Разбиения натуральных чисел

Графические разбиения

Пример. 26 = 6 + 5 + 4 + 4 + 3 + 2 + 1 + 1; $\lambda = (6, 5, 4, 4, 3, 2, 1, 1, 0, 0, ...)$; $\ell(\lambda) = 8$; sum $(\lambda) = 26$.

Разбиение – последовательность $\lambda = (\lambda_1, \lambda_2, ...)$

целых неотрицательных чисел, которая является невозрастающей и содержит конечное число ненулевых компонент.

 $\operatorname{sum}(\lambda)$ — сумма всех компонент разбиения λ , называется весом разбиения λ .

Длина $\ell(\lambda)$ разбиения λ — число его ненулевых компонент. Для удобства разбиение λ иногда будем записывать в виде $\lambda = (\lambda_1, ..., \lambda_t)$, где $t \geq \ell(\lambda)$, т. е. будем опускать нули, начиная с некоторой нулевой компоненты.

Готфрид Вильгельм Лейбниц (1646 - 1716).

Задача о вычислении функции p(n), равной числу разбиений натурального числа n.

Филипп Ноде в 1740 г. Предложил эту задачу Леонарду Эйлеру.

Примеры результатов Эйлера (опубликовал более 850 работ).

1) Тождество: Для любого натурального числа и число разбиений

$$n = n_1 + n_2 + n_3 + ... + n_t$$

таких, что $n_i \neq n_j$ для любых n_i и n_j , равно числу разбиений n таких, что все n_i нечетны.

- 2) **Пентагональная терема Эйлера**: Пусть $S_0(n)$ и $S_1(n)$ соответственно число разбиений числа n на четное и нечетное число слагаемых. Тогда
 - а) если $n \neq (3q^2 + q) / 2$, то $S_0(n) = S_1(n)$;
 - б) если $n = (3q^2 + q) / 2$, то $S_0(n) S_1(n) = (-1)^q$.

Тождества Роджерса-Рамануджана

Для любого натурального числа n

а) число разбиений $n = n_1 + n_2 + n_3 + \ldots + n_t$

таких, что $|\mathbf{n_i} - \mathbf{n_j}| > 1$ для любых $\mathbf{i} \neq \mathbf{j}$, равно числу разбиений п таких, что для любого \mathbf{i} выполняется

$$n_i \equiv 1 \text{ (Mod 5)}$$
 или $n_i \equiv 4 \text{ (Mod 5)};$

б) число разбиений $n = n_1 + n_2 + n_3 + ... + n_t$

таких, что $|n_i - n_j| > 1$ для любых $i \neq j$ и $n_i > 1$ для любого i, равно числу разбиений n таких, что для любого i выполняется

$$n_i \equiv 2 \text{ (Mod 5)}$$
 или $n_i \equiv 3 \text{ (Mod 5)}$.

Школа Сильвестра и тождества. Дёрфи.

В начале 20-го века майор английской армии **Мак-Магон** вычислил все числа p(n) при $n \le 200$.

Изучение тождеств в США в 19-ом веке.

Формула Харди-Рамануджана:

 $p(n) \approx \exp(\pi \cdot (2n/3)^{0.5}) / 4n \cdot 3^{0.5}$ (при $n \to \infty$).

Формула Харди-Рамануджана-Радемахера. Эндрюс Г. Теория

разбиений. – Москва: Наука, 1982. – 256 С.

NPL – множество всех разбиений,

NPL(m) – множество всех разбиений заданного веса m.

Разбиение $\lambda = (\lambda_1, \lambda_2, ...)$ доминируется разбиением $\mu = (\mu_1, \mu_2, ...)$, а μ доминирует λ , если

$$\lambda_1 \leq \mu_1$$

$$\lambda_1 + \lambda_2 \leq \mu_1 + \mu_2$$

$$\dots$$

$$\lambda_1 + \dots + \lambda_i \leq \mu_1 + \dots + \mu_i$$

Будем визуализировать разбиения с помощью $\partial uarpamm$ $\Phi eppe$. Следующая диаграмма соответствует разбиению (6, 5, 4, 4, 3, 2, 1, 1).

Число блоков в *i*-столбце равно λ_i .

Определим два типа элементарных преобразований множества NPL. Первый — перекидывание блока, второй — удаление блока.

Элементарное преобразование первого типа

(или перекидывание блока):

$$\lambda = (\lambda_1, \dots, \lambda_i, \dots, \lambda_j, \dots, \lambda_n) \to \mu = (\lambda_1, \dots, \lambda_i - 1, \dots, \lambda_j + 1, \dots, \lambda_n).$$

Пусть $i \in \{1, \ldots, l(\lambda)\}$ и $\lambda_i - 1 \ge \lambda_{i+1}$.

Элементарное преобразование второго типа

(или удаление блока):

$$\lambda = (\lambda_1, \dots, \lambda_{i-1}, \lambda_i, \lambda_{i+1}, \dots, \lambda_n) \rightarrow \mu = (\lambda_1, \dots, \lambda_{i-1}, \lambda_i - 1, \lambda_{i+1}).$$

Определим порядок \leq на NPL, полагая $\lambda \leq \mu$ iff, когда λ может быть получено из μ с помощью конечной последовательности элементарных преобразований.

Порядок ≤ совпадает с порядком доминируемости.

NPL и NPL(m) — решётки относительно \leq .

Пересечение элементов в NPL

$$\lambda = (6, 6, 2, 1), \ \mu = (7, 4, 4, 2, 2, 1).$$

 $\operatorname{sum}(\lambda) = 15, \ \operatorname{sum}(\mu) = 20$

$$\Delta_i(\lambda)$$
 0 0 1 0 0 0 0 0 $\lambda = 6$ 6 2 1 0 0 $\mu = 7$ 4 4 2 2 1 $\Delta_i(\mu)$ 0 1 0 1 2 4 $5 = 20 - 15$ $\lambda \wedge \mu = 6$ 5 3 1 0 0

$$\lambda \wedge \mu = (6, 5, 3, 1)$$

Пересечение элементов в NPL(m)

$$\lambda = (5, 4, 2, 2, 2, 1), \ \mu = (4, 4, 4, 3, 1).$$

 $\operatorname{sum}(\lambda) = \operatorname{sum}(\mu) = 16, \ m = 16$

$$\Delta_i(\lambda) \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$$
 $\lambda = 5 \ 4 \ 2 \ 2 \ 2 \ 1$
 $\mu = 4 \ 4 \ 4 \ 3 \ 1 \ 0$
 $\Delta_i(\mu) \ 0 \ 0 \ 1 \ 2 \ 1 \ 0$
 $\lambda \wedge \mu = 4 \ 4 \ 3 \ 2 \ 2 \ 1$

$$\lambda \wedge \mu = (4, 4, 3, 2, 2, 1)$$

Отношение покрытия в NPL

Рангом Дёрфи или просто рангом $r(\lambda)$ разбиения λ называется число блоков на главной диагонали диаграммы Ферре, т. е. $r(\lambda) = \max\{k | \lambda_k \geq k\}$. Максимальный квадрат в диаграмме Ферре называется квадратом Дёрфи разбиения λ .

$$\lambda = (6, 5, 4, 4, 3, 2, 1, 1)$$

$$\lambda^* = (8, 6, 5, 4, 2, 1)$$

$$r(\lambda) = r(\lambda^*) = 4$$

$$hd(\lambda) = (3, 2, 1, 1)$$

$$tl(\lambda) = (4, 2, 1)$$

Графическое разбиение $\lambda = (\lambda_1, \lambda_2, \dots)$ — невозрастающая последовательность степеней обыкновенного графа G, дополненная нулями. Граф G называют реализацией разбиения λ .

Первый критерий графичности разбиений был найден Эрдёшем и Галлаи в 1960 году.

Приведем его в виде, найденном Б&С.

ht-критерий.

Разбиение λ чётного веса является графическим iff, когда $hd(\lambda) \leq tl(\lambda)$.

P. Erdös, T. Gallai (1960) Критерий графичности правильной n-последовательности λ

$$\sum_{i=1}^{k} \lambda_i \le k \cdot (k-1) + \sum_{j=k+1}^{n} \min\{k, \lambda_j\} \quad (k = 1, \dots, n-1)$$

(Достаточно рассмотреть $k = 1, \dots, r(\lambda)$)

D.R. Fulkerson, A.J. Hofman, M.H. McAndrew (1965)

$$\sum_{i=1}^{k} \lambda_i \le k(n-m-1) + \sum_{i=n-m+1}^{n} \lambda_i \quad (k=1,\ldots,n; \ 0 \le m \le n-k)$$

G. Grünbaum (1969)

$$\sum_{i=1}^{k} \max\{k-1, \lambda_i\} \le k(k-1) + \sum_{i=k+1}^{n} \lambda_i \quad (k=1, \dots, n-1)$$

- С. Berge (1973)
 На языке (0,1)-матриц
- B. Bollobás (1978)

$$\sum_{i=1}^{k} \lambda_i \le \sum_{i=k+1}^{n} \lambda_i + \sum_{i=1}^{k} \min\{\lambda_i, k-1\} \quad (k=1, \dots, n-1)$$

V. Havel (1955), S.L. Hakimi (1962) *l-процедура*

Последовательность (3,3,2,2,2) алгоритм Гавела-Хакими

$$\lambda = (\lambda_1, \dots, \lambda_i, \dots, \lambda_n), \ \lambda_i \neq 0, \ |\mathcal{S}| = \lambda_i, \ i \notin \mathcal{S}, \ \lambda^{(i)}$$
 — остаточная последовательность.

Теорема

Неотрицательная **n**-последовательность графична тогда и только тогда, когда её остаточная последовательность графична.

Два графа $G_1 = (V, E_1)$ и $G_2 = (V, E_2)$ будем называть *согласованными* на множестве V, если для любой вершины V из V ее степени в G_1 и в G_2 совпадают.

Пусть в графе G для четырех различных вершин a, b, c, d выполняется

где имеются ребра ab и cd, a ребер ac и bd нет (это ребра в дополнении графа G). Обозначим через s = (ab; dc) операцию *переключения ребер*:

Граф G преобразуется в граф sG = G - ab - dc + ca + bd. Граф sG согласован c графом G на V, так как операция переключения ребер не меняет степеней вершин. Имеется обратная операция переключения ребер $s^{-1} = (ca; bd)$, для которой $s^{-1} sG = G$.

Лемма 1. Пусть $\lambda = (\lambda_1, \dots, \lambda_n)$ — правильная n-последовательность степеней n-графа G = (V, E), т.е. $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$, $V = \{v_1, v_2, \dots, v_n\}$ и deg $v_j = \lambda_j$ для любого $j = 1, 2, \dots, n$. Зафиксируем некоторую вершину v_i . Тогда существует такая конечная последовательность операций переключения ребер s_1, \dots, s_t , что в графе $H = s_t \dots s_1G$ окрестность $N_H(v_i)$ вершины v_i состоит из λ_i вершин с наименьшими возможными номерами, отличными от i, т.е.

$$N_H(v_i) = \{v_1, v_2, \dots, v_{\lambda i}\},$$
если $i > \lambda_i;$ $N_H(v_i) = \{v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_{(\lambda i+1)}\},$ если $i \leq \lambda_i.$

Доказательство. Предположим, что для вершины vi существуют две отличные от нее вершины vk и vj такие, что k < j и

Очевидно, $vk \neq vj$ и в силу условия k < j выполняется $\lambda k \geq \lambda j > 0$.

1 случай. Предположим, что любая вершина vt, смежная с vk и отличная от v j , смежна и с v j .

1.1. Пусть vk смежна с v j . Тогда $\lambda_j \ge (\lambda_k - 1) + 2 = \lambda_k + 1 > \lambda_k -$ противоречие.

1.2. Пусть vk не смежна с vj . Тогда $\lambda j \ge \lambda k + 1 > \lambda k$ — противоречие.

2 случай. Будем считать, что существует вершина vt, которая отлична от v j , смежна с vk и не смежна с v j.

Очевидно, все четыре вершины различны. Совершим в графе G операцию переключения ребер $s_1 = (vkvt; vjvi)$. В графе s_1G будет выполняться

Совершив последовательно конечное число подобных переключений, мы получим нужный нам граф Н. Лемма доказана.

Теорема Хакими 1. Два графа $G_1 = (V, E_1)$ и $G_2 = (V, E_2)$ согласованы на множестве V iff, когда G_1 можно получить из G_2 с помощью применения конечного числа операций переключения ребер.

Доказательство. ←. Очевидно.

- \Rightarrow . Индукция по n = | V |.
- **Б.И.** Очевидно, при $n \le 3$ из согласованности G_1 и G_2 на V следует, что $G_1 = G_2$.

Ш.И. Пусть $n \ge 4$ и утверждение верно для n-1. Предположим, что графы G_1 и G_2 согласованы на V, где n=|V|.

Упорядочим вершины v1, v2, ... , vn из V таким образом, что выполняется $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n,$

где λi равно степени вершины vi в графах G_1 и G_2 для любых $i=1,\,2,\,\ldots\,,\,n.$

Рассмотрим вершину v1. Согласно лемме 1 существуют такие операции переключения ребер s1, ..., st1 и s'1, ..., s't2, что в графах

$$H_1 = st_1 \dots s_1G_1$$
 и $H_2 = s't_2 \dots s'_1G_2$

окрестности вершины v1 одинаковы и совпадают с множеством

$$\{V2, V3, \ldots, V(\lambda 1 + 1)\}.$$

Поэтому графы H_1 - v_1 и H_2 - v_1 согласованы на $V \setminus \{v_1\}$.

По предположению индукции существуют такие операции переключения ребер S''_1, \ldots, S''_{t3} , что

$$H_1 - v_1 = s''_{t3} \dots s''_1 (H_2 - v_1).$$

Эти переключения не затрагивают ребер, инцидентных вершине v_1 . Следовательно, $H_1 = s''t_3 \dots s''_1H_2$.

Поэтому мы получаем

$$G_1 = s_1^{-1} \dots s_{t_1}^{-1} H_1 = s_1^{-1} \dots s_{t_1}^{-1} s''_{t_3} \dots s''_1 H_2 = s_1^{-1} \dots s_{t_1}^{-1} s''_{t_3} \dots s''_1 s'_{t_2} \dots s'_1 G_2.$$

Лемма доказана.

Теорема Хакими 2. Пусть G₁ и G₂ - два n-графа. Тогда G₁ и G₂ являются реализациями одной и той же n-последовательности iff, когда G₁ изоморфен некоторому графу H₂, полученному из G₂ с помощью применения конечного числа операций переключения ребер.

Доказательство. ←. Очевидно.

 \Rightarrow . Пусть $G_1 = (V_1, E_1), G_2 = (V_2, E_2), V_1 = \{v_1, v_2, \dots, v_n\}, V_2 = \{u_1, u_2, \dots, u_n\}$ и для любого $i = 1, 2, \dots$, n степени вершин v_i и u_i в графах G_1 и G_2 , соответственно, совпадают и равны λi .

Рассмотрим биекцию ϕ из V_1 в V_2 такую, что $\phi(v_i) = u_i$ для любого i = 1, 2, ..., n, и граф H_2 на V_2 , для которого ϕ является изоморфизмом G_1 на H_2 . Тогда H_2 и G_2 согласованы на V_2 , поэтому в силу теоремы Хакими 1 граф H_2 является искомым графом.

Теорема доказана.

Алгоритм построения всех реализаций п-последовательности.

Пал Эрдёш Дата рождения	<u>26 марта</u> <u>1913</u>
Место рождения	<u>Будапешт, Австро-Венгерская</u> империя
Дата смерти	<u>20 сентября</u> <u>1996</u> (83 года)
Место смерти	• Варшава, Польша
Место работы	• <u>Принстонский университет</u> • <u>Манчестерский университет Виктории Университет Нотр-Дам</u>
Альма-матер	Будапештский университет

1934 г. США, маккартизм. Злоупотреблял крепким кофе и <u>амфетаминами</u>. «Странствующий математик», конференции, дома коллег и написание совместных статей, более 500 статей. «<u>Число</u> <u>Эрдёша</u>» (длина кратчайшего пути от автора до Эрдёша по совместным публикациям). На вопрос журналиста, не слишком ли он пессимистичен, Эрдёш ответил, что в нашей судьбе пессимистично только одно: «Человек живёт недолго и надолго умирает».