Computational MRI

Parallel Imaging III Non-Cartesian Imaging and Iterative Reconstruction

Overview

- Non-Cartesian parallel imaging
- Iterative algorithms:
 - Gradient descent
 - Conjugate gradient
- CG-SENSE image reconstruction

Magnetic Resonance in Medicine 46:638-651 (2001)

Advances in Sensitivity Encoding With Arbitrary *k*-Space Trajectories

Klaas P. Pruessmann, Markus Weiger, Peter Börnert, and Peter Boesiger*

Cartesian subsampling

Cartesian subsampling

Cartesian SENSE

- T2 weighted brain scan
- 4-Channel receive coil
- Sensitivities are known

Pruessmann et al., MRM 42: 952-962 (1999)

Cartesian SENSE

Parallel Imaging: SENSE

Radial Subsampling

Different structure of aliasing

Spiral Subsampling

Different structure of aliasing

Building the encoding operator

$$g_k(k_x, k_y) = \int \int c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y) dxdy$$
Discretization
$$g_k(k_x, k_y) = \sum \sum c_k(x, y) e^{-i(k_x x + k_y y)} u(x, y)$$
Forward operator, encoding matrix
$$\vec{g} = \mathcal{F}_0 C \vec{u} = K \vec{u}$$

Image reconstruction as inverse problem

Encoding: $\vec{g} = \vec{K}\vec{u}$ linear system of equations

Reconstruction:

- Solution of the system of equations
- Inversion of the encoding matrix

$$\vec{u} = K^{-1}\vec{g}$$

Inversion of the encoding matrix

Direct methods: Pseudoinverse: $\vec{u} = (K^H K)^{-1} K^H \vec{g}$

Matrix K can become very large!

Magnus and Stiefel, Journal of Research of the National Bureau of Standards 1952 Pruessmann MRM 2001

Iterative reconstruction

Given:

- Forward Operator: K
- Measured k-space data: \bar{g}

Forward problem

$$K\vec{u} = \vec{g}$$

Iterative reconstruction

$$\hat{\vec{u}} = \arg\min_{\vec{u}} \|K\vec{u} - \vec{g}\|_2^2$$

Iterative optimization: Gradient descent

$$K\vec{u} = \vec{g}$$

$$\hat{\vec{u}} = \arg\min_{\vec{u}} \|K\vec{u} - \vec{g}\|_2^2$$

$$\vec{u}_{n+1} = \vec{u}_n - t \frac{\partial}{\partial \vec{u}} ||K\vec{u} - \vec{g}||_2^2$$

$$\frac{\partial}{\partial \vec{u}} \| K \vec{u} - \vec{g} \|_2^2$$

$$\frac{\partial}{\partial \vec{u}} \|K\vec{u} - \vec{g}\|_2^2 = 2K^T (K\vec{u} - \vec{g})$$

Exercise:-)

Steepest descent

GD implementation (exercise)

$$K: g_{I} = \mathcal{F}(c_{I} \odot u)$$
 $K^{T}: u = \sum_{I} c_{I}^{*} \odot \mathcal{F}^{T}(g_{I})$
 $u_{0} = 0$
 $t > 0$
 $for: n = 1: maxit$
 $u_{n+1} = u_{n} - t(2K^{T}(Ku_{n} - g))$

Exercise example

- T2 weighted brain scan
- 3T System
- 4 channel head coil
- TSE: Sequence parameters:
 - TR 5000ms
 - TE 99ms
 - Turbo Factor 10
 - Matrix Size 256x256
 - In Plane Resolution 0.9mmx0.9mm
 - Slice Thickness 4mm

GD radial trajectory, 128 projections, R=2

Image GD Iteration 100

k-space Iteration 100

GD radial trajectory, 64 projections, R=4

The conjugate gradient method

Minimize $f(\vec{u})$ in subspace spanned by search directions that are K orthogonal (conjugate):

$$\vec{p}_k^T K \vec{p}_{k+1} = 0$$

Converges to exact solution in *n* steps (n is matrix size)

n=2 quadratic form Gradient descent (red) Conjugate gradient minimization (green)

The conjugate gradient method

$$\vec{r}_k = \vec{g} - K \vec{u}_k$$

Residual

$$\vec{p}_k = \vec{r}_k - \sum_{i < k} \frac{\vec{p}_i^T K \vec{r}_k}{\vec{p}_i^T K \vec{p}_i} \vec{p}_i$$

CG search direction

$$\vec{u}_{k+1} = \vec{u}_k + \alpha \vec{p}_k$$

Update step

$$\alpha_k = \frac{\vec{p}_k^T \vec{r}_{k-1}}{\vec{p}_k^T K \vec{p}_k}$$

Step length

The conjugate gradient method

- Exact solution: Interpretation as direct method
- In practice: Used as iterative method
 - Unstable to perturbations, e.g. noise
 - Required tolerance usually achieved after it<<n
- Very easy to implement (≈20 lines of code)
- Implementations in Scipy, Matlab, Numerical Recipes etc.

scipy.sparse.linalg.cg

```
scipy.sparse.linalg.cg(A, b, x\theta=None, tol=1e-\theta5, maxiter=None, M=None, callback=None, atol=None)

Use Conjugate Gradient iteration to solve Ax = b.
```

CG on the normal equations and preconditioning

$$K\vec{u} = \vec{g}$$

Requirement: K symmetric and positive definite

$$K^T K \vec{u} = K^T \vec{g}$$

CG on the normal equations

$$MK\vec{u} = M\vec{g}$$

Preconditioning: "Modify equation such that right hand side is approximate solution"

CG radial trajectory, 128 projections, R=2

Image CG iteration 40

k-space iteration 40

CG radial trajectory, 64 projections, R=4

Image CG iteration 40

k-space iteration 40

GD-SENSE CG-SENSE 128 projections 64 projections

CG radial trajectory, 32 projections, R=8

Image CG iteration 40

k-space iteration 40

CG spiral trajectory, 12 interleaves, R≈4

Image CG iteration 40

k-space iteration 40

CG spiral trajectory, 6 interleaves, R≈8

Image CG iteration 40

k-space iteration 40

Noise propagation: Radial trajectory, 24 projections

Noise propagation: Spiral trajectory, 3 interleaves

Noise propagation: Cartesian, R=4

Home > Pulse

Can you reproduce this seminal MRM paper? Participate in the reproducible research study group challenge!

April 2, 2019 2832

If you believe Copy Link nding time on reproducibility makes SENSE, we encourage you to join the ISMRM reproducible research study group's 2019 challenge! As the challenge unfolds, so will sub-Nyquist aliasing artifacts. Have we dropped enough hints about the MRM paper selected to be reproduced?

Yes, you probably guessed right. The paper selected for the 2019 reproducibility challenge is:

Klaas P. Pruessmann, Markus Weiger, Peter Börnert, Peter Boesiger. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001 Oct;46(4):638-51.

The data

We provided two example datasets, brain (12 receive channels, 96 radial projections) and cardiac (34 receive channels, 55 radial projections), from a radial trajectory acquired with multi-channel coils. The data is provided in the h5 format, and we are following the conventions of the BART toolbox regarding array dimensions of the raw data [1, Readout, Spokes, Channels] and the trajectory [3, Readout, Spokes] where the first dimension encodes the k-space coordinate (for 2D acquisitions the third coordinate is always zero) and the unit of measurement is 1 / FOV.

Figure 1: Raw k-space data from one coil and a gridding sum of squares example reconstruction of the provided brain (left) and cardiac (right) data

Brain data (5.3 MB): rawdata_brain_radial_6proj_12ch.h5: rawdata: [1, 512, 96, 12], trajectory: [1, 512, 96]

Cardiac data (5 MB): rawdata_heart_radial_55proj_34ch.h5: rawdata: [1, 320, 55, 34], trajectory: [1, 320, 55]

We also provided starter-scripts for MATLAB and Python which are able to read in and display the data. These scripts are also available from the Github repository.

Submissions

Collated list of submissions - May 2019:

Authors (or principal author)	Link	Info
Steven Baete (NYU)	https://bitbucket.org/sbaete /ismrm2019reprodcgsense	MATLAB, NUFFT (Fessler), gpuNUFFT (Schwarzl, Knoll)
Alexander Fyrdahl (Karolinska Institutet and Karolinska University Hospital, Sweden)	https://github.com/fyrdahl/rrsg_challenge	MATLAB, NUFFT (Fessler)
Kerstin Hammernik (Graz University of Technology)	https://github.com/khammernik /ISMRM2019_RRSG	Python, BART, primal-dual-toolbox, medutils
Seb Harrevelt (Eindhoven University of Technology)	https://github.com/zwep/ismrm19_challenge	Python, PyNUFFT (Lin),
Namgyun Lee (University of Southern California)	https://drive.google.com/file/d/10qD6K-sCEkNjpynRZTpLm8VBUPJFhJCt/view	MATLAB, custom MEX for gridding
Gilad Liberman (MGH)	https://github.com/giladddd/LinopScript	MATLAB, Demo of linear-operator scripting for BART on challenge datasets
Michael Loecher (Stanford)	https://github.com/mloecher/rrsg_challenge	Python, custom Cython for gridding
Oliver Maier (Graz University of Technology)	https://github.com/MaierOli2010 /ISMRM_RRSG	Python, BART, requires GPU for use of GPyFFT
Franz Patzig, Lars Kasper, Thomas Ulrich, Maria Engel, Johanna Vannesjo, Markus Weiger, David Brunner, Bertram Wilm, Klaas Prüssmann (ETHZ)	https://github.com/mrtm-zurich/rrsg-arbitrary- sense	MATLAB, custom gridding in MATLAB
Ludger Starke (MDC-Berlin)	/reproducibleResearch19_LudgerStarke.zip	MATLAB, BART
Ye Tian (UCAIR - University of Utah)	https://github.com/YeTianMRI/ISMRM-2019-reproducible	MATLAB, NUFFT (Fessler)
Ke Wang, Miki Lustig, Ekin Karasan, Suma Anand, Volert Roeloffs (Berkeley)	https://github.com/KeWang0622 /rrsg_challenge_sigpy	Python, SigPy (Ong)

Revised: 2 October 2020

Accepted: 2 October 2020

DOI: 10.1002/mrm.28569

REVIEW

Magnetic Resonance in Medicine

CG-SENSE revisited: Results from the first ISMRM reproducibility challenge

Oliver Maier ¹ Steven Hubert Baete ² Alexander Fyrdahl ³
Kerstin Hammernik ^{4,5} Seb Harrevelt ⁶ Lars Kasper ^{7,8,9} Agah Karakuzu ¹⁰
Michael Loecher ¹¹ Franz Patzig ⁷ Ye Tian ^{12,13} Ke Wang ¹⁴
Daniel Gallichan ¹⁵ Martin Uecker ^{16,17,18,19} Florian Knoll ²

¹Institute of Medical Engineering, Graz University of Technology, Graz, Austria

²Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA

³Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden

⁴Department of Computing, Imperial College London, London, UK

⁵Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria

⁶Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

⁷Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland

⁸Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland

⁹Techna Institute, University Health Network, Toronto, ON, Canada

¹⁰NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada

¹¹Department of Radiology, Stanford University, Stanford, CA, USA

¹² Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA

¹³ Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA

¹⁴Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA

¹⁵Cardiff University Brain Research Imaging Centre, Cardiff, UK

¹⁶Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany

¹⁷German Centre for Cardiovascular Research (DZHK), Berlin, Germany

¹⁸Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany

¹⁹Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany

Consolidated Python implementation

Consolidated Matlab implementation

Summary

- Aliasing for non-Cartesian subsampling
- Iterative reconstruction: GD, and CG
- Convergence behavior
- Noise propagation
- Sidenote: Reproducibility