An introduction to convex methods for life science Unconstrained minimization for nonsmooth convex problems

Math et Sciences du Vivant - Université Paris-Saclay / Paris-Sud

Autumn semester 2017

http://julien.cremeriefamily.info

References

See Chapter 9 in

Convex Optimization,

Stephen Boyd and Lieve Lieven Vandenberghe https://web.stanford.edu/~boyd/cvxbook/

All slides stolen (extracted/re-arranged) from Lieve Vandenberghe, Ryan Tibshirani:

- Optimization Methods for Large-Scale Systems http://www.seas.ucla.edu/~vandenbe/ee236c/ee236c.html
- Convex Optimization: http://www.stat.cmu.edu/~ryantibs/convexopt/

Subgradients and subdifferentials

Definitions

Important Properties

Example: ℓ_1 -regularization aka Lasso

Subgradients methods

Proximal methods

Subgradients and subdifferentials

Definitions

Important Properties

Example: ℓ_1 -regularization aka Lasso

Subgradients methods

Proximal methods

Basic inequality

recall the basic inequality for differentiable convex functions:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall y \in \text{dom } f$$

- ullet the first-order approximation of f at x is a global lower bound
- $\nabla f(x)$ defines a non-vertical supporting hyperplane to $\mathbf{epi}\,f$ at (x,f(x)):

$$\left[\begin{array}{c} \nabla f(x) \\ -1 \end{array}\right]^T \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right]\right) \leq 0 \quad \forall (y,t) \in \operatorname{\mathbf{epi}} f$$

Subgradients 4-2

Subgradient

g is a **subgradient** of a convex function f at $x \in \text{dom } f$ if

$$f(y) \ge f(x) + g^T(y - x) \quad \forall y \in \text{dom } f$$

 g_1 , g_2 are subgradients at x_1 ; g_3 is a subgradient at x_2

Subdifferential

the **subdifferential** $\partial f(x)$ of f at x is the set of all subgradients:

$$\partial f(x) = \{ g \mid g^T(y - x) \le f(y) - f(x), \ \forall y \in \text{dom } f \}$$

Properties

- $\partial f(x)$ is a closed convex set (possibly empty) this follows from the definition: $\partial f(x)$ is an intersection of halfspaces
- if $x \in \mathbf{int} \ \mathrm{dom} \ f$ then $\partial f(x)$ is nonempty and bounded proof on next two pages

Proof: we show that $\partial f(x)$ is nonempty when $x \in \mathbf{int} \operatorname{dom} f$

- (x, f(x)) is in the boundary of the convex set epi f
- therefore there exists a supporting hyperplane to $\operatorname{\mathbf{epi}} f$ at (x, f(x)):

$$\exists (a,b) \neq 0, \qquad \left[\begin{array}{c} a \\ b \end{array}\right]^T \left(\left[\begin{array}{c} y \\ t \end{array}\right] - \left[\begin{array}{c} x \\ f(x) \end{array}\right]\right) \leq 0 \qquad \forall (y,t) \in \operatorname{\mathbf{epi}} f$$

- b>0 gives a contradiction as $t\to\infty$
- b=0 gives a contradiction for $y=x+\epsilon a$ with small $\epsilon>0$
- $\bullet \ \mbox{therefore} \ b < 0 \ \mbox{and} \ g = \frac{1}{|b|}a$ is a subgradient of f at x

Proof: $\partial f(x)$ is bounded when $x \in \mathbf{int} \operatorname{dom} f$

• for small r > 0, define a set of 2n points

$$B = \{x \pm re_k \mid k = 1, \dots, n\} \subset \operatorname{dom} f$$

and define
$$M = \max_{y \in B} f(y) < \infty$$

• for every nonzero $g \in \partial f(x)$, there is a point $y \in B$ with

$$f(y) \ge f(x) + g^{T}(y - x) = f(x) + r||g||_{\infty}$$

(choose an index k with $|g_k| = ||g||_{\infty}$, and take $y = x + r \operatorname{sign}(g_k) e_k$)

• therefore $\partial f(x)$ is bounded:

$$\sup_{g\in\partial f(x)}\|g\|_{\infty}\leq \frac{M-f(x)}{r}$$

Subgradients 4-6

Example

 $f(x) = \max\{f_1(x), f_2(x)\}$ with f_1 , f_2 convex and differentiable

- if $f_1(\hat{x}) = f_2(\hat{x})$, subdifferential at \hat{x} is line segment $[\nabla f_1(\hat{x}), \nabla f_2(\hat{x})]$
- if $f_1(\hat{x}) > f_2(\hat{x})$, subdifferential at \hat{x} is $\{\nabla f_1(\hat{x})\}$
- if $f_1(\hat{x}) < f_2(\hat{x})$, subdifferential at \hat{x} is $\{\nabla f_2(\hat{x})\}$

Subgradients 4-7

Examples

Absolute value f(x) = |x|

Euclidean norm $f(x) = ||x||_2$

$$\partial f(x) = \{\frac{1}{\|x\|_2} x\}$$
 if $x \neq 0$, $\partial f(x) = \{g \mid \|g\|_2 \leq 1\}$ if $x = 0$

Consider $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \|x\|_2$

- For $x \neq 0$, unique subgradient $g = x/\|x\|_2$
- \bullet For x=0, subgradient g is any element of $\{z:\|z\|_2\leq 1\}$

Consider $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \|x\|_1$

- For $x_i \neq 0$, unique ith component $g_i = \mathrm{sign}(x_i)$
- $\bullet \;$ For $x_i=0,\; i {\rm th}$ component g_i is any element of [-1,1]

Subgradients and subdifferentials

Definitions

Important Properties

Example: ℓ_1 -regularization aka Lasso

Subgradients methods

Proximal methods

Connection to convex geometry

Convex set $C \subseteq \mathbb{R}^n$, consider indicator function $I_C : \mathbb{R}^n \to \mathbb{R}$,

$$I_C(x) = I\{x \in C\} = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C \end{cases}$$

For $x \in C$, $\partial I_C(x) = \mathcal{N}_C(x)$, the normal cone of C at x, recall

$$\mathcal{N}_C(x) = \{ g \in \mathbb{R}^n : g^T x \ge g^T y \text{ for any } y \in C \}$$

Why? By definition of subgradient g,

$$I_C(y) \ge I_C(x) + g^T(y - x)$$
 for all y

- For $y \notin C$, $I_C(y) = \infty$
- For $y \in C$, this means $0 \ge g^T(y-x)$

Subgradient calculus

Basic rules for convex functions:

- Scaling: $\partial(af) = a \cdot \partial f$ provided a > 0
- Addition: $\partial(f_1+f_2)=\partial f_1+\partial f_2$
- Affine composition: if g(x) = f(Ax + b), then

$$\partial g(x) = A^T \partial f(Ax + b)$$

• Finite pointwise maximum: if $f(x) = \max_{i=1,...m} f_i(x)$, then

$$\partial f(x) = \operatorname{conv}\left(\bigcup_{i:f_i(x)=f(x)} \partial f_i(x)\right)$$

convex hull of union of subdifferentials of all active functions at \boldsymbol{x}

• General pointwise maximum: if $f(x) = \max_{s \in S} f_s(x)$, then

$$\partial f(x) \supseteq \operatorname{cl} \left\{ \operatorname{conv} \left(\bigcup_{s: f_s(x) = f(x)} \partial f_s(x) \right) \right\}$$

and under some regularity conditions (on S, f_s), we get an equality above

• Norms: important special case, $f(x) = ||x||_p$. Let q be such that 1/p + 1/q = 1, then

$$||x||_p = \max_{||z||_q \le 1} z^T x$$

Hence

$$\partial f(x) = \underset{\|z\|_q \le 1}{\operatorname{argmax}} \ z^T x$$

Why subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function

Optimality condition

For any f (convex or not),

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

I.e., x^* is a minimizer if and only if 0 is a subgradient of f at x^* . This is called the subgradient optimality condition

Why? Easy: g=0 being a subgradient means that for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note the implication for a convex and differentiable function f, with $\partial f(x) = \{\nabla f(x)\}$

Derivation of first-order optimality

Example of the power of subgradients: we can use what we have learned so far to derive the first-order optimality condition. Recall that for f convex and differentiable, the problem

$$\min_{x} f(x)$$
 subject to $x \in C$

is solved at x if and only if

$$\nabla f(x)^T (y-x) \ge 0$$
 for all $y \in C$

Intuitively says that gradient increases as we move away from x. How to see this? First recast problem as

$$\min_{x} f(x) + I_{C}(x)$$

Now apply subgradient optimality: $0 \in \partial(f(x) + I_C(x))$

But

$$0 \in \partial \big(f(x) + I_C(x) \big)$$

$$\iff 0 \in \{ \nabla f(x) \} + \mathcal{N}_C(x)$$

$$\iff -\nabla f(x) \in \mathcal{N}_C(x)$$

$$\iff -\nabla f(x)^T x \ge -\nabla f(x)^T y \text{ for all } \in C$$

$$\iff \nabla f(x)^T (y - x) \ge 0 \text{ for all } y \in C$$

as desired

Note: the condition $0 \in \partial f(x) + \mathcal{N}_C(x)$ is a fully general condition for optimality in a convex problem. But this is not always easy to work with (KKT conditions, later, are easier)

Subgradients and subdifferentials

Important Properties

Example: ℓ_1 -regularization aka Lasso

Subgradients methods

Proximal methods

Example: lasso optimality conditions

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, lasso problem can be parametrized as:

$$\min_{\beta} \ \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

where $\lambda \geq 0$. Subgradient optimality:

$$0 \in \partial \left(\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}\right)$$

$$\iff 0 \in -X^{T}(y - X\beta) + \lambda \partial \|\beta\|_{1}$$

$$\iff X^{T}(y - X\beta) = \lambda v$$

for some $v \in \partial \|\beta\|_1$, i.e.,

$$v_i \in \begin{cases} \{1\} & \text{if } \beta_i > 0\\ \{-1\} & \text{if } \beta_i < 0 \ , \quad i = 1, \dots p\\ [-1, 1] & \text{if } \beta_i = 0 \end{cases}$$

Write $X_1, ... X_p$ for columns of X. Then subgradient optimality reads:

$$\begin{cases} X_i^T(y - X\beta) = \lambda \cdot \operatorname{sign}(\beta_i) & \text{if } \beta_i \neq 0 \\ |X_i^T(y - X\beta)| \leq \lambda & \text{if } \beta_i = 0 \end{cases}$$

Note: the subgradient optimality conditions do not directly lead to an expression for a lasso solution ... however they do provide a way to check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if $|X_i^T(y-X\beta)|<\lambda$, then $\beta_i=0$

Example: soft-thresholding

Simplfied lasso problem with X = I:

$$\min_{\beta} \ \frac{1}{2} \|y - \beta\|_2^2 + \lambda \|\beta\|_1$$

This we can solve directly using subgradient optimality. Solution is $\beta=S_\lambda(y)$, where S_λ is the soft-thresholding operator:

$$[S_{\lambda}(y)]_i = \begin{cases} y_i - \lambda & \text{if } y_i > \lambda \\ 0 & \text{if } -\lambda \leq y_i \leq \lambda , \quad i = 1, \dots n \\ y_i + \lambda & \text{if } y_i < -\lambda \end{cases}$$

Check: from last slide, subgradient optimality conditions are

$$\begin{cases} y_i - \beta_i = \lambda \cdot \operatorname{sign}(\beta_i) & \text{if } \beta_i \neq 0 \\ |y_i - \beta_i| \leq \lambda & \text{if } \beta_i = 0 \end{cases}$$

Now plug in $\beta = S_{\lambda}(y)$ and check these are satisfied:

- When $y_i > \lambda$, $\beta_i = y_i \lambda > 0$, so $y_i \beta_i = \lambda = \lambda \cdot 1$
- When $y_i < -\lambda$, argument is similar
- When $|y_i| \leq \lambda$, $\beta_i = 0$, and $|y_i \beta_i| = |y_i| \leq \lambda$

Soft-thresholding in one variable:

Subgradients and subdifferentials

Subgradients methods

Principle and analysis

Example: regularized logistic regression

Proximal methods

7

Subgradients and subdifferentials

Subgradients methods
Principle and analysis

Example: regularized logistic regression

Proximal methods

Subgradient method

to minimize a nondifferentiable convex function f: choose $x^{\left(0\right)}$ and repeat

$$x^{(k)} = x^{(k-1)} - t_k g^{(k-1)}, \quad k = 1, 2, \dots$$

 $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

Step size rules

• fixed step: t_k constant

• fixed length: $t_k ||g^{(k-1)}||_2 = ||x^{(k)} - x^{(k-1)}||_2$ is constant

• diminishing: $t_k \to 0$, $\sum_{k=1}^{\infty} t_k = \infty$

Assumptions

- ullet f has finite optimal value f^{\star} , minimizer x^{\star}
- f is convex, $dom f = \mathbf{R}^n$
- f is Lipschitz continuous with constant G > 0:

$$|f(x) - f(y)| \le G||x - y||_2 \quad \forall x, y$$

this is equivalent to $||g||_2 \le G$ for all x and $g \in \partial f(x)$ (see next page)

Proof.

• assume $\|g\|_2 \le G$ for all subgradients; choose $g_y \in \partial f(y)$, $g_x \in \partial f(x)$:

$$g_x^T(x-y) \ge f(x) - f(y) \ge g_y^T(x-y)$$

by the Cauchy-Schwarz inequality

$$G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

• assume $\|g\|_2 > G$ for some $g \in \partial f(x)$; take $y = x + g/\|g\|_2$:

$$f(y) \geq f(x) + g^{T}(y - x)$$

$$= f(x) + ||g||_{2}$$

$$> f(x) + G$$

Analysis

- the subgradient method is not a descent method
- the key quantity in the analysis is the distance to the optimal set

with
$$x^+ = x^{(i)}$$
, $x = x^{(i-1)}$, $g = g^{(i-1)}$, $t = t_i$:
$$\|x^+ - x^\star\|_2^2 = \|x - tg - x^\star\|_2^2$$

$$= \|x - x^\star\|_2^2 - 2tg^T(x - x^\star) + t^2\|g\|_2^2$$

$$\leq \|x - x^\star\|_2^2 - 2t\left(f(x) - f^\star\right) + t^2\|g\|_2^2$$

combine inequalities for $i=1,\ldots,k$, and define $f_{\mathrm{best}}^{(k)}=\min_{0\leq i\leq k}f(x^{(i)})$:

$$2(\sum_{i=1}^{k} t_i)(f_{\text{best}}^{(k)} - f^*) \leq \|x^{(0)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 + \sum_{i=1}^{k} t_i^2 \|g^{(i-1)}\|_2^2$$
$$\leq \|x^{(0)} - x^*\|_2^2 + \sum_{i=1}^{k} t_i^2 \|g^{(i-1)}\|_2^2$$

Fixed step size: $t_i = t$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2}{2kt} + \frac{G^2t}{2}$$

- ullet does not guarantee convergence of $f_{
 m best}^{(k)}$
- for large k, $f_{
 m best}^{(k)}$ is approximately $G^2t/2$ -suboptimal

Fixed step length: $t_i = s/\|g^{(i-1)}\|_2$

$$f_{\text{best}}^{(k)} - f^* \le \frac{G||x^{(0)} - x^*||_2^2}{2ks} + \frac{Gs}{2}$$

- ullet does not guarantee convergence of $f_{
 m best}^{(k)}$
- for large k, $f_{\mathrm{best}}^{(k)}$ is approximately Gs/2-suboptimal

Diminishing step size: $t_i \to 0$, $\sum_{i=1}^{\infty} t_i = \infty$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

can show that $(\sum_{i=1}^k t_i^2)/(\sum_{i=1}^k t_i) \to 0$; hence, $f_{\text{best}}^{(k)}$ converges to f^*

Subgradients and subdifferentials

Subgradients methods

Principle and analysis

Example: regularized logistic regression

Proximal methods

Example: regularized logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ for $i = 1, \dots n$, consider the logistic regression loss:

$$f(\beta) = \sum_{i=1}^{n} \left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta)) \right)$$

This is a smooth and convex, with

$$\nabla f(\beta) = \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i$$

where $p_i(\beta) = \exp(x_i^T \beta)/(1 + \exp(x_i^T \beta))$, i = 1, ... n. We will consider the regularized problem:

$$\min_{\beta} f(\beta) + \lambda \cdot P(\beta)$$

where $P(\beta) = \|\beta\|_2^2$ (ridge penalty) or $P(\beta) = \|\beta\|_1$ (lasso penalty)

Ridge problem: use gradients; lasso problem: use subgradients. Data example with $n=1000,\ p=20$:

Step sizes hand-tuned to be favorable for each method (of course comparison is imperfect, but it reveals the convergence behaviors)

Outline

Subgradients and subdifferentials

Subgradients methods

Proximal methods

Proximal gradient method Convergence Analysis for fixed step Accelerated versions

Outline

Subgradients and subdifferentials

Subgradients methods

Proximal methods

Proximal gradient method

Convergence Analysis for fixed step Accelerated versions

Proximal mapping

if h is convex and closed (has a closed epigraph), then

$$\operatorname{prox}_h(x) = \underset{u}{\operatorname{argmin}} \left(h(u) + \frac{1}{2} \|u - x\|_2^2 \right)$$

exists and is unique for all x

- will be studied in more detail in lecture 8
- from optimality conditions of minimization in the definition:

$$\begin{split} u &= \mathrm{prox}_h(x) &\iff & x - u \in \partial h(u) \\ &\iff & h(z) \geq h(u) + (x - u)^T (z - u) \quad \forall z \end{split}$$

Projection on closed convex set

proximal mapping of indicator function δ_C is Euclidean projection on C

$$\operatorname{prox}_{\delta_C}(x) = \operatorname*{argmin}_{u \in C} \|u - x\|_2^2 = P_C(x)$$

$$u = P_C(x)$$

$$\updownarrow$$

$$(x - u)^T (z - u) \le 0 \quad \forall z \in C$$

we will see that proximal mappings have many properties of projections

Proximal gradient method

unconstrained optimization with objective split in two components

$$minimize \quad f(x) = g(x) + h(x)$$

- g convex, differentiable, $dom g = \mathbf{R}^n$
- h convex with inexpensive prox-operator (many examples in lecture 8)

Proximal gradient algorithm

$$x^{(k)} = \operatorname{prox}_{t_k h} \left(x^{(k-1)} - t_k \nabla g(x^{(k-1)}) \right)$$

- $t_k > 0$ is step size, constant or determined by line search
- can start at infeasible $x^{(0)}$ (however $x^{(k)} \in \text{dom } f = \text{dom } h \text{ for } k \geq 1$)

Interpretation

$$x^+ = \operatorname{prox}_{th} (x - t\nabla g(x))$$

from definition of proximal mapping:

$$x^{+} = \underset{u}{\operatorname{argmin}} \left(h(u) + \frac{1}{2t} \|u - x + t\nabla g(x)\|_{2}^{2} \right)$$
$$= \underset{u}{\operatorname{argmin}} \left(h(u) + g(x) + \nabla g(x)^{T} (u - x) + \frac{1}{2t} \|u - x\|_{2}^{2} \right)$$

 \boldsymbol{x}^+ minimizes $\boldsymbol{h}(\boldsymbol{u})$ plus a simple quadratic local model of $g(\boldsymbol{u})$ around \boldsymbol{x}

Example: ISTA

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, recall lasso criterion:

$$f(\beta) = \underbrace{\frac{1}{2} \|y - X\beta\|_2^2}_{g(\beta)} + \underbrace{\lambda \|\beta\|_1}_{h(\beta)}$$

Prox mapping is now

$$\operatorname{prox}_{t}(\beta) = \underset{z}{\operatorname{argmin}} \ \frac{1}{2t} \|\beta - z\|_{2}^{2} + \lambda \|z\|_{1}$$
$$= S_{\lambda t}(\beta)$$

where $S_{\lambda}(\beta)$ is the soft-thresholding operator,

$$[S_{\lambda}(\beta)]_i = \begin{cases} \beta_i - \lambda & \text{if } \beta_i > \lambda \\ 0 & \text{if } -\lambda \leq \beta_i \leq \lambda \text{ , } i = 1, \dots n \\ \beta_i + \lambda & \text{if } \beta_i < -\lambda \end{cases}$$

Recall $\nabla g(\beta) = -X^T(y - X\beta)$, hence proximal gradient update is:

$$\beta^{+} = S_{\lambda t} (\beta + tX^{T} (y - X\beta))$$

Often called the iterative soft-thresholding algorithm (ISTA).¹ Very simple algorithm

Example of proximal gradient (ISTA) vs. subgradient method convergence rates

¹Beck and Teboulle (2008), "A fast iterative shrinkage-thresholding algorithm for linear inverse problems"

Outline

Subgradients and subdifferentials

Subgradients methods

Proximal methods

Proximal gradient method

Convergence Analysis for fixed step

Accelerated versions

Assumptions

- h is closed and convex (so that $prox_{th}$ is well defined)
- g is differentiable with $dom g = \mathbf{R}^n$
- ullet there exist constants $m\geq 0$ and L>0 such that the functions

$$g(x) - \frac{m}{2}x^Tx$$
, $\frac{L}{2}x^Tx - g(x)$

are convex

• the optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)

Implications of assumptions on g

Lower bound

• convexity of the the function $g(x) - (m/2)x^Tx$ implies (page 1-18):

$$g(y) \ge g(x) + \nabla g(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2 \quad \forall x, y$$
 (1)

• if m=0, this means g is convex; if m>0, strongly convex (lecture 1)

Upper bound

- convexity of the function $(L/2)x^Tx-g(x)$ implies (page 1-12):

$$g(y) \le g(x) + \nabla g(x)^T (y - x) + \frac{L}{2} ||y - x||_2^2 \quad \forall x, y$$
 (2)

• this is equivalent to Lipschitz continuity and co-coercivity of gradient (lecture 1)

Gradient map

$$G_t(x) = \frac{1}{t} (x - \operatorname{prox}_{th}(x - t\nabla g(x)))$$

 $G_t(x)$ is the negative 'step' in the proximal gradient update

$$x^{+} = \operatorname{prox}_{th}(x - t\nabla g(x))$$

= $x - tG_{t}(x)$

- $G_t(x)$ is not a gradient or subgradient of f = g + h
- from subgradient definition of prox-operator (page 6-7),

$$G_t(x) \in \nabla g(x) + \partial h (x - tG_t(x))$$

• $G_t(x) = 0$ if and only if x minimizes f(x) = g(x) + h(x)

Consequences of quadratic bounds on g

substitute $y = x - tG_t(x)$ in the bounds (1) and (2): for all t,

$$\frac{mt^2}{2} \|G_t(x)\|_2^2 \le g(x - tG_t(x)) - g(x) + t\nabla g(x)^T G_t(x) \le \frac{Lt^2}{2} \|G_t(x)\|_2^2$$

• if $0 < t \le 1/L$, then the upper bound implies

$$g(x - tG_t(x)) \le g(x) - t\nabla g(x)^T G_t(x) + \frac{t}{2} \|G_t(x)\|_2^2$$
(3)

- if the inequality (3) is satisfied and $tG_t(x) \neq 0$, then $mt \leq 1$
- if the inequality (3) is satisfied, then for all z,

$$f(x - tG_t(x)) \le f(z) + G_t(x)^T (x - z) - \frac{t}{2} \|G_t(x)\|_2^2 - \frac{m}{2} \|x - z\|_2^2$$
 (4)

(proof on next page)

Proof of (4):

$$f(x - tG_{t}(x))$$

$$\leq g(x) - t\nabla g(x)^{T}G_{t}(x) + \frac{t}{2}\|G_{t}(x)\|_{2}^{2} + h(x - tG_{t}(x))$$

$$\leq g(z) - \nabla g(x)^{T}(z - x) - \frac{m}{2}\|z - x\|_{2}^{2} - t\nabla g(x)^{T}G_{t}(x) + \frac{t}{2}\|G_{t}(x)\|_{2}^{2}$$

$$+ h(z) - (G_{t}(x) - \nabla g(x))^{T}(z - x + tG_{t}(x))$$

$$= g(z) + h(z) + G_{t}(x)^{T}(x - z) - \frac{t}{2}\|G_{t}(x)\|_{2}^{2} - \frac{m}{2}\|x - z\|_{2}^{2}$$

- in the first step we add $h(x tG_t(x))$ to both sides of the inequality (3)
- ullet in the next step we use the lower bound on g(z) from (2) and

$$G_t(x) - \nabla g(x) \in \partial h(x - tG_t(x))$$

(see page 6-12)

Progress in one iteration

for a step size t that satisfies the inequality (3), define

$$x^+ = x - tG_t(x)$$

• inequality (4) with z=x shows the algorithm is a descent method:

$$f(x^+) \le f(x) - \frac{t}{2} ||G_t(x)||_2^2$$

• inequality (4) with $z=x^{\star}$ shows that

$$f(x^{+}) - f^{\star} \leq G_{t}(x)^{T}(x - x^{\star}) - \frac{t}{2} \|G_{t}(x)\|_{2}^{2} - \frac{m}{2} \|x - x^{\star}\|_{2}^{2}$$

$$= \frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x - x^{\star} - tG_{t}(x)\|_{2}^{2} \right) - \frac{m}{2} \|x - x^{\star}\|_{2}^{2}$$

$$= \frac{1}{2t} \left((1 - mt) \|x - x^{\star}\|_{2}^{2} - \|x^{+} - x^{\star}\|_{2}^{2} \right)$$

$$\leq \frac{1}{2t} \left(\|x - x^{\star}\|_{2}^{2} - \|x^{+} - x^{\star}\|_{2}^{2} \right)$$

$$(6)$$

Analysis for fixed step size

add inequalities (6) for $x=x^{(i-1)},\,x^+=x^{(i)},\,t=t_i=1/L$

$$\sum_{i=1}^{k} (f(x^{(i)}) - f^{\star}) \leq \frac{1}{2t} \sum_{i=1}^{k} \left(\|x^{(i-1)} - x^{\star}\|_{2}^{2} - \|x^{(i)} - x^{\star}\|_{2}^{2} \right)$$

$$= \frac{1}{2t} \left(\|x^{(0)} - x^{\star}\|_{2}^{2} - \|x^{(k)} - x^{\star}\|_{2}^{2} \right)$$

$$\leq \frac{1}{2t} \|x^{(0)} - x^{\star}\|_{2}^{2}$$

since $f(x^{(i)})$ is nonincreasing,

$$f(x^{(k)}) - f^* \le \frac{1}{k} \sum_{i=1}^k (f(x^{(i)}) - f^*) \le \frac{1}{2kt} ||x^{(0)} - x^*||_2^2$$

Distance to optimal set

• from (5) and $f(x^+) \ge f^*$, the distance to the optimal set does not increase:

$$||x^{+} - x^{\star}||_{2}^{2} \le (1 - mt)||x - x^{\star}||_{2}^{2}$$

 $\le ||x - x^{\star}||_{2}^{2}$

• for fixed step size $t_k = 1/L$

$$||x^{(k)} - x^*||_2^2 \le c^k ||x^{(0)} - x^*||_2^2, \qquad c = 1 - \frac{m}{L}$$

i.e., linear convergence if g is strongly convex (m>0)

Outline

Subgradients and subdifferentials

Subgradients methods

Proximal methods

Proximal gradient method Convergence Analysis for fixed step

Accelerated versions

Accelerated proximal gradient method

Our problem, as before:

$$\min_{x} g(x) + h(x)$$

where g convex, differentiable, and h convex. Accelerated proximal gradient method: choose initial point $x^{(0)} = x^{(-1)} \in \mathbb{R}^n$, repeat:

$$v = x^{(k-1)} + \frac{k-2}{k+1}(x^{(k-1)} - x^{(k-2)})$$
$$x^{(k)} = \operatorname{prox}_{t_k}(v - t_k \nabla g(v))$$

for k = 1, 2, 3, ...

- First step k = 1 is just usual proximal gradient update
- After that, $v=x^{(k-1)}+\frac{k-2}{k+1}(x^{(k-1)}-x^{(k-2)})$ carries some "momentum" from previous iterations
- h = 0 gives accelerated gradient method

FISTA

Recall lasso problem,

$$\min_{\beta} \ \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

and ISTA (Iterative Soft-thresholding Algorithm):

$$\beta^{(k)} = S_{\lambda t_k}(\beta^{(k-1)} + t_k X^T (y - X\beta^{(k-1)})), \quad k = 1, 2, 3, \dots$$

 $S_{\lambda}(\cdot)$ being vector soft-thresholding. Applying acceleration gives us FISTA (F is for Fast):⁶ for $k=1,2,3,\ldots$,

$$v = \beta^{(k-1)} + \frac{k-2}{k+1} (\beta^{(k-1)} - \beta^{(k-2)})$$
$$\beta^{(k)} = S_{\lambda t_k} (v + t_k X^T (y - Xv)),$$

 $^{^6{\}rm Beck}$ and Teboulle (2008) actually call their general acceleration technique (for general g,h) FISTA, which may be somewhat confusing

Lasso regression: 100 instances (with n = 100, p = 500):

Lasso logistic regression: 100 instances (n = 100, p = 500):

