Continuous-State Dynamic Programming¹

Kenneth L. Judd, Hoover Institution

January 31, 2014

¹ Joint work with Yongyang Cai.

Continuous Methods for Continuous-State Problems

Basic Bellman equation:

$$V(x) = \max_{u \in D(x)} \pi(u, x) + \beta E\{V(x^+)|x, u\} \equiv (TV)(x).$$

- lacktriangleright Discretization essentially approximates V with a step function
 - Approximation theory provides better methods to approximate continuous functions.
- General Task
 - Find good approximation for V
 - Identify parameters

General Parametric Approach: Approximating V(x)

Choose a finite-dimensional parameterization

$$V(x) \doteq \hat{V}(x; a), \ a \in R^m$$

and a finite number of states

$$X=\{x_1,x_2,\cdots,x_n\}$$

- polynomials with coefficients a and collocation points X
 - splines with coefficients a with uniform nodes X
 - rational function with parameters a and nodes X
 - neural network
 - specially designed functional forms
- ▶ Objective: find coefficients $a \in R^m$ such that $\hat{V}(x; a)$ "approximately" satisfies the Bellman equation.

General Parametric Approach: Approximating T

For each x_j , $(TV)(x_j)$ is defined by

$$v_j = (TV)(x_j) = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u)$$

and is approximated by $\hat{\mathcal{T}}$

$$v_j = (\hat{T}V)(x_j) \doteq (TV)(x_j)$$

▶ Integration step: for ω_j and x_j for some numerical quadrature formula

$$E\{V(x^{+};a)|x_{j},u)\} = \int \hat{V}(x^{+};a)dF(x^{+}|x_{j},u)$$

$$= \int \hat{V}(g(x_{j},u,\varepsilon);a)dF(\varepsilon)$$

$$\doteq \sum_{\ell} \omega_{\ell} \hat{V}(g(x_{j},u,\varepsilon_{\ell});a)$$

▶ Maximization step: for $x_i \in X$, evaluate

$$v_i = (T\hat{V})(x_i)$$

- Hot starts
- Concave stopping rules
- ▶ Fitting step:
 - ▶ Data: $(v_i, x_i), i = 1, \dots, n$
 - ▶ Objective: find an $a \in R^m$ such that $\hat{V}(x; a)$ best fits the data
 - ▶ Methods: determined by $\hat{V}(x; a)$

Approximating T with Hermite Data

Conventional methods just generate data on $V(x_j)$:

$$v_j = \max_{u \in D(x_j)} \pi(u, x_j) + \beta \int \hat{V}(x^+; a) dF(x^+|x_j, u)$$

- Envelope theorem:
 - If solution u is interior,

$$v_j'=\pi_x(u,x_j)+\beta\int \hat{V}(x^+;a)dF_x(x^+|x_j,u)$$

If solution u is on boundary

$$v_j' = \mu + \pi_x(u, x_j) + eta \int \hat{V}(x^+; a) dF_x(x^+|x_j, u)$$

where μ is a Kuhn-Tucker multiplier

- ▶ Since computing v'_i is cheap, we should include it in data:
 - ▶ Data: $(v_i, v'_i, x_i), i = 1, \dots, n$
 - ▶ Objective: find an $a \in R^m$ such that $\hat{V}(x; a)$ best fits Hermite data
 - ▶ Methods: determined by $\hat{V}(x; a)$

General Parametric Approach: Value Function Iteration

guess
$$a \longrightarrow \hat{V}(x; a)$$
 $\longrightarrow (v_i, x_i), i = 1, \cdots, n$
 $\longrightarrow \text{new } a$

- Comparison with discretization
 - ▶ This procedure examines only a finite number of states, *xi*:
 - ▶ But does *not* assume that the state is always in this finite set.
 - Choices for the x_i are guided by approximation methods
 - ightharpoonup Procedure examines only a finite number of arepsilon values for the stochastic shocks
 - But does not assume that they are the only ones realized
 - Choices for the ε_i come from quadrature methods
- Synergies
 - Smooth interpolation allows us to use Newton's method for max step.
 - ▶ Smooth interpolation allows more efficient quadrature in (12.7.5).
 - Efficient quadrature reduces cost of computing objective in max problem

- ► Finite-horizon problems
 - ▶ Must use value function iteration since V(x, t) depends on time t.
 - ▶ Begin with terminal value function, V(x, T)
 - ► Compute approximations for each V(x,t), t = T 1, T 2, etc.

Algorithm 12.5: Parametric Dynamic Programming with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).

Step 0: Choose functional form for $\hat{V}(x; a)$, and choose

the approximation grid, $X = \{x_1, ..., x_n\}$.

Make initial guess $\hat{V}(x; a^0)$, and choose stopping

criterion $\epsilon > 0$.

Step 1: Maximization step: Compute

$$v_j = (T\hat{V}(\cdot; a^i))(x_j)$$
 for all $x_j \in X$.

Step 2: Fitting step: Using the appropriate approximation

method, compute the $a^{i+1} \in R^m$ such that $\hat{V}(x; a^{i+1})$ approximates the (v_i, x_i) data.

Step 3: If $\|\hat{V}(x; a^i) - \hat{V}(x; a^{i+1})\| < \epsilon$, STOP; else go to step 1.

Convergence

- ► *T* is a contraction mapping
- $ightharpoonup \hat{T}$ may be neither monotonic nor a contraction
- ► Shape problems
 - Standard approximation methods do not preserve shape
 - ► Shape problems may become worse with value function iteration

Solution to shape problems

- Use shape-preserving approximations
 - Piecewise linear preserves shape in one dimension.
 - Multilinear approximation does not preserve shape
 - ► Shape preserving splines are available for dimensions one and two.
- Impose shape restrictions in fitting
 - Use least squares, not interpolation
 - Add shape constraints to least squares problem
 - Demand correct slopes at some points
 - Demand correct curvature at some points.
 - These methods work well in one dimension, but slow algorithm down considerably for higher dimensions
- ▶ Open research question: What is the best combination of smooth functional form and fitting procedure that preserves shape?

Summary

- Discretization methods
- ▶ Easy to implement
 - Numerically stable
 - Amenable to many accelerations
 - Poor approximation to continuous problems
- Continuous approximation methods
 - ► Can exploit smoothness in problems
 - Must work to avoid numerical instabilities
 - Acceleration is less possible