Definition 0.1. Let R be a semiring. The category Rel_R has sets as objects, and the homset $\operatorname{Rel}_R(X,Y)$ is the set $R^{X\times Y}$ of matrices with rows indexed by X, columns indexed by Y and coefficients in R. The identity id_X is the usual diagonal matrix $id_{a,b} \coloneqq \delta_{a,b}$ (δ is the Kronecker symbol), and the composition of $t: Y \times Z \to R$ with $s: X \times Y \to R$ is the matrix $ts: X \times Z \to R$ given by $(ts)_{a,c} \coloneqq \sum_{b \in Y} t_{b,c} s_{a,b}$. We suppose for the moment that all the desired infinite series converge in R.

Our composition formula is slightly unconventional. This is because, usually, a matrix t with raws on X and columns on Y is seen as a function from R^Y to R^X (R being here any set of coefficients); however, we are using the opposite convention, which corresponds to taking the transpose. In this way, the matrix t applies to a vector $x \in R^X$ giving rise to a vector $tx \in R^Y$ (instead of the converse), and the formula takes the (slightly unconventional) form $(tx)_b := \sum_{a \in X} t_{a,b} x_a$. We use this convention because it simplifies notations, as it allows us to see matrices $t \in \text{Rel}_R(X,Y)$ as functions $\hat{t}: R^X \to R^Y$.

Remark 0.2. It is straightforward to see that each R^X is a R-module w.r.t. pointwise scalar multiplication and pointwise addition. If the desired infinite series behave well in R, then the functions \hat{t} are all and only the linear ones, as in the finite case.

Given $a \in X$, let us denote by $e_a \in Q^X$ the "canonical base vector" whose coordinates are $(e_a)_a := 1$ and $(e_a)_{a'} := 0$ if $a \neq a'$.

Let us set $\overline{\mathbb{R}}_{\geq 0} := \mathbb{R}_{\geq 0} \cup \{+\infty\}.$

Terminology 0.3. Consider the complete lattice $(\overline{\mathbb{R}}_{\geq 0}, \geq)$, with joins $\vee A$ given by $\inf A$, and meets $\wedge A$ by $\sup A$. Remark that we set $\inf \varnothing := +\infty$. It becomes a semiring if we endow it with \inf as addition and + as multiplication¹. It is called the non-negative (min-plus-)tropical (commutative and idempotent) semiring. Moreover, it is a (unital, commutative, idempotent) quantale with multiplication the one of its semiring structure (that is, +). It is also a continuous semiring. Let us call it Q.

Remark 0.4. The Q-module structure of Q^X is given by scalar multiplication $(r,x) \in Q \times Q^X \to r + x \in Q^X$ and addition $(x,y) \in Q \times Q^X \to \min\{x,y\} \in Q^X$. If $t \in \operatorname{Rel}_Q(X,Y)$, than the function \hat{t} is linear.

Definition 0.5. Let us call Trop the co-Kleisli category $(Rel_Q)_!$ of Rel_Q w.r.t. the usual multiset comonad!. That is, objects are sets and morphisms from X to Y are matrices $F: \mathcal{M}_f(X) \times Y \to Q$, seen as maps $\hat{F}: Q^{\mathcal{M}_f(X)} \to Q^Y$. Moreover, the identity on X is the function $id: \mathcal{M}_f(X) \times X \to X$ s.t. $id_{[x],x} = 0$ and $id_{\mu,x} = +\infty$ if $\mu \neq [x]$, and the composition $GF: \mathcal{M}_f(X) \times Z \to Q$ of $G: \mathcal{M}_f(Y) \times Z \to R$ with $F: \mathcal{M}_f(X) \times Y \to R$ takes the form:

$$(GF)_{\mu,c} = \inf_{\rho \in \mathcal{M}_f(Y)} \left\{ G_{\rho,c} + \sum_{b \in Y} \rho_b F_{\mu,b} \right\}.$$

The induced map $\hat{F}: Q^{\mathcal{M}_f(X)} \to Q^Y$ by $F \in \text{Trop}(X,Y)$ is given by:

$$\hat{F}(x)_b = \inf_{\mu \in \mathcal{M}_f(X)} \left\{ F_{\mu,b} + \mu \cdot x \right\}$$

 $^{^1\}mathrm{The}$ neutral element for addition being $+\infty$ and the one for multiplication 0.

where $\mu \cdot x := \sum_{a \in X} \mu_a x_a \in Q$. We call tropical analytical the functions of the shape \hat{F} .

Remark 0.6. Since Q is a continuous semiring, [Weighted relational models] assures us that Rel_Q is:

- linear and continuous category
- *-autonomous with biproducts and bilinear and continuous tensor and monoidal currying
- Lafont category.

Furthermore, the same paper tells us that $(Rel_Q)_!$ is a post-linear and continuous Q-CCC.

Example 0.7. The terminal object of Trop is $1 := \{*\}$. Using the trivial bijection $\mathcal{M}_f(\{*\}) = \mathbb{N}$, the morphisms $F \in \text{Trop}(1,1)$ are exactly the functions $F : \mathbb{N} \to Q$, and the induced tropical analytical map $\hat{F} : Q = Q^{\{*\}} \to Q^{\{*\}} = Q$ has shape $\hat{F}(x) = \inf_{n \mathbb{N}} \{F(n) + nx\}$. A particular case is the one of tropical polynomials on Q, which coincide with the tropical analytical functions from Q to itself for which the inf is always a min. In particular, all affine functions $\hat{F}(x) = r + mx$ with $m \in \mathbb{N}$, $r \in Q$ from Q to itself (and thus also all affine functions from \mathbb{R} to itself), are of this shape: is suffices to take F(n) := r if n = m and $F(n) = +\infty$ otherwise.

Remark 0.8. We can endow Q^X with two (potentially $+\infty$) metrics:

$$d^{\infty}(x,y) \coloneqq \sup_{a \in X} |x_a - y_a|$$

 $d^{1}(x,y) \coloneqq \sum_{a \in X} |x_{a} - y_{a}|.$ (Forse questa la si dovrebbe prendere tropicale, ovvero inf_{a} ?)

Remember the following easy property of infs and sequences.

Lemma 0.9. If $|a_n - b_n| \le K$ for all $n \in \mathbb{N}$, then $|\inf_n a_n - \inf_n b_n| \le K$.

 $Proof. \ \ \text{We have} \ |\inf_n b_n - \inf_n a_n \ | \leq |\inf_n b_n - b_m \ | + |b_m - a_m \ | + |a_m - \inf_n a_n \ | \leq |\inf_n b_n - b_m \ | + K + |a_m - \inf_n a_n \ |$ for all $m \in \mathbb{N}$, so $|\inf_n b_n - \inf_n a_n \ | \leq \inf_m \{ |\inf_n b_n - b_m \ | + K + |a_m - \inf_n a_n \ | \} = K.$

Let us call $\widetilde{F}_{\mu,b}(x) := F_{\mu,b} + \mu \cdot x$, so that $\widehat{F}(x)_b = \inf_{\mu \in \mathcal{M}_f(X)} \widetilde{F}_{\mu,b}(x)$.

Remark 0.10. Let $\hat{F}, \hat{G}: Q^X \to Q^Y$ tropical analytical, whose associated matrices are F, G respectively. We have:

$$d^{\infty}(\hat{F}(x), \hat{G}(x)) \le d^{\infty}(F, G)$$

for all $x \in Q^X$.

Indeed, we have: $|\widetilde{F}_{\mu,b}(x) - \widetilde{G}_{\mu,b}(x)| = |F_{\mu,b} - G_{\mu,b}| \le d^{\infty}(F,G)$, so by the previous Lemma $|\widehat{F}(x)_b - \widehat{G}(x)_b| \le d^{\infty}(F,G)$ and thus the desired result.

Remark 0.11. The functions $\widetilde{F}_{\mu,b}$ are $\#\mu$ -Lipschitz in Q^X (w.r.t. both metrics). Indeed we have the following straightforward inequalities:

$$|\widetilde{F}_{\mu,b}(x) - \widetilde{F}_{\mu,b}(y)| = |\mu \cdot (x-y)| \le \mu \cdot |x-y| = \sum_{a \in X} \mu_a |x_a - y_a| \le d(x,y) \sum_{a \in X} \mu_a = d(x,y) \# \mu.$$

Remark 0.12. The functions $\widetilde{F}_{\mu,b}$ are always non-decreasing, in the sense that $\widetilde{F}_{\mu,b}(x) \leq \widetilde{F}_{\mu,b}(x+y)$. This is clear because everything takes place in non-negative real numbers, so $\mu \cdot x \leq \mu \cdot (x+y)$. Therefore, also \widehat{F} is non-decreasing (in the same sense: for all $b \in Y$, we have $\widehat{F}(x)_b \leq \widehat{F}(x+y)_b$). Remark 0.13. Fix $\epsilon > 0$. Then there is $\mu^{\epsilon} \in \mathcal{M}_f(X)$ s.t. $|\widehat{F}(x)_b - \widetilde{F}_{\mu^{\epsilon},b}(x)| \leq \epsilon$ (this is by definition of inf). Furthermore, if $\widehat{F}(x)_b < +\infty$ then $\sum_{a \in X} \mu_a^{\epsilon} x_a = \mu^{\epsilon} \cdot x < +\infty$. This means that $\mu_a^{\epsilon} x_a < +\infty$ for all $a \in X$.

Actually, for all $a \in X$, there must exist $K_a \in \mathbb{R}$ s.t. $\mu_a^{\epsilon} x_a \leq K_a$ for all $0 < \epsilon < 1$ (limitare eps serve altrimenti l'argomento sotto non funziona!). In fact, otherwise, there is an $a \in X$ s.t. for all K_a there is $0 < \epsilon < 1$ s.t. $\widetilde{F}_{\mu^{\epsilon},b}(x) \geq \mu_a^{\epsilon} x_a > K_a$. But, taking K_a large enough, we obtain a contradiction with he fact that, by definition of μ^{ϵ} , we must have $|\widehat{F}(x)_b - \widetilde{F}_{\mu^{\epsilon},b}(x)| \leq \epsilon < 1$.

Therefore, for all $a \in X$ s.t. $x_a \neq 0$, there must still exist $L_a \in \mathbb{R}$ s.t. $\mu_a^{\epsilon} \leq L_a$ for all $0 < \epsilon < 1$.

Remark 0.14. Let $q \in Q$. For all $0 < \epsilon < 1$, we have:

$$|\widetilde{F}_{\mu^{\epsilon},b}(x) - \widetilde{F}_{\mu^{\epsilon},b}(x + qe_a)| = |\mu^{\epsilon} \cdot (-qe_a)| = q\mu_a^{\epsilon}$$

and, if $x_a \neq 0$, the inequality continues as $\leq qL_a$.

Putting all this together we get:

Proposition 0.15. Let \hat{F} tropical analytical. Fix $x \in Q^X$ and let $a \in X$ s.t. $x_a \neq 0$. For all $0 < \epsilon < 1$ we have:

$$|\hat{F}(x)_b - \hat{F}(x + \epsilon e_a)_b| \le (2 + 2L_a)\epsilon.$$

This immediately implies that:

$$d^{\infty}(\hat{F}(x), \hat{F}(x+\epsilon e_a)) \leq (2+2L_a)\epsilon.$$
 (ma non è vero per d^1)

Proof. We have:

$$|\hat{F}(x)_b - \hat{F}(x + \epsilon e_a)_b| \leq |\hat{F}(x)_b - \widetilde{F}_{\mu^{\epsilon},b}(x)| + |\widetilde{F}_{\mu^{\epsilon},b}(x) - \widetilde{F}_{\mu^{\epsilon},b}(x + \epsilon e_a)| + |\widetilde{F}_{\mu^{\epsilon},b}(x + \epsilon e_a) - \hat{F}(x + \epsilon e_a)_b|$$
 where
$$|\hat{F}(x)_b - \widetilde{F}_{\mu^{\epsilon},b}(x)| \leq \epsilon \text{ and } |\widetilde{F}_{\mu^{\epsilon},b}(x) - \widetilde{F}_{\mu^{\epsilon},b}(x + \epsilon e_a)| \leq \epsilon L_a. \text{ So if we show that:}$$

$$|\widetilde{F}_{\mu^{\epsilon},b}(x+\epsilon e_a) - \hat{F}(x+\epsilon e_a)_b| \le \epsilon + \epsilon L_a$$

we are done. But since $\widetilde{F}_{\mu^{\epsilon},b}$ is non-decreasing, and by definition of inf, we have:

$$\hat{F}(x)_b \le \hat{F}(x + \epsilon e_a)_b \le \widetilde{F}_{\mu^{\epsilon}, b}(x + \epsilon e_a),$$

so that:

$$|\widetilde{F}_{\mu^{\epsilon},b}(x+\epsilon e_a) - \widehat{F}(x+\epsilon e_a)_b| \leq |\widetilde{F}_{\mu^{\epsilon},b}(x+\epsilon e_a) - \widehat{F}(x)_b| \leq |\widetilde{F}_{\mu^{\epsilon},b}(x+\epsilon e_a) - \widetilde{F}_{\mu^{\epsilon},b}(x)| + |\widetilde{F}_{\mu^{\epsilon},b}(x) - \widehat{F}(x)_b| \leq \epsilon L_a + \epsilon.$$

Remark that, in general, the previous results reads as follows:

Fix $x \in Q^X$, $I \subseteq \mathbb{N}$ an index set and let $a_i \in X$ s.t. $x_{a_i} \neq 0$ for all $i \in I$. For all $0 < \epsilon_i < \epsilon < 1$ we have:

$$|\hat{F}(x)_b - \hat{F}(x + \sum_{i \in I} \epsilon_i e_{a_i})_b| \le (2 + 2\sum_{i \in I} L_{a_i})\epsilon.$$

This is because we have:

$$|\widetilde{F}_{\mu^{\epsilon},b}(x) - \widetilde{F}_{\mu^{\epsilon},b}(x + \sum_{i \in I} \epsilon_i e_{a_i})| = |\mu^{\epsilon} \cdot (-\sum_{i \in I} \epsilon_i e_{a_i})| = \sum_{i \in I} \mu_{a_i}^{\epsilon} \epsilon_i$$

and, if $x_{a_i} \neq 0$ for all $i \in I$, the inequality follows as $\leq \sum_{i \in I} \epsilon_i L_{a_i} \leq \epsilon \sum_{i \in I} L_{a_i}$.

Remark 0.16. From the previous Proposition it also immediately follows that, for \hat{F} tropical analytical, $x \in Q^X$, $a \in X$ s.t. $x_a \neq 0$ and for all $0 < \epsilon < 1$, we have:

$$d^{\infty}(\hat{F}(x), \widetilde{F}_{\mu^{\epsilon}}(x + \epsilon e_a)) \le (3 + 2L_a)\epsilon,$$

where we put $\widetilde{F}_{\rho}(.) := (\widetilde{F}_{\rho,b}(.))_{b \in Y} : Q^X \to Q^X$, which is clearly still $\#\rho$ -Lipschitz. That is, we can approximate $\widehat{F}(x)$, with arbitrary precision ϵ , by using the Lipschitz functions $\widetilde{F}_{\mu^{\epsilon}}(x + \epsilon e_a)$. Signification veramente che la posso approssimare con robe lipschitz LOCALMENTE??

We say that a function $f: \overline{\mathbb{R}}_{\geq 0} \to \overline{\mathbb{R}}_{\geq 0}$ is tropical analytical with matrix $\hat{f}: \mathbb{N} \to \overline{\mathbb{R}}_{\geq 0}$ iff $\hat{f} \in \text{Trop}(1,1)$ and f is the tropical analytical function associated with it, under the identification of $\overline{\mathbb{R}}_{\geq 0}$ and Q^1).

Remark that, since $0 \cdot + \infty = 0$, we have: $f(+\infty) = \min\{\hat{f}(0), +\infty\} = \hat{f}(0) = \widetilde{f}(0, +\infty) = \min_{n \in \mathbb{N}} \widetilde{f}(n, +\infty)$. Here we set $\widetilde{f}(n, x) := nx + \hat{f}(n)$.

Example 0.17. Let us study the tropical analytical function with matrix $\hat{f}(n) = \frac{1}{2^n}$, that is:

$$f(x) = \inf_{n \in \mathbb{N}} \{ nx + \frac{1}{2^n} \},$$

where $x \in [0, +\infty]$.

We immediately see that $f(+\infty) = 1$. We also immediately see that $f(0) = \inf_{n \in \mathbb{N}} \frac{1}{2^n} = 0$. In particular, remark that f(0) is not a min but only an inf. In order to see what happens in $(0,+\infty)$, let us treat n as a real variable and, for $0 < x < +\infty$, let us compute: $\frac{\partial}{\partial n} \widetilde{f}(n,x) = x - \frac{\log_e 2}{2^n} \ge 0$ iff $n \ge \log_2 \left(\frac{\log_e 2}{x}\right)$. So $\widetilde{f}(n,x)$ (as a function of n) has exactly one minimum and it is reached at $n_x = \log_2 \left(\frac{\log_e 2}{x}\right)$. Remember now that we are only interested in $n \ge 0$, and $n_x \ge 0$ iff $x \le \log_e 2$. Putting all this together we get:

$$f(x) = \begin{cases} \widetilde{f}(0,x) = 1 & \text{if } x \in [log_e 2, +\infty) \\ \widetilde{f}(\widetilde{n}_x, x) = (\widetilde{n}_x + \frac{1}{log_e 2})x & \text{if } x \in (0, log_e 2] \end{cases}$$

where $\widetilde{n}_x \in \mathbb{N}$ is either $\lceil n_x \rceil$ or $\lfloor n_x \rfloor$. In particular, remark that thus $f(x) = \min_{n \in \mathbb{N}} \{nx + \frac{1}{2^n}\}$ on $(0, +\infty)$. The only point in which f(x) is not a min is thus x = 0. We just proved that f is almost always a min, but in order to find such min we have, à priori, to consider all $n \in \mathbb{N}$. But we can prove more: on intervals of shape $x \in \left[\frac{\log_e(2)}{2^{n+1}}, \frac{\log_e(2)}{2^n}\right]$ (we could also have chosen $\left(\frac{\log_e(2)}{2^{n+1}}, \frac{\log_e(2)}{2^n}\right]$), f coincides in fact with a unique tropical polynomial P_n . To see this, fix $n \in \mathbb{N}$ and remark that if $\frac{\log_e(2)}{2^{n+1}} \le x < \frac{\log_e(2)}{2^n}$ then $\underline{f}(n+1,m) \le \widetilde{f}(m,x) < \underline{f}(n,m)$ for all $m \in \mathbb{N}$, where we set $\underline{f}(k,m) \coloneqq \frac{m}{2^k} \log_e(2) + \frac{1}{2^m}$. By considering m as a real parameter and by computing the derivative $\frac{\partial}{\partial m} \underline{f}(k,m) = \left(\frac{1}{2^k} - \frac{1}{2^m}\right) \log_e(2)$ we see that, as a function of m, $\underline{f}(k,m)$ has a minimum (at m = k). Now, remark that $\lim_{m \to +\infty} \underline{f}(k,m) = +\infty$ for all $k \in \mathbb{N}$, and therefore it must exist $N_n \in \mathbb{N}$ s.t. $\underline{f}(n+1,m) \ge \min_{i \in \mathbb{N}} \underline{f}(n,i)$ for all $m \ge N_n$. Putting all this together we have:

$$\widetilde{f}(m,x) \ge \underline{f}(n+1,m) \ge \min_{i \in \mathbb{N}} \underline{f}(n,i) > \inf_{i \in \mathbb{N}} \widetilde{f}(i,x) = f(x)$$

for all $m \ge N_n$. The last inequality² holds because if a function admitting a minimum is always strictly greater than another function, then the same strict inequality holds for the respective min and inf. This means that all the $m \ge N_n$ are useless in order to compute f(x), i.e. $f(x) = \min_{m \le N_n} \widetilde{f}(m,x) = P_n(x)$, and now this is really a tropical polynomial since the minimum is taken on a finite number of indices.

The property that we just proved can be immediately strengthened. In fact, for all $0 < \epsilon < \log_e(2)$, we can consider the unique $n_{\epsilon} \in \mathbb{N}$ s.t. $\epsilon \in \left[\frac{\log_e(2)}{2^{n_{\epsilon}+1}}, \frac{\log_e(2)}{2^{n_{\epsilon}}}\right)$, and then we have a finite number of intervals $\left\{\left[\frac{\log_e(2)}{2^{i+1}}, \frac{\log_e(2)}{2^{i}}\right]\right\}_{i=0,\dots,n_{\epsilon}}$ partitioning $\left[\frac{\log_e(2)}{2^{n_{\epsilon}+1}}, \log_e(2)\right)$. Now, remembering the definition of P_i , for all $x \in [\epsilon, \log_e(2))$ we actually have that:

$$f(x) = \min_{i=0,\dots,n_{\epsilon}} P_i(x) = \min_{m \le N_{n_{\epsilon}}} \widetilde{f}(m,x) =: P_{\epsilon}(x)$$

where P_{ϵ} is still a tropical polynomial, because $N_{n_{\epsilon}} < +\infty$. Actually, there is no reason to limit x to be smaller than $\log_e(2)$. In fact, remembering that f is non-decreasing and that f(x) = 1 for $\log_e(2) \le x < +\infty$, with $f(+\infty) = 0$, we immediately have that for all $0 < \epsilon < +\infty$ and for all $x \in [\epsilon, +\infty]$:

$$f(x) = \min\{1, P_{\epsilon}(x)\} =: \overline{P}_{\epsilon}(x)$$

and $\overline{P}_{\epsilon}(.) = \min_{m \leq N_{n_{\epsilon}}} \{1, \widetilde{f}(m,.)\}$ is again a tropical polynomial.

Remark that this immediately implies that f is continuous on its domain. It is continuous on $(0,+\infty]$ because for all $\epsilon > 0$, it coincides with a tropical polynomial (which is a continuous function) on $[\epsilon,+\infty]$. And, since we know that f is non-decreasing, in order to show that $\lim_{x\to 0^+} f(x) = f(0) = 0$, it sufficies to show that for all K > 0 there is x > 0 s.t. f(x) < K. This is true because we can certainly find $m,n\in\mathbb{N}$ s.t. $f(n,m)=\frac{m}{2^n}\log_e(2)+\frac{1}{2^m}< K$, and then we have $f(x)\leq \widetilde{f}(m,x)<\underline{f}(n,m)< K$ for $x\in [\frac{\log_e(2)}{2^{n+1}},\frac{\log_e(2)}{2^n})$.

As a last remark, let us point out that we used that fact that $\lim_{m\to +\infty} \underline{f}(k,m) = +\infty$ in order to show that an appropriate N_n always exists. But we can actually give a particular N_n doing the

²The crucial fact is that this inequality is strict. In fact we already knew, by definition of f, that $\widetilde{f}(m,x) \ge f(x)$.

job. In fact we already said that, as a function of m, $\underline{f}(k,m)$ has a minimum at m=k, and its value for k=n is $\frac{1+n\log_e(2)}{2^n}$. Now a perfectly fine N_n is given by any solution m of the inequality: $\underline{f}(n+1,m) \ge \min_{i \in \mathbb{N}} \underline{f}(n,i)$, that is, $\frac{m}{2}\log_e(2) \ge 1+n\log_e(2)-\frac{2^n}{2^m}$. A plot in WolframAlpha (or do it by studying the function) shows that a possible solution, for $n \ge 4$, is to take $m = \frac{2n}{\log_e(2)}$. Since we require m to be natural, we can take the ceiling of that value, which turns out to be lower bounded by $3n =: N_n$. For n = 0, 1, 2, 3 we can find a particular solution by hand. For n = 0 the inequality becomes $m \ge \frac{2}{\log_e(2)} - \frac{2\cdot 2^m}{\log_e(2)}$. Now if $m \ge 1 - \log_2(\log_e(2))$, i.e. $\frac{2\cdot 2^m}{\log_e(2)} \le 1$, the desired inequality is satisfied if we take $m \ge \frac{2}{\log_e(2)}$. Therefore we are done taking $m \ge \max\{1 - \log_2(\log_e(2)), \frac{2}{\log_e(2)}\} = \frac{2}{\log_e(2)}$, and we can take the ceiling in order to have a natural value, which turns out to be $3 =: N_0$. Analogously one can see that we can take $N_1 = 5$, $N_2 = 7$, $N_3 = 9$.

The fact that approaching 0 arbitrarily close (from the right) we can always find a tropical polynomial (which depends on how much we approached 0) coinciding with f from that point on, is not specific to the previous example. As the following proposition shows, this is always the case. In particular, remark that the point x = 0 is always the only one in which f(x) can fail to be a min.

Proposition 0.18. Let $f: \overline{\mathbb{R}}_{\geq 0} \to \overline{\mathbb{R}}_{\geq 0}$ tropical analytical, with matrix $\hat{f}: \mathbb{N} \to \overline{\mathbb{R}}_{\geq 0}$. Then, for all $0 < \epsilon < +\infty$, there is $\mathcal{F}_{\epsilon} \subseteq \mathbb{N}$ s.t.

- 1. \mathcal{F}_{ϵ} finite
- 2. If $\mathcal{F}_{\epsilon} = \emptyset$ then $f(x) = +\infty$ for all $x \in \overline{\mathbb{R}}_{\geq 0}$
- 3. If $f(x_0) = +\infty$ for some $x_0 < +\infty$ then $\mathcal{F}_{\epsilon} = \emptyset$
- 4. For all $x \in [\epsilon, +\infty]$ we have $f(x) = P_{\epsilon}(x)$, where P_{ϵ} is the tropical polynomial:

$$P_{\epsilon}(x) = \min_{n \in \mathcal{F}_{\epsilon}} \{\hat{f}(n) + nx\}.$$

Proof. Let us set \mathcal{F}_{ϵ} to be the complementary in \mathbb{N} of the set:

$$\{n \in \mathbb{N} \mid either \ \hat{f}(n) = +\infty \ or \ there \ is \ m < n \ s.t. \ \hat{f}(m) \le \hat{f}(n) + \epsilon\}.$$

In other words, $n \in \mathcal{F}_{\epsilon}$ iff $\hat{f}(n) < +\infty$ and for all m < n, one has $\hat{f}(m) > \hat{f}(n) + \epsilon$.

1). Suppose that \mathcal{F}_{ϵ} is infinite, and let us enumerate its elements as:

$$\mathcal{F}_{\epsilon} =: \{m_0 < m_1 < \cdots \}.$$

By definition of \mathcal{F}_{ϵ} we have then:

$$+\infty > \hat{f}(m_0) > \hat{f}(m_1) + \epsilon > \hat{f}(m_2) + 2\epsilon > \cdots$$

so that $+\infty > \hat{f}(m_0) > \hat{f}(m_i) + i\epsilon \ge i\epsilon$ for all $i \in \mathbb{N}$. This contradicts the Archimedean property of \mathbb{R} .

2). We show that if $\mathcal{F}_{\epsilon} = \emptyset$, then $\hat{f}(n) = +\infty$ for all $n \in \mathbb{N}$. This immediately entails the desired result. We go by strong induction on $n \in \mathbb{N}$:

- if $n = 0 \notin \mathcal{F}_{\epsilon}$, then $\hat{f}(n) = +\infty$, because there is no m < n.
- if $n \ge 1 \notin \mathcal{F}_{\epsilon}$, then either $\hat{f}(n) = +\infty$ and we are done, or there is m < n s.t. $\hat{f}(m) \le \hat{f}(n) + \epsilon$. By strong induction $\hat{f}(m) = +\infty$ and, since $\epsilon < +\infty$, this entails $\hat{f}(n) = +\infty$.
- 3). If $f(x_0) = +\infty$ with $x_0 < +\infty$, then necessary $\hat{f}(n) = +\infty$ for all $n \in \mathbb{N}$. Therefore, no $n \in \mathbb{N}$ belongs to \mathcal{F}_{ϵ} .
- 4). By 1), it suffices to show that we can compute f(x) by taking the inf, that is therefore a min, only in \mathcal{F}_{ϵ} (instead of all \mathbb{N}). If $\mathcal{F}_{\epsilon} = \emptyset$ then by 2) we are done (remember that $\min \emptyset := +\infty$). If $\mathcal{F}_{\epsilon} \neq \emptyset$, we show that for all $n \in \mathbb{N} \mathcal{F}_{\epsilon}$, there is $m \in \mathcal{F}_{\epsilon}$ s.t. $\hat{f}(m) + mx \leq \hat{f}(n) + nx$. We do it by induction on $n \in \mathbb{N}$:
- if n = 0, then by definition of \mathcal{F}_{ϵ} , we have $\hat{f}(n) = +\infty$ (because there is no n' < n). So any element of $\mathcal{F}_{\epsilon} \neq \emptyset$ works.
- if $n \ge 1$, then we have two cases: either $\hat{f}(n) = +\infty$, in which case we are done as before by taking any element of $\mathcal{F}_{\epsilon} \ne \emptyset$. Or $\hat{f}(n) < +\infty$, in which case (again by definition of \mathcal{F}_{ϵ}) there is n' < n s.t.

$$\hat{f}(n') \le \hat{f}(n) + \epsilon. \tag{1}$$

Therefore we have (remark that the following inequalities hold also for the case $x = +\infty$):

$$\hat{f}(n') + n'x \leq \hat{f}(n) + \epsilon + n'x \qquad by (1)
\leq \hat{f}(n) + (n - n')x + n'x \quad because \ \epsilon \leq x \ and \ n \geq n'
= \hat{f}(n) + nx.$$

Now, if $n' \in \mathcal{F}_{\epsilon}$ we are done. Otherwise $n' \notin \mathcal{F}_{\epsilon}$ and we can apply the induction hypothesis on it, obtaining an $m \in \mathcal{F}_{\epsilon}$ s.t. $\hat{f}(m) + mx \leq \hat{f}(n') + n'x$. Therefore this m works.

Che fare quando y non è della forma x+qe a ??

Continuità a tratti??

Derivate??

Diff lambda cat??

Remember that on the $\overline{\mathbb{R}}_{\geq 0}$ -module $\overline{\mathbb{R}}_{\geq 0}^X$ (we mean $\overline{\mathbb{R}}_{\geq 0}$ with the usual + and \cdot operations, which is also called the *probability semiring*), we can define the subtraction $(x_a)_{a\in X} - (y_a)_{a\in X} := (x_a - y_a)_{a\in X}$ if $x_a - y_a \geq 0$ and := 0 otherwise.

Proposition 0.19. Let $f: \overline{\mathbb{R}}_{\geq 0}^X \to \overline{\mathbb{R}}_{\geq 0}$ and $x \in \overline{\mathbb{R}}_{> 0}^X$ (so $x_a \neq 0$ for all $a \in X$). If there is a convex open $V \subseteq \overline{\mathbb{R}}_{\geq 0}^X$ with $x \in V$ and s.t. $f|_V$ is concave and lower bounded by a constant $K \geq 0$, then f is continuous at x.

Proof. Fix now and for all the proof an $\epsilon \in (0,1)$.

If $f(x) = +\infty$ then for all $y \in V$ we have: $f((1-\epsilon)x + \epsilon y) \ge (1-\epsilon)f(x) + \epsilon f(y) = +\infty$, so $f = +\infty$ on an open neighbourhood of x (actually, on all V), and in particular it is continuous at $x \in W$.

Suppose now $f(x) < +\infty$. Since $x_a \neq 0$ for all $a \in X$, there certainly is a convex open neighbourhood $W \subseteq V$ of x s.t. $W \subseteq \overline{\mathbb{R}}_{>0}$ and W is symmetrical w.r.t. x, meaning that if $w \in W$ then $2x - w \in W$. Said differently, W is of shape $x + \hat{W}$, for some open $\hat{W} \subseteq \overline{\mathbb{R}}^X$ s.t. if $y \in \hat{W}$ then $-y \in \hat{W}$ (that is, symmetrical w.r.t. 0). Now fix $y \in \hat{W}$, that is, s.t. $x + y \in W$.

Since W is convex, $x + \epsilon y = (1 - \epsilon)x + \epsilon(x + y) \in W$, and therefore we have:

$$f(x+\epsilon y) \ge (1-\epsilon)f(x) + \epsilon f(x+y) \ge f(x) - \epsilon f(x) + \epsilon K = f(x) + \epsilon (K-f(x))$$

so:

$$\epsilon(f(x) - K) \ge f(x) - f(x + \epsilon y). \tag{2}$$

Now remark that $x = \frac{1}{1+\epsilon}(x+\epsilon y) + \frac{\epsilon}{1+\epsilon}(x-y)$ where $\frac{1}{1+\epsilon} = 1 - \frac{\epsilon}{1+\epsilon}$, $\frac{\epsilon}{1+\epsilon} \in (0,1)$ and $x-y = 2x - (x+y) \in W$. Therefore we have:

$$f(x) \ge \frac{1}{1+\epsilon} f(x+\epsilon y) + \frac{\epsilon}{1+\epsilon} f(x-y) \ge \frac{1}{1+\epsilon} (f(x+\epsilon y) + \epsilon K)$$

so:

$$f(x) - f(x + \epsilon y) \ge -\epsilon (f(x) - K). \tag{3}$$

Putting 2 and 3 together and remembering that y was arbitrary in \hat{W} , we have shown that for all points $w \in x + \epsilon \hat{W} \subset W$, $|f(x) - f(w)| \le \epsilon (f(x) - K)$ (and $f(x) - K \ge 0$). Since ϵ was arbitrary in (0,1), we have shown that $\exists \lim_{w \to x} f(w) = f(x)$.

Definition 0.20. A semifield is a semiring R s.t. $(R-\{0\},\cdot)$ is a group. A semifield is commutative iff it is commutative as a semiring. Remark that if the semiring R is actually a ring (that is, if (R,+) is a group), then the semifield is a division ring.

 $\overline{\mathbb{R}}_{\geq 0}$ with the usual + and · operations is a semiring, also called the *probability semiring*. It is a semifield under the usual inverse operation.

Definition 0.21. A topological field is the data of a field R together with a topology on it s.t. $+: R \times R \to R$, $-(.): R \to R$, $:: R \times R \to R$ and $(.)^{-1}: R \to R$ are continuous (where $R \times R$ is endowed with the product topology). Similarly for the definitions of topological division ring, semifield, ring and semiring.

Definition 0.22. Let R be a topological semifield. A topological R-module is the data of an R-module A together with a topology on it s.t. $+: A \times A \to A$ and $:: R \times A \to A$ are continuous (where R is considered with its topology of topological semifield and the product spaces are endowed with the product topologies). As a particular case, we have the definition of topological R-module for R a semiring. If R is a field, a topological R-module is called a topological R-vector space, and as a particular case we have the definition of topological module on a ring.

Remark 0.23. If A is a topological module on a semiring R then the translation maps $T_x: A \to A$, $z \mapsto z + x$, are continuous for all $x \in A$. Remark that the set $\{T_x \mid x \in A\}$ forms a monoid under composition. If R is a ring, then the translation maps are homeomorphisms and they form a group under composition.

Definition 0.24. Let Φ be a semigroup (under composition) of continuous maps from a topological module A on a semiring R to itself. The topology τ of A is weakly invariant under Φ iff ϕO is open for all O open and $\phi \in \Phi$. We can write this as $\Phi \tau \subseteq \tau$. It is invariant under Φ iff it is weakly invariant and every open is of shape ϕO for some open O and $\phi \in \Phi$. We can write this as $\Phi \tau = \tau$.

Remark 0.25. The topology of a topological module A on a semiring R is weakly translation invariant. This means that for all $x \in A$ and open O, the set $\{z + x \mid z \in O\} =: O + x$ is open. If R is a ring, then the topology is translation invariant (that is, $\tau + x = \tau$ for all $x \in A$).

Definition 0.26. A normed semiring is the data of a semiring R together with a norm on it, that is, a function $|\cdot|: R \to \mathbb{R}$ satisfying the usual axioms of the absolute value function⁴. One can immediately check that if R is a ring, then any norm on it induces a metric d(r,s):=|r-s| on it (and thus also a topology). A topological normed ring is a normed ring which is a topological ring w.r.t. the topology induced by the norm distance.

Definition 0.27. Let R be normed semiring, let A be a topological R-module and let $C \subseteq A$. We say that C is convex iff for all $x, y \in C$ and for all $r, s \in R$ s.t. |r| + |s| = 1, we have $rx + sy \in C$. We say that C is balanced iff for all $x \in C$ and for all $r, s \in R$ s.t. |r| + |s| = 1, we have $rx, sx \in C$. We say that C is a disk at $x \in A$ iff it is of shape C = x + D for some D both convex and balanced.

Example 0.28. An example of a balanced but not convex set in (the normed field) \mathbb{R}^2 .

 $^{^3 \}mathrm{Non}$ penso che esista come terminologia nella letteratura, la uso qui giusto per capirci.

⁴I.e.: $|x| \ge 0$, |x| = 0 iff x = 0, |xy| = |x| |y| and $|x + y| \le |x| + |y|$.

Definition 0.29. Let R be a normed field and let \mathbb{V} be a topological R-vector space. We say that \mathbb{V} is locally convex iff every $x \in \mathbb{V}$ admits a local basis consisting of disks at x. Since the topology of \mathbb{V} is necessarily translation invariant, it is equivalent to only ask that 0 has such a local basis.

Proposition 0.30. Let \mathbb{V} be a locally convex topological \mathbb{R} -vector space (where \mathbb{R} is endowed with its usual absolute value and the induced topology by it). Fix $x \in \mathbb{V}$, a neighbourhood $V \subseteq \mathbb{V}$ of x and $f: V \to \mathbb{R} \cup \{+\infty, -\infty\}$. If V is convex, f is concave and lower bounded by a finite constant K, then f is continuous at x (w.r.t. the subspace topology on V).

Proof. Since V is a neighbourhood of x, x admits an open neighbourhood $U \subseteq V$, and by local convexity of \mathbb{V} there is a (non necessary open) disk $D \subseteq U$ at x. Now fix $\epsilon \in (0,1)$ and $r,s \in \mathbb{R}$ with $0 \le r \le \epsilon$, s = 1 - r. Fix also $w \in D$. By the convexity of D we have $sx + rw \in D$, and thus the convexity of f entails that:

$$f(sx+rw) \ge sf(x) + rf(w) \ge sf(x) + rK = (1-r)f(x) + rK$$

that is,

$$f(x) - f(sx + rw) \le r(f(x) - K).$$

Now remark that $x = \frac{1}{s+2r}(sx+rw) + \frac{r}{s+2r}(2x-w)$, where $\frac{1}{s+2r} + \frac{r}{s+2r} = 1$, $\frac{1}{s+2r} < 1$ and $2x-w \in D$ (because D is a disk at x). Therefore by the convexity of f we have:

$$f(x) \ge \frac{1}{s+2r} f(sx+rw) + \frac{r}{s+2r} f(2x-w) \ge \frac{1}{s+2r} (f(sx+rw)+rK)$$

that is,

$$f(sx+rw)-f(x) \le r(f(x)-K).$$

We have thus shown that $|f(sx+rw)-f(x)| \le r(f(x)-K)$ for all $w \in D$. Since this holds also for all $\epsilon \in (0,1)$, and due to the choice of r,s, the points of shape sx+rw span D when w spans D and ϵ spans (0,1). That is, we have shown that $|f(w)-f(x)| \le r(f(x)-K)$ for all $w \in W$. Since $f(x)-K \ge 0$ and $r \le \epsilon$, we have that $\exists \lim_{n \to \infty} f(w) = f(x)$.

Corollary 0.31. Let $f:(\mathbb{R}_{>0}^X,\|.\|_{\infty}) \to (\overline{\mathbb{R}}_{\geq 0},\|.\|)$ and $x \in \mathbb{R}_{>0}^X$. If there is a convex neighbourhood $V \subseteq \overline{\mathbb{R}}_{>0}^X$ of x s.t. $f_{|_V}$ is concave, then f is continuous at x.

Proof. The \mathbb{R} -vector space \mathbb{R}^X is topological w.r.t. the topology τ_{∞} induced on it by the norm $\|.\|_{\infty}$, and it is clearly locally convex. Call τ_{∞}^+ the topology induced by $\|.\|_{\infty}$ on $\mathbb{R}^X_{>0}$. It is clear that it coincides with τ_{∞}^+ . Since moreover $\mathbb{R}^X_{>0}$ is open in $(\mathbb{R}^X, \tau_{\infty})$, the neighbourhood V of x in $(\mathbb{R}^X_{>0}, \|.\|_{\infty})$ is also a neighbourhood of x in $(\mathbb{R}^X, \tau_{\infty})$. We can therefore apply Proposition 0.30 to $f_{|V|}$ (which is lower bounded by 0 by definition of f) and obtain that $f_{|V|}$ is continuous at x w.r.t. the subspace topology τ_V induced by τ_{∞} on V. But since V is contained in $\mathbb{R}^X_{>0}$, the topology τ_V coincides with the subspace topology induced on V by τ_{∞}^+ . So f is continuous at x w.r.t. τ_{∞}^+ . \square

One may wonder if the same proof as above makes it possible to state the previous corollary replacing $\mathbb{R}_{>0}^X$ with $\mathbb{R}_{\geq 0}^X$ (so, in particular, taking $x \in \mathbb{R}_{\geq 0}^X$). This is not possible because in the proof

we crucially use that $\mathbb{R}^X_{>0}$ is open in $(\mathbb{R}^X, \tau_\infty)$, which is not the case of $\mathbb{R}^X_{\geq 0}$. In fact, this allowed us to say that V is a neighbourhood of x in $(\mathbb{R}^X, \tau_\infty)$, and therefore to be able to apply Proposition 0.30. Taking $\mathbb{R}^X_{\geq 0}$ instead, this is in general not true: we could have a neighbourhood of x w.r.t. the subspace topology on $\mathbb{R}^X_{\geq 0}$ induced by τ_∞ , which does not contain any open neighbourhood of x w.r.t. τ_∞ (i.e. it is not a neighbourhood w.r.t. τ_∞).

Example 0.32. An example of a neighbourhood of x w.r.t. the subspace topology on $\mathbb{R}^{X}_{\geq 0}$ induced by τ_{∞} , which is not a neighbourhood w.r.t. τ_{∞} .

Corollary 0.33. Tropical functions $f:(\mathbb{R}_{\geq 0}^X,\|.\|_{\infty}) \to (\overline{\mathbb{R}}_{\geq 0},|.|)$ are continuous on $\mathbb{R}_{> 0}^X$.

Proof. We know that tropical functions are concave on all their domain. Therefore the result immediate follows by Corollary 0.31, since the topology induced by $\|.\|_{\infty}$ on $\mathbb{R}^{X}_{>0}$ coincides with the subspace topology induced by $(\mathbb{R}^{X}_{\geq 0},\|.\|_{\infty})$ on it.

Due to the previous discussion about the impossibility of stating Corollary 0.31 in the case where one of the coordinates of x is 0, the continuity of tropical functions on the hyperplanes $\mathcal{H}_a := \{x \in \mathbb{R}^X_{\geq 0} \mid x_a = 0\}$, for $a \in X$, must be treated separately. Similarly, the continuity at points with infinite coordinates must be treated separately as well.

Discussione sui coni? (Vedi altra pagina)

Definition 0.34. An $\overline{\mathbb{R}}_{\geq 0}$ -cone is a commutative $\overline{\mathbb{R}}_{\geq 0}$ -semimodule with cancellative addition⁵.

In [Selinger] cones are required to also have "strict addition", meaning that $x + y = 0 \Rightarrow x = y = 0$. We do not add this requirement since it will automatic hold when considering normed cones.

Remark 0.35. The addition of a cone P (which forms a commutative monoid) turns P into a poset by setting:

$$x \le y$$
 iff $y = x + z$, for some $z \in P$.

By the cancellative property, when such z exists it is unique, and we denote it by y-x. Such order is called the cone-order on P.

Definition 0.36. A normed $\overline{\mathbb{R}}_{\geq 0}$ -cone is the data of a $\overline{\mathbb{R}}_{\geq 0}$ -cone together with a \leq -monotone⁶ norm⁷ on it.

In [Ehrhard-Pagani-Tasson, Crubillie] a normed $\overline{\mathbb{R}}_{>0}$ -cone is simply called a cone.

Remark that in a normed $\overline{\mathbb{R}}_{\geq 0}$ -cone, by monotonicity of the norm, we have: $||x+y|| = 0 \Rightarrow x = y = 0$. Therefore, as already mentioned, in a normed cone we have: $x+y=0 \Rightarrow ||x+y|| = 0 \Rightarrow x=y=0$, that is, addition is strict.

Example 0.37. $\overline{\mathbb{R}}_{\geq 0}^X$ is a normed cone with the norm $||x||_{\infty} := \sup_{a \in X} x_a \in \overline{\mathbb{R}}_{\geq 0}$.

Notation 0.38. We call $\overline{\mathscr{B}}_1^{\|.\|}(P)$ the closed unit ball $\{x \in \overline{\mathbb{R}}_{\geq 0} \mid \|x\| \leq 1\}$ of a normed $\overline{\mathbb{R}}_{\geq 0}$ -cone P. We will also simply call it $\overline{\mathscr{B}}$ when the other informations are clear from the context. Similarly, \mathscr{B} denotes the open unit ball.

Remark 0.39. The cone-order on $\overline{\mathbb{R}}_{\geq 0}^X$ is the pointwise usual order on $\overline{\mathbb{R}}_{\geq 0}$.

Remark also that tropical functions have no reason to be linear nor sublinear.

Remark 0.40. Tropical functions are monotone w.r.t. to the cone order on its domain and codomain. This is clear, using the definition of tropical functions, because $\mu x \leq \mu y$ if $x \leq y$.

Remark 0.41. The image fD of a directed subset D of a poset P under a monotone function $f: P \to P'$ is always directed. This is clear because for all $x, y \in P$, we have $f(x) \le f(z) \ge f(y)$, where $z \in D$ is s.t. $x \le z \ge y$ and it exists in D since D is directed.

Remark 0.42. The cone-order on $\overline{\mathbb{R}}_{\geq 0}^X$ makes it into a dcpo with least element 0.

Lemma 0.43. Let P be a poset and X,I sets. Fix the pointwise order on P^X .

1. Let $x^i \in P^X$ for $i \in I$. If $\bigvee_{i \in I} x^i$ exists P^X , then $\bigvee_{i \in I} x^i_a$ exists in P for all $a \in X$, and we have:

$$\bigvee_{i \in I} x_a^i = \left(\bigvee_{i \in I} x^i\right)_a.$$

⁵I.e.: $x + y = x + y' \Rightarrow y = y'$.

⁶I.e.: $x \le y \Rightarrow \|x\| \le \|y\|$. Remark that requiring this property (for all x, y) is equivalent to requiring that $\|x\| \le \|x + y\|$ for all x, y.

⁷A *norm* on a $\overline{\mathbb{R}}_{\geq 0}$ -abstract cone P is a map $\|.\|: P \to \overline{\mathbb{R}}$ satisfying the usual axioms of norms: $\|x\| \geq 0$, $\|x\| = 0 \Rightarrow x = 0$, $\|rx\| = r\|x\|$ and $\|x + y\| \leq \|x\| + \|y\|$.

2. Let $x_a^i \in P$ for $i \in I, a \in X$. If $\bigvee_{i \in I} x_a^i$ exists P for all $a \in X$, then $\bigvee_{i \in I} x^i$ exists in P^X , and we have:

$$\left(\bigvee_{i\in I} x^i\right)_a = \bigvee_{i\in I} x_a^i.$$

Proof. (1). Fix $a \in X$. Let us show that $\left(\bigvee_{i \in I} x^i\right)_a$ is indeed the sup of $\{x_a^i \mid i \in I\}$. It is an upper bound because $\bigvee_{i \in I} x^i \geq x^i$. Now let $d \in P$ be an upper bound of $\{x_a^i \mid i \in I\}$. In order to show that $d \geq \left(\bigvee_{i \in I} x^i\right)_a$, let us consider $h \in P^X$ defined by $h_c := \left(\bigvee_{i \in I} x^i\right)_c$ if $c \neq a$ and $h_a := d$. By construction h is an upper bound of $\{x^i \mid i \in I\}$. So, by definition of sup, $h \geq \bigvee_{i \in I} x^i$. Hence $d = h_a \geq \left(\bigvee_{i \in I} x^i\right)_a$.

$$\Box$$
 Analogue.

A directed net in a poset P with indices in a set I is a function $s: I \to P$, denoted by $(s_i)_{i \in I}$, s.t. its image is directed. We say that a directed net in P admits a sup iff its image admits a sup in P. We say that a directed net s in a normed cone is bounded iff the set $\{\|s_i\| | i \in I\}$ is bounded in $\mathbb{R}_{\geq 0}$. In the study of dcpo's the role played by sequences in usual topology is often played by directed nets.

Remark 0.44. Monotone functions between posets transport directed nets to directed nets⁸.

Definition 0.45. A function $f: P \to P'$ between posets is Scott-continuous iff for all directed net $(s_i)_i$ in P admitting a sup, we have $\exists \bigvee_i f(s_i) = f(\bigvee_i s_i)$ in P'.

As it is well known, the order theoretic notion of Scott-continuity coincides with the topological continuity w.r.t. to the *Scott-topology* on P, whose opens are exactly the upward closed $O \subseteq P$ s.t. for all directed $D \subseteq P$ with $\bigvee D \in O$, one has $D \cap O \neq \emptyset$.

Proposition 0.46. Let P be a normed $\overline{\mathbb{R}}_{\geq 0}$ -cone s.t. every bounded directed net in P admits a sup. Let $(v_i)_{i\in I}$ be a directed net in P with an upper bound $v\in P$. Then $\exists\bigvee_{i\in I}v_i\in P$ and, if $\inf_{i\in I}\|v-v_i\|=0$, one has: $\bigvee_{i\in I}v_i=v$.

Proof. Remark that $v-v_i$ exists in P by hypothesis and so does $\bigvee v_i$, thanks to the monotonicity of the norm. Now, since $v \ge v_i$ for all i, we have that $v \ge \bigvee v_i$, and so $v-\bigvee v_i$ exists in P. Fix $i \in I$. Since $v_i \le \bigvee v_i$, then $v-\bigvee v_i \le v-v_i$ and, by monotonicity of the norm, $\|v-\bigvee v_i\| \le \|v-v_i\|$. Since this holds for all $i \in I$, we have: $0 \le \|v-\bigvee v_i\| \le \inf_{i \in I} \|v-v_i\| = 0$, where the last equality holds by hypothesis. Thus $\|v-\bigvee v_i\| = 0$, i.e. $v=\bigvee v_i$.

⁸We simply mean that if $(s_i)_i$ is a directed net in the domain, then $(f(s_i))_i$ is a directed net in the codomain.

Definition 0.47. A normed $\overline{\mathbb{R}}_{\geq 0}$ -cone P is Scott-complete iff its norm is Scott-continuous (where the codomain $\overline{\mathbb{R}}_{\geq 0}$ is endowed with its usual order) and every bounded directed net in P admits a sup. This is equivalent to asking that its closed unit ball is a dcpo.

Proposition 0.48. The normed cone $\overline{\mathbb{R}}_{>0}^X$ is Scott-complete.

Proof. $\mathbb{R}^{X}_{\geq 0}$ being a dcpo, all the existences of sup's that we should check do automatically hold, so we only have to show that \bigvee and $\|.\|_{\infty}$ commute: $\|\bigvee_{i} x_{i}\|_{\infty} = \sup_{a} \sup_{i} (x_{i})_{a} = \sup_{i} \sup_{a} (x_{i})_{a} = \bigvee_{i} \|x_{i}\|_{\infty}$.

Proposition 0.49. All tropical functions $f: \overline{\mathbb{R}}_{\geq 0}^X \to \overline{\mathbb{R}}_{\geq 0}^Y$ are Scott-continuous on $\mathbb{R}_{\geq 0}^X$ w.r.t. the cone-orders on its domain and codomain.

Proof. Let $(x_i)_i$ a directed net in $\mathbb{R}^X_{>0}$ s.t. $\bigvee_i x^i$ exists in $\mathbb{R}^X_{>0}$. Then $\inf_i \|\bigvee_i x^i - x^i\|_{\infty} = 0$, where $\bigvee_i x^i - x^i$ exists because $\bigvee_i x^i \geq x^i$ for all i. Since f is $\|.\|_{\infty}$ -continuous on $\mathbb{R}^X_{>0}$ (Corollary 0.33), then $\inf_i \|f(\bigvee_i x^i) - f(x^i)\|_{\infty} = 0$, where $f(\bigvee_i x^i) - f(x^i)$ exists because $f(\bigvee_i x^i) \geq f(x^i)$ for all i being f monotone (Remark 0.40). We can therefore apply Proposition 0.46 to the directed net $(f(x^i))_i$ in $\overline{\mathbb{R}}^Y_{\geq 0}$, obtaining that $\bigvee_i f(x^i)$ exists in $\overline{\mathbb{R}}^Y_{\geq 0}$ and it coincides with $f(\bigvee_i x^i)$.

Definition 0.50. Let P be a dcpo. We define a relation by: x << y iff for all directed $D \subseteq P$, if $y \le \bigvee D$, then $x \le d$, for some $d \in D$. Call $\div y := \{x \in P \mid x << y\}$. A dcpo P is Scott-continuous iff $\div x$ is directed and $x = \bigvee \div x$ for all $x \in P$.

Lemma 0.52. In $\overline{\mathbb{R}}_{\geq 0}^X$, every set $\mathop{\downarrow} x$ is directed.

Proof. It is immediate that $0 \in x$, so it is non-empty. Now let y, y' << x. Since we are in $\overline{\mathbb{R}}_{\geq 0}^X$, there is $y \vee y' \in \overline{\mathbb{R}}_{\geq 0}^X$. So we only have to show that $y \vee y' << x$. For that, let D be a directed set in $\overline{\mathbb{R}}_{\geq 0}^X$ s.t. $x \leq \bigvee D$. Since y, y' << x we find $d, d' \in D$ s.t. $y \leq d, y' \leq d'$. Since D is directed, there is $\hat{d} \in D$ s.t. $y \leq d \leq \hat{d} \geq d' \geq y'$. But then, by definition of sup, it must be $\hat{d} \geq y \vee y'$ and we are done.

Remark 0.53. The following is a known property (that we will not use): let P be a complete normed cone which is a dcpo w.r.t. its cone-order. Then P is Scott-continuous as a dcpo iff its closed unit ball is Scott-continuous as a dcpo.

Remark 0.54. Consider $\overline{\mathbb{R}}_{\geq 0}$ with its usual order (which coincides with its cone-order). It is easily seen (and well known) that y << x iff either y = 0 or y < x. This immediately implies that $\overline{\mathbb{R}}_{\geq 0}$ is Scott-continuous, since $x = \sup y$.

Lemma 0.55. Let $x, y \in \mathbb{R}^{X}_{\geq 0}$ (considered as a dcpo with its cone order, which is the pointwise one). Fix $a \in X$. If $y_a << x_a$ and $y_c = 0$ for all $c \neq a$, then y << x.

Proof. Towards a contradiction, assume that there is a directed set D in $\mathbb{R}_{\geq 0}^X$ with $x \leq \forall D$ and s.t. $y \nleq d$ for all $d \in D$. Call $D_a := \{d_a \mid d \in D\}$ and remark that it is directed, because D is. Also, by Lemma 0.43, $\forall D_a = (\forall D)_a$. Therefore from $y_a << x_a \leq \forall D_a$ we obtain a $d \in D$ s.t. $y_a \leq d_a$. By the absurd hypothesis we have $y \nleq d$, so there must be $c \in X$ s.t. $y_c \nleq d_c$, i.e. (because real numbers are totally ordered) $y_c > d_c$. Therefore it must be $c \neq a$. But then we have $0 = y_c > d_c \geq 0$, contradiction.

Lemma 0.56. In $\overline{\mathbb{R}}_{\geq 0}^X$ we have: if y << x then $y_a << x_a$ for all $a \in X$.

Proof. Fix $a \in X$. Let D directed set in $\overline{\mathbb{R}}_{\geq 0}$ s.t. $x_a \leq \bigvee D$. We look for a $d \in D$ s.t. $y_a \leq d$. For $d \in D$, let $x^{a,d} \in \overline{\mathbb{R}}_{\geq 0}^X$ defined by $x_c^{a,d} \coloneqq x_c$ if $c \neq a$ and $x_a^{a,d} \coloneqq d$. Let $D_a^x \coloneqq \{x^{a,d} \mid d \in D\}$. By Lemma 0.43 D_a^x admits sup in $\overline{\mathbb{R}}_{\geq 0}^X$ and it is $(\bigvee D_a^x)_c = x_c$ if $c \neq a$ and $(\bigvee D_a^x)_a = \bigvee D$. Hence, $x \leq \bigvee D_a^x$. If we prove that D_a^x is directed, we are done: indeed, since y << x, there is $d \in D$ s.t. $y \leq x^{a,d}$ and thus, in particular, $y_a \leq x_a^{a,d} = d$. Let us finally prove that D_a^x is directed: it is clearly non-empty, since D is. Let now $d, d' \in D$. We want to show that there is $\hat{d} \in D$ s.t. $x^{a,d} \leq x^{a,\hat{d}} \geq x^{a,d'}$. But since D is directed, there is $\hat{d} \in D$ s.t. $d \leq \hat{d} \geq d'$, and therefore $x_c^{a,d} = x_c = x_c^{a,\hat{d}} = x_c = x_c^{a,d'}$ for all $c \neq a$, and $x_a^{a,d} = d \leq \hat{d} = x_a^{a,\hat{d}} = \hat{d} \geq d' = x_a^{a,d'}$.

Lemma 0.57. In $\overline{\mathbb{R}}_{\geq 0}^X$ we have: $\bigvee_{y << x_a} y = \bigvee_{y << x} y_a$.

Corollary 0.58. The dcpo $\overline{\mathbb{R}}_{\geq 0}^X$ is Scott-continuous.

Proof. The fact that $\ \downarrow x$ is directed is given by Lemma 0.52. The fact that $x = \bigvee \ \downarrow x$ is given by the following equalities: $x_a = \bigvee_{y << x_a} y = \bigvee_{y << x} y_a = \left(\bigvee_{y << x} y\right)_a = (\bigvee \ \downarrow x)_a$. The first equality follows from Remark 0.54, the second one from Lemma 0.57, the third one from Lemma 0.43.