	TP2 Multi - Marin Mrabet	Pt		A E	3 C	D	Note	
I. Régula	ition de température simple boucle (10 pts)							
1 Donne	r le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Progra	mmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3 Régler	votre maquette pour avoir une mesure de 40% pour une commande de 50%.	1	С				0,35	
	r l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du teur (inverse ou direct).	1	В				0,75	On demande la réponse à un échelon.
5 Régler	la boucle de régulation utilisant la méthode par approches successives.	4	С	П			1,4	Je ne vois pas la consigne.
6 Enregis	strer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	С				0,7	Je ne comprends rien à la courbe. Pas de consigne, de quoi parle-t-on ?
II. Régul	lation cascade (10 pts)							
	ler le fonctionnement d'une boucle de régulation cascade.	1	Α				1	
dessus		3	В				2,25	Il faut montrer que la boucle esclave fonctionne avec une consigne externe.
3 Régler de la b	la boucle de régulation esclave en utilisant la méthode par approches successives. On ne changera pas le réglage oucle maître.	2	D				0,1	Que voulez-vous me montrer ?
4 Enregis	strer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	D				0,1	
5 Expliqu	uez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	D				0,1	
			Not	e: 8	75	/20		

TP2 Multiboucle

I. Régulation de température simple boucle

1/ Donner le schéma électrique correspondant au cahier des charges.

2/ Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entrée :

TagName	TT1		LIN Name	TT1	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	AI	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	

PID:

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	90
→PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	90
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	90
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			

Sortie 1 ·

TagName	FV1		LIN Name	FV1	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	r
			LR_out	4.00	r
Out	0.0	%	AO	0.00	r
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

3/ Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%.

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	MANUAL		Alarms		
FallBack	MANUAL				
			HAA	100.0	9
PV	53.5	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	9
OP	50.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	9
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			

FV1: OP à 53,5 %

4/ Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct)

Χ		Υ
	10	28
	30	33,5
	50	37,7
	80	40,2
	100	41,9

On en déduit que le procédé est DIRECTE car lorsque X augmente Y augmente, ce qui veut dire que le régulateur est inverse

5/ Régler la boucle de régulation

6/ Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.

Perturbation

II. Régulation cascade

1/ Rappeler le fonctionnement d'une boucle de régulation cascade.

Une boucle de régulation cascade se définie par le rajout d'une boucle de régulation appelée "Esclave" à la boucle de régulation "Maître". Ce type de régulation sert à corriger toutes les perturbations qui peuvent intervenir sur la grandeur réglante.

2/ Programmer le régulateur pour obtenir le fonctionnement en régulation cascade conformément au schéma TI ci-dessus.

3/Régler la boucle de régulation esclave en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle maître.

TagName	PID2 ESCLAVE		LIN Name	pid2	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO		Allima		
Taliback	7010		HAA	100.0	90
→PV	0.0	%	LAA	0.0	90
SP	0.0	%	HDA	100.0	90
OP	0.0	%	LDA	100.0	90
SL	0.0	%	LUA	100.0	
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	90
Track	0.0	%	TI	0.00	
114011	0.0		TD	0.00	
TagName	PID1 MAITRE		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	90
→PV	0.0	%	LAA	0.0	90
SP	0.0	%	HDA	100.0	90
OP	50.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	90
Track	0.0	%	TI	0.00	
			TD	0.00	

4/ Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.

Perturbation

5/ Expliquez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.

On observe que l'intérêt de la régulafion cascade est de supprimer les perturbations de la grandeur réglante.