A Practical Implementation of Stochastic Programming: an application to the evaluation of option contracts in supply chains

Mateus Hiro Nagata

**HEC Paris** 

February 14, 2025

#### Outline

Stochastic Problem

The Deterministic Equivalent

Numerical results Finance

#### Motivation

- Stochastic programming is hard to implement
- Formulate as linear program
- Large deterministic equivalent: (can be solved nowadays)

### Chocolate Material flow



#### **Decision variables**: t = 1, ..., T

- $ightharpoonup Q_{0,t}$ : firm order, delivered at t
- ▶  $M_{0,t}$ : # options bought at t = 0, can be exercised in t
- $ightharpoonup m_{t,t+1}: \#$  options exercised in t, delivered in t+1

#### **State variables**: t = 0, ..., T

- I<sub>t</sub>: goods inventory at the end of t
- $ightharpoonup I_t^+$ : physical goods inventory at the end of t
- $ightharpoonup I_t^-$ : backorder of goods inventory at the end of t
- $\triangleright$   $D_t$ : demand in t

#### Material Flow



# Money flow



#### **Parameters**

- $ightharpoonup \bar{M}_t$ : bound of available options at t
- v : salvage value of goods
- o<sub>t</sub>: price: option that can be exercised in t
- $ightharpoonup e_t$ : price: option exercised in t to be delivered in t+1
- $\triangleright$   $p_t$ : price: firm order, delivered in t
- $\triangleright$   $D_t$ : demand in t
- $ightharpoonup r_t$ : selling price of goods in t
- s<sub>t</sub>: shortage cost for goods in t
- $\blacktriangleright$   $h_t$ : 1 period holding cost for goods in t



# Money flow



$$\mathcal{R}(\mathit{I}^{-},\mathit{I}^{+}) = \underbrace{\mathit{r}_{1}(\mathit{D}_{1} - \mathit{I}_{1}^{-})}_{\mathsf{Sales in } t=1} + \sum_{t=2}^{T} \underbrace{\mathit{r}_{t}(\mathit{D}_{t} + \mathit{I}_{t-1}^{-} - \mathit{I}_{t}^{-})}_{\mathsf{Sales in } t=2,\ldots,T} + \underbrace{\mathit{vI}_{T}^{+}}_{\mathsf{Salvage value of inventory}}$$

$$\begin{split} & \mathsf{E}(\mathsf{I}^-,\mathit{I}^+,\mathit{m},\mathit{Q},\mathit{M}) = \\ & \sum_{t=1}^T \underbrace{\left(p_t Q_{0,t}\right) + \sum_{t=1}^T \underbrace{\left(h_t \mathit{I}_t^+ + s_t \mathit{I}_t^- + p_t Q_{0,t}\right)}_{\text{storage, shortage}} + \\ & \sum_{t=1}^{T-1} \underbrace{\left(e_t m_{t,t+1} + o_t M_{0,t}\right)}_{\text{Options bought and executed}} \end{split}$$

# Deterministic Buyer Problem

max 
$$\mathcal{R}(I^-, I^+) - \mathcal{E}(I^-, I^+, m, Q, M)$$
 (Profit Maximization)  
s.t.  $I_t = I_t^+ - I_t^-$  (Inventory Defintion)  
 $I_1 = Q_{0,1} - D_1$  (Initial Inventory)  
 $I_t = I_{t-1} + Q_{0,t} + m_{t-1,t} - D_t$ , (Inventory Evolution)  
 $0 \le m_{t,t+1} \le M_{t,t+1}$  (Feasibility of Options)  
 $0 \le M_{0,t} \le \bar{M}_t$  (Bounded Option Availability)  
 $Q_{0,t}, I_t^+, I_t^- \ge 0$  (Nonnegativity Constraints)

Outline

#### Stochastic Problem

The Deterministic Equivalent

Numerical results Finance



Fig. 1. Example of event tree representation.

#### Characteristics

- Discrete Stochastic process that is independent of the state and decision variables  $\{D_t\}_{t=1}^T$
- State of the world determined by the time period  $t \in \{0, ..., T\}$  and node  $n \in \{1, ..., N[t]\}$ , where N[t] is the number of nodes at t
- ► Easily applicable to the computer languages

## **Variables**

- $\triangleright$  N[t]: number of nodes at t
- f[t, n]: number of branches from (t, n)
- ▶ a[t, n, k]: predecessor function. Returns the node at t k that led to (t, n)

**Notation:** Let T be the final time period.

- ▶ b[t, n]: returns the node at t that resulted in (T, n)
- ▶  $\ell[t, n]$ : transition index. Defines the transition from (t-1, a[t, n, 1]) to (t, n)



Fig. 1. Example of event tree representation.

Demand process  $\{D_t\}_{t=1,...,T}$ .

- $\blacktriangleright$   $\mu_t, \sigma_t$  be the unconditional mean and variance of  $D_t$
- Satisfies

$$\begin{aligned} \textit{E}(\textit{D}_{t+1} \mid \textit{d}_t) &= \mu_{t+1} + \rho_t \frac{\sigma_{t+1}}{\sigma_t} \left( \textit{d}_t - \mu_t \right) \\ \textit{Var}(\textit{D}_{t+1} | \textit{d}_t) &= \sigma_{t+1}^2 (1 - \rho_t^2) \end{aligned}$$

Discretized conditional demand

$$D_{t+1} \mid d_t = E(D_{t+1} \mid d_t) + \varepsilon_{t+1} \sqrt{Var(D_{t+1} \mid d_t)}.$$

- ▶ Discrete state space  $V_{\varepsilon} = \{\varepsilon_1, \dots, \varepsilon_{N_{\varepsilon}}\}$
- $\triangleright$   $N_{\varepsilon}$  cardinality
- $lackbox{ Probability distribution } P_arepsilon = \{p_{arepsilon_1}, \dots, p_{arepsilon_{\mathcal{N}_arepsilon}}\}$

## Discussion?

- Finer grid, better approximation
- Problem size growth exponential
- ► Main interest: first period decisions

- ▶ f[t, n]: number of branches from (t, n) = cardinality of the discretized demand variable  $\varepsilon$  from node (t, n)
- Corresponding discretized rv  $\varepsilon[t, n]$  with cardinality f[t, n] and corresponding state space  $\{\varepsilon[t, n, 1], \dots, \varepsilon[t, n, f[t, n]]\}$  and probability distribution  $\{p[t, n, 1], \dots, p[t, n, f[t, n]]\}$

Demand at node (1, n)

$$D[1, n] = \mu[1] + \varepsilon[0, 1, \ell[1, n]]\sigma[1]$$

Demand at node (t, n)

$$egin{aligned} D[t,n] &= \underbrace{\mu[t]}_{ ext{Unconditional mean}} \ &+ 
ho[t-1] rac{\sigma[t]}{\sigma[t-1]} (D[t-1,a[t,n,1]] - \mu[t-1]) \end{aligned}$$

Autoregressive component

$$+\mathop{\varepsilon}[\mathit{t}-1,\mathit{a}[\mathit{t},\mathit{n},1],\ell[\mathit{t},\mathit{n}]]\sigma[\mathit{t}]\sqrt{1-\rho[\mathit{t}-1]^2}$$

Random component

- ▶ p[t, n, j]: conditional transition probabilities from (t, n) to (t+1, m) with  $n = a[t+1, m, 1], \ell[t+1, m] = j$
- From our assumptions, these probabilities depend on t, n, j.
- $\triangleright$  P[t, n]: unconditional occurrence probability of node (t, n)

- ▶ p[t, n, j]: conditional transition probabilities from (t, n) to (t+1, m) with  $n = a[t+1, m, 1], \ell[t+1, m] = j$
- From our assumptions, these probabilities depend on t, n, j.
- ▶ P[t, n]: unconditional occurrence probability of node (t, n)  $P[t, n] = p[t 1, a[t, n, 1], \ell[t, n]] P[t 1, a[t, n, 1]],$  P[0, 1] = 1

Outline

Stochastic Problem

The Deterministic Equivalent

Numerical results
Finance

- ▶  $\{D_t\}$ , decisions  $\{m_{t-1,t}\}$  and state variables  $(I, I^+, I^-)$  stochastic
- ► M, Q fixed at the beginning

Enforce this into each node of the event tree



Fig. 2. Sequence in the decision process.

$$\begin{array}{lll} \max & E[R(\varGamma, \varGamma^+) - E(\varGamma, \varGamma^+, m, Q, M)] & (\text{Profit Maximization}) \\ \text{s.t.} & I_t = I_t^+ - I_t^- & (\text{Inventory Defintion}) \\ & I_1 = Q_{0,1} - D_1 & (\text{Initial Inventory}) \\ & I_t = I_{t-1} + Q_{0,t} + m_{t-1,t} - D_t, & (\text{Inventory Evolution}) \\ & 0 \leq m_{t,t+1} \leq M_{t,t+1} & (\text{Feasibility of Options}) \\ & 0 \leq M_{0,t} \leq \bar{M}_t & (\text{Bounded Option Availability}) \\ & Q_{0,t}, I_t^+, I_t^- \geq 0 & (\text{Nonnegativity Constraints}) \end{array}$$

Transform this into linear program by enforcing constraints for all nodes (T, n)!

# **Optimization Problem**

$$\max \quad \sum_{n=1}^{N[T]} P[T,n](\mathcal{R}[n] - \mathcal{E}[n]) \qquad \qquad \text{(Profit Maximization)}$$
 s.t.  $I[t,n] = I^+[t,n] - I^-[t,n] \qquad \qquad \text{(Inventory Defintion)}$  
$$I[1,n] = Q[0,1,1] - D[1,n] \qquad \qquad \text{(Initial Inventory)}$$
 
$$I[t,n] = I[t-1,a[t,n,1]] + Q[0,1,t] \qquad \qquad + m[t-1,a[t,n,1],t] - D[t,n] \qquad \qquad \text{(Inventory Evolution)}$$
 
$$0 \leq m[t,n,t+1] \leq M[0,1,t+1] \qquad \qquad \text{(Feasibility of Options)}$$
 
$$0 \leq M[0,1,t] \leq \bar{M}_t \qquad \qquad \text{(Bounded Option Availability)}$$
 
$$I^+[t,n],I^-[t,n],Q[0,1,t],M[0,1,t] \geq 0 \qquad \text{(Nonnegativity Constraints)}$$

#### Revenue:

$$\mathcal{R}[n] = r_1(D[1, b[1, n]] - I^{-}[1, b[1, n]]) + v^{bf}I^{+}[T, n]$$

$$+ \sum_{t=2}^{T} r_t(D[t, b[t, n]] + I^{-}[t - 1, b[t - 1, n]] - I^{-}[t, b[t, n]])$$

#### **Expenses:**

$$\begin{split} \mathcal{E}[n] &= \sum_{t=1}^{T} p_t Q[0, 1, t] \\ &+ \sum_{t=1}^{T} \left( h_t l^+[t, b[t, n]] + s_t l^-[t, b[t, n]] \right) \\ &+ \sum_{t=1}^{T-1} \left( e_t m[t, b[t, n], t+1] + o_t M[0, 1, t] \right) \end{split}$$

# **Optimization Problem**

$$\max \sum_{n=1}^{N[T]} P[T, n] (\mathcal{R}[n] - \mathcal{E}[n]) \qquad \qquad \text{(Profit Maximization)}$$

$$\text{s.t.} \quad I[t, n] = I^+[t, n] - I^-[t, n] \qquad \qquad \text{(Inventory Defintion)}$$

$$I[1, n] = Q[0, 1, 1] - D[1, n] \qquad \qquad \text{(Initial Inventory)}$$

$$I[t, n] = I[t - 1, a[t, n, 1]] + Q[0, 1, t] \qquad \qquad + m[t - 1, a[t, n, 1], t] - D[t, n] \qquad \qquad \text{(Inventory Evolution)}$$

$$0 \le m[t, n, t + 1] \le M[0, 1, t + 1] \qquad \qquad \text{(Feasibility of Options)}$$

$$0 \le M[0, 1, t] \le \bar{M}_t \qquad \qquad \text{(Bounded Option Availability)}$$

$$I^+[t, n], I^-[t, n], Q[0, 1, t], M[0, 1, t] \ge 0 \qquad \text{(Nonnegativity Constraints)}$$

Outline

Stochastic Problem

The Deterministic Equivalent

Numerical results Finance

#### Numerical Results

- $(\mu_t, \sigma_t, \rho_t) = (1500, 330, 0.5)$
- $(c_t, h_t, r_t, p_t, o_t, e_t, s_t, v) = (3, 0.5, 12, 8, 1.5, 8, 6, 2)$
- lacktriangle Constraint parameters on the option right level  $ar{M}_t=10000$
- Base Points in each t: 81, tree with 6642 nodes. Deterministic equivalent (19.929, 13.285)
- Finer  $\forall t$ : 321, tree with 103,362 nodes. Deterministic equivalent (200.000, 300.000)

# Fineness Senstivitiy Analysis

Table 1 Simultaneous refinement of the 1st and 2nd stage grids

| Grid             | Number   | First s | stage decis | Expected  |        |
|------------------|----------|---------|-------------|-----------|--------|
|                  | of nodes | $M_1$   | $Q_{0,1}$   | $Q_{0,2}$ | profit |
| 5 × 5            | 25       | 753     | 1853        | 924       | 8604   |
| $11 \times 11$   | 121      | 486     | 2027        | 863       | 8369   |
| $21 \times 21$   | 441      | 482     | 1969        | 913       | 8342   |
| $41 \times 41$   | 1681     | 469     | 1983        | 911       | 8327   |
| $81 \times 81$   | 6561     | 470     | 1965        | 933       | 8324   |
| $161 \times 161$ | 25 921   | 471     | 1968        | 929       | 8323   |
| 321 × 321        | 1 03 041 | 470     | 1969        | 928       | 8323   |

Table 2 Refinement of the 2nd stage grid alone

| Grid             | Number   | First s | stage decis | Expected  |        |
|------------------|----------|---------|-------------|-----------|--------|
|                  | of nodes | $M_1$   | $Q_{0,1}$   | $Q_{0,2}$ | profit |
| 321 × 5          | 1605     | 538     | 1969        | 883       | 8452   |
| $321 \times 11$  | 3531     | 469     | 1969        | 929       | 8331   |
| $321 \times 21$  | 6741     | 478     | 1969        | 924       | 8331   |
| $321 \times 41$  | 13 161   | 471     | 1969        | 927       | 8325   |
| $321 \times 81$  | 26 001   | 471     | 1969        | 927       | 8323   |
| $321 \times 161$ | 51 681   | 471     | 1969        | 928       | 8323   |
| 321 × 321        | 1 03 041 | 470     | 1969        | 928       | 8323   |

#### What more?

▶ By S.P. analysis, we can know the distribution of expected profits and distribution of the optimal decision variables

# Sensitivity Analysis: Option Right and Option Exercise Price

Table 3 Impact of a variation of the option right price Option First stage decisions Expected price or  $M_1$  $Q_{0,1}$ 002 profit 0 2728 1955 9876 745 1968 782 8624 247 1968 1050 8145 1187 1968 8067

Table 4 Impact of the price of the option exercise

| Exercise    | First stag | Expected  |           |        |
|-------------|------------|-----------|-----------|--------|
| price $e_t$ | $M_1$      | $Q_{0,1}$ | $Q_{0,2}$ | profit |
| 6           | 1653       | 1833      | 0         | 9562   |
| 7           | 804        | 1968      | 656       | 8638   |
| 8           | 471        | 1968      | 929       | 8323   |
| 9           | 280        | 1968      | 1055      | 8165   |

Absolute Lower Bound on Losses:

$$\mathcal{E}[n] - \mathcal{R}[n] \le c, \forall n \in N[T]$$

Increase the total number of constraints in the deterministic equivalent by N[T] (number of terminal nodes).

Table 5 Impact of a maximal admissible loss

| c       | $M_1$ | $Q_{0,1}$ | $Q_{0,2}$ | Expected profit |
|---------|-------|-----------|-----------|-----------------|
| -10 000 | 1495  | 1735      | 0         | 7253            |
| -9000   | 1939  | 1497      | 0         | 6873            |
| -8000   | 2587  | 1215      | 0         | 6106            |
| -7000   | 2664  | 1237      | 0         | 4305            |
| -6000   | 1368  | 1904      | 0         | 876             |

# Curse of dimensionality

- Exponential growth of nodes, variables, constraints
- Sol 1 Coarser grids
- Sol 2 Dynamically adjusted grids (if probability of visiting very small, information probably irrelevant)

$$f[t, n] = \begin{cases} FineGridSize[t] \text{ if } \frac{P[t, n]}{1/N[t]} \ge GSL[t] \\ CrudeGridSize[t] \text{ if } \frac{P[t, n]}{1/N[t]} < GSL[t] \end{cases}$$

GSL[t]: grid switch level for time period t

▶ Same 2 grid sizes  $\forall t$ : crude grid with 5 nodes, fine grid with 321 nodes.

| GSL   | Number   | First stage decisions |           |           | E(profit) |
|-------|----------|-----------------------|-----------|-----------|-----------|
|       | of nodes | $M_1$                 | $Q_{0,1}$ | $Q_{0,2}$ | _         |
| 1000  | 1605     | 538                   | 1969      | 883       | 8452      |
| 2.389 | 3817     | 538                   | 1969      | 883       | 8437      |
| 2.365 | 6977     | 538                   | 1969      | 883       | 8418      |
| 2.250 | 13 297   | 518                   | 1969      | 903       | 8383      |
| 1.840 | 25 937   | 500                   | 1969      | 921       | 8344      |
| 0.800 | 51 849   | 474                   | 1969      | 925       | 8314      |

# Multiperiodic

- ▶ Grid size grows in the case (5,11) by either 5 or 11
- ▶ Switching factor chosen so that # nodes  $\approx$  60k

| Periods          | 1                       | 2                       | 3       | 4       | 5       |  |  |  |  |
|------------------|-------------------------|-------------------------|---------|---------|---------|--|--|--|--|
| Grid scheme 1.   | Expected profit: 22 081 |                         |         |         |         |  |  |  |  |
| Grid sizes       | (5,11)                  | (5, 11)                 | (5,11)  | (5, 11) | (5, 11) |  |  |  |  |
| Switching factor | 0.2                     | 0.2                     | 0.2     | 0.2     | 0.2     |  |  |  |  |
| $M_t$            | 128                     | 377                     | 477     | 820     | _       |  |  |  |  |
| $Q_t$            | 2027                    | 1678                    | 1436    | 1300    | 436     |  |  |  |  |
| Grid scheme 2.   | Expected profit:        | Expected profit: 22 172 |         |         |         |  |  |  |  |
| Grid sizes       | (5, 21)                 | (5, 21)                 | (5, 21) | (5, 21) | (5, 21) |  |  |  |  |
| Switching factor | 2                       | 2                       | 2       | 2       | 2       |  |  |  |  |
| $M_l$            | 119                     | 374                     | 480     | 837     | _       |  |  |  |  |
| $Q_i$            | 1969                    | 1755                    | 1419    | 1303    | 425     |  |  |  |  |
| Grid scheme 3.   | Expected profit: 22 271 |                         |         |         |         |  |  |  |  |
| Grid sizes       | (5.41)                  | (5, 41)                 | (5,41)  | (5,41)  | (5,41)  |  |  |  |  |
| Switching factor | 4                       | 4                       | 4       | 4       | 4       |  |  |  |  |
| M <sub>t</sub>   | 129                     | 345                     | 459     | 885     | _       |  |  |  |  |
| $Q_{l}$          | 1983                    | 1700                    | 1446    | 1330    | 399     |  |  |  |  |
| Grid scheme 4.   | Expected profit: 22314  |                         |         |         |         |  |  |  |  |
| Grid sizes       | (5,81)                  | (5,41)                  | (5, 21) | (5,11)  | (5,11)  |  |  |  |  |
| Switching factor | 12                      | 12                      | 12      | 12      | 12      |  |  |  |  |
| $M_t$            | 129                     | 361                     | 461     | 881     | -       |  |  |  |  |
| Q <sub>i</sub>   | 1965                    | 1725                    | 1435    | 1309    | 415     |  |  |  |  |

#### Conclusion

- Simple implementation of stochastic programming
- Transform s.p. into linear program by enforcing constraints at each node
- Grid size matters for granularity
- Choice of grid size tailored prioritizing first decisions and potentially more important nodes
- Deals with discrete s.p. but with continuous decision and control variables

A Practical Implementation of Stochastic Programming: an application to the evaluation of option contracts in supply chains

Mateus Hiro Nagata

**HEC Paris** 

February 14, 2025