

# CONTROL VALVE SIZING HANDBOOK



## **Table of Contents**

| Flow Coefficient                              | 3  |
|-----------------------------------------------|----|
| Operating Conditions                          | 3  |
| Specific Gravity                              | 3  |
| Pressure Drop Across the Valve                | 4  |
| Flowing Quantity                              | 4  |
| Liquid Flow Equations                         | 5  |
| Liquid Pressure Recovery Factor               | 6  |
| Combined Liquid Pressure Recovery Factor      | 6  |
| Cavitation in Control Valves                  | 6  |
| Effect of Pipe Reducers                       | 11 |
| Equations for Nonturbulent Flow               | 12 |
| Gas and Vapor Flow Equations                  | 13 |
| Multistage Valve Gas and Vapor Flow Equations | 14 |
| Ratio of Specific Heats Factor                | 14 |
| Expansion Factor                              | 14 |
| Two-Phase Flow Equations                      | 15 |
| Choked Flow                                   | 16 |
| Supercritical Fluids                          | 16 |
| Compressibility                               | 17 |
| Thermodynamic Critical Constants              | 19 |
|                                               |    |
|                                               |    |
| Engineering Data                              |    |
| 5                                             |    |
| Liquid Velocity in Steel Pipe                 | 21 |
| Steam or Gas Flow in Steel Pipe               | 21 |
| Commercial Wrought Steel Pipe Data            | 24 |
| Temperature Conversion Table                  | 26 |
| Metric Conversion Tables                      | 27 |
| Useful List of Equivalents                    | 29 |
| References                                    | 20 |

Particulars contained in this publication are for general information only and Masoneilan reserves the right to modify the contents without prior notice. No warranty either expressed or implied is either given or intended.

© 2004 Dresser, Inc. All rights reserved.



#### **Foreword**

This handbook on control valve sizing is based on the use of nomenclature and sizing equations from ANSI/ISA Standard S75.01.01 and IEC Standard 60534-2-1. Additional explanations and supportive information are provided beyond the content of the standards.

The sizing equations are based on equations for predicting the flow of compressible and incompressible fluids through control valves. The equations are not intended for use when dense slurries, dry solids or non-Newtonian liquids are encountered.

Original equations and methods developed by Masoneilan are included for two-phase flow, multistage flow, and supercritical fluids.

Values of numerical factors are included for commonly encountered systems of units. These are United States customary units and metric units for both kilopascal and bar usage.

The principal use of the equations is to aid in the selection of an appropriate valve size for a specific application. In this procedure, the numbers in the equations consist of values for the fluid and flow conditions and known values for the selected valve at rated opening. With these factors in the equation, the unknown (or product of the unknowns, e.g.,  $F_p \, C_v$ ) can be computed. Although these computed numbers are often suitable for selecting a valve from a series of discrete sizes, they do not represent a true operating condition. Some of the factors are for the valve at rated travel, while others relating to the operating conditions are for the partially open valve.

Once a valve size has been selected, the remaining unknowns, such as  $F_p$ , can be computed and a judgement can be made as to whether the valve size is adequate. It is not usually necessary to carry the calculations further to predict the exact opening. To do this, all the pertinent sizing factors must be known at fractional valve openings. A computer sizing program having this information in a database can perform this task.

## Flow Coefficient C<sub>1</sub>

The use of the flow coefficient,  $C_{\rm v}$ , first introduced by Masoneilan in 1944, quickly became accepted as the universal yardstick of valve capacity. So useful has  $C_{\rm v}$  become, that practically all discussions of valve design and characteristics or flow behavior now employ this coefficient.

By definition, the valve flow coefficient,  $C_{v}$ , is the number of U.S. gallons per minute of water at 60°F that will pass

through a given flow restriction with a pressure drop of one psi. For example, a control valve that has a maximum flow coefficient,  $C_{\rm V}$ , of 12 has an effective port area in the full open position such that it passes 12 gpm of water with one psi pressure drop. Basically, it is a capacity index upon which the engineer can rapidly and accurately estimate the required size of a restriction in any fluid system.

## **Operating Conditions**

The selection of a correct valve size, as determined by formula, is always premised on the assumption of full knowledge of the actual flowing conditions. Frequently, one or more of these conditions is arbitrarily assumed. It is the evaluation of these arbitrary data that really determines the final valve size. No formulas, only good common sense combined with experience, can solve this problem.

There is no substitute for good engineering judgement. Most errors in sizing are due to incorrect assumptions as to actual flowing conditions. Generally speaking, the tendency is to make the valve too large to be on the "safe" side (commonly referred to as "oversizing"). A combination of several of these "safety factors" can result in a valve so greatly oversized it tends to be troublesome.

## **Specific Gravity**

In the flow formulas, the specific gravity is a square root function; therefore, small differences in gravity have a minor effect on valve capacity. If the specific gravity is not known accurately, a reasonable assumption will suffice. The use of .9 specific gravity, for example, instead of .8 would cause an error of less than 5% in valve capacity.



## **Pressure Drop Across the Valve**

On a simple back pressure or pressure reducing application, the drop across the valve may be calculated quite accurately. This may also be true on a liquid level control installation, where the liquid is passing from one vessel at a constant pressure to another vessel at a lower constant pressure. If the pressure difference is relatively small, some allowance may be necessary for line friction. On the other hand, in a large percentage of control applications, the pressure drop across the valve will be chosen arbitrarily.

Any attempt to state a specific numerical rule for such a choice becomes too complex to be practical. The design drop across the valve is sometimes expressed as a percentage of the friction drop in the system, exclusive of the valve. A good working rule is that 50% of this friction drop should be available as drop across the valve. In other words, one-third of the total system drop, including all heat exchangers, mixing nozzles, piping etc., is assumed to be absorbed by the control valve. This may sound excessive, but if the control valve were completely eliminated from such a system, the flow increase would only be about 23%. In pump discharge systems, the head characteristic of the pump becomes a major factor. For valves installed in extremely long or high-pressure drop lines, the percentage of drop across the valve may be somewhat lower, but at least 15% (up to 25% where possible) of the system drop should be taken.

Remember one important fact, the pressure differential absorbed by the control valve in actual operation will be the difference between the total available head and that required to maintain the desired flow through the valve. It is determined by the system characteristics rather than by the theoretical assumptions of the engineer. In the interest of economy, the engineer tries to keep the control valve pressure drop as low as possible. However, a valve can only regulate flow by absorbing and giving up pressure drop to the system. As the proportion of the system drop across the valve is reduced, its ability to further increase flow rapidly disappears.

In some cases, it may be necessary to make an arbitrary choice of the pressure drop across the valve because meager process data are available. For instance, if the valve is in a pump discharge line, having a discharge pressure of 7 bar (100 psi), a drop of 0.7 to 1.7 bar (10 to 25 psi) may be assumed sufficient. This is true if the pump discharge line is not extremely long or complicated by large drops through heat exchangers or other equipment. The tendency should be to use the higher figure.

On more complicated systems, consideration should be given to both maximum and minimum operating conditions. Masoneilan Engineering assistance is available for analysis of such applications.

# **Flowing Quantity**

The selection of a control valve is based on the required flowing quantity of the process. The control valve must be selected to operate under several different conditions. The maximum quantity that a valve should be required to pass is 10 to 15% above the specified maximum flow. The normal flow and maximum flow used in size calculations should be based on actual operating conditions, whenever possible, without any factors having been applied.

On many systems, a reduction in flow means an increase in pressure drop, and the  $C_{\rm v}$  ratio may be much greater than would be suspected. If, for example, the maximum operating conditions for a valve are 200 gpm and 25 psi

drop, and the minimum conditions are 25 gpm and 100 psi drop, the  $C_{_{\!\!\!\mbox{}\,\!\!\!}}$  ratio is 16 to 1, not 8 to 1 as it would first seem. The required change in valve  $C_{_{\!\!\!\mbox{}\,\!\!\!}}$  is the product of the ratio of maximum to minimum flow and the square root of the ratio of maximum to minimum pressure drop, e.g.,

$$\frac{200 \times \sqrt{100}}{25 \times \sqrt{25}} = \frac{16}{1}$$

There are many systems where the increase in pressure drop for this same change in flow is proportionally much greater than in this case.



## **Liquid Flow Equations**

### Flow of Non-vaporizing Liquid

The following equations are used to determine the required capacity of a valve under fully turbulent, non-vaporizing liquid flow conditions. Note  $F_p$  equals unity for the case of valve size equal to line size.

$$C_v = \frac{q}{N_1 F_p} \sqrt{\frac{G_f}{p_1 - p_2}}$$

$$C_V = \frac{w}{N_6 F_P \sqrt{(p_1 - p_2) \gamma_1}}$$

### **Choked Flow of Vaporizing Liquid**

Choked flow is a limiting flow rate. With liquid streams, choking occurs as a result of vaporization of the liquid when the pressure within the valve falls below the vapor pressure of the liquid.

Liquid flow is choked if

$$\Delta p \geq F_L^2 (p_1 - F_F p_v)$$

In this case, the following equations are used.

$$C_V = \frac{q}{N_1 F_{LP}} \sqrt{\frac{G_f}{p_1 - F_F p_V}}$$

$$C_V = \frac{W}{N_6 F_{LP} \sqrt{(p_1 - F_F p_V) \gamma_1}}$$

## **Nomenclature**

 $C_{v}$  = valve flow coefficient

N = numerical constants based on units used (see Table 1)

 $F_p$  = piping geometry factor (reducer correction)

 $F_{\rm F}$  = liquid critical pressure factor = 0.96 - 0.28  $\sqrt{\frac{p_{\rm V}}{p_{\rm c}}}$ 

F<sub>L</sub> = liquid pressure recovery factor for a valve

F<sub>LP</sub> = combined pressure recovery and piping geometry factor for a valve with attached fittings

K<sub>i</sub> = velocity head factors for an inlet fitting, dimensionless

p<sub>c</sub> = pressure at thermodynamic critical point

q = volumetric flow rate

G<sub>f</sub> = specific gravity at flowing temperature (water = 1) @ 60°F/15.5°C

p, = upstream pressure

p, = vapor pressure of liquid at flowing temperature

p<sub>2</sub> = downstream pressurew = weight (mass) flow rate

γ<sub>1</sub> = specific weight (mass density) upstream conditions

# **Numerical Constants for Liquid Flow Equations**

| С              | onstant | Units Used in Equations |      |                      |      |                    |  |  |  |
|----------------|---------|-------------------------|------|----------------------|------|--------------------|--|--|--|
| N              |         | w q                     |      | <b>p,</b> ∆ <b>p</b> | d, D | γ <sub>1</sub>     |  |  |  |
|                | 0.0865  | -                       | m³/h | kPa                  | -    | -                  |  |  |  |
| N <sub>1</sub> | 0.865   | -                       | m³/h | bar                  | -    | -                  |  |  |  |
|                | 1.00    | -                       | gpm  | psia                 | -    | -                  |  |  |  |
| N <sub>2</sub> | 0.00214 | -                       | -    | -                    | mm   | -                  |  |  |  |
| 12             | 890.0   | -                       | -    | -                    | in   | -                  |  |  |  |
|                | 2.73    | kg/h                    | -    | kPa                  | -    | kg/m³              |  |  |  |
| N <sub>6</sub> | 27.3    | kg/h                    | -    | bar                  | -    | kg/m³              |  |  |  |
|                | 63.3    | lb/h                    | -    | psia                 | -    | lb/ft <sup>3</sup> |  |  |  |

Table 1



# Liquid Pressure Recovery Factor F<sub>L</sub>

The liquid pressure recovery factor is a dimensionless expression of the pressure recovery ratio in a control valve. Mathematically, it is defined as follows:

$$F_L = \sqrt{\frac{p_1 - p_2}{p_1 - p_{vc}}}$$

In this expression,  $p_{vc}$  is the pressure at the vena contracta in the valve.

Liquid pressure recovery factors for various valve types at rated travel and at lower valve travel are shown in product bulletins. These values are determined by laboratory test in accordance with prevailing ISA and IEC standards.

# Combined Liquid Pressure Recovery Factor F<sub>LP</sub>

When a valve is installed with reducers, the liquid pressure recovery of the valve reducer combination is not the same as that for the valve alone. For calculations involving choked flow, it is convenient to treat the piping geometry factor  $F_p$  and the  $F_L$  factor for the valve reducer combination as a single factor  $F_{LP}$ . The value of  $F_L$  for the combination is then  $F_{LP}/F_p$  where :

 $\frac{\mathbf{F_{LP}}}{\mathbf{F_p}} = \sqrt{\frac{\mathbf{p_1} \cdot \mathbf{p_2}}{\mathbf{p_1} \cdot \mathbf{p_{vc}}}}$ 

The following equation may be used to determine  $F_{\rm Lp}$ .

$$F_{LP} = F_L \left( \frac{K_i F_L^2 C_v^2}{N_2 d^4} + 1 \right)^{-1/2}$$

where  $K_i = K_1 + K_{B1}$  (inlet loss and Bernoulli coefficients)

## **Cavitation in Control Valves**

Cavitation, a detrimental process long associated with pumps, gains importance in control valves due to higher pressure drops for liquids and increased employment of high pressure recovery valves (e.g. butterfly and ball valves).

Cavitation, briefly, is the transformation of a portion of liquid into the vapor phase during rapid acceleration of the fluid in the valve orifice, and the subsequent collapse of vapor bubbles downstream. The collapse of vapor bubbles can produce localized pressure up to 100,000 psi (7000 bar) and are singly most responsible for the rapid erosion of valve trim under high pressure drop conditions.

It is, therefore, necessary to understand and to prevent this phenomenon, particularly when high pressure drop conditions are encountered.

Cavitation in a control valve handling a pure liquid may occur if the static pressure of the flowing liquid tends to decrease to a value less than the fluid vapor pressure. At this point, continuity of flow is broken by the formation of vapor bubbles. Since all control valves exhibit some pressure recovery, the final downstream pressure is generally higher than the orifice throat static pressure. When downstream pressure is higher than vapor pressure of the fluid, the vapor bubbles revert back to liquid. This two-stage transformation is defined as cavitation.

The pressure recovery in a valve is a function of its particular internal geometry. In general, the more streamlined a valve is, the more pressure recovery is experienced. This increases the possibility of cavitation.

The pressure recovery factor,  $F_L$ , is useful for valve sizing purposes to predict limiting choked flow rate under fully cavitating conditions. However, the use of  $F_L$  can be misleading to predict limiting pressure drop at which damaging cavitation will result.

An enhanced cavitation prediction method is described in the ISA Recommended Practice ISA-RP75.23-1995 "Considerations for Evaluating Control Valve Cavitation". The recommended practice is based on the "Sigma" method, where sigma is defined as:

$$\sigma = \frac{(P_1 - P_V)}{(P_1 - P_2)}$$

The determination of sigma is based on cavitation energy levels, not on choked flow. Laboratory testing using high-frequency vibration data establishes sigma values. These sigma values then define different operational regimes for a specific product as illustrated below.



## **Cavitation Prediction "Sigma" Regimes**

Four different operational regimes for each product and lift position.

 $\sigma_i = Inception$ 

 $\sigma_{c}^{'}$  = Constant  $\sigma_{mv}$  = Maximum Vibration

Regime envelopes vary for each product and lift, and are based on laboratory testing.

 $\sigma_{mr}$  = Manufacturer's Recommended Limit

A series of tests have to be run on multiple valve sizes, and at multiple upstream pressures to establish performance curves for each product line.

## Typical Sigma Curve



## Characteristics of the different cavitation regimes are:

#### **Incipient Cavitation:**

- Onset of cavitation
- Detect using high frequency vibration measurement
- Very local phenomenon
- · Transient: random "ticks" sound
- · Low level cavitation: usually not damaging
- · Occurs prior to loss of capacity

#### Constant Cavitation:

- · More regular cavitation events
- Lower frequency sound and vibration sensed: "rumbling" sound
- Some damage to surfaces may occur: dependent upon valve and trim styles, and materials

#### **Maximum Cavitation:**

- · Highest vibration amplitude: sounds like "marbles" or "gravel"
- · Vigorous, large scale cavitation
- Predicted by steady flow pressure distribution (≈ F₁)
- Very high damage potential

#### Manufacturer's Recommended Limit:

- Valve style dependent
- · Provided by manufacturer from combination of:
  - Application experience
  - Laboratory testing (Cavitation damage testing of aluminum parts)
- · Varies with:
  - Size
  - Pressure
- Other application considerations:
  - Materials, usage duration and frequency, fluid properties
  - Fluid velocity
- Testing required for each product line:
  - Sigma curves established for each lift point
  - Minimum of two valve sizes of like geometry tested to establish size scaling factors
  - Minimum of two upstream pressures used to establish pressure scaling factors
  - The use of these two scaling factors allows the application of a particular valve geometry at various pressures and sizes while allowing the same cavitation energy levels to occur



## **Factors Impacting Cavitation Damage**

#### Valve Size

Larger valves increase the extent of the cavitating region. Larger and more damaging bubble size.

Damage Scales with:

$$SSE = \left(\frac{d_{v}}{d_{ref}}\right)^{0.068 \left(\frac{C_{v}}{d_{v}^{2}}\right)^{0.25}}$$

#### **Driving Pressure**

High pressure is more damaging Quantified by exponent 'a'

Damage is proportional to:  $(P_1-P_2)^a$  'a' exponent is from testing at multiple  ${\bf P_1}$  levels

Scaling varies with valve Style and Geometry

## Additional Factors Impacting Cavitation Damage: (Not scaled by ISA- RP75.23)

#### **Fluid Properties**

- Fluid Surface Tension
  - Higher tension, higher collapse energy, more damaging.
  - Water has very high surface tension.
  - Ammonia also has high surface tension.
- · Fluid with multiple constituents
  - Multiple vapor pressures are less damaging as only a portion of the liquid cavitates at service condition.
  - Hydrocarbon mixtures are less damaging.
- Fluid with non-condensable gases
  - Favorable: Gas "cushions" bubble implosion, reducing overpressure and damage.
  - Unfavorable: Cavitation inception occurs "earlier", at higher application "sigma" over a larger region.
     Presence of gas or solid particles 'foster' the formation of bubbles.
- Temperature
  - Impacts gas solubility and degree of cushioning (favorable).
  - Pressure of vaporization, (unfavorable), higher temperature, higher P<sub>v</sub>, increased cavitation possibility.
     Higher temperature decreases surface tension (favorable).

#### **Valve Materials of Construction**

- In most instances, ALL MATERIALS WILL EVENTU-ALLY FAIL!
- Stain-Hardening: Material toughens as it plastically deforms, this is a positive trait.
- Ductility: Ability to deform vs. fracture. Ductile materials exhibit greater resistance than brittle materials.

- Hardness: This is the most important quality, the ability to resist surface pressures. The higher the hardness the greater the resistance.
- Temperature effects material properties, higher temperatures decrease material yield strength levels.

# **Cavitation Can Worsen Corrosion and Chemical Attack on Materials**

- Cavitation weakens material facilitating corrosion attack (and visa versa).
- Cavitation expedites removal of weakened material.
- Cavitation removes protective oxide layers, greatly accelerating additional material removal.

#### **Additional Considerations:**

Some designs can allow a degree of cavitation to occur, however, by controlling the location and energy levels, damage is avoided (Cavitation Containment Designs). For these designs the following considerations, along with the Sigma index, are also important and additional limitations are applied:

- Inlet and inter-stage pressure levels
- Valve body velocity
- · Trim velocity
- Sound power levels



## **Calculation Method**

1. Calculate Applications using Service Conditions

$$\mathbf{\sigma} = \left( \frac{P_1 - P_v}{P_1 - P_2} \right)$$

- 2. Calculate Operating C<sub>v</sub>
- 3. From Product Rating @ C $_{\!\scriptscriptstyle V}$  Find  $\sigma_{\!\scriptscriptstyle mr}$
- 4. Scale  $\sigma_{\!_{mr}}$  to Service Conditions
  - 4.1 Calculate Size Scaling Effect SSE

$$SSE = \left(\frac{d}{d_r}\right)^b \quad \begin{array}{l} \text{d}_r = \text{Ref. Valve Size} \\ \text{d} = \text{Application Valve Size} \\ \text{b} = \text{Size Scaling Exponent} \end{array}$$

4.2 Calculate Pressure Scaling Effect PSE

$$PSE = \left(\frac{\left(P_1 - P_v\right)}{\left(P_1 - P_v\right)_r}\right)^a$$

 $(P_1 - P_y)_r$  = Reference from Testing

4.3  $\sigma_{_{\!\!\boldsymbol{mr}}}$  Scaled to Service Conditions and Valve Size

$$\sigma_{v} = \left( (\sigma_{mr}) SSE - 1 \right) PSE + 1$$

Note: See Nomenclature page 10

## **Calculation Example**

Conditions: Water,  $P_1$  = 275 psia,  $P_2$  = 75 psia,  $P_{\sqrt{}}$  = 4.0  $C_{\sqrt{}}$  req'd = 21, 3 inch Pipe Line

1. 
$$\sigma = \left(\frac{275 - 4}{275 - 75}\right) = 1.36$$

2. Try 2 Inch Camflex @  $C_v = 21$ , F-T-O

3. 
$$\sigma_{mr} = 1.15 @ C_{V} = 21$$

4. Scale  $\sigma_{_{mr}}$  to Service conditions

4.1 SSE = 
$$\left(\frac{2}{1}\right)^{0.132}$$
 = 1.096

4.2 PSE = 
$$\left(\frac{275 - 4}{100}\right)^{0.4}$$
 = 1.49

4.3 
$$\sigma_{V} = \left[ (\sigma_{mr}) 1.096 - 1 \right] 1.49 + 1 = 1.39$$

5. As  $\sigma(1.36) < \sigma_{V}(1.39)$ , – Valve is Not Acceptable –

Try 3 Inch Camflex in the 3 Inch Line

@ 
$$C_V = 21$$
,  $\sigma_{mr} = 1.06$ 

New SSE = 
$$\left(\frac{3}{1}\right)^{0.132}$$
 = 1.156

$$PSE = 1.49$$

New  $\sigma_{v}$ 

$$\sigma_{V} = \left[ (\sigma_{mr}) 1.156 - 1 \right] 1.49 + 1 = 1.34$$

As  $\sigma(1.36) > \sigma_{V}(1.34)$ , – Valve is Acceptable –

Note: Also Check Body Velocity on Camflex



## **Calculation Flow Chart**



## **Nomenclature**

- a Empirical characteristic exponent for calculating PSE
- b A characteristic exponent for calculating SSE; determined from reference valve data for geometrically similar valves.
- $C_{V}$  Valve flow coefficient,  $C_{V} = q(G_{f}/\Delta P)^{1/2}$
- d Valve inlet inside diameter, inches
- d, Valve inlet inside diameter of tested reference valve, inches
- F, Liquid pressure recovery factor
- P<sub>1</sub> Valve inlet static pressure, psia
- P<sub>2</sub> Valve outlet static pressure, psia
- PSE Pressure Scale Effect
- P<sub>v</sub> Absolute fluid vapor pressure of liquid at inlet temperature, psia
- SSE Size Scale Effect

- $\sigma$  Cavitation index equal to  $(P_1-P_v)/(P_1-P_2)$  at service conditions, i.e.,  $\sigma$  (service)
- $\sigma_{\rm c}$  Coefficient for constant cavitation; is equal to  $({\rm P_1}\text{-P_v})\!/\Delta{\rm P}$  at the conditions causing steady cavitation.
- $\sigma_{_{|}}$  Coefficient for incipient cavitation; is equal to  $(P_{_{1}}\text{-}P_{_{V}})\!/\!\Delta P$  at the point where incipient cavitation begins to occur.
- $\sigma_{mr}$  Coefficient of manufacturer's recommended minimum limit of the cavitation index for a specified valve and travel; is equal to minimum recommended value of  $(P_1-P_1)/\Delta P$ .
- σ<sub>mv</sub> Coefficient of cavitation causing maximum vibration as measured on a cavitation parameter plot.



# **Effect of Pipe Reducers**

When valves are mounted between pipe reducers, there is a decrease in actual valve capacity. The reducers cause an additional pressure drop in the system by acting as contractions and enlargements in series with the valve. The Piping Geometry Factor,  $F_p$ , is used to account for this effect.

#### **Piping Geometry Factor**

$$F_p = \left(\frac{C_v^2 \Sigma K}{N_2 d^4} + 1\right)^{-1/2}$$

#### **Pipe Reducer Equations**

Loss Coefficients

inlet 
$$K_1 = 0.5 \left[ 1 - \left( \frac{d}{D_1} \right)^2 \right]^2$$
  
outlet  $K_2 = \left[ 1 - \left( \frac{d}{D_2} \right)^2 \right]^2$ 

Bernoulli Coefficients

$$K_{B1} = 1 - \left(\frac{d}{D_1}\right)^4$$

$$K_{B2} = 1 - \left(\frac{d}{D_2}\right)^4$$

Summation

$$\Sigma K = K_1 + K_2 + K_{B1} - K_{B2}$$

When inlet and outlet reducers are the same size, the Bernoulli coefficients cancel out.

# Nomenclature

C<sub>v</sub> = valve flow capacity coefficient

d = valve end inside diameter

 $D_1$  = inside diameter of upstream pipe

D<sub>2</sub> = inside diameter of downstream pipe

F<sub>p</sub> = piping geometry factor, dimensionless

K<sub>1</sub> = pressure loss coefficient for inlet

reducer, dimensionless

K<sub>2</sub> = pressure loss coefficient for outlet reducer, dimensionless

K<sub>B1</sub> = pressure change (Bernoulli) coefficient for inlet reducer, dimensionless

K<sub>B2</sub> = pressure change (Bernoulli) coefficient for outlet reducer, dimensionless

 $\Sigma K = K_1 + K_2 + K_{B1} - K_{B2}$ , dimensionless



## **Equations for Non-turbulent Flow**

Laminar or transitional flow may result when the liquid viscosity is high, or when valve pressure drop or  $\mathrm{C}_{_{\mathrm{V}}}$  is small. The Valve Reynolds Number Factor is used in the equations as follows :

volumetric flow 
$$C_v = \frac{q}{N_1 F_R} \sqrt{\frac{G_f}{p_1 - p_2}}$$

mass flow 
$$C_V = \frac{W}{N_6 F_R \sqrt{(p_1 - p_2) \gamma_1}}$$

The valve Reynolds number is defined as follows:

$$Re_{v} = \frac{N_{4} F_{d} q}{v F_{L}^{1/2} C_{v}^{1/2}} \left( \frac{F_{L}^{2} C_{v}^{2}}{N_{2} d^{4}} + 1 \right)^{1/4}$$

The Valve Reynolds Number  $\mathrm{Re}_{\mathrm{v}}$  is used to determine the Reynolds Number Factor  $\mathrm{F}_{\mathrm{R}}$ . The factor  $\mathrm{F}_{\mathrm{R}}$  can be estimated from curves in the existing ISA and IEC standards, or by calculation methods shown in the standards. Iteration is required in the method shown in the IEC standard.

## **Nomenclature**

C<sub>v</sub> = valve flow capacity coefficient

d = nominal valve size

F<sub>d</sub> = valve style modifier, dimensionless

F<sub>1</sub> = Liquid pressure recovery factor

F<sub>R</sub> = Reynolds number correction factor, dimensionless

G<sub>f</sub> = specific gravity at flowing temperature

(water = 1) @  $60^{\circ}$ F/15.5°C

 $\Delta p$  = valve pressure drop

q = volumetric flow rate

Re<sub>v</sub> = valve Reynolds number, dimensionless

w = weight (mass) flow rate

 $\gamma$  = mass density of liquid

v = kinematic viscosity, centistokes

# **Numerical Constants for Liquid Flow Equations**

|                | Constant | Units Used in Equations |      |       |      |                |  |  |  |
|----------------|----------|-------------------------|------|-------|------|----------------|--|--|--|
|                | N        |                         | q    | р, ∆р | d, D | γ <sub>1</sub> |  |  |  |
|                | 0.0865   | -                       | m³/h | kPa   | -    | -              |  |  |  |
| N <sub>1</sub> | 0.865    | -                       | m³/h | bar   | -    | -              |  |  |  |
| '              | 1.00     | -                       | gpm  | psia  | -    | -              |  |  |  |
| N <sub>2</sub> | 0.00214  | -                       | -    | -     | mm   | -              |  |  |  |
| 1,42           | 890.0    | -                       | -    | -     | in   | -              |  |  |  |
| N <sub>4</sub> | 76000    | -                       | m³/h | -     | mm   | -              |  |  |  |
| 1 4            | 17300    | -                       | gpm  | -     | in   | -              |  |  |  |
|                | 2.73     | kg/h                    | -    | kPa   | -    | kg/m³          |  |  |  |
| $N_6$          | 27.3     | kg/h                    | -    | bar   | -    | kg/m³          |  |  |  |
|                | 63.3     | lb/h                    | -    | psia  | -    | lb/ft³         |  |  |  |

Table 2



## Gas and Vapor Flow Equations

volumetric flow

$$C_{v} \; = \; \frac{q}{N_{\,7} \; \; F_{p} \; \; p_{1} \; \; Y} \; \; \sqrt{\frac{G_{\,g} \; \; T_{1} \; \; Z}{x}} \label{eq:cv}$$

or

$$C_{v} = \frac{q}{N_{9} F_{p} p_{1} Y} \sqrt{\frac{M T_{1} Z}{x}} *$$

mass flow

$$C_V = \frac{W}{N_6 F_p Y \sqrt{xp_1 \gamma_1}}$$

or

$$C_{V} = \frac{W}{N_{8} F_{p} p_{1} Y} \sqrt{\frac{T_{1} Z}{x M}} \qquad *$$

Gas expansion factor

$$Y = 1 - \frac{X}{3 F_k X_T}$$

Pressure drop ratio

$$x = \frac{\Delta p}{p_1}$$

Ratio of specific heats factor

$$F_k = \frac{k}{1.40}$$

\*The IEC 534-2 equations are identical to the above ISA equations (marked with an \*) except for the following symbols:

> k (ISA) corresponds to  $\gamma$  (IEC)  $\gamma_{\perp}$  (ISA) corresponds to  $\rho_{\perp}$  (IEC)

### **Nomenclature**

C<sub>v</sub> = valve flow coefficient

= ratio of specific heats factor, dimensionless

= piping geometry factor (reducer correction)

= upstream pressure

= downstream pressure

= volumetric flow rate

= numerical constant based on units

(see table below)

= gas specific gravity. Ratio of gas density

at standard conditions

= absolute inlet temperature

= gas molecular weight

= pressure drop ratio,  $\Delta p/p_1$  Limit x =  $F_k x_T$ 

= gas compressibility factor = gas expansion factor,  $Y = 1 - \frac{x}{3 F_k x_T}$ 

= pressure drop ratio factor

= (Gamma) specific weight (mass density),

upstream conditions

= weight (mass) flow rate W

= gas specific heat ratio

# **Numerical Constants for Gas and Vapor Flow Equations**

| С              | onstant | Units Used in Equations |      |                       |                    |                |  |  |
|----------------|---------|-------------------------|------|-----------------------|--------------------|----------------|--|--|
|                | N       | w q*                    |      | <b>p</b> , ∆ <b>p</b> | γ <sub>1</sub>     | T <sub>1</sub> |  |  |
|                | 2.73    | kg/h                    | -    | kPa                   | kg/m³              | -              |  |  |
| N <sub>6</sub> | 27.3    | kg/h                    | -    | bar                   | kg/m³              | -              |  |  |
|                | 63.3    | lb/h                    | -    | psia                  | lb/ft <sup>3</sup> | -              |  |  |
|                | 4.17    | -                       | m³/h | kPa                   | -                  | K              |  |  |
| N <sub>7</sub> | 417.0   | -                       | m³/h | bar                   | -                  | K              |  |  |
|                | 1360.0  | -                       | scfh | psia                  | -                  | R              |  |  |
|                | 0.948   | kg/h                    | -    | kPa                   | -                  | K              |  |  |
| N <sub>8</sub> | 94.8    | kg/h                    | -    | bar                   | -                  | K              |  |  |
|                | 19.3    | lb/h                    | -    | psia                  | -                  | R              |  |  |
|                | 22.5    | -                       | m³/h | kPa                   | -                  | K              |  |  |
| N <sub>9</sub> | 2250.0  | -                       | m³/h | bar                   | -                  | K              |  |  |
|                | 7320.0  | -                       | scfh | psia                  | -                  | R              |  |  |

\*q is in cubic feet per hour measured at 14.73 psia and 60°F, or cubic meters per hour measured at 101.3 kPa and 15.6° C.

Table 3



## **Multistage Valve Gas and Vapor Flow Equations**

volumetric flow

$$C_{v} = \frac{q}{N_{7} F_{p} p_{1} Y_{M}} \sqrt{\frac{G_{g} T_{1} Z}{x}}$$

10

$$C_v = \frac{q}{N_9 F_p p_1 Y_M} \sqrt{\frac{M T_1 Z}{x}}$$

mass flow

$$C_V = \frac{w}{N_6 F_p Y_M \sqrt{x p_1 \gamma_1}}$$

or

$$C_{v} = \frac{w}{N_{8} F_{p} p_{1} Y_{M}} \sqrt{\frac{T_{1} Z}{x M}}$$

$$Y_{M} = 1 - \frac{x_{M}}{3 F_{k} x_{T}}$$

$$x_M = F_M \frac{\Delta p}{p_1}$$
, limit  $x_M = F_k x_T$ 

$$F_{k} = \frac{k}{1.40}$$

 $F_{M}$  = Multistage Compressible Flow Factor  $(F_{M}$  = 0.74 for multistage valves)

X<sub>M</sub> = Pressure drop ratio factor for multistage valves

# Ratio of Specific Heats Factor F<sub>k</sub>

The flow rate of a compressible fluid through a valve is affected by the ratio of specific heats. The factor  $F_k$  accounts for this effect.  $F_k$  has a value of 1.0 for air at moderate temperature and pressures, where its specific heat ratio is about 1.40.

For valve sizing purposes,  $F_k$  may be taken as having a linear relationship to k. Therefore,

$$\mathbf{F_k} = \frac{\mathbf{k}}{1.40}$$

## **Expansion Factor Y**

The expansion factor accounts for the changes in density of the fluid as it passes through a valve, and for the change in the area of the vena contracta as the pressure drop is varied. The expansion factor is affected by all of the following influences:

- 1. Ratio of valve inlet to port area
- 2. Internal valve geometry
- 3. Pressure drop ratio, x
- 4. Ratio of specific heats, k
- 5. Reynolds Number

The factor  $x_T$  accounts for the influence of 1, 2 and 3; factor  $F_k$  accounts for the influence of 4. For all practical purposes, Reynolds Number effects may be disregarded for virtually all process gas and vapor flows.

As in the application of orifice plates for compressible flow measurement, a linear relationship of the expansion factor Y to pressure drop ratio x is used as below:

$$Y = 1 - \frac{x}{3 F_k x_T}$$



## **Two-Phase Flow Equations**

Two-phase flow can exist as a mixture of a liquid with a non-condensable gas or as a mixture of a liquid with its vapor. The flow equation below applies where the twophase condition exists at the valve inlet.

The flow equation accounts for expansion of the gas or vapor phase, and for possible vaporization of the liquid phase. It utilizes both the gas and liquid limiting sizing pressure drops.

The flow equation for a two phase mixture entering the valve is as follows.

Note :  $F_p$  equals unity for the case of valve size equal to line size.

$$C_{V} = \frac{w}{N_{6} F_{p}} \sqrt{\frac{f_{f}}{\Delta p_{f} \gamma_{f}} + \frac{f_{g}}{\Delta p_{g} \gamma_{g} Y^{2}}}$$

Use the actual pressure drop for  $\Delta p_{_{g}}$  and  $\Delta p_{_{g}}$ , but with the limiting pressure drop for each individually as follows :

$$\Delta \mathbf{p}_{f} = \mathbf{F}_{L}^{2} (\mathbf{p}_{1} - \mathbf{F}_{F} \mathbf{p}_{v})$$

$$\Delta p_g = F_k x_T p_1$$

The use of this flow equation results in a required  $C_{\rm V}$  greater than the sum of a separately calculated  $C_{\rm V}$  for the liquid plus a  $C_{\rm V}$  for the gas or vapor phase. This increased capacity models published two-phase flow data quite well.

For the hypothetical case of all liquid flow ( $f_f = 1$ ), the flow equation reduces to the liquid flow equation for mass flow.

For the hypothetical case of all gas or vapor flow ( $f_g = 1$ ), the flow equation reduces to the gas and vapor flow equation for mass flow.

#### **Nomenclature**

 $C_{v}$  = valve flow coefficient

f<sub>f</sub> = weight fraction of liquid in two-phase mixture, dimensionless

f<sub>g</sub> = weight fraction of gas (or vapor) in two-phase mixture, dimensionless

 $F_F$  = liquid critical pressure factor = 0.96 - 0.28  $\sqrt{\frac{p_V}{p_C}}$ 

F<sub>k</sub> = ratio of specific heats factor, dimensionless

F<sub>1</sub> = liquid pressure recovery factor

 $F_{_{D}}$  = piping geometry factor (reducer correction)

p<sub>1</sub> = upstream pressure

p<sub>v</sub> = vapor pressure of liquid at flowing temperature

 $\Delta p_f$  = pressure drop for the liquid phase

 $\Delta p_{d}$  = pressure drop for the gas phase

w = weight (mass) flow rate of two-phase mixture

 $x_{\tau}$  = pressure drop ratio factor

Y = gas expansion factor, Y = 1 -  $\frac{x}{3 F_k x_T}$ 

 $\gamma_f$  = specific weight (mass density) of the liquid phase at inlet conditions

 $\gamma_g$  = specific weight (mass density) of the gas or vapor phase at inlet conditions

# Numerical Constants for Liquid Flow Equations

| Constant       |      | U    | S |                       |      |                    |
|----------------|------|------|---|-----------------------|------|--------------------|
|                |      | W    | q | <b>p</b> , ∆ <b>p</b> | d, D | γ <sub>1</sub>     |
|                | 2.73 | kg/h | - | kPa                   | -    | kg/m³              |
| N <sub>6</sub> | 27.3 | kg/h | - | bar                   | -    | kg/m³              |
|                | 63.3 | lb/h | - | psia                  | -    | lb/ft <sup>3</sup> |

Table 4



## **Choked Flow (Gas and Vapor)**

If all inlet conditions are held constant and pressure drop ratio x is increased by lowering the downstream pressure, mass flow will increase to a maximum limit. Flow conditions where the value of x exceeds this limit are known as choked flow. Choked flow occurs when the jet stream at the vena contracta attains its maximum cross-sectional area at sonic velocity.

Values of  $x_T$  for various valve types at rated travel and at lower valve travel are shown in product bulletins. These values are determined by laboratory test.

When a valve is installed with reducers, the pressure ratio factor  $x_{_{TP}}$  is different from that of the valve alone  $x_{_{TP}}$ . The following equation may be used to calculate  $x_{_{TP}}$ :

$$X_{TP} = \frac{X_T}{F_p^2} \left( \frac{X_T K_i C_v^2}{N_5 d^4} + 1 \right)^{-1}, \quad \text{where}$$

 $\mathbf{K}_{i} = \mathbf{K}_{1} + \mathbf{K}_{B1}$  (inlet loss and Bernoulli coefficients)

The value of  $\rm N_{\rm 5}\,$  is 0.00241 for d in mm, and 1000 for d in inches.

## **Supercritical Fluids**

Fluids at temperatures and pressures above both critical temperature and critical pressure are denoted as supercritical fluids. In this region, there is no physical distinction between liquid and vapor. The fluid behaves as a compressible, but near the critical point great deviations from the perfect gas laws prevail. It is very important to take this into account through the use of actual specific weight (mass density) from thermodynamic tables (or the compressibility factor Z), and the actual ratio of specific heats.

Supercritical fluid valve applications are not uncommon. In addition to supercritical fluid extraction processes, some process applications may go unnoticed. For instance, the critical point of ethylene is 10°C (50°F) and 51.1 bar (742 psia). All ethylene applications above this point in both temperature and pressure are supercritical by definition.

In order to size valves handling supercritical fluids, use a compressible flow sizing equation with the weight (mass) rate of flow with actual specific weight (mass density), or the volumetric flow with actual compressibility factor. In addition, the actual ratio of specific heats should be used.



### **Compressibility Factor Z**

For many real gases subjected to commonly encountered temperatures and pressures, the perfect gas laws are not satisfactory for flow measurement accuracy and therefore correction factors must be used.

Following conventional flow measurement practice, the compressibility factor Z, in the equation PV = ZRT, will be used. Z can usually be ignored below 7 bar (100 psi) for common gases.

The value of Z does not differ materially for different gases when correlated as a function of the reduced temperature,  $T_r$ , and reduced pressure,  $p_r$ , found from Figures 1 and 2.

Figure 2 is an enlargement of a portion of Figure 2. Values taken from these figures are accurate to approximately plus or minus two percent.

To obtain the value of Z for a pure substance, the reduced pressure and reduced temperature are calculated as the ratio of the actual absolute gas pressure and its corresponding critical absolute pressure and absolute temperature and its absolute critical temperature.



Reduced Pressure, p<sub>r</sub>
Figure 1
Compressibility Factors for Gases with
Reduced Pressures from 0 to 6

(Data from the charts of L. C. Nelson and E. F. Obert, Northwestern Technological Institute)

The compressibility factor Z obtained from the Nelson-Obert charts is generally accurate within 3 to 5 percent. For hydrogen, helium, neon and argon, certain restrictions apply. Please refer to specialized literature.



## Compressibility



 $P_r = \frac{\text{inlet pressure (absolute)}}{\text{critical pressure (absolute)}}$   $T_r = \frac{\text{inlet temperature (absolute)}}{\text{critical temperature (absolute)}}$ 

Figure 2
Compressibility Factors for Gases with Reduced Pressures from 0 - 40
See Page 15 for critical pressures and temperatures

(Reproduced from the charts of L. C. Nelson and E. F. Obert, Northwestern Technological Institute)



# Thermodynamic Critical Constants and Density of Elements, Inorganic and Organic Compounds

| Flowert or Compound                                                         | Critical Pr | essure - p <sub>c</sub> | Critical Tem | k *  |                                 |
|-----------------------------------------------------------------------------|-------------|-------------------------|--------------|------|---------------------------------|
| Element or Compound                                                         | psia        | bar (abs)               | °F           | °C   | C <sub>p</sub> / C <sub>V</sub> |
| Acetic Acid, CH <sub>3</sub> -CO-OH                                         | 841         | 58.0                    | 612          | 322  | 1.15                            |
| Acetone, CH <sub>3</sub> -CO-CH <sub>3</sub>                                | 691         | 47.6                    | 455          | 235  | -                               |
| Acetylene, C <sub>2</sub> H <sub>2</sub>                                    | 911         | 62.9                    | 97           | 36   | 1.26                            |
| Air, O <sub>2</sub> +N <sub>2</sub>                                         | 547         | 37.8                    | -222         | -141 | 1.40                            |
| Ammonia, NH <sub>3</sub>                                                    | 1638        | 113.0                   | 270          | 132  | 1.33                            |
| Argon, A                                                                    | 705         | 48.6                    | -188         | -122 | 1.67                            |
| Benzene, C <sub>6</sub> H <sub>6</sub>                                      | 701         | 48.4                    | 552          | 289  | 1.12                            |
| Butane, C <sub>4</sub> H <sub>10</sub>                                      | 529         | 36.5                    | 307          | 153  | 1.09                            |
| Carbon Dioxide, CO <sub>2</sub>                                             | 1072        | 74.0                    | 88           | 31   | 1.30                            |
| Carbon Monoxide, CO                                                         | 514         | 35.5                    | -218         | -139 | 1.40                            |
| Carbon Tetrachloride, CCI <sub>4</sub>                                      | 661         | 45.6                    | 541          | 283  | -                               |
| Chlorine, Cl <sub>2</sub>                                                   | 1118        | 77.0                    | 291          | 144  | 1.36                            |
| Ethane, C <sub>2</sub> H <sub>6</sub>                                       | 717         | 49.5                    | 90           | 32   | 1.22                            |
| Ethyl Alcohol, C <sub>2</sub> H <sub>5</sub> OH                             | 927         | 64.0                    | 469          | 243  | 1.13                            |
| Ethylene, CH <sub>2</sub> =CH <sub>2</sub>                                  | 742         | 51.2                    | 50           | 10   | 1.26                            |
| Ethyl Ether, C <sub>2</sub> H <sub>5</sub> -O-C <sub>2</sub> H <sub>5</sub> | 522         | 36.0                    | 383          | 195  | -                               |
| Fluorine, F <sub>2</sub>                                                    | 367         | 25.3                    | -247         | -155 | 1.36                            |
| Helium, He                                                                  | 33.2        | 2.29                    | -450         | -268 | 1.66                            |
| Heptane, C <sub>7</sub> H <sub>16</sub>                                     | 394         | 27.2                    | 513          | 267  | -                               |
| Hydrogen, H <sub>2</sub>                                                    | 188         | 13.0                    | -400         | -240 | 1.41                            |
| Hydrogen Chloride, HCl                                                      | 1199        | 82.6                    | 124          | 51   | 1.41                            |
| Isobutane, (CH <sub>3</sub> ) CH-CH <sub>3</sub>                            | 544         | 37.5                    | 273          | 134  | 1.10                            |
| Isopropyl Alcohol, CH <sub>3</sub> -CHOH-CH <sub>3</sub>                    | 779         | 53.7                    | 455          | 235  | -                               |
| Methane, CH <sub>4</sub>                                                    | 673         | 46.4                    | -117         | -83  | 1.31                            |
| Methyl Alcohol, H-CH <sub>2</sub> OH                                        | 1156        | 79.6                    | 464          | 240  | 1.20                            |
| Nitrogen, N <sub>2</sub>                                                    | 492         | 34.0                    | -233         | -147 | 1.40                            |
| Nitrous Oxide, N <sub>2</sub> O                                             | 1054        | 72.7                    | 99           | 37   | 1.30                            |
| Octane, CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>6</sub> -CH <sub>3</sub>   | 362         | 25.0                    | 565          | 296  | 1.05                            |
| Oxygen, O <sub>2</sub>                                                      | 730         | 50.4                    | -182         | -119 | 1.40                            |
| Pentane, C <sub>5</sub> H <sub>12</sub>                                     | 485         | 33.5                    | 387          | 197  | 1.07                            |
| Phenol, C <sub>6</sub> H <sub>5</sub> OH                                    | 889         | 61.3                    | 786          | 419  | -                               |
| Phosgene, COCI <sub>2</sub>                                                 | 823         | 56.7                    | 360          | 182  | -                               |
| Propane, C <sub>3</sub> H <sub>8</sub>                                      | 617         | 42.6                    | 207          | 97   | 1.13                            |
| Propylene, CH <sub>2</sub> =CH-CH <sub>3</sub>                              | 661         | 45.6                    | 198          | 92   | 1.15                            |
| Refrigerant 12, CCl <sub>2</sub> F <sub>2</sub>                             | 582         | 40.1                    | 234          | 112  | 1.14                            |
| Refrigerant 22, CHCIF <sub>2</sub>                                          | 713         | 49.2                    | 207          | 97   | 1.18                            |
| Sulfur Dioxide, SO <sub>2</sub>                                             | 1142        | 78.8                    | 315          | 157  | 1.29                            |
| Water, H <sub>2</sub> O                                                     | 3206        | 221.0                   | 705          | 374  | 1.32                            |

<sup>\*</sup> Standard Conditions

Table 5



# Thermodynamic Critical Constants and Density of Elements, Inorganic and Organic Compounds

| Element or Compound                                                         |        | y - Ib/ft³       |        | / - kg/m³         | Mol   |
|-----------------------------------------------------------------------------|--------|------------------|--------|-------------------|-------|
| Element or Compound                                                         | Liquid | ia & 60°F<br>Gas | Liquid | r & 15.6°C<br>Gas | Wt    |
|                                                                             |        |                  |        |                   | 20.4  |
| Acetic Acid, CH <sub>3</sub> -CO-OH                                         | 65.7   |                  | 1052.4 |                   | 66.1  |
| Acetone, CH <sub>3</sub> -CO-CH <sub>3</sub>                                | 49.4   | 0.000            | 791.3  |                   | 58.1  |
| Acetylene, C <sub>2</sub> H <sub>2</sub>                                    |        | 0.069            |        | 1.11              | 26.0  |
| Air, O <sub>2</sub> +N <sub>2</sub>                                         |        | 0.0764           |        | 1.223             | 29.0  |
| Ammonia, NH <sub>3</sub>                                                    |        | 0.045            |        | 0.72              | 17.0  |
| Argon, A                                                                    |        | 0.105            |        | 1.68              | 39.9  |
| Benzene, C <sub>6</sub> H <sub>6</sub>                                      | 54.6   |                  | 874.6  |                   | 78.1  |
| Butane, C <sub>4</sub> H <sub>10</sub>                                      |        | 0.154            |        | 2.47              | 58.1  |
| Carbon Dioxide, CO <sub>2</sub>                                             |        | 0.117            |        | 1.87              | 44.0  |
| Carbon Monoxide, CO                                                         |        | 0.074            |        | 1.19              | 28.0  |
| Carbon Tetrachloride, CCI <sub>4</sub>                                      | 99.5   |                  | 1593.9 |                   | 153.8 |
| Chlorine, Cl <sub>2</sub>                                                   |        | 0.190            |        | 3.04              | 70.9  |
| Ethane, C <sub>2</sub> H <sub>6</sub>                                       |        | 0.080            |        | 1.28              | 30.1  |
| Ethyl Alcohol, C <sub>2</sub> H <sub>5</sub> OH                             | 49.52  |                  | 793.3  |                   | 46.1  |
| Ethylene, CH <sub>2</sub> =CH <sub>2</sub>                                  |        | 0.074            |        | 1.19              | 28.1  |
| Ethyl Ether, C <sub>2</sub> H <sub>5</sub> -O-C <sub>2</sub> H <sub>5</sub> | 44.9   |                  | 719.3  |                   | 74.1  |
| Fluorine, F <sub>2</sub>                                                    |        | 0.097            |        | 1.55              | 38.0  |
| Helium, He                                                                  |        | 0.011            |        | 0.18              | 4.00  |
| Heptane, C <sub>7</sub> H <sub>16</sub>                                     | 42.6   |                  | 682.4  |                   | 100.2 |
| Hydrogen, H <sub>2</sub>                                                    |        | 0.005            |        | 0.08              | 2.02  |
| Hydrogen Chloride, HCl                                                      |        | 0.097            |        | 1.55              | 36.5  |
| Isobutane, (CH <sub>3</sub> ) <sub>2</sub> CH-CH <sub>3</sub>               |        | 0.154            |        | 2.47              | 58.1  |
| Isopropyl Alcohol, CH <sub>3</sub> -CHOH-CH <sub>3</sub>                    | 49.23  |                  | 788.6  |                   | 60.1  |
| Methane, CH <sub>4</sub>                                                    |        | 0.042            |        | 0.67              | 16.0  |
| Methyl Alcohol, H-CH <sub>2</sub> OH                                        | 49.66  |                  | 795.5  |                   | 32.0  |
| Nitrogen, N <sub>2</sub>                                                    |        | 0.074            |        | 1.19              | 28.0  |
| Nitrous Oxide, N <sub>2</sub> O                                             |        | 0.117            |        | 1.87              | 44.0  |
| Octane, CH <sub>3</sub> -(CH <sub>2</sub> ) <sub>6</sub> -CH <sub>3</sub>   | 43.8   |                  | 701.6  |                   | 114.2 |
| Oxygen, O <sub>2</sub>                                                      |        | 0.084            |        | 1.35              | 32.0  |
| Pentane, C <sub>5</sub> H <sub>12</sub>                                     | 38.9   |                  | 623.1  |                   | 72.2  |
| Phenol, C <sub>6</sub> H <sub>5</sub> OH                                    | 66.5   |                  | 1065.3 |                   | 94.1  |
| Phosgene, COCI <sub>2</sub>                                                 |        | 0.108            |        | 1.73              | 98.9  |
| Propane, C <sub>3</sub> H <sub>8</sub>                                      |        | 0.117            |        | 1.87              | 44.1  |
| Propylene, CH <sub>2</sub> =CH-CH <sub>3</sub>                              |        | 0.111            |        | 1.78              | 42.1  |
| Refrigerant 12, CCl <sub>2</sub> F <sub>2</sub>                             |        | 0.320            |        | 5.13              | 120.9 |
| Refrigerant 22, CHCIF <sub>2</sub>                                          |        | 0.228            |        | 3.65              | 86.5  |
| Sulfur Dioxide, SO <sub>2</sub>                                             |        | 0.173            |        | 2.77              | 64.1  |
| Water, H <sub>2</sub> O                                                     | 62.34  |                  | 998.6  |                   | 18.0  |
| . 2                                                                         |        |                  |        |                   |       |

Table 5 (cont.)



## **Liquid Velocity in Commercial Wrought Steel Pipe**

The velocity of a flowing liquid may be determined by the following expressions :

## **U.S. Customary Units**

 $v = .321 \frac{q}{A}$ 

Where v = velocity, ft/sec q = flow, gpm

A = cross sectional area, sq in

#### **Metric Units**

 $v = 278 \frac{q}{A}$ 

Where v = velocity, meters/sec

 $q = flow, meters^3/hr$ 

A = cross sectional area, sq mm

Figure 3 gives the solution to these equations for pipes 1" through 12" over a wide flow range on both U.S. Customary and Metric Units.

## Steam or Gas Flow in Commercial Wrought Steel Pipe

#### Steam or Gas (mass basis)

To determine the velocity of a flowing compressible fluid use the following expressions :

# Gas (volume basis)

To find the velocity of a flowing compressible fluid with flow in volume units, use the following formulas:

#### **U.S. Customary Units**

 $v = .04 \frac{WV}{A}$ 

Where v = fluid velocity, ft/sec

W = fluid flow, lb/hr

V = specific volume, cu ft/lb A = cross sectional area, sq in

#### **U.S. Customary Units**

 $v = .04 \frac{F}{A}$ 

Where v = fluid velocity, ft/sec

F = gas flow, ft<sup>3</sup>/hr at flowing

conditions\*

A = cross sectional area, sq in

#### **Metric Units**

 $v = 278 \frac{WV}{A}$ 

Where v = fluid velocity, meters/sec

W = fluid flow, kg/hr

V = specific volume, m³/kg A = cross sectional area, mm² \*Note that gas flow must be at flowing conditions. If flow is at standard conditions, convert as follows:

 $F = \frac{\text{std ft}^3}{\text{hr}} \times \frac{14.7}{\text{p}} \times \frac{\text{T}}{520}$ 

Where p = pressure absolute, psia

T = temperature absolute, R

#### **Metric Units**

 $v = 278 \frac{F}{A}$ 

Where v = fluid velocity, meters/sec

F = gas flow, meters<sup>3</sup>/hr at flowing conditions\*

A = cross sectional area, sq mm

\*Note that gas flow must be at flowing conditions. If flow is at standard conditions, convert as follows:

 $F = \frac{\text{std meters}^3}{\text{hr}} \times \frac{1.013}{\text{p}} \times \frac{\text{T}}{288}$ 

Where p = pressure absolute, bar

T = temperature absolute, K

Figure 4 is a plot of steam flow versus static pressure with reasonable velocity for Schedule 40 pipes 1" through 12" in U.S. Customary and Metric Units.





U.S. Customary Units Liquid Velocity vs Flow Rate

Metric Units





Figure 4
Saturated Steam Flow vs Pressure
for 1" to 12" Schedule 40 Pipe

U.S. Customary Units

Velocity -- 130 to 170 feet per second -
-- 50 to 60 meters per second --



# Commercial Wrought Steel Pipe Data (ANSI B36.10)

| Nominal<br>Pipe Size |                                                                                                                    | O.D.                                                    |                                                                                                                                              | /all<br>kness                                                                                   | I.D.                                                                                                                                                           | Flow Area                                                                                                                                       |                                                                                                                                                       |                                                                                                                                           |
|----------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                      | mm                                                                                                                 | inches                                                  | inches                                                                                                                                       | mm                                                                                              | inches                                                                                                                                                         | inches                                                                                                                                          | mm²                                                                                                                                                   | sq in                                                                                                                                     |
| Schedule 10          | 350<br>400<br>450<br>500<br>600<br>750                                                                             | 14<br>16<br>18<br>20<br>24<br>30                        | 14<br>16<br>18<br>20<br>24<br>30                                                                                                             | 6.35<br>6.35<br>6.35<br>6.35<br>6.35<br>7.92                                                    | 0.250<br>0.250<br>0.250<br>0.250<br>0.250<br>0.312                                                                                                             | 13.5<br>15.5<br>17.5<br>19.5<br>23.5<br>29.4                                                                                                    | 92200<br>121900<br>155500<br>192900<br>280000<br>437400                                                                                               | 143<br>189<br>241<br>299<br>434<br>678                                                                                                    |
| Schedule 20          | 200<br>250<br>300<br>350<br>400<br>450<br>500<br>600<br>750                                                        | 8<br>10<br>12<br>14<br>16<br>18<br>20<br>24             | 8.63<br>10.8<br>12.8<br>14.0<br>16.0<br>18.0<br>20.0<br>24.0<br>30.0                                                                         | 6.35<br>6.35<br>6.35<br>7.92<br>7.92<br>7.92<br>9.53<br>9.53<br>12.70                           | 0.250<br>0.250<br>0.250<br>0.312<br>0.312<br>0.312<br>0.375<br>0.375                                                                                           | 8.13<br>10.3<br>12.3<br>13.4<br>15.4<br>17.4<br>19.3<br>23.3<br>29.0                                                                            | 33500<br>53200<br>76000<br>90900<br>120000<br>152900<br>187700<br>274200<br>426400                                                                    | 51.9<br>82.5<br>117.9<br>141<br>186<br>237<br>291<br>425<br>661                                                                           |
| Schedule 30          | 200<br>250<br>300<br>350<br>400<br>450<br>500<br>600<br>750                                                        | 8<br>10<br>12<br>14<br>16<br>18<br>20<br>24             | 8.63<br>10.8<br>12.8<br>14.0<br>16.0<br>18.0<br>20.0<br>24.0<br>30.0                                                                         | 7.04<br>7.80<br>8.38<br>9.53<br>9.53<br>11.13<br>12.70<br>14.27<br>15.88                        | 0.277<br>0.307<br>0.330<br>0.375<br>0.375<br>0.438<br>0.500<br>0.562<br>0.625                                                                                  | 8.07<br>10.1<br>12.1<br>13.3<br>15.3<br>17.1<br>19.0<br>22.9<br>28.8                                                                            | 33000<br>52000<br>74200<br>89000<br>118000<br>148400<br>183200<br>265100<br>418700                                                                    | 51.2<br>80.7<br>115<br>138<br>183<br>230<br>284<br>411<br>649                                                                             |
| Schedule 40*         | 15<br>20<br>25<br>32<br>40<br>50<br>65<br>80<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500<br>600 | 1/2 3/4 1 11/4 11/2 2 21/2 3 4 6 8 10 12 14 16 18 20 24 | 0.84<br>1.05<br>1.32<br>1.66<br>1.90<br>2.38<br>2.88<br>3.50<br>4.50<br>6.63<br>8.63<br>10.8<br>12.8<br>14.0<br>16.0<br>18.0<br>20.0<br>24.0 | 2.77 2.87 3.38 3.56 3.68 3.91 5.16 5.49 6.02 7.11 8.18 9.27 10.31 11.13 12.70 14.27 15.06 17.45 | 0.109<br>0.113<br>0.133<br>0.140<br>0.145<br>0.154<br>0.203<br>0.216<br>0.237<br>0.280<br>0.322<br>0.365<br>0.406<br>0.438<br>0.500<br>0.562<br>0.593<br>0.687 | 0.622<br>0.824<br>1.05<br>1.38<br>1.61<br>2.07<br>2.47<br>3.07<br>4.03<br>6.07<br>7.98<br>10.02<br>11.9<br>13.1<br>15.0<br>16.9<br>18.8<br>22.6 | 190<br>340<br>550<br>970<br>1300<br>2150<br>3100<br>4700<br>8200<br>18600<br>32200<br>50900<br>72200<br>87100<br>114200<br>144500<br>179300<br>259300 | 0.304<br>0.533<br>0.864<br>1.50<br>2.04<br>3.34<br>4.79<br>7.39<br>12.7<br>28.9<br>50.0<br>78.9<br>112<br>135<br>177<br>224<br>278<br>402 |

<sup>\*</sup>Standard wall pipe same as Schedule 40 through 10" size. 12" size data follows.

| 300 | 12 | 12.8 | 9.53 | 0.375 | 12.00 | 72900 | 113 |
|-----|----|------|------|-------|-------|-------|-----|
| l   |    | l    | l    | l     | l     |       | 1   |

Table 6



# Commercial Wrought Steel Pipe Data (ANSI B36.10) (continued)

|                     | Nominal<br>Pipe Size                                                                                               |                                                         | O.D.                                                                                                                                         | W:<br>Thick                                                                                                                                             |                                                                                                                                                              | I.D.                                                                                                                                            | Flow                                                                                                                                                  | Area                                                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                     | mm                                                                                                                 | inches                                                  | inches                                                                                                                                       | mm                                                                                                                                                      | inches                                                                                                                                                       | inches                                                                                                                                          | mm²                                                                                                                                                   | sq in                                                                                                                                       |
| Schedule 80*        | 15<br>20<br>25<br>32<br>40<br>50<br>65<br>80<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500<br>600 | 1/2 3/4 1 11/4 11/2 2 21/2 3 4 6 8 10 12 14 16 18 20 24 | 0.84<br>1.05<br>1.32<br>1.66<br>1.90<br>2.38<br>2.88<br>3.50<br>4.50<br>6.63<br>8.63<br>10.8<br>12.8<br>14.0<br>16.0<br>18.0<br>20.0<br>24.0 | 3.73<br>3.91<br>4.55<br>4.85<br>5.08<br>5.54<br>7.01<br>7.62<br>8.56<br>10.97<br>12.70<br>15.06<br>17.45<br>19.05<br>21.41<br>23.80<br>26.16<br>30.99   | 0.147<br>0.154<br>0.179<br>0.191<br>0.200<br>0.218<br>0.276<br>0.300<br>0.337<br>0.432<br>0.500<br>0.593<br>0.687<br>0.750<br>0.843<br>0.937<br>1.03<br>1.22 | 0.546<br>0.742<br>0.957<br>1.28<br>1.50<br>1.94<br>2.32<br>2.90<br>3.83<br>5.76<br>7.63<br>9.56<br>11.4<br>12.5<br>14.3<br>16.1<br>17.9<br>21.6 | 150<br>280<br>460<br>820<br>1140<br>1900<br>2700<br>4200<br>7400<br>16800<br>29500<br>46300<br>65800<br>79300<br>103800<br>131600<br>163200<br>235400 | 0.234<br>0.433<br>0.719<br>1.28<br>1.77<br>2.95<br>4.24<br>6.61<br>11.5<br>26.1<br>45.7<br>71.8<br>102<br>123<br>161<br>204<br>253<br>365   |
| Schedule 160        | 15<br>20<br>25<br>32<br>40<br>50<br>65<br>80<br>100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500        | 1/2 3/4 1 11/4 11/2 2 21/2 3 4 6 8 10 12 14 16 18 20 24 | 0.84<br>1.05<br>1.32<br>1.66<br>1.90<br>2.38<br>2.88<br>3.50<br>4.50<br>6.63<br>8.63<br>10.8<br>12.8<br>14.0<br>16.0<br>18.0<br>20.0<br>24.0 | 4.75<br>5.54<br>6.35<br>6.35<br>7.14<br>8.71<br>9.53<br>11.13<br>13.49<br>18.24<br>23.01<br>28.70<br>33.27<br>35.81<br>40.39<br>45.21<br>50.04<br>59.44 | 0.187<br>0.218<br>0.250<br>0.250<br>0.281<br>0.343<br>0.375<br>0.438<br>0.531<br>0.718<br>0.906<br>1.13<br>1.31<br>1.41<br>1.59<br>1.78<br>1.97<br>2.34      | 0.466<br>0.614<br>0.815<br>1.16<br>1.34<br>1.69<br>2.13<br>2.62<br>3.44<br>5.19<br>6.81<br>8.50<br>10.1<br>11.2<br>12.8<br>14.4<br>16.1<br>19.3 | 110<br>190<br>340<br>680<br>900<br>1450<br>2300<br>3500<br>6000<br>13600<br>23500<br>36600<br>51900<br>63400<br>83200<br>105800<br>130900             | 0.171<br>0.296<br>0.522<br>1.06<br>1.41<br>2.24<br>3.55<br>5.41<br>9.28<br>21.1<br>36.5<br>56.8<br>80.5<br>98.3<br>129<br>164<br>203<br>293 |
| Double Extra Strong | 15<br>20<br>25<br>32<br>40<br>50<br>65<br>80<br>100<br>150<br>200                                                  | 1/2 3/4 1 11/4 11/2 2 21/2 3 4 6 8                      | 0.84<br>1.05<br>1.32<br>1.66<br>1.90<br>2.38<br>2.89<br>3.50<br>4.50<br>6.63<br>8.63                                                         | 7.47<br>7.82<br>9.09<br>9.70<br>10.16<br>11.07<br>14.02<br>15.24<br>17.12<br>21.94<br>22.22                                                             | 0.294<br>0.308<br>0.358<br>0.382<br>0.400<br>0.436<br>0.552<br>0.600<br>0.674<br>0.864<br>0.875                                                              | 0.252<br>0.434<br>0.599<br>0.896<br>1.10<br>1.50<br>1.77<br>2.30<br>3.15<br>4.90<br>6.88                                                        | 30<br>90<br>180<br>400<br>610<br>1140<br>1600<br>2700<br>5000<br>12100<br>23900                                                                       | 0.050<br>0.148<br>0.282<br>0.630<br>0.950<br>1.77<br>2.46<br>4.16<br>7.80<br>18.8<br>37.1                                                   |

<sup>\*</sup>Extra strong pipe same as Schedule 80 through 8" size. 10" & 12" size data follows.

| 250 | 10 | 10.8 | 12.70 | 0.500 | 9.75 | 48200 | 74.7 | 1 |
|-----|----|------|-------|-------|------|-------|------|---|
| 300 | 12 | 12.8 | 12.70 | 0.500 | 11.8 | 69700 | 108  |   |





# **Temperature Conversion Table**

| °C           |          | °F       | °C         |            | °F           |
|--------------|----------|----------|------------|------------|--------------|
| -273         | -459.4   |          | 43.3       | 110        | 230          |
| -268         | -450     |          | 46.1       | 115        | 239          |
| -240         | -400     |          | 48.9       | 120        | 248          |
| -212         | -350     |          | 54.4       | 130        | 266          |
| -184         | -300     |          | 60.0       | 140        | 284          |
| -157         | -250     | -418     | 65.6       | 150        | 302          |
| -129         | -200     | -328     | 71.1       | 160        | 320          |
| -101         | -150     | -238     | 76.7       | 170        | 338          |
| -73          | -100     | -148     | 82.2       | 180        | 356          |
| -45.6        | -50      | -58      | 87.8       | 190        | 374          |
| -42.8        | -45      | -49      | 93.3       | 200        | 392          |
| -40          | -40      | -40      | 98.9       | 210        | 410          |
| -37.2        | -35      | -31      | 104.4      | 220        | 428          |
| -34.4        | -30      | -22      | 110        | 230        | 446          |
| -31.7        | -25      | -13      | 115.6      | 240        | 464          |
| -28.9        | -20      | -4       | 121        | 250        | 482          |
| -26.1        | -15      | 5        | 149        | 300        | 572          |
| -23.2        | -10      | 14       | 177        | 350        | 662          |
| -20.6        | -5       | 23       | 204        | 400        | 752          |
| -17.8        | 0        | 32       | 232        | 450        | 842          |
| -15          | 5        | 41       | 260        | 500        | 932          |
| -12.2        | 10       | 50       | 288        | 550        | 1022         |
| -9.4         | 15       | 59       | 316        | 600        | 1112         |
| -6.7<br>-3.9 | 20<br>25 | 68<br>77 | 343<br>371 | 650<br>700 | 1202<br>1292 |
| -3.9         | 30       | 86       | 399        | 750<br>750 | 1382         |
| 0            | 32       | 89.6     | 427        | 800        | 1472         |
| 1.7          | 35       | 95       | 454        | 850        | 1562         |
| 4.4          | 40       | 104      | 482        | 900        | 1652         |
| 7.2          | 45       | 113      | 510        | 950        | 1742         |
| 10           | 50       | 122      | 538        | 1000       | 1832         |
| 12.8         | 55       | 131      | 566        | 1050       | 1922         |
| 15.6         | 60       | 140      | 593        | 1100       | 2012         |
| 18.3         | 65       | 149      | 621        | 1150       | 2102         |
| 21.1         | 70       | 158      | 649        | 1200       | 2192         |
| 23.9         | 75       | 167      | 677        | 1250       | 2282         |
| 26.7         | 80       | 176      | 704        | 1300       | 2372         |
| 29.4         | 85       | 185      | 732        | 1350       | 2462         |
| 32.2         | 90       | 194      | 762        | 1400       | 2552         |
| 35           | 95       | 203      | 788        | 1450       | 2642         |
| 37.8         | 100      | 212      | 816        | 1500       | 2732         |
| 40.6         | 105      | 221      |            |            |              |

Note : The temperature to be converted is the figure in the red column. To obtain a reading in  $^{\circ}$ C use the left column; for conversion to  $^{\circ}$ F use the right column.

Table 7



## **Metric Conversion Tables**

| Multiply             | Ву                       | To Obtain            | Multiply          | Ву             | To Obtain            |
|----------------------|--------------------------|----------------------|-------------------|----------------|----------------------|
| Length               |                          |                      | Flow Rates        |                |                      |
| millimeters          | 0.10                     | centimeters          | cubic feet/minute | 60.0           | ft³/hr               |
| millimeters          | 0.001                    | meters               | cubic feet/minute | 1.699          | m³/hr                |
| millimeters          | 0.039                    | inches               | cubic feet/minute | 256.5          | Barrels/day          |
| millimeters          | 0.00328                  | feet                 | cubic feet/hr     | 0.1247         | GPM                  |
| centimeters          | 10.0                     | millimeters          | cubic feet/hr     | 0.472          | liters/min           |
| centimeters          | 0.010                    | meters               | cubic feet/hr     | 0.01667        | ft <sup>3</sup> /min |
| centimeters          | 0.394                    | inches               | cubic feet/hr     | 0.0283         | m³/hr                |
| centimeters          | 0.0328                   | feet                 | cubic meters/hr   | 4.403          | GPM                  |
| inches               | 25.40                    | millimeters          | cubic meters/hr   | 16.67          | liters/min           |
| inches               | 2.54                     | centimeters          | cubic meters/hr   | 0.5886         | ft <sup>3</sup> /min |
| inches               | 0.0254                   | meters               | cubic meters/hr   | 35.31          | ft³/hr               |
| inches               | 0.0833                   | feet                 | cubic meters/hr   | 150.9          | Barrels/day          |
| feet                 | 304.8                    | millimeters          |                   |                | ·                    |
| feet                 | 30.48                    | centimeters          |                   | Velocity       |                      |
| feet                 | 0.304                    | meters               |                   | -              |                      |
| feet                 | 12.0                     | inches               | feet per second   | 60             | ft/min               |
|                      | -                        |                      | feet per second   | 0.3048         | meters/second        |
|                      |                          | Area                 | feet per second   | 1.097          | km/hr                |
|                      |                          |                      | feet per second   | 0.6818         | miles/hr             |
| sq. millimeters      | 0.010                    | sq. centimeters      | meters per second | 3.280          | ft/sec               |
| sq. millimeters      | 10. <sup>-6</sup>        | sq. meters           | meters per second | 196.9          | ft/min               |
| sq. millimeters      | 0.00155                  | sq. inches           | meters per second | 3.600          | km/hr                |
| sq. millimeters      | 1.076 x 10 <sup>-5</sup> | sq. feet             | meters per second | 2.237          | miles/hr             |
| sq. centimeters      | 100                      | sq. millimeters      |                   |                |                      |
| sq. centimeters      | 0.0001                   | sq. meters           |                   | Weight (Mass)  |                      |
| sq. centimeters      | 0.155                    | sq. inches           |                   | rroigni (maoo) |                      |
| sq. centimeters      | 0.001076                 | sq. feet             | pounds            | 0.0005         | short ton            |
| sq. inches           | 645.2                    | sq. millimeters      | pounds            | 0.000446       | long ton             |
| sq. inches           | 6.452                    | sq. centimeters      | pounds            | 0.453          | kilogram             |
| sq. inches           | 0.000645                 | sq. meters           | pounds            | 0.000453       | metric ton           |
| sq. inches           | 0.00694                  | sq. feet             | short ton         | 2000.0         | pounds               |
| sq. feet             | 9.29 x 10 <sup>4</sup>   | sqs. millimeters     | short ton         | 0.8929         | long ton             |
| sq. feet             | 929                      | sq. centimeters      | short ton         | 907.2          | kilogram             |
| sq. feet             | 0.0929                   | sq. meters           | short ton         | 0.9072         | metric ton           |
| sq. feet             | 144                      | sq. inches           | long ton          | 2240           | pounds               |
| sq. ieet             |                          | 04. 11101100         | long ton          | 1.120          | short ton            |
|                      | Flow Rates               |                      | long ton          | 1016           | kilogram             |
|                      | 110W Rates               |                      | long ton          | 1.016          | metric ton           |
| gallons US/minute    |                          |                      | kilogram          | 2.205          | pounds               |
| GPM                  | 3.785                    | liters/min           | kilogram          | 0.0011         | short ton            |
| gallons US/minute    | 0.133                    | ft <sup>3</sup> /min | kilogram          | 0.00098        | long ton             |
| gallons US/minute    | 8.021                    | ft³/hr               | kilogram          | 0.00098        | metric ton           |
| gallons US/minute    | 0.227                    | m³/hr                | metric ton        | 2205           | pounds               |
| gallons US/minute    | 34.29                    | Barrels/day          | metric ton        | 1.102          | short ton            |
|                      | UT.2J                    | (42 US gal)          | metric ton        | 0.984          | long ton             |
| cubic feet/minute    | 7.481                    | GPM                  | metric ton        | 1000           | kilogram             |
| cubic feet/minute    | 28.32                    | liters/minute        | IIIetile toli     | 1000           | Kiiograiii           |
| Capic icci/illillule | 20.02                    | iileis/iiiiilule     |                   |                |                      |

Some units shown on this page are not recommended by SI, e.g., kilogram/sq. cm should be read as kilogram (force) / sq. cm



# Metric Conversion Tables (continued)

| Multiply        | Ву                       | To Obtain                        | Multiply        | Ву            | To Obtain                       |
|-----------------|--------------------------|----------------------------------|-----------------|---------------|---------------------------------|
|                 | Volume & Capacit         | у                                | Pr              | essure & Head |                                 |
| cubic cm        | 0.06102                  | cubic inches                     | atmosphere      | 14.69         | psi                             |
| cubic cm        | 3.531 x 10 <sup>-5</sup> | cubic feet                       | atmosphere      | 1.013         | bar                             |
| cubic cm        | 10. <sup>-6</sup>        | cubic meters                     | atmosphere      | 1.033         | Kg/cm <sup>2</sup>              |
| cubic cm        | 0.0001                   | liters                           | atmosphere      | 101.3         | kPa                             |
| cubic cm        | 2.642 x 10 <sup>-4</sup> | gallons (US)                     | atmosphere      | 33.9          | ft of H <sub>2</sub> O          |
| cubic meters    | 10. <sup>6</sup>         | cubic cm                         | atmosphere      | 10.33         | m of H <sub>2</sub> O           |
| cubic meters    | 61,023.0                 | cubic inches                     | atmosphere      | 76.00         | cm of Hg                        |
| cubic meters    | 35.31                    | cubic feet                       | atmosphere      | 760.0         | torr (mm of Hg)                 |
| cubic meters    | 1000.0                   | liters                           | atmosphere      | 29.92         | in of Hg                        |
| cubic meters    | 264.2                    | gallons                          | bar             | 14.50         | psi                             |
| cubic feet      | 28,320.0                 | cubic cm                         | bar             | 0.9869        | atmosphere                      |
| cubic feet      | 1728.0                   | cubic inches                     | bar             | 1.020         | Kg/cm <sup>2</sup>              |
| cubic feet      | 0.0283                   | cubic meters                     | bar             | 100.0         | kPa                             |
| cubic feet      | 28.32                    | liters                           | bar             | 33.45         | ft of H <sub>2</sub> O          |
| cubic feet      | 7.4805                   | gallons                          | bar             | 10.20         | m of H <sub>2</sub> O           |
| liters          | 1000.0                   | cubic cm                         | bar             | 75.01         | cm of Hg                        |
| liters          | 61.02                    | cubic inches                     | bar             | 750.1         | torr (mm of Hg)                 |
| liters          | 0.03531                  | cubic feet                       | bar             | 29.53         | in of Hg                        |
| liters          | 0.001                    | cubic meters                     | kilogram/sq. cm | 14.22         | psi                             |
| liters          | 0.264                    | gallons                          | kilogram/sq. cm | 0.9807        | bar                             |
| gallons         | 3785.0                   | cubic cm                         | kilogram/sq. cm | 0.9678        | atmosphere                      |
| gallons         | 231.0                    | cubic inches                     | kilogram/sq. cm | 98.07         | kPa                             |
| gallons         | 0.1337                   | cubic feet                       | kilogram/sq. cm | 32.81         | ft of H <sub>2</sub> O (4 DEG C |
| gallons         | 3.785 x 10 <sup>-3</sup> | cubic meters                     | kilogram/sq. cm | 10.00         | m of $H_2^{-}$ O (4 DEG C       |
| gallons         | 3.785                    | liters                           | kilogram/sq. cm | 73.56         | cm of Hg                        |
|                 |                          |                                  | kilogram/sq. cm | 735.6         | torr (mm of Hg)                 |
| Pressure & Head |                          |                                  | kilogram/sq. cm | 28.96         | in of Hg                        |
|                 |                          |                                  | kiloPascal      | 0.145         | psi                             |
| pounds/sq. inch | 0.06895                  | bar                              | kiloPascal      | 0.01          | bar                             |
| pounds/sq. inch | 0.06804                  | atmosphere                       | kiloPascal      | 0.00986       | atmosphere                      |
| pounds/sq. inch | 0.0703                   | kg/cm <sup>2</sup>               | kiloPascal      | 0.0102        | kg/cm <sup>2</sup>              |
| pounds/sq. inch | 6.895                    | kPa                              | kiloPascal      | 0.334         | ft of H <sub>2</sub> O          |
| pounds/sq. inch | 2.307                    | ft of H <sub>2</sub> O (4 DEG C) | kiloPascal      | 0.102         | m of $H_2^{-}$ O                |
| pounds/sq. inch | 0.703                    | m of H <sub>2</sub> O (4 DEG C)  | kiloPascal      | 0.7501        | cm of Hg                        |
| pounds/sq. inch | 5.171                    | cm of Hg (0 DEG C)               | kiloPascal      | 7.501         | torr (mm of Hg)                 |
| pounds/sq. inch | 51.71                    | torr (mm of Hg)                  | kiloPascal      | 0.295         | in of Hg                        |
|                 |                          | (0 DEG C)                        | millibar        | 0.001         | bar                             |
| pounds/sq. inch | 2.036                    | in of Hg (0 DEG C)               |                 |               |                                 |

Some units shown on this page are not recommended by SI, e.g., kilogram/sq. cm should be read as kilogram (force) /sq. cm

Table 8



## Useful List of Equivalents (U. S. Customary Units)

1 U.S. gallon of water = 8.33 lbs @ std cond.

1 cubic foot of water = 62.34 lbs @ std cond. (= density)

1 cubic foot of water = 7.48 gallons

1 cubic foot of air = 0.076 lbs @ std cond. (= air density)

Air specific volume = 1/density = 13.1 cubic feet /lb

Air molecular weight M = 29

Specific gravity of air G = 1 (reference for gases)

Specific gravity of water = 1 (reference for liquids)

Standard conditions (US Customary) are at

14.69 psia & 60 DEG F\*

G of any gas = density of gas/0.076

G of any gas = molecular wt of gas/29

G of gas at flowing temp =  $\frac{G \times 520}{T + 460}$ 

Flow conversion of gas

$$scfh = \frac{lbs/hr}{density}$$

$$scfh = \frac{lbs/hr \times 379}{M}$$

$$scfh = \frac{lbs/hr \times 13.1}{G}$$

Flow conversion of liquid

$$GPM = \frac{lbs/hr}{500 \times G}$$

\*Normal conditions (metric) are at 1.013 bar and 0 DEG. C & 4 DEG. C water

Note: Within this control valve handbook, the metric factors are at 1.013 bar and 15.6°C.

Universal gas equation

Metric

$$P_V = mRTZ$$
 Where  $P = press lbs/sq ft$   $P = Pascal$   $v = volume in ft^3$   $v = m^3$ 

m = mass in lbs m = kg

R = gas constant

R = gas constant <u>1545</u> 8314

T = temp Rankine | T = temp Kelvin

Z = gas compressibility factor = Z

Gas expansion 
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

(perfect gas)

Velocity of sound C (ft/sec) where T = temp DEG F

$$C = 223 \quad \sqrt{\frac{k (T + 460)}{M}} \qquad \begin{array}{c} M = \text{mol. wt} \\ k = \text{specific heat} \\ \text{ratio } C_p/C_v \end{array}$$

Velocity of Sound C (m/sec) where 
$$T = \text{temp DEG C}$$

ocity of Sound C (m/sec) where T = temp DEG C M = mol. wt k = specific heat ratio 
$$C_p/C_v$$

#### References

- "The Introduction of a Critical Flow Factor for Valve Sizing," H. D. Baumann, ISA Transactions, Vol. 2, No. 2, April 1963
- "Sizing Control Valves for Flashing Service," H. W. Boger, Instruments and Control Systems, January 1970
- "Recent Trends in Sizing Control Valves," H. W. Boger, Proceedings Texas A&M 23rd Annual Symposium on Instrumentation for the Process Industries, 1968
- "Effect of Pipe Reducers on Valve Capacity," H. D. Baumann, Instruments and Control Systems, December 1968
- "Flow of a Flashing Mixture of Water and Steam through Pipes and Valves," W. F. Allen, Trans. ASME, Vol. 73, 1951
- "Flow Characteristics for Control Valve Installations," H. W. Boger, ISA Journal, October 1966.
- Flowmeter Computation Handbook, ASME, 1961
- ANSI/ISA-75.01.01, Flow Equations for Sizing Control Valves
- IEC 60534-2-1, Sizing Equations for Fluid Flow Under Installed Conditions
- ISA-RP75.23-1995, Considerations for Evaluating Control Valve Cavitation 10
- "Avoiding Control Valve Application Problems with Physics-Based Models," K. W. Roth and J. A. Stares 11
- Masoneilan Noise Control Manual OZ3000



## Notes



## Notes



## **DIRECT SALES OFFICE LOCATIONS**

**BELGIUM** 

Phone: +32-2-344-0970 Fax: +32-2-344-1123

**BRAZIL** 

Phone: +55-11-2146-3600 Fax: +55-11-2146-3610

CANADA

Ontario Phone: +905-335-3529 Fax: +905-336-7628

**CHINA** 

Phone: +86-10-8486-4515 Fax: +86-10-8486-5305

FRANCE Courbevoie

Phone: +33-1-4904-9000 Fax: +33-1-4904-9010

**GERMANY** 

Viersen Phone: +49-2162-8170-0 Fax: +49-2162-8170-280

Frankfurt +49-69-439350 Fax: +49-69-4970802 INDIA

Mumbai Phone: +91-22- 8354790 Fax: +91-22-8354791 New Delhi

Phone: +91-11-2-6164175 Fax: +91-11-5-1659635

ITALY

Phone: +39-081-7892-111 Fax: +39-081-7892-208

JAPAN Chiba

Phone: +81-43-297-9222 Fax: +81-43-299-1115

KOREA

Phone: +82-2-2274-0748 Fax: +82-2-2274-0794

**MALAYSIA** 

Phone: +60-3-2161-0322 Fax: +60-3-2163-6312

**MEXICO** 

Phone: +52-5-310-9863 Fax: +52-5-310-5584

THE NETHERLANDS

Phone: +31-10-438-4122 Fax: +31-10-438-4443 RUSSIA

Veliky Novgorod

Phone: +7-8162-15-7898 Fax: +7-8162-15-7921

Moscow

Phone: +7 495-585-1276 Fax: +7 495-585-1279

**SAUDI ARABIA** 

Phone: +966-3-341-0278 Fax: +966-3-341-7624

**SINGAPORE** 

Phone: +65-6-6861-6100 Fax: +65-6-6861-7172

**SOUTH AFRICA** 

Phone: +27-11-452-1550 Fax: +27-11-452-6542

SOUTH & CENTRAL AMERICA AND THE CARIBBEAN

Phone: +832-590-2303 Fax: +832-590-2529

**SPAIN** 

Phone: +34-93-652-6430 Fax: +34-93-652-6444 **UNITED ARAB EMIRATES** 

Phone: +971-4-8139-200 Fax: +971-4-8838-038

**UNITED KINGDOM** 

Woodburn Green

Phone: +44-1628-536300 Fax: +44-1628-536319

**UNITED STATES** 

Massachusetts

 Phone:
 +508-586-4600

 Fax:
 +508-427-8971

 Corpus Christi, Texas

 Phone:
 +361-881-8182

 Fax:
 +361-881-8246

Dresser Direct Deer Park, Texas

 Phone:
 +281-884-1000

 Fax:
 +281-884-1010

 Dresser Flow Technologies

Houston, Texas

Phone: +281-671-1640 Fax: +281-671-1735

California

Phone: +562-941-7610 Fax: +562-941-7810

### **About Dresser, Inc.**

Dresser, Inc. is a leader in providing highly engineered infrastructure products for the global energy industry. The company has leading positions in a broad portfolio of products including valves, actuators, meters, switches, regulators, piping products, natural gas-fueled engines, retail fuel dispensers and associated retail point of sale systems and air and gas handling equipment.

Leading brand names within the Dresser portfolio include Dresser Wayne® retail fueling systems, Waukesha® natural gas-fired engines, Masoneilan® control valves, Mooney® regulators, Consolidated® pressure relief valves, and Roots® blowers and rotary gas meters. It has manufacturing and customer service facilities located strategically worldwide and a sales presence in more than 100 countries. The company's website can be accessed at www.dresser.com.

#### **About Dresser Masoneilan**

Headquartered in Houston, Dresser Masoneilan is a leading brand in the Dresser, Inc. portfolio. With a history of innovation and technological leadership that goes back more than 125 years, Dresser Masoneilan delivers flexible, best-fit process control valve solutions with interoperable instrumentation and smart technologies for a wide range of applications and industries. An "open architecture" technology platform offers more product application and operational flexibility. With strategically located manufacturing operations and a worldwide network of service and support facilities, Dresser Masoneilan delivers comprehensive process control solutions and services to a global market.

#### **Dresser Masoneilan**

85 Bodwell Street Avon, MA 02322-1190

Tele: 508-586-4600 / Fax: 508-941-5497

Email: sales@masoneilan.com
© 2009 Dresser, Inc. All rights reserved.



www.dresser.com