

数の表現

2 集合論

数の表現

■ コンピュータの基本は 0 と 1 で計算している。電源が Off の場合は 0、電源が On の場合は 1 となる。この電源 On / Off の二つの状態から計算を行う場合、最も簡単な表現方法は 2 進数となる。

10進数

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12$$

10 個の数で表現

11 個目は桁上がり

2進数

$$0 \rightarrow 1 \rightarrow 10 \rightarrow 11 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$

2 個の数で表現

3 個目は桁上がり

基数变换

● 2 進数と 10 進数の変換、または 8 進数や 16 進数と いった基数を変換することを**基数変換**と呼ぶ。

〈2進数→10進数の変換〉

10進数:
$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $8 + 4 + 0 + 1 = 13$ 結果

〈10進数→2進数の変換〉

8 進数と 16 進数

- 2 進数と同じように、8 (16) 個の数で表現する方法を 8 進数 (16 進数) という。
 - 〈8進数、16進数→10進数の変換〉

〈10進数→8進数、16進数の変換〉

Note 1

16 進数の "数字" は 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F である。

2 進数の演算

● 2 進数の桁上がり: 1 + 1 = 10。

● 2 進数の桁下がり: 10 - 1 = 1。

+	1011 0101	×	1011 101
	10000		1011
_	1011 0101		0000 1011
	110	_	110111

問題:人の指で最大何個の数を表現できるか考えてみよう!

Tips - 💢 -

16進数を表示する場合の表示方法:

- 1. 右下に小さく「16」 と書く: 17FA₁₆。
- 2. 冒頭に「0x」を書く 0x17FA。

10進数	2進数	8進数	16進数
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

データ容量の単位

一度に最大で32ビットのデータを処理できるCPUを32ビットCPU、64ビットのデータを処理できるCPUを64ビットCPUと呼ぶ。

● ビットとバイト コンピュータは 2 進数ですべてのデータが構成される。この時の最 小単位「2 進数の 1 桁分」をビット(bit)と呼び、8 ビット分を まとめた単位をバイト(byte)と呼ぶ。

● 補助単位

大きい値の補助単位		小さい値の補助単位	
k(キロ)	10 ³ =1,000倍	m(ミリ)	$1/10^3 = 1/1,000$
M(メガ)	10 ⁶ =1,000,000倍	μ(マイクロ)	1/10 ⁶ =1/1,000,000
G(ギガ)	10 ⁹ =1,000,000,000倍	n(ナノ)	1/109=1/1,000,000,000
T(テラ)	1012=1,000,000,000,000倍	p(ピコ)	1/10 ¹² =1/1,000,000,000,000

【問題 1】

2進数1011と2進数101を乗算した結果の2進数はどれか。

平成28年秋期 問91 4問目/選択範囲の問題数51問

ア 1111 イ 10000 ウ 101111 エ 110111

【問題 2】

10進数155を2進数で表したものはどれか。

出典:令和2年秋期 問62

- 1 数の表現
- 2 集合論

集合とは

ある特性をもったデータ(要素)の集まりを集合という。 集合を表す図にベン図がある。

全体集合	対象とするデータ すべて で構成される集合。	
補集合	ある集合Aに対して 「Aでない」要素の集まり 。	
部分集合	ある集合Aに対して 「Aに含まれる」集合 Bのこと。	

 ■ コンピュータはデータを扱う時、条件で対象を絞り込みする。この絞り込み条件は集合論の概念を用いている。かつ (AND)、または(OR) などを見ていこう。

和集合と積集合

● 和集合: A または B (A OR B)。

● 積集合: A かつ B (A AND B)。

排他集合

● 排他集合: A かつ B でない (A NOT B)。

集合演算と論理演算

論理和(OR、または)	二つの値がいずれも偽(O)のときのみ結果が偽(O)となり、それ以外は真(1)となる	
論理積(AND、かつ)	二つの値がいずれも真(1)のときのみ結果が真(1)となり、それ以外は偽(0)となる	
否定 (NOT、ではない) 値が真(1) のときに結果が偽(0) となり、値が(0) のときに結果が真(1) となる		
排他的論理和(XOR)	二つの値が異なるときに結果が真(1)となり、二つの値が等しいときに結果が偽(O)となる	

● 真(true) と偽(false):集合において、条件(A)を満たすこと、集合 A に含まれることを「真」といい、条件(A)を満たさない、集合 A に含まれないことを「偽」という。論理演算の場合、真を 1 で表し、偽を 0 で表すこともある。

論理演算の真理値表

①論理和

Α	В	A OR B
1	1	1
1	0	1
0	1	1
0	0	0

②論理積

Α	В	A AND B
1	1	1
1	0	0
0	1	0
0	0	0

③否定

Α	NOT A
1	0
0	1

④排他的論理和

Α	В	A XOR B
1	1	0
1	0	1
0	1	1
0	0	0

各論理演算は、記号を用いて、

A OR B \rightarrow A+B

A AND B → A · B

NOT A $\rightarrow \overline{A}$

A XOR B → A⊕B

のように表現することもあります。

論理演算の法則

四則演算の交換法則

$$a + b = b + a$$

 $a \times b = b \times a$

四則演算の分配法則

$$a \times (b + c) = (a \times b) + (a \times c)$$

四則演算の結合法則

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$

論理演算の交換法則

a AND b = b AND aa OR b = b OR a

論理演算の分配法則

a AND (b OR c) = (a AND b) OR (a AND c)a OR (b AND c) = (a OR b) AND (a OR c)

論理演算の結合法則

a AND (b AND c) = (A AND b) AND ca OR (b OR c) = (a OR b) OR c

ド・モルガンの法則

NOT $(a \ AND \ b) = (NOT \ a) \ OR \ (NOT \ b)$ NOT $(a \ OR \ b) = (NOT \ a) \ AND \ (NOT \ b)$

【問題 1】

次のベン図の網掛けした部分の検索条件はどれか。

平成29年秋期 問98 40問目/選択範囲の問題数51問

ア (not A) and (B and C) イ (not A) and (B or C)
ウ (not A) or (B and C) エ (not A) or (B or C)

【問題 2】

二つの集合AとBについて、常に成立する関係を記述したものはどれか。ここで、 $(X \cap Y)$ は、XとYの両方に属する部分(積集合)、 $(X \cup Y)$ は、X又はYの少なくとも一方に属する部分(和集合)を表す。

平成27年春期 問62 24問目/選択範囲の問題数51問

- ア (A∪B)は, (A∩B)でない集合の部分集合である。
- イ (A∪B)は, Aの部分集合である。
- **ウ** (A∩B)は, (A∪B)の部分集合である。
- 工 (A∩B)は, Aでない集合の部分集合である。

【問題 3】

二つの集合AとBについて、常に成立する関係を記述したものはどれか。ここで、 $(X \cap Y)$ は、XとYの共通部分(積集合)、 $(X \cup Y)$ は、X又はYの少なくとも一方に属する部分(和集合)を表わす。

出典:平成22年春期 問69

- ア (ANB)は、Aでない集合の部分集合である。
- イ (ANB)は、Aの部分集合である。
- ウ (A∪B)は, (A∩B) の部分集合である。
- **エ** (A∪B)は, Aの部分集合である。

まとめ

Sum Up

- 1. 数の表現:
 - ① 2 進数、8 進数、16 進数と 10 進数の変換。
 - ② 2 進数の演算。
 - ③ データ容量の単位。
- 2. 集合論:
 - ① 集合の概念。
 - ② 集合演算。
 - ③ 論理演算。

