Matemáticas discretas II: Teoría de Grafos II

Universidad del Valle EISC

Septiembre 2017

- 1 Grafos complementarios
- 2 Grafos planos
- 3 Representación de grafos
- 4 Conectividad

Contenido

- 1 Grafos complementarios
- 2 Grafos planos
- 3 Representación de grafos
- 4 Conectividad

Grafos complementarios

Grafo complementario

Sea G un grafo simple no dirigido sin bucles con n vértices. El complementario de G, se denota como \overline{G} . \overline{G} de un grafo simple G tiene los mismos vértices que G. Dos vértices son adyacentes en \overline{G} sii estos dos vértices no son adyacentes en G.

Si $G=K_n, \overline{G}$ es un grafo con n vértices y ninguna arista. A este grafo se le llama **grafo nulo**.

 $\frac{3, 3, 3, 3}{3, 1, 1, 1}$ $\frac{3, 1, 1, 1}{0, 2, 2, 2}$ 2e = 6

Grafos complementarios

Unión de grafos

La unión de dos grafos simples $G_1=(V_1,E_1)$ y $G_2=(V_2,E_2)$ es el grafo simple con el conjunto de vértices $V_1\cup V_2$ y el conjunto de aristas $E_1\cup E_2$. La unión de G_1 y G_2 es denotada por $G_1\cup G_2$.

Grafos complementarios

Grafos complementarios y K_n

Teorema

Si G es un grafo simple con n vértices, entonces la unión de G y \overline{G} es K_n

Dem// La unión de G y \overline{G} contienen una arista entre cada par de n vértices. Por lo tanto, esta unión es K_n .

Ejercicio

Si la secuencia de grado de un grafo simple G es d_1, d_2, \ldots, d_n , ¿Cuál es la secuencia de grado de \overline{G} ?

$$n-1-d_n, n-1-d_{n-1}, \ldots, n-1-d_2, n-1-d_1$$

N=N-1,N-1, -1, N-2

Problema

Si el grafo simple G tiene v vértices y e aristas, ¿Cuántas aristas tiene \overline{G} ?

Contenido

- 1 Grafos complementarios
- 2 Grafos planos
- 3 Representación de grafos
- 4 Conectividad

Grafos planos

Grafo plano.

Un grafo (o multigrafo) G es plano si podemos dibujar G en el plano de modo que sus aristas se intersectan sólo en los vértices de G. Este dibujo se conoce como una inmersión (*embedding*)de G.

Al igual que K_4 también K_1,K_2,K_3 son planos a diferencia de K_5 que no lo es.

Grafos planos

Teorema

Sea G un grafo simple conexo con e aristas y v vértices. Sea r el número de regiones de una representación plana de G. Entonces, r=e-v+2

Observación

Sea G=(V,E) un grafo plano sin bucles con $\mid V\mid=v, \mid E\mid=e>2$, y r regiones, entonces $3r\leq 2e$ y $e\leq 3v-6$

Ejemplo. El grafo K_4 , tiene $\mid V \mid = 4$, $\mid E \mid = 6 > 2$, además cumple con las dos condiciones: (ver grafo)

- $\blacksquare 3r \le 12 \rightarrow r \le 4$
- $e \le 3(4) 6, \quad e \le 6, 6 \le 6$

Grafos planos

Ejemplo. Sea el grafo K_5 , tiene $\mid V \mid = 5$, y $2e = 4 \cdot 5$, e = 10 no cumple con la condición:

$$e \le 3(5) - 6$$
, $e \le 9$, $10 \le 9$

Ejemplo. Cálculo de las regiones en un grafo planar.

$$|V|=6 \text{ y } |E|=9, e\leq 3(6)-6,$$

$$e\leq 12 \text{ Por Io tanto} 9\leq 12$$

$$\text{y } r????$$

3×52e

e < 31-6

- Sea v_1, v_4, v_5, v_2 un subgrafo con dos regiones R_1 y R_2 que forman una curva cerrada, entonces, el vértice v_3 estaría en R_1 o en R_2 . Cuando v_3 está en R_2 al interior de la curva cerrada, las aristas $\{v_3, v_4\}$ y $\{v_3, v_5\}$ separan a R_2 en dos regiones, R_{21} y R_{22} , sigue siendo plano.
- Entonces no hay manera de colocar el vértice v_6 sin cruzar, si v_6 está en R_1 , entonces el lado $\{v_3,v_6\}$ no se puede dibujar sin cruzar. Si v_6 está en R_{21} , entonces $\{v_2,v_6\}$ no se puede ser dibujado sin cruzar. Si v_6 está en R_{22} , entonces $\{v_1,v_6\}$ no puede dibujar sin cruzar.
- De manera similar cuando $v_3 \in R_1$.

Contenido

- 1 Grafos complementarios
- 2 Grafos planos
- 3 Representación de grafos
- 4 Conectividad

Representación de grafos

Matriz de Adyacencia

Sea G=(V,E) un grafo simple con |V|=n, la matriz de adyacencia es la **matriz booleana** de $n\times n$ tal que:

$$a_{ij} = \left\{ \begin{array}{ll} 1 & \text{si } \{v_i, v_j\} \text{ es una arista de G,} \\ \\ 0 & \text{en caso contrario} \end{array} \right.$$

- \blacksquare hay n! matrices de adyacencia distintas para un grafo de n vértices.
- todos los grafos no dirigidos, incluyendo multigrafos, pseudografos, tienen matrices simétricas

Ejemplo. La matriz de adyacencia de un grafo simple

La matriz de adyacencia de un grafo no dirigido

La matriz de adyacencia de un grafo no dirigido con bucles y con aristas paralelas tiene las siguientes características:

- Un bucle en el vértice a_i se representa por medio de un 1 en la posición (i,i) de la matriz.
- \blacksquare Cuando hay aristas múltiples, la matriz de adyacencia deja de ser booleana, ya que el elemento de la posición (i,j) es igual al número de aristas asociadas a $\{v_i,v_j\}$

Ejemplo. Matriz de adyacencia de un **pseudografo**.

Representación de grafos

Matriz de adyacencia de un grafo dirigido

La Matriz de adyacencia de un grafo dirigido G=(V,E) tiene 1 en la posición (i,j) si hay arista de v_i a v_j , siendo v_1,v_2,\ldots,v_n un listado arbitrario de los vértices del grafo dirigido. entonces:

$$a_{ij} = \begin{cases} 1 & \text{si } \{v_i, v_j\} \text{ es una arista de G,} \\ 0 & \text{en caso contrario} \end{cases}$$

Representación de grafos

Matriz de incidencia

Sea G=(V,E) un grafo no dirigido, supongamos que v_1,v_2,\ldots,v_n son los vértices y e_1,e_2,\ldots,e_m las aristas de G. Entonces, la matriz de incidencia con respecto a este ordenamiento de V y E es la matriz $M=[m_{ij}]$ de $n\times m$ dada por:

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{si la arista } \{e_j\} ext{ es incidente con } \{v_i\} \ \\ 0 & ext{en caso contrario} \end{array}
ight.$$

	e_1	e2	e_3	e4	e_5	e6	(3 £
t	(1)	1	0	0	1	0)	ì
,	0	0	1	1	0	1	1
	0	0	0	0	1	1	0
?	1	0	1	0	0	0	-
,	0	1	0	1	0	0	0
	-					1	V

Listas de adyacencia

Representaciones de grafos.

Matrices adyacencia. Mij = arista que va de i a j Matrices de incidencia. Filas vértices, columnas aristas. Listas de aristas (Pueden ser dirigidas o no)

Contenido

- 1 Grafos complementarios
- 2 Grafos planos
- 3 Representación de grafos
- 4 Conectividad

Teorema

Sea $M_R = (m_{ij})$ la matriz de adyacencia de un grafo.

$$M_R \bigotimes M_R = M_R^2$$

$$M_R \bigotimes M_R \bigotimes M_R = M_R^3$$

$$\underbrace{M_R \bigotimes M_R \bigotimes M_R \dots \bigotimes M_R}_{n} = M_R^n$$

- ⊗ es el producto booleano.
- 1 en M_R^n en un grafo dirigido significa que se puede ir del nodo i al j recorriendo exactamente n aristas en el grado.

Ejemplo Sea el siguiente grafo y su matriz de adyacencia.

El 1 en $\mathbf{M}_{\mathbf{R}}^{2}(1,3)$ significa que hay un camino de longitud 2 de a -c: a,b,c.

Ejemplo. Sea el siguiente pseudografo obtener la cuantía de los caminos de longitud 2.

$$\mathbf{M_R} = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{M_R^2} = \begin{pmatrix} 6 & 3 & 0 & 2 \\ 3 & 6 & 2 & 3 \\ 0 & 2 & 1 & 1 \\ 2 & 3 & 1 & 2 \end{pmatrix}$$

El 6 significa que hay 6 caminos de longitud 2 de a-a:

Matriz de Conectividad

La matriz de conectividad se define como:

$$M_R^{\infty} = M_R \vee M_R^2 \vee M_R^3 \dots \vee M_R^n$$

Ejemplo Obtener la matriz de conectividad para el siguiente grafo.

$$\mathbf{M_R} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\mathbf{M}_{\mathbf{R}}^{\infty} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

Matrices de Pseudografos

$$\begin{array}{c} W^0 = M_R & \textbf{CONECTIVIDAD POR WARSHALL} \\ W^1 = W^0 \vee (W^0_{:1} \wedge W^0_{:1}) \ i,j \geq 1, \ k \leq n \\ W^k = W^{k+1} \vee (W^{k+1}_{ik} \wedge W^{k+1}_{kj}) \\ W^n = M_R^x & M_R = W^0 & W^1 & 4 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array}$$

Camino

Es una trayectoria que comienza en un vértice v_0 y termina en un vértice v_n donde se pueden repetir aristas y vértices.Un camino se puede representar como una sucesión de vértices $v_0, v_1 \dots v_{n-1}, v_n$ o como una sucesión de aristas

$$(v_0, v_1), (v_1, v_2) \dots (v_{n-1}, v_n)$$

Camino simple

Es un camino que NO repite aristas.

Camino cerrado o circuito

Es un camino que comienza y termina en el mismo vértice y puede repetir aristas y vértices.

Circuito simple

Es un camino cerrado en el que no se pueden repetir aristas.

Longitud de un camino

Es el número de aristas que recorre el camino. Un camino de longitud n debe tener n+1 vértices. Para el siguiente grafo:

$$\{b,d,f\}$$

$$\{b-d\}$$

$$\{d-f\}$$

$$n\rightarrow n+1$$

$$n+1\rightarrow n+2$$

- Un camino simple de longitud 4 que empiece en b: b,a,c,e,f
- Un camino cerrado de longitud 5 que inicie en f: f,d,c,d,e,f
- Un camino de longitud 5 de d-c: d,b,c,b,c,d
- Un circuito simple de longitud 4 que empiece en c: c,b,d,e,c

Grafo conexo

Un grafo G=(V,E) no dirigido es conexo si para cualquiera $a,b\in V$, existe un camino o trayectoria de cualquier longitud.

 G_1 es conexo y G_2 no es conexo

Débilmente conexo

Se dice que un grafo dirigido es *débilmente conexo* si hay un camino entre cada dos vértices del grafo no dirigido subyacente.

 a-b: a,b
 b-a: b,d,e,a
 a-e: a,b,d,e

 e-a: e,a
 a-c: a,b,c
 c-a: c,d,e,a

 a-d: a,b,c,d
 d-a: d,e,a
 c-b: c,d,b

b-c: b,c

Por lo tanto, también es débilmente conexo. si obtenemos el grafo no dirigido subyacente encontramos que existe un camino para cualquiera dos vértices.

Grafo fuertemente conexo

Conexidad en grafos dirigidos

Se dice que un grafo dirigido es *fuertemente conexo* si hay un camino de a a b y un camino de b a a para cualquiera dos vértices a y b en el grafo.

 ${\cal H}$ es débilmente conexo y ${\cal G}$ es fuertemente conexo

Componentes fuertemente conexos

- El grafo H tiene 3 componentes fuertemente conexas; el vértice a y el vértice e por ser subgrafos y el componente que es un subgrafo consistente de los vértices $\{b,c,d\}$
- El grafo G tiene dos componentes fuertemente conexas que son los subgrafos formados por los vértices $\{a,b,f\}$ y $\{c,d,e\}$

Grafo acíclico dirigido

Es un grafo que no tiene ciclos.

Problema de los puentes de Königsberg

Partir de cualquier lugar (A,B,C y D) caminar sobre cada puente exactamente una vez y regresar a la posición inicial de partida.

Circuito de Euler

Un **circuito de Euler** en un grafo G es un *circuito simple* que pasa exactamente una vez por cada arista de G. Un **camino de Euler** en G es un camino simple que pasa exactamente una vez por cada arista.

En el grafo A hay una camino de Euler t,z,w,x,y,z se pueden repetir vértices pero no aristas. En el grafo B hay un circuito euleriano: a,e,c,d,e,b,a

Teorema

Un **pseudografo** conexo contiene un circuito euleriano si y sólo si, cada uno de sus vértices tiene grado par.

Ejemplo. Sea el siguiente grafo tiene un circuito euleriano **z**,**y**,**t**,**y**,**x**,**z**,**t**,**x**,**t**,**w**,**u**,**y**,**z**

Hay camino de Euler y circuito de Euler

a,e,c,e,b,e,d,b,a,c,d

a,b,c,d,c,e,d,b,e,a,e,a

Un circuito de Euler.

1) REvisar si tiene los grados de los vértices son pares (x de salida y x de entrada)

Circuito de Euler: a,b,c,b,f,g,c,d,h,g,r,o,h,o,y,z,r,j,x,z,x,p,i,j,f,e,i,e,a

Circuito de Hamilton

Un **camino de Hamilton** en un grafo G es un *camino simple* que pasa exactamente una vez por cada vértice, y un **circuito de Hamilton** en un grafo G es un *circuito simple* que pasa exactamente una vez por cada vértice. Es decir, el camino simple $x_0, x_1, \cdots, x_{n-1}, x_n$ en el grafo G = (V, E) es un camino de Hamilton si $V = \{x_0, x_1, \cdots, x_{n-1}, x_n\}$ y $x_i \neq x_j$ para $0 \leq i < j \leq n$, y un circuito simple $x_0, x_1, \cdots, x_{n-1}, x_n$ es un camino de Hamilton.

El grafo A tiene un camino hamiltoniano t,z,y,x,w y el grafo B tiene un camino hamiltoniano a,b,e,d,c. Ninguno de los dos grafos tiene circuito hamiltoniano. El siguiente grafo tiene el circuito hamiltoniano a,b,c,d,e,f,g,a

Hamilton y K_n

Muestre que K_n tiene un circuito de Hamilton siempre que $n \ge 3$

De los circuitos especiales se puede decir:

- Que son circuitos simples. En el caso del circuito de Euler se pueden repetir vértices pero en el caso del circuito de Hamilton NO.
- Los caminos especiales son caminos simples. En el camino de Euler se pueden repetir vértices. Pero en el camino de Hamilton no se pueden repetir vértices.

Circuito euleriano (circuito simple) que consiste en recorrer todas las arista

Camino euleriano (Camino simple) que consiste en correr todas las aristas

TOdos son de grado PAR

El inicial y el final son de grado IMPAR

١.																				
Ū	Jn									har har										
				Por	qu	e ti	en	e u	n١	ڎrt	ice	N	O c	on	ect	ad	٥.			
Tiene circuito euleriano si n >= 5 e impar No tiene camino euleriano																				

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011. Chapter 10. Graphs.

