Apriori Association Rule Generation Example

Minimum support count is set to 2 (or 2/7=28.5%), minimum confidence is set to 60%

Data:

T0: I1, I2, I3, I5

T1: I2, I4

T2: I1, I2, I4, I5

T3: I2, I6

T4: I1, I2

T5: I1, I2, I3, I5

T6: I1, I2, I3

Step1: Frequent itemset generation

Candidate 1-Itemsets:

Item	Support count
11	5
12	7
13	3
14	2
15	3
16	1

Frequent 1-itemsets, L1:

Ite	m
11	
12	
13	
14	
15	

L1 self join L1→ candidate 2-itemsets:

Item	Support count
l1, l2	5
I1, I3	3
11, 14	1
I1, I5	3
12, 13	3
12, 14	2
12, 15	3
13, 14	θ
13, 15	2

14, 15	1
-------------------	---

Frequent 2-itemsets L2:

Item	
11, 12	
11, 13	
11, 15	
12, 13	
12, 14	
12, 15	•
13, 15	

L2 self join L2 → candidate 3-itemsets

Item	Support count
11, 12, 13	3
11, 12, 15	3
11, 13, 15	2
12, 13, 14	pruned
12, 13, 15	2
12, 14, 15	pruned

Frequent 3-itemsets L3:

Item	
11, 12, 13	
11, 12, 15	
11, 13, 15	
12, 13, 15	

L3 self join L3 → candidate 4-itemsets:

Item	Support count
11, 12, 13, 15	2

Frequent 4-itemset:

Item	
11, 12, 13, 15	

L1, L2, L3, and L4 are frequent 1, 2, 3, and 4 itemsets

Step two: Rule Generation

For each of the frequent itemset generated from Step 1, the following approach will be applied to generate all the strong association rules. In this example, I am showing the derivation of all the rules generated from the frequent 4-itemset (I1, I2, I3, I5)

- 1) Singleton item on the consequent side of the rule
 - 12, 13, 15 \rightarrow 11 (confidence 2/2=1 > 60%)
 - 11, 13, 15 \rightarrow 12 (confidence 2/2=1 > 60%)
 - $|11, |2, |5 \rightarrow |3|$ (confidence 2/3=67% > 60%)
 - $|11, |2, |3 \rightarrow |5|$ (confidence 2/3=67% > 60%)

All I1, I2, I3, I5 are kept as L1

- 2) L1 self join L2 \rightarrow {(I1, I2), (I1, I3), (I1, I5), (I2, I3), (I2, I5), (I3, I5)}
 - 13, 15 \rightarrow 11, 12 (confidence 2/2=1 > 60%)
 - 12, $15 \rightarrow 11$, 13 (confidence 2/3=67% > 60%)
 - $12, 13 \rightarrow 11, 15$ (confidence 2/3=67% > 60%)
 - $11, 15 \rightarrow 12, 13$ (confidence 2/3=67% > 60%)
 - $|11, |3 \rightarrow |2|$, |5. (confidence 2/3=67% > 60%)
 - 11, 12. → 13, 15. (confidence 2/5=40% < 60%)
- 3) L2 sets are {(I1, I2), (I1, I3), (I1, I5), (I2, I3), (I2, I5)} L2 self join L2, then perform pruning

L2 self join L2 results in C3:

- 11, 12, 13
- 11, 12, 15
- I1, I3, I5. ← pruned because (I3, I5) is not in L2
- I2, I3, I5. ← pruned because (I3, I5) is not in L2

Now compute the confidence of these two rules:

 $15 \rightarrow 11$, 12, 13 (confidence 2/3=67% > 60%)

 $13 \rightarrow 11$, 12, 15 (confidence 2/3=67% > 60%)