p-ISSN: 2355-7699 e-ISSN: 2528-6579

DOI: 10.25126/itiik.2025129545

SISTEM PAKAR FUZZY MODULAR UNTUK IDENTIFIKASI DOSIS OBAT **LEUKEMIA**

Linda Perdana Wanti*¹, Nur Wachid Adi Prasetya², Zahrun Nafisa³, Rahmat Mulyadi⁴, Muhammad Ramadani⁵

^{1,2,3,4,5}Politeknik Negeri Cilacap, Kabupaten Cilacap Email: ¹linda_perdana@pnc.ac.id, ²nwap.pnc@pnc.ac.id, ³zahrunafisah05@gmail.com, ⁴rahmatmulyadi024@gmail.com,⁵ram31.stu@pnc.ac.id *Penulis Korespondensi

(Naskah masuk: 11 Desember 2024, diterima untuk diterbitkan: 12 April 2025)

Abstrak

Diagnosis dan pengambilan keputusan tentang penyakit dalam bidang medis menghadapi ketidakpastian yang dapat memengaruhi proses pengobatan. Keputusan ini dibuat berdasarkan pengetahuan pakar dan cara seorang pakar dalam mendefinisikan kondisi pasien, gejala yang dialami dan faktor-faktor lain yang memengaruhi. Hasil definisi setiap pakar mungkin saja terdapat perbedaan berdasarkan faktor-faktor tersebut. Fuzzy modular expert system adalah suatu sistem berbasis pengetahuan yang memanfaatkan logika fuzzy untuk menangani ketidakpastian dan modularitas dalam pengambilan keputusan. Dalam sistem dengan ketidakpastian tinggi dan kompleksitas tinggi, logika fuzzy merupakan metode yang cocok untuk pemodelan. Dalam penelitian ini, fuzzy modular expert system untuk pemodelan ketidakpastian dalam pemberian dosis obat untuk terapi penyakit leukemia. Variabel output yang digunakan pada penelitian ini adalah tingkat toksisitas yang dihasilkan dari proses pemberian dosis obat yang dibagi menjadi lima kategori yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Variabel output yang kedua adalah kategori stadium leukemia yang diderita oleh pasien yang dibagi menjadi empat kategori yaitu stadium 1, stadium 2, stadium 3 dan stadium 4. Penelitian ini menggunakan 128 data latih pasien dengan dua variabel *output*. Hasil yang diperoleh menunjukkan bahwa *fuzzy modular expert system* dalam mengindentifikasi dosis obat yang diberikan sebagai terapi obat leukemia dengan akurasi rata-rata sekitar 94,8% berdasarkan data yang telah diuji dan dibandingkan dengan informasi dari pakar.

Kata kunci: Modular Fuzzy, Sistem Pakar, Leukemia, Diagnosis, Variabel Masukan

FUZZY MODULAR EXPERT SYSTEM FOR IDENTIFICATION LEUKEMIA DRUG **DOSAGE**

Abstract

Diagnosis and decision-making about diseases in the medical field face uncertainties that can affect the treatment process. These decisions are based on expert knowledge and how an expert defines the patient's condition, symptoms experienced, and other influencing factors. The results of each expert's definition may differ based on these factors. A fuzzy modular expert system is a knowledge-based system that utilizes fuzzy logic to handle uncertainty and modularity in decision-making. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this study, a fuzzy modular expert system for modeling uncertainty in leukemia diagnosis. The output variables used in this study are the level of toxicity resulting from the drug dosing process which is divided into five categories, namely shallow, low, medium, high, and very high. The second output variable is the category of leukemia stage suffered by the patient which is divided into four categories, namely stage 1, stage 2, stage 3, and stage 4. This study used 128 patient training data with 2 output variable. The results indicate that the fuzzy modular expert system can diagnose leukemia with an average accuracy of around 94.8% based on data that has been tested and compared with expert diagnoses.

Keywords: Fuzzy Modular, Expert system, Leukemia, Diagnosis, Output Variables

1. PENDAHULUAN

Kasus penderita kanker darah atau kanker hematologi banyak ditemukan pada anak-anak

(Gonibala 2022). Hal tersebut disebabkan oleh jenis kanker tertentu yang lebih umum ditemukan pada anak-anak dibandingkan orang dewasa (Isnani et al. 2020). Beberapa jenis kanker darah yang umum adalah leukimia, limfoma, meiloma multiple, sindrom mielodisplastik, leukimia hairy cell, leukimia sel t, leukimia mielomonositik kronis (Susanto and Winarno 2020). Sedangkan jenis kanker darah yang sering ditemukan pada anak-anak adalah leukimia myeloblastik dan leukimia limfoblastik (Statistik 2023). Data Indonesian Pediactric Center Registry menyebutkan bahwa pada rentang tahun 2021-2022 terdapat 3.834 kasus baru kanker anak di Indonesia. Sebanyak 1.373 anak masih dalam pengobatan hingga Desember 2022, sebanyak 833 terkonfirmasi telah meninggal dunia. Sebanyak 519 pasien anak tercatat putus pengobatan, artinya tidak melanjutkan pengobatan, dan 148 anak penderita kanker terkonfirmasi telah selesai menyelesaikan pengobatan terapi kanker (Globocan 2020). Data berdasarkan sumber WHO (World Organization) mencatat bahwa penderita kanker anak paling banyak Indonesia di Asia Tenggara. Gambar 1 menunjukkan penderita kanker pada anak-anak berdasarkan jenis kanker di Indonesia dan gambar 2 menunjukkan penderita kanker anak di Indonesia dibandingkan dengan negara lain di Kawasan Asia Tenggara (Prasetya et al. 2022). Kanker darah merupakan salah satu penyakit kanker yang diidentifikasi dari kelainan pada sum-sum tulang belakang, darah dan sistem limfatik. Kanker darah dikenal juga dengan kanker hematologi (Heiß et al. 2021), (Rahimi Damirchi-Darasi et al. 2019). Ada empat jenis leukemia, yaitu leukemia limfoblastik akut (ALL). Jenis leukemia ini paling sering menyerang anak-anak (Piccolomo et al. 2020). Ini dimulai pada sel limfoblas, yang merupakan jenis sel darah putih yang belum matang. Yang kedua leukemia myeloid akut (AML). Leukemia ini paling sering menyerang orang dewasa (Friese C, Yang J 2019). Ini dimulai pada sel myeloid, yang merupakan jenis sel darah putih yang belum matang. Yang ketiga leukemia mielogenus kronis (CML) (DiNardo et al. 2019). Leukemia ini dimulai pada sel sumsum tulang yang sehat dan berkembang menjadi sel darah putih abnormal (Gonibala 2022). CML biasanya menyerang orang dewasa muda dan menengah. Dan yang terakhir leukemia limfositik kronis (CLL) (Wei et al. 2020). Leukemia ini dimulai pada sel limfoblas dan berkembang menjadi sel darah putih abnormal (Al-Qindy and Rahayu 2022). CLL biasanya menyerang orang dewasa yang lebih tua (Stein et al. 2021).

Pengobatan kanker leukimia pada anak-anak melibatkan serangkaian terapi yang disesuaikan dengan jenis leukimia yang diderita, tingkat keparahan dan karakteristik pasien secara khusus dalam menerima terapi (L. P. Wanti, Somantri, and Karyati 2023). Beberapa terapi yang diberikan kepada pasien antara lain kemoterapi dengan induksi pada tahap awal untuk menghilangkan sebanyak mungkin sel kanker pada sum-sum tulang dan darah (Mohammad et al. 2024).

Gambar 1. Penderita Kanker Leukemia pada Anak-anak

Masalah yang dihadapi sekarang adalah dosis obat kemoterapi yang diberikan kepada pasien pada awal terapi cukup tinggi (Susanto and Winarno 2020). Hal tersebut justru menimbulkan masalah yang sama seriusnya dengan masalah yang dihadapi yaitu membunuh sel-sel kanker (Wei et al. 2020). Efek samping dosis kemoterapi tinggi dapat melibatkan kerusakan berbagai organ dan sistem dalam tubuh pasien (Muttaqin 2019). Beberapa dampak yang mungkin terjadi akibat kemoterapi dosis tinggi antara lain toksisitas pada sum-sum tulang belakang, pada sistem pencernaan, pada jantung, hati, ginjal, pada neurologis, penurunan fertilitas atau bahkan munculnya kanker sekunder (Al-Qindy and Rahayu 2022).

Penelitian ini mengembangkan Fuzzy Expert system (FES) modular untuk penjadwalan dosis obat leukimia. Fuzzy modular expert system untuk diagnosis penyakit leukemia adalah sistem berbasis pengetahuan yang dirancang untuk membantu dalam proses diagnosis penyakit leukemia dengan menggunakan logika *fuzzy* dan pendekatan modular (L. P. Wanti et al. 2024). Fuzzy modular expert system adalah suatu sistem berbasis pengetahuan yang memanfaatkan logika fuzzy untuk menangani ketidakpastian dan modularitas dalam pengambilan keputusan (L. P. Wanti and Lina Puspitasari 2022). Logika fuzzy dapat memberikan pemodelan matematika untuk banyak konsep, variabel, dan sistem yang tidak jelas dan ambigu dan juga dapat memberikan kerangka kerja untuk penalaran, inferensi, kontrol, dan pengambilan keputusan dalam kondisi ketidakpastian (Saibene, Assale, and Giltri 2021). Sistem modular berarti bahwa sistem ini terdiri dari beberapa modul atau komponen yang dapat berdiri sendiri tetapi saling berinteraksi (Faisal et al. 2023). Setiap modul dapat menangani bagian tertentu dari masalah atau sub-sistem yang lebih kecil, dan dapat digabungkan atau disusun sesuai kebutuhan (Nuhu et al. 2021). Variable *output* yang digunakan pada penelitian ini adalah tingkat toksisitas yang dihasilkan dari proses pemberian dosis obat yang dibagi menjadi lima kategori yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Variabel output yang kedua adalah kategori stadium leukemia yang diderita oleh pasien yang dibagi menjadi empat

kategori yaitu stadium 1, stadium 2, stadium 3 dan stadium 4. Sedangkan variable output yang direncanakan pada penelitian ini adalah jadwal pemberian dosis obat untuk terapi leukimia. Keterbaruan penelitian ini dibandingkan dengan penelitian yang sudah pernah seperti penelitian oleh (Singla et al. 2020), (Moirian et al. 2020), (Rahimi Damirchi-Darasi et al. 2019), (Alhabashneh 2021), (Yuan et al. 2021) dan (L. P. Wanti and Lina Puspitasari 2022) adalah proses penjadwalan pemberian terapi kemoterapi dosis obat terhadap pasien dikembangkan dengan membuat modul dan dikombinasikan dengan sistem pakar dan logika fuzzy sehingga disebut dengan fuzzy modular expert system. Metode yang digunakan fuzzy modular karena nantinva akan dibuat modul-modul penjadwalan pemberian dosis obat leukemia. Sistem modular yang dikembangkan nantinya dibagi menjadi beberapa bagian yang lebih kecil, yang dapat diatur dan diproses secara independen. Hal ini berfungsi untuk meningkatkan fleksibilitas, memudahkan pemeliharaan, serta memungkinkan pembaruan atau penggantian bagian tertentu tanpa memengaruhi seluruh sistem. Modul yang akan dibuat adalah FES-A (Fuzzy Expert system A) dan FES-B (Fuzzy Expert system B).

METODE PENELITIAN

Sistem pakar adalah sebuah program komputer yang dapat meniru pengetahuan seorang pakar dalam bidang tertentu (L. P. Wanti and Romadlon 2020). Pengetahuan tersebut diubah menjadi aturan-aturan, fakta-fakta, relasi antar fakta atau basis pengetahuan digunakan untuk memecahkan yang permasalahan dan mendapatkan solusi permasalahan yang dihadapi (L. P. Wanti, Azroha, and Faiz 2019), (L. Wanti et al. 2023). Salah satu metode sistem pakar yaitu metode fuzzy karena logika fuzzy mengatasi ketidakjelasan dan ketidakpastian dalam pengambilan keputusan sebuah permasalahan (Bahroni et al. 2022), (L. P. Wanti, Laksono, and Purwanto 2019). Pada penelitian ini diimplementasikan metode fuzzy modular pada sistem pakar untuk penjadwalan pemberian dosis obat leukimia untuk meningkatkan efektivitas dan efisiensi dalam pengobatan leukimia.

Fuzzy modular merupakan pendekatan dalam pemrograman fuzzy yang menyatukan konsep modularitas dengan tujuan untuk meningkatkan kinerja dan mempermudah pemeliharaan sistem (Abaei, Selamat, and Al Dallal 2020). Implementasi pendekatan modular *fuzzy* pada penelitian ini dengan melibatkan pembentukan modul-modul fuzzy yang nantinya dikembangkan secara terpisah dan pada akhirnya diintegrasikan ke dalam sebuah sistem fuzzy (Saibene, Assale, and Giltri 2021). Kelebihan fuzzy modular adalah pengembangan satu sistem dengan sistem lainnya tidak saling bergantung dan dapat fokus pada penyesuaian modul-modul tertentu tanpa memengaruhi sistem seluruhnya (Phan et al. 2021).

Pada penelitian ini modular fuzzy expert system yang dikembangkan akan berfokus pada leukimia.

Gambar 2. Tahapan Logika Fuzzy

Flowchart modular fuzzy expert system dibuat dalam dua sistem fuzzy dengan masukan, luaran dan basis aturan berbeda yang nantinya ditempatkan dalam urutan proses hierarki sistem (Arani, Sadoughi, and Langarizadeh 2019). Dalam penelitian ini sistem fuzzy yang diusulkan nantinya diintegrasikan dengan model yang dikembangkan untuk mengamati banyaknya sel kanker, tingkat toksik dan perubahan dosis yang terjadi. Fuzzy system mengakomodir ketidakpastian masukkan dan membantu model FES untuk menghitung jumlah sel kanker dan tingkat toksiknya. Variable outputan yang dimasukkan ke dalam proses fuzzifikasi dibagi menjadi beberapa himpunan fuzzy yang sesuai (Mathew, Chakrabortty, and Ryan 2020). Untuk variabel output yang digunakan pada penelitian ini adalah tingkat toksisitas yang dihasilkan dari proses pemberian dosis obat yang dibagi menjadi lima kategori yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Variabel output yang kedua adalah kategori stadium leukemia yang diderita oleh pasien yang dibagi menjadi empat kategori yaitu stadium 1, stadium 2, stadium 3 dan stadium 4. untuk variabel output yang direncanakan adalah dosis obat leukemia yang diberikan kepada pasien leukemia dengan tiga kategori yaitu minium, normal dan maksimum. Kemudian proses dilanjutkan dengan penetapan fungsi keanggotaan untuk setiap himpunan fuzzy untuk menggambarkan tingkat keanggotaan pada himpunan tersebut (Mujawar et al. 2019). Untuk fungsi keanggotaan setiap himpunan fuzzy masingmasing variable *output* ditunjukkan pada gambar 5. Setelah proses fuzzifikasi selesai maka dilanjutkan dengan pembentukan aturan-aturan (rule-base) yang digunakan dimana aturan tersebut menghubungkan nilai pada variable outputan dengan nilai pada variable output (Cao et al. 2024). Proses pembentukan aturan atau rule-base selesai maka dilanjutkan ke proses pengambilan keputusan melalui mesin inferensi untuk menghasilkan nilai luaran berdasarkan nilai pada variable outputan (Nourian, Mousavi, and Raissi 2019). Rule yang digunakan pada penelitian ini sejumlah 20 rule yang mencakup semua kategori pada variabel *output* tingkat toksisitas dan variabel output stadium leukemia untuk sampai pada kesimpulan berupa variabel output dosis obat leukemia yang diberikan kepada pasien. Setelah didapatkan nilai luaran dari proses sebelumnya, maka nilai luaran tersebut diubah nilainya menjadi nilai konkret (crisp) yang menjadi dasar tindakan yang akan dilakukan. Langkah terakhir adalah melakukan evaluasi dan validasi terhadap performa fuzzy yang telah dibangun dengan menggunakan skenario yang relevan yang dapat disesuaikan dengan parameter dan aturan terbaru untuk meningkatkan hasil akhir (Hadikurniawati et al. 2023). Gambar 1 menunjukkan fungsi keanggotaan himpunan fuzzy variabel tingkat Gambar 2 menunjukkan fungsi toksisitas. keanggotaan himpunan fuzzy variabel stadium kanker leukemia. Sedangkan gambar 3 menunjukkan tentang himpunan fuzzy untuk variabel output yaitu dosis obat leukemia yang diberikan kepada pasien leukemia.

Rumus fungsi keanggotaan untuk variabel *output* untuk kurva segitiga, dijelaskan sebagai berikut (Nuhu et al. 2021):

Fungsi keanggotaan $\mu A(x)$ menentukan seberapa besar suatu elemen (x) menjadi anggota dari himpunan *fuzzy A* Nilai keanggotaan $\mu A(x)$ ini berada dalam rentang [0, 1] (L et al. 2020), (L. P. Wanti et al. 2024).

• Untuk fungsi segitiga (Triangular Membership Function) (Lyu et al. 2020):

$$\mu A(x) = \begin{cases} 0\\ \frac{x-a}{b-a}\\ \frac{c-x}{c-b} \end{cases}$$
 (1)

• Untuk fungsi trapezium (Trapezoidal Membership Function) (Phan et al. 2021):

$$\mu A(x) = \begin{cases} 0 \\ \frac{x-a}{b-a} \\ 1 \\ \frac{c-x}{c-b} \end{cases}$$
 (2)

• Untuk proses inferensi *fuzzy* yang melibatkan aturan AND (Al-Dmour et al. 2019):

$$\mu A \square B(x) = \min(\mu A(x), \mu B(x)) \tag{3}$$

Defuzzifikasi dengan metode centroid (Nilai Tengah)

$$Z^* = \frac{\int z \cdot \mu C(z) dz}{\int \mu C(z) dz} \tag{4}$$

di mana Z^* adalah nilai tegas yang dihasilkan, dan $\mu C(z)$ adalah fungsi keanggotaan dari *output* fuzzy.

Gambar 3. Fungsi Keanggotaan Himpunan Fuzzy Variabel Output Tingkat Toksisitas

Gambar 4. Fungsi Keanggotaan Himpunan Fuzzy Variabel Output Stadium Kanker Leukemia

Gambar 5. Fungsi Keanggotaan Himpunan Fuzzy Variabel Output Dosis Obat Leukemia

3. HASIL DAN PEMBAHASAN

Data pada penelitian ini berjumlah 57 pasien yang terdiri dari 31 pasien laki-laki, 26 pasien perempuan. Variabel *output* yang digunakan adalah tingkat toksisitas dan stadium kanker. Variabel outputnya adalah dosis obat yang diberikan sebagai terapi penyakit leukemia. Tabel 1 menunjukkan tentang data tipe leukemia, tabel 2 menunjukkan data gejala penyakit leukemia yang dialami oleh pasien, tabel 3 menunjukkan data aturan yang digunakan pada *fuzzy modular expert system*.

Tabel	1.	Tipe	Leul	ken	nia
				_	-

Tipe	Deskripsi
ALL	Leukemia Limfoblastik Akut
AML	Leukemia Myeloid Akut
CLL	Leukemia Limfositik Kronis
CML	Leukemia Mielogenus Kronis

Tabel 2. Gejala Penyakit Leukemia

Kode Deskripsi					
	Deskripsi	CML	CLL	AML	ALL
Gejala	Gejala				
G1	Muntah			$\sqrt{}$	$\sqrt{}$
G2	Sakit Kepala				
	Pembesaran				
G3	Kelenjar				
	Getah Bening				
G4	Infeksi		$\sqrt{}$	$\sqrt{}$	
C5	Pembesaran			$\sqrt{}$	
G5	Hati/Limpa				
G6	Anemia	$\sqrt{}$		$\sqrt{}$	
G7	Astenia			$\sqrt{}$	
G8	Berkeringat		ما		$\sqrt{}$
Go	Dingin		٧		
G9	Pendarahan			$\sqrt{}$	
G10	Kelelahan			$\sqrt{}$	
	Demam	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
G11	Sesak Nafas		\checkmark	$\sqrt{}$	
C12	Penurunan	2/			$\sqrt{}$
G12	Berat Badan	V			

Tabel 3. Data Aturan

Kode	Deskripsi
Aturan	_
R1	(tingkat_toksisitas['sangat rendah'] &
	stadium_leukemia['stadium1'], dosis ['minimum'])
R2	(tingkat_toksisitas['sangat rendah'] &
	stadium_leukemia['stadium2'], dosis ['minimum'])
R3	(tingkat_toksisitas['sangat rendah'] &
	stadium_leukemia['stadium3'], dosis['minimum'])
R4	(tingkat_toksisitas['sangat rendah'] &
	stadium_leukemia['stadium4'], dosis['normal'])
R5	(tingkat_toksisitas['rendah'] &
	stadium_leukemia['stadium1'], dosis['minimum'])
R6	(tingkat_toksisitas['rendah'] &
	stadium_leukemia['stadium2'], dosis['minimum'])
R7	(tingkat_toksisitas['rendah'] &
	stadium_leukemia['stadium3'], dosis['normal'])
R8	(tingkat_toksisitas['rendah'] &
	stadium_leukemia['stadium4'], dosis['normal'])
R9	(tingkat_toksisitas['sedang'] &
	stadium_leukemia['stadium1'], dosis['minimum'])
R10	(tingkat_toksisitas['sedang'] &
	stadium_leukemia['stadium2'], dosis['normal'])
R11	(tingkat_toksisitas['sedang'] &
	stadium_leukemia['stadium3'], dosis['normal'])
R12	(tingkat_toksisitas['sedang'] &
	stadium_leukemia['stadium4'], dosis['maksimum'])

Kode Aturan	Deskripsi
R13	(tingkat_toksisitas['tinggi'] &
	stadium_leukemia['stadium1'], dosis['normal'])
R14	(tingkat_toksisitas['tinggi'] &
	stadium_leukemia['stadium2'], dosis['normal'])
R15	(tingkat_toksisitas['tinggi'] &
	stadium_leukemia['stadium3'], dosis['maksimum'])
R16	(tingkat_toksisitas['tinggi'] &
	stadium_leukemia['stadium4'], dosis['maksimum'])
R17	(tingkat_toksisitas['sangat tinggi'] &
	stadium_leukemia['stadium1'], dosis['normal'])
R18	(tingkat_toksisitas['sangat tinggi'] &
	stadium_leukemia['stadium2'], dosis['maksimum'])
R19	(tingkat_toksisitas['sangat tinggi'] &
	stadium_leukemia['stadium3'], dosis['maksimum'])
R20	(tingkat_toksisitas['sangat tinggi'] &
	stadium_leukemia['stadium4'], dosis['maksimum'])

Proses diagnosis menggunakan metode fuzzy sudah dimulai dengan pengumpulan data penelitian yang sudah dijelaskan melalui tabel 1 dan tabel 2. Sedangkan untuk pembentukan basis pengetahuan dijelaskan pada tabel 3 tentang aturan-aturan yang didapatkan berdasarkan konsultasi dengan pakar dan berbagai studi literasi yang sudah dilakukan. Proses fuzzifikasi untuk mendiagnosis penyakit leukemia menggunakan dua variabel output. Variabel output yang pertama adalah tingkat toksisitas yang dibagi menjadi 5 kategori adalah sangat rendah, rendah, sedang, tinggi, sangat tinggi. Variabel output yang kedua adalah kategori stadium leukemia yang diderita oleh pasien yang dibagi menjadi empat kategori yaitu stadium 1, stadium 2, stadium 3 dan stadium 4. Sedangkan variable output yang direncanakan pada penelitian ini adalah jadwal pemberian dosis obat untuk terapi leukimia.

Proses selanjutnya adalah penarikan kesimpulan hasil diagnosis penyakit leukemia berdasarkan aturan-aturan fuzzy yang terdapat pada tabel 3. Pada tahapan ini dilakukan perhitungan nilai keanggotaan dari kesimpulan yang mungkin berdasarkan nilai keanggotaan dari setiap variabel baik variabel tingkat toksisitas dan stadium leukemia dari gejala-gejala yang dialami pasien dan dimasukkan kedalam rulerule yang sudah dibentuk pada tahapan basis diagnosis dikelompokkan pengetahuan. Hasil menjadi tiga kategori yaitu minimum, normal, dan maksimum. Masing-masing kategori nantinya merepresentasikan hasil perhitungan dua variabel output menggunakan metode logika fuzzy.

Pada tahap defuzzifikasi akan dipilih suatu nilai dari suatu variabel solusi yang merupakan konsekuen dari daerah *fuzzy*, nilai keanggotaan untuk variabel tingkat toksisitas dengan himpunan keanggotaan *fuzzy* sangat rendah, rendah, sedang, tinggi, dan dangat tinggi dan nilai keanggotaan untuk variabel stadium leukemia dengan himpunan keanggotaan *fuzzy* stadium1, stadium2, stadium3 dan stadium4 yang sudah dihitung dengan informasi yang terdapat pada tabel 1, tabel 2 dan tabel 3. Metode yang digunakan untuk defuzzifikasi adalah metode centroid karena metode ini memiliki konsistensi yang tinggi, memiliki tinggi dan lebar total daerah *fuzzy*

yang sensitif (Alhabashneh 2021). Untuk interpretasi hasil diagnosis 57 pasien yang dikodekan dengan P1 sampai dengan P57, ditunjukkan pada gambar berikut ini:

Gambar 6. Hasil Identifikasi Pemberian Dosis Obat Leukemia pada Setiap Pasien

Hasil identifikasi pemberian dosis leukemia pada 57 pasien dari pasien dengan kode P1 sampai pasien dengan kode 57 yang ditunjukkan pada gambar 6 adalah disesuaikan dengan stadium kanker yang diderita oleh masing-masing pasien yang direpresentasikan pada kurva segitiga untuk fungsi keanggotaan masing-masing pasien. Hal tersebut dilakukan untuk mengetahui seberapa banyak dosis dan jadwal pemberian obat leukemia sebagai terapi untuk pasien leukemia. Warna biru pada kurva fungsi keanggotaan fuzzy menunjukkan dosis rendah/minimum, warna jingga pada kurva fungsi keanggotaan fuzzy menunjukkan dosis normal/sedang, dan warna hijau pada kurva fungsi

keanggotaan *fuzzy* menunjukkan dosis tinggi/maksimum.

Nilai centroid dalam logika fuzzy digunakan dalam proses defuzzifikasi untuk mengubah keluaran yang berupa himpunan fuzzy menjadi nilai tegas (crisp value) yang dapat digunakan untuk pengambilan keputusan atau tindakan lebih lanjut (Saibene, Assale, and Giltri 2021). Setelah proses inferensi fuzzy dilakukan, hasilnya biasanya adalah himpunan fuzzy yang menggambarkan berbagai kemungkinan keluaran dengan derajat keanggotaan masing-masing. Karena *output* dari inferensi *fuzzy* biasanya berupa range nilai dengan derajat keanggotaan yang bervariasi, nilai centroid menyediakan angka representatif yang satu menyederhanakan interpretasi output tersebut centroid (Al-Dmour et al. 2019). Metode centroid cenderung menghasilkan nilai yang lebih stabil dan akurat karena mempertimbangkan seluruh area di bawah kurva fungsi keanggotaan, bukan hanya titiktitik tertentu (Phan et al. 2021). Untuk nilai defussifikasi masing-masing pasien ditunjukkan oleh grafik berikut ini:

Gambar 7. Nilai Centroid Setiap Pasien

4. KESIMPULAN

Berdasarkan proses pada modular fuzzy expert system, hasil yang diperoleh menunjukkan bahwa fuzzy modular expert system dalam mengindentifikasi dosis obat yang diberikan sebagai terapi obat leukemia dengan akurasi rata-rata sekitar 94,8%. Nilai tersebut diperoleh setelah membandingkan hasil identifikasi dosis obat menggunakan modular fuzzy expert system dan informasi dari pakar. Gambar grafik 8 menunjukkan hasil perbandingan tersebut. Karena identifikasi dosis yang tepat dapat meningkatkan kesembuhan pasien dari penyakit leukemia maka penelitian ini dapat menjadi solusi dari permasalahan tersebut. Selain itu, modular fuzzy expert system dapat menyediakan kerangka kerja untuk penalaran, inferensi, kontrol, dan pengambilan keputusan dalam kondisi ketidakpastian. Sistem dengan ketidakpastian dan kompleksitas tinggi, modular fuzzy expert system merupakan metode yang cocok untuk pemodelan.

DAFTAR PUSTAKA

ABAEI, GOLNOUSH, ALI SELAMAT, AND JEHAD AL DALLAL. 2020. "A Fuzzy Logic

- Expert system to Predict Module Fault Proneness Using Unlabeled Data." Journal of King Saud University Computer and Information Sciences 32(6): 684–99. https://doi.org/10.1016/j.jksuci.2018.08.003.
- AL-DMOUR, JUMANAH A., ASSIM SAGAHYROON, A. R. AL-ALI, AND SALAH ABUSNANA. 2019. "A Fuzzy Logic—Based Warning System for Patients Classification." Health Informatics Journal 25(3): 1004–24.
- AL-QINDY, Q FATIMATUZZAHRO FIRLI, AND ANEKE DEWI RAHAYU. 2022. "Stress-Related Growth Caregiver Penderita Kanker Leukemia Di Ykaki (Yayasan Kasih Anak Kanker Indonesia) Yogyakarta." http://eprints.uty.ac.id/11018/1/ABSTRAK_5_5171111116_Fatimatuzzahroh Firli Al-Qindi.pdf.
- ALHABASHNEH, OBADA. 2021. "Fuzzy-Based Adaptive Framework for Module Advising Expert system." Annals of Emerging Technologies in Computing 5(1): 13–27.
- ARANI, LEILA AKRAMIAN, FRAHNAZ SADOUGHI, AND MUSTAFA LANGARIZADEH. 2019. "An Expert system to Diagnose Pneumonia Using Fuzzy Logic." Acta Informatica Medica 27(2): 103–7.
- BAHRONI, ISA ET AL. 2022. "Implementation of Forward Chaining for Diagnosis of Dengue Hemorrhagic Fever." *Journal of Innovation Information Technology and Application (JINITA)* 4(1): 32–42.
- CAO, JIN ET AL. 2024. "Fuzzy Inference System with Interpretable Fuzzy Rules: Advancing Explainable Artificial Intelligence for Disease Diagnosis—A Comprehensive Review." Information Sciences 662(January): 120212. https://doi.org/10.1016/j.ins.2024.120212.
- DINARDO, COURTNEY D. ET AL. 2019. "Venetoclax Combined with Decitabine or Azacitidine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia." *Blood* 133(1): 7–17.
- FAISAL, RAHAT HOSSAIN ET AL. 2023. "A Modular Fuzzy Expert system for Chemotherapy Drug Dose Scheduling." Healthcare Analytics 3(January): 100139. https://doi.org/10.1016/j.health.2023.100139.
- FRIESE C, YANG J, MENDELSOHN-VICTOR K AND MCCULLAGH M. 2019. "Ten-Day Decitabine with Venetoclax in Acute Myeloid Leukemia: A Single-Arm Phase 2 Trial." Physiology & behavior 46(2): 248–56.
- GLOBOCAN. 2020. "On Cancer Incidence in Indonesia." *Internation Agency for Research on Cancer*. https://www.aws.iarc.who.int/newsevents/latest-global-cancer-data-globocan-

- database-2020/.
- GONIBALA, ALFIANA P. 2022. "Adverse Drug Reactions Pada Pasien Pediatri Kanker Leukemia Limfoblastik Akut Adverse Drug Reactions in Pediatrics with Acute Lymphoblastic Leukemia." *Jurnal Farmasi Tinctura* 3(2): 56–64.
- HADIKURNIAWATI, WIWIEN ET AL. 2023. "Triangular *Fuzzy* Numbers-Based MADM for Selecting Pregnant Mothers at Risk of Stunting." *Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)* 7(3): 579–85.
- HEIß, ANDREAS, DIMITRIOS S. PARAFOROS, GALIBJON M. SHARIPOV, AND HANS W. GRIEPENTROG. 2021. "Modeling and Simulation of a Multi-Parametric Fuzzy Expert system for Variable Rate Nitrogen Application." Computers and Electronics in Agriculture 182(January).
- ISNANI, NAZHIPAH, DYAH ARYANI PERWITASARI, RIZKA ANDALUSIA, AND HARIDINI INTAN MAHDI. 2020. "Hubungan Karakteristik Pasien Dengan Toksisitas Hepatologi Akibat Penggunaan 6-Merkaptopurin Dalam Fase Pemeliharaan Pada Pasien Pediatri Kanker Leukimia Limfoblastik Akut Di Rs Kanker Dharmais Jakarta." *Jurnal Insan Farmasi Indonesia* 3(2): 361–68.
- L, AROKIA JESU PRABHU ET AL. 2020. "Medical Information Retrieval *Systems* for E-Health Care Records Using *Fuzzy* Based Machine Learning Model." *Microprocessors and Microsystems*: 103344. https://doi.org/10.1016/j.micpro.2020.103344.
- LYU, HAI MIN, WAN HUAN ZHOU, SHUI LONG SHEN, AND AN NAN ZHOU. 2020. "Inundation Risk Assessment of Metro *System* Using AHP and TFN-AHP in Shenzhen." *Sustainable Cities and Society* 56: 102103. https://doi.org/10.1016/j.scs.2020.102103.
- MATHEW, MANOJ, RIPON K. CHAKRABORTTY, AND MICHAEL J. RYAN. 2020. "A Novel Approach Integrating AHP and TOPSIS under Spherical Fuzzy Sets for Advanced Manufacturing System Selection." Engineering Applications of Artificial Intelligence 96(October): 103988. https://doi.org/10.1016/j.engappai.2020.10398
- MOHAMMAD, SEYYED, MOHAMMADREZA MEGHDADI, SAEED KHAYAT KAKHKI, AND REZA KHADEMI. 2024. "Anti-Leukemia Effects of Ginsenoside Monomer: A Narrative Review of Pharmacodynamics Study." Current Therapeutic Research: 100739. https://doi.org/10.1016/j.curtheres.2024.10073

- MOJRIAN, SANAZ ET AL. 2020. "Hybrid Machine Learning Model of Extreme Learning Machine Radial Basis Function for Breast Cancer Detection and Diagnosis; A Multilayer Fuzzy Expert system." Proceedings - 2020 RIVF International Conference on Computing and Communication Technologies, RIVF 2020.
- MUJAWAR, I. K., B. T. JADHAV, V. B. WAGHMARE, AND R. Y. PATIL. 2019. "Online Approach for Diabetes Diagnosis and Classification with *Expert system Modules* Using *Fuzzy Logic." 2019 IEEE Pune Section International Conference, PuneCon 2019*: 1–6.
- MUTTAQIN, FAUZAN ZEIN. 2019. "Studi Molecular Docking, Molecular Dynamic, Dan Prediksi Toksisitas Senyawa Turunan Alkaloid Naftiridin Sebagai Inhibitor Protein Kasein Kinase 2-A Pada Kanker Leukemia." *Pharmacoscript* 2(1): 49–64.
- NOURIAN, R., S. MEYSAM MOUSAVI, AND S. RAISSI. 2019. "A *Fuzzy Expert system* for Mitigation of Risks and Effective Control of Gas Pressure Reduction Stations with a Real Application." *Journal of Loss Prevention in the Process Industries* 59: 77–90. https://doi.org/10.1016/j.jlp.2019.03.003.
- NUHU, BELLO KONTAGORA ET AL. 2021. "Distributed Network-Based Structural Health Monitoring Expert system." Building Research and Information 49(1): 144–59.
- PHAN, HUYEN TRANG, NGOC THANH NGUYEN, VAN CUONG TRAN, AND DOSAM HWANG. 2021. "An Approach for a Decision-Making Support *System* Based on Measuring the User Satisfaction Level on Twitter." *Information Sciences* 561: 243–73. https://doi.org/10.1016/j.ins.2021.01.008.
- PICCOLOMO, ANTONIO ET AL. 2020. "Immunomodulatory Drugs in Acute Myeloid Leukemia Treatment." *Cancers* 12(9): 1–14.
- PRASETYA, NUR WACHID ADI, LINDA PERDANA WANTI, LAURA SARI, AND LINA PUSPITASARI. 2022. "Sistem Pakar Deteksi Dini Penyakit Preeklamsia Pada Ibu Hamil Menggunakan Metode Certainty Factor." *Infotekmesin* 13(1): 168–77.
- RAHIMI DAMIRCHI-DARASI, S., M. H. FAZEL ZARANDI, I. B. TURKSEN, AND M. IZADI. 2019. "Type-2 Fuzzy Rule-Based Expert system for Diagnosis of Spinal Cord Disorders." *Scientia Iranica* 26(1E): 455–71.
- SAIBENE, AURORA, MICHELA ASSALE, AND MARTA GILTRI. 2021. "Expert systems: Definitions, Advantages and Issues in Medical Field Applications." Expert systems with Applications 177(November 2020): 114900. https://doi.org/10.1016/j.eswa.2021.114900.
- SINGLA, JIMMY ET AL. 2020. "A Novel Fuzzy

- Logic-Based Medical *Expert system* for Diagnosis of Chronic Kidney Disease." *Mobile Information Systems* 2020.
- STATISTIK, BADAN PUSAT. 2023. *Profil Statistik Kesehatan* 2023. https://www.bps.go.id/id/publication/2023/12/20/feffe5519c812d560bb131ca/profil-statistik-kesehatan-2023.html.
- STEIN, EYTAN M. ET AL. 2021. "Ivosidenib or Enasidenib Combined with Intensive Chemotherapy in Patients with Newly Diagnosed AML: A Phase 1 Study." *Blood* 137(13): 1792–1803.
- SUSANTO, SUSANTO, AND ERMIN KATRIN WINARNO. 2020. "Aktivitas Sitotoksik Ekstrak Etil Asetat Daun Jati Belanda (Guazuma Ulmifolia Lamk.) Terhadap Sel Kanker Leukemia L1210." *Chimica et Natura Acta* 8(1): 1.
- WANTI, LINDA PERDANA, IFDA NURUL AZROHA, AND MUHAMMAD NUR FAIZ. 2019. "Implementasi User Centered Design Pada Sistem Pakar Diagnosis Gangguan Perkembangan Motorik Kasar Pada Anak Usia Dini." Media Aplikom 11(1): 1–10.
- WANTI, LINDA PERDANA, KURNIAWAN YOGI LAKSONO, AND RIYADI PURWANTO. 2019. "Implementasi Metode User Centered Design Pada Sistem Pendukung Keputusan Peramalan Penjualan Ikan Hias." *Jurnal ICT: Information Communication & Technology* 18(1): 26–33.
- WANTI, LINDA PERDANA, AND LINA PUSPITASARI. 2022. "Optimization of the *Fuzzy* Logic Method for Autism Spectrum Disorder Diagnosis." *Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)* 6(1): 16–24.

- WANTI, LINDA PERDANA, AND SYAHRUR ROMADLON. 2020. "Implementasi Forward Chaining Method Pada Sistem Pakar Untuk Deteksi Dini Penyakit Ikan." *Infotekmesin* 11(02): 74–79.
- WANTI, LINDA PERDANA, OMAN SOMANTRI, AND TITIN KARYATI. 2023. "Utilization of AR Technology for The Development of Speech Therapy Applications by Optimizing Marked-Based Tracking Method." Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 8(1).
- WANTI, LINDA PERDANA, OMAN SOMANTRI, NUR WACHID ADI PRASETYA, AND LINA PUSPITASARI. 2024. "Fuzzy Expert system Design for Detecting Stunting." Indonesian Journal of Electrical Engineering and Computer Science 34(1): 556–64.
- WANTI, LINDA, NUR PRASETYA, LAURA SARI, AND LINA PUSPITASARI. 2023. "Optimization of Certainty Factor Method to Detect Preeclampsia in Women Pregnant." In *Icast* 2021, , 147–55.
- WEI, ANDREW H. ET AL. 2020. "Venetoclax plus LDAC for Newly Diagnosed AML Ineligible for Intensive Chemotherapy: A Phase 3 Randomized Placebo-Controlled Trial." *Blood* 135(24): 2137–45.
- YUAN, JIE ET AL. 2021. "Process Abnormity Identification by Fuzzy Logic Rules and Expert Estimated Thresholds Derived Certainty Factor." Chemometrics and Intelligent Laboratory Systems 209(August 2020): 104232.
 - https://doi.org/10.1016/j.chemolab.2020.10423 2.