ECN 7060, Cours 1

William McCausland

2022-09-06

Matières

Partie 1, Livre de Rosenthal

- Espaces de probabilité, le théorème d'extension
- Variables aléatoires, lois, indépendance
- Espérance
- Convergence en probabilité, convergence presque sûre
- Fonctions caractéristiques, convergence en loi, le théorème centrale limite
- Probabilité et espérance conditionnelles

Partie 2, Livre de Casella et Berger

- Statistiques exhaustives et libres, principe de vraisemblance
- Estimation ponctuelle, fréquentiste et bayésienne
- Estimation d'intervalle, fréquentiste et bayésienne
- Tests d'hypothèse, fréquentistes et bayésiens
- Prévision, fréquentiste et bayésienne

Les éléments de la note finale :

- 1. Quiz : 20% (meilleures n-1 de $n \approx 9$)
- 2. Examen intra: 35% (à remettre le 2 novembre)
- 3. Examen final : 45% (le 21 décembre)

Le cycle de mercredi 13h à mardi soir

- 1. Mercredi 13h-16h, cours:
 - retour des quiz corrigés du cours précédent
 - questions des étudiants
 - quiz sur les lectures (matière du cours actuel)
 - correction du quiz du cours actuel
 - enseignement magistral avec participation des étudiants
 - aperçu de la matière de la semaine suivante
- 2. Mercredi avant la fin de la journée
 - attribution des lectures (pour la semaine suivante)
 - questions simples de lecture
 - devoirs sur la matière du cours actuel
- 3. Lundi 13h-14h30, séance de travail pratique
 - discussion des devoirs avec Sawadogo, le moniteur
- 4. Mardi soir
 - chargement des diapos du lendemain

Communications

- 1. Documents à mon site web :
 - https://mccauslw.github.io/ECN7060.html
 - Diapos (un fichier pour chaque cours)
 - Devoirs et lectures (un fichier)
 - Examens précédents
- 2. StudiUM
 - Nouvelles
 - Questions et réponses écrites

Attentes:

Avant le cours

1. Avoir lu les lectures, pouvoir répondre aux questions simples

Avant la séance TP

1. Avoir essayé (idéalement complété) les devoirs

Espaces de probabilité (Ω, \mathcal{F}, P) dans un monde fini

- 1. Ω , l'espace d'états (exactement un état $\omega \in \Omega$ se produit)
- 2. \mathcal{F} , algèbre, un ensemble d'événements (des parties de Ω)
- 3. $P \colon \mathcal{F} \to [0,1]$, une probabilité

Exemple:

- 1. $\Omega = \{0, 1\}$
- 2. $\mathcal{F} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} = 2^{\Omega}$
- 3. $P(\cdot)$ selon le tableau suivant :

Α	P(A
Ø	0
{0}	0.4
$\{1\}$	0.6
$\{0, 1\}$	1

Jugements cohérents (de Finetti et Ramsey)

- Ensemble d'états du monde : $\Omega = \{\omega_1, \omega_2\}$
 - $ightharpoonup \omega_1$: Le parti CAQ gagne l'élection du 3 octobre au Québec.
 - \blacktriangleright ω_2 : Le parti CAQ ne gagne pas.
- ► Un agent offre des prix (un prix est à la fois le cours acheteur et le cours vendeur) pour tous ces contrats :
 - 1. paie 1\$ si ni ω_1 ni ω_2 se produit (l'événement \emptyset)
 - 2. paie 1\$ si ω_1 se produit (l'événement $\{\omega_1\}$)
 3. paie 1\$ si ω_2 se produit (l'événement $\{\omega_2\}$)
 - 4. paie 1\$ si ω_1 ou ω_2 se produit (l'événement $\Omega = \{\omega_1, \omega_2\}$)
- ► Cet ensemble de jugements est *cohérent* si un autre ne peut pas faire un profit sûr peu importe le résultat.
- ▶ Il est cohérents ssi les prix vérifient les axiomes de probabilité.
- ► Contribution de Ramsey : accommoder l'aversion pour le risque et mesurer à la fois les jugements de probabilité et l'utilité.
- ► Ch. 2 de Diaconis et Skyrms, "Ten Great Ideas about Chance".

Interprétation fréquentiste de probabilité

- Venn et (Richard) von Mises essaient de définir la probabilité en termes des (limites des) fréquences des événements semblables.
- Plusieurs fréquentistes rejettent l'aspect subjectif des définitions qui reposent sur les jugements cohérents.
- Difficultés conceptuelles :
 - 1. Définition de « semblable » qui évite et des tautologies et des situations où toutes les probabilités sont 0 ou 1.
 - 2. L'irréalité des fréquences infinies
 - 3. La possibilité des fréquences sans limite.
- Ch. 4 de Diaconis et Skyrms, "Ten Great Ideas about Chance".

Quelles propriétés (Ω, \mathcal{F}, P) devrait-il posséder $(\Omega \text{ fini})$?

Propriétés désirables :

1. Additivité finie :

$$A, B \in \mathcal{F}, A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

- 2. $P(\emptyset) = 0, P(\Omega) = 1,$
- 3. $\emptyset, \Omega \in \mathcal{F}$,
- 4. $A, B \in \mathcal{F} \Rightarrow A^c, A \cup B, A \cap B \in \mathcal{F}$

Par 3 et 4, $\mathcal F$ est une algèbre, pas forcément une tribu.

Une façon de spécifier une probabilité :

- 1. Stipuler $\{\omega\} \in \mathcal{F}$, donner $P(\{\omega\}) = p_{\omega} \ge 0$, $\omega \in \Omega$, telles que $\sum_{\omega \in \Omega} p_{\omega} = 1$.
- 2. Laisser les axiomes donner l'extension avec $\mathcal{F}=2^\Omega$ et les probabilités

$$P(A) = \sum_{\omega \in A} p_{\omega}, \ A \subseteq \Omega.$$

Dénombrable ou non?

Un ensemble S est

- ightharpoonup dénombrable s'il existe une fonction injective de S vers \mathbb{N} ,
- ▶ infini dénombrable s'il existe une fonction bijective de S vers \mathbb{N} ,
- indénombrable s'il n'est pas dénombrable.

Quelques ensembles:

- 1. $\mathbb{N} = \{1, 2, \ldots\}$
- 2. $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$
- 3. \mathbb{Z}^2
- **4**. $\mathbb{Q} = \{ a/b \colon a, b \in \mathbb{Z}, b \neq 0 \}$
- 5. \mathbb{Z}^n
- 6. [0,1), \mathbb{R}
- 7. $2^{\mathbb{N}}$, l'ensemble des sous-ensembles de \mathbb{N}
- 8. L'ensemble des fonctions $f: \mathbb{N} \to \{0,1\}$
- 9. L'ensemble des fichiers finis (livres, documents, dessins, audio, vidéo, programmes informatiques)

Exemples de Ω : finis, dénombrables, indénombrables

- 1. $\Omega = \{1, \ldots, n\}$
- 2. $\Omega = \{(r_1, \dots, r_n) : r_i \in \{0, 1\}\}$ 3. $\Omega = \{(r_1, \dots, r_n) : r_i \in \mathbb{Z}\}$
- 4. $\Omega = \mathbb{N} \equiv \{1, 2, \ldots\}$
- 5. $\Omega = \{(r_1, \ldots) : r_i \in \{0, 1\}\}$
- 6. $\Omega = [0, 1]$
- 7. $\Omega = \mathbb{R}$, $\Omega = \mathbb{R}_+$.
- 8. $\Omega = \mathbb{R}^n$

Construire (Ω, \mathcal{F}, P) pour la loi uniforme [0,1]

Premier essai: $\Omega = [0, 1]$, $\mathcal{F} = 2^{\Omega}$, trouver une P qui vérifie

- 1. P([a,b]) = P((a,b]) = P([a,b)) = P((a,b)) = b a pour tout $0 \le a \le b \le 1$.
- 2. $A_1, A_2, \ldots, \in \mathcal{F}$ disjoints $\Rightarrow P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- 3. $P(A \oplus r) = P(A), 0 \le r \le 1.$

Impossible! Preuve:

- 1. Définir $x \sim y$ ssi $y x \in \mathbb{Q}$; \sim est transitive et réflexive.
- 2. Partitionner [0, 1] en classes d'équivalence : $\{0, 1/3, 1/5, \ldots\}$, $\{\pi 3, \pi 3.1, \pi 3.14, \ldots\}$, $\{e 2.7, e 2.71, e 2.717\}$, etc.
- 3. Construire H, un ensemble avec un élément de chaque classe.
- 4. Noter que $[0,1] = \bigcup_{r \in [0,1] \cap \mathbb{O}} (H \oplus r)$ (ensembles disjoints).
- 5. Constater l'implication impossible :

$$1 = P(\Omega) = \sum_{r \in [0,1] \cap \mathbb{Q}} P(H \oplus r) = \sum_{r \in [0,1] \cap \mathbb{Q}} P(H)$$

La construction d'un espace de probabilité

Supposez que l'espace d'états Ω est donné, on doit spécifier ${\mathcal F}$ et P. On veux

- 1. un système cohérent (qui vérifie certains axiomes)
- 2. une façon de spécifier une partie de *P* et laisser les axiomes déterminer le reste
- une tribu F faisable mais assez riche qu'elle contient les événements d'intérêt.

La semaine prochaine on développe un outil important pour la construction des espaces de probabilité.

Axiomes de probabilités

Un espace de probabilité est un (Ω, \mathcal{F}, P) tel que

- 1. $\Omega \neq \emptyset$;
- 2. \mathcal{F} satisfait
 - a. $\emptyset, \Omega \in \mathcal{F}$.
 - b. $A \in \mathcal{F} \to A^c \in \mathcal{F}$.
 - c. $A_1, A_2, \ldots \in \mathcal{F} \to \bigcup_{i=1}^{\infty} A_i, \bigcap_{i=1}^{\infty} A_i \in \mathcal{F};$
- 3. $P \colon \mathcal{F} \to [0, \infty)$ satisfait
 - a. $P(\emptyset) = 0$, $P(\Omega) = 1$,
 - b. $A_1, A_2, \ldots \in \mathcal{F}$ disjoints $\to P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Mesures

- Si \mathcal{F} est une tribu sur Ω, (Ω, \mathcal{F}) est un *espace mesurable*.
- Une probabilité $P \colon \mathcal{F} \to [0, \infty)$ (ou mesure de probabilité) vérifie $P(\emptyset) = 0$, $P(\Omega) = 1$, additivité dénombrable.
- ▶ Une mesure $\mu \colon \mathcal{F} \to [0, \infty)$ vérifie $\mu(\emptyset) = 0$, additivité dénombrable.
 - On relâche la normalisation $P(\Omega) = 1$.
 - Applications : calcul de longeur, aire, volume, masse; intégration
- ▶ Une mesure signée $\mu \colon \mathcal{F} \to \mathbb{R}$ vérifie $\mu(\emptyset) = 0$, additivité dénombrable.
 - ightharpoonup On relâche aussi la non-négativité de μ .
 - Applications : charge électrique, intégration
- Plusieurs théorèmes dans le cours s'appliquent aux mesures, pas seulement les mesures de probabilité.

Aperçu, Rosenthal chapitre 2

- 1. Construction d'un espace de probabilité à partir d'une semi-algèbre
- 2. Le théorème d'extension
- Construction d'un espace de probabilité pour la loi uniforme sur [0,1]
- 4. Construction d'un espace de probabilité pour un modèle du tirage répété au pile ou face