Desenvolvimento econômico

Contabilidade de crescimento

João Ricardo Costa Filho

O que contribui para a riqueza das nações?

Como estimar o progresso tecnológico

Solow (1957) propõem a estimação da produtividade total dos fatores como um "resíduo".

Solow (1957) propõem a estimação da produtividade total dos fatores como um "resíduo". Se a a função de produção for

$$Y(t) = A(t)K^{\alpha}(t)L^{1-\alpha}(t),$$

Solow (1957) propõem a estimação da produtividade total dos fatores como um "resíduo". Se a a função de produção for

$$Y(t) = A(t)K^{\alpha}(t)L^{1-\alpha}(t),$$

temos que:

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{A}(t)}{A(t)} + \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{I(t)}.$$

Solow (1957) propõem a estimação da produtividade total dos fatores como um "resíduo". Se a a função de produção for

$$Y(t) = A(t)K^{\alpha}(t)L^{1-\alpha}(t),$$

temos que:

$$\frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{A}(t)}{A(t)} + \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{I(t)}.$$

Portanto,

$$\frac{\dot{A}(t)}{A(t)} = \frac{\dot{Y}(t)}{Y(t)} - \alpha \frac{\dot{K}(t)}{K(t)} - (1 - \alpha) \frac{\dot{L}(t)}{I(t)}.$$

Resíduo

$$\frac{\dot{A}(t)}{A(t)} = \underbrace{\frac{\dot{Y}(t)}{Y(t)}}_{Observado} - \alpha \underbrace{\frac{\dot{K}(t)}{K(t)}}_{Observado} - (1 - \alpha) \underbrace{\frac{\dot{L}(t)}{I(t)}}_{Observado}$$

4

Vamos compreender os vetores do crescimento econômico. Para isso, calcule o crescimento (i) do PIB e (ii) do PIB por trabalhador com base nos dados abaixo (assuma $\alpha=0,45$):

a)
$$\frac{\dot{A}(t)}{A(t)} = 2\%$$
, $\frac{\dot{K}(t)}{K(t)} = 0\%$ e $\frac{\dot{L}(t)}{I(t)} = 0\%$.

b)
$$\frac{\dot{A}(t)}{A(t)} = 0\%$$
, $\frac{\dot{K}(t)}{K(t)} = 2\%$ e $\frac{\dot{L}(t)}{I(t)} = 2\%$.

c)
$$\frac{\dot{A}(t)}{A(t)} = 1\%$$
, $\frac{\dot{K}(t)}{K(t)} = 2\%$ e $\frac{\dot{L}(t)}{I(t)} = 3\%$.

5

Vamos encontrar a variação da produtividade total dos fatores em uma economia, com base nos dados abaixo (assuma $\alpha = 0,45$):

a)
$$\frac{\dot{Y}(t)}{Y(t)}=3\%$$
, $\frac{\dot{K}(t)}{K(t)}=1\%$ e $\frac{\dot{L}(t)}{I(t)}=2\%$.

b)
$$\frac{\dot{Y}(t)}{Y(t)} = 3\%$$
, $\frac{\dot{K}(t)}{K(t)} = 2\%$ e $\frac{\dot{L}(t)}{I(t)} = 1\%$.

c)
$$\frac{\dot{Y}(t)}{Y(t)} = 3\%$$
, $\frac{\dot{K}(t)}{K(t)} = 0\%$ e $\frac{\dot{L}(t)}{I(t)} = 3\%$.

Considere a seguinte função de produção:

$$\frac{Y_t}{h_t L_t} = A_t \left(\frac{K_t}{h_t L_t}\right)^{\alpha} H_t^{1-\alpha} \tag{1}$$

onde $\frac{Y_t}{h_t I_t}$ representa o PIB por trabalhador, A_t é a produtividade total dos fatores, $\frac{K_t}{h_t I_t}$ é o valor do estoque de capital por trabalhador e H_t é o índice de capital humano (aqui, consideramos não apenas a quantidade de trabalho, L_t , mas também as horas trabalhadas, h_t). Assumindo que a parcela do capital na função de produção seja igual a um terço, calcule a taxa de crescimento anual média, de cada um dos três fatores que contribuem para o crescimento do PIB, em dois períodos: 2000-2009 e 2010-2019, com base nos dados da Tabela 1. Houve alguma mudança nas fontes do crescimento econômico nesse período? Qual?

Table 1: Variáveis Macroeconômicas (Penn World Table 10.01)

Ano	PIB por trabalhador	Capital Humano	Capital por trabalhador
2000	47464,25	3,131667	193685,2
2001	47483,34	3,151494	189632,0
2002	46907,18	3,171447	179850,4
2003	47853,48	3,191525	182020,4
2004	49805,54	3,211730	189456,3
2005	52735,42	3,232064	198336,4
2006	53034,63	3,252527	211879,8
2007	56579,88	3,273118	218097,6
2008	57646,39	3,293840	242710,7
2009	54963,79	3,314694	277759,0
2010	57055,94	3,335679	284132,7
2011	57478,25	3,354023	291433,2
2012	56848,66	3,372468	308500,1
2013	55095,80	3,391014	307717,4
2014	55271,93	3,409662	300524,2
2015	56280,69	3,428413	294591,4
2016	57455,66	3,447266	301530,4
2017	58884,64	3,466224	292847,8
2018	58100,97	3,485286	291130,2
2019	58440,80	3,504452	293184,0

Com base nos dados da Penn World Table Link, cada grupo deve realizar a contabilidade de crescimento para os países respectivos por décadas (comecem em 1960). Para cada parâmetro, mostre o racional dos cálculos (ou as fontes do mesmo).

- **Grupo 1**: Argentina, Brasil, Chile e Uruguai.
- **Grupo 2**: Australia, Bélgica, Canadá e Dinamarca.
- Grupo 3: China, Coreia do Sul, Índia e Rússia.
- **Grupo 4**: França, Grécia, Itália e Portugal.
- Grupo 5: Alemanha, Espanha, Reino Unido e Suécia.

Leia os livros e os artigos, não fique só com os slides!!!!

Referências

Solow, Robert M. 1957. "Technical Change and the Aggregate Production Function." *The Review of Economics and Statistics* 39 (3): 312–20.