Домашнее задание 1 МАТЕМАТИЧЕСКИЙ АНАЛИЗ-I

Срок сдачи: 30 сентября

Количество сданных задач равняется оценке за листок.

- **1.** Докажите континуальность интервала (a, b) для всяких $a, b \in \mathbb{R}$.
- 2. Докажите иррациональность следующих чисел

(a)
$$\sqrt{12}$$
; (b) $2^{\frac{1}{2}} + 3^{\frac{1}{3}}$.

- **3.** Докажите, что не существует такого счётного набора P числовых последовательностей, что для всякой последовательности чисел $(x_n)_{n\in\mathbb{N}}$ найдётся последовательность $(p_n)_{n\in\mathbb{N}}\in P$, для которой $x_n\leqslant p_n$ для всех $n\in\mathbb{N}$.
 - 4. Используя теорему о вложенных промежутках, докажите несчётность отрезка.
 - **5.** Найти, при каких $a \in \mathbb{R}$ множество $\{a^n/n! \mid n \in \mathbb{N}\}$ ограничено.
- **6.** Пусть множество $A \subset \mathbb{R}$ открыто, а $B \subset \mathbb{R}$ замкнуто. Докажите, что множество $A \setminus B$ открыто, а $B \setminus A$ замкнуто. Выведите отсюда, что множество открыто тогда и только тогда, когда дополнение к нему замкнуто и замкнуто тогда и только тогда, когда дополнение к нему открыто.
- **7.** Докажите, что всякая система непересекающихся интервалов на прямой не более чем счётна.
 - 8. Докажите, что интервал является связным.
- **9*.** Докажите, что $\forall \alpha \in \mathbb{R}, \alpha > 0, \forall M \in \mathbb{N} \ \exists p,q \in \mathbb{N}, q > M, |\alpha \frac{p}{q}| \leqslant q^{-2}$. Иными словами, любое вещественное число приближается с точностью до q^{-2} бесконечным множеством рациональных чисел вида p/q.
- 10. Доказать, что из всякого набора интервалов на прямой можно выбрать конечный или счетный поднабор с тем же объединением.
- **11.** Пусть упорядоченное поле $\mathbb F$ связно. Докажите, что $\mathbb F = \mathbb R$, то есть в $\mathbb F$ выполнена аксиома непрерывности.

Звёздочкой помечены задачи повышенной сложности.