1. Say $S \subseteq \mathbb{R}$ is a set of real numbers, with the property that $\forall s \in S, \exists t \in S, s < t$. Can S be bounded above?

Yes, e.g, $\{-1/n | n \in \mathbb{N} \}$.

2. Say $S \subseteq \mathbb{R}$ is a set of real numbers, with the property that $\forall n \in \mathbb{N}, \exists t \in S, n < t$. Can S be bounded above?

No. If S is bounded above and M is an upper bound for S, let N > M such that $N \in \mathbb{N}$. By the property, there is some $t \in S$ such that M < N < t, contradicting M being an upper bound.

3. (a) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded above. Assume:

$$\forall a \in A, \exists b \in B \text{ such that } a \leq b.$$

Prove $\sup A \leq \sup B$.

Assume $\sup A > \sup B$. Then $\sup B$ is not an upper bound for A (otherwise it would contradict $\sup A$ being the *least* upper bound). So there is some $a \in A$ such that $a > \sup B$. By the assumption, there is some $b \in B$ such that $b \ge a > \sup B$, contradicting $\sup B$ being an upper bound

- (b) Prove that if $A \subseteq B \subset \mathbb{R}$ then $\sup A \leq \sup B$. If $A \subseteq B$, then for every $a \in A$, also $a \in B$ and $a \leq a$, so the assumption of (a) holds.
- (c) Let $A, B \subset \mathbb{R}$ be subsets of \mathbb{R} which are bounded above. Assume:

$$\forall a \in A, \exists b \in B \text{ such that } a \geq b.$$

Prove $\inf A \ge \inf B$.

(d) Prove that if $A \subseteq B \subset \mathbb{R}$ then inf $A \ge \inf B$.

Translate the proof of the first two items into lower bounds.

4. Say we have a sequence of real numbers a_1, a_2, a_3, \ldots Assume:

$$\exists M \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N} : a_n < M$$

$$\exists m \in \mathbb{R} \text{ such that } \forall N \in \mathbb{N}, \exists n > N : m < a_n$$

Now let's define some sets S_1, S_2, S_3, \ldots by

$$S_n = \mathbb{R} \setminus \{ a_1, \dots, a_n \} = \{ a_{n+1}, a_{n+2}, a_{n+3} \dots \}.$$

(a) Prove that for all $n \ge 1$, there exists some $b_n \in \mathbb{R}$ such that $b_n = \sup(S_n)$. Let M be an upper bound for $\{a_1, \ldots, a_n\}$ (from the first assumption above). Then M is also an upper bound for S_n . (b) Prove there exists some $l \in \mathbb{R}$ such that $l = \inf \{ b_1, b_2, b_3, \dots \}$.

Let m be as promised from the second assumption. By the assumption, for every $N \in \mathbb{N}$, there is some $a_n \in S_N$ such that $m < a_n$. Therefore, $m < \sup S_N = b_N$. As N was arbitrary, the set $\{b_1, b_2, b_3, \dots\}$ is bounded below.

Such l is called the limpsup of the sequence $(a_1, a_2, a_3, ...)$

- (c) Find the limsup of the following sequence and prove your findings.
 - i. $1, 1, 1, \ldots$
 - ii. $0, 1, 0, 1, 0, 1, \dots$
 - iii. $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
 - iv. $-\frac{1}{1}, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots$
 - i. 1
 - ii. 1. For every $n \in \mathbb{N}$, $b_n = \sup S_n = 1$.
 - iii. 0. For every $n \in \mathbb{N}$, $b_n = \sup S_n = \frac{1}{n}$. So $\inf \{b_1, b_2, \dots\} = \inf \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} = 0$.
 - iv. 0. For every $n \in \mathbb{N}$, $b_n = \sup S_n = 0$. So $\inf \{ b_1, b_2, \dots \} = \inf \{ 0 \} = 0$.
- (d) Prove:

$$\inf \{ a_1, a_2, a_3, \dots \} \le \limsup (a_1, a_2, a_3, \dots) \le \sup \{ a_1, a_2, a_3, \dots \}.$$

By 3b, $b_n \leq \sup \{ a_1, a_2, a_3, \dots \}$ for any $n \in \mathbb{N}$. Therefore

$$\limsup(a_1, a_2, a_3, \dots) = \inf\{b_1, b_2, b_3, \dots\} \le b_n \le \sup\{a_1, a_2, a_3, \dots\}.$$

On the other hand, since $b_n = \sup\{a_{n+1}, a_{n+2}, a_{n+3}, \dots\}, b_n \geq a_{n+1}$ for every $n \in \mathbb{N}$. Therefore, by 3c,

$$\limsup(a_1, a_2, a_3, \dots) = \inf\{b_1, b_2, b_3, \dots\} \ge \inf\{a_1, a_2, a_3, \dots\}.$$

(e) Let $X = \mathbb{Q} \cap (0,1)$ and let $f : \mathbb{N} \to X$ be a bijection. For every $i \in \mathbb{N}$, let $a_i = f(i)$. Prove $\limsup (a_1, a_2, a_3, \dots) = 1$.

Let $n_0 \in \mathbb{N}$. By definition of S_{n_0} , $S_{n_0} \subseteq X$, therefore it is bounded above by 1.

To show 1 is the least upper bound, assume towards a contradiction c < 1 is some other upper bound. Now, we will show that $X \cap (c,1)$ is infinite. This can be deduced from the fact the rational numbers are dense, or by the assumption that X is countably infinite (as there is a bijection from \mathbb{N}) and showing that the map

¹Hint for (d): To prove $b_n = 1$, show that for every c < 1, $X \cap (c, 1)$ is infinite, therefore $S_n \cap (c, 1)$ is infinite.

 $g: X \to X \cap (c,1)$ defined by g(x) = (1-c)x + c is a bijection. Nonetheless, here is a straightforward proof: Let $N \in \mathbb{N}$ such that $N > \frac{1}{1-c}$. Then $c < 1 - \frac{1}{N} < 1$. In particular, for every n > N, $1 - \frac{1}{N} \in X \cap (c,1)$ so $X \cap (c,1)$ is infinite.

Now $X \setminus S_{n_0}$ is finite. In particular $X \setminus S_{n_0} \cap (c,1)$ is finite. As $X = (X \setminus S_{n_0}) \cup S_{n_0}$, it follows that

$$X \cap (c,1) = ((X \setminus S_{n_0}) \cup S_{n_0}) \cap (c,1) = ((X \setminus S_{n_0}) \cap (c,1)) \cup (S_{n_0} \cap (c,1)).$$

Since $X \cap (c,1)$ is infinite and $(X \setminus S_{n_0}) \cap (c,1)$ is finite, $S_{n_0} \cap (c,1)$ must be infinite. In particular, there is some $a \in S_{n_0}$ such that c < a, contradicting c is an upper bound for S_{n_0} .

So $b_n = \sup S_n = 1$ for all $n \in \mathbb{N}$, therefore $\limsup(a_1, a_2, a_3, \dots) = \inf\{1, 1, 1, \dots\} = 1$.

(f) If you like, then guess the definition of *liminf* and compute it for the examples above.

Which of these sequences converges? (we will see a rigorous definition of this notion next week, but perhaps you know what it means).

Can you tell just from looking at the limsup and liminf?