CS 540 Computer Networks II

Sandy Wang sandy.w@svuca.edu

4. IPV6

Topics

- 1. Overview
- 2. LAN Switching
- 3. IPv4
- 4. IPv6
- 5. Tunnels
- 6. Routing Protocols -- RIP, RIPng
- 7. Routing Protocols -- OSPF
- 8. IS-IS
- 9. Midterm Exam
- 10. BGP
- 11. MPLS
- 12. Transport Layer -- TCP/UDP
- 13. Congestion Control & Quality of Service (QoS)
- 14. Access Control List (ACL)
- 15. Final Exam

Reference Books

 Routing TCP/IP Volume I, 2nd Edition by Jeff Doyle and Jennifer Carroll

ISBN: 1-57870-089-2

- Routing TCP/IP Volume II by Jeff Doyle and Jennifer DeHaven ISBN: 1-57870-089-2
- Cisco CCNA Routing and Switching ICND2 200-101 Official Cert Guide, Academic Edition by Wendel Odom -- July 10, 2013. ISBN-13: 978-1587144882
- The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference by Charles M. Kozierok October 1, 2005. ISBN-13: 978-1593270476
- CCNA Routing and Switching 200-120 Network Simulator. By Wendell Odom, Sean Wilkins. Published by Pearson IT Certification.
- http://class.svuca.edu/~sandy/class/CS540/

Topics:

- IPv6 Protocol
- ICMPv6
- Neighbor Discovery Protocol (NDP)

- Understand the shortcomings of IPv4
- Know the IPv6 address format, address types, and abbreviations
- Be familiar with the IPv6 header format
- Know the extension header types
- Know the differences between ICMPv4 and ICMPv6
- Know the strategies for transitioning from IPv4 to IPv6

IPv6 Advantages Over IPv4

- Larger address space
- Better header format
- New options
- Allowance for extension
- Support for resource allocation
- Support for more security

Auto-configuration

- Obtain an Interface ID that is unique on the link to which the host is attached -- link layer addresses used.
- Obtain correct prefix -- router periodically advertises.
- Put them together.

IPv6 address

$$2^{128} = 2^8 \times (2^{10})^{12} = 256 \times (1024)^{12} \approx 256,000,000,....,000$$

Abbreviated address

Unabbreviated

FDEC BA98 0074 3210 000F BBFF 0000 FFFF

FDEC BA98 74 3210 F BBFF 0 FFFF

Abbreviated

Abbreviated address with consecutive zeros

CIDR address – Classless Inter-Domain Routing

FDEC **BBFF 0 FFFF/60**

Address structure

Address Type Identification – RFC 4291

Address type	Binary Prefix	IPv6 Notation
Unspecified	000 (128 bits)	::/128
Loopback	001 (128 bits)	::1/128
Multicast	1111 1111	FF00::/8 224.0.0.0/4
Link Local Unicast	1111 1110 10	FE80::/10
Global Unicast		

Special Use IPv4 Addresses – RFC 5735

Address type	Address	Description
	0.0.0.0/8	"this network"
Loopback	127.0.0.0/8	127.0.0.0/8
Private Address	10.0.0.0/8	2 ²⁴ → 16 M
	172.16.0.0/12	$2^{20} \rightarrow 1 M$
	192.168.0.0/16	2 ¹⁶ → 64 K

Type prefixes for IPv6 addresses

Type Prefix	Туре	Fraction
010	Provider-based unicast addresses	1/8
011	Reserved	1/8
100	Geographic unicast addresses	1/8
101	Reserved	1/8
110	Reserved	1/8
1110	Reserved	1/16
1111 0	Reserved	1/32
1111 10	Reserved	1/64
1111 110	Reserved	1/128
1111 1110 0	Reserved	1/512
1111 1110 10	Link local addresses	1/1024
1111 1110 11	Site local addresses	1/1024
1111 1111	Multicast addresses	1/256

Unspecified address

8 bits 120 bits

00000000 All 0s

Loopback address

8 bits 120 bits

Compatible address

Mapped address

a. Mapped address

 $b. \ An \ example \ of \ address \ transformation$

Link local address

10 bits	70 bits	48 bits
1111111010	All 0s	Node address

Site local address – Deprecated in RFC 3879

10 bits	38 bits	32 bits	48 bits
1111111011	All 0s	Subnet address	Node address

Unique Local Unicast Address – RFC 4193 FC00::/7

7 bits 1 bit 40 bits		16 bits	64 bits
1111110 L Global ID		Subnet II	Interface ID

IPv6 Global Unicast Address – RFC 3587

General Format

n bits	m bits	128-n-m bits
Global Routing Prefix	Subnet ID	Interface ID

For prefix not starting with binary value 000 (::/3)

n bits	64-n bits	64 bits
Global Routing Prefix	Subnet ID	Interface ID

Example:

3 bits 45 bits		16 bits 64 bits	
001	Global Routing Prefix	Subnet ID	Interface ID

EUI-64 in IPv6

IEEE's 64-bit Extended Unique Identifier (EUI-64) format

1. Break MAC <u>Organizationally Unique Identifier (OUI)</u> and the NIC specific part.

2. Invert the universal/local (U/L) flag (bit 7) in the OUI

Multicast address

Well-known IPv6 multicast addresses

Address	Description
FF02::1	All nodes on the local network segment
FF02::2	All routers on the local network segment
FF02::5	OSPFv3 All SPF routers
FF02::6	OSPFv3 All DR routers
FF02::8	IS-IS for IPv6 routers
FF02::9	<u>RIP</u> routers
FF02::A	EIGRP routers
FF02::D	PIM routers
FF02::16	MLDv2 reports (defined in RFC 3810)
FF02::1:2	All <u>DHCP</u> servers and relay agents on the local network segment (defined in <u>RFC 3315</u>)
FF05::1:3	All DHCP servers on the local network site (defined in RFC 3315)

Solicited-Node Multicast Address

Taking the last 24 bits of IPv6 Unicast or Anycast address and append to FF02::1:FF00:0/104

A host is required to join a Solicited-Node multicast group for each of its configured unicast or anycast addresses

Solicited-Node Multicast Group

FE80:: 0212:7F FF:FE EB:6B40

2601:9:7181:15F1 0212:7F FF:FE **EB:6B40**

FF02::1 FF00:00 EB:6B40

Type of IPv6 Addresses

□ Unicast

An identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address.

□ Anycast

An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocols' measure of distance).

☐ Multicast

An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a multicast address is delivered to all interfaces identified by that address.

Required Anycast Address

Subnet-Router anycast address

n bits	128-n bits	
Subnet Prefix	0000000000	

 Packets sent to the Subnet-Router anycast address will be delivered to one router on the subnet.

IPv6 datagram

IPv6 Header

IPv4 and IPv6 Header

Version	Traffic Class	Flow Label					
	Payload Length Next Header Hop Limit						
Source Address							
Destination Address							

Header comparison

IPv4

Removed (6)

- ID, flags, flag offset
- TOS, hlen
- header checksum

Changed (3)

- total length => payload
- protocol => next header
- TTL => hop limit

<u>Added (2)</u>

- traffic class
- flow label

Expanded

address 32 to 128 bits

IPv6

IPv6 Packet (PDU) Structure

Extension header format

Extension Header

Extension Header	<u>Type</u>	Description
Hop-by-Hop Options	0	Options that need to be examined by all devices on the path.
Destination Options (before routing header)	60	Options that need to be examined only by the destination of the packet.
Routing	43	Methods to specify the route for a datagram (used with Mobile IPv6).
Fragment	44	Contains parameters for fragmentation of datagrams.
Authentication Header (AH)	51	Contains information used to verify the authenticity of most parts of the packet.
Encapsulating Security Payload (ESP)	50	Carries encrypted data for secure communication.
Destination Options (before upper-layer header)	60	Options that need to be examined only by the destination of the packet.
Mobility (currently without upper-layer header)	135	Parameters used with Mobile IPv6.

Extension Header

Extension Header	<u>Type</u>	Description
Experimental Use	139	Host Identity Protocol RFC5201
Shim6 Protocol	140	RFC5533
Use for experimentation and testing	253	Used for testing protocol extensions or new features
Use for experimentation and testing	254	Used for testing protocol extensions or new features

Hop-by-hop option header format

Base header

Next header | Header length

options

Rest of the payload

The format of options in a hop-by-hop option header

Pad1

PadN

Code	Length	Data
00000001		All 0s
1 byte	1 byte	Variable

Jumbo payload

Code Length

11000010 00000100

Length of jumbo payload
4 bytes

Source routing

Base header				
Next header	Header length	Header length Type Addresses left		
Reserved		Strict/loose mask		
	First a	ddress		
Second address				
Last address				
Rest of the payload				

Source routing example

Fragmentation

Base header					
Next header	Next header Header length Fragmentation offset 0 M				
Fragment identification					
Rest of the payload					

Authentication

Base header		
Security parameter index		
Authentication data		
Rest of the payload		

Calculation of authentication data

Encrypted security payload

Base header

Security parameter index

Encrypted data

Transport mode encryption

Base and other headers

Index

Plain
data

Encryption
data

Base and
other headers

Encrypted
data

Tunnel-mode encryption

Base and other headers

Plain data

Base header

Index

Encryption

Encrypted packet

Comparison between IPv4 options and IPv6 extension headers

Comparison

- 1. The no-operation and end-of-option options in IPv4 are replaced by Pad1 and PadN options in IPv6.
- 2. The record route option is not implemented in IPv6 because it was not used.
- 3. The timestamp option is not implemented because it was not used.
- 4. The source route option is called the source route extension header in IPv6.
- 5. The fragmentation fields in the base header section of IPv4 have moved to the fragmentation extension header in IPv6.
- 6. The authentication extension header is new in IPv6.
- 7. The encrypted security payload extension header is new in IPv6.

ICMPv6

ICMPv6, while similar in strategy to ICMPv4, has changes that makes it more suitable for IPv6. ICMPv6 has absorbed some protocols that were independent in version 4.

The topics discussed in this section include:

Error Reporting Query

Comparison of network layers in version 4 and version 6

Network layer in version 4

Network layer in version 6

Categories of ICMPv6 messages

General Format of ICMP messages

Error-reporting messages

Comparison of error-reporting messages in ICMPv4 and ICMPv6

Type of Message	Version 4	Version 6
Destination unreachable	Yes	Yes
Source quench	Yes	No
Packet too big	No	Yes
Time exceeded	Yes	Yes
Parameter problem	Yes	Yes
Redirection	Yes	Yes

Destination-unreachable message format

Type: 1 Code: 0 to 4 Checksum

Unused (All 0s)

Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

Packet-too-big message format

Time-exceeded message format

Type: 3 Code: 0 or 1 Checksum

Unused (All 0s)

Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

Parameter-problem Message Format

Type: 4 Code: 0, 1, 2 Checksum

Offset pointer

Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

Redirection Message Format

Туре: 137	Code: 0	Checksum		
	Rese	erved		
	Target (router) IP address			
Destination IP address				
OPT. code	OPT. code OPT. length			
Target (router) physical address				
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

Query Messages

Comparison Of Query Messages In ICMPv4 and ICMPv6

Type of Message	Version 4	Version 6
Echo request and reply	Yes	Yes
Timestamp request and reply	Yes	No
Address mask request and reply	Yes	No
Router solicitation and advertisement	Yes	Yes
Neighbor solicitation and advertisement	ARP	Yes
Group membership	IGMP	Yes

Echo Request And Reply Messages

Type: 128 or 129	Code: 0	Checksum
Identifier		Sequence number
Optional data Sent by the request message; repeated by the reply message		

Router-solicitation And Advertisement Message Formats

Туре: 133	Code: 0	Checksum	
	Unused	(All 0s)	
Option code: 1 Option length			
Host physical address			

a. Router solicitation format

Type: 134	Code: 0	Checksum		
Max hop	MO Unused(All 0s)	Router lifetime		
	Reachabil	ity lifetime		
	Reachability trar	nsmission interval		
Option code: 1	Option length			
Router physical address				
Option code: 5	Option length	Unused (All 0s)		
	MTU size			

b. Router advertisement format

Neighbor-solicitation And Advertisement Message Formats

Туре: 135	Code: 0	Checksum		
Unused (All 0s)				
— Target IP address				
Option code: 1	Option length			
Solicitor physical address				

a. Neighbor solicitation

	Туре: 136	Code: 0	Checksum	
R	R S Unused (All 0s)			
— Target IP address				
О	ption code: 2	Option length		
Target physical address				

b. Neighbor advertisement

Internet Control Message Protocol version 6 (ICMPv6)

Protocol Overview

- ICMPv6 is a multipurpose protocol used for
 - Reporting errors encountered in processing packets
 - Performing diagnostics
 - Performing Neighbor Discovery
 - Reporting multicast memberships.
- ICMP messages are transported within an IPv6 packet in which extension headers can also be present.
- An ICMP message is identified by a value of 58 in the Next Header field of the IPv6 header or of the preceding Header.

ICMPv6: Introduction

- IPv6 uses the ICMP as defined for IPv4 with a number of changes.
- The resulting protocol is called ICMPv6.
- ICMP messages, delivered in IP packets, are used for out-of-band messages related to network operation or mis-operation.
- ICMP uses IP, ICMP packet delivery is unreliable, so hosts can't count on receiving ICMP packets for any network problem.

ICMPv6: Introduction

- The ICMPv6 is an integral part of the IPv6 architecture and must be completely supported by all IPv6 implementations.
- ICMPv6 combines functions previously subdivided among different protocols, such as
 - ICMP (Internet Control Message Protocol version 4)
 - IGMP (Internet Group Membership Protocol)
 - ARP (Address Resolution Protocol)
- It introduces some simplifications by eliminating obsolete types of messages no longer in use.

ICMP: Functions

Announce network errors

- A host or entire portion of the network being unreachable, due to some type of failure.
- A TCP or UDP packet directed at a port number with no receiver attached is also reported via ICMP.

Announce network congestion

- When a router begins buffering too many packets, due to an inability to transmit them as fast as they are being received, it will generate **ICMP Source Quench** messages.
- Directed at the sender, these messages should cause the rate of packet transmission to be slowed.
- Generating too many Source Quench messages would cause even more network congestion, so they are used sparingly.

ICMP: Functions

Assist Troubleshooting

- ICMP supports an *Echo* function, which just sends a packet on a round--trip between two hosts.
- Ping will transmit a series of packets, measuring average round--trip times and computing loss percentages.

Announce Timeouts

- If an IP packet's TTL field drops to zero, the router discarding the packet will often generate an ICMP packet announcing this fact.
- <u>TraceRoute</u> is a tool which maps network routes by sending packets with small TTL values and watching the ICMP timeout announcements.

ICMPv6 Header

Three Fields

1. Type (8 bits)

- Indicates the type of the message.
- If the high order bit = $0(0-127) \rightarrow$ error message
- if the high-order bit = 1 (128 255) \rightarrow information message.

2. Code (8 bits)

content depends on the message type, and it is used to create an additional level of message granularity.

3. Checksum (16 bits)

Used to detect errors in the ICMP message and in part of the IPv6 message.

Types of ICMPv6 Messages

ICMPv6 messages are grouped into two classes:

Error messages

- To provide feedback to a source device about an error that has occurred.
- Generated specifically in response to some sort of action, usually the transmission of a datagram
- Identified as such by having a zero in the high-order bit of their message
- Type field values 0 to 127.

Informational messages

- Used to let devices exchange information, implement certain IP-related features, and perform testing.
- Message Types from 128 to 255.
- Many of these ICMP types have a "code" field.

Error messages

Type	Description	References		
1	Destination unreachable:	RFC 2463		
2	Packet too big.	RFC 2463		
3	Time exceeded.	RFC 2463		
4	Parameter problem.	RFC 2463		

Informational messages

Туре	Description	References
128	<u>Echo request</u> .	RFC 2463
129	Echo reply.	RFC 2463

ICMPv6 Error Messages

Type Value	Message Name	Summary Description of Message Type
1	Destination Unreachable	Indicates that a datagram could not be delivered to its destination. <i>Code</i> value provides more information on the nature of the error.
2	Packet Too Big	Sent when a datagram cannot be forwarded because it is too big for the MTU of the next hop in the route. This message is needed in IPv6 and not IPv4 because in IPv4, routers can fragment oversized messages, while in IPv6 they cannot.
3	Time Exceeded	Sent when a datagram has been discarded prior to delivery due to the <i>Hop Limit</i> field being reduced to zero.
4	Parameter Problem	Indicates a miscellaneous problem (specified by the <i>Code</i> value) in delivering a datagram.

ICMP Information Messages

ICMPv6 Informational Messages	128	Echo Request	Sent by a device to test connectivity to another device on the internetwork.	2463	
	129	Echo Reply	Sent in reply to an <i>Echo (Request)</i> message; used for testing connectivity.	2463	
	133	Router Solicitation	Prompts a router to send a Router Advertisement.	2461	
	134	Router Advertisement	Sent by routers to tell hosts on the local network the router exists and describe its capabilities.	2461	
	135	Neighbor Solicitation	Sent by a device to request the layer two address of another device while providing its own as well.		
	136	Neighbor Advertisement	Provides information about a host to other devices on the <u>network</u> .	2461	
	137	Redirect	Redirects transmissions from a host to either an immediate neighbor on the network or a router.	2461	
	138	Router Renumbering	Conveys renumbering information for router renumbering.	2894	

Path MTU Discovery (PMTUD) for IPv6

PMTUDv6 - Overview

- To enable hosts to discover the min. MTU on a path to a particular destination.
- Fragmentation in IPv6 is not performed by intermediary routers.
- The source node may fragment packets by itself only when the path MTU is smaller than the packets to deliver
- PMTUD for IPv6 uses ICMPv6 error message
 - Type 2 Packet Too Big
- For detail info http://www.ietf.org/rfc/rfc1981.txt

Differences between IPv4 & IPv6 MTU

Increased Default MTU

- In IPv4, the minimum MTU that routers and physical links were required to handle = **576 bytes**.
- In IPv6, all links must handle a datagram size of at least 1280 bytes.
- improves efficiency by increasing the ratio of maximum payload to header length, and reduces the frequency with which fragmentation is required.

Elimination of En Route Fragmentation

- In IPv4, datagrams may be fragmented by either the source device, or by routers during delivery.
- In IPv6, only the source node can fragment; routers do not.
- The source must therefore fragment to the size of the smallest MTU on the route before transmission.

Differences between IPv4 & IPv6 MTU

MTU Size Error Feedback

- Since routers cannot fragment datagrams, they must drop them if they are forced to try to send a too-large datagram over a physical link.
- A feedback process has been defined using ICMPv6 that lets routers tell source devices that they are using datagrams that are too large for the route.

Movement of Fragmentation Header Fields

• To reflect the decreased importance of fragmentation in IPv4, the permanent fields related to the process that were in the IPv4 header have been farmed out to a *Fragment* extension header, included only when needed.

Determining the Appropriate Datagram Size

How does the source know what size to use? It has two choices:

1. Use Default MTU

- Use the default MTU of 1280, which all physical networks must be able to handle.
- Good choice especially for short communications or for sending small amounts of data.

2. Use Path MTU Discovery feature

A node <u>sends messages</u> over a route to determine what the overall minimum MTU for the path is, in a technique very similar to how it is done in IPv4.

Path MTU Discovery Process

- 1. The sending node assumes that the path MTU is the link MTU of the interface on which the traffic is being forwarded.
- 2. The sending node sends IPv6 packets at the **path MTU size**.
- 3. If a router on the path is unable to forward the packet over a link with a link MTU that is smaller than the size of the packet, it discards the IPv6 packet and sends an ICMPV6 Packet Too Big message back to the sending node. The ICMPV6 Packet Too Big message contains the link MTU of the link on which the forwarding failed.
- 4. The sending node sets the path MTU for packets being sent to the destination to the value of the MTU field in the ICMPv6 Packet Too Big message.
- 5. The sending node starts again at step 2 and repeats steps 2 through 4 for as many times as are necessary to discover the path MTU.

PMTUD uses ICMPv6 Type 2 Message

IPv6 Fragmentation

IPv6 Fragmentation

For purposes of fragmentation, IPv6 datagrams are broken into two pieces:

Unfragmentable Part

Includes the main header of the original datagram + any extension headers that need to be present in each fragment - Hop-By-Hop Options, Destination Options (for those options to be processed by devices along a route) and Routing.

Fragmentable Part

- Data portion of the datagram + other extension headers if present authentication Header, Encapsulating Security Payload and/or Destination Options (for options to be processed only by the final destination).
- Unfragmentable Part must be present in each fragment, while the fragmentable part is split up amongst the fragments.

IPv6 Fragment Sets

• So to fragment a datagram, a device creates a set of fragment datagrams, each of which contains the following, in order:

Unfragmentable Part

• The full *Unfragmentable Part* of the original datagram, with its *Payload Length* changed to the length of the fragment datagram.

Fragment Header

• A Fragment header with the Fragment Offset, Identification and M flags set in the same way they are used in IPv4.

Fragment

 A fragment of the Fragmentable Part of the original datagram. Note that each fragment must have a length that is a multiple of 8 bytes, because the value in the Fragment Offset field is specified in multiples of 8 bytes.

IPv6 Fragmentation

Suppose we need to send this over a link with an MTU of only 230 bytes.

We would actually require three fragments, not the two, because of the need to put the two 30-byte unfragmentable extension headers in each fragment, and the requirement that each fragment be a length that is a multiple of 8.

IPv6 Neighbour Discovery Protocol (NDP)

IPv6 ND - Overview

- IPv6 ND is a set of messages and processes that determine relationships between neighboring nodes.
- ND replaces ARP, ICMP Router Discovery, and ICMP Redirect used in IPv4 and provides additional functionality.

IPv6 ND - Overview

ND is used by hosts to:

- Discover neighbouring routers.
- Discover addresses, address prefixes, and other configuration parameters.

ND is used by routers to:

- Advertise their presence, host configuration parameters, and on-link prefixes.
- Inform hosts of a better next-hop address to forward packets for a specific destination.

ND is used by nodes to:

- Resolve the link-layer address of a neighbouring node to which an IPv6 packet is being forwarded and determine when the link-layer address of a neighbouring node has changed.
- Determine whether a neighbour is still reachable.

IPv6 ND – What is Neighbour?

- Neighbour is one that has been used for years in various networking standards and technologies to refer to devices that are local to each other.
- Two devices are neighbours if they are on the same local network, meaning that they can send information to each other directly.
- Most of the functions of the ND protocol are implemented using a set of five special ICMPv6 control messages.
- ND is a messaging protocol.
 - It doesn't implement a single specific function but rather a group of activities that are performed through the exchange of messages.
 - ND standard describes nine specific functions performed by the protocol.

ICMPv6 Control Messages Used By NDP

- RS- Router Solicitation Messages (ICMPv6 Type 133) **1**.
 - Sent by hosts to request that any local routers send a Router Advertisement message so they don't have to wait for the next regular advertisement message.

talk to row Py

- RA Router Advertisement Messages (ICMPv6 Type 134) 2.
 - Sent regularly by routers to tell hosts that they exist and provide important NS - Neighbor Solicitation Messages (ICMPv6 Type 135)
- *3*.
 - Sent to verify the existence of another host and to ask it to transmit a Neighbor then we neighbor replied talk to neighbor Advertisement.
- NA Neighbor Advertisement Messages (ICMPv6 Type 136) 4.
 - Sent by hosts to indicate the existence of the host and provide information about it.
- Redirect Messages (ICMPv6 Type 137) 5.
 - Sent by a router to tell a host of a better method to route data to a particular destination.

ICMPv6 Messages Used by NDP

Mechanism	Type 133 (RS)	Type 134 (RA)	Type 135 (NS)	Type 136 (NA)	Type 137 (Redirec t)
Replacement of ARP			X	X	
Prefix advertisement	X	X			
Prefix renumbering	X	X			
DAD duplicate address detection			X		
Router redirection					X

NDP Functional Groups and Functions

Mainly three functions

- Host-Router Functions
- 2. Host-Host Communication Functions
- 3. Redirect Function

1. Host-Router Discovery Functions

One of the two main groups of functions in ND are those that facilitate the discovery of local routers and the exchange of information between them and hosts.

Router Discovery

 Core function of this group: the method by which hosts locate routers on their local network.

Prefix Discovery

- Closely related to the process of router discovery is prefix discovery.
- To determine what network they are on, which in turn tells them how to differentiate between local and distant destinations and whether to attempt direct or indirect delivery of datagrams.

Parameter Discovery

 A host learns important parameters about the local network and/or routers, such as the MTU of the local link.

Address Auto-configuration

Hosts in IPv6 are designed to be able to automatically configure themselves, but this
requires information that is normally provided by a router.

2. Host-Host Communication Functions

Address Resolution

SP > MAC dranslation.

- The process by which a device determines the layer two address of another device on the local network from that device's layer three (IP) address.
- Performed by ARP in IP version 4.

Next-Hop Determination

 Looking at an IP datagram's destination address and determining where it should next be sent.

Neighbor Unreachability Detection

Determining whether or not a neighbor device can be directly contacted.

Duplicate Address Detection (DAD)

 Determining if an address that a device wishes to use already exists on the network.

3. Redirect Function

- The last functional group contains just one function: *Redirect*.
- The technique whereby a router informs a host of a better next-hop node to use for a particular destination.

The Host Sending Algorithm

How Neighbour Solicitation and Neighbour Advertisement Works

- A node can use following special addresses:
 - All-node multicast address (FF02::1, destination)
 - All-routers multicast address (FF02::2, destination)
 - Solicited-mode multicast address (destination)
 - Link-local address (sources or destination)
 - Unspecified address (::, source)

Address Resolution

- The address resolution process for IPv6 nodes consists of an exchange of Neighbor Solicitation and Neighbor Advertisement messages to resolve the link-layer address of the on-link next-hop address for a given destination.
- The sending host sends a multicast Neighbor Solicitation message on the appropriate interface.
- The multicast address of the Neighbor Solicitation message is the solicited-node multicast address derived from the target IP address.
- The Neighbor Solicitation message includes the link-layer address of the sending host in the Source Link-Layer Address option.
- When the target host receives the Neighbor Solicitation message, it updates its own neighbor cache based on the source address of the Neighbor Solicitation message and the link-layer address in the Source Link-Layer Address option.

Address Resolution

- Next, the target node sends a unicast Neighbor Advertisement to the Neighbor Solicitation sender.
- The Neighbor Advertisement includes the Target Link-Layer Address option.
- After receiving the Neighbor Advertisement from the target, the sending host updates its neighbor cache with an entry for the target based upon the information in the Target Link-Layer Address option.
- At this point, unicast IPv6 traffic between the sending host and the target of the Neighbor Solicitation can be sent.

Mapping IPv4/IPv6 Multicast Address into Multicast MAC Addresses

- IPv4 01:00:5E:00:00:00 01:00:5E:7F:FF
 - Insert the lower 23 bits of a IPv4 multicast address into the MAC address
- IPv6 33:33:XX:XX:XX:XX
 - Insert the lower 32 bits of a IPv6 multicast address into the MAC address

Address Resolution: Example

the idea is similar to IPV4 ARP but differen

The multicast Neighbor Solicitation for address resolution

Address Resolution: Example continue

The unicast Neighbor Advertisement for address resolution

Prefix advertisement

It uses

- Router Advertisement (RA) message &
- All node multicast address (FF02::1)
- RA sent periodically on the local link to all node-multicast address

Router Advertisement Message Parameters

IPv6 prefix

- Multiple ipv6 prefixes can be advertised per local link
- By default prefix length = 64 bits
- Nodes gets IPv6 address, they append their link-layer in EUIformat to the prefix received = 128 bit IPv6 node address.

• Life-time

- Lifetime may vary from 0 to infinite.
- Two types of lifetime value per prefix:
 - Valid Lifetime: how long the node's address remains in valid state
 - Preferred Lifetime: how long the address configured by a node remains preferred. It must be <= valid lifetime

Router Advertisement Message Parameters

- Default router information
- Information about the existence and lifetime of the default router's ipv6 address
- Default router's address = router's link local address
- Flags/options
- Use flags to instruct nodes to use stateful configuration than stateless

Router Discovery

- Router discovery is the process through which nodes attempt to discover the set of routers on the local link.
- Router discovery in IPv6 is similar to ICMP Router Discovery for IPv4 described in RFC 1256.
- An important difference between ICMPv4 Router Discovery and IPv6 Router Discovery is the mechanism through which a new default router is selected when the current one becomes unavailable.
- In ICMPv4 Router Discovery, the Router Advertisement message includes an Advertisement Lifetime field.
- It is the time after which the router, upon receiving its last Router Advertisement message, can be considered unavailable.
- In the worst case, a router can become unavailable and hosts will not attempt to discover a new default router until the Router Advertisement time has elapsed.

IPv6 Router Discovery

- IPv6 has a Router Lifetime field in the Router Advertisement message.
- It indicates the length of time that the router can be considered a default router.
- If the current default router becomes unavailable, the condition is detected through neighbor unreachability detection instead of the Router Lifetime field in the Router Advertisement message.
- Because neighbor unreachability detection determines that the router is no longer reachable, a new router is chosen immediately from the default router list.

Router Discovery - parameters

- In addition to configuring a default router, IPv6 router discovery also configures the following:
- The default setting for the **Hop Limit field** in the IPv6 header. we THOP
- A determination of whether the node should use a stateful address protocol, such as DHCPv6, for addresses and other configuration parameters.
- The **timers** used in reachability detection and the retransmission of Ladvertern Neighbor Solicitations.
- The list of network prefixes defined for the link. Each network prefix contains both the IPv6 network prefix and its valid and preferred lifetimes.
- If indicated, a network prefix combined with the interface identifier creates a stateless IP address configuration for the receiving interface. A network prefix also defines the range of addresses for nodes on the local link.
- The MTU of the local link.

IPv6 Router Discovery Processes

- IPv6 routers periodically send a Router Advertisement message on the local link advertising their existence as routers.
- They also provide configuration parameters such as default hop limit,
 MTU, and prefixes.
- Active IPv6 hosts on the local link receive the Router Advertisement messages and use the contents to maintain the default router list, the prefix list, and other configuration parameters.
- A host that is starting up sends a Router Solicitation message to the link-local scope all-routers multicast address (FF02::2).
- Upon receipt of a Router Solicitation message, all routers on the local link send a unicast Router Advertisement message to the node that sent the Router Solicitation.
- The node receives the Router Advertisement messages and uses their contents to build the default router and prefix lists and set other configuration parameters.

IPv6 Router Discovery Processes

- Any node can send RS to all-routers multicast address FF02::2 on the local link
- When RS is received, a router responds with RA using all-node multicast FF02::1
- To avoid flooding of RS on the link, each node can send only three RS at boot time.

IPv6 Router Discovery Processes -

The multicast Router Solicitation for router and prefix discovery

- To forward packets to off-link destinations, Host A must discover the presence of Router 1.
- Host A sends a multicast Router Solicitation to the address FF02::2

IPv6 Router Discovery Processes –

The unicast Router Advertisement for router and prefix discovery

- Router 1, having registered the multicast address of 33-33-00-00-02 with its Ethernet adapter, receives and processes the Router Solicitation.
- Router 1 responds with a unicast Router Advertisement message containing configuration parameters and local link prefixes

Duplicate Address Detection (DAD)

everybody has a link local. FE80:, so it needs to me DAD. to detect if its It is duplicated - we neighbor schritater

- IPv4 nodes use ARP Request messages and a method called gratuitous ARP to detect a duplicate IP address on the local link.
- Similarly, IPv6 nodes use the **Neighbor Solicitation message** to detect duplicate address use on the local link.
- Before a node can configure its IPv6 address using stateless autoconfiguration, it must verify on the local link that the tentative address it wants to use is unique and not already in use by another mode.
- Node sending a Neighbour Solicitation (NS) on the local link using unspecified address (::) as its source address and solicited-node multicast of the tentative unicast address as the destination address.
- If a duplicate address no assignment of this unicast address

DAD – Example

The multicast Neighbor Solicitation for duplicate address detection

- Host B has a link-local address of FE80::2AA:FF:FE22:2222.
- Host A is attempting to use the link-local address of FE80::2AA:FF:FE22:2222.
- Before Host A can use this link-local address, it must verify its uniqueness through duplicate address detection.

Host A sends a solicited-node multicast Neighbor Solicitation to the address FF02::1:FF22:222

DAD – Example

The multicast Neighbor Advertisement for duplicate address detection

- Host B, having registered the solicited-node multicast address of 33-33-FF-22-22 with its Ethernet adapter, receives and processes the Neighbor Solicitation.
- Host B notes that the source address is the unspecified address.
- Host B then responds with a multicast Neighbor Advertisement message

Duplicate Address Detection

• By default, DAD is enabled on Cisco routers

Command	Description
Router(config-if)# ipv6 nd dad attempts number	Defines the number of router solicitation messages for DAD to send on the link before considering an IPv6 address unique.
Example RouterA(config-if)# ipv6 nd dad attempts 3	DAD sends three neighbor solicitation messages on the link before considering the IPv6 address unique.
Example	The value 0 disables DAD on an interface.
RouterA(config-if)# ipv6 nd dad attempts 0	

Router Redirect

- Routers use the redirect function to inform originating hosts of a better first-hop neighbor to which traffic should be forwarded for a specific destination.
- Nodes receiving it may modify its routing table according to the new router address.

Router Redirect

- There are two instances where redirect is used:
- 1. A router informs an originating host of the IP address of a router available on the local link that is "closer" to the destination.
 - "Closer" is routing metric function used to reach the destination network segment.
 - This condition can occur when there are multiple routers on a network segment and the originating host chooses a default router and it is not the best one to use to reach the destination.
- 2. A router informs an originating host that the destination is a neighbor (it is on the same link as the originating host).
 - This condition can occur when the prefix list of a host does not include the prefix of the destination.
 - Because the destination does not match a prefix in the list, the originating host forwards the packet to its default router.

Router Redirect Process

- The originating host forwards a unicast packet to its default router.
- The router processes the packet and notes that the address of the originating host is a neighbor.
 - Additionally, it notes that the addresses of both the originating host and the next-hop are on the same link.
- 3. The router forwards the packet to the appropriate next-hop address.
- 4. The router sends the originating host a Redirect message.
 - In the Target Address field of the Redirect message is the next-hop address of the node to which the originating host should send packets addressed to the destination.

Router Redirect Process

- For packets redirected to a router, the Target Address field is set to the link-local address of the router.
- For packets redirected to a host, the Target Address field is set to the destination address of the packet originally sent.
- The Redirect message includes the Redirected Header option. It might also include the Target Link-Layer Address option.
- Upon receipt of the Redirect message, the originating host updates the destination address entry in the destination cache with the address in the Target Address field.
 - If the Target Link-Layer Address option is included in the Redirect message, its contents are used to create or update the corresponding neighbor cache entry.

Router Redirect Process - Example

The unicast packet forwarded by the originating node

Host A is sending a packet to an off-link host at FEC0::2:2AA:FF:FE99:9999 (not shown) and is using Router 1 as its current default router.

However, Router 2 is the better router to use to reach this destination.

Host A sends the packet destined to FEC0::2:2AA:FF:FE99:9999 to Router 1

Router Redirect Process - Example

The unicast packet forwarded by the router

- Router 1 receives the packet from Host A and notes that Host A is a neighbor.
- It also notes that Host A and the next-hop address for the destination are on the same link. Based on the contents of its local routing table, Router 1 forwards the unicast packet received from Host A to Router 2

Router Redirect Process - Example

The Redirect message sent by the router

 To inform Host A that subsequent packets to the destination of FECO::2:2AA:EE:FE99:9999 should be sent to Router 2, Router 1 sends a Redirect message to Host A

Transformation From IPv4 to IPv6

Three strategies have been devised by the IETF to provide for a smooth transition from IPv4 to IPv6.

The topics discussed in this section include:

Dual Stack
Tunneling
Header Translation

Three transition strategies

Dual stack

Tunneling strategy

Header translation strategy

Naming Services

- DNS must be included in transition strategy
- Resolving Names:
 - IPv4 specifies "A" records
 - IPv6 specifies "AAAA" records
- Applications should be aware of both records
- Will require development update and thorough testing
- Tools like "Scrubber" by Sun make it easy

Naming Services

Querying DNS server

Manually Configured Tunnels

- Manually configured tunnels are logical tunnels formed when one protocol version packet is encapsulated in the payload of another version packet
- e.g. IPv4 encapsulated in IPv6 or IPv6 encapsulated in IPv4

IPv4 Packet with tunneling

IPv4	IPv6 Pa	ncket Payload	
HDR	HDR	Payload	

Configured Tunnel-building

- Configured tunnels require static IPv4 addresses
- Configured tunnels are generally setup and maintained by a network administrator
- Configured tunnels are a proven IPv6 deployment technique and provide stable links

Potential Tunnel Issues

- MTU fragmentation
- ICMPv4 error handling
- Filtering protocol 41
- NAT (Network Address Translation)

ISATAP

• **ISATAP** (Intra-Site Automatic Tunneling Addressing Protocol) an automatic tunneling mechanism used inside an organization that has an IPv4-dominant backbone, but has selected users that need IPv6 capability

ISATAP Functions

- ISATAP connects dual-stack nodes, isolated within an IPv4-only network
 - To exchange IPv6 traffic with each other (host ISATAP)
 - To exchange traffic with the global IPv6 Internet
- ISATAP is a mechanism with minimal configuration required
- ISATAP is ideal when there are relatively few, relatively scattered individual nodes that need service

Link-Local ISATAP

192.0.2.100

IPv4 Address

Is converted to hex form

C000:0264

0000:5EFE

And pre-pended with the ISATAP 32-bit link-local suffix

::0000:5EFE:C000:0264

FE80::/10

The link-local prefix merges with the network identifier to create the

ISATAP IPv6 link-local address

FE80::0000:5EFE:C000:0264

Link-local ISATAP example

- Two ISATAP hosts exchanging packets using link-local addresses
- Only route on ISATAP hosts is "send all IPv6 traffic via ISATAP pseudo-IF"
- Hosts are many IPv4 hops away which appear link-local to IPv6

Globally-routable ISATAP

- ISATAP more flexible when using an ISATAP router
- ISATAP hosts are configured with ISATAP router IPv4 address
- Hosts sends router solicitation, inside tunnel, and ISATAP router responds

ISATAP Summary

- ISATAP scales better than manually configured tunnels inside the enterprise
- Decapsulate-from-anywhere issues (like 6to4) mitigated by internal deployment
- No authentication provided any dual stack node that knows ISATAP router address can obtain services
- May need to look at other alternatives if security is required

IPv6 6to4 Transition Mechanism

 6to4 is an automatic tunneling mechanism that provides v6 capability to a dual-stack node or v6-capable site that has only IPv4 connectivity to the site

6to4 Basics

- 6to4 is an automatic tunnel mechanism
- Provides v6 upstream for v6-capable site over v4-only Internet connection
- Uses embedded addressing (v4addr embedded in v6addr) as do other automatic mechanisms

6to4 Address Construction

• 6to4 setups a valid, unique /48 IPv6 prefix from the outside IPv4 address of the site router

6to4 Site-to-Site Example

- 6to4 edge devices are called "6to4 site routers"
- IPv4-only between sites, full IPv6 within sites
- Host A packet tunneled through IPv4 network to destination 6to 4 site

6RD Tunnel

- IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) RFC 5969
- Utilize an SP's own IPv6 address prefix rather than a well-known prefix (2002::/16)

6RD Address Format

Common	IPv4 addr bits	Common
prefix		Suffix

Parameter	Value
6rd Prefix/length	2001:DB8::/32
IPv4 Common prefix/length	10.1.0.0/16
IPv4 Common suffix/length	0.0.0.1/8

6rd Prefix 2001:DB8::/32

Ipv4 common prefix: 10.1.0.0/16

Ipv4 common suffix: 0.0.0.1/8

IPv6: 2001:DB8:0100::C15C:0 → 2001:DB8:0200::C26B:0

IPv4: $10.1.1.1 \rightarrow 10.2.1.1$

6rd Prefix 2001:DB8::/32

Ipv4 common prefix: **10.1.0.0/16**

Ipv4 common suffix: 0.0.0.1/8

2001:DB8::/32 Tunnel0

::/0 Tunnel0 or

::/0 2001:DB8:0300::D55C:3