Uvod v diferencialno geometrijo

Jaša Knap

6. november 2023

Uvod 1

Definicija 1.1. Topološki prostor M je n-dimenzionalna mnogoterost, če za vsak $m \in M$ obstaja okolica $m \in U \subseteq M$ in homeomorfizem $\varphi : U \to V^{\text{odp}} \subseteq \mathbb{R}^n$ (pri tem je $V \approx B^n$).

Primer 1.2. Naslednje množice so primeri mnogoterosti.

- 1. $M = \mathbb{R}^n$ je n-dimenzionalna mnogoterost,
- 2. S^1 je 1-dimenzionalna mnogoterost, 3. $S^n = \left\{ (x_1, x_2, \dots, x_n, x_{n+1}) \middle| \sum_{j=1}^{n+1} x_i^2 = 1 \right\} \subseteq \mathbb{R}^{n+1}$ je n-dimenzionalna mnogoterost, 4. Projektivni prostori $\mathbb{R}P^n = B^n /_{\sim}$, kjer je $\vec{x} \sim \vec{y} \iff \vec{y} = -\vec{x}$ so n-dimenzionalne
- mnogoterosti.
- 5. Grupa

$$\mathrm{SU}\left(2\right) = \left\{ g = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in \mathbb{C}, \, \det g = 1 \right\}$$

je 3-dimenzionalna mnogoterost. Topološko in geometrijsko je namreč $SU(2) = S^3$. To je primer Lijeve grupe.

6. Grupa

SO (3) =
$$\left\{ g = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \middle| g^T = g^{-1}, \det g = 1 \right\}.$$

Izkaže se, da je SO(3) = $B^3/_{\sim} = \mathbb{R}P^3$. To velja, ker vsaka preslikava iz SO(3) predstavlja rotacijo prostora, vsako rotacijo pa lahko predstavimo z osjo in velikostjo kota vrtenja. Pri tem kota π in $-\pi$ predstavljata vrtenje za isti kot. Če točki v krogli $B(0,\pi)^3 \approx B^3$ priredimo os in njeno razdaljo od izhodišča proglasimo za velikost kota vrtenja ter enačimo iste rotacije, dobimo natanko projektivni prostor $\mathbb{R}P^3$.

1.1 Gladke mnogoterosti

Na topoloških mnogoterostih bi radi znali odvajati različne objekte, kot so na primer funkcije, krivulje, tenzorji itd. Zato moramo mnogoterosti opremiti z dodatno strukturo. Za začetek se spomnimo definicije odvedljivosti preslikav v evklidskih prostorih.

Definicija 1.3. Preslikava $F: W^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ je odvedljiva v točki $w \in W$, če obstaja linearna preslikava $A: \mathbb{R}^n \to \mathbb{R}^n$ in preslikava $\mathcal{O}: W \to \mathbb{R}^n$, da za vse ustrezne argumente velja

$$F(w+h) = F(w) + Ah + \mathcal{O}(h)$$

in $\lim_{h\to 0} \frac{||\mathcal{O}(h)||}{||h||} = 0$. Odvod preslikave F v točki w je preslikava $A = D_w F = (DF)_w$.

Definicija 1.4. Preslikava $F: W^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ je odvedljiva na množici W, če je odvedljiva v vsaki točki $w \in W$.

Definicija 1.5. Difeomorfizem je bijektivna odvedljiva preslikava, ki ima odvedljiv inverz.

Definicija 1.6. Naj bo M n-dimenzionalna mnogoterost. Gladek atlas \mathcal{U} na M je družina parov $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in A\}, \text{ \'e za vsak } \alpha \in A \text{ velja:} \\ 1. \ U_{\alpha}^{\text{odp}} \subseteq M \\ 2. \ \varphi_{\alpha} : U_{\alpha} \to V_{\alpha} \subseteq \mathbb{R}^{n} \text{ je homeomorfizem za nek } V_{\alpha} \subseteq \mathbb{R}^{n} \\ 3. \ \{U_{\alpha} \mid \alpha \in A\} \text{ je pokritje } M$

4. za vsaka $\alpha, \beta \in A$ je preslikava $g_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : (\varphi_{\alpha})_{*}(U_{\alpha} \cap U_{\beta}) \to (\varphi_{\beta})_{*}(U_{\alpha} \cap U_{\beta})$ difeomorfizem

Dodatek: Če so vse prehodne preslikave $g_{\alpha\beta}$ k-difeomorfizmi z zveznim k-tim odvodom, imamo

 \mathcal{C}^k -atlas. Če so vse preslikave gladke, imamo \mathcal{C}^∞ -atlas, če so vse analitične, pa \mathcal{C}^ω -atlas.

Opomba. Preslikava $g_{\alpha\beta}$ iz prejšnje definicije je preslikava iz $U_{\alpha} \subseteq \mathbb{R}^n \to \mathbb{R}^n$. Torej jo znamo odvajati in vemo, da je v izbranih koordinatah na \mathbb{R}^n matrika odvoda enaka Jacobijevi matriki:

$$F(x_1, \dots, x_n) = \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix} \implies D_w F = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}_w.$$

Definicija 1.7. Topološka mnogoterost M, ki premore kakšen gladek atlas, je gladka mnogoterost.

Za motivacijo naslednje definicije se spomnimo dejstva, da vemo, kakšne so gladke preslikave iz $\mathbb{R}^n \to$ \mathbb{R}^n . Nismo pa še definirali gladkih preslikav iz mnogoterosti $M \to \mathbb{R}$.

Definicija 1.8. Naj bo M n-dimenzionalna mnogoterost. Funkcija $f:M\to\mathbb{R}$ je gladka, če je gladka vsaka preslikava $f \circ \varphi_{\alpha}^{-1} : V_{\alpha} \subseteq \mathbb{R}^n \to \mathbb{R}$.

Definicija 1.9. Naj bo (M,\mathcal{U}) gladka mnogoterost. Krivulja $\gamma:(a,b)\to M$ je gladka krivulja v M, če za $\forall \alpha \in A$ velja, da je $\varphi_{\alpha} \circ \gamma : (a,b) \to V_{\alpha} \subseteq \mathbb{R}^n$ gladka krivulja v $V_{\alpha} \subseteq \mathbb{R}^n$.

Definicija 1.10. Atlasa $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) | \alpha \in A\}$ in $\mathcal{V} = \{(W_{\beta}, \varphi_{\beta}) | \beta \in B\}$ na mnogoterosti M sta ekvivalentna, če za vsak par $(\alpha, \beta) \in A \times B$ iz $U_{\alpha} \cap W_{\beta} \neq \emptyset$ sledi, da je

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : (\varphi_{\alpha})_{*} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n} \to (\psi_{\beta})_{*} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n}$$

difeomorfizem.

Opomba. Ekvivalentnost atlasov je ekvivalenčna relacija, ekvivalenčni razred atlasa \mathcal{U} označimo z $[\mathcal{U}]$.

Definicija 1.11. Naj bo M topološka mnogoterost in \mathcal{U} gladek atlas na M. Potem je $[\mathcal{U}]$ gladka struktura na M.

Opomba. Dejstvo, da lahko obstajajo kakšne netrivialne (eksotične strukture) na mnogoterostih, je zelo netrivialno. Iz Donaldsonovega in Freedmanovega izreka sledi, da ima \mathbb{R}^4 neštevno neskončno eksotičnih gladkih struktur. Vsi ostali \mathbb{R}^n imajo zgolj svojo trivialno in nobene eksotične.

2 Gladke vložene ploskve

V splošnem bi lahko mnogoterosti obravnavali kot abstraktne matematične strukture, ki ne prebivajo nujno v evklidskih prostorih. Pri uvodu v diferencialno geometrijo pa se bomo v glavnem ukvarjali z eno in dvodimenzionalnimi mnogoterostmi, vloženimi v prostor \mathbb{R}^3 .

Definicija 2.1. Množica $X\subseteq\mathbb{R}^3$ je gladka vložena ploskev, če za vsak $m\in X$ obstaja krogla za m $W\subseteq\mathbb{R}^n$ in gladka funkcija $f:W\to\mathbb{R}$, za katero velja 1. $X\cap W=f^*\left(\{0\}\right)$ 2. $(Df)_w\neq 0$ za vsak $w\in X\cap W$

Vložena ploskev $X \subseteq \mathbb{R}^n$ je tudi abstraktna mnogoterost. Poglejmo si, kako bi konstruirali atlas na X. Vzemimo točko $m \in X$. Po definiciji vložene ploskve obstaja nivojnica $f: W \ni m \to \mathbb{R}$ in vemo, da $D_m f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)(m) \neq 0$. Zdaj se spomnimo izreka o implicitni funkciji. Naj bo $m = (x_0, y_0, z_0)$ in BŠS naj bo $\frac{\partial f}{\partial z}(m) \neq 0$. Torej obstaja gladka okolica $V \ni (x_0, y_0) \subseteq \mathbb{R}^2$ in gladka funkcija $g: V \to \mathbb{R}$, da velja f(x, y, g(x, y)) = 0 za vsak $(x, y) \in V$. Po potrebi lahko množico W zmanjšamo na $W_0 \subseteq W$, da dobimo difeomorfizem

$$r: V \longrightarrow W_0 \cap X$$

 $(x, y) \longmapsto (x, y, g(x, y))$

z inverzom

$$\varphi: W_0 \cap X \longrightarrow V$$
$$(x, y, z) \longmapsto (x, y).$$

Ta inverz je v bistvu projekcija na prvi dve koordinati. Če definiramo $U = W_0 \cap X$, postane par (U, φ) karta na X.

2.1Metrika na ploskvi

Če hočemo meriti razdalje med pari točk na gladki mnogoterosti, potrebujemo še dodatno strukturo – metriko. Ta nam omogoča merjenje dolžin krivulj. Če si predstavljamo krivuljo $\gamma:(a,b)\to M$, je najbolj naravna definicija njene dolžine

$$\mathcal{L}(\gamma) = \int_{a}^{b} ||\dot{\gamma}(t)|| dt.$$

Znati moramo torej izračunati dolžino oziroma normo tangentnega vektorja. Najbolje je, če je ta norma porojena s skalarnim produktom, torej $||x|| = \sqrt{\langle x, x \rangle}$.

Naj bo $\langle \cdot, \cdot \rangle$ neki skalarni produkt na $\mathcal{V} = \mathbb{R}^n$ in naj bo $\{v_1, \dots, v_n\}$ baza za \mathcal{V} , ki ni nujno ortonormirana. Vzemimo vektorja $\vec{x} = \sum_{i=1}^n a_i v_i$ in $\vec{y} = \sum_{i=1}^n b_i v_i$. Potem velja, da je skalarni produkt enak

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i,j=1}^{n} a_i b_j \langle v_i, v_j \rangle = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} \langle a_1, a_1 \rangle & \dots & \langle a_1, a_n \rangle \\ \vdots & \ddots & \vdots \\ \langle a_n, a_1 \rangle & \dots & \langle a_1, a_n \rangle \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

Iz simetričnosti skalarnega produkta ($\langle v_i, v_j \rangle = \langle v_j, v_i \rangle$) sledi, da je zgornja matrika simetrična. Iz pozitivne definitnosti skalarnega produkta ($\langle v_i, v_i \rangle > 0$) pa sledi še pozitivna definitnost te matrike.

Opomba. Kvadratne matrike so lahko koordinatni zapisi linearnih preslikav iz $\mathbb{R}^n \to \mathbb{R}^n$, lahko pa so tudi koordinatni zapisi skalarnih produktov. To je odvisno od tega, kako se matrike transformirajo pri prehodu v različno bazo.

Naj bo P poljubna preslikava med bazama, L_e linearna preslikava glede na bazo $\{e_1, \ldots, e_n\}$, L_f pa glede na bazo $\{f_1, \ldots, f_n\}$. Potem iz algebre 1 vemo, da je

$$L_f = PL_eP^{-1}.$$

Zdaj pa izpeljimo, kako se transformira matrika skalarnega produkta. Naj bosta $a_f = Pa_e$ in $b_f = Pb_e$. Potem dobimo iz enakosti

$$\langle a_f, b_f \rangle = \langle a_e, b_e \rangle$$

$$a_f^T A_f b_f = a_e^T A_e b_e$$

$$a_e^T P^T A_f P b_e = a_e^T A_e b_e, \forall a_e, b_e.$$

Od tod sledi, da je $P^T A_f P = A_e$ oziroma zaradi ortogonalnosti P ekvivalentno

$$A_f = PA_eP^T$$
.

Torej transformacijska pravila določajo vrsto preslikave, podobno kot pri fiziki.

Preden se lotimo definicije tangentne ravnine, se spomnimo naslednje definicije.

Definicija 2.2. Naj bo preslikava $F:W\subseteq\mathbb{R}^n\to\mathbb{R}^m$ odvedljiva. Rang preslikave F v točki $w\in W$ je enak rangu matrike D_wF . Pravimo, da ima F v točki $w\in W$ maksimalen rang, če ima matrika D_wF maksimalen rang.

Definicija 2.3. Naj bo $X \subseteq \mathbb{R}^3$ vložena ploskev in točka $m \in X$. Tangentna ravnina $T_m X$ je množica tangent vseh krivulj v X, ki v času t = 0 gredo skozi m.

$$T_{m}X=\left\{\dot{\gamma}\left(0\right)\mid\gamma:\left(-\varepsilon,\varepsilon\right)\to X\subseteq\mathbb{R}^{3}\text{ krivulja, }\gamma\left(0\right)=m\right\}$$

Trditev 2.4. T_mX je dvodimenzionalen realni vektorski podprostor v \mathbb{R}^3 .

Dokaz: Naj bo $r:V\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$ neka regularna parametrizacija ploskve X (to pomeni, da mora biti rang preslikave r maksimalen, torej konstantno enak 2) v okolici točke $m\in X$. Naj bo $p=(u,v)\in V\subseteq\mathbb{R}^2$. Pišimo

$$r(p) = r(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}.$$

Naj bo $m=r\left(u_0,v_0\right)$. Trdimo, da je $T_mX=\operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Najprej dokažimo inkluzijo $T_mX\subseteq\operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Naj bo $\gamma:\left(-\varepsilon,\varepsilon\right)\to X\subseteq\mathbb{R}^2,\ \gamma(0)=m=r\left(u_0,v_0\right)$ poljubna krivulja. Direktno po definiciji tangentne krivulje sledi $\gamma(0)\in T_mX$. Dokazati moramo $\gamma(0)\in\operatorname{im}\left(D_{(u_0,v_0)}r\right)$. Naj bo $\gamma(t):\left(-\varepsilon,\varepsilon\right)\to V$ podana z $\beta(t)=r^{-1}\left(\gamma(t)\right)$. Ker je praslika preslikave β vsebovana v \mathbb{R}^2 , obstajata funkciji u(t),v(t), da je $\beta(t)=(u(t),v(t))$. Pri tem velja, da je $\beta(0)=(u(0),v(0))=(u_0,v_0)$. Vidimo, da je $\gamma(t)=r(u(t),v(t))$. Po verižnem pravilu za odvajanje imamo

$$\dot{\gamma}(0) = \frac{d}{dt}|_{t=0}\gamma(t) = (D_{(u_0,v_0)}r)\dot{\beta}(0).$$

Torej je $\dot{\gamma}(0) \in \operatorname{im} \left(D_{(u_0,v_0)} r \right)$.

Nato dokažimo še obratno inkluzijo $T_mX \supseteq \operatorname{im} \left(D_{(u_0,v_0)}r\right)$. Vzemimo poljuben vektor $\omega \in \mathbb{R}^2$ in naj bo $v = \left(D_{(u_0,v_0)r} \cdot w\right)$. Potrebujemo krivuljo $\gamma(t), \gamma(0) = m$, za katero bo veljalo $\dot{\gamma}(0) = v$. Oglejmo si

$$\left(D_{(u_0,v_0)}r\right)(\dot{\beta}(0)) = \frac{d}{dt}\big|_{t=0}r(\beta(t)).$$

Trdimo, da za $\gamma(t) = r(\beta(t))$ velja $\dot{\gamma}(0) \in T_m X$. To je res, saj je $\gamma(t) : (-\varepsilon, \varepsilon) \to X \subseteq \mathbb{R}^3$, hkrati pa tudi $\gamma(0) = r(\beta(0)) = r(u_0, v_0) = m$. Torej velja, da je $T_m X = \operatorname{im}(D_{(u_0, v_0)} r)$. Ker smo zahtevali, da je parametrizacija regularna, je matrika $D_{(u_0, v_0)} r$ ranga 2, torej je $T_m X$ dvodimenzionalen vektorski prostor.

Opomba. Tangentna ravnina je pravi vektorski prostor in ne afin kot recimo pri analizi 2a.

Do nadaljnjega nas bodo zanimale lokalne lastnosti ploskev, zato bomo delali v glavnem s ploskvami, ki jih lahko pokrijemo z eno samo karto oziroma z eno samo parametrizacijo.

Definicija 2.5. Metrika na ploskvi $X\subseteq\mathbb{R}^3$, opremljeni s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$, je preslikava

$$g: X \longrightarrow M_2(\mathbb{R})$$

 $m \longmapsto \begin{pmatrix} g_{11}(m) & g_{12}(m) \\ g_{21}(m) & g_{22}(m) \end{pmatrix},$

kjer je za vsak $m \in X$ matrika g(m) simetrična in pozitivno definitna. To lahko povemo s pogojema det g(m) > 0 in $g_{11}(m) > 0$.

Opomba. Za drugo parametrizacijo ploskve X bi dobili druge koeficiente matrike.

Naj bo $\gamma:[a,b]\to X$ krivulja. Njeno parametrizacijo r lahko napišemo v obliki $\gamma(t)=r(u(t),v(t))$ za primerne funkcije $u,v:[a,b]\to\mathbb{R},\ \beta(t)=(u(t),v(t)),\ \gamma(t)=r(\beta(t)).$ V koordinatah lahko zapišemo

$$\gamma(t) = \begin{pmatrix} x(u(t), v(t)) \\ y(u(t), v(t)) \\ z(u(t), v(t)) \end{pmatrix},$$

$$\dot{\gamma}(t) = \frac{d}{dt}\Big|_{t=t_0} r(\beta(t)) = (D_{(u_0, v_0)} r)(\dot{\beta}(t_0)) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}_{(u_0, v_0)} \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = r_u(u_0, v_0)\dot{u}(t_0) + r_v(u_0, v_0)\dot{v}(t_0).$$

To je razvoj vektorja $\dot{\gamma}(t_0)$ po bazi $\{r_u(u_0, v_0), r_v(u_0, v_0)\}$ prostora $T_{\gamma(t_0)}X$, ki pa ni nujno ortogonalna. Pravzaprav je ortogonalna le v precej posebnih primerih.

Definicija 2.6. Dolžina krivulje $\gamma:[a,b]\to X\subseteq\mathbb{R}^3$ glede na metriko g je v parametrizaciji r podana s formulo

$$\mathcal{L}_g(\gamma) = \int_a^b \sqrt{\left(\dot{u}(t) \quad \dot{v}(t)\right) \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix}} dt$$

Ustrezni skalarni produkti na ravnini T_mX so glede na parametrizacijo r podani s predpisi $\langle r_u, r_u \rangle_g = g_{11}$, $\langle r_u, r_v \rangle_g = g_{12}$, $\langle r_v, r_v \rangle_g = g_{22}$. Naj bo sedaj ambientni prostor \mathbb{R}^3 opremljen s fiksnim evklidskim skalarnim produktom, in koeficiente g_{ij} poračunamo z njim (na enak način kot prej). Pri tem uporabimo naslednje standardne oznake:

$$E(u,v) = \langle r_u(u,v), r_u(u,v) \rangle, \quad F(u,v) = \langle r_u(u,v), r_v(u,v) \rangle, \quad G(u,v) = \langle r_v(u,v), r_v(u,v) \rangle.$$

Včasih tudi zlorabimo notacijo

$$E(m) = E(r(u, v)) = E(u, v).$$

Definicija 2.7. Metrika na $X\subseteq\mathbb{R}^2$, ki je glede na $r:V\to X\subseteq\mathbb{R}^3$ podana z matrično funkcijo

$$g_f: V \longrightarrow M_2(\mathbb{R})$$
$$(u, v) \longmapsto \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$

se imenuje prva fundamentalna forma ploskve.

Opomba. Dolžina krivulje $\mathcal{L}(\gamma)$ glede na prvo fundamentalno formo ploskve sovpada z običajno dolžino krivulje:

$$\mathcal{L}(\gamma) = \int_{a}^{b} ||\dot{\gamma}(t)|| dt = \int_{a}^{b} \sqrt{\langle \dot{u}r_{u} + \dot{v}r_{v}, \dot{u}r_{u} + \dot{v}r_{v} \rangle} dt$$

$$= \int_{a}^{b} \sqrt{\left(\dot{u}(t) \quad \dot{v}(t)\right) \left(\langle r_{u}, r_{u} \rangle \quad \langle r_{u}, r_{v} \rangle \right)_{(u(t), v(t))} \left(\dot{u}(t) \right)} dt$$

$$= \int_{a}^{b} \sqrt{\left(\dot{u}(t) \quad \dot{v}(t)\right) \left(\frac{E \quad F}{F \quad G} \right)_{(u(t), v(t))} \left(\dot{v}(t) \right)} dt.$$

Izomorfizmi v diferencialni geometriji so izometrije, katerih definicija pa je nekoliko drugačna, kot bi morda pričakovali.

Definicija 2.8. Preslikava $f: X \to \tilde{X}$ nad dvema ploskvama $X, \tilde{X} \subseteq \mathbb{R}^3$ je izometrija, če za vsako krivuljo $\gamma: [a,b] \to X$ velja enakost med dolžinama

$$\mathcal{L}_X(\gamma) = \mathcal{L}_{\tilde{X}}(f(\gamma)).$$

Opomba. Izometrije med ploskvama porodijo izometrije v običajnem metričnem smislu.

Primer 2.9. 1. fundamentalna forma na sferi glede na sferične koordinate. Če odvzamemo iz S^2 en poldnevnik, jo lahko parametriziramo s sferičnimi koordinatami:

$$r: \begin{pmatrix} u \\ v \end{pmatrix} \subseteq V = (-\pi, \pi) \times (0, \pi) \subseteq \mathbb{R}^2 \to \mathbb{R}^3$$

s predpisom

$$r(u,v) = \begin{pmatrix} \cos u \cos v \\ \cos u \sin v \\ \sin u \end{pmatrix}.$$

Potem dobimo parcialna odvoda

$$r_u(u,v) = \begin{pmatrix} -\sin u \cos v \\ -\sin u \sin v \\ \cos u \end{pmatrix}, \ r_v(u,v) = \begin{pmatrix} -\cos u \sin v \\ \cos u \cos v \\ 0 \end{pmatrix}.$$

Od tod sledi

$$E = \langle r_u, r_u \rangle = 1,$$

$$F = \langle r_u, r_v \rangle = 0,$$

$$G = \langle r_v, r_v \rangle = \cos^2 u,$$

kar lahko zapišemo v obliki

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 u \end{pmatrix}.$$

Primer 2.10. Naj bo X rotacijska ploskev, ki jo dobimo, če krivuljo x = f(z) zavrtimo okoli osi z:

$$r: (u,v) \mapsto \begin{pmatrix} f(u)\cos v \\ f(u)\sin v \\ u \end{pmatrix}.$$

Potem imamo odvoda

$$r_u(u,v) = \begin{pmatrix} f'(u)\cos v \\ f'(u)\sin v \\ 1 \end{pmatrix}, \ r_v(u,v) = \begin{pmatrix} -f(u)\sin v \\ f(u)\cos v \\ 0 \end{pmatrix}.$$

Od tod sledi

$$E = \langle r_u, r_u \rangle = 1 + f'(u)^2,$$

$$F = \langle r_u, r_v \rangle = 0,$$

$$G = \langle r_v, r_v \rangle = f(u)^2,$$

kar lahko zapišemo v obliki

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} 1 + f'(u)^2 & 0 \\ 0 & f(u)^2 \end{pmatrix}.$$

Naslednji izrek nam pove povezavo med 1. fundamentalno formo in izometričnostjo ploskev.

Izrek 2.11.

Naj bo $X \to \tilde{X}$ izometrija med ploskvama. Tedaj obstaja par parametrizacij $r: V \to X$ in $\tilde{r}: V \to \tilde{X}$, da za pripadajoči fundamentalni formi velja

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}_{(u,v)} = \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}_{(u,v)}.$$

Velja tudi obratno, torej če za ploskvi X, \tilde{X} obstajata parametrizaciji r in \tilde{r} , za kateri velja zgornji sistem enačb, potem sta X in \tilde{X} izometrični.

Dokaz: Pokažimo najprej obrat (<==). Recimo, da obstajata parametrizaciji $r:V\to X$ in $\tilde{r}:V\to \tilde{X},$ da velja

$$\begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}_{(u,v)}$$
.

Naj bo $f = \tilde{r} \circ r^{-1}$. Preveriti moramo, da je f izometrija. Naj bo $\gamma : [a, b] \to X$ poljubna krivulja in primerjamo dolžini $\mathcal{L}_r(\gamma)$ ter $\mathcal{L}_{\tilde{r}}(f(\gamma))$. Potem obstaja krivulja $\beta : [\alpha, \beta] \to V$ za katero velja $\gamma(t) = r(\beta(t))$. Potem za $f(\gamma(t))$ velja

$$f(\gamma(t)) = f(r(\beta(t))) = \tilde{r}(\beta(t)).$$

Ker je $\beta(t)$ ravninska krivulja, velja

$$\begin{split} \gamma(t) &= r(\beta(t)) = r(u(t), v(t)), \\ \tilde{\gamma}(t) &= \tilde{r}(\beta(t)) = \tilde{r}(u(t), v(t)). \end{split}$$

Torej imamo enačbi

$$\mathcal{L}_r(\gamma) = \int_a^b \sqrt{E(u,v)\dot{u}^2 + 2F(u,v)\dot{u}\dot{v} + G(u,v)\dot{v}^2} dt,$$

$$\mathcal{L}_{\tilde{r}}(\tilde{\gamma}) = \int_a^b \sqrt{\tilde{E}(u,v)\dot{u}^2 + 2\tilde{F}(u,v)\dot{u}\dot{v} + \tilde{G}(u,v)\dot{v}^2} dt.$$

Ker so posamezni sumandi enaki, sta izraza enaka, torej je $f = \tilde{r} \circ r^{-1}$ res izometrija.

Zdaj dokažimo še (\Longrightarrow). Denimo, da imamo med ploskvama X in \tilde{X} izomerijo $f: X \to \tilde{X}$. Naj bo $\gamma(t) = r(\beta(t)) = (u_0 + t, v_0)$ in $t \in (0, \varepsilon)$. Pri tem je točka $(u_0, v_0) \in V$ poljubna in določa točko $p = r(u_0, v_0) \in X$. Zdaj izračunamo

$$\mathcal{L}_r(\gamma(t)) = \int_0^\varepsilon ||\dot{\gamma}(t)|| \, dt = \int_0^\varepsilon \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} \, dt = \int_0^\varepsilon \sqrt{\langle r_u, r_u \rangle} \, dt = \int_0^\varepsilon \sqrt{E(u_0 + t, v_0)} \, dt.$$

Sedaj si oglejmo $f(\gamma(t)) = \tilde{r}(\beta(t)) = \tilde{r}(u_0 + t, v_0)$. Potem imamo:

$$\mathcal{L}_{\tilde{r}}(f(\gamma(t))) = \int_{0}^{\varepsilon} ||\dot{\tilde{\gamma}}(t)|| dt$$

$$= \int_{0}^{\varepsilon} \sqrt{\langle \dot{\tilde{\gamma}}(t), \dot{\tilde{\gamma}}(t) \rangle} dt$$

$$= \int_{0}^{\varepsilon} \sqrt{\langle \tilde{r}_{u}(u_{0} + t, v_{0}), \tilde{r}_{u}(u_{0} + t, v_{0}) \rangle} dt$$

$$= \int_{0}^{\varepsilon} \tilde{r}(u_{0} + t, v_{0}) dt.$$

Po predpostavki o izometričnosti velja

$$\mathcal{L}_r(\gamma) = \mathcal{L}_{\tilde{r}}(f(\gamma)),$$

$$\int_0^{\varepsilon} \sqrt{E(u_0 + t, v_0)} dt = \int_0^{\varepsilon} \sqrt{\tilde{E}(u_0 + t, v_0)} dt.$$

Po izreku o povprečni vrednosti obstajata neka $\hat{t}, \hat{t} \in (0, \varepsilon)$, da velja

$$E(u_0 + \hat{t}, v_0)\varepsilon = \tilde{E}(u_0 + \hat{t}, v_0)\varepsilon$$

in če pošljemo $\varepsilon \to 0$, zaradi zveznosti funkcij dobimo

$$E(u_0, v_0) = \tilde{E}(u_0, v_0).$$

Še lažje ta rezultat dobimo tako, da na obeh straneh odvajamo po ε in vstavimo $\varepsilon=0$.

Če zdaj vzamemo $\beta(t)=(u_0,v_0+t)$, dobimo po enakem postopku kot prej

$$G(u_0, v_0) = \tilde{G}(u_0, v_0).$$

Nato vzamemo $\beta(t) = (u_0 + t, v_0 + t)$ in imamo

$$\mathcal{L}_r(\gamma) = \int_0^{\varepsilon} \sqrt{E(u_0 + t, v_0 + t) + 2F(u_0 + t, v_0 + t) + G(u_0 + t, v_0 + t)} dt$$

$$= \mathcal{L}_{\tilde{r}}(\tilde{\gamma}) = \int_0^{\varepsilon} \sqrt{\tilde{E}(u_0 + t, v_0 + t) + 2\tilde{F}(u_0 + t, v_0 + t) + \tilde{G}(u_0 + t, v_0 + t)} dt.$$

Če zdaj zopet odvajamo po ε in vstavimo $\varepsilon = 0$, dobimo enakost integrandov v točki (u_0, v_0) , od koder sledi še zadnja zahteva

$$F(u_0, v_0) = \tilde{F}(u_0, v_0).$$

Primer 2.12. Ali je stožec brez ene tvorilke izometričen kosu ravnine? Naj bo podan

$$S = \{(x, y, z) | x^2 + y^2 + z^2 = 1 \}.$$

Parametriziramo ga z

$$r(u, v) = (u\cos v, u\sin v, u)$$

in po znanem postopku dobimo

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}_{(u,v)} = \begin{pmatrix} 2 & 0 \\ 0 & u^2 \end{pmatrix}.$$

Pričakujemo, da bo S izometričen nekemu krožnemu izseku, ki ga parametriziramo z

$$\tilde{r}(u, v) = (\alpha u \cos(\beta v), \alpha u \sin(\beta v), 0).$$

Tako dobimo sistem enačb

$$\begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}_{(u,v)} = \begin{pmatrix} \alpha^2 & 0 \\ 0 & \alpha^2 \beta^2 u^2 \end{pmatrix}.$$

Pogoj

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}_{(u,v)} = \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}_{(u,v)}$$

je izpolnjen pri $\alpha=\sqrt{2},\ \beta=\frac{1}{\sqrt{2}}$ (če bi zamenjali predznake α in β , bi dobili drugačne parametrizacije). Torej je stožec S izometričen krožnemu izseku s parametrizacijo

$$\tilde{r}(u,v) = \left(\sqrt{2}u\cos\left(\frac{1}{\sqrt{2}}v\right), \sqrt{2}u\sin\left(\frac{1}{\sqrt{2}}v\right), 0\right).$$

Na tej točki se pojavi naravno vprašanje: ali znamo poiskati vse ploskve v \mathbb{R}^3 , ki so izomertične ravnini? Izkaže se, da znamo, saj velja naslednji izrek.

Izrek 2.13.

 $Naj\ bo\ ploskev\ X\ izometrična\ kakšnemu\ kosu\ ravnine.\ Potem\ je\ X\ bodisi\ stožec,\ valj,\ ali\ kakšna\ tangentna\ premonosna\ ploskev.$

Definicija 2.14. Naj bo $\gamma:[a,b]\to\mathbb{R}^3$ prostorska krivulja, parametriziarana z naravnim parametrom. Tangentna premonosna ploskev, podana s krivuljo γ , je del prostora \mathbb{R}^3 , ki ga opiše tangenta na $\gamma(t)$ na intervalu $t\in[a,b]$.

Če je $\gamma=\gamma(u)$ naravna parametrizacija, potem je smiselna parametrizacija tangentno premonosne ploskve X podana z

$$r(u, v) = \gamma(u) + v\dot{\gamma}(u).$$

Ker je γ naravna parametrizacija, velja kot prvo

$$||\dot{\gamma}(u)|| = \langle \dot{\gamma}(u), \dot{\gamma}(u) \rangle = 1.$$

Če to zvezo odvajamo, dobimo

$$\langle \ddot{\gamma}(u), \dot{\gamma}(u) \rangle + \langle \dot{\gamma}(u), \ddot{\gamma}(u) \rangle = 0$$

in iz simetričnosti skalarnega produkta sledi

$$\langle \ddot{\gamma}(u), \dot{\gamma}(u) \rangle = 0.$$

Torej je pospešek pri naravni parametrizaciji vedno pravokoten na hitrost. To lahko opazimo, če se v avtu peljemo s konstantno hitrostjo. Pospešek bomo čutili samo v ovinkih in to pravokotno glede na smer vožnje.

Definicija 2.15. Fleksijska ukrivljenost naravno parametrizirane krivulje $\gamma(u)$ je podana z

$$\kappa(u) = \sqrt{\langle \ddot{\gamma}(u), \ddot{\gamma}(u) \rangle} = ||\ddot{\gamma}(u)||.$$

Izračunajmo 1. fundamentalno formo tangentno premonosne ploskve. Ker velja zveza

$$r(u, v) = \gamma(u) + v\dot{\gamma}(u),$$

takoj dobimo

$$r_u(u, v) = \dot{\gamma}(u) + v\ddot{\gamma}(u),$$

 $r_v(u, v) = \dot{\gamma}(u).$

Če od tod po znanem postopku poračunamo koeficiente 1. fundamentalne forme (pri čemer upoštevamo, da je pospešek pravokoten na hitrost), dobimo

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}_{(u,v)} = \begin{pmatrix} 1 + v^2 \kappa^2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Torej vidimo, da je matrika 1. fundamentalne forme zares odvisna samo od fleksijske ukrivljenosti.

Trditev 2.16. Naj bo podana funkcija $\kappa(u)$. Potem obstaja naravno parametrizirana ravninska krivulja $\gamma: [\alpha, \beta] \to \mathbb{R}^2$, katere fleksijska ukrivljenost v točki $\gamma(u)$ je enaka $\kappa(u)$.

Dokaz: Ker je krivulja γ ravninska, lahko zapišemo

$$\gamma(u) = (x(u), y(u)),$$

$$\dot{\gamma}(u) = (\dot{x}(u), \dot{y}(u)),$$

$$\ddot{\gamma}(u) = (\ddot{x}(u), \ddot{y}(u)).$$

Ker je parametrizacija naravna, imamo še sistem enačb

$$\begin{aligned} ||\dot{\gamma}(u)|| &= 1, \\ ||\ddot{\gamma}(u)|| &= \kappa(u), \\ \langle \ddot{\gamma}(u), \dot{\gamma}(u) \rangle &= 0. \end{aligned}$$

Enotski vektor, pravokoten na $\dot{\gamma}(u) = (\dot{x}(u), \dot{y}(u))$, je vektor $(\dot{y}(u), -\dot{x}(u))$. Ta vektor je vzporeden vektorju pospeška, torej bo za neko funkcijo $k : [\alpha, \beta] \to \mathbb{R}$ veljalo

$$(\ddot{x}(u), \ddot{y}(u)) = k(u)(\dot{y}(u), -\dot{x}(u)).$$

Če obe strani enačbe normiramo, iz prejšnega sistema enačb vidimo, da mora priti natanko

$$(\ddot{x}(u), \ddot{y}(u)) = \kappa(u)(\dot{y}(u), -\dot{x}(u)).$$

To je sistem navadnih diferencialnih enačb

$$\ddot{x}(u) = \kappa(u)\dot{y}(u),$$

$$\ddot{y}(u) = -\kappa(u)\dot{x}(u).$$

Pri analizi 3 smo (bomo čez 14 dni?!) dokazali eksistenčni izrek za obstoj rešitev tega sistema. Z drugimi besedami, obstaja naravno parametrizirana krivulja $\gamma(u)=(x(u),y(u))$, za katero za vsak $u\in [\alpha,\beta]$ velja $||\ddot{\gamma}(u)||=\kappa(u)$.

Opomba. Pri določenih (u, v) nam krivulja $\gamma(u)$ podaja tangentno premonosno ploskev. Ta ploskev je del ravnine, v kateri leži krivulja krivulja $\gamma(u)$. Po izreku iz prejšnjih predavanj (TODO ali ali) je ta ploskev izometrična nekemu kosu ravnine.

S tem razmislekom smo dokazali izrek.

Izrek 2.17.

Vsaka tangentno premonosna ploskev je izometrična kosu ravnine.

Definicija 2.18. Ploščina ploskve X, parametrizirane z $r: Vsun\mathbb{R}^2 \to X \subseteq \mathbb{R}^3$ je podana z

$$A(X) = \int_{V} ||r_u \times r_v|| \, du \, dv.$$

Opomba. Da je ta definicija dobra, moramo še preveriti.

Opomba. Ker velja zveza

$$||r_u \times r_v||^2 = \langle r_u, r_u \rangle \langle r_v, r_v \rangle - \langle r_u, r_v \rangle^2 = EG - F^2,$$

lahko ploščino izrazimo tudi kot

$$A(X) = \int_{V} \sqrt{EG - F^{2}} \, du \, dv = \int_{V} \sqrt{\det \begin{pmatrix} E & F \\ F & G \end{pmatrix}} \, du \, dv.$$

Definicija 2.19. Naj bosta $r:V_1\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$ in $\tilde{r}:V_2\subseteq\mathbb{R}^2\to X\subseteq\mathbb{R}^3$ različni regularni parametrizaciji ploskve X. Potem je preslikava

$$g = \tilde{r}^{-1} \circ r : V_1 \longrightarrow V_2$$
$$(u, v) \longmapsto (\tilde{u}(u, v), \tilde{v}(u, v)),$$

prehodna preslikava med parametrizacijama r in \tilde{r} .

Velja $r(u, v) = \tilde{r}(g(u, v))$. Poglejmo si, kaj se zgodi z matriko prve fundamentalne forme transformaciji med parametrizacijama.

2.2 Transformacijska pravila za I-forme

Naj bosta $r:V_1\to X$ in $\tilde{r}:V_2\to X$ dve parametrizaciji iste ploskve. Med njima velja $r(u,v)=\tilde{r}(\tilde{u}(u,v),\tilde{v}(u,v))$. To nam da prehodno preslikavo $g:\tilde{r}^{-1}\circ r:V_1\to V_2$. Vektor, razvit po bazi $\{r_u,r_v\}$ bomo skušali razviti bo bazi $\{\tilde{r}_{\tilde{u}},\tilde{r}_{\tilde{v}}\}$. Imamo

$$\begin{split} r(u,v) &= \tilde{r}(\tilde{u}(u,v),\tilde{v}(u,v)), \\ r_u &= \tilde{r}_{\tilde{u}}\tilde{u}_u + \tilde{r}_{\tilde{v}}\tilde{v}_u, \\ r_v &= \tilde{r}_{\tilde{u}}\tilde{u}_v + \tilde{r}_{\tilde{v}}\tilde{v}_v. \end{split}$$

Zdaj hočemo vektor $ar_u + br_v$ zapisati v obliki $\alpha \tilde{r}_u + \beta \tilde{r}_v$. Dobimo

$$ar_u + br_v = a(\tilde{r}_{\tilde{u}}\tilde{u}_u + \tilde{r}_{\tilde{v}}\tilde{v}_u) + b(\tilde{r}_{\tilde{u}}\tilde{u}_v + \tilde{r}_{\tilde{v}}\tilde{v}_v) = \underbrace{(a\tilde{u}_u + b\tilde{u}_v)}_{\alpha}\tilde{r}_{\tilde{u}} + \underbrace{(a\tilde{v}_u + b\tilde{v}_v)}_{\beta}\tilde{r}_{\tilde{v}}.$$

Torej za vsak par vektorjev $(a,b)^T, (\alpha,\beta)^T$ velja zveza

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \underbrace{\begin{pmatrix} \tilde{u}_u & \tilde{u}_v \\ \tilde{v}_u & \tilde{v}_v \end{pmatrix}}_{\text{Jac}(q)} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Torej za vse pare vektorjev velja

$$\left\langle \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \begin{pmatrix} \gamma \\ \delta \end{pmatrix} \right\rangle$$

$$(a \quad b) \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = (\alpha \quad \beta) \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$$

$$= (a \quad b) \operatorname{Jac}(g)^T \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \operatorname{Jac}(g) \begin{pmatrix} c \\ d \end{pmatrix}.$$

Od tod sledi naslednji izrek.

Izrek 2.20.

Naj za parametrizaciji $r:V_1\to X$ in $\tilde{r}:V_2\to X$ velja

$$r(u,v) = \tilde{r}(\tilde{u}(u,v),\tilde{v}(u,v)) = \tilde{r}(g(u,v)).$$

Potem za I-formi glede na ti parametrizaciji velja

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \operatorname{Jac}(g)^T \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \operatorname{Jac}(g).$$

Posledica 2.21. Definicija ploščine je dobra.

Dokaz: Dokazujemo

$$A(X) = \int_{V_1} \sqrt{EG - F^2} \, du \, dv = \int_{V_2} \sqrt{\tilde{E}\tilde{G} - \tilde{F}^2} \, d\tilde{u} \, d\tilde{v}.$$

Po izreku o transformaciji I-forme velja

$$\begin{split} A(X) &= \int_{V_1} \sqrt{\det \begin{pmatrix} E & F \\ F & G \end{pmatrix}} \, du \, dv \\ &= \int_{V_1} \sqrt{\det \left(\operatorname{Jac}(g)^T \begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix} \operatorname{Jac}(g) \right)} \, du \, dv \\ &= \int_{V_1} \sqrt{\begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}} \, |\det \left(\operatorname{Jac}(g) \right)| \, du \, dv \end{split}$$
 (uvedba novih spremenljivk)
$$= \int_{V_2} \sqrt{\begin{pmatrix} \tilde{E} & \tilde{F} \\ \tilde{F} & \tilde{G} \end{pmatrix}} \, d\tilde{u} \, d\tilde{v}. \end{split}$$

Recimo, da imamo podano $V \subseteq \mathbb{R}^2$ in matrično funkcijo

$$M:V\longrightarrow M_2(\mathbb{R})_{\text{simetrične, pozitivno definitne}}$$

$$(u,v) \longmapsto \begin{pmatrix} E & F \\ F & G \end{pmatrix}_{(u,v)}.$$

Zanimivo vprašanje se glasi: Ali lahko to funkcijo realiziramo v vloženi mnogoterosti? Odgovor je da (ampak lokalno, ker bi lahko prišlo do problemov s samopresečišči).

2.3 Ukrivljenost

2.3.1 Druga fundamentalna forma

Naj bo $X\subseteq\mathbb{R}^3$ ploskev s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X$. Intuitivno je ukrivljenost ploskve X v točki $r(u,v)=m\in X$ 'hitrost' oddaljevanja X od tangentne ravnine T_mX . Naj bo n normala na ravnino

 T_mX v točki m. Naj bo točka $r(u',v')=r(u+\Delta u,v+\Delta v)$ blizu točke m=r(u,v). Izmeriti hočemo razdaljo od točke r(u',v') do T_mX . Dobimo

$$d = \langle n, r(u', v') - r(u, v) \rangle.$$

Ker sta spremembi Δu in Δv majhni, naredimo Taylorjev razvoj, ter izrazimo

$$r(u',v') - r(u,v) = r_u \Delta u + r_v \Delta v + \frac{1}{2} \left(r_{uu} (\Delta u)^2 + 2r_{uv} \Delta u \Delta v + r_{vv} (\Delta v)^2 \right) + \dots$$

Ker vemo tudi, da je normala pravokotna na vektorja r_u in r_v , lahko zapišemo

$$d = \langle n, r(u', v') - r(u, v) \rangle \approx \underbrace{\langle r_u, n \rangle}_{0} \Delta u + \underbrace{\langle r_v, n \rangle}_{0} \Delta v + \frac{1}{2} \left(\langle r_{uu}, n \rangle (\Delta u)^2 + 2 \langle r_{uv}, n \rangle \Delta u \Delta v + \langle r_{vv}, n \rangle (\Delta v)^2 \right).$$

oziroma

$$d \approx \frac{1}{2} \left(\langle r_{uu}, n \rangle (\Delta u)^2 + 2 \langle r_{uv}, n \rangle \Delta u \Delta v + \langle r_{vv}, n \rangle (\Delta v)^2 \right).$$

Zdaj lahko smiselno definiramo drugo fundamentalno formo ploskve.

Definicija 2.22. Naj bo $X\subseteq\mathbb{R}^3$ ploskev s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X$. Druga fundamentalna forma X v točki m=r(u,v) je podana z matriko

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix}_{(u,v)} = \begin{pmatrix} L(u,v) & M(u,v) \\ M(u,v) & N(u,v) \end{pmatrix},$$

kjer so $L,M,N:V\to\mathbb{R}$ funkcije s predpisi

$$L(u,v) = \langle r_{uu}(u,v), n(u,v) \rangle$$
$$M(u,v) = \langle r_{uv}(u,v), n(u,v) \rangle$$
$$N(u,v) = \langle r_{vv}(u,v), n(u,v) \rangle$$

Opomba. Za drugo fundamentalno formo je res nujen skalarni produkt v \mathbb{R}^3 (za razliko od prve fundamentalne forme, ki v vsaki točki določa drug skalarni produkt).

Razmislili smo že, da velja ocena razdalje

$$d \approx \begin{pmatrix} \Delta u & \Delta v \end{pmatrix} \begin{pmatrix} L & M \\ M & N \end{pmatrix}_{(u,v)} \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix}.$$

Od te točke naprej predpostavljamo, da so vse krivulje naravno parametrizirane. Naj bo $\gamma:[a,b]\to X$ gladka krivulja. Spomnimo se definicije fleksijske ukrivljenosti krivulje , velja $\kappa(t)=||\ddot{\gamma}(t)||$. V nadaljevanju bomo razdelili vektor pospeška na geodetsko in normalno komponentno, torej

$$\ddot{\gamma}(t) = \ddot{\gamma}_q(t) + \ddot{\gamma}_n(t).$$

Zato najprej definirajmo geodetsko in normalno ukrivljenost krivulje.

Definicija 2.23. Naj bo $X\subseteq\mathbb{R}^3$ ploskev s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X$ in naj bo $\gamma:[a,b]\to X$ gladka krivulja. Definirajmo normalo na krivuljo γ

$$n_{\gamma}(t) = \frac{r_u(u(t), v(t)) \times r_v(u(t), v(t))}{||r_u(u(t), v(t)) \times r_v(u(t), v(t))||}$$

Potem definiramo normalno in geodetsko ukrivljenost krivulje γ kot

$$\kappa_n(t) = \langle \ddot{\gamma}(t), n_{\gamma}(t) \rangle,$$

$$\kappa_g(t) = \langle \ddot{\gamma}(t), \dot{\gamma}(t) \times n_{\gamma}(t) \rangle.$$

Zdaj si poglejmo, kako se izraža normalna ukrivljenost krivulje s pomočjo druge fundamentalne forme.

Izrek 2.24.

Naj bo $\gamma:[a,b]\to X$ gladka krivulja, podana s parametrizacijo $\gamma(t)=r(u(t),v(t))$. Tedaj lahko njeno normalno ukrivljenost izračunamo po formuli

$$\kappa_n(t) = \begin{pmatrix} \dot{u}(t) & \dot{v}(t) \end{pmatrix} \begin{pmatrix} L & M \\ M & N \end{pmatrix}_{(u(t),v(t))} \begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \end{pmatrix}.$$

Dokaz: Najprej zapišemo prva dva odvoda

$$\dot{\gamma}(t) = r_u \dot{u} + r_v \dot{v},$$

$$\ddot{\gamma}(t) = \ddot{u}r_u + \ddot{v}r_v + r_{uu}\dot{u}^2 + 2r_{uv}\dot{u}\dot{v} + r_{vv}\dot{v}^2.$$

Od tod dobimo

$$\begin{split} \kappa_n &= \langle \ddot{\gamma}, n \rangle = \langle r_{uu}, n \rangle \dot{u}^2 + 2 \langle r_{uv}, n \rangle \dot{u}\dot{v} + \langle r_{vv}, n \rangle \dot{v}^2 \\ &= L\dot{u}^2 + 2M\dot{u}\dot{v} + F\dot{v}^2 \\ &= \begin{pmatrix} \dot{u} & \dot{v} \end{pmatrix} = \begin{pmatrix} L & M \\ M & N \end{pmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix}. \end{split}$$

Vsako funkcijo normalne ukrivljenosti lahko razširimo na tangentno ravnino na naslednji način.

Definicija 2.25. Naj bo $X\subseteq\mathbb{R}^3$ ploskev s parametrizacijo $r:V\subseteq\mathbb{R}^2\to X$ in naj bo $\begin{pmatrix} L&M\\M&N \end{pmatrix}$ II-forma ploskve X glede na r. Naj bo $r(u_0,v_0)=m\in X$. Vemo, da je $\{r_u(u_0,v_0),r_v(u_0,v_0)\}$ baza za tangetno ravnino T_mX , zato lahko vsak vektor v njej enolično zapišemo v obliki $\xi r_u(u_0,v_0)+\eta r_v(u_0,v_0)$. Potem obstaja funkcija

$$\kappa_n : T_m X \longrightarrow \mathbb{R}$$

$$\kappa_n(\xi r_u(u_0, v_0) + \eta r_v(u_0, v_0)) =: \kappa_n(\xi, \eta) = \begin{pmatrix} \xi & \eta \end{pmatrix} \begin{pmatrix} L & M \\ M & N \end{pmatrix}_{(r(u_0, v_0))} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

Opomba. Če je $(\xi, \eta) = (\dot{u}, \dot{v})$ in je γ naravno parametriziana krivulja, potem par (ξ, η) leži na enotski krožnici v ravnini $T_m X$. V \mathbb{R}^3 je to res običajna krožnica glede na evklidkski skalarni produkt, v koordinatah (ξ, η) pa jo določa enačba

$$E\xi^2 + 2F\xi\eta + G\eta^2 = 1.$$

Definicija 2.26. Ekstrema funkcije $\kappa_n: T_mX \to \mathbb{R}$, skrčene na enotsko sfero $E\xi^2 + 2F\xi\eta + G\eta^2 = 1$, imenujemo glavni ukrivljenosti ploskve X v točki m. Označimo ju s κ_1 in κ_2 .

Opomba. Ali minimum označimo s κ_1 ali κ_2 , je stvar dogovora. Ekstrema obstajata, ker je krožnica kompakt, torej ima zvezna funkcija κ_n na njej minimum in maksimum.

Definicija 2.27. Tangetna vektorja $\xi_1 r_u + \eta_1 r_v$, $\xi_2 r_u + \eta_2 r_v \in T_m X$, ki sta (različna) ekstrema funkcije κ_n , se imenujeta glavni smeri.

Opomba. Kmalu bomo dokazali, da sta glavni smeri res kvečjem dve, zato je takšna definicija upravičena (če bi bila κ_n poljubna zvezna funkcija, bi lahko imela več ekstremov).

Definicija 2.28. Gaussova ukrivljenost ploskve X v točki m je podana s produktom

$$\kappa(m) = \kappa_1(m)\kappa_2(m).$$

Opomba. Izkazalo se bo, da je Gaussova ukrivljenost izometrična varianta in da je tesno povezana z Eulerjevo karakteristiko.

Definicija 2.29. Povprečna ukrivljenost ploskve X v točki m je podana s formulo

$$H(m) = \frac{1}{2}(\kappa_1(m) + \kappa_2(m)).$$

Z naslednjim izrekom bomo utemeljili, da sta glavni ukrivljenosti res kvečjem dve.

Izrek 2.30.

Glavni ukrivljenosti sta ničli kvadratne enačbe

$$\det\left(\begin{pmatrix}L & M\\ M & N\end{pmatrix}_{(m)} - \lambda \begin{pmatrix}E & F\\ F & G\end{pmatrix}_{(m)}\right) = 0.$$

Dokaz: Ekstrema λ_1, λ_2 sta vezana ekstrema za funkcijo $\kappa_n : T_m X \to \mathbb{R}$. Zaradi homeomorfizma $T_m X \approx \mathbb{R}^2$ lahko identificiramo elemente $T_m X$ s pari (ξ, η) . Naša krožnica je določena z vezjo $||(\xi, \eta)|| = 1$. Torej iščemo ekstreme funkcije

$$\kappa_n(\xi, \eta) = \begin{pmatrix} \xi & \eta \end{pmatrix} \begin{pmatrix} L & M \\ M & N \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = L\xi^2 + 2M\xi\eta + N\eta^2$$

pri vezi

$$g(\xi,\eta) = ||(\xi,\eta)|| = \begin{pmatrix} \xi & \eta \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = E\xi^2 + 2F\xi\eta + G\eta^2 = 1.$$

Zdaj se s pomočjo analize 2 spomnimo, da se vezane ekstreme išče s pomočjo Lagrangeeve funkcije

$$\kappa_n(\xi,\eta) - \lambda g(\xi,\eta).$$

Da bo skalar λ določal ekstrem, mora veljati zveza

$$\operatorname{grad}(\kappa_n(\xi,\eta) - \lambda g(\xi,\eta)) = 0.$$

Zaradi linearnosti gradienta je to ekvivalentno zvezi

$$\operatorname{grad}(\kappa_n(\xi,\eta)) - \lambda \operatorname{grad}(g(\xi,\eta)) = 0.$$

Zdaj poračunamo gradienta, da dobimo

$$\operatorname{grad}(\kappa_n(\xi,\eta)) = \begin{pmatrix} \frac{\partial \kappa_n}{\partial \xi} \\ \frac{\partial \kappa_n}{\partial \eta} \end{pmatrix} = 2 \begin{pmatrix} L & M \\ M & N \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix},$$
$$\operatorname{grad}(g(\xi,\eta)) = \begin{pmatrix} \frac{\partial g}{\partial \xi} \\ \frac{\partial g}{\partial \eta} \end{pmatrix} = 2 \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}.$$

Torej rešujemo enačbo

$$\left(\begin{pmatrix} L & M \\ M & N \end{pmatrix} - \lambda \begin{pmatrix} E & F \\ F & G \end{pmatrix}\right) \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Ta enačba ima netrivialne rešitve natanko tedaj, ko je

$$\det\left(\begin{pmatrix} L & M \\ M & N \end{pmatrix} - \lambda \begin{pmatrix} E & F \\ F & G \end{pmatrix}\right) = 0.$$

Denimo, da imamo neki rešitvi $\lambda_1,\,\lambda_2.$ Potem obstajata vektorja $(\xi_1,\eta_1)^T,\,(\xi_2,\eta_2)^T,$ da je za i=1,2

$$\left(\begin{pmatrix} L & M \\ M & N \end{pmatrix} - \lambda_i \begin{pmatrix} E & F \\ F & G \end{pmatrix}\right) \begin{pmatrix} \xi_i \\ \eta_i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Če vzamemo enotska vektorja $(\xi_1, \eta_1)^T$, $(\xi_2, \eta_2)^T$, in množimo i-to zgornjo enačbo z leve z (ξ_i, η_i) , dobimo

$$\underbrace{\begin{pmatrix} \xi_i & \eta_i \end{pmatrix} \begin{pmatrix} L & M \\ M & N \end{pmatrix} \begin{pmatrix} \xi_i \\ \eta_i \end{pmatrix}}_{\kappa_n(\xi,\eta)} - \lambda_i \underbrace{\begin{pmatrix} \xi_i & \eta_i \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \xi_i \\ \eta_i \end{pmatrix}}_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Desni člen je enak 1, ker smo izbrali enotska vektorja glede na skalarni produkt, porojen s to matriko. Preostaneta nam torej enačbi

$$\kappa_n(\xi_i, \eta_i) = \lambda_i, \quad i = 1, 2.$$

Točki (ξ_i, η_i) sta vezana ekstrema funkcije κ_n pri vezi g=1. Torej sta to ničli kvadratnega polinoma

$$\det\left(\begin{pmatrix}L & M\\ M & N\end{pmatrix} - \lambda\begin{pmatrix}E & F\\ F & G\end{pmatrix}\right) = 0.$$