

Jeu de Go et Exploration d'Arbre par Bandit

CentraleSupélec – Gif

IA et Jeu de Go

- 2016 : AlphaGo bat le meilleur joueur humain
- Combine des méthodes de deep learning avec une exploration d'arbre par bandit

L'IA et le Jeu de Go Avant l'Exploration d'Arbre par Bandit Exploration d'Arbre par Bandit Conclusion Pourquoi une IA pour le Jeu de Go? Le Jeu de Go

Plan

- L'IA et le Jeu de Go
 - Pourquoi une IA pour le Jeu de Go?
 - Le Jeu de Go
- Avant l'Exploration d'Arbre par Bandit

်ာ မူ

Pourquoi une IA pour un jeu?

- Avoir une IA pour un jeu...
- Représentation des problèmes de décision
- Environnement bien défini : règles du jeu
- Évaluation facile : score
- Challenge de battre les humains

Pourquoi le jeu de Go?

- un jeu de plateau qui a longtemps résisté aux IA
- règles simples
- méthodes classiques (alphabeta) inefficaces

Histoire

- aurait été inventé en chine en 2000 BC
- premiers écrits : 500 BC
- fait parti des 4 arts majeurs chinois : peinture, calligraphie, guqin, go
- se répand en Asie dès 800 dans la noblesse
- aujourd'hui, environ 20 millions de joueurs

Matériel

- plateau de jeu : Goban
- deux tailles 9x9 ou 19x19
- pierres noires et blanches

Règles : placement

- Début de la partie : le plateau est vide
- Chaque joueur pose une pierre à tour de rôle
- Noir commence
- Pierres posées sur les intersections

Règles : chaînes et libertés

- Pierres reliées horizontalement ou verticalement : une chaine
- Emplacements libres autour d'une chaine : liberté

Règles : capture

- Enlever la dernière liberté d'une chaine : capture
- → les pierres sont enlevées du plateau

Règles : fin de partie

- partie terminée quand les deux joueurs passent
- ullet score : pierres + territoire

Règles : le ko

- problème : captures répétées successives
- règle (humain) : pas le droit de remettre le plateau dans l'état juste avant
- règle (ordinateur) : pas le droit de remettre le plateau dans n'importe quel état précédant

Echelle de niveau

TODO tikz

Plan

- L'IA et le Jeu de Go
- Avant l'Exploration d'Arbre par Bandit
- Exploration d'Arbre par Bandit
- 4 Conclusion

Principe

- Exploration d'arbre alphabeta
- Evaluation des noeuds basée sur des connaissances expertes

Evaluation

- Découpage du plateau en sous parties
- Evaluation de chaque sous partie par recherche locale (souvent alphabeta)
- groupe mort, vivant, territoire, ...
 - Recomposition d'un score global

Position à évaluer

Découpage du plateau

Evaluation locale

Evaluation globale

Avantages

- Algorithme très rapide
- Evaluation locale peut être très performante

Inconvénients

- Découpage et recomposition difficile et ayant un fort impact
- Pas d'intéraction entre les positions locales
- Demande beaucoup de connaissances expertes

Échelle de niveau

Plan

- 1 L'IA et le Jeu de Go
- 2 Avant l'Exploration d'Arbre par Bandit
- 3 Exploration d'Arbre par Bandit
 - Construction de l'Arbre
 - Problème de Bandit
- 4 Conclusion

Idée

- Arbre déséquilibré
- → TODO
 - Construction itérative

Principe

• Répétition de ces 3 étapes : TODO

Exemple

TODO tikz

Questions

TODO

- Comment faire l'évaluation?
- Comment faire la descente?

Introduction du problème

Dans un casino, il y a plusieurs machines à sous différentes en terme de récompense.

• Comment répartir mes pièces entre les machines?

Autres problèmes similaires

- Essais cliniques : trouver le traitement qui fonctionne le mieux.
- Sélection d'un serveur dans un réseau : trouver le serveur avec le temps de réponse le plus faible.
- Publicité ciblée : trouver le type de pub qui intéressera le plus un utilisateur.
- ...

Ce sont des problèmes où on a plusieurs fois le même choix à effectuer. Le choix conduit à une récompense aléatoire.

2

Définition formelle

- un ensemble de bras $A = \{1, ..., K\}$.
- chaque bras est associé à une distribution de probabilité X_k d'espérance μ_k .
- l'algorithme choisit un bras a à chaque pas de temps.
- le bandit retourne une récompense r : une réalisation de X_a .
- les tirages successifs sur un même bras sont indépendant et identiquement distribués.

Notations supplémentaires

- $T_i(n)$: le nombre de fois que le bras i a été sélectionné au pas de temps n.
- $\bullet \ \mu^* = \max_{1 \le i \le K} \mu_i$
- $\bullet \ \Delta_i = \mu^* \mu_i$

Objectif

Le but est d'optimiser le regret R_n défini comme suit :

$$R_n = \mu^* n - \mathbb{E} \sum_{j=1}^K T_j(n) \mu_j$$
$$R_n = \sum_{j=1}^K \Delta_j \mathbb{E}[T_j(n)]$$

Borne inférieure

Pour toute stratégie d'allocation et pour tout bras non optimal :

$$\mathbb{E}[T_j(n)] \geq \frac{\log n}{D(p_j||p^*)}$$

où
$$D(p_j||p^*) = \int p_j \log \frac{p_j}{p^*}$$

On en déduit que le meilleur regret atteignable est en log(n). [Lai and Robbins, 1985]

Principe de l'algorithme :

- A partir des informations disponibles au temps t, on calcule la borne de confiance supérieur (UCB) correspondant à chaque bras.
- On choisit le bras qui a la valeur UCB la plus grande.

[Auer and all, 2002]

Calcul de la valeur UCB pour le bras i au pas de temps t:

$$\hat{\mu}_{i,t-1} + \sqrt{\frac{3\log(t)}{2T_i(t-1)}}$$

où $\hat{\mu}_{i,t-1}$ correspond à la moyenne empirique du bras i.

UCB

Borne sur le regret :

$$R_n \leq 6 * \sum_{i \neq i^*} \frac{\log(n)}{\Delta_i} + K(\frac{\pi^2}{3} + 1)$$

Rappel MCTS

TODO rappel l'algo TODO rappel question : comment faire la descente?

Descente dans l'arbre

La descente dans l'arbre se fait en considérant que chaque choix d'une branche est un problème de bandit.

UCB en pratique

• Ajout d'un paramètre p de contrôle de l'exploration :

$$\hat{\mu}_{i,t-1} + p\sqrt{\frac{\log(t)}{T_i(t-1)}}$$

• Ajout de connaissances a priori $C_i(t)$:

$$\hat{\mu}_{i,t-1} + \rho \sqrt{\frac{\log(t)}{T_i(t-1)}} + C_i(t)$$

Améliorations

- Réduire le nombre de bras du bandit
- Ajout de connaissances expertes
- AMAF
- ...

Echelle de niveau

Première victoire en 9x9

Plan

- L'IA et le Jeu de Go
- 2 Avant l'Exploration d'Arbre par Bandi
- 3 Exploration d'Arbre par Bandit
- 4 Conclusion

Alphago

TODO principe en 1 slide

Echelle de niveau

Autres applications

Conclusion

References