

Sim2Real for the corner cases? Getting to robust manipulation

Russ Tedrake, MIT and TRI

TRI's robotics mission is to develop breakthrough capabilities that dramatically improve the quality of life

Today: One experiment in robust manipulation -- loading the dishwasher

Simulation

"Simulation-first" development

Early example:

Camera calibration refactor

Ground-truth labels for training perception

Godot PBR + OSPray ray-tracing

Rendered objects on random backgrounds

+ (sometimes) fine-tuning on labeled real data

Robust contact simulation

"Hydro-elastic" contact model from TRI + Cornell: Ryan Elandt, Evan Drumwright, Michael Sherman, and Andy Ruina

Physics and rendering are not sufficient...

Simulation also requires modeling

- Robot controllers/firmware
- Sensors
- Sensor noise
- Perception components
- Planning components...
- Time delays

Monte Carlo falsification

Date

Scenario description files

Parameters, initial conditions, and noise described as exact values or distributions

Scenario description files 293

Success criteria specified as constraints on systems

Can compose into complex diagrams, and be used for synthesis

```
&mug_placement_position

frame: *mug_link

base_frame: dishwasher_upper_rack

translation_lower: [-0.20, -0.20, 0.056]

translation_upper: [0.20, 0.20, 0.057]
```

```
station_name: central_square
       iiwa_q0: *iiwa_anywhere
        dishwashers:
         dishwasher:
           door angle deg: *door open deg
           silverware rack position: *silverware rack in
           upper_rack_position: *upper_rack_out
           lower_rack_position: *lower_rack_anywhere
           position sensor noise: *default dishwasher position sensor noise
300
        use wrist camera: True
301
       items:
303
         kind: &mua
           role: corelle livingware 11oz mug red
           model: &mug model models/mug/corelle livingware 11oz mug red.sdf
           link_name: &mug_link corelle_livingware_11oz_mug_red
307
         X initial: *mug anywhere
       dish task: load dish test
        pose_constraints:
310
         &mug placement position
         frame: *mug_link
         base_frame: dishwasher_upper_rack
         translation lower: [-0.20, -0.20, 0.056]
314
         translation_upper: [0.20, 0.20, 0.057]
        vec dir constraints:
         &mug_placement_orientation
         frame: *mug link
         vectors in base frame:
320
           -[0, 0, -1]
         vectors in frame:
           -[0, 0, 1]
324
         tolerance_deg_lower: [0]
         tolerance_deg_upper: [10]
```

TestMugLoadAcrossSink:

Rigorous about randomness

Every source of randomness is declared explicitly (using elementary distributions)

- Scene (#/type of objects)
- Parameters/initial conditions
- Time-varying noise

First you find bugs in your simulator!

Pull Lower Rack Nightly

Switched to a motion planning scheme that's less sensitive to rack initial position (#2304)

Initial positions of the

Finding subtle bugs

Finding subtle bugs

Finding subtle bugs

Falsification algorithms

naive Monte Carlo has been sufficient (so far)

Procedural dishes

Procedural dishes

Built in our framework for **optimization-based** control/analysis...

So how well does it work?

Sim vs Real

The big questions

Can we simulate everything in the kitchen? Napkins? Ketchup? Soba noodles?

How accurate do our simulations have to be?

How do I provide test coverage for every possible kitchen?

Hypothesis: Only need a sufficiently rich sandbox to deploy

+ continual improvement (fleet learning)

Summary

- Investigating "Sim2Real" for manipulation; even for the corner cases
- Develop novel algorithms faster, with quantifiable robustness metrics and real-world gains
- Manipulation stack with rigorous system + uncertain modeling (+ gradients, etc)
- Core elements are available at http://drake.mit.edu

MODEL-BASED DESIGN AND VERIFICATION FOR ROBOTICS