Homework 1: Cardiovascular Disease

1. The mean is

$$\overline{x} = \frac{\sum x_i}{24} = \frac{469}{24} = 19.54 \text{ mg/dL}$$

2. We have that

$$s^{2} = \frac{\sum_{i=1}^{24} (x_{i} - \overline{x})^{2}}{23} = \frac{(49 - 19.54)^{2} + \dots + (12 - 19.54)^{2}}{23} = \frac{6495.96}{23} = 282.43$$

$$s = \sqrt{282.43} = 16.81 \text{ mg/dL}$$

3. We provide two rows for each stem corresponding to leaves 5-9 and 0-4 respectively. We have

Stem-and- leaf plot		Cumulative frequency	
+4	98	24	
+4	1	22	
+3	65	21	
+3	21	19	
+2	78	17	
+2	13	15	
+1	9699	13	
+1	332	9	
+0	88	6	
+0	2	4	
-0			
-0	8	3	
-1	03	2	

- **4.** We wish to compute the average of the (24/2)th and (24/2 + 1)th largest values = average of the 12th and 13th largest points. We note from the stem-and-leaf plot that the 13th largest point counting from the bottom is the largest value in the upper +1 row = 19. The 12th largest point = the next largest value in this row = 19. Thus, the median $=\frac{19+19}{2}=19$ mg/dL.
- **5.** We first must compute the upper and lower quartiles. Because 24(75/100) = 18 is an integer, the upper quartile = average of the 18th and 19th largest values = $\frac{32+31}{2} = 31.5$. Similarly, because 24(25/100) = 6 is an integer, the lower quartile average of the 6th and 7th smallest points = $\frac{8+12}{2} = 10$. Second, we identify outlying values. An outlying value is identified as any value x such that

 $x > \text{upper quartile} + 1.5 \times (\text{upper quartile} - \text{lower quartile})$

$$= 31.5 + 1.5 \times (31.5 - 10)$$

$$= 31.5 + 32.25$$

= 63.75

```
x < lower quartile – 1.5 ×(upper quartile - lower quartile)
= 10 - 1.5 \times (31.5 - 10)
= 10 - 32.25
= -22.25
```

From the stem-and-leaf plot, we note that the range is from -13 to +49. Therefore, there are no outlying values. Thus, the box plot is as follows:

	m-and- ıf plot	Cumulative frequency	Box plot
+4	98	24	
+4	1	22	
+3	65	21	
+3	21	19	++
+2	78	17	
+2	13	15	į į
+1	9699	13	* + *
+1	332	9	++
+0	88	6	
+0	2	4	
-0			
-0	8	3	
-1	03	2	

Comments: The distribution is reasonably symmetric, since the mean = 19.54 mg/dL = 19 mg/dL = median. This is also manifested by the percentiles of the distribution since the **upper quartile - median** = 31.5 - 19 = 12.5 = median **- lower quartile** = 19 - 10 = 9. The box plot looks deceptively asymmetric, since 19 is the highest value in the **upper + 1 row** and 10 is the lowest value in the **lower + 1 row**.

6. To compute the median cholesterol level, we construct a stem-and-leaf plot of the before-cholesterol measurements as follows.

Stem-and- leaf plot		Cumulative frequency
25	0	24
24	4	23
23	68	22
22	42	20
21		
20	5	18
19	5277	17
18	0	13
17	8	12
16	698871	11
15	981	5
14	5	2
13	7	1

Based on the cumulative frequency column, we see that the median = average of the 12th and 13th largest values = $\frac{178+180}{2}$ = 179 mg/dL. Therefore, we look at the change scores among persons with baseline cholesterol \geq 179 mg/dL and < 179 mg/dL, respectively. A stem-and-leaf plot of the change scores in these two groups is given as follows:

Baseline ≥179 mg/dL		Baseline < 179 mg/dL		
Stem-and-			Stem-and-	
leaf plot		lea	leaf plot	
+4	98	+4		
+4		+4	1	
+3	65	+3		
+3	2	+3	1	
+2	2 78	+2		
+2	1	+2	3	
+1	699	+1	3 9	
+1		+1	332	
+0	8	+0	8	
+0		+0	2	
-0		-0		
-0		-0	8	
-1		-1	03	

Clearly, from the plot, the effect of diet on cholesterol is much greater among individuals who start with relatively high cholesterol levels ($\geq 179 \text{ mg/dL}$) versus those who start with relatively low levels (< 179 mg/dL). This is also evidenced by the mean change in cholesterol levels in the two groups, which is 28.2 mg/dL in the $\geq 179 \text{ mg/dL}$ group and 10.9 mg/dL in the < 179 mg/dL group.