

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 2 1.1 Actividad: Repaso Método Gráfico y Análisis de Sensibilidad

Trabajo de: ADRIAN ALEJANDRO GONZÁLEZ DOMÍNGUEZ [359834]

Asesora: OLANDA PRIETO ORDAZ

Metodo gráfico

- 1. Definición del problema
 - Definicion de variables
 - Función objetivo Z_a
 - Restricciones
- 2. Graficar las restricciones
- 3. Calcular los puntos de esquina

Analisis de sensibilidad

Precio duales

- 1. Cambiar disponibilidad de la restricción
- 2. Graficar nuevas restricciones
- 3. Calculo del precio dual

$$ext{Precio Dual}_{R_{i_a}} = rac{Z_a - Z}{D_{R_{i_a}} - D_{R_i}}$$

La tienda el chabrito produce 2 tipos de productos texanos. El producto texano 1 requiere el doble de mano de obra que el tipo 2.

Si toda la mano de obra disponible se dedica solo a producir el producto 2, la compañia puede producir un total de 400 productos de tipo 2 en 1 día. La utilidad es de \$8 dolares por producto texano 1, y de \$5 por producto texano 2. Determine la cantidad óptima de productos texanos que debe producir.

Los límites de mercado respectivos para los 2 tipos de producto es 150 y 200 productos por dia.

a)

Realice por el método gráfico.

- 1. Definición del problema
 - Definicion de variables

Disp. Prod.
$$1 \to x_1$$

Disp. Prod.
$$2 \to x_2$$

• Función objetivo Z_a

$$\mathrm{Max}Z
ightarrow 8x_1 + 5x_2$$

Restricciones

$$R_1
ightarrow 2x_1+x_2<=400$$

$$R_2
ightarrow x_1 <= 150$$

$$R_3
ightarrow x_2 <= 200$$

$$R_4 o x_1, x_2=0$$

2. Graficar las restricciones

3. Calcular los puntos de esquina

Puntos esquina

PE	x_1, x_2	$Z ightarrow 8x_1 + 5x_2$
A	0,0	0
B	0,200	1000
C	100, 200	1800
D	150, 100	1700
E	150, 0	1200

b)

Determine el precio dual de la capacidad de producción en función del producto de tipo 2 y el intervalo en el cual es aplicable.

$$R_1
ightarrow 2x_1+x_2<=400$$

$$R_{1_a}
ightarrow 2x_1 + x_2 <= 300$$

Puntos esquina

PE	x_1,x_2	$Z ightarrow 8x_1 + 5x_2$
A	0,0	0
B	0,200	1000
I	50,200	1400
E	150, 0	1200

Precio Dual R_1

$$ext{Precio Dual}_{R_{1a}} = rac{Z_a - Z}{D_{R_{1a}} - D_{R_1}}$$

$$ext{Precio Dual}_{R_{1a}} = rac{1400 - 1800}{300 - 400} = 4$$

Intervalo de factibilidad

${\rm Punto}\:{\rm B}\to (0,200)$	$2x_1 + x_2 ightarrow 2(0) + (200)$	200
Punto H $ ightarrow$ (150, 200)	$2x_1 + x_2 ightarrow 2(150) + (200)$	500

Significa que ${
m Precio\ Dual}_{R_{1_a}}$ es válido en el intervalo dado por $200 \le 2x_1 + x_2 \le 500.$

Ejemplo 1

Por ejemplo si

$$2x_1 + x_2 \le 500$$

PE	x_1, x_2	$Z ightarrow 8x_1 + 5x_2$
A	0,0	0
B	0,200	1000
H	150, 200	2200
E	150, 0	1200

Nos da el máximo valor posible aumentando la capacidad de producción. Si aumentasemos más la capacidad de producción las otras 2 restricciones restringirían la máxima cantidad de productos producibles en un día a 2200.

Ejemplo 2

Por ejemplo si

$$2x_1 + x_2 \le 150$$

PE	x_1, x_2	$Z ightarrow 8x_1 + 5x_2$
A	0,0	0
M	0,150	750
N	75, 0	<mark>600</mark>

Si tratamos de obtener el punto óptimo original basados en la diferencia y el precio dual:

$$600 + 4(400 - 150) = 600 + 4(250) = 1600$$

No nos devolvío el valor del punto óptimo, esto es debido a que a partir del punto B hacia abajo, el precio dual cambiaría de valor. (Borre por accidente las pruebas, pero el precio dual pasa a ser 5).

c)

Si el límite de la demanda diaria del producto texano de tipo 1 se reduce a 120, utilice el precio dual para determinar el efecto correspondiente en el ingreso óptimo.

$$R_2
ightarrow x_1 <= 150$$

$$R_{2_b}
ightarrow x_1 <= 120$$

Puntos esquina

PE	x_1, x_2	$Z ightarrow 8x_1 + 5x_2$
A	0,0	0
B	0,200	1000
C	100, 200	1800
J	120, 160	1760
K	120, 0	960

Precio Dual R_1

$$ext{Precio Dual}_{R_{2_b}} = rac{Z_b - Z}{D_{R_{2_b}} - D_{R_2}}$$

$$\operatorname{Precio} \operatorname{Dual}_{R_{2_b}} = \frac{1800 - 1800}{150 - 120} = 0$$

El impacto será 0, no alterará el ingreso optimo debido a que R_1 está limitando el valor máximo actual a un valor de x_1 menor, esto lo comprobamos con el intervalo de factibilidad.

Intervalo de factibilidad

$\rm{Punto}~C \rightarrow (100,200)$	$x_1 o (100)$	100
Punto G $ ightarrow$ (200, 0)	$x_1 o (200)$	200

Significa que $\operatorname{Precio} \operatorname{Dual}_{R_{2_b}}$ es válido solo en el intervalo dado por $100 \leq x_1 \leq 200$.