

Logică Matematică și Computațională

Anul I, Semestrul I 2022/2023

Laurențiu Leuștean

Pagina web: http://cs.unibuc.ro/~lleustean/

PRELIMINARII

Operații cu mulțimi

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T \setminus A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N} = \{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$; \mathbb{Z} este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor reale; \mathbb{Q} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Operații cu mulțimi

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Definiție

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Fie A și B mulțimi și $f:A\to B$ o funcție.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor sau codomeniul lui f.

Fie $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Mulţimea funcţiilor de la A la B se notează Fun(A, B) sau B^A .

Funcții

Fie $f: A \rightarrow B$ o funcție.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Funcția identică a lui A: $1_A: A \to A$, $1_A(x) = x$.

Fie $f:A\to B$ și $g:B\to C$ două funcții. Compunerea lor $g\circ f$ este definită astfel:

 $g \circ f : A \to C$, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcții

 $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

f este bijectivă ddacă f este inversabilă.

Observație

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă.
- (ii) Pentru orice mulţime nevidă A, $Fun(A, \emptyset) = \emptyset$.

Definiția 1.1

Fie A, T mulțimi $a.\hat{i}. A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

Echipotență

Definiția 1.2

Spunem că A este echipotentă cu B dacă există o bijecție $f: A \rightarrow B$. Notație: $A \sim B$.

Propoziția 1.3

Pentru orice mulțimi A, B, C, avem

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Următorul rezultat este fundamental.

Teorema 1.4 (Teorema Cantor-Schröder-Bernstein)

Fie A și B două mulțimi astfel încât există $f:A\to B$ și $g:B\to A$ funcții injective. Atunci $A\sim B$.

Definiția 1.5

O mulțime A se numește finită dacă $A = \emptyset$ sau dacă există $n \in \mathbb{N}^*$ a.î. A este echipotentă cu $\{1, \ldots, n\}$.

Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

Definiția 1.6

O mulțime care nu este finită se numește infinită.

4

Mulțimi (cel mult) numărabile

Definiția 1.7

O mulțime A este numărabilă dacă este echipotentă cu N. O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple de mulțimi numărabile: \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} .

Teorema Cantor

 \mathbb{R} , $2^{\mathbb{N}}$ nu sunt mulțimi numărabile.

Se poate demonstra că

Propoziția 1.8

 \mathbb{R} este echipotentă cu $2^{\mathbb{N}}$.

Mulțimi (cel mult) numărabile

Propoziția 1.9

- (i) Orice mulțime infinită are o submulțime numărabilă.
- (ii) Orice submulțime a unei mulțimi numărabile este cel mult numărabilă.
- (iii) O mulțime A este cel mult numărabilă ddacă există o funcție injectivă de la A la o mulțime numărabilă.
- (iv) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (v) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

Corolar 1.10

Fie A o mulțime numărabilă și B o mulțime nevidă cel mult numărabilă. Atunci $A \times B$ și $A \cup B$ sunt numărabile.

Cardinale

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ightharpoonup |A| este unic determinat de A.
- ▶ pentru orice mulțimi A, B, avem că |A| = |B| ddacă $A \sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei multimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.

Cardinale

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a multimilor. Conform acestei definiții, pentru orice multime A, |A| este tot o multime.

- Cardinalul unei mulţimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele multimilor infinite.
- $|\mathbb{N}|$ se notează \aleph_0 (se citește alef zero).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.
- ▶ O mulţime A este numărabilă ddacă $|A| = \aleph_0$.
- \triangleright $|2^{\mathbb{N}}| \neq \aleph_0$.
- ▶ $|2^{\mathbb{N}}| = \mathfrak{c}$.

Familii de mulțimi

Fie I o multime nevidă.

Definiția 1.11

Fie A o mulțime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I$$

Familii de mulțimi

Fie I o mulțime nevidă și $(A_i)_{i \in I}$ o familie de mulțimi.

Definitia 1.12

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Fie *n* număr natural, n > 1, $I = \{1, ..., n\}$ și $A_1, ..., A_n \subset T$.

- $(x_i)_{i\in I}=(x_1,\ldots,x_n)$, un *n*-tuplu (ordonat)
- $\bigcup_{i \in I} A_i = \bigcup_{i=1} A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1} A_i$
- $\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_{n}$

Familii de mulțimi

Propoziția 1.13

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Definiția 1.14

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Definiția 1.15

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A^2 = A \times A$.

Exemple

► relația de divizibilitate pe N:

$$|=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$$

ightharpoonup relația de ordine strictă pe \mathbb{N} :

$$<=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$$

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiția 1.16

- ightharpoonup R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- ► R este tranzitivă dacă pentru orice $x, y, z \in A$, xRy și yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A.

Definiția 1.17

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Definiția 1.18

R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

LOGICA PROPOZIŢIONALĂ

10

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- ► Maria a reacționat violent la acuzațiile lui Ion.
- ▶ Orice număr natural par > 2 este suma a două numere prime. (Conjectura lui Goldbach).
- Andrei este deștept.
- ► Marțienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ► Pleacă!

21

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este vineri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este vineri. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este vineri și nu avem curs de logică.

Logica propozițională - informal

Considerăm anumite propoziții ca find ${\color{blue} {atomice}}$ și le notăm

$$p, q, r, \dots$$
 sau p_1, p_2, p_3, \dots

Exemple: p=Numărul 2 este par. q=Mâine plouă. <math>r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

 $p \rightarrow q$ = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu:
$$\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$$

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Logica propozițională LP - Limbajul

Definiția 2.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ▶ conectori logici: ¬ (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulţimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Logica propozițională LP - Limbajul

Definiția 2.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- \triangleright Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Logica propozițională LP - Limbajul

Operația de bază pentru expresii este concatenarea: dacă $\varphi = \varphi_0 \dots \varphi_{k-1}$ și $\psi = \psi_0 \dots \psi_{l-1}$ sunt expresii, atunci concatenarea lor, notată $\varphi \psi$, este expresia $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$.

Definitia 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 2.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează *Form.* Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- ▶ Orice formulă se obţine aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ▶ $Form \subseteq Expr$. Formulele sunt expresiile "bine formate".

Exemple:

- $ightharpoonup v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $ightharpoonup \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $ightharpoonup \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 2.5

Mulţimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $ightharpoonup \varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea P. Rezultă din (2) că φ are proprietatea P.

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Principiul inducției pe formule

Propoziția 2.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \boldsymbol{P} , atunci $(\varphi \to \psi)$ are proprietatea \boldsymbol{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Propoziția 2.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- V ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ , φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 2.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 2.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

$$SubForm(\varphi) = \{v_1, v_2, (v_1 \rightarrow v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$

$$(\varphi \wedge \psi) := (\neg(\varphi \rightarrow (\neg \psi)))$$

$$(\varphi \leftrightarrow \psi) := ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- ▶ Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Principiul recursiei pe formule

Propoziția 2.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A$$
, $G_{\neg}: A \to A$, $G_{\rightarrow}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

- (R0) $F(v) = G_0(v)$ pentru orice variabilă $v \in V$.
- (R1) $F(\neg \varphi) = G_{\neg}(F(\varphi))$ pentru orice formulă φ .
- (R2) $F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$ pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: \mathit{Form} \to \mathbb{N}$ definită astfel: pentru orice formulă φ ,

 $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v) = 0$$
 pentru orice variabilă v

$$c(\neg \varphi) = c(\varphi) + 1$$
 pentru orice formulă φ

$$c(\varphi \to \psi) = c(\varphi) + c(\psi) + 1$$
 pentru orice formule φ, ψ .

În acest caz,
$$A = \mathbb{N}$$
, $G_0 : V \to A$, $G_0(v) = 0$,

$$G_{\neg}: \mathbb{N} \to \mathbb{N}, \qquad G_{\neg}(n) = n+1,$$

$$G_{\rightarrow}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \quad G_{\rightarrow}(m, n) = m + n + 1.$$

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr: 1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$abla : \{0,1\} o \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \Longleftrightarrow p \leq q$.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	p	q	$p \wedge q$	p	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	0	0	1	0	0
1	1	0 1 1 1	1	0 1 0 1	1	1	1	1 0 0 1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ $\Rightarrow p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exerciţiu.

Definiția 2.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 2.11

Pentru orice evaluare e : $V \rightarrow \{0,1\}$ există o unică funcție

$$e^+: \textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Dem.: Aplicăm Principiul recursiei pe formule (Propoziția 2.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p$ și

$$G_{\to}: \{0,1\} \times \{0,1\} \to \{0,1\}, \ G_{\to}(p,q) = p \to q.$$

Evaluare (Interpretare)

Propoziția 2.12

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ , ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

$$\varphi$$
 are proprietatea P ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă arphi și orice evaluări $e_1,e_2:V o \{0,1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = \neg \psi$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \rightarrow \{0,1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Evaluare (Interpretare)

Propoziția 2.13

Pentru orice formulă φ și orice evaluări $e_1,e_2:V\to\{0,1\}$,

$$(*) \quad e_1(v) = e_2(v)$$
 pentru orice $v \in \mathit{Var}(arphi) \implies e_1^+(arphi) = e_2^+(arphi).$

Dem.: (continuare)

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Modele. Satisfiabilitate. Tautologii

Fie φ o formulă.

Definiția 2.14

- O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\triangleright \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 2.15

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 2.13.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

x_1	<i>x</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	arphi
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(arphi)$
$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime+}(\varphi)$
:	÷	٠	:	·	:
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$		$e_{2^k}'(x_k)$		${e_{2^k}^{\prime}}^+(\varphi)$

Pentru orice i, $e_i^{\prime +}(\varphi)$ se definește similar cu Teorema 2.11.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \dots, 2^k\}$.

Metoda tabelului

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> 2	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Definiția 2.16

Fie φ, ψ două formule. Spunem că

- φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- φ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea *Form* a formulelor lui LP.

Propoziția 2.17

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă $(\psi \models \varphi \text{ si } \varphi \models \psi)$ ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

4

Tautologii, consecințe semantice și echivalențe

Propoziția 2.18

Pentru orice formule φ, ψ, χ ,

terțul exclus
$$\models \varphi \lor \neg \varphi$$
 (1)

modus ponens
$$\varphi \wedge (\varphi \rightarrow \psi) \vDash \psi$$
 (2)

afirmarea concluziei
$$\psi \models \varphi \rightarrow \psi$$
 (3)

contradicția
$$\models \neg(\varphi \land \neg \varphi)$$
 (4)

dubla negație
$$\varphi \sim \neg \neg \varphi$$
 (5)

contrapoziția
$$\varphi \to \psi \sim \neg \psi \to \neg \varphi$$
 (6)

negarea premizei
$$\neg \varphi \models \varphi \rightarrow \psi$$
 (7)

modus tollens
$$\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$$
 (8)

tranzitivitatea implicației
$$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$$
 (9)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan
$$\varphi \lor \psi \sim \neg(\neg \varphi \land \neg \psi)$$
 (10)

$$\varphi \wedge \psi \sim \neg(\neg \varphi \vee \neg \psi) \tag{11}$$

exportarea și importarea
$$\varphi \to (\psi \to \chi) \sim \varphi \land \psi \to \chi$$
 (12)

idempotența
$$\varphi \sim \varphi \wedge \varphi \sim \varphi \vee \varphi$$
 (13)

slăbirea
$$\models \varphi \land \psi \rightarrow \varphi \qquad \models \varphi \rightarrow \varphi \lor \psi$$
 (14)

comutativitatea
$$\varphi \wedge \psi \sim \psi \wedge \varphi$$
 $\varphi \vee \psi \sim \psi \vee \varphi$ (15)

asociativitatea
$$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$$
 (16)

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$$
 (17)

absorbţia
$$\varphi \lor (\varphi \land \psi) \sim \varphi$$
 (18)

$$\varphi \wedge (\varphi \vee \psi) \sim \varphi$$
 (19)

distributivitatea
$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
 (20)

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
 (21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$$
 (22)

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$$
 (23)

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi)$$
 (24)

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi)$$
 (25)

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi)$$
 (26)

$$\neg \varphi \sim \varphi \rightarrow \neg \varphi \sim (\varphi \rightarrow \psi) \land (\varphi \rightarrow \neg \psi) \tag{27}$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi)$$
 (28)

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi$$
 (29)

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$
 (30)

$$\vDash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \tag{31}$$

$$\vdash (\varphi \to \psi) \lor (\neg \varphi \to \psi) \tag{31}$$

$$\models (\varphi \to \psi) \lor (\varphi \to \neg \psi)$$
 (32)

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \quad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \tag{34}$$

Dem.: Exercițiu.

50

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi)=1$. Observăm că $e^+(\varphi \vee \neg \varphi)=e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi)=1$ în două moduri.

I. Folosim tabelele de adevăr.

$e^+(arphi)$	$\neg e^+(arphi)$	$e^+(\varphi) \lor \neg e^+(\varphi)$
0	1	1
1	0	1

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

⊤ și ⊥

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notatii

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- $\triangleright \varphi$ este tautologie ddacă $\varphi \sim \top$.
- $ightharpoonup \varphi$ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Substituția

Definiția 2.19

Pentru orice formule φ, χ, χ' , definim

 $\varphi_{\chi}(\chi')$:= expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_{\chi}(\chi')$ este de asemenea formulă.
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie $\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$.

- $\lambda = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$
- $\lambda = v_1, \ \chi' = \neg \neg v_2. \ \varphi_{\chi}(\chi') = (\neg \neg v_2 \rightarrow v_2) \rightarrow \neg(\neg \neg v_2 \rightarrow v_2)$

Substituția

Propoziția 2.20

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 2.21

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $\blacktriangleright \varphi \sim \psi$ implică $\varphi_{\mathbf{v}}(\chi) \sim \psi_{\mathbf{v}}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci și $\varphi_v(\chi)$ este nesatisfiabilă.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \vee \ldots \vee \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

4

Conjuncții și disjuncții finite

Propoziția 2.22

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 2.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$

$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercițiu.

Mulțimi de formule

Fie Γ o mulțime de formule.

Definiția 2.24

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 2.25

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \vDash \varphi$.

Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 2.26

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \vDash \Delta$.
- ▶ Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Proprietăți

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\psi \vDash \varphi$ ddacă $\{\psi\} \vDash \varphi$ ddacă $\{\psi\} \vDash \{\varphi\}$.
- $\blacktriangleright \psi \sim \varphi \ \text{ddacă} \ \{\psi\} \sim \{\varphi\}.$

Propoziția 2.27

- ▶ $Mod(\emptyset) = Fun(V, \{0,1\})$, adică orice evaluare e : $V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.

Proprietăți

Propoziția 2.28

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \models \psi \; ddac\, \Gamma \models \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Dem.: Exercițiu.

Propoziția 2.29

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \vDash \bot$.

Dem.: Exercițiu ușor.

Proprietăți

Propoziția 2.30

Fie Γ o mulțime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puțin una dintre $\Gamma \cup \{\varphi\}$ și $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Dem.:

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \models \neg \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$ este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e \vDash \varphi$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e \nvDash \varphi$, deci $e \vDash \neg \varphi$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Proprietăți

Propoziția 2.31

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}.$
- (ii) $\Gamma \vDash \psi$ ddacă $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Dem.: Exercițiu.

Teorema de compacitate

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulțime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulțime Γ de formule și pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziția 2.32

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

Teorema de compacitate

Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: (continuare)

Aplicând proprietatea P_k , obținem un model e al lui φ a.î.

 $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots k\}$.

Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Din

Propoziția 2.13 rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

"⇒" Evident.

Teorema de compacitate

Lema 2.33

Fie Γ finit satisfiabilă. Atunci există un șir $(\varepsilon_n)_{n\in\mathbb{N}}$ în $\{0,1\}$ care satisface, pentru orice $n\in\mathbb{N}$:

P_n Orice submulțime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ cu proprietatea că $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\ldots n\}$.

Dem.: Exercițiu suplimentar.

Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: "←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n$$

unde (ε_n) este șirul construit în Lema 2.33. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară și fie $k \in \mathbb{N}$ a.î.

 $Var(\varphi) \subseteq \{v_0, v_1, \dots, v_k\}$. Avem că $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ .

FORMA NORMALĂ CONJUNCTIVĂ / DIS JUNCTIVĂ

67

Forma normală conjunctivă / disjunctivă

Definiția 2.35

Un literal este o

- variabilă (în care caz spunem că este literal pozitiv) sau
- negația unei variabile (în care caz spunem că este literal negativ).

Exemple: v_1, v_2, v_{10} literali pozitivi; $\neg v_0, \neg v_{100}$ literali negativi

Conventie: $\bigvee_{i=1}^{1} \varphi_i = \varphi_1$ și $\bigwedge_{i=1}^{1} \varphi_i = \varphi_1$.

Definiția 2.36

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

Aşadar, φ este în FND ddacă $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Forma normală conjunctivă / disjunctivă

Definiția 2.37

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

Aşadar, φ este în FNC ddacă $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Exemple

- \blacktriangleright $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- \triangleright $v_1 \land \neg v_5 \land v_4$ este atât în FND cât și în FNC
- ▶ $\neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Forma normală conjunctivă / disjunctivă

Notație: Dacă L este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.38

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Dem.: Exercițiu.

Funcția asociată unei formule

Exemplu: Arătați că $\vDash v_1 \to (v_2 \to v_1 \land v_2)$.

v_1	<i>v</i> ₂	$v_1 \rightarrow (v_2 \rightarrow v_1 \wedge v_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineste o funcție $F: \{0,1\}^2 \rightarrow \{0,1\}$

ε_1	ε_2	$F(\varepsilon_1, \varepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Fie φ o formulă și $Var(\varphi) = \{v_{i_1}, v_{i_2}, \dots, v_{i_n}\}$, unde $n \ge 1$ și $0 \le i_1 < i_2 < \dots < i_n$.

Fie $(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$. Definim $e_{\varepsilon_1, \dots, \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}(v_{i_k})=\varepsilon_k$$
 pentru orice $k\in\{1,\ldots,n\}$.

Definim $e_{\varepsilon_1,\dots,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi):=e^+(\varphi),$$

unde $e:V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,\dots,\varepsilon_n}$, adică, $e(v_{i_k})=e_{\varepsilon_1,\dots,\varepsilon_n}(v_{i_k})=\varepsilon_k$ pentru orice $k\in\{1,\dots,n\}$. Conform Propoziției 2.13, definiția nu este ambiguă.

Definiția 2.39

Funcția asociată lui φ este $\digamma_{\varphi}:\{0,1\}^n \to \{0,1\}$, definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=e^+_{\varepsilon_1,\ldots,\varepsilon_n}(\varphi)$$
 pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$.

Aşadar, F_{φ} este funcția definită de tabela de adevăr pentru φ .

Funcția asociată unei formule

Propoziția 2.40

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule astfel încât $Var(\varphi) = Var(\psi)$. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\varphi} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Caracterizarea funcțiilor booleene

Definiția 2.41

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 2.42

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H = F_{\varphi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=0$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$,

luăm $\varphi := \bigvee_{i=1} (v_i \wedge \neg v_i)$. Avem că $Var(\varphi) = \{v_1, \dots, v_n\}$, așadar,

 $F_{\varphi}:\{0,1\}^n \to \{0,1\}$. Cum $v_i \land \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este funcția constantă 0.

Caracterizarea funcțiilor booleene

Altcumva, mulțimea

$$T := H^{-1}(1) = \{(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n \mid H(\varepsilon_1, \dots, \varepsilon_n) = 1\}$$

este nevidă.

Considerăm formula

$$\varphi := \bigvee_{(\varepsilon_1, \dots, \varepsilon_n) \in T} \left(\bigwedge_{\varepsilon_i = 1} v_i \wedge \bigwedge_{\varepsilon_i = 0} \neg v_i \right).$$

Deoarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Se demonstrează că $H = F_{\varphi}$ (exercițiu suplimentar).

76

Caracterizarea funcțiilor booleene

Teorema 2.43

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H = F_{\psi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=1$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=1}^{n} (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F := H^{-1}(0) = \{(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n \mid H(\varepsilon_1, \dots, \varepsilon_n) = 0\}$$

este nevidă.

Considerăm formula $\psi := \bigwedge_{(\varepsilon_1, \dots, \varepsilon_n) \in F} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$

Se demonstrează că $H = F_{\psi}$ (exercițiu suplimentar).

Caracterizarea funcțiilor Booleene

Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

ε_1	ε_2	$arepsilon_3$	$H(\varepsilon_1, \varepsilon_2, \varepsilon_3)$	
0	0	0	0	$D_1 = v_1 \vee v_2 \vee v_3$
0	0	1	0	$D_2 = v_1 \vee v_2 \vee \neg v_3$
0	1	0	1	$C_1 = \neg v_1 \wedge v_2 \wedge \neg v_3$
0	1	1	0	$D_3 = v_1 \vee \neg v_2 \vee \neg v_3$
1	0	0	1	$C_2 = v_1 \wedge \neg v_2 \wedge \neg v_3$
1	0	1	1	$C_3 = v_1 \wedge \neg v_2 \wedge v_3$
1	1	0	1	$C_4 = v_1 \wedge v_2 \wedge \neg v_3$
1	1	1	1	$C_5 = v_1 \wedge v_2 \wedge v_3$

$$arphi = C_1 \lor C_2 \lor C_3 \lor C_4 \lor C_5$$
 în FND a.î. $H = F_{\varphi}$. $\psi = D_1 \land D_2 \land D_3$ în FNC a.î. $H = F_{\psi}$.

Forma normală conjunctivă / disjunctivă

Teorema 2.44

Orice formulă φ este echivalentă cu o formulă φ^{FND} în FND și cu o formulă φ^{FNC} în FNC.

Dem.:

Fie $Var(\varphi) = \{x_1, \dots, x_n\}$ și $F_{\varphi} : \{0,1\}^n \to \{0,1\}$ funcția booleană asociată. Aplicând Teorema 2.42 cu $H := F_{\varphi}$, obținem o formulă φ^{FND} în FND a.î. $F_{\varphi} = F_{\varphi^{FND}}$. Așadar, conform Propoziției 2.40.(ii), $\varphi \sim \varphi^{FND}$.

Similar, aplicând Teorema 2.43 cu $H:=F_{\varphi}$, obținem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

Forma normală conjunctivă / disjunctivă

'Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 si $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu $\neg\varphi \land \neg\psi$ şi $\neg(\varphi \land \psi)$ cu $\neg\varphi \lor \neg\psi$.

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \text{ cu } (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ si } \quad (\psi \wedge \chi) \vee \varphi \text{ cu } (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$

Pentru FND, se aplică distributivitatea lui \wedge fața de \vee , pentru a înlocui

$$\varphi \wedge (\psi \vee \chi) \operatorname{cu} (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
 şi $(\psi \vee \chi) \wedge \varphi \operatorname{cu} (\psi \wedge \varphi) \vee (\chi \wedge \varphi)$.

79

Forma normală conjunctivă / disjunctivă

Exemplu

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Avem

$$\begin{array}{lll} \varphi & \sim & \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) & \mathsf{Pasul} \ 1 \\ & \sim & \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) & \mathsf{Pasul} \ 1 \\ & \sim & \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) & \mathsf{Pasul} \ 1 \\ & \sim & \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) & \mathsf{Pasul} \ 2 \\ & \sim & (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) & \mathsf{Pasul} \ 2 \\ & \sim & (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 & \mathsf{Pasul} \ 2 \end{array}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \\ \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

CLAUZE ȘI REZOLUȚIE

Clauze

Definiția 2.45

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obținem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.46

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 2.47

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \rightarrow \{0,1\}$ este model al lui C.

Clauze

Definiția 2.48

O clauză C este trivială dacă există un literal L a.î. $L \in C$ și $L^c \in C$.

Propoziția 2.49

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Dem.: Exercițiu.

Notăm $Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}.$

Daca $x \in Var(C)$, spunem ca x apare în C.

▶ $Var(C) = \emptyset$ ddacă $C = \square$.

 $S = \{C_1, \dots, C_m\}$ este o mulțime finită de clauze. Dacă m = 0, obținem mulțimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 2.50

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui S sau că e satisface S și scriem $e \models S$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 2.51

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e:V \to \{0,1\}$ este model al lui \mathcal{S} .

Clauze

Propoziția 2.52

- ightharpoonup Dacă S conține clauza vidă \square , atunci S este nesatisfiabilă.
- ▶ ∅ este validă.

Dem.: Exercițiu.

Notăm $Var(S) := \bigcup_{C \in S} Var(C)$.

Daca $x \in Var(S)$, spunem ca x apare în S.

▶ $Var(S) = \emptyset$ ddacă $(S = \emptyset \text{ sau } S = \{\square\}).$

Clauze

Exemplu

$$S = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \text{ este satisfiabilă}.$$

Dem.: Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu

 $S = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$ este nesatisfiabilă.

Dem.: Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{ \neg v_3, \neg v_2 \}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{ \neg v_1, v_2 \}$. Am obținut o contradicție.

Clauze și FNC

Unei formule φ în FNC îi asociem o mulțime finită de clauze \mathcal{S}_{φ} astfel:

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1, \ldots, k_i\}$ distincți. Fie \mathcal{S}_{φ} mulțimea tuturor clauzelor $C_i, i \in \{1, \ldots, n\}$ distincte.

 \mathcal{S}_{arphi} se mai numește și forma clauzală a lui arphi .

Propoziția 2.53

Pentru orice evaluare $e:V \to \{0,1\}$, $e \vDash \varphi$ ddacă $e \vDash \mathcal{S}_{\varphi}$.

Clauze și FNC

Unei mulțimi finite de clauze $\mathcal S$ îi asociem o formulă $\varphi_{\mathcal S}$ în FNC astfel:

$$ightharpoonup C = \{L_1, \ldots, L_n\}, n > 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$$

$$\triangleright \square \longmapsto \varphi_{\square} := v_0 \land \neg v_0.$$

Fie $S = \{C_1, \dots, C_m\}$ o mulțime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_\emptyset := v_0 \vee \neg v_0$. Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 2.54

Pentru orice evaluare $e: V \to \{0,1\}, e \models S \ ddacă e \models \varphi_S$.

Rezoluția

Exemplu

 $C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

- ▶ Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- ▶ Dacă luăm $L' := v_2$, atunci $L' \in C_1$ și $L'^c = \neg v_2 \in C_2$. Prin urmare, $R' = \{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu

 $C_1 = \{v_7\}$, $C_2 = \{\neg v_7\}$. Atunci clauza vidă \square este rezolvent al clauzelor C_1 , C_2 .

Rezoluția

Definiția 2.55

Fie C_1 , C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1 , C_2 dacă există un literal L a.î. $L \in C_1$, $L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

Rez
$$\frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- ► Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbajul PROLOG este bazat pe rezoluţie.

Rezoluția

Fie ${\mathcal S}$ o mulțime finită de clauze.

Definiția 2.56

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_j, C_k .

Definiția 2.57

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Exemplu

Fie

$$S = \{ \{\neg v_1, v_2\}, \{\neg v_2, \neg v_3, v_4\}, \{v_1\}, \{v_3\}, \{\neg v_4\} \}.$$

O derivare prin rezoluție a clauzei vide \square din $\mathcal S$ este următoarea:

$$\begin{array}{lcl} C_1 & = & \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 & = & \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \end{array}$$

$$C_3 = \{ \neg v_2, \neg v_3 \}$$
 C_3 rezolvent al clauzelor C_1, C_2

$$C_4 = \{v_3\}$$
 $C_4 \in \mathcal{S}$

$$C_5 = \{ \neg v_2 \}$$
 C_5 rezolvent al clauzelor C_3, C_4

$$C_6 = \{ \neg v_1, v_2 \}$$
 $C_6 \in \mathcal{S}$

$$C_7 = \{\neg v_1\}$$
 C_7 rezolvent al clauzelor C_5, C_6

$$C_8 = \{v_1\}$$
 $C_8 \in \mathcal{S}$

$$C_9 = \square$$
 C_9 rezolvent al clauzelor C_7, C_8 .

Rezoluția

Notăm $Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$

Propoziția 2.58

Pentru orice orice evaluare $e: V \rightarrow \{0,1\}$,

$$e \vDash \mathcal{S} \Rightarrow e \vDash Res(\mathcal{S}).$$

Dem.: Dacă $Res(S) = \emptyset$, atunci este validă, deci $e \models Res(S)$. Presupunem că Res(S) este nevidă și fie $R \in Res(S)$. Atunci există clauze $C_1, C_2 \in S$ și un literal L a.î. $L \in C_1, L^c \in C_2$ și $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$. Avem două cazuri:

- ▶ $e \vDash L$. Atunci $e \not\vDash L^c$. Deoarece $e \vDash C_2$, există $U \in C_2$, $U \ne L^c$ a.î. $e \vDash U$. Deoarece $U \in R$, obținem că $e \vDash R$.
- ▶ $e \not\models L$. Deoarece $e \models C_1$, există $U \in C_1$, $U \not\models L$ a.î. $e \models U$. Deoarece $U \in R$, obtinem că $e \models R$.

Rezoluția

Teorema 2.59 (Teorema de corectitudine a rezoluției)

Dacă \square se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

Dem.: Fie $C_1, C_2, \ldots, C_n = \square$ o S-derivare prin rezoluție a lui \square . Presupunem că S este satisfiabilă și fie $e \models S$.

Demonstrăm prin inducție după i că:

pentru orice
$$1 < i < n$$
, $e \models C_i$.

Pentru i=n, obținem că $e \vDash \square$, ceea ce este o contradicție.

Cazul i = 1 este evident, deoarece $C_1 \in \mathcal{S}$.

Presupunem că $e \models C_i$ pentru orice j < i. Avem două cazuri:

- ▶ $C_i \in S$. Atunci $e \models C_i$.
- ▶ există j, k < i a.î. $C_i \in Res(C_j, C_k)$. Deoarece, conform ipotezei de inducție, $e \models \{C_j, C_k\}$ aplicăm Propoziția 2.58 pentru a conclude că $e \models C_i$.

Algoritmul Davis-Putnam (DP)

Intrare: S mulțime finită nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$.

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pi.2 if $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\begin{array}{lll} \mathcal{S}'_{i+1} & := & \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \breve{a}\}. \end{array}$$

Pi.4 if
$$S_{i+1} = \emptyset$$
 then S este satisfiabilă.
else if $\square \in S_{i+1}$ then S este nesatisfiabilă.
else $\{i := i+1; \text{ go to Pi.1}\}.$

Algoritmul Davis-Putnam (DP)

$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, S_1 := S.$$

P1.1
$$x_1 := v_3$$
; $\mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}$; $\mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}$.

P1.2
$$\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

P1.3
$$S'_2 := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_2, v_1\}\}\}$; $\mathcal{T}_2^0 := \emptyset$.

P2.2
$$\mathcal{U}_2 := \emptyset$$
.

P2.3
$$S_3 := \emptyset$$
.

P2.4
$$S$$
 este satisfiabilă.

Algoritmul DP - terminare

Propoziția 2.60

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i)$$
.

Prin urmare,
$$n = |Var(S_1)| > |Var(S_2)| > |Var(S_3)| > \ldots \ge 0$$
.

Fie $N \leq n$ numărul de pași după care se termină DP. Atunci $\mathcal{S}_{N+1} = \emptyset$ sau $\square \in \mathcal{S}_{N+1}.$

Algoritmul Davis-Putnam (DP)

$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1, S_1 := S.$$

P1.1
$$x_1 := v_1$$
; $\mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$

P1.2
$$\mathcal{U}_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$$

P1.3
$$S_2 := \{ \{ \neg v_3, \neg v_2 \}, \{ v_3 \}, \{ v_4 \}, \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1.
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$

P2.2
$$\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$$

P2.3
$$S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$$

P2.4
$$i := 3$$
 and go to P3.1.

P3.1
$$x_3 := v_3$$
; $\mathcal{T}_3^1 := \{\{v_3\}\}\}$; $\mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}$.

P3.2.
$$U_3 := \{ \{ \neg v_4 \} \}$$
. P3.3 $S_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}$.

P3.4
$$i := 4$$
 and go to P4.1.

P4.1
$$x_4 := v_4$$
; $\mathcal{T}_4^1 := \{\{v_4\}\}$; $\mathcal{T}_4^0 := \{\{\neg v_4\}\}$.

P4.2
$$\mathcal{U}_4 := \{ \Box \}.$$
 P4.3 $\mathcal{S}_5 := \{ \Box \}.$

P4.4
$$\mathcal{S}$$
 nu este satisfiabilă.

Algoritmul DP - corectitudine și completitudine

Propozitia 2.61

Pentru orice $i \leq N$,

 S_{i+1} este satisfiabilă $\iff S_i$ este satisfiabilă.

Dem.: Exercițiu suplimentar.

Teorema 2.62

Algoritmul DP este corect și complet, adică,

S este nesatisfiabilă ddacă $\square \in S_{N+1}$.

Dem.: Aplicăm Propoziția 2.61. Obținem că $S = S_1$ este nesatisfiabilă ddacă S_{N+1} este nesatisfiabilă ddacă $\square \in S_{N+1}$.

99

SINTAXA LP

Sistemul deductiv

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Γ-teoreme

Fie Γ o mulțime de formule. Definiția Γ -teoremelor este un nou exemplu de definiție inductivă.

Definitia 2.63

\(\Gamma_{\text{-teoremele}}\) sunt formulele lui LP definite astfel:

(T0) Orice axiomă este Γ-teoremă.

(T1) Orice formulă din Γ este Γ-teoremă.

(T2) Dacă φ și $\varphi \to \psi$ sunt Γ-teoreme, atunci ψ este Γ-teoremă.

(T3) Numai formulele obținute aplicând regulile (T0), (T1), (T2) sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

$$Thm(Γ) := mulțimea Γ-teoremelor$$
 $Thm := Thm(∅)$

$$\Gamma \vdash \Delta$$
 : \Leftrightarrow $\Gamma \vdash \varphi$ pentru orice $\varphi \in \Delta$.

Definiția 2.64

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 2.65

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

Versiunea 1

Fie \mathbf{P} o proprietate a formulelor. Demonstrăm că orice Γ-teoremă satisface \mathbf{P} astfel:

- (i) Demonstrăm că orice axiomă are proprietatea **P**.
- (ii) Demonstrăm că orice formulă din Γ are proprietatea P.
- (iii) Demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea ${\bf P}$, atunci ψ are proprietatea ${\bf P}$.

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $\mathit{Thm}(\Gamma) \subseteq \Sigma$ astfel:

- (i) Demonstrăm că orice axiomă este în Σ .
- (ii) Demonstrăm că orice formulă din Γ este în Σ .
- (iii) Demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Γ-teoreme

Propoziția 2.66

Fie Γ, Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

- (ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ , $\vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Γ-demonstrații

Definiția 2.67

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_i \rightarrow \theta_i$.
- O Ø-demonstrație se va numi simplu demonstrație.

Lema 2.68

Dacă θ_1 , ..., θ_n este o Γ-demonstrație, atunci

 $\Gamma \vdash \theta_i$ pentru orice $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Γ-demonstrații

Definiția 2.69

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ -demonstrației.

Propoziția 2.70

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Propoziția 2.71

Pentru orice mulțime de formule Γ și orice formulă φ ,

 $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 2.66.(i) obținem că $\Gamma \vdash \varphi$. " \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 2.70, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.

109