Advanced Statistical Methods Assignment 4

2020-21905 Da Hae Kim

5.6

6. If $x \sim \text{Mult}_L(n, \pi)$, use the Poisson trick (5.44) to approximate the mean and variance of x_1/x_2 . (Here we are assuming that $n\pi_2$ is large enough to ignore the possibility $x_2 = 0$.) Hint: In notation (5.41),

$$\frac{S_1}{S_2} \doteq \frac{\mu_1}{\mu_2} \left(1 + \frac{S_1 - \mu_1}{\mu_1} - \frac{S_2 - \mu_2}{\mu_2} \right).$$

sol)

Let $x = (x_1, \dots, x_L)^T$, $\pi = (\pi_1, \dots, \pi_L)^T$, and N > 0.

Suppose that $n \sim Poi(N)$.

Then by Poisson trick (5.44), Multi (n,π) \sim Poi ($N\pi$)

, so $\propto \sim Poi(N\pi)$.

And the approximation $x \sim Poi(N\pi)$ removes the correlations, so x_1 and x_2 are independent

approximately

Note that $x_i \sim Poi(N\pi_i)$,

and $x_2 \sim Poi(N\pi_i)$. Thus, $E(x_1) \doteq Var(x_1) \doteq N\pi_i$,

and $E(x_2) \stackrel{.}{=} Var(x_2) \stackrel{.}{=} N\pi_2$.

Since x1 and x2 are approximately independent

Poisson, by Hint,

$$= \frac{\pi_1}{\pi_2}$$

and

$$Var\left(\frac{x_{1}}{x_{2}}\right) \doteq Var\left[\frac{N\pi_{1}}{N\pi_{2}}\left(1 + \frac{x_{1} - N\pi_{1}}{N\pi_{1}} - \frac{x_{2} - N\pi_{2}}{N\pi_{2}}\right)\right]$$

$$\doteq \left(\frac{\pi_{1}}{\pi_{2}}\right)^{2} \left\{Var\left(\frac{x_{1} - N\pi_{1}}{N\pi_{1}}\right) + Var\left(\frac{x_{2} - N\pi_{2}}{N\pi_{2}}\right)\right\}$$

$$\doteq \left(\frac{\pi_{1}}{\pi_{2}}\right)^{2} \left\{\frac{Var(x_{1})}{(N\pi_{1})^{2}} + \frac{Var(x_{2})}{(N\pi_{2})^{2}}\right\}$$

$$\doteq \left(\frac{\pi_{1}}{\pi_{2}}\right)^{2} \left\{\frac{N\pi_{1}}{(N\pi_{1})^{2}} + \frac{N\pi_{2}}{(N\pi_{2})^{2}}\right\}$$

$$\doteq \left(\frac{\pi_{1}}{\pi_{2}}\right)^{2} \left(\frac{1}{N\pi_{1}} + \frac{1}{N\pi_{2}}\right)$$

Therefore, the mean of $\frac{x_1}{x_2}$ is approximately $\frac{\pi_1}{\pi_2}$, and the variance of $\frac{x_1}{x_2}$ is approximately $\left(\frac{\pi_1}{\pi_2}\right)^2 \left(\frac{1}{N\pi_1} + \frac{1}{N\pi_2}\right)$.

5.7

7. Show explicitly how the binomial density bi(12, 0.3) is an exponential tilt of bi(12, 0.6).

Sol)

Let p = 0.3 and $p_0 = 0.6$.

Note that the binomial density bi(12,p) and $bi(12,p_0)$ are

are
$$f_{p}(x) = {12 \choose x} (0.3)^{x} (0.7)^{12-x}$$

$$f_{\text{Po}}(\infty) = \begin{pmatrix} 12 \\ \infty \end{pmatrix} (0.6)^{\infty} (0.4)^{12-\infty}$$

Then $\frac{f_{p}(x)}{f_{po}(x)} = \frac{\binom{12}{x} (0.3)^{x} (0.7)^{12-x}}{\binom{12}{x} (0.6)^{x} (0.4)^{12-x}}$ $= \left(\frac{1}{2}\right)^{x} \left(\frac{1}{4}\right)^{12-x}$

Thus,
$$f_{p}(x) = \left(\frac{1}{2}\right)^{x} \left(\frac{\eta}{4}\right)^{12-x} \cdot f_{p_{0}}(x)$$

$$= \left(\frac{1}{2} \cdot \frac{4}{\pi}\right)^{x} \cdot \left(\frac{\eta}{4}\right)^{12} \cdot f_{p_{0}}(x)$$

$$= \left(\frac{2}{7}\right)^{\times} \left(\frac{1}{4}\right)^{12} \cdot f_{p_0}(x)$$

$$= e^{\alpha x - \Psi(\alpha)} \cdot f_{P_{\alpha}}(x)$$

where $\alpha = \log\left(\frac{2}{\eta}\right)$ and $\Psi(\alpha) = 12\log\left(\frac{4}{\eta}\right)$ $= 12\left(\alpha + \log 2\right)$ Therefore, the binomial density bi(12,0.3) is an

exponential tilt of bi(12,06).