Herbst 11 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Sei $G \subset \mathbb{C}$ offen, $f: G \to \mathbb{C}$ holomorph und $G_* := \{z \in \mathbb{C} \mid \overline{z} \in G\}$. Zeigen Sie, dass die Funktion

$$f_*: G_* \to \mathbb{C}, \quad f_*(z) = \overline{f(\overline{z})}$$

ebenfalls holomorph ist.

b) Für welche $a, b \in \mathbb{R}$ ist die Funktion $u : \mathbb{R}^2 \to \mathbb{R}, u(x, y) = ax^2 + by^2$ Realteil einer holomorphen Funktion $f : \mathbb{C} \to \mathbb{C}$?

Lösungsvorschlag:

a) Man könnte dies beweisen, indem man f in Potenzreihen entwickelt. Stattdessen werden wir hier aber die Cauchy-Riemann Differentialgleichungen nachrechnen. Seien $u, v : \mathbb{R}^2 \to \mathbb{R}$ mit f(x+iy) = u(x,y) + iv(x,y) der Real- und Imaginärteil von f, wobei $x+iy \in G$ ist. Sei nun $x+iy \in G_*$, dann ist $x+i(-y) \in G$ und $f_*(x+iy) = \overline{f(x-iy)} = u(x,-y) - iv(x,-y)$ per Definitionem. Demnach lautet der Realteil von $f_*u_*(x,y) = u(x,-y)$ und der Imaginärteil von $f_*v_*(x,y) = -v(x,-y)$. Es gilt also

$$\partial_x u_*(x,y) = \partial_x u(x,-y) = \partial_y v(x,-y) = -\partial_y v(x,-y) \cdot (-1) = \partial_y v_*(x,y)$$

und

$$\partial_y u_*(x,y) = -\partial_y u(x,-y) = \partial_x v(x,-y) = -\partial_x v_*(x,y)$$

für alle $x, y \in \mathbb{R}$ mit $x + iy \in G_*$ unter Verwendung der Cauchy-Riemann Differentialgleichungen für die holomorphe Funktion f in $x - iy \in G$. Weil u, v und somit u_*, v_* stetig differenzierbar sind, ist f_* also holomorph.

b) Falls u Realteil einer holomorphen Funktion ist, muss u harmonisch sein, d. h. $0 = \partial_{xx} u(x,y) + \partial_{yy} u(x,y) = 2a + 2b$ gelten. Dies ist genau für a = -b erfüllt. Auf \mathbb{R}^2 gilt sogar die Umkehrung, also ist jede harmonische Funktion Realteil einer holomorphen Funktion. Hier kann man für jedes $a \in \mathbb{R}$ und b = -a aber auch direkt die ganze Funktion $f(x+iy) = a(x+iy)^2 = a(x^2-y^2) + 2aixy$ betrachten

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$