

이론, 실습, 시뮬레이션 💯 디지털 논리회로 깨정3판

Chapter 06. 논리식의 간소화

학습목표 및 목차

- 카르노 맵을 이용하여 논리식을 간소화할 수 있다.
- NAND와 NOR 게이트로 나타내는 방법을 이해하고 이를 응용할 수 있다.
- 퀸-맥클러스키 최소화 알고리즘을 이용하여 논리식을 간소화할 수 있다.
- 출력함수가 여러 개일 때 논리식을 공유하는 방법을 이해할 수 있다.
- XOR 게이트와 XNOR 게이트의 특징을 이해하고 이를 활용할 수 있다.

01. 2변수 카르노 맵

02. 3변수 카르노 맵

03. 4변수 카르노 맵

04. 선택적 카르노 맵

05. 논리식의 카르노 맵 작성

06. 5변수, 6변수 카르노 맵

08. 여러 개의 출력함수

■ 개요

- 불 대수를 이용한 간소화하는 방법은 복잡하고 검증도 어렵다.
- 체계적으로 논리식을 간소화하기 위해 카르노 맵(1953년 Maurice Karnaugh가 소개)과 퀸-맥클러스키 방법(1956년 Willard Van Orman Quine과 Edward J. McCluskey 개발)이 필요
- 퀸-맥클러스키 방법은 많은 변수에 대해서도 쉽게 간소화할 수 있다.

■ 2변수 카르노 맵 표현 방법

A^B	\overline{B}	В
\overline{A}	\overline{AB}	$\overline{A}B$
\boldsymbol{A}	$A\overline{B}$	AB

A	\overline{B}	В
\overline{A}	m_0	m_1
\boldsymbol{A}	m_2	m_3

A^B	0	1
0	0	1
1	2	3

A	\overline{A}	\boldsymbol{A}
\overline{B}	m_0	m_2
В	m_1	m_3

- 무관항(don't care) : 입력이 결과에 영향을 미치지 않는 최소항
- x 로 표시하거나 d로 표시한다.

■ 일반항과 무관항 표현

- 출력이 1이거나 무관항만 표시한다.
- 출력 0을 표시하여도 되지만 일반적으로 생략한다.

■ 카르노 맵을 이용한 간소화 방법

- ① 출력이 같은 항을 1, 2, 4, 8, 16개로 그룹을 지어 묶을 수 있고,
- ② 바로 이웃한 항들끼리 묶을 수 있으며,
- ③ 반드시 직사각형이나 정사각형의 형태로 묶어야 하고,
- ④ 최대한 크게 묶는다.
- ⑤ 중복하여 묶어서 간소화된다면 중복하여 묶는다.
- ⑥ 무관항의 경우 간소화될 수 있으면 묶어 주고, 그렇지 않으면 묶지 않는다.

불 대수의 법칙으로 풀면

$$F = \overline{AB} + \overline{AB}$$
$$= \overline{A}(\overline{B} + B) = \overline{A} \cdot 1 = \overline{A}$$

A=0이므로 AB=0 and 1이므로 제거 즉, 한 변수에서 서로 다른 값이 묶여지면 제거한다.

■ 간소화 예

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

중복하역도 되므로 크게 묶는다.

불 대수의 법칙으로 풀면

$$F = \sum m(0,1,2) = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$
$$= \overline{A}(\overline{B} + B) + \overline{B}(\overline{A} + A)$$
$$= \overline{A} \cdot 1 + \overline{B} \cdot 1$$
$$= \overline{A} + \overline{B}$$

■ 3변수 카르노 맵 표현 방법

A	$C \overline{BC}$	$\overline{B}C$	ВС	$B\overline{C}$
$\overline{\overline{A}}$	\overline{ABC}	\overline{ABC}	- ABC	$\left \overline{ABC} \right $
\boldsymbol{A}	$A\overline{BC}$	ABC	ABC	\overline{ABC}

A	00	01	11	10
0	0	1	3	2
1	4	5	7	6

C^{AE}	$\frac{B}{AB}$	\overline{AB}	AB	\overline{AB}
\overline{C}	\overline{ABC}	\overline{ABC}	$AB\overline{C}$	$A\overline{B}\overline{C}$
C	\overline{ABC}	_ ABC	ABC	\overline{ABC}

C^{AE}	00	01	11	10
0	0	2	6	4
1	1	3	7	5

행과 열을 바꾸어도 상관없다. 설계자가 선호하는 방법을 선택하면 된다.

C	\overline{C}	C
$\frac{1}{AB}$	\overline{ABC}	\overline{ABC}
$\overline{A}B$	ABC	_ ABC
AB	$AB\overline{C}$	ABC
$A\overline{B}$	$A\overline{B}\overline{C}$	\overline{ABC}

0	1
0	1
2	3
6	7
4	5
	0 2

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \sum m(3,5,6,7) = AB + BC + AC$$

■ 간소화 예 7

모두 0이면 논리식은 F=0이다.

$$F = 0$$

모두 1이면 논리식은 F=1이다.

$$F = 1$$

■ 4변수 카르노 맵 표현 방법

AB	00	01	11	10
	\overline{ABCD}	ABCD	ABCD	ABCD
01	ABCD	 ABCD	_ ABCD	ABCD
11	ABCD	ABCD	ABCD	$ABC\overline{D}$
10	\overline{ABCD}	$A\overline{BCD}$	ABCD	$A\overline{B}C\overline{D}$

CI	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

CI AB	00	01	11	10
00	0	1	3	2
01	-4	5	7	6
11	12	13	15	14
10	8	9	11	10

상하 좌우는 연결되어 있다.

■ 예제 6-1 여러 가지 4변수 카르노 맵의 예제

■ 예제 6-1 여러 가지 4변수 카르노 맵의 예제

■ 예제 6-1 여러 가지 4변수 카르노 맵의 예제

■ 예제 6-2 무관항이 있는 경우의 카르노맵의 간소화 예제

$$F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 11) + \sum d(1, 7, 9, 15)$$

$$F(A, B, C, D) = \sum m(1, 2, 3, 4, 6, 8, 10) + \sum d(0, 12, 14)$$

$$F(A, B, C, D) = \sum m(0,2,3,4,8,9,11) + \sum d(1,5,6,7,10,12)$$

■ 예제 6-3 다음 진리표로부터 카르노맵을 작성하고 간소화 하여라

A	В	C	D	F
0	0	0	0	×
0	0	0	1	1
0	0	1	0	×
0	0	1	1	1
0	1	0	0	×
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$F(A, B, C, D) = \overline{A} + B\overline{C}D + BC\overline{D}$$

04 선택적 카르노 맵

■ 카르노 맵에서 선택적으로 묶을 수 있는 경우

<2가지 답이 가능한 경우>

04 선택적 카르노 맵

 $F = \overline{A}\overline{B} + AB + \overline{A}\overline{D}$

<5가지 답이 가능한 경우>

05 논리식의 카르노 맵 작성

❖ 논리식에서 생략된 부분을 찾아서 최소항(Minterm)으로 변경

$$F(A, B, C) = ABC + \overline{A}B + \overline{A}\overline{B}$$

$$= ABC + \overline{A}B(C + \overline{C}) + \overline{A}\overline{B}(C + \overline{C})$$

$$= ABC + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + ABC$$

$$= \sum m(0, 1, 2, 3, 7)$$

05 논리식의 카르노 맵 작성

$$\begin{split} F(A,B,C,D) &= AB + ABC + \overline{A}CD + \overline{A}\overline{C}D + \overline{A}BC\overline{D} \\ &= AB(C+\overline{C})(D+\overline{D}) + ABC(D+\overline{D}) + \overline{A}(B+\overline{B})CD \\ &+ \overline{A}(B+\overline{B})\overline{C}D + \overline{A}BC\overline{D} \\ &= (ABC+AB\overline{C})(D+\overline{D}) + ABCD + ABC\overline{D} + \overline{A}BCD + \overline{A}\overline{B}CD \\ &+ \overline{A}B\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}BC\overline{D} \\ &= ABCD + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD + ABC\overline{D} + \overline{A}BCD \\ &+ \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}BC\overline{D} \\ &= \sum m(15,14,13,12,7,3,5,1,6) = \sum m(1,3,5,6,7,12,13,14,15) \end{split}$$

06 5변수, 6변수 카르노 맵

■ 5변수인 경우

<5변수 카르노 맵>

06 5변수, 6변수 카르노 맵

■ 6변수인 경우

<6변수 카르노 맵>

■ 여러 개의 출력함수를 갖는 시스템의 통합

■ 두 개의 시스템으로 분리되어 있는 것을 하나의 시스템으로 통합하는 것이 가능하고, 공유 가능한 게이트가 있을 때 공유하여 시스템을 구성하면 경제적으로 좋은 시스템이 될 수 있다.

■ 예제 6-10 다음과 같은 2개의 논리함수를 하나의 시스템으로 통합

$$F(X,Y,Z) = \sum m(0,2,6,7)$$

$$G(X,Y,Z) = \sum m(1,3,6,7)$$

■ 예제 6-11 다음과 같은 3변수를 가지는 두 개의 논리함수를 통합하여 게

이트수를 최소화

$$F(X,Y,Z) = \sum m(0,1,6)$$

$$G(X,Y,Z) = \sum m(2,3,6)$$

■ 예제 6-12 다음과 같은 3변수를 가지는 두 개의 논리함수를 통합하여 게

이트수를 최소화

$$F(X,Y,Z) = \sum m(0,1,6)$$

$$G(X,Y,Z) = \sum m(2,3,6)$$

학습목표 및 목차

- 카르노 맵을 이용하여 논리식을 간소화할 수 있다.
- NAND와 NOR 게이트로 나타내는 방법을 이해하고 이를 응용할 수 있다.
- 퀸-맥클러스키 최소화 알고리즘을 이용하여 논리식을 간소화할 수 있다.
- 출력함수가 여러 개일 때 논리식을 공유하는 방법을 이해할 수 있다.
- XOR 게이트와 XNOR 게이트의 특징을 이해하고 이를 활용할 수 있다.

01. 2변수 카르노 맵

02. 3변수 카르노 맵

03. 4변수 카르노 맵

04. 선택적 카르노 맵

05. 논리식의 카르노 맵 작성

06. 5변수, 6변수 카르노 맵

08. 여러 개의 출력함수

감사합니다 ☺

