Comunicação de Dados

Prof. Adilson Gonzaga

Comunicação de Dados em Microprocessadores

Tipos de Comunicação

Comunicação Paralela

- Distância < 30 metros
- Amplificação complexa
- Custo elevado

Comunicação Serial

- Maior distância
- Fácil amplificação
- Baixo custo

Comunicação Serial

Comunicação Serial

Direção da Transferência dos Dados

a) SIMPLEX

Comunicação Serial

Tipos de Comunicação Serial

Síncrona:

um sinal de clock em separado é associado com o

dado.

Assíncrona:

não existe sincronismo entre transmissor e receptor - a re-sincronização é feita caractere

por caractere.

a. Formato do Caractere

b. Sincronismo

O sincronismo é feito a cada caractere, através de um clock localizado no receptor, cujo período é K vezes menor do que o período de duração do bit.

$$TB = K.Tc$$

TB - tempo de duração do bit

Tc - período do clock de sincronismo do caractere

c. Detecção do Start Bit (K=16)

Após a amostragem de 8 zeros, garante-se o START bit, ou seja, o início do caractere.

d. Temporização na Recepção do caractere (K=16)

e. Velocidade de Comunicação

- Considerando um caractere formado por 11 bits, como segue:
 - 1 start bit
 - 8 bits de dados
 - 1 bit de paridade
 - 1 **stop** bit
 - Considerando por exemplo, uma velocidade de comunicação de 10 caracteres por segundo, tem-se:

11 bits/caractere x 10 caracteres/s = 110 bits/s

• Define-se:

BAUD = bits/s

BAUD RATE = Taxa de Comunicação

f. Taxas de Comunicação mais Comuns

Taxa	TB
110 Baud	. 9.1 ms
150 Baud	. 6.66 ms
300 Baud	. 3.33 ms
600 Baud	. 1.66 ms
1200 Baud	833 us
2400 Baud	416 us
4800 Baud	208 us
9600 Baud	104 us
19200 Baud	52 us

Padronizada pela EIA (Electronic Industries Association - USA)

RS: Recommended Standard

232: número da norma

C: número de revisões da norma

Tipo de comunicação: Serial Assíncrona

Características da Interface

- **★** Taxa de Comunicação de 75 Baud a 19200 Baud
- ★ Comprimento do cabo de ligação entre equipamentos: menor do que 15 metros, sem amplificação.
- Não existe isolação elétrica entre os equipamentos

Um **Protocolo de Comunicação de Dados** estabelece regras para a comunicação entre um DTE e um DCE ou entre um DTE e um DTE.

DTE: Data Terminal Equipment

Equipamento que compreende a fonte de dados, a recepção de dados ou ambos

DCE: Data Communication Equipment

Equipamento que providencia as funções necessárias para manter uma conexão de dados, e realizar a conversão do sinal necessária à comunicação entre um DTE e o circuito de comunicação.

Características Elétricas do Sinal

STATUS		
nível lógico	1	0
nível de tensão	- 25V a -3V	+ 3 V a + 25V
função	OFF	ON
condição do sinal	MARK	SPACE

Características Funcionais do Circuito

Transmissão de Dados (TxD)

Esta linha permanece em nível lógico "1" (tensão negativa), enquanto não tiver dados.

Recepção de Dados (TxD)

Esta linha permanece em nível lógico "1" (tensão negativa), enquanto não tiver dados.

Comunicação Serial com "Handshaking"

RTS – Request to Send

CTS – Clear to Send

Uma das características importantes da família de Microcontroladores MCS 51 é que possuem integrada ao chip, uma UART

UART – Universal Asynchronous Receiver Transmitter

A porta serial é full-duplex

 Para Transmitir um Dado Serialmente

Escrever no SBUF

 Para Receber um Dado Serialmente

Ler do SBUF

F8							
F0	В						
E8							
E0	ACC						
D8							
D0	PSW						
C8	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	
C0							
B 8	IP						
В0	P3						
A8	1E						
A0	P2						
98	SCON	SBUF					
90	P1						
88	TCON	TMOD	TL0	TL1	TH0	TH1	
80	P0	SP	DPL	DPH			 PCON

• Os registradores SBUF de recepção e de transmissão são fisicamente separados.

SCON → Usado para programar a Interface Serial

Endereçável a Bit

PCON → Possui um bit (SMOD) que permite dobrar Baud Rate

Não endereçável a Bit

A porta serial pode operar em 4 Modos

Modo 0 – Modo Síncrono: O dado serial (de 8 Bits com LSB primeiro) é transmitido e recebido através de RxD. O TxD envia o clock. A Taxa de Comunicação ("baud rate") é fixa em 1/12 da freqüência do oscilador .

Modo 1 – Modo Assíncrono: 10 Bits são transmitidos (via TxD) ou recebidos (via RxD) : 1 StartBit, 8 Bits de dados com LSB primeiro e um StopBit. O "baud rate" é variável .

Modo 2 – Modo Assíncrono: 11 Bits são transmitidos (via TxD) ou recebidos (via RxD): 1 StartBit, 8 Bits de dados com LSB primeiro, um nono Bit programável, e um StopBit. O "baud rate" é programável para 1/32 ou 1/64 da freqüência do oscilador.

Modo 3 – Modo Assíncrono: 11 Bits são transmitidos (via TxD) ou recebidos (via RxD) : 1 StartBit, 8 Bits de dados com LSB primeiro, um nono Bit programável, e um StopBit. O "baud rate" é variável .

Programação dos Modos de Operação da Interface Serial

Registrador de Controle da Porta Serial - SCON

Endereçável a Bit

SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	l
------	-----	-----	-----	-----	-----	-----	----	----	---

SM0	SM1	Modo de Funcionamento	Taxa de Transmissão
0	0	0	Fclock / 12
0	1	1	Variável (10 bits)
1	0	2	Fclock / 32 ou Fclock / 64
1	1	3	Variável (11 bits)

SM2 - Habilita a comunicação em multiprocessadores nos modos 2 e 3 .
No modo 0 , SM2 deve ser igual a zero .

Programação dos Modos de Operação da Interface Serial

SCON SM0 SM1 SM2 REN TB8 RB8 TI RI

- REN Habilita a recepção serial → 1 Habilita a recepção Serial
 → 0 Desabilita a recepção Serial
- **TB8** É o nono bit de dados que será transmitido nos modos 2 e 3. Setado ou zerado por Software.
- RB8 É o nono bit de dado que foi recebido nos modos 2 e 3. No Modo 1, se SM2=0 → RB8 é o StopBit recebido. No Modo 0 RB8 não é usado.
- TI Flag de Interrupção da Transmissão. Setado por Hardware no fim do oitavo bit no Modo 0, ou no começo do StopBit nos outros Modos.
- RI Flag de Interrupção da Recepção. Setado por Hardware no fim do oitavo bit no Modo 0, ou na metade do tempo do StopBit, nos outros Modos.

(Baud Rates) Taxas de comunicação

Modo 0 : Baud Rate fixo. → = Freqüência do oscilador / 12

Modo 2 : Baud Rate fixo. → = Freqüência do oscilador / 32 ou 64

Modo 1 ou Modo 3 : Baud Rate variável. → Pode ser gerado tanto pelo Timer 1 ou Timer 2 (8052)

O T1 é usado no Modo 2 (Auto Reload) como Timer (C/T = 0)

$$BaudRate = \frac{K \times (Freqüência\ do\ Oscilador)}{32 \times 12 \times [256 - (TH1)]}$$

Se SMOD = 0 então **K=1** (default)

Se SMOD = 1 então **K=2**

Presente apenas nas versões CHMOS

(Baud Rates) Taxas de comunicação

- Logo, deve-se calcular o valor de TH1 (Byte mais significativo do Contador 1, que no Modo 2 é carregado em TL1 no fim de cada contagem)
- TH1 é um valor inteiro de 8 Bits (de 00 a 255)

$$TH1 = 256 - \frac{K \times (Freqüência\ do\ Oscilador)}{384 \times (Baud\ Rate)}$$

- Arredonda-se TH1 para o inteiro mais próximo.
- Como o arredondamento pode não produzir o Baud Rate desejado, deve-se escolher uma outra freqüência para o cristal adotando-se o valor arredondado de TH1.

Exemplo:

 Gerar a Taxa de Comunicação de 19,2 KBPS (19.200 BPS) sendo a freqüência do cristal de 12 MHz.

$$TH1 = 256 - \frac{K \times (Freqüência\ do\ Oscilador)}{384 \times (Baud\ Rate)}$$

Fazendo SMOD = 1 então K = 2

$$TH1 = 256 - \frac{2 \times 12 \times 10^6}{384 \times 19200} = 252,74 \cong 253 \Rightarrow 0FDh$$

• Como TH1 deve ser inteiro, deve-se ajustar a freqüência do cristal :

$$Freqüência do Oscilador = \frac{BaudRate \times 384 \times (256 - TH1)}{K}$$

$$Freq \ddot{u} \hat{e}ncia do Oscilador = \frac{19200 \times 384 \times (256 - 253)}{2} = 11059200 \text{ Hz} = 11.059 \text{ MHz}$$

Operação no Modo1: Comunicação serial Assíncrona. (10 Bits)

Transmissão:

1. A transmissão começa escrevendo-se o dado em SBUF

MOV SBUF,#dado

2. Quando o MSB for transmitido, o bit TI de SCON é setado.

Operação no Modo1: Comunicação serial Assíncrona. (10 Bits)

Recepção:

- Iniciada quando uma transição de 1 para 0 é detectada em RxD . A linha é amostrada 16 vezes. O valor é aceito após 2 ou 3 amostras para evitar ruído (falso StartBit)
- 2. O dado recebido é deslocado por um Shift Register e ao final carregado em SBUF, o StopBit em RB8 e RI é setado .
- 3. Isto só ocorre se a seguinte condição existir no final da última recepção
 - a) Ri = 0
 - b) SM2 ou StopBit recebido = 1

Se estas condições não ocorrerem, o dado foi perdido

Exemplo: Transmitir o código ASCII da letra A pelo canal serial a um taxa de 1200 BPS.

Considerar o cristal da CPU de 11,0592 MHz. Sem uso de Interrupção.

0.000	Timer 1			Timer 0				
ORG 0	GATE	C/T	M1	МО	GATE	C/T	M1	МО
MOV TMOD,#20h		,	OD =					no
		·	do 2, c H1 = 256		•			
MOV TH1,#232		;val	or 23: ar a Ta	2 e	m TH	11 e	TL1	
MOV TL1,#232		;120	00 BPS	6 com	fc=11,	0592 N	ИНz e	
		; K=	1(defa	ıult)				
SETB TR1		;Disp	oara Te	empori	zador			
MOV SCON,#40h		,	ON = nal Sei		0000	→ m	odo 1	do
		SMO	SM1	SM2	REN	TB8 RI	B8 TI	RI
MOV SBUF, #'A'		; Tra	ansmit	e o ca	ractere	e ASCI	ΙΑ	
JNB TI,\$; Es	pera te	ermina	r a tra	nsmiss	são	
CLR TI		; Pre	epara	para n	ova tra	ansmis	são	
SJMP \$; Pá	ra				27	,

Exemplo: Receber um código ASCII pelo canal serial a um taxa de 1200 BPS.

Considerar o cristal da CPU de 11,0592 MHz. Sem uso de Interrupção.

ORG 0	SCON SM0 SM1 SM2 REN TB8 RB8 TI	RI
MOV TMOD,#20h	;TMOD = 00100000 →Timer 1 no ;Modo 2, controle por software	
MOV TH1,#232	;valor 232 em TH1 e TL1 para ;gerar a Taxa de Comunicação de	
MOV TL1,#232	;1200 BPS com fc=11,0592 MHz e	
	; K=1(default)	
SETB TR1	;Dispara Temporizador	
MOV SCON,#40h	;SCON = 01000000 → modo 1 do ;Canal Serial	
SETB REN	; Habilita a Recepção	
JNB RI,\$;Espera terminar a recepção	
MOV A, SBUF	; Lê o dado recebido serialmente	
CLR RI	; Prepara para nova recepção	
SJMP \$; Pára	28

Exemplo: Receber e Transmitir qualquer caractere ASCII pelo canal serial a um taxa de 1200 BPS, utilizando a Interrupção.

Considerar o cristal da CPU de 11,0592 MHz.

		•
FLAG	ORG 0 EQU 30H SJMP PROG	; Definição de Flag de Atendimento de Interrupção
	ORG 0023H CLR EA JNB TI,FIM CLR TI SJMP FIM1	; Sub-rotina de atendimento da Interrupção Serial ; Desabilita as interrupções ; Verifica se foi Recepção ; Sendo Transmissão, limpa o Flag TI de Transmissão ; Retorna
FIM:	MOV A,SBUF CLR RI	; Lê um caractere Serial ; Sendo Recepção, limpa o Flag RI de Recepção
FIM1:	SETB EA SETB FLAG RETI	; Re-abilita as interrupções e ; Ativa Flag de Atendimento de Interrupção ; retorna
PROG:	SETB EA SETB IE.4 MOV TMOD,#20H MOV TH1,#232 MOV TL1,#232 SETB TR1 MOV SCON,#40h	; Habilitação de Interrupções ; Habilitação da Interrupção Serial ; TMOD = 00100000 - Timer 1 no Modo 2, controle por software ; valor 232 em TH1 e TL1 para gerar a Taxa de Comunicação de ; 1200 BPS com fc=11,0592 MHz e K=1(default) ; Dispara Temporizador ; SCON = 01000000 ? modo 1 do Canal Serial
LOOP:	SETB REN CLR FLAG JNB FLAG,\$ MOV SBUF,A CLR FLAG JNB FLAG,\$; Transmite o caractere recebido ; Zera o Flag de Atendimento de Interrupção
•	SJMP LOOP	; verifica se ja foi atendida a interrupção 29 ; Continua a comunicação Serial (Recebe/Transmite)

- Pinos RxD e TxD do 8051
 - O 8051 possui 2 pinos que são usados para transmitir e receber dados serialmente:
 - TxD e RxD (que são pinos da Porta 3)
 - pino 11 (P3.1) é o TxD (Transmissão Serial)
 - pino 10 (P3.0) é o RxD (Recepção Serial)
 - estes pinos são compatíveis com TTL
 - Logo, necessitam de circuito "line driver" para torná-los compatíveis com a RS232

- A interface serial RS232 usa Lógica Negativa e níveis de 12v (nível lógico 1) e +12v (nível lógico 0) (Para o PC)
- Os circuitos de "Line Driver" mais comuns para interfacear o 8051 à linha serial RS232 são:

MAX 232 (usa capacitores externos)

MAX 233 (não usa capacitores externos)

Usando o circuito "Line Driver" MAX 232

Usando o circuito "Line Driver" MAX 233

A diferença entre os dois circuitos é que o MAX233 não necessita dos capacitores externos.

