Breaking Weak Encryption

By Andrew Bernal and Joan Montas

Caesar Cipher

Decrypting with the Caesar Cipher

Encrypt: "Hello" Decrypt: Slccd

Vulnerabilities?

$$E_n(x) = (x + n) \mod 26$$

(Encryption Phase with shift n)

$$D_n(x) = (x + n) \mod 26$$

(Decryption Phase with shift n)

Substitution Cipher

Substitution Cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ

QWERTYUIOPASDFGHJKLZXCVBNM

GRAY FOX HAS ARRIVED UKQN YGB IQL QKKOCTR

Vulnerabilities?

Abū Yūsuf Yaʻqūb ibn ʾIsḥāq aṣ-Ṣabbāḥ al-Kindī (<u>/ælˈkɪndi/; Arabic</u>: أبو يوسف يعقوب بن <u>Latin</u>: *Alkindus*; c. 801–873 AD)

Frequency Analysis

Vigenere

- Blaise de Vigenere
- Giovan Battista Bellaso (auto key cipher 1553)
- Friedrich Kasiki ("Attacking polyalphabetic substitution" 1863)

Vigenere Cipher

· Key:

· Keystream:

LEMONIMONLE

· Ciphertext:

LXFOPVEFR

Improvements on substitution?

Bigrams - Playfair Cipher

Bigram Frequencies

No	Unigram	Frequencies	No	Unigram	Frequencies
1	TH	2.71	16	OR	1.06
2	HE	2.33	17	EA	1.00
3	IN	2.03	18	TI	0.99
4	ER	1.78	19	AR	0.98
5	AN	1.61	20	TE	0.98
6	RE	1.41	21	NG	0.89
7	ES	1.32	22	AL	0.88
8	ON	1.32	23	IT	0.88
9	ST	1.25	24	AS	0.87
10	NT	1.17	25	IS	0.86
11	EN	1.13	26	HA	0.83
12	AT	1.12	27	ET	0.76
13	ED	1.08	28	SE	0.73
14	ND	1.07	29	OU	0.72
15	TO	1.07	30	OF	0.71

RSA

RSA Algorithm

Key Generation

Select p,q. Calculate $n = p \times q$. Calculate $\phi(n) = (p-1)(q-1)$ Select integer e Calculate d $\phi(n) = (p-1)(q-1)$ Select integer e Calculate d $\phi(n) = 1$ $\phi(n)$

Encryption

Plaintext: M < nCiphertext: $C = M^c \pmod{n}$

Decryption

Plaintext: C Ciphertext: $M = C^d \pmod{n}$

Stop my evil plan. Break my codes.

