一、论文理论分析分工 (一周)

模块	成员A任务(理论侧重)	成员B任务(实践侧重)	协作节点
1. 背景 与动机	- 撰写NLP预训练技术发展脉络 (Word2Vec→ELMo→GPT) - 整理GPT在2018年的技术突破点	- 统计论文引用的关键文献(图表化引用网络) - 对比GPT与同期模型(BERT等)的差异	共同确认技术 定位准确性
2. 模型 架构	- 推导Transformer数学公式(式2.1- 2.4) - 绘制模型结构图(Figure 1复现)	- 验证位置编码有效性(正弦vs 学习式) - 分析多头注意力参数占比(12 头 vs 其他配置)	交叉检查公式 推导正确性
3. 训练 策略	- 解释无监督预训练目标函数(式2.1) - 证明最大似然估计的收敛性	- 复现学习率预热曲线(Figure 3) - 统计BooksCorpus数据分布 (词频/长度)	联合设计消融 实验方案
4. 实验 结果	- 分析各任务AUC提升原因(表1) - 解释zero-shot性能(图2右)	- 复现主要实验结果(表1关键 指标) - 可视化注意力模式(如Figure 4)	共同撰写实验 分析段落
5. 局限 与展望	- 总结模型计算效率缺陷 - 提出理论改进方向(稀疏注意力等)	- 测试模型在长文本的泛化性 - 设计知识蒸馏实验方案(加分 项)	联合制定未来 研究路线图

二、代码复现分工 (两周)

阶段	成员A任务(框架搭建)	成员B任务(实验优化)	协作产出
1. 数据 处理	- 实现BPE分词器(原版编码) - 构建文本滑动窗口 (context=512)	- 预处理BooksCorpus子集 (10%数据) - 生成TFRecord格式训练文件	可复用的数据管道
2. 模型 核心	- 编写Transformer Block(含 LayerNorm) - 实现位置编码(正弦函数)	- 添加混合精度训练支持 (AMP) - 实现梯度累积(应对显存限 制)	模块化模型代码库
3. 训练 循环	- 搭建语言模型损失函数 - 配置Adam优化器(β1=0.9, β2=0.999)	- 实现学习率调度器(带预热) - 添加wandb训练监控	可运行的训练脚本
4. 微调 实验	- 适配文本分类任务(如CoLA) - 修改输入格式([start]+text+ [extract])	- 对比不同微调策略(全参数/ 顶层微调) - 测试batch size对准确率的影响	微调性能对比报告
5. 优化 扩展	- 实现稀疏注意力(Blockwise) - 集成Flash Attention加速	- 知识蒸馏:用12层模型指导6 层训练 - 量化模型(FP16→INT8)	改进方案代码与 benchmark

三、文档撰写分工 (两周)

章节	成员A负责内容	成员B负责内容	整合方式
1. 引言	- NLP预训练发展背景 - GPT的核心贡献陈述	- 同期模型对比表格 - 论文技术影响力分析(引用数/应用 场景)	A起草文本,B补充数 据
2. 方 法	- 模型架构数学推导 - 训练目标函数解释	- 代码结构图(类图+数据流) - 工程实现细节(如并行化策略)	交叉验证公式与代码对 应性
3. 实 验	- 主实验结果分析(表1) - 消融实验讨论(层数/头数影 响)	- 复现结果对比图表 - 训练资源消耗统计(显存/时间)	共同确保数据一致性
4. 讨 论	- 理论局限分析(单向注意力 缺陷) - 未来研究方向建议	- 实际部署挑战(模型压缩需求) - 改进方案实验效果	合并观点后逻辑串联
5. 附 录	- 完整公式推导过程 - 超参数配置表	- 代码仓库使用说明 - 复现环境依赖文件	分别提交后合并