## **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6:                                                                                                                                                                                                                                    |                 | (11) International Publication Number: WO 98/14601                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C12N 15/82, 9/10, 15/54, 15/62, C12Q<br>1/68, C12N 1/21, A01H 5/00                                                                                                                                                                                                             | A1              | (43) International Publication Date: 9 April 1998 (09.04.98)                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (21) International Application Number: PCT/USS (22) International Filing Date: 30 September 1997 (3 (30) Priority Data: 60/026,855 30 September 1996 (30.09.96) (71) Applicant: EXSEED GENETICS L.L.C. [US/US Food Science Building, Iowa State University, A 50011–1061 (US). | 80.09.9<br>6) U | BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, |
| <ul> <li>(72) Inventors: KEELING, Peter; 3409 Oakland Street, A 50014 (US). GUAN, Hanping; 1608 Crestwood Ames, IA 50010 (US).</li> <li>(74) Agents: WINNER, Ellen, P. et al.; Greenlee, Win Sullivan, P.C., Suite 201, 5370 Manhattan Circle, CO 80303 (US).</li> </ul>       | d Circl         | With international search report.  Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.                                                                                                                                                                                                                                                                                                                |

#### (54) Title: ENCAPSULATION OF POLYPEPTIDES WITHIN THE STARCH MATRIX

#### (57) Abstract

Hybrid polypeptides are provided formed with encapsulating regions from genes that encode for anabolic proteins. More particularly, the present invention relates to recombinant nucleic acid molecules that code for genes which encapsulate an attached protein within a matrix; preferably, these genes encapsulate a desired ("payload") polypeptide within starch, and more specifically within the starch granule matrix. Expression vectors comprising these recombinant nucleic acid molecules, and hosts therefor, and more specifically the starch—bearing portions of such hosts, transformed with such vectors, are also provided. Preferably, grain containing a foreign protein encapsulated within the starch is provided, useful to produce mammalian, fish and avian food. The invention also encompasses methods of producing purified protein from starch and particularly from starch granules, and industrial uses of such protein.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |  |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|--|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |  |
| AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |  |
| AU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |  |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |  |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |  |
| ВВ | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |  |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |  |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |  |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |  |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |  |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |  |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |  |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |  |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |  |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |  |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |  |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |  |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |  |
| Cυ | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |  |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |  |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |  |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |  |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |  |

1

#### ENCAPSULATION OF POLYPEPTIDES WITHIN THE STARCH MATRIX

## CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional patent application serial No. 60/026,855 filed September 30, 1996. Said provisional application is incorporated herein by reference to the extent not inconsistent herewith.

#### **BACKGROUND OF THE INVENTION**

### Polysaccharide Enzymes

5

10

15

20

25

Both prokaryotic and eukaryotic cells use polysaccharide enzymes as a storage reserve. In the prokaryotic cell the primary reserve polysaccharide is glycogen. Although glycogen is similar to the starch found in most vascular plants it exhibits different chain lengths and degrees of polymerization. In many plants, starch is used as the primary reserve polysaccharide. Starch is stored in the various tissues of the starch bearing plant. Starch is made of two components in most instances; one is amylose and one is amylopectin. Amylose is formed as linear glucans and amylopectin is formed as branched chains of glucans. Typical starch has a ratio of 25% amylose to 75% amylopectin. Variations in the amylose to amylopectin ratio in a plant can effect the properties of the starch. Additionally starches from different plants often have different properties. Maize starch and potato starch appear to differ due to the presence or absence of phosphate groups. Certain plants' starch properties differ because of mutations that have been introduced into the plant genome. Mutant starches are well known in maize, rice and peas and the like.

The changes in starch branching or in the ratios of the starch components result in different starch characteristic. One characteristic of starch is the formation of starch granules which are formed particularly in leaves, roots, tubers and seeds. These granules are formed during the starch synthesis process. Certain synthases of starch, particularly

2

granule-bound starch synthase, soluble starch synthases and branching enzymes are proteins that are "encapsulated" within the starch granule when it is formed.

5

10

15

20

25

The use of cDNA clones of animal and bacterial glycogen synthases are described in International patent application publication number GB92/01881. The nucleotide and amino acid sequences of glycogen synthase are known from the literature. For example, the nucleotide sequence for the *E. coli* glgA gene encoding glycogen synthase can be retrieved from the GenBank/EMBL (SWISSPROT) database, accession number J02616 (Kumar et al., 1986, J. Biol. Chem., 261:16256-16259). *E. coli* glycogen biosynthetic enzyme structural genes were also cloned by Okita et al. (1981, J. Biol. Chem., 256(13):6944-6952). The glycogen synthase glgA structural gene was cloned from *Salmonella typhimurium* LT2 by Leung et al. (1987, J. Bacteriol., 169(9):4349-4354). The sequences of glycogen synthase from rabbit skeletal muscle (Zhang et al., 1989, FASEB J., 3:2532-2536) and human muscle (Browner et al., 1989, Proc. Natl. Acad. Sci., 86:1443-1447) are also known.

The use of cDNA clones of plant soluble starch synthases has been reported. The amino acid sequences of pea soluble starch synthase isoforms I and II were published by Dry et al. (1991, Plant Journal, 2:193202). The amino acid sequence of rice soluble starch synthase was described by Baba et al. (1993, Plant Physiology, ). This last sequence (rice SSTS) incorrectly cites the N-terminal sequence and hence is misleading. Presumably this is because of some extraction error involving a protease degradation or other inherent instability in the extracted enzyme. The correct N-terminal sequence (starting with AELSR) is present in what they refer to as the transit peptide sequence of the rice SSTS.

The sequence of maize branching enzyme I was investigated by Baba et al., 1991, BBRC, 181:8794. Starch branching enzyme II from maize endosperm was investigated by Fisher and Shrable (1993, Plant Physiol., 102:10451046). The use of cDNA clones of plant, bacterial and animal branching enzymes have been reported. The nucleotide and amino acid sequences for bacterial branching enzymes (BE) are known from the literature. For example, Kiel et al. cloned the branching enzyme gene glgB from *Cyanobacterium* synechococcussp PCC7942 (1989, Gene (Amst), 78(1):918) and from *Bacillus* 

stearothermophilus (Kiel et al., 1991, Mol. Gen. Genet., 230(12):136-144). The genes glc3 and ghal of *S. cerevisiae* are allelic and encode the glycogen branching enzyme (Rowen et al., 1992, Mol. Cell Biol., 12(1):22-29). Matsumomoto et al. investigated glycogen branching enzyme from *Neurospora crassa* (1990, J. Biochem., 107:118-122). The GenBank/EMBL database also contains sequences for the *E. coli* glgB gene encoding branching enzyme.

5

10

15

20

25

30

Starch synthase (EC 2.4.1.11) elongates starch molecules and is thought to act on both amylose and amylopectin. Starch synthase (STS) activity can be found associated both with the granule and in the stroma of the plastid. The capacity for starch association of the bound starch synthase enzyme is well known. Various enzymes involved in starch biosynthesis are now known to have differing propensities for binding as described by Mu-Forster et al. (1996, Plant Phys. 111: 821-829). Granule-bound starch synthase (GBSTS) activity is strongly correlated with the product of the waxy gene (Shure et al., 1983, Cell 35: 225-233). The synthesis of amylose in a number of species such as maize, rice and potato has been shown to depend on the expression of this gene (Tsai, 1974, Biochem Gen 11: 83-96; Hovenkamp-Hermelink et al., 1987, Theor. Appl. Gen. 75: 217-221). Visser et al. described the molecular cloning and partial characterization of the gene for granule-bound starch synthase from potato (1989, Plant Sci. 64(2):185192). Visser et al. have also described the inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs (1991, Mol. Gen. Genet. 225(2):289296).

The other STS enzymes have become known as soluble starch synthases, following the pioneering work of Frydman and Cardini (Frydman and Cardini, 1964, Biochem. Biophys. Res. Communications 17: 407-411). Recently, the appropriateness of the term "soluble" has become questionable in light of discoveries that these enzymes are associated with the granule as well as being present in the soluble phase (Denyer et al., 1993, Plant J. 4: 191-198; Denyer et al., 1995, Planta 97: 57-62; Mu-Forster et al., 1996, Plant Physiol. 111: 821-829). It is generally believed that the biosynthesis of amylopectin involves the interaction of soluble starch synthases and starch branching enzymes. Different isoforms of soluble starch synthase have been identified and cloned in pea (Denyer and Smith, 1992, Planta 186: 609-617; Dry et al., 1992, Plant Journal, 2: 193-

5

10

15

20

25

202), potato (Edwards et al., 1995, Plant Physiol 112: 89-97; Marshall et al., 1996, Plant Cell 8: 1121-1135) and in rice (Baba et al., 1993, Plant Physiol. 103: 565-573), while barley appears to contain multiple isoforms, some of which are associated with starch branching enzyme (Tyynela and Schulman, 1994, Physiol. Plantarum 89: 835-841). A common characteristic of STS clones is the presence of a KXGGLGDV consensus sequence which is believed to be the ADP-Glc binding site of the enzyme (Furukawa et al., 1990, J Biol Chem 265: 2086-2090; Furukawa et al., 1993, J. Biol. Chem. 268: 23837-23842).

In maize, two soluble forms of STS, known as isoforms I and II, have been identified (Macdonald and Preiss, 1983, Plant Physiol. 73: 175-178; Boyer and Preiss, 1978, Carb. Res. 61: 321-334; Pollock and Preiss, 1980, Arch Biochem. Biophys. 204: 578-588; Macdonald and Preiss, 1985 Plant Physiol. 78: 849-852; Dang and Boyer, 1988, Phytochemistry 27: 1255-1259; Mu et al., 1994, Plant J. 6: 151-159), but neither of these has been cloned. STSI activity of maize endosperm was recently correlated with a 76-kDa polypeptide found in both soluble and granule-associated fractions (Mu et al., 1994, Plant J. 6: 151-159). The polypeptide identity of STSII remains unknown. STSI and II exhibit different enzymological characteristics. STSI exhibits primer-independent activity whereas STSII requires glycogen primer to catalyze glucosyl transfer. Soluble starch synthases have been reported to have a high flux control coefficient for starch deposition (Jenner et al., 1993, Aust. J. Plant Physiol. 22: 703-709; Keeling et al., 1993, Planta 191: 342-348) and to have unusual kinetic properties at elevated temperatures (Keeling et al., 1995, Aust. J. Plant Physiol. 21 807-827). The respective isoforms in maize exhibit significant differences in both temperature optima and stability.

Plant starch synthase (and *E. coli* glycogen synthase) sequences include the sequence KTGGL which is known to be the ADPG binding domain. The genes for any such starch synthase protein may be used in constructs according to this invention.

Branching enzyme [α1,4Dglucan: α1,4Dglucan 6D(α1,4Dglucano) transferase (E.C. 2.4.1.18)], sometimes called Q-enzyme, converts amylose to amylopectin. A segment of a α1,4Dglucan chain is transferred to a primary hydroxyl group in a similar glucan chain.

5

10

15

20

25

Bacterial branching enzyme genes and plant sequences have been reported (rice endosperm: Nakamura et al., 1992, Physiologia Plantarum, 84:329-335 and Nakamura and Yamanouchi, 1992, Plant Physiol., 99:1265-1266; pea: Smith, 1988, Planta, 175:270-279 and Bhattacharyya et al., 1989, J. Cell Biochem., Suppl. 13D:331; maize endosperm: Singh and Preiss, 1985, Plant Physiology, 79:34-40; VosScherperkeuter et al., 1989, Plant Physiology, 90:75-84; potato: Kossmann et al., 1991, Mol. Gen. Genet., 230(12):39-44; cassava: Salehuzzaman and Visser, 1992, Plant Mol Biol, 20:809-819).

In the area of polysaccharide enzymes there are reports of vectors for engineering modification in the starch pathway of plants by use of a number of starch synthesis genes in various plant species. That some of these polysaccharide enzymes bind to cellulose or starch or glycogen is well known. One specific patent example of the use of a polysaccharide enzyme shows the use of glycogen biosynthesis enzymes to modify plant starch. In U.S. patent 5,349,123 to Shewmaker a vector containing DNA to form glycogen biosynthetic enzymes within plant cells is taught. Specifically, this patent refers to the changes in potato starch due to the introduction of these enzymes. Other starch synthesis genes and their use have also been reported.

#### Hybrid (fusion) Peptides

Hybrid proteins (also called "fusion proteins") are polypeptide chains that consist of two or more proteins fused together into a single polypeptide. Often one of the proteins is a ligand which binds to a specific receptor cell. Vectors encoding fusion peptides are primarily used to produce foreign proteins through fermentation of microbes. The fusion proteins produced can then be purified by affinity chromatography. The binding portion of one of the polypeptides is used to attach the hybrid polypeptide to an affinity matrix. For example, fusion proteins can be formed with beta galactosidase which can be bound to a column. This method has been used to form viral antigens.

Another use is to recover one of the polypeptides of the hybrid polypeptide.

Chemical and biological methods are known for cleaving the fused peptide. Low pH can be used to cleave the peptides if an acid-labile aspartyl-proline linkage is employed between the peptides and the peptides are not affected by the acid. Hormones have been

cleaved with cyanobromide. Additionally, cleavage by site-specific proteolysis has been reported. Other methods of protein purification such as ion chromatography have been enhanced with the use of polyarginine tails which increase overall basicity of the protein thus enhancing binding to ion exchange columns.

6

5

10

A number of patents have outlined improvements in methods of making hybrid peptides or specific hybrid peptides targeted for specific uses. US patent 5,635,599 to Pastan et al. outlines an improvement of hybrid proteins. This patent reports a circularly permuted ligand as part of the hybrid peptide. This ligand possesses specificity and good binding affinity. Another improvement in hybrid proteins is reported in U.S. patent 5,648,244 to Kuliopulos. This patent describes a method for producing a hybrid peptide with a carrier peptide. This nucleic acid region, when recognized by a restriction endonuclease, creates a nonpalindromic 3-base overhang. This allows the vector to be cleaved.

15

An example of a specifically targeted hybrid protein is reported in U.S. patent 5,643,756. This patent reports a vector for expression of glycosylated proteins in cells. This hybrid protein is adapted for use in proper immunoreactivity of HIV gp120. The isolation of gp120 domains which are highly glycosylated is enhanced by this reported vector.

20

U.S. patent 5,202,247 and 5,137,819 discuss hybrid proteins having polysaccharide binding domains and methods and compositions for preparation of hybrid proteins which are capable of binding to a polysaccharide matrix. U.S. patent 5,202,247 specifically teaches a hybrid protein linking a cellulase binding region to a peptide of interest. The patent specifies that the hybrid protein can be purified after expression in a bacterial host by affinity chromatography on cellulose.

25

The development of genetic engineering techniques has made it possible to transfer genes from various organisms and plants into other organisms or plants. Although starch has been altered by transformation and mutagenesis in the past there is still a need for further starch modification. To this end vectors that provide for encapsulation of desired

WO 98/14601

5

10

15

20

25

PCT/US97/17555

7

amino acids or peptides within the starch and specifically within the starch granule are desirable. The resultant starch is modified and the tissue from the plant carrying the vector is modified.

#### SUMMARY OF THE INVENTION

This invention provides a hybrid polypeptide comprising a starch-encapsulating region (SER) from a starch-binding enzyme fused to a payload polypeptide which is not endogenous to said starch-encapsulating region, i.e. does not naturally occur linked to the starch-encapsulating region. The hybrid polypeptide is useful to make modified starches comprising the payload polypeptide. Such modified starches may be used to provide grain feeds enriched in certain amino acids. Such modified starches are also useful for providing polypeptides such as hormones and other medicaments, e.g. insulin, in a starch-encapsulated form to resist degradation by stomach acids. The hybrid polypeptides are also useful for producing the payload polypeptides in easily-purified form. For example, such hybrid polypeptides produced by bacterial fermentation, or in grains or animals, may be isolated and purified from the modified starches with which they are associated by art-known techniques.

The term "polypeptide" as used herein means a plurality of identical or different amino acids, and also encompasses proteins.

The term "hybrid polypeptide" means a polypeptide composed of peptides or polypeptides from at least two different sources, e.g. a starch-encapsulating region of a starch-binding enzyme, fused to another polypeptide such as a hormone, wherein at least two component parts of the hybrid polypeptide do not occur fused together in nature.

The term "payload polypeptide" means a polypeptide not endogenous to the starchencapsulating region whose expression is desired in association with this region to express a modified starch containing the payload polypeptide. When the payload polypeptide is to be used to enhance the amino acid content of particular amino acids in the modified starch, it preferably consists of not more than three different types of amino acids selected from the group consisting of: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val.

5

When the payload polypeptide is to be used to supply a biologically active polypeptide to either the host organism or another organism, the payload polypeptide may be a biologically active polypeptide such as a hormone, e.g., insulin, a growth factor, e.g. somatotropin, an antibody, enzyme, immunoglobulin, or dye, or may be a biologically active fragment thereof as is known to the art. So long as the polypeptide has biological activity, it does not need to be a naturally-occurring polypeptide, but may be mutated, truncated, or otherwise modified. Such biologically active polypeptides may be modified polypeptides, containing only biologically-active portions of biologically-active polypeptides. They may also be amino acid sequences homologous to naturally-occurring biologically-active amino acid sequences (preferably at least about 75% homologous) which retain biological activity.

15

10

The starch-encapsulating region of the hybrid polypeptide may be a starch-encapsulating region of any starch-binding enzyme known to the art, e.g. an enzyme selected from the group consisting of soluble starch synthase I, soluble starch synthase II, soluble starch synthase III, granule-bound starch synthase, branching enzyme I, branching enzyme IIa, branching enzyme IIBb and glucoamylase polypeptides.

20

When the hybrid polypeptide is to be used to produce payload polypeptide in pure or partially purified form, the hybrid polypeptide preferably comprises a cleavage site between the starch-encapsulating region and the payload polypeptide. The method of isolating the purified payload polypeptide then includes the step of contacting the hybrid polypeptide with a cleaving agent specific for that cleavage site.

25

This invention also provides recombinant nucleic acid (RNA or DNA) molecules encoding the hybrid polypeptides. Such recombinant nucleic acid molecules preferably comprise control sequences adapted for expression of the hybrid polypeptide in the

9

selected host. The term "control sequences" includes promoters, introns, preferred codon sequences for the particular host organism, and other sequences known to the art to affect expression of DNA or RNA in particular hosts. The nucleic acid sequences encoding the starch-encapsulating region and the payload polypeptide may be naturally-occurring nucleic acid sequences, or biologically-active fragments thereof, or may be biologically-active sequences homologous to such sequences, preferably at least about 75% homologous to such sequences.

5

10

15

20

25

Host organisms include bacteria, plants, and animals. Preferred hosts are plants. Both monocotyledonous plants (monocots) and dicotyledonous plants (dicots) are useful hosts for expressing the hybrid polypeptides of this invention.

This invention also provides expression vectors comprising the nucleic acids encoding the hybrid proteins of this invention. These expression vectors are used for transforming the nucleic acids into host organisms and may also comprise sequences aiding in the expression of the nucleic acids in the host organism. The expression vectors may be plasmids, modified viruses, or DNA or RNA molecules, or other vectors useful in transformation systems known to the art.

By the methods of this invention, transformed cells are produced comprising the recombinant nucleic acid molecules capable of expressing the hybrid polypeptides of this invention. These may prokaryotic or eukaryotic cells from one-celled organisms, plants or animals. They may be bacterial cells from which the hybrid polypeptide may be harvested. Or, they may be plant cells which may be regenerated into plants from which the hybrid polypeptide may be harvested, or, such plant cells may be regenerated into fertile plants with seeds containing the nucleic acids encoding the hybrid polypeptide. In a preferred embodiment, such seeds contain modified starch comprising the payload polypeptide.

The term "modified starch" means the naturally-occurring starch has been modified to comprise the payload polypeptide.

WO 98/14601

A method of targeting digestion of a payload polypeptide to a particular phase of the digestive process, e.g., preventing degradation of a payload polypeptide in the stomach of an animal, is also provided comprising feeding the animal a modified starch of this invention comprising the payload polypeptide, whereby the polypeptide is protected by the starch from degradation in the stomach of the animal. Alternatively, the starch may be one known to be digested in the stomach to release the payload polypeptide there.

Preferred recombinant nucleic acid molecules of this invention comprise DNA encoding starch-encapsulating regions selected from the starch synthesizing gene sequences set forth in the tables hereof.

10

5

Preferred plasmids of this invention are adapted for use with specific hosts.

Plasmids comprising a promoter, a plastid-targeting sequence, a nucleic acid sequence encoding a starch-encapsulating region, and a terminator sequence, are provided herein.

Such plasmids are suitable for insertion of DNA sequences encoding payload polypeptides and starch-encapsulating regions for expression in selected hosts.

15

Plasmids of this invention can optionally include a spacer or a linker unit proximate the fusion site between nucleic acids encoding the SER and the nucleic acids encoding the payload polypeptide. This invention includes plasmids comprising promoters adapted for a prokaryotic or eukaryotic hosts. Such promoters may also be specifically adapted for expression in monocots or in dicots.

20

A method of forming peptide-modified starch of this invention includes the steps of: supplying a plasmid having a promoter associated with a nucleic acid sequence encoding a starch-encapsulating region, the nucleic acid sequence encoding the starch-encapsulating region being connected to a nucleic acid region encoding a payload polypeptide, and transforming a host with the plasmid whereby the host expresses peptide-modified starch.

25

This invention furthermore comprises starch-bearing grains comprising: an embryo, nutritive tissues; and, modified starch granules having encapsulated therein a protein that is

WO 98/14601

not endogenous to starch granules of said grain which are not modified. Such starchbearing grains may be grains wherein the embryo is a maize embryo, a rice embryo, or a wheat embryo.

All publications referred to herein are incorporated by reference to the extent not inconsistent herewith.

#### BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1a shows the plasmid pEXS114 which contains the synthetic GFP (Green Fluorescent Protein) subcloned into pBSK from Stratagene.
  - FIG. 1b shows the plasmid pEXS115.
- FIG. 2a. shows the waxy gene with restriction sites subcloned into a commercially available plasmid.
  - FIG. 2b shows the p ET-21A plasmid commercially available from Novagen having the GFP fragment from pEXS115 subcloned therein.
    - FIG. 3a shows pEXS114 subcloned into pEXSWX, and the GFP-FLWX map.
- FIG. 3b shows the GFP-Bam HIWX plasmid.
  - FIG. 4 shows the SGFP fragment of pEXS115 subcloned into pEXSWX, and the GFP-NcoWX map.
    - FIG. 5 shows a linear depiction of a plasmid that is adapted for use in monocots.
    - FIG. 6 shows the plasmid pEXS52.

FIG. 7 shows the six introductory plasmids used to form pEXS51 and pEX560.

FIG. 7a shows pEXS adh1. FIG. 7b shows pEXS adh1-nos3'. FIG. 7c shows pEXS33.

FIG. 7d shows pEXS10zp. FIG. 7e shows pEXS10zp-adh1. FIG. 7f shows pEXS10zp-adh1-nos3'.

FIGS. 8a and 8b show the plasmids pEXS50 and pEXS51, respectively, containing the MS-SIII gene which is a starch-soluble synthase gene.

5

10

15

20

25

FIG. 9a shows the plasmid pEXS60 which excludes the intron shown in pEXS50, and FIG. 9b shows the plasmid pEXS61 which excludes the intron shown in pEXS60.

#### **DETAILED DESCRIPTION**

The present invention provides, broadly, a hybrid polypeptide, a method for making a hybrid polypeptide, and nucleic acids encoding the hybrid polypeptide. A hybrid polypeptide consists of two or more subparts fused together into a single peptide chain. The subparts can be amino acids or peptides or polypeptides. One of the subparts is a starch-encapsulating region. Hybrid polypeptides may thus be targeted into starch granules produced by organisms expressing the hybrid polypeptides.

A method of making the hybrid polypeptides within cells involves the preparation of a DNA construct comprising at least a fragment of DNA encoding a sequence which functions to bind the expression product of attached DNA into a granule of starch, ligated to a DNA sequence encoding the polypeptide of interest (the payload polypeptide). This construct is expressed within a eukaryotic or prokaryotic cell. The hybrid polypeptide can be used to produce purified protein or to immobilize a protein of interest within the protection of a starch granule, or to produce grain that contains foreign amino acids or peptides.

The hybrid polypeptide according to the present invention has three regions.

| Payload Peptide | Central Site | Starch-encapsulating |
|-----------------|--------------|----------------------|
| (X)             | (CS)*        | region (SER)         |

X is any amino acid or peptide of interest.

\* optional component.

WO 98/14601

The gene for X can be placed in the 5' or 3' position within the DNA construct described below.

13

PCT/US97/17555

5

10

CS is a central site which may be a leaving site, a cleavage site, or a spacer, as is known to the art. A cleavage site is recognized by a cleaving enzyme. A cleaving enzyme is an enzyme that cleaves peptides at a particular site. Examples of chemicals and enzymes that have been employed to cleave polypeptides include thrombin, trypsin, cyanobromide, formic acid, hydroxyl amine, collagenase, and alasubtilisin. A spacer is a peptide that joins the peptides comprising the hybrid polypeptide. Usually it does not have any specific activity other than to join the peptides or to preserve some minimum distance or to influence the folding, charge or water acceptance of the protein. Spacers may be any peptide sequences not interfering with the biological activity of the hybrid polypeptide.

15

20

25

The starch-encapsulating region (SER) is the region of the subject polypeptide that has a binding affinity for starch. Usually the SER is selected from the group consisting of peptides comprising starch-binding regions of starch synthases and branching enzymes of plants, but can include starch binding domains from other sources such as glucoamylase and the like. In the preferred embodiments of the invention, the SER includes peptide products of genes that naturally occur in the starch synthesis pathway. This subset of preferred SERs is defined as starch-forming encapsulating regions (SFER). A further subset of SERs preferred herein is the specific starch-encapsulating regions (SSER) from the specific enzymes starch synthase (STS), granule-bound starch synthase (GBSTS) and branching enzymes (BE) of starch-bearing plants. The most preferred gene product from this set is the GBSTS. Additionally, starch synthase I and branching enzyme II are useful gene products. Preferably, the SER (and all the subsets discussed above) are truncated versions of the full length starch synthesizing enzyme gene such that the truncated portion includes the starch-encapsulating region.

5

10

15

20

The DNA construct for expressing the hybrid polypeptide within the host, broadly is as follows:

| Promoter Intron | * Transit Peptide Coding Region* | X | SER | Terminator |
|-----------------|----------------------------------|---|-----|------------|
|-----------------|----------------------------------|---|-----|------------|

<sup>\*</sup> optional component. Other optional components can also be used.

As is known to the art, a promoter is a region of DNA controlling transcription. Different types of promoters are selected for different hosts. Lac and T7 promoters work well in prokaryotes, the 35S CaMV promoter works well in dicots, and the polyubiquitin promoter works well in many monocots. Any number of different promoters are known to the art and can be used within the scope of this invention.

Also as is known to the art, an intron is a nucleotide sequence in a gene that does not code for the gene product. One example of an intron that often increases expression in monocots is the Adhl intron. This component of the construct is optional.

The transit peptide coding region is a nucleotide sequence that encodes for the translocation of the protein into organelles such as plastids. It is preferred to choose a transit peptide that is recognized and compatible with the host in which the transit peptide is employed. In this invention the plastid of choice is the amyloplast.

It is preferred that the hybrid polypeptide be located within the amyloplast in cells such as plant cells which synthesize and store starch in amyloplasts. If the host is a bacterial or other cell that does not contain an amyloplast, there need not be a transit peptide coding region.

A terminator is a DNA sequence that terminates the transcription.

X is the coding region for the payload polypeptide, which may be any polypeptide of interest, or chains of amino acids. It may have up to an entire sequence of a known polypeptide or comprise a useful fragment thereof. The payload polypeptide may be a

polypeptide, a fragment thereof, or biologically active protein which is an enzyme, hormone, growth factor, immunoglobulin, dye, etc. Examples of some of the payload polypeptides that can be employed in this invention include, but are not limited to, prolactin (PRL), serum albumin, growth factors and growth hormones, i.e., somatotropin. Serum albumins include bovine, ovine, equine, avian and human serum albumin. Growth factors include epidermal growth factor (EGF), insulin-like growth factor I (IGF-I), insulinlike growth factor II (IGF-II), fibroblast growth factor (FGF), transforming growth factor alpha (TGF-alpha), transforming growth factor beta (TGF-beta), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and recombinant human insulin-like growth factors I (rHuIGF-I) and II (rHuIGF-II). Somatotropins which can be employed to practice this invention include, but are not limited to, bovine, porcine, ovine, equine, avian and human somatotropin. Porcine somatotropin includes delta-7 recombinant porcine somatotropin, as described and claimed in European Patent Application Publication No. 104,920 (Biogen). Preferred payload polypeptides are somatotropin, insulin A and B chains, calcitonin, beta endorphin, urogastrone, beta globin, myoglobin, human growth hormone, angiotensin, proline, proteases, beta-galactosidase, and cellulases.

The hybrid polypeptide, the SER region and the payload polypeptides may also include post-translational modifications known to the art such as glycosylation, acylation, and other modifications not interfering with the desired activity of the polypeptide.

## 20 Developing a Hybrid polypeptide

5

10

15

25

30

The SER region is present in genes involved in starch synthesis. Methods for isolating such genes include screening from genomic DNA libraries and from cDNA libraries. Genes can be cut and changed by ligation, mutation agents, digestion, restriction and other such procedures, e.g., as outlined in Maniatis et al., Molecular Cloning, Cold Spring Harbor Labs, Cold Spring Harbor, N.Y. Examples of excellent starting materials for accessing the SER region include, but are not limited to, the following: starch synthases I, II, III, IV, Branching Enzymes I, IIA and B and granule-bound starch synthase (GBSTS). These genes are present in starch-bearing plants such as rice, maize, peas, potatoes, wheat, and the like. Use of a probe of SER made from genomic DNA or cDNA or mRNA or antibodies raised against the SER allows for the isolation and identification

5

10

15

20

25

16

of useful genes for cloning. The starch enzyme-encoding sequences may be modified as long as the modifications do not interfere with the ability of the SER region to encapsulate associated polypeptides.

When genes encoding proteins that are encapsulated into the starch granule are located, then several approaches to isolation of the SER can be employed, as is known to the art. One method is to cut the gene with restriction enzymes at various sites, deleting sections from the N-terminal end and allowing the resultant protein to express. The expressed truncated protein is then run on a starch gel to evaluate the association and dissociation constant of the remaining protein. Marker genes known to the art, e.g., green fluorescent protein gene, may be attached to the truncated protein and used to determine the presence of the marker gene in the starch granule.

Once the SER gene sequence region is isolated it can be used in making the gene fragment sequence that will express the payload polypeptide encapsulated in starch. The SER gene sequence and the gene sequence encoding the payload polypeptide can be ligated together. The resulting fused DNA can then be placed in a number of vector constructs for expression in a number of hosts. The preferred hosts form starch granules in plastids, but the testing of the SER can be readily performed in bacterial hosts such as *E.coli*.

The nucleic acid sequence coding for the payload polypeptide may be derived from DNA, RNA, genomic DNA, cDNA, mRNA or may be synthesized in whole or in part. The sequence of the payload polypeptide can be manipulated to contain mutations such that the protein produced is a novel, mutant protein, so long as biological function is maintained.

When the payload polypeptide-encoding nucleic acid sequence is ligated onto the SER-encoding sequence, the gene sequence for the payload polypeptide is preferably attached at the end of the SER sequence coding for the N-terminus. Although the N-terminus end is preferred, it does not appear critical to the invention whether the payload polypeptide is ligated onto the N-terminus end or the C-terminus end of the SER. Clearly,

the method of forming the recombinant nucleic acid molecules of this invention, whether synthetically, or by cloning and ligation, is not critical to the present invention.

17

The central region of the hybrid polypeptide is optional. For some applications of the present invention it can be very useful to introduce DNA coding for a convenient protease cleavage site in this region into the recombinant nucleic acid molecule used to express the hybrid polypeptide. Alternatively, it can be useful to introduce DNA coding for an amino acid sequence that is pH-sensitive to form the central region. If the use of the present invention is to develop a pure protein that can be extracted and released from the starch granule by a protease or the like, then a protease cleavage site is useful. Additionally, if the protein is to be digested in an animal then a protease cleavage site may be useful to assist the enzymes in the digestive tract of the animal to release the protein from the starch. In other applications and in many digestive uses the cleavage site would be superfluous.

The central region site may comprise a spacer. A spacer refers to a peptide that joins the proteins comprising a hybrid polypeptide. Usually it does not have any specific activity other than to join the proteins, to preserve some minimum distance, to influence the folding, charge or hydrophobic or hydrophilic nature of the hybrid polypeptide.

#### **Construct Development**

5

10

15

20

25

Once the ligated DNA which encodes the hybrid polypeptide is formed, then cloning vectors or plasmids are prepared which are capable of transferring the DNA to a host for expressing the hybrid polypeptides. The recombinant nucleic acid sequence of this invention is inserted into a convenient cloning vector or plasmid. For the present invention the preferred host is a starch granule-producing host. However, bacterial hosts can also be employed. Especially useful are bacterial hosts that have been transformed to contain some or all of the starch-synthesizing genes of a plant. The ordinarily skilled person in the art understands that the plasmid is tailored to the host. For example, in a bacterial host transcriptional regulatory promoters include lac, TAC, trp and the like. Additionally, DNA coding for a transit peptide most likely would not be used and a secretory leader that is upstream from the structural gene may be used to get the

polypeptide into the medium. Alternatively, the product is retained in the host and the host is lysed and the product isolated and purified by starch extraction methods or by binding the material to a starch matrix (or a starch-like matrix such as amylose or amylopectin, glycogen or the like) to extract the product.

5

10

The preferred host is a plant and thus the preferred plasmid is adapted to be useful in a plant. The plasmid should contain a promoter, preferably a promoter adapted to target the expression of the protein in the starch-containing tissue of the plant. The promoter may be specific for various tissues such as seeds, roots, tubers and the like; or, it can be a constitutive promoter for gene expression throughout the tissues of the plant. Well-known promoters include the 10 kD zein (maize) promoter, the CAB promoter, patastin, 35S and 19S cauliflower mosaic virus promoters (very useful in dicots), the polyubiquitin promoter (useful in monocots) and enhancements and modifications thereof known to the art.

15

The cloning vector may contain coding sequences for a transit peptide to direct the plasmid into the correct location. Examples of transit peptide-coding sequences are shown in the sequence tables. Coding sequences for other transit peptides can be used. Transit peptides naturally occurring in the host to be used are preferred. Preferred transit peptide coding regions for maize are shown in the tables and figures hereof. The purpose of the transit peptide is to target the vector to the correct intracellular area.

20

25

Attached to the transit peptide-encoding sequence is the DNA sequence encoding the N-terminal end of the payload polypeptide. The direction of the sequence encoding the payload polypeptide is varied depending on whether sense or antisense transcription is desired. DNA constructs of this invention specifically described herein have the sequence encoding the payload polypeptide at the N- terminus end but the SER coding region can also be at the N-terminus end and the payload polypeptide sequence following. At the end of the DNA construct is the terminator sequence. Such sequences are well known in the art.

The cloning vector is transformed into a host. Introduction of the cloning vector, preferably a plasmid, into the host can be done by a number of transformation techniques known to the art. These techniques may vary by host but they include microparticle bombardment, micro injection, *Agrobacterium* transformation, "whiskers" technology (U.S. Patent Nos. 5,302,523 and 5,464,765), electroporation and the like. If the host is a plant, the cells can be regenerated to form plants. Methods of regenerating plants are known in the art. Once the host is transformed and the proteins expressed therein, the presence of the DNA encoding the payload polypeptide in the host is confirmable. The presence of expressed proteins may be confirmed by Western Blot or ELISA or as a result of a change in the plant or the cell.

19

#### Uses of Encapsulated Protein

5

10

15

20

25

There are a number of applications of this invention. The hybrid polypeptide can be cleaved in a pure state from the starch (cleavage sites can be included) and pure protein can be recovered. Alternatively, the encapsulated payload polypeptide within the starch can be used in raw form to deliver protein to various parts of the digestive tract of the consuming animal ("animal" shall include mammals, birds and fish). For example if the starch in which the material is encapsulated is resistant to digestion then the protein will be released slowly into the intestine of the animal, therefore avoiding degradation of the valuable protein in the stomach. Amino acids such as methionine and lysine may be encapsulated to be incorporated directly into the grain that the animal is fed thus eliminating the need for supplementing the diet with these amino acids in other forms.

The present invention allows hormones, enzymes, proteins, proteinaceous nutrients and proteinaceous medicines to be targeted to specific digestive areas in the digestive tracts of animals. Proteins that normally are digested in the upper digestive tract encapsulated in starch are able to pass through the stomach in a nondigested manner and be absorbed intact or in part by the intestine. If capable of passing through the intestinal wall, the payload polypeptides can be used for medicating an animal, or providing hormones such as growth factors, e.g., somatotropin, for vaccination of an animal or for enhancing the nutrients available to an animal.

20

If the starch used is not resistant to digestion in the stomach (for example the sugary 2 starch is highly digestible), then the added protein can be targeted to be absorbed in the upper digestive tract of the animal. This would require that the host used to produce the modified starch be mutated or transformed to make sugary 2 type starch. The present invention encompasses the use of mutant organisms that form modified starch as hosts. Some examples of these mutant hosts include rice and maize and the like having sugary 1, sugary 2, brittle, shrunken, waxy, amylose extender, dull, opaque, and floury mutations, and the like. These mutant starches and starches from different plant sources have different levels of digestibility. Thus by selection of the host for expression of the DNA and of the animal to which the modified starch is fed, the hybrid polypeptide can be digested where it is targeted. Different proteins are absorbed most efficiently by different parts of the body. By encapsulating the protein in starch that has the selected digestibility, the protein can be supplied anywhere throughout the digestive tract and at specific times during the digestive process.

15

20

5

10

Another of the advantages of the present invention is the ability to inhibit or express differing levels of glycosylation of the desired polypeptide. The encapsulating procedure may allow the protein to be expressed within the granule in a different glycosylation state than if expressed by other DNA molecules. The glycosylation will depend on the amount of encapsulation, the host employed and the sequence of the polypeptide.

25

Improved crops having the above-described characteristics may be produced by genetic manipulation of plants known to possess other favorable characteristics. By manipulating the nucleotide sequence of a starch-synthesizing enzyme gene, it is possible to alter the amount of key amino acids, proteins or peptides produced in a plant. One or more genetically engineered gene constructs, which may be of plant, fungal, bacterial or animal origin, may be incorporated into the plant genome by sexual crossing or by transformation. Engineered genes may comprise additional copies of wildtype genes or may encode modified or allelic or alternative enzymes with new properties. Incorporation of such gene construct(s) may have varying effects depending on the amount and type of

gene(s) introduced (in a sense or antisense orientation). It may increase the plant's capacity to produce a specific protein, peptide or provide an improved amino acid balance.

#### Cloning Enzymes Involved in Starch Biosynthesis

5

10

15

20

25

Known cloning techniques may be used to provide the DNA constructs of this invention. The source of the special forms of the SSTS, GBSTS, BE, glycogen synthase (GS), amylopectin, or other genes used herein may be any organism that can make starch or glycogen. Potential donor organisms are screened and identified. Thereafter there can be two approaches: (a) using enzyme purification and antibody/sequence generation following the protocols described herein; (b) using SSTS, GBSTS, BE, GS, amylopectin or other cDNAs as heterologous probes to identify the genomic DNAs for SSTS, GBSTS, BE, GS, amylopectin or other starch-encapsulating enzymes in libraries from the organism concerned. Gene transformation, plant regeneration and testing protocols are known to the art. In this instance it is necessary to make gene constructs for transformation which contain regulatory sequences that ensure expression during starch formation. These regulatory sequences are present in many small grains and in tubers and roots. For example these regulatory sequences are readily available in the maize endosperm in DNA encoding Granule Bound Starch Synthesis (GBSTS), Soluble Starch Synthases (SSTS) or Branching Enzymes (BE) or other maize endosperm starch synthesis pathway enzymes. These regulatory sequences from the endosperm ensure protein expression at the correct developmental time (e.g., ADPG pyrophosphorylase).

In this method we measure starch-binding constants of starch-binding proteins using native protein electrophoresis in the presence of suitable concentrations of carbohydrates such as glycogen or amylopectin. Starch-encapsulating regions can be elucidated using site-directed mutagenesis and other genetic engineering methods known to those skilled in the art. Novel genetically-engineered proteins carrying novel peptides or amino acid combinations can be evaluated using the methods described herein.

22

#### **EXAMPLES**

#### Example One:

5

10

15

## Method for Identification of Starch-encapsulating Proteins

#### Starch-Granule Protein Isolation:

Homogenize 12.5 g grain in 25 ml Extraction buffer (50 mM Tris acetate, pH 7.5, 1 mM EDTA, 1 mM DTT for 3 x 20 seconds in Waring blender with 1 min intervals between blending). Keep samples on ice. Filter through mira cloth and centrifuge at 6,000 rpm for 30 min. Discard supernatant and scrape off discolored solids which overlay white starch pellet. Resuspend pellet in 25 ml buffer and recentrifuge. Repeat washes twice more. Resuspend washed pellet in -20°C acetone, allow pellet to settle at -20°C. Repeat. Dry starch under stream of air. Store at -20°C.

#### Protein Extraction:

Mix 50 mg starch with 1 ml 2% SDS in eppendorf. Vortex, spin at 18,000 rpm, 5 min, 4°C. Pour off supernatant. Repeat twice. Add 1 ml sample buffer (4 ml distilled water, 1 ml 0.5 M Tris-HCl, pH 6.8, 0.8 ml glycerol, 1.6 ml 10% SDS, 0.4 ml B-mercaptoethanol, 0.2 ml 0.5% bromphenol blue). Boil eppendorf for 10 min with hole in lid. Cool, centrifuge 10,000 rpm for 10 min. Decant supernatant into new eppendorf. Boil for 4 minutes with standards. Cool.

## SDS-Page Gels: (non-denaturing)

| 20 |                         | 10% Resolve | 4% Stack |
|----|-------------------------|-------------|----------|
|    | Acryl/Bis 40% stock     | 2.5 ml      | 1.0 ml   |
|    | 1.5 M Tris pH 8.8       | 2.5 ml      | -        |
|    | 0.5 M Tris pH 8.8       | -           | 2.5 ml   |
|    | 10% SDS                 | 100 μΙ      | 100 μΙ   |
| 25 | Water                   | 4.845 ml    | 6.34 ml  |
|    | Degas 15 min add fresh  |             |          |
|    | 10% Ammonium Persulfate | 50 μl       | 50 μΙ    |
|    | TEMED                   | 5μΙ         | 10 μl    |

PCT/US97/17555 WO 98/14601

Mini-Protean II Dual Slab Cell; 3.5 ml of Resolve buffer per gel. 4% Stack is poured on top. The gel is run at 200V constant voltage. 10 x Running buffer (250 mM Tris, 1.92 M glycine, 1% SDS, pH 8.3).

23

#### Method of Measurement of Starch-Encapsulating Regions:

#### 5 Solutions:

15

50 mM Tris-acetate pH 7.5, 10 mM EDTA, 10% Extraction Buffer:

sucrose, 2.5 mM DTT-fresh.

Stacking Buffer: 0.5 M Tris-HCl, pH 6.8

1.5 M Tris-HCl, pH 8.8 Resolve Buffer:

30.3 g Tris + 144 g Glycine qs to 1 L. (pH is ~8.3, no 10 10 X Lower Electrode Buffer:

adjustment). Dilute for use.

Upper Electrode Buffer: Same as Lower

Sucrose Solution: 18.66 g sucrose + 100 ml dH<sub>2</sub>O

146 g acrylamide + 4 g bis + 350 ml dH<sub>2</sub>O. Bring up 30% Acryl/Bis Stock (2.67%C):

to 500 ml. Filter and store at 4 C in the dark for up

to 1 month.

15% Acryl/Bis Stock (20% C): 6 g acrylamide + 1.5 g bis + 25 ml  $dH_2O$ . Bring up

to 50 ml. Filter and store at 4 C in the dark for up to

1 month.

20 Riboflavin Solution: 1.4 g riboflavin + 100 ml dH<sub>2</sub>O. Store in dark for up

to 1 month.

25 mM Sodium Citrate, 25 mM Bicine-NaOH (pH SS Assay mix:

8.0), 2 mM EDTA, 1 mM DTT-fresh, 1 mM

Adenosine 5' Diphosphoglucose-fresh, 10 mg/ml rabbit

25 liver glycogen Type III-fresh.

> 2 g iodine + 20 g KI, 0.1 N HCl up to 1 L. **Iodine Solution:**

PCT/US97/17555 WO 98/14601 24

#### **Extract:**

- 4 ml extraction buffer + 12 g endosperm. Homogenize.
- filter through mira cloth or 4 layers cheesecloth, spin 20,000 g (14,500 rpm, SM-24 rotor), 20 min., 4°C.
- 5 remove supernatant using a glass pipette.
  - 0.85 ml extract + 0.1 ml glycerol + 0.05 ml 0.5% bromophenol blue.
  - vortex and spin 5 min. full speed microfuge. Use directly or freeze in liquid nitrogen and store at -80°C for up to 2 weeks.

#### Cast Gels:

10

15

Attach Gel Bond PAG film (FMC Industries, Rockland, ME) to (inside of) outer glass plate using two-sided scotch tape, hydrophilic side up. The tape and the film is lined up as closely and evenly as possible with the bottom of the plate. The film is slightly smaller than the plate. Squirt water between the film and the plate to adhere the film. Use a tissue to push out excess water. Set up plates as usual, then seal the bottom of the plates with tacky adhesive. The cassette will fit into the casting stand if the gray rubber is removed from the casting stand. The gel polymerizes with the film, and stays attached during all subsequent manipulations.

Cast 4.5% T resolve mini-gel (0.75 mm):

2.25 ml dH<sub>2</sub>O

20 + 3.75 ml sucrose solution

+ 2.5 ml resolve buffer

+ 1.5 ml 30% Acryl/Bis stock

+ various amounts of glycogen for each gel (i.e., 0 - 1.0%)

DEGAS 15 MIN.

25 + 50 µl 10% APS

+ 5 µl TEMED

POLYMERIZE FOR 30 MIN. OR OVERNIGHT

Cast 3.125 % T stack:

1.59 ml dH<sub>2</sub>O

PCT/US97/17555 WO 98/14601

25

- + 3.75 ml sucrose solution
- + 2.5 ml stack buffer
- + 2.083 ml 15% Acryl/Bis stock

#### DO NOT DEGAS

5 15 µl 10% APS

10

20

30

- + 35 µl riboflavin solution
- + 30 µl TEMED

#### POLYMERIZE FOR 2.5 HOURS CLOSE TO A LIGHT BULB

cool in 4°C before pulling out combs. Can also not use combs, and just cast a centimeter of stacker.

#### The foregoing procedure:

- Can run at different temperatures; preincubate gels and solutions.
- Pre-run for 15 min. at 200 V
- Load gel: 7 µl per well, or 115 µl if no comb.
- Run at 140 V until dye front is close to bottom. Various running temperatures are 15 achieved by placing the whole gel rig into a water bath. Can occasionally stop the run to insert a temperature probe into the gel.
  - Enzyme assay: Cut gels off at dye front. Incubate in SS. Assay mix overnight at room temperature with gentle shaking. Rinse gels with water. Flood with I2/KI solution.
  - Take pictures of the gels on a light box, and measure the pictures. Rm = mm from top of gel to the active band/mm from top of gel to the bottom of the gel where it was cut (where the dye front was). Plot % glycogen vs. 1/Rm. The point where the line intersects the x axis is -K (where y=0).

#### 25 Testing and evaluation protocol for SER region length:

Following the procedure above for selection of the SER region requires four basic steps. First DNA encoding a protein having a starch-encapsulation region must be selected. This can be selected from known starch-synthesizing genes or starch-binding genes such as genes for amylases, for example. The protein must be extracted. A number of protein extraction techniques are well known in the art. The protein may be treated

with proteases to form protein fragments of different lengths. The preferred fragments have deletions primarily from the N-terminus region of the protein. The SER region is located nearer to the C-terminus end than the N-terminus end. The protein is run on the gels described above and affinity for the gel matrix is evaluated. Higher affinity shows more preference of that region of the protein for the matrix. This method enables comparison of different proteins to identify the starch-encapsulating regions in natural or synthetic proteins.

#### Example Two:

#### **SER Fusion Vector:**

10

5

The following fusion vectors are adapted for use in *E.coli*. The fusion gene that was attached to the probable SER in these vectors encoded for the green fluorescent protein (GFP). Any number of different genes encoding for proteins and polypeptides could be ligated into the vectors. A fusion vector was constructed having the SER of waxy maize fused to a second gene or gene fragment, in this case GFP.

15

20

pEXS114 (see FIG. 1a): Synthetic GFP (SGFP) was PCR-amplified from the plasmid HBT-SGFP (from Jen Sheen; Dept. of Molecular Biology; Wellman 11, MGH; Boston, MA 02114) using the primers EXS73 (5'-GACTAGTCATATG GTG AGC AAG GGC GAG GAG-3') [SEQ ID NO:1] and EXS74 (5'-CTAGATCTTCATATG CTT GTA CAG CTC GTC CAT GCC-3') [SEQ ID NO:2]. The ends of the PCR product were polished off with T DNA polymerase to generate blunt ends; then the PCR product was digested with Spe I. This SGFP fragment was subcloned into the EcoRV-Spe I sites of pBSK (Stratagene at 11011 North Torrey Pines Rd. La Jolla, Ca.) to generate pEXS114.

25

pEXS115 [see FIG. 1b]: Synthetic GFP (SGFP) was PCR-amplified from the plasmid HBT-SGFP (from Jen Sheen) using the primers EXS73 (see above) and EXS75 (5'-CTAGATCTTGGCCATGGC CTT GTA CAG CTC GTC CAT GCC-3') [SEQ ID NO:3]. The ends of the PCR product were polished off with T DNA polymerase to generate blunt ends; then the PCR product was digested with Spe I. This SGFP fragment was subcloned into the EcoRV-Spe I sites of pBSK (Stratagene) generating pEXS115.

27

pEXSWX (see FIG. 2a): Maize WX subcloned NdeI-Not I into pET-21a (see FIG. 2b). The genomic DNA sequence and associated amino acids from which the mRNA sequence can be generated is shown in TABLES 1a and 1b below and alternatively the DNA listed in the following tables could be employed.

#### 5 TABLE la DNA Sequence and Deduced Amino Acid Sequence of the waxy Gene in Maize

## [SEQ ID NO:4 and SEQ ID NO:5]

|    | LOCUS        | YXAWMS     | 4800     | bp DN      | A        | PLN          |          |           |
|----|--------------|------------|----------|------------|----------|--------------|----------|-----------|
| 10 | DEFINITION 2 | Zea mays w | axy (wx+ | ) locus    | for UDP- | -glucose s   | tarch gl | vcosvl    |
|    |              | transferas |          |            |          | •            |          | 22-       |
|    | ACCESSION 2  | X03935 M24 | 258      |            |          |              |          |           |
|    | KEYWORDS     | glycosyl t | ransfera | se; tran   | sit pept | tide;        |          |           |
|    | į            | JDP-glucos | e starch | glycosy    | l trans  | ferase; was  | xv locus | •         |
| 15 |              | naizé.     |          | <i>-</i> - |          |              |          | •         |
|    | ORGANISM 2   | Zea mays   |          |            |          |              |          |           |
|    |              |            | Plantae  | : Embryo   | oionta:  | Magnoliop    | hvta: Li | liongida: |
|    |              | Commelinid |          |            |          | g            | .,,      | -ropolal, |
|    |              |            | 1 to 480 |            |          |              |          |           |
| 20 | AUTHORS I    |            |          |            | chwarz-s | Sommer, Z.   | and Saed | ler.H.    |
|    |              |            |          |            |          | cus of Zea   |          | 101,      |
|    |              | Mol. Gen.  |          |            |          |              |          |           |
|    |              | full autom |          |            | (        | ,            |          |           |
|    |              | NCBI gi: 2 |          |            |          |              |          |           |
| 25 | FEATURES     |            |          | Qualifie:  | ra       |              |          |           |
|    | source       |            | 4800     | 24444      |          |              |          |           |
|    | Doubte       |            |          | ="Zea ma   | 7 C T    |              |          |           |
|    | repeat 1     |            | B3287    | . 204      | , 5      |              |          |           |
|    | ropout       |            |          | rect rep   | eat 1"   |              |          |           |
| 30 | repeat       |            | 88292    | reer rep   | Juc 1    |              |          |           |
|    | F-m          |            |          | rect rep   | at 1"    |              |          |           |
|    | repeat :     |            | 93297    | LOGU LOP   |          |              |          |           |
|    |              | -          |          | rect rep   | eat 1"   |              |          |           |
|    | repeat 1     |            | 98302    | LCCC LCp.  | Juo 4    |              |          |           |
| 35 |              |            |          | rect rep   | at 1"    |              |          |           |
|    | misc fea     |            | 72385    | root rop   |          |              |          |           |
|    |              |            |          | stretch    | (not     | regulatory   | factor   | hindina   |
|    | site)"       | ,          |          | 502000     | (1000.   | . cguracor j | ructor   | Dinaing   |
|    | misc fea     | ature 4    | 42468    |            |          |              |          |           |
| 40 |              |            |          | stretch    | (not     | regulatory   | factor   | hindina   |
|    | site)"       | ,          | 1000- 00 | SCIECCII   | (pot. 1  | regulatory   | ractor   | Dinaing   |
|    | misc fea     | ature 7    | 68782    |            |          |              |          |           |
|    |              |            |          | stretch    | (not     | regulatory   | faatas   |           |
|    | site)"       | ,          | noce- GC | screccn    | (por. i  | egulacoly    | Tactor   | binding   |
| 45 | misc fea     | atura 8    | 10822    |            |          |              |          |           |
|    |              |            |          | stratch    | (not     | regulatory   | factor   | hindina   |
|    | site)"       | ,          | noce- GC | SCIECCII   | (poc. 1  | egulacory    | Tactor   | binding   |
|    | misc fea     | ature 8    | 21828    |            |          |              |          |           |
|    |              |            |          | raet dun   | lication | n site (Ac   | 7 1 11   |           |
| 50 | CAAT sid     |            | 21828    | rget dup.  | LICACIO  | . arce (AC   | , ,      |           |
|    | TATA sid     |            | 67873    |            |          |              |          |           |
|    | misc fea     |            | 37900    |            |          |              |          |           |
|    |              |            |          | stratch    | Inot .   | egulatory    | factor   | hindina   |
|    | site)"       | / '        | GC       | Derecell   | (pot. I  | eguracory    | LACTOR   | pringring |
| 55 | misc fea     | sture 0    | 01       |            |          |              |          |           |
|    | w.rac_ree    |            |          | ancorint   | onal c   | art site"    |          |           |
|    | exon         |            | 011080   | meer tpt.  | Char St  | art site     |          |           |
|    | evon         | · ·        |          |            |          |              |          |           |
|    |              | /1         | number=1 |            |          |              |          |           |

```
1081..1219
            intron
                             /number=1
                             1220..1553
            exon
                             /number=2
 5
            transit_peptide 1233..1448
            CDS
                             join(1449..1553,1685..1765,1860..1958,2055..2144,
       2226..2289,2413..2513,2651..2760,2858..3101,3212..3394,
                             3490..3681,3793..3879,3977..4105,4227..4343)
10
                             /note="NCBI gi: 22510"
                             /codon start=1
                             /product="glucosyl transferase"
       /translation="ASAGMNVVFVGAEMAPWSKTGGLGDVLGGLPPAMAANGHRVMVV
15
       SPRYDQYKDAWDTSVVSEIKMGDGYETVRFFHCYKRGVDRVFVDHPLFLERVWGKTEE
       KIYGPVAGTDYRDNQLRFSLLCQAALEAPRILSLNNNPYFSGPYGEDVVFVCNDWHTG
20
       PLSCYLKSNYQSHGIYRDAKTAFCIHNISYQGRFAFSDYPELNLPERFKSSFDFIDGY
       EKPVEGRKINWMKAGILEADRVLTVSPYYAEELISGIARGCELDNIMRLTGITGIVNG
       MDVSEWDPSRDKYIAVKYDVSTAVEAKALNKEALQAEVGLPVDRNIPLVAFIGRLEEQ
25
       KGPDVMAAAIPOLMEMVEDVOIVLLGTGKKKFERMLMSAEEKFPGKVRAVVKFNAALA
       HHIMAGADVLAVTSRFEPCGLIQLQGMRYGTPCACASTGGLVDTIIEGKTGFHMGRLS
30
       VDCNVVEPADVKKVATTLQRAIKVVGTPAYEEMVRNCMIQDLSWKGPAKNWENVLLSL
                             GVAGGEPGVEGEEIAPLAKENVAAP"
            intron
                             1554..1684
                             /number=2
                             1685..1765
            exon
35
                             /number=3
                             1766..1859
            intron
                             /number=3
            exon
                             1860..1958
                             /number=4
40
            intron
                             1959..2054
                             /number=4
            exon
                             2055..2144
                             /number=5
            intron
                             2145..2225
45
                             /number=5
            exon
                             2226..2289
                             /number=6
                             2290..2412
            intron
                             /number=6
50
            exon
                             2413..2513
                             /number=7
            intron
                             2514..2650
                             /number=7
                             2651..2760
            exon
55
                             /number=8
                             2761..2857
            intron
                             /number=8
            exon
                             2858..3101
                             /number=9
60
            intron
                             3102..3211
                             /number=9
            exon
                             3212..3394
                             /number=10
            misc_feature
                             3358..3365
65
                             /note="target duplication site (Ac9)"
                             3395..3489
            intron
                             /number=10
                             3490..3681
            exon
```

```
/number=11
                           .
3570..3572
           misc feature
                           /note="target duplication site (Spm 18)"
                           3682..3792
           intron
5
                           /number=11
                           3793..3879
           exon
                           /number=12
                           3880..3976
           intron
                           /number=12
10
                           3977..4105
           exon
                           /number=13
           intron
                           4106..4226
                           /number=13
                           4227..4595
           exon
15
                           /number=14
           polyA_signal
                           4570..4575
           polyA_signal polyA_site
                           4593..4598
                           4595
           polyA_signal
                           4597..4602
20
           polyA_site
                           4618
      polyA_site
BASE COUNT
                           4625
                      935 A
                             1413 C
                                       1447 G
                                                1005 T
      ORIGIN
              1 CAGCGACCTA TTACACAGCC CGCTCGGGCC CGCGACGTCG GGACACATCT TCTTCCCCCT
25
             61 TTTGGTGAAG CTCTGCTCGC AGCTGTCCGG CTCCTTGGAC GTTCGTGTGG CAGATTCATC
            121 TGTTGTCTCG TCTCCTGTGC TTCCTGGGTA GCTTGTGTAG TGGAGCTGAC ATGGTCTGAG
30
            181 CAGGCTTAAA ATTTGCTCGT AGACGAGGAG TACCAGCACA GCACGTTGCG GATTTCTCTG
            301 CGATGCGGTG GTGAGCAGAG CAGCAACAGC TGGGCGGCCC AACGTTGGCT TCCGTGTCTT
35
            361 CGTCGTACGT ACGCGCGCGC CGGGGACACG CAGCAGAGAG CGGAGAGCGA GCCGTGCACG
            421 GGGAGGTGGT GTGGAAGTGG AGCCGCGCGC CCGGCCGCCC GCGCCCGGTG GGCAACCCAA
40
            481 AAGTACCCAC GACAAGCGAA GGCGCCAAAG CGATCCAAGC TCCGGAACGC AACAGCATGC
            541 GTCGCGTCGG AGAGCCAGCC ACAAGCAGCC GAGAACCGAA CCGGTGGGCG ACGCGTCATG
            601 GGACGGACGC GGGCGACGCT TCCAAACGGG CCACGTACGC CGGCGTGTGC GTGCGTGCAG
45
            661 ACGACAAGCC AAGGCGAGGC AGCCCCCGAT CGGGAAAGCG TTTTGGGCGC GAGCGCTGGC
            721 GTGCGGGTCA GTCGCTGGTG CGCAGTGCCG GGGGGAACGG GTATCGTGGG GGGCGCGGGC
50
            781 GGAGGAGAGC GTGGCGAGGG CCGAGAGCAG CGCGCGGCCG GGTCACGCAA CGCGCCCCAC
            841 GTACTGCCCT CCCCCTCCGC GCGCGCTAGA AATACCGAGG CCTGGACCGG GGGGGGCCC
            901 CGTCACATCC ATCCATCGAC CGATCGATCG CCACAGCCAA CACCACCGC CGAGGCGACG
55
            961 CGACAGCCGC CAGGAGGAAG GAATAAACTC ACTGCCAGCC AGTGAAGGGG GAGAAGTGTA
            1021 CTGCTCCGTC GACCAGTGCG CGCACCGCCC GGCAGGGCTG CTCATCTCGT CGACGACCAG
60
            1081 GTTCTGTTCC GTTCCGATCC GATCCGATCC TGTCCTTGAG TTTCGTCCAG ATCCTGGCGC
           1141 GTATCTGCGT GTTTGATGAT CCAGGTTCTT CGAACCTAAA TCTGTCCGTG CACACGTCTT
           1201 TTCTCTCTC CCTACGCAGT GGATTAATCG GCATGGCGGC TCTGGCCACG TCGCAGCTCG
65
           1261 TCGCAACGCG CGCCGGCCTG GGCGTCCCGG ACGCGTCCAC GTTCCGCCGC GGCGCCGCGC
```

|    | 1321 | AGGGCCTGAG | GGGGGCCCGG | GCGICGGCGG | CGGCGGACAC | GCTCAGCATG | CGGACCAGCG |
|----|------|------------|------------|------------|------------|------------|------------|
|    | 1381 | CGCGCGCGC  | GCCCAGGCAC | CAGCAGCAGG | CGCGCCGCGG | GGGCAGGTTC | CCGTCGCTCG |
| 5  | 1441 | TCGTGTGCGC | CAGCGCCGGC | ATGAACGTCG | TCTTCGTCGG | CGCCGAGATG | GCGCCGTGGA |
|    | 1501 | GCAAGACCGG | CGGCCTCGGC | GACGTCCTCG | GCGGCCTGCC | GCCGGCCATG | GCCGTAAGCG |
| 10 | 1561 | CGCGCACCGA | GACATGCATC | CGTTGGATCG | CGTCTTCTTC | GTGCTCTTGC | CGCGTGCATG |
| 10 | 1621 | ATGCATGTGT | TTCCTCCTGG | CTTGTGTTCG | TGTATGTGAC | GTGTTTGTTC | GGGCATGCAT |
| •  | 1681 | GCAGGCGAAC | GGGCACCGTG | TCATGGTCGT | CTCTCCCCGC | TACGACCAGT | ACAAGGACGC |
| 15 | 1741 | CTGGGACACC | AGCGTCGTGT | CCGAGGTACG | GCCACCGAGA | CCAGATTCAG | ATCACAGTCA |
|    | 1801 | CACACACCGT | CATATGAACC | TTTCTCTGCT | CTGATGCCTG | CAACTGCAAA | TGCATGCAGA |
| 20 | 1861 | TCAAGATGGG | AGACGGGTAC | GAGACGGTCA | GGTTCTTCCA | CTGCTACAAG | CGCGGAGTGG |
| 20 | 1921 | ACCGCGTGTT | CGTTGACCAC | CCACTGTTCC | TGGAGAGGGT | GAGACGAGAT | CTGATCACTC |
|    | 1981 | GATACGCAAT | TACCACCCCA | TTGTAAGCAG | TTACAGTGAG | CTTTTTTCC  | CCCCGGCCTG |
| 25 | 2041 | GTCGCTGGTT | TCAGGTTTGG | GGAAAGACCG | AGGAGAAGAT | CTACGGGCCT | GTCGCTGGAA |
|    | 2101 | CGGACTACAG | GGACAACCAG | CTGCGGTTCA | GCCTGCTATG | CCAGGTCAGG | ATGGCTTGGT |
| 30 | 2161 | ACTACAACTT | CATATCATCT | GTATGCAGCA | GTATACACTG | ATGAGAAATG | CATGCTGTTC |
| 50 | 2221 | TGCAGGCAGC | ACTTGAAGCT | CCAAGGATCC | TGAGCCTCAA | CAACAACCCA | TACTTCTCCG |
|    | 2281 | GACCATACGG | TAAGAGTTGC | AGTCTTCGTA | TATATATCTG | TTGAGCTCGA | GAATCTTCAC |
| 35 | 2341 | AGGAAGCGGC | CCATCAGACG | GACTGTCATT | TTACACTGAC | TACTGCTGCT | GCTCTTCGTC |
|    | 2401 | CATCCATACA | AGGGGAGGAC | GTCGTGTTCG | TCTGCAACGA | CTGGCACACC | GGCCCTCTCT |
| 40 | 2461 | CGTGCTACCT | CAAGAGCAAC | TACCAGTCCC | ACGGCATCTA | CAGGGACGCA | AAGGTTGCCT |
|    | 2521 | TCTCTGAACT | GAACAACGCC | GTTTTCGTTC | TCCATGCTCG | TATATACCTC | GTCTGGTAGT |
|    | 2581 | GGTGGTGCTT | CTCTGAGAAA | CTAACTGAAA | CTGACTGCAT | GTCTGTCTGA | CCATCTTCAC |
| 45 | 2641 | GTACTACCAG | ACCGCTTTCT | GCATCCACAA | CATCTCCTAC | CAGGGCCGGT | TCGCCTTCTC |
|    | 2701 | CGACTACCCG | GAGCTGAACC | TCCCGGAGAG | ATTCAAGTCG | TCCTTCGATT | TCATCGACGG |
| 50 | 2761 | GTCTGTTTTC | CTGCGTGCAT | GTGAACATTC | ATGAATGGTA | ACCCACAACT | GTTCGCGTCC |
|    | 2821 | TGCTGGTTCA | TTATCTGACC | TGATTGCATT | ATTGCAGCTA | CGAGAAGCCC | GTGGAAGGCC |
|    | 2881 | GGAAGATCAA | CTGGATGAAG | GCCGGGATCC | TCGAGGCCGA | CAGGGTCCTC | ACCGTCAGCC |
| 55 | 2941 | CCTACTACGC | CGAGGAGCTC | ATCTCCGGCA | TCGCCAGGGG | CTGCGAGCTC | GACAACATCA |
|    | 3001 | TGCGCCTCAC | CGGCATCACC | GGCATCGTCA | ACGGCATGGA | CGTCAGCGAG | TGGGACCCCA |
| 60 | 3061 | GCAGGGACAA | GTACATCGCC | GTGAAGTACG | ACGTGTCGAC | GGTGAGCTGG | CTAGCTCTGA |
|    | 3121 | TTCTGCTGCC | TGGTCCTCCT | GCTCATCATG | CTGGTTCGGT | ACTGACGCGG | CAAGTGTACG |
|    | 3181 | TACGTGCGTG | CGACGGTGGT | GTCCGGTTCA | GGCCGTGGAG | GCCAAGGCGC | TGAACAAGGA |
| 65 | 3241 | GGCGCTGCAG | GCGGAGGTCG | GGCTCCCGGT | GGACCGGAAC | ATCCCGCTGG | TGGCGTTCAT |
|    | 3301 | CGGCAGGCTG | GAAGAGCAGA | AGGGCCCCGA | CGTCATGGCG | GCCGCCATCC | CGCAGCTCAT |

31

|     | 3361 | GGAGATGGTG | GAGGACGTGC | AGATCGTTCT | GCTGGTACGT | GTGCGCCGGC | CGCCACCCGG |
|-----|------|------------|------------|------------|------------|------------|------------|
|     | 3421 | CTACTACATG | CGTGTATCGT | TCGTTCTACT | GGAACATGCG | TGTGAGCAAC | GCGATGGATA |
| 5   | 3481 | ATGCTGCAGG | GCACGGGCAA | GAAGAAGTTC | GAGCGCATGC | TCATGAGCGC | CGAGGAGAAG |
|     | 3541 | TTCCCAGGCA | AGGTGCGCGC | CGTGGTCAAG | TTCAACGCGG | CGCTGGCGCA | CCACATCATG |
| 10  | 3601 | GCCGGCGCCG | ACGTGCTCGC | CGTCACCAGC | CGCTTCGAGC | CCTGCGGCCT | CATCCAGCTG |
| 10  | 3661 | CAGGGGATGC | GATACGGAAC | GGTACGAGAG | АААААААА   | TCCTGAATCC | TGACGAGAGG |
|     | 3721 | GACAGAGACA | GATTATGAAT | GCTTCATCGA | TTTGAATTGA | TTGATCGATG | TCTCCCGCTG |
| 15  | 3781 | CGACTCTTGC | AGCCCTGCGC | CTGCGCGTCC | ACCGGTGGAC | TCGTCGACAC | CATCATCGAA |
|     | 3841 | GGCAAGACCG | GGTTCCACAT | GGGCCGCCTC | AGCGTCGACG | TAAGCCTAGC | TCTGCCATGT |
| 20  | 3901 | TCTTTCTTCT | TTCTTTCTGT | ATGTATGTAT | GAATCAGCAC | CGCCGTTCTT | GTTTCGTCGT |
| 20  | 3961 | CGTCCTCTCT | TCCCAGTGTA | ACGTCGTGGA | GCCGGCGGAC | GTCAAGAAGG | TGGCCACCAC |
|     | 4021 | ATTGCAGCGC | GCCATCAAGG | TGGTCGGCAC | GCCGGCGTAC | GAGGAGATGG | TGAGGAACTG |
| 25  | 4081 | CATGATCCAG | GATCTCTCCT | GGAAGGTACG | TACGCCCGCC | CCGCCCCGCC | CCGCCAGAGC |
|     | 4141 | AGAGCGCCAA | GATCGACCGA | TCGACCGACC | ACACGTACGC | GCCTCGCTCC | TGTCGCTGAC |
| 30  | 4201 | CGTGGTTTAA | TTTGCGAAAT | GCGCAGGGCC | CTGCCAAGAA | CTGGGAGAAC | GTGCTGCTCA |
| 30  | 4261 | GCCTCGGGGT | CGCCGGCGGC | GAGCCAGGGG | TCGAAGGCGA | GGAGATCGCG | CCGCTCGCCA |
|     | 4321 | AGGAGAACGT | GGCCGCGCCC | TGAAGAGTTC | GGCCTGCAGG | GCCCTGATC  | TCGCGCGTGG |
| 35  | 4381 | TGCAAAGATG | TTGGGACATC | TTCTTATATA | TGCTGTTTCG | TTTATGTGAT | ATGGACAAGT |
|     | 4441 | ATGTGTAGCT | GCTTGCTTGT | GCTAGTGTAA | TGTAGTGTAG | TGGTGGCCAG | TGGCACAACC |
| 40  | 4501 | TAATAAGCGC | ATGAACTAAT | TGCTTGCGTG | TGTAGTTAAG | TACCGATCGG | TAATTTTATA |
| ••• | 4561 | TTGCGAGTAA | ATAAATGGAC | CTGTAGTGGT | GGAGTAAATA | ATCCCTGCTG | TTCGGTGTTC |
|     | 4621 | TTATCGCTCC | TCGTATAGAT | ATTATATAGA | GTACATTTTT | CTCTCTCTGA | ATCCTACGTT |
| 45  | 4681 | TGTGAAATTT | CTATATCATT | ACTGTAAAAT | TTCTGCGTTC | CAAAAGAGAC | CATAGCCTAT |
|     | 4741 | CTTTGGCCCT | GTTTGTTTCG | GCTTCTGGCA | GCTTCTGGCC | ACCAAAAGCT | GCTGCGGACT |
|     |      |            |            |            |            |            |            |

//

32

# TABLE 1b DNA Sequence and Deduced Amino Acid Sequence in waxy Gene in Rice [SEQ ID NO:6 and SEQ ID NO:7]

| 5  | LOCUS<br>DEFINITION<br>ACCESSION | X62134 S39554                                                                                                                     |
|----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 10 | KEYWORDS<br>SOURCE<br>ORGANISM   |                                                                                                                                   |
|    | REFERENCE<br>AUTHORS             | Eukaryota; Plantae; Embryobionta; Magnoliophyta; Liliopsida; Commelinidae; Cyperales; Poaceae.  1 (bases 1 to 2542) Okayaki, R.J. |
| 15 | TITLE<br>JOURNAL<br>R.J.         | Direct Submission Submitted (12-SEP-1991) to the EMBL/GenBank/DDBJ databases.                                                     |
|    |                                  | Okayaki, University of Florida, Dep of Vegetable Crops, 1255<br>Fifield Hall, 514 IFAS, Gainesville, Florida 32611-0514, USA      |
| 20 | STANDARD<br>REFERENCE<br>AUTHORS | full automatic  2 (bases 1 to 2542) Okagaki, R. J.                                                                                |
| 25 | TITLE<br>JOURNAL<br>STANDARD     | Nucleotide sequence of a long cDNA from the rice waxy gene Plant Mol. Biol. 19, 513-516 (1992)                                    |
|    | COMMENT<br>FEATURES<br>SOURCE    |                                                                                                                                   |
| 30 |                                  | <pre>/organism="Oryza sativa" /dev_stage="immature seed" /tissue_type="seed"</pre>                                                |
|    | CDS                              | 4532282<br>/gene="\x"                                                                                                             |
| 35 |                                  | /standard_name="Waxy gene"<br>/EC number="2.4.1.21"<br>/note="NCBI gi: 20403"<br>/codon start=1                                   |
| 40 |                                  | <pre>/function="starch biosynthesis" /product="starch (bacterial glycogen) synthase"</pre>                                        |
|    | /translatio                      | n="MSALTTSQLATSATGFGIADRSAPSSLLRHGFQGLKPRSPAGGD                                                                                   |
|    | ATSLSVTTSAR                      | ATPKQQRSVQRGSRRFPSVVVYATGAGMNVVFVGAEMAPWSKTGGLG                                                                                   |
| 45 | DVLGGLPPAMA                      | ANGHRVMVISPRYDQYKDAWDTSVVAEIKVADRYERVRFFHCYKRGV                                                                                   |
|    | DRVFIDHPSFL                      | EKVWGKTGEKIYGPDTGVDYKDNQMRFSLLCQAALEAPRILNLNNNP                                                                                   |
| 50 | YFKGTYGEDVV                      | FVCNDWHTGPLASYLKNNYQPNGIYRNAKVAFCIHNISYQGRFAFED                                                                                   |
| 50 | YPELNLSERFR                      | SSFDFIDGYDTPVEGRKINWMKAGILEADRVLTVSPYYAEELISGIA                                                                                   |
|    | RGCELDNIMRL                      | TGITGIVNGMDVSEWDPSKDKYITAKYDATTAIEAKALNKEALQAEA                                                                                   |
| 55 | GLPVDRKIPLI                      | AFIGRLEEQKGPDVMAAAIPELMQEDVQIVLLGTGKKKFEKLLKSME                                                                                   |
|    | EKYPGKVRAVV                      | KFNAPLAHLIMAGADVLAVPSRFEPCGLIQLQGMRYGTPCACASTGG                                                                                   |
| 60 |                                  | FHMGRLSVDCKVVEPSDVKKVAATLKRAIKVVGTPAYEEMVRNCMNQ<br>DLSWKGPAKNWENVLLGLGVAGSAPGIEGDEIAPLAKENVAAP"                                   |
|    | 3'UTR<br>polyA_s<br>BASE COUNT   |                                                                                                                                   |
| 65 | ORIGIN 1 G                       | AATTCAGTG TGAAGGAATA GATTCTCTTC AAAACAATTT AATCATTCAT CTGATCTGCT                                                                  |
|    | - 0.                             |                                                                                                                                   |

|    | 61     | CAAAGCTCTG | TGCATCTCCG | GGIGCAACGG | CCAGGATATT | TATTGTGCAG | IMMMMMAIG  |
|----|--------|------------|------------|------------|------------|------------|------------|
|    | 121    | TCATATCCCC | TAGCCACCCA | AGAAACTGCT | CCTTAAGTCC | TTATAAGCAC | ATATGGCATT |
| 5  | 181    | GTAATATATA | TGTTTGAGTT | TTAGCGACAA | TTTTTTTAAA | AACTTTTGGT | CCTTTTTATG |
|    | 241    | AACGTTTTAA | GTTTCACTGT | CTTTTTTTT  | CGAATTTTAA | ATGTAGCTTC | AAATTCTAAT |
| 10 |        | CCCCAATCCA | AATTGTAATA | AACTTCAATT | CTCCTAATTA | ACATCTTAAT | TCATTTATTT |
| 10 |        | GAAAACCAGT | TCAAATTCTT | TTTAGGCTCA | CCAAACCTTA | AACAATTCAA | TTCAGTGCAG |
|    | 421    | AGATCTTCCA | CAGCAACAGC | TAGACAACCA | CCATGTCGGC | TCTCACCACG | TCCCAGCTCG |
| 15 | 481    | CCACCTCGGC | CACCGGCTTC | GGCATCGCCG | ACAGGTCGGC | GCCGTCGTCG | CTGCTCCGCC |
|    | 541    | ACGGGTTCCA | GGGCCTCAAG | CCCCGCAGCC | CCGCCGGCGG | CGACGCGACG | TCGCTCAGCG |
| 20 |        | TGACGACCAG | CGCGCGCGCG | ACGCCCAAGC | AGCAGCGGTC | GGTGCAGCGT | GGCAGCCGGA |
| 20 |        | GGTTCCCCTC | CGTCGTCGTG | TACGCCACCG | GCGCCGGCAT | GAACGTCGTG | TTCGTCGGCG |
|    | 721    | CCGAGATGGC | CCCTGGAGC  | AAGACCGGCG | GCCTCGGTGA | CGTCCTCGGT | GGCCTCCCC  |
| 25 | 781    | CTGCCATGGC | TGCGAATGGC | CACAGGGTCA | TGGTGATCTC | TCCTCGGTAC | GACCAGTACA |
|    | 841    | AGGACGCTTG | GGATACCAGC | GTTGTGGCTG | AGATCAAGGT | TGCAGACAGG | TACGAGAGGG |
| 30 |        | TGAGGTTTTT | CCATTGCTAC | AAGCGTGGAG | TCGACCGTGT | GTTCATCGAC | CATCCGTCAT |
| 30 |        | TCCTGGAGAA | GGTTTGGGGA | AAGACCGGTG | AGAAGATCTA | CGGACCTGAC | ACTGGAGTTG |
|    | 1021   | ATTACAAAGA | CAACCAGATG | CGTTTCAGCC | TTCTTTGCCA | GGCAGCACTC | GAGGCTCCTA |
| 35 | 1081   | GGATCCTAAA | CCTCAACAAC | AACCCATACT | TCAAAGGAAC | TTATGGTGAG | GATGTTGTGT |
|    | 1141   | TCGTCTGCAA | CGACTGGCAC | ACTGGCCCAC | TGGCGAGCTA | CCTGAAGAAC | AACTACCAGO |
| 40 |        | CCAATGGCAT | CTACAGGAAT | GCAAAGGTTG | CTTTCTGCAT | CCACAACATC | TCCTACCAGG |
| 70 |        | GCCGTTTCGC | TTTCGAGGAT | TACCCTGAGC | TGAACCTCTC | CGAGAGGTTC | AGGTCATCCT |
|    | 1321   | TCGATTTCAT | CGACGGGTAT | GACACGCCGG | TGGAGGGCAG | GAAGATCAAC | TGGATGAAGG |
| 45 | 1381   | CCGGAATCCT | GGAAGCCGAC | AGGGTGCTCA | CCGTGAGCCC | GTACTACGCC | GAGGAGCTCA |
|    | 1441   | TCTCCGGCAT | CGCCAGGGGA | TGCGAGCTCG | ACAACATCAT | GCGGCTCACC | GGCATCACCG |
| 50 |        | GCATCGTCAA | CGGCATGGAC | GTCAGCGAGT | GGGATCCTAG | CAAGGACAAG | TACATCACCG |
| 50 |        | CCAAGTACGA | CGCAACCACG | GCAATCGAGG | CGAAGGCGCT | GAACAAGGAG | GCGTTGCAGG |
|    | 1621   | CGGAGGCGGG | TCTTCCGGTC | GACAGGAAAA | TCCCACTGAT | CGCGTTCATC | GGCAGGCTGG |
| 55 | 5 1681 | AGGAACAGAA | GGGCCCTGAC | GTCATGGCCG | CCGCCATCCC | GGAGCTCATG | CAGGAGGACG |
|    | 1741   | TCCAGATCGT | TCTTCTGGGT | ACTGGAAAGA | AGAAGTTCGA | GAAGCTGCTC | AAGAGCATGG |
| 60 |        | AGGAGAAGTA | TCCGGGCAAG | GTGAGGGCGG | TGGTGAAGTT | CAACGCGCCG | CTTGCTCATC |
| 00 |        | TCATCATGGC | CGGAGCCGAC | GTGCTCGCCG | TCCCCAGCCG | CTTCGAGCCC | TGTGGACTCA |
|    | 1921   | TCCAGCTGCA | GGGGATGAGA | TACGGAACGC | CCTGTGCTTG | CGCGTCCACC | GGTGGGCTCG |
| 6: | 5 1981 | TGGACACGGT | CATCGAAGGC | AAGACTGGTT | TCCACATGGG | CCGTCTCAGC | GTCGACTGC  |
|    | 2041   | AGGTGGTGGA | GCCAAGCGAC | GTGAAGAAGG | TGGCGGCCAC | CCTGAAGCGC | GCCATCAAGG |

34

2101 TCGTCGGCAC GCCGGCGTAC GAGGAGATGG TCAGGAACTG CATGAACCAG GACCTCTCCT
2161 GGAAGGGGCC TGCGAAGAAC TGGGAGAATG TGCTCCTGGG CCTGGGCGTC GCCGGCAGCG

5 2221 CGCCGGGGAT CGAAGGCGAC GAGATCGCGC CGCTCGCCAA GGAGAACGTG GCTGCTCCTT
2281 GAAGAGCCTG AGATCTACAT ATGGAGTGAT TAATTAATAT AGCAGTATAT GGATGAGAGA
2341 CGAATGAACC AGTGGTTTGT TTGTTGTAGT GAATTTGTAG CTATAGCCAA TTATATAGGC
2401 TAATAAGTTT GATGTTGTAC TCTTCTGGGT GTGCTTAAGT ATCTTATCGG ACCCTGAATT
2461 TATGTGTGTG GCTTATTGCC AATAATATTA AGTAATAAAG GGTTTATTAT ATTATTATAT

15 2521 ATGTTATATT ATACTAAAAA AA

# TABLE 2 DNA Sequence and Deduced Amino Acid Sequence of the Soluble Starch Synthase IIa Gene in Maize [SEO ID NO:8 and SEO ID NO:9]

FILE NAME : MSS2C.SEQ SEQUENCE : NORMAL 2007 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 2007

25 TRANSLATION REGION: 1 - 2007

#### \*\*\* DNA TRANSLATION \*\*\*

20

48 A E A E A G G K D A P P E R S G 16 49 GAC GCC GCC AGG TTG CCC CGC GCT CGG CGC AAT GCG GTC TCC AAA CGG 96 30 LPRA R R N R A V S 32 97 AGG GAT CCT CTT CAG CCG GTC GGC CGG TAC GGC TCC GCG ACG GGA AAC 144 R D P L Q P V G R Y G S A 48 145 ACG GCC AGG ACC GGC GCC TCC TGC CAG AAC GCC GCA TTG GCG GAC 192 RTGAA s c o N A 64 35 193 GTT GAG ATC GTT GAG ATC AAG TCC ATC GTC GCC GCG CCG ACG AGC 240 P I V E K S Ι Α 80 I A 241 ATA GTG AAG TTC CCA GGG CGC GGG CTA CAG GAT GAT CCT TCC CTC TGG 288 R G F P G O D D96 L GAC ATA GCA CCG GAG ACT GTC CTC CCA GCC CCG AAG CCA CTG CAT GAA 336 40 L P E A 112 TCG CCT GCG GTT GAC GGA GAT TCA AAT GGA ATT GCA CCT CCT ACA GTT 337 384 I A 113 D S G 128 385 GAG CCA TTA GTA CAG GAG GCC ACT TGG GAT TTC AAG AAA TAC ATC GGT 432 L V Q E 129 A T W D F K K 144 45 433 TTT GAC GAG CCT GAC GAA GCG AAG GAT GAT TCC AGG GTT GGT GCA GAT 480

|    | 145         | F        | D        | E        | P        | D        | E        | A        | K.       | D        | D        | s         | R        | v        | G        | A        | D        | 160         |
|----|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|-------------|
|    | 481<br>161  | GAT<br>D | GCT<br>A | GGT<br>G | TCT<br>S | TTT<br>F | GAA<br>E | CAT<br>H | TAT<br>Y | GGG<br>G | ACA<br>T | ATG<br>M  | ATT      | CTG<br>L | GGC<br>G | CTT<br>L | TGT<br>C | 528<br>176  |
| 5  | 529<br>177  | GGG<br>G | GAG<br>E | AAT<br>N | GTT<br>V | ATG<br>M | AAC<br>N | gtg<br>V | ATC<br>I | GTG<br>V | gtg<br>V | GCT<br>A  | GCT<br>A | GAA<br>E | TGT<br>C | TCT<br>S | CCA<br>P | 576<br>192  |
|    | 577<br>193  | TGG<br>W | TGC<br>C | AAA<br>K | ACA<br>T | GGT<br>G | GGT<br>G | CTT<br>L | GGA<br>G | GAT<br>D | GTT<br>V | gtg<br>V  | GGA<br>G | GCT<br>A | TTA<br>L | CCC<br>P | AAG<br>K | 624<br>208  |
|    | 625<br>209  | GCT<br>A | TTA<br>L | GCG<br>A | AGA<br>R | AGA<br>R | GGA<br>G | CAT<br>H | CGT<br>R | GTT<br>V | ATG<br>M | GTT<br>V  | GTG<br>V | GTA<br>V | CCA<br>P | AGG<br>R | TAT<br>Y | 672<br>224  |
| 10 | 673<br>225  | GGG<br>G | GAC<br>D | TAT<br>Y | gtg<br>V | GAA<br>E | GCC<br>A | TTT<br>F | GAT<br>D | ATG<br>M | GGA<br>G | ATC<br>I  | CGG<br>R | AAA<br>K | TAC<br>Y | TAC<br>Y | AAA<br>K | 720<br>240  |
|    | 721<br>241  | GCT<br>A | GCA<br>A | GGA<br>G | CAG<br>Q | GAC<br>D | CTA<br>L | GAA<br>E | GTG<br>V | AAC<br>N | TAT<br>Y | TTC<br>F  | CAT<br>H | GCA<br>A | TTT<br>F | ATT      | GAT<br>D | 768<br>256  |
| 15 | 769<br>257  | GGA<br>G | GTC<br>V | GAC<br>D | TTT<br>F | GTG<br>V | TTC<br>F | ATT      | GAT<br>D | GCC<br>A | TCT<br>S | TTC<br>F  | CGG<br>R | CAC<br>H | CGT<br>R | CAA<br>Q | GAT<br>D | 816<br>272  |
|    | 817<br>273  | GAC<br>D | ATA<br>I | TAT<br>Y | GGG<br>G | GGA<br>G | AGT<br>S | AGG<br>R | CAG<br>Q | GAA<br>E | ATC<br>I | ATG<br>M  | AAG<br>K | CGC<br>R | ATG<br>M | ATT<br>I | TTG<br>L | 864<br>288  |
|    | 865<br>289  | TTT<br>F | TGC<br>C | AAG<br>K | GTT<br>V | GCT<br>A | GTT<br>V | GAG<br>E | GTT<br>V | CCT<br>P | TGG<br>W | CAC<br>H  | GTT<br>V | CCA<br>P | TGC<br>C | GGT<br>G | GGT<br>G | 912<br>304  |
| 20 | 913<br>305  | GTG<br>V | TGC<br>C | TAC<br>Y | GGA<br>G | GAT<br>D | GGA<br>G | AAT<br>N | TTG<br>L | GTG<br>V | TTC<br>F | ATT<br>I  | GCC<br>A | ATG<br>M | AAT<br>N | TGG<br>W | CAC<br>H | 960<br>320  |
|    | 961<br>321  | ACT<br>T | GCA<br>A | CTC<br>L | CTG<br>L | CCT<br>P | GTT<br>V | TAT<br>Y | CTG<br>L | AAG<br>K | GCA<br>A | TAT<br>Y  | TAC<br>Y | AGA<br>R | GAC<br>D | CAT<br>H | G3G<br>G | 1008<br>336 |
| 25 | 1009<br>337 | TTA<br>L | ATG<br>M | CAG<br>Q | TAC      | ACT<br>T | CGC<br>R | TCC<br>S | GTC<br>V | CTC<br>L | GTC<br>V | ATA:<br>I | CAT<br>H | AAC<br>N | ATC<br>I | GGC<br>G | CAC<br>H | 1056<br>352 |
|    | 1057<br>353 | CAG<br>Q | GGC<br>G | CGT<br>R | GGT<br>G | CCT<br>P | GTA<br>V | CAT<br>H | GAA<br>E | TTC<br>F | P CCC    | TAC<br>Y  | ATG<br>M | GAC<br>D | TTG<br>L | CTG<br>L | AAC<br>N | 1104<br>368 |
|    | 1105<br>369 | ACT<br>T | AAC<br>N | CTT<br>L | CAA<br>Q | CAT<br>H | TTC<br>F | GAG<br>E | CTC<br>L | TAC<br>Y | GAT<br>D | CCC<br>P  | GTC<br>V | GGT<br>G | G G G    | GAG<br>E | CAC<br>H | 1152<br>384 |
| 30 | 1153<br>385 | GCC<br>A | AAC<br>N | ATC      | TTT<br>F | GCC<br>A | GCG<br>A | TGI<br>C | GTI<br>V | CTC<br>L | AAC<br>K | ATC<br>M  | GCA<br>A | GAC<br>D | CGG<br>R | GTG<br>V | GTG<br>V | 1200<br>400 |
|    | 1201<br>401 | ACT<br>T | GTC<br>V | AGC<br>S | CGC<br>R | GGC<br>G | TAC<br>Y | CTG<br>L | TGC<br>W | GAC<br>E | CTC<br>L | AAC<br>K  | ACA<br>T | GTG<br>V | GAA<br>E | G G      | GGC<br>G | 1248<br>416 |
| 35 | 1249<br>417 | TGG<br>W | G G G    | CTC<br>L | CAC<br>H | GAC<br>D | ATC      | ATC<br>I | CGT<br>R | TC1      | AAC<br>N | GAC<br>D  | TGG<br>W | AAG<br>K | ATC      | AAT<br>N | GGC<br>G | 1296<br>432 |
|    | 1297<br>433 | ATT<br>I | CGT<br>R | GAA<br>E | CGC<br>R | ATC<br>I | GAC<br>D | CAC<br>H | CAG<br>Q | GAC<br>E | TGC<br>W | AAC<br>N  | P        | AAG<br>K | GTG<br>V | GAC<br>D | GTG<br>V | 1344<br>448 |
|    | 1345<br>449 | CAC<br>H | CTG<br>L | CGG<br>R | TCG      | GAC<br>D | G<br>G   | TAC<br>Y | ACC<br>T | AAC<br>N | TAC<br>Y | TCC<br>S  | CTC<br>L | GAG<br>E | ACA<br>T | CTC<br>L | GAC<br>D | 1392<br>464 |
| 40 | 1393<br>465 | GCT<br>A | G GGA    | AAG<br>K | CGG<br>R | CAG<br>Q | TGC      | AAG<br>K | GCG<br>A | GCC<br>A | CTC<br>L | CAC<br>Q  | CGG<br>R | GAC<br>D | GTG<br>V | GGC<br>G | CTG<br>L | 1440<br>480 |
|    | 1441<br>481 | GAA<br>E | GTG<br>V | CGC<br>R | GAC<br>D | GAC<br>D | GTG<br>V | CCG<br>P | CTC<br>L | CTC<br>L | G G G    | TTC<br>F  | ATC<br>I | G G      | CGT<br>R | CTG<br>L | GAT<br>D | 1488<br>496 |
| 45 | 1489<br>497 | GGA<br>G | CAG<br>Q | AAG<br>K | GGC<br>G | GTG<br>V | GAC<br>D | ATC<br>I | ATC<br>I | G G      | GAC<br>D | GCC<br>A  | ATG<br>M | CCG<br>P | TGG<br>W | ATC      | GCG<br>A | 1536<br>512 |

WO 98/14601 PCT/US97/17555

|    | 1537        | GGG      | CAG      | GAC      | GTG      | CAG      | CTG      | GTG      | ATG      | CTG      | GGC      | ACC      | GGC      | CCA      | CCT      | GAC      | CTG      | 1584        |
|----|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|    | 513         | G        | Q        | D        | V        | Q        | L        | V        | M        | L        | G        | T        | G        | P        | P        | D        | L        | 528         |
|    | 1585<br>529 | GAA<br>E | CGA<br>R | ATG<br>M | CTG<br>L | CAG<br>Q | CAC<br>H | TTG<br>L | GAG<br>E | CGG<br>R | GAG<br>E | CAT<br>H | CCC      | AAC<br>N | AAG<br>K | GTG<br>V | CGC<br>R | 1632<br>544 |
| 5  | 1633        | GGG      | TGG      | GTC      | GGG      | TTC      | TCG      | GTC      | CTA      | ATG      | GTG      | CAT      | CGC      | ATC      | ACG      | CCG      | GGC      | 1680        |
|    | 545         | G        | W        | V        | G        | F        | S        | V        | L        | M        | V        | H        | R        | I        | T        | P        | G        | 560         |
|    | 1681        | GCC      | AGC      | GTG      | CTG      | GTG      | ATG      | CCC      | TCC      | CGC      | TTC      | GCC      | GGC      | GGG      | CTG      | AAC      | CAG      | 1728        |
|    | 561         | A        | S        | V        | L        | V        | M        | P        | S        | R        | F        | A        | G        | G        | L        | N        | Q        | 576         |
| 10 | 1729        | CTC      | TAC      | GCG      | ATG      | GCA      | TAC      | GGC      | ACC      | GTC      | CCT      | GTG      | GTG      | CAC      | GCC      | GTG      | GGC      | 1776        |
|    | 577         | L        | Y        | A        | M        | A        | Y        | G        | T        | V        | P        | V        | V        | H        | A        | V        | G        | 592         |
|    | 1777        | GGG      | CTC      | AGG      | GAC      | ACC      | GTG      | GCG      | CCG      | TTC      | GAC      | CCG      | TTC      | GGC      | GAC      | GCC      | GGG      | 1824        |
|    | 593         | G        | L        | R        | D        | T        | V        | A        | P        | F        | D        | P        | F        | G        | D        | A        | G        | 608         |
|    | 1825        | CTC      | GGG      | TGG      | ACT      | TTT      | GAC      | CGC      | GCC      | GAG      | GCC      | AAC      | AAG      | CTG      | ATC      | GAG      | GTG      | 1872        |
|    | 609         | L        | G        | W        | T        | F        | D        | R        | A        | E        | A        | N        | K        | L        | I        | E        | V        | 624         |
| 15 | 1873        | CTC      | AGC      | CAC      | TGC      | CTC      | GAC      | ACG      | TAC      | CGA      | AAC      | TAC      | GAG      | GAG      | AGC      | TGG      | AAG      | 1920        |
|    | 625         | L        | S        | H        | C        | L        | D        | T        | Y        | R        | N        | Y        | E        | E        | S        | W        | K        | 640         |
|    | 1921<br>641 | AGT<br>S | CTC<br>L | CAG<br>Q | GCG      | CGC<br>R | GGC<br>G | ATG<br>M | TCG<br>S | CAG<br>Q | AAC<br>N | CTC<br>L | AGC<br>S | TGG<br>W | GAC<br>D | CAC<br>H | GCG<br>A | 1968<br>656 |
| 20 | 1969<br>657 | GCT<br>A | GAG<br>E | CTC<br>L | TAC<br>Y | GAG<br>E | GAC<br>D | GTC<br>V | CTT<br>L | GTC<br>V | AAG<br>K | TAC<br>Y | CAG<br>Q | TGG<br>W |          |          |          | 2007<br>669 |

## TABLE 3 DNA Sequence and Deduced Amino Acid Sequence of The Soluble Starch Synthase Ilb Gene in Maize [SEQ ID NO:10 and SEQ ID NO: 11]

25 FILE NAME : MSS3FULL.DNA SEQUENCE : NORMAL 2097 BP

CODON TABLE : UNIV.TCN

SEQUENCE REGION: 1 - 2097
TRANSLATION REGION: 1 - 2097

#### \*\*\* DNA TRANSLATION \*\*\*

| 30 | 1   | ATG<br>M | CCG<br>P | GGG<br>G | GCA<br>A | ATC<br>I | TCT<br>S | TCC | TCG<br>S | TCG<br>S | TCG<br>S | GCT<br>A | TTT<br>F | CTC<br>L | CTC | CCC | GTC<br>V | 48<br>16 |
|----|-----|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|-----|-----|----------|----------|
|    | 49  |          |          |          |          | CCG      |          |     |          |          |          | AGT      |          |          |     |     | CTG      | 96       |
|    | 17  | A        | s        | s        | s        | P        | R        | R   | R        | R        | G        | S        | V        | G        | A   | A   | L        | 32       |
| 25 | 97  |          |          |          |          | TAC      |          |     |          |          |          |          |          |          |     | GCG | CGG      | 144      |
| 35 | 33  | R        | s        | Y        | G        | Y        | S        | G   | A        | E        | L        | R        | L        | н        | W   | A   | R        | 48       |
|    | 145 | CGG      | GGC      | CCG      | CCT      | CAG      | GAT      | GGA | GCG      | GCG      | TCG      | GTA      | CGC      | GCC      | GCA | GCG | GCA      | 192      |
|    | 49  | R        | G        | P        | Þ        | Q        | D        | G   | A        | A        | s        | V        | R        | A        | A   | A   | A        | 64       |
|    | 193 | CCG      | GCC      | GGG      | GGC      | GAA      | AGC      | GAG | GAG      | GCA      | GCG      | AAG      | AGC      | TCC      | TCC | TCG | TCC      | 240      |
|    | 65  | P        | A        | G        | G        | E        | S        | E   | E        | A        | A        | K        | S        | s        | s   | S   | s        | 80       |
| 40 | 241 | CAG      | GCG      | GGC      | GCT      | GTT      | CAG      | GGC | AGC      | ACG      | GCC      | AAG      | GCT      | GTG      | GAT | TCT | GCT      | 288      |

|    | 81          | Q        | A        | G        | A        | V        | Q         | G        | s           | T        | A          | K          | A        | V          | D          | s        | A          | 96          |
|----|-------------|----------|----------|----------|----------|----------|-----------|----------|-------------|----------|------------|------------|----------|------------|------------|----------|------------|-------------|
|    | 289         | TCA      | CCT      | CCC      | AAT      | CCT      | TTG       | ACA      | TCT         | GCT      | CCG        | AAG        | CAA      | AGT        | CAG        | AGC      | GCT        | 336         |
|    | 97          | S        | P        | P        | N        | P        | L         | T        | S           | A        | P          | K          | Q        | S          | Q          | S        | A          | 112         |
| 5  | 337         | GCA      | ATG      | CAA      | AAC      | GGA      | ACG       | AGT      | GGG         | GGC      | AGC        | AGC        | GCG      | AGC        | ACC        | GCC      | GCG        | 384         |
|    | 113         | A        | M        | Q        | N        | G        | T         | S        | G           | G        | S          | S          | A        | S          | T          | A        | A          | 128         |
|    | 385         | CCG      | GTG      | TCC      | GGA      | CCC      | AAA       | GCT      | GAT         | CAT      | CCA        | TCA        | GCT      | CCT        | GTC        | ACC      | AAG        | 432         |
|    | 129         | P        | V        | S        | G        | P        | K         | A        | D           | H        | P          | S          | A        | P          | V          | T        | K          | 144         |
|    | 433         | AGA      | GAA      | ATC      | GAT      | GCC      | AGT       | GCG      | GTG         | AAG      | CCA        | GAG        | CCC      | GCA        | GGT        | GAT      | GAT        | 480         |
|    | 145         | R        | E        | I        | D        | A        | S         | A        | V           | K        | P          | E          | P        | A          | G          | D        | D          | 160         |
| 10 | 481         | GCT      | AGA      | CCG      | GTG      | GAA      | AGC       | ATA      | GGC         | ATC      | GCT        | GAA        | CCG      | GTG        | GAT        | GCT      | AAG        | 528         |
|    | 161         | A        | R        | P        | V        | E        | S         | I        | G           | I        | A          | E          | P        | V          | D          | A        | K          | 176         |
|    | 529         | GCT      | GAT      | GCA      | GCT      | CCG      | GCT       | ACA      | GAT         | GCG      | GCG        | GCG        | AGT      | GCT        | CCT        | TAT      | GAC        | 576         |
|    | 177         | A        | D        | A        | A        | P        | A         | T        | D           | A        | A          | A          | S        | A          | P          | Y        | D          | 192         |
| 15 | 577<br>193  | AGG<br>R | GAG<br>E | GAT<br>D | AAT<br>N | GAA<br>E | CCT       | GGC<br>G | CCT<br>P    | TTG<br>L | GCT<br>A   | GGG<br>G   | CCT<br>P | AAT<br>N   | GTG<br>V   | ATG<br>M | AAC<br>N   | 624<br>208  |
|    | 625         | GTC      | GTC      | GTG      | GTG      | GCT      | TCT       | GAA      | TGT         | GCT      | CCT        | TTC        | TGC      | AAG        | ACA        | GGT      | GGC        | 672         |
|    | 209         | V        | V        | V        | V        | A        | S         | E        | C           | A        | P          | F          | C        | K          | T          | G        | G          | 224         |
|    | 673         | CTT      | GGA      | GAT      | GTC      | GTG      | GGT       | GCT      | TTG         | CCT      | AAG        | GCT        | CTG      | GCG        | AGG        | AGA      | GGA        | 720         |
|    | 225         | L        | G        | D        | V        | V        | G         | A        | L           | P        | K          | A          | L        | A          | R          | R        | G          | 240         |
| 20 | 721         | CAC      | CGT      | GTT      | ATG      | GTC      | GTG       | ATA      | CCA         | AGA      | TAT        | GGA        | GAG      | TAT        | GCC        | GAA      | GCC        | 768         |
|    | 241         | H        | R        | V        | M        | V        | V         | I        | P           | R        | Y          | G          | E        | Y          | A          | E        | A          | 256         |
|    | 769         | CGG      | GAT      | TTA      | GGT      | GTA      | AGG       | AGA      | CGT         | TAC      | AAG        | GTA        | GCT      | GGA        | CAG        | GAT      | TCA        | 816         |
|    | 257         | R        | D        | L        | G        | V        | R         | R        | R           | Y        | K          | V          | A        | G          | Q          | D        | S          | 272         |
| 25 | 817<br>273  | GAA<br>E | GTT<br>V | ACT<br>T | TAT<br>Y | TTT<br>F | CAC<br>H  | TCT<br>S | TAC<br>Y    | ATT      | GAT<br>D   | GGA<br>G   | GTT<br>V | GAT<br>D   | TTT<br>F   | GTA<br>V | TTC<br>F   | 864<br>288  |
|    | 865         | GTA      | GAA      | GCC      | CCT      | CCC      | TTC       | CGG      | CAC         | CGG      | CAC        | AAT        | AAT      | ATT        | TAT        | GGG      | GGA        | 912         |
|    | 289         | V        | E        | A        | P        | P        | F         | R        | H           | R        | H          | N          | N        | I          | Y          | G        | G          | 304         |
|    | 913<br>305  | GAA<br>E | AGA<br>R | TTG<br>L | GAT<br>D | ATT      | TTG<br>L  | AAG<br>K | CGC<br>R    | ATG<br>M | ATT<br>I   | TTG<br>L   | TTC<br>F | TGC<br>C   | AAG<br>K   | GCC<br>A | GCT<br>A   | 960<br>320  |
| 30 | 961         | GTT      | GAG      | GTT      | CCA      | TGG      | TAT       | GCT      | CCA         | TGT      | GGC        | GGT        | ACT      | GTC        | TAT        | GGT      | GAT        | 1008        |
|    | 321         | V        | E        | V        | P        | W        | Y         | A        | P           | C        | G          | G          | T        | V          | Y          | G        | D          | 336         |
|    | 1009<br>337 | GG(      | AAC<br>N | TTA<br>L | GTI<br>V | TTC<br>F | TA:       | r gci    | 'AA 1<br>'N | r gar    | TG(<br>W   | G CAT      | ACC<br>T | G GCI      | A CT       | r CTC    | G CCT      | 1056<br>352 |
| 35 | 1057<br>353 | GT(      | TAT :    | CTP      | AAC<br>K | GCC<br>A | TAT<br>Y  | TAC<br>Y | C CG        | G GAO    | C AA'      | r GG:<br>G | TTC<br>L | G ATO      | G CAC      | G TA'    | r GCT<br>A | 1104<br>368 |
|    | 1105<br>369 | CGC<br>R | TCI<br>S | GTG<br>V | CTI<br>L | GTC<br>V | ATA S     | A CAC    | C AA<br>N   | C AT     | r GC'      |            | CAC<br>Q | G GG       | CG?        | GG<br>G  | C CCT      | 1152<br>384 |
|    | 1153<br>385 | GT#<br>V | GAC<br>D | GAC<br>D | TTC<br>F | GTC<br>V | AA:<br>N  | r TT     | GA<br>D     | C TTC    | G CC'      | T GAI      | A CAC    | C TAC      | TA C       | C GAG    | C CAC<br>H | 1200<br>400 |
| 40 | 1201<br>401 | TTC<br>F | AAA<br>K | A CTC    | TAT<br>Y | GAC<br>D | AA S<br>N | C AT     | G<br>G      | T GG     | G GA'      | T CAC      | C AGO    | C AAG<br>N | C GT       | r TT     | r gct<br>A | 1248<br>416 |
|    | 1249<br>417 | GC0<br>A | G GG     | CTC<br>L | AAC<br>K | ACC<br>T | GCA<br>A  | A GAO    | C CG        | G GT     | G GTO<br>V |            | C GT     | r AGG      | C AA!<br>N | r GG     | C TAC      | 1296<br>432 |
| 45 | 1297<br>433 | ATC<br>M |          |          | CTC<br>L |          |           |          | G GA        |          |            |            | G GG     | C CTC      | C CAC      | C GAG    | C ATC      | 1344<br>448 |

WO 98/14601 PCT/US97/17555

|    | 1345        | ATA      | AAC      | CAG      | AAC      | GAC      | TGG      | AAG      | CTG      | CAG      | GGC      | ATC      | GTG | AAC | GGC | ATC | GAC | 1392        |
|----|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-------------|
|    | 449         | I        | N        | Q        | N        | D        | W        | K        | L        | Q        | G        | I        | V   | N   | G   | I   | D   | 464         |
|    | 1393        | ATG      | AGC      | GAG      | TGG      | AAC      | CCC      | GCT      | GTG      | GAC      | GTG      | CAC      | CTC | CAC | TCC | GAC | GAC | 1440        |
|    | 465         | M        | S        | E        | W        | N        | P        | A        | V        | D        | V        | H        | L   | H   | S   | D   | D   | 480         |
| 5  | 1441        | TAC      | ACC      | AAC      | TAC      | ACG      | TTC      | GAG      | ACG      | CTG      | GAC      | ACC      | GGC | AAG | CGG | CAG | TGC | 1488        |
|    | 481         | Y        | T        | N        | Y        | T        | F        | E        | T        | L        | D        | T        | G   | K   | R   | Q   | C   | 496         |
|    | 1489        | AAG      | GCC      | GCC      | CTG      | CAG      | CGG      | CAG      | CTG      | GGC      | CTG      | CAG      | GTC | CGC | GAC | GAC | GTG | 1536        |
|    | 497         | K        | A        | A        | L        | Q        | R        | Q        | L        | G        | L        | Q        | V   | R   | D   | D   | V   | 512         |
| 10 | 1537        | CCA      | CTG      | ATC      | GGG      | TTC      | ATC      | GGG      | CGG      | CTG      | GAC      | CAC      | CAG | AAG | GGC | GTG | GAC | 1584        |
|    | 513         | P        | L        | I        | G        | F        | I        | G        | R        | L        | D        | H        | Q   | K   | G   | V   | D   | 528         |
|    | 1585        | ATC      | ATC      | GCC      | GAC      | GCG      | ATC      | CAC      | TGG      | ATC      | GCG      | GGG      | CAG | GAC | GTG | CAG | CTC | 632         |
|    | 529         | I        | I        | A        | D        | A        | I        | H        | W        | I        | A        | G        | Q   | D   | V   | Q   | L   | 544         |
|    | 1633        | gtg      | ATG      | CTG      | GGC      | ACC      | GGG      | CGG      | GCC      | GAC      | CTG      | GAG      | GAC | ATG | CTG | CGG | CGG | 1680        |
|    | 545         | V        | M        | L        | G        | T        | G        | R        | A        | D        | L        | E        | D   | M   | L   | R   | R   | 560         |
| 15 | 1681        | TTC      | GAG      | TCG      | GAG      | CAC      | AGC      | GAC      | AAG      | GTG      | CGC      | GCG      | TGG | GTG | GGG | TTC | TCG | 1728        |
|    | 561         | F        | E        | S        | E        | H        | S        | D        | K        | V        | R        | A        | W   | V   | G   | F   | S   | 576         |
|    | 1729        | GTG      | CCC      | CTG      | GCG      | CAC      | CGC      | ATC      | ACG      | GCG      | GGC      | GCG      | GAC | ATC | CTG | CTG | ATG | 1776        |
|    | 577         | V        | P        | L        | A        | H        | R        | I        | T        | A        | G        | A        | D   | I   | L   | L   | M   | 592         |
| 20 | 1777        | CCG      | TCG      | CGG      | TTC      | GAG      | CCG      | TGC      | GGG      | CTG      | AAC      | CAG      | CTC | TAC | GCC | ATG | GCG | 1824        |
|    | 593         | P        | S        | R        | F        | E        | P        | C        | G        | L        | N        | Q        | L   | Y   | A   | M   | A   | 608         |
|    | 1825        | TAC      | GGG      | ACC      | GTG      | CCC      | GTG      | GTG      | CAC      | GCC      | GTG      | GGG      | GGG | CTC | CGG | GAC | ACG | 1872        |
|    | 609         | Y        | G        | T        | V        | P        | V        | V        | H        | A        | V        | G        | G   | L   | R   | D   | T   | 624         |
|    | 1873        | GTG      | GCG      | CCG      | TTC      | GAC      | CCG      | TTC      | AAC      | GAC      | ACC      | GGG      | CTC | GGG | TGG | ACG | TTC | 1920        |
|    | 625         | V        | A        | P        | F        | D        | P        | F        | N        | D        | T        | G        | L   | G   | W   | T   | F   | 640         |
| 25 | 1921        | GAC      | CGC      | GCG      | GAG      | GCG      | AAC      | CGG      | ATG      | ATC      | GAC      | GCG      | CTC | TCG | CAC | TGC | CTC | 1968        |
|    | 641         | D        | R        | A        | E        | A        | N        | R        | M        | I        | D        | A        | L   | S   | H   | C   | L   | 656         |
|    | 1969        | ACC      | ACG      | TAC      | CGG      | AAC      | TAC      | AAG      | GAG      | AGC      | TGG      | CGC      | GCC | TGC | AGG | GCG | CGC | 2016        |
|    | 657         | T        | T        | Y        | R        | N        | Y        | K        | E        | S        | W        | R        | A   | C   | R   | A   | R   | 672         |
| 30 | 2017        | GGC      | ATG      | GCC      | GAG      | GAC      | CTC      | AGC      | TGG      | GAC      | CAC      | GCC      | GCC | GTG | CTG | TAT | GAG | 2064        |
|    | 673         | G        | M        | A        | E        | D        | L        | S        | W        | D        | H        | A        | A   | V   | L   | Y   | E   | 688         |
|    | 2065<br>689 | GAC<br>D | GTG<br>V | CTC<br>L | GTC<br>V | AAG<br>K | GCG<br>A | AAG<br>K | TAC<br>Y | CAG<br>Q | TGG<br>W | TGA<br>* |     |     |     |     |     | 2097<br>699 |

# TABLE 4 DNA and Deduced Amino Acid Sequence of The Soluble Starch Synthase I Gene in Maize [SEQ ID NO:12; SEQ ID NO: 13]

FILE NAME : MSS1FULL.DNA SEQUENCE : NORMAL 1752 BP

CODON TABLE : UNIV.TCN

35

SEQUENCE REGION: 1 - 1752

40 TRANSLATION REGION: 1 - 1752

|    |            |            |            |                   |            |            |            |            | GGG<br>Gly        |            |            |            |            |                   |            |            |   | 48  |
|----|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|---|-----|
| 5  |            |            |            |                   |            |            |            |            | GTG<br>Val        |            |            |            |            |                   |            |            |   | 96  |
|    | GCC<br>Ala | GAG<br>Glu | CCC<br>Pro | ACG<br>Thr<br>735 | GGT<br>Gly | GAG<br>Glu | CCG<br>Pro | GCA<br>Ala | TCG<br>Ser<br>740 | ACG<br>Thr | CCG<br>Pro | CCG<br>Pro | CCC<br>Pro | GTG<br>Val<br>745 | CCC<br>Pro | GAC<br>Asp | 1 | 144 |
| 10 |            |            |            |                   |            |            |            |            | GAA<br>Glu        |            |            |            |            |                   |            |            | 1 | 192 |
| 15 |            |            |            |                   |            |            |            |            | GCA<br>Ala        |            |            |            |            |                   |            |            |   | 240 |
|    |            |            |            |                   |            |            |            |            | GCT<br>Ala        |            |            |            |            |                   |            |            | 2 | 288 |
| 20 |            |            |            |                   |            |            |            |            | TAT<br>Tyr        |            |            |            |            |                   |            |            | 3 | 336 |
|    |            |            |            |                   |            |            |            |            | GCT<br>Ala<br>820 |            |            |            |            |                   |            |            | 3 | 384 |
| 25 |            |            |            |                   |            |            |            |            | TTA<br>Leu        |            |            |            |            |                   |            |            | 4 | 132 |
| 30 |            |            |            |                   |            |            |            |            | AAA<br>Lys        |            |            |            |            |                   |            |            | 4 | 480 |
|    |            |            |            |                   |            |            |            |            | TTC<br>Phe        |            |            |            |            |                   |            |            | 5 | 528 |
| 35 |            |            |            |                   |            |            |            |            | TCA<br>Ser        |            |            |            |            |                   |            |            | Ę | 576 |
|    |            |            |            |                   |            |            |            |            | GGT<br>Gly<br>900 | Asp        |            |            |            |                   |            |            | • | 524 |
| 40 |            |            |            |                   |            |            |            |            | GCT<br>Ala        |            |            |            |            |                   |            |            | • | 572 |
| 45 |            |            |            |                   |            |            |            |            | ATG<br>Met        |            |            |            |            |                   |            |            | 7 | 720 |
|    |            |            |            |                   |            |            |            |            | GCT<br>Ala        |            |            |            |            |                   |            |            | 7 | 768 |
| 50 |            |            |            |                   |            |            |            |            | CTT<br>Leu        |            |            |            |            |                   |            |            | 8 | 316 |

|    | CAG GGT GTA GAG<br>Gln Gly Val Glu<br>975  | Pro Ala Ser Thi                            | TAT CCT GAC CTT GGG<br>Tyr Pro Asp Leu Gly<br>980    | TTG CCA CCT 864<br>Leu Pro Pro<br>985 |
|----|--------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------|
| 5  |                                            |                                            | GTA TTC CCT GAA TGG<br>Val Phe Pro Glu Trp<br>1000   | Ala Arg Arg                           |
|    | CAT GCC CTT GAC<br>His Ala Leu Asp<br>1005 | AAG GGT GAG GCA<br>Lys Gly Glu Ala<br>1010 | GTT AAT TTT TTG AAA<br>Val Asn Phe Leu Lys<br>1015   | GGT GCA GTT 960<br>Gly Ala Val        |
| 10 |                                            |                                            | GTC AGT AAG GGT TAT<br>Val Ser Lys Gly Tyr<br>1030   |                                       |
| 15 |                                            |                                            | GGC CTC AAT GAG CTC<br>Gly Leu Asn Glu Leu<br>1045   |                                       |
|    |                                            | Leu Asn Gly Ile                            | GTA AAT GGA ATT GAC<br>Val Asn Gly Ile Asp<br>1060   |                                       |
| 20 |                                            |                                            | ATC CCC TGT CAT TAT<br>Ile Pro Cys His Tyr<br>5 1080 | Ser Val Asp                           |
|    |                                            |                                            | AAA GGT GCA TTG CAG<br>Lys Gly Ala Leu Gln<br>1095   |                                       |
| 25 | _                                          |                                            | CCT CTG ATT GGC TTT<br>Pro Leu Ile Gly Phe<br>1110   |                                       |
| 30 |                                            |                                            | CTC ATT CAA CTT ATC<br>Leu Ile Gln Leu Ile<br>1125   |                                       |
|    |                                            | Asp Val Gln Phe                            | GTC ATG CTT GGA TCT<br>Val Met Leu Gly Ser<br>1140   |                                       |
| 35 |                                            |                                            | ACA GAG TCG ATC TTC<br>Thr Glu Ser Ile Phe<br>5 1160 | Lys Asp Lys                           |
|    |                                            |                                            | GTT CCA GTT TCC CAC<br>Val Pro Val Ser His<br>1175   |                                       |
| 40 |                                            |                                            | CCA TCC AGA TTC GAA<br>Pro Ser Arg Phe Glu<br>1190   |                                       |
| 45 |                                            |                                            | TAT GGC ACA GTT CCT<br>Tyr Gly Thr Val Pro<br>1205   |                                       |
|    |                                            | Leu Arg Asp Thi                            | GTG GAG AAC TTC AAC<br>Val Glu Asn Phe Asn<br>1220   |                                       |
| 50 |                                            |                                            | TGG GCA TTC GCA CCC<br>Trp Ala Phe Ala Pro<br>5 1240 | Leu Thr Thr                           |

41

|    | GAA AAC ATG TTT GTG<br>Glu Asn Met Phe Val<br>1245 |                                                                           |                           |                  |
|----|----------------------------------------------------|---------------------------------------------------------------------------|---------------------------|------------------|
| 5  | ACA CAA GTC CTC CTG<br>Thr Gln Val Leu Leu<br>1260 |                                                                           |                           |                  |
|    | CTT CAC GTG GGA CCA<br>Leu His Val Gly Pro<br>128  | Cys Arg *                                                                 |                           | 1752             |
| 10 | (2) INFORMATION FOR                                | SEQ ID NO:13:                                                             |                           |                  |
|    | (A) LE<br>(B) TY                                   | CHARACTERISTICS:<br>NGTH: 584 amino a<br>PE: amino acid<br>POLOGY: linear |                           |                  |
| 15 | (ii) MOLECULE                                      | TYPE: protein                                                             |                           |                  |
|    | , ,                                                | DESCRIPTION: SEQ                                                          |                           |                  |
|    | Cys Val Ala Glu Leu<br>1 5                         | Ser Arg Glu Gly                                                           | Pro Ala Pro Arg Pr<br>10  | o Leu Pro<br>15  |
| 20 | Pro Ala Leu Leu Ala<br>20                          | Pro Pro Leu Val<br>25                                                     |                           | a Pro Pro<br>O   |
|    | Ala Glu Pro Thr Gly<br>35                          | Glu Pro Ala Ser<br>40                                                     | Thr Pro Pro Pro Va        | l Pro Asp        |
|    | Ala Gly Leu Gly Asp<br>50                          | Leu Gly Leu Glu<br>55                                                     | Pro Glu Gly Ile Al<br>60  | a Glu Gly        |
| 25 | Ser Ile Asp Asn Thr<br>65                          | Val Val Val Ala<br>70                                                     | Ser Glu Gln Asp Se<br>75  | r Glu Ile<br>80  |
|    | Val Val Gly Lys Glu<br>85                          | Gln Ala Arg Ala                                                           | Lys Val Thr Gln Se<br>90  | r Ile Val<br>95  |
| 30 | Phe Val Thr Gly Glu<br>100                         | Ala Ser Pro Tyr<br>105                                                    | Ala Lys Ser Gly Gl        |                  |
|    | Asp Val Cys Gly Ser<br>115                         | Leu Pro Val Ala<br>120                                                    | Leu Ala Ala Arg Gl<br>125 | y His Arg        |
|    | Val Met Val Val Met<br>130                         | Pro Arg Tyr Leu<br>135                                                    | Asn Gly Thr Ser As<br>140 | p Lys Asn        |
| 35 | Tyr Ala Asn Ala Phe<br>145                         | Tyr Thr Glu Lys<br>150                                                    | His Ile Arg Ile Pr<br>155 | o Cys Phe<br>160 |
|    | Gly Gly Glu His Glu<br>165                         | Val Thr Phe Phe                                                           | His Glu Tyr Arg As<br>170 | p Ser Val<br>175 |
| 40 | Asp Trp Val Phe Val<br>180                         | Asp His Pro Ser<br>185                                                    | Tyr His Arg Pro Gl<br>19  | <u> </u>         |
|    | Tyr Gly Asp Lys Phe<br>195                         | Gly Ala Phe Gly<br>200                                                    | Asp Asn Gln Phe Ar<br>205 | g Tyr Thr        |
|    | Leu Leu Cys Tyr Ala<br>210                         | Ala Cys Glu Ala<br>215                                                    | Pro Leu Ile Leu Gl<br>220 | u Leu Gly        |
| 45 | Gly Tyr Ile Tyr Gly<br>225                         | Gln Asn Cys Met<br>230                                                    | Phe Val Val Asn As<br>235 | p Trp His<br>240 |

Ala Ser Leu Val Pro Val Leu Leu Ala Ala Lys Tyr Arg Pro Tyr Gly 245 250 255 Val Tyr Lys Asp Ser Arg Ser Ile Leu Val Ile His Asn Leu Ala His Gln Gly Val Glu Pro Ala Ser Thr Tyr Pro Asp Leu Gly Leu Pro Pro 275 280 285 5 Glu Trp Tyr Gly Ala Leu Glu Trp Val Phe Pro Glu Trp Ala Arg Arg 290 295 300 His Ala Leu Asp Lys Gly Glu Ala Val Asn Phe Leu Lys Gly Ala Val 305 310 315 32010 Val Thr Thr Ala Glu Gly Gly Gln Gly Leu Asn Glu Leu Leu Ser Ser 340 345 350Arg Lys Ser Val Leu Asn Gly Ile Val Asn Gly Ile Asp Ile Asn Asp 355 360 36515 Trp Asn Pro Ala Thr Asp Lys Cys Ile Pro Cys His Tyr Ser Val Asp 370 375 380 Asp Leu Ser Gly Lys Ala Lys Cys Lys Gly Ala Leu Gln Lys Glu Leu 20 Gly Leu Pro Ile Arg Pro Asp Val Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp Tyr Gln Lys Gly Ile Asp Leu Ile Gln Leu Ile Ile Pro Asp 420 425 43025 Leu Met Arg Glu Asp Val Gln Phe Val Met Leu Gly Ser Gly Asp Pro 435 445 Glu Leu Glu Asp Trp Met Arg Ser Thr Glu Ser Ile Phe Lys Asp Lys Phe Arg Gly Trp Val Gly Phe Ser Val Pro Val Ser His Arg Ile Thr 465 470 475 48030 Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Gln Tyr Gly Thr Val Pro Val Val His 500 510 Ala Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Phe Asn Pro Phe Gly 515 520 52535 Glu Asn Gly Glu Gln Gly Thr Gly Trp Ala Phe Ala Pro Leu Thr Thr 530 540 Glu Asn Met Phe Val Asp Ile Ala Asn Cys Asn Ile Tyr Ile Gln Gly 545 550 555 560 40 Thr Gln Val Leu Gly Arg Ala Asn Glu Ala Arg His Val Lys Arg 565 570 575 Leu His Val Gly Pro Cys Arg \* 580

#### TABLE 5

### mRNA Sequence and Deduced Amino Acid Sequence of The Maize Branching Enzyme II Gene and the Transit Peptide [SEQ ID NO:14 and SEQ ID NO:15]

| 5  | LOCUS DEFINITION ACCESSION               | Corn star<br>L08065                              | •                                                                                    | enzyme II mF                          | PLN<br>RNA, complete c            |            |
|----|------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|------------|
|    | KEYWORDS                                 |                                                  |                                                                                      |                                       | ; amylo-transgl<br>ing enzyme II. | ycosylase; |
| 10 | SOURCE<br>ORGANISM                       | Zea mays<br>Zea mays                             | cDNA to mRNA.                                                                        |                                       | Magnoliophyta;                    | Lilioppida |
| 15 | REFERENCE<br>AUTHORS<br>TITLE<br>JOURNAL | Commelini 1 (bases Fisher,D. Starch br Plant Phy | idae; Cyperale<br>s 1 to 2725)<br>.K., Boyer,C.D<br>ranching enzym<br>ysiol. 102, 10 | es; Poaceae.  and Hannah e II from ma | n,L.C.<br>aize endosperm          |            |
|    | STANDARD<br>COMMENT                      | full auto                                        |                                                                                      |                                       |                                   |            |
| 20 | FEATURES                                 | MCBI GI:                                         | Location/Qual                                                                        | ifiers                                |                                   |            |
|    | source                                   |                                                  | 12725                                                                                |                                       |                                   |            |
|    |                                          |                                                  | /cultivar="W6<br>/dev stage="2                                                       |                                       | nollenation"                      |            |
|    |                                          |                                                  | /tissue type=                                                                        |                                       | portenacion                       |            |
| 25 |                                          |                                                  | /organism="Ze                                                                        |                                       |                                   |            |
|    | sig_pe                                   | ptide                                            | 91264                                                                                |                                       |                                   |            |
|    | CDS                                      |                                                  | /codon_start= 912490                                                                 | :1                                    |                                   |            |
|    | CDS                                      |                                                  | /EC number="2                                                                        | .4.1.18"                              |                                   |            |
| 30 |                                          |                                                  | /note="NCBI                                                                          |                                       |                                   |            |
|    |                                          |                                                  | /codon_start=                                                                        |                                       |                                   |            |
|    |                                          |                                                  | /product="sta                                                                        | rch branchi                           | ng enzyme II"                     |            |
|    | /translatio                              | n="MAFRVSC                                       | JAVLGGAVRAPRLI                                                                       | GGGEGSLVFRH                           | rglfltrgarvgc                     |            |
| 35 | ,                                        |                                                  |                                                                                      |                                       |                                   |            |
|    | SGTHGAMRAAA                              | AARKAVMVPI                                       | egendglasrads <i>i</i>                                                               | QFQSDELEVPD:                          | ISEETTCGAGVAD                     |            |
|    | AQALNRVRVVP                              | PPSDGQKIFG                                       | QIDPMLQGYKYHLE                                                                       | YRYSLYRRIRSI                          | DIDEHEGGLEAFS                     |            |
| 40 | RSYEKFGFNAS                              | AEGITYREW?                                       | apgafsaalvgdvi                                                                       | INWDPNADRMSKI                         | NEFGVWEIFLPNN                     |            |
|    | ADGTSPIPHGS                              | RVKVRMDTPS                                       | SGIKDSIPAWIKYS                                                                       | VQAPGEIPYDG                           | IYYDPPEEVKYVF                     |            |
| 45 | RHAQPKRPKSL                              | RIYETHVGMS                                       | SSPEPKINTYVNFI                                                                       | RDEVLPRIKKLG                          | YNAVQIMAIQEHS                     |            |
|    | YYGSFGYHVTN                              | FFAPSSRFG                                        | rpedlkslidrahi                                                                       | ELGLLVLMDVVHS                         | SHASSNTLDGLNG                     |            |
|    | FDGTDTHYFHS                              | GPRGHHWMWI                                       | DSRLFNYGNWEVL                                                                        | RFLLSNARWWLE                          | EYKFDGFRFDGVT                     |            |
| 50 | SMMYTHHGLQV                              | TFTGNFNEYI                                       | FGFATDVDAVVYL                                                                        | NLVNDLIHGLYPI                         | EAVTIGEDVSGMP                     |            |
|    | TFALPVHDGGV                              | GFDYRMHMA\                                       | VADKWIDLLKQSDI                                                                       | TWKMGDIVHTL:                          | INRRWLEKCVTYA                     |            |
| 55 | -                                        |                                                  | DMYDFMALDRPSTI                                                                       |                                       |                                   |            |
|    | LNFMGNEFGHP                              | EWIDFPRGP                                        | QRLPSGKF1PGNN1                                                                       | ISYDKCRRRFDLO                         | GDADYLRYHGMQE                     |            |
|    | FDQAMQHLEQK                              | YEFMTSDHQ                                        | YISRKHEEDKVIVI                                                                       | FEKGDLVFVFNFI                         | HCNNSYFDYRIGC                     |            |
| 60 | RKPGVYKVVLD                              | SDAGLFGGFS                                       | SRIHHAAEHFTADO                                                                       | CSHDNRPYSFSV                          | YTPSRTCVVYAPV                     |            |
|    | mat_pe                                   | ptide                                            | E" 2652487 /codon start=                                                             | ÷1                                    |                                   |            |
|    |                                          |                                                  | /product="sta                                                                        | arch branchin                         |                                   |            |
| 65 | BASE COUNT                               | 727 1                                            | 534 C                                                                                | 715 G 749                             | 9 T                               |            |

ORIGIN

44

|     | OKIGIN            |                          |              |             |                   |              |             |
|-----|-------------------|--------------------------|--------------|-------------|-------------------|--------------|-------------|
|     |                   | GGCCCAGAGC               |              |             |                   |              |             |
|     |                   | AGTTCGATCC<br>GGTGGGGCCG |              |             |                   |              |             |
| 5   |                   | CACACCGGCC               |              |             |                   |              |             |
|     |                   | ATGCGCGCGG               |              |             |                   |              |             |
|     |                   | CTCGCATCAA               |              |             |                   |              |             |
|     |                   | TCTGAAGAGA               |              |             |                   |              |             |
| 10  |                   | GTGGTCCCCC               |              |             |                   |              |             |
| 10  |                   | TATAAGTACC<br>GAACATGAAG |              |             |                   |              |             |
|     |                   | AGCGCGGAAG               |              |             |                   |              |             |
|     |                   | GGTGACGTCA               |              |             |                   |              |             |
|     |                   | TGGGAAATTT               |              |             |                   |              |             |
| 15  |                   | GTAAAGGTGA               |              |             |                   |              |             |
|     |                   | TACTCAGTGC               |              |             |                   |              |             |
|     |                   | GAGGTAAAGT               |              |             |                   |              |             |
|     |                   | GAAACACATG<br>GATGAAGTCC |              |             |                   |              |             |
| 20  |                   | CAAGAGCACT               |              |             |                   |              |             |
|     |                   | AGTCGTTTTG               |              |             |                   |              |             |
|     |                   | TTGCTAGTTC               |              |             |                   |              |             |
|     | 1261              | AATGGTTTTG               | ATGGTACAGA   | TACACATTAC  | TTTCACAGTG        | GTCCACGTGG   | CCATCACTGG  |
| a : |                   | ATGTGGGATT               |              |             |                   |              |             |
| 25  |                   | AATGCTAGAT               |              |             |                   |              |             |
|     |                   | TCCATGATGT               |              |             |                   |              |             |
|     |                   | TTTGGCTTTG<br>CATGGACTTT |              |             |                   |              |             |
|     |                   | GCCCTTCCTG               |              |             |                   |              |             |
| 30  |                   | GACAAATGGA               |              |             |                   |              |             |
|     |                   | CACACACTGA               |              |             |                   |              |             |
|     |                   | CAAGCATTAG               |              |             |                   |              |             |
|     |                   | TTCATGGCCC               |              |             |                   |              |             |
| 35  |                   | ATGATTAGAC<br>GAGTTTGGAC |              |             |                   |              |             |
| 33  |                   | AAGTTTATTC               |              |             |                   |              |             |
|     |                   | GATGCAGACT               |              |             |                   |              |             |
|     | 2161              | GAGCAAAAAT               | ATGAATTCAT   | GACATCTGAT  | CACCAGTATA        | TTTCCCGGAA   | ACATGAGGAG  |
|     | 2221              | GATAAGGTGA               | TTGTGTTCGA   | AAAGGGAGAT  | TTGGTATTTG        | TGTTCAACTT   | CCACTGCAAC  |
| 40  |                   | AACAGCTATT               |              |             |                   |              |             |
|     |                   | GACTCCGACG               |              |             |                   |              |             |
|     |                   | ACCGCCGACT<br>ACATGTGTCG |              |             |                   |              |             |
|     |                   | GTGGGGCTGT               |              |             |                   |              |             |
| 45  |                   | CTACAATAAG               |              |             |                   |              |             |
|     |                   | TCCTCTCTAT               |              |             |                   |              |             |
|     |                   | CTTTCCTAAA               | ААААААААА    | AAAAA       |                   |              |             |
|     | //                |                          |              |             |                   |              |             |
|     |                   |                          |              |             |                   |              |             |
|     |                   |                          |              | TABLE       | 6                 |              |             |
| 50  |                   | m D N A                  | Coguenes and |             |                   | wanaa af tha |             |
| 30  |                   |                          |              | Deduced An  |                   |              |             |
|     |                   | <u>Mai</u>               |              | Enzyme I an |                   |              |             |
|     |                   |                          | [SEQ ID      | NO:16 and S | <u>EQ ID NO:1</u> | <b>7</b> ]   |             |
|     |                   |                          |              |             |                   |              |             |
|     | LOCUS             | MZEBEI                   | 2763 bj      | o ss-mRNA   | Pl                | LN           |             |
|     | DEFINITION        | N Maize mRN              | NA for brand | hing enzyme | e-I (BE-I).       |              |             |
| 55  | ACCESSION         |                          | _            |             |                   |              |             |
|     | KEYWORDS          |                          | enzyme-I.    | Oh 421 DN   |                   |              |             |
|     | SOURCE<br>ORGANIS |                          | L. (inpred   | Oh43), cDN  | A CO MKNA.        |              |             |
|     | CAGANIS           |                          | : Plantae.   | Embryobiont | ta: Magnolio      | ophyta; Lili | onsida      |
| 60  |                   |                          | dae; Lilio   |             | ,g                | -Pulou, DII  | Paradi      |
|     | REFERENCE         |                          | 1 to 2763    |             |                   |              |             |
|     | AUTHORS           | Baba, T.,                |              |             | Etoh, H., Is      | shida,Y., Sh | nida,O. and |
|     |                   | Arai,Y.                  |              |             |                   |              |             |
|     |                   |                          |              |             |                   |              |             |

```
Sequence conservation of the catalytic regions of Amylolytic
         TITLE
                   enzymes in maize branching enzyme-I
                   Biochem. Biophys. Res. Commun. 181, 87-94 (1991)
         JOURNAL
         STANDARD
                   full automatic
                   Submitted (30-APR-1992) to DDBJ by: Tadashi Baba
       COMMENT
                   Institute of Applied Biochemistry
                   University of Tsukuba
                   Tsukuba, Ibaraki 305
                   Japan
10
                            0298-53-6632
                   Phone:
                   Fax:
                            0298-53-6632.
                   NCBI gi: 217959
                             Location/Qualifiers
       FEATURES
                             1..2763
            source
                             /organism="Zea mays"
15
                             <1..2470
            CDS
                             /note="NCBI gi: 217960"
                             /codon start=2
                             /product="branching enzyme-I precursor"
20
       /translation="LCLVSPSSSPTPLPPPRRSRSHADRAAPPGIAGGGNVRLSVLSV
       QCKARRSGVRKVKSKFATAATVQEDKTMATAKGDVDHLPIYDLDPKLEIFKDHFRYRM
25
       KRFLEQKGSIEENEGSLESFSKGYLKFGINTNEDGTVYREWAPAAQEAELIGDFNDWN
       GANHKMEKDKFGVWSIKIDHVKGKPAIPHNSKVKFRFLHGGVWVDRIPALIRYATVDA
       SKFGAPYDGVHWDPPASERYTFKHPRPSKPAAPRIYEAHVGMSGEKPAVSTYREFADN
30
       VLPRIRANNYNTVOLMAVMEHSYYASFGYHVTNFFAVSSRSGTPEDLKYLVDKAHSLG
       LRVLMDVVHSHASNNVTDGLNGYDVGQSTQESYFHAGDRGYHKLWDSRLFNYANWEVL
35
       RFLLSNLRYWLDEFMFDGFRFDGVTSMLYHHHGINVGFTGNYQEYFSLDTAVDAVVYM
       MLANHLMHKLLPEATVVAEDVSGMPVLCRPVDEGGVGFDYRLAMAIPDRWIDYLKNKD
       DSEWSMGEIAHTLTNRRYTEKCIAYAESHDQSIVGDKTIAFLLMDKEMYTGMSDLQPA
40
       SPTIDRGIALOKMIHFITMALGGDGYLNFMGNEFGHPEWIDFPREGNNWSYDKCRRQW
       SLVDTDHLRYKYMNAFDQAMNALDERFSFLSSSKQIVSDMNDEEKVIVFERGDLVFVF
45
       NFHPKKTYEGYKVGCDLPGKYRVALDSDALVFGGHGRVGHDVDHFTSPEGVPGVPETN
       FNNRPNSFKVLSPPRTCVAYYRVDEAGAGRRLHAKAETGKTSPAESIDVKASRASSKE
                             DKEATAGGKKGWKFARQPSDQDTK"
            transit peptide 2..190
50
                             191..2467
            mat_peptide
                             /EC number="2.4.1.18"
                             /product="branching enzyme-I precursor" 2734..2739
            polyA_signal
55
       BASE COUNT
                        719 A
                                 585 C
                                           737 G
                                                    722 T
       ORIGIN
                1 GCTGTGCCTC GTGTCGCCCT CTTCCTCGCC GACTCCGCTT CCGCCGCCGC GGCGCTCTCG
              61 CTCGCATGCT GATCGGGCGG CACCGCCGGG GATCGCGGGT GGCGGCAATG TGCGCCTGAG
             121 TGTGTTGTCT GTCCAGTGCA AGGCTCGCCG GTCAGGGGTG CGGAAGGTCA AGAGCAAATT
             181 CGCCACTGCA GCTACTGTGC AAGAAGATAA AACTATGGCA ACTGCCAAAG GCGATGTCGA
60
              241 CCATCTCCC ATATACGACC TGGACCCCAA GCTGGAGATA TTCAAGGACC ATTTCAGGTA
              301 CCGGATGAAA AGATTCCTAG AGCAGAAAGG ATCAATTGAA GAAAATGAGG GAAGTCTTGA
             361 ATCTTTTCT AAAGGCTATT TGAAATTTGG GATTAATACA AATGAGGATG GAACTGTATA
421 TCGTGAATGG GCACCTGCTG CGCAGGAGGC AGAGCTTATT GGTGACTTCA ATGACTGGAA
65
             481 TGGTGCAAAC CATAAGATGG AGAAGGATAA ATTTGGTGTT TGGTCGATCA AAATTGACCA
             541 TGTCAAAGGG AAACCTGCCA TCCCTCACAA TTCCAAGGTT AAATTTCGCT TTCTACATGG
             601 TGGAGTATGG GTTGATCGTA TTCCAGCATT GATTCGTTAT GCGACTGTTG ATGCCTCTAA
```

PCT/US97/17555 WO 98/14601

46

|    | 661 ATTTGGAGCT CCCTATGATG GTGTTCATTG GGATCCTCCT GCTTCTGAAA GGTACACATT 721 TAAGCATCCT CGGCCTTCAA AGCCTGCTGC TCCACGTATC TATGAAGCCC ATGTAGGTAT 781 GAGTGGTGAA AAGCCAGCAG TAAGCACATA TAGGGAATTT GCAGACAATG TGTTGCCACG    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | 841 CATACGAGCA AATAACTACA ACACAGTTCA GTTGATGGCA GTTATGGAGC ATTCGTACTA 901 TGCTTCTTTC GGGTACCATG TGACAAATTT CTTTGCGGTT AGCAGCAGAT CAGGCACACC 961 AGAGGACCTC AAATATCTTG TTGATAAGGC ACACAGTTTG GGTTTGCGAG TTCTGATGGA    |
|    | 1021 TGTTGTCCAT AGCCATGCAA GTAATAATGT CACAGATGGT TTAAATGGCT ATGATGTTGG 1081 ACAAAGCACC CAAGAGTCCT ATTTTCATGC GGGAGATAGA GGTTATCATA AACTTTGGGA 1141 TAGTCGGCTG TTCAACTATG CTAACTGGGA GGTATTAAGG TTTCTTCTTT CTAACCTGAG |
| 10 | 1201 ATATTGGTTG GATGAATTCA TGTTTGATGG CTTCCGATTT GATGGAGTTA CATCAATGCT 1261 GTATCATCAC CATGGTATCA ATGTGGGGTT TACTGGAAAC TACCAGGAAT ATTTCAGTTT 1321 GGACACAGCT GTGGATGCAG TTGTTTACAT GATGCTTGCA AACCATTTAA TGCACAAACT |
| 15 | 1381 CTTGCCAGAA GCAACTGTTG TTGCTGAAGA TGTTTCAGGC ATGCCGGTCC TTTGCCGGCC 1441 AGTTGATGAA GGTGGGGTTG GGTTTGACTA TCGCCTGGCA ATGGCTATCC CTGATAGATG 1501 GATTGACTAC CTGAAGAATA AAGATGACTC TGAGTGGTCG ATGGGTGAAA TAGCGCATAC |
| 13 | 1561 TTTGACTAAC AGGAGATATA CTGAAAAATG CATCGCATAT GCTGAGAGCC ATGATCAGTC 1621 TATTGTTGGC GACAAAACTA TTGCATTTCT CCTGATGGAC AAGGAAATGT ACACTGGCAT                                                                        |
| 20 | 1681 GTCAGACTTG CAGCCTGCTT CACCTACAAT TGATCGAGGG ATTGCACTCC AAAAGATGAT 1741 TCACTTCATC ACAATGGCCC TTGGAGGTGA TGGCTACTTG AATTTTATGG GAAATGAGTT 1801 TGGTCACCCA GAATGGATTG ACTTTCCAAG AGAAGGGAAC AACTGGAGCT ATGATAAATG |
|    | 1861 CAGACGACAG TGGAGCCTTG TGGACACTGA TCACTTGCGG TACAAGTACA TGAATGCGTT 1921 TGACCAAGCG ATGAATGCGC TCGATGAGAG ATTTTCCTTC CTTTCGTCGT CAAAGCAGAT 1981 CGTCAGCGAC ATGAACGATG AGGAAAAGGT TATTGTCTTT GAACGTGGAG ATTTAGTTTT |
| 25 | 2041 TGTTTTCAAT TTCCATCCCA AGAAAACTTA CGAGGGCTAC AAAGTGGGAT ATTTAGTTTTC<br>2101 TGGGAAATAC AGAGTAGCCC TGGACTCTGA TGCTCTGGTC TTCGGTGGAC ATGGAAGAGT                                                                    |
|    | 2161 TGGCCACGAC GTGGATCACT TCACGTCGCC TGAAGGGGTG CCAGGGGTGC CCGAAACGAA 2221 CTTCAACAAC CGGCCGAACT CGTTCAAAGT CCTTTCTCCG CCCCGCACCT GTGTGGCTTA 2281 TTACCGTGTA GACGAAGCAG GGGCTGGACG ACGTCTTCAC GCGAAAGCAG AGACAGGAAA |
| 30 | 2341 GACGTCTCCA GCAGAGAGCA TCGACGTCAA AGCTTCCAGA GCTAGTAGCA AAGAAGACAA 2401 GGAGGCAACG GCTGGTGGCA AGAAGGGATG GAAGTTTGCG CGGCAGCCAT CCGATCAAGA                                                                        |
|    | 2461 TACCAAATGA AGCCACGAGT CCTTGGTGAG GACTGGACTG                                                                                                                                                                     |
| 35 | 2641 ATAATAATCA GGGATGGATG GATGGTGTGT ATTGGCTATC TGGCTAGACG TGCATGTGCC 2701 CAGTTTGTAT GTACAGGAGC AGTTCCCGTC CAGAATAAAA AAAAACTTGT TGGGGGGTTT                                                                        |
|    | 2761 TTC // TABLE 7                                                                                                                                                                                                  |
| 40 | Coding Sequence and Deduced Amino Acid Sequence for                                                                                                                                                                  |
| 40 | Transit Peptide Region of the Soluble Starch Synthase I Maize Gene (153 bp)                                                                                                                                          |
|    | [SEO ID NO:18 and SEQ ID NO:19]                                                                                                                                                                                      |
|    | FILE NAME : MSS1TRPT.DNA SEQUENCE : NORMAL 153 BP                                                                                                                                                                    |
| 45 | CODON TABLE : UNIV.TCN                                                                                                                                                                                               |
| 43 | SEQUENCE REGION: 1 - 153  TRANSLATION REGION: 1 - 153                                                                                                                                                                |
|    | *** DNA TRANSLATION ***                                                                                                                                                                                              |
|    | 1 ATG GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC CT                                                                                                                                                                 |
| 50 | 49 GCC GCC TGG CCG GCC GCC GTC GGC GAC CGG GCG CGC CCG CGG AGG CTC 96 17 A A W P A A V G D R A R P R R L 32                                                                                                          |
|    | 97 CAG CGC GTG CTG CGC CGC CGG TGC GTC GCG GAG CTG AGC AGG GAG GGG 144 33 Q R V L R R R C V A E L S R E G 48                                                                                                         |
| 55 | 145 CCC CAT ATG 49 P H M 51                                                                                                                                                                                          |

#### **GFP** constructs:

5

10

15

20

1. GFP only in pET-21a:

pEXS115 is digested with *Nde* I and *Xho* I and the 740 bp fragment containing the SGFP coding sequence is subcloned into the *Nde* I and *Xho* I sites of pET-21a (Novagen 601 Science Dr. Madison WI). (See FIG. 2b GFP-21a map.)

2. GFP subcloned in-frame at the 5' end of full-length mature WX:

The 740 bp *Nde* I fragment containing SGFP from pEXS114 is subcloned into the *Nde* I site of pEXSWX. (See FIG.3a GFP-FLWX map.)

3. GFP subcloned in-frame at the 5' end of N-terminally truncated WX:

WX truncated by 700 bp at N-terminus.

The 1 kb BamH I fragment encoding the C-terminus of WX from pEXSWX is subcloned into the Bgl II site of pEXS115. Then the entire SGFP-truncated WX fragment is subcloned into pET21a as a Nde I-HindIII fragment. (See FIG. 3b GFP-BamHIWX map.)

4. GFP subcloned in-frame at the 5' end of truncated WX: WX truncated by 100 bp at N-terminus.

The 740 bp *Nde* I-*Nco* I fragment containing SGFP from pEXS115 is subcloned into pEXSWX at the *Nde* I and *Nco* I sites. (See Fig. 4 GFP-NcoWX map.)

#### Example Three:

#### Plasmid Transformation into Bacteria:

Escherichia coli competent cell preparation:

- 1. Inoculate 2.5 ml LB media with a single colony of desired *E. coli* strain: selected strain was XLIBLUE DL2IDE3 from (Stratagene); included appropriate antibiotics. Grow at 37°C, 250 rpm overnight.
- Inoculate 100 ml of LB media with a 1:50 dilution of the overnight culture,
   including appropriate antibiotics. Grow at 37°C, 250 rpm until OD<sub>600</sub>=0.3-0.5.
  - 3. Transfer culture to sterile centrifuge bottle and chill on ice for 15 minutes.

PCT/US97/17555

- 4. Centrifuge 5 minutes at 3,000x g (4°C).
- 5. Resuspend pellet in 8 ml ice-cold Transformation buffer. Incubate on ice for 15 minutes.
  - 6. Centrifuge 5 minutes at 3,000x g (4°C).
- 5 7. Resuspend pellet in 8 ml ice-cold Transformation buffer 2. Aliquot, flash-freeze in liquid nitrogen, and stored at -70°C.

|    | Transformation                      | on Buffer 1          | Transformation Buffer 2             |         |  |  |
|----|-------------------------------------|----------------------|-------------------------------------|---------|--|--|
|    | RbCl                                | 1.2 g                | MOPS (10 mM)                        | 0.209 g |  |  |
|    | MnCl <sub>2</sub> 4H <sub>2</sub> O | 0.99g                | RbCl                                | 0.12  g |  |  |
| 10 | K-Acetate                           | 0.294 g              | CaCl <sub>2</sub> 2H <sub>2</sub> O | 1.1 g   |  |  |
|    | CaCl <sub>2</sub> 2H <sub>2</sub> O | 0.15 g               | Glycerol                            | 15 g    |  |  |
|    | Glycerol                            | 15 g                 | dH <sub>2</sub> O                   | 100 ml  |  |  |
|    | $dH_2O$                             | 100 ml               | pH to 6.8 with NaO                  | Н       |  |  |
|    | pH to 5.8 wi                        | th 0.2 M acetic acid | Filter sterilize                    |         |  |  |
| 15 | Filter steriliz                     | e                    |                                     |         |  |  |

Escherichia coli transformation by rubidium chloride heat shock method: Hanahan, D. (1985) in DNA cloning: a practical approach (Glover, D.M. ed.), pp. 109-135, IRL Press.

- 1. Incubate 1-5  $\mu$ l of DNA on ice with 150  $\mu$ l *E. coli* competent cells for 30 minutes.
- 20 2. Heat shock at 42°C for 45 seconds.
  - 3. Immediately place on ice for 2 minutes.
  - 4. Add 600  $\mu$ l LB media and incubate at 37°C for 1 hour.

5. Plate on LB agar including the appropriate antibiotics.

This plasmid will express the hybrid polypeptide containing the green fluorescent protein within the bacteria.

#### **Example Four:**

#### 5 Expression of Construct in E. coli:

- 1. Inoculate 3 ml LB with *E. coli* containing plasmid of interest. Include appropriate antibiotics. 37°C, 250 rpm, overnight.
- 2. Inoculate 100 ml LB with 2 ml of overnight culture. Include appropriate antibiotics. Grow at 37°C, 250 rpm.
- 10 3. At  $OD_{600}$  about 0.4-0.5, place at room temperature, 200 rpm.
  - 4. At OD<sub>600</sub> about 0.6-0.8, induce with 100  $\mu$ l 1M 1PTG. Final 1PTG concentration is 1 mM.
  - 5. Grow at room temperature, 200 rpm, 4-5 hours.
  - 6. Collect cells by centrifugation.

20

15 7. Flash freeze in liquid nitrogen and store at -70°C until use.

Cells can be resuspended in  $dH_2O$  and viewed under UV light ( $\lambda_{max} = 395$  nm) for intrinsic fluorescence. Alternatively, the cells can be sonicated and an aliquot of the cell extract can be separated by SDS-PAGE and viewed under UV light to detect GFP fluorescence. When the protein employed is a green fluorescent protein, the presence of the protein in the lysed material can be evaluated under UV at 395 nm in a light box and the signature green glow can be identified.

WO 98/14601

50

#### **Example Five:**

#### Plasmid Extraction from Bacteria:

The following is one of many common alkaline lysis plasmid purification protocols useful in practicing this invention.

- 5 1. Inoculate 100-200 ml LB media with a single colony of E. coli transformed with the one of the plasmids described above. Include appropriate antibiotics. Grow at 37°C. 250 rpm overnight.
  - 2. Centrifuge 10 minutes at 5,000x g (4°C).
- 3. Resuspend cells in 10 ml water, transfer to a 15 ml centrifuge tube, and repeat 10 centrifugation.
  - 4. Resuspend pellet in 5 ml 0.1 M NaOH, 0.5% SDS. Incubate on ice for 10 minutes.
  - 5. Add 2.5 ml of 3 M sodium acetate (pH 5.2), invert gently, and incubate 10 minutes on ice.
  - 6. Centrifuge 5 minutes at 15,000-20,000x g (4°C).
- 15 7. Extract supernatant with an equal volume of phenol; chloroform; isoamyl alcohol (25:24:1).
  - 8. Centrifuge 10 minutes at 6,000-10,000x g (4°C).
  - 9. Transfer aqueous phase to clean tube and precipitate with 1 volume of isopropanol.
  - 10. Centrifuge 15 minutes at 12,000x g (4°C).
- 20 11. Dissolve pellet in 0.5 ml TE, add 20 µl of 10 mg/ml Rnase, and incubate 1 hour at 37°C.

51

- 12. Extract twice with phenol:chloroform:isoamyl alcohol (25:24:1).
- 13. Extract once with chloroform.
- 14. Precipitate aqueous phase with 1 volume of isopropanol and 0.1 volume of 3 M sodium acetate.
- 5 15. Wash pellet once with 70% ethanol.

10

16. Dry pellet in SpeedVac and resuspend pellet in TE.

This plasmid can then be inserted into other hosts.

### TABLE 8 DNA Sequence and Deduced Amino Acid Sequence of Starch Synthase Coding Region from pEXS52 [SEQ ID NO:20; SEQ ID NO:21]

FILE NAME: MSS1DELN.DNA SEQUENCE: NORMAL 1626 BP
CODON TABLE: UNIV.TCN

SEQUENCE REGION: 1 - 1626

TRANSLATION REGION: 1 - 1626

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

|   |    | (71) | SEÇ | SOPIAC | וט פי | SOCK | <br> | ים קטי | LD III | <br>• |                  |  |     |
|---|----|------|-----|--------|-------|------|------|--------|--------|-------|------------------|--|-----|
|   |    |      |     |        |       |      |      |        |        |       | CCT<br>Pro<br>65 |  | 48  |
| : | 20 |      |     |        |       |      |      |        |        |       | AGT<br>Ser       |  | 96  |
|   |    |      |     |        |       |      |      |        |        |       | AAA<br>Lys       |  | 144 |
| : | 25 |      |     |        |       |      |      |        |        |       | GCA<br>Ala       |  | 192 |
| : | 30 |      |     |        |       |      |      |        |        |       | CTT<br>Leu       |  | 240 |
|   |    |      |     |        |       |      |      |        |        |       | TAA<br>Asn       |  | 288 |

|      | 135             | 140         | 0                                           | 145 |   |
|------|-----------------|-------------|---------------------------------------------|-----|---|
|      | s Asn Tyr Ala A |             | T TAC ACA GAA A<br>TYr Thr Glu L<br>1       |     |   |
| 5    | B Phe Gly Gly G |             | A GTT ACC TTC T<br>u Val Thr Phe Pi<br>175  |     |   |
| 10   |                 |             | r GAT CAT CCC TO<br>l Asp His Pro So<br>190 |     | 1 |
|      |                 |             | r GGT GCT TTT G<br>e Gly Ala Phe G<br>205   |     |   |
| 15   |                 |             | T GCA TGT GAG G<br>a Ala Cys Glu A<br>O     |     |   |
|      | Gly Gly Tyr I   |             | A CAG AAT TGC A<br>y Gln Asn Cys M<br>2     |     |   |
| 20   | p His Ala Ser I |             | A GTC CTT CTT G<br>o Val Leu Leu A<br>255   |     |   |
| 25   |                 |             | C CGC AGC ATT C<br>r Arg Ser Ile L<br>270   |     | • |
|      |                 |             | T GCA AGC ACA TO<br>O Ala Ser Thr T<br>285  |     |   |
| 30 . |                 |             | T CTG GAG TGG G<br>a Leu Glu Trp V<br>O     |     |   |
|      | g Arg His Ala I |             | G GGT GAG GCA G<br>B Gly Glu Ala V<br>3     |     |   |
| 35   | a Val Val Thr A | Ala Asp Arg | A ATC GTG ACT G<br>g Ile Val Thr V<br>335   |     |   |
| 40   |                 |             | A GGT GGA CAG G<br>u Gly Gly Gln G<br>350   |     | ı |
|      |                 |             | A AAC GGA ATT G<br>u Asn Gly Ile V<br>365   |     |   |
| 45   |                 |             | A GAC AAA TGT A'<br>r Asp Lys Cys I<br>O    | _   |   |
|      | l Asp Asp Leu S |             | G GCC AAA TGT A<br>s Ala Lys Cys L<br>4     |     |   |

|    | CAG<br>Gln        | AAG<br>Lys<br>405 | GAG<br>Glu | CTG<br>Leu | GGT<br>Gly        | TTA<br>Leu        | CCT<br>Pro<br>410 | ATA<br>Ile | AGG<br>Arg | CCT<br>Pro        | GAT<br>Asp        | GTT<br>Val<br>415 | CCT<br>Pro | CTG<br>Leu | ATT<br>Ile        | GGC<br>Gly        | 1104 |
|----|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------|
| 5  | TTT<br>Phe<br>420 | ATT<br>Ile        | GGA<br>Gly | AGG<br>Arg | TTG<br>Leu        | GAT<br>Asp<br>425 | TAT<br>Tyr        | CAG<br>Gln | AAA<br>Lys | GGC<br>Gly        | ATT<br>Ile<br>430 | GAT<br>Asp        | CTC<br>Leu | ATT<br>Ile | CAA<br>Gln        | CTT<br>Leu<br>435 | 1152 |
|    | ATC<br>Ile        | ATA<br>Ile        | CCA<br>Pro | GAT<br>Asp | CTC<br>Leu<br>440 | ATG<br>Met        | CGG<br>Arg        | GAA<br>Glu | GAT<br>Asp | GTT<br>Val<br>445 | CAA<br>Gln        | TTT<br>Phe        | GTC<br>Val | ATG<br>Met | CTT<br>Leu<br>450 | GGA<br>Gly        | 1200 |
| 10 |                   |                   |            |            | GAG<br>Glu        |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1248 |
| 15 |                   |                   |            |            | TTT<br>Phe        |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1296 |
|    |                   |                   |            |            | GCC<br>Ala        |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1344 |
| 20 |                   |                   |            |            | CTC<br>Leu        |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1392 |
|    |                   |                   |            |            | GCA<br>Ala<br>520 |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1440 |
| 25 |                   |                   |            |            | GAG<br>Glu        |                   |                   |            |            | Gly               |                   |                   |            |            |                   |                   | 1488 |
| 30 |                   |                   |            |            | GAA<br>Glu        |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | 1536 |
|    |                   |                   |            |            | ACA<br>Thr        |                   |                   | Leu        |            |                   |                   |                   |            |            |                   |                   | 1584 |
| 35 |                   | Val               |            |            | CTT<br>Leu        |                   |                   |            |            |                   |                   | *                 |            |            |                   |                   | 1620 |
|    | (2)               | INF               | ORMA'      | TION       | FOR               | SEQ               | ID                | NO:2       | 1:         |                   |                   |                   |            |            |                   |                   |      |

#### (2) INFORMATION FOR SEQ ID NO:21:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 540 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Cys Val Ala Glu Leu Ser Arg Glu Asp Leu Gly Leu Glu Pro Glu Gly 1 5 10 15 45 Ile Ala Glu Gly Ser Ile Asp Asn Thr Val Val Val Ala Ser Glu Gln 20Asp Ser Glu Ile Val Val Gly Lys Glu Gln Ala Arg Ala Lys Val Thr 35 40 45

|    | Gln        | Ser<br>50  | Ile        | Val        | Phe        | Val        | Thr<br>55  | GIÀ        | Glu        | Ala        | Ser        | Pro<br>60  | Tyr        | Ala        | Lys        | Ser        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Gly<br>65  | Gly        | Leu        | Gly        | Asp        | Val<br>70  | Cys        | Gly        | Ser        | Leu        | Pro<br>75  | Val        | Ala        | Leu        | Ala        | Ala<br>80  |
| 5  | Arg        | Gly        | His        | Arg        | Val<br>85  | Met        | Val        | Val        | Met        | Pro<br>90  | Arg        | Tyr        | Leu        | Asn        | Gly<br>95  | Thr        |
|    | Ser        | Asp        | Lys        | Asn<br>100 | Tyr        | Ala        | Asn        | Ala        | Phe<br>105 | Tyr        | Thr        | Glu        | ГÀв        | His<br>110 | Ile        | Arg        |
| 10 | Ile        | Pro        | Сув<br>115 | Phe        | Gly        | Gly        | Glu        | His<br>120 | Glu        | Val        | Thr        | Phe        | Phe<br>125 | His        | Glu        | Tyr        |
|    | Arg        | Asp<br>130 | Ser        | Val        | Asp        | Trp        | Val<br>135 | Phe        | Val        | Asp        | His        | Pro<br>140 | Ser        | Tyr        | His        | Arg        |
|    | Pro<br>145 | Gly        | Asn        | Leu        | Tyr        | Gly<br>150 | Asp        | Lys        | Phe        | Gly        | Ala<br>155 | Phe        | Gly        | Asp        | Asn        | Gln<br>160 |
| 15 | Phe        | Arg        | Tyr        | Thr        | Leu<br>165 | Leu        | Cys        | Tyr        | Ala        | Ala<br>170 | Сув        | Glu        | Ala        | Pro        | Leu<br>175 | Ile        |
|    | Leu        | Glu        | Leu        | Gly<br>180 | Gly        | Tyr        | Ile        | Tyr        | Gly<br>185 | Gln        | Asn        | Сув        | Met        | Phe<br>190 | Val        | Val        |
| 20 | Asn        | Asp        | Trp<br>195 | His        | Ala        | Ser        | Leu        | Val<br>200 | Pro        | Val        | Leu        | Leu        | Ala<br>205 | Ala        | Lys        | Tyr        |
|    | Arg        | Pro<br>210 | Tyr        | Gly        | Val        | Tyr        | Lys<br>215 | Asp        | Ser        | Arg        | Ser        | Ile<br>220 | Leu        | Val        | Ile        | His        |
|    | Asn<br>225 | Leu        | Ala        | His        | Gln        | Gly<br>230 | Val        | Glu        | Pro        | Ala        | Ser<br>235 | Thr        | Tyr        | Pro        | Asp        | Leu<br>240 |
| 25 | Gly        | Leu        | Pro        | Pro        | Glu<br>245 | Trp        | Tyr        | Gly        | Ala        | Leu<br>250 | Glu        | Trp        | Val        | Phe        | Pro<br>255 | Glu        |
|    | Trp        | Ala        | Arg        | Arg<br>260 | His        | Ala        | Leu        | Asp        | Lys<br>265 | Gly        | Glu        | Ala        | Val        | Asn<br>270 | Phe        | Leu        |
| 30 | Lys        | Gly        | Ala<br>275 | Val        | Val        | Thr        | Ala        | Asp<br>280 | Arg        | Ile        | Val        | Thr        | Val<br>285 | Ser        | Lys        | Gly        |
|    | Tyr        | Ser<br>290 | Trp        | Glu        | Val        | Thr        | Thr<br>295 | Ala        | Glu        | Gly        | Gly        | Gln<br>300 | Gly        | Leu        | Asn        | Glu        |
|    | Leu<br>305 | Leu        | Ser        | Ser        | Arg        | Lys<br>310 | Ser        | Val        | Leu        | Asn        | Gly<br>315 | Ile        | Val        | Asn        | Gly        | Ile<br>320 |
| 35 | Asp        | Ile        | Asn        | Asp        | Trp<br>325 | Asn        | Pro        | Ala        | Thr        | Asp<br>330 | Lys        | Сув        | Ile        | Pro        | Cys<br>335 | His        |
|    | Tyr        | Ser        | Val        | Asp<br>340 | Asp        | Leu        | Ser        | Gly        | Lys<br>345 | Ala        | Lys        | Сув        | Lys        | Gly<br>350 | Ala        | Leu        |
| 40 | Gln        | Lys        | Glu<br>355 | Leu        | Gly        | Leu        | Pro        | 11e<br>360 | Arg        | Pro        | Asp        | Val        | Pro<br>365 | Leu        | Ile        | Gly        |
|    | Phe        | Ile<br>370 | Gly        | Arg        | Leu        | Asp        | Tyr<br>375 | Gln        | Lys        | Gly        | Ile        | Asp<br>380 | Leu        | Ile        | Gln        | Leu        |
|    | Ile<br>385 | Ile        | Pro        | Asp        | Leu        | Met<br>390 | Arg        | Glu        | Asp        | Val        | Gln<br>395 | Phe        | Val        | Met        | Leu        | Gly<br>400 |
| 45 | Ser        | Gly        | Asp        | Pro        | Glu<br>405 |            | Glu        | Asp        | Trp        | Met<br>410 |            | Ser        | Thr        | Glu        | Ser<br>415 |            |

55

Phe Lys Asp Lys Phe Arg Gly Trp Val Gly Phe Ser Val Pro Val S r

His Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe

5 Glu Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Gln Tyr Gly Thr Val

Pro Val Val His Ala Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Phe

Asn Pro Phe Gly Glu Asn Gly Glu Gln Gly Thr Gly Trp Ala Phe Ala 485 490 495

Pro Leu Thr Thr Glu Asn Met Phe Val Asp Ile Ala Asn Cys Asn Ile 500 505 510

Tyr Ile Gln Gly Thr Gln Val Leu Leu Gly Arg Ala Asn Glu Ala Arg

15 His Val Lys Arg Leu His Val Gly Pro Cys Arg

#### **Example Six:**

10

20

30

This experiment employs a plasmid having a maize promoter, a maize transit peptide, a starch-encapsulating region from the starch synthase I gene, and a ligated gene fragment attached thereto. The plasmid shown in FIG. 6 contains the DNA sequence listed in Table 8.

Plasmid pEXS52 was constructed according to the following protocol:

Materials used to construct transgenic plasmids are as follows:

Plasmid pBluescript SK-

Plasmid pMF6 (contain nos3' terminator)

25 Plasmid pHKH1 (contain maize adh1 intron)

> Plasmid MstsI(6-4) (contain maize stsI transit peptide, use as a template for PCT stsI transit peptide out)

Plasmid MstsIII in pBluescript SK-

Primers EXS29 (GTGGATCCATGGCGACGCCCTCGGCCGTGG) [SEQ ID NO:22]

EXS35 (CTGAATTCCATATGGGGCCCCTCCCTGCTCAGCTC) [SEQ ID NO:23] both used for PCT stsI transit peptide

Primers EXS31 (CTCTGAGCTCAAGCTTGCTACTTTCTTTCCTTAATG) [SEQ ID NO:24]

15

EXS32 (GTCTCCGCGGTGGTGTCCTTGCTTCCTAG) [SEQ ID NO:25] both used for PCR maize 10KD zein promoter (Journal: Gene 71:359-370 [1988]) Maize A632 genomic DNA (used as a template for PCR maize 10KD zein promoter).

Step 1: Clone maize 10KD zein promoter in pBluescriptSK-(named as pEXS10zp).

1. PCR 1.1Kb maize 10KD zein promoter

primers: EXS31, EXS32

template: maize A632 genomic DNA

2. Clone 1.1Kb maize, 10KD zein promoter PCR product into pBluescript SK-plasmid at SacI and SacII site (See FIG. 7).

10 Step 2: Delete NdeI site in pEXS10zp (named as pEXS10zp-NdeI).

NdeI is removed by fill in and blunt end ligation from maize 10KD zein promoter in pBluescriptSK.

Step 3: Clone maize adh1 intron in pBluescriptSK- (named as pEXSadh1).

Maize adh1 intron is released from plasmid pHKH1 at XbaI and BamHI sites. Maize adh1 intron (XbaI/BamHI fragment) is cloned into pBluescriptSK- at XbaI and BamHI sites (see FIG. 7).

Step 4: Clone maize 10KD zein promoter and maize adh1 intron into pBluescriptSK-(named as pEXS10zp-adh1).

Maize 10KD zein promoter is released from plasmid pEXS 10zp-NdeI at SacI and SacII sites. Maize 10KD zein promoter (SacI/SacII fragment) is cloned into plasmid pEXSadh1 (contain maize adh1 intron) at SacI and SacII sites (see FIG. 7).

10

15

Step 5: Clone maize nos3' terminator into plasmid pEXSadh1 (named as pEXSadh1-nos3').

Maize nos3' terminator is released from plasmid pMF6 at EcoRI and HindIII sites.

Maize nos3' terminator (EcoRI/HindIII fragment) is cloned into plasmid pEXSadh1 at

EcoRI and HindIII (see FIG. 7).

Step 6: Clone maize nos3' terminator into plasmid pEXS10zp-adh1 (named as pEXS10zp-adh1-nos3').

Maize nos3' terminator is released from plasmid pEXSadh1-nos3' at EcoRI and ApaI sites. Maize nos3' terminator (EcoRI/ApaI fragment) is cloned into plasmid pEXS10zp-adh1 at EcoRI and ApaI sites (see FIG. 7).

- Step 7: Clone maize STSI transit peptide into plasmid pEXS10zp-adh1-nos3' (named as pEXS33).
  - PCR 150bp maize STSI transit peptide primer: EXS29, EXS35 template: MSTSI(6-4) plasmid
  - 2. Clone 150bp maize STSI transit peptide PCR product into plasmid pEXS10zp-adh1-nos3' at EcoRI and BamHI sites (see FIG. 7).
- Step 8: Site-directed mutagenesis on maize STSI transit peptide in pEXS33 (named as pEXS33(m)).
- There is a mutation (stop codon) on maize STSI transit peptide in plasmid pEXS33.

  Site-directed mutagenesis is carried out to change stop codon to non-stop codon. New plasmid (containing maize 10KD zein promoter, maize STSI transit peptide, maize adh1 intron, maize nos3' terminator) is named as pEXS33(m).

58

Step 9: NotI site in pEXS33(m) deleted (named as pEXS50).

NotI site is removed from pEXS33 by NotI fillin, blunt end ligation to form pEXS50 (see FIG. 8).

Step 10: Maize adh1 intron deleted in pEXS33(m) (named as pEXS60).

Maize adh1 intron is removed by NotI/BamHI digestion, filled in with Klenow fragment, blunt end ligation to form pEXS60 (see FIG. 9).

Step 11: Clone maize STSIII into pEXS50, pEXS60.

5

10

15

20

Maize STSIII is released from plasmid maize STSIII in pBluescript SK- at NdeI and EcoRI sites. Maize STSIII (NdeI-EcoRI fragment) is cloned into pEXS50, pEXS60 separately, named as pEXS51, pEXS61 (see FIGS. 8 and 9, respectively).

Step 12: Clone the gene in Table 8 into pEXS51 at NdeI/NotI site to form pEXS52.

Other similar plasmids can be made by cloning other genes (STSI, II, WX, glgA, glgB, glgC, BEI, BEII, etc.) into pEXS51, pEXS61 at NdeI/NotI site.

Plasmid EXS52 was transformed into rice. The regenerated rice plants transformed with pEXS52 were marked and placed in a magenta box.

Two siblings of each line were chosen from the magenta box and transferred into 2.5 inch pots filled with soil mix (topsoil mixed with peat-vermiculite 50/50). The pots were placed in an aquarium (fish tank) with half an inch of water. The top was covered to maintain high humidity (some holes were made to help heat escape). A thermometer monitored the temperature. The fish tank was placed under fluorescent lights. No fertilizer was used on the plants in the first week. Light period was 6 a.m.-8 p.m., minimum 14 hours light. Temperature was minimum 68°F at night, 80°-90°F during the day. A heating mat was used under the fish tank to help root growth when necessary. The plants stayed in the

above condition for a week. (Note: the seedlings began to grow tall because of low light intensity.)

After the first week, the top of the aquarium was opened and rice transformants were transferred to growth chambers for three weeks with high humidity and high light intensity.

10

5

Alternatively, water mix in the greenhouse can be used to maintain high humidity. The plants grew for three weeks. Then the plants were transferred to 6-inch pots (minimum 5-inch pots) with soil mix (topsoil and peat-Vet, 50/50). The pots were in a tray filled with half an inch of water. 15-16-17 (N-K-P) was used to fertilize the plants (250 ppm) once a week or according to the plants' needs by their appearances. The plants remained in 14 hours light (minimum) 6 a.m.-8 p.m. high light intensity, temperature 85°-90°/70°F day/night.

The plants formed rice grains and the rice grains were harvested. These harvested seeds can have the starch extracted and analyzed for the presence of the ligated amino acids C, V, A, E, L, S, R, E [SEQ ID NO:27] in the starch within the seed.

#### **Example Seven:**

#### 15 SER Vector for Plants:

The plasmid shown in Figure 6 is adapted for use in monocots, i.e., maize. Plasmid pEXS52 (FIG. 6) has a promoter, a transit peptide (from maize), and a ligated gene fragment (TGC GTC GCG GAG CTG AGC AGG GAG) [SEQ ID NO:26] which encodes the amino acid sequence C V A E L S R E [SEQ ID NO:27].

20

25

This gene fragment naturally occurs close to the N-terminal end of the maize soluble starch synthase (MSTSI) gene. As is shown in TABLE 8, at about amino acid 292 the SER from the starch synthase begins. This vector is preferably transformed into a maize host. The transit peptide is adapted for maize so this is the preferred host. Clearly the transit peptide and the promoter, if necessary, can be altered to be appropriate for the host plant desired. After transformation by "whiskers" technology (U.S. Patent Nos. 5,302,523 and 5,464,765), the transformed host cells are regenerated by methods known in the art, the

10

15

20

25

transformant is pollinated, and the resultant kernels can be collected and analyzed for the presence of the peptide in the starch and the starch granule.

This plasmid may be transformed into other cereals such as rice, wheat, barley, oats, sorghum, or millet with little to no modification of the plasmid. The promoter may be the waxy gene promoter whose sequence has been published, or other zein promoters known to the art.

Additionally these plasmids, without undue experimentation, may be transformed into dicots such as potatoes, sweet potato, taro, yam, lotus cassava, peanuts, peas, soybean, beans, or chickpeas. The promoter may be selected to target the starch-storage area of particular dicots or tubers, for example the patatin promoter may be used for potato tubers.

Various methods of transforming monocots and dicots are known in the industry and the method of transforming the genes is not critical to the present invention. The plasmid can be introduced into Agrobacterium tumefaciens by the freeze-thaw method of An et al. (1988) Binary Vectors, in Plant Molecular Biology Manual A3, S.B. Gelvin and R.A. Schilperoot, eds. (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 1-19. Preparation of Agrobacterium inoculum carrying the construct and inoculation of plant material, regeneration of shoots, and rooting of shoots are described in Edwards et al., "Biochemical and molecular characterization of a novel starch synthase from potatoes," Plant J. 8, 283-294 (1995).

A number of encapsulating regions are present in a number of different genes.

Although it is preferred that the protein be encapsulated within the starch granule (granule encapsulation), encapsulation within non-granule starch is also encompassed within the scope of the present invention in the term "encapsulation." The following types of genes are useful for this purpose.

#### Use of Starch-Encapsulating Regions of Glycogen Synthase:

5

10

15

20

25

E. coli glycogen synthase is not a large protein: the structural gene is 1431 base pairs in length, specifying a protein of 477 amino acids with an estimated molecular weight of 49,000. It is known that problems of codon usage can occur with bacterial genes inserted into plant genomes but this is generally not so great with E. coli genes as with those from other bacteria such as those from Bacillus. Glycogen synthase from E. coli has a codon usage profile much in common with maize genes but it is preferred to alter, by known procedures, the sequence at the translation start point to be more compatible with a plant consensus sequence:

glgA G A T A A T G C A G [SEQ ID NO:31] cons A A C A A T G G C T [SEQ ID NO:32]

#### Use of Starch-Encapsulating Regions of Soluble Starch Synthase:

cDNA clones of plant-soluble starch synthases are described in the background section above and can be used in the present invention. The genes for any such SSTS protein may be used in constructs according to this invention.

#### Use of Starch-Encapsulating Regions of Branching Enzyme:

cDNA clones of plant, bacterial and animal branching enzymes are described in the background section above can be used in the present invention. Branching enzyme [1,4Dglucan: 1,4Dglucan 6D(1,4Dglucano) transferase (E.C. 2.4.1.18)] converts amylose to amylopectin, (a segment of a 1,4Dglucan chain is transferred to a primary hydroxyl group in a similar glucan chain) sometimes called Q-enzyme.

The sequence of maize branching enzyme I was investigated by Baba et al. (1991) BBRC, 181:87-94. Starch branching enzyme II from maize endosperm was investigated by

Fisher et al. (1993) Plant Physiol, 102:1045-1046. The BE gene construct may require the presence of an amyloplast transit peptide to ensure its correct localization in the amyloplast. The genes for any such branching enzyme of GBSTS protein may be used in constructs according to this invention.

#### 5 Use of Starch-Binding Domains of Granule-Bound Starch Synthase:

The use of cDNA clones of plant granule-bound starch synthases are described in Shure et al. (1983) Cell 35:225-233, and Visser et al. (1989) Plant Sci. 64(2):185-192. Visser et al. have also described the inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs (1991) Mol. Gen. Genetic 225(2):289-296; (1994) The Plant Cell 6:43-52.) Shimada et al. show antisense in rice (1993) Theor. Appl. Genet. 86:665-672. Van der Leij et al. show restoration of amylose synthesis in low-amylose potato following transformation with the wild-type waxy potato gene (1991) Theor. Appl. Genet. 82:289-295.

The amino acid sequences and nucleotide sequences of granule starch synthases from, for example, maize, rice, wheat, potato, cassava, peas or barley are well known. The genes for any such GBSTS protein may be used in constructs according to this invention.

#### **Construction of Plant Transformation Vectors:**

Plant transformation vectors for use in the method of the invention may be constructed using standard techniques

Use of Transit Peptide Sequences:

WO 98/14601

10

15

20 -

25

Some gene constructs require the presence of an amyloplast transit peptide to ensure correct localization in the amyloplast. It is believed that chloroplast transit peptides have similar sequences (Heijne et al. describe a database of chloroplast transit peptides in (1991) Plant Mol. Biol. Reporter, 9(2):104-126). Other transit peptides useful in this invention are those of ADPG pyrophosphorylase (1991) Plant Mol. Biol. Reporter, 9:104-126), small subunit RUBISCO, acetolactate synthase, glyceraldehyde3Pdehydrogenase and nitrite reductase.

The consensus sequence of the transit peptide of small subunit RUBISCO from many genotypes has the sequence:

MASSMLSSAAVATRTNPAQASM VAPFTGLKSAAFPVSRKQNLDI TSIASNGGRVQC [SEQ ID NO:33]

5 The corn small subunit RUBISCO has the sequence:

MAPTVMMASSATATRTNPAQAS AVAPFQGLKSTASLPVARRSSR SLGNVASNGGRIRC [SEQ ID NO:34]

The transit peptide of leaf glyceraldehyde3Pdehydrogenase from corn has the sequence:

10 MAQILAPSTQWQMRITKTSPCA TPITSKMWSSLVMKQTKKVAHS AKFRVMAVNSENGT [SEQ ID NO:35]

The transit peptide sequence of corn endosperm-bound starch synthase has the sequence:

MAALATSQLVATRAGHGVPDASTFRRGAAQGLRGARASAAADTLSMRTSARAAPRHQ QQARRGGRFPFPSLVVC [SEQ ID NO:36]

The transit peptide sequence of corn endosperm soluble starch synthase has the sequence:

MATPSAVGAACLLLARXAWPAAVGDRARPRRLQRVLRRR [SEQ ID NO:37]

Engineering New Amino Acids or Peptides into Starch-Encapsulating Proteins:

The starch-binding proteins used in this invention may be modified by methods known to those skilled in the art to incorporate new amino acid combinations. For example,

10

15

20

25

sequences of starch-binding proteins may be modified to express higher-than-normal levels of lysine, methionine or tryptophan. Such levels can be usefully elevated above natural levels and such proteins provide nutritional enhancement in crops such as cereals.

In addition to altering amino acid balance, it is possible to engineer the starch-binding proteins so that valuable peptides can be incorporated into the starch-binding protein.

Attaching the payload polypeptide to the starch-binding protein at the N-terminal end of the protein provides a known means of adding peptide fragments and still maintaining starch-binding capacity. Further improvements can be made by incorporating specific protease cleavage sites into the site of attachment of the payload polypeptide to the starch-encapsulating region. It is well known to those skilled in the art that proteases have preferred specificities for different amino-acid linkages. Such specificities can be used to provide a vehicle for delivery of valuable peptides to different regions of the digestive tract of animals and man.

In yet another embodiment of this invention, the payload polypeptide can be released following purification and processing of the starch granules. Using amylolysis and/or gelatinization procedures it is known that the proteins bound to the starch granule can be released or become available for proteolysis. Thus recovery of commercial quantities of proteins and peptides from the starch granule matrix becomes possible.

In yet another embodiment of the invention it is possible to process the starch granules in a variety of different ways in order to provide a means of altering the digestibility of the starch. Using this methodology it is possible to change the bioavailablility of the proteins, peptides or amino acids entrapped within the starch granules.

Although the foregoing invention has been described in detail by way of illustration and example for purposes of clarity and understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

65

#### SEQUENCE LISTING

- (1) GENERAL INFORMATION:
  - (i) APPLICANT: Keeling, Peter Guan, Hanping
  - (ii) TITLE OF INVENTION: Starch Encapsulation
  - (iii) NUMBER OF SEQUENCES: 37
  - (iv) CORRESPONDENCE ADDRESS:
    - (A) ADDRESSEE: Greenlee, Winner and Sullivan, P.C.
    - (B) STREET: 5370 Manhattan Circle
    - (C) CITY: Boulder
    - (D) STATE: CO
    - (E) COUNTRY: US
    - (F) ZIP: 80303
  - (v) COMPUTER READABLE FORM:
    - (A) MEDIUM TYPE: Floppy disk
    - (B) COMPUTER: IBM PC compatible
    - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
    - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
  - (vi) CURRENT APPLICATION DATA:
    - (A) APPLICATION NUMBER: US
    - (B) FILING DATE: 30-SEP-1997
    - (C) CLASSIFICATION:
  - (vii) PRIOR APPLICATION DATA:
    - (A) APPLICATION NUMBER: US 60/026,855
    - (B) FILING DATE: 30-SEP-1996
  - (viii) ATTORNEY/AGENT INFORMATION:
    - (A) NAME: Winner, Ellen P
    - (B) REGISTRATION NUMBER: 28,547
    - (C) REFERENCE/DOCKET NUMBER: 89-97
    - (ix) TELECOMMUNICATION INFORMATION:
      - (A) TELEPHONE: (303) 499-8080
      - (B) TELEFAX: (303) 499-8089
- (2) INFORMATION FOR SEQ ID NO:1:

|          | 66                                         |    |
|----------|--------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:                  |    |
|          | (A) LENGTH: 31 base pairs                  |    |
|          | (B) TYPE: nucleic acid                     |    |
|          | (C) STRANDEDNESS: single                   |    |
|          | (D) TOPOLOGY: linear                       |    |
| (ii)     | MOLECULE TYPE: other nucleic acid          |    |
|          | (A) DESCRIPTION: /desc = "Oligonucleotide" |    |
| (iii)    | HYPOTHETICAL: NO                           |    |
|          |                                            |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO:1:         |    |
| GACTAGTC | AT ATGGTGAGCA AGGGCGAGGA G                 | 31 |
| (2) INFO | RMATION FOR SEQ ID NO:2:                   |    |
| (i)      | SEQUENCE CHARACTERISTICS:                  |    |
|          | (A) LENGTH: 36 base pairs                  |    |
|          | (B) TYPE: nucleic acid                     |    |
|          | (C) STRANDEDNESS: single                   |    |
|          | (D) TOPOLOGY: linear                       |    |
| (ii)     | MOLECULE TYPE: other nucleic acid          |    |
|          | (A) DESCRIPTION: /desc = "Oligonucleotide" |    |
| (iii)    | HYPOTHETICAL: NO                           |    |
|          |                                            |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO:2:         |    |
| CTAGATCT | TC ATATGCTTGT ACAGCTCGTC CATGCC            | 36 |
| (2) INFO | RMATION FOR SEQ ID NO:3:                   |    |
| (i)      | SEQUENCE CHARACTERISTICS:                  |    |
|          | (A) LENGTH: 39 base pairs                  |    |
|          | (B) TYPE: nucleic acid                     |    |
|          | (C) STRANDEDNESS: single                   |    |

(D) TOPOLOGY: linear

67

| (ii) MOLECULE TYPE: other nucleic acid                            |     |
|-------------------------------------------------------------------|-----|
| (A) DESCRIPTION: /desc = "Oligonucleotide"                        |     |
| (iii) HYPOTHETICAL: NO                                            |     |
| (111) 1111011111111111111111111111111111                          |     |
|                                                                   |     |
|                                                                   |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:                           |     |
| (,,                                                               |     |
| CTAGATCTTG GCCATGGCCT TGTACAGCTC GTCCATGCC                        | 39  |
| /2) INFORMATION FOR SEC ID NO.4.                                  |     |
| (2) INFORMATION FOR SEQ ID NO:4:                                  |     |
| (i) SEQUENCE CHARACTERISTICS:                                     |     |
| (A) LENGTH: 4800 base pairs                                       |     |
| (B) TYPE: nucleic acid                                            |     |
| (C) STRANDEDNESS: double (D) TOPOLOGY: not relevant               |     |
| (b) reregent new generality                                       |     |
| (ii) MOLECULE TYPE: DNA (genomic)                                 |     |
| (iii) HYPOTHETICAL: NO                                            |     |
| (111) mioinarional no                                             |     |
| (vi) ORIGINAL SOURCE:                                             |     |
| (A) ORGANISM: Zea mays                                            |     |
| (ix) FEATURE:                                                     |     |
| (A) NAME/KEY: CDS                                                 |     |
| (B) LOCATION: join(14491553, 16851765, 18601958, 2055             |     |
| 2144, 22262289, 24132513, 26512760, 2858                          |     |
| 3101, 32123394, 34903681, 37933879, 3977<br>4105, 42274343)       |     |
| 4105, 42274343)                                                   |     |
|                                                                   |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:                           |     |
| CAGCGACCTA TTACACAGCC CGCTCGGGCC CGCGACGTCG GGACACATCT TCTTCCCCCT | 60  |
| ondernoth linenendes edulades educated danenentel lellececti      | 00  |
| TTTGGTGAAG CTCTGCTCGC AGCTGTCCGG CTCCTTGGAC GTTCGTGTGG CAGATTCATC | 120 |
|                                                                   |     |
| TGTTGTCTCG TCTCCTGTGC TTCCTGGGTA GCTTGTGTAG TGGAGCTGAC ATGGTCTGAG | 180 |
| CAGGCTTAAA ATTTGCTCGT AGACGAGGAG TACCAGCACA GCACGTTGCG GATTTCTCTG | 240 |

| CCTGTGAAGT GCAACGTCTA GGATTGTCAC ACGCCTTGGT CGCGTCGCGT                                                                           | 300  |
|----------------------------------------------------------------------------------------------------------------------------------|------|
| CGATGCGGTG GTGAGCAGAG CAGCAACAGC TGGGCGGCCC AACGTTGGCT TCCGTGTCTT                                                                | 360  |
| CGTCGTACGT ACGCGCGCGC CGGGGACACG CAGCAGAGAG CGGAGAGCGA GCCGTGCACG                                                                | 420  |
| GGGAGGTGGT GTGGAAGTGG AGCCGCGCGC CCGGCCGCCC GCGCCCGGTG GGCAACCCAA                                                                | 480  |
| AAGTACCCAC GACAAGCGAA GGCGCCAAAG CGATCCAAGC TCCGGAACGC AACAGCATGC                                                                | 540  |
| GTCGCGTCGG AGAGCCAGCC ACAAGCAGCC GAGAACCGAA CCGGTGGGCG ACGCGTCATG                                                                | 600  |
| GGACGGACGC GGGCGACGCT TCCAAACGGG CCACGTACGC CGGCGTGTGC GTGCGTGCAG                                                                | 660  |
| ACGACAAGCC AAGGCGAGGC AGCCCCCGAT CGGGAAAGCG TTTTGGGCGC GAGCGCTGGC                                                                | 720  |
| GTGCGGGTCA GTCGCTGGTG CGCAGTGCCG GGGGGAACGG GTATCGTGGG GGGCGCGGGC                                                                | 780  |
| GGAGGAGAGC GTGGCGAGGG CCGAGAGCAG CGCGCCCCAC                                                                                      | 840  |
| GTACTGCCCT CCCCCTCCGC GCGCGCTAGA AATACCGAGG CCTGGACCGG GGGGGGGCCC                                                                | 900  |
| CGTCACATCC ATCCATCGAC CGATCGATCG CCACAGCCAA CACCACCCGC CGAGGCGACG                                                                | 960  |
| CGACAGCCGC CAGGAGGAAG GAATAAACTC ACTGCCAGCC AGTGAAGGGG GAGAAGTGTA                                                                | 1020 |
| CTGCTCCGTC GACCAGTGCG CGCACCGCCC GGCAGGGCTG CTCATCTCGT CGACGACCAG                                                                | 1080 |
| GTTCTGTTCC GTTCCGATCC GATCCGATCC TGTCCTTGAG TTTCGTCCAG ATCCTGGCGC                                                                | 1140 |
| GTATCTGCGT GTTTGATGAT CCAGGTTCTT CGAACCTAAA TCTGTCCGTG CACACGTCTT                                                                | 1200 |
| TTCTCTCTCT CCTACGCAGT GGATTAATCG GCATGGCGGC TCTGGCCACG TCGCAGCTCG                                                                | 1260 |
| TCGCAACGCG CGCCGGCCTG GGCGTCCCGG ACGCGTCCAC GTTCCGCCGC GGCGCCGCGC                                                                | 1320 |
| AGGGCCTGAG GGGGGCCCGG GCGTCGGCGG CGGCGGACAC GCTCAGCATG CGGACCAGCG                                                                | 1380 |
| CGCGCGCGC GCCCAGGCAC CAGCAGCAGG CGCGCCGCG GGGCAGGTTC CCGTCGCTCG                                                                  | 1440 |
| TCGTGTGC GCC AGC GCC GGC ATG AAC GTC GTC TTC GTC GGC GCC GAG ATG Ala Ser Ala Gly Met Asn Val Val Phe Val Gly Ala Glu Met  1 5 10 | 1490 |
| GCG CCG TGG AGC AAG ACC GGC GGC CTC GGC GAC GTC CTC GGC GGC CTG                                                                  | 1538 |

| Ala Pro Trp Ser Lys Thr Gly Gly Leu Gly Asp Val Leu Gly Gly I<br>15 20 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Leu<br>30       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| CCG CCG GCC ATG GCC GTAAGCGCGC GCACCGAGAC ATGCATCCGT TGGATCGC Pro Pro Ala Met Ala 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGT 1593        |
| CTTCTTCGTG CTCTTGCCGC GTGCATGATG CATGTGTTTC CTCCTGGCTT GTGTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CGTGT 1653      |
| ATGTGACGTG TTTGTTCGGG CATGCATGCA G GCG AAC GGG CAC CGT GTC AT Ala Asn Gly His Arg Val Me 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| GTC GTC TCT CCC CGC TAC GAC CAG TAC AAG GAC GCC TGG GAC ACC ACC ACC Val Val Ser Pro Arg Tyr Asp Gln Tyr Lys Asp Ala Trp Asp Thr S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| GTC GTG TCC GAG GTACGGCCAC CGAGACCAGA TTCAGATCAC AGTCACACAC Val Val Ser Glu 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1805            |
| ACCGTCATAT GAACCTTTCT CTGCTCTGAT GCCTGCAACT GCAAATGCAT GCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATC 1862<br>Ile |
| AAG ATG GGA GAC GGG TAC GAG ACG GTC AGG TTC TTC CAC TGC TAC ACC Lys Met Gly Asp Gly Tyr Glu Thr Val Arg Phe Phe His Cys Tyr I 65 70 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| CGC GGA GTG GAC CGC GTG TTC GTT GAC CAC CCA CTG TTC CTG GAG A Arg Gly Val Asp Arg Val Phe Val Asp His Pro Leu Phe Leu Glu A 80 85 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| GTGAGACGAG ATCTGATCAC TCGATACGCA ATTACCACCC CATTGTAAGC AGTTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAGTG 2018      |
| AGCTTTTTTT CCCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVal Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CCCCCGGCC TGGTCGCTGG TTTCAG GTT TGG GGA AAG ACC CVAL Trp Gly Lys Thr CVAL Trp Gly |                 |
| GAG AAG ATC TAC GGG CCT GTC GCT GGA ACG GAC TAC AGG GAC AAC GGlu Lys Ile Tyr Gly Pro Val Ala Gly Thr Asp Tyr Arg Asp Asn G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| CTG CGG TTC AGC CTG CTA TGC CAG GTCAGGATGG CTTGGTACTA CAACTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CATA 2174       |

WO 98/14601

120

TCATCTGTAT GCAGCAGTAT ACACTGATGA GAAATGCATG CTGTTCTGCA G GCA GCA 2231 Ala Ala CTT GAA GCT CCA AGG ATC CTG AGC CTC AAC AAC AAC CCA TAC TTC TCC 2279 Leu Glu Ala Pro Arg Ile Leu Ser Leu Asn Asn Asn Pro Tyr Phe Ser 130 135 GGA CCA TAC G GTAAGAGTTG CAGTCTTCGT ATATATATCT GTTGAGCTCG 2329 Gly Pro Tyr 145 AGAATCTTCA CAGGAAGCGG CCCATCAGAC GGACTGTCAT TTTACACTGA CTACTGCTGC 2389 TGCTCTTCGT CCATCCATAC AAG GG GAG GAC GTC GTG TTC GTC TGC AAC 2438 Gly Glu Asp Val Val Phe Val Cys Asn 150 GAC TGG CAC ACC GGC CCT CTC TCG TGC TAC CTC AAG AGC AAC TAC CAG 2486 Asp Trp His Thr Gly Pro Leu Ser Cys Tyr Leu Lys Ser Asn Tyr Gln 160 165 170 2533 Ser His Gly Ile Tyr Arg Asp Ala Lys 175 CAACGCCGTT TTCGTTCTCC ATGCTCGTAT ATACCTCGTC TGGTAGTGGT GGTGCTTCTC 2593 TGAGAAACTA ACTGAAACTG ACTGCATGTC TGTCTGACCA TCTTCACGTA CTACCAG 2650 ACC GCT TTC TGC ATC CAC AAC ATC TCC TAC CAG GGC CGG TTC GCC TTC 2698 Thr Ala Phe Cys Ile His Asn Ile Ser Tyr Gln Gly Arg Phe Ala Phe 185 190 TCC GAC TAC CCG GAG CTG AAC CTC CCG GAG AGA TTC AAG TCG TCC TTC 2746 Ser Asp Tyr Pro Glu Leu Asn Leu Pro Glu Arg Phe Lys Ser Ser Phe 200 205 210 GAT TTC ATC GAC GG GTCTGTTTTC CTGCGTGCAT GTGAACATTC ATGAATGGTA 2800 Asp Phe Ile Asp Gly 215 ACCCACAACT GTTCGCGTCC TGCTGGTTCA TTATCTGACC TGATTGCATT ATTGCAG C 2858

70

PCT/US97/17555

| TAC                                           | GAG                                                         | AAG                                    | CCC                                                         | GTG                                                         | GAA                                           | GGC                                           | CGG                                    | AAG                                                         | ATC                                                  | AAC                                                         | TGG                                           | ATG                                                  | AAG                                    | GCC                                           | GGG                                           | 2906                 |
|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------|
| Tyr                                           | Glu                                                         | Lys                                    | Pro                                                         | Val                                                         | Glu                                           | Gly                                           | Arg                                    | Lys                                                         | Ile                                                  | Asn                                                         | Trp                                           | Met                                                  | Lys                                    | Ala                                           | Gly                                           |                      |
|                                               |                                                             | 220                                    |                                                             |                                                             |                                               |                                               | 225                                    |                                                             |                                                      |                                                             |                                               | 230                                                  |                                        |                                               |                                               |                      |
|                                               |                                                             |                                        |                                                             |                                                             |                                               | 0.00                                          | ama                                    |                                                             | C.T.C.                                               | 200                                                         | 000                                           | <b></b>                                              | m> 0                                   | ~~~                                           | <b>63.6</b>                                   | 2054                 |
|                                               |                                                             |                                        |                                                             |                                                             |                                               | GTC                                           |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               | 2954                 |
| 116                                           | 235                                                         | GIU                                    | Ala                                                         | Wab                                                         | Arg                                           | Val<br>240                                    | Leu                                    | THE                                                         | vai                                                  | ser                                                         | 245                                           | TAL                                                  | TYL                                    | MIA                                           | GIU                                           |                      |
|                                               | 233                                                         |                                        |                                                             |                                                             |                                               | 240                                           |                                        |                                                             |                                                      |                                                             | 243                                           |                                                      |                                        |                                               |                                               |                      |
| GAG                                           | CTC                                                         | ATC                                    | TCC                                                         | GGC                                                         | ATC                                           | GCC                                           | AGG                                    | GGC                                                         | TGC                                                  | GAG                                                         | CTC                                           | GAC                                                  | AAC                                    | ATC                                           | ATG                                           | 3002                 |
| Glu                                           | Leu                                                         | Ile                                    | Ser                                                         | Gly                                                         | Ile                                           | Ala                                           | Arg                                    | Gly                                                         | Сув                                                  | Glu                                                         | Leu                                           | Asp                                                  | Asn                                    | Ile                                           | Met                                           |                      |
| 250                                           |                                                             |                                        |                                                             |                                                             | 255                                           |                                               |                                        |                                                             |                                                      | 260                                                         |                                               |                                                      |                                        |                                               | 265                                           |                      |
|                                               |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
| CGC                                           | CTC                                                         | ACC                                    | GGC                                                         | ATC                                                         | ACC                                           | GGC                                           | ATC                                    | GTC                                                         | AAC                                                  | GGC                                                         | ATG                                           | GAC                                                  | GTC                                    | AGC                                           | GAG                                           | 3050                 |
| Arg                                           | Leu                                                         | Thr                                    | Gly                                                         | Ile                                                         | Thr                                           | Gly                                           | Ile                                    | Val                                                         | Asn                                                  | Gly                                                         | Met                                           | yab                                                  | Val                                    | Ser                                           | Glu                                           |                      |
|                                               |                                                             |                                        |                                                             | 270                                                         |                                               |                                               |                                        |                                                             | 275                                                  |                                                             |                                               |                                                      |                                        | 280                                           |                                               |                      |
| m~-                                           | ~~~                                                         |                                        |                                                             |                                                             |                                               |                                               | m> ~                                   | 3 m.c                                                       | ~~~                                                  |                                                             |                                               | m                                                    | ~~~                                    |                                               | maa                                           | 2000                 |
|                                               |                                                             |                                        |                                                             |                                                             |                                               | AAG                                           |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               | 3098                 |
| пр                                            | Asp                                                         | Pro                                    | 285                                                         | Arg                                                         | wab                                           | ГÀа                                           | TAL                                    | 290                                                         | WIG                                                  | vai                                                         | гув                                           | ığı                                                  | 295                                    | VAI                                           | ser                                           |                      |
|                                               |                                                             |                                        | 203                                                         |                                                             |                                               |                                               |                                        | 250                                                         |                                                      |                                                             |                                               |                                                      | 2,5                                    |                                               |                                               |                      |
| ACG                                           | GTG                                                         | AGCTO                                  | GC 5                                                        | rage:                                                       | CTG                                           | AT TO                                         | CTGC                                   | rgee:                                                       | r GGT                                                | CCT                                                         | CCTG                                          | CTC                                                  | ATCAT                                  | rgc                                           |                                               | 3151                 |
| Thr                                           |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
|                                               |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
|                                               |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
|                                               |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
| TGG'                                          | rtcg(                                                       | GTA (                                  | CTGA                                                        | CGCGG                                                       | GC A                                          | AGTG:                                         | racg:                                  | r acc                                                       | GTGC                                                 | STGC                                                        | GAC                                           | GTG                                                  | etg 1                                  | rccgo                                         | STTCAG                                        | 3211                 |
|                                               |                                                             |                                        |                                                             |                                                             |                                               |                                               |                                        |                                                             |                                                      |                                                             |                                               |                                                      |                                        |                                               |                                               |                      |
| GCC                                           | GTG                                                         | GAG                                    | GCC                                                         | AAG                                                         | GCG                                           | CTG                                           | AAC                                    | AAG                                                         | GAG                                                  | GCG                                                         | CTG                                           | CAG                                                  | GCG                                    | GAG                                           | GTC                                           | 3211<br>3259         |
| GCC                                           | GTG<br>Val                                                  | GAG                                    | GCC                                                         | AAG                                                         | GCG                                           | CTG<br>Leu                                    | AAC                                    | AAG                                                         | GAG                                                  | GCG                                                         | CTG<br>Leu                                    | CAG                                                  | GCG                                    | GAG                                           | GTC                                           |                      |
| GCC                                           | GTG                                                         | GAG                                    | GCC                                                         | AAG                                                         | GCG                                           | CTG                                           | AAC                                    | AAG                                                         | GAG                                                  | GCG                                                         | CTG                                           | CAG                                                  | GCG                                    | GAG                                           | GTC                                           |                      |
| GCC<br>Ala                                    | GTG<br>Val<br>300                                           | GAG<br>Glu                             | GCC<br>Ala                                                  | AAG<br>Lys                                                  | GCG<br>Ala                                    | CTG<br>Leu<br>305                             | AAC<br>Asn                             | AAG<br>Lys                                                  | GAG<br>Glu                                           | GCG<br>Ala                                                  | CTG<br>Leu<br>310                             | CAG<br>Gln                                           | GCG<br>Ala                             | GAG<br>Glu                                    | GTC<br>Val                                    | 3259                 |
| GCC<br>Ala                                    | GTG<br>Val<br>300                                           | GAG<br>Glu<br>CCG                      | GCC<br>Ala                                                  | AAG<br>Lys                                                  | GCG<br>Ala                                    | CTG<br>Leu<br>305                             | AAC<br>Asn                             | AAG<br>Lys<br>CCG                                           | GAG<br>Glu<br>CTG                                    | GCG<br>Ala<br>GTG                                           | CTG<br>Leu<br>310                             | CAG<br>Gln<br>TTC                                    | GCG<br>Ala                             | GAG<br>Glu<br>GGC                             | GTC<br>Val                                    |                      |
| GCC<br>Ala                                    | GTG<br>Val<br>300                                           | GAG<br>Glu<br>CCG                      | GCC<br>Ala                                                  | AAG<br>Lys                                                  | GCG<br>Ala                                    | CTG<br>Leu<br>305                             | AAC<br>Asn                             | AAG<br>Lys<br>CCG                                           | GAG<br>Glu<br>CTG                                    | GCG<br>Ala<br>GTG                                           | CTG<br>Leu<br>310                             | CAG<br>Gln<br>TTC                                    | GCG<br>Ala                             | GAG<br>Glu<br>GGC                             | GTC<br>Val                                    | 3259                 |
| GCC<br>Ala<br>GGG<br>Gly                      | GTG<br>Val<br>300                                           | GAG<br>Glu<br>CCG                      | GCC<br>Ala                                                  | AAG<br>Lys                                                  | GCG<br>Ala<br>CGG<br>Arg                      | CTG<br>Leu<br>305                             | AAC<br>Asn                             | AAG<br>Lys<br>CCG                                           | GAG<br>Glu<br>CTG                                    | GCG<br>Ala<br>GTG<br>Val                                    | CTG<br>Leu<br>310                             | CAG<br>Gln<br>TTC                                    | GCG<br>Ala                             | GAG<br>Glu<br>GGC                             | GTC<br>Val<br>AGG<br>Arg                      | 3259                 |
| GCC<br>Ala<br>GGG<br>Gly<br>315               | GTG<br>Val<br>300<br>CTC<br>Leu                             | GAG<br>Glu<br>CCG<br>Pro               | GCC<br>Ala<br>GTG<br>Val                                    | AAG<br>Lys<br>GAC<br>Asp                                    | GCG<br>Ala<br>CGG<br>Arg<br>320               | CTG<br>Leu<br>305                             | AAC<br>Asn<br>ATC<br>Ile               | AAG<br>Lys<br>CCG<br>Pro                                    | GAG<br>Glu<br>CTG<br>Leu                             | GCG<br>Ala<br>GTG<br>Val<br>325                             | CTG<br>Leu<br>310<br>GCG<br>Ala               | CAG<br>Gln<br>TTC<br>Phe                             | GCG<br>Ala<br>ATC<br>Ile               | GAG<br>Glu<br>GGC<br>Gly                      | GTC<br>Val<br>AGG<br>Arg<br>330               | 3259                 |
| GCC<br>Ala<br>GGG<br>Gly<br>315               | GTG<br>Val<br>300<br>CTC<br>Leu                             | GAG<br>Glu<br>CCG<br>Pro               | GCC<br>Ala<br>GTG<br>Val                                    | AAG<br>Lys<br>GAC<br>Asp                                    | GCG<br>Ala<br>CGG<br>Arg<br>320               | CTG<br>Leu<br>305<br>AAC<br>Asn               | AAC<br>Asn<br>ATC<br>Ile               | AAG<br>Lys<br>CCG<br>Pro                                    | GAG<br>Glu<br>CTG<br>Leu                             | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG                      | CTG<br>Leu<br>310<br>GCG<br>Ala               | CAG<br>Gln<br>TTC<br>Phe                             | GCG<br>Ala<br>ATC<br>Ile               | GAG<br>Glu<br>GGC<br>Gly                      | GTC<br>Val<br>AGG<br>Arg<br>330               | 3259<br>3307         |
| GCC<br>Ala<br>GGG<br>Gly<br>315               | GTG<br>Val<br>300<br>CTC<br>Leu                             | GAG<br>Glu<br>CCG<br>Pro               | GCC<br>Ala<br>GTG<br>Val                                    | AAG<br>Lys<br>GAC<br>Asp                                    | GCG<br>Ala<br>CGG<br>Arg<br>320               | CTG<br>Leu<br>305<br>AAC<br>Asn               | AAC<br>Asn<br>ATC<br>Ile               | AAG<br>Lys<br>CCG<br>Pro                                    | GAG<br>Glu<br>CTG<br>Leu                             | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG                      | CTG<br>Leu<br>310<br>GCG<br>Ala               | CAG<br>Gln<br>TTC<br>Phe                             | GCG<br>Ala<br>ATC<br>Ile               | GAG<br>Glu<br>GGC<br>Gly                      | GTC<br>Val<br>AGG<br>Arg<br>330               | 3259<br>3307         |
| GCC<br>Ala<br>GGG<br>Gly<br>315               | GTG<br>Val<br>300<br>CTC<br>Leu                             | GAG<br>Glu<br>CCG<br>Pro               | GCC<br>Ala<br>GTG<br>Val                                    | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys                      | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC        | CTG<br>Leu<br>305<br>AAC<br>Asn               | AAC<br>Asn<br>ATC<br>Ile               | AAG<br>Lys<br>CCG<br>Pro                                    | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met               | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG                      | CTG<br>Leu<br>310<br>GCG<br>Ala               | CAG<br>Gln<br>TTC<br>Phe                             | GCG<br>Ala<br>ATC<br>Ile               | GAG<br>Glu<br>GGC<br>Gly<br>CCG<br>Pro        | GTC<br>Val<br>AGG<br>Arg<br>330               | 3259<br>3307         |
| GCC<br>Ala<br>GGG<br>Gly<br>315<br>CTG<br>Leu | GTG<br>Val<br>300<br>CTC<br>Leu<br>GAA<br>Glu               | GAG<br>Glu<br>CCG<br>Pro<br>GAG<br>Glu | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln                      | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335               | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC<br>Gly | CTG<br>Leu<br>305<br>AAC<br>Asn               | AAC<br>Asn<br>ATC<br>Ile<br>GAC<br>Asp | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val                      | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met<br>340        | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala               | CTG<br>Leu<br>310<br>GCG<br>Ala<br>GCC        | CAG<br>Gln<br>TTC<br>Phe<br>GCC<br>Ala               | GCG<br>Ala<br>ATC<br>Ile<br>ATC        | GAG<br>Glu<br>GGC<br>Gly<br>CCG<br>Pro<br>345 | GTC<br>Val<br>AGG<br>Arg<br>330<br>CAG<br>Gln | 3259<br>3307         |
| GCC Ala GGG Gly 315 CTG Leu                   | GTG<br>Val<br>300<br>CTC<br>Leu<br>GAA<br>Glu               | GAG<br>Glu<br>CCG<br>Pro<br>GAG<br>Glu | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln                      | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335               | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC<br>Gly | CTG<br>Leu<br>305<br>AAC<br>Asn<br>CCC<br>Pro | AAC<br>Asn<br>ATC<br>Ile<br>GAC<br>Asp | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val                      | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met<br>340        | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala               | CTG<br>Leu<br>310<br>GCG<br>Ala<br>GCC<br>Ala | CAG<br>Gln<br>TTC<br>Phe<br>GCC<br>Ala               | GCG<br>Ala<br>ATC<br>Ile<br>ATC        | GAG<br>Glu<br>GGC<br>Gly<br>CCG<br>Pro<br>345 | GTC<br>Val<br>AGG<br>Arg<br>330<br>CAG<br>Gln | 3259<br>3307<br>3355 |
| GCC Ala GGG Gly 315 CTG Leu                   | GTG<br>Val<br>300<br>CTC<br>Leu<br>GAA<br>Glu               | GAG<br>Glu<br>CCG<br>Pro<br>GAG<br>Glu | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln                      | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335               | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC<br>Gly | CTG<br>Leu<br>305<br>AAC<br>Asn<br>CCC<br>Pro | AAC<br>Asn<br>ATC<br>Ile<br>GAC<br>Asp | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val                      | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met<br>340        | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala               | CTG<br>Leu<br>310<br>GCG<br>Ala<br>GCC<br>Ala | CAG<br>Gln<br>TTC<br>Phe<br>GCC<br>Ala               | GCG<br>Ala<br>ATC<br>Ile<br>ATC        | GAG<br>Glu<br>GGC<br>Gly<br>CCG<br>Pro<br>345 | GTC<br>Val<br>AGG<br>Arg<br>330<br>CAG<br>Gln | 3259<br>3307<br>3355 |
| GCC<br>Ala<br>GGG<br>Gly<br>315<br>CTG<br>Leu | GTG<br>Val<br>300<br>CTC<br>Leu<br>GAA<br>Glu<br>ATG<br>Met | GAG<br>Glu<br>CCG<br>Pro<br>GAG<br>Glu | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln<br>ATG<br>Met<br>350 | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335<br>GTG<br>Val | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC<br>Gly | CTG<br>Leu<br>305<br>AAC<br>Asn<br>CCC<br>Pro | AAC Asn ATC Ile GAC Asp GTG Val        | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val<br>CAG<br>Gln<br>355 | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met<br>340<br>ATC | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala<br>GTT<br>Val | CTG<br>Leu<br>310<br>GCG<br>Ala<br>GCC<br>Ala | CAG<br>Gln<br>TTC<br>Phe<br>GCC<br>Ala<br>CTG<br>Leu | GCG<br>Ala<br>ATC<br>Ile<br>ATC        | GAG Glu GGC Gly CCG Pro 345                   | GTC<br>Val<br>AGG<br>Arg<br>330<br>CAG<br>Gln | 3259<br>3307<br>3355 |
| GCC<br>Ala<br>GGG<br>Gly<br>315<br>CTG<br>Leu | GTG<br>Val<br>300<br>CTC<br>Leu<br>GAA<br>Glu<br>ATG<br>Met | GAG<br>Glu<br>CCG<br>Pro<br>GAG<br>Glu | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln<br>ATG<br>Met<br>350 | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335<br>GTG<br>Val | GCG<br>Ala<br>CGG<br>Arg<br>320<br>GGC<br>Gly | CTG<br>Leu<br>305<br>AAC<br>Asn<br>CCC<br>Pro | AAC Asn ATC Ile GAC Asp GTG Val        | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val<br>CAG<br>Gln<br>355 | GAG<br>Glu<br>CTG<br>Leu<br>ATG<br>Met<br>340<br>ATC | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala<br>GTT<br>Val | CTG<br>Leu<br>310<br>GCG<br>Ala<br>GCC<br>Ala | CAG<br>Gln<br>TTC<br>Phe<br>GCC<br>Ala<br>CTG<br>Leu | GCG<br>Ala<br>ATC<br>Ile<br>ATC        | GAG Glu GGC Gly CCG Pro 345                   | GTC<br>Val<br>AGG<br>Arg<br>330<br>CAG<br>Gln | 3259<br>3307<br>3355 |
| GCC Ala GGG Gly 315 CTG Leu CTC Leu           | GTG Val 300 CTC Leu GAA Glu ATG Met                         | GAG Glu  GAG Glu  GAG Glu              | GCC<br>Ala<br>GTG<br>Val<br>CAG<br>Gln<br>ATG<br>Met<br>350 | AAG<br>Lys<br>GAC<br>Asp<br>AAG<br>Lys<br>335<br>GTG<br>Val | GCG Ala CGG Arg 320 GGC Gly GAG Glu           | CTG<br>Leu<br>305<br>AAC<br>Asn<br>CCC<br>Pro | AAC Asn ATC Ile GAC Asp CTG Val        | AAG<br>Lys<br>CCG<br>Pro<br>GTC<br>Val<br>CAG<br>Gln<br>355 | GAG Glu CTG Leu ATG Met 340 ATC Ile                  | GCG<br>Ala<br>GTG<br>Val<br>325<br>GCG<br>Ala<br>GTT<br>Val | CTG Leu 310 GCG Ala GCC Ala CTG Leu           | CAG Gln TTC Phe GCC Ala CTG Leu                      | GCG<br>Ala<br>ATC<br>Ile<br>ATC<br>Ile | GAG Glu GGC Gly CCG Pro 345                   | GTC Val AGG Arg 330 CAG Gln                   | 3259<br>3307<br>3355 |

WO 98/14601

|                             | Gly Thr Gly Lys Lys Phe Glu Arg<br>360 365 |      |
|-----------------------------|--------------------------------------------|------|
| ATG CTC ATG AGC GCC GAG GAG | AAG TTC CCA GGC AAG GTG CGC GCC GTG        | 3564 |
| Met Leu Met Ser Ala Glu Glu | Lys Phe Pro Gly Lys Val Arg Ala Val        |      |
| 370 375                     | 380                                        |      |
| GTC AAG TTC AAC GCG GCG CTG | GCG CAC CAC ATC ATG GCC GGC GCC GAC        | 3612 |
| Val Lys Phe Asn Ala Ala Leu | Ala His His Ile Met Ala Gly Ala Asp        |      |
| 385 390                     | 395 400                                    |      |
| GTG CTC GCC GTC ACC AGC CGC | TTC GAG CCC TGC GGC CTC ATC CAG CTG        | 3660 |
| Val Leu Ala Val Thr Ser Arg | Phe Glu Pro Cys Gly Leu Ile Gln Leu        |      |
| 405                         | 410 415                                    |      |
| CAG GGG ATG CGA TAC GGA ACG | GTACGAGAGA AAAAAAAAAT CCTGAATCCT           | 3711 |
| Gln Gly Met Arg Tyr Gly Thr |                                            |      |
| 420                         |                                            |      |
| GACGAGAGGG ACAGAGACAG ATTAT | GAATG CTTCATCGAT TTGAATTGAT TGATCGATGT     | 3771 |
| CTCCCGCTGC GACTCTTGCA G CCC | TGC GCC TGC GCG TCC ACC GGT GGA CTC        | 3822 |
| Pro                         | Cys Ala Cys Ala Ser Thr Gly Gly Leu        |      |
|                             | 425 430                                    |      |
| GTC GAC ACC ATC ATC GAA GGC | AAG ACC GGG TTC CAC ATG GGC CGC CTC        | 3870 |
| Val Asp Thr Ile Ile Glu Gly | Lys Thr Gly Phe His Met Gly Arg Leu        |      |
| 435 440                     | 445                                        |      |
| AGC GTC GAC GTAAGCCTAG CTCT | GCCATG TTCTTTCTTC TTTCTTTCTG               | 3919 |
| Ser Val Asp                 |                                            |      |
| 450                         |                                            |      |
| TATGTATGTA TGAATCAGCA CCGCC | GTTCT TGTTTCGTCG TCGTCCTCTC TTCCCAG        | 3976 |
| TGT AAC GTC GTG GAG CCG GCG | GAC GTC AAG AAG GTG GCC ACC ACA TTG        | 4024 |
| Cys Asn Val Val Glu Pro Ala | Asp Val Lys Lys Val Ala Thr Thr Leu        |      |
| 455                         | 460 465                                    |      |
| CAG CGC GCC ATC AAG GTG GTC | GGC ACG CCG GCG TAC GAG GAG ATG GTG        | 4072 |
| Gln Arg Ala Ile Lys Val Val | Gly Thr Pro Ala Tyr Glu Glu Met Val        |      |
| 470 475                     | 480                                        |      |
| AGG ANG MGG AMG AMG GAG GAM | OTO TOO TOO AND OTHER TOO COORDERS         | 4125 |
| Arg Asn Cys Met Ile Gln Asp | CTC TCC TGG AAG GTACGTACGC CCGCCCCGCC      | 4125 |
| ing you old her tre gru wah | nor our trb nio                            |      |

73

| 485                      | 490                    | 495                                                                           |        |
|--------------------------|------------------------|-------------------------------------------------------------------------------|--------|
| ccgccccgcc               | AGAGCAGAGC GCCAAGATCG  | ACCGATCGAC CGACCACACG TACGCGCCTC                                              | 4185   |
| GCTCCTGTCG               | CTGACCGTGG TTTAATTTGC  | GAAATGCGCA G GGC CCT GCC AAG Gly Pro Ala Lys                                  | 4238   |
|                          | -                      | CTC GGG GTC GCC GGC GGC GAG CCA<br>Leu Gly Val Ala Gly Gly Glu Pro<br>510 515 | 4286   |
|                          |                        | CCG CTC GCC AAG GAG AAC GTG GCC Pro Leu Ala Lys Glu Asn Val Ala 525 530       | 4334   |
| GCG CCC TGA<br>Ala Pro * | A AGAGTTCGGC CTGCAGGGC | CC CCTGATCTCG CGCGTGGTGC                                                      | 4383   |
| AAAGATGTTG               | GGACATCTTC TTATATATG   | C TGTTTCGTTT ATGTGATATG GACAAGTATC                                            | g 4443 |
| TGTAGCTGCT               | TGCTTGTGCT AGTGTAATG   | r agtgtagtgg tggccagtgg cacaacctai                                            | 4503   |
| TAAGCGCATG               | AACTAATTGC TTGCGTGTG   | AGTTAAGTAC CGATCGGTAA TTTTATATTC                                              | g 4563 |
| CGAGTAAATA               | AATGGACCTG TAGTGGTGGA  | A GTAAATAATC CCTGCTGTTC GGTGTTCTTA                                            | A 4623 |
| TCGCTCCTCG               | TATAGATATT ATATAGAGTA  | A CATTTTTCTC TCTCTGAATC CTACGTTTG                                             | r 4683 |
| GAAATTTCTA               | TATCATTACT GTAAAATTTC  | C TGCGTTCCAA AAGAGACCAT AGCCTATCT                                             | r 4743 |
| TGGCCCTGTT               | TGTTTCGGCT TCTGGCAGC   | T TCTGGCCACC AAAAGCTGCT GCGGACT                                               | 4800   |

# (2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 534 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

| Ala<br>1   | Ser        | Ala        | Gly        | Met<br>5   | Asn              | Val        | Val        | Phe        | Val<br>10  | Gly        | Ala        | Glu        | Met        | Ala<br>15  | Pro        |
|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Trp        | Ser        | Lys        | Thr<br>20  | Gly        | Gly              | Leu        | Gly        | Asp<br>25  | Val        | Leu        | Gly        | Gly        | Leu<br>30  | Pro        | Pro        |
| Ala        | Met        | Ala<br>35  | Ala        | Asn        | Gly              | His        | Arg<br>40  | Val        | Met        | Vál        | Val        | Ser<br>45  | Pro        | Arg        | Tyr        |
| Asp        | Gln<br>50  | Tyr        | Lys        | Asp        | Ala              | Trp<br>55  | Asp        | Thr        | Ser        | Val        | Val<br>60  | Ser        | Glu        | Ile        | Lys        |
| Met<br>65  | Gly        | Asp        | Gly        | Tyr        | <b>Glu</b><br>70 | Thr        | Val        | Arg        | Phe        | Phe<br>75  | His        | Cys        | Tyr        | Lys        | Arg<br>80  |
| Gly        | Val        | Asp        | Arg        | Val<br>85  | Phe              | Val        | Asp        | His        | Pro<br>90  | Leu        | Phe        | Leu        | Glu        | Arg<br>95  | Val        |
| Trp        | Gly        | Lys        | Thr<br>100 | Glu        | Glu              | Lys        | Ile        | Tyr<br>105 | Gly        | Pro        | Val        | Ala        | Gly<br>110 | Thr        | Asp        |
| Tyr        | Arg        | Asp<br>115 | Asn        | Gln        | Leu              | Arg        | Phe<br>120 | Ser        | Leu        | Leu        | Cya        | Gln<br>125 | Ala        | Ala        | Leu        |
| Glu        | Ala<br>130 | Pro        | Arg        | Ile        | Leu              | Ser<br>135 | Leu        | Asn        | Asn        | Asn        | Pro<br>140 | Tyr        | Phe        | Ser        | Gly        |
| Pro<br>145 | Tyr        | Gly        | Glu        | Asp        | Val<br>150       | Val        | Phe        | Val        | Сув        | Asn<br>155 | Asp        | Trp        | His        | Thr        | Gly<br>160 |
| Pro        | Leu        | Ser        | Сув        | Tyr<br>165 | Leu              | Lys        | Ser        | Asn        | Туг<br>170 | Gln        | Ser        | His        | Gly        | Ile<br>175 | Tyr        |
| Arg        | Asp        | Ala        | Lys<br>180 | Thr        | Ala              | Phe        | Cys        | Ile<br>185 |            | Asn        | Ile        | Ser        | Tyr<br>190 | Gln        | Gly        |
| Arg        | Phe        | Ala<br>195 | Phe        | Ser        | Asp              | Tyr        | Pro<br>200 | Glu        | Leu        | Asn        | Leu        | Pro<br>205 | Glu        | Arg        | Phe        |
| Lys        | Ser<br>210 |            | Phe        | Asp        | Phe              | 11e<br>215 | Asp        | Gly        | Tyr        | Glu        | Lys<br>220 | Pro        | Val        | Glu        | Gly        |
| Arg<br>225 | Lys        | Ile        | Asn        | Trp        | Met<br>230       | Lys        | Ala        | Gly        | Ile        | Leu<br>235 | Glu        | Ala        | Asp        | Arg        | Val<br>240 |

| Leu        | Thr        | Val        | Ser        | Pro<br>245 | Tyr        | Tyr              | Ala               | Glu        | G1u<br>250 | Leu        | Ile        | Ser               | Gly        | 11e<br>255 | Ala        |
|------------|------------|------------|------------|------------|------------|------------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|
| Arg        | Gly        | Сув        | Glu<br>260 | Leu        | Asp        | Asn              | Ile               | Met<br>265 | Arg        | Leu        | Thr        | Gly               | 11e<br>270 | Thr        | Gly        |
| Ile        | Val        | Asn<br>275 | Gly        | Met        | Asp        | Val              | <i>Ser</i><br>280 | Glu        | Trp        | Авр        | Pro        | Ser<br>285        | Arg        | Asp        | Lya        |
| Tyr        | Ile<br>290 | Ala        | Val        | Lys        | Tyr        | Asp<br>295       | Val               | Ser        | Thr        | Ala        | Val<br>300 | Glu               | Ala        | Lys        | Ala        |
| Leu<br>305 | Asn        | Lys        | Glu        | Ala        | Leu<br>310 | Gln              | Ala               | Glu        | Val        | Gly<br>315 | Leu        | Pro               | Val        | Asp        | Arg<br>320 |
| Asn        | Ile        | Pro        | Leu        | Val<br>325 | Ala        | Phe              | Ile               | Gly        | Arg<br>330 | Leu        | Glu        | Glu               | Gln        | Lys<br>335 | Gly        |
| Pro        | Asp        | Val        | Met<br>340 | Ala        | Ala        | Ala              | Ile               | Pro<br>345 | Gln        | Leu        | Met        | Glu               | Met<br>350 | Val        | Glu        |
| Авр        | Val        | Gln<br>355 | Ile        | Val        | Leu        | Leu              | Gly<br>360        | Thr        | Gly        | Lys        | Lys        | <b>Lys</b><br>365 | Phe        | Glu        | Arg        |
| Met        | Leu<br>370 | Met        | Ser        | Ala        | Glu        | Glu<br>375       | Lys               | Phe        | Pro        | Gly        | 380<br>Lys | Val               | Arg        | Ala        | Val        |
| Val<br>385 | Lys        | Phe        | Asn        | Ala        | Ala<br>390 | Leu              | Ala               | His        | His        | Ile<br>395 | Met        | Ala               | Gly        | Ala        | <b>Авр</b> |
| Val        | Leu        | Ala        | Val        | Thr<br>405 | Ser        | Arg              | Phe               | Glu        | Pro<br>410 | Сув        | Gly        | Leu               | Ile        | Gln<br>415 | Leu        |
| Gln        | Gly        | Met        | Arg<br>420 | Tyr        | Gly        | Thr              | Pro               | Cys<br>425 | Ala        | Сув        | Ala        | Ser               | Thr<br>430 | Gly        | Gly        |
| Leu        | Val        | Asp<br>435 | Thr        | Ile        | Ile        | Glu              | Gly<br>440        | Lys        | Thr        | Gly        | Phe        | His<br>445        | Met        | Gly        | Arg        |
| Leu        | Ser<br>450 | Val        | Asp        | Суз        | Asn        | Val<br>455       | Val               | Glu        | Pro        | Ala        | Азр<br>460 | Val               | Lys        | Lys        | Val        |
| Ala<br>465 | Thr        | Thr        | Leu        | Gln        | Arg<br>470 | Ala <sup>.</sup> | Ile               | Lys        | Val        | Val<br>475 | Gly        | Thr               | Pro        | Ala        | Tyr<br>480 |

| _ | -  |
|---|----|
| 7 | 4  |
| • | ., |

| Glu | Glu | Met | Val        | Arg<br>485 | Asn | Сув | Met | Ile        | Gln<br>490 | Asp | Leu | S  | r | Trp        | Lys<br>495 | Gly |
|-----|-----|-----|------------|------------|-----|-----|-----|------------|------------|-----|-----|----|---|------------|------------|-----|
| Pro | Ala | Lys | Asn<br>500 | Trp        | Glu | Asn | Val | Leu<br>505 | Leu        | Ser | Leu | Gl | у | Val<br>510 | Ala        | Gly |

Gly Glu Pro Gly Val Glu Gly Glu Glu Ile Ala Pro Leu Ala Lys Glu 515 520 525

Asn Val Ala Ala Pro \* 530

#### (2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2542 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Oryza sativa
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 453..2282
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

| GAATTCAGTG | TGAAGGAATA | GATTCTCTTC | AAAACAATTT | AATCATTCAT | CTGATCTGCT | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CAAAGCTCTG | TGCATCTCCG | GGTGCAACGG | CCAGGATATT | TATTGTGCAG | TAAAAAAATG | 120 |
| TCATATCCCC | TAGCCACCCA | AGAAACTGCT | CCTTAAGTCC | TTATAAGCAC | ATATGGCATT | 180 |
| GTAATATATA | TGTTTGAGTT | TTAGCGACAA | TTTTTTAAA  | AACTTTTGGT | CCTTTTTATG | 240 |
| AACGTTTTAA | GTTTCACTGT | CTTTTTTTT  | CGAATTTTAA | ATGTAGCTTC | AAATTCTAAT | 300 |
| CCCCAATCCA | AATTGTAATA | AACTTCAATT | CTCCTAATTA | ACATCTTAAT | TCATTTATTT | 360 |

| GAAA | ACCA | GT I | CAAA              | TTCI | T TI | TAGG | CTCA | CCA | AACC | TTA | AACA | ATTO       | CAA 1 | TCAC | STGCAG | 420 |
|------|------|------|-------------------|------|------|------|------|-----|------|-----|------|------------|-------|------|--------|-----|
| AGAT | CTTC | CA C | CAGCA             | ACAC | C TA | GACA | ACCA | CC  |      |     |      | CTC<br>Leu |       |      |        | 473 |
|      |      |      | ACC<br>Thr<br>545 |      |      |      |      |     |      |     |      |            |       |      |        | 521 |
|      |      |      | CTG<br>Leu        |      |      |      |      |     |      |     |      |            |       |      |        | 569 |
|      |      |      | GGC<br>Gly        |      |      |      |      |     |      |     |      |            |       |      |        | 617 |
|      |      |      | AAG<br>Lys        |      |      |      |      |     |      |     |      |            |       |      |        | 665 |
|      |      |      | GTC<br>Val        |      |      |      |      |     |      |     |      |            |       |      |        | 713 |
|      |      |      | GAG<br>Glu<br>625 |      |      |      |      |     |      |     |      |            |       |      |        | 761 |
|      |      |      | GGC<br>Gly        |      |      |      |      |     |      |     |      |            |       |      |        | 809 |
|      |      |      | TCT<br>Ser        |      |      |      |      |     |      |     |      |            |       |      |        | 857 |
|      |      |      | GCT<br>Ala        |      |      |      |      |     |      |     |      |            |       |      |        | 905 |
|      |      |      | TGC<br>Cys        |      |      |      |      |     |      |     |      |            |       |      |        | 953 |

|     |     |     |     |     |     | GTT<br>Val        |     |     |     |     |     |     |     |     |     | 1001 |
|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|     |     |     |     |     |     | GAT<br>Asp        |     |     |     |     |     |     |     |     |     | 1049 |
|     |     |     |     |     |     | CTC<br>Leu<br>740 |     |     |     |     |     |     |     |     |     | 1097 |
|     |     |     |     |     |     | GGA<br>Gly        |     |     |     |     |     |     |     |     |     | 1145 |
|     |     |     |     |     |     | GGC<br>Gly        |     |     |     |     |     |     |     |     |     | 1193 |
|     |     |     |     |     |     | TAC<br>Tyr        |     |     |     |     |     |     |     |     |     | 1241 |
|     |     |     |     |     |     | GGC<br>Gly        |     |     |     |     |     |     |     |     |     | 1289 |
|     |     |     |     |     |     | TTC<br>Phe<br>820 |     |     |     |     |     |     |     |     |     | 1337 |
|     |     |     |     |     |     | GGC               |     |     |     |     |     |     |     |     |     | 1385 |
|     |     |     |     |     |     | GTG<br>Val        |     |     |     |     |     |     |     |     |     | 1433 |
|     |     |     |     |     |     | GCC<br>Ala        |     |     |     |     |     |     |     |     |     | 1481 |
| CGG | CTC | ACC | GGC | ATC | ACC | GGC               | ATC | GTC | AAC | GGC | ATG | GAC | GTC | AGC | GAG | 1529 |

| Arg | Leu | Thr        | Gly      | Ile  | Thr | Gly        | Ile | Val | Asn | Gly    | Met | Asp | Val | Ser      | Glu  |      |
|-----|-----|------------|----------|------|-----|------------|-----|-----|-----|--------|-----|-----|-----|----------|------|------|
|     |     | 880        |          |      |     |            | 885 |     |     |        |     | 890 |     |          |      |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
| -   |     |            |          |      |     | AAG        |     |     |     |        |     |     |     |          |      | 1577 |
| Trp | _   | Pro        | ser      | гув  | Asp | PAB        | туг | He  | Thr | Ala    | 905 | Tyr | мвр | WIG      | The  |      |
|     | 895 |            |          |      |     | 300        |     |     |     |        | 303 |     |     |          |      |      |
| ACG | GCA | ATC        | GAG      | GCG  | AAG | GCG        | CTG | AAC | AAG | GAG    | GCG | TTG | CAG | GCG      | GAG  | 1625 |
| Thr | Ala | Ile        | Glu      | Ala  | Lys | Ala        | Leu | Asn | Lys | Glu    | Ala | Leu | Gln | Ala      | Glu  |      |
| 910 |     |            |          |      | 915 |            |     |     |     | 920    |     |     |     |          | 925  |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
|     |     |            |          |      |     | AGG        |     |     |     |        |     |     |     |          |      | 1673 |
| Ala | Gly | Leu        | Pro      | Val  | Asp | Arg        | Lys | Ile |     | Leu    | Ile | Ala | Phe |          | Gly  |      |
|     |     |            |          | 930  |     |            |     |     | 935 |        |     |     |     | 940      |      |      |
| 200 | ama |            | <b>a</b> | an a | 220 | 666        | CCM | CAC | CEC | N TO C | 000 | caa | ccc | N M C    | ccc  | 1721 |
|     |     |            |          |      |     | GGC<br>Gly |     |     |     |        |     | _   | _   |          |      | 1721 |
| ALG | Leu | GIU        | 945      | GIII | БУS | GIY        | rio | 950 | Vai | Mec    | ΛIα | nia | 955 | 116      | 110  |      |
|     |     |            | ,        |      |     |            |     |     |     |        |     |     |     |          |      |      |
| GAG | CTC | ATG        | CAG      | GAG  | GAC | GTC        | CAG | ATC | GTT | CTT    | CTG | GGT | ACT | GGA      | AAG  | 1769 |
| Glu | Leu | Met        | Gln      | Glu  | Asp | Val        | Gln | Ile | Val | Leu    | Leu | Gly | Thr | Gly      | Lys  |      |
|     |     | 960        |          |      |     |            | 965 |     |     |        |     | 970 |     |          |      |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
|     |     |            |          |      |     | CTC        |     |     |     |        |     |     |     |          |      | 1817 |
| Lys | _   | Phe        | Glu      | Lys  | Leu | Leu        | Lys | Ser | Met | Glu    |     | Lys | Tyr | Pro      | Gly  |      |
|     | 975 |            |          |      |     | 980        |     |     |     |        | 985 |     |     |          |      |      |
| AAG | GTG | <b>NGG</b> | GCG      | GTG. | GTG | AAG        | ጥጥር | AAC | GCG | CCG    | СТТ | GCT | CAT | СТС      | ATC  | 1865 |
|     |     |            |          |      |     | Lys        |     |     |     |        |     |     |     |          |      | 1000 |
| 990 |     | 5          |          |      | 995 | -1 -       |     |     |     | 100    |     |     |     |          | 1005 |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
| ATG | GCC | GGA        | GCC      | GAC  | GTG | CTC        | GCC | GTC | CCC | AGC    | CGC | TTC | GAG | ccc      | TGT  | 1913 |
| Met | Ala | Gly        | Ala      | Asp  | Val | Leu        | Ala | Val | Pro | Ser    | Arg | Phe | Glu | Pro      | Cys  |      |
|     |     |            |          | 101  | 0   |            |     |     | 101 | 5      |     |     |     | 102      | 0    |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
|     |     |            |          |      |     | GGG        |     |     |     |        |     |     |     |          |      | 1961 |
| Gly | Leu | Ile        |          |      | Gln | Gly        | Met | _   | -   | GLY    | Thr | Pro |     |          | Cys  |      |
|     |     |            | 102      | )    |     |            |     | 103 | U   |        |     |     | 103 | J        |      |      |
| GCG | ፓርር | ACC        | GGT      | GGG  | CTC | GTG        | GAC | ACG | GTC | ATC    | GAA | GGC | AAG | ACT      | GGT  | 2009 |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          | Gly  |      |
|     |     | 104        | _        | 1    |     |            | 104 |     |     |        |     | 105 |     | <b>-</b> |      |      |
|     |     |            |          |      |     |            |     |     |     |        |     |     |     |          |      |      |
| TTC | CAC | ATG        | GGC      | CGT  | CTC | AGC        | GTC | GAC | TGC | AAG    | GTG | GTG | GAG | CCA      | AGC  | 2057 |
| Phe | His | Met        | Gly      | Arg  | Leu | Ser        | Val | Asp | Cys | Lys    | Val | Val | Glu | Pro      | Ser  |      |
|     |     |            | _        | _    |     |            |     |     |     |        |     |     |     |          |      |      |

80

1065 1055 1060 GAC GTG AAG AAG GTG GCG GCC ACC CTG AAG CGC GCC ATC AAG GTC GTC 2105 Asp Val Lys Lys Val Ala Ala Thr Leu Lys Arg Ala Ile Lys Val Val 1075 1080 1085 1070 GGC ACG CCG GCG TAC GAG GAG ATG GTC AGG AAC TGC ATG AAC CAG GAC 2153 Gly Thr Pro Ala Tyr Glu Glu Met Val Arg Asn Cys Met Asn Gln Asp 1095 1090 CTC TCC TGG AAG GGG CCT GCG AAG AAC TGG GAG AAT GTG CTC CTG GGC 2201 Leu Ser Trp Lys Gly Pro Ala Lys Asn Trp Glu Asn Val Leu Leu Gly 1110 1105 1115 CTG GGC GTC GCC GGC AGC GCG CCG GGG ATC GAA GGC GAC GAG ATC GCG 2249 Leu Gly Val Ala Gly Ser Ala Pro Gly Ile Glu Gly Asp Glu Ile Ala 1120 1125 CCG CTC GCC AAG GAG AAC GTG GCT GCT CCT TGA AGAGCCTGAG ATCTACATAT 2302 Pro Leu Ala Lys Glu Asn Val Ala Ala Pro \* 1135 1140 GGAGTGATTA ATTAATATAG CAGTATATGG ATGAGAGACG AATGAACCAG TGGTTTGTTT 2362 GTTGTAGTGA ATTTGTAGCT ATAGCCAATT ATATAGGCTA ATAAGTTTGA TGTTGTACTC 2422 TTCTGGGTGT GCTTAAGTAT CTTATCGGAC CCTGAATTTA TGTGTGTGGC TTATTGCCAA 2482 TAATATTAAG TAATAAAGGG TTTATTATAT TATTATAT GTTATATTAT ACTAAAAAAA 2542

## (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 610 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Ser Ala Leu Thr Thr Ser Gln Leu Ala Thr Ser Ala Thr Gly Phe

1 5 10 15

| Gly        | Ile        | Ala        | Asp<br>20  | Arg        | Ser        | Ala        | Pro        | Ser<br>25  | Ser        | Leu        | Leu        | Arg        | His<br>30  | Gly        | Phe       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| Gl'n       | Gly        | Leu<br>35  | Lys        | Pro        | Arg        | Ser        | Pro<br>40  | Ala        | Gly        | Gly        | Asp        | Ala<br>45  | Thr        | Ser        | Let       |
| Ser        | Val<br>50  | Thr        | Thr        | Ser        | Ala        | Arg<br>55  | Ala        | Thr        | Pro        | Lys        | Gln<br>60  | Gln        | Arg        | Ser        | Val       |
| Gln<br>65  | Arg        | Gly        | Ser        | Arg        | Arg<br>70  | Phe        | Pro        | Ser        | Val        | Val<br>75  | Val        | Tyr        | Ala        | Thr        | G13<br>80 |
| Ala        | Gly        | Met        | Asn        | Val<br>85  | Val        | Phe        | Val        | Gly        | Ala<br>90  | Glu        | Met        | Ala        | Pro        | Trp<br>95  | Sei       |
| Lys        | Thr        | Gly        | Gly<br>100 | Leu        | Gly        | Asp        | Val        | Leu<br>105 | Gly        | Gly        | Leu        | Pro        | Pro<br>110 | Ala        | Met       |
| Ala        | Ala        | Asn<br>115 | Gly        | His        | Arg        | Val        | Met<br>120 | Val        | Ile        | Ser        | Pro        | Arg<br>125 | Tyr        | Asp        | Gli       |
| Tyr        | Lys<br>130 | Asp        | Ala        | Trp        | Asp        | Thr<br>135 | Ser        | Val        | Val        | Ala        | Glu<br>140 | Ile        | Lys        | Val        | Ala       |
| Asp<br>145 | Arg        | Tyr        | Glu        | Arg        | Val<br>150 | Arg        | Phe        | Phe        | His        | Сув<br>155 | Tyr        | Lys        | Arg        | Gly        | Va:       |
| Asp        | Arg        | Val        | Phe        | Ile<br>165 | Asp        | His        | Pro        | Ser        | Phe<br>170 | Leu        | Glu        | Lys        | Val        | Trp<br>175 | Gly       |
| Lys        | Thr        | Gly        | Glu<br>180 | Lys        | Ile        | Tyr        | Gly        | Pro<br>185 | Asp        | Thr        | Gly        | Val        | Asp<br>190 | Tyr        | Lys       |
| Asp        | Asn        | Gln<br>195 | Met        | Arg        | Phe        | Ser        | Leu<br>200 | Leu        | Cys        | Gln        | Ala        | Ala<br>205 | Leu        | Glu        | Ala       |
| Pro        | Arg<br>210 | Ile        | Leu        | Asn        | Leu        | Asn<br>215 | Asn        | Asn        | Pro        | Tyr        | Phe<br>220 | Lys        | Gly        | Thr        | Туі       |
| Gly<br>225 | Glu        | Asp        | Val        | Val        | Phe<br>230 | Val        | Сув        | Asn        | Aap        | Trp<br>235 | His        | Thr        | Gly        | Pro        | Le:       |
| Ala        | Ser        | Tyr        | Leu        | Lys<br>245 | Asn        | Asn        | Tyr        | Gln        | Pro<br>250 | Asn        | Gly        | Ile        | Туг        | Arg<br>255 | Ası       |

|            |            |            |            |            |            |            |            |            | 04         | ۷.         |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Ala        | Lys        | Val        | Ala<br>260 | Phe        | Суз        | Ile        | His        | Asn<br>265 | Ile        | Ser        | Tyr        | Gln        | Gly<br>270 | Arg        | Phe |
| Ala        | Phe        | Glu<br>275 | Asp        | Tyr        | Pro        | Glu        | Leu<br>280 | Asn        | Leu        | Ser        | Glu        | Arg<br>285 | Phe        | Arg        | Sei |
| Ser        | Phe<br>290 | Asp        | Phe        | Ile        | Asp        | Gly<br>295 | Tyr        | Asp        | Thr        | Pro        | Val<br>300 | Glu        | Gly        | Arg        | Lys |
| 11e<br>305 | Asn        | Trp        | Met        | Lys        | Ala<br>310 | Gly        | Ile        | Leu        | Glu        | Ala<br>315 | Asp        | Arg        | Val        | Leu        | Th: |
| Val        | Ser        | Pro        | Tyr        | Tyr<br>325 | Ala        | Glu        | Glu        | Leu        | 11e<br>330 | Ser        | Gly        | Ile        | Ala        | Arg<br>335 | Gly |
| Cys        | Glu        | Leu        | Asp<br>340 | Asn        | Ile        | Met        | Arg        | Leu<br>345 | Thr        | Gly        | Ile        | Thr        | Gly<br>350 | Ile        | Va] |
| Asn        | Gly        | Met<br>355 | Asp        | Val        | Ser        | Glu        | Trp<br>360 | Asp        | Pro        | Ser        | Lys        | Asp<br>365 | Lys        | Tyr        | Ile |
| Thr        | Ala<br>370 | Lys        | Tyr        | Asp        | Ala        | Thr<br>375 | Thr        | Ala        | Ile        | Glu        | Ala<br>380 | Lys        | Ala        | Leu        | Asr |
| Lys<br>385 | Glu        | Ala        | Leu        | Gln        | Ala<br>390 | Glu        | Ala        | Gly        | Leu        | Pro<br>395 | Val        | Asp        | Arg        | Lys        | 11e |
| Pro        | Leu        | Ile        | Ala        | Phe<br>405 | Ile        | Gly        | Arg        | Leu        | Glu<br>410 | Glu        | Gln        | Lys        | Gly        | Pro<br>415 | Yal |
| Val        | Met        | Ala        | Ala<br>420 | Ala        | Ile        | Pro        | Glu        | Leu<br>425 | Met        | Gln        | Glu        | Asp        | Val<br>430 | Gln        | Ile |
| Val        | Leu        | Leu<br>435 | Gly        | Thr        | Gly        | Lys        | Lys<br>440 | Lys        | Phe        | Glu        | Lys        | Leu<br>445 | Leu        | Lys        | Ser |
| Met        | Glu<br>450 | Glu        | Lys        | Tyr        | Pro        | Gly<br>455 | Lys        | Val        | Arg        | Ala        | Val<br>460 | Val        | Lys        | Phe        | Asr |

Ala Pro Leu Ala His Leu Ile Met Ala Gly Ala Asp Val Leu Ala Val

Pro Ser Arg Phe Glu Pro Cys Gly Leu Ile Gln Leu Gln Gly Met Arg

83

Tyr Gly Thr Pro Cys Ala Cys Ala Ser Thr Gly Gly Leu Val Asp. Thr 500 505 510

Val Ile Glu Gly Lys Thr Gly Phe His Met Gly Arg Leu Ser Val Asp 515 520 525

Cys Lys Val Val Glu Pro Ser Asp Val Lys Lys Val Ala Ala Thr Leu 530 535 540

Lys Arg Ala Ile Lys Val Val Gly Thr Pro Ala Tyr Glu Glu Met Val 545 550 560

Arg Asn Cys Met Asn Gln Asp Leu Ser Trp Lys Gly Pro Ala Lys Asn 565 570 575

Trp Glu Asn Val Leu Leu Gly Leu Gly Val Ala Gly Ser Ala Pro Gly 580 585 590

Ile Glu Gly Asp Glu Ile Ala Pro Leu Ala Lys Glu Asn Val Ala Ala 595 600 605

Pro \* 610

- (2) INFORMATION FOR SEQ ID NO:8:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2007 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Zea mays
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 1..2007
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|     |     |     |     |     |     | GGC<br>Gly        |     |     |     |     |     |     |     |     |     |   | 48  |
|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----|
|     |     |     |     |     |     | CGC<br>Arg        |     |     |     |     |     |     |     |     |     |   | 96  |
|     |     |     |     |     |     | GTC<br>Val        |     |     |     |     |     |     |     |     |     | : | 144 |
|     |     |     |     |     |     | GCG<br>Ala<br>665 |     |     |     |     |     |     |     |     |     | : | 192 |
| _   |     |     |     |     |     | AAG<br>Lys        |     |     |     |     |     |     |     |     |     | 2 | 240 |
| _   | _   |     |     |     |     | CGC<br>Arg        |     |     |     |     |     |     |     |     |     | 2 | 288 |
|     |     |     |     |     |     | GTC<br>Val        |     |     |     |     |     |     |     |     |     | ; | 336 |
|     |     |     |     |     |     | GAT<br>Asp        |     |     |     |     |     |     |     |     |     | : | 384 |
|     |     |     |     |     |     | GCC<br>Ala<br>745 |     |     |     |     |     |     |     |     | -   | 4 | 132 |
|     |     |     |     |     |     | GCG<br>Ala        |     |     |     |     |     |     |     |     |     | 4 | 180 |
|     |     |     |     |     |     | CAT<br>His        |     |     |     |     |     |     |     |     |     | į | 528 |
| GGG | GAG | AAT | GTT | ATG | AAC | GTG               | ATC | GTG | GTG | GCT | GCT | GAA | TGT | TCT | CCA | 5 | 576 |

| Gly | Glu | Asn | Val<br>790 | Met | Asn | Val | Ile | Val<br>795 | Val | Ala | Ala | Glu               | 800<br>Cys | Ser | Pro |      |
|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-------------------|------------|-----|-----|------|
|     |     |     |            |     |     |     |     |            |     |     |     | GCT<br>Ala<br>815 |            |     |     | 624  |
|     |     |     |            |     |     |     |     |            |     |     |     | GTA<br>Val        |            |     |     | 672  |
|     |     |     |            |     |     |     |     |            |     |     |     | AAA<br>Lys        |            |     |     | 720  |
|     |     |     |            |     |     |     |     |            |     |     |     | GCA<br>Ala        |            |     |     | 768  |
|     |     |     |            |     |     |     |     |            |     |     |     | CAC<br>His        |            |     |     | 816  |
|     | _   |     |            |     |     |     |     |            |     |     |     | CGC<br>Arg<br>895 |            |     |     | 864  |
|     |     |     |            |     |     |     |     |            |     |     |     | CCA<br>Pro        |            |     |     | 912  |
|     |     |     |            |     |     |     |     |            |     |     |     | ATG<br>Met        |            |     |     | 960  |
|     |     |     |            |     |     |     |     |            |     |     |     | AGA<br>Arg        |            |     |     | 1008 |
|     |     |     |            |     |     |     |     |            |     |     |     | AAC<br>Asn        |            |     |     | 1056 |
|     |     |     |            |     |     |     |     |            |     |     |     | GAC<br>Asp        |            |     |     | 1104 |

965 970 975

ACT AAC CTT CAA CAT TTC GAG CTG TAC GAT CCC GTC GGT GGC GAG CAC Thr Asn Leu Gln His Phe Glu Leu Tyr Asp Pro Val Gly Glu His GCC AAC ATC TTT GCC GCG TGT GTT CTG AAG ATG GCA GAC CGG GTG GTG Ala Asn Ile Phe Ala Ala Cys Val Leu Lys Met Ala Asp Arg Val Val ACT GTC AGC CGC GGC TAC CTG TGG GAG CTG AAG ACA GTG GAA GGC GGC Thr Val Ser Arg Gly Tyr Leu Trp Glu Leu Lys Thr Val Glu Gly Gly TGG GGC CTC CAC GAC ATC ATC CGT TCT AAC GAC TGG AAG ATC AAT GGC Trp Gly Leu His Asp Ile Ile Arg Ser Asn Asp Trp Lys Ile Asn Gly ATT CGT GAA CGC ATC GAC CAC CAG GAG TGG AAC CCC AAG GTG GAC GTG Ile Arg Glu Arg Ile Asp His Gln Glu Trp Asn Pro Lys Val Asp Val CAC CTG CGG TCG GAC GGC TAC ACC AAC TAC TCC CTC GAG ACA CTC GAC His Leu Arg Ser Asp Gly Tyr Thr Asn Tyr Ser Leu Glu Thr Leu Asp GCT GGA AAG CGG CAG TGC AAG GCG GCC CTG CAG CGG GAC GTG GGC CTG Ala Gly Lys Arg Gln Cys Lys Ala Ala Leu Gln Arg Asp Val Gly Leu GAA GTG CGC GAC GTG CCG CTG CTC GGC TTC ATC GGG CGT CTG GAT Glu Val Arg Asp Asp Val Pro Leu Leu Gly Phe Ile Gly Arg Leu Asp GGA CAG AAG GGC GTG GAC ATC ATC GGG GAC GCG ATG CCG TGG ATC GCG Gly Gln Lys Gly Val Asp Ile Ile Gly Asp Ala Met Pro Trp Ile Ala GGG CAG GAC GTG CAG CTG GTG ATG CTG GGC ACC GGC CCA CCT GAC CTG Gly Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Pro Pro Asp Leu GAA CGA ATG CTG CAG CAC TTG GAG CGG GAG CAT CCC AAC AAG GTG CGC Glu Arg Met Leu Gln His Leu Glu Arg Glu His Pro Asn Lys Val Arg 

87

WO 98/14601 PCT/US97/17555

| GGG | TGG  | GTC | GGG  | TTC  | TCG  | GTC  | CTA  | ATG | GTG  | CAT  | CGC  | ATC  | ACG  | CCG | GGC  | 1680 |
|-----|------|-----|------|------|------|------|------|-----|------|------|------|------|------|-----|------|------|
| Gly | Trp  | Val | Gly  | Phe  | Ser  | Val  | Leu  | Met | Val  | His  | Arg  | Ile  | Thr  | Pro | Gly  |      |
| 115 | 5    |     |      |      | 1160 | )    |      |     |      | 1169 | 5    |      |      |     | 1170 |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
| GCC | AGC  | GTG | CTG  | GTG  | ATG  | CCC  | TCC  | CGC | TTC  | GCC  | GGÇ  | GGG  | CTG  | AAC | CAG  | 1728 |
| Ala | Ser  | Val | Leu  | Val  | Met  | Pro  | Ser  | Arg | Phe  | Ala  | Gly  | Gly  | Leu  | Asn | Gln  |      |
|     |      |     |      | 1179 | 5    |      |      |     | 1180 |      |      |      |      | 118 | 5    |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
| CTC | TAC  | GCG | ATG  | GCA  | TAC  | GGC  | ACC  | GTC | CCT  | GTG  | GTG  | CAC  | GCC  | GTG | GGC  | 1776 |
| Leu | Tyr  | Ala | Met  | Ala  | Tyr  | Gly  | Thr  | Val | Pro  | Val  | Val  | His  | Ala  | Val | Gly  |      |
|     |      |     | 1190 | כ    |      |      |      | 119 | 5    |      |      |      | 1200 | )   |      |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
| GGG | CTC  | AGG | GAC  | ACC  | GTG  | GCG  | CCG  | TTC | GAC  | CCG  | TTC  | GGC  | GAC  | GCC | GGG  | 1824 |
| Gly | Leu  | Arg | Asp  | Thr  | Val  | Ala  | Pro  | Phe | Asp  | Pro  | Phe  | Gly  | Asp  | Ala | Gly  |      |
|     |      | 120 | 5    |      |      |      | 1210 | )   |      |      |      | 1219 | 5    |     |      |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
| CTC | GGG  | TGG | ACT  | TTT  | GAC  | CGC  | GCC  | GAG | GCC  | AAC  | AAG  | CTG  | ATC  | GAG | GTG  | 1872 |
| Leu | Gly  | Trp | Thr  | Phe  | Asp  | Arg  | Ala  | Glu | Ala  | Asn  | Lys  | Leu  | Ile  | Glu | Val  |      |
|     | 1220 | כ   |      |      |      | 1225 | 5    |     |      |      | 1230 | ס    |      |     |      |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
|     |      |     |      |      |      | ACG  |      |     |      |      |      |      |      |     |      | 1920 |
| Leu | Ser  | His | Cys  | Leu  | Asp  | Thr  | Tyr  | Arg | Asn  | -    |      | Glu  | Ser  | Trp | Lys  |      |
| 123 | 5    |     |      |      | 1240 | ס    |      |     |      | 124  | 5    |      |      |     | 1250 |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
|     |      |     |      |      |      | ATG  |      |     |      |      |      |      |      |     |      | 1968 |
| Ser | Leu  | Gln | Ala  | -    | -    | Met  | Ser  | Gln | Asn  | Leu  | Ser  | Trp  | Asp  | His | Ala  |      |
|     |      |     |      | 125  | 5    |      |      |     | 1260 | )    |      |      |      | 126 | 5    |      |
|     |      |     |      |      |      |      |      |     |      |      |      |      |      |     |      |      |
|     |      |     |      |      |      | GTC  |      |     |      |      |      |      |      |     |      | 2007 |
| Ala | Glu  | Leu | -    |      | qaA  | Val  | Leu  |     | -    | Tyr  | Gln  | Trp  |      |     |      |      |
|     |      |     | 1270 | 0    |      |      |      | 127 | 5    |      |      |      |      |     |      |      |

# (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 669 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Ala Glu Ala Glu Ala Gly Gly Lys Asp Ala Pro Pro Glu Arg Ser Gly

| 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Ala        | Ala        | Arg<br>20  | Leu        | Pro        | Arg        | Ala        | Arg<br>25  | Arg        | Asn        | Ala        | Val        | Ser<br>30  | Lys        | Arg        |
| Arg        | Asp        | Pro<br>35  | Leu        | Gln        | Pro        | Val        | Gly<br>40  | Arg        | туг        | Gly        | Ser        | Ala<br>45  | Thr        | Gly        | Asr        |
| Thr        | Ala<br>50  | Arg        | Thr        | Gly        | Ala        | Ala<br>55  | Ser        | Сув        | Gln        | Asn        | Ala<br>60  | Ala        | Leu        | Ala        | Asp        |
| Val<br>65  | Glu        | Ile        | Val        | Glu        | Ile<br>70  | Lys        | Ser        | Ile        | Val        | Ala<br>75  | Ala        | Pro        | Pro        | Thr        | Ser<br>80  |
| Ile        | Val        | Lys        | Phe        | Pro<br>85  | Gly        | Arg        | Gly        | Leu        | Gln<br>90  | Asp        | Asp        | Pro        | Ser        | Leu<br>95  | Trp        |
| Asp        | Ile        | Ala        | Pro<br>100 | Glu        | Thr        | Val        | Leu        | Pro<br>105 | Ala        | Pro        | ГÀЗ        | Pro        | Leu<br>110 | His        | Glu        |
| Ser        | Pro        | Ala<br>115 | Val        | Asp        | Gly        | Asp        | Ser<br>120 | Asn        | Gly        | Ile        | Ala        | Pro<br>125 | Pro        | Thr        | Val        |
| Glu        | Pro<br>130 | Leu        | Val        | Gln        | Glu        | Ala<br>135 | Thr        | Trp        | Asp        | Phe        | Lys<br>140 | Lys        | Tyr        | Ile        | Gly        |
| Phe<br>145 | Asp        | Glu        | Pro        | Asp        | Glu<br>150 | Ala        | Lys        | Asp        | Asp        | Ser<br>155 | Arg        | Val        | Gly        | Ala        | Asr<br>160 |
| Asp        | Ala        | Gly        | Ser        | Phe<br>165 | Glu        | His        | Tyr        | Gly        | Thr<br>170 | Met        | Ile        | Leu        | Gly        | Leu<br>175 | Суя        |
| Gly        | Glu        | Asn        | Val<br>180 | Met        | Asn        | Val        | Ile        | Val<br>185 | Val        | Ala        | Ala        | Glu        | Cys<br>190 | Ser        | Pro        |
| Trp        | Сув        | Lув<br>195 | Thr        | Gly        | Gly        | Leu        | Gly<br>200 | Asp        | Val        | Val        | Gly        | Ala<br>205 | Leu        | Pro        | Lys        |
| Ala        | Leu<br>210 | Ala        | Arg        | Arg        | Gly        | His<br>215 | Arg        | Val        | Met        | Val        | Val<br>220 | Val        | Pro        | Arg        | Туг        |
| Gly<br>225 | Asp        | Tyr        | Val        | Glu        | Ala<br>230 | Phe        | Asp        | Met        | Gly        | Ile<br>235 | Arg        | Lys        | Tyr        | Tyr        | Lys<br>240 |
| Ala        | Ala        | Gly        | Gln        | Asp        | Leu        | Glu        | Val        | Asn        | Tyr        | Phe        | His        | Ala        | Phe        | Ile        | Asp        |

|            |            |            |            | 245        |            |            |            |            | 250        |            |            |            |            | 255        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Val        | Авр        | Phe<br>260 | Val        | Phe        | Ile        | Asp        | Ala<br>265 | Ser        | Phe        | Arg        | His        | Arg<br>270 | Gln        | Asp        |
| Asp        | Ile        | Tyr<br>275 | Gly        | Gly        | Ser        | Arg        | Gln<br>280 | Glu        | Ile        | Met        | Lys        | Arg<br>285 | Met        | Ile        | Leu        |
| Phe        | Сув<br>290 | Lys        | Val        | Ala        | Val        | Glu<br>295 | Val        | Pro        | Trp        | His        | Val<br>300 | Pro        | Сув        | Gly        | Gly        |
| Val<br>305 | Сув        | Tyr        | Gly        | Asp        | Gly<br>310 | Asn        | Leu        | Val        | Phe        | 11e<br>315 | Ala        | Met        | Asn        | Trp        | His<br>320 |
| Thr        | Ala        | Leu        | Leu        | Pro<br>325 | Val        | Tyr        | Leu        | Lys        | Ala<br>330 | Tyr        | Tyr        | Arg        | Asp        | His<br>335 | Gly        |
| Leu        | Met        | Gln        | Tyr<br>340 | Thr        | Arg        | Ser        | Val        | Leu<br>345 | Val        | Ile        | His        | Asn        | 11e<br>350 | Gly        | His        |
| Gln        | Gly        | Arg<br>355 | Gly        | Pro        | Val        | His        | Glu<br>360 | Phe        | Pro        | Tyr        | Met        | Asp<br>365 | Leu        | Leu        | Asn        |
| Thr        | Asn<br>370 | Leu        | Gln        | His        | Phe        | Glu<br>375 | Leu        | Туг        | Asp        | Pro        | Val<br>380 | Gly        | Gly        | Glu        | His        |
| Ala<br>385 | Asn        | Ile        | Phe        | Ala        | Ala<br>390 | Сув        | Val        | Leu        | Lys        | Met<br>395 | Ala        | Asp        | Arg        | Val        | Val<br>400 |
| Thr        | Val        | Ser        | Arg        | Gly<br>405 | Tyr        | Leu        | Trp        | Glu        | Leu<br>410 | Lys        | Thr        | Val        | Glu        | Gly<br>415 | Gly        |
| Trp        | Gly        | Leu        | His<br>420 | Asp        | Ile        | Ile        | Arg        | Ser<br>425 | Asn        | Asp        | Trp        | Lys        | Ile<br>430 | Asn        | Gly        |
| Ile        | Arg        | Glu<br>435 | Arg        | Ile        | Asp        | His        | Gln<br>440 | Glu        | Trp        | Asn        | Pro        | Lys<br>445 | Val        | Asp        | Val        |
| His        | Leu<br>450 | Arg        | Ser        | yab        | Gly        | Tyr<br>455 | Thr        | Asn        | Tyr        | Ser        | Leu<br>460 | Glu        | Thr        | Leu        | Asp        |
| Ala<br>465 | Gly        | Lys        | Arg        | Gln        | Cys<br>470 | Lys        | Ala        | Ala        | Leu        | Gln<br>475 | Arg        | yab        | Val        | Gly        | Leu<br>480 |
| Glu        | Val        | Arg        | Asp        | Asp        | Val        | Pro        | Leu        | Leu        | Gly        | Phe        | Ile        | Gly        | Arg        | Leu        | Asp        |

90

| 485 | 490 | 495 |
|-----|-----|-----|
|     |     |     |

- Gly Gln Lys Gly Val Asp Ile Ile Gly Asp Ala Met Pro Trp Ile Ala 500 505 510
- Gly Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Pro Pro Asp Leu
  515 520 525
- Glu Arg Met Leu Gln His Leu Glu Arg Glu His Pro Asn Lys Val Arg 530 535 540
- Gly Trp Val Gly Phe Ser Val Leu Met Val His Arg Ile Thr Pro Gly 545 550 555 560
- Ala Ser Val Leu Val Met Pro Ser Arg Phe Ala Gly Gly Leu Asn Gln 565 570 575
- Leu Tyr Ala Met Ala Tyr Gly Thr Val Pro Val Val His Ala Val Gly 580 585 590
- Gly Leu Arg Asp Thr Val Ala Pro Phe Asp Pro Phe Gly Asp Ala Gly
  595 600 605
- Leu Gly Trp Thr Phe Asp Arg Ala Glu Ala Asn Lys Leu Ile Glu Val 610 615 620
- Leu Ser His Cys Leu Asp Thr Tyr Arg Asn Tyr Glu Glu Ser Trp Lys 625 630 635 640
- Ser Leu Gln Ala Arg Gly Met Ser Gln Asn Leu Ser Trp Asp His Ala 645 650 655
- Ala Glu Leu Tyr Glu Asp Val Leu Val Lys Tyr Gln Trp 660 665

### (2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2097 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: cDNA to mRNA

91

### (iii) HYPOTHETICAL: NO

#### (vi) ORIGINAL SOURCE:

(A) ORGANISM: Zea mays

### (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2097

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

| ATG | CCG   | GGG  | GCA | ATC | TCT  | TCC | TCG     | TCG  | TCG | GCT | TTT  | CTC | CTC        | ccc | GTC  | 48  |
|-----|-------|------|-----|-----|------|-----|---------|------|-----|-----|------|-----|------------|-----|------|-----|
| Met | Pro   | Gly  | Ala | Ile | Ser  | Ser | Ser     | Ser  | Ser | Ala | Phe  | Leu | Leu        | Pro | Val  |     |
| 670 |       |      |     |     | 675  |     |         |      |     | 680 |      |     |            |     | 685  |     |
|     |       |      |     |     |      |     |         |      |     |     |      |     |            |     |      |     |
| GCG | TCC   | TCC  | TCG | CCG | CGG  | CGC | AGG     | CGG  | GGC | AGT | GTG  | GGT | GCT        | GCT | CTG  | 96  |
| Ala | Ser   | Ser  | Ser | Pro | Arg  | Arg | Arg     | Arg  | Gly | Ser | Val  | Gly | Ala        | Ala | Leu  |     |
|     |       |      |     | 690 |      |     |         |      | 695 |     |      | •   |            | 700 |      |     |
|     |       |      |     |     |      |     |         |      |     |     |      |     |            |     |      |     |
| CGC | TCG   | TAC  | GGC | TAC | AGC  | GGC | GCG     | GAG  | CTG | CGG | TTG  | CAT | TGG        | GCG | CGG  | 144 |
| Arg | Ser   | Tyr  | Gly | Tyr | Ser  | Gly | Ala     | Glu  | Leu | Arg | Leu  | His | Trp        | Ala | Arg  |     |
| _   |       | •    | 705 | _   |      | -   |         | 710  |     | _   |      |     | 715        |     | _    |     |
|     |       |      |     |     |      |     |         |      |     |     |      |     |            |     |      |     |
| CGG | GGC   | CCG  | CCT | CAG | GAT  | GGA | GCG     | GCG  | TCG | GTA | CGC  | GCC | GCA        | GCG | GCA  | 192 |
| Arg | Gly   | Pro  | Pro | Gln | Asp  | Gly | Ala     | Ala  | Ser | Val | Arq  | Ala | Ala        | Ala | Ala  |     |
| -   | -     | 720  |     |     | •    | •   | 725     |      |     |     | ,    | 730 |            |     |      |     |
|     |       |      |     |     |      |     |         |      |     |     |      |     |            |     |      |     |
| CCG | GCC   | GGG  | GGC | GAA | AGC  | GAG | GAG     | GCA  | GCG | AAG | AGC  | TCC | TCC        | TCG | TCC  | 240 |
| Pro | Ala   | Gly  | Gly | Glu | Ser  | Glu | Glu     | Ala  | Ala | Lys | Ser  | Ser | Ser        | Ser | Ser  |     |
|     | 735   | •    | •   |     |      | 740 |         |      |     | •   | 745  |     |            |     |      |     |
|     |       |      |     |     |      |     |         |      |     |     |      |     |            |     |      |     |
| CAG | GCG   | GGC  | GCT | GTT | CAG  | GGC | AGC     | ACG  | GCC | AAG | GCT  | GTG | GAT        | TCT | GCT  | 288 |
| Gln | Ala   | Glv  | Ala | Val | Gln  | Glv | Ser     | Thr  | Ala | Lvs | Ala  | Val | Asp        | Ser | Ala  |     |
| 750 |       | ,    |     |     | 755  | 1   |         |      |     | 760 |      |     |            |     | 765  |     |
|     |       |      |     |     | ,,,, |     |         |      |     | ,   |      |     |            |     | , 05 |     |
| TCA | ССТ   | ccc  | ТАА | ССТ | TTG  | ACA | ጥርጥ     | GCT  | CCG | AAG | CAA  | AGT | CAG        | AGC | CCT  | 336 |
|     |       |      |     |     |      |     |         | Ala  |     |     |      |     |            |     |      | 330 |
|     |       |      |     | 770 | 204  |     |         |      | 775 | -10 | 02   | 001 | 0111       | 780 | nzu  |     |
|     |       |      |     | ,,, |      |     |         |      | ,,, |     |      |     |            | ,00 |      |     |
| GCA | ΔTG   | CAA  | ממ  | CCA | ACC. | እርጥ | ccc     | GGC  | ACC | ACC | ccc  | AGC | <b>ACC</b> | ccc | ccc  | 384 |
|     |       |      |     |     |      |     |         | Gly  |     |     |      |     |            |     |      | 304 |
| ALU | Mec   | GIII |     | GIY | TIIL | DET | Gry     |      | Ser | ser | nia  | Ser |            | nia | MIG  |     |
|     |       |      | 785 |     |      |     |         | 790  |     |     |      |     | 795        |     |      |     |
| 000 | C.T.C | mac  | 202 | 000 |      | 00m | ~ ~ ~ ~ | 03 m | 700 | mar | 0.05 | aam | ama        | 200 |      | 420 |
| CCG | GTG   | TCC  | GGA | CCC | AAA  | GCT | GAT     | CAT  | CCA | TCA | GCT  | CCT | GTC        | ACC | AAG  | 432 |

| Pro  | Val  | Ser<br>800 | Gly   | Pro        | Lys | Ala | Asp<br>805 | His | Pro        | Ser  | Ala | Pro<br>810 | Val | Thr        | Lys |      |
|------|------|------------|-------|------------|-----|-----|------------|-----|------------|------|-----|------------|-----|------------|-----|------|
| AGA  | GAA  | ATC        | GAT   | GCC        | AGT | GCG | GTG        | AAG | CCA        | GAG  | CCC | GCA        | GGT | GAT        | GAT | 480  |
|      |      |            |       |            |     |     |            |     |            |      |     | Ala        |     |            |     | 400  |
| _    | 815  |            |       |            |     | 820 |            |     |            |      | 825 |            | _   | _          | -   |      |
|      |      |            |       |            |     |     |            |     |            |      |     |            |     |            |     |      |
|      |      |            |       |            |     |     |            |     |            |      |     | GTG<br>Val |     |            |     | 528  |
| 830  | 9    |            |       |            | 835 |     | ,          |     |            | 840  |     |            |     |            | 845 |      |
|      |      |            |       |            |     |     |            |     |            |      |     |            |     |            |     |      |
|      |      |            |       |            |     |     |            |     |            |      |     | GCT        |     |            |     | 576  |
| Ala  | Asp  | Ala        | Ala   | Pro<br>850 | Ala | Thr | Asp        | Ala | A1a<br>855 | Ala  | Ser | Ala        | Pro | Tyr<br>860 | Asp |      |
|      |      |            |       | 000        |     |     |            |     | 000        |      |     |            |     | 000        |     |      |
| AGG  | GAG  | GAT        | AAT   | GAA        | CCT | GGC | CCT        | TTG | GCT        | GGG  | CCT | AAT        | GTG | ATG        | AAC | 624  |
| Arg  | Glu  | Asp        |       | Glu        | Pro | Gly | Pro        |     | Ala        | Gly  | Pro | Asn        |     | Met        | Asn |      |
|      |      |            | 865   |            |     |     |            | 870 |            |      |     |            | 875 |            |     |      |
| GTC  | GTC  | GTG        | GTG   | GCT        | TCT | GAA | TGT        | GCT | CCT        | TTC  | TGC | AAG        | ACA | GGT        | GGC | 672  |
| Val  | Val  | Val        | Val   | Ala        | Ser | Glu | Сув        | Ala | Pro        | Phe  | Сув | Lys        | Thr | Gly        | Gly |      |
|      |      | 880        |       |            |     |     | 885        |     |            |      |     | 890        |     |            |     |      |
| CTT  | GGA  | GAT        | GTC   | GTG        | GGT | GCT | TTG        | ССТ | AAG        | GCT  | стс | GCG        | AGG | AGA        | GGA | 720  |
|      |      |            |       |            |     |     |            |     |            |      |     | Ala        |     |            |     | ,,,  |
|      | 895  |            |       |            |     | 900 |            |     |            |      | 905 |            |     |            |     |      |
| ~~ ~ |      |            |       |            |     |     |            |     |            |      |     |            |     |            |     |      |
|      |      |            |       |            |     |     |            |     |            |      |     | TAT<br>Tyr |     |            |     | 768  |
| 910  | •••• |            |       | Vu.        | 915 |     |            | 9   | -1-        | 920  | 014 | - 7 -      | n.u | Giu        | 925 |      |
|      |      |            |       |            |     |     |            |     |            |      |     |            |     |            |     |      |
|      |      |            |       |            |     |     |            |     |            |      |     | GGA        |     |            |     | 816  |
| Arg  | Asp  | Leu        | Gly   | Val<br>930 | Arg | Arg | Arg        | Tyr | Lys<br>935 | Val  | Ala | Gly        | Gln | Asp<br>940 | Ser |      |
|      |      |            |       | ,,,,       |     |     |            |     | ,,,,       |      |     |            |     | 240        |     |      |
| GAA  | GTT  | ACT        | TAT   | TTT        | CAC | TCT | TAC        | ATT | GAT        | GGA  | GTT | GAT        | TTT | GTA        | TTC | 864  |
| Glu  | Val  | Thr        | _     | Phe        | His | Ser | Tyr        |     | Asp        | Gly  | Val | Asp        |     | Val        | Phe |      |
|      |      |            | 945   |            |     |     |            | 950 |            |      |     |            | 955 |            |     |      |
| GTA  | GAA  | GCC        | CCT   | ccc        | TTC | CGG | CAC        | CGG | CAC        | AAT  | AAT | ATT        | TAT | GGG        | GGA | 912  |
|      |      |            |       |            |     |     |            |     |            |      |     | Ile        |     |            |     |      |
|      |      | 960        |       |            |     |     | 965        |     |            |      |     | 970        |     |            |     |      |
| CAN  | 202  | mm-c       | C 3 M | አ መመ       | mme | מממ | 000        | አመረ | שתו ע      | mmo. | mm~ | TGC        | 777 | 000        | COT | 0.00 |
|      |      |            |       |            |     |     |            |     |            |      |     | Cys        |     |            |     | 960  |
|      | 9    |            |       |            |     | -1- | y          |     |            |      |     | -10        | -10 |            |     |      |

PCT/US97/17555

|      | 975  |      |      |      |      | 980  |     |      |      |      | 985  |      |              |      |      |      |
|------|------|------|------|------|------|------|-----|------|------|------|------|------|--------------|------|------|------|
| ርጥጥ  | GAG  | ርጥጥ  | CCA  | тсс  | ጥልጥ  | GCT  | CCA | ጥርጥ  | GGC  | ССТ  | ልሮጥ  | GTC  | ጥልጥ          | CCT  | CATT | 1008 |
|      | Glu  |      |      |      |      |      |     |      |      |      |      |      |              |      |      | 1000 |
| 990  |      |      | •••  |      | 995  |      |     | -,-  | 1    | 1000 |      | ,,,  | -,-          | O.J  | 1005 |      |
|      |      |      |      |      |      |      |     |      |      |      |      |      |              |      | 1000 |      |
| GGC  | AAC  | TTA  | GTT  | TTC  | ATT  | GCT  | AAT | GAT  | TGG  | CAT  | ACC  | GCA  | CTT          | CTG  | CCT  | 1056 |
| Gly  | Asn  | Leu  | Val  | Phe  | Ile  | Ala  | Asn | Asp  | Trp  | His  | Thr  | Ala  | Leu          | Leu  | Pro  |      |
|      |      |      |      | 1010 | )    |      |     |      | 1019 | 5    |      |      |              | 1020 | 0    |      |
| GTC  | TAT  | CTA  | AAG  | GCC  | TAT  | TAC  | CGG | GAC  | AAT  | GGT  | TTG  | ATG  | CAG          | TAT  | GCT  | 1104 |
| Val  | Tyr  | Leu  | Lys  | Ala  | Tyr  | Tyr  | Arg | Asp  | Asn  | Gly  | Leu  | Met  | Gln          | Tyr  | Ala  |      |
|      |      |      | 1025 | 5    |      |      |     | 1030 | )    |      |      |      | 1039         | 5    |      |      |
| CGC  | TCT  | GTG  | CTT  | GTG  | ATA  | CAC  | AAC | ATT  | GCT  | CAT  | CAG  | GGT  | CGT          | GGC  | CCT  | 1152 |
| Arg  | Ser  | Val  | Leu  | Val  | Ile  | His  | Asn | Ile  | Ala  | His  | Gln  | Gly  | Arg          | Gly  | Pro  |      |
|      |      | 1040 | )    |      |      |      | 104 | 5    |      |      |      | 1050 | )            |      |      |      |
| ста  | GAC  | GAC  | ጥጥር  | GTC  | ידעע | ጥጥጥ  | GAC | ጥጥር  | ССТ  | CDD  | CAC  | ጥልሮ  | እጥ <u></u> ሮ | CAC  | CAC  | 1200 |
|      | Asp  |      |      |      |      |      |     |      |      |      |      |      |              |      |      | 1200 |
|      | 1059 | -    |      |      |      | 1060 | _   |      |      |      | 106! | •    |              | p    |      |      |
|      |      |      |      |      |      |      |     |      |      |      |      |      |              |      |      |      |
| TTC  | AAA  | CTG  | TAT  | GAC  | AAC  | ATT  | GGT | GGG  | GAT  | CAC  | AGC  | AAC  | GTT          | TTT  | GCT  | 1248 |
| Phe  | Lys  | Leu  | Tyr  | Asp  | Asn  | Ile  | Gly | Gly  | Asp  | His  | Ser  | Asn  | Val          | Phe  | Ala  |      |
| 107  | 0    |      |      |      | 107  | 5    |     |      |      | 1080 | ס    |      |              |      | 1085 |      |
|      |      |      |      |      |      |      |     |      |      |      |      |      |              |      |      |      |
| _    | GGG  |      |      |      |      |      |     |      |      |      |      |      |              |      |      | 1296 |
| Ala  | Gly  | Leu  | Lys  |      |      | Asp  | Arg | Val  |      |      | Val  | Ser  | Asn          | -    | -    |      |
|      |      |      |      | 1090 | )    |      |     |      | 109! | •    |      |      |              | 1100 | )    |      |
| ATG  | TGG  | GAG  | CTG  | AAG  | ACT  | TCG  | GAA | GGC  | GGG  | TGG  | GGC  | CTC  | CAC          | GAC  | ATC  | 1344 |
| Met  | Trp  | Glu  | Leu  | Lys  | Thr  | Ser  | Glu | Gly  | Gly  | Trp  | Gly  | Leu  | His          | Asp  | Ile  |      |
|      |      |      | 1109 | 5    |      |      |     | 1110 | )    |      |      |      | 1119         | 5    |      |      |
| ATA  | AAC  | CAG  | AAC  | GAC  | TGG  | AAG  | CTG | CAG  | GGC  | ATC  | GTG  | AAC  | GGC          | ATC  | GAC  | 1392 |
| Ile  | Asn  | Gln  | Asn  | Asp  | Trp  | Lys  | Leu | Gln  | Gly  | Ile  | Val  | Asn  | Gly          | Ile  | Asp  |      |
|      |      | 1120 | )    |      |      |      | 112 | 5    |      |      |      | 1130 | )            |      |      |      |
| ATG  | AGC  | GAG  | TGG  | AAC  | CCC  | GCT  | GTG | GAC  | GTG  | CAC  | CTC  | CAC  | TCC          | GAC  | GAC  | 1440 |
|      | Ser  |      |      |      |      |      |     |      |      |      |      |      |              |      |      | 1440 |
|      | 1139 |      |      |      |      | 1140 |     |      |      |      | 114  |      |              |      |      |      |
|      |      |      |      |      |      |      |     |      |      |      |      |      |              |      |      |      |
| TAC  | ACC  | AAC  | TAC  | ACG  | TTC  | GAG  | ACG | CTG  | GAC  | ACC  | GGC  | AAG  | CGG          | CAG  | TGC  | 1488 |
| Tyr  | Thr  | Asn  | Tyr  | Thr  | Phe  | Glu  | Thr | Leu  | Asp  | Thr  | Gly  | Lys  | Arg          | Gln  | Сув  |      |
| 1150 | )    |      |      |      | 1159 | 5    |     |      |      | 1160 | )    |      |              |      | 1165 |      |

|                 |               |                 | GTC CGC GAC GAC GTG<br>Val Arg Asp Asp Val<br>1180 | 1536 |
|-----------------|---------------|-----------------|----------------------------------------------------|------|
|                 | Phe Ile Gly A |                 | CAG AAG GGC GTG GAC<br>Gln Lys Gly Val Asp<br>1195 | 1584 |
|                 | Ala Ile His 1 |                 | CAG GAC GTG CAG CTC<br>Gln Asp Val Gln Leu<br>1210 | 1632 |
|                 |               |                 | GAC ATG CTG CGG CGG<br>Asp Met Leu Arg Arg<br>1225 | 1680 |
|                 |               |                 | TGG GTG GGG TTC TCG<br>Trp Val Gly Phe Ser<br>1245 | 1728 |
|                 |               |                 | GAC ATC CTG CTG ATG<br>Asp Ile Leu Leu Met<br>1260 | 1776 |
|                 | Glu Pro Cys ( |                 | CTC TAC GCC ATG GCG<br>Leu Tyr Ala Met Ala<br>1275 | 1824 |
|                 | Pro Val Val H |                 | GGG CTC CGG GAC ACG<br>Gly Leu Arg Asp Thr<br>1290 | 1872 |
|                 |               | Asn Asp Thr Gly | CTC GGG TGG ACG TTC<br>Leu Gly Trp Thr Phe<br>1305 | 1920 |
|                 |               |                 | CTC TCG CAC TGC CTC<br>Leu Ser His Cys Leu<br>1325 | 1968 |
|                 |               |                 | GCC TGC AGG GCG CGC<br>Ala Cys Arg Ala Arg<br>1340 | 2016 |
| GGC ATG GCC GAG |               |                 |                                                    | 2064 |

95

Gly Met Ala Glu Asp Leu Ser Trp Asp His Ala Ala Val Leu Tyr Glu 1345 1350 1355

GAC GTG CTC GTC AAG GCG AAG TAC CAG TGG TGA
Asp Val Leu Val Lys Ala Lys Tyr Gln Trp \*
1360 1365

2097

- (2) INFORMATION FOR SEQ ID NO:11:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 699 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Pro Gly Ala Ile Ser Ser Ser Ser Ala Phe Leu Leu Pro Val

1 5 10 15

Ala Ser Ser Ser Pro Arg Arg Arg Gly Ser Val Gly Ala Ala Leu 20 25 30

Arg Ser Tyr Gly Tyr Ser Gly Ala Glu Leu Arg Leu His Trp Ala Arg
35 40 45

Arg Gly Pro Pro Gln Asp Gly Ala Ala Ser Val Arg Ala Ala Ala Ala 50 55 60

Gln Ala Gly Ala Val Gln Gly Ser Thr Ala Lys Ala Val Asp Ser Ala 85 90 95

Ser Pro Pro Asn Pro Leu Thr Ser Ala Pro Lys Gln Ser Gln Ser Ala 100 105 110

Ala Met Gln Asn Gly Thr Ser Gly Gly Ser Ser Ala Ser Thr Ala Ala 115 120 125

Pro Val Ser Gly Pro Lys Ala Asp His Pro Ser Ala Pro Val Thr Lys 130 135 140

|            |            |            |            |            |            |            |            |            | ,          | ,          |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg<br>145 | Glu        | Ile        | Asp        | Ala        | Ser<br>150 | Ala        | Val        | Lys        | Pro        | Glu<br>155 | Pro        | Ala        | Gly        | Asp        | Asp<br>160 |
| Ala        | Arg        | Pro        | Val        | Glu<br>165 | Ser        | Ile        | Gly        | Ile        | Ala<br>170 | Glu        | Pro        | Val        | Asp        | Ala<br>175 | Lys        |
| Ala        | Авр        | Ala        | Ala<br>180 | Pro        | Ala        | Thr        | Asp        | Ala<br>185 | Ala        | Ala        | Ser        | Ala        | Pro<br>190 | Tyr        | Asp        |
| Arg        | Glu        | Asp<br>195 | Asn        | Glu        | Pro        | Gly        | Pro<br>200 | Leu        | Ala        | Gly        | Pro        | Asn<br>205 | Val        | Met        | Asn        |
| Val        | Val<br>210 | Val        | Val        | Ala        | Ser        | Glu<br>215 | Сув        | Ala        | Pro        | Phe        | Cys<br>220 | Lys        | Thr        | Gly        | Gly        |
| Leu<br>225 | Gly        | Asp        | Val        | Val        | Gly<br>230 | Ala        | Leu        | Pro        | Lys        | Ala<br>235 | Leu        | Ala        | Arg        | Arg        | Gly<br>240 |
| His        | Arg        | Val        | Met        | Val<br>245 | Val        | Ile        | Pro        | Arg        | Tyr<br>250 | Gly        | Glu        | Tyr        | Ala        | Glu<br>255 | Ala        |
| Arg        | Asp        | Leu        | Gly<br>260 | Val        | Arg        | Arg        | Arg        | Tyr<br>265 | Lys        | Val        | Ala        | Gly        | Gln<br>270 | Asp        | Ser        |
| Glu        | Val        | Thr<br>275 | Tyr        | Phe        | His        | Ser        | Tyr<br>280 | Ile        | Asp        | Gly        | Val        | Asp<br>285 | Phe        | Val        | Phe        |
| Val        | Glu<br>290 | Ala        | Pro        | Pro        | Phe        | Arg<br>295 | His        | Arg        | His        | Asn        | Asn<br>300 | Ile        | Tyr        | Gly        | Gly        |
| Glu<br>305 | Arg        | Leu        | Asp        | Ile        | Leu<br>310 | Lys        | Arg        | Met        | Ile        | Leu<br>315 | Phe        | Сув        | Lys        | Ala        | Ala<br>320 |
| Val        | Glu        | Val        | Pro        | Trp<br>325 | Туг        | Ala        | Pro        | Сув        | Gly<br>330 | Gly        | Thr        | Val        | Tyr        | Gly<br>335 | Asp        |
| Gly        | Asn        | Leu        | Val<br>340 | Phe        | Ile        | Ala        | Asn        | Asp<br>345 | Trp        | His        | Thr        | Ala        | Leu<br>350 | Leu        | Pro        |
| Val        | Tyr        | Leu<br>355 | Lys        | Ala        | Tyr        | Tyr        | Arg<br>360 | Asp        | Asn        | Gly        | Leu        | Met<br>365 | Gln        | Tyr        | Ala        |

Arg Ser Val Leu Val Ile His Asn Ile Ala His Gln Gly Arg Gly Pro

| Val<br>385        | Asp        | Asp        | Phe        | Val        | Asn<br>390 | Ph         | Asp        | Lu         | Pro        | Glu<br>395 | His        | Tyr        | Ile        | Asp        | His<br>400 |
|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Phe               | Lys        | Leu        | Tyr        | Asp<br>405 | Asn        | Ile        | Gly        | Gly        | Asp<br>410 | His        | Ser        | Asn        | Val        | Phe<br>415 | Ala        |
| Ala               | Gly        | Leu        | Lув<br>420 | Thr        | Ala        | Asp        | Arg        | Val<br>425 | Val        | Thr        | Val        | Ser        | Asn<br>430 | Gly        | Туг        |
| Met               | Trp        | Glu<br>435 | Leu        | Lys        | Thr        | Ser        | Glu<br>440 | Gly        | Gly        | Trp        | Gly        | Leu<br>445 | His        | Asp        | Ile        |
| Ile               | Asn<br>450 | Gln        | Asn        | Asp        | Trp        | Lys<br>455 | Leu        | Gln        | Gly        | Ile        | Val<br>460 | Asn        | Gly        | Ile        | Asp        |
| Met<br>465        | Ser        | Glu        | Trp        | Asn        | Pro<br>470 | Ala        | Val        | Asp        | Val        | His<br>475 | Leu        | His        | Ser        | Asp        | Asp<br>480 |
| Tyr               | Thr        | Asn        | Tyr        | Thr<br>485 | Phe        | Glu        | Thr        | Leu        | Asp<br>490 | Thr        | Gly        | Lys        | Arg        | Gln<br>495 | Сув        |
| Lys               | Ala        | Ala        | Leu<br>500 | Gln        | Arg        | Gln        | Leu        | Gly<br>505 | Leu        | Gln        | Val        | Arg        | Asp<br>510 | Asp        | Va)        |
| Pro               | Leu        | Ile<br>515 | Gly        | Phe        | Ile        | Gly        | Arg<br>520 | Leu        | Asp        | His        | Gln        | Lys<br>525 | Gly        | Val        | Asp        |
| Ile               | Ile<br>530 | Ala        | Asp        | Ala        | Ile        | His<br>535 | Trp        | Ile        | Ala        | Gly        | Gln<br>540 | Asp        | Val        | Gln        | Lev        |
| <b>Val</b><br>545 | Met        | Leu        | Gly        | Thr        | Gly<br>550 | Arg        | Ala        | Asp        | Leu        | Glu<br>555 | Asp        | Met        | Leu        | Arg        | Arg<br>560 |
| Phe               | Glu        | Ser        | Glu        | His<br>565 | Ser        | Asp        | Lys        | Val        | Arg<br>570 | Ala        | Trp        | Val        | Gly        | Phe<br>575 | Ser        |
| Val               | Pro        | Leu        | Ala<br>580 | His        | Arg        | Ile        | Thr        | Ala<br>585 | Gly        | Ala        | Asp        | Ile        | Leu<br>590 | Leu        | Met        |
| Pro               | Ser        | Arg<br>595 | Phe        | Glu        | Pro        | Сув        | Gly<br>600 | Leu        | Asn        | Gln        | Leu        | Tyr<br>605 | Ala        | Met        | Ala        |
| Tyr               | Gly<br>610 |            | Val        | Pro        |            | Val        | His        | Ala        | Val        | -          | Gly        |            | Arg        | Asp        | Thi        |

98

 Val
 Ala
 Pro
 Phe
 Asn
 A

Thr Thr Tyr Arg Asn Tyr Lys Glu Ser Trp Arg Ala Cys Arg Ala Arg 660 665 670

Gly Met Ala Glu Asp Leu Ser Trp Asp His Ala Ala Val Leu Tyr Glu 675 680 685

Asp Val Leu Val Lys Ala Lys Tyr Gln Trp \*
690 695

- (2) INFORMATION FOR SEQ ID NO:12:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1752 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Zea mays
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 1..1752
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

|     |     |            | Thr        |             | GAG<br>Glu        |     |            | Ser        |            |         |     |            | Val        |            |     | 144 |
|-----|-----|------------|------------|-------------|-------------------|-----|------------|------------|------------|---------|-----|------------|------------|------------|-----|-----|
| GCC | GGC | CTG        | 735<br>GGG | GAC         | CTC               | GGT | стс        | 740<br>GAA | CCT        | GAA     | GGG | ATT        | 745<br>GCT | GAA        | GGT | 192 |
| Ala | Gly | Leu<br>750 | Gly        | Asp         | Leu               | Gly | Leu<br>755 | Glu        | Pro        | Glu     | Gly | Ile<br>760 | Ala        | Glu        | Gly |     |
|     |     |            |            |             | GTA<br>Val        |     |            |            |            |         |     |            |            |            |     | 240 |
| ama | 765 | 663        |            | <b>63.6</b> | <b>a.</b> .       | 770 | 993        |            |            | <b></b> | 775 |            |            |            |     | *   |
|     |     |            |            |             | CAA<br>Gln<br>785 |     |            |            |            |         |     |            |            | _          |     | 288 |
|     |     |            |            |             | GCT               |     |            |            |            |         |     |            |            |            |     | 336 |
| Pne | Val | Thr        | GIÀ        | 800         | Ala               | Ser | Pro        | Tyr        | 805        | Lys     | Ser | Gly        | Gly        | Leu<br>810 | Gly |     |
|     |     |            |            |             | TTG<br>Leu        |     |            |            |            |         |     |            |            |            |     | 384 |
|     |     |            | GTA        |             | ccc               |     |            | TTA        |            |         |     |            | GAT        |            |     | 432 |
| Val | Met | Val<br>830 | Val        | Met         | Pro               | Arg | Tyr<br>835 | Leu        | Asn        | Gly     | Thr | Ser<br>840 | Asp        | ГÀЗ        | Asn |     |
|     |     |            |            |             | TAC<br>Tyr        |     |            |            |            |         |     |            |            |            |     | 480 |
|     |     |            |            |             | GTT<br>Val<br>865 |     |            |            |            |         |     |            |            |            | Val | 528 |
| GAC |     |            |            |             | GAT               |     |            |            |            | CAC     |     |            |            |            |     | 576 |
| Asp | Trp | Val        | Phe        | Val<br>880  | Asp               | His | Pro        | Ser        | Tyr<br>885 | His     | Arg | Pro        | Gly        | Asn<br>890 | Leu |     |
|     |     |            |            |             | GGT<br>Gly        |     |            |            |            |         |     |            |            |            |     | 624 |
| CTC | CTT | TGC        | TAT        | GCT         | GCA               | TGT | GAG        | GCT        | CCT        | TTG     | ATC | CTT        | GAA        | TTG        | GGA | 672 |

| Leu                                            | Leu                                                   | Сув<br>910                           | Tyr                                                          | Ala                                                   | Ala                                            | Сув                                                   | Glu<br>915                              | Ala                                            | Pro                                   | Leu                                                          | 11                                           | L u<br>920                             | Glu                                            | Leu                                            | Gly                              |                      |
|------------------------------------------------|-------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------------------------------|---------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|----------------------|
| GGA                                            | TAT                                                   | ATT                                  | TAT                                                          | GGA                                                   | CAG                                            | AAT                                                   | TGC                                     | ATG                                            | TTT                                   | GTT                                                          | GTC                                          | AAT                                    | GAT                                            | TGG                                            | CAT                              | 720                  |
| Gly                                            | Tyr                                                   | Ile                                  | Tyr                                                          | Gly                                                   | Gln                                            | Asn                                                   | Сув                                     | Met                                            | Phe                                   | Val                                                          | Val                                          | Asn                                    | Авр                                            | Trp                                            | His                              |                      |
|                                                | 925                                                   |                                      |                                                              |                                                       |                                                | 930                                                   |                                         |                                                |                                       |                                                              | 935                                          |                                        |                                                |                                                |                                  |                      |
|                                                |                                                       |                                      |                                                              |                                                       |                                                |                                                       | CTT                                     |                                                |                                       |                                                              |                                              |                                        |                                                |                                                |                                  | 768                  |
| Ala                                            | Ser                                                   | Leu                                  | Val                                                          | Pro                                                   | Val                                            | Leu                                                   | Leu                                     | Ala                                            | Ala                                   | ГÄа                                                          | Tyr                                          | Arg                                    | Pro                                            | Tyr                                            | Gly                              |                      |
| 940                                            |                                                       |                                      |                                                              |                                                       | 945                                            |                                                       |                                         |                                                |                                       | 950                                                          |                                              |                                        |                                                |                                                | 955                              |                      |
| GTT                                            | TAT                                                   | AAA                                  | GAC                                                          | TCC                                                   | CGC                                            | AGC                                                   | ATT                                     | CTT                                            | GTA                                   | ATA                                                          | CAT                                          | AAT                                    | TTA                                            | GCA                                            | CAT                              | 816                  |
| Val                                            | Tyr                                                   | Lys                                  | Asp                                                          | Ser                                                   | Arg                                            | Ser                                                   | Ile                                     | Leu                                            | Val                                   | Ile                                                          | His                                          | Asn                                    | Leu                                            | Ala                                            | His                              |                      |
|                                                |                                                       |                                      |                                                              | 960                                                   |                                                |                                                       |                                         |                                                | 965                                   |                                                              |                                              |                                        |                                                | 970                                            |                                  |                      |
| CAG                                            | GGT                                                   | GTA                                  | GAG                                                          | CCT                                                   | GCA                                            | AGC                                                   | ACA                                     | TAT                                            | CCT                                   | GAC                                                          | CTT                                          | GGG                                    | TTG                                            | CCA                                            | CCT                              | 864                  |
| Gln                                            | Gly                                                   | Val                                  | Glu                                                          | Pro                                                   | Ala                                            | Ser                                                   | Thr                                     | Tyr                                            | Pro                                   | yab                                                          | Leu                                          | Gly                                    | Leu                                            | Pro                                            | Pro                              |                      |
|                                                |                                                       |                                      | 975                                                          |                                                       |                                                |                                                       |                                         | 980                                            |                                       |                                                              |                                              |                                        | 985                                            |                                                |                                  |                      |
|                                                |                                                       |                                      |                                                              |                                                       |                                                |                                                       | TGG                                     |                                                |                                       |                                                              |                                              |                                        |                                                |                                                |                                  | 912                  |
| Glu                                            | Trp                                                   |                                      | Gly                                                          | Ala                                                   | Leu                                            | Glu                                                   | Trp                                     | Val                                            | Phe                                   | Pro                                                          | Glu                                          | Trp                                    | Ala                                            | Arg                                            | Arg                              |                      |
|                                                |                                                       | 990                                  |                                                              |                                                       |                                                |                                                       | 995                                     |                                                |                                       |                                                              |                                              | 1000                                   | )                                              |                                                |                                  |                      |
|                                                |                                                       |                                      |                                                              |                                                       |                                                |                                                       |                                         |                                                |                                       |                                                              |                                              |                                        |                                                |                                                |                                  |                      |
| CAT                                            | GCC                                                   | CTT                                  | GAC                                                          | AAG                                                   | GGT                                            | GAG                                                   | GCA                                     | GTT                                            | AAT                                   | TTT                                                          | TTG                                          | AAA                                    | GGT                                            | GCA                                            | GTT                              | 960                  |
|                                                |                                                       |                                      |                                                              |                                                       |                                                |                                                       | GCA<br>Ala                              |                                                |                                       |                                                              |                                              |                                        |                                                |                                                |                                  | 960                  |
| His                                            | Ala<br>1009                                           | Leu<br>5                             | Asp                                                          | Lys                                                   | Gly                                            | Glu<br>1010                                           | Ala<br>)                                | Val                                            | Asn                                   | Phe                                                          | Leu<br>101                                   | Lys                                    | Gly                                            | Ala                                            | Val                              | 960                  |
| His<br>GTG                                     | Ala<br>1009                                           | Leu<br>5<br>GCA                      | Asp<br>GAT                                                   | Lys<br>CGA                                            | Gly<br>ATC                                     | Glu<br>1010<br>GTG                                    | Ala<br>)<br>ACT                         | Val<br>GTC                                     | Asn<br>AGT                            | Phe<br>AAG                                                   | Leu<br>1019<br>GGT                           | Lys<br>TAT                             | Gly                                            | Ala<br>TGG                                     | Val<br>GAG                       | 960                  |
| His<br>GTG<br>Val                              | Ala<br>1009<br>ACA<br>Thr                             | Leu<br>5<br>GCA                      | Asp<br>GAT                                                   | Lys<br>CGA                                            | Gly<br>ATC<br>Ile                              | Glu<br>1010<br>GTG<br>Val                             | Ala<br>)                                | Val<br>GTC                                     | Asn<br>AGT                            | Phe<br>AAG<br>Lys                                            | Leu<br>1019<br>GGT<br>Gly                    | Lys<br>TAT                             | Gly                                            | Ala<br>TGG                                     | Val<br>GAG                       |                      |
| GTG<br>Val                                     | Ala<br>1009<br>ACA<br>Thr                             | Leu<br>GCA<br>Ala                    | Asp<br>GAT<br>Asp                                            | Lys<br>CGA<br>Arg                                     | ATC<br>Ile<br>1025                             | Glu<br>1010<br>GTG<br>Val                             | Ala<br>)<br>ACT<br>Thr                  | Val<br>GTC<br>Val                              | Asn<br>AGT<br>Ser                     | Phe<br>AAG<br>Lys<br>1030                                    | Leu<br>1015<br>GGT<br>Gly                    | Lys<br>5<br>TAT<br>Tyr                 | Gly<br>TCG<br>Ser                              | Ala<br>TGG<br>Trp                              | Val<br>GAG<br>Glu<br>1035        |                      |
| GTG<br>Val<br>1020                             | Ala<br>1009<br>ACA<br>Thr                             | GCA<br>Ala                           | Asp<br>GAT<br>Asp<br>GCT                                     | CGA<br>Arg                                            | ATC<br>Ile<br>1025                             | Glu<br>1010<br>GTG<br>Val                             | Ala  ACT Thr                            | Val<br>GTC<br>Val                              | Asn<br>AGT<br>Ser                     | AAG<br>Lys<br>1030                                           | Leu<br>1019<br>GGT<br>Gly                    | Lys<br>TAT<br>Tyr                      | TCG<br>Ser                                     | Ala<br>TGG<br>Trp                              | Val<br>GAG<br>Glu<br>1035<br>TCC |                      |
| GTG<br>Val<br>1020                             | Ala<br>1009<br>ACA<br>Thr                             | GCA<br>Ala                           | Asp<br>GAT<br>Asp<br>GCT                                     | CGA<br>Arg<br>GAA<br>Glu                              | ATC<br>Ile<br>1025<br>GGT<br>Gly               | Glu<br>1010<br>GTG<br>Val                             | Ala<br>)<br>ACT<br>Thr                  | Val<br>GTC<br>Val                              | Asn<br>AGT<br>Ser                     | AAG<br>Lys<br>1030                                           | Leu<br>1019<br>GGT<br>Gly                    | Lys<br>TAT<br>Tyr                      | TCG<br>Ser                                     | Ala<br>TGG<br>Trp                              | Val<br>GAG<br>Glu<br>1035<br>TCC | 1008                 |
| GTG<br>Val<br>1020<br>GTC<br>Val               | Ala<br>1005<br>ACA<br>Thr<br>ACA                      | GCA<br>Ala<br>ACT                    | GAT<br>Asp<br>GCT<br>Ala                                     | CGA<br>Arg<br>GAA<br>Glu<br>1040                      | Gly ATC Ile 1025 GGT Gly                       | Glu<br>1010<br>GTG<br>Val<br>GGA<br>GGA               | Ala  ACT Thr  CAG Gln                   | GTC<br>Val<br>GGC<br>Gly                       | AGT<br>Ser<br>CTC<br>Leu<br>1049      | AAG<br>Lys<br>1030<br>AAT<br>Asn                             | Leu<br>1015<br>GGT<br>Gly<br>)<br>GAG<br>Glu | TAT<br>Tyr<br>CTC<br>Leu               | TCG<br>Ser<br>TTA<br>Leu                       | TGG<br>Trp<br>AGC<br>Ser<br>1050               | GAG<br>Glu<br>1035<br>TCC<br>Ser | 1008                 |
| GTG<br>Val<br>1020<br>GTC<br>Val               | Ala<br>1005<br>ACA<br>Thr<br>ACA                      | GCA<br>Ala<br>ACT                    | GAT<br>Asp<br>GCT<br>Ala                                     | CGA<br>Arg<br>GAA<br>Glu<br>1040                      | Gly ATC Ile 1025 GGT Gly                       | Glu<br>1010<br>GTG<br>Val<br>GGA<br>GGA               | Ala  ACT Thr                            | GTC<br>Val<br>GGC<br>Gly                       | AGT<br>Ser<br>CTC<br>Leu<br>1049      | AAG<br>Lys<br>1030<br>AAT<br>Asn                             | Leu<br>1015<br>GGT<br>Gly<br>)<br>GAG<br>Glu | TAT<br>Tyr<br>CTC<br>Leu               | TCG<br>Ser<br>TTA<br>Leu                       | TGG<br>Trp<br>AGC<br>Ser<br>1050               | GAG<br>Glu<br>1035<br>TCC<br>Ser | 1008                 |
| GTG<br>Val<br>1020<br>GTC<br>Val               | Ala<br>1005<br>ACA<br>Thr<br>ACA<br>Thr               | GCA<br>Ala<br>ACT<br>Thr             | GAT<br>Asp<br>GCT<br>Ala                                     | CGA<br>Arg<br>GAA<br>Glu<br>1040                      | ATC<br>Ile<br>1025<br>GGT<br>Gly               | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly               | Ala  ACT Thr  CAG Gln                   | GTC<br>Val<br>GGC<br>Gly                       | AGT<br>Ser<br>CTC<br>Leu<br>1049      | AAG<br>Lys<br>1030<br>AAT<br>Asn                             | Leu<br>1015<br>GGT<br>Gly<br>)<br>GAG<br>Glu | TAT<br>Tyr<br>CTC<br>Leu               | TCG<br>Ser<br>TTA<br>Leu                       | TGG<br>Trp<br>AGC<br>Ser<br>1050               | GAG Glu 1035 TCC Ser             | 1008                 |
| GTG<br>Val<br>1020<br>GTC<br>Val               | ACA<br>Thr<br>ACA<br>Thr<br>ACA<br>Thr                | GCA<br>Ala<br>ACT<br>Thr             | GAT<br>Asp<br>GCT<br>Ala<br>GTA<br>Val                       | CGA<br>Arg<br>GAA<br>Glu<br>1040<br>TTA<br>Leu        | ATC<br>Ile<br>1025<br>GGT<br>Gly<br>AAC<br>Asn | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly               | Ala  ACT Thr  CAG Gln  ATT Ile          | GTC<br>Val<br>GGC<br>Gly<br>GTA<br>Val         | AGT Ser CTC Leu 1049 AAT Asn          | AAG<br>Lys<br>1030<br>AAT<br>Asn<br>GGA<br>Gly               | GGT<br>Gly<br>GAG<br>Glu<br>ATT<br>Ile       | TAT<br>Tyr<br>CTC<br>Leu<br>GAC        | TCG<br>Ser<br>TTA<br>Leu<br>ATT<br>Ile<br>1065 | TGG<br>Trp<br>AGC<br>Ser<br>1050               | GAG Glu 1035 TCC Ser GAT Asp     | 1008<br>1056         |
| GTG<br>Val<br>1020<br>GTC<br>Val               | ACA<br>Thr<br>ACA<br>Thr<br>ACA<br>Thr                | GCA<br>Ala<br>ACT<br>Thr             | GAT<br>Asp<br>GCT<br>Ala<br>GTA<br>Val                       | CGA<br>Arg<br>GAA<br>Glu<br>1040<br>TTA<br>Leu        | ATC<br>Ile<br>1025<br>GGT<br>Gly<br>AAC<br>Asn | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly               | Ala  ACT Thr  CAG Gln                   | GTC<br>Val<br>GGC<br>Gly<br>GTA<br>Val         | AGT Ser CTC Leu 1049 AAT Asn          | AAG<br>Lys<br>1030<br>AAT<br>Asn<br>GGA<br>Gly               | GGT<br>Gly<br>GAG<br>Glu<br>ATT<br>Ile       | TAT<br>Tyr<br>CTC<br>Leu<br>GAC        | TCG<br>Ser<br>TTA<br>Leu<br>ATT<br>Ile<br>1065 | TGG<br>Trp<br>AGC<br>Ser<br>1050               | GAG Glu 1035 TCC Ser GAT Asp     | 1008<br>1056         |
| GTG<br>Val<br>1020<br>GTC<br>Val<br>AGA<br>Arg | Ala<br>1005<br>ACA<br>Thr<br>ACA<br>Thr<br>AAG<br>Lys | GCA Ala ACT Thr AGT Ser              | GAT Asp GCT Ala Val 1055                                     | CGA<br>Arg<br>GAA<br>Glu<br>1040<br>TTA<br>Leu        | ATC Ile 1025 GGT Gly AAC Asn                   | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly<br>GGA<br>Gly | Ala  ACT Thr  CAG Gln  ATT Ile          | GTC Val GGC Gly GTA Val 1060                   | AGT Ser CTC Leu 1045 AAT Asn          | AAG<br>Lys<br>1030<br>AAT<br>Asn<br>GGA<br>Gly               | GGT Gly GAG Glu ATT Ile CAT                  | TAT<br>Tyr<br>CTC<br>Leu<br>GAC<br>Asp | TCG<br>Ser<br>TTA<br>Leu<br>ATT<br>Ile<br>1065 | TGG<br>Trp<br>AGC<br>Ser<br>1050<br>AAT<br>Asn | GAG Glu 1035 TCC Ser GAT Asp     | 1008<br>1056<br>1104 |
| GTG<br>Val<br>1020<br>GTC<br>Val<br>AGA<br>Arg | Ala<br>1005<br>ACA<br>Thr<br>ACA<br>Thr<br>AAG<br>Lys | GCA Ala ACT Thr AGT Ser              | GAT Asp GCT Ala Val 1055                                     | CGA<br>Arg<br>GAA<br>Glu<br>1040<br>TTA<br>Leu        | ATC Ile 1025 GGT Gly AAC Asn                   | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly<br>GGA<br>Gly | Ala  ACT Thr  CAG Gln  ATT Ile          | GTC<br>Val<br>GGC<br>Gly<br>GTA<br>Val<br>1060 | AGT Ser CTC Leu 1045 AAT Asn          | AAG<br>Lys<br>1030<br>AAT<br>Asn<br>GGA<br>Gly               | GGT Gly GAG Glu ATT Ile CAT                  | TAT<br>Tyr<br>CTC<br>Leu<br>GAC<br>Asp | TCG<br>Ser<br>TTA<br>Leu<br>ATT<br>Ile<br>1065 | TGG<br>Trp<br>AGC<br>Ser<br>1050<br>AAT<br>Asn | GAG Glu 1035 TCC Ser GAT Asp     | 1008<br>1056<br>1104 |
| GTG<br>Val<br>1020<br>GTC<br>Val<br>AGA<br>Arg | Ala<br>1009<br>ACA<br>Thr<br>ACA<br>Thr<br>AAG<br>Lys | GCA Ala ACT Thr AGT Ser CCT Pro 1070 | GAT<br>Asp<br>GCT<br>Ala<br>GTA<br>Val<br>1055<br>GCC<br>Ala | CGA<br>Arg<br>GAA<br>Glu<br>1040<br>TTA<br>Leu<br>ACA | ATC Ile 1025 GGT Gly AAC Asn GAC               | Glu<br>1010<br>GTG<br>Val<br>GGA<br>Gly<br>GGA<br>Gly | Ala  ACT Thr  CAG Gln  ATT Ile  TGT Cys | GTC<br>Val<br>GGC<br>Gly<br>GTA<br>Val<br>1060 | AGT Ser CTC Leu 1049 AAT Asn CCCC Pro | AAG<br>Lys<br>1030<br>AAT<br>Asn<br>GGA<br>Gly<br>TGT<br>Cys | GGT Gly GAG Glu ATT Ile CAT His              | TAT Tyr CTC Leu GAC Asp TAT Tyr 1080   | TCG<br>Ser<br>TTA<br>Leu<br>ATT<br>Ile<br>1065 | TGG Trp  AGC Ser 1050 AAT Asn GTT Val          | GAG Glu 1035 TCC Ser GAT Asp     | 1008<br>1056<br>1104 |

|            | 1085 |     |     |     | 1090 |     |     |     |     |     | 1095 | i                  |     |     |     |      |
|------------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|--------------------|-----|-----|-----|------|
|            | Leu  |     |     |     |      | Asp | _   |     |     |     | Gly  | TTT<br>Phe         |     | _   |     | 1248 |
| TTG<br>Leu |      |     |     |     | Gly  |     |     |     |     | Gln |      | ATC<br>Ile         |     |     | Авр | 1296 |
|            |      |     |     | Asp |      |     |     |     | Met |     |      | TCT<br>Ser         |     | Asp |     | 1344 |
|            |      |     | Asp |     |      |     |     | Thr |     |     |      | TTC<br>Phe<br>1160 | Lys |     |     | 1392 |
|            |      | Gly |     |     |      |     | Ser |     |     |     |      | CAC<br>His         |     |     |     | 1440 |
|            | Gly  |     |     |     |      | Leu |     |     |     |     | Phe  | GAA<br>Glu         |     |     |     | 1488 |
|            |      |     |     |     | Ala  |     |     |     |     | Thr |      | CCT<br>Pro         |     |     | His | 1536 |
|            |      |     |     | Leu |      |     |     |     | Glu |     |      | AAC<br>Asn         |     | Phe |     | 1584 |
|            |      |     | Glu |     |      |     |     | Trp |     |     |      | CCC<br>Pro         | Leu |     |     | 1632 |
|            |      | Met |     |     |      |     | Ala |     |     |     |      | TAC<br>Tyr         |     |     |     | 1680 |
|            | Gln  |     |     |     |      | Arg |     |     |     |     | Arg  | CAT<br>His         |     |     |     | 1728 |

102

CTT CAC GTG GGA CCA TGC CGC TGA Leu His Val Gly Pro Cys Arg \* 1280 1752

- (2) INFORMATION FOR SEQ ID NO:13:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 584 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Cys Val Ala Glu Leu Ser Arg Glu Gly Pro Ala Pro Arg Pro Leu Pro

1 5 10 15

Pro Ala Leu Leu Ala Pro Pro Leu Val Pro Gly Phe Leu Ala Pro Pro
20 25 30

Ala Glu Pro Thr Gly Glu Pro Ala Ser Thr Pro Pro Pro Val Pro Asp
35 40 45

Ala Gly Leu Gly Asp Leu Gly Leu Glu Pro Glu Gly Ile Ala Glu Gly
50 55 60

Ser Ile Asp Asn Thr Val Val Val Ala Ser Glu Gln Asp Ser Glu Ile
65 70 75 80

Val Val Gly Lys Glu Gln Ala Arg Ala Lys Val Thr Gln Ser Ile Val 85 90 95

Phe Val Thr Gly Glu Ala Ser Pro Tyr Ala Lys Ser Gly Gly Leu Gly
100 105 110

Asp Val Cys Gly Ser Leu Pro Val Ala Leu Ala Ala Arg Gly His Arg 115 120 125

Val Met Val Val Met Pro Arg Tyr Leu Asn Gly Thr Ser Asp Lys Asn 130 135 140

Tyr Ala Asn Ala Phe Tyr Thr Glu Lys His Ile Arg Ile Pro Cys Phe 145 150 155 160

| Gly        | Gly        | Glu        | His        | Glu<br>165 | Val        | Thr        | Phe        | Phe        | His<br>170 | Glu        | Tyr        | Arg        | Asp        | Ser<br>175 | Val        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Trp        | Val        | Phe<br>180 | Val        | Asp        | His        | Pro        | Ser<br>185 | Tyr        | His        | Arg        | Pro        | Gly<br>190 | Asn        | Leu        |
| Tyr        | Gly        | Asp<br>195 | Lys        | Phe        | Gly        | Ala        | Phe<br>200 | Gly        | Asp        | Asn        | Gln        | Phe<br>205 | Arg        | Tyr        | Thr        |
| Leu        | Leu<br>210 | Сув        | Tyr        | Ala        | Ala        | Cys<br>215 | Glu        | Ala        | Pro        | Leu        | 11e<br>220 | Leu        | Glu        | Leu        | Gly        |
| Gly<br>225 | Tyr        | Ile        | Tyr        | Gly        | Gln<br>230 | Asn        | Сув        | Met        | Phe        | Val<br>235 | Val        | Asn        | Asp        | Trp        | His<br>240 |
| Ala        | Ser        | Leu        | Val        | Pro<br>245 | Val        | Leu        | Leu        | Ala        | Ala<br>250 | Lys        | Tyr        | Arg        | Pro        | Tyr<br>255 | Gly        |
| Val        | Tyr        | Lys        | Asp<br>260 | Ser        | Arg        | Ser        | Ile        | Leu<br>265 | Val        | Ile        | His        | Asn        | Leu<br>270 | Ala        | His        |
| Gln        | Gly        | Val<br>275 | Glu        | Pro        | Ala        | Ser        | Thr<br>280 | Tyr        | Pro        | Asp        | Leu        | Gly<br>285 | Leu        | Pro        | Pro        |
| Glu        | Trp<br>290 | Tyr        | Gly        | Ala        | Leu        | Glu<br>295 | Trp        | Val        | Phe        | Pro        | Glu<br>300 | Trp        | Ala        | Arg        | Arg        |
| His<br>305 | Ala        | Leu        | Asp        | Lys        | Gly<br>310 | Glu        | Ala        | Val        | Asn        | Phe<br>315 | Leu        | Lys        | Gly        | Ala        | Va]        |
| Val        | Thr        | Ala        | Asp        | Arg<br>325 | Ile        | Val        | Thr        | Val        | Ser<br>330 | Lys        | Gly        | Tyr        | Ser        | Trp<br>335 | Glu        |
| Val        | Thr        | Thr        | Ala<br>340 | Glu        | Gly        | Gly        | Gln        | Gly<br>345 |            | Asn        | Glu        | Leu        | Leu<br>350 | Ser        | Ser        |
| Arg        | Lys        | Ser<br>355 | Val        | Leu        | Asn        | Gly        | 11e<br>360 | Val        | Asn        | Gly        | Ile        | Asp<br>365 | Ile        | Asn        | Asr        |
| Trp        | Asn<br>370 | Pro        | Ala        | Thr        | Asp        | Lys<br>375 | Cys        | Ile        | Pro        | Сув        | His<br>380 | Tyr        | Ser        | Val        | Ası        |
| 385        | Leu        | Ser        | Gly        | Lys        | Ala<br>390 | Lys        | Cys        | Lys        | Gly        | Ala<br>395 | Leu        | Gln        | Lys        | Glu        | Let<br>400 |

104

Gly Leu Pro Ile Arg Pro Asp Val Pro Leu Ile Gly Phe Ile Gly Arg 405 410 415

Leu Asp Tyr Gln Lys Gly Ile Asp Leu Ile Gln Leu Ile Ile Pro Asp
420 425 430

Leu Met Arg Glu Asp Val Gln Phe Val Met Leu Gly Ser Gly Asp Pro
435 440 445

Glu Leu Glu Asp Trp Met Arg Ser Thr Glu Ser Ile Phe Lys Asp Lys
450 455 460

Phe Arg Gly Trp Val Gly Phe Ser Val Pro Val Ser His Arg Ile Thr 465 470 475 480

Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly
485 490 495

Leu Asn Gln Leu Tyr Ala Met Gln Tyr Gly Thr Val Pro Val Val His 500 505 510

Ala Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Phe Asn Pro Phe Gly 515 520 525

Glu Asn Gly Glu Gln Gly Thr Gly Trp Ala Phe Ala Pro Leu Thr Thr 530 535 540

Glu Asn Met Phe Val Asp Ile Ala Asn Cys Asn Ile Tyr Ile Gln Gly 545 550 555 560

Thr Gln Val Leu Leu Gly Arg Ala Asn Glu Ala Arg His Val Lys Arg 565 570 575

Leu His Val Gly Pro Cys Arg \* 580

#### (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2725 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: mRNA

PCT/US97/17555 WO 98/14601

|       | 105                                     |
|-------|-----------------------------------------|
| (iii) | HYPOTHETICAL: NO                        |
| (vi)  | ORIGINAL SOURCE: (A) ORGANISM: Zea mays |
| (ix)  | FEATURE: (A) NAME/KEY: sig peptide      |

# (ix) FEATURE:

(A) NAME/KEY: mat\_peptide (B) LOCATION: 265..2487

(B) LOCATION: 91..264

# (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 91..2490

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

| GGC | CCAGI      | AGC 1 | AGACO | CCGGI | AT T  | rcgc  | CTT  | G CGC | STCG  | CTGG | GGT | OATT | GCA : | TTGG | CTGATC         |   | 60  |
|-----|------------|-------|-------|-------|-------|-------|------|-------|-------|------|-----|------|-------|------|----------------|---|-----|
| AGT | TCGA:      | rcc ( | GATCO | cggc: | rg Co | GAAGO | GCGA |       | : Ala |      |     | y Va |       |      | G GCG<br>/ Ala | 1 | .14 |
|     | CTC<br>Leu |       |       |       |       |       |      |       |       |      |     |      |       |      |                | 1 | .62 |
|     | AGT<br>Ser |       |       |       |       |       |      |       |       |      |     |      |       |      |                | 2 | 10  |
|     | GTT<br>Val |       |       |       |       |       |      |       |       |      |     |      |       |      |                | 2 | :58 |
|     | AGG<br>Arg |       |       |       |       |       |      |       |       |      |     |      |       |      |                | 3 | 106 |
|     | AGG<br>Arg |       |       |       |       |       |      |       |       |      |     |      |       |      |                | 3 | 154 |

|     |     |     | GAA<br>Glu |     |     |     |     |           |     |     |     |     |           |     |     | 402 |
|-----|-----|-----|------------|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----------|-----|-----|-----|
|     |     |     |            | 35  |     |     |     |           | 40  |     |     |     |           | 45  |     |     |
|     |     |     | AGA        |     |     |     |     |           |     |     |     |     |           |     |     | 450 |
| Ala | Leu | Asn | Arg<br>50  | Val | Arg | Val | Val | Pro<br>55 | Pro | Pro | Ser | Asp | 60<br>GTA | Gin | Lys |     |
| ATA | TTC | CAG | ATT        | GAC | ccc | ATG | TTG | CAA       | GGC | TAT | AAG | TAC | CAT       | CTT | GAG | 498 |
| Ile | Phe | Gln | Ile        | Asp | Pro | Met | Leu | Gln       | Gly | Tyr | ГЛа | Tyr | His       | Leu | Glu |     |
|     |     | 65  |            |     |     |     | 70  |           |     |     |     | 75  |           |     |     |     |
| TAT | CGG | TAC | AGC        | CTC | TAT | AGA | AGA | ATC       | CGT | TCA | GAC | ATT | GAT       | GAA | CAT | 546 |
| Tyr | -   | Tyr | Ser        | Leu | Tyr | _   | Arg | Ile       | Arg | Ser | _   | Ile | Asp       | Glu | His |     |
|     | 80  |     |            |     |     | 85  |     |           |     |     | 90  |     |           |     |     |     |
| GAA | GGA | GGC | TTG        | GAA | GCC | TTC | TCC | CGT       | AGT | TAT | GAG | AAG | TTT       | GGA | TTT | 594 |
|     | Gly | Gly | Leu        | Glu |     | Phe | Ser | Arg       | Ser | _   | Glu | Lys | Phe       | Gly |     |     |
| 95  |     |     |            |     | 100 |     |     |           |     | 105 |     |     |           |     | 110 |     |
|     |     |     | GCG        |     |     |     |     |           |     |     |     | _   |           |     |     | 642 |
| Asn | Ala | Ser | Ala        |     | Gly | Ile | Thr | Tyr       | -   | Glu | Trp | Ala | Pro       |     | Ala |     |
|     |     |     |            | 115 |     |     |     |           | 120 |     |     |     |           | 125 |     |     |
| TTT | TCT | GCA | GCA        | TTG | GTG | GGT | GAC | GTC       | AAC | AAC | TGG | GAT | CCA       | AAT | GCA | 690 |
| Phe | Ser | Ala | Ala        | Leu | Val | Gly | Asp |           | Asn | Asn | Trp | Asp |           | Asn | Ala |     |
|     |     |     | 130        |     |     |     |     | 135       |     |     |     |     | 140       |     |     |     |
| GAT | CGT | ATG | AGC        | AAA | AAT | GAG | TTT | GGT       | GTT | TGG | GAA | ATT | TTT       | CTG | CCT | 738 |
| Asp | Arg |     | Ser        | Lys | Asn | Glu |     | Gly       | Val | Trp | Glu |     | Phe       | Leu | Pro |     |
|     |     | 145 |            |     |     |     | 150 |           |     |     |     | 155 |           |     |     |     |
|     |     |     | GAT        | *   |     |     |     |           |     |     |     |     |           |     |     | 786 |
| Asn |     | Ala | Asp        | Gly | Thr |     | Pro | He        | Pro | His |     | Ser | Arg       | Val | Lys |     |
|     | 160 |     |            |     |     | 165 |     |           |     |     | 170 |     |           |     |     |     |
|     |     |     | GAT        |     |     |     |     |           |     |     |     |     |           |     |     | 834 |
|     | Arg | Met | Asp        | Thr |     | Ser | Gly | Ile       | Lys |     | Ser | Ile | Pro       | Ala |     |     |
| 175 |     |     |            |     | 180 |     |     |           |     | 185 |     |     |           |     | 190 |     |
|     |     |     | TCA        |     |     |     |     |           |     |     |     |     |           |     |     | 882 |
| Ile | Lys | Tyr | Ser        |     | Gln | Ala | Pro | Gly       |     | Ile | Pro | Tyr | Asp       |     | Ile |     |
|     |     |     |            | 195 |     |     |     |           | 200 |     |     |     |           | 205 |     |     |
| TAT | TAT | GAT | CCT        | CCT | GAA | GAG | GTA | AAG       | TAT | GTG | TTC | AGG | CAT       | GCG | CAA | 930 |

| Tyr | Tyr | Asp | Pro<br>210 | Pro | Glu | Glu | Val | Lys<br>215 | Tyr | Val | Ph | Arg | His<br>220 | Ala               | Gln |      |
|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|----|-----|------------|-------------------|-----|------|
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | GGA<br>Gly        |     | 978  |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | GAT<br>Asp        |     | 1026 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | ATA<br>Ile        |     | 1074 |
|     |     |     |            |     |     |     |     |            |     |     |    | -   |            | GTA<br>Val<br>285 |     | 1122 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | TTG<br>Leu        |     | 1170 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | ATG<br>Met        |     | 1218 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | AAT<br>Asn        |     | 1266 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | GGC<br>Gly        |     | 1314 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | GAA<br>Glu<br>365 |     | 1362 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | TAT<br>Tyr        |     | 1410 |
|     |     |     |            |     |     |     |     |            |     |     |    |     |            | ACT<br>Thr        |     | 1458 |

|     |     | 385 |     |     |     |     | 390 |     |     |     |     | 395 |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CAC | GGA | TTA | CAA | GTA | ACA | TTT | ACG | GGG | AAC | TTC | AAT | GAG | TAT | TTT | GGC | 1506 |
| His | Gly | Leu | Gln | Val | Thr | Phe | Thr | Gly | Asn | Phe | Asn | Glu | Tyr | Phe | Gly |      |
|     | 400 |     |     |     |     | 405 |     |     |     |     | 410 |     |     |     |     |      |
| TTT | GCC | ACC | GAT | GTA | GAT | GCA | GTG | GTT | TAC | TTG | ATG | CTG | GTA | AAT | GAT | 1554 |
| Phe | Ala | Thr | Asp | Val | Asp | Ala | Val | Val | Tyr | Leu | Met | Leu | Val | Asn | Asp |      |
| 415 |     |     |     |     | 420 |     |     |     |     | 425 |     |     |     |     | 430 |      |
|     |     |     |     |     |     | CCT |     |     |     |     |     |     |     |     |     | 1602 |
| Leu | Ile | His | Gly |     | Tyr | Pro | Glu | Ala |     | Thr | Ile | Gly | Glu | Asp | Val |      |
|     |     |     |     | 435 |     |     |     |     | 440 |     |     |     |     | 445 |     |      |
| AGT | GGA | ATG | CCT | ACA | TTT | GCC | CTT | CCT | GTT | CAC | GAT | GGT | GGG | GTA | GGT | 1650 |
| Ser | Gly | Met | Pro | Thr | Phe | Ala | Leu | Pro | Val | His | Asp | Gly | Gly | Val | Gly |      |
|     |     |     | 450 |     |     |     |     | 455 |     |     |     |     | 460 |     |     |      |
| TTT | GAC | TAT | CGG | ATG | CAT | ATG | GCT | GTG | GCT | GAC | AAA | TGG | ATT | GAC | CTT | 1698 |
| Phe | Asp | Tyr | Arg | Met | His | Met | Ala | Val | Ala | Asp | Lys | Trp | Ile | Asp | Leu |      |
|     |     | 465 |     |     |     |     | 470 |     |     |     |     | 475 |     |     |     |      |
| CTC | AAG | CAA | AGT | GAT | GAA | ACT | TGG | AAG | ATG | GGT | GAT | ATT | GTG | CAC | ACA | 1746 |
| Leu | Lys | Gln | Ser | Asp | Glu | Thr | Trp | Lys | Met | Gly | Asp | Ile | Val | His | Thr |      |
|     | 480 |     |     |     |     | 485 |     |     |     |     | 490 |     |     |     |     |      |
| CTG | ACA | AAT | AGG | AGG | TGG | TTA | GAG | AAG | TGT | GTA | ACT | TAT | GCT | GAA | AGT | 1794 |
| Leu | Thr | Asn | Arg | Arg | Trp | Leu | Glu | Lys | Суз | Val | Thr | Tyr | Ala | Glu | Ser |      |
| 495 |     |     |     |     | 500 |     |     |     |     | 505 |     |     |     |     | 510 |      |
| CAT | GAT | CAA | GCA | TTA | GTC | GGC | GAC | AAG | ACT | ATT | GCG | TTT | TGG | TTG | ATG | 1842 |
| His | Asp | Gln | Ala | Leu | Val | Gly | yab | ГЛЗ | Thr | Ile | Ala | Phe | Trp | Leu | Met |      |
|     |     |     |     | 515 |     |     |     |     | 520 |     |     |     |     | 525 |     |      |
| GAC | AAG | GAT | ATG | TAT | GAT | TTC | ATG | GCC | CTC | GAT | AGA | CCT | TCA | ACT | CCT | 1890 |
| Asp | ГÀв | Asp | Met | Tyr | Asp | Phe | Met | Ala | Leu | Asp | Arg | Pro | Ser | Thr | Pro |      |
|     |     |     | 530 |     |     |     |     | 535 |     |     |     |     | 540 |     |     |      |
| ACC | ATT | GAT | CGT | GGG | ATA | GCA | TTA | CAT | AAG | ATG | ATT | AGA | CTT | ATC | ACA | 1938 |
| Thr | Ile | Asp | Arg | Gly | Ile | Ala | Leu | His | Lys | Met | Ile | Arg | Leu | Ile | Thr |      |
|     |     | 545 |     |     |     |     | 550 |     |     |     |     | 555 |     |     |     |      |
| ATG | GGT | TTA | GGA | GGA | GAG | GGC | TAT | CTT | AAT | TTC | ATG | GGA | AAT | GAG | TTT | 1986 |
| Met | Gly | Leu | Gly | Gly | Glu | Gly | Tyr | Leu | Asn | Phe | Met | Gly | Asn | Glu | Phe |      |
|     | 560 |     |     |     |     | 565 |     |     |     |     | 570 |     |     |     |     |      |

| GGA           | CAT | CCT   | GAA     | TGG  | ATA   | GAT   | TTT         | CCA   | AGA         | GGT  | CCG            | CAA     | AGA     | CTT                        | CCA     | 2034 |
|---------------|-----|-------|---------|------|-------|-------|-------------|-------|-------------|------|----------------|---------|---------|----------------------------|---------|------|
| Gly           | His | Pro   | Glu     | Trp  | Ile   | Asp   | Phe         | Pro   | Arg         | Gly  | Pro            | Gln     | Arg     | Leu                        | Pro     |      |
| 575           |     |       |         |      | 580   |       |             |       |             | 585  |                |         |         |                            | 590     |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| AGT           | GGT | AAG   | TTT     | ATT  | CCA   | GGG   | AAT         | AAC   | AAC         | AGT  | TAT            | GAC     | AAA     | TGT                        | CGT     | 2082 |
| Ser           | Gly | Lys   | Phe     | Ile  | Pro   | Gly   | Asn         | Asn   | Asn         | Ser  | Tyr            | Asp     | Lys     | Суз                        | Arg     |      |
|               |     |       |         | 595  |       |       |             |       | 600         |      |                | _       | _       | 605                        | _       |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| CGA           | AGA | ттт   | GAC     | СТС  | сст   | GAT   | GCA         | GAC   | тат         | СТТ  | AGG            | TAT     | САТ     | ССТ                        | ልጥር     | 2130 |
|               | Arg |       |         |      | _     |       | _           |       |             |      |                |         |         |                            |         | 2130 |
| 9             | 9   |       | 610     | 200  | 0.1   | p     |             | 615   | -1-         | 264  | y              | -3-     | 620     | Gry                        | Mec     |      |
|               |     |       | 010     |      |       |       |             | 013   |             |      |                |         | 020     |                            |         |      |
| <b>~~</b> ~ ~ | CAC | mmm   | C N III | ana  | 002   | 3.000 | <b>~~</b> ~ | C A M | C/D/D       | 030  | <i>~</i> ~ ~ ~ |         | <b></b> |                            | mm.c    |      |
|               | GAG |       |         |      |       |       |             |       |             |      |                |         |         |                            |         | 2178 |
| GIn           | Glu |       | Asp     | Gin  | Ala   | Met   |             | His   | Leu         | Glu  | GIn            | Lys     | Tyr     | Glu                        | Phe     |      |
|               |     | 625   |         |      |       |       | 630         |       |             |      |                | 635     |         |                            |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| ATG           | ACA | TCT   | GAT     | CAC  | CAG   | TAT   | ATT         | TCC   | CGG         | AAA  | CAT            | GAG     | GAG     | GAT                        | AAG     | 2226 |
| Met           | Thr | Ser   | Asp     | His  | Gln   | Tyr   | Ile         | Ser   | Arg         | Lys  | His            | Glu     | Glu     | Asp                        | Lys     |      |
|               | 640 |       |         |      |       | 645   |             |       |             |      | 650            |         |         |                            |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| GTG           | ATT | GTG   | TTC     | GAA  | AAG   | GGA   | GAT         | TTG   | GTA         | TTT  | GTG            | TTC     | AAC     | TTC                        | CAC     | 2274 |
| Val           | Ile | Val   | Phe     | Glu  | Lys   | Gly   | Asp         | Leu   | Val         | Phe  | Val            | Phe     | Asn     | Phe                        | His     |      |
| 655           |     |       |         |      | 660   | •     | •           |       |             | 665  |                |         |         |                            | 670     |      |
|               |     |       |         |      |       |       |             |       |             | 000  |                |         |         |                            | 070     |      |
| TGC           | AAC | AAC   | AGC     | тат  | ጥጥጥ   | GAC   | TAC         | ССТ   | <b>ል</b> ጥጥ | CCT  | ጥርጥ            | CGA     | AAG     | CCT                        | ccc     | 2322 |
|               | Asn |       |         |      |       |       |             |       |             |      |                |         |         |                            |         | 2322 |
| Cys           | No. | non   | Set     | -    | rne   | изр   | ıyı         | ALG   |             | GIY  | Cys            | Arg     | гув     |                            | GIŸ     |      |
|               |     |       |         | 675  |       |       |             |       | 680         |      |                |         |         | 685                        |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
|               | TAT |       |         |      |       |       |             |       |             |      |                |         |         |                            |         | 2370 |
| Val           | Tyr | Lys   | Val     | Val  | Leu   | Asp   | Ser         | Asp   | Ala         | Gly  | Leu            | Phe     | Gly     | Gly                        | Phe     |      |
|               |     |       | 690     |      |       |       |             | 695   |             |      |                |         | 700     |                            |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| AGC           | AGG | ATC   | CAT     | CAC  | GCA   | GCC   | GAG         | CAC   | TTC         | ACC  | GCC            | GAC     | TGT     | TCG                        | CAT     | 2418 |
| Ser           | Arg | Ile   | His     | His  | Ala   | Ala   | Glu         | His   | Phe         | Thr  | Ala            | Asp     | Cys     | Ser                        | His     |      |
|               |     | 705   |         |      |       |       | 710         |       |             |      |                | 715     |         |                            |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| GAT           | AAT | AGG   | CCA     | TAT  | TCA   | TTC   | TCG         | GTT   | TAT         | ACA  | CCA            | AGC     | AGA     | ACA                        | TGT     | 2466 |
|               | Asn |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| -             | 720 |       |         |      |       | 725   |             |       |             |      | 730            |         | 5       |                            | -1-     |      |
|               | 0   |       |         |      |       |       |             |       |             |      | , 50           |         |         |                            |         |      |
| GTC.          | GTO | ጥለጥ   | com     | CCZ  | CITIC | CNC   | TC N        | TACC  | racor       | מחיב | ייייייייי      | nmer en | nc c    | 2000                       | NA TOOT | 2522 |
|               |     |       |         |      |       |       |             | TWG   | .666(       | in ( | .1CG.          | LIGU    | i G CC  | )<br>1<br>1<br>1<br>1<br>1 | CATGT   | 2520 |
|               | Val | Tyr   | wra     | Pro  |       | GIU   | *           |       |             |      |                |         |         |                            |         |      |
| 735           |     |       |         |      | 740   |       |             |       |             |      |                |         |         |                            |         |      |
|               |     |       |         |      |       |       |             |       |             |      |                |         |         |                            |         |      |
| GTG           | GGC | rgt ( | CGATO   | TGAC | G A   | AAAA  | CTT         | TTC   | CAA         | AACC | GGC            | AGATO   | CA 1    | CGCAT                      | GCATG   | 2580 |

110

| CTACAATAAG | GTTCTGATAC | TTTAATCGAT | GCTGGAAAGC | CCATGCATCT | CGCTGCGTTG | 2640 |
|------------|------------|------------|------------|------------|------------|------|
| TCCTCTCTAT | ATATATAAGA | CCTTCAAGGT | GTCAATTAAA | CATAGAGTTT | TCGTTTTTCG | 2700 |
| CTTTCCTAAA | ааааааааа  | AAAAA      |            |            |            | 2725 |

## (2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 800 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Ala Phe Arg Val Ser Gly Ala Val Leu Gly Gly Ala Val Arg Ala
-58 -55 -50 -45

Pro Arg Leu Thr Gly Gly Gly Glu Gly Ser Leu Val Phe Arg His Thr
-40 -35 -30

Gly Leu Phe Leu Thr Arg Gly Ala Arg Val Gly Cys Ser Gly Thr His -25 -20 -15

Gly Ala Met Arg Ala Ala Ala Ala Arg Lys Ala Val Met Val Pro
-10 -5 1 5

Glu Gly Glu Asn Asp Gly Leu Ala Ser Arg Ala Asp Ser Ala Gln Phe  $10 \hspace{1cm} 15 \hspace{1cm} 20$ 

Gln Ser Asp Glu Leu Glu Val Pro Asp Ile Ser Glu Glu Thr Thr Cys
25 30 35

Gly Ala Gly Val Ala Asp Ala Gln Ala Leu Asn Arg Val Arg Val Val 40 45 50

Pro Pro Pro Ser Asp Gly Gln Lys Ile Phe Gln Ile Asp Pro Met Leu 55 60 65 70

Gln Gly Tyr Lys Tyr His Leu Glu Tyr Arg Tyr Ser Leu Tyr Arg Arg
75 80 85

| lle        | Arg        | Ser        | Asp<br>90  | Ile        | Asp        | Glu        | His        | Glu<br>95  | Gly        | Gly        | Leu        | Glu        | Ala<br>100 | Phe        | S r        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg        | Ser        | Tyr<br>105 | Glu        | Lys        | Phe        | Gly        | Phe<br>110 | Asn        | Ala        | Ser        | Ala        | Glu<br>115 | Gly        | Ile        | Thr        |
| Tyr        | Arg<br>120 | Glu        | Trp        | Ala        | Pro        | Gly<br>125 | Ala        | Phe        | Ser        | Ala        | Ala<br>130 | Leu        | Val        | Gly        | Asp        |
| Val<br>135 | Asn        | Asn        | Trp        | Asp        | Pro<br>140 | Asn        | Ala        | Asp        | Arg        | Met<br>145 | Ser        | Lys        | Asn        | Glu        | Phe<br>150 |
| Gly        | Val        | Trp        | Glu        | Ile<br>155 | Phe        | Leu        | Pro        | Asn        | Asn<br>160 | Ala        | Asp        | Gly        | Thr        | Ser<br>165 | Pro        |
| Ile        | Pro        | His        | Gly<br>170 | Ser        | Arg        | Val        | Lys        | Val<br>175 | Arg        | Met        | Asp        | Thr        | Pro<br>180 | Ser        | Gly        |
| Ile        | Lys        | Asp<br>185 | Ser        | Ile        | Pro        | Ala        | Trp<br>190 | Ile        | Lys        | Tyr        | Ser        | Val<br>195 | Gln        | Ala        | Pro        |
| Gly        | Glu<br>200 | Ile        | Pro        | Tyr        | Asp        | Gly<br>205 | Ile        | Tyr        | Tyr        | Asp        | Pro<br>210 | Pro        | Glu        | Glu        | Val        |
| Lys<br>215 | Tyr        | Val        | Phe        | Arg        | His<br>220 | Ala        | Gln        | Pro        | Lys        | Arg<br>225 | Pro        | Lys        | Ser        | Leu        | Arg<br>230 |
| Ile        | Tyr        | Glu        | Thr        | His<br>235 | Val        | Gly        | Met        | Ser        | Ser<br>240 | Pro        | Glu        | Pro        | Lys        | Ile<br>245 | Asn        |
| Thr        | Tyr        | Val        | Asn<br>250 | Phe        | Arg        | Asp        | Glu        | Val<br>255 | Leu        | Pro        | Arg        | Ile        | Lys<br>260 | Lys        | Leu        |
| Gly        | Tyr        | Asn<br>265 | Ala        | Val        | Gln        | Ile        | Met<br>270 | Ala        | Ile        | Gln        | Glu        | His<br>275 | Ser        | Tyr        | Tyr        |
| Gly        | Ser<br>280 | Phe        | Gly        | Tyr        | His        | Val<br>285 | Thr        | Asn        | Phe        | Phe        | Ala<br>290 | Pro        | Ser        | Ser        | Arg        |
| Phe<br>295 | Gly        | Thr        | Pro        | Glu        | Asp<br>300 | Leu        | Lys        | Ser        | Leu        | 11e<br>305 | Asp        | Arg        | Ala        | His        | Glu<br>310 |
| Leu        | Gly        | Leu        | Leu        | Val<br>315 | Leu        | Met        | Asp        | Val        | Val<br>320 | His        | Ser        | His        | Ala        | Ser<br>325 | Ser        |

|            |            |            |            |            |             |            |            |            | • •        | _          |            |            |            |            |            |
|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Thr        | Leu        | Asp<br>330 | Gly        | Leu         | Asn        | Gly        | Phe<br>335 | Asp        | Gly        | Thr        | Aap        | Thr<br>340 | His        | Tyr        |
| Phe        | His        | Ser<br>345 | Gly        | Pro        | Arg         | Gly        | His<br>350 | His        | Trp        | Met        | Trp        | Авр<br>355 | Ser        | Arg        | Leu        |
| Phe        | Asn<br>360 | Tyr        | Gly        | Asn        | Trp         | Glu<br>365 | Val        | Leu        | Arg        | Phe        | Leu<br>370 | Leu        | Ser        | Asn        | Ala        |
| Arg<br>375 | Trp        | Trp        | Leu        | Glu        | Glu<br>380  | Tyr        | Lys        | Phe        | Asp        | Gly<br>385 | Phe        | Arg        | Phe        | Asp        | Gly<br>390 |
| Val        | Thr        | Ser        | Met        | Met<br>395 | Tyr         | Thr        | His        | His        | Gly<br>400 | Leu        | Gln        | Val        | Thr        | Phe<br>405 | Thr        |
| Gly        | Asn        | Phe        | Asn<br>410 | Glu        | Tyr         | Phe        | Gly        | Phe<br>415 | Ala        | Thr        | Asp        | Val        | Asp<br>420 | Ala        | Val        |
| `Val       | Tyr        | Leu<br>425 | Met        | Leu        | Val         | Asn        | Asp<br>430 | Leu        | Ile        | His        | Gly        | Leu<br>435 | Tyr        | Pro        | Glu        |
| Ala        | Val<br>440 | Thr        | Ile        | Gly        | Glu         | Asp<br>445 | Val        | Ser        | Gly        | Met        | Pro<br>450 | Thr        | Phe        | Ala        | Leu        |
| Pro<br>455 | Val        | His        | Asp        | Gly        | Gly<br>460  | Val        | Gly        | Phe        | Asp        | Tyr<br>465 | Arg        | Met        | His        | Met        | Ala<br>470 |
| Val        | Ala        | Asp        | Lys        | Trp<br>475 | <u>Į</u> le | Asp        | Leu        | Leu        | Lys<br>480 | Gln        | Ser        | Asp        | Glu        | Thr<br>485 | Trp        |
| Lys        | Met        | Gly        | Asp<br>490 | Ile        | Val         | His        | Thr        | Leu<br>495 | Thr        | Asn        | Arg        | Arg        | Trp<br>500 | Leu        | Glu        |
| Lys        | Cys        | Val<br>505 | Thr        | Tyr        | Ala         | Glu        | Ser<br>510 | His        | Asp        | Gln        | Ala        | Leu<br>515 | Val        | Gly        | Asp        |
| Lys        | Thr<br>520 | Ile        | Ala        | Phe        | Trp         | Leu<br>525 | Met        | Asp        | Lys        | Asp        | Met<br>530 | Tyr        | Asp        | Phe        | Met        |

Ala Leu Asp Arg Pro Ser Thr Pro Thr Ile Asp Arg Gly Ile Ala Leu

His Lys Met Ile Arg Leu Ile Thr Met Gly Leu Gly Gly Glu Gly Tyr

113

L u Asn Ph Met Gly Asn Glu Phe Gly His Pro Glu Trp Ile Asp Phe 570 575 580

Pro Arg Gly Pro Gln Arg Leu Pro Ser Gly Lys Phe Ile Pro Gly Asn 585 590 595

Asn Asn Ser Tyr Asp Lys Cys Arg Arg Arg Phe Asp Leu Gly Asp Ala 600 605 610

Asp Tyr Leu Arg Tyr His Gly Met Gln Glu Phe Asp Gln Ala Met Gln 615 620 625 630

His Leu Glu Gln Lys Tyr Glu Phe Met Thr Ser Asp His Gln Tyr Ile
635 640 645

Ser Arg Lys His Glu Glu Asp Lys Val Ile Val Phe Glu Lys Gly Asp 650 655 660

Leu Val Phe Val Phe Asn Phe His Cys Asn Asn Ser Tyr Phe Asp Tyr 665 670 675

Arg Ile Gly Cys Arg Lys Pro Gly Val Tyr Lys Val Val Leu Asp Ser 680 685 690

Asp Ala Gly Leu Phe Gly Gly Phe Ser Arg Ile His His Ala Ala Glu 695 700 705 710

His Phe Thr Ala Asp Cys Ser His Asp Asn Arg Pro Tyr Ser Phe Ser
715 720 725

Val Tyr Thr Pro Ser Arg Thr Cys Val Val Tyr Ala Pro Val Glu \* 730 735 740

# (2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2763 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: mRNA
- (iii) HYPOTHETICAL: NO

PCT/US97/17555 WO 98/14601

|                                        |                                                             |                                               |                                                             |                                                           |                                        |                                               |                                 |                                     | 11                                                         | 4                                      |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------|
|                                        | (vi)                                                        | ORI                                           | GINA                                                        | L SC                                                      | URCE                                   | :                                             |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             | (F                                            | ) OF                                                        | RGANI                                                     | SM:                                    | Zea                                           | mays                            | 3                                   |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | (ix)                                                        | FE#                                           | TURE                                                        | :<br>:                                                    |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             | ( <i>1</i>                                    | A) NA                                                       | ME/F                                                      | ŒY:                                    | tran                                          | sit_                            | pept                                | ide                                                        |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             | ( E                                           | 3) LC                                                       | CATI                                                      | ON:                                    | 21                                            | 90                              |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | (ix                                                         | FE#                                           | TURE                                                        | E:                                                        |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | ,                                                           |                                               | A) NE                                                       |                                                           | ŒY:                                    | mat                                           | pept                            | ide                                 |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             |                                               | 3) LC                                                       |                                                           |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | (ix                                                         | rea                                           | ATURE                                                       | C :                                                       |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | ,                                                           |                                               | A) NA                                                       |                                                           | ŒY:                                    | CDS                                           |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             | •                                             | 3) LC                                                       |                                                           |                                        |                                               | 2470                            |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             |                                               |                                                             |                                                           |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        |                                                             |                                               |                                                             |                                                           |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | (xi                                                         | ) SEC                                         | QUENC                                                       | CE DE                                                     | ESCRI                                  | PTIC                                          | ON: S                           | SEQ I                               | ID NO                                                      | ):16:                                  | :                                                          |                                               |                                                             |                                                            |                                                      |                   |
| G C'                                   | רה דמ                                                       | בר פי                                         | יכ פיז                                                      | ቦር ጥር                                                     | ים רו                                  | יר ידר                                        | יים יים:                        | TC TC                               | מה כנ                                                      | ים או                                  | ייתי רו                                                    | og ci                                         | רידי רי                                                     | רם כו                                                      | ~G                                                   | 46                |
|                                        |                                                             |                                               |                                                             |                                                           |                                        |                                               |                                 | er Se                               |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      | 40                |
| -                                      |                                                             |                                               |                                                             |                                                           |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | 03                                                          |                                               | -6                                                          | 50                                                        |                                        |                                               |                                 | -5                                  |                                                            |                                        |                                                            |                                               |                                                             | 50                                                         |                                                      |                   |
|                                        | 03                                                          |                                               | -6                                                          | 50                                                        |                                        |                                               |                                 |                                     |                                                            |                                        |                                                            |                                               |                                                             |                                                            |                                                      |                   |
|                                        | CGG                                                         |                                               | TCT                                                         | CGC                                                       |                                        |                                               |                                 | -5<br>GAT                           | 55<br>CGG                                                  | GCG                                    | GCA                                                        | CCG                                           | -i                                                          | 50<br>GGG                                                  | ATC                                                  | 94                |
|                                        | CGG                                                         |                                               | TCT<br>Ser                                                  | CGC                                                       |                                        |                                               |                                 | -5<br>GAT<br>Asp                    | 55<br>CGG                                                  | GCG                                    | GCA                                                        |                                               | -5<br>CCG<br>Pro                                            | 50<br>GGG                                                  | ATC                                                  | 94                |
|                                        | CGG                                                         |                                               | TCT                                                         | CGC                                                       |                                        |                                               |                                 | -5<br>GAT                           | 55<br>CGG                                                  | GCG                                    | GCA                                                        | CCG                                           | -i                                                          | 50<br>GGG                                                  | ATC                                                  | 94                |
| Pro                                    | CGG<br>Arg                                                  | Arg                                           | TCT<br>Ser<br>-45                                           | CGC<br>Arg                                                | Ser                                    | His                                           | Ala                             | GAT<br>Asp<br>-40                   | cgg<br>Arg                                                 | GCG<br>Ala                             | GCA<br>Ala                                                 | CCG                                           | ccg<br>Pro<br>-35                                           | GGG<br>Gly                                                 | ATC<br>Ile                                           | 94                |
| Pro<br>GCG                             | CGG<br>Arg                                                  | Arg<br>GGC                                    | TCT<br>Ser<br>-45                                           | CGC<br>Arg                                                | Ser<br>GTG                             | His<br>CGC                                    | Ala                             | GAT Asp -40                         | CGG<br>Arg                                                 | GCG<br>Ala                             | GCA<br>Ala<br>TCT                                          | CCG<br>Pro                                    | CCG<br>Pro<br>-35                                           | GGG<br>Gly<br>TGC                                          | ATC<br>Ile                                           |                   |
| Pro<br>GCG                             | CGG<br>Arg                                                  | Arg<br>GGC                                    | TCT<br>Ser<br>-45                                           | CGC<br>Arg                                                | Ser<br>GTG                             | His<br>CGC                                    | Ala                             | GAT<br>Asp<br>-40                   | CGG<br>Arg                                                 | GCG<br>Ala                             | GCA<br>Ala<br>TCT                                          | CCG<br>Pro                                    | CCG<br>Pro<br>-35                                           | GGG<br>Gly<br>TGC                                          | ATC<br>Ile                                           |                   |
| Pro<br>GCG<br>Ala                      | CGG<br>Arg<br>GGT<br>Gly                                    | GGC<br>Gly<br>-30                             | TCT<br>Ser<br>-45<br>GGC<br>Gly                             | CGC<br>Arg<br>AAT<br>Asn                                  | Ser<br>GTG<br>Val                      | His<br>CGC<br>Arg                             | Ala<br>CTG<br>Leu<br>-25        | GAT<br>Asp<br>-40<br>AGT<br>Ser     | CGG<br>Arg<br>GTG<br>Val                                   | GCG<br>Ala<br>TTG<br>Leu               | GCA<br>Ala<br>TCT<br>Ser                                   | CCG<br>Pro<br>GTC<br>Val                      | CCG<br>Pro<br>-35<br>CAG<br>Gln                             | GGG<br>Gly<br>TGC<br>Cys                                   | ATC<br>Ile<br>AAG<br>Lys                             | 142               |
| Pro<br>GCG<br>Ala<br>GCT               | CGG<br>Arg<br>GGT<br>Gly                                    | GGC<br>Gly<br>-30                             | TCT<br>Ser<br>-45<br>GGC<br>Gly                             | CGC<br>Arg<br>AAT<br>Asn                                  | Ser<br>GTG<br>Val                      | His<br>CGC<br>Arg                             | Ala<br>CTG<br>Leu<br>-25        | GAT Asp -40 AGT Ser                 | CGG<br>Arg<br>GTG<br>Val                                   | GCG<br>Ala<br>TTG<br>Leu               | GCA<br>Ala<br>TCT<br>Ser                                   | CCG<br>Pro<br>GTC<br>Val<br>-20               | CCG<br>Pro<br>-35<br>CAG<br>Gln                             | GGG<br>Gly<br>TGC<br>Cys                                   | ATC<br>Ile<br>AAG<br>Lys                             |                   |
| Pro<br>GCG<br>Ala<br>GCT               | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg                      | GGC<br>Gly<br>-30                             | TCT<br>Ser<br>-45<br>GGC<br>Gly                             | CGC<br>Arg<br>AAT<br>Asn                                  | Ser<br>GTG<br>Val                      | CGC<br>Arg                                    | Ala<br>CTG<br>Leu<br>-25        | GAT Asp -40 AGT Ser                 | CGG<br>Arg<br>GTG<br>Val                                   | GCG<br>Ala<br>TTG<br>Leu               | GCA<br>Ala<br>TCT<br>Ser                                   | CCG<br>Pro<br>GTC<br>Val                      | CCG<br>Pro<br>-35<br>CAG<br>Gln                             | GGG<br>Gly<br>TGC<br>Cys                                   | ATC<br>Ile<br>AAG<br>Lys                             | 142               |
| Pro<br>GCG<br>Ala<br>GCT               | CGG<br>Arg<br>GGT<br>Gly                                    | GGC<br>Gly<br>-30                             | TCT<br>Ser<br>-45<br>GGC<br>Gly                             | CGC<br>Arg<br>AAT<br>Asn                                  | Ser<br>GTG<br>Val                      | His<br>CGC<br>Arg                             | Ala<br>CTG<br>Leu<br>-25        | GAT Asp -40 AGT Ser                 | CGG<br>Arg<br>GTG<br>Val                                   | GCG<br>Ala<br>TTG<br>Leu               | GCA<br>Ala<br>TCT<br>Ser                                   | CCG<br>Pro<br>GTC<br>Val<br>-20               | CCG<br>Pro<br>-35<br>CAG<br>Gln                             | GGG<br>Gly<br>TGC<br>Cys                                   | ATC<br>Ile<br>AAG<br>Lys                             | 142               |
| Pro<br>GCG<br>Ala<br>GCT<br>Ala        | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg<br>-15               | GGC<br>Gly<br>-30<br>CGG<br>Arg               | TCT<br>Ser<br>-45<br>GGC<br>Gly<br>TCA<br>Ser               | CGC<br>Arg<br>AAT<br>Asn<br>GGG<br>Gly                    | GTG<br>Val<br>GTG<br>Val               | CGC<br>Arg<br>CGG<br>Arg                      | CTG<br>Leu<br>-25<br>AAG<br>Lys | GAT Asp -40 AGT Ser GTC Val         | CGG<br>Arg<br>GTG<br>Val                                   | GCG<br>Ala<br>TTG<br>Leu<br>AGC<br>Ser | GCA<br>Ala<br>TCT<br>Ser<br>AAA<br>Lys                     | CCG<br>Pro<br>GTC<br>Val<br>-20               | CCG<br>Pro<br>-35<br>CAG<br>Gln<br>GCC<br>Ala               | GGG<br>Gly<br>TGC<br>Cys<br>ACT<br>Thr                     | ATC<br>Ile<br>AAG<br>Lys<br>GCA<br>Ala               | 142               |
| GCG<br>Ala<br>GCT<br>Ala               | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg<br>-15               | GGC<br>Gly<br>-30<br>CGG<br>Arg               | TCT<br>Ser<br>-45<br>GGC<br>Gly<br>TCA<br>Ser               | CGC<br>Arg<br>AAT<br>Asn<br>GGG<br>Gly                    | GTG<br>Val<br>GTG<br>Val               | CGC<br>Arg<br>CGG<br>Arg<br>-10               | CTG<br>Leu<br>-25<br>AAG<br>Lys | GAT Asp -40 AGT Ser GTC Val         | CGG<br>Arg<br>GTG<br>Val<br>AAG<br>Lys                     | GCG<br>Ala<br>TTG<br>Leu<br>AGC<br>Ser | GCA Ala TCT Ser AAA Lys -5                                 | CCG<br>Pro<br>GTC<br>Val<br>-20<br>TTC<br>Phe | CCG<br>Pro<br>-35<br>CAG<br>Gln<br>GCC<br>Ala               | GGG<br>Gly<br>TGC<br>Cys<br>ACT<br>Thr                     | ATC<br>Ile<br>AAG<br>Lys<br>GCA<br>Ala               | 142               |
| GCG<br>Ala<br>GCT<br>Ala               | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg<br>-15               | GGC<br>Gly<br>-30<br>CGG<br>Arg               | TCT<br>Ser<br>-45<br>GGC<br>Gly<br>TCA<br>Ser               | CGC<br>Arg<br>AAT<br>Asn<br>GGG<br>Gly                    | GTG<br>Val<br>GTG<br>Val               | CGC<br>Arg<br>CGG<br>Arg<br>-10               | CTG<br>Leu<br>-25<br>AAG<br>Lys | GAT Asp -40 AGT Ser GTC Val         | CGG<br>Arg<br>GTG<br>Val<br>AAG<br>Lys                     | GCG<br>Ala<br>TTG<br>Leu<br>AGC<br>Ser | GCA Ala TCT Ser AAA Lys -5                                 | CCG<br>Pro<br>GTC<br>Val<br>-20<br>TTC<br>Phe | CCG<br>Pro<br>-35<br>CAG<br>Gln<br>GCC<br>Ala               | GGG<br>Gly<br>TGC<br>Cys<br>ACT<br>Thr                     | ATC<br>Ile<br>AAG<br>Lys<br>GCA<br>Ala               | 142               |
| GCG<br>Ala<br>GCT<br>Ala<br>GCT<br>Ala | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg<br>-15<br>ACT        | GGC<br>Gly<br>-30<br>CGG<br>Arg<br>GTG<br>Val | TCT<br>Ser<br>-45<br>GGC<br>Gly<br>TCA<br>Ser               | CGC<br>Arg<br>AAT<br>Asn<br>GGG<br>Gly<br>GAA<br>Glu<br>5 | GTG<br>Val<br>GTG<br>Val<br>GAT<br>Asp | CGC<br>Arg<br>CGG<br>Arg<br>-10<br>AAA<br>Lys | Ala CTG Leu -25 AAG Lys ACT Thr | GAT Asp -40 AGT Ser GTC Val         | CGG<br>Arg<br>GTG<br>Val<br>AAG<br>Lys<br>GCA<br>Ala       | GCG<br>Ala<br>TTG<br>Leu<br>AGC<br>Ser | GCA<br>Ala<br>TCT<br>Ser<br>AAA<br>Lys<br>-5<br>GCC<br>Ala | CCG<br>Pro<br>GTC<br>Val<br>-20<br>TTC<br>Phe | CCG<br>Pro<br>-35<br>CAG<br>Gln<br>GCC<br>Ala               | GGG<br>Gly<br>TGC<br>Cys<br>ACT<br>Thr<br>GAT<br>Asp       | ATC<br>Ile<br>AAG<br>Lys<br>GCA<br>Ala<br>GTC<br>Val | 142<br>190<br>238 |
| GCG Ala GCT Ala 1 GAC                  | CGG<br>Arg<br>GGT<br>Gly<br>CGC<br>Arg<br>-15<br>ACT<br>Thr | GGC<br>Gly<br>-30<br>CGG<br>Arg<br>GTG<br>Val | TCT<br>Ser<br>-45<br>GGC<br>Gly<br>TCA<br>Ser<br>CAA<br>Gln | CGC<br>Arg<br>AAT<br>Asn<br>GGG<br>Gly<br>GAA<br>Glu<br>5 | GTG<br>Val<br>GTG<br>Val<br>GAT<br>Asp | CGC<br>Arg<br>CGG<br>Arg<br>-10<br>AAA<br>Lys | Ala CTG Leu -25 AAG Lys ACT Thr | GAT Asp -40 AGT Ser GTC Val ATG Met | CGG<br>Arg<br>GTG<br>Val<br>AAG<br>Lys<br>GCA<br>Ala<br>10 | GCG<br>Ala<br>TTG<br>Leu<br>AGC<br>Ser | GCA Ala TCT Ser AAA Lys -5 GCC Ala                         | CCG<br>Pro<br>GTC<br>Val<br>-20<br>TTC<br>Phe | CCG<br>Pro<br>-35<br>CAG<br>Gln<br>GCC<br>Ala<br>GGC<br>Gly | GGG<br>Gly<br>TGC<br>Cys<br>ACT<br>Thr<br>GAT<br>Asp<br>15 | ATC<br>Ile<br>AAG<br>Lys<br>GCA<br>Ala<br>GTC<br>Val | 142               |

GAC CAT TTC AGG TAC CGG ATG AAA AGA TTC CTA GAG CAG AAA GGA TCA

Asp His Phe Arg Tyr Arg Met Lys Arg Phe Leu Glu Gln Lys Gly Ser 40

45

35

| ATT         | GAA | GAA         | AAT | GAG              | GGA     | AGT     | CTT | GAA  | TCT | TTT | TCT  | AAA   | GGC  | TAT     | TTG | 382 |
|-------------|-----|-------------|-----|------------------|---------|---------|-----|------|-----|-----|------|-------|------|---------|-----|-----|
| Ile         | Glu | Glu         | Asn | Glu              | Gly     | Ser     | Leu | Glu  | Ser | Phe | Ser  | Lys   | Gly  | Tyr     | Leu |     |
|             | 50  |             |     |                  |         | 55      |     |      |     |     | 60   |       |      |         |     |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
| AAA         | TTT | GGG         | ATT | AAT              | ACA     | AAT     | GAG | GAT  | GGA | ACT | GTA  | TAT   | CGT  | GAA     | TGG | 430 |
| Lys         | Phe | Gly         | Ile | Asn              | Thr     | Asn     | Glu | Asp  | Gly | Thr | Val  | Tyr   | Arg  | Glu     | Trp |     |
| 65          |     |             |     |                  | 70      |         |     |      |     | 75  |      |       |      |         | 80  |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
|             |     |             |     |                  |         | GCA     |     |      |     |     |      |       |      |         |     | 478 |
| Ala         | Pro | Ala         | Ala |                  | Glu     | Ala     | Glu | Leu  |     | Gly | Asp  | Phe   | Asn  | _       | Trp |     |
|             |     |             |     | 85               |         |         |     |      | 90  |     |      |       |      | 95      |     |     |
|             | ~~~ |             |     | ~ » m            |         |         |     |      | ~~~ |     |      |       |      | <b></b> |     |     |
|             |     |             |     |                  |         | ATG     |     |      |     |     |      |       |      |         |     | 526 |
| ASN         | GIY | Ala         |     | HIB              | гув     | Met     | GIU |      | Asp | гÀг | Pne  | GIY   |      | Trp     | ser |     |
|             |     |             | 100 |                  |         |         |     | 105  |     |     |      |       | 110  |         |     |     |
| እጥ <b>ሶ</b> | מממ | <b>ል ጥጥ</b> | CAC | Сът              | GTC.    | AAA     | ccc | מממ  | CCT | ccc | ልጥሮ  | CCT   | CAC  | ייית מ  | TOO | 574 |
|             |     |             |     |                  |         | Lys     |     |      |     |     |      |       |      |         |     | 3/4 |
|             | Lys | 115         | nsp |                  | · · · · | Dys     | 120 | Lys  | 110 | 270 | 110  | 125   | 1113 | no.     | 261 |     |
|             |     |             |     |                  |         |         | 120 |      |     |     |      | 125   |      |         |     |     |
| AAG         | GTT | AAA         | TTT | CGC              | ттт     | CTA     | CAT | GGT  | GGA | GTA | TGG  | GTT   | GAT  | CGT     | АТТ | 622 |
|             | _   |             |     |                  |         | Leu     |     |      |     |     |      |       |      |         |     |     |
| -•          | 130 | •           |     |                  |         | 135     |     | •    | •   |     | 140  |       |      |         |     |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
| CCA         | GCA | TTG         | ATT | CGT              | TAT     | GCG     | ACT | GTT  | GAT | GCC | TCT  | AAA   | TTT  | GGA     | GCT | 670 |
| Pro         | Ala | Leu         | Ile | Arg              | Tyr     | Ala     | Thr | Val  | Asp | Ala | Ser  | Lys   | Phe  | Gly     | Ala |     |
| 145         |     |             |     |                  | 150     |         |     |      |     | 155 |      |       |      |         | 160 |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
| CCC         | TAT | GAT         | GGT | GTT              | CAT     | TGG     | GAT | CCT  | CCT | GCT | TCT  | GAA   | AGG  | TAC     | ACA | 718 |
| Pro         | Tyr | Asp         | Gly | Val              | His     | Trp     | Asp | Pro  | Pro | Ala | Ser  | Glu   | Arg  | Tyr     | Thr |     |
|             |     |             |     | 165              |         |         |     |      | 170 |     |      |       |      | 175     |     |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
| TTT         | AAG | CAT         | CCT | CGG              | CCT     | TCA     | AAG | CCT  | GCT | GCT | CCA  | CGT   | ATC  | TAT     | GAA | 766 |
| Phe         | Lys | His         | Pro | Arg              | Pro     | Ser     | Lys | Pro  | Ala | Ala | Pro  | Arg   | Ile  | Tyr     | Glu |     |
|             |     |             | 180 |                  |         |         |     | 185  |     |     |      |       | 190  |         |     |     |
|             |     |             |     |                  |         |         |     |      |     |     |      |       |      |         |     |     |
|             |     |             |     |                  |         | GGT     |     |      |     |     |      |       |      |         |     | 814 |
| Ala         | His |             | Gly | Met              | Ser     | Gly     |     | Lys  | Pro | Ala | Val  |       | Thr  | Tyr     | Arg |     |
|             |     | 195         |     |                  |         |         | 200 |      |     |     |      | 205   |      |         |     |     |
| ar -        | -   |             | ~~  |                  | 0.55    | mm~     |     | 000  |     |     |      |       |      | m+ ~    |     |     |
|             |     |             |     |                  |         | TTG     |     |      |     |     |      |       |      |         |     | 862 |
| GIU         |     | мта         | Asp | Asn              | vaı     | Leu     | Pro | arg  | TTE | Arg |      | ASN   | ASN  | ryr     | Asn |     |
|             | 210 |             |     |                  |         | 215     |     |      |     |     | 220  |       |      |         |     |     |
| n           |     | ~~~         | mes | <b>&gt;</b> ==== | CC3     | O TO TO | 200 | ar.c | ~~~ | mee | ma ~ | ~ ~ ~ |      | mar.    | mmo | 010 |
| ACA         | GTT | CAG         | TTG | ATG              | GCA     | GTT     | ATG | GAG  | CAT | TCG | TAC  | TAT   | GCT  | TCT     | TTC | 910 |

| Thr<br>225 | Val | Gln | Leu | Met | Ala<br>230 | Val | Met | Glu | His | Ser<br>235 | Tyr | Tyr | Ala | Ser               | Ph<br>240 |      |
|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-------------------|-----------|------|
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | GGC<br>Gly<br>255 |           | 958  |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | GGT<br>Gly        |           | 1006 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | GTC<br>Val        |           | 1054 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | TCC<br>Ser        |           | 1102 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | CGG<br>Arg        |           | 1150 |
|            |     |     |     |     |            |     | _   |     |     |            |     |     |     | AAC<br>Asn<br>335 |           | 1198 |
|            |     |     |     |     |            |     |     |     |     | _          |     |     |     | GAT<br>Asp        |           | 1246 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | TTT<br>Phe        |           | 1294 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | GCA<br>Ala        |           | 1342 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | CCA<br>Pro        |           | 1390 |
|            |     |     |     |     |            |     |     |     |     |            |     |     |     | TGC<br>Cys        |           | 1438 |

|      |   | 405  |   |                   | 410 |   |   |  | 415 |       |      |
|------|---|------|---|-------------------|-----|---|---|--|-----|-------|------|
| <br> |   |      |   | GGG<br>Gly        |     |   |   |  |     | 1     | 486  |
|      |   |      |   | TAC<br>Tyr<br>440 |     |   |   |  |     | 1     | 534  |
| <br> |   |      |   | CAT<br>His        |     |   |   |  |     | 1     | 582  |
|      |   | _    |   | GAG<br>Glu        |     |   | _ |  | _   | 1     | 630  |
|      |   |      |   | CTG<br>Leu        |     |   |   |  |     | 1     | 678  |
|      |   |      | _ | TCA<br>Ser        |     | _ |   |  | _   | <br>1 | .726 |
|      |   |      |   | ATC<br>Ile<br>520 |     |   |   |  |     | 1     | .774 |
| <br> | _ | <br> |   | GAG<br>Glu        |     |   |   |  |     | 1     | .822 |
|      |   |      |   | TGG<br>Trp        |     |   |   |  |     | 1     | .870 |
|      |   |      |   | CAC<br>His        |     |   |   |  |     | 1     | .918 |
|      |   |      |   | CTC<br>Leu        |     |   |   |  |     | 1     | .966 |

| TCG | TCA  | AAG   | CAG  | ATC  | GTC   | AGC   | GAC   | ATG   | AAC  | GAT   | GAG  | GAA   | AAG   | GTT   | ATT    | 2014 |
|-----|------|-------|------|------|-------|-------|-------|-------|------|-------|------|-------|-------|-------|--------|------|
| Ser | Ser  | Lys   | Gln  | Ile  | Val   | Ser   | Asp   | Met   | Asn  | Asp   | Glu  | Glu   | Lys   | Val   | Ile    |      |
|     |      | 595   |      |      |       | •     | 600   |       |      | _     |      | 605   | -     |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| GTC | TTT  | CAA   | ССТ  | GGA  | СЪТ   | מידים | CTT   | ጥጥጥ   | CTT  | ጥጥር   | ידעע | ጥጥር   | CAT   | ccc   | NAC.   | 2062 |
|     | Phe  |       |      |      |       |       |       |       |      |       |      |       |       |       |        | 2002 |
| Val |      | GIU   | Arg  | GIY  | Asb   |       | vai   | Pne   | vai  | Pne   |      | rne   | ura   | Pro   | гля    |      |
|     | 610  |       |      |      |       | 615   |       |       |      |       | 620  |       |       |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
|     | ACT  |       | _    |      |       |       | _     | _     |      |       |      |       |       |       |        | 2110 |
| Lys | Thr  | Tyr   | Glu  | Gly  | Tyr   | Lув   | Val   | Gly   | Cya  | Asp   | Leu  | Pro   | Gly   | Lys   | Tyr    |      |
| 625 |      |       |      |      | 630   |       |       |       |      | 635   |      |       |       |       | 640    |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| AGA | GTA  | GCC   | CTG  | GAC  | TCT   | GAT   | GCT   | CTG   | GTC  | TTC   | GGT  | GGA   | CAT   | GGA   | AGA    | 2158 |
| Arg | Val  | Ala   | Leu  | Asp  | Ser   | Asp   | Ala   | Leu   | Val  | Phe   | Gly  | Gly   | His   | Gly   | Arg    |      |
|     |      |       |      | 645  |       |       |       |       | 650  |       |      |       |       | 655   |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| GTT | GGC  | CAC   | GAC  | GTG  | GAT   | CAC   | TTC   | ACG   | TCG  | CCT   | GAA  | GGG   | GTG   | CCA   | GGG    | 2206 |
|     | Gly  |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
|     | 1    |       | 660  |      | · F   |       |       | 665   |      |       |      | 0-7   | 670   |       | ory    |      |
|     |      |       | 000  |      |       |       |       | 005   |      |       |      |       | 0,0   |       |        |      |
| cmc | ccc  | CAA   | 7.00 | 220  | mm.c  | 220   | 220   | 000   | 000  | 220   | Maa  | mma   |       | ama   | cmm    | 0054 |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        | 2254 |
| vai | Pro  |       | THE  | ASI  | Pne   | ASII  |       | Arg   | PIO  | ASN   | ser  |       | rÅa   | vai   | Leu    |      |
|     |      | 675   |      |      |       |       | 680   |       |      |       |      | 685   |       |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
|     | CCG  |       |      |      |       |       |       |       |      |       |      |       |       |       |        | 2302 |
| Ser | Pro  | Pro   | Arg  | Thr  | Cys   | Val   | Ala   | Tyr   | Tyr  | Arg   | Val  | ysb   | Glu   | Ala   | Gly    |      |
|     | 690  |       |      |      |       | 695   |       |       |      |       | 700  |       |       |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| GCT | GGA  | CGA   | CGT  | CTT  | CAC   | GCG   | AAA   | GCA   | GAG  | ACA   | GGA  | AAG   | ACG   | TCT   | CCA    | 2350 |
| Ala | Gly  | Arg   | Arg  | Leu  | His   | Ala   | Lys   | Ala   | Glu  | Thr   | Gly  | Lys   | Thr   | Ser   | Pro    |      |
| 705 |      |       |      |      | 710   |       |       |       |      | 715   |      |       |       |       | 720    |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| GCA | GAG  | AGC   | ATC  | GAC  | GTC   | AAA   | GCT   | TCC   | AGA  | GCT   | AGT  | AGC   | AAA   | GAA   | GAC    | 2398 |
| Ala | Glu  | Ser   | Ile  | Asp  | Val   | Lys   | Ala   | Ser   | Arq  | Ala   | Ser  | Ser   | Lys   | Glu   | Asp    |      |
|     |      |       |      | 725  |       | •     |       |       | 730  |       |      |       | •     | 735   | •      |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| AAG | GAG  | CCA   | ACC  | COT  | CCT   | ccc   | AAC   | A A C | CCA  | TCC   | DAG  | ատա   | ccc   | ccc   | CAC    | 2446 |
|     | Glu  |       |      |      |       |       |       |       |      |       |      |       |       |       |        | 2440 |
| пур | Glu  | nia   |      | nia  | GIY   | GIY   | гур   | _     | GIY  | пр    | rys  | Pne   |       | Arg   | GIN    |      |
|     |      |       | 740  |      |       |       |       | 745   |      |       |      |       | 750   |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
|     |      |       |      |      |       |       |       | AGC   | CACG | AGT ( | CTT  | GGTG/ | AG G  | ACTGO | FACTG  | 2500 |
| Pro | Ser  | _     | Gln  | Asp  | Thr   | Lys   | *     |       |      |       |      |       |       |       |        |      |
|     |      | 755   |      |      |       |       | 760   |       |      |       |      |       |       |       |        |      |
|     |      |       |      |      |       |       |       |       |      |       |      |       |       |       |        |      |
| GCT | GCCG | GCG ( | CCCT | GTTA | GT AC | TCC:  | rgcto | TAC   | CTGG | ACTA  | GCC  | GCCG  | CTG ( | CGCC  | CCTTGG | 2560 |

WO 98/14601

| AACGGTCCTT | TCCTGTAGCT | TGCAGGCGAC | TGGTGTCTCA | TCACCGAGCA | GGCAGGCACT | 2620 |
|------------|------------|------------|------------|------------|------------|------|
| GCTTGTATAG | CTTTTCTAGA | ATAATAATCA | GGGATGGATG | GATGGTGTGT | ATTGGCTATC | 2680 |
| TGGCTAGACG | TGCATGTGCC | CAGTTTGTAT | GTACAGGAGC | AGTTCCCGTC | CAGAATAAAA | 2740 |
| AAAAACTTGT | TGGGGGGTTT | TTC        |            |            |            | 2763 |

119

PCT/US97/17555

### (2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 823 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Leu Cys Leu Val Ser Pro Ser Ser Pro Thr Pro Leu Pro Pro -63 -60 -55

Arg Arg Ser Arg Ser His Ala Asp Arg Ala Ala Pro Pro Gly Ile Ala -45 -40

Gly Gly Gly Asn Val Arg Leu Ser Val Leu Ser Val Gln Cys Lys Ala -30 -25 -20

Arg Arg Ser Gly Val Arg Lys Val Lys Ser Lys Phe Ala Thr Ala Ala -15 -10 -5

Thr Val Gln Glu Asp Lys Thr Met Ala Thr Ala Lys Gly Asp Val Asp 10

His Leu Pro Ile Tyr Asp Leu Asp Pro Lys Leu Glu Ile Phe Lys Asp 20 25

His Phe Arg Tyr Arg Met Lys Arg Phe Leu Glu Gln Lys Gly Ser Ile 40

Glu Glu Asn Glu Gly Ser Leu Glu Ser Phe Ser Lys Gly Tyr Leu Lys 55 60

Phe Gly Ile Asn Thr Asn Glu Asp Gly Thr Val Tyr Arg Glu Trp Ala

|            |            |            |            | 70         |            |            |            | •          | 75         |            |            |            |            | 80         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Pro        | Ala        | Ala        | Gln<br>85  | Glu        | Ala        | Glu        | Leu        | Ile<br>90  | Gly        | Asp        | Phe        | Asn        | Asp<br>95  | Trp        | Asn        |
| Gly        | Ala        | Asn<br>100 | His        | Lys        | Met        | Glu        | Lys<br>105 | qaA        | Lys        | Phe        | Gly        | Val<br>110 | Trp        | Ser        | Ile        |
| Lys        | Ile<br>115 | Asp        | His        | Val        | Lys        | Gly<br>120 | Lys        | Pro        | Ala        | Ile        | Pro<br>125 | His        | Asn        | Ser        | Lys        |
| Val<br>130 | Lys        | Phe        | Arg        | Phe        | Leu<br>135 | His        | Gly        | Gly        | Val        | Trp<br>140 | Val        | Asp        | Arg        | Ile        | Pro<br>145 |
| Ala        | Leu        | Ile        | Arg        | Tyr<br>150 | Ala        | Thr        | Val        | Asp        | Ala<br>155 | Ser        | Lys        | Phe        | Gly        | Ala<br>160 | Pro        |
| Tyr        | Asp        | Gly        | Val<br>165 | His        | Trp        | Asp        | Pro        | Pro<br>170 | Ala        | Ser        | Glu        | Arg        | Tyr<br>175 | Thr        | Phe        |
| Lys        | His        | Pro<br>180 | Arg        | Pro        | Ser        | Lys        | Pro<br>185 | Ala        | Ala        | Pro        | Arg        | Ile<br>190 | Tyr        | Glu        | Ala        |
| His        | Val<br>195 | Gly        | Met        | Ser        | Gly        | Glu<br>200 | Lys        | Pro        | Ala        | Val        | Ser<br>205 | Thr        | Tyr        | Arg        | Glu        |
| Phe<br>210 | Ala        | Asp        | Asn        | Val        | Leu<br>215 | Pro        | Arg        | Ile        | Arg        | Ala<br>220 | Asn        | Asn        | Tyr        | Asn        | Thr<br>225 |
| Val        | Gln        | Leu        | Met        | Ala<br>230 | Val        | Met        | Glu        | His        | Ser<br>235 | Tyr        | Tyr        | Ala        | Ser        | Phe<br>240 | Gly        |
| Tyr        | His        | Val        | Thr<br>245 | Asn        | Phe        | Phe        | Ala        | Val<br>250 | Ser        | Ser        | Arg        | Ser        | Gly<br>255 | Thr        | Pro        |
| Glu        | Asp        | Leu<br>260 | Lys        | Tyr        | Leu        | Val        | Asp<br>265 | Lys        | Ala        | His        | Ser        | Leu<br>270 | Gly        | Leu        | Arg        |
| Val        | Leu<br>275 | Met        | Asp        | Val        | Val        | His<br>280 | Ser        | His        | Ala        | Ser        | Asn<br>285 | Asn        | Val        | Thr        | Asp        |
| Gly<br>290 | Leu        | Asn        | Gly        | Tyr        | Asp<br>295 | Val        | Gly        | Gln        | Ser        | Thr<br>300 | Gln        | Glu        | Ser        | Tyr        | Phe<br>305 |
| His        | Ala        | Gly        | Asp        | Arg        | Gly        | Tyr        | His        | Lys        | Leu        | Trp        | Asp        | Ser        | Arg        | Leu        | Phe        |

|            |            |            |            | 310        |            |            |            |            | 315        |            |            |            |            | 320        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Tyr        | Ala        | Asn<br>325 | Trp        | Glu        | Val        | Leu        | Arg<br>330 | Phe        | Leu        | Leu        | Ser        | Asn<br>335 | Leu        | Arg        |
| Tyr        | Trp        | Leu<br>340 | Asp        | Glu        | Phe        | Met        | Phe<br>345 | Asp        | Gly        | Phe        | Arg        | Phe<br>350 | Asp        | Gly        | Val        |
| Thr        | Ser<br>355 | Met        | Leu        | Tyr        | His        | His<br>360 | His        | Gly        | Ile        | Asn        | Val<br>365 | Gly        | Phe        | Thr        | Gly        |
| Asn<br>370 | Tyr        | Gln        | Glu        | Tyr        | Phe<br>375 | Ser        | Leu        | Asp        | Thr        | Ala<br>380 | Val        | Asp        | Ala        | Val        | Va1        |
| Tyr        | Met        | Met        | Leu        | Ala<br>390 | Asn        | His        | Leu        | Met        | His<br>395 | Lys        | Leu        | Leu        | Pro        | Glu<br>400 | Ala        |
| Thr        | Val        | Val        | Ala<br>405 | Glu        | Asp        | Val        | Ser        | Gly<br>410 | Met        | Pro        | Val        | Leu        | Cys<br>415 | Arg        | Pro        |
| Val        | Asp        | Glu<br>420 | Gly        | Gly        | Val        | Gly        | Phe<br>425 | Asp        | Tyr        | Arg        | Leu        | Ala<br>430 | Met        | Ala        | Ile        |
| Pro        | Asp<br>435 | Arg        | Trp        | Ile        | Asp        | Tyr<br>440 | Leu        | Lys        | Asn        | Lys        | Asp<br>445 | Asp        | Ser        | Glu        | Trp        |
| Ser<br>450 | Met        | Gly        | Glu        | Ile        | Ala<br>455 | His        | Thr        | Leu        | Thr        | Asn<br>460 | Arg        | Arg        | Tyr        | Thr        | Glu<br>465 |
| Lys        | Сув        | Ile        | Ala        | Tyr<br>470 | Ala        | Glu        | Ser        | His        | Asp<br>475 | Gln        | Ser        | Ile        | Val        | Gly<br>480 | Asp        |
| Lys        | Thr        | Ile        | Ala<br>485 | Phe        | Leu        | Leu        | Met        | Asp<br>490 | Lys        | Glu        | Met        | Туг        | Thr<br>495 | Gly        | Met        |
| Ser        | Asp        | Leu<br>500 | Gln        | Pro        | Ala        | Ser        | Pro<br>505 | Thr        | Ile        | Asp        | Arg        | Gly<br>510 | Ile        | Ala        | Leu        |
| Gln        | Lys<br>515 | Met        | Ile        | His        | Phe        | Ile<br>520 | Thr        | Met        | Ala        | Leu        | Gly<br>525 | Gly        | Asp        | Gly        | Tyr        |
| Leu<br>530 | Asn        | Phe        | Met        | Gly        | Asn<br>535 | Glu        | Phe        | Gly        | His        | Pro<br>540 | Glu        | Trp        | Ile        | Asp        | Phe        |
| Pro        | Arg        | Glu        | Gly        | Asn        | Asn        | Trp        | Ser        | Tyr        | Asp        | Lys        | Cys        | Arg        | Arg        | Gln        | Trp        |

122

550 555 560

Ser Leu Val Asp Thr Asp His Leu Arg Tyr Lys Tyr Met Asn Ala Phe 565 570 575

Asp Gln Ala Met Asn Ala Leu Asp Glu Arg Phe Ser Phe Leu Ser Ser 580 585 590

Ser Lys Gln Ile Val Ser Asp Met Asn Asp Glu Glu Lys Val Ile Val 595 600 605

Phe Glu Arg Gly Asp Leu Val Phe Val Phe Asn Phe His Pro Lys Lys 610 615 620 625

Thr Tyr Glu Gly Tyr Lys Val Gly Cys Asp Leu Pro Gly Lys Tyr Arg 630 635 640

Val Ala Leu Asp Ser Asp Ala Leu Val Phe Gly Gly His Gly Arg Val 645 650 655

Gly His Asp Val Asp His Phe Thr Ser Pro Glu Gly Val Pro Gly Val 660 665 670

Pro Glu Thr Asn Phe Asn Asn Arg Pro Asn Ser Phe Lys Val Leu Ser 675 680 685

Pro Pro Arg Thr Cys Val Ala Tyr Tyr Arg Val Asp Glu Ala Gly Ala 690 695 700 705

Gly Arg Arg Leu His Ala Lys Ala Glu Thr Gly Lys Thr Ser Pro Ala 710 715 720

Glu Ser Ile Asp Val Lys Ala Ser Arg Ala Ser Ser Lys Glu Asp Lys
725 730 735

Glu Ala Thr Ala Gly Gly Lys Lys Gly Trp Lys Phe Ala Arg Gln Pro
740 745 750

Ser Asp Gln Asp Thr Lys \* 755 760

- (2) INFORMATION FOR SEQ ID NO:18:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 153 base pairs

|       | (E                                           | 3) TY                                                                                         | PE:                                                                                                                                                                                          | nucl                                                                                                                                                                                                                                                                   | .eic                                                                                                                                                                                                                                                                                                                          | acid                                                                                                                                                                                                                                                                                                                                                                                | ì                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (0                                           | :) SI                                                                                         | RANE                                                                                                                                                                                         | EDNE                                                                                                                                                                                                                                                                   | ss:                                                                                                                                                                                                                                                                                                                           | sing                                                                                                                                                                                                                                                                                                                                                                                | le                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | (1                                           | ) TC                                                                                          | POLC                                                                                                                                                                                         | GY:                                                                                                                                                                                                                                                                    | not                                                                                                                                                                                                                                                                                                                           | rele                                                                                                                                                                                                                                                                                                                                                                                | vant                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| (ii)  | моі                                          | ECUI                                                                                          | E TY                                                                                                                                                                                         | PE:                                                                                                                                                                                                                                                                    | cDN#                                                                                                                                                                                                                                                                                                                          | to                                                                                                                                                                                                                                                                                                                                                                                  | mRN <i>A</i>                                                                                                                                                                                                                                                                                                                                                                                                                            | Λ                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| (iii) | НУЕ                                          | POTHE                                                                                         | ETICA                                                                                                                                                                                        | AL: N                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| (vi)  | ORI                                          | GINA                                                                                          | AL SC                                                                                                                                                                                        | OURCE                                                                                                                                                                                                                                                                  | E :                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | (F                                           | A) OF                                                                                         | RGANI                                                                                                                                                                                        | SM:                                                                                                                                                                                                                                                                    | Zea                                                                                                                                                                                                                                                                                                                           | maye                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| (ix)  | FE#                                          | ATURE                                                                                         | E :                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | ( ]                                          | A) N2                                                                                         | ME/I                                                                                                                                                                                         | EY:                                                                                                                                                                                                                                                                    | CDS                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | ( I                                          | 3) LC                                                                                         | CAT                                                                                                                                                                                          | ON:                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                             | 153                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       |                                              |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| (xi)  | SEÇ                                          | QUENC                                                                                         | CE DI                                                                                                                                                                                        | ESCRI                                                                                                                                                                                                                                                                  | PTIC                                                                                                                                                                                                                                                                                                                          | on: s                                                                                                                                                                                                                                                                                                                                                                               | SEQ :                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID NO                                                                                                                                                                                                                                                                                                                                                                                                                    | 0:18:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| GCG   | ACG                                          | ccc                                                                                           | TCG                                                                                                                                                                                          | GCC                                                                                                                                                                                                                                                                    | GTG                                                                                                                                                                                                                                                                                                                           | GGC                                                                                                                                                                                                                                                                                                                                                                                 | GCC                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCG                                                                                                                                                                                                                                                                                                                                                                                                                      | TGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTC                                                                                                                                                                                                                                                                                                        | GCG                                                                                                                                                                                                                                                                                                       | CGG                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | 48                                                                                                                                                                                                                                                                                                        |
| Ala   | Thr                                          | Pro                                                                                           | Ser                                                                                                                                                                                          | Ala                                                                                                                                                                                                                                                                    | Val                                                                                                                                                                                                                                                                                                                           | Gly                                                                                                                                                                                                                                                                                                                                                                                 | Ala                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ala                                                                                                                                                                                                                                                                                                                                                                                                                      | Cys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Leu                                                                                                                                                                                                                                                                                                        | Ala                                                                                                                                                                                                                                                                                                       | Arg                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       |                                              |                                                                                               | 765                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 770                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            | 775                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| GCC   | TGG                                          | CCG                                                                                           | GCC                                                                                                                                                                                          | GCC                                                                                                                                                                                                                                                                    | GTC                                                                                                                                                                                                                                                                                                                           | GGC                                                                                                                                                                                                                                                                                                                                                                                 | GAC                                                                                                                                                                                                                                                                                                                                                                                                                                     | CGG                                                                                                                                                                                                                                                                                                                                                                                                                      | GCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CGG                                                                                                                                                                                                                                                                                                        | AGG                                                                                                                                                                                                                                                                                                       | CTC                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | 91                                                                                                                                                                                                                                                                                                        |
|       |                                              |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       |                                              | 780                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                   | 785                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 790                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       |                                              |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| CGC   | GTG                                          | CTG                                                                                           | CGC                                                                                                                                                                                          | CGC                                                                                                                                                                                                                                                                    | CGG                                                                                                                                                                                                                                                                                                                           | TGC                                                                                                                                                                                                                                                                                                                                                                                 | GTC                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCG                                                                                                                                                                                                                                                                                                                                                                                                                      | GAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGG                                                                                                                                                                                                                                                                                                        | GAG                                                                                                                                                                                                                                                                                                       | GGG                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                        |
| Arg   | Val                                          | Leu                                                                                           | Arg                                                                                                                                                                                          | Arg                                                                                                                                                                                                                                                                    | Arg                                                                                                                                                                                                                                                                                                                           | Cys                                                                                                                                                                                                                                                                                                                                                                                 | Val                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ala                                                                                                                                                                                                                                                                                                                                                                                                                      | Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arg                                                                                                                                                                                                                                                                                                        | Glu                                                                                                                                                                                                                                                                                                       | Gly                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | 795                                          |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               | 800                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| CAT   | ATG                                          |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                        |
| His   | Met                                          |                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|       | (iii) (vi) (ix) (xi) GCG Ala GCC Ala CGC Arg | (ii) MOI (iii) HYF (vi) ORI (ix) FEA (ix) SEG GCG ACG Ala Thr GCC TGG Ala Trp CGC GTG Arg Val | (C) ST (D) TO (ii) MOLECUI (iii) HYPOTHE (vi) ORIGINA (A) OF (ix) FEATURE (A) NA (B) LO (xi) SEQUENO GCG ACG CCC Ala Thr Pro GCC TGG CCG Ala Trp Pro 780 CGC GTG CTG Arg Val Leu 795 CAT ATG | (C) STRANE (D) TOPOLO  (ii) MOLECULE TY  (iii) HYPOTHETICA  (vi) ORIGINAL SO (A) ORGANI  (ix) FEATURE: (A) NAME/I (B) LOCATI  (xi) SEQUENCE DE  GCG ACG CCC TCG Ala Thr Pro Ser 765  GCC TGG CCG GCC Ala Trp Pro Ala 780  CGC GTG CTG CGC Arg Val Leu Arg 795  CAT ATG | (C) STRANDEDNE (D) TOPOLOGY:  (ii) MOLECULE TYPE:  (iii) HYPOTHETICAL: M  (vi) ORIGINAL SOURCE (A) ORGANISM:  (ix) FEATURE: (A) NAME/KEY: (B) LOCATION:  (xi) SEQUENCE DESCRI  GCG ACG CCC TCG GCC Ala Thr Pro Ser Ala 765  GCC TGG CCG GCC GCC Ala Trp Pro Ala Ala 780  CGC GTG CTG CGC CGC Arg Val Leu Arg Arg 795  CAT ATG | (C) STRANDEDNESS: (D) TOPOLOGY: not  (iii) MOLECULE TYPE: cDNF  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1  (xi) SEQUENCE DESCRIPTION  GCG ACG CCC TCG GCC GTG Ala Thr Pro Ser Ala Val 765  GCC TGG CCG GCC GCC GTC Ala Trp Pro Ala Ala Val 780  CGC GTG CTG CGC CGC CGC Arg Val Leu Arg Arg Arg 795  CAT ATG | (C) STRANDEDNESS: sing (D) TOPOLOGY: not rele  (ii) MOLECULE TYPE: cDNA to  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: S  GCG ACG CCC TCG GCC GTG GGC Ala Thr Pro Ser Ala Val Gly 765  GCC TGG CCG GCC GCC GTC GGC Ala Trp Pro Ala Ala Val Gly 780  CGC GTG CTG CGC CGC CGG TGC Arg Val Leu Arg Arg Arg Cys 795  800  CAT ATG | (iii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Zea mays  (ix) FEATURE:  (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ TO GCC ACG CCC TCG GCC GTG GGC GCC Ala Thr Pro Ser Ala Val Gly Ala 765  GCC TGG CCG GCC GCC GTC GGC GAC Ala Trp Pro Ala Ala Val Gly Asp 780  CGC GTG CTG CGC CGC CGG TGC GTC Arg Val Leu Arg Arg Arg Cys Val 795  CCAT ATG | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO  GCG ACG CCC TCG GCC GTG GGC GCC GCG Ala Thr Pro Ser Ala Val Gly Ala Ala 765 770  GCC TGG CCG GCC GCC GTC GGC GAC CGC Ala Trp Pro Ala Ala Val Gly Asp Arg 780 785  CGC GTG CTG CGC CGC CGG TGC GTC GCC Arg Val Leu Arg Arg Arg Cys Val Ala 795 800 | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCG TGC Ala Thr Pro Ser Ala Val Gly Ala Ala Cys 765 770  GCC TGG CCG GCC GCC GTC GGC GAC CGG GCG Ala Trp Pro Ala Ala Val Gly Asp Arg Ala 780 785  CGC GTG CTG CGC CGC CGG TGC GTC GCG GAG Arg Val Leu Arg Arg Arg Cys Val Ala Glu 795 800  CAT ATG | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC Ala Thr Pro Ser Ala Val Gly Ala Ala Cys Leu 765 770  GCC TGG CCG GCC GCC GTC GGC GAC CGC GCC Ala Trp Pro Ala Ala Val Gly Asp Arg Ala Arg 780 785  CGC GTG CTG CGC CGC CGG TGC GTC GCC GAG CTG Arg Val Leu Arg Arg Arg Cys Val Ala Glu Leu 795 800  CAT ATG | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (iii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC CT | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC CT | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCG GCG TGC CTC CT | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC CT | (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: cDNA to mRNA  (iii) HYPOTHETICAL: NO  (vi) ORIGINAL SOURCE: (A) ORGANISM: Zea mays  (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1153  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:  GCG ACG CCC TCG GCC GTG GGC GCC GCG TGC CTC CT |

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 51 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

|          |           |           |           |          |               |       |           |           | 12             | 4     |             |           |           |           |      |     |
|----------|-----------|-----------|-----------|----------|---------------|-------|-----------|-----------|----------------|-------|-------------|-----------|-----------|-----------|------|-----|
| Met<br>1 | Ala       | Thr       | Pro       | Ser<br>5 | Ala           | Val   | Gly       | Ala       | Ala<br>10      | Сув   | Leu         | Leu       | Leu       | Ala<br>15 | Arg  |     |
| Ala      | Ala       | Trp       | Pro<br>20 | Ala      | Ala           | Val   | Gly       | Asp<br>25 | Arg            | Ala   | Arg         | Pro       | Arg<br>30 | Arg       | Leu  |     |
| Gln      | Arg       | Val<br>35 | Leu       | Arg      | Arg           | Arg   | Сув<br>40 | Val       | Ala            | Glu   | Leu         | Ser<br>45 | Arg       | Glu       | Gly  |     |
| Pro      | His<br>50 | Met       |           |          |               |       |           |           |                |       |             |           |           |           |      |     |
| (2)      | INFO      | ORMA:     | NOI       | FOR      | SEQ           | ID 1  | NO: 20    | ):        |                |       |             |           |           |           |      |     |
|          |           |           |           |          |               |       |           |           |                |       |             |           |           |           |      |     |
|          | (1)       |           | -         |          | HARA          |       |           |           |                |       |             |           |           |           |      |     |
|          |           | •         |           |          | H: 10         |       |           | -         | rs             |       |             |           |           |           |      |     |
|          |           | -         |           |          | nuc:<br>DEDNI |       |           |           |                |       |             |           |           |           |      |     |
|          |           | •         | •         |          | OEV:          |       |           |           | _              |       |             |           |           |           |      |     |
|          |           | (1        | ) 10      | ) POL    | JGII          | not   | rere      | evan      | <b>-</b>       |       |             |           |           |           |      |     |
|          | (ii)      | MOI       | LECUI     | LE T     | YPE:          | CDN   | A to      | mRN       | A              |       |             |           |           |           |      |     |
| ,        | (111)     | ) НҮІ     | ротні     | ETIC     | AL: 1         | 10    |           |           |                |       |             |           |           |           |      |     |
|          | lix       | ) FE      | ומוודב    | r.•      |               |       |           |           |                |       |             |           |           |           |      |     |
|          | (         |           |           |          | KEY:          | CDS   |           |           |                |       |             |           |           |           |      |     |
|          |           |           | •         |          | ION:          |       | 1620      |           |                |       |             |           |           |           |      |     |
|          |           | •         | •         |          |               |       |           |           |                |       |             |           |           |           |      |     |
|          |           |           |           |          |               |       |           |           |                |       |             |           |           |           |      |     |
|          | (xi       | ) SE(     | QUEN      | CE DI    | ESCR:         | IPTIC | ON: S     | SEQ       | ID N           | 20:20 | :           |           |           |           |      |     |
| TGC      | GTC       | GCG       | GAG       | CTG      | AGC           | AGG   | GAG       | GAC       | CTC            | GGT   | CTC         | GAA       | CCT       | GAA       | GGG  | 48  |
| Cys      | Val       | Ala       | Glu       | Leu      | Ser           | Arg   | Glu       | Asp       | Leu            | Gly   | Leu         | Glu       | Pro       | Glu       | Gly  |     |
|          |           |           | 55        |          |               |       |           | 60        |                |       |             |           | 65        |           |      |     |
|          |           |           |           |          |               |       |           |           |                |       |             |           |           |           |      |     |
| ATT      | GCT       | GAA       | GGT       | TCC      | ATC           | GAT   | AAC       | ACA       | GTA            | GTT   | GTG         | GCA       | AGT       | GAG       | CAA  | 96  |
| Ile      | Ala       | Glu       | Gly       | Ser      | Ile           | Asp   | Asn       | Thr       | Val            | Val   | Val         | Ala       | Ser       | Glu       | Gln  |     |
|          |           | 70        |           |          | •             |       | 75        |           |                |       |             | 80        |           |           |      |     |
| ሮአጥ      | ምርው       | CAC       | ን ሙሙ      | CTTC     | GTT           | CCA   | 7 7 C     | CNC       | <b>~</b> ~ ~ ~ | cam   | <i>ac</i> » | com       | 222       | CM3       | 202  |     |
|          |           |           |           |          | Val           |       |           |           |                |       |             |           |           |           |      | 144 |
|          | 85        | ~u        | 116       | val      | 441           | 90    | ~y s      | GIU       | GIN            | ard   | 95          | nia       | nys       | AGI       | TIIL |     |
|          |           |           |           |          |               | ,0    |           |           |                |       | , ,         |           |           |           |      |     |
| CAA      | AGC       | ATT       | GTC       | TTT      | GTA           | ACC   | GGC       | GAA       | GCT            | TCT   | CCT         | TAT       | GCA       | AAG       | TCT  | 192 |

125

Gln Ser Ile Val Ph Val Thr Gly Glu Ala Ser Pro Tyr Ala Lys Ser 100 105 110 115

CGT GGT CAC CGT GTG ATG GTT GTA ATG CCC AGA TAT TTA AAT GGT ACC

Arg Gly His Arg Val Met Val Val Met Pro Arg Tyr Leu Asn Gly Thr

135

140

145

TCC GAT AAG AAT TAT GCA AAT GCA TTT TAC ACA GAA AAA CAC ATT CGG 336
Ser Asp Lys Asn Tyr Ala Asn Ala Phe Tyr Thr Glu Lys His Ile Arg
150 155 160

ATT CCA TGC TTT GGC GGT GAA CAT GAA GTT ACC TTC TTC CAT GAG TAT

184

185

170

175

AGA GAT TCA GTT GAC TGG GTG TTT GTT GAT CAT CCC TCA TAT CAC AGA 432
Arg Asp Ser Val Asp Trp Val Phe Val Asp His Pro Ser Tyr His Arg
180 185 190 195

CCT GGA AAT TTA TAT GGA GAT AAG TTT GGT GCT TTT GGT GAT AAT CAG

Pro Gly Asn Leu Tyr Gly Asp Lys Phe Gly Ala Phe Gly Asp Asn Gln

200 205 210

TTC AGA TAC ACA CTC CTT TGC TAT GCT GCA TGT GAG GCT CCT TTG ATC

528

Phe Arg Tyr Thr Leu Leu Cys Tyr Ala Ala Cys Glu Ala Pro Leu Ile

215

220

225

CTT GAA TTG GGA GGA TAT ATT TAT GGA CAG AAT TGC ATG TTT GTT GTC 576

Leu Glu Leu Gly Gly Tyr Ile Tyr Gly Gln Asn Cys Met Phe Val Val

230 235 240

AAT GAT TGG CAT GCC AGT CTA GTG CCA GTC CTT CTT GCT GCA AAA TAT 624
Asn Asp Trp His Ala Ser Leu Val Pro Val Leu Leu Ala Ala Lys Tyr
245 250 255

AGA CCA TAT GGT GTT TAT AAA GAC TCC CGC AGC ATT CTT GTA ATA CAT

Arg Pro Tyr Gly Val Tyr Lys Asp Ser Arg Ser Ile Leu Val Ile His

260 275

AAT TTA GCA CAT CAG GGT GTA GAG CCT GCA AGC ACA TAT CCT GAC CTT

Asn Leu Ala His Gln Gly Val Glu Pro Ala Ser Thr Tyr Pro Asp Leu

|   |      | 280 |  |  | 285 |  |                   | 290  |          |
|---|------|-----|--|--|-----|--|-------------------|------|----------|
|   | <br> |     |  |  |     |  | GTA<br>Val        | <br> | <br>768  |
|   |      |     |  |  |     |  | GTT<br>Val<br>320 |      | 816      |
|   |      |     |  |  |     |  | GTC<br>Val        |      | 864      |
|   |      |     |  |  |     |  | GGC<br>Gly        |      | 912      |
|   |      |     |  |  |     |  | GTA<br>Val        |      | <br>960  |
|   |      |     |  |  |     |  | ATC<br>Ile        |      | <br>1008 |
|   |      |     |  |  |     |  | AAA<br>Lys<br>400 |      | 1056     |
| _ |      |     |  |  |     |  | CCT<br>Pro        |      | <br>1104 |
|   |      |     |  |  |     |  | CTC<br>Leu        |      | 1152     |
|   |      |     |  |  |     |  | GTC<br>Val        |      | 1200     |
|   |      |     |  |  |     |  | ACA<br>Thr        |      | 1248     |

127

| mm.c | 330 | C.N.M. |     | mm m | 000  | CCN  | mcc.  | CTT | CCD | mmm. | 200 | GTT        | CCA | c m m | maa | 1206 |
|------|-----|--------|-----|------|------|------|-------|-----|-----|------|-----|------------|-----|-------|-----|------|
|      |     |        |     |      |      |      |       |     |     |      |     | Val        |     |       |     | 1296 |
| FILE | Буз | 470    | БYЗ | 1110 | nrg  | OLY. | 475   | •41 | O1, | 1    | ber | 480        | 110 | 141   | Jei |      |
|      |     |        |     |      |      |      | • • • |     |     |      |     |            |     |       |     |      |
| CAC  | CGA | ATA    | ACT | GCC  | GGC  | TGC  | GAT   | ATA | TTG | TTA  | ATG | CCA        | TCC | AGA   | TTC | 1344 |
| His  | Arg | Ile    | Thr | Ala  | Gly  | Сув  | qaA   | Ile | Leu | Leu  | Met | Pro        | Ser | Arg   | Phe | •    |
|      | 485 |        |     |      |      | 490  |       |     |     |      | 495 |            |     |       |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     |            |     |       |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     | TAT        |     |       |     | 1392 |
|      | Pro | Сув    | GIŸ | Leu  |      | GIn  | Leu   | Tyr | Ala |      | GIN | Tyr        | GIA | Thr   |     |      |
| 500  |     |        |     |      | 505  |      |       |     |     | 510  |     |            |     |       | 515 |      |
| ССТ  | GTT | GTC    | CAT | GCA  | ACT  | GGG  | GGC   | CTT | AGA | GAT  | ACC | GTG        | GAG | AAC   | ттс | 1440 |
|      |     |        |     |      |      |      |       |     |     |      |     | Val        |     |       |     | 2    |
|      |     |        |     | 520  |      | •    | •     |     | 525 | -    |     |            |     | 530   |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     |            |     |       |     |      |
| AAC  | CCT | TTC    | GGT | GAG  | AAT  | GGA  | GAG   | CAG | GGT | ACA  | GGG | TGG        | GCA | TTC   | GCA | 1488 |
| Asn  | Pro | Phe    | Gly | Glu  | Asn  | Gly  | Glu   | Gln | Gly | Thr  | Gly | Trp        | Ala | Phe   | Ala |      |
|      |     |        | 535 |      |      |      |       | 540 |     |      |     |            | 545 |       |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     |            |     |       |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     | AAC        |     |       |     | 1536 |
| Pro  | Leu | 550    | Thr | GIU  | ASII | Met  | 555   | vai | Asp | 116  | Ald | Asn<br>560 | Cys | ASN   | iie |      |
|      |     | 330    |     |      |      |      | 333   |     |     |      |     | 300        |     |       |     |      |
| TAC  | АТА | CAG    | GGA | ACA  | CAA  | GTC  | CTC   | CTG | GGA | AGG  | GCT | AAT        | GAA | GCG   | AGG | 1584 |
| Tyr  | Ile | Gln    | Gly | Thr  | Gln  | Val  | Leu   | Leu | Gly | Arg  | Ala | Asn        | Glu | Ala   | Arg |      |
|      | 565 |        |     |      |      | 570  |       |     |     |      | 575 |            |     |       |     |      |
|      |     |        |     |      |      |      |       |     |     |      |     |            |     |       |     |      |
| CAT  | GTC | AAA    | AGA | CTT  | CAC  | GTG  | GGA   | CCA | TGC | CGC  | TGA |            |     |       |     | 1620 |
|      | Val | Lys    | Arg | Leu  |      | Val  | Gly   | Pro | Cys | -    | *   |            |     |       |     |      |
| 580  |     |        |     |      | 585  |      |       |     |     | 590  |     |            |     |       |     |      |

# (2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 540 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Cys Val Ala Glu Leu Ser Arg Glu Asp Leu Gly Leu Glu Pro Glu Gly

| 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ile        | Ala        | Glu        | Gly<br>20  | Ser        | Ile        | Asp        | Asn        | Thr<br>25  | Val        | Val        | Val        | Ala        | Ser<br>30  | Glu        | Gln        |
| Asp        | Ser        | Glu<br>35  | Ile        | Val        | Val        | Gly        | Lys<br>40  | Glu        | Gln        | Ala        | Arg        | Ala<br>45  | Lys        | Val        | Thr        |
| Gln        | Ser<br>50  | Ile        | Val        | Phe        | Val        | Thr<br>55  | Gly        | Glu        | Ala        | Ser        | Pro<br>60  | Tyr        | Ala        | Lys        | Ser        |
| Gly<br>65  | Gly        | Leu        | Gly        | Asp        | Val<br>70  | Сув        | Gly        | Ser        | Leu        | Pro<br>75  | Val        | Ala        | Leu        | Ala        | Ala<br>80  |
| Arg        | Gly        | His        | Arg        | Val<br>85  | Met        | Val        | Val        | Met        | Pro<br>90  | Arg        | Tyr        | Leu        | Asn        | Gly<br>95  | Thr        |
| Ser        | Asp        | Lys        | Asn<br>100 | Tyr        | Ala        | Asn        | Ala        | Phe<br>105 | Tyr        | Thr        | Glu        | Lys        | His<br>110 | Ile        | Arç        |
| Ile        | Pro        | Сув<br>115 | Phe        | Gly        | Gly        | Glu        | His<br>120 | Glu        | Val        | Thr        | Phe        | Phe<br>125 | His        | Glu        | Tyr        |
| Arg        | Asp<br>130 | Ser        | Val        | Asp        | Trp        | Val<br>135 | Phe        | Val        | Asp        | His        | Pro<br>140 | Ser        | Tyr        | His        | Arç        |
| Pro<br>145 | Gly        | Asn        | Leu        | Tyr        | Gly<br>150 | Asp        | Lys        | Phe        | Gly        | Ala<br>155 | Phe        | Gly        | Asp        | Asn        | Glr<br>160 |
| Phe        | Arg        | Tyr        | Thr        | Leu<br>165 | Leu        | Cys        | Tyr        | Ala        | Ala<br>170 | Cys        | Glu        | Ala        | Pro        | Leu<br>175 | Ile        |
| Leu        | Glu        | Leu        | Gly<br>180 | Gly        | Tyr        | Ile        | Tyr        | Gly<br>185 | Gln        | Asn        | Cys        | Met        | Phe<br>190 | Val        | Val        |
| Asn        | Asp        | Trp<br>195 | His        | Ala        | Ser        | Leu        | Val<br>200 | Pro        | Val        | Leu        | Leu        | Ala<br>205 | Ala        | Lys        | Туг        |
| Arg        | Pro<br>210 | Tyr        | Gly        | Val        | Tyr        | Lys<br>215 | Asp        | Ser        | Arg        | Ser        | lle<br>220 | Leu        | Val        | Ile        | Hie        |
| Asn<br>225 | Leu        | Ala        | His        | Gln        | Gly<br>230 | Val        | Glu        | Pro        | Ala        | Ser<br>235 | Thr        | Tyr        | Pro        | Asp        | Let<br>240 |
| Gly        | Leu        | Pro        | Pro        | Glu        | Trp        | Tyr        | Gly        | Ala        | Leu        | Glu        | Trp        | Val        | Phe        | Pro        | Glu        |

|            |            |            |            | 245        |            |            |              |            | 250        |            |            |            |            | 255        |                        |
|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------------------|
| Trp        | Ala        | Arg        | Arg<br>260 | His        | Ala        | Leu        | Asp          | Lys<br>265 | Gly        | Glu        | Ala        | Val        | Asn<br>270 | Phe        | Leu                    |
| ГÀв        | Gly        | Ala<br>275 | Val        | Val        | Thr        | Ala        | Asp<br>280   | Arg        | Ile        | Val        | Thr        | Val<br>285 | Ser        | Lys        | Gly                    |
| Tyr        | Ser<br>290 | Trp        | Glu        | Val        | Thr        | Thr<br>295 | Ala          | Glu        | Gly        | Gly        | Gln<br>300 | Gly        | Leu        | Asn        | Glu                    |
| Leu<br>305 | Leu        | Ser        | Ser        | Arg        | Lys<br>310 | Ser        | Val          | Leu        | Asn        | Gly<br>315 | Ile        | Val        | Asn        | Gly        | 11e                    |
| Asp        | Ile        | Asn        | Asp        | Trp<br>325 | Asn        | Pro        | Ala          | Thr        | 330        | Lys        | Сув        | Ile        | Pro        | Cys<br>335 | His                    |
| Tyr        | Ser        | Val        | Asp<br>340 | Asp        | Leu        | Ser        | Gly          | Lys<br>345 | Ala        | Lys        | Cys        | Lys        | Gly<br>350 | Ala        | Lev                    |
| Gln        | Lys        | Glu<br>355 | Leu        | Gly        | Leu        | Pro        | 11e<br>360   | Arg        | Pro        | Asp        | Val        | Pro<br>365 | Leu        | Ile        | Gly                    |
| Phe        | 11e<br>370 | Gly        | Arg        | Leu        | Asp        | Tyr<br>375 | Gln          | Lys        | Gly        | Ile        | Asp<br>380 | Leu        | Ile        | Gln        | Lev                    |
| Ile<br>385 | Ile        | Pro        | Asp        | Leu        | Met<br>390 | Arg        | G <u>l</u> u | Asp        | Val        | Gln<br>395 | Phe        | Val        | Met        | Leu        | Gl <sub>3</sub><br>400 |
| Ser        | Gly        | Asp        | Pro        | Glu<br>405 | Leu        | Glu        | Asp          | Trp        | Met<br>410 | Arg        | Ser        | Thr        | Glu        | Ser<br>415 | Ile                    |
| Phe        | Lys        | Asp        | Lys<br>420 | Phe        | Arg        | Gly        | Trp          | Val<br>425 | Gly        | Phe        | Ser        | Val        | Pro<br>430 | Val        | Sea                    |
| His        | Arg        | Ile<br>435 | Thr        | Ala        | Gly        | Cys        | Asp<br>440   | Ile        | Leu        | Leu        | Met        | Pro<br>445 | Ser        | Arg        | Phe                    |
| Glu        | Pro<br>450 | Cys        | Gly        | Leu        | Asn        | Gln<br>455 | Leu          | Tyr        | Ala        | Met        | Gln<br>460 | Tyr        | Gly        | Thr        | Val                    |
| Pro<br>465 | Val        | Val        | His        | Ala        | Thr<br>470 | Gly        | Gly          | Leu        | Arg        | Asp<br>475 | Thr        | Val        | Glu        | Asn        | Phe<br>480             |
| Asn        | Pro        | Phe        | Gly        | Glu        | Asn        | Gly        | Glu          | Gln        | Gly        | Thr        | Gly        | Trp        | Ala        | Phe        | Ala                    |

PCT/US97/17555 WO 98/14601

130

485 490 495

Pro Leu Thr Thr Glu Asn Met Phe Val Asp Ile Ala Asn Cys Asn Ile 500 505

Tyr Ile Gln Gly Thr Gln Val Leu Leu Gly Arg Ala Asn Glu Ala Arg 520 525 515

His Val Lys Arg Leu His Val Gly Pro Cys Arg \* 535 530 540

- (2) INFORMATION FOR SEQ ID NO:22:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 30 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: other nucleic acid
    - (A) DESCRIPTION: /desc = "Oligonucleotide"
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GTGGATCCAT GGCGACGCCC TCGGCCGTGG

- (2) INFORMATION FOR SEQ ID NO:23:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 35 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
    - (ii) MOLECULE TYPE: other nucleic acid
      - (A) DESCRIPTION: /desc = "Oligonucleotide"

| 131                                                                                                                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:                                                                                                                                             |    |
| CTGAATTCCA TATGGGGCCC CTCCCTGCTC AGCTC                                                                                                                                               | 35 |
| (2) INFORMATION FOR SEQ ID NO:24:                                                                                                                                                    |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 36 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| <pre>(ii) MOLECULE TYPE: other nucleic acid   (A) DESCRIPTION: /desc = "Oligonucleotide"</pre>                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:  CTCTGAGCTC AAGCTTGCTA CTTTCTTTCC TTAATG                                                                                                    | 36 |
| (2) INFORMATION FOR SEQ ID NO:25:                                                                                                                                                    |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 29 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| <pre>(ii) MOLECULE TYPE: other nucleic acid     (A) DESCRIPTION: /desc = "Oligonucleotide"</pre>                                                                                     |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:                                                                                                                                             |    |
| GTCTCCGCGG TGGTGTCCTT GCTTCCTAG                                                                                                                                                      | 29 |
| (2) INFORMATION FOR SEQ ID NO:26:                                                                                                                                                    |    |
| (2) INFORMATION FOR SEQ ID NO:26:                                                                                                                                                    |    |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 53 base pairs(B) TYPE: nucleic acid

PCT/US97/17555

132

- (C) STRANDEDNESS: doubl
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: cDNA to mRNA
- (iii) HYPOTHETICAL: NO

WO 98/14601

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TGCGTCGCGG AGCTGAGCAG GGAGGTCTCC GCGGTGGTGT CCTTGCTTCC TAG

53

- (2) INFORMATION FOR SEQ ID NO:27:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 8 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Cys Val Ala Glu Leu Ser Arg Glu

- (2) INFORMATION FOR SEQ ID NO:28:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 16 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: cDNA to mRNA

133

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

AGAGAGAGA AGAGAG

16

- (2) INFORMATION FOR SEQ ID NO:29:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 36 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

### AAGAAGAAGA AGAAGAAGAA GAAGAAGAAG AAGAAG

36

- (2) INFORMATION FOR SEQ ID NO:30:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 18 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

## ААААААА ААААААА

- (2) INFORMATION FOR SEQ ID NO:31:
  - (i) SEQUENCE CHARACTERISTICS:

134

11

- (A) LENGTH: 11 bas pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligonucleotide"
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AGATAATGCA G

- (2) INFORMATION FOR SEQ ID NO:32:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 10 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: other nucleic acid
    - (A) DESCRIPTION: /desc = "Oligonucleotide"
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

AACAATGGCT 10

- (2) INFORMATION FOR SEQ ID NO:33:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 56 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant

WO 98/14601

135

PCT/US97/17555

- (ii) MOLECULE TYPE: p ptide
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met Ala Ser Ser Met Leu Ser Ser Ala Ala Val Ala Thr Arg Thr Asn 1 5 10 15

Pro Ala Gln Ala Ser Met Val Ala Pro Phe Thr Gly Leu Lys Ser Ala 20 25 30

Ala Phe Pro Val Ser Arg Lys Gln Asn Leu Asp Ile Thr Ser Ile Ala 35 40 45

Ser Asn Gly Gly Arg Val Gln Cys 50 55

- (2) INFORMATION FOR SEQ ID NO:34:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 58 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: peptide
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Ala Pro Thr Val Met Met Ala Ser Ser Ala Thr Ala Thr Arg Thr 1 5 10 15

Asn Pro Ala Gln Ala Ser Ala Val Ala Pro Phe Gln Gly Leu Lys Ser 20 25 30

Thr Ala Ser Leu Pro Val Ala Arg Arg Ser Ser Arg Ser Leu Gly Asn

PCT/US97/17555

136

35 40 45

Val Ala Ser Asn Gly Gly Arg Ile Arg Cys
50 55

- (2) INFORMATION FOR SEQ ID NO:35:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 58 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: peptide
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Ala Gln Ile Leu Ala Pro Ser Thr Gln Trp Gln Met Arg Ile Thr

1 5 10 15

Lys Thr Ser Pro Cys Ala Thr Pro Ile Thr Ser Lys Met Trp Ser Ser 20 25 30

Leu Val Met Lys Gln Thr Lys Lys Val Ala His Ser Ala Lys Phe Arg 35 40 45

Val Met Ala Val Asn Ser Glu Asn Gly Thr 50 55

- (2) INFORMATION FOR SEQ ID NO:36:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 74 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: peptide
  - (iii) HYPOTHETICAL: NO

137

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Ala Ala Leu Ala Thr Ser Gln Leu Val Ala Thr Arg Ala Gly His 1 5 10 15

Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gln Gly Leu 20 25 30

Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg Thr
35 40 45

Ser Ala Arg Ala Ala Pro Arg His Gln Gln Ala Arg Arg Gly Gly 50 55 60

Arg Phe Pro Phe Pro Ser Leu Val Val Cys 65 70

- (2) INFORMATION FOR SEQ ID NO:37:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 39 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: peptide
  - (iii) HYPOTHETICAL: NO
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Ala Thr Pro Ser Ala Val Gly Ala Ala Cys Leu Leu Leu Ala Arg

1 5 10 15

Xaa Ala Trp Pro Ala Ala Val Gly Asp Arg Ala Arg Pro Arg Arg Leu 20 25 30

Gln Arg Val Leu Arg Arg Arg

## **CLAIMS**

- 1. A hybrid polypeptide comprising:
  - (a) a starch-encapsulating region;
  - (b) a payload polypeptide fused to said starch-encapsulating region.
- The hybrid polypeptide of claim 1 wherein said payload polypeptide consists of not more than three different types of amino acids selected from the group consisting of: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val.
- 3. The hybrid polypeptide of claim 1 wherein said payload polypeptide is a biologically active polypeptide.
  - 4. The hybrid polypeptide of claim 3 wherein said payload polypeptide is selected from the group consisting of hormones, growth factors, antibodies, peptides, polypeptides, enzyme immunoglobulins, dyes and biologically active fragments thereof.
- 5. The hybrid polypeptide of claim 1 wherein said starch-encapsulating region is the starch-encapsulating region of an enzyme selected from the group consisting of soluble starch synthase I, soluble starch synthase II, soluble starch synthase III, granule-bound starch synthase, branching enzyme I, branching enzyme IIa, branching enzyme IIBb and glucoamylase polypeptides.
  - 6. The hybrid polypeptide of claim 1 comprising a cleavage site between said starchencapsulating region and said payload polypeptide.
    - 7. A recombinant nucleic acid molecule encoding the hybrid polypeptide of claim 1.

8. The recombinant molecule of claim 7 which is a DNA molecule comprising control sequences adapted for expression of said starch-encapsulating region and said payload polypeptide in a bacterial host.

- 9. The recombinant molecule of claim 7 which is a DNA molecule comprising control sequences adapted for expression of said starch-encapsulating region and said payload polypeptide in a plant host.
  - 10. The recombinant molecule of claim 9 wherein said control sequences are adapted for expression of said starch-encapsulating region and said payload polypeptide in a monocot.
- 10 11. The recombinant molecule of claim 9 wherein said control sequences are adapted for expression of said starch-encapsulating region and said payload polypeptide in a dicot.
  - 12. The recombinant molecule of claim 9 wherein said control sequences are adapted for expression of said starch-encapsulating region and said payload polypeptide in an animal host.
- 13. An expression vector comprising the recombinant molecule of claim 7.
  - 14. A cell transformed to comprise the recombinant molecule of claim 7, capable of expressing said DNA molecule.
  - 15. The cell of claim 14 which is a plant cell.
  - 16. A plant regenerated from the cell of claim 15.
- 20 17. A seed from the plant of claim 16 capable of expressing said recombinant molecule.
  - 18. A modified starch derived from cells of claim 14 comprising said payload polypeptide.

- 19. A method of targeting digestion of a payload polypeptide to a selected site in the digestive system of an animal comprising feeding said animal a modified starch of claim 18 comprising said payload polypeptide in a matrix of a starch selected to be digested in the selected site in the digestive tract.
- 5 20. A method of producing a pure payload polypeptide from a hybrid polypeptide of claim 1 comprising:
  - (a) transforming a host organism with DNA encoding said hybrid polypeptide;
  - (b) allowing said hybrid polypeptide to be expressed in said host;
  - (c) isolating said hybrid polypeptide from said host;
- 10 (d) purifying said payload polypeptide from said hybrid polypeptide.

1/12



FIG. 1A



FIG. 1B

SUBSTITUTE SHEET (RULE 26)

2/12



FIG. 2A



FIG. 2B

SUBSTITUTE SHEET (RULE 26)

3/12



FIG. 3A



FIG. 3B

**SUBSTITUTE SHEET (RULE 26)** 



FIG. 5

**SUBSTITUTE SHEET (RULE 26)** 



FIG. 6



FIG. 7A



FIG. 7B





FIG. 7D

WO 98/14601 PCT/US97/17555



FIG. 7E



FIG. 7F

WO 98/14601 PCT/US97/17555



FIG. 8A



FIG. 8B



FIG. 9A



FIG. 9B

## INTERNATIONAL SEARCH REPORT

Inter anal Application No PCT/US 97/17555

| A. CLASSI<br>IPC 6                                                                                                                                                                                                                    | FICATION OF SUBJECT MATTER C12N15/82 C12N9/10 C12N15, C12N1/21 A01H5/00                                                                                                                           | /54 C12N15/62 C12                                                                                                                                                                                                                         | 201/68                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| According to                                                                                                                                                                                                                          | o International Patent Classification(IPC) or to both national classi                                                                                                                             | ication and IPC                                                                                                                                                                                                                           |                                                                                                                                                                                            |  |
| B. FIELDS                                                                                                                                                                                                                             | SEARCHED                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                                                                                                                                            |  |
| Minimum do<br>IPC 6                                                                                                                                                                                                                   | ocumentation searched (classification system followed by classification C12N C12Q A01H                                                                                                            | ation symbols)                                                                                                                                                                                                                            |                                                                                                                                                                                            |  |
| Documenta                                                                                                                                                                                                                             | tion searched other than minimum documentation to the extent tha                                                                                                                                  | t such documents are included in the fields                                                                                                                                                                                               | searched                                                                                                                                                                                   |  |
| Electronic d                                                                                                                                                                                                                          | ata base consulted during the international search (name of data                                                                                                                                  | base and, where practical, search terms us                                                                                                                                                                                                | ed)                                                                                                                                                                                        |  |
| C. DOCUM                                                                                                                                                                                                                              | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                            |  |
| Category '                                                                                                                                                                                                                            | Citation of document, with indication, where appropriate, of the                                                                                                                                  | elevant passages                                                                                                                                                                                                                          | Relevant to claim No.                                                                                                                                                                      |  |
| X                                                                                                                                                                                                                                     | CHEN, L., ET AL.: "IMPROVED ADSORPTION TO STARCH OF A BETA-GALACTOSIDASE FUSION PROTEIN CONTAINING THE STARCH-BINDING DOMAIN FROM ASPERGILLUS GLUCOAMYLASE" BIOTECHNOLOGY PROGRESS, vol. 7, 1991, |                                                                                                                                                                                                                                           | 1,3-5,7,<br>8,13,14,<br>20                                                                                                                                                                 |  |
| Y                                                                                                                                                                                                                                     | pages 225-229, XP002056940 see the whole document                                                                                                                                                 |                                                                                                                                                                                                                                           | 6                                                                                                                                                                                          |  |
| X<br>Y                                                                                                                                                                                                                                | KUSNADI, A.R., ET AL.: "FUNCT<br>STARCH-BINDING DOMAIN OF ASPERG<br>GLUCOAMYLASE I IN ESCHERICHIA C<br>GENE,<br>vol. 127, 1993,<br>pages 193-197, XP002056413<br>see the whole document           | ILLUS                                                                                                                                                                                                                                     | 1,3-5,7,<br>8,13,14,<br>20                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                       | <del></del>                                                                                                                                                                                       | -/                                                                                                                                                                                                                                        |                                                                                                                                                                                            |  |
| X Furti                                                                                                                                                                                                                               | her documents are listed in the continuation of box C.                                                                                                                                            | Patent family members are lists                                                                                                                                                                                                           | ed in annex.                                                                                                                                                                               |  |
| * Special categories of cited documents :  "A" document defining the general state of the art which is not                                                                                                                            |                                                                                                                                                                                                   | "T" later document published after the is or priority date and not in conflict v                                                                                                                                                          | "T" later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the |  |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another                                                                                                               |                                                                                                                                                                                                   | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to (involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention |                                                                                                                                                                                            |  |
| citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed |                                                                                                                                                                                                   | cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  *A" document member of the same patent family      |                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                       | actual completion of theinternational search                                                                                                                                                      | Date of mailing of the international                                                                                                                                                                                                      |                                                                                                                                                                                            |  |
| 2                                                                                                                                                                                                                                     | 5 February 1998                                                                                                                                                                                   | 10/03/1998                                                                                                                                                                                                                                |                                                                                                                                                                                            |  |
| Name and r                                                                                                                                                                                                                            | mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-240, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016                              | Authorized officer Holtorf, S                                                                                                                                                                                                             |                                                                                                                                                                                            |  |

1

## INTERNATIONAL SEARCH REPORT

Interi nal Application No
PCT/US 97/17555

|             |                                                                                                                                                                                                                                                                                              | PC1/05 9/ | 7 17 333              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|
| C.(Continua | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                   |           |                       |
| Category *  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                           |           | Relevant to claim No. |
| X           | BROEKHUIJSEN M P ET AL: "SECRETION OF HETEROLOGOUS PROTEINS BY ASPERGILLUS NIGER: PRODUCTION OF ACTIVE HUMAN INTERLEUKIN-6 IN A PROTEASE-DEFICIENT MUTANT BY KEX2-LIKE PROCESSING OF A GLUCOAMYLASE-HI66 FUSION PROTEIN" JOURNAL OF BIOTECHNOLOGY, vol. 31, 1993, pages 135-145, XPO02048588 |           | 1,3-7,<br>13,14,20    |
| Υ           | see the whole document                                                                                                                                                                                                                                                                       |           | 6                     |
| A           | MU-FORSTER, C., ET AL . : "PHYSICAL ASSOCIATION OF STARCH BIOSYNTHETIC ENZYMES WITH STARCH GRANULES OF MAIZE ENDOSPERM" PLANT PHYSIOLOGY, vol. 111, 1996, pages 821-829, XP002056414 see the whole document                                                                                  |           | 1-20                  |
| A           | GODDIJN O J M ET AL: "PLANTS AS BIOREACTORS" TRENDS IN BIOTECHNOLOGY, vol. 13, no. 9, 1 September 1995, pages 379-387, XP002005043 see page 384, right-hand column; figure 3                                                                                                                 |           | 1-20                  |
|             |                                                                                                                                                                                                                                                                                              |           |                       |
|             |                                                                                                                                                                                                                                                                                              |           |                       |