

2.

3.

	Subject Code:	KOE06
Roll No:		11.

Printed Page: 1 of 2

BTECH (SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES

Time: 3 Hours data then choose suitably

Note: Attempt all Sections. If you require any missing data, then choose suitably.

		SECTION A	2*10 = 20	
1.	Attem	pt all questions in brief.	Marks	CO
	Q.no	Questions	2	1
	(a)	Define Rate of convergence of Bisection method	2	· [
	(b)	Add and Subtract the following floating point numbers.		
	1	0.78596E-2 and 0.78633E1	2	2
	(c)	Evaluate $\Delta^n(e^{3x+5})$	2	2
	(d)	Write the relation between Divided differences and ordinary differences.	2	3
	≠ (e)	Write the formula of generalized Simpson's 1/3 Rule.	$-\frac{2}{2}$	2
	(f)	Find differentiation of Newton's forward difference formula		
	(g)	Define Predictor Corrector method.	2	4
	(h)	Define Stability of solution.	2	4
	(i)	Classify $u_{xx} + 3u_{xy} + u_{yy} = 0$	2	5
	(i)	Define eigen vector of a matrix.	2	5

SECTION B

Attem	pt any three of the i	follow	ing:	ş ⁽³)			10*3	3 = 30	
Q.no				Question	s			Mark	CO
`								s	1
(a)	Using Regula Falsi I 0 upto 3 iteration.	Method	find t	he real re	oot of the e	quation x	$^3 - 4x - 9 =$	10	1
(b)	Using Lagrange int table: x: 0 1 2 - f(x): 1 14 15 5	4 5	6	rmula, c	alculate f(B) from	the following	10	2
(c)	The velocity of a car which start initially from rest at interval of 2 minutes are given below							10	3
	Time (minutes)	2	4	6	8	10	12		
	Velocity (Km/hr)	22	30	27	18		0		
	Apply Simpson's 3/8	th rule	to find	the dista	nce covered	by car			
(d)	Find the value of your differential equation	$: \frac{dy}{dx} =$	y ² +.	xy, y(l) =	1.0 . Take	h=0.05			4
c)	Explain finite difference of second order.	ence n	ethod	to the so	lution of B	oundary ·	value problem	10	5

SECTION C

Attem	tempt any <i>one</i> part of the following: 10*1 =		
Q.no	Questions	Marks	CO
(a)	If $u = \frac{4x^2y^3}{z^4}$ and errors in x, y, z be 0.001, compute the relative maximum	m 10	
	error in u when $x = y = z = 1$		1
(b)	Calculate $\sqrt{12}$ approximately using Newton-Raphson method.	10	1

BTECH (SEM VI) THEORY EXAMINATION 2021-22 COMPUTER BASED NUMERICAL TECHNIQUES

		nart of the following:		
4.	Attem	pt any one part of the following: Questions	10 *1 = 10	_
	Q.no	The state of the s	Marks	CO
	(a)	Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$	10	2
	(b)	Construct Newton forward interpolation polynomial for the data X 4 6 8 10 V 1 3 8 16	10	2
	1 _	Hence evaluated y for x=5.		

Attem	pt any one part of the	1 = 10	
O.no	Questions	Marks	CO
(a)	Compute f'(x) at x=16 from the given data x: 15 17 19 21 $f(x) = \sqrt{x}$: 3.87 4.12 4.35 4.58	10	3
(b)	Find the value of the integral using trapezoidal rule, taking h=0.25 $\int_0^1 \frac{dx}{1+x^2}$	10	3

6.

Atten	pt any one part of the following:	1 = 10	
Q.no	Questions	Marks	CO
(a)	Use Picard's method; obtain the solution of the equation $\frac{dy}{dx} = x(1+x^3y), y(0) = 3$	10	4
	$\frac{dx}{\text{Compute the value of } y(.1) and y(.2)}$		
(b)	Write the algorithm of Euler's method to the solution of ordinary differential equation.	10	4

Q.no	opt any one part of the following: Questions	*1 = 10	
(a)	Explain Explicit method to solve parabolic one dimensional Heat equation	Marks	CC
(b)	Using Power method, find Eigen values and Eigen vector of A	10	5
` ,	$A = \begin{bmatrix} 4 & 1 \end{bmatrix}$	10	5