Модели авторегрессии

Волхонский Денис dvolkhonskiy@gmail.com

ВШЭ

2 февраля 2017 г.

1 Необходимая теория

1. Скользящее среднее (MA, Mean Average)

Имеем дискретные данные, хотим смоделировать какаю-либо зависимость. Имеем:

- Оператор L: $Lx_{n+1} = x_n$ оператор сдвига времени назад;
- Белый шум ε_n , $n \geq 0$, $E\varepsilon_n = 0$, $D\varepsilon_n = \sigma^2$, $E\varepsilon_n\varepsilon_m = 0 \ \forall n \neq m$;
- Многочлен $\beta(L) = b_0 + b_1 L + \ldots + b_q L^q$

Тогда скользящее среднее h_n порядка q называется $h_n = \mu + \beta(L) \cdot \varepsilon_n$. То есть мы имеем постоянное среднее плюч среднее значение последних q значений шума.

2. Авторегрессионная модель (AR)

$$h_n = \mu_n + \sigma \cdot \varepsilon_n$$
, где $\mu_n = a_0 + a_1 h_{n-1} + \ldots + a_n h_{n-n}$.

Если задать
$$\alpha(L) = 1 - a_1 L - \ldots - a_p L^p$$
, тогда $\alpha(L) h_n = a_0 + \sigma \varepsilon_n$.

Условие стационарности AR:

- AR(1): $-1 < a_1 < 1$
- AR(2): $-1 < a_2 < 1$, $a_1 + a_2 < 1$, $a_2 a_1 < 1$

3. Авторегрессионное скользящее среднее (ARMA, AutoRegression Mean Average)

ARMA(p, q) — смесь моделей AR и MA: $h_n = \mu_n + \sigma \varepsilon_n$, где

$$\mu_n = (a_0 + a_1 h_{n-1} + \ldots + a_p h_{n-p}) + (b_1 + \varepsilon_{n-1} + b_2 \varepsilon_{n-2} + \ldots + b_q \varepsilon_{n-q})$$

Согласно теореме Вольда, любой стационарный ряд может быть аппроксимирован моделью ARMA(p, q) (в том смысле, что если мы поставим вместо p и q бесконечность, то мы сможем точно описать любой стационарный ряд).

4. Интегральная модель (ARIMA)

ARIMA(p, d, q). Данная модель представляет собой случай, когда в модели ARMA вместо h_n подставляется ряд d-х разностей h'_n . ARIMA(p, 0, q) = ARMA(p, q)

5. Оценка коэффициентов в модели ARIMA(p, d, q)

- Как правило считают, что шум ε_n смоделирован гауссовским распределением. Тогда при заданных p, d, q параметры модели оцениваются методом максимального правдоподобия. То есть критерием качества является логарифм правдоподобия (Log Likelihood);
- d выбирается так, чтобы ряд был стационарным;
- р, q нельзя выбирать из ММП, т.к. LL растёт с ростом р и q;
- Используют авторорреляционную функцию и частично автокорреляционную функцию

6. (Авторегрессионная модель условной неоднородности, AutoRegressive Conditional Heteroskedastic model) ARCH

Пусть $\varepsilon_n \sim \mathcal{N}(0,1)$. Тогда условно-гауссовская модель $h_n = \sigma_n \varepsilon_n$, где волатильность

$$\sigma^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_i h_{n-i}^2, \ \alpha_0 > 0, \ \alpha_i \ge 0$$

7. Получение стационарности для ряда

• Преобразование Бокса-Кокса для нормализации дисперсии:

$$\hat{h_n} = \begin{cases} \ln h_n, \ \lambda = 0\\ \frac{h_n^{\lambda} - 1}{\lambda}, \ \lambda \neq 0 \end{cases}$$

Параметр λ Выбирается так, чтобы минимизировать дисперсию или максимизировать правдоподобие модели

Что важно:

- Если значения ряда отрицательные, и преобразование невозможно, нужно прибавить к ряду константу;
- Можно округлять значения λ , чтобы упростить интерпретацию;
- Как правило преобразование слабо влияет на прогноз и сильно на предсказательный интервал
- Дифференцирование ряда (может применяться неоднократно):

$$\hat{h_n} = h_n - h_{n-1}$$

8. Выбор модели

- \bullet AIC = 2L + 2(p+q+k+1), где k=1, если в ряде есть константа, k=0, если константы нет;
- $BIC = -2L + (\log T 2)(p + q + k + 1)$, где T длина ряда;
- Автокорреляционная функция и частичная автокорреляционная функция;
- Метрика качества (например, MAE или MSE) на прошлых данных;