Gradient Estimators for Implicit Models

Yingzhen Li

University of Cambridge

Joint work with Rich Turner (Cambridge) Special thanks to Qiang Liu (Dartmouth \rightarrow UT Austin)

Based on Chapter 5,6 of my (draft) thesis arXiv 1705.07107

- Bayesian inference: integrating out the unobserved variables in your model
 - latent variables in a generative model
 - weight matrices in a Bayesian neural network
- "We do approximate inference because exact inference is intractable."

- Bayesian inference: integrating out the unobserved variables in your model
 - latent variables in a generative model
 - weight matrices in a Bayesian neural network
- "We do approximate inference because exact inference is intractable."

What does "tractability" really mean for an approximate inference algorithm?

Bayes Rule

$$p(z|x) = \frac{p(z)p(x|z)}{p(x)}$$

- Inference: given some function F(z) in interest, want $\mathbb{E}_{p(z|x)}[F(z)]$
 - predictive distribution $p(y|x, \mathcal{D}) = \mathbb{E}_{p(z|\mathcal{D})}[p(y|x, z)]$
 - evaluate posterior $p(z \in A|x) = \mathbb{E}_{p(z|x)}[\delta_A]$
- In this talk we assume F(z) is cheap to compute given z

- In most of the time we cannot compute p(z|x) efficiently
- Approximate inference: find q(z|x) in some family Q such that $q(z|x) \approx p(z|x)$
- In inference time: Monte Carlo approximation:

$$\mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x})}\left[F(\boldsymbol{z})\right] pprox \frac{1}{K} \sum_{k=1}^{K} F(\boldsymbol{z}^k), \quad \boldsymbol{z}^k \sim q(\boldsymbol{z}|\boldsymbol{x})$$

- In most of the time we cannot compute p(z|x) efficiently
- Approximate inference: find q(z|x) in some family $\mathcal Q$ such that $q(z|x) \approx p(z|x)$
- In inference time: Monte Carlo approximation:

$$\mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x})}\left[F(\boldsymbol{z})\right] pprox \frac{1}{K} \sum_{k=1}^{K} F(\boldsymbol{z}^k), \quad \boldsymbol{z}^k \sim q(\boldsymbol{z}|\boldsymbol{x})$$

Tractability requirement: fast sampling from q

Optimisation-based methods, e.g. variational inference:

• Optimise a (usually parametric) q distribution to approximate the exact posterior

$$q^*(\boldsymbol{z}|\boldsymbol{x}) = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}|\boldsymbol{x})] = \operatorname*{arg\,max}_{q \in \mathcal{Q}} \mathbb{E}_q[\log p(\boldsymbol{z},\boldsymbol{x})] + \mathbb{H}[q(\boldsymbol{z}|\boldsymbol{x})]$$

ullet When q or p is complicated, usually approximate the expectation by Monte Carlo

$$\mathcal{L}_{\mathsf{VI}}^{\mathsf{MC}}(q) = rac{1}{K} \sum_{k=1}^K \log p(oldsymbol{x}, oldsymbol{z}^k) - \log q(oldsymbol{z}^k | oldsymbol{x}), \quad oldsymbol{z}^k \sim q(oldsymbol{z} | oldsymbol{x})$$

With Monte Carlo approximation methods, inference is done by

$$\mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x})}\left[F(\boldsymbol{z})\right] pprox \frac{1}{K} \sum_{k=1}^{K} F(\boldsymbol{z}^k), \quad \boldsymbol{z}^k \sim q(\boldsymbol{z}|\boldsymbol{x})$$

4

Optimisation-based methods, e.g. variational inference:

Optimise a (usually parametric) q distribution to approximate the exact posterior

$$q^*(\boldsymbol{z}|\boldsymbol{x}) = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z}|\boldsymbol{x})] = \operatorname*{arg\,max}_{q \in \mathcal{Q}} \mathbb{E}_q[\log p(\boldsymbol{z},\boldsymbol{x})] + \mathbb{H}[q(\boldsymbol{z}|\boldsymbol{x})]$$

ullet When q or p is complicated, usually approximate the expectation by Monte Carlo

$$\mathcal{L}_{\mathsf{VI}}^{\mathsf{MC}}(q) = rac{1}{K} \sum_{k=1}^K \log p(oldsymbol{x}, oldsymbol{z}^k) - \log q(oldsymbol{z}^k | oldsymbol{x}), \quad oldsymbol{z}^k \sim q(oldsymbol{z} | oldsymbol{x})$$

With Monte Carlo approximation methods, inference is done by

$$\mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x})}\left[F(\boldsymbol{z})\right] \approx \frac{1}{K} \sum_{k=1}^{K} F(\boldsymbol{z}^k), \quad \boldsymbol{z}^k \sim q(\boldsymbol{z}|\boldsymbol{x})$$

Tractability requirement: fast sampling and fast density (gradient) evaluation (only for optimisation)

Is it necessary to evaluate the (approximate) posterior density?

Three reasons why I think it is not necessary:

- if yes, might restrict the approximation accuracy
- if yes, visualising distributions in high dimensions is still an open research question
- most importantly, MC integration does not require density evaluation

Wild approximate inference: Why

Can we design efficient approximate inference algorithms that enables fast inference, without adding more requirements to q?

Why this research problem is interesting:

- Having the best from both MCMC and VI
- Allowing exciting new applications

Wild approximate inference: Why

VΙ

- Need fast density (ratio) evaluation
- Less accurate
- Faster inference
- Easy to amortise (memory efficient)

MCMC

- Just need to do sampling
- Very accurate
- Need large T thus slower
- Not re-usable when p is updated

We want to have the best from both worlds!

Wild approximate inference: Why

Meta learning for approximate inference:

- Currently we handcraft MCMC algorithms and/or approximate inference optimisation objectives
- Can we learn them?

Wild approximate inference: How

We have seen/described/developed 4 categories of approaches:

- Variational lower-bound approximation (based on density ratio estimation)
 Li and Liu (2016), Karaletsos (2016); Huszár (2017); Tran et al. (2017); Mescheder et al. (2017); Shi et al. (2017)
- Alternative objectives other than minimising KL Ranganath et al. (2016); Liu and Feng (2016)
- Amortising deterministic/stochastic dynamics
 Wang and Liu (2016); Li, Turner and Liu (2017); Chen et al. (2017); Pu et al. (2017)
- Gradient approximations (this talk)
 Huszár (2017); Li and Turner (2017)

Also see Titsias (2017)

Alternative idea: approximate the gradient

Variational lower-bound: assume $extbf{z} \sim q_{\phi} \Leftrightarrow \epsilon \sim \pi(\epsilon), extbf{z} = extbf{f}_{\phi}(\epsilon)$

$$\mathcal{L}_{\mathsf{VI}}(q_{oldsymbol{\phi}}) = \mathbb{E}_{\pi}\left[\log p(\pmb{x}, \pmb{f_{\phi}}(\pmb{\epsilon}, \pmb{x}))
ight] + \mathbb{H}[q(\pmb{z}|\pmb{x})]$$

During optimisation we only care about the gradients!

The gradient of the variational lower-bound:

$$\nabla_{\phi} \mathcal{L}_{\mathsf{VI}}(q_{\phi}) = \mathbb{E}_{\pi} \left[\nabla_{f} \log p(\mathbf{x}, f_{\phi}(\epsilon, \mathbf{x}))^{\mathsf{T}} \nabla_{\phi} f_{\phi}(\epsilon, \mathbf{x}) \right] + \nabla_{\phi} \mathbb{H}[q(\mathbf{z}|\mathbf{x})]$$

Alternative idea: approximate the gradient

Variational lower-bound: assume $extbf{z} \sim q_{\phi} \Leftrightarrow \epsilon \sim \pi(\epsilon), extbf{z} = extbf{f}_{\phi}(\epsilon)$

$$\mathcal{L}_{\mathsf{VI}}(q_{oldsymbol{\phi}}) = \mathbb{E}_{\pi}\left[\log p(\pmb{x}, \pmb{f_{\phi}}(\pmb{\epsilon}, \pmb{x}))
ight] + \mathbb{H}[q(\pmb{z}|\pmb{x})]$$

During optimisation we only care about the gradients!

The gradient of the variational lower-bound:

$$abla_{\phi} \mathcal{L}_{\mathsf{VI}}(q_{\phi}) = \mathbb{E}_{\pi} \left[
abla_{f} \log p(\pmb{x}, \pmb{f}_{\phi}(\pmb{\epsilon}, \pmb{x}))^{\mathsf{T}}
abla_{\phi} \pmb{f}_{\phi}(\pmb{\epsilon}, \pmb{x}) \right] +
abla_{\phi} \mathbb{H}[q(\pmb{z}|\pmb{x})]$$

The gradient of the entropy term:

$$\nabla_{\phi} \mathbb{H}[q(\mathbf{z}|\mathbf{x})] = -\mathbb{E}_{\pi} \left[\nabla_{\mathbf{f}} \log q(\mathbf{f}_{\phi}(\epsilon, \mathbf{x})|\mathbf{x})^{\mathsf{T}} \nabla_{\phi} \mathbf{f}_{\phi}(\epsilon, \mathbf{x})] \right] - \underbrace{\mathbb{E}_{q} \left[\nabla_{\phi} \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]}_{\boldsymbol{\phi}}$$

this term is 0

It remains to approximate $\nabla_z \log q(z|x)!$ (in a cheap way, don't want double-loop)

Gradient estimators (kernel based)

KDE plug-in gradient estimator for $\nabla_{\mathbf{x}} \log q(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$:

• first approximate q(x) using kernel density estimator $\hat{q}(x)$:

$$\hat{q}(\mathbf{x}) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{K}(\mathbf{x}, \mathbf{x}^k), \quad \mathbf{x}^k \sim q(\mathbf{x})$$

ullet then approximate $abla_x \log q(x) pprox
abla_x \log \hat{q}(x)$

Gradient estimators (kernel based)

Score matching gradient estimators: find $\hat{m{g}}(m{x})$ to minimise the ℓ_2 error

$$\mathcal{F}(\hat{\boldsymbol{g}}) := \mathbb{E}_q \left[||\hat{\boldsymbol{g}}(\boldsymbol{x}) - \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x})||_2^2 \right]$$

Using integration by parts we can rewrite: (Hyvärinen 2005)

$$\mathcal{F}(\hat{\boldsymbol{g}}) = \mathbb{E}_q \left[||\hat{\boldsymbol{g}}(\boldsymbol{x})||_2^2 + 2 \sum_{j=1}^d \nabla_{x_j} \hat{g}_j(\boldsymbol{x}) \right] + C$$

Sasaki et al. (2014) and Strathmann et al. (2015): define

$$\hat{\mathbf{g}}(\mathbf{x}) = \sum_{k=1}^{K} a_k \nabla_{\mathbf{x}} \mathcal{K}(\mathbf{x}, \mathbf{x}^k), \quad \mathbf{x}^k \sim q(\mathbf{x})$$

and find the best $\mathbf{a} = (a_1, ..., a_K)$ by minimising the ℓ_2 error.

Define h(x): a (column vector) test function satisfying the boundary condition

$$\lim_{x\to\infty}q(x)h(x)=0.$$

Then we can derive Stein's identity using integration by parts:

$$\mathbb{E}_q[\boldsymbol{h}(\boldsymbol{x})\nabla_{\boldsymbol{x}}\log q(\boldsymbol{x})^{\mathsf{T}} + \nabla_{\boldsymbol{x}}\boldsymbol{h}(\boldsymbol{x})] = \boldsymbol{0}$$

Invert Stein's identity to obtain $\nabla_x \log q(x)$!

Main idea: invert Stein's identity:

$$\mathbb{E}_q[\boldsymbol{h}(\boldsymbol{x})\nabla_{\boldsymbol{x}}\log q(\boldsymbol{x})^{\mathsf{T}} + \nabla_{\boldsymbol{x}}\boldsymbol{h}(\boldsymbol{x})] = \boldsymbol{0}$$

1. MC approximation to Stein's identity:

$$\frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} - \boldsymbol{h}(\boldsymbol{x}^k) \nabla_{\boldsymbol{x}^k} \log q(\boldsymbol{x}^k)^\mathsf{T} + \mathrm{err} = \frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \nabla_{\boldsymbol{x}^k} \boldsymbol{h}(\boldsymbol{x}^k), \quad \boldsymbol{x}^k \sim q(\boldsymbol{x}^k),$$

Main idea: invert Stein's identity:

$$\mathbb{E}_q[\boldsymbol{h}(\boldsymbol{x})\nabla_{\boldsymbol{x}}\log q(\boldsymbol{x})^{\mathsf{T}} + \nabla_{\boldsymbol{x}}\boldsymbol{h}(\boldsymbol{x})] = \boldsymbol{0}$$

1. MC approximation to Stein's identity:

$$\frac{1}{K} \sum_{k=1}^K -\boldsymbol{h}(\boldsymbol{x}^k) \nabla_{\boldsymbol{x}^k} \log q(\boldsymbol{x}^k)^\mathsf{T} + \mathrm{err} = \frac{1}{K} \sum_{k=1}^K \nabla_{\boldsymbol{x}^k} \boldsymbol{h}(\boldsymbol{x}^k), \quad \boldsymbol{x}^k \sim q(\boldsymbol{x}^k),$$

2. Rewrite the MC equations in matrix forms: denoting

$$\mathbf{H} = (\mathbf{h}(\mathbf{x}^1), \cdots, \mathbf{h}(\mathbf{x}^K)), \quad \overline{\nabla}_{\mathbf{x}} \overline{\mathbf{h}} = \frac{1}{K} \sum_{k=1}^K \nabla_{\mathbf{x}^k} \mathbf{h}(\mathbf{x}^k),$$
$$\mathbf{G} := (\nabla_{\mathbf{x}^1} \log q(\mathbf{x}^1), \cdots, \nabla_{\mathbf{x}^K} \log q(\mathbf{x}^K))^{\mathsf{T}},$$

Then
$$-\frac{1}{K}\mathbf{HG} + \mathrm{err} = \overline{\nabla_{\mathbf{x}}\mathbf{h}}$$
.

Main idea: invert Stein's identity:

$$\mathbb{E}_q[\mathbf{h}(\mathbf{x})\nabla_{\mathbf{x}}\log q(\mathbf{x})^{\mathsf{T}} + \nabla_{\mathbf{x}}\mathbf{h}(\mathbf{x})] = \mathbf{0}$$

Matrix form:
$$-\frac{1}{K}\mathbf{HG} + \text{err} = \overline{\nabla_{\mathbf{x}}\mathbf{h}}$$
.

3. Now solve a ridge regression problem:

$$\hat{\mathbf{G}}_V^{\mathsf{Stein}} := \mathop{\arg\min}_{\hat{\mathbf{G}} \in \mathbb{R}^{K \times d}} ||\overline{\nabla_{\mathbf{x}} \mathbf{h}} + \frac{1}{K} \mathbf{H} \hat{\mathbf{G}}||_F^2 + \frac{\eta}{K^2} ||\hat{\mathbf{G}}||_F^2,$$

Main idea: invert Stein's identity:

$$\mathbb{E}_q[\boldsymbol{h}(\boldsymbol{x})\nabla_{\boldsymbol{x}}\log q(\boldsymbol{x})^{\mathsf{T}} + \nabla_{\boldsymbol{x}}\boldsymbol{h}(\boldsymbol{x})] = \boldsymbol{0}$$

Matrix form:
$$-\frac{1}{K}\mathbf{HG} + \text{err} = \overline{\nabla_{\mathbf{x}}\mathbf{h}}$$
.

3. Now solve a ridge regression problem:

$$\hat{\mathbf{G}}_V^{\mathsf{Stein}} := \mathop{\arg\min}_{\hat{\mathbf{G}} \in \mathbb{R}^{K \times d}} ||\overline{\nabla_{\mathbf{x}} \boldsymbol{h}} + \frac{1}{K} \mathbf{H} \hat{\mathbf{G}}||_F^2 + \frac{\eta}{K^2} ||\hat{\mathbf{G}}||_F^2,$$

Analytic solution:
$$\hat{\mathbf{G}}_{V}^{\mathsf{Stein}} = -(\mathbf{K} + \eta \mathbf{I})^{-1} \langle \nabla, \mathbf{K} \rangle$$
,

with

$$\mathbf{K} := \mathbf{H}^{\mathsf{T}} \mathbf{H}, \quad \mathbf{K}_{ij} = \mathcal{K}(\mathbf{x}^{i}, \mathbf{x}^{j}) := \mathbf{h}(\mathbf{x}^{i})^{\mathsf{T}} \mathbf{h}(\mathbf{x}^{j}), \\ \langle \nabla, \mathbf{K} \rangle := \mathcal{K} \mathbf{H}^{\mathsf{T}} \overline{\nabla_{\mathbf{x}} \mathbf{h}}, \quad \langle \nabla, \mathbf{K} \rangle_{ij} = \sum_{k=1}^{K} \nabla_{\mathbf{x}_{j}^{k}} \mathcal{K}(\mathbf{x}^{i}, \mathbf{x}^{k}).$$

Gradient estimators: comparisons

Comparing KDE plugin gradient estimator and Stein gradient estimator: for translation invariant kernels:

$$\hat{\textbf{G}}^{\mathsf{KDE}} = -\mathsf{diag}(\textbf{K1})^{-1}\langle \nabla, \textbf{K} \rangle$$

$$\hat{\mathbf{G}}_V^{\mathsf{Stein}} = -(\mathbf{K} + \eta \mathbf{I})^{-1} \langle
abla, \mathbf{K}
angle$$

When approximating $\nabla_{\mathbf{x}^k} \log q(\mathbf{x}^k)$:

- KDE: only use $\mathcal{K}(\mathbf{x}^j, \mathbf{x}^k)$
- Stein: use all $\mathcal{K}(\mathbf{x}^j, \mathbf{x}^i)$ even for those $i \neq k$

more sample efficient!

Gradient estimators: comparisons

Compare to the score matching gradient estimator:

Score matching

- Min. expected ℓ₂ error (a stronger divergence)
- Parametric approx. (introduce approx. error)
- Repeated derivations for different kernels

Stein

- Min. KSD

 (a weaker divergence)
- Non-parametric approx. (no approx. error)
- Ubiquitous solution for any kernel

KSD: Kernelised Stein discrepancy (Liu et al. 2016; Chwialkowski et al. 2016)

Example: meta-learning for approximate inference

• learn an approx. posterior sampler for NN weights

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \zeta \Delta_{\boldsymbol{\phi}}(\boldsymbol{\theta}_t, \nabla_t) + \boldsymbol{\sigma}_{\boldsymbol{\phi}}(\boldsymbol{\theta}_t, \nabla_t) \odot \boldsymbol{\epsilon}_t, \quad \boldsymbol{\epsilon}_t \sim \mathcal{N}(\boldsymbol{\epsilon}; \boldsymbol{0}, \boldsymbol{I}), \\ \nabla_t &= \nabla_{\boldsymbol{\theta}_t} \left[\frac{N}{M} \sum_{m=1}^{M} \log p(y_m | \boldsymbol{x}_m, \boldsymbol{\theta}_t) + \log p_0(\boldsymbol{\theta}_t) \right]. \end{aligned}$$

- coordinates of $\Delta_{\phi}(\theta_t, \nabla_t)$ and $\sigma_{\phi}(\theta_t, \nabla_t)$ are parameterised by MLPs
- training objective: an MC approximation of

$$\sum_t \mathcal{L}_{\mathsf{VI}}(q_t), \quad q_t$$
 is the marginal distribution of $heta_t$

- see whether it generalises to diff. architectures and datasets:
 - train: 1-hidden-layer BNN with 20 hidden units + ReLU, on crabs dataset
 - test: 1-hidden-layer BNN with 50 hidden units + sigmoid, on other datasets

Example: meta-learning for approximate inference

Summary

What we covered today:

- Is density evaluation really necessary for inference tasks?
- Fitting implicit approx. posterior
 by approximating variational lower-bound's gradients
- Designing implicit posterior approximations: big challenge

Thank you!

(BDL workshop tomorrow: training implicit generative models)