Homework 1

Quantum Mechanics

January 22, 2023

C Seitz

Problem 1. 1.3.5 Calculations, No-cloning theorem

Solution. Assume we have a unitary copying operator U and two quantum states $|\phi\rangle$ and $|\psi\rangle$. Suppose this unknown copying operator U could transform $|s\rangle$ to either $|\phi\rangle$ or $|\psi\rangle$.

$$|\psi\rangle \otimes |s\rangle \xrightarrow{U} |\psi\rangle \otimes |\psi\rangle$$
$$|\phi\rangle \otimes |s\rangle \xrightarrow{U} |\phi\rangle \otimes |\phi\rangle$$

If U is unitary, then it preserves inner products, so

$$(\langle \psi | \otimes \langle s |)(|\phi\rangle \otimes |s\rangle) = \langle \psi | \phi\rangle \otimes \langle s | s\rangle = \langle \psi | \phi\rangle$$

After the copying transformation, we have

$$(\langle \psi | \otimes \langle \psi |)(|\phi\rangle \otimes |\phi\rangle) = \langle \psi | \phi\rangle \otimes \langle \psi | \phi\rangle$$
$$= (\langle \psi | \phi\rangle)^{2}$$

We demanded that the inner product be preserved, so these two results must be equivalent. However, there is only a solution when $|\psi\rangle = |\phi\rangle$ or $\langle\psi|\phi\rangle = 0$. Therefore, the copying circuit only works for orthogonal states, and not a general ket.

Problem 2. 1.3.7 Calculations, Quantum Teleportation

Solution.

The objective is for Alice to teleport to Bob a qubit in a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, which can be done by using an entangled EPR pair. There three qubits in total: $|\psi\rangle$ and an entangled EPR pair $|\beta_{00}\rangle$. The first qubit in the EPR pair is kept by alice and the second is given to Bob. Since the EPR pair is entangled, the three qubits are in a state

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} \left(\alpha |000\rangle + \alpha |011\rangle + \beta |100\rangle + \beta |111\rangle\right)$$

Alice then sends this state through a CNOT gate, where the qubit $|\psi\rangle$ is the control bit and the first qubit of the EPR pair is the target bit. This of course flips the second bit for the second two terms:

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(\alpha |000\rangle + \alpha |011\rangle + \beta |110\rangle + \beta |101\rangle\right)$$

Then the first qubit is sent through a Hadamard gate. As a minor detour, the Hadamard gate, does

$$|0\rangle \to (|0\rangle + |1\rangle)/\sqrt{2}$$

$$|1\rangle \to (|0\rangle - |1\rangle)/\sqrt{2}$$

Therefore, the effect on $|\psi_1\rangle$ is:

$$|\psi_{1}\rangle = \frac{1}{2}(\alpha |000\rangle + \alpha |100\rangle + \alpha |011\rangle + \alpha |111\rangle + \beta |010\rangle + \beta |001\rangle - \beta |110\rangle - \beta |101\rangle) = \frac{1}{2}(|00\rangle (\alpha |0\rangle + \beta |1\rangle) + |10\rangle (\alpha |0\rangle - \beta |1\rangle) + |01\rangle (\alpha |1\rangle + \beta |0\rangle) + |11\rangle (\alpha |1\rangle - \beta |0\rangle)$$

Therefore, if Alice measures her two qubits, say in state $|00\rangle$, she can communicate this to bob over a classical communication channel, and Bob then knows the superposition of his qubit. Bob can then apply the necessary quantum gate to transform his qubit to $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.

Problem 3. Deutsch Algorithm, Deutch-Josza Algorithm

Solution.

Suppose we have some boolean function $f:\{0,1\} \to \{0,1\}$. Deutch's algorithm can determine whether the function f is constant or balanced exponentially faster than a classical computer. If f is constant then f(0) = f(1); however, if f is balanced then $f(0) \neq f(1)$. For example, f(0) = 1 and f(1) = 0 is a balanced function. A classical computer would need to evaluate f(0) and f(1) separately, but a quantum computer can leverage quantum parallelism to compute both f(0) and f(1) at the same time.

We start with the two qubits prepared in state $|\psi_0\rangle = |0\rangle |1\rangle$. Each qubit is Hadamard transformed to give

$$|\psi_1\rangle = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$
$$= \frac{1}{2} (|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle)$$

The state then goes through an oracle, which implements the unitary transformation $|\alpha\rangle |\beta\rangle \rightarrow |\alpha\rangle |\beta\oplus f(\alpha)\rangle$. Note that \oplus is addition modulo two, which is essentially an XOR operation. Thus, after transformation, the state is

$$|\psi_{2}\rangle = \frac{1}{2} (|0\rangle |0 \oplus f(0)\rangle - |0\rangle |1 \oplus f(0)\rangle + |1\rangle |0 \oplus f(1)\rangle - |1\rangle |1 \oplus f(1)\rangle)$$

$$= \frac{1}{2} (|0\rangle (|0 \oplus f(0)\rangle - |1 \oplus f(0)\rangle) + |1\rangle (|0 \oplus f(1)\rangle - |1 \oplus f(1)\rangle))$$

$$= \frac{1}{2} ((-1)^{f(0)} |0\rangle (|0\rangle - |1\rangle) + (-1)^{f(1)} |1\rangle (|0\rangle - |1\rangle))$$

Then we Hadamard transform the first qubit:

$$|\psi_3\rangle = \frac{1}{2} \left((-1)^{f(0)} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) + (-1)^{f(1)} (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) \right)$$

= $((-1)^{f(0)} + (-1)^{f(1)}) (|00\rangle - |01\rangle) + ((-1)^{f(0)} - (-1)^{f(1)}) (|10\rangle - |11\rangle)$

Writing it in this way makes it clear how we determine if the function is constant or balanced. If it is constant (f(0) = f(1)) then the second term vanishes. So, if we measure the first qubit, it will be in state $|0\rangle$. However, if

it is balanced $(f(0) \neq f(1))$, then the first term vanishes and the first qubit will be measured in state $|1\rangle$.

This algorithm generalizes to the case where the function $f: \{0,1\}^n \to \{0,1\}$. This is where the power of quantum computing really shines. Clasically, (if f can be constant or balanced and nothing else), we would need $2^{n-1} + 1$ function calls. But a quantum computer can do this in a single function call. First, note that the Hadamard transform on a bit string $|\alpha\rangle$ of length n is

$$H |\alpha\rangle = \left(\frac{|0\rangle + |1\rangle}{2}\right)^{\otimes n}$$

For brevity, I will now also adopt the notation where $H|0\rangle = |+\rangle$ and $H|1\rangle = |-\rangle$. We have,

$$|\psi_1\rangle = \left(\frac{|0\rangle + |1\rangle}{2}\right)^{\otimes n} \otimes |-\rangle = \frac{1}{2^{n/2}} \sum_{\alpha \in \{0,1\}^n} |\alpha\rangle \otimes |-\rangle$$

Looking at the last line from $|\psi_2\rangle$ in Deutsch's algorithm above, we can see that the effect of the oracle U is efficiently summarized as:

$$U |\alpha\rangle |1\rangle = \frac{1}{2^{n/2}} \sum_{\alpha \in \{0,1\}} (-1)^{f(\alpha)} |\alpha\rangle |-\rangle$$

Therefore, for the n-bit case, we get

$$|\psi_2\rangle = \frac{1}{2^{n/2}} \sum_{\alpha \in \{0,1\}^n} (-1)^{f(\alpha)} |\alpha\rangle \otimes |-\rangle$$