Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

19 ноября 2018 г.

1 Введение

Эти лекции были рассказаны студентам групп M3334–M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 5 Изоморфизм Карри-Ховарда (завершение), Унификация

2.1 Изоморфизм Карри-Ховарда

Определение 2.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M$: σ влечет $|\Gamma| \vdash \sigma$
- 2. $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M:\sigma$, где $\Delta = \{x_\sigma:\sigma \mid \sigma \in \Gamma \}$

Пример.

 $\{f: \alpha \to \beta, x: \beta\} \vdash fx: \beta$ Применив изоморфизм Карри-Ховарда получим: $\{\alpha \to \beta, \beta\} \vdash \beta$

 $oldsymbol{\mathcal{A}}$ оказательcтво.

- $\Pi.1$ доказывается индукцией по длине выражения т.е. есть 3 правила вывода. убирая P и Q.
 - П.2 доказывается аналогичным способом но действия обратные.

Т.е. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение 2.2. Расширенный полином определяется формулой:

$$E(p,q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p,q), & \text{if } p, q \neq 0 \end{cases}$$

, где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант

по сути расширенный полином это множество функций над натуральными числами (черчевскими нумералами).

Пусть $v=(\alpha\to\alpha)\to(\alpha\to\alpha)$, где $\alpha-$ произвольный тип и пусть $F\in\Lambda$, что $F:v\to v\to v$, то существует расширенный полином E, такой что $\forall a,b\in\mathbb{N}$ $F(\overline{a},\overline{b})=_{\beta}\overline{E(a,b)}$, где \overline{a} —черчевский нумерал

Теорема 2.1. У каждого терма в просто типизиреумом λ исчислении существует расширенный полином.

Утверждение 2.1. Основные задачи типизации λ исчисления

- 1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ терма M и типа σ (для проверки типа обычно откидывают σ и рассматривают п.2).
- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M$:? подставить конкретный тип σ в ? и контекст Γ в $?_1$.
- 3. Обитаемость типа—пытается подобрать, такой **замкнутый** терм M и контекст Γ , что бы было выполнено $\Gamma \vdash M : \sigma$.

Определение 2.3. Алгебраический терм

Выражение типа $\Theta = a | (f_k \Theta_1 \cdots \Theta_n),$ где a-переменная, $(f_k \Theta_1 \cdots \Theta_n)$ -применение функции

Пример.

- 1. (fab(ga))
- 2. Известно, что \rightarrow -функция, тогда выражение $((a \rightarrow b) \rightarrow c) \Longleftrightarrow (\rightarrow (\rightarrow ab)c)$

2.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 2.4. Система уравнений в алгебраических термах

$$\left\{egin{aligned} \Theta_1 = \sigma_1 \ dots \ \Theta_n = \sigma_n \end{aligned}
ight.$$
 Гле Θ_i и σ_i — термы

Определение 2.5. $\{a_i\} = A$ -множество перменных, $\{\Theta_i\} = T$ -множество термов.

Определение 2.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

Т.е. S_0 – конечное множество переменных $a_1 \cdots a_n$ на которых $S_0(a_i) = \Theta_i$ либо $S_0(a_i) = a_i$.

Доопределим S на все T т.е. $S: T \to T$, где

1.
$$S(a) = S_0(a)$$

2.
$$S(f(\Theta_1 \cdots \Theta_k)) = f(S(\Theta_1) \cdots S(\Theta_k))$$

По сути S тоже самое что и много if'ов либо map строк

Определение 2.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные, f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) S(fa(gb)) = f(he)(gb)
 - (b) S(f(he)d) = f(he)(gb)
 - (c) f(he)(gb) = f(he)(gb)
- 2. fa = gb-решений не имеет

Таким образом, что бы существовало решение необходимо равенство строк полученной подстановки

2.3 Алгоритм Унификации

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения(унификаторы).
- 2. Любая система E эквивалентна некторому уравнению $\Sigma_1 = \Sigma_2$.

 \mathcal{A} оказательство.

Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1\dots\Theta_n=f\sigma_1\dots\sigma_n$

Если сущесвтует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \ \forall i, \text{ To } S(f \Theta_1 \dots \Theta_n) = f \ S(\sigma_1) \dots S(\sigma_n)$$

Обратное аналогично.

- 3. Рассмотрим операции
 - (а) Редукция терма

Заменим уравнение вида $-f_1$ $\Theta_1 \dots \Theta_n = f_1 \ \sigma_1 \dots \sigma_n$ на систему уравнений $\Theta_1 = \sigma_1$

:

$$\Theta_n = \sigma_n$$

(b) Устранение переменной Пусть есть уравнени $x = \Theta$, заменим во всех остальных уравнениях переменную x на терм Θ

Утверждение 2.2. Эти операции не изменяют множества решений.

Определение 2.8. Система уравнений в разрешеной форме если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только раз

Определение 2.9. Система несовместима если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\ \Theta_1\dots\Theta_n$, причем a выходит в какой-то из Θ_i

2.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i = a_i$, то перепишем, как $a_i = \Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i$ удалим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i$ Применим подстановку переменной т.е. подставим во все остальне уравнения Θ_i вместо a_i
- 2. Проверим разрешима ли система, совместима ли система (два пункта несовместимости)
- 3. повторим пункт 1

Утверждение 2.3. Алгоритм не изменяет множетва решений

Утверждение 2.4. Несовместимая решения не имеет решений

Утверждение 2.5. Система в разрешеной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases} \text{ имеет решение} - \begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 2.6. Алгоритм всегда закначивается

 $oxed{\it Доказательство}.$

По индукции, выберем три числа $\langle x y z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (т.е. b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta$),

у- количество функциональных символов в системе,

z-количество уравнеий типа a=a и $\Theta=b$

3аметим, что (a) и (b) всегда уменьшают z и иногда уменьшают x,

(c) всегда уменьшает y иногда x и, возможно, увеличивает z,

операция (d) всегда уменьшает x, и иногда увеличивает y.

Очевидно, что с каждой операцией a-d данная тройка уменьшается и так как $x,y,z\geq 0$, то данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E =$$

$$g(x_2) = x_1$$

$$f(x_1, h(x_1), x_2) = f(g(x_3), x_4, x_3)$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E =$$

$$g(x_2) = x_1$$

$$x_1 = g(x_3)$$

$$h(x_1) = x_4$$

$$x_2 = x_3$$

Применим пункт (d) ко второму уравнению верхней системы

(оно изменит 1ое уравнение) получим:

$$E =$$

$$g(x_2) = g(x_3)$$

$$x_1 = g(x_3)$$

$$h(g(x_3)) = x_4$$

$$x_2 = x_3$$

Применим пункт (c) ко первому ур-ию

и пункт (а) к третьему уравнению верхней системы

$$F -$$

$$x_2 = x_3$$

$$x_1 = g(x_3)$$

$$x_4 = h(q(x_3))$$

$$x_2 = x_3$$

Применим пункт (b) к последнему уравнению и получим систему в разрешеной форме

$$E = x_2 = x_3$$
$$x_1 = g(x_3)$$
$$x_4 = h(g(x_3))$$

Решение системы:

$$S = \{ (x_1 = g(x_3)), (x_2 = x_3), (x_4 = h(g(x_3))) \}$$

Определение 2.10. $S \circ T$ -композиция подстановок, если $S \circ T = S(T(a))$

Определение 2.11. S—наиболее общий унификатор ксли любое решение сисетмы R может быть получено уточнением: $\exists T: R = T \circ S$

Утверждение 2.7. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения. Если решений нет алгоритм окончится неудачей.

3 Лекция 6

Реконструкция типов в просто типизированном лямбдаисчислении, комбинаторы

3.1 Алгоритм вывода типов

Пусть есть: ?|-A:?, хотим найти пару \langle контекст, тип \rangle **Алгоритм:**

- 1. Рекурсия по структуре формулы Построить по формуле A пару $\langle E, \tau \rangle$, где E-набор уравнений, τ -тип A
- 2. Решение уравнения, получения подстановки S и из решения E и $S(\tau)$ получения ответа

Т.е. необохимо свести вывод типа к алгоритму унификации.

Пункт 3.1. Рассмотрим 3 случая

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой конекст, α_A -новая переменная нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P \ Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \tau_Q \to \alpha_A\}, \alpha_A \rangle$, где α_A -новая переменная

3.
$$A \equiv \lambda x.P \implies \langle E_P, \alpha_x \to \tau_P \rangle$$

Пункт 3.2. Алгоритм унификации

Рассмотрим E-набор уравнений, запишем все уравнения в алгебраическом виде т.е. $\alpha \to$ $\beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 3.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma | -M : \rho$, то существует:

- 1. S-решение E_M тогда $\Gamma = \{S(\alpha_x) | x \in FV(M)\}, FV$ -множество свободных переменных в терме M, α_x – переменная полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S- решение E_M , то $\Gamma|-M:\rho$,Доказательство-индукция по структуре терма

 $\langle \Gamma, \rho \rangle$ -основная пара для терма M, если

- 1. $\Gamma | -M : \tau$
- 2. Если $\Gamma'|-M:\tau'$, то сущесвтует $S:S(\Gamma)\subset\Gamma'$

Пример.

Рассмотрим терм: $\lambda f \lambda x. f(f(x))$, построим и пронумеруем его дерево разбора:

- 1. $E_1 = \langle \{\}, \alpha_x \rangle$
- 2. $E_2 = \langle \{\}, \alpha_f \rangle$
- 3. $E_3 = \langle \{\}, \alpha_f \rangle$
- 4. $E_4 = \langle \{\alpha_f = \alpha_x \to \alpha_1\}, \alpha_1 \rangle$
- 5. $E_5 = \langle \{ \alpha_f = \alpha_x \to \alpha_1 \}$ $\alpha_f = \alpha_1 \rightarrow \alpha_2 \}, \alpha_2 \rangle$
- 6. $E_6 = \langle \{\alpha_f = \alpha_x \to \alpha_1\} \rangle$ $\alpha_f = \alpha_1 \to \alpha_2 \}, \alpha_x \to \alpha_2 \rangle$
- 7. $E_7 = \langle \{ \alpha_f = \alpha_r \to \alpha_1 \} \rangle$ $\alpha_f = \alpha_1 \to \alpha_2, \alpha_f \to (\alpha_x \to \alpha_2)$

 $E = \alpha_f = \alpha_x \to \alpha_1$ $\alpha_f = \alpha_1 \rightarrow \alpha_2$, решим полученную систему: 1. приведем систему к алгебрачиескому виду и решим её:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$

(b)
$$\left\{ \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \right\}$$

(c)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных
- 4. тип терма $\lambda f \lambda x. f(f(x))$ является результат подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2))$, получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

3.2 Сильная и слабая нормализации

Определение 3.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 3.2. Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

Утверждение 3.1.

- 1. $KI\Omega$ слабо нормализуема
- 2. Ω не нормализуема
- 3. *II* сильно нормализуема

Лемма 3.2. Сильная нормализация влечет слабую.

3.3 Выразимость комбинаторов

Утверждение 3.2. Любое λ выражение можно записать с помощью комбинаторов S и K, где

$$S = \lambda x \lambda y \lambda z.(x z)(y z)$$

$$K = \lambda x \lambda y.x$$

Утверждение 3.3. Соотношение комбинаторов с λ исчислением:

- 1. T(x) = x
- 2. T(PQ) = T(P)T(Q)
- 3. $T(\lambda x.P) = K(T(P)), x \notin FV(P)$
- 4. $T(\lambda x.x) = I$
- 5. $T(\lambda x \lambda y.P) = T(\lambda x.T(\lambda y.P))$
- 6. $T(\lambda x.P Q) = S T(\lambda x.P)T(\lambda x.Q)$

Утверждение 3.4. Альтернативный базис:

- 1. $B = \lambda x \lambda y \lambda z.x(yz)$
- 2. $C = \lambda x \lambda y \lambda z.((x z)y)$
- 3. $W = \lambda x \lambda y \cdot ((x y)y)$