$11n_{95} (K11n_{95})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{10} - 4u^9 + 5u^8 + 4u^7 - 20u^6 + 24u^5 - 8u^4 - 8u^3 + 7u^2 + b - 1, \\ u^{11} - 7u^{10} + 18u^9 - 12u^8 - 36u^7 + 95u^6 - 84u^5 - 2u^4 + 59u^3 - 31u^2 + 2a - 9u + 9, \\ u^{12} - 5u^{11} + 10u^{10} - 4u^9 - 22u^8 + 51u^7 - 48u^6 + 10u^5 + 23u^4 - 21u^3 + 3u^2 + 5u - 2 \rangle \\ I_2^u &= \langle u^5 + 2u^4 - 2u^2 + b - u + 1, \ -3u^5 - 5u^4 + 2u^3 + 8u^2 + a + 2u - 6, \ u^6 + 2u^5 - 3u^3 - 2u^2 + 2u + 1 \rangle \\ I_3^u &= \langle -4u^4a - 5u^3a - 10u^4 - 4u^2a - 7u^3 + 3au + u^2 + 11b + 5a + 13u - 4, \\ &- 6u^4 + u^2a - 2u^3 + a^2 + 2au + 3u^2 + a + 9u - 11, \ u^5 + u^4 - u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle u^{10} - 4u^9 + \dots + b - 1, \ u^{11} - 7u^{10} + \dots + 2a + 9, \ u^{12} - 5u^{11} + \dots + 5u - 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 4u^{9} - 5u^{8} - 4u^{7} + 20u^{6} - 24u^{5} + 8u^{4} + 8u^{3} - 7u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{11} + \frac{5}{2}u^{10} + \dots + \frac{9}{2}u - \frac{7}{2} \\ -u^{10} + 4u^{9} - 5u^{8} - 4u^{7} + 20u^{6} - 24u^{5} + 8u^{4} + 8u^{3} - 7u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{11} + \frac{5}{2}u^{10} + \dots + \frac{19}{2}u - \frac{7}{2} \\ -u^{10} + 4u^{9} - 5u^{8} - 4u^{7} + 20u^{6} - 24u^{5} + 8u^{4} + 8u^{3} - 7u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{11} - 4u^{10} + 6u^{9} + u^{8} - 18u^{7} + 30u^{6} - 22u^{5} + 2u^{4} + 9u^{3} - 6u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{11} - 4u^{10} + 6u^{9} + u^{8} - 18u^{7} + 30u^{6} - 22u^{5} + 2u^{4} + 9u^{3} - 6u^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{10} - 3u^{9} + 2u^{8} + 6u^{7} - 14u^{6} + 11u^{5} + 2u^{4} - 8u^{3} + 4u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}u^{11} - \frac{13}{2}u^{10} + \dots - \frac{11}{2}u + \frac{7}{2} \\ -u^{11} + 4u^{10} + \dots + 3u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{2}u^{11} - \frac{13}{2}u^{10} + \dots - \frac{11}{2}u + \frac{7}{2} \\ -u^{11} + 5u^{10} + \dots + 5u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{2}u^{11} - \frac{13}{2}u^{10} + \dots - \frac{11}{2}u + \frac{7}{2} \\ -u^{11} + 5u^{10} + \dots + 5u - 3 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= -u^{11} + 6u^{10} - 14u^9 + 9u^8 + 27u^7 - 75u^6 + 75u^5 - 10u^4 - 49u^3 + 40u^2 - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{12} + 5u^{11} + \dots - 5u - 2$
c_2	$u^{12} + 5u^{11} + \dots + 37u + 4$
c_3, c_4, c_{10}	$u^{12} - u^{11} + \dots - 2u - 1$
<i>c</i> ₆	$u^{12} + 12u^{11} + \dots + 240u + 32$
c_7	$u^{12} + 5u^{10} + \dots + 4u + 1$
c_8, c_{11}	$u^{12} + 2u^{11} + \dots + 3u + 1$
<i>c</i> ₉	$u^{12} - 7u^{11} + \dots - 15u - 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{12} - 5y^{11} + \dots - 37y + 4$
c_2	$y^{12} + 7y^{11} + \dots - 353y + 16$
c_3, c_4, c_{10}	$y^{12} - 19y^{11} + \dots + 2y + 1$
<i>C</i> ₆	$y^{12} - 6y^{11} + \dots - 7936y + 1024$
	$y^{12} + 10y^{11} + \dots - 10y + 1$
c_8, c_{11}	$y^{12} - 6y^{11} + \dots - 25y + 1$
c_9	$y^{12} - 3y^{11} + \dots - 689y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.634055 + 0.761588I		
a = 2.40907 - 0.56101I	2.28232 - 3.09531I	-6.37045 + 4.07458I
b = -1.061820 + 0.403224I		
u = 0.634055 - 0.761588I		
a = 2.40907 + 0.56101I	2.28232 + 3.09531I	-6.37045 - 4.07458I
b = -1.061820 - 0.403224I		
u = 0.706953 + 1.119620I		
a = -2.03790 - 1.24403I	-1.55271 + 4.05634I	-6.99284 - 2.54487I
b = 1.33004 + 0.60517I		
u = 0.706953 - 1.119620I		
a = -2.03790 + 1.24403I	-1.55271 - 4.05634I	-6.99284 + 2.54487I
b = 1.33004 - 0.60517I		
u = 1.184170 + 0.621257I		
a = 1.075910 + 0.634900I	0.53240 - 2.26677I	-5.92780 + 2.45213I
b = -0.732377 + 0.158790I		
u = 1.184170 - 0.621257I		
a = 1.075910 - 0.634900I	0.53240 + 2.26677I	-5.92780 - 2.45213I
b = -0.732377 - 0.158790I		
u = -0.585422 + 0.102144I		
a = 0.251345 - 0.127948I	-0.76434 + 2.25567I	-2.25761 - 1.65555I
b = -0.388763 - 1.056570I		
u = -0.585422 - 0.102144I		
a = 0.251345 + 0.127948I	-0.76434 - 2.25567I	-2.25761 + 1.65555I
b = -0.388763 + 1.056570I		
u = 1.13630 + 0.87513I		
a = -2.57645 + 0.49107I	-2.90723 - 11.19710I	-8.74463 + 6.08532I
b = 1.35172 - 1.03292I		
u = 1.13630 - 0.87513I		
a = -2.57645 - 0.49107I	-2.90723 + 11.19710I	-8.74463 - 6.08532I
b = 1.35172 + 1.03292I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.531194		
a = -1.14054	-0.766539	-13.0250
b = 0.227398		
u = -1.68330		
a = -0.603416	-10.8637	-2.38840
b = 0.774996		

$$\text{II. } I_2^u = \langle u^5 + 2u^4 - 2u^2 + b - u + 1, \ -3u^5 - 5u^4 + 2u^3 + 8u^2 + a + 2u - 6, \ u^6 + 2u^5 - 3u^3 - 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3u^{5} + 5u^{4} - 2u^{3} - 8u^{2} - 2u + 6 \\ -u^{5} - 2u^{4} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{5} + 3u^{4} - 2u^{3} - 6u^{2} - u + 5 \\ -u^{5} - 2u^{4} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{5} + 3u^{4} - u^{3} - 5u^{2} - 2u + 4 \\ -u^{5} - 2u^{4} - u^{3} + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3u^{5} - 5u^{4} + 2u^{3} + 8u^{2} + 3u - 7 \\ u^{5} + 2u^{4} - 2u^{2} - u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{5} - 3u^{4} + u^{3} + 5u^{2} + 2u - 4 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{5} - 3u^{4} + u^{3} + 5u^{2} + 2u - 4 \\ u^{5} + u^{4} - u^{3} - 3u^{2} - u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{5} - 3u^{4} + u^{3} + 5u^{2} + 2u - 4 \\ u^{5} + u^{4} - u^{3} - 3u^{2} - u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^5 + 7u^4 + 4u^3 6u^2 9u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^6 + 2u^5 - 3u^3 - 2u^2 + 2u + 1$
c_2	$u^6 + 4u^5 + 8u^4 + 15u^3 + 16u^2 + 8u + 1$
c_3	$u^6 + u^5 - 2u^4 - 3u^3 - 5u^2 - 4u - 1$
c_4, c_{10}	$u^6 - u^5 - 2u^4 + 3u^3 - 5u^2 + 4u - 1$
<i>C</i> 5	$u^6 - 2u^5 + 3u^3 - 2u^2 - 2u + 1$
c_6	$u^6 + u^5 - 2u^4 + 2u^3 - 2u + 1$
<i>c</i> ₇	$u^6 - 4u^3 - 5u^2 - 2u - 1$
c ₈	$u^6 + 2u^5 - 2u^3 - 2u^2 - u + 1$
<i>c</i> 9	$u^6 + 4u^5 + 5u^4 + 2u^3 - u^2 - u + 1$
c_{11}	$u^6 - 2u^5 + 2u^3 - 2u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^6 - 4y^5 + 8y^4 - 15y^3 + 16y^2 - 8y + 1$
c_2	$y^6 - 24y^4 - 31y^3 + 32y^2 - 32y + 1$
c_3, c_4, c_{10}	$y^6 - 5y^5 + 17y^3 + 5y^2 - 6y + 1$
<i>c</i> ₆	$y^6 - 5y^5 + 2y^3 + 4y^2 - 4y + 1$
	$y^6 - 10y^4 - 18y^3 + 9y^2 + 6y + 1$
c_8, c_{11}	$y^6 - 4y^5 + 4y^4 + 2y^3 - 5y + 1$
<i>c</i> ₉	$y^6 - 6y^5 + 7y^4 - 4y^3 + 15y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.907957 + 0.227043I		
a = -0.348496 + 0.361180I	-1.45069 - 2.49752I	-13.4121 + 4.8455I
b = 0.355765 - 0.898533I		
u = 0.907957 - 0.227043I		
a = -0.348496 - 0.361180I	-1.45069 + 2.49752I	-13.4121 - 4.8455I
b = 0.355765 + 0.898533I		
u = -0.934823 + 0.946305I		
a = -2.43499 + 0.27700I	5.64849 + 3.45368I	-2.17386 - 2.96497I
b = 1.42809 + 0.28813I		
u = -0.934823 - 0.946305I		
a = -2.43499 - 0.27700I	5.64849 - 3.45368I	-2.17386 + 2.96497I
b = 1.42809 - 0.28813I		
u = -1.52247		
a = -0.116304	-11.4632	-16.4310
b = -0.452275		
u = -0.423796		
a = 5.68327	-6.80200	-4.39680
b = -1.11543		

$$III. \ I_a^u = \langle -4u^4a - 10u^4 + \dots + 5a - 4, -6u^4 - 2u^3 + \dots + a - 11, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.363636au^{4} + 0.909091u^{4} + \dots - 0.454545a + 0.363636 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.363636au^{4} + 0.909091u^{4} + \dots + 0.545455a + 0.363636 \\ 0.363636au^{4} + 0.909091u^{4} + \dots + 0.454545a + 0.363636 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.272727au^{4} + 0.181818u^{4} + \dots + 0.909091a + 0.272727 \\ 0.181818au^{4} + 1.45455u^{4} + \dots - 0.727273a + 0.181818 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.454545au^{4} - 3.63636u^{4} + \dots - 0.181818a - 2.45455 \\ 0.0909091au^{4} + 1.72727u^{4} + \dots - 0.363636a + 1.09091 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.272727au^{4} + 0.181818u^{4} + \dots + 0.909091a + 0.272727 \\ 0.181818au^{4} + 1.45455u^{4} + \dots - 0.727273a + 0.181818 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.272727au^{4} + 0.181818u^{4} + \dots + 0.909091a + 0.272727 \\ -0.272727au^{4} + 0.818182u^{4} + \dots - 0.909091a + 0.727273 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.272727au^{4} + 0.818188u^{4} + \dots + 0.909091a + 0.272727 \\ -0.272727au^{4} + 0.818182u^{4} + \dots - 0.909091a + 0.272727 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.272727au^{4} + 0.181818u^{4} + \dots + 0.909091a + 0.272727 \\ -0.272727au^{4} + 0.818182u^{4} + \dots - 0.909091a + 0.272727 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^2 + 4u 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$(u^5 - u^4 + u^2 + u - 1)^2$
c_2	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^2$
c_3, c_4, c_{10}	$u^{10} + u^9 - 4u^8 - 4u^7 - 2u^6 + 2u^5 + 29u^4 + 7u^3 - 48u^2 + 12u - 1$
<i>c</i> ₆	$(u-1)^{10}$
	$u^{10} + u^9 + 2u^8 + 6u^7 - 14u^6 + 28u^5 - 59u^4 + 53u^3 - 82u^2 + 34u - 13u^4 + 34u^2 + 3$
c_8, c_{11}	$u^{10} + 3u^9 + 2u^8 - 8u^7 - 24u^6 - 16u^5 + 25u^4 + 71u^3 + 78u^2 + 40u + 7u^3 + 78u^2 + 40u + 7u^3 + 78u^2 + 40u + 7u^3 + 78u^3 + 78u^2 + 40u + 7u^3 + 78u^3 + 78$
<i>c</i> 9	$(u^5 + 3u^4 - 5u^2 - u + 3)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^2$
c_2	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^2$
c_3, c_4, c_{10}	$y^{10} - 9y^9 + \dots - 48y + 1$
<i>c</i> ₆	$(y-1)^{10}$
	$y^{10} + 3y^9 + \dots + 976y + 169$
c_8, c_{11}	$y^{10} - 5y^9 + \dots - 508y + 49$
c_9	$(y^5 - 9y^4 + 28y^3 - 43y^2 + 31y - 9)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758138 + 0.584034I		
a = -1.87197 - 0.03044I	-4.75993 - 2.21397I	-11.11432 + 4.22289I
b = 0.452332 - 1.123840I		
u = 0.758138 + 0.584034I		
a = -0.87798 - 2.02319I	-4.75993 - 2.21397I	-11.11432 + 4.22289I
b = 0.81806 + 1.53771I		
u = 0.758138 - 0.584034I		
a = -1.87197 + 0.03044I	-4.75993 + 2.21397I	-11.11432 - 4.22289I
b = 0.452332 + 1.123840I		
u = 0.758138 - 0.584034I		
a = -0.87798 + 2.02319I	-4.75993 + 2.21397I	-11.11432 - 4.22289I
b = 0.81806 - 1.53771I		
u = -0.935538 + 0.903908I		
a = -1.88766 + 0.16400I	4.37856 + 3.33174I	-10.08126 - 2.36228I
b = 0.868620 + 0.215856I		
u = -0.935538 + 0.903908I		
a = 2.70055 - 0.28054I	4.37856 + 3.33174I	-10.08126 - 2.36228I
b = -1.72566 - 0.41266I		
u = -0.935538 - 0.903908I		
a = -1.88766 - 0.16400I	4.37856 - 3.33174I	-10.08126 + 2.36228I
b = 0.868620 - 0.215856I		
u = -0.935538 - 0.903908I		
a = 2.70055 + 0.28054I	4.37856 - 3.33174I	-10.08126 + 2.36228I
b = -1.72566 + 0.41266I		
u = -0.645200		
a = 3.94511	-7.46192	-19.6090
b = 0.340045		
u = -0.645200		
a = -4.07100	-7.46192	-19.6090
b = 1.83325		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^5 - u^4 + u^2 + u - 1)^2(u^6 + 2u^5 - 3u^3 - 2u^2 + 2u + 1)$ $\cdot (u^{12} + 5u^{11} + \dots - 5u - 2)$
c_2	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^2$ $\cdot (u^6 + 4u^5 + \dots + 8u + 1)(u^{12} + 5u^{11} + \dots + 37u + 4)$
c_3	$(u^{6} + u^{5} - 2u^{4} - 3u^{3} - 5u^{2} - 4u - 1)$ $\cdot (u^{10} + u^{9} - 4u^{8} - 4u^{7} - 2u^{6} + 2u^{5} + 29u^{4} + 7u^{3} - 48u^{2} + 12u - 1)$ $\cdot (u^{12} - u^{11} + \dots - 2u - 1)$
c_4, c_{10}	$(u^{6} - u^{5} - 2u^{4} + 3u^{3} - 5u^{2} + 4u - 1)$ $\cdot (u^{10} + u^{9} - 4u^{8} - 4u^{7} - 2u^{6} + 2u^{5} + 29u^{4} + 7u^{3} - 48u^{2} + 12u - 1)$ $\cdot (u^{12} - u^{11} + \dots - 2u - 1)$
c_5	$(u^5 - u^4 + u^2 + u - 1)^2(u^6 - 2u^5 + 3u^3 - 2u^2 - 2u + 1)$ $\cdot (u^{12} + 5u^{11} + \dots - 5u - 2)$
c_6	$((u-1)^{10})(u^6 + u^5 + \dots - 2u + 1)(u^{12} + 12u^{11} + \dots + 240u + 32)$
c_7	$(u^{6} - 4u^{3} - 5u^{2} - 2u - 1)$ $\cdot (u^{10} + u^{9} + 2u^{8} + 6u^{7} - 14u^{6} + 28u^{5} - 59u^{4} + 53u^{3} - 82u^{2} + 34u - 13)$ $\cdot (u^{12} + 5u^{10} + \dots + 4u + 1)$
c_8	$(u^{6} + 2u^{5} - 2u^{3} - 2u^{2} - u + 1)$ $\cdot (u^{10} + 3u^{9} + 2u^{8} - 8u^{7} - 24u^{6} - 16u^{5} + 25u^{4} + 71u^{3} + 78u^{2} + 40u + 7)$ $\cdot (u^{12} + 2u^{11} + \dots + 3u + 1)$
c_9	$(u^5 + 3u^4 - 5u^2 - u + 3)^2(u^6 + 4u^5 + 5u^4 + 2u^3 - u^2 - u + 1)$ $\cdot (u^{12} - 7u^{11} + \dots - 15u - 4)$
c_{11}	$(u^{6} - 2u^{5} + 2u^{3} - 2u^{2} + u + 1)$ $\cdot (u^{10} + 3u^{9} + 2u^{8} - 8u^{7} - 24u^{6} - 16u^{5} + 25u^{4} + 71u^{3} + 78u^{2} + 40u + 7)$ $\cdot (u^{12} + 2u^{11} + \dots + 3u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^2$ $\cdot (y^6 - 4y^5 + \dots - 8y + 1)(y^{12} - 5y^{11} + \dots - 37y + 4)$
c_2	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^2$ $\cdot (y^6 - 24y^4 + \dots - 32y + 1)(y^{12} + 7y^{11} + \dots - 353y + 16)$
c_3, c_4, c_{10}	$(y^6 - 5y^5 + 17y^3 + 5y^2 - 6y + 1)(y^{10} - 9y^9 + \dots - 48y + 1)$ $\cdot (y^{12} - 19y^{11} + \dots + 2y + 1)$
c_6	$(y-1)^{10}(y^6 - 5y^5 + 2y^3 + 4y^2 - 4y + 1)$ $\cdot (y^{12} - 6y^{11} + \dots - 7936y + 1024)$
c_7	$(y^{6} - 10y^{4} - 18y^{3} + 9y^{2} + 6y + 1)(y^{10} + 3y^{9} + \dots + 976y + 169)$ $\cdot (y^{12} + 10y^{11} + \dots - 10y + 1)$
c_8, c_{11}	$(y^6 - 4y^5 + 4y^4 + 2y^3 - 5y + 1)(y^{10} - 5y^9 + \dots - 508y + 49)$ $\cdot (y^{12} - 6y^{11} + \dots - 25y + 1)$
c_9	$(y^5 - 9y^4 + 28y^3 - 43y^2 + 31y - 9)^2$ $\cdot (y^6 - 6y^5 + \dots - 3y + 1)(y^{12} - 3y^{11} + \dots - 689y + 16)$