实验名称 密兰根油滴实验

维名:刘子亭 学号: 20001462 实验班: G13 细号: 15 教师:倪一

一、实验目的

- 1. 学用寄立根油滴实验的设计思想,
- 2. 验证电荷的难换也;
- 3、学会州用平衡法学动态法两种方法测量油净的电荷量,开划定基本电荷值电;
- 4、培养严谨的科学实验态度。

二、实验原理

- 1. 沟量徽观电荷量(g</e) 确果路:
- (1) 研究对象: 带色油海;
- 山何接测量量·油滴电荷量?, 叁本电荷量 e,
- (3) 思路、聚化河童法、⇒找到更客员测量的物理量,宏观识测反映线观的性;
- (4)实识: 图电场控制带电柱子的运动。
- 2、置于电场中的油海的三种状态;
- 1) 状态一: 知速下落

·条件: U=0 , 即无电场

粒净力: Fr=6xryy

·铅气,油淘大小口与速费平均,从予与向下落时间的唯一对点,

四状态二:静态景学

程 (AT): 何と1000 日子 (E=mg-F4 =) (= 18元リュー・ 1 · (七) ・ 2 ② ・ 特点: 静态悬净状态均 (天) 取列油局大小 r (5 女) 唯石 U), 共定的常量。

・平衡法 = 匀速下落+静奈泉净

图1:用电场控制带电油周运动

13)状态、三、 入速上升

共台切为常量。

·勃东流 二月速下路十月遮上升

3、每三极油淘灾脸的次性:

(1) 用油滴發的水滴

最初每三极图水海作为电量的截体, 好水滴的蒸发, 改刚按梦年小的油滴。

山对粘滞小数的修正

起先计等所得的C值随油简的减小产增大, 密之极认为由于油资在小, 共五径可知空气 分十四千次自由起棚比拟,所以不能再将室气着就是连续介质,油滴所受粘滞为外将减小, 旅游和数左矛以修正。

(3) 经过粘滞系数的修正(一从近似)以后:

• 平衡活测的的油熵电荷量 -

• 动态试测倍尚油熵电荷量 ·

4、差本电荷e的付弃:

采用倒证法", 确定电荷数 1 和基本电子电量 C, 及自分误差:

由此也可验证电荷的不进级生和所有电药都是基本电荷e的整数倍。

三、实验仪器

客与根油滴仪、显示器、油滴管、实验总体发置。

四、实验内容与主要步骤

1. 调整仪器

- 心调节调平爆丝,将平行电极极调到水平,使平衡电场方向各重力方向平行以免引起实验误差,
- 四、打开寄三根油滴《的开关,打开显示器开关,将电压档从的调至"十"向电压;
- (3)调节显微镜焦点,使油滴滴吸析显示在显示屏上。

2、喷油 8 选择油滴

- "一快连接压喷雾器,通过喷雾口向油滴室内喷入油雾,显示器机场中将出死大量漏晰的油滴。
- 四加上的为200 V的平稳电压,改变其大小日秋性, 驱散不需要的油海, 粗闪开皮棒2mm下路时间的为155~25的油滴,确定好油滴后, 点起"确认状态";
- (3) 调和平衡电压的大小,使湖海能够静止装好在视场中;

3、测量油滴

- 川洲量了清油滴的平线电压、下降时间、上升时间和上升电压,同一油滴进行8次测量,
- 以至永屏上8格为2mm,开始计对前,油滴应下落一小段距离从达到知速,上升对同程,由于近界外的空隙很小,油滴可略微跑边画面;
- 的 纺束计对后, 应将油滴切换到"要好"状态,即调至平衡, 成之民失油滴。

4. 数据化展

将每个油滴的何有测量影形 Ling、好、Ung、t、均比以及移中,根据相应的公式及 存程计等油滴所带电荷量,进中央斜基本电荷至已及相对误差。

五、数据记录与处理

1. 实验中记录的3滴油滴的确之数据;

油滷1		2	3	4	5	6	7	8	平均值
U平换了	215	215	2/5	215	215	215	215	2/5	215
tg	16,18	16.38	18.96	17,53	18.38	17.81	17./0	17.48	17,478
UE4	322	322	322	322	322	322	322	322	322
ti	32.30	31.40	33.97	33,85	33.17	31.64	32,88	33.14	32,79375

油滴2		2	3	4	5	6	7	8	科值
山平铁了	205	205	205	215	205	205	205	205	205
ty	18.60	18.29	1828	18.73	18.10	18.54	18.18	18.29	18.376
L104	307	307	307	307	307	307	307	307	307
ti	36.42	36,29	36.36	36,54	36,14	36,32	36.03	36.32	36,302

油濱3		2	3	4	5	6	7	8	平均值
4449	207	207	207	207	207	207	207	207	207
ta	18.59	18.90	18.28	17.96	18.11	17.91	18.33	18.52	18.325
UEH	3/0	3/0	3/0		3/0	3/0	3/0	3/0	3/0
£	33.86	34:70	34:83	35.78	35.99	35.82	35.85	35,27	35, 2625

2、计算每个油洞所带的电量 27

已於考數值: 钟油畲友: $\rho = 981 \, kg \cdot m^{-3}$ (20℃); 空气粘滞分数: $\eta = 1.83 \times /o^{-5} \, Pa \cdot S$ 重力加速度: $g = 9.794 \, m \cdot S^{-2}$; 修正常数: $b = 8.22 \times /o^{-3} \, N/m$ 大气压磁: $p = 1.013 \times /o^{5} \, Pa$; 平行极极闪距: $d = 5.00 \times /o^{-3} \, m$ 油滴运动的距离 $l = 2 \times /o^{-3} \, m$

川油潤1.

平饒海:
$$q_1 = \frac{1820}{(29P)^{\frac{1}{2}}} \cdot \frac{d}{D_{H}} \cdot \left[\frac{1}{49}\right]^{\frac{3}{2}} \cdot \left[\frac{1}{1+\bar{p}_{1}}\right]^{\frac{3}{2}} = 8.0843 \times 10^{-19} C$$
动态法: $q_1' = \frac{18201}{(29P)^{\frac{1}{2}}} \cdot \frac{d}{D_{L}} \cdot \left[\frac{1}{4} + \frac{1}{49}\right] \cdot \left[\frac{1}{49}\right]^{\frac{1}{2}} \cdot \left[\frac{1}{1+\bar{p}_{1}}\right]^{\frac{3}{2}} = 8.2748 \times 10^{-19} C$

四油陶工

刊版法:
$$q_2 = \frac{187}{(190)^{\frac{1}{2}}} \cdot \frac{d}{11} \cdot \left[\frac{1}{4}\right]^{\frac{3}{2}} \cdot \left[\frac{1}{1+\frac{1}{p_{1}p_{2}}}\right]^{\frac{3}{2}} = 7.8417 \times 10^{-19} \text{C}$$
 动态法: $q_2' = \frac{1870L}{(19p)^{\frac{1}{2}}} \cdot \frac{d}{11+\frac{1}{p_{2}}} \cdot \left[\frac{1}{4} + \frac{1}{4}\right] \cdot \left[\frac{1}{4} + \frac{1}{p_{2}}\right]^{\frac{1}{2}} \cdot \left[\frac{1}{1+\frac{1}{p_{2}p_{2}}}\right]^{\frac{3}{2}} = 7.8870 \times 10^{-19} \text{C}$ (ソ油)

刊為:
$$q_3 = \frac{182}{(29p)^{\frac{1}{2}}} \cdot \frac{d}{[14p]} \cdot \left[\frac{1}{1+p}\right]^{\frac{3}{2}} = 7.7998 \times /0^{-19} C$$

动态法: $q_3' = \frac{1821}{(29p)^{\frac{1}{2}}} \cdot \frac{d}{[1+q]} \cdot \left[\frac{1}{1+p}\right]^{\frac{1}{2}} \cdot \left[\frac{1}{1+p}\right]^{\frac{3}{2}} = 7.9149 \times /0^{-19} C$

3、 利用"国证法"计算基本电荷电空 e 反其误差 E

平氏话
$$n_i = \frac{q_i}{e_{AL}} = \frac{8.0843 \times 10^{-19}}{1.602 \times 10^{-19}} = 5.0$$
, $e_i = \frac{q_i}{Int[n_i]} = 1.617 \times 10^{-19} C$
 $E_i = \frac{1e_i - e_{AL}}{e_{AL}} \times 100\% = \frac{1.617 \times 10^{-19}}{1.602 \times 10^{-19}} \times 100\% = 0.93\%$

动态话 $n_i' = \frac{q_i'}{e_{AL}} = \frac{8.2748 \times 10^{-19}}{1.602 \times 10^{-19}} = 5.2$, $e_i' = \frac{q_i'}{Int[n_i']} = 1.655 \times 10^{-19} C$
 $E_i' = \frac{1e_i' - e_{AL}}{e_{AL}} \times 100\% = \frac{1.655 \times 10^{-19}}{1.602 \times 10^{-19}} \times 100\% = 3\%$

六,实验结果分分析

- 1. 基本了解知识了密色根油淘实验的设计思想后,分别制用平衡法、动态法两种为法则生油淘的电荷量,进一步计等基本电荷量 e 的值,并计年共相对误差,均在5岁以内,所以沿途的基本电荷量有一定的准确性,实验结果较为准确;
- 2、由实验过能与结果, 验证」电荷的不近换性, 以从所有电荷都是基本电荷已的整数倍,
- 3、实验中应直避急、同一般油滴反复多处测量时,不要丢失油滴。

七,分析讨选题

1. 本实验的巧妙构思在哪里?

答:本实验的的物构思在于,制用宏观量(Lg, tg, U,, t,)的测量来反映微观道(q, er),即段化测量法表阅接测量油滴电疗和基本电荷量。

2、实验中如何保证油海做知道运动?

等。让油渍从开始时时线上刷约一段距离释放(由于近哥外室厚较小,油渍可路微跑也画面), 当油湖正到至开始计时线时, 再按下计时按钮开始计时, 由于有一段距离的缓冲, 此后油净便做为速运动了。

3、若平行板不水平,对测量有什么影响?

等:如果平行校不水平,油海变到的重力和群电场力就不在一条互保上了,在建立发力平伏方 程对还需要再来上来自的保纸值,这就使历本的闪圣后果不准确了;且油滴可能会在平行 于根板的左向运动,导致油滴运动轨迹为余代法。

4. 如何这中后送的油桶进行测量?

答: 调节年度了电压约为200V, 极测开选择2mm内下落时间约为20公355的油海, 开通过调节电压的规划和大小来驱散其它的油海,来保证我们的显示屏上 仅剩送中的那一股油海。

5、东科判断油筒所带电荷量的改变?

答:通过反复测量油海经过一般距离(如2mm)所用的时间,进行对比,如果所用的时间有明显的改变(即明显地越超过时间测量上的)适机设差),则这明油滴所带的电荷量发生了改变。