Inteligência Artificial: Conceitos Básicos de Otimização

Prof. Dr. Rafael Stubs Parpinelli

E-mail: rafael.parpinelli@udesc.br

Min ou Max

Sujeito a

$$h_k(x) = 0$$

$$g_j(x) \ge 0$$

$$x_i^{(U)} \ge x_i \ge x_i^{(L)}$$

$$j = 1, ..., J$$

$$i = 1, ..., N$$

- Função objetivo
 - A qual se quer maximizar ou minimizar
 - Ex: max(lucro), min(custo)
 - Pode n\u00e3o existir ou ser mais de uma
- Conjunto de variáveis
 - Que afetam o valor da função objetivo
 - Em problemas complexos este conjunto pode ser muito grande
- Conjunto de restrições
 - Não permite que o conjunto de variáveis assuma determinados valores

- Espaço de busca ou espaço de soluções
 - Define o espaço no qual o algoritmo de otimização deverá realizar a busca pela solução ótima ou pelas soluções ótimas
- Região de soluções factíveis ou região comum
 - Define a região no espaço de busca onde se encontram todas as possíveis soluções válidas ou viáveis para o problema. Ou seja, a região onde não existe infração de restrições. Região comum a todas as restrições

- Otimização Contínua:
 - variáveis assumem valores reais (ou contínuos)
- Otimização Combinatória ou Discreta:
 - variáveis com valores discretos (ou inteiros)
- Otimização Mista:
 - variáveis inteiras e contínuas

Otimização multiobjetivos

- O conceito de ótimo não é óbvio e deve respeitar a individualidade de cada critério
- Otimalidade de Pareto:
 - Conjunto de soluções P-ótimas e não um único ponto

Minimizar Custo e Número de Acidentes

- Dominância:
 - Neste caso: P-ótimo: {A, B, C}

Tipos de Problemas

		Função Objetivo	
		SIM	NÃO
Restrições	SIM	СОР	CSP
	NÃO	FOP	Z

- COP: Problema de Otimização com Restrições (Constrained Optimization Problem)
- **CSP**: Problema de Satisfação de Restrições (*Constraint Satisfaction Problem*)
- FOP: Problema Livre de Restrições (Free Optimziation Problem)
- Problemas de Otimização:
 - Dentre as soluções viáveis, qual é a melhor?

Características do Espaço do Problema

Conceitos

- Busca local
 - Exploitation / Intensificação: refina a busca em uma região específica do espaço de soluções
- Busca global
 - Exploration / Diversificação: promove uma maior amplitude na busca por regiões promissoras
- Single solution methods
 - Otimizam uma única solução a cada execução do algoritmo
- Population-based methods
 - Utilizam um conjunto de soluções (população) para realizar a busca no espaço de soluções
- Como gerar uma possível solução para o problema?
 - Algoritmos de construção: iterativamente o algoritmo "monta"/constrói uma solução para o problema
 - Algoritmos de melhoria: o algoritmo parte de uma possível solução do problema e tenta melhorá-la a cada iteração

Métodos de otimização

- Enumerativos
 - Busca exaustiva

- Analíticos: derivadas parciais
- Diretos: técnicas de gradiente (steepest descent ou hill-climbing)
- Probabilísticos (Heurísticas e Meta-heurísticas)
 - Busca aleatória
 - Simulated Annealing
 - Computação Evolucionária
 - Inteligência de Enxame

Métodos enumerativos

- Excelentes para um grande número de problemas, entretanto:
 - Aplicável somente a problemas de "dimensões pequenas"
 - Aceitável quando envolve tempos computacionais "razoáveis"
- Tendem a ser cada vez mais utilizados a medida que a capacidade computacional disponível aumenta.

- Definição de Otimização
 - Processo de melhoramento/construção iterativo/interativo de uma solução para um problema, com respeito a uma (ou mais) função(ões) objetivo e sujeito a restrições do problema