√ الفقرات الرئيسية المطلوبة بهذه المحاضرة

- خوارزمية السمبلكس الم<mark>رافقة</mark>
- تعريف المسألة المرافقة لمسألة LP.
- استنتاج الحل الأمثل للمسألة المرافقة.
 - خوارزمية السمبلكس المرافقة.

· ?:

• بعض الأسئلة المهمة:

(سيتم طرح بعض الأسئلة أثناء شرح المحاضرة)

- mell 1:
- سؤال 2:
- **■** سؤال 3:

المرجع: بحوث العمليات - د. زياد قناية، منشورات جامعة تشرين - سوريا - 2015.

المحاضرة 6

تمارین تتعلق بالمحاضرة 6

تمرين 1: اكتب المسألة المرافقة للمسألة الأولية الآتية

$$\max z = 40x_1 + 50x_2$$
subject to
$$2x_1 + 3x_2 \ge 3$$

$$4x_1 + 2x_2 \le 4$$

الحل:

تكتب الصياغة القياسية كالآتى:

max
$$z = 40x_1 + 50x_2 + 0x_3 + 0x_4$$

subject to $2x_1 + 3x_2 - x_3 = 3$
 $4x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

وتكتب المسألة المرافقة كما يلي:

$$\min w = 3y_1 + 4y_2$$

subject to

$$2y_{1} + 4y_{2} \ge 40$$
$$3y_{1} + 2y_{2} \ge 50$$
$$y_{1} \le 0, y_{2} \ge 0$$

تمرين 2: اكتب المسألة المرافقة للمسألة الأولية الآتية

$$2x_1 + 3x_2 + x_3 \leq 2$$
 $x_1 + 2x_2 - x_3 \leq 1$
 $-x_1 + 5x_2 - x_3 \geq -4$
 $x_1, x_3 \geq 0$
غير محدد الإشارة

الحل: بضرب طرفي المتباينة التي تمثل القيد الثالث بـ $x_2 = x_2' - x_2''$; $x_2' > 0$ وبفرض $x_2 = x_2' - x_2''$ تكون الصياغة القياسية كالآتى:

$$\min \ z = -x_1 - 3x_2' + 3x_2'' - 2x_3$$

subject to

$$2x_{1} + 3x'_{2} - 3x''_{2} + x_{3} + x_{4} = 2$$

$$x_{1} + 2x'_{2} - 2x''_{2} - x_{3} + x_{5} = 1$$

$$x_{1} - 5x'_{2} + 5x''_{2} + x_{3} + x_{6} = 4$$

$$x_{1}, x'_{2}, x''_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

وتكتب المسألة المرافقة كما يلى:

max
$$w = 2y_1 + y_2 + 4y_3$$

subject to
$$2y_1 + y_2 + y_3 \le -1$$

$$3y_1 + 2y_2 - 5y_3 \le -3$$

$$-3y_1 - 2y_2 + 5y_3 \le 3$$

$$y_1 - y_2 + y_3 \le -2$$

$$y_1, y_2, y_3 \le 0$$

 $-3y_1 - 2y_2 + 5y_3 = 3$ نلاحظ أن القيدين الثاني والثالث للمسألة المرافقة يمثلان بالمعادلة الآتية:

وبالتالي تصبح المسألة المرافقة كما يلي:

$$\max_{w = 2y_1 + y_2 + 4y_3} w = 2y_1 + y_2 + 4y_3$$
subject to

$$2y_1 + y_2 + y_3 \le -1
-3y_1 - 2y_2 + 5y_3 = 3
y_1 - y_2 + y_3 \le -2
y_1, y_2, y_3 \le 0$$

تمرين 3: اكتب المسألة المرافقة للمسأ<mark>لة الأولية الآتية</mark>

المسألة الأولية

max $z = x_1 + 2x_2 + 3x_3$

subject to

$$x_1 + 4x_2 + 3x_3 \le 6$$

$$5x_1 + x_2 + 2x_3 = 4$$

$$x_1, x_2, x_3 \ge 0$$

الحل: المسألة المرافقة

min $z = 6y_1 + 4y_2$

subject to

$$y_1 + 5y_2 \ge 1$$

$$4y_1 + y_2 \ge 2$$

$$3y_1 + 2y_2 \ge 3$$

$$y_1 \ge 0$$

عير محدد الاشارة y_2

تمرين 4: لدينا المسألة الأولية الآتية:

$$\max z = x_1 + 9x_2 + x_3$$

subject to

$$x_1 + 2x_2 + 3x_3 \le 9$$

$$3x_1 + 2x_2 + 2x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0$$

المطلوب:

1- إيجاد الحل الأمثل للمسألة الأول<mark>ية مستخدماً خوارزمية السمبلكس.</mark>

2 – اكتب المسألة المرافقة.

3- إيجاد الحل الأمثل للمسألة المرافقة مباشرة من جدول السمبلكس الأمثل للمسألة الأولية.

الحل:

الطلب الأول: الصياغة القياسية للمسألة الأولية هي كالآتي:

$$\max \ z = x_1 + 9x_2 + x_3$$

subject to

$$x_1 + 2x_2 + 3x_3 + x_4 = 9$$

$$3x_1 + 2x_2 + 2x_3 + x_5 = 15$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

وتكون جداول السمبلكس كالآتي:

القاعدة	x_1	x_2	$\int x_3$	x_4	x_5	الحل
Z	-1	-9	-1)	0	0	0
x_4	1	[2]	3	1	0	9
x_5	3	2	2	<u>Q</u> 0	1	15

جدول السمبلكس الأول

القاعدة	x_1	x_2	x_3	x_4	x_5	الحل
z	<u>7</u> 2	0	<u>25</u> 2	9/2	0	<u>81</u> 2
x_2	<u>1</u> 2	1	3/2	<u>1</u> 2	0	9 2
x_5	2	0	-1	-1	1	6

جدول السمبلكس الثاني (الأمثل)

 $z^* = \frac{81}{2}$: الحل الأمثل للمسألة الأولية هو $z^* = \frac{9}{2}, x_3^* = 0$: الحل الأمثل للمسألة الأولية هو

المحاضرة 6

الطلب الثاني: المسألة المرافقة هي كالآتي:

 $min w = 9y_1 + 15y_2$ subject to

$$y_{1} + 3y_{2} \ge 1$$

$$2y_{1} + 2y_{2} \ge 9$$

$$3y_{1} + 2y_{2} \ge 1$$

$$y_{1}, y_{2} \ge 0$$

الطلب الثالث:

المتحول المرافق y_1 يناظر المتحول x_4 والمتحول المرافق y_2 يناظر المتحول المرافق y_1 والمتحول المرافق x_4 والمتحول المرافقة من معاملات x_4 في سطر دالة الهدف ضمن جدول السمبلكس الأمثل وهو: x_4 في سطر دالة الهدف ضمن جدول السمبلكس الأمثل وهو: x_4 أما القيمة المثلى للمسألة المرافقة فهي: x_4 القيمة المثلى للمسألة المرافقة فهي: x_4 القيمة المثلى المسألة المرافقة فهي المرافقة فه المرا

تمرين 5: استخدم خوارزمية السمبلكس المرافقة لحل مسالة البرمجة الخطية الآتية:

max
$$z = -x_1 - x_2$$

subject to
$$2x_1 - x_2 \ge 2$$

$$2x_1 + 4x_2 \ge 8$$

$$6x_1 + 5x_2 \le 30$$

$$x_1, x_2 \ge 0$$

الحل:

نكتب المسألة بالصياغة النظامية كالآتي:

max
$$z = -x_1 - x_2$$

subject to
$$-2x_1 + x_2 \le -2$$

$$-2x_1 - 4x_2 \le -8$$

$$6x_1 + 5x_2 \le 30$$

$$x_1, x_2 \ge 0$$

ستصبح المسألة كالآتي:

 $\max z = -x_1 - x_2$

subject to

$$-2x_1 + x_2 + x_3 = -2$$
$$-2x_1 - 4x_2 + x_4 = -8$$

$$6x_1 + 5x_2 + x_5 = 30$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

حل القاعدة الابتدائي $(-2,-8,30) = (x_3,x_4,x_5) = (x_3,x_4,x_5)$ لا يحقق شروط عدم السلبية، ويكون الجدول الأول للسمبلكس المرافقة كالآتي:

القاعدة	x_1	x_2	x_3	X_4	x_5	الحل
Z	1	1	0	0	0	0
x_3	-2	1	T	0	0	-2
x_4	-2	-4	0	1	0	-8
x_5	 6	(5 <	0	0	1	30

الجدول الأول للسمبلكس المرافقة

 $\varepsilon = \min\{-4, -8\} = -8$ هو المتحول الخارج لأنه متحول قاعدة ويمتلك أصغر المعاملات السالية في عمود الحل $\varepsilon = \min\{-4, -8\} = -8$ ، وبذلك يتحدد السطر المحوري، ولدينا قاعدة النسبة الأكبر $\varepsilon = \max\{\frac{1}{2}, \frac{1}{4}\} = \frac{1}{4}$ لذلك نختار $\varepsilon = \min\{x_2\}$ المعمود المحوري، وبالتالي يتحدد العنصر المحوري. باستخدام التحويلات الأولية المناسبة نجد الجدول الثاني للسمبلكس المرافقة:

القاعدة	x_1	x_2	x_3	X_4	x_5	الحل
Z	0.5	0	-0	0.25	0	-2
x_3	$\begin{bmatrix} -2.5 \end{bmatrix}$	0	<u> </u>	0.25	0	-4
x_2	0.5	1	C 0<	-0.25	0	2
x_5	3.5	0	_0)	1.25	1	20

الجدول الثاني للسمبلكس المرافقة

 $\theta = \max\{\frac{0.5}{-2.5}, -\}$ المتحول الخارج هو x_3 حيث $\varepsilon = \min\{-4, -, -\}$ المتحول الخارج هو x_3

القاعدة	x_1	Q_2	x_3	x_4	x_5	الحل
Z	0	0	0.2	0.3	0	-2.8
x_1	1	0	-0.4	-0.1	0	1.6
x_2	0	1	0.2	-0.2	0	1.2
x_5	0	0	1.4	1.6	1	14.4

الجدول الثالث (الأمثل) للسمبلكس المرافقة

 $z^* = -2.8$. والقيمة المثلى هي: $x_1^* = 1.6, x_2^* = 1.2, x_3^* = 0$. والقيمة المثلى هي: