

703308 VO High-Performance Computing The 13 Dwarfs of HPC

Philipp Gschwandtner

Overview

- ▶ The 13 Dwarfs of HPC
 - abstract application categories

Motivation

- MPI API or concepts such as data vs. task parallelism are still pretty low-level characteristics of parallel programs
- we need to be able to recognize higher-level classes of HPC applications and discuss them

- this lecture presents the most prominent classes of HPC applications
 - many new applications you encounter will fit into these categories or are a combination of them

How and why are dwarfs defined?

- group applications by similarity in computation and data structures
 - first published by Asanovic et al in *The Landscape of Parallel Computing Research: A View from Berkeley*
 - https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
- purely algorithmic, implementation-independent
 - enables cross-platform reasoning and cross-application knowledge/resource sharing (e.g. libraries)
- serve as small, abstract, high-level benchmarks for studying new
 - programming models
 - communication patterns
 - hardware architectures, topologies
 - ...
- used to kick off innovation in all of these aspects

7 original dwarfs of HPC

- What are we going do discuss?
 - 1. Dense Linear Algebra
 - 2. Sparse Linear Algebra
 - 3. Spectral Methods
 - ▶ 4. N-body Methods
 - ▶ 5. Structured Grids
 - ▶ 6. Unstructured Grids
 - > 7. Monte Carlo Methods

- What have you already heard?
 - matrix mul (first MPI lecture)

- N-body
- heat stencil
- Monte Carlo π

Dense linear algebra

- data is stored in densely-populated matrices (or vectors)
 - data is stored uncompressed ("as is")
 - data access via strides, often unit stride
- e.g. matrix multiplication, LU decomposition, Gauss-Seidel, ...
- rarely done manually, there are a TON of libraries out there

Dense linear algebra: characteristics

- naïve implementations usually memory bound
 - remember: memory wall!
 - caches and prefetching helps
- simple but significant data structure
 - stride often enables/prevents vectorization (SIMD)
 - fastest-changing index affects cache efficiency (hence matrices are often transposed)
- still the default measure for performance in HPC
 - e.g. TOP500 uses HPL, a high performance LINPACK benchmark
 - but nowadays not the only one (e.g. HPCG)

```
for (int i = 0; i < N; ++i) {
  for (int j = 0; j < N; ++j) {
    double tmp = 0.0;
  for (int k = 0; k < N; ++k) {
    tmp += A[i][k] * B[k][j];
  }
  result[i][j] = tmp;
}</pre>
```

```
vgatherqpd ymm0{k2}, [rax+ymm5*1]
vmulpd ymm0, ymm0, YMMWORD PTR [rdx+rdi]
...
```

Side note: TOP500 list: Rmax vs. Rpeak

- Rmax: achieved by software
 - high performance linpack (HPL) benchmark
 - linear algebra stress-testing
- Rpeak: achievable by hardware
 - product of: number of FP units per CPU, their FP instructions per cycle, clock frequency, and number of CPUs

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

Taken from the June 2024 list of the Top500

Dense linear algebra: optimizations

loop blocking or tiling

- do not work on single elements but smaller blocks (e.g. 2x2 or 32x32)
- exploits locality and cache
- also, lots of other HOTs (<u>H</u>igher <u>O</u>rder <u>T</u>ransformations)
- vectorization (SIMD, e.g. SSE/AVX)
 - might entail modifications, e.g. transposing matrix A or B in matrix mul
- hardware-specific instructions
 - e.g. fused multiply-add (FMA)

```
for (int ii = 0; ii < N; ii += ib) {
 for (int jj = 0; jj < N; jj += jb) {
  for (int k = 0; k < N; ++k) {
   for (int i = ii; i < ii+ib; ++i) {
    for (int j = jj; j < jj+jb; ++j) {
      // ... process single tile
```

Sparse linear algebra

- data is stored in sparsely-populated matrices (or vectors)
 - (vast) majority of data is zero
 - data is stored in compressed format
 - data often accessed indirectly via indices

e.g. conjugate gradient, Google's PageRank, data mining

Sparse linear algebra: characteristics

computationally or memory limited

 depends on sparsity of data, data structure representation and algorithm

different data structures available

- e.g. coordinate scheme (COO) or "triplet format" or similar: (i, j, a_{ij})
- array of structs (AoS) vs. struct of arrays (SoA)
- not necessarily sorted!

```
typedef struct sparseElement {
    int i; int j; double value;
} sparseElement;
sparseElement sparseMatrix[SIZE];
sparseMatrix[0].i = 0;
typedef struct sparseMatrixT {
    int i[SIZE]; int j[SIZE];
    double values[SIZE];
} sparseMatrixT;
sparseMatrixT sparseMatrix;
sparseMatrix.i[0] = 0;
```

Sparse linear algebra: optimizations

compressed row storage (CRS)

- two arrays of size N
- one holds a_{ij} , the other j
- third array points to start of row i in j
- smaller memory footprint than COO
 - $\triangleright 2N + (m+1) \text{ vs. } 3N$

variants

- column-major variant (CCS)
- store small blocks (2x2 or 4x4) instead of single elements, improves SIMDness
- compressed diagonal storage (CDS)
 - use domain-specific knowledge!

Spectral methods

- data in frequency domain, not time or space
 - can include multiple stages of computations alternating between local and global communication
- e.g. fast Fourier transform (FFT), audio and video signal processing
 - e.g. "focus hunting" in contrast-based autofocus of photo/video cameras

Spectral methods: characteristics

- usually implemented using butterfly patterns
 - multiple stages of multiply-add
 - often latency limited due to global communication patterns (e.g. all-to-all)
- often resemble structured or unstructured grid methods after transformation to frequency domain

Spectral methods: optimizations

- requires optimization of the transformation to frequency domain
 - relies on transposing data efficiently
- afterwards, consider similar optimizations as for (un)structured grids

- severely restricted scalability on larger HPC systems
 - ongoing research
 - lots of it in math

N-body methods

- models interactions between discrete, moving points
 - often requires dynamic data structures
 - varying spatial locality
 - movement affects load balance and data access costs

• e.g. galaxy collision simulations, molecular dynamics, protein folding

N-body methods: characteristics

- computational effort is an issue
 - $\mathcal{O}(N^2)$ for N particles
 - but also global communication
- lots of hierarchical optimization studies
 - domain decomposition!
 - e.g. Barnes-Hut or fast multipole optimization

- alternative approaches rely on domain-specific knowledge, e.g.
 - ignore long-distance particle interactions
 - store particles in Cartesian topology & only consider particles in neighboring grid cells

N-body methods: optimizations

▶ Barnes-Hut optimization:

- decompose domain into quadtree (for 2D)
- aggregate particle effect (e.g. gravitation from mass) for each cell into a single (hypothetical) particle at the center of gravity per cell
- reduces complexity from $O(N^2)$ to $O(N \cdot \log N)$

Structured grids

- model interactions between discrete, fixed points
 - grid structure described by pattern
 - topological information easily derived
 - usually high spatial locality
 - may be subdivided into finer grid ("adaptive")
- e.g. heat transfer (stencil), computational fluid dynamics (CFD), octrees

Structured grids: characteristics

structured nature is a key aspect

- similar characteristics compared to dense linear algebra (e.g. row-major vs. columnmajor)
- memory access patterns & addresses often predictable, facilitates e.g. prefetching
- adaptive grids and multi-grids possible

typically memory bound

- e.g. 7-point stencil in 3D: load 7 data points for computing a new one
- local communication only (ghost cell exchange with direct neighbor)

structured grid does not imply rectangular!

Structured grids: optimizations

- decomposition, decomposition, decomposition
 - highly dependent on type of grid and specific use case
- structured nature of the problem makes analytic prediction possible
 - performance models and simulators for simple stencil kernels (e.g. Kerncraft)

L1 misses: # L2 misses: # L3 misses: # ...

Unstructured grids

- model interactions between discrete, fixed points
 - grid pattern described explicitly by individual connections
 - irregular geometry and topology
 - usually involves multiple levels of indirection when accessing data

• e.g. computational fluid dynamics (CFD)

Unstructured grids: characteristics

- usually heavily latency bound due to indirect access
 - ... = cells[neighbors[i]]
 - ... = cell.getNeighbor(i)
 - also known as "pointer chasing"
- similar problems compared to structured grids, e.g.
 - domain decomposition / adaptivity
 - topological information
 - ghost cell exchange
 - but hardly analytically predictable

Unstructured grids: optimizations

- problem space discretization and topology
 - which types of grid elements?
 - which types of connections?
 - cells, faces, vertices, edges, ...
 - should be efficient to load/store, navigate, and compute
- decomposition, decomposition, decomposition
 - efficient ghost cell exchange required
 - efficient grid navigation e.g. to access neighbors

Monte Carlo methods

- also known as map-reduce
 - process data independently and merge the results
- models statistical evaluation of repeated random trials
 - communication usually insignificant
 - embarrassingly parallel, multiple copies of sequential method
- e.g. numerical integration, quantum many-body problems, ray tracing

Monte Carlo methods: characteristics

- parallelization almost a no-factor
 - similar to multiple sequential programs sharing some resources
 (e.g. L3 cache, random number generator, thermal envelope of CPU)
 - relatively inexpensive reduction
- depends heavily on sequential speed and shared bottlenecks

Monte Carlo methods: optimizations

- not much to do beyond sequential optimization
 - **ILP**
 - prefetching
 - vectorization
 - reduce resource contention (read: fast random number generation)

- consider different hardware
 - **GPUs**
 - FPGAs
 - ...
- try to decrease cost of evaluating a sample
 - increase number of samples if required

Additional Dwarfs

Additional dwarfs

- ▶ 8. Combinational Logic
- 9. Graph Traversal
- ▶ 10. Dynamic Programming
- ▶ 11. Backtrack & Branch+Bound
- ▶ 12. Graphical Models
- ▶ 13. Finite State Machine

- slightly different focus compared to first 7 dwarfs
 - more (but not exclusively) on integerheavy applications, machine learning, theoretical problems
 - less on physical processes

Combinational logic

- generally involves performing simple operations on large amounts of integer data
 - e.g. computing cyclic redundancy codes (CRC)
- often parallelizable on multiple levels
 - bit-level parallelism (e.g. x86 popcnt)
 - block-level parallelism

```
uint8_t compute(uint8_t const msg[], int n) {
    uint8 t rem = 0;
    for (int byte = 0; byte < n; ++byte) {
        rem ^= (msg[byte] << (WIDTH - 8));</pre>
        for (uint8_t bit = 8; bit > 0; --bit) {
            if (rem & TOPBIT) {
                 rem = (rem << 1) ^ POLYNOMIAL;</pre>
             } else {
                 rem = (rem << 1);
    return (rem);
```

Graph traversal

- traverse a number of objects in a graph and examine characteristics
 - e.g. searching, sorting, collision detection, decision trees, ...
 - usually heavy on data reads and lookups,
 very little computation and output
- parallelizable over different paths in the graph
 - but indirect accesses are heavily latency-bound (c.f. unstructured grids)

Dynamic programming

- method of computing solutions by solving simpler, overlapping sub-problems
 - applicable to problems where optimal result is composed of optimal results of sub-problems
 - e.g. matrix-chain-multiplication
- usually based on memoization
 - solve each sub-problem exactly once
 - store and re-use the result

$$A \times (B \times (C \times D)) = X$$
 154 ops
 $(A \times B) \times (C \times D) = X$ 204 ops
 $((A \times B) \times C) \times D = X$ 340 ops

Backtrack & Branch+Bound

- search and optimization problems for very large problem spaces
 - incrementally build solution but discard if determined unsuitable
 - e.g. n-queens problem
- use divide & conquer strategy:
 - break down complex problem into smaller sub-problems until they become solvable
 - solve sub-problems in parallel

Probabilistic graphical models

- represent graphs consisting of random variables as nodes and dependencies as edges
 - e.g. Bayesian networks, Hidden Markov models

 ongoing research in math and computer science regarding parallelization and optimization

Finite state machines

- represent interconnected set of states to be moved among
 - e.g. parsers
- can sometimes be decomposed into multiple state machines that act in parallel
 - ongoing research

Literature material

- White Paper by Berkeley University: "The Landscape of Parallel Computing Research: A View from Berkeley" from 2006:
 - https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
- ▶ Holds more detailed descriptions and related aspects

Note the focus on scientific problems

- ▶ MPI can be (and is!) used to implement also
 - distributed-memory runtime systems
 - emulate shared memory runtime systems on distributed memory (e.g. PGAS)
 - provide the connecting parallelism layer for shared-memory or sequential systems
 - e.g. use multiple accelerators in separate compute nodes (Celerity project @ UIBK)
 - extend shared memory parallelism to distributed memory (MPI+X)
 - **...**
- > still, the majority of codes is of scientific computing nature

Side note: Portability

functional portability

- program runs on different hardware and produces correct results
- hardware architecture, compiler, libraries, etc.
- usually not hard to achieve (mostly x86/ARM + GPUs)
- performance (also "non-functional") portability
 - program runs efficiently on different hardware and is considered "fast"
 - no exact definition, topic of ongoing research

Summary

▶ 13 Dwarfs of HPC

- abstract application categories
- facilitate cross-platform reasoning and cross-application component reuse
- ▶ 7 older ones, most well-studied physics problems
- ▶ 6 newer ones, partially of theoretical nature, subject to ongoing research
- give a broad perspective on HPC potential and limitations

Image Sources

- Dwarfs: http://pngimg.com/download/47261, <a href="ht
- Barnes-Hut: http://portillo.ca/nbody/barnes-hut/
- ▶ Unstructured Mesh: https://resourcearea.cpu-24-7.com/en/numeca_welcome
- ▶ CRC: https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code