Project 8: Ensemble approaches

Written by

Omid Jafari

Department of Computer Science

New Mexico State University

November 2018

Preprocessing and notes:

Mammographic dataset contained some missing values; therefore, we used the SimpleImputer function from Sklearn library to replace the missing values with the mean of each attribute.

After that, as usual, we loaded the datasets and standardized them.

Splitting to training and testing sets were done on a 0.7/0.3 basis.

Decision Tree was chosen as the base classifier.

Ensemble methods were executed using several different parameters and compared to the base classifier. Since parameters "criterion", "random_state", and "max_depth" were common between the base classifier and ensemble algorithms, we did not consider changing them. The only parameters that made sense to tune them were "bootstrap" for Bagging algorithm and "learning rate" for AdaBoost algorithm.

Results:

Running time of Digits dataset (ms)			
Decision Tree (Base)	Training	14	
	Prediction of train set	0	
	Prediction of test set	0	
Random Forest (Default params)	Training	47	
	Prediction of train set	6	
	Prediction of test set	4	
Bagging (Default params)	Training	206	
	Prediction of train set	12	
	Prediction of test set	6	
AdaBoost (Default params)	Training	14	
	Prediction of train set	2	
	Prediction of test set	1	
Bagging (bootstrap=False)	Training	352	
	Prediction of train set	13	
	Prediction of test set	6	
Bagging (bootstrap_features=True)	Training	212	
	Prediction of train set	12	
	Prediction of test set	6	
AdaBoost (learning_rate=0.5)	Training	15	
	Prediction of train set	1	
	Prediction of test set	1	
AdaBoost (learning_rate=2.0)	Training	14	
	Prediction of train set	1	
	Prediction of test set	1	

Accuracy of Digits dataset (%)			
Decision Tree (Base)	Train set	1	
	Test set	0.861	
Random Forest (Default params)	Train set	1	
	Test set	0.970	
Bagging (Default params)	Train set	1	
	Test set	0.946	
AdaBoost (Default params)	Train set	1	
	Test set	0.848	
Bagging (bootstrap=False)	Train set	1	
	Test set	0.869	
Bagging (bootstrap_features=True)	Train set	1	
	Test set	0.970	
AdaBoost (learning_rate=0.5)	Train set	1	
	Test set	0.848	
AdaBoost (learning_rate=2.0)	Train set	1	
	Test set	0.848	

Running time of Mammographic dataset (ms)			
Decision Tree (Base)	Training	1	
	Prediction of train set	1	
	Prediction of test set	0	
	Training	21	
Random Forest (Default params)	Prediction of train set	4	
	Prediction of test set	2	
	Training	25	
Bagging (Default params)	Prediction of train set	4	
	Prediction of test set	3	
	Training	37	
AdaBoost (Default params)	Prediction of train set	5	
	Prediction of test set	3	
Bagging (bootstrap=False)	Training	32	
	Prediction of train set	4	
	Prediction of test set	3	
Bagging (bootstrap_features=True)	Training	23	
	Prediction of train set	3	
	Prediction of test set	3	
AdaBoost (learning_rate=0.5)	Training	38	
	Prediction of train set	5	
	Prediction of test set	3	
	Training	36	
AdaBoost (learning_rate=2.0)	Prediction of train set	5	
	Prediction of test set	3	

Accuracy of Mammographic dataset (%)			
Decision Tree (Base)	Train set	0.955	
	Test set	0.727	
Random Forest (Default params)	Train set	0.952	
	Test set	0.761	
Bagging (Default params)	Train set	0.951	
	Test set	0.765	
AdaBoost (Default params)	Train set	0.955	
	Test set	0.734	
Bagging (bootstrap=False)	Train set	0.955	
	Test set	0.723	
Bagging (bootstrap_features=True)	Train set	0.932	
	Test set	0.817	
AdaBoost (learning_rate=0.5)	Train set	0.955	
	Test set	0.723	
AdaBoost (learning_rate=2.0)	Train set	0.955	
	Test set	0.713	

Analysis:

Random Forest and Bagging algorithms have the most improvement in accuracy. However, the running time of them has increased too.

Changing the learning rate of AdaBoost did not improve the accuracy and running time. On the other hand, using bootstrapping for the features in Bagging method improved accuracy.