Tensor Data Analysis Overview

Carlos Llosa

STAT 680 lecture November 08,2021

Outline

1 Tensors when the observations are scalars

- 2 Tensors with multivariate observations
 - Kronecker Separability for Higher Order Normality

3 Low-Rank Formats

Outline

1 Tensors when the observations are scalars

- 2 Tensors with multivariate observations
 - Kronecker Separability for Higher Order Normality

3 Low-Rank Formats

Human Mortality Database

Tensor form along different factors:

- 38 countries
- 23 age levels (0,1, then every 5 years)
- 9 time periods (1960-2000 every 5 years)
- 2 sexes

$$39 \times 23 \times 9 \times 2$$
 array!

Factorial Designs

Cell means ANOVA:

$$y_{ijklm} = \mu_{ijkl} + e_{ijklm}$$

• In STAT 500-510 deep interactions:

$$\mu_{ijkl} = \alpha_i + \beta_j + \eta_k + \gamma_l + \alpha\beta_{ij} + \alpha\eta_{ik} + \alpha\gamma_{il} + \beta\eta_{jk} + \beta\gamma_{jl} + \eta\gamma_{kl} + (\alpha\beta\eta)_{ijk} + (\alpha\beta\gamma)_{ijl} + (\alpha\eta\gamma)_{ikl} + (\beta\eta\gamma)_{jkl} + (\alpha\beta\eta\gamma)_{ijkl}$$

Factorial Designs

Cell means ANOVA:

$$y_{ijklm} = \mu_{ijkl} + e_{ijklm}$$

• In STAT 500-510 deep interactions:

$$\mu_{ijkl} = \alpha_i + \beta_j + \eta_k + \gamma_l + \alpha \beta_{ij} + \alpha \eta_{ik} + \alpha \gamma_{il} + \beta \eta_{jk} + \beta \gamma_{jl} + \eta \gamma_{kl} + (\alpha \beta \eta)_{ijk} + (\alpha \beta \gamma)_{ijl} + (\alpha \eta \gamma)_{ikl} + (\beta \eta \gamma)_{jkl} + (\alpha \beta \eta \gamma)_{ijkl}$$

• We could do $\mu_{ijkl} = \langle \mathcal{X}_{ijkl}, \mathcal{B} \rangle$, where

$$\mathcal{X}_{i^*j^*k^*l^*} = \begin{cases} 1 & if(i, j, k, l) = (i^*, j^*, k^*, l^*) \\ 0 & otherwise \end{cases}$$

Then \mathcal{B} is an array that contains all the relevant means and deep interactions!

Tensor Regression

• Simple linear regression

$$y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

Tensor Regression

• Simple linear regression

$$y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

• Multiple linear regression

$$y_i = \boldsymbol{\beta}' \boldsymbol{x_i} + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

Tensor Regression

• Simple linear regression

$$y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

• Multiple linear regression

$$y_i = \boldsymbol{\beta}' \boldsymbol{x_i} + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

Tensor regression

$$y_i = \langle \mathcal{B}, \mathcal{X}_i \rangle + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

Outline

1 Tensors when the observations are scalars

- 2 Tensors with multivariate observations
 - Kronecker Separability for Higher Order Normality

3 Low-Rank Formats

Brain Imaging Data (Yamashita et.al 19)

tensor form along multiple factors and spatial dimensions!

- 9 subjects traveled to 12 imaging centers
- 3 repetitions of 240 time-steps each
- brain images of size $73 \times 73 \times 61$

$$73 \times 73 \times 61 \times 240 \times 9 \times 12 \times 3$$
 array!

Multivariate Regression

• Multivariate Multiple Linear Regression

$$\mathbf{y}_i = B\mathbf{x}_i + \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \stackrel{iid}{\sim} \mathcal{N}_m(0, \Sigma),$$

Multivariate Regression

• Multivariate Multiple Linear Regression

$$\mathbf{y}_i = B\mathbf{x}_i + \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \stackrel{iid}{\sim} \mathcal{N}_m(0, \Sigma),$$

• Matrix-variate Regression (Ding and Cook, 2018, JRSSB)

$$Y_i = B_1 X_i B_2^{\mathsf{T}} + E_i, \quad E_i \stackrel{iid}{\sim} \mathcal{N}_{m_1, m_2}(0, \Sigma_1, \Sigma_2),$$

Multivariate Regression

• Multivariate Multiple Linear Regression

$$\mathbf{y}_i = B\mathbf{x}_i + \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \stackrel{iid}{\sim} \mathcal{N}_m(0, \Sigma),$$

• Matrix-variate Regression (Ding and Cook, 2018, JRSSB)

$$Y_i = B_1 X_i B_2^{\mathsf{T}} + E_i, \quad E_i \stackrel{iid}{\sim} \mathcal{N}_{m_1, m_2}(0, \Sigma_1, \Sigma_2),$$

• Multilinear Tensor Regression (Hoff, 2015, Ann. Appl. Stat)

$$\mathcal{Y}_i = [\![\mathcal{X}_i; B_1, \dots, B_p]\!] + \mathcal{E}_i, \quad \mathcal{E}_i \stackrel{iid}{\sim} \mathcal{N}_{m_1, \dots, m_p}(0, \Sigma_1, \dots, \Sigma_p),$$

The Matrix Normal Distribution

- S. N. Roy wrote its pdf in 1957
- A matrix follows a normal distribution if its vectorization follows a multivariate normal distribution
- Without any constraint on the covariance matrix, this leads to overfitting
- Kronecker separability is an intuitive constraint

Definition:

$$X \sim \mathcal{N}_{m_1, m_2} (M, \Sigma_1, \Sigma_2) \iff \operatorname{vec}(X) \sim \mathcal{N}_{m_1 \times m_2} (\operatorname{vec}(M), \Sigma_2 \otimes \Sigma_1)$$

dimensionality reduction:

$$[(m_1 \times m_2 + 1)(m_1 \times m_2)]/2 \rightarrow (m_1 + 1) \times m_1/2 + (m_2 + 1) \times m_2/2$$

The Tensor Normal Distribution

- A tensor follows a normal distribution if its vectorization follows a multivariate normal distribution
- The assumption of kronecker separability can be extended to higher order tensors
- Vectorization is usually defined in reverse lexicographic order to avoid an inconsistency with matrix vectorization

Definition:

$$\mathcal{X} \sim \mathcal{N}_{m_1,\dots,m_p} \left(\mathcal{M}, \Sigma_1, \dots, \Sigma_p \right)$$

$$\iff \operatorname{vec}(\mathcal{X}) \sim \mathcal{N}_{m_1 \times \dots \times m_p} \left(\operatorname{vec}(\mathcal{M}), \bigotimes_{i=p}^1 \Sigma_i \right)$$

Comparisons between tensor normal distributions

• Bivariate normal distribution: $\boldsymbol{x} \sim \mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma}[i, j] = \sigma_{ij}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}_2 \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \right)$$

Comparisons between tensor normal distributions

• Bivariate normal distribution: $\boldsymbol{x} \sim \mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma}[i, j] = \sigma_{ij}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}_2 \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \right)$$

• Matrix normal distribution: $X \sim \mathcal{N}_{3,2}(M, \Sigma_1, \Sigma), \quad \Sigma[i, j] = \sigma_{ij}^2$

$$\mathrm{vec}(X) = \begin{bmatrix} \boldsymbol{x_1} \\ \boldsymbol{x_2} \end{bmatrix} \sim \mathcal{N}_{3 \times 2} \left(\begin{bmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{bmatrix}, \quad \begin{bmatrix} \sigma_{11} \boldsymbol{\Sigma_1} & \sigma_{12} \boldsymbol{\Sigma_1} \\ \sigma_{21} \boldsymbol{\Sigma_1} & \sigma_{22} \boldsymbol{\Sigma_1} \end{bmatrix} \right).$$

Comparisons between tensor normal distributions

• Bivariate normal distribution: $\boldsymbol{x} \sim \mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\Sigma}[i, j] = \sigma_{ij}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}_2 \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \right)$$

• Matrix normal distribution: $X \sim \mathcal{N}_{3,2}(M, \Sigma_1, \Sigma), \quad \Sigma[i, j] = \sigma_{ij}^2$

$$\mathrm{vec}(X) = \begin{bmatrix} \boldsymbol{x_1} \\ \boldsymbol{x_2} \end{bmatrix} \sim \mathcal{N}_{3 \times 2} \left(\begin{bmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{bmatrix}, \quad \begin{bmatrix} \sigma_{11} \boldsymbol{\Sigma_1} & \sigma_{12} \boldsymbol{\Sigma_1} \\ \sigma_{21} \boldsymbol{\Sigma_1} & \sigma_{22} \boldsymbol{\Sigma_1} \end{bmatrix} \right).$$

• Third order tensor normal distribution: $\mathcal{X} \sim \mathcal{N}_{3,2,2}(\mathcal{M}, \Sigma_1, \Sigma_2, \Sigma)$

$$\operatorname{vec}(\mathcal{X}) = \begin{bmatrix} \operatorname{vec} \mathcal{X}(:,:,1) \\ \operatorname{vec} \mathcal{X}(:,:,2) \end{bmatrix}$$
$$\sim \mathcal{N}_{3\times 2\times 2} \left(\begin{bmatrix} \operatorname{vec} \mathcal{M}(:,:,1) \\ \operatorname{vec} \mathcal{M}(:,:,2) \end{bmatrix}, \begin{bmatrix} \sigma_{11}\Sigma_{2} \otimes \Sigma_{1} & \sigma_{12}\Sigma_{2} \otimes \Sigma_{1} \\ \sigma_{21}\Sigma_{2} \otimes \Sigma_{1} & \sigma_{22}\Sigma_{2} \otimes \Sigma_{1} \end{bmatrix} \right).$$

Back to Matrix-Variate Regression

$$Y_i = B_1 X_i B_2^{\mathsf{T}} + E_i, \quad E_i \overset{iid}{\sim} \mathcal{N}_{m_1, m_2}(0, \Sigma_1, \Sigma_2),$$

Back to Matrix-Variate Regression

$$Y_i = B_1 X_i B_2^{\mathsf{T}} + E_i, \quad E_i \stackrel{iid}{\sim} \mathcal{N}_{m_1, m_2}(0, \Sigma_1, \Sigma_2),$$

• MLE under fixed (B_2, Σ_2) : Let $H_1 = \sum_{i=1}^n X_i B_2' \Sigma_2^{-1} B_2 X_i'$, then

$$\begin{cases} \widehat{B}_1 = (\sum_{i=1}^n Y_i \Sigma_2^{-1} B_2 X_i') H_1^{-1} \\ \widehat{\Sigma}_1 = \sum_{i=1}^n Y_i \Sigma_2^{-1} Y_i' - \widehat{B}_1 H_1 \widehat{B}_1' \end{cases}$$

Back to Matrix-Variate Regression

$$Y_i = B_1 X_i B_2^{\mathsf{T}} + E_i, \quad E_i \stackrel{iid}{\sim} \mathcal{N}_{m_1, m_2}(0, \Sigma_1, \Sigma_2),$$

• MLE under fixed (B_2, Σ_2) : Let $H_1 = \sum_{i=1}^n X_i B_2' \Sigma_2^{-1} B_2 X_i'$, then

$$\begin{cases} \widehat{B}_1 = (\sum_{i=1}^n Y_i \Sigma_2^{-1} B_2 X_i') H_1^{-1} \\ \widehat{\Sigma}_1 = \sum_{i=1}^n Y_i \Sigma_2^{-1} Y_i' - \widehat{B}_1 H_1 \widehat{B}_1' \end{cases}$$

• MLE under fixed (B_1, Σ_1) : Let $H_2 = \sum_{i=1}^n X_i' B_1' \Sigma_1^{-1} B_1 X_i$, then

$$\begin{cases} \hat{B}_2 = (\sum_{i=1}^n Y_i' \sum_{1}^{-1} B_1 X_i) H_2^{-1} \\ \hat{\Sigma}_2 = \sum_{i=1}^n Y_i' \sum_{1}^{-1} Y_i - \hat{B}_2 H_2 \hat{B}_2' \end{cases}$$

- Block relaxation algorithm!!!
- You should avoid this model \rightarrow tensor on tensor regression!

Outline

1 Tensors when the observations are scalars

- 2 Tensors with multivariate observations
 - Kronecker Separability for Higher Order Normality

3 Low-Rank Formats

The Tucker (TK) Format

- Unconstrained $\mathcal{B} \in \mathbb{R}^{15 \times 15 \times 15}$ has 3,375 parameters
- Constrained to a Tucker format of rank (3,4,5) leads to only 240

The Canonical (CP) format

- Special case when core \mathcal{V} is diagonal
- Unconstrained \mathcal{B} has 3,375 parameters
- Constrained to a CP format of rank 4 leads to only 180

The Tensor Ring (TR) Format

- Referred to matrix product state (MPS) in many-body physics
- Unconstrained \mathcal{B} has 256 parameters
- Constrained to a TR format of rank (2,2,2,2) leads to only 64

Tensor-on-Tensor Regression:

$$\mathcal{Y}_{i} = \langle \mathcal{X}_{i} | \mathcal{B} \rangle + \mathcal{E}_{i}, \quad \mathcal{E}_{i} \stackrel{iid}{\sim} \mathcal{N}_{m_{1}, m_{2} \dots, m_{p}} (0, \sigma^{2} \Sigma_{1}, \Sigma_{2}, \dots, \Sigma_{p}),$$

$$\mathcal{X}_{i} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l}}, \quad \mathcal{Y}_{i} \in \mathbb{R}^{m_{1} \times m_{2} \times \dots \times m_{p}},$$

$$\mathcal{B} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l} \times m_{1} \times m_{2} \times \dots \times m_{p}}.$$

Tensor-on-Tensor Regression:

$$\mathcal{Y}_{i} = \langle \mathcal{X}_{i} | \mathcal{B} \rangle + \mathcal{E}_{i}, \quad \mathcal{E}_{i} \stackrel{iid}{\sim} \mathcal{N}_{m_{1}, m_{2} \dots, m_{p}} (0, \sigma^{2} \Sigma_{1}, \Sigma_{2}, \dots, \Sigma_{p}),$$

$$\mathcal{X}_{i} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l}}, \quad \mathcal{Y}_{i} \in \mathbb{R}^{m_{1} \times m_{2} \times \dots \times m_{p}},$$

$$\mathcal{B} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l} \times m_{1} \times m_{2} \times \dots \times m_{p}}.$$

• Multilinear Tensor Regression is the case where \mathcal{B} has an OP format $\mathcal{B}_{OP} = \circ \llbracket M_1, M_2, \dots, M_p \rrbracket$ because

$$\langle \mathcal{X}_i | \mathcal{B}_{OP} \rangle = [\![\mathcal{X}_i; M_1, M_2, \dots, M_p]\!].$$

Tensor-on-Tensor Regression:

$$\mathcal{Y}_{i} = \langle \mathcal{X}_{i} | \mathcal{B} \rangle + \mathcal{E}_{i}, \quad \mathcal{E}_{i} \stackrel{iid}{\sim} \mathcal{N}_{m_{1}, m_{2}, \dots, m_{p}}(0, \sigma^{2} \Sigma_{1}, \Sigma_{2}, \dots, \Sigma_{p}),$$

$$\mathcal{X}_{i} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l}}, \quad \mathcal{Y}_{i} \in \mathbb{R}^{m_{1} \times m_{2} \times \dots \times m_{p}},$$

$$\mathcal{B} \in \mathbb{R}^{h_{1} \times h_{2} \times \dots \times h_{l} \times m_{1} \times m_{2} \times \dots \times m_{p}}.$$

• Multilinear Tensor Regression is the case where \mathcal{B} has an OP format $\mathcal{B}_{OP} = \circ \llbracket M_1, M_2, \dots, M_p \rrbracket$ because

$$\langle \mathcal{X}_i | \mathcal{B}_{OP} \rangle = [\![\mathcal{X}_i; M_1, M_2, \dots, M_p]\!].$$

• You can instead do a CP, TR or TK format!