Név: osztály:.....

MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2014. május 6. 8:00

I.

Időtartam: 45 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

- 1. A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- 2. A megoldások sorrendje tetszőleges.
- 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- 4. **A feladatok végeredményét az erre a célra szolgáló keretbe írja,** a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad!
- 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- 6. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek!
- 7. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

1. Legyen A halmaz a 8-nál nem nagyobb pozitív egész számok halmaza, B pedig a 3-mal osztható egyjegyű pozitív egész számok halmaza.

Elemeinek felsorolásával adja meg az A, a B, az $A \cap B$ és az $A \setminus B$ halmazt!

A =	1 pont	
B =	1 pont	
$A \cap B =$	1 pont	
$A \setminus B =$	1 pont	

2. Egy konzerv tömege a konzervdobozzal együtt 750 gramm. A konzervdoboz tömege a teljes tömeg 12%-a.

Hány gramm a konzerv tartalma?

A konzerv tartalma gramn	2 pont
--------------------------	--------

3. Oldja meg a következő egyenletet a valós számok halmazán: $(x-3)^2 + 2x = 14$. Válaszát indokolja!

	2 pont	
Az egyenlet megoldása(i):	1 pont	

4. Válassza ki az f függvény hozzárendelési szabályát az **A, B, C, D** lehetőségek közül úgy, hogy az megfeleljen az alábbi értéktáblázatnak:

х	-2	0	2
f(x)	-4	0	-4

A:
$$f(x) = 2x$$

B:
$$f(x) = x^2$$

C:
$$f(x) = -2x$$

A helyes válasz betűjele:	2 pont	
---------------------------	--------	--

5. Egy osztályban 25-en tanulnak angolul, 17-en tanulnak németül. E két nyelv közül legalább az egyiket mindenki tanulja.

Hányan tanulják mindkét nyelvet, ha az osztály létszáma 30?

Mindkét nyelvet fő tanulja.	2 pont	
-----------------------------	--------	--

6. Egy termék árát az egyik hónapban 20%-kal, majd a következő hónapban újabb 20%-kal megemelték. A két áremelés együttesen hány százalékos áremelésnek felel meg? Válaszát indokolja!

	2 pont	
A két áremelés együttesen %-os áremelésnek felel meg.	1 pont	

7. Melyik számjegy állhat a $\overline{2582X}$ ötjegyű számban az X helyén, ha a szám osztható 3-mal? Válaszát indokolja!

	2 pont	
X lehetséges értékei:	1 pont	

8. Az ábrán a [-1; 5] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát!

A:
$$x \mapsto |x - 3| + 1$$

B:
$$x \mapsto -|x+3|+1$$

A:
$$x \mapsto |x-3|+1$$
 B: $x \mapsto -|x+3|+1$ **C**: $x \mapsto -|x-3|+1$ **D**: $x \mapsto -|x+3|-1$

D:
$$x \mapsto -|x+3|-1$$

A helyes válasz betűjele:	2 pont	
---------------------------	--------	--

9. Adja meg az x értékét, ha $\log_2(x+1) = 5$.

x =	2 pont	

10. Egy irodai számítógép-hálózat hat gépből áll. Mindegyik gép ezek közül három másik-kal van közvetlenül összekötve.

Rajzoljon egy olyan gráfot, amely ezt a hálózatot szemlélteti!

2 pont

11. Egy téglalap szomszédos oldalainak hossza 4,2 cm és 5,6 cm. Mekkora a téglalap körülírt körének sugara? Válaszát indokolja!

	2 pont	
A kör sugara cm.	1 pont	

12. Egy kalapban 3 piros, 4 kék és 5 zöld golyó van. Találomra kihúzunk a kalapból egy golyót.

Adja meg annak valószínűségét, hogy a kihúzott golyó nem piros!

A valószínűség:	2 pont	
-----------------	--------	--

	egész számra kerekítve	beírt egész pontszám
I. rész	Referitive	
javító tanár	jeg	yző
dátum	dát	cum

Megjegyzések:

- 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad!
- 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő!

MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2014. május 6. 8:00

II.

Időtartam: 135 perc

Pótlapok száma		
Tisztázati		
Piszkozati		

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Matematika — középszint Ne	év:	osztály:
----------------------------	-----	----------

Fontos tudnivalók

- 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie.
- 2. A feladatok megoldási sorrendje tetszőleges.
- 3. A **B** részben kitűzött három feladat közül csak kettőt kell megoldania. **A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe!** Ha a javító tanár számára *nem derül ki egyértelműen*, hogy melyik feladat értékelését nem kéri, akkor a kitűzött sorrend szerinti legutolsó feladatra nem kap pontot.

- 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos!
- 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár!
- 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek!
- 7. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasságtétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, *de alkalmazhatóságát röviden indokolnia kell*.
- 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje!
- 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető.
- 10. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén **egyértelműen jelölje**, hogy melyiket tartja érvényesnek!
- 11. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!

A

- **13.** Adott az A(5; 2) és a B(-3; -2) pont.
 - a) Számítással igazolja, hogy az A és B pontok illeszkednek az x-2y=1 egyenletű e egyenesre!
 - **b)** Írja fel az AB átmérőjű kör egyenletét!
 - c) Írja fel annak az f egyenesnek az egyenletét, amely az AB átmérőjű kört a B pontban érinti!

a)	2 pont	
b)	5 pont	
c)	5 pont	
Ö.:	12 pont	

Matematika — középszint No	év:	osztály:
----------------------------	-----	----------

- **14. a)** Egy háromszög oldalainak hossza 5 cm, 7 cm és 8 cm. Mekkora a háromszög 7 cm-es oldalával szemközti szöge?
 - **b)** Oldja meg a [0; 2π] intervallumon a következő egyenletet: $\cos^2 x = \frac{1}{4}$ ($x \in \mathbb{R}$).
 - c) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!
 - I) Az $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \sin x$ függvény páratlan függvény.
 - II) A g: $\mathbf{R} \to \mathbf{R}$, $g(x) = \cos 2x$ függvény értékkészlete a [-2; 2] zárt intervallum.
 - III) A $h: \mathbf{R} \to \mathbf{R}$, $h(x) = \cos x$ függvény szigorúan monoton növekszik a $\left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$ intervallumon.

a)	4 pont	
b)	6 pont	
c)	2 pont	
Ö.:	12 pont	

Matematika — középszint Név: osztály:.	Matematika — középszint	Név:	osztály:
--	-------------------------	------	----------

- **15. a)** Egy számtani sorozat első tagja 5, differenciája 3. A sorozat első *n* tagjának összege 440. Adja meg *n* értékét!
 - **b)** Egy mértani sorozat első tagja 5, hányadosa 1,2. Az első tagtól kezdve legalább hány tagot kell összeadni ebben a sorozatban, hogy az összeg elérje az 500-at?

a)	5 pont	
b)	7 pont	
Ö.:	12 pont	

Matematika — középszint Név: osztály	ly:
--------------------------------------	-----

B

A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

- **16.** A vízi élőhelyek egyik nagy problémája az algásodás. Megfelelő fény- és hőmérsékleti viszonyok mellett az algával borított terület nagysága akár 1-2 nap alatt megduplázódhat
 - a) Egy kerti tóban minden nap (az előző napi mennyiséghez képest) ugyanannyiszorosára növekedett az algával borított terület nagysága. A kezdetben 1,5 m²-en észlelhető alga hét napi növekedés után borította be teljesen a 27 m²-es tavat. Számítsa ki, hogy naponta hányszorosára növekedett az algás terület!

Egy parkbeli szökőkút medencéjének alakja szabályos hatszög alapú egyenes hasáb. A szabályos hatszög egy oldala 2,4 m hosszú, a medence mélysége 0,4 m. A medence alját és oldalfalait csempével burkolták, majd a medencét teljesen feltöltötték vízzel.

b) Hány m² területű a csempével burkolt felület, és legfeljebb hány liter víz fér el a medencében?

A szökőkútban hat egymás mellett, egy vonalban elhelyezett kiömlő nyíláson keresztül törhet a magasba a víz. Minden vízsugarat egy-egy színes lámpa világít meg. Mindegyik vízsugár megvilágítása háromféle színű lehet: kék, piros vagy sárga.

Az egyik látványprogram úgy változtatja a vízsugarak megvilágítását, hogy egy adott pillanatban három-három vízsugár színe azonos legyen, de mind a hat ne legyen azonos színű (például kék-sárga-sárga-kék-sárga-kék).

c) Hányféle különböző látványt nyújthat ez a program, ha a vízsugaraknak csak a színe változik?

a)	4 pont	
b)	8 pont	
c)	5 pont	
Ö.:	17 pont	

Matematika — középszint Név: osztály	ly:
--------------------------------------	-----

A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

17. Kóstolóval egybekötött termékbemutatót tartottak egy új kávékeverék piaci megjelenését megelőzően. Két csoport véleményét kérték úgy, hogy a terméket az 1-től 10-ig terjedő skálán mindenkinek egy-egy egész számmal kellett értékelnie. Mindkét csoport létszáma 20 fő volt. A csoportok értékelése az alábbi táblázatban látható.

pontszám		2	3	4	5	6	7	8	9	10
gyakoriság az 1. csoportban	0	0	1	0	6	8	2	2	1	0
gyakoriság a 2. csoportban	0	8	0	2	0	1	0	0	0	9

- a) Ábrázolja közös oszlopdiagramon, különböző jelölésű oszlopokkal a két csoport pontszámait! A diagramok alapján fogalmazzon meg véleményt arra vonatkozóan, hogy melyik csoportban volt nagyobb a pontszámok szórása! Véleményét a diagramok alapján indokolja is!
- b) Hasonlítsa össze a két csoport pontszámainak szórását számítások segítségével is!

Kétféle kávéból 14 kg 4600 Ft/kg egységárú kávékeveréket állítanak elő. Az olcsóbb kávéfajta egységára 4500 Ft/kg, a drágábbé pedig 5000 Ft/kg.

c) Hány kilogramm szükséges az egyik, illetve a másik fajta kávéból?

a)	5 pont	
b)	5 pont	
c)	7 pont	
Ö.:	17 pont	

Matematika — középszint Név: osztály	ly:
--------------------------------------	-----

A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania. A kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe!

18. András és Péter "számkártyázik" egymással. A játék kezdetén mindkét fiúnál hat-hat lap van: az 1, 2, 3, 4, 5, 6 számkártya. Egy mérkőzés hat csata megvívását jelenti, egy csata pedig abból áll, hogy András és Péter egyszerre helyez el az asztalon egy-egy számkártyát. A csatát az nyeri, aki a nagyobb értékű kártyát tette le. A nyertes elviszi mindkét kijátszott lapot. (Például ha András a 4-est, Péter a 2-est teszi le, akkor András viszi el ezt a két lapot.) Ha ugyanaz a szám szerepel a két kijátszott számkártyán, akkor a csata döntetlenre végződik. Ekkor mindketten egy-egy kártyát visznek el. Az elvitt kártyákat a játékosok maguk előtt helyezik el, ezeket a továbbiakban már nem játsszák ki.

1 2 3 4 5 6

a) Hány kártya van Péter előtt az első mérkőzés után, ha András az 1, 2, 3, 4, 5, 6, Péter pedig a 2, 4, 5, 3, 1, 6 sorrendben játszotta ki a lapjait?

A második mérkőzés során Péter az 1, 2, 3, 4, 5, 6 sorrendben játszotta ki a lapjait, és így összesen két lapot vitt el.

b) Adjon meg egy lehetséges sorrendet, amelyben András kijátszhatta lapjait!

A harmadik mérkőzés hat csatája előtt András elhatározta, hogy az első csatában a 2-es, a másodikban a 3-as számkártyát teszi majd le, Péter pedig úgy döntött, hogy ő véletlenszerűen játssza ki a lapjait (alaposan megkeveri a hat kártyát, és mindig a felül lévőt küldi csatába).

c) Számítsa ki annak a valószínűségét, hogy az első két csatát Péter nyeri meg!

A negyedik mérkőzés előtt mindketten úgy döntöttek, hogy az egész mérkőzés során véletlenszerűen játsszák majd ki a lapjaikat. Az első három csata után Andrásnál a 3, 4, 6 számkártyák maradtak, Péternél pedig az 1, 5, 6 számkártyák.

d) Adja meg annak a valószínűségét, hogy András az utolsó három csatából pontosan kettőt nyer meg!

a)	2 pont	
b)	3 pont	
c)	6 pont	
d)	6 pont	
Ö.:	17 pont	

Matematika — középszint Név: osztály	ly:
--------------------------------------	-----

	a feladat sorszáma	maximális pontszám	elért pontszám	összesen
	13.	12		
II. A rész	14.	12		
	15.	12		
		17		
II. B rész		17		
		← nem vála	sztott feladat	
	ÖSSZESEN	70		

	maximális pontszám	elért pontszám
I. rész	30	
II. rész	70	
Az írásbeli vizsgarész pontszáma	100	

dátum javító tanár

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
I. rész		
II. rész		

javító tanár jegyző

dátum dátum