Y36SAP

Číselné soustavy a kódy, převody, aritmetické operace

Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová

Osnova

- Poziční číselné soustavy a převody
 - Dvojková soust., převod do desítkové
 - Šestnáctková soust., převod do dvojkové
- Aritmetika (1)
 - Sčítání
 - Násobení
- Řádová mřížka
- Zobrazení záporných čísel
- Aritmetika (2)
 - Odčítání

Kubátová 2008

Y36SAP-Data

Literatura

[1] Pluháček, A., "*Projektování logiky počítačů*," skripta, Praha, ČVUT, 2000, ISBN 80-01-02145-9

Kubátová 2008 Y36SAP-Data 3

Poziční číselné soustavy I

- Určeny bází (základem) $z, z \in N$ a $z \ge 2$
- Soustava s bází z ... z-adická
- Nejčastěji používané soustavy:

z = 2 dvojková (binární)

z = 10 desítková (dekadická)

z = 16 šestnáctková (hexadecimální)

Poziční číselné soustavy II

Zápis čísla v z-adické soustavě:

 $A_z = \underbrace{\left(a_n \ a_{n-1} \dots a_1 \ a_0}_{\text{celá část}}, \underbrace{a_{-1} \ a_{-2} \dots a_{-m}}_{\text{zlomková část}}\right)_z, \ n,m \in N$

 $a_i \quad \dots \quad z$ -adická cifra (číslice) na pozici i

 a_i ... hodnota číslice a_i , $0 \le a_i < z$

i ... řád číslice (řádové místo, pozice), určuje její váhu $v_i = z^i$

n ... nejvyšší řád s nenulovou číslicí-m ... nejnižší řád s nenulovou číslicí

Hodnota čísla A_z:

 $A = v(A_z) = \sum_{-m}^{n} a_i \cdot v_i = \sum_{-m}^{n} a_i \cdot z^i$

Kubátová 2008

Y36SAP-Data

5

Dvojková soustava

 Základ (báze) soustavy z = 2 ⇒ zápis čísla tvořen posloupností 0 a 1

Př.
$$v_i \dots 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3}$$

$$1 \ 0 \ 0 \ 1 \ 1 \ , \ 1 \ 0 \ 1_2$$

$$v(A) = 2^4 + 2 + 1 + 1/2 + 1/8 = 19,625$$

Toto je ekvivalentní zápis čísla A v desítkové soustavě.

Určení hodnoty čísla ≈ převod do desítkové soust., tj.
 Dvojková → Desítková

Y36SAP-Data

Kubátová 2008

Desítková → Dvojková (celá část)

 Postupným dělením celé části číslem 2 (tj. základem dvojkové soustavy)

Př. Převeďte číslo 57₁₀ do dvojkové soustavy.

$$57_{10} \approx A_2$$

$$A_2 = 111001_2 \leftarrow \begin{cases} 57: 2 = 28 & zbytek & 1 \dots a_0 \\ 28: 2 = 14 & zbytek & 0 \\ 14: 2 = 7 & zbytek & 0 \\ 7: 2 = 3 & zbytek & 1 \\ 3: 2 = 1 & zbytek & 1 \\ 1: 2 = 0 & zbytek & 1 \dots a_5 \end{cases}$$

Pozn. Zápis čísla odpovídá posloupnosti zbytků brané v opačném pořadí.

Kubátová 2008 Y36SAP-Data 7

Desítková → Dvojková (zlomková část)

- Postupným násobením zlomkové části číslem 2 (tj. základem dvojkové soustavy)
 - Př. Převeďte číslo 0,65625₁₀ do dvojkové soustavy.

$$\begin{array}{c} 0,65625_{10} \approx A_2 \\ A_2 = 0,10101_2 \end{array} \qquad \begin{array}{c} 0,65625 \cdot 2 = 1 & , \ 3125 & \dots \ a_{-1} \\ 0,3125 & \cdot 2 = 0 & , \ 625 \\ 0,625 & \cdot 2 = 1 & , \ 25 \\ 0,25 & \cdot 2 = 0 & , \ 5 \\ 0,5 & \cdot 2 = 1 & , \ 0 & \dots \ a_{-5} \end{array}$$

Úloha: Převádějte mezi desítkovou a dvojkovou soustavou.

- 1. 11010001,11₂
- ?10
- 2. 1111111₂
- \rightarrow ?₁₀
- 3. 1,011001₂
- → ?₁₀
- 4. 147,15625₁₀
- → ?₂
- 5. 1345,125₁₀
- ?2

Kubátová 2008

Y36SAP-Data

Řešení:

- 1. 11010001,11₂
- 209,75₁₀
- 2. 1111111₂
- 127₁₀
- 3. 1,011001₂
- \rightarrow 1,390625₁₀
- 4. $147,15625_{10}$ \rightarrow 1001 0011,0010 1_2
- 5. 1345,125₁₀ →
- 101 0100 0001,0012
- Kubátová 2008

Y36SAP-Data

Důležité mocniny dvou

n	2 ⁿ	Dec.
0	20	1
1	2 ¹	2
2	2 ²	4
3	2 ³	8
4	2 ⁴	16
5	2 ⁵	32
6	2 ⁶	64
7	2 ⁷	128

	On.	Doo
n	2 ⁿ	Dec.
8	28	256
9	2 ⁹	512
10	2 ¹⁰	1 024
11	211	2 048
12	212	4 096
13	2 ¹³	8 192
14	214	16 384
15	2 ¹⁵	32 768
16	2 ¹⁶	65 536

n	2 ⁿ	Dec.
20	2 ²⁰	1 M
30	2 ³⁰	1 G
32	2 ³²	4 G
40	240	1 T
-1	2-1	0,5
-2	2-2	0,25
-3	2-3	0,125
-4	2-4	0,0625

Toto je důležité!

Kubátová 2008

Y36SAP-Data

11

Šestnáctková soustava

Zápis čísla tvořen ciframi 0..9 a A..F

Hex.	Dec.	Bin.
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Hex.	Dec.	Bin.
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Toto je nutné znát zpaměti!

Kubátová 2008

Y36SAP-Data

Dvojková ←→ Šestnáctková

- Jsou to příbuzné soustavy, tj. $z_{16} = 16 = 2^4 = z_2^4$
- ⇒ Jedna cifra v z₁₆ odpovídá čtyřem cifrám v z₂
 ⇒ Mezi zápisy v soustavách z₁₆ a z₂ je pouze formální rozdíl.

Př. Převeďte čísla mezi příbuznými soustavami:

Kubátová 2008 Y36SAP-Data 13

Úloha: Převádějte mezi dvojkovou a šestnáctkovou soustavou.

- 1. $101101011,010111_2 \rightarrow ?_{16}$
- 2. $111010111010100_2 \rightarrow ?_{16}$
- 3. $0,00110101111001_2 \rightarrow ?_{16}$
- 4. 12A5F,1₁₆
- \rightarrow ?₂
- 5. F563D,8₁₆
- → ?₂
- 6. 0,98736₁₆
- → ?₂

Kubátová 2008

Y36SAP-Data

Řešení

 $101101011,010111_2 \rightarrow 16B,5C_{16}$

- 1. $111010111010100_2 \rightarrow 75D4_{16}$
- 2. $0,00110101111001_2 \rightarrow 0,35C8_{16}$
- 3. $12A5F,1_{16} \rightarrow 1001010101011111,0001_{2}$
- 4. $F563D,8_{16} \rightarrow 1111\ 0101\ 0110\ 0011\ 1101,1_2$
- 5. $0.98736_{16} \rightarrow 0.1001\ 1000\ 0111\ 0011\ 0110_2$

Kubátová 2008 Y36SAP-Data 15

Sčítání ve dvojkové soustavě

 Základem je součet dvou 1-ciferných čísel

+	0	1
0	0	1
1	1	1 0

Přenos do vyššího řádu.

Př. Sečtěte čísla 0101_2 a 1110_2 .

Pozn. Součtem dvou N-ciferných čísel může vzniknout (N+1)-ciferné číslo.

Úloha: **Sčítejte ve dvojkové** soustavě.

- 1. $10110001_2 + 11001101_2 = ?_2$
- 2. $1111_2 + 1111_2 = ?_2$
- 3. $111010_2 + 110_2 = ?_2$

Kubátová 2008 Y36SAP-Data 17

Řešení:

- 1. $10110001_2 + 11001101_2 = 101111110_2$
- 2. $1111_2 + 1111_2 = 11110_2$
- 3. $111010_2 + 110_2 = 100\ 0000_2$

Násobení ve dvojkové soustavě

 Základem je součin dvou 1-ciferných čísel

×	0	1
0	0	0
1	0	1

Více-ciferné násobení se převádí na sčítání

Př. Vynásobte čísla 1110₂ a 101₂.

Pozn. Součinem N- a M-ciferného čísla může vzniknout (N+M)-ciferné číslo.

Kubátová 2008 Y36SAP-Data 19

Úloha: **Vynásobte ve dvojkové** soustavě.

1.
$$1010_2 \times 101_2 = ?_2$$

2.
$$100000_2 \times 1101_2 = ?_2$$

3.
$$1111_2 \times 1111_2 = ?_2$$

Řešení:

- 1. $1010_2 \times 101_2 = 11\ 0010_2$
- 2. $100000_2 \times 1101_2 = 1 \ 1010 \ 0000_2$
- 3. $1111_2 \times 1111_2 = 11100001_2$

Kubátová 2008 Y36SAP-Data 21

Řádová mřížka

 Řádová mřížka určuje formát zobrazitelných čísel na počítači (tj. definuje nejvyšší řád n a nejnižší řád m)

- Základní vlastnosti:
 - **Délka ř.m.** (*l*) počet řádů obsažených v ř.m.
 - **Jednotka ř.m.** (ε) nejmenší číslo zobrazitelné v ř.m.
 - Modul ř.m. (M) nejmenší číslo, které již v ř.m. zobrazitelné není

Určete vlastnosti ř.m.

Určete vlastnosti následujících řádových mřížek (z = 2):

a)

$$l = 8$$
, $M = 2_{10}$, $\varepsilon = (2^{-7})_{10}$

b)

$$l = 8$$
, $M = (2^8)_{10}$, $\varepsilon = 1$

c)

$$l = 6$$
, $M = (2^3)_{10}$, $\varepsilon = (2^{-3})_{10}$

obecně, tj. v závislosti na *n* a –*m*:

$$l = n + m + 1$$
, $M = z^{n+1}$, $\varepsilon = z^{-m}$

Kubátová 2008

Y36SAP-Data

23

Úloha: Zobrazte čísla v ř.m.

• Převeďte čísla do dvojkové soustavy a zapište je do ř.m. zadaných parametrů.

$$1. (-9)_{10} = ?_2$$

1.
$$(-9)_{10} = ?_2$$
 $n = 5$, $m = 0$... 110 111₂

2.
$$(-17)_{10} = ?_2$$

2.
$$(-17)_{10} = ?_2$$
 $n = 7$, $m = 0$... $1110 \ 1111_2$

3.
$$(-6C)_{16} = ?_2$$

3.
$$(-6C)_{16} = ?_2$$
 $n = 8$, $m = 0$... 1 1001 0100₂

4.
$$(-0)_{16} = ?_2$$

4.
$$(-0)_{16} = ?_2$$
 $n = 4$, $m = 0$... $0 \ 0000_2$

Kubátová 2008

Y36SAP-Data

Zobrazení záporných čísel

(čísel se znaménkem)

- Standardní polyadické soustavy ⇒ pouze nezáporná čísla
- Zobrazení záporných čísel ⇒ číselné kódy
 - popisují transformaci z omezené množiny celých čísel do omezené množiny nezáporných čísel
- Nejpoužívanější číselné kódy:
 - přímý (znaménko a absolutní hodnota sign-magnitude)
 - aditivní (s posunutou nulou biased)
 - doplňkový (pro dvojkovou soustavu 2's complement)
 - (inverzní)

Odečítání ve dvojkové soustavě

- Odčítání ≈ přičítání opačného čísla
 - Př. Určete rozdíl čísel $10_{10} 6_{10}$ (ve dvojkové soustavě).

Úloha: Odečtěte ve dvojkové soustavě.

Převeďte čísla do dvojkové soustavy (je-li to nutné) a spočítejte jejich rozdíl.

- 1. 6_{10} 10_{10} = $?_2$
- 2. $7_{10} 7_{10} = ?_2$
- 3. $1001_2 0110_2 = ?_2$
- 4. $F1_{16} 3_{16} = ?_2$

Kubátová 2008 Y36SAP-Data 29

Úloha: Odečtěte ve dvojkové soustavě.

- Převeďte čísla do dvojkové soustavy (je-li to nutné) a spočítejte jejich rozdíl.
- 1. $6_{10} 10_{10} = 11 \ 100_2$ 2. $7_{10} 7_{10} = 0_2$
- 2. 7₁₀ 7₁₀
- 3. $1001_2 0110_2 = 0.0011_2$
- 4. $F1_{16} 3_{16} = 0.1110.1110_2$

velikost řádové mřížky, určení a zobrazení správného výsledku, jestliže používáme nezáporná čísla

Kubátová 2008

Y36SAP-Data

Odčítání pro nezáporná čísla

pozorování na příkladu M=1000, ε=1:

B=101 B=010

 $B + \overline{B} = 111 = 1000 - 1 = M - 1$

 $-B = \overline{B} + 1 - M$

 $A - B = A + \overline{B} + 1 - M$

Abychom dostali správný výsledek
– musíme mít možnost odečíst modul
Musí vyjít přenos !!

Kubátová 2008 Y36SAP-Data 31

Doplňkový kód

Definice: $D(X) = \begin{cases} X, & \text{je-li } X >= 0 \\ M + X, & \text{je-li } X < 0 \end{cases}$

Příklad – napsat všechna 3 bitová čísla (M = 1000, ε = 1, I = 3)

	Х	D(X)		
	0	0	0	0
	1	0	0	1
	2	0	1	0
	3	0	1	1
	-4	1	0	0
	-3	1	0	1
	-2	1	1	0
Kubátová 2008	-1	1	1	1

D(X)

Znaménko je určeno prvním bitem zleva, ale tento bit je organickou součástí obrazu !!!

Y36SAP-Data

Doplňkový kód - pokračování

- Obraz záporného čísla X je doplňkem jeho hodnoty do modulu M řádové mřížky
- Př.

Kubátová 2008 Y36SAP-Data 33

Sčítání a odčítání v doplňkovém kódu

Sečtou se obrazy a ignoruje se přenos !!!

Příklady – viz tabule a cvičení

Doplňkový kód pro desítkovou soustavu 10's complement

Příklad - 3 místná desítková čísla -

 $M = 1000_{10}$

znaménko je určeno první číslicí zleva:

0 – 4	+ (kladná čísla	1)
5 – 9	 – (záporná čís 	la)

X	D(X)	X	D(X)
0	000	-500	500
1	001	-499	501
499	499	-1	999

D(X) + D(-X) = 1000 = 999 + 1

D(-X) = 999 - D(X) + 1

označme: $\overline{a} = 9 - a$

 $D(X) = 499 \rightarrow D(-X) = \overline{499} + 1$

D(-X) = 500 + 1 = 501

Kubátová 2008 Y36SAP-Data