Lecture 2 Breadth-First Search

Breadth-first search (outline)

- 1. The single source shortest-paths problem for unweighted graph
- 2. The Breadth-first search algorithm
- 3. The correctness proof
- 4. The running time of BFS algorithm

Note: We only introduce BFS for undirected graphs. But it also works for directed graphs.

Shortest paths

Example: There are three simple paths (distinct vertices) from source s to b: $\langle s, b \rangle$, $\langle s, a, b \rangle$, $\langle s, e, d, b \rangle$ of length 1, 2, 3, respectively.

So the shortest path (a path containing the smallest number of edges) from s to b is $\langle s, b \rangle$.

The shortest paths from s to other vertices a, e, d, c are:

$$\langle s, a \rangle$$
, $\langle s, e \rangle$, $\langle s, e, d \rangle$, $\langle s, b, c \rangle$.

There are two shortest paths from *s* to *d*.

The shortest-paths problem

- Distance $\delta(s, v)$: The length of the shortest path from s to v. For example $\delta(s, c)=2$.
- The problem:
 - Input: A graph G = (V, E) and a source vertex $s \in V$
 - Question: A shortest path from s to each vertex $v \in V$ and the distance $\delta(s, v)$.

The Breadth-First Search

- The idea of the BFS:
 - Each time, search as many vertices as possible.
 - Visit the vertices as follows:
 - 1. Visit all vertices at distance 1
 - 2. Visit all vertices at distance 2
 - 3. Visit all vertices at distance 3
 - 4.
- Initially, *s* is made GRAY, others are colored WHITE.
- After a gray vertex is processed, its color is changed to black, and the color of all white neighbors is changed to gray.
- Gray vertices are kept in a queue Q.

The Breadth-First Search (more details)

- *G* is given by its adjacency-lists.
- Initialization:
 - First Part: lines 1-4
 - Second Part: lines 5 9
- Main Part: lines 10 18

- Enqueue(Q, v): add a vertex v to the end of the queue Q
- Dequeue(Q): Extract the first vertex in the queue Q

```
BFS(G, s)
1 for each vertex u \in V[G] - \{s\}
        do color[u]<--WHITE
           d[u] < --\infty
           \pi[u] < --NIL
   color[s]<--GRAY
   d[s] < --0
   \pi[s] < --NIL
  O<--φ
   ENQUEUE(Q, s)
10 while Q≠φ
11
      do u<--DEQUEUE(Q)
         for each v∈Adj[u]
            do if color[v]=WHITE
13
               then color[v]<--GRAY
14
                    d[v] < --d[u] + 1
15
                    \pi[v] \leq -u
16
                    ENQUEUE(Q, v)
17
          color[u]<--BLACK
18
```

What does the BFS do?

- Given a graph G = (V, E), the BFS returns:
 - d[v], proved to be the shortest distance from s to v
 - $\pi[v]$, the predecessor of v in the search, which can be used to derive a shortest path from s to vertex v.
- BFS actually returns a **shortest path tree** in which the unique simple path from *s* to node *v* is a shortest path from *s* to *v* in the original graph.
- In addition to the two arrays d[v] and $\pi[v]$, BFS also uses another array color[v], which has three possible values:
 - WHITE: represented "undiscovered" vertices;
 - GRAY: represented "discovered" but not "processed" vertices;
 - BLACK: represented "processed" vertices.

Example of Breadth-First Search

source vertex: s

Initialization

vertex u		a	b	c	d	e	$\underline{\mathbf{f}}$
color[u]	G	W	W	W	\mathbf{W}	\mathbf{W}	W
d[u]	0	∞	∞	∞	∞	∞	∞
color[u] d[u] π[u]	NIL	NIL	NIL	NIL	NIL	NIL	NIL

Q = <_S>
(put s into Q (discovered),
mark s gray (unprocessed))

- While loop, first iteration
 - Dequeue s from Q. Find Adj[s]=<b, e>

a

W

 ∞

NIL

- Mark b,e as "G"
- Update d[b], d[e], π [b], π [e]
- Put b, e into Q
- Mark s as "B"

vertex u s

color[u]|B

 $d[u]|_{0}$

 $\pi[u]$ NII

• Q=<b, e>

 ∞

NIL

 ∞

NIL

 ∞

NIL

- While loop, second iteration
 - Dequeue b from Q, find Adj[b]=<s, a, c, f>
 - Mark a, c, f as "G",
 - Update d[a], d[c], d[f], π [a], π [c], π [f]
 - Put a, c, f into Q
 - Mark b as "B"
- Q=<e, a, c, f>

- While loop, third iteration
 - Dequeue e from Q, find Adj[e]=<s, a, d, f>
 - Mark d as "G", mark e as "B"
 - Update d[d], π [d],
 - Put d into Q
- $Q=\langle a,c,f,d\rangle$

vertex u S	a	b	c	d	e	<u>f</u>
color[u] B	G	В	G	G	В	G
$d[u] _{0}$	2	1	2	2	1	2
$\pi[u]$ NIL	b	S	b_	e	S	b

• While loop, fourth iteration

Dequeue a from Q, find Adj[a]=<b, e>

mark a as "B"

• Q=<c, f, d>

vertex u s	a	b	c	d	e	<u>f</u>
color[u] B	В	В	G	G	В	G
$d[u]_0$	2	1	2	2	1	2
$\pi[u]_{NIL}$	b	S	b	e	S	b

• While loop, fifth iteration

Dequeue c from Q, find Adj[c]=<b, d>

mark c as "B"

• Q=<f, d>

vertex u s	a	b	c	d	e	<u>f</u>
color[u] B	В	В	В	G	В	G
d[u]	2	1	2	2	1	2
$\pi[u]$ NIL	b_	S	b	e	S	b

• While loop, sixth iteration

Dequeue f from Q, find Adj[f]=<b,e>

mark f as "B"

Q=<d>

vertex u s	a	b	c	d	e	<u>f</u>
color[u] B	В	В	В	G	В	В
$d[u] _{0}$	2	1	2	2	1	2
$\pi[u]$ NIL	b_	S	b_	<u>e</u>	S	b

• While loop, seventh iteration

Dequeque d from Q, find Adj[d]=<c,e>

mark d as "B"

Q is empty

vertex u s	a	b	c	d	e	\underline{f}
color[u] B	В	В	В	В	В	В
$d[u]_0$	2	1	2	2	1	2
$\pi[u]$ NII	<u>b</u>	S	<u>b</u>	<u>e</u>	S	b

- While loop, eighth iteration
- Since Q is empty, stop

vertex u s	a	b	c	d	e	<u>f</u>
color[u] B	В	В	В	В	В	В
$d[u]_0$	2	1	2	2	1	2
$\pi[u]_{NII}$	<u>b</u>	S	b_	<u>e</u>	S	b

What does BFS produce

- BFS creates a prodecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$, where
 - $V_{\pi} = \{ u \in V \mid \pi[u] \neq \text{NIL} \} \cup \{ s \}$
 - $E_{\pi} = \{(\pi[u], u) | \text{ where } \pi[] \text{ is computed in the BFS(G, s) calls} \}$
 - prodecessor subgraph is a tree since it is connect and $|E_{\pi}| = |V_{\pi}| 1$

The red edges form a tree //n

//note there are |V|-1 edges

Our Goal

- Shortest-path distance $\delta(s, v)$:
 - the minimum number of edges in any path from vertex s to vertex v; if there is no path from s to v, then $\delta(s, v) = \infty$.
- Shortest path:
 - A path of length $\delta(s, v)$: $s \to v$.

Recall what does the BFS return?

• The BFS returns:

- d[v], proved to be the shortest distance from s to v
- $\pi[v]$, the predecessor of v in the search, which can be used to derive a shortest path from s to vertex v.
- What we need to prove:
 - $\delta(s, v) = d[v]$
 - $s \rightarrow v = s \rightarrow \pi[v] + (\pi[v], v)$

An Important Property

• Lemma 22.1: Let G=(V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + 1$.

• Proof:

- If *u* is reachable from *s*, then so is *v*. In this case, the shortest path from *s* to *v* can not be longer than the shortest path from *s* to *u* followed by the edge (*u*, *v*) and thus the inequality holds.
- If u is not reachable from s, then $\delta(s, u) = \infty$, and the inequality holds.

A Property of the BFS

• Lemma 22.2: Let G=(V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then upon termination, for each vertex $v \in V$, the value d[v] computed by BFS satisfies $d[v] \ge \delta(s, v)$.

Proof of Lemma 22.2

• Proof:

- We use induction on the number of ENQUEUE operations. Our inductive hypothesis is that $d[v] \ge \delta(s, v)$ for all $v \in V$.
- The basis of the induction is the situation immediately after enqueuing s in line 9 of BFS. The inductive hypothesis holds here, because $d[s] = 0 = \delta(s, s)$ and $d[v] = \infty \ge \delta(s, v)$, $v \in V \{s\}$.
- For the inductive step, consider a white vertex *v* that is discovered during the search from a vertex *u*.
- We obtain

$$d[v] = d[u] + 1(\text{line 15})$$

$$\geq \delta(s, u) + 1(\text{inductive hypothesis})$$

$$\geq \delta(s, v) \text{ (Lemma 22.1)}$$

Proof of Lemma 22.2

- Vertex *v* is then enqueued, and it is never enqueued again because it is also grayed and the **then** clause of lines 14–17 is executed only for white vertices.
- Thus, the value of d[v] never changes again, and the inductive hypothesis is maintained.

A property of the Queue

• Lemma 22.3

- Suppose that during the execution of BFS on a graph G=(V, E), the queue $Q=\langle v_1, v_2, ..., v_r \rangle$, where v_1 is the head of Q and v_r is the tail.
- Then $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$, for $1 \le i \le r-1$.

Proof of Lemma 22.3(1)

- The proof is by induction on the number of queue operations. Initially, when the queue contains only *s*, the lemma certainly holds.
- For the inductive step, we must prove that the lemma holds after both dequeuing and enqueuing a vertex. If the head v_1 of the queue is dequeued, v_2 becomes the new head. (If the queue becomes empty, then the lemma holds vacuously.)
- By the inductive hypothesis, $d[v_1] \le d[v_2]$, $d[v_r] \le d[v_1] + 1 \le d[v_2] + 1$, $d[v_i] \le d[v_{i+1}]$, $2 \le i \le r-1$.
- Thus, the lemma follows with v_2 as the head.

Proof of Lemma 22.3(2)

- In order to understand what happens upon enqueuing a vertex, we need to examine the code more closely. When we enqueue a vertex v in line 17 of BFS, it becomes v_{r+1} . At that time, we have already removed vertex u, whose adjacency list is currently being scanned, from the queue Q.
- By the inductive hypothesis, the new head v_1 has $d[v_1] \ge d[u]$. Thus, $d[v_{r+1}] = d[v] = d[u] + 1 \le d[v_1] + 1$.
- From the inductive hypothesis, we also have $d[v_r] \le d[u]+1$, or from line 15 we have $d[v_r] = d[u]+1$, and so $d[v_r] \le d[u]+1 = d[v]=d[v_{r+1}]$.
- The remaining inequalities are unaffected. Thus, the lemma follows when ν is enqueued.

Proof of Lemma 22.3

• Proof:

- 对入队和出队操作次数进行归纳证明。我们证明入队或出队操作之后,引理总成立。
- 当Q=<s>时,引理中的性质成立。
- v_1 出队, v_2 成为队首。则依据归纳假设 $d[v_1] \leq d[v_2], d[v_r] \leq d[v_1] + 1 \leq d[v_2] + 1, d[v_i] \leq d[v_{i+1}], 2 \leq i \leq r-1.$
- v入队,成为队尾 v_{r+1} 。之前存在u出队,此时算法正在搜索u的邻接链表,发现白色顶点v。

```
d[v_1] \ge d[u] , d[v_r] \le d[u]+1 (归纳假设) 
 d[v_{r+1}] = d[v] = d[u]+1 (算法第15行) 
 d[v_{r+1}] = d[u]+1 \le d[v_1]+1 ; d[v_r] \le d[u]+1 = d[v_{r+1}] 。
```

A Corollary (推论)

- Corollary 22.4:
- Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_i .
- Then $v_i.d \le v_j.d$ at the time that v_i is enqueued.
- Proof:
- Immediate from Lemma 22.3 and the property that each vertex receives a finite *d* value at most once during the course of BFS.

A Corollary (推论)

- 推论22.4: v_i 先于 v_k 入队,则 $d[v_i] \le d[v_k]$ 。
- 先入队的距离小。
- 一旦入队, d[]值就不发生变化。

Correctness of BFS

- 定理22.5: $\delta(s, v) = d[v]$ $s \rightarrow v = s \rightarrow \pi[v] + (\pi[v], v)$
- 证明: (part 1)
 - 反证法。假设存在一些顶点,它们的d[]值不等于最短路径距离。设v是这些顶点中,最短路径距离最小的。($v \neq s$)
 - $d[v] \ge \delta(s, v)$ (引理22.2),因此 $d[v] > \delta(s, v)$ 。v和s之间必然存在一条最短路径 $s \to v$,否则 $\delta(s, v) = \infty \ge d[v]$ 。设业是这条最短路径上v的前驱,即 $s \to u v$ 。因此, $\delta(s, v) = \delta(s, u) + 1$ 。这意味着 $\delta(s, u) < \delta(s, v)$,根据v的选择方式, $d[u] = \delta(s, u)$ $d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$ 。
 - 接下来分析当u出队时,v可能的三种颜色: W, G, B。 我们证明每一种情况下,上式都不可能成立。

Correctness of BFS

- 定理22.5: $\delta(s, v) = d[v]$ $s \to v = s \to \pi[v] + (\pi[v], v)$
- 证明: (part 2)
 - v是白色的, d[v] = d[u] + 1。(算法15行)
 - v是黑色的, v已经出队, $d[v] \le d[u]$ 。 (推论22.4)
 - v是灰色的, v在顶点w的邻接链表里, w先于u出队. d[v] = d[w] + 1, $d[w] \le d[u]$, 从而 $d[v] \le d[u] + 1$ 。
 - 综上,假设的v是不可能存在的。因此 $d[v] = \delta(s, v)$.
 - 所有s不可达的顶点的d[]值都是 ∞ 。

(part 3)

• 如果 $\pi[v]=u$,则d[v]=d[u]+1, $s \to u+(u,v)$ 是s到v的最短路径。

Predecessor subgraph

- BFS creates a predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$, where
 - $V_{\pi} = \{u \in V \mid \pi[u] \neq \text{NIL}\} \cup \{s\}$
 - $E_{\pi} = \{(\pi[u], u) | \text{ where } \pi[] \text{ is computed in the BFS}(G, s) \text{ calls} \}$
- The predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is a shortest path tree if
 - V_{π} consists of vertices reachable from s.
 - For all $v \in V_{\pi}$, there is a unique simple path form s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges (树边)。

Breadth-first Tree

- 引理22.6: BFS得到前驱图 $G_{\pi} = (V_{\pi}, E_{\pi})$ 是shortest path tree。
- 证明:
 - 算法16行 $\pi[v]=u$ 当且仅当 $(u,v) \in E$ 且 $\delta(s,v)<\infty$ (意味着v是从s可达的)。因此 V_{π} 中包含了所有从s可以到达的顶点。 G_{π} 是树,每个顶点到s都有唯一的一条路径。根据定理22.5, $s \to \pi[v] + (\pi[v],v)$ 是s到v的最短路径。从而树中每个顶点到s的路径都是最短路径。
 - 如何归纳的?
 - $\delta(s, v) = d[v] = d[\pi[v]] + 1 = \delta(s, \pi[v]) + 1$,这意味着, $s \to \pi[v] + (\pi[v], v)$ 是s到v的最短路径。

Example of Breadth-first Tree

Question:

How do you construct a short path from s to any vertex by using the following table?

	bt		c 2
a ²	S 0	f 2	
ortest			→ d 2
27	e 1		

vertex u	s a	b	c	d	e	<u>f</u>
color[u]	В В	В	В	В	В	В
$d[u] _{0}$	2	1	2	2	1	2
$\underline{\hspace{1cm}}\pi[u]$	NIL b	S_	b	<u>e</u>	S	b

The Answer

```
PRINT-PATH(G, s, v)

1 if v = s

2 then print s

3 else if \pi[v] = \text{NIL}

4 then print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, \pi[v])

6 print v
```

BFS for disconnected graph

- We can modify BFS so that it returns a forest.
- More specifically, if the original graph is composed of connected components C_1 , C_2 , ..., C_k , then BFS will return a tree corresponding to each C_i .

BFS for disconnected graph

BFS GENERAL(G)

- 1 for each vertex $u \in V$
- 2 $color[u] \leftarrow WHITE;$
- $3 \quad d[u] \leftarrow \infty;$
- 4 $\pi[u] \leftarrow NIL;$
- 5 for each vertex $u \in V$
- 6 if $d[u] = \infty$
- 7 then BFS(G, u);

Analysis of the Breadth-First Search Algorithm

- We assume that it takes one unit time to test the color of a vertex, or to update the color of a vertex, or to compute d[v] = d[u] + 1, or to set $\pi[v] = u$, or to en-queue, or to dequeue.
- The following analysis is valid for connected graphs.
 - The initialization requires O(V) time units.
 - In the while loop, each vertex u is en-queued and de-queued exactly once. So, each adjacency list Adj[u] is scanned exactly once after u is de-queued. So scanning the adjacency lists needs time O(E).
- Total time is: T(V, E) = O(V+E).

Conclusion

- Content
 - BFS: algorithm, proof of its correctness, cases, analysis of its time complexity
- Homework
 - 22.2-2 and 22.2-7