NASA TECHNICAL MEMORANDUM

NASA TM X-53263

MAY 17, 1965

NASA TM X-53263

a	N65-24567	
X	(ACCESSION NUMBER)	(THRU)
7 5	(PAGES)	460051
FACILI	(FAGES)	(CODE) 3/
-	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

SA-9, 8, and 10 DISPERSION ANALYSIS

by GERALD WITTENSTEIN AND JERRY D. WEILER Aero-Astrodynamics Laboratory

	GPO PRICE \$
	OTS PRICE(S) \$
NASA	Hard copy (HC)
	Microfiche (MF)
George C. Marshall	WILCIONCINE (WIT)

George C. Marshall Space Flight Center, Huntsville, Alabama

TECHNICAL MEMORANDUM X-53263

SA-9, 8 AND 10 DISPERSION ANALYSIS

Ву

Gerald Wittenstein and Jerry D. Weiler

George C. Marshall Space Flight Center

ABSTRACT

24567

This report replaces the Part II portion of the SA-9 Final Trajectory. The data used to generate the analysis presented here is based on final SA-9 Data. The only differences in the flights of SA-9, 8 and 10 will be a shift in the nominal similar to the shift described in this report.

A detailed discussion of dispersions, their philosophy, and application with respect to a nominal trajectory is presented. A brief description of the SA-9 nominal trajectory is contained as a reference in this report.

It is felt by the authors that the group of trajectories presented in the dispersion analysis is representative and yields a satisfactory envelope for the remaining Block II flight profiles (SA-8 and SA-10). Considering the vehicle \pm 2 σ perturbations, all mission objectives and requirements will be met with a high level of confidence.

Author

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53263

May 17, 1965

SA-9, 8, and 10 DISPERSION ANALYSIS

Ву

Gerald Wittenstein and Jerry D. Weiler

TRAJECTORY SECTION

FLIGHT MECHANICS BRANCH
FLIGHT EVALUATION AND OPERATIONS STUDIES DIVISION

AERO-ASTRODYNAMICS LABORATORY

TABLE OF CONTENTS

			Page
I.	INT	RODUCTION	2
II.	DES	CRIPTION	3
	A. B.	Theory	3
	C. D.	Presentation of the Dispersions and RSS Method Discussion of Engine-Out Capability	6 7
III.	RES	ULTS	8
	Α.	SA-9 Nominal Trajectory	8
	В.	Dispersion Analysis	8
	C.	Vehicle Root-Sum-Square Dispersions	8
	D.	Partials	8
	Ε.	Confidence Level	9
	F.	Orbital Results	9
	G.	Final Results	9

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
1	Nominal Sequence of Events	10
2A- 2B	S-I Stage Nominal Trajectory	11
3A- 3B	S-IV Ullage Portion Trajectory	13
4A- 4B	S-IV Stage Nominal Trajectory	15
5A- 5B	S-I Retro Portion Trajectory	19
6A- 6B	S-I Coast to Impact Trajectory	21
7A- 7C	S-I Stage State Parameters of Outboard Cutoff Result-	
	ing from 2 Magnitude Performance Variations	27
8A- 8C	S-IV Stage State Parameters at Guidance Initiations	
	Resulting from S-I Stage 2 o Magnitude Performance	
	·Variations	30
9A- 9C	S-IV Stage State Parameters at Guidance Initiation	
	Resulting from S-IV Stage 2 _J Magnitude Performance	
	Variations	33
10A-10D	S-IV Stage State Parameters at Guidance Cutoff	
	Resulting from S-I Stage 20 Magnitude Performance	
	Variations	36
11A-11D	S-IV Stage State Parameters at Guidance Cutoff	
	Resulting from S-IV Stage 20 Magnitude Performance	
	Variations	40
12A-12D	S-IV Stage Orbital Insertion State Parameters Result-	
	ing from S-I Stage 2σ Magnitude Performance	
	Variations	44
13A-13D	S-IV Stage Orbital Insertion State Parameters Result-	•
	ing from S-IV.Stage 20 Magnitude Performance	
	Variations	48
14	Dispersions Resulting from Guidance System Hardware	
	Errors	52
15	S-I, S-IV RSS Envelope	53
16	Perigee and Apogee Altitude Dispersions	54
1 7	Performance Partials Applicable at S-I Stage Outboard	
1.0	Cutoff	55
18	Performance Partials Applicable at S-IV Stage Cutoff	
	Signal and Orbital Insertion	56

TECHNICAL MEMORANDUM X-53263

SA 9, 8, AND 10 DISPERSION ANALYSIS

SUMMARY

SA-9 was the first Saturn flight to have a primary payload mission. Therefore, insuring a successful flight required that both payload and vehicle primary objectives be met with a high level of confidence. To accomplish this, the nominal trajectory was shaped so that there was approximately an equal confidence in "not" exceeding 113.4 kg (250 lbm) of liquid hydrogen (LH₂) and of achieving a guidance cutoff (95 per cent). It should be pointed out that in the event of a $+2\sigma$ vehicle dispersion the 113.4 kg (250 lbm) limit of LH₂ will be exceeded. Conversely, if a -2σ vehicle dispersion occurs, then a depletion cutoff will result rather than a guidance cutoff. In both cases the confidence of this occurring is quite small.

Considering only first stage performance perturbations and a nominal S-IV stage, then the following $\pm 2\,\sigma$ Root Sum Square (RSS) variations about the nominal at S-I stage cutoff are

Time = \pm 2.141 sec Altitude = \pm 1,986.2 m Range = \pm 3,652.7 m Velocity = \pm 44.62 m/sec Path Angle = \pm .937 deg

This yields at guidance cutoff signal (GCS) of the S-IV stage a ± 2 σ Root Sum Square (RSS) envelope about the nominal of

Time = $\frac{+}{2}$ 2.860 sec Altitude = $\frac{+}{4}$ 14.0 m Range = $\frac{+}{13}$,833.4 m Velocity = $\frac{+}{4}$ 0.00 m/sec Path Angle = $\frac{+}{4}$ 0.004 deg Residual = $\frac{+}{4}$ 263.14 kg

Assuming a nominal performing first stage and only S-IV stage perturbations, the following $\pm 2\sigma$ Root Sum Square (RSS) deviations occur about the nominal at guidance cutoff signal (GCS)

Time = \pm 9.656 sec Altitude = \pm 30.9 m Range = \pm 35,685.2 m Velocity = \pm 0.00 m/sec Path Angle = \pm 0.002 deg Residuals = \pm 184.2 kg

The nominal orbital configuration will guarantee greater than a one-year lifetime and a maximum altitude of approximately 750 km. In the event of a $-2\,\sigma$ vehicle dispersion, the apogee altitude will be reduced to approximately 700 km, which does not significantly change the lifetime.

SECTION I. INTRODUCTION

The primary objectives of the SA-9, 8 and 10 vehicles are to place the Pegasus satellite into an orbit which has a guaranteed lifetime of one year under 2 or Root Sum Square (RSS) considerations and the continued development of the Saturn I, Block II vehicles. The Pegasus satellite's primary objectives are to measure the magnitude and direction of medium size meteoroids, store this information and transmit it back to earth upon telemetered commands.

SA-9, 8 and 10 are Saturn I, Block II vehicles, which consist of S-I Stage, S-IV Stage, instrument unit, and Apollo boilerplate (BP 16). The boilerplate consists of a service module, a command module, a launch escape system, and a Pegasus satellite.

Nominally for the SA-9, the S-I stage will propel the vehicle to an altitude of approximately 89 km, with a range of approximately 79 km. The S-IV stage, using the iterative guidance mode (IGM), will arrive at the following conditions at guidance cutoff signal (GCS): (guidance cutoff signal is initiated when the velocity reaches 7,678.95 m/sec) a time of 629.93 sec, an altitude of 500.06 km, a path angle of 90.018° , and a range of 1,861.2 km. See Reference 1 for a more complete description of the nominal trajectory.

SA-9, launched from Cape Kennedy, Pad 37B, on February 16, 1965, flew a successful mission, placing the Pegasus satellite into the predicted orbit and preliminary results show that all the mission objectives were accomplished.

In obtaining the flight profile necessary to achieve the mission requirements, the following assumption was made: A successful flight will occur if the vehicle can achieve the mission requirements

satisfactorily under a $\pm 2\sigma$ Root Sum Square (RSS) dispersion. It is upon this assumption that the nominal trajectory is based. By coordination with responsible people of the Center, the dispersion analysis presented in the description is considered representative of a $+2\sigma$ Root Sum Square (RSS) normal type distribution.

In light of the LH $_2$ problem (see Reference 2), it became necessary to reduce the nominal Flight Performance Reserve such that there would be approximately a 95 per cent confidence in achieving a guidance cutoff and of "not" exceeding 113.4 kg (250 lbm) of LH $_2$. This leads to a dispersion analysis which must consider primarily both a guidance cutoff and the safety of the Pegasus satellite.

Lieftime and orbital information was obtained from the Operations Studies Branch, R-AERO-FO.

The authors wish to thank Pamelia B. Pack for her assistance in obtaining the data presented in this report.

SECTION II. DESCRIPTION

A. Theory

Since a deviation from the mean is statistically probable, it is necessary to determine within reasonable limits a vehicle envelope which will describe the flights of SA-9, 8 and 10. This envelope will determine the necessary performance characteristics of the vehicle which are needed to accomplish the mission. It is assumed that a successful mission will occur if the requirements can be met 95 per cent of the time. Therefore, individual perturbations (\mathbf{I}_{sp} , F, winds, etc.) of a $\pm 2\,\sigma$ magnitude must be considered for the dispersion analysis. For the purpose of this report, all individual perturbations are assumed to describe a normal (Gaussian) distribution. Statistically, all disturbances can occur with an equal probability and, therefore, it is necessary to determine a total vehicle $\pm 2\,\sigma$ deviation.

The individual perturbations are considered to be independent; however, the propulsion group used in the S-I stage is complete only if the group and magnitude of the dispersion obtained from P&VE Laboratory are contained in the dispersion analysis. The propulsion group of the S-I stage consists of the following perturbations: propellant loading, I $_{\rm SP}$ (flowrate), thrust and flowrate (I $_{\rm SP}$ = constant), mixture ratio, ground winds, and ambient temperature. All other perturbations are considered completely uncorrelated.

After establishing the median trajectory (by use of the Monte Carlo Method described below), it was found that this corresponded to the nominal trajectory as presented in Part I. Using this (nominal)

as a base, a $\pm 2\,\sigma$ vehicle dispersion was determined by applying the Root Sum Square Method. The Root Sum Square method uses the fact that for a number of perturbations, which have a $2\,\sigma$ magnitude and are independent of each other, a total vehicle $2\,\sigma$ perturbation can be found by squaring the individual perturbations and taking the square root of the sum (see Reference 3). A similar method which was used for determining the vehicle $2\,\sigma$ perturbation is the Monte Carlo technique. In general, this technique generates a large number of cases and statistically analyzes them. For more information about this method, see Reference 4. The results of both methods were essentially identical. The only difference in the two is in the prediction of the envelope for a large number of parameters. For SA-9, 8 and 10 the only envelope established by the Monte Carlo technique was the delta $2\,\sigma$ residual dispersions.

B. Mission Objectives and Requirements

Generation of the final flight profile must satisfy, if at all possible, all the mission requirements and objectives. Those which most affect the flight profile are as follows

- 1. Having a minimum of LH_2 residual at cutoff. The desired amount is less than 113.4 kg (250 lbm).
- 2. Achieving a guidance cutoff (GCS).
- 3. Guaranteeing a one-year lifetime.
- 4. Not exceeding an apogee altitude of 750 km.

SA-9, 8 and 10 are unique in (up to this time in the Saturn program) that the flight profile is bounded by both high and low performance. Requirements one and two contradict each other in that number one calls for a large Flight Performance Reserve and number two calls for zero residuals. In the nominal case, Flight Performance Reserve is treated as residuals. It was for this reason that the approach was to compromise requirements one and two such that an equal confidence results for both requirements.

Since the dispersion envelope is treated statistically and must be representative, it is essentially independent of influencing most of the requirements. To satisfy the requirements for SA-9, the envelope had to be shifted so that requirements one and two could both be met with a high level of confidence. The method used to accomplish this was to adjust the nominal Flight Performance Reserve, which is necessary to satisfy the four requirements. For SA-9, the S-I Stage loading was changed to accomplish this. For SA-8 and 10 the iterative guidance mode terminal conditions will be altered to assure the correct Flight Performance Reserve on board.

Shown below is a graphical representation of the results of this shift. The shaded area in Figure 1 indicates the regions where a

guidance cutoff does not occur and where 113.4 kg (250 lbm) of $\ensuremath{\mathrm{LH}}_2$ is exceeded.

C. Presentation of the Dispersions and Root Sum Square Method

The dispersions considered to be representative for SA-9, 8 and 10 are as follows:

1. S-I Stage

(a)	Non-Propellant Mass	(-237. 1bm)
(b)	Propellant Loading Mass	(1,712. 1bm)
(c)	Thrust and Flow Rate (I _{sp} = Constant)	(75 per cent)
(d)	Flow Rate	(1 per cent)
(e)	Thrust Misalignment (Normal)	(.37 deg)
*(f)	Thrust Misalignment (Inplane +)	(.37 deg)
*(g)	Thrust Misalignment (Inplane -)	(.37 deg)
(h)	Mixture Ratio Shift	(.47 per cent)
(i)	Longitudinal Drag Coefficient	(10 per cent)
*(j)	2 σ Headwind	(See Reference 5).
*(k)	2 σ Tailwind	(See Reference 5)
*(1)	2 σ Left Crosswind	(See Reference 5)
*(m)	2 σ Right Crosswind	(See Reference 5)
*(n)	$+2\sigma$ Ground Wind	(See Reference 6)
*(o)	-2 σ Ground Wind	(See Reference 6)
(p)	+2 σ Ambient Temperature	(See Reference 6)
*(q)	-2 σ Ambient Temperature	(See Reference 6)

2. S-IV Stage

(a)	Non-Propellant Mass	(+ 781bm)
(b)	Propellant Loading Mass	(335 1bm)
(c)	Thrust and Flow Rate $(I_{sp} = 0)$	Constant)(5 per cent)
	Flow Rate	(5 per cent)
(e)	Thrust Misalignment (Normal)	(.41 deg)
(f)	Mixture Ratio	(8.5 per cent)

3. Guidance System Hardware Errors

(a)	Accelerometer Errors	(See Reference 8)
(b)	Gyro Drift Errors	(See Reference 8)
(c)	Azimuth Alignment Errors	(See Reference 8)
(d)	Resolver Chain Errors	(See Reference 8)
(e)	Platform Leveling Errors	(+.005 arc sec.)

The envelope about the nominal state parameters (X, Y, etc.) takes into account guidance scheme and guidance hardware errors in both the S-I stage and S-IV stage. As seen in the results, the deviations are not symmetric. However, this result has been taken into account in the generation of the final flight profile. The starred (*) cases above are the nonsymmetric cases considered in this analysis.

Shown below is the analytical method used in obtaining the root sum squared deviations for stage and vehicle perturbations.

 P_g = Guidance System Hardware Errors

The S-I Stage RSS is obtained as follows:

Positive
$$RSS_I = \sqrt{\sum (+P_I)^2}$$

Negative $RSS_I = \sqrt{\sum (-P_I)^2}$
 $RSS_I = \frac{Positive RSS_I + Negative RSS_I}{2}$

The S-IV Stage RSS is obtained as follows:

Positive RSS_{IV} =
$$\sqrt{\sum (+P_2)^2}$$

Negative RSS_{IV} = $\sqrt{\sum (-P_2)^2}$

 $RSS_{TV} = (Positive RSS_{IV} + Negative RSS) = 2$

The vehicle RSS is obtained as follows:

Positive
$$RSS_V = \sqrt{\sum (+P_1)^2 + \sum (+P_2)^2 + \sum (+P_g)^2}$$

Negative $RSS_V = \sqrt{\sum (-P_1)^2 + \sum (-P_2)^2 + \sum (-P_g)^2}$
 $RSS_V = \text{(Positive } RSS_V + \text{Negative } RSS_V) \stackrel{\bullet}{\longrightarrow} 2$

D. Discussion of Engine-Out Capability

Engine-out cases are not considered in the $\pm 2\,\sigma$ RSS since the probability of one not occurring is supposedly greater than 3σ (i.e., 99%). For SA-9 it is impossible to have an outboard engine-out in the first stage and make the nominal orbit, although it is possible to have an engine-out at approximately 130 seconds and make an orbit with a guaranteed lifetime of one year. For an inboard engine, it is possible to have an engine-out at approximately 80 seconds and still make the predicted orbit. An engine-out in the S-IV stage must come after 300 seconds of flight time in order to make the predicted orbit. If, however, an engine-out occurs after 583.2 sec. of flight time, all engines will cut off. This is due to the arming of the LOX cutoff capability, which is established by range safety requirements. If this takes place before 624. sec. of flight time, no orbit can be made.

SECTION III. RESULTS

A. SA-9 Nominal Trajectory

The nominal SA-9 trajectory, including retro and coast portions, is presented in Tables 2A through 6B. The tables labeled with an A represent space-fixed values and those labeled with a B represent earthfixed values.

B. Dispersion Analysis

Shown in tables 7A through 15 are the results of the dispersion analysis. Tables 7A through 13D contain the nominal values with corresponding deltas which apply at outboard engine cutoff, S-IV guidance initiation, S-IV guidance cutoff, and S-IV insertion. These results are due to guidance scheme and performance perturbations. Table 14 contains the nominal values with the corresponding deltas due to guidance system hardware errors at S-IV guidance cutoff. Table 15 contains the RSS envelope for the vehicle.

C. Vehicle RSS (S-IV Residual was the only parameter considered.)

The vehicle root sum squared deviations are as follows:

 $+RSS_{V} = 313 \text{ kg (690 1bm)}$

 $-RSS_V = 331 \text{ kg} (730 \text{ 1bm})$

 $RSS_{V} = 322 \text{ kg} (710 \text{ 1bm})$

D. Partials

Shown in Tables 17 and 18 is a group of partials applicable for SA-9. A note of caution of the validity of these partials should be made in the event of a combination of perturbations. These partials should be applicable for SA-8 and SA-10.

E. Confidence

The results of the dispersion analysis yields an envelope which gives a 90 per cent confidence in having a successful flight. However, if high performance occurs, at least one objective will be met (guidance cutoff). In the event of low performance, one objective will also be met (not exceed 113.4 kg (250 lbm) of LH₂). The 90 per cent confidence results from the conflict between requirements one and two as listed in the description. Shown below is the region where a successful flight will occur (shaded area).

F. Orbital Results

Introduction of the $2\,\sigma$ perturbations listed in the description causes only a small deviation in the predicted orbit of 750 km - 500 km apogee and perigee altitudes. This is credited to the use of the iterative guidance mode employed in the S-IV stage of SA-9.

Shown in table 16 are the perigee and apogee variations due to S-I, S-IV stage performance deviations and the guidance system hardware errors. Also included are the \pm 2 σ root sum square values.

G. Final Result

According to preliminary results from the flight evaluation, the SA-9 flight fell within the predicted envelope. The dispersion analysis considered here should well define the flight profile of SA-8 and 10.

TABLE I
SA-9 SEQUENCE OF EVENTS

Time (From Lift-Off)	Event
0.00	Lift-Off
8.00	Initiate Roll and Pitch Tilt
23.00	Terminate Roll
136.05	Signal from Sequencer to Enable Level Sensors
138.00	Tilt Arrest
140.05	S-I Stage Level Sensor Signal
141.65	Inboard Cutoff (S-I Stage)
147.65	Outboard Cutoff (S-I Stage)
148.35	Ullage Rocket Ignition (S-IV Stage)
148.45	Separation, Immediately Followed by Retro Rocket Ignition (S-I Stage)
150.15	S-IV Mainstage Ignition
152.15	Ullage Rocket Thrust Termination
160.45	Jettison Ullage Rocket Casing and LES
166.00	Initiate Active Guidance
584.25	Signal from Sequencer to Arm LOX Cutoff Capability
630.49	S-IV Stage Guidance Cutoff Signal
640.49	End of Powered Flight
810.49	Close Blowdown Non-Propellant Vents
811.49	Start S-IV Pegasus/Apollo Separation
871.49	Begin Pegasus Wing Deployment
931.49	Terminate Wing Deployment

TABLE 2A S-I STACE NOMINAL TRAJECTORY

-	TIME	GRØUND DISTANCE	ALTITUDE	SPACE FIXED VELOCITY	SPACE FIXED PATH ANGLE	ACCELERATIØN V DØT EARTH-FIXED	MASS	DYNAM IC Pressure	THRUST	МАСН	DR AG
1.5	() EC)	(KM)	(KM)	(M/SEC)	(050)	(M/SEC SQ)	(KG)	(N/M SC)	2		3
	0	00.0-	0	408.9	0.0	ε,	505602	0	6572064	0.00	44130
	5.0	-0.00	0	409.3	7.4	6.	9221	ç	75350	0	222
7	0.0	00.0-	7	410.8	4.6	ď.	7882	86	79118	٠,	625
	5.0	00.0	4.0	414.2	1.5	٠,	6534	12	82913		7356
~!	20.0	0.01	0	421.4	78.21	5.22	86	4672	385	.2	580
~	2.0	40°0	1.3	433.2	4.8	-	3834	673	9222C	'n.	4391
ויה ו	0.0	0.11	1.9	450.5	1.5	ω.	2483	<u>.</u> 7	98026	4.	9116
וח י	15.0	0.23	2.1	473.3	4.8	6.	1130	400	04347	5	5396
. 4	0	0.43	3.7	501.4	3.	ŝ	2777	832	11057	•	3230
4	5.0	0.72	4.8	534.1	2.9	۳.	8425	27 c	17910	۲.	5555
41	0.00	1.12	6.1	571.0	0.7	ŝ	7074	670	24917	8	64414
	55.0	1,63	7.6	610.6	8.9	4.	5721	862	31609	ှ	03388
. ~	0.0	2.28	9.2	653.4	7.4	2.	4368	13	37913	7	8292
	55.0	3.08	11.1	702.7	6.2	5.	3011	204	43917	e,	02899
, ,-	0.0	4.07	13.2	759.8	5.1	٦.	1654	149	49546	•	0278
,-	75.0	5.27	15.4	825.7	4.1	6.	0297	936	54617	æ	4317
~	30.0	6.72	18.0	901.4	3.3	8	8940	505	58601	∹	7114
	35.0	94,08	20.8	988.1	2.7	6.	1590	003	61411	٠,4	0960
	0.06	10.55	24.0	086	2.5	0	6241	528	63097	٠.	8353
•	95.0	וייי	27.5	196	2.4		4893	123	63878	0	8823
	0.00	v	31.3	317	2.7	۳,	3546	88	64058	ď,	1838
Ä	5.0	ూ	35.4	450	3.0	7.	2200	3 C	63873	9.	229
7	10.0	ന	40.0	595	3.5	.2	0855	44	63379	਼	331
	15.0	28.26	44.9	1752.6	3.9	0	9512	18	65239	4.	559
1	0.0	(L)	50.3	924	4.3	7	8170	37	61019	5	501
1	25.0	. 5	56.1	111	4.6	.5	6832	4n	59808	5	9,3
; ; ;;	30.0	-O	62.5	316	6. 4	ž	2494	œ	58255	4.	75
1	35.0	,	9.5	543	5.1	٦.	4164	ጥ	56008	Š	,4
71	0.0	9.4	7.1	194	5.3	ď	2834	55	53038	۲.	4]
(1)	40.6	4.0	8.1	827	5.4	• 2	2668	84	52350	6.	55
–	42.0	7 . 2	0.3	2871.1	5.5	3	97	61	92026	• 2	55
(2) 14	9.94	÷. 9	7.9	2586.2	5.9	6.	1782	17	64224	φ,	22.
-	47.1		8.6	92	5.9		10	. 15	322	•	19
(3) 14			•2	-	6.6	•	1703	13	332	6	17
5		Ę									
33 3		LECO OECO									
. U	_	Separation									

S-I STAGE NOMINAL TRAJECTORY TABLE 2B

00. LAT. GEØC. LAT.	NØRTH)	8.5319 28.3707 8.5319 28.3707 8.5319 28.3707	.5319 28.37	.5318 28.37	.5317 28.37	.5315 28.37	.5305 28.36	.5296 28.36	.5286 28.36	.5272 28.36	.5255 28.36	.5233 28.36	.5207 28.35	.5175 28.35	.5136 28.35	.5088 28.34	•503:1 28 •3 4	•4962 28•33	•4881 28.32	•4786 28.31	•4676 28•30	•4549 28.29	.4404 28.27	•4238 28.26	.4051 28.24	.3840 28.22	.3812 28.22	.3748 28.21	.3527 28.19	.3505 28.19	.3487 28.18			
.DE GE	WEST) N	8C.5650 28 8C.5649 28 8O.5649 28	0.5649 2	0.5645	0.5638 2	0.5626 2	2 7755.0	C.5538 2	0.5487 2	6.5422 2	0.5343 2	0.5245 2	C.5126 2	C.4983 2	C.4810 2	0.4664 2	C.4357 2	0.4065 2	0.3721 2	0.3320 2	C.2857 2	0.2325 2	3.1719 2	0.1033 2	0.0260 2	2 0586.5	5.9275 2	9.9014 2	5.8110 2	9.8022 2	5.7949 2			
РАТН	ANGLE (DEG)	83.73 0.46 0.45	7.	. 9	4.	0°9	٠.	8.0	0.1	2.3	4.4	9.9	8.6	9.0	2.6	4.7	6.8	8.9	1.0	2.8	4.5	5.9	7.2	8.2	6.1	0.0	0.1	0.3	1.0	1.0	1.1			
	VEL BCITY (M/SEC)	0.0 18.0 38.6	_ ,	ם ה	4	S	5.4	93	36	8	53	86	51	ວ	5	04	913	026	54	294	447	614	798	0 기	225	473	506	548	662	999	667			
AMETERS	022E (M/SEC)		0.5		-0.5	· -	-i.4	•	2	2.	2	2	•	2	2.	:	ં		•	٠	•	•	•	•	•	•	•	٠	•	•				
XED PARAME	DYYE (M/SEC)	0.0 18.0 38.6	61.2	13	45	173.8	42	19	15	5	90	34	83	37	96	69	9	95	68	944	026	14	212	320	438	567	584	63	43	64	46			
EARTH FI)	DXXE (M/SEC)	0000	•		æ		· .	-	16.	44.	78.	18.	5	19.	84.	59.	47.	48.	60.	884.	020.	168.	328.	504.	697.	914.	42.	982.	091.	.760	098.			
	222E (KM)	000	o 6	်ငံ	ပံ	o c		ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	់	•	•	•	•	•	•	•			
	YYYE (KM)	0.0	•		•	•		•		9	:	ä		æ	ċ	4.	۲.	;	Š	ċ	•	ċ	9	· 5	6	9	۲.	ċ	7	æ	å			
	XXXE (KM)	000													æ	ċ	3	ġ		ë.	å	4	ċ	7	5.	4	Š	æ	۲.	8	9.	.	OECO Separation	ון מרדחוו
	TIME (SEC)	0.0		. יי	ċ	ے ڈ		<u>.</u>		<u>.</u>	•	÷		·		÷	95.	00	٠	10.	15.	20.	25.	30.	35.	• 0 •	40.	142.	146.		147.	(1) IECO		

TABLE 3A S-IV ULLAGE PORTION TRAJECTORY

CRAG		2	116	96	19
MACH			06.6	9.87	9.70
THRUST		Ĉ	62517	62517	62517
EYNAMIC	PRESSURE	(3S &/2)	13	11	ಹು
MASS		(KG)	62191	62164	62114
ACCELERATION	V D@T EARTH-FIXED	(M/SEC SG)	76.4-	-4.95	-4.93
SPACE FIXED	PATH ANGLE	(DEG)	55.99	56.06	56.20
SPACE	FIXED VELØCITY	(M/SEC)	2991.3	2588.8	2984.0
ALTITUDE		(KM)	89.28	90.25	92.11
GREUND	UISTANCE	(KA)	78.12	79.31	8i.60
TIME		(SEC)	147.4	148.0	149.1

S-IV ULLAGE PORTION TRAJECTORY

GERC. LAT.	(PBSITIVE	NERTH)	(DEG)	28.1882	28.1854	28.1798
GEBD. LAT.	(PØSITIVE	NØRTH)	(DEG)	28.3487	28.3459	28.3403
LONGITUDE	(PØSITIVE	WEST)	(DEC)	19.7549	75.7832	79.7607
	PATH	ANGLE	(CEG)	51.14	51.22	51.37
		VELRCITY	(M/SEC)	2667.0	2664.1	2658.6
TERS		277G	(M/SEC)	4.7	6.6	10.1
EARTH FIXED PARAMETERS		CYYE	(M/SEC)	1646.2	1641.2	1631.5
EAKTH FI		DXXE	(M/SEC)	2098.3	2098.6	2099.1
		Z Z Z E	(XX)	0.1	0.1	0.1
		YYYE	(χ Σ	88.8	89.8	91.6
		XXXE	(KK)	79.3	80.5	85.8
		TIME	(SEC)	147.4	143.0	149.1

TABLE 4A

S-IV STAGE NOMINAL TRAJECTORY

DRAG (N)	19	20	4	m	7	0	۲.	o ·	O	ວ	c	0	၁	5	c	0	0	0	C	0	0	Q	0	0	c	C	Ö	0	0	0	0	0	0	0	C	c	0	0	0	0
МАСН	9.70	•	8.30	2	• 2	٦.	۲.	~	æ	٠.	•	•	••	ř.	ď	3	.5	ů	•	•	•	•	۲.	٠.	ω	8		6	0	~	• 5	ď,	ن	4.	3		4.79	4.91	5.03	
THRUST (N)	334	'n	0886	C87	408045	C 13C	0579	0439	5	0267	0203	0141	010	0032	9937	9843	9733	9636	9656	9553	9536	9537	9529	9514	9492	9455	394185	9405	9406	9420	9436	9456	9440	9419	9405	9386	9386	9410	9427	9450
CYNAMIC PRESSURE (N/M SQ)	œ	9	O	O	ပ	ပ	C	ပ	0	ပ	0	0	C	0	0	0		0	0	0	O	0	ပ	0	0	0	0	0	0	ಭ	0	0	0	ပ	0	၁	0	0	0	၁
MASS (KG)	211	20	122	914	956	877	()	684	587	491	395	562	204	10 E	012	114	322	728	×#	533	EC 3	351	257	163	590	975	38814	787	669	229	5 06	415	318	224	133	036	943	849	755	
ACCELERATION V DØT EARTH-FIXED (M/SEC SG)	-4.92	5	6.	~	• 2	.3	1.52	8	٦.	4.	۲.	0	3	•	6.	•	5	æ	7	S	æ	٦.	S.	8		•	7.97	۳.	۲.	~	3	٠,	4.0	0.8	1.3	1.8	12.33	2.8	4.	4.0
SPACE FIXED PATH ANGLE (DEG)	6.2		7.4	7.4	8.0	8.6	9.5	0.5	1.5	2.5	3.4	4.4	5.4	66.36	7	ဆ	Φ,	\circ		7i.72	174	m	4	4	5.7	4.9	77.17	7.8	ဆ	9.5	6.6	0.0		1.7	2.3	2.8	ė	3.9		4
SPACE FIXED VELØCITY (M/SEC)	Ů,	2580.4	ď	Ģ,	Ō.	O	O	\circ	\circ	3089.5	_	_	$\overline{}$	α	N	r,	L.J	-7	4	S.	ω,	A)	_	~	æ	σ	4016.2	O	_	w	ויז	J	ď١	ç	_	v	2.	159	91.	429.
ALTIFUDE (KM)	2.1	93.57	68.9	69.8	17.8	25.7	41.1	56.3	71.1	85.5	7.66	13.4	26.9	40.0	52.8	65.3	77.4	89.3	60.8	12.0	22.9	33.5	43.8	53.7	63.4	72.7	1.8	90.5	686	07.0	14.9	22.3	56.5	36.4	42.9	49.1	55.0	60.6	65.8	7.07
GRØUND DISTANCE (KM)	•	83.40	02.8	o	14.4	25.0	40.4	68.1	90.3	12.8	35.8	59.5	83.1	07.5	32.4	57.8	83.7	10.2	37.3	65.0	93.3	22.3	51.9	82.3	13.39	45.2	ဆ	11.2	42.4	83.5	16.5	53.5	9I.4	30.3	70.2	011.3	053.4	7.960	141.2	1187.07
TIME (SEC)	•	0	.6	ċ	5	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ		ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	6	ċ	ċ	Ċ	510.0

TABLE 4A (Cont)

S-IV STAGE NOMINAL TRAJECTORY

(KM) VELØCITY EARTH-FIXED (KG) 475-27 5572-7 85-47 14-63 25677 475-27 5572-7 85-94 15-27 24738 479-45 5722-6 85-94 15-27 24738 483-27 5879-1 86-85 15-95 23759 486-73 5672-5 86-85 17-47 21922 489-82 6213-7 87-28 17-47 21922 492-52 6392-9 87-70 18-33 20982 494-84 6580-9 88-11 19-25 20042 494-84 6580-9 88-11 19-25 20042 494-84 6580-9 88-11 19-25 20042 494-84 6580-9 88-11 19-25 20042 498-24 6586-2 88-51 20-24 1816c 499-31 7265-1 89-6 23-76 16-28c 499-32 7436-2 89-6 23-76 15-34 50	TIME	GRØUND DISTANCE	ALTITUDE	SPACE FIXED	SPACE FIXED PATH ANGLE	ACCELERATION V DOT	MASS	CYNAMIC	THRUST	МАСН	DRAG
(KM) (KM) (W/SEC) (DEG) (W/SEC SC) (KG) (N/M SC) (N) 1234-16 475-27 5572-7 85-94 14-63 25677 0 394442 5-29 1285-61 479-45 5722-6 85-94 15-27 24738 0 394442 5-29 1285-61 479-45 5722-6 85-94 15-37 0 394442 5-29 1385-83 489-87 86-85 16-68 22851 0 394426 5-58 1395-83 489-82 6213-7 86-85 16-68 22851 0 394428 5-74 1430-7 489-82 6213-7 87-28 17-47 21922 0 394428 5-74 1491-26 492-52 6392-9 87-70 18-33 20982 0 394621 6.08 1605-34 494-84 6580-9 88-11 19-25 20042 0 394861 6.68 1605-34 496-25 6786-3				VELØCITY		EARTH-FIXED					
1234-16 475-27 5572-7 85-47 14-63 25677 0 394442 1282-61 479-45 5722-6 85-94 15-27 24738 0 394442 1332-48 483-27 5879-1 86-40 15-95 23759 0 394346 1332-83 486-73 5C42-6 86-85 16-68 22861 0 394428 135-74 489-82 6213-7 87.28 17-47 21922 0 394428 1491-26 492-52 6392-9 87.70 18-33 20982 0 394428 1605-49 494-84 6580-9 88-11 19-25 20042 0 394631 1605-49 494-84 6580-9 88-11 20-24 19101 0 394631 1605-49 496-75 6778-4 88-51 20-24 19101 0 394568 1605-37 499-31 7205-1 89-66 23-47 17220 0 394568 1856-85 500-07 7680-6 90-02 25-16 15345 0 394568 1924-14 499-8 7680-6 90-01 15345 0 394568 1924-14 499-8	<u>(</u>)		(× ×)	(M/SEC)	(DEC)	(M/SEC SQ)	(KG)	(N/M SC)	2		ŝ,
1282.61 479.45 5722.6 85.94 15.27 24738 0 394442 1332.48 483.27 5879.1 86.40 15.95 23759 0 394442 1335.48 486.73 66.40 15.95 23759 0 394422 1436.74 486.73 6213.7 86.85 16.68 22861 0 394428 1491.26 492.52 6392.9 87.28 17.47 21922 0 394428 1691.26 492.52 6392.9 87.70 18.21 20042 0 394428 1605.49 494.84 6580.9 88.11 19.25 20042 0 394428 1605.49 496.75 6778.4 88.51 20.24 1910.1 0 394631 1605.37 499.21 7205.1 88.51 20.24 1910.1 0 394581 1721.23 499.31 7205.1 89.28 22.47 17220 0 394588 1856.85 500.07 7680.6 90.02 23.76 16386 0 394580 1657.69 500.07 7680.6 90.01 0.01 15319 0 18777	0.0		475.27	5572.7	85.47	14.63	75677	¢,	306516	4	Ċ
1332.48 483.27 5879.1 86.40 15.95 23759 0 394346 1393.93 486.73 5642.6 86.85 16.68 22861 0 394428 1491.26 492.52 6213.7 87.28 17.47 21922 0 394428 1491.26 492.52 632.9 87.70 18.33 20982 0 394631 1605.49 494.84 6580.9 88.11 19.25 20042 0 394631 1605.49 494.84 6580.9 88.11 19.25 20042 0 394631 1605.49 494.84 6580.9 88.11 19.25 20042 0 394661 1605.49 496.75 6778.4 88.51 20.24 19101 0 394568 1727.23 499.31 7205.1 89.26 23.47 16280 0 394568 1856.85 500.07 7678.9 90.02 25.16 15349 0 393580 <	٠. د		419.45	5722.6	85.94	15.27	24738	o C	277758	7 Y	. c
1393-93 486.73 5642-6 86.85 16.68 22841 0 394237 1436.74 489.82 6213.7 87.28 17.47 21922 0 394428 1491.26 492.52 632.9 87.70 18.33 20982 0 394631 1577.49 494.84 6580.9 88.11 19.25 20042 0 39461 1655.49 494.84 6580.9 88.11 20.24 19101 0 394861 1655.37 496.75 6778.4 88.51 20.24 19101 0 394960 1727.23 499.31 7205.1 89.28 22.47 1720 0 394568 1856.85 50.07 7680.6 90.02 25.16 15345 0 393580 1657.69 50.07 7680.6 90.01 1.21 15329 0 1877 1924.14 499.98 7682.1 90.01 0.01 15319 0 0	0.0		483.27	5879.1	86.40	15.95	23755) C	34446	י מ • יי	o r
1436.74 489.82 6213.7 87.28 17.47 21922 0 394428 1491.26 492.52 632.9 87.70 18.33 20982 0 394631 1547.49 494.84 6580.9 88.11 19.25 20042 0 394631 1655.49 496.75 6778.4 88.51 20.24 19101 0 394960 1655.49 496.75 6786.2 88.90 21.31 18160 0 39458 1727.23 499.92 7436.2 89.66 23.47 1720 0 394568 1791.17 499.92 7436.2 89.66 25.16 15345 0 394568 1856.85 50.07 7680.6 90.02 1.21 15329 0 18777 1924.14 499.98 7682.1 90.01 1.5319 0 0 0	0.0		486.73	6042.6	86.85	16.68	22851	ေ	364237	5.74) (
1491-26 492.52 6392.9 87.70 18.33 20982 0 394631 1547.49 494.84 6580.9 88.11 19.25 20042 0 394861 1605.49 496.75 6778.4 88.51 20.24 19101 0 394960 1605.49 498.24 6986.2 88.90 21.31 18160 0 394881 1727.23 499.31 7205.1 89.28 22.47 17220 0 394568 1791.17 499.92 7436.2 89.66 23.76 16280 0 394179 1856.85 50.07 7680.6 90.02 1.21 1533.9 0 18777 1924.14 499.98 7682.1 90.01 15319 0 0 16577	0.0		489.82	6213.7	87.28	17.47	21922	(0)	394428	. 0	
1547.49 494.84 6580.9 88.11 19.25 20042 0 394861 1655.49 496.75 6778.4 88.51 20.24 19101 0 394960 1655.37 498.24 6986.2 88.90 21.31 18160 0 39481 1727.23 499.31 7205.1 89.28 22.47 1720 0 39458 1791.17 499.92 7436.2 89.66 23.76 16280 0 394179 1856.85 50.07 7678.9 90.02 25.16 15349 0 393580 1657.69 50.07 7680.6 90.01 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 0.01 15319 0 0	0.		492.52	6392.9	87,70	18.33	20982	0	394631	× × × ×) ·"
1605-49 496.75 6778.4 88.51 20.24 19101 0 394900 1655.37 498.24 6986.2 88.90 21.31 18160 0 394881 1727.23 499.31 7205.1 89.28 22.47 17220 0 394568 1791.17 499.92 7436.2 89.66 23.76 16580 0 294179 1856.85 50.07 7680.6 90.02 25.16 15329 0 18777 1924.14 499.98 7682.1 90.01 0.01 15319 0 0	0.0		464.84	6.0839	88.11	19.25	20042) C	394861	900	i c
1665.37 498.24 6986.2 88.90 21.31 1816 0 394881 1727.23 499.31 7205.1 89.28 22.47 1720 0 394568 1791.17 499.92 7436.2 89.66 23.76 16280 0 394179 1856.85 500.07 7678.9 90.02 25.16 15349 0 293580 1657.69 500.07 7680.6 90.02 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 15319 0 0	0.0		456.75	6778.4	88.51	20.24	19101) (C	394900	0 4 9) r
1727.23 499.31 7205.1 89.28 22.47 17220 0 394568 1791.17 499.92 7436.2 89.66 23.76 16280 0 394179 1856.85 500.07 7678.9 90.02 25.16 15349 0 393580 1657.69 500.07 7680.6 90.02 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 15319 0 0	0.0		488.24	6586.2	88.90	21.31	18160) (S	394881	6.66	` c
1791.17 499.92 7436.2 89.66 23.76 1628C 0 394179 1856.85 500.07 7678.9 90.02 25.16 15349 0 393580 1657.69 500.07 7680.6 90.02 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 15319 0 0	0.0		466.31	7205.1	89.28	22.47	1722C	C	394548	0 0	o c
1856.85 500.07 7678.9 90.02 25.16 15345 0 393580 1657.69 500.07 7680.6 90.02 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 0.01 15319 0	0.0		469.92	7436.2	89.66	23.76	1678C) C	027752	7 11	> (
1657.69 503.37 7680.6 90.02 1.21 15323 0 18777 1924.14 499.98 7682.1 90.01 15319 0	6.6		500.07	7678.9	90.02	25.16	15349) C	202200	7 24.	o (
1924-14 499-98 7682-1 90-01 0-01 15319 0			500.07	7680.6	90.02	1.21	15323		18777	7.36	ی د
	6.0		466.68	7682.1	90.01	0.01	15319) ()	- 0	7.36	י כ

⁽¹⁾ Initiate Active Guidance(2) GCS(3) Insertion

TABLE 4B

S-IV STAGE NOMINAL TRAJECTORY

CCYYE (M/SEC) (M/SE				-			_
999-11	CYYE M/SE	ZZE /SEC	VEL2CITY (M/SEC)	ANGLE (DEG)		NØRTH) (DEG)	NØRTH) (DEG)
24.09 24.09 24.09 24.09 24.09 24.09 24.09 24.09 24.09 24.09 24.09 25.09	631.	0	658.	1.3	9.763	8.340	8.179
41.9 15.26.5 16.90 17.20 18.20 1	674.		2654.5	51.49	79.7430	28.3360	28.1755
24.6.8 15.40.9 15.40.8 15.40.8 15.40.9 15.40.8 15.40.9 15.40.8	573.	ċ	658.	2.1	5.552	8.288	8.128
24.98 24.39 11.20.22 12.30.30 12.30 12.30 13.30 14.30	570.	2	.859	2∙8	8.54C	8.285	8.125
24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3	546.	ф •	999	3.4	2.437	8.260	8.100
24.3 24.3 24.3 24.3 24.3 25.3 26.3 27.3	62 2 •	9	671.	4.0	9.334	8.234	4.014
23.5 23.7.2 13.5 14.5	480.	9	•84•	5.1	9.125	8.180	8.C2C
83.5 83.5 83.5 14.5 14.5	437.	e G	701.	6.2	8.912	8.125	7.965
89.5 1349.6 1356.0 1266	353.	6	721.	7.4	8.696	8.068	7.908
73.5.2 13.05.4 73.6.2 13.05.2 12.05.2	349.	3.	744.	8 5	8.477	8.009	7.849
98.7 1261.0 17.5.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.2 11.75.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 1	305.	<u>.</u>	77C.	6.7	8.254	7.948	7.789
25.0 10.2 23.0 11.2 23.0 11.2 23.0 11.2 23.0 11.2 23.0 10.2 23.0 10.2 23.0 10.2 23.0 10.2 23.0	261.	္ပံ	.562	O . B	8 · 0 2 6	7.885	7.727
115.2 346.2 1171.2 356.3 1171.2 366.3 367.4 368.8	216.	÷	851.	1.9	7.795	7.821	7.662
24.2 1125.6 57.4 22.3 4 4.2 23.4 10.79.5 6 57.4 23.4 10.79.5 6 57.4 23.4 10.79.5 6 69.1 3 3 2 6.5 2 6.	171.	ŝ	866.	3.0	7.555	7.755	7.597
23.1 1079.5 59.6 20.3 39.0 10.2 8.8 61.7 2.8 88.7 9 66.5 3 3 3 66.5 68.8 87.9 66.5 3 3 66.5 68.8 87.9 71.9 3 88.7 9 60.5 9 3 60.5 9 60.5 9 9 9 60.5 9 9 9 60.5 9 9 9 60.5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	125.		963.		7.318	7.687	7.529
0.3.9 10.2.8 985.3 985.4 985.3 985.4 9	6Lō	6	. 546	5.2	7.073	7.617	7.459
70.7 985.3 999.5 997.0 9	032.		986.	ę•5	6.823	7.545	7.387
29.5 20.5 20.3	æ5∙	•	035.	7.3	6.568	7.471	7.314
10.3 883.4 883.4 883.4 883.4 883.4 883.4 884.2 86.6 688.9 87.9 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0	37.	9	085.	8.3	€.30€	7.395	7.230
83.4 588.8 786.9 71.9 724.8 724.8 724.8 724.8 724.8 724.8 724.8 724.8 724.8 725.0 725.1 725.1 726.0 7276.0 7276.0 7276.0 7	87.	<u>,</u>	135.	9.3	6.042	7.316	7.159
58.8 346.5 786.9 786.9 78.0 88.0 88.0 78.	37.	1:	196.	୍ଚ	5.171	7.2.35	7.079
36.5 734.8 78.0 3 16.6 681.5 81.3 3 399.2 6526.8 84.8 3 31.8 512.7 95.0 3 52.0 351.6 100.0 3 50.7 252.5 1108.4 3 56.0 11 123.9 117.3 4 75.1 -125.8 126.6 4 75.1 -128.3 136.4 4 75.1 -128.3 136.6 4	86.	.	256.	1.2	5.494	7.152	966.9
681.5 999.2 999.2 626.8 84.8 84.8 62.0 63.0 64.0 65.0 65.0 66	34.	ဆိ	315.	2.2	5.211	7.066	6.91C
99.2 84.2 52.0	8 .		386.		4.921	6.977	6.822
84.2 71.8 71.8 71.8 52.0 72.7 72.8 72.1 72.8 72.1 72.8 72.1 72.8 72.1 72.8 72.8 72.8 72.9 72.9 72.9 72.9 72.9 72.9 72.9 72.9	.92	4	457.	٠. /	4.626	6.885	6.730
71.8 62.0 62.0 63.1 66.0 73.8 73.8 75.1 75.1 75.1 75.1 75.4 75.1 75.4 75.1 75.4 75.1 75.4 75.1 75.4 75.1 75.4	70.	٥	531.	4. 33	4.323	6.790	6.636
55.0 453.1 96.0 3 55.4 9 351.6 100.0 3 500.7 328.1 100.0 3 500.7 100.0 3	25	ż	96.5	5.	4 • C 14	6.693	6.539
54.9 50.7 528.1 104.2 54.9 50.7 562.5 112.8 50.5 112.8 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.5 121.9 50.9 50.9 50.9 50.9 50.9 50.9 50.9 50	ъ С	96	691.	6.5	3.098	6.592	6.438
50.7 328.1 104.2 3 49.4 262.5 108.4 3 56.0 123.9 117.3 4 63.9 50.5 121.9 4 75.1 -25.8 126.6 4 75.1 -15.4 131.5 4 63.9 -27.4 9 141.5 4	5 1 •	၁	776.	7 .3	3.375	6.487	6.334
49.4 262.5 108.4 3 51.1 E94.4 112.8 4 56.0 123.9 117.3 4 75.1 -25.8 126.6 4 77.0 -188.3 136.4 4 75.0 -274.9 141.5 4	• ထ	Ç4.	866.	တ္	3.044	6.379	6.227
56.0 123.9 117.3 4 56.0 123.9 117.3 4 75.1 -25.8 126.6 4 69.6 -1.5.4 131.5 4 75.0 -27.9 141.5 4	62.	08.	. 556	8 · 8	2.105	6.24.8	6.115
56.0 123.9 117.3 4 63.9 50.5 121.9 4 75.1 -25.8 126.6 4 689.6 -1.5.4 131.5 4 67.0 -188.3 136.4 4 67.0 -274.9 141.5 4	. 4 0	12.	057.	6.5	2.358	6.152	0003*9
63.9 50.5 121.9 4 75.1 -25.8 126.6 4 89.6 -1.5.4 131.5 4 67.0 -188.3 136.4 4 67.0 -274.9 141.5 4	23.	17.	156.	0.5	2.003	6.033	5.881
75.1 -25.8 126.6 4 89.6 -1.5.4 131.5 4 87.6 -188.3 136.4 4 429.3 -274.9 144.5 4	50.	21.	266.	6•℃	1.640	5.909	5.758
69.6 -1.5.4 131.5 4 607.0 -1.58.3 136.4 4 605.9 -3 -274.9 144.5 4 605.0 -275.3 144.5 4	25.	26.	377.	1.5	1.267	5.781	5.631
29.3 -274.9 141.5 4	1.5.	31.	.264	2.2	0.885	5.648	964.6
29.3 -274.9 141.5 4	188.	36.	613.	8.8	0.494	5.511	5.362
7 1 471 8 376 0 78	274.	41.	735.	3.4	0.093	5.369	5.220
T OF 4 (C) 1 (F)	365.	46.	870.	4.0	5.005	5.221	5.073
84.5 -460.1 152.0 5	S	Š	008.	4.5	.260	5.068	4.920

TABLE 4B (Cont)

S-IV STAGE NOMINAL TRAJECTORY

				EARTH FI	FIXED PARAMETERS	TERS			LØNGITUDE	GEAD. LAI.	GESC. LAT.
TIRE	XXXE	YYYE	3777	DXXE	DYYE	D.2.2E	VEL 2CITY	ANGLE	WEST)	NORTH)	NZRITVE NZRTH)
(SEC)	(KM)	χ Σ	(XX)	(M/SEC)	(M/SEC)	(M/SEC)	(M/SEC)		(DEC)	(050)	(DEG)
520.0	1317.9	347.3	30.2	5118.2	-559.5	157.5	5151.1	65.09	68.8280	24.9093	24.7627
530.0	1369.8	341.2	31.8	5256.3	-663.6	163.0	5300.4	85.62	68.3841	24.7444	24.5985
540.0	1423.1	334.0	33.4	5399.0	-773.0	166.7	5456.7	86.12	67.9284	24.5732	24.4280
550.0	1477.8	325.7	35.1	5546.4	-888.2	174.6	5615.8	86.61	67.4605	24.3954	24.2510
563.0	1534.0	316.2	36.9	5698.9	-1009.7	180.6	5790.5	87.08	6526 • 99	24.2106	24.0670
570.0	1591.8	305.5	38.7	5857.0	-1137.9	186.7	5865.5	67.54	66.4861	24.0185	23.8758
580.0	1651.2	293.4	40.6	6021.0	-1273.5	192.9	6157.3	87.98	65.9785	23.8187	23.6768
€665	1712.2	280.0	42.6	6191.4	-1417.3	199.4	6354.6	88.41	65.4564	23.6107	23.4658
0.009	1775.0	265.1	44.6	6308.4	-1570.2	2.5.9	6562.3	88.83	64.9152	23.3940	23.2541
610.0	1839.6	248.6	46.7	6552.5	-1733.2	212.6	6781.1	89.24	64.3662	23.1683	23.0294
620.0	1936.1	230.4	48.9	6744.2	-1907.3	219.5	7012.2	89.64	63.7966	22.9328	22.7950
(2) 629.9	1974.1	210.5	51.1	6943.2	-2091.8	226.5	7255.0	20.05	63.2135	22.6888	22.5521
_	1974.9	210.3	51.1	4.4469	-2053.4	226.6	7256.6	20.05	63.2.61	22.6856	22.5490
(3) 639.9	2043.4	189.2	53.4	6-63-69	-2165.1	230.0	7258.1	8C-01	62.6183	22.4363	22.3009

(1) Initiate Active Guidance(2) GCS(3) Insertion

TABLE 5A

S-I RETRO PORTION TRAJECTORY

DRAG	2	2120 1758 1524 1092 945
МАСН		9.90 9.85 9.77 9.59 9.51
THRUST	(N)	275724 387046 468726 587092
DYNAMIC PRESSURE	(38 A/N)	133 100 7
MASS	(KG)	54935 54709 54544 54201 54124
ACCELERATION V DØT	. (M/SEC SG)	-11.03 -13.06 -14.57 -16.78 -5.94
SPACE FIXED PATH ANGLE	(DEG)	55.04 56.07 56.13 56.28 56.34
SPACE FIXED	VELECTIY (M/SEC)	2991.3 2984.7 2979.2 2963.8 2958.1
ALTITUDE	(KM)	89.28 90.25 90.95 92.60
GREUND DISTANCE	(KM)	78.12 79.31 80.16 82.20 83.12
TIME	(SEC)	(1) 147.4 148.0 148.4 149.4 (2) 149.9

Retro Ignition
 Retro E.T.D.

TABLE 5B

S-I RETRO PORTION TRAJECTORY

		EARTH FI	FIXEC PARAMETERS	TERS		PATH	LØNGITLDE (PØSITIVE	GEBD. LAT.	GESC. LAT.
222E (KM)	ZZE 	DXXE (M/SEC)	DYYE (M/SEC)	CZZE (M/SEC)	VELECITY (M/SEC)	ANGLE (DEG)	WEST) (DEG)	NZRTH) (DEG)	NØRTH) (DEG)
0.1		2098.3	1646.2	7.6	2667.0	51.14	79.7549	28.3487	24.1882
0.1	7.1	2095.4	1638.6	8.6	2660.0	51.22	79.7832	28,3459	24.1854
0.1	7.1	2092.6	1632.7	6.6	2654.2	€1.28	79.7748	28.3438	28.1833
3•1	3.1	2084.3	1617.1	10.1	2638.1	51.41	75.7547	28.3389	23.1784
C•1	3.1	2081.6	1610.9	10.1	2632.2	51.48	79.7458	28.3366	28.1762

⁽¹⁾ Retro Ignition
(2) Retro E.T.D.

TABLE 6A

S-I COAST TO IMPACT TRAJECTORY

TIME	GREUND DISTANCE	ALTITUDE	SPACE FIXED	SPACE FIXED PATH ANGLE	ACCELERATION V DØT FARTH-FTXFD	RASS	DYNAMIC PRESSURE	THRUST	МАСН	DRAG
(SEC)	(KM)	(X X)	(M/SEC)	(DEC)	(M/SEC SC)	(KG)	(NZM SC)	(N)		3
6	3.1	3	958.	6.3	6.	412	9	0	5.	945
52.	7.4	9.0	5,946.9	5.6	α	412	m	C-	۲,	493
8.	.5	6.93	915.	7.4	۲.	412	-4	0	• 2	92
. 40	11.6	15.6	885.	8.2	•	412	O	O	7	23
6	23.7	24.5	856.	0.6	4.	412	τ, γ	0	٠,	9
76.	35.7	33.2	827.	6.6	ď,	412	O	c	6	ĸ
182.0	147.73	141.55	2789.5	60.81	-5.21	54124	Q	Ç)	٠	7
38.	59.6	49.5	772.	1.7	0	412	ပ	C	3.92	1
94.	71.5	57.3	746.	2.5	~	412	O	C١	•	~
00	93.4	64.7	720.	ω 2	٠.	412	O	О	٠,	C)
96.	95.3	71.8	696.	4.4	•	412	€ji	O	63	Þ
12.	07.1	78.6	672.	5.4	4.	412	ij	O	•2	n
8.	18.9	85.1	649.	6.9	ď,	412	င္	0	~	C
24.	30.6	91.3	628.	6.3	٦.	413	O	0	ټ	Ç)
30.	45.4	97.2	607.	6.3	6.	412	O	0	٠,	r):
36.	54.1	05.9	587.	5.3	٠.	412	ن ن	ဝ	6.	·-)
45.	65.8	C8.2	568.	0.4	•	412	c)	0	8	O
48	77.4	13.2	550.	i. 4	4.	415	e a	C	ж Ж	ា
54.	89.1	17.9	533.	7.4	٠2	412	Φ	C	۲.	.**1
50.	7.00	22.3	517.	3.5	c.	412	ပ	0	٠,	¢
56.	12.3	26.4	502.	4.6	æ	412	Ö	Ç	••	
72.	23.9	30.2	488	5.7	•	415	O	0	• 5	<u> </u>
78.	35.5	33.7	475.	8.9	4.	415	Ð	0	• 6	C
84.	47.1	37.0	463.	5.	• 5	412	O	رى	3	•
90.	5c.6	39.9	2452.3	6	\circ	4.	φ	0	α,	0
96.	70.1	45.5	445.		æ.	4:2	0	0	3	C
02.	81.7	6.44	433.	-	•	415	O	O	ιŲ	. - .
08.	93.2	6.94	426	.,	4.	412	O	C	Š	۲.
14.	04.7	48.6	419.	3.6	-5	412	₹*	0	٠,	-
20.	16.2	50.1	414.	3.4	٥.	4:2	Ó	0	4.	<i>-</i> `
26.	27.7	51.2	408.	ڻ. ت	-0.75	412	ပ	0	4.	
32.	36.5	52.1	406	7.	'n	412	0	O	٠,	,-
38.	50.7	52.6	404.	8	3	412	O	0	٠,	
44.	62.2	52.9	403.	6.	्	412	C)	c,	4.	• ~
46.	67.0	52.9	403	0.0	0.01	412	O	7.	4.	. •
50.	73.7	52.9	2403.5	69.06	٦.	415	ပ	0	٠,	.
56.	85.2	55.5	404.	1.8		412	Ö	ဝ	4.	-
62.	96.7	51.9	2407.1	3.0	Š	41	O	C	٠,	C
88	08.2	51.0	410	7.	æ	41	Û	Ö	4	C
	19.7	9.8	415	φ.	0	4 1		C	4.	,

TABLE 6A (Cont)

S-I COAST TO IMPACT TRAJECTORY

CH DRAG	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.	nı	Λ :	7	O	3	9	0	4	co.	3	6	4	C	7	9	J.	9	0	-		7	4	2	3	0 13	6 27	1 . 75	9 504	1 2734	11990	9 44539	7 169282	9 576033	829613	7 526915	266664	8 128503	60989 0
MACH			٠	•	•	٠	•	•	•	٠	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	•	•	٠	٠	•	٠	•	٠	٠	٠	•	•	٠	•	•	•	•
THRUST	(2)	00) C) (0	0	O	رى	O	0	0	0	С	O	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	C	0	0	0	0	0	C	0	c	0	O	0
CYNAP IC PRESSURE	(N/F SC)	00	.	، د	ى		ر. •	ري	S	0	ပ	၁	0	0	ပ	ပ	O	O	ပ	0	Ü	0	0	ပ	ဝ	ပ				'n	(1)	~	76	96	105	816	80	644	15771	27	5
MASS	(KG)	54124	711	715	412	412	412	412	412	415	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412	412
ACCELERATION V DOT FARTH-FIVED	(M/SEC SC)	1.25	•	٥	æ	7	ů.	ď	۲.	•	∹	5	4.	• 6	æ	0	٦.	ů	4.	•	8	٠.	7	• 2	ŗ,	• 2	•	۲.	ထ	8	6.	9	0	1.8	۲.	8	-146.50			9	6.
SPACE FIXED PATH ANGLE	(DEG)	96.53	0 6	20:	9.9	1.1	2.2	3.3	4.4	105.54	9.90	7.6	8.7	1.6	8.0	11.8	2.8	13.7	14.7	15.6	16.6	17.5	8.4	19.3	20.1	21.0	21.8	2.7	3.0	3.5	4.2	25.0	5.8	6.5	7.0	7.1	5.4	1.1	115.38	8.0	9.8
SPACE FIXED		20	175	435	444.	454.	465.	477.	490.	505.	520.	536.	553.	572.	591.	611.	632.	654.	677.	701.	725.	751.	777.	8C5.	833.	861.	891.	922.	935.	953.	984.	C16.	C42.	049.	982.	•	836	116.	749	90.	
ALTITUDE	(KM)	248.29	0	44.3	41.9	39.2	36.2	32.9	29.4	25.5	21.3	16.8	12.0	6.90	01.6	95.9	66.68	83.6	77.0	70.1	65.9	55.5	17.7	39.6	31.2	22.4	13.4	04.1	00.0	÷.5	4.5	4.3	3.7	2.9	2.0	1.7	3.6	8	6.2	4.6	3.5
CRØUND DISTANCE	(¥ X)	1.1	7 .	24.7	65.8	77.3	88.	S. 4	12.0	23.6	35.2	46.9	58.5	70.2	81.5	93.6	05.4	17.2	29.0	4. • 8	52.7	54.6	76.5	38.5	00.5	12.5	24.6	36.7	42.0	48.9	51.1	73.4	85.6	97.9	0.01	21.1	29.62	34.4	36.7	37.9	934.59
TIME	(SEC)	80.	9 0	26	98	94.	10.	16.	22.	28.	34.	6	46	52.	58.	54.	0.	76.	32.	38.	34.	ö	9	12.	80	4.	000	98	88.	.5	8	54.	0,0	90	72.	8	34.	ç	9,0	, ,	608.0

TABLE 6A (Cont)

S-I COAST TO IMPACT TRAJECTORY

DRAG	E	620574	603116	598628	594361	589431	584326	579478	575188	572340	569129	566004	563082	560360	557790	555337	552969	550652	549907
MACH		0.63	0.58	0.54	0.50	0.47	0.44	0.42	0.40	0.38	0.36	0.35	0.33	0.32	0.31	0.29	0.28	0.27	0.27
THRUST	(<u>2</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	о
DYNAM IC PRESSURE	(N/M SC)	5330	5334	5358	5376	5382	5381	5376	5371	5361	5346	5330	5315	5300	5286	5272	5259	5245	5240
MASS	(KG)	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124	54124
ACCELERATIEN V DØT BARTH-FIXED	(M/SEC SQ)	-2,28	-1.69	-1.47	1.31	-1.18	-1.06	76.0-	-0.88	-0.83	-0.77	-0-71	-0.65	09.0-	-0.56	-0.51	-0.47	-0.43	-0.41
SPACE FIXED PATH ANGLE	(DEG)	110.02	110.07	109.85	109.42	108.87	108.27	107.65	107.04	106.45	105.88	105.33	104.82	104.35	103.90	103.49	103.11	102.77	102.66
SPACE FIXED VELØCITY	(M/SEC)	508.0	488.8	474.3	463.4	455.3	6,644	6.444	441.5	438.9	436.9	435.3	433.9	432.8	431.8	430.9	430.2	429.5	429.3
ALTITUDE	(KM)	12.48	11.45	10.46	9.52	8.61	7.75	6.92	6.13	5.37	49.4	3.93	3.26	2.60	1.97	1,36	97.0	0.18	00.0
GRØUND DISTANCE	(X X)	939.03	939.34	939.55	939.69	939.78	939.85	939.88	939.91	939.93	939.94	939.94	939.95	939.95	939.95	939.95	939.96	96.686	96.666
TIME	(SEC)	614.0	620.0	626.0	632.0	638.0	644.0	650.0	656.0	662.0	668.0	674.0	680.0	686.0	0-269	0.869	704.0	710.0	(1) 712.0

(1) Theoretical Ballistic Impact

TABLE 6B

S-I COAST TO IMPACT TRAJECTORY

				EARTH FI	XED PARAMET	TERS		Q + ∨	6.1	GEBD. LAT.	
TIME (SEC)	XXXE (KM)	YYYE (KM)	222E (KM)	DXXE (M/SEC)	DYYE (M/SEC)	CZZE (M/SEC)	VEL2CITY (P/SEC)	ANGLE (DEG)	WEST) (DEG)	NØRTH) (DEG)	NØRTH)
07		ζ,		083	610	c	632	7	372 5	726	A. 176
5.7		, 6		080	591.	ت	619	7.1	207.2	8.326	8.165
158.0	101.3	0	0.5	2078.9	1535.8	11.7	2584.7	52.61	75.5841	28.2967	28.1364
9	13,	14.	•	076.	480	ď	55C.	3.4	9.465	8.267	8.106
73,	26.	23.	•	074.	425.	4	517.	4.3	9.347	8.237	8.C77
76,		31.	•	072.	370.	15.2	484.	5.2	9.229	8.207	8.04
82.	51,	39.	•	070.	316.	•	453.	6.1	9.112	8.177	8.C18
88	63,	47.	•	067.	261.	7	422.	7.1	8.995	8.148	7.588
94	75,	54.	•	65.	2:6.	ъ Э	392.	8.1	8.878	8.118	7.958
o O	88	62.	•	063.	152.	ė.	363.	9.1	8.762	8.088	7.928
90	00	68.	•	090	098.	ن	335.	0.1	8.647	8.057	7.898
12.	13.	75.	•	058.	044.		308.	1.1	8.531	8.027	7.868
13	52	81.	•	055.	90.	Š	281.	2.2	8.416	7.997	7.838
24.	37.	87.	•	052.	36.	'n	256.	3.3	8.302	7.967	7.808
30.	50.	92.	•	050.	82.	•	232.	4.4	8.188	7.936	7.777
36.	62.	97.	•	047.	29.	ė	2C8•	5.6	8.074	7.906	7.747
45.	74.	02.	•	044.	75.	÷	186.	6.7	396.	7.875	7.716
8	86.	07.		041.	22.	ဆိ	165.	7.9	7.847	7.844	7.686
54.	96	11.	•	038.	8	å	145.	8.5	7.734	7.813	7.655
90	Ϊ.	15.	•	035.	5	Ġ	126.	4.0	7.621	7.783	7.624
99	23.	18.	•	032.	52	ٺ	108.	1.6	1.505	7.752	7.593
72.	35.	21.	•	029.	9		092.	2.9	7.396	7.720	7.562
78.	÷,	24.	•	026.	, ,	o.	077.	4.2	7.284	7.689	7.531
34.	000	27.		022.	32.	m	062.	5.5	7.173	7.658	7.500
90	72.	29.	•	019.	6	÷.	046.	6.9	7.061	7.626	7.469
96.	3 4.	31.	•	016.	96	٠.	038	8.2	5 • 95 C	7.595	1.437
25.	<u>,</u>	33.	•	012.	*	9 1	027.	9.6	5.838	7.563	7.406
е С	8	34.		600	• •	٠,	870	ر ت	2.1.5	(.) 51	4.00.1
<u>.</u>	0	35	•	0.05	20 1	20:4	: TO	٠, د د د	5.616 7.07	004.7	7.047
50.	36.	9		200	· ·	'n	004	0 1	3000	-40	1.510
26.	4.4	36.	•	948.	2	ė.	• ნე	ري. د	5.395	7.435	7.278
32.	99	36.	•	994.	20.	ċ	995.	5.5	5.285	7.403	7.246
38.	8	36.	•	991.	72.	:	92.	8.0	5.174	7.371	7.214
44.	30.	35.		987.	125.	ol.	91.	4.6	5.064	7.338	7.181
•	35.	35.		985.	147.	å	91.	0	5.018	7.325	7.168
20.	32.	34.		983.	178.	*	91.	မှ ပ	5.954	7.305	7.149
56.	. 40	33.	•	919.	230.	å	93.	2.2	5.844	7.273	7.116
52.	91	31.	•	975.	٠	٠	• 96	3.6	5.733	7.240	7.083
68	27.	30.		971.	336.		ر. دران	5.0	5.623	7.207	7.050
74.	39.	•	•	67.	389.	÷	0.5	4.9	513	7.173	7.017

24

TABLE 6B (Cont)

S-I COAST TO IMPACT TRAJECTORY

GEZC.	NØRTH) (DEG)	26.9846	166.0	716.9	5.884	6.850	6.816	6.781	6.747	6.713	8.678	6.643	6.608	5.573	5.537	5.502	994.9	6.430	5.394	6.357	5.321	6.284	6.247	6.210	6.172	6.134	960.9	6.058	6.041	6.C20	186.5	5.942	5.903	5.863	5.825	5.789	5.761	5.746	5.738	5.135	5.732
GEDD. LAT.	NØRTH) (DEG)	27.1405	1010	6)(3)	<u>7</u> .039	7.005	6.971	6.937	6.902	6.867	6.833	6.198	6.762	6.727	6.691	6.656	6.620	6.584	6.547	6.511	6.474	6.437	6.400	6.362	6.325	6.287	6.249	6.210	6.193	6.172	6.133	6.093	6.054	6.015	5.976	5.940	5.912	5.897	5.889	5.885	5.883
LØNGITUDE	WEST)	75.4039	562.0	0 . I R 4	5.074	4.964	4.854	4.743	4.633	4.523	4.413	4.302	4.192	4.081	3.971	3.860	3.745	3.637	3.526	3.414	3.303	3.191	3.078	2.966	2.853	2.740	2.627	2.513	2.464	2.399	2.285	2.170	2.056	1.941	1.829	1.725	1.646	1.601	1.579	1.568	1.562
нто	ANGLE (DEG)	97.86	89.2	9.00	1.9	03.3	9.49	6.50	07.2	68.5	16.63	10.9	12.2	13.3	14.5	15.6	16.8	17.9	18.9	20.0	21.0	22.0	22.9	23.9	24.8	25.7	56.6	27.5	27.8	28.3	29.1	29.9	30.7	31.4	32.2	33.0	34.1	36.2	0.1	46.4	53.8
	VELECITY (M/SEC)	2012.6	020.	0 8 0	04C.	052.	366.	ე8С.	960	113.	131.	150.	170.	191.	214.	237.	262.	267.	314.	341.	370.	366	•524	460.	492.	525.	558.	595.	6 08.	627.	663.	. 869	728.	738.	675.	331.	528.	98°	18.	51.	02.
TERS	D22E (P/SEC)	46.3	·	-	å	ъ Ф	5	0	္ပံ	-	_;	2	7	Ę,	ω,	4.	4.	Š	Š	,	,	•	۲.	۲.	7	œ	æ	å	ဆံ	æ	o,	6	5	å	ġ	ထံ	-	ŝ	7.5	•	•
XEU PARAMETI	DYYE (M/SEC)	. 441	94.	٠		653.	706.	759.	812.		918.	971.	024.	1078.	1131.	1134.	1238.	1292.	346.	399.	453	508.	562.	516.	571.	725.	780.	935.	959.	390.	945.	000	250.	385.	062.	821.	233.	651.	-357.1	227.	
EARTH FI	DXXE (M/SEC)	63.	958.	954.	950.	945.	941.	936.	931.	927.	922.	917.	912.	.106	902.	897.	892.	887.	881.	876.	871.	865.	859.	854.	848	842.	836.	830.	827.	824.	817.	810.	799.	774.	702.	455.	28.	61.	217.8	90	
	222E (KM)		-								_		ċ	o	0	-	;	-	2	2	2.	ň	6	ě	4	4	4.	5	5	5.	•	•	ģ	۲.	۲.	۲.	æ	å	18.2	æ	æ
	YYYE (KM)	25.	22.	19.	15.	12.	08	03.	99.	.+	88	82.	77.	70.	64.	57.	49.	42.	34.	26.	17.	08	96	6	0	•	6	80	m	۲.	Š	'n	-	10.	23.	35.	44	49	-52.6	54.	55
	XXXE (KM)	15	53.	74.	36.	98	0		33.1	44	99	1 0	6.2	06	2.	3		36.	47.	6.6	0.2	8	92.	9.	14.	25.	36.	47.	52.	58.	69	30.	91.	02.	12.	22.	29.	ايا ن ه	935.6	36.	37.
	TIME (SEC)	30.	36.	92.	98	. 40	c	9	~	ά	34.	0	9	2.5	1 10	54.	20.	76.	32.	1 80	76	00	90	12.	8	24.	30	36	38.	42.	48.	54.	60.	66.	72.	78.	84.	90	296.0	02.	08

TABLE 6B (Cont)

S-I COAST TO IMPACT TRAJECTORY

				EARTH FI	FIXED PARAMETERS	TERS		3 + 0	LØNGITUDE	GERD. LAT.	GEBC. LAT.
TIME (SEC)	XXXE (KM)	YYYE (KM)	222E (KM)	DXXE (M/SEC)	CYYE (M/SEC)	DZZE (M/SEC)	VEL2CITY (M/SEC)	ANGLE (DEG)	MEST) (DEG)	(PASILIVE NØRTH) (DEG)	(PSSI 1 1 VE NZRTH) (DEG)
614.0	937.3	-56.6	18.2	35.1	-131.1	1.4	184.5	160.52	71.5586	25.8822	25.7314
620.0	937.5	-57.7	18.3	17.0	-172.1	8•0	173.0	165.85	71.5557	25.8812	25.7304
626.0	937.5	-58.7		4.5	-163.5	4.0	163.6	169.93	71.5538	25.8805	25.7297
632.0	937.5	-59.7	18.3	0.4-	-155.2	١.،	155.2	172.97	71.5524	25.8801	25.7293
638.0	937.5	9.09-	18.3	4.6-	-147.5	-0-1	147.8	175.17	71.5516	25.8797	25.7289
0.449	937.4	-61.4	18.3	-12.8	-140.5	-0.3	141.1	176.72	71.5510	25.8795	25.7287
650.0	937.3	-62.3	18.3	-14.8	-134.2	-0.3	135.0	177.80	71.5507	25.8794	25.7286
656.0	937.2	-63.0	18.3	8.5.	-128.5	10.4	129.5	178.53	71.5564	25.8793	25.7285
662.0	937.1	-63.8	18.3	-16.3	-123.3	-C.4	124.3	179.02	71.5503	25.8792	25.7284
0.399	937.0	-64.5	13.3	-16.3	-118.4	4.0-	119.5	179.33	71.5502	25.8792	25.7284
6.479	636.9	-65.2	18.2	-16.1	-114.0	4.0-	115.1	179.53	71.5552	25.8792	25.7284
0.089	936.9	-65.9	18.2	-15.8	-138.9	-C.4	111.0	179.66	71.5501	25.8791	25.7283
686.0	936.8	-66.5	18.2	-15.4	-106.1	-C.4	167.2	179.73	71.5501	25.8791	25.7283
692.0	936.7	-67.2	18.2	-15.0	-102.7	4.0-	103.8	175.78	71.5501	25.8791	25.7283
0.869	936.6	-67.8	18.2	-14.6	5.65-	10.4	100.6	179.80	71.5501	25.8791	25.7283
704.0	936.5	-68.4	18.2	-14.2	9.96-	-0.3	91.6	179.81	71.5500	25.8791	25.7283
710.0	936.4	-68.9	18.2	-13.8	-63.9	-0.3	6.45	179.82	71.5500	25.8790	25.7283
(1) 712.0	936.4	-69.1	18.2	-13.7	-93.1	-6.3	94.1	179.82	71.5500	25.8790	25.7282

(1) Theoretical Ballistic Impact

TABLE 7A

S-I STAGE STATE PARAMETERS AT BUTBBARD CUT-BFF

ØNS
0
_
Ξ
Ξ
ď
⋖
>
ш
S
ANCE
8 KW
0
u.
ER
PE
w
9
I TUDE
-
MAGNI
9
3
_
⋖
Σ
91
S
1
8
TWB-SIG
Σ
RØ
FRØ
TING
Z
=
Ę
~
RE SUL 1

	RESULTING F	FROM TWO-SIGMA MAGNITUDE	MAGNITUDE	PERFORMANCE	VAKIALIBNS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TIME	ALTITUDE	RANGE	INTEGRATED X1-DØT	PLATFORM ACCELERATIONS ETA-DOT ZETA-DOT	LERATIONS ZETA-DOT	PATH ANGLE SPACE	VELØCITY SPACE
VARIATIONS	LIFTØFF (SEC)	(W)	Ē	(M/SEC)	(M/SEC)	(M/SEC)	FIXED (DEG)	FIXED (M/SEC)
NOMINA	146.620	87944.3	76482.4	2121.20	3048.73	-11.10	55.898	2986.21
NAN-PROPELLANT MASS	000	-65.3	-39.8	-1.31	-1.41	00.	010.	-1.86
PROPERT LOADING MASS	294	-54.1	-356.4	-5.14	-1.45	•0•	071	-3.51
THRUST AND FLOW RATE	1.170	-325.8	1106.1	8.69	-6.44	13	.362	-2.45
FLOW RATE	-1.302	-1217.1	-1989.5	-31.63	-19.13	.17	197	-29.93
THRUST MISAL IGNMENT	000	4.9-	-8.1	28	25	-39.64	.023	1.37
IN-PLANE THRUST MISALIGN	000	-813.9	1346.7	28.53	-26.86	02	.712	19.6
THRUST MISAL IGNMENT	000	791.3	-1363.2	-29.03	26.34	• 02	714	-9.83
MIXIINE RATIO	330	-611.0	-747.5	-17.70	-14.25	• 01	,00	-20.82
AXIAI DRAG COFFEICIENT	000.	-941.4	-435.8	-6.63	-11.51	03	.123	-11.82
HEADWIND	000.	123.8	-1303.6	-12.64	1.11	-3.31	135	-9.80
CZIMITAT	000	-145.9	1827.2	. 16.94	-1.04	4.34	.171	13.40
LEFT CRASS WIND	000.	140.6	-1655.0	-16.23	*6 *	29.62	169	-13.10
RIGHT CROSS WIND	000	6.96	-771.9	-8.56	.71	-24.19	081	-5.76
CNIM CNOONS HILL	262	0.964-	-574.9	-12.40	-10.15	• 0 •	• 005	-14.52
LOW GRAUND WIND	.078	365.2	295.2	7,72	7.50	01	033	10.14
HIGH AMBIENT TEMPERATURE	565	216.3	-518.1	-4.82	3.25	80.	184	• 19
LØW AMBIENT TEMPERATURE	1.537	-640.0	1355.4	11.15	-9.73	22	.495	-4.11
PØSITIVE RSS	2-372	1924.8	3624.3	52.40	38.86	39.97	986	43.22
NEGATIVE RSS	1.910	2047.6	3681.1	54.57	40.83	46.56	. 888	46.02
ASS	2.141	1986.2	3652.7	53.48	39.84	43.26	166.	44.62

TABLE 7B

S-I STAGE STATE PARAMETERS AT BUTBBARD CUT-BFF

RESULTING FROM TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

	200011				>::21			
4 4 1 1 1 1 1 1 1 1	X X X X X X X X X X	•	7	X-DøT	Y-DØT	Z-DØT	VEHICLE	
	SPACE		SPACE	SPACE	SPACE	SPACE		
VARIATIONS	FIXED		FIXED	FIXED	FIXED	FIXED		
	Ξ		£	(M/SEC)	(M/SEC)	(M/SEC)		
NØMINAL	140902.8	6459781.9	1104.5	2505.85	1620.02	-117.18	6461318	
NON-PROPELLANT MASS	-41.8	-64.4	1	-1.31	-1.42	00•		
PROPELLANT LAADING MASS	-480.0	-43.8	33.8	-5.09	1.42	•03		
THRUST AND FLAW RATE	1581.6	-360.1	-133.5	8.50	-17.88	12		
FLOW RATE	-2563.5	-1162.8	145.5	-31.38	-6.60	.16		
THRUST MISALIGNMENT	-24.1	-10.0	-1634.8	27	26	-39.55		
IN-PLANE THRUST MISALIGN	1346.8	-842.9	•5	28.44	-26.92	02		
THRUST MISALIGNMENT	-1364.4	820.5	٠,	-28.95	26.40	•02		
MIXTURE RATIØ	-903.1	-591.8	37.4	-17.63	-11.10	.07		
AXIAL DRAG CØEFFICIENT	-462.4	-931.8	-2.3	09.9-	-11.63	03		
HEADWIND	-1319.2	151.0	-357.3	-12.54	1.13	-3.28		
TAILWIND	1846.9	-181.4	495.5	16.79	-1.07	4.30		
LEFT CRBSS WIND	-1675.8	177.3	450.1	-16.10	96.	2.58		
RIGHT CRØSS WIND	-825.9	106.8	-2728.1	-8.50	.73	-23.97		
HIGH GRAUND WIND	4.869-	-481.1	29.6	-12.35	-7.66	•03		
LØW GRØUND WIND	338.5	358.0	-8.6	7.70	6.19	01		
HIGH AMBIENT TEMPERATURE	-746.2	232.4	65.3	-4.73	8.79	• 08		
LØW AMBIENT TEMPERATURE	1973.9	-683.0	-177.4	10.01	-24.80	20		1
PØSITIVE RSS	4423.9	1904.6	1772.3	52.04	38.06	39.87	1925	
NEGATIVE RSS	4297.9	2036.6	3211.8	54.23	45.00	46.37	2048	
RSS	4360.9	1970.6	2492.1	53.14	41.53	43.12	1987	
								111111111

TABLE 7C

S-I STAGE STATE PARAMETERS AT BUTBBARD CUT-BFF

	RE SUL TING F	FROM TWO-SIGMA	A MAGNITUDE	PERFORMANCE	VARIATIONS			1
VARIAT! ØNS	EARTH (M)	EARTH FIXED (M)	EARTH FIXED (M)	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH EARTH (DEG)	VELØCITY EARTH FIXED (M/SEC)
NØMINAL	7.66577	87478	62,4	2091:19	1647.75	9.54	51.034	2662.38
NØN-PRØPELLANT MASS Dombellant i gading mass	-41.2	-64.9	11.5	-1.29	1.30	10	086	-3.19
THOUST AND FLOW RATE	1117.0	-339.5	2.6	8.57	-17.55	•05	. 400	-4.00
FLOW RATE	-2032.2	-1192.6	-13.7	-31.12	-7.21	26	275	-28.92
THRUST MISALIGNMENT	-15.6	7.9-	-1634.9	28.74	-26.57	-39.56	916	6.53
IN-PLANE THRUST MISALIGN	1371-8	0.808	1 1 1 1 1 1 1	-29.24	26.05	10	816	69.9-
MIKOSI MISALIGAMENI Mikindi Ratio	7.65.7	-601.7	100	-17.46	-11.36	12	033	-20.74
AXIAL DRAG CREETCIENT	1453	-936.0	6.9-	-6.44	-11.71	13	.117	-12.28
TATAL DESCRIPTION OF THE PROPERTY OF THE PROPE	-1318.6	139.9	-363.8	-12.53	76°	-3.39	170	-9.28
	1846.0	-165.8	504.5	16.77	82	4.45	.218	12.75
	-1679.5	160.9	411.9	-16.15	.70	7.44	211	-12.25
RICHT CRASS WIND	-812.8	105.9	-2732.0	-8.30	.70	-24.04	113	-6.13
CNIM CNIESU HUIH	-589.2	-488.8	0.4-	-12.22	-7.85	11	024	-14.46
	304.0	361.4	2.6	7.61	68.9	.00	018	10.23
HIGH AMBIENT TEMPERATURE	-522.4	222.7	1	-4.77	8•63	00	204	1.58
LOW AMBIENT TEMPERATURE	1365.6	-656.8	E. 4	11.03	-24.37	.01	. 546	-6.22
PØSITIVE RSS	3674.5	1916.3	1759.9	51.98	37.84	39.88	1.126	41.95
NEGATIVE RSS	3745.0	2042.1	3204.6	54.12	44.64	46.41	1.026	44.87
RSS	3709.8	1979.2	2482.3	53.05	41.24	43.15	1.076	43.41

IABLE 8A

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

RESULTING FROM S-I STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

NOMINAL 165.0CO NON-PROPELLANT MASS PROPELLANT LOADING MASS	LIFTØFF (SEC) (M)	(W	X1-DØT (M/SEC)	ETA-DØT ZETA-DØT (M/SEC)	ZETA-DØT (M/SEC)	SPACE FIXED (DEG)	SPACE FIXED (M/SEC)
	117819.3 -84.8 443.6	14489.7 -62.6 164.3	2206.68	3116.12	-11.89 29 .00	58.054	2999.08
FLOW RATE -1.000 FLOW RATE -1.000 THRUST MISALIGNMENT .000		1967.5	-346 -348 -346	-17.41	-40.12	141	1.69
IN-PLANE THRUST MISALIGN THRUST MISALIGNMENT .OCO MIXTURE RATIØ AXIAL DRAG GRFFICIENT .OCO		1804.5 -1913.1 -361.4 -539.0	-3C.C2 -16.18 -6.60	-26.79 26.52 -12.73 -11.50	- 46 - 12 - 09	.059 .059 .135	10.62 -12.19 -20.37 -11.52
	133.9 -125.8 138.9 117.3 -240.7	-1517.3 2123.4 -1941.9 -927.9 -256.6	-12.22 17.04 -16.44 -8.70 -12.03	1.39 12 1.01 1.67 -9.42	-3.00 4.74 2.93 -23.97	-124 -142 -157 -092 -043	-9.60 14.31 -13.61 -5.62 -15.13
LUM GRAUND WIND HIGH AMBIENT TEMPERATURE 2.000 LOW AMBIENT TEMPERATURE 2.0449		2558.3 4456.4	14.59	6.71	51	- 133 - 532 - 970	2.22 2.226060 43.58
NEGATIVE RSS 1.414 RSS 1.932	2253.6	3945.9	53.48	38.42	46.84	. 913	46.46

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

	RESULTING FROM S-	S-I STAGE TWØ-	TWB-SIGMA MAGNITUDE	UDE PERFØRMANCE	NCE VARIATION	NS	
VARIATIONS	S PACE FIXED (M)	SPACE FIXED	SPACE FIXED (M)	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	2-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE (M)
	187633.5	6488509.8	-1053.1	2586.96	1512.70	-117.74	6491222
NON-DOGDELLANT MACC	-66.2	-82.9	14.8	-1.37	95	29	-85
DO ADELLANT LAND MACC	180.2	438.6	7.	-4.24	. 50	00.	777
TABLE AND CLASS DATE	1298-5	-938-4	-116.8	7.78	-16.84	11	- 900
CLAN DATE	2-69-62-	-821.9	120.0	-30.24	-7.82	• 50	-890
THOMENT MICH ICAMENT	9-66-	-3.1	-2367.9	-,33	44.	-39.98	-3
TALDIAND THOUSE MICALICA	1860-4	-1336.5	4.4-	27.89	-26.90	29	-1281
THE PROPERTY OF THE PROPERTY O	-1911-5	1308.3	-7.8	-29.89	26.63	94	1252
ETATION DATES	-377-0	-299.0	2.0	-16.17	-12.74	.12	-310
ALTERNATION OF THE PROPERTY OF	-582-6	-1145.5	-3.9	-6.56	-11.67	60*-	-1162
AAIAL DRAG CBELL CILM	-1541-5	176.5	-412.3	-12.08	1.42	-2.96	132
	2156.6	-186.1	583.0	16.84	16	4.68	-123
- TITE COURT STAND	0.0743	1961	4.2.4	-16.26	1.05	2.87	139
LEFT CROSS WIND	2 6001	136.0	-3163.6	-8.62	1.69	-23.67	108
RICHT CROSS WIND	C.COK-	7.001	11010	1 ·	. (

1287

-.51 -.12

7.59 6.92 -25.88

7.23

-1.7

14.16 51.12 53.14

-238.3 2489.1

-428.9 2589.2

LØW GRØUND WIND HIGH AMBIENT TEMPERATURE LOW AMBIENT TEMPERATURE

POSITIVE RSS NEGATIVE RSS

TAILWIND LEFT CRØSS WIND RIGHT CRØSS WIND HIGH GRØUND WIND

-12.03

176.5 -186.1 196.1 136.0 -233.3 371.3

1860.4 -1911.5 -377.0 -582.6 -1541.5 -1974.0 -1974.0 -983.5 -262.2 276.7 -3397.7

.17

2582

40.36 46.56 2418

43.46

52.13

3236.3 3983.6

4810.6

2283.9 2436.5

5287.6 4333.7

46.12 42.20

TABLE 8C

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

RESULTING FROM S-I STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

				ŧ				
	. X X	γ α ν α ν α ν α ν α ν α ν α ν α ν α ν α	2	X-DØT	Y-0@T	Z-00T	PATH ANGLE	VELØCITY
VARIATIONS	C L	FIXED			EAKIH	LAKIH	EARTH	EARTH
	(W)	(X)	(W)		(M/SEC)	FIXED (M/SEC)	FIXED (DEG)	FIXED (M/SEC)
NØMINAL	116685.7	116771.6	1 126	1	***************************************			
DOWN THE LANG.	- W	0.17.011	7.7.7	11.6017	1540.55	13.10	53.449	2664.56
DOGOTI ANT PROPERTY	4.60-	-83.6	-5.5	-1.35	96*-	31	.001	-1.66
THEFT LEAN LEADING MASS	175.7	440.5	5.9	-4.27	74.	01	063	-3.22
THRUSI AND FLOW KAIE	906.5	-917.3	-:	7.92	-16.54	•05	.380	-3.04
TLOW KATE	-1959.0	-853.6	-7.8	-30.02	-8.41	10	210	-29.33
HKUSI MISAL IGNMENT	-15.9	3.2	-2368.0	02	• 59	-39.98	007	46.
IN-PLANE THRUST MISALIGN	1874.0	-1317.3	2.7	28.25	-26.50	-15	767	00.8
IHRUST MISALIGNMENT	-1924.7	1288.6	-15.3	-30.24	26.20	61	-,819	-9.25
MIXIURE RATIO	-373.9	-302.8	-1.0	-16.02	-12.93	-,03	0.31	-20 55
AXIAL DRAG CØEFFICIENT	-570.7	-1151.4	-10.4	-6.37	-11.78	-, 20	132	12.00
HEADWIND	-1540.9	161.8	-420.8	-12.07	1.21	-3.08	25.1	910-
TAILWIND	2155.0	-165.5	592.9	16.80	13	28.4	781	70 61
LEFT CRØSS WIND	-1978.6	174.5	461.5	-16.31	7.		001	+ o o o o o
RIGHT CRØSS WIND	9-996-	134.7	-3168.6	4 4 4	77 [11.07	661.	+12.84
HIGH GRAINS WIND	-250 0	1326	•		00.	C1•C7_	124	c4.c-
	0.667	0.062-	· ·	76.11-	15.6-	• 00	.022	-15.26
TIME STRUCK WIND	6.272	374.2	6•	7.13	7.68	+0	048	10.26
HIGH AMBIRNI LEMPEKALUKE	625.3	1275.2	•5	-1.64	6.95	46	141	2.68
LOW AMBIEN! IEMPERATURE	2598•8	-378.3	4.2	14.27	-25.25	15	• 596	-2.79
PASITIVE RSS	4531.6	2586.4	2484.4	51-14	38.08	40.36	1.110	42.63
NEGATIVE RSS	4019.5	2269.3	3978.1	53.12	45.64	46.61	266.	45.38
RSS	4275.5	2427.9	3231.2	52.13	41.86	43.49	1.051	44.00

TABLE 9A

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

ş
ē
Ξ
<u><</u>
AR
۲
5
Ž
PERFORMANCE
9
Ä
Ē
۵.
౼
TUDE
_
z
M
Σ.
TWB-SIGMA MAGNITUDE
5
SIGN
T
TWO
-
STAGE
×
S
>
S-IV
Σ
FROM
ш
FSULTING FROM
=
Ī
F

~	RESULTING FROM S-I	V STAGE TWO-	SIGMA MAGNI	S-IV STAGE TWO-SIGMA MAGNITUDE PERFERMANCE VARIATIONS	VCE VARIALIS	C.V.		
	TIME	ALTITUDE	RANGE	INTEGRATED X1-DØT	INTEGRATED PLATFORM ACCELERATIONS X1-DØT ETA-DØT ZETA-DØT	ELERATIONS ZETA-DOT	PATH ANGLE SPACE	VELØCITY SPACE ETYED
VARIATIONS	LIFTØFF (SEC)	(B	(W)	(M/SEC)	(M/SEC)	(M/SEC)	(DEG)	(M/SEC)
NATIONAL PROPERTY OF THE PROPE	165.000	117819.3	114489.7	2206.68	3116.12	-11.89	58,054	2999.08
NON-DESCRIPTION MASS	000	39.5	31.7	1.14	86.	.01	900	1.48
SOME TANT LAND MACK	000	135.1	89.3	2.13	2.46	.01	-• 021	3.07
THOUST AND FLOW DATE	000	-2.6	-3.0	94	37	.01	• 005	59
FIRE DATE	000	4.	4	60*-	07	00.	000.	11
THRICH MICALICAMENT	000	1	1	01	01	-1.17	.001	• 03
MIXTURE RATIO	000	9.9	7.8	1.15	26.	01	004	1.46
PØSITIVE RSS	000.	140.8	95.1	2.71	2.83	1.17	.023	3.76
NEGATIVE RSS	000.	140.8	95.1	2.71	2.83	1.17	.023	3.76
RSS	000.	140.8	95.1	2.71	2.83	1.17	.023	3.76

TABLE 9B

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

RESULTING FRØM S-IV STAGE TWØ-SIGMA MAGNITUDE PERFØRMANCE VARIATIØNS

VARIATIBNS	X SPACE FIXED (M)	Y SPACE FIXED (M)	SPACE FIXED (M)	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	Z-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE (M)	
NOMINAL NON-PROPELLANT MASS PROPELLANT LOADING MASS THRUST AND FLOW RATE FLOW RATE THRUST MISALIGNMENT MIXTURE RATIO	187633.5 33.4 94.9 -3.1 5 1 8.1	6488509.8 38.3 132.4 -2.5 4 1	-1053.1 1.4 1.1 -8.4	2586.96 2.13 2.12 2.46 09 01	1512.70 2.48 2.37 37 01	-117.74 -01 -07 -00 -1.17	6491222 39 135 -3	
PØSITIVE RSS	101.0	138.0	8.5	2.71	2.84	1.17	141	: !
	101.0	138.0	8.5	2.71	2.84	1.17	141	†
RSS	101.0	138.0	8.5	2.71	2.84	1.17	141	i t f i

TABLE 9C

S-IV STAGE STATE PARAMETERS AT GUIDANCE INITIATION

VARIATIONS
PESULTING FROM S-TV STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS
MAGNITUDE
TWO-SIGMA
STAGE
FRON S-TV
PESHI TING

						11111111111		
EARTH VARIATIONS (M)	E ARTH FIXED (M)	Y EARTH FIXED (M)	Z EARTH FIXED (M)	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH FIXED (DEG)	VELØCITY EARTH FIXED (M/SEC)
NOMINAL	116685.7	116771.6	271.1	2169.77	1546.55	13.10	53.449	2664.56
NON-PROPELLANT MASS	33.0	38.6	• "	1.12	2.50	20.	- 004	3,15
PROPELLANT LOADING MASS	7.00 P	133.4	30	94	38	00.	.001	59
TOOL TOOL TOOL TOOL TOOL TOOL TOOL TOOL	1 1	4.	•	60°-	07	00•	000•	11
THRUST MISALIGNMENT	0	0	4.8-	01	01	-1.17	000.	02
MIXTURE RATIO	8.0	6.5	0.1	1.14	.93	00*-	002	1.47
PØSITIVE RSS	5*66	139.1	8.7	2.67	2.88	1.17	.019	3.83
NEGATIVE RSS	66.5	139.1	8.7	2.67	2.88	1.17	.019	3.83
RSS	5*66	139.1	8.7	2.67	2.88	1.17	.019	3.83

TABLE 10A

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-ØFF SIGNAL

. RESULTING FROM S-I STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

		, , , , , , , , , , , , , , , , , , , ,		**********				
	TIME	ALTITUDE	RANGE	INTEGRATED X1-DØT	PLATFBRM ACCELERATIBNS ETA-DØT ZETA-DØT	ELERATIONS ZETA-DOT	PATH ANGLE SPACE	VELØCITY SPACE
VARIATIONS	(SEC)	Ξ	(w)	(M/SEC)	(M/SEC)	(M/SEC)	(066)	(M/SEC)
NOMINAL	629.931	500066.9	1856845.4	7489.93	3127.37	13	90.019	7678.95
NEN-PROPELLANT MASS	•106	6.	-312.0	•12	1.42	00.	- 000	00.
PROPELLANT LOADING MASS	116	1.1	-1404.2	LO	• 30	00.	000.	8.
THRUST AND FLAW RATE	1.543		2520.1	1.40	12.56	00.	002	0.
FLOW RATE	664.	9.7	-8127.2	96.	14.30	00.	002	00.
THRUST MISAL IGNMENT	.521	1.1	-1249.0	.68	6.30	00	002	00.
IN-PLANE THRUST MISALIGN	800*-	-5.4	6461.5	1.07	-5.36	00.	000	00.
THRUST MISALIGNMENT	.158	9.9	6.0069-	06	7.22	00.	001	00•
MIXTURE RATIO	696*	6.4	-4282.9	1.10	14.10	00•	- 000	00.
AXIAL DRAG CREFFICIENT	.884	2.1	-1775.3	*6 *	10.99	00	000.	00.
HEADEIN	.468	4.7	-3637.6	01	8.29	00*-	002	·•
CZINITAL	-,713	-3.6	5007.7	.08	-11.70	00.	001	٥ ٠
LEFT CROSS WIND	.646	4.4	-4746.3	60*-	10.78	00•	.001	00.
RIGHT CRØSS WIND	.730	5.	-3398.7	.42	10.11	00	.001	00.
HIGH GROUND WIND	.708	2.9	-3198.1	.78	10.32	00•	.001	00.
CNIM CNIEST	586	-1.0	1788.3	59	-7.54	00	001	00.
HIGH AMBIENT TEMPERATURE	787	1.4	-1227.6	65	-6.31	00 -	001	00.
LØW AMBIENT TEMPERATURE	2.055	-1.6	3375.7	1.76	16.60	00.	000	00.
PØSITIVE RSS	3.249	14.9	13377.1	3.23	38.01	00•	÷00.	00
NEGATIVE RSS	2.471	13.1	14289.7	2.65	31.40	00.	+00+	00.
RSS	2.860	14.0	13833.4	2.94	34.71	00.	*00*	00.
			· · · · · · · · · · · · · · · · · · ·	, , , , , , , ,				

The state of the s

TABLE 10B

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-ØFF SIGNAL

α.	RESULTING FRØM'S-I	STAGE	TWB-SIGMA MAGNITUDE PERFORMANCE VARIATIONS	UDE PERFØRMA	NCE VARIATIO	SN	9 9
VARIATIØNS	S PACE FIXED (M)	Y SPACE FIXED (M)	SPACE FIXED	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	Z-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE (M)
NØMINAL NACE	2234043.7	6501811.6	-46160.7 -8.4	7260.71	-2498.15	-87.32	6875073 1
PROPELLANT LOADING MASS	-1478.5	508.5	4.6	.55	1.60	01	• "
THRUST AND FLOW RATE	3188.0	-1096.1 2781.6	-128.8	3.19	9.28	.04	n 0
THRUST MISAL IGNMENT	-1065.9	368.4	163.8	64.	1.42	84.	-
IN-PLANE THRUST MISALIGN	6585.0	-2269.9	4.8	-2.54	7.37	10.	-
THRUST MISALIGNMENI	-3979.8	1369.0	-82.6	1.53	4.46	.00	-1
AXIAL DRAG CØEFFICIENT	-1456.4	501.2	-73.7	.55	1.58	.07	<u>-</u>
HEADWING	4821.0	-1660.8	6.9	-1.81	-5.26	16	-1
LEFT CRØSS WIND	-4581.7	1574.5	-104.8	1.72	2.00	05	
RIGHT CRØSS WIND	-3175.8	1091.9	236.8	1.20	20 c	V C	7-
HIGH GRØUND WIND	1589.2	1024.0	0.04 0.04	56	-1.62	04	
HIGH AMBIENT TEMPERATURE	-1566.9	539.6	8.99	.64	1.85	90*-	•
LOW AMBIENT TEMPERATURE	4264.9	-1468.9	-170.4	-1.63	-4.73	.16	

69.

15.58

333.2

4770.2

13576.1 14158.1 13867.1

PØSITIVE RSS

.54

15.95

5.24

347.5

4867.7

TABLE 10C

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-0FF SIGNAL

RESULTING FRØM S-I STAGE TWØ-SIGMA MAGNITUDE PERFØRMANCE VARIATIØNS

VARIATIONS	EARTH FIXED	EARTH FIXED	EARTH FIXED (M)	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH FIXED (DEG)	VELØCITY EARTH FIXED (M/SEC)
NOWINAL NOW-PROPELLANT WASS PROPELLANT LOADING WASS THRUST AND FL?W RATE FLOW RATE THRUST MISALIGNMENT IN-PLANE THRUST MISALIGN THRUST MISALIGNMENT MIXTURE RATIO AXIAL DRAG CØFFICIENT HEADWIND LEFT CRØSS WIND RIGHT CRØSS WIND HIGH GRØUND WIND LØW GRØUND WIND LØW GRØUND WIND LØW AMBIENT TEMPERATURE	1974066.3 -322.3 -1449.5 2598.5 -8393.0 -1296.2 6670.3 -7126.1 -4424.5 -1126.1 -4757.6 5173.0 -3757.6 5173.0 -4901.2 -3519.5 -3519.5 -3519.5 -3519.5 -3519.5	210526.4 436.4 436.4 -782.1 2524.8 388.2 -2012.9 -2012.9 -2143.0 1331.5 155.3 1151.6 -1558.9 -1053.5 -993.9 -555.9	51097.2 2.39.0 2.35.6 11.25.6 11.8.9 1.5.4 3.07.2 3.07.2 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5	6943.17 6943.17 7.45 7.45 7.47 7.47 7.47 1.40 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2091.75 -2091.75 -2.50 9.10 -2.50 -2.50 -1.59 -2.61 -1.59 -2.61 -1.59 -2.61 -1.59 -1.59 -1.59 -1.59 -1.59 -1.59 -1.59 -1.59 -1.61 -1.59 -1.61 -1	226.51 - 058 - 058	90.020 0000 0000 0000 0000 0000 0001 0001	7254.96 - 00 - 00 - 01 - 01 - 00 - 00 - 00 - 00
PØSITIVE RSS	13813.1	4439.1	549.2	4.72	15.72	1.32	• 00•	.02
NEGATIVE RSS	14759.8	4160.3	383.1	4.41	14.63	.91	400°	.01
				;				

TABLE 10D.

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-ØFF SIGNAL

	RESULTING FROM S-I		-SIGMA MAGNIT	STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS
	RESIDUAL	LØNGITUDE	GE ØDE T I C	VELBCITY
	PROPELLANT	+ WEST OF	LATITUDE	ØVER .
VARIATIONS	MASS	GREENWICH	+ NØRTH	CIRCULAR
	(KG)	(DEG)	(DEG)	(M/SEC)
NOMINAL TOTAL CONTRACTOR OF THE PROPERTY OF TH	284.34	63.21351	22.688750	64.62
NON-PROPELLANT MASS	-9.95	.00282	.001044	00.
PROPELLANT LOADING MASS	-16.73	.01247	.005178	00*-
THRUST AND FLOW RATE	-35.05	02188	010338	00.
FIGH RATE	-168.84	.07264	•029∂54	00•
THRUST MISAL ISMMENT	00.64-	.01209	.002531	00.
IN-PLANE THRUST MISALIGN	.73	05758	023443	00.
THRUST MISAL IGNMENT	-14.82	.06157	.024886	00.
MIXTIRE RATIO	-122.16	.03854	.014765	00.
AXIAL DRAG COFFEICIENT	-83.15	.01616	.005737	00.
TEADER OF COMMENTER OF COMMENTE	-44°C2	.03274	.012523	00.
	66.93	04509	017181	00.
LEFT CRASS WIND	-60.79	.04237	.017070	00.
CNIN VERU LICIA	-68.65	.03166	.009461	00*-
CNIM CNIESS HUIH	-91.21	.02877	.011039	00.
	62,33	01616	006028	00.
HIGH AMBIENT TEMPERATURE	20.90	.01065	.005053	00.
LOW AMBIENT TEMPERATURE	-48.73	02931	013849	00.
PØSITIVE RSS	251.31	.12811	.050405	00.
NEGATIVE RSS	274.98	.11950	.04853	00.
RSS	263.14	.12380	.049229	00•

TABLE 11A

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-ØFF SIGNAL

RESULTING FROM S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE VARIATIONS

TIME FROM	TIME	ALTITUDE	RANGE	INTEGRATED X1-00T	PLATFORM ACCELERATIONS ETA-DOT ZETA-DOT	ELERATIONS ZETA-DOT	PATH ANGLE SPACE	VELØCITY Space
VARIATIONS	LIFIØFF (SEC)	ξ	Ê	(M/SEC)	(M/SEC)	(M/SEC)	FIXED (DEG)	FIXED (M/SEC)
NØMINAL	629.931	500066.9	1856845.4	7489.93	3127.37	13	90.019	7678.95
NON-PROPELLANT MASS	375	2	-772.1	-,35	-2.33	00	.001	80.
PROPELLANT LOADING MASS	-1.396	2.3	-3781.1	-1.14	-7.10	00	.001	00.
THRUST AND FLOW RATE	2.482	0.9-	8624.0	1.92	9.81	00•	005	00.
FLOW RATE	1.279	-4.5	5759.4	.78	3.36	00.	001	00.
THRUST MISAL IGNMENT	.001	1.4	-2.4	00.	10.	00.	- 000	00
MIXTURE RATIO	-9.133	29.8	-33926.4	-6.41	-32.56	00	000*-	00.
PØSITIVE RSS	659.6	30.9	35685.2	6.84	34.98	00.	.002	00.
NEGATIVE RSS	659*6	30.9	35685.2	6.84	34.98	00.	.002	00.
RSS 9.659	659.6	30.9	35685.2	6.84	34.98	00	.002	00.

TABLE 11B

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-ØFF SIGNAL

α	RESULTING FROM S-	S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE VARIATIONS	SIGMA MAGNI	TUDE PERFORM	ANCE VARIATI	SNO	8 8 8 8 8 8	
VARIATIONS	S PACE FIXED (M)	Y SPACE FIXED (M)	SPACE FIXED (M)	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	Z-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE	9 9 8 8 9
NOMINAL NOW-PROPELLANT MASS PROPELLANT LØADING MASS THRUST AND FLØW RATE FLØW RATE THRUST MISALIGNMENT MIXTURE RATIØ	2234043.7 2234043.7 -4415.4 9785.7 6384.4 -1.3	6501811.6 321.9 1517.4 -3375.8 -2200.9	-46160.7 121.1 121.1 -215.8 -111.4 -141.7	7260.71 1.64 -3.70 -2.43 14.58	-2498.15 -91 4.78 -10.73 -7.04 -7.04 42.78	-87.32 03 10 .17 .08 .08	6875073 -1 -2 3 1 1	
PØSITIVE RSS	40288.0	13752.4	855.1	15,33	44.93	49.	9	1 1 6 6
NEGATIVE RSS	40288.0	13752.4	855.1	15.33	44.93	79.	9	
RSS 40288.0	40288.0	13752.4	855.1	15.33	44.93	. 64	9	* * * * * * * * * * * * * * * * * * * *

TABLE 11C

S-IV STAGE STATE PARAMETERS AT GUIDANCE CUT-0FF SIGNAL

v
z
6
_
۳.
4
_
9
2
_
u
۷
z
3
Z
S
Ľ
=
느
≌
=
_
5
$\bar{\cdot}$
ä
ž
_
9
Σ
2
Z.
7
7
7
MULY BILL
7
7
ACA TES AL
7
ACA TES AL
ACA TES AL
IV SAT HOATS VI
ACA TES AL
IV SAT HOATS VI
IV WAL HUVLY VIEW W
IV WILL HUNDLY ALTON WE
IV WAL HUVLY VIEW W
TO WITH LIV VITOR TERM VI
TO WITH LIV VITO MES
TO WITH LIV VITO MES
IV BILL HUVLY ALTO MEST UNIT HIVE
IV BAL HUVLY ALTO MESSE CALL SIVE

VARIATIØNS	EARTH FIXED (M)	Y EARTH FIXED	Z EARTH FIXED	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH FIXED (DEG)	VELØCITY EARTH FIXED (M/SEC)
NOMINAL NON-PROPELLANT WASS PROPELLANT LOADING WASS THRUST AND FLOW RATE FLOW RATE THRUST MISALIGNMENT	1974066.3 -796.5 -3900.9 8896.3 5942.5 1.6	210526.4 239.2 1173.9 -2687.1 -1793.6 2.1	51097.2 -51.9 -210.1 410.2 236.2 -141.6	6943.17 1.20 1.20 -2.79 -1.87 11.10	-2091.75 .70 3.97 -9.19 -6.18 .01	226.51 - 43 - 43 - 79 - 42 - 08 - 2.91	90.020 . 001 . 001 . 002 . 000 000	7254.96 -00 -01 -01 -01 -01
\$5	36845.9	11012.4	1629.2	11.66	38.85	3.08	.003	• 05
NEGATIVE RSS	36845.9	11012.4	1629.2	11.66	38.85	3.08	.003	•05
RSS 36845,9	36845.9	11012.4	1629.2	11.66	38.85	3.08	.003	•05

TABLE 11D

S-IV STAGE STATE PARAMETERS AT GULDANCE CUT-ØFF SIGNAL

VARIATIONS
VA
PECHITING FROM S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE
TUDE
MAGNI
SIGMA
TW 0
STAGE
S-1V
FROM
PECHI TING

TABLE 12A

S-IV STAGE BRBITAL INSERTION STATE PARAMETERS

RESULTING FROM S-1 STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

VARIATIONS	TIME FRØM LIFTØFF (SEC)	ALTITUDE (M)	RANGE (M)	INTEGRATED X1-DØT (M/SEC)	PLATFØRM ACCELERATIØNS ETA-DØT ZETA-DØT (M/SEC)	ELERATIONS ZETA-DOT (M/SEC)	PATH ANGLE SPACE FIXED (DEG)	VELØCITY SPACE FIXED (M/SEC)
NØMINAL NØM-PRØPELLANT MASS PRØPELLANT LØADING MASS THRIGT AND ET AM BATE	639.931	499976.6 1.3	1924144.5 -312.0 -1404.1	7492.64	3125.80	.000	900.013	7682.08
FLOW RATE THRUST RATE THRUST RASE IN THRUST IN-PLANE THRUST MISALIGN THRUST MISALIGN		12.0 3.3 -6.2	2520.0 -8127.2 -1249.0 6461.4	1.04	14.28		2000	003
MIXTURE RATIO AXIAL DRAG CØEFFICIENT HEADWIND		1.2	-6900.9 -4282.8 -1775.4 -3637.7	1.12	14.08 10.97 8.29	0000		0.00.00.00.00.00.00.00.00.00.00.00.00.0
TATLWIND LEFT CRØSS WIND RIGHT CRØSS WIND HIGH GRØUND WIND LØW GRØUND WIND HIGH AMBIENT TEMPERATURE LØW AMBIENT TEMPERATURE	713 .646 .730 .708 586 787 2.055	72.6 3.0 1.9 7.2 7.1	5007.4 -4746.1 -3398.6 -3198.3 -1788.0 -1227.6 3375.8	.008 08 .44 .79 59 65	-11.70 10.78 10.10 10.30 -7.53 -6.29	0000000		-01 -01 -02 -00 -00
PØSITIVE RSS NEGATIVE RSS	3.249	17.5	13376.9	3.25	37.98	00.	,00¢	.05
RSS	2,860	16.4	13833.2	2.96	34.67	00.	, 004	.05

TABLE 12B

S-IV STAGE BRBITAL INSERTIBN STATE PARAMETERS

	RESULTING FRØM S-	S-I STAGE TWØ-	SIGMA MAGNIT	STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS	NCE VARIATIØ	NS	
VARIATIONS	SPACE FIXED (M)	SPACE FIXED	S P A C E F I X E D (M)	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	Z-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE
NØMINAL NØM-PRØPELLANT MASS	ŧ	6476417.0 99.1 524.4	-47030.7 -8.3 9.3		-2579.39 .36 1.60	-86.67 .01	6875049 1 -1
THRUST AND FLOW RATE	3176-1	-1129.6 2874.1	-127.6	-1.18 3.32 5.2	-3.32 9.23 1.41	.12	n 4 w
THRUST MISALIGNMENT IN-PLANE THRUST MISALIGN THRUST MISALIGNMENT	-1060.9 6558.8 -6947.5	2343.8 -2343.8 2475.8	5.0	2.64	7.38	- 00	
MIXTURE RATIO AXIAL DRAG CØEFFICIENT	-3964.2 -1451.1 -3507.7	1413.4 516.8 1254.1	-81.9 -73.0 9	1.60	4.13 4.13	.07	щ i m
HEADWIND TAILWIND LEFT CROSS WIND DITCH CORES WIND	4802.3 -4563.9 -3163.6	-1713.3 1624.3 1126.5	4.7 -105.3 243.3	-1.89 1.79 1.26	-5.23 4.99 3.46	-16	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
HIGH GROUND WIND LOW GROUND WIND LOW AMBIENT TEMPERATURE LOW AMBIENT TEMPERATURE	-2967-0 1583-3 -1560-4 4248-3	1056.4 -562.4 -558.4 -1516.4	-59.9 49.4 66.2 -168.7	1.17	3.22 -1.60 1.86 -4.75	1.05	70-0
PØSITIVE RSS	13522.5	5026.9	353.2	5.71	15.90	. 85	6
NEGATIVE RSS	14102.1	4824.6	319.6	5.45	15.16	.54	80

6

69.

15.53

5.58

336.4

4925.7

13812.3

TABLE 12C

S-IV STAGE BRBITAL INSERTION STATE PARAMETERS

RESULTING FROM S-I STAGE TWO-SIGMA MAGNITUDE PERFORMANCE VARIATIONS

VARIATIONS	EARTH FIXED (M)	Y EARTH FIXED (M)	EARTH FIXED (M)	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH FIXED (DEG)	VELØCITY EARTH FIXED (M/SEC)
NØMINAL NØM-PRØPELLANT "ASS PRØPELLANT LØADING MASS THRUST AND FLAW RATE FLØW RATE THRUST MISALIGNMENT IN-PLANE THRUST MISALIGN THRUST MISALIGNMENT MIXALIGNMENT MIXALIGNMENT MIXAL DRR GREFFICIENT HEADWIND TAILWIND LEFT CRØSS WIND HIGH GRØUND WIND HIGH ARBUENT TEMPERATURE LØW AMBIENT TEMPERATURE	2043414.3 -1445.0 -1445.0 2590.4 -8365.1 -1291.5 -648.2 -7102.7 -410.1 -1829.7 -4895.5 -3745.0 5156.4 -4895.5 -3793.7 -1260.9 3468.6	ì	53380.1 -39.5 -1.06.5 -1.06.5 -1.06.5 -1.06.5 -1.05.1 -1.05.1 -1.05.1 -1.05.1	6923.87 - 112 - 2.86 - 2.33 - 2.23 - 2.23 - 2.23 - 1.59 - 1.59 - 1.59 - 1.59 - 1.67 - 1.67 - 1.67	-2165.12 1.48 -2.51 9.06 1.58 -7.07 7.62 4.16 5.04 1.45 1.45	230.02 230.02 -03 -058 -03 -24 -24 -24 -24 -24 -24 -24 -26 -26	90.014 90.017 90.002 90.002 90.002 90.002 90.002 90.002 90.003	7258.15 .00 .00 .01 .03 .03 .02 .02 .02 .02 .02 .02
PØSITIVE RSS	13767.8	4596.0	561.5	76* 5	15.68	1.31	,000	.06
NEGATIVE RSS	14711.6	4306.5	390.5	4.61	14.60	.91	. 004	.05
	-							

TABLE 12D

S-IV STAGE BRBITAL INSERTION STATE PARAMETERS

E VARIATIONS
PERFORMANC
TWB-SIGMA MAGNITUDE
TWB-SIGMA
STAGE
S-I
FROM
RESULTING FROM

	RESULTING FROM S-	STAGE TWB-	-SIGMA MAGNIT	S-I STAGE TWØ-SIGMA MAGNITUDE PERFØRMANCE VARIATIØNS
VARIATIØNS	RESIDUAL PRØPELLANT MASS (KG)	Løngitude + West øf Greenwich (Deg)	GEØDETIC LATITUDE + NØRTH (DEG)	VELØCITY ØVER CIRCULAR (M/SEC)
NOMINAL NON-PROPELLANT MASS PROPELLANT LOADING MASS	254.41 -9.95 -16.73	62.61827	22.436318 .001053 .005230	47.76 .00. 00.
THRUST AND FLOW RATE FLOW RATE THRUST MISALIGNMENT IN-PLANF THRUST MISALIGN	-35.05 -168.84 -49.00 -73	02178 .07238 .01208 05736	010456 .029325 .002533 023664	.03 .03 .01 01
THRUST MISALIGNMENT MIXTURE RATIØ AXIAL DRAG CØEFFICIENT	-14.82 -122.16 -83.15	.06135 .03841 .01611	.014893 .014893 .005781	.01 .02 .02 .02
HEADWIND TAILWIND LEFT CRØSS WIND RIGHT CRØSS WIND HIGH GRØUND WIND	- 60.79 - 60.79 - 68.64 - 91.21 - 91.21	.04494 .04494 .04222 .03159 .02868 .01610	017330 017238 017228 009521 006076	- 01 - 01 - 02 - 02 - 01
HIGH AMBIENT TEMPERATURE LOW AMBIENT TEMPERATURE	-48.73 -251.31	02917	014008	.01
NEGATIVE RSS	274.98	.11907	.048507	.05
RSS	263.14	.12337	.049688	• 05

TABLE 13A

S-IV STAGE BRBITAL INSERTIBN STATE PARAMETERS

RESULTING FROM S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE VARIATIONS

CALTATORY	TIME FRØM	ALTITUDE	RANGE	INTEGRATED X1-00T	PLATFORM ACCELERATIONS ETA-DOT ZETA-DOT	ELERATIONS ZETA-DOT	PATH ANGLE SPACE	VELØCITY SPACE
	(SEC)	(M)	(M)	(M/SEC)	(M/SEC)	(M/SEC)	(DEG)	FIXED (M/SEC)
NØMINAL	639.931	499976.6	1924144.5	7492.64	3125.80	13	90.013	7682.08
NON-PROPELLANT MASS	375	-1.9	-772.1	35	-2.33	00	• 001	00.
PROPELLANT LOADING MASS	-1.396	4.	-3781.4	-1.14	-7.11	00	• 001	.01
THRUST AND FLØW RATE	2.482	-3.8	8624.2	1.92	9.81	00.	-• 005	00.
FLØW RATE	1.279	-3.5	5759.2	.78	3.37	00.	-• 001	00
THRUST MISAL IGNMENT	.001	1.2	-2•3	00•	.01	• 00	000	00
MIXTURE RATIØ	-9.133	29.1	-33927.1	-6.40	-32.60	00	000	.01
PØSITIVE RSS		29.7	35686.0	6.83	35.01	00.	.003	.02
	659*6	29.7	35686.0	6.83	35.01	00.	.003	.02
RSS 9.659	659*6	29.7	35686.0	6.83	35.01	00.	.003	.02

TABLE 13B

S-IV STAGE ØRBITAL INSERTIØN STATE PARAMETERS

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	RESULTING FROM S-	S-IV STAGE TWØ SIGMA MAGNITUDE PERFORMANCE VARIATIØNS	SIGMA MAGNI	TUDE PERFORM	ANCE VARIATI	ans	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VARIATIONS	S PACE FIXED (M)	S P A C E F I X E D (M)	SPACE FIXED (M)	X-DØT SPACE FIXED (M/SEC)	Y-DØT SPACE FIXED (M/SEC)	Z-DØT SPACE FIXED (M/SEC)	VEHICLE RADIAL DISTANCE (M)	1 1 1 1 1
NOMINAL NON-PROPELLANT MASS PROPELLANT LOADING MASS THRUST AND FLOW RATE FLOW RATE THRUST MISALIGNMENT MIXTURE RATIO	2306537.8 -934.7 -4398.9 9748.3 6359.6 -1.2	6476417.0 330.8 1565.2 -3482.7 -2270.9 13483.4	-47030.7 33.2 120.1 -214.1 -110.6 -140.9 791.7	7235.58 3.32 1.70 -3.81 -2.50 15.06	-2579.39 4.76 -10.68 -7.00 42.58	-86.67 -03 -10 -17 -08 -08	6875049 -3 -3 5 5 -7	
PØSITIVE RSS	40132.4	14200.3	848.6	15.83	44.72	.65	6	
NEGATIVE RSS	40132.4	14200.3	848.6	15.83	44.72	.65	6	1
RSS	40132.4	14200.3	848.6	15.83	44.72	.65	6	1

TABLE 13C

S-IV STAGE BRBITAL INSERTIBN STATE PARAMETERS

RESULTING FROM S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE VARIATIONS

VARIATIØNS	_	EARTH FIXED (M)	2 EARTH FIXED (M)	X-DØT EARTH FIXED (M/SEC)	Y-DØT EARTH FIXED (M/SEC)	Z-DØT EARTH FIXED (M/SEC)	PATH ANGLE EARTH FIXED (DEG)	VELØCITY EARTH FIXED (M/SEC)
NØMINAL NØN-PRØPELLANT MASS PRØPELLANT LØADING MASS THRUST AND FLØW RATE FLØW RATE THRUST MISALIGNMENT	2043414.3 -794.3 -794.3 -3899.0 8868.0 5923.2 1.6 -34920.3	189235.6 246.1 1213.6 -2778.7 -1855.2 10828.6	53380.1 -214.4 418.0 240.4 -140.8	6923.87 1.25 1.25 -2.88 -1.94 11.49	-2165.12 -70 3.96 -9.16 -6.15 .01	230.02 230.02 - 11 - 43 - 78 - 41 - 61	90.014	7258.15 -000 -000 -002 -000
PØSITIVE RSS	36727.5	11399.8	1659.5	12.07	38.69	3.04	.003	• 0.4
NEGATIVE RSS	36727.5	11399.8	1659.5	12.07	38.69	3.04	.003	,0
RSS	36727.5	11399.8	1659.5	12.07	38.69	3.04	.003	•04

TABLE 13D

į

S-IV STAGE BRBITAL INSERTION STATE PARAMETERS

VARIATIONS				
PERFORMANCE		VELØCITY	ØVER	
MAGNI TUDE			. an	
SIGMA		GEØDET	LATI TUDE	
IV STAGE TWO		LØNGITUDE	+ WEST OF	
RESULTING FROM S-IV STAGE TWO SIGMA MAGNITUDE PERFORMANCE VARIATIONS		RESIDUAL LONGITUDE GEODETIC	PROPELLANT + WEST OF	
	1			

VELØCITY ØVER CIRCULAR (M/SEC)	67.74 .00 .00 .01 .01 .01	.01	.01	01
GENDETIC LATITUDE + NØRTH (DEG)	22.436318 .003115 .014907 033484 022061 .001083	.137631	.137631	.137631
LØNGITUDE + WEST ØF GREENWICH (DEG)	62.61827 .00571 .03306 07564 05066 00050	.31362	.31362	.31362
⊢	254.41 -34.93 -18.01 -6.23 106.08 -06	185.08	185.08	185 . 08
RESIDUAL PROPELLAN VARIATIONS HASS (KG)	NOMINAL NOMINAL NOMPORTELLANT MASS PROPELLANT LØADING MASS THRUST AND FLØW RATE FLØW RATE THRUST MISALIGNMENT MIXTURE RATIØ	PØSITIVE RSS	NEGATIVE RSS	RSS

DISPERSIONS RESULTING FROM GUIDANCE SYSTEM HARDWARE ERRORS

S-IV STATE PARAMETERS AT S-IV GUIDANCE CUT-OFF

VARIATIONS	TIME FROM LIFTOFF (sec)	ALIIIUDE	VELOCITY	PATH ANGLE SPACE FIXED	VEHICLE RADICAL DISTANCE
NOMINAL	629.931	500066 9	7579 OF	(geb)	(m)
ACCELEROMETER MISALIGNMENT	0	1.2	56.50	90.019	6875073
PLATFORM DRIFT DUE TO X GYRO	0	15	0	» o	7 -
PLATFORM DRIFT DUE TO Y GYRO	. 003	2.0	.01	0	- T
PLATFORM DRIFT DUE TO Z GYRO	.019	192.7	. 26	.014	180
SCALE FACTOR	800.	66.4	.21	.002	63
BIAS	.007	70.8	.18	. 002	. 89
PLATFORM MISALIGNMENT	.017	131.3	.42	.004	233
POSITIVE RSS	.028	252.5	.57	. 015	308
NEGATIVE RSS	. 028	252.5	.57	.015	308
RSS	. 028	252.5	75.	.015	308

TABLE 15 S-IV RSS ENVELOPE

STATE PARAMETERS AT S-IV GUIDANCE SIGNAL CUT-OFF

RSS DISPERSIONS	TIME FROM LIFTOFF (sec)	ALTITUDE (m)	VELOCITY (m/sec)	PATH ANGLE SPACE FIXED (deg)	VEHICLE RADICAL DISTANCE (m)
+RSS DUE TO S-I PERFORMANCE PERTURBATIONS	3.249	14.9	00.	. 004	
+RSS DUE TO S-IV PERFORMANCE PERTURBATIONS	9.659	30.9	00.	. 002	vo
+RSS DUE TO GUIDANCE SYSTEM HARDWARE ERRORS	. 028	252.5	.57	. 015	308
-RSS DUE TO S-I PERFORMANCE	2.471	13.1	. 00:	.004	7
-RSS DUE TO GUIDANCE SYSTEM HARDWARE ERRORS	9.659	30.9	00.	. 002	9
-RSS DUE TO CUIDANCE SYSTEM HARDWARE ERRORS	. 028	252.5	.57	.015	308
+RSS DISPERSION FOR VEHICLE	10.191	254.8	.57	.016	308
-RSS DISPERSION FOR VEHICLE	9.970	254.7	.57	.016	308
RSS	10.081	254.8	.57	.016	308

Perigee & Apogee Variations Due to S-I Stage Deviations

	D	(m)
Deviation	Lerigee (III)	who as a work
Nominal	496900	747100
Non-Propellant Mass	7	∞
Propellent Loading Mass	1	14
Thrust & Flow Rate (Isp = Constant)	2	21
Flow Rate	11	141
Thrust Misalignment (Normal)	2	38
Thrust Misalignment (In Plane +)	9-	-29
Thrust Misalignment (In Plane -)	7	41
Mixture Ratio Shift	5	94
Longitudinal Drag Coefficient	2	58
2 o Headwind	9	44
2 Tailwind	۳.	£5-
20 Left Crosswind	41	54
24 Right Crosswind	0	49
+20 Ground Wind	6	89
-20 Ground Wind	O	42
+20 Ambient Temperature	2	9
-20 Ambient Temperature	-1	20

Perigee & Apogee Variations Due to S-IV Stage Deviations and Guidance Systems Hardware Errors	ons nidance Syste	sms
Deviation	Perigee (m) Apogee(m)	Apogee(m)
Nominal	496900	747100
Propellant Loading Mass	-1	- 1
Non-Propellant Mass	. 2	12
Thrust & Flow Rate (Isp= Constant)	5-	20
Flow Rate	4-	9-
Thrust Misalignment (Normal)	+2	2
Mixture Ratio	ю	89
Guidance System Hardware Errors	+378	+3273

su	Apogee (m)	220	74	147	72	3273	3273	3284	3275	3280
RSS Deviations	Perigee (m)	17	7	30	9	378	378	380	378	379
Perigee & Apogee										
	Туре	$+RSS_{\mathrm{I}}$	-RSS_{I}	$^{+RSS}_{\mathrm{IV}}$	$-RSS_{IV}$	+RSS _G	$-RSS_G$	+RSS _V	-RSS _V	RSSV

TABLE 17
PERFORMANCE PARTIALS APPLICABLE AT S-I STAGE OUTBOARD CUTOFF

												[
	DEPENDENT	Time	Path Angle	Velocity	Altitude	Range	X (E.F.)	Y (E.F.)	Z . (E.F.)	X (E.F.)	Ý (E.F.)	Z (E.F.)
INDEFENDENT VARIABLE	TAKTABLE T	Units→sec	deg	-	B	E	E .	a a	E		m/sec	m/sec
	Units		•									
NON-PROPELLANT MASS	100 lbm wt	0.00	.003	ω. 1	-28.	-17.	-17.4	-27.4	•	54	60	0.0
PROPELLANT LOADING MASS	100 lbm wt	.017	.004	2	3.	-21.	21.2	2.9	0.	.30	08	0.0
THRUST AT ISP = CONSTANT	+1%	-1,560	-,533	5,3	435.	-1,473.	-1,487.0	452.5	-3.5	-11.41	23.40	07
ISP (w)	-1%	-1.302	275	-29.9	-1,217.	-1,990.	-2,032.2	-1,192.6	-13.7	-31.12	-7.21	26
NORMAL THRUST MISALIGNMENT	1 deg	00.0	.016	1	-17.	-22.	-42.2	-16.8	-4,418.6	03	35	-106.92
INFLANE THRUST MISALIGNMENT	1 deg	00.00	2.200	17.6	-2,200.	3,640.	3,660.5	-2,244.9	13.8	77.68	-71.81	.27
MIXTURE RATIO	+1%	.702	.070	44.1	1,300.	1,590.	1,629.2	1,280.2	10.6	37.15	24.17	.26
DRAG COEFFICIENT	+1%	0.00	.012	-1.2	-94.	-44.	-45.4	-93.6	7	64	-1.17	01

PERFORMANCE PARTIALS APPLICABLE AT S-IV STAGE GCS

Crossrange (E.F.) m/sec Velocity 90. -.64 -.49 .01 90. 1.57 . 22 .02 -.15 -.16 .20 -.34 **.**84 Cross--274. -107. -33. 639. 342. 9 -99-63. -820. 472. 7 ۷. -345. -181. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .60 -.02 14.30 17.03 1.10 -14.49 -30.00 2.12 -19.62 6.72 -3.83 .02 -2.97 -16.75 -1.87 .05 8 .95 1.84 2.89 -2.34 -.45 -3.84 1.56 -.75 69. .34 0.0 Exceeding Circular Velocity 0 0 ö ö ö ö ö ö ö ö ö ö ö Propellant Reserve (Weight)... 573. 102. -372. -292. -18. 12. 28. 467. 4 ė, ς. 99. 0 -38 9,113. -131. 82. -3,360. 17,463. -178. -8,127. -3,376. -985. 1,129. 11,519. Range -17,248. 9 -3,991.Altitude 0 -15. 0 10. ÷ -10. <u>-</u>6 ö 0 12. 4. Ö (S.F.) Angle -.002 .003 -.005 .004 -.002 .001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Time .007 .493 1.408 -.022 -2.062 .088 .417 -4.964 2.558 .002 -2.057 -.478 -1.075 1 deg +1% 1 deg +1% +1% deg 100 lbm wt - 1% +1% +11% +1% 100 lbm wt 100 lbm wt 100 lbm wt Units DEPENDENT VARIABLE PROPELLANT LOADING MASS 1

H THRUST AT ISP = CONSTANT

H ISP (w)

NORMAL THRUST MISALIGNMENT

INPLANE THRUST MISALIGNMENT

O MAYNTHER PARTO GISP (w)
ONORMAL THRUST MISALIGNMENT
ONIXTURE RATIO MON-PROPELLANT MASS
FIPROPELLANT LOADING MASS
FIPRUST AT ISP = CONSTANT NON-PROPELLANT MASS INDEPENDENT DRAG COEFFICIENT VARIABLE MIXTURE RATIO

REFERENCES

- 1. NASA TMX-53203, "SA-9 Final Predicted Trajectory, Part I. Nominal Trajectory," January 29, 1965
- 2. R-P&VE-PT-65-M-27-P, "Maximum Allowable Residual for S-IV (SA-9, 8, 10) Based on Current Venting System," January 27, 1965
- 3. Beers, Yardley, "Introduction to the Theory of Error," Addison-Wesley, Inc., Reading, Massachusetts, 1962
- 4. AERO-IN-11-64, "Monte Carlo Performance Analysis Computer Program," April 15, 1964
- Memorandum from Chief, Aerophysics and Astrophysics Branch, M-AERO-G, "Range Safety Wind Profiles for Selected Flight Azimuths," March 29, 1963
- 6. R-P&VE-PPE-64-M-296, "Final S-IV-9 Propulsion Prediction," December 28, 1964
- 7. R-P&VE-PPE-64-M-287, "Final S-I-9 Performance Prediction,"
 December 17, 1964
- 8. R-ASTR-G-120-65, "Test Data From Serial Number 7, ST124 Platform for SA-9," January 15, 1965.

APPROVAL

SA-9, 8 AND 10 DISPERSION ANALYSIS

Вy

Gerald Wittenstein and Jerry D. Weiler

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This report has also been reviewed and approved for technical accuracy.

O. M. HARDAGE, JR.

Chief, Trajectory Section Flight Mechanics Branch

Om Hardage, Ir.

LLOYD O. STONE

Chief, Flight Mechanics Branch

FRIDTJOF A. SPEER

Chief, Flight Evaluation and Operations Studies Division

E. D. GEISSLER

Director, Aero-Astrodynamics

Laboratory

DISTRIBUTION

I-I/IB-DIR, Col. James I-I/IB-T, Mr. Bender R-AERO-DIR, Dr. Geissler R-AERO-DIR, Mr. Jean R-AERO-AT, Mr. Wilson R-AERO-AD, Mr. Nunley R-AERO-DD, Mr. Winch R-AERO-DD, Mr. Ryan R-AERO-F, Dr. Speer R-AERO-FF, Mr. Lindberg (6) R-AERO-FF, Mr. Hagood R-AERO-FP, Mr. Clarke R-AERO-FO, Mr. Kurtz R-AERO-FO, Mr. Naumcheff R-AERO-FO, Mrs. McNair R-AERO-FF, Mr. Sheats R-AERO-FF, Mr. Horst R-AERO-FM, Mr. Stone R-AERO-FM, Mr. Hardage (10) R-AERO-FM, Mr. Wittenstein (5) R-AERO-FM, Mr. Weiler R-AERO-FM, Mr. Sullivan R-AERO-FM, Mr. Leonard R-AERO-P, Mr. McNair (6) R-AERO-P, Mr. Teague (10) R-AERO-Y, Mr. Vaughan R-AERO-Y, Mr. Smith R-ASTR-F, Mr. Blackston R-ASTR-NGI, Mr. Blunton R-ASTR-NGI, Mr. Nicaise (2)

MSC

MS-IP

MS-IPL (8)

MSC-PT6, Mr. McKann MSC-PS3, Mr. Perrine

R-ASTR-NGO, Mr. Winkler

R-P&VE-PP, Mr. Heusinger R-P&VE-PPE, Mr. McKay R-P&VE-VAW, Mr. Scott

R-ASTR-TJ, Mr. Noel

EXTERNAL

HME-P

CC-P

MS-H

Scientific and Technical Information Facility (25) P. O. Box 5700 Bethesda, Maryland ATTN: NASA Representative

(S-AK RKT)

MSC-FM, Mr. Mayer

MSC-FM, Mr. Incerto