

MAT1503

October/November 2014

LINEAR ALGEBRA

Duration

2 Hours

100 Marks

EXAMINERS:

FIRST

DR L GODLOZA

DR ZE MPONO

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages

Answer All Questions

QUESTION 1

(a) Consider the following system of equations

$$\begin{cases} x_1 - 3x_2 = 2 \\ 2x_2 = 6 \end{cases}$$

(i) write down the coefficient matrix of the above system

(1)

(11) using back substitution, solve the above system

(3)

(b) Let

$$A=\left[egin{array}{cc} 1 & 2 \ 3 & 4 \end{array}
ight] \;\;\;,\; B=\left[egin{array}{cc} 2 & 1 \ -3 & 2 \end{array}
ight] \;\;\;,\; C=\left[egin{array}{cc} 1 & 0 \ 2 & 1 \end{array}
ight]$$

and determine as to whether or not

$$(1) A(BC) = (AB)C$$
 (5)

(ii)
$$A(B+C) = AB + AC \tag{5}$$

(c) Let
$$D, E$$
 be nonsingular matrices and show that $(DE)^{-1} = E^{-1}D^{-1}$ (5)

(d) Compute the inverse of the following matrix

$$F = \left[\begin{array}{cc} -1 & 1 \\ 1 & 0 \end{array} \right]$$

and verify that the matrix you have computed indeed is the required inverse

(6)

[25]

[TURN OVER]

QUESTION 2

(a) Given that

$$G = \left[\begin{array}{ccc} 2 & 5 & 4 \\ 3 & 1 & 2 \\ 5 & 4 & 6 \end{array} \right]$$

compute $\det(G)$ (5)

(b) Find all values of λ for which

$$\det \begin{pmatrix} 2 - \lambda & 4 \\ 3 & 3 - \lambda \end{pmatrix} = 0 \tag{5}$$

(c) Let

$$H = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

and find H^T and relate it to H (3)

(d) Let I, J be 3×3 matrices such that $\det(I) = 4$ and $\det(J) = 5$. Then find

$$(1) \det(IJ) \tag{2}$$

(n)
$$det(3I)$$

(m)
$$\det(2IJ)$$
 (2)

(iv)
$$\det(I^{-1}J)$$
 (2)

(e) Show that the coefficient matrix of the following system of equations is nonsingular

$$\begin{cases} x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 2x_2 + x_3 = 6 \\ x_1 + 2x_2 + 3x_3 = 9 \end{cases}$$

(4)

[25]

QUESTION 3

(a) Let $\underline{u}=(1\ 2,-2)$ and $\underline{v}=(3,0\ 1)$ be vectors in \mathbb{R}^3

(1) Calculate
$$\underline{u} \times \underline{v}$$

(ii) Determine the area of the parallelogiam bounded by \underline{u} and \underline{v} (3)

[TURN OVER]

(m)	Verify that $\underline{u} \times \underline{v}$ is perpendicular to \underline{v}	(4)
-----	--	-----

- (iv) Determine $Pi oj_{\underline{u}\underline{v}}$ (3)
- (v) Determine the cosine of the angle between \underline{u} and \underline{v} (3)
- (b) Consider the points P(3,-1,4) $Q(6\ 0,2)$ and R(5,1,1)
 - (1) Find the point S in \mathbb{R}^3 whose first component is -1 and such that \overrightarrow{PQ} is parallel to \overrightarrow{RS} (4)
 - (ii) Determine the equation of the plane passing through R and perpendicular to the line passing through P and Q (5)

[25]

QUESTION 4

- (a) Use de Mouvre's Theorem to express $\sin 4\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$ (10)
- (b) Determine the cube roots of ι in polar form (10)
- (c) Let z = x + iy be any complex number. Prove that if $z^3 = 1$, then $z^3 3xy^2 = 1$ and $3x^2y y^3 = 0$

(5)

[25]

TOTAL: 100 Marks

©

UNISA 2014