Introducción a cohetería computacional, segundo semestre del 2022, programa del curso

Luis Ross Lépiz 26 de septiembre de 2022

Versión 1.0

${\rm \acute{I}ndice}$

1.	Descripción general	3
	Objetivos2.1. Objetivo General	
3.	Contenidos 3.1. Conocimiento general sobre qué es cohetería computacional	4 4 5
4.	Evaluación	6

1. Descripción general

Introducción a cohetería computacional tiene como intención brindarle a los estudiantes una idea sobre el conocimiento y trabajo que va detrás de diseñar un sistema computacional para una misión de cohetería, esto desde los aspectos de electrónica, programación y un poco de organización de trabajo en equipo.

El estudiante que disfrute de esta área y aproveche el curso tendrá herramientas útiles para todo momento en programación así como conocimiento general sobre cómo funcionan todos los equipos que nos rodean día a día desde el celular en nuestras manos, hasta los chips que envían información desde satélites y aparatos espaciales en el espacio exterior.

2. Objetivos

2.1. Objetivo General

Brindar el conocimiento necesario de programación, electrónica y telemetría para llevar a cabo una misión de cohetería exitosa, donde se diseñe una computadora para el cohete, una aplicación para control de misión y un sistema de recuperación que facilite la misma, así aportando a la misión en toda etapa.

2.2. Objetivos Específicos

- 1. Enseñar los fundamentos detrás de los lenguajes de programación que se usan en la actualidad, así como un trasfondo histórico sobre los mismos.
- 2. Aprender a programar en lenguajes de alto nivel bastante comúnes como lo son Python y Arduino, para poder programar tanto en computadoras comúnes como en microcontroladores.
- Diseñar circuitos básicos con conceptos simples de corriente continua y el uso de microcontroladores programables para automatizar tareas.
- 4. Usar sensores y actuadores según sea necesario para las soluciones de electrónica que se consideren necesarias en los circuitos creados.
- 5. Conocer la teoría de telemetría y poder aplicarla para realizar conexiones inalámbricas y transmisión de datos a distancia en los dispositivos elegidos.
- 6. Programar una aplicación pensada para el uso de un usuario promedio, con funcionalidades útiles o llamativas antes, durante y después del lanzamiento y aterrizaje del cohete.
- 7. Trabajar en conjunto para diseñar un sistema completo e inter funcional de electrónica y programación.
- 8. Ganar conocimiento de programación que pueda ser aplicado a cualquier lenguaje que se encuentren en un futuro en su carrera profesional.

3. Contenidos

3.1. Conocimiento general sobre qué es cohetería computacional

- Hardware a lo largo de la historia.
- Software a lo largo de la historia.
- Computación en el espacio (NASA y SpaceX).
- Objetivos de cohetería computacional en TECSpace.
- Tecnologías que usamos en TECSpace.
- Ejemplos de proyectos existentes y viables.

3.2. Fundamentos tras los lenguajes de programación y sus diferencias

- Diferencias entre lenguajes de alto y bajo nivel.
- Paradigmas de progrmación y sus usos.
- Diferencias entre lenguajes compilados e interpretados.
- Compatibilidad de sistemas operativos.
- Compatibilidad de navegadores web.
- Compatibilidad de dispositivos (arquitecturas).
- Pseudocódigo y diagramas de flujo.

3.3. Taller básico de programación en Python con enfoque al aprendizaje de otros lenguajes

- Qué son variables detalles y cómo usarlas.
- Instaciación de variables vs declaración de valores.
- Utilidad de funciones, cómo usarlas y sus partes.
- \blacksquare Código estructurado para manejo de pruebas lógicas.
- Ciclos de código do while, y do for.
- Listas en Python sus usos y cómo se diferencian de arrays.
- Cómo importar código de otros archivos en Python (módulos).
- Lectura y escritura de datos en archivos de texto I/O.
- Cómo facilitar el aprendizaje u entendimiento de lenguajes que no conocemos.

3.4. Introducción a microcontroladores

- Marcas y tipos de microncontroladores comúnes.
- Pinout de los microcontroladores.
- Qué son los sensores y para qué se usan.
- Qué son los actuadores y para qué se usan.
- Motores, tipos y comparación entre estos.
- Alimentación de distintos tipos según necesidades.
- Interfaces de comunicación UART, SPI e I2C.
- Programación de bajo nivel mediante Arduino.
- Conceptos básicos de electrónica.
- Uso del ADC en Arduino y otros dispositivos.
- Referencias de información para aprender más.
- Selección de MCU según sea el uso que se le dará.

3.5. Introducción a telemetría

- Radiofrecuencias y cómo se usan estas mediante distintos módulos.
- Cómo usar módulos RF con Arduino u otros MCU similares.
- Ejemplos de librerías para comunicación RF.
- Colocación de la computadora de vuelo.
- Distribución del espacio dentro del cohete según necesidades.
- Qué es una ground station y sus requisitos mínimos.
- Consideraciones al diseñar una ground station.
- Compra de componentes, medios para obtener información y precios.
- Recomendaciones para el manejo de costos en el proyecto.

4. Evaluación

La nota final del curso para cada estudiante constará tanto de la nota grupal del proyecto, como de otros valores, estos se detallan a continuación.

Item a evaluar	Valor del item [%]
Proyecto final	70
Tareas	20
Asistencia a charla de equidad	10

Todo estudiante que obtenga una nota redondeada de 70 será considerado aprobado del curso de cohetería computacional, esto significa que podrá participar en los proyectos de TECSpace como integrante y recibirá un reconocimiento por haber aprobado el curso, el cual puede ser usado para demostrar iniciativa, experiencia y dedicación.