Quantifying causal impact using information theory

To find out where to nudge a dynamical system

The diminishing role of hubs in dynamical processes on complex networks

Rick Ouax 1° , Andrea Apolloni 2° and Peter M. A. Sloot 1° 3,4

Rick Quax
Computational Science Lab
University of Amsterdam

Control theory

Complicated systems

Complex systems

Actual microscope image in vitro

- Self-organization
- Emergent behavior

How to control a networked system

network structure + node dynamics

Research question

- Suppose an isolated model A→B where one stochastic variable A influences another B
- P(B | A) encodes the full causality relation

Research question

- Suppose an isolated model A→B where one stochastic variable A influences another B
- P(B | A) encodes the full causality relation
- Find a mathematical 'indicator' fluid to detect causality

Major problem

Non-causal correlations!

Computational

Zero causal effect

Non-zero causal effect

Kullback-Leibler divergence

$$E_{A} \left[D_{KL} \left(\Pr(B \mid A = a) \middle\| \Pr(B) \right) \right]$$

Kullback-Leibler divergence → Mutual information

$$E_{A} \left[D_{KL} \left(\Pr(B \mid A = a) \middle\| \Pr(B) \right) \right] = I(A : B)$$

Causality \rightarrow **information flow**

I(A:A) I(A:B)

"Entropy"

"Mutual information"

Entropy of a coin flip

$$A =$$

$$A = \begin{cases} 0 & Pr(A=0) = 0.5 \\ 1 & Pr(A=1) = 0.5 \end{cases}$$

Carries 1 bit of information

Entropy of a coin flip

$$A =$$

$$A = \begin{cases} 0 & \Pr(A=0) = 0.5 \\ 1 & \Pr(A=1) = 0.5 \end{cases}$$

Carries 1 bit of information

$$A =$$

$$A = \begin{cases} 0 & Pr(A=0) = 0 \\ 1 & Pr(A=1) = 1 \end{cases}$$

Carries **0** bits of information

Entropy of a coin flip

$$A =$$

$$A = \begin{cases} 0 & \Pr(A=0) = 0.5 \\ 1 & \Pr(A=1) = 0.5 \end{cases}$$

Carries 1 bit of information

$$A =$$

$$\begin{cases} 0 & Pr(A=0) = 0 \\ 1 & Pr(A=1) = 1 \end{cases}$$

Carries **0** bits of information

In general:

$$H(A) = \sum_{a \in \{0,1\}} \Pr(A = a) \cdot \log_2 \frac{1}{p(A = a)}$$

Mutual information between coins

Mutual information between coins

Computational

Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Summary of information theory

$$H(X) = -\sum_{X=x} p(x) \log p(x)$$

"Entropy"

$$I(X:Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)},$$
$$= H(X) - H(X|Y).$$

"Mutual information"

Causality \rightarrow **information flow**

$$H(A) = I(A:A)$$

"Entropy"

"Mutual information"

Chain of interactions

$$Pr(A) \longrightarrow Pr(B|A) \longrightarrow Pr(C|B) \longrightarrow ..$$

$$\begin{cases} 1/2 & A=0 \\ 1/2 & A=1 \end{cases} \longrightarrow \begin{cases} \alpha & B=A \\ 1-\alpha & B\neq A \end{cases} \longrightarrow \begin{cases} \alpha & C=B \\ 1-\alpha & C\neq B \end{cases} \longrightarrow \cdots$$

Information dissipation length

Information dissipation length

$$f \equiv \lim_{i \to \infty} \frac{I(X_1 : X_{i+1})}{I(X_1 : X_i)} = (2\alpha - 1)^2$$

$$I(X_1:X_1)=1 \longrightarrow I(X_1:X_2)=f \longrightarrow I(X_1:X_3)=f^2 \longrightarrow \dots$$

When is $f^n \neq \frac{1}{2}$

Information dissipation length

Information dissipation...

NOW TO NETWORKED SYSTEMS

Network of variables

Beware!

Science

No short loops

Network

Rick Quax 11, Andrea Apolloni 2, 1 and Peter M. A. Sloot 1, 3, 4

- Very large networks
 - Locally tree-like (i.e., no short loops)
 - E.g., large and no community-structure / modularity
 - Any degree distribution can be chosen

Network

The diminishing role of hubs in dynamical processes on complex networks

Rick Quax 11, Andrea Apolloni 2, 1 and Peter M. A. Sloot 1, 3, 4

- Network structure
 - Locally tree-like (i.e., no short loops)
 - E.g., large and no community-structure / modularity
 - Any degree distribution can be chosen

Generalized energy function

Not the *influentials* but the *man in the street* drives change

Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Computational

Qualitative evidence from experiments

Network of neurons cultured in a Petri dish

Ivenshitz & Segal (2010)

Social network of word-of-mouth marketing #2

Leskovec et al. (2007)

Gene regulation network

Brown & Jurisica (2007)

Conclusion

- The strength of a causal relation can be quantified using information theory
- The major hurdle to take (or avoid) is correlation
- Locally tree-like networks avoid the hurdle
- The man-in-the-street drives the system behavior for a particular class of dynamics (not the hubs)

Software: https://bitbucket.org/rquax/jointpdf

Quiz

- 1. Does a small nudge always result in a small effect?
- 2. If H(A)=0 can A then still have causal influence on B?