School:	Centre No.		Personal No.				
***************************************	U					T	

545/1

CHEMISTRY

Paper 1

July/Aug. 2023

11/2 hours

HOIMA DIOCESE EXAMINATIONS BOARD

UCE Mock Examination, 2023

CHEMISTRY Paper 1

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 50 objective-type questions.

Answer all questions.

You are required to write the correct answer; A, B, C or D in the box provided on the right-hand side of each question.

Do not use pencil.

For Examiners' Use Only		

© 2023 Hoima Diocese Examinations Board

Turn Over

۱.	Steel is a form of iron which contains
	A. carbon B. magnesium C. oxygen D. sulphur
2.	Nitrogen and oxygen in the air can be separated by fractional distillation because they have different
	A. densities B. solubilities C. melting points D. boiling points.
3.	Which of the following represents the electron arrangement of a period 3 element?
	A. 2:5 B. 2:3 C. 2:8:3 D. 2:8:8:2
1.	Which one of the following elements burns in oxygen to produce a residue which dissolves in an acid?
	A. Carbon B. Magnesium C. Phosphorus D. Sulphur
5.	During the manufacture of sulphuric acid, sulphur trioxide is not dissolved in water but in concentrated sulphuric acid in order to
	A. increase the percentage yield of the acid. B. avoid the formation of sulphur trioxide fumes. C. increase the rate of reaction. D. produce a very concentrated acid.
ó.	Elements P, Q, R and S have atomic numbers 8, 11, 13 and 17 respectively. Which pair of atoms will form a molecular compound?
	A. Two atoms of P . B. Two atoms of Q . C. An atom of P and an atom of R . D. An atom of R and an atom of S .

7.		ch one of the following forms a colourless aqueous solution which tied lead (II) nitrate to give a white precipitate?	reacts	with
	A. B. C. D.	Calcium iodide Iron (II) iodide Copper (II) chloride Sodium chloride		
8.	A sal	It whose mass remains the same upon strong heating is likely to be a ca	rbonate	of
	A. B. C. D.	calcium copper magnesium potassium		
9.	other	ream of ammonia was passed over heated iron wool and a lighted splint or end of the combustion tube was extinguished with a 'pop' sound. The experiment acts as	placed iron wo	at the
	A. B. C. D.	a dehydrating agent. an oxidising agent. a catalyst. a reducing agent.		
10.	The i	isotopes 35 Cl and 37 Cl have similar chemical properties because they have	ive	
	A. B. C. D.	the same number of electrons. the same mass number. different numbers of neutrons. the same chemical symbol.	P	ì
11.	Whic	ch one of the following contains layers of carbon atoms?	10	
	A. B. C. D.	Diamond Lamp black Graphite Wood charcoal		
12.	gives	ibasic acid, H_2J has a concentration of 0.5 M. Which of the following s the volume of 1.0 M potassium hydroxide that can neutralise 25.0 cm solution?		
	A.	$\left(\frac{0.5\times25}{2}\right)$ cm ³		
	В.	$(0.5 \times 25) \text{ cm}^3$		
	C.	$(0.5 \times 25 \times 2) \text{ cm}^3$		
	D.	$(25 \times 2) \text{ cm}^3$	Turn C	Over

13. The table below shows some properties of substances H, I, J and K.

Substance	Melting point	Boiling point	Electrical con	ductivity
thin batteries	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		in liquid state	in aqueous state
nas anno anno anno anno anno anno anno a	low	Low	none	None
	low	Low	none	Good
J	high	High	none	None
K	high	High	good	Good

	K		high	High	good	Good
•	Whi	ch one	e of the substance	s could be hydro	ogen chloride?	
	Α,	H				
	В.	1				
	C.	J				
	D.	K				
14.	Wha	t is tl	ne concentration	of nitrate ions,	NO, in 1000 cm3 of	f 2 M lead (II) nitrate
			Pb (NO,),?			
	Α.	0.38	3 M			
	в.	0.50) M			
	C.	2.00) M			
	D.	4.00) M			
15.	Fron	n whi	ch of the followir	ig will a gas be p	produced?	
	A.	Ado	ding calcium to w	rater.		
	В.	Ado	ding dilute hydrod	chloric acid to si	lver.	
	C.		ding dilute sulphu	• •	er.	
	D.	Ado	ding sodium oxid	e to water.		
16.	Som	e syn	thetic products ar	e said to be non-	biodegradable because	they
	A.	are	not decomposed	by strong heat.		
	В.		not harmful to liv			
	C.		not broken down		sms.	
	D.		not be obtained fi			
17.	The	chang	ge which takes pla	ace when a chlor	rine atom becomes a ch	loride ion is that the
	A.		omic number of c			
	В.		m loses 1 electro			
	C.	ma	ss number of chl	orine decreases t	by 1.	
	D.	ele	ctrons in the aton	n increase by 1		

		5 Tu	ırn Over
	A. B. C. D.	$\begin{array}{l} \text{Mg (s)} + 2\text{HNO}_3 \text{ (aq)} & \longrightarrow \text{Mg(NO}_3)_2 \text{ (aq)} + \text{H}_2 \text{ (g)} \\ \text{Fe(OH)}_2 \text{ (aq)} + 2\text{HNO}_3 \text{ (aq)} & \longrightarrow \text{Fe(NO}_3)_2 \text{ (aq)} + \text{H}_2 \text{O (l)} \\ \text{ZnCO}_3 \text{ (s)} + 2\text{HNO}_3 \text{ (aq)} & \longrightarrow \text{Zn(NO}_3)_2 \text{ (aq)} + \text{CO}_2 \text{ (g)} + \text{H}_2 \text{O} \\ 3\text{Cu (s)} + 8\text{HNO}_3 \text{ (aq)} & \longrightarrow 3\text{Cu (NO}_3)_2 \text{ (aq)} + 2\text{NO (g)} + 4\text{H}_2 \text{O (l)} \end{array}$	(1)
23.	In wh	which of the following reactions is dilute nitric acid not behaving as an acid	!?
		KL_3 B. KL_4 D. K_2L_3	
22.		nents K and L have atomic numbers 6 and 9 respectively. What is the likeline compound formed between K and L?	y formula
	A. B. C. D.	$30 l$ $10 l$ $\left(\frac{22.4}{3}\right) l$ $(3 \times 22.4) l$	
		$CS_2(l) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$ at volume of oxygen is required to react with excess carbon disulphide to p as of carbon dioxide?	roduce 10
21.	Carbo	on disulphide reacts with oxygen according to the following equation:	
	B. C. D.	Fe (s) + ZnSO ₄ (aq) \longrightarrow FeSO ₄ (aq) + Zn (s) Mg (s) + CaCl ₂ (aq) \longrightarrow MgCl ₂ (aq) + Ca (s) 3Zn (s) + Al ₂ (SO ₄) ₃ \longrightarrow 3ZnSO ₄ (aq) + 2Al (s)	
20.	Which	ch of the following reactions will take place readily? $Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$	
,	A. B. C. D.	Aluminium sulphate Ammonium sulphate Copper (II) sulphate Iron (II) sulphate	
19.	Whic	ch of the following salts can be prepared by the neutralisation method?	
1	A. B. C. D.	Nitrogen Oxygen Carbon dioxide Rare gases	
18.	Whic	ch one of the following gases constitutes the most chemically active part of	f air?

24. Methanoic acid, HCOOH, neutralises barium hydroxide solution according to the following equation:

2HCOOH (aq) + Ba (OH)₂ (aq) \longrightarrow (HCOO)₂ Ba (aq) + 2H₂O (I)

What is the mass of methanoic acid that is just enough to react with 1000 cm³ of 0.02 M barium hydroxide solution? (H = 1, C = 12, O = 16)

A. $\left(\frac{2 \times 46}{1 \times 0.02}\right) g$

B. $\left(\frac{2 \times 0.02}{1 \times 46}\right)$ g

C. $\left(\frac{1 \times 0.02 \times 46}{2}\right)$ g

- D. $(2 \times 0.02 \times 46)$ g
- 25. When a substance T is heated strongly, it releases a colourless gas that forms a white precipitate with aqueous calcium hydroxide and leaves a white residue on cooling. What is substance X?
 - A. Zinc carbonate

- B. Sodium carbonate
- C. Lead (II) carbonate
- D. Copper (II) carbonate
- 26. Gas X, with a pungent smell burn in oxygen rich air to form a colourless gas Y which is insoluble in water and neither burns nor supports combustion. Identify gases X and Y.

X

- Sulphur trioxide
- A. Sulphur dioxide

Nitrogen

B. Ammonia

- Sulphur dioxide
- C. Hydrogen sulphideD. Nitrogen monoxide
- Nitrogen dioxide
- 27. Methane burns in oxygen according to the following equation:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$

When 1 g of methane is burnt, 56 kJ of energy is released. The enthalpy of combustion of methane is (C = 12, H = 1)

- A. $\left(\frac{56}{16}\right)$ kJ mol⁻¹
- B. $\left(\frac{56}{2}\right)$ kJ mol⁻¹
- C. $(56 \times 2) \text{ kJ mol}^{-1}$
- D. $(56 \times 16) \text{ kJ mol}^{-1}$

28.	When fact, s	sulphuric acid is heated with substance X , sulphur dioxide is produced. From this ubstance X must be
	A. B. C. D.	an oxidising agent a reducing agent a metal a base
29.	What at s.t.	is the volume occupied by 22 g of carbon dioxide at s.t.p? (Molar volume of a gas p is 22.4 dm ³)
	A.	$(22.4 \times 22) dm^3$
	B.	$\left(\frac{22.4 \times 22}{44}\right) \mathrm{dm}^3$
	C.	$\left(\frac{44\times22}{22.4}\right) dm^3$
	D.	$\left(\frac{44 \times 22.4}{22}\right) dm^3$
30.		ng the process of water treatment, a calculated amount of chlorine is added to the r in order to
	A. B. C. D.	prevent tooth decay. sediment the impurities. kill any bacteria present. remove any dissolved salt.
31.	Whic	ch one of the following equations represents a redox reaction?
	A. B. C. D.	H_2SO_4 (aq) + 2NaOH (aq) \longrightarrow Na ₂ SO ₄ (aq) + 2H ₂ O (l) $CuSO_4$ (aq) + 5H ₂ O (l) \longrightarrow CuSO ₄ .5H ₂ O (aq) Na ₂ CO ₃ (aq) + Pb(NO ₃) ₂ (aq) \longrightarrow PbCO ₃ (s) + 2NaNO ₃ (aq) 2FeCl ₃ (aq) + SnCl ₂ (aq) \longrightarrow 2FeCl ₂ (aq) + SnCl ₄ (aq)
32.	The	equation below shows the reaction of calcium and chlorine gas.
	(Ca=	Ca (s) + Cl ₂ (g) \longrightarrow CaCl ₂ (s) $\Delta H = -900 \text{ kJ mol}^{-1}$ t is the mass of calcium that reacts with chlorine gas to release 360 kJ of heat energy? = 40, Cl = 35.5) $\left(\frac{40 \times 900}{360}\right)$ g
	B.	$\left(\frac{40\times360}{900}\right)$ g
	C.	$\left(\frac{900}{369 \times 40}\right) g$
	D.	$\left(\frac{360}{40 \times 900}\right)$ g

33.	Which of the following reactants will produc	e the highest rate of reaction with excess zinc
	powder?	

Na₂CO₃ (aq) + 2HCl (aq)
$$\longrightarrow$$
 2NaCl (aq) + CO₂ (g) + H₂O (l)
Given that 2.0 g of hydrated sodium carbonate (Na₂CO₃.nH₂O) requires 25.0 cm³ of 1.0 M hydrochloric acid for complete reaction, what is the value of n? (Na₂CO₃ = 106)

- A. 3
- B. 5
- C. 7
- D. 10

- A. $CaCO_3(s) + H_2SO_4(aq) \longrightarrow CaSO_4(s) + H_2O(l) + CO_2(g)$
- B. $PbCO_3(s) + H_2SO_4(aq) \longrightarrow PbSO_4(s) + H_2O(l) + CO_2(g)$
- C. $PbCO_3$ (s) + $2HNO_3$ (aq) $\longrightarrow Pb(NO_3)_2$ (s) + $H_2O(l)$ + CO_2 (g)
- D. $PbCO_3$ (s) + 2HCl (aq) $\longrightarrow PbCl_2$ (s) + $H_2O(l) + CO_2$ (g)

36.	The table below	gives information about th	ree metals X , Y and Z .
-----	-----------------	----------------------------	--------------------------------

Metal	Method of extraction of metal	
X	Found uncombined.	
Y	Electrolysis of molten oxide.	
Z	Heating oxide with carbon.	

In which of the following orders are the metals arranged in decreasing ease of extraction?

- A. X, Y, Z
- B. *Y*, *Z*, *X*
- C. Z, Y, X
- D. X, Z, Y

37. The carbonate of metal X decomposes when heated according to the following equation:

$$XCO_1(s) \longrightarrow XO_1(s) + CO_2(g)$$

What mass of the carbonate is needed to produce 492 cm^3 of carbon dioxide gas at s.t.p? (C = 12, O = 16, X = 52; Molar gas volume at s.t.p = 22.4 dm³)

A.
$$\left(\frac{112 \times 492}{22.4}\right)$$
 g

B.
$$\left(\frac{112 \times 492}{22.4 \times 1000}\right)$$
 g

C.
$$\left(\frac{22.4}{112 \times 492}\right)$$
 g

D.
$$\left(\frac{22.4 \times 1000}{112 \times 492}\right)$$
 g

- A. Cu2+
- B. Zn2+
- C. Pb2+
- D. Ca2+

- A. 2:7
- B. 2:8:5
- C. 2:8:7
- D. 2:8:8:1

 $(N = 14; Avogadro constant = 6.02 \times 10^{23} \text{ mol}^{-1})$

A.
$$\left(\frac{6.02 \times 10^{23}}{2 \times 14}\right) g$$

B.
$$\left(\frac{2 \times 14}{6.02 \times 10^{23}}\right)$$
 g

C.
$$\left(\frac{14}{2 \times 6.02 \times 10^{23}}\right) g$$

D.
$$\left(\frac{2 \times 6.02 \times 10^{23}}{14}\right) g$$

Turn Over

Each of the questions 41 to 45 consists of an assertion (statement) on the left side and α reason on the right-hand side.

Select

- A. if both the assertion and reason are true statements and the reason is a correct explanation of the assertion.
- B. if both the assertion and reason are true statements but the reason is not a correct explanation of the assertion.
- C. if the assertion is true but the reason is not a correct statement.
- D. it the assertion is not correct but the reason is a correct statement.

INSTRUCTIONS SUMMARISED

Assertion	Reason		
A. True	True and is a correct explanation		
B. True	True but is not a correct explanation		
C. True	Incorrect		
D. Incorrect	Correct		

41.	Nitrogen and			
41,	Nitrogen and oxygen in liquid air can be separated by fractional crystallisation	because	nitrogen is more volatile than oxygen.	
42.	Sulphur dioxide is dried using concentrated sulphuric acid	because	concentrated sulphuric acid is an oxidising agent.	
43.	When water containing magnesium hydrogen carbonate is boiled, it forms a lather readily with soap	because	the soluble magnesium hydrogen carbonate decomposes on heating to insoluble magnesium carbonate.	
44.	Dry ammonia reacts with heated lead (II) oxide to form nitrogen	because	lead (II) oxide is an amphoteric oxide.	
	5			
45.	The rate of a reaction increases with the increase in the concentration of the reactants	because	high concentration increases the possibility for collision between the reacting molecules.	

	For each of the questions 46 - 50, one or more answers may be correct. Read question carefully and then write;				
	A. If answers 1, 2 and 3 only are correct B. If answers 1 and 3 only are correct C. If answers 2 and 4 only are correct D. If only answer 4 is correct				
46.	When hydrogen chloride is dissolved in water, it reacts with				
	1. copper to form hydrogen. 2. zinc to form hydrogen. 3. sodium hydroxide to form an acid salt. 4. calcium carbonate to form carbon dioxide.				
47.	Which of the following molecular formulae is/are of alkanes?				
	1. C ₂ H ₆ 2. C ₂ H ₄ 3. C ₃ H ₈ 4. C ₃ H ₆				
48.	Which of the following statement(s) is/are true about a solution with a pH of 7.5? The solution				
	 accepts a proton. turns red litmus paper blue. gives a pink colour with phenolphthalein indicator. contains hydrogen ions as the only positively charged ions. 				
49.	O. Calcium carbonate, zinc powder, copper (II) oxide powder and aqueous potationate were separately placed in test tubes labelled P, Q, R and S respective solution of hydrogen chloride in methylbenzene was poured into each of the four tubes. In which test tube(s) did a reaction occur?				
	1. P 2. Q 3. R 4. S				
50.	Which of the following substance(s) is/are formed when calcium is burnt in air?				
	1. Calcium nitrate 2. Calcium nitride 3. Calcum nitrite 4. Calcum oxide				
	11 E	ND			