PIEO Trees for Fun and Profit

We assume familiarity with [MLF⁺23], adopt its notational conventions, and borrow many of its definitions!

1 Structure & Semantics

Definition 1.1. For sets S, D, and predicates F over D, let **PIEO**(S, D, F) denote the set of *PIEO*s that

- (1) hold entries in S, decorated with meta-data in D
- (2) are ordered by Rk
- (3) support predicates in F
- (4) admit partial functions

pop :
$$PIEO(S, D, F) \times F \rightarrow S \times PIEO(S, D, F)$$

push : $PIEO(S, D, F) \times S \times D \times Rk \rightarrow PIEO(S, D, F)$

For $p \in \mathbf{PIEO}(S, D, F)$, $s \in S$, and $f \in F$, we write

- (1) |p| for the number of entries in p
- (2) $|p|_s$ for the number of times s occurs in p
- (3) $|p|_{s,f}$ for the number of times s occurs in p with associated d such that f(d)

We fix an opaque set **Data** and a collection \mathcal{F} of predicates defined on it. These predicates come with a total order \leq and the property that, $\forall d \in \mathbf{Data}$ and $f, f' \in \mathcal{F}, f \leq f' \land f(d) \implies f'(d)$.

Definition 1.2. The set of *PIEO trees* over $t \in \textbf{Topo}$, denoted **PIEOTree**(t), is defined inductively by

$$\begin{array}{ll} p \in \mathsf{PIEO}(\mathsf{Pkt},\mathsf{Data},\mathcal{F}) \\ \text{Leaf}(p) \in \mathsf{PIEOTree}(*) \end{array} \qquad \begin{array}{ll} n \in \mathbb{N} & ts \in \mathsf{Topo}^n & p \in \mathsf{PIEO}(\{1,\ldots,n\},\mathsf{Data},\mathcal{F}) \\ \forall i \in [1,n]. \ qs[i] \in \mathsf{PIEOTree}(ts[i]) \\ \text{Internal}(qs,p) \in \mathsf{PIEO}(\mathsf{Node}(ts)) \end{array}$$

Definition 1.3. Define pop : **PIEOTree** $(t) \times \mathcal{F} \rightarrow \mathbf{Pkt} \times \mathbf{PIEOTree}(t)$ by

$$\frac{\mathsf{pop}(p,f) = (\mathsf{pkt},p')}{\mathsf{pop}(\mathsf{Leaf}(p),f) = (\mathsf{pkt},\mathsf{Leaf}(p'))} \qquad \frac{\mathsf{pop}(p,f) = (i,p') \quad \mathsf{pop}(qs[i],f) = (\mathsf{pkt},q')}{\mathsf{pop}(\mathsf{Internal}(qs,p),f) = (\mathsf{pkt},\mathsf{Internal}(qs[q'/i],p'))}$$

Definition 1.4. Define push : $PIEOTree(t) \times Pkt \times Data \times Path(t) \rightarrow PIEOTree(t)$ by

$$\frac{\operatorname{push}(p,\operatorname{pkt},d,r)=p'}{\operatorname{push}(\operatorname{Leaf}(p),\operatorname{pkt},d,r)=\operatorname{Leaf}(p')} \frac{\operatorname{push}(p,i,d,r)=p'}{\operatorname{push}(\operatorname{Internal}(qs,p),\operatorname{pkt},d,(i,r)::pt)=\operatorname{Internal}(qs[q'/i],p')}$$

Definition 1.5. Let $t \in \textbf{Topo}$. A *control* over t is a triple (s, q, z), where $s \in \textbf{St}$ is the *current state*, q is a PIEO tree of topology t, and $z : \textbf{St} \times \textbf{Pkt} \to \textbf{Data} \times \textbf{Path}(t) \times \textbf{St}$ is a function called the *scheduling transaction*. We write Control(t) for the set of controls over t.

Definition 1.6. Define $|\cdot|$: **PIEOTree** $(t) \to \mathbb{N}$ by

$$|\operatorname{Leaf}(p)| = |p|$$
 $|\operatorname{Internal}(qs, p)| = \sum_{i=1}^{|qs|} |qs[i]|$

We say that $q \in \mathbf{PIEOTree}(t)$ is well-formed w.r.t $f \in \mathcal{F}$, denoted $\vdash_f q$, if it adheres to the following rules.

$$\frac{\forall i \in [1, |qs|] \; \vdash_f qs[i] \land |p|_i = |qs[i]|}{\vdash_f \mathsf{Leaf}(p)}$$

We say g is well-formed, denoted $\vdash g$, if for all $f \in \mathcal{F}$, $\vdash_f g$.

References

[MLF⁺23] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. Formal abstractions for packet scheduling,