Tekstury (ang. *Texture Mapping*) odnosi się do procedury projektowania graficznego, powalającej na nałożenie "mapy tekstury" (obiekt 2-D) na obiekt 3-D. W ten sposób obiekt trójwymiarowy uzyskuje strukturę powierzchni podobną do tekstury powierzchni dwuwymiarowej. Jest to cyfrowy odpowiednik stosowania tapety, malowania lub pokrywania wzorem dowolnej powierzchni.

Mapowanie tekstury służy do dodawania szczegółów i tekstury (w postaci obrazu bitmapowego) do obiektu 3D lub koloru do graficznego modelu 3D.

Edwin Catmull w 1974 roku po raz pierwszy użył mapowania tekstury na generowanych komputerowo graffiti. Ta metoda zasadniczo mapowała i łączyła piksele na powierzchni trójwymiarowej. Jest ona obecnie nazywana *diffuse mapping* w celu odróżnienia jej od innych typów technik mapowania.

Postępy w komputerowych technikach mapowania, takich jak height mapping, bump mapping, normal mapping, displacement mapping, reflection mapping, mipmaps i occlusion mapping, ułatwiły realistyczny wygląd grafiki 3D generowanej komputerowo.

Diffuse Map

Najpopularniejsza i najprostsza technika nakładania tekstur na obiekt. Obraz nakładany jest po prostu na trójwymiarowy model, zachowując oryginalne kolory.

Bump Map

Ta technika umożliwia symulowanie zagłębień czy zmarszczek na płaskich teksturach, tworząc wrażenie głębi i trójwymiarowości. Nie zmienia się model obiektu, co pozwala na zaoszczędzenie mocy obliczeniowych.

Rys. 1. Przykład Bump Map (w skali szarości, gdzie czarna barwa oznacza błębokość, biała wysokość).

Normal Map

Umożliwia symulowanie zagłębień czy zmarszczek na płaskich teksturach, tworząc wrażenie głębi i trójwymiarowości. Nie zmienia się model obiektu, co pozwala na zaoszczędzenie mocy obliczeniowych. Różnicą w porównaniu z *bump mappingiem* jest nieco szybsze generowanie efektów, przy większym wykorzystaniu zasobów obliczeniowych.

Rys. 2. Przykład *Normal Map* (przedstawiana w odcieniach niebieskiego, jest uzyskiwana z *Height Map* lub *Bump Map* z *Normal Map Filter*).

Displacement Map

Tekstura przechowująca informacje na temat wysokości elementów, umożliwiając ich podnoszenie i opuszczanie, tworząc bardziej realistyczny obraz. Alternatywa dla *Bump Map* czy *Normal Map*. Technika nie była szeroko stosowana, ponieważ wymaga dodatkowej teselacji obiektów, czyli podzielenia ich na mniejsze części.

Parallax Occlusion

Kolejna technika proceduralnego generowania trójwymiarowych detali na płaskich teksturach i powierzchniach. Zamiast tworzyć nową geometrię, *Parallax Occlusion* bazuje na przygotowanych mapach (*Displacement Map*, powyżej). Dzięki temu możliwe jest tworzenia realistycznych efektów bez znacznego obciążania procesora.

Glow Map

Umożliwia deweloperom określenie, które elementy tekstury powinny błyszczeć, określając także kolor i kształt.

Opacity Map

Umożliwia zamienienie przygotowanych modeli - lub ich fragmentów - w przezroczyste powierzchnie, prezentując na przykład wnętrze kuli.

Specular Map

Ta technika determinuje, w których miejscach błyszczącego obiektu pojawią się jaśniejsze odbicia światła.

Źródła: https://www.techopedia.com/definition/15917/texture-mapping, https://gamebanana.com/threads/190320