**Specification** 

# DAB Series [PNP All-in-One SOC]

# PAIOS<sup>2</sup>-AD [Dual/MRC with SL] DATA SHEET

PnpNetwork Technologies, Inc.

SEP 2020 (Version 0.97)

Note: This documentation is preliminary and subject to change. PnpNetwork Technologies, Inc. reserves the right to do any kind of modification in this datasheet regarding both hardware and software implementations without notice.



# **Revision History**

Bars appearing in the left margin of the document as shown here indicate changes made to this document since the last revision issued.

| Date       | Revision     | Description                              | Author |
|------------|--------------|------------------------------------------|--------|
| 2018.04.19 | Version 0.90 | Revised by PAIOS <sup>2</sup> -VD        | Jeremy |
| 2018.05.10 | Version 0.91 | Errata's Correction                      | Jeremy |
|            |              | 2 ball assignments are swapped           |        |
|            |              | - A10 ( VSS -> EXT_MCLK)                 |        |
|            |              | - B10 (EXT_MCLK -> VSS)                  |        |
| 2019.04.02 | Version 0.92 | Pin assignment                           | Jeremy |
|            |              | Pin Description Update                   |        |
|            |              | <b>Function Description Update</b>       | /      |
| 2019.05.02 | Version 0.93 | Ball map Update (B2)                     | Jeremy |
|            |              | Pin Description Update (B2)              |        |
| 2019.05.24 | Version 0.94 | Electrical Characteristics               | Jeremy |
| 2019.08.28 | Version 0.95 | Ball map Update (C2, C8)                 | Jeremy |
|            |              | Pin Description Update (C2, C8)          |        |
| 2020.01.07 | Version 0.96 | Ball Map Update (R15)                    | Jeremy |
| 2020.09.18 | Version 0.97 | Functional Description Update            | Jeremy |
|            | /            | Peripheral Description Update            |        |
|            |              | <b>Electrical Characteristics Update</b> |        |
|            |              |                                          |        |
|            |              | <b>X</b>                                 |        |
|            |              |                                          |        |
|            |              |                                          |        |
|            |              |                                          |        |
|            |              |                                          |        |
|            | \            |                                          |        |
|            | /            |                                          |        |
|            |              |                                          |        |
|            |              |                                          |        |
|            |              |                                          |        |
|            |              |                                          |        |



# **Contents**

| <i>1</i> . | Introduction                             | 5        |
|------------|------------------------------------------|----------|
| 1.1        | Overview                                 | 5        |
| 1.2        | Features                                 | 5        |
| 1.3        | Applications                             | 5        |
| 1.4        | Ordering Information                     |          |
| <i>2</i> . | Pin Information                          | <i>7</i> |
| 2.1        | Pin Assignment                           | 7        |
| <i>3</i> . | Pin Descriptions                         | 8        |
| <i>4</i> . | Functional Description                   | 13       |
| 4.1        | General Functions                        | 14       |
| 4.2        | DSP Functions                            |          |
| 4.3        | DAB Functions                            |          |
| 4.4        | Tuner Interface Functions                |          |
| 4.5        | Built-in RF tuners for DAB               |          |
| 4.6        | Diversity Functions                      |          |
| 4.7        | Loop though Antenna                      |          |
| 4.8        | PLL Functions                            | 17       |
| 4.9        | I <sup>2</sup> S TX Functions            | 17       |
| 4.10       | 0 I <sup>2</sup> S 7.1 Channel Functions | 17       |
| 4.11       | SPDIF Functions                          | 17       |
| 4.12       | 2 I <sup>2</sup> S RX Functions          | 17       |
| 4.13       | 3 I <sup>2</sup> C Functions             | 18       |
| 4.14       | 4 UART Functions                         | 18       |
| 4.15       | 5 SPI Functions                          | 18       |
| 4.16       | 6 SPI Bridge Functions                   | 18       |
| <i>5</i> . | Peripheral Descriptions                  | 19       |



| 5.1         | I <sup>2</sup> C Interface                  | 19 |
|-------------|---------------------------------------------|----|
| 5.2         | SPI Interface                               | 20 |
| 5           | 5.2.1 Characteristics SPI Bus               | 20 |
| 5           | 5.2.2 SPI Timing Diagram                    | 21 |
| 5           | 5.2.3 SPI Timing Characteristics            | 21 |
| 5.3         | UART Interface & HSUART Interface           | 22 |
| 5.4         |                                             |    |
| 5.5         | I <sup>2</sup> S RX Interface               | 25 |
| 5.6         | Digital I/Q Interface                       | 27 |
| 5.7         |                                             |    |
| <b>6</b> .  | Application                                 | 29 |
| 6.1         | **                                          |    |
| 6.2         | Operation Mode Selection                    | 30 |
| <i>7</i> .  | Electrical Characteristics                  | 31 |
| 7.1         | Absolute Maximum Rating                     | 31 |
| 7.2         | Recommended operating conditions            | 32 |
| 7.3         | Power-on and Reset Timing                   | 33 |
| 7.4         |                                             |    |
| <b>8.</b>   | Package Dimension                           | 35 |
| <b>9</b> .  | PCB Mounting Guidelines                     | 36 |
| 9.1         | Board Pad Design                            | 36 |
| 9.2         | Handling                                    | 36 |
| 9.3         | DRYING                                      | 37 |
| 9.4         | SMT Process                                 | 38 |
| 9.5         | The temperature profile of a reflow process | 39 |
| <i>10</i> . | Part marking                                | 40 |



# 1. ,Introduction

#### 1.1 Overview

The PAIOS<sup>2</sup>-AD is a superior system on chip for DAB applications. It fully supports both the Eureka-147 DAB consists of flexible hardware COFDM demodulator and Radio/Audio DSP. Several interfaces such as SPI, I<sup>2</sup>C and UART are implemented providing customers with more flexibility.

The PAIOS<sup>2</sup>-AD integrates the Tensilica HiFi EP DSP, offering the low-power, high-performance audio DSP core, support enhanced digital audio applications. The DSP EP core eliminates the need for the audio companion processors normally required for audio-based applications. In addition, dual DAB RF tuner are integrated with RF SOC technology. By removing the need for costly application coprocessors and memory subsystems and dual RF tuner, the PAIOS<sup>2</sup>-AD chipset solution reduces BOM costs. The PAIOS<sup>2</sup>-AD chipset solution integrates both DAB into a single chip.

#### 1.2 Features

| ш   | Multi-standards support: DAB / DAB+ / DMB-A / 1-DMB / HD-DMB                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Dual DAB tuners are integrated and dual Digital I/Q Tuner interface for external RF device                                                                                                                         |
|     | Outstanding SFN, Mobility, Adjacent and Co-channel rejection                                                                                                                                                       |
|     | Ideal C/N Performance and Superior Fading Performance                                                                                                                                                              |
|     | Decoding Information: FIC and MSC                                                                                                                                                                                  |
|     | MRC Diversity support for both DAB1.5 / DAB 2.0 system                                                                                                                                                             |
|     | Low power consumption: MAX 990mW (TBD)                                                                                                                                                                             |
|     | 32-bits RISC architecture with integrated 24-bits audio processing instructions                                                                                                                                    |
|     | Modeless switching between 16-, 24-, and 64-bits dual-issue instructions                                                                                                                                           |
|     | Dual MACs can operate as 32 x 24-bits                                                                                                                                                                              |
|     | 16MByte Mobile SDRAM stacked for high technology audio codec process and data service                                                                                                                              |
|     | 10 x 10 mm <sup>2</sup> , 0.65 mm pitch, 179-pin Fine pitch BGA technology.                                                                                                                                        |
| 1.3 | Applications                                                                                                                                                                                                       |
|     | Automotive Digital Radio System for receiving dual channel DAB signals Aftermarket car radio and audio system Boom Box and Audio component system Smart Speaker system for Digital Radio Kitchen Radio application |



#### 1.4 Ordering Information

| Order                  | Number            | PAIOS <sup>2</sup> -AD |  |  |
|------------------------|-------------------|------------------------|--|--|
| Stacked SDRAM Size     |                   | 16MByte                |  |  |
| Dookogo                | Ball Pitch        | 0.65mm                 |  |  |
| Package<br>Information | Body Size         | 10mm × 10mm × 1.2mm    |  |  |
| Information            | Ball Count (Type) | 179 balls (FBGA)       |  |  |
| Cumply Voltage         | Core              | 1.2V                   |  |  |
| Supply Voltage         | I/O               | 3.0V / 3.3V            |  |  |
| Operation Temperature  |                   | -40 ~ +85°C            |  |  |
| Storage Temperature    |                   | -50 ~ +150°C           |  |  |

**Table 1-1 Ordering Information** 

- Note: PAIOS<sup>2</sup>-AD is pin-to-pin compatible with PAIOS<sup>X</sup>-H & PAIOS<sup>X</sup>-VD series.

| Type number            | Target Application                                                                                                                                                                                                                                                                                                         | Internal tuner           | Digital I/Q tuner Interface |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|
| PAIOS <sup>2</sup> -AD | [MRC Diversity Antenna] DAB 2-ch Receiver Baseband All In One SOC for Audio & Data <sup>(*1)</sup> mode with Seamless linking + BGS/Data <sup>(*2)</sup> or MRC Audio & Data mode with Seamless linking  [Single Antenna] DAB 2-ch Receiver Baseband All In One SOC for Audio & Data mode with Seamless linking + BGS/Data | 2 tuners:<br>Band3+Band3 | Up to 2                     |

**Table 1-2 Type and Target Application overview** 

<sup>\*</sup> Note 1: "Audio & Data" means audio and data service are received simultaneous on the same frequency station.

<sup>\*</sup> Note 2: "BGS/Data" means the separated tuner can be used for back ground scanning or data service on the other frequency stations time-dependently.



# 2. Pin Information

#### 2.1 Pin Assignment

- Top View



PAIOS<sup>2</sup>-AD Pin assignment



# 3. Pin Descriptions

TYPE Description

 $I: Input, \, O: Output, \, IO: Bidirectional, \quad AP: Analog \, Power, \, DP: Digital \, Power, \, DG: Digital \, Ground$ 

#### - DSP & Baseband Pins

| Pin | Symbol    | Type | Function | Description                               |
|-----|-----------|------|----------|-------------------------------------------|
| A12 | I2C_SDA0  | IO   | I2C      | I <sup>2</sup> C DATA (Master Mode only)  |
| B12 | I2C_SCL0  | О    | I2C      | I <sup>2</sup> C CLK (Master Mode only)   |
| R1  | I2C_SDA1  | IO   | I2C      | I <sup>2</sup> C DATA (Master/Slave Mode) |
| P1  | I2C_SCL1  | IO   | I2C      | I <sup>2</sup> C CLK (Master/Slave Mode)  |
| A11 | BB_SDA    | IO   | I2C      | I <sup>2</sup> C DATA (Master Mode only)  |
| B11 | BB_SCL    | О    | I2C      | I <sup>2</sup> C CLK (Master Mode only)   |
| R14 | UART_TX0  | О    | UART     | UART0 Transfer data                       |
| R13 | UART_RX0  | I    | UART     | UART0 Receive data                        |
| P10 | SPM0_DO   | О    | SPI      | SPI0 master / Data out / MOSI             |
| P9  | SPM0_DI   | I    | SPI      | SPI0 master / Data in / MISO              |
| R9  | SPM0_CSN  | О    | SPI      | SPI0 master / Chip select / SS            |
| R10 | SPM0_CLK  | О    | SPI      | SPI0 master Clock/ CLK                    |
| G14 | INT0      | IO   | GPIO     | External Interrupt Input[0]               |
| R5  | UART_TX1  | IO   | GPIO     | UART1 TX                                  |
| P5  | UART_RX1  | IO   | GPIO     | UART1 RX                                  |
| P2  | BLD0      | IO   | GPIO     | GPIO0 / Blending Out0                     |
| R2  | BLD1      | IO   | GPIO     | GPIO1 / Blending Out1                     |
| R3  | NSPI1_DO  | IO   | GPIO     | SPI1 DO (Master or Slave)                 |
| P4  | NSPI1_DI  | IO   | GPIO     | SPI1 DI (Master or Slave)                 |
| Р3  | NSPI1_CLK | IO   | GPIO     | SPI1 CLK (Master or Slave)                |
| R4  | NSPI1_CSN | IO   | GPIO     | SPI1 nCS (Master or Slave)                |
| P14 | SPI0_DO   | IO   | GPIO     | SPI0 Slave MISO                           |
| N15 | SPI0_CSN  | IO   | GPIO     | SPI0 Slave nCS                            |
| N14 | SPI0_DI   | IO   | GPIO     | SPI0 Slave MOSI                           |
| P15 | SPI0_CLK  | IO   | GPIO     | SPI0 Slave CLK                            |
| P6  | SPDIF     | IO   | GPIO     | SPDIF/ GPIO3[6]                           |
| P11 | TX0_MCLK  | О    | I2S      | I <sup>2</sup> S TX0 Main Clock           |
| R11 | TX0_LRCK  | Ю    | I2S      | I <sup>2</sup> S TX0 Left / Right CLK     |
| P12 | TX0_BCLK  | IO   | I2S      | I <sup>2</sup> S TX0 Bit Clock            |



| D10 |             |    |          |                                        |
|-----|-------------|----|----------|----------------------------------------|
| R12 | TX0_DATA    | О  | I2S      | I <sup>2</sup> S TX0 Data              |
| R7  | TX1_MCLK    | О  | I2S      | I <sup>2</sup> S TX1 Main Clock        |
| P7  | TX1_LRCK    | IO | I2S      | I <sup>2</sup> S TX1 Left / Right CLK  |
| R6  | TX1_BCLK    | IO | I2S      | I <sup>2</sup> S TX1 Bit Clock         |
| R8  | TX1_DATA    | О  | I2S      | I <sup>2</sup> S TX1 Data              |
| D13 | TX71_MCLK   | О  | I2S      | I <sup>2</sup> S TX71 Main Clock       |
| E13 | TX71_DATA3  | О  | I2S      | I <sup>2</sup> S TX71 Data3            |
| G13 | TX71_ DATA2 | О  | I2S      | I <sup>2</sup> S TX71 Data2            |
| H13 | TX71_ DATA1 | О  | I2S      | I <sup>2</sup> S TX71 Data1            |
| J13 | TX71_ DATA0 | О  | I2S      | I <sup>2</sup> S TX71 Data0            |
| K13 | TX71_LRCK   | IO | I2S      | I <sup>2</sup> S TX71 Left / Right CLK |
| L13 | TX71_BCLK   | IO | I2S      | I <sup>2</sup> S TX71 Bit Clock        |
| J14 | RX0_BCLK    | I  | I2S      | I <sup>2</sup> S RX0 Bit Clock         |
| J15 | RX0_LRCK    | I  | I2S      | I <sup>2</sup> S RX0 Left-Right Clock  |
| K14 | RX0_DATA    | I  | I2S      | I <sup>2</sup> S RX0 Data              |
| L14 | RX1_BCLK    | I  | I2S      | I <sup>2</sup> S RX1 Bit Clock         |
| K15 | RX1_LRCK    | I  | I2S      | I <sup>2</sup> S RX1 Left-Right Clock  |
| L15 | RX1_DATA    | I  | I2S      | I <sup>2</sup> S RX1 Data              |
| H14 | RX2_BCLK    | I  | I2S      | I <sup>2</sup> S RX2 Bit Clock         |
| G15 | RX2_LRCK    | I  | I2S      | I <sup>2</sup> S RX2 Left-Right Clock  |
| H15 | RX2_DATA    | I  | I2S      | I <sup>2</sup> S RX2 Data              |
| C11 | EAGC        | О  | Tuner IF | External AGC                           |
| A13 | NC          | -  | -        | Reserved for Future extension          |
| B13 | NC          | -  | -        | Reserved for Future extension          |
| A14 | NC          | -  | -        | Reserved for Future extension          |
| A15 | NC          | -  | -        | Reserved for Future extension          |
| B15 | BLK1        | I  | Tuner IF | Digital I/Q Input BCLK1                |
| B14 | WS1         | I  | Tuner IF | Digital I/Q Input WS1                  |
| C14 | SDI1        | I  | Tuner IF | Digital I/Q Input Serial Data-I 1      |
| C15 | SDQ1        | I  | Tuner IF | Digital I/Q Input Serial Data-Q 1      |
| D15 | BLK2        | I  | Tuner IF | Digital I/Q Input BCLK2                |
| D14 | WS2         | I  | Tuner IF | Digital I/Q Input WS2                  |
| E14 | SDI2        | I  | Tuner IF | Digital I/Q Input Serial Data-I 2      |
| E15 | SDQ2        | I  | Tuner IF | Digital I/Q Input Serial Data-Q 2      |



#### - MODE & SYSTEM Pins

| Pin | Symbol   | Туре | Function | Description                                         |
|-----|----------|------|----------|-----------------------------------------------------|
| L2  | BMODE[0] | I    | MODE     | Configure Pin Boot MODE[0] 1)note                   |
| K1  | BMODE[1] | I    | MODE     | Configure Pin Boot MODE[1] <sup>2)note</sup>        |
| L1  | BMODE[2] | I    | MODE     | Configure Pin Boot MODE[2] <sup>2)note</sup>        |
| A10 | EXT_MCLK | I    | MODE     | External Clock                                      |
| K2  | BBMODE   | I    | MODE     | DSP or BASEBAND Mode Selection                      |
| К3  | TEST0    | I    | MODE     | Digital Part Test Mode Selection                    |
| N4  | RESET_N  | I    | RESET    | SYSTEM RESET IN                                     |
| A9  | XTAL P   | I    | CLOCK    | Crystal Positive                                    |
| В9  | XTAL N   | I    | CLOCK    | Crystal Negative                                    |
| L3  | STDO     | I    | MODE     | Standard Mode0                                      |
| M3  | STD1     | I    | MODE     | Standard Mode1                                      |
| P13 | AWAKE    | I    | MODE     | AWAKE                                               |
| R15 | NC       | -    | -        | Reserved for future use                             |
| N2  | JTAG_TDO | IO   | JTAG     | DSP Debug Serial Instruction/Data Shift Output Port |
| N3  | JTAG_TRS | IO   | JTAG     | DSP Debug Active Low Input Port                     |
| M1  | JTAG_TDI | IO   | JTAG     | DSP Debug Serial Instruction/Data Shift Input Port  |
| N1  | JTAG_TMS | IO   | JTAG     | DSP Debug TAP Controller Port                       |
| M2  | JTAG_TCK | IO   | JTAG     | DSP Debug Clock Port                                |

Please refer to details for detail mode selection in section 6.2.

<sup>1)</sup> BMODE[0] = 1  $\rightarrow$  System clock Input = 24.576MHz

<sup>2)</sup> BMODE[2:1] = [1][0] → Booting From Serial Flash Memory BMODE[2:1] = [1][1] → Waiting for UART Download BMODE[2:1] = [0][1] --> SPI Bridge Enabled between SPIM0 and SPIS2. So, Host can access Serial flash directly. (TBD)



#### - RF Pins

| Pin         | Symbol   | Туре | Function | Description                 |
|-------------|----------|------|----------|-----------------------------|
| A1          | LTAOUT3  | I    | RF       | LTA Output Buffer3          |
| C1          | LTA IN   | I    | RF       | LTA Input                   |
| C7          | FSOURCE  | IO   | RF       | Reserved                    |
| D3          | ADCTN    | IO   | RF       | ADC TEST Input Negative     |
| E1          | BRFIN1   | I    | RF       | Band3 RF Input1             |
| E2          | LTA OUT1 | О    | RF       | LTA Output Buffer1          |
| E3          | ADCTP    | IO   | RF       | ADC TEST Input Positive     |
| G1          | BRFIN2   | I    | RF       | Band3 RF Input2             |
| G2          | LTA OUT2 | О    | RF       | LTA Output Buffer2          |
| H2          | LTAOUT4  | О    | RF       | LTA Output Buffer4          |
| A2, A4, A5, | NC       |      |          | December of the factors and |
| A6, B5, B6  | NC       | _    |          | Reserved for future use     |

#### - Analog Power Pins

| Pin             | Symbol    | Type | Function | Description                   |
|-----------------|-----------|------|----------|-------------------------------|
| A7              | VDDLOB1   | AP   | POWER    | RF & Analog Part Power Supply |
| A8              | VDD33     | AP   | POWER    | RF & Analog Part Power Supply |
| B2              | VDDLTA25  | AP   | POWER    | RF & Analog Part Power Supply |
| В7              | VDDLOB2   | AP   | POWER    | RF & Analog Part Power Supply |
| В8              | VDD25DAB  | AP   | POWER    | RF & Analog Part Power Supply |
| C2              | VDDRFB30  | AP   | POWER    | RF & Analog Part Power Supply |
| C3              | VDD12     | AP   | POWER    | RF & Analog Part Power Supply |
| C4              | VDD12P    | AP   | POWER    | RF & Analog Part Power Supply |
| C8              | VDD25DAB0 | AP   | POWER    | RF & Analog Part Power Supply |
| F2              | VDDRFB31  | AP   | POWER    | RF & Analog Part Power Supply |
| A3, B1, B3, C5, |           |      |          |                               |
| C6, C9, D1, D2, | MCCD      | A.D. | DOWED    | DE 6 Analos Dos Consul        |
| F1, G3, H1, H3, | VSSR      | AP   | POWER    | RF & Analog Part Ground       |
| J1, J2, J3      |           |      |          |                               |
| B4, F3          | NC        | -    | -        | Reserved for future use       |



#### - Digital Power Pins

| Pin                                | Symbol | Type | Function | Description                                  |
|------------------------------------|--------|------|----------|----------------------------------------------|
| F14, F15, K6, L6, K10, L10,        | VDDI   | DP   | POWER    | Digital Dawar supply yeltogo for Cons        |
| N8, P8, M13, M14, N13              | VDDI   | DF   | FOWER    | Digital Power supply voltage for Core        |
| C12, C13, N5, N6, N10, N11         | VDDE   | DP   | POWER    | Digital Power supply voltage for I/O & SDRAM |
| F13                                | VDDPLL | DP   | POWER    | Digital Power supply voltage for PLL         |
| B10, C10, E6, E7, E8, E9, E10, F6, |        |      |          |                                              |
| F7, F8, F9, F10, G6, G7, G8, G9,   |        |      |          |                                              |
| G10, H6, H7, H8, H9, H10, J6, J7   | VSS    | DG   | POWER    | Ground.                                      |
| J8, J9, J10, K7, K8, K9, L7, L8,   |        |      |          |                                              |
| L9, M15, N7, N9, N12               |        |      |          | X Y                                          |



# 4. Functional Description

This chapter describes PAIOS<sup>2</sup>-AD internal structure, components and interfaces as shown in figure 4-1. The algorithms and architectures used in the PAIOS<sup>2</sup>-AD have been efficiently optimized in order to minimize hardware and chip area.



Figure 4-1 Functional Block Diagram



#### 4.1 General Functions

4.2

| The fol    | lowing is a total feature list and is spread over multiple commercial releases.                   |
|------------|---------------------------------------------------------------------------------------------------|
| The ini    | tial releases will not include all of these simultaneously.                                       |
|            |                                                                                                   |
|            | Support for DAB ETSI 300 401 v1.4.1 standard                                                      |
|            | High-performance Tensilica Diamond HiFi EP Core.                                                  |
|            | 32Bit RISC with 24-bits Audio processing                                                          |
|            | Advanced 10 x 10 mm2, 0.65 mm pitch, 179-pins Fine pitch BGA technology.                          |
|            |                                                                                                   |
|            |                                                                                                   |
| <b>DSP</b> | Functions                                                                                         |
|            |                                                                                                   |
|            | Based on standard 32-bits RISC architecture with integrated 24-bits audio processing instructions |
|            | Industry-leading low-power consumption coupled with high-fidelity 24-bits audio                   |
|            | Dual-issue, static super-scalar VLIW                                                              |
|            | Dual MACs can operate as 32 x 24-bits                                                             |
|            | Predictive pre-fetch cache memory subsystem for improvement of high-density memory latency        |
|            | Ultra-low power consumption increases battery life in portable applications                       |
|            | Full 24-bits internal audio resolution throughout delivers extremely high-quality audio output    |



# 4.3 DAB Functions

|     |      | Multi-standards support in DAB Family: DAB/ DAB+/ DMB-A / T-DMB / HD-DMB                  |
|-----|------|-------------------------------------------------------------------------------------------|
|     |      | Dual DAB demodulator support to receive the two ensembles in different frequency at once. |
|     |      | Additional Back Scanning or Data service decoding by using dual demodulators              |
|     |      | All DAB transmission modes (I, II, III, and IV) support                                   |
|     |      | Low-IF (2.048 MHz) and Zero-IF support                                                    |
|     |      | Fast automatic channel acquisition and re-acquisition                                     |
|     |      | EN 50248 performance environment compatible                                               |
|     |      | Dual AGC control for RF and IF amplifier, and WAGC/SLI to tuner                           |
|     |      | Outstanding SFN, Mobility, Adjacent and Co-channel rejection                              |
|     |      | Dynamic window positioning and channel tracking                                           |
|     |      | Internal digital AFC loop (no feedback to tuner)                                          |
|     |      | TII decoder can detect 5 signals                                                          |
|     |      | Embedded on-chip de-interleaving memory for full 1.824Mbps data rate                      |
|     |      | Required crystal tolerance ( ±50ppm)                                                      |
| 4.4 | Tune | r Interface Functions                                                                     |
|     |      | 2 x Digital I/Q interface support for External Tuner connection                           |
|     |      | Support Split mode, Multiplexed mode, Analog/Digital mode, MSB bit shift mode             |
|     |      | Software and hardware switching of sample rates supported                                 |



# 4.5 Built-in RF tuners for DAB

|     |       | PAIOS <sup>2</sup> -AD support dual Band-3 RF tuners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | Supports Bands: 174~245MHz (Band-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |       | Low Noise Amplifier (LNA) with 4-gain modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |       | RF automatics Gain Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |       | Typical AGC dynamic range: Over 60dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |       | Bandwidth adjustable band-pass filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |       | I/Q Down Conversion Mixer to Baseband                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |       | Low noise figure: 3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |       | Low noise and Wide frequency range On-chip Voltage Controlled Oscillator (VCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.6 | Diver | rsity Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       | MRC Diversity support in DAB family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |       | Better C/N performance and seamless switching between master and slave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.7 | Loop  | though Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |       | VHF Band3 Band support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | _     | Four RF output support with One Antenna input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | _     | The state of the s |



4.8 PLL Functions

|             |                    | Input Frequency: 24.576MHz                                                            |
|-------------|--------------------|---------------------------------------------------------------------------------------|
|             |                    | Output Frequency: 37.5MHz~600MHz                                                      |
|             |                    |                                                                                       |
|             |                    |                                                                                       |
| 4.9         | I <sup>2</sup> S T | "X Functions                                                                          |
|             |                    |                                                                                       |
|             |                    | 2 x Master or Slave I <sup>2</sup> S TX interface.                                    |
|             |                    | Programmable clock generation (I <sup>2</sup> S master mode, MCLK, BCLK, LRCK).       |
|             |                    | Programmable data width (up to 32-bits).                                              |
|             |                    | Sample rate converter supporting for externally provided clock in slave mode          |
|             |                    |                                                                                       |
| 4.10        | $I^2S$ 7           | .1 Channel Functions                                                                  |
|             |                    |                                                                                       |
|             |                    | 1 x Master or Slave I <sup>2</sup> S 7.1ch interface.                                 |
|             |                    | Programmable clock generation (I <sup>2</sup> S master mode, MCLK, BCLK, LRCK).       |
|             |                    | Programmable data width (up to 32-bits).                                              |
|             |                    | 4-pair I <sup>2</sup> S out mode and 1-pair I <sup>2</sup> S with TDM mode (DSP MODE) |
|             |                    | Sample rate converter supporting for externally provided clock in slave mode          |
|             |                    |                                                                                       |
| 111         | CDD                | IF Functions                                                                          |
| 4,11        | SFDI               | r runcuons                                                                            |
|             |                    | 1 x SPDIF interface for Stereo channel audio PCM.                                     |
|             |                    | Fixed sample rate output for 48KHz sample rate audio                                  |
|             |                    | Tixed sample face output for 401x112 sample face address                              |
|             |                    |                                                                                       |
| <i>4</i> 12 | I <sup>2</sup> S R | eX Functions                                                                          |
| 7,12        | IJN                |                                                                                       |
|             |                    | 2 x Master or Slave I <sup>2</sup> S RX interface.                                    |
|             |                    | Programmable clock generation (I <sup>2</sup> S master mode, BCLK, LRCK).             |
|             |                    | Programmable data width (up to 32-bits).                                              |
|             |                    | Sample rate converter supporting for externally provided clock in slave mode          |
|             |                    |                                                                                       |



#### 4.13 I<sup>2</sup>C Functions

|      |       | Support 2 x channels I <sup>2</sup> C                                                                |
|------|-------|------------------------------------------------------------------------------------------------------|
|      |       | Detect/generate Start and Stop events                                                                |
|      |       | Identify its slave (ID) address (in Slave mode)                                                      |
|      |       | Identify the transfer direction (receive/transmit)                                                   |
|      |       | Transfer data byte-wise according to the SCL clock line                                              |
|      |       | Generate an ACK signal following a byte receive                                                      |
|      |       | Inspect an ACK signal following a byte transmit                                                      |
|      |       | Generate vectored interrupt for receive and transmit events and receive/transmit/bus error exception |
|      |       | Generate the clock signal (in Master mode)                                                           |
| 4.14 | UAR   | T Functions                                                                                          |
|      |       | Support 2 x UART interfaces and one of them supports HSUART mode                                     |
|      |       | Programmable Baud Rate Generator                                                                     |
|      |       | 5- to 8-bits full-duplex asynchronous serial communication.                                          |
|      |       | Parity generation and error detection                                                                |
|      |       | HSUART mode supports communication at up to 115,200 bps x2 and 115,200 bps x8 (TBD)                  |
|      |       | UART mode supports communication at up to 115,200 bps                                                |
| 4.15 | SPI I | Functions                                                                                            |
|      |       | 2 x Master /Slave Serial Peripheral Bus Interface                                                    |
|      |       | 8- or 16-bits Programmable Data Length Per Chip Select                                               |
|      |       | Programmable Phase and Polarity Per Chip Select (master mode)                                        |
|      |       | Communication at up to main (clock/2) bps (slave), main (clock/2) bps(master mode)                   |
|      |       |                                                                                                      |
| 4.16 | SPI I | Bridge Functions                                                                                     |
|      |       | Host can program the serial flash directly via SPI interface by using SPI Bridge. (TBD)              |
|      |       |                                                                                                      |



# 5. Peripheral Descriptions

#### 5.1 I<sup>2</sup>C Interface

The  $I^2C$  is a standard 2 wire serial interface used to connect the acacia with  $I^2C$  device or host.  $I^2C$  bus application includes EEPROM, LCD, host controllers. The  $I^2C$  interface is able to:

- Detect/generate Start and Stop events
- Identify its slave (ID) address (in Slave mode)
- Identify the transfer direction (receive/transmit)
- Transfer data byte-wise according to the SCL clock line
- Generate an ACK signal following a byte receive
- Inspect an ACK signal following a byte transmit
- · Generate vectored interrupt for receive and transmit events and receive/transmit/bus error exceptions
- Generate the clock signal (in Master mode)



Figure 5-1 I<sup>2</sup>C Block Diagram



#### 5.2 SPI Interface

The SPI makes a serial communication with external through SPM\_CLK, SPM\_CSN, SPM\_DI, SPM\_DO pin. The SPM\_CLK is clock for the serial communication, SPM\_CSN are chip enable signals, SPM\_DI is serial data-in, and SPM\_DO is serial data-out.

The SPM Master communicates in unit of 8-bits character. If CPU writes the contents to communicate to command register, SPI Master executes communication for command register and then clears the VALID bit in command register with 0 and stops operation. That is, always when CPU sends command through command register, SPI Master does its operations.

The SPI communicates in specified unit of character and the length of character, which is possible from 1-bits to 16-bits, is defined by setting of register.

The SPI operation modes are DMA mode and non-DMA mode. The DMA mode is used to transfer large data through SPI, it reduces interrupt's occurrence to CPU. In Non-DMA mode, each finish of 1-character transfer makes interrupt to CPU.

#### 5.2.1 Characteristics SPI Bus



Figure 5-2 SPI Clock Polarity



#### 5.2.2 SPI Timing Diagram



Figure 5-3 SPI Timing Diagram

#### 5.2.3 SPI Timing Characteristics

| Symbol                      | Parameter            | <b>Test Conditions</b> | Min         | Тур | Max    | Unit |
|-----------------------------|----------------------|------------------------|-------------|-----|--------|------|
| $f_{CLKF}$                  | CLV Close Francisco  | Normal Mode            | 0           | -   | Fbus/2 | MHz  |
| $ m f_{CLKN}$ $ m f_{CLKS}$ | CLK Clock Frequency  | Standby Mode           | 0           | -   | Fbus/2 | MHz  |
| $t_{CS}$                    | Minimum CS High Time | · /                    | CYC bus * 5 | -   | -      | ns   |
| t <sub>CSS</sub>            | CS Setup Time        | 7                      | CYC bus * 2 | -   | -      | ns   |
| t <sub>CSH</sub>            | CS Hold Time         |                        | CYC bus * 2 | -   | -      | ns   |
| $t_{ m WH}$                 | SCK High Time        |                        | CYC bus * 1 | -   | -      | ns   |
| $t_{ m WL}$                 | SCK Low Time         |                        | CYC bus * 1 | -   | -      | ns   |
| $t_{\mathrm{SU}}$           | Data In Setup Time   |                        | 10          | -   | -      | ns   |
| t <sub>H</sub>              | Data In Hold Time    |                        | 10          | -   | -      | ns   |
| $t_{\rm V}$                 | Data Time            |                        | 0           |     | 20     | ns   |
| t <sub>HD</sub>             | Hold Setup Time      |                        | 0           | 0   | 0      | ns   |

**Table 5-1 SPI Timing** 

<sup>\*</sup> Fbus = Bus Frequency, CYC bus = 1 clock cycle time of Bus Clock

<sup>\*</sup> PAIOS<sup>2</sup>-AD's Bus Frequency = 170 MHz (TBD) in Reference Firmware.



#### 5.3 UART Interface & HSUART Interface

The UART (Universal Asynchronous Receiver/Transmitter) core and HSUART (High Speed Universal Asynchronous Receiver/Transmitter) core provides serial communication capabilities, which allow communication with modem or other external devices, like another computer using a serial cable and RS232 protocol. This core is designed to be maximally compatible with the industry standard National Semiconductors' 16550A device. The UART core implements the AMBA bus interface for communication with the system. It has an 8-bits data bus for compatibility reason. The core requires one interrupt. It requires 2 pads in the chip (serial in and serial out) and, optionally, another six modem control signals, which can otherwise be implemented using general purpose I/Os on the chip.



#### 5.4 I<sup>2</sup>S TX Interface

I<sup>2</sup>S TX is peripheral which delivers audio data to DAC and it support DMA. DMA reduce interrupt frequency to DSP core as a result DMA increase whole chip operation efficiency.

- In slave mode, I<sup>2</sup>S TX receives the signal BCLK, LRCK from outside device possibly codec/DAC.
- In master mode, divided DSP core clock signals are delivered to outside device as MCLK, BCLK and LRCK.





Figure 5-4 I<sup>2</sup>S Slave Mode = DAC Master Mode

Figure 5-5 I<sup>2</sup>S Master Mode = DAC Slave Mode

In the block diagram below, signal name which is ended with "\_S" are supplied by outside device in slave mode. Signal name which is ended with "\_M" are drive outside device in master mode. MCLK does not exist in I2S specification but generally used by commercially available CODEC/DAC as main clock to support specific sampling frequency.

BCLK is serial clock and LRCK is word select signal.



Figure 5-6 I<sup>2</sup>S Interface Block Diagram



Figure 5-7 I2S Timing Diagram

- The MSB is available on the  $2^{\rm nd}$  rising edge of BCLK following a DATA transition.





Figure 5-8 I2S TX Timing Diagram

| Symbol          | Parameter                | Condition      | Min                              | Тур | Max                              | Unit |
|-----------------|--------------------------|----------------|----------------------------------|-----|----------------------------------|------|
| Byllibor        | 1 at affecter            | Condition      | 171111                           | Тур | IVIAA                            | Omt  |
| -               | Duty Cycle               | -              | -                                | 50  |                                  | %    |
| tcybck          | BLCK Cycle Time          | Output / 48Khz | 320                              |     |                                  | ns   |
| $t_{ m R}$      | Rising Time              |                |                                  |     | 0.15 х <b>t</b> <sub>СУВСК</sub> | ns   |
| t <sub>F</sub>  | Falling Time             |                |                                  |     | 0.15 x <b>t</b> <sub>CYBCK</sub> | ns   |
| tвскн           | BCLK High Time           |                | 0.35 x <b>t</b> <sub>CYBCK</sub> |     |                                  | ns   |
| <b>t</b> BCKL   | BCLK Low Time            |                | 0.35 x <b>t</b> <sub>CYBCK</sub> |     |                                  | ns   |
| t <sub>SD</sub> | Data Set-up time         |                | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |
| t <sub>HD</sub> | Data hold time           |                | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |
| t <sub>CD</sub> | Clock to Data delay time |                |                                  |     | 0.15 x <b>t</b> <sub>CYBCK</sub> | ns   |
| twss            | WS set-up time           |                | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |
| twsh            | WS hold time             |                | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |

**Table 5-2 I2S TX Timing Table** 

| Sample Rate<br>Frequency | LRCK  | BCLK     | Valid Data Bit Number (n) *2) | MCLK      | MODE                                |
|--------------------------|-------|----------|-------------------------------|-----------|-------------------------------------|
| 24 KHz*¹)→48KHz          | 48KHz | 3.072MHz | 16-bits                       | 12.288MHz | DAB                                 |
| 32 KHz*¹)→48KHz          | 48KHz | 3.072MHz | 16-bits                       | 12.288MHz | DAB+<br>DAB+(16KHz SBR)             |
| 44.1KHz*¹)→48KHz         | 48KHz | 3.072MHz | 16-bits                       | 12.288MHz | DMB-A                               |
| 48KHz                    | 48KHz | 3.072MHz | 16-bits                       | 12.288MHz | DAB, DAB+, DMB-A<br>DAB+(24KHz SBR) |

**Table 5-3 Sample Rate Frequency Table** 

#### Note

- 1) PAIOS<sup>2</sup>-AD has sample rate conversion function. So basically contents of 8, 12, 24, 32, 44.1KHz sample rate will be converted to 48KHz sample rate.
- 2) The number of all data in each channel is 32-bits



#### 5.5 I<sup>2</sup>S RX Interface

I<sup>2</sup>S RX is peripheral which delivers audio data from outside of chip and it supports DMA mode. DMA reduce interrupt frequency to DSP core as a result DMA increase whole chip operation efficiency.

- Clock signals and data are delivered to outside device as BCLK, LRCK and DATA.



Figure 5-9 I<sup>2</sup>S RX Mode

Please refer to below block diagram.

In the block diagram below, signal name which is ended with "\_S" are supplied by outside device



Figure 5-10 I<sup>2</sup>S RX Interface Block Diagram



Figure 5-11 I<sup>2</sup>S RX Timing Diagram

- The MSB is available on the 2<sup>nd</sup> rising edge of BCLK following a DATA transition.





Figure 5-12 I<sup>2</sup>S RX Timing Diagram

| Symbol             | Parameter        | Condition       | Min                              | Тур | Max                              | Unit |
|--------------------|------------------|-----------------|----------------------------------|-----|----------------------------------|------|
| -                  | Duty Cycle       | -               | - (                              | 50  |                                  | %    |
| 4                  | DI CV Cools Time | Input / 48Khz   | 320                              |     |                                  | ns   |
| t <sub>CYBCK</sub> | BLCK Cycle Time  | Input / 44.1Khz | 360                              |     |                                  | ns   |
| $t_{ m R}$         | Rising Time      |                 |                                  |     | 0.15 x <b>t</b> <sub>CYBCK</sub> | ns   |
| $t_{ m F}$         | Falling Time     |                 |                                  |     | 0.15 x <b>t</b> <sub>CYBCK</sub> | ns   |
| tвскн              | BCLK High Time   |                 | 0.35 х <b>t</b> <sub>СУВСК</sub> |     |                                  | ns   |
| tBCKL              | BCLK Low Time    |                 | 0.35 х <b>t</b> <sub>СУВСК</sub> |     |                                  | ns   |
| t <sub>SD</sub>    | Data Set-up time |                 | 0.2 х <b>t</b> <sub>СУВСК</sub>  |     |                                  | ns   |
| t <sub>HD</sub>    | Data hold time   |                 | 0.2 х <b>t</b> <sub>СУВСК</sub>  |     |                                  | ns   |
| twss               | WS set-up time   |                 | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |
| twsH               | WS hold time     |                 | 0.2 x <b>t</b> <sub>CYBCK</sub>  |     |                                  | ns   |

Table 5-4 I2S RX Timing Table

| Sample Rate<br>Frequency | LRCK    | BCLK      | Valid Data Bit Number (n) *2) | MODE                                   |
|--------------------------|---------|-----------|-------------------------------|----------------------------------------|
| 24KHz*3)                 | 24KHz   | 1.536MHz  | 16-bits                       |                                        |
| 32KHz*3)                 | 32KHz   | 2.048MHz  | 16-bits                       | I <sup>2</sup> S RX mode <sup>1)</sup> |
| 44.1KHz                  | 44.1KHz | 2.8224MHz | 16-bits                       |                                        |
| 48KHz                    | 48KHz   | 3.072MHz  | 16-bits                       |                                        |

**Table 5-5 Sample Rate Frequency Table** 

#### Note\*

- 1) PAIOS-AD has sample rate conversion function in  $I^2S\ RX$  mode.
- 2) The number of all data is 32-bits and 16-bits will be valid in  $I^2S$  RX's data.
- 3) 24Khz and 32Khz sample rate clock is reserved for customizing future option.



#### 5.6 Digital I/Q Interface

- Digital I/Q Interface is peripheral which delivers RF tuner's I & Q data from outside of chip and it support DMA. DMA reduces interrupt frequency to DSP core as a result DMA increases whole chip operation efficiency.
  - Clock signals and data are delivered to outside device as BCLK, LRCK and Serial Data-I / Serial Data Data-Q



Figure 5-13 Digital I/Q Mode

- Support Split mode, Multiplexed mode, Analog/digital mode



Figure 5-15 Digital I/Q Multiplexed mode Timing Diagra

DATA Q

Not Used



#### 5.7 Built-in RF tuners or DAB Band3



Figure 5-16 Built-in RF tuner Functional Block Diagram

The built-in RF tuners are highly integrated CMOS Receiver IP for DAB. The RF inputs can operate wideband range from 174MHz to 245MHz for DAB. The building blocks include LNA, RFPGA, I/Q down conversion mixer, bandwidth adjustable high-pass filter, baseband PGA, fractional-N frequency synthesizer with fully integrated VCO and LDO. The on-chip low phase noise VCO, along with the high-resolution fractional-N frequency synthesizer makes in-band phase noise low enough for reliable Radio applications.



# 6. Application

#### 6.1 Clock application

#### - Crystal Oscillator

PAIOS<sup>2</sup>-AD has an oscillation circuit and PLL. It can generate the Master clock by connecting to a crystal oscillator, a capacitor and a fixed resistor as shown in the circuit diagram below.

It is recommended to use a crystal oscillator with a maximum frequency tolerance of  $\pm 50$ ppm.

Please contact the manufacturer of the crystal oscillator for the appropriate values of the load capacitors and resistors. PAIOS<sup>2</sup>-AD input clock is available only for 24.576MHz.



#### 6.2 Operation Mode Selection

#### -BMODE[0] (Pin L2)

BMODE[0] = {1}: System clock input from Crystal Oscillator is 24.576Mhz (system requirement)

 $BMODE[0] = \{0\}$ : Reserved for future use

#### - BMODE[1:2] ( Pin K1 & Pin L1 )

BMODE  $[1][2] = \{0, 1\}$ : Normal system booting mode with firmware in serial flash.

BMODE [1][2] = {1, 1}: Firmware program mode into serial flash via UART downloading

BMODE [1][2] = {1,0} : SPI bridge mode between SPM0 and NSPI0. Host can directly access to serial flash(TBD)

#### - AWAKE (P13) -TBD-

This pin should be controlled to Low during normal system operation

#### - BBMODE & TESTO (Pin K2 & K3)

This pin should be connected to ground [Low state] for normal system booting mode with DSP.

#### - STD[0:1] (Pin L3 & Pin M3)

STD0, STD1 =  $\{0, 0\}$ : User Define mode for post audio processing

STD0, STD1 =  $\{1, 0\}$ : DAB Standard mode

STD0, STD1 =  $\{0, 1\}$ : Reserved for future use

STD0, STD1 =  $\{1, 1\}$ : DAB & DRM Standard mode



#### 7. Electrical Characteristics

#### 7.1 Absolute Maximum Rating

Operating the PAIOS<sup>2</sup>-AD under conditions that exceed those listed in Table 9-1 may result in damage to the device. Absolute maximum ratings are limiting values and are considered individually, while all other parameters are within their specified operating ranges. Functional operation of the PAIOS<sup>2</sup>-AD device under any of the conditions listed in Table 9-1 is not implied. Exposure to absolute maximum ratings for extended periods of time may affect the device's reliability.

| Symbol              | Description                | Value          | Units |
|---------------------|----------------------------|----------------|-------|
| $T_{J}$             | Junction temperature       | -40 to +125    | °C    |
| V <sub>VDDI</sub>   | Core Supply Voltage        | -0.5 to + 1.4  | V     |
| V <sub>VDDE</sub>   | I/O Supply Voltage         | -0.5 to + 3.6  | V     |
| V <sub>VDD33</sub>  | Analog I/O Supply Voltage  | -0.5  to + 3.6 | V     |
| V <sub>VDD12</sub>  | Analas Cara Sungle Walters | 0.54- + 1.4    | V     |
| $V_{\text{VDD12P}}$ | Analog Core Supply Voltage | -0.5 to + 1.4  | V     |

**Table 7-1 Absolute Maximum Ratings** 



# 7.2 Recommended operating conditions

| Symbol                                    | Description                        | Min                     | Max                     | Units |
|-------------------------------------------|------------------------------------|-------------------------|-------------------------|-------|
| Top                                       | Operation Temperature              | -40                     | +85                     | °C    |
| T <sub>STG</sub>                          | Storage Temperature                | -50                     | +150                    | °C    |
| $V_{ m VDDI}$                             | Core Supply Voltage                | 1.08                    | 1.32                    | V     |
|                                           | I/O Supply Voltage (I/O=3.0V mode) | 2.7                     | 3.3                     | V     |
| $V_{ m VDDE}$                             | I/O Supply Voltage (I/O=3.3V mode) | 2.97                    | 3.63                    | V     |
| V <sub>IH</sub>                           | High Level Input voltage at I/O    | 0.7 * V <sub>VDDE</sub> | V <sub>VDDE</sub> +0.3  | V     |
| V <sub>IL</sub>                           | Low Level Input voltage at I/O     |                         | 0.3 * V <sub>VDDE</sub> | V     |
| V <sub>HYS</sub>                          | Input Hysteresis Voltage           | 0.4                     | -                       | V     |
| V <sub>VDD12</sub><br>V <sub>VDD12P</sub> | Analog Core Supply Voltage         | 1.14                    | 1.26                    | V     |
| W.                                        | Analog Supply Voltage (3.0V mode)  | 2.85                    | 3.15                    | V     |
| V <sub>VDD33</sub>                        | Analog Supply Voltage (3.3V mode)  | 2.97                    | 3.63                    | V     |

**Table 7-2 Recommended Ratings** 



#### 7.3 Power-on and Reset Timing

Please refer to timing chart and table for proper power-on and IC reset.



Figure 7-1 Power Sequence Timming Chart

| Characteristic                 | Condition        | Symbol | Min        | Max | Unit |
|--------------------------------|------------------|--------|------------|-----|------|
| Power Supply Rising Time       | Room Temperature | A      | 10         | 500 | μs   |
| Tower suppry rusing Time       | Over +85℃        | 11     | 10         | 150 | μs   |
| IC Internal Power on Reset *1) | Room Temperature | В      | 24         | 110 | μs   |
| ic internal Power on Reset     | Over +85℃        |        | 12         | 50  | μs   |
| Idle State after System Reset  | С                | С      | Don't Care | -   | μs   |
| External System Reset          | D                | D      | 500        | -   | μs   |

**Table 7-3 Power-on and Reset Timing** 

In *Table 9-3*, if the *Power Supply Rising Time(A)* exceeds over 150 us, the *External Reset(D)* must to be toggled for guaranteed system reset.

Note \*1) The required *IC Internal Power on Reset(B)* time is varied according to *Power Supply Rising Time(A)* and IC internal logic characteristic. So, the external interface should be operated after (A)+(B) time have passed from Power supply switch ON.



# 7.4 Power Consumption

| Symbol                   | Parameter                          | Test Conditions       | Min | Тур   | Max       | Unit |
|--------------------------|------------------------------------|-----------------------|-----|-------|-----------|------|
| T                        | Sumply Cumont for Core             | $V_{VDD12ALL} = 1.2V$ |     | 211.0 |           | A    |
| $I_{ m VDD12	ext{-}ALL}$ | Supply Current for Core            | Dual DAB Mode         | -   | 311.9 | -         | mA   |
| T                        | Caral Caract Carlo                 | $V_{VDDE} = 3.0V$     | -   | 19.6  | -         | mA   |
| I <sub>VDDE</sub> Sup    | Supply Current for IO              | Dual DAB Mode         |     |       |           |      |
| Ţ                        | Complet Company for DE % A male of | $V_{VDD\_RA} = 3.0V$  |     | 100 1 |           |      |
| $I_{\mathrm{VDD\_RA}}$   | Supply Current for RF & Analog     | Dual DAB Mode         | -   | 188.1 |           | mA   |
| P <sub>TPOW</sub>        | Total Power Consumption            | Dual DAB Mode         | - / | 997.4 | \ <u></u> | mW   |

**Table 7-4 Power Consumption (TBD)** 



# 8. Package Dimension

- The Package dimension of PAIOS<sup>2</sup>-AD



Figure 8-1 PAIOS<sup>2</sup>-AD Package Dimension



# 9. PCB Mounting Guidelines

Guidelines for mounting the PAIOS<sup>2</sup>-AD onto a printed circuit board (PCB) are presented in this part, including land pad and handling, SMT Process.

#### 9.1 Board Pad Design

| Item                 | Symbol | Recommendation |
|----------------------|--------|----------------|
| Pad pitch (mm)       | PP     | 0.65           |
| Pad diameter (mm)    | PD     | 0.30           |
| Solder mask open(mm) | MO     | 0.30           |

Table 9 -1 Board Pad Design



Figure 9-1 Pad design

#### 9.2 Handling

Floor life time will be modified by environmental conditions other than 30'C/60%RH. If partial lots are used, the remaining SMD packages must be resealed or placed in safe storage within one hour of bag opening.

Refer to JEDEC spec (J-STD-033B) for details

| Level | Floor life (out of bag) at factory  Ambient 30'C/60%RH or as started |  |
|-------|----------------------------------------------------------------------|--|
| 2     | 1 year                                                               |  |
| 2a    | 4 weeks                                                              |  |
| 3     | 168 hours                                                            |  |
| 4     | 72 hours                                                             |  |

Table 9 -2 Moisture classification level and floor life



#### 9.3 DRYING

Component drying options for various moisture sensitivity levels and ambient humidity exposures of £ $\leq$  60% RH are given in the following tables. Drying per an allowable option resets the floor life clock. If dried and sealed in an MBB with fresh desiccant, the shelf life is reset. Table 12-3 gives conditions for re-bake of SMD packages at a user site after the floor life has expired or other conditions have occurred to indicate excess moisture exposure.

PAIOS<sup>2</sup>-AD's condition: Leve3, 9 hours, Bake @125 °C

| Package<br>Body<br>Thickness | Level | Bake @ 125°C  |               | Bake @ 90°C<br>≤5% RH |                 | Bake @ 40° C<br>≤ 5% RH |               |
|------------------------------|-------|---------------|---------------|-----------------------|-----------------|-------------------------|---------------|
|                              |       | Exceeding     | Exceeding     | Exceeding             | Exceeding       | Exceeding               | Exceeding     |
|                              |       | Floor Life by | Floor Life by | Floor Life by         | Floor Life by   | Floor Life by           | Floor Life by |
|                              |       | >72 hours     | ≤ 72 hours    | >72 hours             | $\leq$ 72 hours | >72 hours               | ≤ 72 hours    |
|                              | 2     |               |               |                       |                 |                         |               |
| ≤ 1.4mm                      | 2a    | 5 hours       | 3 hours       | 17 hours              | 11 hours        | 8 days                  | 5 days        |
|                              | 3     | 9 hours       | 7 hours       | 33 hours              | 23 hours        | 13 days                 | 9 days        |
|                              | 4     | 11 hours      | 7 hours       | 37 hours              | 23 hours        | 15 days                 | 9 days        |
|                              | 5     | 12 hours      | 7 hours       | 41 hours              | 24 hours        | 17 days                 | 10 days       |
|                              | 5a    | 16 hours      | 10 hours      | 54 hours              | 24 hours        | 22 days                 | 10 days       |

Table 9 -3 Reference Conditions for Drying Mounted or Un-mounted SMD Packages



#### 9.4 SMT Process

#### - Screen print process

- 1. Type3 or type4 is recommended for solder paste.
- 2. No clean flux is recommended for lead-free condition.

#### - Component placement

Standard pick-and-place machines can be used for placing a package. The following methods can be used for recognition and positioning

- 1. Use ball inspection and compliant tip nozzle
- 2. It is recommended that the side-lighting option on pick and place machine
- 3. It is preferable to use IC placement/ fine pitch placement machines over chip-shooters for better accuracy.
- 4. Solder ball self-align when placed at an offset due to self-centering nature of it.
- 5. Little or no force needs to be exerted during placement to prevent damage to a part.

It is recommended that balls be dipped into solder paste on PCB to greater than 20% of paste block height.

#### - Reflow and cleaning

- 1. Compatible with industry standard reflow process for both lead-free process.
- 2. Qualified for up to three reflow operation (260'C peak) per J-STD-020.
- 3. Nitrogen gas is recommended (oxygen level<75ppm) to avoid oxidation or void formation.
- 4. Reflow profile depends on whole parts and board density.
- 5. Follow recommended recipe from paste manufacturer for reflow profile.

#### - Rework

The key features for rework are listed below.

- 1. Rework procedure used is identical to the one used for most BGA packages.
- 2. Rework reflow process should duplicate original reflow profile used for assembly.
- 3. Rework system should include localized convection heating element with profiling capacity, a bottom side pre-heater and a part pick and placer with image overlay.



# 9.5 The temperature profile of a reflow process



Figure 9-2 The temperature profile of a reflow process

| Parameter                 | Parameter Tin-lead Alloy (SnPb or SnPbAg) |                 | Main Requirements<br>From |  |
|---------------------------|-------------------------------------------|-----------------|---------------------------|--|
| Preheating rate           | 2.5℃/sec                                  | 2.5℃/sec        | Flux system(Solder paste) |  |
| Soaking temperature       | 140 ~ 170 ℃                               | 140 ~ 170 ℃     | Flux system(Solder paste) |  |
| Soaking time              | 80 second                                 | 80 second       | Flux system(Solder paste) |  |
| Peak temperature          | 225℃                                      | 245℃ ~ 260℃     | Alloy(Solder paste)       |  |
| Reflow time over Liquidus | 60 second                                 | 60 or 90 second | Alloy(Solder paste)       |  |
| Liquidus temperature      |                                           | 217°C or 219°C  |                           |  |
| Cool Down rate            | 2.5℃/sec                                  | 2.5℃/sec        |                           |  |

Table 9-4 The temperature profile of a reflow process



# 10. Part marking

- The marking information of PAIOS<sup>2</sup>-AD

| Line           | Description                      | Image                                            |
|----------------|----------------------------------|--------------------------------------------------|
| 1st            | Company logo                     |                                                  |
| 2nd            | Device name*1                    | AP è                                             |
| 3rd            | Application name*2               | PAIOS2-AD                                        |
| 4th            | Chip revision                    | PAIOS2-AD TO |
| 5th            | Manufacturing date (KYYWW)*3     | ●KYYWW SSY                                       |
| 6th (vertical) | Assembly lot number(CYWWPPTTT)*4 |                                                  |

\*1 Device name : PAIOS2-AD

\*2 Application name : WWR SoC

\*3 Manufacturing date: KYYWW

- K: Site

- YYWW: Date code

\*4 Assembly lot number : CYWWPPTTT

- C: Customer code

Y: YearsWW: Week

- PP : Package code

- TTT : Serial No.

Table 10-1 Marking Information: PAIOS<sup>2</sup>-AD



PnpNetwork Technologies, Inc.

www.pnpnetwork.com
support@pnpnetwork.com
T: 82-2-2240-0800
3F, Fine Venture BLD, 41 , Seongnamdearo 925beangil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea 13496