Теоретическая информатика III, осень 2018 г. Формальные языки и действия над ними. Регулярные выражения. Детерминированные и недетерминированные конечные автоматы. Детерминизация недетерминированных автоматов, преобразование регулярных выражений к автоматам*

Александр Охотин

29 сентября 2018 г.

Содержание

T	Формальные языки и деиствия над ними	J
2	Регулярные выражения	3
3	Детерминированные конечные автоматы (DFA)	4
4	Недетерминированные конечные автоматы (NFA)	6
5	Построение подмножеств (перевод NFA в DFA)	8
6	Преобразование регулярных выражений в автоматы	ę

1 Формальные языки и действия над ними

Символьная строка — это самое естественное для человека представление данных. Символы из заранее заданного набора идут один за другим — такова, например, человеческая речь как последовательность фонем, таковы книги, таковы файлы на компьютере — и так можно представить любые данные.

Сперва задаётся конечное множество символов Σ , называемое алфавитом. В абстрактных примерах элементы Σ обозначаются строчными латинскими буквами из начала алфавита (a, b, \dots) .

 $Cmpo\kappa a$ (англ. string) над алфавитом Σ — это конечная последовательность $w=a_1\dots a_\ell,$ где $\ell\geqslant 0,$ и $a_1,\dots,a_\ell\in \Sigma$ — символы. Строки обычно обозначаются латинскими буквами

^{*}Краткое содержание лекций, прочитанных студентам 2-го курса СПбГУ, обучающимся по программе «математика», в осеннем семестре 2018—2019 учебного года. Страница курса: http://users.math-cs.spbu.ru/~okhotin/teaching/tcs3_2018/.

¹Чистые математики любят называть строки «словами» (words); в информатике же это наименование не используется, и в этом курсе его не будет. В очень старых учебниках строки иногда называют «цепочками» — но так говорить уж точно не стоит.

w (дубль-вэ²), u, v, x, y и z. Например, w = abb — это 3-символьная строка над алфавитом, содержащим символы a и b.

Число символов в строке называется её ∂ линой, $|w| = \ell$. Существует единственная строка длины 0, называемая nycmoй строкой и обозначаемая через ε . Множество всех строк над алфавитом Σ обозначается через Σ^* .

Основная операция над строками — конкатенация, то есть, приписывание одной строки вслед за другой³. Если $u=a_1\dots a_m$ и $v=b_1\dots b_n$ — две строки, то их конкатенация — это строка $u\cdot v=uv=a_1\dots a_mb_1\dots b_n$.

Пример 1. У строки abab восемь различных подстрок: ε , a, b, ab, ba, aba, bab, abab. У неё пять префиксов (ε , a, ab, aba, abab) и пять суффиксов (ε , b, ab, bab, abab).

Обращение строки w, обозначаемое через w^R — это та же самая строка, записанная в обратном порядке: если $w = a_1 \dots a_\ell$, то $w^R = a_\ell \dots a_1$. В частности, $\varepsilon^R = \varepsilon$.

Множества строк называют «формальными языками» или просто «языками». Если Σ — алфавит, то Σ^* — множество всех строк над ним, и языком называется всякое подмножество Σ^* .

Пусть $K, L \subseteq \Sigma^*$. Так как языки — это множества, для них определены обычные действия над множествами.

$$K \cup L = \{ w \mid w \in K \text{ или } w \in L \}$$
 (объединение K и L) $K \cap L = \{ w \mid w \in K \text{ и } w \in L \}$ (пересечение K и L)

Для языка L, определённого над алфавитом Σ , его дополнением называется дополнение до Σ^* — то есть, язык $\overline{L} = \Sigma^* \setminus L$.

$$\overline{L} = \{ w \mid w \in \Sigma^*, \quad w \notin L \}$$
 (дополнение L)

Конкатенация двух языков, K и L — это язык, состоящий из всех возможных конкатенаций строки из K и строки из L.

$$KL = K \cdot L = \{ uv \mid u \in K \text{ и } v \in L \}$$
 (конкатенация K и L)

Операции конкатенации и объединения обладают свойством дистрибутивности, то есть, $K(L \cup M) = KL \cup KM$ и $(K \cup L)M = KM \cup LM$ для всех языков $K, L, M \in \Sigma^*$. Формальные языки образуют *полукольцо* с конкатенацией в качестве умножения и объединением в качестве сложения.

Так как конкатенация языков считается умножением, конкатенация k экземпляров одного и того же языка называется её k-й cmene+b.

$$L^k = \underbrace{L \cdot \ldots \cdot L}_{k \text{ pas}} = \{ w_1 \ldots w_k \mid w_1, \ldots, w_k \in L \}$$

В частности, $L^0 = \{\varepsilon\}$ для всякого языка L, что соответствует свойству $x^0 = 1$ для чисел.

Следующее действие над языком $L-nosmopehue\ 0\ u\ bonee\ pas-$ задаёт множество всех строк, получаемых конкатенаций любого числа любых строк из L. Эта операция выражается следующим образом.

$$L^* = \bigcup_{k=0}^{\infty} L^k = \{ w_1 \dots w_k \mid k \geqslant 0, \ w_1, \dots, w_k \in L \}$$

 $^{^2}$ На худой конец, «дабл-ю». Но, ради Бога, ни в коем случае не «омега»! Омега (ω , Ω) — это совсем другая буква, и ею обозначают совсем другие объекты!

 $^{^{3}}$ К сожалению, общепринятого русского названия нет — это, конечно, позор на весь мир, но что делать?

Операция повторения была введена Клини [1951], и её часто называют замыканием Клини, или звёздочкой Клини, или просто «звёздочкой».

2 Регулярные выражения

Строятся с помощью трёх операторов: выбор, конкатенация, повторение.

Формальное определение: сперва, какой вид может иметь регулярное выражение (его *синтаксис*), затем — определение языка, задаваемого всяким регулярным выражением.

Рис. 1: Стивен Клини (1909–1994).

Определение 2.1 (Клини [1951]). *Регулярные выражения над алфавитом* Σ *определяются так.*

- ullet Символ для пустого множества \varnothing регулярное выражение.
- Всякий символ a, где $a \in \Sigma$ регулярное выражение.
- Если α и β регулярные выражения, то тогда $(\alpha \mid \beta)$, $(\alpha\beta)$ и $(\alpha)^*$ тоже регулярные выражения.

Всякое регуларное выражение α определяет язык над алфавитом Σ , обозначаемый через $L(\alpha)$. Символ для пустого множества определяет пустое множество.

$$L(\varnothing) = \varnothing$$

Bсякий символ из Σ обозначает одноэлементное множество, состоящее из односимвольной строки.

$$L(a) = \{a\}$$

Оператор выбора задаёт объединение множеств.

$$L(\alpha \mid \beta) = L(\alpha) \cup L(\beta)$$

⁴Формальные языки с операциями объединения, конкатенации и звёздочки — это основной пример *алгебры Клини* — абстрактной алгебраической структуры, представляющей собою полукольцо, расширенное оператором замыкания, удовлетворяющим определённым аксиомам. В данном курсе это понятие не потребуется, да и сами полукольца не потребуются тоже.

Конкатенация регулярных выражений задаёт конкатенацию языков. Оператор итерации задаёт итерацию.

$$L(\alpha\beta) = L(\alpha) \cdot L(\beta)$$
$$L(\alpha^*) = L(\alpha)^*$$

Лишние скобки можно опускать, используя следующий порядок действий: сперва итерация, затем конкатенация, затем выбор. Например, регулярное выражение $(a \mid bc^*)d$ читается как $(a \mid (b(c^*)))d$.

Синтаксис регулярных выражений можно расширить лишними конструкциями: пустая строка (ε) , повторение один и более раз (α^+) , необязательная конструкция $([\alpha]$, что означает " α или ничего"). Всё это можно выразить в терминах определения 2.1. Пустая строка: $\varnothing^* = \{\varepsilon\}$. Повторение один и более раз (α^+) — как $\alpha\alpha^*$. Необязательная конструкция $[\alpha]$ — как $\alpha \mid \varepsilon$, и в конечном счёте как $\alpha \mid \varnothing^*$. Например, $a^+b \mid \varepsilon$ — это сокращённая запись для $aa^*b \mid \varnothing^*$.

Пример 2. Множество всех строк над алфавитом $\Sigma = \{a, b\}$, в которых третий символ с конца — a, задаётся регулярным выражением $(a \mid b)^*a(a \mid b)(a \mid b)$.

Пример 3. В языках программирования, **имена** обычно определяются как непустые последовательности из букв и цифр, начинающиеся с буквы.

$$(\underbrace{a\mid\ldots\mid z}_{\text{любая буква}})(\underbrace{a\mid\ldots\mid z\mid 0\mid\ldots\mid 9}_{\text{любая буква или цифра}})^*$$

3 Детерминированные конечные автоматы (DFA)

Конечный автомат — простейшая модель вычисления в теоретической информатике, соответствующая вычислениям с конечной памятью.

Конечный автомат читает входную строку посимвольно слева направо, не возвращаясь назад. Закончив читать строку, автомат выдаёт ответ «да» или «нет».

Понятие *состояния*: конфигурация памяти всего автомата в некоторый момент. Можно сказать, что у автомата с 32 состояниями — 5 битов памяти; однако никакой битовой структуры на самом деле нет, на каждом шаге можно перейти из любого состояния памяти в любое. Число состояний конечно, отсюда название.

Конечный автомат начинает работу в определённом начальном состоянии q_0 , головка видит самый левый символ строки. На каждом шаге текущее состояние и текущий символ определяют состояние в следующий момент, и головка переезжает на одну клетку направо. Состояние после чтения последнего, самого правого символа определяет, принимается строка или отвергается.

Определение 3.1 (Клини [1951]). Детерминированный конечный автомат (deterministic finite automaton, DFA; мн. число: automata) — пятёрка $\mathcal{A} = (\Sigma, Q, q_0, \delta, F)$, со следующим значением компонентов.

- $\Sigma an\phi asum$ (конечное множество).
- ullet Q конечное множество состояний.
- $q_0 \in Q$ начальное состояние.
- Функция переходов $\delta \colon Q \times \Sigma \to Q$. Если автомат находится в состоянии $q \in Q$ и читает символ $a \in \Sigma$, то его следующее состояние $-\delta(q,a)$. Функция переходов определена для всех q u a.
- Множество принимающих состояний $F \subseteq Q$.

Для всякой входной строки $w = a_1 \dots a_\ell$, где $\ell \geqslant 0$ и $a_1, \dots, a_\ell \in \Sigma$, вычисление — последовательность состояний $p_0, p_1, \dots, p_{\ell-1}, p_\ell$, где $p_0 = q_0$, и всякое следующее состояние p_i , где $i \in \{1, \dots, \ell\}$, однозначно определено как $p_i = \delta(p_{i-1}, a_i)$.

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_{\ell-1}} p_{\ell-1} \xrightarrow{a_\ell} p_\ell$$

Строка принимается, если последнее состояние p_ℓ принадлежит множеству F- иначе отвергается.

Язык, распознаваемый автоматом, обозначаемый через L(A) — это множество всех строк, которые он принимает.

Дополнительное обозначение: если DFA начинает вычисление в состоянии $q \in Q$ и читает строку $w = a_1 \dots a_\ell$, то его состояние после её прочтения обозначается через $\delta(q,w)$. Формально, определение функции переходов расширяется до $\delta \colon Q \times \Sigma^* \to Q$, и определяется как $\delta(q,\varepsilon) = q$ и $\delta(q,aw) = \delta(\delta(q,a),w)$. В этих обозначениях язык, распознаваемый DFA, кратко определяется так.

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta(q_0, w) \in F \}$$

Автоматы удобно представлять в виде диаграмм переходов, таких как на рис. 2. Из каждого состояния по каждому символу выходит ровно одна стрелка. Начальное состояние обозначается стрелкой, ведущей из ниоткуда, принимающие состояния обведены в кружок.

Пример 4. Язык $a^*b^* = \{a^ib^j \mid i,j \geqslant 0\}$, определённый над алфавитом $\Sigma = \{a,b\}$, распознаётся конечным автоматом $\mathcal{A} = (\Sigma,Q,q_0,\delta,F)$ с состояниями $Q = \{q_0,q_1,q_2\}$. Начав работу в состоянии q_0 , автомат остаётся в q_0 при прочтении a, и переходит в q_1 , как только встретится первый символ b. Это обеспечивается следующими переходами.

$$\delta(q_0, a) = q_0$$
$$\delta(q_0, b) = q_1$$

Далее, в состоянии q_1 при чтении b автомат остаётся в этом же состоянии. Если же в состоянии q_1 когда-нибудь встретится a, это значит, что строка — не вида a^*b^* , и потому автомат переходит в состояние q_2 , в котором он отвергнет эту строку.

$$\delta(q_1, a) = q_2$$
$$\delta(q_1, b) = q_1$$

Рис. 2: DFA из примера 4, распознающий язык a^*b^* .

Рис. 3: (слева) NFA из примера 5, угадывающий третий символ с конца; (справа) четыре вычисления на строке w=abaab, из которых одно — принимающее.

Наконец, в состоянии q_2 автомат просто дочитывает строку до конца, хотя уже известно, что принята она не будет.

$$\delta(q_2, a) = \delta(q_2, b) = q_2$$

Mножество принимающих состояний — $F = \{q_0, q_1\}$. Автомат изображён на рис. 2.

4 Недетерминированные конечные автоматы (NFA)

Недетерминированный конечный автомат (nondeterministic finite automaton, NFA) — обобщение детерминированного автомата, в котором переход в данной конфигурации может быть определён не единственным образом. В некоторых состояниях и по некоторым символам, у NFA может быть определено несколько возможных переходов, и, соответственно, на одной строке может быть несколько различных вычислений. Если хотя бы одно из этих вычислений — принимающее, то тогда считается, что NFA принимает эту строку; в противном случае, если все эти вычисления — отвергающие, то строка отвергается.

Это абстрактное определение можно понимать так. Если в некоторой конфигурации допустимо несколько различных переходов, и при некотором выборе действия на этом шаге вычисление может увенчаться успехом, то можно сказать, что NFA обладает способностью «угадать» это правильное продолжение — своего рода «интуицией». Вообще, если существует последовательность недетерминированных решений, заканчивающаяся принятием, то тогда NFA «угадывает» эту последовательность — так, что строка отвергается только если она не может быть принята ни для какой последовательности догадок. Иными словами, догадки автомата всегда правильны.

В общем случае, такая способность угадывать правильное продолжение не обязательно будет иметь физическую реализацию. Однако для случая конечных автоматов будет показано, что NFA и DFA равномощны — то есть, способны распознавать один и тот же класс языков.

Пример 5 (ср. с примером 2). Язык всех строк над алфавитом $\Sigma = \{a, b\}$, в которых третий символ с конца — a, распознаётся NFA на рис. 3 (левый).

Eго вычисления на строке abaab представлены на рис. 3(правый); в их числе — одно принимающее вычисление.

Рис. 4: Майкл Рабин (род. 1931), Дана Скотт (род. 1932).

Определение 4.1 (Рабин и Скотт [1959]). Недетерминированный конечный автомат (NFA) — это пятёрка $\mathcal{B} = (\Sigma, Q, Q_0, \delta, F)$, со следующим значением компонентов.

- Σ and asum.
- Q конечное множество состояний.
- $Q_0 \in Q$ множество начальных состояний (автомат угадывает, в каком из них начать).
- Функция переходов $\delta \colon Q \times \Sigma \to 2^Q$ даёт множество возможных следующих состояний. Находясь в состоянии $q \in Q$ и читая символ $a \in \Sigma$, автомат может перейти в любое состояние из $\delta(q,a)$.
- Множество **принимающих состояний** $F \subseteq Q$.

Вычисление на входной строке $w = a_1 \dots a_{\ell} - \Im$ то всякая последовательность состояний $p_0, p_1, \dots, p_{\ell-1}, p_{\ell}$, где $p_0 \in Q_0$, и $p_i \in \delta(p_{i-1}, a_i)$. для всех $i \in \{1, \dots, \ell\}$,

$$p_0 \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_{\ell-1}} p_{\ell-1} \xrightarrow{a_\ell} p_\ell$$

Вычисление — **принимающее**, если последнее состояние p_{ℓ} принадлежит множеству F; иначе оно называется **отвергающим**.

Язык, распознаваемый автоматом, обозначаемый через $L(\mathcal{B})$ — это множество всех входных строк, на которых есть хотя бы одно принимающее вычисление.

В этих обозначениях. NFA в примере 5 имеет множество состояний $Q = \{q_0, q_1, q_2, q_3\}$, где q_0 — единственное начальное состояние $(Q_0 = \{q_0\})$, q_3 — единственное принимающее

 $(F = \{q_3\})$, а функция переходов δ принимает следующие значения.

$$\delta(q_0, a) = \{q_0, q_1\}$$

$$\delta(q_0, b) = \{q_0\}$$

$$\delta(q_1, a) = \delta(q_1, b) = \{q_2\}$$

$$\delta(q_2, a) = \delta(q_2, b) = \{q_3\}$$

$$\delta(q_3, a) = \delta(q_3, b) = \emptyset$$

Тогда принимающее вычисление на w = abaab обозначается так.

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3$$

DFA может рассматриваться как особый случай NFA, с единственным начальным состоянием ($|Q_0|=1$) и с единственным следующим состоянием в каждом переходе ($|\delta(q,a)|=1$ для всех q и a).

5 Построение подмножеств (перевод NFA в DFA)

«Интуиция», которой обладает NFA, может быть механически воплощена в материальном мире.

NFA отличается от DFA тем, что может иметь несколько различных вычислений на одной и той же входной строке. Все эти вычисления проходят те же символы в том же порядке, и отличаются только в состояниях. Можно считать, что все они происходят одновременно. Например, как показано на рис. 3(правом), после чтения первых трёх символов есть возможных вычисления, находящиеся в состояниях q_0 , q_1 и q_3 , соответственно. DFA может вычислить *множесство* этих состояний.

Для NFA на рис. 3(левом), моделирующий его работу DFA, читая ту же самую строку w=abaab пройдёт через следующую последовательность состояний-подмножеств: $\{q_0\}$, $\{q_0,q_1\}$, $\{q_0,q_2\}$, $\{q_0,q_1,q_3\}$, $\{q_0,q_1,q_2\}$, $\{q_0,q_2,q_3\}$. Их нетрудно видеть на рис. 3(правом). Следующая лемма даёт общее построение.

Лемма 1 («построение подмножеств», Рабин и Скотт [1959]). Пусть $\mathcal{B} = (\Sigma, Q, Q_0, \delta, F)$ — произвольный NFA. Тогда существует DFA $\mathcal{A} = (\Sigma, 2^Q, Q_0, \delta', F')$, состояния которого — подмножества Q, который распознаёт тот же язык, что и \mathcal{B} . Его переход в кажедом состоянии-подмножестве $S \subseteq Q$ по каждому символу $a \in \Sigma$ ведёт во множество состояний, достижимых по a из некоторого состояния их S.

$$\delta'(S, a) = \bigcup_{q \in S} \delta(q, a)$$

Cостояние-подмножество $S\subseteq Q$ — принимающее, если оно содержит хотя бы одно принимающее состояние NFA.

$$F' = \{ S \mid S \subseteq Q, \ S \cap F \neq \emptyset \}$$

Общий вид утверждения: по одному вычислительному устройству строится второе, и поведение построенного устройства выражается через поведение исходного устройства. Доказательства подобных результатов обычно начинаются с утверждения о правильности

Рис. 5: DFA, моделирующий работу NFA из примера 5, полученный построением подмножеств (все состояния, содержащие q_3 — принимающие).

— подробного математического утверждения, описывающего, что новое устройство делает на каждом шаге, и как это связано с работой исходного устройства. Как правило, именно утверждение о правильности содержит в себе главный смысл построения, а его доказательство бывает неинтересным.

Доказательство.

Утверждение о правильности. Для всякой строки $w \in \Sigma^*$, состояние-подмножество, достигаемое DFA по прочтении строки w, содержит элемент q тогда u только тогда, когда хотя бы одно из вычислений NFA на w заканчивается в состоянии q.

Доказывается индукцией по длине строки w.

Далее из утверждения о правильности выводится, что построенный DFA принимает строку $w \in \Sigma^*$ тогда и только тогда, когда её принимает исходный NFA.

Построение переводит NFA с n состояниями в DFA с 2^n состояниями-подмножествами. На практике, многие из них обычно бывают недостижимы. Поэтому алгоритм будет строить только состояния-подмножества, достижимые из уже построенных, начиная с Q_0 .

Пример 6. Построение подмножеств, применённое к NFA с 4 состояниями из примера 5, производит DFA с 8 достижимыми состояниями, представленный на рис 5.

Можно заметить, каждое состояние-подмножество по существу кодирует три последних прочитанных символа (q_i принадлежит ему, если i-й символ c конца — это a).

В худшем случае построение оптимально по числу состояний: Лупанов [1963] построил, для всякого n, такой NFA над $\{a,b\}$ из n состояний, что всякий DFA для этого языка должен содержать хотя бы 2^n состояний.

Было показано, что DFA и NFA определяют одно и то же семейство языков, называемых *регулярными языками*. Следующий результат: что регулярные выражения определяют то же семейство.

6 Преобразование регулярных выражений в автоматы

Теорема 1 (Клини [1951]). Язык распознается неким DFA тогда и только тогда, когда он определяется неким регулярным выражением.

Рис. 6: Олег Лупанов (1932–2006).

Доказательство конструктивно в обе стороны.

Для преобразования регулярного выражения в автомат удобно ввести промежуточную модель.

Определение 6.1. Недетерминированный конечный автомат с ε -переходами (ε -NFA) — пятёрка $\mathcal{C} = (\Sigma, Q, Q_0, \delta, F)$, где Σ , Q, Q_0 и F — как в NFA, а функция переходов имеет вид $\delta \colon Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$. В состоянии $q \in Q$ автомат может или сделать обычный переход по символу $a \in \Sigma$ в любое состояние из $\delta(q, a)$, перемещая головку на символ вперёд—или же перейти в любое состояние из $\delta(q, \varepsilon)$, не читая ничего (ε -переход).

Вычисление на w может потребовать более |w| шагов. Строка принимается, если есть разбиение $w=u_1\ldots u_m$, где $u_i\in\Sigma\cup\{\varepsilon\}$, и последовательность состояний $r_0,\ldots,r_m\in Q$, для которых: $r_0=q_0$, всякое следующее r_i принадлежит $\delta(r_{i-1},u_i)$, и $r_n\in F$.

Использование ε -переходов не увеличивает мощности конечных автоматов.

Лемма 2. Для всякого ε -NFA существует NFA, использующий то же множество состояний и распознающий тот же язык.

Доказательство. Пусть $\mathcal{C} = (\Sigma, Q, Q_0, \delta, F)$ — произвольный ε -NFA. Для всякого состояния $q \in Q$, множество состояний, достижимых из него за 0 и более ε -переходов, обозначается через ε -closure $(q) \subseteq Q$. Главная мысль построения: NFA будет проделывать произвольную последовательность ε -переходов за один шаг.

Первый вариант построения. Определяется NFA $\mathcal{B} = (\Sigma, Q, Q_0, \delta', F')$, всякий переход которого за один шаг выполняет любую последовательность ε -переходов в \mathcal{C} , и затем переход по одному символу.

$$\delta'(p,a) = \bigcup_{q \in \varepsilon\text{-closure}(p)} \delta(q,a) \qquad (p \in Q, \ a \in \Sigma)$$

Если $\mathcal C$ может придти по ε -переходам из $p \in Q$ в некоторое принимающее состояние, то p помечается как принимающее в $\mathcal B$.

$$F' = \{ p \mid \varepsilon\text{-closure}(p) \cap F \neq \emptyset \}$$

Утверждение о правильности. Исходный ε -NFA \mathcal{C} может достигнуть состояния $q \in Q$ по прочтении строки $w \in \Sigma^*$ тогда и только тогда, когда построенный NFA \mathcal{B} , прочитав w, может достигнуть некоторого состояния p, где $q \in \varepsilon$ -closure(p).

Второй вариант построения. Строится автомат $\mathcal{B}' = (\Sigma, Q, Q'_0, \delta', F)$. На этот раз в автомате \mathcal{B}' начальными будут все состояния, которые достижимы в \mathcal{C} из его начальных состояний по ε -переходам.

$$Q_0' = \bigcup_{q_0 \in Q_0} \varepsilon\text{-closure}(q_0)$$

Всякий переход \mathcal{B} по символу a начинается с перехода \mathcal{C} по этому же символу, а вслед за тем выполняется любая последовательность ε -переходов.

$$\delta'(p, a) = \bigcup_{q \in \delta(p, a)} \varepsilon\text{-closure}(q) \qquad (p \in Q, \ a \in \Sigma)$$

Множество принимающих состояний остаётся тем же.

Утверждение о правильности. Исходный ε -NFA $\mathcal C$ может достигнуть состояния $q \in Q$ по прочтении строки $w \in \Sigma^*$ тогда и только тогда, когда построенный NFA $\mathcal B'$, прочитав w, может достигнуть того же состояния состояния q.

Регулярные выражения легко выражаются в этой модели.

Лемма 3 («построение Томпсона»). Для всякого регулярного выражения α , существует ε -NFA \mathcal{C}_{α} с одним начальным и одним принимающим состояниями, распознающий язык, задаваемый α .

Рис. 7: Кеннет Томпсон (род. 1943).

Доказательство. Индукция по структуре регулярного выражения, пять случаев представлены на рис. 8. \Box

Известно также прямое преобразование регулярного выражения в DFA, но это по существу построение Томпсона и построение подмножеств, объединённые в одно маловразумительное определение.

Рис. 8: Преобразование регулярного выражения в ε -NFA.

Список литературы

- [1951] S. C. Kleene, "Representation of events in nerve nets and finite automata", RAND Research Memorandum RM-704, 1951, 98 pp.
- [1963] О. Б. Лупанов, "О сравнении двух типов конечных источников", *Проблемы киберне-* $mu\kappa u$, 9 (1963), 321–326.
- [1959] M. O. Rabin, D. Scott, "Finite automata and their decision problems", *IBM Journal of Research and Development*, 3:2 (1959), 114–125.