- 1. 估计计算复杂度时不考虑比较操作、移位操作。
- 2. 整除操作的资源消耗需要仔细考虑。(若资源消耗过大,需要考虑使用 LUT 存储 1/x 的近似结果,乘以该结果再右移 n 位,其中 x 范围为[0,255])
- 3. 若资源紧张, 做乘法时并行乘法, 即 25*18 乘法器同时做两次乘法, 一个高位, 一个低位。
- 4. 仿真结果: (0,0,0)到(255,255,255)的像素,分析 R 的误差 (G 和 B 同理),结果为

0	1	-1	2
63.22%	30.90%	5.53%	0.35%

RGB2HSL

- 1. 比较 RGB, 得出最大值和最小值。
- 2. 计算色调 H, 其结果为 12bit 值:

$$H = \begin{cases} 0\,, & \textit{if } \max = \min \\ 0000 + 683 \times (G - B) / / (\max - \min) & \textit{if } \max = R \ \&\& \ G \geq B \\ 4096 - 683 \times (B - G) / / (\max - \min) & \textit{if } \max = R \ \&\& \ G < B \\ 2730 + 683 \times (R - G) / / (\max - \min) & \textit{if } \max = B \ \&\& \ R \geq G \\ 2730 - 683 \times (G - R) / / (\max - \min) & \textit{if } \max = B \ \&\& \ R < G \\ 1365 + 683 \times (B - R) / / (\max - \min) & \textit{if } \max = G \ \&\& \ B \geq R \\ 1365 - 683 \times (R - B) / / (\max - \min) & \textit{if } \max = G \ \&\& \ B < R \end{cases}$$

• 一次乘法: 10bit * 8bit

• 一次整除: 18bit / 8bit

• 一次加减: 12bit +/- 10bit, 结果保证正数

- 3. 计算亮度 L, 其结果为 9bit 值: L=max+min
- 4. 计算饱和度 S, 其结果为 9bit 值:

$$S = \begin{cases} 0 & \textit{if } L = 0 \ || \ L = 510 \\ 510*(\max - \min) / / \min(L, 510 - L) & \textit{otherwise} \end{cases}$$

• 一次乘法: 9bit * 8bit

• 一次整除: 17bit / 8bit

5. L和S均右移一位

6. 最终结果: H 为 12bit 值; S 和 L 为 8bit 值

HSL2RGB

1. 计算 C, 结果为 8bit:

$$C = \begin{cases} L \ll 1 & \text{if } L < 128 \\ (255 - L) \ll 1 & \text{if } L \ge 128 \end{cases}$$
$$C = C \times S \times 129 \gg 15$$

- 一次乘法: 9bit * 8bit → 舍弃最高位, C*S 为 16bit 数
- 乘以 129 → 左移 7 位再加上原始数据 → 舍弃最高位, C*S*129 为 23bit 数
- 2. 计算 H1 和 H2, 分别为 3bit 和 12bit:

h=H*6 → h 为 15bit 值 → H1=h 高 3bit; H2=h 低 12bit

3. 计算 X:

$$X = \begin{cases} C \times (4096 - H2) \gg 12 & \text{if } H1 \text{ mod } 2 = 1 \\ C \times H2 \gg 12 & \text{if } H1 \text{ mod } 2 = 0 \end{cases}$$

- 一次乘法: 8bit * 12bit
- 4. 计算 m, m 为 8bit: $m = L (C \gg 1)$
- 5. 计算R, G, B:

$$R,G,B = \left\{ egin{array}{ll} C,X,0 & if \ H1 = 0 \ X,C,0 & if \ H1 = 1 \ 0,C,X & if \ H1 = 2 \ 0,X,C & if \ H1 = 3 \ X,0,C & if \ H1 = 4 \ C,0,X & other \end{array}
ight.$$

6. R, G, B 都加上 m, 结果保证为 8bit, 即加上 m 的 9bit 数字舍弃最高位