overing is that municipal to mi
A covering of a graph quis a subsect kitator such at a
C C LOO CHICART ONO PER IN NO. 1 (3) J.
Note: A covering k is minimum covering if q has no covering k
with 16/2/61
with k' < k matching is alternating path in 9. no repeated vertices.
af bc ed > notching.
Covering: $k = \{a, c, d, f\}$ $k' = \{a, c, d, e, f\}$ -inot a minimum Covering.
h albi
Remark: 1) If k is a covering of G and m is matching of G.
1) It has affected of each edge of m.
Then k contains attent one end of each edge of m.
: Imielki
2) Mª - maximum matching
k - maximum covering, then INITE IKI
a) IC G is himstile, we do have M* = K
and the or covering
'emma: Let M be a matching and kis [MI=1kl. Then M is a maximum matching and kis Coulding.
[M] = [K] Country:
a minimum covering. [M=1K] [M=K] [M=K]
hmol.
IMI = IKI = IKIE (K)
MUMICIKIC (K)
12 th = 12
[M#]=[R]

In a bipartite graph G, the no. of edges in a maximum matching is equal to the number of vertices in a minimum covering. |M|= |K| proof: Covering: - KOCV 3 every edge of G has atleast one end Covering number: B(G) - Cardinality of minimum Comm Edge Covering: A L € E 3 each vertex of G is an end of some edge in L. Independent Set: A subset sof Vis called as independent Set OF. G it no two vertices of s are adjacent in G. An independant set is maximum if q has no independant Set s' with | | | > | 2 |. $\begin{cases} a,c \\ z \end{cases} = S \quad (independent)$ Maximum independent set. Clique: - A clique of a simple graph is a subset S of V such that G[s] is complete. QS= Zabcy G[s]= Complete e c S={bcd} G[s] = Complete.

X(a): Independance number of G: Cardinality of maximum independent set: Theorem: A set SCV is an independent set iff Vls is a covering of a Gr ナ、冬、 (チ、こ)。 proof: S is independent set.

no edge of q has both edger in s. (each edge has attent one end in V/s Therefore Y/e is a cover of g if s is independent set of g x+B=V ollary: e te S - Maximum independent Set. K - minimum covering. k= { f, a, c, d Then V/k is an independent Set. V-K= { 6,e} : 301 V/s is a coveringindependent set B = minimum Couling maximum. x = maximum ind-set. N-K=S => N=071K N-10= |V|K| = x -> 0 d.1: edge independan V- d= |V|S| = B -> 2 Cardinality of maximu (1) and (2) implies: theorem. Theorem: If 870, then x'+ p'= V. B': edge covering number: of minim Cardinality of minim colge Covering. $a = \{fe, dc, ag\}$ $b = \{ag, fe, dc, bg\}$

Independent Set SCV clique & Eq > 9 · Sis clique of G, iff Spisi independent set of GC. $\gamma(s,t)$, s, $t \ge 1$ gugc = kn N=3: black compliment (or) blue. (empty graph) famery's Theorem: Det: The Smallest 1 such that every 2-coloring of kn Contains a monochromatic clique of order sort Denoted by MS, to known as family Number. possible integers, there exist r(s,t) such that if h > r(s,t) and edges of Kn are coloured with hed or buse then there is a "red k - digne." or blue 2-clique 1/4 1/2 0 43 7 (3,3)

> r(s,1)=1 r(1, t)=1 } hivial Case. r(21t) = +. 7(3,2) = 3 r(313) ... > r(3,4): = x(2,4) + x(3,3) ≤ 10. Statement: $\Upsilon(S,t) \leq \Upsilon(s,t-1) + \Upsilon(s-1,t)$. Theorem: Tresit) = r(s-1,t) + r(s,t-1) Recuelion Since it is a panyey runber, it should either have a st dique or + dique. Smallert number T(KIE) 13.401 to my K clique red. L'independent set 7 Blue; (ox cost, 200) hoon wing N= o(k11-1)+r(k-1,1). : best which best : but y red colored? ene (Vo) & (1) x e N blue colored? N-1= |VR/+ |VB| Note: If both o(k, e-1) and o(k-1,e) are even then Strict inequality holds. r(k,l) ≤ r(k,l-1) +r(k-1,1) -1 d(3,3) ≤ r(2,3) + r(3,2) = 6. £ r(2,5)+ r(3,4) + σ(4,5) ≠ σ(3,5) + r(4,4) r(314) + r(413)

D(3,5) & r(3,4) +r(2,5) 2 ≤ 4+6-1+5 € 14. $\gamma(4,4) \leq \gamma(3,4) + \gamma(4,3)$ $\leq r(3,3) + r(2,4) + r(3,3) + r(4,2)$ $\leq 6 - 1 + 6 - 1 + 4 + 2$ (6 + 4) - 1 + (3 + 4) - 1 ≤ 18 (1-11-2) + + (1-1-2) + = (1-2) + (1-2) + (2-1-2) + (1-(k, 1) Ransey graph: A graph sone r(k, 1)+1 vertices that

Contains neither, a k clique graph nor e- independent set. Note: By definition of r (K, d) with (K, d) - rampey graph exist for $k \ge 2$, $k \ge 2$.

(3.5) Ramsey graph; no-of Verticey = 13. it gride trailers.

- (3.5) Ramsey graph; no-of Verticey = 13. it grides.

- (3.5) Ramsey graph; no-of Verticey = 13. it grides. for k=2, l=2. finite field (715, t15, X15) Z13 = {0,1,2---123. (1.1) 5 - (1-1.1) . M.

Rution between Parsey number and field finite field: Lettion between Karrey humber and Hella vin Two vertices are adjacent it their difference is a jouloic residue of modulo 13. Thirt will of the open to make · (2,11.4) + 1 - 2, 1 - 2 (2,1) 6 d: (20) + + (8) por the 18 2 # 1/2 28 1/(2, 8)/ 1 (P.D) 1 / 10(8) 8 3 13 14

(4,4) - Ramsey graph. (a,b) is dif is quadratic residue. \rightarrow ffate ment: $r(k, l) \leq \binom{k+l-2}{k-1}$ from (1,1) = r(k, E) = 1. proof: By induction 8(214) = & Y(K,2)=K. theorem holds when K+1 = 5. - > base case. p. 64: {1,2,1-1-13} portions: 21,4,10,133 8 2, 3, 11, 123, { 511,7,8,93

Schur's theorem: et {S1, S2, Sn } be any partition of the Set of integers {1,2, --- my where is Muthally exclusive and Ramsey number, then for some i,

union of all partitions give the original set Si contains three integers xiy and z Satisfy x+y= 7. Krn with vertices &1,2,--- 8n3 a Color the edges of Krn in colours 1,2. -- in. roof: by the rule, the edge w is assigned color j, iff

y Ramsey; theorem, there exists a monochromatic triangle, that is there are 3 vertices, we can say a,b,c such that ab, bc, cq -, colored with same color, say i.

n= a-b y=b-c == c-a.

2+ リニモ・

Statement: Every k Chromatic graph has a Statement: For any positive integer k, there exists a graph containing no triangle. degnee K-1.

> Planar Graph:
to be planar it
& Jeann graph colled. planet grapes of
Jordan aut.
V, V2 V3 V4 V5 (C: V, V2 V3 V) C: V, V2 V3 V) Origin and terminus
Vi V2 (int, ext) Coincide.
if 14 inside C:
joining Interior and Che
ext: Intersect and
First: when V5 is placed in.
external respectively.
int: when V_5 is placed in V_2 are or C_3 , V_3 , V_1 , V_2 are external respectively. So V_5 is Non planar.
12 tobs iff it contains subgraph tuned
Statement: A graph is nonpolar iff it contains subgraph turned to K3,3 or kt. (Kuratowski)
to K3,3 or kg. (Auditoria)
Demans edges and Vertices.
2) Collapse degree two vertices in
3) Apply an isomorphism it into K3,3 or ks.
0
8 1 (4180,7) Remove 2 3
2 3 Kg. 2
J) 3

Let G(N, E) be a connected planar graph and I be a ¿ Eulers Formula; Set of faces of planar drawing of G. Then WI-181+181=2 ' Ex: -splonplanat. taking and placing dout! DUAL OF A PLANAR GRAPH: let q be a planar graph -> F(G) - Set of faces → Q(F) - no. of facy * Each planar has exactly one unbounded face. * G is a Connected planae graph |V|-|E|+|F|=2. V= {V, , V2, --- V8 } Note: 1) G is a planar, graph and f is a faci. 2) b(f) - boundary of a face f. b(f2) = Vier vy er 13 cy 12 13 V1 b(fs) = V7 e10 V5 e11 V8 e11 V5 e8 V6 c9 V7 3) A face f is said to be incident with every verticus and edges in its boundary.

with e. otherwise there are two facy incident with e. of the degree, dq(f), of a face f is the number of edges. with which edge it is incident. d(f2) = 4 d(f5) = 6 Note: Number of edges in b(f). Dual graph qt of a planar graph q:-1) For each face f in q, there is vertex ft in qt 2) For each edge e in q, there is an edge et in qt. 3) Two vertices f* and g* in g* are joint by an edge et in g* iff their corresponding faces fand g in G are seperated by an edge e in G. Then 9th is called Dual. h er cu G-connect plana $G_1 \cong G_2$ -> Not isomorphic, Check if Gi* = 92*

graph: Grinbergi theorem: 3-Connected: it we remove 3 edg *3-regular, 3- connected non hamilton planar graph - disconnect

Grinbergs Theorem: Let G be a loopless plane graph with har $\frac{2}{2}(i-2)(\phi_{i}^{1}-\phi_{i}^{1})=0$

Then C Containes exactly (E'+1) facy. ξ = = = = + 1 - 1

Now each edge in El is on the boundary of int c. and each edge of C is on the boundary of enactly one face in int C. ξ | φ| = 2ε + ν → @ from (1) and (2) - : N - 2 = 5 (1-2) 0!

5 5 5 5 Cor: Only one face having degree 2 and 3, others have 2 and 3. then Gis non hamiltonian.

Grinbergs Graph:

(8-2)(b= b")+ (9-2)(0)-0)

faces of degree

(5-2) (05-05")+

| w: Show that no Lamilton cycle contain both the edges e and e' in the following graph: