基础课 58 事件的相互独立性、条件概率 与全概率公式

课时评价·提能

床的 广闪 "矩形						
基础巩固练						
的概率是(C))		则他连续射击两次都位	命中		
	第i次击中目标",	C. 0.81 $i = 1,2, \mathbb{N}P(A_1A_2)$	D. 0.99 $) = P(A_1) \cdot P(A_2) = $			
2. 某质检部门对 打,若没有受损	†某种建筑构件的排 ,则认为该构件证	通过质检.若第一次击	对此建筑构件实施两次 打后该构件没有受损的 没有受损的概率为0.80	勺概		
该构件通过质检	的概率为(C)	C. 0.68	D 0.17			
[解析]设事件 A_i	表示"第i次击打局	台该构件没有受损"	, <i>i</i> = 1,2, 则由已知可	得		
$P(A_1)P(A_2 A_1)$ = 3. (改编)已知	= 0.85 × 0.80 = 0 在 50 件产品中有	45 件合格品, 5 件7	等 $P(A_1A_2) =$ 质检的概率为 0.68 ,故选 下合格品,现从中不放 第二次取到不合格品	回地		
A. $\frac{4}{49}$	B. $\frac{4}{99}$	C. $\frac{2}{49}$	D. $\frac{2}{99}$			
			"第二次取到不合格品			
		$(B) = \frac{C_5^2}{C_{50}^2} = \frac{2}{245}, P(A)$	$0 = \frac{C_5^1}{C_{50}^1} = \frac{1}{10}, \text{MWP}(B A)$	4) =		
$\frac{P(AB)}{P(A)} = \frac{\frac{2}{245}}{\frac{1}{10}} = \frac{4}{49},$	故选A.					
约有30%的学生 天阅读时间超过	的写作能力被评为 1小时,这些学生吗 1小时的学生中院	为优秀等级.经调查知 中写作能力被评为优	章能力.某校全体学生中 点该校大约有20%的学生 秀等级的占70%.现从每 写作能力被评为优秀等	生每 每天		
A. 0.25	B. 0.2	C. 0.15	D. 0.1			
			! = "每天阅读时间超过 B) = 70% = 0.7.:: P(A			
$P(AB) + P(A\overline{B})$	= P(A B)P(B) +	$P(A \overline{B}) \cdot P(\overline{B}), \therefore P(A \overline{B}) = P(A \overline{B}) = P(A \overline{B})$	$A \overline{B}) = \frac{P(A) - P(A B)P(B)}{P(\overline{B})} =$	=		
$\frac{0.3 - 0.7 \times 0.2}{1 - 0.2} = \frac{0.16}{0.8}$	= 0.2,即从每天阅	读时间不超过1小时	的学生中随机抽取一名	名,则		
该比写作能力站	评为优委等级的相	死率为0.2,故选B.				

5.	(改编)从1~80	共80个正整数中,任	E取一数,已知取出的	这个数不大于 40,				
则此数是2或3的倍数的概率为(B).								
A.	<u>33</u> 80	B. $\frac{27}{40}$	C. $\frac{13}{20}$	D. $\frac{7}{10}$				
[解	/析]设事件C为"	取出的数不大于40"	,事件A为"取出的	数是2的倍数",				
		t是3的倍数",则P(C	_					
<i>P</i> (.	A C) + P(B C) -	$P(AB C) = \frac{P(AC)}{P(C)} + \frac{P(C)}{P(C)}$	$\frac{P(BC)}{P(C)} - \frac{P(ABC)}{P(C)} = 2 \times \left(\frac{2}{8}\right)$	$\frac{0}{0} + \frac{13}{80} - \frac{6}{80} = \frac{27}{40},$				
	选B.							
6.	市场调查发现,	大约 3 的人喜欢在网上	:购买儿童玩具,其余	的人则喜欢在实体				
店」	购买儿童玩具.经	某部门抽样调查发现。	,网上购买的儿童玩	具的合格率为 * , 而				
实体店里的儿童玩具的合格率为9/10.现随机抽取到一个不合格的儿童玩具,则这个								
儿	童玩具是在网上原	构买的可能性是(B						
A.	1/2	B. $\frac{3}{4}$	C. $\frac{4}{5}$	D. $\frac{5}{6}$				
[解	析 这个儿童玩具	-是在网上购买的可能	E性是 $\frac{\frac{3}{5} \times \frac{1}{5}}{\frac{3}{5} \times \frac{1}{5} + \frac{2}{5} \times \frac{1}{10}} = \frac{3}{4}$,故	选B.				
体两件A. C.	验课程.甲、乙两之人所选课程恰有一 $C = "甲、乙两人A = B为对立事件A = C相互独立$		挑选两门课程学习,i ="甲、乙两人所选课 是程",则(C). B. A与C互斥 D. B与C相互独立	及事件A = "甲、乙 是程完全不同",事				
		[] 一两人所选课程有如						
(3) i	两门都不相同.故。	A与B互斥不对立, A	与C不互斥,所以P(A	$1) = \frac{C_4 C_3 C_2}{C_4^2 C_4^2} = \frac{2}{3},$				
<i>P</i> ()	$B) = \frac{C_4^2}{C_4^2 C_4^2} = \frac{1}{6}, \ P($	$(C) = \frac{C_3^2 C_3^2}{C_4^2 C_4^2} = \frac{1}{4} \mathbb{E} P(AC_4^2)$	$C(C) = \frac{C_3^1 C_2^1}{C_4^2 C_4^2} = \frac{1}{6}, \ P(BC)$	= 0, 所以P(AC) =				
P(x)	A)P(C), P(BC)	$\neq P(B)P(C)$,即 A 与(C相互独立,B与C不	相互独立,故选C.				
8.	(改编) 某射手	每次射击击中目标的	概率是 $\frac{3}{4}$,且各次射击	的结果互不影响.				
	设这名射手射击。 <mark>B</mark>).	4次,则有2次连续击	5中目标,另外2次未	:击中目标的概率为				
A.	27 128	B. $\frac{27}{256}$	C. $\frac{8}{81}$	D. $\frac{29}{256}$				
[解	析]因为该射手每	次射击击中目标的概	$\mathbb{E}^{\mathbb{Z}} = \frac{3}{4}$,所以每次射击	·未击中目标的概率				
为	· , 设"第i次射击	5击中目标"为事件A	_i (i = 1,2,3,4),"该与	射手在4次射击中,				

有 2 次连续击中目标,另外 2 次未击中目标"为事件A,则 $P(A) = P(A_1A_2\overline{A_3}\overline{A_4}) + P(\overline{A_1}A_2A_3\overline{A_4}) + P(\overline{A_1}\overline{A_2}A_3A_4) = 3 \times \left(\frac{3}{4}\right)^2 \times \left(\frac{1}{4}\right)^2 = \frac{27}{256}$,故选B.

综合提升练

9. (多选题)已知红箱内有 6 个红球、3 个白球,白箱内有 3 个红球、6 个白球,所有小球的大小、形状完全相同.第一次从红箱内取出一球后再放回,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回,以此类推,第 (k+1)次从与第k次取出的球颜色相同的箱子内取出一球,然后再放回.记第n次取出的球是红球的概率为 P_n ,则下列说法正确的是(AC).

A.
$$P_2 = \frac{5}{9}$$

B.
$$3P_{n+1} + P_n = 1$$

- C. 第 5 次取出的球是红球的概率为 $\frac{122}{243}$
- D. 前 3 次取球恰有 2 次取到红球的概率是 $\frac{139}{243}$

[解析]依题意 $P_1 = \frac{6}{9} = \frac{2}{3}$,设第n次取出的球是红球的概率为 P_n ,则取出的球是白球的概率为 $1 - P_n$,对于第n + 1次,取出红球有两种情况:①从红箱内取出的概率为 $P_n \cdot \frac{2}{3}$;②从白箱取出的概率为 $P_n \cdot \frac{2}{3}$;②从白箱取出的概率为 $P_n \cdot \frac{2}{3}$;②从白箱取出的概率为 $P_n \cdot \frac{1}{3}$,即 $P_n \cdot \frac{1}{3}$,则数列 $P_n \cdot \frac{1}{3}$,即 $P_n \cdot \frac{1}{3}$,因为 $P_n \cdot \frac{1}{2}$,所以 $P_n \cdot \frac{1}{3}$,故 $P_n \cdot \frac{1}{3}$,因为 $P_n \cdot \frac{1}{3}$,就 $P_n \cdot \frac{1}{3}$

10. (多选题)已知事件A,B满足 $A \subseteq B,$ 且P(B) = 0.5,则一定有(BC).

A.
$$P(\overline{A}B) > 0.5$$
 B. $P(\overline{B}|A) < 0.5$ C. $P(A\overline{B}) < 0.25$ D. $P(A|B) > 0.5$

[解析]对于A,因为 $A \subseteq B$,所以 $\overline{AB} \subseteq B$,所以 $P(\overline{AB}) \le P(B) = 0.5$,故A错误;

对于B,因为
$$A \subseteq B$$
,所以 $A \cap \overline{B} = \emptyset$,所以 $P(\overline{B}|A) = \frac{P(A\overline{B})}{P(A)} = 0$,故B正确;

对于C,因为 $A \subseteq B$,所以 $A \cap \overline{B} = \emptyset$,所以 $P(A\overline{B}) = 0$,故C正确;

对于D,因为 $A \subseteq B$,所以 $A \cap B = A$,所以 $P(A \cap B) = P(A)$,若 $A = \emptyset$,则 $P(A|B) = \frac{P(AB)}{P(B)} = 0$,故D错误.故选BC.

11. 某社区举办"环保我参与"有奖问答比赛活动,在某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确的概率是 $\frac{3}{4}$,甲、丙两个家庭都回答错误的概率是 $\frac{1}{12}$,乙、丙两个家庭都回答正确的概率是 $\frac{1}{4}$,各家庭回答是否正确互不影响,则乙、丙两个家庭各自回答正确的概率分别为 $\frac{3}{83}$. [解析]记"甲家庭回答正确""乙家庭回答正确""丙家庭回答正确"分别为事件A,B,C,

則
$$P(A) = \frac{3}{4}$$
,
且有 $\left\{ P(\overline{A})P(\overline{C}) = \frac{1}{12}, \\ P(B)P(C) = \frac{1}{4}, \\ P(B)P(C) = \frac{1}{4}, \\ P(B)P(C) = \frac{1}{4}, \\ P(B)P(C) = \frac{1}{4}, \\$ 所以 $P(B) = \frac{3}{8}, P(C) = \frac{2}{3}.$

12. 已知播种用的一等品种子中混合了2.0%的二等品种子, 1.5%的三等品种子, 1.0%的四等品种子, 若用一等品、二等品、三等品、四等品种子长出优质产品的概率分别为0.5,0.15,0.1,0.05,则从这批种子中任选一粒能长出优质产品的概率为 0.4825.

[解析]设事件 B_i = "从这批种子中任选一粒是i(i=1,2,3,4)等品种子",则 Ω = $B_1 \cup B_2 \cup B_3 \cup B_4$,且 B_1 , B_2 , B_3 , B_4 两两互斥.事件A = "在这批种子中任选一粒长出优质产品",则 $P(B_1)$ = 95.5%, $P(B_2)$ = 2%, $P(B_3)$ = 1.5%, $P(B_4)$ = 1.0%, $P(A|B_1)$ = 0.5, $P(A|B_2)$ = 0.15, $P(A|B_3)$ = 0.1, $P(A|B_4)$ = 0.05,由全概率公式得P(A) = $\sum_{i=1}^4 P(B_i)P(A|B_i)$ = 0.955 × 0.5 + 0.02 × 0.15 + 0.015 × 0.1 + 0.01 × 0.05 = 0.4825,所以从这批种子中任选一粒长出优质产品的概率为 0.4825.

应用情境练

13. 某一部件由三个电子元件按如图所示的方式连接而成,元件1和元件2同时正常工作,或元件3正常工作,则部件正常工作.设三个电子元件正常工作的概率均为 3,且各个元件能否正常工作相互独立,那么该部件正常工作的概率为 57/164.

[解析]讨论元件 3 正常与不正常,第一类,元件 3 正常,上部分正常或不正常都不影响该部件正常工作,则正常工作的概率为 $\frac{3}{4} \times 1 = \frac{3}{4}$;第二类,元件 3 不正常,上部分

必须正常,则正常工作的概率为 $\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{9}{64}$.故该部件正常工作的概率为 $\frac{3}{4} + \frac{9}{64} = \frac{57}{64}$.

创新拓展练

14. (双空题) 田忌赛马的故事出自司马迁的《史记》,话说齐王、田忌分别有上、中、下等马各一匹.赛马规则: 一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局,最后以获胜局数多者为胜.记齐王的马匹分别为 A_1,A_2,A_3 ,田忌的马匹分别为 B_1,B_2,B_3 ,每局比赛之间都是相互独立的,而且不会出现平局.用 $P_{A_iB_j}(i,j)$

 $\{1,2,3\}$)表示马匹 A_i 与 B_i 比赛时齐王获胜的概率,且 $P_{A_1B_1}=0.8$, $P_{A_1B_2}=0.9$,

$$P_{A_1B_3}=0.95,\;P_{A_2B_1}=0.1,\;P_{A_2B_2}=0.6,\;P_{A_2B_3}=0.9,\;P_{A_3B_1}=0.09,\;P_{A_3B_2}=0.1,\;P_{A_3B_3}=0.9,\;P_{A_3B_3}$$

 $P_{A_3B_3} = 0.6$,则一场比赛共有 <u>6</u>种不同的比赛方案.在上述所有的方案中,有一种方案田忌获胜的概率最大,此概率的值为 0.819.

[解析]所有的比赛方案有6种,即

 (A_1B_1,A_2B_2,A_3B_3) , (A_1B_1,A_2B_3,A_3B_2) , (A_1B_2,A_2B_1,A_3B_3) , (A_1B_2,A_2B_3,A_3B_1) , (A_1B_3,A_2B_1,A_3B_2) , (A_1B_3,A_2B_1,A_3B_2) ,可使田忌获胜的概率最大,记田忌三局全胜和恰好胜两局的概率分别为 P_1,P_2 ,则 $P_1=0.05\times0.9\times0.9=0.0405$,

 $P_2 = 0.05 \times 0.9 \times 0.1 \times 2 + 0.95 \times 0.9 \times 0.9 = 0.7785$, 所以所求概率的值为 $P_1 + P_2 = 0.819$.