EE147: Neural Networks and Deep Learning

Professor Kao

Thilan Tran

Winter 2021

Contents

EE147: Neural Networks and Deep Learning	
History	. :
Basics of Machine Learning	
Supervised Learning Example	
Maximum Likelihood Optimization	
Generalizing the Model	
Supervised Classification	14
k-Nearest Neighbors	. 1
Softmax Classifier	
Support Vector Machine	
Gradient Descent	
Hinge Loss Gradient	
Appendix	2
Python Libraries	. 2
NumPy	
MatPlotLib	
Linear Algebra Review	
Vectors	
Matrices	
Decomposition	
Mathematical Tools	
Probability	
Derivatives	_
Chain Rule	

CONTENTS CONTENTS

Tensors	37
Discussion Problems	37
Linear Algebra Review	37
Vector and Matrix Derivatives	38
Supervised Classification	40

EE147: Neural Networks and Deep Learning

- deep learning has many modern applications:
 - Google search
 - Youtube video recommendations
 - Yelp restuarant best foods
 - Instagram feeds
 - very smart image recognition:
 - * what makes a car a car?
 - * cannot classify purely based on physical attributes such as size or number of wheels
 - * image may be obscured or obfuscated
 - fraud detection
 - cancer treatment
 - self driving car:
 - * many concerns eg. traffic cones, school buses, pedestrian signals, police cars
 - much expressive capacity is required
 - AlphaGo, Deepmind's AI that plays Go:
 - * there are more Go board configurations than atoms in the unvierse
 - * cannot do something as simple as a tree search
 - * although AlphaGo was trained off of "big data" of Go experts:
 - its successor AlphaGo Zero uses deep reinforcement learning, without using any human data
 - \cdot algorithm rather than data based
 - brain-machine interfaces

History

- the concept of neural networks have been around for a long time, since Mc-Culloch and Pitts in 1943:
 - but has only become relevant as of recently
 - this early model was inspired by the nervous system activity (and did not have the capacity to learn):
 - 1. all or none: a brain neuron either fires or not, ie. 1 or 0
 - 2. synpases can sum together to trigger a neuron
- in 1958, Rosenblatt propsed the first NN (neural network) that could learn:
 - called the perceptron, it had a learning rule to train it to perform clas-

sifications

- had m neurons or inputs, , m weights, a bias b, and a value v
 - * where $v = w_1 x_1 + \ldots + w_m x_m + b$
- this early perceptron had a **hard-limiter** function φ st. the output $y = \varphi(v)$ and $\varphi(x)$ outputs 1 if x > 0 and otherwise 0
 - * inspired by observation (1)
- the perceptron could act as a linear classifier with one layer
 - * but failed for nonlinear classifications, such as the XOR problem, with only one layer
- thus, there was a lot of pessimism towards researching multilayer neural networks around this time
- researchers would continue to use biological inspiration for developing neural networks:
 - in 1962, Hubel and Wiesel published research on the cat V1 visual neural system
 - Fukushima's neocognitron from 1982 used the insights from these visual system in a new neural network architecture
- in 1986, Rumelhart used **backpropagation** to finally train multilayer neural networks:
 - a new way to train multilayer perceptrons by essentially using the chain rule to pass partial derivatives
- in 1989, LeCun and researchers at Bell Labs used neural networks to recognize handwritten zipcodes from the MNIST dataset
- in 1998, LeCun introduced LeNet, the modern CNN (convolutional neural network), similarly inspired by visual cortex experiments:
 - took inspiration from spatial independence and simple linear composition of neurons in the V1 system
 - but still just a loose inspiration, eg. neurons in brains have probabilistic rather than static weights
- why didn't CNNs and backpropagation develop widespread use then?
 - backpropagation was still only good for shallow neural networks
 - * as networks are deeper, the propagated derivative becomes more inaccurate
 - in addition, neural networks are data hungry
- modern era of deep learning:
 - the famous large ImageNet dataset with over 1000 classes of images held a yearly competition

- $_{\ast}$ within a decade, deep learning teams improved drastically in the ImageNet competition, from a 25% error rate to less than 5%
- driven by the massive amount of data we have access to and computation power to process it
 - * GPU hardware have accelerated the training of NNs
- trend of more and more layers used in neural networks

Basics of Machine Learning

- machine learning uses statistical tools to estimate ie. *learn* functions, some of which may be fairly complex:
 - classification produces a discrete output representing the category given an input vector $x \in \mathbb{R}^n$:
 - * ie. which of k categories x belongs to
 - * eg. classifying whether an image is a cat or dog = class focuses on this type of function
 - regression produces an analog output predicting the value given an input
 - * eg. predicting housing prices from square footage, controlling position and velocity of a cursor through brain signals
 - synthesis and sampling generate new examples that resemble a training data
 - * eg. used in generative adversarial networks (GANs)
 - data imputation fills in missing values of a vector
 - * eg. Netflix predicting if you will like a show or movie
 - denoising takes a corrupt data sample and outputs a cleaner sample
 - * eg. used in variational autoencoders
 - other types
- in **supervised learning**, input vectors x and their target vectors y are known:
 - the goal is to learn function y = f(x) that predicts y given x
 - eg. takes in a dataset D of n tuples of data
- in **unsupervised learning**, goal is to discover structure in input vectors, absent of knowledge of target vectors
 - eg. finding similar input vectors in clustering, distributions of the inputs, visualization, etc.
- in reinforcement learning, goal is to find suitable actions in certain scenarios to maximize a given reward ${\cal R}$
 - discovers policies through trial and error
- in this class, we will focus on supervised learning:
 - using the CIFAR-10 dataset for an image classification problem:
 - * 10 possible image categories
 - * 32 by 32 pixel images, represented as 32 by 32 by 3 data values (RGB colors)
 - * ie. input vector $x \in \mathbb{R}^{3072}$
 - want to find a function f(x) that outputs one of the 10 categories

Supervised Learning Example

- for a problem of renting a home in Westwood, we want to know if we were getting a good deal:
 - given the square footage of a house, output how much monthly rent we should expect to reasonably pay based on the training data we have
- first, we should determine how we model data:
 - 1. determine inputs and outputs
 - input x is the square footage, and the output y is the rent
 - 2. what model should we use?
 - try a linear model y = ax + b
 - * a, b are the **parameters** that must be found in this chosen model
 - a different model could have been chosen eg. a nonlinear, higher order polynomial
 - * many more parameters to tune with
 - 3. how do we assess how good our model is?
 - we need a **loss function** that *scores* how good the model is
 - for a prediction $\hat{y}_i = f(x_i)$ and actual sample output y_i , we can use a least squares loss function:

$$\mathit{loss} = \mathit{cost} = \sum_i (y_i - \hat{y}_i)^2$$

- note that using least squares rather than absolute value puts higher weight on outlilers
- transforming with vectors:
 - writing the model using vectors where $\theta = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\hat{x} = \begin{bmatrix} x \\ 1 \end{bmatrix}$:

$$\hat{y} = ax + b$$
$$= \theta^T \hat{x}$$

- writing the cost function using vectors where k is a normalization constant:

$$\begin{split} L(\theta) &= k \sum_i (y_i - \hat{y}_i)^2 \\ &= k \sum_i (y_i - \theta^T \hat{x}_i)^2 \end{split}$$

- we want to make loss $L(\theta)$ as *small* as possible, since θ represents the parameters we can control:
 - in this case, $L(\theta)$ will look like a parabola since it is squared
 - * can solve for its minimum using optimization

- 1. calculate $\frac{dL}{d\theta}$
 - tells us the slope of the line with respect to θ
- 2. solve for θ such that $\frac{\partial L}{\partial \theta} = 0$
- however, θ is a vector, so how do we take derivatives with respect to it?
 - * these derivatives are typically called **gradients** eg. $\frac{\partial y}{\partial x}$ or $\nabla_x y$
 - * can be done with respect to vectors or matrices
 - * see entry in appendix
- rewriting the cost function:

$$\begin{split} L &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \theta^T \hat{x}_i)^2 \\ &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \theta^T \hat{x}_i)^T (y_i - \theta^T \hat{x}_i) \\ &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \hat{x}_i^T \theta)^T (y_i - \hat{x}_i^T \theta) \\ &= \frac{1}{2} (\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} \theta)^T (\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} - \begin{bmatrix} \hat{x}_1^T \\ \vdots \\ \hat{x}_N^T \end{bmatrix} \theta) \\ &= \frac{1}{2} (Y - X\theta)^T (Y - X\theta) \\ &= \frac{1}{2} (Y^T - \theta^T X^T) (Y - X\theta) \\ &= \frac{1}{2} [Y^T Y - Y^T X\theta - \theta^T X^T Y + \theta^T X^T X\theta] \\ &= \frac{1}{2} [Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta] \end{split}$$

- where $Y \in \mathbb{R}^{N \times 1}$ and $X \in \mathbb{R}^{N \times 2}$
 - * note that $\theta^T \hat{x}_i = \hat{x}_i^T \theta$ and $Y^T X \theta = \theta^T X^T Y$ since they are all scalars and inner product is commutative
- we used vectorization to move from summation to a sum expressed as an equivalent inner product of vectors
- now we can take derivatives to optimize the cost function:

$$\begin{split} \frac{\partial L}{\partial \theta} &= \frac{1}{2}[0 - 2X^TY + [X^TX + X^TX] \;\; \theta] \\ &= -X^TY + X^TX\theta \;\; [=] \;\; 0 \\ X^TY &= X^TX\theta \\ \theta &= (X^TX)^{-1}X^TY \\ &\triangleq X^\dagger Y \end{split}$$

– recall that $\frac{\partial z^T\theta}{\partial\theta}=z$ and $\frac{\partial\theta^TA\theta}{\partial\theta}=(A+A^T)\theta$

- * Y^TX can be considered as a vector z
- this solution $\theta = X^{\dagger}Y$ is called the **least-squares solution**
 - * gives us the best parameters θ to minimize the least-squares cost
- alternatively, using the chain rule to optimize the cost function:

$$\begin{split} f(z) &= z^2 \\ \frac{\partial f}{\partial z} &= 2z \\ g(\theta) &= y_i - \theta^T x_i \\ \frac{\partial g}{\partial \theta} &= -x_i \end{split}$$

$$\begin{split} \frac{\partial f}{\partial \theta} &= \frac{1}{2} \sum_{i=1}^{N} \frac{\partial}{\partial \theta} f(z(\theta)) \\ &= \frac{1}{2} \sum_{i=1}^{N} -x_i \cdot 2(y_i - \theta^T x_i) \\ &= \sum_{i=1}^{N} -x_i (y_i - \theta^T x_i) \\ &= -\sum_{i=1}^{N} x_i (y_i - \theta^T x_i) \\ &= -X^T (Y - X\theta) \end{split}$$

- critically, whenever we see the pattern of a vector-scalar multiply within a summation, a vectorization can be performed
- ie. the product within the summation is equal to:

$$\begin{bmatrix} x_1 \dots x_N \end{bmatrix} \begin{bmatrix} y_1 - \theta^T x_1 \\ \vdots \\ y_N - \theta^T x_N \end{bmatrix} = X^T (Y - X\theta)$$

- * since $X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix}$ is usually represented as a matrix of data rows
- * to vectorize $\theta^T x_i$, we can equivalently multiply data rows of X with the column vector θ
- does our current least-squares formula allow for learning nonlinear polynomial fits of the form:

$$y = b + a_1 x_1 + a_2 x^2 + \dots + a_n x^n$$

- yes, we just have to redefine the input vectors:

$$\hat{x} = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^n \end{bmatrix}, \quad \theta = \begin{bmatrix} b \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

- a higher degree polynomial will *always* fit the training data *no worse* than a lower degree polynomial
 - \star encapsulates lower degree polynomials and can implement them by just setting the necessary coefficients to 0
- but do we always want the highest possible degree polynomial?
 - * eg. for housing price example, the linear model performs best for new inputs
 - * the fundamental problem is that more complex models may not *generalize* as well if the data came from a different model
 - · ie. relying on fitting the training data instead of generalizing

Maximum Likelihood Optimization

- note that there are alternative types of optimization rather than minimizing a mean-square error for the loss function:
 - in maximum likelihood optimization, we want to instead maximize the probability of having observed the data
 - others eg. MAP estimation, KL divergence
 - * important to arrive at an appropriate model and cost function, and then *optimize* it
 - in these examples, we could differentiate and set the derivative equal to zero
 - * in more complex models, there are more general ways to learn model parameters
- ex. given a weighted coin and a sequence of flips, want to find the coins weight θ :
 - consider the example training data of HTHHTTHT
 - 1. if $\theta = 1$, the probability of observing the data is 0
 - 2. if $\theta=0.75$, the probability of observing the data is $0.75^40.25^4=0.00124$
 - 3. if $\theta = 0.5$, the probability of observing the data is $0.5^40.5^4 = 0.0039$
 - thus we would want to choose model (3) since it maximizes the likelihood of seeing the data

- ex. given a set of N paired data $\{x_i, y_i\}$ where the coordinate $x_i \in \mathbb{R}^2$ has a class y_i belongs to one of three classes, want to be able to estimate the class of a new coordinate:
 - say that each of the classes follows a normal / Gaussian distribution ie. $x_i|y_i=j\sim N(\mu_j,\Sigma_j)$
 - the μ, Σ are the parameters θ we can choose to match the data as close as possible
 - need to make some important assumptions:
 - * all classes are equally probable a priori ie. $p(y_i) = \frac{1}{3} = k$
 - * each data point is *independent* given the parameters:

$$p(\{x_i,y_i\},\{x_j,y_j\}|\theta) = p(x_i,y_i|\theta)p(x_j,y_j|\theta)$$

- very useful assumption, prevents dealing with a long expansion of the probability chain rule
- not completely true in reality eg. pictures data may have both cars and dogs, time series can cause dependencies
- want to maximize the likelihood of having seen the dataset:

$$\begin{split} L &= p(\{x_1, y_1\}, \dots, \{x_N, y_N\} | \theta) \\ &= \prod_{i=1}^N p(x_i, y_i | \theta) \\ &log(L) = \sum_{i=1}^N log(p(x_i, y_i | \theta)) \\ &= \sum_{i=1}^N log(p(y_i | \theta) p(x_i | y_i, \theta)) \\ &= \sum_{i=1}^N log(p(y_i | \theta)) + log(p(x_i | y_i, \theta)) \\ &= Nlog \frac{1}{3} + \sum_{i=1}^N log(p(x_i | y_i, \theta)) \end{split}$$

- using a log-likelihood technique to convert a product into a sum
- results in a function of θ , so we can optimize θ to make the log function as large as possible
- optimizing:
 - after solving $\frac{\partial log L}{\partial \mu_i}=0$ we find that the optimal μ_i is the empirical mean of the samples
 - similarly, solving x gives that the optimal Σ_i is the sample covariance

• with a new coordinate, how do we find the class x_{new} belongs to:

$$\begin{split} argmax_j \ \ p(j|x_{new}) &= argmax_j \ \ \frac{p(j,x_{new})}{p(x_{new})} \\ &= argmax_j \ \ \frac{p(j)p(x_{new}|j)}{p(x_{new})} \\ &= argmax_j \ \ p(j)p(x_{new}|j) \\ &= argmax_j \ \ p(x_{new}|j) \end{split}$$

- ie. calculating the probability of it belonging to each of the distributions
- simplifications occur since $p(x_{new})$ does not depend on j and p(j) is uniform in this example

Generalizing the Model

- dangers of overfitting / underfitting:
 - training data is data that is used to learn the parameters of the model
 - validation data is the data used to optimize the hyperparameters of the model:
 - * hyperparameters are the design choices of the model, eg. the order of the fitted polynomial
 - * avoids the potential of overfitting to nuances in the testing dataset
 - testing data is data that is excluded in training and used to score the model
 - * a "pristine" dataset used to score the final model with set parameters and hyperparameters
 - all datasets should follow the same distributions
 - a model with very low training error but high testing error is called overfit:
 - * beyond a certain point, model begins to overfit the data
 - addressing overfitting:
 - * more data helps ameliorate the issue of overfitting
 - · may be appropriate to use more complex models when given much more data
 - * regularization is another useful technique
- picking a best model:
 - 1. assess its generalization ie. validation error
 - 2. pick a setting of the parameters that results in minimal value
 - there are some scenarios where the database size is so limited that it is better to utilize model selection techniques

- * ie. penalizes the model for being overly complex
- evaluating generalization error:
 - in a common scenario, we are given a training and testing dataset
 - to train a model while validating hyperparameters, one common approach is k-fold **cross validation**:
 - * split training data into k equal sets called **folds**, each with $\frac{N}{k}$ examples
 - *~k-1 folds are training datasets, while the remaining fold is a validation dataset
 - * for each hyperparameter eg. polynomial order we are trying to validate
 - · run k validation tests using each of the folds as a validation set, take the average as an overall validation error
 - * note that class balance should be maintained across folds eg. using a stratified k-fold
 - after using cross validation to finalize hyperparameters, we can train a single model based on the entire training data

Supervised Classification

- supervised learning techniques are useful for classification, as well as some neural networks developments
 - a new renaissance in supervised learning due to the boom in computer vision applications
 - in classification, want to classify an input image x as one of several possible categories y
 - * images are input into a computer vision algorithm as a $width \times height \times 3$ array representing RGB values from [0, 255]
- problems that arise in image classification:
 - viewpoint variation
 - * cannot simply compare pixel values at certain locations
 - illumination that adjusts the RGB values
 - deformation
 - * eg. different visible *features* of a cat depending on the image
 - occlusion
 - background clutter
 - intraclass variation
- different possible approaches to classifying an image:
 - have experts come in and manually craft important features of image classes
 - impossible to scale
 - instead, use a data driven approach:
 - 1. expose a machine learning algorithm to a lot of *data*
 - 2. learns a function mapping the image to class
 - * these deep neural nets learn parameters that represent features useful for classifying the image well
 - · developing their *own* features for image classes that may be difficult to interpret
 - * then, test how the neural net performs on predicting the class of new images

k-Nearest Neighbors

- given a training set of input vectors x_1,\ldots,x_m and their corresponding classes y_1,\ldots,y_m , want to estimate the class of a new data point x_{new} :
 - we previously found a way to classify through a probabilistic model where we had to learn parameters
 - * is there a simpler way to classify without very much ML machin-

ery?

- in the k-nearest neighbors algorithm:
 - find the k closest points or neighbors in the training set according to an appropriate metric
 - each of these neighbors then vote according to what class it is in, and x_{new} is assigned to be the class with the most votes
 - -k and the distance metric are hyperparameters
 - * can test hyperparameters to find the settings with lowest errors and lower variances
 - an example of instance-based classification where similar instances will have similar classification
- *k*-nearest neighbors more formally:
 - 1. choose an appropriate distance metric d(x,y) ie. just Euclidian distance or $d(x,y)=||x-y||_2$
 - 2. choose the number of nearest neighbors k
 - 3. calculate $d(x_{new}, x_i) \ \forall \ i = 1, \dots, m$
 - 4. classify x_{new} as the class that occurs most frequently among the corresponding classes of the k closest neighbors
- how do we train the classifier?
 - just have to cache the entire dataset so it can run the algorithm on testing data
 - pros:
 - * fast in O(1) and simple
 - no need to copy, can just use pointers or references to point to data
 - cons:
 - * memory intensive since we have to store all of the training data
 - * memory scales with the number of training examples
 - · vs. the MLE algorithm, which needs to store a constant number of parameters regardless of training examples
- how do we test a new data point?
 - have to calculate the distances from every point in the training set, and sort them
 - pros:
 - * simple
 - cons:
 - st takes a long time, scales with the amount of data given in O(N)
 - want the *reversed* complexity times for training and testing:
 - * testing should be O(1), while it is more acceptable for training to be slower
 - * eg. in computer vison, want instantaneous results
- why might this algorithm fail for image classification?
 - calculating distance between the inputs doesn't have a semantic mean-

ing correlating to image similarity

- * eg. shifted vs. tinted vs. boxed images would have similar distances from the original
- the "curse of dimensionality":
 - * the number of dimensions starts to scale exponentiality given larger, more complex input data
 - * as feature space gets larger, the feature vectors become sparser ie. *farther* apart
 - · the notion of similarity thus begins to break down in higher dimensions
 - * ie. distances in different dimensions may start to mean different things other than similarities

Softmax Classifier

• a better approach may be to develop a score for an image coming from each class and then select the class with the largest score:

- based on **linear classification**, made of two major components:
 - 1. a *linear* score function that maps the raw data to class scores
 - 2. a loss function that measures how good the scoring functions is at predicting the labels
- linear classifiers are a building block for neural networks
 - * each layer of a neural network is a linear classifier that is then passed through nonlinearity
- consider a matrix $W \in \mathbb{r}^{c \times N}$ where $W = \begin{bmatrix} w_1^T \\ \vdots \\ w_c^T \end{bmatrix}$:
 - with c number of classes
 - y = Wx + b is a vector of scores where its ith element corresponds to the score of x being in class i:

$$y = \begin{bmatrix} W_1^T x + b_1 \\ \vdots \\ W_c^T x + b_c \end{bmatrix}$$

- * b is a vector of bias terms
 - $b, y \in \mathbb{R}^{10}$ in CIFAR
- * x has dimensions $x \in \mathbb{R}^{3072}$ in CIFAR
- the output will be the index of the highest score in y
 - * ie. $a_i(x)$ is the *i*th entry of y
- note that due to the dot product, when \boldsymbol{w}_i^T is similar to x, the score will be higher

- * thus each w_i , when recomposed as in image, acts as a template for the $\it average$ image in that class
- what is a linear classifier actually doing?

$$w_i^T x = ||w_i|| \ ||x|| cos\theta$$
$$= ||x|| cos\theta$$

- assuming $||w_i|| = 1$
- in 2D, any point x that lies on the same line $\emph{perpendicular}$ to w_i has the $\emph{same score}$:
 - * since $||x||cos\theta = ||x|| \frac{||adjacent||}{||hypotenuse||} = ||adjacent||$
 - * ie. taking x and calculating its *projection* onto every weight vector
 - * the *intersection* of these perpendicular lines indicates a **linear decision boundary** between different weights
- where might linear classifiers fail?
 - when data is not linearly separable
 - * eg. the XOR problem
 - however, can sometimes use tricks using change of bases:
 - * eg. *radial* data can be expressed in polar to become linearly separable
 - * this is a foreshadowing of what neural networks do
 - · ie. find features that make the data linearly separable themselves
- collecting the received scores into a loss function:
 - use the **softmax** function to transform the scores into a probability

$$softmax_i(x) = \frac{e^{a_i(x)}}{\sum_{j=1}^c e^{a_j(x)}}$$

- * ie. normalizes the scores to probabilities while handling negative or very large scores
 - \cdot thus all the softmax probabilities will add up to 100%
- * note that the choice of softmax for loss gives a smoother curve that is much easier to optimize compared to argmax or distance
- $softmax_i(x)$ can be interpreted as the probability x belongs to class i:

$$Pr(y_i = i | x_i, \theta) = softmax_i(x_i)$$

- * where $\theta = \{w_j, b_j\} \ \ \forall \ \ j \in \{1, \dots, c\}$
- optimizing softmax loss function ie. the **cross-entropy loss** with respect to θ :

$$p(x_1,\ldots,x_m,y_1,\ldots,y_m|\theta) = \prod_{i=1}^m p(x_i,y_i|\theta) = \prod_{i=1}^m p(x_i|\theta)p(y_i|x_i,\theta)$$

$$\begin{split} argmax_{\theta} \prod_{i=1}^{m} p(x_i|\theta) p(y_i|x_i,\theta) &= argmax_{\theta} \prod_{i=1}^{m} p(y_i|x_i,\theta) \\ &= argmax_{\theta} \sum_{i=1}^{m} log(softmax_{y_i}(x_i)) \\ &= argmax_{\theta} \sum_{i=1}^{m} log[\frac{e^{a_{y_i}(x_i)}}{\sum_{j} e^{a_{j}(x_i)}}] \\ &= argmax_{\theta} \sum_{i=1}^{m} [a_{y_i}(x_i) - log(\sum_{j=1}^{c} e^{a_{j}(x_i)})] \\ &= argmin_{\theta} \sum_{i=1}^{m} [log(\sum_{j=1}^{c} e^{a_{j}(x_i)}) - a_{y_i}(x_i)] \end{split}$$

- note that $p(x_i|\theta)$ is *independent* of θ ie. not dependent of chosen parameters, so it can be taken out of the $argmax_{\theta}$
- in addition, $argmax_{\theta}f(\theta) = argmin_{\theta} f(\theta)$
- intuition behind the name of the softmax classifier:
 - the output of the softmax can be interpreted as the probability of a class and is typically considered with *log* ie. the **log likelihood**

$$\begin{split} log(Pr(y=i|x)) &= log(softmax_i(x)) \\ &= a_i(x) - log(\sum_{j=1}^c e^{a_j(x)}) \end{split}$$

- the latter term can be approximated by $\max_j a_j(x)$ since the biggest a_j dominates
- if $a_i(x)$ produces the largest score, then the log likelihood is approximately 0
- if $a_j(x)$ produces the largest score for $j \neq i$, then $a_i(x) a_j(x)$ is negative, and the log likelihood is negative
- ie. in cross-entropy, want to minimize the *negative* log likelihood of the correct class
- a potential problem when implementing a softmax classifier is overflow:
 - if $a_i(x) \gg 0$, then $e^{a_i(x)}$ may overflow
 - thus it is standard practice to normalize the softmax function as follows:

$$\tilde{a}_i(x) = a_i(x) + logk = \frac{ke^{a_i(x)}}{k\sum_j e^{a_j(x)}} = \frac{e^{a_i(x) + logk}}{\sum_j e^{a_j(x) + logk}}$$

* we usually set $log k = -max_i \ a_i(x)$, which makes the maximal argument of the exponent 0

Support Vector Machine

- another common decision boundary classifier is the support vector machine (SVM):
 - the SVM finds a boundary that maximizes the margin or *gap* between the boundary and the data points
 - if a point is *further* away from the decision boundary, there ought to be greater *confidence* in classifying that point
- informally, to calculate the loss of a chosen boundary:
 - points very close to the boundary should incur small losses, even if they are correctly classified:
 - * while different classifiers would not penalize these points at all
 - * encourages the model to find a boundary with a large margin
 - misclassified data points that are incorrect should have a very large loss though they may be close to the boundary
 - points past a certain margin of the boundary should incur no loss
- the **hinge loss** function:
 - standardly defined for a binary output $y \in \{-1, 1\}$
 - when $y_i=1$, want w^Tx_i+b to be large and positive, while when $y_i=-1$, want w^Tx_i+b to be large and negative

$$hinge_{y_i}(x_i) = max(0, 1 - y_i(w^Tx_i + b))$$

- * when $y_i = 1$ and $w^T x_i + b \gg 1$, the hinge loss is 0
 - $\cdot\,$ zero error if signs match and there is a large margin
- * when $y_i = 1$ and $w^T x_i + b = 0.3$, the hinge loss is 0.7
 - $\cdot\,$ nonzero error if signs match, but there is a small margin
- * when $y_i = 1$ and $w^T x_i + b = -1$, the hinge loss is 2
 - · larger error when signs do not match
- * here, 1 acts as the margin value
 - note that we can set it as 1 without a loss of generality, since a change in the margin could be compensated by changing the weights
- hinge loss extension to multiple classes:

$$hinge_{y_i}(x_i) = \sum_{j \neq y_i} max(0, 1 + a_j(x_i) - a_{y_i}(x_i))$$

- given c classes where 1 is correct and c-1 are incorrect, and $a_j(x_i)=w_j^Tx_i+b_j$
- when the correct class achieves the highest score:

$$a_{y_i}(x_i) \geq a_j(x_i), \ 0 \leq hinge_{y_i}(x_i) \leq c-1$$

- when the correct class is much higher than the other scores:

$$a_{y_i}(x_i) \gg a_j(x_i) + 1$$
, $hinge_{y_i}(x_i) = 0$

- when the correct class achieves an equal score:

$$a_{y_i}(x_i) = a_j(x_i), \ hinge_{y_i}(x_i) = c - 1$$

- when an incorrect class achieves the highest score:

$$a_{y_i}(x_i) < a_j(x_i), \ a_j(x_i) - a_{y_i}(x_i) \ge 0$$

- * has the potential to be large
- in general, the model is encouraged to make correct margins larger and incorrect margins smaller
- softmax vs. SVM intuition:
 - the softmax is a maximum likelihood loss function:
 - * change the parameters to optimize having seen the data
 - * cross-entropy is the most common loss function typically used
 - the hinge loss is a human-constructed heuristic:
 - bound the loss at zero, and calculate a margin from a difference of scores
 - * the margin in the SVM may help more with noisy data and outliers
 - * thus SVM could be more useful empirically in some scenarios
- optimizing the SVM cost function:

$$\begin{split} & argmin_{\theta} \ \frac{1}{m} \sum_{i=1}^{m} hinge_{y_i}(x_i) \\ & argmin_{\theta} \ \frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq y_i} max(0, 1 + a_j(x_i) - a_{y_i}(x_i)) \end{split}$$

– where
$$a_j(x_i) = W_j^T x_i + b, \theta = \{W, b\}, W = \begin{bmatrix} W_1^T \\ \vdots \\ W_c^T \end{bmatrix}$$

Gradient Descent

• from calculus, the derivative of a function tells us its slope at a point:

$$f(x+\epsilon) \approx f(x) + zf'(x)$$

- when the derivative is 0, we are at a stationary or critical point of the function:

- * may be a local or gobal maximimum or minimum, or a saddle point
- * however, when f contains nonlinear or non-differentiable functions, cannot simply set the derivative equal to 0
- instead want to iteratively approach a critical point via gradient descent
- in this class, need to optimize f with respect to vectors and matrices
- terminology:
 - a global minimum x_g achieves the absolute lowest values of f, ie. $f(x) \geq f(x_g) \ \forall \ x$
 - a **local minimum** x_l is a critical point that is lower than its neighboring points, however, $f(x_l) > f(x_a)$
 - * analagous definitions for maximums
 - a saddle point is a critical point that is not a not local maximum or minimum
 - * local neighbors are larger and smaller on either side
- the gradient is a vector that tells us how small changes in Δx affects f(x) through:

$$f(x + \Delta x) \approx f(x) + \Delta x^T \nabla_x f(x)$$

– to find how f(x) changes in some direction of a unit vector u:

$$u^T \nabla_x f(x)$$

• to minimize f(x), want to find the direction in which f(x) decreases the fastest:

$$\begin{aligned} min_{u,||u||=1}u^T\nabla_x f(x) &= min_{u,||u||=1}||u|| \ ||\nabla_x f(x)|| \ cos(\theta) \\ &= min_u \ ||\nabla_x f(x)|| \ cos(\theta) \end{aligned}$$

- this quantity is minimzed for u pointing in the opposite direction of the gradient such that $cos(\pi)=-1$
- thus to update x as to minimize f(x), we repeatedly calculate:

$$x := x - \epsilon \nabla_x f(x)$$

- * ϵ is known as the **learning rate**, and may change over iterations
- how to pick the right step size ie. learning rate:
 - when the step size is too large, the linear approximation of the gradient will fail and the descent may keep overshooting its target
 - if the step size is smaller, the linear approximation of the gradient should hold
 - * but with too small a step size, computation time greatly increases
 - with more and more dimensions, should we step in every direction at the same rate?

- * in a **first-order method**, we take steps in every direction at equal rates
- * in a **second-order method**, we compute the curvature of the surface in every direction to calculate how much to step in each direction
 - · but this is prohibitively expensive to calculate
- * first-order methods with heuristics may be a better alternative
- can empirically test learning rate by examining the cost function at each iteration:
 - * want the loss to quickly and smoothly decrease
 - * abnormalities or a plateau may indicate too high a step size
 - * a slowly decreasing loss may indicate too small a step size
- why not instead use a numerical gradient as follows:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- with millions of parameters represented by h, we would have to calculate the loss at many settings of h
 - * extremely slow

Hinge Loss Gradient

• want to find the gradient for the hinge loss:

$$\begin{split} L(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \sum_{j \neq y_i} max(0, 1 + w_j^T x_i - w_{y_i}^T x_i) \\ L_i &= \sum_{j \neq y_i} max(0, 1 + w_j^T x_i - w_{y_i}^T x_i) \\ &= \sum_{j \neq y_i} max(0, z_j) \end{split}$$

$$\begin{split} \nabla_{W_j} L_i &= \begin{cases} 0 & z_j \leq 0 \\ x_i & z_j > 0 \end{cases} = \mathbb{1}(z_j > 0) x_i \\ \nabla_{W_{y_i}} L_i &= -\sum_{j \neq y_i} \mathbb{1}(z_j > 0) x_i \end{split}$$

– where
$$W = \begin{bmatrix} W_1^T \\ \vdots \\ W_c^T \end{bmatrix}$$

- notes:
 - * the biases are dropped for simplicity
 - * the gradient can be applied on the inside of the averaging term since the gradient is a linear operator

- · ie. the gradient is taken over every training example and then averaged
- * manually setting the derivative at 0 to 0 using the concept of subgradients, though it is technically undefined
- * the indicator function 1 returns 0 if its argument ≤ 0 and 1 otherwise
- in the earlier illustrated gradient descent, we know the function f exactly and can calculate the gradient at that point exactly:
 - in optimization, we instead differentiate the cost function with respect to the parameters
 - * thus this gradient is a *function* of the training data
 - ie. each data point provides a noisy estimate of the gradient at that point
 - however, it's expensive to calculate the gradient with *every* example in the set
- instead, there are alternatives approaches to calculating the gradient:
 - in a batch algorithm, use all m examples in the training set to calculate the gardient
 - in a minibatch algorithm, approximate the gradient by calculating it with k examples where m>k>1
 - * typically used in deep learning
 - in a stochastic algorithm, approxmiate the gradient by calculating it over a single example
 - the smaller the batch size, the more steps we can take in the same amount of calculation time:
 - * though more noise may be introduced into the gradient estimation
 - * however, more noise may be beneficial in acting as regularization
 - · ie. generalizing the model better to avoid overfitting

Appendix

Python Libraries

NumPy

- linera algebra:
 - linalg.inv(m) inverts matrix m
 - ndarray.dot(b) takes the dot product of two arrays
 - ndarray.T gives the transpose of the array
 - vstack(tuple) stacks the arrays in tuple in sequence vertically
 - * useful for constructing transposed matrices
- building arrays and distributions:
 - arange(start, stop, step) returns evenly spaced values within an interval given a step size
 - linspace(start, stop, num) returns num evenly spaced numbers over an interval given a number of steps
 - ones(shape) returns a new array of shape filled with ones
 - ones_like(a) returns an array of ones with the same shape and type as given array
 - random.uniform(low, high, size) draws size samples from a uniform
 distribution between low and high
 - random.normal(loc, scale, size) draws size samples from a normal distribution with mean loc and standard deviation scale
 - flatnonzero(a) returns indices that are non-zero in the flattened version
 of a
 - random.choice(a, size, replace) generates a random sample from a
 - split(a, sections, axis) divides an array into sections subarrays along a specified axis
- other methods:
 - concatenate joins a sequence of arrays along an existing axis
 - count_nonzero(a) counts the number of non-zero values in the array

MatPlotLib

- plt.figure creates a new figure
- Figure.gca gets the current axes of a figure

- Axes.plot(x, y, fmt) plots a figure with points or line nodes given by x, y
 - fmt is a format string eg. 'ro' for red circles, '.' for dots, 'x' for crosses
- Axes.set_xlabel(lbl) and Axes.set_ylabel(lbl) sets the labels for the axes
- Axes.legend() places a legend on the axes

Linear Algebra Review

Vectors

•
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is a **column vector** with n elements

- $z = [z_1 z_2 \dots z_n]$ is a row vector with n elements
- the transpose of a column vector is a row vector, and vice versa

- eg.
$$x = \begin{bmatrix} x_1 x_2 \dots x_n \end{bmatrix}^T$$

• the **dot product** of two column vectors is given by:

$$x^T y = \sum_{i=1}^n x_i y_i$$

- the dot product of two vectors is commutative
- the **norm** of a vector measures its length
- the **p-norm** of a vector is given by the following, where $p \geq 1$:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

• the **Euclidian norm** is the 2-norm, and can also be writen as:

$$||x|| = ||x||_2 = \sqrt{x^T x}$$

- the 2-norm is often more convenient to work with
- a **unit vector** is a vector with $||x||_2 = 1$

• the dot product can also be written as the following, where θ is the angle between the vectors:

$$x^T y = ||x||||y||cos\theta$$

- x and y are **orthogonal** if $x^Ty = 0$:
 - if both vectors have nonzero norm, than they are at a 90 degree angle to each other
 - in \mathbb{R}^n at most n vectors may be mutually orthogonal with nonzero norm
 - if the vectors are orthogonal and also have unit norm, they are orthonormal
- a **linear combination** of vectors is a summation of those vectors scaled by a constant:

$$\sum_{i} c_{i} v_{i}$$

 the span of a set of vectors is the set of all points obtainable by linear combinations of the vectors

Matrices

•
$$A = \begin{bmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \dots a_{mn} \end{bmatrix}$$
 is an $m \times n$ matrix

• the product operation of two matrices C=AB is defined by:

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

- matrix multiplication is distributive and associative
- however, it is *not* commutative
- matrix multiplication is usually used to write down a system of linear equations, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, x \in \mathbb{R}^n$:

$$Ax = b$$

$$A_1x = b_1$$

$$A_2x = b_2$$
...
$$A_mx = b_m$$

– this system can be solved using matrix inversion where $A^{-1}A=I_n$

and I_n is the $n \times n$ identity matrix:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_n x = A^{-1}b$$

$$x = A^{-1}b$$

- however, Ax = b may not always have a solution:
 - * the column space is the span of the columns of A
 - * to have a solution for all values of $b \in \mathbb{R}^m$, the column space of A must be all of \mathbb{R}^m
 - * thus A should have at least m columns or m > n:
 - however, some of the columns may be redundant ie. linearly dependent as well
 - in addition, we need each equation to have at *most* one solution for each value of b, so A can also have at most m columns
 - * therefore, the system will have a solution if it is square and all the columns are **linearly independent** ie. no vector in the columns is a linear combination of the other vectors
 - · a square matrix with linearly dependent columns is **singular**
 - * the **rank** of a matrix is the number of linearly independent columns it has
- the **determinant** of a square matrix det(A) is a function that maps matrices to real scalars:
 - the determinant is equal to the product of all eigenvalues of a matrix
 - thus, since eigenvalues measure the scaling of eigenvectors, the absolute value of the determinant is a measure of how much the matrix expands or contracts space
 - if the determinant is 0, then space is contracted *completely* along at least one dimension, losing all its volume
- the **transpose** of a matrix satisfies:

$$A_{ij} = (A^T)_{ji}$$

- a matrix is symmetric if $A = A^T$
- if the matrix is square ie. m=n with rank n, then the **inverse** of a matrix satisfies the following, where I is the $n \times n$ **identity** matrix:

$$A^{-1}A = AA^{-1} = I$$

• the **trace** of a matrix is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

- the trace operator is invariant to transposition:

$$tr(A) = tr(A^T)$$

 the trace operator is invariant to cyclic permutations of its input (even if the resulting product has different shapes):

$$tr(ABC) = tr(CAB) = tr(BCA)$$

- the trace operator is linear:

$$tr(aX + bY) = atr(X) + btr(Y)$$

• the Frobenius norm of matrix $A \in \mathbb{R}^{m \times n}$ is:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{tr(AA^T)}$$

- a diagonal matrix consists of only nonzero entries along the main diagonal:
 - ie. $D_{ij} = 0 \ \forall \ i \neq j$
 - eg. the identity matrix
 - useful properties of diagonal matrices:
 - * multiplying by a diagonal matrix is computationally efficient
 - · to find Dx, we just need to scale each element x_i by D_{ii}
 - * to compute the inverse of a square diagonal matrix where each element on the diagonal is nonzero, just take the reciprocal $\frac{1}{D_{ii}}$ on the diagonal
 - * nonsquare diagonal matrices do not have inverses, but can still be multiplied cheaply
- a symmetric matrix is one that is equal to its own transpose ${\cal A}={\cal A}^T$
- given a symmetric matrix A:
 - A is called **positive definite** if $x^T A x > 0 \ \forall \ x$
 - if $x^T A x \ge 0$, A is positive semidefinite
 - similarly for **negative definite** and **negative semidefinite** matrices
- an **orthogonal matrix** is a square matrix whose rows are mutually orthonormal and whose columns are mutually orthonormal:

$$A^T A = A A^T = I$$
$$A^{-1} = A^T$$

- thus the inverse of these matrices are easily computed

Decomposition

• an eigenvector u_i and its corresponding eigenvalue λ_i of a square matrix $A \in \mathbb{R}^{n \times n}$ satisfy:

$$Au_i = \lambda_i u_i$$

- the eigenvalues can be found by solving:

$$det(A - \lambda I) = 0$$

• collecting all of A's eigenvectors and eigenvalues into the following matrices gives the following **eigendecomposition** of A:

$$U = \begin{bmatrix} u_1 u_2 \dots u_n \end{bmatrix} \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$A = U\Lambda U^{-1}$$

- this decomposes square matrices in a *unique*, guaranteed way that show us information about their fundamental functional properties
- tells us that these transformations *scale* space by eigenvalue λ_i in the direction of eigenvector v_i
- in addition, makes the calculation of A^p easier, since $A^p = U\Lambda^pU^{-1}$
- specifically, if U's columns are an orthonormal set of the eigenvectors:

$$A = U\Lambda U^T$$

• the eigendecomposition can be derived as follows from the definition of an eigenvector:

$$Au_1 = \lambda_2 u_1$$

$$Au_2 = \lambda_2 u_2$$

$$A \begin{bmatrix} u_1 u_2 \end{bmatrix} = \begin{bmatrix} u_1 u_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$AU = U\Lambda$$

$$A = U\Lambda U^{-1}$$

• if A is **normal**, then its eigenvectors are **orthonormal**:

$$u_i^T u_j = 0 \ \forall \ i \neq j, \quad u_i^T u_i = 1$$

• the singular value decomposition (SVD) of a matrix $A \in \mathbb{R}^{m \times n}$ is:

$$A = U\Sigma V^T$$

- where U is an $m \times m$ matrix with orthonormal columns and V is an $n \times n$ matrix with orthonormal columns
 - * the columns of U are the **left singular vectors** of A and are the orthonormal eigenvectors of AA^T
 - * the columns of V are the **right singular vectors** of A and are the orthonormal eigenvectors of A^TA
- Σ is a diagonal $m \times n$ matrix with σ_i as its ith diagonal element
 - * σ_i is called the *i*th **singular value** of A and can be calculated as:

$$\sigma_i = \lambda_i^{\frac{1}{2}}(A^T A) = \lambda_i^{\frac{1}{2}}(AA^T)$$

- essentially factorizing a matrix into singular vectors and singular values by performing an eigendecomposition for A^TA
- unlike an eigendecomposition, SVD is applicable to nonsquare matrices as well eg. can solve Ax = b for nonsquare and perform **principal** component analysis (PCA)

Mathematical Tools

- useful properties of common functions:
 - 1. the logistic sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- commonly used to produce the probability parameter of a Bernoulli distribution
- its range is (0,1), and saturates when its argument is very positive or negative
- 2. the **softplus function**:

$$\zeta(x) = \log(1 + e^x)$$

- useful for producing the $\sigma = \frac{1}{\beta}$ parameter of a normal distribution
- its range is $(0, \infty)$

Probability

- notation note:
 - Pr(E) is the probability of the event E

- Pr(X = x) or equivalent shorthand p(x) is the probability of random variable X taking on the value x
- manipulating probabilities revolves around two main rules:
 - 1. the law of total probability ie. sum rule:

$$p(x) = \sum_{y} p(x, y), \quad x, y \text{ discrete}$$

$$p(x) = \int_y p(x,y) dy, \quad x,y \text{ continuous}$$

– more particularly, if A_1, \dots, A_n forms a partition of the sample space S, then the probability of an event B is:

$$Pr(B) = \sum_{i=1}^n Pr(B \cap A_i)$$

- alternatively, using the conditional probability definition:

$$Pr(B) = \sum_{i=1}^{n} Pr(B|A_i) Pr(A_i)$$

2. the **probability chain rule** ie. product rule:

$$\begin{split} Pr(E_1, E_2) &= Pr(E_1) Pr(E_2 | E_1) \\ &= Pr(E_2) Pr(E_1 | E_2) \end{split}$$

- used to break up a joint probability into a product probability
- can be further decomposed as follows:

$$p(w, x, y, z) = p(w, x)p(y, z|w, x)$$

$$= p(x)p(w|x)p(y, z|w, x)$$

$$= p(x)p(w|x)p(z|w, x)p(y|z, w, x)$$

- * any event that has been in front of the conditioning bar must be bind the conditioning bar for all other probability expressions
- * ie. assuming a random variable *has* taken on a value, and evaluating the remaining events
- can also represent conditional independencies in graphical models
- generalized for a joint probability over many variables:

$$p(x_1,\ldots,x_n)=p(x_1)\prod_{i=2}^n p(x_i|x_1,\ldots,x_{i-1})$$

- * could be proved through induction
- chain rule examples:

$$p(b,c|d,e) = \frac{q}{p(d)p(e|d)}$$

$$p(d)p(e|d)p(b,c|d,e) = q$$

$$q = p(b,c,d,e)$$

$$p(d,e)q = \frac{p(a,b,c,d,e)}{p(a|b,c,d,e)}$$

$$p(d,e)p(a|b,c,d,e)q = p(a,b,c,d,e)$$

$$q = p(b,c|d,e)$$

• Bayes' rule gives the following relationship:

$$p(x|y) = \frac{p(y|x)p(x)}{\sum_{x} p(y|x)p(x)}$$

- an intuition on **Bayesian inference**, which appears frequently in machine learning:
 - let x represent model parameters we wish to infer denoted θ and y correspond to data we have observed D:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\sum_{x} p(D|\theta)p(\theta)}$$

- $p(\theta|D)$ is the **posterior distribution**, ie. the probability distribution of model parameters given the data
- $p(D|\theta)$ is the **likelihood** of the data, ie. the probability of having seen the data given a chosen set of model parameters
- $p(\theta)$ are **prior parameters**, ie. the probabilities of the model parameters *absent* of any data
 - * we can consider that the prior is *updated* by the likelihood to arrie at the posterior distribution on the parameters
- in Bayesian inference, we calculate $p(\theta|D)$, giving a distribution over the model parameters given the data we observed
 - * concretely gives us all the parameters of our model
- in Frequentist inference or maximum-likelihood estimation, we calculate $p(D|\theta)$, wanting to infering the θ that makes the data most likely to have been observed
 - * ie. we choose the parameters that maximize the likelihood of the data

Derivatives

• in machine learning, we want to find the *best* model according to some performance metric:

- this requires **optimization**, in which derivatives are crucial
- in simple cases, we can find minima and maxima by simply setting the derivative equal to 0
- however, in more complex cases, there is no closed-form solution, but the derivative is still useful in telling us how a change in the model parameters will affect the performance
- the definition of a **derivative** of a function $f: \mathbb{R} \to \mathbb{R}$ at a point $x \in \mathbb{R}$ is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- gives how much a small change in x affects f:

$$f(x+\varepsilon) \approx f(x) + \varepsilon f'(x)$$

- given y = f(x), we denote the derivative of y with respect to x as $\frac{dy}{dx}$, such that:

$$\Delta y \approx \frac{dy}{dx} \Delta x$$

• the scalar chain rule states that if y = f(x) and z = g(y):

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

- ie. a small change in x will cause a small change in y that will in turn cause a small change in z as follows:

$$\Delta y \approx \frac{dy}{dx} \Delta x$$
$$\Delta z \approx \frac{dz}{dy} \Delta y$$
$$= \frac{dz}{dy} \frac{dy}{dx} \Delta x$$

- the **gradient** generalizes the scalar derivative to multiple dimensions:
 - if $f: \mathbb{R}^n \to \mathbb{R}$ transforms a vector to a scalar and y=f(x), the gradient with respect to a vector x is :

$$\nabla_x y = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}$$

- the gradient is a vector that is the same size as x
- each dimension of $\nabla_x y$ tells us how small changes in x in that dimension affect y
- ie. after changing the ith dimension of x by a small amount affects y as follows:

$$\Delta y \approx \frac{\partial y}{\partial x_i} \Delta x_i$$

- * equivalently, $\frac{\partial y}{\partial x_i} = (\nabla_x y)_i$
- similarly, after changing multiple dimensions of x, y is changed as follows in a dot product:

$$\Delta y = \sum_{i} \frac{\partial y}{\partial x_{i}} \Delta x_{i}$$
$$= (\nabla_{x} y)^{T} \Delta x$$

- ex. if $f(x) = \theta^T x$, find $\nabla_x f(x)$ where $\theta, x \in \mathbb{R}^n, y \in \mathbb{R}$:
 - by rules of the gradient, $\nabla_x y \in \mathbb{R}^n$
 - 1. expand the dot product in f(x):

$$f(x) = \theta_1 x_1 + \dots + \theta_n x_n$$

2. write out the gradient:

$$\nabla_x y = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \theta$$

- dimensions match up
- ex. if $f(x)=x^TAx$, find $\nabla_x f(x)$ where $A\in\mathbb{R}^{n\times n}, x\in\mathbb{R}^n, y\in\mathbb{R}$:
 - by rules of the gradient, $\nabla_x y \in \mathbb{R}^n$
 - 1. expand f(x):

$$f(x) = \sum_{i} \sum_{j} a_{ij} x_i x_j$$

2. write out the gradient:

$$\begin{split} \frac{\partial y}{\partial x_1} &= \frac{\partial (a_{11}x_1^2)}{\partial x_1} + a_{12}x_2 + \ldots + a_{1n}x_n + a_{21}x_2 + \ldots + a_{n1}x_n \\ &= 2a_{11}x_1 + \sum_{j=2}^n a_{1j}x_j + \sum_{i=2}^n a_{1i}x_i \\ &= \sum_{j=1}^n a_{1j}x_j + \sum_{i=1}^n a_{i1}x_i \\ &= (Ax)_1 + (A^Tx)_1 \\ \frac{\partial y}{\partial x_i} &= (Ax)_i + (A^Tx)_i \\ \frac{\partial y}{\partial x} &= \nabla_x f(x) = Ax + A^Tx \end{split}$$

- an intuition check is to consider the problem in a single dimension:
 - * ie. when n=1, $f(x)=xax=ax^2$ and $\frac{\partial f(x)}{\partial x}=2ax$
 - * when A is symmetric, the gradient is analogously just 2Ax
- derivative of a scalar with respect to a matrix:
 - given a scalar y and a matrix $A \in \mathbb{R}^{m \times n}$, the derivative is given by:

$$\nabla_A y = \begin{bmatrix} \frac{\partial y}{\partial a_{11}} \cdots \frac{\partial y}{\partial a_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial a_{m1}} \cdots \frac{\partial y}{\partial a_{mn}} \end{bmatrix}$$

- like the gradient, the i,jth element of $\nabla_A y$ tells us how small changes in a_{ij} affect y
- this layout is called **denominator layout** notation, in which the dimensions of $\nabla_A y$ and A are the same
 - \star in **numerator layout**, the dimensions are transposed
- derivative of a vector with respect to a vector:
 - given $y \in \mathbb{R}^n$ as a function of $x \in \mathbb{R}^m$, the derivative of y with respect to x would be used as follows:

$$\Delta y_i = \nabla_x y_i \cdot \Delta x$$

- thus, the derivative J should be an $n \times m$ matrix as follows:

$$J = \begin{bmatrix} (\nabla_x y_1)^T \\ \vdots \\ (\nabla_x y_n)^T \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \cdots \frac{\partial y_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} \cdots \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

- like the gradient, we can see how small changes in x affect y as follows:

$$\Delta y \approx J \Delta x$$

- * J is called the **Jacobian** matrix
- since in the denominator layout, the denominator vector changes along rows (instead of along columns, as in the Jacobian):

$$J = (\nabla_x y)^T$$

$$= (\frac{\partial y}{\partial x})^T$$

$$\nabla_x y = J^T$$

• the **Hessian** matrix of a function f(x) is a square matrix of second-order partial derivatives of f as follows:

$$H = \begin{bmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & \dots & \frac{\partial f}{\partial x_1 \partial x_n} \\ \frac{\partial f}{\partial x_2 \partial x_1} & \frac{\partial f}{\partial x_2^2} & \dots & \frac{\partial f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_m \partial x_1} & \frac{\partial f}{\partial x_m \partial x_2} & \dots & \frac{\partial f}{\partial x_m^2} \end{bmatrix}$$

– the Hessian is denoted as $\nabla_x(\nabla_x f(x))$ or equivalently $\nabla_x^2 f(x)$

Chain Rule

- the **chain rule** for vector valued functions:
 - in the denominator layout, the chain rule runs from right to left
 - if $x \in \mathbb{R}^m, y \in \mathbb{R}^n, z \in \mathbb{R}^p$ and y = f(x) for $f : \mathbb{R}^m \to \mathbb{R}^n$ and z = g(y) for $g : \mathbb{R}^n \to \mathbb{R}^p$, then:

$$\begin{split} \nabla_x z &= \nabla_x y \nabla_y z \\ \frac{\partial z}{\partial x} &= \frac{\partial y}{\partial x} \frac{\partial z}{\partial y} \end{split}$$

- * $\nabla_x z$ should have dimensionality $\mathbb{R}^{m \times p}$
- * since $\nabla_x y \in \mathbb{R}^{m \times n}$ and $\nabla_y z \in \mathbb{R}^{n \times p}$, the operations are dimensionally correct
- composing the chain rule:
 - intuitively, a small change Δx affects Δz through the Jacobian $(\nabla_x z)^T$:

$$\Delta z \approx (\nabla_x z)^T \Delta x$$

- then, through composition:

$$\begin{split} \Delta y &\approx (\nabla_x y)^T \Delta x \\ \Delta z &\approx (\nabla_y z)^T \Delta y \\ \Delta z &\approx (\nabla_y z)^T (\nabla_x y)^T \Delta x \end{split}$$

- thus reduces to the right to left chain rule:

$$\begin{split} (\nabla_x z)^T &= (\nabla_y z)^T (\nabla_x y)^T \\ \nabla_x z &= \nabla_x y \nabla_y z \end{split}$$

Tensors

- we may need to take a derivative that is more than 2-dimensional:
 - eg. the derivative of a vector with respect to a matrix would be a 3dimensional tensor
 - * a tensor is an array with more than two axes
 - if $z\in\mathbb{R}^p$ and $W\in\mathbb{R}^{m\times n}$ then $\nabla_W z$ is a 3-dimensional tensor with shape $\mathbb{R}^{m\times n\times p}$
 - * each $m \times n$ slice is the matrix derivative $\nabla_W z_i$

Discussion Problems

Linear Algebra Review

- ex. show the following properties for matrices:
 - 1. if $b^T A b > 0 \ \forall \ \bar{b} \in \mathbb{R}^n$, then all eigenvalues of A are positive:

$$Av_i = \lambda_i v_i$$

$$v_i^T A v_i = \lambda_i v_i^T v_i$$

$$v_i^T A v_i = \lambda_i ||v_i||_2^2 > 0$$

$$\therefore ||v_i||_2^2 > 0, \lambda_i > 0$$

- this is a positive definite matrix

2. if $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then all eigenvalues of A have norm 1:

$$\begin{split} Av_i &= \lambda_i v_i \\ A^T Av_i &= \lambda_i A^T v_i \\ v_i &= \lambda_i A^T v_i \\ ||v_i||_2^2 &= |\lambda_i|^2 ||A^T v_i||_2^2 \\ &= |\lambda_i|^2 (A^T v_i)^T (A^T v_i) \\ &= |\lambda_i|^2 v_i^T A A^T v_i \\ &= |\lambda_i|^2 ||v_i||_2^2 \\ & \div |\lambda_i| = 1 \end{split}$$

3. If $A \in \mathbb{R}^{m \times n}$ is a matrix with rank r, then $\sigma_i(A) = \lambda_i^{\frac{1}{2}}(AA^T)$:

$$\Sigma\Sigma^T = diag(\sigma_1^2, \dots, \sigma_n^2)$$

$$\begin{split} A &= U \Sigma V^T \\ AA^T &= (U \Sigma V^T)(U \Sigma V^T)^T \\ &= U \Sigma V^T V \Sigma^T U^T \\ &= U \Sigma \Sigma^T U^T \\ &= U diag(\sigma_1^2, \dots, \sigma_n^2) U^T \\ & \div \ \sigma_i(A) = \lambda_i^{\frac{1}{2}}(AA^T) \end{split}$$

- producing an eigendecomposition of AA^T

Vector and Matrix Derivatives

- trace has useful properties for computing derivatives:
 - the **trace** of a matrix is the sum of the diagonal entries
 - -Tr(AB) = Tr(BA)

 - $-Tr(A) = Tr(A^{T})$ $-Tr(A^{T}B) = \sum_{i} \sum_{j} a_{ij}b_{ij}$

• ex.
$$\nabla_A tr(AB)$$
 where $A=\begin{bmatrix}a_1^T\\ \vdots\\ a_n^T\end{bmatrix}$ and $B=[b_1\dots b_n]$:
$$Tr(AB)=a_1^Tb_1+\dots+a_n^Tb_n$$

$$=\sum_{i=1}^n a_i^Tb_i$$

$$=\sum_{i=1}^n \sum_{j=1}^n a_{ij}b_{ji}$$

$$[\nabla_A tr(AB)]_{ij}=b_{ji}$$

$$\nabla_A tr(AB)=B^T$$

• ex. $\nabla_A(x^TAx)$:

$$\begin{split} Tr(x^TAx) &= x^TAx \\ \nabla_A(x^TAx) &= nabla_A(Tr(x^TAx)) \\ &= \nabla_A(Tr(Axx^T)) \\ &= (xx^T)^T \\ &= xr^T \end{split}$$

• ex. $\nabla_z(x-z)^T\Sigma^{-1}(x-z)$ where y=f(z)=x-z, $r=g(y)=y^T\Sigma^{-1}y,$ and Σ^{-1} is symmetric:

$$\begin{split} \nabla_z y &= \nabla_z (x-z) \\ &= -I \\ \\ \nabla_y r &= \nabla_y (y^T \Sigma^{-1} y) \\ &= \Sigma^{-1} y + (\Sigma^{-1})^T y \\ &= 2\Sigma^{-1} y \end{split}$$

$$\begin{split} \nabla_z r &= \nabla_z y \nabla_y r \\ &= -2 \Sigma^{-1} y \\ &= -2 \Sigma^{-1} (x-z) \end{split}$$

• a technique used to address the overfitting found in the normal least squares approach is called **regularization**:

– this produces the regularized least squared problem with the following cost function where λ is a tunable regularization parameter:

$$L = \frac{1}{2} \sum_{i=1}^{N} (y_i - \theta^T \hat{x}_i)^2 + \frac{\lambda}{2} ||\theta||_2^2$$

* want a least squares solution with a smaller ie. simpler θ norm – optimizing L:

$$\begin{split} L &= \frac{1}{2}(Y - X\theta)^T(Y - X\theta) + \frac{\lambda}{2}||\theta||_2^2 \\ L(\theta) &= \frac{1}{2}[Y^TY - Y^TX\theta - \theta^TX^TY + \theta^TX^TX\theta] + \frac{\lambda}{2}\theta^T\theta \\ &= \frac{1}{2}Y^TY - Y^TX\theta + \frac{1}{2}[\theta^T(X^TX + \lambda I)\theta] \\ \nabla_{\theta}L(\theta) &= -\nabla_{\theta}[Y^TX\theta] + \frac{1}{2}\nabla_{\theta}[\theta^T(X^TX + \lambda I)\theta] \\ &= -X^TY + \frac{1}{2}2(X^TX + \lambda I)\theta \ \ [=] \ \ 0 \\ \theta &= (X^TX + \lambda I)^{-1}X^TY \end{split}$$

* note that $X^TX + \lambda I$ is symmetric

Supervised Classification

- examine how k-NN classifiers can be more robust to noise:
 - given two labels 0 and 1, a test point x, and its k nearest neighbors z_i where p_i is the probability the label of z_i is not equal to x
 - let $p_1 = 0.1$ and $p_i = 0.2 \ \forall \ i > 1$
 - the probability that the 1-NN classifier makes a mistake classifying is $0.1\,$
 - the probability that the 3-NN classifier makes a mistake occurs when at least 2 of the 3 nearest neighbors have a different label than x:
 - * $Pr(all\ different) = 0.1 \times 0.2^2$
 - * $Pr(\text{first different}, \text{ one other different}) = 0.1 \times 0.2 \times 0.8$
 - * $Pr(second and third different) = 0.9 \times 0.2^2$
 - * altogether, the sum is of probabilities is 0.072
 - thus the 3-NN classifier is more robust, since it checks more neighbors
- taking the derivative of the softmax function:

$$f(z_j) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

– calculate $\nabla_{z_i} f(z_j)$ for i = j:

$$\begin{split} \nabla_{z_i} f(z_j) &= \frac{\partial}{\partial z_i} [\frac{e^{z_i}}{e^{z_1} + \ldots + e^{z_c}}] \\ &= \frac{e^{z_i} \sum_k e^{z_k} - e^{z_i} \cdot e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{e^{z_i}}{\sum_k e^{z_k}} - \frac{(e^{z_i})^2}{(\sum_k e^{z_k})^2} \\ &= f(z_i) - (f(z_i))^2 \\ &= f(z_i) (1 - f(z_i)) \end{split}$$

- * uses the quotient rule for derivatives
- calculate $\nabla_{z_i} f(z_j)$ for $i \neq j$:

$$\begin{split} \nabla_{z_i} f(z_j) &= \frac{\partial}{\partial z_i} [\frac{e^{z_j}}{e^{z_1} + \ldots + e^{z_c}}] \\ &= \frac{0 \cdot \sum_k e^{z_k} - e^{z_j} \cdot e^{z_i}}{(\sum_k e^{z_k})^2} \\ &= \frac{-e^{z_j}}{\sum_k e^{z_k}} \frac{e^{z_i}}{\sum_k e^{z_k}} \\ &= -f(z_i) f(z_i) \end{split}$$