m2pm3l4.tex

Lecture 4. 17.1.2011.

Euler's Formula (L. Euler (1707-1783)).

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} \dots,$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots,$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

Take $z = i\theta$, θ real:

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!}$$

$$= (1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots) + i(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots)$$

$$= \cos\theta + i\sin\theta.$$

This is implicit in the Argand representation:

$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta) = re^{i\theta};$$

 $r = |z| := \sqrt{x^2 + y^2}$ is the modulus of z, θ , where $\tan \theta = y/x$ (so $\theta = \tan^{-1}z$) is the argument of z.

Note. 1. The argument (or \tan^{-1} , like \sin^{-1} and \cos^{-1}) is many-valued; see later.

2. Take $\theta = \pi$; then

$$e^{i\pi} = -1$$
.

The extended complex plane C^* .

 \mathbf{R} is totally ordered, so there are two directions in which to "go off to infinity", right to $+\infty$, and left to $-\infty$. We write $\mathbf{R}^* := \mathbf{R} \cup \{+\infty\} \cup \{-\infty\}$. What about \mathbf{C} ?

On **R**, recall graphs with asymptotes, e.g. g(x) = 1/x or $g(x) = \tan(x)$. This suggests that, in some sense, ' $+\infty$ and $-\infty$ are the same place'.

Stereographic Projection (G.F. RIEMANN (1826-66) in 1851), PTOLEMY, c. 160 AD).

Draw a picture of the unit sphere ('Earth'), showing the following:

 Σ Unit sphere

C Unit circle in Oxy ("Equator")

N,S North and South poles

GM "Greenwich Meridian"

Line NP cuts Oxy-plane in P'.

$$P \longrightarrow P'$$

is called *stereographic projection*.

P Northern Hemisphere \longleftrightarrow P' outside unit circle C

P Southern Hemisphere \longleftrightarrow P' inside unit circle C

P on equator $\longleftrightarrow P' = P$ on unit circle

P South Pole S \longleftrightarrow P' origin 0

 $P \text{ North Pole N} \longleftrightarrow P'$?

Stereographic projection gives a 1-1 correspondence between the complex plane \mathbb{C} and $\Sigma \setminus \{N\}$. Call this the *punctured sphere*

$$\Sigma' := \Sigma \setminus \{N\}.$$

We now complete Σ' to get Σ , by including the North Pole N. This corresponds (under stereographic projection) to completing \mathbf{C} to get \mathbf{C}^* :

$$\mathbf{C}^* := \mathbf{C} \cup \{\infty\},\$$

where ∞ , the "point at infinity in \mathbb{C} ", corresponds to "going off to infinity in all directions".

Note. 1. This is a special case of a general procedure, called Alexandrov (one-point) compactification.

2. See also the subject of *Projection Geometry* (Girard DESARGUES (1591-1661) in 1631) - the mathematics of perspective and computer graphics.