1.3 The Sigma Notation and Partial Sums

In the previous sections, you learned about the individual terms of a sequence. In this section, you will learn how to add the terms of a sequence, i.e. find the sum of the terms.

Partial sums

Given the sequence a_n

 $S_1 = a_1$, S_1 is the first term of the sequence.

 $S_2 = a_1 + a_2$, S_2 is the sum of the first two terms of the sequence.

 $S_3 = a_1 + a_2 + a_3$, S_3 is the sum of the first three terms of the sequence.

 $S_4 = a_1 + a_2 + a_3 + a_4$, S_4 is the sum of the first four terms of the sequence, and so on.

 $S_n = a_1 + a_2 + a_3 + a_4 + ... + a_n$, S_n is the sum of the first n terms of the sequence called the partial sum.

Definition 1.4

Let $\{a_n\}_{n=1}^{n=\infty}$ be a sequence. The sum of the first n terms of the sequence, denoted by S_n is called the partial sum of the sequence. Such summation is denoted as follows.

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + a_4 + \dots + a_n$$
, where k is the index of the summation, 1 is

the lower limit of summation, n is the upper limit of the summation and \sum is the sigma notation or the summation notation.

Example 1

Find the sum of the first five even natural numbers.

Solution

$$a_1 = 2$$
, $a_2 = 4$, $a_3 = 6$, $a_4 = 8$, $a_5 = 10$. Then,
 $S_5 = a_1 + a_2 + a_3 + a_4 + a_5$
 $= 2 + 4 + 6 + 8 + 10$
 $= 30$

Example 2

Let $a_n = 3n + 1$, find S_6

Solution

$$a_n = 3n+1$$

 $a_1 = 4, a_2 = 7, a_3 = 10, a_4 = 13, a_5 = 16, a_6 = 19$
 $S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6$
 $= 4+7+10+13+16+19$
 $= 69$

Example 3

Given the general term $a_n = \frac{1}{n(n+1)}$, find the sum of the first

a. 99 terms

b. *n* terms

Solution

By using partial fraction decomposition:

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

Solving for A and B gives A = 1 and B = -1

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

(a)
$$S_{99} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{99} - \frac{1}{100}) = 1 - \frac{1}{100} = 0.99$$

(b)
$$S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

Note: Such a sequence is said to be telescoping sequence.

Exercise 1.10

- 1. Find the sum of:
 - a. the first five odd natural numbers.
 - b. the first ten odd natural numbers.
- 2. Find the sums of the following sequences to the term given.

a.
$$a_n = 4n - 3$$
, S_5 .

b.
$$a_n = 3 - 5n$$
, S_8 .

a.
$$a_n = 4n - 3$$
, S_5 . **b.** $a_n = 3 - 5n$, S_8 . **c.** $a_n = n^2 + 1$, S_6 .

3. Given the general term $a_n = \frac{2}{n^2 + 5n + 6}$, find the sum of the first n^{th} terms.

Sigma notation

Sigma notation is a method used to write out a long sum in a concise way. We use sigma notation for writing finite and infinite numbers of terms in a sequence. The sum is denoted by the sigma notation using the Greek letter Σ (sigma).

Example 1

Express the following sigma notation in the form of the sum

a.
$$\sum_{k=1}^{8} 3k$$

b.
$$\sum_{k=2}^{6} k^2$$

Solution

a.
$$\sum_{k=1}^{8} 3k = 3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 = 108$$
. b. $\sum_{k=2}^{6} k^2 = 4 + 9 + 16 + 25 + 36 = 90$.

Example 2

Which one of the following express the sum, $3^2 + 4^2 + 5^2 + 6^2 + 7^2$?

a.
$$\sum_{k=3}^{7} k^2$$

b.
$$\sum_{i=3}^{7} i^2$$

b.
$$\sum_{i=2}^{7} i^2$$
 c. $\sum_{k=2}^{6} (k+1)^2$

Solution

All of them express the given sum.

Exercise 1.11

1. Express the following sigma notations in the form of a sum.

a.
$$\sum_{k=1}^{6} 2k$$
 b. $\sum_{k=1}^{5} k^2$ c. $\sum_{k=1}^{n} 3^k$

b.
$$\sum_{k=3}^{5} k^2$$

c.
$$\sum_{k=1}^{n} 3^{k}$$

d.
$$\sum_{k=3}^{5} k^3$$

2. Express the following using the sigma notation

$$2^2 + 4^2 + 6^2 + 8^2 + 10^2 + 12^2$$
.

1.3.1 Sigma Notation

Properties of sigma notation

The sequence $\{a_n\}$, where all the terms are c, the sum of the first n^{th} term is

$$\sum_{k=1}^{n} a_{n} = c + c + c + \dots + c = nc$$

That is,
$$\sum_{k=1}^{n} a_k = nc$$

In particular,
$$\sum_{k=1}^{n} 1 = n(1) = n.$$

Properties of Sigma Notation

(1)
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$
, *c* is a constant

(3)
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

(2)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_i + \sum_{k=1}^{n} b_k$$

(4)
$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{m} a_k + \sum_{k=m+1}^{n} a_k$$
, $1 \le m \le n$

Example

Evaluate each of the following sigma notations:

$$(a) \sum_{k=1}^{3} 4k$$

(b)
$$\sum_{k=1}^{5} (3k-2)$$

$$(c) \sum_{k=1}^{6} 2^{k-1}$$

Solution

(a)
$$\sum_{k=1}^{3} 4k = 4 + 8 + 12 = 24$$

Using the above property (1), you can also calculate,

$$\sum_{k=1}^{3} 4k = 4\sum_{k=1}^{3} k = 4(1+2+3) = 4(6) = 24$$

(b)
$$\sum_{k=1}^{5} (3k-2) = 1+4+7+10+13 = 35$$

Using property (1) and (3), you can also calculate,

$$\sum_{k=1}^{5} (3k-2) = 3\sum_{k=1}^{5} k - \sum_{k=1}^{5} 2 = 3(1+2+3+4+5) - (2+2+2+2+2)$$

$$= 3(1+2+3+4+5) - (2+2+2+2+2)$$

$$= 3(15) - 2(5)$$

$$= 35$$

(c)
$$\sum_{k=1}^{6} 2^{k-1} = 2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5}$$
$$= 1 + 2 + 4 + 8 + 16 + 32$$
$$= 63$$

Using the above property (4), you can also calculate,

$$\sum_{k=1}^{6} 2^{k-1} = \sum_{k=1}^{3} 2^{k-1} + \sum_{k=4}^{6} 2^{k-1}$$
$$= (2^{0} + 2^{1} + 2^{2}) + (2^{3} + 2^{4} + 2^{5})$$
$$= 63$$

Exercise 1.12

Evaluate each of the following sigma notations.

a.
$$\sum_{k=1}^{4} 5k$$

b.
$$\sum_{k=1}^{5} (4k-1)$$

c.
$$\sum_{k=3}^{6} (k^2 - 4)$$

d.
$$\sum_{k=2}^{5} 3$$

e.
$$\sum_{k=1}^{8} (k^3 + 2k^2 - 3k + 5)$$

1.3.2 Sum of Arithmetic Sequences

Activity 1.5

Find the sum of the first ten terms of the sequence 5,15,25,35,...

HISTORICAL NOTE

Carl Friedrich Gauss (1777-1855)

A teacher of Gauss, at his elementary school, asked him to add all the integers from 1 to 100. When Gauss returned with the correct answer after only a few moments, the teacher could only look at him in astounded silence. This is what Gauss did:

$$\frac{1+2+3+...+100}{100+99+98+...+1}$$

$$\frac{100+99+98+...+1}{101+101+101+...+101}$$

$$\frac{100\times101}{2}=5050.$$

To find the sum of the first 100 natural numbers, Gauss worked as follows. Writing the sum forward and backward then adding them together yields:

$$\begin{split} S_{100} &= 1 + 2 + 3 + \dots + 98 + 99 + 100 \\ S_{100} &= 100 + 99 + 98 + \dots + 3 + 2 + 1 \\ 2S_{100} &= 101 + 101 + 101 + \dots + 101 + 101 + 101 \\ 2S_{100} &= 100 \times 101 \end{split}$$

Therefore,
$$S_{100} = \frac{1}{2} \times 100 \times 101 = 5050$$

The sum of the first n natural numbers can also be calculated as follows:

$$S_n = 1 + 2 + 3 + ... + (n-2) + (n-1) + n$$

$$S_n = n + (n-1) + (n-2) + ...3 + 2 + 1$$

$$2S_n = (n+1) + (n+1) + \dots + (n+1) + (n+1)$$

Therefore, $2S_n = n(n+1)$

The sum of the first *n* consecutive natural numbers is $S_n = \frac{n}{2}(n+1)$.

Example

Find the sum of the first

- a. 40 natural numbers
- b.150 natural numbers

Solution

- a) Using the formula $S_n = \frac{n}{2}(n+1)$, $S_{40} = \frac{40}{2}(40+1) = 20(41) = 820$
- b) Using the formula $S_n = \frac{n}{2}(n+1)$, $S_{150} = \frac{150}{2}(150+1) = 75(151) = 11,325$

Exercise 1.13

- 1. Find the sum of the first
 - a. 30 natural numbers.
 - b. 99 natural numbers.
 - c. 200 natural numbers.
- 2. If the sum of the first n natural numbers is 3240, what is the value of n?

Derivation of sum of arithmetic sequence

Let $\{A_n\}_{n=1}^{\infty}$ be an arithmetic sequence.

$$S_n = A_1 + A_2 + A_3 + ... + A_n$$
, where $A_n = A_1 + (n-1)d$

$$S_n = A_1 + (A_1 + d) + (A_1 + 2d) + (A_1 + 3d) + \dots + (A_1 + (n-1)d)$$

By collecting all the A_1 terms (there are n of them) we get,

$$S_n = nA_1 + [d + 2d + 3d + ... + (n-1)d]$$

Now factoring out d from within the brackets,

$$S_n = nA_1 + d[1+2+3+...+(n-1)]$$

Inside the brackets you have the sum of the first (n-1) positive integers. Thus by

using the formula, $S_n = \frac{n}{2}(n+1)$,

$$S_n = nA_1 + d\left(\frac{n-1}{2}\right)n = \frac{2nA_1 + n(n-1)d}{2} = \frac{n}{2}[2A_1 + (n-1)d].$$

This formula can be written as:

$$S_n = \frac{n}{2} [A_1 + \{A_1 + (n-1)d\}]$$
$$= \frac{n}{2} (A_1 + A_n)$$

Hence, the following theorem is derived:

Theorem 1.3

The sum S_n of the first n terms of an arithmetic sequence with first term A_1

and common difference d is
$$S_n = \sum_{k=1}^n A_k = \frac{n}{2} [2A_1 + (n-1)d].$$

This formula can also be written as:

$$S_n = n \left(\frac{A_1 + A_n}{2} \right)$$
, where A_n is the n^{th} term.

This alternative formula is useful when the first and the last terms are known.

Example 1

Find the sum of the first 35 terms of the sequence whose general term is $A_n = 5n$.

Solution

From the general term, we get $A_1 = 5$, $A_2 = 10$, $A_3 = 15$,..., this shows that the given sequence is an arithmetic sequence. So, $A_{35} = 5(35) = 175$.

Since we can easily identify the first and the 35th terms, we use the formula

$$S_n = \frac{n}{2}(A_1 + A_n) = n\left(\frac{A_1 + A_n}{2}\right)$$

Thus, substituting $A_1 = 5$, and $A_{35} = 175$

$$S_{35} = \frac{35}{2}(5+175) = 35\left(\frac{5+175}{2}\right) = 35(90) = 3,150$$

Example 2

If the 1st term of arithmetic sequence is 4, common difference is 5, then find the sum of the first 40 terms.

Solution

Given $A_1 = 4$, d = 5,

$$S_n = \frac{n}{2} [2A_1 + (n-1)d] \Rightarrow S_{40} = \frac{40}{2} [2(4) + (40-1)(5)] = 20(8+195) = 20(203) = 4060.$$

Exercise 1.14

- 1. Find the partial sum of the following arithmetic sequences:
 - a. $A_1 = 2$, and last term $A_{10} = 21$.
 - b. $A_1 = 40$, and last term $A_{26} = 0$.
- 2. Find the sum of the following arithmetic sequences:

 - a. $A_1 = 2$, d = 3, n = 10b. $A_1 = 30$, d = -5, n = 12

Further on sum of arithmetic sequence

Example 1

Find the sum S_7 of the arithmetic sequence whose 4^{th} term is 2 and 7^{th} term is 17.

Solution

Applying the formula $A_n = A_1 + (n-1)d$

$$\begin{cases} A_4 = A_1 + 3d = 2 \\ A_7 = A_1 + 6d = 17 \end{cases}$$

Subtracting the first equation from the second equation,

$$3d = 17 - 2$$
$$d = 5$$

Thus,

$$A_{1} = A_{4} - 3d$$

$$A_{1} = 2 - 3 \times 5 = -13$$

$$S_{n} = n \left(\frac{A_{1} + A_{n}}{2}\right)$$

$$S_{7} = 7 \left(\frac{-13 + 17}{2}\right) = 7(2) = 14.$$

Example 2

For a given arithmetic sequence the sum $S_{10} = 165$ and $A_1 = 3$, find A_{10} .

Solution

Since the first term and the sum are given, applying the formula gives:

$$S_n = n \left(\frac{A_1 + A_n}{2} \right)$$

$$S_{10} = 165, A_1 = 3, A_{10} = ?$$

$$S_{10} = 10 \left(\frac{A_1 + A_{10}}{2} \right)$$

$$165 = \frac{10}{2} (3 + A_{10})$$
$$\frac{165}{5} = 3 + A_{10}$$
$$A_{10} = 33 - 3 = 30.$$

Example 3

Find the sum of integers from 1 to 100 that are divisible by 10.

Solution

The number of such integer is $\frac{100}{10} = 10$

The 1st term is 10, and the last term is 100. Then, $S_n = 10 \left(\frac{10 + 100}{2} \right) = 550$.

Exercise 1.15

- 1. Find S_5 of the arithmetic sequence whose $3^{\rm rd}$ term is 5 and $5^{\rm th}$ term is 11.
- 2. Given the sum of an arithmetic sequence is $S_8 = 120$ and $A_1 = 1$, find A_8 and A_n .
- 3. Find the sum of the integers from 1 to 100 that are divisible by 2 or 5.
- 4. Find the sum of odd integers from 1 to 2001.

1.3.2 Sum of Geometric Sequences

Activity 1.6

- 1. Find the sum of the following geometric sequences:
 - a. {2, 4, 8, 16, 32} b.
- b. $\left\{1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}\right\}$
- 2. Find the sum of the first 5 terms of the sequence $1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$

In order to answer such types of problems, consider the following:

Let $\{G_n\}_{n=1}^{\infty}$ be a geometric sequence, then its associated geometric sum, S_n is:

$$\begin{split} S_n &= G_1 + G_2 + G_3 + \ldots + G_{n-1} + G_n, \text{ where } G_n = r^{n-1}G_1 \\ S_n &= G_1 + rG_1 + r^2G_1 + \ldots + r^{n-2}G_1 + r^{n-1}G_1 \end{split}$$

Factorizing out G_1 ,

$$S_n = G_1(1 + r + r^2 + \dots + r^{n-2} + r^{n-1})$$
(1)

Multiplying both sides of equation (1) by r

$$rS_{n} = G_{1}(r + r^{2} + r^{3} ... + r^{n-1} + r^{n})$$
(2)

Subtracting the equation (2) from equation (1),

$$\begin{split} S_n - r S_n &= G_1 (1 + r + r^2 + r^3 + ... + r^{n-2} + r^{n-1}) - G_1 (r + r^2 + r^3 + ... + r^{n-1} + r^n) \\ & (1 - r) s_n = G_1 (1 - r^n) \\ S_n &= \frac{G_1 (1 - r^n)}{1 - r} \text{ for } r \neq 1 \end{split}$$

Thus, the following theorem is inferred:

Theorem 1.4

Let $\{G_n\}_{n=1}^{\infty}$ be a geometric sequence with common ratio r. Then the sum of the

first *n* terms
$$S_n$$
 is given by, $S_n = \begin{cases} nG_1, & \text{if } r = 1 \\ G_1 \frac{(1-r^n)}{1-r} = G_1 \frac{(r^n-1)}{r-1}, & \text{if } r \neq 1. \end{cases}$

Example

Find the sum of the sequences in activity 1.6 using this theorem, and confirm the results.

Solution

a.
$$r = 2$$
, $G_1 = 2$ and $n = 5$

$$S_5 = 2\left(\frac{2^5 - 1}{2 - 1}\right) = 62$$

b.
$$\left\{1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}\right\}$$

$$G_1 = 1$$
, $r = \frac{2}{3}$ and $n = 4$

$$S_4 = 1 \left(\frac{\left(\frac{2}{3}\right)^4 - 1}{\frac{2}{3} - 1} \right) = \frac{65}{27}$$

Exercise 1.16

1. Find the sum of the from 1^{st} to n^{th} of the following geometric sequences:

a.
$$G_1 = 3$$
, $r = 2$

b.
$$G_1 = 1$$
, $r = \frac{1}{2}$

2. Given the geometric sequence: 1, 3, 9, 27,.... find S_n .

Further on the sum of geometric sequences

Example

The sum of the first three terms of a geometric sequence is 7, and the sum from 4^{th} to 6^{th} terms is 56. Find the first term and the common ratio.

Solution

Let the first term be G_1 and common ratio r. Then,

$$G_1 + G_1 r + G_1 r^2 = 7$$

$$G_1 r^3 + G_1 r^4 + G_1 r^5 = 56$$

(2)

$$r^3(G_1 + G_1r + G_1r^2) = 56$$

Substituting (1),

$$7r^3 = 56$$

$$r^3 = 8$$

$$r = 2$$

Then,

$$G_1 + 2G_1 + 4G_1 = 7$$

$$7G_1 = 7$$

$$G_1 = 1$$

Therefore, the common ratio is 2, and the 1^{st} term is 1.

Exercise 1.17

- 1. The sum of the first three terms of a geometric sequence is 9, and the sum from the 4^{th} to 6^{th} term is -18. Find the first term and common ratio.
- 2. How many terms of the sequence: 3, $\frac{3}{2}$, $\frac{3}{4}$, $\frac{3}{8}$,... are needed to give the sum $\frac{3069}{512}$?
- 3. Find the sum to indicated number of terms in each of the geometric sequence in questions *a* to *d*:

b.
$$\sqrt{7}$$
, $\sqrt{21}$, $3\sqrt{7}$, ... *n* terms.

b. 1,
$$-a$$
, a^2 , $-a^3$, ... n terms (if $a \ne -1$).

d.
$$x^3$$
, x^5 , x^7 , ... *n* terms (if $x \neq \pm 1$).