

第七章 脉冲波形的产生和整形电路

本章目录

- ▶7.1 概述
- ▶7.2 施密特触发电路
- ▶7.3 单稳态电路
- >7.4 多谐振荡电路
- ▶7.5 555定时器及其应用

2022-9-9

第七章 脉冲波形的产生和整形电路

.

§ 7.1 概述

- 一、获取矩形脉冲的方法
- 1. 脉冲波形发生电路
- 2. 脉冲波形整形电路
- 二、描述矩形脉冲特性的主要参数
- **1.** 脉冲周期T: 周期性重复的脉冲序列中,两个相邻脉冲之间的时间间隔。

 $0.5V_{\rm m}$

 $0.1V_{\rm m}$

- 2. 脉冲幅度 $V_{\rm m}$: 脉冲电压的最大变化幅度。
- 3. 脉冲宽度 $t_{\rm W}$: 从脉冲前沿到达 $0.5V_{\rm m}$ 起,到脉冲后沿到达 $0.5V_{\rm m}$ 为止的一段时间。
- **4.** 上升时间 t_r : 脉冲上升沿从 $0.1V_m$ 上升到 $0.9V_m$ 所需要的时间。
- 5. 下降时间 $t_{\rm f}$: 脉冲下降沿从 $0.9V_{\rm m}$ 下降到 $0.1V_{\rm m}$ 所需要的时间。
- 6. 占空比q: 脉冲宽度与脉冲周期的比值,即 $q = t_{\rm w}/T$

2022-9-9 第七章 脉冲波形的产生和整形电路

施密特触发电路: 常用的一种脉冲整形电路

施密特触发电路具有两个性能特点:

第一 输入信号从低电平上升的过程中,电路状态转换时对应 的输入电平,与输入信号从高电平下降过程中对应的输入转换 电平不同;

第二 在电路状态转换时,通过电路内部的正反馈过程使输出 电压波形的边沿变得很陡。

2022-9-9

第七章 脉冲波形的产生和整形电路

1

§ 7.2 施密特触发电路

7.2.2 用门电路组成的施密特触发电路

设反相器 G_1 和 G_2 均为CMOS门,其阈值电压为 $V_{\text{TH}}=V_{\text{DD}}/2$,输出高低电平分别为 $V_{\text{OH}}=V_{\text{DD}}$, $V_{\text{OL}}=0$,且 $R_1 < R_2$

$$v_1 \xrightarrow{R_1} v_A \xrightarrow{V_{O1}} v_O$$

$$= 0$$

*当 $v_I = 0$ 时, $v_O = 0$ 。

*当 v_I 个,至 $v_A = V_{TH}$ 时, G_I 进入电压传输特性的转折区,

故
$$v_A \uparrow \rightarrow v_{O1} \downarrow \rightarrow v_O \uparrow$$
 使电路迅速跳变到 $v_O = V_{OH} = V_{DD}$

设输入 v_{I} 上升过程中电路状态发生转换时对应的输入电平为 $V_{\text{T+}}$, $V_{\text{T+}}$ 称为正向阈值电压

$$v_A = V_{TH} = \frac{R_2}{R_1 + R_2} V_{T+}$$
 $\Rightarrow V_{T+} = (1 + \frac{R_1}{R_2}) V_{TH}$

2022-9-9

第七章 脉冲波形的产生和整形电路

5

§ 7.2 施密特触发电路

* 当 $v_I = V_{DD}$ 时, $v_O = V_{DD}$ °

*当 $v_I \downarrow$,至 $v_A = V_{TH}$ 时, G_1 进入电压传输特性的转折区,

故
$$v_A \downarrow \to v_{O1} \uparrow \to v_O \downarrow$$
 使电路迅速跳变到 $v_O = V_{OL} = 0$

设输入 $v_{\rm I}$ 下降过程中电路状态发生转换时对应的输入电平为 $V_{\rm T-}$, $V_{\rm T-}$ 称为负向阈值电压

$$v_A = V_{TH} = V_{DD} - (V_{DD} - V_{T-}) \frac{R_2}{R_1 + R_2} \implies V_{T-} = (1 - \frac{R_1}{R_2}) V_{TH}$$

$$v_I = V_{T+} = (1 + \frac{R_1}{R_2})V_{TH}$$
 $v_I = V_{T-} = (1 - \frac{R_1}{R_2})V_{TH}$

$$V_I = V_{T-} = (1 - \frac{R_1}{R_2})V_{TH}$$

将 V_{T_+} 和 V_{T_-} 之间的差值定义为回差电压,用 $\triangle V_{T}$ 表示,即

$$\Delta V_T = V_{T^+} - V_{T^-} = 2 \frac{R_1}{R_2} V_{TH} \Big|_{\mathbf{v_0}} - \frac{2 \frac{R_1}{R_2} V_{TH}}{2 \frac{R_1}{R_2} V_{TH}} \Big|_{\mathbf{v_0}}$$

电压传输特性 (a) 同相输出 (b) 反相输出

2022-9-9

第七章 脉冲波形的产生和整形电路

§ 7.2 施密特触发电路

7.2.3 施密特触发电路的应用

一、用于脉冲整形

7.2.3 施密特触发电路的应用

二、用于波形变换

三、用于脉冲鉴幅

2022-9-9

第七章 脉冲波形的产生和整形电路

§ 7.3 单稳态电路

波形分析法——单稳态电路和多谐振荡电路的分析方法 步骤:

- ① 分析电路的工作过程, 定性地画出电路中各点电压的波形, 找出 决定电路状态发生转换的控制电压。
- ② 画出控制电压充、放电的等效电路,并将得到的电路化简。
- ③确定每个控制电压充、放电的起始值、终了值和转换值。
- ④ 计算充、放电时间, 求出所需的计算结果。

电压充、放电开始到变化至某一数值所经过的时间为:

由一阶电路三要素公式: $v(t) = v(\infty) + [v(0+) - v(\infty)]e^{-t/\tau}$

所以:
$$t = \tau \ln \frac{v(\infty) - v(0+)}{v(\infty) - v(t)}$$

特点:

- ①有稳态和暂稳态两个不同的工作状态。
- ②在外界触发脉冲作用下,能从稳态→暂稳态,维持一段时间 后自动返回稳态。
- ③暂稳态维持的时间长短取决于电路本身的参数。

2022-9-9

第七章 脉冲波形的产生和整形电路

§ 7.3 单稳态电路

7.3.1 用门电路组成的单稳态电路

一、微分型单稳态电路

G₁和G₂为CMOS门

$$G_1$$
和 G_2 为CMOS门
$$V_{OH} = V_{DD}, V_{OL} = 0, V_{TH} = \frac{1}{2}V_{DD}$$

$$V_{DD} = V_{DD} + V_{DD} +$$

1原理分析

稳态下: $v_I = 0, v_d = 0, v_{I2} = V_{DD}, v_O = 0, (v_{O1} = V_{DD}), C$ 上无电压; 加触发信号ν, ↑,

$$\begin{array}{c} v_d \uparrow \rightarrow v_{O1} \downarrow \rightarrow v_{I2} \downarrow \rightarrow v_O \uparrow \\ \uparrow & \downarrow \end{array}$$

 $v_0 = V_{DD}, v_{O1} = 0$,电路迅速进入暂稳态, C开始充电

7.3.1 用门电路组成的单稳态电路

一、微分型单稳态电路

G₁和G₂为CMOS门

$$G_1$$
和 G_2 为CMOS门
$$V_{OH} = V_{DD}, V_{OL} = 0, V_{TH} = \frac{1}{2}V_{DD}$$

$$I 原理分析$$

充电至
$$v_{I2} = V_{TH}$$
时, v_{I2} 个又引起正反馈
$$v_{I2} \uparrow \rightarrow v_o \downarrow \rightarrow v_{o1} \uparrow$$

电路迅速返回 $v_o = 0, v_{o1} = V_{DD}, C$ 放电至没有电压,恢复稳态。

2022-9-9

第七章 脉冲波形的产生和整形电路

§ 7.3 单稳态电路

2性能参数计算

- ●输出脉冲宽度t_w 电容C开始充电到 v_{12} 上升至 V_{TH} 的时间
- ●输出脉冲幅度V_m 输出脉冲的最大变化幅度
- ●恢复时间t_{re} v_o 返回低电平后,电容C放电至恢复为 起始稳态的时间
- ●分辨时间t_d 电路正常工作时, 允许两个相邻触发 脉冲之间的最小时间间隔

2 性能参数计算

输出脉冲宽度tw

$$t_{w} = RC \ln \frac{v_{C}(\infty) - v_{C}(0)}{v_{C}(\infty) - V_{TH}} = RC \ln \frac{V_{DD} - 0}{V_{DD} - V_{TH}} = RC \ln 2 = 0.69RC$$

输出脉冲幅度
$$V_{\mathbf{m}}$$
 $V_{\mathbf{m}} = V_{OH} - V_{OL} = V_{DD}$

2022-9-9

第七章 脉冲波形的产生和整形电路

15

§ 7.3 单稳态电路

2 性能参数计算

恢复时间
$$t_{re}$$
 $t_{re} = (3 \sim 5)(R//r_{D1} + R_{ON})C \approx (3 \sim 5)R_{ON}C$

分辨时间 $t_{\mathbf{d}}$ $t_d = t_w + t_{re}$

$$t_d = t_w + t_{re}$$

7.3.2 集成单稳态电路

(a)不可重复触发型

 v_1 v_2 v_3 v_4 v_6 v_8 v_8 v_8 v_9 v_9

(b)可重复触发型

2022-9-9

第七章 脉冲波形的产生和整形电路

17

§ 7.3 单稳态电路

- 一、TTL集成单稳态电路(74121)
 - 1 电路结构与工作原理

2022-9-9

第七章 脉冲波形的产生和整形电路

2集成单稳态电路 74121 的功能表

输入			输出		
A_1	A_2	В	v_{0}	v_{0}'	
0	X	1	0	1	
X	0	1	0	1	
X	X	0	0	1	
1	1	X	0	1	
1	+	1	Л	T	
\	1	1			
\	↓	1			
0	X	1		T	
X	0	↑	Л	T	

2022-9-9

第七章 脉冲波形的产生和整形电路

19

§ 7.3 单稳态电路

3 集成单稳态电路 74121 的外部连接方法

 $t_w \approx R_{\rm ext} C_{\rm ext} \ln 2 = 0.69 R_{\rm ext} C_{\rm ext}$

- 二、单稳态电路的应用
- 1定时:产生固定时间宽度的脉冲信号

2022-9-9

第七章 脉冲波形的产生和整形电路

21

§ 7.3 单稳态电路

- 二、单稳态电路的应用
- 2 延时:产生滞后于触发脉冲的输出脉冲

§ 7.4 多谐振荡电路

7.4.2 非对称式多谐振荡电路

一、工作原理(CMOS)

(1)由于"扰动"使ν₁有微小↑,则有:

使 v_{01} 迅速 = 低,而 v_{02} 迅速 = 高。

电路进入第一个暂稳态 \Rightarrow C开始放电, v_{I1} \downarrow

(2)*v*₁₁ ↓ 至*V*_{TH},则有:

t 使 v_{o1} 迅速 = 高,而 v_{o2} 迅速 = 低。

电路进入第二个暂稳态 \Rightarrow *C*开始充电, v_{II} \uparrow (3)当 v_{II} \uparrow 至 V_{TH} ,又返回第一个暂稳态。

2022-9-9

第七章 脉冲波形的产生和整形电路

23

§ 7.4 多谐振荡电路

二、电压波形

 T_2 : C放电,从 $V_{TH}+V_{DD}$ 放至 V_{TH}

 T_1 : C充电,从 $V_{TH} - V_{DD}$ 充至 V_{TH}

振荡周期: $T = T_1 + T_2 \approx 2.2R_F C$

§ 7.4 多谐振荡电路

7.4.3 环形振荡电路

一、最简单的环形振荡电路

振荡周期:

$$T = 2nt_{pd}$$

2022-9-9

第七章 脉冲波形的产生和整形电路

§ 7.4 多谐振荡电路

7.4.4 用施密特触发电路构成的多谐振荡电路

$$T = T_1 + T_2 = RC \ln \frac{V_{DD} - V_{T-}}{V_{DD} - V_{T+}} + RC \ln \frac{V_{T+}}{V_{T-}} = RC \left(\ln \frac{V_{DD} - V_{T-}}{V_{DD} - V_{T+}} \cdot \frac{V_{T+}}{V_{T-}} \right)$$

$$T = T_1 + T_2 \approx R_2 C \ln \frac{V_{DD} - V_{T-}}{V_{DD} - V_{T+}} + R_1 C \ln \frac{V_{T+}}{V_{T-}}$$

第七章 脉冲波形的产生和整形电路 2022-9-9

§ 7.4 多谐振荡电路

7.4.5 石英晶体多谐振荡电路

石英晶体的符号和电抗频率特性

石英晶体多谐振荡电路

- *振荡电路的频率取决于石英晶体的固有谐振频率 f_0
- *频率稳定性极高,频率稳定度 $(\Delta f_0/f_0)$ 可达 $10^{-10} \sim 10^{-11}$

2022-9-9

第七章 脉冲波形的产生和整形电路

27

§ 7.5 555定时器及其应用

7.5.1 555定时器的电路结构与功能

一、电路结构

电压比较器(C1,C2)

SR锁存器

OC输出的三极管(T_D)

二、功能表

输 入			输	出
R'_D	v_{I1}	v_{I2}	v_o	T_D
0	X	X	0	导通
1	$> \frac{2}{3}V_{CC}$	$> \frac{1}{3}V_{CC}$	0	导通
1	$<\frac{2}{3}V_{CC}$	$> \frac{1}{3}V_{CC}$	不变	不变
1	$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	截止
1	$> \frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	截止

2022-9-9

2022-9-9

第七章 脉冲波形的产生和整形电路

29

§ 7.5 555定时器及其应用

30

7.5.2 用555定时器接成施密特触发电路

输入			输	出
R'_D	v_{I1}	v_{I2}	v_o	T_D
0	X	X	0	导通
1	$> \frac{2}{3}V_{CC}$	$> \frac{1}{3}V_{CC}$	0	导通
1	$<\frac{2}{3}V_{CC}$	$> \frac{1}{3}V_{CC}$	不变	不变
1	$<\frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	截止
1	$> \frac{2}{3}V_{CC}$	$<\frac{1}{3}V_{CC}$	1	截止

7.5.2 用555定时器接成施密特触发电路

$$V_{T+} = \frac{2}{3}V_{CC}, V_{T-} = \frac{1}{3}V_{CC}$$

$$\Delta V_T = V_{T^+} - V_{T^-} = \frac{1}{3} V_{CC}$$

2022-9-9

第七章 脉冲波形的产生和整形电路

3

§ 7.5 555定时器及其应用

7.5.3 用555定时器接成单稳态电路

稳态时: $v_I = 1, v_O = 0, T_D$ 导通

稳态时,无触发信号: v,=1

若通电后 $Q=0 \rightarrow T_D$ 导通

$$\to v_C = 0 \begin{cases} v_{C1} = 1 \\ v_{C2} = 1 \end{cases} \to Q = 0$$
保持

若通电后 $Q=1 \rightarrow T_D$ 截止

$$\rightarrow C$$
充电至 $v_C = \frac{2}{3}V_{CC}$

$$\rightarrow v_{C1} = 0 \rightarrow Q = 0 \rightarrow T_D$$
导通

$$\rightarrow C$$
放电 $\rightarrow \begin{cases} v_{C1} = 1 \\ v_{C2} = 1 \end{cases} \rightarrow Q = 0$ 保持

2022-9-9 第七章 脉冲波形的产生和整形电路

7.5.3 用555定时器接成单稳态电路

触发时 V_I 几厂

只要 v_{I} 降至 $\frac{1}{3}V_{CC}$,则 $\begin{cases} v_{C1} = 1 \\ v_{C2} = 0 \end{cases}$ $\rightarrow Q = 1, T_{D}$ 截止 $\rightarrow C$ 开始充电 当 v_{C} 充至 $\frac{2}{3}V_{CC}$ 时

(假定此时v,已经回到高电平)

则
$$\begin{cases} v_{C1} = 0 \\ v_{C2} = 1 \end{cases} \rightarrow Q = 0, T_D$$
导通

 $\rightarrow C$ 开始放电至0

$$\rightarrow \begin{cases} v_{C1} = 1 \\ v_{C2} = 1 \end{cases} \rightarrow Q = 0$$
保持

2022-9-9

第七章 脉冲波形的产生和整形电路

33

§ 7.5 555定时器及其应用

7.5.3 用555定时器接成单稳态电路

电压波形图:

输出脉冲的宽度tw:

$$t_{w} = RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = RC \ln 3$$

2022-9-9 第七章 脉冲波形的产生和整形电路

2022-9-9

第七章 脉冲波形的产生和整形电路

35

§ 7.5 555定时器及其应用

7.5.4 用555定时器接成多谐振荡电路

振荡频率计算

充电时间 T_1 :

$$T_1 = (R_1 + R_2)C \ln \frac{V_{CC} - V_{T-}}{V_{CC} - V_{T+}}$$
$$= (R_1 + R_2)C \ln 2$$

$$T_2 = R_2 C \ln \frac{0 - V_{T+}}{0 - V_{T-}} = R_2 C \ln 2$$

振荡周期: $T = T_1 + T_2 = (R_1 + 2R_2)C \ln 2$

振荡频率:
$$f = \frac{1}{T} = \frac{1}{(R_1 + 2R_2)C \ln 2}$$
 占空比: $q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} > 50\%$

 $V_{\rm CC}$

7.5.4 用555定时器接成多谐振荡电路

•占空比可调的多谐振荡电路

$$T_1 = R_1 C \ln 2$$
 $T_2 = R_2 C \ln 2$

$$T_2 = R_2 C \ln 2$$

$$T = T_1 + T_2 = (R_1 + R_2)C \ln 2$$
 $q = \frac{R_1}{R_1 + R_2}$

2022-9-9

第七章 脉冲波形的产生和整形电路