Assignment -
$$\frac{1}{4}$$

T(n) = $2T(\frac{n}{2})+n$

Masters theorem

 $f(n) = O(n^{k \log n})$
 $T(n) = a \cdot T(\frac{n}{b}) + f(n)$
 $a \cdot 2$, $b \cdot 2$, $k = 1$, $k = 0$
 $a \cdot 2$, $b \cdot 2$, $k = 1$

Case 2: P > - 1 =) O (n lo1 pt)

=) 0 (\(\sigma \) \(\)

2)
$$T(n) = 2T(\frac{n}{2}) + n\log n$$

3) $T(n) = 2T(\frac{n}{2}) + \log n$
 $T(n) = aT(\frac{n}{2}) + f(n)$
 $a = 2, b = 2, k$
 $\log_{b} = \log_{b} = \log_{b}$

$$f(n) = O(n \log n)$$
 $a = 2 \cdot b = 2 \cdot k = 1 \cdot p = 1$
 $log a = 1 = 1 \cdot k$
 $log b = 1 = 1 \cdot k$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1$
 $log a = 1 \cdot a \cdot k = 1$
 l

P = 0 =) n log n

=) n' lugn

0 (~ logn) \

A)
$$7(n) = 8T(\frac{n}{2}) + n^{2}$$
 $a = 8, b = 2, K = 2, P = 0$
 $log_{b} = log_{b} = 3log_{c} = 3 > K$

Cage 1: $log_{b} = 3log_{c} = 3 > K$
 $0(n) = 8T(\frac{n}{2}) + n^{2}$
 $0(n) = 1$