My PPT Title my sub title

its me

¹Department of Informatics University of Rijeka

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

December 24, 2014

Eggs

- Eggs
- Plants

- Eggs
- Plants
- Animals

Apple

- Apple
- Peach

- Apple
- Peach
- Plum

- Apple
- Peach
- Plum
- Orange

Theorem

A = B.

<u>ام</u>	$\overline{}$	$\overline{}$		_		
n	$\boldsymbol{\leftarrow}$	O	n	$\boldsymbol{-}$	и	а

A = B.

Proof.

Theorem

A = B.

Proof.

• Clearly, A = C.

• Thus A = B.

Theorem

A = B.

Proof.

- Clearly, A = C.
- As shown earlier,
- Thus A = B.

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

Example

• 2 is prime (two divisors: 1 and 2).

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).

What Are Prime Numbers?

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

① Suppose *p* were the largest prime number.

• But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

$\mathsf{Theorem}$

There is no largest prime number.

Proof.

- ① Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- **1** Suppose *p* were the largest prime number.
- ② Let *q* be the product of the first *p* numbers.
- **3** Then q + 1 is not divisible by any of them.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

$\mathsf{Theorem}$

There is no largest prime number.

Proof.

- ① Suppose *p* were the largest prime number.
- 2 Let *q* be the product of the first *p* numbers.
- **3** Then q + 1 is not divisible by any of them.
- But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

Whats Still To Do? I

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

Answered Questions

How many primes are there?

Whats Still To Do? II

Open Questions

Is every even number the sum of two primes?

Whats Still To Do?

- Answered Questions
- How many primes are there?
- Open Questions
 - Is every even number the sum of two primes?

Lion King of the savanna.

Tiger King of the jungle.

Paragraph Heading.

Whats Still To Do?

Answered Questions

How many primes are there?

Open Questions

Is every even number the sum of two primes?

Open Questions

Is every even number the sum of two primes? [1]

My PPT Title

Aneesh

An Algorithm For Finding Primes Numbers.

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ";
for (int j = i; j < 100; is_prime [j] = false, j+=i);
return 0;
}
```

An Algorithm For Finding Primes Numbers.

```
int main (void)
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
std::cout << i << " ":
for (int j = i; j < 100; is_prime [j] = false, j+=i);
return 0;
}
```

Note the use of std::.

References

[Goldbach, 1742] Christian Goldbach.
A problem we should try to solve before the ISPN 43 deadline,
Letter to Leonhard Euler, 1742.