Semi-Conditional Normalizing Flows for Semi-Supervised Learning

Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, Dmitry Vetrov

Contributions

Propose a Semi-Conditional Normalizing Flows.

- Efficiently evaluate marginal distribution of unlabelled data.
- Flexible conditional coupling layers.
- Data obfuscation by class-independent latent representations.

Semi-Supervised Learning with Deep Generative models

Model joint distribution over object and label:

$$p_{\theta}(x,y) = p_{\theta}(x|y)p(y)$$

Let's use Normalizing Flows as they provide tractable log-likelihood and its gradients estimations!

• Use marginal density for unlabelled objects:

$$p_{\theta}(x) = \sum_{k=1}^{K} p_{\theta}(x, y = k)$$

Inference for unlabelled objects is **K times slower!** Let's condition only a small part of a flow!

Objective for training model parameters:

$$L(\theta) = \sum_{\substack{labelled}} \log p_{\theta}(x_i, y_i) + \sum_{\substack{labelled}} \log p_{\theta}(x_j)$$

• Prediction can be done by the posterior:

$$p_{\theta}(y|x) = \frac{p_{\theta}(x,y)}{p_{\theta}(x)}$$

Normalizing Flows

 Model data as an invertible transformation of a simple random variable:

Change of variables formula to compute the density:

$$\log p_{\theta}(x|y) = \log \left| \frac{\partial f_{\theta}(x;y)}{\partial x^T} \right| + \log p(z)$$

 Use conditional coupling layer for flexible conditioning on a class label:

$$z_1 = x_1, \quad z_2 = x_2 \odot \exp\left(s\left(x_1,\mathbf{y}\right)\right) + t\left(x_1,\mathbf{y}\right)$$
 arbitrary neural networks

Semi-Conditional Normalizing Flows

• Condition only a small part of a flow to decrease the dimension of a representation and speed up inference.

Single pass of large flow to compute marginal density:

MNIST Semi-Supervised Classification

Model	Optimisation	$L_{ m clf}$	Error, %	Bits/dim
Kingma et al. (2014)	VI	✓	3.3 ± 0.1	_
SCNF-GLOW (Ours)	SGD	X	1.9 ± 0.3	1.145 ± 0.004
	EM-SGD	✓ ×	2.0 ± 0.1 1.9 ± 0.0	1.151 ± 0.010 1.146 ± 0.002
SCNF-GMM (Ours)	SGD	X	14.2 ± 2.4	1.143 ± 0.011
	EM-SGD	✓ ×	16.9 ± 5.3 13.4 ± 2.8	1.141 ± 0.006 1.145 ± 0.005

- 100 labelled objects (the rest are unlabelled).
- **EM-SGD** --- an Expectation Maximization algorithm for maximizing marginal likelihood.
- Kingma et al. (2014) --- stacked M1+M2 model based on variational autoencoders.

Semi-Supervised Data Obfuscation

(a) t-SNE Embeddings of z_f

(b) t-SNE Embeddings of z_h

ullet The objective favours z_h to be independent of class variable:

enforce increasing push z in a high volume density region

ullet However, z_h contains all the other information since the invertibility.

00122345600 0122344560789 012334566789 99999

0123456789

Reconstructions with different class labels