Transmission intervals in Disease Modeling

Jonathan Dushoff, McMaster University

IBENS Minisymposium Modeling Epidemics and Behaviour May 2022, Paris

► Math undergrad, trained as a theoretical ecologist

- ▶ Math undergrad, trained as a theoretical ecologist
- ► Interests

- ▶ Math undergrad, trained as a theoretical ecologist
- Interests
 - ▶ Disease modeling, bridging to data, statistical philosophy

- Math undergrad, trained as a theoretical ecologist
- Interests
 - Disease modeling, bridging to data, statistical philosophy
 - ► Canine rabies, HIV, influenza, **COVID-19**

- Math undergrad, trained as a theoretical ecologist
- Interests
 - Disease modeling, bridging to data, statistical philosophy
 - Canine rabies, HIV, influenza, COVID-19
- ► McMaster University

- Math undergrad, trained as a theoretical ecologist
- Interests
 - Disease modeling, bridging to data, statistical philosophy
 - Canine rabies, HIV, influenza, COVID-19
- McMaster University
- ▶ International Clinics on Infectious Disease Dynamics and Data

- Math undergrad, trained as a theoretical ecologist
- Interests
 - Disease modeling, bridging to data, statistical philosophy
 - Canine rabies, HIV, influenza, COVID-19
- McMaster University
- International Clinics on Infectious Disease Dynamics and Data
 - ► http://www.ici3d.org

- Math undergrad, trained as a theoretical ecologist
- Interests
 - Disease modeling, bridging to data, statistical philosophy
 - Canine rabies, HIV, influenza, COVID-19
- McMaster University
- International Clinics on Infectious Disease Dynamics and Data
 - http://www.ici3d.org

What is the pattern of Pythagorean triples of integers $a^2 + b^2 = c^2$?

How many at-bats does it take to get a given batting average?

► How far and fast would it spread if unchecked?

https://wzmli.github.io/COVID19-Canada

- How far and fast would it spread if unchecked?
- ► How hard is it to eliminate?

https://wzmli.github.io/COVID19-Canada

- How far and fast would it spread if unchecked?
- How hard is it to eliminate?
- How are we doing on control in a particular place and time?

https://wzmli.github.io/COVID19-Canada

- How far and fast would it spread if unchecked?
- How hard is it to eliminate?
- How are we doing on control in a particular place and time?
- How do we think emerging variants will affect our predictions?

https://wzmli.github.io/COVID19-Canada

- How far and fast would it spread if unchecked?
- How hard is it to eliminate?
- How are we doing on control in a particular place and time?
- How do we think emerging variants will affect our predictions?

https://wzmli.github.io/COVID19-Canada

Wuhan control measures

https://jamanetwork.com/journals/jama/fullarticle/2764658

Outline

Modeling approaches

Transmission intervals

Linking rR

Evaluating interventions

Summary

Divide people into categories:

ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered

Divide people into categories:

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ► Individuals recover independently

Divide people into categories:

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ► Individuals recover independently
- ► Individuals are infected by infectious people

Divide people into categories:

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ► Individuals recover independently
- Individuals are infected by infectious people

$$\begin{array}{ll} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Delayed infectiousness

Ebola

Coronavirus

Childs et al., http://covid-measures.stanford.edu/

► A broad framework that covers a wide range of underlying models

► A broad framework that covers a wide range of underlying models

$$ightharpoonup i(t) = \int k(\tau,t)i(t-\tau)\,d\tau$$

- ➤ A broad framework that covers a wide range of underlying models
- \blacktriangleright $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)

- ➤ A broad framework that covers a wide range of underlying models
- $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - ightharpoonup k(au) measures how infectious a person is (on average) at time au after becoming infected

- ➤ A broad framework that covers a wide range of underlying models
- $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - k(au) measures how infectious a person is (on average) at time au after becoming infected
- ► *k* changes through time

- ➤ A broad framework that covers a wide range of underlying models
- $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - $k(\tau)$ measures how infectious a person is (on average) at time au after becoming infected
- k changes through time
 - proportion susceptible, control measures

- ➤ A broad framework that covers a wide range of underlying models
- \blacktriangleright $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - $k(\tau)$ measures how infectious a person is (on average) at time τ after becoming infected
- k changes through time
 - proportion susceptible, control measures
 - we often think about *counterfactuals* with *fixed* $k(\tau)$

- ➤ A broad framework that covers a wide range of underlying models
- \blacktriangleright $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - k(au) measures how infectious a person is (on average) at time au after becoming infected
- k changes through time
 - proportion susceptible, control measures
 - we often think about *counterfactuals* with *fixed* $k(\tau)$

Cohort modeling

 Create ODEs to follow a cohort of people infected at the same time

Cohort modeling

- Create ODEs to follow a cohort of people infected at the same time
- ► Transform ODE model to renewal-equation model

Cohort modeling

- Create ODEs to follow a cohort of people infected at the same time
- ► Transform ODE model to renewal-equation model

Cohort modeling

Childs et al., http://covid-measures.stanford.edu/

Transmission kernel

lacktriangle Area is ${\cal R}$

Transmission kernel

- ightharpoonup Area is $\mathcal R$
- Distribution is the generation interval

Transmission kernel

- ightharpoonup Area is $\mathcal R$
- Distribution is the generation interval

Outline

Modeling approaches

Transmission intervals

Linking rR

Evaluating interventions

Summary

 Sort of the poor relations of disease-modeling world

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods
- ► Error often not propagated

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods
- ► Error often not propagated

How long is a disease generation?

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

30

40

50

20

Generation interval (days)

10

Density (1/day)

► The generation distribution measures generations of the disease

Approximate generation intervals

- The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection

Approximate generation intervals

- ► The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Link r (exponential growth rate) and R (effective reproductive number)

Approximate generation intervals

- The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Link r (exponential growth rate) and R (effective reproductive number)

► Population-level *Speed* of spread *r* is a product:

- ▶ Population-level *Speed* of spread *r* is a product:
 - ▶ Something about *Strength* R

- Population-level *Speed* of spread *r* is a product:
 - ightharpoonup Something about Strength $\mathcal R$
 - ► X

- Population-level Speed of spread r is a product:
 - ightharpoonup Something about Strength $\mathcal R$
 - ×
 - Something about *Quickness*: Individual-level speed of transmission $g(\tau)$

- Population-level Speed of spread r is a product:
 - ightharpoonup Something about Strength $\mathcal R$
 - X
 - Something about *Quickness*: Individual-level speed of transmission $g(\tau)$

Mechanistic perspective

 $\triangleright \mathcal{R}$ is known

Mechanistic perspective

- $\triangleright \mathcal{R}$ is known
- ► Quicker generations ⇒ faster population-level spread

Mechanistic perspective

- $\triangleright \mathcal{R}$ is known
- ▶ Quicker generations ⇒ faster population-level spread

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Faster than expected.

Ebola outbreak

Coronavirus speed

► Population-level speed *r* is observed

- Population-level speed r is observed
- Generation-interval distribution $g(\tau)$ can be estimated

- Population-level speed r is observed
- Generation-interval distribution $g(\tau)$ can be estimated
- Quicker generations (low \bar{G}) \implies lower \mathcal{R}

- Population-level speed r is observed
- Generation-interval distribution $g(\tau)$ can be estimated
- Quicker generations (low \bar{G}) \implies lower \mathcal{R}

► One generation:

- ▶ One generation:
 - ► Latent period (time until infectiousness) +

- ▶ One generation:
 - ► Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)

- ▶ One generation:
 - Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)
- ► Infectious waiting time

- ▶ One generation:
 - Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)
- ▶ Infectious waiting time
 - Drawn at random from infectious period

Generation interval

- One generation:
 - Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - ► Equal to infectious period *only* when we assume a Markovian process

Generation interval

- One generation:
 - Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - Equal to infectious period only when we assume a Markovian process
 - ► Common source of confusion for people with ODE background

Generation interval

- One generation:
 - Latent period (time until infectiousness) +
 - ► Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - Equal to infectious period only when we assume a Markovian process
 - ► Common source of confusion for people with ODE background

How long until the bus comes?

► Infectious period of an infector

- ► Infectious period of an infector
 - ► Activity level of an interactor, in HIV models

- ► Infectious period of an infector
 - Activity level of an interactor, in HIV models

$$\blacktriangleright \ \mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$$

- ► Infectious period of an infector
 - Activity level of an interactor, in HIV models

$$\mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$$

▶ Time until bus comes: $\mu(1+\kappa)/2$

- ► Infectious period of an infector
 - Activity level of an interactor, in HIV models
- $\mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$
- ▶ Time until bus comes: $\mu(1+\kappa)/2$
- **Exponential distribution**: $\kappa = 1$

- ► Infectious period of an infector
 - Activity level of an interactor, in HIV models
- $\mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$
- ▶ Time until bus comes: $\mu(1+\kappa)/2$
- **Exponential distribution**: $\kappa = 1$

► Generation interval: infection ⇒ infection

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved

- ▶ Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ► Serial interval: symptoms ⇒ symptoms

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ► Serial interval: symptoms ⇒ symptoms
 - ► Observable..., may be hard to define

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ► Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- ► Other:

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis

- ▶ Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - ▶ notification ⇒ notification

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - ▶ notification ⇒ notification
- ► Some cases are never symptomatic, or never diagnosed

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - ▶ notification ⇒ notification
- ▶ Some cases are never symptomatic, or never diagnosed

Outline

Modeling approaches

Transmission intervals

Linking $r\mathcal{R}$

Evaluating interventions

Summary

► If we assume *k* is not changing through time, we expect exponential growth

▶ If we assume *k* is not changing through time, we expect exponential growth

$$1 = \int k(\tau) \exp(-r\tau) \, d\tau$$

- ▶ If we assume *k* is not changing through time, we expect exponential growth
- $1 = \int k(\tau) \exp(-r\tau) d\tau$
 - ▶ i.e., the total of *discounted* contributions is 1

- ▶ If we assume *k* is not changing through time, we expect exponential growth
- ► $1 = \int k(\tau) \exp(-r\tau) d\tau$ ► i.e., the total of *discounted* contributions is 1
- ► $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$

- ▶ If we assume *k* is not changing through time, we expect exponential growth
- ► $1 = \int k(\tau) \exp(-r\tau) d\tau$ ► i.e., the total of *discounted* contributions is 1
- ▶ $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- ▶ Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution

- ▶ If we assume *k* is not changing through time, we expect exponential growth
- ► $1 = \int k(\tau) \exp(-r\tau) d\tau$ ► i.e., the total of *discounted* contributions is 1
- ▶ $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

- ▶ If we assume *k* is not changing through time, we expect exponential growth
- ► $1 = \int k(\tau) \exp(-r\tau) d\tau$ ► i.e., the total of *discounted* contributions is 1
- ► $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

►
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

$$ightharpoonup \mathcal{R} = 1/M(-r)$$

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

- $ightharpoonup \mathcal{R} = 1/M(-r)$
- ► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

- $ightharpoonup \mathcal{R} = 1/M(-r)$
- ► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

$$\blacktriangleright$$
 $k(\tau) = \mathcal{R}g(\tau)$

- \blacktriangleright $k(\tau) = \mathcal{R}g(\tau)$
- ► Strength decomposition

$$\blacktriangleright$$
 $k(\tau) = \mathcal{R}g(\tau)$

$$k(\tau) = \exp(r\tau)b(\tau)$$

Strength decomposition

Strength decomposition

$$k(\tau) = \exp(r\tau)b(\tau)$$

Speed decomposition

Strength decomposition

$$k(\tau) = \exp(r\tau)b(\tau)$$

Speed decomposition

$$\blacktriangleright \ \mathcal{R} = (1 + r\kappa \bar{G})^{1/\kappa} \equiv X(r\bar{G}; 1/\kappa)$$

 \blacktriangleright κ is the 'effective dispersion'

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- ► X is the compound-interest approximation to the exponential

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - Linear when $\kappa=1$ (i.e., when g is exponential)
 - ▶ Approaches exponential as $\kappa \to 0$

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - ightharpoonup Approaches exponential as $\kappa o 0$
- lacktriangle Compounding underlying ${\cal R}$ is dual to dynamical compounding

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - ightharpoonup Approaches exponential as $\kappa o 0$
- lacktriangle Compounding underlying ${\cal R}$ is dual to dynamical compounding
- ► Park et al., Epidemics DOI:10.1101/312397

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - Linear when $\kappa = 1$ (i.e., when g is exponential)
 - Approaches exponential as $\kappa \to 0$
- lacktriangle Compounding underlying ${\cal R}$ is dual to dynamical compounding
- ▶ Park et al., Epidemics DOI:10.1101/312397

ightharpoonup Quicker generations (small \bar{G}) mean faster r for fixed \mathcal{R}

- lacktriangle Quicker generations (small $ar{G}$) mean faster r for fixed ${\cal R}$
 - ightharpoonup \implies Weaker \mathcal{R} for fixed r

- lacktriangle Quicker generations (small $ar{G}$) mean faster r for fixed ${\cal R}$
 - ightharpoonup \Longrightarrow Weaker \mathcal{R} for fixed r
- \blacktriangleright More variation κ means more "compounding" of infections

- ightharpoonup Quicker generations (small \bar{G}) mean faster r for fixed \mathcal{R}
 - $\blacktriangleright \implies \text{Weaker } \mathcal{R} \text{ for fixed } r$
- lacktriangle More variation κ means more "compounding" of infections
 - quicker spread, when epidemic is growing

- lacktriangle Quicker generations (small $ar{G}$) mean faster r for fixed ${\cal R}$
 - ightharpoonup Weaker \mathcal{R} for fixed r
- lacktriangle More variation κ means more "compounding" of infections
 - quicker spread, when epidemic is growing
- $ightharpoonup r=(1/\bar{G}) imes \ell(\mathcal{R};\bar{\kappa})$ is the sense in which r is actually a product

- $lackbox{ Quicker generations (small \bar{G}) mean faster r for fixed \mathcal{R}}$
 - ightharpoonup \Longrightarrow Weaker \mathcal{R} for fixed r
- lacktriangle More variation κ means more "compounding" of infections
 - quicker spread, when epidemic is growing
- $r = (1/\bar{G}) \times \ell(\mathcal{R}; \bar{\kappa})$ is the sense in which r is actually a product

Approximating the rR relationship

Exponential growth rate (per generation)

Heuristics for \mathcal{R}

▶ Mechanistic: R = DcpS/N

- ▶ Mechanistic: $\mathcal{R} = DcpS/N$
 - Duration of infectiousness, contact rate, probability of transmission, proportion susceptible

- ▶ Mechanistic: $\mathcal{R} = DcpS/N$
 - Duration of infectiousness, contact rate, probability of transmission, proportion susceptible
- ▶ Phenomenological: $\mathcal{R} = X(r\bar{G}; 1/\kappa)$

- ▶ Mechanistic: $\mathcal{R} = DcpS/N$
 - Duration of infectiousness, contact rate, probability of transmission, proportion susceptible
- ▶ Phenomenological: $\mathcal{R} = X(r\bar{G}; 1/\kappa)$
 - ► Rate of exponential growth, mean generation interval, effective dispersion of generation interval

- ▶ Mechanistic: $\mathcal{R} = DcpS/N$
 - Duration of infectiousness, contact rate, probability of transmission, proportion susceptible
- ▶ Phenomenological: $\mathcal{R} = X(r\bar{G}; 1/\kappa)$
 - Rate of exponential growth, mean generation interval, effective dispersion of generation interval

Propagating error

Propagating error

B. Reduced uncertainty in r

Outline

Modeling approaches

Transmission intervals

Linking rR

Evaluating interventions

Summary

Wuhan control measures

https://jamanetwork.com/journals/jama/fullarticle/2764658

▶ Instantaneous \mathcal{R}_i (Cori):

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - \blacktriangleright $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - ► Counterfactual: how many cases per case if conditions were frozen at time *t*

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):
 - $i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):
 - $i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$
- Moving from reports to infections

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):

$$i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$$

- Moving from reports to infections
 - Deconvolution

Time-varying reproductive numbers

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):

$$i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$$

- Moving from reports to infections
 - Deconvolution

- Strength-like: lockdown, vaccination
- Speed-like: diagnosis, contact tracing

- Strength-like: lockdown, vaccination
- Speed-like: diagnosis, contact tracing
- Dushoff and Park, DOI: 10.1098/rspb.2020.1556

- Strength-like: lockdown, vaccination
- Speed-like: diagnosis, contact tracing
- Dushoff and Park, DOI: 10.1098/rspb.2020.1556

▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ – the proportional amount by which the intervention reduces transmission.

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$
 - ► Easy to estimate for generalized interventions

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$
 - Easy to estimate for generalized interventions
- ▶ Define intervention speed $\phi = r \hat{r}$ the amount by which the intervention slows down spread.

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$
 - ► Easy to estimate for generalized interventions
- ▶ Define intervention speed $\phi = r \hat{r}$ the amount by which the intervention slows down spread.
 - ▶ Outbreak can be controlled if $\phi > r$.

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$
 - Easy to estimate for generalized interventions
- ▶ Define intervention speed $\phi = r \hat{r}$ the amount by which the intervention slows down spread.
 - ▶ Outbreak can be controlled if $\phi > r$.
 - ► Easy to estimate for some surveillance-based interventions

- ▶ Define intervention strength $\theta = \mathcal{R}/\hat{\mathcal{R}}$ the proportional amount by which the intervention reduces transmission.
 - ▶ Outbreak can be controlled if $\theta > \mathcal{R}$
 - Easy to estimate for generalized interventions
- ▶ Define intervention speed $\phi = r \hat{r}$ the amount by which the intervention slows down spread.
 - ▶ Outbreak can be controlled if $\phi > r$.
 - Easy to estimate for some surveillance-based interventions

 $ightharpoonup r_0$ is easier to estimate from early time series

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease
- r is a better indicator if changes are speed-like

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease
- r is a better indicator if changes are speed-like
- $ightharpoonup \mathcal{R}$ is a better indicator if changes are strength-like

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease
- r is a better indicator if changes are speed-like
- $ightharpoonup \mathcal{R}$ is a better indicator if changes are strength-like
- ► Both approaches require estimating *infections*

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease
- r is a better indicator if changes are speed-like
- $ightharpoonup \mathcal{R}$ is a better indicator if changes are strength-like
- Both approaches require estimating infections
 - Deconvolution

- $ightharpoonup r_0$ is easier to estimate from early time series
- $ightharpoonup \mathcal{R}_0$ may be easier to estimate for an established disease
- r is a better indicator if changes are speed-like
- $ightharpoonup \mathcal{R}$ is a better indicator if changes are strength-like
- ▶ Both approaches require estimating *infections*
 - Deconvolution

▶ Constant-strength interventions reduce \mathcal{R}_i by the strength of control \mathcal{P} .

- ▶ Constant-strength interventions reduce \mathcal{R}_i by the strength of control \mathcal{P} .
- ightharpoonup Constant-hazard interventions reduce r by the hazard of control \mathcal{H} .

- ▶ Constant-strength interventions reduce \mathcal{R}_i by the strength of control \mathcal{P} .
- ▶ Constant-hazard interventions reduce r by the hazard of control \mathcal{H} .
- ► These can be combined ...

- ▶ Constant-strength interventions reduce \mathcal{R}_i by the strength of control \mathcal{P} .
- ▶ Constant-hazard interventions reduce r by the hazard of control \mathcal{H} .
- These can be combined . . .
- ► Realistic interventions are more complicated still

- ▶ Constant-strength interventions reduce \mathcal{R}_i by the strength of control \mathcal{P} .
- ▶ Constant-hazard interventions reduce r by the hazard of control \mathcal{H} .
- These can be combined . . .
- ▶ Realistic interventions are more complicated still

Unidentifiability

► Strength-like and speed-like interventions can give exactly the same incidence curves

Unidentifiability

➤ Strength-like and speed-like interventions can give exactly the same incidence curves

Implications for intervention

Implications for intervention

Outline

Modeling approaches

Transmission intervals

Linking rR

Evaluating interventions

▶ Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- ► Transmission intervals are key to linking these measurements

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- ▶ Transmission intervals are key to linking these measurements
 - ► Clear definitions

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- ► Transmission intervals are key to linking these measurements
 - Clear definitions
 - Combining different sources of information

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- Transmission intervals are key to linking these measurements
 - Clear definitions
 - Combining different sources of information
 - ► Propagating error

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- ► Transmission intervals are key to linking these measurements
 - Clear definitions
 - Combining different sources of information
 - Propagating error

► Organizers and audience

- Organizers and audience
- ► Collaborators:

- Organizers and audience
- ► Collaborators:
 - Park, Weitz

- Organizers and audience
- Collaborators:
 - Park, Weitz
 - Li, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So ...

- Organizers and audience
- Collaborators:
 - Park, Weitz
 - Li, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So ...
- ► Funders: NSERC, CIHR, PHAC, WHO, McMaster

- Organizers and audience
- Collaborators:
 - Park, Weitz
 - Li, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So ...
- ► Funders: NSERC, CIHR, PHAC, WHO, McMaster