Model Accuracy

Some trade-offs

- Prediction accuracy versus interpretability.
 - Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.

Some trade-offs

Model Accuracy

- Regression model : f, $Y \sim f(X)$
 - Training data : 모형 적합을 위하여 사용한 데이터,

$$\mathsf{Tr} = \{x_i, y_i\}_{i=1}^n$$

$$\mathsf{MSE}_{\mathsf{Tr}} = \mathsf{Ave}_{i \in \mathsf{Tr}} \left[y_i - \hat{f}(x_i) \right]^2$$

ullet Test data : 아직 관측되지 않은 데이터, Te $=\{x_i,y_i\}_{i=1}^M$

$$MSE_{Te} = Ave_{i \in Te} \left[y_i - \hat{f}(x_i) \right]^2$$

- Black line : 실제 분포, Red curve : MSE_{Te} , Grey curve : MSE_{Tr}

- Black line : 실제 분포 - 직선에 가까움 (smoother)

- Black line : 실제 분포 - 비선형 (more flexible)

Bias-Variance Trade-off

- True model : $Y = f(X) + \epsilon$,
- $\hat{f}(x)$: training data를 이용하여 적합한 모델
- test data : (x_0, y_0)

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = Var\left(\hat{f}(x_0)\right) + \left[\operatorname{Bias}\left(\hat{f}(x_0)\right)\right]^2 + Var(\epsilon)$$

• Typically as the flexibility of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a bias-variance trade-off.

Bias-Variance Trade-off

Classification

- Classification model : C, Y C(X)
 - 오분류율 (misclassification error rate)

$$\mathsf{Err}_{\mathsf{Te}} = \mathsf{Ave}_{i \in \mathsf{Te}} I[y_i \neq \hat{C}(x_i)]$$

Bayes classifier :

$$p_k(x_0) = P(Y = k|X = x_0)$$

의 값을 가장 크게 해주는 범주 k로 분류

K-Nearest Neighbors: KNN

- 가장 가까운 K개의 데이터를 탐색하여 분류 또는 예측
- $\mathcal{N}_0: x_0$ 로부터 가장 가까운 K개의 관측값
- 분류:

$$P(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(Y_i = j)$$

• 예측 :

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_0} y_i$$

KNN (K=3)

KNN: Example

KNN : Example (K=10)

 X_1

KNN : Example

KNN: Example

