Damian Franco dfranco24@unm.edu 101789677 CS-575

Homework 6

1) For the first problem we were asked to show that the Classical Gram-Schmidt (CGS) and Modified Gram-Schmidt (MGS) are mathematically equivalent. That is, prove that $q_i^{(CGS)} = q_i^{(MGS)}$ and $r_{i,i}^{(CGS)} = r_{i,i}^{(MGS)}$. To show this, we will prove by induction. Induction involves first proving a base case which I did with n = 1. Proving that $q_1^{(CGS)} = q_1^{(MGS)}$ and $r_{1,1}^{(CGS)} = r_{1,1}^{(MGS)}$ was fairly simple for the base case due to the q vectors being the same for both CGS and MGS. The relements are different in CGS and MGS so there is some algebra done to get $r_{1,1}^{(CGS)}$ to equal to $r_{1,1}^{(MGS)}$ but the base case was able to be proved with some norm and Gram-Schmidt rules applied in certain steps. Next, we had to state an inductive hypothesis that states how we are going to prove that all elements of q and r elements are mathematically equal. Lastly, we need to prove the inductive case/step. This was done by proving that $q_{k+1}^{(CGS)} = q_{k+1}^{(MGS)}$ and $r_{k+1}^{(CGS)} = q_{k+1}^{(CGS)}$ r_{k+1} $_{h+1}$ (MGS) where k+1 and h+1 are the inductive step to prove that all elements are mathematically equal. Once again, the proof for $q_{k+1}^{(CGS)} = q_{k+1}^{(MGS)}$ is simple for the inductive case due to the q vectors being the same for both CGS and MGS. Now, I need to prove $r_{k+1,h+1}^{(CGS)} = r_{k+1,h+1}^{(MGS)}$. To do this, I used some rules that were mentioned in class and some that were not. The one that stands out to me was the q vector is equal to a much larger equation according to the textbook and other online references. I used that rule, alongside some algebra to get $r_{k+1,h+1}^{(CGS)} = r_{k+1,h+1}^{(MGS)}$ which I found was true. This problem gave me a great refresher on proof by induction and finding that CGS and MGS are indeed mathematically equivalent was very fun. You can find my hand-written work on the next two pages.

1) Show that Classical Gram-Schmidt
and Modified Gram-schmidt (version 2)
are mathematically equivalent in
exact asidhmetic
Rase case:
Let n=1 4 m=1
9 (cos) = a/(1 (cos) g T a
$= \frac{a}{1/1 a_1 a_2} = \frac{a}{2} \sqrt{a_1}$
= g (MGS) / DONE = g T (1 g)
$= g T \alpha_1 _2$
= q Tq
= y g = r (mes) Jooné
Base case proces q ((6s) - q (M6s) and p (C6s) - (CM6s)
and ((CGS) - (MGS)
Inductive hypothesis:
Assume that quest = quemes and
Assume that g(c6s) = g.(M6s) and rices) = ric(M6s) for some integers
iEA and jEA where n=k and m=h
where KER and hER are the dimensions of
Arh (ie. i=1k and j=1h)

Industive case:
Show the case holds for k+1 and
h+1:
2 (CGS) - V++1-16 (CV)
OKH - KK CKH, Ktl
1 + 1: 2 (CGS) = VK+1/(K+1) K+1 = V = ax+1 \(\frac{1}{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(
Therefore g((GS) = g (MGS) VDONE
Therefore g(c6s) = q (M6s) VDONE
$\frac{C(CGS)}{(++++++++++++++++++++++++++++++++++++$
=/ak+1 - Ei=1 (i,j.) ah+1
-(=== (
(K+1,K+1)
=/a=+1- &i=1 (i,jgi) an+1
(K+1, K+1)
= (an+1 - 8 = 1 (1) 9:
Ftl, Ktl
= aht ax+1- Ei=1 Pis gi
TEHINH (Et), Et)
= ak+1 - 2 = 1 [ing i ah+1
- 11 (kt) Cht/ht/
To
= 2k+1 8ht/MGS)
The state of Mass
Theretore (++1)ht/ = (+1)ht/s)

- 2) The next question asks us to show/prove two characteristics of the reduced QR decompositions. In lecture, we spoke about $\widehat{Q} \ \widehat{R}$ and how it relates to the linear system Ax = b where $A = \widehat{Q} \ \widehat{R}$. We know that the rank of the matrix A is n. I will be using the Q and R hat letters to represent my reduced QR decomposition in both of these proofs.
 - a) This first proof specifically asks us to first show that we have a unique solution y and that the solution y minimizes to the euclidean norm of Qy-b. To show this, I started with the 2-norm of the system Qy-b. Next, I squared the norm and used matrix norm rules and algebra to get all the terms out of the squared 2-norm. This allowed me to find where I can eliminate variables with the use of rules like $\widehat{Q}^T \widehat{Q} = I$, but not the opposite. I then took the derivative of the entire function in respect to y and found more terms I can eliminate. With some simple algebra, I was able to cancel all terms and find that it is indeed bound by the 2-norm of our system (= 0). I then showed for an arbitrary variable z, that we indeed do have a unique solution y by showing that the solution for z, as well as y+z will always produce the same unique solution. My work is shown on the next page.

2) Let AERMM, M>n, have rank=n. Let A= OR be the reduced OR decomposition OF A (so QEPMEN and RE PORM
Let A = OR be the reduced OR decomposition
OF A (SO QEPMAN and RE ROXA
a) Show the unique y & Br that minimizes 1/ ây -61/2 is equal to ât b (y = ât6) 1/ ây -61/2 - 1/ ây -61/3
1/Qu-blb is equal to QTb (y=QTb)
1184-6112 = 1184-6113.
=(QQ-b)'(QQ-b)
$= y^{T} \hat{a}^{T} \hat{a} y - 2 b^{T} \hat{a}^{T} y + b^{T} b$ $= y^{T} y - 2 b^{T} \hat{a}^{T} y + b^{T} b$
$= y T y - 2 b T \hat{o} T y + b T \hat{o}$
at y = at/y (yTy) - at/y (26 TaTy)
1/2 = df/dy (yTy) - df/dy (26 TQTy) + df/dy (6 Tb) - 1
$-((a^{T}a)+(a^{T}a)^{T})y-(a^{T}a)^{T}$
1
$= 2 \hat{\alpha} \hat{\alpha} \hat{\gamma} - 2 \hat{\alpha} \hat{\tau} \hat{b}$
$= 2 I y - 2 Q^{T} b$ $= 2 y - 2 Q^{T} b$
$= a_y - a\hat{q}^T b$
= 2y - 2y
$= 2y - 2y$ $= 0 \qquad pone$

Let z be a solution for the system $\hat{Q}z = b$ which means $\hat{Q}(y+z) = b$ $||\hat{Q}(y+z) - b||_2 = ||\hat{Q}(y+z) - b||_2^2$ so we can say $||\hat{Q}y - b||_2 = ||\hat{Q}z - b||_2$ and $||\hat{Q}y - b||_2 = 0$ and $||\hat{Q}z - b||_2 = 0$ $||\hat{Q}y - b||_2 = 0$ and $||\hat{Q}z - b||_2 = 0$ Since y = z then we can say yis a wingue solution,

b) The next part of the question, we must show the least-squares solution x of Ax = b is the solution of $\widehat{R}x = \widehat{Q}^Tb$. To show this, I first started with Ax = b and used $A = \widehat{Q}\widehat{R}$ to change it to our reduced QR form. Next, I did the same steps that I did for the first question by first taking the euclidean norm of the system then squaring it. I used the same technique on eliminating and expanding terms to reduce my entire term. The next step was to take the derivative which set me up for success because I could see that I had the terms $\widehat{R}x$ and \widehat{Q}^Tb alongside two terms that could cancel each other out when put on either side of the equation. I canceled those terms out and found that indeed the least-squares solution of Ax = b is the same solution of $\widehat{R}x = \widehat{Q}^Tb$. My work is shown on the next page.

- This problem asks us to implement code for classical Gram-Schmidt, modified Gram-Schmidt Version 1, and modified Gram-Schmidt Version 2. All three approaches were provided for us in pseudocode form by Professor Zeb. To test these algorithms, a simple A matrix and a large matrix with almost linearly dependent columns were used to compare their efficiency and accuracy. After writing the code, the algorithms were tested and compared to determine which method was the most effective in terms of speed and accuracy when dealing with matrices with almost linearly dependent columns. Implementation of Classical Gram-Schmidt to Modified Gram-Schmidt Version 1 to Modified Gram-Schmidt Version 2 is very similar in all three senses. However, they do differ in their implementation of the Gram-Schmidt orthogonalization process so it is worth noting. CGS and MGS Version 2 seem to be very similar besides the dot operation on CGS is using both Q and the A matrix while MGS Version 2 uses only the Q matrix for computation. The big difference between MGS Version 1 and the other two is in the order of updating the columns of the Q matrix and computing the elements of the R matrix.
 - a) Verifying all three algorithms and what QR decomposition they produced was very straightforward and I found that all three implementations produced that same exact QR decomposition with the seemingly little to no errors. I would assume that this is because our A matrix is linearly independent and Gram-Schmidt has no issues with linearly independent matrices. On the next pages, you can see my code and output.

Classical Gram-Schmidt function and output:

```
[ ] # Classical GS
    def qr_cgs(A):
        (m,n) = A.shape
        Q = A.copy()
        R = np.zeros((n,n))
        for j in range(n):
            for i in range(j):
                R[i,j] = np.dot(Q[:,i],A[:,j])
                Q[:,j] = Q[:,j] - R[i,j]*Q[:,i]
            R[j,j] = np.linalg.norm(Q[:,j])
            Q[:,j] = Q[:,j]/R[j,j]
        return Q, R
[ ] # Lets test the algorithms on a simple 2x2 system
    A = np.array([[1.,2.],[3.,4.],[5.,6.]])
[ ] Q_cgs, R_cgs = qr_cgs(A)
    print('Q =', Q_cgs)
    print('R =', R_cgs)
    Q = [[ 0.16903085 \ 0.89708523]
     [ 0.50709255  0.27602622]
     [ 0.84515425 -0.34503278]]
    R = [[5.91607978 \ 7.43735744]
     [0.
                 0.82807867]]
```

Modified Gram-Schmidt Version 1 function and output:

```
[ ] # Modified GS - Version 1.
    def qr mgs ver 1(A):
        (m,n) = A.shape
        Q = A.copy()
        R = np.zeros((n,n))
        for j in range(n):
            R[j,j] = np.linalg.norm(Q[:,j])
            Q[:,j] = Q[:,j]/R[j,j]
            for i in range(j+1, n):
                R[j,i] = np.dot(Q[:,j], Q[:,i])
                Q[:,i] = Q[:,i] - R[j,i]*Q[:,j]
        return Q, R
[ ] Q ver1, R ver1 = qr mgs ver 1(A)
    print('Q =', Q_ver1)
    print('R =', R_ver1)
    Q = [[ 0.16903085 \ 0.89708523]
     [ 0.50709255  0.27602622]
     [ 0.84515425 -0.34503278]]
    R = [[5.91607978 \ 7.43735744]
     [0.
                 0.82807867]]
```

Modified Gram-Schmidt Version 2 function and output:

```
[10] # Modified GS - Version 2. Notice the similarity to Classical GS.
     def qr_mgs_ver_2(A):
         (m,n) = A.shape
         Q = A.copy()
         R = np.zeros((n,n))
         for j in range(n):
             for i in range(j-1):
                 R[i,j] = np.dot(Q[:,i], Q[:,j])
                 Q[:,j] = Q[:,j] - R[i,j]*Q[:,i]
             R[j,j] = np.linalg.norm(Q[:,j])
             Q[:,j] = Q[:,j]/R[j,j]
         return Q, R
[11] Q_ver2, R_ver2 = qr_mgs_ver_2(A)
     print('Q =', Q_ver2)
     print('R =', R_ver2)
     Q = [[ 0.16903085 \ 0.89708523]
      [ 0.50709255  0.27602622]
      [ 0.84515425 -0.34503278]]
     R = [[5.91607978 \ 7.43735744]
      [0.
                 0.82807867]]
```

b) Lastly, we were told to test our three algorithms on a matrix with nearly linearly dependent columns. We are given the python code for this part where it computes the euclidean norm of *A-QR* and *Q^TQ-I* where Q and R are the outputs of our functions. We are computing both norms of these functions because it is a way to check the accuracy of the function (||A-QR||) and orthogonality of the columns of the Q matrix (||Q^TQ-I||). Both are important to view how reliable each approach can be, even in an extreme circumstance such as nearly dependent columns. I found that the error itself was very low for every algorithm, but the orthogonality of the columns was very high for CGS and MGS Version 2. This tells me that those algorithms have computed a Q matrix that may not be very close to an orthogonal matrix. This can then lead to numerical errors in the algorithm which implies to me that the best algorithm that we can use is MGS Version 1 which is very surprising and not surprising at the same time. Below and on the next page you can see my results and code.

Results of error and orthogonality calculations:

```
+-----+
| Version | ||A-QR|| | ||QTQ-I|| |
+-----+
| CGS | 7.459892324685454e-14 | 0.00043386787336402015 |
| MGS Ver.1 | 7.451390748880851e-14 | 4.5864016513518555e-10 |
| MGS Ver.2 | 7.394211914570254e-14 | 3.3716815787946195 |
+------+
```

Code for calculating error and orthogonality calculations:

```
#Lets test the algorithms on a matrix with nearly linearly dependent columns
m = 200; n = 150
a = np.random.normal(loc=0, scale=1, size=(m, 1))
epsi = 1e-5
b=a@np.ones((1,n))
A = np.multiply ((a@np.ones((1,n))), np.ones((m,n))) + epsi*np.random.normal(loc\neq 0, scale=1, size=(m, n))
normAs = []
normQs = []
# Classical Gram-Schmidt
Q,R = qr_cgs(A)
norm_of_A_minus_QR = np.linalg.norm(A-Q@R)
norm_of_QTQ_minus_I = np.linalg.norm(Q.T@Q - np.identity(n))
normAs.append(norm_of_A_minus_QR)
normQs.append(norm_of_QTQ_minus_I)
print('CGS: ||A-QR|| = ', norm_of_A_minus_QR, '&& ||QTQ-I|| = ',norm_of_QTQ_minus_I)
Q,R = qr_mgs_ver_1(A)
norm_of_A_minus_QR = np.linalg.norm(A-Q@R)
norm_of_QTQ_minus_I = np.linalg.norm(Q.T@Q - np.identity(n))
normAs.append(norm_of_A_minus_QR)
normQs.append(norm_of_QTQ_minus_I)
print('MGS-ver1: ||A-QR|| = ', norm_of_A_minus_QR, '&& ||QTQ-I|| = ',norm_of_QTQ_minus_I)
# Modified Gram-Schmidt Version 2
Q_R = qr_mgs_ver_2(A)
norm_of_A_minus_QR = np.linalg.norm(A-Q@R)
norm_of_QTQ_minus_I = np.linalg.norm(Q.T@Q - np.identity(n))
normAs.append(norm_of_A_minus_QR)
normQs.append(norm_of_QTQ_minus_I)
print('MGS-ver2: ||A-QR|| = ', norm_of_A_minus_QR, '&& ||QTQ-I|| = ',norm_of_QTQ_minus_I)
```