Лекция №6

	X 1	X 2	X 3	X 4	X 5	fi
X 1	1	0	0	2	2	5
X 2	0	1	0	2	1	4
X 3	2	2	1	2	2	9
X 4	0	0	0	1	0	1
X 5	0	1	0	2	1	4

Суммирование построчно позволяет получить значение f_i степени доминирования данного i-го решения над остальными. На основе значений f_i может быть выполнено упорядочивание элементов x_i множества X. В данном случае порядок частичный. В соответствии со значениями f_i упорядочивание примет вид:

 $x_3 > x_1 > x_2 \sim x_5 > x_4$, где > - отношение строгого порядка, $\sim -$ отношение эквивалентности

Сравнение решений по свойствам

Сравнение по свойствам реализуется в случае, если каждое решение характеризуется множеством (набором) характеристик, признаков и в итоге критериев. В этом случае каждому решению ставится в соответствие вектор скалярных оценок критериев.

Задан набор критериев, тогда связывание решений x_i и x_j (сравнений решений) с помощью отношений (>, >, ~) происходит по принципу:

$$x_{i} \sim x_{j} \Leftrightarrow f_{i} =_{F} f_{j}$$
 $(f_{i1}, f_{i2}, ..., f_{iQ}) =_{F} (f_{j1}, f_{j2}, ..., f_{jQ})$ (1)
 $f_{iQ} = f_{iQ} \prod_{p \neq i} q = 1..Q$

$$x_{i} > x_{j} \Leftrightarrow f_{i} > f_{j}$$
 $(f_{i1}, f_{i2}, ..., f_{iQ}) > (f_{j1}, f_{j2}, ..., f_{jQ})$ (2)
$$f_{iq} > f_{jq} \prod_{p \neq i} q = 1..Q$$

$$x_{i} \ge x_{j} \Leftrightarrow f_{i} \ge f_{j}$$
 $(f_{i1}, f_{i2}, ..., f_{iQ}) \ge (f_{j1}, f_{j2}, ..., f_{jQ})$ (3)
$$f_{iq} \ge f_{iq} \prod_{p \neq i} q = 1..Q$$

Выражение (3) соответствует условию Парета, которое требует, что бы все кроме одной скалярной оценки были связаны в виде $f_{iq} >= f_{jq}$ и для одной оценки $f_{iq} > f_{jq}$, где q = q

Пример реализации доминирования отношений

ГРАФИК У МАШИ

Решение x_i , находящееся внутри множества возможных решений, доминируется всем, что выше и левее него, такая область называется конусом доминирования.

Решение x_j , находящееся на границе множества возможных решений, доминируется всем, что имеет большее значение критерия, вдоль которого проходит граница.

Условие несравнимости:

```
f_{1i} >_{K1} f_{1j}

f_{1i} <_{K1} f_{1j}

x_i \not> x_j

x_i \not> x_i
```

Так как x_i и x_j несравнимые решения образуют Парето границу множества возможных решений. Эффективные решения выделяются среди Парето-оптимальных решений (среди решений, лежащих на Парето границу).

Этап выбора эффективных решений, предполагающий выделение наилучших, упорядочивание решений, либо их классификацию?

Принятие решений на основе бинарных отношений

Общие понятия бинарных отношений:

<u>Бинарное отношение</u> – это некоторое свойство, которое связывает пары элементов множества X^2 .

<u>Бинарное отношение</u> – это подмножество пар, входящих в декартово произведение X^2 , для которых рассматриваемое свойство выполняется.

$$R = \{(x_i, x_i) \in X^2 \mid x_i \mid R \mid x_i\}$$

 $(x_i, x_i) \in R \subseteq X^2$

 $(x_i, x_j) \not\in R \Longrightarrow (x_i, x_j) \in X^2 \backslash R$

 $!R = X^2 \setminus R \Rightarrow (xi, xj) \in !R$

Способы задания отношений – матрица, граф, сечение

Операции над отношениями

Вложение отношений $R_2 > R_1$; $R_2 \subseteq R_1 \subseteq X^2$

 $(x_i, x_j) \in R_2 \Longrightarrow (x_i, x_j) \in R_1$

Дополнение отношения R и $!R = X^2 \setminus R$

Для отношения R существует обратное отношение $R^{\text{-1}}$, при этом если x_i R x_j , то x_j $R^{\text{-1}}$ x_i

Свойства отношений