PCA9451A

Power management IC for i.MX 93x application processor

Rev. 2.0 — 17 April 2023

Product data sheet

1 General description

The PCA9451A is a single chip Power Management IC (PMIC) designed to support i.MX 93x family processor in both 1 cell Li-lon and Li-polymer battery portable application and 5 V adapter non-portable applications.

The device provides six high efficiency step-down regulators, three LDOs, one 400 mA load switch, 2-channel level translator and 32.768 kHz crystal oscillator driver. Three buck regulators support Dynamic Voltage Scaling (DVS)¹ along with programmable ramping up and down time. The buck regulators support remote sense to compensate IR drop to load from buck regulator, allowing better performance to meet the demand for accuracy in critical supply rails. This device is characterized across -40 °C to 105 °C ambient temperature range, making it a good option for the industrial, extended-industrial, and consumer markets.

The six step-down regulators are designed to providing power for i.MX 93x application processor and the associated DRAM memory. The LDO1 features very low quiescent current to provide power for Secure Non-Volatile Storage (SNVS) since this LDO is always ON when input voltage is valid. Low quiesce (Low IQ) is important in low voltage systems since it enables longer battery life without sacrificing performance.

The PCA9451A also integrates a 2-bit logic translator, dual supply translating transceiver with auto direction sensing, enabling bidirectional voltage level translation. It can be used as I²C level translator. PCA9451A also includes a 400 mA load switch supplying 3.3 V power supply to SD card, which has an internal discharge resistor, used to discharge the electric charge stored in the output when the equipment is turned off, for safety reasons.

The PCA9451A is offered in an industrial friendly 56-pin HVQFN package, 7 mm x 7 mm, 0.4 mm pitch.

2 Features and benefits

- Six high-efficiency step down regulators
 - One 4 A dual phase buck regulator with DVS feature and remote sense
 - One 2 A buck regulator with DVS feature and remote sense
 - One 3 A buck regulator
 - One 2 A buck regulator
 - One 1.5 A buck regulator
- · Three linear regulators
 - One Low IQ 10 mA LDO
 - One 150 mA LDO
 - One 200 mA LDO
- 400 mA load switch with a built-in active discharge resistor
- 32.768 kHz crystal oscillator driver and buffer output
- · Two channel logic level translator
- Power control IO
 - Power ON/OFF control

¹ To reduce overall power consumption, processor core voltages can vary depending on the mode or activity level of the processor. DVS is used to support such voltage variation requirements by dynamically changing the output voltage of the regulator.

Power management IC for i.MX 93x application processor

- Standby/Run mode control
- Fm+ 1 MHz I²C interface
- ESD protection
 - Human Body Model (HBM): +/- 2000 V
 - Charged Device Model (CDM): +/-500 V
- 7 mm x 7 mm, 56 pin HVQFN with 0.4 mm pitch

3 Applications

- IoT devices
- Tablet
- Electronic Point of Sale (ePOS)
- · Industrial application
- Monitoring system
- Infotainment

4 Ordering information

Table 1. Ordering information

Type number	Topside	AP platform	Package			
Type number	marking	AF plationii	Name	Description	Version	
PCA9451AHN	PCA9451A	i.MX 93x		thermal enhanced very thin quad flat package; no leads; 56 terminals; 0.4 mm pitch, 7 mm x 7 mm x 0.85 mm body	SOT949-6	

4.1 Ordering options

Table 2. Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Ambient Temperature range
PCA9451AHN	PCA9451AHNY	HVQFN56	REEL 13" Q1 DP	2000	-40 °C to +105 °C

Power management IC for i.MX 93x application processor

5 Block diagram

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Pin description			
Symbol	Pin	Туре	Description
LDO4	1	Р	LDO4 output. Bypass with a 1 μF to Ground.
NC	2	-	Not connected; leave floating.
LDO1	3	Р	LDO1 output. Bypass with a 1 μF to Ground.
VINT	4	Р	Internal Power supply output pin. Bypass with 1 µF to Ground.
AGND	5	GND	Analog ground pin. It should be connected to ground plane through Via. Do not short to EP directly on top layer.
RTC_RESET_B	6	DO	Reset output pin. It is High-Z after LDO1 voltage is good. It is internally pulled up with LDO1 power rail.
CLK_32K_OUT	7	DO	32.768 kHz clock CMOS output with LDO1 power rail.

Power management IC for i.MX 93x application processor

Table 3. Pin description...continued

Pin description			
Symbol	Pin	Туре	Description
PMIC_RST_B	8	DI	PMIC reset input pin. It is internally pulled up with LDO1 power rail. Once it is asserted LOW, PMIC performs reset.
POR_B	9	DO	Power On reset output pin. Open drain output requiring external pull up resistor.
XTAL_IN	10	Al	32.768 kHz crystal oscillator input, tie to GND if Xtal is not used.
XTAL_OUT	11	AO	32.768 kHz crystal oscillator output, leave float if Xtal is not used.
SW_EN	12	DI	Load switch enable input pin. It has internal 1.5 M Ω pull down resistor.
IRQ_B	13	DO	Open drain output to indicate Interrupt issued.
BUCK5FB	14	Al	Buck5 output voltage sensing pin.
LX5	15	Р	Buck5 switching node.
INB45	16,17,18	Р	Buck4 / Buck5 Input pins. Bypass with 10 μF and 4.7 μF to Ground.
LX4	19,20	Р	Buck4 switching node.
BUCK4FB	21	Al	Buck4 output voltage sensing pin.
SWIN	22	Р	Load switch input pin, Bypass with a 1 µF to Ground.
SWOUT	23	Р	Load switch output pin, Bypass with a 1 µF to Ground.
SDAH	24	DIO	Level translator high voltage IO pin, SDA referenced to SWIN, 3.3 V.
SCLH	25	DO	Level translator high voltage IO pin, SCL referenced to SWIN, 3.3 V.
SDAL	26	DIO	Level translator low voltage IO pin, SDA referenced to VINT, 1.8 V.
SCLL	27	DO	Level translator low voltage IO pin, SCL referenced to VINT, 1.8 V.
WDOG_B	28	DI	Active LOW watchdog reset input pin from application processor.
SD_VSEL	29	DI	LDO5 voltage selection input pin. LDO5 output is 3.3 V when it is driven LOW and 1.8 V when driven HIGH.
R_SNSP3_CFG	30	AI	Buck3 output voltage remote sense pin. This pin should be tied to ground to use Buck1 and Buck3 in dual phase configuration.
LX3	31,32	Р	Buck3 switching node. For dual-phase configuration, Buck1 and Buck3 outputs should be connected together. Refer to Figure 15 for details
INB13	33,34,35	Р	Buck1 / Buck3 Input. Bypass with two 10 μF to Ground
LX1	36,37	Р	Buck1 switching node
R_SNSP1	38	Al	Buck1 output voltage remote sensing pin
PMIC_ON_REQ	39	DI	PMIC ON input from Application processor. When it is asserted HIGH, the device starts power on sequence.
PMIC_STBY_REQ	40	DI	Standby mode input from Application processor. When it is asserted HIGH, device enters STANDBY mode.
SCL	41	DI	I ² C serial clock pin
SDA	42	DIO	I ² C serial data pin
BUCK_AGND	43	GND	Buck reference GND for BUCK1,2,3. It should be connected to ground plane through Via. Do not short to EP directly on top layer

Power management IC for i.MX 93x application processor

Table 3. Pin description...continued

Pin description	Pin description			
Symbol	Pin	Туре	Description	
R_SNSP2	44	Al	Buck2 output voltage remote sensing pin	
LX2	45,46	Р	Buck2 switching node	
INB26	47,48,49	Р	Buck2 / Buck6 Input. Bypass with 10 μF and 4.7 μF to Ground	
LX6	50,51	Р	Buck6 switching node	
BUCK6FB	52	Al	Buck6 output voltage sensing pin	
VSYS	53	Р	Internal power input. Bypass with a 1 µF to Ground	
NC	54	-	Not connected; leave floating.	
LDO5	55	Р	LDO5 output. Bypass with a 1 μF to Ground.	
INL1	56	Р	Power input pin for LDO1, LDO4 and LDO5. Bypass with a 4.7 μF to Ground.	
EP		GND	Exposed PAD. All bucks' PGND are internally connected. Do not short to EP directly on top layer.	

7 Functional description

7.1 Features

The PCA9451A is a power management integrated circuit (PMIC) designed to be the primary power management for NXP application processors i.MX 93x.

- · Buck regulators
 - BUCK1/BUCK3: Dual-phase, 0.65 V to 2.2375 V, 12.5 mV step, 4000 mA
 - BUCK2: 0.6 V to 2.1875 V, 12.5 mV step, 2000 mA
 - BUCK4: 0.6 V to 3.4 V, 25 mV step, 3000 mA
 - BUCK5: 0.6 V to 3.4 V, 25 mV step, 2000 mA
 - BUCK6: 0.6 V to 3.4 V, 25 mV step, 1500 mA
 - Dynamic Voltage scaling on BUCK1, BUCK2 and BUCK3
 - Support remote sensing on BUCK1, BUCK2 and BUCK3
 - Monitor fault condition
- · LDO regulators
 - LDO1, 1.6 V to 1.9 V, 3.0 V to 3.3 V 100 mV step, 10 mA
 - LDO4, 0.8 V to 3.3 V with 100 mV step, 200 mA
 - LDO5, 1.8 V to 3.3 V with 100 mV step, 150 mA, voltage selection through SD VSEL pin
 - Monitor fault condition
- 400 mA Load switch for SD card
 - Built-in OCP protection
 - GPIO/I²C control
 - Built-in active discharge resistor
- I²C level translator
- · 32.768 kHz crystal oscillator driver
 - Mux output with internal 32 kHz output
- Protection and monitoring: Soft start, power rails fault detection, UVLO, thermal shutdown

PCA9451A

Power management IC for i.MX 93x application processor

- Configurable reset from WDOGB, PMIC_RST_B and SW_RST register
- Power control IO
 - PMIC_ON_REQ, PMIC_STBY_REQ
- Fm+ 1 MHz I²C-bus interface
- Type 3 PCB applicable

7.2 Functional diagram

The PCA9451A is a single chip Power Management IC (PMIC) specifically designed to support i.MX 93x family processor in both 1 cell Li-lon and Li-polymer battery portable application and 5 V adapter non-portable applications.

7.3 Power modes

PCA9451A has eight power modes: OFF, READY, SNVS, RUN, STANDBY, PWRDN, PWRUP and FAULT_SD. Figure 4 shows the state transition diagram showing the conditions to enter and exit each state.

Power management IC for i.MX 93x application processor

7.3.1 Off mode

PCA9451A enters OFF mode from any state when VSYS falls below V_{SYS_POR} threshold. All regulators are off and all registers get reset in this mode.

7.3.2 READY mode

PCA9451A enters READY mode from OFF mode when VSYS is higher than V_{SYS_POR}. Internal LDO VINT is enabled and loads MTP data to registers. Once MPT loading is done, it is ready to transition to SNVS mode.

7.3.3 SNVS mode

PCA9451A enters Secure Non-Volatile Storage (SNVS) mode when VSYS exceeds V_{SYS_UVLO} threshold. LDO1 is powered up and 32.768 kHz buffer starts running. RTC_RESET_B is pulled HIGH in t_{RTC_RST} after LDO1 voltage comes up.

PMIC_ON_REQ input is masked until RTC_RESET_B is released. If PMIC_ON_REQ is asserted HIGH in this mode, PCA9451A starts power up sequence.

Power management IC for i.MX 93x application processor

Table 4. SNVS mode

Time	Description	Value
t _{SNVS_PU}	Time to LDO1 turn on from VSYS UVLO detected	20 ms
t _{RTC_RST}	Time to RTC_RESET_B release from LDO1 POK	20 ms
t _{32K_EN}	Time to 32k buffer Enable from LDO1 POK	10 ms
t _{RTC_Tran}	Time to transition to Xtal output from RC osc after RTC_RESET_B release	1 sec

7.3.4 PWRUP mode

After RTC_RESET_B is released in SNVS mode, it starts power up with pre-defined sequence when PMIC_ON_REQ is asserted HIGH for longer than debounce time, t_{ON_DEB} , which is programmable in PWR_CTRL reg. Buck1 begins turning ON at first and then each power rail is followed with t_{step} after POK of predecessor power rail. During PWRUP mode, PMIC_STBY_REQ signal is masked until POR_B is released. The PWRUP mode ends up releasing POR_B and PCA9451A transitions to RUN mode.

Power management IC for i.MX 93x application processor

Table 5. Power up sequence

Regulator	PCA9451A
LDO1	Always ON, 1.8 V
BUCK1, BUCK3 (Dual Phase)	T1, 0.85 V
BUCK2	T5, 0.6 V
BUCK4	T6, 3.3 V
BUCK5	T3, 1.8 V
BUCK6	T4, 1.1 V
LDO4	T2, 0.8 V
LDO5	T7, 1.8 V/3.3 V

Table 6. PWRUP mode

Time	Description	Value
t _{ON_DEB}	Time to power-on start from PMIC_ON_REQ high	20 ms
t _{STEP}	Time to next power rail ON from prev rail POK	2 ms
t _{PORB}	Time to POR_B release from the last rail POK	20 ms
t _{OFF_STEP}	Time to next power rail off from prev rail off	8 ms
t _{OFF_DEB}	Time to POR_B low from PMIC_ON_REQ falling	2 ms

If any of regulators does not generate POK within $t_{FLT_SH_PU}$ after receiving digital enable during PWRUP mode, it transitions to Fault_SD mode.

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

7.3.5 PWRDN mode

When PMIC_ON_REQ is LOW for t_{OFF_DEB} in RUN or STANDBY mode, PCA9451A enters PWRDN mode. It starts with pulling down POR_B, turns off each power rail in t_{OFF_STEP} and transitions to SNVS mode.

7.3.6 RUN mode

PCA9451A operates in RUN mode when PMIC_ON_REQ is driven HIGH and PMIC_STBY_REQ is driven LOW. BUCK1, BUCK2, and BUCK3 output voltages are set to BUCK1OUT_DVS0, BUCK2OUT_DVS0 and BUCK3OUT_DVS0 register values, respectively. When PMIC_STBY_REQ is asserted HIGH in this mode, it transitions to STANDBY mode. After PMIC_ON_REQ is asserted LOW, it moves to PWRDN mode.

7.3.7 STANDBY mode

PCA9451A transitions to STANDBY mode from RUN mode when both PMIC_ON_REQ and PMIC_STBY_REQ are driven HIGH. BUCK1 output voltage is set to BUCK1OUT_DVS1.

If PMIC_ON_REQ is asserted LOW, then it transitions to PWRDN mode. If PMIC_STBY_REQ is driven LOW, then it transitions to RUN mode.

Table 7. Power modes summary

X: Don't care

Power mode	VSYS	PMIC_ON_REQ	PMIC_STBY_REQ
OFF	VSYS < V _{SYS_POR}	X	X
READY	VSYS > V _{SYS_POR}	X	X
SNVS	VSYS > V _{SYS_UVLO}	Low	X
STANDBY	VSYS > V _{SYS_UVLO}	High	High

PCA9451A

All information provided in this document is subject to legal disclaimers

Power management IC for i.MX 93x application processor

Table 7. Power modes summary...continued

X: Don't care

Power mode	VSYS	PMIC_ON_REQ	PMIC_STBY_REQ
RUN	VSYS > V _{SYS_UVLO}	High	Low

7.3.8 FAULT_SD

PCA9451A has three types of fault sources:

1. Thermal shutdown: Transition to SNVS mode or READY mode after FAULT_SD mode. When junction temperature reaches T_{JSHDN}, it enters FAULT_SD mode after t_{FLT_THSD} where regulators are turned off simultaneously. It stays at FAULT_SD until junction temperature falls below T_{JSHDN}. If the temperature drops below T_{JSHDN}, then it moves to READY state if LDO1 fault is triggered when thermal shutdown happens; it moves to SNVS mode if LDO1 fault is not triggered when thermal shutdown happens.

(1) If LDO1 fault occurs when junction temperature reaches thermal shutdown threshold, LDO1/RTC_RESETB/CLK_32K_OUT is turned off. Otherwise, they are kept on.

Figure 8. PCA9451A FAULT_SD from thermal shutdown

Power management IC for i.MX 93x application processor

Table 8. t_{FLT_THSD}

Time	Description	Value
t _{FLT_THSD}	Time to reset released from Fault event	120 µs

- 2. **Voltage regulator fault during power-up**: Transition to READY mode or SNVS mode after FAULT_SD mode. Any POK of voltage regulators does not come up within t_{FLT_SD_PU} after regulator is enabled during power-up sequence; it stops power-up sequence and then moves to FAULT_SD where all regulators are turned off. It stays at FAULT_SD for t_{FLT_SD_STAY} and transitions to READY mode or SNVS mode.
- 3. **Voltage regulator fault in STANDBY and RUN MODE**: Move to FAULT_SD mode in t_{FLT_SD_WAIT} after Fault is detected. Transition to SNVS mode or READY mode after FAULT_SD mode when fault is removed. During RUN and STANDBY mode, VR Fault status bit in VRFLT1_STS and VRFLT2_STS registers is latched to "1" when corresponding regulator voltage falls below POK threshold for t_{DEB_POKB}, or POK does not go HIGH within t_{FLT_POK_MSK} after regulator is enabled. If the fault status bit is masked in VRFLT1_MASK and VRFLT2_MASK registers, it does not enter FAULT_SD mode; instead, PCA9451A stays at current mode. If the fault register bit is unmasked, it starts t_{FLT_SD_WAIT} timer. Application processor can determine to enter FAULT_SD mode or not, by masking the VR Fault status bit in VRFLTx_MASK registers before the timer expires. PCA9451A enters FAULT_SD mode when the timer expires. PCA9451A stays at FAULT_SD mode for t_{FLT_SD_STAY}.

PCA9451A moves to READY mode after FAULT_SD mode if the regulator fault is caused by LDO1. Otherwise, it moves to SNVS mode after FAULT_SD.

If LDO1 has a fault in SNVS mode, then it enters FAULT SD mode regardless of VRFLT1 Mask bit.

PCA9451A does not enter FAULT SD mode from load switch overcurrent fault.

Power management IC for i.MX 93x application processor

Table 9. t_{FLT_SD_WAIT}

Time	Description	Value
t _{FLT_SD_WAIT}	Time to reset released from Fault event	100 ms

7.4 PMIC reset

The PCA9451A PMIC has three reset inputs: WDOG_B pin, PMIC_RST_B pin, and I²C reset bit.

The reset behavior is configured in RESET_CTRL register for WDOG_B pin and PMIC_RST_B pin. I²C reset behavior is configured in SW_RST register.

Table 10. 0x08 - RESET CTRL

	TOT OXOG TREGET_GITTE							
0x08 - RESET_CTRL				Reset Type S				
Bit	Name	Туре	Reset	Description				
7:6	WDOG_B_CFG	R/W	00	When WDOG_B is asserted to L, P 00b = WDOG_B reset is disabled				

PCA9451A All information provided in this document is subject to legal disclaimers

Power management IC for i.MX 93x application processor

Table 10. 0x08 - RESET_CTRL...continued

0x08	0x08 - RESET_CTRL		Reset Type	S				
Bit	Name	Туре	Reset	Description				
				01b = Warm Reset, POR_B pin is asserted LOW for 20 ms 10b = Cold Reset, All voltage regulators are recycled except LDO1 11b = Cold Reset, All voltage regulators are recycled				
5:4	PMIC_RST_CFG	R/W	10	When PMIC_RST_B is asserted to 00b = PMIC_RST_B reset is disabl 01b = Warm Reset, POR_B pin is a 10b = Cold Reset, All voltage reg LDO1 11b = Cold Reset, All voltage regulations	ed asserted LOW for 20 ms ulators are recycled except			

Table 11. 0x06 - SW RST

0x06	0x06 - SW_RST			Reset Type O					
Bit	Name	Туре	Reset	Description					
7:0	SW_RST	R/W	0x00	Software reset register. This register writing the value. 0x00 = No action 0x05 = Reset all registers to defaul 0x14 = Cold reset (Power recycle at 0x35 = Warm Reset (Toggle POR_0x64 = Cold reset (Power recycle at 0thers = No action	t value all regulators except LDO1) B for 20 ms)				

WDOG_B is an active LOW watchdog reset input pin from application processor. The PCA9451A does not include a watchdog timer, but includes a dedicated input pin to be used as a source of reset connected from external watchdog timer circuit, so in case the watchdog timer expires, the PCA9451A PMIC receives a reset request signal. When WDOG_B is asserted LOW, it resets depending on WDOG_B_CFG bit configuration. When the bits are set to 2b00, the reset by WDOG_B pin is disabled. If the bits are set to 2b01, warm reset is performed, where POR_B is pulled LOW for 20 ms and reset I²C O type registers to default value keeping power rails remaining ON. If the bits are set to 2b11, it performs Cold reset, where all voltage regulators except LDO1 are power recycled and I²C O type registers get reset to default value.

When PMIC_RST_B is asserted LOW, it also gets reset depending on PMIC_RST_CFG bits configuration. When the bits are set to 2b00, any reset by PMIC_RST_B pin is disabled. If the bits are set to 2b01, warm reset is performed, which pulls POR_B low for 20 ms and resets I²C O type registers to default value keeping power rails remaining ON.

Cold reset event is generated by either of I²C reset, WDOG_B falling edge or PMIC_RST_B falling edge after debounce time. Once it is detected, POR_B is pulled LOW and takes power down sequence. For cold reset from WDOG_B and I²C reset, PCA9451A stays at RESET for t_{RESTART} and then starts power on sequence even though WDOG_B pin is still LOW. For cold reset from PMIC_RST_B, t_{RESTART} timer starts after PMIC_RST_B is asserted HIGH, in other words, PCA9451A starts power on sequence in t_{RESTART} after PMIC_RST_B pin is released HIGH.

Power management IC for i.MX 93x application processor

Table 12. t_{RESTART}

Time	Description	Value
t _{RESTART}	Time to power ON seq from end of power OFF seq during cold reset	250 ms

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 13. t_{RESET}

Time	Description	Value
t _{RESET}	POR_B low time at Warm reset	20 ms

7.5 Regulator control in each power mode

<u>Table 14</u> shows PCA9451A regulator ON/OFF control in each power mode by default. It can be reconfigured through I²C registers.

Table 14. PCA9451A Regulator control summary

Power Rail		Default Voltage	OFF	SNVS	STANDBY	RUN
LDO1	NVCC_BBSM_SNVS	1.8 V	OFF	ON	ON	ON
BUCK1&3 Dual Phase	VDD_SOC	0.85 V	OFF	OFF	ON	ON
LDO4	VDD_ANA_0P8	0.8 V	OFF	OFF	ON	ON
BUCK5	VDD_ANA_1P8/ NVCC_1V8	1.8 V	OFF	OFF	ON	ON
BUCK6	VDD2_DDR	1.1 V	OFF	OFF	ON	ON
BUCK2	VDDQ_DDR	0.6 V	OFF	OFF	ON	ON
BUCK4	NVCC_3V3	3.3 V	OFF	OFF	ON	ON
LDO5	NVCC_SD2	3.3 V / 1.8 V	OFF	OFF	ON	ON

7.6 Regulator summary

The PCA9451A features six buck regulators, three linear regulators, and one load switch to supply voltage rails powering for the application processor and peripheral devices. The buck regulators are supplied directly from the main input supply, the input to all of the buck regulators must be tied to VSYS, whether they are powered on or off.

7.6.1 Buck regulator

The PCA9451A has six high-efficiency low Iq buck regulators. Each buck regulator features soft start and overcurrent protection. Buck regulator operates in two modes, PFM, and PWM mode. It automatically transitions from PFM to PWM mode when FPWM bit is set to "0". Internal active discharge resistor is installed in each buck regulator output to discharge voltage on output capacitors when regulator is off. It is configurable through I²C register. Table 15 shows buck regulator summary.

BUCK1 and BUCK3 are configured as dual-phase buck and provide up to 4 A.

Table 15. PCA9451A buck summary

,										
Buck#	INPUT PIN	Default VOUT [V]	Vout range [V]	Step size [mV]	Default ON/ OFF	Current rating [mA]				
BUCK1/3	INB13	0.85	0.65 - 2.2375	12.5	ON	4000				
BUCK2	INB26	0.6	0.6 - 2.1875	12.5	ON	2000				
BUCK4	INB45	3.3	0.6 - 3.4	25	ON	3000				
BUCK5	INB45	1.8	0.6 - 3.4	25	ON	2000				
BUCK6	INB26	1.1	0.6 - 3.4	25	ON	1500				

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

7.6.1.1 Dynamic voltage scaling

BUCK1, BUCK2, and BUCK3 support Dynamic Voltage Scaling (DVS). If PRESET_EN bit in BUCK123_DVS register is set to 1, BUCK1/BUCK2/BUCK3 outputs are controlled by Bx_DVS_PRESET bits in BUCK123_DVS. It enables those buck outputs to be controlled by writing one register at a time.

If PRESET_EN bit is set to 0, those buck regulator outputs are determined by BUCKxOUT_DVS0 and BUCKxOUT_DVS1 depending on PMIC_STBY_REQ pin. When PMIC_STBY_REQ is asserted LOW, BUCKxOUT_DVS0 register determines each buck output voltage; if the PMIC_STBY_REQ is asserted HIGH, BUCKxOUT_DVS1 register is selected as each buck output voltage. Figure 13 shows the DVS voltage section diagram.

The programmable voltage rampup and ramp-down are applied during the DVS voltage transition. The RAMP[7:6] bits configure the ramp rate in each BUCKxCTRL register.

7.6.1.2 Buck output limiting

Application processor may accidentally write higher voltage than absolute maximum voltage rating of its power input, it may cause significant damage on application processor. PCA9451A has registers to limit the maximum voltage to prevent such an incident.

The maximum output of BUCK1, BUCK2, and BUCK3 is limited by BUCKxOUT_LIMIT, respectively. Even if Buck output is configured to be higher than the limit voltage configured in BUCKxOUT_LIMIT register, the actual buck output is clamped to the limiting voltage set by BUCKxOUT_LIMIT register.

PCA9451A

All information provided in this document is subject to legal disclaimers

Power management IC for i.MX 93x application processor

7.6.1.3 BUCK1 and BUCK3 dual-phase configuration

BUCK1 and BUCK3 are configured as dual-phase buck. R_SNSP3_CFG pin must be connected to GND. This dual phase buck regulator is controlled through BUCK1 registers. All BUCK3 registers are not responsive under dual-phase configuration.

7.6.2 LDO and load switch

The PCA9451A has three LDOs and one load switch. LDO1 supplies SNVS core in application processor. This LDO features ultra-low guiescent current, 2 µA typical, since it is always ON when VSYS is valid.

For all LDOs and the load switch, each has designated active discharge resistor configurable through I²C.

LDO#	INPUT PIN	Default VOUT [V]	VOUT range [V]	Step size [mV]	Default ON/ OFF	Current rating [mA]
LDO1	INL1	1.8	1.6-1.9, 3.0-3.3	100	ON	10
LDO4	INL1	0.8	0.8 - 3.3	100	ON	200
LDO5	INL1	3.3/1.8	1.8 - 3.3	100	ON	150
SW	SWIN	-	-	-	OFF	400

7.7 32 kHz crystal oscillator driver

The PCA9451A consists of a crystal oscillator driver with an external load capacitor buffer referenced to LDO1 voltage. When VSYS exceeds POR threshold and internal power VINT is good, internal 32 kHz oscillator and 32.768 kHz crystal oscillator start oscillating. Crystal oscillator typically takes few seconds to be stabilized.

PCA9451A outputs the internal 32 kHz RC oscillator initially, while internal counter counts crystal oscillator output in t_{RTC_Tran} after RTC_RESET_B is released. If the counter reaches 100, then CLK_32K_OUT buffer input is switched to the external crystal oscillator from internal 32 kHz oscillator.

Clock stretch is applied during this clock source transition to prevent unwanted glitch. If external 32.768 kHz crystal oscillator is not populated, CLK_32K_OUT pin outputs 32 kHz clock from internal 32 kHz oscillator.

For more detailed information on selecting crystal oscillator and load capacitance, refer to Section 9.2.2.

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

7.8 Load switch

PCA9451A integrates 400 mA load switch which supplies SD card VDD. SWIN is connected to BUCK4 output, 3.3 V, in this application. It is enabled by SW_EN pin or SW_EN[1:0] bits in LOADSW_CTRL register. It has soft start feature to reduce inrush current during turn-on.

This load switch has over current protection and short circuit protection by monitoring voltage difference between SWIN and SWOUT. When the switch current exceeds overcurrent threshold (I_{OC}) for overcurrent debounce time (I_{OC_DEB}), SW_OCP bit in VRFLT1_STS register is set to 1, and SW_OC[1:0] configuration in LOADSW_CTRL register determines the fault behavior. When the switch current exceeds short-circuit current threshold (I_{SC}), SW_OCP bit in VRFLT1_STS register is set to 1, and switch is turned off right away.

7.9 I²C level translator

PCA9451A I²C level translator is a "switch" type voltage translator; it employs two key circuits to enable voltage translation:

1. A pass-gate transistor (N-channel) that ties the ports together.

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

2. An output edge-rate accelerator that detects and accelerates rising edges on the I/O pins.

The gate bias voltage of the pass gate transistor (T3) is set at approximately one threshold voltage above the VCC level of the low-voltage side. During a LOW-to-HIGH transition, the output one-shot accelerates the output transition by switching on the PMOS transistors (T1, T2), bypassing the 10 k Ω pullup resistors and increasing current drive capability. The one-shot is activated once the input transition reaches approximately VCCI/2; it is deactivated approximately 50 ns after the output reaches VCCO/2. During the acceleration time, the driver output resistance is between approximately 50 Ω and 70 Ω . To avoid signal contention and minimize dynamic ICC, the user should wait for the one-shot circuit to turn off before applying a signal in the opposite direction. Pullup resistors are included in the device for DC current sourcing capability.

Each A port I/O has an internal $10 \text{ k}\Omega$ pullup resistor to VCCA, and each B port I/O has an internal $10 \text{ k}\Omega$ pullup resistor to VCCB. If a smaller value of pullup resistor is required, an external resistor must be added parallel to the internal $10 \text{ k}\Omega$, which affects the VOL level. When Level translator is disabled through I²C, the internal pullup resistors are disconnected.

PCA9451A I²C level translator is controlled by I²C register, CONFIG2 Reg. When disabled, all I/Os assume the high-impedance OFF-state. The enable time (t_{en}) indicates the amount of time the user must allow for one one-shot circuitry to become operational after it is enabled.

7.10 Interrupt management

The IRQ_B pin is an interface to the software-controlled system that indicates any interrupt bit status change of INT1 register. The IRQ_B pin is pulled LOW when any unmasked interrupt bit status is changed and it is released HIGH once application processor read INT1 register.

The INT1 bits are latched to 1 whenever corresponding STATUS1 bits change and the latch is cleared when the INT1 register is read. The INT1_MASK bits are used to enable or disable individual interrupt bits of INT1 register. The STATUS1 register indicates the status and is not latched.

Power management IC for i.MX 93x application processor

8 Software interface

PCA9451A implements I²C-bus target interface which interfaces with the host system. The host processor can issue commands, monitor status and receive response through this bus. A detailed description of the I²C-bus specification, with applications, is given in UM10204, "I²C-bus specification and user manual" [Ref. 4]. PCA9451A supports I²C-bus data transfers in Standard-mode (100 kbit/s), Fast-mode (400 kbit/s) and Fast-mode plus (1 Mbit/s).

The I²C address at Power-On Reset is shown in Table 17.

Table 17. I²C target address

7-bit target Address	8-bit Write Address	8-bit Read Address		
0x25, 0b 010 0101	0x4A, 0b 0100 1010	0x4B, 0b 0100 1011		

There are three I²C register reset types:

- Type S1: Reset condition = VSYS < V_{SYS POR}
- Type S: Reset condition = VSYS < V_{SYS UVLO}
- Type O: Reset condition = (VSYS < V_{SYS_UVLO}) || (Cold Reset) || (Warm Reset) || (Falling edge of PMIC_ON_REQ) || (SW_RST) || (FAULT_SD)

Power management IC for i.MX 93x application processor

8.1 Register map

Table 18. Register map

All BUCK3 registers are not responsive under dual-phase configuration

Add	Name					Description					R/W	Reset	Reset
Auu	Name	B7	В	3	B5	B4	В3	B2	B1	В0	FK/VV	Type	Value
0x00	Device_ID			CHIP_ID	•			RS	VD		R	S	0x90
0x01	INT1	PWERONI	WDO	GBI	RSVD	VR_FLT1I	VR_FLT2I	LOW VSYSI	THERM_ 105I	THERM_ 125I	R/C	S	0x00
0x02	INT1_MSK	PWRONI_M	WDOG	B_M	RSVD	VR_ FLT1_M	VR_ FLT2_M	LOWVSYS_ M	THERM_ 105_M	THERM_ 125_M	R/W	S	0xFF
0x03	STATUS1	PWRONS	WDO	GBS	RSVD	VR_FLT1S	VR_FLT2S	LOW VSYSS	THERM_ 105S	THERM_ 125S	R	s	0x00
0x04	STATUS2	RSVD	RS\	/D	RSVD	RSVD		POWER	_STATUS		R	S1	0x00
0x05	PWRON_STAT	PWRON	WD0	OG	SW_RST	PMIC_RST	RSVD	RSVD	RSVD	RSVD	R/C	S	0x00
0x06	SW_RST					SW_RST					R/W	0	0x00
0x07	PWR_CTRL		Ton_Deb		Toff_Deb	Tst	ер	Toff_	step	Trestart	R/W	S	0x60
80x0	RESET_CTRL	W	/DOGB_CFG		PMIC_	RST_CFG	RSVD	T_I	PMIC_RST_	DEB	R/W	S	0x21
0x09	CONFIG1	ı	LOW_VSYS		VSYS	S_UVLO	RSVD	RSVD	tFLT_ SD_WAIT	THERM_ SD_DIS	R/W	S1	0x50
Dx0A	CONFIG2	RSVD	RS\	/D	RSVD	RSVD	RSVD	RSVD	I2C_I	LT_EN	R/W	0	0x00
0x0C	BUCK123_DVS	PRESET_EN	B3_I	DVS_PRESE	ΕT	B1_DVS_	PRESET	B2	_DVS_PRES	SET	R/W	0	0xA8
0x0D	BUCK1OUT_LIMIT	RSVD				B1_L	.IMIT				R/W	0	0x10
0x0E	BUCK2OUT_LIMIT	RSVD				B2_L	.IMIT				R/W	0	0x28
0x0F	BUCK3OUT_LIMIT	RSVD				B3_L	.IMIT				R/W	0	0x10
0x10	BUCK1CTRL		RAMP		RSVD	DVS_CTRL	BUCK1AD	FPWM	B1_EN	NMODE	R/W	0	0x49
0x11	BUCK1OUT_DVS0	RSVD		B1_DVS0						R/W	0	0x10	
0x12	BUCK1OUT_DVS1	RSVD				B1_0	DVS1			_	R/W	0	0x10
0x13	BUCK2CTRL		RAMP		RSVD	DVS_CTRL	BUCK2AD	FPWM	B2_EN	NMODE	R/W	0	0x49
0x14	BUCK2OUT_DVS0	RSVD		B2 DVS0						R/W	0	0x0	
0x15	BUCK2OUT_DVS1	RSVD				B2_0	DVS1				R/W	0	0x00
0x16	BUCK3CTRL		RAMP		RSVD	DVS_CTRL	BUCK3AD	FPWM	B3_EN	NMODE	R/W	0	0x49
0x17	BUCK3OUT_DVS0	RSVD				В3_0	DVS0				R/W	0	0x10
0x18	BUCK3OUT DVS1	RSVD				В3 Г	DVS1				R/W	0	0x10
0x19	BUCK4CTRL	RSVD	RS\	/D	RSVD	RSVD	BUCK4AD	FPWM	B4 EN	NMODE	R/W	0	0x09
0x1A	BUCK4OUT	RSVD				<u>I</u> В4 (DUT				R/W	0	0x60
0x1B	BUCK5CTRL	RSVD	RS\	/D	RSVD	RSVD	BUCK5AD	FPWM	B5 EN	NMODE	R/W	0	0x09
0x1C	BUCK5OUT	RSVD				B5 (UUT				R/W	0	0x30
0x1D	BUCK6CTRL	RSVD	RS\	/D	RSVD	RSVD	BUCK6AD	FPWM	B6 EN	NMODE	R/W	0	0x09
0x1E	BUCK6OUT	RSVD				B6 (R/W	0	0x14
0x20	LDO_AD_CTRL	LDO1 AD	RS\	/D	RSVD	LDO4_AD	LDO5_AD	RSVD	RSVD	RSVD	R/W	0	0xF8
0x21	LDO1CTRL	_	ENMODE		RSVD	RSVD	RSVD		L1_OUT		R/W	0	0xC
0x22	RSVD				1	RSVD	1				R/W	0	0x00
0x23	RSVD					RSVD					R/W	0	0x4/
0x24	LDO4CTRL		ENMODE		RSVD	· ·		L4_OUT			R/W	0	0x40
0x25	LDO5CTRL L		ENMODE		RSVD	RSVD			UT_L		R/W	0	0x4F
0x26	LDO5CTRL H	RS\		RSVD	RSVD	RSVD			UT_H		R/W	0	0x00
0x27	RSVD			1	1	RSVD			<u> </u>		R/W	0	0x00
0x28	RSVD					RSVD					R/W	0	0x00
0x29	RSVD					RSVD					R/W	0	0x00
0x2A	LOADSW CTRL	SW_AD	RS\	/D	RSVD	SW_SC	SW	ОС	9.1/2	VEN	R/W	0	0x85
0x2B	VRFLT1_STS	SW_OCP	RS\		BUCK6_ FLT	BUCK5_ FLT	BUCK4_ FLT	BUCK3_ FLT	BUCK2_ FLT	BUCK1_ FLT	R/W/C	s	0x00
0x2C	VRFLT2 STS	RSVD	RS\	/D	RSVD	LDO5_FLT	LDO4_FLT	RSVD	RSVD	LDO1 FLT	R/W/C	S	0x00
0x2D	VRFLT1_MASK	RSVD	RS\		BUCK6_ FLT M	BUCK5_ FLT_M	BUCK4_ FLT_M	BUCK3_ FLT_M	BUCK2_ FLT_M	BUCK1_ FLT_M	R/W	s	0x3F

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 18. Register map...continued

All BUCK3 registers are not responsive under dual-phase configuration

Add Name	Namo				Description					R/W	Reset	Reset
	Name	B7	В6	B5	B4	В3	B2	B1	В0	IV.	Type	Value
0x2E	VRFLT2_MASK	RSVD	RSVD	RSVD	LDO5_ FLT_M	LDO4_ FLT_M	RSVD	RSVD	LDO1_ FLT_M	R/W	S	0x1F

8.2 Register details

8.2.1 0x00 Device_ID

The device identification code stores a unique identifier for each version and/or revision of a PCA9451A, so that the connected processor recognizes it automatically.

Table 19. 0x00 Device ID

0x00 - Device_ID				Reset Type	S			
Bit	Name	Туре	Reset	t Description				
7:4	CHIP_ID	R	1001	Chip ID 1001b = PCA9451A				
3:0	RSVD	R	0000	Reserved				

8.2.2 0x01 INT1

Interrupt source register. Either of unmasked register bits is set to 1, IRQB pin is pulled LOW. This register is Read and Clear.

Table 20. 0x01 INT1

0x01 – INT1				Reset Type	S
Bit	Name	Туре	Reset	Description	
7	PWRONI	R/C	0	PWRON interrupt bit 0b = PWRONS bit has not been changed 1b = PWRONS bit has been changed	
6	WDOGBI	R/C	0	WDOGB interrupt bit 0b = WDOG_BS bit has not been changed 1b = WDOG_BS bit has been changed	
5	RSVD	R/C	0	Reserved	
4	VR_FLT1I	R/C	0	Voltage regulator Group1 Fault interrupt 0b = VR_FLT1S bit has not been changed 1b = VR_FLT1S bit has been changed	
3	VR_FLT2I	R/C	0	Voltage regulator Group2 Fault interrupt 0b = VR_FLT2S bit has not been changed 1b = VR FLT2S bit has been changed	
2	LOWVSYSI	R/C	0	Low-SYS Voltage interrupt bit 0b = LOWVSYSS bit has not been changed 1b = LOWVSYSS bit has been changed	
1	THERM_105I	R/C	0	Die temperature 105 °C interrupt 0b = THERM_105S bit has not bee 1b = THERM_105S bit has been ch	o .

PCA9451A

Power management IC for i.MX 93x application processor

Table 20. 0x01 INT1...continued

0x01 – INT1				Reset Type	S
Bit	Name	Туре	Reset	Description	
0	THERM_125I	R/C	l	Die temperature 125 °C interrupt 0b = THERM_125S bit has not bee 1b = THERM_125S bit has been ch	· ·

8.2.3 0x02 INT1_MSK

The INT1_MSK register enables the masking (disabling) of the different interrupt signals of register INT1. When unmasked, interrupt events trigger the IRQB pin to be pulled LOW when the matching flag bit in the register INT1 is set.

Table 21. 0x02 INT1 MSK

0x02	- INT1_MSK			Reset Type	S
Bit	Name	Type	Reset	Description	
7	PWRON_M	R/W	1	PWRONI interrupt mask bit 0b = Enable PWRONI interrupt 1b = Mask PWRONI interrupt	
6	WDOGB_M	R/W	1	WDOGBI interrupt mask bit 0b = Enable WDOGBI interrupt 1b = Mask WDOGBI interrupt	
5	RSVD	R/W	1	Reserved	
4	VR_FLT1_M	R/W	1	VR_FLT1I interrupt mask bit 0b = Enable VR_FLT1I interrupt 1b = Mask VR_FLT1I interrupt	
3	VR_FLT2_M	R/W	1	VR_FLT2I interrupt mask bit 0b = Enable VR_FLT2I interrupt 1b = Mask VR_FLT2I interrupt	
2	LOWVSYS_M	R/W	1	LOWVINI interrupt mask bit 0b = Enable LOWVINI interrupt 1b = Mask LOWVINI interrupt	
1	THERM_105_M	R/W	1	THERM_105 interrupt mask bit 0b = Enable THERM_105 interrupt 1b = Mask THERM_105 interrupt	
0	THERM_125_M	R/W	1	THERM_125 interrupt mask bit 0b = Enable THERM_125 interrupt 1b = Mask THERM_125 interrupt	

8.2.4 0x03 STATUS1

STATUS1 register shows status. Any status bit change set corresponding interrupt bit to 1.

Table 22. 0x03 STATUS1

0x03 - STATUS1				Reset Type	S
Bit	Bit Name Type Reset		Description		
7	PWRONS	R	0	PMIC_ON_REQ pin status after debounce time	

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 22. 0x03 STATUS1...continued

0x03 - STATUS1				Reset Type	S	
Bit	Name	Туре	Reset	Description	Description	
				0b = PMIC_ON_REQ pin is low 1b = PMIC_ON_REQ pin is high		
6	WDOG_BS	R	0	WDOG_B pin status 0b = WDOG_B pin is low 1b = WDOG_B pin is high		
5	RSVD	R	0	Reserved		
4	VR_FLT1S	R	0	Voltage Regulator Fault status, See 0x2B Register. 0b = All voltage regulators are OK 1b = Either of voltage regulators is in Fault state		
3	VR_FLT2S	R	0	Voltage Regulator POK status, See 0x2C Registers. 0b = All voltage regulators are OK 1b = Either of voltage regulators is in Fault state		
2	LOWVSYSS	R	0	VSYS low voltage status 0b = VSYS > Low VSYS threshol 1b = VSYS ≤ Low VSYS threshold		
1	THERM_105S	R	0	Die temperature 105 °C statue 0b = Die temperature is below 105 °C 1b = Die temperature is above 105 °C		
0	THERM_125S	R	0	Die temperature 125 °C statue 0b = Die temperature is below 125 °C 1b = Die temperature is above 125 °C		

8.2.5 0x04 STATUS2

STATUS1 register shows current PCA9451A power mode.

Table 23. 0x04 STATUS2

0x04	0x04 - STATUS2			Reset Type	S1
Bit	Name	Туре	Reset	Description	
7:4	RSVD	R	0000	Reserved	
3:0	POWER_STATUS	R	0000	Current PCA9451A power status 0000b = OFF 0001b = READY 0010b = SNVS 0011b = PWRUP 0100b = RUN 0101b = STANDBY 0110b = PWRDN 0111b = WARM RESET 1000b = COLD RESET 1001b = FAULT Shutdown 1010b - 1111b = Reserved	

Power management IC for i.MX 93x application processor

8.2.6 0x05 PWRON_STAT

Power ON source register. It is latched to 1 until the bit is read back.

Table 24. 0x05 PWRON_STAT

0x05 – PWRON_STAT				Reset Type	S
Bit	Name	Туре	Reset	Description	
7	PWRON	R/C	0	1b = Power ON triggered by PMIC_ON_REQ. This bit will be set right after completing power-up sequence.	
6	WDOG	R/C	0	1b = This bit is set after cold reset by WDOGB pin	
5	SW_RST	R/C	0	1b = This bit is set after cold reset by SW_RST bit	
4	PMIC_RST	R/C	0	1b = This bit is set after cold reset t	by PMIC_RST_B
3	RSVD	R/C	0	Reserved	
2	RSVD	R/C	0	Reserved	
1	RSVD	R/C	0	Reserved	
0	RSVD	R/C	0	Reserved	

8.2.7 0x06 SW_RST

Software reset register

Table 25. 0x06 SW_RST

0x06 - SW_RST				Reset Type	0
Bit	Name	Туре	Reset	Description	
7:0	SW_RST	R/W	0x00	Software reset register. This register writing the value. 0x00 = No action 0x05 = Reset all registers to defaul 0x14 = Cold reset (Power recycle at 0x35 = Warm Reset (Toggle POR_0x64 = Cold reset (Power recycle at 0thers = No action	It value all regulators except LDO1) B for 20 ms)

8.2.8 0x07 PWR_CTRL

Debounce timer configuration register.

Table 26. 0x07 PWR_CTRL

0x07 – PWR_CTRL				Reset Type	S
Bit	it Name Type Reset		Description		
7:6	Ton_Deb	R/W	01	Debounce time for PMIC_ON_REG 00b = 120 µs 01b = 20 ms 10b = 100 ms 11b = 750 ms) high.
5	Toff_Deb	R/W	1	Debounce time for PMIC_ON_REC	is asserted LOW

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 26. 0x07 PWR_CTRL...continued

0x07	0x07 – PWR_CTRL			Reset Type	S	
Bit	Name	Туре	Reset	Description		
				1b = 2 ms		
				Time step configuration during pow	er-on sequence	
				00b = 1 ms		
4:3	Tstep	R/W	01	01b = 2 ms		
				10b = 4 ms		
				11b = 8 ms		
				Time step configuration during pow	er down sequence	
				00b = 2 ms		
2:1	Toff_step	R/W	10	01b = 4 ms		
				10b = 8 ms		
				11b = 16 ms		
		R/W 0		Time to stay off regulators during C	old reset	
0	Trestart		0	0b = 250 ms		
				1b = 500 ms		

8.2.9 0x08 RESET_CTRL

Reset behavior configuration register

Table 27. 0x08 RESET_CTRL

0x08 - RESET_CTRL				Reset Type	S
Bit	Name	Туре	Reset	Description	
7:6	WDOG_B_CFG	R/W	00	When WDOG_B is asserted LOW, PMIC reset behavior 00b = WDOG_B reset is disabled 01b = Warm Reset, POR_B pin is asserted LOW for 20 ms 10b = Cold Reset, All voltage regulators are recycled except LDO1 11b = Cold Reset, All voltage regulators are recycled	
5:4	PMIC_RST_CFG	R/W	10	When PMIC_RST_B is asserted LOW, PMIC reset behavior 00b = PMIC_RST_B reset is disabled 01b = Warm Reset, POR_B pin is asserted LOW for 20 ms 10b = Cold Reset, All voltage regulators are recycled except LDO1 11b = Cold Reset, All voltage regulators are recycled	
3	RSVD	R/W	0	Reserved	
2:0	T_PMIC_RST_DEB	R/W	001	Reserved PMIC_RST_B debounce time 000b = 10 ms 001b = 50 ms 010b = 100 ms 011b = 500 ms 100b = 1 sec 101b = 2 sec 110b = 4 sec 111b = 8 sec	

Power management IC for i.MX 93x application processor

8.2.10 0x09 CONFIG1

VSYS_UVLO and LOW VSYS configuration register

Table 28. 0x09 CONFIG1

	Table 26. UXU9 CONFIGT								
0x09 – CONFIG1				Reset Type	S1				
Bit	Name	Type	Reset	Description					
7:6	LOW_VSYS	R/W	01	Low VSYS threshold above V _{SYS_UVLO} 00b = 100 mV 01b = 200 mV 10b = 300 mV 11b = 400 mV					
5:4	VSYS_UVLO	R/W	01	VSYS UVLO threshold 00b = 2.85 V 01b = 3.0 V 10b = 3.15 V 11b = 3.3 V					
3:2	RSVD	R/W	00	Reserved					
1	tFLT_SD_WAIT	R/W	0	Wait time for AP action when regulator fault occurs 0b = 100 ms 1b = 120 μs					
0	THERM_SD_DIS	R/W	0	Thermal shutdown disable bit 0b = Enable Thermal shutdown 1b = Disable Thermal shutdown	Thermal shutdown disable bit 0b = Enable Thermal shutdown				

8.2.11 0x0A CONFIG2

I²C level translator control register

Table 29. 0x0A CONFIG2

0x0A	0x0A – CONFIG2			Reset Type	0
Bit	Name	Туре	Reset	Description	
7	RSVD	R/W	0	Reserved	
6:4	RSVD	R/W	000	Reserved	
3:2	RSVD	R/W	00	Reserved	
1:0	I2C_LT_EN	R/W	00	I ² C level translator enable 00b = Forcedly Disable 01b = Enable only when STANDBY 10b = Enable only when RUN mod 11b = Forcedly enable	

8.2.12 0x0C BUCK123_DVS

BUCK1, BUCK2, BUCK3 DVS control register with preset value

Power management IC for i.MX 93x application processor

Table 30. 0x0C BUCK123_DVS

All BUCK3 registers are not responsive under dual-phase configuration.

0x0C - BUCK123_DVS				Reset Type	0
Bit	Name	Туре	Reset	Description	
7	PRESET_EN	R/W	1	BUCK123 output voltage selection 0b = BUCK voltage is determined by each BUCKxOUT_DVS0 or BUCKxOUT_DVS1. 1b = BUCK voltage is determined by Bx_DVS_PRESET bits.	
6:5	B3_DVS_PRESET	R/W	01	BUCK3 Preset voltage option 00b = 0.80 V 01b = 0.85 V 10b = 0.90 V 11b = 0.95 V	
4:3	B1_DVS_PRESET	R/W	01	BUCK1 (SOC) Preset voltage option 00b = 0.80 V 01b = 0.85 V 10b = 0.90 V 11b = 0.95 V	
2:0	B2_DVS_PRESET	R/W	000	BUCK2 Preset voltage option 000b = 0.6 V 001b = 0.7 V 010b = 0.8 V 011b = 0.9 V 100b - 111b = 1.1 V	

8.2.13 0x0D BUCK1OUT_LIMIT

BUCK1 output voltage limit register

Table 31. 0x0D BUCK1OUT_LIMIT

0x0D - BUCK1OUT_LIMIT				Reset Type	0
Bit	Bit Name Type Reset		Description		
7	RSVD	R/W	0	Reserved	
6:0	B1_LIMIT	R/W	001 1100	BUCK1 output voltage limit Programmable from 0.65 V to 2.2375 V in 12.5 mV step Default = 1.0 V	

8.2.14 0x0E BUCK2OUT_LIMIT

BUCK2 output voltage limit register

Table 32. 0x0E BUCK2OUT LIMIT

idolo del diver bookedo i _Elimi							
0x0E - BUCK2OUT_LIMIT				Reset Type	0		
Bit	Bit Name Type Reset		Description				
7	RSVD R/W 0		Reserved				
6:0	B2_LIMIT	R/W	4000	BUCK2 output voltage limit Programmable from 0.60 V to 2.18	75 V in 12.5 mV step		

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 32. 0x0E BUCK2OUT_LIMIT...continued

0x0E - BUCK2OUT_LIMIT				Reset Type	0
Bit	Bit Name Type Reset		Description		
				Default = 1.1 V	

8.2.15 0x0F BUCK3OUT_LIMIT

BUCK3 output voltage limit register.

Table 33. 0x0F BUCK3OUT_LIMIT

All BUCK3 registers are not responsive under dual-phase configuration.

0x0F - BUCK3OUT_LIMIT				Reset Type	0
Bit	Name	Туре	Reset	Description	
7	RSVD	R/W	0	Reserved	
6:0	B3_LIMIT	R/W	001 1100	BUCK3 output voltage limit Programmable from 0.65 V to 2.2375 V in 12.5 mV step Default = 1.0 V	

8.2.16 0x10 BUCK1CTRL

BUCK1 control register for Ramp, DVS control, Active discharge, FPWM and Enable.

Table 34. 0x10 BUCK1CTRL

0x10 - BUCK1CTRL				Reset Type	0
Bit	Name	Туре	Reset	Description	
7:6	RAMP	R/W	01	Buck1 DVS speed $00b = 25 \text{ mV} / 1 \mu\text{s}$ $01b = 25 \text{ mV} / 2 \mu\text{s}$ $10b = 25 \text{ mV} / 4 \mu\text{s}$ $11b = 25 \text{ mV} / 8 \mu\text{s}$	
5	RSVD	R/W	0	Reserved	
4	DVS_CTRL	R/W	0	DVS Control configuration 0b = BUCK voltage is determined by BUCK1VOUT_DVS0 register regardless of PMIC_STBY_REQ 1b = DVS control through PMIC_STBY_REQ	
3	BUCK1AD	R/W	1	Buck1 Active discharge 0b = Always disable Active dischar 1b = Enable Active discharge res	
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM mode transition 1b = Forced PWM mode	
1:0	B1_ENMODE	R/W	01	Buck1 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H && PMIC_STBY_REQ = L 11b = Reserved	

Power management IC for i.MX 93x application processor

8.2.17 0x11 BUCK1OUT_DVS0

BUCK1 DVS output voltage PMIC_STBY_REQ = L

Table 35. 0x11 BUCK1OUT_DVS0

0x11 - BUCK1OUT_DVS0				Reset Type	0
Bit	Name	Туре	Reset	Description	
7	RSVD	R/W	0	Reserved	
6:0	B1_DVS0	R/W	001 0000	BUCK1 DVS0 Output voltage Programmable from 0.65 V to 2.2375 V in 12.5 mV step Default = 0.85 V	

8.2.18 0x12 BUCK1OUT_DVS1

BUCK1 DVS output voltage PMIC_STBY_REQ = H

Table 36. 0x12 BUCK1OUT_DVS1

0x12 - BUCK1OUT_DVS1				Reset Type	0
Bit	Name	Туре	Reset	Description	
7	RSVD	R/W	0	Reserved	
6:0	B1_DVS1	R/W	001 0000	BUCK1 DVS1 Output voltage Programmable from 0.65 V to 2.2375 V in 12.5 mV step Default = 0.85 V	

8.2.19 0x13 BUCK2CTRL

BUCK2 control register for Ramp, DVS control, Active discharge, FPWM, and Enable.

Table 37. 0x13 BUCK2CTRL

0x13	0x13 - BUCK2CTRL			Reset Type	0
Bit	Name	Туре	Reset	Description	
7:6	RAMP	R/W	01	Buck2 DVS speed 00b = 25 mV / 1 μs 01b = 25 mV / 2 μs 10b = 25 mV / 4 μs 11b = 25 mV / 8 μs	
5	RSVD	R/W	0	Reserved	
4	DVS_CTRL	R/W	0	DVS Control configuration 0b = BUCK2VOUT_DVS0 register determines BUCK voltage regardless of PMIC_STBY_REQ 1b = DVS control through PMIC_STBY_REQ	
3	BUCK2AD	R/W	1	Buck2 Active discharge 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF	
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM m 1b = Forced PWM mode	node transition

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 37. 0x13 BUCK2CTRL...continued

0x13 – BUCK2CTRL				Reset Type	0
Bit	Name	Name Type Reset		Description	
1:0	B2_ENMODE	R/W	01	Buck2 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H & 11b = Reserved	&& PMIC_STBY_REQ = L

8.2.20 0x14 BUCK2OUT_DVS0

BUCK2 DVS output voltage PMIC_STBY_REQ = L

Table 38. 0x14 BUCK2OUT_DVS0

0x14	0x14 - BUCK2OUT_DVS0			Reset Type	0		
Bit Name Type Reset			Reset	Description			
7	RSVD	R/W	0	Reserved			
6:0	B2_DVS0	R/W	000 0000	BUCK2 DVS0 Output voltage Programmable from 0.60 V to 2.187 Default = 0.6 V	75 V in 12.5 mV step		

8.2.21 0x15 BUCK2OUT_DVS1

BUCK2 DVS output voltage PMIC_STBY_REQ = H

Table 39. 0x15 BUCK2OUT DVS1

0x15 - BUCK2OUT_DVS1				Reset Type	0	
Bit Name Type Reset			Reset	Description		
7	RSVD	R/W	0	Reserved		
6:0	B2_DVS1	R/W	000 0000	BUCK2 DVS1 Output voltage Programmable from 0.60 V to 2.187 Default = 0.6 V	75 V in 12.5 mV step	

8.2.22 0x16 BUCK3CTRL

BUCK3 control register for Ramp, DVS control, Active discharge, FPWM, and Enable.

Table 40. 0x16 BUCK3CTRL

All BUCK3 registers are not responsive under dual-phase configuration.

0x16	0x16 - BUCK3CTRL			Reset Type	0	
Bit	Bit Name Type Reset			Description		
7:6	RAMP	R/W	01	Buck3 DVS speed 00b = 25 mV / 1 μs 01b = 25 mV / 2 μs 10b = 25 mV / 4 μs 11b = 25 mV / 8 μs		
5	RSVD	R/W	0	Reserved		

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 40. 0x16 BUCK3CTRL...continued

All BUCK3 registers are not responsive under dual-phase configuration.

0x16	0x16 - BUCK3CTRL			Reset Type	0	
Bit	Name	Туре	Reset	Description		
4	DVS_CTRL	R/W	0	DVS Control configuration 0b = BUCK3VOUT_DVS0 register determines BUCK voltage regardless of PMIC_STBY_REQ 1b = DVS control through PMIC_STBY_REQ		
3	BUCK3AD	R/W	1	Buck3 Active discharge 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM m 1b = Forced PWM mode	ode transition	
1:0	B3_ENMODE	R/W	01	Buck3 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H 11b = Reserved	&& PMIC_STBY_REQ = L	

8.2.23 0x17 BUCK3OUT_DVS0

BUCK3 DVS output voltage PMIC_STBY_REQ = L

Table 41. 0x17 BUCK3OUT_DVS0

All BUCK3 registers are not responsive under dual-phase configuration.

0x17 - BUCK3OUT_DVS0				Reset Type	0		
Bit	it Name Type Reset			Description			
7	RSVD	R/W	0	Reserved			
6:0	B3_DVS0	R/W	001 0000	BUCK3 DVS0 Output voltage Programmable from 0.65 V to 2.23 Default = 0.85 V	75 V in 12.5 mV step		

8.2.24 0x18 BUCK3OUT_DVS1

BUCK3 DVS output voltage PMIC_STBY_REQ = H

Table 42. 0x18 BUCK3OUT_DVS1

All BUCK3 registers are not responsive under dual-phase configuration.

0x18 - BUCK3OUT_DVS1				Reset Type	0		
Bit	Bit Name Type Reset			Description			
7	RSVD	R/W	0	Reserved			
6:0	B3_DVS1	R/W	001 0000	BUCK3 DVS1 Output voltage Programmable from 0.60 V to 2.187 Default = 0.8 V	75 V in 12.5 mV step		

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 42. 0x18 BUCK3OUT_DVS1...continued

All BUCK3 registers are not responsive under dual-phase configuration.

0x18 ·	0x18 - BUCK3OUT_DVS1			Reset Type	0	
Bit	Name	Туре	Reset	Description		
6:0	B3_DVS1	R/W	INN1	BUCK3 DVS1 Output voltage Programmable from 0.65 V to 2.237 Default = 0.85 V	75 V in 12.5 mV step	

Table 43. BUCK1, BUCK3 Output voltage table

	- ,						
Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x00	0.6500 V	0x20	1.0500 V	0x40	1.4500 V	0x60	1.8500 V
0x01	0.6625 V	0x21	1.0625 V	0x41	1.4625 V	0x61	1.8625 V
0x02	0.6750 V	0x22	1.0750 V	0x42	1.4750 V	0x62	1.8750 V
0x03	0.6875 V	0x23	1.0875 V	0x43	1.4875 V	0x63	1.8875 V
0x04	0.7000 V	0x24	1.1000 V	0x44	1.5000 V	0x64	1.9000 V
0x05	0.7125 V	0x25	1.1125 V	0x45	1.5125 V	0x65	1.9125 V
0x06	0.7250 V	0x26	1.1250 V	0x46	1.5250 V	0x66	1.9250 V
0x07	0.7375 V	0x27	1.1375 V	0x47	1.5375 V	0x67	1.9375 V
0x08	0.7500 V	0x28	1.1500 V	0x48	1.5500 V	0x68	1.9500 V
0x09	0.7625 V	0x29	1.1625 V	0x49	1.5625 V	0x69	1.9625 V
0x0A	0.7750 V	0x2A	1.1750 V	0x4A	1.5750 V	0x6A	1.9750 V
0x0B	0.7875 V	0x2B	1.1875 V	0x4B	1.5875 V	0x6B	1.9875 V
0x0C	0.8000 V	0x2C	1.2000 V	0x4C	1.6000 V	0x6C	2.0000 V
0x0D	0.8125 V	0x2D	1.2125 V	0x4D	1.6125 V	0x6D	2.0125 V
0x0E	0.8250 V	0x2E	1.2250 V	0x4E	1.6250 V	0x6E	2.0250 V
0x0F	0.8375 V	0x2F	1.2375 V	0x4F	1.6375 V	0x6F	2.0375 V
0x10	0.8500 V	0x30	1.2500 V	0x50	1.6500 V	0x70	2.0500 V
0x11	0.8625 V	0x31	1.2625 V	0x51	1.6625 V	0x71	2.0625 V
0x12	0.8750 V	0x32	1.2750 V	0x52	1.6750 V	0x72	2.0750 V
0x13	0.8875 V	0x33	1.2875 V	0x53	1.6875 V	0x73	2.0875 V
0x14	0.9000 V	0x34	1.3000 V	0x54	1.7000 V	0x74	2.1000 V
0x15	0.9125 V	0x35	1.3125 V	0x55	1.7125 V	0x75	2.1125 V
0x16	0.9250 V	0x36	1.3250 V	0x56	1.7250 V	0x76	2.1250 V
0x17	0.9375 V	0x37	1.3375 V	0x57	1.7375 V	0x77	2.1375 V
0x18	0.9500 V	0x38	1.3500 V	0x58	1.7500 V	0x78	2.1500 V
0x19	0.9625 V	0x39	1.3625 V	0x59	1.7625 V	0x79	2.1625 V
0x1A	0.9750 V	0x3A	1.3750 V	0x5A	1.7750 V	0x7A	2.1750 V
0x1B	0.9875 V	0x3B	1.3875 V	0x5B	1.7875 V	0x7B	2.1875 V
			•	•		•	

Power management IC for i.MX 93x application processor

Table 43. BUCK1, BUCK3 Output voltage table...continued

Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x1C	1.0000 V	0x3C	1.4000 V	0x5C	1.8000 V	0x7C	2.2000 V
0x1D	1.0125 V	0x3D	1.4125 V	0x5D	1.8125 V	0x7D	2.2125 V
0x1E	1.0250 V	0x3E	1.4250 V	0x5E	1.8250 V	0x7E	2.2250 V
0x1F	1.0375 V	0x3F	1.4375 V	0x5F	1.8375 V	0x7F	2.2375 V

Table 44. BUCK2 Output voltage table

Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x00	0.6000 V	0x20	1.0000 V	0x40	1.4000 V	0x60	1.8000 V
0x01	0.6125 V	0x21	1.0125 V	0x41	1.4125 V	0x61	1.8125 V
0x02	0.6250 V	0x22	1.0250 V	0x42	1.4250 V	0x62	1.8250 V
0x03	0.6375 V	0x23	1.0375 V	0x43	1.4375 V	0x63	1.8375 V
0x04	0.6500 V	0x24	1.0500 V	0x44	1.4500 V	0x64	1.8500 V
0x05	0.6625 V	0x25	1.0625 V	0x45	1.4625 V	0x65	1.8625 V
0x06	0.6750 V	0x26	1.0750 V	0x46	1.4750 V	0x66	1.8750 V
0x07	0.6875 V	0x27	1.0875 V	0x47	1.4875 V	0x67	1.8875 V
80x0	0.7000 V	0x28	1.1000 V	0x48	1.5000 V	0x68	1.9000 V
0x09	0.7125 V	0x29	1.1125 V	0x49	1.5125 V	0x69	1.9125 V
0x0A	0.7250 V	0x2A	1.1250 V	0x4A	1.5250 V	0x6A	1.9250 V
0x0B	0.7375 V	0x2B	1.1375 V	0x4B	1.5375 V	0x6B	1.9375 V
0x0C	0.7500 V	0x2C	1.1500 V	0x4C	1.5500 V	0x6C	1.9500 V
0x0D	0.7625 V	0x2D	1.1625 V	0x4D	1.5625 V	0x6D	1.9625 V
0x0E	0.7750 V	0x2E	1.1750 V	0x4E	1.5750 V	0x6E	1.9750 V
0x0F	0.7875 V	0x2F	1.1875 V	0x4F	1.5875 V	0x6F	1.9875 V
0x10	0.8000 V	0x30	1.2000 V	0x50	1.6000 V	0x70	2.0000 V
0x11	0.8125 V	0x31	1.2125 V	0x51	1.6125 V	0x71	2.0125 V
0x12	0.8250 V	0x32	1.2250 V	0x52	1.6250 V	0x72	2.0250 V
0x13	0.8375 V	0x33	1.2375 V	0x53	1.6375 V	0x73	2.0375 V
0x14	0.8500 V	0x34	1.2500 V	0x54	1.6500 V	0x74	2.0500 V
0x15	0.8625 V	0x35	1.2625 V	0x55	1.6625 V	0x75	2.0625 V
0x16	0.8750 V	0x36	1.2750 V	0x56	1.6750 V	0x76	2.0750 V
0x17	0.8875 V	0x37	1.2875 V	0x57	1.6875 V	0x77	2.0875 V
0x18	0.9000 V	0x38	1.3000 V	0x58	1.7000 V	0x78	2.1000 V
0x19	0.9125 V	0x39	1.3125 V	0x59	1.7125 V	0x79	2.1125 V
0x1A	0.9250 V	0x3A	1.3250 V	0x5A	1.7250 V	0x7A	2.1250 V
0x1B	0.9375 V	0x3B	1.3375 V	0x5B	1.7375 V	0x7B	2.1375 V
0x1C	0.9500 V	0x3C	1.3500 V	0x5C	1.7500 V	0x7C	2.1500 V

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 44. BUCK2 Output voltage table...continued

Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x1D	0.9625 V	0x3D	1.3625 V	0x5D	1.7625 V	0x7D	2.1625 V
0x1E	0.9750 V	0x3E	1.3750 V	0x5E	1.7750 V	0x7E	2.1750 V
0x1F	0.9875 V	0x3F	1.3875 V	0x5F	1.7875 V	0x7F	2.1875 V

8.2.25 0x19 BUCK4CTRL

BUCK4 control register for Active discharge, FPWM and Enable.

Table 45. 0x19 BUCK4CTRL

0x19	- BUCK4CTRL			Reset Type	0	
Bit	Name	Туре	Reset	Description		
7:4	RSVD	R/W	0000	Reserved		
3	BUCK4AD	R/W	1	Buck4 Active discharge 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM mode transition 1b = Forced PWM mode		
1:0	B4_ENMODE	R/W	01	Buck4 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H 11b = Reserved	&& PMIC_STBY_REQ = L	

8.2.26 0x1A BUCK4OUT

BUCK4 output voltage configuration register

Table 46. 0x1A BUCK4OUT

0x1A - BUCK4OUT				Reset Type	0
Bit Name Type Reset		Description			
7	RSVD	R/W	0	Reserved	
6:0	B4_OUT	R/W	110 1100	BUCK4 Output voltage Programmable from 0.60 V to 3.40 Default = 3.3 V	V in 25 mV step

8.2.27 0x1B BUCK5CTRL

BUCK5 control register for Active discharge, FPWM, and Enable.

Table 47. 0x1B BUCK5CTRL

02	0x1B - BUCK5CTRL		Reset Type	0		
В	it	Name	Туре	Reset	Description	
7:	4	RSVD	R/W	0000	Reserved	

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 47. 0x1B BUCK5CTRL...continued

0x1B	- BUCK5CTRL			Reset Type	0	
Bit	Bit Name Type Reset		Reset	Description		
3	BUCK5AD	R/W	1	Buck5 Active discharge 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM m 1b = Forced PWM mode	ode transition	
1:0	B5_ENMODE	R/W	01	Buck5 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H 11b = Reserved		

8.2.28 0x1C BUCK5OUT

BUCK5 output voltage configuration register

Table 48. 0x1C BUCK5OUT

0x1C - BUCK5OUT				Reset Type	0	
Bit	Bit Name Type Reset		Description			
7	RSVD	R/W	0	Reserved		
6:0	B5_OUT	R/W	011 0000	BUCK5 Output voltage Programmable from 0.60 V to 3.40 Default = 1.8 V	V in 25 mV step	

8.2.29 0x1D BUCK6CTRL

BUCK6 control register for Active discharge, FPWM, and Enable.

Table 49. 0x1D BUCK6OUT

0x1D	- BUCK6OUT			Reset Type	0	
Bit	Bit Name Type Reset			Description		
7:4	RSVD	R/W	0000	Reserved		
3	BUCK6AD	R/W	1	Buck6 Active discharge 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
2	FPWM	R/W	0	Forced PWM mode 0b = Automatic PFM and PWM mode transition 1b = Forced PWM mode		
1:0	B6_ENMODE	R/W	01	Buck6 enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H && PMIC_STBY_REQ = L 11b = Reserved		

Power management IC for i.MX 93x application processor

8.2.30 0x1E BUCK6OUT

BUCK6 output voltage configuration register

Table 50. 0x1E BUCK6CTRL

0x1E - BUCK6CTRL				Reset Type	0
Bit Name Type Reset		Description			
7	RSVD	R/W	0	Reserved	
6:0	B6_OUT	R/W	001	BUCK6 Output voltage Programmable from 0.60 V to 3.40 Default = 1.1 V	V in 25 mV step

Table 51. BUCK4, BUCK5, BUCK6 Output voltage table

Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x00	0.600 V	0x20	1.400 V	0x40	2.200 V	0x60	3.000 V
0x01	0.625 V	0x21	1.425 V	0x41	2.225 V	0x61	3.025 V
0x02	0.650 V	0x22	1.450 V	0x42	2.250 V	0x62	3.050 V
0x03	0.675 V	0x23	1.475 V	0x43	2.275 V	0x63	3.075 V
0x04	0.700 V	0x24	1.500 V	0x44	2.300 V	0x64	3.100 V
0x05	0.725 V	0x25	1.525 V	0x45	2.325 V	0x65	3.125 V
0x06	0.750 V	0x26	1.550 V	0x46	2.350 V	0x66	3.150 V
0x07	0.775 V	0x27	1.575 V	0x47	2.375 V	0x67	3.175 V
80x0	0.800 V	0x28	1.600 V	0x48	2.400 V	0x68	3.200 V
0x09	0.825 V	0x29	1.625 V	0x49	2.425 V	0x69	3.225 V
0x0A	0.850 V	0x2A	1.650 V	0x4A	2.450 V	0x6A	3.250 V
0x0B	0.875 V	0x2B	1.675 V	0x4B	2.475 V	0x6B	3.275 V
0x0C	0.900 V	0x2C	1.700 V	0x4C	2.500 V	0x6C	3.300 V
0x0D	0.925 V	0x2D	1.725 V	0x4D	2.525 V	0x6D	3.325 V
0x0E	0.950 V	0x2E	1.750 V	0x4E	2.550 V	0x6E	3.350 V
0x0F	0.975 V	0x2F	1.775 V	0x4F	2.575 V	0x6F	3.375 V
0x10	1.000 V	0x30	1.800 V	0x50	2.600 V	0x70	3.400 V
0x11	1.025 V	0x31	1.825 V	0x51	2.625 V	0x71	3.400 V
0x12	1.050 V	0x32	1.850 V	0x52	2.650 V	0x72	3.400 V
0x13	1.075 V	0x33	1.875 V	0x53	2.675 V	0x73	3.400 V
0x14	1.100 V	0x34	1.900 V	0x54	2.700 V	0x74	3.400 V
0x15	1.125 V	0x35	1.925 V	0x55	2.725 V	0x75	3.400 V
0x16	1.150 V	0x36	1.950 V	0x56	2.750 V	0x76	3.400 V
0x17	1.175 V	0x37	1.975 V	0x57	2.775 V	0x77	3.400 V
0x18	1.200 V	0x38	2.000 V	0x58	2.800 V	0x78	3.400 V
0x19	1.225 V	0x39	2.025 V	0x59	2.825 V	0x79	3.400 V

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 51. BUCK4, BUCK5, BUCK6 Output voltage table...continued

Code	Voltage	Code	Voltage	Code	Voltage	Code	Voltage
0x1A	1.250 V	0x3A	2.050 V	0x5A	2.850 V	0x7A	3.400 V
0x1B	1.275 V	0x3B	2.075 V	0x5B	2.875 V	0x7B	3.400 V
0x1C	1.300 V	0x3C	2.100 V	0x5C	2.900 V	0x7C	3.400 V
0x1D	1.325 V	0x3D	2.125 V	0x5D	2.925 V	0x7D	3.400 V
0x1E	1.350 V	0x3E	2.150 V	0x5E	2.950 V	0x7E	3.400 V
0x1F	1.375 V	0x3F	2.175 V	0x5F	2.975 V	0x7F	3.400 V

8.2.31 0x20 LDO_AD_CTRL

LDO active discharge resistor configuration register\

Table 52. 0x20 LDO_AD_CTRL

	LDC AD CTPI			Decet Time	0	
UXZU	- LDO_AD_CTRL			Reset Type	0	
Bit	Name	Туре	Reset	Description		
7	LDO1_AD	R/W	1	LDO1 Active discharge enable 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
6:5	RSVD	R/W	1	Reserved		
4	LDO4_AD	R/W	1	LDO4 Active discharge enable 0b = Always disable Active discharge res	9	
3	LDO5_AD	R/W	1	LDO5 Active discharge enable 0b = Always disable Active discharge resistor 1b = Enable Active discharge resistor when regulator is OFF		
2:0	RSVD	R/W	0	Reserved		

8.2.32 0x21 LDO1CTRL

LDO1 control register for enable and voltage

Table 53. 0x21 LDO1CTRL

0x21	- LDO1CTRL			Reset Type	0
Bit	Name	Туре	Reset	Description	
7:6	ENMODE	R/W	11	LDO1 Enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H 11b = Always ON * When LDO1 is turned off, PCA94	
5:3	RSVD	R/W	000	Reserved	
2:0	L1_OUT	R/W	010	LDO1 output voltage Programmable from 1.6 V – 1.9 V, 3 000b = 1.6 V 001b = 1.7 V	3.0 V – 3.3 V in 100 mV step

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 53. 0x21 LDO1CTRL...continued

0x21 – LDO1CTRL				Reset Type	0
Bit	Name	Туре	Reset	Description	
				010b = 1.8 V	
				011b = 1.9 V	
				100b = 3.0 V	
				101b = 3.1 V	
				110b = 3.2 V	
				111b = 3.3 V	

8.2.33 0x24 LDO4CTRL

LDO4 control register for enable and voltage

Table 54. 0x24 LDO4CTRL

0x24 - LDO4CTRL				Reset Type	0
Bit	Name	Туре	Reset	Description	
7:6	ENMODE	R/W	01	LDO4 Enable mode 00b = OFF 01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H && PMIC_STBY_REQ = L 11b = Reserved	
5	RSVD	R/W	0	Reserved	
4:0	L4_OUT	R/W	0 0000	LDO4 output voltage Programmable from 0.8 V to 3.3 V in 100 mV step, see <u>Table 55</u>	

Table 55. LDO4 output voltage

0x00: 0.80 V	0x8: 1.60 V	0x10: 2.40 V	0x18: 3.20 V
0x01: 0.90 V	0x9: 1.70 V	0x11: 2.50 V	0x19: 3.30 V
0x02: 1.00 V	0xA: 1.80 V	0x12: 2.60 V	0x1A: 3.30 V
0x03: 1.10 V	0xB: 1.90 V	0x13: 2.70 V	0x1B: 3.30 V
0x04: 1.20 V	0xC: 2.00 V	0x14: 2.80 V	0x1C: 3.30 V
0x05: 1.30 V	0xD: 2.10 V	0x15: 2.90 V	0x1D: 3.30 V
0x06: 1.40 V	0xE: 2.20 V	0x16: 3.00 V	0x1E: 3.30 V
0x07: 1.50 V	0xF: 2.30 V	0x17: 3.10 V	0x1F: 3.30 V

8.2.34 0x25 LDO5CTRL_L

LDO5 control register for enable and voltage when SD_VSEL is LOW.

Table 56. 0x25 LDO5CTRL L

0x25 - LDO5CTRL_L				Reset Type	0	
Bit	Name	Туре	Reset	Description		
7:6	ENMODE	R/W	01	LDO5 Enable mode 00b = OFF		

PCA9451A All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Power management IC for i.MX 93x application processor

Table 56. 0x25 LDO5CTRL_L...continued

0x25	0x25 – LDO5CTRL_L			Reset Type	0
Bit	t Name Type Reset		Description		
				01b = ON by PMIC_ON_REQ = H 10b = ON by PMIC_ON_REQ = H && PMIC_STBY_REQ = L 11b = Reserved	
5:4	RSVD	R/W	00	Reserved	
3:0	L5_OUT_L	R/W	1111	LDO5 output voltage when SD_VSEL = Low Programmable from 1.8 V to 3.3 V in 100 mV step, see <u>Table 57</u>	

Table 57. LDO5 output voltage when SD_VSEL = Low

0x00: 1.80 V	0x4: 2.20 V	0x8: 2.60 V	0xC: 3.00 V
0x01: 1.90 V	0x5: 2.30 V	0x9: 2.70 V	0xD: 3.10 V
0x02: 2.00 V	0x6: 2.40 V	0xA: 2.80 V	0xE: 3.20 V
0x03: 2.10 V	0x7: 2.50 V	0xB: 2.90 V	0xF: 3.30 V

8.2.35 0x26 LDO5CTRL_H

LDO5 control register for enable and voltage when SD_VSEL is HIGH.

Table 58. 0x26 LDO5CTRL_H

0x26 - LDO5CTRL_H				Reset Type	0
Bit	Name	Туре	Reset	Description	
7:6	RSVD	R/W	00	Reserved	
5:4	RSVD	R/W	00	Reserved	
3:0	L5_OUT_H	R/W	0000	LDO5 output voltage when SD_VSEL = HIGH Programmable from 1.8 V to 3.3 V in 100 mV step, see <u>Table 59</u>	

Table 59. LDO5 output voltage when SD_VSEL = HIGH

0x00: 1.80 V	0x4: 2.20 V	0x8: 2.60 V	0xC: 3.00 V
0x01: 1.90 V	0x5: 2.30 V	0x9: 2.70 V	0xD: 3.10 V
0x02: 2.00 V	0x6: 2.40 V	0xA: 2.80 V	0xE: 3.20 V
0x03: 2.10 V	0x7: 2.50 V	0xB: 2.90 V	0xF: 3.30 V

8.2.36 0x2A LOADSW_CTRL

Load switch control register for active discharge, short/over current and enable.

Table 60. 0x2A LOADSW CRTL

0x2A - LOADSW_CTRL				Reset Type	0
Bit	Name	Туре	Reset	Description	
7	SW_AD	R/W	1	Load switch active discharge 0b = Always disable active discharge resistor	

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 60. 0x2A LOADSW_CRTL...continued

0x2A	0x2A - LOADSW_CTRL			Reset Type	0
Bit	Name	Туре	Reset	Description	
				1b = Enable active discharge res	istor when it is OFF
6:5	RSVD	R/W	00	Reserved	
4	sw_sc	R/W	0	When switch detects short circuit current 0b = Turned OFF and set SWEN[1:0] are set to 00b automatically 1b = Turned off and restart in 100 ms	
3:2	sw_oc	R/W	01	When load switch detects over current 00b = Turned OFF and set SWEN[1:0] are set to 00b automatically 01b = Turned off and restart in 100 ms 10b, 11b = stay ON	
1:0	SWEN	R/W	01	SW Enable control 00b = Forcedly OFF 01b = Enabled by SW_EN pin 10b = Forcedly ON 11b = Forcedly ON	

8.2.37 0x2B VRFLT1_STS

Voltage regulator fault status register. It is latched to 1 once corresponding regulator is detected until overwriting "1" to the register. If "1" is overwritten, the corresponding bit is newly updated by current status.

Table 61. 0x2B VRFLT1_STS

All BUCK3 registers are not responsive under dual-phase configuration.

0x2E	0x2B - VRFLT1_STS			Reset Type	S	
Bit	Name	Туре	Reset	Description		
7	SW_OCP	R/W/C	0	Load SW OCP status, deglitched with t _{DEB_POKB_SW} 0 = Load SW does not exceed current limit or is OFF 1 = Load SW exceeded current limit		
6	RSVD	R/W/C	0	Reserved		
5	BUCK6_FLT	R/W/C	0	BUCK6 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK6 output is good or BUCK6 is OFF 1b = BUCK6 output falls below 80 % of target		
4	BUCK5_FLT	R/W/C	0	BUCK5 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK5 output is good or BUCK5 is OFF 1b = BUCK5 output falls below 80 % of target		
3	BUCK4_FLT	R/W/C	0	BUCK4 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK4 output is good or BUCK4 is OFF 1b = BUCK4 output is below 80 %		
2	BUCK3_FLT	R/W/C	0	BUCK3 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK3 output is good or BUCK3 is OFF 1b = BUCK3 output falls below 80 % of target		
1	BUCK2_FLT	R/W/C	0	BUCK2 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK2 output is good or BUCK2 is OFF 1b = BUCK2 output falls below 80 % of target		

PCA9451A

Power management IC for i.MX 93x application processor

Table 61. 0x2B VRFLT1_STS...continued

All BUCK3 registers are not responsive under dual-phase configuration.

0x2B - VRFLT1_STS				Reset Type	S	
Bit	Name	Туре	Reset	Description		
0	BUCK1_FLT	R/W/C		BUCK1 Fault status, deglitched with t _{DEB_POKB} 0b = BUCK1 output is good or BUCK1 is OFF 1b = BUCK1 output falls below 80 % of target		

8.2.38 0x2C VRFLT2_STS

Voltage regulator fault status register. It is latched to 1 once corresponding regulator is detected until overwriting "1" to the register. If "1" is overwritten, the corresponding bit is newly updated by current status.

Table 62. 0x2C VRFLT2_STS

0x2C	- VRFLT2_STS			Reset Type	S	
Bit	Name	Туре	Reset	Description		
7:5	RSVD	R/W/C	000	Reserved		
4	LDO5_FLT	R/W/C	0	LDO5 Fault status, deglitched wit 0b = LDO5 output is good or LE 1b = LDO5 output falls below 80 °C	OO5 is OFF	
3	LDO4_FLT	R/W/C	0	LDO4 Fault status, deglitched wit 0b = LDO4 output is good or LD 1b = LDO4 output falls below 80	OO4 is OFF	
2:1	RSVD	R/W/C	0	Reserved		
0	LDO1_FLT	R/W/C	0	LDO1 Fault status, deglitched wit 0b = LDO1 output is good or LE 1b = LDO1 output falls below 80 or LE	OO1 is OFF	

8.2.39 0x2D VRFLT1_MASK

VR fault mask bit. Once the bit is masked, PCA9451A does not enter Fault shutdown even if fault condition of corresponding regulator happens.

Table 63. 0x2D VRFLT1_MASK

All BUCK3 registers are not responsive under dual-phase configuration.

0x2D	0x2D - VRFLT1_MASK			Reset Type	S
Bit	Name	Туре	Reset	Description	
7:6	RSVD	R/W	0	Reserved	
5	BUCK6_FLT_M	R/W	1	BUCK6 FLT mask 0b = Unmask 1b = Masked	
4	BUCK5_FLT_M	R/W	1	BUCK5 FLT mask 0b = Unmask 1b = Masked	
3	BUCK4_FLT_M	R/W	1	BUCK4 FLT mask 0b = Unmask	

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 63. 0x2D VRFLT1_MASK...continued

All BUCK3 registers are not responsive under dual-phase configuration.

0x2D	0x2D - VRFLT1_MASK			Reset Type	S
Bit	Name	Туре	Reset	Description	
				1b = Masked	
				BUCK3 FLT mask	
2	BUCK3_FLT_M	R/W	1	0b = Unmask	
				1b = Masked	
				BUCK2 FLT mask	
1	BUCK2_FLT_M	R/W	1	0b = Unmask	
				1b = Masked	
				BUCK1 FLT mask	
0	BUCK1_FLT_M	R/W	1	0b = Unmask	
				1b = Masked	

8.2.40 0x2E VRFLT2_MASK

VR fault mask bit. Once the bit is masked, PCA9451A does not enter Fault shutdown even if fault condition of corresponding regulator happens.

Table 64. 0x2E VRFLT2_MASK

0x2E - VRFLT2_MASK				Reset Type	S
Bit	Name	Туре	Reset	Description	
7:5	RSVD	R/W/C	0	Reserved	
4	LDO5_FLT_M	R/W	1	LDO5 FLT mask 0b = Unmask 1b = Masked	
3	LDO4_FLT_M	R/W	1	LDO4 FLT mask 0b = Unmask 1b = Masked	
2:1	RSVD	R/W	1	Reserved	
0	LDO1_FLT_M	R/W	1	LDO1 FLT mask 0b = Unmask 1b = Masked	

9 Application design-in information

9.1 Reference schematic

PCA9451A reference schematic with i.MX 93x is illustrated in Figure 20.

Power management IC for i.MX 93x application processor

PCA9451A

Power management IC for i.MX 93x application processor

9.2 Typical application

The PCA9451A devices have only a few design requirements. Use the following parameters for the design.

- 1 μF bypass capacitor on VINT and VSYS, located as close as possible to those pins to ground
- Input capacitors must be present on the INB and INL supplies if used
- · Output inductors and capacitors must be used on the outputs of the BUCK converters if used
- · Output capacitors must be used on the outputs of the LDOs

9.2.1 Detailed design procedure

9.2.2 Inductor selection for buck converters

Each of the converters in the PCA9451A typically use a 0.47 µH output inductor which has to be rated for its DC resistance and saturation current. The DC resistance of the inductance influences directly the efficiency of the converter. Therefore, an inductor with lowest DC resistance must be selected for highest efficiency.

Equation 1 calculates the maximum inductor current under static load conditions. The saturation current of the inductor must be rated higher than the maximum inductor current as calculated with Equation 2. This is needed because during heavy load transient the inductor current rises above the calculated value.

$$\Delta I_{L} = Vout \times \frac{1 - \frac{Vout}{Vinmax}}{L \times f}$$

$$I_{Lmax} = I_{out.max} \times \frac{\Delta I_{L}}{2}$$
(1)

Where

f = switching frequency (2 MHz)

L = Inductance

 ΔI_L = Peak to peak inductor ripple current

I_{L.max} = Maximum inductor current

A conservative approach is to select the inductor current rating just for the maximum switch current of the PCA9451A.

Table 65 shows possible inductors list.

Table 65. Tested inductor list

Buck	Vendor	Part number	Size	DCR [mΩ]	Isat [A]	Itemp [A]
BUCK1, BUCK2,	Sunlord	WPN252012HR47MT	2520	29	5.6	4.0
BUCK3, BUCK4	Murata	1239AS-H-R47M	2520	39	3.8	3.7
BUCK5, BUCK6	Sunlord	WPN201610UR47MT	2016	28	5.0	4.1
	Murata	1286AS-H-R47M	2016	52	3.4	3.2

9.2.3 Output capacitor selection for buck converters

The fast response adaptive constant ON time control scheme of the buck converters implemented in the PCA9451A allow the use of small ceramic capacitors with a typical value of 22 μ F for each converter without

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

having large output voltage under and overshoots during heavy load transients. Ceramic capacitors having low ESR values have the lowest output voltage ripple and are recommended.

If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application requirements. Just for completeness, the RMS ripple current is calculated in Equation 3.

$$I_{RMS.COUT} = \text{Vout} \times \frac{1 - \frac{\text{Vout}}{\text{Vin}}}{\text{L} \times \text{f}} \times \frac{1}{2\sqrt{3}}$$
 (3)

At nominal load current, the inductive converters operate in PWM mode. The overall output voltage ripple is the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the output capacitor:

$$\Delta \text{ Vout} = \text{Vout} \times \frac{1 - \frac{Vout}{Vin}}{L \times f} \times \left(\frac{1}{8 \times Cout \times f} + ESR \right)$$
 (4)

Where:

The highest output voltage ripple occurs at the highest input voltage Vin.

At light load currents, the converters operate in PFM mode and the output voltage ripple is dependent on the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external capacitor. The typical output voltage ripple is less than 1 % of the nominal output voltage.

9.2.4 Input capacitor selection for buck converters

Low ESR input capacitor is highly recommended for best input voltage filtering and minimizing the interference with other circuits caused by high input voltage spikes because of the nature of buck converter. Each DC-DC converter requires a 10 μ F ceramic input capacitor on its input pins. The input capacitor could be increased without any limit for better input voltage filtering.

9.3 Layout guide

Figure 21 shows layout guidance.

All components related to the power stage should be kept as close to the PMIC as possible, especially decoupling input and output capacitors. Place these components in order of priority:

- · Input capacitor of the buck regulators
- · LDO capacitors
- · VSYS and VINT capacitors
- · Buck regulator inductors
- · Buck regulator output capacitors

Care must be taken with BUCKxFB pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or high power signals, like the ones on the INBxx, and LXx pins. The exposed pad (EP) is the power ground of all bucks which is relatively noisy. AGND is the analog ground. Do not connect AGND to EP on the top layer. Connect AGND to main ground by via. Avoid separating the main ground under PCA9451A which may increase the return path. Make sure that there are enough vias to connect EP to system main ground.

Power management IC for i.MX 93x application processor

Power management IC for i.MX 93x application processor

10 Limiting values

Table 66. Limiting values (Absolute Maximum Ratings)

Explanation	Pin	Conditions	Min	Max	Unit
	VSYS, INB13, INB26, INB45, INL1, SWIN		-0.5	+6.0	V
	SWOUT		-0.5	SWIN + 0.5	V
	LX1, LX3		-0.5	INB13 + 0.5	V
	LX2, LX6		-0.5	INB26 + 0.5	V
	LX4, LX5		-0.5	INB45 + 0.5	V
	R_SNSP1, R_SNSP2, R_SNSP3_ CFG		-0.5	VSYS + 0.5	V
	BUCK_AGND, AGND		-0.5	+0.5	
/oltage range with respect to	BUCK4FB, BUCK5FB, BUCK6FB		-0.5	VSYS + 0.5	V
EP)	LDO1, LDO4, LDO5		-0.5	V _{INL1} + 0.5	V
	XTAL_IN, XTAL_OUT		-0.5	VSYS + 0.5	V
	RTC_RESET_B, PMIC_RST_B, CLK_32K_OUT		-0.5	LDO1 + 0.5	V
	PMIC_ON_REQ, POR_B PMIC_ STBY_REQ, WDOG_B, IRQ_B, SCL, SDA, SD_VSEL, SW_EN		-0.5	VSYS + 0.5	V
	SCLH, SDAH		-0.5	SWIN + 0.5	V
	SCLL, SDAL		-0.5	VINT + 0.5	
	VINT		-0.5	+2.0	V
	LX1, LX2, LX3, LX4	RMS current		5.0	Α
Output Current	LX5, LX6	RMS current		4.0	Α
	SWIN, SWOUT	RMS current		0.5	Α
lunction emperature			-40	+150	°C
1 -	All pine	HBM (JESD22-001)	-2	+2	kV
V _{ESD}	All pins	CDM (JESD22-C101E)	-500	500	V

11 Recommended operating conditions

Table 67. Recommended operating conditions

Explanation	Pin	Conditions	Min	Max	Unit
	VSYS, INL1		2.7	5.5	V
Voltage range (with respect to EP)	INB13, INB26, INB45		2.7	5.5	V
respect to Li)	SWIN, SWOUT		2.7	5.5	V
Junction temperature			-40	+125	°C

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 67. Recommended operating conditions...continued

Explanation	Pin	Conditions	Min	Max	Unit
Ambient temperature			-40	+105	°C
Storage temperature			-65	+150	°C

12 Thermal characteristics

Table 68. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		[1] [2]	40.1	°C/W
$\Psi_{j ext{-top}}$	junction to top of package		[1] [2]	6.2	°C/W
R _{th(j-c)}	thermal resistance from junction to case		[2][3]	18.3	°C/W

^[1] Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment

13 Electrical Characteristics

13.1 Top level parameter

Table 69. Top level parameter

Unless otherwise specified, VSYS = 3.8 V, V_{INBX} = 3.8 V, V_{INL1} = 3.8 V, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Quiescent C	urrent			<u> </u>		
I _{Q_SNVS}	VSYS SNVS Current	LDO1 is ON and no load, other regulators are OFF, CLK_32k_OUT enabled, PMIC_ON_REQ = L, T _{amb} = 25 °C		20	45	μА
		LDO1 is ON and no load, other regulators are OFF, PMIC_ON_REQ = L, T _{amb} = -40 °C ~105 °C		20	115	μА
I _{Q_STANDBY}	VSYS Standby Current	LDO1, LDO4, LDO5, BUCK1, BUCK3, BUCK4, BUCK5, BUCK6 are ON and no load. PMIC_ON_ REQ = H, PMIC_STBY_REQ = H		205	320	μА
VSYS				'		'
V _{SYS_UVLO}	VSYS UVLO	Rising – MTP Programmable 00b = 2.85 V 01b = 3.0 V 10b = 3.15 V 11b = 3.3 V	2.85	3.0	3.15	V
V _{SYS_UVLO_H}	VSYS UVLO Hysteresis	Falling		200		mV
V _{SYS_POR}	VSYS POR	Rising	2.2	2.4	2.6	V
V _{SYS_POR_H}	VSYS POR Hysteresis	Falling		200		mV

PCA9451A

All information provided in this document is subject to legal disclaimers.

^[2] Thermal test board meets JEDEC specification for this package (JESD51-9)

^[3] Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is the mold surface temperature at the center of the top

Power management IC for i.MX 93x application processor

Table 69. Top level parameter...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBX} = 3.8 V, V_{INL1} = 3.8 V, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VINT						
V _{INT}	Internal Power supply LDO	VSYS = 3.8 V	1.7	1.8	1.9	V
Low VSYS		•	•		•	
V _{LOW_VSYS}	Low VSYS	Low VSYS threshold above V _{SYS_UVLO} , LOW_VSYS [7:6] = 01b	150	200	250	mV
V _{LOW_VSYS} _ HYS	Low VSYS Hysteresis			110		mV
Thermal Shute	down					
T _{JSHDN}	Thermal Shutdown	Tj Rising, 15 °C hysteresis		150		°C
T _{J105}	Thermal interrupt1	Tj Rising, 15 °C hysteresis	95	105	125	°C
T _{J125}	Thermal interrupt2	Tj Rising, 15 °C hysteresis	115	125	145	°C
Logic and Cor	ntrol signals					
V _{IL}	Input Low level	PMIC_ON_REQ, PMIC_STBY_REQ, WDOG_B, SD_VSEL, SW_EN, PMIC_ RST_B			0.4	V
V _{IH}	Input High level	PMIC_ON_REQ, PMIC_STBY_REQ, WDOG_B, SD_VSEL, SW_EN, PMIC_ RST_B	1.4			V
I _{LEAK}	Logic Input leakage current	PMIC_ON_REQ, PMIC_STBY_REQ, WDOG_B, SD_VSEL: V _{Logic} = 5.5 V, VSYS = 5.5 V	-0.5		+0.5	μΑ
R _{PD}	Internal Pull-down resistor	SW_EN		1.2		ΜΩ
V _{OL}	Output Low level	RTC_RESET_B, IRQB, POR_B, I _{OL} = 6mA			0.4	V
R _{PU}	Internal Pull-up resistor	RTC_RESET_B, PMIC_RST_B to LDO1		100		ΚΩ
Logic signal			1		1	,
V _{IL}	Input Low level	R_SNSP3_CFG ^[1]			0.4	V
V _{IH}	Input High level	R_SNSP3_CFG ^[1]	1.4			V
I _{LEAK}	Logic Input leakage current	R_SNSP3_CFG ^[1] V _{Logic} = 5.5 V, VSYS = 5.5 V	-1		+1	μΑ
Timing spec						
t _{DEB_POKB}	Debounce time of regulator POKB		320	400	480	us
t _{DEB_POKB_SW}	Debounce time of Load SW POKB		240	300	360	us
t _{DEB_WDOGB}	Debounce time of WDOG_B		90	120	150	us
t _{DEB_PMIC_} RST_B	Debounce time of PMIC_ RST_B	T_PMIC_RST_DEB[2:0] = 001b	40	50	60	ms
t _{SNVS_PU}	Time to 90 % of LDO1 from VSYS UVLO detected		16	20	24	ms
t _{RTC_RST}	Time to RTC_RESET_B release from LDO1 POK		16	20	24	ms
t _{32k_EN}	Time to buffer enable from LDO POK		8	10	12	ms

PCA9451A

Power management IC for i.MX 93x application processor

Table 69. Top level parameter...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RTC_TRAN}	Time to transition to Xtal osc after RTC_RESET_B release		0.8	1	1.2	sec
t _{ON_DEB}	PMIC_ON_REQ high debounce time	Programmable, t _{ON_DEB} [1:0] = 01b	16	20	24	ms
t _{STEP}	Time step to turn on each regulator	Programmable, t _{STEP} [1:0] = 01b	1.6	2	2.4	ms
t _{OFF_STEP}	Time step to turn off each regulator	Programmable, t _{OFF_STEP} [1:0] = 10b	6	8	10	ms
t _{OFF_DEB}	PMIC_ON_REQ low debounce time	Programmable, t _{OFF_DEB} = 0b	90	120	150	μs
t _{PORB}	Time from LDO5 POK to POR_B release during power on seq		16	20	24	ms
t _{FLT_SD_PU}	Fault time to POK after regulator enable during power up sequence	At power up sequence	8	10	12	ms
t _{FLT_POK_MSK}	POK mask time when regulator is enabled at RUN/Standby mode		1.6	2	2.4	ms
t _{FLT_THSD} ^[2]	Time to enter FAULT_SD when thermal Fault occurs		170	210	250	μs
t _{FLT_SD_STAY}	Time to stay at FAULT_SD to move other mode		80	100	120	ms
t _{FLT_SD_WAIT}	Wait time to enter FAULT_ SD after fault interrupt	At Standby and Run mode, programmable, tFLT_SD_WAIT = 0b1	80	100	120	ms
t _{RESTART}	Wait time to start power up after power down at cold reset	Programmable, Trestart = 0b	200	250	300	ms
t _{WRESET}	POR_B low time at Warm reset		16	20	24	ms

13.2 I²C level translator

Table 70. I²C level translator

Unless otherwise specified, VSYS = 3.8 V, V_{INBX} = 3.8 V, V_{INL1} = 3.8 V, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDH	Operating voltage	Internally tied to SWIN	2.7		5.5	V
I_{VDDH}	Shutdown current	SWIN = 3.3 V, I2C_LT_EN bit = 0b		1	5	μΑ
I _{VDDH}	Active current	SWIN = 3.3 V, I2C_LT_EN bit = 1b, SCLL, SDAL = 1.8 V		60	90	μА
I _{VDDH}	Active current	SWIN = 3.3 V, I2C_LT_EN bit = 1b, SCLL, SDAL = 0 V		715	850	μА
V _{IH}	High level input voltage	SWIN = 3.3 V, I2C_LT_EN bit = 1b	VINT – 0.2			V

All information provided in this document is subject to legal disclaimers.

BUCK3 MTP bit needs to be programmed. Guaranteed by design, not tested in bench

Power management IC for i.MX 93x application processor

Table 70. I²C level translator...continued Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low level input voltage	SWIN = 3.3 V, I2C_LT_EN bit = 1b			0.15	V
V _{OH}	High level output voltage	SWIN = 3.3 V, I2C_LT_EN bit = 1b, I_{OL} = $20 \mu A$	0.75 * SWIN			V
V _{OL}	Low level output voltage	SWIN = 3.3 V , I2C_LT_EN bit = 1b, I_{OL} = 1 mA			0.4	V
C _{I/O} ^[1]	Input Output capacitance	SWIN = 3.3 V		5		pF
t _{PHL} ^[1]	High to Low propagation delay	SWIN = 3.3 V, SCL/SDA to SCLH/ SDAH		4.0	4.7	ns
t _{PLH} ^[1]	Low to High propagation delay	SWIN = 3.3 V, SCL/SDA to SCLH/ SDAH		5.0	6.8	ns
t _{PHL} ^[1]	High to Low propagation delay	SWIN = 3.3 V, SCLH/SDAH to SCL/ SDA		4.0	4.5	ns
t _{PLH} ^[1]	Low to High propagation delay	SWIN = 3.3 V, SCLH/SDAH to SCL/ SDA		4.0	4.5	ns
t _{en} ^[1]	Enable time	SWIN = 3.3 V, from I ² C enable		100		us
f _{data} ^[1]	Data rate				20	Mbps

^[1] Guaranteed by design

13.3 Dual-phase BUCK1/BUCK3

Table 71. Dual-phase BUCK1/BUCK3

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK1} = 0.85 V, C_{OUT} = 44 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INB13}	Input voltage range	INB13 pin	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{INB13} = 5.0 V		0.2		μΑ
IQ	Quiescent current	Regulator enabled, No load, No switching		20		μA
I _{OUT_MAX}	Max Output Current		4000			mA
V _{BUCK1}	Programmable Output voltage range	I ² C programmable, 12.5 mV step	0.65		2.2375	V
V _{BUCK1_OUT}	DC Output Voltage Accuracy	V_{INB13} = 3.8 V, $V_{\text{BUCK1_OUT}}$ = 0.85 V, IOUT = 0A, FPWM mode	-2		2	%
$\Delta V_{OUT(\Delta VINB)}$	DC Line regulation	V _{INB13} = 3V to 5 V, I _{OUT} = I _{OUT_MAX}		2		mV/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	$0 \text{ mA} < I_{\text{OUT}} < I_{\text{OUT_MAX}}, V_{\text{BUCK1_OUT}}$ $= 0.85 \text{ V}$		3		mV/A
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	I _{OUT} changes 0 to I _{OUT_MAX} (1A/us slope), V _{BUCK1_OUT} = 0.85 V		50		mV
ΔV _{OUT}	Output voltage Ripple	FPWM mode		10		mV

Power management IC for i.MX 93x application processor

Table 71. Dual-phase BUCK1/BUCK3...continued Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK1} = 0.85 V, C_{OUT} = 44 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SW}	Switching Frequency in CCM			2		MHz
Р	High Side P-FET R _{DSON}	V _{INB13} = 3.8 V		87		mΩ
R _{DSON}	Low Side N-FET R _{DSON}	V _{INB13} = 3.8 V		45		mΩ
	High side current limit	V _{INB13} = 3.8 V	4.0	4.5	5.0	А
I _{LIM}	Low side current limit	V _{INB13} = 3.8 V	2.5	3.0	3.7	А
t _{START}	Startup time	EN rising to 90 % of output voltage		250	500	μs
V _{RAMP}	Output voltage slew rate	Programmable, RAMP[1:0] = 01b		12.5		mV/us
V _{soft_strup}	Soft-start slew rate			12.5		mV/us
R _{DIS}	Output Active Discharge Resistance			100	150	Ω
POK	Output Power good			85	95	%
L	Inductor value			0.47		μH
C _{OUT}	Output capacitance	Minimum nominal capacitance	44		88	μF

13.4 BUCK2

Table 72. BUCK2 Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK2} = 0.6 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INB26}	Input voltage range	INB26 pin	2.85		5.5	V
Shutdown	Shutdown current	Regulator disabled, V _{INB26} = 5.0 V		0.1		μA
IQ	Quiescent current	Regulator enabled, No load, No switching		20		μΑ
I _{OUT_MAX}	Max Output Current		2000			mA
V _{BUCK2}	Programmable Output voltage range	I ² C programmable, 12.5 mV step	0.6		2.1875	V
V _{BUCK2_OUT}	DC Output Voltage Accuracy	V_{INB26} = 3.8 V, $V_{\text{BUCK2_OUT}}$ = 0.6 V, IOUT = 0A, FPWM mode	-2		2	%
ΔV _{OUT(ΔVINB)}	DC Line regulation	V _{INB26} = 3V to 5 V, I _{OUT} = I _{OUT_MAX}		2		mV/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	0 mA < I _{OUT} < I _{OUT_MAX} , V _{BUCK2_OUT} = 0.6 V		3		mV/A
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	I _{OUT} changes 0 to I _{OUT_MAX} (1A/us slope), V _{BUCK2_OUT} = 0.6 V		50		mV
ΔV _{OUT}	Output voltage Ripple	FPWM mode		10		mV
f _{sw}	Switching Frequency in CCM			2		MHz
R _{DSON}	High Side P-FET R _{DSON}	V _{INB26} = 3.8 V		87		mΩ

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 72. BUCK2...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK2} = 0.6 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Low Side N-FET R _{DSON}	V _{INB26} = 3.8 V		45		mΩ
I _{LIM}	High side current limit	V _{INB26} = 3.8 V	4.0	4.5	5.0	А
	Low side current limit	V _{INB26} = 3.8 V	2.5	3.0	3.7	А
t _{START}	Startup time	EN rising to 90 % of output voltage		250	500	μs
V_{RAMP}	Output voltage slew rate	Programmable, RAMP[1:0] = 01b		12.5		mV/us
V _{soft_strup}	Soft-start slew rate			12.5		mV/us
POK	Output Power good		75	85	95	%
R _{DIS}	Output Active Discharge Resistance			100	150	Ω
L	Inductor value			0.47		μH
C _{OUT}	Output capacitance	Minimum nominal capacitance	22		44	μF

13.5 BUCK4

Table 73. BUCK4

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK4} = 3.3 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INB45}	Input voltage range	INB45 pin	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{INB45} = 5.0 V		0.1		μA
IQ	Quiescent current	Regulator enabled, No load, No switching		20		μА
I _{OUT_MAX}	Max Output Current		3000			mA
V _{BUCK4}	Programmable Output voltage range	I ² C programmable, 25 mV step	0.6		3.4	V
V _{BUCK4_OUT}	DC Output Voltage Accuracy	V_{INB45} = 3.8 V, $V_{\text{BUCK4_OUT}}$ = 3.3 V, IOUT = 0A, FPWM mode	-2		2	%
$\Delta V_{OUT(\Delta VINB)}$	DC Line regulation	$V_{INB45} = 4 \text{ V to 5 V}, I_{OUT} = I_{OUT_MAX}$		2		mV/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	0 mA < I_{OUT} < I_{OUT_MAX} , V_{BUCK4_OUT} = 3.3 V		6		mV/A
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	I _{OUT} changes 0 to I _{OUT_MAX} (1A/us slope), V _{BUCK4_OUT} = 3.3 V		160		mV
ΔV _{OUT}	Output voltage Ripple	FPWM mode		10		mV
f _{SW}	Switching Frequency in CCM			2		MHz
D	High Side P-FET R _{DSON}	V _{INB45} = 3.8 V		87		mΩ
R _{DSON}	Low Side N-FET R _{DSON}	V _{INB45} = 3.8 V		45		mΩ
1	High side current limit	V _{INB45} = 3.8 V	4.0	4.5	5.0	Α
I _{LIM}	Low side current limit	V _{INB45} = 3.8 V	2.5	3.0	3.7	Α

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 73. BUCK4...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK4} = 3.3 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{START}	Startup time	EN rising to 90 % of output voltage		250	500	μs
V _{soft_strup}	Soft-start slew rate			12.5		mV/us
POK	Output Power good		75	85	95	%
R _{DIS}	Output Active Discharge Resistance			100	150	Ω
L	Inductor value			0.47		μΗ
C _{OUT}	Output capacitance	Minimum nominal capacitance	22		44	μF

13.6 BUCK5

Table 74. BUCK5

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK5} = 1.8 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INB45}	Input voltage range	INB45 pin	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{INB45} = 5.0 V		0.1		μA
IQ	Quiescent current	Regulator enabled, No load, No switching		20		μА
I _{OUT_MAX}	Max Output Current		2000			mA
V _{BUCK5}	Programmable Output voltage range	I ² C programmable, 25 mV step	0.6		3.4	V
V _{BUCK5_OUT}	DC Output Voltage Accuracy	V_{INB45} = 3.8 V, $V_{\text{BUCK5_OUT}}$ = 1.8 V, IOUT = 0A, FPWM mode	-2		2	%
$\Delta V_{OUT(\Delta VINB)}$	DC Line regulation	V _{INB45} = 3V to 5 V, I _{OUT} = I _{OUT_MAX}		2		mV/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	0 mA < I _{OUT} < I _{OUT_MAX} , V _{BUCK5_OUT} = 1.8 V		7		mV/A
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	I _{OUT} changes 0 to I _{OUT_MAX} (1A/us slope), V _{BUCK5_OUT} = 1.8 V		50		mV
ΔV _{OUT}	Output voltage Ripple	FPWM mode		22		mV
f _{SW}	Switching Frequency in CCM			2		MHz
D	High Side P-FET R _{DSON}	V _{INB45} = 3.8 V, including bonding wire		130		mΩ
R _{DSON}	Low Side N-FET R _{DSON}	V _{INB45} = 3.8 V, including bonding wire		70		mΩ
1	High side current limit	V _{INB45} = 3.8 V	3.0	3.5	4.0	Α
I _{LIM}	Low side current limit	V _{INB45} = 3.8 V	1.5	2	2.7	Α
t _{START}	Startup time	EN rising to 90 % of output voltage		250	500	μs
V _{soft_strup}	Soft-start slew rate			12.5		mV/us

Power management IC for i.MX 93x application processor

Table 74. BUCK5...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK5} = 1.8 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
POK	Output Power good		75	85	95	%
R _{DIS}	Output Active Discharge Resistance			100	150	Ω
L	Inductor value			0.47		μΗ
C _{OUT}	Output capacitance	Minimum nominal capacitance	22		44	μF

13.7 BUCK6

Table 75. BUCK6

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK6} = 1.1 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INB26}	Input voltage range	INB26 pin	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{INB26} = 5.0 V		0.1		μA
IQ	Quiescent current	Regulator enabled, No load, No switching		20		μΑ
I _{OUT_MAX}	Max Output Current		1500			mA
V _{BUCK6}	Programmable Output voltage range	I ² C programmable, 25 mV step	0.6		3.4	V
V _{BUCK6_OUT}	DC Output Voltage Accuracy	V _{INB26} = 3.8 V, V _{BUCK6_OUT} = 1.1 V, IOUT = 0A, FPWM mode	-2		2	%
$\Delta V_{OUT(\Delta VINB)}$	DC Line regulation	V _{INB26} = 3V to 5 V, I _{OUT} = I _{OUT_MAX}		2		mV/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	0 mA < I _{OUT} < I _{OUT_MAX} , V _{BUCK6_OUT} = 1.1 V		6		mV/A
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	I _{OUT} changes 0 to I _{OUT_MAX} (1A/us slope), V _{BUCK6_OUT} = 1.1 V		50		mV
ΔV _{OUT}	Output voltage Ripple	FPWM mode		18		mV
f_{SW}	Switching Frequency in CCM			2		MHz
Р	High Side P-FET R _{DSON}	V _{INB26} = 3.8 V		130		mΩ
R _{DSON}	Low Side N-FET R _{DSON}	V _{INB26} = 3.8 V		70		mΩ
	High side current limit	V _{INB26} = 3.8 V	3.0	3.5	4.0	А
I _{LIM}	Low side current limit	V _{INB26} = 3.8 V	1.5	2	2.7	А
t _{START}	Startup time	EN rising to 90 % of output voltage		250	500	μs
V _{soft_strup}	Soft-start slew rate			12.5		mV/us
POK	Output Power good		75	85	95	%
R _{DIS}	Output Active Discharge Resistance			100	150	Ω
L	Inductor value			0.47		μH

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 75. BUCK6...continued

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{BUCK6} = 1.1 V, C_{OUT} = 22 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{OUT}	Output capacitance	Minimum nominal capacitance	22	-	44	μF

13.8 LDO1

Table 76. LDO1

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{LDO1} = 1.8 V, C_{INL1} = 4.7 μ F, C_{OUT} = 1 μ F, T_{amb} = -40 °C \sim +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input voltage range	INL1 pin	2.85		5.5	V
IQ	Quiescent current	Regulator enabled, No load		2		μA
I _{OUT_MAX}	Maximum Output DC Current	V _{IN} > 2.85 V, V _{LDO1} = 1.8 V	10			mA
I _{LIMIT}	Short Current Limit	Output shorted to GND	30		60	mA
V_{DO}	Dropout Voltage	I _{OUT} = I _{OUT_MAX} , V _{IN} = 3.2 V, L1_ OUT[2:0]= 0x7, 3.3 V		35	60	mV
	Nominal output voltage	I ² C Programmable, 100 mV step	1.6		3.3	V
V_{LDO1}	Default voltage			1.8		V
	DC accuracy	V _{LDO1} = 1.8 V, I _{Load} = 5mA	-3		3	%
V _{NOISE}	Output noise	$f = 10 \text{ Hz to } 10 \text{ kHz}, I_{OUT} = 10 \% \text{ of } I_{MAX}, V_{LDO1} = 1.8 \text{ V}$		400		μV
$\Delta V_{OUT(\Delta VINL)}$	DC Line regulation $V_{LDO1} + 0.3V < V_{IN} < 5.5 V$, $I_{OUT(LDO1)} = 10 \%$ of I_{OUT_M}			0.2	0.5	%/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	V _{IN} = V _{LDO1} +0.3V to 5.5 V, 0 mA < I _{OUT} < I _{OUT} max		0.5	1	%
$\Delta V_{OUT(\Delta VINL)}$	Transient Line Response	V_{LDO1} +0.3V < V_{IN} < 5.5 V, $I_{OUT(LDO1)}$ = 10 % of I_{OUT_MAX} , tr = 10 μ s		0.5		%/V
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	$V_{IN} = V_{LDO1} + 0.3V \text{ to } 5.5 \text{ V},$ 1 mA < $I_{OUT} < I_{OUT_MAX}$, tr = 10 µs, $V_{LDO1} = 1.8 \text{ V}$	-3		3	%
PSRR	Power Supply Rejection ratio	f = 10 Hz to 10 kHz, I _{OUT} = 10 % of I _{OUT_MAX}		45		dB
V _{soft_strup}	Soft-start slew rate	I _{OUT} = 0 mA, 10 % to 90 % of V _{LDO1}		15		mV/μs
V _{ov_srtup}	Overshoot at startup	I _{OUT} = 0 mA			10	mV
t _{en}	Enable time	EN rising to 90 % of output voltage		150		μs
POK	Output Power good	Percentage of V _{LDO1} configuration	75	85	92	%
R _{DIS}	Active Discharge Resistance			100	150	Ω
C _{OUT}	Output capacitance	Minimum nominal capacitance	1		2	μF

Power management IC for i.MX 93x application processor

13.9 LDO4

Table 77. LDO4 Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{LDO4} = 0.8 V, C_{INL1} = 4.7 μ F, C_{OUT} = 1 μ F, T_{amb} = -40 °C \sim +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input voltage range	INL1	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{IN} = 5.0 V		0.1		μA
IQ	Quiescent current	Regulator enabled, No load		15		μA
I _{OUT_MAX}	Maximum Output DC Current	V _{IN} > 2.8, V _{LDO4} = 0.8 V	200			mA
I _{LIMIT}	Short Current Limit	Output shorted to GND	210		330	mA
V_{DO}	lour = lour V.u = 3.2 V L			60	100	mV
	Nominal output voltage	I ² C Programmable, 100 mV step	0.8		3.3	V
V_{LDO4}	Default voltage			0.8		V
	DC accuracy	V _{LDO4} = 0.8 V, I _{Load} = 5mA	-3		3	%
V _{NOISE}	Output noise	$f = 10 \text{ Hz to } 10 \text{ kHz}, I_{OUT} = 10 \% \text{ of } I_{MAX}, V_{LDO4} = 0.8 \text{ V}$		150		μV
AVOLITANIAL LINE REGULATION		V _{LDO4} +0.3V < V _{IN} < 5.5 V, I _{OUT(LDO4)} = 10 % of I _{OUT_MAX}	ĸ		0.5	%/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	$V_{IN} = V_{LDO4} + 0.3V \text{ to } 5.5 \text{ V},$ $0 \text{ mA} < I_{OUT} < I_{OUT_MAX}$		0.9		%
$\Delta V_{OUT(\Delta VINL)}$	Transient Line Response	V_{LDO4} +0.3V < V_{IN} < 5.5 V, $I_{OUT(LDO4)}$ = 10 % of I_{OUT_MAX} , tr = 10 μ s		0.5		%/V
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	$V_{IN} = V_{LDO4} + 0.3V \text{ to } 5.5 \text{ V},$ 1 mA < I_{OUT} < I_{OUT_MAX} , tr = 10 µs, $V_{LDO4} = 0.8 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	-4		4	%
PSRR	Power Supply Rejection ratio	f = 10 Hz to 10 kHz, I _{OUT} = 10 % of I _{OUT_MAX}		60		dB
V _{soft_strup}	Soft-start slew rate	I _{OUT} = 0 mA, 10 % to 90 % of V _{LDO4}		20		mV/μs
V _{ov_srtup}	Overshoot at startup	I _{OUT} = 0 mA			10	mV
t _{en}	Enable time	EN rising to 90 % of output voltage		100		μs
POK	Output Power good	Percentage of V _{LDO4} configuration	75	85	92	%
R _{DIS}	Active Discharge Resistance			100	150	Ω
C _{OUT}	Output capacitance	Minimum nominal capacitance	1		2	μF

Power management IC for i.MX 93x application processor

13.10 LDO5

Table 78. LDO5 Unless otherwise specified, VSYS = 3.8 V, V_{INBX} = 3.8 V, V_{INL1} = 3.8 V, V_{LDO5} = 3.3 V, C_{INL1} = 4.7 μ F, C_{OUT} = 1 μ F, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input voltage range	INL1 pin	2.85		5.5	V
I _{Shutdown}	Shutdown current	Regulator disabled, V _{IN} = 5.0 V		0.1		μΑ
IQ	Quiescent current	Regulator enabled, No load		15		μΑ
I _{OUT_MAX}	Maximum Output DC Current	V _{IN} > 2.8 V, V _{LDO5} = 3.3 V	150			mA
I _{LIMIT}	Short Current Limit	Output shorted to GND	160		280	mA
V_{DO}	Dropout Voltage I _{OUT} = I _{OUT} MAX, V _{IN} = 3.2 V, L5_ OUT_L[3:0] = 0xF, 3.3 V			50	100	mV
	Nominal output voltage	I ² C Programmable, 100 mV step	1.8		3.3	V
	D ()	SD_VSEL = Low		3.3		V
V_{LDO5}	Default voltage	SD_VSEL = High		1.8		V
	DC accuracy	V _{LDO5} = 1.8 V, I _{Load} = 5mA	-3		3	%
V _{NOISE}	Output noise	f = 10 Hz to 10 kHz, I _{OUT} = 10 % of I _{MAX} , V _{LDO5} = 3.3 V		300		μV
$\Delta V_{OUT(\Delta VINL)}$	DC Line regulation	V _{LDO5} +0.3V < V _{IN} < 5.5 V, I _{OUT(LDO5)} = 10 % of I _{OUT_MAX}		0.2	0.5	%/V
$\Delta V_{OUT(\Delta IOUT)}$	DC Load regulation	$V_{IN} = V_{LDO5} + 0.3V \text{ to } 5.5 \text{ V},$ $0 \text{ mA} < I_{OUT} < I_{OUT_MAX}$		0.3		%
$\Delta V_{OUT(\Delta VINL)}$	Transient Line Response	V _{LDO5} +0.3V < V _{IN} < 5.5 V, I _{OUT(LDO5)} = 10 % of I _{OUT_MAX}		0.5		%/V
$\Delta V_{OUT(\Delta IOUT)}$	Transient Load Response	$V_{IN} = V_{LDO5} + 0.3V \text{ to } 5.5 \text{ V},$ 1 mA < I_{OUT} < I_{OUT_MAX} , tr = 10 µs, $V_{LDO5} = 3.3 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	-3		3	%
PSRR	Power Supply Rejection ratio	f = 10 Hz to 10 kHz, I _{OUT} = 10 % of I _{OUT_MAX}		50		dB
V _{soft_strup}	Soft-start slew rate	I _{OUT} = 0 mA, 10 % to 90 % of V _{LDO5}		15		mV/μs
V _{ov_srtup}	Overshoot at startup	I _{OUT} = 0 mA			10	mV
t _{en}	Enable time	EN rising to 90 % of output voltage		200		μs
POK	Output Power good	Percentage of V _{LDO5} configuration	75	85	92	%
R _{DIS} Active Discharge Resistance				100	150	Ω
C _{OUT}	Output capacitance	Minimum nominal capacitance	1		2	μF

Power management IC for i.MX 93x application processor

13.11 Load SW

Table 79. Load SW

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8 V, V_{SWIN} = 3.8 V, C_{SWIN} = C_{SWOUT} = 1 μ F, T_{amb} = -40 °C \sim +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{SWIN}	Input voltage range	SWIN	2.8		5.5	V
IQ	Quiescent current	Switch enabled, No load, V _{SWIN} = 3.3 V		5	8	μА
I _{SHDN}	Shut down current	SWEN = 0 V, V _{SWIN} = 3.3 V		1	2.5	μA
I _{OC}	OverCurrent Threshold		450	800		mA
I _{SC}	Short circuit current threshold			2		А
R _{DSON}	Switch ON resistance	V _{SWIN} = 3.3 V, I _{LOAD} = 200 mA, including bonding wire resistance		150	210	mΩ
t _{en}	Enable time	Time to SWOUT 10 % from EN pin high, $V_{\rm SWIN}$ = 3.3 V		90	120	us
t _{ON}	Output rise time	CL = 10uF, V _{SWIN} = 3.3 V, SWOUT 10 % to 90 %		200	500	us
R _{DIS}	Active Discharge Resistance	SWEN = 0 V		80	120	Ω

13.12 32 kHz internal oscillator

Table 80. 32 kHz internal oscillator

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_32K}	Clock frequency	Internal Oscillator	29	32.77	36	kHz
f _{CLK}	Clock frequency	External 32.768 kHz crystal oscillator		32.768		kHz
t _{RTCSTB}	Oscillator stabilization time			1000		ms
Duty	Output Duty cycle		30	50	70	%
V _{OL}	Output Low level	I _{OL} = 1 mA			0.4	V
V _{OH}	Output High level	V _{LDO1} = 1.8 V, I _{OL} = 1 mA	1.6			V

13.13 I²C interface and logic I/O

Table 81. I²C interface and logic I/O

Unless otherwise specified, VSYS = 3.8 V, V_{INBx} = 3.8 V, V_{INL1} = 3.8, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SCL, SDA						
f _{I2C}	I ² C c lock frequency		-	-	1	MHz
V _{IH}	High-level Input voltage	SCL, SDA; VSYS= 3.0 V to 5.5 V	1.2	-	-	V

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Table 81. I²C interface and logic I/O...continued Unless otherwise specified, VSYS = 3.8 V, V_{INBX} = 3.8 V, V_{INL1} = 3.8, T_{amb} = -40 °C ~ +105 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low-level Input voltage	SCL, SDA; VSYS= 3.0 V to 5.5 V	-	-	0.4	V
V _{hys}	Hysteresis of Schmitt trigger inputs		0.01	-	-	V
V _{OL}	Low-level output voltage	SDA, Iload = 20 mA, VSYS = 3.0 V to 5.5 V	0	-	0.4	V
t _{HD,STA}	Hold time (repeated) START condition	Fast mode plus; After this period, the first clock pulse is generated	0.26	-	-	μs
t _{LOW}	LOW period of I ² C clock	Fast mode plus	0.5	-	-	μs
t _{HIGH}	HIGH period of I ² C clock	Fast mode plus	0.26	-	-	μs
t _{SU,STA}	Setup time (repeated) START condition	Fast mode plus	0.26	-	-	μs
t _{HD,DAT}	Data Hold time	Fast mode plus	0	-	-	μs
t _{SU,DAT}	Data Setup time	Fast mode plus	50	-	-	ns
t _r	Rise time of I2C_SCL and I2C_SDA signals	Fast mode plus	-	-	120	ns
t _f	Fall time of I2C_SCL and I2C_SDA signals	Fast mode plus	-	-	120	ns
t _{SU,STO}	Setup time for STOP condition	Fast mode plus	0.26	-	-	μs
t _{BUF}	Bus free time between STOP and START condition	Fast mode plus	0.5	-	-	μs
t _{VD,DAT}	Data valid time	Fast mode plus		-	0.45	μs
t _{VD,ACK}	Data valid acknowledge time	Fast mode plus		-	0.45	μs
t _{SP}	Pulse width of spikes that must be suppressed by input filter		0	-	50	ns

Power management IC for i.MX 93x application processor

14 Package outline

Power management IC for i.MX 93x application processor

Power management IC for i.MX 93x application processor

15 Soldering

PCA9451A

Power management IC for i.MX 93x application processor

Figure 25. Reflow soldering footprint for HVQFN56 (SOT949-6); I/O pads and solderable area

Power management IC for i.MX 93x application processor

PCA9451A

Power management IC for i.MX 93x application processor

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

5. MIN. METAL GAP SHOULD BE 0.15 MM.

© NXP B.V. ALL RIGHTS RESERVED

DATE: 01 MAR 2019

MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION:
PRINT VERSION NOT TO SCALE NON JEDEC 98ASA01369D A

Figure 27. Reflow soldering footprint for HVQFN56 (SOT949-6); note

Power management IC for i.MX 93x application processor

16 Revision history

Table 82. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PCA9451A v.2.0	20230417	Product data sheet	-	PCA9451A v.1.0
Modifications:	 Updated Figure 1 Table 6: Updated Table 18: Update Table 26: Update to 1b Removed BUCK Bx_ENMODE 11I Table 68: Update 	t _{OFF_DEB} value from 120 d reset value for 0x07 fro) μs to 2 ms om 0x4C to 0x6C updated highlighted added <u>Table 43</u> on" to "reserved" thr	I field in description from 0b
PCA9451A v.1.0	20221205	Product data sheet	-	-

Power management IC for i.MX 93x application processor

17 Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

17.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PCA9451A

All information provided in this document is subject to legal disclaimers.

Power management IC for i.MX 93x application processor

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

17.4 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Power management IC for i.MX 93x application processor

Tables

Tab. 1.	Ordering information	2	Tab. 44.	BUCK2 Output voltage table	36
Tab. 2.	Ordering options		Tab. 45.	0x19 BUCK4CTRL	
Tab. 3.	Pin description		Tab. 46.	0x1A BUCK4OUT	
Tab. 4.	SNVS mode	9	Tab. 47.	0x1B BUCK5CTRL	37
Tab. 5.	Power up sequence		Tab. 48.	0x1C BUCK5OUT	38
Tab. 6.	PWRUP mode		Tab. 49.	0x1D BUCK6OUT	
Tab. 7.	Power modes summary		Tab. 50.	0x1E BUCK6CTRL	
Tab. 8.	tFLT THSD		Tab. 51.	BUCK4, BUCK5, BUCK6 Output voltage	
Tab. 9.	tFLT_SD_WAIT			table	39
Tab. 10.	0x08 - RESET CTRL		Tab. 52.	0x20 LDO_AD_CTRL	
Tab. 11.	0x06 - SW_RST		Tab. 53.	0x21 LDO1CTRL	
Tab. 12.	trestart		Tab. 54.	0x24 LDO4CTRL	
Tab. 13.	tRESET		Tab. 55.	LDO4 output voltage	
Tab. 14.	PCA9451A Regulator control summary		Tab. 56.	0x25 LDO5CTRL_L	41
Tab. 15.	PCA9451A buck summary		Tab. 57.	LDO5 output voltage when SD_VSEL =	
Tab. 16.	LDO summary			Low	42
Tab. 17.	I2C target address		Tab. 58.	0x26 LDO5CTRL H	
Tab. 18.	Register map		Tab. 59.	LDO5 output voltage when SD_VSEL =	
Tab. 19.	0x00 Device ID			HIGH	42
Tab. 20.	0x01 INT1		Tab. 60.	0x2A LOADSW CRTL	
Tab. 21.	0x02 INT1_MSK		Tab. 61.	0x2B VRFLT1 STS	
Tab. 22.	0x03 STATUS1		Tab. 62.	0x2C VRFLT2 STS	
Tab. 23.	0x04 STATUS2		Tab. 63.	0x2D VRFLT1_MASK	
Tab. 24.	0x05 PWRON STAT		Tab. 64.	0x2E VRFLT2_MASK	
Tab. 25.	0x06 SW_RST		Tab. 65.	Tested inductor list	47
Tab. 26.	0x07 PWR_CTRL		Tab. 66.	Limiting values (Absolute Maximum	
Tab. 27.	0x08 RESET CTRL			Ratings)	50
Tab. 28.	0x09 CONFIG1		Tab. 67.	Recommended operating conditions	
Tab. 29.	0x0A CONFIG2	29	Tab. 68.	Thermal characteristics	
Tab. 30.	0x0C BUCK123_DVS	30	Tab. 69.	Top level parameter	51
Tab. 31.	0x0D BUCK1OUT_LIMIT	30	Tab. 70.	I2C level translator	53
Tab. 32.	0x0E BUCK2OUT_LIMIT	30	Tab. 71.	Dual-phase BUCK1/BUCK3	54
Tab. 33.	0x0F BUCK3OUT_LIMIT	31	Tab. 72.	BUCK2	
Tab. 34.	0x10 BUCK1CTRL	31	Tab. 73.	BUCK4	56
Tab. 35.	0x11 BUCK1OUT_DVS0	32	Tab. 74.	BUCK5	
Tab. 36.	0x12 BUCK1OUT_DVS1		Tab. 75.	BUCK6	58
Tab. 37.	0x13 BUCK2CTRL	32	Tab. 76.	LDO1	59
Tab. 38.	0x14 BUCK2OUT_DVS0	33	Tab. 77.	LDO4	60
Tab. 39.	0x15 BUCK2OUT_DVS1	33	Tab. 78.	LDO5	61
Tab. 40.	0x16 BUCK3CTRL	33	Tab. 79.	Load SW	62
Tab. 41.	0x17 BUCK3OUT_DVS0		Tab. 80.	32 kHz internal oscillator	
Tab. 42.	0x18 BUCK3OUT_DVS1	34	Tab. 81.	I2C interface and logic I/O	62
Tab. 43.	BUCK1, BUCK3 Output voltage table		Tab. 82.	Revision history	70
Figur	es				
Fig. 1.	Block diagram	3	Fig. 9.	PCA9451A fault event	13
Fig. 2.	PCA9451A pin map – top view		Fig. 10.	PCA9451A FAULT_SD from VR Fault	
Fig. 3.	Functional internal block diagram		1 ig. 10.	except LDO1 in RUN/STANDBY	1./
Fig. 4.	Power states diagram		Fig. 11.	PCA9451A Cold reset	
Fig. 5.	SNVS mode ON/OFF sequence		Fig. 11.	Warm reset	
Fig. 6.	Power ON/OFF sequence		Fig. 13.	DVS functional diagram	
Fig. 7.	PCA9451A mode transition		Fig. 13.	DVS timing	
Fig. 7.	PCA9451A FAULT_SD from thermal	1 1	Fig. 14.	BUCK1 and BUCK3 configuration	
ı ıy. u.	shutdown	12	1 ig. 10.	DOGNI and DOGNO configuration	18

Power management IC for i.MX 93x application processor

Fig.	16.	32 kHz Crystal oscillator driver block		Fig. 23.	Package outline HVQFN56 (SOT949-6)	
		diagram	20		detail	65
Fig.	17.	Load switch internal block diagram	20	Fig. 24.	Reflow soldering footprint for HVQFN56	
Fig.	18.	Architecture of I2C level translator (one			(SOT949-6); solder mask opening pattern	66
		channel)	21	Fig. 25.	Reflow soldering footprint for HVQFN56	
Fig.	19.	Interrupt diagram	22		(SOT949-6); I/O pads and solderable area	67
Fig.	20.	Application schematic	46	Fig. 26.	Reflow soldering footprint for HVQFN56	
Fig.	21.	PCA9451A layout	49		(SOT949-6); solder paste stencil	68
Fig.	22.	Package outline HVQFN56 (SOT949-6)	64	Fig. 27.	Reflow soldering footprint for HVQFN56	
_				_	(SOT949-6); note	69

Power management IC for i.MX 93x application processor

Contents

1	General description		8.2.20	0x14 BUCK2OUT_DVS0	
2	Features and benefits		8.2.21	0x15 BUCK2OUT_DVS1	
3	Applications		8.2.22	0x16 BUCK3CTRL	
4	Ordering information		8.2.23	0x17 BUCK3OUT_DVS0	
4.1	Ordering options		8.2.24	0x18 BUCK3OUT_DVS1	
5	Block diagram		8.2.25	0x19 BUCK4CTRL	
6	Pinning information		8.2.26	0x1A BUCK4OUT	
6.1	Pinning		8.2.27	0x1B BUCK5CTRL	
6.2	Pin description		8.2.28	0x1C BUCK5OUT	
7	Functional description	6	8.2.29	0x1D BUCK6CTRL	
7.1	Features	6	8.2.30	0x1E BUCK6OUT	39
7.2	Functional diagram	7	8.2.31	0x20 LDO AD CTRL	40
7.3	Power modes	7	8.2.32	0x21 LDO1CTRL	40
7.3.1	Off mode	8	8.2.33	0x24 LDO4CTRL	
7.3.2	READY mode		8.2.34	0x25 LDO5CTRL_L	41
7.3.3	SNVS mode	8	8.2.35	0x26 LDO5CTRL H	
7.3.4	PWRUP mode		8.2.36	0x2A LOADSW CTRL	
7.3.5	PWRDN mode		8.2.37	0x2B VRFLT1_STS	
7.3.6	RUN mode		8.2.38	0x2C VRFLT2_STS	
7.3.7	STANDBY mode		8.2.39	0x2D VRFLT1_MASK	
7.3.8	FAULT SD		8.2.40	0x2E VRFLT2 MASK	
7.4	PMIC reset		9	Application design-in information	
7. 5	Regulator control in each power mode		9.1	Reference schematic	15
7.6	Regulator summary		9.2	Typical application	
7.6.1			9.2.1	Detailed design procedure	
	Buck regulator		9.2.1		
7.6.1.1	Dynamic voltage scaling			Inductor selection for buck converters	47
7.6.1.2	1 3	18	9.2.3	Output capacitor selection for buck	47
7.6.1.3	BUCK1 and BUCK3 dual-phase	40	004	converters	47
-	configuration		9.2.4	Input capacitor selection for buck	4.0
7.6.2	LDO and load switch			converters	
7.7	32 kHz crystal oscillator driver		9.3	Layout guide	
7.8	Load switch		10	Limiting values	
7.9	I2C level translator		11	Recommended operating conditions	
7.10	Interrupt management		12	Thermal characteristics	
8	Software interface		13	Electrical Characteristics	
8.1	Register map		13.1	Top level parameter	51
8.2	Register details		13.2	I2C level translator	
8.2.1	0x00 Device_ID	24	13.3	Dual-phase BUCK1/BUCK3	
8.2.2	0x01 INT1	24	13.4	BUCK2	55
8.2.3	0x02 INT1_MSK		13.5	BUCK4	
8.2.4	0x03 STATUS1	25	13.6	BUCK5	57
8.2.5	0x04 STATUS2	26	13.7	BUCK6	58
8.2.6	0x05 PWRON_STAT	27	13.8	LDO1	59
8.2.7	0x06 SW_RST		13.9	LDO4	60
8.2.8	0x07 PWR_CTRL		13.10	LDO5	61
8.2.9	0x08 RESET CTRL		13.11	Load SW	
8.2.10	0x09 CONFIG1		13.12	32 kHz internal oscillator	
8.2.11	0x0A CONFIG2		13.13	I2C interface and logic I/O	
8.2.12	0x0C BUCK123 DVS		14	Package outline	
8.2.13	0x0D BUCK1OUT LIMIT		15	Soldering	
8.2.14	0x0E BUCK2OUT LIMIT		16	Revision history	
8.2.15	0x0F BUCK3OUT LIMIT		17	Legal information	
8.2.16	0x10 BUCK1CTRL		••	-09a: IIIOIIIauoii	/ 1
8.2.17	0x11 BUCK1OUT DVS0				
8.2.18					
8.2.19	0x12 BUCK1OUT_DVS1 0x13 BUCK2CTRL				
0.2.19	UA 13 BOOKZOTKL	32			

Power management IC for i.MX 93x application processor

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.