Classification for fMRI curves with similar mean, different variation

2024-04-30

Functional GLM with sparse group lasso penalty

다음의 functional GLM에서

$$g(\mu) = \beta_0 + \sum_{j=1}^p \int X_i^j(t) \beta^j(t) dt \approx \beta_0 + \sum_{j=1}^p \sum_{k=1}^{K_j} \xi_{ik}^j \beta_k^j$$

아래의 sparse group lasso penalty를 주어 loss를 minimize.

$$P(\lambda) = (1-\alpha)\lambda \sum_{j=1}^p \sqrt{K_j} \|\beta^j\|_2 + \alpha\lambda \|\beta\|_1$$

결과

		FGLM		FLasso	
# of basis		B-spline	FPCA	B-spline	FPCA
		Train:Test = $80:20$			
FVE = 0.9 # of knots = 20 $FVE = 0.8$	Accuracy	0.489	0.503	0.586	0.584
# of knots = 50 $K = 5$		0.524	0.509	0.585	0.581
# of knots = 5 $K = 3$		0.501	0.512	0.587	0.583
# of knots = 3 $\alpha = 0.05$		0.509	0.501	0.588	0.582
$\alpha = 0.03$ FVE = 0.7					
# of knots = 40		0.500	0.497	0.584	0.584
		Train: Test = $70:30$			
$\begin{array}{c} \alpha = 0.1 \\ \mathrm{FVE} = 0.7 \\ \# \ \mathrm{of \ knots} = 30 \end{array}$	Accuracy	0.486	0.499	0.576	0.581
	Sensitivity	0.479	0.483	0.025	0.014
	Specificity	0.490	0.510	0.963	0.980
$\alpha = 0.2$ $FVE = 0.7$ # of knots = 30	Accuracy	0.486	0.499	0.576	0.580
	Sensitivity	0.479	0.483	0.025	0.016
	Specificity	0.490	0.510	0.962	0.977

문제점

- Group lasso를 준 FLasso의 경우, optimal λ 가 큰 값을 가질 때 10-fold CV error가 가장 작은 값을 가지게 됨
 - $-\,$ 이 때문에 모든 $\beta=0$ 으로 shrinkage 되어 prediction을 1개 class로만 분류해버림 (control 의 비율이 높기 때문에 control로 모두 classify해버림)

Control

ADHD

