# Minimisation of (history-)deterministic generalised (co-)Büchi automata

joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and Aditya Prakash

# Minimisation of (history-)deterministic generalised (co-)Büchi automata

joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and Aditya Prakash

# Büchi automaton



## Büchi automaton



 $L(\mathcal{A}) = \{ \text{words that contain infinitely many } aab \} = (\Sigma^* aab)^\omega$ 

#### Büchi automaton



$$L(A) = \{ \text{words that contain infinitely many } aab \} = (\Sigma^* aab)^{\omega}$$

Deterministic Büchi automata recognise Büchi languages.

# Co-Büchi automaton



### Co-Büchi automaton



 $L(\mathcal{A}) = \{ ext{words that contain finitely many } aab \} = \Sigma^* a^\omega \cup \Sigma^* (ab^+)^\omega$ 

#### Co-Büchi automaton



$$L(\mathcal{A}) = \{ \text{words that contain finitely many } aab \} = \Sigma^* a^\omega \cup \Sigma^* (ab^+)^\omega$$

Deterministic co-Büchi automata recognise *co-Büchi languages*. = complements of Büchi languages.

 $\mathcal{A}$  is history-deterministic if there is a resolver  $\sigma: \Delta^* \times \Sigma \to \Delta$  such that for all  $w \in L(\mathcal{A})$ , applying  $\sigma$  while reading w yields an accepting run.

 $\mathcal{A}$  is history-deterministic if there is a resolver  $\sigma: \Delta^* \times \Sigma \to \Delta$  such that for all  $w \in L(\mathcal{A})$ , applying  $\sigma$  while reading w yields an accepting run.



History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

 $\mathcal{A}$  is history-deterministic if there is a resolver  $\sigma: \Delta^* \times \Sigma \to \Delta$  such that for all  $w \in L(\mathcal{A})$ , applying  $\sigma$  while reading w yields an accepting run.



History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

Büchi automaton, NOT history-deterministic.

Infinitely many b or infinitely many c.

 $\mathcal{A}$  is history-deterministic if there is a resolver  $\sigma: \Delta^* \times \Sigma \to \Delta$  such that for all  $w \in L(\mathcal{A})$ , applying  $\sigma$  while reading w yields an accepting run.



History-deterministic co-Büchi automaton.

Finitely many b or finitely many c.

Büchi automaton, NOT history-deterministic.

Infinitely many b or infinitely many c.

## [Kuperberg, Skrzypczak 2015]

History-deterministism can be tested in PTIME for Büchi and co-Büchi automata.

### Minimisation

**Minimise** A = find B of the same type, the same language and with as few states as possible.

#### **Minimisation**

**Minimise**  $\mathcal{A}=\mathsf{find}\ \mathcal{B}$  of the same type, the same language and with as few states as possible.

Remark: Minimising deterministic Büchi and co-Büchi automata is the same problem.

#### Minimisation

**Minimise**  $\mathcal{A}=\mathsf{find}\ \mathcal{B}$  of the same type, the same language and with as few states as possible.

Remark: Minimising deterministic Büchi and co-Büchi automata is the same problem.

But history-deterministic Büchi and co-Büchi are very different!

## [Kuperberg, Skrzypczak 2015]

- History-deterministic co-Büchi automata can be exponentially smaller than deterministic ones,
- Every history-deterministic Büchi automata has an equivalent deterministic one of size  $O(n^2)$ .

It is NP-complete to minimise deterministic (co-)Büchi automata.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

## [Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

## [Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

## [Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

#### State-based

# [Schewe 2010]

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

## [Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

#### Transition-based

## [Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

#### State-based

# [Schewe 2010]

It is NP-complete to minimise deterministic (co-)Büchi automata when the acceptance condition is on the states.

## [Schewe 2020]

It is NP-complete to minimise history-deterministic (co-)Büchi automata when the acceptance condition is on the states.

#### Transition-based

## [Abu Radi, Kupferman 2019]

We can minimise history-deterministic co-Büchi automata in polynomial time when the acceptance condition is on the transitions.

Can we minimise (history-)deterministic (co-)Büchi automata in polynomial time?

|                       | Büchi | Co-Büchi |
|-----------------------|-------|----------|
| Deterministic         | ???   | ???      |
| History-deterministic | ???   | PTIME    |

|                       | Büchi | Co-Büchi |
|-----------------------|-------|----------|
| Deterministic         | ???   | ???      |
| History-deterministic | ???   | PTIME    |

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

|                       | Büchi | Co-Büchi |
|-----------------------|-------|----------|
| Deterministic         | ???   | ???      |
| History-deterministic | ???   | PTIME    |

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

**This work:** We study generalised (co-)Büchi automata:

|                       | Büchi | Co-Büchi |
|-----------------------|-------|----------|
| Deterministic         | ???   | ???      |
| History-deterministic | ???   | PTIME    |

When you encounter a difficult problem, switch to a different (related) problem.

-George Pólya (sort of)

## **This work:** We study generalised (co-)Büchi automata:

|                       | Generalised Büchi | Generalised co-Büchi |
|-----------------------|-------------------|----------------------|
| Deterministic         | NP-complete       | NP-complete          |
| History-deterministic | NP-complete       | PTIME                |

### Generalised Büchi automaton

Set of colours  $C = \{ \bullet, \bullet, \bullet, ... \}$ , colouring function  $col : \Delta \to 2^C$ 

#### Generalised Büchi automaton

Set of colours  $C = \{ \bullet, \bullet, \bullet, ... \}$ , colouring function  $col : \Delta \to 2^C$ 

Generalised Büchi: See every colour infinitely many times.



Infinitely many aab or infinitely many ab and  $b^2$ 

#### Generalised Büchi automaton

Set of colours  $C = \{ \bullet, \bullet, \bullet, ... \}$ , colouring function  $col : \Delta \to 2^C$ 

Generalised Büchi: See every colour infinitely many times.



Infinitely many aab or infinitely many ab and  $b^2$ 

Generalised co-Büchi: avoid some colour indefinitely after sone point.



Finitely many aab and finitely many ab or  $b^2$ 

### From GBA to BA



Generalised Büchi with n states and k colours.



Büchi with nk states.

### From GBA to BA



Generalised Büchi with n states and k colours.

Büchi with nk states.

Preserves history-determinism!

Minimisation of gen. HD co-Büchi in polynomial time

# Step 1: Apply Abu Radi-Kupferman

Given a generalised history-deterministic co-Büchi recognising L,

► Compute an equivalent history-deterministic co-Büchi

# Step 1: Apply Abu Radi-Kupferman

Given a generalised history-deterministic co-Büchi recognising L,

- ► Compute an equivalent history-deterministic co-Büchi
- lacktriangle We can minimise it  $o {\cal A}^L_{min}$  using Abu Radi and Kupferman's algorithm

# Step 2: Merge safe components

Suppose the language is *prefix-independent*, i.e., all states have the same residual. (= the language is stable under prefix modification)



## Step 2: Merge safe components

Suppose the language is prefix-independent



 $\label{eq:Accepted} \textbf{Accepted} = \textbf{stay in a safe component eventually}$ 

# Step 2: Merge safe components

Suppose the language is prefix-independent

















Suppose the language is prefix-independent





+ all other transitions, with X X X

### [Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton  ${\mathcal C}$  there is an injection

 $\eta: SafeComp(\mathcal{A}^{L}_{min}) o SafeComp(\mathcal{C}) ext{ such that } |\eta(S)| \geq |S| ext{ for all } S \in SafeComp(\mathcal{C}).$ 

### [Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton  $\mathcal C$  there is an injection  $\eta: SafeComp(\mathcal A^L_{min}) \to SafeComp(\mathcal C)$  such that  $|\eta(S)| \geq |S|$  for all  $S \in SafeComp(\mathcal C)$ .

lacktriangle We have an HD gen. co-Büchi of size m= size of the largest safe component of  ${\cal A}^L_{min}$ 

### [Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton  $\mathcal C$  there is an injection  $\eta: SafeComp(\mathcal A^L_{min}) \to SafeComp(\mathcal C)$  such that  $|\eta(S)| \geq |S|$  for all  $S \in SafeComp(\mathcal C)$ .

- lacktriangle We have an HD gen. co-Büchi of size m= size of the largest safe component of  ${\cal A}^L_{min}$
- ▶ Every equivalent HD co-Büchi has a safe component of size ≥ m

### [Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton  $\mathcal C$  there is an injection  $\eta: SafeComp(\mathcal A^L_{min}) \to SafeComp(\mathcal C)$  such that  $|\eta(S)| \geq |S|$  for all  $S \in SafeComp(\mathcal C)$ .

- lacktriangle We have an HD gen. co-Büchi of size m= size of the largest safe component of  ${\cal A}^L_{min}$
- lacktriangle Every equivalent HD co-Büchi has a safe component of size  $\geq m$

If we had a smaller HD gen. co-Büchi we could unfold it to get an HD co-Büchi where all components have size < m.

#### This work

We can minimize generalised HD co-Büchi automata in polynomial time.

### [Abu Radi, Kupferman 2019]

For all equivalent HD co-Büchi automaton  $\mathcal C$  there is an injection  $\eta: SafeComp(\mathcal A^L_{min}) \to SafeComp(\mathcal C)$  such that  $|\eta(S)| \geq |S|$  for all  $S \in SafeComp(\mathcal C)$ .

- lacktriangle We have an HD gen. co-Büchi of size m= size of the largest safe component of  ${\cal A}^L_{min}$
- ightharpoonup Every equivalent HD co-Büchi has a safe component of size  $\geq m$

If we had a smaller HD gen. co-Büchi we could unfold it to get an HD co-Büchi where all components have size < m.

#### This work

We can minimize generalised HD co-Büchi automata in polynomial time.

If not prefix-independent  $ightarrow \sim$  apply the procedure for each residual.

# A sketch of NP-completeness

 $\mathcal{A}$  a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with  $\leq m$  states equivalent to  $\mathcal{A}$ ?

 $\mathcal{A}$  a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with  $\leq m$  states equivalent to  $\mathcal{A}$ ?

- ▶ Guess an automaton  $\mathcal{B}$  with  $\leq m$  states
- ightharpoonup Check equivalence between  $\mathcal A$  and  $\mathcal B$

 $\mathcal{A}$  a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with  $\leq m$  states equivalent to  $\mathcal{A}$ ?

- ▶ Guess an automaton  $\mathcal{B}$  with  $\leq m$  states
- lacktriangleright Check equivalence between  ${\cal A}$  and  ${\cal B}$

#### **Folklore**

Equivalence is decidable in PTIME between all those kinds of automata.

 $\mathcal{A}$  a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with  $\leq m$  states equivalent to  $\mathcal{A}$ ?

- ▶ Guess an automaton  $\mathcal{B}$  with  $\leq m$  states
- ightharpoonup Check equivalence between  ${\cal A}$  and  ${\cal B}$

#### **Folklore**

Equivalence is decidable in PTIME between all those kinds of automata.

But  $\mathcal{B}$  could have exponentially many colours!

 $\mathcal{A}$  a (history-)deterministic gen. (co-)Büchi automaton with n states and k colours. Is there an automaton of the same type with  $\leq m$  states equivalent to  $\mathcal{A}$ ?

- ▶ Guess an automaton  $\mathcal B$  with  $\leq m$  states  $\checkmark$
- ightharpoonup Check equivalence between  ${\cal A}$  and  ${\cal B}$

#### **Folklore**

Equivalence is decidable in PTIME between all those kinds of automata.

But  $\mathcal{B}$  could have exponentially many colours!

#### This work

If  $\mathcal{B}$  exists then it can be recoloured to use  $\leq \mathcal{O}(|\mathcal{A}|km)$  colours.

From graph 3-colouring.

Suitable language:  $L_G = \bigcap_{v \in V} (V^* vv)^\omega \cup V^* (V \setminus N(v))^\omega$ .





- $\blacktriangleright$  Every k-colouring of G induces a det. gen. Büchi automaton with k states for  $L_G$ .
- ▶ A 3-state gen. Büchi automaton for  $L_G$  induces a 3-colouring of G.

- $\blacktriangleright$  Every k-colouring of G induces a det. gen. Büchi automaton with k states for  $L_G$ .
- ▶ A 3-state gen. Büchi automaton for  $L_G$  induces a 3-colouring of G.

### This work

This problem is NP-complete:

Given a (history-)deterministic Büchi automaton  $\mathcal A$  and  $k\in\mathbb N$ ,

is there an equivalent one with  $\leq k$  states?

- $\blacktriangleright$  Every k-colouring of G induces a det. gen. Büchi automaton with k states for  $L_G$ .
- ▶ A 3-state gen. Büchi automaton for  $L_G$  induces a 3-colouring of G.

#### This work

This problem is NP-complete:

Given a (history-)deterministic Büchi automaton  $\mathcal{A}$  with  $\frac{4}{3}$  states, is there an equivalent one with  $\frac{3}{3}$  states?

# Minimising colours

### This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

# Minimising colours

### This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

Proof idea:

## Minimising colours

#### This work

It is NP-complete to minimise both the number of states and colours for (history-)deterministic gen. (co-)Büchi automata.

[Casares, M. 2024]  $\rightarrow$  study of the complexity of simplifying conditions on  $\omega$ -automata.

### What is left to do

- ▶ Minimisation of Büchi, parity automata
- ▶ Are HD gen. Büchi automata more succinct than deterministic ones?
- ► (In-)approximability of minimisation?

### What is left to do

- ▶ Minimisation of Büchi, parity automata
- ▶ Are HD gen. Büchi automata more succinct than deterministic ones?
- ► (In-)approximability of minimisation?

# Thanks!