Corso di Algebra per Ingegneria

Lezione 19: Esercizi

- (1) Una relazione binaria ρ su un insieme a si dice *antisimmetrica* se $(\forall x, y \in a)(x\rho y \to \neg(y\rho x))$. Dimostrare che una relazione transitiva è antisimmetrica se e solo se è antiriflessiva.
- (2) Sia $\rho = (\mathbb{N} \times \mathbb{N}, \in)$. Quali delle proprietà enunciate (riflessività, antiriflessività, simmetria, ecc.) soddisfa ρ ?
- (3) Disegnare i diagrammi di Hasse di $(P(P(\emptyset), \subseteq), \text{ di } (P(P(\emptyset), \in) \text{ e di } (P(P(\emptyset))), \subseteq).$
- (4) Verificare che ρ^{\wedge} e ρ^{\vee} definite a lezione sono rispettivamente di ordine stretto e largo.
- (5) Sia $s = \{n \in \mathbb{N} \mid 2 \le n\} \cup \{-1\}$ e sia (s, |) un sottoinsieme ordinato di $(\mathbb{Z}, |)$. Mostrare che (s, |) è un insieme ben ordinato ma non totalmente ordinato.
- (6) Trovare (se ci sono) minimo e massimo dell'insieme ordinato $(\mathbb{N}, |)$.
- (7) Sia ρ la relazione binaria su \mathbb{Z} così definita: $m\rho n \iff (m|n \land mn \ge 0)$.
 - Verificare che ρ è una relazione d'ordine.
 - (\mathbb{Z}, ρ) è bene ordinato? E totalmente ordinato?
 - Trovare, se possibile, minimo e massimo in (\mathbb{Z}, ρ) .
 - Descrivere l'insieme degli elementi confrontabili con -1 e quello degli elementi confrontabili con 2.
- (8) Sia $s = \{2^n \mid n \in \mathbb{N}\}$. Dimostrare che l'applicazione $n \in \mathbb{N} \mapsto 2^n \in s$ è un isomorfismo tra (\mathbb{N}, \leq) e (s, \leq) .
- (9) Con la notazione dell'esercizio precedente, trovare un isomorfismo tra (\mathbb{N}, \leq) and (s, |).