» Kernalising Linear Models: Using Training Data As Features

- * Training data $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$, $i = 1, 2, \dots, m$
- Idea: associate a feature with each training data point and then use linear model ...
- * Feature *i*: function $y^{(i)}K(x^{(i)},x)$ outputting a real number for input x. $K(x^{(i)},x)$ measures the distance between input x and training point $x^{(i)}$. $K(x^{(i)},x)$ is referred to as a *kernel*
- * Model: $\hat{y} = sign(\theta_0 + \theta_1 y^{(1)} K(x^{(1)}, x) + \theta_2 y^{(2)} K(x^{(2)}, x) + \dots + \theta_m y^{(m)} K(x^{(m)}, x))$
- * Now can learn parameters θ_0 , θ_1 ,... by selecting them to minimise a cost function e.g. logistic regression or SVM cost function.
- * Can do same thing for regression problems, model is then $\hat{\mathbf{y}} = \theta_0 + \theta_1 \mathbf{y}^{(1)} \mathbf{K}(\mathbf{x}^{(1)}, \mathbf{x}) + \theta_2 \mathbf{y}^{(2)} \mathbf{K}(\mathbf{x}^{(2)}, \mathbf{x}) + \dots + \theta_m \mathbf{y}^{(m)} \mathbf{K}(\mathbf{x}^{(m)}, \mathbf{x})$

» Using Training Data As Features

Remind you of a kNN Model? I hope so ..

- * We want to attach more weight to training data points that are close to input x and less weight to far away training points.
- * So $K(x^{(i)}, x)$ should be about 1 when distance between $x^{(i)}$ and x is small, falling to 0 as distance grows.

» Using Training Data As Features

- * Model: $\hat{y} = sign(\theta_0 + \theta_1 y^{(1)} K(x^{(1)}, x) + \theta_2 y^{(2)} K(x^{(2)}, x) + \dots + \theta_m y^{(m)} K(x^{(m)}, x)$
- * Gaussian kernel $K(x^{(i)}, x) = e^{-\gamma d(x^{(i)}, x)^2}$
- * Parameter γ controls how quickly $K(x^{(i)},x)$ decreases as distance between $x^{(i)}$ and x grows.

Choose γ using cross-validation.

- st Now train parameters heta to improve on basic fit to training data provided by kernel.
 - * This is like a *k*NN with k=m (all of training data) and enhanced by addition of parameters θ that provide extra flexibility to tune model.
 - * Another way to think about it is that in *k*NN model the parameters θ change with the input x, i.e. $\theta_i = 1$ for training points $i \in N_k$ and $\theta_i = 0$ for $i \notin N_k$ (N_k is the set of k points closest to x)

» Classification example

- pprox Kernalised SVM: 1) $\gamma=50$, L_2 penalty weight $extbf{\emph{C}}=1$
- * kNN model: 1) Euclidean distance, 2) (i) k = m, 3) gaussian weights, 4) sign(weighted average)
- * SVM and *k*NN predictions are not identical, but much the same.
- * Note: No kernalised version of logistic regression available in sklearn currently. Its certainly possible to implement one but SVM lends itself to more efficient kernelised implementation than logistic regression.

» Regression example

- * Kernalised Ridge Regression: 1) $\gamma=10$, \emph{L}_2 penalty weight $\emph{C}=10$
- * kNN model: 1) Euclidean distance, 2) k = m, 3) gaussian weights, 4) weighted average
- * kernel and *k*NN predictions are not identical, but much the same.

» Classification Example Python Code

```
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["kNN","SVM","train"])
```

» Regression Example Python Code

```
from sklearn.kernel ridge import KernelRidge
model2 = KNeighborsRegressor(n neighbors=m,weights=gaussian kernel).fit(Xtrain, ytrain)
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x"); plt.ylabel("output y")
plt.leaend(["Kernel Ridge Regression","kNN","train"])
```

» Another Classification example

When points from one class are clumped together then using training data as features can work nicely:

- * Kernalised SVM: 1) $\gamma = 1$, L_2 penalty weight C = 1
- * kNN model: 1) Euclidean distance, 2) (i) k = m, 3) gaussian weights, 4) sign(weighted average)

» Another Classification example (cont)

Impact of Gaussian kernel parameter γ :

* As γ increases the kernel decreases more quickly with distance. This makes the predictions tend to be less smooth and to just snap to the nearest training point

* Use γ to manage trade-off between under-fitting and over-fitting

» Circle Example Python Code

```
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x 1"); plt.ylabel("input x 2")
plt.show()
def gaussian kernel(distances):
model = KNeiahborsClassifier(n_neiahbors=m,weiahts=aaussian_kernel).fit(Xtrain, vtrain)
plt.xlabel("input x 1"); plt.vlabel("input x 2")
```

» Some More Details

* So far we used predictions of the form:

$$\hat{y} = \theta_0 + \theta_1 y^{(1)} K(x^{(1)}, x) + \theta_2 y^{(2)} K(x^{(2)}, x) + \dots + \theta_m y^{(m)} K(x^{(m)}, x)$$

* Can also consider predictions of the form:

$$\hat{y} = \theta_0 + w_1 K(x^{(1)}, x) + w_2 K(x^{(2)}, x) + \cdots + w_m K(x^{(m)}, x)$$

where parameters w_1, w_2, \dots, w_m are learned. Choosing $w_i = \theta_i y^{(i)}$ gives our previous setup.

- * Kernalised SVM predictions are always of the first form (with $\theta_i y^{(i)}$'s)
- * Kernalised ridge regression and kernalised logistic regression actually use the second form (with w_i 's) but when the weight 1/C given to the regularisation penalty is large enough then the w_i 's learned are of the form $w_i \approx \theta_i v^{(i)}$
 - \rightarrow needs a bit of maths to show this, beyond this module but if interested see e.g.
 - www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote14.
 html
 - * www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

» Some More Details

- * L_2 regularisation $\sum_{i=1}^m \theta_m^2 = \theta^T \theta$
- * With kernelised models number of parameters θ is same as size of training data, so often quite large
- * SVM implementation used weighted penalty $\theta^T M \theta$ where M is a weighting matrix \rightarrow improves computational performance

» Kernel SVMs¹ [Optional]

Linear model: $sign(\theta^Tx)$. First try at kernalising:

- * We'll refer to parameters in kernelised model as α_i rather than θ_i .
- * Replace $\theta^T x$ with $\sum_{j=1}^m \alpha_j y^{(j)} K(x, x^{(j)})$
- * Hypothesis: $sign(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)}))$
- $* \; \mathsf{Cost:} \; \tfrac{1}{\textit{m}} \sum_{i=1}^{\textit{m}} \max(0, 1 \textit{y}^{(i)} \sum_{j=1}^{\textit{m}} \alpha_j \textit{y}^{(j)} \textit{K}(\textit{x}^{(i)}, \textit{x}^{(j)})) + \lambda \theta^T \theta$
- st What about $heta^{ au} heta$ term ? We'd like cost to be only in terms of lpha

 $^{^{1}\}mbox{Training}$ a Support Vector Machine in the Primal. Olivier Chapelle, Neural Computation 2007

» Kernel SVMs [Optional]

Second try at kernalising:

- * Write $K(x, x^{(j)}) = \phi(x^{(j)})^T \phi(x) \rightarrow \text{can't do this for all weight}$ functions K, need to restrict ourselves to ones where we can.
- * Replace x by $\phi(x)$ and define $\theta = \sum_{i=1}^{m} \alpha_{i} y^{(i)} \phi(x^{(i)})$
- * Then

$$\theta^{T}\phi(\mathbf{x}) = \sum_{j=1}^{m} \alpha_{j} \mathbf{y}^{(j)} \phi(\mathbf{x}^{(j)})^{T} \phi(\mathbf{x}) = \sum_{j=1}^{m} \alpha_{j} \mathbf{y}^{(j)} K(\mathbf{x}, \mathbf{x}^{(j)})$$

$$\theta^{T}\theta = \sum_{j=1}^{m} \alpha_{j} \mathbf{y}^{(j)} \phi(\mathbf{x}^{(j)})^{T} \sum_{i=1}^{m} \alpha_{i} \mathbf{y}^{(i)} \phi(\mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{j} \mathbf{y}^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}^{(i)}) \mathbf{y}^{(i)} \alpha_{i} = \alpha^{T} M \alpha$$

where *M* is matrix with $M_{ij} = y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)}$ and α is parameter vector.

- * Cost: $\frac{1}{m}\sum_{i=1}^m \max(0, 1-\mathbf{y}^{(i)}\sum_{i=1}^m \alpha_j \mathbf{y}^{(j)} \mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})) + \lambda \alpha^T \mathbf{M} \alpha$
- * Now everything is in terms of the new parameters α .

» Kernel Logistic Regression [Optional]

- * Replace $\theta^T x$ with $\sum_{j=1}^m \alpha_j y^{(j)} K(x, x^{(j)})$
- * Hypothesis: $sign(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)}))$
- * Cost: $\frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \sum_{j=1}^{m} \alpha_{j} y^{(j)} K(x^{(i)}, x^{(j)})})$

» Kernalised Ridge Regression [Optional]

- * Replace $\theta^T x$ with $\sum_{j=1}^m \alpha_j y^{(i)} K(x, x^{(j)})$
- * Use $\theta^T \theta = \alpha^T M \alpha$ where M is matrix with $M_{ij} = y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)}$ and α is parameter vector.
- * Hypothesis: $\sum_{i=1}^{m} \alpha_{i} y^{(i)} K(x, x^{(j)})$
- * Cost: $\frac{1}{m} \sum_{i=1}^{m} (\mathbf{y}^{(i)} \sum_{j=1}^{m} \alpha_j \mathbf{y}^{(i)} \mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}))^2 + \lambda \alpha^T \mathbf{M} \alpha$

» Kernel Summary

- $\overline{*}$ Easy to use ightarrow hyperparameters are kernel parameter γ and L_2 penalty weight C. Also need to choose kernel, but Gaussian usually works well.
- Essentially an enhanced form of kNN model, so shares many of the same characteristics
- * Small data only \to as training data increases kernel approaches tend to become expensive/slow.
- * Efficient kernel SVM implementations:
 - Often online "SVM" is used to mean "kernel SVM", so can get confusing. Often you'll also be told that SVM is better than logistic regression etc without further explanation
 - * Its important to keep clearly in mind that two tools are usually being conflated here: (i) use of kernels and (ii) use of SVMs. Its use of kernels that's key – its a powerful approach but kernels can be applied with any linear model not just SVMs