

0 favorites 1 play 1 player

A private kahoot

Questions (10)

1 - Quiz Which fields have been revolutionized by Deep Learning?		30 sec
	Computer Vision	✓
•	Al Planning	×
	Language Processing	✓
	Game Playing	✓
2 - Quiz Why is it comparably easy to get started in Deep Learning?		20 sec
	The underlying concepts are trivial	×
•	There are very well-engineered libraries	✓
	Stochastic gradient descent always works	×
	Deep learning works like the brain	×

What is the main contribution of deep neural networks compared to traditional machine learning algorithms? It is better at every task Automatic representation learning compared to manual design It is conceptually simpler Mimicking the interaction and complexity of neurons in brains 4 - True or false Are deep networks always better than shallow networks? True False 5 - Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m m m m m m m m m		
Automatic representation learning compared to manual design It is conceptually simpler Mimicking the interaction and complexity of neurons in brains 4-True or false Are deep networks always better than shallow networks? True False 5-Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m n n n m+n	t is the main contribution of deep neural networks compared to traditional	20 sec
It is conceptually simpler Mimicking the interaction and complexity of neurons in brains 4-True or false Are deep networks always better than shallow networks? True False 5-Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m m m m m m m m	It is better at every task	×
Mimicking the interaction and complexity of neurons in brains 4 - True or false Are deep networks always better than shallow networks? True False 5 - Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m m m	Automatic representation learning compared to manual design	✓
4 - True or false Are deep networks always better than shallow networks? True False 5 - Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m m m m m m m m	It is conceptually simpler	X
Are deep networks always better than shallow networks? True False 5-Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m m	Mimicking the interaction and complexity of neurons in brains	×
False 5 - Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m m m m m+n		10 sec
5 - Quiz In order to learn a function R ^m →R ⁿ , how many neurons should be in the output layer of a neural network for regression? m n m+n	True	×
In order to learn a function $R^m \to R^n$, how many neurons should be in the output layer of a neural network for regression?	False	✓
n m + n	In order to learn a function $R^m{\to}R^n$, how many neurons should be in the output	
m + n	m	×
	n	✓
		\
m*n	m + n	×
		t is the main contribution of deep neural networks compared to traditional nine learning algorithms? It is better at every task Automatic representation learning compared to manual design It is conceptually simpler Mimicking the interaction and complexity of neurons in brains e or false leep networks always better than shallow networks? True False iz der to learn a function R ^m →R ⁿ , how many neurons should be in the output of a neural network for regression? m

9 - Quiz Which operation performs element-wise multiplication in numpy?		
	+	×
•	*	✓
	numpy.dot()	X
	numpy.matmul()	×
10 - Quiz POLL (no points to win/lose): Is there any background you are missing and should "brush up" on?		30 sec
	Yes, programming skills	✓
•	Yes, machine learning	✓
	Yes, linear algebra	✓
	No	✓