UERJ – Universidade do Estado do Rio de Janeiro

Instituto de Matemática e Estatística Departamento de Matemática Aplicada Disciplina: Otimização Combinatória

Professor: Marcos Roboredo

2015 – 1 Lista de exercícios nº 5

- 1) Considere o exemplo 1 de programação inteira a respeito dos projetos de investimento dado em sala no dia 22/10/15.
 - a) Crie uma ou mais restrições garantindo que, caso o projeto 1 ou projeto 3 sejam selecionados então o projeto 5 também deve ser selecionado.
 - b) Crie uma ou mais restrições garantindo que os projetos 2 e 3 não possam ser selecionados ao mesmo tempo.
 - c) Crie uma ou mais restrições garantindo que dentre os projetos 1, 2 3 e 4, pelo menos dois destes sejam selecionados.
- 2) Cinco itens devem ser carregados em um recipiente. O peso, o volume e o retorno (lucro) de cada item i serão denotados respectivamente por w_i , v_i e r_i e estão na tabela abaixo.

Item i	w_i (Toneladas)	$v_i(m^3)$	$r_i(100 \$)$
1	5	1	4
2	8	8	7
3	3	6	6
4	2	5	5
5	7	4	4

O peso e o volume máximo de cargas permitidos são 112 t e 109 m^3 . Faça um modelo PLI para achar a carga mais valiosa.

3) Uma universidade usa um modelo matemático que otimiza as preferências dos estudantes levando em consideração a limitação das salas de aula e dos recursos da faculdade. Para demonstrar a aplicação do modelo, considere o caso simplificado de 10 estudantes que devem selecionar dois cursos eletivos entre 6 oferecidos. A tabela abaixo apresenta contagem que representa preferência de cada estudante para cursos individuais, sendo a contagem 100 a mais alta. Para simplificar, considera-se que a contagem de preferência para a seleção de dois cursos é a soma das contagens individuais. A capacidade do curso é o número máximo de estudantes que poderão assistir as aulas.

	Contagem de Preferência por Curso						
Estudante	1	2	3	4	5	6	
1	20	40	50	30	90	100	
2	90	100	80	70	10	40	
3	25	40	30	80	95	90	
4	80	50	60	80	30	40	
5	75	60	90	100	50	40	
6	60	40	90	10	80	80	
7	45	40	70	60	55	60	
8	30	100	40	70	90	55	
9	80	60	100	70	65	80	
10	40	60	80	10	80	80	
Capacidade	6	8	5	5	6	5	

Formule o problema usando um modelo PLI.

4) Uma Universidade pretende formar um comitê para tratar das reclamações dos estudantes. A administração quer que o comitê seja composto por ao menos uma mulher, um homem, um estudante, um administrador e um membro da faculdade. Dez indivíduos se candidataram a participar do comitê e serão indicados pelas letras a até j, a nível de simplificação. O mix destes indivíduos nas categorias é apresentado na tabela abaixo.

Categoria	Indivíduos
Mulheres	a,b,c,d,e
Homens	f,g,h,i,j
Estudantes	a,b,c,j
Administradores	e,f
Membros da faculdade	d,g,h,i

A Universidade deseja um comitê com o menor número de estudantes possível. Formule um PLI que resolva o problema.

5) A zona metropolitana de Washington inclui seis cidades que precisam de sinal de antenas de celular. Devido a proximidade, uma única antena as vezes é capaz de atender mais de uma cidade. Estipula-se que se uma antena deva estar a no máximo 15 km de uma cidade para poder atendê-la. A distância entre as cidades se encontra na tabela abaixo.

Distâ	ncia	em	Km	da	cidad	le i			
para cidade j									
i∖j	1	2	3	4	5	6			
1	0	23	14	18	10	32			
2	23	0	24	13	22	11			
3	14	24	0	60	19	20			
4	18	13	60	0	55	17			
5	10	22	19	55	0	12			
6	32	11	20	17	12	0			

Faça um modelo PLI que determine o número mínimo de antenas a ser instaladas.

6) Um hospital trabalha com atendimento variável em demanda durante as 24 horas do dia. As necessidades distribuem-se segundo a tabela:

Turno	Horário	Número requerido de enfermeiros
1	08 às 12h	51
2	12 às 16h	58
3	16 às 20h	62
4	20 às 24h	41
5	24 às 04h	32
6	04 às 08h	19

O horário de trabalho de um enfermeiro é de 8 horas seguidas e só pode ser iniciado no começo de cada turno, isto é, às 8 ou 12 ou 16 ou 20 ou 24 ou 04 horas. Elabore um modelo de PLI que minimize o gasto com a mão-de-obra. Considere que cada enfermeiro recebe \$100 por hora de trabalho no período diurno (08 às 20 h) e \$125 no período noturno (20 às 08 h).

7) Considere a formulação para o problema das p-medianas dado em sala no dia 05/11/15.

- a) Considere que a capacidade máxima de estudantes que uma escola localizada na região i pode ter é denotada por cap(i). Quais restrições deveriam ser criadas para que estas capacidades sejam respeitadas?
- b) Considere que a função objetivo agora é minimizar a maior distância percorrida por algum estudante. Como esta nova função poderia ser modelada? (obs: se for preciso, crie novas variáveis)
- 8) Considere o problema do caixeiro viajante dado em sala.
 - a) Suponha que, os clientes são divididos em dois tipos: clientes de entrega (Conjunto E) e clientes de coleta (conjunto C). Os clientes de coleta só podem começar a ser visitados depois que todos os clientes de entrega forem visitados. Crie uma ou mais restrições que garantam esta precedência.
 - b) Suponha agora que é conhecida uma matriz de tempo T, onde cada célula T_{ij} representa o tempo de deslocamento do ponto i para o ponto j. Além disso, cada cliente i possui um intervalo (janela de tempo) $[a_i,b_i]$ de modo que o cliente deve começa ser atendido dentro deste intervalo. Assim, por exemplo, se um cliente possui o intervalo [2,5] indica que ele deve começar a ser atendido entre o tempo 2 e o tempo 5. O depósito inicial também possui uma janela de tempo $[a_0,b_0]$ indicando que o caminhão deve sair e voltar ao depósito dentro deste intervalo. É dado também o para cada cliente i o tempo que ele demora para ser atendido, que será denotado por t_i . Crie restrições para o problema do caixeiro viajante de modo que as janelas de tempo de todos os pontos sejam respeitadas.
- 9) Considere um conjunto de m mochilas e n itens. O peso e o volume de cada item i serão denotados respectivamente por w_i e v_i . O peso e volume máximo de cada mochila j serão denotados por W_j e V_j . Desconsidere possíveis problemas com unidades. O lucro obtido caso o item i seja carregado será denotado por r_i . Faça um modelo PLI que decida qual a composição de cada mochila, maximizando o lucro total.
- 10)Uma empresa deseja decidir onde vai localizar suas bancas de jornal. Na região considerada, existem m possíveis locais onde estas bancas podem ser localizadas. Para localizar uma banca em um dos possíveis locais i, a empresa deverá desembolsar um valor denotado por b_i . O orçamento total da empresa é denotado por B. Além disso, a empresa sabe que existem n clientes nesta região. Estipula-se que se não houver nenhuma banca a menos de δ metros deste cliente, ele deixará de ser atendido. A empresa possui a distância entre cada possível local de localização i e cada cliente j. Faça um modelo PLI que indique para empresa onde devem ser localizadas bancas de modo que o maior número possível de clientes seja atendido.
- 11) Sudoku é um passatempo lógico de colocação de números numa grade de células individuais. Em cada uma das 9 subdivisões quadradas da grade inteira (cada área de 3 células x 3 células) devem aparecer os números de 1 a 9, um número em cada célula (ou seja, sem repetição). Em cada linha e em cada coluna, agora considerando-se a grade inteira, também devem aparecer os números de 1 a 9, um em cada célula (também sem repetição). Faça um modelo PLI que encontre a solução para a seguinte instância de Sudoku

1					7		9	
	3			2				8
		9	6			5		
		5	3			9		
	1			8				2

6				4			
3						1	
	4						7
		7			3		

12) A figura a seguir representa uma rede de comunicação de dados entre computadores. Os números representam a capacidade máxima em MBytes por segundo que pode ser transmitido de um computador para outro. Admita que a transmissão só é possível no sentido especificado pela seta. Construa um modelo de programação linear inteira que determine o fluxo máximo que pode passar entre A e G através da rede?

13) Resolva os seguintes modelos PLI através do algoritmo de branch-and-bound:

a)
$$\max z = 3x_1 + 2x_2$$

$$2x_1 + 5 \le 9$$

$$4x_1 + 2x_2 \le 9$$

$$x_1, x_2 \in \mathbb{Z}^+$$

b)
$$\max z = 5x_1 + 8x_2$$

$$s. a. x_1 + x_2 \le 6$$

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \in \mathbb{Z}^+$$

$$c) \min z = 5x_1 + 4x_2$$

$$s. a. 3x_1 + 2x_2 \ge 5$$

$$2x_1 + 3x_2 \ge 7$$

$$x_1, x_2 \in \mathbb{Z}^+$$

d)
$$max 4x_1 - x_2$$

$$s. a. 7x_1 - 2x_2 \le 14$$

$$x_2 \leq 3$$

$$2x_1 - 2x_2 \le 3$$

$$x_1, x_2 \in \mathbb{Z}^+$$