4. 識別 一統計的手法一

• カテゴリ特徴

• 3章 (決定木):正解を表現する概念を得る

4章(統計) : 結果の確率を得る

説明性

意思決定

・最大事後確率則による識別

$$C_{MAP} = rg \max_{i} P(\omega_{i} | \boldsymbol{x})$$
 \boldsymbol{x} :特徴ベクトル ω_{i} $(1 \leq i \leq c)$: クラス

- <u>データから直接的に</u>この確率を求めるのは難しい
- ベイズの定理 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\boldsymbol{x})$$

$$= \arg \max_{i} \frac{P(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= \arg \max_{i} P(\boldsymbol{x}|\omega_{i})P(\omega_{i})$$

- ベイズ統計とは
 - 結果から原因を求める
 - ベイズ識別
 - 観測結果 x から、それが生じた原因 ω_i を求める
 - 通常、確率が与えられるのは原因→結果(尤度)
 - ベイズ識別では、事前分布 $P(\omega_i)$ が、観測によって事後分布 $P(\omega_i | \mathbf{x})$ に変化したと考えることができる

- 事前確率 $P(\omega_i)$
 - 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス ω_i のデータ数

- 尤度 $P(x|\omega_i)$
 - 特定のクラスから、ある特徴ベクトルが出現する尤もらしさ
- は次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

4.2 カテゴリ特徴に対するベイズ識別

- データの尤度
 - データを生成するモデルを考え、そのモデルがパラ メータ θ に従ってデータを生成していると仮定

$$P(oldsymbol{x}|\omega_i,oldsymbol{ heta})$$
 以後、1 クラス分のデータを全データとみなす

- 全データは、それぞれ独立に生成されていると仮定
 - i.i.d (independent and identically distributed)

$$P(D|\boldsymbol{\theta}) = \prod_{i=1}^{N} P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

- 対数尤度
 - 確率の積のアンダーフローを避けるため、対数尤度 で計算

$$\mathcal{L}(D) = \log P(D|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

- 最尤推定法
 - 特徴ベクトルが 1 次元、値 0 or 1 で、ベル ヌーイ分布に従うと仮定
 - ベルヌーイ分布:確率 θ で値 1 、確率 1- θ で値 0 をとる分布

$$\mathcal{L}(D) = \sum_{i=1}^{N} \log \theta^{x_i} (1 - \theta)^{1 - x_i}$$

$$= \sum_{i=1}^{N} x_i \log \theta + (N - \sum_{i=1}^{N} x_i) \log(1 - \theta)$$

- 対数尤度を最大にするパラメータ $\hat{ heta}$
 - $\frac{\partial \mathcal{L}(D)}{\partial \theta} = 0$ の解を求める

$$\frac{\partial \mathcal{L}(D)}{\partial \theta} = \sum_{i=1}^{N} x_i \frac{1}{\theta} - (N - \sum_{i=1}^{N} x_i) \frac{1}{1 - \theta}$$

$$= \frac{1}{\theta(1 - \theta)} \{ (1 - \theta) \sum_{i=1}^{N} x_i - \theta(N - \sum_{i=1}^{N} x_i) \} = 0$$

$$\hat{ heta} = rac{1}{N} \sum_{i=1}^{N} x_i$$
 値 x_i をとる回数を全データ数で割ったもの

4.2.2 ナイーブベイス識別

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d | \omega_i)$$

$$\approx \prod_{j=1}^d P(x_j | \omega_i)$$

$$C_{NB} = \arg \max_i P(\omega_i) \prod_{j=1}^d P(x_j | \omega_i)$$

4.2.2 ナイーブベイス識別

• 尤度の最尤推定

$$P(x_j \mid \omega_i) = \frac{n_j}{n_i}$$

 n_{ij} : クラス ω_i のデータのうち、j 次元目の値が x_j の個数

ゼロ頻度問題

• 確率の m 推定

$$P(x_j \mid \omega_i) = \frac{n_j + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

- ラプラス推定
 - m: 特徴値の種類数、 p: 等確率 とすると、 mp=1