Matematica Discreta II -2020-Teórico del final del 29-Julio

Para aprobar el teórico hay que obtener 40% del puntaje EN CADA pregunta.

- (1) (4 puntos) Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x=z, denotandola por $d_f(x,z)$, y definimos $b_k(x) = d_{f_k}(x,t)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $b_k(x) \leq b_{k+1}(x)$. (Prestar atención a lo que se pide. En el teórico se enuncio esta propiedad junto con la misma propiedad para unas distancias $d_k(x)$ y se demostró para esas d_k , sobreentendiendo que la prueba para las b_k es similar. Probar en este ejercicio la propiedad para las d_k tiene 0 puntos).
- (2) (3 puntos)
- a) Probar que si H es matriz de chequeo de un código binario C entonces:

$$\delta(C) = Min\{j : \exists \text{ un conjunto de } j \text{ columnas LD de } H\}$$

(LD es "linealmente dependiente")

- b) Suponga ahora que C no es binario sino que C es un código lineal de longitud n sobre el alfabeto \mathbb{Z}_p con p primo distinto de 2. En este caso "lineal" es obviamente que C es un subespacio vectorial de \mathbb{Z}_p^n . Analice su prueba de a) y explique si es válida en este caso. (nota: en el caso de códigos no binarios, la distancia de Hamming en vez de ser $d_H(v,w) = \#\{\text{BITS distintos entre } v \ y \ w\}$ es $d_H(v,w) = \#\{\text{COORDENADAS distintas entre } v \ y \ w\}$, el peso de Hamming sigue definido igual que antes, pero $d_H(v,w) = |v-w|$) c) En clase probamos que en el caso de códigos lineales, la parte a) implicaba que si una matriz de chequeo no tiene la columna 0 ni columnas repetidas, entonces el código corrije al menos un error pues $\delta \geq 3$. Dar un ejemplo que muestre que este teorema NO es cierto para códigos no binarios y escriba como sería el teorema correcto en ese caso.
- (3) (3 puntos) 4SAT es como 3SAT pero se pide que haya exactamente 4 literales en cada disjunción. Reducir polinomialmente 4SAT a 4-COLOR probando que, dada una expresión booleana B en CNF con 4 literales por disjunción y variables $x_i, i = 1, 2, ..., n$, entonces existe $b \in \mathbb{Z}_2^n$ tal que B(b) = 1 si y solo si $\chi(G) = 4$, donde G es el grafo creado a partir de B de la siguiente forma:

Si $B = D_1 \wedge D_2 \wedge \wedge D_m$, con disjunciones $D_j = \ell_{1,j} \vee \ell_{2,j} \vee \ell_{3,j} \vee \ell_{4,j}$ donde $\ell_{k,j}$ son literales, G es:

vértices:

$$\{s,t,r\} \cup \{v_{\ell} : \ell \text{ es un literal}\} \cup \{e_{k,j}, a_{k,j} : k=1,...,4, j=1,...,m\}$$

lados:

 $\{st, sr, tr\} \cup \{tv_{\ell}, rv_{\ell} : \ell \text{ es un literal}\} \cup \{e_{k,j}a_{k,j} : k = 1, ..., 4, j = 1, 2,, m\} \cup \{e_{k,j}s : k = 1, ..., 4, j = 1, 2,, m\} \cup \{e_{k,j}r : k = 1, ..., 4, j = 1, 2,, m\} \cup_{j=1}^{n} K_{4,j}$ donde $K_{4,j}$ es el completo K_{4} formado por los $a_{k,j}$, k = 1, 2, 3, 4. (la prueba es similar a la de 3COLOR es NP completo, pero se agrega un vértice especial

r, algunos lados y vértices mas y en vez de triangulos hay K_4 's).