California Housing Price Prediction

Xiang Liu 94457 Lan Zhang 94807

California Housing Price Prediction

Topic

To predict the median housing prices in different administrative regions of California.

Data Resources

California House Price Database

(Kaggle)

Link:

http://raw.githubusercontent.com/agero n/handson-ml/master/datasets/housing /housing.tgz

Tools and Method

Python

LinearRegression

DecisionTreeRegression

Raw Data Sample

lo	ngitude	latitude	housing_med	dian_age	total_rooms	total_bedroom	s population	households	median_income	median_house_val	ue ocean_proximity
0	-122.23	37.88		41.0	880.0	129.	0 322.0	126.0	8.3252	452600	0.0 NEAR BAY
1	-122.22	37.86		21.0	7099.0	1106.	0 2401.0	1138.0	8.3014	358500	0.0 NEAR BAY
2	-122.24	37.85		52.0	1467.0	190.	0 496.0	177.0	7.2574	352100	0.0 NEAR BAY
3	-122.25	37.85		52.0	1274.0	235.	0 558.0	219.0	5.6431	341300	0.0 NEAR BAY
4	-122.25	37.85		52.0	1627.0	280.	0 565.0	259.0	3.8462	342200	0.0 NEAR BAY
5	-122.25	37.85		52.0	919.0	213.	0 413.0	193.0	4.0368	269700	0.0 NEAR BAY
	lor	ngitude	latitude housing		_median_age	total_rooms	total_bedrooms	populatio	n households	median_income	median_house_value
count	20640.	000000	20640.000000	2	0640.000000	20640.000000	20433.000000	20640.00000	0 20640.000000	20640.000000	20640.000000
mean	-119.	569704	35.631861		28.639486	2635.763081	537.870553	1425.47674	4 499.539680	3.870671	206855.816909
std	2.	003532	2.135952		12.585558	2181.615252	421.385070	1132.46212	2 382.329753	1.899822	115395.615874
min	-124.	350000	32.540000		1.000000	2.000000	1.000000	3.00000	0 1.000000	0.499900	14999.000000
25%	-121.	800000	33.930000		18.000000	1447.750000	296.000000	787.00000	0 280.000000	2.563400	119600.000000
50%	-118.	490000	34.260000		29.000000	2127.000000	435.000000	1166.00000	0 409.000000	3.534800	179700.000000
75%	-118.	010000	37.710000		37.000000	3148.000000	647.000000	1725.00000	0 605.000000	4.743250	264725.000000
max	-114.	310000	41.950000		52.000000	39320.000000	6445.000000	35682.00000	0 6082.000000	15.000100	500001.000000

Data Types

data.dtypes

longitude	float64			
latitude	float64			
housing_median_age	float64			
total_rooms	float64			
total bedrooms	float64			
population	float64			
households	float64			
median income	float64			
median house value	float64			
ocean proximity	object			
dtype: object	**************************************			

Process

Data Cleaning

Working with data

Clean the data

(missing data, outliers)

80% train, 20% test

Standardize the data

Generate a model

Machine Learning Algorithm

Explore the traits of the data and generate visual plots

Linear Regression

Decision Tree

Test the model

Testing the effectiveness and results of the models

RMSE

Data Cleaning

Check missing value

Before

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
                      20640 non-null float64
longitude
latitude
                      20640 non-null float64
housing median age
                      20640 non-null float64
total rooms
                      20640 non-null float64
total bedrooms
                      20433 non-null float64
population
                      20640 non-null float64
households
                      20640 non-null float64
median income
                      20640 non-null float64
median house value
                      20640 non-null float64
ocean proximity
                      20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

Drop missing value

After

```
data df = data.dropna(axis=0)
data df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20433 entries, 0 to 20639
Data columns (total 10 columns):
                      20433 non-null float64
longitude
latitude
                      20433 non-null float64
housing median age
                      20433 non-null float64
total rooms
                      20433 non-null float64
total bedrooms
                      20433 non-null float64
                      20433 non-null float64
population
households
                      20433 non-null float64
                      20433 non-null float64
median income
median house value
                      20433 non-null float64
ocean proximity
                      20433 non-null object
dtypes: float64(9), object(1)
memory usage: 1.7+ MB
```

Remove Outliers

```
In [13]: plt.figure(figsize=(10,5))
sns.boxplot(y='total_bedrooms',data=data_df)
plt.plot

Out[13]: <function matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)>

6000
5000
1000
1000
1000
1000
```

```
In [12]: total_bedroms = data_df[data_df["total_bedrooms"].notnull()]["total_bedrooms"]
total_bedroms.hist(figsize=(12,8),bins=50)
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x124d31390>

Clean up Outliers

```
In [9]: # Clean up outliners
        def getOutliers(dataframe,column):
            column = "total bedrooms"
            #housing[column].plot.box(figsize=(8,8))
            des = dataframe[column].describe()
            desPairs = {"count":0, "mean":1, "std":2, "min":3, "25":4, "50":5, "75":6, "max":7}
            Q1 = des[desPairs['25']]
            Q3 = des[desPairs['75']]
            IOR = 03-01
            lowerBound = Q1-1.5*IQR
            upperBound = 03+1.5*IOR
            print("(IQR = {})Outlier are anything outside this range: ({},{})".format(IQR,lowerBound,upperBound))
            \#b = df((df('a') > 1) & (df('a') < 5))
            outliners = data df[(data df[column] < lowerBound) | (data df[column] > upperBound)]
            print("Outliers out of total = {} are \n {}".format(data df[column].size,len(outliners[column])))
            #remove the outliers from the dataframe
            outlierRemoved = data df[~data df[column].isin(outliners[column])]
            return outlierRemoved
```

Clean up Outliers

```
In [10]: #get the outlier
         data df = getOutliers(data df, "total bedrooms")
         data df = getOutliers(data df, "median house value")
         data df = getOutliers(data df, "median income")
         data_df = getOutliers(data_df, "total_rooms")
         data df.info()
         (IQR = 351.0)Outlier are anything outside this range: (-230.5,1173.5)
         Outliers out of total = 20433 are
          1271
         (IQR = 307.0)Outlier are anything outside this range: (-172.5,1055.5)
         Outliers out of total = 19162 are
          365
         (IQR = 294.0)Outlier are anything outside this range: (-155.0,1021.0)
         Outliers out of total = 18797 are
          139
         (IOR = 291.0)Outlier are anything outside this range: (-151.5,1012.5)
         Outliers out of total = 18658 are
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 18616 entries, 0 to 20639
         Data columns (total 10 columns):
                               18616 non-null float64
         longitude
         latitude
                               18616 non-null float64
         housing median age
                              18616 non-null float64
                               18616 non-null float64
         total rooms
         total bedrooms
                               18616 non-null float64
         population
                               18616 non-null float64
         households
                               18616 non-null float64
         median income
                               18616 non-null float64
         median house value
                               18616 non-null float64
                               18616 non-null object
         ocean proximity
         dtypes: float64(9), object(1)
         memory usage: 1.6+ MB
```

Convert non-numerical value to numerical number

ocean_proximity	ocean_proximity
NEAR BAY	3
NEAR BAY	 3
NEAR BAY	3

Histogram of each column

Scatter plot of correlation

Median_income & Median_house_value

longitude	1	-0.92	-0.11	0.045	0.07	0.1	0.057	-0.016	-0.045	-0.29	
latitude	-0.92	1	0.012	-0.037	-0.067	-0.11	-0.072	-0.08	-0.14	0.2	- 0.8
housing_median_age	-0.11	0.012	1	-0.36	-0.32	-0.3	-0.3	-0.12	θ.11	0.11	
total_rooms	0.045	-0.037	-0.36		0.93	0.86	0.92	0.2	0.13	-0.015	- 0.4
total_bedrooms	0.07	-0.067	-0.32	0.93		0.88	0.98	-0.0077	0.05	-0.015	
population	0.1	-0.11	-0.3	0.86	0.88		0.91	0.0051	-0.025	-0.07	- 0.0
households	0.057	-0.072	-0.3	0.92	0.98	0.91	1	0.013	0.065	-0.018	
median_income	-0.016	-0.08	-0.12	0.2	-0.0077	0.0051	0.013			-0.015	0.4
median_house_value	-0.045	-0.14	0.11	0.13	0.05	-0.025	0.065	0.69	1	0.08	
ocean_proximity	-0.29	0.2	0.11	-0.015	-0.015	-0.07	-0.018	-0.015	0.08	1	0.8
	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity	

Apply Linear Regression & Decision Tree

Apply LinearRegression

```
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
# X train = data df.drop(['total rooms', 'total bedrooms', 'households',
                           'ocean proximity', 'median house value', 'longitude', 'latitude', 'housing median age
X train = data df.drop(['median house value'],axis=1)
Y train = data df['median house value']
X,X test,Y,Y test = train test split(X train, Y train, test size=0.2)
clf = LinearRegression()
clf.fit(np.array(X),Y)
confidence = clf.score(X, Y)
print("confidence: ", confidence)
confidence: 0.6537004439295262
#initantiate the linear regression
linearRegModel = LinearRegression(n jobs=-1)
#fit the model to the training data (learn the coefficients)
linearRegModel.fit(X train, Y train)
#print the intercept and coefficients
print("Intercept is "+str(linearRegModel.intercept ))
print("coefficients is "+str(linearRegModel.coef ))
Intercept is -3544080.1333994106
coefficients is [-4.22553578e+04 -4.23296088e+04 1.12187140e+03 -1.50175843e+01
 2.58484960e+02 -5.83804855e+01 3.37103493e+00 4.15396026e+04
 -8.71153033e+021
y pred = linearRegModel.predict(X test)
test = pd.DataFrame({'Predicted':y pred, 'Actual':Y test})
fig= plt.figure(figsize=(16,8))
test = test.reset index()
test = test.drop(['index'],axis=1)
plt.plot(test[:50])
plt.legend(['Actual', 'Predicted'])
sns.jointplot(x='Actual',y='Predicted',data=test,kind='reg',);
```

Perform Decision Tree Regression

```
from sklearn.tree import DecisionTreeRegressor
dtReg = DecisionTreeRegressor(max depth=10)
dtReg.fit(X train, Y train)
confidence = dtReg.score(X, Y)
print("confidence: ", confidence)
confidence: 0.8426651459087362
dtReg v pred = dtReg.predict(X test)
dtReg y pred
array([111175.75757576, 321063.63636364, 146022.07792208, ...,
       495529.28571429, 196902.77777778, 129352.941176471)
print(len(dtReg y pred))
print(len(Y_test))
print(dtReg y pred[0:5])
print(Y_test[0:5])
3724
[111175.75757576 321063.63636364 146022.07792208 81260.66666667
  84745.180722891
         106700.0
         250000.0
8410
        170600.0
13983
         57400.0
         77900.0
Name: median house value, dtype: float64
print(np.sqrt(metrics.mean squared error(Y test,dtReg y pred)))
46049.44911738237
test = pd.DataFrame({'Predicted':dtReg v pred,'Actual':Y test})
fig= plt.figure(figsize=(16,8))
test = test.reset index()
test = test.drop(['index'],axis=1)
plt.plot(test[:50])
plt.legend(['Actual', 'Predicted'])
sns.jointplot(x='Actual',y='Predicted',data=test,kind="req")
```

Testing and Results

Predicted vs. Actual

- Actual - Predicted

600000

Linear Regression RMSE = 68541.16 Accuracy = 0.65

Decision Tree max_depth = 10 RMSE = 46049.45 Accuracy = 0.84

Solution

The linear correlation between median_house_value and median income is obvious.

Decision Tree model has a better performance than Linear Regression model in this case.