Numerical Linear Algebra. QS 1 (MT 2017)

Optional question: Qn 4

- 1. Show that $H(w)^2 = I$ when H is a Householder matrix.
- **2.** Show that $||x||_{\infty} = \max_{i} |x_{i}|$ satisfies the axioms for a vector norm.
- **3.** Show that if ||x|| is a vector norm then $\sup_x \frac{||Ax||}{||x||}$ satisfies the axioms for a matrix norm. Further show that

$$||AB|| \le ||A|| \, ||B||.$$

4. From the definition of the vector 1-norm show that

$$||A||_1 = \max_j \sum_i |a_{ij}|.$$

5. By considering the individual columns a_j of A and b_j of B = QA, show that

$$||QA||_{\mathcal{F}} = ||A||_{\mathcal{F}}$$

if Q is an orthogonal matrix.

6. By using the definition of the vector 2-norm and the SVD show that

$$||A||_2 = \sigma_1$$

where σ_1 is the largest singular value.

- 7. (a) For $A \in \mathbb{R}^{m \times n}$ show that the singular values of A are the square roots of the eigenvalues of $A^{\mathrm{T}}A$ if $m \geq n$ or of AA^{T} is $m \leq n$. (You might want to consider what A and A^{T} do to the singular vectors.)
 - (b) Check the above using matlab: e.g. set

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

lam = eig(A' * A) and sing = svd(A).

8. If $A \in \mathbb{R}^{n \times n}$ is nonsingular, what is the SVD of A^{-1} in terms of that of A?