## Infinite impulse response filtering

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar

Técnicas Digitales III

Universidad Tecnológica Nacional, Facultad Regional Mendoza.

#### Resumen

- Classification of discrete filters
- Leaky integrator filter
- Bilinear transform
  - Map from s to z
  - Frequency Warping
  - Phase response
  - Example of IIR design using bilinear transform
- IIR structures
  - Direct form I IIR implementation
  - Direct form II IIR implementation
  - IIR cascade implementation
- 5 FIR vs IIR

#### Classification of discrete filters

Table: Classification of discrete filters

|                               | Finite impulse response (FIR)             | Infinite impulse response (IIR) |
|-------------------------------|-------------------------------------------|---------------------------------|
| Filtering in time domain      | Moving average                            | Leaky Integrator                |
| Filtering in frequency domain | Windowed Filters<br>Equiripple<br>Minimax | Bilinear z-transform            |

# Leaky integrator filter

The MA filter equation,

$$y[n] = x[n] * h[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k],$$
 (1)

$$y[n] = \frac{1}{M} \left[ \sum_{k=1}^{M-1} x[n-k] + x[n] \right].$$
 (2)

Since,

$$y[n-1] = \frac{1}{M-1} \left[ \sum_{k=1}^{M-1} x[n-k] \right].$$
 (3)

Then,

$$y[n] = \frac{1}{M}x[n] + \frac{M-1}{M}y[n-1]. \tag{4}$$

Defining  $\lambda = \frac{M-1}{M}$ ,

$$y[n] = \lambda y[n-1] + (1-\lambda)x[n].$$
 (5)

It can be seen that the leaky integrator filter is an IIR filter. Why?

# Leaky integrator filter

$$y[n] = \lambda y[n-1] + (1-\lambda) x[n].$$

- No longer a convolution.
- Instead, a constant coefficient difference equation. Initial conditions must be set.
- The new system is LTI [2].
- System is stable for  $|\lambda| < 1$ .
- The value of  $\lambda$  (which is the pole of the system) determines the smoothing power of the filter.



#### Noise Reduction



#### Noise Reduction

• Note how the signal is delayed as  $\lambda$  grows.



# Frequency Response

Magnitude and phase response of the leaky integrator for  $\lambda = 0.9$ .



#### Bilinear transform

The technique is an algebraic transformation between variables s and z.

$$s = \frac{2}{T_d} \left( \frac{1 - z^{-1}}{1 + z^{-1}} \right) . \tag{6}$$

Solving for z,

$$z = \frac{1 + (T_d/2)s}{1 - (T_d/2)s}. (7)$$

Doing  $s = j\Omega$ , where  $\Omega$  is the analog frequency,  $-\infty$ ,  $< \Omega < \infty$ ,

$$z = \frac{1 + (T_d/2)j\Omega}{1 - (T_d/2)j\Omega}.$$
 (8)

The relationship between  $\Omega$  and  $\omega$ , the "digital" frequency,  $-\pi, < \omega < \pi$ , can be found by replacing  $z = e^{j\omega}$  in Eq. 6,

$$s = \frac{2}{T_d} \left( \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right) = \sigma + j\Omega = \frac{2}{T_d} \left[ \frac{2e^{-j\omega/2}(j\sin\omega/2)}{2e^{-j\omega/2}(\cos\omega/2)} \right] = j\frac{2}{T_d} \tan(\omega/2).$$
 (9)

### Bilinear transform (2)

Real and imaginary parts on both sides of Eq. 9 are,

$$\sigma = 0, (10)$$

$$\Omega = \frac{2}{T_d} \tan(\omega/2). \tag{11}$$

Or,

$$\omega = \arctan(\Omega T_d/2). \tag{12}$$

# Bilinear transform, Map from s to z





## Bilinear transform, Frequency Warping

- Non-linear compression of the frequency axis.
- The design of discrete-time filters using the bilinear transformation is useful only when this compression can be tolerated or compensated for.



### Bilinear transform, Phase response

Suppose a continuous-time filter with linear phase response. The nonlinear warping of the frequency axis introduced by the bilinear transformation will not preserve linearity in phase response.



## Example of IIR design using bilinear transform

Design a digital filter equivalent of a  $2^{nd}$  order Butterworth low-pass filter with a cut-off frequency  $f_c = 100$  Hz and a sampling frequency  $f_s = 1000$  samples/sec. Derive the finite difference equation and draw the realisation structure of the filter. Given that the analogue prototype of the frequency-domain transfer function H(s) for a Butterworth filter is:

$$H(s) = \frac{1}{s^2 + \sqrt{2} \cdot s + 1}$$

The normalised cut-off frequency of the digital filter is given by the following equation:

$$\Omega_c = \frac{2\pi f_c}{f_s} = \frac{2\pi 100}{1000} = 0.628$$

Now determine the equivalent analogue filter cut-off frequency  $\omega_{ac}$ , using the pre-warping function of Equation 5.9. The value of K is immaterial so let K = 1.

$$\omega_{ac} = K \cdot \tan\left(\frac{\Omega_c}{2}\right) = 1 \cdot \tan\left(\frac{0.628}{2}\right)$$

$$\omega_{ac} = 0.325 \ rads/\sec$$

### Example of IIR design (2)

Now denormalise the frequency-domain transfer function H(s) of the Butterworth filter, with the corresponding lowpass to low-pass frequency transformation of Equation 5.10. Hence the transfer function of the Butterworth filter becomes:

$$H(s) = \frac{1}{\left[\frac{s}{0.325}\right]^2 + \sqrt{2} \cdot \left[\frac{s}{0.325}\right] + 1}$$

Next, convert the analogue filter into an equivalent digital filter by applying the bilinear z-transform. This is achieved by making a substitution for s in the transfer function.

$$s = \frac{z - 1}{z + 1} \equiv \frac{1 - z^{-1}}{1 + z^{-1}}$$

$$H(z) = \frac{1}{\frac{1}{0.325^{2}} \cdot \left[ \frac{1 - z^{-1}}{1 + z^{-1}} \right]^{2} + \frac{\sqrt{2}}{0.325} \cdot \left[ \frac{1 - z^{-1}}{1 + z^{-1}} \right] + 1}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{0.067 + 0.135z^{-1} + 0.067z^{-2}}{1 - 1.1429z^{-1} + 0.4127z^{-2}}$$

The finite difference equation of the filter is found by inverting the transfer function.

$$y(n) = 1.1429y(n-1) - 0.4127y(n-2) + 0.067x(n) + 0.135x(n-1) + 0.067x(n-2)$$

### Direct form I IIR implementation



Figure 7.24 Direct Form implementation of an IIR filter.

### Direct form I IIR implementation inverted

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

By the commutative properties of the z-transform, we can invert the order of computation to turn the Direct Form I structure into a new structure.



Figure 7.25 Direct form I with inverted order.

## Direct form II IIR implementation

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

We can then combine the parallel delays together. This implementation is called Direct Form II; its obvious advantage is the reduced number of the required delay elements (hence of memory storage).



Figure 7.26 Direct Form II implementation of a second-order section.

### IIR cascade implementation

The cascade structure of N second-order sections is much less sensitive to quantization than the previous Direct form II of order  $2 \cdot N$ .



Figure 7.27 4th order IIR: cascade implementation.

#### FIR vs IIR

#### FIR, pros:

- Unconditional stability (no poles).
- Precise control of the phase response and, in particular, exact linear phase.
- Optimal algorithmic design procedures.
- Robustness with respect to finite numerical precision hardware.

#### FIR, cons:

- Longer input-output delay.
- Higher computational cost with respect to IIR solutions.

#### IIR, pros:

- Lower computational cost with respect to an FIR with similar behavior.
- Shorter input-output delay.
- Compact representation.

#### IIR, cons:

- Stability is not guaranteed.
- Phase response is difficult to control.
- Design is complex in the general case.
- Sensitive to numerical precision.

## Bibliography

- 1 Alan V. Oppenheim and Ronald W. Schafer. *Discrete-time signal processing, 3rd Ed.* Prentice Hall. 2010. Sections 7.2 and 7.3.
- 2 Paolo Prandoni and Martin Vetterli. Signal processing for communications. Taylor and Francis Group, LLC. 2008. Sections 5.3.2, 7.3, and 7.4.2.
- 3 Oliver Hinton. Digital Signal Processing Resources for EEE305 Course. Chapter 5. www.staff.ncl.ac.uk/oliver.hinton/eee305/