Reinforcement Learning Training 2025

Model-Free Approach

Motivation

Recall in policy iteration

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

- ullet To make this work, we need to know the model dynamics or p(s',r|s,a).
- However, we do now know p.
- Instead, we will resort to sampling.
 - Collecting experience by following some policy in the real world or running the agent through a policy in simulation.

Model-Free Learning

- Monte Carlo (MC) methods
- Temporal difference (TD) methods

Monte Carlo

- We use the law of large numbers (LLN) from statistics.
 - Average of samples is a good estimate for the actual unknown quantity.
 - This estimate becomes better and better as the number of trials of the experiment (samples) increases.

Monte Carlo

Re call that We want to calculate

$$v_\pi(s) = \mathtt{E}_\pi[G_t|S_t=s]$$

- We let the agent start from this state $S_t=s$, follow the policy π to take actions, and keep doing so until termination.
 - We call one round of actions an episode.
- We record the total sum of rewards for each episode.
- ullet We average the rewards to get an estimate of $v_\pi(s)$ for the policy π .

MC methods replaces expected returns with the average of sample returns.

Worked Example

RL Training 2025

Solution v

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big]$$
Let $\gamma = 1$

$$V(C) = 0 \quad (\text{Terminal})$$

$$V(B) = 1 \Big[1 \times [2 + 1(0)] \Big]$$

$$= 2$$

$$V(A) = \frac{1}{3} \Big[1 \times (0 + 1(2)) \Big]$$

$$+ \frac{1}{3} \Big[1 \times (1 + 1(0)) \Big]$$

$$= \frac{1}{3}(2) + \frac{1}{3}(1) = \frac{4}{3}$$

Solution q

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') \ q(s',a') \right]$$

$$q_{\pi}(a_3) = 1 \left[2 + 1 \sum_{a'} (a'|s') \right]$$

$$= 2$$

$$q_{\pi}(a_3) = 1 \left[1 + 1 \sum_{a'} (a'|s') \right]$$

$$= 1$$

$$q_{\pi}(a_1) = 1 \left[0 + 1 \left(1 \left(2 \right) \right) \right]$$

$$= 2$$

10

Estimate v(A)

• We simulate many episodes.

Episode	Path	Reward from A
1	$A \rightarrow C$	G_1 = 1
2	$A\toB\toC$	G_2 = 0 + 2 = 2
3	$A\toB\toC$	G_3 = 0 + 2 = 2
4	$A \rightarrow C$	G_4 = 1
		G_n

Results

Monte Carlo estimates the value function v(A) as the average return observed after visiting A.

$$v(A) = rac{G_1 + G_2 + G_3 + G_4 + \ldots}{n} = rac{1 + 2 + 2 + 1 + \ldots}{n} o rac{4}{3}$$

12

Online method

- ullet Instead of averaging all the returns at the end (the sample mean), we can use the incremental (update) method to estimate v(A) as each new return is observed.
- This is also called the "sample-average" update and is given by:

$$v_{n+1}=v_n+rac{1}{n}(G_n-v_n)$$

Estimate $q(a_1)$ and $q(a_2)$

Episode	Path	Actions at ${\cal A}$	Reward from Action at \boldsymbol{A}
1	$A \rightarrow C$	a_2	$G_1=1$
2	$A\toB\toC$	a_1	$G_2=0+2$
3	$A\toB\toC$	a_1	$G_3=0+2$
4	$A \to C$	a_2	$G_4=1$
			$ G_n $

14

Estimate $q(a_1)$ and $q(a_2)$

$$q(a_1) = rac{G_2 + G_3 + \dots}{n} = rac{2 + 2 + \dots}{n}
ightarrow 2 \ q(a_2) = rac{G_1 + G_4 + \dots}{n} = rac{1 + 1 + \dots}{n}
ightarrow 1$$

Online update

$$q_{n+1}=q_n+rac{1}{n}(G_n-q_n)$$

Comparing estimations of v and q

- ullet Notice that the calculation of v and q is the same.
- This is because both functions are fundamentally estimates of an expected value—just over different types of returns.
 - $\circ \ v(s)$ average over all times you start at s
 - $\circ \ q(s,a)$ average over all times you start at s and pick a