MIAT_STM32 內部與外部SRAM存取控制實驗

浯陽科技有限公司

Declared Version

Training Only					
Declare					
Document Number					
Document Version	1.00				
Release Date					
Document Title	MIAT_STM32 內部與外部SRAM存取控制實驗				
Exercise Time					
Platform	■ <i>MIAT_STM32.V2</i> ■ <i>MIAT IOB.V1</i>				
Peripheral					
Author	■ WU-YANG Technology Co., Ltd.				

實驗目的(一)

□ 使用MIAT_STM32實驗板透過Flexible static memory controller (FSMC)控制內部與外部SRAM進行存取控制實驗,並利用LED確認存取是否正常。

實驗原理

- ☐ System architecture
- ☐ Embedded SRAM
 - Features
 - Memory map
 - RVMDK環境設定
- ☐ External SRAM
 - IS61LV25616AL
 - FSMC (flexible static memory controller)
- Development Flow
- ☐ ARM Configure

System architecture

Embedded SRAM

- Features
 - 48Kbytes of embedded SRAM

accessed (read/write) at CPU clock speed with 0 wait

states

Embedded SRAM Memory map

RVMDK環境設定

External SRAM (IS61LV25616AL)

- Features
 - High-speed access time 10 ns
 - 256K x 16

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

A0-A17	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

READ CYCLE

READ CYCLE SWITCHING CHARACTERISTICS

Symbol	Parameter	-1(Min.) Max.
trc	Read Cycle Time	10	_
taa	Address Access Time	_	10
toha	Output Hold Time	2	_
tace	CE Access Time	_	10
tDOE	OE Access Time	_	4
thzoe(2)	OE to High-Z Output	_	4
tlzoe(2)	OE to Low-Z Output	0	_
thzce(2	CE to High-Z Output	0	4
tLZCE ⁽²⁾	CE to Low-Z Output	3	_
t BA	LB, UB Access Time	_	4
thzb(2)	LB, UB to High-Z Output	0	3
tlzb(2)	LB, UB to Low-Z Output	0	_
tpu	Power Up Time	0	_
tpD	Power Down Time	_	10

WRITE CYCLE

WRITE CYCLE SWITCHING CHARACTERISTICS

Symbol	Parameter	-10 Min. Max	
twc	Write Cycle Time	10 —	
tsce	CE to Write End	8 —	
taw	Address Setup Time to Write End	8 —	
tha	Address Hold from Write End	0 —	
tsa	Address Setup Time	0 —	
tpwB	LB, UB Valid to End of Write	8 —	
tpwe1	WE Pulse Width	8 —	
tPWE2	WE Pulse Width (OE = LOW)	10 —	
tsp	Data Setup to Write End	6 —	
tho	Data Hold from Write End	0 —	
thzwe ⁽²⁾	WE LOW to High-Z Output	<u> </u>	
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	2 —	

FSMC

- ☐ Features
 - Interfaces with static memory-mapped devices including:
 - ☐ Static random access memory (SRAM)
 - ☐ Read-only memory (ROM)
 - □ NOR Flash memory
 - □ PSRAM (4 memory banks)8- or 16-bit wide databus
 - 8- or 16-bit wide databus
 - Independent chip select control for each memory bank
 - Independent configuration for each memory bank

FSMC

- Programmable timings to support a wide range of devices, in particular:
 - ☐ Programmable wait states (up to 15)
 - ☐ Programmable bus turnaround cycles (up to 15)
 - □ Programmable output enable and write enable delays (up to 15)
 - ☐ Independent read and write timings and protocol, so as to support the widest variety of memories and timings

NOR/PSRAM address mapping

□ NOR/PSRAM bank selection

HADDR[27:26] ⁽¹⁾	Selected bank
00	Bank 1 NOR/PSRAM 1
01	Bank 1 NOR/PSRAM 2
10	Bank 1 NOR/PSRAM 3
11	Bank 1 NOR/PSRAM 4

☐ External memory address

Memory width ⁽¹⁾	Data address issued to the memory	Maximum memory capacity (bits		
8-bit	HADDR[25:0]	64 Mbytes x 8 = 512 Mbit		
16-bit	HADDR[25:1] >> 1	64 Mbytes/2 x 16 = 512 Mbit		

External memory interface signals

FSMC signal name	I/O	Function			
CLK	0	Clock (for synchronous burst)			
A[25:0]	O	Address bus			
D[15:0]	I/O	Data bidirectional bus			
NE[x]	0	Chip select, x = 14 (called NCE by PSRAM (Cellular RAM i.e. CRAM))			
NOE	0	Output enable			
NWE	0	Write enable			
NL(= NADV)	0	Address valid PSRAM input (memory signal name: NADV)			
NWAIT	I	PSRAM wait input signal to the FSMC			
NBL[1]	0	Upper byte enable (memory signal name: NUB)			
NBL[0]	0	Lowed byte enable (memory signal name: NLB)			

NOR Flash/PSRAM controller timing diagrams

□ read accesses

NOR Flash/PSRAM controller timing diagrams

☐ write accesses

FSMC Memory map

Development Flow

Configure FSMC IO

GPIO FwLib Functions List

Function name	Description
RCC_APB2PeriphClock Cmd	Enables or disables the High Speed APB (APB2) peripheral clock.
GPIO_Init	Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
RCC_AHBPeriphClock Cmd	Enables or disables the AHB peripheral clock.

```
RCC APB2PeriphClockCmd(RCC APB2Periph GPIOD | RCC APB2Periph GPIOG |
RCC APB2Periph GPIOE | RCC APB2Periph GPIOF, ENABLE);
/*-- GPIO Configuration ------
  /* SRAM Data lines configuration */
 GPIO InitStructure.GPIO Pin = GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 8 |
GPIO Pin 9 | GPIO Pin 10 | GPIO Pin 14 | GPIO Pin 15;
  GPIO InitStructure.GPIO Mode = GPIO Mode AF PP;
  GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
  GPIO Init(GPIOD, &GPIO InitStructure);
  GPIO InitStructure.GPIO Pin = GPIO Pin 7 | GPIO Pin 8 | GPIO Pin 9 |
GPIO Pin 10 | GPIO Pin 11 | GPIO Pin 12 | GPIO Pin 13 | GPIO Pin 14 |
GPIO Pin 15;
  GPIO Init(GPIOE, &GPIO InitStructure);
  /* SRAM Address lines configuration */
  GPIO InitStructure.GPIO Pin = GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 2 |
GPIO Pin 3 | GPIO Pin 4 | GPIO Pin 5 | GPIO Pin 12 | GPIO Pin 13 |
GPIO Pin 14 | GPIO Pin 15;
  GPIO Init(GPIOF, &GPIO InitStructure);
  GPIO InitStructure.GPIO Pin = GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 2 |
GPIO Pin 3 | GPIO Pin 4 | GPIO Pin 5;
  GPIO Init(GPIOG, &GPIO InitStructure);
  GPIO InitStructure.GPIO Pin = GPIO Pin 11 | GPIO Pin 12 | GPIO Pin 13;
  GPIO Init(GPIOD, &GPIO InitStructure);
  /* NOE and NWE configuration */
  GPIO InitStructure.GPIO Pin = GPIO Pin 4 | GPIO Pin 5;
  GPIO Init(GPIOD, &GPIO InitStructure);
  /* NE1configuration */
  GPIO InitStructure.GPIO Pin = GPIO Pin 7;
  GPIO Init(GPIOD, &GPIO InitStructure);
  /* NBL0, NBL1 configuration */
  GPIO InitStructure.GPIO Pin = GPIO Pin 0 | GPIO Pin 1;
  GPIO Init(GPIOE, &GPIO InitStructure);
  /* Enable the FSMC Clock */
  RCC AHBPeriphClockCmd(RCC AHBPeriph FSMC, ENABLE);
```


Configure FSMC

FSMC FwLib Functions List

Function name	Description
RCC_AHBPeriphClock Cmd	Enables or disables the AHB peripheral clock.
FSMC_NORSRAMInit	Initializes the FSMC NOR memory bank according to the parameters specified in FSMC_NORInitStruct.
FSMC_NORSRAMCm	Enables or disables the NOR/SRAM memory bank1.

```
/* Enable the FSMC Clock */
  RCC AHBPeriphClockCmd(RCC AHBPeriph FSMC, ENABLE);
/*-- FSMC Configuration --*/
 p.FSMC AddressSetupTime = 0;
 p.FSMC AddressHoldTime = 0;
 p.FSMC DataSetupTime = 2;
 p.FSMC BusTurnAroundDuration = 0;
 p.FSMC CLKDivision = 0;
 p.FSMC_DataLatency = 0;
 p.FSMC AccessMode = FSMC AccessMode A;
 FSMC NORSRAMInitStructure.FSMC Bank = FSMC Bank1 NORSRAM1;
  FSMC NORSRAMInitStructure.FSMC DataAddressMux =
FSMC DataAddressMux Disable;
 FSMC NORSRAMInitStructure.FSMC MemoryType = FSMC MemoryType SRAM;
 FSMC NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  FSMC NORSRAMInitStructure.FSMC BurstAccessMode =
FSMC BurstAccessMode Disable;
  FSMC NORSRAMInitStructure.FSMC WaitSignalPolarity =
FSMC WaitSignalPolarity Low;
 FSMC NORSRAMInitStructure.FSMC WrapMode = FSMC WrapMode Disable;
 FSMC NORSRAMInitStructure.FSMC WaitSignalActive =
FSMC WaitSignalActive BeforeWaitState;
 FSMC NORSRAMInitStructure.FSMC WriteOperation =
FSMC WriteOperation Enable;
 FSMC NORSRAMInitStructure.FSMC WaitSignal = FSMC WaitSignal Disable;
 FSMC NORSRAMInitStructure.FSMC ExtendedMode = FSMC ExtendedMode Disable;
  FSMC NORSRAMInitStructure.FSMC AsyncWait = FSMC AsyncWait Disable;
  FSMC NORSRAMInitStructure.FSMC WriteBurst = FSMC WriteBurst Disable;
 FSMC NORSRAMInitStructure.FSMC ReadWriteTimingStruct = &p;
  FSMC NORSRAMInitStructure.FSMC WriteTimingStruct = &p;
 FSMC NORSRAMInit(&FSMC NORSRAMInitStructure);
  /* Enable FSMC Bank1 SRAM Bank */
  FSMC NORSRAMCmd(FSMC Bank1 NORSRAM1, ENABLE);
```


硬體電路配置

Mapping Table

Num.	SRAM	STM32	Num.	SRAM	STM32	Num.	SRAM	STM32
1	A0	FSMC_A0	14	A13	FSMC_A13	27	I/O8	FSMC_D8
2	A1	FSMC_A1	15	A14	FSMC_A14	28	I/O9	FSMC_D9
3	A2	FSMC_A2	16	A15	FSMC_A15	29	I/O10	FSMC_D10
4	A3	FSMC_A3	17	A16	FSMC_A16	30	I/O11	FSMC_D11
5	A4	FSMC_A4	18	A17	FSMC_A17	31	I/O12	FSMC_D12
6	A5	FSMC_A5	19	I/O0	FSMC_D0	32	I/O13	FSMC_D13
7	A6	FSMC_A6	20	I/O1	FSMC_D1	33	I/O14	FSMC_D14
8	A7	FSMC_A7	21	I/O2	FSMC_D2	34	I/O15	FSMC_D15
9	A8	FSMC_A8	22	I/O3	FSMC_D3	35	CE	FSMC_nNE1
10	A9	FSMC_A9	23	I/O4	FSMC_D4	36	OE	FSMC_nOE
11	A10	FSMC_A10	24	I/O5	FSMC_D5	37	WE	FSMC_nWE
12	A11	FSMC_A11	25	I/O6	FSMC_D6	38	UB	FSMC_NBL1
13	A12	FSMC_A12	26	I/O7	FSMC_D7	39	LB	FSMC_NBL0

實驗步驟

- □ 範例目錄架構
- □ 範例說明
- □ 預設定義說明
- □ 燒錄MIAT_STM32

範例目錄架構

- □ 範例目錄
 - 測試映像檔
 - 含括檔
 - 函式庫
 - 專案檔
 - ■原始碼

표 🛅 project

範例說明

Embedded Software Side

SRAM memory R/W operation

```
/* Write data to FSMC SRAM memory */
/* Fill the buffer to send */
Fill_Buffer(TxBuffer, BUFFER_SIZE, 0x3212);
FSMC_SRAM_WriteBuffer(TxBuffer, WRITE_READ_ADDR, BUFFER_SIZE);
/* Read data from FSMC SRAM memory */
FSMC_SRAM_ReadBuffer(RxBuffer, WRITE_READ_ADDR, BUFFER_SIZE);
/* Read back SRAM memory and check content correctness */
for (Index = 0x00; (Index < BUFFER_SIZE) && (WriteReadStatus == 0);
Index++)
 if (RxBuffer[Index] != TxBuffer[Index])
   WriteReadStatus = Index + 1;
```


範例說明

Embedded Software Side

Display Result

```
while (1)
 if (WriteReadStatus == 0)
 { /* OK Turn on USERLED */
  GPIO_SetBits(GPIOF, GPIO_Pin_11);
                                      如果寫入與讀取Buffer內
 else
                                      容相同,外部記憶體使
 { /* KO Turn off USERLED */
                                      用正常, USERLED 紅燈
  GPIO_ResetBits(GPIOF, GPIO_Pin_11);
                                      恆亮
  /* Insert delay */
  Delay(0xAFFFF);
  /* Turn on USERLED */
  GPIO_SetBits(GPIOF, GPIO_Pin_11);
  /* Insert delay */
  Delay(0xAFFFF);
                                  如果寫入與讀取Buffer內容不
                                  同,外部記憶體使用異常,
                                  USERLED紅燈閃爍
```


預設定義說明

- □ #define Bank1_SRAM1_ADDR ((u32)0x60000000)
 - 定義SRAM起始點
- ☐ #define BUFFER_SIZE 0x400
 - 定義測試資料大小
 - 資料大小必需小於0xC000
- #define WRITE_READ_ADDR 0x8000
 - 定義SRAM寫入起始點
 - 寫入起始點WRITE_READ_ADDR + BUFFER_SIZE 必需小於0x6000C000

燒錄MIAT_STM32

- □ Rebuilder all target files產生HEX
- □ DFU File Manager轉換HEX產生DFU
- □ DfuSe Demonstration 燒錄DFU
- ☐ Leave DFU mode

內部與外部SRAM存取控制實驗

實驗一

實驗一練習

- □ 練習:
 - ■修改寫入位置測試是否正常
 - ■修改寫入資料大小測試是否正常
 - 取消FSMC_SRAM_Init測試是否正常

實驗目的(二)

□ 使用MIAT_STM32實驗板透過FSMC控制外部SRAM並設定為data memory進行存取控制實驗,同樣利用LED確認存取是否正常。

實驗原理

- ☐ External SRAM
- □ RVMDK環境設定
- ☐ Development Flow
- ☐ ARM Configure
- ☐ Startup Code

RVMDK環境設定

Development Flow

Embedded Software Side Bootup STM32F10x int main(void) **Programming** #ifdef DEBUG **Startup Code** debug(); #endif **Bootup** STM32F10x /* System Clocks Configuration */ **RCC Configure** RCC_Configuration(); **NVIC Configure** /* NVIC Configuration */ NVIC_Configuration(); **GPIO** Configure /* GPIO Configuration */ GPIO_Configuration(); for (Index = 0; Index <1024; Index++) **Check operation Check pointer value** Tab[Index] =Index; **Display Result** /* Get main stack pointer value */

```
TabAddr = (u32)Tab; /* should be 0x600000xx */
MSPValue = __MRS_MSP(); /* should be 0x2000xxxx */
```


Startup Code

Register boundary addresses

Boundary address	Peripheral	Bus
0x4002 1000 - 0x4002 13FF	Reset and clock control RCC	AHB

RCC register map

Offset	Register
0x014	RCC_AHBENR
0x018	RCC_APB2ENR

RCC Configure

; Enable FSMC clock

LDR R0,= 0x00000114

LDR R1,= 0x40021014

STR R0,[R1]

; Enable GPIOD, GPIOE, GPIOF and GPIOG clocks

LDR R0,= 0x000001E0

LDR R1,= 0x40021018

STR R0,[R1]

RCC Register

AHB Peripheral Clock enable register (RCC_AHBENR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved			SDIO EN	Res.	FSMC EN	Res.	CRCE N	Res.	FLITF EN	Res.	SRAM EN	DMA2 EN	DMA1 EN
							rw		rw		rw		rw	rw	rw

Bit 8 FSMCEN: FSMC clock enable

Set and cleared by software.

0: FSMC clock disabled

1: FSMC clock enabled

APB2 peripheral clock enable register (RCC_APB2ENR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADC3 EN	USAR T1EN	TIM8 EN	SPI1 EN	TIM1 EN	ADC2 EN	ADC1 EN	IOPG EN	IOPF EN	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.	AFIO EN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw

Bit 8/7/6/5 **IOPGEN: I/O port G/F/E/D clock enable**

Set and cleared by software.

0: I/O port G/F/E/D clock disabled

1: I/O port G/F/E/D clock enabled

Startup Code

Register boundary addresses

Boundary address	Peripheral	Bus
0x4001 2000 - 0x4001 23FF	GPIO Port G	APB2
0x4001 1C00 - 0x4001 1FFF	GPIO Port F	
0x4001 1800 - 0x4001 1BFF	GPIO Port E	
0x4001 1400 - 0x4001 17FF	GPIO Port D	

GPIO register map

Offset	Register
0x00	GPIOx_CRL
0x04	GPIOx_CRH

GPIO Configure

; SRAM Data lines, NOE and NWE configuration

; SRAM Address lines configuration

; NOE, NEW, NE1, NBL0, NBL1 configuration

LDR R0,= 0xB4BB44BB

LDR R1,= 0x40011400

STR R0,[R1]

LDR R0,= 0xBBBBBBBB

LDR R1,= 0x40011404

STR R0,[R1]

LDR R0,= 0xB44444BB

LDR R1,= 0x40011800

STR R0,[R1]

LDR R0,= 0xBBBBBBBB

LDR R1,= 0x40011804

STR R0,[R1]

LDR R0,=0x44BBBBBB

LDR R1,= 0x40011C00

STR R0,[R1]

LDR R0,= 0xBBBB4444

LDR R1,= 0x40011C04

STR R0,[R1]

LDR R0,= 0x44BBBBBB

LDR R1,= 0x40012000

STR R0,[R1]

GPIO Register

Port configuration register low

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CNF	CNF7[1:0]		MODE7[1:0]		CNF6[1:0]		MODE6[1:0]		5[1:0]	MODE	5[1:0]	CNF	4[1:0]	MODE4[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CNF	CNF3[1:0] MODE3[1:0]		E3[1:0]	CNF2[1:0]		MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF	0[1:0]	MODE	0[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Port configuration register high

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CNF1	CNF15[1:0]		MODE15[1:0]		CNF14[1:0]		MODE14[1:0]		3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE12[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CNF1	1[1:0]	MODE	11[1:0]	CNF1	CNF10[1:0]		MODE10[1:0]		9[1:0]	MODE	9[1:0] CNF		8[1:0]	MODE	8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:30, 27:26,23:22, 19:18, 15:14,11:10, 7:6, 3:2

CNFy[1:0]: Port x configuration bits (y= 0 .. 15) In input mode (MODE[1:0]=00):

00: Analog input mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] >00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24,

21:20, 17:16, 13:12,

9:8, 5:4, 1:0

MODEy[1:0]: Port x mode bits (y=0..15)

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

Startup Code

FSMCregister map

Offset	Register
0xA000 0000	FSMC_BCR1
0xA000 0004	FSMC_BTR1

FSMC Configure

; FSMC Configuration

; Enable FSMC Bank1_SRAM Bank

LDR R0,= 0x00001011

LDR R1,= 0xA0000000

STR R0,[R1]

LDR R0,= 0x00000200

LDR R1,= 0xA0000004

STR R0,[R1]

FSMC Register

SRAM/NOR-Flash chip-select control registers 1 (FSMC_BCR1)

31 30 29 28 27 26 25 24 23 22 21 20	19 18 17 16 15	14 13 1	12 11 10 9 8	7 6 5 4	3 2 1 0
Reserved	CBURSTRW	EXTMOD	WREN WAITCFG WRAPMOD WAITPOL BURSTEN	ACCE	MTYP MUXEN MBKEN
	rw	rw rw r	rw rw rw rw	rw rw rw	rw rw rw

Bit 12 WREN: Write enable bit.

This bit indicates whether write operations are enabled/disabled in the bank by the FSMC:

0: Write operations are disabled in the bank by the FSMC, an AHB error is reported,

1: Write operations are enabled for the bank by the FSMC (default after reset).

Bits 5:4 MWID: Memory databus width.

Defines the external memory device width, valid for all type of memories.

00: 8 bits,

01: 16 bits (default after reset),

10: reserved, do not use,

11: reserved, do not use.

Bit 0 MBKEN: Memory bank enable bit.

Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a disabled bank causes an ERROR on AHB bus.

0: Corresponding memory bank is disabled

1: Corresponding memory bank is enabled

FSMC Register

SRAM/NOR-Flash chip-select timing registers 1 (FSMC_BTR1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		ACCIMOD		F	5			200	CLADIV			NotiForio	NEO I COG					TOATACT	DAIASI						משטחרה :			1000	ADDSEI	
	_	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:8 **DATAST: Data-phase duration**

0000 0000: Reserved

0000 0001: DATAST phase duration = 2 × HCLK clock cycles

0000 0010: DATAST phase duration = $3 \times HCLK$ clock cycles

...

1111 1111: DATAST phase duration = 256 × HCLK clock cycles (default value after reset)

Bits 7:4 ADDHLD: Address-hold phase duration

0000: Reserved

0001: ADDHLD phase duration = 2 × HCLK clock cycle

0010: ADDHLD phase duration = $3 \times HCLK$ clock cycle

•••

1111: ADDHLD phase duration = 16 × HCLK clock cycles (default value after reset)

Bits 3:0 ADDSET: Address setup phase duration

These bits are written by software to define the duration of the $address\ setup\ phase\ (refer\ to$

Figure 162 to Figure 172), used in SRAMs, ROMs and asynchronous NOR Flash:

0000: ADDSET phase duration = $1 \times HCLK$ clock cycle

•••

1111: ADDSET phase duration = $16 \times HCLK$ clock cycles (default value after reset)

實驗步驟

- □ 範例目錄架構
- □ 範例說明
- □ 預設定義說明

範例目錄架構

- □ 範例目錄
 - 測試映像檔
 - 含括檔
 - 函式庫
 - 專案檔
 - ■原始碼

- 🖃 🚞 SRAM_DataMemory
 - 🛅 image
 - 🛅 include
 - 🛅 library
 - 표 🚞 project
 - 🛅 source

範例說明

Embedded Software Side

Display Result

```
/* Infinite loop */
 while (1)
  if (((TabAddr&0xFFFFF00) == 0x60000000) &&
((MSPValue\&0xFFFF0000) == 0x20000000))
  { /* OK Turn on USERLED */
   GPIO_SetBits(GPIOF, GPIO_Pin_11);
  else
                                        如果Tab位置在0x600000??
  { /* KO Turn off USERLED */
                                        且Stack pointer位置在
  GPIO_ResetBits(GPIOF, GPIO_Pin_11);
                                        0x2000????, 外部記憶
  /* Insert delay */
                                        體使用正常, USERLED
  Delay(0xAFFFF);
                                        紅燈恆亮
  /* Turn on USERLED */
   GPIO_SetBits(GPIOF, GPIO_Pin_11);
  /* Insert delay */
  Delay(0xAFFFF);
                                 如果Tab位置不在0x600000??或
                                 Stack pointer位置不在0x2000????
                                 外部記憶體使用異常,USERLED
                                 紅燈閃爍
```


預設定義說明

- □ DATA_IN_ExtSRAM EQU 1
 - External SRAM Configuration
 - \square 0=> DISABLE
 - \square 1=> ENABLE
- □ u32 Tab[1024]
 - 宣告於外部SRAM的記憶體

data memory存取控制實驗

實驗二

實驗二練習

□ 練習:

- 取消RVMDK環境外部SRAM設定測試是否正常
- 修改DATA_IN_ExtSRAM EQU 0測試是否正常
- 修改外部SRAM記憶體Tab變數大小測試是否正常

Q & A

