(1)	If κ , λ , and μ are cardinals, then $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$.
	Proof. Given $\bar{K} = \kappa$, $\bar{L} = \lambda$, $\bar{M} = \mu$, and $L \cap M = \emptyset$. Given a function $f: L \cup M \mapsto K$. Construct $g: L \mapsto K = f \upharpoonright L$ and $h: M \mapsto K = f \upharpoonright M$. So $\kappa^{\lambda + \mu} \leq \kappa^{\lambda} \cdot \kappa^{\mu}$.
	Given a pair of functions $g: L \mapsto K$ and $h: M \mapsto K$. Construct $f: L \cup M \mapsto K = g \cup h$. g and h have disjoint domains, so f is a function. Therefore $\kappa^{\lambda} \cdot \kappa^{\mu} \leq \kappa^{\lambda + \mu}$, and therefore they are equal. \square
(2)	$2^{\aleph_0} eq \aleph_{\omega_1 \cdot 49 + \omega}$
	<i>Proof.</i> Let $\beta = \omega_1 \cdot 49 + \omega$. β is a limit ordinal, so cf $\aleph_{\beta} = \text{cf } \beta = \aleph_0$ (by Enderton's Theorem 9N). However, by König's theorem, $\aleph_0 < \text{cf } 2^{\aleph_0}$.
(3)	If A is a set well-ordered by (<) and $f: A \mapsto A$ satisfies $x < y \Rightarrow f(x) < f(y)$, then for all $x \in A$, $x \le f(x)$.
	<i>Proof.</i> If not, then there is a least x such that $f(x) < x$. Construct by recursion $R: \omega \mapsto A$ where $R(0) = x$; $R(a+1) = f(R(a))$. $R(1) < R(0)$, and given $R(n+1) < R(n)$, $f(R(n+1)) < f(R(n))$, so $R(n+2) < R(n+1)$. Therefore R is an infinitely descending sequence in A , a contradiction.
(4)	There exists a sequence of sets $A_0 \supset A_1 \supset \ldots \supset A_r \supset \ldots \supset A_r \supset \ldots$

Proof. Namely, let $A_{\alpha} = \omega_1 - \alpha$. Every $\alpha < \omega_1$ is countable, so subtracting it from uncountable ω_1 leaves an uncountable set. Also, any ordinal $\alpha \notin A_{\alpha+1}$, so the intersection is empty.

(5) For λ an infinite cardinal, $2^{\lambda} = \lambda^{\lambda}$.

Proof. By the Schröder-Bernstein theorem, $2^{\lambda} \leq \lambda^{\lambda} \leq (2^{\lambda})^{\lambda} \leq 2^{\lambda \cdot \lambda} \leq 2^{\lambda}$.

(7)	Given a set P of \aleph_0 -many people. There is an infinite subset of that set
	such that all people have met each other or all people have not met
	each other.

Proof. Let $M \cup \tilde{M} = P^{(2)}$, where $P^{(2)}$ is the set of 2-element subsets of P. M represents the set of pairs of people who have met, and \tilde{M} represents the set of pairs of people who have not. Then by Ramsey's theorem, there exists a $P' \subseteq P$ where $\bar{P}' = \aleph_0$ and either $P'^{(2)} \subseteq M$ or $P'^{(2)} \subset \tilde{M}$.

(8ai) There is a countable subset of [0,1] isomorphic to ω^2 under the usual (<) of the real line.

Proof. Define $v: \mathbb{R} \times \mathbb{R} \times \omega \mapsto \mathbb{R}$ by $v(a,b,n) = b-2^{-n}(b-a)$. Now define $w: \omega^2 \mapsto \mathbb{R}$ by $w(\omega \cdot c + d) = v(1-2^{-c}, 1-2^{-(c+1)}, d)$. The set $W = \operatorname{rng} w$ is a subset of [0,1] and isomorphic to ω^2 . Since the domain of w is a set of ordinals, if w is monotonically increasing then W is well-ordered. Notice that $v(a,b,n) \in [a,b)$ for any n and it is monotonically increasing in n. Then it is easy to see that w is monotonically increasing.

(8aii) There is no $X \subseteq [0,1]$ with X well-ordered by the usual (<) of the real line and X uncountable.

Proof. Assume that there is. Let $f: \bar{X} \mapsto X$ be the function that well-orders X (for example, f(0) = the smallest element in X, etc.). Let $q: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{Q}$ be a function that selects a rational between its two arguments. Let $g: \bar{X} \xrightarrow{1-1} \mathbb{Q}$, by induction: g(0) = q(f(0), f(1)); $g(\alpha+1) = q(f(\alpha+1), f(\alpha+2))$; $g(\lambda) = q(f(\lambda), f(\lambda+1))$. We have just shown that $\bar{X} \leq \bar{\mathbb{Q}}$, contradicting that X is uncountable.

(9) $\aleph_{\omega}^{\aleph_0} > \aleph_{\omega}$.

Proof. Let $\bar{I} = \aleph_0$, and let A_i for $i \in I$ be a bunch of disjoint sets each with cardinality \aleph_{ω} . By a theorem due to König, $\aleph_{\omega}^{\aleph_0} = \operatorname{card} \bigotimes_i A_i > \operatorname{card} \bigcup_i A_i = \aleph_{\omega} \cdot \aleph_{\omega} = \aleph_{\omega}$.