

M2

Matemàtiques 2 (FIB)

APUNTS EXAMEN FINAL (80%)

Profe: MARC
Autor: MARC
Copyright: MARC ©

SUCCESSIONS

SUCCESSIONS FITADES

DIFICULTAT $\bigstar \bigstar \diamondsuit \diamondsuit \diamondsuit$

Successions fitades inferiorment

Una successió a_n està fitada inferiorment si tots els seus termes són majors o iguals que un cert nombre K, que anomenem cota inferior de la successió.

a_n ≥ K per a tota n natural

La cota inferior més gran és l'extrem inferior o ínfim.

Successions fitades superiorment

Una successió a_n està fitada superiorment si tots els seus termes són menors o iguals que un cert nombre K', que anomenem cota superior de la successió.

a_n ≤ K' per a tota n natural

A cota superior més petita se l'anomena extrem superior o suprem.

Exemple

Sigui $\{a_n\}$ una successió tal que $a_1 = -2/3$ i $3 a_{n+1} = 2 + a_n^3$ si $n \ge 1$. a) Proveu que $-2 \le a_n \le 1$, per a tot $n \ge 1$.

Ho demostrem per inducció:

Pas base (comprovem per a n = 1): $-2 \le -2/3 \le 1$

Pas inductiu:

Assumim $-2 \le a_n \le 1$ per a alguna $n \ge 1$ (H.I.) i volem demostrar el cas n+1: $-2 \le a_{n+1} \le 1$

Partim de la H.I:

$$-2 \le a_n \le 1$$

$$\frac{2-2^3}{3} \le \frac{2+a_n^3}{3} \le \frac{2+1^3}{3}$$

Elevem al cub, sumem 2 i dividim per 3 a tot arreu

 $-2 \le a_{n+1} \le 1$

Operem i substituïm, hem arribat on volíem q.e.d.

SUCCESSIÓ MONÒTONA (CREIXENT/DECREIXENT)

DIFICULTAT $\bigstar \bigstar \diamondsuit \diamondsuit \diamondsuit$

Donada una successió $(a_n)_{n\in\mathbb{N}}$ diem que és creixent si tot element de la successió és menor que els següents, és a dir, si $a_n\leq a_{n+1}$ per a tot n.

Anàlogament diem que és decreixent si tot element de la successió és més gran que els següents, $a_n \geq a_{n+1}$ per a tot n.

Exemple

Sigui $\{a_n\}$ una successió tal que $a_1 = -2/3$ i $3a_{n+1} = 2 + a_n^3$ si $n \ge 1$. b) Proveu que $\{a_n\}$ és creixent.

Hem de demostrar que $a_n \le a_{n+1}$ per a tota n. Ho fem per inducció:

Pas base (comprovem per a n = 1): $a_1 \le a_2$

Pas inductiu:

Assumim $a_n \le a_{n+1}$ per a alguna $n \ge 1$ (H.I.) i volem demostrar el cas n+1: $a_{n+1} \le a_{n+2}$

Partim de la H.I.:

$$a_n \leq a_{n+1}$$

$$\frac{2+a_n^3}{3} \le \frac{2+a_{n+1}^3}{3}$$

Elevem al cub, sumem 2 i dividim per 3 a tot arreu

 $a_{n+1} \leq a_{n+2}$

Substituïm per la fórmula de la successió, q.e.d.

TEOREMA DE LA CONVERGÈNCIA MONÒTONA

DIFICULTAT

★ ☆ ☆ ☆ ☆

Tota successió successió monòtona decreixent i fitada inferiorment és convergent i el seu límit és igual a l'ínfim de la successió.

Tota successió successió monòtona creixent i fitada superiorment és convergent i el seu límit és igual al suprem de la successió.

Exemple

La successió dels dos exemples anteriors és creixent i fitada superiorment, per tant és convergent.

LÍMIT DE SUCCESSIONS MONÒTONES

Sigui an una successió monòtona (creixent o decreixent)

Sigui
$$L = \lim_{n \to +\infty} a_n$$
, llavors

$$L = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_{n+1}$$

Exemple

Calculem el límit de la successió següent (assumim que és monòtona decreixent, fitada inferiorment per 1/2)

$$a_1 = 10$$

$$a_{n+1} = \sqrt{a_n}$$

Com que an és monòtona

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = l$$

$$a_{n+1} = \sqrt{a_n}$$

$$\Rightarrow l = \sqrt{l} \Rightarrow l^2 = l \Rightarrow l^2 - l = 0$$

$$\Rightarrow l(l-1) = 0 \Rightarrow l = 0 \lor l = 1$$

Com que a_n és decreixent i està fitada inferiorment per 1/2, el límit no pot ser 0. Per tant el límit és 1

LÍMITS

CRITERI DEL SÀNDVITX

DIFICULTAT

★★★★★

a) Criteri del sandvitx. Siguin $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ i $\{c_n\}_{n\in\mathbb{N}}$ tres successions de nombres reals tals que:

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

En particular, si $\ell_1 = \ell_2 = \ell$, resulta que b_n és convergent i $\lim_{n \to \infty} b_n = \ell$.

Exemple

Volem calcular el límit $\lim_{x \to 0} \frac{\sin x}{x}$, que és una indeterminació del tipus $\frac{0}{0}$.

Prenem la relació $\cos x \sin x \le x \le \tan x$

Mitjançant càlculs successius esdevé en $\cos x \leq \frac{x}{\sin x} \leq \frac{1}{\cos x}$

$$\frac{1}{\cos x} \geq \frac{\sin x}{x} \geq \cos x$$

Sabem que $\lim_{x o 0} rac{1}{\cos x} = 1$ i que $\lim_{x o 0} \cos x = 1$

per la qual cosa, pel teorema del sandvitx, $\lim_{x o 0} rac{\sin x}{x} = 1$

REGLA DE L'HÔPITAL

Si f i g són dues funcions derivables, i a més

$$\lim_{x o c}rac{f'(x)}{g'(x)}=l$$
, on $l\in\mathbb{R}$ o bé $l=-\infty$ o $l=+\infty$

Aleshores:

$$\lim_{x o c}rac{f(x)}{g(x)}=l.$$

Indeterminacions que s'acostumen a resoldre amb l'hôpital

- 0 entre 0
- infinit entre infinit

Exemple 1

Exemple de resolució d'una indeterminació $\frac{0}{0}$:

$$\lim_{x o 0}rac{\sin x}{x}=\lim_{x o 0}rac{\cos x}{1}=rac{1}{1}=1$$

Exemple 2

Exemple de resolució d'una indeterminació $\frac{\infty}{\infty}$:

$$\lim_{x o\infty}rac{\sqrt{x}}{\ln(x)}=\lim_{x o\infty}rac{1/(2\sqrt{x}\,)}{1/x}=\lim_{x o\infty}rac{\sqrt{x}}{2}=\infty.$$

CRITERI DEL QUOCIENT

DIFICULTAT $\star\star\star\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}$

Sigui $(a_n)_{n\in\mathbb{N}}$

$$Si \exists \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = l \in \mathbb{R} \cup \{+\infty\} \implies \begin{cases} si & l < 1 \implies \lim_{n \to +\infty} a_n = 0 \\ si & l > 1 \implies \lim_{n \to +\infty} |a_n| = +\infty \end{cases}$$

$$(a_n \neq 0, \forall n \geq n_0 \in \mathbb{N})$$

$$\lim_{n \to +\infty} \frac{n^n}{4^n n!}$$

$$a_n = \frac{n^n}{4^n n!} \ y \ a_{n+1} = \frac{(n+1)^{n+1}}{4^{n+1}(n+1)!}. \quad Por \ lo \ tanto$$

$$l = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{(n+1)^{n+1}}{4^{n+1}(n+1)!} \Big/ \frac{n^n}{4^n n!} = \lim_{n \to +\infty} \frac{(n+1)^{n+1} 4^n n!}{4^{n+1}(n+1)! \, n^n} = \lim_{n \to +\infty} \frac{(n+1)^{n+1}}{4(n+1) \, n^n} = \lim_{n \to +\infty} \frac{(n+1)^n}{4^n n!} = \lim_{n \to +\infty} \frac{1}{4} \left(\frac{n+1}{n}\right)^n = \frac{1}{4} \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \frac{e}{4}$$

$$Como \ l = \frac{e}{4} < 1 \implies \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{n^n}{4^n n!} = 0.$$

INDETERMINACIÓ 1^{∞}

Quan tenim una indeterminació tipus 1 elevat a infinit, apliquem la fórmula:

$$\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right)^{h(x)} = e^{\lim_{x\to a} h(x)\left(\frac{f(x)}{g(x)}-1\right)}$$

$$\lim_{x\to 1} \left(\frac{2x+1}{x+2}\right)^{\frac{1}{x-1}} = 1^{\infty}$$

$$\lim_{x \to 1} \left(\frac{2x+1}{x+2} \right)^{\frac{1}{x-1}} = e^{\lim_{x \to 1} \left(\frac{1}{x-1} \right) \left(\frac{2x+1}{x+2} - 1 \right)} =$$

$$= e^{\lim_{x\to 1}\frac{1}{x-1}\left(\frac{2x+1-x-2}{x+2}\right)} = e^{\lim_{x\to 1}\left(\frac{1}{x-1}\right)\left(\frac{x-1}{x+2}\right)} =$$

$$=e^{\lim_{\kappa\to 1}\left(\frac{1}{\kappa+2}\right)}=e^{\frac{1}{3}}=\sqrt[3]{e}$$

CRITERI DE L'ARREL-QUOCIENT

Sigui a_n una successió, el límit de l'arrel n-éssima d'aquesta successió es pot calcular amb la fórmula següent:

$$\lim_{x \to \infty} \sqrt[n]{a_n} = \lim_{x \to \infty} \frac{a_{n+1}}{a_n}$$

$$\lim_{n\to\infty} \sqrt[n]{\frac{n!}{(2n)!}}$$

$$= \lim_{x \to \infty} \frac{\frac{(n+1)!}{(2(n+1))!}}{\frac{n!}{(2n)!}} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(2(n+1))!}}{\frac{n!}{(2n)!}}$$

$$= \lim_{n \to \infty} \frac{\frac{(n+1)!}{(2n+2)!}}{\frac{n!}{(2n)!}} = \lim_{n \to \infty} \frac{(2n)!(n+1)!}{(2n+2)!n!}$$

$$= \lim_{n \to \infty} \frac{n+1}{(2n+1)(2n+2)} = 0$$

FUNCIONS CONTÍNUES

TEOREMA DE BOLZANO

DIFICULTAT $\bigstar \stackrel{\wedge}{\wedge} \stackrel{\wedge}{\wedge} \stackrel{\wedge}{\wedge} \stackrel{\wedge}{\wedge}$

Si:

- $f:[a,b] \to \mathbb{R}$ és una funció contínua en un interval tancat [a,b]
- u és un nombre real tal que f(a) < u < f(b) o f(a) > u > f(b)

Aleshores:

• Existeix alguna $c \in (a,b)$ tal que f(c) = u

Exemple

Comproveu que l'equació $x^2 + x - 1 = 0$ té almenys una solució real en l'interval [0,1].

És contínua en [0,1] per ser polinòmica.

$$f(0) = 0^2 + 0 - 1 = -1 < 0$$

$$f(1) = 1^2 + 1 - 1 = 1 > 0$$

Pel teorema de Bolzano, existeix un $c \in (0, 1)$ tal que f(c) = 0.

TEOREMA DE ROLLE

DIFICULTAT $\bigstar \bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Si:

- $f:[a,b] \to \mathbb{R}$ és una funció contínua en un interval tancat [a,b]
- f és derivable en l'interval obert (a,b)
- f(a) = f(b)

Aleshores:

• Existeix algun nombre $c \in (a,b)$ tal que f'(c) = 0

Exemple

Comproveu que l'equació $x^2 + x - 1 = 0$ té exactament UNA solució real en l'interval [0,1].

Reducció a l'absurd: Suposem que té 2 solucions a, b en l'interval [0,1], amb això es verifiquen les 3 hipòtesis del teorema de Rolle.

Per tant, l'equació f'(x) = 0 ha de tenir solució per algun $c \in (a,b)$.

La derivada és f'(x) = 2x + 1, que només té una solució: x = -1/2. Però -1/2 no está dins l'interval [0,1]. Contradicció.

TEOREMA DE WEIERSTRASS

DIFICULTAT $\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Si:

- $f:[a,b] \to \mathbb{R}$ és una funció contínua en un interval tancat [a,b] Llavors:
 - f és fitada
 - f té un màxim i un mínim absoluts

APROXIMACIÓ

MÈTODE DE LA BISECCIÓ

DIFICULTAT $\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Donada una funció f(x) contínua en un intèrval tancat [a,b]

Per trobar una aproximació d'un valor x demanat, realitzem n vegades:

$$c = \frac{(a+b)}{2}$$

Si f(c) < 0, aleshores a = c;

Si f(c) > 0, aleshores b = c;

La iteració n-èssima és una aproximació amb error E.

Fórmula de l'error

Donada una funció f(x) contínua en un intèrval tancat [a,b] i un error E, podem calcular les n iteracions necessàries amb la fórmula següent:

$$\frac{|b-a|}{2^n} < E$$

MÈTODE DE NEWTON O DE LA TANGENT

Donada una funció f(x) contínua en un intèrval tancat [a,b] i un error E

Prenem $x_0 = a$ i calculem

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

fins que Ix_{n+1} - $x_nI < E$ i $f(x_{n+1}) < E$

MÈTODE DE LA SECANT

DIFICULTAT $\bigstar \bigstar \diamondsuit \diamondsuit \diamondsuit$

Prenem $x_0 = a i x_1 = b i calculem$

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

fins que $|x_{n+1} - x_n| < E$ i $f(x_{n+1}) < E$

POLINOMI DE TAYLOR

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star}$

Si f(x) és una funció que és derivable \mathbf{n} vegades en l'interval tancat [a, x] i $\mathbf{n+1}$ en l'interval obert (a, x), aleshores podem aproximar \mathbf{f} amb \mathbf{grau} \mathbf{n} del polinomi de $\mathbf{centrat}$ en \mathbf{a} amb la següent fórmula:

$$f(x) = f(a) + rac{f'(a)}{1!}(x-a) + rac{f^{(2)}(a)}{2!}(x-a)^2 + \cdots + rac{f^{(n)}(a)}{n!}(x-a)^n$$

Fórmula de la fita superior de l'error (Residu de Lagrange)

$$E < \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

(amb $x < \xi < a$)

Provem ξ=x i ξ=a. El valor que faci que E sigui més gran és el "bo".

D'aquesta manera es troba "l'error més gran possible", és a dir, la fita superior de l'error.

INTEGRALS

REGLA DE BARROW

DIFICULTAT $\star\star\star \star \star \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \dot{}$

Si:

- $f:[a,b] \to \mathbb{R}$ és una funció contínua en un interval tancat [a,b]
- F(x) és qualsevol funció primitiva de f, és a dir F'(x) = f(x)

Aleshores:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Utilitat

Es fa servir per calcular l'àrea del recinte limitat entre funcions

$$\int_{-1}^{1} (x+1) \cdot dx = \left[\frac{x^2}{2} + x \right]_{-1}^{1} = \left(\frac{1^2}{2} + 1 \right) - \left(\frac{(-1)^2}{2} + (-1) \right) =$$
$$= \frac{1}{2} + 1 - \left(\frac{1}{2} - 1 \right) = 2 u^2$$

TEOREMA FONAMENTAL DEL CÀLCUL

DIFICULTAT $\star\star\star\star$

Si:

• $f:[a,b] \to \mathbb{R}$ és una funció contínua en un interval tancat [a,b]

Aleshores:

- La funció $F:[a,b] \to \mathbb{R}$ $F(x) = \int_a^x f(t)dt$ és contínua i derivable.
- La funció derivada és $F'(x) = f(x), \forall x \in [a, b]$

En general, si $F(x) = \int_{v(x)}^{u(x)} f(t)dt$, amb u(x) i v(x) funcions derivables, fent ús de la regla de la cadena i el teorema fonamental es té F'(x) = u'(x)f(u(x)) - v'(x)f(v(x)) per a tot x de [a, b].

Utilitat

Serveix per derivar integrals definides

Exemple

Sigui $F(x) = \int_0^{x^2} \sin \sqrt{t} \, dt$, la funció $\sin \sqrt{t}$ és contínua per a tot real t > 0, llavors pel teorema del fonamental del càlcul, la funció F(x) és derivable i la seva derivada és $F'(x) = 2x \sin \sqrt{x^2} = 2x \sin x$ per a x > 0.

REGLA DELS TRAPEZIS (APROXIMACIÓ INTEGRAL)

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star} \dot{\star}$

Amb n trapezis:

$$\int_a^b f(x) \, dx pprox rac{b-a}{2n} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)
ight)$$

$$x_k = a + k rac{b-a}{n},$$
 per $k = 0, 1, \ldots, n$

Utilitat

Serveix per aproximar integrals definides

Fórmula de l'error

$$E < \frac{(b-a)^3}{12n^2} f''(\xi)$$

on ξ és algún nombre entre a i b i n el nombre de trapezis

Exemple

Aproximació de $\int_0^2 3x\,dx$ amb 6 trapezis

$$h = rac{b-a}{n} = rac{2-0}{6} = rac{1}{3}.$$

$$\int_{a}^{b} f(x) dx = \frac{h}{2} [f(a) + 2f(a+h) + 2f(a+2h) + \ldots + f(b)]$$

$$\int_{0}^{2} 3x \, dx = \frac{1}{2} \cdot \frac{1}{3} [3(0) + 2[3(0+1 \cdot \frac{1}{3})] + 2[3(0+2 \cdot \frac{1}{3})] + 2[3(0+3 \cdot \frac{1}{3})] + 2[3(0+4 \cdot \frac{1}{3})] + 2[3(0+5 \cdot \frac{1}{3})] + 3(2)] = 6$$

REGLA DE SIMPSON (APROXIMACIÓ INTEGRAL)

DIFICULTAT $\star\star\star\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}\dot{}$

$$\int_a^b f(x) \, dx pprox rac{h}{3} igg[f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + 2 f(x_4) + \cdots + 4 f(x_{n-1}) + f(x_n) igg]$$

$$h = (b - a)/n.$$

$$x_k = a + k rac{b-a}{n},$$
 per $k = 0, 1, \dots, n$

Fórmula de l'error

$$\mathrm{E} < rac{h^4}{180}(b-a)\max_{\xi \in [a,b]}|f^{(4)}(\xi)|$$

$$h = (b-a)/n$$
.

Exemple

Fita superior de l'error comès en aproximar per Simpson amb 4 iteracions

$$\int_{1}^{3} e^{x} dx$$

Substituïm a la fórmula de l'error:

$$h = \frac{b-a}{n} = \frac{3-1}{4} = \frac{1}{2}$$

Com que $f^{(v)}(x)=e^x$, substituïm $\xi=3$, ja que és el valor que maximitza

$$\frac{(\frac{1}{2})^4}{180}(2)(e^3) = 0.0139482895299914$$

RECINTES

FÓRMULA DEL CERCLE

DIFICULTAT

★ ☆ ☆ ☆ ☆

$$(x-a)^2 + (y-b)^2 = r^2$$

Centre de la circumferència: (a, b)

Radi: r

Exemple 1

$x^2 + y^2 = 4$

Centre: (0, 0)

Radi: 2

Exemple 2

Centre: (-1, 2)

Radi: √5

FRONTERA/INTERIOR/ADHÈRENCIA

DIFICULTAT $\bigstar \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit$

Exemple

$$(x+1)^2 + (y-2)^2 \le 5$$

Els punts de la frontera són $(x+1)^2 + (y-2)^2 = 5$

Els punts de l'interior són $(x+1)^2 + (y-2)^2 < 5$

Els punts de l'adherència són $(x+1)^2 + (y-2)^2 \le 5$

CONJUNT OBERT/TANCAT

DIFICULTAT

★ ☆ ☆ ☆ ☆

Un conjunt $(A \subseteq \Re^n)$ es obert si no conte cap punt de la seva frontera. Es a dir, si $(x \in Fr(A) \Rightarrow x \notin A)$

Exemple

$$(x+1)^2 + (y-2)^2 \le 5$$

És un conjunt tancat, tots els punts de la frontera pertanyen al conjunt

Nota

Pot ser que un conjunt no sigui ni obert ni tancat.

CONJUNT COMPACTE

DIFICULTAT

★ ☆ ☆ ☆ ☆

Un conjunt és compacte si i només si és tancat i fitat

Exemple

$$(x+1)^2 + (y-2)^2 \le 5$$

- És tancat (exemple anterior)
- És fitat, ja que una bola de centre (-1, 2) de radi $\sqrt{5}$ el conté

Per tant, el conjut és un recinte compacte

DERIVADES. VECTOR GRADIENT

PLA TANGENT

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star}$

L'equació del pla tangent a la superfície $z=\varphi(x,y)$ en el punt $(a,b,\varphi(a,b))$ és:

$$z = \varphi(a,b) + \frac{\partial \varphi}{\partial x}(a,b) \cdot (x-a) + \frac{\partial \varphi}{\partial y}(a,b) \cdot (y-b).$$

RECTA NORMAL

DIFICULTAT $\star \star \star \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \dot{} \dot{}$

La equació contínua de la recta normal a superfície $z=\varphi(x,y)$ en el punt $(a,b,\varphi(a,b))$ és:

$$\frac{x-a}{\frac{\partial \varphi}{\partial x}(a,b)} = \frac{y-b}{\frac{\partial \varphi}{\partial y}(a,b)} = \frac{z-\varphi(a,b)}{-1}$$

FUNCIONS DE CLASSE Cn

Una funció és de classe **C**¹ si les seves derivadas parcials són contínues. Si les derivadas parcials n-èssimes també són contínues és de classe **C**ⁿ

Les funcions polinòmiques son de classe \mathbf{C}^{∞} en tot \mathbb{R}^2

DERIVADES PARCIALS

DIFICULTAT $\bigstar \bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow$

$$\partial f$$

La derivada parcial $\overline{\partial x}$ d'una funció de diverses variables és la derivada respecte la variable x. La resta de variables es consideren constansts

Exemple

$$z = x^2y - 3xy + 5y$$

$$\frac{\partial z}{\partial x} = 2xy - 3y + 0$$

$$\frac{\partial z}{\partial x} = 2xy - 3y$$

CORBES DE NIVELL

Considereu la la funció $f(x,y) = x^2 + (y-1)^2 - 1$.

a) Feu un esboç de les corbes de nivell de z=f(x,y) corresponents als nivells z=-2,-1,0,3. La corba de nivell f(x,y)=3 és un cercle de radi 2 centrat en (0,1) d'equació $x^2+(y-1)^2=4$; la corba de nivell f(x,y)=0 és un cercle de radi 1 centrat en (0,1) d'equació $x^2+(y-1)^2=1$; la corba de nivell f(x,y)=-1 és el punt (0,1) d'equació $x^2+(y-1)^2=0$ i la corba de nivell f(x,y)=-2 no té cap punt.

VECTOR DIRECTOR

DIFICULTAT $\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Donats dos punts A = (1,1) i B = (4,2)

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2) \Rightarrow$$

$$\overrightarrow{AB} = (4 - 1, 2 - 1) \Rightarrow$$

$$\overrightarrow{AB} = (3, 1)$$

MÒDUL D'UN VECTOR

DIFICULTAT

★ ☆ ☆ ☆ ☆

Si
$$ec{v}$$
 = (v_1,v_2) ; $\|ec{v}\|$ = $\sqrt{v_1^2+v_2^2}$

NORMALITZACIÓ DE VECTOR (Vector unitari)

DIFICULTAT $\bigstar \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit$

El **vector normalitzat** o **versor** $\hat{\boldsymbol{u}}$ d'un vector diferent de zero \boldsymbol{u} és el vector unitari codireccional amb \boldsymbol{u} , és a dir

$$\hat{m{u}} = rac{m{u}}{\|m{u}\|}.$$

Utilitat

Pel càlcul de derivades direccionals, cal un vector direcció normalizat

VECTOR GRADIENT

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star} \dot{\star}$

Donada una funció f(x,y) de 2 variables, i un punt P.

El gradient de f en el punt P s'obté de la fórmula:

$$\nabla f(P) = (\frac{\mathrm{d}f}{\mathrm{d}x}(P), \frac{\mathrm{d}f}{\mathrm{d}y}(P))$$

Utilitat

El gradient és la direcció de creixement màxim de la funció des d'un punt

DERIVADA DIRECCIONAL

$$D_{\overrightarrow{v}}f(P) = \overrightarrow{\nabla}f(P) \cdot \overrightarrow{v}'.$$

DERIVADA DIRECCIONAL MÀXIMA EN UN PUNT

DIFICULTAT

★ ☆ ☆ ☆ ☆

El valor de la derivada direccional màxima de f en un punt és el mòdul del vector gradient

$$||\overrightarrow{\nabla}f(P)||$$

OPTIMITZACIÓ

PUNTS CRÍTICS

DIFICULTAT $\bigstar \bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow$

Suposem que volem determinar els extrems relatius d'una funció de dues variables f(x, y) amb derivades parcials contínues fins a ordre 2.

En aquest cas, els possibles extrems es produeixen en els anomenats punts crítics, que són punts que anul·len simultàniament les derivades parcials primeres de f(x, y).

Exemple

Considerem la funció:

$$f(x,y) = 4 + x^3 + y^3 - 3xy.$$

Les seves derivades parcials són:

$$f'_x(x,y) = 3x^2 - 3y,$$
 $f'_y(x,y) = 3y^2 - 3x.$

Muntem el sistema i el resolem:

$$\begin{cases} 3x^2 - 3y = 0, \\ 3y^2 - 3x = 0. \end{cases} \begin{cases} y = x^2, \\ y^2 - x = 0. \end{cases}$$

$$x^4 - x = 0.$$

$$x\left(x^3 - 1\right) = 0$$

$$x = 0, \quad x = 1.$$

Substituïnt, trobem que els punts crítics són (0,0) i (1,1)

EXTREMS CONDICIONATS SOBRE UNA CORBA MULTIPLICADORS DE LAGRANGE

DIFICULTAT $\star\star\star\star$

Exemple

Es vol trobar els valors màxims de

$$f(x,y) = x^2 y$$

amb la condició que les coordenades x i y romanguin dins el cercle de radi √3 centrat a l'origen, és a dir

$$x^2 + y^2 = 3.$$

Com que només hi ha una condició, s'utilitza només un multiplicador, λ.

A partir de la restricció, es defineix la funció g(x, y):

$$g(x,y) = x^2 + y^2 - 3.$$

La funció g és idènticament zero sobre el cercle de radi 3. Així, es pot sumar qualsevol múltiple de g(x, y) a f(x, y) deixant inalterada f(x, y) a la regió d'interès (damunt el cercle on se satisfà la restricció original). Siguin

$$\Lambda(x,y,\lambda)=f(x,y)+\lambda g(x,y)=x^2y+\lambda(x^2+y^2-3).$$

Els valors crítics de Λ tenen lloc on el seu gradient és zero. Les derivades parcials són

$$rac{\partial \Lambda}{\partial x} = 2xy + 2\lambda x \hspace{1cm} = 0, \hspace{1cm} ext{(i)}$$

$$egin{align} rac{\partial \Lambda}{\partial x} &= 2xy + 2\lambda x &= 0, & ext{(i)} \ rac{\partial \Lambda}{\partial y} &= x^2 + 2\lambda y &= 0, & ext{(ii)} \ rac{\partial \Lambda}{\partial \lambda} &= x^2 + y^2 - 3 &= 0. & ext{(iii)} \ \end{pmatrix}$$

$$rac{\partial \Lambda}{\partial \lambda} = x^2 + y^2 - 3 \qquad = 0. \hspace{0.5cm} ext{(iii)}$$

MATRIU HESSIANA I CLASSIFICACIÓ PUNTS CRÍTICS

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star}$

Considerem les derivadas parcials segones de f:

$$D_{11} f(x,y) = \frac{\partial^2}{\partial x^2} f(x,y), \qquad D_{12} f(x,y) = \frac{\partial^2}{\partial y \partial x} f(x,y),$$

$$D_{21} f(x,y) = \frac{\partial^2}{\partial x \partial y} f(x,y), \qquad D_{22} f(x,y) = \frac{\partial^2}{\partial y^2} f(x,y).$$

La matriu Hessiana es defineix per:

$$H(x,y) = \begin{pmatrix} D_{11} f(x,y) & D_{12} f(x,y) \\ D_{21} f(x,y) & D_{22} f(x,y) \end{pmatrix}.$$

Exemple

Considerem la funció

$$f(x,y) = 4 + x^3 + y^3 - 3xy.$$

La matriu hessiana és:

$$H(x,y) = \left(\begin{array}{cc} 6x & -3 \\ -3 & 6y \end{array}\right).$$

MATRIU HESSIANA I CLASSIFICACIÓ PUNTS CRÍTICS

DIFICULTAT $\star\star\star \dot{\star} \dot{\star} \dot{\star} \dot{\star}$

- Si D11 $f(x_c, y_c) > 0$ yidet $[H(x_c, y_c)] > 0$, aleshores f té un **mínim relatiu** en (x_c, y_c) .
- Si D11 $f(x_c, y_c) < 0$ i det $[H(x_c, y_c)] > 0$, aleshores f té un **màxim relatiu** en (x_c, y_c) .
- Si det [H(x_c, y_c)] ≠ 0 i no estem en cap del casos anteriors, aleshores f té un punt de sella en (x_c, y_c).
- Si det $[H(x_c, y_c)] = 0$, és a dir, quan la matriu Hessiana $H(x_c, y_c)$ és singular, el criteri no aplica.

Exemple

Considerem la funció

$$f(x,y) = 4 + x^3 + y^3 - 3xy.$$

La matriu hessiana és:

$$H(x,y) = \left(\begin{array}{cc} 6x & -3 \\ -3 & 6y \end{array} \right).$$

Sabem de l'exemple anterior que els punts crítics són P1=(0,0) i P2=(1,1)

$$H(0,0) = \left(\begin{array}{cc} 0 & -3 \\ -3 & 0 \end{array}\right).$$

$$\det[H(0,0)] = -9 \neq 0, \quad D_{11} f(0,0) = 0,$$

Per tant, (0,0) és un punt de sella de f

$$H(1,1) = \left(\begin{array}{cc} 6 & -3 \\ -3 & 6 \end{array}\right),$$

$$D_{11}f(1,1) = 6 > 0$$
, $\det[H(1,1)] = 27 > 0$.

Per tant, (1,1) és un mínim relatiu de f

Acadèmia ASES

www.asesacademia.com

C/ González Tablas, 7

93 204 62 56