Rapport de laboratoire 3 MTH8211

Oussama Mouhtal, Yasmine Amami

using DataAssim
using LinearAlgebra
using Plots
using Random
using Test

Description du projet

Assimilation de données

L'assimilation de données consiste à ajuster une modèle physique dépendant d'un paramètre souvent l'estimation initiale par les données et des informations a priori sur le problème, mathématiquement, on cherche à trouver le paramètre du modèle physique en minimisant l'écart entre le modèle et les observation tout en tenant compte de l'information à priori :

$$\min_{x_0 \in \mathbb{R}^n} f(x_0) = \min_{x_0 \in \mathbb{R}^n} \frac{1}{2} \|x_0 - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{t_i \in \mathcal{T}} \|y_i - \mathcal{H}_i(\mathcal{M}_{t_0,t_i}(x_0))\|_{R_i^{-1}}^2. \tag{1}$$

Ici, $x_0 = x(t_0)$ est l'état au temps initial t_0 , par exemple la valeur de la température, $x_b \in \mathbb{R}^n$ représente les informations a priori au temps t_0 et $y_i \in \mathbb{R}^{m_i}$ est le vecteur d'observation au temps t_i pour $t_i \in \mathcal{T}$ avec \mathcal{T} représente l'ensemble des instants où les observations sont collectés. $\mathcal{M}_{t_0,t_i}(\cdot)$ est un modèle dynamique physique non linéaire qui propage l'état x_0 au temps x_0 vers l'état x_i au temps t_i en résolvant les équations aux dérivées partielles. $\mathcal{H}_i(\cdot)$ transforme le vecteur d'état x_i en un vecteur de dimension m_i représentant l'état dans l'espace d'observation. $B \in \mathbb{R}^{n \times n}$, $R_i \in \mathbb{R}^{m_i \times m_i}$ sont des matrices symétriques définies positives de covariance d'erreur correspondant aux erreurs du modèle a priori et des observations, respectivement.

Modèle utilisé

Le modèle que nous utilisons est "Shallow Water 1D". Ce modèle repose sur deux variables principales : la hauteur de la surface de l'eau ζ et la vitesse de l'eau u, avec les équations linéarisées.

Les équations discrétisées sont les suivantes :

1. Mise à jour de la hauteur de la surface de l'eau ζ_i :

$$\zeta_i^{(new)} = \zeta_i - \frac{\operatorname{dt} \cdot h}{x_u[i+1] - x_u[i]} (u[i+1] - u[i])$$

Où dt est le pas de temps, h est la profondeur de l'eau, et x_u est l'espace discret pour les vitesses de l'eau.

2. Mise à jour de la vitesse de l'eau u_i :

$$u_i^{(new)} = u_i - \frac{\operatorname{dt} \cdot g}{x_r[i] - x_r[i-1]}(\zeta_i - \zeta_{i-1})$$

Où g est la constante gravitationnelle et x_r est l'espace discret pour les hauteurs de l'eau.

Finalement, le modèle M utilisé est linéaire tel que la matrice est creuse, tel que :

$$\mathcal{M}_{t_0,t_i}(x_0) = \mathcal{M}(\mathcal{M}(\dots \mathcal{M}(x_0)))$$

avec $x = [\zeta, u]$.

Opérateur d'observation

L'opérateur d'observation utilisé ici consiste à extraire les m_i premier élément du vecteur d'état $\mathcal{M}_{t_0,t_i}(x_0)$ à l'instant t_i , qui est une opération linéaire.

Génération des observations

Le modèle est exécuté avec les conditions initiales exactes xit, et les observations réelles y_i sont générées par l'opérateur d'observation \mathcal{H} tel que :

$$y_i = H\mathcal{M}_{t_0,t_i}(xt) + \epsilon_{\text{obs}}$$

où $\epsilon_{\mathrm{obs}} \sim \mathcal{N}(0, R_i)$ est un bruit d'observation. Dans ce projet les matrice $R_i = \sigma I_{m_i}$, et \$m_i = m.

Information a priori (background)

En assimilation de données, l'information a priori correspons au vecteur d'état du sytème prédit par l'ancien modèle à l'instant t_0 , l'information à priori x_b est généré tel que :

$$x_b = xit + \epsilon_b$$

où $\epsilon_{\rm b} \sim \mathcal{N}(0, B)$ est un bruit. Dans ce projet les matrice $B = \sigma I_n$.