



# Molecular Standard Operating Procedure (MSOP)

for
Marine Biodiversity Observation network for genetic
monitoring of hard-bottom communities
(ARMS-MBON)

Version

Date 2020-04-01

# **Purpose**

This document contains the Standard Operating Procedures for working with the molecular data of the ARMS-MBON (www.arms-mbon.eu) project. The samples containing the material are sent by each observatory to HCMR for processing (see the <u>Handbook</u> for details).

## **DNA Extraction**

This protocol is used for each of the three ARMS fractions (motile  $100\mu m - 500\mu m$ , motile 500m - 2mm, and sessile).

## **Materials:**

- Falcon tubes containing the samples stored in DMSO
- DNA-extraction kit (DNeasy PowerSoil Kit or DNeasy PowerSoil Pro Kit)
- Sterile pipettes and pipette tips
- DNA-decontaminating solution
- agarose/EtBr gel and loading buffer
- DNA size ladder

#### **Procedures:**

- 1. Wear gloves at all times. Carefully clean the bench station(s) and pipettes.
- 2. Proceed to DNA extraction using the DNA-extraction kit, as recommended by the manufacturer. Use about 0.5 grams of wet material from each sample. Extract each replicate sample separately.
- 3. Evaluate the quality of the extracted DNA by gel electrophoresis and quantify it using a spectrophotometer.
- 4. Store the DNA at -20 °C until further processing.

## PCR amplification and sequencing

### **Materials:**

• Primers

| Primer Name | Sequence                                 | Target gene | Target group                    | Amplicon size (bp) | Reference         |
|-------------|------------------------------------------|-------------|---------------------------------|--------------------|-------------------|
| All18 SF    | 5'-TGGTGCATGGCCG<br>TTCTTAGT-3'          | 18S rRNA    | metazoa,<br>fungi,<br>protozoa, | 200500             | Hardy et al. 2010 |
| All18SR     | 5'-CATCTAAGGGCAT<br>CACAGACC-3'          |             | plants                          |                    |                   |
| mlCOIintF   | 5'-GGWACWGGWTG<br>AACWGTWTAYCCY<br>CC-3' | COI         | metazoa                         | 313                | Leray et al. 2013 |

| gHCO2198 | 5'-TAIACYTCIGGRTG<br>ICCRAARAAYCA-3' |     |       |        | Geller et<br>al. 2013     |
|----------|--------------------------------------|-----|-------|--------|---------------------------|
| ITS1f    | 5'-CTTGGTCATTTAG<br>AGGAAGTAA-3'     | ITS | fungi | 250600 | Gardes &<br>Bruns<br>1993 |
| ITS2     | 5'-GCTGCGTTCTTCA<br>TCGATGC-3'       |     |       |        | White et al. 1990         |

• 5' tails used for the first-step PCR

| <b>Primer Name</b> | Sequence                                           |
|--------------------|----------------------------------------------------|
| 1st_PCR_for        |                                                    |
|                    | 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-[locus-specif |
|                    | ic sequence] -3'                                   |
| 1st_PCR_rev        |                                                    |
|                    | 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[locus-spec  |
|                    | ific sequence] -3'                                 |

- Extracted DNA
- KAPA HiFi HotStart PCR Kit and KAPA Taq PCR Kit
- Qubit® dsDNA HS Assay Kit or Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher/Invitrogen)
- AMPure XP beads (Beckman Coulter) or NucleoMag® NGS Clean-up and Size Select (Macherey-Nagel)
- KAPA Illumina Library Quantification Kit and Illumina Library Quantification DNA Standards
- Thermal cycler
- Dedicated pipettes and pipette tips
- PCR reaction tubes and/or plates
- PCR grade water
- agarose/EtBr gel and loading buffer
- MiSeq Reagent kit v3 (600 cycles)
- 1. Wear gloves at all times. Carefully clean the bench station(s) and pipettes.
- 2. Mix the biological replicate samples in equimolar amounts, so that you end up with one tube for each sample (i.e. for each MaterialSample-ID).
- 3. PCR amplification is performed targeting three gene regions: COI (metazoa), 18S rRNA (metazoa) and ITS (fungi), using the Two-Step PCR Approach.
- 4. The first-step PCR is performed with the aforementioned primers containing a universal 5' tail as specified in the Nextera library protocol from Illumina.
  - The first-step PCR for the COI:

Amplification reaction mix:

- o 3.0 μl 10x KAPA Tag buffer A,
- o 0.6 μl MgCl<sub>2</sub> (25 mM),
- o 0.75 μl KAPA dNTP Mix (10 mM),
- 0 1.8 μl from each primer (10 μM),
- 0.9 μl KAPA Taq DNA polymerase (5.0 U/μl)
- The final volume was 30.0 μl per reaction.

O DNA template concentration is about 10.0 ng/μl.

## First PCR protocol:

- o 95 °C for 5 min;
- 16 cycles at 95 °C for 10 s, 62 °C (-1 °C/cycle) for 30 s, 72 °C for 1 min;
- o 24 cycles at 95 °C for 10 s, 46 °C for 30 s, 72 °C for 1 min;
- o 72 °C for 7 min
- The first-step PCR for the 18S rRNA:

## Amplification reaction mix:

- o 6.0 μl 5x KAPA HiFi Fidelity buffer,
- o 6.0 μl Trehalose (1 M),
- o 0.9 μl KAPA dNTP Mix (10 mM),
- $\circ$  1.8 µl from each primer (5 µM),
- 0.6 μl KAPA HiFi HotStart DNA polymerase (1.0 U/μl)
- The final volume was 30.0 μl per reaction.
- O DNA template concentration is about 10.0 ng/μl.

## First PCR protocol:

- o 95 °C for 3 min;
- o 30 cycles at 98 °C for 20 s, 58 °C for 15 s, 72 °C for 15 s;
- o 72 °C for 3 min
- The first-step PCR for the ITS:

### Amplification reaction mix:

- 3.0 μl 10x KAPA Tag buffer A,
- o 0.75 μl KAPA dNTP Mix (10 mM),
- $\circ$  1.5 µl from each primer (10 µM),
- 0.9 μl KAPA Tag DNA polymerase (5.0 U/μl)
- The final volume was 30.0 μl per reaction.

DNA template concentration is about 10.0 ng/µl.

## First PCR protocol:

- o 95 °C for 5 min;
- o 35 cycles at 95 °C for 30 s, 52 °C for 30 s, 68 °C for 30 s;
- o 68 °C for 10 min
- 5. Purify 20 μl of the resulting PCR amplicons using magnetic beads, at a ratio 1:1 (magnetic beads: PCR product).
- 6. Quantify the purified PCR amplicons using fluorometric quantitation.
- 7. Use the purified and quantified PCR amplicons as templates for the second-step PCR in order to include the indexes (barcodes), as well as the Illumina adaptors. A different set of indexed primers should be used for each sample.

*Indexed forward primers for the second-step PCR:* 

| Primer Name | Sequence                                                      | Index<br>name |
|-------------|---------------------------------------------------------------|---------------|
| NGS_i5_S502 | 5'-AATGATACGGCGACCACCGAGATCTACACCTCTCTATTC<br>GTCGGCAGCGTC-3' | S502          |
| NGS_i5_S503 | 5'-AATGATACGGCGACCACCGAGATCTACACTATCCTCTTC<br>GTCGGCAGCGTC-3' | S503          |

| NGS_i5_S505 | 5'-AATGATACGGCGACCACCGAGATCTACACGTAAGGAGT<br>CGTCGGCAGCGTC-3' | S505 |
|-------------|---------------------------------------------------------------|------|
| NGS_i5_S506 | 5'-AATGATACGGCGACCACCGAGATCTACACACTGCATAT<br>CGTCGGCAGCGTC-3' | S506 |
| NGS_i5_S507 | 5'-AATGATACGGCGACCACCGAGATCTACACAAGGAGTAT<br>CGTCGGCAGCGTC-3' | S507 |
| NGS_i5_S508 | 5'-AATGATACGGCGACCACCGAGATCTACACCTAAGCCTT<br>CGTCGGCAGCGTC-3' | S508 |
| NGS_i5_S510 | 5'-AATGATACGGCGACCACCGAGATCTACACCGTCTAATTC<br>GTCGGCAGCGTC-3  | S510 |
| NGS_i5_S511 | 5'-AATGATACGGCGACCACCGAGATCTACACTCTCCGTC<br>GTCGGCAGCGTC-3'   | S511 |
| NGS_i5_S513 | 5'-AATGATACGGCGACCACCGAGATCTACACTCGACTAGT<br>CGTCGGCAGCGTC-3' | S513 |
| NGS_i5_S515 | 5'-AATGATACGGCGACCACCGAGATCTACACTTCTAGCTTC<br>GTCGGCAGCGTC-3' | S515 |
| NGS_i5_S516 | 5'-AATGATACGGCGACCACCGAGATCTACACCCTAGAGTT<br>CGTCGGCAGCGTC-3' | S516 |
| NGS_i5_S517 | 5'-AATGATACGGCGACCACCGAGATCTACACGCGTAAGAT<br>CGTCGGCAGCGTC-3' | S517 |
| NGS_i5_S518 | 5'-AATGATACGGCGACCACCGAGATCTACACCTATTAAGT<br>CGTCGGCAGCGTC-3' | S518 |
| NGS_i5_S520 | 5'-AATGATACGGCGACCACCGAGATCTACACAAGGCTATT<br>CGTCGGCAGCGTC-3' | S520 |
| NGS_i5_S521 | 5'-AATGATACGGCGACCACCGAGATCTACACGAGCCTTAT<br>CGTCGGCAGCGTC-3' | S521 |
| NGS_i5_S522 | 5'-AATGATACGGCGACCACCGAGATCTACACTTATGCGAT<br>CGTCGGCAGCGTC-3' | S522 |

Indexed reverse primers for the second-step PCR:

| Primer Name | Sequence                                                  | Index<br>name |
|-------------|-----------------------------------------------------------|---------------|
| NGS_i7_N701 | 5'-CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCG<br>TGGGCTCGG-3' | N701          |
| NGS_i7_N702 | 5'-CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCG<br>TGGGCTCGG-3' | N702          |
| NGS_i7_N703 | 5'-CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCG<br>TGGGCTCGG-3' | N703          |

| NGS_i7_N704 | 5'-CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCG<br>TGGGCTCGG-3' | N704 |
|-------------|-----------------------------------------------------------|------|
| NGS_i7_N705 | 5'-CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCG<br>TGGGCTCGG-3' |      |
| NGS_i7_N706 | 5'-CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCG<br>TGGGCTCGG-3' | N706 |
| NGS_i7_N707 | 5'-CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTC<br>GTGGGCTCGG-3' | N707 |
| NGS_i7_N710 | 5'-CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCG<br>TGGGCTCGG-3' | N710 |
| NGS_i7_N711 | 5'-CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCG<br>TGGGCTCGG-3' | N711 |
| NGS_i7_N712 | 5'-CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCG<br>TGGGCTCGG-3' | N712 |
| NGS_i7_N714 | 5'-CAAGCAGAAGACGGCATACGAGATTCATGAGCGTCTCG<br>TGGGCTCGG-3' | N714 |
| NGS_i7_N715 | 5'-CAAGCAGAAGACGGCATACGAGATCCTGAGATGTCTCG<br>TGGGCTCGG-3' | N715 |
| NGS_i7_N716 | 5'-CAAGCAGAAGACGGCATACGAGATTAGCGAGTGTCTCG<br>TGGGCTCGG-3' | N716 |
| NGS_i7_N718 | 5'-CAAGCAGAAGACGGCATACGAGATGTAGCTCCGTCTCG<br>TGGGCTCGG-3' | N718 |
| NGS_i7_N719 | 5'-CAAGCAGAAGACGGCATACGAGATTACTACGCGTCTCG<br>TGGGCTCGG-3' | N719 |
| NGS_i7_N720 | 5'-CAAGCAGAAGACGGCATACGAGATAGGCTCCGGTCTCG<br>TGGGCTCGG-3' | N720 |
| NGS_i7_N721 | 5'-CAAGCAGAAGACGGCATACGAGATGCAGCGTAGTCTCG<br>TGGGCTCGG-3' | N721 |
| NGS_i7_N722 | 5'-CAAGCAGAAGACGGCATACGAGATCTGCGCATGTCTCG<br>TGGGCTCGG-3' | N722 |
| NGS_i7_N723 | 5'-CAAGCAGAAGACGGCATACGAGATGAGCGCTAGTCTCG<br>TGGGCTCGG-3' | N723 |
| NGS_i7_N724 | 5'-CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTCTCG<br>TGGGCTCGG-3' | N724 |
| NGS_i7_N726 | 5'-CAAGCAGAAGACGGCATACGAGATGTCTTAGGGTCTCG<br>TGGGCTCGG-3' | N726 |
| NGS_i7_N727 | 5'-CAAGCAGAAGACGGCATACGAGATACTGATCGGTCTCG<br>TGGGCTCGG-3' | N727 |

| NGS_i7_N728 | 5'-CAAGCAGAAGACGGCATACGAGATTAGCTGCAGTCTCG<br>TGGGCTCGG-3' | N728 |
|-------------|-----------------------------------------------------------|------|
| NGS_i7_N729 | 5'-CAAGCAGAAGACGGCATACGAGATGACGTCGAGTCTCG<br>TGGGCTCGG-3' | N729 |

8. The amplification reaction mix of the second PCR contains:

6.0 µl 5x KAPA HiFi Fidelity buffer,

0.75 µl KAPA dNTP Mix (10 mM),

3.0  $\mu$ l from each indexed primer (10  $\mu$ M),

0.75 μl KAPA HiFi HotStart DNA polymerase (1.0 U/μl)

The final volume was 30 µl per reaction.

DNA template concentration is about 20.0 ng/ µl.

The second PCR protocol is:

95 °C for 3 min;

8 cycles at 98 °C for 20 s, 55 °C for 30 s, 72 °C for 30 s;

72 °C for 5 min.

- 9. Purify 20 µl of the resulting PCR amplicons and quantify them.
- 10. Calculate the concentration of the PCR amplicons (nM) using the equation (1000000\*Concentration in ng/ul)/(Total amplicom length in bp\*660).
- 11. Create an amplicon sequencing pool by mixing the PCR amplicons in equimolar amounts (at a desired final concentration of 10 nM).
- 12. Quantify the amplicon pool using the Illumina Library Quantification Kit and dilute it to the desired concentration, according to the Illumina sequencing protocol.
- 13. Sequence the amplicon pool using a MiSeq Reagent Kit v3 ( $2 \times 300$ -cycles).
- 14. Submit the raw sequence files to the European Nucleotide Archive (ENA) (Amid et al. 2019).
- 15. Analyse the sequences using the PEMA pipeline (Zafeiropoulos et el. 2020). Examples of parameter values that could be a starting point for the analysis are shown below.

Example parameters for the tools invoked by PEMA:

| Tool                 | Parameter               | Parameter Value |            |     |
|----------------------|-------------------------|-----------------|------------|-----|
|                      |                         | COI             | 18S rRNA   | ITS |
| trimmomatic (v.0.38) | maxInfo                 | Yes             | Yes        | Yes |
|                      | targetLength            | 200             | 200        | 200 |
|                      | strictness              | 0.3             | 0.3 or 0.5 | 0.3 |
|                      | seedMismatches          | 2               | 2          | 2   |
|                      | palindromeClipThreshold | 30              | 30         | 30  |
|                      | simpleClipThreshold     | 15              | 15         | 15  |
|                      | leading                 | 10              | 10         | 10  |

|              | trailing          | 15              | 15              | 15              |
|--------------|-------------------|-----------------|-----------------|-----------------|
|              | minlen            | 100             | 100             | 100             |
| PANDAseq     | pandaseqAlgorithm | simple_bayesian | simple_bayesian | simple_bayesian |
| (v. 2.11)    | pandaseqMinlen    | 150             | 150             | 150             |
|              | minoverlap        | 20              | 20              | 20              |
|              | threshold         | 0.6             | 0.6             | 0.6             |
| SWARM (v. 2) | d                 | 10              | 1               | 5 or 20         |
|              | removeSingletons  | Yes             | No              | No              |

#### Deviations from the MSOP:

In the 18S rRNA amplifications of the pilot 2018 samples, the protocol that was followed was slightly different: a) the 1st PCR primers included the barcodes and b) the ligation of the adaptors was performed with the TruSeq DNA PCR-free amplicon workflow.

#### References

- Amid, C., Alako, B.T.F., Balavenkataraman Kadhirvelu, V., Burdett, T., Burgin, J., Fan, J., Harrison, P.W., Holt, S., Hussein, A., Ivanov, E., Jayathilaka, S., Kay, S., Keane, T., Leinonen, R., Liu, X., Martinez-Villacorta, J., Milano, A., Pakseresht, A., Rahman, N., Rajan, J., Reddy, K., Richards, E., Smirnov, D., Sokolov, A., Vijayaraja, S., and Cochrane, G. 2019. The European Nucleotide Archive in 2019. Nucleic Acids Res. doi:10.1093/nar/gkz1063.
- Gardes, M., and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol. Ecol. **2**(2): 113–118. doi:10.1111/j.1365-294X.1993.tb00005.x.
- Geller, J., Meyer, C., Parker, M., and Hawk, H. 2013. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. **13**(5): 851–61. doi:10.1111/1755-0998.12138.
- Hardy, C.M., Krull, E.S., Hartley, D.M., and Oliver, R.L. 2010. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. **19**(1): 197–212. doi:10.1111/j.1365-294X.2009.04411.x.
- Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T., and Machida, R.J. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. **10**(1): 34. Frontiers in Zoology. doi:10.1186/1742-9994-10-34.
- White, T.J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In* PCR protocols: a guide to methods and applications. pp. 315–322. doi:10.1016/b978-0-12-372180-8.50042-1.
- Zafeiropoulos, H., Viet, H.Q., Vasileiadou, K., Potirakis, A., Arvanitidis, C., Topalis,

P., Pavloudi, C., and Pafilis, E. 2019. PEMA: from the raw .fastq files of 16S rRNA and COI marker genes to the (M)OTU-table, a thorough metabarcoding analysis. bioRxiv: 709113. doi:10.1101/709113.