Занятие 8. Нормальные формы

- 1. Привести следующие формулы к предваренной нормальной форме:
- a) $\exists x_1 P_1^2 x_1 x_2 \rightarrow \forall x_1 \exists x_2 P_1^2 x_1 x_2$;
- б) $\forall x_1 \exists x_2 P_1^2 x_1 f_1^2 x_2 x_1 \land \exists x_1 P_1^2 x_1 x_2 \land (\forall x_2 P_1^2 x_1 x_2 \longrightarrow \exists x_1 \exists x_2 P_1^2 f_1^2 x_1 x_2 x_2).$
- 2. Для каждой из приведенных ниже формул напишите формулу в сколемовой нормальной форме, выполнимую в том и только случае, когда выполнима исходная формула.
 - a) $\exists x_1 \forall x_2 \forall x_3 \exists x_4 \exists x_5 \forall x_6 \exists x_7 \forall x_8 P_1^3 x_1 f_1^3 x_2 x_1 x_4 f_2^3 x_3 f_3^3 x_5 x_6 x_4 f_1^2 x_7 x_8;$
 - $6) \ \forall x_1 \exists x_2 P_1^2 x_1 f_1^2 x_2 x_1 \land \exists x_1 P_1^2 x_1 x_2 \land (\forall x_2 P_1^2 x_1 x_2 \rightarrow \exists x_1 \exists x_2 P_1^2 f_1^2 x_1 x_2 x_2).$
- 3. Некоторые студенты второго курса помнят определение непрерывности функции f(x) в точке a:

$$\forall \varepsilon (0 < \varepsilon \to \exists \delta (0 < \delta \to \forall x (|x - a| < \delta \to |f(x) - f(a)| < \varepsilon).$$

- а) На языке логики 1-го порядка напишите формулу, интерпретация которой в соответствующей алгебраической системе даёт приведённое выше определение непрерывности.
 - б) Полученную формулу приведите к предваренной нормальной форме.
- в) Напишите формулу в сколемовой нормальной форме, выполнимую тогда и только тогда, когда выполнима построенная вами формула.
 - 4. Дана формула $\forall x_1 \forall x_2 \exists x_3 \ (P_1^2 x_3 x_1 \& P_1^2 x_3 x_2)$.
 - а) Выполнима ли эта формула?
 - б) Имеется ли модель, в которой эта формула невыполнима?
- в) Пусть носителем модели является множество открытых кругов на плоскости, предикатный символ интерпретируется как отношение теоретико-множественного включения. Какое утверждение является интерпретацией указанной формулы? Является ли оно истинным?
- г) Постройте формулу в сколемовой нормальной форме, выполнимую тогда и только тогда, когда выполнима исходная формула.
 - 5. Пусть подстановка $\sigma = \{x_1 | f_1^1 x_3, x_2 | f_1^2 x_1 x_2, x_3 | f_1^0 \}.$
 - а) Найти результат F^{σ} и $(F^{\sigma})^{\sigma}$, если $F = P_1^2 x_1 f_1^2 x_2 x_3 \wedge P_1^2 x_1 x_2$
 - б) Вычислить σ^2 .
 - 6. Каковы подстановки σ и τ , если $\sigma \circ \tau = \epsilon$?
 - 7. Пусть подстановки $\sigma = \{x_1 | f_1^1 x_3, x_2 | f_1^2 x_4 x_2, x_3 | f_1^0, x_4 | x_1 \}$ и $\tau = \{x_1 | x_4, x_2 | x_1, x_3 | f_1^1 x_4, x_4 | x_3 \}$. Вычислить $\sigma \circ \tau$ и $\tau \circ \sigma$.
 - 8. Отличаются ли подстановки

$$\{x_{i_1}|t_1, x_{i_2}|t_2, ..., x_{i_n}|t_n\} \text{ M } \{x_{i_1}|t_1\} \circ \{x_{i_2}|t_2\} \circ ..., \circ \{x_{i_n}|t_n\}?$$

Если не отличаются, то доказать это, в противном случае привести пример, аргументирующий их различие.

Домашнее задание

- 1. а) Вспомните задачу. Даны формулы: $\exists x_1 \exists x_2 (P_1^1 x_1 \land P_2^1 x_2 \land P_1^2 x_1 x_2)$ и $\neg \exists x_1 \exists x_2 (P_1^1 x_1 \land P_3^1 x_2 \land P_1^2 x_1 x_2)$. Выясните, какие из ниже приведённых формул являются логическими следствиями этой совокупности формул:
 - 1) $\forall x_1(P_2^1x_1 \to \neg P_3^1x_1);$
 - 2) $\exists x_1(P_2^1x_1 \land \neg P_3^1x_1);$
 - 3) $\exists x_1 (P_2^1 x_1 \wedge P_3^1 x_1)$.
- б) Вот два утверждения: «Среди первокурсников есть такие, которые знакомы с некоторыми второкурсниками» и «Ни один первокурсник не знаком ни с одним волонтером чемпионата мира по футболу 2018». Постройте такую модель, чтобы эти утверждения стали интерпретацией формул пункта а) и на основании результатов выполнения пункта а) определите, какие из следующих утверждений гарантированно являются логическими следствиями:
- 1) «Ни какой второкурсник не является волонтёром чемпионата мира по футболу 2018»;
- 2) «Некоторые второкурсники не являются волонтёрами чемпионата мира по футболу 2018»;
- 3) «Есть хотя бы один второкурсник, который является волонтёром чемпионата мира по футболу 2018».
- в) Сколько второкурсников должно остаться после отчисления по результатам зимней сессии, чтобы в получившейся модели утверждение 1) из пункта б) было логическим следствием исходных утверждений?
- г) Существует ли модель, в которой утверждение 3) из пункта а) является логическим следствием исходных утверждений?

Ответы: 1. а) только 2-я, б) 2, в) сколько угодно, лишь бы отчислили всех знакомых с первокурсниками, г) да, например, выберем носитель $M = \{1, 2\}$, положим

$$P_1^1(x) = P_2^1(x) = 1$$
 при любом x , $P_3^1(x) = 1$ при $x = 1$, $P_1^2(x, y) = 1$ при $x = 1$ и $y = 2$.

- 2. Привести следующие формулы к предваренной нормальной форме:
- a) $\forall x_1 P_1^2 x_1 f_1^2 x_2 x_1 \rightarrow \exists x_1 (P_1^2 x_2 x_1 \vee \forall x_3 (P_1^1 x_3 \rightarrow P_1^2 f_1^2 x_1 x_3 x_1)).$
- $6) \neg \forall x_1 \exists x_3 (P_1^2 x_1 f_1^2 x_2 x_1 \rightarrow \forall x_2 (P_2^2 x_1 x_2 \wedge P_2^2 x_2 x_3 \wedge P_1^1 f_1^2 x_1 x_3)).$
- 3. Для каждой из приведенных формул, приведенных в задании 2, напишите формулу в сколемовой нормальной форме, выполнимую в том и только случае, когда выполнима исходная формула.
- 4. Дана формула $\forall x_1 \forall x_2 \exists x_3 \ (P_1^2 x_3 x_1 \ \& \ P_1^2 x_3 x_2 \ \& \ \forall x_4 (P_1^2 x_4 x_1 \ \& \ P_1^2 x_4 x_2 \ \rightarrow \ P_1^2 x_4 x_3))$. Выполните для нее все пункты задания 4 из классной работы.