Computabilità e Algoritmi - 25 Agosto 2014

Soluzioni Formali

Esercizio 1

Problema: Enunciare e dimostrare il teorema di Rice.

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Definizione: Un insieme $A \subseteq \mathbb{N}$ è saturato (estensionale) se per ogni $x, y \in \mathbb{N}$: se $x \in A$ e $\phi_x = \phi_y$, allora $y \in A$.

Dimostrazione: Dimostriamo che K \leq_m A. Sia e_0 tale che $\phi_{e0}(x)$ ↑ per ogni x. Distinguiamo due casi:

Caso 1: $e_0 \notin A$ Poiché $A \neq \emptyset$, esiste $e_1 \in A$. Definiamo:

$$g(x,y) = \{ \phi_{e1}(y) \text{ se } x \in K$$

 $\{ \phi_{e0}(y) \text{ se } x \notin K \}$

Questa è equivalente a: $q(x,y) = \phi_{e1}(y) \cdot 1(\Psi U(x,x))$

Per il teorema S-m-n, esiste s: $\mathbb{N} \to \mathbb{N}$ calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Verifichiamo che s è una funzione di riduzione per $K \leq_m A$:

- $x \in K \Longrightarrow \forall y \ \phi_{s(x)}(y) = \phi_{e1}(y) \Longrightarrow s(x) \in A \ (poiché A \ è \ saturato)$
- $x \notin K \Longrightarrow \forall y \varphi_{s(x)}(y) = \varphi_{e0}(y) \uparrow \Longrightarrow s(x) \notin A$

Caso 2: $e_0 \in A$ Allora $e_0 \notin \bar{A}$. Poiché $\bar{A} \neq \emptyset$, $\bar{A} \neq \mathbb{N}$, $e \bar{A}$ è saturato, per il caso 1 applicato ad \bar{A} , otteniamo che \bar{A} non è ricorsivo, quindi A non è ricorsivo. \Box

Esercizio 2

Problema: Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che per ogni funzione non calcolabile $g: \mathbb{N} \to \mathbb{N}$ la funzione f+g definita da (f+g)(x) = f(x)+g(x) sia calcolabile?

Soluzione: No, una tale funzione non può esistere.

Dimostrazione per assurdo: Supponiamo che esista una funzione totale non calcolabile f tale che per ogni funzione totale non calcolabile g, la funzione f+g sia calcolabile.

Sia h una funzione totale non calcolabile qualsiasi (ad esempio, una funzione diagonale che evita tutte le funzioni calcolabili).

Per ipotesi, f+h è calcolabile. Ma allora:

$$g(x) = (f+h)(x) - f(x) = h(x)$$

Se f+h è calcolabile e f è una funzione (anche se non calcolabile), allora per ottenere h dovremmo essere in grado di calcolare h(x) = (f+h)(x) - f(x).

Tuttavia, questo richiede di poter calcolare f(x), contraddicendo il fatto che f non è calcolabile.

Argomento alternativo più rigoroso: Consideriamo l'insieme delle funzioni totali calcolabili C. Se f+g è sempre calcolabile per ogni g non calcolabile, allora l'operazione $x \mapsto f(x) + c$ (dove c è una costante) mapperebbe funzioni non calcolabili in funzioni calcolabili, il che contraddice il fatto che l'insieme delle funzioni calcolabili è chiuso sotto composizione con funzioni calcolabili ma non può "assorbire" l'incomputabilità in questo modo sistematico. \Box

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x : \phi_x(y + x) \downarrow \text{ per qualche } y \ge 0\}.$

Soluzione:

A è ricorsivamente enumerabile:

```
sc_a(x) = 1(\mu y.S(x, y+x, \mu t.T(x, y+x, t)))
```

dove S(e,n,t) è il predicato "il programma e su input n termina in t passi".

Questa è calcolabile perché per ogni x fissato, testiamo sequenzialmente y = 0, 1, 2, ... fino a trovare un y tale che $\varphi_x(y+x) \downarrow$.

A non è ricorsivo: Dimostriamo che $K \leq_m A$ costruendo una riduzione.

Definiamo g(x,y) attraverso:

$$g(x,y) = \{ y \quad \text{se } x \in K \}$$

Per il teorema S-m-n, esiste s calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Verifichiamo la riduzione:

•
$$x \in K \Longrightarrow \phi_{s(x)}(y) = y \text{ per ogni } y \Longrightarrow \phi_{s(x)}(s(x)) = s(x) \downarrow \Longrightarrow s(x) \in A$$

•
$$x \notin K \Longrightarrow \phi_{s(x)}(y) \uparrow \text{ per ogni } y \Longrightarrow s(x) \notin A$$

Quindi $K \leq_m A$, e poiché K non è ricorsivo, A non è ricorsivo.

Ā non è ricorsivamente enumerabile: Poiché A è r.e. ma non ricorsivo, per il teorema fondamentale, Ā non può essere r.e. □

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : W_x \supseteq Pr\}$, dove $Pr \subseteq \mathbb{N}$ è l'insieme dei numeri primi.

Soluzione:

B non è ricorsivamente enumerabile: Dimostriamo che $\bar{K} \leq_m B$.

Definiamo g(x,y) come:

```
g(x,y) = \{ \uparrow \quad se \ x \in K \}
\{ 1 \quad se \ x \notin K \}
```

Per il teorema S-m-n, esiste s calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Verifichiamo la riduzione:

```
• x \in K \Longrightarrow W_{s(x)} = \emptyset \Longrightarrow W_{s(x)} \not\supseteq Pr \Longrightarrow s(x) \notin B
```

•
$$x \notin K \Longrightarrow W_{s(x)} = \mathbb{N} \Longrightarrow W_{s(x)} \supseteq Pr \Longrightarrow s(x) \in B$$

Quindi $\bar{K} \leq_m B$, e poiché \bar{K} non è r.e., B non è r.e.

B non è ricorsivamente enumerabile: $\bar{B} = \{x \in \mathbb{N} : W_x \not\supseteq Pr\} = \{x \in \mathbb{N} : \exists p \in Pr. p \notin W_x\}$

Questo insieme non è r.e. perché verificare che un numero primo non è in W_x richiederebbe di determinare che l'enumerazione di W_x non produrrà mai quel primo, il che è indecidibile.

Conclusione: B non è ricorsivo.

Esercizio 5

Problema: Dimostrare che esiste $n \in \mathbb{N}$ tale che $\phi_n = \phi_{n+1}$ ed esiste anche $m \in \mathbb{N}$ tale che $\phi_m \neq \phi_{m+1}$.

Soluzione:

Parte 1: Esistenza di n tale che $\varphi_n = \varphi_{n+1}$

Per il Secondo Teorema di Ricorsione applicato alla funzione f(x) = x+1:

Esiste n tale che $\varphi_n = \varphi f(n) = \varphi_{n+1}$.

Costruzione esplicita: Consideriamo la funzione successore succ(x) = x+1. Per il secondo teorema di ricorsione, esiste n tale che $\varphi_n(y) \simeq \varphi_{su}cc(n)(y) = \varphi_{n+1}(y)$ per ogni y.

Parte 2: Esistenza di m tale che $\phi_m \neq \phi_{m+1}$

Supponiamo per assurdo che $\varphi_x = \varphi_{x+1}$ per ogni $x \in \mathbb{N}$.

Allora $\phi_0 = \phi_1 = \phi_2 = ... = \phi_x$ per ogni x, il che implicherebbe che esiste una sola funzione parziale calcolabile.

Ma sappiamo che esistono infinite funzioni parziali calcolabili distinte (ad esempio, le funzioni costanti λy .c per ogni $c \in \mathbb{N}$).

Contraddizione.

Costruzione esplicita: Possiamo costruire esplicitamente m considerando due programmi che calcolano funzioni diverse:

- Programma m: calcola la funzione costante 0
- Programma m+1: calcola la funzione costante 1

Allora $\phi_m \neq \phi_{m+1}$. \square