CLAIMS

A compound of general formula (I) below:

$$(R_1)_n$$

$$NH$$

$$(R_2)_m$$

$$(R_3)_m$$

$$(R_4)_n$$

5 wherein

30

each R group is, at one or more of the positions 4, 5, 6 and 7 of the indolinone ring and independently from each other, a straight or branched C₁-C₄ alkyl or alkoxy group or a halogen atom;

- each R₁ group is, the same or different and at one or more of the positions of the pyrrole ring, a C₁-C₄ alkyl or a group of general formula -(CH₂)_pCO₂R', -(CH₂)_p-CONR'R" or -CONH-(CH₂)_p-CONR'R" wherein p is 0, 1, 2 or 3, the alkylene -(CH₂)_p- chain is optionally substituted by hydroxy, and R' and R" are selected, each independently, from hydrogen or straight or branched C₁-C₄ alkyl optionally substituted by hydroxy or, taken together with the nitrogen atom to which they are attached, R' and R" may form a pyrrolidino,
- 20 m is 0 or an integer from 1 to 4;
 n is 0 or an integer from 1 to 3;
 or pharmaceutically acceptable salts thereof.

piperidino or morpholino group;

- 2. A compound according to claim 1 wherein the pyrrole ring is substituted by one or more of the groups selected from methyl, carboxy, ethoxycarbonyl, carboxyethyl, N,N-diethyl-aminocarbonyl, N-[(2-diethylamino)ethyl]carboxamide or N-[2-hydroxy-3-morpholin-4-ylpropyl]carboxamide.
 - 3. A compound according to claim 1 which is 3-[(3,5-dimethyl-1H-pyrrol-2-yl)[14C]methylene-1,3-dihydro-2H-indol-2-one; 5-[(1,2-dihydro-2-oxo-3H-indol-3-

ylidene) ["C] methyl] -2,4-dimethyl-1H-pyrrole-3-propionic acid; N-[(2-diethylamino)ethyl]-5-[(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidene)["C] methyl] -2,4-dimethyl-1H-pyrrole-3-carboxamide; 3-{5-methyl-2-[(Z)-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)["C] methyl]-LH-pyrrol-3-yl)}propanoic acid; and 5-[(Z)-(5-fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)["C] methyl]-N-[(2S)-2-hydroxy-3-morpholin-4-ylpropyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide.

- 4. A process for preparing a compound of formula (I)10 according to claim 1 which process comprises:
 - a) reacting dimethyl-["C] formamide with a suitable pyrrole derivative of formula (II), in the presence of diphosphoryl-chloride

wherein R_1 and n are as defined in claim 1, so as to obtain a compound of formula (III)

$$\begin{array}{c|c} H & 14 \\ C & N \\ N & H \end{array} \qquad \text{(III)}$$

and optionally converting a compound of formula (III) into another compound of formula (III);

20 b) reacting under basic conditions the compound of formula (III) with an oxindole derivative of formula (IV)

$$(R)$$
 (IV)

wherein R and m are as defined in claim 1, so as to obtain a compound of formula (I) and, optionally converting it into another compound of formula (I) and/or into a pharmaceutically acceptable salt thereof.

- 5. A process according to claim 4 wherein, in step (b), basic conditions are obtained by means of pyrrolidine.
- 6. A compound of formula (IIIa) or (IIIb) below

wherein R_1 is a hydrogen atom or a group selected from $-(CH_2)_2-CO_2H$, $-CO_2H_2-CH_3$, $-CO_2CH_2-CO_3H_3$, $-CO_3CH_3-CO_3CH_3$, $-CO_3CH_3$, -

7. Use of a compound of formula (I), as defined in claim 1, for absorption, distribution, metabolism and excretion (ADME) studies.

Statura i de la companya di Albanda di Albanda

in a viejse garannes, bili garanti (j.t.)