Pang and Jaelyn are having a race – they want to see who can run the farthest in 10 seconds. They start at the same spot, so say s(0) = 0 for both. Pang's velocity in meters per second is given by $v_P(t) = 4.9 + \sin(t)$, and Jaelyn's velocity is given by $v_J(t) = 3 + 0.4t$.

- 2. Who starts off faster, Pang or Jaelyn? Who is running faster at t = 10 seconds?
- 3. What is happening at time $t \approx 3.6$ seconds where the two curves intersect?
- 4. Based on the velocity graphs only, who do you think wins the race? Why? (You don't need to be correct here, but you should provide some justification of your thinking.)
- 5. Use antiderivatives to find the two position functions $s_P(t)$ and $s_J(t)$. Be sure to include "+ C" in the first step and then use s(0) = 0 to find the constants.

6.	Use Desmos to gebelow.	enerate graphs (in one set of axes) of s_P	$s(t)$ and $s_J(t)$ for $0 \le t \le 10$. Re-sketch	
7.	Calculate exactly where Pang and Jaelyn end up after 10 seconds. Who wins the race?			
8.	Fill in the following grid to show where in the interval $(0,10)$ seconds each position function is increasing/decreasing and concave up/down. Answer with open intervals. (Recall that all this information can be determined from the derivative functions.)			
		Pang's position function	Jaelyn's position function	
	Increasing			
	Decreasing			
	Concave up			
	Concave down			
9.	9. What is each person's acceleration? What are the units of acceleration here?			