THE LINUX PROGRAMMING INTERFACE

A Linux and UNIX® System Programming Handbook

MICHAEL KERRISK

THE LINUX PROGRAMMING INTERFACE

A Linux and UNIX System Programming Handbook

MICHAEL KERRISK

no starch press

San Francisco

Translated by: Kevin Zhang

2011-01-26 - 2011-05-15(TODO)

本资料仅供学习所用,请于下载后 24 小时内删除,否则引起的任何后果均由您自己承担。本书版权归原作者所有,如果您喜欢本书,请购买正版支持作者。

目录

前言	·	7
	主题	7
	目标读者	7
	Linux 和 UNIX	8
	使用和组织	8
	例子程序	9
	练习	10
	标准和可移植性	10
	Linux 内核和 C 库版本	11
	其它语言使用编程接口	11
	关于作者	11
	致谢	11
	许可	12
	网站和例子程序源代码	12
	反馈	12
第 1	章 历史和标准	13
第 2	章 基础概念	14
第 3	章 系统编程概念	15
第 4	章 文件 I/O: 统一的 I/O 模型	16
第 5	章 文件 I/O: 更多细节	17
第 6	章 进程	18
第 7	章 内存分配	19
第 8	章 用户和组	20
第 9	章 进程凭证	21
第 1	0章 时间	22
第 1	1章 系统限制和选项	23
第 1	2 章 系统和进程信息	24

第	13	章	文件 I/O 缓冲25
第	14	章	文件系统26
第	15	章	文件属性27
第	16	章	扩展属性28
第	17	章	访问控制列表29
第	18	章	目录和链接30
第	19	章	监控文件事件31
第	20	章	信号: 基础概念32
第	21	章	信号: 信号处理器
第	22	章	信号: 高级特性34
第	23	章	定时器和睡眠35
第	24	章	进程创建36
第	25	章	进程结束37
第	26	章	监控子进程38
第	27	章	程序执行39
第	28	章	进程创建和程序执行的更多细节40
第	29	章	线程:介绍41
第	30	章	线程: 同步42
第	31	章	线程:线程安全和线程存储43
第	32	章	线程:线程取消44
第	33	章	线程: 更多细节45
第	34	章	进程组、会话和任务控制46
第	35	章	进程优先级和调度47
第	36	章	进程资源48
第	37	章	Daemon49
第	38	章	编写安全的特权程序50
第	39	章	能力51
第	40	章	登录会计52

第 41 章	共享库基础5	3
第 42 章	共享库高级特性5	4
第 43 章	进程间通信简介5	5
第 44 章	管道和 FIFO5	6
第 45 章	System V IPC 介绍5	7
第 46 章	System V 消息队列5	8
第 47 章	System V 信号量5	9
第 48 章	System V 共享内存6	0
第 49 章	内存映射6	1
第 50 章	虚拟内存操作6	2
第 51 章	POSIX IPC 介绍6	3
第 52 章	POSIX 消息队列6	4
第 53 章	POSIX 信号量6	5
第 54 章	POSIX 共享内存6	6
第 55 章	文件锁6	7
第 56 章	Sockets: 介绍6	8
第 57 章	Sockets: UNIX Domain6	9
第 58 章	Sockets: TCP/IP 网络基础	0
第 59 章	Sockets: Internet Domain	1
第 60 章	Sockets: 服务器设计	2
第 61 章	Sockets: 高级主题	3
第 62 章	终端	4
第 63 章	可选 I/O 模型7	5
第 64 章	伪终端	6
附录 A:	跟踪系统调用7	7
附录 B:	解析命令行参数	8
附录 C:	转换 NULL 指针7	9
附录 D:	内核配置8	0

附录 E:	更多信息来源	81
附录 F:	部分习题解答	82
参考书	目	83
索引		84

前言

主题

本书描述 Linux 编程接口——Linux(UNIX 操作系统的一种免费实现)提供的系统调用、库函数、和其它底层接口。这些接口被直接或间接地使用在 Linux 上运行的每个程序中。它们允许应用程序完成各种任务:如文件 I/O、创建删除文件和目录、创建新进程、执行程序、设置定时器、本机进程和线程间通信、通过网络连接的不同机器进程间通信等等。这些底层接口有时候也叫做系统编程接口。

尽管本书关注于 Linux,但我也非常注意标准和可移植性问题,清晰地区分了 Linux 特有的接口、多数 UNIX 实现共有的特性、以及 POSIX 和 Single UNIX Specification 标准定义的特性。因此本书也提供了 UNIX/POSIX 编程接口的详尽描述,能够适用于编写 UNIX 系统应用或跨平台应用的程序员。

目标读者

本书主要面向以下读者:

- 为 Linux、UNIX、或者其它遵循 POSIX 的系统开发应用的程序员和软件设计师:
- 在 Linux、UNIX、或其它操作系统之间移植应用的程序员:
- Linux 或 UNIX 系统编程课程的教师和高年级学生:
- 希望深入理解 Linux/UNIX 编程接口,以及系统软件是如何实现的系统管理员和"高级用户"。

我假设你拥有一定的编程经验,但不要求系统编程经验。我还假设你了解 C 编程语言,并且知道如何使用 shell 和常用的 Linux 或 UNIX 命令。如果你是 Linux/UNIX 的新手,你会发现第 2 章非常有用,我们以程序员的视角来讲述 Linux 和 UNIX 的基础概念。

Linux 和 UNIX

本书原本可以纯粹地讲解标准 UNIX(也就是 POSIX)系统编程,因为 UNIX 和 Linux 的大多数特性都是相同的。不过虽然编写可移植程序是很好的目标,理解 Linux 对标准 UNIX 编程接口的扩展也是非常重要的。理由之一是 Linux 非常流行;其二是有时候为了性能、或使用标准 UNIX 没有的功能,我们不得不使用非标准的扩展(所有 UNIX 实现都提供类似的非标准扩展)。

因此本书在适用于标准 UNIX 的程序员时,还提供了 Linux 特定编程特性的详细描述。这些特性包括:

- epoll,获得文件 I/O 事件通知的机制;
- inotify, 监控文件和目录改变的机制;
- 能力,授予进程一组超级用户能力的机制;
- 扩展属性:
- i-node 标志;
- clone()系统调用;
- ✓ /proc 文件系统
- Linux 对文件 I/O、信号、定时器、线程、共享库、进程间通信、和 socket 的特殊实现细节。

使用和组织

你至少可以按两种方式来使用本书:

- 作为 Linux/UNIX 编程接口的介绍手册。你可以从头到尾阅读本书。后续章节建立在之前章节的基础之上,我尽量避免依赖后续章节的情况。
- 作为 Linux/UNIX 编程接口的索引参考手册。详细的索引和频繁的交叉引用,允许你随机地阅读任何主题。

我把本书分为以下几部分:

1. 背景和概念: UNIX、C 和 Linux 的历史; UNIX 标准简介(第1章); 以程 第8页/共84页 序员的视角介绍 Linux 和 UNIX 的基本概念 (第 2 章); Linux 和 UNIX 系统编程的基本概念 (第 3 章)。

- 2. 系统编程接口的基础特性: 文件 I/O(第4章和第5章); 进程(第6章); 内存分配(第7章); 用户和组(第8章); 进程凭证(第9章); 定时器(第10章); 系统限制和选项(第11章); 获取系统和进程信息(第12章)。
- 3. 系统编程接口的高级特性: 文件 I/O 缓冲(第 13 章); 文件系统(第 14 章); 文件属性(第 15 章); 扩展属性(第 16 章); 访问控制列表(第 17 章); 目录和链接(第 18 章); 监控文件事件(第 19 章); 信号(第 20 章到第 22 章); 定时器(第 23 章)。
- 4. 进程、程序、和线程:进程创建、进程结束、监控子进程、执行程序(第 24 章到第 28 章); POSIX 线程(第 29 章到第 33 章)。
- 5. 进程和程序的高级主题: 进程组、会话、任务控制(第 34 章); 进程优先级和调度(第 35 章); 进程资源(第 36 章); daemon(第 37 章); 编写安全的特权程序(第 38 章); 能力(第 39 章); 登录会计(第 40 章); 共享库(第 41 章到第 42 章)。
- 6. 进程间通信 (IPC): IPC 简介 (第 43 章); 管道和 FIFO (第 44 章); System V IPC——消息队列、信号量、共享内存 (第 45 章到第 48 章); 内存映射 (第 49 章); 虚拟内存操作 (第 50 章); POSIX IPC——消息队列、信号量、共享内存 (第 51 章到第 54 章); 文件锁 (第 55 章)。
- 7. Socket 和网络编程: IPC 和 socket 网络编程(第 56 章到第 61 章)。
- 8. 高级 I/O 主题: 终端 (第 62 章); 可选 I/O 模型 (第 63 章); 伪终端 (第 64 章)。

例子程序

我用短小但完整的例子程序来阐述多数接口的使用方法,这些例子都被设计为很容易就能从命令行体验,来查看不同的系统调用和库函数如何工作。所以本书包含大量的示例代码——大概 15000 行 C 代码和 shell 会话日志。

尽管阅读和试验例子程序是不错的起点,掌握本书讨论的概念最有效的方法 是编写代码,按你的想法修改例子程序,或者编写新程序都可以。

本书的所有源代码都可以在网站上下载。源代码包含许多书中没有的程序。 这些程序的目的和细节在注释中都有相关描述。我提供了 Makefile 编译这些程序, 以及一个 README 文件,给出了例子程序更多的细节信息。

源代码采用 GNU Affero 通用公共授权版本 3,可以自由分发和修改。源代码中也包含一份该协议的拷贝。

练习

多数章节都以一组练习结束,其中一些是要你按不同方式来试验例子程序, 另外一些是该章讨论过的概念相关的问题,还有就是要求你来编写代码以巩固你 对本书的理解。你可以在附录 F 找到部分练习的解答。

标准和可移植性

贯穿整本书,我都对可移植性问题特别地关注。你会发现很多相关标准的引用,特别是 POSIX.1-2001 和 Single UNIX 规范版本 3(SUSv3)标准。同时你还将看到这些标准最新修订的细节改变,也就是 POSIX.1-2008 和 SUSv4 标准。(由于SUSv3 是更大的修订版本,也是本书编写时最广泛有效的 UNIX 标准,本书讨论的标准大多是 SUSv3,并标注出 SUSv4 不同的地方。除非我明确地提到,你可以假设我们对 SUSv3 规范的描述也适用于 SUSv4)。

对于那些不是标准的特性,我会指出在不同 UNIX 实现间的差别。我还会突出那些 Linux 特定的特性,以及 Linux 与其它 UNIX 对系统调用和库函数实现上的细小差别。当某个特性我没有明确指出是 Linux 专有时,你也通常可以假设它在多数或所有 UNIX 上都有实现。

本书大多数例子程序我都在 Solaris、FreeBSD、Mac OS X、Tru64 UNIX、和 HP-UX 上测试通过(除了那些 Linux 独有的特性)。为了提高代码在这些系统上的可移植性,本书网站上提供的某些例子程序有一些额外的代码。

Linux 内核和 C 库版本

本书主要关注 Linux 2.6.x 系列,这是本书写作时最广泛使用的内核版本。Linux 2.4 的某些细节也会提到,我也会指出 Linux 2.4 和 2.6 的区别。当 Linux 2.6.x 系列出现了新特性时(例如 2.6.34),我也会特别指出相应的内核版本号。

至于 C 库,本书则主要关注于 GNU C 库(glibc) 版本 2。当然, glibc 2.x 系列版本存在差异时,我也会特别指出。

在本书即将印刷时, Linux 内核刚刚发布了 2.6.35 版本, glibc 则已经发布 2.12 版本。本书完全适用于这两个软件版本。Linux 内核和 glibc 将来接口的变化,会在本书的网站上列出。

其它语言使用编程接口

尽管例子程序用 C 语言编写,你也可以在其它编程语言中使用本书讨论的接口——例如编译型语言 C++、Pascal、Modula、Ada、FORTRAN、D;解释型语言 Perl、Python、Ruby 等。(Java 则需要采用一种不同的方式 JNI)。不同的语言要 获取必要的常量定义和函数声明,需要使用不同的技术(C++除外),另外传递函数参数时可能也需要一点额外的工作。此外就没有太大的区别了,核心概念其实都是一样的。因此即使你使用其它的编程语言,你也会发现本书提供的信息是适用的。

关于作者

(略)

致谢

(略)

许可

电子工程学会和开放组织非常友好地许可我引用 IEEE Std 1003.1, 2004 版本,以及信息技术标准——可移植操作系统接口(POSIX),开放组织基本规范 Issue6。 完整的标准可以在 http://www.unix.org/version3/online.html 上在线查阅。

网站和例子程序源代码

你可以在 http://www.man7.org/tlpi 上找到关于本书更多的信息,包括勘误表和例子程序的源代码。

反馈

我非常欢迎代码 bug 报告、代码改进建议、以及代码可移植性的提高。同样 我也欢迎本书的 bug 报告和改进建议。由于 Linux 编程接口总是在变化,我也非 常高兴能获得关于本书将来版本的改进意见,包括新特性和变化特性。

Michael Timothy Kerrisk

Munich, Germany and Christchurch, New Zealand

August 2010

mtk@man7.org

第1章 历史和标准

Linux 是 UNIX 操作系统家族的成员之一。在计算机的术语里,UNIX 已经拥有很悠久的历史。第 1 章的前半部分简述 UNIX 的历史。我们首先描述 UNIX 系统和 C 编程语言的起源,然后讲述导致 Linux 发展成为今天这个样子的两个关键因素: GNU 项目和 Linux 内核的开发。

UNIX 系统最显著的特点之一是它的开发不是被一个厂商或组织控制。相反许多商业和非商业组织都为 UNIX 的发展做出了贡献。UNIX 也因此增加了许多革新的特性,但同时也导致 UNIX 各个实现之间的分歧越来越大,编写一个能运行于所有 UNIX 实现的应用也变得非常困难。于是产生了 UNIX 的标准化运动,我们将在本章后半部分进行讨论。

1.1 UNIX 和 C 简史

第2章 基础概念

第3章 系统编程概念

第4章 文件 I/O: 统一的 I/O 模型

第5章 文件I/O: 更多细节

第6章 进程

第7章 内存分配

第8章 用户和组

第9章 进程凭证

第10章 时间

第11章 系统限制和选项

第12章 系统和进程信息

第 13 章 文件 I/O 缓冲

第14章 文件系统

第15章 文件属性

第16章 扩展属性

第17章 访问控制列表

第18章 目录和链接

第19章 监控文件事件

第 20 章 信号: 基础概念

第21章 信号:信号处理器

第22章 信号: 高级特性

第23章 定时器和睡眠

第24章 进程创建

第25章 进程结束

第 26 章 监控子进程

第 27 章 程序执行

第 28 章 进程创建和程序执行的更多细节

第29章 线程:介绍

第30章 线程:同步

第 31 章 线程:线程安全和线程存储

第32章 线程:线程取消

第33章 线程: 更多细节

第34章 进程组、会话和任务控制

第 35 章 进程优先级和调度

第36章 进程资源

第 37 章 Daemon

第 38 章 编写安全的特权程序

第 39 章 能力

第 40 章 登录会计

第 41 章 共享库基础

第 42 章 共享库高级特性

第 43 章 进程间通信简介

第 44 章 管道和 FIFO

第 45 章 System V IPC 介绍

第 46 章 System V 消息队列

第 47 章 System V 信号量

第 48 章 System V 共享内存

第49章 内存映射

第 50 章 虚拟内存操作

第51章 POSIX IPC 介绍

第 52 章 POSIX 消息队列

第 53 章 POSIX 信号量

第54章 POSIX 共享内存

第55章 文件锁

第 56 章 Sockets: 介绍

第 57 章 Sockets: UNIX Domain

第 58 章 Sockets: TCP/IP 网络基础

第 59 章 Sockets: Internet Domain

第60章 Sockets: 服务器设计

第61章 Sockets: 高级主题

第62章 终端

第 63 章 可选 I/O 模型

第64章 伪终端

附录 A: 跟踪系统调用

附录 B:解析命令行参数

附录 C:转换 NULL 指针

附录 D: 内核配置

附录 E: 更多信息来源

附录 F: 部分习题解答

参考书目

索引