Det the minimal polynomial of an algebraic element u over F is the monic generator of Ker (F[x] -> F[u]).

Det $h(x) \in F(x)$ is irreducible if $h(x) = w(x) V(x) \Rightarrow w(x) \text{ or } V(x) \in F$.

(0 is not considered to be irreducible or reducible).

Thus: Let u be algebraic over F w/ minimal poly. $g^{(\alpha)}$.

If g(x) is irreducible, F(u) is a field. If not, F(u) is not a domain.

Det a root of $f(x) \in F(x)$ is $a \in F$ s.t. f(a) = 0.

Thm for \in F(x) = F(x) has at most deg f distinct roots in F.

If Ut $a_1, ..., a_r$ be some roots of f. Then $\prod_{i=1}^r (x-a_i) \mid f(x)$.

To show this, use induction on r.

Base case: r=1. $f(x) = g(x)(x-a_1) + f(a_1) = g(x)(x-a_1)$.

Induction: $f(x) = g(x) \prod_{i=1}^{r-1} (x-a_i)$ since $\prod_{i=1}^{r-1} (a_r-a_i) \neq 0$,

 $q(a_r) = 0$ so $(x-a_r) | q(x)$ by base case.

Thun let F be a field A my finite subgroof F^* is cyclic. PF let $G \leq F^*$, $|G| < \infty$. G is a belian.

G is cyclic iff $\exp(G) = |G| \left[\exp(G) := \min\{l \mid g^l = 1 \mid \forall g \in G\} \right]$

Page 1

Note that $\exp(G) = \max\{\operatorname{ord}(g) \mid g \in G\} \leq |G|$. We have $x^{\exp(G)} - 1$ has at most $\exp(G)$ roots in F, So it has at most $\exp(G)$ roots in G. But all $g \in G$ are roots. So $\exp(G) = |G|$.

Consider the ring F^F . 1_F is the id map, e.g. $1_F^n: S \longrightarrow S^n$.

Pointwisp
mult & addition

View F as a subring of FF by a = x -- a.

We write $F[1]_F]$ in the form F[S], the ring of polynomial functions in one var. over F.

We have a surj. hom $\eta_s: F(x) \longrightarrow F(s)$ extending $F \hookrightarrow F(s)$ and mapping $x \mapsto s$.

 $\frac{P_{rop}}{2}$ is an isomorphism $F(x) \cong F(s)$ iff F is infinite.