– DM N°9 – <u>PSI* 11-12</u>

DM N°9 (pour le 17/02/2012)

On se propose d'étudier quelques propriétés des applications linéaires inversibles de \mathbb{R}^n dans \mathbb{R}^n ainsi que de leurs matrices.

Dans tout ce qui suit, \mathbb{R}^n $(n \in \mathbb{N}^*)$ est supposé muni de sa base canonique ordonnée $\mathcal{B}_n = (e_1, ..., e_n)$, $e_i = (\delta_1^i, ..., \delta_n^i)$, δ_i^j désignant le symbole de Kronecker $(\delta_i^j = 1 \text{ si } i = j \text{ et } \delta_i^j = 0 \text{ si } i \neq j)$.

On choisit sur
$$\mathbb{R}^n$$
 la norme euclidienne usuelle : $||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$, avec $x = (x_1, ..., x_n)$.

 $\mathscr{L}(\mathbb{R}^n)$ est l'ensemble des applications linéaires de \mathbb{R}^n dans \mathbb{R}^n et $\mathscr{M}_n(\mathbb{R})$ est l'ensemble des matrices carrées réelles d'ordre n.

Alors, $\mathcal{M}: \mathcal{L}(\mathbb{R}^n) \to \mathcal{M}_n(\mathbb{R})$ défini par : « $\mathcal{M}(f)$ est la matrice de f relativement à \mathcal{B}_n », est un isomorphisme d'algèbre de $(\mathcal{L}(\mathbb{R}^n),+,.,\circ)$ sur $(\mathcal{M}_n(\mathbb{R}),+,.,\times)$, où + désigne l'addition, . désigne la multiplication par les scalaires, \circ la composition des applications et \times le produit matriciel.

Si $f \in \mathcal{L}(\mathbb{R}^n)$, $||f|| = \sup\{||f(x)||_2 : ||x||_2 \le 1\}$ sera la norme subordonnée de f associée à $||f||_2$, on notera aussi $||f||_2$ la norme transportée sur $\mathcal{M}_n(\mathbb{R})$ par \mathcal{M} , c'est-à-dire que $||f||_2 = ||f||_2 = ||f||_2$ ($f||f||_2 = ||f||_2 = ||f||_2$).

On rappelle que $((\mathcal{L}(\mathbb{R}^n),+,.,\circ),\|\|)$ et $((\mathcal{M}_n(\mathbb{R}),+,.,\times),\|\|)$ sont des **algèbres de Banach unitaires**, ¹ et que \mathcal{M} est un isomorphisme isométrique ² de la première algèbre sur la seconde : de ce fait toutes les propriétés établies dans le texte sur $\mathcal{L}(\mathbb{R}^n)$ se transposent immédiatement sur $\mathcal{M}_n(\mathbb{R})$.

On notera I_n l'élément neutre de $(\mathcal{L}(\mathbb{R}^n), \circ)$ et J_n celui de $(\mathcal{M}_n(\mathbb{R}), \times)^3$.

On pose det : $\mathcal{L}(\mathbb{R}^n) \to \mathbb{R}$ et Det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$, où det(f) désigne le déterminant de f et Det $(M) = \det(\mathcal{M}^{-1}(M))$ est le déterminant de M.

Soit $M \in \mathcal{M}_n(\mathbb{R})$, $M = (\alpha_{i,j})$ signifie que $\alpha_{i,j}$ est le réel situé sur la $i^{\text{ième}}$ ligne et la $j^{\text{ième}}$ colonne de M, $\alpha_{i,j}$ est une « entrée » de la $i^{\text{ième}}$ ligne et de la $j^{\text{ième}}$ colonne de M.

Pour
$$k \in \{1, ..., n\}$$
 on définit $L_k : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^n$ par $L_k(M) = (\alpha_{k,1}, ..., \alpha_{k,n})$ si $M = (\alpha_{i,j})$.

Si $L_k(M)\neq(0,...,0)$ on notera $p(k)=\min\left\{j\in\{1,...,n\}:\alpha_{k,j}\neq0\right\}$ et on dira que $\alpha_{k,p(k)}$ est « l'entrée principale » de $L_k(M)$.

Dans tout le problème, on appelle « groupe linéaire d'ordre n », et on note $\mathrm{GL}(\mathbb{R}^n)$, l'ensemble suivant : $\mathrm{GL}(\mathbb{R}^n) = \{f \in \mathcal{L}(\mathbb{R}^n) : (\exists g) \left(\left(g \in \mathcal{L}(\mathbb{R}^n) \right) \text{ et } \left(g \circ f = \mathrm{I}_n \right) \right) \}$, (i.e. $f \in \mathrm{GL}(\mathbb{R}^n)$ si et seulement si f possède une « inverse linéaire à gauche ») ; de même $\mathrm{GL}_n(\mathbb{R}) = \mathcal{M}\left(\mathrm{GL}(\mathbb{R}^n)\right)$ sera le « groupe matriciel d'ordre n ».

La partie II est autonome ; la partie III peut se traiter en admettant II.3.4.

- I. On se propose, dans cette partie, d'établir les résultats de base relatifs aux groupes linéaires et matriciels.
 - 1) Montrer que $f \in GL(\mathbb{R}^n)$ si et seulement si f est une bijection linéaire de \mathbb{R}^n sur \mathbb{R}^n , (donc $GL_n(\mathbb{R})$ n'est autre que l'ensemble des matrices inversibles d'ordre n) et que $(GL(\mathbb{R}^n), \circ)$ et $(GL_n(\mathbb{R}), \times)$ sont bien des groupes ; si $f \in GL(\mathbb{R}^n)$ et si $M \in GL_n(\mathbb{R})$ on notera f^{-1} et M^{-1} leurs inverses dans ces groupes.
 - **2)** Soit $f \in \mathcal{L}(\mathbb{R}^n)$, on définit $(f^p)_{p \in \mathbb{N}} : \mathbb{N} \to \mathcal{L}(\mathbb{R}^n)$ par $f^0 = I_n$, $f^{p+1} = f^p \circ f$.

^{1.} Une algèbre de Banach $(A,+,\cdot,\times,\parallel \parallel)$ sur le corps $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} est une \mathbb{K} -algèbre, munie d'une norme telle que $\forall (a,b)\in A^2, \|a\times b\| \leq \|a\|\cdot\|b\|$ et telle que l'espace vectoriel normé sous-jacent soit en outre un espace de Banach (i.e. un espace vectoriel normé complet). Elle est de plus dite unitaire si son élément neutre 1_A pour \times vérifie 1_A 0 = 1

^{2.} c'est-à-dire qui conserve la norme, soit $\|\mathcal{M}(M)\| = \|M\|$

^{3.} Des notations pour le moins curieuses...

- **2.1.** Démontrer que si ||f|| < 1, alors $I_n f \in GL(\mathbb{R}^n)$ et $(I_n f)^{-1} = \sum_{i=0}^{\infty} f^i$.
- **2.2.** Soit $p \in \mathbb{N}^*$, soit $(f_1, ..., f_p) \in (\mathcal{L}(\mathbb{R}^n))^p$ montrer que : $||f_1 \circ ... \circ f_p|| \leq ||f_1|| ... ||f_p||$ et en déduire que $(f_1, ..., f_p) \mapsto f_1 \circ ... \circ f_p$ est continue (donc $(M_1, ..., M_p) \mapsto M_1 \times ... \times M_p$ est continue avec $(M_1, ..., M_p) \in (\mathcal{M}_n(\mathbb{R}))^p$.
- **2.3.** a) Soit $f \in GL(\mathbb{R}^n)$, montrer que si $g \in \mathcal{L}(\mathbb{R}^n)$ vérifie $\|g\| < \|f^{-1}\|^{-1}$, on a : $f + g \in GL(\mathbb{R}^n)$ (on aura intérêt à écrire : $f + g = f \circ (I_n + f^{-1} \circ g)$).
 - **b)** Montrer que : $(f+g)^{-1} f^{-1} = ((I_n + f^{-1} \circ g)^{-1} I_n) \circ f^{-1}$ et en déduire que $f \mapsto f^{-1}$ est continue (donc $M \mapsto M^{-1}$ est continue).
- 3) 3.1. Montrer que Det est une application continue; en déduire qu'il en est de même pour det.
 - **3.2.** On définit $\operatorname{GL}_+(\mathbb{R}^n)$, $\operatorname{GL}_-(\mathbb{R}^n)$, $\operatorname{GL}_{n+}(\mathbb{R})$, $\operatorname{GL}_{n-}(\mathbb{R})$ comme suit : $\operatorname{GL}_+(\mathbb{R}^n) = \left\{f \in \mathscr{L}(\mathbb{R}^n) : \det(f) > 0\right\}, \quad \operatorname{GL}_-(\mathbb{R}^n) = \left\{f \in \mathscr{L}(\mathbb{R}^n) : 0 > \det(f)\right\}$ $\operatorname{GL}_{n+}(\mathbb{R}^n) = \left\{M \in \mathscr{M}(\mathbb{R}) : \operatorname{Det}(M) > 0\right\}, \quad \operatorname{GL}_{n-}(\mathbb{R}^n) = \left\{M \in \mathscr{M}(\mathbb{R}) : 0 > \operatorname{Det}(M)\right\}.$ Montrer que $\operatorname{GL}(\mathbb{R}^n) = \operatorname{GL}_+(\mathbb{R}^n) \cup \operatorname{GL}_-(\mathbb{R}^n)$ (donc $\operatorname{GL}_n(\mathbb{R}) = \operatorname{GL}_{n+}(\mathbb{R}) \cup \operatorname{GL}_{n-}(\mathbb{R})$). Montrer que $\operatorname{GL}_+(\mathbb{R}^n)$, $\operatorname{GL}_-(\mathbb{R}^n)$ sont ouverts (donc $\operatorname{GL}_{n+}(\mathbb{R})$ et $\operatorname{GL}_{n-}(\mathbb{R})$ sont ouverts).
- **4)** Montrer que $(GL_{+}(\mathbb{R}^{n}), \circ)$ et $(GL_{n+}(\mathbb{R}), \times)$ sont des sous-groupes de $(GL(\mathbb{R}^{n}), \circ)$ et $(GL_{n}(\mathbb{R}), \times)$. Qu'en est-il de $GL_{-}(\mathbb{R}^{n})$ et $GL_{n-}(\mathbb{R})$?
- 5) Soit $f \in \mathcal{L}(\mathbb{R}^n)$, on définit $u : \mathbb{R} \to \mathbb{R}$ par : $u(t) = \det(f + t.I_n)$.
 - **5.1.** Montrer que u est une fonction polynomiale de degré n.
 - **5.2.** Montrer qu'il existe $\alpha \in \mathbb{R}$, $\alpha > 0$ tel que l'on ait : $\{f + t.I_n : t \in]0, \alpha[\} \subset GL(\mathbb{R}^n)$. En déduire que $GL(\mathbb{R}^n)$ est dense dans $\mathscr{L}(\mathbb{R}^n)$ (donc $GL_n(\mathbb{R})$ est dense dans $\mathscr{M}_n(\mathbb{R})$).
- II. Dans cette partie, on montre comment on peut calculer l'inverse d'un élément de $GL_n(\mathbb{R})$ en utilisant des « transformations élémentaires » sur les lignes des matrices.

Définitions et notations :

- 1- Soit $M = (\alpha_{i,j}) \in \mathcal{M}_n(\mathbb{R})$; on dira que M est « L réduite » si et seulement si :
 - soit M est la matrice nulle (notée $0_{\mathcal{M}_n}$),
 - soit, pour tout $k \in \{1,...,n\}$ tel que $L_k(M) \neq (0,...,0)$ alors $\alpha_{k,p(k)} = 1$ et $\sum_{j=1}^n \left| \alpha_{j,p(k)} \right| = 1$ (où $\alpha_{k,p(k)}$ est « l'entrée principale » de $L_k(M)$).

$$2 - \mathscr{E}l_1(n) = \bigcup_{(k,\lambda) \in \{1,\dots,n\} \times \mathbb{R}^*} \left\{ A_{1,k,\lambda} \right\} \subset \mathscr{M}_n(\mathbb{R}) \text{ où } A_{1,k,\lambda} = \begin{pmatrix} 1 & 0 & \dots & \dots & \dots & 0 \\ 0 & 1 & 0 & & & \vdots \\ \vdots & 0 & \ddots & 0 & & & \vdots \\ \vdots & & 0 & 1 & 0 & & \vdots \\ \vdots & & & 0 & \lambda & 0 & & \vdots \\ \vdots & & & & 0 & 1 & 0 & \vdots \\ \vdots & & & & & 0 & \ddots & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 & 1 \end{pmatrix},$$

 λ étant à la $k^{\text{ième}}$ ligne et la $k^{\text{ième}}$ colonne. autrement dit : $(L_i(A_{1,k,\lambda}) = e_i)$ si $i \neq k$, $L_k(A_{1,k,\lambda}) = \lambda e_k$.

 λ étant à la $k^{\mathrm{i\`eme}}$ ligne et la $p^{\mathrm{i\`eme}}$ colonne.

autrement dit : $(L_i(A_{2,k,p,\lambda}) = e_i)$ si $i \neq k$, $L_k(A_{2,k,p,\lambda}) = e_k + \lambda e_p$

$$4- \mathscr{E}l_{3}(n) = \bigcup_{(k,p)\in\{1,\ldots,n\}^{2}} \left\{ A_{3,k,p} \right\} \subset \mathscr{M}_{n}(\mathbb{R}) \text{ avec } A_{3,k,p} = \begin{pmatrix} 1 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 & \ldots & \ldots & 0 & \ldots & 0 \\ \vdots & & & & \vdots & & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & \ldots & \ldots & 1 & \ldots & 0 \\ \vdots & & & \vdots & & \vdots & & \vdots \\ 0 & \ldots & 0 & 1 & \ldots & \ldots & 0 & \ldots & 1 \end{pmatrix}$$

 $\text{autrement dit}: \operatorname{L}_i(\operatorname{A}_{3,k,p}) = e_i \text{ si } i \notin \left\{k,p\right\}, \ \operatorname{L}_k(\operatorname{A}_{3,k,p}) = e_p \,, \ \operatorname{L}_p(\operatorname{A}_{3,k,p}) = e_k \,.$

On définit alors $\mathscr{E}l(n) = \bigcup_{i \in \{1,2,3\}} \mathscr{E}l_i(n)$, un élément de $\mathscr{E}l(n)$ s'appelle une matrice élémentaire d'ordre n, de type i s'il appartient à $\mathscr{E}l_i(n)$

5- On appelle opération élémentaire de type 1, 2 ou 3 sur $\mathcal{M}_n(\mathbb{R})$ et on note $\mathcal{T}_{1,k,\lambda}$, $\mathcal{T}_{2,k,p,\lambda}$, $\mathcal{T}_{3,k,p}$, $\left((k,p)\in\{1,\ldots,n\}^2,\lambda\in\mathbb{R}\right)$ toute application (de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$) du type :

$$\mathscr{T}_{1,k,\lambda}(\mathsf{M}) = \mathsf{A}_{1,k,\lambda} \times \mathsf{M} \; ; \quad \mathscr{T}_{2,k,p,\lambda}(\mathsf{M}) = \mathsf{A}_{2,k,p,\lambda} \times \mathsf{M} \; ; \quad \mathscr{T}_{3,k,p}(\mathsf{M}) = \mathsf{A}_{3,k,p} \times \mathsf{M}$$

avec $A_{1,k,\lambda} \in \mathcal{E}l_1(n)$, $A_{2,k,p,\lambda} \in \mathcal{E}l_2(n)$ et $A_{3,k,p} \in \mathcal{E}l_3(n)$.

On définit alors:

$$\begin{split} &\mathscr{O}_1(n) = \left\{ \mathscr{T}_{1,k,\lambda} : \mathsf{A}_{1,k,\lambda} \in \mathscr{E}l_1(n) \right\}, \quad \mathscr{O}_2(n) = \left\{ \mathscr{T}_{1,k,p,\lambda} : \mathsf{A}_{2,k,p,\lambda} \in \mathscr{E}l_2(n) \right\}, \\ &\text{et } \mathscr{O}_3(n) = \left\{ \mathscr{T}_{3,k,p} : \mathsf{A}_{3,k,p} \in \mathscr{E}l_3(n) \right\}; \end{split}$$

 $\mathcal{O}(n) = \bigcup_{i \in \{1,2,3\}} \mathcal{O}_i(n)$ est l'ensemble des opérations élémentaires sur $\mathcal{M}_n(\mathbb{R})$).

6- Soit $(M,N) \in (\mathcal{M}_n(\mathbb{R}))^2$, on dira que N est « L - équivalente » à M s'il existe $q \in \mathbb{N}^*$ et $(\mathcal{T}^{(1)},\ldots,\mathcal{T}^{(q)}) \in (\mathcal{O}(n))^q$ tels que : $N = (\mathcal{T}^{(1)} \circ \mathcal{T}^{(2)} \circ \ldots \circ \mathcal{T}^{(q)})$ (M).

Questions:

1) Soit $M = (\alpha_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, calculer $\mathcal{T}_{1,k,\lambda}(M)$, $\mathcal{T}_{2,k,p,\lambda}(M)$, $\mathcal{T}_{3,k,p}(M)$ et donner une interprétation simple des opérations élémentaires sur $\mathcal{M}_n(\mathbb{R})$.

- 2) Calculer $\operatorname{Det}(A_{1,k,\lambda})$, $\operatorname{Det}(A_{2,k,p,\lambda})$, $\operatorname{Det}(A_{3,k,p})$ et montrer que $\mathscr{E}l(n)\subset\operatorname{GL}_n(\mathbb{R})$. Calculer $\left(A_{1,k,\lambda}\right)^{-1}$, $\left(A_{2,k,p,\lambda}\right)^{-1}$, $\left(A_{3,k,p}\right)^{-1}$ et en déduire que la « L équivalence » est bien une relation d'équivalence sur $\mathscr{M}_n(\mathbb{R})$. Montrer que si $M\in\operatorname{GL}_n(\mathbb{R})$ et si $N\in\mathscr{M}_n(\mathbb{R})$ est « L équivalente » à M, alors $N\in\operatorname{GL}_n(\mathbb{R})$.
- 3) On se propose de montrer que tout élément de $\mathcal{M}_n(\mathbb{R})$ est « L équivalent » à une matrice « L réduite » et ce, en utilisant uniquement des opérations élémentaires de type 1 ou 2.

Soit $M = (\alpha_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ (on suppose que $M \neq 0_{\mathcal{M}_n}$), on suppose que pour k donné, $k \in \{1, ..., n\}$, on a pu trouver $(\mathcal{T}^{(1)}, ..., \mathcal{T}^{(q(k))}) \in (\mathcal{O}_1(n) \cup \mathcal{O}_2(n))^{q(k)}$ tel que

$$\mathbf{M}_{(k)} = \left(\mathscr{T}^{(1)} \circ \ldots \circ \mathscr{T}^{(q(k))} \right) (\mathbf{M}) = \left(\alpha_{i,j}^{(k)} \right) \text{ vérifie la propriété } (\mathbf{P}(k)).$$

$$(P(k)): \text{pour tout } i \in \{1,...,k\}, \text{ soit } L_i(M_{(k)}) = (0,...,0), \text{ soit } \alpha_{i,p_{(i)}}^{(k)} = 1 \text{ et } \sum_{j=1}^n \left| \alpha_{j,p_{(i)}}^{(k)} \right| = 1$$
 $((\alpha_{i,p_{(i)}}^{(k)}) \text{ étant "l'entrée principale "de L}_i(M_{(k)}).$

Si pour tout $i \in \{k+1,...,n\}$ on a $L_i(M_{(k)}) = (0,...,0)$ alors $M_{(k)}$ est « L - réduite », de même si k=n; de plus M et $M_{(k)}$ sont « L - équivalentes » par des opérations élémentaires de type 1 ou 2. Si $M_{(k)}$ est « L - réduite » c'est fini, sinon soit $m(k) = \min \left\{i \in \{k+1,...,n\} : L_i\left(M_{(k)}\right) \neq (0,...,0)\right\}$.

- **3.1.** Montrer qu'il existe $\mathscr{T}_{1,m(k),\lambda} \in \mathscr{O}_1(n)$ tel que l'on ait : $\mathscr{T}_{1,m(k),\lambda} \left(\mathsf{M}_{(k)} \right) = \mathsf{M}'_{(k)} = \left(\alpha'_{i,j}^{\ k} \right)$ vérifie $(\mathsf{P}(k))$ et $\alpha'_{m(k),p(m(k))}^{\ \ (k)} = 1$ (où $\alpha'_{m(k),p(m(k))}^{\ \ (k)}$ est « l'entrée principale » de $\mathsf{L}_{m(k)}(\mathsf{M}'_{(k)})$).
- **3.2.** Soit $\{i_1,\ldots,i_{n-1}\}=\{1,\ldots,n\}\setminus\{m(k)\}$, montrer qu'il existe $\left(\mathcal{T}_{2,i_j,m(k),\lambda_{i_j}}\right)_{j\in\{1,\ldots,i_{n-1}\}}$ tel que l'on ait : $\mathbf{M}_{(m(k))}=\mathcal{T}_{2,i_1,m(k),\lambda_{i_1}}\circ\ldots\mathcal{T}_{2,i_{n-1},m(k),\lambda_{i_{n-1}}}(\mathbf{M}'_{(k)})$ vérifie $(\mathbf{P}(m(k)))$. Montrer que ceci établit le résultat énoncé au début du II.3.
- **3.3.** On s'intéresse à l'algorithme permettant de calculer les entrées de $M_{(m(k))}$ à partir de la donnée de celles de $M_{(k)}$. On pose, pour simplifier l'écriture ⁴, $M_{(k)} = (a_{i,j})$, m(k) = m, $M_{(m(k))} = (b_{i,j})$; expliciter les formules permettant le calcul des $b_{i,j}$ à partir des $a_{i,j}$.
- **3.4.** Soit $M \in GL_n(\mathbb{R})$, montrer que, si M est « L réduite », il existe $q \in \mathbb{N}^*$ et $\left(\mathscr{T}_{3,k_i,p_i}\right)_{i\in\{1,\dots,q\}}\in \left(\mathscr{O}_3(n)\right)^q$ tels que $\left(\mathscr{T}_{3,k_1,p_1}\circ\mathscr{T}_{3,k_2,p_2}\circ\mathscr{T}_{3,k_q,p_q}\right)(M)=J_n$. Montrer que $M\in GL_n(\mathbb{R})$ si et seulement si M est un produit d'éléments de $\mathscr{E}l(n)$.
- III. Nous allons montrer que $GL_{n+}(\mathbb{R})$, $GL_{n-}(\mathbb{R})$, $GL_{+}(\mathbb{R}^{n})$, $GL_{+}(\mathbb{R}^{n})$ sont connexes par arcs ⁵. Il s'agit d'un résultat important et non évident, bien qu'élémentaire ⁶.

A. Soit $M \in GL_{n+}(\mathbb{R})$, d'après II.3.4, il existe $(B_i)_{i \in \{1,...,m\}} \in (\mathcal{E}l(n))^m$ tel que l'on ait : $M = B_1 \times B_2 \times ... \times B_m$.

- 1) Montrer que $\{i \in \{1,...,m\} : B_i \in GL_{n-}(\mathbb{R})\}$ possède un nombre pair d'éléments.
- 2) 2.1. Soit $A_{1,k,\lambda} \in \mathcal{E}l_1(n) \cap GL_{n+}(\mathbb{R})$, soit $\varphi : [0,1] \to \mathcal{M}_n(\mathbb{R})$, $\varphi(t) = A_{1,k,(1-t)\lambda+t}$. Montrer que φ est continue, que $\varphi([0,1]) \subset GL_{n+}(\mathbb{R})$ et calculer $\varphi(0)$ et $\varphi(1)$.
 - **2.2.** Soit $A_{1,k,\lambda} \in \mathcal{E}l_1(n) \cap GL_{n-}(\mathbb{R})$, soit $\psi : [0,1] \to \mathcal{M}_n(\mathbb{R}), \psi(t) = A_{1,k,(1-t)\lambda-t}$. Montrer que ψ est continue, que $\psi([0,1]) \subset GL_{n-}(\mathbb{R})$ et calculer $\psi(0)$ et $\psi(1)$.
- 3) Soit $A_{2,k,p\lambda} \in \mathscr{E}l_2(n)$, soit $\chi:[0,1] \to \mathscr{M}_n(\mathbb{R}), \chi(t) = A_{2,k,p,(1-t)\lambda}$. Montrer que χ est continue, que $\chi([0,1]) \subset \mathrm{GL}_{n+}(\mathbb{R})$, et calculer $\chi(0)$ et $\chi(1)$.

^{4.} Il est temps!..

^{5.} Une partie A d'un espace vectoriel normé E est dite connexe par arcs si et seulement si pour tous $x, y \in A$, il existe un chemin continu qui relie x à y, c'est-à-dire une application continue $\gamma: [0,1] \to E$ telle que $\gamma(0) = x$ et $\gamma(1) = y$.

^{6.} non évident, mais cependant élémentaire???

4) Soit $A_{3,k,p}\in \mathcal{E}l_3(n), (k\neq p),$ soit $\omega:[0,1]\to \mathcal{M}_n(\mathbb{R})$ définie par :

$$L_i(\omega(t)) = e_i \text{ si } i \notin \{k, p\}$$

$$L_k(\omega(t)) = -\sin\left(\frac{\pi}{2}t\right) \cdot e_k + \cos\left(\frac{\pi}{2}t\right) \cdot e_p$$

$$L_p(\omega(t)) = \sin\left(\frac{\pi}{2}t\right) \cdot e_p + \cos\left(\frac{\pi}{2}t\right) \cdot e_k$$

Montrer que ω est continue, que $\omega([0,1]) \subset GL_{n-}(\mathbb{R})$, et calculer $\omega(0)$ et $\omega(1)$.

- 5) En utilisant ce qui précède, montrer qu'il existe σ , $\sigma:[0,1]\to \mathrm{GL}_{n+}(\mathbb{R})$, σ continue, telle que l'on ait : $\sigma(0)=\mathrm{M}$ et $\mathrm{L}_i(\sigma(1))=\epsilon_i.e_i$, $\epsilon_i\in\{-1,1\}$ et $\{i\in\{1,\ldots,n\}:\epsilon_i=-1\}$ possède un nombre pair d'éléments.
- **6)** Soit $\{p,k\} \subset \{1,...,n\}$, $p \neq k$, soit $N_{(p,k)} \in \mathcal{M}_n(\mathbb{R})$ avec :

$$L_i\left(N_{(p,k)}\right) = e_i \text{ si } i \notin \{p,k\}$$

$$L_k\left(N_{(p,k)}\right) = -e_k,$$

$$L_p\left(\mathbf{M}_{(p,k)}\right) = -e_p.$$

Soit $\rho: [0,1] \to \mathcal{M}_n(\mathbb{R})$, avec:

$$L_i(\rho(t)) = e_i \text{ si } i \notin \{p, k\}$$

$$L_k(\rho(t)) = -\cos(\pi t).e_k + \sin(\pi t).e_p$$

$$L_p(\rho(t)) = -\cos(\pi t).e_p - \sin(\pi t).e_k$$

Montrer que ρ est continue, que $\rho([0,1]) \in GL_{n+}(\mathbb{R})$, et calculer $\rho(0)$ et $\rho(1)$.

- 7) En utilisant III.A.5 et III.A.6, montrer qu'il existe μ , μ : $[0,1] \to GL_{n+}(\mathbb{R})$, μ continue, telle que l'on ait $\mu(0) = M$, $\mu(1) = J_n$. Déduire de ceci que $GL_{n+}(\mathbb{R})$ est connexe par arcs (donc $GL_{+}(\mathbb{R}^n)$ est connexe par arcs).
- **B.** Soit $M \in GL_{n-}(\mathbb{R})$, montrer, en s'inspirant de III.A qu'il existe ν , ν : $[0,1] \to GL_{n-}(\mathbb{R})$, ν continue, telle que l'on ait $\nu(0) = M$, $\nu(1) = A_{1,1,-1}$.

Déduire de ceci que $GL_{n-}(\mathbb{R})$ est connexe par arcs (donc $GL_{-}(\mathbb{R}^{n})$ est connexe par arcs).

