MF_EBD_PROJETO_DE_INSTALAÇÕES_DE_ SISTEMAS_FOTOVOLTÁICOS

ORIENTAÇÕES GERAIS, LICENÇA E CRÉDITOS.

Objetivo Geral

Este manual visa facilitar a qualificação profissional de jovens e adultos para trabalhar como Instaladores de sistemas fotovoltaicos.

Este manual segue os termos e condições da Licença Creative Commons Atribuição-Uso Não-Comercial-Compartilhamento pela mesma Licença 4.0 Brasil.

Você pode:

Copiar, distribuir, exibir e executar a obra

Criar obras derivadas

Sob as seguintes condições:

Atribuição — Você deve dar crédito ao autor original, da forma especificada pelo autor ou licenciante.

Uso Não-Comercial — Você não pode utilizar esta obra com finalidades comerciais.

Compartilhamento pela mesma Licença — Se você alterar, transformar, ou criar outra obra com base nesta obra, mas você somente poderá distribuir a obra resultante sob uma licença idêntica a esta.

Dimensionamento de um sistemas fotovoltaico, por Oliveira Junior, P.E. em 15/04/2024 Contato: missao.filosofica@gmail.com

O Professor Oliveira Junior, P.E. é pós-graduado em Engenharia elétrica com ênfase em instalações elétricas residenciais, especialista em Administração e Supervisão Escolar, especialista em Planejamento e uso do Solo Urbano, graduado (licenciatura) em Ciências Sociais, graduado (licenciatura) em Computação e Técnico em Eletrotécnica. Atualmente é Professor de Sociologia e Filosofia - Ensino Médio - SEEDUC/RJ, Instrutor de Instalações elétricas prediais e Sistema fotovoltaicos

residenciais - FAETEC/RJ.

Mensagem do professor:

-Instalador/montador de sistemas fotovoltaicos, espero que este material possa te ajudar!

PROJETO FOTOVOLTAICO

A base de conhecimento para o dimensionamento de uma usina residencial encontra-se em https://oliveirajpe.github.io/missaoEletrica/ .

O processo deve se iniciar com o levantamento de dados para a análise de viabilidade técnica.

Neste exemplo vamos considerar a residência (Padrão LIGHT trifásico) com uma água, recortada, Telhado em L – metálico trapezoidal com 22.801º de angulação, voltada para o norte geográfico, Rua x, nº95, Seropédica-RJ – Aplique endereço ao Google Earth e encontre as coordenadas: 22.801ºS; 43.649ºO.

DIMENSIONAMENTO DE UM SISTEMA PV - 01

Determine o tipo: (X) OnGrid () OffGrid ()Híbrido

Gerador Fotovoltaico Fonte de energia elétrica Esquema Genérico Quadro de Distribuição Rede Elétrica Medidor de energia (bidirectonal)

1º Passo: De posse das contas.

Com base nas últimas 13 contas mensais de energia elétrica calcule o consumo mensal médio.

Casa A – kWh/mês									
fev	525								
mar	506								
abr	526								
mai	293								
jun	263								
jul	231								
ago	201								
set	245								
out	298								
nov	279								
dez	334								
jan	364								
fev	463								
Média = Soma /13 =	348,3								

Este cliente apresentou a intenção de aumentar seu consumo com um ar condicionado de 12000BTUs (acréscimo de 175kWh/mês) e em 200kWh/mês. O Cliente concluiu que a melhor opção para ele é manter o TUSD no dimensionamento, pois caso tenha sobras (créditos acumulados), irá destinar a outra residência que possui na mesma titularidade.

OPCIONAL

Como o projeto em questão se encaixa na aplicação microgeração pode-se descontar o TUSD ou mantê-lo para crédito – LEI 14300.

I – 30kWh, se a instalação elétrica é monofásica ou bifásica a (dois) condutores.

II – 50 kWh, se a instalação elétrica é bifásica a 3 (três) condutores.

III – 100 kWh, se a instalação elétrica é trifásica.

Novo Consumo = Consumo mensal - TUSD = 548 - 0 = 548 kWh/mês

Logo o consumo considerado no dimensionamento será de 548 kWh/mês.

2º Passo - Determinar média diária

Consumo médio diário de energia (MÉDIA- kWh/mês / 30dias) = 548 / 30 = 18,27 kWh/dia

3º Passo: HSP / ISDMM

De posse do endereço, encontre as coordenadas geográfica (22.801°S; 43.649°O), do imóvel no <u>GOOGLE EARTH</u>, acessar http://www.cresesb.cepel.br/sundata/index.php para verificar a irradiação solar no plano Horizontal 0°, a ser utilizada de acordo com a localização da edificação.

É possível tirar as medidas do telhado pelo aplicativo GOOGLE EARTH ou MAPS.

Cálculo no Plano Inclinado

Estação: Seropedica

Município: Seropedica , RJ - BRASIL

Latitude: 22,801° S Longitude: 43,649° O

Distância do ponto de ref. (22,822778° S; 43,675° O) :3,6 km

١.	Distancia do ponto de rei. (22,622176 3, 45,675 0) .5,0 kili																
i	#	Ângulo	Inclinação	Irradiação solar diária média mensal [kWh/m².dia]													
il	*		Inciniação	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média	Delta
i	/	Plano Horizontal	0° N	5,97	6,23	5,03	4,48	3,64	3,37	3,39	4,26	4,37	4,99	5,06	5,82	4,72	2,86
Н	~	Ângulo igual a latitude	23° N	5,39	5,93	5,17	5,08	4,48	4,36	4,28	5,02	4,64	4,87	4,65	5,18	4,92	1,66
H	✓	Maior média anual	20° N	5,49	6,01	5,18	5,03	4,40	4,26	4,19	4,96	4,63	4,92	4,73	5,29	4,92	1,82
Ì	~	Maior mínimo mensal	30° N	5,10	5,71	5,09	5,14	4,63	4,56	4,44	5,13	4,61	4,73	4,43	4,88	4,87	1,27

Foto tirada na visita técnica para análise de viabilidade.

Plano de inclinação dos módulos fotovoltaicos = 22.801°N, ~ entre 22° e 23°. Irrad. solar diária média anual no plano (arred. p/Crecesb) dos módulos (23°) = **4,92 (kWh/m2.dia)** ISDMM ou HSP (h) — Valor diário (médio anual) da HSP no plano horizontal = **4,72 Kwh/m². dia**

4º Passo – Determinar a potência da Usina.

Calcular a Potência (E) que o arranjo fotovoltaico deve gerar para atender o consumo diário da carga, a seguinte equação deve ser utilizada:

 $E = (kWh/dia) / (TD \times ISDMM) = 18,27 kWh/dia / 4,72 x 0,75 = 5,16 kWp$

Sendo:

E: Potência do sistema (kWp);

ISDMM ou HSP (h) - Valor diário (médio anual) da HSP no plano horizontal

TD: Taxa de Desempenho (adimensional), usamos a média 25% - 0,75 de eficiência.

O nosso sistema de testes, que não opera as perdas, chegou a seguinte proposição, com módulos de 580Wp

Vamos comparar com as decisões analógicas a que podemos tomar, para confirmar se essa é a melhor opção. Considere a observação para o inverso (20%) – que poderá variar de 4,2kWp (08 painéis de 580Wp) ~ 6,3kwp (11 painéis de 580Wp).

5º Passo. Escolher módulos e determinar o número de módulos fotovoltaicos e Dimensionar o Inversor

Podemos proceder de duas formas: Informar a integradora os dados de potência e tipo de telhado, e deixar ela montar o kit, ou fazer todos os cálculos.

Consulte o fornecedor de sua preferência. Neste exercício consultamos: BUYERS/SOLAR e NEOSOLAR.

DATASHEETS BUYERS

1)https://www.buyersenergy.com.br/produtos/kit-solar-448-kwp-inversor-growatt-8-modulos-de-560wp/2)https://www.buyersenergy.com.br/produtos/kit-solar-560-kwp-inversor-growatt-10-modulos-de-560wp/

DATASHEETs NEOSOLAR

- 3) https://www.neosolar.com.br/loja/kit-gerador-energia-solar-2-32kwp-micro-inversor-deye-sun2250-g4-osda-580wp.html
- 4) https://www.neosolar.com.br/loja/kit-gerador-energia-solar-0-55kwp-micro-inversor-deye-sun2250-g4-renesola-555wp.html

5.1. Comprar Kit montado para os parâmetros 5,16KWp.

- 1) Kit Solar 4,48 kWp Inversor Growatt 8 módulos de 560Wp. R\$9.617,62 Simulação: gera em média 570kwh/mês.
- 2) Kit Solar 5,60 kWp Inversor Growatt 10 módulos de 560Wp. R\$11.489,79 - Simulação: gera em média 713kwh/mês.
- 3) Kit Gerador Energia Solar 2,32 kWp 04 módulos de 580Wp Microinversor Deye c/ Wifi SUN2250 Painel OSDA 02 KITS = R\$ 8.198,00 - Simulação: gera em média 556 kwh/mês.
- 4) Kit Gerador Energia Solar 2,32 kWp 04 módulos de 580Wp Microinversor Deye c/ Wifi SUN2250 Painel OSDA 02 KITS = R\$ 8.198,00 + Kit Gerador Energia Solar 0,55 kWp 01 módulo de 555Wp Microinversor Deye c/ Wifi SUN2250 Painel ReneSola R\$2249,00 Simulação: gera em média 622 kwh/mês.

Considerando o aumento de 200kWh/mês ser reserva para aumento de consumo, ou seja, a usina de 3,3kWp original cresceu para 5,22Kwp (após ajuste), gerando um acréscimo de produção de 1,95kWp e a simulação favorável de 556kWh/mês feita pela empresa, e a possibilidade de aumento de na produção de modo fácil. Considerando a possibilidade futura de aquisição de mais um micro, já que o seu datasheet (https://www.neosolar.com.br/loja/micro-inversor-deye-sun2250-g4-monofasico-2250w-220v-mlpe-e-wi-fi-integrado.html), indica um máximo de 03 microinversores em série no tronco de saída. O cliente, após a exposição das alternativas, preferiu diminuir a produção para 4,64kWp, ou seja, produzir sobreprodução de 1,36kWp, optando pela solução 03, mais barata.

5.2. E se comprássemos as peças do Kit separado para os parâmetros 4,64KWp?

Especificação do módulo: Placa Solar Fotovoltaica 580W - OSDA ODA580-36V-MHD

Potência nominal em Wp = 580Wp - 144 células - Monocristalino -

Módulo: Vmp=43,37V, Voc= 51,06V, Imp.= 13,69A, Isc= 14,46A,

Eficiência do módulo (%) = 22,50% Custo do módulo (R\$) = R\$ 679,99

Marca/fabricante: OSDA

Dimensões do módulo: Comprimento - 2,3m, Largura - 1,1m, Espessura - 0,35m, Área - 2,58m²

Garantia – 12 anos defeitos e geração de 80% com 25 anos de uso.

Datasheet do módulo - Manter em anexo.

Número total de módulos a serem adquiridos = P(kWp)/P(kWpmódulo) = **4,64kWp / 580Wp = 8 Módulos**

Ajuste da Potência da USINA = Soma (kWp dos mádulos): 8 x 580 kWp = 46,4kWp

08 - Módulos 580W - OSDA ODA580-36V-MHD = R\$679,00 x 8 = R\$5432,00

5.3. Inversor

- a) É possível usar inversores de menor potência. Para isto, calcule quantos inversores irão precisar de forma a dar a potência total necessária (1,2 x potência nominal do arranjo fotovoltaico). Liguem os mesmos em paralelo de tal forma que a voltagem de entrada dos inversores não seja modificada (permaneça igual a tensão de saída do arranjo fotovoltaico).
- b) Outro método considera a potência do gerador PV entre outros a serem avaliados. O Fator de Dimensionamento de Inversores (FDI): FDI =PNca(W) / PFV (Wp), onde: PNca: Potência nominal em corrente alternada do inversor (W); PFV: Potência pico do painel fotovoltaico (Wp). Os FDI recomendados por fabricantes situam-se na faixa de 0,75 a 0,85, já o limite superior é de 1,05.

Dimensionamento do Inversor.

- a) Growatt MIN4200TL-X= $1.2 \times 4.64 = 5568Wp < 5880Wp = R$ 4456.90$
- b) Growatt MIN3600TL-X= $1.2 \times 4.64 = 5568Wp > 5040Wp = R$ 3699,00$
- c) FDI = PNca(W) / PFV (Wp) = 4200W / 4640Wp = 0.90.
- d) FDI = PNca(W) / PFV (Wp) = 3600W / 4640Wp = 0.77.

https://drive.google.com/file/d/1mNXIBKH-cq_KoO_LtueVb4i2uHYZv23J/view DataSheet: Preços:https://www.innotechvision.com.br/produtos/inversor-growatt-4200/?variant=788279084&pf=mc&srsltid=AfmBOorHaHQ25mk7NJ3 Ugm6kG1Z59gBFRt5itZkb pWlq7U1WfrAWSaUC0k

03 - MicroInversor = Microinversor Deve SUN2250 G4 Monofásico 2250W - 220V - MLPE e Wi-Fi Integrado, Entrada de 600Wmax por módulo – R\$ 2139,00 x 2 = R\$ 4.278,00.

Obs.: O modelo 03 com microinversores compensa mais do que a aquisição de inversor.

04 - Kit pata telhado metálico - mini trilho 1 painel - R\$ 78,00 X 9 = R\$702,00 https://produto.mercadolivre.com.br/MLB-3484299893-estrutura-suporte-fixa-painel-solar-telhametalica-1-painel- JM?variation=#reco item pos=1&reco backend=recommplatform_ranker_v2p&reco_backend_type=low_level&reco_client=vip-v2p&reco_id=198fa233b108-4ab2-b230-9849f665136c

Comparativo:

Parcial Separado: 10.412,00 Parcial KIT: 8.198,00

OBS: Alguns inversores comerciais admitem uma faixa de tensão de operação (VCC de entrada).

Conclusão

Potência mínima do Microinversor (2 x 2250) >= 4500W

Potencia máxima por MPPT = 600W

Arranjo 01 Norte: 4640 kWp

Determine a saída: ()127VCA (x)220VCA (X)380 VCA (x)02 Fases ()03 Fases Especificação dos inversores escolhidos: Microinversor Deye SUN2250 G4 Monofásico 2250W -

220V - MLPE

Quantidade de MPPT: 8. Número de Microinversores: 02

Nº máximo de microinversores nem série no tronco: 03.

Imp por MPPT = 18A

Faixa de operação por MPPT: 25 - 55Vcc Saída - Vn = 220Vca, Imax=10,3 Aca

Rendimento (%) - 96,5%

Datasheet do inversor – Manter em anexo.

6º Passo – Escolher área do telhado para instalação do arranjo. (Caso não seja possível alocar o arranjo, refaça a escolha dos módulos e recalcule).

Área total a ser ocupada pelos módulos: 8 x 2,58 = 20,64 m² O sistema sugeriu 28m² de área livre.

Área da água 01 – ABA 1 – SW: 18,1 x 6,5 = 117,65m²

Área da água 01 – ABA 2 – SW: 9 x 6 = 54m²

Área total = 171,65m² - Área viável para instalação Desenhar Layout do arranjo sobre o telhado.

7º Proteção e cabos de saída.

Não é necessário dimensionar o cabo e String box CC, devido ao uso de Microinversores.

Conforme a NBR5410, nas tabelas de **36 à 39** NBR5410. Encontre no datasheet do inversor a sua máxima corrente e determine a corrente do projeto: Iz = ICondutor x K1 x k2 x k3.

A instalação é do tipo B1: Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto. PVC 70º.

Onde

K1 – Fator de correção de temperatura

K2 - Fator de correção de agrupamento.

K3 – Fator de correção de resistividade do solo

Tabelas 40, 41 e 42 NBR 5410

Pmáx = 600W X 8 = 4800W

IB = 4500/220 = 20,45A

5.3.4.1 NBR5410 - Para que a proteção dos condutores contra sobrecargas fique assegurada, as características de atuação do dispositivo destinado a provê-la devem ser tais que:

a) $IB \le In \le Iz$;

 $k1(40^{\circ}) = 0.87, k2 = 1, k3=1.$

Use a tabela 36 da NBR5410 e encontre o condutor mais próximo de IB = 20,45A - 2,5mm²(24A).

Aplique os fatores de correção: $Iz = Icondutor \times k1 \times k2 \times k3 = 24 \times 0,87 \times 1 \times 1 = 20,88A$ IB = 20,45A <= In - Disjuntor <= Iz - 20,88A - Não é possível usar esse condutor.

Testar o condutor 4mm²(32A)

Aplique os fatores de correção: Iz = Icondutor x k1 x k2 x k3= 32 x 0,87 x 1 x 1 = 27,84A IB = 20,45A <= In - Disjuntor - 25A <= Iz - 27,84A

b) 12 <=1,45 lz - Nota -5.3.4.1 NBR5410 - NÃO SE APLICA A NOSSO CASO -

A condição da alínea b) é aplicável quando for possível assumir que a temperatura limite de sobrecarga dos condutores (ver tabela 35) não venha a ser mantida por um tempo superior a 100 h durante 12 meses consecutivos, ou por 500 h ao longo da vida útil do condutor. Quando isso não ocorrer, a condição da alínea b) deve ser substituída por: I2

ou seja:

4mm² (32A → corrigido para 27,84A) | 2 x 1,45 >= | z --- 25 x 1,45 >= 27,84 --- $\frac{36,25}{27,84}$ 6mm² (41A → corrigido para 35,67A) | 2 x 1,45 >= | z --- 25 x 1,45 >= 35,67 --- $\frac{36,25}{27,84}$ 10mm² (57A → corrigido para 49,59A) | 2 x 1,45 >= | z --- 25 x 1,45 >= 45,59 --- 36,25 >= 45,59

Onde:

IB - é a corrente de projeto do circuito;

Iz - é a capacidade de condução de corrente dos condutores, nas condições previstas para sua Instalação;

In - é a corrente nominal do dispositivo de proteção (ou corrente de ajuste, para dispositivos ajustáveis), nas condições previstas para sua instalação;

I2 - é a corrente convencional de atuação, para disjuntores, ou corrente convencional de fusão, para Fusíveis.

Queda de tensão: 4%.

Método 2 - Circuitos Monofásicos

 $Sc = (2 \times 100) \times \rho \times (\Sigma l \times lB) / \Delta Vc \times V$ ou $Sc = [2 \times \rho \times 1 / e(\%) \times V^2] \times (\Sigma L \times P)]$

$Sc = 200 \times 1/58 \times (15m \times 20,45) / 4 \times 220 = 1,2mm^2$

Onde

- Sc: seção em mm2;
- ∘ ∆Vc : queda de tensão máxima, em % (exemplo 3 para 3%);
- ∘ *V* : tensão em V;
- · I : comprimento do circuito, em m
- · IB: corrente de projeto, em A;
- \circ ρ : resistividade do material condutor = cobre = 1/58 Ω .mm2/m
- P = potência consumida em watts;
- e% = queda de tensão percentual/100 (exemplo 0,03 para 3%);
- o para trifásico troque 2 por 1,73.

Logo, ficaremos com 03 Condutores de 4mm², Disjuntor de 25A Bipolar, DPS (TAB 49 >=1,1U) classe II 275V. Condutores carcaça e equipotenciais 6mm² ou 16mm² mínimo e Proteção UV

8ºPasso- Lista de Material

Quant	Descrição	Fornecedor	Preço
2	Kit Gerador Energia Solar 2,32 kWp - 04 módulos de 580Wp	NEOSOLAR	R\$ 8.198,00
	- Microinversor Deye c/ Wifi SUN2250 - Painel OSDA		
1	https://www.lojaclamper.com.br/clamper-front-box-275v-20ka-	Clamper	R\$ 279,90
	<u>2p-25a-ip65/p</u> STRING BOX CA		
Total			R\$8477,00

8º Passo - Cálculo da viabilidade econômica:

A) KITs PV Completo:......R\$8.198,00 + R\$279,90 = R\$8477,00

Preço dos inversores: R\$
Kits de fixação... R\$
Kits de junção de trilho. R\$
STRING BOXCC e CA... R\$
Conectores MC4... R\$
Cabos Solares. R\$

- B) Mão de obra: R\$800,00 (Média de R\$100,00 por placa)
- C) Custo de instalação (Cabos, Disjuntores, quadro de distribuição, Material de aterramento, DPS, Eletrodutos, Conduletes, parafusos, miscelâneas) = R\$1230,00 (R\$ = 15% x kWp USINA)

- D) Homologação: R\$1000,00 até 5kWp ou 20%kWp se superior (15/12/23). R\$1000,00
- E) Margem de lucro: 20% sobre o custo total:R\$11507,00 x 20% = 2301,40.
- F) Tarifa de energia elétrica (R\$/kWh) R\$ 1, 12

Cálculo do Custo do investimento (CI) a ser realizado no projeto (\$):

$$CI = A + B + C + D + E = R$13808,40$$

Custo do kWp instalado (R\$) = CI (R\$) / potência total instalada em kWp = 13808,40 / 4,64 = 2975,9 R\$/kWp

Cálculo do custo anual da energia gerada (CG anual - R\$/kWh)

 $CGanual(R\$/kWh) = (CI \times FRC + CO\&Manual) / EGanual$

Ex.: Usina de 13808,40 Reais e 4,64kWp

 $(13808,40 \times 0,134 + 138,1) / 7993,792 = 1988,42/7993,792 = R$0,24/KWh$

Onde:

CI – Investimento realizado (R\$)

FRC – Fator de recuperação do capital investido - Transforma CI em uma série uniforme de custos ao longo da vida útil do sistema, levando em conta o valor do dinheiro no tempo (taxa de desconto).

$$FRC(i,n) = \frac{i.(1+i)^n}{(1+i)^n - 1}$$
 Ex.:Taxa de desconto12%(Fixo)
FRC (i, n) = 0,12(1+0,12) ²⁰ / (1+0,12)²⁰ -1 = **0,134**

Sendo:

i - taxa de desconto (12%)

n - vida útil do sistema (20 anos)

CO&M anual - custo anual de operação e manutenção (R\$/ano) = considerar 1% do CI.

EG anual (kWh) - Energia anual gerada pelo sistema fotovoltaico = Número total de módulos x Potência do módulo(kWp) x HSP (horas/dia) x 365 dias = 8 x 0,58 x 4,72 x 365 = 7993,792(kWh/ano)

Comparar CG anual (R\$/kWh) com a tarifa de energia elétrica da concessionária (R\$/kWh)

O custo para gerar 1kWh = R\$0,24

O custo de consumo de 1kWh = R\$ 1,12

Diferença (Economia) = 1,12 - 0,24 = R\$0,88 por kWh

Tempo de retorno do investimento = 20 anos / (1,12/0,24) = 4,3 anos.

Considerando o financiamento, a média aumenta para aproximadamente 6,5 anos.

Mantendo a mesma tarifa para média de consumo mensal = $358 \times 1,12 = R$400,96$.

Custo sem o sistema em 20 anos $-7993,792 \times 20 = 159.875,84$ kWh x 1,12 = R\$179.060,94 Custo da geração em 20 anos $-7993,792 \times 20 = 159.875,84$ kWh x 0,24 = R\$38.370,00 Economia em 20 anos = Custo sem sistema - Custo Geração = R\$140.690,94

Considerando o resultado obtido para o CG anual, é viável economicamente investir no projeto deste sistema fotovoltaico? (x)SIM ()Não

DIMENSIONAMENTO DE UM SISTEMA PV - 02

Neste exemplo vamos considerar a residência anterior com telhado inclinado à 10°, voltado para o Oeste geográfico.

Ajustes médios por direção = Ad - Nosso telhado tem leve posicionamento à W =>0,85.

EAd = E(kWp) / Ad = 4,64 / 0,85 = 5,45 kWp

Perda por angulação:

Pa% = \cos (ângulo do módulo – latitude)= $\cos(10 - 22)$ = $\cos -12^{\circ}$ = 0,97~ 97% – Analise posição – Resultado positivo = rendimento de 97% e perda de 3%.

Para gerar 100% - Potência da USINA= EAd+(Ead x Pa) = $5,45+(5,45\times0,03)=5,61\,kWp$

DIMENSIONAMENTO DE UM SISTEMA PV - 03

Neste exemplo vamos considerar a residência anterior com Telhado inclinado à 10º de angulação, voltado para o Sul geográfico.

Ajustes médios por direção = Ad - Nosso telhado tem leve posicionamento à S = >0.53.

EAd = E(kWp) / Ad = 4,64 / 0,53 = 8,75 kWp

Perda por angulação: Sul → Norte

Potência da USINA= EAd+(Ead x Pa) = 8,75+ (8,75 x 1,792) = 24,43kWp

Vamos fazer uma comparação - grosso modo 4,64kWp – 24,43kWp - para economizar tempo. (Você pode cotar todos os materiais e fazer o dimensionamento completo se desejar. O resultado não será à menor. Verificamos açodadamente os preços dos kits para atender essa demanda e variam entre R\$44000,00 e R\$ 65000,00.)

Resultante - 526,5% - logo, Cálculo do custo anual da energia gerada (CG anual - R\$/kWh)

 $CGanual\ (R\$/kWh) = R\$0,24\ R\$/kWh\ (4,64kWp)\ x\ 5,265 = R\$1,26\ R\$/kWh\ (24,43kWp)$ O sistema vai gerar (energia) o mesmo EG anual (kWh) = 7993,792(kWh/ano), Comparar CG anual (R\\$/kWh) com a tarifa de energia elétrica da concessionária (R\\$/kWh)

O custo para gerar 1kWh = R\$1,26

O custo de consumo de 1kWh = R\$ 1,12

Diferença (Economia) = 1,12 - 1,26 = - R\$ 0,14 por kWh

Tempo de retorno do investimento = 20 anos / (1,12/1,26) = 20/0,88 = 22 anos e 8 meses.

Considerando o financiamento, a média aumenta para aproximadamente 30 anos para retorno do investimento, mantendo a mesma tarifa para média de consumo mensal = 358 x 1,12 = R\$400,96.

Para pagamento à vista.

Custo sem o sistema em 20 anos $-7993,792 \times 20 = 159.875,84$ kWh x 1,12 = R\$179.060,94 Custo da geração em 20 anos $-7993,792 \times 20 = 159.875,84$ kWh x 1,26 = R\$ 201.443,55

Prejuízo em 20 anos = Custo sem sistema – Custo Geração = - R\$ 22,382,61.

Considerando o resultado obtido para o CG anual, é viável economicamente investir no projeto deste sistema fotovoltaico? ()SIM (X)Não

DIMENSIONAMENTO DE UM SISTEMA PV - 04

Neste exemplo vamos considerar a residência anterior com telhado inclinado 12º de angulação, voltada para o leste geográfico. As decisões analógicas terão de ser revistas!!!! Logo, retornamos o processo ao passo 04.

4º Passo - Determinar a potência da Usina.

Calcular a Potência (E) que o arranjo fotovoltaico deve gerar para atender o consumo diário da carga, a seguinte equação deve ser utilizada:

 $E = (kWh/dia) / (TD \times ISDMM) = 18,27 kWh/dia / 4,72 x 0,75 = 5,16 kWp$

Sendo:

E: Potência do sistema (kWp);

ISDMM ou HSP (h) - Valor diário (médio anual) da HSP no plano horizontal

TD: Taxa de Desempenho (adimensional), usamos a média 25% - 0,75 de eficiência.

Ajuste de direção leste: Ead=E(kWp)/Ad = 5,16 / 0,85 = 6,07kWp

Outra perda ocorre por angulação:

Pa% = cos (ângulo do módulo – latitude) = cos(12-22) = 0,98 positivo. Use 0,02 Potência da USINA= EAd+(Ead X Pa)= 6,07 + 0,12 = **6,19.kWp**

5º Passo. Escolher módulos e determinar o número de módulos fotovoltaicos e Dimensionar o Inversor

Neste exercício consultamos: BUYERS/SOLAR e NEOSOLAR.

DATASHEETS BUYERS

1) https://www.buyersenergy.com.br/produtos/kit-solar-616-kwp-inversor-solis-11-modulos-de-560wp/

5.1. Comprar Kit montado para os parâmetros 6,16KWp.

- 1) Kit Solar 6,16 kWp Inversor Solis 11 módulos de 560Wp R\$11.801,00
 - a) 11 Módulos Fotovoltaicos TSUN TS560S8B 560Wp 21,7% Eficiência
 - b) 1 Inversor Solar SOLIS
 - c) 1 String Box Compativel com o Sistema
 - d) 3 Kit de Estrutura de Fixação para 4 Módulos (Conforme Telhado Definino no Pedido)
 - e) 60 Metros de Cabo Solar Flexivel 6MM 1,8KV Preto
 - f) 60 Metros de Cabo Solar Flexivel 6MM 1,8KV Vermelho
 - g) 3 Pares de Conector MC4
- 2) Kit Gerador Energia Solar 2,32 kWp módulos de 580Wp Microinversor Deye c/ Wifi SUN2250 Painel OSDA 03 KITS = R\$ 12292,50.

5.2. Comprar Kit separado para os parâmetros: *Provamos no dimensionamento 01 que não vale a pena comprar os itens separados para um único empreendimento.*

Determinar o tipo do inversor (x) Inversor – STRING – opção 1.

Inversor

https://drive.google.com/file/d/1WRHaHVk6iQ1rWKTcdJd4i7 m7Te1KLIP/view

Potência de saída = 6kW

Potência máxima do inversor >= 10,2kWp Arranjo 01 5Mod: 2,8 kWp - MPPT 01 Arranjo 01 6Mod: 3,36 kWp - MPPT 02

Determine a saída: ()127VCA (x) 220VCA (X) 380 VCA (x) 02 Fases () 03 Fases Especificação dos inversores escolhidos: S6-GR1P(2.5-6)K - Solar 6,16 kWp - Inversor Solis.

Quantidade de MPPT: **2.** Número de inversores: 01 Imp por MPPT = 14A

Faixa de operação por MPPT: 90-520Vcc

Tensão Nominal = 330V Saída - Vn = 220Vca, Imax=27,3 Aca

Rendimento (%) - 97,7%

Datasheet do inversor - Manter em anexo.

Especificação do módulo:

Potência nominal em Wp = 560 Vmp = 39,4V; Voc = 46,9V; Imp =10,58A; Isc = 11,26A Eficiência do módulo (%) = 21,7%

Área do módulo (m2) = 2,53m² Custo do módulo (R\$) = Kit

Marca/fabricante: S560S8B - TSUN

https://drive.google.com/file/d/1rYfGp5ZOV0Ldqc9nkrlONO8laDxbjbdb/view

Dimensões do módulo: 2,3 m - Comprimento; 1,1m - Largura.

Datasheet do módulo - Manter em anexo.

Número total de módulos a serem adquiridos = P(kWp)/P(kWpMódulo) = 6,16 / 560 =11Módulos Ajuste da Potencia da USINA 6,19kwp = Soma(kWp dos mádulos): 6,16.kWp

OBS.: O n^0 máximo de módulos em série deve ser; N^0 mód. X Voc < V entrada do inversor. Já a corrente, para séries em paralelo é igual à: n^0 Strings paralelo = Imáxima de entrada do inversor / Isc_mod.

Quantidade de MPPT: 02

Nº máximo de módulos por MPPT:

- a) No mód. X Voc < V entrada do inversor = $6 \times 46.9 < 330V$ = 298 < 330.
- b) nº Strings paralelo = Imáxima de entrada do inversor / Isc_mod. = 14/11,26 = 01 String.
- 6º Passo Escolher área do telhado para instalação do arranjo. (Caso não seja possível alocar o arranjo, refaça a escolha dos módulos e recalcule).

Desenhar Layout do arranjo sobre o telhado.

Área total a ser ocupada pelos módulos: 11 x 2,53 = 27,83 m²

Área da água 01 - ABA 1 - SW: 18,1 x 6,5 = 117,65m²

Área da água 01 – ABA 2 – SW: 9 x 6 = 54m²

Área total = $171,65m^2$

Área viável para instalação

Todos os módulos irão ficar na mesma direção: (x) SIM () NÃO.

7º Proteção e cabos de saída.

Seja o arranjo fotovoltaico com as seguintes características: Cada módulo fotovoltaico:

- Potência máxima: 560 Wp
- Corrente no ponto de máxima potência: Ip = 10,58 A
- Tensão no ponto de máxima potência: Up = 39,4 V
- Corrente de curto-circuito: ISC MOD = 11,26 A
- Número de módulos fotovoltaicos em série = 6/5
- Número de séries no arranjo: 2
- Potência de pico total da instalação: 11 x 560 Wp = 6,16kWp
- Instalação sem proteção contra sobrecorrente
- Temperatura ambiente máxima = 30 °C
- SSA = 2 (2 séries fotovoltaicas)

OBS.: Trechos 1 e 2: Expostos ao sol. Distância 15m.

Trecho 3: O método de instalação escolhido para esta ligação é C.4 (Dois cabos em paralelo em eletroduto não metálico embutido na parede). Temperatura do solo máxima: 30 °C. Distância 02m.

Trecho 4: UCP até QLF - PVC 70º NBR 5410 - Distancia 8m.

Trechos 1 e 2:

a) Dimensionamento dos cabos fotovoltaicos dos trechos 1 e 2 (cabos que interligam os módulos entre si e até a caixa de junção. A possibilidade de corrente de retorno deve ser considerada. Logo:

Conforme a Figura, os módulos estão ligados em série:

 $Ib1 = Ib2 = 1,25 \times ISC S$ -ARRANJO ou $1,25 \times ISC MOD \times SSA = 1,25 \times 11,26 \times 2 = 28,15 A$

O método de instalação escolhido para esta ligação é A.1 (Cabo instalado ao ar livre: Modo 1 - dois cabos unipolares encostados um ao outro, na horizontal). Instalação ao ar livre exposta ao Sol.

Critério da capacidade de corrente - Ampacidade:

Conforme a recomendação da ABNT NBR 16690, deve ser considerado para o dimensionamento dos cabos um valor de 40 °C acima da máxima temperatura ambiente. Assim, para este exemplo, obtém-se, então, 30 °C + 40 °C = 70 °C. Ocorre que a máxima temperatura ambiente nas tabelas anteriores é 60 °C (tabela C.5), sendo que, neste caso, a temperatura no condutor é 120

°C por 20.000 horas, o que representa, de certa forma, uma sobrecarga controlada (autorizada) pela norma, na medida em que a temperatura normal de operação dos cabos é 90 °C. Desta forma, neste exemplo será utilizada a tabela C.4, que embora seja para temperatura ambiente de 50 °C, tem como temperatura no condutor 90 °C, o que implica em valores mais restritos de capacidade de corrente admissível do que a tabela C.5, o que leva o dimensionamento mais a favor da segurança e da preservação da vida útil do cabo.

Conforme Tabela C.4 anterior, para lb1 = lb2 = 28,15 A, Instalação exposta ao Sol, Modo de Instalação 1, a seção nominal do cabo é 6mm².

.

Critério da queda de tensão:

Admitindo-se uma queda de tensão máxima de 2 % nos trechos 1 e 2, tem-se: S = L x lb / σ x e

```
6 módulos x 39,4 V por módulo = 236,4 V L1 = L2 = 15 m + 15 m (positivo + negativo) = 30 m lb1 = lb2 = 28,15 A \sigma = 44 m/\Omega.mm2 e = 0,02 (2 %) x 236,4 V = 4,73 V
```

Então:

 $S = 30 \times 28,15 / 44 \times 4,73 = 4,05 \text{mm}^2 \sim 6 \text{ mm}^2$

.

Seção final do cabo fotovoltaico (trecho 1 e trecho2) é 6 mm2.

Dimensionamento dos cabos fotovoltaicos do trecho 3 (cabos da caixa de junção até o inversor):

Trecho 03:

Conforme Figura, a corrente de projeto no trecho entre a caixa de junção e o inversor é a soma das correntes de cada série de módulos e a tensão máxima é a mesma de cada conjunto.

Portanto:

```
lb3 = lb1 + lb2 = 28,15 + 28,15 = 56,3 A
Vt = 236,4 V
```

O método de instalação escolhido para esta ligação é C.4 (Dois cabos em paralelo em eletroduto não metálico embutido na parede). Temperatura do solo máxima: 30 °C.

Critério da capacidade de corrente:

Conforme Tabela C.10, para IB3 = 56,3 A, temperatura 30 °C, a seção nominal do cabo é 10 mm2.

Critério da queda de tensão:

Admitindo-se uma queda de tensão máxima de 1% no trecho 3, tem-se: S = L x lb / σ x e

Onde:

```
L=2 m + 2 m (positivo + negativo) = 4 m lb3 = 56,3 A \sigma = 44 m/\Omega.mm2 e = 0,01 (1%) . 236,4 V = 2,36 V
```

Então:

 $S = 4 \times 56,3 / 44 \times 2,36 = 2,16 \text{ mm}$ 2

Logo:

Condutores (Pos + Neg + (PE>= 6mm²)) de 10mm².

Caso haja risco de descarga atmosférica, o aterramento deve ser de no mínimo 16mm²

Como o kit oferece 120 metro de cabo 6mm², cabe negociar outra configuração de cabos e desconto no valor final da compra: 5 m de 10mm² e 32 metros de 6mm²

Trecho 04:

Conforme a NBR5410, nas tabelas de 36 à 39. Encontre no datasheet do inversor a sua máxima corrente e determine a corrente do projeto: Iz = ICondutor x K1 x k2 x k3.

A instalação é do tipo B1: Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto. PVC 70°.

Onde

K1 – Fator de correção de temperatura

K2 - Fator de correção de agrupamento.

K3 – Fator de correção de resistividade do solo

Pmáx = 560W X 11 = 6160W

IB = 6160/220 = 28A

Para que a proteção dos condutores contra sobrecargas fique assegurada, as características de atuação do dispositivo destinado a provê-la devem ser tais que:

a) IB <= In <= Iz;

 $k1(40^{\circ}) = 0.87, k2 = 1, k3=1.$

Use a tabela 36 da NBR5410 e encontre o condutor mais próximo de IB = 28A

Aplique os fatores de correção:

Para $4mm^2$ (32A) - $1z = 1condutor \times k1 \times k2 \times k3 = 32 \times 0.87 \times 1 \times 1 = 27.84$ (<28A) Para $6mm^2$ (41A) - $1z = 1condutor \times k1 \times k2 \times k3 = 41 \times 0.87 \times 1 \times 1 = 35.67$ (>28A)

IB = 28A <= In - Disjuntor <= Iz - 35,67A

Disjuntor = 32A - Bipolar

Condutor = 02 F + PE - 6mm²

b) 12 <=1,45 lz - Nota -5.3.4.1 NBR5410 - NÃO SE APLICA A NOSSO CASO!!!!

Onde:

IB - é a corrente de projeto do circuito;

 Iz - é a capacidade de condução de corrente dos condutores, nas condições previstas para sua Instalação;

In - é a corrente nominal do dispositivo de proteção (ou corrente de ajuste, para dispositivos ajustáveis), nas condições previstas para sua instalação;

l2 - é a corrente convencional de atuação, para disjuntores, ou corrente convencional de fusão, para Fusíveis.

Queda de tensão: 2%.

Método 2 - Circuitos Monofásicos

 $Sc = (2 \times 100) \times \rho \times (\Sigma l \times IB) / \Delta Vc \times V$ ou $Sc = [2 \times \rho \times 1 / e(\%) \times V^2] \times (\Sigma L \times P)]$

 $Sc = 200 \times 1/58 \times (8m \times 28) / 2 \times 220 = 1,75mm^2$

Onde

- Sc : seção em mm2 ;
- ΔVc: queda de tensão máxima, em % (exemplo 2 para 2%);
- ∘ V: tensão em V;
- I : comprimento do circuito, em m
- IB: corrente de projeto, em A;
- \circ ρ : resistividade do material condutor = cobre = 1/58 Ω .mm2/m
- P = potência consumida em watts;
- ∘ e% = queda de tensão percentual/100 (exemplo 0,02 para 2%);
- o para trifásico troque 2 por 1,73.

Logo, ficaremos com 03 Condutores de 6mm², Disjuntor de 32A Bipolar, DPS (NBR5410 TAB 49 >=1,1U) classe II 275V.

8ºPasso-Lista de Material

Quant	Descrição	Fornecedor	Preço
2	Kit Solar 6,16 kWp - Inversor Solis - 11 módulos de 560Wp	BUYERS	R\$ 11801,00
1	https://www.lojaclamper.com.br/clamper-front-box-275v-20ka- 2p-25a-ip65/p STRING BOX CA	Clamper	R\$ 279,90
Total			R\$12080,90

8º Passo - Cálculo da viabilidade econômica:

A) KITs PV Completo:.....R\$12080,00

- B) Mão de obra: R\$1100,00 (Média de R\$100,00 por placa)
- C) Custo de instalação (Cabos, Disjuntores, quadro de distribuição, Material de aterramento, DPS, Eletrodutos, Conduletes, parafusos, miscelâneas) = R\$924,00 (R\$ = 15% x kWp USINA)
- D) Homologação: R\$1000,00 até 6,16kWp ou 20%kWp se superior (15/12/23). R\$1232,00
- E) Margem de lucro: 20% sobre o custo total:R\$11507,00 x 20% = R\$3067,20.
- F) Tarifa de energia elétrica (R\$/kWh) R\$ 1, 12

Cálculo do Custo do investimento (CI) a ser realizado no projeto (\$):

$$CI = A + B + C + D + E = R$18403,20$$

Custo do kWp instalado (R\$) = CI (R\$) / potência total instalada em kWp = 18403,20 / 6160 = 2987,53 R\$/kWp

Cálculo do custo anual da energia gerada (CG anual - R\$/kWh)

CGanual (R\$/kWh) = (CI × FRC + CO&Manual) / EGanual Ex.: Usina de 18403,20 Reais e 6,16 kWp (18403,2 x 0,134 + 184,03) / 10612,448 = **R\$0,25/KWh**

Onde:

CI – Investimento realizado (R\$)

FRC – Fator de recuperação do capital investido - Transforma CI em uma série uniforme de custos ao longo da vida útil do sistema, levando em conta o valor do dinheiro no tempo (taxa de desconto).

$$FRC(i,n) = \frac{i.(1+i)^n}{(1+i)^n-1}$$
 Ex.:Taxa de desconto12%(Fixo) FRC (i, n) = 0,12(1+0,12) ²⁰ / (1+0,12) ²⁰ -1 = **0,134**

Sendo:

i - taxa de desconto (12%)

n - vida útil do sistema (20 anos)

CO&M anual - custo anual de operação e manutenção (R\$/ano) = considerar 1% do CI.

EG anual (kWh) - Energia anual gerada pelo sistema fotovoltaico = Número total de módulos x Potência do módulo(kWp) x HSP (horas/dia) x 365 dias = 11 x 0,56 x 4,72 x 365 = 10612,448(kWh/ano)

Comparar CG anual (R\$/kWh) com a tarifa de energia elétrica da concessionária (R\$/kWh)

O custo para gerar 1kWh = R\$0,25

O custo de consumo de 1kWh = R\$ 1,12

Diferença (Economia) = 1,12 - 0,24 = R\$0,87 por kWh

Tempo de retorno do investimento = 20 anos / (1,12/0,25) = 4,5 anos.

Considerando o financiamento, a média aumenta para aproximadamente 6,5 anos.

Mantendo a mesma tarifa para média de consumo mensal = 358 x 1,12 = R\$400,96.

Custo sem o sistema em 20 anos – 10612,448 x 20 = 212.248,96kWh x 1,12 = R\$237718,83 Custo da geração em 20 anos – 10612,448 x 20 = 212.248,96kWh x 0,25 = R\$53062,24 Economia em 20 anos = Custo sem sistema – Custo Geração = R\$184.656,59

Considerando o resultado obtido para o CG anual, é viável economicamente investir no projeto deste sistema fotovoltaico? (x)SIM ()Não

DIMENSIONAMENTO DE UM SISTEMA PV - 5

Neste exemplo vamos considerar a potência de geração da residência anterior (6,16kwp), considerando uma laje e como produção de um sistema híbrido, ou seja, vamos manter todos os parâmetros ONGRID, substituir o inversor ONGRID por um Híbrido, dimensionar a distância entre as fileiras e dimensionar o banco de baterias.

Distanciamento entre fileiras de módulos no solo ou laje.

A Intelbras sugere 3,5 x h - altura dos módulos.

(https://blog.intelbras.com.br/nao-cometa-estes-5-erros-ao-instalar-energia-solar/#:~:text=Tamb%C3%A9m%20%C3%A9%20preciso%20prestar%20aten%C3%A7%C3%A3o,5%20x%20a%20altura%20dos%20m%C3%B3dulos.)

O software <u>PVsist</u> e similares, permitem o dimensionamento, arranjos e layout. Contudo, para plantas no solo, onde é necessário determinara a distância entre as fileiras em função da altura dos módulos, podemos usar dois métodos:

Método 01

L=2m;

@=22°;

$$D = L \times \cos @ = 5 \times \cos(22^{\circ}) = 1,85m$$

 $h = L \times \sin @ = 5 \times \sin(22^{\circ}) = 0,74m$

$$d = (3.5 \times h) - D = 3.5 \times 0.74 - 1.85 = 0.74m$$

Método 02

Fator de segurança – FS = 1m;

$$d = FS + (3.5 \times h) - D = 1 + (3.5 \times 0.74) - (1.85) = 1.74m$$
.

Método 03

Considere:

Latitude = 22°;

Pior $HSP = 26^{\circ}$:

 $h0 = (90^{\circ} - Latitude - Pior HSP) = 90 - 22 - 26 = 42^{\circ}$

 $d = L \times [(sen@/tan h0) + cos h0] = 2 \times [(sen 22^{\circ}/tan 42^{\circ}) + cos 42^{\circ}] = 2 \times (0,374/0,9) + 0,743 = 1,57m$

NEOSOLAR - Sistema Hibrido com backup a bateria- ON+OFF - para 6,16kWp

https://www.neosolar.com.br/loja/kit-hibrido-deye-6-38-kwp-bateria-solar-litio-unipower.html

11x Painel Solar Fotovoltaico 580W - OSDA ODA580-36V-MH

1x Inversor Híbrido On + Off Grid Deye SUN5K - 5000W - 48/220V

1x Bateria Solar de Lítio 5kWh - Unipower UPLFP48 6000 ciclos

2x Stringbox Neosolar PRO 2x1 1000V 25A IP65

40 metros de cabo CC

2 pares de Conector MC4

*OBS: Os 11 painéis NÃO devem ser concetados em série. É recomendado que, 6 placas estejam conectadas em uma stringbox e 5 estejam conectados á outra.

Marca: Inversor Híbrido On + Off Grid Deye SUN5K (US) - 5000W - 48/120-240V

Número de Inversores/controladores: 01

Nº de MPPT - 02

Algoritmo de carga- Tipo: (x) MPTT () PWM () outro

Potência MAX 6,5kWp - 48Vcc

Potencia Nominal - 5kW

 $V = 370 \ V = 150 - 425 \ V = 150 \ V = 150$

V saída = 220V

Tensão Bateria = 40 ~60V

I entrada = 17 + 17 A

Imax = 25A

I fusível = 25A

Corrente de carga (A) – 120A

Corrente de descarga (A) - 120A

Especificações: https://www.neosolar.com.br/loja/bateria-solar-litio-lfp-5kwh-unipower-upflp48-6000-ciclos-48v.html

Manual técnico - https://minhacasasolar.fbitsstatic.net/media/0-manual t%C3%A9cnico - <a href="https://minhacasasolar.fbitsstatic.net/media/0-manual t%C3%A9cnico - <a href="https://minhacasasolar.fbitsstatic.net/media/0-manual t%C3%A9cnico - <a href="https://minhacasasolar.fbitsstatic.net/media/0-manual the static - <a href="https://minhacasasolar.fbitsstatic.net/media/0-manual the s

OBS.: Para uma bateria com uma capacidade de 100 Ah, isto equivale a uma corrente de descarga de 100 A em 01 hora. Uma classificação 5C para esta bateria seria 500 A durante 12 min (1/5 h) e uma classificação C5 seria 20 A durante 5 h (nosso caso). O DOD para estacionária é 20%, e DOD para lítio é de 80% de profundidade de descarga.

Tipo de Bateria: Litio - Unipower - UPLFP48-100 3U - 5kWh

Tensão Bateria = 48V Capacidade C5 = 100Ah

Imax = 25A I fusível = 25A

Corrente de carga (A) e descarga (A) – 100A

Logo, dispomos de 20A em 4h ou, com perdas consideradas para o tempo de vida útil:

AUTONOMIA DO SISTEMA Tempo de funcionamento do sistema (em horas) em função da carga utilizada na saída backup do inversor												
Quantidade de	Energia Nominal	Energia		Potência Instantânea Consumida do Sistema (watts)								
Baterias	(kWh)	Utilizável (90%) (kWh)	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
1	5	4,5	9 h	4,5 h	3 h	2,3 h	1,8 h	1,5 h	1,3 h	1,1 h	1 h	0,9 h
2	10	9,0	18 h	9 h	6 h	4,5 h	3,6 h	3 h	2,6 h	2,3 h	2 h	1,8 h
3	15	13,5	27 h	13,5 h	9 h	6,8 h	5,4 h	4,5 h	3,9 h	3,4 h	3 h	2,7 h
4	20	18,0	36 h	18 h	12 h	9 h	7,2 h	6 h	5,1 h	4,5 h	4 h	3,6 h
5	25	22,5	45 h	22,5 h	15 h	11,3 h	9 h	7,5 h	6,4 h	5,6 h	5 h	4,5 h
6	30	27,0	54 h	27 h	18 h	13,5 h	10,8 h	9 h	7,7 h	6,8 h	6 h	5,4 h
7	35	31,5	63 h	31,5 h	21 h	15,8 h	12,6 h	10,5 h	9 h	7,9 h	7 h	6,3 h
8	40	36,0	72 h	36 h	24 h	18 h	14,4 h	12 h	10,3 h	9 h	8 h	7,2 h
Obs.: a autonomia)bs.: a autonomia (em horas) é estimada e pode variar de acordo com as condições de uso e estado de saúde da bateria.											

CABO - BATERIA - 48V -100Ah

Somar potencias demandadas e dividir por tensão da bateria. P(W) / VCC

No caso de um arranjo de carga e descarga usar a capacidade "C" em Ah.

Método 01:

IB = 1,25 x Ah = 125A ou IB = Potencia demandada pelo sistema / Vcc x eficiência do inversor.

O método de instalação escolhido para esta ligação é B.1 – Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto; à 30°; XLPE – 90° Tabela 37.

Critério da capacidade de corrente - Ampacidade: Conforme Tabela 37 a seção nominal do cabo, para 125A é 25 mm².

Critério da queda de tensão: Distância 2 m, admitindo-se uma queda de tensão máxima de 1%:

$$Sc = (2 \times 100) \times \rho \times (\Sigma l \times IB) / \Delta Vc \times V$$

$$Sc = 200 \times 1/58 \times (4m \times 125) / 1 \times 48 = 35 \text{ mm}^2$$

Para que a proteção dos condutores contra sobrecargas fique assegurada, as características de atuação do dispositivo destinado a provê-la devem ser tais que:

a) $IB \le In \le Iz$; $k1(30^{\circ}) = 1$, k2 = 1, k3 = 1. TABELAS DE 36 Até 42 NBR5410.

Aplique os fatores de correção:

Para $25mm^2$ (133A) - Iz = Icondutor x k1 x k2 x k3= 133A (>125A)

IB = 125A <= In - Proteção <= Iz = 133A ... **Disjuntor CC = 125A** - Bipolar