

The Pumping Lemma for Context-Free Languages

Munding Lemma do into posturant muda stall de as

Derivation tree of string W

Possible derivations:

 $A \Rightarrow vAy$

 $A \Longrightarrow x$

$$S \Longrightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$*$$
 $S \Rightarrow uAz \Rightarrow uxz$

$$uv^0xy^0z$$

$$S \Longrightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$*$$
 $S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$

The original
$$w = uv^1xy^1z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$S \Longrightarrow uAz \Longrightarrow uvAyz \Longrightarrow uvvAyyz \Longrightarrow uvvxyyz$$

$$uv^2xy^2z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$\begin{array}{c}
* \\
S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow \\
* \\
\Rightarrow uvvVAyyz \Rightarrow uvvxyyz
\end{array}$$

$$uv^3xy^3z$$

$$S \Longrightarrow uAz \qquad \qquad * \qquad \qquad * \qquad \qquad * \qquad \qquad A \Longrightarrow x$$

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvVAyyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV\cdots vxy\cdots yyyz$$

$$uv^i xy^i z$$

Therefore, any string of the form

$$uv^i x y^i z$$
 $i \ge 0$

is generated by the grammar G

Therefore,

knowing that
$$uvxyz \in L(G)$$

we also know that $uv^ixy^iz \in L(G)$

$$L(G) = L - \{\lambda\}$$

$$uv^{i}xy^{i}z \in L$$

Observation: $|vxy| \leq m$

Since A is the last repeated variable

Since there are no unit or λ -productions

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that

- (i) for any string $w \in L$, $|w| \ge m$
- we can write w = uvxyz with lengths $|vxy| \le m$ and $|vy| \ge 1$
- with lengths $|vxy| \le m$ and $|vy| \ge 1$ and it must be:
 - (a) Famili $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L_{3} = \{a^{n}b^{n}c^{n} : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$w = uvxyz \qquad |vxy| \le m$$

We examine all the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: v and y consist from only a $\frac{y}{y} = a^{k} + y = 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating
$$v$$
 and y

$$k \ge 1$$

$$m+k$$
 m

aaaaaa...aaaaaa bbb...bbb ccc...ccc

$$u v^2 x v^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k \ge 1$

$$m+k$$
 m m

aaaaaaaaaaaabbb...bbbccc...ccc

$$u v^2 x v^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz | vxy | \le m | vy | \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$vxy$$
 is within b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: vxy is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

MADEL

Case 4: Possibility 1: v contains only a y contains only b

m m m aaa...aaa bbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1:
$$v$$
 contains only a^k
 $k_1 + k_2 \ge 1$
 y contains only b^k
 $m + k_1$
 $m + k_2$
 m

aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k_1 + k_2 \ge 1$

$$m+k_1$$
 $m+k_2$ m

aaa...aaaaaaaa bbbbbbbbbbbbbccc...ccc

$$u$$
 $v^2 x v^2$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 2: y contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$
$$w = uvxyz$$

$$|vxy| \le m \qquad |vy| \ge 1$$

$$|vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

Contradiction!!!

$$aaabbbccc$$

$$aa ab b b ccc$$

$$u = aa, v = ab, x = b, y = b, z = ccc$$

$$i = 2) uv^{2}xy^{2}z = aa abab b b ccc$$

$$= aaababbbbccc$$

$$= aaababbbbbccc$$

 $= a^3 b^1 a^1 b^{3+1} c^3$

am bk1 ak2 bm+k cm

38

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

Similar analysis with Possibility 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5: vxy overlaps b^m and c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5: Similar analysis with case 4

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot

overlap a^m , b^m and c^m at the same time)

Airyount oner los and answer or los amp men

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free