

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

of flavour oscillations and time-Measurements dependent *CP* asymmetries in neutral *B* meson systems require knowledge of the b quark flavour at production. This identification is performed by the Flavour Tagging (FT). [1,2]

Two independent classes of algorithms

same side taggers (SS)

use charged particles created in the fragmentation process of the b quark of the signal B meson

- kaon for B_s^0 → SS kaon / SS kaon nnet
- pion for B^0 \rightarrow SS pion - proton for B^0 \rightarrow SS proton

opposite side taggers (OS)

exploit the non-signal b quark of the initial bb pair

- overall charge of the secondary vertex (SV) → OS vertex charge
- lepton from semi-leptonic b hadron decays → OS muon / OS electron
- kaon from the $b \rightarrow c \rightarrow s$ decay chain \rightarrow OS kaon
- D meson from the $b \rightarrow c$ decay chain → OS charm (New!)

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Flavour Tagging characteristics

mistag

fraction of events with a wrong tagging decision

$$\omega = rac{N_{ ext{wrong}}}{N_{ ext{right}} + N_{ ext{wrong}}}$$

tagging efficiency

fraction of events with a tagging decision

$$oldsymbol{arepsilon}_{\mathsf{tag}} = rac{oldsymbol{\mathsf{N}}_{\mathsf{right}} + oldsymbol{\mathsf{N}}_{\mathsf{wrong}}}{oldsymbol{\mathsf{N}}_{\mathsf{all}}}$$

effective tagging efficiency

represents the statistical reduction factor of a sample in a tagged analysis

$$arepsilon_{ ext{eff}} = arepsilon_{ ext{tag}} \left(1 - 2\omega
ight)^2$$

Calibration

Mistag calibration

$$\omega(\eta) = p_0 + p_1 (\eta - \langle \eta \rangle)$$

calibrated ev-by-ev mistag ev-by-ev mistag

ev-by-ev mistag

Several flavour-specific decay channels are used

- $B^+ \to J/\psi K^+, B^+ \to D^0 \pi^+$ charged channels: extract ω by comparing tag decision with charge of the final state
- $B^0 \to J/\psi K^{*0}$, $B^0 \to D^{*-}\mu^+\nu_\mu$, $B^0_s \to D^-_s\pi^+$, ... neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

$$\mathcal{A}_{\mathsf{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$$

Flavour Tagging in Run I

Usage in analyses

- one calibration per tagger valid for all channels
- systematic uncertainties from
 - calibration methods
 - results in different control channels
- "ad-hoc" calibration using best-suited control channels for analyses dominated by FT uncertainty

Highlights of flavour-tagged measurements

• Measurements of ϕ_s

Decay mode	$arepsilon_{ ext{eff,2011}}$	$arepsilon_{ ext{eff, Run I}}$
$B_s^0 \rightarrow J/\psi K^+ K^-$	3.13 [3]	3.73 [4]
$B_s^0 o J/\psi \pi^+ \pi^- \ \overline B_s^0 o D_s^+ D_s^-$	2.43 [5]	3.89 [6] 5.33 [7]

- newest analyses profited from:
 - → including SS kaon nnet tagger
 - → re-optimisation of OS algorithms

CP violation in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

- SS kaon nnet adds more than 1.3% to $arepsilon_{
 m eff}$ [8]

- *CP* violation in $B^0 \rightarrow J/\psi K_s^0$ (sin 2 β)
 - analysis on 2011 data: $arepsilon_{ ext{eff}} = 2.38\,\%$ [9]
 - full Run I analysis: $\varepsilon_{\rm eff} = 3.02 \,\%$ [10]
 - ightarrow SS pion tagger adds more than 0.376 % to $arepsilon_{
 m eff}$

- precision analysis \rightarrow "ad-hoc" FT calibration
 - OS algorithms calibrated with $B^+ o J/\psi K^+$
 - \rightarrow SS pion calibrated with $B^0 \rightarrow J/\psi K^{*0}$
- *CP* violation in $B_s^0 \to J/\psi K_s^0$
 - not possible to exclude B^0 events in selection

- B_s^0 events: $\varepsilon_{\rm eff}=4.00\,\%$ [11]
- B^0 events: $\varepsilon_{\rm eff}=2.62\,\%$ [11]
 - small contribution of SS kaon for B^0 due to: same-side protons misidentified as kaons
 - kaons from same-side K^* (892)
- kaons have opposite charge for B^0 : tagging decision has to be inverted

Developments

OS charm tagger (preliminary)

• reconstruct $D^0/D^{\pm}/D^*$ decays related to OS b decay

Decay mode	Relative $arepsilon_{tag}$	Relative $arepsilon_{ ext{eff}}$
$D^0 o K^-\pi^+$	10.0 %	24.0 %
$D^0 o K^-\pi^+\pi^+\pi^-$	5.9 %	8.4 %
$D^+ o K^-\pi^+\pi^+$	10.3 %	2.6 %
D^0 , $D^+ o K^-\pi^+ X$	69.7 %	61.5 %
D^0 , $D^+ o K^-e^+X$	0.5 %	0.2 %
D^0 , $D^+ o K^-\mu^+ X$	3.4 %	0.3 %
$\Lambda_c^+ o p^+ K^- \pi^+$	0.2 %	2.4 %

- one boosted decision tree (BDT) for each mode [12]
- clean measure of B meson flavour (low mistag)
- stand-alone tagging power of $\varepsilon_{\mathrm{eff}} = 0.30\,\%$ to $0.40\,\%$

SS pion calibration

- calibration performed with $B^0 o J/\psi K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of

$$-\sin(2\beta)$$
 with $B^0 \to J/\psi K_S^0$

$$\Rightarrow \varepsilon_{\rm eff}^{\rm SS\pi} = 0.38 \%$$

$$- \sin(2eta_{
m eff})$$
 with $B^0 o J\!/\psi\,\pi^+\pi^-$

$$\Rightarrow \ arepsilon_{
m eff}^{
m SS}\pi = 0.54\,\%$$

SS kaon tagging using neural nets (NN)

basic idea: use two NN

– first NN distinguishes between:

- 1. fragmentation tracks ⇒ signal for SS kaon nnet
- 2. underlying event tracks
- Signal (test sample) • Signal (training sample) Background (test sample) • Background (training sample) MLPBNN response
- second NN:
 - assigns final tag and mistag based on multiple candidates [13]
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $-B_s^0 \rightarrow D_s^- \pi^+$: 50 % relative improvement in $\varepsilon_{\rm eff}$
 - $-B_s^0 \rightarrow J/\psi \phi$: 41 % relative improvement in $\varepsilon_{\rm eff}$

References

- [1] LHCb Collaboration, R. Aaij et. al., Opposite-side flavour tagging of B [5] mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022
- [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the same-side kaon tagging algorithm using hadronic B_s^0 decays in 2011 data, LHCb-CONF-2012-033
- [3] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi K^+ K^-$ and $\overline{B}^0_s \rightarrow J/\psi \pi^+ \pi^-$ decays, Phys.Rev. D87 (2013) 11, 112010
- [4] LHCb Collaboration, R. Aaij et. al., Precision measurement of CP violation in $B_s^0 \rightarrow J/\psi K^+ K^-$ decays, Phys.Rev.Lett. 114 (2015) 4, 041801
- LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase
- LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_s in $\overline{B}^0_s \to J/\psi \, \pi^+ \pi^-$ decays, Phys.Lett. B736 (2014) 186-195
- [7] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_s in $\overline{B}^0_s \to D_s^+ D_s^-$ decays, Phys.Rev.Lett. 113 (2014) 21, 211801 LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in [13]
 - LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetry in $B^0 \rightarrow J/\psi K_s^0$ decays, Phys.Lett. B721 (2013) 24-31
- $B^0 \to J/\psi K_s^0$ decays, Phys.Rev.Lett. 115 (2015) 3, 031601 LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetries in $B_s^0 \rightarrow J/\psi K_s^0$, JHEP 1506 (2015) 131
- LHCb Collaboration, R. Aaij et. al., B flavor tagging using reconstructed charm decays at the LHCb experiment, LHCb-PAPER-2015.027 G. A. Krocker, Development and calibration of a same side kaon tagging algorithm and measurement of the $B_s^0 - \overline{B}_s^0$ oscillation frequency Δm_s at the

 $B_s^0 \to D_s^{\mp} K^{\pm}$ decays, JHEP 1411 (2014) 060

LHCb experiment, PhD thesis, Heidelberg U., Sep, 2013, CERN-THESIS-2013-213