LES SUITES NUMÉRIQUES E05

Comportement d'une suite définie explicitement

Étudier les variations des suites suivantes :

1) La suite u définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 + n$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = \frac{3^n}{7^{n+1}}$

3) La suite w définie par : $\forall n \in \mathbb{N}$, $w_n = -5^n$

4) La suite t définie par : $\forall n \in \mathbb{N}$, $t_n = (-5)^n$

Comportement d'une suite définie par récurrence

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n - \sqrt{n+1} \end{cases}$ 2) La suite v définie par : $\begin{cases} v_0 = 7 \\ \forall n \in \mathbb{N}, v_{n+1} = \frac{7}{v_n} \end{cases}$

EXERCICE N°3 Comportement d'une suite arithmétique

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n - 4,5 \end{cases}$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 5n+4$

EXERCICE N°4 Comportement d'une suite géométrique

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = 0.5u_n \end{cases}$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 4 \times 5^n$

Limite d'une suite : 1ère approche EXERCICE N°5

Conjecturer, si elle existe, la limite des suites suivantes pour lesquelles on a donné quelques termes.

1) $u_0 = 1$, $u_{52} = -30$, $u_{7589} = -5000$, $u_{20000} = -168699245$

2) $v_3 = -5$, $v_{52} = -30$, $v_{789} = 22$, $v_{5240} = -30$, $v_{35240} = 2$

Limite d'une suite : 2ème approche

Conjecturer, si elle existe, la limite des suites suivantes.

1) La suite u définie par $\forall n \in \mathbb{N}$, $u_n = n$

2) La suite v définie par $\forall n \in \mathbb{N}^*$, $v_n = \frac{1}{n}$

LES SUITES NUMÉRIQUES E05

Comportement d'une suite définie explicitement

Étudier les variations des suites suivantes :

1) La suite u définie par : $\forall n \in \mathbb{N}$, $u_n = n^2 + n$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = \frac{3^n}{7^{n+1}}$

3) La suite w définie par : $\forall n \in \mathbb{N}$, $w_n = -5^n$

4) La suite t définie par : $\forall n \in \mathbb{N}$, $t_n = (-5)^n$

Comportement d'une suite définie par récurrence

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n - \sqrt{n+1} \end{cases}$ 2) La suite v définie par : $\begin{cases} v_0 = 7 \\ \forall n \in \mathbb{N}, v_{n+1} = \frac{7}{v_n} \end{cases}$

EXERCICE N°3 Comportement d'une suite arithmétique

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = u_n - 4,5 \end{cases}$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 5n+4$

EXERCICE N°4 Comportement d'une suite géométrique

Étudier les variations des suites suivantes :

1) La suite u définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = 0.5u_n \end{cases}$

2) La suite v définie par : $\forall n \in \mathbb{N}$, $v_n = 4 \times 5^n$

Limite d'une suite : 1ère approche EXERCICE N°5

Conjecturer, si elle existe, la limite des suites suivantes pour lesquelles on a donné quelques termes.

1) $u_0 = 1$, $u_{52} = -30$, $u_{7589} = -5000$, $u_{20000} = -168699245$

2) $v_3 = -5$, $v_{52} = -30$, $v_{789} = 22$, $v_{5240} = -30$, $v_{35240} = 2$

Limite d'une suite : 2ème approche

Conjecturer, si elle existe, la limite des suites suivantes.

1) La suite u définie par $\forall n \in \mathbb{N}$, $u_n = n$

2) La suite v définie par $\forall n \in \mathbb{N}^*$, $v_n = \frac{1}{n}$