Universidade do Minho 22 de Junho de 2010 2º Teste de Lógica EI

Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas (se nada for dito em contrário).

- 1. Sejam φ e ψ fórmulas do Cálculo Proposicional.
 - (a) Construa uma derivação em DNP mostrando que $\vdash (\neg \varphi \rightarrow \neg \psi) \leftrightarrow \neg (\neg \varphi \land \psi)$.
 - (b) Mostre que, se $\{\neg\varphi \to \neg\psi\}$ é sintacticamente inconsistente, então $\{\neg(\neg\varphi \land \psi)\}$ também o é.
- 2. Considere o tipo de linguagem $L = (\{0, +, \times\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(+) = \mathcal{N}(\times) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(<) = 2$.

Seja $E=(\mathbb{Q},\overline{\ })$ a L-estrutura tal que $\overline{0}$ é o número $zero, \overline{\ }+ e \times s$ ão as operações de adição e multiplicação em \mathbb{Q} , respectivamente, $\overline{P}=\mathbb{Q}^+$ (ou seja, \overline{P} é o predicado "é positivo"), $e < \acute{e}$ a relação "menor do que" em \mathbb{Q} .

- (a) Das seguintes palavras de \mathcal{A}_L^+ , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.
 - i. $(x_1 \times 0) + x_3$
 - ii. $P(x_1) \times 0$
 - iii. $x_0 + x_2 \to x_3$
 - iv. $\forall_{x_0} ((x_0 < 0) \lor P(x_0))$
- (b) Indique o conjunto das variáveis substituíveis pelo L-termo $x_1 \times x_2$ na L-fórmula $\exists_{x_0}(P(x_1) \land \forall_{x_2} \neg P(x_0 \times x_2)).$
- (c) Seja ainda a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = (-1)^i i$. Calcule:
 - i. $(P(x_1 \times x_2) \wedge (0 < x_3))[a]$
 - ii. $(\forall x_0 (0 < x_0 \times x_2) \to P(x_0))[a]$
- (d) Diga se a fórmula $(\forall_{x_0}(0 < x_0 \times x_2) \to P(x_0))$ é válida em E e se é universalmente válida.
- (e) Escreva uma L-fórmula φ que represente, na estrutura E, a afirmação "dois números quaisquer são positivos só se o seu produto é também positivo" e outra ψ que represente, também na estrutura E, a afirmação "a soma de dois números quaisquer positivos é positiva".
- (f) Considerando as fórmulas que escreveu na alínea anterior, diga se ψ é consequência semântica de φ .
- 3. Diga justificando se são verdadeiras ou falsas as seguintes proposições (para quaisquer tipo de linguagem L do Cálculo de Predicados, L-fórmulas φ e ψ e variável x):
 - (a) $\forall_x (\varphi \to \psi) \Leftrightarrow \neg \exists_x (\varphi \land \neg \psi);$
 - (b) $(\neg \varphi \land \forall_x \psi) \rightarrow (\varphi \lor \forall_x \psi) \Leftrightarrow \neg \bot$;
 - (c) $\models \forall_x (\varphi \lor \psi) \to (\forall_x \varphi \lor \forall_x \psi).$
- 4. Seja L um tipo de linguagem do Cálculo de Predicados.
 - (a) Defina por recursão estrutural uma função $f: \mathcal{F}_L \to \mathcal{F}_L$ com a seguinte propriedade: para todo $\varphi \in \mathcal{F}_L$, $f(\varphi)$ é uma fórmula logicamente equivalente a φ e onde não ocorre o quantificador universal.
 - (b) Prove que a função que definiu na alínea anterior tem a propriedade exigida.

Cotações	1.	2.	3.	4.
	2+1,5	1,5+1+1,5+1,5+1,5+1,5	1,5+1,5+1,5	1,5+2