Parallel Implementation and Evaluation of Logistic Regression

Massively Parallel Machine Learning (2018-19)

Marcin Paszkiewicz Moritz Meister

Data Set Description

Data set: SPAM E-mail Database

Origin: **Hewlett-Packard Labs**

Task: Classification of emails as spam or non-spam

Note: False positives (marking good mail as spam) is very

undesirable

zero false positives in the training/testing set -> 20-25% of the spam

would pass through the filter (HP labs)

Preprocessing: Removal of column 57

Standardization

Features:

Target variable:

Number of spam instances:	1,813	39.4%
Number of non-spam instance:	2,788	60.6%
Total of observations (emails):	4.601	

Definition: GD for Logistic Regression

Loss function to be optimized:

$$J(W) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} log(\hat{y}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{y}^{(i)})) + \frac{\lambda}{2m} \sum_{i=1}^{k} w_i^2$$
 2. Step 1. Step

Derivatives:

$$dw_1 = \frac{1}{m} \underbrace{\sum_{j=1}^{m} (\hat{y}^{(j)} - y^{(j)}) * x_1^{(j)}}_{\text{2. Step}} + \frac{\lambda}{m} w_1$$

- 1. Step: map, done in parallel
- 2. Step: reduce, across RDD partitions over all observations

Implementation: data structures

Weight tuple:

Main RDD:

Implementation

Gradient Descent algorithm:	Spark Pseudo-code:	$dw_1 = \frac{1}{m} \sum_{j=1}^{m} (\hat{y}^{(j)} - y^{(j)}) * x_1^{(j)} + \frac{\lambda}{m} w_1$
1 Initialize weights2 Initialize derivatives	w = (0, numpy.zeros(#features)) not needed	Concerning bias Concerning other weights Important operations
3 for i in iterations:	for i in iterations:	
4 compute derivatives — \Rightarrow dw = train.map(lambda x: $((\hat{y} - y) * 1, (\hat{y} - y) * x[1]))$.reduce(lambda a, b: $(a[0] + b[0], a[1] + b[1])$) $dw = (dw[0] / \#obs, (dw[1] / \#obs) + lambda * w[1])$		
5 update weights — $w = (w[0] - lr * dw[0], w[1] - lr * dw[1])$		
6 update predicted probabilities—	→ train = train	
7 compute loss—	.map(lambda x: (1 , x, y, sigmoid(w[1].dot(x[1]) + w[0] * x[0]))) → loss = val_rdd.map(lambda x: cost_function(y, ŷ)) \ .reduce(lambda a,b: a + b)	

loss = -(1 / # obs) * loss + (lambda / 2) * np.sum(w[1]**2)

Cross Validation

Train and Test split (80%, 20%)

Stochastic Gradient Descent

Goal: Stochastic approximation of normal Gradient Descent.

Advantage: Faster training iterations, since training is done on

a random sample of the entire training data.

How? Define what percentage of the training data should be used for the actual training.

Resample before every new iteration step.

for i in iterations:

train_sample = train_data.randomSample(withReplacement = False, percentage)
.repartition(sc.defaultParallelism)

continue as usual with train_sample

Hyperparameters tuning:

Regularization: 0.05

Cross-validation:

10-fold, 50 iterations per fold

Learning rate: 0.1

Hyperparameters tuning:

Learning rate: 0.1

Cross-validation:

10-fold, 50 iterations per fold

Regularization: 0.05

Training parameters:

Iterations: 200

Regularization: 0.05

Learning rate: 0.1

Final model test validation metrics:

Loss: 0.391

Precision: 0.954

Recall: 0.919

F1: 0.936

Accuracy: 0.880

By adjusting prediction threshold we can steer towards precision or recall.

Training time decreases as expected with smaller samples.

Overhead for more than four workers outweighs the performance increase.

Based on 10-fold cross-validation with 50 iterations each, that is 500 iterations in total.

Conclusions

Speedup:

Caching RDDs makes a big difference.

Model complexity:

Good performance with low regularization, indicates that the model could be more complex.