COMP3151/9154 Week 2 – Notes on Floyd's Method

Ron van der Meyden

June 11, 2023

These notes expand on the example application of Floyd's method discussed in lectures in more precise detail.

1 Hoare Logic

Floyd's method is used to prove "Hoare Logic" assertions of the form $\{\alpha\}$ P $\{\beta\}$, meaning that program P, when started in any state satisfying formula α will, whenever it terminates, do so in a state satisfying β . (Note that this is a safety property. It is not part of the assertion that P will always terminate!)

To apply Floyd's method, we need to deal with variants of formulas $Q(\ell)$ labelling a location ℓ of the transition diagram of P after the application of an update function f. This is denoted $Q(\ell) \circ f$ in the lecture slides.

Effectively, Floyd's method breaks down the proof down into a set of simpler Hoare Logic statements, each corresponding to a single possible step of the program. Suppose we have a transition $\ell_i \xrightarrow{g;S} \ell_j$ and $Q(\ell_i) = \alpha$ and $Q(\ell_j) = \beta$, where α , β and g are formulas, and S is a single step program, or action (typically an assignment statement x = e, or simply the action skip that does not change any of the program's variables). Then the formula $(Q(\ell_i) \wedge g) \implies Q(\ell_j) \circ f$ in the lecture slides corresponds to a Hoare logic statement $\{\alpha\}$ g; S $\{\beta\}$.

The formula g is called the guard of the step. Intuitively, the program g; S is able to proceed only if the guard g is true. If not, the step is not able to execute, but this does not amount to termination, so there is nothing to prove in this case. The statement $\{\alpha\}$ g; S $\{\beta\}$ only cares about the initial states where $\alpha \land g$ is true. In these cases, we run S, and we require that β is true when S terminates.

To reason precisely about such statements, we need a little terminology from predicate logic. The notation $\beta[e/x]$ is used to represent the result of substituting expression e for the free occurrences of variable x in a formula β . "Free" here means not in the scope a quantification of that variable. For example,

$$(x = 3 \land \forall x (0 \le x))[e/x] = (e = 3 \land \forall x (0 \le x))$$

Note that we don't substitute for the third occurrence of x because it is in the scope of the quantification $\forall x$.

We can now characterize the validity of some simple Hoare logic statements as follows:

• For skip statements, $\{\alpha\}$ g; skip $\{\beta\}$ is equivalent to the validity of the following formula

$$(\alpha \land g) \Rightarrow \beta$$

• For assignment statements x = e, where e is some expression, $\{\alpha\}$ g; x = e $\{\beta\}$ is equivalent to the validity of the following formula:

$$(\alpha \wedge g) \Rightarrow (\beta[e/x])$$

We use these characterizations below to calculate the formulas we need to apply Floyd's method to a simple program.

2 The example

We have the program

$$P = \left\{ \begin{array}{l} i \leftarrow 0; \\ s \leftarrow 0; \\ \textbf{while } i \neq N \textbf{ do} \\ s \leftarrow s + i; \\ i \leftarrow i + 1 \\ \textbf{od} \end{array} \right.$$

which corresponds to the transition diagram

We will show that $\{\top\}$ P $\{s = \sum_{j=0}^{N-1} j\}$. We label this diagram as follows:

- $Q(\ell_0)$ is \top
- $Q(\ell_1)$ is i = 0
- $Q(\ell_2)$ is $s = \sum_{i=0}^{i-1} j$
- $Q(\ell_3)$ is $s = \sum_{i=0}^i j$
- $Q(\ell_4)$ is $s = \sum_{j=0}^{N-1} j$

(Note that the question of *how* a particular program should be labelled in order to prove its correctness is not always easy to answer. The intuition is that $Q(\ell)$ should be a formula that is *always* true when the computation is at location ℓ , but finding such formulas is an art.)

For each of the edges of the transition diagram, as well as the initial and final states, we now have a formula to prove valid.

- For the initial state, we need to show $T \Rightarrow T$, which is obviously valid.
- Transition $\ell_0 \xrightarrow{\top; i \leftarrow 0} \ell_1$ corresponds to $\{\top\}$ $\top; i \leftarrow 0$ $\{i = 0\}$ which is $\top \Rightarrow (i = 0)[0/i]$, that is, $\top \Rightarrow (0 = 0)$. This is obviously valid!
- Transition $\ell_1 \xrightarrow{\top; s \leftarrow 0} \ell_2$ corresponds to $\{i = 0\}$ $\top; s \leftarrow 0$ $\{s = \sum_{j=0}^{i-1} j\}$ which is $i = 0 \Rightarrow (s = \sum_{j=0}^{i-1} j)[0/s]$, that is, $i = 0 \Rightarrow (0 = \sum_{j=0}^{i-1} j)$. Noting that if i = 0, the sum in question is the empty sum $\sum_{j=0}^{-1} j$, which we conventionally treat as equal to 0, this is valid.
- Transition $\ell_2 \xrightarrow{i \neq N; s \leftarrow s+i} \ell_3$ corresponds to the Hoare Logic statement $\{s = \sum_{j=0}^{i-1} j\} \ i \neq N; s \leftarrow s+i \ \{s = \sum_{j=0}^{i} j\}$ which is

$$((s = \sum_{j=0}^{i-1} j) \land i \neq N)) \Rightarrow (s = \sum_{j=0}^{i} j)[s + i/s]$$

which is

$$((s = \sum_{j=0}^{i-1} j) \land i \neq N)) \Rightarrow (s+i = \sum_{j=0}^{i} j)$$

This is also valid, since if $s = \sum_{j=0}^{i-1} j$ then $s+i = (\sum_{j=0}^{i-1} j) + i = \sum_{j=0}^{i} j$.

• $\ell_3 \xrightarrow{i \leftarrow i+1} \ell_2$ corresponds to the Hoare Logic statement $\{s = \sum_{j=0}^i j\} \; \top; i \leftarrow i+1 \; \{s = \sum_{j=0}^{i-1} j\}$ which is

$$(s = \sum_{j=0}^{i} j) \Rightarrow (s = \sum_{j=0}^{i-1} j)[i + 1/i]$$

which is

$$(s = \sum_{j=0}^{i} j) \Rightarrow (s = \sum_{j=0}^{i+1-1} j)$$

This is also valid, since i + 1 - 1 = i, so the left and right hand sides of this implication are the same.

• $\ell_2 \xrightarrow{i=N; skip} \ell_4$ corresponds to the Hoare Logic statement $\{s = \sum_{j=0}^{i-1} j\}$ i = N; skip $\{s = \sum_{j=0}^{N-1} j\}$ which is

$$((s = \sum_{j=0}^{i-1} j) \land i = N) \Rightarrow s = \sum_{j=0}^{N-1} j$$

This also is obviously valid.

• For the final state, we need to prove that its label implies the right hand formula of the Hoare logic statement that we are trying to prove for *P*. This is trivial, since they are the same.

We have now checked all of the proof obligations for Floyd's method, and can conclude that $\{\top\}$ P $\{s=\sum_{j=0}^{N-1}j\}$.