» Gradient Descent

* Recall general iterative minimisation algorithm:

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

* We know one way to choose the step, namely:

$$\textit{step} = \alpha[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)]$$

where α is the *step size* or *learning rate*

* How to choose α ?

* Minimise function $f(x) = x^2$. Derivative df/dx = 2x.

- * Minimum of f(x) = 0 when x = 0
- * Python code:

```
class QuadraticFn():
    def (fself, x):
        return x**2 # function value f(x)

def df(self, x):
        return 2*x # derivative of f(x)

def gradDescent(fn,x0,alpha=0.15,num_iters=50):
        x=x0;
        X=np.array([x]); F=np.array(fn.f(x)):
        for k in range(num_iters):
        step = alpha*fn.df(x)
        x = x - step
        X=np.append(X,[x],axis=0); F=np.append(F,fn.f(x));
    return (X,F)

(X, F) = gradDescent(fn,x0=1,alpha=0.1)
```

* Starting value x0 = 1, step size *alpha* = 0.1

- Function decreases at every iteration, decrease gets smaller over time. Input x also decreases from 1 towards 0 (the optimum value).
- * Hard to see small values of function, helps to plot on a log scale:

* On log-scale the function value is decreasing linearly towards zero i.e. $\log f(x_t) = mt + c$ with m < 0, so $f(x_t) = e^{mt+c}$ decreases exponentially \rightarrow super fast!. This is basically best-case performance

- * Starting value x0 = 1, step size alpha = 0.1
- * Can be helpful to plot (x, f(x)) pairs of values over time.

* Why do the steps in x get smaller over time? Recall derivative is 2x and minimum is at x=0. Derivates don't always <u>diminish</u> as get close to optimum, more on this later.

Plotting commands:

```
plt.plot(xx.fn.f(xx))
plt.xlabel('x'); plt.ylabel('f(x)')
plt.show()
plt.plot(F)
plt.xlabel('#teration'); plt.ylabel('function value')
plt.show()
plt.semilogy(F)
plt.xlabel('#teration'); plt.ylabel('function value')
plt.xlabel('#teration'); plt.ylabel('function value')
plt.xlabel('#teration'); plt.ylabel('x')
plt.xlabel('#teration'); plt.ylabel('x')
plt.show()
plt.step(X,fn.f(X))
xx=np.arange(-1,1.1,0.1)
plt.ylabel('x'); plt.ylabel('f(x'))
```

* Starting value x0 = 1, step size *alpha* = 0.01

st Now rate of convergence is much smaller, and steps in st are smaller too.

* Starting value x0 = 1, step size alpha = 1.01

 Now no longer converges to minimum (in fact it diverges), steps in x are larger.

* What happens as function becomes more curved? Try $f(x) = \gamma x^2$ and vary γ .

* Starting value x0 = 1, step size *alpha* = 0.1

* Derivative is $2\gamma x$, so steps in x increase/decrease as γ increases/decreases \rightarrow so we can expect to have to adjust step size α based on magnitude of derivative of $f(\cdot)$.

* Another example: f(x) = |x|. Minimum is 0 when x = 0.

- Slope is constant, it doesn't decrease as get closer to minimum
- * When x > 0 derivative of $f(\cdot)$ is +1, when x < 0 derivative is -1 i.e. derivative is sign(x) for $x \neq 0$. When x = 0? No single line just touches the curve at that point ...

* Define derivative at x = 0 to be 0, will come back to this later.

* Starting value x0 = 1, step size *alpha* = 0.1

- * Function decreases until it reaches vicinity of minimum, then oscillates forever never converges to minimum.
- * How might we try to fix that?

* As usual, changing magnitude of derivative affects steps. $f(x) = |\gamma x|$, derivative is $\gamma sign(x)$ for $x \neq 0$.

* Starting value x0 = 1, step size *alpha* = 0.1

* Yet another example: $f(x) = x^4$. Minimum is 0 when x = 0.

* Slope decreases more quickly than quadratic as get closer to minimum. Derivative of $f(x) = x^4$ is $3x^3$. Compare with derivative 2x when $f(x) = x^2$.

* Starting value x0 = 1, step size alpha = 0.1

* Starting value x0 = 1, step size *alpha* = 0.1

- * Observe that rate of decrease of $f(\cdot)$ gets slower and slower over time.
- * Decrease of $\log f(x)$ is no longer linear, convergence rate is *much* slower than for quadratic function:

How might we try to fix this?

» Summary

What have we discovered?

- * No "one size fits all" choice of step size.
 - * Scaling function e.g. from x^2 to $2x^2$ changes magnitude of derivative and so of steps taken
- Maybe need to change the step size over time
 - If derivative doesn't decrease as get close to minimum then can end up "bouncing around"
 - If derivative decreases too quickly as get close to minimum then can end up with v slow convergence
- Convergence rate can be v sensitive to properties of function being minimised
 - Quadratic function is "best" case, exponentially fast convergence (jargon: quadratic-like → strongly convex)
 - * Kinks and flat areas in functions can greatly slow convergence (jargon: has kinks →non-smooth)

