Part I

目录

Part II

摘要

Part III

假设

Part IV

人口增长的简单模型

1 引述

就是抄一抄百科

2 模型概述

我们从人口的产生与消亡这两方面来看待人口的变动。人口的增长,一方面被人口的产生所促进,另一方面被人口的消亡所限制,所以是一个动态平衡的过程。一大波新出生的人口,在达到适育年龄的时候,会反过来对人口的增长起到促进作用;而当他们走向衰老乃至死亡的时候,又会加剧人口的减少。因此我们要使用科学的方法来看待这个问题。下面我们分别着手处理这个两个问题。

2.1 人口的衰老

随着时间的流逝,一部分人口会衰老一岁,而剩下不幸的人则会因为各种各样的原因死去。其中死亡率是一个随着年龄而变化的数据,一般情况是婴儿的死亡率较高,然后随着年龄的增长而下降,到 40、50 岁时开始逐步回升。

2.2 人口的出生

各个年龄层次的适育妇女,都有可能在考察的时间段内生育:对于个人而言,这是一个概率性事件;但是对于群体而言,生育事件的随机性就被大量的人群基数所磨灭,成为一个比率。因此,一段时间内婴儿的出生数目,等于平均生育率乘上适育妇女的人数。

但是,不同地区、学历的妇女在生产意愿上有着不同的态度。为了简化问题,我们认为地区与教育带给人的影响是近似独立的,因此可以直接对平均生育率进行修正。在这种假设下,一段时间内婴儿的出生人数,等于各年龄层的适育妇女乘上修正后的生育率之和。

3 记号表

见 Table1。

Table 1: 人口增长的简单模型					
符号	含义	相关的其他参数	备注		
\overline{a}	年龄				
	京教会小亚 (44米里)		e_0 : 小学及以下		
e	受教育水平 (枚举量)		e ₁ : 中学		
			e_2 : 大学及以上		
			r ₀ : 城		
r	地区(枚举量)		r ₁ : 镇		
			r ₂ : 乡		
t	考察的时间段				
I	出生婴儿数	e, r, t			
N	总人口数	a, e, r, t			
W	女性人数	a, e, r, t			
β	生育率	a,e,r			
δ	平均死亡率	a			
λ	修正系数	a, e, r			
μ_p	男女比例				

4 数据引用

Table 2: 来自第六次人口普查的数据

5 方程的建立

首先,考虑人口的自然衰老:

$$N(a+1, t+1) = N(a, t) \cdot (1 - \delta(a)) \tag{1}$$

这里 $\delta(a)$ 指的是 a 岁人口的平均死亡率。

再考虑所有地区,由受各种教育水平的妇女生育的婴儿数:

$$N(0, t+1) = \sum_{r_k} \sum_{e_l} I(r_k, e_l, t)$$
 (2)

这里 $I(r_k, e_l, t+1)$ 表示在 t 这个考察时间段内,在 r_k 地区,受到 e_l 教育水平的妇女生育的婴儿数目。

考察 $I(r_k, e_l, t)$ 是由各个不同年龄阶段的适龄妇女所生育的:

$$I(r_k, e_l, t) = \sum_{a} \beta(a, r_k, e_l) W(a, r_k, e_l, t)$$
(3)

这里 $\beta(a, r_k, e_l)$ 是 r_k 地区,受到 e_l 教育水平的妇女的生育率, $W(a, r_k, e_l, t)$ 是这段时间这类妇女的总人数。

总人口数与总女性数之间存在着简单的比例关系:

$$N(a, r, e, t) = W(a, r, e, t) \cdot (1 + \mu_p) \tag{4}$$

这里 μ_p 表示的是男性与女性人数的比例。

教育水平与地区对于生育率的修正,即 $\beta(a, r_k, e_l)$,是这样构成的:

$$\beta(a, r_k, e_l) = \overline{\beta(a)} \cdot \lambda_{r_k} \cdot \lambda_{e_l} \tag{5}$$

其中 $\overline{\beta(a)}$ 是平均生育率, λ_{r_k} 与 λ_{e_l} 分别是地区与教育水平分别对于生育率的修正;为了记号上的方便,令 λ_b 为生育修正参数矩阵,其中

$$\lambda_b(r_k, e_l) = \lambda_{r_k} \cdot \lambda_{e_l} \tag{6}$$

在进一步完善模型之前,我们给出 $\lambda_b(r_k,e_l)$ 的计算公式与结果。事实上,根据等式 3与等式 5,我们可以立即得到:

$$\lambda_b(r_k, e_l) = \frac{I(r_k, e_l, t)}{\sum_a \overline{\beta(a)} W(a, r_k, e_l, t)}.$$
 (7)

利用表 2中的数据,代入 t=2010,我们得到了 $\lambda_b(r_k,e_l)$ 的具体结果,见表 3:

Table 3: 生育修正参数 λ_b $\begin{array}{c|cccc} \lambda_b(r_k,e_l) & e_0 & e_1 & e_2 \\ \hline r_0 & & & \\ r_1 & & & \\ r_2 & & & \end{array}$

6 小结

把这个 naive 的模型批判一番

Part V

人口增长模型修正与应用

7 假设

明确地列出哪些因素是要考虑的, 而哪些还是不考虑

8 记号表

Table 4: 人口增长简单模型的修正

符号 含义 相关的其他参数 I_i 作为第 $(i+1)$ 胎出生的婴儿数目 e,r,t W_i 生育了 i 个孩子的妇女数目 a,e,r,t β_i 已生育 i 胎妇女的生育率 a,e,r η_a a 岁已育一胎妇女的相对生育意愿 λ_i 已生育 i 胎妇女受到政策阻力修正因素 ν_{r_k} 从 r_{k+1} 到 r_k 的地区迁移率 ν_{e_l} 从 e_{l+1} 到 e_l 的受教育水平迁移率	14016年,八百名以前十次至前移止				
W_i 生育了 i 个孩子的妇女数目 a, e, r, t β_i 已生育 i 胎妇女的生育率 a, e, r η_a a 岁已育一胎妇女的相对生育意愿 λ_i 已生育 i 胎妇女受到政策阻力修正因素 ν_{r_k} 从 r_{k+1} 到 r_k 的地区迁移率	符号	含义	相关的其他参数		
eta_i 已生育 i 胎妇女的生育率 a,e,r η_a a 岁已育一胎妇女的相对生育意愿 λ_i 已生育 i 胎妇女受到政策阻力修正因素 ν_{r_k} 从 r_{k+1} 到 r_k 的地区迁移率	I_i		e, r, t		
$ \eta_a $ $ a$ 岁已育一胎妇女的相对生育意愿 $ \lambda_i $ 已生育 i 胎妇女受到政策阻力修正因素 $ \nu_{r_k} $ $ \lambda_i $	W_i	生育了 i 个孩子的妇女数目	a, e, r, t		
λ_i 已生育 i 胎妇女受到政策阻力修正因素 ν_{r_k} 从 r_{k+1} 到 r_k 的地区迁移率	eta_i	已生育 i 胎妇女的生育率	a, e, r		
$ u_{r_k}$ 从 r_{k+1} 到 r_k 的地区迁移率	η_a	a 岁已育一胎妇女的相对生育意愿			
11 对 的可协会认证任务会	λ_i	已生育 i 胎妇女受到政策阻力修正因素			
$ u_{e_l}$ 从 e_{l+1} 到 e_l 的受教育水平迁移率	ν_{r_k}	** = ***			
	$ u_{e_l}$	从 e_{l+1} 到 e_l 的受教育水平迁移率			

9 数据引用

- 人口增长率
- 城乡比
- 姿势水平的人数

剩下的就直接甩链接。

10 模型的修正

10.1 依据生育情况区分妇女

首先,适育妇女数,依照她们已生育孩子的数目,可分为 W_0 、 W_1 、 W_2 这三类,分别表示未生孩子、已生一个孩子与生了两个及以上的妇女数目。在这样的分类下,等式 3将被修正为如下带有下标的形式:

$$I_{i}(r_{k}, e_{l}, t) = \sum_{a} \beta_{i}(a, r_{k}, e_{l}) W_{i}(a, r_{k}, e_{l}, t)$$
(8)

这里 I_i 是作为第 (i+1) 胎出生的婴儿数目,而 W_i 是生育过 i 胎的妇女数目。

同时,由于计划生育政策,已生育的妇女将会受到较大的政策阻力, 因此她们的生育率将会减小。这一点反应在模型上是通过参数对方程进行调 节的:

$$\beta_i(a, r_k, e_l) = \overline{\beta(a)} \cdot \lambda_i \cdot \lambda_b(k, l) \tag{9}$$

其中 λ_i 是已生i胎妇女受到政策阻力的修正因数。

考虑在放开二胎政策之前,对于已生育的妇女而言,再生育的政策阻力应当是一致的。为了得到政策阻力的量化情况,我们采用数据拟合的手段。考虑 λ_i 具有如下的形式:

$$\lambda_{i} = \begin{cases} (3 - \lambda_{policy}) & i = 0\\ \lambda_{policy} & i = 1\\ \lambda_{policy} & i = 2 \end{cases}$$

$$(10)$$

这里参数 λ_{policy} 是由再分法确定的,使得人口增长率符合当年数据。拟合结果如表 5所示。

Table 5:
$$\lambda_i$$
 拟合结果 参数 λ_0 λ_1 λ_2 值

在第一次修正后,中国人口增长趋势大致如图所示。 图图图

10.2 考虑人口的地域与教育水平的迁移

随着时间的推移,人口逐渐向城市靠拢,同时由于自身的不断学习,受教育水平也在不断提升。这两个方面的迁移由以下的方程组来描述:

$$\begin{cases}
N'(a, r_0, e_l, t+1) = N(a, r_0, e_l, t+1) + \nu_{r_0} \cdot N(a, r_1, e_l, t+1) \\
N'(a, r_1, e_l, t+1) = (1 - \nu_{r_0}) N(a, r_1, e_l, t+1) + \nu_{r_1} \cdot N(a, r_2, e_l, t+1) \\
N'(a, r_2, e_l, t+1) = (1 - \nu_{r_1}) N(a, r_2, e_l, t+1) \\
N''(a, r_k, e_0, t+1) = (1 - \nu_{e_0}) N'(a, r_k, e_0, t+1) \\
N''(a, r_k, e_1, t+1) = \nu_{e_0} \cdot N'(a, r_k, e_0, t+1) + (1 - \nu_{e_1}) N'(a, r_k, e_1, t+1) \\
N''(a, r_k, e_2, t+1) = \nu_{e_1} \cdot N'(a, r_k, e_1, t+1) + N'(a, r_k, e_2, t+1)
\end{cases}$$
(11)

这里 $N''(a, r_k, e_l, t+1)$ 是经过两次修正后的不同地区、受教育程度的人口数。

为了确定参数 ν_{r_0} 与 ν_{r_1} 、 ν_{e_0} 与 ν_{e_1} ,从 2010 年的数据出发进行迭代至 2015 年,选取预测结果最为接近的一组参数,其中最为接近是指比例相

等,由如下方程组描述:

$$\begin{cases}
\frac{N_P(r_0, t+5)}{N(r_0, t+5)} = \frac{N_P(r_1, t+5)}{N(r_1, t+5)} = \frac{N_P(r_2, t+5)}{N(r_2, t+5)} \\
\frac{N_P(e_0, t+5)}{N(e_0, t+5)} = \frac{N_P(e_1, t+5)}{N(e_1, t+5)} = \frac{N_P(e_2, t+5)}{N(e_2, t+5)}
\end{cases}$$
(12)

这里 $N_P(t+5)$ 是指从 t 出发迭代预测的数据,而 $N_P(r_k,t+5)$ 应理解为 $\sum_{e_l}\sum_a N_P(a,r_k,e_l,t+5)$, $N_P(e_l,t+5)$ 应理解为 $\sum_{r_k}\sum_a N_P(a,r_k,e_l,t+5)$ 。 拟合结果如表 6所示。

Table 6:
$$\nu_{r_k}$$
 与 ν_{e_l} 拟合结果 参数 $|\nu_{r_0}|$ ν_{r_1} $|\nu_{e_0}|$ $|\nu_{e_1}|$ 值

在第二次修正后,中国人口增长趋势大致如图所示。

10.3 考虑计划生育政策的开放带来的影响

考虑到当二胎政策出台后,仅已生一胎的妇女生育意愿会增大,因此等式 $5 + \beta_1(a, r_k, e_l)$ 将会比原来大,被修正为:

$$\beta(a, r_k, e_l) = \eta_a \cdot \overline{\beta(a)} \cdot \lambda_i \cdot \lambda_b(k, l)$$
(13)

其中 η_a 是 a 岁已生育一胎的妇女在政策放开后的相对生育意愿。

11 小结

再批判一番

Part VI

把其他人的论文批判一番

12 你们啊, naive

蛤

- 13 西方的人口模型我哪个没算过 蛤
- **14** 开放二胎不知道比你们高到哪里去了 蛤
- 15 你问我支不支持计划生育,那我当然是支持的
- 16 我今天算是得罪了你们 蛤
- **17** 小结 蛤

Part VII

北京市的人口增长模型

18 讨论

考虑到北京市城市人口占总人口大多数【来源请求】,所以我们认为北京市的迁入人口转化为了城市人口。为了研究北京市每年净迁入人口的数目,我们假定,外来人口即为无户籍的常住人口。

- 19 数据的引用
 - 流入人口数目

20 模型的再次修正

我们只要对等式11进行修正,加入外来人口的因素:

$$\sum_{e_l} N'''(a, r_0, e_l, t+1) = \sum_{e_l} N''(a, r_0, e_l, t+1) + M(a, t)$$
 (14)

其中 M(a,t) 是 t 时间段内迁入北京市的 a 岁人口数目, $N'''(a,r_0,e_l,t+1)$ 是这一次修正后城市各受教育程度的人口数。

根据统计数据,在一个固定研究时间段内,M(a,t) 随着 a 的分布如表 7所示。如果假定在各年龄层迁入人口保持相同比例,那么,M(a,t) 与总 迁入人数 M(t) 的比例 $\phi_a=\frac{M(a,t)}{M(t)}$ 满足如下关系:

Table 7: 北京迁入人口随年龄的分布

年龄 a 分布	$\frac{\sum_{a} M(a,t)}{M(t)}$	ϕ_a		
[0, 15)	7.00%	0.467%		
[15, 40)	82.4%	3.296%		
[40, 60)	9.8%	0.490%		
$[60,\infty)$	0.8%	0.020%		

北京市总迁入人口M(t),是基于历年的迁入人口拟合得出的:

$$M(t) = M_0 + M_1 \cdot e^{-\kappa(t - t_0)} \tag{15}$$

其中参数拟合结果如表 8所示。

Table 8: 北京迁入人口参数拟合结果 t_0 =2010

参数
$$M_0$$
 M_1 κ 值

21 模型的预测

这大清吃枣药丸

22 小结

唉

Part VIII

政策对社会造成的影响

苟利国家生死以, 岂因祸福避趋之

Part IX

养老金模型

下面不加特殊说明时,研究对象均为北京市与北京市人口。

23 概述

抄抄抄

24 符号表

又可以拖页数啦

25 数据的引用

- 2010 年人均收入与养老金水平
- 养老金补贴指数与通货膨胀率保险金征收比例
- 北京养老基金还有多少钱

26 模型的建立

我们从养老金的支出与收入两方面来看待养老金的流动。对于t时间国家养老基金的已有积累,采用记号F(t)。

26.1 支出

养老基金的支出,即为给符合条件的老龄人口的发放。为了简化问题, 我们并不考虑养老金与退休人员的年龄之间的关系;亦即,退休人员在同一 26.2 收入 Page 11 of 11

年中获得相同的养老金。考虑 t 时间内养老基金的减少量 F_0 :

$$F_o(t) = N_o(t) \cdot P(t) \tag{16}$$

其中 $N_o(t) = \sum_{A_B(t) \le a} N(a,t)$ 是所有符合退休条件的人数,P(t) 是养老金 发放的金额。

而养老金的发放金额,根据【来源请求】,是由一个基准量加上修正 而得到的;我们可以依此列出方程:

$$P(t) = P_0 \cdot \gamma_n^{t - t_0} \tag{17}$$

其中 P_0 是 t_0 年养老金发放的平均水平, γ_p 是养老金上调幅度。

26.2 收入

养老基金的收入,主要依赖于企事业员工定期缴纳的养老保险金。类似 的,我们并不考虑缴纳人员的收入差异,而使用他们的平均工资代替。那么,

$$F_i(t) = N_i(t) \cdot C(t) \tag{18}$$

其中 $N_i(t) = \sum_{A_W(t) \leq a < A_R(t)} N(a,t)$ 是所有符合缴纳保险金的人数,C(t)是单个参保人员需要缴纳的保险金。

而单个参保人员需要缴纳的保险金、根据【来源请求】、是根据其收 入与生活物价水平综合计算而得的; 于是

$$C(t) = S(t) \cdot \gamma_i^{t-t_0} \cdot \theta_p \tag{19}$$

其中 S_0 是 t_0 年人均收入, γ_i 是物价水平上涨指数, θ_p 是养老金征收比例。

小结

因此,综合以上两方面,我们写出养老基金积累的递推关系:

$$F(t+1) = F(t) - F_o(t) + F_i(t)$$

$$= \sum_{A_R(t) \le a} N(a,t) \cdot P_0 \cdot \gamma_p^{t-t_0}$$

$$+ \sum_{A_W(t) \le a < A_R(t)} N(a,t) S(t) \cdot \gamma_i^{t-t_0} \cdot \theta_p$$
(21)

$$+ \sum_{A_W(t) \le a < A_R(t)} N(a, t) S(t) \cdot \gamma_i^{t-t_0} \cdot \theta_p$$
 (21)

27 数据的预测

养老金肯定是发不出来的, 嗯

28 二胎政策的影响

虽然我们还是很 naive, 但是 zf 也不能把我们当傻瓜看啊, 根本就没有什么卵用

29 小结

你问我吼不吼,那当然吼啊。

Part X

总结

蛤

参考文献

蛤