Licence Tronc commun Mécanique du solide Feuille N11

Exercice

On considère le système matériel suivant (Σ) compsé des solides suivants:

- (S_1) : est un coulisseau de masse m_1 , de centre de masse G_1 lié au repère R_1 en mouvement de translation rectiligne par rappport à un repère fixe R_0 (\overrightarrow{x}_0 , \overrightarrow{y}_0 , \overrightarrow{z}_0) suivant l'axe \overrightarrow{z}_0 .
 - (S_2) : est une barre uniforme de longueur 2b, de masse m_2 , de centre de masse G_2 lié à R_2 .
 - (S_3) : est un disque homogène de rayon R, de masse m_3 , de centre de masse G_3 lié à R_3 .

On donne les tenseurs d'inertie:
$$I_{G_2}\left(S_2\right) = \left[\begin{array}{ccc} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{array} \right]_{R_2}$$
, $I_{G_3}\left(S_3\right) = \left[\begin{array}{ccc} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{array} \right]_{R_3}$

- 1. Déterminer les vitesses et les accélérations des points G_i avec i = 1, 2, 3;
- 2. Calculer les moments cinétiques $\overrightarrow{\sigma}_{G_i}(S_i/R_0)$ des S_i en G_i avec i=1,2,3;
- 3. Calculer les moments dynamiques $\overrightarrow{\delta}_{G_i}(S_i/R_0)$ des S_i en G_i avec i=1,2,3;
- 4. En déduire le moment dynamique du système au point G_1 : $\overrightarrow{\delta}_{G_1}(\Sigma/R_0)$ exprimé dans R_0 ;
- 5. Calculer l'énergie cinétique du système $E_c\left(\Sigma/R_0\right)$ par rapport à R_0 .