Requested Patent:

JP6137254A

Title:

HEAT ACCUMULATING FACILITY WITH PUMPING-UP POWER GENERATION:

Abstracted Patent:

JP6137254:

Publication Date:

1994-05-17;

Inventor(s):

ITAYA TOSHIMASA;

Applicant(s):

SHIMIZU CORP:

Application Number:

JP19920308283 19921022 :

Priority Number(s):

IPC Classification:

F03B13/06; F28D20/00; H02J15/00; H02P9/04;

Equivalents:

JP3289151B2;

ABSTRACT:

PURPOSE:To improve efficiency of facilities and operation and to drastically reduce construction cost compared with separate construction of underground pumping-up power generation facilities and underground heat accumulating facilities for heat source for local heating and cooling by accumulating heat of a heat source for local heating and cooling utilizing a reservoir for pumping-up power generation.

CONSTITUTION:An upper reservoir 2 is connected to a lower reservoir 3 through a storage pipe 4 and a flow pipe 5, and water reserved in the lower reservoir 3 is pumped up to the upper reservoir 2 through the storage pipe 4 by a storage pump 6 operated utilizing surplus power. In pumping-up power generation in which the pumped-up water from the upper reservoir flows to the lower reservoir 3 through the flow pipe 5 at the time of concentrated power consumption to generate power, the water reserved in the upper reservoir 2 is cooled or heated by a heat exchanger 8 arranged at the storage pipe 4 to accumulate quantity of heat, and this accumulated heat is taken out by a heat exchanger 12 arranged at the flow pipe 5 to be utilized for local cooling and heating, etc., in this heat accumulating facilities with pumping-up power generation.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-137254

(43)公開日 平成6年(1994)5月17日

(51) Int.Cl. ⁵ F 0 3 B 13/06	識別記号	庁内整理番号	FI	技術表示箇所
F 2 8 D 20/00	В	2105-3H		
H 0 2 J 15/00	Z	9061-5G		
H 0 2 P 9/04	A	2116-5H		

審査請求 未請求 請求項の数1(全 4 頁)

特願平4-308283

(22)出願日

平成4年(1992)10月22日

(71)出願人 000002299

清水建設株式会社

東京都港区芝浦一丁目2番3号

(72)発明者 板谷 敏正

東京都港区芝浦一丁目2番3号 清水建設

株式会社内

(74)代理人 弁理士 柳田 良徳 (外1名)

(54) 【発明の名称】 揚水発電併用蓄熱施設

(57)【要約】

【目的】 揚水発電の貯水槽を利用して地域冷暖房の熱源の蓄熱を行うことにより、地下揚水発電施設と地域冷暖房用熱源の地下蓄熱施設を別個に建設する場合に比べ、施設効率ならびに運転効率の向上と、建設コストの大幅の低減を図ることができる揚水発電併用蓄熱施設を提供する。

【構成】 上部貯水槽2と下部貯水槽3とを揚水パイプ4と流下パイプ5で連結し、下部貯水槽3の貯水を、余 利電力を利用して運転する揚水ポンプ6によって揚水パイプ4を通じて上部貯水槽2に揚水し、揚水した上部貯水槽2の貯水を電力消費集中時に流下パイプ5を通じて下部貯水槽3に流下させて発電する揚水発電において、前記揚水パイプ4に配設した熱交換器8によって上部貯水槽2に貯水する水を冷却または加熱して熱量を蓄熱し、この蓄熱を流下パイプ5に配設した熱交換器12によって取出し、地域冷暖房等に利用するようにした揚水発電併用蓄熱施設。

1

【特許請求の範囲】

【請求項1】 上部貯水槽と下部貯水槽とを揚水パイプ と流下パイプで連結し、下部貯水槽の貯水を、余剰電力 を利用して運転する揚水ポンプによって揚水パイプを通 じて上部貯水槽に揚水し、揚水した上部貯水槽の貯水を 電力消費集中時に流下パイプを通じて下部貯水槽に流下 させて発電する揚水発電において、前記揚水パイプに配 設した熱交換器によって上部貯水槽に貯水する水を冷却 または加熱して熱量を蓄熱し、この蓄熱を流下パイプに 配設した熱交換器によって取出し、地域冷暖房等に利用 10 するようにしたことを特徴とする揚水発電併用蓄熱施 設。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、消費量の少ない夜間の 余剰電力を利用してポンプ揚水し、消費量の集中する昼 間にこれを流下させて発電し、夜間と昼間の外部電力の 負荷の平準化を図る揚水発電の貯水を利用して地域冷暖 房等の熱源を蓄熱する揚水発電併用蓄熱施設に関するも のである。

[0002]

【従来の技術】近時、社会経済のめざましい発展に伴い 産業用電力需要が飛躍的に拡大すると共に、一般居住環 境にもルームエアコンがほぼ完全に普及し、このため、 特に夏季において冷房に消費する電力が著しく過大とな って電力供給がパニックに陥るという事態が現実的に起 り得るところまできており、上記事態は特に大都市にお いて深刻となっている。そこで上記事態の解決策の一つ として都市の一地域を再開発し、ここに電力消費のピー クをカットして外部電力負荷の平準化を図るための揚水 30 発電施設を、土地の有効利用と美観を考えて地下に建設 し、地上を緑地、公園、ショッピングセンター等に開放 する都市型地域揚水発電施設のプランが提案されてい る。しかしながら、上記都市型地域揚水発電施設は消費 地内にあるため、送配電ロスとコストが少なくてすむと いう利点がある一方、地下施設の建設コストがかなり莫 大になるという問題がある。また再開発した都市内の一 地域を地域冷暖房する場合、この冷暖房に要する冷暖熱 量を夜間の余剰電力で作り、この熱量を蓄熱槽に蓄熱し て昼間に取出し、外部電力負荷の平準化を図る必要があ 40 るが、地域冷暖房に要する熱量はかなり大熱量であるた め、これを賄う大容量の蓄熱槽を前配揚水発電施設と別 に地下に建設するとなると、この蓄熱施設の建設コスト もかなり高額となるという問題がある。

[0003]

【本発明が解決しようとする課題】本発明は現時の電力 事情に鑑み、上記問題を解決することを課題としてなさ れたものであって、揚水発電の貯水槽を利用して地域冷 暖房の熱源の蓄熱を行うことにより、地下揚水発電施設 合に比べ、施設効率ならびに運転効率の向上と、建設コ ストの大幅の低減を図ることができる揚水発電併用蓄熱 施設を提供することを目的としている。

[0004]

【課題を解決するための手段】上記月的を達成するため 本発明は、上部貯水槽と下部貯水槽とを揚水パイプと流 下パイプで連結し、下部貯水槽の貯水を、余剰電力を利 用して運転する揚水ポンプによって揚水パイプを通じて 上部貯水槽に揚水し、揚水した上部貯水槽の貯水を電力 消費集中時に流下パイプを通じて下部貯水槽に流下させ て発電する揚水発電において、前記揚水パイプに配設し た熱交換器によって上部貯水槽に貯水する水を冷却また は加熱して熱量を蓄熱し、この蓄熱を流下パイプに配設 した熱交換器によって取出し、地域冷暖房等に利用する ようにした揚水発電併用蓄熱施設を特徴としている。

[0005]

【作用】上記のごとく、揚水発電によって電力消費のピ 一クをカットして外部電力負荷の平準化を図るため、電 力供給がパニック状態に陥る事態が避けられると共に、 20 揚水発電の貯水槽を利用して地域冷暖房の熱源の蓄熱を 行うことにより、地下揚水発電施設と冷暖房用熱源の地 下蓄熱施設を別個に建設する場合に比べ、施設効率なら びに運転効率の向上と建設コストの大幅の低減が実現さ れる。

[0006]

【実施例】以下本発明を図示の一実施例に基いて詳細に 説明する。図1は本発明に係る揚水発電併用蓄熱施設の 配置立面図で、図において、1は電力消費のピークをカ ットして外部電力負荷の平準化を図る揚水発電施設に、 地域の冷暖房用の冷暖熱源を蓄熱する蓄熱槽を併用させ た地下揚水発電併用蓄熱施設、2は複数の槽で成る揚水 発電の上部貯水槽、3は同じく複数の槽で成る揚水発電 の下部貯水槽、4は下部貯水槽3の貯水を上部貯水槽2 に揚水する揚水パイプ、5は上部貯水槽2の貯水を下部 貯水槽3に流下させる流下パイプである。揚水パイプ4 はパイプ下方に揚水ポンプ6、パイプ上方に冷却加熱切 替え自在のヒートポンプ7等の冷却加熱機に連結された 熱交換器8が設けられ、パイプ上端は各上部貯水槽2の 上部に流入弁9を介して連結され、下端は相互に連通パ イプ10で連通された下部水槽3の最外端のものに連結 されている。流下パイプ5はパイプ下方に発電機11、 パイプ上方に図示しない地域の冷暖房設備およびその他 の熱源機器に接続された熱交換器12が設けられ、パイ ブ上端は前記各上部貯水槽2の下部に流出弁13を介し て連結され、パイプ下端は前記下部水槽3の他方の最外 側のものに連結されている。

【0007】次に、上記揚水発電併用蓄熱施設1の、冷 房用電力消費がピークに達するを示す夏季の運転につい て説明すると、余剰電力が生じる夜間の一般電力を利用 と地域冷暖房用熱源の地下蓄熱施設を別個に建設する場 50 して揚水ポンプ 6 を運転し、下部貯水槽 3 の貯水を揚水

パイプ4を通じて揚水し、流入弁9を開いて上部貯水槽 2に貯水する。この時同時に冷却側に切替えたヒートポ ンプ7を同夜間電力で運転し、熱交換機8を介して揚水 を冷却し、低温熱量を上部貯水槽2に蓄熱する。社会の 活動時間となって動力機械、電気器具、照明、その他諸 々の電力と共に冷房用電力の消費がピークに達した時、 上部貯水槽2の流出弁13を開いて蓄熱貯水を流下バイ プ5を通じて下部貯水槽3に流下させ、その途中発電機 11によって発電した揚水発電電力を一般電力に還元し 電力ピークを平準化させる。また、上部貯水槽2の低温 10 蓄熱水は、流ドバイプ5上方に設けた熱交換機12によ って、地域の冷暖房設備およびその他の熱源機器を作動 させて昇温した作用媒体と熱交換され、冷却された作用 媒体は冷暖房設備およびその他の熱源機器に戻され、昇 温した蓄熱水は流トバイプ5、ト部貯水槽3を通り揚水 パイプ4上方の熱交換部8を通過する時ヒートポンプ7 の低温媒体と熱交換されて冷却され、上記貯水の循環が 繰返され、揚水発電併用蓄熱施設1の発電と蓄熱が継続 される。 冬季の暖房時には、揚水パイプ4の熱交換機 8に接続されたヒートポンプ7を加温側に切替えること 20 によって上部貯水槽2に加温熱量が蓄熱され暖房モード となる。

【0008】図2(A)は夏季または冬期における冷房 または暖房機器フル稼働時の1日24時間経時の一般動 力、照明等の電力、および冷暖房用電力の消費量を模式 的に示したグラフで、図に示すように、電力消費ピーク 時、一般動力、照明等の電力消費量P1および冷、暖房 用電力の消費量P2は8時頃から17時頃の時間帯にか けてピークとなり、発電所の能力を超過しかねない消費 量となるのに対し、その他の時間帯の一般動力、照明、 および冷暖房用等の電力消費量P1、P2は著しく減少 し、このため発電所の施設効率が極端に低下する。図2 (B) は本発明の揚水発電併用蓄熱施設を稼働した場合 の同上電力消費量を模式的に示したグラフで、本発明の 揚水発電併用蓄熱施設1では図に示すように、17時過 ぎから翌朝8時頃までの間、余剰となっている夜間の一 般電力を使い、電力量Pa で下部貯水槽3の貯水を上部 貯水槽2へ揚水すると共に、電力量P₄ でヒートポンプ 7を運転して上部貯水槽2へ揚水する貯水を冷却または 加温する。そして昼間8時頃から17時頃までの間、上 40 部貯水槽2の貯水を下部貯水槽3に流下させて揚水発電 し、この電力を一般電力に還元することによって電力消 費が集中する昼間の一般電力量がP。まで減少し、電力 消費のピークが平準化される。

【0009】次に比較的小規模地域の冷房時のモデルを 試算してみる。

<地域規模>

冷房対象建造物の延べ床面積=160,000m² 冷房ピーク負荷量=約16,000Mcal/h 冷房時の必要電力量(冷凍機効率を3.0とする) 冷凍機運転用定格電力量=16,000 (Mcal/h)/{0.86 (Mcal/kW) X 3.0}=約6200kW

一般動力、照明等電力量=約7700kW(過去の統計値より)

<揚水発電>

落差=100m

貯水量=30,000m³

発電規模=1200kW/h

1日当り稼働時間=5時間(例えば10時~15時) 1日当り発電量=1200kW X 5h=6,000 kWh

貯水規模=30.000m3

冷房利用温度差(冷水送り温度-冷水湿り温度)=5° C

貯水槽蓄熱量=30,000m3 X 5° X 1.0 (Mcal/m³ °C)=150.000Mcal≒16,000Mcal/h(冷房ピーク負 荷量)X 9.5h (ピーク負荷の9.5時間分) 上記試算によれば、外気温より低温の冷水30,000 m³を貯水し、5°Cの温度差で冷房に利用することに より、夏季における電力消費ピーク日の地域冷房の負荷 6200kW(昼間分全量)を賄うに十分な蓄熱量が得 られる他、一般動力、照明等による消費電力量7700 kWの約16% (1200kW) が5時間分ピークカッ トされることになる。また、これを1200kW発電の 地下揚水発電施設のみを別個に建設する場合と比べてみ ると、本発明の揚水発電併用蓄熱施設では、夏季のピー ク日における1200kW発電と、冷房用電力6200 kWのカパーにより、大幅に施設効率ならびに運転効率 の向上と、建設コストの低減が実現される。なお、本発 明の揚水発電併用蓄熱施設1は1日24時間周期の電力 のピークカットのみならず、1年12ケ月周期の期間蓄

[0010]

【発明の効果】以上説明したように本発明は、上部貯水槽と下部貯水槽とを揚水パイプと流下パイプで連結し、下部貯水槽の貯水を、余剰電力を利用して運転する揚水が、ポンプによって揚水パイプを通じて上部貯水槽に揚水し、揚水した上部貯水槽の貯水を電力消費集中時に流下パイプを通じて下部貯水槽に流下させて発電する揚水発電において、前記揚水パイプに配設した熱交換器によって上部貯水槽に貯水する水を冷却または加熱して熱量を蓄熱し、この蓄熱を流下パイプに配設した熱交換器によって取出し、地域冷暖房等に利用するようにしたから、揚水発電によって電力需要のピークをカットして発電負荷の平準化が図られ、電力供給がパニック状態に陥るという事態が避けられると共に、揚水発電の貯水槽を利用して地域冷暖房の熱源の蓄熱を行うことにより、地下揚

熱槽としても利用できることは勿論である。

水発電施設と冷暖房用熱源の地下蓄熱施設を別個に建設する場合に比べ、両施設の施設効率ならびに運転効率の向上と建設コストの大幅の低減が可能となり、都市内地域の番エネルギ施設の実現が現実的のものになるという効果を奏する。

[0011]

【図面の簡単な説明】

【図1】本発明に係る揚水発電併用蓄熱施設の配置立面 図である。

【図2】(A)は夏季または冬期における冷房または暖 10 房機器フル稼働時の1日24時間経時の一般動力、照明 等の電力、および冷、暖房用電力の消費量を模式的に示 したグラフでである。(B)は本発明の揚水発電併用蓄 熱施設を稼働した場合の同上電力消費量を模式的に示し

たグラフである。

[0012]

【符号の説明】

- 1 揚水発電併用蓄熱施設
- 2 上部貯水槽流下パイプ
- 3 下部貯水槽
- 4 揚水パイプ
- 5 流下パイプ
- 6 揚水ポンプ
- 0 7 ヒートポンプ
 - 8 揚水パイプの熱交換器
 - 11 発電機
 - 12 流下パイプの熱交換器

【図1】

【図2】

6

