

FASTSchoolofComputing

CS2001 – Data Structures FALL 2023

Instructor Name: Hira Butt Email: hira.butt@nu.edu.pk

Office Location: Old-Admin Block (M-107) infront of Lab 4

Course Information

Program: BS(CS,SE,DS,R) Credit Hours: 3 and (1 for Lab)

Type: Core Pre-requisites: Object Oriented Programming

Course Description/Objectives/Goals:

- Introduce students with data structures and their associated algorithms.
- Introduce the concept of efficient data structures and how this efficiency can be measured. Prepare students to select appropriate data structure for a given computational problem.

Course Learning Outcomes (CLOs):

The course learning outcomes of this course are:

- **1.** Understand basic concepts of data structure and algorithms.
- 2. Evaluate different data structures in terms of memory and time requirement
- 3. Design appropriate data structures to solve real world problems related to the program
- 4. Determine bugs in programs and recognize required operations with data structures

Course Textbooks:

- Mark Allen Weiss, *Data structures and algorithm analysis*, Pearson Education, 2007. Adam Drozdek, *Data structures and algorithms in C++*, Course technology, 2004. Nell Dale, *C++ Plus Data Structures*, 3rd Edition, Jones and Bartlett, 2003.
- Michael T. Goodrich, Roberto Tamassia and David M. Mount, Data structures and algorithms, 2nd Edition, John Wiley & Sons, 2011.

(Tentative) Grading Criteria:

Assignments - (15 %) Quizzes - (10 %) Midterms - (30 %) Final Exam - (45 %) • Grading scheme for this course is **Absolute** under application of CS department's grading policies. • Minimum requirement to pass this course is to obtain at least 50% absolute marks.

Course Policies:

Quizzes will be announced.

- o All assignments and course work must be done individually.
- o **Plagiarism** in any work (Labs, Quiz, Assignment, Midterms, and Final Exam) from any source, Internet or a Student will result in **F** grade or deduction of absolute marks.
- o No Late Submissions or Makeup Quizzes.
- o 80% attendance is required for appearing in the Final exams.

Tentative Weekly Schedule

Tentative Weekly Schedule		
Lectu	Topics	
re		
Coun		
t		
1	Introduction	
3	Time Complexity Analysis and Asymptotic Bounds	
4	Linked Lists: Singly linked lists, doubly linked lists, Circular lists Link list iterators	
2	Stacks: Operations (Push, Pop) Applications: Expression Evaluation, Backtracking,	
1	Queues: Operations (Enqueue, Dequeue) Applications: Lee's Algorithm, Josephus Problem	
Mid 1		
2	Recursion: with Time complexity Analysis	
3	Trees:	
+	Binary trees and their traversals Binary search trees (Search, Insertion, and Deletion)	
3	Height Balanced Binary Search Trees AVL Trees (Insertion, Deletion)	
3	Heaps: Heaps (Insertion, Deletion and Search) Applications: Heap sort Data compression and Huffman coding	
	Mid 2	

3	Hashing: Hash tables and hash functions Collision resolution methods Universal hashing (Optional) Bit vectors and bloom filters (Optional)
3	Graphs: Storage (Adjacency List, Adjacency Matrix) Search: Breadth first search, Depth first search Applications: Connection, Finding Paths, Cycles