Chapter 38 Génération et liberté

Avec une bouée

Exercice 38.1

On considère les vecteur suivants

$$v_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad u = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}, \qquad w = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}.$$

- 1. Montrer que u est combinaison linéaire de v_1 et v_2 et expliciter cette combinaison linéaire. Montrer que w n'est pas combinaison linéaire de v_1 et v_2 .
- **2.** Comparer les quatres sous-espaces vectoriels de \mathbb{R}^3 suivants

$$\operatorname{Vect} \left\{ v_1, v_2 \right\} \qquad \operatorname{Vect} \left\{ v_1, v_2, u \right\} \qquad \operatorname{Vect} \left\{ v_1, v_2, w \right\} \qquad \mathbb{R}^3.$$

- **3.** En déduire que Vect $\{v_1, v_2, u, w\} = \mathbb{R}^3$.
- **4.** Montrer également que tout vecteur $b \in \mathbb{R}^3$ peut être exprimer comme combinaison linéaire de v_1, v_2, u, w d'une infinité de manières différentes.

Indication:

- 1. Il s'agit de résoudre le système $u = \alpha v_1 + \beta v_2$ d'inconnues α, β .
- **2.** Montrer que Vect $\{v_1, v_2, u\} = \text{Vect } \{v_1, v_2\} \subsetneq \mathbb{R}^3$. Montrer que Vect $\{v_1, v_2, w\} = \mathbb{R}^3$.
- 3.
- **4.** Pour comprendre les calculs, on peut traiter le cas $b = (4, 1, 1)^T$ (au hasard). Puis essayer de généraliser avec $b = (b_1, b_2, b_3)$ quelconque.

Exercice 38.2

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
.

1. En calculant A^{-1} , résoudre l'équation suivante d'inconnue α et β :

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \tag{1}$$

2. Soit $w_1 = (1,2)^T$ et $w_2 = (1,-1)^T$. Montrer que Vect $\{w_1,w_2\} = \mathbb{R}^2$. C'est-à-dire, montrer que tout vecteur $b \in \mathbb{R}^2$ est combinaison linéaire de w_1 et w_2 en résolvant l'équation b = Ax d'inconnue x:

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \tag{2}$$

3. Montrer que si v et w sont deux vecteurs non nuls de \mathbb{R}^2 , avec $v=(a,c)^T$ et $w=(b,d)^T$, alors

Vect
$$\{v, w\} = \mathbb{R}^2 \iff \forall t \in \mathbb{R}, v \neq tw \iff \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

38.1 Familles et parties génératrices

38.1.1 Sous-espace vectoriel engendré par une partie

Exercice 38.3

Soient E un \mathbb{K} -espace vectoriel, A et B deux parties quelconques de E.

- **1.** Comparer Vect $(A \cap B)$ et Vect $(A) \cap$ Vect (B).
- **2.** Comparer Vect $(A \cup B)$ et Vect $(A) \cup$ Vect (B).
- **3.** Comparer Vect $(A \cup B)$ et Vect (A) + Vect (B).

Exercice 38.4

Soit $v, w \in \mathbb{R}^n$. Expliquer la différence entre les ensembles

$$A = \{ v, w \}$$
 et

38.1.2 Sous-espace vectoriel engendré par une famille finie de vecteurs

Exercice 38.6

On considère l'ensemble

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \, \middle| \, x_1 + x_2 + x_3 + x_4 = 0 \text{ et } x_1 - x_2 + x_3 - x_4 = 0 \right\}.$$

 $B = \text{Vect} \{ v, w \}.$

Montrer que V est un sous-espace vectoriel de \mathbb{R}^4 :

- 1. en utilisant la définition de sous-espace vectoriel;
- **2.** en exhibant une famille finie qui engendre V;
- 3. en écrivant V comme le noyau d'une matrice.

Exercice 38.8

1. Écrire, si possible, le vecteur $v = (5, 1, 6) \in \mathbb{R}^3$ comme combinaison linéaire des vecteurs

$$u_1 = (0, 1, 1), \quad u_2 = (1, 2, 3), \quad u_3 = (2, -1, 3).$$

2. Montrer que Vect $\{v, u_1, u_3\}$ = Vect $\{u_1, u_2, u_3\}$.

Exercice 38.9

Considérons les vecteurs u=(1,1,1) et v=(1,2,3) de \mathbb{R}^3 ainsi que le plan vectoriel $P=\text{Vect }\{u,v\}$. Déterminer une équation de P, c'est-à-dire, déterminer a,b,c tels que, pour tout $(x,y,z) \in \mathbb{R}^3$,

$$(x, y, z) \in P \iff ax + by + cz = 0.$$

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ -6 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 38.11

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \text{Vect} \left\{ \begin{pmatrix} 1\\2\\-6 \end{pmatrix}, \begin{pmatrix} -2\\-4\\12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 38.12

On considère le sous-espace vectoriel de \mathbb{R}^2

$$V = \text{Vect}\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} -6 \\ 12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 38.13

On considère le sous-espace vectoriel de \mathbb{R}^4

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ -2 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 38.20

On considère l'ensemble

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \, \middle| \, x_1 + x_2 + x_3 + x_4 = 0 \text{ et } x_1 - x_2 + x_3 - x_4 = 0 \right\}.$$

Montrer que V est un sous-espace vectoriel de \mathbb{R}^4 :

- 1. en utilisant la définition de sous-espace vectoriel;
- **2.** en exhibant une famille finie qui engendre V;
- 3. en écrivant V comme le noyau d'une matrice.

Dans $\mathcal{M}_3(\mathbb{R})$, trouver une famille génératrice de $\mathcal{S}_3(\mathbb{R})$ et une famille génératrice de $\mathcal{A}_3(\mathbb{R})$.

Exercice 38.24

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ en les décrivant sous la forme Vect(A).

- **1.** $F_1 = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f' 2f = 0 \}.$
- **2.** $F_2 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' \omega^2 f = 0 \} \text{ où } \omega \in \mathbb{R}_+^*.$
- **3.** $F_3 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' + 2f' + f = 0 \}.$
- **4.** $F_4 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' 4f = 0 \}.$

Exercice 38.25

On considère l'espace vectoriel $E = \mathscr{C}(\mathbb{R}, \mathbb{R})$ des fonctions continues sur \mathbb{R} et à valeurs réelles. On note $\varphi : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x}$. Montrer l'égalité

Vect (ch, sh) = Vect (exp,
$$\varphi$$
).

Exercice 38.26

Soit $n \in \mathbb{N}$. Montrer que les familles

$$(x \mapsto \cos(kx))_{0 \le k \le n}$$
 et $(x \mapsto \cos^k(x))_{0 \le k \le n}$

engendrent le même sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.

Exercice 38.27

Soit $E = \mathbb{R}_2[X]$. On note $E^* = \mathbf{L}(E, \mathbb{K})$ l'espace vectoriel des formes linéaires sur E.

On considère les trois formes linéaires sur E, définies pour tout P de E par

$$f_0(P) = P(0);$$
 $f_1(P) = P(1);$ $f_2(P) = P(2).$

On pose par ailleurs, pour tout P de E

$$f(P) = \int_0^2 P(t) \, \mathrm{d}t.$$

Montrer que f appartient à l'espace vectoriel engendré par $\left\{\ f_0, f_1, f_2\ \right\}$.

38.1.3 Espace vectoriel de dimension finie

38.2 Liberté

38.2.1 Relations linéaires

Exercice 38.28

On considère une famille de 4 vecteurs linéairement indépendants $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$. Les familles suivantes sontelles libres ?

1. $(\vec{e_1}, 2\vec{e_2}, \vec{e_3})$.

4. $(3\vec{e_1} + \vec{e_3}, \vec{e_3}, \vec{e_2} + \vec{e_3})$.

2. $(\vec{e_1}, \vec{e_3})$.

3. $(\vec{e_1}, 2\vec{e_1} + \vec{e_4}, \vec{e_4})$.

5. $(2\vec{e_1} + \vec{e_2}, \vec{e_1} - 3\vec{e_2}, \vec{e_4}, \vec{e_2} - \vec{e_1}).$

Exercice 38.29

En utilisant la définition de famille libre. Montrer que tout sous famille (non vide) d'une famille libre est une famille libre.

Exercice 38.30

Soit A un matrice quelconque. On suppose qu'il existe deux vecteurs non nuls, v_1 et v_2 , tels que $Av_1 = 2v_1$ et $Av_2 = 5v_2$.

Montrer que les vecteurs v_1 et v_2 sont linéairement indépendants.

Pouvez-vous généraliser ce résultat ?

Indication: Écrire $\alpha_1 v_1 + \alpha_2 v_2 = 0$ et multiplier cette relation à gauche par A afin d'obtenir une nouvelle relation entre v_1 et v_2 .

Exercice 38.32

On suppose que $v_1, v_2, v_3, \dots, v_n$ sont des vecteurs linéairement indépendants.

- 1. Les vecteurs $v_1 v_2$, $v_2 v_3$, $v_3 v_4$, ..., $v_n v_1$ sont-ils linéairement indépendants ?
- **2.** Les vecteurs $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$, ..., $v_n + v_1$ sont-ils linéairement indépendants ?
- 3. Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4, \dots, v_1 + v_2 + \dots + v_n$ sont-ils linéairement indépendants ?

Exercice 38.33

Montrer que les vecteur x_1, x_2, x_3 ci-dessous sont linéairement indépendant:

$$x_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \qquad \qquad x_2 = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}, \qquad \qquad x_3 = \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix},$$

Exprimer le vecteur

$$v = \begin{pmatrix} -5\\7\\-2 \end{pmatrix}$$

comme combinaison linéaire de x_1, x_2, x_3 .

Exercice 38.38

Montrer que les vecteurs ci dessous forment une famille liée en déterminant un relation de dépendance linéaire non triviale.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ -1 \\ 3 \\ 4 \end{pmatrix}, \qquad \begin{pmatrix} 4 \\ -11 \\ 5 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 9 \\ 2 \\ 1 \\ -3 \end{pmatrix}.$$

Montrer que si n > m, alors toute famille de n vecteurs de \mathbb{R}^m est liée.

Exercice 38.40

Soit
$$\sigma = (X^2 + 1, 2X^2 - X + 1, -X^2 + X).$$

- **1.** La famille σ est-elle libre dans $\mathbb{R}_2[X]$?
- **2.** La famille σ est-elle génératrice de $\mathbb{R}_2[X]$?

Exercice 38.41

Indiquer si les vecteurs suivants forment une famille libre ou liée de $\mathbb{R}[X]$.

1.
$$P = X^3 - X + 1$$
 et $Q = 2X^3 + X^2 + 3$.

2.
$$P = X^2 + 1$$
, $Q = X^2 + X - 1$ et $R = X^2 + X$.

3.
$$P = X^2 + 7X + 1$$
, $Q = 2X^2 - X + 3$ et $R = X^2 - 8X + 2$,

4.
$$P_1, \ldots, P_n$$
 avec $P_k = (X+1)^k - X^k$.

Exercice 38.42

Notons, pour tout $k \in \mathbb{N}$, $u^{(k)}$ la suite de réels dont le terme d'indice n est $u_n^{(k)} = n^k$. Démontrer que la famille $\left(u^{(k)}\right)_{k\in\mathbb{N}}$ est une famille libre de \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.

Exercice 38.43

Montrer de deux manières que les trois fonctions

$$f: x \mapsto e^x$$
 $g: x \mapsto x^2$ $h: x \mapsto \ln(x)$

forment une famille libre dans l'espace vectoriel des applications de $]0, +\infty[$ dans \mathbb{R} :

- 1. une fois, en donnant des valeurs particulières à la variable x;
- 2. une autre fois, en utilisant les croissances comparées des trois fonctions en $+\infty$.

Exercice 38.44

Dans $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$, soit f,g,h les fonctions définies par

$$f(x) = \cos x$$
 $g(x) = \sin x$ $h(x) = e^x$.

Montrer que (f, g, h) est une famille libre.

Exercice 38.45

Soit

$$f_1: x \mapsto x;$$
 $f_2: x \mapsto \ln x;$ $f_3: x \mapsto \exp(x).$

Montrer que la famille (f_1, f_2, f_3) est libre dans $\mathscr{C}^0(\mathbb{R}_+^*, \mathbb{R})$.

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on pose

$$f_1(x) = e^{x+1},$$
 $f_2(x) = e^{x+2},$ $f_3(x) = e^{x+3}.$

La famille (f_1, f_2, f_3) est-elle libre dans E?

Exercice 38.47

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on pose

$$g_1(x) = |x - 1|,$$
 $g_2(x) = |x - 2|,$ $g_3(x) = |x - 3|.$

La famille (g_1, g_2, g_3) est-elle libre dans E?

Exercice 38.48

Soit $n \in \mathbb{N}^*$ et a_1, a_2, \dots, a_n des réels tels que $a_1 < a_2 < \dots < a_n$. Montrer que la famille (f_1, f_2, \dots, f_n) où $f_k : x \mapsto e^{a_k x}$

est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 38.49

Soit $n \in \mathbb{N}$. Montrer que la famille (f_1, f_2, \dots, f_n) où

$$f_k: x \mapsto \sin(kx)$$

est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 38.50

Dans l'espace vectoriel $\mathbf{L}(\mathbb{R}^3, \mathbb{R})$ des formes linéaires sur \mathbb{R}^3 , on considère les trois formes linéaires f_1, f_2, f_3 définies par

$$f_1(x, y, z) = -x + y + z$$

$$f_2(x, y, z) = 2x - y - z$$

$$f_3(x, y, z) = x + 2y + z$$

La famille (f_1, f_2, f_3) est-elle libre?

38.2.2 Unicité de la décomposition

38.2.3 Indépendance linéaire et sous espace engendré

Exercice 38.51

Soit

$$x_1 = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, \qquad \qquad x_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \qquad \qquad v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Déterminer une condition nécessaire et suffisante sur a, b, c pour que la famille (x_1, x_2, v) soit liée. Exhiber un vecteur x_3 tel que la famille (x_1, x_2, x_3) soit libre.

38.3 Bases

38.3.1 Bases d'un espace vectoriel

Exercice 38.52

On suppose que E est un \mathbb{K} -espace vectoriel qui admet (e_1, e_2) comme base.

À chaque fois, on donnera les relations entre coordonnées d'un même vecteur dans les deux bases en question.

- 1. λ et μ étant des scalaires différents de 0, montrer que $(\lambda e_1, \mu e_2)$ est encore une base de E.
- **2.** Montrer que $(e_1 + e_2, e_1 e_2)$ est encore une base de E.
- 3. En déduire que si λ et μ sont deux scalaires différents de 0, $(\lambda(e_1 + e_2), \mu(e_1 e_2))$ est une base de E.

Exercice 38.53

Soit E un \mathbb{K} -espace vectoriel et $\mathfrak{F}=(v_1,\ldots,v_p)$ une famille de vecteurs. Nous pouvons lui associer les familles suivantes :

• $\mathfrak{F}' = (v'_1, \dots, v'_p)$ obtenue en multipliant un des vecteurs de \mathfrak{F} par un scalaire différent de 0, c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = \lambda v_j. \end{cases}$$

On code cette opération $v_j \leftarrow \lambda v_j$.

• $\mathfrak{F}' = (v'_1, \dots, v'_p)$ obtenue en ajoutant à un vecteur de \mathfrak{F} un multiple d'un des autres vecteurs de \mathfrak{F} , c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = v_j + \lambda v_i & \text{où } i \neq j. \end{cases}$$

On code cette opération $v_i \leftarrow v_i + \lambda v_i$.

• $\mathfrak{F}' = (v'_1, \dots, v'_p)$ obtenue en échangeant les vecteurs v_i et v_j . On code cette opération $v_i \leftrightarrow v_j$.

Ces opération sont appelée **opérations élémentaires** sur une famille de vecteurs. On suppose que l'on passe de la famille \mathfrak{F} à la famille \mathfrak{F}' par un enchainement d'opération élémentaires.

8

- 1. Montrer que la famille \mathfrak{F}' est libre si, et seulement si \mathfrak{F} est libre.
- 2. Montrer que la famille \mathfrak{F}' est liée si, et seulement si \mathfrak{F} est liée.
- **3.** Montrer que $\operatorname{Vect}(v'_1, \dots, v'_p) = \operatorname{Vect}(v_1, \dots, v_p)$.
- **4.** Montrer que la famille \mathfrak{F}' est une base de E si, et seulement si \mathfrak{F} est une base de E.

Exercice 38.54

Donner une base du plan (0xz) de \mathbb{R}^3 .

Soient F et G les sous-ensembles de $\mathcal{M}_3(\mathbb{R})$ définis par

$$F = \left\{ \begin{pmatrix} a+b & 0 & c \\ 0 & b+c & 0 \\ c+a & 0 & a+b \end{pmatrix} \middle| a,b,c \in \mathbb{R} \right\}$$
 et $G = \left\{ \begin{pmatrix} a+b+d & a & c \\ 0 & b+d & 0 \\ a+c+d & 0 & a+c \end{pmatrix} \middle| a,b,c,d \in \mathbb{R} \right\}.$

Montrer que ce sont des sous espaces vectoriels de $\mathcal{M}_3(\mathbb{R})$ dont on déterminera des bases.

Exercice 38.58

Soit $E = \mathcal{M}_n(\mathbb{R})$, soit $A \in E$ fixé et

$$F = \{ M \in E \mid AM = MA \}.$$

- **1.** Montrer que F est un sous-espace vectoriel de E.
- **2.** Dans cette question, n = 2 et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. Déterminer une base de F.

Exercice 38.59

Soient

$$P_1 = X^2 + 1$$
 $P_2 = X^2 + X - 1$ $P_3 = X^2 + X$.

Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.

Exercice 38.60

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{R}[X]$ et en déterminer une base.

1.
$$F_1 = \mathbb{R}_2[X]$$
.

2.
$$F_2 = \{ P \in \mathbb{R}_3[X] \mid P(1) = 0 \}.$$

3.
$$F_3 = \{ P' \mid P \in \mathbb{R}_n[X] \} \text{ où } n \in \mathbb{N}.$$

4.
$$F_4 = \left\{ a(X^3 - 1) + b(X^2 - 2) + c(X + 4) \mid (a, b, c) \in \mathbb{R}^3 \right\}.$$

5.
$$F_5 = \{ P \in \mathbb{R}_4[X] \mid P(1) = P(2) = 0 \}.$$

6.
$$F_6 = \{ P \in \mathbb{R}_2[X] \mid P' = 0 \}.$$

7.
$$F_7 = \{ P \in \mathbb{R}_3[X] \mid P'' = 0 \}.$$

8.
$$F_8 = \left\{ P \in \mathbb{R}_2[X] \middle| \int_0^1 P(t) dt = 0 \right\}.$$

Soient a et b deux nombres complexes distincts. Montrer que l'ensemble des polynômes de degré inférieur ou égal à 4 admettant a et b comme racines est un sous-espace vectoriel de l'espace vectoriel $\mathbb{C}_4[X]$. Trouver une base de cet espace.

Exercice 38.62 Polynômes interpolateurs de Lagrange

Soit n un entier naturel non nul et (a_1, \ldots, a_n) n nombres réels deux à deux distincts. On leur associe les polynômes L_1, \ldots, L_n définis, pour tout j de $\{1, \ldots, n\}$, par

$$L_{j} = \prod_{\substack{k=1\\k\neq j}}^{n} \frac{X - a_{k}}{a_{j} - a_{k}}.$$
 (1)

Par exemple, si n = 3, on a

$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}, \qquad L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}, \qquad L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}.$$
(2)

Dans la suite, *n est quelconque*.

- **1.** Pour tout entier j de $\{1, ..., n\}$, déterminer le degré de L_j .
- **2.** Pour tout entier j de $\{1, ..., n\}$, déterminer les racines de L_i .
- **3.** Pour tout entier j de $\{1, ..., n\}$, calculer $L_i(a_i)$.
- **4.** Montrer que (L_1, \ldots, L_n) est une famille libre de $\mathbb{R}_{n-1}[X]$.
- **5.** Soit *P* un polynôme de $\mathbb{R}_{n-1}[X]$. On pose

$$Q = \sum_{i=1}^{n} P(a_j) L_j. \tag{3}$$

- (a) Pour tout entier k de $\{1, ..., n\}$, calculer $Q(a_k)$.
- (b) Montrer alors que P = Q.
- **6.** En déduire que $(L_1, ..., L_n)$ est une base de $\mathbb{R}_{n-1}[X]$. On l'appelle base de Lagrange. Que représente donc $P(a_i)$ pour le polynôme P dans la base de Lagrange ?
- 7. Montrer que le reste de la division euclidienne de X^q par $Q=(X-a_1)\dots(X-a_n)$ est

$$\sum_{j=1}^n a_j^q L_j.$$

8. Soient a et b deux réels distincts tels que $\forall k \in \{1, ..., n\}, a_k \in [a, b]$. Soit aussi une fonction $f \in \mathcal{F}([a, b], \mathbb{R})$. Déduire de la question **5.** qu'il existe un unique polynôme P_n de $\mathbb{R}_{n-1}[X]$ tel que

$$\forall k \in \{1, \dots, n\} \quad P_n(a_k) = f(a_k).$$

Ce polynôme s'appelle polynôme d'interpolation de Lagrange de f sur [a,b] relativement aux points $\{a_1,\ldots,a_n\}$: c'est donc l'unique polynôme de degré $\leq n-1$ prenant les mêmes valeurs que f aux points (a_1,\ldots,a_n) .

38.3.2 Théorème de la base extraite

Exercice 38.65

Dans \mathbb{R}^4 , on considère

$$a = \begin{pmatrix} 1 \\ -2 \\ 4 \\ -1 \end{pmatrix}; \qquad b = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 2 \end{pmatrix}; \qquad c = \begin{pmatrix} -2 \\ 4 \\ 0 \\ 1 \end{pmatrix}; \qquad d = \begin{pmatrix} -7 \\ 7 \\ 9 \\ -1 \end{pmatrix}; \qquad e = \begin{pmatrix} 9 \\ -4 \\ -6 \\ 3 \end{pmatrix}.$$

Déterminer le rang de (a, b, c, d, e), préciser des relations de dépendance linéaire entre a, b, c, d, e et donner une base de Vect (a, b, c, d, e).

38.3.3 Coordonnées d'un vecteur relativement à une base

Exercice 38.66

Soit V un \mathbb{K} -espace vectoriel et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de V. Montrer que pour tous vecteurs $u, w \in V$, on a

$$\operatorname{Coord}_{\mathcal{B}}(\alpha u + \beta w) = \alpha \operatorname{Coord}_{\mathcal{B}}(u) + \beta \operatorname{Coord}_{\mathcal{B}}(w).$$

où Coord_B(u) désigne la matrice des coordonnées de u relativement à la base \mathcal{B} .

Exercice 38.67

Soient (x_1, x_2, x_3) les coordonnées d'un vecteur u dans la base canonique de \mathbb{R}^3 . Exprimer les coordonnées (y_1, y_2, y_3) de ce même vecteur dans la base de \mathbb{R}^3 formée des vecteurs

$$\varepsilon_1 = (1, 1, 0),$$
 $\varepsilon_2 = (1, 0, 1),$ $\varepsilon_3 = (0, 1, 1).$

Exercice 38.69

Donner une base de $F = \{ (x, y, z, t) \in \mathbb{R}^4 \mid x + y = z + t = 0 \}$. Quelles sont les coordonnées de a = (2, -2, -1, 1) dans cette base ?

Exercice 38.70

Soit
$$F = \left\{ \begin{pmatrix} a+b+c & b & c \\ c & a+b+c & b \\ b & c & a+b+c \end{pmatrix} \middle| (a,b,c) \in \mathbb{R}^3 \right\}.$$

- **1.** Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, dont on précisera une base \mathcal{B} .
- 2. Quelles sont les coordonnée de $\begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ dans la base \mathcal{B} ?
- **3.** Calculer *tous* les produits deux à deux des éléments de la base *B* (*indiquer uniquement le résultat sur la copie*).

11

Vérifier qu'ils appartiennent bien à F.

4. En déduire que pour tout $(M, N) \in F^2$, on a $MN \in F$.

Soient

$$P_1 = 2X^2 - X + 1,$$
 $P_2 = X^2 + 2X,$ $P_3 = X^2 - 1.$

Montrer que la famille (P_1, P_2, P_3) est un base de $\mathbb{R}_2[X]$. Déterminer les coordonnées de $P = 3X^2 + 5X - 3$ dans cette base.

Généralisation aux familles quelconques 38.4

- 38.4.1 Combinaison linéaire
- 38.4.2 Familles génératrices
- **38.4.3** Liberté
- 38.4.4 Bases