

IIR

INGÉNIERIE INFORMATIQUE & RESAUX

Stage d'été

2023/2024

THEME

Creation d'une platfrome de streaming

RÉALISÉ PAR SOULAIMANE OUHMIDA

ENCADRÉ PAR CHARIF

ENCADRÉ PAR 01/09/2024

Dedicace

A mes parents, dont le soutien et les encouragements indéfectibles ont été mon pilier tout au long de mes études et de ce stage. À mes sœurs Salma et Souhaila, pour leur soutien inconditionnel et leur présence réconfortante à chaque étape de ma vie. A mes amis, pour leur soutien indéfectible et leurs précieux encouragements. A M. Charif, pour sa patience, ses conseils avisés et la confiance qu'il m'a accordé. Ce rapport est dédié à tous ceux qui ont contribué, directement ou indirectement, à mon expérience de stage.

Je tiens également à remercier Saad Riadi, dont les conseils et les retours ont été déterminants pour façonner mon parcours au cours de ce stage. Leur sagesse et leurs encouragements ont eu un impact profond sur mon développement personnel et professionnel.

Enfin, j'adresse mes sincères remerciements à toute l'équipe de Concentrix pour m'avoir accueilli chaleureusement et m'avoir offert un environnement enrichissant pour apprendre et grandir.

Remerciement

Je tiens tout d'abord à exprimer ma profonde gratitude envers Charif pour son soutien constant, ses conseils avisés et la confiance qu'il m'a accordée tout au long de mon stage. Ses précieux enseignements et son accompagnement ont été essentiels pour mon développement professionnel.

Mes remerciements vont également à l'équipe de Concentrix, particulièrement à Ezzadine, pour leur accueil chaleureux, leur collaboration et leur volonté de partager leurs connaissances. Leur expertise m'a permis d'acquérir une compréhension approfondie du domaine et de contribuer de manière significative aux projets de l'entreprise.

Je souhaite exprimer ma reconnaissance envers mes collègues, qui ont rendu mon expérience de travail enrichissante et agréable. Leur soutien et leur camaraderie ont contribué grandement à mon épanouissement professionnel au sein de l'équipe.

Enfin, je suis reconnaissant envers ma famille et mes amis pour leur soutien inconditionnel et leurs encouragements constants tout au long de cette période.

Résumé

À une époque où les services de streaming numérique sont omniprésents, des plateformes telles que Netflix et Disney+ incarnent parfaitement la fusion entre technologie avancée et divertissement. Ces entreprises déploient des technologies de pointe pour offrir du contenu visuel de qualité à un large public. Ce projet ambitieux a pour objectif de recréer l'infrastructure complète de Netflix, comprenant une interface utilisateur attrayante, des serveurs puissants, et une architecture de base de données complexe qui soutient une expérience utilisateur fluide et immersive.

L'interface utilisateur est conçue pour capter et maintenir l'attention des utilisateurs, tandis que les systèmes backend sophistiqués gèrent la diffusion du contenu et l'administration des comptes. Chaque composant de ce projet vise à reproduire les fonctionnalités distinctives qui ont fait la renommée de Netflix. En réalisant cette réplique détaillée, le projet met en lumière non seulement des compétences techniques impressionnantes, mais il explore également les défis de l'évolutivité, de la distribution de contenu, et du design centré sur l'utilisateur dans le paysage moderne des médias.

Ce travail nous conduit à décortiquer et à recréer la magie qui a permis à Netflix de devenir un acteur incontournable du divertissement mondial. En approfondissant ces aspects, le projet aspire à offrir une compréhension approfondie des technologies et des stratégies qui sous-tendent le succès des géants du streaming.

Abstract

In an era where digital streaming services are ubiquitous, platforms like Netflix and Disney+ epitomize the fusion of advanced technology and entertainment. These companies deploy cutting-edge technologies to deliver quality visual content to a wide audience. This ambitious project aims to recreate Netflix's entire infrastructure, including a compelling user interface, powerful servers, and a complex database architecture that supports a seamless and immersive user experience.

The user interface is designed to capture and maintain users' attention, while sophisticated backend systems handle content delivery and account administration. Each component of this project aims to replicate the distinctive features that Netflix is known for. By creating this detailed replica, the project not only showcases impressive technical skills, but also explores the challenges of scalability, content distribution, and user-centric design in the modern media landscape.

This work leads us to unpack and recreate the magic that has allowed Netflix to become a global entertainment powerhouse. By delving into these aspects, the project aims to provide an in-depth understanding of the technologies and strategies that underpin the success of streaming giants.

Glossaire

backend	
Dackellu	
Frontend	
AWS	
API	
AWS S3	

Liste des Figures

Figure 1: Logo de Concentrix	15
Figure 2: Emplacement du Concentrix dans le monde	16
Figure 3: Les valeurs de concentrix	16
Figure 4: Concentrix Maroc	18
Figure 5: Logo Webhelp	20
Figure 6: Emplacement du Webhelp dans le monde	21
Figure 7: Les valeurs de webhelp	21
Figure 8: Concentrix + Webhelp	22
Figure 9: Pile technologique Netflix	24
Figure 10: Stack technologique frontend (netflix)	25
Figure 11: Stack technologique backend (netflix)	25
Figure 12: Stack technologique bases de données (netflix)	26
Figure 13: Stack technologique big data (netflix)	26
Figure 14: Stack technologique devops (netflix)	26
Figure 15: Pile technologique de ce projet	27
Figure 16: Logo de React JS	27
Figure 17: Logo de React Native	Erreur ! Signet non défini.
Figure 18: Logo de HTML	28
Figure 19: Logo de CSS	28
Figure 20: Logo de JavaScript	27
Figure 21: Logo de Tailwind	28
Figure 22: Logo de Java	29
Figure 23: Logo de Spring Boot	29
Figure 24: Logo de MySQL	29
Figure 25: Logo de Cassandra	30
Figure 26: Logo de Redis	30
Figure 27: Logo de AWS	30
Figure 28: Logo de AWS S3	Erreur ! Signet non défini.
Figure 29: Logo de AWS EC2	Erreur ! Signet non défini.
Figure 30: Logo de Github	30
Figure 31: Repository Github " Netflix Clone "	Erreur ! Signet non défini.
Figure 32: Logo de Jira	
Figure 33: Tableau de bord " Jira "	31
Figure 34 : Diagramme de cas d'utilisation	37
Figure 35 : Diagramme de classes	
Figure 36: Diagramme de séquence " authentification "	
Figure 37: Diagramme de séquence "Paiement de l'abonnement "	41
Figure 38: Diagramme de séquence " Navigation et lecture de vidéo "	
Figure 39: Diagramme du cloud	53

Liste des tableaux

Tableau 1: Fiche technique du Concentrix	15
Tableau 2: Secteurs d'activité de concentrix	17
Tableau 3: Fiche technique du Webhelp	20
Tableau 4: Les secteurs d'activité de webhelp	22
Tableau 5: Les besoins clés de l'utilisateur final	34
Tableau 6: Les besoins fonctionnelles	35
Tableau 7: Les besoins non fonctionnelles.	35

Table des matières

Dedicace	2
Remerciement	3
Résumé	4
Abstract	5
Glossaire	6
Liste des Figures	7
Liste des tableaux	8
Table des matières	9
Introduction Générale	12
Contexte	12
Problématique	12
Objectifs	12
Méthodologie	13
Structure du Rapport	13
Chapitre 1 : Présentation de l'organisme d'accueil	14
Introduction	15
I. Concentrix	15
Présentation	15
Les valeurs de Concentrix	16
Secteurs d'activité	17
Concentrix Maroc	18
II. Webhelp	20
Presentaion	20
Les valeurs de Webhelp	21
Secteurs d'activité	22
III. Concentrix + WebHelp	22
Conclusion	22
Chapitre 2 : Etude de projet et outils utilisés	23
Introduction	24
I. Pile technologique Netflix	24
1. Frontend	25

concentrix

	2.	Backend	25
	3.	Bases de Données	26
	4.	Big Data	26
	5.	DevOps	26
II.		Pile technologique de ce projet	27
Ш		Outils de développement	27
	1.	Frontend	27
	2.	Backend	29
	3.	Databases	29
	4.	Cloud	30
	5.	Gestion du Code Source	30
	6.	Outils de Collaboration	31
С	onc	clusion	32
Cha	pitr	re 3 : Analyse et Conception	33
In	tro	duction	34
I.		Analyse des Besoins	34
	1.	Analyse des Besoins Utilisateurs	34
	2.	Analyse Fonctionnelle	35
	3.	Analyse Non Fonctionnelle	35
II.		Conception de l'Architecture	36
	Arc	chitecture Générale du Système	36
	Со	nception Technique	36
Ш		Modélisation UML	37
	Dia	agrammes de cas d'utilisation	37
	Dia	agrammes de classes	38
	Dia	agrammes de séquence	.40
С	onc	clusion	42
Cha	pitr	re 4 : Conception de la Base de Données	43
In	tro	duction	.44
l.		Choix de la Base de Données	44
II.		Optimisation	.45
	Ор	otimisation de Cassandra	.45
	Ор	otimisation de MySQL	45

concentrix

	O	Optimisation de Redis	45		
Ш	l.	Collecte des données45			
	In	ntroduction au Web Scraping	45		
	St	tockage des Données Collectées	46		
С	on	nclusion	46		
Cha	pit	tre 5 : Mise en œuvre et Réalisation	47		
In	ıtro	oduction	48		
ı.		Développement Backend	48		
11.		Développement Frontend	49		
С	on	nclusion	49		
Cha	pit	tre 6 : Déploiement Cloud	50		
In	ıtro	oduction	51		
ı.		Architecture Cloud	51		
	Pr	résentation Générale	51		
	Se	ervices AWS Utilisés	51		
11.		Processus de Déploiement	53		
	De	Péploiement du Frontend (React)	53		
	De	Péploiement du Backend (Spring Boot)	54		
	С	Configuration des Bases de Données	54		
Ш	l.	Sécurité et Conformité	55		
С	on	nclusion	55		
Con	ıclı	usion Générale et Perspectives	56		
Ann	ехе	re	57		
Réfe	ére	ences	58		

Introduction Générale

Lors de mon stage d'été, j'ai entrepris de développer une application qui reproduit les principales fonctionnalités de Netflix, un service de streaming vidéo de renommée mondiale. Ce projet ambitieux vise à intégrer la gestion des utilisateurs, le streaming de vidéos, et une interface utilisateur intuitive et engageante.

Contexte

L'industrie du streaming vidéo connaît une croissance spectaculaire, portée par des plateformes comme Netflix qui redéfinissent la consommation de médias. Cette transformation est le fruit de progrès technologiques notables dans le développement web, la gestion de bases de données, et les services cloud, permettant une diffusion fluide et accessible du contenu audiovisuel.

Problématique

La création d'un clone de Netflix pose plusieurs défis techniques majeurs, notamment la gestion efficace des flux de données, la protection des informations sensibles des utilisateurs, et l'optimisation des performances pour une expérience utilisateur fluide.

Ce projet explore ces défis et propose des solutions en s'appuyant sur des technologies modernes et une approche de développement agile.

Objectifs

Les principaux objectifs de ce projet sont :

- Développer une interface utilisateur moderne, réactive et conviviale.
- Construire un backend solide, accompagné d'une API REST pour la gestion des données.
- Concevoir et implémenter une base de données optimisée pour le stockage rapide et la récupération efficace des informations vidéo.
- Utiliser des services cloud pour garantir la scalabilité et la disponibilité continue de l'application.

Méthodologie

Le projet a été réalisé selon une approche Agile, avec des sprints hebdomadaires facilitant des itérations rapides et des ajustements basés sur les retours d'expérience. Les outils utilisés incluent Git pour le contrôle de version et Jira pour la gestion des tâches.

Structure du Rapport

Ce rapport est organisé en plusieurs chapitres, chacun décrivant une étape spécifique du projet. Le premier chapitre introduit l'organisme d'accueil. Les chapitres suivants détaillent l'analyse et la conception du projet, la conception de la base de données, le développement frontend et backend, le déploiement cloud, les mesures de sécurité, et les tests effectués.

Le rapport conclut par une analyse des défis rencontrés et des suggestions pour les améliorations futures.

CHAP1: Présentation de l'organisme d'accueil

Introduction

Ce premier chapitre abordera la présentation de l'organisme d'accueil, l'entreprise Concentrix, ses domaines d'activités et ses métiers, et son rapprochement avec Webhelp.

I. Concentrix

Présentation

Figure 1: Logo de Concentrix

Concentrix Corporation est l'un des principaux fournisseurs mondiaux de solutions et de technologies d'expérience client (CX), améliorant les performances commerciales de certaines des meilleures marques au monde, dont plus de 100 clients du Fortune Global 500 et plus de 125 clients de la nouvelle économie.

Création	Concentrix a été fondée en 1983.
Forme Juridique	Société anonyme (corporation) cotée en bourse.
Slogan	We deliver extraordinary customer experiences.
Présence Mondiale	plus de 40 pays à travers le monde.
Siège Sociale	Fremont, Californie, États-Unis.
Directeur Général (CEO)	Chris Caldwell
Produits	Gestion de l'expérience client
	 Externalisation des processus métiers (BPO)
	Services informatiques
	Solutions de technologie
	Analytique et intelligence artificielle
	Services de gestion des interactions clients (centres de contact,
	support technique, etc.)
Filiales	Concentrix Catalyst
	TigerSpike
	Minacs
Effictif	Environ 290,000 employés à travers le monde.
Site Web	concentrix.com
Chiffre d'Affaire	Environ 5,6 milliards de dollars en 2021.

Tableau 1: Fiche technique du Concentrix

La figure suivante représente les régions de présence de Concentrix au monde et la répartition de ses consultants :

Figure 2: Emplacement du Concentrix dans le monde

Les valeurs de Concentrix

Les valeurs et la culture de concentrix repose sur le respect d'un soutien individuel et mutuel entre collaborateurs, et d'une véritable collaboration. Les sept valeurs de Concentrix sont :

Figure 3: Les valeurs de concentrix

Secteurs d'activité

Concentrix opère dans plusieurs secteurs d'activité, fournissant une gamme diversifiée de services pour répondre aux besoins spécifiques de chaque industrie. Voici quelques-uns des principaux secteurs d'activité de Concentrix :

Technologie	 Services de support technique Gestion des relations clients pour les entreprises technologiques Solutions de service après-vente
Télécommunications	 Assistance clientèle pour les opérateurs de téléphonie mobile et les fournisseurs d'accès internet Gestion des ventes et du support technique
Services financiers	 Services de gestion des comptes Support client pour les banques et les compagnies d'assurance Services de recouvrement et de gestion des fraudes
Santé	 Services de support aux patients Gestion des réclamations d'assurance santé Services de télésanté et de soins à distance
Commerce de détail et e- commerce	 Gestion des commandes et des retours Support client pour les boutiques en ligne et les détaillants traditionnels Solutions de marketing numérique
Automobile	 Services de support pour les constructeurs automobiles Gestion des réclamations de garantie Support technique pour les véhicules connectés
Voyages et loisirs	 Services de réservation et de support client pour les compagnies aériennes, les hôtels et les agences de voyages Gestion des programmes de fidélité
Services publics et gouvernement	 Assistance clientèle pour les services publics Solutions de gestion des citoyens pour les agences gouvernementales
Éducation	 Services de support pour les établissements d'enseignement Gestion des inscriptions et des programmes éducatifs en ligne
Médias et divertissement	 Support client pour les plateformes de streaming et de médias Gestion des abonnements et des services à la demande

Tableau 2: Secteurs d'activité de concentrix

Concentrix Maroc

Figure 4: Concentrix Maroc

La figure suivante est la représentation schématique des liens hiérarchiques de Concentrix Maroc :

II. Webhelp

Presentaion

Figure 5: Logo Webhelp

Webhelp est une entreprise française d'externalisation de la gestion de l'expérience client et des processus métier. Elle a été fondée en 2000 et son siège est situé à Paris en France.

Concrètement, ce groupe dirige des centres d'appels qui proposent à des entreprises des prestations de ligne directe, de télémarketing, de traitement de courriers et d'e-mails.

Création	Webhelp a été fondée en 2000.
Forme Juridique	Société par actions simplifiée (SAS).
Slogan	Making business more human.
Présence Mondiale	plus de 50 pays avec plus de 200 sites à travers le monde.
Siège Sociale	161 Rue de Courcelles, 75017 Paris, France.
Direction	Co-fondateurs : Frédéric Jousset et Olivier Duha
	CEO : Olivier Duha
Produits	Gestion de l'expérience client
	 Externalisation des processus métiers (BPO)
	Services de centres de contact
	Services de support technique et d'assistance
	Solutions de transformation numérique
	Services de modération de contenu
	Services de gestion des réseaux sociaux
Filiales	Webhelp Payment Services
	Webhelp Enterprise Sales Solutions
	Webhelp Digital Consulting
Effictif	Environ 100,000 employés à travers le monde.
Site Web	webhelp.com
Chiffre d'Affaire	Environ 2,5 milliards euros en 2021.

Tableau 3: Fiche technique du Webhelp

La figure suivante représente les régions de présence de Concentrix au monde et la répartition de ses consultants :

Figure 6: Emplacement du Webhelp dans le monde

Les valeurs de Webhelp

Webhelp, dans l'ensemble du groupe est attaché à ses 5 valeurs : la reconnaissance, l'unité, l'engagement, l'exemplarité, le Wahou.

Figure 7: Les valeurs de webhelp

Secteurs d'activité

Webhelp opère principalement dans les secteurs suivants :

Expérience client	Fourniture de solutions pour améliorer l'interaction client à travers différents canaux comme le service client, le support technique, et la gestion des relations client.
Externalisation des processus métier (BPO)	Gestion déléguée de processus métier tels que la gestion des ressources humaines, la comptabilité, et d'autres fonctions administratives.
Conseil et technologie	Offre de conseils stratégiques et de solutions technologiques pour optimiser les opérations commerciales et améliorer l'efficacité opérationnelle.
Santé et bien-être	Services spécialisés dans le domaine de la santé, y compris la gestion des dossiers médicaux et l'assistance aux patients.

Tableau 4: Les secteurs d'activité de webhelp

III. Concentrix + WebHelp

Figure 8: Concentrix + Webhelp

Le 25 septembre 2023, Concentrix a annoncé avoir finalisé son rapprochement avec Webhelp et que l'intégration des deux sociétés est en cours. Pendant que la société issue de la fusion finalise son nom permanent, elle opérera sous le nom commercial Concentrix + Webhelp.

Conclusion

Dans ce chapitre, le cadre général du projet a été décrit. Après avoir présenté l'organisme d'accueil, présenté le projet, nous avons décrit par le périmètre de ce stage, la méthodologie adoptée pour atteindre la bonne conduite du projet. Le chapitre suivant sera consacré à l'étude fonctionnelle et technique du projet.

CHAP2 : Etude de Projet et Outils Utilisés

Introduction

Ce chapitre se concentre sur l'étude approfondie du projet et les outils techniques utilisés pour développer l'application. Le but de cette section est de fournir une vue d'ensemble des choix technologiques, des frameworks et des bibliothèques, ainsi que des raisons derrière leur sélection.

I. Pile technologique Netflix

Netflix, utilise une infrastructure technologique avancée pour offrir une expérience utilisateur fluide et une disponibilité constante. Cette partie explore le stack technologique de Netflix, en mettant en lumière les principaux composants et technologies utilisés pour gérer le vaste écosystème de contenu, les millions d'utilisateurs et les flux de données massifs. Cette analyse comprend les aspects frontend, backend, infrastructure cloud, bases de données et sécurité.

Figure 9: Pile technologique Netflix

1. Frontend

React JS (Web)	Framework de JavaScript Utilisé pour le développement des interfaces utilisateur web, cette technologie permet de créer des expériences utilisateur dynamiques et réactives.
Swift (Mobile)	Langage de programmation Utilisé pour le développement des applications iOS, elle permet de créer des applications performantes et sécurisées.
Kotlin (Mobile)	Langage de programmation utilisé pour le développement d'applications Android, offrant une syntaxe moderne et des fonctionnalités robustes.
GraphQL (API)	Une technologie utilisée pour la communication entre le frontend et le backend. Elle permet au frontend de demander exactement les données dont ils ont besoin.

Figure 10: Stack technologique frontend (netflix)

2. Backend

Spring Boot	Framework de Java utilisé pour développer des serveurs web robustes et scalables. Spring Boot facilite le développement rapide de services web.
Apache Kafka	Plateforme de streaming utilisée pour gérer les flux de données en temps réel.
Apache Flink	Framework pour le traitement des données en streaming.

Figure 11: Stack technologique backend (netflix)

3. Bases de Données

Cassandra	Base de données NoSQL utilisée pour sa scalabilité et sa capacité à gérer de grandes quantités de données.
CockroachDB & MySQL	Bases de données relationnelles (SQL) utilisées pour les transactions nécessitant une consistance stricte.
EVCache	Un système de cache distribué basé sur Memcached.

Figure 12: Stack technologique bases de données (netflix)

4. Big Data

Amazon S3, Iceberg	Des services pour le stockage des données massives et les logs.
Apache Spark et Apache Flink	Des services utilisés pour le traitement des données en batch et en streaming.
Tableau	Outil de visualisation des données pour des analyses interactives.

Figure 13: Stack technologique big data (netflix)

5. DevOps

Jira et Confluence	Outils utilisés pour la gestion de projet et la documentation.
Jenkins	Serveur d'intégration continue pour l'automatisation des tâches de développement et de déploiement.

Figure 14: Stack technologique devops (netflix)

II. Pile technologique de ce projet

Figure 15: Pile technologique de ce projet

III. Outils de développement

1. Frontend

React JS

Figure 16: Logo de React JS

React est une bibliothèque JavaScript open-source qui est utilisée pour construire des interfaces utilisateur spécifiquement pour des applications d'une seule page. Elle est utilisée pour gérer la couche d'affichage des applications web et mobiles. React a été créé par Jordan Walke, un ingénieur logiciel travaillant pour Facebook. React a été déployé pour la première fois sur Facebook en 2011 et sur Instagram en 2012.

Javascript

Figure 17: Logo de JavaScript

JavaScript est un langage de programmation qui permet d'implémenter des mécanismes complexes sur une page web. À chaque fois qu'une page web fait plus que simplement afficher du contenu statique.

HTML

Figure 18: Logo de HTML

HTML est l'abréviation de « hypertext markup language » (langage de balisage hypertexte) et est un langage relativement simple utilisé pour créer des pages web. Comme il n'autorise pas les variables ou les fonctions, il n'est pas considéré comme un « langage de programmation », mais plutôt comme un « langage de balisage ».

CSS

Figure 19: Logo de CSS

CSS désigne Cascading Style Sheets (pour Feuilles de style en cascade). Il s'agit d'un langage de style dont la syntaxe est extrêmement simple mais son rendement est remarquable. En effet, le CSS s'intéresse à la mise en forme du contenu intégré avec du HTML.

Tailwind JS

Figure 20: Logo de Tailwind

Tailwind CSS est un framework permettant aux développeurs de personnaliser totalement et simplement le design de leur application ou de leur site web. Avec ce framework CSS, il est possible de créer un design d'interface au sein même du fichier HTML.

2. Backend Java

Figure 21: Logo de Java

Java est un langage de programmation multiplateforme, orienté objet et largement utilisé pour coder des applications Web. Il s'agit d'un choix populaire parmi les développeurs depuis plus de deux décennies.

Spring Boot

Figure 22: Logo de Spring Boot

Spring Boot est un framework de développement JAVA. C'est une déclinaison du framework classique de Spring qui permet essentiellement de réaliser des microservices (ce sont la majeure partie du temps des services web qui sont regroupés en API).

Databases MySQL

Figure 23: Logo de MySQL

MySQL est un système de gestion de bases de données relationnelles SQL open source développé et supporté par Oracle. Peut être utilisé par les développeurs et des administrateurs de bases de données pour gérer efficacement les données de leurs projets.

Casandra

Figure 24: Logo de Cassandra

Il s'agit d'un système de gestion de bases de données (SGBD) NoSQL open source. Cela signifie qu'il stocke les données sous forme de clé-valeur. Il stocke et manipule les données pour les restructurer.

Redis

Figure 25: Logo de Redis

Redis est un magasin de structures de données clé-valeur rapide, open source et en mémoire. Il vous permet de stocker des paires clé-valeur sur votre RAM. L'accès à la RAM est 150 000 fois plus rapide que l'accès à un disque et 500 fois plus rapide que l'accès au SSD.

4. Cloud *AWS*

Figure 26: Logo de AWS

AWS (Amazon Web Services) est une plateforme de cloud computing fournie par Amazon. Offre des outils tels que la puissance de calcul, le stockage de bases de données et les services de diffusion de contenu.

5. Gestion du Code Source

Figure 27: Logo de Github

Git est un outil DevOps utilisé pour la gestion du code source. Il s'agit d'un système de contrôle de version gratuit et open source utilisée pour gérer efficacement des projets de petite à très grande envergure. Git est habitué à suivre les modifications du code source.

6. Outils de Collaboration

Figure 28: Logo de Jira

Jira est l'outil de gestion de projet agile n°1 utilisé par les équipes pour planifier, suivre, publier et prendre en charge des logiciels de classe mondiale en toute confiance. Il s'agit de la source unique de vérité pour l'ensemble de votre cycle de développement, offrant aux équipes autonomes le contexte nécessaire pour agir rapidement tout en restant connectées à l'objectif commercial global.

Figure 29: Tableau de bord " Jira "

Conclusion

Le choix des technologies et des outils utilisés dans ce projet a été guidé par la nécessité de créer une application robuste, évolutive et facile à maintenir. Chaque technologie a été sélectionnée en fonction de ses capacités à répondre aux besoins spécifiques du projet, tout en prenant en compte les meilleures pratiques de l'industrie.

Ce chapitre a fourni une vue d'ensemble des considérations techniques et des décisions prises pour assurer le succès du développement de l'application clone de Netflix.

CHAP3: Analyse et Conception

Introduction

Ce chapitre présente l'analyse et la conception du projet. Il vise à définir les besoins des utilisateurs, concevoir l'architecture du système et spécifier les aspects fonctionnels et techniques du projet.

Cette phase est cruciale car elle permet de préparer le terrain pour le développement et la mise en œuvre réussis du système.

I. Analyse des Besoins

1. Analyse des Besoins Utilisateurs

Pour concevoir une solution efficace, il est essentiel de comprendre les besoins des utilisateurs finaux. L'utilisateurs cibles est un utilisateur régulier qui cherchent une expérience de streaming fluide, une interface intuitive et des recommandations personnalisées.

Les besoins clés identifiés sont :

Streaming haute définition	Les utilisateurs souhaitent pouvoir regarder des vidéos en qualité optimale.
Recommandations personnalisées	Offrir des suggestions basées sur les préférences et l'historique de visionnage.
Gestion des profils	Permettre aux utilisateurs de créer et de gérer plusieurs profils avec des paramètres personnalisés.

Tableau 5: Les besoins clés de l'utilisateur final.

2. Analyse Fonctionnelle

Lecture de vidéos	Fonctionnalité de streaming avec support pour les vidéos en haute définition et la lecture en continu.
Système de recommandation	Algorithmes pour proposer des contenus en fonction des préférences des utilisateurs.
Gestion des profils utilisateur	Interface permettant aux utilisateurs de créer, modifier et supprimer des profils.

Tableau 6: Les besoins fonctionnelles.

Le diagramme de cas d'utilisation montrent comment les différents acteurs interagissent avec ces fonctionnalités.

3. Analyse Non Fonctionnelle

Performance	Le système doit être capable de gérer un grand nombre d'utilisateurs simultanément avec un temps de réponse minimal.
Sécurité	Protection des données des utilisateurs contre les accès non autorisés et les fuites de données.
Scalabilité	Le système doit pouvoir évoluer pour supporter une augmentation du nombre d'utilisateurs sans dégradation des performances.

Tableau 7: Les besoins non fonctionnelles.

II. Conception de l'Architecture

Architecture Générale du Système

L'architecture proposée est basée sur une approche microservices, permettant de diviser le système en services distincts mais interconnectés :

Service de streaming	Gère la lecture et la diffusion des vidéos.
Service de recommandation	Gère l'algorithme de recommandation et les suggestions de contenu.
Service de gestion des utilisateurs	Gère les profils et les informations des utilisateurs.

Tableau 8 : le système en services.

Conception Technique

Les technologies choisies sont :

Frontend	React pour son efficacité dans la construction d'interfaces utilisateur dynamiques et réactives.
Backend	Spring boot pour sa performance en matière de traitement des requêtes et de gestion des services.
Base de données	MySQL pour sa flexibilité et son évolutivité dans la gestion des données non structurées. Et Cassandra

Tableau 9: Les technologies choisies.

Le diagramme de classes montre la structure de la base de données, y compris les collections et les relations entre les entités.

III. Modélisation UML

Diagrammes de cas d'utilisation

Les diagrammes de cas d'utilisation montrent les différentes interactions entre les utilisateurs et le système, illustrant les principales fonctionnalités telles que la recherche de contenu, la lecture de vidéos, et la gestion des profils.

Figure 30: Diagramme de cas d'utilisation

Description:

S'authentifier (Authentication)

Ce cas d'utilisation représente le processus par lequel un utilisateur accède à son compte sur la plateforme.

- Register: Inscription d'un nouvel utilisateur sur la plateforme.
- Login: Connexion d'un utilisateur existant.
- Creer Profile: Création d'un profil utilisateur, souvent nécessaire après l'inscription.

Consulter les films

Ce cas d'utilisation permet à l'utilisateur de parcourir les films disponibles sur la plateforme.

Consulter les séries

Permet aux utilisateurs de parcourir les séries disponibles sur la plateforme.

Consulter les genres

Permet aux utilisateurs de filtrer les contenus par genre (comédie, drame, action, etc.).

Consulter les chaînes

Permet aux utilisateurs de naviguer par chaînes ou collections de contenu spécifiques.

Regarder

Ce cas d'utilisation inclut toutes les actions liées à la visualisation de contenu, comme regarder des bandes-annonces, des films, ou des épisodes de séries.

- Trailer: Regarder des bandes-annonces pour des films ou des séries.
- Film: Regarder des films complets.
- Episode: Regarder des épisodes de séries.

Subscribe

Ce cas d'utilisation couvre le processus d'abonnement d'un utilisateur à la plateforme, y compris les interactions avec un service de paiement pour traiter les transactions financières.

Diagrammes de classes

Le diagramme de classes est considéré comme le plus important de la modélisation orientée objet, il est le seul obligatoire lors d'une telle modélisation. Le diagramme de classes montre la structure interne du système. Il permet de fournir une représentation abstraite des objets du système qui vont interagir ensemble pour réaliser les cas d'utilisation. Il s'agit d'une vue statique car nous ne tenons pas compte du facteur temporel dans le comportement du système. Les principaux éléments de cette vue statique sont les classes et leurs relations. Ci-dessous le diagramme de classe qui correspond au projet :

Figure 31 : Diagramme de classes

Diagrammes de séquence

Les diagrammes de séquence illustrent les processus détaillés de certaines opérations, comme la lecture d'une vidéo ou l'ajout d'une recommandation.

1. Authentification des Utilisateurs

Figure 32: Diagramme de séquence " authentification "

Description:

- L'utilisateur entre ses informations de connexion (email d'utilisateur et mot de passe) sur le frontend
- Le frontend envoie ces informations au backend via une requête HTTP (POST).
- Le backend vérifie les informations dans la base de données.
- Si les informations sont correctes, le backend génère un jeton JWT.
- Le backend renvoie le jeton au frontend.

• Le frontend stocke le jeton pour les futures requêtes authentifiées.

2. le Paiement de l'Abonnement

Figure 33: Diagramme de séquence "Paiement de l'abonnement "

Description:

- L'utilisateur sélectionne un plan d'abonnement sur le frontend.
- Le frontend envoie les informations du plan d'abonnement au backend.
- Le backend prépare une requête de paiement et la transmet au service de paiement tiers.
- Le service de paiement demande à l'utilisateur de fournir les informations de carte de crédit.
- L'utilisateur fournit les informations de paiement.
- Le service de paiement traite le paiement et renvoie le statut de la transaction au backend.
- Le backend met à jour le statut de l'abonnement de l'utilisateur dans la base de données.
- La base de données confirme la mise à jour.
- Le backend envoie une confirmation de succès au frontend.
- Le frontend affiche la confirmation du paiement et de l'activation de l'abonnement à l'utilisateur.

3. la Navigation et la Lecture de Vidéo

Figure 34: Diagramme de séquence "Navigation et lecture de vidéo"

Description:

- L'utilisateur navigue sur la page d'accueil de l'application.
- Le frontend demande la liste des vidéos recommandées au backend.
- Le backend récupère les données de la base de données.
- Le backend renvoie les données au frontend.
- L'utilisateur sélectionne une vidéo à lire.
- Le frontend demande les détails de la vidéo et l'URL du fichier média au backend.
- Le backend récupère les détails de la vidéo et l'URL de stockage.
- Le backend envoie les informations au frontend.
- Le frontend charge et lit la vidéo.

Conclusion

Le processus d'analyse et de conception a permis de définir clairement les besoins des utilisateurs, de concevoir une architecture robuste, et de spécifier les fonctionnalités et les technologies nécessaires. Les prochaines étapes du projet incluront le développement et l'implémentation de ces conceptions, en suivant le plan établi pour assurer une livraison efficace du système.

CHAP4: Conception de la Base de Données

Introduction

La conception de la base de données est essentielle pour garantir la performance, la scalabilité et l'intégrité des données. Ce projet utilise une combinaison de Cassandra, MySQL et Redis pour tirer parti des points forts de chaque technologie.

I. Choix de la Base de Données

Pour le projet de clonage de Netflix, nous avons choisi d'utiliser trois types de bases de données pour répondre aux besoins spécifiques du système :

Cassandra	Base de données NoSQL distribuée, adaptée pour des applications nécessitant une haute disponibilité et une scalabilité horizontale. Elle est particulièrement efficace pour gérer des volumes de données importants avec des exigences élevées en termes de lecture et d'écriture.
MySQL	Système de gestion de base de données relationnelle (SGBDR), idéal pour la gestion des transactions et l'intégrité des données. MySQL est utilisé pour stocker des informations critiques nécessitant une gestion transactionnelle rigoureuse.
Redis	Base de données en mémoire clé-valeur, connue pour sa rapidité et son efficacité en tant que cache. Redis est utilisé pour le stockage temporaire de données fréquemment accédées et la gestion des sessions utilisateurs.

Tableau 10: les types de bases de données.

Ces choix permettent de combiner les avantages de chaque technologie, optimisant ainsi la performance globale du système.

II. Optimisation

Optimisation de Cassandra

- **Partitionnement :** Les données sont partitionnées pour répartir uniformément la charge sur les différents nœuds du cluster.
- **Compaction :** Utilisation de la compaction pour fusionner les fichiers SSTable et améliorer les performances de lecture.

Optimisation de MySQL

- **Indexation :** Création d'index sur les colonnes fréquemment utilisées dans les requêtes pour accélérer les opérations de recherche.
- **Optimisation des Requêtes :** Écriture de requêtes SQL optimisées et gestion des transactions pour éviter les blocages et améliorer la performance.

Optimisation de Redis

- **Politique d'Éviction :** Configuration des politiques d'éviction (comme LRU Least Recently Used) pour gérer efficacement la mémoire.
- Options de Persistance : Configuration des options de persistance (RDB ou AOF) pour sauvegarder les données en cas de redémarrage.

III. Collecte des données

La collecte des données est une étape cruciale pour alimenter les bases de données du projet. Nous allons utiliser le web scraping pour extraire des données telles que des textes, des images et des vidéos à partir de sites web. Le scraping est réalisé avec Python, utilisant des bibliothèques spécialisées pour récupérer et traiter les données nécessaires.

Introduction au Web Scraping

Le web scraping est une technique utilisée pour extraire des informations de sites web. En utilisant Python, nous pouvons automatiser la collecte de données et les stocker dans les bases de données appropriées. Les bibliothèques couramment utilisées pour le scraping en Python incluent BeautifulSoup, Scrapy, et Selenium.

Stockage des Données Collectées

Après la collecte, les données doivent être stockées dans les bases de données appropriées :

- Textes: Stockés dans Cassandra selon la structure et la nécessité de la donnée.
- Images et Vidéos: Les fichiers sont stockés dans un service de stockage de fichiers (AWS S3).

Conclusion

La conception des bases de données pour ce projet combine Cassandra, MySQL et Redis pour tirer parti des avantages spécifiques de chaque technologie. Cassandra est utilisée pour sa scalabilité, MySQL pour la gestion des transactions et l'intégrité des données, et Redis pour sa rapidité et son efficacité en tant que cache.

CHAP5: Mise en œuvre et Réalisation

Introduction

Le développement frontend se concentre sur la création de l'interface utilisateur et l'expérience utilisateur. Pour le clonage de Netflix, nous avons utilisé des technologies modernes pour construire une interface réactive et attrayante.

I. Développement Backend

II. Développement Frontend

Conclusion

Le développement frontend et backend pour le projet de clonage de Netflix combine des technologies modernes pour offrir une interface utilisateur fluide et une gestion efficace des données. Le frontend utilise React pour créer des interfaces dynamiques, tandis que le backend avec Node.js et Express (ou Django) gère les fonctionnalités serveur et l'accès aux données.

CHAP 6: Déploiement Cloud

Introduction

Le déploiement sur le cloud est une étape cruciale pour garantir la disponibilité, l'évolutivité, et la résilience de l'application. Dans ce projet, nous avons choisi Amazon Web Services (AWS) pour déployer notre application en raison de sa robustesse, de sa flexibilité et de ses services complets.

Ce chapitre détaille le processus de déploiement sur AWS, les services utilisés, ainsi que les considérations en matière de sécurité et de surveillance.

I. Architecture Cloud

Présentation Générale

L'architecture est conçue pour offrir une haute disponibilité et une scalabilité horizontale. Les principaux composants sont :

Frontend (React)	Interface utilisateur accessible via un navigateur.
Backend (Spring Boot)	Gère la logique métier, les API REST, et les opérations de traitement.
Bases de Données	Gestion des données structurées (MySQL), semi-structurées (Cassandra), et du cache (Redis).

Tableau 11: Les principaux composants cloud

Services AWS Utilisés

Amazon S3	Utilisé pour héberger les fichiers statiques de l'application React, comme les fichiers HTML, CSS, et JavaScript. S3 permet une distribution mondiale avec des options de sécurité avancées.
Amazon CloudFront	Service de distribution de contenu qui permet de mettre en cache les fichiers statiques à des emplacements géographiquement dispersés pour améliorer les temps de chargement.

Amazon EC2	Les instances EC2 sont utilisées pour héberger les applications backend développées avec Spring Boot. EC2 offre une flexibilité pour choisir les types d'instances en fonction des besoins de performance et de coût.
Amazon RDS	Utilisé pour déployer la base de données MySQL. RDS gère les tâches administratives comme les sauvegardes, le scaling et les mises à jour logicielles.
Amazon Keyspaces (for Apache Cassandra)	Service entièrement managé pour Cassandra, utilisé pour les données semi-structurées et les requêtes à haute performance. Keyspaces est compatible avec les API Cassandra, facilitant la migration et la gestion.
Amazon ElastiCache	Utilisé pour déployer Redis, un système de cache en mémoire, pour accélérer l'accès aux données fréquemment demandées et réduire la charge sur les bases de données.
Amazon Elastic Load Balancing (ELB)	Assure la répartition de la charge sur plusieurs instances EC2, augmentant la tolérance aux pannes et l'évolutivité.
Amazon Route 53	Service DNS pour gérer les noms de domaine et diriger le trafic vers les ressources AWS.
AWS IAM (Identity and Access Management)	Utilisé pour gérer les permissions et l'accès sécurisé aux ressources AWS.
Amazon CloudWatch	Pour la surveillance des ressources AWS et des applications, avec des alertes et des dashboards pour suivre les performances.

Tableau 12: Les services AWS Utilisés

Figure 35: Diagramme du cloud

II. Processus de Déploiement

Déploiement du Frontend (React)

Etape	Description
Build de l'application	Utilisation de npm run build pour créer une version optimisée de l'application React.
Hébergement sur S3	Les fichiers de build sont téléchargés sur un bucket S3 configuré pour l'hébergement de sites web statiques.

Distribution via CloudFront	Configuration de CloudFront pour distribuer le contenu depuis le bucket S3, en utilisant des points de présence globaux pour une performance optimale

Tableau 13: Les étapes de déploiement du Frontend (React)

Déploiement du Backend (Spring Boot)

Etape	Description
Build et Packaging	Le backend est packagé en utilisant des outils comme Maven ou Gradle pour créer des artefacts (fichiers .jar ou .war).
Déploiement sur EC2	Les artefacts sont déployés sur des instances EC2 configurées avec les paramètres nécessaires pour exécuter des applications Spring Boot.
Mise en place de l'ELB	Utilisation d'Elastic Load Balancer pour répartir la charge du trafic réseau entrant entre plusieurs instances EC2, assurant ainsi l'évolutivité et la tolérance aux pannes.

Tableau 14: Les étapes de déploiement du Backend (Spring Boot)

Configuration des Bases de Données

Etape	Description
MySQL sur RDS	Mise en place de la base de données MySQL avec Amazon RDS, incluant la configuration des paramètres de sécurité, des sauvegardes automatiques et du Multi-AZ pour la haute disponibilité.
Cassandra sur Amazon Keyspaces	Déploiement de la base de données NoSQL Cassandra sur Amazon Keyspaces, avec une attention particulière à la mise en place des schémas et des stratégies de partitionnement pour des performances optimales.

Redis sur ElastiCache	Déploiement de Redis pour le caching des données et la gestion des sessions. ElastiCache gère l'évolutivité, la sécurité et la surveillance.

Tableau 15: Les étapes de la configuration des Bases de Données

III. Sécurité et Conformité

IAM et Sécurité des Instances	Configuration des rôles IAM pour restreindre l'accès aux ressources critiques, et mise en place de groupes de sécurité pour filtrer le trafic réseau vers et depuis les instances EC2.
Chiffrement	Utilisation de SSL/TLS pour sécuriser les communications entre les services et de KMS pour le chiffrement des données au repos.
Surveillance et Audit	CloudWatch est utilisé pour surveiller les accès et les activités, garantissant la conformité et facilitant les audits.

Tableau 16: Sécurité et Conformité

Conclusion

Le déploiement sur le cloud pour notre projet de clonage de Netflix permet de bénéficier de la flexibilité, de la scalabilité et des services gérés offerts par les principaux fournisseurs de cloud. Le processus de déploiement, les stratégies de scalabilité et de gestion des performances sont essentielles pour assurer que l'application fonctionne efficacement et est capable de répondre aux besoins des utilisateurs.

Conclusion Générale et Perspectives

Le projet de développement d'un clone de Netflix a été une expérience enrichissante et formatrice, couvrant divers aspects du développement logiciel, de la conception à la mise en œuvre. Nous avons réussi à créer une application fonctionnelle intégrant une interface utilisateur réactive, un backend robuste, une base de données optimisée, et un déploiement sur le cloud. Les défis techniques rencontrés ont été surmontés grâce à une méthodologie Agile efficace et à l'utilisation d'outils de gestion de projet modernes. Ce projet a non seulement renforcé mes compétences techniques mais m'a également permis de mieux comprendre les exigences d'un environnement de développement collaboratif et professionnel.

Améliorations Futures:

- Nouvelles Fonctionnalités : Intégrer des fonctionnalités avancées comme la recommandation de contenu basée sur l'IA, le téléchargement de vidéos pour une lecture hors ligne, et des options de personnalisation d'interface.
- Optimisation de la Performance : Améliorer les algorithmes de streaming pour réduire la latence et optimiser la qualité vidéo en fonction de la bande passante disponible.
- Sécurité Accrue : Renforcer les mesures de sécurité pour protéger les données des utilisateurs et prévenir les attaques potentielles.
- Expansion des Capacités Cloud : Explorer l'utilisation de services cloud supplémentaires pour améliorer la scalabilité et la résilience de l'application.

Ce projet a également ouvert de nouvelles perspectives professionnelles en me préparant à des rôles de développeur full-stack et d'architecte de solutions cloud. Les compétences acquises et les défis relevés constituent une base solide pour poursuivre des projets de plus grande envergure et pour contribuer efficacement à des équipes de développement dans des environnements dynamiques.

En somme, ce projet de fin d'études a été une opportunité précieuse pour appliquer des connaissances théoriques à un projet concret et complexe, tout en acquérant une expérience pratique des meilleures pratiques en matière de développement logiciel et de gestion de projet. Il marque une étape importante dans mon parcours professionnel et constitue une base solide pour mes futures contributions dans le domaine du développement web et des technologies de l'information.

Annexe

Références