Elaborato Calcolo Numerico

Alessio Santoro - 7029440

A.A. 2022/2023

Nota: Per gli esercizi che prevedono delle *funcion* Matlab, si specifica nella relativa risposta al quesito i file tra gli alleagti a cui essa si riferisce.

1

Si considera lo sviluppo delle funzioni f(x-h), f(x+h), f(x+2h), f(x+3h):

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{4h^2}{2}f''(x) + \frac{8h^3}{6}f^{(3)}(x) + \frac{16h^4}{24}f^{(4)}(x) + O(h^5)$$

$$f(x+3h) = f(x) + 3hf'(x) + \frac{9h^2}{2}f''(x) + \frac{27h^3}{6}f^{(3)}(x) + \frac{81h^4}{24}f^{(4)}(x) + O(h^5)$$

Si sostiuiscono le espressioni così trovate nella parte sinistra dell'equaziome iniziale e si ottiene la seguente espressione:

$$\begin{split} &-\frac{1}{4}\left[f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f^{(3)}(x)+\frac{h^4}{24}f^{(4)}(x)+O(h^5)\right]+\\ &-\frac{5}{6}\left[f(x)\right]+\\ &+\frac{3}{2}\left[f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f^{(3)}(x)+\frac{h^4}{24}f^{(4)}(x)+O(h^5)\right]+\\ &-\frac{1}{2}\left[f(x)+2hf'(x)+\frac{4h^2}{2}f''(x)+\frac{8h^3}{6}f^{(3)}(x)+\frac{16h^4}{24}f^{(4)}(x)+O(h^5)\right]+\\ &+\frac{1}{12}\left[f(x)+3hf'(x)+\frac{9h^2}{2}f''(x)+\frac{27h^3}{6}f^{(3)}(x)+\frac{81h^4}{24}f^{(4)}(x)+O(h^5)\right] \end{split}$$

Si procede a moltiplicare i coefficienti di ogni espressione e poi raccogliere i termini che contengono le derivate dello stesso ordine, una volta raccolti i temrini assumono i seguenti valori che, stando all'equazione iniziale dovranno poi essere

sommati:

$$f(x)\left[-\frac{1}{4} - \frac{5}{6} + \frac{3}{2} - \frac{1}{2} + \frac{1}{12}\right] = 0\tag{1}$$

$$f'(x) \cdot h \left[\frac{1}{4} + \frac{3}{2} - \frac{1}{2} 2 + \frac{1}{12} 3 \right] = hf'(x)$$
 (2)

$$f''(x) \cdot \frac{h^2}{2} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}4 + \frac{1}{12}9 \right] = 0 \tag{3}$$

$$f^{(3)}(x) \cdot \frac{h^3}{6} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}8 + \frac{1}{12}27 \right] = 0 \tag{4}$$

$$f^{(4)}(x) \cdot \frac{h^4}{24} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}16 + \frac{1}{12}81 \right] = 0$$
 (5)

Dalle espressioni (1)...(5) e dalle proprietà degli "O-grande" di moltiplicazione per una costante segue l'asserto.

$\mathbf{2}$

La doppia precisione dello standard IEEE 754 è una rappresentazione in base binaria, in forma normalizzata (1.f) che approssima per arrotondamento e occupa 64 bit, di cui 52 dedicati alla frazione (53 alla mantissa).

Si può dunque ottenere il valore della precisione di macchina (u) dalla seguente espressione, dove: b=2 rappresenta la base, e m=53 la mantissa:

$$u = \frac{1}{2}b^{1-m} = 2^{-53}$$

Invece eps è definito dalla stessa funzione help di Matlab come la distanza tra 1.0 e il maggior valore a doppia precisione successivo disponibile, ovvero 2^{-52} . Si osserva infatti che, considerato il valore $x=1+u=1+2^{-53}\neq 1$ e sia fl la funzione di floating, allora vale che fl(x)=1, poichè $u=2^{-53}<2^{-52}=$ eps. Vi è dunque un errore di rappresentazione del valore x (ε_x), determinato dalla seguente espressione:

$$\varepsilon_x = \frac{|x - fl(x)|}{|x|} = \frac{|1 + 2^{-53} - 1|}{|1 + 2^{-53}|} = \frac{|2^{-53}|}{|1 + 2^{-53}|} < |2^{-53}| = u$$

3

La cancellazione numerica è quel fenomeno in cui, sommando in aritmetica finita due numeri quasi opposti si verifica la perdita di cifre significative. Questo è dovuto all'espressione del numero di condizionamento della somma in aritmetica finita (k) che per due valori $x \in y$ è dato da:

$$k = \frac{|x| + |y|}{|x + y|}$$

Infatti, se $x \to -y$ allora $k \to \infty$ e la somma tra x e y risulta mal condizionata.

Sia $x^* \in \mathbb{R}$ il valore di cui si ricerca la radice sesta. Per calcolarlo si definisce una funzione f(x) come segue:

$$f(x) = x^6 - x^*$$

La cui derivata è:

$$f'(x) = 6x^5$$

La funzione f(x) si annulla solo nella radice sesta di x^* , quindi avendo un'approsimazione iniziale x_0 si può applicare il metodo di Newton alla funzione f(x) per ricercarne una radice che coinciderà con il valore cercato:

$$x_{i+1} = x_i + \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^6 - x^*}{6x_i^5} = \frac{1}{6} \left[5x_i + \frac{x^*}{x_i} \right]$$

La function che implementa il metodo presentato è contenuta nel file radice.m:

```
function root = radice(x)
%
%
    root = radice(x)
%
%
    Questa funzione calcola la radice sesta di un valore non negativo
%
    attraverso il metodo iterativo di Newton utilizzando solo operazioni elementari
%
%
    Input:
        x: valore di cui si vuole calcolare la radice sesta
%
    Output:
        root; risultato del calcolo
if(x<0), error("Value x must be not negative"); end
if(x==0)
    root = 0;
    return;
end
root = x;
er = 1;
while(er \geq eps*(1+abs(x)))
    xi = (5*root+x/root^5)/6;
    er = abs(root - xi);
    root = xi;
end
return;
end
```

I dati sul confronto tra il risultato offerto dalla funzione e il valore x(1/6) sono contentuti nel file $4_table.txt$:

x	radice(x)	x^(1/6)	errore
1e-10	0.021544	0.021544	3.4694e-18
1.1288e-09	0.032268	0.032268	6.9389e-18
1.2743e-08	0.048329	0.048329	6.9389e-18
1.4384e-07	0.072385	0.072385	1.3878e-17
1.6238e-06	0.10841	0.10841	4.1633e-17
1.833e-05	0.16238	0.16238	0
0.00020691	0.2432	0.2432	2.7756e-17
0.0023357	0.36425	0.36425	5.5511e-17
0.026367	0.54556	0.54556	0
0.29764	0.81711	0.81711	1.1102e-16
3.3598	1.2238	1.2238	2.2204e-16
37.927	1.833	1.833	0
428.13	2.7453	2.7453	4.4409e-16
4832.9	4.1118	4.1118	8.8818e-16
54556	6.1585	6.1585	0
6.1585e+05	9.2239	9.2239	1.7764e-15
6.9519e+06	13.815	13.815	1.7764e-15
7.8476e+07	20.691	20.691	3.5527e-15
8.8587e+08	30.99	30.99	3.5527e-15
1e+10	46.416	46.416	7.1054e-15

5

Il seguente testo è cotnenuto nel file ${\tt newtonMethod.m}$ e rappresenta il metodo di Newton:

```
function [x,n] = newtonMethod(f,df, x0, tol)
%
    x = newtonMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo di Newton
%
%
%
        f: funzione di cui si ricercano le radici
%
        df: derivata della funzione f
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
    Output:
%
        x: approssimazione della radice di f
%
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
```

```
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0- fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx==0
        error("Value of derivative function is 0, invalid first approximation");
    end
    n = n+1;
    x = x0 - fx/dfx; %calcolo effettivo
end
return
end
Da qui in poi viene presentato il contenuto del file secantsMethod.m che rapp-
resenta il metodo delle secanti:
function [x,i] = secantsMethod(f, x0, x1, tol)
%
    x = secantsMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo delle secanti
%
%
    Input:
%
        f: funzione di cui si ricercano gli 0
%
        x0: prima approssimazione iniziale della radice
%
        x1: seconda approssimazione iniziale della radice
        tol: errore assoluto ammissibile
%
%
    Output:
%
        x: approssimazione della radice di f
        i: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
fx0 = feval(f,x0);
fx1= feval(f,x1);
```

Nel file 6_result.txt è contenuta la tabella dei risultati delle funzioni precedentemente mostrate:

Tolleranza	Ris. Newton	Iterazoni New	vton Ris. secanti	Iterazioni secanti
0.001	0.7390	9 8	0.739	1 4
1e-06	0.7390	9 9	0.7390	9 6
1e-09	0.7390	9 10	0.7390	9 7
1e-12	0.7390	9 10	0.7390	9 7

Per entrambi i metodi, la parte più costosa computazionalmente è la valutazione funzionale, dato che tutte le altre operazioni che vengono svolte sono operazioni elementari.

Il metodo di Newton esegue due valutazioni in ogni iterazione.

Sia n il numero di iterazioni, il costo computazionale del metodo di Newton è dato da 2(n+1).

Il metodo delle secanti esegue due valutazioni iniziali e poi una per ogni iterazione, quindi il suo costo computazionale per n iterazioni è dato da n+2.

Tolleranza	Iterazioni Newton	Costo Newton	Iterazioni secanti	Costo secanti
10^{-3}	8	16	4	6
10^{-6}	9	18	6	8
10^{-9}	10	20	6	8
10^{-12}	10	20	7	9

La seguente tabella fornisce i risultati dell'utilizzo delle funzioni precedenti per calcolare la radice della funzione $f(x) = [x - \cos(x)]^5$:

tolleranza	Newton ris.	Newton iter.	Secant ris.	Secant iter.
10e-3	0.74512	18	0.73015	26
10e-6	0.73909	49	0.73908	70
10e-9	0.73909	80	0.73909	115
10e-12	0.73909	111	0.73909	159

Dopo aver sviluppato la function modifiedNewtonMethod.m si sono riscontrati i seguenti risultati:

tolleranza	risultato Newton modificato	numero di iterazioni
1e-3	0.73909	22
1e-6	0.73909	23
1e-9	0.73909	24
1e-12	0.73909	24

Come atteso, i metodi di Newton e delle secanti sono più lenti a causa del metodo di Newton modificato, a causa della natura multipla della radice. Infatti il metodo di Newton e quello delle secanti hanno convergenza quadratica nel caso di radici a molteplicità 1, ma solo lineare nel caso di radici multiple. La modifica che abbiamo fatto, ovvero $x_{i+1} = x_i - m \cdot \frac{f(x_i)}{f'(x_i)}$, nonostante richieda che la molteplicità m della radice sia nota, ripristina la convergenza quadratica del metodo di Newton.

I rislutati sono contentuti nel file table_7.txt e si mostra di seguito il codice della funztion del metodo di Newton modificato:

```
function [x,n] = modifiedNewtonMethod(f,df, m, x0, tol)
%
%
    x = newtonMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo di Newton
%
%
    Input:
%
        f: funzione di cui si ricercano le radici
%
        df: derivata della funzione f
%
        m: molteplicità (nota) della radice
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
    Output:
%
        x: approssimazione della radice di f
%
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 5, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
```

```
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0- m*fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx==0
        error("Value of derivative function is 0, invalid first approximation");
    \quad \text{end} \quad
    n = n+1;
    x = x0 - m*fx/dfx; %calcolo effettivo
end
return
end
```

Il codice della function è contenuto nel file mialu.m:

```
function x = mialu(A,b)
% x = mialu(A,b)
% presa in input una matrice ed un vettore calcola la soluzione del
% corrispondente sistema lineare utilizzando il metodo di fattorizzazione
% LU con pivoting
%
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
% Output:
% x = soluzione del sistema lineare
[m,n] = size(A);
if m = n
    error("La matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
        "non è coerente con quella della matrice");
```

```
end
p = (1:n).;
for i = 1:n
    [mi, ki] = max(abs(A(i:n,i)));
    if mi == 0
        error("la matrice è singolare");
    end
    ki = ki+i-1;
    if ki>i
        A([i,ki],:) = A([ki,i],:);
        p([i,ki]) = p([ki,i]);
    A(i+1:n,i) = A(i+1:n,i)/A(i,i);
    A(i+1:n,i+1:n) = A(i+1:n,i+1:n)-A(i+1:n,i)*A(i,i+1:n);
end
x = b(p);
for i=1:n
    x(i+1:n) = x(i+1:n)-A(i+1:n,i)*x(i);
end
for i=n:-1:1
    x(i) = x(i)/A(i,i);
    x(1:i-1) = x(1:i-1)-A(1:i-1,i)*x(i);
end
return;
end
```

Un esempio di utilizzo è contenuto nel file di testo ex_8_mialu.txt:

9

Il codice della function è contenuto nel file mialdl.m:

```
function x = mialdl(A,b)
%
    x = mialdl(A,b)
%
% presa in input una matrice ed un vettore calcola la soluzione del
% corrispondente sistema lineare utilizzando il metodo di fattorizzazione
% LDL
%
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
%
% Output:
% x = soluzione del sistema lineare
%
[m,n] = size(A);
```

```
if m = n
    error("la matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
        "non è coerente con quella della matrice");
end
if A(1,1) <= 0
    error("la matrice non è sdp");
end
% la matrice non è memorizzata in forma compressa! (cit. libro)
A(2:n,1) = A(2:n,1)/A(1,1);
for i = 2:n
    v = (A(i,1:i-1).') .* diag(A(1:i-1,1:i-1));
    A(i,i) = A(i,i) - A(i,1:i-1)*v;
    if A(i,i) <= 0
        error("la matrice non è sdp");
    end
    A(i+1:n,i) = (A(i+1:n,i) - A(i+1:n,1:i-1) * v) / A(i,i);
end
x = b;
for i = 2:n
    x(i:n) = x(i:n) - A(i:n,i-1) * x(i-1);
end
x = x ./ diag(A);
for i = n-1:-1:1
    x(1:i) = x(1:i) - A(i+1,1:i) .* x(i+1);
end
end
Un esempio di utilizzo è contenuto nel file di testo 9_mialdl.txt:
% si genera una matice quadrata casuale
A = randi([-8,8],4)
A =
     0
           0
                 2
                      -3
                -2
    -1
           0
                      7
    -1
           5
                 5
                       6
    -3
           5
                 1
                       1
% si generano i valori di una diagonale
d = randi([5,30],4,1)
d =
    21
    20
    10
    12
```

```
\% si costruisce una matrice adeguata per la fattorizzazione LDL
A = tril(A,-1)+triu(A',1)+diag(d)
A =
    21
                -1
                      -3
          -1
    -1
          20
                5
                      5
    -1
           5
                10
                      1
    -3
           5
                 1
                      12
\% Si genera la soluzione, da confrontare dopo
x = randi([-8,8],4,1)
x =
     0
    -5
     6
    -5
% si calcolano i termini noti
b = A*x
b =
    14
   -95
    30
   -79
\% si usa la funzione per calcolare la soluzione
mialdl(A,b)
ans =
    0.0000
   -5.0000
    6.0000
   -5.0000
A = randi([-8,8],4)
A =
           7
                -4
    -4
           4
                -1
                      -5
```

-8

0

1

8

1

0 2

```
d = randi([5,30],4,1)
d =
   22
   15
   14
   30
A = tril(A,-1)+triu(A',1)+diag(d)
A =
   22
                    -8
         -4
              5
   -4
         15
               0
                    1
    5
         0
               14
                    1
   -8
          1
               1
                    30
x = randi([-8,8],4,1)
x =
   -8
    7
    7
    5
b = A*x
b =
  -209
  142
   63
  228
mialdl(A,b)
```

ans =

-8.0000 7.0000 7.0000 5.0000

La funzione è nel file functions/miaqr.m, mostrato di seguito insieme ad un esempio in cui viene applicato:

```
function [x,nr] = miaqr(A,b)
%
    [x, nr] = miaqr(A,b)
%
%
   Calcola la soluzione del sistema lineare sovradimensioanto Ax = b
%
   nel senso dei minimi quadrati e restituisce la norma del
%
   corrispondente vettore residuo
%
%
   Input:
        A: matrice dei coefficienti del sistema
%
%
       b: vettore dei termini noti
%
   Output:
        x: soluzione nel senso dei minimi quadrati
        nr: norma del vettore resiudo
%
[m,n] = size(A);
if(n>=m), errror("Il sistema non è sovradimensionato"); end
if(m~=length(b)), error("Le dimensioni della matrice e del vettore " + ...
        "non sono compatibili"); end
for i=1:n
    alfa = norm( A(i:m,i));
    if alfa==0,error("La matrice A non ha rango massimo");end
    if(A(i,i)>=0), alfa = -alfa; end
    v = A(i,i) - alfa;
    A(i,i) = alfa;
    A(i+1:m,i) = A(i+1:m,i)/v;
    beta = -v/alfa;
    A(i:m,i+1:n) = A(i:m,i+1:n)-(beta*[1;A(i+1:m,i)])*...
        ([1;A(i+1:m,i)]'*A(i:m,i+1:n));
end
for i=1:n
    v = [1;A(i+1:m,i)];
    beta = 2/(v'*v);
    b(i:end) = b(i:end) - (beta*(v'*b(i:end)))*v;
end
for i=n:-1:1
    b(i) = b(i)/A(i,i);
    b(1:i-1) = b(1:i-1)-A(1:i-1,i)*b(i);
end
x = b(1:n);
nr = norm(b(n+1:m));
return ;
end
>> A = randi([-20,20],7,4)
A =
```

```
6 -13
-6
              -1
13
     -2
         -5
              -3
-20
     2
          5
              -2
         11
              -8
-19
     -8
     10 -17
             0
-14
6
    -13
         18
              0
10
              13
     8
         11
```

>> b = randi([-20,20],7,1)

b =

12

6

-5

13 1

-6

18

>> [x,nr] = miaqr(A,b)

x =

0.5023

2.5325

1.1667

-2.1687

nr =

22.8572

>> A\b

ans =

0.5023

2.5325

1.1667

-2.1687

>> A = randi([-20,20],7,4)

A =

15 -11 -8 -16 2 14 17 -10

```
5 -13 -3 -4
4 -11 -13 4
              -10
-12
          17
     -14
              4
9
-8
    -11
           20
-1
     -3
          -3
```

>> b = randi([-20,20],7,1)

b =

-11

-16

-8 -7

-3

0 -17

>> [x,nr] = miaqr(A,b)

x =

-1.2544

0.2774

-0.6423

-0.2978

nr =

22.2472

>> A\b

ans =

-1.2544

0.2774

-0.6423

-0.2978

>>

12

13

4.7017 1.7584

Di seguito si mostra come sono stati assegnati i valori richiesti, le soluzioni trovate con la funzione miaqr sono confrontate con il risultato dell'operatore \.

```
>> A = [ 1 3 2; 3 5 4; 5 7 6; 3 6 4; 1 4 2 ];
>> b = [ 15 28 41 33 22 ]';
>> D = diag(1:5);
>> D1 = diag(pi*[1 1 1 1 1])
D1 =
    3.1416
                                        0
                                                  0
                   0
                             0
              3.1416
         0
                                        0
                                                  0
                             0
                        3.1416
                                                  0
         0
                   0
                                        0
         0
                   0
                             0
                                   3.1416
                                                  0
         0
                   0
                             0
                                        0
                                             3.1416
>> [x,nr] = miaqr(A,b)
x =
    3.0000
    5.8000
   -2.5000
nr =
    1.2649
>> A\b
ans =
    3.0000
    5.8000
   -2.5000
>> [x,nr] = miaqr(D*A,D*b)
x =
   -0.6026
```

```
nr =
    3.7352
>> (D*A)\(D*b)
ans =
   -0.6026
    4.7017
    1.7584
>> [x,nr] = miaqr(D1*A,D1*b)
x =
    3.0000
    5.8000
   -2.5000
nr =
    3.9738
>> (D1*A)\(D1*b)
ans =
    3.0000
    5.8000
   -2.5000
```

Si osserva come le soluzioni siano coerenti, ma la norma del vettore residuo aumenta, negli ultimi due sistemi è quasi il triplo che nel primo.

14