

ROBOTICS & AI MEETUP #12

NO SU NIOL

7 PM CET, 20TH MARCH

CART POLE BALANCE USING Q-LEARNING

MEETUP #12:20/03/2021

THE BUILDING CULTURE

AGENDA

- 9:00 Introductory Presentation
- 19:05 Project Presentation
- 9:45 Discussion
- 20:00 Feedback
- 20:05 Introductions
- 20:30 Casual Networking

WHAT IS THE BUILDING CULTURE COMMUNITY?

ROBOTICS EDUCATION

Best way to learn is to build

ACTIVE LEARNING GROUP OF ROBOTICS & AI ENTHUSIASTS

PLEASE FILL THE ROLES

- Project presenter (#meetup-volunteer in Events)
- Research Paper presenter
 (#paper-reading-volunteer in Events)
- News-feed updater in all 4 categories

VOLUNTEER-DRIVEN COMMUNITY!

MEETINGS WILL BE RECORDED AND SHARED ON YOUTUBE
EVERYONE CAN PARTICIPATE REGARDLESS OF EXPERIENCE OR AGE GROUP

LET'S START

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Meetup #11 - RL Concepts

RL PROBLEM

STATE SPACE DISCRETIZATION

EXPECTED RETURN

TEMPORAL DIFF

Q - LEARNING

BELLMAN EQUATION

STATE VALUE FUNCTION

ACTION VALUE FUNCTION MONTE CARLO METHODS

MODEL BASED RL

MODEL FREE RL

MARKOV DECISION PROCESS

Meetup #10 – Temporal Diff. Prediction

THE BUILDING CULTURE

Pole

- Initialize the policy
- Initialize value function
- For N no. of episodes :
- initialize environment
- For each step in episode:
- Select action acc to given policy
- Take action
- Get reward, new state
- Set current state to new state.

- Discretize pole angles
- If theta < 0, move left
- else move right
- 5000 games, print V for all 10 states to terminal
- Alpha = 0.1, Gamma = 0.99

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Problem Definition Goal

- Learn the following :
- Demonstrate and understand
 Q Learning in code
- Revisit all concepts visited so far
- Solidify our foundation

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Problem Definition Problem

- Given :
- Cart moves linearly x
- Pole rotates θ
- Task:
- Balance pole by moving the cart (Goal)
- Balance pole Keep |θ| <= 12 deg
- Move cart x (*User controlled*)

Problem Definition

<u>Requirements</u>

- Episode ends when :
- |θ| >= 12 deg Pole out of balance
- |x| >= 2.4 Out of range
- Steps >= 200

Balance pole for atleast 200 steps

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Problem Definition

<u>State</u>

<u>Action</u>

Reward

Policy

THE BUILDING CULTURE

Cart Pole Balance using Temporal Difference Prediction

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

State [0]

• O Pole angle

State Space

- Range of allowable values for each state variable
- [-0.2019 to 0.2019] radians
- Or (-12 to 12) degrees

Problem Definition

State [0]

• O – Pole angle

State Space

- Range of allowable values for each state variable x
- [-0.2019 to 0.2019] radians
- Or (-12 to 12) degrees

DISCRETE SET OF ANGLES

1

5

6

New state space [1,2,3,4,5,6,7,8,9,10]

Problem Definition

<u>Action</u>

[0, 1]

- I Moving x left
- Moving x right

<u>Reward</u>

R(state, action, next_state) = +1

<u>Goal_reached</u>

When running average value of rewards > 195

<u>Policy</u>

If pole is left of the center
 Move cart left

 If pole is right of the center Move cart right

CONCEPT: VALUE FUNCTION /

Algorithm – Temporal Difference Prediction

- Define the policy
- Initialize value function

(-0.2019 to 0.2019) 10 discrete states Value(all 10 states) = 0

- If pole is left of the center
 Move cart left
- If pole is right of the center
 Move cart right

CONCEPT : VALUE FUNCTION <u>A</u> Algorithm — Temporal Difference Prediction

- Initialize the policy
- Initialize value function
- For N no. of episodes :
- initialize environment

Algorithm –Temporal Difference Prediction

- Initialize the policy
- Initialize value function
- For N no. of episodes :
- initialize environment
- For each step in episode:
- Discretize state
- Select action acc to given policy
- Take action

CONCEPT : MONTE CARLO PREDICTION / Algorithm (contd.)

For each step in episode:

- Discretize state
- Select action acc to given policy
- Take action
- Get reward, new state

CONCEPT: TEMPORAL DIFFERENCE LEARNING 🛝

Algorithm (contd.)

For each step in episode:

- Discretize state
- Select action acc to given policy
- Take action
- Get reward, new state
- Define value of state

$$V(S_t) = V(S_t) + \alpha(G_t - V(S_t))$$

CONCEPT: TEMPORAL DIFFERENCE LEARNING 1

Algorithm (contd.)

For each step in episode:

- Discretize state
- Select action acc to given policy
- Take action
- Get reward, new state
- Define value of state
- Update state to new state

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Problem Definition

<u>State</u>

[x, x_dot, θ , θ _dot]

- x Cart position
- x_dot Cart velocity
- θ_dot Pole tip velocity

State Space

- Range of allowable values for each state variable
- [-2.4, -inf, -41.8, -inf] to [2.4, inf, 41.8, inf]

Problem Definition

<u>Action</u>

[0, 1]

- I Moving x left
- Moving x right

<u>Reward</u>

R(state, action, next_state) = +1

<u>Goal_reached</u>

When running average value of rewards > 195

CONCEPT : Q-LEARNING / CONCEPT : EPSILON GREEDY POLICY /

Problem Definition

<u>Policy</u>

- Epsilon Greedy Policy
- Random action in the beginning
- Action with max Value later
- If pole is left of the center

Cart Pole Balance using Q-Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

CONCEPT : PREDICTION AND CONTROL /

Algorithm - Temporal Difference Control

- Define the policy
- Initialize arbitrary
 I, terminal state 0

- If pole is left of the center Move cart left
- If pole is right of the center Move cart right

CONCEPT : PREDICTION AND CONTROL <u>()</u> Algorithm — Temporal Difference Control

- Initialize the policy
- Initialize arbitrary Q, terminal state 0
- For N no. of episodes :
- initialize environment

CONCEPT: PREDICTION AND CONTROL A Algorithm - Temporal Difference Control

- Initialize the policy
- Initialize arbitrary Q, terminal state D
- For N no. of episodes :
- initialize environment
- For each step in episode:
- Discretize state
- Select action acc to epsilon greedy policy
- Take action

CONCEPT : PREDICTION AND CONTROL /

Algorithm – Temporal Difference Control

- Initialize the policy
- Initialize arbitrary Q, terminal state 0
- For N no. of episodes :
- initialize environment
- For each step in episode:
- Discretize state
- Select action acc to epsilon greedy policy
- Take action

Epsilon starts at 1, goes down to 0.01 halfway through

CONCEPT : Q-LEARNING (Algorithm (contd.)

For each step in episode:

- Discretize state
- Select action acc to given policy
- Take action
- Get reward, new state
- Q(St,At) = Q(St, At) + alpha[Rt+1 + gamma max Q(St+1,a) Q(St, At)]

CONCEPT : Q-LEARNING (Algorithm (contd.)

For each step in episode:

- Select action acc to given policy
- Take action
- Get reward, new state
- Q(St,At) = Q(St, At) + alpha(Rt+1 + gamma max Q(St+1,a) Q(St, At))
- Update state to new state

THE BUILDING CULTURE

Cart Pole Balance using Reinforcement Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

THE BUILDING CULTURE

Cart Pole Balance using Reinforcement Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task for next week

Meetup #12 - RL Concepts

RL PROBLEM

CONT. STATE SPACES

EXPECTED RETURN

TEMPORAL DIFF

Q - LEARNING

BELLMAN EQUATION

ACTION VALUE FUNCTION

STATE VALUE FUNCTION MONTE CARLO PREDICTION

MODEL BASED RL

MODEL FREE RL

MARKOV DECISION PROCESS

PREDICTION AND CONTROL

MONTE CARLO CONTROL EPSILON GREEDY POLICY

THE BUILDING CULTURE

Cart Pole Balance using Reinforcement Learning

- Goal
- Problem Definition
- Brainstorming
- Project / Case Study Solution
- Algorithm + Code Walkthrough
- Concepts Covered
- Task

TASK (OPTIONAL)

- Codebase shared on the Discord server
- Play with the code
- Write your own implementation
- Show progress / discuss in next meetup

LIVE Coding - Cart Pole Balance using Q-Learning

Code shared beforehand

REFERENCES

- https://spinningup.openai.com/en/latest/spinningup/rl_intro.htm
- Deep Lizard Youtube channel
- Machine Learning with Phil Youtube channel
- Steve Brunton Youtube channel
- David Silver Lectures

YOU CAN SWITCH TOPICS OR EVEN DO LATER IF YOU ARE UNABLE TO PREPARE

MEETUP #10: 06/03/2021

AGENDA

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

MEETUP #10: 06/03/2021

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

MEETUP #10: 06/03/2021

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

- 19:00 Introductory Presentation
- 19:05 Project Presentation
- 19:45 QnA
- 20:00 Feedback for Presentation
- 20:05 Feedback for Project Process
- 20:10 Project Accountability Share (if any)
- 20:15 Introductions and casual networking
- 20:30 Announcement

PLEASE FILL THE ROLES

- Roles filled News-feed updater
- Open roles -
- Project presenter (#meetup-volunteer in Events)
- Research Paper presenter

(#paper-reading-volunteer in Events)

VOLUNTEER-DRIVEN COMMUNITY!

MEETINGS WILL BE RECORDED AND SHARED ON YOUTUBE

EVERYONE CAN PARTICIPATE REGARDLESS OF EXPERIENCE OR AGE GROUP

THANK YOU