# **Supervised Learning**

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professor: Christian Gagné

Week 1



#### **Learn from examples**

- Let's suppose a class corresponding to the concept of family car
- Two-class problem
  - Positive (red circles): is a family car
  - Negative (blue squares): is not a family car
- Examples representation in two dimensions
  - $x_1$ : car price
  - $x_2$ : engine power

## Learn from examples



• Examples:

$$\mathbf{x} = \left[ \begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Class labels:

$$r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is positive} \\ 0 & \text{if } \mathbf{x} \text{ is negative} \end{cases}$$

• Dataset of N examples:

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

#### **Classification hypothesis**



• Possible hypothesis:

$$(x_1^{\mathsf{min}} \leq x_1 \leq x_1^{\mathsf{max}})$$
 and  $(x_2^{\mathsf{min}} \leq x_2 \leq x_2^{\mathsf{max}})$ 

# Hypothesis classes



ullet Particular hypothesis:  $h \in \mathcal{H}$ 

$$h(\mathbf{x}) = \left\{ egin{array}{ll} 1 & ext{if } h ext{ classifies } \mathbf{x} \\ & ext{as positive} \\ 0 & ext{if } h ext{ classifies } \mathbf{x} \\ & ext{as negative} \end{array} \right.$$

• Empirical error:

$$E(\mathbf{h}|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \mathcal{L}(\mathbf{h}(\mathbf{x}^t), r^t)$$

• 0-1 loss function:

$$\mathcal{L}(a,b) = \left\{ egin{array}{ll} 1 & ext{if } a 
eq b \\ 0 & ext{if } a = b \end{array} 
ight.$$

# General and specific hypothesis



- G: most general hypothesis
- S: most specific hypothesis
- ullet Hypothesis in  ${\mathcal H}$  between S and G are part of the  $version\ space$

## Model's complexity and noise



- Noise within the data
  - Lack of accuracy
  - Labelling errors
  - Latent measurements
- When the performances are equal, always prefer the simplest model
  - Complexity: easier to use and to train
  - Interpretability: easier to demonstrate
  - Plausibility: Ockham's razor

## Multiclass problems

 $x_1$ 

• Dataset of *K* classes:

$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$$

• Labels of K dimensions:

$$\mathbf{r}^{t} = \begin{bmatrix} r_{1}^{t} & r_{2}^{t} & \dots & r_{K}^{t} \end{bmatrix}$$

$$r_{i}^{t} = \begin{cases} 1 & \text{if } \mathbf{x}^{t} \in C_{i} \\ 0 & \text{if } \mathbf{x}^{t} \in C_{j}, j \neq i \end{cases}$$

• *K* hypothesis to train:

$$\mathbf{h}_i,\ i=1,\ldots,\mathcal{K}$$
  $\mathbf{h}_i(\mathbf{x}^t)=\left\{egin{array}{ll} 1 & ext{if } \mathbf{x}^t \in \mathcal{C}_i \ 0 & ext{if } \mathbf{x}^t \in \mathcal{C}_j,\ j 
eq i \end{array}
ight.$ 

## Regression

• Dataset:

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N, r^t \in \mathbb{R}$$

• We are looking for a function  $h(\cdot)$ :

$$r^t = h(\mathbf{x}^t) + \epsilon$$

• And we want to minimize the quadratic error:

$$E(\mathbf{h}|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} (r^{t} - \mathbf{h}(\mathbf{x}^{t}))^{2}$$

#### Regression



• 1st order with a variable:

$$h(x) = w_1 x + w_0$$

- Solution based on partial derivatives on the empirical error
- On the figure, solutions with 1st, 2nd and 4th order polynomials
  - 4th order is "almost perfect", but doesn't generalize well
  - 2nd order captures data better than the 1st

#### Model selection

- Supervised learning is an *ill-posed problem* 
  - The examples are not enough for a unique solution
- ullet We must have an *inductive bias*, by making assumptions about  ${\cal H}$
- First objective: **generalization** 
  - Get the model that performs the best on new data
- ullet Overfit:  ${\cal H}$  is more complex than the modelled concept
- ullet Underfit:  ${\cal H}$  is less complex than the modelled concept

## **Factors influencing learning**

- Reminder: the objective is to minimize the generalization error on new, unseen, examples
- 1st factor: complexity of the hypothesis class
  - If the hypothesis complexity increases, then the generalization error decreases for a while and increases right after
- 2nd factor: size of the training dataset
  - The more data we have, the more the generalization error decreases

#### Regularization

- Regularization: introduce a penalty function in the optimized function in order to minimize complexity
  - Ockham's razor: all other things being equal, the simplest solutions are the most likely
- Current form:  $J(h) = E(h|\mathcal{X}) + \lambda C(h)$ 
  - $\lambda$ : relative weighting between the empirical error  $E(h|\mathcal{X})$  and the complexity C(h) of the function
- Examples of complexity measures used for regularization
  - Quantity of used parameters (non-null parameter values)
  - L<sub>2</sub> magnitude of parameter values
  - Vapnik-Chervonenkis dimension
  - Degree of the polynomial for polynomial regression

#### **Empirical validation**

- In order to estimate the generalization error, we must use data that are unseen during training
- Classical approach, split the dataset
  - Training (50%) / validation (25%) / test (25%)
- The procedure
  - 1. Compute the function on the training set
  - 2. Evaluate the generalization error of these functions on the validation set, return the one that minimizes it
  - 3. Evaluate the final performance of the function on the test set as a basis for comparison
- If we only have few data, there are other existing solutions
  - Split the initial dataset into M distinct folds
  - Use M-1 folds as training data and the remaining fold as validation data
  - ullet Repeat this experiment M times, with all the different combinations
  - Extreme case: M is equal to N (leave-one-out)

## Three dimensions of supervised learning

- Representation
  - Parametric hypothesis:  $h(\mathbf{x}|\theta)$
  - Instances, hyperplanes, decision trees, set of rules, neural nets, graphical models, etc.
- Evaluation
  - Empirical error:  $E(\theta|\mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \mathcal{L}(r^t, h(\mathbf{x}^t|\theta))$
  - Recognition rate, precision, recall, quadratic error, likelihood, posterior probability, information gain, margin, cost, etc.
- Optimization
  - Procedure:  $\theta^* = \operatorname{argmin}_{\forall \theta} E(\theta | \mathcal{X})$
  - Gradient descent, quadratic programming, heuristic, etc.