DISTRIBUIÇÃO NORMAL

A distribuição normal, também conhecida como distribuição gaussiana, é uma das distribuições de **probabilidade** mais importantes na estatística.

É fundamental em estatística e ciência de dados, permitindo a modelagem e análise de uma ampla gama de fenômenos e processos. Ela fornece um arcabouço teórico sólido para muitos métodos estatísticos e é amplamente utilizada em várias disciplinas científicas e industriais.

FORMATO:

Ela é caracterizada por sua forma de sino, simétrica em relação à média, onde a maior parte dos dados está concentrada perto da média e os valores mais extremos são mais raros à medida que se afastam da média. Esse gráfico é conhecido como Histograma.

CARACTERÍSTICAS

- Geralmente representada pela letra N
- Valores simétricos: Media = Mediana
- Muitos eventos do dia dia tem comportamento bem próximo a distribuição normal.
- Exemplos: Alturas, Notas, Idades

Ela é caracterizada por sua forma de sino, simétrica em relação à média, onde a maior parte dos dados está concentrada perto da média e os valores mais extremos são mais raros à medida que se afastam da média.

EXEMPLO PRÁTICO:

Suponhamos que temos uma loja Online de produtos cosméticos e queremos entender a distribuição das idades dos nossos clientes, será que alguma faixa de idade indica uma probabilidade maior de ser cliente?

Através do gráfico da distribuição conseguiremos identificar se o comportamento se assemelha a distribuição normal.

Entendam que, se a distribuição não for simétrica significa que ações voltadas a X faixa etária não serão eficazes na nossa empresa, essa é uma informação relevante.

DISTRIBUIÇÃO NORMAL - FÓRMULA

Além de nos permitir uma análise assertiva e completa da distribuição dos dados a distribuição normal nos ajuda a calcular probabilidades, quando sabemos apenas a média e a variância dos dados:

Calma, não iremos ter que integrar essa equação, já temos formas mais simples de calcular a probabilidade através da normal.

NORMAL PADRÃO:

Uma curva com valores especiais:

$$\mu = 0$$

 $\sigma = 1$ Z - NORMAL (0;1)

NORMAL PADRÃO

Nós temos conhecidos todos os valores da normal padrão, onde a média é 0 e a variância é 1.
Os valores estão dispostos na tabela ao lado!

Se queremos a probabilidade de Z ser <= a 0.1: Probabilidade = 0.0398

Se queremos a probabilidade de Z ser <= a 0.33: Probabilidade = 0.1294

Mas como calcular a probabilidade para valores fora da normal padrão?

$$Z = \frac{(x-\mu)}{\sigma}$$

Para quando a media e a variância não forem 0 e 1 respectivamente. Distribuição Normal Padrão: Valores de p tais que P(0≤Z≤z₂) = p

	Segunda casa decimal de z _e											
	0	1	2	3	4	5	6	7	8	9		
0,0	9,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359		
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753		
0,2	0,0793	0,0832	0,0871	0.0010	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141		
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517		
0,4	0,1554	0,1591	0,1628	9.1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879		
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224		
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549		
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852		
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133		
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389		
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621		
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830		
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015		
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177		
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319		
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441		
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545		
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633		
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706		
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767		
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817		
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857		
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890		
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916		
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936		
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952		
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964		
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974		
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981		
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986		
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990		
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993		
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995		
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997		
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998		
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998		
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999		
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000		

Tabela gerada pela função DIST.NORMP() do Excel

DISTRIBUIÇÃO NORMAL - FÓRMULA

Imaginem que a **média** da idade dos nossos clientes **é 32 anos** e a **variância** das idades de **0.81**.

Sabendo que as idades seguem a distribuição normal qual a probabilidade de um cliente **ter ATÉ 35 anos**?

Probabilidade do nosso X (idade) <= 35 Iremos padronizar para usar a equação simplificada do slide anterior.

$$Z = \frac{(x-\mu)}{\sigma}$$
P ($\frac{X-32}{0.9}$) <= $\frac{35-32}{0.9}$
P ($Z <= 3.33$)

				Segunda o	asa decir	nal de z.				
	0	1	2	3	4	5	6	7	8	9
0.0	0,0000	0.0040	0,0080	0.0120	0,0160	0.0199	0.0239	0,0279	0.0319	0.0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,151
0.4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0.5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,417
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,444
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,481
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,485
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,499
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,499
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
					100000000000000000000000000000000000000					

0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0,5000 0,5000

3,9 0,5000

0,5000

DISTRIBUIÇÃO NORMAL - FÓRMULA

Imaginem que a **média** da idade dos nossos clientes **é 32 anos** e a **variância** das idades de **0.81**.
Sabendo que as idades seguem a distribuição normal qual a probabilidade de um cliente **ter ATÉ 35**

Probabilidade do nosso X (idade) <= 35 Iremos padronizar para usar a equação simplificada do slide anterior.

$$Z = \frac{(x-\mu)}{\sigma}$$
P (X-32) <= 35-32
0.9
0.9
P (Z <= 0.33)

Probabilidade = 49.9%