Warm Up: Work and Energy

Prof. Jordan C. Hanson

November 2, 2022

1 Memory Bank

- $KE = \frac{1}{2}mv^2$... Definition of Kinetic Energy
- $W = KE_f KE_i$... Work-energy theorem.
- U = mgy ... Gravitational potential energy.
- $KE_i + PE_i = KE_f + PE_f$... One form of energy conservation. Consider that potential energy is just stored energy created by performing work, so this statement is not that different from the official work-energy theorem.

2 Work and Energy

- 1. In Fig. 1 below, a system begins with height y_1 . The zero-point of gravitational potential energy is located at the ground. The system travels through the loop when released. If y_1 is the minimum necessary height, we know that N=0 at point 2.
 - Start by writing down the *gravitational potential energy* at points 1 and 2.
 - Assume that the system begins from rest. What is KE_i ?
 - Assume the system is moving at velocity v at point 2, and has a mass m. What is the kinetic energy?
 - At point 2, assume that the centripetal force is provided by the weight force, since N=0. Solve for mv^2 .
 - Substitute everything into the energy conservation formula and solve for y_1 . If $y_1 = 80$ m, how fast will the system be moving at ground level?

Figure 1: The classic loop-the-loop problem.