Lista 5

Para todas as listas de exercício, você deve criar arquivos .m com os códigos implementados e, se necessário, um arquivo em pdf com os resultados gerados (pode ser a impressão dos resultados calculados ou figuras). Todos arquivos devem ser nomeados como RA000000_LXX_YY.m, em que

- 000000 é o número do seu RA
- XX é o número da lista.
- YY é o número do exercício.
- 1) A figura abaixo apresenta um desenho esquemático de um mecanismo de quatro barras.

Os três angulos mostrados na figura estão relacionados através das seguintes equações:

$$L_1 \cos \theta_1 + L_2 \cos \theta_2 - L_3 \cos \theta_3 = L_4$$

 $L_1 \sin \theta_1 + L_2 \sin \theta_2 - L_3 \sin \theta_3 = 0$

Num dado instante de tempo, $\theta_1 = 40^\circ$. Determine os ângulos θ_2 e θ_3 . Observe que existem duas soluções diferentes. Considere $L_1 = 300$ mm, $L_2 = 360$ mm, $L_3 = 400$ mm e $L_4 = 400$ mm.

Sua função deve retornar uma matriz theta, cujos vetores colunas são os ângulos theta2 e theta3, em graus, nessa ordem. Cada vetor coluna deve representar uma solução do problema, isto é:

$$[\theta] = \begin{bmatrix} \theta_2^1 & \theta_2^2 \\ \theta_3^1 & \theta_3^2 \end{bmatrix}$$

```
theta = RA000000_L05_01;
```

```
function [theta] = RA000000_L05_01()
        % seu código aqui
end
```

2) Um projétil é lançado a partir de O com uma velocidade v a um ângulo θ_0 medido a partir da horizontal.

As equações paramétricas da trajetória são

$$x = (v \cos \theta_0)t$$

$$y = -\frac{1}{2}g t^2 + (v \sin \theta_0)t$$

em que t é o tempo decorrido a partir do lançamento do projétil e $g=9.81~\mathrm{m/s^2}$ é a gravidade. Se o projétil deve atingir o alvo a uma distância L=360~m, altura h=55~m e em um ângulo de $\theta_f=45^\circ$, conforme mostrado na figura, determine a velocidade v, o ângulo θ_0 do lançamento e o tempo t de vôo.

Observe que num instante de tempo qualquer, o ângulo α entre a trajetória do projétil e a horizontal pode ser escrito como:

$$\tan \alpha = \frac{-g \, t + v \sin \theta}{v \cos \theta}$$

de forma que a restrição de atingir o alvo a 45° especifica que, no instante da colisão, $\theta_f = -45^\circ$.

Sua função deve retornar a velocidade v (em m/s), o ângulo theta (em graus) e o tempo de vôo t (em s), nessa ordem.