

Lightning NO_x (LNO_x)

Joint MTG LI Mission Advisory Group & GOES-R GLM Science Team Workshop

May 27-29, 2015

Dr. William Koshak
Earth Science Office, NASA Marshall Space Flight Center

IMPORTANCE OF LNO_x

Interconnections:

IMPACTS

Increased Human Deaths & Injuries

Increased Medical Costs

Increased Livestock Deaths/Injuries & Crop Damage

Increased Food Prices

Increased Power Outages

Increased Repair, Research, & Protection Costs

Increased Fires to Wildlands & Buildings

Increased Mitigation & Insurance Costs

Increased Delays to Outside Operations:
Airport, Launches, Mining, Fed Ex, etc.

Time is Money

Increased Use of Generator Power
(by: hospitals, op radars, emergency managers, military facilities)

Increased Generator Fuel Costs

Increased Tropospheric Ozone

Increase Costs to Industry trying to meet National Ambient Air Quality Standards (NAAQS)

COSTS

OPTICAL ENERGY INTERCEPTED

LNO_x PRODUCTION FROM ONE FLASH

$$\text{LNOx Production} = \left(\frac{Y}{N_A} \right) \frac{Q}{\beta}$$

[moles/flash] [moles/Joule] [Joules/flash]

$\beta = Q/E = \text{fraction of total energy detected by LIS}$

$Y = \text{Thermo-chemical Yield} = 10^{17} \text{ molecules/Joule}$

$N_A = \text{Avogadro's Constant} = 6.022 \times 10^{23} \text{ molecules/mole}$

PRODUCTION FROM MANY FLASHES

$$P = \sum_{k=1}^N P_k = \left(\frac{Y}{N_A} \right) \sum_{k=1}^N \frac{Q_k}{\beta_k}$$

$\beta_k = \beta_k$ (instrument, thundercloud, lightning flash)

$$P \cong \left(\frac{Y}{\beta^* N_A} \right) \sum_{k=1}^N Q_k = K \sum_{k=1}^N Q_k$$

$\beta^* = 1.8675 \times 10^{-19}$ = The value required such that the mean production from the 73,292 flashes observed by LIS over CONUS in the year 1998 (arbitrary reference year) is **250 moles / flash**.

$$K = 8.8920 \times 10^{11} \text{ moles/Joule}$$

FUNDAMENTAL QUESTION

How does one compute the optical energy Q_k detected from the LIS science data?

$$P \cong K \sum_{k=1}^N Q_k$$

LIS data provides:

- radiance
- footprint
- location
- time stamp
- pixel address

.

YAW & PITCH IN CALIBRATION LAB

BORESIGHT ANGLE OF AN EVENT

(n_x, n_y) = pixel address; $1 \leq \text{integer} \leq 128$

$$x = (n_x - 65)60 + 30 = \text{pixel } x\text{-location } (\mu\text{m})$$

$$y = (65 - n_y)60 - 30 = \text{pixel } y\text{-location } (\mu\text{m})$$

$$\rho = \sqrt{x^2 + y^2} = \text{pixel distance from center of CCD}$$

$u = u(n_x, n_y)$ = yaw of LIS sensor head in cal lab

$v = v(n_x, n_y)$ = pitch of LIS sensor head in cal lab

$$\theta = \cos^{-1}[-\sin v_o \cos u \sin v - \sin u_o \cos v_o \sin u + \cos u_o \cos v_o \cos u \cos v]$$

Splining the calibration data gives:

$$\theta = \theta(\rho(n_x, n_y)) = b_3\rho^3 + b_2\rho^2 + b_1\rho + b_0 = \text{boresight angle of illuminated pixel}$$

That is: $(n_x, n_y) \rightarrow \rho \rightarrow \theta$

SOLID ANGLE OF AN EVENT

R = Earth radius

H = cloud-top height

z = orbital altitude

a = event footprint (area)

$$\Delta\omega \square \frac{a \cos \alpha}{r^2} = \text{solid angle of event}$$

where Law of Sines & geometry gives:

$$\alpha = \sin^{-1} \left[\left(\frac{R+z}{R+H} \right) \sin \theta \right] = \text{foreshortening angle}$$

$$r = (R+H) \frac{\sin(\alpha - \theta)}{\sin \theta} = \text{range}$$

FLASH OPTICAL ENERGY DETECTED

$$Q_k = CA\Delta\lambda \sum_{i=1}^{m_k} \sum_{j=1}^{n_k} \left[\frac{a_{jk} \cos \alpha_{jk}}{r_{jk}^2} \right] \bar{\xi}_{\lambda i j k} = \text{ LIS-detected optical energy of } k\text{th flash}$$

a_{jk} = event footprint (j^{th} event in the k^{th} flash)

θ_{jk} = event boresight angle

$\bar{\xi}_{\lambda i j k}$ = event energy density

m_k = # frames occupied by kth flash

n_k = # pixels illuminated by kth flash.

z = LIS orbital altitude

A = LIS entrance aperture area

$\Delta\lambda$ = LIS bandwidth

R = Earth Radius

C = conversion factor

$$r_{jk} = (R + H) \frac{\sin(\alpha_{jk} - \theta_{jk})}{\sin \theta_{jk}} = \text{range (from event footprint to LIS)}$$

$$\alpha_{jk} = \sin^{-1} \left[\left(\frac{R + z}{R + H} \right) \sin \theta_{jk} \right] = \text{foreshortening angle}$$

PRODUCTION (FINAL ESTIMATE)

Boost Number of Flashes based on:

- LIS Detection Efficiency
- LIS Viewtime

So have:

N_o = Number observed

N_t = Total Number Estimated

LIS shown detecting optical energy Q_k from the k^{th} flash.

$$P_t \cong K \sum_{k=1}^{N_o} Q_k + \underbrace{(N_t - N_o)}_{\text{Boost}} \underbrace{\left(K \frac{1}{N_o} \sum_{k=1}^{N_o} Q_k \right)}_{\text{Ave Prod per flash}}$$

NLDN Flash Density (2003-2012)

LIS Flash Density (2003-2012)

Compared CGs to
total lightning from LIS

Year	NLDN	LIS (Raw)	LIS (DE & VT Corrected)
2003	25,312,151	100,090	50,435,202
2004	26,515,549	100,695	51,831,376
2005	25,733,836	96,522	47,837,176
2006	25,110,025	78,787	40,511,787
2007	23,350,168	87,181	44,373,486
2008	22,888,321	90,307	44,772,072
2009	22,233,574	95,793	48,724,951
2010	22,793,791	93,751	49,250,190
2011	23,825,025	96,680	48,989,029
2012	18,192,183	86,766	44,139,720

1998-2013 LIS-INFERRRED LNOx (megamoles)

FLASH COUNT & LNOx TIME SERIES (1998-2013)

~ 33% drop in LNOx

Main Result

USER COMMUNITY & DECISION MAKERS

Chattanooga Hamilton County Air Pollution Bureau

- Address: 6125 Preservation Dr, Chattanooga, TN 37416.
- Monitors Air Quality, and proceeds with enforcement actions if air quality violations are determined.

Point-Of-Contact

- Kathy Jones – Air Monitoring Manager.
- She would like to know better to what extent ozone exceedances are attributable to lightning.

Sample of Jone's estimates of lightning-caused exceedances ... but desire is to improve accuracy of these analyses.

OZONE	Exceedance of 75 STD 8-Hour	Association with Significant Lightning
2012		
June 28-July 1	Yes	Yes
2011		
June 7, 8	Yes	No
August 17,18	Yes	No
September 2	Yes	No
2010		
May 5,6	Yes	No
April 2	No	Day before Yes
April 13,14	Yes	Yes for 4/14
August 4	Yes	Yes
August 10,11	Yes	Yes
September 15	Yes	No
2009		
March 22,23	No	No
April 9	No	Yes for 4/10
June 1,2	Yes	Yes
August 7	No	Yes
June 25, 26	No	Yes
2008		
June 25	Yes	No- West of Chatt
July 18,19	Yes	No-West of Chatt
August 4	Yes	Day Before Some
August 19	Yes	Day Before Some

BENEFITS OF SIMILAR STUDIES USING GLM

- Events Already Given In Terms of Joules**
- Continuous 24/7 Monitoring Helps:**
 - Better assess β_k
 - Better support of LNOx-caused ozone exceedances
 - Provides unprecedented LNOx Emission Inventory for CMAQ, thus improving ozone air quality forecasting

Thank You

