

PROTOKÓŁ POMIAROWY DO LABORATORIUM PODSTAW ELEKTRONIKI

ROSZALINSKA			
Rok akademicki 2020/2021	TEMAT: Pomiary oscyloskopowe		
Kierunek studiów: Semestr:		Wykonawcy:	
Grupa:		wykonawcy.	
Data wykonania:		Podpis:	

1. Spis aparatury pomiarowej

Tabela 1.1 Wykaz aparatury pomiarowej stosowanej podczas wykonywania ćwiczenia

Urządzenie	Тур	Numer	Klasa
Oscyloskop			
Generator			

2. Zadania i wyniki pomiarowe

UWAGA!

Nie włączać zasilania! Włączenie zasilania może nastąpić TYLKO w obecności prowadzącego, po uprzednim sprawdzeniu przez niego obwodu pomiarowego. Niestosowanie się do zasad bezpieczeństwa będzie skutkować usunięciem z zajęć.

Niniejsze ćwiczenie polega na badaniu różnych przebiegów przy pomocy oscyloskopu. W tym celu należy:

- Podłączyć generator do oscyloskopu przy pomocy kabla BNC
- Zawołać prowadzącego w celu sprawdzenia obwodu
- Po sprawdzeniu i akceptacji obwodu pomiarowego przez prowadzącego, można przystąpić do pomiarów
- Na generatorze ustawić parametry zgodnie z danymi zamieszczonymi w tabeli 2.1
- Wyświetlić na oscyloskopie przebieg i zmierzyć jego parametry (wypełniając tabelę 2.1)
- Powtórzyć dwa poprzednie punkty dla kolejnego zestawu parametrów z tabeli 2.1.
- Wymyślić przynajmniej dwa własne ustawienia generatora i wykonać dla nich pomiary.
- Po zakończeniu pomiaru należy odłączyć generator od oscyloskopu i wyłączyć zasilanie

Tabela 2.1 Tabela ustawień i wyników pomiaru

	Ustawienia generatora		Wynik pomiaru oscyloskopowego					
Typ sygnału	U _{PP} [V]	f [Hz]	U _{OFF} [V]	Wzmocnienie [V/dz]	U _{PP} [I. kratek]	U _{OFF} [I. kratek]	Podstawa czasu [s/dz]	T [l. kratek]
Trójkąt	0,1	1 k	5					
Trójkąt	0,3	100	0					
Sinusoida	5	1 M	0					
Sinusoida	0,1	355 k	5					
Prostokąt	4	20	0					
Prostokąt	128	128 k	0					

U_{pp} – napięcie międzyszczytowe na generatorze (pionowa wartość między maksymalną, a minimalną wartością przebiegu)

3. Zagadnienia do opracowania

W sprawozdaniu należy:

- Opisać różnice między trybem AC i DC w oscyloskopie (zwizualizować za pomocą rysunku)
- Opisać parametry sygnałów (co to jest wartość międzyszczytowa, amplituda, wartość skuteczna, okres, czas narastania itp.). Zamieścić grafikę ilustrującą te parametry
- Odpowiedzieć na pytanie co to jest synchronizacja i wyzwalanie oraz po co się je stosuje
- Odpowiedzieć na pytanie kiedy używa się trybu AC, a kiedy DC
- Odpowiedzieć na pytanie kiedy tryb AC może wpływać na kształt obserwowanego sygnału. Podać przykład takich zniekształceń
- Opisać algorytm wyszukiwania sygnału na oscyloskopie
- Opisać czynności jakie należy wykonać, aby zapewnić synchronizację przebiegu
- Obliczyć napięcie międzyszczytowe, offset oraz częstotliwość na podstawie wyników pomiaru
- Wyznaczyć błąd między ustawieniami na generatorze, a pomiarem przy pomocy oscyloskopu δ =(wart.gen.-wart.osc)/wart.gen·100 [%]

Podpis prowadzącego:	
----------------------	--

f – częstotliwość na generatorze

U_{OFF} – składowa stała na generatorze (offset)

T – okres przebiegu (czas po którym przebieg powtarza swoje wartości). Okres jest odwrotnością częstotliwości T=1/f