Universidad Tecnológica Nacional Facultad Regional Avellaneda

								UTNFra		
Técnico Superior en Programación										
Materia: Sistemas de Procesamiento de datos										
Apellido:					Fecha:			29/10/2018		
Nombre:					Docente:			Dario Cuda		
División:					Nota:					
Legajo:					Firr	na:				
Instancia:	PP		RPP	X	SP		RSP		FIN	

Ejercicios para la aprobación con final:

Para acceder a la nota de aprobación con examen final, deben contestarse correctamente al menos el 60% de los puntos del 1 al 10:

Para acceder a la nota de aprobación directa, se deben realizar correctamente 4 de los ejercicios entre el 11 y el 16.

- 1) La ley de las mallas afirma: (Marque la respuesta correcta)
 - Que la sumatoria de todas las tensiones de los componentes de una malla cerrada es igual a la suma de sus corrientes circulantes.
 - b. Que la sumatoria de todas las tensiones de los componentes de una malla cerrada es igual a cero.
 - c. Que en una malla cerrada no puede haber más de una fuente de alimentación
 - d. Todas las anteriores son correctas.
- 2) Escriba el número 180 en formato signo magnitud (bit de signo) de 16 bits
- 3) Escriba el número -15 en notación Complemento a 2 de 16 Bits .
- 4) Determine la corriente circulante por la resistencia R1 del siguiente circuito, y la potencia que desarrolla:

5) Agregue un bit de paridad **impar** a los siguientes binarios:

Nro	Paridad
1000101	
0010110	
0110111	
0100001	

- 6) La suma de las tensiones de todos los componentes de una malla cerrada es igual a la potencia entregada por la fuente del circuito.
- 7) ¿Como conectaría al ARDUINO los siguientes componentes para poder medir la tensión sobre R2?

Complete con verdadero o falso, justificando sus respuestas:

- 8) La línea digitalWrite(13,1); pone a los pines 1 y 13 del Arduino 1 como salida digital.
- 9) La línea pinMode(10,INPUT); declara al pin 10 como entrada analógica.
- 10) Arduino permite conectar directamente un LED a sus salidas sin riesgo de quemar ni el LED ni el ARDUINO.
- 11) Determine el valor de R5 tal la corriente que circula por R3 sea de 0.2A.

- 12) Determine si el siguiente código recibido, correspondiente a 8 Bits más los 4 bits de paridad **IMPAR** Hamming, contiene un error, en caso afirmativo, indique cuál es ese bit. **10**11111**0**0111
- 13) Escriba una función llamada int keyboard(); que devuelva;
 - a. 0 si se presionó la tecla 0 (conectada a Pin7)
 - b. 1 si se presionó la tecla 1 (conectada a Pin8)
 - c. 2 si se presionó la tecla 2 (conectada a Pin9)
 - d. 3 si se presionó la tecla 3 (conectada a Pin10)
- 14) Escriba el número decimal 348 en float de simple precisión. (32 bits)
- 15) Escriba el numero -204 en complemento a 2 de 16 bits.
- 16) Escriba el número binario de 7 bits que debería transmitir, agregando los bits de paridad PAR correspondientes al código de Hamming, para transmitir el código 1011b