Introduction to Differential Geometry Notes

Phillip Kim

2023-05-10

1 What is a curve?

Def'n 1.1.1

Parameterized curve in \mathbb{R}^n is map $\gamma(t):(\alpha,\beta)\longrightarrow\mathbb{R}^n$ for some α,β with $-\infty\leq\alpha<\beta<\infty$

Level curves in \mathbb{R}^n

i.e. $y^2 - x^2 = 0 \leftarrow \text{parabola in } \mathcal{R}^2$

The level curve above is at "level" 0. In general, we could have a level curve at level 'c' f(x,y) = c

smooth function $f:(\alpha,\beta)\longrightarrow \mathcal{R}^n$ is said to be smooth if derivative $\frac{d^nf}{dt^n}$ exists $\forall n\geq 1$ and $t\in(\alpha,\beta)$

Def'n 1.1.5

If γ is a parameterized curve, first derivative $\dot{\gamma}$ is called the tangent vector of γ at point $\gamma(t)$

2 Arc Length

Developing intuition for arc length Suppose we have vector $v = (v_1, ..., v_n)$ $||v|| = \sqrt{v_1^2 + ... + v_n^2}$

Suppose we have curve γ . If δt is very small, then the part of the curve between $\gamma(t)$ and $\gamma(t + \delta t)$ is very small and is nearly a straight line, so its

length is approximately:

$$||\gamma(t+\delta t)-\gamma(t)||$$

$$\frac{(\gamma(t+\delta t)-\gamma(t))}{\delta t} pprox \dot{\gamma}(t)$$

$$||\gamma(t+\delta t)-\gamma(t)||\approx ||\dot{\gamma}(t)||\delta t$$

Def'n 1.1.1

The arc-length of a surve γ starting at point $\gamma(t_0)$ is the function s(t) given by:

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(u)|| du$$

Arc length is differentiable function. Indeed if s is arc-length of curve γ starting at point $\gamma(t_0)$ we have:

$$\frac{ds}{dt} = \frac{d}{dt} \int_{t_0}^t ||\dot{\gamma}(u)|| du = ||\dot{\gamma}(t)||$$

Def'n 1.2.3

If $\gamma:(\alpha,\beta)\longrightarrow \mathcal{R}^n$ is parameterized curve, its speed at point $\gamma(t)$ is $||\dot{\gamma}(t)||$ and γ is said to be unit speed curve if $\dot{\gamma}$ is a unit vector $\forall t\in(\alpha,\beta)$. a unit vector is a vector of speed 1. so $||\dot{\gamma}(t)||=1 \forall t\in(\alpha,\beta)$.

Dot product

$$a = (a_1, ..., a_n), b = (b_1, ..., b_n)$$
$$a \cdot b = \sum_{i=1}^n a_i b_i$$

$$\frac{d}{dt}(a \cdot b) = \frac{da}{dt} \cdot b + a \cdot \frac{db}{dt}$$

Proposition 1.2.4

Let n(t) be unit vector that is smooth function of parameter t. Then dot product

$$\dot{n}(t) \cdot n(t) = 0.$$

 $\forall t$ i.e. $\dot{n}(t)$ is zero or perpendicular to n(t) $\forall t$. In particular, if $\gamma(t)$ is unit speed curve, then $\ddot{\gamma}(t)$ is zero or perpendicular to $\dot{\gamma}$.

Proof: Using the product formula to differentiate both sides of the equation $n \cdot n = 1$ with respect to t gives:

 $\dot{n} \cdot n + n \cdot \dot{n} = 0$ so $2\dot{n} \cdot n = 0 \longrightarrow \dot{n} \cdot n = 0$.

For the last part of the proposition, replace $n = \dot{\gamma}$.