Assiomi di separazione T_1 e T_2

Def. Uno spazio topologico X è:

 T_1 se $\forall x, y \in X$, $x \neq y \Rightarrow \exists U, V \subset X$ aperti t.c. $x \in U - V$ e $y \in V - U$.

 T_2 o di Hausdorff se $\forall x, y \in X, x \neq y \Rightarrow \exists U, V \subset X$ aperti t.c. $x \in U, y \in V$ e $U \cap V = \emptyset$.

Oss.

- $(1) \# X \geqslant 2 \Rightarrow X_{\text{ban}} \text{ non } T_1.$
- (2) $\# X = \infty \Rightarrow X_{\text{cof}} T_1$ ma non T_2 . $T_1 \quad \forall x \neq y \in X_{\text{cof}} \leadsto U = X - \{y\}, \ V = X - \{x\}.$ $Non \ T_2 \quad \forall U, V \subset X_{\text{cof}} \text{ aperti non vuoti} \Rightarrow \exists A, B \subset X \text{ finiti t.c.}$ $U = X - A, \ V = X - B \Rightarrow U \cap V = X - (A \cup B) \neq \emptyset.$
- (3) $X_{\text{dis}} T_2 \forall X$.

Oss. $T_2 \not\leftarrow \Rightarrow T_1$.

Oss. Metrizzabile $\Rightarrow T_2$. $\forall x \neq y \in (X, d) \rightsquigarrow r = \frac{d(x, y)}{2} > 0 \rightsquigarrow x \in U := B_d(x, r), y \in V := B_d(y, r) \in U \cap V = \emptyset$.

Oss. \mathbb{R}^n , \mathbb{C}^n e i loro sottospazi sono T_2 in quanto metrizzabili. In particolare I^n , B^n , S^n e T^n sono T_2 .

Oss. $T_2 \Rightarrow$ unicità del limite per funzioni e successioni.

Teor. $X \in T_1 \Leftrightarrow \forall x \in X$, $\{x\} \in C$ chiuso in X.

In altre parole uno spazio è $T_1 \Leftrightarrow i$ punti sono chiusi.

Dim. $\Rightarrow \forall x \in X, \forall y \in X - \{x\}, \exists U, V \subset X \text{ aperti t.c.}$ $x \in U - V \text{ e } y \in V - U \Rightarrow y \in V \subset X - \{x\} \Rightarrow X - \{x\} \text{ aperto.}$

$$\forall x \neq y \in X \rightsquigarrow U := X - \{y\}, V := X - \{x\} \text{ aperti } \Rightarrow x \in U - V \text{ e } y \in V - U.$$

Oss. La retta con due origini R_{\div} è T_1 ma non T_2 .

Oss. T_1 e T_2 si preservano a meno di prodotti topologici. <u>Esercizio</u>.

Oss. X_1, \ldots, X_n spazi $T_1 \Rightarrow i_j : X_j \hookrightarrow X_1 \times \cdots \times X_n$ immers. chiusa $\forall j$.

Prop. $X \in T_2 \Leftrightarrow la diagonale \Delta := \{(x, x) \mid x \in X\} \in chiusa in X \times X.$

Dim. $\Rightarrow \forall (x, y) \in (X \times X) - \Delta \Rightarrow \exists U, V \subset X \text{ aperti t.c. } x \in U, y \in V, U \cap V = \emptyset \Rightarrow (x, y) \in U \times V \subset (X \times X) - \Delta \Rightarrow (X \times X) - \Delta \text{ aperto.}$

Cor. $f, g: X \to Y$ continue e Y di Hausdorff \Rightarrow l'insieme di coincidenza $C(f, g) := \{x \in X \mid f(x) = g(x)\}$

è chiuso in X.

Dim. $F: X \to Y \times Y$, F(x) = (f(x), g(x)) continua perché le componenti sono continue $\Rightarrow C(f, g) = F^{-1}(\Delta)$ chiuso, con $\Delta \subset Y \times Y$ diag. di Y. \Box

Proprietà topologiche ereditarie

Def. Una proprietà topologica \mathcal{P} è *ereditaria* se valendo per uno spazio X vale anche per tutti i sottospazi topologici di X.

Oss. Se X ha una proprietà topologica ereditaria \mathcal{P} e $Y \hookrightarrow X \Rightarrow Y$ ha \mathcal{P} .

Oss. La metrizzabilità è una proprietà topologica ereditaria.

Prop. T_1 e T_2 sono proprietà topologiche ereditarie.

Dim. Dimostriamolo per T_2 . T_1 è lasciata per Esercizio.

 $|T_2|$ proprietà topologica $|X|T_2|$ e $X \cong Y \Rightarrow \exists f: X \rightarrow Y$ omeo.

 $\forall y_1 \neq y_2 \in Y \exists U, V \subset X$ aperti t.c. $f^{-1}(y_1) \in U$, $f^{-1}(y_2) \in V$, $U \cap V = \emptyset$ $\Rightarrow f(U), f(V) \subset Y$ aperti, $y_1 \in f(U)$, $y_2 \in f(V)$, $f(U) \cap f(V) = \emptyset$.

 T_2 ereditaria X T_2 e $Y \subset X$. $\forall y_1 \neq y_2 \in Y$, $\exists U, V \subset X$ aperti t.c. $y_1 \in U$, $y_2 \in V$, $U \cap V = \emptyset \Rightarrow U \cap Y$ e $V \cap Y$ aperti disgiunti in Y. \Box