Redes neuronales

Programa ejecutivo de Inteligencia Artificial

Año de realización: 2019-2020

Alberto Torres Barrán alberto.torres@icmat.es

Introducción

Perceptrón

- Combinación lineal de las variables de entrada
- No linealidad: función de activación (por ejemplo la función escalón)

Fuente

Ejemplo perceptron

Problema XOR

• Observaciones no separables linealmente ⇒ perceptrón no encuentra solución

Fuente

Redes neuronales

• Añadimos una capa intermedia (capa oculta)

Teorema de aproximación universal

- Asumimos:
 - o red neuronal feed-forward
 - o una capa oculta
 - o número de neuronas finito
 - o algunas funciones de activación (por ej. sigmoidea)
- Aproxima cualquier función continua con precisión arbitrarea
- Pero: el número de neuronas necesario es exponencialmente grande

Aprender representaciones

- Modelos como las SVMs generan una nueva representación de los datos de entrada en un espacio ampliado
- Esperamos que en este nuevo espacio el problema de aprendizaje sea más sencillo
- Esta nueva representación también se puede generar de forma manual (*feature engineering*)
- Crear nuevas variables es, típicamente:
 - 1. critico para obtener buen rendimiento
 - 2. muy dependiente del problema
- Ejemplo: extraer variables de datos no tabulares (audio, video, imágenes, texto)

Figure 1.4 Coordinate change

RN vs otros modelos

- Automatizan la creación de nuevas variables
- Esto simplifica la resolución de nuevos problemas:
 - 1. no necesario tanto conocimiento específico
 - 2. proceso mucho menos costoso que crear nuevas variables a mano
- Además la creación de estas nuevas representaciones forma parte del aprendizaje
 - ∘ específicas para la tarea a resolver ⇒ mejor rendimiento

Machine Learning

Deep Learning

Ejemplo

- Clasificar imágenes médicas en sano/enfermo
- Antes: una parte importante del trabajo consistía en procesar las imágenes del microscopio para extraer características:
 - 1. segmentar células
 - 2. identificar núcleo
 - 3. etc.
- Redes neuronales profundas extraen automáticamente características útiles para la tarea de clasificar

¿Por qué ahora?

- Redes convolucionales y *backpropagation* son de 1989
- Redes recurrentes como la LSTM de 1997
- Desde 2010 varios avances han contribuido al exíto de las redes neuronales:
 - 1. hardware
 - 2. datos
 - 3. avances algorítmicos

Hardware

- Entre 1990 y 2010 las CPUs estándar incrementaron su velocidad un factor de 5000
- Modelos de redes neuronales entrenables en un portátil estándar
- No suficiente para modelos más complejos (recurrentes, convolucionales)
- GPUs: unidades de procesamiento gráfico
 - 1. procesadores más sencillos
 - 2. útiles para procesar grandes bloques de datos en paralelo
- Entrenar una red necesita muchas multiplicaciones de matrices
- NVIDIA Titan X (aprox. 1000\$) tiene 350 veces más potencia que un portátil moderno ⇒ 6.6 trillones de operaciones en coma flotante/segundo

Datos

- Desarrollo exponencial de la capacidad de almacenamiento
- Internet: recolectar y distribuir conjuntos de datos de forma sencilla
 - 1. Wikipedia (texto)
 - 2. Youtube (video)
 - 3. Flickr (imágenes)
- Competiciones de benchmark, por ej. ImageNet o Kaggle

Algoritmos

- Hasta 2010 no existían formas fiables de entrenar redes neuronales profundas (solo 1 o 2 capas)
 - 1. se puede calcular el gradiente (backpropagation)
 - 2. la señal del error se desvanece en las capas intermedias
- Ciertos avances algorítmicos aliviaron el problema:
 - 1. mejores funciones de activación
 - 2. mejor inicialización de los pesos
 - 3. mejores algoritmos de optimización (variantes de SGD)
- Se pueden entrenar redes con 10 o más capas
- Hoy en día otros avances permiten entrenar modelos con cientos de capas

Ventajas y desventajas

Ventajas

- Simplicidad: no es necesario crear nuevas variables a mano
- Escalabilidad:
 - 1. paralelizacion en GPUs
 - 2. uso de mini-baches
- Versatilidad y reusabilidad:
 - 1. aprovechar representaciones aprendidas para otros problemas
 - 2. continuar el entrenamiento con nuevos datos

Desventajas

- Coste computacional y hardware
- Dificultad entrenamiento

Democratización

- Antes: programar en GPUs ⇒ lenguajes específicos (CUDA) y C++
- Desde 2010: multiples librerias (Torch, Theano, Caffe, Tensorflow) que
 - 1. realizan diferenciación automática
 - 2. implementan tensores y operaciones con los mismos
 - 3. hacen uso de la GPU de forma transparente
- Ahora: varias librerías de alto nivel que implementan capas de aprendizaje profundo:
 - 1. Keras
 - 2. PyTorch

Ejemplo Keras

- Problema de regresión con 2 salidas
- Arquitectura:


```
library(keras)
model <- keras model sequential()</pre>
# arquitectura
model %>%
  layer dense (units = 4,
               activation = 'sigmoid',
               input shape = c(3)) %>%
  layer dense (units = 2,
               activation = 'linear')
# definir entrenamiento
model %>% compile(loss = "mse",
                   optimizer = optimizer sqd())
# entrenamiento
model %>% fit(X train, y train,
               epochs = 10, batch size = 128,
               validation size = \overline{0.2})
# error de test
model %>% evaluate(X test)
```

Perceptrón multicapa

Introducción

- Hasta ahora hemos visto modelos de regresión y clasificación que recibían como input combinaciones lineales de *funciones base*.
- Para que estos modelos resulten prácticos, debemos adaptar las funciones base a los datos.
- Idea:
 - 1. Fijar el número de funciones base de antemano
 - 2. Darles forma paramétrica
 - 3. Aprender parámetros usando los datos.
- Aprender la representación.
- Perceptrón multicapa o feed-forward neural network.

Perceptrón multicapa (1)

- ¿Cómo parametrizamos las funciones de base?
- Hasta ahora

$$y(x,w) = f\left(\sum_{j=1}^M w_j \phi_j(x)
ight).$$

- Siendo f una activación no lineal.
- Objetivo: parametrizar $\phi_i(x)$ y aprender los parámetros.
- Idea de las NN: parametrizar $\phi_j(x)$ de la misma manera que y(x, w).

Perceptrón multicapa (2)

- MLP básico:
 - 1. Construír M combinaciones lineales del input x_1, \ldots, x_D :

$$a_j = \sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}$$

- 2. Transformar cada activación a_j usando una función de activación **no lineal** y **diferenciable**: $z_j = h(a_j)$.
- 3. Repetir 1 y 2, tantas veces como capas ocultas queramos en la red.
- 4. Por último, en la capa de salida, las activaciones se transforman con una función de activación adecuada para producir los outputs y_k .
- Notación: w_{ji} son pesos, w_{j0} son biases, a_j son activaciones.

Perceptrón multicapa (3)

• Ejercicio: ¿Por qué las activaciones tienen que ser funciones no lineales diferenciables?

Perceptrón multicapa (4)

- La función de activación de la capa de salida, dependerá de la naturaleza de los datos.
- Para problemas de regresión, la activación será la identidad $y_k = a_k$.
- Para clasificación binaria (output es una probabilidad) la activación será la sigmoide $y_k = \sigma(a_k)$.
- Para clasificación multiclase, usaremos la softmax.

$$ext{softmax}(a)_i = rac{e^{a_i}}{\sum_k e^{a_k}}$$

Perceptrón multicapa (5)

- ¿Funciones de activación de capas intermedias?
- Históricamente, la sigmoide.
- Hoy en día, las más conocidas son la *REctifier Linear Unit (RELU)*, tangente hiperbólica y variantes.

Perceptrón multicapa (6)

• Componiendo lo visto, obtenemos una NN de dos capas (e.g. con salida binarias)

$$y(w,x) = \sigma\left(\sum_{j=0}^M w_j^{(2)} h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i
ight)
ight)$$

• El proceso de evaluar esta función se denomina forward propagation.

Fuente

Perceptrón multicapa (7)

• Gráficamente...

Perceptrón multicapa -Entrenamiento

Entrenamiento de la red

- Para entrenar, necesitamos definir función objetivo (función de coste).
- Una opción: mínimos cuadrados.
- Si damos **interpretación probabilística** a la salida de la NN, conseguimos una visión más general.

Regresión

• Asumiremos que el target t sigue una distribución normal

$$p(t|y(x,w),eta^{-1})$$

- Donde la activación de la capa de salida es la identidad.
- Dado conjunto de entrenamiento $X = \{x_1, \dots, x_N\}$, $t = t_1, \dots, t_N$, maximizar la verosimilitud es equivalente a

$$w_{ML} = rg\min_w E(w) = rg\min_w rac{1}{2} \sum_{i=1}^N \{y(x_n,w) - t_n\}^2$$

- Ojo: la **no linealidad** de la red hace que E(w) no sea convexo... en la práctica conseguiremos converger a mínimo local.
- En regresión multi-target, se asume **independencia condicional** de los targets dados x y w y el análisis es idéntico.

Clasificación binaria

- t=1 representa una pertenencia a una clase y t=0 a la otra. La NN tiene una única salida con activación sigmoide.
- Interpretamos y(x, w) como p(t = 1|x). Entonces

$$p(t|x,w) = y(x,w)^t \{1 - y(x,w)\}^{1-t}$$

• Dado conjunto de entrenamiento, maximizar la verosimilitud equivale a minimizar la **entropía cruzada**

$$E(w) = -\sum_{n=1}^N \{t_n \log y_n + (1-t_n) \log (1-y_n)\}$$

- Para clasificación binaria multi-etiqueta, usamos una red con K outputs sigmoidales.
- Asumiendo independencia condiciones de las etiquetas dado el input, el análisis es idéntico.

Clasificación multiclase

- Las K posibles clases se escriben en notación One-Hot-Encoding.
- Si la observación n-ésima, pertenece a la clase 1, entonces $t_{n1}=1$ y $t_{nj}=0$ para $j \neq 1$.
- La red tiene K salidas interpretadas como $y_k(x, w) = p(t_{\cdot k} = 1|x)$.
- Maximizar la verosimilitud equivale a minimizar

$$E(w) = -\sum_{n=1}^N \sum_{k=1}^K t_{nk} \log y_k(x_n,w)$$

• La red tiene K unidades de salida con activación softmax.

Optimización

- Una vez definida la función de coste, hay que encontrar los pesos que la optimicen.
- $\nabla E(w) = 0$ no se puede resolver analíticamente. Tenemos que usar métodos numéricos iterativos.
- Los más importantes: **basados en el gradiente**, pues como veremos, evaluar el gradiente es muy eficiente gracias al algoritmo de *backpropagation*.
- Descenso por el gradiente requiere inicializar los pesos e iterar:

$$w^{t+1} = w^t - \eta
abla E(w^t)$$

• En cada iteración, accedemos a todos los datos para calcular $\nabla E(w^t)\dots$ complejidad $\mathcal{O}(N)$.

Descenso por el gradiente estocástico (SGD)

• La función de coste tiene esta forma:

$$E(w) = \sum_{i=1}^N E_i(w)$$

• En cada iteración, escogemos un dato al azar

$$w^{t+1} = w^t - \eta_t
abla_w E_i(w^t)$$

Descenso por el gradiente estocástico (SGD)

• También podemos seleccionar un **minilote** \mathcal{B}

$$w^{t+1} = w^t - \eta_t
abla_w rac{1}{B} \sum_{i \in \mathcal{B}} f_i(w^t).$$

- La complejidad pasa de $\mathcal{O}(N)$ a $\mathcal{O}(B)$, además, no es necesario tener toda la matriz X, sino solo los datos del minilote \mathcal{B} .
- Otra ventaja: mayor probabilidad de escapar óptimos locales que con GD, un punto estacionario de la función objetivo en GD no lo será en SGD generalmente.

Descenso por el gradiente estocástico (SGD)

- Usando resultados de aproximación estocástica de Robbins & Monro (1954), se puede demostrar convergencia a mínimo local siempre y cuando
 - 1. Las tasas de aprendizaje cumplen estas condiciones:

$$\sum_{t=0}^{\infty} \eta_t = \infty$$
 $\sum_{t=0}^{\infty} \eta_t^2 < \infty$

$$\sum_{t=0}^{\infty}\eta_t^2<\infty$$

2. El gradiente que se utiliza en cada iteración es un estimador no sesgado del gradiente.

Eecto de la estocasticidad

Nuevos desarrollos

• Momento (1986)

Ayuda a amortiguar las oscilaciones que hacen que SGD sea lento.

$$egin{aligned} w^{t+1} &= w^t - v^{t+1} \ v^{t+1} &= \gamma v^t + \eta_t
abla_w E_i(w^t) \end{aligned}$$

• AdaGrad (2011)

Adapta la tasa de aprendizaje a cada parámetro, disminuyéndola en parámetros con actualizaciones frecuentes (resp. aumentándola en parámetros con actualizaciones infrecuentes).

$$w_j^{t+1} = w_j^t - rac{\eta}{\sqrt{G_{j,j}^t + \epsilon}}
abla_w E_i(w^t)_j$$

donde $G_{j,j}^t=\sum_{t'=0}^t (\nabla_w f_i(w^t)_j)^2$ (la suma de los gradientes al cuadrado para esa coordenada hasta t)

Nuevos desarrollos

• RMSProp

Adapta la tasa de aprendizaje dividiéndola por una media del cuadrado de los gradientes anteriores, que decae exponencialmente.

- Adam, evolución de AdaGrad.
- Muchos más...
- Una revisión de los diferentes optimizadores puede encontrarse en aqui.

Perceptrón muilticapa. Backpropagation

Backpropagation (1)

- Técnica eficiente para evaluar $\nabla E(w)$ aprovechando la estructura de perceptrones multicapa.
- En mayoría de problemas $E(w) = \sum_n E_n(w)$, nos centramos en evaluar $\nabla E_n(w)$.
- En un MLP, cada unidad calcula combinación lineal de sus inputs z_i , $a_j = \sum_i w_{ji} z_i$.
- Como output devuelve $z_j = h(a_j)$.
- Supongamos que para cada instancia the train, hemos calculado inputs y outputs de todas las neuronas (*forward propagation*).
- Evaluamos la derivada de E_n respecto w_{ji}

$$rac{\partial E_n}{\partial w_{ji}} = rac{\partial E_n}{\partial a_j} rac{\partial a_j}{\partial w_{ji}} := \delta_j z_i$$

• Donde $\delta_j = \frac{\partial E_n}{\partial a_j}$.

Backpropagation (2)

- Para calcular las derivadas, únicamente necesitamos calcular δ_j para cada unidad.
- Para cualquier unidad oculta, E_n es función de a_j , únicamente a través de las a_k de la capa siguiente.

$$\delta_j = rac{\partial E_n}{\partial a_j} = \sum_k rac{\partial E_n}{\partial a_k} rac{\partial a_k}{\partial a_j}$$

Backpropagation (2)

• Efectuando las derivadas vemos que

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$

• Para unidad de salida calcular δ_j es trivial, e.g. $E_n=\frac{1}{2}(y_n-t_n)^2$, y la activación es la identidad, entonces

$$\delta = y_n - t_n$$

Backpropagation (3)

- El algoritmo
 - 1. Meter vector x_n a la red y realizar el *forward pass* de la red, para calcular inputs y outputs en cada unidad.
 - 2. Evaluar δ en la unidad de salida.
 - 3. Propagar las δ 's hacia atrás para obtener δ_j en cada unidad usando

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$

4. Evaluar las derivadas usando

$$rac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$$

Backpropagation (4)

- Aspecto crucial de *backpropagation* es su eficiencia.
- Sea W el número totad de pesos.
- Calcular el gradiente usando *backpropagation*, requiere O(W) operaciones, para W suficientemente grande.
- Esto es así, pues el número de pesos suele ser mucho mayor que el número de neuronas.
- Esto implica que el cuello de botella en la computación es evaluar las combinaciones lineales. La evaluación de las activaciones requiere menos carga, pues hay tantas activaciones como neuronas.

Backpropagation (5)

• Ejercicio: ¿Cuál es la complejidad de evaluar la derivada usando diferencias centrales?

$$rac{\partial E_n}{\partial w_{ji}} = rac{E_n(w_{ji} + \epsilon) - E_n(w_{ji} - \epsilon)}{2\epsilon} + O(\epsilon^2)$$

Perceptrón multicapa. Regularización

Regularización (1)

- Número de unidades de input y output se eligen teniendo en cuenta la dimensionalida de los datos.
- Número de unidades ocultas M, es un hiperparámetro que regula la complejidad del modelo.
- Existirá un valor óptimo que equilibre entre underfitting y overfitting.
- Alternativa: escoger M lo suficientemente grande, y añadir regularizadores:
 - 1. L2: $\lambda ||w||_2^2$, conocido como weight decay.
 - 2. L1: $\lambda ||w||_1$

Regularización (2)

- Otra alternativa es usar *early stopping*.
- Como entrenamos de forma iterativa, podemos observar el comportamiento de una estimación del error de generalización mientras vamos entrenando.
- Guardamos un conjunto de validación, y en cada época, calculamos el error producido en este conjunto de validación.
- Observaremos que el error primero decrece, y después, cuando se hace overfitting, crece.
- Dejaremos de entrenar antes de que esto último suceda.
- Esto, en algunos casos, es equivalente a reducir la complejidad efectiva de la red.

Regularización (3)

- Otra alternativa es usar *dropout*.
- En cada ejemplo de cada iteración del entrenamiento, "apagar" cada neurona con probabilidad 1-p.
- En cada iteración se entrena una red de tamaño efectivo menor.

Redes Neuronales Bayesianas

¿Por qué BNNs?

- Cuantifican la incertidumbre en los pesos.
- Cuantifican la incertidumbre en la salida de la red.
- Permiten la selección directa de hiperparámetros, sin necesidad de validación.
- Previenen overfitting, y que la respuesta de la red es un "promedio" sobre muchas redes (cada una pesada con la distribución a posteriori).

$$p(t|\mathcal{D},x) = \int p(t|w,x) p(w|\mathcal{D}) dw$$

¿Por qué no BNNs?

- La dependencia **altamente no lineal** de la salida con los pesos, hace que la inferencia Bayesiana exact sea inviable.
- Métodos MCMC no escalan bien.
- Alternativas:
 - 1. Versiones sofisticadas de MCMC, por ejemplo esto.
 - 2. Inferencia variacional: aproximar el posterior por una gaussiana multivariante (mean-field o full rank).
- Campo activo de investigación!