Simple groups, fixed point ratios and applications I

Hong Yi Huang

University of Bristol

11 March 2021

Based on the survey article by Tim Burness¹

¹T.C. Burness. *Simple groups, fixed point ratios and applications*. Local representation theory and simple groups, 267–322, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2018.

Overview

This lecture is divided into three parts:

- Introduction to simple groups and fixed point ratios;
- Generation of simple groups;
- Base sizes and Saxl graphs for almost simple groups.

Outline

Simple groups

2 Fixed point ratios

CFSG and almost simple groups

Theorem (CFSG).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following groups:

- A_n with $n \geq 5$;
- classical simple groups;
- exceptional simple groups of Lie type;
- 26 sporadic groups.

CFSG and almost simple groups

Theorem (CFSG).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following groups:

- A_n with $n \ge 5$;
- classical simple groups;
- exceptional simple groups of Lie type;
- 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

CFSG and almost simple groups

Theorem (CFSG).

Let G be a non-abelian finite simple group. Then G is isomorphic to one of the following groups:

- A_n with $n \ge 5$;
- classical simple groups;
- exceptional simple groups of Lie type;
- 26 sporadic groups.

Theorem (Schreier Conjecture).

The outer automorphism group of a finite simple group is soluble.

A group *G* is called **almost simple** if

$$\mathsf{soc}(G) \cong \mathsf{Inn}(T) \lesssim G \lesssim \mathsf{Aut}(T)$$

for some non-abelian simple group T.

Alternating groups

If $n \ge 5$, then we have

$$Aut(A_n) = \begin{cases} S_n & n \neq 6; \\ S_n.2 & n = 6. \end{cases}$$

5/29

Alternating groups

If $n \geq 5$, then we have

$$\operatorname{Aut}(A_n) = \begin{cases} S_n & n \neq 6; \\ S_n.2 & n = 6. \end{cases}$$

If $soc(G) = A_n$ and H is a maximal subgroup of G, then by O'Nan-Scott, H either contains A_n or is in one of the following classes.

Class	Descriptions	Structure in S_n	Conditions
\mathscr{A}_1	Intransitive	$S_m \times S_k$	$m+k=n, m\neq k$
\mathscr{A}_2	Imprimitive	$S_a \wr S_b$	$n = ab$, $a, b \ge 2$
\mathscr{A}_3	Affine	$AGL_d(p)$	$n=p^d$, p prime
\mathscr{A}_4	Product action	$S_a \wr S_b$	$n=a^b$, $a\geq 5$, $b\geq 2$
\mathscr{A}_5	Diagonal	T^k .(Out(T) \times S_k)	$n= T ^{k-1},\ k\geq 2,$
			${\mathcal T}$ non-abelian simple
S	Almost simple	5	S is primitive on [n]

11 March 2021

Let soc(G) be a finite simple classical group. Then G is in one of the following cases:

$$L, U, S, O, O^{\pm}$$
.

We also write $U = L^-$ in the literature.

The outer automorphism group of a classical group is generated by **diago-nal**, **field and graph automorphisms**. In more detail, we have the table in the next page.

Case	soc(G)	Out(soc(G))	Conditions
L	$L_n(p^f)$	$\mathbb{Z}_{(n,p^f-1)}:(\mathbb{Z}_f\times\mathbb{Z}_2)$	<i>n</i> > 2
		$\mathbb{Z}_{(2,p^f-1)} imes \mathbb{Z}_f$	n = 2
S	$PSp_{2n}(p^f)$	$\mathbb{Z}_2.\mathbb{Z}_f$	$p \neq 2$
		$\mathbb{Z}_f.\mathbb{Z}_2$	p = 2, n = 2
		\mathbb{Z}_{f}	p = 2, n > 2
U	$U_n(q)$	$\mathbb{Z}_{(n,q+1)}.\mathbb{Z}_f$	$q^2 = p^f$
Ο	$\Omega_{2n+1}(p^f)$	$\mathbb{Z}_{(2,p^f-1)}.\mathbb{Z}_f$	
O^+	$P\Omega_{2n}^+(p^f)$	$\mathbb{Z}^2_{(2,p^f-1)}$. $\mathbb{Z}_f.S_3$	n = 4
		$\mathbb{Z}_{(2,p^f-1)}^{\grave{2}}.\mathbb{Z}_f.\mathbb{Z}_2$	n > 4 even
		$\mathbb{Z}_{(4,p^{nf}-1)}.\mathbb{Z}_f.\mathbb{Z}_2$	n odd
O^-	$P\Omega_{2n}^-(q)$	$\mathbb{Z}_{(4,q^n+1)}.\mathbb{Z}_f$	$q^2 = p^f$

Let soc(G) be a finite simple classical group over \mathbb{F}_q with characteristic p. A famous theorem of Aschbacher implies that a maximal subgroup H of Geither contains soc(G), or is in the following classes. We refer the reader to Kleidman-Liebeck for details.

Class	Descriptions
$\overline{\mathscr{C}_1}$	Stabiliser of subspaces, or pairs of subspaces, of V
\mathscr{C}_2	Stabilisers of decompositions $V = \bigoplus_{i=1}^t V_i$, where dim $V_i = a$
\mathscr{C}_3	Stabilisers of prime degree extension fields of \mathbb{F}_q
\mathscr{C}_{4}	Stabiliser of decompositions $V=V_1\otimes V_2$
\mathscr{C}_5	Stabilisers of prime index subfields of \mathbb{F}_q
\mathscr{C}_6	Normalisers of symplectic-type r -groups, $r \neq p$
\mathscr{C}_7	Stabilisers of decompositions $V = \bigotimes_{i=1}^t V_i$, where dim $V_i = a$
\mathscr{C}_8	Stabilisers of nondegenerate forms on V
$\mathscr S$	Almost simple absolutely irreducible subgroups
\mathcal{N}	Novelty subgroups ($\operatorname{soc}(G) = \operatorname{P}\Omega_8^+(q)$ or $\operatorname{Sp}_4(q)'$ $(p=2)$, only)

We also refer the reader to Table 3.5 in Kleidman-Liebeck for the types of subgroups in classes \mathscr{C}_i . For example, in case U we have

Class	Types	Conditions
$\overline{\mathscr{C}_1}$	P_m	$1 \le m \le [n/2]$
	$GU_m(q) \oplus GU_{n-m}(q)$	$1 \leq m < n/2$
\mathscr{C}_2	$GU_m(q) \wr S_t$	$n=mt$, $t\geq 2$
	$GL_{n/2}(q^2).2$	<i>n</i> even
\mathscr{C}_3	$GU_m(q^r)$	$n=mr$, $r\geq 3$ prime
\mathscr{C}_{4}	$GU_{n_1}(q)\otimes GU_{n_2}(q)$	$n = n_1 n_2, \ 2 \le n_1 < \sqrt{n}$
\mathscr{C}_5	$GU_n(q_0)$	$q=q_0^r$, $r\geq 3$ prime
	$O_n(q)$	<i>qn</i> odd
	$O_n^\epsilon(q)$	q odd, n even
	$Sp_n(q)$	<i>n</i> even
\mathscr{C}_6	r^{2m} . $\operatorname{Sp}_{2m}(r)$	See KL
\mathscr{C}_7	$GU_m(q) \wr S_t$	$n = m^t, m \ge 3, (q, m) \ne (2, 3)$

11 March 2021

Dynkin diagrams

The **Dynkin diagrams** have a close relation to simple groups of Lie type. Roughly speaking, a simple group of Lie type corresponds to one of the following Dynkin diagrams, where the second or third corresponding group is (if any) given by twisting points.

Groups	Dynkin diagram	Condition
$L_{n+1}(q),U_{n+1}(q)$	$A_n \longrightarrow$	$n \ge 1$
$\Omega_{2n+1}(q)$	$B_n \stackrel{\bullet \bullet \bullet}{\longleftarrow} \stackrel{\bullet \to \bullet}{\longrightarrow}$	$n \ge 3$
$PSp_{2n}(q), {}^{2}B_{2}(2^{f})$	$C_n \bullet \bullet$	$n \ge 2$
$P\Omega_{2n}^{+}(q), \ P\Omega_{2n}^{-}(q), \ ^{3}D_{4}(q)$	D_n	$n \ge 4$
$E_6(q)$, ${}^2E_6(q)$	E_6 •••••	
$E_7(q)$	E ₇ •••••	
$E_8(q)$	E ₈ •••••	
$F_4(q)$, ${}^2F_4(2^f)$	$F_4 \longrightarrow \longrightarrow \longrightarrow$	
$G_2(q)$, ${}^2G_2(3^f)$	$G_2 \iff$	

Let soc(G) be a finite exceptional simple group of Lie type. Then G and Out(soc(G)) are listed as follows.

T	Out(T)	Condition
$G_2(p^f)$	$\overline{\mathbb{Z}_{f}}$	<i>p</i> ≠ 3
	$\mathbb{Z}_f.\mathbb{Z}_2$	p = 3
$F_4(p^f)$	\mathbb{Z}_f	$p \neq 2$
_	$\mathbb{Z}_f.\mathbb{Z}_2$	p = 2
$E_6(p^f)$	$\mathbb{Z}_{(3,p^f-1)}.\mathbb{Z}_f.\mathbb{Z}_2$	
${}^{2}E_{6}(q)$	$\mathbb{Z}_{(3,q+1)}.\mathbb{Z}_f$	$q^2 = p^f$
$E_7(p^f)$	$\mathbb{Z}_{(2,p^f-1)}.\mathbb{Z}_f$	
$E_8(p^f)$	\mathbb{Z}_f	
$^{3}D_{4}(q)$	\mathbb{Z}_f	$q^3 = p^f$
$^{2}B_{2}(2^{2n+1})$	\mathbb{Z}_{2n+1}	
$^{2}G_{2}(3^{2n+1})$	\mathbb{Z}_{2n+1}	
$^{2}F_{4}(2^{2n+1})$	\mathbb{Z}_{2n+1}	
${}^{2}F_{4}(2)'$	\mathbb{Z}_2	

The maximal subgroups of exceptional groups are similar. We "correspond" those groups to the classes of maximal subgroups of classical groups.

Description	"Correspondence"
\overline{H} is maximal parabolic in \overline{G}	\mathscr{C}_1
\overline{H} is non-parabolic, of maximal rank in \overline{G}	$\mathscr{C}_2,\mathscr{C}_3$
\overline{H} is closed of positive dimension in \overline{G}	$\mathscr{C}_4,\mathscr{C}_7,\mathscr{C}_8$
Subfield subgroups	\mathscr{C}_5
Exotic <i>p</i> -local subgroups	\mathscr{C}_6
Almost simple (complete unless E_7 and E_8)	$\mathscr S$
Borovik subgroup $(A_5 \times A_6).2^2$ for $\overline{G} = E_8$	

Here we write \overline{G} the associated group of Lie type defined over $\overline{\mathbb{F}_q}$. We refer the reader to a survey article by Liebeck and Seitz².

²M.W. Liebeck and G.M Seitz, *A survey of maximal subgroups of exceptional groups of Lie type.* Groups, combinatorics & geometry (Durham, 2001), 139–146, World Sci. Publ., River Edge, NJ, 2003.

Example.

Let $soc(G) = L_8(q)$ and $H \in \mathscr{C}_4$ of type $GL_4(q) \otimes GL_2(q)$. Then \overline{G} is of type A_7 and \overline{H} is of type A_3A_1 , which is not of maximal rank.

Example.

Let $soc(G) = L_8(q)$ and $H \in \mathscr{C}_8$ is of type $Sp_8(q)$. Then \overline{G} is of type A_7 and \overline{H} is of type C_4 , which is not of maximal rank.

Example.

Let $soc(G) = PSp_8(q)$ and $H \in \mathcal{C}_2$ is of type $GL_4(q).2$. The matrices of elements in H are of the form

$$\begin{pmatrix} A & 0 \\ 0 & A^{-T} \end{pmatrix} \operatorname{diag}(\lambda, 1, 1, 1, \lambda^{-1}, 1, 1, 1)$$

for some $A \in SL_4(q)$ and $\lambda \in \mathbb{F}_q$. Hence, \overline{G} is of type C_4 and \overline{H} is of type A_3T_1 , which is of maximal rank.

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Sporadic groups

Let soc(G) be a sporadic simple group. Then $|\operatorname{Out}(soc(G))| \le 2$. Specifically, the groups with $|\operatorname{Out}(soc(G))| = 2$ are

 $\mathsf{M}_{12}, \mathsf{M}_{22}, \mathsf{HS}, \mathsf{J}_2, \mathsf{J}_3, \mathsf{McL}, \mathsf{Suz}, \mathsf{He}, \mathsf{HN}, \mathsf{Fi}_{22}, \mathsf{Fi}_{24}' \ \ \mathsf{and} \ \ \mathsf{O'N},$

and those with trivial outer automorphism are

 $\mathsf{M}_{11}, \mathsf{M}_{23}, \mathsf{M}_{24}, \mathsf{Co}_1, \mathsf{Co}_2, \mathsf{Co}_3, \mathsf{J}_1, \mathsf{J}_4, \mathsf{Fi}_{23}, \mathsf{Th}, \mathsf{Ly}, \mathsf{Ru}, \mathbb{B} \text{ and } \mathbb{M}.$

Hong Yi Huang (UoB) Fixed point ratios 11 March 2021

15/29

³R.A. Wilson. *Maximal subgroups of sporadic groups*. Finite simple groups: thirty years of the atlas and beyond, 57–72, Contemp. Math., 694, Amer. Math. Soc., Providence, RI, 2017.

⁴R.A. Wilson et al., *A World-Wide-Web Atlas of finite group representations*, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Sporadic groups

Let soc(G) be a sporadic simple group. Then $|\operatorname{Out}(soc(G))| \le 2$. Specifically, the groups with $|\operatorname{Out}(soc(G))| = 2$ are

 $\mathsf{M}_{12}, \mathsf{M}_{22}, \mathsf{HS}, \mathsf{J}_2, \mathsf{J}_3, \mathsf{McL}, \mathsf{Suz}, \mathsf{He}, \mathsf{HN}, \mathsf{Fi}_{22}, \mathsf{Fi}_{24}' \ \ \mathsf{and} \ \ \mathsf{O'N},$

and those with trivial outer automorphism are

 $\mathsf{M}_{11}, \mathsf{M}_{23}, \mathsf{M}_{24}, \mathsf{Co}_1, \mathsf{Co}_2, \mathsf{Co}_3, \mathsf{J}_1, \mathsf{J}_4, \mathsf{Fi}_{23}, \mathsf{Th}, \mathsf{Ly}, \mathsf{Ru}, \mathbb{B} \text{ and } \mathbb{M}.$

The classification of maximal subgroups of sporadic almost simple groups is complete, except for \mathbb{M} . See an article by Wilson³ or the Web Atlas⁴ for the classification, where some errors of the old-version Atlas are fixed.

Hong Yi Huang (UoB) Fixed point ratios 11 March 2021 15 / 29

³R.A. Wilson. *Maximal subgroups of sporadic groups*. Finite simple groups: thirty years of the atlas and beyond, 57–72, Contemp. Math., 694, Amer. Math. Soc., Providence, RI, 2017.

⁴R.A. Wilson et al., *A World-Wide-Web Atlas of finite group representations*, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Soluble maximal subgroups

Problem.

Classify soluble maximal subgroups of almost simple groups.

Some remarks

- Even though classification has been already done by Li and Zhang⁵, it is still worth trying yourself to get familiar with maximal subgroups.
- In Li and Zhang's paper, the maximal subgroups H is presented by "GroupName"s. It is also worth interpreting those groups into "Type of H" considering the classification theorems.
- When dealing with some small cases, we can use MAGMA by the functions AutomorphismGroupSimpleGroup and MaximalSubgroups(G:IsSolvable:=ture).

⁵C.H. Li and H. Zhang. *The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs.* Proc. Lond. Math. Soc. **103** (2011), 441–472.

Outline

Simple groups

Pixed point ratios

Fixed point ratios

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega|$ finite. Write

$$C_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^x = \alpha \}$$

the set of fixed points of $x \in G$.

Hong Yi Huang (UoB)

Fixed point ratios

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega|$ finite. Write

$$C_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^x = \alpha \}$$

the set of fixed points of $x \in G$.

Definition (Fixed point ratios).

The **fixed point ratio** of $x \in G$ is

$$\operatorname{fpr}(x,\Omega) = \operatorname{fpr}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|},$$

the proportion of points in Ω fixed by x, or the probability that a randomly chosen element of Ω is fixed by x.

S_n on 2-subsets

Let $G = S_n$ for $n \ge 5$ acting on 2-subsets of [n]. Set x = (123). We have

$$C_{\Omega}(x) = \{\{a, b\} : a, b \in \{4, \dots, n\}\}$$

and so $|C_{\Omega}(x)| = \binom{n-3}{2}$. This implies

$$fpr(x) = \frac{\binom{n-3}{2}}{\binom{n}{2}} = \frac{(n-3)(n-4)}{n(n-1)}.$$

Observations

Note that $C_{\Omega}(x) = \{\alpha \in \Omega : x \in G_{\alpha}\}$. We have

- fpr(x) = fpr(y) for all $y \in x^G$.
- $\operatorname{fpr}(x) \leq \operatorname{fpr}(x^m)$ for all $m \in \mathbb{Z}$.

Observations

Note that $C_{\Omega}(x) = \{\alpha \in \Omega : x \in G_{\alpha}\}$. We have

- fpr(x) = fpr(y) for all $y \in x^G$.
- $\operatorname{fpr}(x) \leq \operatorname{fpr}(x^m)$ for all $m \in \mathbb{Z}$.

Moreover, if G is transitive with stabiliser H, then

$$\mathsf{fpr}(x) = \frac{|x^{\mathsf{G}} \cap H|}{|x^{\mathsf{G}}|}.$$

This provides a method to compute fpr(x) for an abstract action.

S_n on 2-subsets again

Let $G = S_n$ for $n \ge 5$ acting on 2-subsets of [n]. We have the stabiliser $H = S_{n-2} \times S_2$. Set x = (123).

Since all the 3-cycles in G are conjugate, $x^G \cap H$ is the set of 3-cycles in H, which gives

$$|x^{\mathsf{G}} \cap H| = |x^{\mathsf{H}}| = 2\binom{n-2}{3}$$

and

$$|x^G| = 2\binom{n}{3}.$$

So the fixed point ratio is

$$fpr(x) = \frac{|x^G \cap H|}{|x^G|} = \frac{2\binom{n-2}{3}}{2\binom{n}{3}} = \frac{(n-3)(n-4)}{n(n-1)}.$$

On computing

Let G be transitive.

- Concrete and well known actions: directly calculate.
- General actions: very difficult!!!

On computing

Let G be transitive.

- Concrete and well known actions: directly calculate.
- General actions: very difficult!!!
- \bullet Magma: CosetAction is expensive and requires very small degrees.
- $fpr(x) = \frac{|x^G \cap H|}{|x^G|}$ is useful and most frequently used.

Problems

- Obtain upper and lower bounds on fpr(x).
- Compute (or bound) the minimal and maximal fixed point ratios $\min\{\operatorname{fpr}(x): x \in G\}$ and $\max\{\operatorname{fpr}(x): 1 \neq x \in G\}$.
- Given $S \subseteq G \setminus \{1\}$, compute (or bound) $\min\{fpr(x) : x \in S\}$ and $\max\{fpr(x) : x \in S\}$.

Minimal degrees and fixities

• Minimal degree:

$$\mu(G) = \min_{1 \neq x \in G} (n - |C_{\Omega}(x)|) = n \left(1 - \max_{1 \neq x \in G} \operatorname{fpr}(x)\right),$$

which is the smallest number of points moved by any non-identity element in G.

Fixity:

$$f(G) = n \left(\max_{1 \neq x \in G} fpr(x) \right) = n - \mu(G),$$

the largest number of fixed points of a non-identity element in G.

• Involution fixity:

$$\mathsf{ifix}(G) = n\left(\max_{|x|=2}\mathsf{fpr}(x)\right).$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

A base is a subset Δ of Ω such that $G_{(\Delta)} = 1$. The base size b(G) of G is the minimal size of bases for G.

Hong Yi Huang (UoB)

A base is a subset Δ of Ω such that $G_{(\Delta)} = 1$. The base size b(G) of G is the minimal size of bases for G.

• Let Q(G,c) be the probability that a randomly chosen c-tuple $\{\alpha_1,\ldots,\alpha_c\}$ in Ω is NOT a base. That is,

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1\cdots\alpha_c} \neq 1\}|}{|\Omega|^c}.$$

Hong Yi Huang (UoB)

A base is a subset Δ of Ω such that $G_{(\Delta)} = 1$. The base size b(G) of G is the minimal size of bases for G.

• Let Q(G,c) be the probability that a randomly chosen c-tuple $\{\alpha_1,\ldots,\alpha_c\}$ in Ω is NOT a base. That is,

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1\cdots\alpha_c} \neq 1\}|}{|\Omega|^c}.$$

• If $\{\alpha_1,\ldots,\alpha_c\}$ is not a base, then there exists an element x (of prime order) such that

$$x \in \bigcap_{i=1}^{c} G_{\alpha_i} \neq 1,$$

which gives $\{\alpha_1, \ldots, \alpha_c\} \subseteq C_{\Omega}(x)$ and $c \leq |C_{\Omega}(x)|$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

• Let \mathcal{P} be the set of elements of prime order in G. Then

$$Q(G,c) \leq \sum_{x \in \mathcal{P}} \left(\frac{|C_{\Omega}(x)|}{|\Omega|} \right)^c = \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c =: \hat{Q}(G,c).$$

Hong Yi Huang (UoB) Fixed point ratios

26/29

• Let \mathcal{P} be the set of elements of prime order in G. Then

$$Q(G,c) \leq \sum_{x \in \mathcal{P}} \left(\frac{|C_{\Omega}(x)|}{|\Omega|} \right)^c = \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c =: \hat{Q}(G,c).$$

• Note that $fpr(x) = fpr(x^g)$ for all $g \in G$. This implies

$$Q(G,c) \leq \hat{Q}(G,c) = \sum_{i=1}^{k} |x_i^G| \cdot \left(\frac{|x_i^G \cap H|}{|x_i^G|}\right)^c,$$

where x_1, \ldots, x_k are representatives of \mathcal{P} up to conjugacy in G.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

26 / 29

Hong Yi Huang (UoB) Fixed point ratios 11 March 2021

• Let \mathcal{P} be the set of elements of prime order in G. Then

$$Q(G,c) \leq \sum_{x \in \mathcal{P}} \left(\frac{|C_{\Omega}(x)|}{|\Omega|} \right)^c = \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c =: \hat{Q}(G,c).$$

• Note that $fpr(x) = fpr(x^g)$ for all $g \in G$. This implies

$$Q(G,c) \leq \hat{Q}(G,c) = \sum_{i=1}^{k} |x_i^G| \cdot \left(\frac{|x_i^G \cap H|}{|x_i^G|}\right)^c,$$

where x_1, \ldots, x_k are representatives of \mathcal{P} up to conjugacy in G.

• We have $b(G) \le c$ if $\hat{Q}(G,c) < 1$.

Hong Yi Huang (UoB)

• Let \mathcal{P} be the set of elements of prime order in G. Then

$$Q(G,c) \leq \sum_{x \in \mathcal{P}} \left(\frac{|C_{\Omega}(x)|}{|\Omega|} \right)^c = \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c =: \hat{Q}(G,c).$$

• Note that $fpr(x) = fpr(x^g)$ for all $g \in G$. This implies

$$Q(G,c) \leq \hat{Q}(G,c) = \sum_{i=1}^{k} |x_i^G| \cdot \left(\frac{|x_i^G \cap H|}{|x_i^G|}\right)^c,$$

where x_1, \ldots, x_k are representatives of \mathcal{P} up to conjugacy in G.

- We have $b(G) \le c$ if $\hat{Q}(G,c) < 1$.
- In particular, $b(G) \le 2$ if

$$|H|^2 \max_{1 \neq x \in H} |C_G(x)| = |H|^2 \max_{\substack{x \in H \\ |x| \text{ prime}}} |C_G(x)| < |G|.$$

Example.

Suppose $soc(G)=\mathsf{L}_3^\epsilon(q)$ with $q=p\equiv\epsilon\pmod 3$ and H is of type $3^{1+2}.\,\mathsf{Sp}_2(3).$ Then $|H|\le 432$ and

$$|C_G(x)| \ge \frac{|G|}{(q-1)(q^3-1)}$$

for all $x \in G$ of prime order (maximal if $\epsilon = +$ and x is unipotent with Jordan form $[J_2, J_1]$). This gives b(G) = 2 for all q > 23. When $q \le 23$ we can also check using MAGMA that b(G) = 2.

Next time

In the next talk, we will introduce the generation problem of simple groups and some related results, which includes

- The 2-generation property of simple groups;
- Random generations of simple groups;
- Spreads and uniform spreads;
- Generating graphs;

and how fixed point ratios are applied to these problems.

Thank you for your attention!