

planetmath.org

Math for the people, by the people.

The Hamiltonian ring is not a complex algebra

 ${\bf Canonical\ name} \quad {\bf The Hamiltonian Ring Is Not A Complex Algebra}$

Date of creation 2013-03-22 16:01:57

Last modified on 2013-03-22 16:01:57

Owner Algeboy (12884)

Last modified by Algeboy (12884)

Numerical id 10

Author Algeboy (12884)

Entry type Result Classification msc 16W99 The http://planetmath.org/QuaternionAlgebra2Hamiltonian algebra \mathbb{H} contains isomorphic copies of the real \mathbb{R} and complex \mathbb{C} numbers. However, the reals are a central subalgebra of \mathbb{H} which makes \mathbb{H} into a real algebra. This makes identifying \mathbb{R} in \mathbb{H} canonical: $1 \in \mathbb{H}$ determines a unique embedding $\mathbb{R} \to \mathbb{H} : r \mapsto r1$. Yet \mathbb{H} is not a complex algebra. The goal presently is to outline some of the incongruities of $\mathbb{C} = \langle 1, i \rangle$ and $\mathbb{H} = \langle 1, \hat{\imath}, \hat{\jmath}, \hat{k} \rangle$ which may be obscured by the notational overlap of the letter i.

Proposition 1. There are no proper finite dimensional division rings over algebraically closed fields.

Proof. Let D be a finite dimensional division ring over an algebraically closed field K. This means that K is a central subalgebra of D. Let $a \in D$ and consider K(a). Since K is central in D, K(a) is commutative, and so K(a) is a field extension of K. But as D is a finite dimensional K space, so is K(a). As any finite dimensional extension of K is algebraic, K(a) is an algebraic extension. Yet K is algebraically closed so K(a) = K. Thus $a \in K$ so in fact D = K.

- In particular, this proposition proves H is not a complex algebra.
- Alternatively, from the Wedderburn-Artin theorem we know the only semisimple complex algebra of dimension 2 is $\mathbb{C} \oplus \mathbb{C}$. This has proper ideals and so it cannot be the division ring \mathbb{H} .
- It is also evident that the usual, notationally driven, embedding of \mathbb{C} into \mathbb{H} is non-central. That is, \mathbb{C} embeds as $a+bi\mapsto a+b\hat{i}$, into $\mathbb{H}=\langle 1,\hat{\imath},\hat{\jmath},\hat{k}\rangle$. This is not central:

$$(1+\hat{i})\hat{j} = \hat{j} + \hat{k} \neq \hat{j}(1+\hat{i}) = \hat{j} - \hat{k}.$$

• Further evidence of the incompatibility of \mathbb{H} and \mathbb{C} comes from considering polynomials. If x^2+1 is considered as a polynomial over $\mathbb{C}[x]$ then it has exactly two roots i,-i as expected. However, if it is considered as a polynomial over $\mathbb{H}[x]$ we arrive at 6 obvious roots: $\{\hat{\imath}, -\hat{\imath}, \hat{\jmath}, -\hat{\jmath}, \hat{k}, -\hat{k}\}$. But indeed, given any $q \in \mathbb{H}$, $q \neq 0$, then $q\hat{\imath}q^{-1}$ is also a root. Thus there are an infinite number of roots to $x^2 + 1$. Therefore declaring $\hat{\imath} = \sqrt{-1}$ can be greatly misleading. Such a conflict does not arise for polynomials with real roots since \mathbb{R} is a central subalgebra.