ADS theoretische Klausur 29.06.2021

	20		25		28		19		27		34		29		26
+		+		+		+		+		+		+		+	
•		•		•		•		•		•		•		•	
z_1		z_2		z_3		z_4		z_5		z ₆		Z ₇		z ₈	

Aufgabe 1 [2]

Fügen Sie in obiger Tabelle in den leeren Kästchen, vor denen das Pluszeichen steht, die Ziffern Ihrer Matrikelnummer ein. Führen Sie die Additionen durch und ermitteln Sie die Zahlen z_1 bis z_8 .

Aufgabe 2 [18]

a. [6] Die Laufzeitanalyse einer Funktion hat die Rekurrenzgleichung G ergeben. Ermitteln Sie mittels des Master-Theorems eine möglichst kleine O-Schranke. Ersetzen Sie die Werte z_n duch die Ergebnisse aus Aufgabe 1.

$$G(n) = z_3 * G(\left[\frac{n}{3}\right]) + 4n^2 + z_7 n + 42 \text{ für } n \in \mathbb{N}$$

- b. [6] Kann jede beliebige Rekurrenzgleichung mithilfe des vereinfachten Master-Theorems gelöst werden? Begründen Sie Ihre Antwort kurz.
- c. [6] Analysieren Sie die Laufzeitkomplexität des folgenden Codes:

```
int xpowy(int x, int n)
{
    if (n==0)
        return 1;
    if (n==1)
        return x;
    if ((n % 2) == 0)
        return xpowy(x*x, n/2);
    else
        return xpowy(x*x, n/2) * x;
}
```

Aufgabe 3 [20]

Die Werte z_1 bis z_8 . (aus Aufgabe 1) seien in dieser Reihenfolge von links nach rechts in einem Array gespeichert. Sortieren Sie die Werte aufsteigend mit

- a. [8] Quicksort
- b. [4] Counting Sort (**Achtung:** verwenden Sie \mathbf{z}_n % **10** als zu sortierende Werte!)
- c. [8] Heap Sort

universität wien

ADS theoretische Klausur 29.06.2021

Aufgabe 4 [20]

- a. [9] Fügen Sie die Werte z_2 bis z_8 aus Aufgabe 1 (in dieser Reihenfolge) in eine zu Beginn leere Hashtabelle der Länge 7 ein. Verwenden Sie als Hashfunktion h(k)=k%7 und Double Hashing zur Kollisionsbehandlung. Die zweite Hashfunktion ist g(k)=k%5+1.
 - Skizzieren Sie den Zustand der Hashtabelle nach jedem Einfügeschritt.
- b. [4] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert $\mathbf{z_4}$ in der Tabelle aus (a) an.
- c. [4] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert 5 in der Tabelle aus (a) an.
- d. [1] Löschen Sie den Wert $\mathbf{z_5}$ aus der Tabelle und skizzieren Sie den Zustand der Hashtabelle.
- e. [2] Wozu wird die beim Double Hashing die Markierung "wiederfrei" verwendet?

Aufgabe 5 [20]

- a. [4] Fügen Sie die Werte Z₂ bis Z₈ aus Aufgabe 1 (in dieser Reihenfolge) in einen zu Beginn leeren binären Suchbaum ein.
 Skizzieren Sie den Zustand des Baums nach jedem Einfügeschritt.
 (Anmerkung: Werte können mehrfach im Baum gespeichert werden.)
- b. [4] Geben Sie in C++ ähnlicher Notation die Definition einer möglichen Datenstruktur für einen binären Suchbaum an.
- c. [8] Geben Sie in C++ ähnlicher Notation eine Definition einer Funktion oder Methode an, die das Minimum der im binären Suchbaum gespeicherten Werte ermittelt.
- d. [4] Bestimmen Sie die Laufzeitkomplexität Ihrer Funktion abhängig von der Anzahl *n* der im Suchbaum gespeicherten Werte in O-Notation. Begründen Sie Ihr Ergebnis kurz.

universität wien

ADS theoretische Klausur 29.06.2021

Aufgabe 6 [20]

Gegeben ist der folgende gerichtete Graph (die Werte $\mathbf{z_1}$ bis $\mathbf{z_6}$. sind aus Aufgabe 1 zu übernehmen):

- a. [3] Geben Sie die Adjazenzmatrix des Graphen an.
- b. [3] Skizzieren Sie die Adjazenzliste des Graphen.
- c. [10] Bestimmen Sie mit dem Algorithmus von Dijkstra die jeweils kürzesten Wege vom Knoten 1 (erste Zeile, erste Spalte der Matrix) zu allen anderen Knoten des Graphen. Notieren Sie Ihr Vorgehen so, dass jeder Schritt nachvollzogen werden kann.
- d. [2] Ist der oben dargestellte Graph topologisch sortierbar? Falls ja, geben Sie eine topologische Sortierung an, andernfalls begründen Sie, warum eine solche nicht gefunden werden kann.
- e. [2] Welche der folgenden Voraussetzungen ist hinreichend, damit der Dijkstra-Algorithmus das korrekte Resultat liefert? Zutreffendes bitte ankreuzen.
 - (1) Alle Kantengewichte des Eingabegraphen sind nicht-negativ.
 - (2) Der Eingabegraph ist ein DAG.
 - (3) Der Eingabegraph enthält keinen negativen Kreis.
 - (4) Der Eingabegraph enthält einen negativen Kreis.