问题求解与实践——数值积分

主讲教师: 陈雨亭、沈艳艳

问题描述

- 给定函数f(x), 求积分 $\int_a^b f(x) dx$
 - 矩形积分法
 - 梯形积分法
 - Simpson积分法,输入: &f, a, b, n
 - Romberg积分法,输入: &f, a, b, eps

矩形积分法

梯形积分法

Simpson积分法

③ Simpson公式

$$\int_{a}^{b} f(x)dx \approx \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] - \frac{1}{6}(b-a) \left[f(a) + f(a) + f(a) + f(a) \right] - \frac{1}{6}(b-a) \left[f(a) + f(a) + f(a) + f(a) \right] - \frac{1}{6}(b-a) \left[f(a) + f(a) + f(a) + f(a) \right] - \frac{1}{6}(b-a) \left[f(a) + f(a) + f(a) + f(a) + f(a) \right] - \frac{1}{6}(b-a) \left[f(a) + f$$

Simpson公式是以函数f(x)在a, b, (a+b)/2这三点的函数值f(a), f(b), $f(\frac{a+b}{2})$ 的加权平均值 $\frac{1}{6}(f(a)+4f(\frac{a+b}{2})+f(b))$ 作为平均高度 $f(\xi)$ 的近似值而获得的一种数值积分方法。

Romberg积分法

$$\begin{cases} T_0(0) = \frac{b-a}{2} [f(a)+f(b)] \\ T_0(k) = \frac{1}{2} T_0(k-1) + \frac{b-a}{2^k} \sum_{j=0}^{2^{k-1}-1} f(a+(2j+1)\frac{b-a}{2^k}) \end{cases}$$

$$T_1(k-1) = \frac{4}{3}T_0(k) - \frac{1}{3}T_0(k-1)$$

$$T_2(k-1) = \frac{16}{15}T_1(k) - \frac{1}{15}T_1(k-1)$$

$$T_3(k-1) = \frac{64}{63}T_2(k) - \frac{1}{63}T_2(k-1)$$

$$k = 1, 2, \dots$$

以上整个过程称为Romberg算法

其中外推加速公式可简化为

$$T_m(k-1) = \frac{1}{4^m - 1} [4^m T_{m-1}(k) - T_{m-1}(k-1)] \qquad -----(9)$$

并且m可以推广到 $m = 1,2,\cdots$ $k = 1,2,\cdots$

Romberg算法求解步骤

公式

Romberg算法的代 数精度为m的两倍

Romberg算法的收敛 阶高达m+1的两倍

Romberg积分法(例)

• 计算 $\int_{1+x}^{1.5} \frac{1}{1+x} dx$

	m=0	1	2	3	
k=0	To(0)	T1(0)	T2(0)	T3(0)	
1	To(1)	T1(1)	T2(1)		
2	To(2)	T1(2)	T _{i.1} 1.05	T _{i,2} T _{i,3}	T _{1,4}
3	To(3)		2 0.953571429 0.9 3 0.925983575 0.9 4 0.918741799 0.9	921428571 916787624 0. 916478228 916327874 0. 916297224 916293190 0. 916290077	0. 916294351 0. 916290776 0. 916290762