(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年1月15日(15.01.2004)

PCT

(10) 国際公開番号 WO 2004/005297/A1

(51) 国際特許分類7:

C07D 495/04

(21) 国際出願番号:

PCT/JP2003/008266

(22) 国際出願日:

2003 年6 月30 日 (30.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-197401 2002 年7 月5 日 (05.07.2002) J

- (71) 出願人 (米国を除く全ての指定国について): 日本 曹達株式会社 (NIPPON SODA CO.,LTD.) [JP/JP]; 〒 100-8165 東京都 千代田区大手町 2丁目2番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 加藤 雅彦 (KATO,Masahiko) [JP/JP]; 〒949-2392 新潟県 中頸城郡中郷村大字藤沢 950日本曹達株式会社 二本木工場内 Niigata (JP). 金子 彰 (KANEKO,Akira) [JP/JP]; 〒949-2392 新潟県 中頸城郡中郷村大字藤沢 950日本曹達株式会社 二本木工場内 Niigata (JP).

(74) 代理人: 松橋 泰典 (MATSUHASHI, Yasusuke); 〒100-8165 東京都 千代田区大手町 2丁目2番1号 日本曹達 株式会社内 Tokyo (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PYRROLE DERIVATIVE AND PROCESS FOR PRODUCING THE SAME

(54) 発明の名称: ピロール誘導体及びその製造方法

$$R^1 \longrightarrow R^2$$
 (2)

(57) Abstract: A novel pyrrole derivative; a process for producing the derivative; and a novel pyrrole derivative (intermediate) capable of being a starting material for that pyrrole derivative and a process for producing the derivative (intermediate). The pyrrole derivatives are characterized by being represented by the formulae [1] and [2]: [1] [2] wherein R¹ and

 R^2 each independently represents hydrogen or an optionally substituted $C_{1\cdot 10}$ hydrocarbon group; and Z represents an organic group. The process for producing the compound represented by the formula [1] is characterized by eliminating the Z from the compound represented by the formula [2].

(57) 要約:

本発明は、新規ピロール誘導体及びその製造方法並びに前記ピロール誘導体の 原料となり得る新規ピロール誘導体(中間体)及びその製造方法を提供すること を、目的とする。

式 [1] 及び式 [2]

$$R^1$$
 R^2
 R^2
 R^2
 R^2
 R^2

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 10$ の炭化水素基を表し、Zは有機基を表す。)で表されることを特 徴とするピロール誘導体、及び、式〔2〕からZを脱離させることを特徴とする 式〔1〕の製造方法。

DT15 Rec'd PCT/PTO 3 0 DEC 2004

明細書

ピロール誘導体及びその製造方法

技術分野:

本発明は、分子内にスルフィド結合を有する新規なピロール誘導体及びその製造方法に関する。

従来技術:

近年、電子機器の電源回路の高周波化にともない、そこに用いられる電解コンデンサについても高周波特性の優れたものが要求されている。そこで、高周波領域で低インピーダンスを実現するために、ポリチオフェン、ポリピロール、ポリアニリン、ポリインドール等の高電導度の導電性高分子を固体電解質として用いた固体コンデンサが提案されている(特開昭60-37114号、特開昭63-158829号、特開平2-153516号等)。

発明の開示:

しかしながら、従来の骨格の導電性高分子では必ずしも満足のいく性能が得られていないという問題があった。本発明は、十分な性能が得られる可能性のある新規な骨格の導電性高分子の原料となり得る化合物を提供することを目的とする。

本発明者らは、キャパシタ(コンデンサ)となり得る化合物として、同一分子内にピロール骨格とスルフィド結合を有する化合物に着目し、鋭意研究を重ねた結果、特定の条件下において、スルフィド結合を有する新規なピロール誘導体の合成に成功し、本発明を完成するに至った。

すなわち本発明は、式〔1〕

$$R^1$$
 R^2
 N
 N

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim10$ の炭化水素基を表す。)で表されることを特徴とするピロール誘 導体(請求項1)や、式 $\{2\}$

$$R^1$$
 R^2
 R^2
 R^2

(式中、R¹及びR²はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数1~10の炭化水素基を表し、Zは有機基を表す。)で表されることを特 徴とするピロール誘導体(請求項2)や、式〔2〕におけるZが、窒素原子上の 保護基であることを特徴とする請求項2に記載のピロール誘導体(請求項3)や、 窒素原子上の保護基が、トシル基であることを特徴とする請求項3に記載のピロール誘導体(請求項4)に関する。

また本発明は、式〔3〕

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 1$ 0 の炭化水素基を表し、X及びYはそれぞれ独立してハロゲン原子 を表し、Zは有機基を表す。)で表されるピロール誘導体にアルカリ金属硫化物 を反応させることを特徴とする式 [2]

$$R^1$$
 R^2 (2)

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 10$ の炭化水素基を表し、Z は有機基を表す。)で表されるピロール 誘導体の製造方法(請求項 5)や、式 [4]

$$R^1$$
 R^2
 N
 Z''

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim10$ の炭化水素基を表し、Z''は窒素原子上の保護基を表す。)で表 されるピロール誘導体の保護基を脱保護することを特徴とする式〔1〕

$$R^1$$
 R^2
 N
 H

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 1$ 0 の炭化水素基を表す。)で表されるピロール誘導体の製造方法(請 求項 6)や、式 [4] における Z'' がトシル基であって、前記トシル基の脱保護 を水素化ピス(2-メトキシエトキシ)アルミニウムナトリウムを用いて行うこ とを特徴とする請求項 6 に記載のピロール誘導体の製造方法(請求項 7)に関す る。

本発明に係るピロール誘導体は、式[1]で表されることを特徴とする。式[1]で表されるピロール誘導体は、電解重合、酸化重合等により重合体とすることによって固体電解コンデンサの固体電解質として利用することができる。

式〔1〕中、R¹及びR²はそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~10の炭化水素基を表す。R¹及びR²で表される炭化水素基は、直鎖状であってもよいし、分岐状であってもよく、メトキシ基、エトキシ基等のアルコキシ基や、ホルミル基、アセチル基等のアシル基等で置換されていてもよ

い。R¹及びR²で表される炭化水素基の炭素数としては1~10であれば特に制限はないが、具体的には、メチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、tープチル基、sープチル基、イソプチル基、nーペンチル基、sーペンチル基、イソペンチル基、ネオペンチル基、nーヘキシル基、sーヘキシル基、1,1ージメチルーnーヘキシル基、nーヘプチル基、nーデシル基等の炭素数1~10のアルキル基、ピニル基、アリル基、2ープテニル基、1ーメチルー2ープロペニル基、4ーオクテニル基等の炭素数2~10のアルケニル基、エチニル基、プロパルギル基、1ーメチループロピニル基等の炭素数2~10のアルキニル基、シクロプロピル基、シクロプチル基、シクロペンチル基、1ーメチルーシクロペンチル基、1ーメチルーシクロペンチル基、1ーメチルーシクロペンチル基、フェニル基、1ーナフチル基等の炭素数3~10の脂環式炭化水素基、フェニル基、1ーナフチル基等の炭素数6~10の芳香族炭化水素基、ベンジル基、フェネチル基等のアラルキル基等を例示することができる。より具体的に、式〔1〕で表されるピロール誘導体としては、例えば、下記表1に示すものが挙げられる。

化合物No	$R^1(R^2)$	$R^2(R^1)$
1	CH₃	CH ₃
2	CH ₃	CH ₂ CH ₃
3	CH₃	CH ₂ CH ₂ CH ₃
4	CH₃	CH ₂ CH ₂ CH ₂ CH ₃
5	CH₃	CH ₂ CH ₂ CH ₂ CH ₃
6	CH ₃	CH(CH ₃) ₂
7	CH₃	CH ₂ CH(CH ₃) ₂
8	CH ₃	CH(CH ₃)CH ₂ CH ₃
9	CH ₃	C(CH ₃) ₃
10	CH ₃	CH ₂ CH(CH ₃)CH ₂ CH ₃
11	CH ₃	CH ₂ C(CH ₃) ₃
12	CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂
13	CH₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
14	CH ₃	CH(CH ₂ CH ₃) ₂
15	CH₃	CH(CH ₃)CH(CH ₃) ₂
16	CH₃	CH(CH ₃) ₂ CH ₂ CH ₃
17	CH₂CH₃	CH₂CH₃
18	CH₂CH₃	CH₂CH₂CH₃
19	CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
20	CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
21	CH₂CH₃	CH(CH ₃) ₂
22	CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
23	· CH ₂ CH ₃	CH(CH₃)CH₂CH₃
24	CH ₂ CH ₃	C(CH ₃) ₃
25	CH ₂ CH ₃	CH ₂ CH(CH ₃)CH ₂ CH ₃
26	CH ₂ CH ₃	CH ₂ C(CH ₃) ₃
27	CH ₂ CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂
28	CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
29	CH ₂ CH ₃	CH(CH ₂ CH ₃) ₂
30	CH ₂ CH ₃	CH(CH ₃)CH(CH ₃) ₂
31	CH ₂ CH ₃	CH(CH ₃) ₂ CH ₂ CH ₃
32	CH ₂ CH ₂ CH ₃	CH₂CH₂CH₃
- 33	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
34	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₃
35	CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂
36	CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
37	CH ₂ CH ₂ CH ₃	CH(CH₃)CH₂CH₃
38	CH₂CH₂CH₃	C(CH ₃) ₃

表1の続き

		· · · · · · · · · · · · · · · · · · ·
39	CH₂CH₂CH₃	CH ₂ CH(CH ₃)CH ₂ CH ₃
40	CH ₂ CH ₂ CH ₃	CH ₂ C(CH ₃) ₃
41	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH(CH ₃) ₂
42	CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
43	CH ₂ CH ₂ CH ₃	CH(CH ₂ CH ₃) ₂
44	CH ₂ CH ₂ CH ₃	CH(CH ₃)CH(CH ₃) ₂
45	CH₂CH₂CH₃	CH(CH ₃) ₂ CH ₂ CH ₃
46	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
47	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
48	CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂
49	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
50	CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃
- 51	CH ₂ CH ₂ CH ₂ CH ₃	C(CH ₃) ₃
52	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃)CH ₂ CH ₃
53	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ C(CH ₃) ₃
54	CH2CH2CH2CH3	CH ₂ CH ₂ CH(CH ₃) ₂
55	CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
56	CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₂ CH ₃) ₂
57	CH2CH2CH2CH3	CH(CH ₃)CH(CH ₃) ₂
58	CH2CH2CH2CH3	CH(CH ₃) ₂ CH ₂ CH ₃
59	CH2CH2CH2CH2CH3	CH ₂ CH ₂ CH ₂ CH ₃
60	CH2CH2CH2CH2CH3	CH(CH ₃) ₂
61	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃) ₂
62	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃
63	CH2CH2CH2CH2CH3	C(CH ₃) ₃
64	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH(CH ₃)CH ₂ CH ₃
65	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ C(CH ₃) ₃
66	CH2CH2CH2CH2CH3	CH ₂ CH ₂ CH(CH ₃) ₂
67	CH2CH2CH2CH2CH3	CH(CH ₃)CH ₂ CH ₂ CH ₃
68	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₂ CH ₃) ₂
69	CH2CH2CH2CH2CH3	CH(CH ₃)CH(CH ₃) ₂
70	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂ CH ₂ CH ₃
71	CH(CH ₃) ₂	CH(CH ₃) ₂
72	CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂
73	CH(CH ₃) ₂	CH(CH ₃)CH ₂ CH ₃
74	CH(CH ₃) ₂	C(CH ₃) ₃
75	CH(CH ₃) ₂	CH ₂ CH(CH ₃)CH ₂ CH ₃
76	CH(CH ₃) ₂	CH ₂ C(CH ₃) ₃
77	CH(CH ₃) ₂	CH ₂ CH ₂ CH(CH ₃) ₂

表1の続き

79	78	CH(CH ₃) ₂	CH(CH ₃)CH ₂ CH ₂ CH ₃
80	}		
81			
82	ļ		
83			
84	<u></u>		
85			
86	L		
87			
88			
89			
90			
91	1	L	
92			
93			
94			
95]		The state of the s
96			
97	}		
98			
99			
100			
101			
102		<u> </u>	
103			
104			
105 C(CH ₃) ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 106 C(CH ₃) ₃ CH(CH ₂ CH ₃) ₂ 107 C(CH ₃) ₃ CH(CH ₃)CH(CH ₃) ₂ 108 C(CH ₃) ₃ CH(CH ₃) ₂ CH ₂ CH ₃ 109 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃ 110 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ C(CH ₃) ₃ 111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃			
106			
107 C(CH ₃) ₃ CH(CH ₃)CH(CH ₃) ₂ 108 C(CH ₃) ₃ CH(CH ₃) ₂ CH ₂ CH ₃ 109 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃ 110 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ C(CH ₃) ₃ 111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₂ CH ₃ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	106		
108 C(CH ₃) ₃ CH(CH ₃) ₂ CH ₂ CH ₃ 109 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃ 110 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ C(CH ₃) ₃ 111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃			
109 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₃ 110 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ C(CH ₃) ₃ 111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	108		CH(CH ₃) ₂ CH ₂ CH ₃
110 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ C(CH ₃) ₃ 111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	109		
111 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH ₂ CH ₂ CH(CH ₃) ₂ 112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	110		
112 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₂ CH ₃ 113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	111		
113 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₂ CH ₃) ₂ 114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	112	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
114 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH(CH ₃) ₂ 115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	113		
115 CH ₂ CH(CH ₃)CH ₂ CH ₃ CH(CH ₃) ₂ CH ₂ CH ₃	114		
	115		
	116		

表1の続き

117	CH ₂ C(CH ₃) ₃	CH ₂ CH ₂ CH(CH ₃) ₂
118	CH ₂ C(CH ₃) ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
119	CH ₂ C(CH ₃) ₃	CH(CH ₂ CH ₃) ₂
120	CH ₂ C(CH ₃) ₃	CH(CH ₃)CH(CH ₃) ₂
121	CH ₂ C(CH ₃) ₃	CH(CH ₃) ₂ CH ₂ CH ₃
122	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH(CH ₃) ₂
123	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₃)CH ₂ CH ₂ CH ₃
124	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₂ CH ₃) ₂
125	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₃)CH(CH ₃) ₂
126	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂ CH ₂ CH ₃
127	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃
128	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₂ CH ₃) ₂
129	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃)CH(CH ₃) ₂
130	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃)₂CH₂CH ₃
131	CH(CH ₂ CH ₃) ₂	CH(CH ₂ CH ₃) ₂
132	CH(CH ₂ CH ₃) ₂	CH(CH ₃)CH(CH ₃) ₂
133	CH(CH ₂ CH ₃) ₂	CH(CH ₃) ₂ CH ₂ CH ₃
134	CH(CH ₃)CH(CH ₃) ₂	CH(CH ₃)CH(CH ₃) ₂
135	CH(CH ₃)CH(CH ₃) ₂	CH(CH ₃) ₂ CH ₂ CH ₃
136	CH(CH ₃) ₂ CH ₂ CH ₃	CH(CH ₃) ₂ CH ₂ CH ₃

また、本発明に係るピロール誘導体は、式〔2〕で表されることを特徴とする。 式〔2〕で表されるピロール誘導体は、式〔1〕で表されるピロール誘導体の製 造における中間体ともなり得る化合物である。

式〔2〕中、R¹及びR²はそれぞれ独立して水素原子又は置換基を有していてもよい炭素数1~10の炭化水素基を表し、Zは有機基(有機の官能基)を表す。式〔2〕におけるR¹及びR²は、式〔1〕におけるR¹及びR²と同義である。また、前記有機基とは、官能基中に炭素原子を含むものであれば制限されず、ピロール環窒素原子に直接炭素原子が結合している必要はなく、窒素原子、硫黄原子、酸素原子、リン原子等のヘテロ原子等を介して結合している炭素原子を含む官能基を含み、特にピロール部位の窒素原子を保護する保護基を好ましく例示することができ、例えば、アルコキシカルボニル基、アリールスルホニル基、アルキルオキシメチル基、トリアルキルシリル基等(これらは、アルキル基、アルコキシ基、アシル基等の置換基を有していてもよい)を挙げることができ、アリールス

ルホニル基が好ましく、中でもトシル基(p-トルエンスルホニル基)が特に好ましい。

- 式〔2〕で表されるピロール誘導体の製造方法として、具体的には、式〔3〕で表されるピロール誘導体にアルカリ金属硫化物を反応させて製造する方法を例示することができる。さらに式〔1〕で表されるピロール誘導体の製造方法として、具体的には、式〔4〕で表されるピロール誘導体の保護基を脱保護する方法を例示することができる。
- 式〔3〕中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい炭素数 $1\sim10$ の炭化水素基を表し、X及びYはそれぞれ独立してハロゲン原子を表し、Zは有機基を表す。
- 式〔3〕におけるR¹及びR²は、式〔1〕におけるR¹及びR²と同義である。 式〔3〕中、X及びYで表されるハロゲン原子としては、例えば、フッ素原子、 塩素原子、臭素原子、ヨウ素原子等が挙げられ、塩素原子、臭素原子であること がより好ましい。また、場合によって、アリールスルホニルオキシ基、アルキル スルホニルオキシ基、トリフルオロメチルスルホニルオキシ基であってもよい。 式〔3〕におけるZは、式〔2〕におけるZと同義である。
- 式〔4〕中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい炭素数 $1\sim1$ のの炭化水素基を表し、Z''は窒素原子上の保護基を表す。式〔4〕における R^1 及び R^2 は、式〔1〕における R^1 及び R^2 と同義である。式〔4〕におけるZ''は、式〔2〕における窒素原子上の保護基としてのZと同義である。

本反応に用いる溶媒としては、水、メタノール、エタノール、プロパノール、エチレングリコール等の炭素数 1~6の直鎖状又は分岐状のアルコール、テトラヒドロフラン、ジエチルエーテル、ジオキサン、グライム、ジグライム等の鎖状又は環状エーテル、ベンゼン、トルエン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒、ジメチルホルムアミド、ジメチルスルホキサイド等の非プロトン性極性溶媒等を適宜使用することができ、これらは単独で用いていもよいし、2種以上を併用してもよい。

反応温度としては-10℃から用いる溶媒の沸点の範囲であることが好ましく、 この温度範囲であれば反応がより円滑に進行する。

前記アルカリ金属硫化物としては、例えば、硫化カリウム、硫化ナトリウム等が挙げられ、あらかじめ調製された水和物、無水物のいずれも使用することができ、さらに、アルカリ金属アルコラートと硫化水素より反応系中で精製させたものをそのまま使用することもできる。アルカリ金属硫化物は、式〔3〕で表されるピロール誘導体に対して1~100当量の範囲、好ましくは1.0~2.0当量の範囲で使用することができる。

式〔1〕で表されるピロール誘導体は、式〔4〕で表されるピロール誘導体の保護基を脱保護することにより製造することができるが、この脱保護は、式〔4〕で表されるピロール誘導体を一旦単離した後に行ってもよいし、単離することなく続けて脱保護を行ってもよい。

保護基(Z″)の脱保護は、塩酸、硫酸等の鉱酸類、水酸化ナトリウム、水酸化カリウム、硫化ナトリウム、ナトリウムジスルフィド等のアルカリ類を用いた加水分解、及び金属アルコラート類を用いた加アルコール分解、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、水素化ピス(2ーメトキシエトキシ)アルミニウムナトリウム(Red-A1(登録商標))等を用いた還元反応等により行うことができ、還元反応を利用することが好ましく、保護基であるトシル基の脱保護を行う場合には、水素化ピス(2ーメトキシエトキシ)アルミニウムナトリウムを用いることが特に好ましい。還元剤の添加量としては、式〔4〕で表されるピロール誘導体に対して1~4当量の範囲であることが好ましく、1.5~3当量の範囲であることあることがより好ましい。

上記のように製造されたピロール誘導体は、電解重合、酸化重合等によって高 分子として、例えば、固体電解コンデンサの電解質(電極)として用いることが できる。

発明を実施するための最良の形態:

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。

実施例1<3,5-ジヒドロ-1H-チエノー[3,4-c]ピロールの合成>

ジクロロトリフェニルホスホラン6.44g(19.3mmol)をTHF(テトラヒドロフラン)30mlに懸濁させ、これに氷水冷却下、3,4ージ(ヒドロキシメチル)ー1ートシルピロール2.47g(8.8mmol)をゆっくり添加した。室温で2時間攪拌した後、溶媒のTHFを減圧留去し、そこへ水と酢酸エチルを加えて分液し、酢酸エチル層を無水硫酸マグネシウムで乾燥し減圧濃縮した。カラムクロマトグラフィー(ワコーゲルC200;ヘキサン:酢酸エチル=8:2(スラリー状のものをのせる))で精製の後、3,4ージ(クロロメチル)ー1ートシルピロールを2.55g(収率91%)得た。

3, 4-ジ(クロロメチル) -1-トシルピロール:

 $^{1}H-NMR$ (2 7 0 MHz, CDCl₃/TMS) δ 2. 4 3 (s, 3 H), 4. 5 3 (s, 4 H), 7. 1 7 (s, 2 H), 7. 3 3 (d, 2 H, J=8. 1 Hz), 7. 7 7 (d, 2 H, J=8. 1 Hz)

次に、3, 4-ジ(クロロメチル)-1-トシルピロール2. 55g(8mm o 1)をメタノール20m1に溶かし、硫化ナトリウム9水和物($Na_2S \cdot 9H_2O$)2. 12g(8.8mm o 1)を加えて3時間加熱還流した。冷却後、水と酢酸エチルを加えてセライト濾過し、分液して有機層を食塩水で洗い、無水硫酸マグネシウムで乾燥し、濃縮してカラムクロマトグラフィー(ワコーゲルC200; n+サン:酢酸エチル=95:5)で精製することで、n-トシルー3, 5-ジn-バーーn-バーn-バールn-バー

Nートシルー3, 5-ジハイドロー1Hーチエノー [3, 4-c] ピロール:結晶 mp134-136 $^{\circ}$

次に、N-hシルー3, 5-ジヒドロー1H-Fエノー [3, 4-c] ピロール 0.99gをベンゼン15m1に溶かし、Red-A1 (登録商標) (65 重量%) 2.20g (2当量)を加えて、2時間加熱還流した。冷却後、氷を加えて過剰の還元剤をつぶし、水と酢酸エチルを加えて分液した。有機層を食塩水洗して無水硫酸マグネシウムで乾燥し、濃縮し、カラムクロマトグラフィー(ワコーゲルC200; Λ キサン:酢酸エチル=95:5)で精製することで、目的物である3,5-ジヒドロ-1H-チエノー [3,4-c] ピロールを0.23

g (収率52%) 得た。

3, 5-ジヒドロ-1H-チエノ-[3, 4-c] ピロール:

 $^{1}H-NMR$ (270MHz, CDC1₃/TMS) $\delta = 4.00$ (s, 4H),

6. 48 (d, 2H, J=2. 4Hz), 8. 15 (bs, 1H)

結晶 mp39-40℃

産業上の利用可能性:

以上述べたように、本発明のピロール誘導体は、固体電解コンデンサの電解質 として使用できる可能性のある導電性高分子の原料となり得る新規な化合物であ り、産業上の利用価値は高いといえる。

請求の範囲

1. 式〔1〕

$$R^1$$
 R^2
 N
 H

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 1$ 0の炭化水素基を表す。)で表されることを特徴とするピロール誘 導体。

2. 式[2]

$$R^1$$
 R^2
 R^2
 R^2

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 1$ 0 の炭化水素基を表し、Zは有機基を表す。)で表されることを特 徴とするピロール誘導体。

- 3. 式〔2〕におけるZが、窒素原子上の保護基であることを特徴とする請求項 2に記載のピロール誘導体。
- 4. 窒素原子上の保護基が、トシル基であることを特徴とする請求項3に記載のピロール誘導体。
- 5. 式〔3〕

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 10$ の炭化水素基を表し、X及びYはそれぞれ独立してハロゲン原子 を表し、Zは有機基を表す。)で表されるピロール誘導体にアルカリ金属硫化物 を反応させることを特徴とする式〔2〕

$$R^1$$
 R^2
 R^2
 R^2

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 10$ の炭化水素基を表し、Zは有機基を表す。)で表されるピロール 誘導体の製造方法。

6. 式〔4〕

$$R^1$$
 R^2
 N
 Z''

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 10$ の炭化水素基を表し、Z'' は窒素原子上の保護基を表す。)で表 されるピロール誘導体の保護基を脱保護することを特徴とする式 [1]

$$R^1$$
 R^2
 N
 N

(式中、 R^1 及び R^2 はそれぞれ独立して水素原子又は置換基を有していてもよい 炭素数 $1\sim 1$ 0 の炭化水素基を表す。)で表されるピロール誘導体の製造方法。 7. 式〔4〕における Z'' がトシル基であって、前記トシル基の脱保護を水素化 ピス(2-メトキシエトキシ)アルミニウムナトリウムを用いて行うことを特徴 とする請求項 6 に記載のピロール誘導体の製造方法。 THIS PAGE BLANK (USPTO)