

Universidade do Minho

Departamento de Matemática

Cálculo para Engenharia Licenciatura em Engenharia Biomédica

Teste	2	Α	::	12	de	janeiro	de	2022

Nome	Número	
	,	

ı

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Calcule

a)
$$\int \frac{x-1}{x^2+1} dx.$$

b)
$$\int \frac{1}{x + x \ln^2 x} \, dx$$

Questão 2. [3 valores] Calcule $\int_{-1}^{1} (2x+1) \arctan x \, dx$.

Questão 3. [3 valores] Considere a região do plano

$$R = \{(x, y) \in \mathbb{R}^2 : x^2 - 2x - 8 \le y \le 4 - x^2 \land x - y + 2 \ge 0\}.$$

- a) Apresente um esboço gráfico da região R.
- b) Escreva uma expressão integral que permita calcular o valor da área da região R.

Questão 4. [5 valores] Considere a função $f:[-2,1]\longrightarrow \mathbb{R}$ cujo gráfico se apresenta na figura anexa e seja $F:[-2,1]\longrightarrow \mathbb{R}$ tal que $F(x)=\int_0^x f(t)\,dt.$

c) Determine o conjunto dos zeros da função F.

f) Apresente, caso exista, uma função $g:[-2,2]\longrightarrow \mathbb{R}$ tal que g é um prolongamento contínuo de f(ao intervalo [-2,2]) e tal que $\int_{-2}^{2} g(x) dx = 0$.

(a) intervalo [-2,2]) e tal que
$$\int_{-2}^{2} g(x) dx = 0$$
.
 $g(1)=1$ $g(2)=1$ $g(3)=1$ $g(3)=$

 $a) \int \frac{w_5 H}{w_{-1}} \, dn = \int \frac{w_5 H}{s_m} \, dn - \int \frac{w_5 H}{s_m} \, dn$ = 7 m(n2+1) - anetgr+c h. . with - aretgrate, CER I mtalien du = I de athieu du = arety/lun/+c, core I winder der et de = 1 1 dt = onely t+c = onely lhunte, cer 82 / (2nH) overgon du = w= 2m+ w= m2+m = (n2+n) overfån] - [n2+n gr = 5 1 - [15++11-1 gn= 12 - [gn - [115+ qn = = = 2 - [lu væn - audgu] = = # -2 - lu2+ # + lu2+ # = 11-3.

 $A = r - u_{3}$ $A = r - u_{3}$ $a_{3} - 2r - 3 = 0$ (a) $a_{3} = +5$ $a_{3} - 2r - 3 = 0$ (b) $a_{3} = +5$ $a_{3} - 2r - 3 = 0$ (c) $a_{3} = +5$ $a_{3} - 2r - 3 = 0$ (d) $a_{3} = +5$

(2) 42 - 2 4 M = 1

= [(-15+31+10) gys + [(-515+541+15) gys () [(15-15+51+5) gm+[(1-15-15+51+15) gys

· [(w+s/qn + ((n-ns)qn - ((ns-sn-8)qn

· \(\frac{-3}{2}(n-\sigma-\sigma+\sigma+\sigma)\gumman-\sigma\frac{-5}{2}(n-\sigma-\sigma-\sigma)\gumman

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira. não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

Questão 1. Seja $f:[-1,1] o \mathbb{R}$ uma função contínua tal que $\int_{-1}^1 f(x)\,dx = 0$. Então:

 \bigcirc f é uma função ímpar.

- $\int_{-1}^{0} f(x) dx = \int_{0}^{1} f(x) dx = 0.$
- $\exists c \in]-1,1[$ tal que f(c)=0.

Questão 2. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função e seja $F: \mathbb{R} \to \mathbb{R}$ uma sua primitiva. Então:

- \bigcirc f e F são contínuas.
- \bigcirc f e F são deriváveis
- \bigcirc f é contínua e F é derivável.
- nenhuma das respostas anteriores é verdadeira.

Questão 3. Seja f uma função tal que $\int_1^2 f(x) dx = 2$. Então :

 $\bigcap \int_{1}^{2} f(-x) dx = -2.$

 $\int_{-2}^{-1} f(-x) \, dx = -2.$

 $\int_{-2}^{-1} f(-x) dx = 2.$

 $\bigcap \int_{1}^{2} |f(x)| \, dx = 2.$

Questão 4. A identidade $\int_1^3 \frac{1}{\ln(4x)}\,dx = k \int_a^b \frac{1}{\ln t}\,dt$ verifica-se quando:

 $a = 4, b = 12, k = \frac{1}{4}.$

 \bigcirc a = 4, b = 12, k = 1.

 \bigcirc $a=1, b=3, k=\frac{1}{4}$.

 \bigcirc a = 1, b = 3, k = 1.

Questão 5. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que f(x) > 0, $\forall x \in \mathbb{R}$. Se $F: \mathbb{R} \to \mathbb{R}$ é uma primitiva de f então:

 $\bigcirc F(x) > 0, \ \forall x \in \mathbb{R}.$

 $\bigcirc F(x) < 0, \ \forall x \in \mathbb{R}.$

 $m{\emptyset}$ F é uma função crescente.

 \bigcirc F é uma função decrescente.

Questão 6. O integral $\int \frac{2(x^2+x+1)}{(x+1)^2(x^2+1)} dx$ é igual a:

- $\int \frac{2}{(x^2+1)^2} dx \int \frac{x^2+x+1}{x^2+1} dx.$
- $\int \frac{1}{x+1} \, dx + \int \frac{x}{(x+1)^2} \, dx + \int \frac{x+1}{x^2+1} \, dx.$
- nenhuma das respostas anteriores é verdadeira.