Handbook on geometry

Andriy Zhugayevych January 8, 2012

1	Notations and conventions	1
2	Linear transformations2.1 General formulas2.2 Linear transformations in 3D	1 1 2
3	Coordinate systems3.1 General formulas3.2 Orthogonal coordinate systems3.3 Cylindrical and polar coordinates3.4 Spherical coordinates3.5 Hyperspherical coordinates	4
4	Euclidean geometry	6
5	Geometry on sphere 5.1 Basics	6
6	Vector calculus	8

§1. Notations and conventions

Transformation (active transformation) of manifold $M \subset \mathbb{R}^n$ is one-to-one map $x \to x' = f(x)$. Each transformation f can be considered as coordinate transformation (passive transformation, transformation of coordinate system) in such a way that the old x and new ξ coordinates are related by $x = f(\xi)$. If not specified we distinguish active and passive transformations by using the decoration of the same symbol (x and x') for active and different symbol $(x \text{ and } \xi)$ for passive transformations. In most cases we treat transformations as active.

§2. Linear transformations

2.1. General formulas

Consider a linear space \mathbb{R}^n . We denote the coordinates of vector $x \in \mathbb{R}^n$ and matrix (operator) $A : \mathbb{R}^n \to \mathbb{R}^n$ by indexes below: x_i and A_{ij} .

Linear transformation is a linear map $x \to x' = Tx$, where T is a nondegenarate matrix. They compose a group $GL(n,\mathbb{R})$. Translation is a map $x \to x' = x + a$, where a is a vector. The corresponding group is denoted by $T(n,\mathbb{R})$. Combinations of linear transformations and translations form affine transformations, $x \to x' = Tx + a$. The affine group $Aff(n,\mathbb{R}) = GL(n,\mathbb{R}) \ltimes T(n,\mathbb{R})$ since $(T,a)(1,b)(T,a)^{-1} = (1,Tb)$. Any linear transformation of vectors (or linear part of affine transformation) induces the following transformation of matrices: $A \to A' = TAT^{-1}$.

Any basis $\{e^i\}$ transforms to basis $\varepsilon^i = Te^i$ so that for any $x \in \mathbb{R}^n$ we have $x = \sum_i x_i e^i = \sum_i \xi_i \varepsilon^i$ and thus $x_i = \sum_j T_{ij} \xi_j$ and $\varepsilon^i = \sum_j T_{ji} e^j$.

In Euclidean space the *orthogonal transformations* are defined as those preserving the scalar product: (Ox, Oy) = (x, y). The corresponding group is denoted by O(n) and it is the group of matrices O with det $O = \pm 1$. Rotation R (proper) is the orthogonal transformation with det R = 1, the corresponding group is denoted by SO(n). Any orthogonal transformations is either rotation or composition of a rotation and inversion $(x \to -x)$ yielding $O(n) = SO(n) \times I$, where $I = \{1, -1\}$. Any