7.7. 7.8. 7.9. Second Applications of Suffix Trees

2015. 06. 09 YunJin Choi

Second Application of Suffix Trees

- APL7: Building a smaller directed graph for exact matching
- APL8: A reverse role for suffix trees, and major space reduction
- APL9 : Space-efficient longest common substring algorithm

Second Application of Suffix Trees

- APL7: Building a smaller directed graph for exact matching
- APL8 : A reverse role for suffix trees, and major space reduction
- APL9 : Space-efficient longest common substring algorithm

In many applications

- Space is the critical constraint
- Any significant reduction in space is of value

In this section

- We consider how to compress a suffix tree into a directed acyclic graph (DAG)
 - solve the exact matching problem (and others) in linear time
 - using less space than the tree

Problem

Problem

- Determine whether a pattern occurs in a larger text
 - rather than learning all the locations of the pattern occurrence(s)
- We could merge a subtree into another subtree
 - by redirecting the labeled edge
 - by deleting the subtree

Example

Example

• S = xyxaxaxa

Example

Example

- The edge-labeled subtree below node p is isomorphic to the subtree below node q, except for the leaf numbers
 - That is, for every path from *p* there is a path from *q* with the same path-labels.

Example

Example

- We could merge *p* into *q*
 - by redirecting the labeled edge from p's parent to go into q, deleting the subtree of p

- However, the leaf numbers
 - may no longer give the exact starting positions of the occurrences

• The key algorithmic issue

How to find isomorphic subtrees in the suffix tree

• Theorem 7.7.1

- In a suffix tree T the edge-labled subtree below a node p is *isomorphic* to the subtree below a node q if and only if
 - 1. there is a directed path of suffix links from one node to the other node
 - 2. the number of leaves in the two subtrees is equal

- Proof (if statement)
 - Suppose *p* has a direct suffix link to *q*, and those two nodes have the same number of leaves in their subtrees.

- Proof (if statement)
 - Node p has path-label $x\alpha$ while q has path-label α

- Proof (if statement)
 - For every leaf numbered *i* in the subtree of *p*
 - there is a leaf numbered i + 1 in the subtree of q

- Proof (if statement)
 - Therefore, for every path from *p* to a leaf, there is an identical path from *q* to a leaf
 - Hence the two subtrees are **isomorphic**

• Proof (if statement)

- If there is a path of suffix links from p to q going through a node v
 - $|p| \le |v| \le |q|$
- If *p* and *q* have the same number of leaves, then all the subtrees have the same number of leaves
- All these subtrees are isomorphic to each other

- Proof (only if statement)
 - Suppose that the subtrees of p and q are isomorphic
 - 1. there is a directed path of suffix links from one node to the other node
 - 2. the number of leaves in the two subtrees is equal
 - -> Clearly they have the same number of leaves

Proof (only if statement)

- Assume that $|\beta| \le |\alpha|$ α is the path-label of p β is the path-label of q
- A. If β is a suffix of α
 - it must be a proper suffix (since $\alpha != \beta$)
 - Then by properties of suffix links,
 - there is a directed path of suffix links from p to q

- Proof (only if statement)
 - Now we will prove that β must be a suffix of α
 - by contradiction
 - B. Suppose β is not a suffix of α
 - Let γ be the suffix of T just to the right of α
 - That means that $\alpha \gamma$ is a suffix of T

- Proof (only if statement)
 - Since β is not a suffix of α
 - there is no path of length $|\gamma|$ from q to a leaf
 - Therefore, the subtrees rooted at p and at q are not isomorphic
 - which is a contradiction

- let Q be the set of all pairs (p, q) such that
 - A. there exists a suffix link from p to q in T
 - **B.** p and q have the same number of leaves in their respective subtrees

• The entire procedure to compact a suffix tree

Suffix tree compaction

begin

Identify the set Q of pairs (p, q) such that there is a suffix link from p to q and the number of leaves in their respective subtrees is equal.

While there is a pair (p, q) in Q and both p and q are in the current DAG, Merge node p into q.

end.

Correctness

- Theorem 7.7.2
 - Let \mathcal{T} be the suffix tree for an input string S
 - Let D be the DAG resulting from running the compaction algorithm on \mathcal{T}
 - Any directed path from the root in D
 - enumerates a substring of S
 - and every substring of *S* is
 - enumerated by some such path
 - Therefore, the problem of determining whether a string is a substring of S
 - can be solved in linear time using D instead of \mathcal{T} .

• DAG D can be used

- to determine whether a pattern occurs in a text
- but the graph seems to lose the location(s) where the pattern begins

• It is possible

- to add simple (linear-space) information to the graph
- so that the locations of all the occurrences can also be recovered

In the algorithm

Pairs are merged in arbitrary order

DAGs versus DAWGs

• DAWG

- represents a finite-state machine
- and each edge label is allowed to have only one character
- Moreover, the main theoretical feature of the DAWG for a string S
 - is that it is the finite-state machine with the fewest number of states (nodes)
 - that recognizes suffixes of S
- Still, DAG D for string S has as few (or fewer) nodes and edges than DAWG for S
 - so is as compact as the DAWG
- Therefore, construction of the DAWG for *S* is mostly of theoretical interest

Second Application of Suffix Trees

- APL7: Building a smaller directed graph for exact matching
- APL8: A reverse role for suffix trees, and major space reduction
- APL9 : Space-efficient longest common substring algorithm

Exact matching problem

- Suffix tree
 - Preprocessing time and space: O(n)
 - *n*: length of the text
 - Search time: O(m+k)
 - *m*: length of the pattern
 - k: the number of occurrences
- KMP (or Boyer-Moore)
 - Preprocessing time and space: O(m)
 - *m*: length of the pattern
 - Search time: O(n)
 - *n*: length of the text

- Exact set matching problem
 - Suffix tree
 - Preprocessing time and space: O(n)
 - *n*: length of the text
 - Search time: O(m+k)
 - *m*: total length of all the patterns
 - k: the number of occurrences
 - Aho-Corasick
 - Preprocessing time and space: O(m)
 - *m*: total length of all the patterns
 - Search time: O(n+k)
 - *n*: length of the text
 - k: the number of occurrences

- Suffix tree methods that preprocess the text
 - as efficient as the methods that preprocess the pattern
 - O(n+m) time and $\Theta(n+m)$ space
 - However, the practical constants for suffix trees
 - unattractive compare to the other methods
 - Moreover, the situation that the pattern(s) will be given first and held fixed while the text varies
 - Solve those problems by building a suffix tree for the pattern(s)
 - ⇒the reverse of the normal use of suffix trees

- ms(i)
 - the length of the longest substring of T starting at position i
 - that matches a substring somewhere (but we don't know where) in P
 - These values are called the matching statistics
- Ex)
 - T = abcxabcdex
 - P = wyabcwzqabcdw
 - *ms*(1)

- ms(i)
 - the length of the longest substring of T starting at position i
 - that matches a substring somewhere (but we don't know where) in P
 - These values are called the matching statistics
- Ex)
 - T = abcxabcdex
 - P = wyabcwzqabcdw
 - ms(1) = 3

- ms(i)
 - the length of the longest substring of T starting at position i
 - that matches a substring somewhere (but we don't know where) in P
 - These values are called the matching statistics
- Ex)
 - T = abcxabcdex
 - P = wyabcwzqabcdw
 - ms(5)

- ms(i)
 - the length of the longest substring of T starting at position i
 - that matches a substring somewhere (but we don't know where) in P
 - These values are called the matching statistics
- Ex)
 - T = abcxabcdex
 - P = wyabcwzqabcdw
 - ms(5) = 4

- There is an occurrence of P starting at position i of T
 - if and only if ms(i) = |P|
 - Thus, the problem of finding the matching statistics
 - is a generalization of the exact matching problem

Matching statistics

- can be used to reduce the size of the suffix tree
- are central to a fast approximate matching method
 - designed for rapid database searching
- provide one bridge
 - between exact matching and approximate string matching

How to compute matching statistics

- Compute ms(i) for each position i in T
 - in O(m) time
 - using only a suffix tree for *P*
 - Build a suffix tree T for P
 - but do not remove the suffix links

How to compute matching statistics

The naïve way

- Match the initial characters of T[i...n] against T
- by following the unique path of matches
- until no further matches are possible
- Repeating this for each *i*
 - not achieve the linear time bound

How to compute matching statistics

- To accelerate the entire computation
 - The suffix links are used
 - similar to the way they accelerate the construction of \mathcal{T} in Ukkonen's algorithm

- T = cxabxat
- P = xabxac

- T = cxabxat
- P = xabxac
- *ms*(1)

- T = cxabxat
- P = xabxac
- ms(1) = 1

- Compute ms(i+1)
 - A. If point b is an internal node v

B. If point *b* is not an internal node

- Compute ms(i+1)
 - A. If point *b* is an internal node *v*
 - can follow its suffix link to a node s(v)
 - B. If point *b* is not an internal node
 - Back up to the node *v* just above *b*
 - a. If v is the root

b. If v is not the root

- Compute ms(i+1)
 - A. If point *b* is an internal node *v*
 - can follow its suffix link to a node s(v)
 - B. If point *b* is not an internal node
 - Back up to the node *v* just above *b*
 - a. If v is the root
 - begins at the root
 - b. If v is not the root
 - follows the suffix link from v to s(v)

- T = cxabxat
- P = xabxac
- ms(2) =

- T = cxabxat
- P = xabxac
- ms(2) = 5

• Example

- T = cxabxat
- P = xabxac
- ms(3) =

- T = cxabxa
- P = xabxac
- ms(3) =

- T = cxabxat
- P = xabxac
- ms(3) = 4

- One special case that can arise in computing ms(i+1)
 - If ms(i) = 1 or ms(i) = 0
 - (so that the algorithm is at the root)
 - and T(i+1) is not in P
 - then ms(i+1) = 0

- The proof of correctness of the method is immediate
 - since it merely simulates the naïve method for finding each ms(i)
- The proof of time
 - very similar to that done for Ukkonen's algorithm
 - Theorem 7.8.1
 - Using only a suffix tree for P and a copy of T
 - All the n matching statistics can be found in O(n) time

• Proof

O(n)
Backing up
Constant time per i
Suffix link traverse
Constant time per i

Proof

- The total time to traverse the various β path
- Each backup reduces the current depth by one
- A link traversal reduces the current node depth by at most one
 - Ukkonen's algorithm
- \Rightarrow total decrement cannot exceed 2n
- But current depth cannot exceed *n* or become negative
- The total increments to current depth are bounded by 3n
- \Rightarrow total time for all β traversal is at most 3n

Proof

- Total time used in all the character comparisons
 - done in the 'after- β ' traversals
- The 'after- β ' character comparisons needed to compute ms(i+1)
 - 1. begin with the character in T that ended the computation for ms(i)
 - 2. or with the next character in T
- Hence the after- β comparisons performed
 - when computing ms(i) and ms(i+1) share at most one character in common
- At most 2n comparisons in total are performed during all the after- β comparisons

A small but important extension

- ms(i)
 - does not indicate the location of match in P
 - For some applications
 - We must also know the location of at least one such matching substring
- p(i)
 - For each position i in T,
 - the number p(i) specifies a starting location in P
 - such that the substring starting at p(i) matches a substring starting at position i of T for exactly ms(i) places

A small but important extension

- To accumulate the p(i) values
 - First do a depth-first traversal of T
 - marking each node *v* with the leaf number of one of the leaves in its subtree
 - Takes time linear in the size of T
 - Then, when using T to find each ms(i)
 - If the search stops at a node *u*
 - p(i) is the suffix number written at u
 - If the search stops on an edge (u, v)
 - p(i) is the suffix number written at v

Second Application of Suffix Trees

- APL7: Building a smaller directed graph for exact matching
- APL8 : A reverse role for suffix trees, and major space reduction
- APL9 : Space-efficient longest common substring algorithm

Longest common substring

In section 7.4

- Solve the problem of finding the longest common substring of S_1 and S_2
- by building a generalized suffix tree
- That solution used $O(|S_1|+|S_2|)$ time and space
- Problem
 - The practical space overhead required to construct and use suffix tree

Longest common substring

- The longest common substring
 - has length equal to the longest matching statistics ms(i)
 - The actual substring occurs
 - in the longer string starting at position *i*
 - in the shorter string starting at position p(i)
 - So, using only a suffix tree for the smaller of the two strings
 - The use of matching statistics reduces the space needed to solve the longest common substring problem.