PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-045438

(43) Date of publication of application: 17.02.1998

(51)Int.CI.

CO3C 27/12 B32B 17/10

(21)Application number: 08-200042

•

(22)Date of filing:

30.07.1996

(71)Applicant : SEKISUI CHEM CO LTD

(72)Inventor: HATTORI TSUYOSHI

(54) PRODUCTION OF LAMINATED GLASS

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain laminated glass excellent in blocking resistance, handleability and degassing performance of a middle layer and not causing optical strain by using a specified laminated resin film as the middle layer.

SOLUTION: At least an underside of a laminated resin film composed of at least two resin films (A), (B) including the outermost resin film of 45 to <200µm thickness is finely embossed to 20–40µm surface roughness to form a middle layer. This middle layer is held between transparent glass sheets and they are subjected to preliminary press bonding and concluding press bonding. The resin film A composed of PVAc contg. 5–8mol% vinyl acetate obtd. by modifying PVA to acetal with 4–6C aldehyde and a plasticizer. The resin film B consists of PVAc contg. ≤4mol% vinyl acetate obtd. by modifying PVA to acetal with 3 or 4C aldehyde and a plasticizer. The preliminary press bonding is carried out at a temp. below the outflow start temp. of at least one of the resin films.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind-of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-45438

(43)公開日 平成10年(1998) 2月17日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 3 C 27/12			C 0 3 C 27/12	Н
				С
B 3 2 B 17/10			B 3 2 B 17/10	

審査請求 未請求 請求項の数2 OL (全 8 頁)

(72)発明者 服部 強司 滋賀県甲賀郡水口町泉1259			
滋賀 県甲賀郡水口町泉1259	大阪府大阪市北区西天嶺2丁目4番4号		
株式会社内	積水化学工業		

(54) 【発明の名称】 合わせガラスの製造方法

(57)【要約】

【課題】 積層樹脂膜からなる中間膜を用い、中間膜の耐ブロッキング性、取扱作業性及び脱気性に優れ、しかも光学歪みが発生しない合わせガラスを得る。

【解決手段】 最外樹脂膜の膜厚が45 μm 以上200 μm 未満である積層樹脂膜からなり、表面に粗さ20~40 μm のエンボスが形成されてなる中間膜、或いは最外樹脂膜の膜厚が200 μm 以上720 μm 以下である積層樹脂膜からなり、表面に粗さ20~40 μm のエンボスが形成されてなる中間膜を、透明なガラス板の間に挟み、予備圧着を行い、その後本圧着を行って合わせガラスを得る。ここで、上記積層樹脂膜は特定物性の可塑化ポリビニルアセタール樹脂膜 A 及び B とからなり、上記予備圧着は中間膜を構成する各樹脂膜のうち少なくとも一層の樹脂膜の流出開始温度よりも低い温度で行われる。流出開始温度は高化式フローテスター(試験荷重20 kg/cm²、ダイ径1 mm、ダイ長さ10mm)を用いて測定される。

【特許請求の範囲】

【請求項1】 最外樹脂膜の膜厚が45μm以上200 μπ 未満である少なくとも二層の積層樹脂膜からなり、 その少なくとも一面に表面粗さが20~40μm の微細 なエンボスが形成されてなる中間膜を、透明なガラス板 の間に挟み、予備圧着を行い、その後本圧着を行うこと によって、合わせガラスを製造する方法であって、

上記積層樹脂膜は、二種の樹脂膜A及びBとからなり、 樹脂膜Aは、ポリビニルアルコールを炭素数4~6のア ルデヒドでアセタール化して得られ、ビニルアセテート 成分が5~8モル%のポリビニルアセタール樹脂(a) と 可塑剤とからなり、樹脂膜Bは、ポリビニルアルコール を炭素数3又は4のアルデヒドでアセタール化して得ら れ、ビニルアセテート成分が4モル%以下のポリビニル アセタール樹脂(b) と可塑剤とからなり、

上記予備圧着は、中間膜を構成する各樹脂膜のうち、少 なくとも一層の樹脂膜の流出開始温度よりも低い温度で 行われることを特徴とする合わせガラスの製造方法。こ こで、表面粗さは、JIS B 0601による十点平 均粗さであり、各樹脂膜の流出開始温度は、高化式フロ ーテスター(試験荷重20 kg/cm²、ダイ径1mm、ダ イ長さ10mm)を用い昇温法によって測定される値であ る。

【請求項2】 最外樹脂膜の膜厚が200μm 以上72 0 μm 以下である少なくとも二層の積層樹脂膜からな り、その少なくとも一面に表面粗さが20~40μmの 微細なエンボスが形成されてなる中間膜を、透明なガラ ス板の間に挟み、予備圧着を行い、その後本圧着を行う ことによって、合わせガラスを製造する方法であって、 上記積層樹脂膜は、二種の樹脂膜A及びBとからなり、 樹脂膜Aは、ポリビニルアルコールを炭素数4~6のア ルデヒドでアセタール化して得られ、ビニルアセテート 成分が5~8モル%のポリビニルアセタール樹脂(a) と 可塑剤とからなり、樹脂膜Bは、ポリビニルアルコール を炭素数3又は4のアルデヒドでアセタール化して得ら れ、ビニルアセテート成分が4モル%以下のポリビニル アセタール樹脂(b) と可塑剤とからなり、

上記予備圧着は、中間膜を構成する各樹脂膜のうち、少 なくとも一層の樹脂膜の流出開始温度よりも低い温度で 行われることを特徴とする合わせガラスの製造方法。こ こで、表面粗さは、JIS B 0601による十点平 均粗さであり、各樹脂膜の流出開始温度は、高化式フロ ーテスター(試験荷重20 kg/cm²、ダイ径1mm、ダ イ長さ10mm)を用い昇温法によって測定される値であ る。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、積層樹脂膜から なる中間膜を用い、光学歪みが発生しない合わせガラス の製造方法に関する。

[0002]

【従来の技術】透明なガラス板の間に、可塑化ポリビニ ルブチラール等の熱可塑性樹脂シートからなる中間膜を 挟み互いに接着させて得られる合わせガラスは、自動 車、航空機、建築物などの窓ガラスに広く使用されてい

2

【0003】この種の合わせガラスは、通常、透明なガ ラス板の間に中間膜を挟み、これをニップロールに通し て扱くか或いはゴムバックに入れて減圧吸引し、ガラス 板と中間膜との間に残留する空気を脱気しながら予備圧 着し、次いでオートクレーブ内で加熱加圧して本圧着を 行うことにより製造される。

【0004】上記合わせガラスの中間膜には、接着性、 耐候性、耐貫通性、透明性等の基本性能が良好であるこ とのほかに、保管中に中間膜同士がブロッキングしない こと、ガラス板の間に中間膜を挟む際の取扱い作業性が 良好であること、さらに空気の巻き込みを無くすため に、予備圧着工程での脱気性が良好であることが要求さ れる。

【0005】このような要求を満たすために、通常、中 間膜には、その少なくとも一面に微細なエンボスが形成 されている。微細なエンボスの形態としては、多数の凸 起とこの凸起に対する凹部とからなる各種の凹凸模様、 或いは多数の凸条とこの凸条に対する凹溝からなる各種 の凹凸模様が広く知られている (例えば、特開昭60-204643号公報及び特公平1-32776号公報参 照)。

【0006】一方、近年では合わせガラスの用途の多様 化が進み、遮音性、装飾性、断熱性など、合わせガラス の付加価値の向上が広く要求されるようになってきてい る。このため、単層の樹脂膜よりなる中間膜だけでは要 求性能を全て満足させることが難しくなり、積層樹脂膜 からなる中間膜が注目されている。例えば、特開平7一 206483号公報においては、二種の可塑化ポリビニ ルアセタール樹脂膜を積層して構成した、少なくきでで の積層樹脂膜からなる遮音性の中間膜及び合わせガラス が提案されている。

[0007]

30

【発明が解決しようとする課題】このような従来の積層 40 樹脂膜からなる中間膜を用いて合わせガラスを製造する 際に、ブロッキングの防止、取扱作業性改善及び脱気性 向上のために、中間膜の表面に微細なエンボスを形成し た場合、最外樹脂膜の膜厚が比較的薄い場合には、エン ボスが中間膜表面に形成されるだけではなく、積層樹脂 膜を構成する各樹脂膜の界面にもエンボスの凹凸に対応 して凹凸状の微小な変形が生じる。

【0008】このため、各樹脂膜の界面に微小な乱れが 生じて界面が不均一となる。その結果、このような積層 樹脂膜からなる中間膜を用いて作製した合わせガラス

50 は、この合わせガラスを通してガラスの反対側を見た場

30

3

合、反対側の像が歪んで見える、いわゆる光学歪みが発生するという問題が生じることが多い。

【0009】この発明は、上記の問題を解決するもので、その目的とするところは、積層樹脂膜からなる中間膜を用い、中間膜の耐ブロッキング性、取扱作業性及び脱気性に優れ、しかも光学歪みが発生しない合わせガラスの製造方法を提供することにある。

[0010]

【課題を解決するための手段】上述の問題を解決するために鋭意研究を行った結果、積層樹脂膜からなる中間膜を用いた合わせガラスに発生する像の歪み、いわゆる光学歪み現象は、中間膜表面に形成された微細なエンボスの表面粗さ及び予備圧着温度と多大な相関があることを見出した。この発明は、このような知見に基づいてなされたものである。

【0011】すなわち、この発明の合わせガラスの製造 方法のうち、請求項1の発明は、最外樹脂膜の膜厚が4 5 μm 以上200 μm 未満である少なくとも二層の積層 樹脂膜からなり、その少なくとも一面に表面粗さが20 ~40 µm の微細なエンボスが形成されてなる中間膜 を、透明なガラス板の間に挟み、予備圧着を行い、その 後本圧着を行うことによって、合わせガラスを製造する 方法であって、上記積層樹脂膜は、二種の樹脂膜A及び Bとからなり、樹脂膜Aは、ポリビニルアルコールを炭 素数4~6のアルデヒドでアセタール化して得られ、ビ ニルアセテート成分が5~8モル%のポリビニルアセタ ール樹脂(a) と可塑剤とからなり、樹脂膜Bは、ポリビ ニルアルコールを炭素数3又は4のアルデヒドでアセタ ール化して得られ、ビニルアセテート成分が4モル%以 下のポリビニルアセタール樹脂(b) と可塑剤とからな り、上記予備圧着は、中間膜を構成する各樹脂膜のう ち、少なくとも一層の樹脂膜の流出開始温度よりも低い 温度で行われることを特徴とする。ここで、表面粗さ は、JIS B 0601による十点平均粗さであり、 各樹脂膜の流出開始温度は、高化式フローテスター(試 験荷重20 kg/cm²、ダイ径1mm、ダイ長さ10mm) を用い昇温法によって測定される値である。

【0012】さらに、この発明の合わせガラスの製造方法のうち、請求項2の発明は、最外樹脂膜の膜厚が200 μ m以上720 μ m以下である少なくとも二層の積層40樹脂膜からなり、その少なくとも一面に表面粗さが20~40 μ mの微細なエンボスが形成されてなる中間膜を、透明なガラス板の間に挟み、予備圧着を行い、その後本圧着を行うことによって、合わせガラスを製造する方法であって、上記積層樹脂膜は、二種の樹脂膜A及びBとからなり、樹脂膜Aは、ポリビニルアルコールを炭素数4~6のアルデヒドでアセタール化して得られ、ビニルアセテート成分が5~8モル%のポリビニルアセタール樹脂(a)と可塑剤とからなり、樹脂膜Bは、ポリビニルアルコールを炭素数3又は4のアルデヒドでアセタ50

ール化して得られ、ビニルアセテート成分が4モル%以下のポリビニルアセタール樹脂(b) と可塑剤とからなり、上記予備圧着は、中間膜を構成する各樹脂膜のうち、少なくとも一層の樹脂膜の流出開始温度よりも低い温度で行われることを特徴とする合わせガラスの製造方法。ここで、表面粗さは、JIS B 0601による十点平均粗さであり、各樹脂膜の流出開始温度は、高化式フローテスター(試験荷重20kg/cm²、ダイ径1mm、ダイ長さ10mm)を用い昇温法によって測定される値である。

【0013】この発明において、積層樹脂膜からなる中間膜の表面に形成される微細なエンボスの形状は、円錐、角錐、擬錐体、角柱、円錐等の柱体等、特に限定されることなく種々の形状を採用することができる。

【0014】また、エンボスの底面径または底辺長や間隔(ピッチ)は、合わせ加工時の脱気性(シール性、エアー溜まり限度)、作業性(中間膜同士のブロッキング防止、中間膜とガラス板との適度な滑り)等を考慮して適宜変更することができるが、外観上の不具合の解消のためには、底面径または底辺長は小さい方が好ましく、反面、ピッチは大きい方が好ましい。一般的には、底面径または底面長は $30~900~\mu$ m、ピッチは $100~1000~\mu$ mの範囲が好ましいが、特にこれらに限定されるものではない。

【0015】しかしながら、エンボスの表面粗さは最外樹脂膜の膜厚との関係において限定される。なお、ここで言うエンボスの表面粗さは、JISB0601による十点平均粗さである。最外樹脂膜の膜厚が 45μ m以上 200μ m未満の場合に、エンボスの表面粗さは $20\sim40\mu$ mに限定される(請求項10発明)。また、最外樹脂膜の膜厚が 200μ m以上 720μ m以下の場合に、エンボスの表面粗さは $20\sim50\mu$ mに限定される(請求項20発明)。このような最外樹脂膜の膜厚及びエンボスの粗さの範囲で、各樹脂膜の界面に微小な乱れが生ぜずに界面が均一となり、いわゆる光学歪みの発生が防止され、しかも中間膜の耐ブロッキング性、取扱作業性及び脱気性に優れることが見出された。

【0016】なお、エンボスの配列としては、規則的なもの、ランダムなものなど種々なものを採用することができ、特に限定されるものではないが、界面の乱れによる光学歪み現象が起こりにくいという点を考慮すれば、エンボスの配列は規則的である方が好ましい。

【0017】積層樹脂膜からなる中間膜の表面に上記のような微細なエンボスを形成する方法としては、エンボスロール法、カレンダーロール法、異形押出法等が挙げられるが、定量的に一定のエンボスを得るにはエンボスロール法が好適に採用される。微細なエンボスは中間膜の片面だけに形成されてもよいが、中間膜の両面に形成されるのが望ましい。

50 【0018】なお、積層樹脂膜からなる中間膜の膜厚

は、請求項1の発明においては、最外樹脂膜の膜厚が4 5 μm 以上200 μm 未満に限定され、請求項2の発明 においては、最外樹脂膜の膜厚が200μm以上720 μm以下に限定されるほかは、特に限定されるものでは ないが、各種の用途に対して好適であるように、この発 明においては、中間膜の膜厚は0.1~2mmの範囲で あるのが好ましい。

【0019】この発明において、中間膜を構成する積層 樹脂膜は、二種の樹脂膜A及びBとからなり、樹脂膜A は、ポリビニルアルコールを炭素数4~6のアルデヒド でアセタール化して得られ、ビニルアセテート成分が5 ~8モル%のポリビニルアセタール樹脂(a) と可塑剤と からなり、樹脂膜Bは、ポリビニルアルコールを炭素数 3又は4のアルデヒドでアセタール化して得られ、ビニ ルアセテート成分が4モル%以下のポリビニルアセター ル樹脂(b) と可塑剤とからなる。

【0020】このような積層樹脂膜からなる中間膜は、 耐候性、耐貫通性、ガラス破片の飛散防止性、透明性な ど、合わせガラスに要求される基本性能が優れている上 に、遮音性能に優れている。なお、積層樹脂膜を構成す る各樹脂膜には、紫外線吸収剤、酸化防止剤、接着力調 整剤等の種々の公知の添加剤が含有あるいは付着されて もよい。

【0021】上記ポリビニルアセタール樹脂(a)及び (b) の調製に使用するポリビニルアルコールとしては、 平均重合度500~3000のものが好まく、平均重合 度1000~2500のものがさらに好ましい。この平 均重合度が500未満であると合わせガラスの耐貫通性 が低下する。逆に、平均重合度が3000を越えると樹 脂膜の成形が難しくなり、しかも樹脂膜の強度が強くな りすぎて適当でない。

【0022】また、ポリビニルアルコールの鹸化度は、 樹脂(a) の調製においてはビニルアセテート成分を5~ 8 モル%に設定せねばならないので、鹸化度95~92 モル%のものが用いられる。また、樹脂(b)の調製にお いてはビニルアセテート成分を4モル%以下に設定せね ばならないので、鹸化度96モル%以上のものが用いら れる。

【0023】ここで、ポリビニルアルコールの平均重合 度及び鹸化度は、例えば、JISK 6726「ポリビ ニルアルコール試験方法」に基づいて測定することがで きる。

【0024】ポリビニルアセタール樹脂(a) の調製にお いて、炭素数4~6のアルデヒドとしては、n-ブチル アルデヒド、イソブチルアルデヒド、バレルアルデヒ ド、n-ヘキシルアルデヒド、2-エチルブチルアルデ ヒド等が単独或いは二種以上組み合わせて用いられる。

【0025】樹脂(a) の調製において、アルデヒドの炭 素数が3以下では充分な遮音性を得ることができない。

反応性が低下し、しかも室温付近での遮音性能が充分に 発揮されない。特に、nープチルアルデヒド、イソプチ ルアルデヒド、n-ヘキシルアルデヒドの単独或いは二 種以上組み合わせが好ましい。

【0026】また、ポリビニルアセタール樹脂(b) の調 製において、炭素数3又は4のアルデヒドとしては、プ ロピオンアルデヒド、nーブチルアルデヒド、イソブチ ルアルデヒド等が単独或いは二種以上組み合わせて用い られる。

10 【0027】樹脂(b) の調製において、アルデヒドの炭 素数が2以下で樹脂膜の成形性が低下し、逆にアルデヒ ドの炭素数が5以上ではアセタール化の反応性が低下 し、しかも室温付近での遮音性能が充分に発揮されな い。特に、nーブチルアルデヒド、イソブチルアルデヒ ドの単独或いは二種の組み合わせが好ましい。

【0028】特に、上記樹脂(a) 及び樹脂(b) は、いず れも炭素数4のnーブチルアルデヒドでアセタール化し て得られたものが好ましい。 n-ブチルアルデヒドでア セタール化した樹脂の使用により、各樹脂膜の接着強度 が強くなり、また耐候性にも優れ、しかも樹脂の製造も 容易である。

【0029】ポリビニルアセタール樹脂(a)及び(b)の 調製方法としては、公知のいかなる方法でもよい。例え ば、ポリビニルアルコールを温水に溶解し、得られた水 溶液を所定の温度、例えば0~95℃に保持しておい て、所要の酸触媒及びアルデヒドを加え、攪拌しながら アセタール化反応を進行させ、次いで反応温度を上げて 熟成し反応を完結させ、その後、中和、水洗及び乾燥を 行って樹脂(a) 及び樹脂(b) の粉末を得る。

【0030】得られるポリビニルアセタール樹脂(a)及 び(b) は、ビニルアセタール成分とビニルアルコール成 分とビニルアセテート成分とから構成されている。これ 等の各成分量は、例えば、JIS K 6728「ポリ ビニルブチラール試験方法」に基づいて測定することが できる。

【0031】なお、ポリビニルブチラール樹脂以外のホ リビニルアセタール樹脂の場合は、ビニルアルコール成 分量とビニルアセテート成分量とを測定し、残りのビニ ルアセタール成分量は100から上記両成分量を差し引 くことにより算出することができる。

【0032】また、アセタール化度も上記試験方法に基 づいて測定することができる。ここで、樹脂(a) のアセ タール化度は40モル%以上が好ましい。このアセター ル化度が40モル%未満では、可塑剤との相溶性が良く なく、遮音性能を発揮するのに必要な可塑剤量を含有さ せることが難しくなる。より好ましいアセタール化度は 50モル%以上である。

【0033】また、樹脂(b) のアセタール化度は50モ ル%以上が好ましい。このアセタール化度が50モル% 逆に、アルデヒドの炭素数が7以上ではアセタール化の 50 未満では、可塑剤との相溶性が良くなく、耐貫通性確保

に必要な可塑剤量を含有させることが難しくなる。

【0034】上記樹脂(a) のビニルアセテート成分の含 有量は5~8モル%である。このビニルアセテート成分 の含有量が5モル%未満では遮音性能が充分に発揮され ず、逆にビニルアセテート成分の含有量が8モル%を超 えると樹脂の製造時にプロッキングを起こし易くなり、 製造に困難をともなう。特に、このビニルアセテート成 分の含有量は6~8モル%が好ましい。

【0035】また、樹脂(b) のビニルアセテート成分の 含有量は4モル%以下である。このビニルアセテート成 分の含有量が4モル%を超えると、樹脂膜A及びBとの 粘弾性的性質が類似したものとなり、広い温度領域での 遮音性能が充分に発揮されない。特に、このビニルアセ テート成分の含有量は0~2モル%が好ましい。

【0036】このようにして調製されたポリビニルアセ タール樹脂(a) とポリビニルアセタール樹脂(b) に、そ れぞれ所定量の可塑剤が配合され、これを押出法、カレ ンダー法、プレス法等によりシート状に製膜して樹脂膜 Aと樹脂膜Bとを成形する。また、上記樹脂(a) と樹脂 (b) に、それぞれ所定量の可塑剤を混合し、これを多層 押出法により一体に成形することもできる。

【0037】可塑剤としては、この種の中間膜に用いら れている公知の可塑剤、例えば、一塩基酸エステル、多 塩基酸エステル等の有機系可塑剤や、有機リン酸系、有 機亜リン酸系等のリン酸系可塑剤等が用いられる。

【0038】一塩基酸エステルの中では、例えば、トリ エチレングリコールと、酪酸、イソ酪酸、カプロン酸、 2-エチル酪酸、ヘプタン酸、n-オクチル酸、2-エ チルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシ ル酸等の有機酸との反応によって得られたグリコール系 エステルが好ましい。その他、テトラエチレングリコー ル、トリプロピレングリコールと上記の如き有機酸との エステルも用いられる。

【0039】多塩基酸エステルとしては、例えば、アジ ピン酸、セバチン酸、アゼライン酸等の有機酸と炭素数 4~8の直鎖状又は分枝状アルコールとのエステルが好 ましい。また、リン酸系可塑剤としては、トリブトキシ エチルフォスフェート、イソデシルフェニルホスフェー ト、トリイソプロピルホスファイト等が好ましい。

【0040】特に、トリエチレングリコールジー2-エ 40 チルブチレート、トリエチレングリコールジー2-エチ ルヘキソエート、トリエチレングリコールジカプリレー ト、トリエチレングリコールジーnーオクトエート、ト リエチレングリコールジ-n-ヘプトエート、テトラエ チレングリコールジ-n-ヘプトエート、その他ジブチ ルセパケート、ジオクチルアゼレート、ジブチルカルビ トールアジペートが好適に用いられる。

【0041】そして、ポリビニルアセタール樹脂(a) に配合される可塑剤量は、ポリビニルアセタール樹脂

含有される。この可塑剤量が20重量部未満であると遮 音性が充分に得られず、逆に可塑剤量が70重量部を超 えると可塑剤がブリードして、合わせガラスの透明性や

ガラス板との接着性が損なわれる。特に、この可塑剤量 は30~60重量部が好ましい。

【0042】この発明において、積層樹脂膜からなる中 間膜は、前述のような樹脂膜AとBとを多層押出法によ り一体成形する方法、或いは別々に成形した各樹脂膜を 重ねて加熱加圧することにより一体化する方法、或い は、各樹脂膜を二枚の透明なガラス板の間に重ねて加熱 加圧することにより一体化して、合わせガラスの製造と 同時に成形する方法等により製造することができる。そ

して、このような中間膜の少なくとも一面には、前記の

ような所望の粗さの微細なエンボスが形成される。

【0043】こうして得られる中間膜を用いて合わせガ ラスを製造するには、透明なガラス板の間に、所望の粗 さの微細なエンボスが形成された上記中間膜或いは上記 樹脂膜AとBを挟み、これをニップロールに通して扱く か(扱き脱気法)或いはゴムバックに入れて減圧吸引し (減圧脱気法)、ガラス板と中間膜との間に残留する空 気を脱気しながら予備圧着し、次いでオートクレープ内 或いはプレスにより加熱加圧して本圧着を行うことによ り製造される。

【0044】この場合、予備圧着温度が高くなると光学 歪み現象が発生しやすくなる傾向があり、予備圧着の温 度として、上記中間膜を構成する各樹脂膜のうち、少な くとも一層の樹脂膜の流出開始温度よりも低い温度で行 うと、前述の特定の最外樹脂膜の膜厚及び特定のエンボ スの粗による作用とが相まって、各樹脂膜の界面に微小 30 な乱れが生ぜずに界面が均一となり、いわゆる光学歪み の発生がより確実に防止され、しかも中間膜の耐ブロッ キング性、取扱作業性及び脱気性に優れることが見出さ

【0045】特に、上記中間膜を構成する各樹脂膜のう ち、少なくとも最外樹脂膜の流出開始温度よりも低い温 度で行うのが好ましく、上記中間膜を構成する各樹脂膜 の流出開始温度よりも低い温度で行うのが、さらに好ま しい。

【0046】ここで、樹脂膜の流出開始温度は、高化式 フローテスター (試験荷重 2 O kg/cm²、ダイ径 1 m m、ダイ長さ10mm)を用い昇温法によって測定される 値である。高化式フローテスターは、JIS K 72 10の流れ試験方法(参考試験)に記載されており、具 体的には、例えば島津製作所製の島津フローテスタCF T-500℃が挙げられ、この島津フローテスタ℃FT - 5000の取扱い説明書に流出開始温度の測定方法が 記載されている。

【0047】因みに、従来の予備圧着温度は、各樹脂膜 の流出開始温度以上の温度で温度で行われていた。この (a) 100重量部に対して20~70重量部の範囲で 50 発明では、予備圧着温度が高くなると光学歪み現象が発

Ç

生しやすくなる傾向があり、少なくとも最外樹脂膜の流出開始温度よりも低い温度であって且つ40~100℃の範囲、好ましくは50~90℃の範囲の予備圧着温度を採用するのが好適である。

【0048】予備圧着の際の圧力は、従来と同様で、扱き脱気法では約 $2\sim10~kg/cm^2$ 、約 $-400\sim-7$ 50mHgの真空(絶対圧力 $360\sim10mHg$)が好適に採用される。また、予備圧着後の本圧着は、従来と同様で、約 $120\sim150$ ℃の温度、約 $10\sim15~kg/cm^2$ の圧力で行われる。こうして、合わせガラスが製造される。

【0049】なお、樹脂膜AとBによる積層構成は、例えば、下記のような積層構成とされる。

樹脂膜 A / 樹脂膜 B の 2 層積層構成。

樹脂膜A/樹脂膜B/樹脂膜A、又は樹脂膜B/樹脂膜A/樹脂膜Bの3層積層構成。

樹脂膜A/樹脂膜B/樹脂膜A/樹脂膜Bの4層積層構成。

さらに、上記樹脂膜A及びBには、例えば、樹脂膜A/ 樹脂膜A、樹脂膜B/樹脂膜Bのように同種の樹脂膜を 重ねて使用してもよい。

【0050】また、上記透明なガラス板としては、無機ガラス板のみならず、ポリカーボネート板、ポリメチルメタクリレート板などの有機ガラス板も使用することができる。また、合わせガラスの積層構成は、ガラス板/中間膜/ガラス板の三層構成のみならず、例えば、ガラス板/中間膜/ガラス板のような多層構成とすることができる。

[0051]

【発明の実施の形態】以下、この発明の実施例及び比較 30 例を示す。

実施例1

樹脂(a) 及び樹脂膜Aの調製

平均重合度 1700、ケン化度 88モル%のポリビニルアルコールをnーブチルアルデヒドでアセタール化して得られ、ブチラール化度が58モル%、ビニルアセテート成分が12モル%のポリビニルアセタール樹脂(a)を用意した。

【0052】上記樹脂(a) 100重量部と、可塑剤としてトリエチレングリコールジー2ーエチルブチレート50重量部とを混合し、これをミキシングロールで充分に溶融混練した後、プレス成形して、厚さ0.12mmの樹脂膜Aを得た。この樹脂膜Aについて、島津製作所製の島津フローテスタCFT-500C(試験荷重20kg/cm²、ダイ径1mm、ダイ長さ10mm)を用いて、樹脂膜の流出開始温度を測定したところ、その値は80℃であった。

【0053】樹脂(b) 及び樹脂膜Bの調製

平均重合度1700、ケン化度99モル%のポリビニル アルコールをnーブチルアルデヒドでアセタール化して 得られ、ブチラール化度が66モル%、ビニルアセテート成分が1モル%のポリビニルアセタール樹脂(b) を用意した。

10

【0054】上記樹脂(b) 100重量部と、可塑剤としてトリエチレングリコールジー2ーエチルブチレート40とを混合し、これをミキシングロールで充分に溶融混練した後、プレス成形して、厚さ0.13mmの樹脂膜Bを得た。この樹脂膜Bについて、島津製作所製の島津フローテスタCFTー500C(試験荷重20kg/cm²、ダイ径1mm、ダイ長さ10mm)を用いて、樹脂膜の流動開始温度を測定したところ、その値は105℃であった。

【0055】中間膜の作製

上記樹脂膜AとBを用い、これを樹脂膜B/樹脂膜A/ 樹脂膜Bの順に重ね合わせ、プレス成形機で加熱加圧し て一体化して積層樹脂膜からなる中間膜を作製し、この 中間膜の両面にエンボスロール法によりエンボスを形成 した。

【0056】この中間膜のエンボスの表面粗さ(JISB 0601による十点平均粗さ)を、触針式粗さ計(東京精密社製: surfcomE-RM-S09A、E-RM-S02A、E-RM-S39A)を用い、て測定したところ、エンボスの表面粗さは30μmであった。

【0057】また、ブロッキング性について、次の方法で剥離力を測定した結果、剥離力は86g/cmと低い値を示し、耐ブロッキング性は良好であり、作業性に優れることがわかった。

【0058】<プロッキングテスト>中間膜を10mx25mmに裁断し、これを2枚重ね合わせ、その上に2kgの重りを載せ、室温で25時間放置したあと、引張試験機で500m/分の速度で180度剥離試験を行い

(繰り返し数3)、この剥離力(g/cm幅)を測定した。この剥離力が小さいほど耐ブロッキング性や取扱い作業性が優れている。

【0059】合わせガラスの製造

上記中間膜を、その両側から透明なフロートガラス(縦 $30 \text{ cm} \times$ 横 $30 \text{ cm} \times$ 厚さ 3 mm)で挟み、これをゴムバッグ内に入れ 20 torropace のの真空度で 20 分間脱気した後、脱気したまま 70 Cooleropace の分間保持しつつ真空プレスした。

【0060】このようにして予備圧着された合わせガラスを、エアー式オートクレーブ中で圧力 12 kg/cm²、温度 135 $^{\circ}$ Cの条件で20分間本圧着を行い、合わせガラスを製造した。。

【0061】この合わせガラスについて、脱気性、光学 歪み及び遮音性を、次の方法で評価した。その結果をま とめて表1に示す。

【0062】 < 脱気性の評価 > 目視により合わせガラス 50 に気泡が存在するか否かについて調べた。

【0063】<光学歪みの評価>合わせガラス合わせガラスを通してガラスの反対側を目視した時、反対側の像が歪んで見えるか否かについて調べた。

【0064】<遮音性の評価>合わせガラスから試料を切り出し、この試料をダンピング試験用の振動発生機

(振研社製の加振機「G21-005D」)により加振し、そこから得られる振動特性を、機械インピーダンスアンプ(リオン社製の「XG-81」)にて増幅し、振動スペクトルをFFTスペクトラムアナライザー(横河ヒューレットパッカード社製の「FFTアナライザーHP 3582A」)により解析した。

【0065】 こうして得られた損失係数と、ガラスとの 共振周波数との比から、20℃における音周波数(H z)と音響透過損失(dB)との関係を示すグラフを作 成し、音周波数2000Hz近辺における極小の音響透 過損失(TL値)を求めた。このTL値により、合わせ ガラスの遮音性が判断できる。

*【0066】実施例2

【0067】実施例3

表1に示す物性の樹脂膜A及びBを用い、樹脂膜B/樹脂膜A/樹脂膜B/樹脂膜Aの順に重ね合わせ、エンボスの表面粗さを22μmに変更し、予備圧着温度を80 00 ℃に変更したこと以外は、実施例1と同様に行った。その結果をまとめて表1に示す。

【0068】比較例1

予備圧着温度を110℃に変更したこと以外は、実施例 1と同様に行った。その結果をまとめて表1に示す。

[0069]

【表1】

•		本		_	
		実施例 1	実施例2	実施例3	比較例1
	アルデヒドの種類	n- <i>7f278f</i> Ef	ロ−ヘキジルブル デヒド	ロープチルフルデ ヒド	n-ブチルブルデ ヒド
樹	ビニルアセテート成分(1 2	8	2 8	1 2
脂	モル%)	•			
膜	アセタール化度(モル%	58	5 5	5 0	5 8
Α	可塑剤量(重量部)	5 0	5 0	5 0	5 0
	膜厚 (mg)	0.12	0.38	0.12	0.12
	流出開始温度(℃)	8 0	8 5	7 5	80
	アルデヒドの種類	n-7+4747	n-ブチルアルデ	プロピオンフルデ	ローブチルアルデ
		Ł۴	Ł F	ŁF	Łř
樹	ビニルアセテート成分(1	4	l	1
脂	モル%)				
膜	アセタール化度(モル%	6 6	6 4	67	6 6
В	可塑剤量(重量部)	4 0	40	40	4 0
	膜厚 (論)	0.13	0. 1 9	0.07	0.13
	流出開始温度 (°C)	105	100	105	105
中 積層構成 (樹脂膜A、B)		B/A/B	B/A/B	B/A/B/A	B/A/B
間 中間膜の厚み (血)		0.38	0.76	0.38	0.38
1 :	ノポスの表面粗さ(μ 🛭)	3 0	3 8	2 2	3 0
予備圧着温度(℃)		7 0	9 0	8.0	1 ! 0
ブロッキング性 (g/cm)		8 6	8 1	9 6	8 6
脱気性		良好	良好	良好	良好
光学歪み		良好	良好	良好	不良
透过	過損失(T L値)(d B)	3 7	38	38	3 7
	樹脂膜A 樹脂膜B 稜中エ予 ブ脱光	サンプセドの種類 アルデヒドの種類 ビニルアセテート成分(モルルツ) アセタール化度(モル%) ででのでは、でででは、ででででは、ででででは、でででででででででででででででで	実施例 1 アルデヒドの種類 ローチル7が はず ローチル7が はず ローチル7が はず ローチルので ロールのので アセタール化度(モル% アマタール化度(モル% のののので ののので アルデヒドの種類 アルデヒドの種類 アルデヒドの種類 ローチル7が はず ロールので アルデヒドの種類 ローチル7が はず ローアがより アセタール化度(モル% ので アルデヒドの種類 ローチルアセテート成分(ローアセテート成分(ローアセタール化度(モル% ので ロールのので はいるので はいるので はいるので はいるので のので はいるので はいるで はいるので はいるので はいるので はいるので はいるので はいるので はいるので はいるので はいるで はいるので はいるので はいるので はいるので はいるので はいるので はいるので はいるではいるではいるで はいるではいるではいるではいるではいるではいるで はいるではいるではいるではいるではいるではいるではいるではいるではいるではいるで	実施例 1 実施例 2 アルデヒドの種類 ローチルブが 比 にニルアセテート成分(モル%) アセタール化度(モル% A 剪塑剤量(重量部) 膜厚(mm) 流出開始温度(℃) カーチルブルデー に モルルアセテート成分(モルルカ) アセタール化度(モル% B 可塑剤量(重量部) 原厚(mm) 流出開始温度(℃) カーチルブルデー に モルルカ) アセタール化度(モル% B 可塑剤量(重量部) 原厚(mm) 流出開始温度(℃) 移稿機成(樹脂膜 A、B) 中間膜の厚み(mm) エンボスの表面粗さ(μm) 予備圧着温度(℃) プロッキング性(g ✓ cm) 脱気性 光学歪み ローチルブが に ローハートルブルデー に ロールが ローライルブルデー に ロールが ローライルブルデー に ロールが ローライルブルデー に ロールが ローライルが ローライルブルデー に ローカーチルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルブルデー に ローカーチルブルデー に ローカーチルブルデー に ローカーチルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルブルブルデー に ローカーチルグル に ローカー・ ローカー・ ローカー・ ローカー に ローカー・ ローカー に ローカー・ ローカー に ローカー に ローカー・ ローカー に ロ	実施例1 実施例2 実施例3 アルデヒドの種類 ロープチルブルデ ローペキシルブル ロープチルブルデ により ロールフセテート成分(モル%) アセタール化度(モル% 5 8 5 5 5 5 0 可塑剤量(重量部) 膜厚(mm) の.1 2 8 8 5 7 5 0 1 2 8 0 8 5 7 5 0 1 2 0.3 8 0.1 2 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 8 5 7 5 0 0.1 2 8 0 0.1 2 8 0 0.1 2 8 0 0.1 2 8 0 0.1 2 8 0 0.1 2 8 0 0.1 2 8 0 0.1 3 0.1 9 0.0 7 1 0 5 0.0 7 1 0 5 0 0.0 7 1 0 5 0 0.0 7 1 0 5 0 0.0 7 1 0 5 0 0.3 8 0 0.7 6 0.3 8 0.7 6 0.3 8 0.3 8 0.3

[0070]

【発明の効果】上述の通り、この発明の合わせガラスの 製造方法によれば、特定の樹脂膜 A と B を用いた積層樹 脂膜からなる中間膜を使用し、さらに最外樹脂膜の膜厚 とエンボスの表面粗さが特定の範囲限定され、しかも予 備圧着の温度が特定の範囲限定されており、これ等の限 定による効果が相まって、合わせ工程において各樹脂膜 の界面は乱れることなく均一となり、得られる合わせガラスの光学歪みを確実に防止することができる。

【0071】また、中間膜の表面に特定粗さのエンボスが形成されているので、保管中に中間膜同士がブロッキングせず、ガラス板の間に中間膜を挟む際の取扱い作業性が良好で、また予備圧着工程での脱気性が良好で、空50 気の巻き込みによる気泡の発生がない。さらに、特定の

樹脂膜AとBを用いた積層樹脂膜からなる中間膜を使用するので、上記のような効果とともに、遮音性に優れた合わせガラスを製造することができる。

【0072】したがって、この発明の方法で得られる合わせガラスは、特に、高い遮音性能が要求される建築物の窓ガラス等に好適に使用される。

14