

Matthew Murakami

Nikolai Stambler

What is Senescence?

Micco et al. 2021

Identifying Senescence Cells

Morphology by Deep Learning

ARTICLE

https://doi.org/10.1038/s41467-020-20213-0

OPEN

Anti-senescent drug screening by deep learning-based morphology senescence

Dai Kusumoto^{1,2}, Tomohisa Seki³, Hiromune Sawada¹, Akira Kunitomi⁴, Toshiomi Katsul Shogo Ito¹, Jin Komuro¹, Hisayuki Hashimoto^{1,2}, Keiichi Fukuda¹ & Shinsuke Yuasa¹

TECHNICAL REPORT

https://doi.org/10.1038/s43587-022-00263-3

OPEN

Nuclear morphology is a deep learning biomarker of cellular senescence

Indra Heckenbach^{1,2,3}, Garik V. Mkrtchyan¹, Michael Ben Ezra¹⁴, Daniela Bakula¹, Jakob Sture Madsen^{1,0}, Malte Hasle Nielsen ⁵, Denise Oró⁵, Brenna Osborne ^{1,0}, Anthony J Covarrubias^{6,7}, M. Laura Idda^{8,9}, Myriam Gorospe ^{1,0}, Laust Mortensen^{4,10}, Eric Verdin², Rudi Westendorp^{4,10} and Morten Scheibye-Knudsen ^{1,3} ⊠

Overview of Experimental Design

Feature Based DL: Deep Neural Networks

Nuclear Segmentation

Feature Extraction

Training and Testing Model

Image Based DL: CNN, ResNet50

Nuclear Segmentation

Image Splitting

Training and Testing Model

Overview of Experimental Design

Feature Based DL: Deep Neural Networks

Nuclear Segmentation

Feature Extraction

Training and Testing Model

Image Based DL: CNN, ResNet50

Nuclear Segmentation

Image Splitting

Training and Testing Model

Description of Data Set

Human Set

- 515 Senescent Human Cells
- 1,093 Proliferating Human Cells

Mouse Set

- 1,732 Senescent Mouse Cells
- 38,869 Proliferating Mouse Cells

Nuclear Segmentation of Images: Proliferating

Captured: Dapi-Stained Image

Nuclear Segmented Image

Nuclear Segmentation of Images: Senescent

Captured: Dapi-Stained Image

Nuclear Segmented Image

Used a package called pycleperanto_prototype to extract features from the segmented images

Images were described by **41** different features

- mean distance to centroid
- sum_distance_to_mass_center
- standard_deviation_intensity
- sum distance to centroid
- bbox min y
- bbox min x
- bbox min z
- bbox max x
- bbox_max_y
- bbox max z
- bbox width
- bbox_height
- min_intensity
- max_intensity
- sum_intensity

- mean intensity
- sum_intensity_times_x
- mass center x
- sum intensity times y
- mass center y
- sum_intensity_times_z
- mass center z
- sum_intensity_times_z
- sum_x
- centroid x
- sum_intensity_times_z
- sum_y
- centroid_y
- sum intensity times z
- sum_z

- sum_distance_to_mass_center
- mean distance to mass center
- max_distance_to_centroid
- max distance to mass center
- mean_max_distance_to_centroid_ratio
- mean_max_distance_to_mass_center_rati
 o
- mean_distance_to_mass_center
- centroid z
- sum distance to centroid
- mean distance to centroid
- area

- mean distance to centroid
- sum_distance_to_mass_center
- standard_deviation_intensity
- sum distance to centroid
- bbox min y
- bbox min x
- bbox min z
- bbox max x
- bbox_max_y
- bbox_max_z
- bbox width
- bbox_height
- min_intensity
- max_intensity
- sum_intensity

- mean intensity
- sum_intensity_times_x
- mass center x
- sum intensity times y
- mass center y
- sum_intensity_times_z
- mass center z
- sum_intensity_times_z
- sum_x
- centroid x
- sum_intensity_times_z
- sum_y
- centroid_y
- sum intensity times z
- sum_z

- sum_distance_to_mass_center
- mean distance to mass center
- max_distance_to_centroid
- max distance to mass center
- mean_max_distance_to_centroid_ratio
- mean_max_distance_to_mass_center_rati
 o
- mean_distance_to_mass_center
- centroid z
- sum distance to centroid
- mean distance to centroid
- area

We ran into issues utilizing pyclesperanto_prototype to gather feature data

We are working to address these issues

Overview of Experimental Design

Feature Based DL: Dense Neural Network

Nuclear Segmentation

Feature Extraction

Training and Testing Model

Image Based DL: CNN, ResNet50

Nuclear Segmentation

Image Splitting

Training and Testing Model

ResNet50 Architecture

Custom CNN

Nuclear Segmentation of Images: Proliferating

Captured: Dapi-Stained Image

Nuclear Segmented Image

Image Splitting

Image Splitting

Custom CNN: Training and Testing on Human Cells

Test Accuracy: 74.13

Baseline Accuracy 71.34

Custom CNN: Training and Testing on Human Cells

ResNet50: Training and Testing on Human Cells

- Test Accuracy: 88.83
- Test Precision: 88.94
- Test Recall: 88.81
- Test F1: 88.82
- Test AUC: 94.65
- Size (~1000, 206)
- Baseline Accuracy: 50.45%

ResNet50: Training and Testing on Human Cells

ResNet50: Training and Testing on Human Cells

Senescent

ResNet50: Training on Mice Cells and Testing on Human Cells

- Test Accuracy: 69.92
- Test Precision: 77.13
- Test Recall: 69.67
- Test F1: 67.25
- Test AUC: 84.79
- Size (2760, 206)
- Baseline Accuracy: 50.59%

ResNet50: Training on Mice Cells and Testing on Human Cells

ResNet50: Training on Mice Cells and Testing on Human Cells

ResNet50: Training on Cells From Both Species Testing on Human

- Test Accuracy: 85.92
- Test Precision: 86.47
- Test Recall: 85.98
- Test F1: 85.88
- Test AUC: 91.88
- Size (1640, 206)
- Baseline Accuracy: 50.59%

ResNet50: Training on Cells From Both Species Testing on Human

ResNet50: Training on Cells From Both Species Testing on Human

Cycling

Conclusions

- Our Model Utilizes Reproducible/Clean Well Commented Code
- We are able to get similar accuracies as other papers in the field with a fraction of the cells
- When training on one species and testing on the other the model performs poorly this is likely due to morphological differences between the cells
- We are able to increase cross species testing metrics by training on both species
- Lime demonstrates that the perimeter of the cell is the most relevant for model performance

Future Directions

- Increase the number of Senescent cells in the dataset
- Finish the feature based DNN model
- Fine-tune hyper-parameters of the model
- Improve model interpretability
- Make our model more easily accessible to non-technical users
- Introduce multi-class classification to identify different types of senescence

Backpocket Slide

• We did a variety of tests the next few slides are for addressing other questions outside of the scope of the length of the presentation.

Training and Testing on Human Cells

Training on Mice Cells and Testing on Human Cells

Training on Cells From Both Species Testing on Human

