$4\int cosec2x dx = ?$

 \bigcirc B |n| tanx| + c

C $\ln \left| 1 + \tan^2 x \right| + c$

 $\int \ln \left| \sec^2 x - 1 \right| + c$

 $\int \frac{x}{\cos^2 x} dx = ?$

xtanx - ln|cosx| + c

xtanx - |n| secx| + c

c xtanx - ln|sinx| + c

D xsecx - In| tanx| + c $\int e^x \left(\frac{1 + \frac{1}{2} \sin 2x}{\cos^2 x} \right) dx = ?$

 $e^x cosecx + c$

 $e^{x}tanx + c$ $e^{x}cosx + c$

 $\int_0^\infty \frac{x dx}{1 + x^4} = ?$

 $\frac{\pi^2}{16}$

 $\frac{\pi}{2}$

 $\frac{\pi^2}{4}$

 $\int \frac{dx}{x\sqrt{x^2-1}} = ?$

 $\sec^{-1}x + c$

 $cosec^{-1}x + c$

 $\int \frac{dx}{2x^2 + 8x + 12} = ?$

 $A \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}} \right) + c$

 $\frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{x+2}{\sqrt{2}}\right) + c$

 $\begin{array}{ccc} \hline C & \frac{1}{2} \tan^{-1} \left(\frac{x+2}{\sqrt{2}} \right) + c & \hline C & \frac{1}{8} \end{array}$

 $\int_0^{\pi/4} \sin x \cos x \, dx = ?$