SCALING FACTORIZATION MACHINES ON APACHE SPARK WITH PARAMETER SERVERS

Nick Pentreath
Principal Engineer, IBM

About

- About me
 - @MLnick
 - Principal Engineer at IBM working on machine learning & Spark
 - Apache Spark PMC
 - Author of Machine Learning with Spark

Agenda

- Brief Intro to Factorization Machines
- Distributed FMs with Spark and Glint
- Results
- Challenges
- Future Work

FACTORIZATION MACHINES

Feature interactions

Linear Models

$$w_0 + \sum_{i=1}^n w_i x_i$$

$$w_0 + \sum_{i=1}^n w_i x_i$$
Bias terms

Polynomial Regression

Factorization Machine

$$w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \overrightarrow{v_i} \overrightarrow{v_j} \rangle x_i x_j \implies w_0 + \underbrace{\begin{bmatrix} w_u, 0, 0, w_i, \dots, \langle \mathbf{v}_u \mathbf{v}_i \rangle, \dots \end{bmatrix}}_{\text{Bias terms}}$$
Factorized interaction term

Factorization Machine

Not convex, but efficient to train using SGD, coordinate descent, MCMC

Factorization Machine

Model size can still be very large! e.g. video sharing, online ads, social networks

DISTRIBUTED FM MODELS ON SPARK

Linear Models on Spark

Data parallel

EUROPE 2016

Parameter Servers

Model & data parallel

Distributed FMs

- spark-libFM
 - Uses old MLlib GradientDescent and LBFGS interfaces
- DiFacto
 - Async SGD implementation using parameter server (ps-lite)
 - Adagrad, L1 regularization, frequency-adaptive model-size
- Key is that most real-world datasets are highly sparse (especially high-cardinality categorical data), e.g. online ads, social network, recommender systems
- Workers only need access to a small piece of the model

GlintFM

Procedure:

- 1. Construct Glint Client
- Create distributed parameters
- Pre-compute required feature indices (per partition)
- 4. İterate:
 - Pull partial model (blocking)
 - Compute partial gradient & update
 - Push partial update to parameter servers (can be async)
- 5. Done!

```
val client = Client(config)
val w = client.vector[Double](d)
val V = client.matrix[Double](d, k)
// training
train.foreachPartition { iter =>
 // compute partition statistics
 val localKevs = { ... }
 // iterate
  for (i <- 1 to numIterations) {</pre>
   // pull latest model for l local keys
    val localW = w.pull(localKeys) // 1 x l vector
    val localV = V.pull(localKeys) // l x k matrix
    // compute gradient
    partitionData.foldLeft(new FMAggregator(...)) { case (agg, features, label) =>
      agg.add(features, label, localW, localV)
    // compute and push update
    val updates = ...
   w.push(...)
   V.push(...)
```

RESULTS

Data

Criteo Display Advertising Challenge Dataset

• 45m examples, 34m unique features, 48 nnz /example

Raw Data StringIndexer OneHotEncoder VectorAssembler

+		+	+			+	+	++
label	i1	i2	i3	i4	i 5	i6	i7	i8 i9
+		+	+			+	+	++
0	1	1	5	0	1382	4	15	2 181
0	2	0	44	1	102	8	2	2 4
0								2 245
0	NULL	893	NULL	NULL	4392	NULL	0	0 0
0	3	-1	NULL	0	2	0	3	0 0
+						4	+	++

+	+ -	
label i1_idx	i1_ohe	features
+	F	tt
0 2.0	(152,[2],[1.0])	(273492,[2,153,28
0 3.0	(152,[3],[1.0])	(273492,[3,152,28
0 3.0	(152,[3],[1.0])	(273492,[3,152,28
0.0	(152,[0],[1.0])	(273492,[0,923,28
0 4.0	(152,[4],[1.0])	(273492,[4,154,28
+	}	 +

Solution? "Stringify" + CountVectorizer

```
from pyspark.sql import Row
cols = df.columns
                                                   Row(i1=u'1', i2=u'1', i3=u'5', i4=u'0', i5=u'1382',...)
def convert row(row):
    l = row.label
                                                                                        Convert set of
                                                                                        String features into
    i = 1
                                                                                        Seq[String]
    v = [1]
    for c in cols[1:1:
                                                   Row (raw=[u'i1=1', u'i2=1', u'i3=5', u'i4=0', u'i5=1382', ...)
        if row[i] is not None:
            v.append("%s=%s" % (c, row[i]))
        i += 1
    return Row(label=1, raw=v)
df_stringified = spark.createDataFrame(df.rdd.map(lambda row: convert_row(row)))
```

SPARK SUMMIT

Raw Data Stringify Count Vectorizer

+	-+-					+	++	+	+	+
•						•	i6	•		
+	-+-					+	++	+	+	+
()	1	1	5	0	1382	4	15	2 18	1
()	2	0	44	1	102	8	2	2	4
()	2	0	1	14	767	89	4	2 24	5
(1 0	ULL	893	NULL	NULL	4392	NULL	0	0	0
()	3	-1	NULL	0	2	0	3	0	0
+	-+-					+	++	+-	+	-+

++	+	 +
label	raw	features
+		+
0 [i1=1, i2=1,	i3=5	(273531,[0,1,2,3,
0 [i1=2, i2=0,	i3=4	(273531,[0,1,2,3,
0 [i1=2, i2=0,	i3=1	(273531,[0,3,4,6,
0 [i1=NULL, i2=	893,	(273531,[0,1,2,3,
		(273531,[0,1,2,3,
++		+

Raw Data Stringify HashingTF

+	+	+							+
label	•	•				•			
+	+	+							+
0	1	1	5	0	1382	4	15	2	181
0	2	0	44	1	102	8	2	2	4
0	2	0	1	14	767	89	4	2	245
0	NULL	893	NULL	NULL	4392	NULL	0	0	0
0	3	-1	NULL	0	2	0	3	0	0
+	+	+	+			+		++	+

+	+	+
label	raw	features
++	+	+
0 [i1=1, i2=1,	i3=5	(262144,[2411,726
0 [i1=2, i2=0,	i3=4	(262144,[5352,934
0 [i1=2, i2=0,	i3=1	(262144,[14069,15
0 [i1=NULL, i2	=893,	(262144,[4201,693
0 [i1=3, i2=-1	, i3=	(262144,[6935,140
++	+-	+

Performance

Total run time (s)*

Performance

Details for Stage 23 (Attempt 0) Total Time Across All Tasks: 41 min Locality Level Summary: Process local: 48 Input Size / Records: 18.9 GB / 36671573 Shuffle Write: 4.1 GB / 48 DAG Visualization ▶ Show Additional Metrics ▼ Event Timeline Enable zooming Executor Computing Time Scheduler Delay Getting Result Time Shuffle Write Time Task Deserialization Time Shuffle Read Time Result Serialization Time 0/ **Broadcast Read** Compute

Details for Stage 24 (Attempt 0)

Performance

CHALLENGES & FUTURE WORK

Challenges

- Tuning configuration
 - Glint models/server, message size, Akka frame size
 - Spark data partitioning (can be seen as "mini-batch" size)
- Lack of server-side processing in Glint
 - For L1 regularization, adaptive sparsity, Adagrad
 - These result in better performance, faster execution
- Backpressure / concurrency control

Challenges

Tuning models / server

Challenges

- Index partitioning for "hot features"
 - CountVectorizer for features
 leads to hot spots & straggler
 tasks due to sorting by
 occurrence
 - OneHotEncoder OOMed... but
 can also face this problem
 - Spreading out features is critical (used feature hashing)

Future Work

- Glint enhancements
 - Add features from DiFacto, i.e. L1 regularization, Adagrad & memory-adaptive k
 - Requires support for UDFs on the server
 - Built-in backpressure (Akka Artery / Streams?)
 - Key caching 2x decrease in message size
- Mini-batch SGD within partitions
- Distributed solvers for ALS, MCMC, CD
- Relational data / block structure formulation
 - www.vldb.org/pvldb/vol6/p337-rendle.pdf

References

- Factorization Machines
 - http://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
 - https://github.com/ibayer/fastFM
 - www.libfm.org
 - https://github.com/zhengruifeng/spark-libFM
 - https://github.com/scikit-learn-contrib/polylearn
- DiFacto
 - https://github.com/dmlc/difacto
 - www.cs.cmu.edu/~yuxiangw/docs/fm.pdf
- Glint / parameter servers
 - https://github.com/rjagerman/glint
 - https://github.com/dmlc/ps-lite

THANK YOU.

@MLnick

github.com/MLnick/glint-fm spark.tc

