The Cross-Correlation package is available on github: https://github.com/keflavich/image_registration.

The goal is to determine the offset between two images with primarily extended structure.

```
In [1]: # import statement (with warnings silenced).
        with warnings.catch warnings():
            warnings.filterwarnings("ignore")
            import image registration
        errmsgs = np.seterr(all='ignore') # silence warning messages about div-by-zero
        Activating auto-logging. Current session state plus future input saved.
        Filename
                      : /Volumes/disk4/gbt/AGBT12B 221 01/ipython log 2012-09-08.py
        Mode
                      : append
        Output logging : True
        Raw input log : False
        Timestamping
                      : False
        State
                      : active
         Logging to /Volumes/disk4/gbt/AGBT12B 221 01/ipython log 2012-09-08.py
In [2]: # create a simulated image by randomly sampling from a power-law power spectrum with
        im1 = image registration.tests.make extended(100)
        # create an offset version corrupted by noise
        subplot(121); img1=imshow(im1)
        subplot(122); img2=imshow(im2)
         80
                               80
         60
         40
                               40
         20
                               20
         0
             20
                 40
                         80
                                0
                                    20
                                       40
                                           60
In [3]: # Run the registration methods 100 times each (and hide the output)
        offsets_n1,eoffsets_n1 = image_registration.tests.compare_methods(im1,im2,noise=0.1)
In [4]: # plot the simulation data
        # (note that the "gaussian" approach is hidden; it was problematic)
        image_registration.tests.plot_compare_methods(offsets_n1,eoffsets_n1,dx=4.76666666,dy
        figure(2); ax=axis([4.7,4.85,-12.23,-12.43])
        figure(1); ax=axis([4.7,4.85,-12.23,-12.43])
        # the outputs below show the x,y standard deviations (i.e., the "simulated error"),
        # the means of the reported errors (i.e., the measured errors)
        # and the ratio of the measured error to the simulated error - should be ~1 if correc
        # the black X is the correct answer
        Standard Deviations: [ 0.00456276  0.00438376  0.00516853  0.00389744  0.
          0.00429528 0.00413325]
        Error Means: [ 0.00497512  0.00497512  0.12037047  0.11054405  0.
                                                                                 0.
          0.00423828 0.0046875 ]
        emeans/stds: [ 1.09037575
                                     1.13489906 23.28909224 28.36321925
                                                                                 nan
                       0.98673067
                                    1.13409595]
                 nan
```


4.72

4.70

4.74

4.76

4.78

4.80

In [5]: # plot the simulation data but zoomed in more (same as above otherwise)
 # (note that the "gaussian" approach is hidden; it was problematic)
 image_registration.tests.plot_compare_methods(offsets_n1,eoffsets_n1,dx=4.76666666,dy
 figure(2); ax=axis([4.74,4.79,-12.32,-12.35])
 figure(1); ax=axis([4.74,4.79,-12.32,-12.35])
 # the outputs below show the x,y standard deviations (i.e., the "simulated error"),
 # the means of the reported errors (i.e., the measured errors)
 # and the ratio of the measured error to the simulated error - should be ~1 if correc
 # the black X is the correct answer

4.82

4.84

Cross Correlation (1)

So how do these methods work? They all use the peak of the cross-correlation, which is most efficiently done via fourier transforms, to determine the offset.

The "cross_correlation_shift" function selects the cross-correlation peak, then finds the sub-pixel shift using a second order Taylor expansion.

The "register_images" function uses some linear algebra + fourier space tricks to upsample the image to determine sub-pixel shifts.

The "chi2_shift" function uses the same trick, but "automatically" determines the upsampling factor based on the $\Delta\chi^2$ values. The peak is identified, as is a region within 1σ (for 2 fitted parameters, $\Delta\chi^2 < 2.3$, then the original image is magnified to include only the 1σ region.

The errors are determined by marginalizing over the other fitted parameter, BUT it is possible to return the full $\Delta \chi^2$ image if you are concerned with correlation.


```
In [7]: # Run the registration methods 100 times each (and hide the output)
    offsets_n5,eoffsets_n5 = image_registration.tests.compare_methods(im1,im2,noise=0.5)
```

```
In [8]: # plot the simulation data
    # (note that the "gaussian" approach is hidden; it was problematic)
    image_registration.tests.plot_compare_methods(offsets_n5,eoffsets_n5,dx=4.76666666,dy
    figure(2); ax=axis([4.5,5.05,-12.63,-12.03])
    figure(1); ax=axis([4.5,5.05,-12.63,-12.03])
    # the outputs below show the x,y standard deviations (i.e., the "simulated error"),
```

```
# the means of the reported errors (i.e., the measured errors)
# and the ratio of the measured error to the simulated error - should be ~1 if correc
# the black X is the correct answer
```

```
Standard Deviations: [ 0.02184051  0.02353286  0.0238039
                                                             0.01956646 0.
  0.02186998
             0.02339381]
Error Means:
              [ 0.00497512  0.00497512
                                        0.13799409
                                                     0.12679361
                                                                             0.
  0.02845703
              0.03056641]
emeans/stds:
              [ 0.22779339  0.21141177  5.79711994  6.48015051
                                                                        nan
nan
  1.30119163 1.30660248]
```


In [9]: # plot the simulation data but zoomed in more (same as above otherwise)
(note that the "gaussian" approach is hidden; it was problematic)
image_registration.tests.plot_compare_methods(offsets_n5,eoffsets_n5,dx=4.766666666,dy
figure(2); ax=axis([4.74,4.79,-12.32,-12.35])
figure(1); ax=axis([4.74,4.79,-12.32,-12.35])
the outputs below show the x,y standard deviations (i.e., the "simulated error"),
the means of the reported errors (i.e., the measured errors)
and the ratio of the measured error to the simulated error - should be ~1 if correc
the black X is the correct answer

```
Standard Deviations: [ 0.02184051 0.02353286 0.0238039
                                                             0.01956646 0.
  0.02186998
             0.02339381]
Error Means:
              [ 0.00497512  0.00497512
                                        0.13799409
                                                    0.12679361
                                                                             0.
  0.02845703
              0.03056641]
emeans/stds:
              [ 0.22779339  0.21141177  5.79711994  6.48015051
                                                                        nan
nan
  1.30119163 1.30660248]
```

4.78

4.79

4.76

4.77

4.75

In [9]:

-0.005

0.000