10/581688

AP3 Rec'd PCT/PTO 06 JUN 2008

THE FOLLOWING ARE THE ENGLISH TRANSLATION OF ANNEXES TO THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT (ARTICLE 34):

Amended Sheets (Pages 30-32a)

Claims

1. A compound of the formula (V),

$$\begin{bmatrix}
O & R^6 \\
O & OH \\
OH & OH
\end{bmatrix}$$
(V)

in which

5

10

20

25

30

 R^2 and R^3 independently of one another are C_1 – C_{18} alkyl, C_2 – C_{18} alkyl if appropriate interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C_2 – C_{18} alkenyl, C_6 – C_{12} aryl, C_5 – C_{12} cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles,

15 R² and/or R³ are/is additionally hydrogen, C₁-C₁8 alkoxy optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or –COOR⁴,

R² may additionally together with R¹ form a ring, in which case R² can be a carbonyl group, so that the group COOR¹ and R² together form an acid anhydride group –(CO)-O-(CO)-,

 R^4 is C_1 – C_{18} alkyl, C_2 – C_{18} alkyl if appropriate interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C_2 – C_{18} alkenyl, C_6 – C_{12} aryl, C_5 – C_{12} cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles,

 R^5 and R^6 independently of one another are hydrogen, C_1 – C_{18} alkyl, C_2 – C_{18} alkyl if appropriate interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C_2 – C_{18} alkenyl, C_6 – C_{12} aryl, C_5 - C_{12} cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or

10

20

30

may together form a ring,

n is a positive integer from 3 to 10, and

- R⁷ is an n-valent organic radical having 1 to 50 carbon atoms which can be unsubstituted or substituted by halogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, carboxyl, carboxy-C₁-C₈ alkyl, C₁-C₂₀ acyl, C₁-C₈ alkoxy, C₆-C₁₂ aryl, hydroxyl or hydroxy-substituted C₁-C₈ alkyl and/or can contain one or more –(CO)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- or -(CO)O- groups.
 - 2. The compound according to claim 1, wherein n is 3 or 4 and

R⁷ is derived from an n-hydric alcohol by removing n hydroxyl groups,

- the n-hydric alcohol being trimethylolpropane, pentaerythritol or a singly to vigintuply ethoxylated trimethylolpropane.
 - 3. A coating composition comprising
 - at least one compound of the formula (V) as defined in claim 1, or of the formula (VII) as defined in claim 10, and
 - at least one photoinitiator (P).
 - 4. The coating composition according to claim 3, further comprising
 - at least one reactive diluent and/or
- 25 at least one polyfunctional polymerizable compound.
 - 5. The coating composition according to claim 3 or 4, further comprising
 - at least one compound (B) containing at least one hydroxy (-OH)-reactive group.
 - 6. A method of coating substrates, wherein a coating composition according to any one of claims 3 to 5 is used.
- 7. A substrate coated with a coating composition according to any one of claims 3to 5.
 - 8. A process for preparing a compound of the formula (V)

5

10

25

$$R^{7} \longrightarrow R^{7} \longrightarrow R^{7} \longrightarrow R^{6} \longrightarrow R^{5} \longrightarrow R^{7} \longrightarrow R^{7$$

as defined in claim 1, it being possible for n to be additionally 2, wherein the compound (II) is an aldehyde R^5 -CHO and is used in free form so that in formals of the formula (R^5 -CHO)_w in which w is a positive integer, w is ≤ 20 .

- 9. The use of α -(1'-hydroxyalkyl)acrylates in coating compositions for dual-cure applications.
 - 10. The use of compounds of the formula (V) as defined in claim 8 or (VII)

$$R^{1}OOC$$
 R^{8}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
(VII)

in which R² and R³ are as defined in claim 1,

15 R¹ is C₁-C₁8 alkyl, C₂-C₁8 alkyl if appropriate interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups, C₂-C₁8 alkenyl, C6-C₁2 aryl, C5-C₁2 cycloalkyl or a five- to six-membered oxygen-, nitrogen- and/or sulfur-containing heterocycle, it being possible for each of the stated radicals to be substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, and

 R^8 is unsubstituted or halogen-, C_1 - C_8 alkyl-, C_2 - C_8 alkenyl-, carboxyl-, carboxyl- C_1 - C_8 alkyl-, C_1 - C_2 0 acyl-, C_1 - C_8 alkoxy-, C_6 - C_{12} aryl-, hydroxyl- or hydroxysubstituted C_1 - C_8 alkyl-substituted C_6 - C_{12} arylene, C_3 - C_{12} cycloalkylene or C_1 - C_2 0 alkylene or is C_2 - C_2 0 alkylene interrupted by one or more oxygen and/or sulfur atoms and/or one or more substituted or unsubstituted imino groups and/or by one or more –(CO)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- or -(CO)O- groups or is a single bond

in radiation curing.