	$\overrightarrow{b} = \langle -2, 6, 3 \rangle,$	and $\vec{c} = (3, 2, 4)$) .								
(a) Compute	$\vec{a} \cdot \vec{b}$.										
(b) Compute	→ → a · c.										
(c) Compute	$\vec{b} \cdot \vec{c}$.										
(d) Compute	$\vec{a} \cdot (\vec{b} - \vec{c}).$										
								I		I	
Part	A										
C	· =	-4+	. A	- CI							
	b -	7, 1		, ,							
		٢									
	=	5									
Part	B										
\overline{c}	· C =	(+	01	- 12							
		18									
	_	17									
0 ,	0										
Part	C										
\overline{b}	, C =	-6+	12	+ 12							
					•						
	=	18									
		10									
1 01	l/										
Part	- ()										

a·(b-c)	= a.<-5.	,4,-17	
	= -10 + 0	- 3	
	=- 13		

The short sides of the right triangle in the figure have length seven.

Find $\overrightarrow{u} \cdot \overrightarrow{v}$, $\overrightarrow{u} \cdot \overrightarrow{w}$, and $\overrightarrow{w} \cdot \overrightarrow{v}$.

$$\overrightarrow{u} \cdot \overrightarrow{v} =$$

$$\overrightarrow{u} \cdot \overrightarrow{w} =$$

$$\overrightarrow{w} \cdot \overrightarrow{v} =$$

Part C

Part A				
O beause V	and J ave	perpendialar	-	
Part B				
J= (0, -7)				
w=<7,7>				
0. W = -49				

Find the three angles of the triangle formed using the position vectors
$$2\hat{i} - \hat{j} + 4\hat{k}$$
 and $\hat{i} + 2\hat{j} + 3\hat{k}$ and the line segment connecting their endpoints. Give your answers in degrees to two decimal places. (Enter your answers as a comma-separated list with no degree symbols.)

Find the three angles of the triangle formed using the position vectors $2\hat{i} - \hat{j} + 4\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ and the line segment connecting their endpoints. Give your answers in degrees to two decimal

places. (Enter your answers as a comma-separated list with no degree symbols.) Be coretel with this Vector and its direction

$$\vec{r}_{1} = \langle 2, -1, 4 \rangle$$
 $\vec{r}_{2} = \langle 1, 2, 3 \rangle$

$$\hat{Y}_3 = \langle -1, 3, -1 \rangle$$

Let
$$\vec{A} = \vec{Y}_1$$
 and $\vec{B} = \vec{Y}_2$

If $\vec{a} \cdot \vec{b} = 30$, $||\vec{a}|| = 5$, and the angle between the vectors \vec{a} and \vec{b} is 30°, what is the magnitude of vector \vec{b} ?

$$|\vec{a}||\vec{b}|(cs(a) = \vec{a} \cdot \vec{b})$$

$$|\vec{b}| = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|(cs(a))}$$

$$= \frac{30}{5ccs(30)}$$

Find the orthogonal decomposition of vector $\overrightarrow{b} = \langle 4, 0, 0 \rangle$ with respect to vector $\overrightarrow{a} = \langle 6, -5, 0 \rangle$. (Your instructors prefer angle bracket notation < > for vectors.)

 $\vec{b}_1 =$

$$\vec{b}_{\perp} =$$

$$\overline{b}_{11} = \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|^2} \overline{b}$$

2.4			
= 36 + 25	6,-5,0>		
70 + 23			
$\vec{b} \perp = \vec{b} - \vec{b}_{\parallel}$			

Find the work done in Newton-meters by the constant force $\vec{F} = 20\hat{i} + 10\hat{j} + 15\hat{k}$ in moving a particle along the straight line from point P(7, -2, 6) to Q(9, 3, 3), where distance is in meters.

N-n

After a snow storm Bob pulls his sled along a horizontal path with a constant force of F = 9 N, with the rope tipped upward $\theta = 30^{\circ}$ as in the figure.

If Bob pulls the sled 25 m, how much work does he do?

N-m

$$\vec{F}_{i} = (\vec{F} \cdot \hat{i})\hat{i}$$

$$= (9 \cos(30)) \langle 1, 0, 0 \rangle$$

$$= \langle 9 \cos(30), 0, 0 \rangle N$$

