NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

Ch6. Density Functional Theory

James Lutsko

Lecture 9, 2021-2022

Density Functional Theory

- Introduction
- OK DFT
- T > 0
 - Théorème fondamental du DFT
 - des quantities du mechanique statistique
 - Gaz parfait
 - Des modèles
 - Sphères Dures: FMT
 - Interactions de longue portée
 - Applications

DFT: gaz parfait

$$\begin{split} \Xi[\phi] &\equiv \exp\left(-\beta\Omega[\phi]\right) = \sum_{N=0}^{\infty} \frac{1}{N! h^{ND}} \int \exp\left(-\beta(H^{(N)} - \mu N)\right) d\Gamma^{(N)} \\ &= \sum_{N=0}^{\infty} \frac{1}{N! h^{ND}} (2\pi k_B T)^{-DN/2} \left(\int \exp\left(-\beta(\phi(\mathbf{r}) - \mu)\right) d\mathbf{r}\right)^{N} \\ &= \exp\left(\Lambda^{-D} \int e^{-\beta(\phi(\mathbf{r}) - \mu)} d\mathbf{r}\right) & \Lambda \equiv \frac{h}{\sqrt{2\pi k_B T}} \end{split}$$

$$\Rightarrow \rho(\mathbf{r}|\phi) = \frac{\delta \Omega}{\delta \phi(\mathbf{r})} = \Lambda^{-D} \exp(-\beta(\phi(\mathbf{r}) - \mu)) \Leftrightarrow \phi(\mathbf{r}|\rho) = \mu + \ln \Lambda^{D} \rho(\mathbf{r})$$

Euler-Lagrange
$$\frac{\delta F_{id}[\rho]}{\delta \rho(\mathbf{r})} = \mu - \phi(\mathbf{r}|\rho) = k_B T \ln \Lambda^D \rho(\mathbf{r})$$

DFT: gaz parfait

$$\frac{\delta F_{id}[\rho]}{\delta \rho(\mathbf{r})} = \mu - \phi(\mathbf{r}|\rho) = k_B T \ln \Lambda^D \rho(\mathbf{r})$$

$$\frac{\delta\beta F[\rho]}{\delta\alpha(\mathbf{r})} = c_1(\mathbf{r}|\rho)$$

En generale si
$$\frac{\delta \beta F[\rho]}{\delta \rho(\mathbf{r})} = c_1(\mathbf{r}|\rho)$$
 et si $\frac{\delta c_1(\mathbf{r}_1|\rho)}{\delta \rho(\mathbf{r}_2)} = \frac{\delta c_1(\mathbf{r}_2|\rho)}{\delta \rho(\mathbf{r}_1)}$

ils ensuite que

$$\beta F[\rho_2] - \beta F[\rho_1] = \int_0^1 d\lambda \int d\mathbf{r} (\rho_2(\mathbf{r}) - \rho_1(\mathbf{r})) c_1(\mathbf{r}|\rho_1 + \lambda(\rho_2 - \rho_1))$$

Donc, on trouve que

$$\beta F_{id}[\rho] = \int \left(\rho(\mathbf{r}) \ln \left(\Lambda^D \rho(\mathbf{r}) \right) - \rho(\mathbf{r}) \right) d\mathbf{r}$$

Density Functional Theory

- Introduction
- OK DFT
- T > 0
 - Théorème fondamental du DFT
 - des quantities du mechanique statistique
 - Gaz parfait
 - Des modèles
 - Sphères Dures: FMT
 - Interactions de longue portée
 - Applications

DFT: Des modèles

$$\beta F_{id}[\rho] = \int \left(\rho(\mathbf{r}) \ln \left(\Lambda^{D} \rho(\mathbf{r}) \right) - \rho(\mathbf{r}) \right) d\mathbf{r}$$

$$\beta F[\rho_{1}] - \beta F[\rho_{0}] = \int_{0}^{1} d\lambda \int d\mathbf{r} \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} c_{1}(\mathbf{r}|\rho_{\lambda})$$

$$- \int_{0}^{1} d\lambda \int_{0}^{\lambda} d\lambda' \int d\mathbf{r} d\mathbf{r}' \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} \frac{\partial \rho_{\lambda'}(\mathbf{r}')}{\partial \lambda'} \left(\Gamma(\mathbf{r}, \mathbf{r}'|\rho_{\lambda'}) - \frac{1}{\rho_{\lambda'}(\mathbf{r})} \delta(\mathbf{r} - \mathbf{r}') \right)$$

Si l'on définit $\beta F[\rho] = \beta F_{id}[\rho] + \beta F_{ex}[\rho]$

il s'ensuite que

$$\beta F_{ex}[\rho_{1}] = \beta F_{ex}[\rho_{0}] + \int_{0}^{1} d\lambda \int d\mathbf{r} \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} c_{1}(\mathbf{r}|\rho_{\lambda})$$

$$- \int_{0}^{1} d\lambda \int_{0}^{\lambda} d\lambda' \int d\mathbf{r} d\mathbf{r}' \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} \frac{\partial \rho_{\lambda'}(\mathbf{r}')}{\partial \lambda'} \Gamma(\mathbf{r}, \mathbf{r}'|\rho_{\lambda'})$$

DFT: des modèles

Effective liquid models:

$$\beta F_{ex}[\rho_{1}] - \beta F_{ex}[\rho_{0}] = \int_{0}^{1} d\lambda \int d\mathbf{r} \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} c_{1}(\mathbf{r}|\rho_{\lambda})$$

$$- \int_{0}^{1} d\lambda \int_{0}^{1} d\lambda' \int d\mathbf{r} d\mathbf{r}' \frac{\partial \rho_{\lambda}(\mathbf{r})}{\partial \lambda} \frac{\partial \rho_{\lambda}(\mathbf{r}')}{\partial \lambda'} c_{2}(\mathbf{r}, \mathbf{r}'|\rho_{\lambda'})$$

$$\rho_0(\mathbf{r}) = \overline{\rho}_0$$
 $F[\rho_0] \rightarrow Vf(\overline{\rho}_0)$ $\rho_{\lambda}(\mathbf{r}) = \overline{\rho}_0 + \lambda(\rho_1(\mathbf{r}) - \overline{\rho}_0)$

$$\begin{split} \beta \frac{1}{V} F_{ex}[\rho_{1}] = & \beta f_{ex}(\bar{\rho}_{0}) + \frac{\partial f_{ex}(\bar{\rho}_{0})}{\partial \bar{\rho}_{0}}(\bar{\rho}_{1} - \bar{\rho}_{0}) \\ & - \frac{1}{V} \int_{0}^{1} d\lambda \int_{0}^{1} d\lambda$$

Lutsko, Adv. Chem. Phys. **144**, 1-91 (2010).

DFT: des modeles de liquide efficaces

$$\begin{split} \frac{1}{V}\beta F_{ex}[\rho_{1}] &= \beta f_{ex}(\bar{\rho}_{0}) + \frac{\partial f_{ex}(\bar{\rho}_{0})}{\partial \bar{\rho}_{0}}(\bar{\rho}_{1} - \bar{\rho}_{0}) \\ &- \frac{1}{V} \int_{0}^{1} d\lambda \int_{0}^{1} d\lambda \int_{0}^{1} d\lambda ' \int d\mathbf{r} d\mathbf{r} '(\rho(\mathbf{r}) - \bar{\rho}_{0})(\rho(\mathbf{r}') - \bar{\rho}_{0}) c_{2}(\mathbf{r}, \mathbf{r}' | \bar{\rho}_{0} + \lambda'(\rho_{1} - \bar{\rho}_{0})) \end{split}$$

Ramakrishnan-Yussouff: Ramakrishnan and Yussouff, Phys. Rev. B 19, 2775 (1979).

$$\overline{\rho}_0 = \overline{\rho}_1 \qquad \qquad c_2({\bf r}\,,{\bf r}\,'|\bar{\rho_0} + (1-\lambda)(\rho_1 - \overline{\rho}_0)) = c_2(|{\bf r}-{\bf r}\,'|\,;\bar{\rho_0}) + \dots$$

$$\frac{1}{V}\beta F_{ex}^{(RY)}[\rho_{1}] = \beta f_{ex}(\bar{\rho}_{0}) - \frac{1}{2V}\int d\mathbf{r} d\mathbf{r}'(\rho(\mathbf{r}) - \bar{\rho}_{0})(\rho(\mathbf{r}') - \bar{\rho}_{0})c_{2}(|\mathbf{r} - \mathbf{r}'|; \bar{\rho}_{0})$$

Generalized Effective Liquid Approx. (GELA)

Lutsko and Baus, Phys. Rev. Lett. 64, 761 (1990); Phys. Rev. A41, 6647 (1990).

$$\begin{split} \overline{\rho}_0 &= 0 \qquad \qquad c_2(\boldsymbol{r}_{},\boldsymbol{r}_{}'|\bar{\rho}_0^- + (1-\lambda)(\rho_1 - \overline{\rho}_0)) = c_2(|\boldsymbol{r}_{}-\boldsymbol{r}_{}'|; \overline{\rho}(\lambda)) \\ &\frac{1}{V}\beta F_{ex}^{(GELA)}[\rho_1] = -\frac{1}{2V}\int_0^1 d\lambda (1-\lambda)\int d\boldsymbol{r}_{}d\boldsymbol{r}_{}'\rho(\boldsymbol{r}_{})\rho(\boldsymbol{r}_{}')c_2(|\boldsymbol{r}_{}-\boldsymbol{r}_{}'|; \overline{\rho}(\lambda)) \\ &\frac{1}{V\alpha\,\overline{\rho}_1}\beta F_{ex}^{(GELA)}(\alpha\,\overline{\rho}_1) = \frac{1}{\overline{\rho}_{GELA}(\alpha)}\beta f_{ex}(\overline{\rho}_{GELA}(\alpha)) \end{split}$$

Lutsko, Adv. Chem. Phys. 144, 1-91 (2010).

DFT: des modeles

Modified Weighted Density Approx. (MWDA):

Denton and Ashcroft, Phys. Rev. A39 2909 (1985).

$$\frac{1}{\rho_1} V \beta F_{ex}^{(MWDA)}[\rho] = \frac{1}{\rho_{MWDA}} V \beta F_{ex}(\rho_{MWDA}[\rho])$$

$$\lim_{\rho(\mathbf{r}) \to \bar{\rho}} \frac{\delta^{2} \beta F_{ex}^{(MWDA)}}{\delta \rho(\mathbf{r}_{1}) \delta \rho(\mathbf{r}_{2})} = -c(r_{12}; \bar{\rho})$$

$$\Rightarrow \rho_{MWDA}[\rho] = \frac{1}{\overline{\rho} V} \int w(r_{12}; \rho_{MWDA}[\rho]) \rho(\mathbf{r}_1) \rho(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

$$w(r,\rho) = \frac{-1}{2\beta \psi'(\rho)} \left(c_2(r_{12};\rho) + \frac{1}{V} \rho \beta \psi''(\rho) \right), \quad \psi(\rho) = \frac{1}{\rho} f_{ex}(\rho) = \frac{1}{\rho V} F_{ex}(\rho)$$

(exercise)

DFT: solides

$$\rho(\mathbf{r}) = \left(\frac{\alpha}{\pi}\right)^{3/2} \sum_{\mathbf{R}_{i} \in lattice \ vectors} \exp\left(-\alpha \left(\mathbf{r} - \mathbf{R}_{i}\right)^{2}\right)$$

$$\rho(\mathbf{r}) = \bar{\rho} + \bar{\rho} \sum_{\mathbf{K}_{i} \in \text{recip lattice}} \exp\left(i \mathbf{K}_{i} \cdot \mathbf{r}\right) \exp\left(-K_{i}^{2} / (4\alpha)\right)$$

$$= \bar{\rho} + \bar{\rho} \sum_{\mathbf{K}_{i} \in \text{recip lattice}} \exp\left(i \mathbf{K}_{i} \cdot \mathbf{r}\right) \chi^{\left(K_{i} / K_{1}\right)^{2}}, \quad \chi = \exp\left(-K_{1}^{2} / (4\alpha)\right) \text{ "crystallinity"}$$

 $K_i \in \text{recip lattice}$

Lutsko, Adv. Chem. Phys. 144, 1-91 (2010).

Efficaces théories liquides: gel des sphères dures

TABLE I

Comparison of the Predictions of Various Effective-Liquid DFTs for the Freezing of Hard Spheres to

Data from Simulation^a

Theory	EOS	$ar{\eta}_{ ext{liq}}$	$ar{\eta}_{ m sol}$	P^*	L
RY ^b	PY	0.506	0.601	15.1	0.06
$MWDA^c$	CS	0.476	0.542	10.1	0.097
ELA^d	PY	0.520	0.567	16.1	0.074
$SCELA^{\sigma}$	CS	0.508	0.560	13.3	0.084
$GELA^e$	CS	0.495	0.545	11.9	0.100
WDA^{cf}	CS	0.480	0.547	10.4	0.093
MC^g	_	0.494	0.545	11.7	0.126

[&]quot;Given are the liquid $(\bar{\eta}_{liq})$ and solid $(\bar{\eta}_{sol})$ packing fractions $(\eta = \pi \rho d^3/6)$, the reduced pressure $(P^* = \beta P d^3)$, and the Lindemann parameter (L) at bulk coexistence. For each theory, the equation of state used for the fluid, Percus–Yevick (PY), or Camahan–Starling (CS) is indicated.

Lutsko, Adv. Chem. Phys. **144**, 1-91 (2010).

^bFrom Barrat et al. [49].

^{&#}x27;From Denton and Ashcroft [41].

From Baus and Colot [37].

From Lutsko and Baus [25].

From Curtin and Ashcroft [40].

From Hoover and Ree [57].

Density Functional Theory

- Introduction
- OK DFT
- T > 0
 - Théorème fondamental du DFT
 - des quantities du mechanique statistique
 - Gaz parfait
 - Des modèles
 - Sphères Dures: FMT
 - Interactions de longue portée
 - Applications

Hard spheres in 1D: hard rods (barres dures)

$$F[\rho] = F_{id}[\rho] - \int_{-\infty}^{\infty} \frac{1}{2} \left[\rho(x + d/2) + \rho(x - d/2) \right] \ln \left(1 - \int_{-d/2}^{d/2} \rho(x + y) \, dy \right] dx \qquad \text{(Exact)}$$

Percus, J. Stat. Phys 15, 505 (1976)

Fundamental Measure Theory (FMT): Généralisation du résultat de Percus à plusieurs dimensions.

Ansatz:
$$F_{ex}[\rho] = \int \Phi(\{n_{\alpha}(\mathbf{r})\}) d\mathbf{r}$$
$$n_{\alpha}(\mathbf{r}|\rho) = \int w_{\alpha}(|\mathbf{r}-\mathbf{r}'|) \rho(\mathbf{r}') d\mathbf{r}'$$

Percus:
$$F[\rho] = F_{id}[\rho] - \int_{-\infty}^{\infty} \frac{1}{2} \left[\rho(x + d/2) + \rho(x - d/2) \right] \ln \left(1 - \int_{-d/2}^{d/2} \rho(x + y) dy \right) dx$$

$$\Phi(\{n_{\alpha}(\mathbf{r})\}) = s(x) \ln(1 - \eta(x)) \qquad w_{s}(|x - x'|) = \delta((d/2) - |x - x'|)$$

$$w_{s}(|x - x'|) = \Theta((d/2) - |x - x'|)$$

Rosenfeld: ansatz + "scaled particle theory"

Y. Rosenfeld, Phys. Rev. Lett. **63**, 980 (1989).

$$F_{ex}[\rho] = \int \Phi(\{n_{\alpha}(\mathbf{r})\}) d\mathbf{r}$$
$$n_{\alpha}(\mathbf{r}|\rho) = \int w_{\alpha}(\mathbf{r}-\mathbf{r}')\rho(\mathbf{r}') d\mathbf{r}'$$

Kierlik and M. L. Rosinberg: insiste que

$$\lim_{\rho(\mathbf{r})\to\bar{\rho}} \frac{\delta^2 \beta F^{(FMT)}[\rho]}{\delta \rho(\mathbf{r})\delta \rho(\mathbf{r}')} = -c_2^{(PY)}(|\mathbf{r}-\mathbf{r}'|;\bar{\rho})$$

E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990).

$$\lim_{\rho(\mathbf{r}) \to \bar{\rho}} \frac{\delta^2 \beta F^{(FMT)}[\rho]}{\delta \rho(\mathbf{r}) \delta \rho(\mathbf{r}')} = \frac{\partial^2 \Phi(\{n_{\alpha}(\mathbf{r})\})}{\partial n_{\alpha} \partial n_{\beta}} \sum_{\alpha, \beta} \int w_{\alpha}(\mathbf{r} - \mathbf{r}'') w_{\beta}(\mathbf{r}' - \mathbf{r}'') d\mathbf{r}''$$

Rosenfeld et Kierlik & Rosinberg sont equilvant:

$$\Phi = -\frac{1}{\pi d^2} s \ln(1-\eta) + \frac{1}{2\pi d} \frac{s^2 - v^2}{(1-\eta)} + \frac{1}{24\pi} \frac{s^3 - 3sv^2}{(1-\eta)^2}$$

$$w_{\eta}(\mathbf{r}) = \Theta(\frac{d}{2} - r), \quad w_{s}(\mathbf{r}) = \delta(\frac{d}{2} - r), \quad \mathbf{w}_{v}(\mathbf{r}) = \hat{\mathbf{r}} \delta(\frac{d}{2} - r)$$

$$F_{ex}[\rho] = \int \Phi(\{n_{\alpha}(\mathbf{r})\}) d\mathbf{r}$$
$$n_{\alpha}(\mathbf{r}|\rho) = \int w_{\alpha}(\mathbf{r}-\mathbf{r}')\rho(\mathbf{r}') d\mathbf{r}'$$

Probleme: Rosenberg FMT ne se stabilise pas le solide.

Solution: après beaucoup de travail, exiger des limites plus précises. (Pour example: une cavité qui peut contenir au plus deux boules.) (exercise)

Afin de satisfaire à toutes les exigences, on a besoin des densités tensorielles:

$$\mathbf{w}_{T}(\mathbf{r}) = \hat{\mathbf{r}} \hat{\mathbf{r}} \delta(\frac{d}{2} - r)$$

$$\Phi_{3} = \frac{1}{24\pi} \frac{s^{3} - 3sv^{2}}{(1 - \eta)^{2}} \rightarrow \frac{3}{16\pi(1 - \eta)^{2}} \left(v \cdot T \cdot v - sv^{2} - Tr(T^{3}) + sTr(T^{2}) \right)$$

P. Tarazona, Phys. Rev. Lett. 84, 694 (2000).

Probleme: Le description de gel de hard-sphere n'etait pas bonne.

Raison: Percus-Yevik pas precise a haut densitie.

Solution: modification heuristique de Tarazona fonctionnel appelé "White Bear".

R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys. Condens. Matter **14**, 12063 (2002).

TABLE II Comparison of the Predictions of Various FMT DFTs for the Freezing of Hard Spheres to Data from Simulation^a

Theory	EOS	$ar{\eta}_{\mathrm{liq}}$	$\bar{\eta}_{ m sol}$	P^*	L
RSLT ^b	PY	0.491	0.540	12.3	1.06
Tarazona ^c	PY	0.467	0.516	9.93	0.145
White Bear ^{c,d}	CS	0.489	0.536	11.3	0.132
MC^e	_	0.494	0.545	11.7	0.126

[&]quot;Given are the liquid, $\bar{\eta}_{liq}$, and solid, $\bar{\eta}_{sol}$, packing fractions, the reduced pressure $P^* = \beta P d^3$ and the Lindemann parameter, L, at bulk coexistence. For each theory, the equation of state used for the fluid, Percus-Yevick(PY) or Carnahan-Starling (CS), is indicated. The Lindemann ratio for all three theories, calculated in the Gaussian approximation, is taken from Ref. 81.

From Hoover and Ree [57]. Lutsko, Adv. Chem. Phys. **144**, 1-91 (2010).

[&]quot;From Rosenfeld et al. [80].

^{&#}x27;From Tarazona [82].

From Roth et al. [74].

Density Functional Theory

- Introduction
- OK DFT
- T > 0
 - Théorème fondamental du DFT
 - des quantities du mechanique statistique
 - Gaz parfait
 - Des modèles
 - Sphères Dures: FMT
 - Interactions de longue portée
 - Applications

Interactions de longue portée

Modele moyenne-champ (ou, parfois "van der Waals"):

Lutsko, Adv. Chem. Phys. 144, 1-91 (2010).

Interactions de longue portée

Plus simple:

$$F_{ex}[\rho] = F_{ex}^{HS}(d_{eff}|\rho) + V(f_{ex}(\bar{\rho}) - f_{ex}^{HS}(\bar{\rho}; d_{eff}))$$

$$F_{ex}[\rho] = F_{ex}^{HS}(d_{eff}|\rho) + \int \left(f_{ex}(\rho(\mathbf{r})) - f_{ex}^{HS}(\rho(\mathbf{r}); d_{eff}) \right) d\mathbf{r}$$

$$F_{ex}[\rho] = \int f_{ex}(\rho(\mathbf{r})) d\mathbf{r}$$

"local density model"

$$F_{ex}[\rho] = \int [f_{ex}(\rho(\mathbf{r})) + K(\nabla \rho(\mathbf{r}))^2] d\mathbf{r}$$
 "van der Waals' model"

"van der Waals' model" or "squared-gradient model"

Plus complex et précise:

$$F_{ex}[\rho] = F_{ex}^{HS}(d_{eff}|\rho) + F_{ex}^{core}(d_{eff}|\rho) + \frac{1}{2}\int \rho(\mathbf{r})\rho(\mathbf{r}')w(\mathbf{r}-\mathbf{r}')d\mathbf{r}d\mathbf{r}'$$

Pour l'application de certaines propriétés de la dcf; formulées comme FMT

Lutsko, J. Chem. Phys. 128, 184711 (2008). Lutsko, Adv. Chem. Phys. **144**, 1-91 (2010).

Density Functional Theory

- Introduction
- OK DFT
- T > 0
 - Théorème fondamental du DFT
 - des quantities du mechanique statistique
 - Gaz parfait
 - Des modèles
 - Sphères Dures: FMT
 - Interactions de longue portée
 - Applications

Applications: Hard-Spheres

TABLE III: The order parameter profile parameters obtained by minimizing the free energy. The profiles studied are the hyperbolic tangents with $B_m = B_\rho$ (H), the "offset" hyperbolic tangents where $B_m \neq B_{rho}$ (OH), and the hyperbolic tangents with a Gaussian term (HO). Also included are the results from MD simulations of ref [27] and the MC simulations of ref. [28]. In all cases, the last column gives the surface tension.

Theory	Profile	A_{m}	$A_{ ho}$	B_{ρ}	$C_{ ho}$	D_{ρ}	$E_{ ho}$	$\gamma\sigma^2/k_BT$
RLST	H	0.61	0.83	*	*	*	*	0.730
RLST	OH	0. 6 7	1.64	-0.70	*	***	*	<u>0.6</u> 89
RLST	HG	0. 6 8	0.99	*	-0.039	1.27	0.04	<u>0.</u> 687
WB	H	0.74	0.84	*	*	*	*	0.754
WB	OH	0.85	2.54	-0.78	*	*	*	0.659_
WB	HG	0.88	1.70	*	-0.0 5	1.97	-0.21	0.656
MD								<u>0</u> .617
MC			W(X)					0.623

Lutsko, Phys. Rev. E 74, 021603 (2006)

Applications: Hard-Spheres

Source	$\rho_f \sigma^3$	$\rho_s \sigma^3$	$\beta P \sigma^3$	$\beta\mu$	$\beta \gamma_{[001]} \sigma^2$	$\beta \gamma_{[110]} \sigma^2$	$\beta \gamma_{[111]} \sigma^2$
WBII (Oettel et al.)	0.945	1.039	11.87	16.38	0.69	0.67	0.64
*WBII ($\Delta \approx 0.0125\sigma$)	0.946	1.039	11.94	16.46	-	-	-
*WBII ($\Delta \approx 0.025\sigma$)	0.950	1.041	12.16	16.68	0.69	-	-
*WBII ($\Delta \approx 0.05\sigma$)	0.966	1.046	13.09	17.65	0.71	-	-
*esFMT ($\Delta \approx 0.05\sigma$)	0.942	1.027	11.96	16.50	0.51	0.47	0.46
Sim. (Davidchack et al.)	0.940	1.041	-	-	0.58	0.56	0.54
Sim. (Oettel et al.)	0.938	1.039	-	-	0.63	0.61	0.60

Applications: Hard-Spheres

FIG. 3: The atomic density averaged over planes perpendicular to the interface as a function of position, calculated using the RLST theory and the offset hyperbolic tangent parameterization. The position is shown in units of the interplaner spaceing for [100] planes, d = 0.5a where a is the lattice parameter.

Lutsko, Phys. Rev. E 74, 021603 (2006)

Applications: Problems with Hard-Spheres

FIG. 4. (Color online) The Lindemann parameter for the bcc phase as a function of packing fraction $\bar{\eta}$ as calculated using the RSLT theory, the Tarazona theory (labeled T) and the White Bear theory (labeled WB). Both the low- α and high- α branches are shown with the stable branch being drawn with full lines and the unstable branch with dashed lines. Also shown as dotted lines are the quadratic interpolation of the curves to L=0 based on the data for $\bar{\eta} > 0.60$.

Lutsko, Phys. Rev. E 74, 021121 (2006)

Applications: un fluid simple

Lutsko, J. Chem. Phys., 128, 184711 (2008)

Applications: Slit pores (deux parois parallèles et infinie)

Applications: Confined Clusters

Un liquide confiné à un nano-volume sphérique

Lutsko, Laidet, Grosfils, J. Phys.: Condens. Matter 22 035101 (2010)

Applications: Liquid-vapor nucleation

Applications: Protein crystallization

Applications: Properties of small clusters

Crystallization: pathways and metastable states

JFL, Science Advances, 5, eaav7399 (2019)

Crystal-fluid surface tension

