a inverted relationship between injury crashes and population density in most of the city's area.

Dumbaugh, Li, and Joh (2013), Lee, Abdel-Aty, and Jiang (2015) and Pirdavani

TABLE 3 - CORRELATION BETWEEN DENSITY AND ROAD SAFETY OUTCOMES

Category	Variable	Road safety outcomes Crashes	Speeding
Density	Population	 (-) Dumbaugh and Rae (2009) (+) Dumbaugh, Li, and Joh (2013) (+) Lee, Abdel-Aty, and Jiang (2015) (-) Obelheiro, Silva, Nodari, et al. (2020) (+) Pirdavani et al. (2014) (±) Welle et al. (2016) 	_

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

et al. (2014) found a direct relationship between population density and the occurrence of road crashes.

TABLE 4 - CORRELATION BETWEEN DIVERSITY AND ROAD SAFETY OUTCOMES

Cotogory	Variable	Road safety outcomes		
Category	Variable	Crashes	Speeding	
		(+) Amoh-Gyimah, Saberi, and Sarvi (2017) (+) Obelheiro, Silva, and Nodari (2019)		
Diversity	Land use	(+) Obelheiro, Silva, And Nodari (2019) (+) Obelheiro, Silva, Nodari, et al. (2020)	_	
,		(+) Ouyang and Bejleri (2014)		
		(+) Rhee et al. (2016)		

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

Present all the available and used indicators. Guide the literature review based on the indicators (which articles are using the same indicators and why - ewing ...)

add ewing, dumbaugh scheme of BE, mediators and safety.

Add description from urban elements (reports passed form Tiago)

Master plan, mobility planning and zoning laws (try to focus on the mobility and road safety, maybe a brief history). —> relating to the previously described elements

2.4 NATURALISTIC DRIVING STUDIES

- Introduce the Naturalistic Driving Studies as an alternative for the analysis of behavior. Describe multiple international NDS programs, reference the NDS that analyses the speeding. (this part needs to be well described.)
- categorize the nds programs and compared with the method used in this work.
 (maybe construct a table)
- Focus on authors that used NDS to study speeding.

TABLE 5 - CORRELATION BETWEEN DESIGN AND ROAD SAFETY OUTCOMES

Variable	y outcomes	
variable	Crashes	Speeding
Density of intersections	 (±) Dumbaugh and Rae (2009) (+) Dumbaugh and Li (2011) (+) Dumbaugh, Li, and Joh (2013) (+) Elvik et al. (2009) (-) Ewing and Dumbaugh (2009) (+) Huang, Wang, and Patton (2018) (-) Marshall and Garrick (2011) (-) Ouyang and Bejleri (2014) (-) Yuanyuan Zhang et al. (2015) 	 (-) Dumbaugh and Rae (2009) (-) Elvik et al. (2009) (-) Ewing and Dumbaugh (2009) (-) Huang, Wang, and Patton (2018) (-) Obelheiro, Silva, and Nodari (2019) (-) Obelheiro, Silva, Nodari, et al. (2020)
Density of speed cameras	 (-) Høye (2015) (-) Li, Graham, and Majumdar (2013) (-) Li, Zhang, and Ren (2020) (+) Park, Park, and Kwon (2019) 	(±) Li, Zhang, and Ren (2020) (-) Li, Graham, and Majumdar (2013) (-) Oliveira et al. (2015)
Density of signalized intersections	 (-) Elvik et al. (2009) (+) Lovegrove and Sayed (2006) (+) Lee, Abdel-Aty, and Jiang (2015) 	(\pm) Elvik et al. (2009) (\pm) Furth et al. (2018)
Proportion of arterial roads	 (+) Dumbaugh and Rae (2009) (+) Dumbaugh and Li (2011) (+) Dumbaugh, Li, and Joh (2013) (+) Ewing and Dumbaugh (2009) (+) Huang, Wang, and Patton (2018) (+) Obelheiro, Silva, Nodari, et al. (2020) (+) Ukkusuri et al. (2012) (+) Welle et al. (2016) (+) Yu and Xu (2017) 	(+) Dumbaugh and Li (2011) (+) Dumbaugh, Li, and Joh (2013) (+) Ewing and Dumbaugh (2009) (+) Huang, Wang, and Patton (2018) (+) Obelheiro, Silva, Nodari, et al. (2020) (+) Welle et al. (2016)
Network density	(-) Marshall and Garrick (2010)(-) Marshall and Garrick (2011)	_

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

TABLE 6 – CORRELATION BETWEEN DESTINATION ACCESSIBILITY AND ROAD SAFETY OUTCOMES

Cotomoru	Variable	Road safety outcomes	
Category		Crashes	Speeding
Destination Accessibility	Density of commercial and services units	(-) Ouyang and Bejleri (2014)	_
		(-) Welle et al. (2016)	

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

TABLE 7 - CORRELATION BETWEEN DISTANCE TO TRANSIT AND ROAD SAFETY OUTCOMES

Variable	Road safet	y outcomes
variable	Crashes	Speeding
Bus stop density	 (+) Karim, Wahba, and Sayed (2013) (+) Obelheiro, Silva, Nodari, et al. (2020) (+) Ouyang and Bejleri (2014) (+) Ukkusuri et al. (2012) (+) Wei and Lovegrove (2013) 	(-) Bansal, Agrawal, and Tiwari (2014) (-) Koshy and Arasan (2005)

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

TABLE 8 - CORRELATION BETWEEN DEMOGRAPHICS AND ROAD SAFETY OUTCOMES

Cotogory	Variable	Road safety outcomes	
Category	variable	Crashes	Speeding
Demographics	Income	(-) Obelheiro, Silva, and Nodari (2019)	
Demographics	IIICOIIIC	(-) Marshall and Ferenchak (2017)	

SOURCE: The Author (2021).

NOTE: (+): positive correlation between variable and outcome; (-): inverted correlation between variable and outcome; (\pm) : correlation not clear / depends on other factors.

2.5 GEOGRAPHICALLY WEIGHTED REGRESSION

Regression analysis is a tool to investigate the dependency between variables and to predict future parameters based on previous ones. This type of statistical analysis can show the relationship between dependent variables (road accidents or speeding) and independent variables (land use, road design etc.) (LINDLEY, 1987). In investigation of the effects of the constructed environment on the occurrence of crashes in urban areas, negative binomial regression is a traditional model used (WEI; LOVEGROVE, 2013; ZHANG, C. et al., 2014). But the quality of this model is limited by the incapacity of analyzing the spatial dependency and heterogeneity expected to happen on road safety factors related to the urban environment (OBELHEIRO; SILVA; NODARI, 2019).

To overcome this limitation, the Geographically Weighted Regression (GWR) allows the exploration of relationship between variables on a spatial nonstationarity context. The spatial nonstationarity is a scenario where it is assumed that parameters are not constant across the space. In this thesis context, these parameters are the occurrence of speeding across Curitiba's territory. A global regression model may be incapable of explaining the relationship between sets of variables with a acceptable level of precision in this scenario. The GWR model considers that the nature of the model must alter over space to reflect the structure within the data, allowing the actual parameters for each location in space to be modeled and mapped (BRUNSDON; FOTHERINGHAM; CHARLTON, 1996).

The basic form of GW linear regression is based on the following equation:

$$y_i = \beta_{i0} + \sum_{k=1}^{m} \beta_{ik} x_{ik} + \epsilon_i; \qquad (2.2)$$

where y_i is the dependent variable (speeding) at location i, x_{ik} is the value of the kth independent variable at location i, m is the number of independent variables, β_{i0} is the intercept parameter at location i, β_{ik} is the local regression coefficient for the kth parameter at location i and ϵ_i is the random error at location i. The GWR model depends on a spatial weighting function called w_{ij} that controls the contribution of the point j on the calibration of a model for point i. The spatial weighting function represents the idea that for each point i there is a bump of influence around it. Considering this "bump", observations closer to i have more influence in the estimation of i's parameters (BRUNSDON; FOTHERINGHAM; CHARLTON, 1996; GOLLINI et al., 2013).

In the context of a multivariate GW model, these influences are calculated by a weighted least squares approach, described on the following equation:

$$\hat{\beta}_i = (X^T W(u_i, v_i) X)^{-1} X^T W(u_i, v_i) y;$$
(2.3)

where X is the matrix of the independent variables with a column of 1s (ones) for the intercept, y is the dependent variable vector, $\hat{\beta} = (\beta_{i0},...,\beta_{im})^T$ is the vector of m+1 local regression coefficients and W_i is the diagonal matrix denoting the spatial weighting (w_{ij}) of each observed data for regression point i at location (u_i,v_i) (defined by the selected kernel function) (GOLLINI et al., 2013). The spatial weighting function is also known as the kernel function. This function can have multiple configurations, including Gaussian, Exponential, Boxcar, Bisquare and Tricube configurations, detailed on TABLE 9.

TABLE 9 - AVAILABLE KERNEL FUNCTIONS

Model	Equation
Global Model	$w_{ij} = 1$
Gaussian	$w_{ij} = \exp(-\frac{1}{2}(\frac{d_{ij}}{b})^2)$
Exponential	$w_{ij} = \exp(-\frac{ d_{ij} }{b})$
Boxcar	$w_{ij} = egin{cases} 1 & ext{if } d_{ij} < b, \ 0 & ext{otherwise} \end{cases}$
Bisquare	$w_{ij} = \begin{cases} (1 - (d_{ij}/b)^2)^2 & \text{if } d_{ij} < b, \\ 0 & \text{otherwise} \end{cases}$
Bioquare	0 otherwise
Tricube	$w_{ij} = \begin{cases} (1 - (d_{ij} /b)^3)^3 & \text{if } d_{ij} < b, \\ 0 & \text{otherwise} \end{cases}$
	$w_{ij} = \begin{cases} 0 & \text{otherwise} \end{cases}$

SOURCE: Gollini et al. (2013)

The distance between observations i and j is defined by d_{ij} , inside a chosen b bandwidth, which is the key controlling parameter in all kernel functions. The optimal

bandwidth can be estimated by a cross-validation function, a process that will be detailed in the section 3.3. FIGURE 17 presents the plot of the kernel functions, for a generic bandwidth b=1000, where w is the weight and d is the distance between two observations. As the plot shows, the global kernel function represents a global linear regression, where all the variables are constant across the space.

FIGURE 17 - KERNEL FUNCTIONS PLOT

SOURCE: The Author (2021), based on Gollini et al. (2013).

In addition to the different types of kernel functions, the GWR has multiple configurations based on the type of regression: negative binomial (GWNBR), Poisson (GWPR) and Gaussian, which is the basic form of linear GWR described on EQUATION 2.2. The GWNBR and GWPR models were used by Obelheiro, Silva, and Nodari (2019); Obelheiro, Silva, Nodari, et al. (2020) and Yu and Xu (2017) to study the impacts of the built environment on the occurrence of road crashes inside urban areas.

In conclusion, GWR is a method that enables the exploration of findings that might otherwise be missed if only a global regression method is applied. It is always important to really check if the GWR model will describe the data better than a global regression model comparing the results from both. All the process of constructing a GWR model and its parameters for this work is described in section 3.3.

3 METHODS

- 3.1 NATURALISTIC DATA COLLECTION
- 3.2 DATA PROCESSING
- 3.3 GEOGRAPHICALLY WEIGHTED MODEL

4 ANALYSIS AND RESULTS

5 CONCLUSIONS

BIBLIOGRAPHY

AMOH-GYIMAH, Richard; SABERI, Meead; SARVI, Majid. The effect of variations in spatial units on unobserved heterogeneity in macroscopic crash models. **Analytic**Methods in Accident Research, v. 13, p. 28–51, Mar. 2017. ISSN 22136657. DOI: 10.1016/j.amar.2016.11.001. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213665716300471. Cit. on p. 27.

ASHTON, S J. A Preliminary Assessment of the Potential for Pedestrian Injury Reduction Through Vehicle Design. **SAE Technical Papers**, Sept. 1980. DOI: 10.4271/801315. Available from: https://www.sae.org/content/801315/. Cit. on pp. 19, 20.

BANSAL, Prateek; AGRAWAL, Rishabh; TIWARI, Geetam. Impacts of Bus-stops on the Speed of Motorized Vehicles under Heterogeneous Traffic Conditions: A Case-Study of Delhi, India. **International Journal of Transportation Science and Technology**, v. 3, n. 2, p. 167–178, June 2014. ISSN 20460430. DOI: 10.1260/2046-0430.3.2.167. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2046043016300946. Cit. on p. 29.

BASTOS, Jorge Tiago. **Análise Estratégica da Segurança viária no Brasil: Pesquisa de índices e Indicadores**. 2014. S. 290. PhD thesis – Universidade de São Paulo / Hasselt University. Cit. on p. 8.

BASTOS, Jorge Tiago; GARRONCE, Francisco Vieira, et al. **Desempenho brasileiro** na década de ação pela segurança no trânsito: análise, perspectivas e indicadores 2011-2020. Brasilia: Viva editora, 2020. P. 120. Cit. on p. 13.

BASTOS, Jorge Tiago; SANTOS, Pedro Augusto B. dos, et al. Is organized carpooling safer? Speeding and distracted driving behaviors from a naturalistic driving study in Brazil. **Accident Analysis & Prevention**, v. 152, p. 105992, Mar. 2021. ISSN 00014575. DOI: 10.1016/j.aap.2021.105992. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457521000233. Cit. on p. 22.

_____. Naturalistic Driving Study in Brazil: An Analysis of Mobile Phone Use Behavior while Driving. **International Journal of Environmental Research and Public Health**, v. 17, n. 17, p. 6412, Sept. 2020. ISSN 1660-4601. DOI: 10.3390/ijerph17176412. **Available from:** https://www.mdpi.com/1660-4601/17/17/6412. Cit. on p. 24.

BHALLA, Kavi; MOHAN, Dinesh. Understanding the Road Safety Performance of OECD Countries. In: TIWARI, Geetam; MOHAN, Dinesh (Eds.). **Transport Planning and Traffic Safety - Making Cities, Roads and Vehicles Safer**. Boca Raton: CRC Press, 2016. P. 1–15. DOI: 10.1201/b19737-2. Cit. on pp. 9, 10.

BRASIL. **Lei nº 10.257, de 10 de julho de 2001 - Estatuto das Cidades**. Brasília: Presidência da República, 2001. Cit. on p. 8.

_____. Lei nº 12.587, de 3 de janeiro de 2012 - Lei da Mobilidade. Brasília: Presidência da República, 2012. Cit. on p. 8.
____. Lei nº 9.503, de 23 de setembro de 1997. Código de trânsito Brasileiro, 1997. Cit. on p. 8.

BRUNSDON, Chris; FOTHERINGHAM, A. Stewart; CHARLTON, Martin E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. **Geographical Analysis**, v. 28, n. 4, p. 281–298, Sept. 1996. ISSN 00167363. DOI: 10.1111/j.1538-4632.1996.tb00936.x. Available from: http://doi.wiley.com/10.1111/j.1538-4632.1996.tb00936.x. Cit. on pp. 29, 30.

DE VOS, Jonas; WITLOX, Frank. Transportation policy as spatial planning tool; Reducing urban sprawl by increasing travel costs and clustering infrastructure and public transportation. **Journal of Transport Geography**, Elsevier Ltd, v. 33, p. 117–125, 2013. ISSN 09666923. DOI: 10.1016/j.jtrangeo.2013.09.014. Available from: http://dx.doi.org/10.1016/j.jtrangeo.2013.09.014. Cit. on p. 7.

DENATRAN. **Estatísticas - Frota de veículos**. [S.I.: s.n.], 2020. Available from: https://www.infraestrutura.gov.br/component/content/article/115-portal-denatran/8552-estat%7B%5C'%7Bi%7D%7Dsticas-frota-de-ve%7B%5C'%7Bi%7D%7Dculos-denatran.html. Cit. on pp. 12–14, 16.

DINH, Do Duy; KUBOTA, Hisashi. Speeding behavior on urban residential streets with a 30km/h speed limit under the framework of the theory of planned behavior. **Transport Policy**, v. 29, p. 199–208, Sept. 2013. ISSN 0967070X. DOI: 10.1016/j.tranpol.2013.06.003. **Available from**:

DUMBAUGH, Eric; LI, Wenhao. Designing for the safety of pedestrians, cyclists, and motorists in urban environments. **Journal of the American Planning Association**, v. 77, n. 1, p. 69–88, 2011. ISSN 01944363. DOI: 10.1080/01944363.2011.536101. Cit. on p. 28.

https://linkinghub.elsevier.com/retrieve/pii/S0967070X13000905. Cit. on p. 24.

DUMBAUGH, Eric; LI, Wenhao; JOH, Kenneth. The built environment and the incidence of pedestrian and cyclist crashes. **URBAN DESIGN International**, v. 18, n. 3, p. 217–228, Aug. 2013. ISSN 1357-5317. DOI: 10.1057/udi.2013.2. Available from: http://link.springer.com/10.1057/udi.2013.2. Cit. on pp. 26–28.

DUMBAUGH, Eric; RAE, R. Safe Urban Form: Revisiting The Relationship Between Community Design and Traffic Safety. **Journal of the American Planning Association**, v. 75, n. 3, p. 309–329, 2009. Cit. on pp. 26–28.

ELVIK, Rune. A re-parameterisation of the Power Model of the relationship between the speed of traffic and the number of accidents and accident victims. **Accident Analysis and Prevention**, v. 50, p. 854–860, Jan. 2013. ISSN 00014575. DOI: 10.1016/j.aap.2012.07.012. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457512002667. Cit. on p. 20.

ELVIK, Rune et al. **The Handbook of Road Safety Measures**. Second edi. Bingley: Emerald Group Publishing Limited, 2009. ISBN 9781848552500. Cit. on pp. 7, 18, 28.

EWING, Reid; CERVERO, Robert. Travel and the built environment: A meta analysis. **Journal of the American Planning Association**, v. 76, n. 3, p. 265–294, 2010. ISSN 01944363. DOI: 10.1080/01944361003766766. Cit. on pp. 25, 26.

EWING, Reid; DUMBAUGH, Eric. The built environment and traffic safety: A review of empirical evidence. **Journal of Planning Literature**, v. 23, n. 4, p. 347–367, 2009. ISSN 08854122. DOI: 10.1177/0885412209335553. Cit. on pp. 7, 8, 25, 26, 28.

FERRAZ, Antonio Clóvis Pinto "Coca" et al. **Segurança viária**. São Carlos: [s.n.], 2012. ISBN 9788598156699. Cit. on pp. 13, 18.

FURTH, Peter G. et al. Using Traffic Signal Control to Limit Speeding Opportunities on Bidirectional Urban Arterials. **Transportation Research Record: Journal of the Transportation Research Board**, v. 2672, n. 18, p. 107–116, Dec. 2018. ISSN 0361-1981. DOI: 10.1177/0361198118790638. Available from: http://journals.sagepub.com/doi/10.1177/0361198118790638. Cit. on p. 28.

GOLLINI, Isabella et al. GWmodel: an R Package for Exploring Spatial Heterogeneity using Geographically Weighted Models, June 2013. arXiv: 1306.0413. Available from: http://arxiv.org/abs/1306.0413. Cit. on pp. 30, 31.

GREEN, David; LEWIS, Kenneth. **Guide to Traffic Management Part 2: Traffic Theory Concepts**. 3.0. ed. Sydney: Austroads, 2020. P. 122. ISBN 978-1-925854-76-3. Cit. on p. 22.

HADDON, W. Advances in the epidemiology of injuries as a basis for public policy. **Public Health Reports**, v. 95, n. 5, p. 411–21, 1980. ISSN 0033-3549. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7422807. Cit. on pp. 16, 17, 21, 24.

HARVEY, D. O trabalho, o capital e o conflito de classes em torno do ambiente construído nas sociedades capitalistas avançadas. **Espaços e Debates**, Jun-Set, n. 6, p. 6–32, 1982. Cit. on p. 13.

HIDALGO-SOLÓRZANO, Elisa et al. Prevalence of speeding and associated factors in four Mexican cities. **Journal of Epidemiology and Community Health**, jech–2019–213352, Apr. 2020. ISSN 0143-005X. DOI: 10.1136/jech-2019-213352. Available from: http://jech.bmj.com/lookup/doi/10.1136/jech-2019-213352. Cit. on p. 23.

HØYE, Alena. Safety effects of fixed speed cameras—An empirical Bayes evaluation. **Accident Analysis & Prevention**, v. 82, p. 263–269, Sept. 2015. ISSN 00014575. DOI: 10.1016/j.aap.2015.06.001. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457515002225. Cit. on p. 28.

HUANG, Yuan; WANG, Xiaoguang; PATTON, David. Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach. **Journal of Transport Geography**, v. 69, p. 221–233, May 2018. ISSN 09666923. DOI: 10.1016/j.jtrangeo.2018.04.027. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966692317306373. Cit. on p. 28.

JØRGENSEN, N.O. Traffic Safety. In: THAGESEN, Bent (Ed.). **Highway and Traffic Engineering in Developing Countries**. London: Chapman and Hall, 2005. chap. 6, p. 121–137. ISBN 0-203-22367-5. Cit. on p. 12.

KARIM, M. Ahsanul; WAHBA, Mohamed M.; SAYED, Tarek. Spatial Effects on Zone-Level Collision Prediction Models. **Transportation Research Record: Journal of the Transportation Research Board**, v. 2398, n. 1, p. 50–59, Jan. 2013. ISSN 0361-1981. DOI: 10.3141/2398-06. Available from: http://journals.sagepub.com/doi/10.3141/2398-06. Cit. on p. 29.

KOSHY, Reebu Zachariah; ARASAN, V. Thamizh. Influence of Bus Stops on Flow Characteristics of Mixed Traffic. **Journal of Transportation Engineering**, v. 131, n. 8, p. 640–643, Aug. 2005. ISSN 0733-947X. DOI:

10.1061/(ASCE)0733-947X(2005)131:8(640). Available from:

http://ascelibrary.org/doi/10.1061/%7B%5C%%7D28ASCE%7B%5C%%7D290733-947X%7B%5C%%7D282005%7B%5C%%7D29131%7B%5C%%7D3A8%7B%5C%%7D28640%7 Cit. on p. 29. LEE, Jaeyoung; ABDEL-ATY, Mohamed; JIANG, Ximiao. Multivariate crash modeling for motor vehicle and non-motorized modes at the macroscopic level. **Accident Analysis & Prevention**, v. 78, p. 146–154, May 2015. ISSN 00014575. DOI: 10.1016/j.aap.2015.03.003. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457515000779. Cit. on pp. 26–28.

LI, Haojie; GRAHAM, Daniel J.; MAJUMDAR, Arnab. The impacts of speed cameras on road accidents: An application of propensity score matching methods. **Accident Analysis & Prevention**, v. 60, p. 148–157, Nov. 2013. ISSN 00014575. DOI: 10.1016/j.aap.2013.08.003. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000145751300314X. Cit. on p. 28.

LI, Haojie; ZHANG, Yingheng; REN, Gang. A causal analysis of time-varying speed camera safety effects based on the propensity score method. **Journal of Safety Research**, v. 75, p. 119–127, Dec. 2020. ISSN 00224375. DOI: 10.1016/j.jsr.2020.08.007. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022437520300967. Cit. on p. 28.

LINDLEY, D. V. Regression and Correlation Analysis. In: THE New Palgrave Dictionary of Economics. London: Palgrave Macmillan UK, 1987. P. 1–6. DOI: 10.1057/978-1-349-95121-5_1873-1. Available from: http://link.springer.com/10.1057/978-1-349-95121-5_1873-1. Cit. on p. 29.

LOVEGROVE, Gordon R; SAYED, Tarek. Macro-level collision prediction models for evaluating neighbourhood traffic safety. **Canadian Journal of Civil Engineering**, v. 33, n. 5, p. 609–621, May 2006. ISSN 0315-1468. DOI: 10.1139/106-013. Available from: http://www.nrcresearchpress.com/doi/10.1139/l06-013. Cit. on p. 28.

MARSHALL, Wesley; FERENCHAK, Nicholas. Assessing equity and urban/rural road safety disparities in the US. **Journal of Urbanism: International Research on Placemaking and Urban Sustainability**, v. 10, n. 4, p. 422–441, Oct. 2017. ISSN 1754-9175. DOI: 10.1080/17549175.2017.1310748. Available from: https://www.tandfonline.com/doi/full/10.1080/17549175.2017.1310748. Cit. on p. 29.

MARSHALL, Wesley; GARRICK, Norman. Does street network design affect traffic safety? **Accident Analysis and Prevention**, Elsevier Ltd, v. 43, n. 3, p. 769–781, 2011. ISSN 00014575. DOI: 10.1016/j.aap.2010.10.024. Available from: http://dx.doi.org/10.1016/j.aap.2010.10.024. Cit. on p. 28.

_____. Street network types and road safety: A study of 24 California cities. **URBAN DESIGN International**, v. 15, n. 3, p. 133–147, Sept. 2010. ISSN 1357-5317. DOI: 10.1057/udi.2009.31. Available from: http://link.springer.com/10.1057/udi.2009.31. Cit. on p. 28.

MINISTRY OF HEALTH. **Number of traffic fatalities in Brazil**. [S.I.]: Ministry of Health, 2020. Available from: http://www2.datasus.gov.br/DATASUS/index.php?area=02. Cit. on pp. 10–12, 14–16.

_____. **Resident population in Brazil**. [S.l.: s.n.], 2021. Available from: http://www2.datasus.gov.br/DATASUS/index.php?area=02. Cit. on pp. 11, 13–15.

MOHAN, D. Road Traffic Injury as a Public Health Problem. In: TIWARI, Geetam; MOHAN, Dinesh (Eds.). **Transport Planning and Traffic Safety - Making Cities, Roads and Vehicles Safer**. Boca Raton: CRC Press, 2016. chap. 2, p. 18–28. ISBN 978-1-4987-5147-6. Cit. on pp. 16, 17.

_____. Speed and its Effects on Road Traffic Crashes. In: TIWARI, Geetam; MOHAN, Dinesh (Eds.). **Transport Planning and Traffic Safety - Making Cities, Roads and Vehicles Safer**. Boca Raton: CRC Press, 2016. chap. 9, p. 127–137. ISBN 978-1-4987-5147-6. Cit. on pp. 18–21.

MORENO, Ana Tsui; GARCÍA, Alfredo. Use of speed profile as surrogate measure: Effect of traffic calming devices on crosstown road safety performance. **Accident Analysis & Prevention**, v. 61, p. 23–32, Dec. 2013. ISSN 00014575. DOI: 10.1016/j.aap.2012.10.013. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457512003697. Cit. on p. 24.

OBELHEIRO, Marta Rodrigues; SILVA, Alan Ricardo da; NODARI, Christine Tessele, et al. A new zone system to analyze the spatial relationships between the built environment and traffic safety. **Journal of Transport Geography**, v. 84, p. 102699, Apr. 2020. ISSN 09666923. DOI: 10.1016/j.jtrangeo.2020.102699. Available from: https://linkinghub.elsevier.com/retrieve/pii/S096669231930225X. Cit. on pp. 26–29, 31.

OBELHEIRO, Marta Rodrigues; SILVA, Alan Ricardo; NODARI, Christine Tessele. UMA ANÁLISE DA RELAÇÃO ENTRE AMBIENTE CONSTRUÍDO E ACIDENTES DE TRÂNSITO EM ZONAS DE TRÁFEGO. **33º Congresso de Pesquisa e Ensino em Transporte da ANPET**, p. 3696–3707, 2019. Cit. on pp. 27–29, 31.

OLIVEIRA, Daniele Falci de et al. Do speed cameras reduce speeding in urban areas? **Cadernos de Saúde Pública**, v. 31, suppl 1, p. 208–218, Nov. 2015. ISSN 0102-311X. DOI: 10.1590/0102-311X00101914. **Available from**:

http://www.scielo.br/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&%7Dpid=S0102-311X2015001300208%7B%5C&%7Dlng=en%7B%5C&%7Dtlng=en. Cit. on p. 28.

OUYANG, Yiqiang; BEJLERI, Ilir. Geographic Information System—Based Community-Level Method to Evaluate the Influence of Built Environment on Traffic Crashes. Transportation Research Record: Journal of the Transportation Research Board, v. 2432, n. 1, p. 124–132, Jan. 2014. ISSN 0361-1981. DOI: 10.3141/2432-15. Available from: http://journals.sagepub.com/doi/10.3141/2432-15. Cit. on pp. 27–29.

PARK, Shin Hyung; PARK, Shin Hyoung; KWON, Oh Hoon. K-Means and CRP-Based Characteristic Investigating Method of Traffic Accidents with Automated Speed Enforcement Cameras. In: [s.l.: s.n.], 2019. P. 631–637. DOI: 10.1007/978-981-13-1328-8_81. Available from:

http://link.springer.com/10.1007/978-981-13-1328-8%7B%5C_%7D81. Cit. on p. 28.

PIRDAVANI, Ali et al. Application of Geographically Weighted Regression Technique in Spatial Analysis of Fatal and Injury Crashes. **Journal of Transportation Engineering**, v. 140, n. 8, p. 04014032, Aug. 2014. ISSN 0733-947X. DOI:

10.1061/(ASCE)TE.1943-5436.0000680. Available from:

http://ascelibrary.org/doi/10.1061/%7B%5C%%7D28ASCE%7B%5C%%7D29TE.1943-5436.0000680. Cit. on pp. 26, 27.

RHEE, Kyoung-Ah et al. Spatial regression analysis of traffic crashes in Seoul. **Accident Analysis & Prevention**, v. 91, p. 190–199, June 2016. ISSN 00014575. DOI: 10.1016/j.aap.2016.02.023. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457516300562. Cit. on p. 27.

RICHARD, Christian M.; CAMPBELL, John; BROWN, James, et al. Investigating speeding behavior with naturalistic approaches. **Transportation Research Record**, v. 2365, n. 2365, p. 58–65, Jan. 2013. ISSN 03611981. DOI: 10.3141/2365-08. Available from: http://journals.sagepub.com/doi/10.3141/2365-08. Cit. on pp. 23, 24.

RICHARD, Christian M.; CAMPBELL, John L.; LICHTY, Monica G., et al. **Motivations for Speeding, Volume II: Findings Report**. Washington, D.C., 2013. Available from: https://www.nhtsa.gov/sites/nhtsa.gov/files/811818.pdf. Cit. on pp. 21, 22.

SHINAR, D. **Traffic Safety and Human Behavior**. Ed. by David Shinar. [S.I.]: Emerald Group Publishing Limited, Oct. 2017. ISBN 978-0-08-045029-2. DOI: 10.1108/9780080555874. **Available from**:

https://www.emerald.com/insight/publication/doi/10.1108/9780080555874. Cit. on pp. 18, 20, 21, 24.

SWOV. **Sustainably safe road infrastructure: main requirements**. [S.I.], 2003. Cit. on p. 17.

TIWARI, Geetam. Land Use-Transportation Planning, Mobility and Safety. In: TIWARI, Geetam; MOHAN, Dinesh (Eds.). **Transport Planning & Traffic Safety - Making Cities, Roads & Vehicles Safer**. [S.I.]: CRC Press, 2016. chap. 4, p. 45–58. ISBN 978-1-4987-5147-6. Cit. on p. 25.

UKKUSURI, Satish et al. The role of built environment on pedestrian crash frequency. **Safety Science**, v. 50, n. 4, p. 1141–1151, Apr. 2012. ISSN 09257535. DOI: 10.1016/j.ssci.2011.09.012. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925753511002578. Cit. on pp. 28, 29.

VASCONCELLOS, Eduardo Alcântara de. **Políticas de Transporte no Brasil - A Construção da Mobilidade Excludente**. [S.I.]: Editora Manole, 2013. Cit. on p. 13.

WANG, Xuesong et al. Speed, speed variation and crash relationships for urban arterials. **Accident Analysis & Prevention**, v. 113, p. 236–243, Apr. 2018. ISSN 00014575. DOI: 10.1016/j.aap.2018.01.032. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457518300381. Cit. on p. 24.

WARREN, Josh; LIPKOWITZ, Jeff; SOKOLOV, Vadim. Clusters of Driving Behavior From Observational Smartphone Data. **IEEE Intelligent Transportation Systems Magazine**, v. 11, n. 3, p. 171–180, 2019. ISSN 1939-1390. DOI: 10.1109/MITS.2019.2919516. **Available from:** https://ieeexplore.ieee.org/document/8743351/. Cit. on p. 24.

WATSON, B. et al. Profiling high-range speeding offenders: Investigating criminal history, personal characteristics, traffic offences, and crash history. **Accident Analysis & Prevention**, v. 74, p. 87–96, Jan. 2015. ISSN 00014575. DOI: 10.1016/j.aap.2014.10.013. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457514003108. Cit. on p. 23.

WEI, Feng; LOVEGROVE, Gordon. An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression. **Accident Analysis & Prevention**, v. 61, p. 129–137, Dec. 2013. ISSN 00014575. DOI: 10.1016/j.aap.2012.05.018. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001457512002023. Cit. on p. 29.

WELLE, Ben et al. **O Desenho de Cidades Seguras**. [S.I.], 2016. Cit. on pp. 24, 27, 28.

WHO. Global Plan for the Decade of Action for Road Safety 2011-2020. [S.I.], 2011. Cit. on p. 10.

WHO. Global status report on road safety 2013 - supporting a decade of action.

[S.I.], 2013. P. 1–318. Available from:

http://www.who.int/about/licensing/copyright_form/en/index.html. Cit. on pp. 7, 18.

______. Global status report on road safety 2018. Geneva, 2018. Cit. on pp. 8–10, 15.

______. Speed management: a road safety manual for decision-makers and practioners. Geneva: [s.n.], 2008. ISBN 978-2-940395-04-0. Cit. on pp. 20, 21, 23.

_____. World Report on Road Traffic Injury Prevention. [S.I.], 2004. P. 238. ISBN 9789241562607. Available from:

http://whqlibdoc.who.int/publications/2004/9241562609.pdf. Cit. on p. 17.

YADAV, Ankit Kumar; VELAGA, Nagendra R. Alcohol-impaired driving in rural and urban road environments: Effect on speeding behaviour and crash probabilities.

Accident Analysis & Prevention, v. 140, p. 105512, June 2020. ISSN 00014575. DOI: 10.1016/j.aap.2020.105512. Available from:

https://linkinghub.elsevier.com/retrieve/pii/S0001457519315866. Cit. on p. 24.

YU, Chia-Yuan; XU, Minjie. Local Variations in the Impacts of Built Environments on Traffic Safety. **Journal of Planning Education and Research**, p. 0739456x1769603, Mar. 2017. ISSN 0739-456X. DOI: 10.1177/0739456X17696035. Available from: http://journals.sagepub.com/doi/10.1177/0739456X17696035. Cit. on pp. 28, 31.

ZERVAS, Efthimios; LAZAROU, Christos. Influence of European passenger cars weight to exhaust CO2 emissions. **Energy Policy**, v. 36, n. 1, p. 248–257, Jan. 2008. ISSN 03014215. DOI: 10.1016/j.enpol.2007.09.009. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301421507003849. Cit. on p. 19.

ZHANG, Cuiping et al. Crash Prediction and Risk Evaluation Based on Traffic Analysis Zones. **Mathematical Problems in Engineering**, v. 2014, p. 1–9, 2014. ISSN 1024-123X. DOI: 10.1155/2014/987978. Available from: http://www.hindawi.com/journals/mpe/2014/987978/. Cit. on p. 29.

ZHANG, Yuanyuan et al. Investigating the associations between road network structure and non-motorist accidents. **Journal of Transport Geography**, v. 42, p. 34–47, Jan. 2015. ISSN 09666923. DOI: 10.1016/j.jtrangeo.2014.10.010. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966692314002336. Cit. on p. 28.