Problem1

- (a) From the definition, $R_1 \cap R_2 = \{(s1, s2) : (s1, s2) \in R1 \text{ and } (s1, s2) \in R2 \}$.
 - Reflective: Since R_1 and R_2 are both reflexive, So for each $s \in S$, $(s, s) \in R$, then $(s, s) \in R_1 \cap R_2$. Therefore, $R_1 \cap R_2$ is reflexive.
 - Symmetric: Because R_1 and R_2 are both symmetric, so if $(s_1, s_2) \in R_1 \cap R_2$, we have $(s_1, s_2) \in R_1$ and $(s_1, s_2) \in R_2$, then $(s_2, s_1) \in R_1$, $(s_2, s_1) \in R_2$. So $(s_2, s_1) \in R_1 \cap R_2$. Therefore, $R_1 \cap R_2$ is symmetric.
 - Transitive: Let s_1 , s_2 , $s_3 \in S$. Since R_1 and R_2 are both transitive, if $(s_1, s_2) \in R_1$, $(s_2, s_3) \in R_1$, then $(s_1, s_3) \in R_1$. Similarly, $(s_1, s_3) \in R_2$. So $(s_1, s_3) \in R_1 \cap R_2$. Therefore, $R_1 \cap R_2$ is transitive.

Therefore, $R_1 \cap R_2$ is an equivalence relation.

- (b) $[x]_1 = [s: s \in S \text{ and } sR_1x]$ $[x]_2 = [s: s \in S \text{ and } sR_2x]$ $[x] = [s: s \in S \text{ and } s(R_1 \cap R_2)x] = [s: s \in S, x \in [x]_1 \cap [x]_2]$
- (c) $R_1 \cup R_2$ is not an equivalence relation.
 - Reflective: Since R_1 and R_2 are both reflexive, So for each $s \in S$, $(s, s) \in R$, then $(s, s) \in R_1 \cup R_2$. Therefore, $R_1 \cup R_2$ is reflexive.
 - Symmetric: Let $(s_1, s_2) \in R_1 \cup R_2$, if $(s_1, s_2) \in R_1$, Because R_1 is Symmetric, so $(s_2, s_1) \in R_1$, then $(s_2, s_1) \in R_1 \cup R_2$. If $(s_1, s_2) \in R_2$, Because R_2 is Symmetric, so $(s_2, s_1) \in R_2$, then $(s_2, s_1) \in R_1 \cup R_2$. Therefore, $R_1 \cup R_2$ is symmetric.
 - Transitive: Let $S = \{1, 2, 3\}$, $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$, $R_2 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$. $R_1 \cup R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$. For element (1, 2) and (2, 3) in $R_1 \cup R_2$, if $R_1 \cup R_2$ is transitive, (1, 3) will in $R_1 \cup R_2$. But (1, 3) is not in $R_1 \cup R_2$. There $R_1 \cup R_2$ is not transitive.

Therefore, $R_1 \cup R_2$ is not an equivalence relation.

Problem2

- (a) R_1 ; $R_2 = \{(a, c) : there is a b with <math>(a, b) \in R_1 \text{ and } (b, c) \in R_2\}$. If R_1 and R_2 are both reflexive, for $s \in S$, let $(s, s) \in R_1$, if R_1 ; R_2 , then $(s, s) \in S$. So that $(s, s) \in R_1$; R_2 . Therefore, if R_1 and R_2 are reflexive then R_1 ; R_2 is reflexive.
- (b) Use a counterexample to disapprove. R_1 and R_2 are both symmetric, so let $S = \{1, 2, 3\}$, $R_1 = \{(1, 1), (1, 2), (1, 3)\}$, $R_2 = \{(2, 1), (2, 2), (2, 3)\}$. So R_1 ; $R_2 = \{(1, 1), (1, 2), (1, 3)\}$. R_1 ; R_2 is not symmetric.

(c) Use a counterexample from (b) to disapprove. R_1 ; R_2 is not transitive.

Problem3

(a) Use induction

Base case j = i: Clearly $R^i = R^i$. So $R^j = R^i$ holds.

Inductive case: Assume that $R^{j} = R^{i}$ holds. We will show that $R^{j+1} = R^{i}$ holds.

$$R^{j+1} = R^{j} \cup (R; R^{j})$$

= $R^{i} \cup (R; R^{j})$
= R^{i+1}
= R^{i}

Therefore, by induction, $R^j = R^i$ holds for all $j \ge i$.

(b) Use induction

When $j \leq i$, clearly $R^j \subseteq R^i$

Base case j = i: $R^j = R^i$, So $R^j = R^i$ holds.

Inductive case: Assume that $R^{j} \subseteq R^{i}$ holds. We will show that $R^{j+1} \subseteq R^{i}$ holds.

From (a) we have that $R^j = R^i$ holds for all $j \ge i$. so $R^{j+1} = R^j \subseteq R^i$ Therefore, by induction, $R^j \subseteq R^i$ for all $j \ge 0$

(c) Use contradiction

Assume that $R^{k^2} \neq R^{k^{2+1}}(|S| = k)$

So that $\exists (a, b) \in R^{k^{2+1}}$, but $(a, b) \notin R^{k^2}$

$$R^{k^{2+1}} = R^{k^2} \cup (R; R^{k^2}), \text{ so } (a, b) \in R^{k^2} \cup (R; R^{k^2})$$

So that $(a, c_k) \in R$ and $(c_k, b) \in R^{k^2} (c \neq a)$.

$$R^{k^2} = R^{k^2-1} \cup (R; R^{k^2-1}), \text{ so } (c_k, b) \in R^{k^2-1} \cup (R; R^{k^2-1})$$

Because $(a, c_k) \in R$, if $(c_k, b) \in R^{k^{2-1}}$, then $(a, b) \in (R; R^{k^{2-1}}) \in R^{k^2}$, it is contrary to the assumption.

So
$$(c_k, b) \notin R^{k^{2-1}}$$
, $(c_k, b) \in (R; R^{k^{2-1}})$

.

$$(c_1, c_0) \in R \text{ and } (c_0, b) \in R^{k^{2-1}} (c_1 \neq c_0)$$

Because $a \in S$, |S| = k, and count $(c_0, c_1, c_2, \dots, c_k) = k+1$, so there exists $c_i = a, i \in [0, k]$

This is contrary to the assumption. So the assumption is not true.

Therefore, if |S| = k, then $R^{k^2} = R^{k^{2+1}}$

(d) Use induction

Base case n = 0: For all m \in N, R 0+m = R m

So
$$P(0)$$
 : R^0 ; $R^m = R^{0+m}$ holds

Inductive case: Assume for all m, P(n) holds, that is R^n ; $R^m = R^{n+m}$, we will show that

$$P(n+1) : R^{n+1} ; R^m = R^{m+n+1} \text{ holds, that is :}$$

$$R^{n+1}$$
; $R^m = (R^n \cup (R; R^n))$; R^m

$$= (R^n; R^m) \cup ((R; R^n); R^m) \quad (From \ assignment1 \ problem8 \ (c))$$

$$= (R^n; R^m) \cup (R; (R^n; R^m)) \quad (From \ assignment1 \ problem8 \ (a))$$

$$= R^{n+m} \cup (R; R^{n+m})$$

$$= R^{n+m+1}$$

$$= R^{(n+1)+m}$$

So P(n+1) holds.

Therefore, by induction, R^n ; $R^m = R^{m+n}$ holds for all $n \in N$

(e) From (c), we have that if |S| = k, then $R^{k^2} = R^{k^{2+1}}$

Assume that $(a, b) \in R^{k^2}$ and $(b, c) \in R^{k^2}$,

then (a, c)
$$\in R^{k^2}$$
; $\in R^{k^2}$
= R^{2k^2} (from (d))
= R^{k^2} (from (a))

Therefore, R^{k2} is transitive.

- (f) We need to prove the reflective, symmetric and transitive.
 - Reflective: Since $(R \cup R^{\leftarrow})^0 = I$, and from (b) we have that $I \subseteq (R \cup R^{\leftarrow})^{k^2}$, so for any $a \in S$, $(a, a) \in I \subseteq (R \cup R^{\leftarrow})^{k^2}$.

Therefore, $(R \cup R^{\leftarrow})^{k^2}$ is transitive.

Symmetric: Let $p = (R \cup R^{\leftarrow})^{k^2}$ be a binary relation.

Assume that (a, b)
$$\in (R \cup R^{\leftarrow})^{k^2} \cup (R \cup R^{\leftarrow}; (R \cup R^{\leftarrow})^{k^2})$$

From (c) we know that:

$$(a,\,c_0)\,\in\,\textit{R}\,\cup\,\textit{R}^{\leftarrow}\ \ \text{and}\ (c_0,\,b)\,\in\,(\textit{R}\,\cup\,\textit{R}^{\leftarrow})^{k^2\text{-}1}$$

$$(c_0, c_1) \in R \cup R^{\leftarrow}$$
 and $(c_1, b) \in (R \cup R^{\leftarrow})^{k^2-2}$

.

$$(c_i, c_{i+1}) \in R \cup R^{\leftarrow}$$
 and $(c_{i+1}, b) \in (R \cup R^{\leftarrow})^{k^2}$

So for all
$$i \in [0, k-1], (c_i, c_{i+1}) \in R \cup R^{\leftarrow} (c_0 = a, c_k = b)$$

If
$$(c_i, c_{i+1}) \in R \cup R^{\leftarrow}$$
, then $(c_{i+1}, c_i) \in R \cup R^{\leftarrow}$. So $(b, a) \in (R \cup R^{\leftarrow})^{k^2}$

Therefore, $(R \cup R^{\leftarrow})^{k^2}$ is symmetric.

- Transitive: From (e) we have that, $(R \cup R^{\leftarrow})^{k^2}$ is transitive.

Therefore, if |S| = k, $(R \cup R^{\leftarrow})^{k^2}$ is an equivalence relation.

(g)

Problem4

If
$$n = 1$$
: $f(1) \in O(1)$

If $n \ge 1$:

Because $\lfloor \frac{n}{5} \rfloor \leq \lfloor \frac{n}{3} \rfloor$,

so
$$f(n) \le f(\lfloor \frac{n}{3} \rfloor) + 3f(\lfloor \frac{n}{3} \rfloor) + n = 4f(\lfloor \frac{n}{3} \rfloor) + n = 4f(\lfloor \frac{n}{3} \rfloor) + O(1) \in O(n)$$

Therefore, $f(n) \in O(n)$

```
Problem5
```

```
(a) count(T):
            if T = \tau:
                   return 0
            else:
                   return count(T_{left}) + count(T_{right}) + 1
(b) leaves(T):
            if T = \tau:
                   return 0
            else if T =((\tau, \tau)):
                   return 1
            else:
                   return leaves( T<sub>left</sub> ) + leaves( T<sub>rignt</sub> )
(c) half-leaves(T):
            if T = \tau:
                   return 0
            else if T = (\tau, T_{right}) or T = (T_{letf}, \tau):
                   return 1
            else:
                   return half-leaves( T<sub>left</sub> ) + half-leaves( T<sub>right</sub> )
(d) count(T) = 2*leaves(T) + half-leaves(T) - 1
     We prove P(T) by induction on T
     Base case T = (\tau, \tau): count(T) = 1, leaves(T) = 1, half-leaves(T) = 0, so P((\tau, \tau)) holds.
     Inductive case:T = (T_{left}, T_{right})
                         Assume P(T<sub>left</sub>) holds and P(T<sub>right</sub>) holds, and T<sub>left</sub>, T<sub>right</sub> are both not empty.
                         That is, count(T_{left}) = 2 * leaves(T_{left}) + half-leaves(T_{left}) - 1,
                         count(T_{right}) = 2 * leaves(T_{right}) + half-leaves(T_{right}) - 1,
                         we will show that P((T<sub>left</sub>, T<sub>right</sub>)) holds.
                         count(T) = count((T_{left}, T_{right}))
                                      = count(T_{left}) + count(T_{right}) + 1 + half-leaves(T_{right}) +
                                             half-leaves(T_{left}) - 2
                                      = 2*leaves((T<sub>left</sub>, T<sub>right</sub>)) + half-leaves((T<sub>left</sub>, T<sub>right</sub>)) -1
                                      = 2leaves(T) + half-leaves(T) - 1
                         So P(T) holds when T<sub>left</sub> and T<sub>right</sub> are not empty.
      Therefore, by the induction, P(T) holds for all binary trees T.
```

Problem6

- (a) $O(n^2)$
- (b) $O(n^3)$

$$\begin{split} &\text{(c) recursive-product(A, B):} \\ &\text{if n = 1:} \\ &\text{AB = S*W} \\ &\text{if n = 2:} \\ &\text{AB = } \left(\frac{SW + TY - SX + TZ}{VW + VY - VX + VZ}\right) \\ &\text{else:} \\ &\text{recursive-product (SW)} \\ &\text{recursive-product (TY)} \\ &\text{recursive-product (TZ)} \\ &\text{recursive-product (VW)} \\ &\text{recursive-product (VY)} \\ &\text{recursive-product (VY)} \\ &\text{recursive-product (VX)} \\ &\text{recursive-product (VZ)} \\ &\text{We have:} \\ &\text{T(1) = O(1)} \\ &\text{T(n) = O(1) + T(logn)} \in O(logn) \end{split}$$

(d) $T(n) \in O(log n)$