Algorithm Analysis

- Sonali Gogate

Algorithm Analysis (1/2)

- Checking after writing the program?
 - If algorithms are to be compared?
 - Can we test any program for all the possible values?
- Analyze such that
 - All the possible inputs are taken into account
 - Allows us to evaluate efficiency independent of hardware and software environments
 - Can be performed without implementing

Algorithm Analysis (2/2)

Analysis framework

- A way to describe the algorithm (consistent/ standard)
- Computational model (in which we can theoretically execute the algorithms)
- A metric to measure the running time of the algorithm
- Approach to characterizing running times

Space & Time complexity

- The space complexity of an algorithm is the amount of memory it needs to run to completion.
- The time complexity of an algorithm is the amount of computer time it needs to run to completion.

Space Complexity

Space Complexity (1)

The space complexity of an algorithm is the amount of memory it needs to run to completion.

The space needed by each algorithm is the sum of following components –

Fixed Part consisting of -

- Instruction space
- Space for simple variables & fixed sized component variables
- 3. Space for constants

Variable Part consisting of -

- 1. Component variables whose sizes depend on problem instance
- 2. Space needed by reference variables
- 3. Recursion stack space

Space Complexity (2)

The space requirement S(P) of any algorithm P may therefore be written as –

$$S(P) = c + S_P$$

Where c is a constant.

While Analyzing the space complexity we focus on S_P.

Space Complexity (3)

```
EquationABC(a, b, c)  \{ \\ Result = a + b + b*c + (a+b-c)/(a+b) + 4; \\ Return Result; \}
```

What is the space complexity for this? $S(P) = c + S_P$

Space Complexity (4)

 $S(P) = c + S_P$

```
SumI(A, n)
                                                 Space for n
                                                 Space for S
         S = 0;
                                                 Space for i
         for (i=1 \text{ to } n)
                                                 Space for A
           S = S + A[i];
         Return S;
                                                 So at least n+3
What is the space complexity for this?
```

 $S_{SumI(n)} >= (n+3)$

Space Complexity (5)

```
SumR(A, n)
                                                      Stack space
                                                      Formal parameters
                                                      Local variables
   if (n = 0)
                                                      Return address
      Return 0;
                                                      Each call to SumR
   else
                                                      Value of n
     Return SumR(A, n-1) + A[n];
                                                      Return address
                                                      Pointer to A[]
                                                      Depth of recursion is (n+1)
What is the space complexity for this?
S(P) = c + S_{P}
                                                      S_{SumR(n)} >= 3(n+1)
```

Time Complexity

Time Complexity of an Algorithm

The time complexity of an algorithm is the amount of computer time it needs to run to completion.

For Time Complexity analysis, we use an analysis framework that consists of -

- 1. A language to describe the algorithm
- 2. Computational Model in which we can theoretically execute the algorithms
- 3. A metric for measuring the algorithms' running times
- 4. An approach for characterizing the running times

Time Complexity Basics (1)

The Time T(P) taken by a program is sum of compile time and run (execution) time.

Compile Time

- Does not depend on instance characteristics
- Comes into picture very few times

Run Time

- Denoted as t_p
- In the analysis phase, we estimate the t_p
- Best case, Worst case, Average case

Time Complexity Basics (2)

- Program step A program step is (loosely) defined as a syntactically or semantically meaningful statement of a program that has execution time which is independent of the instance characteristics.
- For the purpose of the analysis, we assume that each program step takes the same amount of fixed time.
- Determining the number of steps needed to be executed for program completion

Time Complexity Basics (3)

Time for

- > comments
- > Assignment
- > Function call
- Control statements

Counting the steps –

- Using a counter to increment on every step
- Using a table to determine the number of times each step is getting executed in the program

Using Counter for Counting steps

```
Algorithm RSum(A, n)
        Count = Count + 1;
        If (n = 0)
                 Count = Count + 1;
                 Return 0;
        Else
                 Count = Count + 1;
                 Return RSum(A, n-1) + A[n];
```

Time Complexity of RSum

$$t_{RSum}(n)$$
 = 2 if n = 0
= 2 + $t_{RSum}(n-1)$ if n > 0

Recurrence Relation

```
Algorithm ISum(A, n)
          S = 0;
          Count = Count + 1;
          For (I = 1 \text{ to } n)
                    Count = Count + 1; // For the for
                     S = S + A[i];
                     Count = Count + 1; // For the assignment
          Count = Count + 1;
                                         //When i becomes n+1 and check happens
                                          If to decide not to enter the for loop
          Count = Count + 1;
                                         //For return
          Return S;
```

Using a table to determine the steps

Statement	s/e	Frequency	Total steps
Algorithm ISum(A, n) { S = 0; For (I = 1 to n) S = S + A[i]; Return S; }	0 1 1 1 0	- 1 n+1 n 1	0 0 1 n+1 n 1
Total			2n + 3

_

Matrix Addition

```
Algorithm MatAdd(A, B, C, m, n)
    for i := 1 to m
        for j := 1 to n
            C[i, j] := A[i, j] + B[i, j];
```

Statement	s/e	Frequency	Total steps
Algorithm MatAdd(A, B, C, m, n) { for i := 1 to m for j := 1 to n C[i, j] := A[i, j] + B[i, j]; }	0 0 1 1 1 0	- m+1 m(n+1) mn -	0 0 m+1 mn+m mn 0
Total			2mn + 2m + 1

Analysis of the time complexity

We need to determine how long the algorithm will take based on the size of the input.

We also need to understand how fast the time complexity function of an algorithm grows with the size of the input. This is the rate of growth of the running time of the algorithm.

Statement	s/e	Frequency	Total steps
Algorithm ISum(A, n) { S = 0; For (I = 1 to n) S = S + A[i]; Return S; }	0 1 1 1 0	- 1 n+1 n 1	0 0 1 n+1 n 1
Total			2n + 3

_

Time Complexity of Sum(A, n)

Statement	s/e	Frequency	Total steps
Algorithm MatAdd(A, B, C, m, n) { for i := 1 to m for j := 1 to n C[i, j] := A[i, j] + B[i, j]; }	0 0 1 1 1 0	- m+1 m(n+1) mn -	0 0 m+1 mn+m mn 0
Total			2mn + 2m + 1

Time Complexity of Matrix Sum (m=n)

Asymptotic Analysis & Notations

 Asymptotic Analysis of algorithms is analysis of the run time based on the size of the input and the growth of the runtime.

Asymptotic notations are the notations used in Asymptotic analysis

Asymptotic Notations (1)

Big O notation

If f(n) and g(n) are functions of n; c is a real constant > 0 and n_0 is an integer constant >= 1, then we say

$$f(n) = O(g(n))$$

If For
$$\forall$$
 n > n₀, 0 <= f(n) <= c.g(n)

Asymptotic Notations (2)

Big Ω notation

If f(n) and g(n) are functions of n; c is a real constant > 0 and n_0 is an integer constant >= 1, then we say

$$f(n) = \Omega(g(n))$$

If For
$$\forall$$
 n > n₀, 0 <= c.g(n) <= f(n)

Asymptotic Notations (3)

Big O notation

If f(n) and g(n) are functions of n; c1 and c2 are real constants > 0 and n_0 is an integer constant >= 1, then we say $f(n) = \Theta(g(n))$

If For \forall n > n₀, 0 <= c1.g(n) <= f(n) <= c2.g(n)

Big O examples

```
• 2n + 3 (ISum)
O(n)
as 2n + 3 \le 4n for all n \ge 2
```

•
$$2n^2 + 2n + 1$$
 (Matrix addition)
 $O(n^2)$
as $2n^2 + 2n + 1 \le 4n^2$ for all $n \ge 2$

Search Algorithms

Linear Search Algorithm

Given an array A[] of n elements, search for the given element x in A[]

Algorithm

```
Search(A[], n, x)
{
    for (i=1 to n)
        if (A[i] == x)
            return i;
    return -1;
}
```

Time Complexity

O(n)

Linear

Binary Search Algorithm (1/2)

Given a sorted array A[] of n elements, search for the given element x in A[]

```
binarySearchR(A[], I, r, x)
  if (r >= 1)
     mid = I + (r - I) / 2;
     if (A[mid] == x)
       return mid;
     if (A[mid] > x)
        return binarySearch(A[], I, mid - 1, x);
    else
       return binarySearch(A[], mid + 1, r, x);
  return -1;
```

Binary Search Algorithm (2/2)

Given a sorted array A[] of n elements, search for the given element x in A[]

```
binarySearchI(A[], I, r, x)
  while(l \ll r)
     mid = I + (r - I) / 2;
     if (A[mid] == x)
       return mid;
     if (A[mid] > x)
        r = mid - 1;
    else
       I = mid + 1;
  return -1;
```

Time Complexity of Binary Search (1)

Example:

Sorted Array of 12 elements - 2,4, 7, 11, 16, 21, 25, 30, 34, 38, 43, 49 Element to search for - <u>38</u>

Iteration	array	Mid Element	found	Compare	Sub Array for next iteration
1	2,4, 7, 11, 16, 21, 25, 30, 34, 38, 43, 49	21	N	21 < 38	25 to 49
2	25, 30, 34, 38, 43, 49	34	N	34 < 38	38 to 49
3	38, 43, 49	43	N	43 > 38	38
4	38	38	Υ		

Time Complexity of Binary Search (2)

Array size goes from n to n/2 to n/4 ($n/2^2$) to n/8 ($n/2^3$)and so on. It is **halved** in each iteration.

Let us say the array becomes of size 1 after it is halved k times.

Thus,

$$n/2^k = 1$$

That is,

$$n = 2^k$$

Taking log

$$\log_2 n = \log_2 2^k$$

$$\Rightarrow \log_2 n = k \log_2 2$$

$$\Rightarrow k = \log_2 n$$

Recurrence equation for Binary search

$$T(n) = 1$$

for n = 1
 $T(n/2) + 1$ for n > 1

Other names for binary search

Half Interval Search Logarithmic Search

O(1)	Constant time

O(1)	Constant time
O(log n)	Logarithmic time

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time
O(n²)	Quadratic time

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time
O(n²)	Quadratic time
O(n logn)	

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time
O(n²)	Quadratic time
O(n logn)	
O(n³)	Cubic time

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time
O(n²)	Quadratic time
O(n logn)	
O(n³)	Cubic time
O(n ^c)	Polynomial time

O(1)	Constant time
O(log n)	Logarithmic time
O(n)	Linear time
O(n²)	Quadratic time
O(n logn)	
O(n³)	Cubic time
O(n ^c)	Polynomial time
O(2 ⁿ)	Exponential time

Rules for functions & orders of growth

- 1. $\operatorname{cn}^m = O(n^k)$ for any constant c and any $m \le k$
- 2. O(f(n)) + O(g(n)) = O(f(n) + g(n))
- 3. O(f(n))O(g(n)) = O(f(n)g(n))
- 4. O(cf(n)) = O(f(n)) for any constant c
- 5. c is O(1) for any constant c
- 6. $\log_b n = O(\log n)$ for any base b

Matrix Multiplication

a11b11+	a11b12+	a11b13
a12b21	a12b22	+a12b23
a21b11+	a21b12+	a21b13
a22b21	a22b22	+a22b23
a31b11+	a31b12+	a31b13
a32b21	a32b22	+a32b23
a41b11+	a41b12+	a41b13
a42b21	a42b22	+a42b23

$$C_{i,j} = \sum_{i=1}^k A_{i,k} \cdot B_{k,j}$$

Matrix Multiplication

```
MatrixMult(A[M][N], B[P][Q])
   if (N != P)
      Exit;
   int i, j, k;
   for (i = 1 \text{ to } M)
      for (j=1 \text{ to } Q)
          C[i][j] = 0;
          for (k = 1 \text{ to } N)
             C[i][j] = C[i][j] + A[i][k]*B[k][j];
```

$$C_{i,j} = \sum_{i=1}^{k} A_{i,k} \cdot B_{k,j}$$

Matrix Multiplication Rules

$$A(m \times n)$$
, $B(p \times q)$, $C(r \times s)$

When can we multiply A & B?

A x B (possible when n = p)

Is
$$A \times B = B \times A$$
?

- \blacksquare AxB != BxA
- B x A (possible when q = m)

Is
$$A \times (B \times C) = (A \times B) \times C$$
?

Matrix Chain Multiplication (1)

$$A = \begin{bmatrix} A11 & A12 \\ A21 & A22 \\ A31 & A32 \end{bmatrix} \qquad B = \begin{bmatrix} B11 & B12 & B13 & B14 \\ B21 & B22 & B23 & B34 \end{bmatrix} \qquad C = \begin{bmatrix} C11 \\ C21 \\ C31 \\ C41 \end{bmatrix}$$

$$M = A \times B$$
$$Y = M \times C$$

$$N = B \times C$$

$$Z = A \times N$$

Matrix Chain Multiplication (2)

$$A = \begin{bmatrix} A11 & A12 \\ A21 & A22 \\ A31 & A32 \end{bmatrix}$$
 $B = \begin{bmatrix} B11 & B12 & B13 & B14 \\ B21 & B22 & B23 & B34 \end{bmatrix}$ $C = \begin{bmatrix} C11 \\ C21 \\ C31 \\ C41 \end{bmatrix}$

Option 1

(3×4) $M = A \times B$

24 multiplications

12 additions

$$Y = M \times C$$
 (3 x 1)

12 multiplication

9 additions

Option 2

$$N = B \times C$$

8 multiplication

6 additions

$$Z = A \times N$$

6 multiplication 3 additions

$$(2 \times 1)$$

 (3×1)