Análise de Variância – ANOVA

Introdução

Quando se usa a ANOVA?

Comparação envolvendo mais de dois tratamentos (grupos), ou situações experimentais.

O que a ANOVA faz?

Compara variação dentro de cada tratamento e entre os tratamentos.

Passos a serem realizados para Análise de Variância:

1. Estabelecer as hipótese:

$$\begin{cases} H_0: \ \mu_1 = \mu_2 = \mu_3 = \dots = \mu_m \\ H_1: existe \ pelo \ menos \ uma \ média \ diferente \end{cases}$$

- 2. Estabelecer o índice de significância: α
- 3. Estatística: Teste F
- 4. Definir a região Crítica

Para localizar o $F_{crit} = F5\%$; gl_{trat} ; gl_{erro}

5. Conclusão do teste:

F calculado < F tabelado = H_0 não rejeitada

F calculado > F tabelado = H_0 rejeitada.

Soma de Quadrados

A abordagem da análise da variância pode ser mais bem compreendida observando-se a soma dos quadrados dos desvios (ou soma de quadrados).

Quadro da ANOVA – Fator único para m grupos distintos. Cada um com n elementos

Fonte de Variação	SQ	gl	QM	F
Entre os grupos (tratamento)	SQTR	m-1	$QM_{trat} = SQTR/gl_{trat}$	QM_{trat}/QM_{erro}
Dentro dos grupos (erro/resíduo)	SQER	m(n-1)	$QM_{erro} = SQER/gl_{erro}$	
Total	STQ	$gl_{trat} + gl_{erro}$		

SQ = soma dos quadrados

QM = variância do quadrado médio

gl = grau de liberdade

$$F = F_{calc}$$

Formulário

SQTR - Soma de quadrados de tratamentos: Desvio de cada média de grupo em relação ao média global. (Esses desvios podem ser considerados como devidos ao fato de os grupos terem recebidos tratamentos diferentes.)

$$SQTR = n \sum_{j=1}^{m} (\bar{x}_j - \bar{\bar{x}})^2$$

onde, a Média global é: $\bar{\bar{x}} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}}{mn}$ m= número de grupos e n=número de elementos em cada grupo. $\bar{x_j}$ é a média de cada grupo , $j=1,\ldots,m$

Formulário

SQER - Soma de quadrados dos erros: Desvio de cada elemento em relação a média do grupo. (Podemos considerar essas diferenças como decorrentes de fatores aleatórios desconhecidos.)

$$SQER = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} - \bar{x}_{j})^{2}$$

STQ - É a soma total:

$$STQ = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} - \bar{\bar{x}})^2$$

ou ainda, STQ = SQTR + SQER

Variância Quadrática Média

- Cada estatística do tipo soma de quadrados tem uma grandeza associada, que são seus graus de liberdade;
- O número de graus de liberdade de SQTR é m-1;
- O número de graus de liberdade de SQER é m(n-1);
- Quando uma soma de quadrados é dividida pelos seus graus de liberdade, o seu resultado é chamado de variância quadrática média;
- A variância quadrática média dos tratamentos é dada por:

$$QM_{trat} = \frac{SQTR}{m-1}$$

A variância quadrática média do erro é dada por:

$$QM_{erro} = \frac{SQER}{m(n-1)}$$

Estatística do Teste

Tomando-se a variância quadrática média dos tratamentos dividida pela variância quadrática média dos erros, o resultado é a estatística F:

$$F_{cal} = \frac{QM_{trat}}{QM_{erro}}$$

Exemplo 1

Um professor deseja testar três métodos de ensino diferentes, I, II e III. Para isso, escolhe aleatóriamente três grupos de 5 alunos, e cada grupo é ensinado por um método diferente. Dá-se então uma mesma prova a todos os alunos; os resultados (notas) constam na tabela abaixo. Determine se há diferença significativa entre os três métodos, ao nível de significância de 5%.

Método I	75	62	71	58	73
Método II	81	85	68	92	90
Método III	73	79	60	75	81

Nesses modelos, os elementos são classificados segundo dois critérios, ou seja, existem duas características de interesse que deverão ser testadas simultaneamente, constituindo duas classificações cruzadas.

Testes a serem realizados

$$I: \begin{cases} H_0 \ linha: \ \mu_1 = \mu_2 = \mu_3 = \dots = \mu_n \\ H_1 \ linha: existe \ pelo \ menos \ uma \ diferente \end{cases}$$

II:
$$\begin{cases} H_0 \ coluna: \ \mu_1 = \mu_2 = \mu_3 = \dots = \mu_m \\ H_1 \ coluna: \ existe \ pelo \ menos \ uma \ diferente \end{cases}$$

Quadro da ANOVA – Fator duplo sem repetição

Fonte de Variação	SQ	gl	QM	F
Entre colunas	SQC	m-1	$QMC = \frac{SQC}{m-1}$	QMC/QMER
Entre linhas	SQL	n-1	$QML = \frac{SQL}{n-1}$	QML/QMER
Dentro dos grupos (erro/resíduo)	SQER	(m-1)(n-1)	QMER = SQER/(m-1)(n-1)	
Total	STQ	$gl_c + gl_l + gl_{er}$		

SQ = soma dos quadrados

QM = variância do quadrado médio

gl = grau de liberdade

 $F = F_{calc}$

Formulários

Para encontrar os F críticos:

$$F_{crit/linha} = F_{\alpha}, gl_L; gl_{erro}$$
 $F_{crit/coluna} = F_{\alpha}, gl_C; gl_{erro}$

STQ - Soma total de quadrados:

$$STQ = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} - \bar{\bar{x}})^2$$

ou ainda, STQ = SQlin + SQcol + SQerro

Formulários

SQcol - soma de quadrados entre colunas:

$$SQcol = n \sum_{j=1}^{m} (\bar{x}_{cj} - \bar{\bar{x}})^2$$

 \bar{x}_{cj} representa a média de todos os elementos da coluna j.

• SQcol tem (m-1) graus de liberdade

SQlin - Soma de quadrados entre linhas:

$$SQlin = m \sum_{i=1}^{n} (\bar{x}_{li} - \bar{\bar{x}})^2$$

 \bar{x}_{li} representa a média de todos os elementos da linha i.

SQlin tem (n-1) graus de liberdade.

Formulários

SQerro= Soma dos quadrados dos erros:

$$SQER = \sum_{i=1}^{n} \sum_{j=1}^{m} [x_{ij} - \bar{\bar{x}} - (\bar{x}_{cj} - \bar{\bar{x}}) - (\bar{x}_{li} - \bar{\bar{x}})]^{2}$$

ou ainda, SQER = STQ - SQcol - SQcol

• SQER tem (m-1)(n-1) graus de liberdade.

$$QMC = \frac{SQcol}{m-1}$$

$$QML = \frac{SQlin}{n-1}$$

$$QMER = \frac{SQER}{(m-1)(n-1)}$$

 F_{col} - Estatística F para colunas:

$$F_{col} = \frac{QMC}{QMER}$$

F_{lin} - Estatística F para linhas:

$$F_{lin} = rac{QML}{QMER}$$

Exemplo 2

A tabela abaixo apresenta o número de peças defeituosas produzidas por quatro operários trabalhando em três máquinas diferentes. Faça uma análise de variância considerando os dois fatores (máquinas e operários) utilizando 5% de significância.

Máquinas	Operários				Total
	B ₁	B ₂	B ₃	B ₄	Iotai
A ₁	35	38	41	32	146
A ₂	31	40	38	31	140
A ₃	36	35	43	25	139
Total	102	113	122	88	425

