Steelhead Overshoot Update

Markus Min 4/21/2022

Simulation study

Simulation study diagram

Covariates included

- · Two continuous covariates:
 - Temperature
 - Flow
- Two categorical covariates:
 - Rear type
 - Natal origin
- -> generating multiple datasets with different functional relationships between covariates and movement probabilities, including datasets that have no relationship with covariates

Multinomial logit revisited

For each movement probability:

Numerator:

$$\psi_{12} = \exp(\beta_{0,12} + \beta_{temp,12} * temp + \beta_{flow,12} * flow + \beta_{rear,12}[rear] + \beta_{origin,12}[origin])$$

Denominator:

$$1 + \psi_{12} + \psi_{13} + \psi_{14} \dots$$

Loss = 1 - Σ (all other movements)

BON to MCN example

Multinomial logit revisited

For each movement probability:

Numerator:

$$\psi_{BM-JDR} = \exp(\beta_{0,BM-JDR} + \beta_{temp,BM-JDR} * temp + \beta_{flow,BM-JDR} * flow + \beta_{rear,BM-JDR}[rear] + \beta_{origin,BM-JDR}[origin])$$

Denominator:

$$1 + \psi_{BM-JDR} + \psi_{BM-DES} + \psi_{BM-MIP} + \psi_{BM-MB}$$

BM-loss = 1 - Σ (all other movements)

Behavior of multinomial logit

Simulation code

Example data

600 simulated detection histories:

##	[,1]	[,2]	[,3]	[,4]	[,5]
## mainstem, mouth to BON	0	0	0	0	0
## mainstem, BON to MCN	1	0	1	0	0
## mainstem, MCN to ICH or PRA	0	1	0	0	0
## mainstem, PRA to RIS	0	0	0	0	0
## mainstem, ICH to LGR	0	0	0	0	0
## Deschutes River	0	0	0	0	0
## John Day River	0	0	0	1	0
## Tucannon River	0	0	0	0	0
## Yakima River	0	0	0	0	0
## loss	0	0	0	0	1

Current approach to JAGS code (which isn't working yet)

Using a design matrix

- For each individual state transition, create a matrix ${\bf X}$ that contains 1s (in the case of intercepts, β_0 , or β values that are not multiplied by a covariate value, e.g., origin and rear type) and covariate values
- · Multiply ${f X}$ by a vector ${f B}$ to get the equation for each ψ
- Note: There is one ${\bf B}$ vector for each state (total of 9 in our simulated dataset); there is one ${\bf X}$ for each individual transition
 - In the simulated dataset of 600 fish, we have about 3,000 individual trans itions; in the full dataset it's about 200,000

Matrix setup

$$\begin{bmatrix} \psi_{12} \\ \psi_{13} \\ \psi_{14} \\ \psi_{15} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & t_1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & t_2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & t_3 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & t_4 \end{bmatrix} \begin{bmatrix} \beta_{0,1} \\ \vdots \\ \beta_{0,4} \\ \beta_{t,1} \\ \vdots \\ \beta_{t,4} \end{bmatrix}$$

$$\underbrace{ X(\text{data})}$$

$$\begin{bmatrix} \psi_{12} \\ \psi_{13} \\ \vdots \\ \beta_{0,4} \\ \beta_{t,1} \\ \vdots \\ \beta_{t,4} \end{bmatrix}$$

One row for each possible movement (except loss).

Additional columns are added for each covariate.

Matrix setup

This gives you a column vector ψ which corresponds to the numerators of the each of the movement probabilities except loss.

Exponentiating this ψ vector and dividing this vector by the scalar $(1 + \Sigma(exp(\psi)))$ gives you a vector of the non-loss movement probabilities.

$$\frac{exp(\psi)}{1 + \Sigma(exp(\psi))}$$

Loss is then 1 - the sum of this vector.

Evaluating in JAGS

These different movement probabilities are then summarized into a single vector, which can then be evaluated in JAGS using dmulti():

$$p = c(\frac{exp(\psi)}{1 + \Sigma(exp(\psi))}, loss)$$

$$y[,i,j] \leftarrow dmulti(p, 1)$$