effectOfIndividualInputs

Andy South 2016-02-07

Investigation into effects of individual inputs on time to reach resistance thresholds.

version 2 - in progress

Based on 1000 runs with all inputs varying at once which explains the variability at particular input values.

Within each figure the plots are divided into 6 sub-plots according to the insecticide use strategy and when the resistance threshold is reached

- 1. insecticide 1: sole use
- 2. insecticide 2 : sole use
- 3. Mixture 1: threshold reached for either insecticide in mixture
- 4. Mixture 2 : once threshold reached for either insecticide in mixture, switch to sole use of other until it too reaches threshold
- 5. Mixture 3: threshold reached for both insecticides in mixture
- 6. Sequential: sole use of one insecticide, switch to other when threshold reached until it too reaches threshold

These plots show gen_cP0.2, which is the number of generations to reach 20% resistance.

Red dashed lines are a smoothed mean.

Runs where resistance thresholds have not been reached have been removed.

Previous plots showed a set of points at 1000 generations. The model is run for 500 generations, any runs which have not reached the resistance threshold by this time are given a value of 1000. This has little effect on questions of whether mixtures or sequential use is better.

Plot time to resistance for each strategy using all sensitivity analysis values

Histogram of gglnsOuts\$exposure

trying a PRCC analysis using the package sensitivity

trying to highlight differences between sequential and mixture strategies in response of time-to-resistance to inputs

response of resistance thresholds to individual inputs faceted by strategy

start_freq_allele2

effectiveness_insecticide1

effectiveness_insecticide2

dominance_allele1

dominance_allele2

selection_coef_allele1

selection_coef_allele2

maleExposureProp

correctMixDeployProp

resist_start_hi_div_lo

Looking more closely at ratio between the level of resistance to the first insecticide divided by that of the second one. Restricting the x axis to lower values.

?not very useful