STAT 500

Normal Distribution Information

• Definition: A continuous random variable Y has a normal distribution if the density function of the random variable is of the form:

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{y-\mu}{\sigma}\right)^2} \qquad -\infty < y < \infty$$

- The parameters of the normal distribution are the mean μ and the variance σ^2 . By definition, $E(Y) = \mu$ and $V(Y) = E[(Y \mu)^2] = \sigma^2$
- Normal distributions are usually denoted as $Y \sim N(\mu, \sigma^2)$. Note: some resources use σ instead of σ^2 .
- Here is a picture of the density function of a normal distribution. The mean parameter μ controls the center of the distribution and the variance parameter σ^2 controls the variability of the distribution.

• A standard normal distribution has a mean $\mu = 0$ and variance $\sigma^2 = 1$. This is denoted as $Z \sim N(0,1)$

1

• Results for standard normal distributions.

– If
$$Z \sim N(0,1)$$
 then $Y = (\mu + Z * \sigma) \sim N(\mu, \sigma^2)$

– If
$$Y \sim N(\mu, \sigma^2)$$
 then $Z = \frac{Y-\mu}{\sigma} \sim N(0, 1)$

• Here is a picture of the density function of a standard normal distribution.

