6.2

输出特性曲线: NEMOS的输出特性曲线与NDMOS基本一致; PEMOS的输出特性曲线与PDMOS基本一致。P型 MOS管与N型MOS管的电压极性与电流方向相反。

转移特性曲线: NEMOS是增强型,需要给到正的 $V_{GS} = V_{TN}$ 才会有电流 I_D ; NDMOS是耗尽型,在 $V_{GS} < 0$ 时沟道变窄,直至夹断电压 $V_{GS(off)n}$ 处 $I_D=0$ 。P型MOS管与N型MOS管的电压极性与电流方向相反。

6.3

物理意义:

- v_{qs} 为G、S极之间的电压交流分量, v_{ds} 为D、S极之间的电压交流分量
- i_q 是G极流入的电流, i_d 是D极流入的电流
- C_{gs} 是栅-源电容
- C_{qd} 是栅-漏电容
- g_m是跨导
- r_{ds}是漏源电阻

计算:

$$egin{aligned} ullet & g_m = 2\sqrt{K_nI_{DQ}} \ ullet & r_{ds} = rac{V_A}{I_{DQ}} \end{aligned}$$

$$ullet r_{ds}=rac{V_A}{I_{DO}}$$

6.4

输出特性曲线

2.0424m g_m

51.8797u g_{ds}

 C_{gd} 1.7714f

6.5

不同W对应的输出特性

随着W增大, I_D 、 g_m 、 g_{ds} 、 C_{gs} 、 C_{gd} 增大。

解释: $:K_n=rac{W}{L}rac{\mu_0 C_{ox}}{2}$

:随着W增大, K_n 增大

 $::I_D$ 在线性区和饱和都与 K_n 成正比

 $::I_D$ 增大

又
$$g_m = 2\sqrt{K_n I_{DQ}}, \; g_{ds} = \lambda K_n (V_{GS} - V_{TN})^2,$$

 $\therefore g_m$ 、 g_{ds} 也增大

在截止区, $C_{gs}=C_{gd}=WC_{ol}$;在饱和区, $C_{gs}=rac{2}{3}rac{W}{L}C_{ox}+WC_{ol}$,均与W成正比

 $::C_{gs},\ C_{gd}$ 增大

图 1.7 栅/源、栅/漏的电容量变化与 VGS 的关系曲线

6.6

$$I_{D1} = (rac{W}{L})_1 rac{\mu_0 C_{ox}}{2} (V_{GS} - V_T)^2$$

$$I_{D2} = 5I_{D1} = 1mA$$
 : $I_{D1} = 0.2mA$

$$V_{GS} = -1.432V$$

$$V_G = V_{DD} - 1.432V = 1.868V$$

义:
$$V_G=I_{D1}\cdot R_D$$
 : $R_D=rac{1.868}{0.2 imes10^{-3}}=9.34k\Omega$

6.7

$$V_{GS2}=2V$$

$$I_o = (rac{W}{L})_2 rac{\mu_0 C_{ox}}{2} (V_{GS2} - V_{TN})^2$$

$$\therefore (\frac{W}{L})_2 = 5$$

$$I_{ref} = (\frac{W}{L})_1 \frac{\mu_0 C_{ox}}{2} (V_{GS1} - V_{TN})^2$$

$$V_{GS1} = V_{GS2}$$

$$\therefore (\frac{W}{L})_1 = 12.5$$

$$I_{ref} = (\frac{W}{L})_3 \frac{\mu_0 C_{ox}}{2} (V_{GS3} - V_{TN})^2$$

$$\because V_{GS3} = V_{DD} - V_{SS} - V_{GS1} = 3V$$

$$V_{GS1} = V_{GS2}$$

$$\therefore (\frac{W}{L})_3 = 3.125$$

6.8

$$I_{ref} = K_{n3}(V_{GS3} - V_{TN3})^2 = K_{n4}(V_{GS4} - V_{TN4})^2$$

$$\therefore V_{GS3} = V_{GS4}$$

$$V_{GS3} + V_{GS4} = 5V$$

$$V_{GS3} = V_{GS4} = 2.5V$$

$$I_o=(rac{W}{L})_2rac{\mu_0C_{ox}}{2}(V_{GS2}-V_{TN2})^2$$

$$\therefore V_{GS3} = V_{GS2}$$

$$I_o = 0.225mA$$

$$I_o=(rac{W}{L})_1rac{\mu_0 C_{ox}}{2}(V_{GS1}-V_{TN1})^2$$

$$V_{GS1} = 2.06V$$

$$V_{DS2} = -V_{GS1} - V_{SS} = 2.94V > V_{GS2} - V_{TN2} = 1.5V$$

:. M2工作在饱和区

6.9

$$I_{ref}=(rac{W}{L})_Rrac{\mu_n C_{ox}}{2}(V_{GSR}-V_{TN})^2$$
,取 $V_{GS}=1.5V$

$$\therefore (\frac{W}{L})_R = 1.6$$

由电流镜特点得 $I_{D1}=I_{D2}=I_{ref}=10\mu A$

$$:: I_{D3} = 40 \mu A$$

$$\therefore (\frac{W}{L})_3 = 6.4$$

$$\because V_{GS,PMOS} = -V_{TP} + \sqrt{rac{I_{ref}}{rac{W}{2L}\mu_p C_{ox}}}$$

$$\therefore (\frac{W}{L})_4 = 3.2$$

$$\therefore I_{D5}=10\mu A, I_{D6}=20\mu A$$

$$(\frac{W}{L})_5 = 3.2, (\frac{W}{L})_6 = 6.4$$

$$\because L=1\mu m$$
时, $r_o=1M\Omega$

$$\therefore$$
 取 $L=10\mu m$

对于
$$M_6$$
取 $L=20\mu m$,对于 M_3 取 $L=40\mu m$

6.11

(a)

(b)

取直流工作点为0.5V

$$V_{DS1}=1.6314V, V_{GS1}=500mV, I_{D1}=7.2591\mu A$$

(c)

$$g_{m1}=112.3016u, g_{ds1}=2.4165u, C_{gs1}=904.5415a, C_{gd1}=308.8128a$$
 等效电阻为 $r_{ds2}=rac{V_{DS2}}{I_{D2}}=23.22k\Omega$

(2)

(3)

6.12

(1)

(2)

Conf
$$\approx$$
 CL = 1pF

$$\frac{1}{Rout} = g ds_1 + g ds_2 = 6.1894 uS$$

$$\frac{1}{Rout} = \frac{A_0}{1 + SRC}$$

$$\frac{A_0}{1 + SRC}$$

仿真结果为 1 MH2. 基本教