

Neutron damage corrections

Damian Ralet

GANIL, CEA/DSM-CNRS/IN2P3, F-14076 Caen Cedex 05, France

• PSA treatment

Objectives of the presentation

Neutron damage correction

Typical Replay folder:

```
[analysis:run_0015_local_ndamage] $ 1s
Conf Data Out Trapping_template.cal gen_conf.py
```


Several files for detector 00A:

[analysis:Conf] \$ ls -1 00A BasicAFC.conf BasicAFP.conf CrystalProducer.conf CrystalProducerATCA.conf PSAFilter.conf PostPSAFilter.conf PreprocessingFilter.conf PreprocessingFilterPSA.conf Trapping OOA.cal xdir 1325-1340.cal xinv 1325-1340.cal

List of task that were done before doing the "neutron damage correction":

- Segment lookup table CrystalProducerATCA.conf
- ullet Energy calibration o PreProcessingPSA.conf
- ullet Cross-talk o xdir / xinv files
- Time alignment of segments →PreProcessingPSA.conf

PSA treatment

Objectives of the presentation

Neutron damage correction

Explain how to get the parameters for:

- Neutron damage correction → Trapping_00A.cal
- ullet Configuration of the actor o PostPSAFilter.conf
- ullet Global time alignment ightarrow gen_conf.py

B. Bruyneel et al. Eur. Phys. J. A. 49 (2013) 61

Reference work on neutron damage:

PSA treatment

Objectives of the presentation

Neutron damage correction

What is needed:

- RecalEnergy
- SortPsaHits
- TkT, femul, (Mat)
- A long ⁶⁰Co run (the traces are generally needed...)
- PSA hits files produced by the PSA actor:
 - \rightarrow Psa__0-16-F__Hits.fdat

femul key for this:

WritePsaHits bool write file of hits for calibrations of n-damage

Trapping file template

The Trapping_XXX.cal file has 36 lines, one per segment:

```
#SG gainSG_orig gainCC_orig lambdaE lambdaH gainSG_corr gainCC_corr
0
             1.
                               1.6
                                       6.6
                                                     1.
                               1.6
                                       6.6
                               1.6 6.6
                               1.6
                                    6.6
             1.
                               1.6
                                       6.6
```


Get the parameter with SortPsaHits (this generate the $Pso_{7-36-50-100-UI_maxEH.matr}$ to verify the procedure)

SortPsaHits	-1	00C/Psa0)-16-FH1	ts.idat -be	est 1300	1350 -bpa:	r 1 10000	0		
# seg	area	maxSG	lambdaE	lambdaH	maxCC	lambdaE	lambdaH	${\tt maxSG+CC}$	lambdaE	lambdaH
0	1697	404	999999.9	48.5	346	999999.9	25.3	354	999999.9	48.5
1	1113	294	999999.9	51.2	226	8228.2	27.8	243	8228.2	45.8
2	1299	381	8228.2	65.4	268	2098.6	32.8	313	999999.9	65.4
3	1400	418	1482.1	74.4	278	999999.9	56.8	338	999999.9	74.4
4	924	302	985.8	90.2	195	2611.6	68.3	236	1305.8	90.2

7 spectra for 36 segments:

Pso__7-36-50-100-UI__maxEH.matr [Ampl_seg Ampl_core Ampl_seg+core TL_SG TR_SG TL_CC TR_CC]

Update the Trapping_00C.cal file

```
#SG gainSG_orig gainCC_orig lambdaE lambdaH gainSG_corr gainCC_corr
0
                          1. 999999.9
                                          48.5
              1.
                                                                     1.
                          1. 999999.9
                                          51.2
                                                         1.
                               8228.2
                                          65.4
              1.
                          1. 1482.1
                                         74.4
                                                         1.
                                                                     1.
              1.
                          1.
                                985.8
                                          90.2
                                                         1.
                                                                     1.
```

C A Collaboration of the colla

Segment recalibration before trapping

Generation of the file Pso__2-4-40-2048-UI__Ener.spec for the recalibration of the segment before neutron correction

This file contains :

$$0 - orig, 1 - orig + recal, 2 - corr, 3 - cor + recal$$

36seg, global

0-SG, 1CC

Command to generate it:

SortPsaHits -f Psa__0-16-F__Hits.fdat -gain 5 -offs 5000 -fcal Trapping_00C.cal

Segment recalibration before trapping

Example: library 0 and 2: before (red) and after (black) trapping correction

Segment recalibration before trapping

Segment recalibration parameters:

```
RecalEnergy -spe Pso_2-4-40-2048-UI_Ener.spec -num 36 -sub 0 -gain 5 -offs -5000 -noTR -dwa 35 2
/../#spec #pks #ok rEnergy
                            FW05
                                     FW01 Area Position
                                                         Width Ampli
                                                                                   slope*gain rChi2%
                                                                       WTML WTMR
                2 1332.34
                           5.374
                                   14.628 1608
                                               6664.10
                                                         17.8
                                                                 46
                                                                      6.383 1.823
                                                                                     0.999637
                                                                                                7.20
/../
                2 1332.60
                          6.927
                                   21.174 1038
                                               6670.15
                                                         11.4
                                                                     16.794 1.823
                                                                                     0.998929
                                                                                                1.77
1../
            3 2 1332.59
                           6.604
                                   19.349 1244
                                                6666.80
                                                         15.4
                                                                     10.738 1.823
                                                                                     0.999426
                                                                                                1.52
1../
                2 1332.48
                          7.164
                                   21.274 1405
                                                6663.96
                                                         15.2
                                                                     12.152 1.823
                                                                                     0.999767
                                                                                                0.23
/../
                2 1332 88 6 412
                                   19.393 850
                                                6662.56
                                                          11.7
                                                                     14.756 1.823
                                                                                     1.000272
                                                                                               30.05
```

Core recalibration parameters:

```
RecalEnergy -spe Pso 2-4-40-2048-UI Ener.spec -num 36 -sub 160 -gain 5 -offs -5000 -noTR -dwa 35 2
/../#spec #pks #ok rEnergy FW05
                                    FW01
                                          Area
                                                Position
                                                          Width Ampli
                                                                         WTML WTMR
                                                                                     slope*gain rChi2%
                                  11.344
                                                                                       0.999948
      160
                 2 1332.56 6.224
                                          1707
                                                  6663.12
                                                            31.1
                                                                       1.823 1.823
                                                                                                  0.41
      161
                 2 1332.67 4.983
                                   9.083
                                                  6666.78
                                                            24.9
                                                                        1.823 1.823
                                                                                       0.999487
                                                                                                  5.83
                                           806
      162
                 2 1332.52 5.737
                                  10.456
                                          1085
                                                  6663.81
                                                            28.7
                                                                        1.823 1.823
                                                                                       0.999819
                                                                                                  0.01
      163
                 2 1332.56 6.308
                                  11.498
                                          1264
                                                  6667.69
                                                           31.6
                                                                       1.823 1.823
                                                                                       0.999268
                                                                                                  0.57
     164
                 2 1332.69 5.415
                                 11.985
                                           830
                                                 6671.88
                                                            26.2
                                                                    26
                                                                        2.763 1.823
                                                                                       0.998737
                                                                                                  7.21
```

Segment recalibration before trapping

Update the Trapping_00C.cal file

```
#SG gainSG_orig gainCC_orig lambdaE lambdaH gainSG_corr gainCC_corr
0
       0.999637
                  0.999948 999999.9
                                       48.5
       0.998929 0.999487 999999.9
                                       51.2
                                                      1.
       0.999426
                 0.999819
                            8228.2
                                       65.4
       0.999767
                 0.999268
                            1482.1
                                       74.4
                                                     1.
 4
       1.000272
                  0.998737 985.8
                                       90.2
                                                      1.
                                                                1.
```

SortPsaHits -f Psa_0-16-F_Hits.fdat -gain 5 -offs 5000 -fcal Trapping_00C.cal Before recalibration (lib 0, red) and after (lib 1, black):

Segment recalibration parameters:

```
RecalEnergy -spe Pso_2-4-40-2048-UI_Ener.spec -num 36 -sub 80 -gain 5 -offs -5000 -noTR -dwa 20 2
/../#spec #pks #ok rEnergy
                             FW05
                                    FW01
                                                Position
                                                          Width Ampli
                                                                         WTML
                                                                                  WTMR
                                                                                        slope*gain rChi2%
                                          Area
      80
                 2 1332.50
                            3.872
                                   7.058
                                          1622
                                                 6669.68
                                                           19.4
                                                                   78
                                                                        1.823
                                                                                 1.823
                                                                                          0.998924
                                                                                                     0.03
/../
      81
                 2 1332.55
                            3.366
                                   6.135
                                          1066
                                                 6666.79
                                                           16.8
                                                                   59
                                                                        1.823
                                                                                 1.823
                                                                                          0.999393
                                                                                                     0.29
/../
      82
                2 1332.55
                            2.873
                                   5.330
                                          1254
                                                 6667.26
                                                           14.4
                                                                   81
                                                                        1.887
                                                                                 1.823
                                                                                          0.999320
                                                                                                     0.25
/../
       83
                2 1332.49
                           3.061
                                   5.578
                                          1322
                                                 6671.90
                                                           15.3
                                                                   81
                                                                        1.823
                                                                                 1.823
                                                                                          0.998580
                                                                                                     0.18
/../
                 2 1332.44 2.890 5.267
                                           833
                                                 6674.64
                                                           14.5
                                                                   54
                                                                        1.823
                                                                                 1.823
                                                                                          0.998137
                                                                                                     1.17
```

16/01/2018

Core recalibration parameters:

```
RecalEnergy -spe Pso_2-4-40-2048-UI_Ener.spec -num 36 -sub 240 -gain 5 -offs -5000 -noTR -dwa 20 2
/../#spec #pks #ok rEnergy
                             FW05
                                    FW01
                                                Position
                                                          Width Ampli
                                                                         WTML
                                                                                 WTMR
                                                                                       slope*gain rChi2%
                                          Area
/../ 240
                 2 1332.53
                           4.985
                                   9.086
                                          1710
                                                 6664.29
                                                           24.9
                                                                        1.823
                                                                                1.823
                                                                                          0.999752
                                                                                                     0.05
                                                                   64
/../
     241
                 2 1332.48
                            5.063
                                   9.235
                                          1056
                                                 6662.07
                                                           25.3
                                                                        1.826
                                                                                1.823
                                                                                          1.000049
                                                                                                     0.25
/../
     242
                2 1332.57 4.802
                                   8.813
                                          1289
                                                 6663.80
                                                           24.0
                                                                   50
                                                                        1.848
                                                                                1.823
                                                                                          0.999856
                                                                                                     0.72
/../
     243
                2 1332.54
                           5.030
                                  9.168
                                          1423
                                                 6669.06
                                                           25.2
                                                                   53
                                                                        1.823
                                                                                1.823
                                                                                          0.999050
                                                                                                     0.23
     244
/../
                 2 1332.62 4.751 8.729
                                           874
                                                 6671.95
                                                           23.8
                                                                    34
                                                                        1.852
                                                                                1.823
                                                                                          0.998675
                                                                                                     2.69
```


Update the Trapping_00C.cal file

```
#SG gainSG_orig gainCC_orig lambdaE lambdaH gainSG_corr gainCC_corr
0
       0.999637
                  0.999948 999999.9
                                       48.5
                                              0.998924
                                                       0.999752
       0.998929
                  0.999487 999999.9
                                       51.2
                                              0.999393
                                                       1.000049
       0.999426
                 0.999819
                            8228.2
                                       65.4
                                              0.999320 0.999856
       0.999767
                  0.999268
                            1482.1
                                       74.4
                                              0.998580 0.999050
 4
       1,000272
                  0.998737
                             985.8
                                       90.2
                                              0.998137
                                                       0.998675
```


SortPsaHits -f Psa__0-16-F__Hits.fdat -gain 5 -offs 5000 -fcal Trapping_00C.cal Segments before (lib 0, red) and after trapping and recal (lib 3, black):

Core before (lib 0, red) and after trapping and recal (lib 3, black):

- Determination of the neutron damage parameters is a three steps process
- Once the Trapping_00C.cal file is ready: need to be verified with the femul replay
- The file that you will get is Post__5-40-16384-UI__Ener.spec
- 0 SG_orig; 1-SG_cor; 2-CC_orig; 3-SG_cor; 4-SG_final
- The PostPSA actor is actually doing many more things. . .
- Some of them are redundant...and should not be done twice!

KEYWORDS ACCEPTED BY	PostPSAFilter	
ActualClass	str	name of daughter class
SaveDataDir	str	where to write data and spectra
TstampFile	str ui32 i32	File_with_timestams_to_selct Width_of_selection ID of crystal
		(-1 if not present in file)
TstampMask	str	bit mask for the timestamps, given as a hexadecimal string(e.g. FFFF)
CoreEnergyGate	f32 f32	acceptance window on core energy (keV)
SegmentFoldGate	ui32 ui32	selection of events based of number of fired segments
NumberOfHitsGate	ui32 ui32	selection of events based of number of hits
LambdaE	f32	global parameter to correct trapping of electrons
LambdaH	f32	global parameter to correct trapping of holes
TrappingFile	str	file containing detailed trapping and re-calibration parameters
RecalEnergy1	str	file containing the coefficients for the
		initial energy re-calibration
RecalEnergy2	str	file containing the coefficients for the
		final energy re-calibration
SegCenter	str	place hits at the center of their segment, as specified in the given to
DetCenter	f32 f32 f32	merge hits into a single one placed at the given x y z position
PackHits	f32	packing hits closer than this (0 &=& nopack)
SmearPos	f32	xyz uniform smearing of hits (usually the size of the PSA fine-grid
RecalCC	f32 f32	offset and gain adjustment for core
RecalSG	f32 f32	offset and gain adjustment for all segments
TimeShiftCC	f32	time shift of core (ns)
ForceSegmentsToCore	bool	renormalize energy of segments so that their sum equals
		energy of core
NewCrystalID	i32	change ID of crystal
EnergyGain	f32	scaling factor for binary energy spectra
WriteTstampDiff	bool	List-mode of time stamp differences between successive events
WriteTstamp	ui64	List-mode of time stamp values for events later than the given limit
RateProfile	ui64 ui64 i32	TstampOffset, TstampStep, Length of rate-profile spectrum
NoMultiHist	bool	exclude flat binary spectra
Verbose	bool	verbosity of printouts

LambdaE

Neutron damage correction Possible key for femul

KEYWORDS ACCEPTED BY PostPSAFilter (REDUCED) £32

LambdaŁ	132	global parameter to correct trapping of electrons
LambdaH	f32	global parameter to correct trapping of holes
TrappingFile	str	file containing detailed trapping and re-calibration parameters
RecalEnergy1	str	file containing the coefficients for the initial energy re-calibration
RecalEnergy2	str	file containing the coefficients for the
		final energy re-calibration
RecalCC	f32 f32	offset and gain adjustment for core
RecalSG	f32 f32	offset and gain adjustment for all segments
TimeShiftCC	f32	time shift of core (ns)
ForceSegmentsToCore	bool	renormalize energy of segments so that their sum equals energy of core $% \left\{ 1\right\} =\left\{ $
SegCenter	str	place hits at the center of their segment, as specified in the given file
SmearPos	f32	xyz uniform smearing of hits (usually the size of the PSA fine-grid

global parameter to correct transing of electrons

ATTENTION:

The following corrections have to be done in this order. No need to do the energy recalibration twice (or more)

 ${\tt Track_28-28-1000-UI_TT.spec}\ spectra\ generated\ by\ {\tt TrackingFilter}$

RecalEnergy for the 28*28 time spectra.

RecalEnergy -spe Track__28-28-1000-UI__TT.spec -T 500 -num 784 |tee recalT.dat

# :	indx	#spec	#pks	#ok	rEnergy	FW05	FW01	Area	Position	Width	Ampli	WTML	WTMR	shift*gain
	0	0	0	0	0.00	0.000	0.000	0	0.00	0.0	0	0.000	0.000	0.000
	1	1	1	1	500.85	23.649	55.600	1480831	500.85	23.0	51178	2.171	2.653	-0.851
	2	2	1	1	500.47	20.929	48.502	1615273	500.47	20.7	63431	2.343	2.335	-0.473
	3	3	1	1	499.84	25.223	58.799	510810	499.84	24.9	16595	2.289	2.430	0.164
	4	4	1	1	499.65	25.046	60.172	105932	499.65	24.3	3416	2.247	2.715	0.350

Get the 28 time coefficient (TimeShiftCC of the gen_conf.py)

```
solveTT.py -f recalT_nohead.dat -n 28 -c 13 -p 500
Shifts that minimize Chi2
  0.001
 -0.181
  0.004
 -0.087
  0.040
 -0.239
  0.194
 -0.008
  0.068
 -0.048
  0.238
١..١
١..١
 -0.183
Inital:
          Average of 756 nonzero values is -499.98149
                                                          Chi2 = 5.16749
Corrected: Average of 756 nonzero values is -499.98149
                                                          Chi2 = 3.02089
```

Post-PSA actor procedure

From October 2017 agapro libraries

- -1) Change ID of detector
- 0) Recalibration of Segment and core from file RecalEnergy1
- 1) Recalibration of Segment from the Trapping file.
- Recalibration of core from the Trapping file.
- 3) Apply the trapping correction, and do the recalibration after (Trapping file)
- 3.5) Packing of hits
- 4) Smearing of hits
- 5 Time-Stamp mask and calculation of consecutive event time difference
- 6) Filling of histogram 0 to 3.
- 7?) Matrix of PSA hits (XYZ + RZE)
- 10) Recalibration of energy (segment and core) from file RecalEnergy2
- 10) Core recalibration from RecalCC
- 11) Segment recalibration from RecalSg (one gain and offset for all segments)
- 12) Timing shift
- 13) Force segment to core
- 14) segment center
- 15) merge hit or fixed positions
- 16-1) Filled histogram 4. This is final event.
- 16-2) matrix of hits again

- Follow the order given here.
- Be careful of the possible redundant calibration done by the PostPSA filter actor.
- The PostPSA is the last chance to have properly calibrated segments.
- The calibration offset can only be set at this level of the analysis.
- ForceSegToCore → final correction, only when the core resolution is good.