

Jan Please

SEARCH REQUEST FORM

Scientific and Technical Information Center

69962

Requester's Full Name: S. Kumar Examiner #: 69594 Date: 7/1/02
Art Unit: 1621 Phone Number 308 4519 Serial Number: 091887933
Mail Box and Bldg/Rm Location: CM 7A07 Results Format Preferred (circle): PAPER DISK E-MAIL
7E12

If more than one search is submitted, please prioritize searchs in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Process for racemising an enantiomer-enriched Schiff base...

Inventors (please provide full names): Robert Patrick Hof et al.

Earliest Priority Filing Date: 6/22/00

12. (Amended) A process for racemising an enantiomer-enriched Schiff base of a primary amide of an amino acid which process comprises contacting said enantiomer-enriched
B1 Schiff base with a strong base in an organic solvent,
wherein said strong base is chemically reactive with water.

22. (Amended) The process of claim 12 wherein said enantiomer-enriched Schiff
B2 base has been prepared from the primary amide of the amino acid in said organic solvent.
water.

13. (new) The process of claim 12 wherein the strong base is a metal alkoxide, a metal alkyl, a metal amide, or a metal hydride.

14. (new) The process of claim 13 wherein the strong base is a metal alkoxide.

15. (new) The process of claim 12 wherein the strong base is present in an amount of 0.001-1000 mole% relative to the enantiomer-enriched Schiff base.

16. (new) The process of claim 15 wherein the strong base is present in an amount of 0.1-100 mole% relative to the enantiomer-enriched Schiff base.

17. (new) The process of claim 12 wherein the enantiomer-enriched Schiff base is an N-benzylidene primary amino acid amide.

18. (new) The process of claim 12 wherein the enantiomer-enriched Schiff base is derived from an aliphatic primary amino acid amide.

19. (new) The process of claim 18 wherein the enantiomer-enriched Schiff base is derived from tertiary-leucine amide.

20. (new) The process of claim 12 wherein the organic solvent is an aromatic hydrocarbon, a cyclic aliphatic hydrocarbon or an ether.

=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 12:35:02 ON 08 JUL 2002
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Jan Delaval
 Reference Librarian
 Biotechnology & Chemical Library
 CM1 1E07 - 703-308-4498
 ian.delaval@uspto.gov

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 8 Jul 2002 VOL 137 ISS 2
 FILE LAST UPDATED: 7 Jul 2002 (20020707/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> d all tot 156

L56 ANSWER 1 OF 8 HCAPLUS COPYRIGHT 2002 ACS
 AN 2001:936109 HCAPLUS
 DN 136:54022
 TI Process for **racemizing** an **enantiomer-enriched Schiff base** of an **amino acid amide** using **strong bases**
 IN Hof, Robert Patrick; Hermsen, Petrus Johannes; De Bode, Ronus
 PA Neth.
 SO U.S. Pat. Appl. Publ., 3 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 IC ICM C07C251-02
 NCL 564225000
 CC 34-2 (**Amino Acids, Peptides, and Proteins**)
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2001056209	A1	20011227	US 2001-887933	20010622
	NL 1015495	C2	20011228	NL 2000-1015495	20000622
	EP 1167347	A1	20020102	EP 2001-202359	20010621
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	JP 2002037767	A2	20020206	JP 2001-190159	20010622
PRAI	NL 2000-1015495	A	20000622		
AB	The invention relates to a process for racemizing an enantiomer-enriched Schiff base of a primary amino acid amide with a strong base that is chem. reactive towards water. The reaction is conducted in an org. solvent (e.g., THF). Preferably a metal alkoxide , a metal alkyl , a metal amide , or				

a metal hydride, in particular a metal alkoxide (e.g., KOCMe₃) is applied as the strong base. As the Schiff base preferably N-benzylidene primary amino acid amide (e.g., N-benzylidene-(R)-tertiary-leucine amide) is used, with the primary amino acid amide preferably being derived from an aliph. primary amino acid amide, for example tertiary-leucine amide. As org. solvent use is preferably made of an arom. hydrocarbon, a cyclic, aliph. hydrocarbon or a ether, in particular an arom. hydrocarbon is applied. The invention may also be applied for the racemization of an enantiomer-enriched primary amino acid amide.

ST **racemization Schiff base amino acid amide; benzylideneleucine amide base racemization**

IT **Amides, processes**

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (amino, Schiff bases; process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT **Hydrides**

Metal alkoxides

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (bases; process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT **Schiff bases**

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (of an amino acid amide; process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT **Racemization**

(process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT **Bases, processes**

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT **Aromatic hydrocarbons, uses**

Cycloalkanes

RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); REM (Removal or disposal); PROC (Process); USES (Uses)
 (solvents; process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT 124-41-4, Sodium methoxide 141-52-6, Sodium ethoxide
 865-47-4 381724-98-7

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (process for racemizing an enantiomer-enriched Schiff base of an amino acid amide using strong bases)

IT 381724-99-8P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (process for **racemizing** an enantiomer-enriched
Schiff base of an amino acid
 amide using strong bases)

L56 ANSWER 2 OF 8 HCAPLUS COPYRIGHT 2002 ACS
 AN 1998:79714 HCAPLUS
 DN 128:167308
 TI Method for producing **racemic** phenethylamines
 IN Stelzer, Uwe
 PA Bayer A.-G., Germany
 SO Ger. Offen., 12 pp.
 CODEN: GWXXBX
 DT Patent
 LA German
 IC ICM C07C211-29
 ICS C07C211-27; C07C209-84; C07B055-00
 ICA C07C251-16
 CC 26-9 (Biomolecules and Their Synthetic Analogs)
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 19629692	A1	19980129	DE 1996-19629692	19960723
	WO 9803465	A1	19980129	WO 1997-EP3691	19970711
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
	AU 9736223	A1	19980210	AU 1997-36223	19970711
	EP 923534	A1	19990623	EP 1997-932809	19970711
	EP 923534	B1	20001004		
	R: BE, CH, DE, DK, ES, FR, GB, IT, LI, NL				
	BR 9710391	A	19990817	BR 1997-10391	19970711
	CN 1226228	A	19990818	CN 1997-196707	19970711
	JP 2000514813	T2	20001107	JP 1998-506503	19970711
	ES 2150267	T3	20001116	ES 1997-932809	19970711
	US 6046351	A	20000404	US 1999-230232	19990119
PRAI	DE 1996-19629692	A	19960723		
	WO 1997-EP3691	W	19970711		
OS	CASREACT 128:167308; MARPAT 128:167308				
GI					

AB **Racemic phenethylamines I** [R1-R5 = H, halo, cyano, nitro, alkyl, alkoxy, alkylthio, alkylsulfinyl, etc.] are prep'd. by condensing their optically active stereoisomers with acetophenone derivs. II, treating the resulting optically active **Schiff base** [optically active III] with metal hydroxide contg. 0.1-50% water, and treating the resulting **racemic Schiff base** with acid in the presence of water. Thus, (S)-1-(4-chlorophenyl)ethylamine was treated with 4-chloroacetophenone in toluene contg. tetra-Bu orthotitanate at room temp. followed by refluxing 6 h to give 91% the corresponding (S) **Schiff base**, which was stirred with KOH contg. 15 wt.% water for 16 h and then heated at 130-160.degree. followed by cooling and refluxing with 2N aq. H₂SO₄ for 2 h to give the title compd. (.-.)-1-(4-chlorophenyl)ethylamine.

ST **racemic phenethylamine prepn**

IT 202827-93-8P

RL: IMF (Industrial manufacture); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(method for producing **racemic phenethylamines**)

IT 99-91-2 4187-56-8, (S)-1-(4-Chlorophenyl)ethylamine 6299-02-1
RL: RCT (Reactant); RACT (Reactant or reagent)
(method for producing **racemic phenethylamines**)

L56 ANSWER 3 OF 8 HCPLUS COPYRIGHT 2002 ACS

AN 1996:231688 HCPLUS

DN 124:288970

TI **Racemization of optically active .alpha.-arylalkylamines**

IN Tsucha, Toyohito; Sugiyama, Naoko; Takemoto, Tadashi

PA Ajinomoto Kk, Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM C07C211-27

ICS C07C209-88

CC 25-4 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds)

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

PI JP. 08027073 A2 19960130 JP 1994-171190 19940722

OS MARPAT 124:288970

AB Optically active **Schiff bases** formed from optically active ArCHRNH₂ (I; Ar = aryl; R = alkyl) and arylaldehydes are treated

with **bases** and the resulting **racemized Schiff bases** are hydrolyzed to give **racemic I**. The obtained **racemates** are useful as materials for resln. to obtain isomers useful as resolving agents and intermediates for sweet substances. (S)-.alpha.-phenylpropylamine [(S)-I] and p-ClC₆H₄CHO were dissolved in CH₂C₁₂ and the soln. was treated with MgSO₄ under stirring overnight to give (S)-N-(p-chlorobenzylidene)-.alpha.-phenylpropylamine. The **Schiff base** dissolved in Me₃COH was treated with Me₃COK under reflux for 5 h, followed by treatment of the reaction product with HCl at room temp. for 30 min to give (.+-.)-I at **racemization** rate 90.5%.

ST arylalkylamine **Schiff base racemization**
hydrolysis; **racemic** arylalkylamine prepn

IT **Racemization**

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT **Amines, reactions**

Hydroxides

RL: RCT (Reactant)

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT **Schiff bases**

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT **Amines, preparation**

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(.alpha.-arylkyl; **racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT **Alcohols, reactions**

RL: RCT (Reactant)

(**metal salts, racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT 98-84-0P, .alpha.-Phenylethylamine 2941-20-0P, .alpha.-Phenylpropylamine

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT 104-88-1, p-Chlorobenzaldehyde, reactions 865-47-4, Potassium

tert-butoxide 1310-58-3, Potassium hydroxide, reactions 3082-64-2

3789-59-1, (S)-.alpha.-Phenylpropylamine 4187-48-8 6674-22-2, DBU
74879-38-2 74879-40-6 175842-06-5

RL: RCT (Reactant)

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

IT 175842-05-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)

(**racemization** of .alpha.-arylkylamines by treatment of **Schiff bases** of the isomers and arylaldehydes with **bases** followed by hydrolysis)

TI Process for **racemization** of optically active **amino acid** amides

IN Boesten, Wilhelmus Hubertus Joseph

PA Stamicarbon B. V., Neth.

SO Eur. Pat. Appl., 9 pp.

CODEN: EPXXDW

DT Patent

LA English

IC ICM C07C237-20

ICS C07C231-20; C07B055-00

CC 34-2 (**Amino Acids, Peptides, and Proteins**)

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 442585	A1	19910821	EP 1991-200307	19910214
	EP 442585	B1	19940720		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, NL, SE NL 9000387	A	19910916	NL 1990-387	19900216
	HU 56531	A2	19910930	HU 1991-481	19910213
	HU 212704	B	19961028		
	ES 2061155	T3	19941201	ES 1991-200307	19910214
	JP 07070027	A2	19950314	JP 1991-22138	19910215
	JP 2941444	B2	19990825		
	CZ 280920	B6	19960515	CZ 1991-417	19910218
PRAI	NL 1990-387		19900216		

AB Optically active **amino acid** amides are **racemized** by a process comprising conversion of the optically active amide or its **Schiff base** in the presence of 0.5-4 equiv of an aldehyde to its addn. salt at 75-100.degree. using 1-2 equiv of a **racemic** carboxylic acid with the addn. of 0.5-3 equiv of H2O. No aldehyde is needed when the **Schiff base** is the starting material. Thus, 0-10 mol D-N-benzylidenephenylglycineamide, 0.10 mol DL-mandelic acid, 200 mL PhMe, 50 mL EtOAc, and 0.15 mol H2O were stirred 4 h at 85.degree.. The **Schiff base** addn. salt formed was filtered and hydrolyzed by 6N HCl to give DL-phenylglycineamide.HCl. The above reaction carried out without addn. of water gave only 12.2 g of intermediate **Schiff base** addn. salt, compared to 29.9 g when H2O was added.

ST chiral amino acid amide **racemization**; **racemic** amino acid amide prepn; benzylidene phenylglycineamide prepn **racemization**

IT **Racemization**
(of optically active **amino acid** amides via **Schiff bases**)

IT **Schiff bases**
RL: RCT (Reactant)
(**amino acid**, formation and **racemization** of, in prepn. of **racemic amino acid** amides)

IT **Amides, preparation**
RL: SPN (Synthetic preparation); PREP (Preparation)
(**amino**, **racemic**, prepn. of, via **racemization** of optically active **Schiff base** derivs.)

IT 100-52-7P, Benzaldehyde, preparation
RL: PREP (Preparation)
(**Schiff base** formation of, with optically active **amino acid** amides, in **racemization** reaction)
IT 78-84-2 89-98-5, o-Chlorobenzaldehyde 50984-52-6, Anisaldehyde
RL: PROC (Process)
(**Schiff base** formation of, with **racemic amino acid** amides)

IT 138228-63-4P 138258-73-8P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and decompr. of)

IT 138228-56-5P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and decompr. of, in prepn. of **racemic amino acid amide**)

IT 54397-23-8P 60079-51-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)

IT 51703-58-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, via **racemization** of corresponding optically active **Schiff base**)

IT 700-63-0 4726-84-5 19298-72-7 67412-95-7 108888-96-6 108888-97-7
 108888-98-8 108888-99-9 138228-57-6 138228-58-7 138228-59-8
 138228-60-1 138228-61-2 138258-70-5 138258-71-6
 RL: RCT (Reactant)
 (**racemization** of)

IT 6485-67-2
 RL: RCT (Reactant)
 (**racemization** of, via **Schiff base**)

IT 58429-87-1 72151-95-2
 RL: PROC (Process)
 (resoln. of, via **Schiff base**)

IT 64-19-7, Acetic acid, reactions 611-72-3, DL-Mandelic acid
 RL: RCT (Reactant)
 (salification of, with optically active **amino acid amide Schiff bases**)

IT 611-71-2, D-Mandelic acid 17199-29-0, L-Mandelic acid
 RL: PROC (Process)
 (salt formation of, with **racemic amino acid amide Schiff bases**)

L56 ANSWER 5 OF 8 HCAPLUS COPYRIGHT 2002 ACS

AN 1992:42062 HCAPLUS

DN 116:42062

TI Preparation of optically active **amino acid amides** via **Schiff base salts**.

IN Boesten, Wilhelmus Hubertus Joseph

PA Stamicarbon B. V., Neth.

SO Eur. Pat. Appl., 12 pp.

CODEN: EPXXDW

DT Patent

LA English

IC ICM C07C231-20

ICS C07C237-20; C07C249-02; C07B057-00

CC 34-2 (**Amino Acids, Peptides, and Proteins**)

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 442584	A1	19910821	EP 1991-200306	19910214
	EP 442584	B1	19931110		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, NL, SE				
	NL 9000386	A	19910916	NL 1990-386	19900216
	HU 56532	A2	19910930	HU 1991-482	19910213
	HU 212703	B	19961028		
	AT 97125	E	19931115	AT 1991-200306	19910214
	ES, 2062660	T3	19941216	ES 1991-200306	19910214
	JP 05178805	A2	19930720	JP 1991-22137	19910215
	JP 2854148	B2	19990203		
	US 5306826	A	19940426	US 1991-655623	19910215

CZ 281203 B6 19960717 CZ 1991-418 19910218
 PRAI NL 1990-386 19900216
 EP 1991-200306 19910214
 AB Title compds. are prepd. from their **racemic** mixts. by conversion of the mixts. to **Schiff base** salts with optically active carboxylic acids in a process using 0.5-4 equiv aldehyde and 0.5-3 equiv H₂O, followed by hydrolysis. Thus, a mixt. of 0.10 mL DL-phenylglycine amide, 0.10 mol D-mandelic acid, 230 mL PhMe, 20 mL PhCHO, and 0.10 mol H₂O was stirred for 2 h at 88.degree.. After cooling, the **Schiff base** addn. salt was filtered and hydrolyzed by 6N HCl to give L-phenylglycine amide.HCl. Resoln. was also accomplished starting with the **Schiff base** of the **amino acid** amides.
 ST chiral **amino acid** amide prepn; resoln **racemic** **amino acid** amide; benzylidene phenylglycineamide chiral resoln
 IT **Schiff bases**
 RL: FORM (Formation, nonpreparative)
 (formation of, in resoln. of **amino acid** amides)
 IT Resolution
 (of **amino acid** amides via **Schiff bases**)
 IT **Amides, preparation**
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (amino, chiral, prepn. of, via resoln. of corresponding **Schiff base** **racemic** mixts.)
 IT 78-84-2, Isobutyraldehyde 89-98-5, o-Chlorobenzaldehyde 50984-52-6,
 Anisaldehyde
 RL: PROC (Process)
 (**Schiff base** formation of, with **racemic** **amino acid** amides, in prepn. of optically active **amino acid** amides)
 IT 100-52-7P, Benzaldehyde, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (**Schiff base** formation of, with **racemic** **amino acid** amides, in prepn. of optically active **amino acid** amides)
 IT 138228-65-6P 138228-66-7P 138228-68-9P 138228-69-0P 138258-73-8P
 138258-74-9P 138258-75-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and decompr. of, in prepn. of optically active **amino acid** amides)
 IT 875-74-1P, D-Phenylglycine 2935-35-5P, L-Phenylglycine 16120-92-6P,
 L-Methionineamide hydrochloride 32462-30-9P, L-p-Hydroxyphenylglycine
 53958-19-3P 54397-23-8P 60079-51-8P 63291-39-4P 82795-51-5P
 138228-64-5P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, from **racemate**, via **Schiff base** salt with optically active carboxylic acid)
 IT 108945-11-5 108945-13-7 138258-76-1
 RL: RCT (Reactant)
 (resoln. and hydrolysis of, optically active **amino acid** amides from)
 IT 4510-08-1
 RL: PROC (Process)
 (resoln. of, via **Schiff base**)
 IT 58429-87-1, DL-Phenylglycineamide 72151-95-2
 RL: PROC (Process)
 (resoln. of, via **Schiff base** with benzaldehyde)
 IT 98-79-3, L-2-Pyrrolidone-5-carboxylic acid 611-71-2, D-Mandelic acid
 1152-61-0 17199-29-0, L-Mandelic acid
 RL: PROC (Process)
 (salt formation of, with **racemic amino acid**)

amide **Schiff bases**, in prepn. of optically active
amino acid amides)

L56 ANSWER 6 OF 8 HCAPLUS COPYRIGHT 2002 ACS
 AN 1986:109498 HCAPLUS
 DN 104:109498
 TI Optically active .alpha.-amino-.epsilon.-caprolactam
 IN Markowicz, Stanislaw; Leplawy, Miroslaw; Witkowski, Kazimierz; Kociolek,
 Karol; Kuswik, Gabriela; Krawczyk, Henryk; Lewandowska, Ewa; Olejniczak,
 Bogdan
 PA Politechnika Lodzka, Pol.
 SO Pol., 2 pp.
 CODEN: POXXA7
 DT Patent
 LA Polish
 IC C07D223-10
 CC 27-21 (Heterocyclic Compounds (One Hetero Atom))
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	PL 124435	B2	19830131	PL 1980-228617	19801218
AB	Optically active .alpha.-amino-.epsilon.-caprolactam (I) is prep'd. by contacting racemic I with an optically active terpene aldehyde or ketone in presence of BF3 etherate or p-toluenesulfonic acid (II) (as a catalyst) in an org. solvent. The Schiff base obtained is reacted with BuLi in presence of (Me2CH)2NH, or with a metal hydride in THF or ether. The mixt. was treated with an aq. mineral acid, and the product was sepd. Thus, racemic I was resolved by treatment with (+)-mytenal, II, BuLi, (Me2CH)2NH and HCl to give I.HCl, [.alpha.]20D = -6.3.degree..				
ST	aminocaprolactam resoln; caprolactam amino resoln				
IT	100325-27-7P RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (prepn. and hydrolysis of)				
IT	26081-07-2P RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)				
IT	17929-90-7 RL: PROC (Process) (resoln. of)				

L56 ANSWER 7 OF 8 HCAPLUS COPYRIGHT 2002 ACS
 AN 1982:598518 HCAPLUS
 DN 97:198518
 TI Deracemization by enantioselective protonation. Application to
 an .alpha.-amino acid, phenylglycine
 AU Duhamel, Lucette; Plaquevent, Jean Christophe
 CS Lab. Chim. Org., Fac. Sci. Tech. Rouen, Mont Saint-Aignan, F-76130, Fr.
 SO Bull. Soc. Chim. Fr. (1982), (3-4, Pt. 2), 75-83
 CODEN: BSCFAS; ISSN: 0037-8968
 DT Journal
 LA French
 CC 34-2 (Amino Acids, Peptides, and Proteins)
 Section cross-reference(s): 22
 AB Phenylglycine esters were converted into **Schiff bases**,
 metalated by a Li **amide**, and then protonated by a chiral
 acid to give optically active starting materials (enantiomer excess as
 high as 70%). Chiral acids can easily be retrieved after protonation with
 excellent yields and conservation of enantiomeric purity. A mechanism
 responsible for the asym. induction is suggested by means of a study of
 the parameters modifying the selectivity, such as the nature of protecting
 groups, chiral acid, and lithium **amide**.
 ST resoln phenylglycine enantioselective protonation; substituent effect

benzylidenephenylglycinate resoln
 IT Asymmetric synthesis and induction
 (of benzylidenephenylglycine ester by enantioselective protonation)
 IT Resolution
 (of benzylidenephenylglycine esters)
 IT Substituent effect
 (on resoln. of benzylidenephenylglycinate by enantioselective
 protonation)
 IT Protonation and Proton transfer reaction
 (enantioselective, of lithiated benzylidenephenylglycinate)
 IT 3886-69-9
 RL: RCT (Reactant)
 (acylation of)
 IT 74842-56-1 76769-54-5 76769-56-7 76821-61-9
 RL: RCT (Reactant)
 (benzylidenephenylglycinate resoln. in presence of)
 IT 2835-06-5
 RL: RCT (Reactant)
 (esterification of)
 IT 816-43-3 4111-54-0 4111-55-1 38227-87-1
 RL: RCT (Reactant)
 (metalation by, of benzylidenephenylglycinate)
 IT 5933-40-4P 70811-66-4P 76821-62-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and hydride redn. of)
 IT 43189-03-3P 43189-47-5P 63430-99-9P 83529-43-5P 83529-44-6P
 83529-45-7P 83529-46-8P 83529-47-9P 83572-72-9P 83572-73-0P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. and resoln. of, by enantioselective protonation)
 IT 15028-40-7P 19883-41-1P 36123-72-5P 39251-36-0P 55130-90-0P
 59410-82-1P 72651-17-3P 83529-48-0P 83529-49-1P 83529-50-4P
 83529-51-5P 83572-23-0P 83572-24-1P 83572-25-2P 83572-26-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
 IT 63903-05-9P 68906-71-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of, by resoln. via enantioselective protonation)
 IT 2743-38-6 5123-55-7 17199-29-0 17257-71-5 51591-38-9 65259-81-6
 65259-82-7 68870-86-0 68870-87-1 68870-88-2 68870-89-3
 68870-90-6 68870-91-7 68870-92-8 74817-66-6 74817-67-7
 74817-68-8 74817-69-9 74817-72-4 83529-37-7 83529-38-8
 83529-39-9 83529-40-2 83529-41-3 83529-42-4
 RL: RCT (Reactant)
 (protonation by, of lithiated benzylidenephenylglycinate)
 IT 76769-55-6 76821-63-1 76821-64-2
 RL: RCT (Reactant)
 (protonation by, of lithiated benzylidenephenylglycinate)
 IT 100-10-7 100-52-7, reactions 104-87-0 104-88-1, reactions 105-07-7
 123-11-5, reactions 135-02-4 591-31-1
 RL: RCT (Reactant)
 (reaction of, with phenylglycine ester)

L56 ANSWER 8 OF 8 HCPLUS COPYRIGHT 2002 ACS

AN 1981:121892 HCPLUS

DN 94:121892

TI Deracemization by enantioselective protonation. IV.

An improved method for the enantiomeric enrichment of .alpha.-
 amino acids using metalation by means of
 chiral amides

AU Duhamel, Lucette; Plaquevent, Jean Christophe

CS Lab. Chim. Org., Fac. Sci. Tech. Rouen, Mont Saint Aignan, 76130, Fr.

SO Tetrahedron Lett. (1980), 21(26), 2521-4

CODEN: TELEAY; ISSN: 0040-4039
 DT Journal
 LA English
 CC 34-2 (Synthesis of Amino Acids,
 Peptides, and Proteins)
 AB Optically active alpha.-amino acid esters were prep'd.
 by metalation of the corresponding Schiff
 bases by chiral lithium amides followed by protonation
 by an achiral or a chiral acid. Thus, PhCH:NCHPhCO₂Me underwent
 sequential metalation with (R)-PhCHMeNRLi (R = Me, Et, Pr)
 (-50.degree.), reaction with (2R,3R)-[HO₂CCHO₂C(CMe₃)₂] (-70.degree.) in
 the presence of (R)-PhCHMeNHR (R as before), and hydrolysis to give
 PhCH(NH₃Cl)CO₂Me with enantiomeric excess of 70%.
 ST enantioselective protonation amino acid
 deracemization
 IT Amino acids, reactions
 RL: RCT (Reactant)
 (deracemization of, by enantioselective
 protonation).
 IT Resolution
 (of amino acids by enantioselective
 protonation)
 IT Racemization
 (de-, of amino acids by enantioselective
 protonation)
 IT Protonation and Proton transfer reaction
 (enantioselective, in deracemization of
 amino acids)
 IT 43189-47-5
 RL: RCT (Reactant)
 (deracemization of)
 IT 65259-81-6 68870-92-8 76769-55-6 76821-63-1
 RL: RCT (Reactant)
 (enantioselective protonation by, of metalated enolate of
 benzylidenephenylglycine Me ester)
 IT 63903-05-9
 RL: RCT (Reactant)
 (enantioselective protonation of)
 IT 74842-56-1 76769-54-5 76769-56-7 76821-61-9
 RL: RCT (Reactant)
 (metalation by, of Schiff base)
 IT 15028-39-4P 19883-41-1P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
 IT 76821-64-2
 RL: RCT (Reactant)
 (protonation by, of metalated enolate of benzylidenephenylglycine Me
 ester)
 IT 5933-40-4 70811-66-4 76821-62-0
 RL: RCT (Reactant)
 (reaction of, with metalated Schiff base and
 tartaric acid esters)

=> fil reg

FILE 'REGISTRY' ENTERED AT 12:40:17 ON 08 JUL 2002
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2002 American Chemical Society (ACS)

STRUCTURE FILE UPDATES: 5 JUL 2002 HIGHEST RN 437600-19-6
 DICTIONARY FILE UPDATES: 5 JUL 2002 HIGHEST RN 437600-19-6

TSCA INFORMATION NOW CURRENT THROUGH January 7, 2002

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Calculated physical property data is now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details:

<http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf>

=> d ide can 158

L58 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
 RN 381724-98-7 REGISTRY
 CN Butanamide, 3,3-dimethyl-2-[(phenylmethylene)amino]-, (2R)- (9CI) (CA INDEX NAME)
 FS STEREOSEARCH
 MF C13 H18 N2 O
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

Absolute stereochemistry.

Double bond geometry unknown.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 136:54022

=> d ide can 159

L59 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
 RN 381724-99-8 REGISTRY
 CN Butanamide, 3,3-dimethyl-2-[(phenylmethylene)amino]- (9CI) (CA INDEX NAME)
 FS 3D CONCORD
 MF C13 H18 N2 O
 SR CA
 LC STN Files: CA, CAPLUS, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)

REFERENCE 1: 136:54022

=> fil wpix
FILE 'WPIX' ENTERED AT 12:53:36 ON 08 JUL 2002
COPYRIGHT (C) 2002 THOMSON DERWENT

FILE LAST UPDATED: 04 JUL 2002 <20020704/UP>
MOST RECENT DERWENT UPDATE 200242 <200242/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> SLART (Simultaneous Left and Right Truncation) is now
available in the /ABEX field. An additional search field
/BIX is also provided which comprises both /BI and /ABEX <<<

>>> Update 2002-42 does not contain any new polymer indexing <<<

>>> The BATCH option for structure searches has been
enabled in WPINDEX/WPIDS and WPIX >>>

>>> PATENT IMAGES AVAILABLE FOR PRINT AND DISPLAY >>>

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES,
SEE <http://www.derwent.com/dwpi/updates/dwpicov/index.html> <<<

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
PLEASE VISIT:

http://www.stn-international.de/training_center/patents/stn_guide.pdf <<<

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
GUIDES, PLEASE VISIT:
http://www.derwent.com/userguides/dwpi_guide.html <<<

=> d all abeq tech tot

L71 ANSWER 1 OF 10 WPIX (C) 2002 THOMSON DERWENT
AN 2002-194879 [25] WPIX
DNC C2002-060158

TI Racemization process involves providing organic solvent used for
racemizing enantiomer-enriched Schiff base of primary
amino acid amide with strong base that is chemically reactive towards
water.

DC E16
IN DE BODE, R; HERMSEN, P J; HOF, R P
PA (STAM) DSM NV; (DBOD-I) DE BODE R; (HERM-I) HERMSEN P J; (HOFR-I) HOF R P
CYC 28
PI US 2001056209 A1 20011227 (200225)* 3p C07C251-02
EP 1167347 A1 20020102 (200225) EN C07C249-02 <--
R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
RO SE SI TR
NL 1015495 C2 20011228 (200225) C07C249-02
JP 2002037767 A 20020206 (200226) 12p C07C249-02
ADT US 2001056209 A1 US 2001-887933 20010622; EP 1167347 A1 EP 2001-202359
20010621; NL 1015495 C2 NL 2000-1015495 20000622; JP 2002037767 A JP
2001-190159 20010622
PRAI NL 2000-1015495 20000622
IC ICM C07C249-02; C07C251-02
ICS C07C237-00; C07C251-16; C07C251-24

ICA C07B055-00
 AB US2001056209 A UPAB: 20020418
 NOVELTY - A strong base that is chemically reactive towards water is used in an organic solvent for **racemizing** an enantiomer-enriched **Schiff** base of a primary amino acid amide.
 USE - For enantiomer-enriched primary amino acid amide.
 ADVANTAGE - Allows enantiomer-enriched **Schiff** bases of primary amino acid amides to be **racemized** efficiently, with strongly reduced likelihood of byproducts being formed.
 Dwg.0/0
 FS CPI
 FA AB; DCN
 MC CPI: E10-A20B

L71 ANSWER 2 OF 10 WPIX (C) 2002 THOMSON DERWENT
 AN 1998-101789 [10] WPIX
 DNC C1998-033669
 TI Preparation of **racemic** phenylethyl-amine derivatives - by reaction of optically-active amine with identically ring-substituted acetophenone to give **Schiff** base, **racemisation** and final cleavage.
 DC B05
 IN STELZER, U
 PA (FARB) BAYER AG
 CYC 77
 PI DE 19629692 A1 19980129 (199810)* 11p C07C211-29
 WO 9803465 A1 19980129 (199811) C07C209-68
 RW: AT BE CH DE DK EA ES FI FR GB GH GR IE IT KE LS LU MC MW NL OA PT
 SD SE SZ UG ZW
 W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
 HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX
 NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN
 AU 9736223 A 19980210 (199827) C07C209-68
 EP 923534 A1 19990623 (199929) DE C07C209-68
 R: BE CH DE DK ES FR GB IT LI NL
 CN 1226228 A 19990818 (199951) C07C209-68
 BR 9710391 A 19990817 (199954) C07C209-68
 HU 9903251 A2 20000128 (200015) C07C209-68
 US 6046351 A 20000404 (200024) C07C305-04
 EP 923534 B1 20001004 (200050) DE C07C209-68
 R: BE CH DE DK ES FR GB IT LI NL
 DE 59702432 G 20001109 (200059) C07C209-68
 JP 2000514813 W 20001107 (200059) 26p C07C209-68
 MX 9900880 A1 19990801 (200063) C07C209-66
 ES 2150267 T3 20001116 (200064) C07C209-68
 KR 2000067873 A 20001125 (200130) C07C209-68
 IL 127970 A 20010826 (200157) C07C211-27
 MX 204324 B 20010919 (200239) C07B055-00 <--
 ADT DE 19629692 A1 DE 1996-19629692 19960723; WO 9803465 A1 WO 1997-EP3691 19970711; AU 9736223 A AU 1997-36223 19970711; EP 923534 A1 EP 1997-932809 19970711, WO 1997-EP3691 19970711; CN 1226228 A CN 1997-196707 19970711; BR 9710391 A BR 1997-10391 19970711, WO 1997-EP3691 19970711; HU 9903251 A2 WO 1997-EP3691 19970711, HU 1999-3251 19970711; US 6046351 A WO 1997-EP3691 19970711, US 1999-230232 19990119; EP 923534 B1 EP 1997-932809 19970711, WO 1997-EP3691 19970711; DE 59702432 G DE 1997-502432 19970711, EP 1997-932809 19970711, WO 1997-EP3691 19970711; JP 2000514813 W WO 1997-EP3691 19970711, JP 1998-506503 19970711; MX 9900880 A1 MX 1999-880 19990122; ES 2150267 T3 EP 1997-932809 19970711; KR 2000067873 A WO 1997-EP3691 19970711, KR 1999-700258 19990115; IL 127970 A IL 1997-127970 19970711; MX 204324 B MX 1999-880 19990122
 FDT AU 9736223 A Based on WO 9803465; EP 923534 A1 Based on WO 9803465; BR 9710391 A Based on WO 9803465; HU 9903251 A2 Based on WO 9803465; US 6046351 A Based on WO 9803465; EP 923534 B1 Based on WO 9803465; DE

59702432 G Based on EP 923534, Based on WO 9803465; JP 2000514813 W Based on WO 9803465; ES 2150267 T3 Based on EP 923534; KR 2000067873 A Based on WO 9803465; IL 127970 A Based on WO 9803465

PRAI DE 1996-19629692 19960723

IC ICM C07C209-66; C07C209-68; C07C211-27; C07C211-29; C07C305-04
ICS C07C209-84; C07C211-03; C07C217-544; C07C255-49; C07C255-50;
C07C313-12; C07C317-14; C07C323-32

ICA C07B055-00

AB DE 19629692 A UPAB: 19980309

Preparation of **racemic** phenylethylamine derivatives of formula (I) by:

(a) reacting optically-active (I) with an acetophenone derivative of formula (II), where the phenyl substitution in (I) and (II) is identical, optionally in the presence of a solvent and/or catalyst;

(b) reacting the optically-active **Schiff** base (III) with a metal hydroxide and water content = 0.1-50 wt.%, optionally under an inert atmosphere, and

(c) treating the obtained **racemic** **Schiff** bases with aqueous acid.

R1-R5 = H, halo, cyano, nitro, alkyl, alkoxy, alkylthio, alkylsulphanyl, alkylsulphonyl, dialkylamino, haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphanyl or haloalkylsulphonyl)

ADVANTAGE - The method affords a high degree of **racemisation**

Dwg.0/0

FS CPI

FA AB; GI; DCN

MC CPI: B10-A10; B10-A15; B10-B01A; B10-B04B

L71 ANSWER 3 OF 10 WPIX (C) 2002 THOMSON DERWENT

AN 1996-136245 [14] WPIX

DNC C1996-042431

TI Racemisation of optically active alpha-aryl-alkylamine - by racemising optically active **Schiff** base of alpha-aryl-alkylamine and aryl-aldehyde with base, then hydrolysing.

DC B05 E14

PA (AJIN) AJINOMOTO KK

CYC 1

PI JP 08027073 A 19960130 (199614)* 4p C07C211-27

ADT JP 08027073 A JP 1994-171190 19940722

PRAI JP 1994-171190 19940722

IC ICM C07C211-27

ICS C07C209-88

AB JP 08027073 A UPAB: 19960405

Racemisation of an optically active alpha-aryl-alkylamine comprises contacting an optically active **Schiff** base (prepd. from an optically active alpha-aryl-alkylamine of formula Ar-CHR-NH₂ (I) and aryl-aldehyde) with a base to **racemise** and then hydrolysing the **Schiff** base. Ar = aryl; and R = alkyl.

USE - The optically active alpha-aryl-alkylamine is useful as an optically resolving agent for obtaining an optically active cpd. from **racemic** carboxylic acids. The s-isomer of the amine of formula (I; Ar = phenyl or methyl-substd. phenyl) is important as the starting material for a strongly sweet cpd..

ADVANTAGE - The method is carried out with safety with a cheap reagent.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: B10-B04B; B11-B; E10-B04C; E11-J

L71 ANSWER 4 OF 10 WPIX (C) 2002 THOMSON DERWENT

AN 1991-247269 [34] WPIX

DNC C1991-107300
 TI **Racemisation** of optically active aminoacid amide(s) - by reaction of amide with carboxylic acid in presence of aldehyde and water.
 DC B05 E14
 IN BOESTEN, W H; BOESTEN, W H J
 PA (STAM) DSM NV; (STAM) STAMICARBON BV
 CYC 19
 PI EP 442585 A 19910821 (199134)*
 R: AT BE CH DE ES FR GB GR IT LI NL SE
 NL 9000387 A 19910916 (199140)
 HU 56531 T 19910930 (199143)
 CS 9100417 A 19910915 (199148)
 EP 442585 B1 19940720 (199428) EN 10p C07C237-20
 R: AT BE CH DE DK ES FR GB GR IT LI NL SE
 DE 69102896 E 19940825 (199433) C07C237-20
 ES 2061155 T3 19941201 (199504) C07C237-20
 SG 9401335 A 19950113 (199513)
 JP 07070027 A 19950314 (199519) 7p C07C237-04
 CZ 280920 B6 19960515 (199627) C07C231-16
 HU 212704 B 19961028 (199702) C07B055-00 <--
 JP 2941444 B2 19990825 (199940) 7p C07C231-16
 KR 167558 B1 19990320 (200042) C07C229-06
 ADT EP 442585 A EP 1991-200307 19910214; NL 9000387 A NL 1990-387 19900216; EP 442585 B1 EP 1991-200307 19910214; DE 69102896 E DE 1991-602896 19910214, EP 1991-200307 19910214; ES 2061155 T3 EP 1991-200307 19910214; SG 9401335 A SG 1994-1335 19940921; JP 07070027 A JP 1991-22138 19910215; CZ 280920 B6 CS 1991-417 19910218; HU 212704 B HU 1991-481 19910213; JP 2941444 B2 JP 1991-22138 19910215; KR 167558 B1 KR 1991-2590 19910213
 FDT DE 69102896 E Based on EP 442585; ES 2061155 T3 Based on EP 442585; SG 9401335 A Previous Publ. EP 442585; CZ 280920 B6 Previous Publ. CS 9100417; HU 212704 B Previous Publ. HU 56531; JP 2941444 B2 Previous Publ. JP 07070027
 PRAI NL 1990-387 19900216
 REP EP 199407; EP 57092; FR 2334659; US 4072698
 IC C07B055-00; C07C231-20; C07C237-20
 ICM C07B055-00; C07C229-06; C07C231-16; C07C237-04; C07C237-20
 ICS C07C023-20; C07C231-20; C07C237-02; C07C237-12; C07C319-20; C07C323-59; C07C323-60
 AB EP 442585 A UPAB: 19931220
 Process for **racemisation** of optically active amino acid amides or **Schiff** bases thereof, comprising (a) reacting an amino acid amide with a carboxylic acid in the presence of a solvent and an aldehyde (b) recovering the salt of the **racemised** amino acid amide and the carboxylic acid. Water is added to the reaction mixt. in an amt. at least equivalent to the amt. of amide and the amt. of aldehyde is 0.5-4 equivs. w.r.t. the amide.
 The amino acid amide is pref. phenylglycine amide, alanine amide, metionine amide or o-chlorophenylglycine amide. Water is added at the beginning of the reaction and the reaction is at 75-100 deg.C. The amt. of water added is 0.5-3 equivs. w.r.t. the amt. of amide and the amt. of aldehyde is 1-2 is 0.5-3 equivs. w.r.t. the amt. of amide.
 ADVANTAGE - The process gives high yields with fast **racemisation**. @ (10pp Dwg.No.0/0)
 FS CPI
 FA AB; DCN
 MC CPI: B10-B02F; E10-B02D1; E10-B02D6; E10-B02D8; E11-J
 ABEQ EP 442585 B UPAB: 19940831
 Process for the **racemization** of an optically active amino acid amide by reacting the amino acid amide with a carboxylic acid in the presence of a solvent and an aldehyde, characterised in that water is added to the reaction mixture and that the quantity of aldehyde amounts to 0.5-4 equivalents relative to the quantity of amino acid amide.
 Dwg.0/0

L71 ANSWER 5 OF 10 WPIX (C) 2002 THOMSON DERWENT
 AN 1991-247268 [34] WPIX
 DNC C1991-107299
 TI Optically active aminoacid amide(s) prepn. - by reaction of aminoacid amide with carboxylic acid in presence of aldehyde and water.
 DC B05 E14
 IN BOESTEN, W H; BOESTEN, W H J
 PA (STAM) STAMICARBON BV; (STAM) DSM NV
 CYC 20
 PI EP 442584 A 19910821 (199134)*
 R: AT BE CH DE ES FR GB GR IT LI NL SE
 NL 9000386 A 19910916 (199140)
 HU 56532 T 19910930 (199143)
 CS 9100418 A 19910915 (199148)
 JP 05178805 A 19930720 (199333) 10p C07C237-06
 EP 442584 B1 19931110 (199345) EN 14p C07C231-20
 R: AT BE CH DE DK ES FR GB GR IT LI NL SE
 TW 211555 A 19930821 (199347) C07B057-00
 DE 69100598 E 19931216 (199351) C07C231-20
 US 5306826 A 19940426 (199416) 8p C07C231-20
 ES 2062660 T3 19941216 (199505) C07C231-20
 CZ 281203 B6 19960717 (199637) C07C231-16
 HU 212703 B 19961028 (199702) C07B055-00 <--
 JP 2854148 B2 19990203 (199910) 10p C07C237-06
 KR 179028 B1 19990515 (200052) C07C231-20
 ADT EP 442584 A EP 1991-200306 19910214; NL 9000386 A NL 1990-386 19900216; JP 05178805 A JP 1991-22137 19910215; EP 442584 B1 EP 1991-200306 19910214;
 TW 211555 A TW 1991-101328 19910221; DE 69100598 E DE 1991-600598
 19910214, EP 1991-200306 19910214; US 5306826 A US 1991-655623 19910215;
 ES 2062660 T3 EP 1991-200306 19910214; CZ 281203 B6 CS 1991-418 19910218;
 HU 212703 B HU 1991-482 19910213; JP 2854148 B2 JP 1991-22137 19910215; KR 179028 B1 KR 1991-2589 19910213
 FDT DE 69100598 E Based on EP 442584; ES 2062660 T3 Based on EP 442584; CZ 281203 B6 Previous Publ. CS 9100418; HU 212703 B Previous Publ. HU 56532;
 JP 2854148 B2 Previous Publ. JP 05178805
 PRAI NL 1990-386 19900216
 REP EP 1821; EP 7834; FR 2173232; FR 2334658; US 4072698
 IC C07B055-00; C07B057-00; C07C231-20; C07C237-20; C07C249-02
 ICM C07B055-00; C07B057-00; C07C231-16; C07C231-20; C07C237-06
 ICS C07C231-22; C07C237-02; C07C237-18; C07C237-20; C07C249-02
 AB EP 442584 A UPAB: 19930928
 Process for prepn. of optically active amino acid amides, characterised by adding water to the mixt. and comprising (a) at least partial conversion of a mixt. of L-amino and D-amino acid amides in a suitable solvent and the presence of an aldehyde and an optically active carboxylic acid to the corresp. amino acid amide and carboxylic acid salt (b) sepn. of a portion contg. mainly one of the diastereo isomers of the salt from the reaction mixt. The amt. of aldehyde is 0.5-4 equivs. w.r.t. the amt. of amino acid amide. The L-amino and D-amino acid amides are opt. the corresp. Schiff bases. The prod. is opt. treated with a mineral acid before sepn.
 Specifically claimed are LD or DL salts of phenylglycine amide and mandelic acid; p-hydroxyphenylglycine amide and mandelic acid; methionine amide and 2-pyrrolidone-5-carboxylic acid; homophenylalanine amide and L-Z-aspartic acid. The amino acid amide is pref. phenylglycine amide or p-hydroxyphenylglycine amide and the carboxylic acid is L- or D-mandelic acid or 2-pyrrolidone-5-carboxylic acid.
 USE/ADVANTAGE - The process is useful for the prepn. of amino acids. E.g. 99.8% optically pure prods. are obtd. with 99% efficiency.
 O/O
 FS CPI
 FA AB; DCN

MC CPI: B07-D03; B10-B02F; E07-D03; E10-B02D; E10-C04D4
 ABEQ EP 442584 B UPAB: 19931220

Process for the preparation of optically active amino acid amide whereby a mixture of the L-amino and D-amino acid amides in a suitable solvent in the presence of an aldehyde is converted in whole or in part, by means of an optically active carboxylic acid, into the salt of the amino acid amide and the carboxylic acid, and a portion mainly consisting of one of the diastereoisomers of that salt is separated from the reaction mixture obtained, characterised in that water is added to the reaction mixture and that the quantity of aldehyde amounts to 0.5-4 equivalents relative to the quantity of amino acid amide, and that the temperature during the conversion is between 70 and 120 deg.C.

Dwg.0/0

ABEQ US 5306826 A UPAB: 19940608

Prepn. of an optically active aminoacid amide comprises (a) (1)mixing together mixt. of corresp. **Schiff** bases of L- and D-aminoacid amides selected from gp. phenylglycine-,p-hydroxyphenylglycine-, methionine- and homophenylalanine-amides, a solvent, an optically active carboxylic acid selected from gp. mandelic, 2-pyrrolidone-5-, and Z-aspartic acids, and 1(+) equiv., of water w.r.t. **Schiff** base to produce the salt of the aminoacid amide and the carboxylic acid.

Alternatively, (2) mixing mixt. of the above L- and D- aminoacid amides with 0.5-4(1) equivs. of an aldehyde, a solvent and water to form the above salt; (b) one of the diastereoisomers of the salt is then sepd. and converted into the corresp. aminoacid amide.

Pref. pressure is 0.01-1 MPa and temp. 70-120 (75-100) deg.C for 1-8 hrs.. The salt may be treated with mineral acid before sepn..

ADVANTAGE - High yields of optically active aminoacid amide or corresp. aminoacid are rapidly obtd..

Dwg.0/0

L71 ANSWER 6 OF 10 WPIX (C) 2002 THOMSON DERWENT
 AN 1991-046443 [07] WPIX

DNC C1991-019607

TI **Racemisation** of optically active halo-aryl-alkylamine(s) - by halogenating to N-halo cpds., dehydrohalogenation, and redn. of **Schiff** bases formed.

DC B05

IN KISS, G; MOZSOLITS, K; TAKACS, K; TOROK, Z
 PA (CHIN) CHINOIN GYOGYSZER ES VEGYESZETI

CYC 1

PI HU 53853 T 19901228 (199107)*

ADT HU 53853 T HU 1989-330 19890126

PRAI HU 1989-330 19890126

IC C07B055-00

AB HU 53853 T UPAB: 19930928

Optically active (halo-aryl)-alkyl-amines of general formula (I) (where R = tri:halo-methyl gp.; R1 and R2 are independently hydrogen atom or 1-5C straight or branched alkyl gps.) are **racemised** by converting them to N-halo cpds. using a halogenating agent of formula (II) (where X = chlorine or bromine atom). The N-halogen cpds. are dehydro-halogenated to **Schiff** bases of formula (III), which on redn. yield **racemic** cpds. of formula (I).

FS CPI

FA AB

MC CPI: B10-B04B

L71 ANSWER 7 OF 10 WPIX (C) 2002 THOMSON DERWENT

AN 1991-046442 [07] WPIX

DNC C1991-019606

TI **Racemisation** of optically active tri-halo-methyl -aryl-alkylamine(s) - by halogenation and redn. of the active cpd..

DC B05

IN AJZERT, I; ECSERYNE, P; HERMECZ, I; KISS, G; MOZSOLITS, K; SZINNYEI, E;
 TAKACS, K
 PA (CHIN) CHINOIN GYOGYSZER ES VEGYESZETI
 CYC 1
 PI HU 53852 T 19901228 (199107)*
 ADT HU 53852 T HU 1989-327 19890126
 PRAI HU 1989-327 19890126
 IC C07B055-00
 AB HU 53852 T UPAB: 19930928
Racemisation of optically active tri:halo-methyl)-aryl)-alkyl-
 amines of general formula (I), (where R = tri:halo-methyl gp. and R1 and
 R2 = independently hydrogen atoms or 1-5C straight or branched alkyl gp.)
 takes place, when the optically active cpd. (I) is treated by a
 halogenating agent of formula (II) (where X = chlorine or bromine atom) to
 yield a **Schiff base** (III). This base yields a **racemic**
 cpd. (I), on redn..
 FS CPI
 FA AB
 MC CPI: B10-B04B
 L71 ANSWER 8 OF 10 WPIX (C) 2002 THOMSON DERWENT
 AN 1991-009425 [02] WPIX
 DNC C1991-004139
 TI Synthesis, inversion, and de-**racemisation** of asymmetric cpds. -
 comprises grafting reactant esp. aminoacid, onto polymer contg. chiral
 gps., treating the graft and then hydrolysing.
 DC A14 A89 B05 E19 J04
 IN CALMES, M; DAUNIS, J; JACQUIER, R
 PA (CNRS) CNRS CENT NAT RECH SCI; (RHON) RHONE-POULENC CHIMI; (RHOD) RHODIA
 CHIM; (RHON) RHONE POULENC CHIM
 CYC 25
 PI EP 406124 A 19910102 (199102)* 10p
 R: AT BE CH DE ES FR GB GR IT LI LU NL SE
 WO 9100303 A 19910110 (199105)
 W: AU BR CA FI HU JP KP KR NO RO US
 FR 2649098 A 19910104 (199109)
 AU 9059679 A 19910117 (199117)
 US 5280093 A 19940118 (199404) 7p C08F226-00
 US 5281750 A 19940125 (199405) 12p C07B057-00
 EP 406124 B1 19991124 (199954) FR C08F220-58
 R: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
 DE 69033361 E 19991230 (200007) C08F220-58
 ES 2138580 T3 20000116 (200011) C08F220-58
 ADT EP 406124 A EP 1990-401899 19900629; FR 2649098 A FR 1989-8679 19890629;
 US 5280093 A Cont of US 1990-545526 19900629, Cont of US 1992-915758
 19920721, US 1993-47001 19930414; US 5281750 A CIP of US 1990-545526
 19900629, Cont of US 1990-636476 19901231, US 1992-976672 19921116; EP
 406124 B1 EP 1990-401899 19900629; DE 69033361 E DE 1990-633361 19900629,
 EP 1990-401899 19900629; ES 2138580 T3 EP 1990-401899 19900629
 FDT DE 69033361 E Based on EP 406124; ES 2138580 T3 Based on EP 406124
 PRAI FR 1989-8679 19890629
 REP 1.Jnl.Ref; EP 300448; FR 2515645
 IC C07B053-00; C07B057-00; C07C229-00; C08F220-58; C08F246-00; C09K019-38
 ICM C07B057-00; C08F220-58; C08F226-00
 ICS C07B053-00; C07B055-00; C07C227-30; C07C229-00; C08F220-36;
 C08F246-00; C09K019-38
 AB EP 406124 A UPAB: 19930928
 Process comprises (A) assymetric synthesis, (B) configuration inversion,
 and (C) **deracemisation**, involving grafting of a reactant onto a
 polymer (I) (itself also claimed) contg. blocks of chiral units (pref.
 50-75%, most pref. 75%), functionalisation units, and opt. crosslinking
 units. Processes (B) and (C) involve treatment of the graft with a
racemising or inverting reactant.

Synthesis of $H_2-N-C(R_1)(R_3)-(CH_2)-COOH$ (II), (where $R_1 = H$, alkyl or aralkyl; $R_3 = alkyl$ or aralkyl, but not = R_1 ; $n = 0$ or 1), comprises (a) reversibly grafting $H_2N-C(R_1)H-(CH_2)_n-COOR_2$ (III) (where $R_2 = 1-5C$ alkyl or aryl) onto (I) by forming a **Schiff's base**; (b) deprotonating (III) with a strong base in an aprotic solvent (pref. THF) at ambient temp. (or pref. at the reflux temp. of THF for 15-240 mins.); (c) alkylating (esp. using R_3X , where $X = Cl$, Br or I), or protonating (esp. with water, alcohol, mineral acid or organic acid) to create an assymetric C atom; (d) hydrolysing this **Schiff's base** to yield (II).

ADVANTAGE - The process is highly selective in producing a single enantiomer. (10op Dwg.No.0/0)

FS CPI

FA AB; DCN

MC CPI: A12-W11L; B04-C03; B10-B02; B11-B; E10-B02B; J04-X

ABEQ US 5280093 A UPAB: 19940307

Polymers obtd. by free radical co-polymerisation of chiral unit(s), and functionising unit(s) having a protective function are new. Each chiral unit is a chiral monomer from one of two stereoisomers, (R and S), having a chiral C and M.W. not above 200, and possessing a double bond for polymerisation spaced at up to 5 (3 or 2) atoms from the chiral C. The chiral unit represents at least 1/2 (3/4) the mole units in the polymer, and if two or more chiral units are copolymerised with the functionalising agent all chiral units are of the same configuration, R or S.

Functionalising agents comprise an aromatic aldehyde, with the chiral monomer and a protective gp. Provided that the chiral monomer is not 1-acryloyl-2-methoxy methylpyrrolidine. Polymers opt. include crosslinking agents. Pref. one functional gp. is capable of hydrogen bonding to a 2nd identical chiral unit, and may be acidic, alcohol amide or amine. (benzaldehyde or aminobenzaldehyde). Typically the chiral monomer is (R)- or (S)-N-acryloyl-prolinol with functionalising agent para-(N-acryloyl-N-methylamino) benzaldehyde, free of methacryloyl. Pref. crosslinking agent is bis(acryloyl)-N,N;- dimethylethylenediamine or bis (acryloyl)-piperidine, with any acryloyl opt. replaced by methacryloyl.

USE - Chiral organic assymetric synthesis of pure enantiomers of amino acids and for changing from one enantiomer to another (**deracemising**). Using these supports synthesis may be done easily at R.T. (or higher), with yields 96-98%.

Dwg.0/0

ABEQ US 5281750 A UPAB: 19940315

Asymmetric synthesis comprises reversibly reacting a prochiral deriv. or enantiomer(s) with a functionalising unit of a support polymerised or copolymerised with chiral unit(s) which may also be a source of the functionalising unit or copolymerised from chiral and functionalising unit(s). The prochiral part of the reacted prochiral deriv. or enantiomer is then converted into a species having a reactive achiral portion. Thermodynamic equilibrium is attained at at least 20 deg. C. giving an assymmetric C atom from the achiral portion of the species and a 2nd species contg. this assymmetric C atom present in 85+(99+) % enantiomeric excess is sepd. from the support. The chiral and functionalising units may be copolymerised in presence of a crosslinking agent. Typically the prochiral deriv. is of formula $H_2N-C(R_1)H(CH_2)_nCOOR_2$ (where n is 0 or 1; R_1 is H and R_2 is 1-5C alkyl o aryl). E.g. the chiral unit is N-acryloylprolinol, prolinolmethyl ether or prolinol and is in R or S form.

USE - Used for asymmetric synthesis, **deracemisation** and optical inversion of organic chiral cpds. The asymmetric synthesis of aminoacids, esp. of formula $H_2N-C(R_1)(R_3)-(CH_2)_nCOOH$ (where R_3 is alkyl or aralkyl), the 2nd species contg. the assymmetric C atom being sepd. from the support by hydrolytic cleavage of the connecting bond.

Dwg.0/0

TI Racemisation of optically active amino acids.

DC B00

PA (AJIN) AJINOMOTO KK

CYC 2

PI FR 1517674 A (196800)*
FR 194 M (196801)
CA 854295 A (197043)

PRAI JP 1962-2811 19620131

AB FR 1517674 A UPAB: 19930831

Process for the racemisation of optically active amino acids by heating with a racemisation catalyst comprising a metallic ion

and a water-insoluble resin containing benzene or heterocyclic groups substd. by CHO with a group in the ortho position allowing chelation of the metallic ion.

Racemisation of unwanted forms of optically active amino acids partic. those arising from resolutions.

The resin is prepnd. (a) by polymerisation of monomers contng. the chelating groups, the CHO groups being protected as

Schiff bases or acetals, and (b) by suitably polymerising o-cresol with formalin and oxidising the methyl to CHO. The

metal ions used are derived from Cu, Al, Fe, Zn, etc. An aqs. soln. of the amino acid at pH >8 and pref 10 is passed over the catalyst at >80 deg. and pref. 100 deg. alpha-amino-acids such as glutamic acid, valine, arginine, phenylalanine, aspartic acid and methionine may be racemised in yields up to 100%.

FS CPI

FA AB

MC CPI: B04-C02; B04-C03; B05-A01B; B05-A03; B10-A17; B10-B02B; B11-B; B11-C

L71 ANSWER 10 OF 10 WPIX (C) 2002 THOMSON DERWENT

AN 1966-29344F [00] WPIX

TI Racemizing optical active amino acid.

DC B00

PA (TOAG) TOA GOSEI CHEM IND LTD

CYC 1

PI JP 42011924 B (196800)*

PRAI JP 1965-29557 19650521

AB JP 67011924 B UPAB: 19930831

Racemisation of optically active amino acids.

Process may be applied to a pharmacologically inactive optical isomer to convert it to the pharmacologically active racemate e.g. D-methionine to DL-methionine.

The amino acid is mixed with 5-30 mol.% of a salt of oxalacetic acid (I) together with metal ions e.g. of Cu, Fe, Al or Ni at pH 3-10, pref. 4-7 in aqueous/alcoholic solution at 50-140 deg.C, pref. 80-110 deg.C. The reaction scheme is as follows:

The metal ions form a chelate with the Schiff's base and increase the effect of racemisation.

FS CPI

FA AB

MC CPI: B10-B01B; B10-B02B; B10-C02; B11-C; B12-J01

=> d his

(FILE 'HOME' ENTERED AT 12:06:11 ON 08 JUL 2002)
SET COST OFF

FILE 'HCAPLUS' ENTERED AT 12:06:23 ON 08 JUL 2002
E HOF R/AU

L1 92 S E3,E6,E9-E11,E13
 E HERMSEN P/AU
 L2 2 S E4,E5
 E DE BODE R/AU
 L3 7 S E3,E4
 E DEBODE R/AU
 E DSM/PA,CS
 L4 3490 S E3,E4
 L5 99 S L1-L3
 E RACEMIZATION/CT
 E E3+ALL
 L6 2539 S E4
 E E7+ALL
 L7 984 S E5,E4
 E RACEMIZATION/CT
 E E7+ALL
 L8 217 S E4,E5,E3
 E RACEMIZATION/CT
 E RACEMIZATION/CW
 L9 3112 S E3
 L10 1 S L5 AND L6-L9
 L11 2 S L4 AND L6-L9
 L12 3 S L10,L11
 L13 5 S L5 AND RACEMI?
 L14 5 S L10,L13
 E SCHIFF/CT
 E E19+ALL
 L15 8039 S E5
 L16 11132 S E5+NT
 L17 77 S SHIFF?(L)BASE
 L18 24674 S SCHIFF?(L)BASE
 L19 541 S SCHIFF?(L)BASIC
 L20 39 S L15-L19 AND L6-L9
 L21 297 S L15-L19 AND RACEMI?
 L22 297 S L20,L21
 L23 72 S L22 AND ENANTIOM?
 L24 110 S L22 AND (AMINOACID OR AMINO ACID OR PROTEIN OR ?PEPTIDE?)
 L25 81 S L22 AND (AMINO ACID? OR PROTEIN? OR PEPTIDE?)/SC,SX
 L26 124 S L24,L25
 L27 79 S L22 AND ENANTIO?
 L28 41 S L23,L27 AND L26
 E BASE/CT
 E E66+ALL
 L29 1 S E1+NT AND L26
 E BASES/CT
 L30 1 S L26 AND (E20 OR E22 OR E23 OR E24)
 L31 5 S METAL(L)(ALKOXIDE OR ALKYL OR AMIDE OR HYDRIDE) AND L22
 E METAL ALKOXIDE/CT
 E E4+ALL
 L32 16304 S E3,E4,E2+NT
 E METAL ALKYL/CT
 E E47+ALL
 L33 26589 S E2+NT
 L34 2 S L32,L33 AND L22
 L35 6 S L29-L31,L34
 L36 1 S L14 AND L15-L35
 L37 6 S L35,L36
 SEL DN AN 2 6
 L38 4 S L37 NOT E1-E6
 L39 39 S L28 NOT L35-L38
 L40 23 S L39 AND 34/SC
 L41 16 S L39 NOT L40
 E AMIDES/CT

L42 11 S L22 AND (AMIDE# OR AMINE#)/CW
 SEL DN AN 1 4 5 6
L43 4 S L42 AND E1-E12
L44 4 S L37 NOT (LIGAND OR COMPLEX)/TI
L45 6 S L43,L44
L46 6 S L45 AND L1-L45
L47 44619 S L6-L9 OR ?RACEM?
L48 341 S L47 AND (SHIFF OR SCHIFF) (L) (BASE OR BASIC?)
L49 2 S L48 AND L32,L33
L50 8 S L48 AND METAL?(L) (ALKOXIDE OR ALKYL OR AMIDE OR HYDRIDE)
L51 9 S L49,L50
L52 11 S L46,L51
L53 8 S L52 NOT (LIGAND OR COMPLEX)/TI
L54 8 S L53 AND L1-L53
L55 4 S L24,L25 AND L54
L56 8 S L54,L55

FILE 'HCAPLUS' ENTERED AT 12:35:02 ON 08 JUL 2002

FILE 'REGISTRY' ENTERED AT 12:38:21 ON 08 JUL 2002

L57 1 S 865-47-4
L58 1 S 381724-98-7
L59 1 S 381724-99-8
L60 3 S C13H18N2O/MF AND BUTANAMIDE AND 46.150.18/RID

FILE 'HCAPLUS' ENTERED AT 12:39:51 ON 08 JUL 2002

L61 1 S L58 OR L59

FILE 'REGISTRY' ENTERED AT 12:40:17 ON 08 JUL 2002

FILE 'WPIX' ENTERED AT 12:40:41 ON 08 JUL 2002
 E EP1167347/PN

L62 1 S E3
L63 325 S C07B055/IC, ICM, ICS, ICA, ICI
L64 7 S L63 AND (SCHIFF? OR SHIFF?)
L65 7 S L62,L64
L66 37 S ?RACEM? AND (SCHIFF? OR SHIFF?)
L67 31 S L66 NOT L65
L68 9 S L67 AND ?METAL?
 SEL DN AN 8 9
L69 2 S L68 AND E1-E2
 SEL DN AN L67 11
L70 1 S E3-E4
L71 10 S L65,L69,L70 AND L62-L70

FILE 'WPIX' ENTERED AT 12:53:36 ON 08 JUL 2002

FILE 'DPCI' ENTERED AT 12:54:12 ON 08 JUL 2002
 E EP1167347/PN
 E NL1015495/PN
 E US2001056209/PN