

Matemática Discreta Para Computação

Aula de Monitoria - MP4

Roteiro

- Ordem Parcial
- Ordem Lexicográfica
- Diagrama de Hasse
- Reticulados

- Ordem Parcial
 - Uma relação R em um conjunto S com as seguintes propriedades:
 - 1. Reflexiva
 - 2. Anti-simétrica
 - 3. Transitiva
- Conjunto Parcialmente Ordenado (Poset)
 - Um conjunto S juntamente com uma ordem parcial R: (S,R)

- Em um poset, a notação a ≤ b denota que (a,b) pertence a relação R do poset
- A notação a b denota que a ≤ b mas a ≠ b. Dizemos que "a é menor que b" ou "b é maior que a".
- Os elementos a e b em um poset (S,≤) são chamados de comparáveis se a ≤ b ou b ≤ a.

- Se (S,≤) é um poset e cada par de elementos de S são comparáveis, dizemos que S é um conjunto totalmente ordenado ou linearmente ordenado, e ≤ é chamada de ordem total ou linear.
- Um conjunto totalmente ordenado é chamado de cadeia

- MP4 2016.1
- 3. (0,7 pontos). Seja S = N×N e seja R uma relação binária em S definida por (x, y)R(z, w) ↔y|w ^ x ≤ z. Sobre a relação R, responda e justifique adequadamente: A relação R é uma relação de ordem parcial (poset)?

- MP4 2016.1
 - 3. Precisamos provar que a relação é uma ordem parcial. Logo, precisamos provar as propriedades reflexiva, anti--simétrica e transitiva:

Reflexiva

1. Como y | y e $x \le x$ para todo x e y naturais, (x, y) R (x, y).

MP4 - 2016.1 (Cont.)

Anti--simétrica

- 1. Suponha que (a,b) R (c,d) e (c,d) R (a,b)
- 2. De 1, conclui--se que b | d e d | b e a \leq c e c \leq a.
- 3. Podemos reescrever b e d da seguinte forma:

$$d = b * m (1)$$

b = d * n (2), onde m e n são inteiros positivos.

Substituindo (2) em (1):

$$d = d * n * m$$

Conclui--se, portanto que m = n = 1.

Assim, substituindo o valor de m na primeira equação: d = b.

Como a
$$\leq$$
 c e c \leq a, a = c.

Logo, temos que (a,b) e (c,d) são a mesma tupla.

4. Provada a anti--simetria.

• MP4 - 2016.1 (Cont.)

Transitiva

Transitiva (0,3 pontos)

- 1. Suponha que (a,b) R (c,d) e (c,d) R (e,f)
- 2. De 1, conclui-se que b | d e d | f e a \leq c e c \leq e.
- 3. Podemos reescrever d e f da seguinte forma:

$$d = b * m (1)$$

 $f = d * n (2)$,

onde m e n são inteiros positivos. Substituindo (1) em (2):

$$f = b * m * n$$

Como o produto de dois inteiros resulta num inteiro, chamamos m*n de um inteiro positivo t qualquer.

$$f = b * t;$$

MP4 - 2016.1 (Cont.)

Reescrevendo, temos que b | f.

Como a≤ c e c ≤e, a ≤e.

4. De 3, conclui--se que, como b | f e a \leq e, (a,b) R (e,f).

5. Provada a transitividade.

Como provamos as três propriedades, temos que R é uma relação de ordem parcial.

- Precisamos construir uma ordem parcial no produto cartesiano de dois posets (A,≤1) e (B, ≤2)
- A ordem lexicográfica ≤ em A × B é definida da seguinte forma:

 Uma ordem lexicográfica pode ser definida no produto cartesiano de n posets:

$$(A_1, \leq_1), (A_2, \leq_2)..., (A_n, \leq_n).$$

• Defina a ordem parcial em $A_1 \times A_2 \times ... \times A_n$ por: $(a_1,a_2,...,a_n) < (b_1,b_2,...,b_n)$

- Considere as cadeias distintas a₁a₂...a_m e b₁b₂...b_n sobre um conjunto parcialmente ordenado S
- Seja t = mínimo(n,m)
- $a_1a_2...a_m < b_1b_2...b_n$ se e somente se

$$(a_1a_2...a_t) < (b_1b_2...b_t)$$
 ou $(a_1a_2...a_t) = (b_1b_2...b_t)$ e m

- MP4 2017.1
- (0,3) Encontre a ordem lexicográfica do seguinte conjunto
 A, considerando que 0 ≤ 1.
 - $A = \{11,1010,100,1,101,111,110,1001,10,1000\}$

• MP4 - 2017.1

- O Diagrama de Hasse é uma forma mais simples de representar ordens parciais que usando grafos
 - A relação é reflexiva: possui laços em todos os nós
 No diagrama de Hasse, omitimos os laços
 - A relação é transitiva:
 No diagrama de Hasse, omitimos as arestas que indicam a transitividade
 - Desenhamos o diagrama de forma que não é preciso colocar setas

Seja um poset (S, \leq):

- O elemento a é maximal nesse poset se não existe b ∈ S tal que a < b;
- O elemento a é minimal nesse poset se não existe b ∈ S tal que b < a;
- O elemento a é dito o maior elemento nesse poset se para todo b ∈ S, temos b ≤ a;
- O elemento a é dito o menor elemento nesse poset se para todo b ∈ S, temos a ≤ b;

Atenção!

Quando existem, o maior e o menor elementos são únicos no poset.

Seja A um subconjunto do poset (S, \leq) :

- Se u ∈ S e a ≤ u para todo a ∈ A, então u é chamado de limitante superior de A;
- Se i ∈ S e i ≤ a para todo a ∈ A, então i é chamado de limitante superior de A;

Atenção!

Ao contrário de maior e menor elemento, os limitantes superiores e inferiores podem ou não serem únicos no poset, se existirem.

Supremo e ínfimo

- Supremo: o menor dos limitantes superiores;
- **Ínfimo**: o maior dos limitantes inferiores;

Atenção!

Quando existem, supremo e ínfimo são únicos.

- MP4 2016.2
 - 3. (0.6 pt.) Responda às perguntas para o poset ({3, 5, 9, 15, 24, 45}, |).
 - a. Desenhe o diagrama de Hasse do Poset.
 - b. Encontre os elementos maximais.
 - c. Encontre os elementos minimais.
 - d. Há um maior elemento? Se sim, qual?
 - e. Há um menor elemento? Se sim, qual?
 - f. Encontre os limitantes superiores de {3, 5}.
 - g. Encontre o supremo de {3, 5}, se existir.
 - h. Encontre os limitantes inferiores de {15, 45}.
 - i. Encontre o ínfimo de {15, 45}, se existir.

• MP4 - 2016.2


```
b) maximais = {24, 45}.
c) minimais = {3, 5}.
d) Não.
e) Não
f) superiores{3,5} = {15, 45}.
g) 15.
h) inferiores {15, 45} = {15, 5, 3}.
i) 15.
```

Reticulado

Reticulado

- É um *poset* onde cada par de elementos possui <u>um</u> <u>supremo e um ínfimo</u>
 - Quais dos seguintes diagramas são reticulados?

Reticulado

- MP4 2015.2
- 2. (0,2 Pontos cada letra) Dê um exemplo de um reticulado infinito com
 - a) nem um maior nem um menor elemento.
 - b) um menor, mas não um maior elemento.
 - c) um maior, mas não um menor elemento.
 - d) tanto um maior quanto um menor elemento.

Reticulado

• MP4 - 2015.2

- a) o poset (Z,<=), onde Z são os inteiros e <= é a relação menor-igual.
- b) o poset (N,<=), onde N são os naturais e <= é a relação menor-igual.
- c) o poset (Z-,<=), onde Z- são os inteiros não positivos e <= é a relação menor-igual.
- d) o poset (S,<=), onde S é o conjunto dos números reais de 0 à 1 e <= é a relação menor-igual.