PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-350310

(43) Date of publication of application: 15.12.2000

(51)Int.Cl.

B60L 11/14 B60K 6/02 F02D 29/02 F02N 11/04

F02N 11/04 F02N 11/08 H01M 8/00

(21)Application number: 11-221934

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

05.08.1999

(72)Inventor: TABATA ATSUSHI

NAGANO SHUJI

(30)Priority

Priority number: 11085300

Priority date: 29.03.1999

Priority country: JP

(54) DRIVING SYSTEM OF MOVING BODY AND VEHICLE DRIVING SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to prevent a feeling of tardiness caused by a delay in engine start during a shift from a motor running mode to an engine running mode. SOLUTION: An engine as a driving source is driven to start in a step S4. In this case, a judgment of a step S5 becomes NO when the starting of the engine is slow, and a step S7 and the following steps are carried out. A clutch C1 is engaged to join the engine with a driving force transmission system. An engine starting electric motor MO is operated with torque larger than a starting case while the engine is operated with revolutions so that given driving force is generated for complementing a lack in driving force related with a delay in engine start.

LEGAL STATUS

[Date of request for examination]

01.02.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than this source of the 1st driving force as a source for migration of driving force for moving a mobile The drive system of the mobile characterized by establishing the auxiliary drive control means which uses said source of the 2nd driving force instead, and is operated exceeding the rated output of this source of the 2nd driving force if needed when [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate.

[Claim 2] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for moving a mobile, by the case where at least one source of the 1st driving force starts among said two or more sources for migration of driving force When the starting time amount of this source of the 1st driving force exceeds predetermined time The drive system of the mobile characterized by establishing the auxiliary drive control means operated exceeding the rated output of this source of the 2nd driving force if needed while starting the source of the 2nd driving force where starting time amount is shorter than this source of the 1st driving force among these two or more sources for migration of driving force.

[Claim 3] Said source of the 1st driving force is the engine which operates by combustion of a fuel, and said source of the 2nd driving force is an electric motor which operates with electrical energy. While having an engine starting means to start in order to use said engine as said source for migration of driving force, said auxiliary drive control means In case said engine is started by said engine starting means, when starting of this engine is slow, or when starting of this engine cannot be performed The drive system of the mobile according to claim 1 or 2 characterized by being what uses said electric motor instead and operated exceeding the rated output of this electric motor if needed.

[Claim 4] It is the drive system of the mobile according to claim 3 which, as for said electric motor, electrical energy is supplied from a fuel cell, and is characterized by said auxiliary drive control means being what operates said electric motor exceeding the rated output by increasing the amount of generations of electrical energy of said fuel cell exceeding the amount of rated generations of electrical energy if needed.

[Claim 5] It is the drive system of the mobile according to claim 3 characterized by being what operates this electric motor exceeding the rated output by, as for said electric motor, usually supplying electrical energy alternatively from either a fuel cell and a rechargeable battery, and said auxiliary drive control means's carrying out series connection of said fuel cell and rechargeable battery if needed, and supplying electrical energy to said electric motor.

[Claim 6] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than this source of the 1st driving force as a source for migration of driving force for moving a mobile When [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate It has the auxiliary drive control means which generates driving force, using said source of the 2nd driving force instead. And said source of the 2nd driving force It is the drive system of the mobile characterized by said auxiliary drive control means being what increases the amount of generations of electrical energy of this fuel cell exceeding the amount of rated generations of electrical energy if needed, and operates this electric motor in the electric motor which operates with the electrical energy supplied from a fuel cell.

[Claim 7] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for moving a mobile, by the case where at least one source of the 1st driving force starts among said two or more sources for migration

of driving force When the starting time amount of this source of the 1st driving force exceeds predetermined time It has the auxiliary drive control means which starts the source of the 2nd driving force where starting time amount is shorter than this source of the 1st driving force among these two or more sources for migration of driving force, and generates driving force. And said source of the 2nd driving force It is the drive system of the mobile characterized by said auxiliary drive control means being what increases the amount of generations of electrical energy of this fuel cell exceeding the amount of rated generations of electrical energy if needed, and operates this electric motor in the electric motor which operates with the electrical energy supplied from a fuel cell.

[Claim 8] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than this source of the 1st driving force as a source for migration of driving force for moving a mobile The drive system of the mobile characterized by establishing the auxiliary drive control means which uses the source of the 3rd driving force which is not usually used as a source for migration of driving force as a source for migration of driving force when [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate.

[Claim 9] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for moving a mobile, by the case where at least one source of the 1st driving force starts among said two or more sources for migration of driving force When the starting time amount of this source of the 1st driving force exceeds predetermined time Usually, the drive system of the mobile characterized by establishing the auxiliary drive control means which is the source of driving force which is not used as a source for migration of driving force, and uses the source of the 3rd driving force where starting time amount is shorter than this source of the 1st driving force as a source for migration of driving force.

[Claim 10] Said auxiliary drive control means is the drive system of the mobile according to claim 8 or 9 characterized by being what operates said source of the 3rd driving force exceeding the rated output if needed.

[Claim 11] While having an engine starting means for said source of the 1st driving force to be an engine which operates by combustion of a fuel, and to start in order to use this engine as said source for migration of driving force In case said engine is started by said engine starting means, when starting of this engine is slow, or when starting of this engine cannot be performed, said auxiliary drive control means Usually, the drive system of a mobile given in any 1 term of claims 8-10 characterized by being what uses the electric motor which is not used as a source for transit of driving force as said source of the 3rd driving force. [Claim 12] Said source of the 3rd driving force is the drive system of the mobile according to claim 11 characterized by being an electric motor for engine starting.

[Claim 13] Said source of the 3rd driving force is the drive system of the mobile according to claim 11 characterized by being an electric motor for an auxiliary machinery drive.

[Claim 14] In the drive system for cars of the hybrid mold equipped with the engine which operates by combustion of a fuel, and the electric motor which operates with electrical energy as a source for transit of driving force for making it run a car A low-speed motor transit means to be at the predetermined low-speed transit time defined beforehand, and to run only said electric motor as a source of driving force at the time of Brake ON, A low-speed engine transit means to be at said predetermined low-speed transit time, and to run said engine as a source of driving force at the time of Brake OFF, The drive system for cars characterized by having a high-speed engine transit means to run said engine as a source of driving force rather than said predetermined low-speed transit at the time of high-speed transit.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the drive system of mobiles, such as a car, and relates to the drive system by which the smooth start engine performance is obtained especially.
[0002]

[Description of the Prior Art] As a source for migration of driving force for moving a mobile, the drive system of the mobile which has a source of the 1st driving force and the source of the 2nd driving force where rated output is smaller than the source of the 1st driving force is known. The drive system for cars of the hybrid mold equipped with the engine which operates by combustion of a fuel, and the electric motor which operates with electrical energy as a source of driving force for car transit is the example, and, generally engine one of rated output is [a system] larger than an electric motor. To the equipment indicated by JP,10-136508,A, the auxiliary transmission which is the example and consists of the epicyclic gear drive of a simple planetary mold is prepared, and various transit modes, such as motor transit mode which makes only an electric motor the source of driving force according to the engagement condition of two clutches, and engine transit mode which makes only an engine the source of driving force, are formed. And in such a drive system for cars, after an engine is generally also stopped at the time of a car halt and departing in motor transit mode, an engine is put into operation and, usually it switches to engine transit mode.

[Problem(s) to be Solved by the Invention] However, if engine starting can be slow or it cannot start when putting an engine into operation and shifting to engine transit mode, after departing in motor transit mode in this way, even if driving force is insufficient, it may leave and come and admiration may be produced. If the mass electric motor with which a big output is obtained is carried as a source for transit of driving force, the lack of driving force can be mitigated or canceled by operating the electric motor to high power rather than usual at the time of engine starting improper etc., but while becoming the superfluous quality which is unnecessary at the time of the usual transit and becoming cost quantity, a large-sized and big installation tooth space is needed.

[0004] The place which succeeded in this invention against the background of the above situation, and is made into the purpose has rated output in improving the lack of driving force by which it is accompanied improper [the actuation initiation delay of sources of the 1st driving force, such as a large engine, or actuation], rated output adopting a small small and cheap thing as sources of the 2nd driving force, such as an electric motor.

[0005]

[Means for Solving the Problem] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than the source of the 1st driving force as a source for migration of driving force for the 1st invention to move a mobile in order to attain this purpose When [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate, said source of the 2nd driving force is used instead, and it is characterized by establishing the auxiliary drive control means operated exceeding the rated output of the source of the 2nd driving force if needed.

[0006] in addition, the rotational speed of the motor which "rated output" is the maximum output which can be used continuously, for example, it is "a motor output when reaching constant value in the range in which a temperature rise does not exceed a limit when continuous running of the motor is carried out with a nominal speed" in the case of an electric motor, and operates a nominal speed by "rated output. Even if it performs acceleration and deceleration by the maximum torque, it is an convenient rotational frequency."

Therefore, it can be made to operate exceeding the rated output, without spoiling the endurance of the source of driving force, if it is a short time.

[0007] Moreover, in the case of the electric motor to which the source of driving force operates with the electrical energy supplied from a fuel cell, the rated output of the source of driving force becomes settled by the lower one among the rated output of the amount of rated generations of electrical energy of a fuel cell, and an electric motor. That is, allowances are in the rated output of an electric motor, even if the amount of generations of electrical energy of a fuel cell reaches the amount of rated generations of electrical energy, when an electric motor does not reach rated output, the rated output of the source of driving force is prescribed by the amount of rated generations of electrical energy of a fuel cell, and the output of the electric motor when being operated in the amount of rated generations of electrical energy turns into rated output of the source of driving force. On the other hand, allowances are in the amount of rated generations of electrical energy of a fuel cell, and even if the output of an electric motor reaches rated output, when a fuel cell does not reach the amount of rated generations of electrical energy, the rated output of an electric motor turns into rated output of the source of driving force as it is.

[0008] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for the 2nd invention to move a mobile By the case where at least one source of the 1st driving force starts among said two or more sources for migration of driving force, when the starting time amount of the source of the 1st driving force exceeds predetermined time While starting the source of the 2nd driving force where starting time amount is shorter than the source of the 1st driving force among two or more of the sources for migration of driving force, it is characterized by establishing the auxiliary drive control means operated exceeding the rated output of the source of the 2nd driving force if needed.

[0009] The 3rd invention is the engine with which the source of the 1st driving force of (a) above operates by combustion of a fuel in the drive system of the mobile of the 1st invention or the 2nd invention. Said source of the 2nd driving force is an electric motor which operates with electrical energy, and is (b). While having an engine starting means to start in order to use said engine as said source for migration of driving force (c) in case said engine is started by said engine starting means, said auxiliary drive control means When starting of the engine is slow, or when starting of the engine cannot be performed, said electric motor is used instead and it is characterized by being what is operated exceeding the rated output of the electric motor if needed.

[0010] It sets to the drive system of the mobile of the 3rd invention, and the 4th invention is (a). Electrical energy is supplied from a fuel cell and said electric motor is (b). Said auxiliary drive control means is characterized by being what operates said electric motor exceeding the rated output by increasing the amount of generations of electrical energy of said fuel cell exceeding the amount of rated generations of electrical energy if needed.

[0011] In addition, it can be made to generate electricity exceeding the amount of rated generations of electrical energy, without spoiling the endurance of a fuel cell, if "the amount of rated generations of electrical energy" is the amount of the maximum generations of electrical energy which can be used continuously and it is a short time.

[0012] It sets to the drive system of the mobile of the 3rd invention, and the 5th invention is (a). Electrical energy is usually alternatively supplied from either a fuel cell and a rechargeable battery, and said electric motor is (b). Said auxiliary drive control means is characterized by being what operates the electric motor exceeding the rated output by carrying out series connection of said fuel cell and rechargeable battery if needed, and supplying electrical energy to said electric motor.

[0013] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than the source of the 1st driving force as a source for migration of driving force for the 6th invention to move a mobile (a) When [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate It has the auxiliary drive control means which generates driving force, using said source of the 2nd driving force instead, and is (b). Said source of the 2nd driving force With the electric motor which operates with the electrical energy supplied from a fuel cell, said auxiliary drive control means is characterized by being what increases the amount of generations of electrical energy of the fuel cell exceeding the amount of rated generations of electrical energy if needed, and operates the electric motor.

[0014] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for the 7th invention to move a mobile (a) By the case where at least one source of the 1st driving force starts among said two or more

sources for migration of driving force, when the starting time amount of the source of the 1st driving force exceeds predetermined time It has the auxiliary drive control means which starts the source of the 2nd driving force where starting time amount is shorter than the source of the 1st driving force among two or more of the sources for migration of driving force, and generates driving force. And (b) Said source of the 2nd driving force is the electric motor which operates with the electrical energy supplied from a fuel cell, and said auxiliary drive control means is characterized by being what increases the amount of generations of electrical energy of the fuel cell exceeding the amount of rated generations of electrical energy if needed, and operates the electric motor.

[0015] In the drive system of the mobile which has a source of the 1st driving force, and the source of the 2nd driving force where rated output is smaller than the source of the 1st driving force as a source for migration of driving force for the 8th invention to move a mobile When [with slow actuation initiation of said source of the 1st driving force] it cannot be made to case or operate, it is characterized by establishing the auxiliary drive control means which uses the source of the 3rd driving force which is not usually used as a source for migration of driving force as a source for migration of driving force.

[0016] In the drive system of the mobile which has two or more sources of driving force where the time amount which starting takes differs as a source for migration of driving force for the 9th invention to move a mobile By the case where at least one source of the 1st driving force starts among said two or more sources for migration of driving force, when the starting time amount of the source of the 1st driving force exceeds predetermined time Usually, it is characterized by establishing the auxiliary drive control means which is the source of driving force which is not used as a source for migration of driving force, and uses the source of the 3rd driving force where starting time amount is shorter than the source of the 1st driving force as a source for migration of driving force.

[0017] The 10th invention is characterized by said auxiliary drive control means being what operates said source of the 3rd driving force exceeding the rated output if needed in the drive system of the mobile of the 8th invention or the 9th invention.

[0018] The 11th invention is set to the drive system of which mobile of the 8th invention - the 10th invention. (a) Said source of the 1st driving force is an engine which operates by combustion of a fuel, and is (b). While having an engine starting means to start in order to use the engine as said source for migration of driving force (c) In case said engine is started by said engine starting means, said auxiliary drive control means When starting of the engine is slow, or when starting of the engine cannot be performed, it is characterized by being what uses the electric motor which is not usually used as a source for transit of driving force as said source of the 3rd driving force.

[0019] The 12th invention is characterized by said source of the 3rd driving force being an electric motor for engine starting in the drive system of the mobile of the 11th invention.

[0020] The 13th invention is characterized by said source of the 3rd driving force being an electric motor for an auxiliary machinery drive in the drive system of the mobile of the 11th invention.

[0021] In the drive system for cars of the hybrid mold equipped with the engine which operates by combustion of a fuel, and the electric motor which operates with electrical energy as a source for transit of driving force for the 14th invention to make it run a car (a) A low-speed motor transit means to be at the predetermined low-speed transit time defined beforehand, and to run only said electric motor as a source of driving force at the time of Brake ON, (b) A low-speed engine transit means to be at said predetermined low-speed transit time, and to run said engine as a source of driving force at the time of Brake OFF, (c) At the time of high-speed transit, it is characterized by having a high-speed engine transit means to run said engine as a source of driving force rather than said predetermined low-speed transit.

[0022] In addition, since "Brake ON" generates damping force, the condition that the operator succeeds in brakes operation is meant, and "Brake OFF" means the condition of not succeeding in brakes operation. [0023]

[Effect of the Invention] In the drive system of the mobile of the 1st invention When [with slow actuation initiation of the source of the 1st driving force where rated output is large] it cannot be made to case or operate, in order to use the source of the 2nd driving force instead and to make it operate exceeding rated output if needed by the auxiliary drive control means, The lack of driving force by which it is accompanied improper [the actuation initiation delay of the source of the 1st driving force or actuation] is improved rated output adopting a small cheap and compact electric motor etc. as the source of the 2nd driving force. [0024] Moreover, in order to compensate the lack of driving force using the source of the 2nd driving force which is a source for migration of driving force, For example, the move mode using the move mode using the source of the 2nd driving force to the source of the 1st driving force, Or when the actuation initiation

delay of the source of the 1st driving force at the time of shifting to the move mode using both the source of the 1st driving force and the source of the 2nd driving force and actuation are improper, in order to pull to high power, using the source of the 2nd driving force as it is and to make a mobile moved, As compared with the 8th invention and the 9th invention using the source of the 3rd driving force, while being able to increase driving force smoothly, control is easy.

[0025] When the starting time amount of the source of the 1st driving force exceeds predetermined time, the mobile system of the mobile of the 2nd invention While starting the source of the 2nd driving force where starting time amount is shorter than the source of the 1st driving force among two or more sources for migration of driving force by the auxiliary drive control means The lack of driving force by which it is accompanied improper [the actuation initiation delay of the source of the 1st driving force or actuation] is improved rated output adopting a small cheap and compact electric motor etc. as a source of the 2nd driving force like the 1st invention, in order to make it operate exceeding the rated output of the source of the 2nd driving force if needed. Moreover, as compared with the 8th invention and the 9th invention using the source of the 3rd driving force, in order to compensate the lack of driving force using the source of the 2nd driving force which is a source for migration of driving force, while being able to increase driving force smoothly, it is the same as that of the 1st invention for control to be easy.

[0026] It is the case where the 3rd invention - the 5th invention use an engine as a source of the 1st driving force, and an electric motor is used as a source of the 2nd driving force. In case an engine is started by the engine starting means, when starting of the engine is slow, or when engine starting cannot be performed While driving force is generated by the auxiliary drive control means using the electric motor which is a source of the 2nd driving force The lack of driving force by which it is accompanied improper [engine starting delay or starting] is improved rated output adopting a small cheap and compact thing as an electric motor, since the electric motor is operated exceeding rated output if needed.

[0027] Thereby, in the case of the drive system for cars of the hybrid mold with which an engine and an electric motor are used as a source for transit of driving force, the thing which are formed even if it originates in engine starting delay at the time of the shift to engine transit mode (or engine + motor transit mode) from motor transit mode and which it comes, and admiration arises or engine starting therefore becomes improper transit impossible is prevented. Moreover, in order to compensate the lack of driving force using the electric motor which is a source for migration of driving force, In for example, the case of the engine starting delay at the time of the shift to engine transit mode or engine + motor transit mode from motor transit mode In order to pull and run to high power, using the electric motor which was being used in motor transit mode as it is, As compared with the 12th invention and the 13th invention using the electric motor for engine starting, or the electric motor for an auxiliary machinery drive, while being able to increase driving force smoothly, control is easy.

[0028] The amount of rated generations of electrical energy and rated output are able to all adopt a small cheap and compact thing as a fuel cell and an electric motor, and in order to operate an electric motor exceeding rated output by using a fuel cell as an electrical energy source of supply of the above-mentioned electric motor, and increasing the amount of generations of electrical energy of the fuel cell exceeding the amount of rated generations of electrical energy, a drive system is still cheaper and is constituted from the 4th invention by the compact. Moreover, compared with the case where it uses together with a rechargeable battery like the 5th invention, control is easy.

[0029] The 5th invention by the case where a fuel cell and a rechargeable battery are used as an electrical energy source of supply of the above-mentioned electric motor, and electrical energy is usually alternatively supplied from either In order to operate an electric motor exceeding rated output by said auxiliary drive control means's carrying out series connection of a fuel cell and rechargeable batteries, such as it, if needed, and supplying electrical energy to an electric motor, It is possible to adopt the cheap and compact thing which has the amount of rated generations of electrical energy small as a fuel cell like the 4th invention, and a drive system is still cheaper and is constituted by the compact.

[0030] The 6th invention is one embodiment of the 1st invention substantially, and the same operation effectiveness as the 1st invention is acquired. Moreover, the 7th invention is one embodiment of the 2nd invention substantially, and the same operation effectiveness as the 2nd invention is acquired. In addition, it is the electric motor to which the source of the 2nd driving force operates in the 6th invention of this etc., and the 7th invention with the electrical energy supplied from a fuel cell, and since an auxiliary drive control means is what increases the amount of generations of electrical energy of the fuel cell exceeding the amount of rated generations of electrical energy if needed, and operates an electric motor, it can adopt the cheap and compact thing which has the amount of rated generations of electrical energy small as a fuel cell. In

addition, although the source of the 2nd driving force which consists of the fuel cell and electric motor when the amount of generations of electrical energy of a fuel cell exceeds the amount of rated generations of electrical energy is made to operate exceeding the rated output (output specified in the amount of rated generations of electrical energy), the electric motor itself is not necessarily not necessarily operated exceeding the rated output of an electric motor.

[0031] In the drive system of the mobile of the 8th invention When [with slow actuation initiation of the source of the 1st driving force where rated output is large] it cannot be made to case or operate, in order to use the source of the 3rd driving force which is not usually used as a source for migration of driving force by the auxiliary drive control means as a source for migration of driving force, The lack of driving force by which it is accompanied improper [the actuation initiation delay of the source of the 1st driving force or actuation] is improved rated output adopting a small cheap and compact electric motor etc. as a source of the 2nd driving force.

[0032] When the starting time amount of the source of the 1st driving force exceeds predetermined time, the mobile system of the mobile of the 9th invention In order to use the source of the 3rd driving force where are the source of driving force which is not usually used as a source for migration of driving force by the auxiliary drive control means, and starting time amount is shorter than the source of the 1st driving force as a source for migration of driving force, The lack of driving force by which it is accompanied improper [the actuation initiation delay of the source of the 1st driving force or actuation] is improved rated output adopting a small cheap and compact electric motor etc. as sources for migration of driving force other than the source of the 1st driving force.

[0033] In the 10th invention, the lack of driving force by which it is accompanied improper [the actuation initiation delay of the source of the 1st driving force or actuation] can be improved much more effectively, rated output adopting a small cheap and compact electric motor etc. as sources for migration of driving force other than sources of the 1st driving force, such as a source of the 2nd driving force, in order to operate the above-mentioned source of the 3rd driving force exceeding the rated output if needed.

[0034] The 11th invention - the 13th invention are the cases where an engine is used as a source of the 1st driving force. In case an engine is started by the engine starting means, when starting of the engine is slow, or when engine starting cannot be performed Since driving force is generated by the auxiliary drive control means using the electric motor of the source of the 3rd driving force, The lack of driving force by which it is accompanied improper [engine starting delay or starting] is improved supposing that it is sources for migration of driving force other than sources of the 1st driving force, such as a source of the 2nd driving force of the 8th invention, and rated output adopting a small cheap and compact electric motor etc. [0035] Thereby, in the case of the drive system for cars of the hybrid mold with which an engine and an electric motor are used as a source for transit of driving force, the thing which are formed even if it originates in engine starting delay at the time of the shift to engine transit mode (or engine + motor transit mode) from motor transit mode and which it comes, and admiration arises or engine starting therefore becomes improper transit impossible is prevented.

[0036] Even if it is at the predetermined low-speed transit time, in the 14th invention at the time of Brake OFF While running an engine as a source of driving force with a low-speed engine transit means In order to run an engine as a source of driving force similarly with a high-speed engine transit means rather than the predetermined low-speed transit at the time of high-speed transit, It compares, when running by operating an engine from the time of start at the time of the usual start from which breaks in an accelerator and it departs, putting an engine into operation in the middle of start acceleration and switching to engine transit from motor transit. The feeling of slowness accompanying the change is solved, and the smooth start engine performance is obtained. On the other hand, it is at the predetermined low-speed transit time, and since it runs only an electric motor as a source of driving force with a low-speed motor transit means, the reduction effectiveness of fuel consumption or exhaust gas which is one of the drive system features for cars of the hybrid mold equipped with the engine and the electric motor as a source for transit of driving force is fully enjoyable in the case of Brake ON (at i.e., the time of the creep transit which moves forward only by adjusting a brake force, or goes astern).

[Embodiment of the Invention] Here, the 1st invention - the 13th invention are applied suitable for the drive system for cars of the hybrid mold equipped with the engine (source of the 1st driving force) which operates by combustion of a fuel, and the electric motor (source of the 2nd driving force) which operates with electrical energy as a source for transit of driving force for making it run a car (source for migration of driving force).

[0038] After departing as a drive system for cars of the above-mentioned hybrid mold in the motor transit mode it runs only with an electric motor, when putting an engine into operation and switching to engine transit mode or engine + motor transit mode, it is applied suitably, but while departing in engine transit mode, when operating an electric motor if needed and assisting, it may be applied to the various drive systems for cars.

[0039] as the electric motor (the electric motor used as a source for transit of the 14th invention of driving force is included) used as a source of the 2nd driving force -- dozens -- although it is desirable to use what [about V] that operates by the low battery comparatively cheap and compact -- several -- it is also possible to use the electric motor which operates by the high voltage of 100V grade. It not only generates torque as a source of driving force, but as an electric motor, the motor generator which can be generated electricity by carrying out a rotation drive with the kinetic energy of a car is used suitably. As an engine, a gasoline engine, a diesel power plant, etc. are used suitably.

[0040] It is possible to adopt various sources of driving force other than an engine or an electric motor as a source for migration of the 1st invention, the 2nd invention, the 8th invention, and the 9th invention of driving force.

[0041] Although starting of an engine is efficiently slow, and it can also constitute from the 3rd invention - the 5th invention, the 11th invention - the 13th invention at the time of engine starting so that [driving force] it may always be generated by the auxiliary drive control means For example, a starting delay decision means to judge whether engine starting is slower than the predetermined time defined beforehand is established, and only when it succeeds in decision of the purport that starting is slow, with the starting delay decision means, you may make it generate driving force by the auxiliary drive control means.

[0042] Although the engine starting means of the 3rd invention and the 11th invention is equipped with the electric motor for engine starting like the 12th invention and is constituted, using the electric motor which it has as a source for migration of driving force, the electric motor for an auxiliary machinery drive, etc., it may carry out cranking of the engine and may start.

[0043] Although electrical energy is supplied from a fuel cell in the 4th invention - the 7th invention, electrical energy may be supplied to the electric motor as a source of the 2nd driving force only from rechargeable batteries, such as a dc-battery, and the amount of supply of electrical energy can be increased to it, and it can be operated exceeding the rated output of an electric motor.

[0044] Although do not make into heat the chemical energy produced by oxidation of the fuel supplied from the outside, but it is made to change to direct electrical energy and the hydrogen-oxygen fuel cell is known widely, the fuel cell using other fuels, such as natural gas and alcohol, can also be used for a fuel cell. [0045] Although the 5th invention carries out series connection of a fuel cell and the rechargeable battery and operates an electric motor by high power, it can also make a fuel cell generate in that case exceeding the amount of rated generations of electrical energy like the 4th invention. When making it generate electricity exceeding the amount of rated generations of electrical energy, it can also be regarded as one embodiment of the 4th invention.

[0046] Although driving force is generated using the source of the 3rd driving force in the 8th invention - the 13th invention, it is desirable not to generate driving force in a source of 3rd driving force independent, and to use together with sources for migration of driving force other than sources of the 1st driving force, such as a source of the 2nd driving force of the 8th invention. In that case, although it is not necessary to not necessarily operate sources for migration of driving force, such as a source of the 2nd driving force, exceeding rated output, it is possible to also make it operate exceeding rated output like the 1st invention - the 7th invention. In that case, it can also be regarded as one embodiment of the 1st invention - the 7th invention.

[0047] By the 12th invention, it is (a), for example. Said engine starting means It is constituted so that said engine may carry out cranking of the engine with the electric motor for said engine starting and may start in the condition of having been separated from the driving force transfer system. (b) Operating the electric motor for said engine starting with bigger torque than the time of said cranking, and rotating the engine, while connecting said engine to a driving force transfer system, said auxiliary drive control means is constituted so that driving force may be generated.

[0048] Although the electric motor for engine starting is used as a source of the 3rd driving force and the electric motor for an auxiliary machinery drive is used by the 13th invention in the 12th invention, on the occasion of implementation of other invention, the electric motor for engine starting of that etc. and the electric motor for an auxiliary machinery drive are not necessarily indispensable.

[0049] The low-speed engine transit means of the 14th invention and a high-speed engine transit means can

also use both an engine and an electric motor as a source of driving force if needed that what is necessary is just what uses an engine as a source of driving force at least.

[0050] Hereafter, the example of this invention is explained to a detail, referring to a drawing. Drawing 1 is the main point Fig. of the hybrid driving gear 10 which is the drive system for cars of the hybrid mold with which this invention was applied. This hybrid driving gear 10 is for FF (front engine front drive) cars, it has the gasoline engine 12 which operates by combustion of a fuel, the motor generator 14 which has a function as the electric motor which operates with electrical energy, and a generator, the epicyclic gear-type auxiliary transmission 16, the belt-type nonstep variable speed gear 18, and the differential gear 20, and driving force is transmitted to the front wheel (driving wheel) of the right and left which are not illustrated from output shafts 22R and 22L. The input shaft 38 of an engine 12, a motor generator 14, an auxiliary transmission 16, and a nonstep variable speed gear 18 is arranged in the sequence on the same axis. An engine 12 and a motor generator 14 are equivalent to the source for migration of driving force for moving the car which is a mobile, and the source for transit of driving force, an engine 12 is a source of the 1st driving force, and a motor generator 14 is a source of the 2nd driving force where rated output is smaller than an engine 12 and where starting time amount is short. Moreover, a nonstep variable speed gear 18 is the main change gear, and about three to 11 change gear ratio is obtained in this example before output shafts 22R and 22L. [0051] An engine 12 is started by carrying out a rotation drive (cranking) by the electric motor 60 for engine starting (MO). This electric motor 60 is a DC motor, it is operated by low batteries, such as about 12V-36V, and electrical energy is supplied from the dc-battery 26 as accumulation-of-electricity equipment. Crankshaft 12s of an engine 12, it connects with the above-mentioned electric motor 60 mechanically through gears, such as a belt. Auxiliary machinery 64 is connected through a gear and electromagnetic clutches 62, such as a belt, again at crankshaft 12s, and the rotation drive of the compressor of the airconditioner as auxiliary machinery 64 etc. is carried out. The motor generator 24 is further connected through gears, such as a belt, at crankshaft 12s. This motor generator 24 is an electric motor for an auxiliary machinery drive, and electrical energy is supplied from a dc-battery 26.

[0052] what a dc-battery 26 supplies electrical energy also to said motor generator 14, and is operated -- it is -- this example -- about 36V -- the thing of a low battery is used comparatively and it charges serially during car transit by regenerative braking of a motor generator 14. While putting an engine 12 into operation with an electric motor 60 when a motor generator 14 cannot be operated as an electric motor when the amount SOC of accumulation of electricity of a dc-battery 26 falls below to a predetermined value namely, a dcbattery 26 is charged by carrying out a rotation drive and making a motor generator 24 generate with the engine 12. Thereby, always running using a motor generator 14 is possible except the time of failure. The amount SOC of accumulation of electricity of extent which can put an engine 12 into operation with an electric motor 60 is always secured to a dc-battery 26. In addition, in order to supply electrical energy to an electric motor 60, you may make it form the dc-battery of 12V grade independently [a dc-battery 26]. [0053] The auxiliary transmission 16 is equipped with the 1st epicyclic gear drive 30 of the double planetary mold which approached mutually and was arranged in juxtaposition, and the 2nd epicyclic gear drive 32 of a simple planetary mold. These epicyclic gear drives 30 and 32 are RABINIYO molds with which the pinion gear by the side of the ring wheel of the carrier of the 1st epicyclic gear drive 30 and the pinion gear of the carrier of the 2nd epicyclic gear drive 32 are unified while having the common ring wheel R and Carrier C. And said motor generator 14 is connected with the sun gear S1 of the 1st epicyclic gear drive 30, and an engine 12 is connected with the sun gear S2 of the 2nd epicyclic gear drive 32 through the 1st clutch C1 and a damper gear 34. Moreover, while the sun gears S1 and S2, such as it, are connected with the 2nd clutch C2, the reaction force brake B connects with housing 44, as for Carrier C, rotation is prevented, and the ring wheel R is connected with the input shaft 38 of a nonstep variable speed gear 18 through the output member 36. Clutches C1 and C2 and the reaction force brake B are the things of the friction engagement type made to all carry out friction engagement with an actuator.

[0054] The above-mentioned sun gear S1 is connected to the 2nd clutch C2 prepared in the engine 12 side rather than the motor generator 14 through the connection member 40 of the shape of a cylinder arranged by penetrating the core of the motor generator 14 which adjoins the 1st epicyclic gear drive 30 and is arranged, and Rota of a motor generator 14 is being fixed to the mid-position of the connection member 40 by relative rotation impossible. a sun gear S2 -- the above-mentioned connection member 40 -- inserting in -- relativity -- while connecting with the 1st clutch C1 prepared in the engine 12 side rather than the motor generator 14 through the connection member 42 arranged pivotable, it connects with the 2nd clutch C2, without going via the 1st clutch C1. Moreover, said reaction force brake B is arranged so that the carrier C which begins to be prolonged from between an auxiliary transmission 16 and motor generators 14 to a periphery side may be

fixed to housing 44.

[0055] Thus, since both the epicyclic gear drives 30 and 32 consist of sun gears S1 and S2 and a common ring wheel R, and a total of four rotation elements of Carrier C, there being little engagement equipment of a clutch or a brake and ending etc. is constituted by that equipment is easy as a whole and the compact. Since it is the RABINIYO mold with which the pinion gear by the side of the ring wheel of the carrier of the 1st epicyclic gear drive 30 and the pinion gear of the carrier of the 2nd epicyclic gear drive 32 are unified especially, components mark decrease and it is constituted by still easier and the compact. [0056] Moreover, while the sun gear S1 is connected to the 2nd clutch C2 through the connection member 40 of the shape of a cylinder arranged by penetrating the core of a motor generator 14 While it is being fixed to the mid-position of the connection member 40 by relative rotation impossible, Rota of a motor generator 14 a sun gear S2 the connection member 40 -- inserting in -- relativity, while connecting with the 1st clutch C1 through the connection member 42 arranged pivotable The connection member 42 is connected to the 2nd clutch C2, without going via the 1st clutch C1. The reaction force brake B Since the carrier C which begins to be prolonged from between an auxiliary transmission 16 and motor generators 14 to a periphery side is fixed to housing 44 and a ring wheel R is connected to the input shaft 38 of a nonstep variable speed gear 18 through the output member 36 as it is, The management (connection structure etc.) for connecting an engine 12, a motor generator 14, the reaction force brake B, and the output member 36 is easy. [0057] <u>Drawing 2</u> is the collinear Fig. which expresses the interrelation of the rotational frequency of each rotation elements S1, S2, R, and C of the above-mentioned auxiliary transmission 16 in a straight line, an axis of ordinate is a rotational frequency and the location and spacing of each rotation elements S1, S2, R, and C become settled uniquely by the gear ratio rho1 and rho2 of a connection condition or epicyclic gear drives 30 and 32. While the sun gears S1 and S2 which are input rotation elements are mutually located to the both ends of the opposite side on this collinear Fig., the ring wheel R which is a rotation element for an output is located between Carriers C and the sun gears S1 which are a rotation element for reaction force. In addition, spacing of each rotation elements S1, S2, R, and C in drawing 2 is not what was not necessarily correctly expressed based on gear ratio rho1 and rho2.

[0058] the actuation position (refer to drawing 6) of a shift lever when drawing 3 is drawing showing the relation between the engagement condition of clutches C1 and C2 and the reaction force brake B, and the gear change mode (an example) of an auxiliary transmission 16, it uses an engine 12 as a source of driving force and it uses a motor generator 14 as a source of driving force etc. -- a case -- dividing -- carrying out -- being shown. The "D" position of drawing 6 is the automatic gear change location which carries out advance transit while changing continuously the change gear ratio of a nonstep variable speed gear 18 according to operational status, such as an accelerator control input and the vehicle speed, according to the gear change conditions defined beforehand. The "M" position is the owner stage manual gear change location to which the change gear ratio of a nonstep variable speed gear 18 is gradually changed like an owner stage change gear by operating a shift lever in the "+" location or the "-" location. The "B" position is a stepless manual gear change location to which the change gear ratio of a nonstep variable speed gear 18 is continuously changed according to the cross-direction location of a shift lever. Moreover, "R" is the reverse location which reverses a car, "N" is a neutral location and "P" is a parked position which prevents transit of a car by the Parkin Grock device etc.

[0059] In drawing 3, by making an engine 12 into the source of driving force, while making clutches C1 and C2 engaged, by both the "D", "M", and "B" positions that carry out advance transit, a change gear ratio is formed in the high-speed advance mode "2nd" of 1 by releasing the reaction force brake B. This highspeed advance mode "2nd" is equivalent to a high-speed stage. In that case, if slip engagement of the 1st clutch C1 is carried out, even when the engine low-speed advance mode "2nd (low speed)" in which engine start is possible is formed and a motor generator 14 cannot be used by a fall, failure, etc. of a dc-battery 26 of the amount SOC of accumulation of electricity, the creep torque of the advance direction can be generated with an engine 12, or a car can be started for the front. By the "R" position, while making the 1st clutch C1 and the reaction force brake B engaged, a change gear ratio is formed by releasing the 2nd clutch C2 in the high-speed go-astern mode "a high speed" of -1/rho 2 (rho 2 is the gear ratio (number of teeth of the number of teeth / ring wheel R of the = sun gear S2) of the 2nd epicyclic gear drive 32). In that case, if slip engagement of the 1st clutch C1 is carried out, even when the engine low-speed go-astern mode "a low speed (engine)" in which engine start is possible is formed like the time of advance and a motor generator 14 cannot be used by a fall, failure, etc. of a dc-battery 26 of the amount SOC of accumulation of electricity. the creep torque of the go-astern direction can be generated with an engine 12, or a car can be started back. Moreover, by both the "N" positions, while releasing clutches C1 and C2, the power transfer from an engine

12 is intercepted by making the reaction force brake B engaged.

[0060] By both the "D", "M", and "B" positions that make a motor generator 14 the source of driving force, while low-speed advance mode "1st" is formed and generating the creep torque of the advance direction at the time of a car halt by making the reaction force brake B engaged while releasing clutches C1 and C2, it departs according to accelerator actuation. The change gear ratio at this time is comparatively large at 1/rho 1 (rho 1 is the gear ratio (number of teeth of the number of teeth / ring wheel R of the = sun gear S1) of the 1st epicyclic gear drive 30), and since big torque amplification is acquired, also in the big change gear ratio of a nonstep variable speed gear 18, and the motor generator 14 conjointly operated by the about [36V] electrical potential difference, practically satisfying creep torque and the practically satisfying start engine performance are obtained. This low-speed advance mode "1st" is a low-speed stage.

[0061] And after the number of rotations of an engine 12 synchronizes with a sun gear S2, it makes the 1st clutch C1 engaged, and the shift to high-speed advance mode "2nd" with an engine 12 from the above-mentioned low-speed advance mode "1st" stops the electric power supply to a motor generator 14 after that, and is made into unloaded condition while it releases the reaction force brake B and really rotates an auxiliary transmission 16, making the 2nd clutch C2 engaged.

[0062] Moreover, by releasing the reaction force brake B, while making both the clutches C1 and C2 engaged The change gear ratio which runs as a source of driving force both an engine 12 and the motor generator 14 is formed in the assistant mode "2nd (assistance)" of 1. If the 2nd clutch C2 is made engaged while releasing the 1st clutch C1 and the reaction force brake B, the change gear ratio which generates damping force will be formed in the regenerative-braking mode "2nd (regeneration)" of 1, carrying out regenerative control of the motor generator 14, and charging efficiently. In addition, assistant mode "2nd (assistance)" should just operate a motor generator 14 at the time of activation in high-speed advance mode "2nd" with an engine 12, and regenerative-braking mode "2nd (regeneration)" should just carry out regenerative control of the motor generator 14 while it releases the 1st clutch C1 and separates an engine 12 at the time of activation in high-speed advance mode "2nd" with an engine 12. Moreover, in the engine lowspeed advance mode "2nd (low speed)" in which slip engagement of the 1st clutch C1 is carried out, assistant mode "2nd (assistance)" can operate a motor generator 14, and can also be performed. [0063] Moreover, by both the "R" positions that make a motor generator 14 the source of driving force, while generating [by making the reaction force brake B engaged, while releasing clutches C1 and C2] the creep torque of the go-astern direction at the time of a car halt by forming low-speed go-astern mode "a low speed (motor)", and making a motor generator 14 generate the torque of inverse rotation, according to accelerator actuation, it departs back. The change gear ratio at this time is comparatively large at -1/rho 1. and since big torque amplification is acquired, also in the big change gear ratio of a nonstep variable speed gear 18, and the motor generator 14 conjointly operated by the about [36V] electrical potential difference, practically satisfying creep torque and the practically satisfying start engine performance are obtained. This low-speed go-astern mode "a low speed (motor)" is a low-speed stage. And what is necessary is to stop the electric power supply to a motor generator 14, and just to make it into unloaded condition, after the shift to high-speed go-astern mode "a high speed" with an engine 12 from this low-speed go-astern mode "a low speed (motor)" operates an engine 12 and makes the 1st clutch C1 engaged.

[0064] Proper use of the above-mentioned engine 12 and a motor generator 14 makes a parameter the vehicle speed and output torque (accelerator control input), and is (a) of drawing4. A map M1 or (b) It is set as shown in a map M2. Here, it is (a). On the map M1, although an engine 12 is used in the field of the high vehicle speed and high torque (accelerator control input size) and a motor generator 14 is used in the field of the low vehicle speed and low torque (accelerator control input smallness), in this example which uses the motor generator 14 of a low battery, the use range of a motor generator 14 is comparatively narrow, and is limited to the creep torque and few travel corridors at the time of a car halt. When maps M1 and M2 are chosen according to the transit conditions of cars, such as the amount SOC of accumulation of electricity of a dc-battery 26, etc., for example, the amounts SOC of accumulation of electricity of a dc-battery 26 are insufficient, a map M2 is chosen. Although drawing4 is for advance transit, it is similarly defined about go-astern transit. In addition, it is also possible to use a motor generator 14 in assistance in the field of the above "2nd" which makes an engine 12 the source of driving force, and "2nd (low speed)." Moreover, the boundary line of each field changes according to the change gear ratio of a nonstep variable speed gear 18 etc.

[0065] <u>Drawing 5</u> is drawing showing the control network which controls actuation of the hybrid driving gear 10 of this example. While various kinds of signals are inputted into ECU (Electronic Control Unit)50 from a switch, a sensor, etc. which are shown in the left-hand side of drawing 5 By outputting a control

signal etc. to various kinds of equipments which perform signal processing according to the program beforehand memorized by ROM etc., and are shown in right-hand side For example, the vehicle speed V, the accelerator opening (control input of an accelerator pedal) theta, a shift position (actuated valve position of a shift lever), According to operational status, such as the amount SOC of dc-battery accumulation of electricity, and a control input of a foot brake, the gear change mode of an auxiliary transmission 16 is switched, or actuation of an engine 12 and a motor generator 14 is controlled.

[0066] The deceleration / torque configuration switch 52 of <u>drawing 5</u> are constituted by the slide switch as shown in <u>drawing 7</u>, and is arranged near the shift lever etc. This adjusts the regenerative-braking torque of the motor generator 14 in case an auxiliary transmission 16 is in regenerative-braking mode "2nd (regeneration)" manually, and damping torque increases, so that it lengthens to the front. That is, according to the actuated valve position of this deceleration / torque configuration switch 52, Rhine in the regenerative-braking mode "2nd (regeneration)" of <u>drawing 4</u> is moved up and down. Moreover, according to the actuated valve position of deceleration / torque configuration switch 52, an established state is expressed to the setting decelerating indicator 54 of <u>drawing 8</u> as the backward arrow head by which die length becomes long, so that regenerative-braking torque becomes large. This setting decelerating indicator 54 is formed in an instrument panel.

[0067] Moreover, the controller (MO) 66 of drawing 5 performs output (torque) control of the electric motor 60 for engine starting, it is the inverter with which a controller (MG14) 68 and a controller (MG24) 70 perform output (torque) control, regenerative control, etc. of motor generators 14 and 24, and the electric oil pump 72 is for supplying oil pressure to said clutches C1 and C2 and Brake B, or ABS actuator 74 grade. The system indicator 76 becomes active when a shift lever is operated to the aforementioned "M" position or the "B" position, and as shown in drawing 9, it carries out the digital readout of the change gear ratio of the whole nonstep variable speed gear. When a change gear ratio does not light up by the "M" position and the "B" position for a certain reason, it succeeds in a fail judging. You may make it blink a change gear ratio at the time of fail.

[0068] <u>Drawing 10</u> is the property Fig. of the leech hold oil pressure which maintains a car to a idle state. Leech hold oil pressure is the oil pressure of the wheel cylinder prepared in the wheel, is controlled by the ABS actuator 74 of <u>drawing 5</u>, and is controlled according to the pedal travel of a foot brake. At this example, the foot-brake upper switch 78 and foot-brake ROASUITCHI 80 of <u>drawing 5</u> detect a pedal travel in two steps, in the field of BS1-BS2 where the amount of treading in of OFF of foot-brake ROASUITCHI 80 by ON (pedal travel) is small, a leech hold is carried out with 50% of oil pressure, and the foot-brake upper switch 78 carries out a leech hold with 100% of oil pressure in a two or more BS [with the large amount of treading in from which foot-brake ROASUITCHI 80 is turned on] field. In addition, the pedal travel of a foot brake is detected continuously, and as an alternate long and short dash line shows, you may make it change leech hold oil pressure continuously.

[0069] On the other hand, in case it starts in order to use an engine 12 as a source of driving force, signal processing is performed by said ECU50 according to the flow chart of drawing 11. At step S1, input signal processing of reading various kinds of signals required for this control is performed, and it judges whether the actuated valve position of a shift lever is a transit position, i.e., "D", "M", "B", or "R" in step S2 based on the signal supplied from a shift position switch 82 (refer to drawing 5). If it is a transit position, it will judge [whether it shifts to engine transit mode or engine + motor transit mode from whether the engine starting conditions for using an engine 12 as a source of driving force for transit in step S3 are satisfied, and motor transit mode, and] whether it puts into operation and runs an engine 12 simply. Specifically, it is (a) of said drawing 4. In a map M1 [whether the conditions on which the vehicle speed V, the accelerator control input theta, etc. shift to engine low-speed advance mode "2nd (low speed)" or high-speed advance mode "2nd" with an engine 12 from the low-speed advance mode "1st" by the motor generator 14 are fulfilled, and] Or it is (b) of drawing 4 by the lack of the amount of accumulation of electricity of a dcbattery 26 etc. It is whether to fulfill the conditions which are switched to a map M2 and newly perform engine low-speed advance mode "2nd (low speed)" or high-speed advance mode "2nd" with an engine 12. [0070] And when engine starting conditions are satisfied, while carrying out cranking of the engine 12 with the electric motor 60 for engine starting in step S4, ignition timing control, fuel-injection control, etc. are performed. At the time of activation of this engine starting processing, the 1st clutch C1 is released and the engine 12 is separated from the driving force transfer system. The part which performs step S4 among signal processing by ECU50 is functioning as an engine starting means. Although the usual transit control which makes an engine 12 the source of driving force in step S6 will be performed at the following step S5 if it judges whether the engine 12 actually started and an engine 12 starts in the predetermined time amount

defined beforehand When an engine 12 does not start in time amount predetermined by a certain reason, such as failure, less than [step S7] is performed following step S5, and driving force is generated using the electric motor 60 for engine starting. The part which performs step S5 among signal processing by ECU50 is functioning as a starting delay decision means.

[0071] At step S7, the burden of the electric motor 60 made to generate driving force is mitigated by releasing an electromagnetic clutch 62 and separating auxiliary machinery 64. At step S8, the 1st clutch C1 is made engaged, an engine 12 is connected to an auxiliary transmission 16, and rotation of an engine 12 is made to be transmitted from output shafts 22R and 22L to a driving wheel through the driving force transfer system of an auxiliary transmission 16 and belt type nonstep variable speed gear 18 grade. It is made for the 2nd clutch C2 other than the 1st clutch C1 to be engaged at the time of advance transit, and is made for the reaction force brake B to be engaged at the time of go-astern transit. And in MO special control of step S9. an electric motor 60 is operated with bigger torque than the time of engine starting of step S4, and driving force is generated, rotating an engine 12. The output of an electric motor 60 is pulled up to the maximum exceeding rated output, the lack of driving force accompanying the starting delay of an engine 12 is specifically compensated, transit a car is enabled or predetermined driving force is generated. Since an electric motor 60 is a DC motor, such control is easily possible for it. The part which performs step S8 and S9 among signal processing by ECU50 is functioning as an auxiliary drive control means, and the electric motor 60 for engine starting is equivalent to the source of the 3rd driving force which is not usually used as a source for transit of driving force. Moreover, the starting time amount of an electric motor 60 can fully be shorter than an engine 12, and can generate driving force promptly. That is, this example is equivalent to the example of the 8th invention - the 12th invention.

[0072] In addition, a motor generator 14 is also operated at the time of special control of the above-mentioned electric motor 60, and the driving force which applied both outputs is generated. That is, when shifting to engine + motor transit mode, also when shifting to engine transit mode, of course, a motor generator 14 is operated with a predetermined output, and generates predetermined driving force with an electric motor 60 instead of an engine 12.

[0073] It judges whether MO special control is stopped, and in stopping, step S12 is performed immediately and it stops MO special control by step S10. When OFF actuation of the ignition switch (switch which switches ON of the drive system of a hybrid car and OFF) 84 of <u>drawing 5</u> is carried out, for example, change actuation of the shift lever is carried out as termination conditions to the "N" position or the "P" position, MO special control passes beyond predetermined time, and engine starting processing of fuel injection etc. is being performed continuously, it is a time of an engine 12 starting etc. Moreover, at step S11, it judges whether the amount SOC of accumulation of electricity of a dc-battery 26 became one or less lower limit SOCL, and also when it becomes SOC<=SOCL1, MO special control is stopped by step S12. A lower limit SOCL1 is defined on the basis of whether it remains, so that the amount SOC of accumulation of electricity of a dc-battery 26 can be equal to MO special control.

[0074] Thus, the hybrid driving gear 10 of this example In order to run an engine 12 as a source of driving force, in case an engine 12 is started by step S4, when starting of the engine 12 is slow Since decision of step S5 is set to NO, less than [step S7] is performed and driving force is generated using the electric motor 60 for engine starting besides a motor generator 14, The lack of driving force by which it is accompanied improper [the starting delay of an engine 12 or starting] is improved rated output adopting a small cheap and compact thing as a motor generator 14 which is a source of the 2nd driving force. Thereby, in case it departs from the time of the shift to engine transit mode from motor transit mode, or an engine 12 as a source of driving force, the thing which are formed even if it originates in the starting delay of an engine 12 and which it comes, and admiration arises or starting of an engine 12 therefore becomes improper transit impossible is prevented.

[0075] In addition, although the lack of driving force is compensated with the above-mentioned example using the electric motor 60 for engine starting as a source of the 3rd driving force, the lack of driving force is also suppliable using the motor generator 24 for an auxiliary machinery drive. That is, predetermined driving force is generated in step S9, carrying out power running control of the motor generator 24, and rotating an engine 12 instead of using an electric motor 60. Although a motor generator 24 is an AC motor and it is controlled by the inverter, if temporary, the big torque exceeding rated output can be generated by designing so that a high current can be passed beforehand. In this case, it is equivalent to the example of the 13th invention.

[0076] It is also possible to start an engine 12 using the above-mentioned motor generator 24, and an electric motor 60 can be omitted in that case.

a source of the 2nd driving force for car transit, and the lack of driving force accompanying the starting delay of an engine 12 is compensated So that the lack of driving force accompanying [steps SS1-SS6 are substantially / as steps S1-S6 of drawing 11 / the same, and I the starting delay of an engine 12 may be compensated with a step SS 7 It runs by increasing the electrical energy amount of supply from a dc-battery 26, and operating a motor generator 14 with the large torque exceeding the rated output. Although a motor generator 14 is an AC motor and it is controlled by the inverter, if temporary, the big torque exceeding rated output can be generated by designing so that a high current can be passed beforehand. [0078] It judges whether MG special control of a step SS 7 is stopped, and in stopping, a step SS 11 is performed immediately and it stops MG special control by the step SS 8. When OFF actuation of the ignition switch 84 is carried out, for example, change actuation of the shift lever is carried out as termination conditions to the "N" position or the "P" position, and engine starting processing of a step SS 4 is being performed continuously, it is a time of an engine 12 starting etc. Moreover, while judging whether the amount SOC of accumulation of electricity of a dc-battery 26 became two or less lower limit SOCL at a step SS 9, it judges whether the duration TS of MG special control became more than predetermined time T1 at a step SS 10, and also when it becomes SOC<=SOCL2 or TS>=T1, MG special control is stopped by the step SS 11. It is set on the basis of whether it remains, so that the amount SOC of accumulation of electricity of a dc-battery 26 can be equal to MG special control, and a lower limit SOCL2 is defined on the basis of the thermal limitation of the motor generator 14 according [fixed time amount T1] to continuation high power

[0077] By moreover, the case where drawing 12 carries out special control of the motor generator 14 used as

[0079] Also in this case, the same effectiveness as said example is acquired. In order to pull and run to high torque especially in the case of the engine starting delay at the time of the shift to engine transit mode or engine + motor transit mode from motor transit mode, using the motor generator 14 which was being used in motor transit mode as it is, while being able to increase driving force smoothly, as compared with the case where driving force is generated using an another electric motor 60 and an another motor generator 24 like said example, control is easy.

[0080] This example is an example of the 1st invention - the 3rd invention, the part which performs a step SS 4 among signal processing by ECU50 is functioning as an engine starting means, the part which performs a step SS 5 is functioning as a starting delay decision means, and the part which performs a step SS 7 is functioning as an auxiliary drive control means.

[0081] Drawing 13 and drawing 14 are one example of the 14th invention, are applied to said hybrid driving gear 10, and are performed by signal processing by ECU50. At step Q1, input signal processing of reading various kinds of signals required for this control is performed, and it judges whether the actuated valve position of a shift lever is a transit position, i.e., "D", "M", "B", or "R" in step Q2 based on the signal supplied from a shift position switch 82. If it is a transit position, in step O3, the amount SOC of accumulation of electricity of a dc-battery 26 will judge whether it is three or less lower limit SOCL, and in SOC<=SOCL3, it is (b) of said drawing 4 at step Q4. Although it runs only an engine 12 as a source of driving force according to the shown map M2, if it is SOC>SOCL3, less than [step Q5] will be performed. A lower limit SOCL3 is defined on the basis of whether it remains, so that the amount SOC of accumulation of electricity of a dc-battery 26 carries out power running control and can run a motor generator 14. [0082] At step Q5, foot-brake ROASUITCHI 80 judges whether abbreviation completeness gets into the foot brake by whether it is ON, and, in ON, it judges whether it is the one or less fixed low vehicle speed VL as which the vehicle speed V was beforehand determined at step O6. Step O6 will be for judging whether a car is an abbreviation idle state, and the low vehicle speed VL 1 is set as the value of abbreviation 0 in consideration of the detection error of a sensor etc., if it is V<=VL1, it will set both the outputs of an engine 12 and a motor generator 14 to 0 at step Q7, and will save a fuel and power. Moreover, at step Q8, as shown in drawing 10, leech hold oil pressure is made into 100%, a wheel brake is operated with high oil pressure, and a car is held to a idle state.

[0083] When decision of the above-mentioned step Q5 is NO (i.e., when the BUREKIROA switch 80 is OFF), less than [of drawing 14 / step Q9] is performed, and when decision of step Q6 is NO, the vehicle speed V performs less than [of drawing 14 / step Q11], when larger than the low vehicle speed VL 1. At step Q9, the foot-brake upper switch 78 judges whether it is that a few is broken into the foot brake (BS1-BS2) by whether it is ON, and, in ON, it judges whether it is the two or less fixed low vehicle speed VL as which the vehicle speed V was beforehand determined at step Q14. the low vehicle speed VL 2 -- for example, drawing 4 (a) the maximum vehicle speed in the low-speed advance mode "1st" in a map M1, and abbreviation -- it is the same vehicle speed, and if it is V<=VL2, while carrying out power running control

of the motor generator 14 at step Q15, the leech hold force is reduced to 50% at step Q16. the torque of a motor generator 14 -- irrespective of the leech hold force (50%) and the damping force of a foot brake -- abbreviation -- if it is a level flat way, it is set as the magnitude which generates the creep torque to which a car moves forward little by little. It is similarly set up at the time of go-astern transit. Therefore, the amount of treading in of a foot brake (pedal travel) is comparatively small (within the limits of BS1-BS2), and when the vehicle speed V is the two or less low vehicle speed VL, a car is made to ** by the motor generator 14 also with Accelerator OFF approximately, and creep transit can be carried out only by the strength of brakes operation like a common automatic car equipped with the torque converter.

[0084] On the other hand, also in ON, when decision of step Q9 is NO (i.e., when [the case where treading-in actuation of the foot brake is not carried out, and when decision of step Q14 is NO]), the vehicle speed V performs [a foot brake] less than [step Q10], in being larger than the low vehicle speed VL 2. <u>Drawing 4</u> which runs only an engine 12 as a source of driving force at step Q10 (b) A map M2 is set up, and it runs at step Q11, putting an engine 12 into operation with an electric motor 60 etc., and switching gear change mode according to a map M2. At step Q12, gear change control of a nonstep variable speed gear 18 is performed according to operational status, such as the vehicle speed V and the accelerator control input theta, or shift-lever actuation, and a leech hold is completely canceled at step Q13.

[0085] In this example, when treading-in actuation of the foot brake is not carried out (step Q9 is NO) In order to run only an engine 12 as a source of driving force according to a map M2, It compares, when running by operating an engine 12 from the time of start at the time of the usual start from which breaks in an accelerator and it departs, putting an engine 12 into operation in the middle of start acceleration and switching to engine transit from motor transit. The feeling of slowness accompanying the change is solved, and the smooth start engine performance is obtained. Since it runs only a motor generator 14 as a source of driving force in carrying out creep transit only by the strength of brakes operation on the other hand, if the amount of treading in of a foot brake (pedal travel) is comparatively small (within the limits of BS1-BS2), and it puts in another way when the vehicle speed V is the two or less low vehicle speed VL (step Q14 is YES), the reduction effectiveness of fuel consumption or exhaust gas which is one of the descriptions of the hybrid driving gear 10 is fully enjoyable.

[0086] In this case, the part which performs step Q15 among signal processing by ECU50 is functioning as a low-speed motor transit means, and the part which performs step Q11 is functioning as a low-speed engine transit means and a high-speed engine transit means.

[0087] Drawing 15 is the outline block diagram of the hybrid driving gear 100 which is the drive system for cars of the hybrid mold with which this invention was applied, and drawing 16 is a main point Fig. This hybrid driving gear 100 is for FR (front engine Riyadh live) cars. The gasoline engine 102 which operates by combustion of a fuel, and the motor generator 104 which has a function as the electric motor which operates with electrical energy, and a generator It has as a source for migration of the car which is a mobile of driving force (source for transit of driving force), and driving force is transmitted to a rear wheel (driving wheel) on either side through a differential gear, an axle, etc. which are not illustrated through the gearing change gear section 108 from the torque converter barter 106. An engine 102 is a source of the 1st driving force, a motor generator 104 is a source of the 2nd driving force where rated output is smaller than an engine 102 and where starting time amount is short, and crankshaft 102s of an engine 102 is connected with 104s of motor shafts of a motor generator 104 through the input clutch 110 which is hydraulic friction engagement equipment.

[0088] An engine 102 is started when a rotation drive (cranking) is carried out through the driving gears 114, such as a timing belt and a chain, by the motor generator 112 for engine starting. This motor generator 112 is operated by low batteries, such as about 36V, and is alternatively connected to a rechargeable battery 118 and the fuel cell 120 of a hydrogen-oxygen mold through the power-source change-over switch 116, and while being operated with the electrical energy supplied from it etc., a rechargeable battery 118 is charged with the electrical energy generated by carrying out the rotation drive of the motor generator 112 with an engine 102. Similarly said motor generator 104 is operated by low batteries, such as about 36V, and it connects with a rechargeable battery 118 and a fuel cell 120 alternatively through the power-source change-over switch 122, and while being operated with the electrical energy supplied from it etc., a rechargeable battery 118 is charged with the electrical energy generated by making a motor generator 104 carry out regenerative braking at the time of the moderation under car transit etc. When starting of an engine 102 is slow, when it cannot be started, the power-source change-over switch 122 connects a rechargeable battery 118 and a fuel cell 120 to a serial if needed, and can supply the electrical energy of the high voltage to a motor generator 104 again. In addition, a rechargeable battery 118 can also be charged with a fuel cell

120.

[0089] While the above-mentioned motor generators 104 and 112 are equipped with the inverter which neither illustrates, the fuel cell 120 is equipped with the cooling system. Moreover, it has the rechargeable battery of 12V for various kinds of mounted computers etc., and charges through a DC-DC converter with a fuel cell 120 or a rechargeable battery 118.

[0090] Said torque converter 106 is equipped with the lock-up clutch 130 which links directly between the pump disk 124 connected with 104s of motor shafts, the turbine rotor 128 connected with the input shaft 126 of the gearing change gear section 108, and the pump disks 124, such as it, and turbine rotors 128, and the stator 132 from which rotation of an one direction is prevented with the one way clutch.

[0091] The gearing change gear section 108 is equipped with the 1st change gear 134 which performs yes and two steps of low changes, and the 2nd change gear 136 which can switch the gear ratio of one step of go-astern, and four steps of advance. The 1st change gear 134 is equipped with the epicyclic gear drive 138 of 1 set of simple planetary molds, a brake B0, a clutch C0, and an one way clutch F0, and is constituted. Moreover, the 2nd change gear 136 is equipped with the epicyclic gear drives 140, 142, and 144 of 3 sets of simple planetary molds, a brake B1 - B4, clutches C1 and C2, and one way clutches F1 and F2, and is constituted. At a brake B0 - B4, and clutches C0-C2, all, it is friction engagement equipment of the multiplate type engaged and released by the actuator, and the hydraulic circuit and oil pressure of the oil pressure control section 146 which are shown in drawing 15 are switched with a solenoid valve etc., by carrying out pressure regulation control, engagement and a release condition are switched and the gear ratio shown in drawing 17 according to the operating state is formed. Hydraulic oil is supplied to the oil pressure control section 146 from the electric oil pump 148, the mechanical oil pump by which a rotation drive is carried out in one with said pump disk 124 and which is not illustrated. In addition, since a motor generator 104, a torque converter 106, and the gearing change gear section 108 are constituted by the abbreviation symmetry target to the center line, the lower half of a center line is omitted in drawing 16.

[0092] For the hydraulic oil which is drawing showing a part of oil pressure control section 146, and was pumped up by the electric oil pump 148, drawing 18 is line pressure [bulb/150/primary regulator] PL according to accelerator opening etc. The pressure is regulated and hydraulic oil is supplied via the manual bulb 154 by which clutches C1 and C2 are mechanically connected with the shift lever 152 as a shift operating member, and a free passage condition is switched. Moreover, the engagement and a release condition are switched also for said input clutch 110 by the input clutch control solenoid 156. [0093] "P" of drawing 17 is the parking formed when a shift lever 152 is operated to the "P" position of drawing 19, and rotation of an output shaft 158 (refer to drawing 16) is mechanically prevented by the mechanical Parkin Grock device which is not illustrated while power transfer is intercepted. "R" is a goastern gear ratio formed when a shift lever 152 is operated to the "R" position. "N" is the neutral formed when a shift lever 152 is operated to the "N" position, and power transfer is intercepted. - "5th" is the advance gear ratio formed when a shift lever 152 is operated to the "D" position "1 st." A change gear ratio (= the rotational frequency of the rotational frequency / output shaft 158 of an input shaft 126) becomes small as it goes to "5th" from "1st." For example, (a) of drawing 20 It is switched by two or more solenoid operated directional control valves (AT solenoid 162 of drawing 22) according to the gear ratio change-over map (gear change map) to which the accelerator opening theta and the vehicle speed V were beforehand set as a parameter as a dotted line showed. <u>Drawing 19</u> is an example of the shift pattern of a shift lever 152, it is switched by - "4th" "1 st" by "4" positions, is switched by - "3rd" "1 st" by "3" positions, is switched by "1st" and "2nd" by "2" positions, and is fixed to "1st" by the "L" position. (b) of drawing 20 A dotted line is a gear ratio change-over map in the case of "2" positions.

[0094] The continuous line of drawing 20 and drawing 21 is an example of the source change-over map of driving force in which an engine 102 and the use field (each travel corridor) of a motor generator (MG) 104 are shown, and the accelerator opening theta and the vehicle speed V are beforehand set to it as a parameter for every actuation position of a shift lever 152. By this example, it has two transit modes, the motor transit mode it runs only by the motor generator 104, and the engine transit mode it runs only with an engine 102, and in a motor travel corridor, it runs in motor transit mode and runs in engine transit mode in an engine travel corridor. (a) of drawing 20 The "D" position and (b) A comparison of "2" positions expands the use field (motor travel corridor) of a motor generator 104 to the high vehicle speed side for a while rather than 2nd gear ratio in the "D" position by "2" positions in which gear change is performed even for 2nd gear ratio. Moreover, drawing 21 (a) By the "L" position, the motor travel corridor is expanded to the high vehicle speed side for a while rather than 1st gear ratio in "2" positions. In addition, the source change-over map of driving force of "4" positions and "3" positions is drawing 20 (a). It is the same as the case of the

"D" position.

[0095] The sport mode switch 160 of said <u>drawing 19</u> is (a) of <u>drawing 20</u>, for example, when it is prepared near the shift lever 152 currently arranged beside the driver's seat and ON (pushing) actuation of this sport mode switch 160 is carried out. As a two-dot chain line shows, a motor travel corridor is made small. You may make it shift the gear change line of a gear ratio change-over map to a high vehicle speed side at the same time it makes a motor travel corridor small.

[0096] <u>Drawing 22</u> is drawing showing the control network which controls actuation of the hybrid driving gear 100 of this example. While various kinds of signals are inputted into ECU (Electronic Control Unit)164 from a switch, a sensor, etc. which are shown in the left-hand side of <u>drawing 22</u> By outputting a control signal etc. to various kinds of equipments which perform signal processing according to the program beforehand memorized by ROM etc., and are shown in right-hand side The operational status of the vehicle speed V, the accelerator opening (control input of an accelerator pedal) theta, a shift position (actuation position of a shift lever 152), etc., etc. is embraced. For example, switch the gear ratio of the gearing change gear section 108, or Actuation of an engine 102 and a motor generator 104 is controlled. The controller (MG104) 166 of <u>drawing 22</u> and a controller (MG112) 168 are inverters which perform output (torque) control, regenerative control, etc. of motor generators 104 and 112.

[0097] And in case it starts in order to use an engine 102 as a source of driving force, signal processing is performed by ECU164 according to the flow chart of <u>drawing 23</u>. Input signal processing of reading various kinds of signals required for this control at step R1 is performed. At step R2 Whether the engine starting conditions for using an engine 102 as a source for transit of driving force are satisfied For example, the actuation position of the shift lever 152 detected by the shift position sensor 170, It judges by whether it went into the engine travel corridor of the source change-over map of driving force shown in <u>drawing 20</u> and <u>drawing 21</u> as a continuous line based on the accelerator opening (control input of an accelerator pedal) theta detected by the vehicle speed V detected by the speed sensor 172, and the accelerator opening sensor 174.

[0098] If decision of the above-mentioned step R2 is YES (affirmation), while carrying out cranking of the engine 102 by the motor generator 112 for engine starting in step R3, ignition timing control, fuel-injection control, etc. will be performed. At the time of activation of this engine starting processing, the input clutch 110 is released and the engine 102 is separated from the driving force transfer system. The part which performs step R3 among signal processing by ECU164 is functioning as an engine starting means. Although change-over control of the gear ratio of the gearing change gear section 108 will be performed to drawing 20 at the following step R4 according to the usual gear change map shown by the dotted line in step R5 if it judges whether the engine 102 actually started and an engine 102 starts in the predetermined time amount defined beforehand When an engine 102 does not start in time amount predetermined by a certain reason, such as failure, less than [step R6] is performed following step R4, a motor generator 104 is used instead of an engine 102, and predetermined driving force is generated. The part which performs step R4 among signal processing by ECU164 is functioning as a starting delay decision means.

[0099] At step R6, in order that the residue of the fuel of the fuel cell (FC) 120 detected by the fuel-cell-fuel residue sensor 176 may become below the predetermined value defined beforehand and may use a motor generator 104 as a source for transit of driving force, it judges whether electrical energy can be supplied from a fuel cell 120. When there are more residues of fuel cell fuel than a predetermined value, the series connection of a fuel cell 120 and the rechargeable battery 118 is carried out with said power-source changeover switch 122 at step R7, and electrical energy is supplied to a motor generator 104. Moreover, at step R8, permanent wave MENTO processing of a generation of electrical energy of a fuel cell 120 is performed, and the amount of generations of electrical energy is made [many] exceeding the amount of rated generations of electrical energy by time amount limitation. That is, it is made to increase temporarily to the amount which a long period of time is impossible for, and is usually used neither on a thermal problem nor the problem on durability. Thus, while using together a fuel cell 120 and a rechargeable battery 118, the output of a motor generator 104 can pull up exceeding rated output by increasing the amount of generations of electrical energy of a fuel cell 120 exceeding the amount of rated generations of electrical energy. Thereby, the lack of driving force accompanying the starting delay of an engine 102 is eased. The part which performs steps R7 and R8 among signal processing by ECU164 constitutes the auxiliary drive control means with the power-source change-over switch 122. That is, this example is equivalent to the example of the 4th invention - the 7th invention. In addition, on the occasion of implementation of the 4th invention, step R7 is not necessarily required, on the occasion of implementation of the 5th invention, step R8 is not necessarily required, and it is not necessarily required for a motor generator 104 to exceed the rated output on the

occasion of implementation of the 6th invention and the 7th invention.

[0100] At the following step R10, as gear change is performed to <u>drawing 20</u> by the high vehicle speed side rather than the usual gear change map shown by the dotted line, driving force also with the big motor generator 104 with rated output smaller than an engine 102 is obtained.

[0101] On the other hand, when the residue of fuel cell fuel is [decision of step R6] NO below in a predetermined value, while performing step R9 and operating a motor generator 104, using a rechargeable battery 118 independently, a gear change map is changed at step R10. It is desirable to enlarge the amount of modification of a gear change map at step R9 as compared with the case where it performs at step R10 in this case following steps R7 and R8 since the output of a motor generator 104 is low as compared with the time of activation of steps R7 and R8.

[0102] Thus, the hybrid driving gear 100 of this example In order to run an engine 102 as a source of driving force, in case an engine 102 is started at step R3, when starting of the engine 102 is slow If decision of step R4 is set to NO, less than [step R6] is performed and there are residues of enough of fuel cell fuel, while carrying out the series connection of the fuel cell 120 and rechargeable battery 118 and supplying electrical energy to a motor generator 104 In order to operate a motor generator 104 exceeding rated output by increasing the amount of generations of electrical energy of a fuel cell 120 exceeding the amount of rated generations of electrical energy, The lack of driving force by which it is accompanied improper [the starting delay of an engine 102 or starting] is improved rated output adopting a small cheap and compact thing as a motor generator 104 which is a source of the 2nd driving force. Thereby, in case it departs from the time of the shift to engine transit mode from motor transit mode, or an engine 102 as a source of driving force, the thing which are formed even if it originates in the starting delay of an engine 102 and which it comes, and admiration arises or starting of an engine 102 therefore becomes improper transit impossible is prevented. [0103] Moreover, as compared with the case where driving force is generated using an another electric motor 60 and an another motor generator 24 like said example, in order to pull and run to high torque in the case of the engine starting delay at the time of the shift to engine transit mode from motor transit mode, using the motor generator 104 which was being used in motor transit mode as it is, while being able to increase driving force smoothly, control is easy.

[0104] Moreover, in this example, a fuel cell 120 and a rechargeable battery 118 are used as an electrical energy source of supply of a motor generator 104. As opposed to electrical energy being alternatively supplied from either usually, when starting of an engine 102 is slow While carrying out the series connection of a fuel cell 120 and rechargeable batteries 118, such as it, and supplying electrical energy to a motor generator 104 In order to operate a motor generator 104 exceeding rated output by increasing the amount of generations of electrical energy of a fuel cell 120 exceeding the amount of rated generations of electrical energy, It is possible to adopt the cheap and compact thing which has the amount of rated generations of electrical energy small as a fuel cell 120, and the hybrid driving gear 100 is still cheaper, and is constituted by the compact.

[0105] As mentioned above, although the example of this invention was explained to the detail based on the drawing, this etc. is 1 operation gestalt to the last, and this invention can be carried out in the mode which added various modification and amelioration based on this contractor's knowledge.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 9]

3.0

[Drawing 3]

	操作ポジション	変速モード	C1	C2	В	变速比
エンジン12	D,M,B	2nd	0	0	×	1
	L	2nd (低速)	Δ	0	×	1
	R	高速	0	×	0	-1/p2
		低速(エンジン)	Δ	×	0	−1/ _P 2
	N		X	X	0	
MG14	D,M,B	181	×	×	0	1 م/ا
		2nd (アシスト)	0	0	×	1
		2nd (回生)	×	0	×	1
	R	低速(モータ)	×	×	0	−1/ _P 1

〇係合 Δスリップ ×解放

[Drawing 7]

[Drawing 5]

[Drawing 11]

[Drawing 12]

SS7:補助駆動制御手段

[Drawing 17]											
	CO	C1	C2	B0	B1	B2	B3	B4	FO	F1	F2
Р	0								0		
R			0	0				0			
N	0								0		
1st	0	0						0	0		0
2nd	0	0		j			0		0		
3rd	0	0			0	0			0	0	
4th	0	0	0			Δ			0		
5th		0	0	0		Δ					

○係合 ◎エンジンブレーキ時係合 △係合するが動力伝達に関係無し

[Drawing 13]

[Drawing 18]

[Drawing 14]

Q11:低速エンジン走行手段,高速エンジン走行手段 Q15:低速モータ走行手段

[Drawing 23]

[Drawing 22]

[Translation done.]

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-350310

(43)Date of publication of application: 15.12.2000

(51)Int.CI.

B60L 11/14

B60K 6/02 F02D 29/02

F02N 11/04

F02N 11/08

H01M 8/00

(21)Application number: 11-221934

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

05.08.1999

(72)Inventor: TABATA ATSUSHI

NAGANO SHUJI

(30)Priority

Priority number: 11085300

Priority date: 29.03.1999

Priority country: JP

(54) DRIVING SYSTEM OF MOVING BODY AND VEHICLE DRIVING SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To make it possible to prevent a feeling of tardiness caused by a delay in engine start during a shift from a motor running mode to an engine running mode.

SOLUTION: An engine as a driving source is driven to start in a step S4. In this case, a judgment of a step S5 becomes NO when the starting of the engine is slow, and a step S7 and the following steps are carried out. A clutch C1 is engaged to join the engine with a driving force transmission system. An engine starting electric motor MO is operated with torque larger than a starting case while the engine is operated with revolutions so that given driving force is generated for complementing a lack in driving force related with a delay in engine start.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-350310 (P2000-350310A)

(43)公開日 平成12年12月15日(2000.12.15)

(51) Int.Cl.'	設別記号	FΙ	デーマュート*(参考)
B60L 11/14		B60L 11/14	3 G 0 9 3
B 6 0 K 6/02		F02D 29/02	D 5H115
F02D 29/02			321B
	3 2 1	F02N 11/04	D
F02N 11/04		11/08	L
	宋 <u>哲</u> 查書	未請求 請求項の数14 OL	(全 25 頁) 最終頁に続く
(21)出願番号	特膜平11-221934	(71)出顧人 000003207	
		トヨタ自動車	株式会社
(22)出顧日	平成11年8月5日(1999.8.5)	愛知県費田市	トヨタ町1番地
		(72)発明者 田端 淳	
(31)優先権主張番号	特顧平11-85300	愛知県豊田市	トヨタ町1番地 トヨタ自動
(32)優先日	平成11年3月29日(1999.3.29)	車株式会社内	
(33)優先権主張国	日本 (JP)	(72)発明者 永野 周二	
		爱知県豊田市	トヨタ町1番地 トヨタ自動
		車株式会社内	
		(74)代理人 100085361	
		弁理士 池田	治幸 (外2名)
			最終官に続く

(54) 【発明の名称】 移動体の駆動システムおよび車両用駆動システム

(57) 【要約】

【課題】 モータ走行モードからエンジン走行モードへ 移行する際に、エンジンの始動遅れに起因してもたつき 感などが発生することを防止する。

【解決手段】 エンジンを駆動力源として走行するためにステップS4でエンジンが始動させられる際に、そのエンジンの始動が遅い場合には、ステップS5の判断がNOになってステップS7以下が実行され、クラッチC1を係合させてエンジンを駆動力伝達系に接続するとともに、エンジン始動用の電動モータ(MO)をエンジン始動時よりも大きなトルクで作動させて、エンジンを回転させながら、エンジンの始動遅れに伴う駆動力不足を補うように所定の駆動力を発生させる。

1

【特許請求の範囲】

【請求項1】 移動体を移動させるための移動用駆動力 源として、第1駆動力源と、該第1駆動力源よりも定格 出力が小さい第2駆動力源と、を有する移動体の駆動シ ステムにおいて、

前記第1駆動力源の作動開始が遅い場合或いは作動させ ることができない場合に、前配第2駆動力源を代わりに 使用し、必要に応じて該第2駆動力源の定格出力を越え て作動させる補助駆動制御手段を設けたことを特徴とす る移動体の駆動システム。

【請求項2】 移動体を移動させるための移動用駆動力 源として、始動に要する時間が異なる複数の駆動力源を 有する移動体の駆動システムにおいて、

前記複数の移動用駆動力源のうち少なくとも1つの第1 駆動力源が始動される場合で、該第1駆動力源の始動時 間が所定時間を越える場合には、該複数の移動用駆動力 源のうち該第1駆動力源よりも始動時間が短い第2駆動 力源を始動させるとともに、必要に応じて該第2駆動力 源の定格出力を越えて作動させる補助駆動制御手段を設 けたことを特徴とする移動体の駆動システム。

【請求項3】 前記第1駆動力源は燃料の燃焼で作動す るエンジンで、前記第2駆動力源は電気エネルギーで作 動する電動モータであり、

前記エンジンを前記移動用駆動力源として使用するため に始動するエンジン始動手段を備えているとともに、 前記補助駆動制御手段は、前記エンジン始動手段によっ て前記エンジンが始動させられる際に、該エンジンの始 動が遅い場合或いは該エンジンの始動ができない場合に は、前記電動モータを代わりに使用し、必要に応じて該 電動モータの定格出力を越えて作動させるものであるこ とを特徴とする請求項1または2に記載の移動体の駆動 システム。

【請求項4】 前記電動モータは、燃料電池から電気エ ネルギーが供給されるもので、

前記補助駆動制御手段は、必要に応じて前記燃料電池の 発電量をその定格発電量を越えて増大させることによ り、前記電動モータをその定格出力を越えて作動させる ものであることを特徴とする請求項3に記載の移動体の 駆動システム。

【請求項5】 前記電動モータは、通常は燃料電池およ 40 び二次電池の何れか一方から択一的に電気エネルギーが 供給されるもので、

前記補助駆動制御手段は、必要に応じて前記燃料電池お よび二次電池を直列接続して前記電動モータに電気エネ ルギーを供給することにより、該電動モータをその定格 出力を越えて作動させるものであることを特徴とする請 求項3に記載の移動体の駆動システム。

【請求項6】 移動体を移動させるための移動用駆動力 源として、第1駆動力源と、該第1駆動力源よりも定格 出力が小さい第2駆動力源と、を有する移動体の駆動シ 50 始動するエンジン始動手段を備えているとともに、

ステムにおいて、

前記第1駆動力源の作動開始が遅い場合或いは作動させ ることができない場合に、前配第2駆動力源を代わりに 使用して駆動力を発生させる補助駆動制御手段を有し、 且つ、前記第2駆動力源は、燃料電池から供給される電 気エネルギーで作動する電動モータで、前記補助駆動制 御手段は、必要に応じて該燃料電池の発電量をその定格 発電量を越えて増大させて該電動モータを作動させるも のであることを特徴とする移動体の駆動システム。

【請求項7】 移動体を移動させるための移動用駆動力 10 源として、始動に要する時間が異なる複数の駆動力源を 有する移動体の駆動システムにおいて、

前記複数の移動用駆動力源のうち少なくとも1つの第1 駆動力源が始動される場合で、該第1駆動力源の始動時 間が所定時間を越える場合には、該複数の移動用駆動力 源のうち該第1駆動力源よりも始動時間が短い第2駆動 力源を始動させて駆動力を発生させる補助駆動制御手段 を有し、

且つ、前配第2駆動力源は、燃料電池から供給される電 20 気エネルギーで作動する電動モータで、前記補助駆動制 御手段は、必要に応じて該燃料電池の発電量をその定格 発電量を越えて増大させて該電動モータを作動させるも のであることを特徴とする移動体の駆動システム。

【請求項8】 移動体を移動させるための移動用駆動力 源として、第1駆動力源と、該第1駆動力源よりも定格 出力が小さい第2駆動力源と、を有する移動体の駆動シ ステムにおいて、

前記第1駆動力源の作動開始が遅い場合或いは作動させ ることができない場合に、通常は移動用駆動力源として 30 使用しない第3駆動力源を移動用駆動力源として使用す る補助駆動制御手段を設けたことを特徴とする移動体の 駆動システム。

【請求項9】 移動体を移動させるための移動用駆動力 源として、始動に要する時間が異なる複数の駆動力源を 有する移動体の駆動システムにおいて、

前記複数の移動用駆動力源のうち少なくとも1つの第1 駆動力源が始動される場合で、該第1駆動力源の始動時 間が所定時間を越える場合には、通常は移動用駆動力源 として使用しない駆動力源であって該第1駆動力源より も始動時間が短い第3駆動力源を移動用駆動力源として 使用する補助駆動制御手段を設けたことを特徴とする移 動体の駆動システム。

【請求項10】 前記補助駆動制御手段は、必要に応じ て前記第3駆動力源をその定格出力を越えて作動させる ものであることを特徴とする請求項8または9に記載の 移動体の駆動システム。

【請求項11】 前配第1駆動力源は燃料の燃焼で作動 するエンジンであり.

該エンジンを前記移動用駆動力源として使用するために

3

前記補助駆動制御手段は、前記エンジン始動手段によって前記エンジンが始動させられる際に、該エンジンの始動が遅い場合或いは該エンジンの始動ができない場合には、通常は走行用駆動力源として使用しない電動モータを前記第3駆動力源として使用するものであることを特徴とする請求項8~10の何れか1項に記載の移動体の駆動システム。

【請求項12】 前記第3駆動力源はエンジン始動用の 電動モータであることを特徴とする請求項11に記載の 移動体の駆動システム。

【請求項13】 前記第3駆動力源は補機駆動用の電動 モータであることを特徴とする請求項11に記載の移動 体の駆動システム。

【請求項14】 車両を走行させるための走行用駆動力源として、燃料の燃焼で作動するエンジンと電気エネルギーで作動する電動モータとを備えているハイブリッド型の車両用駆動システムにおいて、

予め定められた所定の低速走行時であってブレーキON の時には前記電動モータのみを駆動力源として走行する 低速モータ走行手段と、

前記所定の低速走行時であってプレーキOFFの時には 前記エンジンを駆動力源として走行する低速エンジン走 行手段と、

前記所定の低速走行よりも高速の走行時には前記エンジンを駆動力源として走行する高速エンジン走行手段と、 を有することを特徴とする車両用駆動システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は車両等の移動体の駆動システムに係り、特に、スムーズな発進性能が得られ 30 る駆動システムに関するものである。

[0002]

【従来の技術】移動体を移動させるための移動用駆動力 源として、第1駆動力源と、その第1駆動力源よりも定 格出力が小さい第2駆動力源と、を有する移動体の駆動 システムが知られている。燃料の燃焼で作動するエンジ ンと電気エネルギーで作動する電動モータとを車両走行 用の駆動力源として備えているハイブリッド型の車両用 駆動システムはその一例で、一般にエンジンの方が電動 モータよりも定格出力が大きい。特開平10-1365 08号公報に記載されている装置はその一例で、シンプ ルプラネタリ型の遊星歯車装置から成る副変速機が設け られ、2つのクラッチの係合状態によって電動モータの みを駆動力源とするモータ走行モード、エンジンのみを 駆動力源とするエンジン走行モードなど種々の走行モー ドが成立させられるようになっている。そして、このよ うな車両用駆動システムにおいては、一般に車両停止時 にはエンジンも停止させられ、モータ走行モードで発進 してからエンジンを始動してエンジン走行モードに切り 換えるようになっているのが普通である。

[0003]

【発明が解決しようとする課題】しかしながら、このようにモータ走行モードで発進してからエンジンを始動してエンジン走行モードに移行する場合、エンジンの始動が遅かったり始動できなかったりすると、駆動力が不足してもたつき感を生じる可能性がある。大きな出力が得られる大容量の電動モータを走行用駆動力源として搭載しておけば、エンジンの始動不可時等にその電動モータを通常よりも高出力まで作動させることにより、駆動力不足を軽減或いは解消できるが、通常の走行時には必要ない過剰品質になってコスト高になるとともに、大型で大きな設置スペースが必要になる。

【0004】本発明は以上の事情を背景として為されたもので、その目的とするところは、電動モータ等の第2駆動力源として定格出力が小さい小型で安価なものを採用しつつ、定格出力が大きいエンジン等の第1駆動力源の作動開始遅れや作動不可に伴う駆動力不足を改善することにある。

[0005]

20 【課題を解決するための手段】かかる目的を達成するために、第1発明は、移動体を移動させるための移動用駆動力源として、第1駆動力源と、その第1駆動力源よりも定格出力が小さい第2駆動力源と、を有する移動体の駆動システムにおいて、前記第1駆動力源の作動開始が遅い場合或いは作動させることができない場合に、前記第2駆動力源を代わりに使用し、必要に応じてその第2駆動力源の定格出力を越えて作動させる補助駆動制御手段を設けたことを特徴とする。

【0006】なお、「定格出力」とは、連続して使用できる最大出力で、例えば電動モータの場合は、「モータを定格回転数で連続運転した時、温度上昇が限度を超えない範囲で一定値に達した時のモータ出力」で、定格回転数は「定格出力で運転するモータの回転速度。最大トルクで加減速を行っても支障のない回転数」である。したがって、短時間であれば駆動力源の耐久性を損なうことなく、その定格出力を越えて作動させることができる。

【0007】また、駆動力源が、例えば燃料電池から供給される電気エネルギーで作動する電動モータの場合、 40 その駆動力源の定格出力は、燃料電池の定格発電量および電動モータの定格出力のうち低い方によって定まる。すなわち、電動モータの定格出力に余裕があり、燃料電池の発電量が定格発電量に達しても電動モータが定格出力に違しない場合は、燃料電池の定格発電量で駆動力源の定格出力は規定され、その定格発電量で作動させられる時の電動モータの出力が駆動力源の定格出力になる。 一方、燃料電池の定格発電量に余裕があり、電動モータの出力が定格出力に達しても燃料電池が定格発電量に違しない場合は、電動モータの定格出力がそのまま駆動力源の定格出力になる。

【0008】第2発明は、移動体を移動させるための移 動用駆動力源として、始動に要する時間が異なる複数の 駆動力源を有する移動体の駆動システムにおいて、前記 複数の移動用駆動力源のうち少なくとも1つの第1駆動 力源が始動される場合で、その第1駆動力源の始動時間 が所定時間を越える場合には、その複数の移動用駆動力 源のうちその第1駆動力源よりも始動時間が短い第2駆 動力源を始動させるとともに、必要に応じてその第2駆 動力源の定格出力を越えて作動させる補助駆動制御手段 を設けたことを特徴とする。

【0009】第3発明は、第1発明または第2発明の移 動体の駆動システムにおいて、(a)前記第1駆動力源は 燃料の燃焼で作動するエンジンで、前配第2駆動力源は 電気エネルギーで作動する電動モータであり、(b) 前記 エンジンを前記移動用駆動力源として使用するために始 動するエンジン始動手段を備えているとともに、(c)前 記補助駆動制御手段は、前記エンジン始動手段によって 前記エンジンが始動させられる際に、そのエンジンの始 動が遅い場合或いはそのエンジンの始動ができない場合 には、前記電動モータを代わりに使用し、必要に応じて 20 その電動モータの定格出力を越えて作動させるものであ ることを特徴とする。

【0010】第4発明は、第3発明の移動体の駆動シス テムにおいて、(a) 前記電動モータは、燃料電池から電 気エネルギーが供給されるもので、(b) 前配補助駆動制 御手段は、必要に応じて前記燃料電池の発電量をその定 格発電量を越えて増大させることにより、前記電動モー タをその定格出力を越えて作動させるものであることを 特徴とする。

【0011】なお、「定格発電量」とは、連続して使用 できる最大発電量で、短時間であれば燃料電池の耐久性 を損なうことなくその定格発電量を越えて発電させるこ とができる。

【0012】第5発明は、第3発明の移動体の駆動シス テムにおいて、(a) 前記電動モータは、通常は燃料電池 および二次電池の何れか一方から択一的に電気エネルギ ーが供給されるもので、(b) 前配補助駆動制御手段は、 必要に応じて前記燃料電池および二次電池を直列接続し て前記電動モータに電気エネルギーを供給することによ り、その電動モータをその定格出力を越えて作動させる ものであることを特徴とする。

【0013】第6発明は、移動体を移動させるための移 動用駆動力源として、第1駆動力源と、その第1駆動力 源よりも定格出力が小さい第2駆動力源と、を有する移 動体の駆動システムにおいて、(a) 前配第1駆動力源の 作動開始が遅い場合或いは作動させることができない場 合に、前記第2駆動力源を代わりに使用して駆動力を発 生させる補助駆動制御手段を有し、且つ、(b) 前記第2 駆動力源は、燃料電池から供給される電気エネルギーで 作動する電動モータで、前記補助駆動制御手段は、必要 50 システムにおいて、前記第3駆動力源はエンジン始動用

に応じてその燃料電池の発電量をその定格発電量を越え て増大させてその電動モータを作動させるものであるこ とを特徴とする。

【0014】第7発明は、移動体を移動させるための移 動用駆動力源として、始動に要する時間が異なる複数の 駆動力源を有する移動体の駆動システムにおいて、(a) 前記複数の移動用駆動力源のうち少なくとも1つの第1 駆動力源が始動される場合で、その第1駆動力源の始動 時間が所定時間を越える場合には、その複数の移動用駆 動力源のうちその第1駆動力源よりも始動時間が短い第 2駆動力源を始動させて駆動力を発生させる補助駆動制 御手段を有し、且つ、(b) 前記第2駆動力源は、燃料電 池から供給される電気エネルギーで作動する電動モータ で、前記補助駆動制御手段は、必要に応じてその燃料電 池の発電量をその定格発電量を越えて増大させてその電 動モータを作動させるものであることを特徴とする。

【0015】第8発明は、移動体を移動させるための移 動用駆動力源として、第1駆動力源と、その第1駆動力 源よりも定格出力が小さい第2駆動力源と、を有する移 動体の駆動システムにおいて、前記第1駆動力源の作動 開始が遅い場合或いは作動させることができない場合 に、通常は移動用駆動力源として使用しない第3駆動力 源を移動用駆動力源として使用する補助駆動制御手段を 設けたことを特徴とする。

【0016】第9発明は、移動体を移動させるための移 動用駆動力源として、始動に要する時間が異なる複数の 駆動力源を有する移動体の駆動システムにおいて、前記 複数の移動用駆動力源のうち少なくとも1つの第1駆動 力源が始動される場合で、その第1駆動力源の始動時間 が所定時間を越える場合には、通常は移動用駆動力源と して使用しない駆動力源であってその第1駆動力源より も始動時間が短い第3駆動力源を移動用駆動力源として 使用する補助駆動制御手段を設けたことを特徴とする。

【0017】第10発明は、第8発明または第9発明の 移動体の駆動システムにおいて、前記補助駆動制御手段 は、必要に応じて前記第3駆動力源をその定格出力を越 えて作動させるものであることを特徴とする。

【0018】第11発明は、第8発明~第10発明の何 れかの移動体の駆動システムにおいて、(a) 前記第1駆 動力源は燃料の燃焼で作動するエンジンであり、(b) そ のエンジンを前記移動用駆動力源として使用するために 始動するエンジン始動手段を備えているとともに、(c) 前配補助駆動制御手段は、前配エンジン始動手段によっ て前記エンジンが始動させられる際に、そのエンジンの 始動が遅い場合或いはそのエンジンの始動ができない場 合には、通常は走行用駆動力源として使用しない電動モ ータを前記第3駆動力源として使用するものであること

【0019】第12発明は、第11発明の移動体の駆動

7

の電動モータであることを特徴とする。

【0020】第13発明は、第11発明の移動体の駆動システムにおいて、前記第3駆動力源は補機駆動用の電動モータであることを特徴とする。

【0021】第14発明は、車両を走行させるための走行用駆動力源として、燃料の燃焼で作動するエンジンと電気エネルギーで作動する電動モータとを備えているハイブリッド型の車両用駆動システムにおいて、(a) 予め定められた所定の低速走行時であってブレーキONの時には前記電動モータのみを駆動力源として走行する低速 10モータ走行手段と、(b) 前配所定の低速走行時であってブレーキOFFの時には前配エンジンを駆動力源として走行する低速エンジン走行手段と、(c) 前配所定の低速走行よりも高速の走行時には前配エンジンを駆動力源として走行する高速エンジン走行手段と、を有することを特徴とする。

【0022】なお、「ブレーキON」は、制動力を発生させるために運転者によってブレーキ操作が為されている状態を意味し、「ブレーキOFF」はブレーキ操作が為されていない状態を意味する。

[0023]

【発明の効果】第1発明の移動体の駆動システムにおいては、定格出力が大きい第1駆動力源の作動開始が遅い場合或いは作動させることができない場合に、補助駆動制御手段によって第2駆動力源を代わりに使用し、必要に応じて定格出力を越えて作動させるため、その第2駆動力源として定格出力が小さい安価でコンパクトな電動モータ等を採用しつつ、第1駆動力源の作動開始遅れや作動不可に伴う駆動力不足が改善される。

【0024】また、移動用駆動力源である第2駆動力源 30 を用いて駆動力不足を補うため、例えば第2駆動力源を用いた移動モードから第1駆動力源を用いた移動モード、或いは第1駆動力源および第2駆動力源の両方を用いた移動モードへ移行する際の第1駆動力源の作動開始遅れや作動不可の場合、第2駆動力源をそのまま用いて高出力まで引っ張って移動体を移動させることになるため、第3駆動力源を用いる第8発明や第9発明に比較して、駆動力を滑らかに増大させることができるとともに制御が容易である。

【0025】第2発明の移動体の移動システムは、第1 駆動力源の始動時間が所定時間を越える場合には、補助 駆動制御手段により複数の移動用駆動力源のうち第1駆 動力源よりも始動時間が短い第2駆動力源を始動させる とともに、必要に応じてその第2駆動力源の定格出力を 越えて作動させるため、第1発明と同様に第2駆動力源 として定格出力が小さい安価でコンパクトな電動モータ 等を採用しつつ、第1駆動力源の作動開始遅れや作動不 可に伴う駆動力不足が改善される。また、移動用駆動力 源である第2駆動力源を用いて駆動力不足を補うため、 第3駆動力源を用いる第8発明や第9発明に比較して、 駆動力を滑らかに増大させることができるとともに制御 が容易であることも第1発明と同様である。

【0026】第3発明~第5発明は、第1駆動力源としてエンジンを使用し、第2駆動力源として電動モータを使用する場合であり、エンジン始動手段によってエンジンが始動させられる際に、そのエンジンの始動が遅い場合或いはエンジンの始動ができない場合には、補助駆動制御手段によって第2駆動力源である電動モータを用いて駆動力が発生させられるとともに、その電動モータは必要に応じて定格出力を越えて作動させられるため、電動モータとして定格出力が小さい安価でコンパクトなものを採用しつつ、エンジンの始動遅れや始動不可に伴う駆動力不足が改善される。

【0027】これにより、例えばエンジンおよび電動モ ータが走行用駆動力源として用いられるハイブリッド型 の車両用駆動システムの場合、モータ走行モードからエ ンジン走行モード(或いはエンジン+モータ走行モー ド) への移行時に、エンジンの始動遅れに起因してもた つき感が生じたり、エンジンの始動不可によって走行不 20 能になったりすることが防止される。また、移動用駆動 力源である電動モータを用いて駆動力不足を補うため、 例えばモータ走行モードからエンジン走行モード或いは エンジン+モータ走行モードへの移行時のエンジン始動 遅れの場合、モータ走行モードで使用していた電動モー タをそのまま用いて髙出力まで引っ張って走行すること になるため、エンジン始動用の電動モータや補機駆動用 の電動モータを用いる第12発明や第13発明に比較し て、駆動力を滑らかに増大させることができるとともに 制御が容易である。

【0028】第4発明では、上記電動モータの電気エネルギー供給源として燃料電池が用いられ、その燃料電池の発電量を定格発電量を越えて増大させることにより、電動モータを定格出力を越えて作動させるため、燃料電池および電動モータとして何れも定格発電量、定格出力が小さい安価でコンパクトなものを採用することが可能で、駆動システムが一層安価でコンパクトに構成される。また、第5発明のように二次電池と併用する場合に比べて制御が容易である。

【0029】第5発明は、上記電動モータの電気エネルギー供給源として燃料電池および二次電池が用いられ、通常は何れか一方から択一的に電気エネルギーが供給される場合で、前記補助駆動制御手段は、必要に応じてそれ等の燃料電池および二次電池を直列接続して電動モータに電気エネルギーを供給することにより、電動モータを定格出力を越えて作動させるため、第4発明と同様に燃料電池として定格発電量が小さい安価でコンパクトなものを採用することが可能で、駆動システムが一層安価でコンパクトに構成される。

【0030】第6発明は、実質的に第1発明の一実施態 50 様で、第1発明と同様の作用効果が得られる。また、第

40

7 発明は、実質的に第2 発明の一実施態様で、第2 発明 と同様の作用効果が得られる。加えて、これ等の第6発 明、第7発明では、第2駆動力源が燃料電池から供給さ れる電気エネルギーで作動する電動モータで、補助駆動 制御手段は、必要に応じてその燃料電池の発電量をその 定格発電量を越えて増大させて電動モータを作動させる ものであるため、燃料電池として定格発電量が小さい安 価でコンパクトなものを採用することが可能である。な お、燃料電池の発電量が定格発電量を越えることによ り、その燃料電池および電動モータから構成される第2 駆動力源は、その定格出力(定格発電量で規定される出 力)を越えて作動させられることになるが、電動モータ 自体は必ずしも電動モータの定格出力を超えて作動させ

【0031】第8発明の移動体の駆動システムにおいて は、定格出力が大きい第1駆動力源の作動開始が遅い場 合或いは作動させることができない場合に、補助駆動制 御手段によって通常は移動用駆動力源として使用しない 第3駆動力源を移動用駆動力源として使用するため、第 2駆動力源として定格出力が小さい安価でコンパクトな 電動モータ等を採用しつつ、第1駆動力源の作動開始遅 れや作動不可に伴う駆動力不足が改善される。

られるわけではない。

【0032】第9発明の移動体の移動システムは、第1 駆動力源の始動時間が所定時間を越える場合には、補助 駆動制御手段によって通常は移動用駆動力源として使用 しない駆動力源であって第1駆動力源よりも始動時間が 短い第3駆動力源を移動用駆動力源として使用するた め、第1駆動力源以外の移動用駆動力源として定格出力 が小さい安価でコンパクトな電動モータ等を採用しつ つ、第1駆動力源の作動開始遅れや作動不可に伴う駆動 30 力不足が改善される。

【0033】第10発明では、必要に応じて上記第3駆 動力源をその定格出力を越えて作動させるため、第2駆 動力源等の第1駆動力源以外の移動用駆動力源として定 格出力が小さい安価でコンパクトな電動モータ等を採用 しつつ、第1駆動力源の作動開始遅れや作動不可に伴う 駆動力不足を一層効果的に改善できる。

【0034】第11発明~第13発明は、第1駆動力源 としてエンジンを使用する場合であり、エンジン始動手 段によってエンジンが始動させられる際に、そのエンジ 40 ンの始動が遅い場合或いはエンジンの始動ができない場 合には、補助駆動制御手段によって第3駆動力源の電動 モータを用いて駆動力が発生させられるため、第8発明 の第2駆動力源など第1駆動力源以外の移動用駆動力源 としてとして定格出力が小さい安価でコンパクトな電動 モータ等を採用しつつ、エンジンの始動遅れや始動不可 に伴う駆動力不足が改善される。

【0035】これにより、例えばエンジンおよび電動モ ータが走行用駆動力源として用いられるハイブリッド型 ンジン走行モード(或いはエンジン+モータ走行モー ド)への移行時に、エンジンの始動遅れに起因してもた つき感が生じたり、エンジンの始動不可によって走行不 能になったりすることが防止される。

10

【0036】第14発明では、所定の低速走行時であっ てもプレーキOFFの時には、低速エンジン走行手段に よりエンジンを駆動力源として走行するとともに、その 所定の低速走行よりも高速の走行時には高速エンジン走 行手段によって同じくエンジンを駆動力源として走行す るため、アクセルを踏み込んで発進する通常の発進時に は発進当初からエンジンを作動させて走行することにな り、発進加速の途中でエンジンを始動してモータ走行か らエンジン走行に切り換える場合に比較して、その切換 えに伴うもたつき感が解消し、スムーズな発進性能が得 られる。一方、所定の低速走行時であってプレーキON の場合、すなわちブレーキカを調整するだけで前進した り後進したりするクリープ走行時には、低速モータ走行 手段により電動モータのみを駆動力源として走行するた め、エンジンおよび電動モータを走行用駆動力源として 備えているハイブリッド型の車両用駆動システムの特徴 の一つである燃費や排ガスの低減効果を十分に享受でき る。

[0037]

【発明の実施の形態】ここで、第1発明~第13発明 は、車両を走行させるための走行用駆動力源(移動用駆 動力源)として、燃料の燃焼で作動するエンジン(第1 駆動力源)と電気エネルギーで作動する電動モータ(第 2駆動力源)とを備えているハイブリッド型の車両用駆 動システムに好適に適用される。

【0038】上記ハイブリッド型の車両用駆動システム としては、電動モータのみで走行するモータ走行モード で発進した後に、エンジンを始動してエンジン走行モー ド或いはエンジン+モータ走行モードへ切り換える場合 に好適に適用されるが、エンジン走行モードで発進する とともに必要に応じて電動モータを作動させてアシスト する場合など、種々の車両用駆動システムに適用され得 る。

【0039】第2駆動力源として使用される電動モータ (第14発明の走行用駆動力源として使用される電動モ ータを含む)としては、数十V程度の比較的低電圧で作 動する安価でコンパクトなものを用いることが望ましい が、数百V等の高電圧で作動する電動モータを用いるこ とも可能である。電動モータとしては、駆動力源として トルクを発生するだけでなく、車両の運動エネルギーで 回転駆動されることにより発電することが可能なモータ ジェネレータが好適に用いられる。エンジンとしては、 ガソリンエンジンやディーゼルエンジンなどが好適に用

【0040】第1発明、第2発明、第8発明、第9発明 の車両用駆動システムの場合、モータ走行モードからエ 50 の移動用駆動力源としては、エンジンや電動モータ以外 の種々の駆動力源を採用することが可能である。

【0041】第3発明~第5発明、第11発明~第13 発明では、エンジンが性能的に始動が遅く、エンジンの 始動時には常に補助駆動制御手段によって駆動力が発生 させられるように構成することもできるが、例えばエン ジンの始動が予め定められた所定時間よりも遅いか否か を判断する始動遅れ判断手段を設け、その始動遅れ判断 手段によって始動が遅い旨の判断が為された場合にのみ 補助駆動制御手段によって駆動力を発生させるようにし ても良い。

【0042】第3発明、第11発明のエンジン始動手段は、例えば第12発明のようにエンジン始動用の電動モータを備えて構成されるが、移動用駆動力源として備えられている電動モータや補機駆動用の電動モータなどを用いてエンジンをクランキングして始動するものでも良い。

【0043】第2駆動力源としての電動モータには、第4発明〜第7発明では燃料電池から電気エネルギーが供給されるようになっているが、バッテリ等の二次電池のみから電気エネルギーが供給されるものでも良く、電気 20エネルギーの供給量を増大させるなどして電動モータの定格出力を越えて作動させることができる。.

【0044】燃料電池は、外部から供給される燃料の酸化によって生じる化学的エネルギーを熱にせず、直接電気エネルギーに変化させるもので、水素ー酸素燃料電池が広く知られているが、天然ガスやアルコールなどの他の燃料を用いる燃料電池を採用することもできる。

【0045】第5発明は、燃料電池および二次電池を直列接続して電動モータを高出力で作動させるが、その場合に、燃料電池を第4発明のように定格発電量を越えて発電させることもできる。定格発電量を越えて発電させる場合は、第4発明の一実施態様と見做すこともできる。

【0046】第8発明~第13発明では第3駆動力源を用いて駆動力を発生させるが、第3駆動力源単独で駆動力を発生させるのではなく、第8発明の第2駆動力源など第1駆動力源以外の移動用駆動力源と併用することが望ましい。その場合に、第2駆動力源等の移動用駆動力源は、必ずしも定格出力を越えて作動させる必要はないが、第1発明~第7発明のように定格出力を越えて作動 40 させることも可能である。その場合は、第1発明~第7発明の一実施態様と見做すこともできる。

せるように構成される。

【0048】第12発明では第3駆動力源としてエンジン始動用の電動モータが用いられ、第13発明では補機駆動用の電動モータが用いられるが、他の発明の実施に際してはそれ等のエンジン始動用の電動モータ、補機駆動用の電動モータは必ずしも必須のものではない。

12

【0049】第14発明の低速エンジン走行手段および 高速エンジン走行手段は、少なくともエンジンを駆動力 源として使用するものであれば良く、必要に応じてエン ジンおよび電動モータの両方を駆動力源として使用する ことも可能である。

【0050】以下、本発明の実施例を図面を参照しつつ 詳細に説明する。図1は、本発明が適用されたハイブリ ッド型の車両用駆動システムであるハイブリッド駆動装 置10の骨子図である。このハイブリッド駆動装置10 はFF (フロントエンジン・フロントドライブ) 車両用 のもので、燃料の燃焼によって作動するガソリンエンジ ン12と、電気エネルギーで作動する電動モータおよび 発電機としての機能を有するモータジェネレータ14 と、遊星歯車式の副変速機16と、ベルト式の無段変速 機18と、差動装置20とを備えており、出力軸22 R、22Lから図示しない左右の前輪 (駆動輪) に駆動 力が伝達される。エンジン12、モータジェネレータ1 4、副変速機16、および無段変速機18の入力軸38 は、同一の軸線上にその順番で配設されている。エンジ ン12およびモータジェネレータ14は、移動体である 車両を移動させるための移動用駆動力源、走行用駆動力 源に相当するもので、エンジン12は第1駆動力源であ り、モータジェネレータ14はエンジン12よりも定格 出力が小さく且つ始動時間が短い第2駆動力源である。 また、無段変速機18は主変速機で、本実施例では出力 軸22R、22Lまでの間で3~11程度の変速比が得 られるようになっている。

【0051】エンジン12は、エンジン始動用の電動モ ータ (MO) 60によって回転駆動 (クランキング) さ れることにより始動させられるようになっている。この 電動モータ60は直流モータで、12V~36 V程度等 の低電圧で作動させられるものであり、蓄電装置として のバッテリ26から電気エネルギーが供給されるように なっている。エンジン12のクランクシャフト12s は、ベルト等の伝動装置を介して上記電動モータ60に 機械的に連結されている。クランクシャフト12sには また、ベルト等の伝動装置および電磁クラッチ62を介 して補機64が接続され、補機64としてのエアコンの コンプレッサ等を回転駆動するようになっている。クラ ンクシャフト12sには更に、ベルト等の伝動装置を介 してモータジェネレータ24が接続されている。このモ ータジェネレータ24は補機駆動用の電動モータで、バ ッテリ26から電気エネルギーが供給されるようになっ

【0052】バッテリ26は、前記モータジェネレータ 14にも電気エネルギーを供給して作動させるもので、 本実施例では36V程度の比較的低電圧のものが用いら れており、モータジェネレータ14の回生制動によって 車両走行中に逐次充電される。バッテリ26の蓄電量S OCが所定値以下まで低下した時、すなわちモータジェ ネレータ14を電動モータとして作動させることができ ない場合は、電動モータ60によりエンジン12を始動 するとともに、そのエンジン12でモータジェネレータ 24を回転駆動して発電させることにより、バッテリ2 6を充電する。これにより、故障時以外は常時モータジ ェネレータ14を用いて走行することが可能である。バ ッテリ26には、電動モータ60によってエンジン12 を始動できる程度の蓄電量SOCが常に確保されるよう になっている。なお、電動モータ60に電気エネルギー を供給するため、バッテリ26とは別に12V等のバッ テリを設けるようにしても良い。

【0053】副変速機16は、互いに近接して並列に配 設されたダブルプラネタリ型の第1遊星歯車装置30お よびシンプルプラネタリ型の第2遊星歯車装置32を備 えている。これらの遊星歯車装置30、32は、共通の リングギヤRおよびキャリアCを有するとともに、第1 遊星歯車装置30のキャリアのリングギヤ側のピニオン ギヤと第2遊星歯車装置32のキャリアのピニオンギャ とが一体化されているラビニョ型である。そして、第1 遊星歯車装置30のサンギヤS1には、前記モータジェ ネレータ14が連結され、第2遊星歯車装置32のサン ギヤS2には、第1クラッチC1およびダンパ装置34 を介してエンジン12が連結されるようになっている。 また、それ等のサンギヤS1およびS2は第2クラッチ C2によって連結されるとともに、キャリアCは反力ブ レーキBによってハウジング44に連結されて回転が阻 止されるようになっており、リングギヤRは出力部材3 6を介して無段変速機18の入力軸38に連結されてい る。クラッチC1、C2、反力ブレーキBは、何れも油 圧アクチュエータによって摩擦係合させられる摩擦係合 式のものである。

【0054】上記サンギヤS1は、第1遊星歯車装置3 0に隣接して配設されるモータジェネレータ14の中心 を貫通して配設された円筒状の連結部材40を介して、 そのモータジェネレータ14よりもエンジン12側に設 けられた第2クラッチC2に接続されており、モータジ エネレータ14のロータは連結部材40の中間位置に相 対回転不能に固定されている。サンギヤS2は、上記連 結部材40を挿通して相対回転可能に配設された連結部 材42を介して、モータジェネレータ14よりもエンジ ン12側に設けられた第1クラッチC1に接続されてい るとともに、その第1クラッチC1を経由することなく 第2クラッチC2に接続されている。また、前配反力プ

の間から外周側へ延び出すキャリア Cをハウジング 4 4 に固定するように配設されている。

【0055】このように両遊星歯車装置30、32は、 サンギヤS1、S2、および共通のリングギヤR、キャ リアCの計4つの回転要素にて構成されているため、ク ラッチやブレーキの係合装置が少なくて済むなど、装置 が全体として簡単且つコンパクトに構成される。特に、 第1遊星歯車装置30のキャリアのリングギヤ側のピニ オンギヤと第2遊星歯車装置32のキャリアのピニオン ギヤとが一体化されているラビニョ型であるため、部品 点数が少なくなって一層簡単且つコンパクトに構成され る。

【0056】また、サンギヤS1は、モータジェネレー タ14の中心を貫通して配設された円筒状の連結部材4 Oを介して第2クラッチC2に接続されているととも に、モータジェネレータ14のロータはその連結部材4 0の中間位置に相対回転不能に固定されている一方、サ ンギヤS2は、連結部材40を挿通して相対回転可能に 配設された連結部材42を介して第1クラッチC1に接 続されているとともに、その連結部材42は第1クラッ チC1を経由することなく第2クラッチC2に接続され ており、反力プレーキBは、副変速機16とモータジェ ネレータ14との間から外周側へ延び出すキャリアCを ハウジング44に固定するようになっており、リングギ ヤRはそのまま出力部材36を介して無段変速機18の 入力軸38に接続されるため、エンジン12やモータジ ェネレータ14、反力プレーキB、出力部材36を連結 するための取り回し(連結構造など)が簡単である。

【0057】図2は、上記副変速機16の各回転要素S 1、S2、R、Cの回転数の相互関係を直線で表す共線 図で、縦軸が回転数であり、各回転要素 S1、S2、 R、Cの位置および間隔は、連結状態や遊星歯車装置3 0、32のギヤ比ρ1、ρ2によって一義的に定まる。 この共線図上において、入力回転要素であるサンギヤS 1、52は互いに反対側の両端に位置しているととも に、出力用回転要素であるリングギヤRは反力用回転要 素であるキャリアCとサンギヤS1との間に位置してい る。なお、図2における各回転要素S1、S2、R、C の間隔は、ギヤ比ρ1、ρ2に基づいて必ずしも正確に 表したものではない。

【0058】図3は、クラッチC1、C2、および反力 プレーキBの係合状態と副変速機16の変速モード (一 例) との関係を示す図で、エンジン12を駆動力源とし て使用する場合、モータジェネレータ14を駆動力源と して使用する場合、或いはシフトレバーの操作ポジショ ン (図6参照) などにより場合分けして示したものであ る。図6の「D」ポジションは、予め定められた変速条 件に従って無段変速機18の変速比をアクセル操作量や 車速などの運転状態に応じて連続的に変化させながら前 レーキBは、副変速機16とモータジェネレータ14と 50 進走行する自動変速位置で、「M」ポジションは、

30

16

「十」位置または「一」位置へシフトレバーが操作されることにより有段変速機のように無段変速機18の変速比を段階的に変化させる有段手動変速位置で、「B」ポジションは、シフトレバーの前後方向位置に応じて無段変速機18の変速比を連続的に変化させる無段手動変速位置である。また、「R」は車両を後進させるリバース位置で、「N」はニュートラル位置で、「P」はパーキングロック機構などで車両の走行を阻止するパーキング位置である。

【0059】図3において、エンジン12を駆動力源と 10 して前進走行する「D」、「M」、「B」ポジションでは、クラッチC1、C2を共に係合させるとともに反力プレーキBを解放することにより、変速比が1の高速前進モード「2nd」が成立させられる。この高速前進モード「2nd」は高速段に相当する。その場合に、第1クラッチC1をスリップ係合させれば、エンジン発進が可能なエンジン低速前進モード「2nd(低速)」が成立させられ、バッテリ26の蓄電量SOCの低下や故障などでモータジェネレータ14を使用できない場合でも、エンジン12で前進方向のクリープトルクを発生さ 20 せたり車両を前方へ発進させたりすることができる。

「R」ポジションでは、第1クラッチC1および反力プレーキBを係合させるとともに第2クラッチC2を解放することにより、変速比が-1/ρ2(ρ2は、第2遊星歯車装置32のギヤ比(=サンギヤS2の歯数/リングギヤRの歯数))の高速後進モード「高速」が成立させられる。その場合に第1クラッチC1をスリップ係合させれば、前進時と同様にエンジン発進が可能なエンジン低速後進モード「低速(エンジン)」が成立させられ、バッテリ26の蓄電量SOCの低下や故障などでモ 30ータジェネレータ14を使用できない場合でも、エンジン12で後進方向のクリープトルクを発生させたり車両を後方へ発進させたりすることができる。また、「N」ポジションでは、クラッチC1、C2を共に解放するとともに反力プレーキBを係合させることにより、エンジン12からの動力伝達を遮断する。

【0060】モータジェネレータ14を駆動力源とする「D」、「M」、「B」ポジションでは、クラッチC 1、C2を共に解放するとともに反力プレーキBを係合させることにより低速前進モード「1st」が成立させ 40 られ、車両停止時には前進方向のクリープトルクを発生させるとともにアクセル操作に従って発進する。この時の変速比は1/ρ1 (ρ1は第1遊星歯車装置30のギヤ比(=サンギヤS1の歯数/リングギヤRの歯数))で比較的大きく、大きなトルク増幅が得られるため、無段変速機18の大きな変速比と相まって、36 V程度の電圧によって作動させられるモータジェネレータ14においても、実用上満足できるクリープトルクや発進性能が得られる。この低速前進モード「1st」は低速段である。

【0061】そして、上記低速前進モード「1st」からエンジン12による高速前進モード「2nd」への移行は、例えば、第2クラッチC2を係合させながら反力プレーキBを解放して副変速機16を一体回転させるとともに、エンジン12の回転数がサンギヤS2と同期した後に第1クラッチC1を係合させ、その後にモータジェネレータ14への電力供給を停止して無負荷状態にする。

【0062】また、クラッチC1、C2を共に係合させ るとともに反力プレーキBを解放することにより、エン ジン12およびモータジェネレータ14の両方を駆動力 源として走行する変速比が1のアシストモード「2nd・ (アシスト)」が成立させられ、第1クラッチC1およ び反力プレーキBを解放するとともに第2クラッチC2 を係合させれば、モータジェネレータ14を回生制御し て効率良く充電しながら制動力を発生させる変速比が1 の回生制動モード「2nd (回生)」が成立させられ る。なお、アシストモード「2 n d (アシスト)」は、 エンジン12による高速前進モード「2nd」の実行時 にモータジェネレータ14を作動させれば良いし、回生 制動モード「2nd(回生)」は、エンジン12による 髙速前進モード「2 n d」の実行時に第1クラッチC1 を解放してエンジン12を切り離すとともにモータジェ ネレータ14を回生制御すれば良い。また、アシストモ ード「2 n d (アシスト) 」は、第1クラッチC1をス リップ係合させるエンジン低速前進モード「2nd(低 速)」でモータジェネレータ14を作動させて行うこと もできる。

【0063】また、モータジェネレータ14を駆動力源 とする「R」ポジションでは、クラッチC1、C2を共 に解放するとともに反力プレーキBを係合させることに より低速後進モード「低速(モータ)」が成立させら れ、モータジェネレータ14に逆回転のトルクを発生さ せることにより、車両停止時には後進方向のクリープト ルクを発生させるとともにアクセル操作に従って後方へ 発進する。この時の変速比は $-1/\rho$ 1で比較的大き く、大きなトルク増幅が得られるため、無段変速機18 の大きな変速比と相まって、36V程度の電圧によって 作動させられるモータジェネレータ14においても、実 用上満足できるクリープトルクや発進性能が得られる。 この低速後進モード「低速(モータ)」も低速段であ る。そして、この低速後進モード「低速(モータ)」か ちエンジン12による高速後進モード「高速」への移行 は、エンジン12を作動させて第1クラッチC1を係合 させた後にモータジェネレータ14への電力供給を停止 して無負荷状態にすれば良い。

【0064】上記エンジン12およびモータジェネレー タ14の使い分けは、例えば車速およびアウトプットト ルク(アクセル操作量)をパラメータとして、図4の 50 (a)のマップM1、または(b)のマップM2に示すよう

に定められる。ここで、(a) のマップM1では、高車 速、髙トルク(アクセル操作量大)の領域ではエンジン 12を使用し、低車速、低トルク (アクセル操作量小) の領域ではモータジェネレータ14を使用するが、低電 圧のモータジェネレータ14を使用する本実施例では、 モータジェネレータ14の使用範囲は比較的狭く、車両 停止時のクリープトルクおよび僅かな走行領域に限定さ れている。マップM1、M2は、バッテリ26の蓄電量 SOCなど車両の走行条件等に応じて選択され、例えば バッテリ26の蓄電量SOCが不足している場合はマッ 10 ブM2が選択される。図4は前進走行用のものである が、後進走行についても同様に定められる。なお、エン ジン12を駆動力源とする上記「2nd」、「2nd (低速) 」の領域でモータジェネレータ14をアシスト 的に使用することも可能である。また、各領域の境界線 は、無段変速機18の変速比などに応じて変化する。

17

【0065】図5は、本実施例のハイブリッド駆動装置 10の作動を制御する制御系統を示す図で、ECU (EI ectronic Control Unit) 50には図5の左側に示すスイ ッチやセンサ等から各種の信号が入力されるとともに、 ROM等に予め記憶されたプログラムに従って信号処理 を行って右側に示す各種の装置等に制御信号などを出力 することにより、例えば車速Vやアクセル開度(アクセ ルペダルの操作量) θ、シフトポジション (シフトレバ ーの操作位置)、バッテリ蓄電量SOC、フットプレー キの操作量などの運転状態に応じて副変速機16の変速 モードを切り換えたり、エンジン12およびモータジェ ネレータ14の作動を制御したりする。

【0066】図5の減速度/トルク設定スイッチ52 は、例えば図7に示すようなスライドスイッチによって 30 構成され、シフトレバーの近傍などに配設される。これ は、副変速機16が回生制動モード「2nd (回生)」 の時のモータジェネレータ14の回生制動トルクを手動 で調整するもので、手前に引く程制動トルクは増大す る。すなわち、この減速度/トルク設定スイッチ52の 操作位置に従って、図4の回生制動モード「2nd(回 生)」のラインは上下に移動させられるのである。ま た、図8の設定減速度インジケータ54には、減速度/ トルク設定スイッチ52の操作位置に応じて、回生制動 トルクが大きくなる程長さが長くなる後向きの矢印で設 40 定状態が表示される。この設定減速度インジケータ54 は、インストルメントパネルに設けられる。

【0067】また、図5のコントローラ (MO) 66は エンジン始動用の電動モータ60の出力(トルク)制御 を行うもので、コントローラ (MG14) 68、コント ローラ (MG24) 70はモータジェネレータ14、2 4の出力(トルク)制御および回生制御等を行うインバ ータで、電動オイルポンプ72は前記クラッチC1、C 2やプレーキB、或いはABSアクチュエータ74等に 油圧を供給するためのものである。システムインジケー 50 場合には、ステップS4においてエンジン始動用電動モ

タ76は、シフトレバーが前配「M」 ポジションまたは 「B」ポジションへ操作された場合にアクティブにな り、無段変速機全体の変速比を図9に示すように数値表 示する。何等かの理由により「M」ポジション、「B」 ポジションで変速比が点灯しない場合はフェール判定が 為される。フェール時には、変速比を点滅させるように しても良い。

【0068】図10は、車両を停止状態に維持するヒル ホールド油圧の特性図である。ヒルホールド油圧は、車 輪に設けられたホイールシリンダの油圧で、図5のAB Sアクチュエータ74によって制御されるものであり、 フットプレーキのペダルストロークに応じて制御される ようになっている。本実施例では、図5のフットブレー キアッパスイッチ78およびフットプレーキロアスイッ チ80によってペダルストロークを2段階で検出するよ うになっており、フットプレーキアッパスイッチ78が ONでフットプレーキロアスイッチ80がOFFの踏込 み量(ペダルストローク)が小さいBS1~BS2の領 域では50%の油圧でヒルホールドを実施し、フットブ 20 レーキロアスイッチ80がONになる踏込み量が大きい BS2以上の領域では100%の油圧でヒルホールドを 実施する。なお、フットプレーキのペダルストロークを 連続的に検出して、一点鎖線で示すようにヒルホールド 油圧を連続的に変化させるようにしても良い。

【0069】一方、エンジン12を駆動力源として使用 するために始動する際には、前記ECU50により図1 1のフローチャートに従って信号処理が行われる。ステ ップ S 1 では、本制御に必要な各種の信号を読み込む等 の入力信号処理を行い、ステップS2では、シフトポジ ションスイッチ82(図5参照)から供給される信号に 基づいてシフトレバーの操作位置が走行ポジション、す なわち「D」、「M」、「B」、または「R」であるか 否かを判断する。走行ポジションであれば、ステップS 3においてエンジン12を走行用の駆動力源として使用 するためのエンジン始動条件が成立しているか否か、す なわちモータ走行モードからエンジン走行モード或いは エンジン+モータ走行モードへ移行するか否か、または 単純にエンジン12を始動して走行するか否かなどを判 断する。具体的には、前記図4の(a) のマップM1にお いて、車速∨およびアクセル操作量θ等がモータジェネ レータ14による低速前進モード「1st」からエンジ ン12によるエンジン低速前進モード「2nd(低 速)」または高速前進モード「2 n d」へ移行する条件 を満たしているか否か、或いはバッテリ26の蓄電量不 足などで図4の(b) のマップM2に切り換えられるなど してエンジン12によるエンジン低速前進モード「2n d (低速)」または高速前進モード「2nd」を新たに 実行する条件を満たしているか否か等である。

【0070】そして、エンジン始動条件が成立している

ータ60によりエンジン12をクランキングするととも に点火時期制御や燃料噴射制御などを行う。このエンジ ン始動処理の実行時には、第1クラッチC1は解放さ れ、エンジン12が駆動力伝達系から切り離されてい る。ECU50による信号処理のうちステップS4を実 行する部分はエンジン始動手段として機能している。次 のステップS5では、予め定められた所定の時間内に実 際にエンジン12が始動したか否かを判断し、エンジン 12が始動すればステップS6においてエンジン12を 駆動力源とする通常の走行制御を行うが、故障など何等 10 かの理由で所定の時間内にエンジン12が始動しない場 合にはステップS5に続いてステップS7以下を実行 し、エンジン始動用の電動モータ60を用いて駆動力を 発生させる。ECU50による信号処理のうちステップ S5を実行する部分は始動遅れ判断手段として機能して いる。

【0071】ステップS7では、電磁クラッチ62を解 放して補機64を切り離すことにより、駆動力を発生さ せる電動モータ60の負担を軽減する。ステップS8で は第1クラッチC1を係合させてエンジン12を副変速 20 機16に接続し、エンジン12の回転が副変速機16、 ベルト式無段変速機18等の駆動力伝達系を経て出力軸 22R、22Lから駆動輪まで伝達されるようにする。 第1クラッチC1の他にも前進走行時には第2クラッチ C2が係合させられ、後進走行時には反力プレーキBが 係合させられる。そして、ステップS9のMO特殊制御 では、電動モータ60をステップS4のエンジン始動時 よりも大きなトルクで作動させて、エンジン12を回転 させながら駆動力を発生させる。具体的には、電動モー タ60の出力を、定格出力を越えて最大限まで引き上げ 30 てエンジン12の始動遅れに伴う駆動力不足を補い、車 両を走行可能としたり、所定の駆動力を発生させたりす るのである。電動モータ60は直流モータであるため、 容易にこのような制御が可能である。ECU50による 信号処理のうちステップS8およびS9を実行する部分 は補助駆動制御手段として機能しており、エンジン始動 用の電動モータ60は通常は走行用駆動力源として使用 しない第3駆動力源に相当する。また、電動モータ60 の始動時間はエンジン12よりも十分に短く、速やかに 駆動力を発生させることができる。すなわち、本実施例 は第8発明~第12発明の実施例に相当する。

【0072】なお、上記電動モータ60の特殊制御時に はモータジェネレータ14も作動させられ、両方の出力 を加えた駆動力が発生させられる。すなわち、エンジン +モータ走行モードへ移行する場合は勿論、エンジン走 行モードへ移行する場合にも、モータジェネレータ14 は所定の出力で作動させられ、電動モータ60と共にエ ンジン12の代わりに所定の駆動力を発生させるのであ

【0073】ステップS10では、MO特殊制御を中止 50 1~S6と実質的に同じであり、ステップSS7ではエ

するか否かを判断し、中止する場合には直ちにステップ S12を実行してMO特殊制御を中止する。中止条件と しては、例えば図5のイグニッションスイッチ(ハイブ リッド車両の駆動システムのON、OFF を切り換える スイッチ)84がOFF操作された時、シフトレバーが 「N」ポジションや「P」ポジションへ切換え操作され た時、MO特殊制御が所定時間以上経過した時、燃料噴 射等のエンジン始動処理を継続して行っている場合にエ ンジン12が始動した時などである。また、ステップS 11では、バッテリ26の蓄電量SOCが下限値SOC い以下になったか否かを判断し、SOC≦SOCいにな った場合もステップS12でMO特殊制御を中止する。 下限値SOCいは、例えばバッテリ26の蓄電量SOC がMO特殊制御に耐え得る程残っているか否か等を基準 にして定められる。

【0074】このように、本実施例のハイブリッド駆動 装置10は、エンジン12を駆動力源として走行するた めにステップS4でエンジン12が始動させられる際 に、そのエンジン12の始動が遅い場合には、ステップ S5の判断がNOになってステップS7以下が実行さ れ、モータジェネレータ14の他にエンジン始動用の電 動モータ60を用いて駆動力が発生させられるため、第 2駆動力源であるモータジェネレータ14として定格出 力が小さい安価でコンパクトなものを採用しつつ、エン ジン12の始動遅れや始動不可に伴う駆動力不足が改善 される。これにより、モータ走行モードからエンジン走 行モードへの移行時、或いはエンジン12を駆動力源と して発進する際に、エンジン12の始動遅れに起因して もたつき感が生じたりエンジン12の始動不可によって 走行不能になったりすることが防止される。

【0075】なお、上記実施例では第3駆動力源として エンジン始動用の電動モータ60を用いて駆動力不足を 補うようになっていたが、補機駆動用のモータジェネレ ータ24を用いて駆動力不足を補うこともできる。すな わち、ステップS9において、電動モータ60を用いる 代わりにモータジェネレータ24を力行制御して、エン ジン12を回転させながら所定の駆動力を発生させるの である。モータジェネレータ24は交流モータで、イン バータにより制御されるが、予め大電流を流せるように 設計することにより、一時的であれば定格出力を越える 大きなトルクを発生させることができる。この場合は、 第13発明の実施例に相当する。

【0076】上記モータジェネレータ24を用いてエン ジン12を始動させることも可能で、その場合は電動モ 一夕60を省略できる。

【0077】また、図12は、車両走行用の第2駆動力 源として用いられるモータジェネレータ 1 4 を特殊制御 して、エンジン12の始動遅れに伴う駆動力不足を補う 場合で、ステップSS1~SS6は図11のステップS

ンジン12の始動遅れに伴う駆動力不足を補うように、 バッテリ26からの電気エネルギー供給量を増大させる などしてモータジェネレータ14を、その定格出力を越 える大トルクで作動させて走行する。モータジェネレー タ14は交流モータで、インバータにより制御される が、予め大電流を流せるように設計することにより、一 時的であれば定格出力を越える大きなトルクを発生させ ることができる。

【0078】ステップSS8では、ステップSS7のM G特殊制御を中止するか否かを判断し、中止する場合に 10 は直ちにステップSS11を実行してMG特殊制御を中 止する。中止条件としては、例えばイグニッションスイ ッチ84がOFF操作された時、シフトレバーが「N」 ポジションや「P」ポジションへ切換え操作された時、 ステップSS4のエンジン始動処理を継続して行ってい る場合にエンジン12が始動した時などである。また、 ステップSS9でバッテリ26の蓄電量SOCが下限値 SOCL2以下になったか否かを判断するとともに、ステ ップSS10でMG特殊制御の継続時間TSが所定時間 T1以上になったか否かを判断し、SOC≦SOCL2或 20 いはTS≧T1になった場合もステップSS11でMG 特殊制御を中止する。下限値SOCL2は、例えばバッテ リ26の蓄電量SOCがMG特殊制御に耐え得る程残っ ているか否か等を基準にして定められ、一定時間T1 は、連続高出力によるモータジェネレータ14の熱的限 界等を基準にして定められる。

【0079】この場合も前配実施例と同様の効果が得ら れる。特に、モータ走行モードからエンジン走行モード 或いはエンジン+モータ走行モードへの移行時のエンジ ン始動遅れの場合、モータ走行モードで使用していたモ 30 ータジェネレータ14をそのまま用いて髙トルクまで引 っ張って走行することになるため、前配実施例のように 別の電動モータ60やモータジェネレータ24を用いて 駆動力を発生させる場合に比較して、駆動力を滑らかに 増大させることができるとともに制御が容易である。

【0080】この実施例は、第1発明~第3発明の実施 例で、ECU50による信号処理のうちステップSS4 を実行する部分がエンジン始動手段として機能してお り、ステップSS5を実行する部分が始動遅れ判断手段 として機能しており、ステップSS7を実行する部分が 40 補助駆動制御手段として機能している。

【0081】図13および図14は第14発明の一実施 例で、前記ハイブリッド駆動装置10に適用され、EC U50による信号処理によって実行される。ステップQ 1では、本制御に必要な各種の信号を読み込む等の入力 信号処理を行い、ステップQ2では、シフトポジション スイッチ82から供給される信号に基づいてシフトレバ ーの操作位置が走行ポジション、すなわち「D」、

「M」、「B」、または「R」であるか否かを判断す

ッテリ26の蓄電量SOCが下限値SOCL3以下か否か を判断し、SOC≦SOCL3の場合はステップQ4で前 記図4の(b) に示すマップM2に従ってエンジン12の みを駆動力源として走行するが、SOC>SOCL3であ ればステップQ5以下を実行する。下限値SOCL3は、 例えばバッテリ26の蓄電量SOCがモータジェネレー タ14を力行制御して走行できる程残っているか否か等 を基準として定められる。

22

【0082】ステップQ5では、フットプレーキが略完 全に踏み込まれているか否かを、フットプレーキロアス イッチ80がONか否かによって判断し、ONの場合は ステップQ6で車速Vが予め定められた一定の低車速V い以下か否かを判断する。ステップQ6は、車両が略停 止状態であるか否かを判断するためのもので、低車速V L1はセンサの検出誤差などを考慮して略 0 の値に設定さ れており、V≦VいであればステップQ7でエンジン1 2およびモータジェネレータ14の出力を共に0にして 燃料や電力を節約する。また、ステップQ8では、図1 0に示すようにヒルホールド油圧を100%とし、高い 油圧でホイールプレーキを作動させて車両を停止状態に 保持する。

【0083】上記ステップQ5の判断がNOの場合、す なわちプレーキロアスイッチ80がOFFの場合は、図 14のステップQ9以下を実行し、ステップQ6の判断 がNOの場合、すなわち車速Vが低車速VL1より大きい 場合は、図14のステップQ11以下を実行する。ステ ップQ9では、フットプレーキが少し踏み込まれている (BS1~BS2) か否かを、フットプレーキアッパス イッチ78がONか否かによって判断し、ONの場合は ステップQ14で車速Vが予め定められた一定の低車速 VL2以下か否かを判断する。低車速VL2は、例えば図4 (a) のマップM1における低速前進モード「1 s t」の 最大車速と略同じ車速で、V≦VL2であればステップQ 15でモータジェネレータ14を力行制御するととも に、ステップQ16でヒルホールド力を50%に低減す る。モータジェネレータ14のトルクは、ヒルホールド 力(50%)およびフットプレーキの制動力に拘らず略 水平な平坦路であれば車両が少しずつ前進するクリープ トルクを発生させる大きさに設定されている。後進走行 時も同様に設定される。したがって、フットプレーキの 踏込み量(ペダルストローク)が比較的小さく(BS1 ~BS2の範囲内)、且つ車速Vが低車速VL2以下の場 合には、アクセルOFFでもモータジェネレータ14に よって車両が前後進させられ、トルクコンバータを備え ている一般のオートマチック車両と同様にプレーキ操作 の強弱だけでクリープ走行できる。

【0084】一方、ステップQ9の判断がNOの場合、 すなわちフットブレーキが踏込み操作されていない場合 や、ステップQ14の判断がNOの場合、すなわちフッ る。走行ポジションであれば、ステップQ3においてバ 50 トブレーキがONでも車速Vが低車速VL2より大きい場 合には、ステップQ10以下を実行する。ステップQ10では、エンジン12のみを駆動力源として走行する図4(b)のマップM2を設定し、ステップQ11では、電動モータ60などでエンジン12を始動してマップM2に従って変速モードを切り換えながら走行する。ステップQ12では、車速Vおよびアクセル操作量θなどの運転状態、或いはシフトレバー操作などに従って無段変速機18の変速制御を行い、ステップQ13ではヒルホールドを完全に解除する。

【0085】本実施例では、フットブレーキが踏込み操 10 作されていない場合 (ステップQ9がNO) には、マッ プM2に従ってエンジン12のみを駆動力源として走行 するため、アクセルを踏み込んで発進する通常の発進時 には発進当初からエンジン12を作動させて走行するこ とになり、発進加速の途中でエンジン12を始動してモ ータ走行からエンジン走行に切り換える場合に比較し て、その切換えに伴うもたつき感が解消し、スムーズな 発進性能が得られる。一方、フットプレーキの踏込み最 (ペダルストローク) が比較的小さく (BS1~BS2 の範囲内)、且つ車速Vが低車速VL2以下の場合(ステ ップQ14がYES)、言い換えればプレーキ操作の強 弱だけでクリープ走行する場合には、モータジェネレー タ14のみを駆動力源として走行するため、ハイブリッ ド駆動装置10の特徴の一つである燃費や排ガスの低減 効果を十分に享受できる。

【0086】この場合には、ECU50による信号処理のうちステップQ15を実行する部分が低速モータ走行手段として機能しており、ステップQ11を実行する部分が低速エンジン走行手段および高速エンジン走行手段として機能している。

【0087】図15は、本発明が適用されたハイブリッ ド型の車両用駆動システムであるハイブリッド駆動装置 100の概略構成図で、図16は骨子図である。このハ イブリッド駆動装置100はFR(フロントエンジン・ リヤドライブ) 車両用のもので、燃料の燃焼によって作 動するガソリンエンジン102と、電気エネルギーで作 動する電動モータおよび発電機としての機能を有するモ ータジェネレータ104とを、移動体である車両の移動 用駆動力源(走行用駆動力源)として備えており、トル コンバータ106から歯車変速機部108を経て図示し ない差動装置、車軸などを介して左右の後輪 (駆動輪) に駆動力が伝達される。エンジン102は第1駆動力源 で、モータジェネレータ104はエンジン102よりも 定格出力が小さく且つ始動時間が短い第2駆動力源であ り、エンジン102のクランクシャフト102gは油圧 式摩擦係合装置である入力クラッチ110を介してモー タジェネレータ104のモータ軸104sに連結される ようになっている。

74 74

ン等の駆動装置114を介して回転駆動 (クランキン グ)されることによって始動させられるようになってい る。このモータジェネレータ112は、例えば36V程 度等の低電圧で作動させられるもので、電源切換スイッ チ116を介して二次電池118および水楽-酸楽型の 燃料電池120に択一的に接続され、それ等から供給さ れる電気エネルギーで作動させられるとともに、エンジ ン102によってモータジェネレータ112が回転駆動 されることによって発生する電気エネルギーで二次電池 118が充電される。前配モータジェネレータ104 も、同じく36 V程度等の低電圧で作動させられるもの で、電源切換スイッチ122を介して二次電池118お よび燃料電池120に択一的に接続され、それ等から供 給される電気エネルギーで作動させられるとともに、車 両走行中の減速時等にモータジェネレータ104が回生 制動させられることによって発生する電気エネルギーで 二次電池118が充電される。電源切換スイッチ122 はまた、エンジン102の始動が遅い場合や始動不可の 時など、必要に応じて二次電池118と燃料電池120 とを直列に接続して、モータジェネレータ104に高電 圧の電気エネルギーを供給できるようになっている。な お、燃料電池120によって二次電池118を充電する こともできる。

【0089】上記モータジェネレータ104、112は、何れも図示しないインバータを備えているとともに、燃料電池120は冷却系を備えている。また、各種の車載コンピュータ等のために12Vの二次電池を備えており、燃料電池120や二次電池118によりDCーDCコンバータを介して充電を行うようになっている。【0090】前記トルクコンバータ106は、モータ軸104sに連結されたポンプ翼車124と、歯車変速機部108の入力軸126に連結されたタービン翼車128の間を直結するロックアップクラッチ130と、一方向クラッチによって一方向の回転が阻止されているステータ132とを備えている。

【0091】歯車変速機部108は、ハイおよびローの2段の切換えを行う第1変速機134と、後進1段および前進4段の変速段の切換えが可能な第2変速機136とを備えている。第1変速機134は、1組のシンプルプラネタリ型の遊星歯車装置138、プレーキB0、クラッチF0を備えて構成されている。また、第2変速機136は、3組のシンプルプラネタリ型の遊星歯車装置140、142、144、プレーキB1~B4、クラッチC1、C2、およびーカクラッチF1、F2を備えて構成されている。プレーキB0~B4およびクラッチC1、C2、およびーキB0~B4およびクラッチC0~C2は、何れも一下クチュエータによって係合、解放される多板式の摩擦係合装置で、図15に示す油圧制御部146の油圧回路や油圧がソレノイドバルプ等によって切換 調圧制御さ

20

30

40

れることにより係合、解放状態が切り換えられ、その作 動状態に応じて図17に示す変速段等が成立させられ る。油圧制御部146には、電動オイルポンプ148や 前記ポンプ翼車124と一体的に回転駆動される図示し ない機械式のオイルポンプ等から作動油が供給されるよ うになっている。なお、モータジェネレータ104やト ルクコンバータ106、歯車変速機部108は中心線に 対して略対称的に構成されているため、図16では中心 線の下半分が省略されている。

25

【0092】図18は、油圧制御部146の一部を示す 図で、電動オイルポンプ148によって汲み上げられた 作動油は、プライマリレギュレータバルブ150により アクセル開度等に応じたライン圧PL に調圧され、クラ ッチC1およびC2は、シフト操作部材としてのシフト レバー152に機械的に連結されて連通状態が切り換え られるマニュアルバルプ154を経由して作動油が供給 されるようになっている。また、前配入力クラッチ11 0も、入力クラッチコントロールソレノイド156によ って、その係合、解放状態が切り換えられるようになっ ている。

【0093】図17の「P」は、シフトレバー152が 図19の「P」ポジションへ操作された場合に成立させ られるパーキングで、動力伝達が遮断されるとともに図 示しないメカニカルパーキングロック機構により出力軸 158 (図16参照)の回転が機械的に阻止される。

「R」は、シフトレバー152が「R」ポジションへ操 作された場合に成立させられる後進変速段である。

「N」は、シフトレバー152が「N」ポジションへ操 作された場合に成立させられるニュートラルで、動力伝 達が遮断される。「1 s t」~「5 t h」は、シフトレ バー152が「D」ポジションへ操作された場合に成立 させられる前進変速段で、「1 s t」から「5 t h」へ 向かうに従って変速比(=入力軸126の回転数/出力 軸158の回転数) が小さくなり、例えば図20の(a) に点線で示すようにアクセル開度θおよび車速Vをパラ メータとして予め定められた変速段切換マップ(変速マ ップ)に従って複数の電磁切換弁(図22のATソレノ イド162) により切り換えられる。図19は、シフト レバー152のシフトパターンの一例で、「4」ポジシ ョンでは「1 s t」~「4 t h」で切り換えられ、

「3」ポジションでは「1 s t」~「3 r d」で切り換 えられ、「2」ポジションでは「1 s t」および「2 n d」で切り換えられ、「L」ポジションでは「1 s t」 に固定される。図20の(b) の点線は、「2」ポジショ ンの場合の変速段切換マップである。

【0094】図20および図21の実線は、エンジン1 02およびモータジェネレータ (MG) 104の使用領 域(各走行領域)を示す駆動力源切換マップの一例で、 シフトレバー152の操作ポジション毎にアクセル開度 θおよび車速∨をパラメータとして予め定められてい

る。本実施例では、モータジェネレータ104のみで走 行するモータ走行モード、およびエンジン102のみで 走行するエンジン走行モードの2つの走行モードを備え ており、モータ走行領域ではモータ走行モードで走行 し、エンジン走行領域ではエンジン走行モードで走行す る。図20の(a) の「D」ポジションと(b) の「2」ポ ジションとを比較すると、2 n d変速段までで変速が行 われる「2」ポジションでは、モータジェネレータ10 4の使用領域(モータ走行領域)が「D」ポジションに おける2nd変速段よりも少し高車速側まで拡大されて いる。また、図21(a)の「L」ポジションでは、モー タ走行領域が「2」ポジションにおける1 s t 変速段よ りも少し高車速側まで拡大されている。なお、「4」ポ ジションおよび「3」ポジションの駆動力源切換マップ は、図20(a) の「D」ポジションの場合と同じであ る。

【0095】前配図19のスポーツモードスイッチ16 0は、運転席の横に配設されているシフトレバー152 の近傍に設けられており、このスポーツモードスイッチ 160がON(押込み)操作されると、例えば図20の (a) に二点鎖線で示すようにモータ走行領域が小さくさ れる。モータ走行領域を小さくすると同時に、変速段切 換マップの変速線を髙車速側へずらすようにしても良 ٧١.

【0096】図22は、本実施例のハイブリッド駆動装 置100の作動を制御する制御系統を示す図で、ECU (Electronic Control Unit) 1 6 4 には図 2 2 の左側に 示すスイッチやセンサ等から各種の信号が入力されると ともに、ROM等に予め記憶されたプログラムに従って 信号処理を行って右側に示す各種の装置等に制御信号な どを出力することにより、例えば車速Vやアクセル開度 (アクセルペダルの操作量) θ、シフトポジション(シ フトレバー152の操作ポジション)などの運転状態に 応じて歯車変速機部108の変速段を切り換えたり、エ ンジン102およびモータジェネレータ104の作動を 制御したりする。図22のコントローラ (MG104) 166、コントローラ (MG112) 168はモータジ ェネレータ104、112の出力(トルク)制御および 回生制御等を行うインバータなどである。

【0097】そして、エンジン102を駆動力源として 使用するために始動する際には、ECU164により図 23のフローチャートに従って信号処理が行われる。ス テップR1では、本制御に必要な各種の信号を読み込む 等の入力信号処理を行い、ステップR2では、エンジン 102を走行用駆動力源として使用するためのエンジン 始動条件が成立しているか否かを、例えばシフトポジシ ョンセンサ170によって検出されるシフトレバー15 2の操作ポジションや、車速センサ172によって検出 される車速V、アクセル開度センサ174によって検出 50 されるアクセル開度(アクセルペダルの操作量) θなど

に基づいて、図20、図21に実線で示す駆動力源切換 マップのエンジン走行領域に入ったか否か、等によって 判断する。

【0098】上記ステップR2の判断がYES (肯定)

であれば、ステップR3においてエンジン始動用のモー タジェネレータ112によりエンジン102をクランキ ングするとともに点火時期制御や燃料噴射制御などを行 う。このエンジン始動処理の実行時には、入力クラッチ 110は解放され、エンジン102が駆動力伝達系から 切り離されている。ECU164による信号処理のうち 10 ステップR3を実行する部分はエンジン始動手段として 機能している。次のステップR4では、予め定められた 所定の時間内に実際にエンジン102が始動したか否か を判断し、エンジン102が始動すれば、ステップR5 において歯車変速機部108の変速段の切換制御を例え ば図20に点線で示す通常の変速マップに従って行う が、故障など何等かの理由で所定の時間内にエンジン1 02が始動しない場合にはステップR4に続いてステッ プR6以下を実行し、エンジン102の代わりにモータ ジェネレータ104を用いて所定の駆動力を発生させ る。ECU164による信号処理のうちステップR4を 実行する部分は始動遅れ判断手段として機能している。 【0099】ステップR6では、燃料電池燃料残量セン サ176によって検出される燃料電池 (FC) 120の 燃料の残量が予め定められた所定値以下になり、モータ ジェネレータ104を走行用駆動力源として使用するた めに燃料電池120から電気エネルギーを供給すること ができないか否かを判断する。燃料電池燃料の残量が所 定値より多い場合は、ステップR7で前記電源切換スイ ッチ122により燃料電池120および二次電池118 を直列接続してモータジェネレータ104に電気エネル ギーを供給する。また、ステップR8では、燃料電池1 20の発電のパーマメント処理を行い、時間限定で発電 量を定格発電量を越えて多くする。すなわち、熱的な問 題や耐久上の問題で、長期には無理で通常は使っていな い量まで一時的に増加させるのである。このように燃料 電池120および二次電池118を併用するとともに、 燃料電池120の発電量を定格発電量を越えて増大させ ることにより、モータジェネレータ104の出力が定格 出力を越えて引き上げられる。これにより、エンジン1 02の始動遅れに伴う駆動力不足が緩和される。ECU 164による信号処理のうちステップR7およびR8を 実行する部分は、電源切換スイッチ122と共に補助駆 動制御手段を構成している。すなわち、本実施例は第4 発明~第7発明の実施例に相当する。なお、第4発明の 実施に際してはステップR7は必ずしも必要でなく、第 5発明の実施に際してはステップR8は必ずしも必要で なく、第6発明、第7発明の実施に際してはモータジェ ネレータ104がその定格出力を越えることは必ずしも 必要でない。

【0100】次のステップR10では、図20に点線で示す通常の変速マップよりも高車速側で変速が行われるようにして、定格出力がエンジン102よりも小さいモータジェネレータ104でも大きな駆動力が得られるようにする。

28

【0101】一方、燃料電池燃料の残量が所定値以下で ステップR6の判断がNOの場合は、ステップR9を実 行し、二次電池118を単独で使用してモータジェネレ ータ104を作動させるとともに、ステップR10で変 速マップを変更する。ステップR9では、ステップR7 およびR8の実行時に比較してモータジェネレータ10 4の出力が低いため、この場合のステップR10では、 ステップR7およびR8に続いて実行される場合に比較 して変速マップの変更量を大きくすることが望ましい。 【0102】このように、本実施例のハイブリッド駆動 装置100は、エンジン102を駆動力源として走行す るためにステップR3でエンジン102が始動させられ る際に、そのエンジン102の始動が遅い場合には、ス テップR4の判断がNOになってステップR6以下が実 行され、燃料電池燃料の残量が十分あればその燃料電池 120および二次電池118を直列接続してモータジェ ネレータ104に電気エネルギーを供給するとともに、 燃料電池120の発電量を定格発電量を越えて増大させ ることにより、モータジェネレータ104を定格出力を 越えて作動させるため、第2駆動力源であるモータジェ ネレータ104として定格出力が小さい安価でコンパク トなものを採用しつつ、エンジン102の始動遅れや始 動不可に伴う駆動力不足が改善される。これにより、モ ータ走行モードからエンジン走行モードへの移行時、或 いはエンジン102を駆動力源として発進する際に、エ ンジン102の始動遅れに起因してもたつき感が生じた りエンジン102の始動不可によって走行不能になった りすることが防止される。

【0103】また、モータ走行モードからエンジン走行モードへの移行時のエンジン始動遅れの場合、モータ走行モードで使用していたモータジェネレータ104をそのまま用いて高トルクまで引っ張って走行することになるため、前記実施例のように別の電動モータ60やモータジェネレータ24を用いて駆動力を発生させる場合に比較して、駆動力を滑らかに増大させることができるとともに制御が容易である。

【0104】また、本実施例では、モータジェネレータ 104の電気エネルギー供給源として燃料電池120お よび二次電池118が用いられ、通常は何れか一方から 択一的に電気エネルギーが供給されるのに対し、エンジ ン102の始動が遅い場合には、それ等の燃料電池12 0および二次電池118を直列接続してモータジェネレ ータ104に電気エネルギーを供給するとともに、燃料 電池120の発電量を定格発電量を越えて増大させるこ とにより、モータジェネレータ104を定格出力を越え

30

て作動させるため、燃料電池120として定格発電量が 小さい安価でコンパクトなものを採用することが可能 で、ハイブリッド駆動装置100が一層安価でコンパク トに構成される。

29

【0105】以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

【図面の簡単な説明】

【図1】本発明が適用されたハイブリッド型の車両用駆 10 る。 動システムの一例であるハイブリッド駆動装置の骨子図 【図 である。 - 2

【図2】図1の副変速機の各回転要素の回転数の相互関係を直線で示す共線図である。

【図3】図1の副変速機で成立させられる変速モードと 係合装置の係合状態との関係を示す図である。

【図4】図1のハイブリッド駆動装置におけるモータジェネレータとエンジンとの使い分けを説明する図である。

【図5】図1のハイブリッド駆動装置の制御系統を説明 20 するブロック線図である。

【図 6】図1のハイブリッド駆動装置のシフトポジションを示す図である。

【図7】図1のハイブリッド駆動装置が備えている減速 度/トルク設定スイッチを示す図である。

【図8】図7の減速度/トルク設定スイッチの設定状態を表示するインジケータを示す図である。

【図9】図6の「M」または「B」ポジションヘシフトレバーが操作された場合にアクティブになって変速比を表示するシステムインジケータを示す図である。

【図10】ヒルホールド油圧とブレーキペダルストロークとの関係を示す図である。

【図11】車両走行用の駆動力源としてエンジンを使用するために始動する際の作動を説明するフローチャートである。

【図12】別の実施例を説明するフローチャートで、図11に相当する図である。

【図13】図14と共に、フットプレーキのON、OF Fによって駆動力源を切り換える第14発明の一実施例 を説明するフローチャートである。

【図14】図13と共に、フットプレーキのON、OF Fによって駆動力源を切り換える第14発明の一実施例 を説明するフローチャートである。

【図15】更に別の実施例を説明する概略構成図である。

【図16】図15の実施例の動力伝達経路の骨子図である。

【図17】図16の歯車変速機部における摩擦係合装置の係合、解放状態と変速段等との関係を説明する図である。

【図18】図15の油圧制御部の一部を示す回路図である。

【図19】図15の実施例のシフトレバーのシフトバタ ーンおよびスポーツモードスイッチを示す図である。

【図20】 Dポジションおよび2ポジションにおける変速段切換マップ(点線)および駆動力源切換マップ(実線、二点鎖線)を示す図である。

【図21】 LポジションおよびRポジションにおける駆動力源切換マップを示す図である。

【図22】図15のハイブリッド駆動装置の制御系統を 説明するプロック線図である。

0 【図23】図15の実施例において車両走行用の駆動力源としてエンジンを使用するために始動する際の作動を 説明するフローチャートである。

【符号の説明】

10:ハイブリッド駆動装置(移動体の駆動システム、車両用駆動システム)

12:エンジン(第1駆動力源) 14:モータジェネレータ(第2駆動力源,走行用電動モータ) 2 4:モータジェネレータ(補機駆動用電動モータ)

60:電動モータ(エンジン始動用) 64:補機 78:フットプレーキアッパスイッチ 80:フットプレーキロアスイッチ 100:ハイブリッド駆動 装置(移動体の駆動システム) 102:エンジン

(第1駆動力源)104:モータジェネレータ(第2駆動力源、電動モータ)118:二次電池120:燃料電池122:電源切換スイッチステップS4、SS4、R3:エンジン始動手段ステップS8、S9、SS7、R7、R8:補助駆動制

ステップQ11:低速エンジン走行手段、高速エンジン 40 走行手段

ステップQ15:低速モータ走行手段

【図9】

御手段

【図11】

S8,S9:補助駆動制御手段

【図16】

【図12】

SS7:補助駆動制御手段

【図17】

	Co	C1	C2	B0	B 1	B2	ВЗ	B4	F0	F1	F2
P	0								0		
R			0	0				0			
2	0				_				0		
1st	0	0						0	0		0
2nd	0	0					0		0		
3rd	0	0			0	0			0	0	
4th	0	0	0			Δ			0		
5th		0	0	0		Δ					

○係合 ◎エンジンブレーキ時係合 △係合するが動力伝達に関係無し

【図14】

Q11:低速エンジン走行手段,高速エンジン走行手段 Q15:低速モータ走行手段

[図21]

【図23】

【図22】

フロントページの続き

(51) Int. CI. 7	識別記号	FΙ		テーマコード(参考)
F02N 11/08		H01M	8/00	Z
H01M 8/00		B60K	9/00	E

Fターム(参考) 3G093 AA06 AA07 AA16 AB01 CA01

CB02 DA06 DB00 DB05 DB11

DB15 DB23 EB00 EC02 FA11

FB01

5H115 PI16 PI18 PI29 PI30 P017

PU01 PU25 QA01 QE01 QE10

QHO2 Q104 QNO3 QN12 RB08

RE01 RE05 SE04 SE05 SE08

TB01 TI01 T021 T023