Некоторые задачи (с решениями) к экзамену по курсу ЕНС

«Геометрические структуры в квантовой механике»

(лектор А. И. Шафаревич, осень 2004 г.)

Операторы Лапласа-Бельтрами и Виттена

Вычисление оператора Лапласа—Бельтрами производится непосредственно по формуле $D=d^*d+dd^*$, где $d^*=(-1)^{nk+n+1}*d*$ (k — степень формы, к которого он применяется). Вычисление оператора Виттена возможно как по формуле из определения $D_h=d_hd_h^*+d_h^*d_h$ ($d_h=e^{-f/h}de^{f/h}$), так и по формуле $h^2D_h=h^2D+(df,df)+hR$, где $R=k_fd^*+d^*k_f+k_f^*d+dk_f^*$ ($k_f(\omega)=df\wedge\omega$). Удобство этой формулы в том, что оператор R является недифференциальным (зависит лишь от значений формы в точке: $R(g(x)\omega)=g(x)R(\omega)$), поэтому достаточно вычислять его на базисных формах $(1,dx,dy,dx\wedge dy)$. Вычисление оператора k_f^* производится по формуле $k_f^*=\sum (\partial f/\partial x_j)k_j^*$, где

$$k_j^*(dx_{i_1}\wedge\ldots\wedge dx_{i_k})=\sum_s(-1)^{s+1}g^{ji_s}dx_{i_1}\wedge\ldots\wedge dx_{i_{s-1}}\wedge dx_{i_{s+1}}\wedge\ldots\wedge dx_{i_k}.$$

Замечу также, что в вычислениях (особенно если G не ортогональна) будет постоянно появляться $\sqrt{\det G}$ — коэффициент в форме объёма. Его полезно обозначить одной буквой (но помнить, что это не константа, и его нужно дифференцировать).

Функции Морса

Напомню, что функция f называется $\phi yn\kappa uueŭ$ Mopca, если она имеет конечное число $\kappa pumuuec\kappa ux$ $move\kappa$ (точек, где df=0), причём все они nes ipo medeni: матрица $Q=(\partial^2 f/\partial x_i\partial x_j)$ невырождена. Число отрицательных квадратов в Q называется индексом критической точки.

Задача. Рисуется какая-то замкнутая кривая без самопересечений $(\rho(t), z(t))$ в области $\rho > 0$. Вращая её вокруг оси Oz, получаем поверхность в Oxyz. Спрашивается, будут ли на этой поверхности функциями Морса f = y и f = z.

Решение. Поверхность параметризуется параметрами t и φ :

$$x = \rho(t) \cos \varphi,$$

$$y = \rho(t) \sin \varphi,$$

$$z = z(t).$$

Функция f=z не будет функцией Морса. Нужно взять t_0 , где dz/dt=0 (например, точку максимума z(t)), тогда $df(t_0,\varphi)=0$ при всех φ , т. е. точек df=0 бесконечно много.

Функция f=y будет функцией Морса при некоторых условиях на кривую, указанных ниже. Чтобы dy=0, нужно, чтобы $\cos\varphi=0$ и $\rho'(t)\sin\varphi=0$. $\sin\varphi\neq0$, поэтому $\rho'(t)=0$. Итак, dy=0 в точках, где $\cos\varphi=0$ и $\rho'(t)=0$. Выпишем матрицу вторых производных:

$$\begin{pmatrix} -\rho(t)\sin\varphi & \rho'(t)\cos\varphi \\ \rho'(t)\cos\varphi & \rho''(t)\sin\varphi \end{pmatrix} = \begin{pmatrix} \mp\rho(t) & 0 \\ 0 & \pm\rho''(t) \end{pmatrix}.$$

Следовательно, это функция Морса если и только если (1) в конечном числе точек $\rho'=0$ и (2) во всех этих точках $\rho''\neq 0$ (обычно на рисунке это видно).

Гармонические формы. Числа Бетти

Форма ω называется гармонической, если $D\omega=0$. Оказывается, что необходимое и достаточное условие гармоничности — это $d\omega=0$ и $d^*\omega=0$ (второе условие удобнее проверять в виде $d(*\omega)=0$). Ясно, что гармоничность ω и $*\omega$ имеет место одновременно. Размерность пространства Γ_k гармонических k-форм равна $b_k=\dim H^k$ — k-му числу Бетти (размерности пространства k-мерных когомологий). Из последних двух утверждений мгновенно следует, что $b_k=b_{n-k}$.

Для функции Морса f обозначим через m_k число точек индекса k. Тогда верны следующие неравенства (неравенста Морса):

$$m_k \geqslant b_k,$$

$$\sum_{j=0}^k (-1)^{k-j} m_j \geqslant \sum_{j=0}^k (-1)^{k-j} b_j$$

и равенство (теорема Морса об индексе)

$$\sum_{j=0}^{n} (-1)^{n-j} m_j = \sum_{j=0}^{n} (-1)^{n-j} b_j.$$

Вычисление гармонических 0-форм $\omega = f(x)$ особенно просто: условие $d^*\omega = 0$ выполнено всегда, поскольку левая часть — это (-1)-форма. Условие df = 0 означает, что f является константой на компонентах связности. Итак, для связного многообразия $b_0 = 1$ и $\Gamma_0 = \langle 1 \rangle$.

Вычисление Γ_n тоже просто, поскольку $\Gamma_n = *\Gamma_0$. Легко проверить, что $*1 = \Omega$ (форма объёма). Тогда $\Gamma_n = \langle \Omega \rangle$ (в случае связного многообразия).

Задача. Найти гармонические формы на n-мерном эллипсоиде $\sum_{i=1}^{n+1} x_i^2/a_i^2 = 1$.

Решение. Γ_0 и Γ_n вычисляются как указано выше. Гармонических форм других размерностей нет: рассмотрим функцию $f=x_{n+1}$. Она имеет один минимум (индекс равен 0) и один максимум (индекс n), других критических точек не имеет. Поэтому если $1\leqslant k\leqslant n-1$, то $b_k\leqslant m_k=0$, т. е. $b_k=0$.

Задача. Найти все гармонические формы на торе T^n с метрикой $ds^2 = dx_1^2 + \ldots + dx_n^2$. (Имеется в виду, что $T^n = \mathbb{R}^n(x_1, x_2, \ldots, x_n)/\mathbb{Z}^n$.)

Решение 1. Вспомним, что если метрика плоская, то $D(f\,dx_{i_1}\wedge dx_{i_2}\wedge\ldots\wedge dx_{i_k})=(-\Delta f)dx_{i_1}\wedge dx_{i_2}\wedge\ldots\wedge dx_{i_k}$. Значит, все коэффициенты в мономах перед $dx_{i_1}\wedge dx_{i_2}\wedge\ldots\wedge dx_{i_k}$ являются гармоническими функциями. Но гармонические функции (если они не константы) достигают экстремума на границе компакта. Тор компактен, а границы не имеет. Значит, такие функции — константы. Чуть более подробно: соответствующее утверждение для компакта в \mathbb{R}^n доказано в курсе УрЧП, Если в некоторой точке $P\in T^n$ значение f(x) максимально, то, применяя утверждение для локальной карты, получим, что в малой окрестности f равна этому же числу. Далее проводим стандартное рассуждение об открытости и замкнутости множества $\{x\colon f(x)=\max_{T^n}f(\xi)\}$: оно непусто, замкнуто из непрерывности f, и открыто по доказанному. Значит, это весь тор. Итак, гармоническими являются в точности формы с постоянными коэффициентами.

Решение 2. Ясно, что всякая форма ω с постоянными коэфициентами гармоническая: d от неё, очевидно, ноль, а d^* — ноль, поскольку $*\omega$ тоже имеет постоянные коэффициенты. Итак, найдено C_n^k линейно независимых гармонических форм степени k. Покажем, что больше их нет. Для этого рассмотрим функцию $f(x) = \cos(2\pi x_1) + \ldots + \cos(2\pi x_n)$. Её особые точки — это все точки с координатами 0 и 1/2, причём их индекс равен количеству координат, равных 0 (скажем, индекс (0,1/2,1/2,0,1/2) будет 2). Значит, $\dim \Gamma_k = b_k \leqslant m_k(f) = C_n^k$.

Задача. Найти гармонические формы на торе вращения в \mathbb{R}^3 .

Решение. Итак, рассматривается погружённый в \mathbb{R}^3 тор:

$$x = (R + r \cos \psi) \cos \varphi,$$

$$y = (R + r \cos \psi) \cos \varphi,$$

$$z = r \sin \varphi$$

с метрикой, индуцированной из евклидовой на \mathbb{R}^3 . Легко проверить, что матрица метрики в этих координатах такова:

$$G = \begin{pmatrix} (\partial_{\varphi}, \partial_{\varphi}) & (\partial_{\varphi}, \partial_{\psi}) \\ (\partial_{\psi}, \partial_{\varphi}) & (\partial_{\psi}, \partial_{\psi}) \end{pmatrix} = \begin{pmatrix} (R + r \cos \psi)^2 & 0 \\ 0 & r^2 \end{pmatrix}.$$

Переходим непосредственно к поиску гармонических форм. Как обычно, гармонические 0-формы — это константы, а 2-формы — это $c\Omega$, т. е. $cr(R+r\cos\psi)d\varphi\wedge d\psi$. Как известно, (см. предыдущую задачу) $\dim\Gamma_1=2$, поэтому нужно найти две линейно независимые гармонические 1-формы.

Проверим, что одной из них будет $d\varphi$. Действительно, $d(d\varphi) = ((\partial 1/\partial \varphi)d\varphi + (\partial 1/\partial \psi)d\psi) \wedge d\varphi = 0$. Заметим, что $*d\varphi = f(\psi)d\psi$. f не зависит от φ , поскольку коэффициенты метрики не зависят от φ . Поэтому $d*(d\varphi) = f'(\psi)d\psi \wedge d\psi = 0$. Значит, $d\varphi$ гармоническая.

Второй гармонической 1-формой будет $*d\varphi$. Найдём её. Пусть $*d\varphi = ad\varphi + bd\psi$. Тогда из равенства $\alpha \wedge *d\varphi = (\alpha, d\varphi)\Omega$ находим при $\alpha = d\varphi$: $bd\varphi \wedge d\psi = (R + rcos\psi)^{-2}r(R + rcos\psi)\varphi \wedge d\psi$, т. е. $b = r/(R + r\cos\psi)$, а при $\alpha = d\psi$: $-ad\varphi \wedge d\psi = 0$. Значит, $*d\varphi = [r/(R + r\cos\psi)]d\psi$.

Ясно, что эти формы линейно независимы. Значит, всё Γ_1 — это их линейные комбинации.

1. Осцилляторное приближение

Рассматривается оператор (оператор Шрёдингера, оператор Гамильтона)

$$\hat{H}\psi = -\frac{h^2}{2}\frac{d^2\psi}{dx^2} + V(x)\psi.$$

(В многомерном случае вместо ψ'' ставится $\Delta \psi$.) Спрашивается, какие он имеет собственные значения: такие значения E, при которых решения уравнения $\hat{H}\psi = E\psi$ ограничены на бесконечности. Особенно интересно поведения спектра при $h \to 0$.

Имеет место следующая теорема: пусть $\min V(x)=0$ и вне некоторого компакта $V(x)>\delta$. Пусть точек x_k глобального минимума V(x) конечное число. В них есть матрицы $\Omega^2(x_k)$ вторых производных 1 Пусть они невырождены, а их собственные значения — $(\omega_j(x_k))^2$. Тогда рассмотрим набор $\mathcal{E}=\cup\mathcal{E}(x_k)$, где $\mathcal{E}(x_k)=\{\sum_j h\omega_j(x_k)(2m_j+1)/2,m_j\in\mathbb{Z}_+\}$ («набор» означает множество с повторениями: если при разных \vec{m} получается одно и тоже, то такое число входит в \mathcal{E}_m дважды, трижды, и т. д.) Возьмём $E_1,\ldots E_M$ — M самых меньших элементов из \mathcal{E} (с учётом кратностей). Пусть $\mathcal{E}(h)$ — спектр \hat{H} , Утверждается, что при $h< h_0(M)$ набор $\mathcal{E}(h)$ содержит по меньшей мере M собственных значений и M наименьших из них: $E_1(h),\ldots E_M(h)$ приближают $E_j\colon E_j(h)=E_j+o(h)$.

Ясно, что если $\min V(x) = V_0$, то нужно ко всем элементам $\mathcal E$ прибавить V_0 .

(Замечу в скобках, что при доказательстве неравенств Морса эта теорема применялась (хотя это и не говорилось) в гораздо более общей ситуации линейного расслоения над многообразием, коим является пространство дифференциальных форм.)

Если $V(x)=1/2(x,\Omega^2x)$, то система с таким потенциалом называется (квантовым) осциллятором. Её спектр — $\{\sum_j h\omega_j(2m_j+1)/2, m_j\in\mathbb{Z}_+\}$, где ω_j^2 — собственные числа матрицы Ω^2 .

Задача. Найти спектр двумерного оператора Шрёдингера с $V(x_1,\ldots,x_n)=\frac{1}{2}(x_1^2+2x_2^2+3x_3^2+\ldots+nx_n^2)$. Имеет ли он кратные собственные значения?

Решение. $\mathcal{E} = \left\{ \frac{h}{2} \left[\sum_{j=1}^n \sqrt{j} (2m_j + 1) \right], m_j \in \mathbb{Z}_+ \right\}$. Кратные собственные значения имеются при $n \geqslant 4$: $\vec{m} = (2,0,0,0,0,\ldots 0)$ и $\vec{m}' = (0,0,0,1,0,0,\ldots 0)$ дают равные собственные значения. Если бы при n < 4 были кратные собственные значения, то $1,\sqrt{2}$ и $\sqrt{3}$ были бы линейно зависимы над \mathbb{Q} , что неверно. (Доказательство: $a + b\sqrt{2} = c\sqrt{3}$, тогда $3c^2 - a^2 - 2b^2 = 2ab\sqrt{2}$, откуда ab = 0. При b = 0 получаем, что $\sqrt{3}$ рационален, а при a = 0 — $\sqrt{2/3}$ рационален.

Задача. Используя осцилляторное приближение, найти квазиклассический предел первых 10 собственных чисел оператора Шрёдингера с потенциалом $V(x_1, x_2) = (x_1^2 - a^2)^2 + x_2^2$.

Решение. Минимум достигается при $x_1 = \pm a, x_2 = 0$. Значит, с точностью o(h) (аккуратная формулировка — выше) спектр есть $\frac{h}{2}[\sqrt{2}(2l+1) + 2\sqrt{2}a(2m+1)]$, и все эти числа входят в него по два раза (поскольку точек две). В зависимости от a разные l, m будут соответствовать первым десяти из них.

Задача. Найти первые десять чисел спектра для $V(x) = \frac{1}{2}(x_1^2 + 2x_2^2 + 4x_3^2)$ и их кратности.

Решение. Общая формула — $E_{\vec{m}} = ((2m_1+1)+\sqrt{2}(2m_2+1)+2(2m_3+1))h/2$. Кратные собственные числа соответствуют одному и тому же m_2 и разным m_1 и m_3 . Выпишем сначала таблицу для $(2m_1+1)+2(2m_3+1)$:

	m_1						
m_3	0	1	2	3	4	5	6
0	3	5	7	9	11	13	15
1	7	9	11	13	15		
2	11	13	15				
3	15						

Значит, значения этого выражения — $3,5,7,7,9,9,11,11,11,13,13,\dots$ Теперь выпишем таблицу для $2E_{\vec{m}}/h$:

	m_2							
	0	1	2	3				
3	4,4	7,2	10,0	12,8				
5	6,4	9,2	12,0					
7	8,4	11,2						
9	10,4							
11	12,4							

(Здесь выписаны приближения e' к величине e, для которых e' < e < e' + 0,1.) Все остальные собственные значения больше 13. Итак, первые 10 собственных значений $3 + \sqrt{2}$ (кратность 1), $5 + \sqrt{2}$ (1), $3 + 3\sqrt{2}$ (1), $7 + \sqrt{2}$ (2), $5 + 3\sqrt{2}$ (1), $3 + 5\sqrt{2}$ (1), $9 + \sqrt{2}$ (2), $7 + 3\sqrt{2}$ (2), $5 + 5\sqrt{2}$ (1), $11 + \sqrt{2}$ (3) (и всё это надо умножить на h/2).

Оператор монодромии. Потенциальные барьеры и ямы

Пусть V(x) отличен от нуля лишь на конечном отрезке I (x одномерно). Тогда решения слева от него — это решение уравнения $-\frac{\hbar^2}{2}\psi''=E\psi$, что в зависимости от знака E есть две экспоненты или синус и косинус.

 $^{^{1}\}Omega^{2}$ — единое обозначение, а не $\Omega\Omega$.

Решения справа от отрезка I такое же. Имеем линейных оператор на двумерном пространстве решений этого уравнения, который переводит решение ψ_1 в решение ψ_2 , такое что существует решение ψ уравнения $-\frac{h^2}{2}\psi'' + V(x)\psi = E\psi$, совпадающее с ψ_1 слева, а с ψ_2 справа от I. Он и называется оператором монодромии.

Оператор монодромии осмысленно рассматривать при E>0. В этом случае в базисе из комплексных экспонент $e^{\pm ikx}$ $(k=\sqrt{2E/h})$ он имеет вид $M=\left(\begin{smallmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{smallmatrix} \right)$, где $|\alpha|^2-|\beta|^2=1$. Если $V(x)=V_1(x)+V_2(x)$ и носитель V_1 левее носителя V_2 , то оператор монодромии M для V(x)

Если $V(x)=V_1(x)+V_2(x)$ и носитель V_1 левее носителя V_2 , то оператор монодромии M для V(x) есть M_2M_1 , где $M_{1,2}$ — операторы монодромии $V_{1,2}$. Пусть оператор монодромии для функции V(x) есть M. Найдём оператор монодромии для функции V'(x)=V(x-a). Пусть $U\colon f(x)\mapsto f(x+a)$. Тогда $M'=U^{-1}MU$. В базисе e^{ikx},e^{-ikx} имеем:

$$M' = \begin{pmatrix} e^{-ika} & 0 \\ 0 & e^{ika} \end{pmatrix} \begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} e^{ika} & 0 \\ 0 & e^{-ika} \end{pmatrix} = \begin{pmatrix} \alpha & e^{-2ika}\bar{\beta} \\ e^{2ika}\beta & \bar{\alpha} \end{pmatrix}.$$

Физический смысл имеют две характеристики — коэффициент прохождения $T=1/|\alpha|^2$ и коэффициент отражения $R=|\beta/\alpha|^2, R+T=1.$

Задача. Найти оператор монодромии для двойного прямоугольного барьера

$$V(x) = \begin{cases} V_0 > 0, & x \in (0, a) \cup (b, b + a), \\ 0, & \text{иначе} \end{cases}$$

(0 < a < b). Существуют ли энергии $E < V_0$, при которых коэффициент прохождения равен 1?

Решение. Найдём оператор монодромии при $0 < E < V_0$ для $V(x) = V_0 \chi_{(0,a)}(x)$. Решение слева от 0: e^{ikx} $(k = \sqrt{2E}/h)$, на (0,a): $\lambda e^{\varkappa x} + \mu e^{-\varkappa x}$ $(\varkappa = \sqrt{2(V-E)}/h)$, справа от a: $\alpha e^{ikx} + \beta e^{-ikx}$. Коэффициенты λ , μ , α , β находятся из условий 1-гладкости решения в точках склейки:

$$\lambda + \mu = 1, \qquad \alpha e^{ika} + \beta e^{-ika} = \lambda e^{\varkappa a} + \mu e^{-\varkappa a}, \lambda - \mu = \frac{ik}{\varkappa}, \qquad \alpha e^{ika} - \beta e^{-ika} = \frac{\varkappa}{ik} (\lambda e^{\varkappa a} - \mu e^{-\varkappa a}).$$

Отсюда $\lambda = (1 + (ik/\varkappa))/2, \, \mu = (1 + (ik/\varkappa))/2$ и

$$\alpha = \frac{e^{-ika}}{4} \left[e^{\varkappa a} \left(1 + \frac{ik}{\varkappa} \right) \left(1 + \frac{\varkappa}{ik} \right) + e^{-\varkappa a} \left(1 - \frac{ik}{\varkappa} \right) \left(1 - \frac{\varkappa}{ik} \right) \right] = \frac{e^{-ika}}{2} \left[2 \operatorname{ch} \varkappa a + \operatorname{sh} \varkappa a \left(\frac{ik}{\varkappa} + \frac{\varkappa}{ik} \right) \right].$$

Значение β для ответа на второй вопрос задачи не понадобится, поэтому здесь оно не приведено.

Оператор монодромии для потенциала из условия задачи есть

$$M = \begin{pmatrix} \alpha & e^{-2ikb}\bar{\beta} \\ e^{2ikb}\beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \alpha & \bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} = \begin{pmatrix} \cdot & \cdot \\ (e^{2ikb}\alpha + \bar{\alpha})\beta & \cdot \end{pmatrix}.$$

Интересующий нас случай R=0 (резонансное прохождение) соответствует равенству нулю коэффициента $e^{2ikb}\alpha+\bar{\alpha}$, т. е. тому, что $e^{ikb}\alpha\in\mathbb{R}$. Последнее условие эквивалентно

$$e^{ik(b-a)}\left(\operatorname{cth}\varkappa a + \frac{1}{2i}\frac{\varkappa^2 k^2}{\varkappa k}\right) \in \mathbb{R}$$

Исследуем поведение аргумента от выражения в скобках при изменении $E \in (0, V_0)$. \varkappa монотонно убывает к нулю, поэтому cth $\varkappa a$ монотонно возрастает к $+\infty$. $(\varkappa^2-k^2)/(\varkappa k)$ монотонно убывает от $+\infty$ до $-\infty$ (монотонность проще всего заметить из формулы $(\varkappa^2-k^2)/(\varkappa k)=(\varkappa/k)-(k/\varkappa)$). Значит, аргумент растёт от $-\pi/2$ до некоторого положительного значения, (проходя через 0 при $E=V_0/2$).

Аргумент $e^{ik(b-a)}$ растёт от нуля (т. к. b>a). Значит, аргумент $e^{ikb}\alpha$ растёт от $-\pi/2$ и положителен при $E=V_0/2$. Поэтому при некоторой $E,\ 0< E< V_0/2$, он равен нулю. Итак, при всех $V_0>0$, при всех a и b (b>a) существует такая энергия $E\in (0,V_0)$, что R=0.

Задача. Найти собственные значения E < 0 оператора Шрёдингера с потенциалом в виде прямоугольной ямы:

$$V(x) = \begin{cases} V_0 < 0, & x \in (0, a), \\ 0, & \text{uhave.} \end{cases}$$

Решение. Заметим, что потенциал симметричен относительно x=a/2, поэтому если $\psi(x)$ — собственная функция с собственным значением E, то $\psi(a-x)$ — собственная функция с собственным значением E. Тогда $\psi_+(x) = (\psi(x) + \psi(a-x))/2$ и $\psi_-(x) = (\psi(x) - \psi(a-x))/2$ — тоже собственные функции с собственным значением E. (Впрочем, как будет показано ниже, одна из них обязательно будет нулём,

так что собственных значений кратности 2 не будет.) Для удобства далее введём новую координату y = x - a/2 и обозначим b = a/2.

Будем искать собственные значения, для которых собственные функции чётны:

$$\psi(y) = \begin{cases} A\cos\left(\sqrt{\frac{2(|V_0| - |E|}{h^2}}y\right), |y| < b, \\ B\exp\left(-\sqrt{\frac{2|E|}{h^2}}|y|\right), |y| > b. \end{cases}$$

(Вид решения при |y| > b таков, поскольку решение должно быть ограничено на бесконечности.) Коэффициенты A и B ищутся из условия 1-гладкости решения в точках $y = \pm b$. Впрочем, условия в точке y = -b ничем не отличаются от условий в точке b, поэтому выпишем условия в точке b.

$$A\cos\left(\sqrt{\frac{2(|V_0| - |E|)}{h^2}}b\right) = B\exp\left(-\sqrt{\frac{2|E|}{h^2}}b\right),$$
$$-A\sqrt{\frac{2(|V_0| - |E|)}{h^2}}\sin\left(\sqrt{\frac{2(|V_0| - |E|)}{h^2}}b\right) = -B\sqrt{\frac{2|E|}{h^2}}\exp\left(-\sqrt{\frac{2|E|}{h^2}}b\right).$$

Чтобы система имела ненулевое решение, необходимо, чтобы

$$\sqrt{|V_0| - |E|} \operatorname{tg} \left(\sqrt{\frac{2(|V_0| - |E|)}{h^2}} b \right) = \sqrt{|E|}.$$

Для нечётных собственных функций, представляемых в виде

$$\psi(y) = \begin{cases} A \sin\left(\sqrt{\frac{2(|V_0| - |E|}{h^2}}y\right), |y| < b, \\ B \operatorname{sgn} y \exp\left(-\sqrt{\frac{2|E|}{h^2}}|y|\right), |y| > b \end{cases}$$

аналогично находим условие

$$\sqrt{|V_0| - |E|} \operatorname{ctg} \left(\sqrt{\frac{2(|V_0| - |E|)}{h^2}} b \right) = -\sqrt{|E|}.$$

Исследуем корни этих уравнений. Примем $z = \sqrt{2(|V_0| - |E|)}/h$. Тогда уравнения перепишутся в виде

$$z \operatorname{tg}(bz) = \sqrt{A^2 - z^2},$$
$$-z \operatorname{ctg}(bz) = \sqrt{A^2 - z^2},$$

где $A=\sqrt{2V_0}/h$. Левая их часть — возрастающая при z>0 (на каждом интервале непрерывности) функция: $d(z\lg(bz))/dz=(\sin(2bz)+2bz)/(2\cos^2(bz))$, правая — убывающая. Поэтому у первого уравнения на каждом интервале непрерывности $((2k-1)\pi/2b,(2k+1)\pi/2b)$ имеется один корень, если $A>(2k+1)\pi/2b$, k>0. Рассмотрение первого интервала $(0,\pi/2b)$ и последнего (где $(2k-1)\pi/2b < A < (2k+1)\pi/2b$) показывают, что на первом корень есть всегда, а на втором — при $A\geqslant k\pi/b$. Общее число корней, таким образом, равно n, если $\pi(n-1)< Ab\leqslant \pi n$.

Второе уравнение исследуется аналогично, у него n корней при $\pi(2n-1)/2 < Ab \leqslant \pi(2n+1)/2$. Общее число корней равно N при $(N-1)\pi/2 < Ab < N\pi/2$. Корни двух серий, как легко проверить, чередуются: на $[0,\pi b/2]$ — корень первого, на $[\pi b/2,\pi b]$ — корень второго, на $[\pi b,3\pi b/2]$ — корень первого, и т. д. Поэтому кратных среди них нет, так что любая собственная функция либо чётна, либо нечётна.

Спектры оператора Гамильтона в других ситуациях

Не следует думать, что спектр оператора Шрёдингера всегда дискретен. Если потенциал не ограничен снизу, он вполне может быть непрерывен, как показывает следующая

Задача. Найти спектр оператора Шрёдингера с $V(x_1, x_2) = (x_1^2 - x_2^2)/2$.

Решение. Как обычно, переменные разделяются. Спектр одномерного оператора с $V(x_1) = x_1^2/2$ хорошо известен: $(2m+1)h/2, m \in \mathbb{Z}_+$.

Найдём спектр одномерного оператора с $V(x)=-x^2/2$. Итак, нужно найти, при каких $E\in\mathbb{R}$ существует решение уравнения

$$h^2\psi''(x) + (x^2 + 2E)\psi = 0,$$

ограниченное на бесконечности. Оказывается, что все его решения при всех E ограничены. Для этого рассмотрим функцию $A(x)=h^2\psi'^2(x)+(x^2+2E)\psi^2(x)$. (Её смысл — это «почти энергия»: если бы x «не менялось», то A'(x)=0.) Тогда $A'=2\psi'(h^2\psi''+(x^2+2E)\psi)+2x\psi^2=2x\psi^2$. Значит, $dA\leqslant [2x/(x^2+2E)]Adx$, т. е. $d(\ln A)\leqslant d(\ln(x^2+2E))$ (если $x^2+2E>0$, что обязательно так вне некоторой окрестности нуля). Интегрируя это неравенство, получим, что $\ln A\leqslant \ln(x^2+2E)+\ln C$ (при $x>x_0$), т. е. $A< C(x^2+2E)$. Значит, $\psi^2< C$, т. е. решение ограничено на $+\infty$. Ограниченность на $-\infty$ проверяется либо дословным повторением всех рассуждений, либо заменой решения $\psi(x)$ на решение $\psi(-x)$.

Среди операторов Гамильтона встречаются операторы, не являющиеся оператором Шрёдингера:

Задача. Найти спектр оператора, соответствующего гамильтониану $p_1x_2 - p_2x_1$.

Решение. Соответствующее уравнение имеет вид $-ih(x_2\psi'_{x_1}-x_1\psi'_{x_2})=E\psi$. Решение УрЧП первой степени начинается с поиска характеристик — поверхностей, где дифференциальный оператор равен 0: их уравнение $dx_1/x_2=-dx_2/x_1$, т. е. $d(x_1^2+x_2^2)=0$. Одну переменную нужно взять так, чтобы она была постоянна вдоль характеристик, а за остальные — что угодно. Берём систему полярную систему координат (r,φ) : тогда

$$dx_1 = \cos \varphi \, dr - x_2 \, d\varphi,$$

$$dx_2 = \sin \varphi \, dr + x_1 \, d\varphi.$$

Значит, $d\psi=(\psi'_{x_1}\cos\varphi+\psi'_{x_2}\sin\varphi)dr+(-x_2\psi'_{x_1}+x_1\psi'_{x_2})d\varphi$. Следовательно, уравнение перепишется в виде $ih\psi'_{\varphi}=E\psi$. Его решения — $\psi=f(r)e^{E\varphi/ih}$. Чтобы это была корректно заданная функция, необходимо и достаточно, чтобы E/h было целым числом (при $\varphi=0$ и $\varphi=2\pi$ должно получаться одно и то же). Гладкость в нуле и ограниченность на бесконечности можно получить, выбрав f(r) ограниченной и быстро стремящейся к нулю при $r\to+0$. Итак, спектр — это $\{kh,k\in\mathbb{Z}\}$.