

Lecture 19

Poisson Regression

STAT 8020 Statistical Methods II October 27, 2020

> Whitney Huang Clemson University

Count Data

• Daily COVID-19 Cases in South Carolina

Each day shows new cases reported since the previous day \cdot Updated less than 19 hours ago \cdot Source: The New York Times \cdot About this data

Number of landfalling hurricanes per hurricane season

Modeling Count Data

So far we have talked about:

- Linear regression: $Y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \stackrel{\text{i.i.d.}}{\sim} \text{N}(0, \sigma^2)$
- Logistic Regression: $\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x, \quad \pi = \mathrm{P}(Y=1)$

Count data

- Counts typically have a right skewed distribution
- Counts are not necessarily binary

We could use Poisson Regression to model count data

Poisson Distribution

If Y follow a Poisson distribution, then we have

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}, \quad y = 0, 1, 2, \dots,$$

where λ is the rate parameter that describe the event occurrence frequency

•
$$E(Y) = Var(Y) = \lambda \text{ if } Y \sim Pois(\lambda), \quad \lambda > 0$$

 A useful model to describe the probability of a given number of events occurring in a fixed interval of time or space

Poisson Probability Mass Function

- (a), $\lambda=0.5$: distribution gives highest probability to y=0 and falls rapidly as y \uparrow
- ullet (b), $\lambda=2$: a skew distribution with longer tail on the right
- \bullet (c), $\lambda=5$: distribution become more normally shaped

The City of London was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly k times was counted. There were a total of 537 hits, so the average number of hits per area was $\frac{537}{576} = 0.9323$. The observed frequencies in the table below are remarkably close to a Poisson distribution with rate $\lambda = 0.9323$

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected	226.7	211.4	98.5	30.6	7.1	1.6

Number of US Landfalling Hurricanes Per Hurricane Season

Research question: Can the variation of the annual counts be explained by some environmental variable, e.g., Southern Oscillation Index (SOI)?

Hurricane Count vs. Environmental Variables

Poisson Regression

$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

$$\Rightarrow Y \sim \text{Pois}(\lambda = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}))$$

- Model the logarithm of the mean response as a linear combination of the predictors
- Parameter estimation is carry out using maximum likelihood method
- Interpretation of $\beta's$: every one unit increase in x_j , given that the other predictors are held constant, the λ increases by a factor of $\exp(\beta_j)$

US Hurricane Count: Poisson Regression Fit

Poisson Regression Model:

$$\log(\lambda_{ exttt{Count}}) \sim exttt{SOI} + exttt{NAO} + exttt{SST} + exttt{SSN}$$

Table: Coefficients of the Poisson regression model.

0.5953	0.1033	5.76	0.0000
0.0619	0.0213	2.90	0.0037
-0.1666	0.0644	-2.59	0.0097
0.2290	0.2553	0.90	0.3698
-0.0023	0.0014	-1.68	0.0928
	0.0619 -0.1666 0.2290	0.0619 0.0213 -0.1666 0.0644 0.2290 0.2553	0.0619 0.0213 2.90 -0.1666 0.0644 -2.59 0.2290 0.2553 0.90

 \Rightarrow every one unit increase in SOI, the hurricane rate increases by a factor of $\exp(0.0619)=1.0639$ or 6.39%.

Issue with Linear Regression Fit

Poisson Regression CLEMS UNIVERSITY

Linear Regression Model:

$$E(Count) \sim SOI + NAO + SST + SSN$$

Table: Coefficients of the linear regression model.

Estimate	Std. Error	t value	Pr(> t)
1.8869	0.1876	10.06	0.0000
0.1139	0.0402	2.83	0.0053
-0.2929	0.1173	-2.50	0.0137
0.4314	0.4930	0.88	0.3830
-0.0039	0.0024	-1.66	0.1000
	1.8869 0.1139 -0.2929 0.4314	1.8869 0.1876 0.1139 0.0402 -0.2929 0.1173 0.4314 0.4930	1.8869 0.1876 10.06 0.1139 0.0402 2.83 -0.2929 0.1173 -2.50 0.4314 0.4930 0.88

If we use this fitted model to predict the mean hurricane count, say SOI = -3, NAO=3, SST = 0, SSN=250

```
> predict(lmFull, newdata = data.frame(SOI = -3, NAO = 3, SST = 0, SSN = 250))  
1 -0.318065
```

This number does not make sense

Model Selection

```
> step(PoiFull)
Start: AIC=479.64
```

All ~ SOI + NAO + SST + SSN Df Deviance

AIC

 SST 175.61 478.44 174.81 479.64 <none> - SSN 1 177.75 480.59 - NAO 1 181.58 484.41 - SOI 1 183.19 486.02

Step: AIC=478.44 All ~ SOI + NAO + SSN

Df Deviance AIC 175.61 478.44 <none> SSN 1 178.29 479.12 - NAO 1 183.57 484.41 - SOI 183.91 484.74

Call: qlm(formula = All ~ SOI + NAO + SSN, family = "poisson", data = df)

Coefficients:

(Intercept) SOI NA0 SSN 0.584957 0.061533 -0.177439 -0.002201

Degrees of Freedom: 144 Total (i.e. Null); 141 Residual

Null Deviance: 197.9

Residual Deviance: 175.6 ATC: 478.4

