Этап 4

Результаты проекта

Канева Екатерина Клюкин Михаил Ланцова Яна 11 апреля 2025

Российский университет дружбы народов, Москва, Россия

Информация

Состав исследовательской команды

Студенты группы НФИбд-02-22:

- Канева Екатерина
- Клюкин Михаил
- Ланцова Яна

Введение

Актуальность

Все вещества состоят из атомов, которые постоянно колеблются. Изучение этих колебаний помогает нам понять, как материалы ведут себя при разных температурах. Особенно важно понимать, как колебания приводят к тепловому равновесию. Исследование цепочек атомов, связанных пружинками, это простая модель, чтобы понять, как возникают колебания в кристаллах. Эта модель помогает объяснить, почему некоторые классические законы физики работают только при высоких температурах. Понимание колебаний важно для создания новых материалов с нужными свойствами, например, для электроники или термоизоляции.

Цель работы

Исследовать закономерности колебаний в простейшей одномерной цепочке атомов, связанных между собой.

Объект и предмет исследования

- 1. Изучение условий для установления равновесия
- 2. Изучение условий для приближения к равновесию
- 3. Изучение явлений в простейшем одномерном случае

Задачи

- 1. Построить модель цепочки из N частиц.
- 2. Описать алгоритм для моделирования гармонических и ангармонических колебаний.
- 3. Реализовать программу для моделирования гармонических и ангармонических колебаний.

Материалы и методы

Язык программирования Julia

- Plots.jl
- LinearAlgebra
- FFTW

Теоретическое описание задачи

Гармоническая цепочка

$$F_i = k(y_{i+1} - y_i) - k(y_i - y_{i-1}) = k(y_{i+1} - 2y_i + y_{i-1}).$$

Гармоническая цепочка

$$m\frac{d^2y_i}{dt^2} = k(y_{i+1} - 2y_i + y_{i-1}), \quad i = 1, \dots, N.$$

Полная энергия системы

$$U = \frac{m}{2} \sum_{i=1}^{N} \left(\frac{dy_i}{dt} \right)^2 + \frac{k}{2} \sum_{i=1}^{N+1} (y_i - y_{i-1})^2.$$

Решение уравнения

$$y_i = (A\cos(px_i) + B\sin(px_i))\cos(\omega t).$$

Решение уравнения

$$\sin(p(N+1)d) = 0.$$

Решение уравнения

$$p_l = \frac{l\pi}{(N+1)d}, \quad l = 1, \dots, N.$$

Ангармоническая цепочка

$$F = -kx\left(1 - \frac{\alpha x}{d}\right).$$

Ангармоническая цепочка

$$U = \frac{m}{2} \sum_{i=1}^{N} \left(\frac{dy_i}{dt} \right)^2 + \frac{k}{2} \sum_{i=1}^{N+1} (y_i - y_{i-1})^2 - \frac{k\alpha}{3d} \sum_{i=1}^{N+1} (y_i - y_{i-1})^3.$$

```
# Гармонические колебания
function harmonic chain simulation(;
  N=20. # Количество частии
  m=1.0, # Масса частицы
  k=1.0, #Жёсткость пружины
  alpha=0.0,
               # Коэффициент ангармоничности (О для гармонического случая
  Т=100.0. # Общее время моделирования
  dt=0.01, # Шаг по времени
  dd=1.0. # Расстояние между частицами
  initial displacement=0.1, # Амплитуда начального возмущения
  save every=10 # Сохранять состояние каждые save every шагов
```

```
# Инициализация массивов (включая граничные условия) y = zeros(N+2) # Смещения (у[1] и у[N+2] - граничные условия) v = zeros(N+2) # Скорости a = zeros(N+2) # Ускорения
```

```
# Начальные условия - синусоидальное возмущение
for i in 2:N+1
  y[i] = initial_displacement * sin(pi*(i-1)/N)
end
```

```
# Массивы для сохранения результатов times = Float64[] positions = Vector{Float64}[] velocities = Vector{Float64}[]
```

```
# Вычисление ускорений для внутренних частиц
for i in 2:N+1
  dy prev = y[i] - y[i-1]
  dv next = v[i+1] - v[i]
  # Гармоническая часть силы
  F harmonic = k * (y[i+1] - 2*y[i] + y[i-1])
  # Ангармоническая часть силы (если \alpha \neq 0)
  F anharmonic = alpha * (dy next^3 + dy prev^3)
  a[i] = (F harmonic + F anharmonic) / m
end
```

```
# Обновление скоростей и смещений (метод Верле)

for i in 2:N+1

v[i] += a[i] * dt

y[i] += v[i] * dt

end
```

```
# Применение граничных условий
y[1] = 0.0
y[N+2] = 0.0
```

```
# Coxpaнeнue состояния (не на каждом шаге для экономии памяти)

if mod(round(t/dt), save_every) == 0
    push!(times, t)
    push!(positions, copy(y[2:N+1])) # Исключаем граничные точки
    push!(velocities, copy(v[2:N+1]))

end
```

Результаты

Результаты

Выводы

- Построили модель цепочки из N частиц.
- Описали алгоритм для моделирования гармонических и ангармонических колебаний.
- Реализовали программу для моделирования гармонических и ангармонических колебаний.