NCLAIMS:

7

8

9

10

11

12

TU 2

S

A post-processing method for correcting media noise errors and producing a corrected recovered data output signal, for use in a sampled data read channel of a mass data storage device that has a Viterbi detector that receives actual sampled partial response target data from a data medium of the mass data storage device, comprising:

filtering a recovered partial response target signal derived from said recovered data output signal and said sampled partial response target data to produce a filtered output signal;

providing a threshold circuit to provide a threshold against which said filtered output signal is compared;

adding a predetermined value to the filtered output signal when a predetermined error event pattern due to media noise occurs in said recovered data output signal;

and modifying the recovered data output signal when said filtered output signal exceeds the threshold of said threshold circuit.

- 2. The method of claim 1 wherein said Viterbi detector is an ${\tt EPR4}$ Viterbi detector.
- 1 3. The method of claim 1 wherein said Viterbi detector is an
- 2 EEPR4 Viterbi detector.
- 1 4. The method of claim 1 wherein said error event pattern is ex =
- $2 \pm \{1\}.$
- 1 5. The method of claim 1 wherein said error event pattern is ex =
- $2 \pm \{1-1\}.$

3

- 1 6. The method of claim 1 wherein said filtering is accomplished
- 2 by applying said output to an FIR filter.
- 1 The method of claim 1 wherein said predetermined value in an
- 2 BPR4 channel is -A when said predetermined error event pattern is
- 3 "1x1".
- 1 8. The method of claim 1 wherein said predetermined value in an
- 2 EPR4 channel is +A when said predetermined error event pattern is
- 3 "0x0".
- 9. The method of claim 1 wherein said predetermined value in an \square 2 EPR4 channel is 0 when said predetermined error event pattern is other than "1X1" or "0X0".
 - 10. The method of claim 1 wherein said predetermined value in an EEPR4 channel is determined from the following tables:

	Recov	Output						
k	-3	-2	-1	0	1	2	3	
	Х	0	0	Х	0	0	X	
	1	1	0	Х	0	0	K	Ajitter
	Х	0	0	Х	0	1	1	
	Х	1	1	Х	1	1	x \	
	0	0	1	Х	1	1	X	\-Ajitter
	Х	1	1	Х	1	0	0	
Oth	ers					•	·	0

	Polarity Ch		Corre	ction	
Amplitude	Polarity	ĉ(0)	ĉ(1)	ĉ(0)	ĉ(1)
le	FexA(6)>0	0	Х	1	Х
fexA(6) >VthA	FexA(6)<0	1	X	0	X
Ford (6)	FexA(6)>0	0	1	1	0
FexB(6) >VthA	FexA(6)<0	1	0	0	1

6

5

wherein the polarity check correction table is logically or'd with the output\of the recovered write current $\hat{\mathbf{c}}(k)$ table to

produce a correction value.

3

₫ 5

6

7

8

9

10

11 12 11. The method of claim1 wherein said predetermined value in an EPR4 channel is determined from the following table:

	1			
Rec	cover	Output		
C	urrer			
k	-1			
	0	X	0	Ajitter
	1	-Ajitter		
	Oth	ets		0

and the polarity is determined from the following table:

Polarity	check	Corre	ction
Amplitude	Polarity		
fexA > VthA	FexA > 0	0	1
TEXA > VCIIA	FexA 0	1	0

12. A sampled data detection technique for use in a mass data storage device for correcting for media noise, comprising:

detecting an actual sampled partial response target from a transducer head of said mass data storage device which has been equalized to a partial response level of at least EPR4 in a Viterbi detector having a partial response detection level of at least EPR4 to produce a recovered data output signal;

delaying said actual sampled partial response target signal for a time substantially equal to a time required by said Viterbi detector to generate said recovered data output signal from said actual sampled partial response target signal to produce a delayed actual sampled partial response target signal;

converting said recovered data output signal to a partial response level of said actual sampled data output signal to produce a converted recovered partial response target signal;

16

17

18

19

2021

22

23

24

25

W 2

subtracting said converted recovered partial response target signal from said delayed actual sampled partial response target signal to produce an error signal;

determining the occurrence of a predetermined error event pattern in said recovered data output signal to produce a filtered output signal;

adding a predetermined value to the filtered output signal when a predetermined error event pattern due to media noise occurs in said recovered data output signal;

and modifying the recovered data output signal when said filtered output signal exceeds the threshold of said threshold circuit.

- 13. The method of claim 12 wherein said producing a detection signal comprises filtering said error signal with an FIR filter.
- 1 14. The method of claim 12 wherein said determining the occurrence of a predetermined error event pattern in said recovered data output signal comprises determining the occurrence of ex = ±{1} in said recovered data output signal.
 - 1 15. The method of claim 12 wherein said determining the
 - 2 occurrence of a predetermined error event pattern in said
 - 3 recovered data output signal comprises determining the occurrence
 - 4 of $ex = \pm \{1-1\}$ in said recovered data output signal.

1 The method of claim 12 wherein said predetermined value in an 2 EEPR4 channel is determined from the following tables:

		-						
	Reco	vereb	Writ	te Cu	rren	ĉ(k)	Output
k	-3	-2	-1	0	1	2	3	
	Х	0	0	Х	0	0	Х	
	1	1	10	Х	0	. 0	Х	Ajitter
	Х	0	d	Х	0	1	1	
	Х	1	1	Х	1	1	Х	
	0	0	1	Х	1	1	Х	-Ajitter
	Х	1	1	X	1	0	0	
Oth	ers			7				0

3

	Polarity Ch	eck \	•	Corre	ction
Amplitude	Polarity	ĉ(0)	ĉ(1)	ĉ(0)	ĉ(1)
16 276 1277	FexA(6)>0	0 \	Х	1	X
fexA(6) >VthA	FexA(6)<0	1	Х	0	Х
InP(C) Israin	FexA(6)>0	0	1	1	0
FexB(6) >VthA	FexA(6)<0	1	0	0	1

wherein the polarity check correction table is logically or'd with the output of the recovered write current $\hat{\mathbf{c}}(k)$ table to produce a correction value.

17. The method of claim 12 wherein said predetermined value in an EPR4 channel is determined from the following table:

	over	Output		
k	-1			
-	0	Х	0	Ajitter
	1	-Ajitter		
	Oth	ers		0

3 and the polarity is determined from the following table:

Polarity check		
Polarity		
FexA > 0	P	1
FexA < 0	1	0
	FexA > 0	FexA > 0

4

1 18. A post-processor circuit for use in a sampled data read 2 channel of a mass data storage device of the type using a Viterbi 3 detector that receives an actual sampled partial response target 4 signal from a storage medium of said mass data storage device to 5 produce a recovered data output signal, comprising:

an error pattern detector to generate an error pattern event indicating signal if a predetermined error event pattern occurs in said sampled partial response target signal;

a circuit for generating an error signal based upon a difference between said recovered data output signal and a delayed said actual sampled partial response target signal;

a circuit for adding a predetermined value to the error signal when a predetermined error event pattern due to media noise occurs in said recovered data output signal;

a threshold circuit to generate an error correction control signal if a magnitude of said error signal exceeds a predetermined threshold;

and an error correction circuit to modify the recovered data output signal when said error correction control signal and said error event pattern indicating occurrence signal are generated.

- 19. The circuit of claim 18 wherein said predetermined error pattern event is $ex = \pm\{1\}$.
- 1 20. The circuit of claim 18 wherein said predetermined error
- 2 pattern event is $ex = \pm \{1-1\}$.

6

7

8

10

11

12

13

19 1420 N

2

- 1 21. The circuit of claim 18 wherein said circuit for generating
- 2 an error signal is an FIR filter

23. The circuit of claim 18 wherein said Viterbi detector has a partial response level of at least EEPR4.

1 The method of claim 18 wherein said predetermined value in an 2 EAPX4 channel is determined from the following tables:

	Recov	Output						
k	-3	-2	-4	0	1	2	3	
	Х	0	10	Х	0	0	Х	
	1	1	0	Х	0	0	Х	Ajitter
	Х	0	0	Х	0	1	1	
	Х	1	1	/x	1	1	Х	
	0	0	1	/x	1	1	Х	-Ajitter
	Х	1	1	*	1	0	0	
Oth	ers			1	•	•	•	0

	Polarity Ch	eck \		Correction		
Amplitude	Polarity	Ĉ(0)	ĉ(1)	ĉ(0)	ĉ(1)	
157 (C) 1>57+1-7	FexA(6)>0	0	X	1	Х	
fexA(6) >VthA	FexA(6)<0	1	X	0	Х	
	FexA(6)>0	0	1	1	0	
FexB(6) >VthA	FexA(6)<0	1	0	0	1	

wherein the polarity check correction table is logically

5 or'd with the output of the recovered write current $\hat{\mathbf{c}}(k)$ table to

6 produce a correction value.

IUEZIEI IOEE99

.4

1 25. The method of claim 18 wherein said predetermined value in an

2 EPR4 channel is determined from the following table:

	cover	Output		
C	urrer	it ĉ(
k	-1	0		
	0	Х	0	Ajitter
	1	Х	1	-Ajitter

Others 0

and the polarity is determined from the following table:

Polarity	check		Corre	ction
Amplitude	Pola	rity		
fexA > VthA	FexA	> 0	0	1
Texa > VLIIA	FexA	10	1	0
		 	<u> </u>	L