9 REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(A n'utiliser que pour le classement et les commandes de reproduction).

72.02098

(21) Nº d'enregistrement national :

(A utilizer pour les palements d'ennuités, les demandes de copies officielles et toutes autres correspondences avec l'i.N.P.I.)

DEMANDE DE BREVET D'INVENTION

1re PUBLICATION

(22) (41)	Date de dépôt Date de la mise à la disposition du	21 janvier 1972, à 16 h 18 mn.
Ψ	public de la demande	B.O.P.1. — «Listes» n. 35 du 31-8-1973.
61	Classification internationale (Int. Cl.)	С 07 b 29/00.
71)	Déposant : COMMISSARIAT A L'ENERGIE ATOMIQUE, résidant en France.	
73	Titulaire : Idem (71)	
74	Mandataire : Brevatome.	
54	Radicaux binitroxydes polycycliques et leur procédé de préparation.	
(72)	Invention de : André Rassat et Hans U	Jirich Sieveking.

Priorité conventionnelle :

10

20

La présente invention a pour objet des radicaux binitroxydes polycycliques et leur procédé de préparation.

Les radicaux conformes à l'invention sont constitués par des composés ayant la formule générale :

$$R_1 \sim C \sim A \sim C \sim R_1$$
 $R_2 \sim C \sim N \sim N \sim C \sim R_2$
(1)

dans laquelle R_{\uparrow} et R_{2} sont des groupements alkyles, et A est un système organique tétravalent qui stabilise les groupements nitroxydes.

Suivant l'invention, A peut être un système aliphatique, un système alicyclique, un système aromatique, comportant des substituents qui protègent la molécule.

Le procédé de préparation des radicaux conformes à l'invention consiste à faire réagir une cétone sur un diaminodiol de manière à obtenir une diamine polycyclique par élimination d'esu et à faire ensuite subir à cette diamine une réaction d'oxydation. Cette préparation peut être schématisés par la réaction suivante :

Suivant l'invention , la cétone peut être avantageusement
de l'acétone et l'agent d'oxydation l'acide m-chloroperbenzoïque.
A titre d'example non limitatif, on va décrire ci-dessous
la préparation d'un biradical tricyclique conforms à l'invention de formule :

10

15

20

25

30

35

40

Pour préparer ce redicel, on part du diamino -4,6 isophtalate d'éthyle de formule :

$$H_5C_2OOC$$
 $COOC_2H_5$
 H_2N
 NH_2
 (V)

que l'on transforme en un eminoalcool de formule :

$$CH_3$$
 CH_3 CH_3

Dans cet exemple, A est un cycle aromatique substitué en position 4 et 6 par des groupements isopropylidènes; ces derniers portent les groupements hydroxyles et les groupes aminos se trouvent en position 1-3 du cycle aromatique. On transforme ensuite par action de l'acétone cet aminoalcool (VI) en une diamine de formule :

que l'on oxyde pour obtenir le biradical (IV).

La mise en oeuvre du procédé de préparation du radical (IV) s'effectue de la manière suivente : A 0,2 mole d'iodure de méthyl magnésium dans 80 ml d'éther, on ajoute pendant2 neures, 3 g (0,012 mole) de diamino-4,6 isophtalate d'éthyle (formule V) dissous dans 500 ml d'éther et on chauffe à reflux pendant 24 heures. On saponifie à froid evec un mélange de 30 g de NH₄ Cl et de 85 g de glace. On extrait 10 fois à l'éther et on sèche sur du K₂CO₃. Après évaporation de la plus grande partie du solvant, on obtient un précipité de-1,13 g de l'amino-elcool de formule (VI) avec un rendement de 40 %. Son point_de fusion est de 150-152°.

On chauffe ensuits un mélange de 660 mg (3 millimoles) du produit (VI), 1,16 ml d'acide acétique, 2,4 g de CaSO₄ at 15 ml d'acétone à reflux pendant 4 heures ; on ajoute alors 15 ml de benzène et on lave le mélange froid avec une solution aqueuse de bicarbonate de sodium à 5 %. De le phase

organique desséchée sur Na₂SO₄ et évaporée, on obtient alors 500 mg de la diamine de formule (VII) brute (le rendement est de 55 %); par chromatographie sur alumine, la diamine (VII) est purifiée (température de fusion = 144,6°).

On oxyde ensuite la diamina (VII) bruta (500 mg) avec un excès d'acide m-chloroperbenzoïque (2g) en solution éthérée, à température ambiente, pendant 2 heures. On obtient 100 mg de produit brut qui, chromatographié sur plaque (Al₂O₃, mélange de benzène dans de l'éther) et recristallisé dans un mélange d'éther dens du pentane, donne 20 mg de 1,2,8,9-tétrahydro-2,2,4,4,6,6,8,8-octaméthyl-4 H, 6 H-benzo (1,2-d:5,4-d') bis (1,3) oxazine-1,9-dioxyle (produit IV) pur. La température de fusion de ce produit est de 159,5 à 161°. On l'obtient avec un randement de 5 %.

Les radicaux conformes à l'invention sont utilisables

pour le marquage de spin et rendent notamment des services, en
raison de leurs propriétés paramagnétiques consécutives à la
présence des deux électrons non appariés, dans la mesure des champs
magnétiques par résonance magnétique nucléaire à l'aida de
l'effet Overhauser-Abragam. Ils peuvent avoir une application dans

le marquage de spin des molécules biologiques, des polymères, des
liquides de viscosité différente.

10

15.

20

25

30

35

REVENDICATIONS

1- Radical binitroxyde polycyclique, caractérisé en ca qu'il est constitué par un composé ayant la formule générale :

dans laquelle R₁ et R₂ sont des groupements alkyles, et A est un système organique tétravelent qui stabilise les groupements nitroxydes.

2- Radical selon la revendication 1, caractérisé en ce que A est un système aliphatique comportent des substituants protégeant la molécule.

3- Radical salon la revendication 1, caractérisé en ce que A est un système alicyclique comportant des substituents protégaant la molécule.

4- Radical selon la revendication 1, caractérisé en ce que A est un système aromatique comportant des substituents qui protégent la molécule.

5- Radical salon la revendication 4, caractérisé en ce que A set un cycle aromatique substitué en 4 et 6 par des groupements isopropylidànes, ces derniers portant les groupements hydroxyles et les groupes aminos étant placés en position 1-3 du cycle aromatique.

6- Radical selon la revendication 5, caractérisé en ce qu'il est constitué par le 1,2,8,9-tétrahydro-2,2,4,4,6,6,8,8 octaméthyl-4 H, 6H-benzo (1,2-d:5,4-d')bis (1,3)oxazine-1,9-dioxyle.

7- Procédé de préparation des radicaux selon l'une quelconque des revendications 1 à 6, caractérieé en ce que l'on fait réagir une cétone sur un diaminodiol de manière à obtanir une diamine polycyclique et l'on fait ensuite subir à cette diamine une réaction d'oxydation.

8- Procédé selon la revendication 7, caractérisé en ce que la cétone est constituée par l'acétone.

9- Procédé selon l'une quelconque des revendications 7 et 8, caractérisé en ce que la réaction d'oxydation se fait par action

de l'acide m-chloroperbenzoïque.

10- Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que le diaminodiol est constitué par un cycle aromatique substitué en 4 et 6 par des groupes isopropy-lidènes, ces derniers portant les groupements hydroxyles et les groupes aminos étant placés en position 1-3 du cycle aromatique.

11- Application des biradicaux salon l'une qualconque des revendications 1 à 6 en magnétométrie nucléaire.

12- Application des biradicaux au marquage de spin 10 dans les molécules biologiques, les polymères, les fluides de différente viscosité.