לוגיקה הרצאה 4

סמנטיקה של פסוקי:

$$v:\{p_i|i\in\mathbb{N}\} o \{T,F\}$$
 מגדירים מגדירים $\overline{V}=WFF o \{T,F\} o \overline{V}$ אם $\overline{V}(p_i)=v(p_i)$ $\alpha=p_i$ אם $\overline{V}(\alpha)=TT_{\square}(\overline{V}(\beta),\overline{V}(\gamma))$ אז $\alpha=(\beta\square\gamma)$ אם $\overline{V}(\alpha)=TT_{\neg}(\overline{V}(\beta))$ אז $\alpha=(\neg\beta)$

מושגים סמנטיים:

טאוטולוגיה

הוא פסוק שמקבל ערך ${
m T}$ לכל השמה

דתירה:

פסוק שמקבל ערך F לכל השמה. מה משמעות שך $v(
otin)\alpha$ ער מה $\overline{V}(\alpha)=F$ ($otin \alpha$) א בהכרח סתירה $otin \Delta$ לא בהכרח טאוטולוגיה. $otin \Delta$

דוגמה:

בבינתן קבוצה של פסוקים X בבינתן קבוצה של פסוקים $v\models X$ אם $v\models \alpha$ לכל $v\models \alpha$ אם $v\models \alpha$ לכל $\gamma \models \alpha$ לכל $\gamma \models \alpha$ לכל $\gamma \models \alpha$ לא כתיבה חוקית כי לא פ<u>סוק, יתכן סדרה אינסופית של סמימנים.</u> פסוק $\gamma \models \alpha$ מובע לוגית מפסוק $\gamma \models \alpha$ (סימון $\gamma \models \alpha$) אם כל השמה מספקת של $\gamma \models \alpha$ מספקת גם את $\gamma \models \alpha$.

למה:

 $\models \alpha \to \beta$ אם ורק אם $\alpha \models \beta$

הוכחה:

 $\models \alpha \to \beta$ צ"ל $\alpha \models \beta$ נתון \Leftarrow נבחר השמה V

 $\overline{V}(\alpha) = F$, $\neg \models \alpha$: מקרה בי

 $V \models \alpha \to \beta$ $TT_{\to}(\underbrace{\overline{V}}_{\text{F or FT or FF}}(\beta)) = T$

$$V\models lpha$$
 , $\overline{V}(lpha)=T$:2 מקרה עס $eta\models eta$, גם עס $V\models lpha o eta$ ולכן ולכן ו

$$\models \alpha \to \beta$$
 נתון :⇒
$$\alpha \models \beta$$
 צ"ל

2 מקרים:

$$\overline{V}(lpha)=T$$
 .1 מאחר ש־ eta טאוטולוגיה אז $lpha o eta$ טאוטולוגיה מסקנה עפ"י $\overline{V}(eta)=T:TT_{ o}$ מסקנה עפ"י

$$\overline{V}(lpha)=F$$
 .2

אין צורך להוכיח כי ה \models מתקיים וריויאלי.

דוגמה:

Xאת שמספקת השמה כל אם אם אם או נאמר ע נאמר לאמר על נאמר את גאמר על נאמר בהינתן בהינתן או נאמר א eta את גם את מספקת ($lpha \in X$ את (כלומר את כל

דוגמה:

$$\begin{array}{c} \alpha \to \beta \text{ ,} \alpha \models \beta \\ \{\alpha \to \beta, \alpha\} \models \beta \end{array}$$

למה:

$$X \models \alpha \rightarrow \beta$$
 אם ורק אם $X, \alpha \models \beta$

סימון:

$$M(lpha)\{v|v\modelslpha\}$$
 $M(X)=\{v|v\models X\}$ $M(lpha)=\emptyset$ סתירה: $lpha$ $M(lpha)\subseteq M(eta),\ lpha\modelseta$

שקילות לוגית

אוג פסוקים את ערך אותו הם הם אם הואם לוגית אם הכל שקולים אותו אחם אות פסוקים eta, lpha

$$\overline{v}(lpha)=\overline{v}(eta)$$
 . v השמה לכל אחרות, במילים
$$lpha\equiv\beta\ {
m Diag}(lpha)=M(lpha)$$

דוגמה לפסוקים שקולים:

* כל הטאוטולוגיות

* כל הסתירות

$$(\alpha_{\wedge}(\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \beta))$$
$$(\neg(\neg \alpha)) \equiv \alpha$$

למה:

$$ert$$
 logic connect ert אם ורק אם $lpha\equiv eta$

שלמות של מערכת קשרים:

הגדרה: פסוק α אמת מממש טבלת אמת נתונה אם טבלת האמת של מממש טבלה הנתונה.

עבור טבלת אמת עם kפסוקים עם עבור טבלת עבור עבור פסוקים אווע אמת עם אוווע

$$TT: \{T, F\}^k \to \{T, F\}$$

דוגמה:

"קשר לוגה "רוב"

תלת־ערה(תלת מקומי?)

	נכונ עו דונונכונ בוקובויי)		
p_1	p_2	p_3	$\#(p_1, p_2, p_3)$
Т	Т	Т	Т
Τ	Т	F	Т
Τ	F	Т	Т
Τ	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

T שורות שקבלו

$$\alpha_1 = p_1 \wedge p_2 \wedge p_3$$
 .1

$$\alpha_2 = p_1 \wedge p_2 \neg p_3$$
 .2

$$\alpha_3 = p_1 \wedge \neg p_2 \wedge p_3$$
 .3

$$lpha_5 = \neg p_1 \wedge p_2 \wedge p_3$$
 .4

$$\alpha = \alpha_1 \vee \alpha_2 \vee \alpha_3 \alpha_5$$

:טענה

מממשת את טבלת האמת של α

 ${\cal F}$ אמת מחזירות השורות שבה כל אמת עבור עבור

. בטבלה שמופיע בטבלה פסוק אטומי כאשר $p_1 \wedge \neg p_1$ לחזיר נחזיר כאשר $p_1 \wedge \neg p_1$

1 1 1 1					
p_2	p_1	$?(p_1,p_2)$			
F	F	F			
F	F	F			
F	F	F			
F	F	F			
$(p_1 \wedge \neg p_1)$					

:המשך

גם מערכת קשרי שלמה $begin{array}{c} \land, \lnot \{ \end{cases}$

$$(\alpha \lor \beta) \equiv \neg(\neg \alpha \land \neg \beta)$$

מערכת קשרים שלמה
$$\{v,\neg\} \leftarrow (\alpha \wedge \beta) \equiv \neg (\neg \alpha \vee \neg \beta)$$

מערכת קשרים שלמה $\{\neg,\leftarrow\}$

הגדרה:

נגדיר קבוצה אינדוקטיבית של קבוצת <u>המשפטים הפורמליים</u> או <u>הפסוקים היכיחים</u>.

בסיס(אקסיומות] קבוצת פסוקים (עוזרים להוכיח/לקבל פסוקים חדשים עס' פסוקים נתונים). כללי יצירה/פעולות

.(ממעלה נתון שיכיח, גורר שלמטה בם). $\underbrace{\alpha, \alpha o \beta}$

MP-Modus Promens , כלל הניתוק

קבוצות האכסיומות של תחשיב הפסוקים

:A1 תבנית ראשונה

A1 פסוק מטיפוס אכסיומה הוא δ

אם קיימים פסוקים β, α כך ש־

$$\delta = (\alpha \to (\beta \to \alpha)) : A1$$

:A2

:מהצורה δ

$$\delta = (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$$

......

$$\delta = ((\neg \alpha \to \neg \beta) \to (\beta \to \gamma))$$

קבוצת הבסיס. $\overrightarrow{B} = \overrightarrow{A_1} \cup \overrightarrow{A_2} \cup \overrightarrow{A_3}$

דוגמאות:

$$(p_2 \rightarrow (p_1 \rightarrow p_2)) : A_1$$

$$(\neg \neg p_5 \rightarrow \neg p_5) \rightarrow (p_5 \rightarrow \neg p_5)$$

עץ יצירה עבור אכסיומה 3

להראות שפסוק יכיח:

להראות סדרת יצירה ־ נקרא לה סדרת הוכחה סדרת הוכחה עבור פסוק β

 a_1, a_2, \dots, a_n הינה של פסוקים

כך ש־

 $a_b = \beta \star$

לכל מהפעלתו. a_i , $1 \leq i \leq n$ לכל

כלל ההיסק על פסוקים קודמים בסדרה

 a_1 מה יכול היות

אחת מהאכסיומות אחת $\vdash \alpha$ יכיח נסמן α