杂环化合物

第一节 杂环化合物的分类和命名

一、杂环化合物的定义和分类

二、有特定名称的杂环母核及其衍生物的命名及编号

类别		命名实例		命名原则
单杂原 子五元	$5\sqrt[4]{N_1}$	$5\sqrt[4]{O_1}^3$	5 S 3 2	
单杂环	吡咯 pyrrole	呋喃 furan	噻吩 thiophene	

类别	A to the hal	延衣
矢加	命名实例	命名原则
单杂原 子五元	CH ₃ CHO CHO	单杂原子 杂环,从 杂原子开
单杂环	2-甲基吡咯 2-呋喃甲醛(俗称糠醛) 3-乙酰基噻吩 2-methylpyrrole 2-furancarbaldehyde 3-acetylthiophene	始编号。 环上有取代基时,
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	尽可能使其位次较小。环上
単杂原	吡啶 $2H$ — 吡喃 $4H$ — 吡喃 pyridine $2H$ — pyran $4H$ — pyran	连有标图时,应给标图尽可
子六元 单杂环	COOH OOO	能低的编号,用位次加H(斜体
30	3-吡啶甲酸(俗称烟酸) α-吡喃酮 γ-吡喃酮 3-pyridinecarboxylic acid α-pyranone γ-pyranone	大写) 来 表示
双杂原	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	双杂原子杂环,应
子五元单杂环	CH ₃ O N N N S CH ₂ CONH ₂ 5-甲氧基咪唑 2-噻唑乙酰胺 5-methoxyimidazole 2-thiazoleacetamide	使杂原可能号。不按 0 杂原 6
双杂原子六元单杂环	5 0 0 0 0 0 0 0 0 0 0	S、NH N的顺序 决定优先 杂原子

		头权
类别	命名实例	命名原则
双杂原子六元单杂环	OH CH3 N OH 4-氨基哒嗪 5-甲基-2,4-二羟基嘧啶(胸腺嘧啶) 4-aminopyridazime 2,4-dihydroxy-5-methylpyrimidine	双杂使有低杂同的 原,原可编子的 S、顺优 原 所 NH、序先 原 条
		稠多应碳的 行编号
稠杂环	IN 5 N7 8 9 10 N 10 1 2 8 9 H N 10 1 2 2 8 9 H N N N N N N N N N N N N N N N N N N	少数稠杂环如嘌呤、吩嗪等有特殊规定的编号
	CH ₂ COOH OH OH NNH NNH NNH NNH NNH NNH NNH NN	

三、无特定名称的稠杂环的命名

基本原则:确定基本环和附加环,按"附加环"并"基本环"的形式命名。例如:

	举 例	原则
	苯并呋喃 苯并喹啉	芳碳环与杂环组成的稠杂 环,选择杂环为基本环
	NH NNH NNH NNH NNH NNH NNH NNH NNH NNH	两个杂环大小不同时,选择 大的杂环为基本环
基本环的选	中 中 中 中 中 中 中 中 中 中 中 中 中 中	两个杂环大小相同而杂原子 种类不同时,按 N、O、S 优 先顺序选择基本环
定	N N N N O O O V 味喃并噁唑	两个杂环大小相同而杂原子 数目不同时,选择含杂原子 数目多的杂环为基本环
	N N N N N N N N N N N N N N N N N N N	两个杂环大小及杂原子数目 都相同,但杂原子种类不同 时,选择含杂原子种类多的 杂环为基本环

			头状
180	举	例	原则
基本环的选定	N N N N N N N N N N N N N N N N N N N	H N N N N N N N N N N N N N N N N N N N	两个杂环大小及杂原子种 类、数目均相同时,选择稠 合前杂原子编号较小的杂环 为基本环
稠合边的表示	苯并[b]呋喃 **	N N A	按稠合前原杂环的编号原则,基本环从1位原子开始用字母a、b、c···依次表示各边的编号,附加环用数字1、2、3···依次表示各原子的编号,并尽可能使稠合边的编号较小。数字的书写顺序要与字母的排序一致。芳碳环不编号
周边编号	4 N 3 4 5 5 1 5 1 6 5 1 6 5 1 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	坐并[4,5-d] 噁唑 (b c 3 a S ₁ 2 瓦咪唑并[2,1-b] 噻唑	基本遵循芳稠环的编号原则,共用碳原子不编号,共用杂原子要编号。在满足杂原子编号尽可能小的前提下,再考虑按 O、S、NH N 的顺序编号

第二节 六元杂环化合物

一、六元杂环化合物的结构特点和物理性质

名称	共轭大π键示意图	芳香性	碱性 (pK _a)	沸点	偶极距 (C.m)	水溶性
吡啶	H N N N	有	5.19	115.5	7.41 × 10 ⁻³⁰	混溶

续表

						沙水
名称	共轭大π键示意图	芳香性	碱性 (pK _a)	沸点(℃)	偶极距 (C.m)	水溶性
喹啉	88 88 88 80 88 80	有	4.90	238	_	热水溶
异喹啉	88880	有	5.42	243	_	热水溶
哒嗪	8 800	有	2.33	207	13.1 × 10 ⁻³⁰	混溶
嘧啶	80 80 00 80	有	1.30	124	6.99 × 10 ⁻³⁰	混溶
吡嗪	08 80	有	0.65	121	80	溶

二、吡啶的化学性质

反应类型	反应实例	备注
成 盐 碱性	$+ HCl \longrightarrow \bigoplus_{\substack{+ \\ N \\ H}} Cl^-(\cancel{\text{ex}} \bigcirc_N) \cdot HCl)$	

反	应类型	反应实例	备注
	碱性	$+ SO_3 \longrightarrow \bigcirc_{N}^+ \longrightarrow \bigcirc_{N}$	吡啶三氧化硫 是温和的非质 子性磺化试剂
成盐	99X L.L.	$+ \text{CrO}_3 \longrightarrow \bigcirc N \cdot \text{CrO}_3$	吡啶三氧化铬 是温和的非质 子性氧化试剂 (Sarrett 试剂)
反应	亲核	$+ CH_3I \longrightarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	碘化 N-甲基吡啶是温和的非质子性甲基化试剂
	性	$+ PhCOCl \longrightarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	氯化 N-苯甲酰基吡啶是温和的非质子性酰基化试剂
	卤代	$ \begin{array}{c c} & Br_2 \\ \hline & 300^{\circ}C \end{array} $ $ \begin{array}{c c} & Br \\ \hline & 39\% \end{array} $	吡啶是缺π杂 环,亲电取代
	硝化	液HNO ₃ , 液H ₂ SO ₄ NO ₂ NO ₂ 300℃ N 20%	反应活性比苯 低。反应主要 发生在β位。 吡啶不发生
亲电取代反应	磺化	发烟 H ₂ SO ₄ → SO ₃ H N 70%	Friedel-Crafts 反应
		CH_3 N	当 α、γ 位 上 有供电子基团 时,亲电取代 反应活性增强

续表

反应类型	反应实例	· 沒衣
汉应关至	NHCOOC ₂ H ₅ NHCOOC ₃ H ₆	备 注
亲电取代反应	$ \begin{array}{c c} & & & \\ & & $	当β位上有强 供电子基团时, 反应则由强供 电子基团定位
亲核取代反应	N N N N N N N N N N	吡啶比苯容易 发生亲核取代 反应,且主要 发生在电子云 密度较低的α 位,其次是γ
	$\begin{array}{c c} & NaOH \\ \hline & H_2O, \triangle \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	当α、γ位上有 较好的离去基 团时,亲核取 代反应更容易 发生
氧化反应	M M M M M M M M M M	吡啶是缺π杂环,不易失去电子,难以被氧化。但烷基或芳基侧链可被氧化

		级农
反应类型	反应实例	备 注
氧化反应	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	吡化很间行应亲且位用直行。 等是用既取能对。 以取发α制用代列的。 是一个, 以取发α制用代列的。 是一个进反行。 以取发位备、 以取发位。 是一个进行。 是一个, 是一个, 是一个, 是一个, 是一个, 是一个, 是一个, 是一个,
还原反应	」 H ₂ / Pt, 0.3MPa 或 Na / C ₂ H ₅ OH, △ N H 哌啶(pK _a =11.2)	吡啶比苯易还 原,产物哌啶 是仲胺,碱性 比吡啶强

三、喹啉和异喹啉的化学性质

反应 类型	反应实例	备	注
亲电取代反应	$\begin{array}{c c} & & & & & & & & & & & \\ \hline & & & & & & &$	在电子度较大上,其	要发生密子 的苯环 反应 小, 比

续表

		>大-(X
反应 类型	反应实例	备注
亲电取代反应	$\frac{\text{浓HNO}_3, \text{浓H}_2\text{SO}_4}{0^{\circ}\text{C}}$ $\xrightarrow{NO_2}$ $+$ $\xrightarrow{NO_2}$ \times	喹啉主要在5位和8位取代,异喹啉主要在5位取代
亲核取代反应	NaNH ₂ , 二甲苯 100℃ NH ₂ ○PhCH ₂ MgCl ②H ₃ O' N CH ₂ Ph KNH ₂ /液NH ₃ -10℃ N NH ₂	反应主要发生 在吡啶环上, 其反应活性比 吡啶大。喹啉 主要在2位或 4位取代, 异 喹啉主要在1 位取代
氧化反应	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & & \\ \hline & &$	只能被强氧化 剂氧化,且主 要发生在电子 云密度较大的 苯环上
	H ₂ O ₂ /CH ₃ COOH 或RCO ₃ H	被过氧化物氧化时,产物为N-氧化物

反应 类型	反应实例	备注
还原 反应	H ₂ /Pt, 0.2MPa 或SnCl ₂ /HCl N Na, C ₂ H ₅ OH N H ₂ /Pt, CH ₃ COOH 或Sn+HCl	比吡啶易被还原,且主要发生在电子云密度较小的吡啶环上 还原剂强时两环均被还原

四、二氮嗪类的化学性质

反应 类型	反应实例	备注
碱性	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	二氮嗪类化合物是一元碱
亲和性	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	生成单季铵盐
亲电取	N Brs/PhNO ₂ 130°C N	比吡啶难。卤代发 生在5位。硝化、 磺化等反应都难以 进行
代反应	OH OH OH OH OH OH OH OH O	当环上有羟基、氨 基等强供电子基团 时,硝化、磺化等 亲电取代反应也能 发生

反应 类型	反应实例	备注
亲核取代反应	$\begin{array}{c c} CH_3 & CH_3 \\ \hline N & NaNH_2 \\ \hline N & NH_2 \\ \hline N & OH \\ \hline \end{array}$	比吡啶容易。取代 主要发生在电子云 密度较低的 2、4、 6 位。当这些位置 已连有卤素时,亲 核取代反应更容易 发生
	$\begin{array}{c c} CH_3 & COOH \\ \hline N & \hline N & \hline N \\ \hline N & \hline N & \hline N \\ \hline N & \hline N & \hline N \\ \hline N & \hline N & \hline COOH \\ \hline N & \hline COOH \\ \hline \end{array}$	二氮嗪不易被氧化,但侧链易被氧化
氧化 反应	$\begin{array}{c c} N & \xrightarrow{H_2O_2, \text{ AcOH}} & \nearrow N \\ \hline \downarrow N & \xrightarrow{\text{pl} CH_3CO_3H} & \nearrow N \\ \hline \downarrow N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & & & & & \\ \hline N & & \\ N & & & \\ \hline N & & & \\ \hline N & & \\ \hline N & & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & \\ \hline N & & \\ N & & $	与吡啶相似,二氮 嗪在过氧酸或过氧 化氢中被氧化成单 氮氧化物。单氮氧 化物既易发生亲电 取代反应,也易发 生亲核取代反应
α - H 的反应	N CH3 PhCHO N CH=CHPh	除 5- 烷基嘧啶外, 其他烷基二氮嗪在 邻、对位氮的吸电 子作用下, 侧链上 的 α- 氢 均 很 活 泼, 都能进行类似 羟醛缩合、烷基化 反应等

反应 类型	反应实例	备注
α - H 的反应	CH ₂ CH	除 5- 烷基嘧啶外, 其他烷基二氮嗪在 邻、对位氮的吸电 子作用下,侧链上 的 α- 氢 均 很 活 泼,都能进行类似 羟醛缩合、烷基化 反应等

五、喹啉及其衍生物的合成

六、嘧啶及其衍生物的合成

75	, IIN	11	A 2 - Mu ++
通式	\downarrow 0 + \downarrow HN	- N	1,3-二羰基 化合物与二 胺缩合

七、含氧原子的六元杂环

吡喃	2H-吡喃(α-吡喃) 4H-吡喃(γ-吡喃)	均无芳香性,不稳定, 自然界不存在
吡喃	α-吡喃酮 (不饱和内酯, 不稳定) (插烯内酯, 稳定)	均 无 芳 香 性,自然界 中存在
門	$ \begin{array}{c c} \hline O & OH^{-} & H' \\ \hline OH & COOH \end{array} $ OHC COOH	α- 吡喃酮 具有内酯和 共轭 二烯 的性质,可 发生水解、

续表

第三节 五元杂环化合物

一、五元杂环化合物的结构特点和物理性质

名称	共轭大π键 示意图	芳香性	碱性 (pK _a)	酸性 (pK _n)	沸点 (℃)	偶极距 (C.m)	水溶性
吡咯	H N H	有	无	17.5	130 ~ 131	6.03 × 10 ⁻³⁰	微溶

名称	共轭大π键 示意图	芳香性	碱性 (pK _a)	酸性 (pK _a)	沸点(℃)	偶极距 (C.m)	水溶性
呋喃	H 0 0 H	有	无	无	31.4	2.33 × 10 ⁻³⁰	微溶
噻吩	H 8 0 H S S S S S S S S S S S S S S S S S S	有	无	无	84.4	1.70 × 10 ⁻³⁰	微溶
吡唑	H 0 0 H	有	2.5	<17.5	186 ~ 188	13.1 × 10 ⁻³⁰	易溶
咪唑	H O O H	有	7.0	<17.5	257	6.99 × 10 ⁻³⁰	易溶
噁唑	н 8 0 н Н 8 0 н	有	0.8	无	69 ~ 70	45	易溶
异噁唑	н О О Н	有	-2.03	无	95 ~ 96	8 61	溶

续表

名称	共轭大π键 示意图	芳香性	碱性 (pK _a)	酸性 (pK _a)	沸点(℃)	偶极距 (C.m)	水溶性
噻唑	н 8 0 н	有	2.4	无	116.8	_	微溶
吲哚	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	有	无	17.0	253	_	微溶

二、吡咯、呋喃和噻吩的化学性质

反应类型	反应实例	备 注
	$\begin{array}{c} \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle \\ + \text{KOH} \xrightarrow{\triangle} \begin{array}{c} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \\ \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \\ \end{array} \\ + H_2O$	吡咯有弱酸性,能 与强碱(如金属钾 或固体氢氧化钾) 共热成盐
酸性	$\begin{array}{c} CH_3 \\ \hline \\ N \\ K^* \end{array}$ $\begin{array}{c} CH_3COCI \\ \hline \\ N \\ \hline \\ COCH_3 \\ \hline \\ CH_2CH_2OH \end{array}$	吡咯盐不稳定,具有亲核性,可与卤代烷等一些试剂反应生成 N-取代吡咯
亲电取代反应	$\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) \\ \left(A\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) \\ \left(A\right) \\ \left(A\right) & A \end{array}\right) \\ \left(\begin{array}{ccc} \left(A\right) & A \end{array}\right) \\ \left(A\right) \\ \left(A\right) \\ \left(A\right) \\ A \end{array}\right) \\ \left(A\right) \\ \left(A\right) \\ \left(A\right) \\ \left(A\right) \\ \left(A\right) \\ \left(A\right) \\ A \end{array}\right) \\ \left(A\right) \\$	它们都是多π杂环, 比苯易发生亲电取 代反应,其反应活 性为:吡咯>呋喃> 噻吩>苯

反应	类型	反 应 实 例	备注
	卤代	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	反应主要发生在电子云密度较高的2位 反应需在较低温度 且试剂浓度很低的 条件下进行
亲电取代	硝化	$ \begin{array}{c c} & CH_3COONO_2 \\ N \\ H \end{array} $ $ \begin{array}{c} & CH_3COONO_2 \\ Ac_2O, -10^{\circ}C \end{array} $ $ \begin{array}{c} & CH_3COONO_2 \\ -5 \sim -30^{\circ}C \end{array} $ $ \begin{array}{c} & CH_3COONO_2 \\ O \\ NO_2 \end{array} $ $ \begin{array}{c} & CH_3COONO_2 \\ Ac_2O, -10^{\circ}C \end{array} $ $ \begin{array}{c} & CH_3COONO_2 \\ O \\ NO_2 \end{array} $	它们在氧化剂或强酸存在下,易发生氧化、水解、开环、聚合等反应,所以要采用非质子性硝化试剂硝乙酐进行硝化反应,不能用混酸作硝化试剂
反应	磺化	$ \begin{array}{c c} & & & & \\ \hline Z & & & & \\ \hline 100^{\circ}C & & & \\ \hline Z & & & \\ \hline SO_3H & & \\ \hline \end{array} $	吡咯和呋喃要用比较温和的非质子性 磺化试剂吡啶三氧 化硫进行磺化。噻 吩较稳定,可用硫 酸进行磺化,但产 率较低
	傅克酰基化	$(Z=NH, O, S)$ $(Z=NH, O, S)$ $(CH_3CO)_2O$ $COCH_3$ $(CH_3CO)_2O$ CH_3COONa (CH_3COONa) (CH_3COONa) $(COCH_3$	酸催化下, 傅 - 克酰基化反应主要得到单取代酰基化产物 吡咯在碱催化下的酰化主要得到 N- 酰基化产物
其他反应	还原	$(Z=NH, O, S)$ H_2/Ni Z	

续表

反应类型		反应 实 例	备注	
其他反	吡咯特性	$ \begin{array}{c cccc} & & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & $	吡咯具有类似于苯酚的性质,如可发生 Reimer-Timann反应、偶合反应等	
	呋喃特性		呋喃共振能较小, 稳定性较差,具有 明显的共轭二烯烃 的性质,如可发生 Diels-Alder 反应	
应	糠醛性质	CHO CHO	糠醛具有芳醛性质,可发生银镜反应、Cannizzaro反应、Perkin 反应等	

三、唑类和吲哚的亲电取代反应、氧化反应

唑类	CH_3 N N $KMnO_4$ N	
吲哚	$ \begin{array}{c c} & \xrightarrow{CH_1COONO_2} & & & \\ \hline N & \xrightarrow{-} & & \\ H & & & H \end{array} $	反应主要发生在3 位,而不是2位

四、互变异构现象

吡唑	CH ₃ N CH ₃ N N CH ₃ N N N N N N N N N N N N N N N N N N N	—н
咪唑	OHC NOHC NOHC NOHC NOHC NOHC NOHC NOHC N	一H 由活泼氢引起的互
嘌呤	N N N N N N N N N N N N N N N N N N N	变异构现象
嘧啶	OH N N OH N N N N N N N N N N N N N N N	

(张丽娟)