Posterior Collapse and Latent Variable Non-identifiability

The Power of Deep Generative Models

- Unsupervised representation learning: Extract meaningful latent variable
- Density estimation; reconstruct input; generate new samples

Variational Autoencoders

 $z_i \sim p(z_i), \qquad x_i | z_i \sim p(x_i | z_i; \theta) = \text{EF}(x_i | f_{\theta}(z_i))$

Posterior Collapse

- The model fits well: Good predictive likelihood; Generate good new samples.
- Posterior is equal to the prior: Non-informative; useless as representations.

We have blamed many aspects of VAE for collapse

- Decoder is too powerful (Li+ 2019)
- The prior biases us (Higgins+ 2016)
- Approximate inference (Bowman+ 2015; Kingma+ 2016; Sønderby+ 2016)
- Training procedure; the order of parameter updates (He+ 2019)
- Local minima of optimization (Lucas+ 2019)
- Information preference (Chen+ 2016)

We have invented many ways to try to fix it

- Beta VAE (Higgins+ 2016)
- VampPrior (Tomczak+ 2017)
- Lagging inference (He+ 2019)
- Semi-amortized training (Kim+ 2018)
- Threshold the KL to prior (Li+ 2019)

Posterior Collapse and Latent Variable Identifiability

- What is it? Why it happens? Is it new?
- Can we fix it? Do we pay a price? Does it work?

Posterior collapse is a problem of latent variable non-identifiability.

Takeaways first

- Posterior collapse is a problem of latent variable non- identifiability.
- It is **not** specific to the use of neural networks or variational inference algorithms in VAE. Rather, it is an **intrinsic** issue of the model and the dataset.
- We propose a class of latent-identifiable variational autoencoders
 (LIDVAE) via Brenier maps to resolve latent variable non-identifiability and mitigate posterior collapse.
- Identifiability used to be mostly of theoretical interest, but it turns out to have important practical implications in modern machine learning.

Modeling high-dimensional data with VAE

• A variational autoencoder (VAE) assumes each datapoint x_i is generated by the latent variable z_i with parameters θ

$$z_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta) = \text{EF}(x_i \mid f_{\theta}(z_i)).$$

• Infer θ and posterior $p(z_i \mid x_i; \theta)$ by maximum (marginal) likelihood with variational approximation

$$\theta^* = \operatorname{argmax} \quad p(\mathbf{x} \mid \theta),$$

$$q(z_i \mid x_i; \theta) = \operatorname{argmin}_{\mathcal{Q}} \operatorname{KL}(q(z_i \mid x_i; \theta) \mid | p(z_i \mid x_i; \theta))$$

Examples of Variational Autoencoders

Variational Autoencoder (VAE)

$$Z_i \sim p(z_i), \qquad X_i \mid Z_i \sim p(x_i \mid z_i; \theta),$$

• Example: Gaussian VAE

$$Z_i \sim \mathcal{N}(0, I_K), \qquad X_i \mid Z_i \sim \mathcal{N}(f_{\theta}(z_i), \sigma_{\theta}^2 \cdot I_m).$$

• Example: Bernoulli mixture VAE

$$Z_i \sim \text{Categorical}(1/K), \qquad X_i \mid Z_i \sim \text{Bernoulli}(\text{sigmoid}(f_{\theta}(\mathcal{N}(\mu_{z_i}, \Sigma_{z_i})))),$$

Posterior Collapse: What is it?

 Posterior collapse is a phenomenon where the posterior of the latents in a VAE is equal to its uninformative prior

$$p(\boldsymbol{z} \mid \boldsymbol{x}; \, \theta^*) = p(\boldsymbol{z}).$$

Posterior Collapse: What are the essential conditions?

- Let's abstract away approximate inference
 - Consider the ideal case where the variational approximation is exact.
- Posterior collapse can happen in the absence of variational approximation.

Latent Variable Non-identifiability

- Definition (Latent variable non-identifiability)
 - Given a likelihood function $p(\mathbf{x}, \mathbf{z}; \theta)$, a parameter value $\theta = \hat{\theta}$, and a dataset $\mathbf{x} = (x_1, ..., x_n)$, the latent variable \mathbf{z} is **non-identifiable** if

$$p(\mathbf{x} | \mathbf{z} = \tilde{\mathbf{z}}'; \hat{\theta}) = p(\mathbf{x} | \mathbf{z} = \tilde{\mathbf{z}}; \hat{\theta}) \quad \forall \tilde{\mathbf{z}}', \tilde{\mathbf{z}} \in \mathcal{Z}.$$

Posterior Collapse iff Latent Variable Non-identifiability

- Theorem (Latent variable non-identifiability ⇔ Posterior collapse)
 - The latent variables \mathbf{z} are non-identifiable at $\hat{\theta}$ if and only if the posterior of \mathbf{z} collapses, $p(\mathbf{z} \mid \mathbf{x}; \hat{\theta}) = p(\mathbf{z})$.
- Proof: One line proof due to the Bayes rule
 - $p(\mathbf{z} \mid \mathbf{x}; \hat{\theta}) \propto p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z}; \hat{\theta}) = p(\mathbf{z})p(\mathbf{x}; \hat{\theta}) \propto p(\mathbf{z})$

Posterior Collapse iff Latent Variable Non-identifiability

- It happens with exact inference.
- It happens in classical not-so-flexible models.
- It doesn't have to involve neural network.
- It happens with global optima.
- It happens with both local and global latent variables.

Posterior Collapse in Gaussian Mixture VAE

• Gaussian Mixture VAE (GMVAE) $p(z_i) = \text{Categorical}(1/K), \qquad p(w_i | z_i) = \mathcal{N}(\mu_{z_i}, \Sigma_{z_i}), \qquad p(x_i | w_i; \theta) = \mathcal{N}(f_{\theta}(w_i), \sigma^2 \cdot I_m)$

Posterior Collapse in Gaussian Mixture Model

• Gaussian mixture model (GMM) $p(\alpha) = \text{Beta}(\alpha; 5,5), \quad p(x_i \mid \alpha; \theta) = \alpha \cdot \mathcal{N}(x_i; \mu_1, \sigma_1^2) + (1 - \alpha) \cdot \mathcal{N}(x_i; \mu_2, \sigma_2^2)$

(a) Likelihood function

(b) Posterior histogram

Posterior Collapse in Probabilistic PCA

Probabilistic PCA (PPCA)

$$p(z_i) = \mathcal{N}(z_i; 0, I_2),$$

$$p(x_i | z_i; \theta) = \mathcal{N}(x_i; z_i^{\mathsf{T}} w, \sigma^2 \cdot I_5)$$

- (Top): z_1 non-identifiable
- (Bottom): z_1 identifiable

(a) Likelihood (1D PPCA)

(c) Likelihood (2D PPCA)

(b) Posterior (1D PPCA)

(d) Posterior (2D PPCA)

Posterior Collapse in Probabilistic PCA

- Probabilistic PCA (PPCA) $p(z_i) = \mathcal{N}(z_i; 0, I_2), \quad p(x_i \mid z_i; \theta) = \mathcal{N}(x_i; z_i^\top w, \sigma^2 \cdot I_5)$
- The latent variable becomes closer to non-identifiable with larger σ
- The posterior collapses more.

Posterior Collapse: Can we fix it?

- Make latent variables identifiable in VAE.
- A variational autoencoder (VAE) assumes each datapoint x_i is generated by the latent variable z_i ,

$$x_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta) = \text{EF}(x_i \mid f_{\theta}(z_i)).$$

- Constructing latent-identifiable VAE thus amounts to constructing an injective likelihood function for VAE.
 - The construction is based on a few building blocks of linear and nonlinear injective functions, then composed into an injective likelihood $p(x_i | z_i; \theta)$ mapping from \mathcal{Z}^d to \mathcal{X}^m .

•

The building blocks of LIDVAE: Injective functions

- Linear injective functions
 - Left multiplication by matrix β^{\top} where β has **full column rank**
- Nonlinear injective function
 - Brenier map (aka monotone transport map): gradient of a convex function
 - Guaranteed to be bijective: derivative is the Hessian of a convex function (positive semidefinite and has a nonnegative determinant)
 - Parametrizable by neural networks using input convex neural networks (ICNN)

Latent-Identifiable VAE (LIDVAE)

- We construct injective likelihoods for LIDVAE by composing injective functions.
- Vanilla VAE $z_i \sim p(z_i), \qquad x_i \mid z_i \sim p(x_i \mid z_i; \theta) = \mathrm{EF}(x_i \mid f_{\theta}(z_i)).$
- Latent-Identifiable VAE

$$z_i \sim p(z_i), \qquad x_i | z_i \sim p(x_i | z_i; \theta) = \text{EF}(x_i | \boldsymbol{g}_{2,\theta}(\boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{g}_{1,\theta}(z_i)))$$

- $g_{1,\theta}: \mathbb{R}^K \to \mathbb{R}^K$ and $g_{2,\theta}: \mathbb{R}^D \to \mathbb{R}^D$ are continuous Brenier maps. (Nonlinear injective)
- The matrix β is a $K \times D$ -dimensional matrix $(D \ge K)$ with full row rank. (Linear injective)

Properties of LIDVAE

Latent-identifiable VAE (LIDVAE)

$$z_i \sim p(z_i), \qquad x_i | z_i \sim p(x_i | z_i; \theta) = \text{EF}(x_i | g_{2,\theta}(\beta^T g_{1,\theta}(z_i)))$$

- Properties
 - (Identifiability) The latent variable z_i is identifiable in LIDVAE i.e. for all $i \in \{1, ..., n\}$, we have $p(x_i | z_i = \tilde{z}'; \theta) = p(x_i | z_i = \tilde{z}; \theta) \implies \tilde{z}' = \tilde{z}, \quad \forall \tilde{z}', \tilde{z}, \theta$.
 - **(Flexibility)** For any VAE-generated data distribution, there exists an LIDAVE that can generate the same distribution.

Inference in LIDVAE

- Inference in LIDVAE is identical to the classical VAE, as they differ only in parameter constraints.
- LIDVAE is a drop-in replacement for VAE.
 - Both have the same capacity and share the same inference algorithm, but LIDVAE is identifiable and does not suffer from posterior
- The price we pay for LIDVAE is computational.
 - The generative model (i.e. decoder) is parametrized using the gradient of a neural network
 - Its optimization thus requires calculating gradients of the gradient of a neural network,
 - It increases the computational complexity and can sometimes challenge optimization.

Example: Identifiable Mixture VAE

- We replace the neural network mapping $p(x_i | z_i; \theta)$ with its injective counterpart, i.e. a composition of two Brenier maps and a matrix multiplication $g_{2,\theta}(\beta_2^\top g_{1,\theta}(\,\cdot\,))$
- Identifiable Mixture VAE (IDMVAE)

$$w_i \sim \text{Categorical}(1/K),$$

$$z_i | w_i \sim \text{EF}(\beta_1^{\mathsf{T}} w_i; \gamma_{\theta}),$$

$$x_i | z_i \sim \text{EF}(g_{2,\theta}(\beta_2^{\mathsf{T}} g_{1,\theta}(z_i)))$$

Example: Identifiable Sequential VAE

- We replace the neural network mapping $p(x_i | z_i; \theta)$ with its injective counterpart, i.e. a composition of two Brenier maps and a matrix multiplication $g_{2,\theta}(\beta_2^\top g_{1,\theta}(\,\cdot\,))$
- Identifiable Sequential VAE (IDSVAE)

$$z_i \sim p(z_i),$$

 $x_i | z_i, x_{< i} \sim \text{EF}(g_{2,\theta}(\beta_2^\top g_{1,\theta}([z_i, f_{\theta}(x_{< i})])))$

LIDVAE: It works!

			Fashion-MNIST						Omniglot					
			AU	KL	MI	LL			AU	KL	\mathbf{M}	I	LL	
VAE [28]			0.1	0.2	0.9	-258	.8		0.02	0.0	0.1	l -	862.1	
SA-VAE [25]			0.2	0.3	1.3	-252	.2		0.1	0.2	1.0) -	853.4	
Lagging VAE [18]			0.4	0.6	1.6	-248	.5		0.5	1.0	3.6	5 -	849.4	
β -VAE [19] (β =0.2)			0.6	1.2	2.4	-245	.3		0.7	1.4	5.9) -	842.6	
LIDGMVAE (this w		ork)	1.0	1.6	2.6	-242	.3		1.0	1.7	7.5	5 -	820.3	
		Syr	nthetic			Yahoo						Yelp		
	AU	KĽ	MI	LI		AU F	L	MI	LL	A	U	KL	MI	L
VAE [28]	0.0	0.0	0.0	-46	.5 (0.0	0.0	0.0	-519.	7 0	.0	0.0	0.0	-63
SA-VAE [25]	0.4	0.1	0.1	-40	.2 (0.2	0.	0.2	-520.	2 0	.1	1.9	0.2	-63
Lagging VAE [18]	0.5	0.1	0.1	-40	.0	0.3	.6	0.4	-518.	6 0	.2	3.6	0.1	-63
β -VAE [19] (β =0.2)	1.0	0.1	0.1	-39	.9 ().5	.7	0.9	-524.4	4 0	.3	10.0	0.1	-63
LIDSVAE	1.0	0.5	0.6	-40	.3 ().8 7	.2	1.1	-519.:	5 0	.7	9.1	0.9	-63

Table 1: Across image and text datasets, LIDVAE outperforms existing VAE variants in preventing posterior collapse while achieving similar goodness-of-fit to the data.

Takeaways

- Posterior collapse is a problem of latent variable non- identifiability.
- It is **not** specific to the use of neural networks or variational inference algorithms in VAE. Rather, it is an **intrinsic** issue of the model and the dataset.
- We propose a class of latent-identifiable variational autoencoders
 (LIDVAE) via Brenier maps to resolve latent variable non-identifiability and mitigate posterior collapse.
- Identifiability used to be mostly of theoretical interest, but it turns out to have important practical implications in modern machine learning.

Thank you!

- Wang, Y., Blei, D.M., and Cunningham, J.P. (2021) Posterior Collapse and Latent Variable Non-identifiability. NeurIPS 2021.
- https://github.com/yixinwang/lidvae-public

Input Convex Neural Networks (ICNN)

An L-layer ICNN is a neural network mapping from \mathbb{R}^d to \mathbb{R} . Given an input $u \in \mathbb{R}^d$, its lth layer is

$$z_0 = u,$$
 $z_{l+1} = h_l(W_l z_l + A_l u + b_l),$ $(l = 1, ..., L-1),$ (6)

where the last layer z_L must be a scalar, $\{W_l\}$ are non-negative weight matrices with $W_0 = \mathbf{0}$, and $\{h_l\}$ are convex and non-decreasing functions. A common choice of h_0 is the square of a leaky RELU, $h_0(x) = (\max(\alpha \cdot x, x))^2$ with $\alpha = 0.2$; the remaining h_l 's are set to be a leaky RELU, $h_l(x) = \max(\alpha \cdot x, x)$. This neural network is called "input convex" because it is guaranteed to be a convex function.

Input convex neural networks can approximate any convex function on a compact domain in sup norm (Theorem 1 of Chen et al. [9].) Given the neural network parameterization of convex functions, we can parametrize the Brenier map $g_{\theta}(\cdot)$ as its gradient with respect to the input $g_{\theta}(u) = \partial z_L/\partial u$. This neural network parameterization of Brenier map is a universal approximator of all Brenier maps on a compact domain, because input convex neural networks are universal approximators of convex functions [9].