ECON 31200 Part B Problem Set 1

Professor James J. Heckman

Due May 14, 2020 at 5 PM CDT

- 1. (10 points) When economists build empirical models, they often "test down" to a simpler model. This practice is sometimes called "pre-testing." It is common practice in empirical economics that the testing sequences actually used are rarely reported. At the same time, proponents of RCTs insist on "pre-analysis plans" (PAP) (for example, see Christensen and Miguel (2018) and the recent NBER working paper Banerjee et al. (2020)). Explain why these proposed criteria for RCTs are a consequence of one (influential) mode of statistical inference: classical statistics. Should PAP also be applied to model specification tests (for instance, the Durbin (1954)-Wu (1973)-Hausman (1978) test)? (Hint: See posted handout, Hypothesis Testing, Part I.)
- 2. (10 points) Answer the stated questions in the handout Hypothesis Testing Part I.
- 3. (10 points) How would Bayesians, followers of the likelihood principle, and abductors build models? Is it illegitimate to use data to estimate a model, revise it and test it again on the same data? Why or why not?
- 4. (5 points) Was Feynman right in this video that social scientists (who often use pretesting strategies) are pseudoscientists? Or did he mean their frequent failure to replicate? How could pre-testing lead to replication failure? Does publication bias erode credibility?
- 5. (40 points) For the following model,

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \equiv \begin{pmatrix} \boldsymbol{\iota} & \mathbf{X}_1 & \mathbf{X}_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \boldsymbol{\varepsilon}, \tag{1}$$

let N denote the number of observations, and K denote the number of covariates. Accordingly, $\mathbf{Y} \equiv (Y_1, \dots, Y_N)$ is a $N \times 1$ vector, \mathbf{X} is a $N \times K$ matrix containing observed covariates, $\boldsymbol{\beta}$ is a $K \times 1$ parameter vector, $\boldsymbol{\iota}$ is a $N \times 1$ vector containing 1, and $\boldsymbol{\varepsilon}$ is a $N \times 1$ vector describing unobserved variables. $\mathbf{X} \perp \boldsymbol{\varepsilon}$ and $\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0}$.

Assume that $(X_{1,i}, X_{2,i}, \varepsilon_i)$, i = 1, ..., N are i.i.d. random variables drawn from the following distribution:

$$\begin{pmatrix} \mathbf{X}_{1,i} \\ \mathbf{X}_{2,i} \\ \varepsilon_i \end{pmatrix} \overset{\text{i.i.d.}}{\sim} \mathcal{N} \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 & 0 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_{\varepsilon}^2 \end{bmatrix} \end{pmatrix}$$

with $\rho \in (-1,1)$.

It is common practice in applied economics to test among competing specifications. Which of specification I or specification II is correct:

I.
$$Y_i = \beta_0 + X_{1,i}\beta_1 + X_{2,i}\beta_2 + \varepsilon_i$$
 $i = 1, ..., N$.

II.
$$Y_i = \alpha + X_{1,i}\beta_1 + v_i$$
, where $v_i = (\varepsilon_i + X_{2,i}, \beta_2)$.

Download PS1_Q5_Data.xlsx from Canvas and use the provided 72 samples (simulated from models with the same β but with varying values of N, ρ , σ_1^2 , σ_2^2 , σ_ϵ^2 , μ_1 and μ_2) to answer the following questions for these samples to determine which model is correct. (All models have intercepts.)

- Estimate (β_1, β_2) by OLS if $t_2 \ge 1.964$, where t_{β_2} is the t-statistic for the OLS estimate of β_2 when both X_1 and X_2 are used in the regression.
- Estimate β_1 as the value of π from the regression $Y = X_1\pi + v$ with $\mathbb{E}[v] = 0$ if $t_{\beta_2} < 1.964$. Denote this estimator by $\widetilde{\beta}_1$.
- The pre-test estimator is

$$\beta_1^{\star} = \widehat{\beta}_{1,\text{OLS}} \mathbf{1} (t_{\beta_2} \ge 1.964) + \widetilde{\beta}_1 \mathbf{1} (t_{\beta_2} < 1.964)$$

- A. Estimate β_1 obtained from this procedure and its sampling distribution for each sample (simulated using Monte- Carlo methods for values of ρ , σ_1^2 , σ_2^2 , σ_{ε}^2 , μ_1 and μ_2 which you can estimate from each sample).
- B. What is the relationship of the bias for β_1 with respect to $\rho, \sigma_1^2, \sigma_2^2, \sigma_{\varepsilon}^2$ across samples? Characterize this bias empirically, and analytically using the posted notes on pre-testing bias.
 - Note that the DGP (or the "true model") has $\beta_1 = 1$.
 - For the analytical calculation, assume that variances are known and not estimated.
 - It may be helpful to consult Bancroft (1944).

- C. How would a Bayesian approach this problem?
- 6. (25 points) Define the causal parameters for the regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U \tag{*}$$

- A. Define counterfactuals.
- B. Define causal parameters.
- C. What is the causal effect of a unit change in X_1 ? The partial derivative with respect to X_1 ?
- D. Distinguish the coefficients in (\star) from the coefficients in a regression of Y on X_1, X_2 and an intercept.
- E. Distinguish fixing from conditioning.
- F. Distinguish a thought experiment from an actual experiment.
- G. Is causality defined by any particular statistical procedure?
- H. Distinguish between the tasks of:
 - (i) model formulation,
 - (ii) identification,
 - (iii) testing.
- I. Answer Parts A through H for the following model:

$$Y = f(X, U)$$
 where $f : (X, U) \rightarrow Y$.

J. When is β_1 in (\star) a structural parameter?

References

- Bancroft, T. A. (June 1944). "On Biases in Estimation Due to the Use of Preliminary Tests of Significance". *Annals of Mathematical Statistics* 15.2, pp. 190–204. https://www.jstor.org/stable/2236199.
- Banerjee, Abhijit, Esther Duflo, Amy Finkelstein, Lawrence F Katz, Benjamin A Olken, and Anja Sautmann (Apr. 2020). In Praise of Moderation: Suggestions for the Scope and Use of Pre-Analysis Plans for RCTs in Economics. Working Paper 26993. National Bureau of Economic Research. http://www.nber.org/papers/w26993.
- Christensen, Garret and Edward Miguel (Sept. 2018). "Transparency, Reproducibility, and the Credibility of Economics Research". *Journal of Economic Literature* 56.3, pp. 920–80. https://www.aeaweb.org/articles?id=10.1257/jel.20171350.
- Durbin, J. (1954). "Errors in Variables". Revue de l'Institut International de Statistique / Review of the International Statistical Institute 22.1, pp. 23–32. www.jstor.org/stable/1401917.
- Hausman, J. A. (1978). "Specification Tests in Econometrics". *Econometrica* 46.6, pp. 1251–1271. www.jstor.org/stable/1913827.
- Wu, De-Min (1973). "Alternative Tests of Independence between Stochastic Regressors and Disturbances". Econometrica 41.4, pp. 733–750. www.jstor.org/stable/1914093.