09.02.2007.

PRVA SKUPINA ZADATAKA

1.

- 1-1. Zajednički i diferencijski napon diferencijskog pojačala sa slike su u_z =-15sin ω t mV i u_d =+10sin ω t mV. Koliki su naponi u_{g1} i u_{g2} ? U odgovorima nije bitan redoslijed ulaznih napona. (1bod):
 - a. -10sinot mV i 0 mV
 - b. -20sin\omega t mV i -10sin\omega t mV
 - c. -20sinωt mV i -30sinωt mV
 - d. +20sin\omega t mV i +10sin\omega t mV
 - e. +20sin\omega t mV i +30sin\omega t mV
- 1-2. U diferencijskom pojačalu sa slike A_{Vd} je pojačanje za diferencijski signal, a A_{Vz} je pojačanje za zajednički signal. Uz pretpostavku da se statičke struje tranzistora ne mijenjaju, povećanjem otpora R_E (1bod):
 - a. povećava se iznos pojačanja $|A_{Vd}|$ i ne mijenja se iznos pojačanja $|A_{Vz}|$,
 - b. ne mijenja se iznos pojačanja $|A_{Vd}|$ i povećava se iznos pojačanja $|A_{Vz}|$,
 - c. povećava se iznos pojačanja $|A_{Vd}|$ i smanjuje se iznos pojačanja $|A_{Vz}|$,
 - d. ne mijenja se iznos pojačanja $|A_{Vd}|$ i smanjuje se iznos pojačanja $|A_{Vz}|$,
 - e. smanjuje se iznos pojačanja $|A_{Vd}|$ i ne mijenja se iznos pojačanja $|A_{Vz}|$.

2.

2-1. Naponska prijenosna karakteristika neopterećenog invertora s bipolarnim tranzistorom prikazana je na slici. Zadane su vrijednosti: U_{CC} =10 V, U_{ULV} =1,1 V, U_{ULN} =0,7 V i U_{CEzas} =0,2 V. Kolika je vrijednost naponskog pojačanja u točki A (1bod):

- b. 24,5
- c. 32,6
- d. 24,5
- e. ne može se odrediti
- 2-2. Ako bipolarni tranzistor radi u točki B idealne invertorske karakteristike na slici tada je on u (1bod):

- b. normalnom aktivnom području,
- c. području zasićenja,
- d. ne može se utvrditi,
- e. inverznom aktivnom području.

3-1. I-U karakteristika diode iz stabilizatora dana je na slici. Koliki je iznos napona U_{IZ} i kolika je minimalna strija I_R ako se struja baze može mijenjati od 50 – 100 μ A? (1bod):

- a. 6,7 V i 2,1 mA
- b. 5,3V i 2,1 mA
- c. 5,3V i 1,1 mA
- d. 6,7V i 1,1 mA
- e. 5,3V i 2,05 mA

3-2. Koji odnosi vrijede za komponente ulaznog i izlaznog napona kod stabilizatora? (1bod):

- a. $U_{UL} > U_{IZ}$ i $u_{ul} > u_{iz}$
- b. $U_{UL} > U_{IZ}$ i $u_{ul} < u_{iz}$
- c. $U_{UL} < U_{IZ} i u_{ul} > u_{iz}$
- d. $U_{UL} < U_{IZ} i u_{ul} < u_{iz}$
- e. $U_{UL} = U_{IZ} i u_{ul} > u_{iz}$

4.

4-1. U sklopu integratora na slici $R=1k\Omega$ i C=100nF i početni napon na kondenzatoru jednak je 0 V. Napon napajanja operacijskog pojačala je \pm 12 V. Na ulaz u sklop priključen je sinusni napon prema slici. Odrediti oblik izlaznog napona (1bod):

Odgovor:

4-2. Ako kondenzator i otpornik zamjene mjesta, izlazni napon imat će oblik (1bod): Odgovor:

5-1. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -3V? Zadano je U_Z =3,3V; U_D =0,7V (1bod):

- a. -4 V
- b. -1,4 V
- c. + 4 V
- d. + 1,4 V
- e. +.0,7 V

- 5-2. Ako se napon poveća sa -3V na +1,4V koliko će iznositi izlazni napon nakon promjene? (1bod):
 - a. -4 V
 - b. -1.4 V
 - c. +4 V
 - d. + 1,4 V
 - +0.7V

DRUGA SKUPINA ZADATAKA

ZADATAK.1.

- 1-1. Uz napon na diodi U=-5 V kroz diodu teče struja iznosa I=-10 pA. Kolika struja teče uz U=0,475 V. Uzeti mU_T =25 mV. (1bod)
- 1-2. Struja zasićenja diode iznosi I_s =1 nA. Koliki je dinamički otpor uz struju I=2,5 nA. Uzeti mU_I =25 mV. (1bod)
- 1-3. Uz napon na vanjskim priključcima U=0,525 V kroz diodu teče struja I=5 mA. Koliki je serijski otpor diode R_S , ako je struja zasićenja I_S =10 pA. Uzeti mU_T =25 mV. (1bod)

Odgovori:

1-1. (1bod) a. I_D =1,785 mA, b. I_D =0,66 mA, c. $I_D=1$ mA, d. I_D =4,85 mA,

e. I_D =65 µA.

(1bod) a. r_d =7,14 M Ω , b. $r_d=10 \text{ M}\Omega$, c. $r_d=16.7 \text{ M}\Omega$ d. r_d =8 Ω , e. $r_d=12 \Omega$.

(1bod) a. $R_S = 4.85 \Omega$, b. R_S =105 Ω, c. R_S =5 Ω , d. R_S =250 M Ω , e. $R_s = 12.5 \Omega$.

ZADATAK.2. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Strujna konstanta MOSFET-a iznosi $|K| = 0.25 \text{ mA/V}^2$. Pretpostaviti $\lambda = 0$. Odrediti:

- 2-1. tip MOSFET-a (1bod)
- 2-2. struju i strminu u točki A (1bod)
- 2-3. struju i strminu u točki B (1bod)

Odgovori:

- 2-1. (1bod) a. n-kanalni, obogaćeni tip, b. *n*-kanalni, osiromašeni tip,
- 2-2. (1bod)
 - a. I_{DA} =- 0,125 mA, g_{mA} =0,25 mA/V b. I_{DA} =- 0,125 mA, g_{mA} =0,375 mA/V
- c. p-kanalni, obogaćeni tip, c. I_{DA} =- 93,75 μ A, g_{mA} =0,375 mA/V d. p-kanalni, osiromašeni tip, d. I_{DA} = - 93,75 μ A, g_{mA} =0,25 mA/V
- e. p-kanalni obogaćeno-osiromašeni tip. e. I_{DA} =- 0,125 mA, g_{mA} =0,625 mA/V
- U_{DS}= 1,5 V - 2 - 1 U_{GS} , [V]

 I_D , [mA]

- 2-3.
 - a. I_{DB} =- 0,469 mA, g_{mB} =0,375 mA/V b. I_{DB} =- 0,469 mA, g_{mB} =0,5 mA/V
 - c. I_{DB} =- 0,5 mA, g_{mB} =0,5 mA/V

 - d. I_{DB} =- 0,5 mA, g_{mB} =0,375 mA/V
 - e. I_{DB} =- 1 mA, g_{mB} =1 mA/V

ZADATAK.3. Za pojačalu sa slike zadano je: U_{CC} =15 V, R_g =500 Ω , R_I =180 k Ω , R_Z =27 k Ω , R_C =5,6 k Ω i R_T =4,7 k Ω . Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe} = 100$ i $U_y = 0.7$ V. Naponski ekvivalent temperature $U_T = 25$ mV.

- 3-1. Odrediti vrijednost otpornika R_E , ako je poznata struja I_{CO} =1,18 mA.
- 3-2. Odrediti dinamičke parametre g_m i r_{be} , ako je poznato I_{CO} =1,01 mA, U_{CEO} =8,34 V i R_E =1 k Ω . (1 bod)
- 3-3. Odrediti naponsko pojačanje $A_{V}=u_{iz}/u_{ul}$, ako su poznati dinamički parametri g_m =37,35 mA/V i r_{be} =2678 Ω , te R_E =1,1 k Ω . (1 bod)
- 3-4. Odrediti ulazni otpor R_{ul} , ako su poznati dinamički parametri $g_m = 37,35 \text{ mA/V i } r_{he} = 2678 \Omega, \text{ te } R_E = 1,1 \text{ k}\Omega. (1 \text{ bod})$
- Odrediti izlazni otpor R_{iz} , ako su poznati dinamički parametri 3-5. g_m =37,35 mA/V i r_{be} =2678 Ω , te R_E =1,1 k Ω . (1 bod)

∘+Ucc u_{ul}

Odgovori:

- 3-1. (1 bod)
 - a. $R_E=1,1 \text{ k}\Omega$,
 - b. $R_E=1 \text{ k}\Omega$,
 - c. R_E =563 Ω ,
 - d. R_E =684 Ω ,
 - e. R_E =822 Ω ,

- 3-2. (1 bod)
 - a. $g_m = 40.4 \text{ mA/V}$, r_{be} =2475 Ω
 - b. $g_m = 47,28 \text{ mA/V}$, r_{be} =2115 Ω
 - c. $g_m = 40.4 \text{ mA/V}$, $r_{be} = 2115 \Omega$
 - r_{be} =2475 Ω d. $g_m = 47,28 \text{ mA/V}$,
 - e. $g_m = 37,35 \text{ mA/V}$, $r_{be} = 2678 \ \Omega$

- $A_{V} = -128,1$
- $A_V = -95.4$ b.
- A_{V} = 63,2 c.
- $A_{V} = 95.4$ d.
- $A_{V}=128,1$ e.

- 3-4. (1 bod)
 - $R_{ul} = 82,02 \Omega,$ a
 - b. $R_{ul}=42,1 \Omega$
 - R_{ul} =25,9 Ω , c.
 - R_{ul} =204,2 Ω , d.
 - $R_{ul}=132,2 \Omega.$
- 3-5. (1 bod)
 - $R_{iz}=8,2 \text{ k}\Omega$, a.
 - b. $R_{iz}=3.9 \text{ k}\Omega$,
 - $R_{iz}=4.7 \text{ k}\Omega$, c.
 - R_{iz} =6,8 k Ω , d.
 - R_{iz} =5,6 k Ω .

ZADATAK.4. Na izlazu stabilizatora, prikazanog slikom, izmjeren je napon 8,5 V. Ako na ulaz dovedeno napon između 13 i 20 V moramo koristiti otpornik R_I u granicama od 434 do 2840 Ω da bi stabilizator radio ispravno. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe} = 100$ i $U_{BE} = 0.7$ V. $U_T = 25$ mV. Otpor trošila je $R_T \ge 390$

- 4-1. Odrediti napon Zenerove diode U_Z . (1 bod)
- 4-2. Odrediti minimalnu struju Zenerove diode I_{Zmin} , ako je U_Z =8,2 V. (1 bod)
- 4-3. Odrediti maksimalnu disipaciju snage na Zenerovoj diodi P_{Zmax} , ako je U_Z =8,2 V. (1 bod)
- 4-4. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,8 k Ω i R_T =820 Ω . Parametri Zenerove diode su U_Z =8,2 V, I_{Zmin} =1,2 mA, P_{Zmax} =750mW i r_z =3 Ω . (1 bod)
- 4-5. Odrediti naponski faktor stabilizacije S_U , ako su vrijednosti otpornika R_I =1,8 k Ω i R_I =820 Ω . Parametri Zenerove diode su U_Z =8,2 V, I_{Zmin} =1,2 mA, P_{Zmax} =750mW i r_z =3 Ω . (1bod)

Odgovori:

b.

d.

- 4-1. (1 bod) U_z =8,5 V, a.
- 4-2.
 - (1 bod)
- 4-3. (1 bod)
- 4-4. (1 bod)
- 4-5. (1 bod)
- I_{Zmin} =1,25 mA, $P_{Zmax}=0,75W,$ $S_U = 0.00266$, a. a. a. $P_{Zmax}=0.5W$, b. $I_{Zmin}=1,5$ mA, $U_{z}=9.2 \text{ V},$ b.

e.

- b. $S_U = 0.00206$,
- R_{IZ} =2,763 Ω , a. R_{IZ} =2,763 k Ω , b.

 $U_z=7.8 \text{ V},$ c. $U_{Z}=13 \text{ V},$

 U_z =19,3 V.

c. $I_{Zmin}=1$ mA, d. $I_{Zmin}=1,75 \text{ mA}$,

 I_{Zmin} =2 mA.

 $P_{Zmax}=0,25W,$ c. $P_{Zmax} = 0.125 \text{W},$ d.

 $P_{Zmax} = 0.05 \text{W}.$

 $S_U = 0.00166$, c. $S_U = 0.00106$, d.

 $S_U = 0.00226$.

 R_{IZ} =4,91 Ω , c. R_{IZ} =4,91 k Ω , d. R_{IZ} =233 Ω . e.

ZADATAK 5. Operacijska pojačala su idealna.

- 5-1. Odrediti vrijednost otpornika R_I , ako je izlazni napon U_{IZ} =-4,51 V. Zadano je U_{UL} =2 V, R_2 =68 k Ω i R_3 =20 k Ω . (1 bod)
- 5-2. Odrediti vrijednost otpornika R_2 , ako je izlazni napon U_{IZI} =-1 V. Zadano je U_{UL} =1,5 V, R_1 =27 k Ω i R_3 =68 k Ω .
- 5-3. Odrediti vrijednost ulazno napona U_{UL} , ako je izlazni napon U_{IZ} =7,74 V. Zadano je R_I =27 k Ω , R_2 =56 k Ω i $R_3=39 \text{ k}\Omega$. (1 bod)
- 5-4. Odrediti vrijednost napona U_{IZI} i U_{IZ2} . Zadano je U_{UL} =-2,1 V, R_I =27 k Ω , R_2 =56 k Ω i R_3 =39 k Ω . (1 bod)

Odgovori:

- 5-1. (1 bod)
- (1 bod) 5-2.
- 5-3. (1 bod)
- 5-4. (1 bod)

- $R_I=68 \text{ k}\Omega$, a.
- $R_2=18 \text{ k}\Omega$, a.
- U_{UL} =- 22 V, a.
- U_{IZI} = 7,39 V, U_{IZ2} = 4,36 V a.

- b. $R_I=33 \text{ k}\Omega$,
- b. $R_2=20 \text{ k}\Omega$,
- b. U_{UL} =- 2,2 V,
- b. U_{IZI} =7,39 V, U_{IZ2} =4,36 V

- c. $R_I=39 \text{ k}\Omega$,
- c. $R_2=22 \text{ k}\Omega$,
- c. $U_{UL}=2,2 \text{ V}$, d. U_{UL} =22 V,
- c. U_{IZI} = 4,36 V, U_{IZ2} = 7,39 V

- d. R_I =56 k Ω ,
- d. $R_2=27 \text{ k}\Omega$,
- U_{UL} =7,74.
- d. U_{IZI} =4,36 V, U_{IZ2} =7,39 V

- R_I =47 k Ω .
- R_2 =33 k Ω .
- e. U_{IZI} = 7,39 V, U_{IZ2} =4,36 V