Public Health 501 Class 10

Linear Regression

Pearson's Correlation

Spearman's Rank Correlation

Goals

- Understand when to use correlation
- Be able to interpret correlation in terms of form, direction, and strength
- Know how to compute and interpret the Pearson correlation coefficient and perform hypothesis testing
- Be able to describe the limitations in interpretation: causality, outliers, and restriction of range
- Distinguish between relationships and predictions
- Understand the fundamentals of linear regression, how to use it, and perform hypothesis testing
- Know when and how to use the Spearman correlation coefficient

Comparing 2 Variables to Each Other

- Up until now, we have compared:
 - Continuous vs. categorical
 - Independent sample t-test (2 groups) Normally distributed
 ANOVA (>2 groups)
 - Sign test, Wilcoxon signed rank, Wilcoxon rank sum
 - Kruskal-Wallis
 - Categorical vs. categorical
 - Chi-square tests
- But... how do we compare two continuous variables to each other?

Not Normally distributed

Setting the Scene

- Your veterinary nutritionist friend has noticed that many of her 4-legged patients have put on a few kilograms
- Being an astute practitioner, she also noticed that the owners of these pets tend to overindulge them
- She develops an index of over-indulgence, the PET-ME* score, and attempts to relate it to dog BMI

^{*} People food, Exercise hours, Toys and treats, Meals/day, Entertainment (non exercise)

Setting the Scene

- But BMI and PET-ME are both interval/ratio
 - All the tests we've learned so far involve an interval/ratio variable and a nominal variable or 2 nominal/ordinal, i.e. categorical variables
- We could categorize PET-ME into low and high and do a t-test, or low, medium, high and do an ANOVA, but we would lose information
- Is there a better way?

Are PET-ME and BMI correlated?

- "Correlation" used in everyday language
- Can be measured mathematically
- Correlation coefficients measure
 - Whether or not there is a relationship
 - Do BMI and PET-ME go up and down together?
 - Strength of relationship
 - Direction of relationship
- Bivariate scatter plots show correlation visually

The Study

 We enroll 15 willing clients and their purebred dogs from our practice

- We ask owners to fill out our PET-ME questionnaire
- We then weigh the dogs and calculate our BMI (observed weight/ideal weight)
- We display our data in a scatterplot

Interpreting the Scatterplot

- After plotting two variables using a scatterplot, we can examine the plot for an overall pattern
- We seek to describe the relationship in terms of form, direction, and strength of the association
 - Form: linear, curves, clusters, no pattern
 - Direction: positive, negative, no direction
 - Strength: relates to how closely the points fit the "form"

Form

No relationship Linear Nonlinear

The Direction of a Correlation

- The correlation coefficient, r, is used to measure the strength and direction of the linear relationship, or correlation between two interval/ratio variables
- The value of r ranges from -1.0 to +1.0
- Values closer to ± 1.0 indicate stronger correlations
- The sign of the correlation coefficient (- or +) indicates only the direction or slope of the correlation

Direction

• Positive (or direct) Relationship: As X gets larger, so does Y

• Negative (or inverse) Relationship: As X gets larger, Y get smaller

Positive, negative, or no association?

- Age and blood pressure
- Weight of car and miles per gallon
- 2 different depression scales
- Age of child and vocabulary size
- Adult height and vocabulary size
- Time since injury and disability score (higher score means more disability)

Strength

Perfect Relationship

No Relationship

Which is the stronger correlation?

Reasons to Infer a Relationship

- The line relating the 2 is not horizontal (i.e., the slope is not zero)
- The closer the points fall to the fitted line, the stronger the relationship
 - How far the line differs from the horizontal does not tell us about the strength of the relationship

Pearson's Correlation Coefficient r

- Quantifies how close points fit a line
 - Extent to which a straight line describes the association
- Pearson's correlation coefficient
 - Population parameter: ρ (rho)
 - Sample estimate: r
 - Range: between -1.0 and +1.0
 - -1.0 = perfect negative correlation (line would pass through every point and association is negative)
 - +1.0 = perfect positive correlation (line would pass through every point and association is positive)
 - 0 = no correlation

Examples of Correlation r

The Messy Formula

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$
Noise

- The numerator expresses the extent that X and Y vary together (signal)
 - Called the covariance of X and Y or cov (X,Y)
- The denominator is based on the deviations of each X from the mean of X and of each Y from the mean of Y (noise)
- When the extent to which X and Y vary together is large compared to the deviations of X and Y from their respective means, (absolute value of) r is larger

Back to our example

$X_i - \overline{X}$	$Y_i - \overline{Y}$	$(X_i - \overline{X})(Y_i - \overline{Y})$	$(X_i - \overline{X})^2$	$(Y_i - \overline{Y})^2$
-14.47	-0.84	12.15	209.28	0.71
-13.47	-0.64	8.62	181.35	0.41
-12.47	-0.74	9.23	155.42	0.55
-11.47	-0.59	6.77	131.48	0.35
-9.47	-0.94	8.90	89.62	0.88
-6.47	0.11	-0.71	41.82	0.01
-5.47	0.36	-1.97	29.88	0.13
-5.47	-0.34	1.86	29.88	0.12
-2.47	-0.24	0.59	6.08	0.06
-0.47	0.16	-0.07	0.22	0.03
4.53	-0.34	-1.54	20.55	0.12
6.53	0.76	4.97	42.68	0.58
10.53	0.46	4.85	110.95	0.21
24.53	0.96	23.55	601.88	0.92
35.53	1.86	66.09	1262.62	3.46
		143.27	2913.73	8.52

Mean PET-ME = 15.47 Mean BMI = 1.64

$$r = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}}$$

$$= \frac{143.3}{\sqrt{2913.7 * 8.52}}$$

If we square r to get r^2 ...

- Will always be positive
 - Ranges 0 to 1
 - $-r^2=0$, no linear association
 - r^2 = 1, perfect linear association (negative or positive)
- r^2 called coefficient of determination
- Expresses the proportion of variance in the dependent variable (Y) explained by the independent variable (X)
 - If we know X, how much does that tell us about Y

Interpretation of r and r^2

- What are considered reasonable r and r^2 ?
- r = 0.7, $r^2 = 0.49$, viewed favorably
 - x explains about half the variance in y
- r = 0.3, $r^2 = 0.09$, not viewed favorably
 - only explains ~10% of the variation

Is r statistically significant?

Note: We estimate the population correlation ρ with the sample correlation r

- State the hypotheses
 - $-H_0$: ρ =0 or PET-ME scores are not related to canine BMI
 - H_A : $\rho \neq 0$ or PET-ME scores are related to canine BMI
- Set the criteria for a decision
 - We will compute a two-tailed test at a .05 level of significance
 - − df for a correlation are n − 2
 - df for this example are 15 2 = 13
- Critical values can be found in the posted table: ±0.514

Critical Values of the Pearson Correlation Coefficient

Level of Significance for One-Tailed Test						
df	0.05	0.025	0.01	0.005		
Level of Significance for Two-Tailed Test						
	0.10	0.05	0.02	0.01		
1	.988	.997	.9995	.9999		
4	.729	.811	.882	.917		
8	.549	.632	.716	.765		
10	.497	.576	.658	.708		
13	.441	.514	.592	.641		
15	.412	.482	.558	.606		
:						
100	.164	.195	.230	.254		

2-sided test, α =0.05, df = 13, what is the critical value?

Hypothesis Testing (continued)

Compute the test statistic

- The correlation coefficient r is the test statistic for the hypothesis test (previously computed)
- -r = .909

Make a decision

- Because r = .909 exceeds the critical values (r = \pm 0.514), we reject the null hypothesis
- Based on this data, we conclude that the observed PET-ME scores and canine BMI reflect a significant correlation between the two variables in the population

Assumptions for Pearson's r

- Both X and Y are normally distributed
- The values of Y are independent from one another
 - Value of 1 observation not related to value of another observation (e.g. no dogs from the same litter)
- The observations are drawn from a random sample
- There is equal variation in the Y's across the entire range of X's
 - This is called homogeneity or homoscedasticity
- There is a linear relationship

Homoscedasticity vs Heteroscedasticity

Homoscedasticity

Violation of Homoscedasticity

Variance of scores in Group B is different from that in Group A

Homoscedastic

B

- Variable X
- Homoscedasticity is assumed
- The variability in Y is consistent along the regression line

Linearity

- Linearity is assumed
- The best way to describe the relationship between the two variables is by using a straight line

Limitations of Interpretation

- Correlation does not equal causation
- Just because you can predict Y from X and just because the correlation is significant at p<.0001, does not mean X causes Y
- Equally plausible that Y causes X or yet both result from some other thing such as Z

Country Statistics

Outliers

- An outlier is a score that falls substantially above or below most other scores in a data set
- Outliers can obscure relationship between two variables by altering direction & strength of observed correlation

Outliers: A second example

Restriction of Range

- Problem arises when range of data for one or both correlated variables in a sample is limited/restricted, compared to the range of data in the population from which the sample was selected
- When interpreting a correlation, it is important to avoid making conclusions about relationships that fall beyond the range of data measured

Restriction of Range

- Figure to right shows scatterplot of grip and arm strength for people working in physically demanding jobs
- N=147, *r*=0.63
- Lower figure shows scatterplot for 73 workers with the highest grip strength
- Note scales of x-axes are different
- Whenever a sample has a restricted range of scores, the correlation will be reduced

From Relationships to Predictions

- Can also use information provided by r to predict values of one variable, given known values of a second variable
- Linear regression is a statistical procedure used to estimate the equation of a regression line to a set of data points
- It is used to determine the extent to which the regression equation can be used to predict values of one variable, given known values of a second variable in a population

Fundamentals of Linear Regression

You can use linear regression to answer the following questions about the pattern of data points and the significance of a linear equation:

- Is a pattern evident in a set of data points?
- Which equation of a straight line best describes this pattern?
- Are the predictions made from this equation significant?

Back to PET-ME & Canine BMI

Remember Algebra??

The straight line formula:

- y = a + bx (or y = mx + b)
- where a is the intercept or the value of y when x equals zero
- and b is the slope or the amount of change in y for one unit change in x

Rewriting the equation

- Change a to β_0
- Change b to β_1
- With our example the equation now reads:

Called "hat"
$$\widehat{BMI} = \beta_0 + \beta_1 (PET-ME)$$

 A "hat" over a variable means estimate rather than the original value

Interpreting the slope

- Slope = change in y/change in x = 'rise over run'
- If slope = 2
 - For a 1 unit change in x, how much does y change?
 - Increases by 2 units
- If slope = -2
 - For a 1 unit change in x, how much does y change?
 - Decreases by 2 units

Coefficient = B_1 = Slope

Different coefficient values for the linear model: y = 1 + Beta1x

Y Intercept = β_0

Different intercept values for the linear model: y = Beta0+ 2x

Using the Equation

- \widehat{BMI}_{i} = .88 + (.05*PET-ME_i)
- PET-ME scores ranged from about 1 to 60
- BMI for dogs = body weight/ideal body weight
- If PET-ME = 2, what is \widehat{BMI} ?

$$-\hat{y} = 0.88 + 0.05(2) = 0.88 + 0.1 = 0.98$$

- If PET-ME = 10, \hat{y} = 0.88 + 0.05(10) = 1.38
- If PET-ME = 15, \hat{y} = 0.88 + 0.05(15) = 1.63

Using the Equation

- To see how well the line estimates BMI of a study participant based on dog's PET-ME score
- To predict BMI based on any PET-ME score, even if no dog in the study had that score

Estimates or predictions of BMI for any PET-ME value

Dog #	PETME	ВМІ	BMI
1	1	0.80	0.93
2	2	1.00	0.98
3	3	0.90	1.03
4	4	1.05	1.08
5	6	0.70	1.17
6	9	1.75	1.32
7	10	2.00	1.37
8	10	1.30	1.37
9	13	1.40	1.52
10	15	1.80	1.62
11	20	1.30	1.86
12	22	2.40	1.96
13	26	2.10	2.16
14	40	2.60	2.85
15	51	3.50	3.39

$$\widehat{BMI} = \beta_0 + \beta_1 (PET-ME)$$

$$\widehat{BMI} = 0.88 + .05(PET-ME)$$

Selecting values for β_0 and β_1 to best fit the line

- Strategy used is to adjust the value in such a way as to
 - Maximize the variance resulting from the fitted line or
 - Minimize the variance resulting from deviations from the fitted line
- Optimal solution determined by least squares analysis

Minimizing Σe_i^2

But is the line statistically significant?

- Test whether slope = 0 (horizontal line)
- If no association, what would our best guess be for y for any value of x?
 - Mean of y

Is best line fit the data better than a horizontal line?

Hypotheses

- Null hypothesis (H₀)
 - There is no linear relationship between PET-ME scores and BMI
 - $-H_0: \beta_1 = 0$
- Alternative Hypothesis (H_A)
 - There is a linear relationship between PET-ME scores and BMI
 - $-H_A$: $\beta_1 \neq 0$
- For 1-sided test, H_A : $\beta_1 > 0$ or $\beta_1 < 0$

Testing the "best" fit line

- We will be using Sums of Squares (SS) for our test
- The SS from the regression results from the difference between the fitted points and the horizontal line through the mean of X and Y

$$SS_{\text{regression}} = \sum (\widehat{Y}_i - \overline{Y})^2$$

 Tells us how far the predicted values differ from the overall mean

Graphically depicted as

Sum of Squares of the residual

 Reflects the difference between the original data and the fitted line

$$SS_{\text{residual}} = \sum (Y_i - \widehat{Y}_i)^2$$
 Noise

- This captures the error between the estimate and the actual data
- Expresses the variance that remains after the regression is over

Graphically depicted as

Plugging in the numbers

$$SS_{reg} = (1.4 - 1.64)^{2} + (1.08 - 1.64)^{2} + \cdots$$

$$(2.16 - 1.64)^{2} + (1.96 - 1.64)^{2}$$

$$= 7.04 \qquad \widehat{Y}_{i} - \overline{Y}$$

$$SS_{res} = (2.0 - 1.4)^{2} + (1.05 - 1.08)^{2} + \cdots$$

$$(2.1 - 2.16)^{2} + (2.4 - 1.96)^{2}$$

$$= 1.48 \qquad \qquad Y_{i} - \widehat{Y}_{i}$$

Regression Table

Regression table: PET-ME (IV) and BMI (DV)

	df	SS	MS	F	Pr >F
Regression	1	7.04			
Residual	13	1.48			
Total	14	8.52			

- <u>Degrees of freedom</u>
 - Regression: df=1
 - Residual: df = n-2

• Test statistic = F

$$-F_{1,13}$$

Regression table: PET-ME (IV) and BMI (DV)

	df	SS	MS	F	Pr >F
Regression	1	7.04	7.04	62.03	<.0001
Residual	13	1.48	0.11		
Total	14	8.52			

• MS = mean square

- Sum of squares/df
- Regression MS = 7.04/1 = 7.04
- Residual MS = 1.48/13 = 0.11

Test statistic = F

$$-F_{1.13} = 7.04/0.11 = 62.03$$

- P<.0001

Summary of the Math

- Regression sum of squares: how far the fitted line is from a slope of 0, a horizontal line
 - How much of y is explained by the fitted line
- Residual sum of squares: how far observed y's are from fitted y's
- If regression SS is large compared to residual SS, slope is statistically significantly different from 0

Back to r^2

- We got it by squaring r, correlation coefficient
 - Proportion of variance in the dependent variable (Y)
 explained by the independent variable (X)
 - Proportion of variance explained by the regression line
- Another way to calculate it:

Can get r by taking square root

Our example

$$r^2 = \frac{SS_{reg}}{SS_{reg} + SS_{res}}$$

$$r^2 = \frac{7.04}{7.04 + 1.48}$$

What does r^2 mean?

- Coefficient of determination expresses the amount of variation in Y explained by knowing X
- In our example, r^2 =.827, which means that ~83% of the variation in BMI can be explained by the PET-ME score
- Venn diagrams

Source: Dawson B, Trapp RG: Basic & Clinical Biostatistics, 4th Edition: http://www.accessmedicine.com

Examples of coefficient of determination r^2 (always positive)

Confidence interval around B or r

- Slope from linear regression = sample estimate
- Estimate of true population parameter
- Confidence interval around slope or r tells us where true value is likely to be
- Example: *r*=0.32, 95% CI 0.11 to 0.50
 - 95% probability that the population (true) correlation coefficient is between 0.11 and 0.50

Linear regression

- Form of 'modeling'
 - Representing reality by an equation
- Some models are good, some aren't
- Will get equation for regression line whether or not x and y are linearly related or not
 - If not linearly related, line is misleading

Line for non-linear data: misleading

Another Conundrum

Linear Regression: Summary

- Provides 3 pieces of information
 - Whether or not there is a linear relationship (p-value)
 - Direction of relationship (sign of slope θ or sign of r)
 - Strength of relationship (r or r^2)
- Testing significance of $\boldsymbol{\theta}$ is the same as testing significance of \mathbf{r}
 - Same p-value for both
- Important to know which is independent and which is dependent variable

What is the Difference Between *r* and Beta?

r

- Correlation coefficient
- Strength of relationship, how close values are to e.o. or how close values are to the line
- Direction of relationship (+/-)
- Range: -1 to 1

Beta

- Regression coefficient
- Magnitude of change in Y for each change in x
 - Slope
- Direction of relationship (+/-)
- Range -∞ to +∞

When X and Y are not normally distributed

- Spearman's rank correlation coefficient
- For skewed data or data with extreme values
- Based on ranks
 - Same formulas but use ranks instead of values
 - Also an alternative formula using differences of ranks
- Interpretation is similar
 - Testing for linear association between ranks of subjects on 2 variables

Still more Spearman's rank correlation

- r_s same interpretation as r
- Both range from -1 to 1
 - Values close to -1 and 1 indicate high correlation
 - Values close to 0 indicate lack of linear association
- r_s can be thought of as measure of the concordance of the ranks of the 2 variables

PET-ME and BMI using Spearman

PET-ME		BMI				
Score	Rank	Corrected Rank	ВМІ	Rank	d	d ²
1	1	1	0.8	2	-1.0	1.0
2	2	2	1.0	4	-2.0	4.0
3	3	3	0.9	3	0.0	0.0
4	4	4	1.1	5	-1.0	1.0
6	5	5	0.7	1	4.0	16.0
9	6	6	1.8	9	-3.0	9.0
10	8	7.5	1.3	6.5	1.0	1.0
10	7	7.5	2.0	11	-3.5	12.3
13	9	9	1.4	8	1.0	1.0
15	10	10	1.8	10	0.0	0.0
20	11	11	1.3	6.5	4.5	20.3
22	12	12	2.4	13	-1.0	1.0
26	13	13	2.1	12	1.0	1.0
40	14	14	2.6	14	0.0	0.0
51	15	15	3.5	15	0.0	0.0

$$r_s = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

$$r_s = 1 - \frac{6(67.5)}{15(15^2 - 1)}$$

$$r_{s} = 0.879$$

- Somewhat smaller than our Pearson's r (.909)
- r could be inflated due to nonnormality of data
- PET-ME not normally distributed ☺

 $d^2 = 67.5$

Canine BMI - Normal?

Mean 1.65, SD .78 Median 1.4, IQR 1-2.1

BMI is not normally distributed!

72

Another Example

- Is the percentage of children immunized against DPT associated with mortality rate in children <5 years?
- % children immunized for DPT and mortality rates for children <5 years collected from 20 countries in 1992
- What type of analysis would we do if the mortality rates were normally distributed?
 - Linear regression, calculation of Pearson's correlation coefficient
- If not normal?
 - Spearman's rank correlation coefficient

Percentage of Children Immunized against DPT & Under 5 Mortality Rates for 20 Countries (1992)

Country	Percentage	Mortality	
	immunized	rate	
Ethiopia	13	208	
Cambodia	32	184	
Senegal	47	145	
Greece	54	9	
Brazil	69	65	
Russia	73	32	
Turkey	76	87	
Bolivia	77	118	
Canada	85	8	
Japan	87	6	
India	89	124	
Egypt	89	55	
UK	90	9	
Mexico	91	33	
China	94	43	
France	95	9	
Finland	95	7	
Italy	95	10	
Poland	98	16	
Czech Republic	99	12	

Checking for Normality

• Mean: 77.4

• Median: 88.0

• STD: 23.7

• Mean: 59.0

• Median: 32.5

• STD: 63.9

Pearson versus Spearman

- Null & alternative hypotheses are almost identical
- Null hypothesis
 - $H_0: \rho = 0$
 - Pearson: There is no correlation between % immunized & mortality rate
 - Spearman: There is no correlation between the <u>ranks</u> of % immunized & mortality rate
- Alternative hypothesis
 - $-H_{\Delta}: \rho \neq 0$
 - Pearson: There is a correlation between % immunized & mortality rate
 - Spearman: There is a correlation between the <u>ranks</u> of % immunized & mortality rate

Spearman r_s

- Much less sensitive to extreme values than Pearson
 - Similar to other non-parametric tests
- Can be used when 1 or both variables are not normally distributed
- Some information lost by use of ranks instead of values

Pearson versus Spearman

Pearson r = -0.79, p < 0.001

Spearman r = -0.54, p=0.01

Correlation versus Regression

Time z-scores

The **correlation** is a measure of spread (scatter) in both the *x* and *y* directions in the linear relationship

In **regression** we examine the variation in the response variable (*y*) given change in the explanatory variable (*x*)

Summary

- Correlation assesses strength of relationship
- Related to linear regression, but different
- Regression shows overall change in Y given a change in X
- *Y=mx+b*
- Simple regression has 1 IV (x var)
 - Beta coefficient = slope
 - Explains rise over run
 - Δ in Y for every 1 unit Δ in x
 - R²=variability of the DV explained by IV (how good our model is at predicting Y)