Propositional Logic: Semantics (2/3) CS402, Spring 2016

Shin Yoo

Overview

- Logical Equivalence and Substitution
- Satisfiability, Validity, and Consequence

Logical Equivalence

Definition 1 (2.13)

Let $A_1, A_2 \in \mathcal{F}$. If $\nu(A_1) = \nu(A_2)$ for all/every interpretation ν , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

Logical Equivalence

Definition 1 (2.13)

Let $A_1, A_2 \in \mathcal{F}$. If $\nu(A_1) = \nu(A_2)$ for all/every interpretation ν , then A_1 is logically equivalent to A_2 , denoted $A_1 \equiv A_2$.

р	q	$\nu(p \lor q)$	$\nu(q \lor p)$
T	Т	T	T
Τ	F	T	T
F	Τ	T	T
F	F	F	F

Logical Equivalence: we can extend the result of the previous example from atomic propositions to general formulas.

Theorem 1 (2.15)

Let A_1 and A_2 be any formulas. Then $A_1 \vee A_2 \equiv A_2 \vee A_1$.

Proof.

- Let ν be an arbitrary interpretation $A_1 \vee A_2$. Then, ν is an interpretation for $A_2 \vee A_1$, too.
- ② Similarly, ν is an interpretation for A_1 and A_2 .
- **③** Therefore, $\nu(A_1 \lor A_2) = T \leftrightarrow (\nu(A_1) = T \lor \nu(A_2) = T) \leftrightarrow \nu(A_2 \lor A_1) = T$.

Logical Equivalence

Definition 2 (2.22)

A binary operator, o, is defined from a set of operators, $O = \{o_1, \ldots, o_n\}$ iff there is a logical equivalence A_1 o $A_2 \equiv A$ where A is a formula constructed from occurrences of A_1 , A_2 , and operators in O.

Similarly, an unary operator o is defined from a set of operators, $O = \{o_1, \ldots, o_n\}$ iff there is a logical equivalence o $A_1 \equiv A$ where A is a formula constructed from occurrences of A_1 , and operator o.

Example 1

- \leftrightarrow is defined from $\{\rightarrow, \land\}$ because $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$.
- \rightarrow is defined from $\{\neg, \lor\}$ because $A \rightarrow B \equiv \neg A \lor B$.
- \wedge is defined from $\{\neg, \lor\}$ because $A \wedge B \equiv \neg(\neg A \lor \neg B)$.

 $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation.

 $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation.

- Object Language: the language we set out to study, i.e. propositional logic in our current case.
- Metalanguage: the language that is used to discuss an object language.

 $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation.

- **Object Language:** the language we set out to study, i.e. propositional logic in our current case.
- Metalanguage: the language that is used to discuss an object language.

What is the difference between \leftrightarrow and \equiv ?

 $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is true in every interpretation.

- Object Language: the language we set out to study, i.e. propositional logic in our current case.
- Metalanguage: the language that is used to <u>discuss an</u> object language.

What is the difference between \leftrightarrow and \equiv ?

- Material Equivalence (↔): just another statement in the object language; <u>truth value depends on the specific</u> <u>interpretation</u>.
- Logical Equivalence (≡): semantic statement, i.e. if *p* is logically equivalent to *q*, it means that <u>under every possible</u> <u>interpretation</u>, *p* and *q* logically means the same thing. This is a statement in the metalanguage.

Logical Substitution: logical equivalence justifies *substitution* of one formula for another that is equivalent.

Let us present the intermediate steps first.

Definition 3 (2.17)

A is subformula of B if the formation tree for A occurs as a subtree of the formation tree for B. A is proper subformation of B if A is a subformation of B, but A is not identical to B.

Example 2 (2.18)

The formula $(p \to q) \leftrightarrow (\neg p \to \neg q)$ contains the following proper subformulas: $p \to q, \neg p \to \neg q, \neg p, \neg q, p$ and q

Definition 4 (2.19)

If A is a subformula of B, and A' is an arbitrary formula, then B', the *substitution* of A' for A in B, denoted $B\{A \leftarrow A'\}$, is the formula obtained by replacing all occurrences of the subtree for A in B by the tree for A'.

Definition 4 (2.19)

If A is a subformula of B, and A' is an arbitrary formula, then B', the substitution of A' for A in B, denoted $B\{A \leftarrow A'\}$, is the formula obtained by replacing all occurrences of the subtree for A in B by the tree for A'.

Theorem 3

Let A be a subformula of B and let A' be a formula such that $A \equiv A'$. Then $B \equiv B\{A \leftarrow A'\}$.

Substitution can be naturally used to simplify formulas.

$$p \wedge (\neg p \vee q) \equiv (p \wedge \neg p) \vee (p \wedge q) \equiv \textit{false} \vee (p \wedge q) \equiv p \wedge q$$

Definition 5 (2.24)

A propositional formula A is *satisfiable* iff $\nu(A) = T$ for *some* interpretation ν . A satisfying interpretation is called a *model* for A. A is *valid*, denoted $\models A$, iff $\nu(A) = T$ for *all* interpretation ν . A valid propositional formula is also called a *tautology*.

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is falsifiable.

• X (and, therefore, Z): Satisfiable.

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is falsifiable.

- X (and, therefore, Z): Satisfiable.
- Y: Unsatisfiable.

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is falsifiable.

- X (and, therefore, Z): Satisfiable.
- Y: Unsatisfiable.
- Z: Valid.

A is valid iff $\neg A$ is unsatisfiable. A is satisfiable iff $\neg A$ is falsifiable.

- X (and, therefore, Z): Satisfiable.
- Y: Unsatisfiable.
- *Z*: Valid.
- $(X Z) \bigcup Y$: Falsifiable (i.e. can be shown to be false).

Definition 6 (2.26)

Let $\mathcal V$ be a set of formulas. An algorithm is a decision procedure for $\mathcal V$ if given an arbitrary formula $A\in\mathcal F$, it terminates and return the answer 'yes' if $A\in\mathcal V$ and the answer 'no' if $A\notin\mathcal V$.

By Theorem 2.25, a decision procedure for satisfiability can be used as a decision procedure for validity. Let \mathcal{V} be the set of all satisfiable formulas. To decide the validity of A, we can apply the decision procesure for satisfiability of $\neg A$. This decision procedure is called a *refutation procedure*.

Example 3 (2.27)

Is $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow \neg q)$ valid?

Example 4 (2.28)

 $p \lor q$ is satisfiable but not valid.

Logical Consequence

Definition 7 (2.30)

Extension of satisfiability from a single formula to a set of formulas: a set of formulas $U = A_1, \ldots, A_n$ is (simultaneously) satisfiable iff there exists an interpretation ν such that

 $(A_1) = \dots = \nu(A_n) = T$. The satisfying interpretation is called a nodel of U. U is unsatisfiable iff for every interpretation ν , there exists an i such that $\nu(Ai) = F$.

Logical Consequence: let U be a set of formulas and A a formula. If A is *true* in every model of U, then A is a logical consequence of U, i.e. $\underline{U} \models A$.

Theorem 5 (2.38)

 $U \models A \text{ iff } A_1 \land A_2 \ldots \land A_n \rightarrow A, \text{ where } U = \{A_1, \ldots, A_n\}.$

- If $U = \emptyset$, the logical consequence is the same as the validity.
- Note Theorem 2.16: $A_1 \equiv A_2$ if and only if $A_1 \leftrightarrow A_2$ is *true* in every interpretation.

Theories

Logical consequence is the central concept in the foundations of mathematics; validity is often trivial and not very interesting. For example, Euclidean geometry is an extensive set of logical consequences, all deduced from the five axioms.

Definition 8 (2.41)

A set of formulas \mathcal{T} is a theory if and only if it is <u>closed under</u> <u>logical consequence</u>, i.e. if $\mathcal{T} \models A$ then $A \in \mathcal{T}$. Elements of \mathcal{T} are called <u>theorems</u>.

Let U be a set of formulas. $\mathcal{T}(U) = \{A | U \models A\}$ is called the theory of U. The formulas of U are called <u>axioms</u> and the theory $\mathcal{T}(U)$ is <u>axiomatizable</u>.

Theories

Logical consequence is the central concept in the foundations of mathematics; validity is often trivial and not very interesting. For example, Euclidean geometry is an extensive set of logical consequences, all deduced from the five axioms.

Definition 8 (2.41)

A set of formulas \mathcal{T} is a theory if and only if it is *closed under logical consequence*, i.e. if $\mathcal{T} \models A$ then $A \in \mathcal{T}$. Elements of \mathcal{T} are called *theorems*.

Let U be a set of formulas. $\mathcal{T}(U) = \{A | U \models A\}$ is called the theory of U. The formulas of U are called *axioms* and the theory $\mathcal{T}(U)$ is *axiomatizable*.

Is $\mathcal{T}(U)$ a theory?

p	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
Т	Т	Т	T	T	T
T	T	F	T	F	T
T	F	Τ	T	T	T
T	F	F	T	T	T
F	T	Τ	T	T	F
F	T	F	T	F	T
F	F	T	T	T	F
Т	F	F	F	T	Т
	T T T T F F	T T T T F F T F T	T T T T T T F T F T T F T F F T T F F F T T F F F T T F F F T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T

- $U = \{p \lor q \lor r, q \to r, r \to p\}$
- Interpretation ν_1, ν_3, ν_4 are models of U (i.e. interpretations that make all formulas in U true, see Def. 2.30).
- Which of the following are true?
 - $0 \ U \models p$
 - $U \models q \rightarrow r$

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	Т	T	T	T
ν_2	T	T	F	T	F	T
ν_3	T	F	Τ	T	T	T
ν_4	T	F	F	T	T	T
ν_{5}	F	T	Τ	T	T	F
ν_6	F	T	F	T	F	T
ν_7	F	F	Τ	T	T	F
ν_8	T	F	F	F	T	T

Theory of
$$U = \{p \lor q \lor r, q \to r, r \to p\}$$
, i.e. \mathcal{T} (U):

•
$$U \subseteq \mathcal{T}(U)$$

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	Т	T	T	T
ν_2	T	T	F	T	F	T
ν_3	Т	F	Τ	T	T	T
ν_4	T	F	F	T	T	T
ν_{5}	F	Τ	Τ	T	T	F
ν_6	F	Τ	F	T	F	T
ν_7	F	F	Τ	T	T	F
ν_8	T	F	F	F	T	T

- $U \subseteq \mathcal{T}(U)$ because for all formula $A \in \mathcal{F}$, $A \models A$.
- $p \in \mathcal{T}(U)$

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	Т	T	T	T
ν_2	T	Τ	F	T	F	T
ν_3	Т	F	Τ	T	T	T
ν_4	Т	F	F	T	T	T
ν_5	F	Τ	Τ	T	T	F
ν_6	F	T	F	T	F	T
ν_7	F	F	Т	T	T	F
ν_8	T	F	F	F	T	T

- $U \subseteq \mathcal{T}(U)$ because for all formula $A \in \mathcal{F}$, $A \models A$.
- $p \in \mathcal{T}(U)$ because $U \models p$.
- $(q \rightarrow r) \in \mathcal{T}(U)$

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	Т	T	T	T
ν_2	T	T	F	T	F	T
ν_3	T	F	Τ	T	T	T
	Т		F	T	T	T
ν_{5}	F	Τ	Τ	T	T	F
ν_6	F	Τ	F	T	F	T
ν_7	F	F	Τ	T	T	F
ν_8	T	F	F	F	T	T

- $U \subseteq \mathcal{T}(U)$ because for all formula $A \in \mathcal{F}$, $A \models A$.
- $p \in \mathcal{T}(U)$ because $U \models p$.
- $(q \to r) \in \mathcal{T}(U)$ because $U \models (q \to r)$.
- $p \land (q \rightarrow r) \in \mathcal{T}(U)$

	р	q	r	$p \lor q \lor r$	$q \rightarrow r$	$r \rightarrow p$
ν_1	T	Т	Т	T	T	T
ν_2	T	T	F	T	F	T
ν_3	Т	F	Τ	T	T	T
ν_4	Т	F	F	T	T	T
ν_{5}	F	Τ	Τ	T	T	F
ν_6	F	Τ	F	T	F	T
ν_7	F	F	Τ	T	T	F
ν_8	T	F	F	F	T	T

- $U \subseteq \mathcal{T}(U)$ because for all formula $A \in \mathcal{F}$, $A \models A$.
- $p \in \mathcal{T}(U)$ because $U \models p$.
- $(q \to r) \in \mathcal{T}(U)$ because $U \models (q \to r)$.
- $p \land (q \rightarrow r) \in \mathcal{T}(U)$ because $U \models p \land (q \rightarrow r)$.

Theory of Euclidean Geometry is based on the set of 5 axioms, $U = A_1, A_2, A_3, A_4, A_5$ such that:

- A_1 : Any two points can be joined by a unique straight line.
- A₂: Any straight line segment can be extended indefinitely in a straight line.
- A₃: Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
- A₄: All right angles are congruent.
- A₅: For every line I and for every point P that does not lie on
 I, there exists a unique line m through P that is parallel to I.

The ancient Greeks suspected whether A_5 is a logical consequence of the other four. For about 2,000 years, various mathematicians tried to show $\{A_1, \ldots, A_4\} \models A_5$. Only in 1868, Beltrami showed that A_5 is independent from the rest. In other words, we accept A_5 as an axiom.

Beltrami also showed that non-Euclidean geometry (i.e. U with A_5 replaced with alternatives) is *consistent*.