Introduction to RNA-Seq Data Analysis

Dr. Benilton S Carvalho
Department of Statistics
University of Campinas

Tools of Choice

- R and BioConductor:
 - Both created by Robert Gentleman;
 - Open-source tools;
 - Easy to prototype;
 - Communicate with C/C++/Fortran;

About R

- Cross-plataform;
- Data analysis and visualization;
- Fast deployment to users;
- Able to interact with C/C++/Fortran;
- Thousands of packages:
 - Descriptive analyses;
 - Clustering and classification;
 - Regression Models and Trees;
 - Visualization;
 - Reproducible research;
 - Etc;

About Bioconductor

- Software infra-structure that uses R;
- Designed for biological data;
- Hundreds of packages:
 - Mass spectrometry;
 - Microarrays;
 - Next Generation Sequencing (NGS);
- Active community:
 - Heavily used by industry;
 - Releases in April and October;
 - Cutting-edge methods.

RAW DATA

Inside a FASTQ File

Instrument
Run ID
Flowcell ID
Lane
Tile number
X in tile
Y in tile

Mate Fail filter Control bits Index seq

```
[benilton@bioinf1 tmp]$ head -n 4 *
=> IC01_GCCAAT_L001_R1.fastq <==</p>
@HWI-ST932:92:C1EU1ACXX:1:1101:1206:2174 1:N:0:GCCAAT
GAAGGCAGCAGCGCGCAAATTACCCACTCCCGACCCGGGGAGGTAGTGACGAA
@@@DD3DBFH8?DCGEHIIIGIICHGHDDGGHEGIGIIBEDCB>5>@CCACB@B
=> IC01_GCCAAT_L001_R2.fastq <==</p>
@HWI-ST932:92:C1EU1ACXX:1:1101:1206:2174 2:N:0:GCCAAT
CTGCGGTATCCAGGCGGCTCGGGCATGCTTTGAACACTCTAATTTTTTCAAAGT
@<@DDDDDDFBFHGGGGBAAGGHB@>FF@FIG@FGEEGIEHE;CEHHDEE@CCC
[benilton@bioinf1 tmp]$
```

The Mistery of the Quality Scores

```
.....
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~
33
                                                    126
                                        104
0.....9......40
                    0.2.....41
S - Sanger
         Phred+33, raw reads typically (0, 40)
X - Solexa
          Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

The Mistery of Quality Scores

- Base 1:
 - -G/@
- @ = 31
- PHRED = 31
- $-10*\log 10(1-P) = 31$
- P = 0.9992057

```
[benilton@bioinf1 tmp]$ head -n 4 *
==> IC01_GCCAAT_L001_R1.fastq <==
@HWI-ST932:92:C1EU1ACXX:1:1101:1206:217
GAAGGCAGCAGGCGCGCAAATTACCCACTCCCGACCCGG
@@@DD3DBFH8?DCGEHIIIGIICHGHDDGGHEGIGIIB
=> IC01_GCCAAT_L001_R2.fastq <==</p>
@HWI-ST932:92:C1EU1ACXX:1:1101:1206:217
CTGCGGTATCCAGGCGGCTCGGGCATGCTTTGAACACTC
@<@DDDDDDFBFHGGGGBAAGGHB@>FF@FIG@FGEEGI
[benilton@bioinf1 tmp]$
```

QUALITY ASSESSMENT

FastQC

- We have experience with FastQC, but we are developing our own tool;
- FastQC is Java-based;
- Includes the option of pointing and clicking;
- http://www.bioinformatics.babraham.ac.uk/p rojects/fastqc/Help/3%20Analysis%20Module s/

FastQC – Per Base Seq Quality

FastQC – Quality Score over All Seqs

FastQC – Sequence Content

FastQC – Sequence Duplication

MAPPING

Principles of Mapping

- Obtain the reference (genome or transcriptome) for the organism of interest:
- Mapping to the genome:
 - Allows for identification of novel genes/isoforms
 - Must allow for gaps (really hard)
- Mapping to the transcriptome:
 - Fast(er)
 - No need for spliced alignments
 - Can't find novel genes/isoforms

Principles of Mapping

Genome alignment (e.g. align to 23 chromosomes):

Transcriptome alignment (e.g. align to 150,000 known transcripts):

Result of Mapping: SAM/BAM

ор	Description
М	Alignment match (can be a sequence match or mismatch
I	Insertion to the reference
D	Deletion from the reference
N	Skipped region from the reference
S	Soft clip on the read (clipped sequence present in <seq>)</seq>
Н	Hard clip on the read (clipped sequence NOT present in <seq>)</seq>
Р	Padding (silent deletion from the padded reference sequence)

COUNT TABLE

The BAM isn't the final file

- BAM files give the location of mapped reads;
- But, per individual, how many reads should be considered as from any particular gene?
- The count table represents this;
- It can be obtained through
 GenomicAlignments, HTSeq, Rsubread and
 EasyRNASeq;

Count-table Example

	C1	C2	C3	T1	T2	T3
ENSRN0G00000010603	0	0	0	0	0	1
ENSRN0G00000033787	4289	7831	12489	5904	5033	4619
ENSRN0G00000014887	3	7	7	1	3	3
ENSRN0G00000045753	0	0	7	0	0	2
ENSRN0G00000048290	9	11	7	11	6	5
ENSRN0G00000001689	233	375	466	489	405	266

STATISTICAL MODELING

What is a model?

Different Transcripts, Rates and Probabilities

Different Transcripts, Rates and Probabilities

Characteristics of a Poisson Distribution

X ~ Poisson(λp)

$$P(X = k) = \frac{(\lambda p)^k e^{-\lambda p}}{k!}$$

Mean: λp

Variance: λp

Analysis method: GLM

Need to account for extra variability

mean

Based on the data of Nagalakshmi et al. Science 2008; slide adapted from Huber;

Characteristics of a Negative Binomial (NB) Distribution

- X | λp ~ Poisson(λp)
- λp ~ Gamma(a, b)
- Mean: μ
- Variance: μ/ν
 0 < ν < 1

Current methods for DE use NB model!

Allow these to change!!!

Sequencing – Rationale Biological Replicates

For subject j, on transcript i:

$$Y_{ij}|\lambda_{ij} \sim P(\lambda_{ij})$$

 Different subjects have different rates, which we can model through:

$$\lambda_{ij} \sim \Gamma(\alpha, \beta)$$

This hierarchy changes the distribution of Y:

$$Y_{ij} \sim \text{NB}\left(\alpha, \frac{1}{1+\beta}\right)$$

An additional source of variation

Summary of the Poisson and Negative Binomial Models

- Poisson(λ):
 - Mean: λ
 - Variance: λ
- Negative Binomial $(\alpha, 1/(1+\beta))$:
 - Mean: α/β
 - Variance: $\alpha(1+\beta)/\beta^2$

Example: DE / DEU

Summary of Models Treatment (x_i) as Covariate

Expression in control $N_{ij} \sim NB(s_j\mu_{ij},\alpha(\mu_{ij}))$ $\log \mu_{ij} \sim \beta_i^0 + \beta_i^T x_j^T$ Change for treatment

$$N_{ijl} \sim NB(s_j\mu_{ijl},\alpha(\mu_{ijl}))$$

$$\log \mu_{ijl} \sim \beta_i^0 + \beta_{il}^E x_j^E + \beta_{ij}^T x_j^T + \beta_{ijl}^{ET} x_l^E x_j^T$$

Fraction of reads falling onto exon *I* in control

Change to fraction of reads for exon / due to treatment

Variance Shrinkage

Dispersion estimation: shrinkage

mean of normalized counts

Downstream Effect of Shrinkage

Remember the variance effect!

- Variance changes as mean changes...
- This seriously affects visualization;
- It also interferes with comparisons;

 DESeq2 has a "regularized log-transformation" method designed for that.

Clustering

PCA

The Truth Statistical Models

- There is no "correct model";
- Models are approximations of the truth;
- There is a "useful model";
- Understand the mechanisms of the system for better choices of model alternatives;

What if we look at multiple p-values at a time?

- On a Gene Expression study, we test often 20K genes for differential expression;
- Each test leads to one p-value;
- Should we trust the p-values in order to make decisions?

What if we look at multiple p-values at a time?

- Can we simulate this?
- Choose an α -level;
- Generate two populations with the same pars;
- Run t-test;
- Is the result smaller than α ?
 - Yes: reject;
 - No: don't reject;

Multiple Testing

- We are doing high-throughput experiments;
- Comparing thousands of units simultaneously;
- At this scale, we can observe several instances of rare events just by chance:
 - Event A: 1 in 1000 chance of happening;
 - Event B: 999 in 1000 chance of happening;
 - And the experiment is tried 20,000 times;
 - We expect 20 occurrences of Event A to be observed, although Event B is much more likely;

Multiple Testing

- Similar scenario, for example, with DE;
- Most genes are not differentially expressed;
- High-throughput experiments;
- Differential expression is tested for 20K genes;
- Need to protect against false positives;
- Suggestion:
 - use non-specific filtering;
 - use adjusted p-values;

Type I and Type II Errors

Non-Specific Filtering

- The majority of the genes are not differentially expressed – this is the basic hypothesis for normalization;
- If we reduce the number of genes to be tested, the chance of making a wrong decision is reduced;
- Non-Specific filtering refers to removing genes that are clearly not DE without looking at the phenotypic information of the samples;

Using Mean Expression as a Filter

Dispersion estimation: shrinkage

mean of normalized counts

FDR – Benjamini Hochberg (BH)

- Sort the p-values by magnitude;
- Get the adjusted values by

$$j^* = \max\left\{j : p_j \le \frac{j}{m}\alpha\right\}$$

