1. Allgemeine Formeln

Ampére'sches Gesetz in Integralform

$$\oint_{C} oldsymbol{B} \cdot dl = \mu_0 \int_{S} oldsymbol{J} \cdot doldsymbol{A} = \mu_0 \cdot I_{enclosed}$$

Gauß'sches Gesetz in Integralform

$$\oint_{S} m{E} \cdot dm{A} = rac{1}{\epsilon_0} \cdot \int_{V}
ho(m{x}) \cdot d^3 x = rac{Q_{enclosed}}{\epsilon_0}$$

Green'sche Funktion des Laplaceoperators

$$G(x,x') = -rac{1}{4\pi}\cdotrac{1}{|x_m-x_m'|}$$

2. Maxwell-Gleichungen

1. Maxwell-Gleichung

Elektrostatik

$$oldsymbol{
abla} \cdot oldsymbol{E} = \partial_i E_i(x_m) = rac{
ho(x_m)}{\epsilon_0}$$

Magnetostatik

$$oldsymbol{
abla}\cdotoldsymbol{B}=\partial_iB_i(x_m)=0$$

2. Maxwell-Gleichung

Elektrostatik

$$oldsymbol{
abla} imesoldsymbol{E}=\epsilon_{ijk}\partial_{j}E_{k}(x_{m})=0$$

Magnetostatik

$$oldsymbol{
abla} imes oldsymbol{B} = \epsilon_{ijk}\partial_j B_k(x_m) = \mu_0 \cdot J_i(x_m)$$

4. Nabla-Operator

Rechenregeln

1.
$$\nabla \cdot \nabla = \nabla^2 = \Delta$$

2.
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

3.
$$oldsymbol{
abla}\cdot(oldsymbol{
abla}arphi)=oldsymbol{
abla}^2arphi$$

4.
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

5.
$$\nabla \times (\nabla \varphi) = 0$$

Zylinderkoordinaten

$$oldsymbol{
abla} = ec{e}_r \cdot rac{\partial}{\partial r} + rac{1}{r} \cdot ec{e}_arphi \cdot rac{\partial}{\partial arphi} + ec{e}_z \cdot rac{\partial}{\partial z}$$

Kugelkoordinaten

$$oldsymbol{
abla} = ec{e}_r \cdot rac{\partial}{\partial r} + rac{1}{r} \cdot ec{e}_{ heta} \cdot rac{\partial}{\partial heta} + rac{1}{r \cdot \sin heta} \cdot ec{e}_{arphi} \cdot rac{\partial}{\partial arphi}$$

5. Erste Theoriefragen

2019

Zeigen Sie die Quellfreiheit des Magnetfelds $B_i(x_m)$ unter Verwendung des Amperéschen Ausdrucks, welcher $B_i(x_m)$ in Abhängigkeit von der Volumsstromdichte $J_i(x_m)$ darstellt.

Die Quellenfreiheit des magnetischen Feldes \boldsymbol{B} ist über den magnetischen Hüllenfluss definiert. Dieser besagt, dass der durch eine geschlossene Fläche austretende magnetische Fluss zu jedem Zeitpunkt gleich Null sein muss:

$$\oint_{\partial V} m{B} \cdot dA = 0$$

Der Gauß'sche Integralsatz besagt, dass für ein vom Rand ∂V eingeschlossenes Volumen V, für ein beliebiges Vektorfeld B, geschrieben werden kann:

$$\int d^3V \partial_i B_i = \oint_{\partial V} dA_i B_i$$

Somit kann die Quellenfreiheit des magnetischen Feldes B wie folgt beschrieben werden:

$$\oint_{\partial V} oldsymbol{B} \cdot dA = \int_V \operatorname{div} oldsymbol{B} \cdot dV = 0$$

In differentieller Form entspricht dieser Zusammenhang:

$$\operatorname{div} \boldsymbol{B} = 0$$

Das Magnetfeld ${m B}$ kann über den Ampéreschen Ausdruck, welcher das magnetische Feld ${m B}$ in Abhängigkeit von der elektrischen Stromdichte ${m J}$ definiert, angeschrieben werden:

$$B_i(x_m) = rac{\mu_0}{4\pi} \cdot \int d^3x' \, rac{\epsilon_{ijk} \cdot J_i \cdot (x_k - x_k')}{|x_m - x_m'|^3}$$

Für später wird die folgende Nebenrechnung benötigt:

$$\partial_k \frac{1}{\underbrace{|oldsymbol{x}_m - oldsymbol{x}'_m|}_{ ext{Abstand}}} = \partial_k \frac{1}{|oldsymbol{x}|} = \partial_k \frac{1}{\sqrt{oldsymbol{x}^2}} = \underbrace{-\frac{1}{2} \cdot \frac{1}{\sqrt{oldsymbol{x}^2}^3}}_{ ext{äußere Ableitung}} \cdot \partial_k oldsymbol{x}^2 = -\frac{1}{2} \cdot \frac{1}{\sqrt{oldsymbol{x}^2}^3} \cdot \underbrace{oldsymbol{x} \cdot oldsymbol{x}}_{innereAbleitung} \cdot \delta_{km}$$

$$oxed{oxed} = -rac{oldsymbol{x}_m - oldsymbol{x}_m'}{|oldsymbol{x}_m - oldsymbol{x}_m'|^3} \cdot \delta_{km} = -rac{oldsymbol{x}_k - oldsymbol{x}_k'}{|oldsymbol{x}_m - oldsymbol{x}_m'|^3}$$

Aus der Nebenrechnung lässt sich demnach ablesen:

$$-oldsymbol{
abla} rac{1}{|oldsymbol{x}_m - oldsymbol{x}_m'|} = rac{oldsymbol{x}_k - oldsymbol{x}_k'}{|oldsymbol{x}_m - oldsymbol{x}_m'|^3}$$

Dieser Zusammenhang lässt sich nun in den Ampéreschen Ausdruck für das magnetische Feld **B** einsetzen:

$$B_i(x_m) = rac{\mu_0}{4\pi} \cdot \int d^3 x' \, \epsilon_{ijk} \cdot J_i \cdot \left(-\partial_k rac{1}{|x_m - x_m'|}
ight)$$

Das Kreuzprodukt ϵ_{ijk} sowie die Ableitung ∂_k können aus der Integration heraus gehoben werden, nachdem sie von x und nicht von x' abhängig sind bzw. sich darauf beziehen. Dadurch folgt:

$$B_i(x_m) = \epsilon_{ijk} \cdot (-\partial_k) \cdot \underbrace{\left(rac{\mu_0}{4\pi} \cdot \int d^3x' rac{J_i}{|x_m - x_m'|}
ight)}_{=A_j(x_m)}$$

Der hintere Teil der Gleichung entspricht nun dem magnetischen Vektorpotential A. Demnach kann der Ausdruck wie folgt vereinfacht werden:

$$B_i(x_m) = \epsilon_{ijk} \cdot (-\partial_i) \cdot A_k(x_m)$$

Wie bereits in der Einleitung des Beispiels beschrieben, muss für die Quellenfreiheit des magnetischen Feldes *B* in differentieller Form gelten:

$$\operatorname{div} \boldsymbol{B} = \partial_i B_i(x_m) = 0$$

Eingesetzt folgt entsprechend:

$$\partial_i B_i(x_m) = \partial_i \epsilon_{ijk} \partial_j A_k(x_m) = \epsilon_{ijk} \partial_i \partial_j A_k(x_m)$$

Setzt man die Symmetrien der einzelnen Ausdrücke ein, kann geschrieben werden:

$$\partial_i B_i(x_m) = \epsilon_{ijk} \partial_i \partial_j A_k(x_m)$$

Mit:

$$\lor \to \text{antisymmetrisch}$$

$$\cup \to symmetrisch$$

Die Multiplikation einer symmetrischen und einer antisymmetrischen Funktion ergibt jedenfalls 0. Der Nachweis dafür ist wie folgt:

$$egin{aligned} A_{ij} \cdot S_{ij} &= -A_{ji} \cdot S_{ji} &= \ -A_{ij} \cdot S_{ij} \ \ &\Longrightarrow \ 2 \cdot A_{ij} \cdot S_{ij} = 0 \end{aligned}$$

Dadurch folgt, dass die Multiplikation eines antisymmetrischen Vektors mit einem symmetrischen Vektor immer 0 ergibt. Entsprechend wurde gezeigt, dass gilt:

$$\partial_i B_i(x_m) = 0$$

Das magnetische Feld ist somit quellenfrei!

2009 / 2011 / 2013

Zeigen Sie unter Zuhilfenahme des Biot-Savart'schen Ausdrucks für das Magnetfeld $B_i(x_m)$ in Abhängigkeit von der Volumsstromdichte $J_i(x_m)$ die Divergenzfreiheit von $B_i(x_m)$.

Gemäß dem Biot-Savart-Gesetz erzeugt ein Stromleiter mit dem infinitesimalen Längenelement $d\boldsymbol{l}$, welcher sich an dem Ort \boldsymbol{r}' befindet und von einem Strom I durchflossen wird, am Ort \boldsymbol{r} die magnetische Flussdichte $d\boldsymbol{B}$:

$$dm{B} = rac{\mu_0}{4\pi} rac{I\,dm{l} imesm{\hat{r}}}{r^2}$$

Der Vektor \hat{r} ist dabei wie folgt definiert:

$$oldsymbol{\hat{r}} = rac{ec{r}}{|r|}$$

Umgeschrieben entspricht der Ausdruck für die magnetische Flussdichte ${\it B}$ am Ort ${\it r}$ somit:

$$doldsymbol{B}(oldsymbol{r}) = rac{\mu_0}{4\pi} \cdot I \, doldsymbol{l} imes rac{oldsymbol{r} - oldsymbol{r}'}{|oldsymbol{r} - oldsymbol{r}'|^3}$$

Durch Aufsummieren der infinitesimalen Anteile und durch Umwandeln des entstehenden Wegintegrals in ein Volumensintegral folgt die Integralform des Biot-Savart-Gesetzes: (*J* entspricht der elektrischen Stromdichte)

$$oldsymbol{B}(oldsymbol{r}) = rac{\mu_0}{4\pi} \cdot \int_V oldsymbol{J}(oldsymbol{r}) imes rac{oldsymbol{r} - oldsymbol{r}'}{|oldsymbol{r} - oldsymbol{r}'|^3} \, dV'$$

Dieser kann in die bereits eingangs beschriebene Berechnung eingesetzt werden.

2013 Ersatztest

Unter Verwendung des Biot-Savart'schen Ausdrucks für das Magnetfeld $B_i(x_m)$ in Abhängigkeit von der Volumsstromdichte $J_i(x_m)$ zeige man die Abwesenheit von magnetischer Ladung.

Die Abwesenheit von magnetischer Ladung ist äquivalent zu der Quellfreiheit des magnetischen Feldes.

6. Zweite Theoriefragen

2019

Für zwei Flächen F_1 und F_2 , welche durch dieselbe Kurve γ berandet werden (d.h. $\partial F_1 = \partial F_2 = \gamma$), weise man die Gleichheit des magnetischen Flusses durch diese Flächen, unter Verwendung der magnetostatischen Maxwellgleichungen, nach.

Der magentische Fluss Φ ist allgemein als das Flächenintegral über die magnetische Flussdichte B definiert:

$$\Phi = \int_S m{B} \cdot dA$$

Weiters lautet die ersten Maxwell-Gleichung der Magnetostatik:

$$oldsymbol{
abla}\cdotoldsymbol{B}=0$$

Diese Gleichung drückt aus, dass das magnetische Feld quellenfrei ist. Daraus folgt der Satz vom magnetischen Hüllenfluss, welcher besagt, dass der durch eine geschlossene Oberfläche ∂V eines Volumens V austretende magnetische Fluss Φ stets gleich Null sein muss. Mit dem Satz von Gauß, in Integralform, folgt:

$$\oint_{\partial V} \boldsymbol{B} \cdot d\boldsymbol{A} = \int_{V} \underbrace{\boldsymbol{\nabla} \cdot \boldsymbol{B}}_{=0} \cdot d^{3}x = 0$$

An einer Fläche, wie in unserer Skizze der Fläche A, muss entsprechend, gemäß dem Satz vom magnetischen Hüllenfluss, gelten: (gedanklich wird dafür die Höhe der umgebenden "Box" gegen Null approximiert; 1 und 2 stehen für die Ober- und Unterseite der Fläche A)

$$\Phi = 0 = oldsymbol{B}_1 \cdot A \cdot oldsymbol{\hat{n}} - oldsymbol{B}_2 \cdot A \cdot oldsymbol{\hat{n}}$$

Daraus folgt, dass die Normalkomponente der magnetischen Flussdichte B_n jederzeit kontinuierlich über eine beliebige zweidimensionale Fläche A ist:

$$|[B_n]| = 0$$

Nachdem die tangentiale Komponente der magnetischen Flussdichte ${\pmb B}_t$ gleich Null ist (der Fluss durch die Kurve γ ist annähernd Null), der gesamt durch die Fläche F austretende magnetische Fluss ebenfalls Null ist, müssen die Flüsse durch die Flächen F_1 und F_2 gleich aber entgegengesetzt sein:

$$\int_{F_1} oldsymbol{B}_n \cdot dA = \int_{F_2} oldsymbol{B}_n \cdot dA$$

Unter Verwendung der magnetostatischen Maxwellgleichungen bestimme man die Rotation der Volumensstromdichte $J_i(x_m)$. Den so gewonnen Ausdruck löse man nach $B_i(x_m)$ unter Zuhilfenahme der Green-Funktion des Laplace-Operators auf.

Die zweite Maxwell-Gleichung der Magnetostatik, das Ampéresche Gesetz, lautet:

$$oldsymbol{
abla} imesoldsymbol{B}=\mu_0\cdotoldsymbol{J}$$

Basierend auf diesem Zusammenhang kann man die Rotation der elektrischen Stromdichte J ermitteln. Hierzu werden beide Seite der Gleichung um das Kreuzprodukt mit Nabla erweitert:

$$\nabla \times (\nabla \times \boldsymbol{B}) = \mu_0 \cdot (\nabla \times \boldsymbol{J})$$

Gemäß der Rechenregeln des Nabla Operators kann die linke Seite der Gleichung $\nabla \times (\nabla \times \mathbf{B})$ wie folgt umgeschrieben werden:

$$oldsymbol{
abla} (oldsymbol{
abla} \cdot oldsymbol{B}) - oldsymbol{
abla}^2 oldsymbol{B} = \mu_0 \cdot (oldsymbol{
abla} imes oldsymbol{J})$$

Weiters ist gemäß der ersten Maxwell-Gleichung der Magnetostatik die Divergenz der magnetischen Flussdichte $\nabla \cdot \mathbf{B}$ stets gleich Null. Somit folgt:

$$oldsymbol{
abla} (0) - oldsymbol{
abla}^2 oldsymbol{B} = \mu_0 \cdot (oldsymbol{
abla} imes oldsymbol{J})$$

Nun kann, wie in der Angabe beschrieben, die Green'sche Funktion des Laplaceoperators G angewendet werden. Diese lautet in Integralform:

$$G\left(oldsymbol{x},oldsymbol{x}'
ight) = -rac{1}{4\pi}\cdotrac{1}{|oldsymbol{x}-oldsymbol{x}'|}$$

Eingesetzt folgt somit:

$$G = \mu_0 \cdot \int_V G(oldsymbol{x}, oldsymbol{x}') \cdot \left(oldsymbol{
abla} imes oldsymbol{J}\left(oldsymbol{x}'
ight)
ight) d^3x'$$

Somit folgt für den Ausdruck der magnetischen Flussdichte B:

$$oldsymbol{B} = +rac{\mu_0}{4\pi}\cdot\int_Vrac{oldsymbol{
abla} imesoldsymbol{J}\left(oldsymbol{x}^\prime
ight)}{|oldsymbol{x}-oldsymbol{x}^\prime|}\,d^3x^\prime$$

Beziehungsweise in Indexschreibweise:

$$B_{i}(x_{m}) = rac{\mu_{0}}{4\pi} \cdot \int_{V} rac{\epsilon_{ijk} \cdot \partial_{j} \cdot J_{k}\left(x_{m}^{\prime}
ight)}{\left|x_{m} - x_{m}^{\prime}
ight|} \ d^{3}x^{\prime}$$

Die Ableitung des resultierenden Ausdrucks für die magnetische Flussdichte \boldsymbol{B} kann in weiterer Folge aufgelöst werden:

$$egin{aligned} \partial_k rac{1}{\underbrace{|oldsymbol{x}_m - oldsymbol{x}'_m|}_{ ext{Abstand}}} &= \partial_k rac{1}{|oldsymbol{x}|} = \partial_k rac{1}{\sqrt{oldsymbol{x}^2}} = \underbrace{-rac{1}{2} \cdot rac{1}{\sqrt{oldsymbol{x}^2}^3}}_{ ext{außere Ableitung}} \cdot \partial_k oldsymbol{x}^2 = -rac{1}{2} \cdot rac{1}{\sqrt{oldsymbol{x}^2}^3} \cdot \underbrace{oldsymbol{x} \cdot oldsymbol{x}}_{innere Ableitung}} \cdot \delta_{km} \\ &= -rac{oldsymbol{x}_m - oldsymbol{x}'_m}{|oldsymbol{x}_m - oldsymbol{x}'_m|^3} \cdot \delta_{km} = -rac{oldsymbol{x}_k - oldsymbol{x}'_k}{|oldsymbol{x}_m - oldsymbol{x}'_m|^3} \end{aligned}$$

Aus der Nebenrechnung lässt sich demnach ablesen:

$$-oldsymbol{
abla} rac{1}{|oldsymbol{x}_m - oldsymbol{x}_m'|} = rac{oldsymbol{x}_k - oldsymbol{x}_k'}{|oldsymbol{x}_m - oldsymbol{x}_m'|^3}$$

Dieser Zusammenhang lässt sich nun in den Ausdruck für die magnetische Flussdichte B einsetzen, wodurch final der Ampéresche Ausdruck für das magnetische Feld B folgt:

$$B_i(x_m) = rac{\mu_0}{4\pi} \cdot \int d^3x' \, rac{\epsilon_{ijk} \cdot J_j \left(x_m'
ight) \cdot \left(x_k - x_k'
ight)}{\left|x_m - x_m'
ight|}$$

Herleitung ohne Altfrage

Die zweite Maxwell-Gleichung der Magnetostatik, das Ampéresche Gesetz, lautet:

$$oldsymbol{
abla} imes oldsymbol{B} = \mu_0 \cdot oldsymbol{J}$$

In diesen Ausdruck kann man den Zusammenhang zwischen der magnetischen Flussdichte \boldsymbol{B} und des magnetischen Vektorpotentials \boldsymbol{A} einsetzen:

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$$

Damit folgt:

$$oldsymbol{
abla} imes(oldsymbol{
abla} imesoldsymbol{A})=\mu_0\cdotoldsymbol{J}$$

Die linke Seite des Zusammenhangs kann gemäß der Rechenregeln des Nabla-Operators ∇ umgeformt werden:

$$\nabla (\nabla \cdot A) - \nabla^2 A = \mu_0 \cdot J$$

Gemäß der Coulomb-Eichung ist das Vektorpotential A divergenzfrei. Entsprechend gilt:

$$\nabla \cdot \mathbf{A} = 0$$

Somit folgt für den Ausdruck basierend auf dem Ampéreschen Gesetz:

$$oldsymbol{
abla}(0) - oldsymbol{
abla}^2 oldsymbol{A} = \mu_0 \cdot oldsymbol{J}$$

Nachdem der Gradient von Null ∇ (0) ebenfalls Null ist, kann weiters geschrieben werden:

$$-\mathbf{\nabla}^2 \mathbf{A} = \mu_0 \cdot \mathbf{J}$$

In diesen Ausdruck kann gemäß der Angabe die Greensche Funktion des Laplaceoperators ∇^2 eingesetzt werden. Diese lautet im dreidimensionalen Raum:

$$G\left(oldsymbol{x},oldsymbol{x}'
ight) = -rac{1}{4\pi}\cdotrac{1}{|x_m-x_m'|}$$

Eingesetzt folgt damit:

$$oldsymbol{A}\left(oldsymbol{x}
ight) = \mu_0 \cdot \int G\left(oldsymbol{x}, oldsymbol{x}'
ight) \cdot oldsymbol{J}\left(oldsymbol{x}'
ight) d^3x'$$

Final folgt somit der Ausdruck für das magnetische Vektorpotential A:

$$oldsymbol{A}\left(oldsymbol{x}
ight) = rac{\mu_0}{4\pi}\cdot\int d^3x'rac{oldsymbol{J}\left(oldsymbol{x}'
ight)}{\left|oldsymbol{x}-oldsymbol{x}'
ight|}$$

Gemäß der Coulomb-Eichung muss gelten, dass die Divergenz des magnetischen Vektorpotentials A gleich Null ist. Auf die Lösung angewandt ist diese Beziehung gegeben, da die Divergenz der

2013 Ersatztest

Zeigen Sie unter Verwendung der zweiten magnetostatischen Maxwellgleichung, dem Ampéreschen Gesetz, die Divergenzfreiheit der Stromdichte $J_i(x_m)$.

Das Ampéresche Gesetz, die zweite Maxwell-Gleichung der Magnetostatik, lautet:

$$oldsymbol{
abla} imes oldsymbol{B} = \mu_0 \cdot oldsymbol{J}$$

Leitet man aus diesem Gesetz die Divergenz der elektrischen Stromdichte J ab, folgt:

$$oldsymbol{
abla} \cdot oldsymbol{J} = rac{1}{\mu_0} \cdot (oldsymbol{
abla} \cdot (oldsymbol{
abla}$$

Die Divergenz der Rotation eines Vektorfeldes $\nabla \cdot (\nabla \times \mathbf{B})$ ist in allen Fällen 0. Dieser Zusammenhang lässt sich wie folgt nachweisen:

$$\epsilon_{ijk} \cdot \partial_j \mathop{\cdot}_{\cup} \partial_k B_i = 0$$

 $\lor \to antisymmetrisch$

 $\cup \to symmetrisch$

Die Multiplikation einer symmetrischen und einer antisymmetrischen Funktion ergibt jedenfalls 0. Der Nachweis dafür ist wie folgt:

$$egin{aligned} A_{ij} \cdot S_{ij} &= -A_{ji} \cdot S_{ji} &= \ = umbenennen \end{aligned} - A_{ij} \cdot S_{ij} \ &\Longrightarrow \ 2 \cdot A_{ij} \cdot S_{ij} = 0 \end{aligned}$$

Dadurch folgt, dass die Multiplikation eines antisymmetrischen Vektors mit einem symmetrischen Vektor 0 ergibt. Damit folgt für die Divergenz der Stromdichte $\nabla \cdot \mathbf{J}$:

$$oldsymbol{
abla}\cdotoldsymbol{J}=rac{1}{\mu_0}\cdot 0=0$$

Somit wurde gezeigt, dass die elektrische Stromdichte J für statische Systeme divergenzfrei ist.

2011

Zeigen Sie, dass die stationäre (zeitunabhängige) Kontinuitätsgleichung $\partial_i J_i = -\frac{\partial \rho}{\partial t}$ eine direkte Konsequenz des Ampere'schen Gesetzes zwischen Magnetfeld $B_i(x_k)$ und Volumsstromdichte $J_i(x_k)$ darstellt.

Das Ampéresche Gesetz, die zweite Maxwell-Gleichung der Magnetostatik, lautet:

$$\nabla \times \boldsymbol{B} = \mu_0 \cdot \boldsymbol{J}$$

Dieser Ausdruck gilt lediglich für statische Systeme. In einem statischen System ist $\frac{\partial \rho}{\partial t}$ und somit auch $\nabla \cdot \boldsymbol{J}$ gleich 0. In zeitabhängigen Systemen ist dieser Ausdruck jedoch nicht korrekt. In solchen Systemen muss zu der elektrischen Stromdichte \boldsymbol{J} der Verschiebungsstrom (eng.

displacement current) berücksichtigt werden. Ergänzt man den Verschiebungsstrom in dem Ampéreschen Gesetz, erhält man das Ampére-Maxwell-Gesetz:

$$oldsymbol{
abla} imes oldsymbol{B} = \mu_0 \cdot \left(oldsymbol{J} + \epsilon_0 \cdot rac{\partial oldsymbol{E}}{\partial t}
ight)$$

Basierend auf diesem Zusammenhang kann die Divergenz der elektrischen Stromdichte $\nabla \cdot J$ ermittelt werden:

$$oldsymbol{
abla} oldsymbol{
abla} \cdot (oldsymbol{
abla} imes oldsymbol{B}) = \mu_0 \cdot oldsymbol{
abla} \cdot oldsymbol{oldsymbol{abla}} \cdot oldsymbol{oldsymbol{abla}} \cdot oldsymbol{oldsymbol{abla}} + \epsilon_0 \cdot oldsymbol{
abla} \cdot oldsymbol{oldsymbol{abla}} \cdot oldsymbol{oldsymbol{abla} \cdot oldsymbol{oldsymbol{abla}} \cdot oldsymbol{oldsymbol{$$

Gemäß der ersten Maxwell-Gleichung der Elektrostatik entspricht $\epsilon_0 \cdot (\nabla \cdot E)$ gleich:

$$oldsymbol{
abla}\cdotoldsymbol{E}=rac{
ho}{\epsilon_0}
ightarrow\epsilon_0\cdot(oldsymbol{
abla}\cdotoldsymbol{E})=
ho$$

Somit kann wie folgt in die Divergenz der elektrischen Stromdichte eingesetzt werden:

$$oldsymbol{
abla} \cdot (oldsymbol{
abla} imes oldsymbol{B}) = \mu_0 \cdot \left(oldsymbol{
abla} \cdot oldsymbol{J} + rac{\partial
ho}{\partial t}
ight)$$

Die Divergenz der Rotation eines Vektorfeldes $\nabla \cdot (\nabla \times \mathbf{B})$ ist in allen Fällen 0. Dieser Zusammenhang lässt sich wie folgt nachweisen:

$$egin{aligned} \epsilon_{ijk} \cdot \partial_j \cdot \partial_k B_i &= 0 \ ⅇ & o ext{ antisymmetrisch} \end{aligned}$$
 $ee & o ext{ symmetrisch}$

Die Multiplikation einer symmetrischen und einer antisymmetrischen Funktion ergibt jedenfalls 0. Der Nachweis dafür ist wie folgt:

$$egin{aligned} A_{ij} \cdot S_{ij} &= -A_{ji} \cdot S_{ji} &= \ _{umbenennen} -A_{ij} \cdot S_{ij} \ \ &\Longrightarrow \ 2 \cdot A_{ij} \cdot S_{ij} = 0 \end{aligned}$$

Dadurch folgt, dass die Multiplikation eines antisymmetrischen Vektors mit einem symmetrischen Vektor 0 ergibt. Damit folgt für die Divergenz der Stromdichte $\nabla \cdot \mathbf{J}$:

$$0 = \mu_0 \cdot \left(oldsymbol{
abla} \cdot oldsymbol{J} + rac{\partial
ho}{\partial t}
ight) = oldsymbol{
abla} \cdot oldsymbol{J} + rac{\partial
ho}{\partial t}$$

Somit ergibt sich final:

$$oldsymbol{
abla}\cdotoldsymbol{J}=-rac{\partial
ho}{\partial t}$$

7. Der elektrische Strom

Allgemein gelten für den elektrischen Strom die folgenden Zusammenhänge:

$$I = \oint_S m{J} \cdot \hat{m{n}} \cdot dm{A} = \sigma \cdot \oint_S m{E} \cdot \hat{m{n}} \cdot dm{A} = \sigma \cdot \int_V m{
abla} \cdot E \cdot d^3x = rac{\sigma}{\epsilon} \cdot \int_V
ho \cdot d^3x = rac{\sigma}{\epsilon} \cdot Q$$

Ohm'sches Gesetz

 $\it U$ entspricht der elektrischen Spannung. $\it I$ entspricht dem elektrischen Strom. $\it R$ entspricht dem elektrischen Widerstand.

$$U = I \cdot R$$

Der elektrische Widerstand R eines Zylinders lässt sich beispielsweise wie folgt berechnen:

$$R = \frac{L}{\sigma \cdot A}$$

L entspricht der Länge des Zylinders und A dessen Querschnittsfläche.

Die elektrische Leitfähigkeit σ lässt sich auch durch den spezifischen Widerstand ρ ausdrücken:

$$\sigma = \frac{1}{\rho}$$

Lokale Form des Ohm'schen Gesetzes

Die lokale Form des Ohm'schen Gesetzes ist:

$$\boldsymbol{J}\left(\boldsymbol{x}\right) = \sigma \cdot \boldsymbol{E}\left(\boldsymbol{x}\right)$$

Joule'sches Gesetz

Das Joule'sche Gesetz definiert die Leistung P basierend auf dem Strom I, der Spannung U und dem Widerstand R:

$$P = U \cdot I = I^2 \cdot R$$

Elektrische Stromdichte

Sei dA ein infinitesimales Flächenstück, dann ist dI die Ladung, welche pro Zeiteinheit das Flächenstück dA passiert:

$$dI = \boldsymbol{J} \cdot d\boldsymbol{A}$$

Die elektrische Stromdichte ist unter anderem wie folgt definiert. n entspricht dabei der Anzahl an Ladungen pro Volumenseinheit. q ist die Ladung der einzelnen Ladungsträger. v entspricht der mittleren Geschwindigkeit der Ladungen. ρ entspricht der elektrischen Raumladungsdichte.

$$oldsymbol{J} = \underbrace{q \cdot n}_{=
ho} \cdot oldsymbol{v}$$

Stationäre Kontinuitätsgleichung

Die stationäre Kontinuitätsgleichung besagt, dass der Fluss von Ladung, aus einem Volumen V, in besagtem Volumen V zu einer Abnahme der Ladung führt. J entspricht der Volumensstromdichte. ρ entspricht der Volumensladungsdichte.

$$oldsymbol{
abla}\cdotoldsymbol{J}=-rac{\partial
ho}{\partial t}$$

In Integralform entspricht der Zusammenhang:

$$\oint_S m{J} \cdot dm{A} = -rac{d}{dt} \int_V
ho \cdot d^3x$$

8. Das elektrische Potential

$$V(oldsymbol{x}) = rac{1}{4\pi \cdot \epsilon_0} \cdot \int rac{
ho(oldsymbol{x'})}{|oldsymbol{x} - oldsymbol{x'}|} \, d^3 x'$$

Ist das elektrische Feld E bekannt, gilt für das elektrische Potential:

$$V\left(oldsymbol{x}
ight) = -\int_{\Gamma}oldsymbol{E}\left(oldsymbol{x}
ight)\cdot dl$$

Das elektrische Potential entspricht dem Wegintegral von x_0 nach x.

Punktladung

Das elektrische Potential V einer Punktladung ist wie folgt definiert:

$$V = \frac{q}{4\pi \cdot \epsilon_0 \cdot r}$$

q ist die Ladung der Quelle bzw. der Punktladung. Der Abstand r entspricht dem betraglichen Abstand zwischen dem Referenzpunkt x und dem Quellpunkt x'. Demnach kann man für das elektrische Potential V einer Punktladung auch schreiben:

$$V(oldsymbol{x}) = rac{1}{4\pi \cdot \epsilon_0} \cdot rac{1}{|oldsymbol{x} - oldsymbol{x}'|}$$

Coulomb'scher Ausdruck für $E_i(x_m)$

$$E_i(x_m) = rac{1}{4\pi \cdot \epsilon_0} \cdot \int d^3x \cdot rac{
ho(x_m) \cdot (x_i - x_i')}{\left|x_m - x_m'
ight|^3}$$

9. Das magnetische Feld

Das magnetische Feld ${\pmb B}$ ist stets in ${\vec e}_{\varphi}$ ausgerichtet. Die Ausrichtung entspricht im Falle einer Kugel auch:

$$ec{e}_B = ec{e}_arphi = ec{e}_I imes ec{e}_r$$

Hierbei ist \vec{e}_I die Richtung des Stromes und \vec{e}_r die Richtung des Radius R.

Ampérescher Ausdruck für das Magnetfeld

$$B_i(x_m) = rac{\mu_0}{4\pi} \int_{wire} d^3x' \, rac{\epsilon_{ijk} J_i(x_m')(x_k-x_k')}{|x_m-x_m'|^3}$$

Der Tensor x_m entspricht dem **Referenzpunkt**.

Der Tensor x'_m entspricht dem **Quellpunkt**.

Biot-Savart'scher Ausdruck für das Magnetfeld

$$dm{B} = rac{\mu_0}{4\pi}rac{I\,dm{l} imesm{\hat{r}}}{r^2}$$

In Integralform entspricht der Ausdruck:

$$oldsymbol{B}(oldsymbol{x}) = rac{\mu_0}{4\pi} \int_{wire} d^3x' \, rac{I\,dl imes oldsymbol{\hat{r}}}{r^2} = rac{\mu_0}{4\pi} \int_{wire} d^3x' \, rac{I\,dl imes (oldsymbol{x} - oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|^3}$$

Langer gerader Draht

Das magnetische Feld für einen langen geraden Draht ist über die folgende Formel definiert:

$$oldsymbol{B}\left(oldsymbol{x}
ight) = rac{\mu_0 \cdot I}{2\pi \cdot B} \cdot oldsymbol{\hat{\Phi}}$$

R entspricht dabei dem Radius des Leiters.

Kraft

Die auf ein Teilchen mit der Ladung q wirkende Kraft, verursacht durch ein Magnetfeld mit der magnetischen Flussdichte B, entspricht:

$$oldsymbol{F} = qoldsymbol{v} imes oldsymbol{B}$$

Wirkt auf das Teilchen zusätzlich ein elektrisches Feld, folgt daraus die Lorentz-Kraft: (Elektromagnetismus)

$$m{F} = q \cdot (m{E} + m{v} imes m{B}) = \underbrace{q \cdot m{E}}_{ ext{el. Kraft}} + \underbrace{q \cdot m{v} imes m{B}}_{ ext{mag. Kraft}}$$

Die Kraft auf einen Leiter lautet wie folgt:

$$oldsymbol{F} = \int_{wire} I \, doldsymbol{l} imes oldsymbol{B}$$

Das magnetische Feld verrichtet **keine Arbeit**. Entsprechend gibt es auch keine potentielle Energie.

10. Das magnetische Vektorpotential

Das magnetische Vektorpotential A hängt wie folgt mit der magnetischen Flussdichte B zusammen:

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$$

Ähnlich zu dem Ampére'schen Ausdruck für das magnetische Feld \boldsymbol{B} lässt sich das magnetische Vektorpotential wie folgt anschreiben:

$$A_i(x_m) = rac{\mu_0}{4\pi} \cdot \int_V rac{J_i(x_m')}{|x_m-x_m'|} \, d^3x'$$

11. Integralsätze

Gaußscher Integralsatz

Der Satz von Gauß lautet für ein vom Rand ∂V eingeschlossenes Volumen V für ein beliebiges Vektorfeld mit den Komponenten E_i :

$$\int d^3 V \partial_i E_i = \oint_{\partial V} dA_i E_i$$

wobei A_i die Komponenten des (stets nach außen gerichteten) Flächennormalvektors am Rand des Volumens sind.

Stokescher Integralsatz

Der Satz von Stokes verknüpft ein Oberflächenintegral über eine (gekrümmte) Fläche mit einem Kurvenintegral über den Rand der Fläche:

$$\int_S dA_i \epsilon_{ijk} \partial_j F_k = \oint_{\partial S} ds_i F_i$$

12. Randbedingungen

$$|[E_t]| = 0$$

$$|[D_n]| = 0$$

$$|[B_n]| = 0$$

$$|[A_t]|=0$$

13. Der Kondensator

Ladung

Allgemein gilt für die Ladung Q in einem Kondensator der folgende Zusammenhang mit der elektrischen Spannung U und der Kapazität C:

$$Q = C \cdot U$$

Daraus folgt mit dem Ohm'schen Gesetz:

$$R \cdot C = \frac{\epsilon}{\sigma}$$

Energie

Die Energie U eines Kondensators lässt sich wie folgt berechnen:

$$U = rac{1}{2} \cdot \int_V oldsymbol{D} \cdot oldsymbol{E} \, d^3 x$$

Alternativ kann man die Energie U auch wie folgt berechnen, wobei C die Kapazität darstellt und V die elektrische Spannung:

$$U = rac{1}{2} \cdot C \cdot V^2$$

14. Das elektrische Feld

Allgemeine Zusammenhänge

$$U = s \cdot E$$

$$F = q \cdot E$$

$$E = -\nabla V$$

Elektrische Flussdichte

Die elektrische Flussdichte D ist allgemein wie folgt definiert:

$$oldsymbol{D} = \epsilon \cdot oldsymbol{E} + oldsymbol{P}$$

 $m{E}$ entspricht in diesem Kontext dem elektrischen Feld und $m{P}$ dem Polarisations-Feld, welches selbst über folgende Formel definiert ist:

$$oldsymbol{P} = rac{1}{\delta V} \cdot \sum_{i=0}^{\delta N} oldsymbol{p}_i$$

 δV ist in diesem Kontext eine Volumenseinheit, δN ist die Anzahl an Atomen und ${m p}$ ist der Dipol des i-ten Atoms.

Gauß'sches Gesetz

Die Definition des Gauß'schen Gesetzes für die elektrische Flussdichte D lautet wie folgt:

$$\oint_S m{D} \cdot dm{A} = Q_{enclosed}$$

Basierend auf der ersten Maxwell-Gleichung der Elektrostatik lässt sich auch der folgende Zusammenhang herleiten:

$$oldsymbol{
abla} \cdot oldsymbol{D} =
ho_{free}$$

Vakuum

Im Vakuum und bei isotropen Leitern vereinfacht sich die Definition der elektrischen Flussdichte D wie folgt:

$$oldsymbol{D} = \epsilon_0 \cdot oldsymbol{E}$$

Die relative Permittivität κ stellt das Verhältnis zwischen der Permittivität im Vakuum und der Permittivität im Dielektrikum dar:

$$\kappa = \frac{\epsilon}{\epsilon_0}$$

Unter anderem lässt sich so die Energie U eines Kondensators ableiten:

$$rac{U_0}{U} = rac{\epsilon}{\epsilon_0} = \kappa$$

 ${\cal U}_0$ entspricht dabei der Energie des Kondensators, wenn die Leiterplatten durch ein Vakuum getrennt sind.

Weiters kann auch die Kapazität C über ein ähnliches Verhältnis, basierend auf der Kapazität im Vakuum C_0 , ermittelt werden:

$$rac{C}{C_0} = \kappa$$

15. Geometrien

Kugelkoordinaten

$$ec{r}(R, heta,arphi) = egin{bmatrix} R \cdot \sin heta \cdot \cos arphi \ R \cdot \sin heta \cdot \sin arphi \ R \cdot \cos heta \end{bmatrix}$$

Bzw. mit einer anderen Parametrisierung:

$$ec{r}(R,s,t) = egin{bmatrix} R \cdot \sin s \cdot \cos t \ R \cdot \sin s \cdot \sin t \ R \cdot \cos s \end{bmatrix}$$

In Kugelkoordinaten gilt:

$$dV = r^2 \cdot \sin heta$$

Zum Beispiel:

$$\int_V E\,dV = \int_0^R \int_0^{2\pi} \int_0^\pi E\,d heta darphi dr = \int_0^R \int_0^{2\pi} \int_0^\pi E\cdot r^2\cdot\sin heta\,dr = 4\pi\cdot\int_0^R E\cdot r^2\,dr$$

Kreiskoordinaten / Polarkoordinaten

$$ec{r}(R,arphi) = egin{bmatrix} R \cdot \cos arphi \ R \cdot \sin arphi \end{bmatrix}$$

Bzw. mit einer anderen Parametrisierung:

$$ec{r}(s,t) = egin{bmatrix} s \cdot \cos t \ s \cdot \sin t \end{bmatrix}$$

Zylinderkoordinaten

$$ec{r}(R,arphi) = egin{bmatrix} R \cdot \cos arphi \ R \cdot \sin arphi \end{bmatrix}$$

Bzw. mit einer anderen Parametrisierung:

$$ec{r}(s,t) = egin{bmatrix} s \cdot \cos t \ s \cdot \sin t \end{bmatrix}$$

16. Poisson- und Laplace-Gleichung

Die Poisson-Gleichung lautet wie folgt:

$$-oldsymbol{
abla}^2 V = rac{
ho}{\epsilon_0}$$

Nachdem im Vakuum $\rho(\boldsymbol{x})=0$ ist, ergibt sich die Poisson-Gleichung zu:

Dieser Ausdruck nennt sich die **Laplace-Gleichung**.