Linear Algebra

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- 1. Eigenvalues and eigenvectors.
- 2. Properties of eigenvalues and eigenvectors.
- 3. Cayley-Hamilton theorem.

Eigen Values and Eigen Vectors

Introduction

Assume the linear transformation $(R^2 \rightarrow R^2)$ of

- → vertical scaling of +2 to every vector of a square.
- → It will transform the square into a rectangle.

Note that during these transformations, some of the vectors (red and yellow) remain on the same line (span) as they were earlier.

[Eigenvectors]

- The horizontal vector remains **unchanged** (same direction, same length). [**Eigenvalue**= 1]
- The vertical vector has same direction, but doubled in length. [Eigenvalue 2]
- The diagonal vector has changed its angle (direction) as well as length.

For visual interactive version of the transformation, check the following link"

https://www.geogebra.org/m/mdvN0HTt

Definitions of Eigenvalue and Eigenvector

Let A be an $n \times n$ matrix. The scalar λ is called an **eigenvalue** of A if there is a <u>nonzero</u> vector \mathbf{x} such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector **x** is called an **eigenvector** of A corresponding to λ .

Verifying Eigenvalues and Eigenvectors

For the matrix

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

verify that $\mathbf{x}_1 = (1, 0)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_1 = 2$,

$$Ax_1 = \lambda x_1$$

SOLUTION

$$A\mathbf{x}_{1} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$Eigenvalue \qquad Eigenvector$$

Verifying Eigenvalues and Eigenvectors

For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

verify that

$$\mathbf{x}_1 = (-3, -1, 1)$$
 and $\mathbf{x}_2 = (1, 0, 0)$

are eigenvectors of A and find their corresponding eigenvalues.

SOLUTION

$$A\mathbf{x}_1 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix}.$$

$$A\mathbf{x}_2 = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$
Any vector $\in Kern(T)$ represented by A is and eigenvector with eigenvalue of zero.

Excel zeroxon

Exercise

determine whether \mathbf{x} is an eigenvector of A.

$$A = \begin{bmatrix} -1 & -1 & 1 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{bmatrix}$$

(a)
$$\mathbf{x} = (2, -4, 6)$$

(b)
$$\mathbf{x} = (2, 0, 6)$$

(a) Because

$$A\mathbf{x} = \begin{bmatrix} -1 & -1 & 1 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ -16 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$$

 \mathbf{x} is an eigenvector of A (with a corresponding eigenvalue 4).

(b) Because

$$A\mathbf{x} = \begin{bmatrix} -1 & -1 & 1 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ -16 \\ 12 \end{bmatrix} \neq \lambda \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix}$$

 \mathbf{x} is *not* an eigenvector of A.

Verifying Eigenvalues and Eigenvectors

Is
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 an eigenvector of $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$? Yes $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$? Yes $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$ Uhen the sum of each row of the matrix is equal to some constant value k , then we know that one of its eigenvectors is an all-ones

value k, then we know that one of its eigenvectors is an all-ones vector and its corresponding eigenvalue is k

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix} \xrightarrow{sum = 6} \Rightarrow \text{ Eigenvector} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{, eigenvalue} = 6$$

$$\begin{bmatrix} 1 & 8 \\ 5 & 4 \end{bmatrix} \xrightarrow{sum} = 9 \qquad \Rightarrow \qquad \text{Eigenvector} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{, eigenvalue} = 9$$

Finding the eigenvalues and eigenvectors:

- \rightarrow To get non-zero value for x
 - → We need to have infinite

number of solutions

$$|\hat{\lambda}I - A| = 0$$

Characteristic equation

Homogeneous

system of linear

equations

If A is $n \times n$ matrix, Then the ccs eqn. is

n degree polynomial

Substitute in $(\lambda I - A) x = 0$ with the obtained λs and solve the homogeneous system of equations.

Now is known

EXAMPLE

Finding Eigenvalues and Eigenvectors

Reverse the sign of all elements

• Add λ to the main diagonal elements

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}. \quad |\lambda I - A| = \left| \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix} \right| = \left| \begin{matrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{matrix} \right|$$

SOLUTION

The characteristic polynomial of A is

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix}$$

$$= (\lambda - 2)(\lambda + 5) - (-12)$$

$$= \lambda^2 + 3\lambda - 10 + 12$$

$$= \lambda^2 + 3\lambda + 2$$

$$= (\lambda + 1)(\lambda + 2).$$

$$(\lambda + 1)(\lambda + 2) = 0$$
, which gives $\lambda_1 = -1$ and $\lambda_2 = -2$

EXAMPLE

Finding Eigenvalues and Eigenvectors

(Continued)

Find the eigenvalues and corresponding eigenvectors of

For
$$\lambda_1 = -1$$
, $A \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$. $A \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -1 \end{bmatrix}$ $A \begin{bmatrix} 8 \\ 2 \end{bmatrix} = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$ (a) For $\lambda_1 = -1$, $A \begin{bmatrix} 8 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 & 12 \\ -1 & 4 \end{bmatrix}$, Gauss Elimination $A \begin{bmatrix} 1 & 12 \\ 0 & 0 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4t \\ t \end{bmatrix} = t \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad t \neq 0.$$
All scalar multiples of $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ free eigenvectors of $\lambda = -1$ eigenspace of $\lambda = -1$

 \equiv eigenspace of $\lambda = -1$

Finding Eigenvalues and Eigenvectors

(Continued)

Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}.$$

SOLUTION

For
$$\lambda_2 = -2$$
,
$$(-2)I - A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 & 12 \\ -1 & 3 \end{bmatrix} \xrightarrow{\text{Gauss}} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \overset{\circ}{\circ}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3t \\ t \end{bmatrix} = t \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad t \neq 0.$$

Example

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -2 & 5 & -2 \\ -6 & 6 & -3 \end{bmatrix}$$

- (a) Find the eigen values and its corresponding eigen vectors of the matrix.
- (b) What is the dimension of the eigen space corresponding to each eigen value.

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & 2 \\ 2 & \lambda - 5 & 2 \\ 6 & -6 & \lambda + 3 \end{vmatrix} = \lambda^3 - 3\lambda^2 - 9\lambda + 27 = (\lambda + 3)(\lambda - 3)^2 = 0.$$

For
$$\lambda_1 = -3$$
,
$$\begin{bmatrix} \lambda_1 - 1 & -2 & 2 \\ 2 & \lambda_1 - 5 & 2 \\ 6 & -6 & \lambda_1 + 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -4 & -2 & 2 \\ 2 & -8 & 2 \\ 6 & -6 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $\{(t, t, 3t) : t \in R\}$. So, an eigenvector corresponding to $\lambda_1 = -3$ is $\{1, 1, 3\}$.

din= 1

Spour of

Example(continued)

$$A = \begin{bmatrix} 1 & 2 & -2 \\ -2 & 5 & -2 \\ -6 & 6 & -3 \end{bmatrix}$$

- (a) Find the eigen values and its corresponding eigen vectors of the matrix.
- (b) What is the dimension of the eigen space corresponding to each eigen value.

For
$$\lambda_2 = 3$$
,
$$\begin{bmatrix} \lambda_2 - 1 & -2 & 2 \\ 2 & \lambda_2 - 5 & 2 \\ 6 & -6 & \lambda_2 + 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -2 & 2 \\ 2 & -2 & 2 \\ 6 & -6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $\{(s-t,s,t): s,t\in R\}$. So, two eigenvector corresponding to $\lambda_2=3$ are (1,1,0) and (1,0,-1).

Example

Is 3 an eigenvalue of
$$A = \begin{bmatrix} 1 & -1 \\ -6 & 0 \end{bmatrix}$$
?

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 \\ 6 & \lambda \end{vmatrix}$$

$$|3I - A| = \begin{vmatrix} 2 & 1 \\ 6 & 3 \end{vmatrix} = (2)(3) - (1)(6) = 0$$

∴ 3 an eigenvalue of $A = \begin{bmatrix} 1 & -1 \\ -6 & 0 \end{bmatrix}$ Since it satisfies its characteristic equation. To calculate
the corresp. eigenvec. [2 1 0]

EXAMPLE

Finding Eigenvalues and Eigenvectors

Find the eigenvalues and corresponding eigenvectors of

Triangla.
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}_3$$

What is the dimension of the eigenspace of each eigenvalue?

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^{3}. \longrightarrow 2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 & 0 \end{vmatrix} = (\lambda - 2)^{3}. \longrightarrow 2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \end{vmatrix} = (\lambda - 2)^{3}. \longrightarrow 2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \end{vmatrix} = (\lambda - 2)^{3}. \longrightarrow 2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & \lambda - 2 & 0 \end{vmatrix} = (\lambda - 2)^{3}. \longrightarrow 2I - A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \underline{s \text{ and } t \text{ not both zero.}}$$

THEOREM 7.3

Eigenvalues of Triangular Matrices

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

EXAMPLE

Finding Eigenvalues of Diagonal and Triangular Matrices

Find the eigenvalues of each matrix.

SOLUTION

(a) Without using Theorem 7.3, you can find that

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ 1 & \lambda - 1 & 0 \\ -5 & -3 & \lambda + 3 \end{vmatrix}$$
$$= (\lambda - 2)(\lambda - 1)(\lambda + 3).$$

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

- **Example** (a) Find the eigen values and its corresponding eigen vectors of
- the matrix.

 (b) What is the dimension of the eigen space corresponding to each eigen value. $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 2,3,1 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 2,3,1 \end{bmatrix}$

Triangular matrix $\rightarrow \lambda = 2$, 3, 1

For
$$\lambda_1 = 2$$
,
$$\begin{bmatrix} \lambda_1 - 2 & 0 & -1 \\ 0 & \lambda_1 - 3 & -4 \\ 0 & 0 & \lambda_1 - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\text{Yow}} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $\{(t, 0, 0) : t \in R\}$. So, an eigenvector corresponding to $\lambda_1 = 2$ is (1, 0, 0).

For
$$\lambda_2 = 3$$
,
$$\begin{bmatrix} \lambda_2 - 2 & 0 & -1 \\ 0 & \lambda_2 - 3 & -4 \\ 0 & 0 & \lambda_2 - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $\{(0, t, 0) : t \in R\}$. So, an eigenvector corresponding to $\lambda_2 = 3$ is (0, 1, 0).

Example(continued)

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Find the eigen values and its corresponding eigen vectors of the matrix.
- $A = \begin{vmatrix} \mathbf{2} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{3} & \mathbf{4} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{vmatrix}$ (b) What is the dimension of the eigen space corresponding to each eigen value.

Triangular matrix $\rightarrow \lambda = 2$, 3, 1

For
$$\lambda_3 = 1$$
,
$$\begin{bmatrix} \lambda_3 - 2 & 0 & -1 \\ 0 & \lambda_3 - 3 & -4 \\ 0 & 0 & \lambda_3 - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $\{(-t, -2t, t) : t \in R\}$. So, an eigenvector corresponding to $\lambda_3 = 1$ is (-1, -2, 1).

Example ~~~

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Find the dimension of the eigenspace corresponding to the eigenvalue $\lambda = 3$.

$$AX = (3I)X = 3(IX) = 3X$$

$$\begin{bmatrix} \lambda - 3 & 0 & 0 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = t_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t_3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{are eigen vec}} A = 3$$

and eigen vectors are eigen vectors.

Properties of Eigen Values and Eigen Vectors

If A is singular i.e. has no inverse, A^{-1} does not exist $\longleftrightarrow \lambda = 0$

Proof:

Suppose A is square matrix and has an eigenvalue of $\mathbf{0}$.

$$\rightarrow Ax = \lambda x$$
 with $\lambda = 0$

The system Ax = 0 has a non-trivial solution when

- The system has infinite number of solutions.
- i.e. no pivot in last row(s) of A
- i.e. |A| = 0.
- i.e. *A* is singular.

However,

Example $\int_{0}^{1} kernal$ $\int_{0}^{1} kernal} \int_{0}^{1} kernal$ $\int_{0}^{1} kernal$ $\int_{0}^{1} kernal$ $\int_{0}^{1} kernal} \int_{0}^{1} kernal$ $\int_{0}^{1} kernal} \int_{0}^$

Eigenvalues Eigenvectors

$$A \rightarrow \lambda_{1}, \lambda_{2}, \lambda_{3}, \dots \qquad v_{1}, v_{2}, v_{3}, \dots$$
 $A^{-1} \rightarrow \frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \frac{1}{\lambda_{3}}, \dots \qquad v_{1}, v_{2}, v_{3}, \dots$

Proof:

$$Ax = \lambda x$$

$$\rightarrow A^{-1}Ax = \lambda A^{-1}x$$

$$\rightarrow Ix = \lambda A^{-1}x$$

$$\rightarrow A^{-1}x = \frac{1}{\lambda}x$$
 The same eigen vector x with eigenvalue $\frac{1}{\lambda}$

Eigenvalues Eigenvectors
$$A \rightarrow \lambda_1, \lambda_2, \lambda_3, \dots$$
 v_1, v_2, v_3, \dots $A^n \rightarrow (\lambda_1)^n, (\lambda_2)^n, (\lambda_3)^n, \dots$ v_1, v_2, v_3, \dots

Proof:

$$Ax = \lambda x$$

$$Ax = \lambda Ax$$

$$Ax = \lambda Ax$$

$$Ax = \lambda Ax$$

$$A^{2}x = \lambda \lambda x$$

$$A^{2}x = \lambda^{2}x$$

Repeating $\rightarrow A^n x = \lambda^n x$

The same eigen vector x with eigenvalue λ^n

\boldsymbol{A} and \boldsymbol{A}^{T} have the same eigenvalues

Proof:

Starting from the characteristic equation

$$|\lambda I - A| = 0$$

Since
$$|B| = |B^T|$$

$$|\lambda I - A| = |(\lambda I - A)^T| = 0$$

$$= |\lambda I^T - A^T|$$

$$= |\lambda I - A^T|$$
 Since A and

$$= |\lambda I - A^T|$$

Since A and A^T have the same characteristic equation

→ then they have the same eigenvalues

Theorem

• If λ is an eigen value for A

Then

- λ is an eigen value for A^t
- $\frac{1}{\lambda}$ is an eigen value for A^{-1}
- λ^m is an eigen value for \tilde{A}^m

Example: If $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ has the eigenvalues $\lambda = 7$, -4. Find the eigenvalues of A^{-1} , A^{T} and A^{2} .

$$A \rightarrow 7, -4$$

$$\begin{array}{cccc}
A^{T} & \rightarrow & 7 & -4 \\
A^{2} & \rightarrow & (7)^{2} & (-4)^{2}
\end{array}$$

Cayley-Hamilton theorem

CAYLEY-HAMILTON THEOREM:

• Statement: Every square matrix satisfies its own characteristic equation

The characteristic equation: $f(\lambda) = |\lambda I - A| = 0$ Replace λ with the matrix $A \rightarrow f(A) = 0$

- Uses of Cayley-Hamilton theorem:
- (1) To calculate the positive integral powers of A.
- (2) To calculate the inverse of a square matrix A.

1. Verify that $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ satisfies its own characteristic equation and hence find A^4 Solution: Given $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. the characteristic equation is $\lambda^2 - 0\lambda - 5 = 0$ i.e., $\lambda^2 - 5 = 0$

To prove: $A^2 - 5I = 0$ -----(1)

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1+4 & 2-2 \\ 2-2 & 4+1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$A^{2} - 5I = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

To find A^4 :

From (1), we get, $A^2 - 5I = 0 \Rightarrow A^2 = 5I$

Multiplying by A^2 on both sides, we get, $A^4 = A^2(5I) = 5A^2 = 5\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix}$

2., find
$$A^4$$
 and A^{-1} when $A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ — Steps

Solution: The characteristic equation of A is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$

To find A^4 :

Solution: The characteristic equation of A is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$

To find A4:

(1)
$$\Rightarrow A^3 - 6A^2 + 8A - 3I = 0 \Rightarrow A^3 = 6A^2 - 8A + 3I - (2)$$

Multiply by A on both sides, $A^4 = 6A^3 - 8A^2 + 3A = 6(6A^2 - 8A + 3I) - 8A^2 + 3A$

Therefore,
$$A^4 = 36A^2 - 48A + 18I - 8A^2 + 3A = 28A^2 - 45A + 18I$$

Hence,
$$A^4 = 28\begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - 45\begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 18\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 196 & A168 & 252 \\ -140 & 168 & -168 \\ 140 & -140 & 196 \end{bmatrix} - \begin{bmatrix} 90 & -45 & 90 \\ -45 & 90 & -45 \\ 45 & -45 & 90 \end{bmatrix} + \begin{bmatrix} 18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18 \end{bmatrix} =$$

$$\begin{bmatrix} 124 & -123 & 162 \\ -95 & 96 & -123 \\ 95 & -95 & 124 \end{bmatrix}$$

To find
$$A^{-1}$$
:

To find
$$A^{-1}$$
: $A^3 - 6A^2 + 8A - 3I = 0$ ————(1)

Multiplying (1) by A^{-1} , $A^2 - 6A + 8I - 3A^{-1} = 0$

$$\Rightarrow 3A^{-1} = A^2 - 6A + 8I$$

$$\Rightarrow 3A^{-1} = \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - 6 \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{bmatrix} - \begin{bmatrix} -12 & 6 & -12 \\ 6 & -12 & 6 \\ -6 & 6 & -12 \end{bmatrix} + \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$$

3. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$, using Cayley-Hamilton theorem

Solution: The characteristic equation of A is $\lambda^3 - 2\lambda^2 - 5\lambda + 6 = 0$

By Cayley- Hamilton theorem, $A^3 - 2A^2 - 5A + 6I = 0$ ----- (1)

To find A^{-1} **:** Multiplying (1) by A^{-1} , we get, $A^2 - 2A - 5A^{-1}A + 6A^{-1}I = 0 \Rightarrow A^2 - 2A - 5I + 6A^{-1} = 0$

$$6A^{-1} = -A^2 + 2A + 5I \Rightarrow A^{-1} = \frac{1}{6}(-A^2 + 2A + 5I) - - - - (2)$$

$$A^{2} = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1-3+8 & -1-2+4 & 4+1-4 \\ 3+6-2 & -3+4-1 & 12-2+1 \\ 2+3-2 & -2+2-1 & 8-1+1 \end{bmatrix} = \begin{bmatrix} 6 & 1 & 1 \\ 7 & 0 & 11 \\ 3 & -1 & 8 \end{bmatrix}$$

$$-A^{2} + 2A + 5I = \begin{bmatrix} -6 & -1 & -1 \\ -7 & 0 & -11 \\ -3 & 1 & -8 \end{bmatrix} + \begin{bmatrix} 2 & -2 & 8 \\ 6 & 4 & -2 \\ 4 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$

From (2),
$$A^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -3 & 7 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$