VAE: Variational Autoencoder:

https://lilianweng.github.io/posts/2018-08-12-vae/#vg-vae-and-vg-vae-2

https://www.jeremyjordan.me/variational-autoencoders/

https://www.youtube.com/watch?v=qJeaCHQ1k2w

• Objective/ Goal of VAE: Trying to find distribution $q_{\phi}(z|x)$ from where we sample $z \sim q_{\phi}(z|x)$ to generate new sample x' from $p_{\theta}(x|z)$

$$L_{ ext{VAE}}(heta,\phi) = -\mathbb{E}_{\mathbf{z}\sim q_{\phi}(\mathbf{z}|\mathbf{x})}\log p_{ heta}(\mathbf{x}|\mathbf{z}) + D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{ heta}(\mathbf{z}))$$

2. Architecture of VAE

- Encoder $q_{\phi}(z|x)$:
 - Maps the input x to a latent distribution $q_{\phi}(z|x)$, which is typically modeled as a Gaussian distribution.
- Latent Variable Sampling $z \sim q_{\phi}$:
 - z represents compressed information from x.
 - Sampling allows z to capture variability in the data.
- Decoder $p_{\theta}(x|z)$:
 - Reconstructs or generates samples x' based on the latent variable z.

3. Learning Process

- Optimization Variables:
 - ϕ : Parameters of the encoder (probabilistic mapping to latent space).
 - θ : Parameters of the decoder (probabilistic mapping from latent space back to the data).
 - Both are learned through backpropagation using the VAE loss function.

Loss Function:

- · Balances two terms:
 - 1. Reconstruction Loss: Ensures x' is similar to x (e.g., log-likelihood).
 - 2. **KL Divergence**: Regularizes $q_{\phi}(z|x)$ to be close to a prior distribution (commonly standard Gaussian).

4. Graphical Model

• Highlights the probabilistic relationships:

- z: Latent variable (hidden).
- x: Observed variable (input).
- Arrows show how z is sampled using $q_\phi(z|x)$, and x' is generated using $p_ heta(x|z)$.

We'd like to use our observations to understand the hidden variable.

5. Steps Summarized:

- 1. Input x is fed into the encoder to compute $q_{\phi}(z|x)$.
- 2. Sample z from $q_{\phi}(z|x)$.
- 3. Use z as input to the decoder $p_{\theta}(x|z)$ to generate x'.
- 4. Optimize the loss function to align x' with x while regularizing $q_{\phi}(z|x)$.

1. Goal of VAE

- The objective of VAEs is to learn a **distribution** $\frac{q_{\phi}(z|x)}{q_{\phi}(z|x)}$ of some **latent variables** z. From which we can sample $z \sim q_{\phi}(z|x)$ to generate x' from $p_{\theta}(x|z)$
- Instead of just encoding and decoding data deterministically (as in typical autoencoders), VAEs aim to:
 - Encode input x into a latent space z such that z represents a probability distribution (usually Gaussian).
 - Generate new samples by sampling from this latent space distribution z~q_φ(z|x).

Use a decoder p_θ(x|z) to reconstruct samples x'.

Expectation of a random variable

$$E_x[f(x)] = \int x f(x) dx$$

Chain rule of probability

$$P(x,y) = P(x|y)P(y)$$

Bayes' Theorem

$$P(x \mid y) = \frac{P(y|x)P(x)}{P(y)}$$

Kullback-Leibler Divergence

$$D_{KL}(P||Q) = \int p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

Properties:

- Not symmetric.
- Always ≥ 0
- It is equal to 0 if and only if P = Q

P(x) is the probability of any value of X

The interesting quantity is E[X] is the expectation of X,. It the average value of X when we sampling from X. and is computed by the following formulation. CAN show the previous Lecture example

Let consider two random variable X and Z, and their joint probability

In 3D, we can see the joint probability of X and Z. it shows the each pair of events occurs together.

[show examples of joint distribution.

If $X = \{H, T\}$, and $Z = \{1,2,3,4,5,6\}$

P(x = H, Y = 3) = 1/2 * 1/6 = 1/12]

At the same time each Random variable has its own probability distribution called the marginal distribution.

Interesting property of joint distribution is to find p(x) and p(z) called the marginal distribution.

Example define the find the marginal distribution p(x) with respect to other variable z by integrating the joint distrubion of p(x,z) with respect to dz

P(x=3) = find the joint probabity over the all value of z

 $p(x) = \int p(x, z) dz$ p(x)

show examples of joint distribution.

P(X) = sum the joint probability over all the possible value of Z.

If $X = \{H, T\}$, and $Z = \{1,2,3,4,5,6\}$

$$P(X) = P(X = H) = P(X = H) * P(Y = 1) + P(X = H) * P(Y = 2) + P(X = H) * P(Y = 3) + P(X = H) * P(Y = 6)$$

$$P(X) = 1/2 *1/6 + 1/2 *1/6 + 1/2 *1/6 + 1/2 *1/6 + 1/2 *1/6 + 1/2 *1/6 = 6*1/12 = 1/2$$

P(Z) = sum the joint probability over all the possible value of x.

If $X = \{H, T\}$, and $Z = \{1,2,3,4,5,6\}$

 $P(Z) = P(Z=1) = P(X=H) + P(Z=1) + P(X=T) + P(Y=1) = \frac{1}{2} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6}$

Conditional probability: it is defined as the joint distribution and normalizing it with the marginal distribution.

It is the slice of joint distribution and normalized it with the marginal distribution.

It is slice of joint probability for fix z= 3, p dividing

P(Z) = sum the joint probability over all the possible value of x.

If
$$X = \{H, T\}$$
, and $Z = \{1,2,3,4,5,6\}$

$$P(Z) = P(Z=1) = P(X=H) * P(Z=1) + P(X=T) * P(Y=1) = \frac{1}{2} * \frac{1}{6} + \frac{1}{2} * \frac{1}{6} = \frac{1}{6}$$

As
$$P(x/z = 1) = p(x, z=1)/p(z=1)$$

$$p(x=H, z=1) = p(x=H)*p(z=1) = ½* 1/6 = 1/12$$

$$p(x=T, z=1) = p(x=T)*p(z=1) = \frac{1}{2}*1/6 = \frac{1}{12}$$

therefore

$$p(x=H/Z=1) = p(x = H, z = 1) / p(z=1) = 1/12 *6 = 1/2$$

$$p(x=T/Z=1) = p(x = T, z = 1) / p(z=1) = 1/12 *6 = 1/2$$

This makes sense because the coin toss is independent of the die roll, and thus the outcomes of the coin toss (H or T) remain equally likely even when we know Z=3.

Show the presence of z when we sample the data from x.

In the case of a Variational Autoencoder (VAE), **directly finding P(Z|X) using the formula** P(Z|X)=P(X,Z)/P(X) is extremely difficult due to several reasons:

Why
$$P(Z|X) = rac{P(X,Z)}{P(X)}$$
 Is Hard to Compute in VAEs

- 1. Marginal Probability P(X) is Intractable:
 - The denominator P(X) requires integrating over all possible values of the latent variable
 Z. i.e.:

$$P(X) = \int P(X, Z) \, dZ.$$

- If Z is high-dimensional (e.g., a 10-dimensional latent space), the integration becomes
 computationally infeasible due to the curse of dimensionality.
- 2. Complex Form of P(X, Z):
 - In a VAE, P(X,Z)=P(Z)P(X|Z), where:
 - ullet P(Z): The prior on the latent variable Z, typically a multivariate Gaussian.
 - P(X|Z): The likelihood, often modeled by a complex neural network (the decoder in the VAE).
 - Computing P(X|Z) involves evaluating the decoder network for each possible value of Z, which is computationally expensive.

The Problem Setup:

1. We are trying to compute the marginal probability P(X):

$$P(X) = \int P(X,Z) dZ = \int P(Z)P(X|Z) dZ.$$

- 2. Here:
 - P(X|Z): The likelihood of observing X given latent variables Z. This is usually a complex function, often modeled with a neural network.
 - P(Z): The prior over Z. In VAEs, this is typically a multivariate Gaussian distribution, e.g.,
 N(0, I).
 - dZ: The integration must consider all possible values of Z.
- 3. Dimension of Z:
 - If Z is 2-dimensional (Z = (Z₁, Z₂)), then the integral becomes:

$$P(X) = \int_{Z_1} \int_{Z_2} P(Z_1, Z_2) P(X|Z_1, Z_2) \, dZ_1 \, dZ_2.$$

- 4. Why We Use Numerical Integration:
 - For many models, especially in deep learning, the likelihood P(X|Z) is not an analytically simple function, and closed-form solutions to this integral are not possible.
 - Thus, we approximate the integral numerically by discretizing the continuous space of Z₁ and Z₂ into a grid.

How Grid-Based Numerical Integration Works

Discretizing Z_1 and Z_2 :

- Imagine Z₁ and Z₂ are continuous variables in the range [a, b].
- To compute the integral, we divide the range of each variable into n discrete points:

$$\{z_1^{(1)}, z_1^{(2)}, \dots, z_1^{(n)}\}$$
 and $\{z_2^{(1)}, z_2^{(2)}, \dots, z_2^{(n)}\}.$

• Now, we evaluate the integrand P(X|Z)P(Z) at each of the $n \times n$ combinations of (Z_1, Z_2) .

Numerical Approximation of the Integral:

The integral is approximated as:

$$P(X)pprox \sum_{i=1}^{n}\sum_{j=1}^{n}P(X|Z_{1}^{(i)},Z_{2}^{(j)})P(Z_{1}^{(i)},Z_{2}^{(j)})\Delta Z_{1}\Delta Z_{2},$$

where ΔZ_1 and ΔZ_2 are the widths of the discretized intervals.

Computational Cost:

- ullet For every combination of $Z_1^{(i)}$ and $Z_2^{(j)}$, we evaluate P(X|Z)P(Z) .
- The total number of evaluations required is $n \times n = O(n^2)$.

Toy Example

Suppose:

- $\bullet \quad Z_1 \text{ and } Z_2 \text{ range from } [0,1].$
- Divide each into n = 10 points: $\{0.0, 0.1, 0.2, \dots, 1.0\}$.

To Compute P(X):

- ullet For each of the $n^2=10 imes 10=100$ grid points (Z_1,Z_2) , evaluate:
 - ullet $P(X|Z_1,Z_2)$: Likelihood at each grid point.
 - $P(Z_1,Z_2)$: Prior at each grid point.
- Sum over all 100 combinations to approximate P(X).

Scaling Issue:

- If Z were 10-dimensional (Z_1, Z_2, \ldots, Z_{10}):
 - $n^{10} = 10^{10} = 10,000,000,000$ evaluations would be needed.

Problem Setup

Suppose we want to compute:

$$I = \int_{0}^{1} f(z_1) dz_1,$$

where $f(z_1) = z_1^2 + 2z_1 + 1$.

Step-by-Step Solution

1. Divide the Range into Intervals

For n=5, the interval length is:

$$\Delta z_1 = \frac{1}{n} = \frac{1}{5} = 0.2.$$

The interval midpoints for z_1 are:

$$z_1 = \{0.1, 0.3, 0.5, 0.7, 0.9\}.$$

2. Compute $f(z_1)$ at Each Midpoint

Evaluate $f(z_1)$ at each midpoint:

$$f(0.1) = 0.1^{2} + 2(0.1) + 1 = 1.21,$$

$$f(0.3) = 0.3^{2} + 2(0.3) + 1 = 1.69,$$

$$f(0.5) = 0.5^{2} + 2(0.5) + 1 = 2.25,$$

$$f(0.7) = 0.7^{2} + 2(0.7) + 1 = 2.89,$$

$$f(0.9) = 0.9^{2} + 2(0.9) + 1 = 3.61.$$

3. Apply the Midpoint Rule

The midpoint rule approximates the integral as:

$$Ipprox \Delta z_1\cdot \sum_{i=1}^n f(z_1^{(i)}).$$

Substitute the values:

$$I \approx 0.2 \cdot (1.21 + 1.69 + 2.25 + 2.89 + 3.61)$$
.

4. Simplify the Calculation

$$I \approx 0.2 \cdot 11.65 = 2.33$$
.

As n=5, there are 5 computation are needed inorder to solve the single integral, if n= 10, then there are 10 computation are required to compute.

4. Toy Example to Compute Marginal Probability

Problem Setup:

- Let $Z=(z_1,z_2)$ be 2-dimensional latent variables, with both $z_1,z_2\in[0,1].$
- Assume the prior distribution is uniform: P(Z)=1 for $Z\in [0,1]$
- The likelihood $P(X|Z) = \exp(-(z_1 + z_2))$, representing some simple relationship between X and Z.
- The marginal P(X) is:

$$P(X) = \int_0^1 \int_0^1 P(X|Z)P(Z) dz_1 dz_2 = \int_0^1 \int_0^1 \exp(-(z_1 + z_2)) dz_1 dz_2.$$

Solution:

Numerical integration for this 2D integral:

- Divide [0,1] for z_1 and z_2 into n points (e.g., n=10).
- Sample grid points: $z_1, z_2 = [0, 0.1, 0.2, \dots, 1.0]$.
- Evaluate f(z₁, z₂) = exp(-(z₁ + z₂)) at all n² grid points.

For n=10:

- We compute $f(z_1, z_2)$ at $10 \times 10 = 100$ points.
- Sum up all values, weighted by the grid spacing ($\Delta z_1 \cdot \Delta z_2 = 0.1 \cdot 0.1 = 0.01$).

This process becomes increasingly expensive f ψ igher dimensions.

Now we Z is two dimentional and if n= 10, then there are 10x10= 10^2 computation are required to compute.

In practiacally Z is 10 to 100 dimensional, so it means 10^10 to 10^100 computation are required to compute, which is very expensive. So it seem interactable

As the number of dimensions (or features/**Z**'s) increases, the computational and data requirements grow exponentiall

https://www.jeremyjordan.me/variational-autoencoders/

Variational Inference:

Variational Inference (VI): Addresses the challenge of approximating the intractable posterior distribution $P_{\theta}(z|x)$ by using a simpler, more manageable distribution $q_{\phi}(z|x)$, often chosen as a Gaussian distribution.

The goal is to make $q_{\phi}(z|x)$ closely approximate $P_{\theta}(z|x)$. This is achieved by adjusting the parameters of $q_{\phi}(z|x)$ (e.g., its mean and variance) to minimize the discrepancy between the two distributions.

To measure this discrepancy, the Kullback-Leibler (KL) divergence $\mathrm{KL}(q_{\phi}(z|x)\|P_{\theta}(z|x))$ is minimized, effectively making $q_{\phi}(z|x)$ as close as possible to $P_{\theta}(z|x)$.

$$\begin{split} &D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}|\mathbf{x})) \\ &= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})p_{\theta}(\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} d\mathbf{z} \\ &= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \left(\log p_{\theta}(\mathbf{x}) + \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} \right) d\mathbf{z} \\ &= \log p_{\theta}(\mathbf{x}) + \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z},\mathbf{x})} d\mathbf{z} \\ &= \log p_{\theta}(\mathbf{x}) + \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \log p_{\theta}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})} - \log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] \\ &= \log p_{\theta}(\mathbf{x}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z})) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) \end{split}$$
; Because $p(z, x) = p(x|z)p(z)$

So we have:

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}|\mathbf{x})) = \log p_{\theta}(\mathbf{x}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z})) - \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z})$$

Once rearrange the left and right hand side of the equation,

$$\log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x})) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) - D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}))$$

The LHS of the equation is exactly what we want to maximize when learning the true distributions: we want to maximize the (log-)likelihood of generating real data (that is $\log p_{\theta}(\mathbf{x})$) and also minimize the difference between the real and estimated posterior distributions (the term D_{KL} works like a regularizer). Note that $p_{\theta}(\mathbf{x})$ is fixed with respect to q_{ϕ} .

Instead of optimizating the LHS of the original loss function, we optimize the RHS, evidance lower bound (ELBO), which avoid the need o to compute $P_{\theta}(z|x)$

The negation of the above defines our loss function:

$$\begin{split} L_{\text{VAE}}(\theta, \phi) &= -\log p_{\theta}(\mathbf{x}) + D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}|\mathbf{x})) \\ &= -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z})) \\ \theta^*, \phi^* &= \arg \min_{\theta, \phi} L_{\text{VAE}} \end{split}$$

In Variational Bayesian methods, this loss function is known as the *variational lower bound*, or *evidence lower bound*. The "lower bound" part in the name comes from the fact that KL divergence is always non-negative and thus $-L_{\rm VAE}$ is the lower bound of $\log p_{\theta}(\mathbf{x})$.

$$-L_{\text{VAE}} = \log p_{\theta}(\mathbf{x}) - D_{\text{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x})) \leq \log p_{\theta}(\mathbf{x})$$

Therefore by minimizing the loss, we are maximizing the lower bound of the probability of generating real data samples.

(2) Z=2~24(2/x)	W.
Substituting @ in @	
Pre(9, (2/x) Po(2/x)) = E/2 [log 2, (2/x)] - E/2 [log Po(x/2) P(2)]	
= E_[log Q(2)] - E_[log P(2)] = E_[log Q(2)] - E_[log (P(2))] + E_[log	Boyeshing
= E2[log Q(2/x)] - E2[log(P(2,x)] + E2[log	Pw)]
= Ez[log Qp(2/x)] - Ez[log p(2,x)] + { Q, (3/x) } = Ez[log Qq(2/x)] - Ez[log p(2,x)] + log p(x) {	29/2/2012
= Ez [log Qq (2/x)] - Ez [log p(2,x)] + log p(()
logP(x) = E2[logP(2,x)] - E2[log Qq(2/x)]+	Dec (Spaile
3 Component 1 A max mil	Compost 2
2 we	words
In order to make the above equation equal 24 we minimized component (2) we have maximized the component 1 (1)	
· Composent is called Evidence lover born. · Now if we maximized ELBO, it indirect	
IT KL divergena.	

$$\log p_{\theta}(x) = E_{q_{\varphi}(\mathbf{Z}|\mathbf{X})} \left[\log \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q_{\varphi}(\mathbf{z}|\mathbf{x})} \right] + \frac{D_{KL} \left(q_{\varphi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}|\mathbf{x}) \right)}{2}$$

$$\mathbf{ELBO} = \text{Evidence Lower Bound} \qquad \mathbf{ELBO} \qquad \geq 0$$

$$\text{Total Compensation} = \quad \text{Base Salary} \qquad + \quad \mathbf{Bonus}$$

$$\geq 0$$

We can for sure deduce the following:

Total Compensation ≥ Base Salary

$$\log p_{\theta}(x) \geq E_{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\varphi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$

Umar Jamil

Reparameterization Trick

The expectation term in the loss function invokes generating samples from $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$. Sampling is a stochastic process and therefore we cannot backpropagate the gradient. To make it trainable, the reparameterization trick is introduced: It is often possible to express the random variable \mathbf{z} as a deterministic variable $\mathbf{z} = \mathcal{T}_{\phi}(\mathbf{x}, \boldsymbol{\epsilon})$, where $\boldsymbol{\epsilon}$ is an auxiliary independent random variable, and the transformation function \mathcal{T}_{ϕ} parameterized by ϕ converts $\boldsymbol{\epsilon}$ to \mathbf{z} .

For example, a common choice of the form of $q_{\phi}(\mathbf{z}|\mathbf{x})$ is a multivariate Gaussian with a diagonal covariance structure:

$$\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}^{(i)}, \boldsymbol{\sigma}^{2(i)} \boldsymbol{I})$$

 $\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{I})$; Reparameterization trick.

where ① refers to element-wise product.

Fig. 8. Illustration of how the reparameterization trick makes the **z** sampling process trainable.(Image source: Slide 12 in Kingma's NIPS 2015 workshop talk)

The reparameterization trick works for other types of distributions too, not only Gaussian. In the multivariate Gaussian case, we make the model trainable by learning the mean and variance of the distribution, μ and σ , explicitly using the reparameterization trick, while the stochasticity remains in the random variable $\epsilon \sim N(0,1)$.

KL divergence for a continuous distribution:

Here is the plot of the two normal distributions $p(x) \sim \mathcal{N}(0,1)$ (blue) and $q(x) \sim \mathcal{N}(1,2)$ (orange). The shaded gray area highlights the difference between the two distributions, which contributes to the KL divergence $D_{KL}(p(x)\|q(x))$.

Key observations:

- p(x) has a mean of 0 and a variance of 1 (standard normal distribution).
- q(x) has a mean of 1 and a variance of 2 (wider distribution centered at 1).
- The KL divergence measures how much q(x) deviates from p(x), and the larger the difference
 in their means and variances, the larger the divergence. [>-]

(6)

Toy Example: KL Divergence Between Two Univariate Normal Distributions

Let $p(x) \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $q(x) \sim \mathcal{N}(\mu_2, \sigma_2^2)$, with:

- $oldsymbol{\mu}_1=0, \sigma_1^2=1$ (standard normal distribution for p(x)),
- μ₂ = 1, σ₂² = 2 (slightly shifted and wider distribution for q(x)).

The KL divergence between p(x) and q(x) is defined as:

$$D_{KL}(p(x)||q(x)) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

Step-by-Step Derivation:

1. Write the PDFs of p(x) and q(x):

$$p(x) = rac{1}{\sqrt{2\pi\sigma_1^2}}e^{-rac{(x-\mu_1)^2}{2\sigma_1^2}}, \quad q(x) = rac{1}{\sqrt{2\pi\sigma_2^2}}e^{-rac{(x-\mu_2)^2}{2\sigma_2^2}}.$$

2. Substitute p(x) and q(x) into D_{KL} :

$$D_{KL}(p(x)\|q(x)) = \int_{-\infty}^{\infty} p(x) \left[\log rac{p(x)}{q(x)}
ight] dx.$$

This becomes:

$$D_{KL}(p(x)\|q(x)) = \int_{-\infty}^{\infty} p(x) \left[\log rac{rac{1}{\sqrt{2\pi\sigma_1^2}}e^{-rac{(x-\mu_1)^2}{2\sigma_1^2}}}{rac{1}{\sqrt{2\pi\sigma_2^2}}e^{-rac{(x-\mu_2)^2}{2\sigma_2^2}}}
ight] dx.$$

3. Simplify the logarithm:

$$\log rac{p(x)}{q(x)} = \log rac{rac{1}{\sqrt{2\pi\sigma_1^2}}}{rac{1}{\sqrt{2\pi\sigma_2^2}}} + \log e^{-rac{(x-\mu_1)^2}{2\sigma_1^2} + rac{(x-\mu_2)^2}{2\sigma_2^2}}.$$

This simplifies to:

$$\log \frac{p(x)}{q(x)} = \log \frac{\sigma_2}{\sigma_1} + \frac{(x - \mu_2)^2}{2\sigma_2^2} - \frac{(x - \mu_1)^2}{2\sigma_1^2}.$$

4. Expand $D_{KL}(p(x)||q(x))$:

$$D_{KL}(p(x)\|q(x)) = \int_{-\infty}^{\infty} p(x) \left[\log rac{\sigma_2}{\sigma_1} + rac{(x-\mu_2)^2}{2\sigma_2^2} - rac{(x-\mu_1)^2}{2\sigma_1^2}
ight] dx.$$

Break this into three terms:

$$D_{KL}(p(x)\|q(x)) = \log \frac{\sigma_2}{\sigma_1} \int_{-\infty}^{\infty} p(x) dx + \frac{1}{2\sigma_2^2} \int_{-\infty}^{\infty} p(x) (x - \mu_2)^2 dx - \frac{1}{2\sigma_1^2} \int_{-\infty}^{\infty} p(x) (x - \mu_1)^2 dx.$$

Analytical Solution:

Using properties of the normal distribution:

1.
$$\int_{-\infty}^{\infty} p(x) dx = 1$$
 (normalization).

2.
$$\int_{-\infty}^{\infty} p(x)(x-\mu_1)^2 dx = \sigma_1^2$$
 (variance of $p(x)$).

3.
$$\int_{-\infty}^{\infty}p(x)(x-\mu_2)^2dx=(\mu_1-\mu_2)^2+\sigma_1^2$$
 (shifted variance).

Substitute these into the equation:

$$D_{KL}(p(x)\|q(x)) = \log rac{\sigma_2}{\sigma_1} + rac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - rac{1}{2}.$$

Plugging in the Values:

For
$$\mu_1=0, \sigma_1^2=1, \mu_2=1, \sigma_2^2=2$$
:

$$D_{KL}(p(x)\|q(x)) = \log \sqrt{2} + rac{1+(0-1)^2}{2\cdot 2} - rac{1}{2}.$$

Simplify:

$$egin{aligned} D_{KL}(p(x)\|q(x)) &= rac{\log 2}{2} + rac{1+1}{4} - rac{1}{2}. \ &\ D_{KL}(p(x)\|q(x)) &= rac{\log 2}{2} + rac{2}{4} - rac{2}{4}. \ &\ D_{KL}(p(x)\|q(x)) &= rac{\log 2}{2}. \end{aligned}$$

Final Value:

$$D_{KL}(p(x)||q(x)) \approx 0.3466.$$

This example demonstrates how KL divergence measures the difference between two distributions p(x) and q(x).

Derivation of KL divergence between the multivariate Gaussian distribution:

We want to calculate the KL divergence between two distributions:

$$p(x) \sim \mathcal{N}(\mu_1, \Sigma_1), \quad q(x) \sim \mathcal{N}(\mu_2, \Sigma_2).$$

The formula for KL divergence is:

$$D_{KL}(p(x)\|q(x)) = \int p(x) \log rac{p(x)}{q(x)} dx.$$

Step 1: Write down the Gaussian PDFs

The probability density function (PDF) of a multivariate Gaussian distribution is:

$$p(x) = rac{1}{(2\pi)^{k/2} |\Sigma_1|^{1/2}} \exp\left(-rac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)
ight),$$

$$q(x) = rac{1}{(2\pi)^{k/2} |\Sigma_2|^{1/2}} \exp\left(-rac{1}{2} (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2)
ight),$$

where:

- k is the dimensionality of x,
- $|\Sigma_1|$ and $|\Sigma_2|$ are the determinants of the covariance matrices,
- $(x-\mu)^T \Sigma^{-1} (x-\mu)$ is the Mahalanobis distance.

Step 2: Compute the ratio $\frac{p(x)}{q(x)}$

The ratio of p(x) and q(x) is:

$$\frac{p(x)}{q(x)} = \frac{|\Sigma_2|^{1/2}}{|\Sigma_1|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1) + \frac{1}{2}(x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2)\right).$$

Taking the logarithm of the ratio:

$$\log \frac{p(x)}{q(x)} = \frac{1}{2} \log \frac{|\Sigma_2|}{|\Sigma_1|} - \frac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) + \frac{1}{2} (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2).$$

Step 3: Substitute into the KL divergence formula

Now substitute the expression for $\log \frac{p(x)}{q(x)}$ into the KL divergence formula:

$$D_{KL}(p(x)\|q(x)) = \int p(x) \left[rac{1}{2}\lograc{|\Sigma_2|}{|\Sigma_1|} - rac{1}{2}(x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1) + rac{1}{2}(x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2)
ight] dx.$$

Separate the terms of the integral into three parts:

$$D_{KL}(p(x)\|q(x)) = rac{1}{2}\lograc{|\Sigma_2|}{|\Sigma_1|} + I_1 - I_2,$$

where:

$$I_1 = \int p(x) \left[rac{1}{2} (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2)
ight] dx,$$

$$I_2 = \int p(x) \left[rac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)
ight] dx.$$

Step 4: Evaluate each term

(a) First Term:
$$\log rac{|\Sigma_2|}{|\Sigma_1|}$$

This term is constant and independent of x, so it directly contributes:

$$\frac{1}{2}\log\frac{|\Sigma_2|}{|\Sigma_1|}.$$

(b) Second Term:
$$\int p(x)(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1) dx$$

Using the expectation property of the Gaussian distribution:

$$\mathbb{E}_{p(x)}[(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)] = \operatorname{tr}(\Sigma_1^{-1} \Sigma_1) = k,$$

where k is the dimensionality of the space.

Thus, the integral:

$$I_2=rac{1}{2}k.$$

(c) Third Term: $\int p(x)(x-\mu_2)^T \Sigma_2^{-1}(x-\mu_2) dx$

Expand $(x - \mu_2)$ as $(x - \mu_1) + (\mu_1 - \mu_2)$:

$$(x-\mu_2)^T \Sigma_2^{-1} (x-\mu_2) = (x-\mu_1)^T \Sigma_2^{-1} (x-\mu_1) + 2(x-\mu_1)^T \Sigma_2^{-1} (\mu_1-\mu_2) + (\mu_1-\mu_2)^T \Sigma_2^{-1} (\mu_1-\mu_2).$$

Take the expectation under p(x):

1.
$$\mathbb{E}_{p(x)}[(x-\mu_1)^T \Sigma_2^{-1}(x-\mu_1)] = \operatorname{tr}(\Sigma_2^{-1} \Sigma_1),$$

2.
$$\mathbb{E}_{p(x)}[2(x-\mu_1)^T\Sigma_2^{-1}(\mu_1-\mu_2)]=0$$
 (since $\mathbb{E}_{p(x)}[x-\mu_1]=0$),

3.
$$\mathbb{E}_{p(x)}[(\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2)] = (\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2).$$

Thus:

$$I_1 = \frac{1}{2} \left[\operatorname{tr}(\Sigma_2^{-1} \Sigma_1) + (\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2) \right].$$

Step 5: Combine All Terms

Finally, substitute everything back:

$$D_{KL}(p(x)\|q(x)) = rac{1}{2} \left[\log rac{|\Sigma_2|}{|\Sigma_1|} - k + \mathrm{tr}(\Sigma_2^{-1}\Sigma_1) + (\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2)
ight].$$

This is the final result.

For the loss function of VAE:

kullback leibler - Deriving the KL divergence loss for VAEs - Cross Validated

Both are multivariate Gaussians of dimension n_i , for which in general the KL divergence is:

$$\mathfrak{D}_{ ext{KL}}[p_1 \mid\mid p_2] = rac{1}{2} iggl[\log rac{|\Sigma_2|}{|\Sigma_1|} - n + ext{tr} \{\Sigma_2^{-1} \Sigma_1\} + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) iggr]$$

where $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$ and $p_2 = \mathcal{N}(\mu_2, \Sigma_2)$.

In the VAE case, $p_1=q(z|x)$ and $p_2=p(z)$, so $\mu_1=\mu$, $\Sigma_1=\Sigma$, $\mu_2=\vec{0}$, $\Sigma_2=I$. Thus:

$$\begin{split} \mathfrak{D}_{\mathrm{KL}}[q(z|x) \mid\mid p(z)] &= \frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} - n + \mathrm{tr}\{\Sigma_2^{-1}\Sigma_1\} + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) \right] \\ &= \frac{1}{2} \left[\log \frac{|I|}{|\Sigma|} - n + \mathrm{tr}\{I^{-1}\Sigma\} + (\vec{0} - \mu)^T I^{-1} (\vec{0} - \mu) \right] \\ &= \frac{1}{2} \left[-\log |\Sigma| - n + \mathrm{tr}\{\Sigma\} + \mu^T \mu \right] \\ &= \frac{1}{2} \left[-\log \prod_i \sigma_i^2 - n + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right] \\ &= \frac{1}{2} \left[-\sum_i \log \sigma_i^2 - n + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right] \\ &= \frac{1}{2} \left[-\sum_i \left(\log \sigma_i^2 + 1 \right) + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right] \end{split}$$

OR from ChatGPT:

To compute $D_{KL}[q(z|x)\|p(z)]$ for the VAE case using the given formulation:

$$D_{KL}(p(x)\|q(x)) = rac{1}{2} \left[\log rac{|\Sigma_2|}{|\Sigma_1|} - k + ext{tr}(\Sigma_2^{-1}\Sigma_1) + (\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2)
ight],$$

where:

- $\mu_1 = \mu$ and $\Sigma_1 = \Sigma$ come from q(z|x),
- $\mu_2=0$ and $\Sigma_2=I$ come from p(z).

Step-by-Step Calculation

- 1. Log Determinant Term: $\log \frac{|\Sigma_2|}{|\Sigma_1|}$
- $\Sigma_2 = I$, so $|\Sigma_2| = 1$,
- $|\Sigma_1| = |\Sigma|$,

$$\log\frac{|\Sigma_2|}{|\Sigma_1|} = -\log|\Sigma|.$$

- 2. Trace Term: $\operatorname{tr}(\Sigma_2^{-1}\Sigma_1)$
- $\Sigma_2 = I$, so $\Sigma_2^{-1} = I$,
- Therefore, $\operatorname{tr}(\Sigma_2^{-1}\Sigma_1) = \operatorname{tr}(\Sigma_1) = \operatorname{tr}(\Sigma).$
- 3. Quadratic Term: $(\mu_1-\mu_2)^T\Sigma_2^{-1}(\mu_1-\mu_2)$
- $oldsymbol{\omega} \mu_1 = \mu$, $\mu_2 = 0$, and $\Sigma_2^{-1} = I$,
- So, $(\mu_1 \mu_2)^T \Sigma_2^{-1} (\mu_1 \mu_2) = \mu^T I \mu = \mu^T \mu$.

4. Combine Terms

Plugging all these into the KL divergence formula:

$$D_{KL}[q(z|x)\|p(z)] = rac{1}{2}\left[-\log|\Sigma| - k + ext{tr}(\Sigma) + \mu^T \mu
ight].$$

Final Result

$$D_{KL}[q(z|x)\|p(z)] = rac{1}{2}\left[-\log|\Sigma| - k + ext{tr}(\Sigma) + \|\mu\|^2
ight].$$

This is the KL divergence between the approximate posterior q(z|x) and the prior p(z) in a VAE.

Now the final loss function of VAE:

Loss Function with the Computed KL Divergence

The VAE loss is:

$$\mathcal{L}_{ ext{VAE}} = -\mathbb{E}_{q_{\phi}(z|x)}[\log p_{ heta}(x|z)] + D_{KL}[q_{\phi}(z|x)\|p(z)].$$

For D_{KL} , using the formula for two Gaussian distributions $q(z|x)=\mathcal{N}(\mu,\Sigma)$ and $p(z)=\mathcal{N}(0,I)$, we computed:

$$D_{KL}[q_{\phi}(z|x)\|p(z)] = rac{1}{2}\left(-\log|\Sigma|-k+ ext{tr}(\Sigma)+\|\mu\|^2
ight).$$

Incorporating into the Loss

Substituting the KL divergence into the VAE loss:

$$\mathcal{L}_{ ext{VAE}} = -\mathbb{E}_{q_{\phi}(z|x)}[\log p_{ heta}(x|z)] + rac{1}{2}\left(-\log |\Sigma| - k + ext{tr}(\Sigma) + \|\mu\|^2
ight).$$

- 1. Reconstruction Loss ($-\mathbb{E}_{q_{\phi}(z|x)}[\log p_{ heta}(x|z)]$):
 - For Gaussian decoders, this term can often be approximated by the Mean Squared Error (MSE):

Reconstruction Loss
$$\approx \frac{1}{2} ||x - \hat{x}||^2$$
,

where \hat{x} is the reconstructed input.

- 2. KL Divergence:
 - · From the computation:

$$D_{KL}[q_{\phi}(z|x)\|p(z)] = rac{1}{2}\left(-\log|\Sigma| - k + \operatorname{tr}(\Sigma) + \|\mu\|^2
ight).$$

Final Loss Function

The final loss function becomes:

$$\mathcal{L}_{ ext{VAE}} = rac{1}{2} \|x - \hat{x}\|^2 + rac{1}{2} \left(-\log |\Sigma| - k + ext{tr}(\Sigma) + \|\mu\|^2
ight).$$

Simplifications for Diagonal Covariance Matrix

If Σ is diagonal with entries $\sigma_1^2, \sigma_2^2, \dots, \sigma_k^2$:

1.
$$\log |\Sigma| = \sum_{i=1}^k \log \sigma_i^2$$
,

2.
$$\operatorname{tr}(\Sigma) = \sum_{i=1}^{k} \sigma_i^2$$
,

3. The KL divergence simplifies to:

$$D_{KL} = rac{1}{2} \sum_{i=1}^k \left(-\log \sigma_i^2 - 1 + \sigma_i^2 + \mu_i^2
ight).$$

Thus, the loss becomes:

$$\mathcal{L}_{ ext{VAE}} = rac{1}{2} \|x - \hat{x}\|^2 + rac{1}{2} \sum_{i=1}^k \left(-\log \sigma_i^2 - 1 + \sigma_i^2 + \mu_i^2
ight).$$

Interpretation

- 1. First term: Ensures \hat{x} (reconstructed input) is close to x (original input).
- 2. Second term: Regularizes the encoder by forcing $q_{\phi}(z|x)$ to align with the prior p(z).