Bioinformatics + Deep Learning Technical Test

Welcome! This test evaluates your practical and theoretical knowledge in **bioinformatics**, **deep learning**, and **scientific communication**, specifically in the context of **single-cell data analysis** and **generative AI**.

Instructions

- Total time: **24 hours**
- Submit: A Jupyter notebook and a brief report (markdown or PDF)
- Include: All code, visualizations, and explanations inline
- Recommended: Use `scanpy.datasets.pbmc3k()` or any publicly available dataset if none is provided.

PART 1: Single-cell RNA-seq Analysis (Scanpy)

Goal: Preprocess and analyze scRNA-seg data.

Tasks:

- 1. Load the dataset (`scanpy.datasets.pbmc3k()`).
- 2. Preprocess:
 - Filter cells and genes
 - Normalize and log-transform
 - Identify highly variable genes
 - PCA + neighbors + UMAP
- 3. Cluster using Leiden or Louvain.
- 4. Identify marker genes.
- 5. Plot:
 - UMAP colored by cluster

- Heatmap of marker genes 6. Summary: Brief biological interpretation (12 paragraphs) ---PART 2: Deep Learning Model (Autoencoder or scVI) **Goal:** Apply deep learning to dimensionality reduction and reconstruction. Tasks: 1. Use PyTorch, TensorFlow, or scVI. 2. Build a simple autoencoder: - Input: gene expression matrix - Output: reconstruction and latent space 3. Visualize latent space (UMAP or PCA). 4. Optionally, fine-tune a pre-trained `scVI` model. PART 3: Multi-Omics Integration (Mini Task) **Goal:** Show theoretical and practical knowledge of omics integration. Tasks: 1. Briefly describe **two strategies** for integrating multi-omics data (e.g., RNA + protein). 2. Provide pseudocode or actual Python code to preprocess and concatenate RNA and protein matrices for downstream analysis.

PART 4: Scientific Reasoning + Communication

Tasks:
1. You observed poor clustering between two biologically similar cell types:
- List 3 possible causes
- Suggest 2 resolution strategies
2. Bonus: Draft a short abstract (max 200 words) summarizing your analysis from Parts 1 & 2.
Submission Checklist
- [] Jupyter Notebook with code and outputs
- [] Short report/abstract with biological interpretations
- [] Include necessary plots: UMAP, heatmap, etc.