ECM305 Sistemas Eletrônicos

Conversão A/D e D/A

Sergio Ribeiro Augusto

Objetivos

- Conceitos de amostragem e quantização
- Principais parâmetros
- Tipos de conversores

Processamento Digital de Sinais

- Muitos sinais físicos, tais como os fornecidos por transdutores existem na forma analógica.
- Tais sinais devem ser convertidos para a forma digital de maneira que possam ser tratados e processados em microcontroladores /microprocessadores e/ou computadores.
- Devemos então ter um *sistema de aquisição de dados* que nos permita um "*processamento digital de sinais*" (Ex: operações aritméticas, filtragem, etc..).
- Da mesma forma, tendo o sinal sido tratado digitalmente, muitas vezes precisamos transformar tal sinal em um sinal analógico através de conversores digitais analógicos (ex: sinal de áudio).

Processamento Digital de Sinais: Arquitetura Típica

Amostragem de Sinais Analógicos

- O princípio do processamento digital é o de amostrar o sinal analógico (*Sample & Hold*) e depois quantizá-lo em um número binário (conversão A/D).
- Alguns conversores A/D comerciais agregam as duas funções em um único componente.

Amostragem de Sinais Analógicos (cont.)

- A chave fecha periodicamente sob o comando de um sinal periódico.
- τ (pequeno) é o tempo de fechamento da chave e T é o período (Frequência de amostragem f=1/T).
- As amostras são armazenadas no capacitor.
- Cada amostra vai alimentar o conversor Analógico-Digital (A/D) o qual fornece um número binário proporcional ao valor amostrado (quantização e codificação).

Teorema da Amostragem

- A frequência de amostragem f deve ser maior que duas vezes a maior frequência do sinal amostrado f_{MAX} (Teorema de Nyquist $\rightarrow f > 2*f_{\text{MAX}}$).
- Se $f < 2*f_{MAX}$ ocorre um fenômeno denominado *aliasing*:

Filtro Anti-Aliasing

- Um Filtro Passa baixas (FPB) é usado como filtro *anti-aliasing* precedendo o *Sample & Hold* (Amostrador e Segurador);
- Tal filtro é dimensionado de modo a ter uma largura de faixa que deixa passar frequências do sinal analógico $(f_{\rm MAX})$ inferiores à metade da frequência de amostragem, evitando erros devido ao *aliasing* e garantindo o teorema de Nyquist $(f > 2*f_{\rm MAX})$

QUANTIZAÇÃO

- Consideremos inicialmente um sinal analógico de 0 a 4V.
- Para fins ilustrativos e por simplicidade vamos inicialmente assumir que desejemos converter este sinal para a forma digital utilizando 2 bits (conversor A/D de 2 bits).
- Com 2 bits podemos representar $2^2 = 4$ valores diferentes de 0 a 3.
- A resolução do conversor seria então $4/2^2 = 1$ V.
- Um sinal analógico de 0V será representado por 00, 1V por 01, 2V por 10, 3V por 11 (a saída binária satura em 3V).
- Note que uma tensão de 0,0V irá resultar no mesmo número binário que 0,9V.
- Neste esquema de codificação temos um *erro de quantização* de 0 a 1LSB (1 LSB = $4/2^2 = 1$ V).
- De maneira a termos o <u>erro</u> de quantização simétrico (+/- 1/2LSB) é comum, e transparente para o usuário, que a tensão analógica seja deslocada internamente no conversor A/D de uma tensão equivalente a ½ LSB
- Nas próximas figuras e considerações consideraremos tal deslocamento.

Resolução e Quantização

 A Resolução de um Conversor A/D é a menor mudança no sinal analógico que irá resultar em uma mudança no sinal digital de saída

Resolução =
$$1LSB = \Delta V = V_{FSR}/2^n$$

Onde V_{FSR} á a faixa de tensão de entrada sob a qual o conversor opera (depende de sua tensão de referência), Também chamada de Faixa Dinâmica do conversor.

• Quanto maior a resolução menor o erro de quantização.

Exemplo: Se um AD tiver 10 bits e a faixa da tensão de entrada analógica for 10V, a resolução é 10/1024 = 9,8 mV

Resolução e Quantização Conversão A/D

Como já comentado, é usual definir a tensão analógica de entrada correspondente a um dado código binário pelo centro do código que fica entre duas regiões de transição adjacentes, o que requer que a primeira transição ocorra a 1/2LSB.

Então, a tensão de entrada analógica correspondente à saída digital máxima (ex: 111) é definida por (V_{FS} - 1LSB), onde V_{FS} é a tensão de fundo de escala. Ou seja, se a tensão de fundo de escala for de 8 V (conversor 0V a 8V), com um conversor de 3 bits, a tensão do conversor que fornece o código 111 seria $\frac{2^{n}-1}{2^{n}}$ V_{FS} ,ou (8V -1V) = 7V, visto

seria
$$\frac{2}{2^n}$$
 V_{FS} ,ou (8V -1V) = 7V, visto
que 1 LSB = 1V

Efeito Aumentando a Resolução e Taxa de Amostragem

Exemplo

• Considere um transdutor de temperatura (termopar) que forneça uma saída de 0,5mV/°C. Qual o tamanho necessário da palavra binária (número de bits) do conversor AD de maneira que possamos representar uma temperatura na faixa 0-200°C com uma resolução de 0,5°C ?

Solução:

- Faixa da tensão de entrada $V_{ESR} = 200^{\circ}C *0.5 \text{ mV/}{^{\circ}C} = 100 \text{ mV}$
- Resolução = $1LSB = \Delta V = V_{FSR}/2^n$
- Para uma resolução de 0,5 °C devemos ser capazes de detectar uma sinal do sensor de 0,5 °C * 0,5 mV/°C = 0,25 mV
 - Então: 0,25 mV =100 mV /2ⁿ \rightarrow n = 8,6 \rightarrow é necessária uma palavra de 9 bits

Resolução e Quantização Conversão D/A

Simbologia Conversores AD e DA

Conversores unipolares e bipolares, *single ended* (terminação simples) e diferenciais

Codificação Unipolar

• Em sistemas de conversão de dados, o método de codificação está relacionado com o range (ou span) da tensão analógica de entrada (ou *span*) de um ADC ou o range da tensão de saída analógica de um DAC. O caso mais comum é quando a tensão de entrada do ADC ou a saída do DAC é sempre um a tensão positiva (unipolar).

BASE 10 NUMBER	SCALE	+10V FS	BINARY	GRAY	
+15	+FS - 1LSB = +15/16 FS	9.375	1111	1000	
+14	+7/8 FS	8.750	1110	1001	
+13	+13/16 FS	8.125	1101	1011	
+12	+3/4 FS	7.500	1100	1010	
+11	+11/16 FS	6.875	1011	1110	
+10	+5/8 FS	6.250	1010	1111	
+9	+9/16 FS	5.625	1001	1101	
+8	+1/2 FS	5.000	1000	1100	
+7	+7/16 FS	4.375	0111	0100	
+6	+3/8 FS	3.750	0110	0101	
+5	+5/16 FS	3.125	0101	0111	
+4	+1/4 FS	2.500	0100	0110	
+3	+3/16 FS	1.875	0011	0010	
+2	+1/8 FS	1.250	0010	0011	
+1	1LSB = +1/16 FS	0.625	0001	0001	
0	0	0.000	0000	0000	

Códigos binários unipolares – conversor de 4 bits

Codificação Bipolar

Em muitos sistemas é desejável representar quantidades analógicas positivas e negativas com códigos binários. Dentre as várias formas disponíveis, "binário deslocado" (offset binary) e

"complemento de dois" são as mais utilizadas.

BASE 10 NUMBER	SCALE	±5V FS	OFFSET BINARY	TWOS COMP.	ONES COMP.	SIGN MAG.
+7	+FS - 1LSB = +7/8 FS	+4.375	1111	0111	0111	0111
+6	+3/4 FS	+3.750	1110	0110	0110	0110
+5	+5/8 FS	+3.125	1101	0101	0101	0101
+4	+1/2 FS	+2.500	1100	0100	0100	0100
+3	+3/8 FS	+1.875	1011	0011	0011	0011
+2	+1/4 FS	+1.250	1010	0010	0010	0010
+1	+1/8 FS	+0.625	1001	0001	0001	0001
0	0	0.000	1000	0000	*0000	*1000
-1	- 1/8 FS	-0.625	0111	1111	1110	1001
-2	- 1/4 FS	-1.250	0110	1110	1101	1010
-3	- 3/8 FS	-1.875	0101	1101	1100	1011
-4	-1/2 FS	-2.500	0100	1100	1011	1100
-5	-5/8 FS	-3.125	0011	1011	1010	1101
-6	-3/4 FS	-3.750	0010	1010	1001	1110
-7	- FS + 1LSB = -7/8 FS	-4.375	0001	1001	1000	1111
-8	- FS	-5.000	0000	1000		
						SIGN MAG.
NOT NORMALLY USED					0000	0000

Códigos binários bipolares – conversor de 4 bits

001

010 011 100 101 DIGITAL INPUT (OFFSET BINARY)

Exemplo

• Um sistema de aquisição de dados tem um *range* ou faixa de fundo de escala de +/- 10V (bipolar) e usa um conversor AD de 12 bits. Um transdutor de torque que tem um fundo de escala de 5V de saída é conectado ao sistema, sendo que o fundo de escala do mesmo corresponde a um torque de 100 ft-lbs. Qual a resolução do sistema em ft-lbs, ou seja, qual a menor mudança que o sistema consegue medir em ft-lbs?

Resolução

• Resolução do sistema em volts:

Resolução do sistema em volts =
$$\frac{10-(-10)}{2^{12}} = \frac{20}{2^{12}} = 1$$
 LSB

• Resolução da medida em unidades de engenharia :

Menor valor Lido em volts -----→Resolução em ft-lbs (1 LSB)

Resolução (ft-lbs) = 1LSB *
$$\frac{100}{5}$$

Resolução (ft-lbs) =
$$\frac{20}{2^{12}} * \frac{100}{5} = 0,098$$
 ft-lbs

Conversor A/D com Vários Canais de Entrada

- É comum termos microcontroladores com várias entradas de conversão A/D.
- Tipicamente o
 microcontrolador tem
 um único conversor
 A/D e utiliza-se um
 MUX para direcionar
 qual entrada será
 convertida em um
 dado instante.

Principais Parâmetros de um Conversor A/D

- Faixa dinâmica: é a faixa de amplitude de operação do sinal analógico (em geral uma tensão) dentro da região de trabalho do conversor. O sinal de entrada deve ser condicionado de forma a possibilitar sua máxima utilização dentro dessa faixa dinâmica.
- **Resolução**: é a menor quantidade que pode ser convertida dentro da faixa dinâmica do sinal de entrada. É especificada pelo número de bits do conversor. Tipicamente de 8 a 20 bits.
- **Tempo de conversão**: é o tempo necessário para se obter o valor na saída (digital para o A/D; analógico para o D/A) a partir do momento em que o sinal de entrada foi aplicado e iniciado o processo de conversão. Depende da estrutura do circuito utilizado e da sua resolução. De modo geral, quanto maior a resolução, maior o tempo de conversão Este tempo é importante para definir a máxima frequência possível a ser convertida a partir de um sinal de entrada variante no tempo.
- Erro de linearidade: expressa o desvio do resultado de conversão de uma reta ideal. É expresso em uma porcentagem do valor total ou em número de bits. Exemplo: Um erro de linearidade de \pm 0,4% equivale a uma linearidade de \pm 1 bit num conversor de 8 bits.

Tipos de Conversores A/D

- Rampa Digital;
- Dupla rampa;
- Aproximação Sucessivas (SAR);
- Flash;
- Pipeline -pedir para pesquisar;
- Delta-Sigma A/D pedir para pesquisar;

Conversor A/D Rampa Digital (single slope)

Conversor A/D Rampa Digital (cont.)

ADC dupla rampa (dual slope)

- Esta arquitetura resulta insensível a erros nos valores dos componentes.
- O tempo medido pelo contador não depende da constante de tempo *RC* do integrador.

ADC de Aproximação Sucessivas (SAR)

ADC de Aproximação Sucessivas - Exemplo

• Exemplo conversão do valor analógeo 10,4 V : Sequência 1000(8), 1100(12), 1010(10),1011(11), retorna para 1010(10)

SAR – Exemplo de componente comercial

Pequeno Comparativo

ADC FLASH

- Usa 2^N resistores para formar divisores de tensão
- Usa 2^N -1 comparadores para determinar em qual dos 2^N intervalos de tensão a tensão de entrada V_A está.

Entrada

• É o conversor mais rápido.

Outros: Delta-Sigma e Pipeline

Pesquise a respeito destes Conversores!

Escolha do ADC (ref. Maxim)

	FLASH (Parallel)	SAR	DUAL SLOPE (Integrating ADC)	PIPELINE	SIGMA DELTA
Pick This Architecture if	Double	Medium to high resolution (8 to 16bit), 5Msps and	signals, high resolution, low power	few Msps to	High resolution, low to medium speed, no precision external components, simultaneous 50/60Hz
you want:	not primary concern?	under, low power, small size.	good noise performance ICL7106.	power consumption than flash.	rejection, digital filter reduces anti-aliasing requirements.

Conversores DA (DAC)

- Exemplos de Técnicas de Conversão:
 - Rede Resistiva com pesos binários;
 - Rede R-2R
 - PWM
 - Oversampling Delta-sigma:

Rede Resistiva com Pesos Binários

- Esta técnica baseia-se em um amplificador-somador, onde se consegue a conversão, controlando-se o ganho em cada entrada.
- A desvantagem desse circuito é a necessidade de uma grande gama de valores de resistores de precisão, tornando difícil a sua implementação.

$$V_S = -(Rr/R)[(Va/1) + (Vb/2) + (Vc/4) + (Vd/8)]$$

$$V_S = -[(V_a/1) + (V_b/2) + (V_c/4) + (V_d/8)]$$
 (Rr = R)

Na Tabela se supõe que as entradas lógicas 0 é 0 V e 1 é 5 V e Rr = R. Cada Passo digital = 0,625 V

A (Va)	B (Vb)	C (Vc)	D (Vd)	Vs (V)
0	0	0	0	0,000
0	0	0	1	0,625
0	0	1	0	1,250
0	0	1	1	1,875
0	1	0	0	2,500
0	1	0	1	3,125
0	1	1	0	3,750
0	1	1	1	4,375
1	0	0	0	5,000
1	0	0	1	5,625
1	0	1	0	6,250
1	0	1	1	6,875
1	1	0	0	7,500
1	1	0	1	8,125
1	1	1	0	8,750
1	1	1	1	9,375

Rede R-2R

- Utiliza apenas dois valores resistivos: **R e 2R**.
- Va é o bit mais significativo.

$$Vs = -Vr \frac{R_r}{R} \left[\frac{V_a}{2} + \frac{V_b}{2^2} + \frac{V_c}{2^3} + \frac{V_d}{2^4} \right]$$

Va, Vb,...Vd → valores binários [0,1] Vr → tensão analógica de Va, Vb,..,Vd qdo em nível '1'.

Modulação em Largura de Pulso PWM

- Baseia-se na geração de um trem de pulsos com largura variável (*Pulse Width Modulation*) conforme o valor digital do sinal a ser convertido.
- Passa-se o trem de pulsos por um filtro passa-baixas, de maneira a se extrair apenas a componente contínua do sinal, obtendo-se a conversão para sinal analógico
- Muito utilizado em sistemas microprocessados, sendo o método mais econômico de se efetuar a conversão D/A: basta o programa gerar um trem de pulsos em uma saída digital.
- É uma técnica de a baixa velocidade de conversão.

Delta – Sigma

- Técnica que utiliza teoria de processamento de sinais.
- Obtém-se conversores velozes e precisos.
- Utiliza conversor D/A de 1 bit
- Muito utilizada em equipamentos digitais de áudio.

Principais Parâmetros de um Conversor D/A

- **VELOCIDADE/TAXA DE CONVERSÃO**: taxa de conversão do sinal digital para seu equivalente analógico.
- **RESOLUÇÃO** (Tamanho do degrau): Depende do número de bits (N). Menor incremento analógico correspondente à mudança de 1 LSB. Resolução = $V_{LSB} = V_{ref}/2^{N}$
- **PRECISÃO:** Erro de Fundo de Escala, Erro de Linearidade. É o desvio máximo da saída ideal expresso como uma percentagem do fundo de escala.
- OFFSET: É o erro constante somando aos valores da saída.
- **TEMPO DE ESTABILIZAÇÃO:** É o tempo necessário para o sinal de saída estabilizar dentro de +/- ½ LSB do seu valor final após uma mudança no sinal de entrada.

• **TEMPO DE CONVERSÃO** = tempo de propagação + tempo de estabilização. Tempo de propagação corresponde ao tempo que decorre entre uma mudança na entrada e a correspondente mudança na saída.

Exemplo Conversor D/A: AD557

- Conversor digital analógico de 8 bits fabricado pela Analog Devices
- Possui *latches* de entrada para simplificar o interfaceamento com microprocessadores e microcontroladores.
- Estes *latches* são controlados pelas entradas de *Chip Select* (CS) e *Chip Enable* (CE), ambas ativas em nível baixo.

Estudo de caso – Ex. ENADE

As vibrações em um ônibus em movimento serão analisadas através da medida da aceleração durante períodos de tempo, por meio do sistema de aquisição formado por quatro módulos: um sensor de aceleração, um amplificador, um Sample & Hold e um conversor A/D, conforme esquema a seguir.

O sensor é um acelerômetro que converte linearmente leituras entre -1,0 m/s² e +1,0 m/s² em sinal de tensão V_{in} entre -800 mV e +800 mV. Esse sinal passa por um amplificador operacional com ganho de tensão dado por $Av = 1 + R_{t}/R_{p}$, em que $R_{t} = R_{g} = 10 \text{ k}\Omega$. Uma vez amplificado, o sinal V_{out} é submetido a um Sample & Hold, cuja chave de amostragem pode ser controlada por Software através de seu ponto de controle "c". O conversor A/D converte linearmente valores entre -2,00 V e + 2,00 V para valores binários que podem, então, ser lidos por Software. Com esse sistema de aquisição, serão feitas coletas de dados de 1 000 aquisições a uma taxa de 500 aquisições por segundo, ou seja, cada coleta dura dois segundos.

Estudo de caso – Ex. ENADE (cont.)

A análise desse sistema de aquisição de dados revela que

- O o amplificador tem ganho unitário e alta impedância de entrada, isolando o sensor do resto do circuito.
- O conversor A/D deverá ser de 12 ou mais bits, para que as leituras obtidas tenham uma resolução de 0,001 m/s².
- O software que fará o processamento da aquisição necessitará trocar o sinal da leitura feita, já que a montagem do amplificador é inversora.
- O a faixa de passagem do amplificador deve ficar pelo menos entre 0 e 250 Hz, correspondentes à taxa de Nyquist, já que ocorrerão 500 aquisições por segundo.
- O sample & Hold vai ser ligado no início da coleta de dados e desligado ao seu final, com a chave mantida fechada durante todos os 2 segundos de cada coleta.

Resposta: B