# MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

#### Geometric random variable

- Consider a biased coin (head with probability p) and suppose you keep tossing it till head appears the first time.
- Let random variable N denote the number of tosses needed for head to appear first time.
- ▶ What is the PMF of N?  $p_N(k) = (1-p)^{k-1}p$ .
- ightharpoonup HW: What is  $E[N], E[N^2], Var(N)$ ?
- ▶ What is  $\bar{F}_N(k) := 1 F_N(k) = P(N > k)$ ?
- What is  $P(N > k + m \mid N > k)$ ? (= P(N > m)) (memoryless property)

#### Poisson random variable

- A Poisson random variable X comes with a parameter  $\lambda$  and has  $\Omega'=\mathbb{Z}_{\geq 0}$
- Intuitively its a limiting case of the Binomial distribution with n increasing and p decreasing such that np converges to  $\lambda$ .
- $\triangleright$  Mean of binomial is np so p should decrease while n increases.
- Read the Wiki page on Poisson limit theorem.
- We will see more of this when we see Poisson Processes.

## Induced measure $P_X$ and CDF

- The cumulative distribution function (CDF)  $F_X(x)$  can be expressed using induced measure  $P_X$ .
- Suppose the domain of  $P_X$  is  $\mathcal{B}(\mathbb{R})$ .  $\mathcal{B}(\mathbb{R})$  is made up of sets of the form  $(-\infty, a]$  for  $a \in \mathbb{R}$ .
- $P_X((-\infty,x]) = \mathbb{P}\{w \in \Omega : X(w) \le x\} := F_X(x).$
- This is a general definition of CDF (applicable for both continuous or discrete).
- ▶ If  $F_X(\cdot)$  is continuous (resp. piecewise continuous), then X is continuous (resp. discrete) random variable.

## For a r.v. X, its CDF satisfies the following

- ▶  $F_X(\infty) = 1$  and  $F_X(-\infty) = 0$  when  $P(-\infty < X < \infty) = 1$ .
- $ightharpoonup F_X: \mathbb{R} 
  ightarrow [0,1]$  is non-decreasing and right continuous.
- ► At point of discontinuity *x* we have
  - 1. right hand limit  $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
  - 2. left hand limit  $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
  - 3.  $F_X(x-) \neq F_X(x+)$ .
  - 4.  $F_X(x)$  could be set to either of the two. Which one?
- Right continuity mandates that at point of discontinuity, we have  $F_X(x) = F_X(x+)$ .
- ▶ By default,  $F_X(x) = F_X(x+) = F_X(x-)$  if  $F_X(x)$  is continuous at x.

## Right-continuity

 $F_X:\mathbb{R} o [0,1]$  is non-decreasing and right continuous.

#### Proof

- Consider a < b where a and b are arbitrary. We want to show that  $F_X(a) \le F_X(b)$ .
- ▶ Define  $A := \{\omega \in \Omega : X(\omega) \le a\}, B := \{\omega \in \Omega : X(\omega) \le b\}.$
- ▶ Easy to see that  $A \subseteq B$  and hence  $\mathbb{P}(A) \leq \mathbb{P}(B)$ .
- $ightharpoonup F_X(a) = P_X((-\infty, a]) = \mathbb{P}(A) \leq \mathbb{P}(B) = F_X(b).$
- This proves the non-decreasing part.

## Right-continuity

 $F_X:\mathbb{R} o [0,1]$  is non-decreasing and right continuous.

#### Proof for right-continuity

- ▶ We want to prove that  $F_X(x) = F_X(x+)$ .
- Consider a sequence of numbers  $\{x_n\}$  decreasing to x. In this case, we have  $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$ .
- ▶ Define  $A_n := \{\omega : X(\omega) \le x_n\}$  and  $A := \{\omega : X(\omega) \le x\}$ .
- ► Is  $A_n \uparrow A$  or  $A_n \downarrow A$ ? Clearly,  $A_n \downarrow A$ .
- From continuity of probability,  $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$ .
- This implies  $\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$ .
- You cannot prove the other way by considering  $x_n \uparrow x$  because  $\bigcup_n (-\infty, x_n] = (-\infty, x)$  and  $P_X(-\infty, x) \neq F_X(x)$ .

## Continuous random variables

#### Continuous random variables

- ▶ A random variable defined on  $\mathbb{R}$  is discrete, if  $F_X(\cdot)$  is piecewise constant.
- ▶ A random variable defined on  $\mathbb{R}$  is continuous, if  $F_X(\cdot)$  is a continuous function.
- Examples of Continuous random variables
  - 1. Pick a number uniformly from [a, b].
  - 2. Time interval between successive customers entering DMart.
  - 3. Travel time from office to home.
  - 4. Level of water in a dam or pending workload on a server.

#### Continuous random variables

Associated with a continuous random variable is a probability density function (pdf)  $f_X(x)$  for all  $x \in \mathbb{R}$ . Its unit is probability per unit length and is defined as

$$f_X(x) := \lim_{\Delta \to 0^+} \frac{P(x < X \le x + \Delta)}{\Delta}$$

$$= \lim_{\Delta \to 0^+} \frac{F_X(x + \Delta) - F_X(x)}{\Delta}$$

$$= \frac{dF_X(x)}{dx}.$$

Alternatively, a random variable X is continuous if there exists a non-negative real valued probability density function (PDF)  $f_X(\cdot)$  such that  $F_X(x) = \int_{u=-\infty}^x f_X(u) du$ .

$$\frac{dF_X(x)}{dx} = f_X(x) \text{ or } P_X(x < X \le x + h) \simeq f_X(x)h.$$

## Properties of pdf

- $ightharpoonup P_X(\mathbb{R}) = \int_{u=-\infty}^{\infty} f_X(u) du = 1.$
- $ightharpoonup P_X(a \le X \le b) = \int_a^b f_X(u) du$ . (Area under the curve)
- ▶ In general,  $P_X(B) = \int_{u \in B} f_X(u) du$ .
- $ightharpoonup P_X(a \le X \le b) = P_X(a \le X \le b) = P_X(a \le X \le b) = P_X(a \le X \le b)$
- $ightharpoonup P_X(X=a)=0.$  (no mass at any point)

### Mean, Variance, Moments

- $ightharpoonup E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- $\triangleright$   $E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where  $g(x) = (x E[X])^2$ .
- For Y = aX + b, E[Y] = aE[X] + b.
- For Y = aX + b,  $F_Y(y) = F_X(\frac{y-b}{a})$  when  $a \ge 0$ .
- ▶ For Y = aX + b and a < 0,  $F_Y(y) = 1 F_X(\frac{y-b}{a})$ .