Lema do Bombeamento

Douglas O. Cardoso douglas.cardoso@cefet-rj.br

Douglas O. Cardoso CEFET-RJ Petrópolis

Roteiro

1 Noções Básicas

2 Exemplos

Roteiro

1 Noções Básicas

2 Exemplos

4/12

Motivação

- As linguagens reconhecidas por AFs são ditas regulares.
- Nem toda linguagem é regular.
 - Por exemplo, $\{0^n1^n : n \in \mathbb{N}\}.$
- Avaliar se uma linguagem a ser reconhecida é ou não regular antes de tentar definir um AF que a reconheça pode evitar trabalho inútil.
- Tal avaliação pode ser feita utilizando propriedades simples derivadas da definição de AFs.

Intuição (1)

- \blacksquare Seja L uma linguagem qualquer.
- lacktriangle Deseja-se determinar um AF que reconheça L, se isto for possível.
 - Se *L* é finita, isto não só é possível como é trivial. (por que?)
- Considere que L é infinita. Ou seja, $(\forall x \in \mathbb{N})(\exists w \in L)[|w| > x]$.
 - L poderia ser infinita se $(\exists x \in \mathbb{N})(\forall w \in L)[|w| \leq x]$?

Douglas O. Cardoso CEFET-RJ Petrópolis

Intuição (2)

- Suponha que exista um AFD $M = (E, \Sigma, \delta, i, F)$ que reconheça L.
- Se $w \in L \land |w| > |E|$, não há como fazer a computação de w sem visitar algum estado de M mais de uma vez.
 - Princípio das gavetas, ou do pombal, ou de Dirichlet.
- \blacksquare Consequentemente, há algum ciclo em M.

Douglas O. Cardoso CEFET-RJ Petrópolis

Intuição (3)

- Seja w=xyz uma decomposição tal que x,y e z são as palavras consumidas antes, durante e após o ciclo, respectivamente.
- Nota-se que $(\forall n \in \mathbb{N})[\hat{\delta}(i,w) = \hat{\delta}(i,xy^nz)].$
 - n é o número de repetições do ciclo.
- Logo, se $\hat{\delta}(i, w) \in F$, então $\hat{\delta}(i, xy^n z) \in F$.
- lacksquare Ou seja, se $w\in L$, então $xy^nz\in L$.
- lacksquare Se esta última implicação for falsa, não há AFD que reconheça L.
 - M não pode reconhecer w e não reconhecer xy^nz simultaneamente.

Lema do Bombeamento (para linguagens regulares)

Seja L uma linguagem regular. Então existe uma constante k>0 tal que para qualquer palavra $w\in L, |w|\geq k$, existem x,y e z que satisfazem as seguintes condições:

- $|xy| \leq k$;
- $y \neq \lambda$;
- $(\forall n \in \mathbb{N})[xy^nz \in L].$

Informações Adicionais

- Toda linguagem regular segue o Lema do Bombeamento (LB): $R \to LB$.
- Todavia, a recíproca não é verdadeira: $\neg(LB \rightarrow R)$.
- Para mostrar que uma linguagem não é regular basta mostrar que apenas uma de suas palavras não possui nenhuma subpalavra bombeável, dentre todas as possíveis.
- É prático e usual pensar que k = |E|.

Roteiro

1 Noções Básicas

2 Exemplos

Exemplo 1: $L = \{0^m 1^m : m \ge 0\}$

- Seja $w = 0^k 1^k$, sendo k a constante do LB.
- Para w = xyz, $x = 0^i$, $y = 0^j$ e $z = 0^{k-i-j}1^k$.
- $xy^nz = 0^{i+jn+k-i-j}1^k = 0^{k+j(n-1)}1^k.$
- Para que $xy^nz \in L$, k+j(n-1)=k, para todo $n \in \mathbb{N}$.
- Porém, a equação só vale se j = 0.
- Isso contradiz a condição 3 do LB $(y \neq \lambda)$.
- Logo, L não é regular.

Exemplo 2: $L = \{uu : u \in \{0, 1\}^*\}$

- Seja $w = 0^k 10^k 1$, sendo k a constante do LB.
- Para w = xyz, $x = 0^i$, $y = 0^j$ e $z = 0^{k-i-j}10^k1$.
- $xy^nz = 0^{i+jn+k-i-j}10^k1 = 0^{k+j(n-1)}10^k1.$
- Para que $xy^nz \in L$, k+j(n-1)=k, para todo $n \in \mathbb{N}$.
- Porém, a equação só vale se j = 0.
- Isso contradiz a condição 3 do LB $(y \neq \lambda)$.
- Logo, L não é regular.