Geometric Algebra for Special and General Relativity

Joseph Wilson

December 10, 2021

Contents

I.	Sp	ecial Relativity and Geometric Algebra	3
1.	Intro	oduction	4
2.	Preliminary Theory		
	2.1.	Associative Algebras	6
		2.1.1. Quotient algebras	7
		2.1.2. Graded algebras	10
	2.2.		12
		2.2.1. As antisymmetric tensors	13
		2.2.2. Exterior forms	14
	2.3.		16
		2.3.1. Metrical exterior algebra	17
3.	The Geometric Algebra		
	3.1.	Relations to Other Algebras	22
	3.2.	Rotors and the Associated Lie Groups	22
		3.2.1. The rotor groups	24
		3.2.2. The bivector subalgebra	25
4.	The	Algebra of Spacetime	27
5.	Calc	culus in Flat Space(time)	28
	5.1.	Integration	28
		5.1.1. Exterior Calculus	28
II.	Ge	eneral Relativity and Manifold Geometry	31
6.	The	Problem: Curvature	32
7.	The	Answer: Fibre Bundles	33

Part I.

Special Relativity and Geometric Algebra

Chapter 1.

Introduction

The Special Theory of Relativity is a model of *spacetime* — the geometry in which physical events take place. Spacetime comprises the Euclidean dimensions of space and time, but only in a way relative to each observer moving through it: there exists no single 'universal' ruler or clock. Instead, two observers in relative motion define different decompositions of spacetime, and their respective clocks and rulers are found to disagree according to the Lorentz transformation laws. The insight of special relativity is that one should focus not on the observer-dependent notions of space and time, but on the Lorentzian geometry of spacetime itself.

Seven years after Albert Einstein introduced this theory,¹ he succeeded in formulating a relativistic picture which included gravity. In this General Theory of Relativity, gravitation is identified with the curvature of spacetime over astronomical distances. Both theories coincide locally when confined to sufficiently small extents of spacetime, over which the effects of curvature are negligible. In part I, we will focus on special relativity, leaving gravity and curvature to part II.

In reference to the Erlangen programme, 2 the study of local space-time geometry amounts to the study of its intrinsic symmetries. These symmetries form the Poincaré group, and consist of spacetime translations and Lorentz transformations, the latter being the extension of the rotation group for Euclidean space to relativistic rotations of spacetime. The standard matrix representation of the Lorentz group, $\mathrm{SO}^+(1,3)$, is the connected component of the orthogonal group

$$O(1,3) = \left\{ \Lambda \in GL(\mathbb{R}^4) \, \middle| \, \Lambda^\mathsf{T} \eta \Lambda = \eta \right\}$$

with respect to the bilinear form $\eta=\pm\mathrm{diag}(-1,+1,+1,+1)$. The rudimentary tools of matrix algebra are sufficient for an analys the Lorentz group, and are familiar to any physicist.

¹ Einstein's paper [1]
was published in 1905,
the so-called *Annus Mirabilis* or "miracle
year" during which he
also published on the
photoelectric effect,
Brownian motion and the
mass-energy equivalence.
Each of the four papers
was a monumental
contribution to modern
physics.

² Introduced by Felix Klein in 1872 [2], the Erlangen program is the characterisation of geometries (Euclidean, hyperbolic, projective, etc.) by their symmetry groups and the properties invariant under those groups. E.g., Euclidean geometry studies the invariants of rigid transformations.

However, the last century has seen many other mathematical tools be applied to the study of generalised rotation groups such as $\mathrm{SO}^+(1,3)$ or the rotation group $\mathrm{SO}(3)$ of \mathbb{R}^3 . Among these tools is the *geometric algebra*, invented³ by William Clifford in 1878 [4]. Geometric algebra remains largely unknown in the physics community, despite arguably being far superior for the description of rotations than traditional matrix techniques. It is good to glean some of the history that led to this (perhaps unfortunate) state of the field.

³ Clifford algebra was independently discovered by Rudolf Lipschitz two years later [3]. He was the first to use them to the study the orthogonal groups.

The quest for an optimal formalism for rotations

Mathematics has seen the invention of a variety of vector formalisms since the 1800s, and the question of which is best suited to physics has a long contentious history.

Complex numbers had been known for a long time⁴ to be useful descriptions of planar rotations. William Hamilton's efforts to extend the same ideas into three dimensions by inventing a "multiplication of triples" bore fruition in 1843, when the quaternion algebra $\hat{\imath}^2 = \hat{\jmath}^2 = \hat{k}^2 = \hat{\imath}\hat{\jmath}\hat{k} = -1$ came to him in revelation. In following decades, William Gibbs developed the vector calculus of \mathbb{R}^3 with the usual vector cross and dot products. The ensuing vector algebra "war" of 1890–1945 saw Hamilton's prized⁵ quaternion algebra \mathbb{H} , hailed as the optimal tool for describing 3d rotations, struggle for popularity against Gibbs' easier-to-visualise vector calculus. Today, quaternions are generally regarded in physics as an old-fashioned mathematical curiosity.

⁴ Since Wessel, Argand and Gauss in the 1700s [5].

⁵ Hamilton had dedicated following in the time that quaternions were in fasion: the *Quaternion Society* existed from 1895 to 1913.

Chapter 2.

Preliminary Theory

Many of the tools we will develop for the study of spacetime take place in various associative algebras. As well as the geometric algebra of spacetime, we will encounter tensors, exterior forms, quaternions, and other structures in this category. Instead of defining each algebra axiomatically as needed, it is easier to develop the general theory and then define each algebra succinctly as a particular quotient of the free algebra. This enables the use of the same tools and the same terminology thoughout.

Therefore, this section is an overview of the abstract theory of associative algebras, which more generally belongs to *ring theory*. Algebras, quotients, gradings, homogeneous and inhomogeneous tensor and multivectors are defined, as well as standard operations on exterior forms. Most definitions in this chapter can be readily generalised by replacing the field $\mathbb F$ with a ring. The excitable reader may skip this chapter and refer back as needed.

⁶ A RING is a field without the requirement that multiplicative inverses exist nor that multiplication commutes.

2.1. Associative Algebras

Throughout, \mathbb{F} denotes the underlying field of some vector space. (Eventually, \mathbb{F} will always be taken to be \mathbb{R} , but we may begin in generality.)

Definition 1. An associative algebra A is a vector space equipped with a product $\circledast: A \times A \to A$ which is associative and bilinear.

Associativity means $(\boldsymbol{u}\circledast\boldsymbol{v})\circledast\boldsymbol{w}=\boldsymbol{u}\circledast(\boldsymbol{v}\circledast\boldsymbol{w})$, while bilinearity means the product is:

• compatible with scalars: $(\lambda u) \circledast v = u \circledast (\lambda v) = \lambda (u \circledast v)$ for $\lambda \in \mathbb{F}$; and

• distributive over addition: $(u + v) \circledast w = u \circledast w + v \circledast w$, and similarly for $u \circledast (v + w)$.

This definition can be generalised by relaxing associativity or by letting \mathbb{F} be a ring. However, we will use "algebra" exclusively to mean an associative algebra over a field (usually \mathbb{R}).

Any ring forms an associative algebra when considered as a one-dimensional vector space. The complex numbers can be viewed as a real 2-dimensional algebra by defining \circledast to be complex multiplication; $(x_1,y_1)\circledast(x_2,y_2):=(x_1x_2-y_1y_2,x_1y_2+y_1x_2).$

The free tensor algebra

The most general (associative) algebra containing a given vector space V is the Tensor algebra V^{\otimes} . The tensor product \otimes satisfies exactly the relations of definition 1 with no others. Thus, the tensor algebra associative, bilinear and *free* in the sense that no further information is required in its definition.

As a vector space, the tensor algebra is equal to the infinite direct sum

$$V^{\otimes} \cong \bigoplus_{k=0}^{\infty} V^{\otimes k} \equiv \mathbb{F} \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots \tag{2.1}$$

where each $V^{\otimes k}$ is the subspace of Tensors of Grade k.

2.1.1. Quotient algebras

Owing to the maximal generality of the free tensor algebra, any other associative algebras may be constructed as a *quotient* of V^{\otimes} . In order for a quotient V^{\otimes}/\sim by an equivalence relation \sim to itself form an algebra, the relation must preserve the associative algebra structure:

Definition 2. A CONGRUENCE on an algebra A is an equivalence relation \sim which is compatible with the algebraic relations, so that if $a \sim a'$ and $b \sim b'$ then $a + b \sim a' + b'$ and $a \circledast b \sim a' \circledast b'$.

The quotient of an algebra by a congruence naturally has the structure of an algebra, and so is called a QUOTIENT ALGEBRA.

Lemma 1. The QUOTIENT A/\sim of an algebra A by a congruence \sim , consisting of equivalence classes $[a] \in A/\sim$ as elements, forms an algebra with the naturally inherited operations [a]+[b]:=[a+b] and $[a] \circledast [b]:=[a \circledast b]$.

Proof. The fact that the operations + and \circledast of the quotient are well-defined follows from the structure-preserving properties of the congruence. Addition is well-defined if [a] + [b] does not depend on the choice of representatives: if $a' \in [a]$ then [a'] + [b] should be [a] + [b]. By congruence, we have from $a \sim a'$ so that [a + b] = [a' + b] and indeed [a] + [b] = [a'] + [b]. Likewise for \circledast .

Instead of presenting an equivalence relation, it is often easier to define a congruence by specifying the set of elements which are equivalent to zero, from which all other equivalences follow from the algebra axioms. Such a set of all 'zeroed' elements is called an ideal.

Definition 3. A (TWO-SIDED) IDEAL of an algebra A is a subset $I \subseteq A$ which is closed under addition and invariant under multiplication, so that

- if $a, b \in I$ then $a + b \in I$; and
- if $r \in A$ and $a \in I$ then $r \circledast a \in I \ni a \circledast r$.

We will use the notation $\{\{A\}\}$ to mean the ideal generated by setting $a \sim 0$ for all a in A. For example, $\{\{a\}\} = \operatorname{span}\{r \circledast a \circledast r' \mid r, r' \in A\}$ is the ideal consisting of sums and products involving the specified element a, and $\{\{u \otimes u \mid u \in V\}\}$, or simply $\{\{u \otimes u\}\}$, is the ideal in V^{\otimes} consisting of sums of terms of the form $a \otimes u \otimes u \otimes b$ for vectors u and arbitrary $a, b \in V^{\otimes}$.

Lemma 2. An ideal uniquely defines a congruence, and vice versa, by the identification of I as the set of elements equivalent to zero; $a \sim 0 \iff a \in I$.

Proof. The set $I:=\{a\mid a\sim 0\}$ is indeed an ideal because it is closed under addition (for $a,b\in I$ we have $\implies a+b\sim 0+0=0$ so $a+b\in I$) and invariant under multiplication (for any $a\in I$ and $r\in A$, we have $r\circledast a\sim r\circledast 0=0$ $\circledast r\sim a\circledast r$). Conversely, let $a\sim a'$ and $b\sim b'$. Since \sim respects addition:

$$\left. \begin{array}{l} a-a' \in I \\ b-b' \in I \end{array} \right\} \implies (a+b)-(a'+b') \in I \iff a+b \sim a'+b',$$

and multiplication:

$$\left. \begin{array}{l} (a-a')\circledast b\in I\\ a'\circledast (b-b')\in I \end{array}\right\} \implies a\circledast b-a'\circledast b'\in I \iff a\circledast b\sim a'\circledast b',$$

the equivalence defined by $a \sim b \iff a - b \in I$ is a congruence.

The equivalence of ideals and congruences is a general feature of abstract algebra. Furthermore, both can be given in terms of a homomorphism between algebras, and this is often the most convenient way to define a quotient.

Theorem 1 (first isomorphism theorem). If $\Psi: A \to B$ is a homomorphism, between algebras, then

- 1. the relation $a \sim b$ defined by $\Psi(a) = \Psi(b)$ is a congruence;
- 2. the kernel $I := \ker \Psi$ is an ideal; and
- 3. the quotients $A/\sim \equiv A/I \cong \Psi(A)$ are all isomorphic.

Proof. We assume A and B associative algebras. (For a proof in universal algebra, see $[6, \S 15]$.)

To verify item 1, suppose that $\Psi(a)=\Psi(a')$ and $\Psi(b)=\Psi(b')$ and note that $\Psi(a+a')=\Psi(b+b')$ by linearity and $\Psi(a\otimes b)=\Psi(a'\otimes b')$ from $\Psi(a\otimes b)=\Psi(a)\otimes \Psi(b)$, so the congruence properties of definition 2 are satisfied.

For item 2, note that $\ker \Psi$ is a vector subspace, and that $a \in \ker \Psi$ implies $a \circledast r \in \ker \Psi$ for any $r \in A$ since $\Psi(a \circledast r) = \Psi(a) \circledast \Psi(r) = 0$. Thus, $\ker \Psi$ is an ideal by definition 3.

The first equivalence in item 3 follows from lemma 2. For an isomorphism $\Phi: A/\ker\Psi \to \Omega(A)$, pick $\Phi([a]) = \Psi(a)$. This is well-defined because the choice of representative of the equivalence class [a] does not matter; $a \sim a'$ if and only if $\Psi(a) = \Psi(a')$ by definition of \sim , which simultaneously shows that Φ is injective. Surjectivity follows since any element of $\Psi(A)$ is of the form $\Psi(a)$ which is the image of [a].

With the free tensor algebra and theorem 1 in hand, we are able to describe any associative algebra as a quotient of the form V^{\otimes}/I .

Definition 4. The dimension dim A of a quotient algebra $A = V^{\otimes}/I$ is its dimension as a vector space. The base dimension of A is the dimension of the underlying vector space V.

Algebras may be infinite-dimensional, as is the case for the tensor algebra itself (which is a quotient by the trivial ideal).

 $^{^{7}}$ For example, in group theory, ideals are *normal subgroups* and a congruence is an equivalence relation satisfying $gag^{-1} \sim id$ whenever $a \sim id$. A group modulo a normal subgroup forms a quotient group.

⁸ A homomorphism is a structure-preserving map; in the case of algebras, a linear map $\Psi: A \to A'$ which satisfies $\Psi(a \circledast b) = \Psi(a) \circledast' \Psi(b)$.

2.1.2. Graded algebras

Associative algebras may possess another layer of useful structure: a grading. The grading of the tensor algebra has already been exhibited in eq. (2.1). A grading is a generalisation of the degree or rank of tensors or forms, and of the notion of parity for objects functions or polynomials.

Definition 5. An algebra A is R-GRADED for (R, +) a monoid 9 if there exists a decomposition

$$A = \bigoplus_{k \in R} A_k$$

 $\textit{such that } A_i \circledast A_j \subseteq A_{i+j} \textit{, i.e., } a \in A_i, b \in A_j \Longrightarrow a \circledast b \in A_{i+j}.$

The monoid is usually taken to be $\mathbb N$ or $\mathbb Z$ with addition, possibly modulo some integer. The tensor algebra V^\otimes is $\mathbb N$ -graded, since if $a\in V^{\otimes p}$ and $b\in V^{\otimes q}$ then $a\otimes b\in V^{\otimes p+q}$. Indeed, V^\otimes is also $\mathbb Z$ -graded if for k<0 we understand $V^{\otimes k}:=\{\mathbf 0\}$ to be the trivial vector space. The tensor algebra is also $\mathbb Z_p$ -graded, where $\mathbb Z_p\equiv \mathbb Z/p\mathbb Z$ is addition modulo any p>0, since the decomposition

$$V^{\otimes} = \bigoplus_{k=0}^{p-1} Z_k \quad \text{where} \quad Z_k = \bigoplus_{n=0}^{\infty} V^{\otimes k + np} = V^{\otimes k} \oplus V^{\otimes (k+p)} \oplus \cdots$$

satisfies $Z_i \otimes Z_j \subseteq Z_k$ when $k \equiv i+j \mod p$. In particular, V^\otimes is \mathbb{Z}_2 -graded, its elements admit a notion of *parity*: elements of $Z_0 = \mathbb{F} \otimes V^{\otimes 2} \otimes \cdots$ are even, while elements of $Z_1 = V \otimes V^{\otimes 3} \otimes \cdots$ are odd, and parity is respected by \otimes as it is for integers.

Importantly, just as not all functions $f: \mathbb{R} \to \mathbb{R}$ are even or odd, not all elements of a \mathbb{Z}_2 -graded algebra are even or odd; and more generally not all elements of a graded algebra belong to a single graded subspace.

Definition 6. If $A=\bigoplus_{k\in R}A_k$ is an R-graded algerba, then an element $a\in A$ is homogeneous if it belongs to some A_k , in which case it is said to be a k-vector. If $a\in A_{k_1}\oplus \cdots \oplus A_{k_n}$ is inhomogeneous, we may call it a $\{k_1,...,k_n\}$ -multivector.

All elements of a graded algebra are either inhomogeneous or a k-vector for some k; and each k-vector is either a k-blade or a sum of k-blades.

⁹ A MONOID is a group without the requirement of inverses; i.e., a set with an associative binary operation for which there is an identity element.

 10 Algebras which are \mathbb{Z}_2 -graded are sometimes called *superalgebras*, with the prefix 'super-' originating from supersymmetry theory.

Definition 7. A k-BLADE is a k-vector $a \in A_k$ of the form $a = u_1 \circledast \cdots \circledast u_k$ where each $u_i \in A_1$ is a 1-vector.

Note that not all k-vectors are blades. The simplest counterexample requires at least four dimensions: the bivector $e_1 \otimes e_2 + e_3 \otimes e_4 \in (\mathbb{R}^4)^{\otimes 2}$, where $\{e_i\}$ are the standard basis of \mathbb{R}^4 , cannot be factored into a blade of the form $u \otimes v$ for any $u, v \in V$.

{TO DO: Does this even make sense for a general graded algebra??}

Graded quotient algebras

A grading structure may or may not be inherited by a quotient — in particular, not all quotients of V^{\otimes} inherit its \mathbb{Z} -grading. When reasoning about quotients of graded algebras, the following fact is useful.

Lemma 3. Quotients commute with direct sums, so if

$$A = \bigoplus_{k \in R} A_k \quad \text{and} \quad I = \bigoplus_{k \in R} I_k \quad \text{then} \quad A/I = \bigoplus_{k \in R} (A_k/I_k)$$

where R is some index set.

Proof. It is sufficient to prove the case for direct sums of length two. We then seek an isomorphism $\Phi: (A\oplus B)/(I\oplus J) \to (A/I) \oplus (B/J)$. Elements of the domain are equivalence classes of pairs [(a,b)] with respect to the ideal $I\oplus J$. The direct sum ideal $I\oplus J$ corresponds to the congruence defined by $(a,b)\sim (a',b')\iff a\sim a'$ and $b\sim b'$. Therefore, the assignment $\Phi=[(a,b)]\mapsto ([a],[b])$ is well-defined. Injectivity and surjectivity follow immediately. \square

This motivates the following strengthening to the notion of an ideal:

Definition 8. An ideal I of an R-graded algebra $A=\bigoplus_{k\in R}A_k$ is homogeneous if $I=\bigoplus_{k\in R}I_k$ where $I_k=I\cap A_k$.

Not all ideals are homogeneous.¹¹ The additional requirement that an ideal be homogeneous ensures that the associated equivalence relation, as well as respecting the basic algebraic relations of definition 2, also preserves the grading structure. And so, we have a graded analogue to lemma 1:

Theorem 2. If A is an R-graded algebra and I a homogeneous ideal, then the quotient A/I is also R-graded.

11 For example, the ideal $I = \{\{\boldsymbol{e}_1 + \boldsymbol{e}_2 \otimes \boldsymbol{e}_3\}\}$ is distinct from $\bigoplus_{k=0}^{\infty} (I \cap V^{\otimes k}) = \{\{\boldsymbol{e}_1, \boldsymbol{e}_2 \otimes \boldsymbol{e}_3\}\}$ because the former does not contain span $\{\boldsymbol{e}_1\}$, while the latter does.

Proof. By lemma 3 and the homogeneity of I, we have $A/I=\bigoplus_{k\in R}(A_k/I_k)$. Elements of A_k/I_k are equivalence classes $[a_k]$ where the representative is of grade k. Thus, $(A_p\big/I_p) \circledast (A_q\big/I_q) \subseteq A_{p+q}\big/I_{p+q}$ since $[a_p] \circledast [a_q] = [a_p \circledast a_q] = [b]$ for some $b \in A_{p+q}$. Hence, A/I is R-graded. \square

2.2. The Wedge Product: Multivectors

One of the simplest algebras to construct as a quotient of the tensor algebra, yet still one of the most useful, is the *exterior algebra*, first introduced by Hermann Grassmann in 1844.

Definition 9. The exterior algebra over a vector space V is

$$\wedge V \coloneqq V^{\otimes}/\{\{\boldsymbol{u}\otimes\boldsymbol{u}\}\}\ .$$

The product in $\wedge V$ is denoted \wedge and called the WEDGE PRODUCT.

The ideal $\{\{u \otimes u\}\} \equiv \{\{u \otimes u \mid u \in V\}\}$ corresponds to the congruence defined by $u \otimes u \sim 0$ for any vectors $u \in V$. The wedge product is also called the *exterior*, *alternating* or *antisymmetric* product. The property suggested by its various names is easily seen by expanding the square of a sum;

$$(u + v) \wedge (u + v) = u \wedge u + u \wedge v + v \wedge u + v \wedge v.$$

Since all terms of the form ${\boldsymbol w} \wedge {\boldsymbol w} = 0$ are definitionally zero, we have

$$u \wedge v = -v \wedge u$$

for all vectors $\boldsymbol{u}, \boldsymbol{v} \in V$. By associativity, it follows that $\boldsymbol{v}_1 \wedge \boldsymbol{v}_2 \wedge \cdots \wedge \boldsymbol{v}_k$ vanishes exactly when the \boldsymbol{v}_i are linearly dependent.¹²

The ideal $\{\{u\otimes u\}\}$ is homogeneous with respect to the \mathbb{Z} -grading of the parent tensor algebra; hence $\wedge V$ is itself \mathbb{Z} -graded. In particular, it is the direct sum of fixed-grade subspaces

$$\wedge V = \bigoplus_{k=0}^{\dim V} \wedge^k V \quad \text{where} \quad \wedge^k V = \operatorname{span}\{ \boldsymbol{v}_1 \wedge \boldsymbol{v}_2 \wedge \dots \wedge \boldsymbol{v}_k \mid \boldsymbol{v}_i \in V \},$$

and the wedge product respects grade, $(\wedge^p V) \wedge (\wedge^q V) \subseteq \wedge^{p+q} V$. By counting the number of possible linearly independent sets of k vectors in dim V dimensions, it follows that in base dimension dim V=n,

$$\dim \wedge^k V = \binom{n}{k}$$
, and hence $\dim \wedge V = 2^n$.

12

Proof. Blades of the form $a = \mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k$ vanish when two or more vectors are repeated. If $\{\mathbf{u}_i\}$ is linearly dependent, then any one \mathbf{u}_i can be written in terms of the others, and thus a can be expanded into a sum of such vanishing terms.

In particular, note that $\dim \wedge^k V = \dim \wedge^{n-k} V$. Elements of the one-dimensional subspace $\wedge^n V$ are called PSEUDOSCALARS.¹³

The prefix 'pseudo' means $k\mapsto n-k$. Hence, a pseudovector is an (n-1)-vector, etc.

2.2.1. As antisymmetric tensors

The exterior algebra may equivalently be viewed as the space of antisymmetric tensors equipped with an antisymmetrising product. Consider the map

$$\operatorname{Sym}^{\pm}(\boldsymbol{u}_{1}\otimes\cdots\otimes\boldsymbol{u}_{k})=\frac{1}{k!}\sum_{\sigma\in S_{k}}(\pm1)^{\sigma}\boldsymbol{u}_{\sigma(1)}\otimes\cdots\otimes\boldsymbol{u}_{\sigma(k)} \tag{2.2}$$

where $(-1)^{\sigma}$ denotes the sign of the permutation σ in the symmetric group of k elements, S_k . By enforcing linearly, $\mathrm{Sym}^{\pm}:V^{\otimes}\to V^{\otimes}$ is defined on all tensors. A tensor A is called symmetric if $\mathrm{Sym}^+(A)=A$ and antisymmetric if $\mathrm{Sym}^-(A)=A$.

Denote the image $\operatorname{Sym}^-(V^\otimes)$ by S. The linear map $\operatorname{Sym}^-:V^\otimes\to S$ is not an algebra homomorphism with respect to the tensor product on S, since, e.g., $\operatorname{Sym}^-(\boldsymbol{u}\otimes\boldsymbol{v})\neq\operatorname{Sym}^-(\boldsymbol{u})\otimes\operatorname{Sym}^-(\boldsymbol{v})=\boldsymbol{u}\otimes\boldsymbol{v}$. However, it is if we instead equip S with the antisymmetrising product $\wedge:S\times S\to S$ defined by

$$A \wedge B := \operatorname{Sym}^{-}(A \otimes B). \tag{2.3}$$

This makes $\mathrm{Sym}^-:V^\otimes\to S$ an algebra homomorphism, and by theorem 1, we have

$$S \cong V^{\otimes}/\text{ker Sym}^{-}. \tag{2.4}$$

Furthermore, note that the kernel of Sym⁻ consists of tensor products of linearly dependent vectors, and sums thereof,¹⁴

$$\ker \operatorname{Sym}^- = \operatorname{span}\{\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k \mid k \in \mathbb{N}, \{\boldsymbol{u}_i\} \text{ linearly dependent}\},$$

which is exactly the ideal $\{\{u\otimes u\}\}$. Therefore, the right-hand side of eq. (2.4) is identically the exterior algebra of definition 9. Hence, we have an algebra isomorphism $\mathrm{Sym}^-(V^\otimes)\cong \wedge V$, where the left-hand side is equipped with the product (2.3). This gives an alternative construction of the exterior algebra.

14

Proof. If $A = \mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_k$ where two vectors $\mathbf{u}_i = \mathbf{u}_j$ are equal, then $\operatorname{Sym}^-(A) = 0$ since each term in the sum in eq. (2.2) is paired with an equal and opposite term with $i \leftrightarrow j$ swapped. If $\{\mathbf{u}_i\}$ is linearly dependent, any one vector is a sum of the others, so A is a sum of blades with at least two vectors repeated.

Note on conventions

The factor of $\frac{1}{k!}$ present in eq. (2.2) is not necessary for the above fact that $\operatorname{Sym}^-(V^\otimes) \cong \wedge V$ Indeed, some authors omit the normalisation factor, which has the effect of changing eq. (2.3) to

$$A \wedge B = \frac{(p+q)!}{p!q!} \mathrm{Sym}^-(A \otimes B)$$

for A and B of respective grades p and q, written in terms of our convention (2.2). The different normalisations of \wedge as an antisymmetrising product lead to distinct identifications of multivectors in $\wedge V$ with tensors in $S \subset V^{\otimes}$, as clarified in table 2.1.

Kobayashi–Nomizu [7] Spivak [8]
$$A \wedge B := \operatorname{Sym}^{-}(A \otimes B) \qquad A \wedge B := \frac{(p+q)!}{p!q!} \operatorname{Sym}^{-}(A \otimes B)$$

$$\boldsymbol{u} \wedge \boldsymbol{v} = \frac{1}{2}(\boldsymbol{u} \otimes \boldsymbol{v} - \boldsymbol{v} \otimes \boldsymbol{u}) \qquad \boldsymbol{u} \wedge \boldsymbol{v} = \boldsymbol{u} \otimes \boldsymbol{v} - \boldsymbol{v} \otimes \boldsymbol{u}$$

Table 2.1.: Different embeddings of $\land V$ into V^{\otimes} . We employ the Kobayashi–Nomizu convention as this is coincides with the wedge product of geometric algebra. The Spivak convention is dominant for exterior differential forms in physics.

2.2.2. Exterior forms

The exterior algebra is most frequently encountered by physicists as an operation on *exterior* (differential) forms, which are alternating¹⁵ multilinear maps.

We may wish to use the exterior algebra $\wedge V^*$ over the dual space of linear maps $V \to \mathbb{R}$ as a model for exterior forms. Using a basis $\{ \boldsymbol{e}^i \} \subset V^*$, any element $f \in \wedge^k V^*$ has the form $f = f_{i_1 \cdots i_k} \boldsymbol{e}^{i_1} \wedge \cdots \wedge \boldsymbol{e}^{i_k}$, and each component acts on $\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k \in V^{\otimes k}$ as

$$\begin{split} (\boldsymbol{e}^{i_1} \wedge \cdots \wedge \boldsymbol{e}^{i_k}) (\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k) &= \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{\sigma} \boldsymbol{e}^{i_{\sigma(1)}} (\boldsymbol{u}_1) \cdots \boldsymbol{e}^{i_{\sigma(k)}} (\boldsymbol{u}_k) \\ &= \frac{1}{k!} \det \bigl[\boldsymbol{e}^{i_m} (\boldsymbol{u}_n) \bigr]_{mn}. \end{split} \tag{2.5}$$

However, this differs from the standard definition of exterior forms in two important ways:

15 An ALTERNATING linear map is one which changes sign upon transposition of any pair of arguments.

- 1. In eq. (2.5), the dual vectors $\boldsymbol{e}^i \in V^*$ are permuted while the order of the arguments \boldsymbol{u}_i are preserved; but for standard exterior forms, the opposite is true. This prevents the proper extension of $\wedge V^*$ to non-Abelian vector-valued forms, where the values $\boldsymbol{e}^i(\boldsymbol{u}_j)$ may not commute.
- 2. Trivially, we insist on the Kobayashi—Nomizu convention of normalisation factor for $\wedge V^*$; but the Spivak convention for exterior forms is much more standard in physics.

Thus, we define exterior forms separately from the exterior algebra.

Definition 10. For a vector space V over \mathbb{F} , a k-form $\varphi \in \Omega^k(V)$ is an alternating multilinear map $\varphi: V^{\otimes k} \to \mathbb{F}$. For another vector space A, an A-valued k-form $\varphi \in \Omega^k(V,A)$ is such a map $\varphi: V^{\otimes k} \to A$ with codomain A.

The evaluation of a form is denoted $\varphi(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k)$ or $\varphi(\boldsymbol{u}_1, \dots, \boldsymbol{u}_k)$, and the wedge product of a p-form φ and q-form ϕ is defined (in the Spivak convention)

$$\varphi \wedge \phi = \frac{(p+q)!}{p!q!} (\varphi \otimes \phi) \circ \operatorname{Sym}^{-}.$$
 (2.6)

Explicitly, eq. (2.6) acts to antisymmetrise arguments. To see this, choose a basis $\{dx^{\mu}\}$ of $\Omega(V)$, and compare to eq. (2.5),

$$\begin{split} (\mathrm{d} x^{\mu_1} \wedge \cdots \wedge \mathrm{d} x^{\mu_k}) (\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k) &= \sum_{\sigma \in S_k} (-1)^{\sigma} \mathrm{d} x^{\mu_1} (\boldsymbol{u}_{\sigma(1)}) \cdots \mathrm{d} x^{\mu_k} (\boldsymbol{u}_{\sigma(k)}) \\ &= \det [\mathrm{d} x^{\mu_m} (\boldsymbol{u}_n)]_{mn}. \end{split}$$

If $\varphi, \phi \in \Omega(V, A)$ are A-valued forms, where A is equipped with a bilinear product $\circledast: A \times A \to A$, then scalar multiplication may be replaced by \circledast so that

$$(\varphi \wedge \phi)(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k) = \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_p) \circledast \phi(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_q).$$

The product \circledast need not be commutative nor associative; in particular, we may have Lie algebra–valued forms. For example, if $\varphi, \phi \in \Omega^1(V, \mathfrak{g})$ are Lie algebra–valued, then

$$(\varphi \wedge \phi)(\boldsymbol{u}, \boldsymbol{v}) = [\varphi(\boldsymbol{u}), \phi(\boldsymbol{v})] - [\varphi(\boldsymbol{v}), \phi(\boldsymbol{u})],$$

where $[\ ,\]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$ is the Lie bracket. Note that this implies that $\varphi\wedge\varphi$ does not necessarily vanish for non-Abelian forms.¹⁶

¹⁶ E.g., in the case above we have $(\varphi \wedge \varphi)(\boldsymbol{u}, \boldsymbol{v}) =$

2.3. The Metric: Length and Angle

The tensor and exterior algebras considered so far are build from a vector space V alone. Notions of length and angle are central to geometry, but are not intrinsic to a vector space — additional structure must be provided.

17 a.k.a. an inner product, or symmetric bilinear form **Definition 11.** A METRIC ¹⁷ is a function $\eta: V \times V \to \mathbb{F}$, often written $\eta(\boldsymbol{u}, \boldsymbol{v}) \equiv \langle \boldsymbol{u}, \boldsymbol{v} \rangle$ which satisfies

- symmetry, $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle$; and
- linearity, $\langle \alpha \boldsymbol{u} + \beta \boldsymbol{v}, \boldsymbol{w} \rangle = \alpha \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \beta \langle \boldsymbol{v}, \boldsymbol{w} \rangle$ for $\alpha, \beta \in \mathbb{F}$.

Linearity in either argument implies linearity in the other by symmetry, so η is bilinear. A metric is non-degenerate if $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$ for all \boldsymbol{u} implies that \boldsymbol{v} is zero. With respect to a basis $\{\boldsymbol{e}_i\}$ of V, the metric components $\eta_{ij} = \langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle$ are defined. Non-degeneracy means that $\det \eta \neq 0$ when viewing $\eta = [\eta_{ij}]$ as a matrix, and in this case the matrix inverse η^{ij} is also defined and satisfies $\eta^{ik}\eta_{kj} = \delta^i_j$.

A vector space V together with a metric η is called an inner product space (V,η). Alternatively, instead of a metric, an inner product space may be constructed with a quadratic form:

Definition 12. A QUADRATIC FORM is a function $q:V \to \mathbb{F}$ satisfying

- $q(\lambda v) = \lambda^2 q(v)$ for all $\lambda \in \mathbb{F}$; and
- the requirement that the Polarization of q,

$$(\boldsymbol{u},\boldsymbol{v}) \mapsto q(\boldsymbol{u}+\boldsymbol{v}) - q(\boldsymbol{u}) - q(\boldsymbol{v}),$$

is bilinear.

To any quadratic form q there is a unique associated bilinear form, which is *compatible* in the sense that $q(\mathbf{u}) = \langle \mathbf{u}, \mathbf{u} \rangle$. It is recovered¹⁸ by the *polarization identity*

$$\langle \boldsymbol{u},\boldsymbol{v}\rangle = \frac{1}{2} \big(q(\boldsymbol{u}+\boldsymbol{v}) - q(\boldsymbol{u}) - q(\boldsymbol{v}) \big).$$

The prescription of either η or q is therefore equivalent — but the notion of a metric is more common in physics, whereas the mathematical viewpoint often starts with a quadratic form.

 18 Except, of course, if the characteristic of \mathbb{F} is two. We only consider fields of characteristic zero.

Covectors and dual bases

The dual space $V^* := \{f : V \to \mathbb{F} \mid f \text{ linear}\}$ of a vector space consists of DUAL VECTORS or COVECTORS, which are linear maps from V into its underlying field. Convention dictates that components of vectors be written superscript, $\boldsymbol{u} = u^i \boldsymbol{e}_i \in V$, and covectors subscript, $\varphi = \varphi_i \boldsymbol{e}^i \in V^*$, for bases $\{\boldsymbol{e}_i\} \subset V$ and $\{\boldsymbol{e}^i\} \subset V^*$.

A metric η on V defines an isomorphism between itself and its dual space. Collectively known as the Musical Isomorphisms, the map $\flat:V\to V^*$ and its inverse $\sharp:V^*\to V$ are defined by

$$m{u}^{lat}(m{v}) = \langle m{u}, m{v}
angle \quad ext{and} \quad \left\langle arphi^{\sharp}, m{u}
ight
angle = arphi(m{u})$$

for $u, v \in V$ and $\varphi \in V^*$. The names become justified when working with a basis; the relations

$$(oldsymbol{u}^{lat})_i = \eta_{ij} oldsymbol{u}^j \quad ext{and} \quad (arphi^{\sharp})^i = \eta^{ij} arphi_j$$

show that b lowers indices, while # raises them.

The basis $\{e_i\}$ also defines a dual basis $\{e^i\} \subset V^*$ of V via the metric by $e^i := \eta^{ij} e^\flat_j$. Note that basis vectors and covectors defined in this way do not exist in the same vector space, but are related by their evaluation on one another via $e^i(e_j) = \delta^i_j$. In some contexts, given a basis $\{e_i\}$ of V, we will define a dual basis $\{e^i\} \subset V$ (not in V^*). By this we mean the dual basis vectors are instead defined as $e^i := \eta^{ij}e_j$, relating to the non-dual basis vectors via $\langle e^i, e_j \rangle = \delta^i_j$. We use both senses of dual basis, but the distinction can often be safely ignored.

2.3.1. Metrical exterior algebra

In an exterior algebra $\wedge V$ with a metric defined on V, there is an induced metric on k-vectors defined by

$$\begin{split} \langle \boldsymbol{u}_1 \wedge \cdots \wedge \boldsymbol{u}_k, \boldsymbol{v}_1 \wedge \cdots \wedge \boldsymbol{v}_k \rangle &= \sum_{\sigma \in S_k} (-1)^\sigma \big\langle \boldsymbol{u}_1, \boldsymbol{v}_{\sigma(1)} \big\rangle \cdots \big\langle \boldsymbol{u}_k, \boldsymbol{v}_{\sigma(k)} \big\rangle \\ &= \det[\langle \boldsymbol{u}_m, \boldsymbol{u}_n \rangle]_{mn}. \end{split}$$

In particular, a metric on $\wedge V$ defines a magnitude for pseudoscalars.

Definition 13. Let V be an n-dimensional vector space with a metric. The VOLUME ELEMENT \mathbb{I} of the metrical exterior algebra $\wedge V$ is the unique (up to sign) n-vector satisfying $\langle \mathbb{I}, \mathbb{I} \rangle = 1$.

Chapter 2. Preliminary Theory

A choice of sign for the volume element defines an orientation. Given an ordered orthonormal basis $\{e_i\}$ with $\langle e_i, e_i \rangle = \pm 1$, the basis is called right-handed if $e_1 \wedge \cdots \wedge e_n = \mathbb{I}$, and left-handed otherwise.

Hodge duality

A useful duality operation can be defined in an exterior algebra $\wedge V$ with a metric on V.

Definition 14. Let $\wedge V$ be a metrical exterior algebra with base dimension n and volume element \mathbb{I} . The HODGE DUAL is the unique operator satisfying

$$A \wedge \star B = \langle A, B \rangle \, \mathbb{I}$$

for any k-vectors $A, B \in \wedge^k V$.

The Hodge dual $\star: \wedge^k V \to \wedge^{n-k} V$ associates fixed-grade subspaces of the same dimension; in particular, $\star 1 = \mathbb{I}$.

Chapter 3.

The Geometric Algebra

In chapter 2, we defined the metric-independent exterior algebra of multivectors over a vector space V. Metrical operations can be achieved by introducing the Hodge dual (of section 2.3.1) and tacking onto $\wedge V$. The geometric algebra is a generalisation of $\wedge V$ which has the metric (and its concomitant notions of orientation and duality) directly built-in.

Geometric algebras are also known as real Clifford algebras Cl(V,q) after their first inventor. Especially in mathematics, Clifford algebras are defined in terms of a quadratic form q, and the vector space V is usually complex. However, in physics, where V is taken to be real and a metric η is usually supplied instead of q, the name "geometric algebra" is preferred.¹⁹

Construction as a quotient algebra

Informally put, the geometric algebra is obtained by enforcing the single rule

$$\boldsymbol{u}^2 = \langle \boldsymbol{u}, \boldsymbol{u} \rangle \tag{3.1}$$

for any vector u, along with the associative algebra axioms of definition 1. The rich algebraic structure which follows from this is remarkable. Formally, we may give the geometric algebra as a quotient, just like our presentation of $\wedge V$.

Definition 15. Let V be a finite-dimensional real vector space with metric. The Geometric algebra over V is

$$\mathcal{G}(V,\eta) \coloneqq V^{\otimes}/\{\{\boldsymbol{u}\otimes\boldsymbol{u} - \langle\boldsymbol{u},\boldsymbol{u}\rangle\}\}\ .$$

The newer name was coined by David Hestenes in the 1970s, who popularised Clifford algebra for physics [9, 10].

Chapter 3. The Geometric Algebra

The ideal defines the congruence generated by $u \otimes u \sim \langle u, u \rangle$ for any vector $u \in V$, encoding eq. (3.1). This uniquely defines the associative (but not generally commutative) geometric product which we denote by juxtaposition.

As 2^n -dimensional vector spaces, $\mathcal{G}(V,\eta)$ and $\wedge V$ are isomorphic, each with a $\binom{n}{k}$ -dimensional subspace for each grade k. Denoting the k-grade subspace $\mathcal{G}_k(V, \eta)$,

$$\mathcal{G}(V,\eta) = \bigoplus_{k=0}^{\infty} \mathcal{G}_k(V,\eta).$$

If the inner product is completely degenerate (i.e., $\langle m{u}, m{v} \rangle_0 = 0$ for all vectors), then there is an algebra isomorphism $\mathcal{G}(V,0) \cong \wedge V$ — so the geometric algebra is more general. A qualitative difference between $\mathcal{G}(V,\eta)$ and $\wedge V$ is that, while inhomogeneous multivectors find little use in exterior algebra, 20 such elements have the significant geometrical role as reflections and rotations in $\mathcal{G}(V, \eta)$.

Note that $\mathcal{G}(V, \eta)$ is not \mathbb{Z} -graded, since it is a quotient by *inhomo*geneous elements $m{u}\otimes m{u} - \langle m{u}, m{u} \rangle \in V^{\otimes 2} \oplus V^{\otimes 0}$; therefore the geometric product of a p-vector and a q-vector is not generally a (p+q)vector. However, the congruence is homogeneous with respect to the \mathbb{Z}_2 -grading, so $\mathcal{G}(V,\eta)$ is \mathbb{Z}_2 -graded. This shows that the algebra separates into 'even' and 'odd' subspaces

$$\mathcal{G}(V,\eta) = \mathcal{G}_+(V,\eta) \oplus \mathcal{G}_-(V,\eta) \quad \text{where} \quad \begin{cases} \mathcal{G}_+(V,\eta) = \bigoplus_{k=0}^\infty \mathcal{G}_{2k}(V,\eta) \\ \mathcal{G}_+(V,\eta) = \bigoplus_{k=0}^\infty \mathcal{G}_{2k+1}(V,\eta) \end{cases}$$

and also implies that $\mathcal{G}_+(V,\eta)$ is closed under the geometric product, forming the EVEN SUBALGEBRA.

The geometric product of vectors

By expanding $(u + v)^2 = \langle u + v, u + v \rangle$, it follows²¹ that

$$\langle oldsymbol{u}, oldsymbol{v}
angle = rac{1}{2} (oldsymbol{u} oldsymbol{v} + oldsymbol{v} oldsymbol{u}).$$

We recognise this as the symmetrised product of two vectors. The remaining antisymmetric part coincides with the alternating or wedge product familiar from exterior algebra

$$\boldsymbol{u} \wedge \boldsymbol{v} = \frac{1}{2}(\boldsymbol{u}\boldsymbol{v} - \boldsymbol{v}\boldsymbol{u}).$$

In fact, some authors [11] leave sums of terms of differing grade undefined.

 $^{21} u^2 + vu + uv + v^2 =$ $\langle \boldsymbol{u}, \boldsymbol{u} \rangle + 2 \langle \boldsymbol{u}, \boldsymbol{v} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle$ This is a 2-vector, or bivector, in $\mathcal{G}_2(V,\eta)$. Thus, the geometric product on vectors is

$$uv = \langle u, v \rangle + u \wedge v,$$

and some important features are immediate:

- Parallel vectors commute, and vice versa. If $\mathbf{u} = \lambda \mathbf{v}$, then $\mathbf{u} \wedge \mathbf{v} = 0$ and $\mathbf{u}\mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v}\mathbf{u}$.
- Orthogonal vectors anti-commute, and vice versa. If $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$, then $\boldsymbol{u}\boldsymbol{v} = \boldsymbol{u} \wedge \boldsymbol{v} = -\boldsymbol{v} \wedge \boldsymbol{u} = -\boldsymbol{v}\boldsymbol{u}$.
- Vectors are invertible under the geometric product. If u is a vector for which the scalar u^2 is non-zero, then $u^{-1} = u/u^2$.
- Geometric multiplication produces objects of mixed grade. The product uv has a scalar part $\langle u, v \rangle$ and a bivector part $u \wedge v$.

Higher-grade elements

{TO DO: }

Fundamental algebra automorphisms

Operations such complex conjugation $\overline{AB} = \overline{A}\,\overline{B}$ or matrix transposition $(AB)^\mathsf{T} = B^\mathsf{T}A^\mathsf{T}$ are useful because they preserve or reverse multiplication. Linear functions with this property are called algebra automorphisms or antiautomorphisms, respectively. The geometric algebra possesses this (anti)automorphism operations.

Isometries of (V,η) are linear functions $f:V\to V$ which preserve the metric, so that $\langle f(\boldsymbol{u}),f(\boldsymbol{v})\rangle=\langle \boldsymbol{u},\boldsymbol{v}\rangle$ for any $\boldsymbol{u},\boldsymbol{v}\in V$. Vector spaces always possess the involution isometry $\iota(\boldsymbol{u})=-\boldsymbol{u}$, as well as the trivial isometry. An isometry extends uniquely to an algebra (anti)automorphism by defining f(AB)=f(A)f(B) or f(AB)=f(B)f(A). Thus, by extending the two fundamental isometries of (V,η) in the two possible ways, we obtain four fundamental (anti)automorphisms of $\mathcal{G}(V,\eta)$.

Definition 16.

• Reversion \dagger is the identity map on vectors $\boldsymbol{u}^{\dagger} = \boldsymbol{u}$ extended to general multivectors by the rule $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

• Grade involution ι is the extension of the involution $\iota(\mathbf{u}) = -\mathbf{u}$ to general multivectors by the rule $\iota(AB) = \iota(A)\iota(B)$.

If $A\in \mathcal{G}_k(V,\eta)$ is a $k\text{-vector, then }\iota(A)=(-1)^kA$ and $A^\dagger=s_kA$ where

$$s_k = (-1)^{\frac{(k-1)k}{2}} \tag{3.2}$$

is the sign of the reverse permutation on k symbols.

Reversion and grade involution together generate the four fundamental automorphisms

$$\begin{array}{c|cccc} id & \iota & \text{automorphisms} \\ \hline \dagger & \iota \circ \dagger & \text{anti-automorphisms} \end{array}$$

 $\iota \circ \dagger$ is sometimes referred to as the Clifford Conjugate

which form a group isomorphic to \mathbb{Z}_2^2 under composition.

These operations are very useful in practice. In particular, the following result follows easily from reasoning about grades.

Lemma 4. If $A \in \mathcal{G}_k(V, \eta)$ is a k-vector, then A^2 is a $4\mathbb{N}$ -multivector, i.e., a sum of blades of grade $\{0, 4, 8, \dots\}$ only.

Proof. The multivector A^2 is its own reverse, since $(A^2)^\dagger = (A^\dagger)^2 = (\pm A)^2 = A^2$, and hence has parts of grade $\{4n,4n+1 \mid n \in \mathbb{N}\}$. Similarly, A^2 is self-involutive, since $\iota(A^2) = \iota(A)^2 = (\pm A)^2 = A^2$. It is thus of even grade, leaving the possible grades $\{0,4,8,\ldots\}$.

3.1. Relations to Other Algebras

An efficient way to become familiar with geometric algebras is to study their relations to other common algebras encountered in physics.

{to do: Include \mathbb{C} , \mathbb{H} and exterior forms!}

3.2. Rotors and the Associated Lie Groups

There is a consistent pattern in the algebra isomorphisms listed above. Note how the complex numbers $\mathbb C$ are fit for describing $\mathrm{SO}(2)$ rotations in the plane, and the quaternions $\mathbb H$ describe $\mathrm{SO}(3)$ rotations in $\mathbb R^3$. Common to both the respective isomorphisms with $\mathcal G_+(2)$ and $\mathcal G_+(3)$ is the identification of each "imaginary unit" in $\mathbb C$ or $\mathbb H$ with a *unit bivector* in $\mathcal G(n)$.

- In 2d, there is one linearly independent bivector, e_1e_2 , and one imaginary unit, i.
- In 3d, there are dim $\mathcal{G}_2(3)=\binom{3}{2}=3$ such bivectors, and so three imaginary units $\left\{\hat{\pmb{\imath}},\hat{\pmb{\jmath}},\hat{\pmb{k}}\right\}$ are needed.
- In (1+3)d, we have dim $\mathcal{G}_2(1,3)=\binom{4}{2}=6$, corresponding to three 'spacelike' $\left\{\hat{\pmb{\imath}},\hat{\pmb{\jmath}},\hat{\pmb{k}}\right\}$ and three 'timelike' $\left\{i\hat{\pmb{\imath}},i\hat{\pmb{\jmath}},i\hat{\pmb{k}}\right\}$ units of $\mathbb{C}\otimes\mathbb{H}$.

The interpretation of a bivector is clear: it generates a rotation through the oriented plane which it spans.

To see how bivectors act as rotations, observe that rotations in the \mathbb{C} -plane may be described as mappings $z\mapsto e^{\theta i}z$, while \mathbb{R}^3 rotations are described in \mathbb{H} using a double-sided transformation law, $u\mapsto e^{\theta \hat{n}/2}ue^{-\theta \hat{n}/2}$, where $\hat{n}\in \mathrm{span}\left\{\hat{\imath},\hat{\jmath},\hat{k}\right\}$ is a unit quaternion defining the plane of rotation. Due to the commutativity of \mathbb{C} , the double-sided transformation law is actually general to both \mathbb{C} and \mathbb{H} .

Similarly, rotations in a geometric algebra are described as

$$u \mapsto e^{-\theta \hat{b}/2} u e^{\theta \hat{b}/2}$$
.

where $\hat{b}\in\mathcal{G}_2(V,\eta)$ is a unit bivector. Multivectors of the form $R=e^\sigma$ for $\sigma\in\mathcal{G}_2(V,\eta)$ are called *rotors*. Immediate advantages to geometric algebra's rotor formalism are clear:

- It is general to n dimensions, and to any metric signature. Rotors describe generalised rotations, 22 depending on the metric and algebraic properties of the generating unitbivector σ . If $\sigma^2 < 0$, then e^{σ} describes a Euclidean rotation; if $\sigma^2 > 0$, then e^{σ} is a hyperbolic rotation or *Lorentz boost*.
- ²² a.k.a., proper orthogonal transformations
- Vectors are distinguished from bivectors. One of the subtler points about quaternions is their transformation properties under reflection. A quaternion 'vector' v = xî + yĵ + zk reflects through the origin as v → -v, but a quaternion 'rotor' of the same value is invariant vectors and pseudovectors are confused with the same kind of object. Not so in the geometric algebra: vectors are vectors in G₁, and R³ pseudovectors are bivectors in G₂. The price to

Chapter 3. The Geometric Algebra

pay for the introduction of more objects is not a price but a benefit: the generalisation to arbitrary dimensions is immediate and the geometric role of objects becomes clear. ²³

²³ See [5, 9, 12] for similarly impassioned testaments to the elegance of geometric algebra.

²⁴ This is the Cartan–Dieudonné theorem [13].

3.2.1. The rotor groups

We will now see more rigorously how the rotor formalism arises. An orthogonal transformation in n dimensions may be achieved by the composition of at most n reflections. A reflection may be described in the geometric algebra by conjugation with an invertible vector. For instance, the linear map

$$A \mapsto -vAv^{-1} \tag{3.3}$$

reflects the multivector A along the vector v, that is, across the hyperplane with normal v. By composing reflections of this form, any orthogonal transformation may be built, acting on multivectors as

$$A \mapsto \pm RAR^{-1} \tag{3.4}$$

for some $R = v_1 v_2 \cdots v_3$, where the sign is positive for an even number of reflections, and negative for odd.

Scaling the axis of reflection ${\boldsymbol v}$ by a non-zero scalar λ does not affect the reflection map (3.3), since ${\boldsymbol v}\mapsto \lambda {\boldsymbol v}$ is cancelled out by ${\boldsymbol v}^{-1}\mapsto \lambda^{-1}{\boldsymbol v}^{-1}$. Therefore, a more direct correspondence exists between reflections and normalised vectors $\hat{{\boldsymbol v}}^2=\pm 1$ (although there still remains an overall ambiguity in sign). For an orthogonal transformation built using normalised vectors,

$$R^{-1} = \hat{\boldsymbol{v}}_3^{-1} \cdots \hat{\boldsymbol{v}}_2^{-1} \hat{\boldsymbol{v}}_1^{-1} = \pm R^{\dagger}$$

since $\hat{v}^{-1} = \pm \hat{v}$, and hence eq. (3.4) may be written with the reversion instead of inversion:

$$A \mapsto \pm RAR^{\dagger}$$
 (3.5)

All such elements $R^{-1}=\pm R^{\dagger}$ taken together form a group under the geometric product. This is called the *pin* group:

$$\mathrm{Pin}(p,q) \coloneqq \left\{ R \in \mathcal{G}(p,q) \mid RR^\dagger = \pm 1 \right\}$$

There are two "pinors" for each orthogonal transformation, since +R and -R give the same map (3.5). Thus, the pin group forms a double cover of the orthogonal group O(p,q).

Furthermore, the even-grade elements of Pin(p, q) form a subgroup, called the *spin* group:

$$\mathrm{Spin}(p,q) \coloneqq \left\{ R \in \mathcal{G}_+(p,q) \mid RR^\dagger = \pm 1 \right\}$$

This forms a double cover of SO(p, q).

Finally, the additional requirement that $RR^\dagger=1$ defines the restricted spinor group, or the *rotor* group:

$$\mathrm{Spin}^+(p,q) \coloneqq \left\{ R \in \mathcal{G}_+(p,q) \mid RR^\dagger = 1 \right\}$$

The rotor group is a double cover of the restricted special orthogonal group $SO^+(p,q)$. Except for the degenerate case of $Spin^+(1,1)$, the rotor group is simply connected to the identity.

$\begin{array}{cccc} Spin^+ \subseteq Spin \subseteq Pin \\ \downarrow & \downarrow & \downarrow \\ SO^+ \subseteq SO \subseteq O \end{array}$

Figure 3.1.: Relationships between Lie groups associated with a geometric algebra. An arrow $a \rightarrow b$ signifies that a is a double-cover of b.

3.2.2. The bivector subalgebra

The multivector commutator product

$$A \times B := \frac{1}{2}(AB - BA) \tag{3.6}$$

forms a Lie bracket on the space of bivectors \mathcal{G}_2 .

Proof. The commutator product $A\mapsto A\times\sigma$ with a bivector σ is a grade-preserving operation. If $A=\left\langle A\right\rangle _{k}$ then $A\sigma$ and σA are $\{k-2,k,k+2\}$ -multivectors. The $k\pm2$ parts are

$$\left\langle A\times\sigma\right\rangle _{k\pm2}=\frac{1}{2}\Big(\left\langle A\sigma\right\rangle _{k\pm2}-\left\langle \sigma A\right\rangle _{k\pm2}\Big).$$

However, $\langle \sigma A \rangle_{k\pm 2} = s_{k\pm 2} \left\langle A^\dagger \sigma^\dagger \right\rangle_{k\pm 2} = -s_{k\pm 2} s_k \left\langle A \sigma \right\rangle_{k\pm 2}$ and the reversion signs satisfy $s_{k\pm 2} s_k = -1$ for any k. Hence, $\left\langle A \times \sigma \right\rangle_{k\pm 2} = 0$, leaving only the grade k part, $A \times \sigma = \left\langle A \times \sigma \right\rangle_{k}$. Clearly eq. (3.6) is bilinear and satisfies the Jacobi identity, so (\mathcal{G}_2, \times) is closed and forms a Lie algebra.

²⁵ Recall from eq. (3.2) that $A^{\dagger} = s_k A$ for a k-vector where $s_k = (-1)^{\frac{(k-1)k}{2}}$.

Because the even subalgebra $\mathcal{G}_+\supset\mathcal{G}_2$ is closed under the geometric product, the exponential $e^\sigma=1+\sigma+\frac{1}{2}\sigma^2+\cdots$ of a bivector is an even

Chapter 3. The Geometric Algebra

multivector. Furthermore, note that the reverse $(e^{\sigma})^{\dagger}=e^{\sigma^{\dagger}}=e^{-\sigma}$ is the inverse, and also that e^{σ} is continuously connected to the identity by the path $e^{\lambda\sigma}$ for $\lambda\in[0,1]$. Therefore, $e^{\sigma}\in {\rm Spin}^+$ is a rotor, and we have a Lie algebra–Lie group correspondence shown in fig. 3.2. Thus, both the rotor groups and their Lie algebras are directly represented within the mother algebra $\mathcal{G}(p,q)$.

$$\begin{array}{ccc} \operatorname{Spin}^+(p,q) & \twoheadrightarrow & \operatorname{SO}^+(p,q) \\ & \stackrel{\leftarrow}{\exp} & & \stackrel{\leftarrow}{\exp} \\ & & & | & | \\ \mathcal{G}_2(p,q) & \cong & \mathfrak{so}(p,q) \end{array}$$

Figure 3.2.: The Lie algebras $\mathfrak{so}(p,q)$ and $\mathcal{G}_2(p,q)$ under \times are isomorphic, and are associated respectively to $\mathrm{SO}^+(p,q)$ and its universal double cover $\mathrm{Spin}^+(p,q)$.

Chapter 4.

The Algebra of Spacetime

Special relativity is geometry with a Lorentzian signature. The spacetime algebra (STA) is the name given to the geometric algebra of a Minkowski vector space, $\mathcal{G}(\mathbb{R}^4,\eta)\equiv\mathcal{G}(1,3)$, where $\eta=\pm\mathrm{diag}(-1,+1,+1,+1)$. Other introductory material on the STA can be found in [14–16].

We denote the standard vector basis by $\{\gamma_{\mu}\}$, where Greek indices run over $\{0,1,2,3\}$. This is a deliberate allusion to the Dirac γ -matrices, whose algebra is isomorphic to the STA — however, the $\gamma_{\mu} \in \mathbb{R}^{1+3}$ of STA are real, genuine spacetime vectors. A basis for the entire 2^4 -dimensional STA is then

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
$$\{1\} \cup \{\gamma_0, \gamma_i\} \cup \{\gamma_0 \gamma_i, \gamma_j \gamma_k\} \cup \{\gamma_0 \gamma_j \gamma_k, \gamma_1 \gamma_2 \gamma_3\} \cup \{\mathbb{I} := \gamma_0 \gamma_1 \gamma_2 \gamma_3\}$$

where Latin indices range over spacelike components, $\{1,2,3\}$. Blades shown on the left-hand side of $\{\ ,\ \}$ are called **TIMELIKE**, and those in on right-hand side spacelike.

Chapter 5.

Calculus in Flat Space(time)

{TO DO:

- 1. Exterior derivative and vector derivative
- 2. Stokes' theorem and the GA equivalent
- 3. Maxwell's equations

}

5.1. Integration

5.1.1. Exterior Calculus

Theorem 3 (Stokes' theorem in \mathbb{R}^n). If $R \subseteq \mathbb{R}^n$ is a compact k-dimensional hypersurface with boundary ∂R , then a smooth differential form $\omega \in \Omega^{k-1}(R)$ satisfies

$$\int_{R} d\omega = \int_{\partial R} \omega. \tag{5.1}$$

Proof. Since R is a k-dimensional region with boundary, every point $x \in R$ has a neighbourhood diffeomorphic to a neighbourhood of the origin in either \mathbb{R}^k or $H^k := [0,\infty) \oplus \mathbb{R}^{k-1}$, depending on whether x is an interior point or a boundary point, respectively. Let $\{U_i\}$ be a cover of R consisting of such neighbourhoods. Since R is compact, we may assume $\bigcup_{i=1}^N \{U_i\} = R$ to be a finite covering. Thus, we have finitely maps $h_i: U_i \to X$ where X is either \mathbb{R}^k or the half-space H^k , where $U_i \cong h_i(U_i)$ are diffeomorphic.

Finally, let $\{\phi_i:R\to[0,1]\}$ be a partition of unity subordinate to $\{U_i\}$, so that $\{x\in R\mid\phi_i(x)>0\}\subseteq U_i$ and $\omega=\sum_{i=1}^N\phi_i\omega$. We need only prove the equality (5.1) for each $\omega_i:=\phi_i\omega$, and the full result follows be linearity.

With respect to the canonical coordinates of X, the (k-1)-form $h_i^*\omega_i$ can be written

$$h_i^*\omega_i = \sum_{j=1}^k f_j (-1)^{j-1} \mathrm{d} x^{1\cdots \hat{j}\cdots k}$$

using the multi-index notation $\mathrm{d} x^{i_1\cdots i_k} \equiv \mathrm{d} x^{i_1} \wedge \cdots \wedge \mathrm{d} x^{i_k}$, where the hat denotes an omitted term. The factor of $(-1)^{j-1}$ gives the (k-1)-form the boundary orientation induced by the volume form $\mathrm{d} x^{1\cdots k}$ for convenience. Since pullbacks commute with d,

$$h^*\mathrm{d}\omega_i=\mathrm{d}(h_i^*\omega_i)=\sum_{j=1}^k\frac{\partial f_j}{\partial x^j}\mathrm{d}x^{1\cdots n}.$$

There are then two cases to consider.

• Interior case. If $h_i:U_i\to\mathbb{R}^k$, then the right-hand side of eq. (5.1) vanishes because ω_i is zero outside the neighbourhood $U_i\subset R$ which nowhere meets the boundary ∂R .

$$\int_{\partial R} \omega_i = \int_{\partial U_i} \omega_i = \int_{\varnothing} \omega_i = 0$$

The left-hand side evaluates to

$$\begin{split} \int_{R} \mathrm{d}\omega_{i} &= \int_{X} \mathrm{d}(h_{i}^{*}\omega_{i}) = \int_{\mathbb{R}^{k}} \sum_{j=1}^{k} \frac{\partial f_{j}}{\partial x^{j}} \mathrm{d}x^{1\cdots n} \\ &= \underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^{k} \frac{\partial f_{j}}{\partial x^{j}} dx^{1} \cdots dx^{k}}_{k} \\ &= \underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^{k} f_{j} \bigg|_{x^{j} = -\infty}^{+\infty} (-1)^{j-1} dx^{1} \cdots \widehat{dx^{j}} \cdots dx^{k} = 0, \end{split}$$

which vanishes because $h_i^*\omega_i$, and hence the f_j , vanish outside the neighbourhood $h_i(U_i)\subset\mathbb{R}^k$.

Chapter 5. Calculus in Flat Space(time)

• Boundary case. If $h_i:U_i\to H^k$, then the boundary $\partial U_i\subset\partial R$ is mapped onto the hyperplane $\partial H^k=\{(0,x^2,\dots,x^k)\ \big|\ x^j\in\mathbb{R}\}$. Thus, $dx^1=0$ on this boundary, and the right-hand side of eq. (5.1) becomes

$$\begin{split} \int_{\partial R} \omega_i &= \int_{\partial U_i} h_i^* \omega_i = -\int_{\mathbb{R}^{k-1}} f_1 dx^2 \cdots dx^k \\ &= -\underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}}_{k-1} f_1(0, x^2, \dots, x^k) dx^2 \cdots dx^k. \end{split}$$

The factor of -1 comes from the induced orientation of the boundary ∂H^k , which is outward-facing, so in the *negative* x^1 direction. For the left-hand side of eq. (5.1),

$$\int_R \mathrm{d}\omega_i = \int_{H^k} h_i^* \mathrm{d}\omega_i = \int_0^\infty \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^k \frac{\partial f_j}{\partial x^j} dx^1 \cdots dx^k$$

All terms $\frac{\partial f_j}{\partial x^j} dx^j$ in the sum for j>1 integrate to boundary terms $x_j \to \pm \infty$ where f_j vanishes. This leaves the single term from the integration of dx^1 ,

$$= -\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_1 \Big|_{x^1=0}^{\infty} dx^2 k \cdots k dx$$

Thus, we have equality for all ω_i , so

$$\int_R \mathrm{d}\omega = \sum_{i=1}^N \int_R \mathrm{d}\omega_i = \sum_{i=1}^N \int_{\partial R} \omega_i = \int_{\partial R} \omega$$

by linearity. \Box

Part II.

General Relativity and Manifold Geometry

Chapter 6.

The Problem: Curvature

Here we only give a pragmatic definition of a manifold as a space which locally looks like \mathbb{R}^n upon which one can do calculus. (More rigour can be found in the first chapter of [17].)

²⁶ Here, a 'nice' topological space is:

- 1. Hausdorff, meaning each distinct pair of points have mutually disjoint neighbourhoods (so it is "not too small"); and
- 2. second-countable, meaning there exists a countable base (so it is "not too large").

Definition 17. A manifold \mathcal{M} of dimension n is a nice²⁶ topological space which is locally Euclidean, meaning for every $x \in \mathcal{M}$ there exist neighbourhoods $x \in \mathcal{U} \subseteq \mathcal{M}$ and subsets $U \subseteq \mathbb{R}^n$ with a homeomorphism (continuous bijection) $\mathcal{U} \hookrightarrow U$ between them.

A smooth manifold is a manifold with the stricter requirement that $\mathcal{U} \hookrightarrow U$ be a diffeomorphism (differentiable bijection).

The definitions that follow take place in the category of manifolds. Furthermore, if the qualifier "smooth" is present, then the objects exist in the category of *smooth manifolds* in which all maps are smooth (i.e., infinitely differentiable). This means all maps between manifolds are *assumed to be continuous*.

Essentially, definition 17 is designed to guarantee that well-behaved local coordinates always exist.

Definition 18. Let \mathcal{M} be an n-dimensional manifold. A (GLOBAL) COORDINATE CHART $\{x^i\} \equiv \{x^1, \dots, x^n\}$ of \mathcal{M} is a set of scalar fields $x^i : \mathcal{M} \to \mathbb{R}$ such that each point in \mathcal{M} is specified uniquely by the coordinate values $(x^1, \dots, x^n) \in \mathbb{R}^n$. A local coordinate chart about a point $x \in \mathcal{M}$ is a coordinate chart of a neighbourhood of x.

We will often call a point $x \in \mathcal{M}$ by the same symbol as the local coordinates $x^i : \mathcal{M} \to \mathbb{R}$ without the index — but these objects are not interchangeable.

Chapter 7.

The Answer: Fibre Bundles

{TO DO: Treating physical things as fields} would suggest that all values are directly comparable, making expressions like $f(x) + f(y) \in A$ geometrically meaningful for different points $x, y \in \mathcal{M}$. However, an important lesson from physical theories like general relativity is that it is very often beneficial to distinguish between codomains at each point in the domain.

This can be motivated with the simple example of a fluid flowing on a sphere: The instantaneous fluid velocity at a point is a vector lying in the sphere's tangent plane at that point. If the fluid flow is given as a field $f:\mathcal{S}^2\to\mathbb{R}^2$, then any two velocity vectors exist in the "same" space, even when *geometrically* they do not (fig. 7.1). This is more than a purely philosophical point: the fluid flow's representation as a field $f:\mathcal{S}^2\to\mathbb{R}^2$ is dependent on the choice of basis, i.e., the way in which the single codomain \mathbb{R}^2 is identified with each tangent plane on the sphere. We would do better with a more geometrical representation of the vector field which is independent of any choice of basis, viewing the fluid velocities at different points as existing in different spaces.

This leads to the formulation of a tangent "bundle" $T\mathcal{S}^2$, where all the tangent planes of \mathcal{S}^2 are collected in a disjoint union forming a manifold. The vector field on the sphere now becomes a "section" of $T\mathcal{S}^2$, which is a map $f:\mathcal{S}^2\to T\mathcal{S}^2$ satisfying some conditions. The tangent bundle is a special case of a "fibre bundle", which is a manifold consisting of disjoint copies of a space (called the "fibre") taken at every point in a base manifold.

Definition 19. A FIBRE BUNDLE $F \hookrightarrow \mathcal{F} \stackrel{\pi}{\twoheadrightarrow} \mathcal{M}$ consists of

• a bulk manifold \mathcal{F} ;

Figure 7.1.: Vectors in different tangent spaces, and their basis-dependent representation as an \mathbb{R}^2 -valued field.

Chapter 7. The Answer: Fibre Bundles

- a BASE MANIFOLD \mathcal{M} ; and
- a surjection $\pi:\mathcal{F}\to\mathcal{M}$, the PROJECTION, such that
- the inverse image $F_x:=\pi^{-1}(x)$ of a base point $x\in\mathcal{M}$ is homeomorphic to the FIBRE F.

Thus, the projection $\pi:\mathcal{A}\to\mathcal{M}$ in definition 19 is required to be continuous; and in a smooth fibre bundle, the projection π is differentiable and F, \mathcal{F} and \mathcal{M} are all smooth manifolds.

Figure 7.2.: (a) A field $f: \mathcal{M} \to F$, where values at any point can be compared. (b) A fibre bundle $F \hookrightarrow \mathcal{F} \twoheadrightarrow \mathcal{M}$ with a section $f \in \Gamma(\mathcal{F})$ whose individual fibres F are labelled by base point in \mathcal{M} .

Bibliography

- [1] Einstein, A. On the electrodynamics of moving bodies. Ann. Phys., 17(10):891–921 (Jun. 1905).
- [2] Klein, F. *A comparative review of recent researches in geometry.* Bull. Amer. Math. Soc., 2(10):215–249 (1893). ISSN 0273-0979, 1088-9485. doi:10.1090/s0002-9904-1893-00147-x.
- [3] Lipschitz, R. Principes d'un calcul algébrique qui contient, comme espèces particulières, le calcul des quantités imaginaires et des quaternions:(extrait d'une lettre adressée à M. Hermite). Gauthier-Villars (1880).
- [4] Clifford, P. Applications of grassmann's extensive algebra. Am. J. Math., 1(4):350 (1878). ISSN 0002-9327. doi:10.2307/2369379.
- [5] Chappell, J. M., Iqbal, A., Hartnett, J. G. and Abbott, D. *The vector algebra war: A historical perspective.* IEEE Access, 4:1997–2004 (2016). ISSN 2169-3536. doi:10.1109/access.2016.2538262.
- [6] Gallian, J. A. Student Solutions Manual. Textbooks in mathematics. Chapman and Hall/CRC (Jun. 2021). ISBN 9781003182306. doi:10.1201/9781003182306.
- [7] Kobayashi, S. and Nomizu, K. Foundations of differential geometry, vol. 1. New York, London (1963).
- [8] Spivak, M. *A comprehensive introduction to differential geometry*, vol. 5. Publish or Perish, Incorporated (1975).
- [9] Hestenes, D. A unified language for mathematics and physics. In Clifford Algebras and Their Applications in Mathematical Physics, pp. 1–23. Springer Netherlands (1986). doi:10.1007/978-94-009-4728-3_1.
- [10] Hestenes, D. *Multivector calculus*. J. Math. Anal. Appl., 24(2):313–325 (Nov. 1968). ISSN 0022-247X. doi:10.1016/0022-247x(68)90033-4.

Bibliography

- [11] Flanders, H. *Differential Forms with Applications to the Physical Sciences*, vol. 11. Elsevier (1963). ISBN 9780122596506. doi:10.1016/s0076-5392(08)x6021-7.
- [12] Lasenby, A. N. Geometric algebra as a unifying language for physics and engineering and its use in the study of gravity. Adv. Appl. Clifford Algebras, 27(1):733–759 (Jul. 2016). ISSN 0188-7009, 1661-4909. doi:10.1007/s00006-016-0700-z.
- [13] Gallier, J. The Cartan-Dieudonné Theorem, chap. The Cartan-Dieudonné Theorem, pp. 231–280. Springer New York, New York, NY (2011). ISBN 978-1-4419-9961-0. doi:10.1007/978-1-4419-9961-0_8.
- [14] Hestenes, D. Spacetime physics with geometric algebra. Am.
 J. Phys., 71(7):691-714 (Jul. 2003). ISSN 0002-9505, 1943-2909. doi:10.1119/1.1571836.
- [15] Gull, S., Lasenby, A. and Doran, C. *Imaginary numbers are not real—The geometric algebra of spacetime*. Found Phys, 23(9):1175–1201 (Sep. 1993). ISSN 0015-9018, 1572-9516. doi:10.1007/bf01883676.
- [16] Dressel, J., Bliokh, K. Y. and Nori, F. *Spacetime algebra as a powerful tool for electromagnetism*. Phys. Rep., 589:1–71 (Aug. 2015). ISSN 0370-1573. doi:10.1016/j.physrep.2015.06.001.
- [17] Lee, J. M. *Introduction to smooth manifolds*. Grad. Texts Math. (2012). ISSN 0072-5285. doi:10.1007/978-1-4419-9982-5.