Formulaire d'analyse

Limites et ordres de grandeurs

limite	Notation de Landau	condition	
$\lim_{x \to +\infty} \frac{x^{\alpha}}{x^{\beta}} = 0$	$x^{\alpha} = o_{+\infty}(x^{\beta})$	$\alpha < \beta$	
$\lim_{x \to +\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0$	$\left (\ln x)^{\alpha} = o_{+\infty}(x^{\beta}) \right $	$0 < \alpha, \ 0 < \beta$	
$\lim_{x \to +\infty} \frac{(\exp x)^{\alpha}}{x^{\beta}} = +\infty$	$x^{\beta} = o_{+\infty}((\exp x)^{\alpha})$	$0 < \alpha, \ 0 < \beta$	
$\lim_{x \to -\infty} x^{\alpha} (\exp x)^{\beta} = 0$	$\left (\exp x)^{\beta} = o_{-\infty}(x^{-\alpha}) \right $	$0 < \alpha, \ 0 < \beta$	
$\lim_{x \to 0+} \frac{x^{\alpha}}{x^{\beta}} = 0$	$x^{\alpha} = o_0(x^{\beta})$	$\alpha > \beta$	
$\lim_{x \to 0+} x^{\alpha} (\ln x)^{\beta} = 0$	$\left (\ln x)^{\beta} = o_0(x^{-\alpha}) \right $	$0 < \alpha, \ 0 < \beta$	

Dérivées

fonction	dérivée	condition
x^n	nx^{n-1}	$n \in \mathbb{N}, x \in \mathbb{R}$
x^n	nx^{n-1}	$n \in \mathbb{Z}, x \in \mathbb{R}^*$
x^{α}	$\alpha x^{\alpha-1}$	$\alpha \in \mathbb{R}, x \in \mathbb{R}_+^*$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\alpha = \frac{1}{2}, x \in \mathbb{R}_+^*$
$\ln x$	$\frac{1}{x}$	$x \in \mathbb{R}_+^*$
$\exp x$	$\exp x$	$x \in \mathbb{R}$

$\sin x$	$\cos x$	$x \in \mathbb{R}$
$\cos x$	$-\sin x$	$x \in \mathbb{R}$
$\sinh x$	$\cosh x$	$x \in \mathbb{R}$
$\cosh x$	$\sinh x$	$x \in \mathbb{R}$
$\tan x$	$\frac{1}{\cos^2 x}$	$x \in \mathbb{R}, x \neq (2k+1)\frac{\pi}{2}$
	$1 + \tan^2 x$	
$\tanh x$	$\frac{1}{\cosh^2 x}$	$x \in \mathbb{R}$
	$1 - \tanh^2 x$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$x \in]-1,1[$
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	$x \in]-1,1[$
$\arctan x$	$\frac{1}{1+x^2}$	$x \in \mathbb{R}$
arsinh x	$\frac{1}{\sqrt{1+x^2}}$	$x \in \mathbb{R}$
$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$	$x \in]1, +\infty[$
artanh x	$\frac{1}{1-x^2}$	$x \in]-1,1[$

Règles de calculs :

 $\alpha, \beta \in \mathbb{R}$, u et v deux fonctions

$$\star (\alpha u)' = \alpha u'$$

$$\star (u+v)' = u'+v'$$

$$\star (uv)' = u'v+uv'$$

$$\star \left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$\star \left(u(\alpha x+\beta)\right)' = \alpha u'(\alpha x+\beta)$$

$$\star \left(u(v(x))\right)' = v'(x) \cdot u'(v(x))$$

Primitives

fonction	primitive	condition
x^n	$\frac{x^{n+1}}{n+1} + C$	$n \in \mathbb{N}^*, x \in \mathbb{R}$
x^n	$\frac{x^{n+1}}{n+1} + C$	
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$	$\alpha \in \mathbb{R} \setminus \{-1\}, x \in \mathbb{R}_+^*$
$\frac{1}{x}$	$\ln x + C$	$x \in \mathbb{R}_+^*$
$\exp x$	$\exp x + C$	$x \in \mathbb{R}$
$\cos x$	$\sin x + C$	$x \in \mathbb{R}$
$\sin x$	$-\cos x + C$	$x \in \mathbb{R}$
$\cosh x$	$\sinh x + C$	$x \in \mathbb{R}$
$\sinh x$	$\cosh x + C$	$x \in \mathbb{R}$
$\frac{1}{\cos^2 x}$	$\tan x + C$	$x \in \mathbb{R}, x \neq (2k+1)\frac{\pi}{2}$
$\frac{1}{\cosh^2 x}$	$\tanh x + C$	$x \in \mathbb{R}$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	$x \in]-1,1[$
$\frac{1}{1+x^2}$	$\arctan x + C$	$x \in \mathbb{R}$
$\frac{1}{\sqrt{x^2+1}}$		$x \in \mathbb{R}$
$\frac{1}{\sqrt{x^2 - 1}}$	$\operatorname{arcosh} x + C$	$x \in]1, +\infty[$

Règles de calculs :

 $\alpha \in \mathbb{R}$, u et v deux fonctions

$$\star \int \alpha u = \alpha \int u$$

$$\star \int (u+v) = \int u + \int v$$

$$\star \int (u'u') = \ln|u| + C$$

$$\star \int (u'u'') = \frac{u^{\alpha+1}}{\alpha+1} \text{ si } \alpha \neq -1$$

Développements en série entière

fonction	DSE(0)	RC	validité
$\frac{1}{1-x}$	$\sum_{n\geq 0} x^n$	1] - 1,1[
$\frac{1}{1+x}$	$\sum_{n\geq 0} (-1)^n x^n$	1] - 1,1[
$\exp x$	$\sum_{n\geq 0} \frac{x^n}{n!}$	∞	\mathbb{C}
$\cos x$	$\sum_{n\geq 0} \frac{(-1)^n x^{2n}}{(2n)!}$	∞	\mathbb{C}
$\sin x$	$\sum_{n\geq 0} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	∞	\mathbb{C}
$\cosh x$	$\sum_{n\geq 0} \frac{x^{2n}}{(2n)!}$	∞	\mathbb{C}
$\sinh x$	$\sum_{n\geq 0} \frac{x^{2n+1}}{(2n+1)!}$	∞	\mathbb{C}
$\ln(1+x)$	$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} x^n$	1] - 1, 1]
$-\ln(1-x)$	$\sum_{n\geq 1} \frac{x^n}{n}$	1	[-1, 1[
$(1+x)^{\alpha}$	$1 + \sum_{n \ge 1} \frac{\alpha(\alpha - 1)(\alpha - n + 1)}{n!} x^n$	1] - 1, 1[
$\arctan x$	$\sum_{n\geq 0} \frac{(-1)^n}{2n+1} x^{2n+1}$	1	[-1,1]