

USB HW design

USB device HW design with STM32 147

ESD protection

- Connected in series or parallel, it depends on the ESD part
- Correct choice of ESD protection see next slides
- ESDA6V is not recommended capacitance too high and protection characteristic is not met
- But USB signals are not violated by ESDA6V
- No serial resistance on the data lines

USB host HW design with STM32 148

Bad ESD design

• Incorrect ESD part – there are 33 Ω resistors on data lines inside EMIF02, 22 Ω resistors in parallel are used as workaround to add lower resistance on the bus

- The STM32 Internal USB driver impedance is inline with specification and is not necessary to add external impedance
- Only ESD protection without internal serial resistance are recommended

- We can recommend to use protection without internal resistors:
 - USBLC6-2 for VBUS powered DEVICE/HOST only (no ID pin)
 - USBLC6-4SC6 for self powered DEVICE/OTG (protect also ID pin)
 - ECMF02-4CMX8 for HS (ESD+EMI)

- USBLC6-2 for DEVICE/HOST only (no ID pin)
- Connection for VBUS powered application
 - Cable deatach event cannot be detected in Self powered application due to the D+ pull-up and the diode connection to **VBUS**

 For self powered application or OTG (ID usage) USBLC6-4SC6 is recommended

VBUS powered implementation

Self powered implementation

 Note1: If system is Self powered, cable detach event cannot be detected due to the D+ pull-up and the diode connection to VBUS

ECMF02-4CMX8 recommended for HS (ESD+EMI)

The EMI common mode filter is mandatory for the USB HS signaling point

of view.

 USBLC6-2SC6 can be also used, but additional EMI common mode filter need to be added

Device VBUS sensing

- Differentiate suspend and disconnection event
 - Mandatory for self-powered devices
 - Bus-powered application don't need VBUS sensing
- Pin dedicated to be connected to USB VBUS (5V)
 - PA9 on OTG FS, PB13 on OTG HS with internal PHY
 - Not 5V tolerant only VDD + 4.0V
 - Requires external voltage divider
 - Requires 200 µA minimal current for the detection to work
 - Limits maximum resistor values in voltage divider
- Any GPIO can be used instead
- life gugmented
- Also requires external voltage divider
- Requires handling in software

USB bus-powered device 155

- MCU powered from USB bus
 - No need for ID line or VBUS sensing
 - For some STM32 (F1, F3 families) additional pull up resistor on D+ need to be added, please check datasheet

USB self-powered device 156

- VBUS sensing mandatory to differentiate disconnect and suspend
 - Scenario with OTG dedicated GPIO for VBUS sensing

• For some STM32 (F1, F3 families) additional pull up resistor on D+ need to be added, please

USB self-powered device 157

- Similar to previous slides, battery charged from VBUS
 - Battery management not illustrated application dependent
 - For some STM32 (F1, F3 families) additional pull up resistor on D+ need to be added, please check datasheet Batterv

USB host 158

Host is managing +5V on VBUS

USB OTG 159

Recommended HS PHY 160

USB3300

FUSB2805 (FW fix needed)

• USB331x

• ISP1705

USB3320C

STULPI01

Not compatible!

USB3330

USB334x

 For USB HS board design BOM and schematic from ST evaluation boards shall be used

HW design summary 161

No resistors in series on data lines

- Even though it is on some of ST Evaluation boards
- It can shift the electrical characteristic out of USB specification
- ESD protection
 - E.g.: USBLC6-4SC6 (from ST)
 - Must match the USB speed (full-speed or high-speed)
- VBUS sensing
 - Voltage divider is required to match Absolute maximum ratings
- USB OTG HS peripheral can work in FS mode using internal PHY

HW design summary 162

- Power supply (internal PHY)
 - Most devices require at least 3V supply voltage
 - The peripheral might work to 2.7V, but electrical characteristic will be out of specification
 - Some devices (low-power family) has dedicated power supply for USB
 - 3V is required only for this power supply
 - STM32H7 has dedicated voltage regulator for USB from 5V
 - Can be used only for the USB peripheral
 - Voltage detector must be enabled in both cases bit cleared only by power-on reset
- Clocking (internal PHY)
 - External HSE crystal required, except for crystal-less devices
- External high-speed PHY
 - Power supply and clocking depends on the PHY IC
 - Connected via ULPI interface
 - E.g.: STULPI01