A Data-Driven Statistical Model for Predicting the Critical Temperature of a Superconductor

APS Meeting, March 9, 2018

Kam Hamidieh
Statistics and Data Sciences Department
UT Austin

Find All at:

https://github.com/khamidieh/predict_tc

Acknowledgement

Many thanks to Dr. Allan Macdonald, Sid W. Richardson Foundation Regents Chair in Physics, University of Texas at Austin.

Agenda

- Goal
- Data source discussion
- Data clean up
- Some model discussion
- (Live!) Demo

Goal

• Create a statistical model to predict T_c from elemental properties.

Statistical model = Machine learning model

Data

- Data source: Superconducting Material Database maintained by Japan's National Institute for Materials Science (NIMS)
- Site: http://supercon.nims.go.jp/index en.html
- Largest database of superconductors of all types
- Has errors
- Easily accessible

Data Clean Up

- Data accessed on July 24, 2017
- Started with 31,611 superconductors
- A combination of manual and software clean up left 21,263 superconductors.
- Took a bit of time.

Feature Extraction

Example: $Nb_{0.8}Pd_{0.2}$ with $T_c = 1.98$ K

Use the thermal conductivities of niobium and palladium to define a new "feature":

Mean thermal conductivity = (54 + 71)/2 = 62.5 W/(m×K)

		Feature & Description
		Mean
10 —	-	Weighted mean
		Geometric mean
		Weighted geometric mean
		Entropy
		Weighted entropy
		Range
		Weighted range
		Standard deviation
		Weighted standard deviation

More on Feature Extraction:

• I had done some preliminary analysis to find out which elemental properties may be useful.

A lot of it was driven by using properties with no missing values.

No MAGPIE. No Aflow. (Didn't know about them.)

Good: Gain intuition

Bad: lots of coding

Final Data

• Data size = 21,263 rows by 82 Columns

• 82 = 81 features extracted for each superconductor (10 features \times 8 element properties plus 1 features for the total number of elements) + T_c

Features are highly correlated.

Main Model

- XGBoost = eXtreme Gradient Boost
- Set up: add a tree to an ensemble of trees in a sequential manner to improve the fit:

Objective with respect to
$$f_t = \sum_{i=1}^n L(\underbrace{y_i}_{observed}, \underbrace{\hat{y}_i^{(t-1)} + f_t(x_i)}_{predicted}) + \Omega(f_t)$$
New Tree

Loss Function

Clever Penalty

Anthony Goldbloom, CEO of Kaggle (now owned by Google):

"It used to be random forest that was the big winner, but over the last six months a new algorithm called XGBoost has cropped up, and it's winning practically every competition in the structured data category." (2015?)

Model Summary

The model is tuned over various grid.

- Based on cross validation:
 - Out of sample root-mean-squared-error ≈ 9.5 K
 - Out of sample $R^2 \approx 0.92$

Demo:

https://github.com/khamidieh/predict_tc

> predict_tc("Ba0.2La1.8Cu104", verbose = TRUE)
\$prediction
[1] 24.44241

\$info

	critical_temp	material
1	29.00	Ba0.2La1.8Cu104
934	28.00	La1.8Ba0.2Cu104
1053	31.00	La1.8Ba0.2Cu104
1277	25.60	La1.8Ba0.2Cu104
1798	21.00	La1.8Ba0.2Cu104
2272	23.50	La1.801Ba0.199Cu104
2342	20.90	La1.8Ba0.2Cu104
2907	32.50	La1.8Ba0.2Cu104
3533	16.50	La1.8Ba0.2Cu104
7041	17.90	La1.8Ba0.2Cu104
9684	38.00	La1.8Ba0.2Cu104
20338	9.38	La1.8Ba0.2Cu104
20653	23.40	La1.8Ba0.2Cu104

> predict tc("MgB2")

[1] 35.50066

> predict_tc("Hg")

[1] 4.076086

Comments

- Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy.
- Root-mean-squared-error is too global.
- The model probably won't predict out of the range of the observed T_c .
- Many potential variables are missing: pressure, crystal structure, manufacturing method, etc.
- Excellent project idea: predict if a material is a superconductor or not. However, we would need a *large* database of non-superconductors.

Thank you!

Questions or comments?