T.D. II - Intégrale sur un segment

I - Calcul de primitives

Exercice 1. (Fonctions polynomiales, 🐯) Déterminer des primitives des fonctions suivantes

1.
$$x^2 + x + 1$$
.

3.
$$4x^3 + 2x^2 - 1$$
.

2.
$$2x^3 + 4x + 2$$

3.
$$4x^3 + 2x^2 - 1$$
.
4. $x^{10} + \frac{1}{5}x^4 + \frac{1}{2}$.

Exercice 2. (Fonctions puissances, $\mathbf{Q}_{\mathbf{B}}^{\mathbf{B}}$)

1.
$$x^{3/2}$$

4.
$$\frac{4}{x^5}$$

2.
$$\frac{1}{\sqrt{x}}$$

5.
$$(2x+1)(x^2+x)^5$$

3.
$$\frac{1}{3x^2}$$

5.
$$(2x+1)(x^2+x)^5$$
.
6. $(x^2+1)(x^3+3x+4)$.

Exercice 3. (Logarithmes & Exponentielles, 🌣

1.
$$\frac{3}{x}$$

4.
$$\frac{1}{e^{12x}}$$

$$2. \ \frac{3x^2 + 4x}{x^3 + 2x^2 + 1}.$$

4.
$$\frac{1}{e^{12x}}$$
5. $(e^x + 1)(e^x + x)^{22}$
6. $\frac{e^x + 1}{e^x + x}$

3.
$$e^{2x}$$

6.
$$\frac{e^x + 1}{e^x + x}$$

Exercice 4. (Calculs d'intégrales, 🗱) Calculer les intégrales suivantes :

1.
$$\int_0^1 (x^2 + 3x + 1) dx$$
.
2. $\int_0^1 e^{3x} dx$.
3. $\int_1^{-1} e^3 dx$.
4. $\int_0^1 \frac{1}{x} dx$.

3.
$$\int_{1}^{-1} e^{3} dx$$

2.
$$\int_{-2}^{1} e^{3x} dx$$

4.
$$\int_{2}^{1} \frac{1}{x} dx$$

II - Propriétés de l'intégale

Exercice 5. (Loi uniforme) Soit f la fonction définie par f(x) = 0 si $x \notin [1,3]$ et $f(x) = \frac{1}{2}$ sinon.

- 1. Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

$$\mathbf{a)} \ \int_{-2}^{0} f(x) \, \mathrm{d}x.$$

d)
$$\int_{-4}^{3} f(x) \, dx$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x.$$

e)
$$\int_{-5}^{10} f(x) \, dx$$
.

c)
$$\int_{-1}^{2} f(x) \, dx$$
.

3. Si
$$x \in [1,3]$$
, déterminer $\int_1^x f(t) dt$.

Exercice 6. (Loi exponentielle) Soit f la fonction définie par f(x) = 0 si x < 0 et $f(x) = 2e^{-2x}$ sinon.

- 1. Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x$$
.

$$\mathbf{d}) \int_{-4}^{3} f(x) \, \mathrm{d}x.$$

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x$$
.

e)
$$\int_{5}^{10} f(x) \, dx$$
.

c)
$$\int_{-1}^{2} f(x) dx$$
.

3. Si $x \ge 0$, déterminer $\int_0^x f(t) dt$ et en déduire $\lim_{x \to +\infty} \int_0^x f(t) dt$.

Exercice 7. Calculer $\int_{-1}^{5} |x-2| dx$.

Exercice 8. (4) Soit
$$I = \int_0^1 \frac{1}{1+x} dx$$
 et $J = \int_0^1 \frac{x}{1+x} dx$.

- **1.** Calculer I.
- **2.** Calculer I+J.
- **3.** En déduire la valeur de J.

Exercice 9. (\$\mathbf{Q}_{\mathbf{e}}^{\mathbf{e}}\$) Soit
$$I = \int_{0}^{1} \frac{x}{1+x^{2}} dx$$
 et $J = \int_{0}^{1} \frac{x^{3}}{1+x^{2}} dx$.

- **1.** Calculer I.
- **2.** Calculer I + J.
- **3.** En déduire la valeur de J.

Exercice 10. (**) Pour tout n entier naturel, on pose $u_n = \int_0^{1/2} \frac{x^n}{1-x^2} dx$.

- 1. Montrer que la suite (u_n) est décroissante.
- 2. Montrer que (u_n) est minorée par 0.
- **3.** En minorant $1-x^2$, montrer que $u_n \leqslant \frac{4}{3(n+1)} \left(\frac{1}{2}\right)^{n+1}$.
- **4.** En déduire la limite de la suite (u_n) .

Exercice 11. (**) Pour tout n entier naturel non nul, on pose $I_n = \int_0^1 \ln(1+x^n) \, \mathrm{d}x$.

- **1.** Montrer que, pour tout n entier naturel non nul, $0 \le I_n \le \ln(2)$.
- **2.** Étudier les variations de la suite (I_n) .
- 3. En déduire que la suite (I_n) converge.

III - Intégrations par parties

Exercice 12. (À l'aide d'une intégration par parties, calculer les intégrales suivantes :

1.
$$\int_0^1 x e^x dx$$
.

4.
$$\int_1^2 x^2 \ln(x) dx$$
.

2.
$$\int_{1}^{2} x e^{2x} dx$$
.

5.
$$\int_{1}^{e} (\ln(t))^2 dt$$
.

3.
$$\int_{1}^{e} x \ln(x) dx.$$

6.
$$\int_{1}^{e} t^2 e^t dt$$
.

Exercice 13. (\mathscr{E}) Pour tout n entier naturel, on pose $u_n = \int_0^1 (1-t)^n e^t dt$.

- **1.** Calculer u_0 .
- **2.** Montrer que $f(t) = (2 t)e^t$ est une primitive de la fonction $g(t) = (1 t)e^t$.
- 3. Déterminer la valeur de u_1 .
- **4.** À l'aide d'une intégration par parties, montrer que, pour tout n entier naturel, $u_{n+1}=(n+1)u_n-1$.
- 5. Montrer que la suite (u_n) converge et déterminer sa limite.
- **6.** Déterminer la limite de (nu_n) .

Exercice 14. (**) Pour tout n entier naturel non nul, on pose $u_n = \int_1^e t(\ln(t))^n dt$.

- **1.** Calculer u_0 .
- **2. a)** Montrer que, pour tout $t \in [1, e]$, $0 \le \ln(t) \le 1$.
 - **b)** En déduire que la suite (u_n) est décroissante.
- **3.** En utilisant une intégration par parties, montrer que pour tout n entier naturel, $u_{n+1} = \frac{e^2}{2} \frac{n+1}{2}u_n$.
- **4.** En déduire u_1 , u_2 et u_3 .