LATEX 計數器的應用

張馨云 410578046

MAY 27, 2019

引言

在閱讀數理相關的文章、書籍、講義,甚或作答考試卷時,常常會看到一些定義公式、範例,題號等等皆以相同的格式呈現,並因不同章節而有計數之分別,為避免手動輸入及維護造成錯誤與麻煩,本文將介紹如何使用 LATEX 指令計數。

1 計數器基本指令

1.1 IAT_EX 內建計數器

LATEX 有內建幾種計數器以便使用者使用,指令如表1所示:

表 1: LATEX 內建計數器

指令(加上\)	用途
part	部序號計數器
equation	公式序號計數器
chapter	章序號計數器
page	頁碼計數器
section	節序號計數器
footnote	腳註序號計數器
subsection	小節序號計數器
mpfootnote	小頁環境中的腳註序號計數器
subsubsection	小小節序號計數器
enumi	排序列表第1層序號計數器
enumii	排序列表第2層序號計數器
enumiii	排序列表第3層序號計數器
enumiv	排序列表第 4 層序號計數器
paragraph	段序號計數器
subparagraph	小段序號計數器
figure	插圖序號計數器
table	表格序號計數器

1.2 定義新的計數器

定義新的計數器,需要用到 amsthm 套件所提中的 \theroemstyle 指令,使用方法如下,詳見表2:

{\newtheorem{name}{Printed output}[numberby]

{\newtheorem{name}[counter]{Printed output}

表 2: theoremstyle 說明

選項設置	說明	
name	定義新計數器的指令。	
Printed output	計數器最終呈現於文章的字樣	
numberby	新定義的計數器將以原先已定義的計數器為計數範圍	
counter	counter為已定義之計數器。代表新定義之計數器將	
	與其共用相同的計數器,計算數字時會同步累計。	
\begin{name}	開啟新定義之計數器環境	
$\ensuremath{\mbox{\sc end}\{name\}}$	州瓜以祁 八亡我之二日 安义664农4兄	

1.3 直接定義計數之數

別於1.2所介紹之事先定義再以指令去呈現的計數器,另一種計數器使用方 法如表3所示:

表 3: counter 使用說明

指令	說明
\newcounter{name}	定義計數器名稱
\setcounter{name}{ 數字 }	設置計數器起始數字,預設為0
\addtocounter{name}{1}	第二次使用往上加1
\thename	顯示該計數器的值
\value{name}	調用該計數器之值

使用此方法計數,每一次計數都需要使用 \addtocounter ,相比之下,使用事先定義之計數器指令計數更為簡便。

2 計數器實際操作

表4定義了幾個新的計數器:

表 4: 定義新的計數器

定義	說明
{\newtheorem{Def}{Definition}[section]	定義 Definition
{\newtheorem{thm}{{\HC 定理 }}[section]	定義 theorem 為定理
{\newtheorem{lemma}[thm]{Lemma}	定義與 theorem 共用編號的 lemma
{\newtheorem{ex}{{\F Example}}	定義獨立編號的 example
{\newtheorem{EX}[ex]{{\HC 範例 }}	定義與 example 共用編號的範例

或以有底色之表格,或以¹上下限之線條,我們常看見,在文章、書籍中, 定理、範例等將定義區隔開來,以較明顯的方式呈現給讀者,不妨在以下練習 試試:

Definition 2.1. (Factorization Theorem)

Let X_1, X_2, \dots, X_n denote random variables with joint pdf or pmf $f(x_1, x_2, \dots, x_n; \theta)$, which depends on the parameter θ . The statistic $Y = u(X_1, X_2, \dots, X_n)$ is sufficient for θ if and only if $f(x_1, x_2, \dots, x_n; \theta) = \varphi[u(x_1, x_2, \dots, x_n); \theta]h(x_1, x_2, \dots, x_n)$, where φ depends on x_1, x_2, \dots, x_n only through $u(x_1, \dots, x_n)$ and $h(x_1, \dots, x_n)$ does not depend on θ .

Example 1. Let X_1, X_2, \dots, X_n be a random sample from an exponential distribution with pdf

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta} = exp\left[x(-\frac{1}{\theta}) - ln\theta\right], \quad 0 < x < \infty,$$

provided that $0 < x < \infty$. Here, K(x) = x. Thus, $\sum_{i=1}^{n} X_i$ is sufficient for θ ; of courfe, $\bar{X} = \sum_{i=1}^{n} X_i / n$ is also sufficient.

Lemma 2.2. (Neyman-Pearson Lemma)

Let X_1, X_2, \dots, X_n be a random sample of size n from a distribution with pdf or pmf $f(x; \theta)$, where θ_0 and θ_1 are two possible values of θ . Denote the joint pdf or pmf of X_1, X_2, \dots, X_n by the likelihood function

$$L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta).$$

 $^{^{1}}$ \rule{\textwidth}{0.2pt}

If there exist a positive constant k and a subset C of the sample space such that

- (a) $P[(X_1, X_2, \dots, X_n) \in C; \theta_0] = \alpha$
- (b) $\frac{L(\theta_0)}{L(\theta_1)} \leq kfor(X_1, X_2, \cdots, X_n) \in C$, and
- (c) $\frac{L(\theta_0)}{L(\theta_1)} \ge kfor(x_1, x_2, \cdots, x_n) \in C'$,

then C is a best critical region of size α for testing the simple null hypothesis $H_0: \theta = \theta_0$ against the simple alternative hypothesis $H_1: \theta = \theta_1$.

\$\frac{1}{2}\delta_0^{\frac{1}{2}\delta_0}\$ Let \$\bar{X}_n\$ denote the mean of a random sample of size n from a distribution that has pdf $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Use Δ -method to find the limiting distribution of $\sqrt{n}(\sqrt{\bar{X}_n} - 1)$.

因為我們曾經定義 Lemma 與定理共用計數編號;範例與 Example 共用計數編號,可以看到 Lemma2.2接續定理2.1標號;範例2接續 Example1編號。

3 結語與問題

利用 LATEX 之計數器能使文章書籍在編輯時更有效率且錯誤率更低,只要事先在 preamble 檔案中設計好計數器樣式、字型等等運作規則,操作起來比 WORD 更加方便快速!在引用 amsthm 套件定義計數器時,可能會因為套件衝突,而產生"! LaTeX Error: Command \openbox already defined."之錯誤信息,此時,只要在引用 amsthm 套件之前,使用 \let\openbox\relax,忽略 \openbox 這個指令,就可以成功的引用 amsthm 套件囉!

References

- [1] 吳聰敏·吳聰慧, cwTeX 排版系統, 翰蘆圖書出版有限公司, 10 2005, 第 3 版.
- [2] Edward G.J. Lee 李果正, 大家來學 *latex*, http://jupiter.math.nctu.edu.tw/~smchang/latex/latex123.pdf, 3 2004, Version 1.0.
- [3] C.C.Wang, *Xetex tutorial*, https://ntpuccw.blog/supplements/xetex-tutorial/.

- [4] Frequently asked question list for tex, https://texfaq.org/.
- [5] Robert V. Hogg, Elliot A. Tanis, and Dale L.Zimmerman, *Probability and statistical inference*, 9th ed., Pearson Education Limited, England, 2015.
- [6] Latex color, http://latexcolor.com/.
- [7] Peter Yu, Styling captions in latex (subfig and caption packages), http://www.peteryu.ca/tutorials/publishing/latex_captions_old.