Homework 3

March 8, 2018

1 Homework 3: Hyperparameter Tuning with SVMs

The final deliverable for this homework will be this Jupyter notebook, which should include all relevant code, markdown cells before each code block describing what the code does, and any write-ups/images/plots that you wish to include.

To add a block click on Insert > Insert Cell Below. To make a markdown cell, click the drop-down menu at the top of this page and select Markdown.

The starter code for this homework is purposely very minimal. You should get used to coding from scratch. Just follow all the instructions in the PDF you will be fine.

```
In [1]: import numpy as np
    import pandas as pd

from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split, GridSearchCV

from scipy.stats import zscore
    import matplotlib.pyplot as plt
```

1.1 2.3 Grid Search

Here I will be finding the optimal pair of (C, d) for an SVM model where C is the hyperparameter which determines the amount with which we penalize misclassified points and d is the degree of the polynomial, that gives the best results on a test set.

1.1.1 2.3.1 Specifications

First let's read in the data and normalize all the data points.

1	1002945	5	4	4	5	7	10
2	1015425	3	1	1	1	2	2
3	1016277	6	8	8	1	3	4
4	1017023	4	1	1	3	2	1
5	1017122	8	10	10	8	7	10
6	1018099	1	1	1	1	2	10
7	1018561	2	1	2	1	2	1
8	1033078	2	1	1	1	2	1
9	1033078	4	2	1	1	2	1
10	1035078	1	1	1	1	1	1
		2			1		
11	1036172		1	1		2	1
12	1041801	5	3	3	3	2	3
13	1043999	1	1	1	1	2	3
14	1044572	8	7	5	10	7	9
15	1047630	7	4	6	4	6	1
16	1048672	4	1	1	1	2	1
17	1049815	4	1	1	1	2	1
18	1050670	10	7	7	6	4	10
19	1050718	6	1	1	1	2	1
20	1054590	7	3	2	10	5	10
21	1054593	10	5	5	3	6	7
22	1056784	3	1	1	1	2	1
23	1059552	1	1	1	1	2	1
24	1065726	5	2	3	4	2	7
25	1066373	3	2	1	1	1	1
26	1066979	5	1	1	1	2	1
27	1067444	2	1	1	1	2	1
28	1070935	1	1	3	1	2	1
29	1070935	3	1	1	1	1	1
						<u>-</u>	
653	1350423	5	10	10	8	5	5
654	1352848	3	10	7	8	5	8
655	1353092	3	2	1	2	2	1
656	1354840	2	1	1	1	2	1
	1354840	5	3	2		3	1
657 650	1355260				1		
658		1	1	1	1	2	1
659	1365075	4	1	4	1	2	1
660	1365328	1	1	2	1	2	1
661	1368267	5	1	1	1	2	1
662	1368273	1	1	1	1	2	1
663	1368882	2	1	1	1	2	1
664	1369821	10	10	10	10	5	10
665	1371026	5	10	10	10	4	10
666	1371920	5	1	1	1	2	1
667	466906	1	1	1	1	2	1
668	466906	1	1	1	1	2	1
669	534555	1	1	1	1	2	1
670	536708	1	1	1	1	2	1

671	566346	3	1	1	1	2	1
672	603148	4	1	1	1	2	1
673	654546	1	1	1	1	2	1
674	654546	1	1	1	3	2	1
675	695091	5	10	10	5	4	5
676	714039	3	1	1	1	2	1
677	763235	3	1	1	1	2	1
678	776715	3	1	1	1	3	2
679	841769	2	1	1	1	2	1
680	888820	5	10	10	3	7	3
681	897471	4	8	6	4	3	4
682	897471	4	8	8	5	4	5
	concativity	concav	e points	symmetry	label		
0	3		1	1	2		

	concativity	concave	noints	symmetry	label
0	3	Concave	1	Symmetry 1	2
1	3		2	1	2
2	3		1	1	2
3	3		7	1	2
4	3		1	1	2
5	9		7	1	4
6	3		1	1	2
7	3		1	1	2
8	1		1	5	2
9	2		1	1	2
10	3		1	1	2
11	2		1	1	2
12	4		4	1	4
13	3		1	1	2
14	5		5	4	4
15	4		3	1	4
16	2		1	1	2
17	3		1	1	2
18	4		1	2	4
19	3		1	1	2
20	5		4	4	4
21	7		10	1	4
22	2		1	1	2
23	3		1	1	2
24	3		6	1	4
25	2		1	1	2
26	2		1	1	2
27	2		1	1	2
28	1		1	1	2
29	2		1	1	2
653	7		10	1	4
654	7		4	1	4
655	3		1	1	2

```
656
                   3
                                        1
                                                     1
                                                              2
657
                                                     1
                                                              2
                   1
                                        1
658
                   2
                                                              2
                                        1
                                                     1
659
                   1
                                        1
                                                     1
                                                              2
                   2
                                                              2
                                        1
                                                     1
660
                                                              2
661
                   1
                                        1
                                                     1
                                                              2
662
                   1
                                        1
                                                     1
                                                              2
663
                   1
                                        1
                                                     1
664
                  10
                                       10
                                                     7
                                                              4
665
                   5
                                                     3
                                                              4
                                        6
666
                   3
                                        2
                                                              2
                                                     1
667
                   1
                                        1
                                                     1
                                                              2
                                                              2
668
                   1
                                        1
                                                     1
                                                              2
669
                   1
                                        1
                                                     1
                                                              2
670
                   1
                                        1
                                                              2
671
                   2
                                        3
                                                     1
672
                   1
                                        1
                                                     1
                                                              2
                                                     8
                                                              2
673
                   1
                                        1
674
                   1
                                        1
                                                     1
                                                              2
                   4
                                                              4
675
                                        4
                                                     1
                                                              2
676
                   1
                                        1
                                                     1
677
                   2
                                        1
                                                     2
                                                              2
                                                              2
678
                   1
                                        1
                                                     1
                                                              2
679
                   1
                                        1
                                                     1
680
                   8
                                       10
                                                     2
                                                              4
681
                  10
                                        6
                                                     1
                                                              4
                                        4
                                                              4
682
                  10
                                                     1
```

[683 rows x 11 columns]

```
Out [10]:
                    ID
                          radius
                                   texture
                                           perimeter
                                                           area
                                                                 smoothness
             -0.123664 0.197905 -0.702212
                                           -0.741774 -0.639366
                                                                  -0.555608
         1
             -0.118956 0.197905 0.277252
                                             0.262783 0.758032
                                                                   1.695166
         2
             -0.098833 -0.511643 -0.702212 -0.741774 -0.639366
                                                                  -0.555608
         3
             -0.097459 0.552679
                                 1.583204
                                             1.602192 -0.639366
                                                                  -0.105454
         4
             -0.096256 -0.156869 -0.702212 -0.741774 0.059333
                                                                  -0.555608
        5
             -0.096097 1.262227 2.236180
                                             2.271896 1.806080
                                                                   1.695166
         6
             -0.094521 -1.221191 -0.702212 -0.741774 -0.639366
                                                                  -0.555608
        7
             -0.093777 -0.866417 -0.702212 -0.406921 -0.639366
                                                                  -0.555608
             -0.070369 -0.866417 -0.702212 -0.741774 -0.639366
                                                                  -0.555608
```

```
-0.070369 -0.156869 -0.375724 -0.741774 -0.639366
9
                                                        -0.555608
10 -0.066814 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -1.005763
11 -0.065380 -0.866417 -0.702212 -0.741774 -0.639366
                                                        -0.555608
12 -0.056304 0.197905 -0.049236 -0.072069 0.059333
                                                        -0.555608
13 -0.052760 -1.221191 -0.702212
                                  -0.741774 -0.639366
                                                        -0.555608
14 -0.051836 1.262227
                       1.256716
                                   0.597635 2.504778
                                                         1.695166
15
   -0.046905 0.907453 0.277252
                                   0.932487 0.408682
                                                         1.245011
16
   -0.045225 -0.156869 -0.702212
                                  -0.741774 -0.639366
                                                        -0.555608
17
   -0.043382 -0.156869 -0.702212 -0.741774 -0.639366
                                                        -0.555608
18 -0.042004 1.971775 1.256716
                                   1.267340 1.107381
                                                         0.344701
19 -0.041926 0.552679 -0.702212
                                  -0.741774 -0.639366
                                                        -0.555608
20
   -0.035683 0.907453 -0.049236
                                 -0.406921 2.504778
                                                         0.794856
21 -0.035678 1.971775 0.603740
                                   0.597635 0.059333
                                                         1.245011
22 -0.032145 -0.511643 -0.702212 -0.741774 -0.639366
                                                        -0.555608
23
   -0.027682 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
24 -0.017727 0.197905 -0.375724 -0.072069 0.408682
                                                        -0.555608
25 -0.016684 -0.511643 -0.375724
                                  -0.741774 -0.639366
                                                        -1.005763
26 -0.015707 0.197905 -0.702212 -0.741774 -0.639366
                                                        -0.555608
27 -0.014957 -0.866417 -0.702212 -0.741774 -0.639366
                                                        -0.555608
28 -0.009328 -1.221191 -0.702212
                                  -0.072069 -0.639366
                                                        -0.555608
29
   -0.009328 -0.511643 -0.702212
                                  -0.741774 -0.639366
                                                        -1.005763
. .
          . . .
                   . . .
                                        . . .
                                                  . . .
                                                              . . .
    0.441321 0.197905 2.236180
653
                                   2.271896 1.806080
                                                         0.794856
654
    0.445231 -0.511643 2.236180
                                   1.267340 1.806080
                                                         0.794856
    0.445625 -0.511643 -0.375724 -0.741774 -0.290016
655
                                                        -0.555608
    0.448443 -0.866417 -0.702212
                                  -0.741774 -0.639366
656
                                                        -0.555608
    0.448443 0.197905 -0.049236
657
                                  -0.406921 -0.639366
                                                        -0.105454
658
    0.449120 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
659
    0.464946 -0.156869 -0.702212
                                  0.262783 -0.639366
                                                        -0.555608
    0.465354 -1.221191 -0.702212 -0.406921 -0.639366
                                                        -0.555608
    0.470093 0.197905 -0.702212
                                  -0.741774 -0.639366
661
                                                        -0.555608
662
    0.470103 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
663
    0.471085 -0.866417 -0.702212
                                 -0.741774 -0.639366
                                                        -0.555608
    0.472599 1.971775 2.236180
                                   2.271896 2.504778
664
                                                        0.794856
665
    0.474542 0.197905 2.236180
                                   2.271896 2.504778
                                                         0.344701
666 0.475983 0.197905 -0.702212 -0.741774 -0.639366
                                                        -0.555608
667 -0.983271 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
668 -0.983271 -1.221191 -0.702212
                                  -0.741774 -0.639366
                                                        -0.555608
669 -0.874193 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
670 -0.870721 -1.221191 -0.702212 -0.741774 -0.639366
                                                        -0.555608
671 -0.822933 -0.511643 -0.702212 -0.741774 -0.639366
                                                        -0.555608
672 -0.763593 -0.156869 -0.702212 -0.741774 -0.639366
                                                        -0.555608
673 -0.680718 -1.221191 -0.702212
                                 -0.741774 -0.639366
                                                        -0.555608
674 -0.680718 -1.221191 -0.702212 -0.741774 0.059333
                                                        -0.555608
675 -0.615343 0.197905 2.236180
                                   2.271896 0.758032
                                                         0.344701
676 -0.584791 -0.511643 -0.702212 -0.741774 -0.639366
                                                        -0.555608
677 -0.505467 -0.511643 -0.702212 -0.741774 -0.639366
                                                        -0.555608
678 -0.483732 -0.511643 -0.702212 -0.741774 -0.639366
                                                        -0.105454
```

```
679 -0.378838 -0.866417 -0.702212 -0.741774 -0.639366
                                                            -0.555608
680 -0.302972 0.197905 2.236180
                                     2.271896 0.059333
                                                            1.695166
681 -0.289023 -0.156869
                         1.583204
                                     0.932487 0.408682
                                                            -0.105454
682 -0.289023 -0.156869
                         1.583204
                                     1.602192 0.758032
                                                            0.344701
     compactness concativity concave points symmetry
                                                           label
0
       -0.698853
                     -0.181827
                                      -0.612927 -0.348400
                    -0.181827
1
        1.772867
                                     -0.285105 -0.348400
                                                              0.0
2
                                     -0.612927 -0.348400
       -0.424217
                    -0.181827
                                                              0.0
3
        0.125054
                    -0.181827
                                      1.354008 -0.348400
                                                              0.0
4
                                      -0.612927 -0.348400
                     -0.181827
                                                              0.0
       -0.698853
5
                                      1.354008 -0.348400
        1.772867
                     2.269251
                                                              1.0
6
        1.772867
                                      -0.612927 -0.348400
                     -0.181827
                                                              0.0
7
       -0.698853
                    -0.181827
                                      -0.612927 -0.348400
                                                              0.0
8
       -0.698853
                     -0.998853
                                      -0.612927 1.961862
                                                              0.0
9
       -0.698853
                                     -0.612927 -0.348400
                    -0.590340
                                                              0.0
10
       -0.698853
                    -0.181827
                                      -0.612927 -0.348400
                                                              0.0
       -0.698853
                                      -0.612927 -0.348400
11
                    -0.590340
                                                              0.0
12
       -0.149582
                                      0.370540 -0.348400
                     0.226686
                                                              1.0
       -0.149582
                     -0.181827
                                      -0.612927 -0.348400
                                                              0.0
13
14
        1.498232
                     0.635199
                                      0.698363 1.384297
                                                              1.0
15
       -0.698853
                      0.226686
                                      0.042718 -0.348400
                                                              1.0
16
       -0.698853
                    -0.590340
                                      -0.612927 -0.348400
                                                              0.0
                                      -0.612927 -0.348400
17
       -0.698853
                    -0.181827
                                                              0.0
18
        1.772867
                     0.226686
                                      -0.612927 0.229166
                                                              1.0
19
       -0.698853
                                      -0.612927 -0.348400
                                                              0.0
                     -0.181827
                                      0.370540 1.384297
20
        1.772867
                     0.635199
                                                              1.0
21
        0.948960
                     1.452225
                                      2.337476 -0.348400
                                                              1.0
                                      -0.612927 -0.348400
22
       -0.698853
                     -0.590340
                                                              0.0
23
       -0.698853
                    -0.181827
                                      -0.612927 -0.348400
                                                              0.0
24
        0.948960
                                      1.026185 -0.348400
                     -0.181827
                                                              1.0
25
       -0.698853
                    -0.590340
                                      -0.612927 -0.348400
                                                              0.0
26
       -0.698853
                    -0.590340
                                      -0.612927 -0.348400
                                                              0.0
27
       -0.698853
                                     -0.612927 -0.348400
                    -0.590340
                                                              0.0
                                      -0.612927 -0.348400
28
       -0.698853
                    -0.998853
                                                              0.0
       -0.698853
29
                     -0.590340
                                      -0.612927 -0.348400
                                                              0.0
                                                              . . .
. .
             . . .
                                            . . .
        0.399689
                     1.452225
                                      2.337476 -0.348400
653
                                                              1.0
654
        1.223596
                     1.452225
                                      0.370540 -0.348400
                                                              1.0
       -0.698853
                     -0.181827
                                      -0.612927 -0.348400
                                                              0.0
655
       -0.698853
                    -0.181827
                                      -0.612927 -0.348400
656
                                                              0.0
                                     -0.612927 -0.348400
657
       -0.698853
                    -0.998853
                                                              0.0
                                      -0.612927 -0.348400
658
       -0.698853
                     -0.590340
                                                              0.0
                                      -0.612927 -0.348400
659
       -0.698853
                     -0.998853
                                                              0.0
660
       -0.698853
                     -0.590340
                                      -0.612927 -0.348400
                                                              0.0
661
       -0.698853
                    -0.998853
                                      -0.612927 -0.348400
                                                              0.0
662
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                              0.0
663
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                              0.0
```

```
664
        1.772867
                     2.677764
                                      2.337476 3.116993
                                                             1.0
665
        1.772867
                     0.635199
                                      1.026185 0.806731
                                                             1.0
666
       -0.698853
                    -0.181827
                                     -0.285105 -0.348400
                                                             0.0
667
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                             0.0
       -0.698853
                                     -0.612927 -0.348400
668
                    -0.998853
                                                             0.0
669
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                             0.0
670
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                             0.0
671
       -0.698853
                    -0.590340
                                      0.042718 -0.348400
                                                             0.0
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                             0.0
672
673
       -0.698853
                    -0.998853
                                     -0.612927 3.694559
                                                             0.0
                                     -0.612927 -0.348400
                                                             0.0
674
       -0.698853
                    -0.998853
        0.399689
                     0.226686
                                      0.370540 -0.348400
                                                             1.0
675
                                     -0.612927 -0.348400
676
       -0.698853
                    -0.998853
                                                             0.0
                                                             0.0
677
       -0.698853
                    -0.590340
                                     -0.612927 0.229166
                                     -0.612927 -0.348400
678
       -0.424217
                    -0.998853
                                                             0.0
679
       -0.698853
                    -0.998853
                                     -0.612927 -0.348400
                                                             0.0
680
       -0.149582
                     1.860738
                                      2.337476 0.229166
                                                             1.0
681
        0.125054
                     2.677764
                                      1.026185 -0.348400
                                                             1.0
682
        0.399689
                     2.677764
                                      0.370540 -0.348400
                                                             1.0
```

[683 rows x 11 columns]

Now let's split our data into a testing and training set.

```
In [13]: C = [.0001, .001, .01, .1, 1, 10, 100]
         d = [1, 2, 3, 4, 5]
         train_set, test_set = train_test_split(normalized_df, test_size = .3)
   Now let's test to see which pair of (C, d) will yield the highest accuracy.
In [14]: row, col = len(d), len(C);
         accuracies = [[0 for c in range(col)] for r in range(row)]
         for i in range(row):
             for j in range(col):
                 svc = SVC(C=C[j], degree=d[i], probability=True)
                 svc.fit(train_set[['radius', 'texture', 'perimeter', 'area',
                                     'smoothness', 'compactness', 'concativity',
                                     'concave points', 'symmetry']],
                         train_set['label'])
                 score = svc.score(test_set[['radius', 'texture', 'perimeter', 'area',
                                              'smoothness', 'compactness', 'concativity',
                                              'concave points', 'symmetry']],
                                    test_set['label'])
                 accuracies[i][j] = score
         accuracies
         array = np.array(accuracies)
         array
Out[14]: array([[ 0.62926829,  0.62926829,  0.95609756,  0.97073171,  0.97560976,
                  0.96585366, 0.95609756],
```

```
[ 0.62926829, 0.62926829, 0.95609756, 0.97073171, 0.97560976, 0.96585366, 0.95609756], [ 0.62926829, 0.62926829, 0.95609756, 0.97073171, 0.97560976, 0.96585366, 0.95609756], [ 0.62926829, 0.62926829, 0.95609756, 0.97073171, 0.97560976, 0.96585366, 0.95609756], [ 0.62926829, 0.62926829, 0.95609756, 0.97073171, 0.97560976, 0.96585366, 0.95609756]])
```


0.975609756098 1 1

1.2 2.4 Cross Validation Search

Use cross validated grid search to find the best combination of and C on the breast cancer dataset.

1.2.1 2.4.1 Specifications

Using $C = \{.0001, .001, .01, .1, 1, 10, 100\}$ and $\gamma = \{.0001, .001, .01, .1, 1, 10\}$ for gridsearch, we will report the best accuracy and which parameters gave the best accuracy.