Cancer Diagnosis and Prognosis using Gene Expression

Group 3

Supervised by Prof. Olubisi Runsewe

Problem Formulation

Identify liver cancer biomarkers using gene expression data to facilitate early diagnosis and monitoring disease prognosis.

Agenda

- Introduction
- Project steps
- Results
- Conclusion
- Observations & Future work

What is cancer?

What is Gene Expression?

What are DNA Microarrays?

Image By Sagar Aryal, created using biorender.com

DNA Microarrays, Cancer tissues & Biomarkers

- Patterns of altered microarray expression profiles in cancer can serve
 as biomarkers for tumor diagnosis, prognosis of disease-specific
 outcomes, and prediction of treatments responses. [2]
- Microarray datasets containing expression profiles of several miRNAs or genes are used to identify biomarkers [2]
- Microarrays chips can have various sizes, they can have up to 2000 probes. [3]

What is Gene Expression Omnibus?

- © GEO is an international public repository that archives and freely distributes microarray, next-generation sequencing, and other forms of high-throughput functional genomics data submitted by the research community.
- Microarray datasets have samples, their microarrays & meta data to describe other characteristics about tissue owner.

What is Gene Expression Omnibus?

Tissue sample

П		L	_	1 6	`
Р	rറ	n	e	П)

^	GSM4473281_Jllo- MCF7-1a- U133Plus2_HG- U133_Plus_2CEL.gz	GSM4473282_Jllo- shSPCA2-1a- U133Plus2_HG- U133_Plus_2CEL.gz	GSM4473283_Jllo- MCF7-2a- U133Plus2_HG- U133_Plus_2CEL.gz	GSM4473284 Jllo- shSPCA2-2a- U133Plus2_HG- U133_Plus_2CEL.gz
1007_s_at	9.759789	9.789560	9.452247	9.45406
1053_at	8.211626	8.126970	8.232125	8.22032
117_at	3.573675	3.360919	3.472520	3.43362
121_at	6.382752	6.458215	6.340344	6.22769
1255_g_at	2.421189	2.424104	2.176736	2.2101
1294_at	3.972205	4.112060	4.066955	3.8475
1316_at	3.979537	3.994334	3.852810	3.9113
1320_at	3.075585	2.849677	3.007880	2.8440
1405_i_at	2.710340	2.886446	4.046385	3.53084
1431_at	3.144953	3.416276	2.893746	3.2732
1438_at	4.655579	4.694605	4.933841	4.8479
1487_at	7.754502	7.635340	7.628142	7.7134
1494_f_at	4.156180	4.480077	4.294640	3.8428
52256 a at	8.607673	8.351812	8.374356	8.1714

An example of data with ID = "GSE148537" downloaded from Gene Expression Omnibus

Cancer Diagnosis & prognosis

O Diagnosis:

The process of identifying a disease, condition, or injury from its signs and symptoms.

Prognosis:

predicting the likely or expected development of a disease.

Methods Used in both:

- Lab Test
 - Blood, Tissue samples ...
- Imaging Tests
 - MRI, CT ...

Another Approach for cancer diagnosis & prognosis

Project Steps

1- Dataset

O Dataset:

- Challenges
 - Different environments
 - Different protocols & different metadata structure
 - HUGE number of features (Genes) per sample
 - Small number of samples

Selected dataset:

- Data with ID "GSE14520" from "CuMiDa" project that includes normalized microarrays of 375 samples of healthy and cancerous liver tissues
- Raw data can be found here

2- Data visualization & Exploration

	samples	type	1007_s_at	1053_at	117_at	121_at
0	GSM362958.CEL.gz	HCC	6.801198	4.553189	6.787790	5.430893
1	GSM362959.CEL.gz	HCC	7.585956	4.193540	3.763183	6.003593
2	GSM362960.CEL.gz	HCC	7.803370	4.134075	3.433113	5.395057
3	GSM362964.CEL.gz	HCC	6.920840	4.000651	3.754500	5.645297
4	GSM362965.CEL.gz	HCC	6.556480	4.599010	4.066155	6.344537
5 r	ows × 22279 columr	าร				

3- System Architecture

- Using different techniques to identify biomarkers
 - PCA
 - Feature Selection using Chi-square
- Using Different modeling techniques
 - SVM
 - Naïve Bias
- Evaluating different models
 - Using K-Fold cross validation

4- System Evaluation

- Evaluating best model & dimensionality reduction strategy
 - Confusion matrix.
 - F1-score & Accuracy scores.
- Evaluating acquired Biomarkers
 - Checking the selected biomarkers against famous biomarkers for this cancer type.

Using Proposed System For Prognosis & Diagnosis

O Diagnosis

 The identified biomarkers will be checked for every new patient liver tissue sample, if they exist in patient tissue samples then this patient may get liver cancer.

O Prognosis

The identified biomarkers will be monitored while the patient is undergoing treatment, if their values are getting into normal range then the treatment is working.

Results

Apply PCA Analysis

```
from sklearn.decomposition import PCA
pca = PCA(n components = 0.85)
pca.fit(X scaled)
print("Cumulative Variances (Percentage):")
print(np.cumsum(pca.explained variance ratio * 100))
components = len(pca.explained variance ratio )
print(f'Number of components: {components}')
# Make the scree plot
plt.plot(range(1, components + 1), np.cumsum(pca.explained variance ratio * 100))
plt.xlabel("Number of components")
plt.vlabel("Explained variance (%)")
X pca = pca.transform(X scaled)
print(X pca.shape)
print(X pca)
 (357, 146)
 [[-4.36933079e+01 2.95800459e+01 -2.58912691e+01 ...
   -1.46242797e+01 4.09976171e+00]
  [-2.08763102e+01 7.24459379e+01 8.91731420e+00 ...
                                                          5.84418709e+00
   -2.26578238e+00 -9.27886845e+00]
  [-1.25643617e+00 8.05652056e+01 -3.64488166e+00 ... 4.81323316e-01
   4.70648023e+00 3.42267784e+00]
  [-6.55505934e+01 -1.77614639e+01 7.62129596e+00 ... 3.95674832e+00
    2.57896360e+00 -2.16438385e+00]
   3.05008518e+01 -4.45508838e+01 2.26069248e+01 ... 3.25189472e-01
   1.97230648e+00 7.20281873e-02]
   2.32894496e+01 -2.35199829e+01 1.96684362e+01 ... -4.71468879e+00
   4.66180285e+00 4.66934741e-01]]
```


Apply Filter Selection Method using Chi square

filter_selecton(X_train, y_train, X_test, y_test, svm.SVC(),"SVM",sub_data)

max mutal 96.5034965034965

Best value of n components: 200 from chi2

	CCL5	ESRRAP1	PXN	SEC11A	TOP2A	NQO1	ACSL3.2	SIGMAR1	EGR1	FAM3C	 MCTP2	TMOD3	FIP1L1	ALDH6A1.3
0	3.654116	6.720586	5.015457	10.373907	6.487182	3.484757	7.443709	7.513818	4.234161	9.108184	 3.364998	3.865661	5.785655	8.765856
1	5.137159	5.246931	4.539729	10.863529	5.809140	3.617111	9.126945	6.978191	4.575328	6.651637	 3.468009	3.465546	5.088006	6.500905
2	4.515175	6.121159	4.862556	11.232235	4.315457	3.696638	7.167784	7.717214	3.935277	6.839798	 3.658915	3.714477	5.403839	7.550403
3	5.192624	6.275763	4.661036	10.229783	4.940407	4.399711	7.945846	7.484491	5.173549	7.877896	 3.276052	3.681416	5.159395	8.171625
4	4.961625	6.216846	5.121474	9.978668	5.830239	5.780928	7.744503	7.694174	4.720321	7.544878	 3.699457	3.679710	5.372327	7.524524
352	5.193377	6.183175	4.639223	9.727213	3.591141	3.608490	6.673683	8.079547	7.159559	6.622838	 3.510749	3.265976	5.230712	10.793508
353	5.704730	6.224405	4.457951	9.842509	3.271005	3.340908	6.868325	8.201286	9.975128	8.337508	 3.465303	3.452212	5.755963	10.612945
354	4.284763	5.688998	4.666346	10.063517	7.249937	4.928347	8.047757	7.784594	5.122428	9.072875	 3.346077	3.889923	6.656467	9.252310
355	5.472988	6.136591	4.352139	9.620298	3.840579	3.549621	6.299182	8.046369	8.747951	7.092517	 3.296420	3.368441	5.786661	10.689106
356	5.598791	5.924060	4.621681	9.654952	3.685207	3.607251	6.633805	7.862495	8.482645	7.526601	 3.681690	3.386870	5.875606	10.469765
357 r	ows × 200	columns												

Apply Cross Validation on different models using PCA data

SVM Model

Accuracy: 0.95 (+/- 0.05) K-fold cross validation score: fo each [0.95454545 0.95454545 0.909090901 1. 0.9047619 0.95238095 0.95238095 0.95238095]

0.95238095 0.95238095

Naïve Bayes

Accuracy: 0.91 (+/- 0.14)
K-fold cross validation score: fo each [1. 0.95238095 0.95238095 0.76190476 0.95238095]

0.95454545 0.81818182 0.86363636 0.9047619 0.9047619

Apply Cross Validation on different models using Filter selection data

SVM Model

Accuracy: 0.95 (+/- 0.05)
K-fold cross validation score: fo each [0.95454545 0.95454545 0.99909091 1.
0.95238095 0.95238095 0.9647619 0.95238095]

0.95238095 0.95238095

Naïve Bayes

Accuracy: 0.85 (+/- 0.15)
K-fold cross validation score: fo each [0.86363636 0.90909091 0.81818182 0.86363636 0.85714286 0.80952381
1. 0.76190476 0.71428571 0.85714286]

Choose Champion Model

 After Evaluation cross validation we choose SVM model using PCA data as a champion model

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.95	0.96	65
1	0.96	0.97	0.97	78
accuracy			0.97	143
macro avg	0.97	0.96	0.96	143
weighted avg	0.97	0.97	0.97	143

Confusion Matrix:

[[62 3] [2 76]]

Accuracy Score:

0.965034965034965

Conclusion

Conclusion

The following topics were covered

- Gene expression data and its challenges.
- Biomarkers and their role in cancer diagnosis and prognosis.
- Proposed a system for identifying cancer biomarkers.

5.

Future Trends

Future trends & observations

- Developing AI frameworks to identify biomarkers with the advances in computing efficiency.
- Gene expression data will increase & its accuracy will be better as technology is advancing.

References

- https://www.cancer.gov/publications/dictionaries/cancer-terms/def/diagnosis
- https://en.wikipedia.org/wiki/Prognosis
- https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis
- https://www.cancercouncil.com.au/cancer-information/understandingcancer/what-is-cancer/
- https://www.azolifesciences.com/article/A-Guide-to-Understanding-Gene-Expression.aspx
- https://microbenotes.com/dna-microarray/

References

- [1] A. Mohammed, G. Biegert, J. Adamec, and T. Helikar, "Identification of potential tissue-specific cancer biomarkers and development of cancer versus normal genomic classifiers," *Oncotarget*, vol. 8, no. 49, p. 85692, Oct. 2017, doi: 10.18632/ONCOTARGET.21127.
- [2] D. Chakraborty and U. Maulik, "Oncology Identifying Cancer Biomarkers From Microarray Data Using Feature Selection and Semisupervised Learning", doi: 10.1109/JTEHM.2014.2375820.
- [3] Z. He, L. Wu, M. W. Fields, and J. Zhou, "Use of Microarrays with Different Probe Sizes for Monitoring Gene Expression," *Applied and Environmental Microbiology*, vol. 71, no. 9, p. 5154, Sep. 2005, doi: 10.1128/AEM.71.9.5154-5162.2005.