Zadanie 6

Treść

Ułóż algorytm, który dla danego n-wierzchołkowego drzewa i liczby k, pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce prostej było nie więcej niż k pokolorowanych wierzchołków.

Algorytm

Będziemy iteracyjnie kolorować warstwy liści w drzewie.

- 1. Zainicjuj zbiór pokolorowanych wierzchołków $C := \emptyset$.
- 2. Zainicjuj roboczą kopię drzewa T' := T.
- 3. Wykonaj $\left|\frac{k}{2}\right|$ razy:
 - i. Jeśli T' jest pusty, zakończ pętlę.
 - ii. Znajdź zbiór L wszystkich liści w aktualnym drzewie T'.
 - iii. Dodaj wszystkie wierzchołki z L do zbioru C.
 - iv. Zaktualizuj T' poprzez usunięcie z niego wszystkich wierzchołków ze zbioru L.
- 4. Jeśli k jest nieparzyste i graf T' wciąż zawiera jakieś wierzchołki:
 - i. Wybierz dowolny wierzchołek v należący do T'.
 - ii. Dodaj v do zbioru C.
- 5. Zwróć zbiór C.

Dowód poprawności

Musimy pokazać, że na dowolnej ścieżce w oryginalnym drzewie T znajduje się co najwyżej k pokolorowanych wierzchołków.

Rozważmy dowolną ścieżkę P w drzewie T. Ścieżka ta może wejść do pewnej warstwy i ją opuścić co najwyżej raz. Oznacza to, że P może zawierać co najwyżej dwa wierzchołki z dowolnej warstwy.

1. k jest parzyste:

Algorytm wykonuję pętlę $\left\lfloor \frac{k}{2} \right\rfloor = \frac{k}{2}$ razy. Oznacza to, że koloruje dokładnie $\frac{k}{2}$ najbardziej zewnętrznych liści. Każda z tych warstw może dodać do naszej ścieżki co najwyżej 2 pokolorowane wierzchołki. W najgorszym przypadki ścieżka przejdzie przez każdą warstwę 2 razy. Całkowita liczba wierzchołków na ścieżce nie przekroczy więc k.

2. k jest nieparzyste:

Algorytm wykonuje pętlę $\left\lfloor \frac{k}{2} \right\rfloor = \frac{k-1}{2}$ razy. Koloruje więc $\frac{k-1}{2}$ warstw. Te warstwy mogą dać co najwyżej k-1 pokolorowanych wierzchołków na dowolnej ścieżce, więc po pokolorowaniu jednego dodatkowego wierzchołka, żadna ścieżka nie będzie miała więcej niż k pokolorowanych wierzchołków.

Złożoność

Na początek musimy znaleźć wszystkie liście, musimy przejść po każdym wierzchołku zatem zajmie to O(n). Podczas usuwania wierzchołków w aktualnym L możemy tworzyć kolejne L', które będzie zawierało liście które się utworzą. Takich operacji znowu wykonamy O(n). Wszystkie inne operacje powinny nas kosztować stały czas.

Wykonanie: O(n); Złożoność pamięciowa: O(n).

Maksymalność

Dowód przeprowadzimy za pomocą argumentu wymiany. Pokażemy, że dowolne optymalne rozwiązanie C_{OPT} można krok po kroku przekształcić w rozwiązanie wygenerowane przez nasz algorytm, C_{ALG} , nie zmniejszając przy tym liczby pokolorowanych wierzchołków.

Załóżmy, że $k \ge 2$, ponieważ dla k = 0, 1 możemy pokolorować T w trywialny sposób.

Niech C_{OPT} będzie optymalnym kolorowaniem. Chcemy pokolorować wszystkie liście L_0 w drzewie T. Jeśli $L_0 \subseteq C_{\mathrm{OPT}}$ (wszystkie liście są pokolorowane), to C_{OPT} zgadza się z C_{ALG} na pierwszej warstwie i możemy kontynuować rekurencyjnie dla drzewa $T-L_0$ i parametru k-2.

Załóżmy, więc że istnieje liść $v \in L_0$, który nie jest pokolorowany w rozwiązaniu optymalnym, czyli $v \notin C_{\mathrm{OPT}}$. Pokażemy, że możemy zmodyfikować C_{OPT} tak, aby zawierało v, nie tracąc na optymalności.

Rozważmy nowe kolorowanie $C_{\text{test}} = C_{\text{OPT}} \cup \{v\}.$

1. Kolorowanie C_{test} jest poprawne:

Jeśli $C_{\rm test}$ jest poprawne, to znaleźliśmy rozwiązanie lepsze od optymalnego, ponieważ $|C_{\rm test}|=|C_{\rm OPT}|+1$. To jest sprzeczność z założeniem, że $C_{\rm OPT}$ jest optymalne. Ten przypadek nie może więc zajść. 4

2. Kolorowanie C_{test} jest niepoprawne:

Skoro C_{test} jest niepoprawne, to musi istnieć co najmniej jedna ścieżka, na której znajduje się k+1 pokolorowanych wierzchołków. Nazwijmy zbiór takich "zepsutych" ścieżek $\mathcal{P}_{\text{zepsute}}$.

Każda ścieżka $P \in \mathcal{P}_{\text{zespute}}$ musi spełniać dwa warunki

- i. $v \in P$, ponieważ bez v kolorowanie było poprawne.
- ii. $|P \cap C_{OPT}| = k$, czyli przed pokolorowaniem v, ścieżka miała k pokolorowanych wierzchołków.

Lemat 1 Istnieje pokolorowany wierzchołek w wspólny dla wszystkich zepsutych ścieżek.

Niech $P_1, P_2 \in \mathcal{P}_{\text{zepsute}}$ będą dwiema różnymi zepsutymi ścieżkami. Jako że obie zaczynają się w liściu v, muszą posiadać pewną część wspólną. Niech z będzie wierzchołkiem, w którym te ścieżki się rozchodzą.

Rysunek 1: Poglądowy rysunek opisanej sytuacji

Załóżmy, dla dowodu nie wprost, że na wspólnej części ścieżki od v do z nie ma żadnego wierzchołka z C_{OPT} . Oznacza to, że wszystkie k pokolorowane wierzchołki z $P_1 \cap C_{\mathrm{OPT}}$ leżą na gałęzi za z, a wszystkie k pokolorowane wierzchołki z $P_2 \cap C_{\mathrm{OPT}}$ leżą na swojej gałęzi za z.

Rozważmy teraz ścieżkę S łączącą końcowe wierzchołki P_1 i P_2 . Ścieżka ta przechodzi przez z. Liczba pokolorowanych wierzchołków na S wynosi:

$$|S \cap C_{\mathrm{OPT}}| = |(P_1 \setminus P_2) \cap C_{\mathrm{OPT}}| + |(P_2 \setminus P_1) \cap C_{\mathrm{OPT}}| = k + k = 2k$$

Jeśli $k \geq 1$, to 2k > k, co oznacza, że oryginalne kolorowanie $C_{\rm OPT}$ było niepoprawne. To jest sprzeczność. $\red{4}$

Zatem na wspólnym odcinku każdej pary zepsutych ścieżek musi znajdować się co najmniej jeden pokolorowany wierzchołek. To implikuje, że istnieje wierzchołek $w \in C_{\mathrm{OPT}}$, który leży na każdej ścieżce ze zbioru $\mathcal{P}_{\mathrm{zepsute}}$. \square

Skoro udowodniliśmy istnienie takiego wspólnego wierzchołka w, wybierzmy go tak, aby był jak najbliżej liścia v na ścieżce.

Zdefiniujmy nowe kolorowanie:

$$C'_{\mathrm{OPT}} = (C_{\mathrm{OPT}} \smallsetminus \{w\}) \cup \{v\}$$

Zauważmy, że $|C'_{\mathrm{OPT}}| = |C_{\mathrm{OPT}}|$, więc jeśli jest ono poprawne, to jest również optymalne.

Dowód poprawności C_{OPT}'

Niech S będzie dowolną ścieżką w T.

i. $w \notin S$:

Liczba pokolorowanych wierzchołków na S mogła się co najwyżej zwiększyć o 1 (jeśli $v \in S$). Jeśli by to spowodowało "zepsucie" ścieżki S, oznaczałoby to, że $|S \cap C_{\mathrm{OPT}}| = k$ i $v \in S$. Ale wtedy S należałoby do $\mathcal{P}_{\mathrm{zepsute}}$. Z naszego lematu wiemy jednak, że każda ścieżka z $\mathcal{P}_{\mathrm{zepsute}}$ musi zawierać w. To jest sprzeczność z założeniem $w \notin S$. Zatem ten przypadek jest bezpieczny.

ii. $w \in S$:

Liczba pokolorowanych wierzchołków na S w C'_{OPT} wynosi $|S \cap C_{\mathrm{OPT}}| - 1$ (jeśli $v \notin S$) lub $|S \cap C_{\mathrm{OPT}}|$ (jeśli $v \in S$). W obu sytuacjach liczba ta nie przekracza k, ponieważ $S \cap C_{\mathrm{OPT}} \leq k$. Ten przypadek również jest bezpieczny.

Pokazaliśmy, że możemy zamienić w na v, otrzymując nowe, poprawne i wciąż optymalne kolorowanie C'_{OPT} , które zawiera liść v.

Możemy powtarzać ten proces dla każdego liścia z L_0 , który nie należy do $C_{\rm OPT}$. Po skończonej liczbie kroków przekształcimy $C_{\rm OPT}$ w inne optymalne rozwiązanie $C_{\rm OPT}^*$, które zawiera wszystkie liście z L_0 .

Możemy zastosować to samo rozumowanie do podproblemu ($T-L_0,k-2$). Indukcyjnie dochodzimy do wniosku, że istnieje rozwiązanie optymalne, które ma dokładnie taką samą konstrukcję jak $C_{\rm ALG}$. Zatem $|C_{\rm ALG}|=|C_{\rm OPT}|$.