Task: Clustering based identification

Data: Date and time, OCHL, volume, open interest Deciding Features (X): ☐ Normalization of position of the OHCL candle: ☐ Find the moving mean of past n candles (close, open , 0.5(C+O)) - used close, close is generally chosen (O, C, H, L) - moving mean ✓ Vedika: use exponential moving average instead of simple moving average. EMA is better for short term markets, suitable for the per-minute prediction. Mormalisation works as expected, verified using visualisation ✓ Moving mean ☑ Gradients 1st, 2nd Of moving mean ✓ Volume Their gradients ☑ Differences between OHLC <> OHCL ✓ Week day ☑ Think of more features: gradients, frequencies (maybe 30) ✓ Moving average convergence/divergence (MACD) = 26 period EMA - 12 period **EMA** SMA can also be used in addition to the EMA, 2.3 SMAs and EMAs can be used, over different periods ✓ On balance volume (OBV) □ accumulation/distribution indicator (A/D) ☐ Momentum indicators ☑ RSI (relative strength index) ☐ Stochastic oscillator ☐ Directional movement index ✓ Ultimate oscillator Economic indicators ■ More useful for long term investments ☐ Economic cost index (ECI) ☐ GDP □ Purchasing managers' index (PMI)

	☐ Personal consumption expenditures (PCE)
	☐ Also include seasonality, and inflation indicators, like PPI, CPI
	☐ Coincident indicators
	☐ Similar to economic indicators, not useful in this context
	☐ GDP and employment figures
	☐ Lagging indicators
	☐ Similar to economic indicators
	☐ GDP
	☐ CPI
	☐ Balance of Trade (BOT)
	200 period and 50 period SMA crossover
	☐ Technical indicators have been observed to not work for us
	ESN (echo state networks) can be used for prediction
	LSTM is commonly used for stock price prediction
	Look for features that can help
	Perform more intensive EDA, use boxplots, (preferably) pdf plots and heatmaps
	Plotted distribution plots for starter data, more variables need to be
	introduced
$\overline{\mathbf{A}}$	Vedika: insights from EDA
	Start and the end of the work week witness high volatility (spikes and drops in C-O)
	First two hours of the market are volatile, followed by increasing tranquility
	✓ Midweek trading volume is high
	☑ Midday trading volume is low
	Relationship among volume, C-O, and open interest needs to be looked at - not
	✓ High H and low L point to volatility
	Clustering part: k-mean :
	☑ Clustered on EMA, C-O, volume, and open interest
	H-clustering
	Latent space VAEs
	Look for similar projects to cluster candlesticks, try implementing them
	☐ Look for insights from a single candlestick, or a group of candlesticks

☐ 6 clusters:
1st cluster has candles from 2018 and 2019
2nd cluster also has candles from 2023 and 2024
3rd cluster has candles from 2020 end and 2021
4th cluster has candles from 2017 and 2018 start
5th cluster has candles from 2022 and 2023 start
☐ 6th cluster has candles from 2019 and 2020
☐ The economic conditions during those periods are leading to these clusters
1: fluctuation in mid range - hold
2: set up trend, high prices - good y value
3: increasing trend - optimistic
4: low prices, upward trend - not the right time to invest, keep a look
5: very volatile in the medium high range - better to hold
6: sharp drop from medium to low prices - avoid
☐ Comparing the trends to the time frame
2018-19: Rafale controversy, LTCG tax
2023-24: election season, euphoria of strong campaigning
2020-21: vaccines, first wave had ebbed
☐ 2017-18: economic decisions, GST, market had started gaining strength
☐ 2022-23: wars
2019-20: pandemic - sharp drop
Events are in conformity with the trends
☐ Engineered features can also be used for clustering
Let's say we get k no of clusters
KPI: identify the clusters with better Y var.
Deciding the Y var. (close - open)
☐ Occurrence of Green/ Red in in future candles (categorical type)
- How many time it is green and red, neutral
- Also decide the green/red based on threshold
☐ Amount of change in the open and close - for n future candles (numerical)
Descriped a table.
Required a table:
- Cluster number - Y_cat - Y_num

Docs:

https://www.quantstart.com/articles/k-means-clustering-of-daily-ohlc-bar-data/ https://github.com/samuelclk/ethcandleclusters/blob/master/ethuat%20kmeans%20candlesticks%20250817.jpvnb

Code NBs:

- OptAlpha Candle Prediction.ipynb
- OptAlpha Candle Prediction v2.ipynb

Work Logs

4/June/2024

- Found moving mean avg simple and Exponential
- Difference between OHCL candles

5/June/2024

- Visualization of candles
- Started K-mean clustering

6/June/2024

- Tried on K-mean clustering
- Plotted variations of features

7/June/2024

- Looked for technical indicators
- Found potential ideas for prediction model

10/June/2024

- Plotted distribution plots
- Started looking for clustering ideas

11/June/2024

- Calculated gradients of features
- Looked for more features

12/June/2024

- Added more features

13/June/2024

- Looked for clustering ideas
- Searched for discontinuities in data

14/June/2024

- Removed discontinuous days
- Updated dataframes

17/June/2024

- Prepared clustering database (as per notebook)
- Plotted scatter plot

18/June/2024

- Fixed some df features found to contain NANs

19/June/2024

- Plotted mpf candlesticks
- Plotted go candlesticks

20/June/2024

- Plotted normalised candlesticks
- Preliminary insights were drawn from normalised and unconditioned ohlc plots

21/June/2024

- Deeper insights were sought from the snaps
- Additional clustering ideas can be looked for