



#### Microprocessors and Assembly language

**Isfahan University of Technology (IUT)** 



The AVR Microcontroller

Dr. Hamidreza Hakim hamid.hakim.u@gmail.com





#### **Topics**

- Computer History
- Microcontroller vs. Microprocessor
- AVR History and features



## INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER



#### Vacuum tube computers



1<sup>nd</sup> Generation 1940
military
SAGE Blockhouse/Computer:
10,170m<sup>2</sup>, 250 tons, houses More than 200,000
vacuum tubes @ 3,000,000 Watts



#### Collaboration learning

- Reseach How Relay Computer works?
- History, Gates,...



#### **Transistor Computers**

- 2<sup>nd</sup> Generation
- From 1956
- Half a room





The Harwell Dekatron Computer under restoration at the British National Museum of Computing



#### Invention of ICs

- 3<sup>rd</sup> generation
- Integrated Circuits
- 1960
- IBM 360



IBM 360 made by ICs (1964)



#### VLSI technology

- 1970
- Fourth Generation
- the VLSI technology or the Very Large Scale Integrated (VLSI) circuits technology
- millions
   or <u>billions</u> of <u>MOS</u>
   <u>transistors</u>





#### **ULSI**

- 1980-till date
- the fifth generation, VLSI technology became ULSI (Ultra Large Scale Integration)
- microprocessor chips having ten million electronic components.
- parallel processing hardware





#### First microprocessors/Microcontrollers

- 4004 (from Intel)
- TI TMS1000
- 6800 (Motorola)
- Microwave oven



PICO1 (1971)

http://en.wikipedia.org/wiki/Microprocessor



Intel 4004 (1971) www.computerhistory.org **4BIT DATA** 2300 transistors



**TI TMS1000** (1971-1974)http://www.antiquetech.com/





#### Now!





## Chip packaging





#### Moore's law

number of transistors in an IC) doubles about every two years

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.



The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

Licensed under CC-BY-SA by the author Max Roser.

In May 2021, IBM announced the creation of the first 2 nm computer chip, with parts supposedly being smaller than human

https://www.computerhistory.org/timeline/computers/



# MICROCONTROLLER VS. MICROPROCESSOR



#### General Purpose Microprocessors vs. Microcontrollers

General Purpose Microprocessors



- Microcontrollers
  - Fix Wiring
  - Fix RAM





#### Most common microcontrollers

- 4 bit->32 bit
- 8-bit microcontrollers
  - AVR
  - PIC
  - HCS12
  - -8051
- 32-bit microcontrollers
  - ARM
  - AVR32
  - PIC32
  - CodeFire
  - PowerPC







## **AVR HISTORY AND FEATURES**



#### AVR internal architecture





#### AVR internal architecture





- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433

| • | Mega       | Table 1-3: Some Members of the Classic Family |              |             |                |                  |           |            |                          |         |   |  |
|---|------------|-----------------------------------------------|--------------|-------------|----------------|------------------|-----------|------------|--------------------------|---------|---|--|
|   | – e.ç      | Part Num                                      | Code<br>ROM  | Data<br>RAM | Data<br>EEPROM | I/O pins<br>pins | ADC       | Timers     | Pin numbers<br>& Package |         |   |  |
|   | <b>—</b> · | AT90S2313                                     | 2K           | 128         | 128            | 15               | 0         | 2          | SOIC20,PDIP20            |         |   |  |
| • | l inv(     | AT90S2323                                     | 2K           | 128         | 128            | 3                | 0         | 1          | SOIC8,PDIP8              |         |   |  |
|   | 7          | AT90S4433                                     | 4K           | 128         | 256            | 20               | 6         | 2          | TQFP32,PDIP28            |         |   |  |
| • | - e.g      | 2. Data RAM                                   | (General-F   | urpose RAI  | ,              |                  | available | for data n | nanipulation (scratch    | <u></u> | 1 |  |
|   | Shed       | pad) in add                                   | ution to the | Registers s | pace.          |                  |           |            |                          |         |   |  |
|   |            |                                               |              |             |                |                  |           |            |                          |         |   |  |
|   | — e.d      | . A 1 90                                      | PVVI         | VIZTO       | <b>D.AT9</b>   | <b>UUS</b> 1     | BTZ       | 787        |                          |         |   |  |

- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128

Tiny(

-e.9

Special

-e.9

XMe

 $-N\epsilon$ 

| Table 1-4: Son | me Mem | bers of the | Mega Famil | <u>y</u> |     |        |               |
|----------------|--------|-------------|------------|----------|-----|--------|---------------|
| Part Num       | Code   | Data        | Data       | I/O pins | ADC | Timers | Pin numbers   |
| 1              | ROM    | RAM         | EEPROM     | pins     |     |        | & Package     |
| ATmega8        | 8K     | 1K          | 0.5K       | 23       | 8   | 3      | TQFP32,PDIP28 |
| ATmega16       | 16K    | 1K          | 0.5K       | 32       | 8   | 3      | TQFP44,PDIP40 |
| ATmega32       | 32K    | 2K          | 1K         | 32       | 8   | 3      | TQFP44,PDIP40 |
| ATmega64       | 64K    | 4K          | 2K         | 54       | 8   | 4      | TQFP64,MLF64  |
| ATmega1280     | 128K   | 8K          | 4K         | 86       | 16  | 6      | TQFP100,CBGA  |
|                |        |             |            |          |     |        |               |

#### Notes.

- All ROM, RAM, and EEPROM memories are in bytes.
- Data RAM (General-Purpose RAM) is the amount of RAM available for data manipulation (scratch pad) in addition to the Registers space.
- All the above chips have USART for serial data transfer.

etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25

| • | Sped  |          |             |             |                |                  |      |        |                          |
|---|-------|----------|-------------|-------------|----------------|------------------|------|--------|--------------------------|
|   | – e.d | Part Num | Code<br>ROM | Data<br>RAM | Data<br>EEPROM | I/O pins<br>pins | ADC  | Timers | Pin numbers<br>& Package |
|   | 9.9   | ATtiny13 | 1K          | 64          | 64             | 6                | 4    | 1      | SOIC8,PDIP8              |
| _ | VN1-  | ATtiny25 | 2K          | 128         | 128            | 6                | 4    | 2      | SOIC8,PDIP8              |
| • | XIVIE | ATtiny44 | 4K          | 256         | 256            | 12               | 8    | 2      | SOIC14,PDIP14            |
|   |       | ATtiny84 | 8K          | 512         | 512            | 12               | 8    | 2      | SOIC14,PDIP14            |
|   | – Ne  | ***      | ·           |             | - 1 V 12 X 1   |                  | , ., | , p    | <del> </del>             |



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433

| • | Mega   | /420 ir        | -at)         |      |               |           |              |            |               |
|---|--------|----------------|--------------|------|---------------|-----------|--------------|------------|---------------|
|   |        | Table 1-6: Som |              |      | ie Special pu | irpose Fa | amily        |            |               |
|   | – e.₫  | Part Num       | Code         | Data | Data          | Max I/C   | Special      | Timer      | s Pin numbers |
|   | ٠, ١   |                | ROM          | RAM  | <b>EEPROM</b> | pins      | Capabilities |            | & Package     |
|   | Tipy   | AT90CAN128     | 128K<br>128K | 4K   | 4K            | 53        | CAN          | 4          | LQFP64        |
| , | IIIIy( | AT90USB1287    | 128K         | 8K   | 4K            | 48        | USB Host     | 4          | TQFP64        |
|   |        | AT90PWM216     | 16K          | 1K   | 0.5K          | 19 /      | Advanced PWN | <b>1</b> 2 | SOIC24        |
|   | – e.₫  | ATmega169      | 16K          | 1K   | 0.5K          | 54        | LCD          | 3 '        | TQFP64,MLF64  |
|   | C.§    |                |              |      | 0.000         |           | 50000000000  |            |               |

- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega(120 inst)
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny(low power)
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



Cla

Ν//

\_

Tir

• Sr

\_\_\_\_

• XI\

\_\_\_





64433

32, ATmega128

pplication Oriented AVR)
0USB1287

DAC, crypto engine, etc.











- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega
  - e.g. ATmega8, ATmega32, ATmega128

Tinv

| Product      | Flash | SRAM | I/O | 16-bit<br>Timers | SPI/TWI/USART | 12-bit ADC | Analog<br>Comparator |
|--------------|-------|------|-----|------------------|---------------|------------|----------------------|
| ATxmega64A1  | 64    | 4    | 78  | 8                | 4/4/8         | 2×8        | 4                    |
| ATxmega128A1 | 128   | 8    | 78  | 8                | 4/4/8         | 2×8        | 4                    |
| ATxmega192A1 | 192   | 8    | 78  | 8                | 4/4/8         | 2×8        | 4                    |
| ATxmega256A1 | 256   | 16   | 78  | 8                | 4/4/8         | 2×8        | 4                    |
| ATxmega64A3  | 64    | 4    | 50  | 7                | 4/4/7         | 2×8        | 4                    |
| ATxmega256A3 | 256   | 16   | 50  | 7                | 4/2/7         | 2×8        | 4                    |
| ATxmega16A4  | 16    | 2    | 36  | 5                | 2/2/5         | 1×12       | 2                    |
| ATxmega32A4  | 32    | 4    | 36  | 5                | 2/2/5         | 1×12       | 2                    |
| ATxmega64A4  | 64    | 4    | 36  | 5                | 2/2/5         | 1×12       | 2                    |
| ATxmega128A4 | 128   | 8    | 36  | 5                | 2/2/5         | 1×12       | 2                    |



- Classic AVR
  - e.g. AT90S2313, AT90S4433
- Mega
  - e.g. ATmega8, ATmega32, ATmega128
- Tiny
  - e.g. ATtiny13, ATtiny25
- Special Purpose AVR (Application Oriented AVR)
  - e.g. AT90PWM216,AT90USB1287
- XMega
  - New features like DMA, DAC, crypto engine, etc.



#### Let's get familiar with the AVR part numbers









#### **AVR Pin/out**

Xtal=OSI AREFF= ADC



#### **AVR Pin/out**

Xtal=OSI AREFF= ADC





#### **AVR Pin/out**

Xtal=OSI AREFF= ADC



#### PA0 - PA7 PC0 - PC7 VCC PORTC DRIVERS/BUFFERS PORTA DRIVERS/BUFFERS PORTC DIGITAL INTERFACE GND PORTA DIGITAL INTERFACE AVCC ADC INTERFACE MUX & ADC AREF TIMERS/ COUNTERS OSCILLATOR PROGRAM COUNTER STACK POINTER INTERNAL OSCILLATOR PROGRAM SRAM FLASH XTAL1 INSTRUCTION REGISTER WATCHDOG TIMER GENERAL PURPOSE REGISTERS OSCILLATOR XTAL2 INSTRUCTION DECODER MCU CTRL. & TIMING RESET Z INTERNAL CALIBRATED CONTROL INTERRUPT UNIT LINES ALU OSCILLATOR STATUS REGISTER AVR CPU EEPROM USART COMP. INTERFACE PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PD0 - PD7 Figure 4. ATmega32 Block Diagram

#### ATmega32 Block Diagram



#### References

- https://www.msu.edu/course/lbs/126/lectures/history.html
- www.williamson-labs.com/480\_cpu.htm
- www.computerhistory.org
- The AVR Microcontroller and Embedded systems, Mazidi & Naimi
- http://www.antiquetech.com/
- http://en.wikipedia.org/

