Predicción de cristalización de perovskitas

mediante aprendizaje automático

María Belén Ticona

Tesis de Licenciatura en Ciencias de la Computación

Director: Onna, Diego

Co-director: Turjanski, Pablo

Índice

01	Motivación	04	Simulación de Errores de Predicción
02	Dataset de Experimentos	05	Ensamble de modelos
03	Ruido en Matrices de Confusión	06	Conclusiones y Trabajo Futuro

01. Ciencia de los materiales

Ejemplo de datos experimentales

Concentraciones (M)

Reactivo A	Reactivo B	Reactivo C	Temperatura (°C)	Solvente	Resultado
2,5	0,3	0,7	57	DMSO	×
2,5	0,2	0,9	60	GBL	×
2,1	0,2	0,5	55	DMSO	✓
•••	•••	•••		•••	
2,1	0,1	0,7	55	DMSO	?

01. Caso de estudio: perovskitas

FORMACIÓN DE MONOCRISTALES

X Fracaso

02. Dataset de experimentos

02. Variables predictoras del dataset

Condiciones de Reacción (FEAT_RXN)	Cantidad de Variables
concentración de reactivos (orgánico, inorgánico, ácido)	3
solvente (GBL, DMSO o DMF)	1
temperatura de reacción	1
tiempos de agitación	2
organoamina ID	1
Descriptor de Organoamina (FEAT_PHYCHEM)	
propiedades FQ ¹	61
$^{\rm 1}$ E.g cantidad de grupos funcionales, donores o aceptores, cantidad de enlaces	

02. Desbalance en calidad de cristal

02. Organoaminas con distinto desbalance

03. Modelos de Clasificación Binaria

03. Evaluación de Clasificación

03. Ruido en los datos de evaluación

03. Ruido en la predicción del modelo

03. Parametrización de la matriz de confusión

03. Parametrización de métricas de clasificación

04. Simulación de errores en CM

04. Influencia del desbalance y tamaño del dataset

Tamaño del conjunto de evaluación

04. Métricas complementarias

05. Modelos de clasificación (single)

05. Ensamble de modelos (bagging)

05. Comparación Single vs Ensambles Bagging

05. Ensamble de modelos heterogeneos (bagging)

05. Ensambles según preferencia de clase

05. Ensambles según clase de preferencia

06. Conclusiones

- Caracterización de datos experimentales para evaluar sistemas predictivos
- Significancia del valor de una métrica de clasificación
- Ensambles de modelos complementarios para datasets chicos
- Contexto de recolección de datos vs aplicación de sistemas predictivos

06. Trabajo Futuro

- Dataset con ruido: variabilidad de evaluación de clasificadores
- Fusión de datos de síntesis de perovskita
- Enfoque multiclase de ensambles

¡Muchas gracias!

Al jurado:

Esteban Mocskos y Mario Tagliazucchi

A los directores:

Diego Onna y Pablo Turjanski

Programa de Becas de Iniciación a la Investigación en Cs. de la Computación