Problem 1

Note: Please check the appendix section for detailed results and code b) Run IV and get estimates

Code:

**** Generate the binary treatment variables*****

gen treat1 = 0

replace treat 1 = 1 if hwage >= 5

gen treat2 = 0

replace treat2 = 1 if wage >= 7

gen treat3 = 0

replace treat3 = 1 if unemployment >= 5

Ouestion b**

***Estimate the IV regression by running mrt on the binary treatment variables,

***** control variables and instrumental variable

ivregress 2sls mtr treat1 treat2 age heduc hsiblings (siblings= treat3)

****Alternative method is to use gmm approach****

ivregress gmm mtr treat1 treat2 age heduc hsiblings (siblings= treat3)

Empirical Results:

Table 1: IV estimation

Instrumental variables (2SLS) regression

Number of obs = 753
Wald chi2(6) = 221.26
Prob > chi2 = 0.0000
R-squared = .09078

mtr	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
siblings	.0271812	.0607782	0.45	0.655	0919418	.1463042
treat1	0584407	.0229095	-2.55	0.011	- 1033425	013539
treat2	0626907	.0391681	-1.60	0.109	- 1394588	.0140775
age	0008333	.0007985	-1.04	0.297	0023982	.0007317
heduc	0089675	.0011935	-7.51	0.000	0113066	0066283
hsiblings	005162	.0117717	-0.44	0.661	0282341	.01791
_cons	.8027829	.199089	4.03	0.000	.4125755	1.19299

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

Alternatively:

Instrumental variables (GMM) regression

Number of obs = 753
Wald chi2(6) = 226.51
Prob > chi2 = 0.0000
R-squared = .
Root MSE = .09078

GMM weight matrix: Robust

mtr	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
siblings	.0271812	.0598936	0.45	0.650	090208	.1445704
treat1	0584407	.0228697	-2.56	0.011	1032645	013617
treat2	0626907	.039495	-1.59	0.112	1400995	.0147182
age	0008333	.0007484	-1.11	0.266	0023	.0006335
heduc	0089675	.0012995	-6.90	0.000	0115145	0064205
hsiblings	005162	.0115997	-0.45	0.656	0278971	.017573
_cons	.8027829	.1955154	4.11	0.000	.4195796	1.185986

Instrumented: siblings

Instruments: treat1 treat2 age heduc hsiblings treat3

As we can see from table 1, the result shows that both first binary treatment (treat1) and heduc have a significant impact on mtr. Unfortunately, the result shows that the instrumental variable is insignificant to the model using IV regression.

C) Calculate the bias based on the formula derived in part a Code:

```
*****Question c*****
reg mtr treat1 treat2 treat3 age heduc hsiblings
predict e_z, residuals
mat beta = e(b)
symat beta, names(matcol)
reg siblings treat1 treat2 treat3 age heduc hsiblings
predict e_y, residuals
mat gamma = e(b)
symat gamma, names(matcol)
scalar alpha_hat1 = betatreat3/gammatreat3
display alpha_hat1
reg treat3 treat1 treat2 age heduc hsiblings
predict e_t, residuals
* Estimate the first covariance using the second and the first residuals
corr e_v e_z, covariance
scalar scov1 = r(cov_12)
* Estimate the second covariance using the third and the first residuals
corr e_t e_z, covariance
scalar scov2 = r(cov_12)
* Finally, divide the first covariance by the second covariance.
scalar alpha_hat2 = scov1/scov2
display alpha_hat2
```

Empirical Result:

Table 2: reg mtr treat1 treat2 treat3 age heduc hsiblings

Source	SS	df	MS		Number of obs	
Model	1.82334348	6 .30	3890579		Prob > F	= 0.0000
Residual	3.41922921	746 .00	4583417		R-squared	= 0.3478
Total	5.24257268	752 .00	6971506		Adj R-squared Root MSE	= 0.3425 = .0677
mtr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treat1	067291	.0060121	-11.19	0.000	0790937	0554882
treat2	0461611	.0099636	-4.63	0.000	0657211	0266012
treat3	0061028	.0101769	-0.60	0.549	0260816	.0138761
age	0011407	.000311	-3.67	0.000	0017512	0005302
heduc	0088924	.000881	-10.09	0.000	010622	0071628
hsiblings	.0000467	.0010281	0.05	0.964	0019717	.002065
_cons	.8964564	.0205165	43.69	0.000	.8561794	.9367333

Table 3: reg siblings treat1 treat2 treat3 age heduc hsiblings

Source	SS	df		MS		Number of obs F(6, 746)		753 6.38
Model Residual	196.411427 3826.14103	6 746		7352378 2887538		Prob > F R-squared Adj R-squared	=	0.0000 0.0488 0.0412
Total	4022.55246	752	5.34	1913891		Root MSE	=	2.2647
siblings	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
treat1 treat2 treat3 age heduc hsiblings _cons	3256005 .6081235 224522 0113107 .0027604 .1916292 3.446259	.2011 .3332 .3404 .016 .0294 .0343	2966 1345 1403 1719 3924	-1.62 1.82 -0.66 -1.09 0.09 5.57	0.106 0.068 0.510 0.277 0.925 0.000	72042 0461875 8928457 0317334 0550973 .1241117 2.098932	1	0692189 .262434 4438017 .009112 0606181 2591467 .793586

[.] scalar alpha_hat1 = betatreat3/gammatreat3

Table 4: reg treat3 treat1 treat2 age heduc hsiblings

Source	SS	df		MS		Number of obs		753
Model Residual	2.42569724 44.2542496	5 747		139447 242637		F(5, 747) Prob > F R-squared	=	8.19 0.0000 0.0520 0.0456
Total	46.6799469	752	.062	074397		Adj R-squared Root MSE	=	.2434
treat3	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
treat1 treat2 age heduc hsiblings _cons	.1263408 .0103424 0004761 0001401 0032171 .8733817	.0211 .0358 .0011 .0031 .0036	189 179 675 944	5.98 0.29 -0.43 -0.04 -0.87	0.000 0.773 0.670 0.965 0.384 0.000	.0848895 0599754 0026707 0063583 0104698 .742873		1677921 0806602 0017186 0060781 0040357 1.00389

[.] display alpha_hat1

^{.02718123}

Table 5: Estimate the covariance

	e_y	e_z
e_y e_z	5.08795	.004547
	e_t	e_z
e_t	.058849	004547
e_z . scalar alpha_	2.4e-11 hat2 = sco	

. display alpha_hat2 41319651

After estimating the three regression equations showed in table 2-4, the calculated bias is given as $bias = \alpha iv - \alpha = 41319651 - 0.02718123 = 41319650.97$.