Towards a Deep Adversarial Classifier that Exactly Optimizes the 0-1 Loss CS 270 Final Project

Nikhil Mishra Mostafa Rohaninejad

May 1, 2017

Motivation

- K-way classification problem
- ▶ Performance criterion we care about is accuracy (0-1 loss).
- Gradient of 0-1 loss is not conducive to optimization
- So we end up optimizing a smooth, convex, upper bound:
 - ▶ L2, cross-entropy, hinge losses . . .

▶ More generally: incur cost $C(i,j) \ge 0$ for predicting class i when true class is j.

Our Project

- We will summarize a recently-proposed technique, based on duality in zero-sum games, that allows exact optimization of the 0-1 loss (and cost-sensitive variants)
 - Introduced by: Asif, Kaiser, et al. "Adversarial Cost-Sensitive Classification." UAI. 2015.
 - ▶ More related papers from Brian Ziebart's group at UIC
- ▶ Then we offer a novel extension that allows their idea to scale to larger feature spaces (e.g. images).

Preliminaries

- Cost-matrix C:
 - Where $C_{i,i} = 0, C_{i,i \neq i} > 0$
 - ▶ 0-1 loss corresponds to $C_{i,j\neq i}=1, \forall i,j$
- ▶ Input points drawn from some data distribution P(X)
- ▶ Given some $x \sim P(X)$, consider the true distribution over classes P(Y|X=x):
 - Abbreviate P(Y|X=x) as y.
 - ▶ If we predict distribution \hat{y} , then the expected loss is $\hat{y}^T Cy$.
- ▶ Want to minimize: $\mathbb{E}_{P(X)P(Y|X)}[\hat{y}^TCy]$
 - ▶ Abbreviate to: $\mathbb{E}[\hat{y}^T Cy]$

A minimax game

- Key idea: instead of optimizing an upper bound on the loss with respect to the training data, let's optimize the true loss on a pessimistic perturbation of the training data.
- ▶ Classifier predicts the distribution \hat{y} , then adversary chooses the evaluation distribution \check{y} to be used in place y.
- Yielding a two-player zero-sum game:

$$\min_{\hat{y} \in \Delta} \max_{\hat{y} \in \Delta} \hat{y}^T C y$$

where Δ is the probability simplex.

Too easy for the adversary! (set all the labels to be random)

A constrained minimax game

- ▶ Suppose we have a feature function $\phi(x, y_i) \to \mathbb{R}^D$.
- Add constraint that $\mathbb{E}_{y_i \sim \check{y}}[\phi(x, y_i)] = \mathbb{E}_{y_i \sim y}[\phi(x, y_i)]$
 - ▶ Moment of features should match between evaluation distribution \check{y} and true distribution y.
 - ▶ Constrains the adversary to be close to the true distribution.
 - ▶ Let Ξ be feasible set for \check{y} given this new constraint.
- New constrained game:

$$\min_{\hat{y} \in \Delta} \max_{\hat{y} \in \Delta \cap \Xi} \hat{y}^T C \tilde{y}$$

Duality Tricks

Let Φ_X be a $D \times K$ matrix, where the *i*-th column is $\phi(x, y_i)$. Then we can rewrite the constrained minimax problem as:

$$\min_{\hat{y} \in \Delta} \max_{\hat{y} \in \Delta \cap \Xi} \hat{y}^T C \check{y} \tag{1}$$

$$= \max_{\check{y} \in \Delta \cap \Xi} \min_{\hat{y} \in \Delta} \hat{y}^T C \check{y} \tag{2}$$

$$= \max_{\check{y} \in \Delta} \min_{\nu} \left[\min_{\hat{y} \in \Delta} \hat{y}^T C \check{y} + \nu^T (\Phi_x \check{y} - \Phi_x y) \right]$$
(3)

$$= \min_{\nu} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \left(\hat{y}^T C \check{y} + \nu^T (\Phi_x \check{y} - \Phi_x y) \right) \right]$$
(4)

- (2) strong duality in two-player zero-sum games
- (3) formed the Lagrangian for adversary (primal variable \check{y})
- (4) strong duality holds for Lagrangian (true distribution y is strictly feasible)

Algebra Tricks

$$\begin{split} & \min_{\nu} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \left(\hat{y}^T C \check{y} + \nu^T (\Phi_x \check{y} - \Phi_x y) \right) \right] \\ & = \min_{\nu} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \hat{y}^T \left(C + 1 \cdot \nu^T (\Phi_x - \Phi_x y \cdot 1) \right) \check{y} \right] \\ & = \min_{\nu} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \hat{y}^T (\tilde{C}_{x,\nu}) \check{y} \right] \end{split}$$

- Augmented cost-matrix $\tilde{C}_{x,\nu} = C + 1 \cdot \nu^T (\Phi_x \Phi_x y \cdot 1)$
- ▶ Loss function: $J(\nu) = \mathbb{E}_{x \sim P(X)} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \hat{y}^T (\tilde{C}_{x,\nu}) \check{y} \right]$
- ightharpoonup Optimize the expected value of a minimax game wrt Lagrange multiplier ν .

Deriving a Subgradient

- ▶ Loss function: $J(\nu) = \mathbb{E}_{P(X)} \left[\min_{\hat{y} \in \Delta} \max_{\check{y} \in \Delta} \hat{y}^T (\tilde{C}_{x,\nu}) \check{y} \right]$
- ▶ Convex in ν (max wrt \check{y} of affine functions of ν).
- ▶ Not differentiable, but we can find a subgradient:

$$\begin{split} & \partial_{\nu} \, \mathbb{E}_{P(X)} \bigg[\min_{\hat{y} \in \Delta} \max_{\hat{y} \in \Delta} \hat{y}^{T} (\tilde{C}_{\nu}) \check{y} \bigg] \\ & = \mathbb{E}_{P(X)} \bigg[\partial_{\nu} \min_{\hat{y} \in \Delta} \max_{\hat{y} \in \Delta} \hat{y}^{T} (\tilde{C}_{\nu}) \check{y} \bigg] \\ & \ni \mathbb{E}_{P(X)} \bigg[\frac{\partial}{\partial \nu} \bigg((\hat{y}^{*})^{T} (C_{\nu}) \check{y}^{*} \bigg) \bigg] \\ & = \Phi_{x} (\check{y}^{*} - y) \\ & = \mathbb{E}_{v: \sim \check{y}^{*}} [\phi(x, y_{i})] - \mathbb{E}_{v: \sim v} [\phi(x, y_{i})] \end{split}$$

Training Algorithm

Algorithm 1 Training the Classifier

- 1: **Input:** Cost matrix C, dataset $\mathcal{D} = \{x, y\}$, feature function ϕ
- 2: Output: optimal Lagrange multiplier ν^*
- 3: Initialize $\nu o 0$
- 4: **while** ν not converged **do**
- 5: Sample $(x,y) \sim \mathcal{D}$
- 6: Compute $\tilde{C}_{x,\nu}$ and solve minimax game for \check{y}^*
- 7: Compute subgradient $abla_
 u = \Phi_{\scriptscriptstyle X}(\check{y}^* y)$
- 8: Update ν using any gradient-descent-like algorithm
- 9: end while
- 10: return ν

Inference Algorithm

Algorithm 2 Making Predictions

- 1: **Input:** Cost matrix C, optimal multiplier ν^* , feature function ϕ , query point x
- 2: **Output:** Predicted label distribution \hat{y}^*
- 3: Take y=0 and construct $\tilde{\mathcal{C}}_{\nu}$ using ν^*
- 4: Solve the following LP:

$$egin{aligned} \min & v \ v \in \mathbb{R}, \hat{y} \in \mathbb{R}^K \end{aligned}$$
 s.t. $\hat{y}^T \tilde{\mathcal{C}}_{\mathsf{X},
u} \leq v, \hat{y} \in \Delta$

5: **return** LP solution \hat{y}^*

Results

Datasets

Name	Classes	Attributes	Training	Testing
Iris	3	4	120	30
Optical Digits	10	64	3823	1797
Satellite Image	6	36	4435	2000
Shuttle	7	9	43500	14500
Vehicle	4	18	658	188
Wine	3	4	142	36
Breast Tissue	6	9	85	21
Ecoli	8	7	269	67
Glass	6	9	171	43
Image Segment	7	19	210	2100
Libras	15	90	288	72
Pen Digits	10	16	7494	3498
Vertebral	3	6	248	62

Results

Our Extension

- Where does ϕ come from?
 - \blacktriangleright Original paper considers low-dimensional x and ϕ is hand-specified
 - ► They just take a quadratic transformation:

$$\phi(x,y_i) = [\mathsf{flatten}(xx^T) \cdot \mathbf{1}\{y_i = 1\}, \dots, \mathsf{flatten}(xx^T) \cdot \mathbf{1}\{y_i = K\}]$$

- ▶ Not scalable: if $x \in \mathbb{R}^d$, then Φ_x has dimensions $d^2K \times K$.
- \blacktriangleright May not be using the best ϕ for a particular problem

Learned Features

- ▶ Suppose ϕ is a differentiable function parametrized by θ .
- Augmented cost-matrix: $ilde{\mathcal{C}}_{\mathsf{x},\nu} o \mathcal{C}_{\mathsf{x},\nu, heta}$
- ▶ Want to choose ϕ that yields best \hat{y} :
 - lacktriangleright u forces adversary to satisfy constraint on expectation of ϕ
 - lacktriangledown heta controls the expressiveness and usefulness of ϕ .
 - \blacktriangleright ν and θ are on the same team.

$$\min_{\nu} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \hat{y}^T (\tilde{\mathcal{C}}_{\nu}) \check{y} \right] \rightarrow \min_{\nu, \theta} \left[\max_{\check{y} \in \Delta} \min_{\hat{y} \in \Delta} \hat{y}^T (\tilde{\mathcal{C}}_{\nu, \theta}) \check{y} \right]$$

- ▶ Loss function is now $J(\nu, \theta)$, jointly minimize over ν, θ
- ► Can compute a subgradient with respect to Φ_x : $\partial_{\Phi} J = \nu (\check{y} y)^T$
- ► Can compute $\frac{\partial \Phi}{\partial \theta}$ since f is differentiable.
- ▶ Using the chain rule: $\partial_{\theta}J = \partial_{\Phi}J \cdot \frac{\partial \Phi}{\partial \theta}$
- ▶ If f is a neural network, then start from $\partial_{\Phi} J = \nu (\check{y} y)^T$ and just do backpropagation!

Our Training Algorithm

Algorithm 3 Training the Deep Classifier

- 1: **Input:** Cost matrix C, dataset $\mathcal{D} = \{x, y\}$, feature function ϕ parametrized by θ
- 2: **Output:** optimal Lagrange multiplier ν^*
- 3: Initialize $\nu \to 0$, $\theta \to \text{randomly}$
- 4: **while** ν, θ not converged **do**
- 5: Sample $(x, y) \sim \mathcal{D}$
- 6: Compute $\tilde{\mathcal{C}}_{\nu}$ and solve minimax game for $\check{\mathbf{y}}^*$
- 7: Compute subgradient $\nabla_{\nu} = \Phi_{x}(\check{y}^{*} y)$
- 8: Compute ∇_{θ} using backprop starting from $\nu(\check{y}^* y)^T$
- 9: Update ν, θ using $\nabla_{\nu}, \nabla_{\theta}$ with Adam algorithm
- 10: end while
- 11: **return** ν, θ

Results

- Tried our method on CIFAR-10 dataset: 60k 32 × 32 color images from 10 classes.
- ▶ Used a 6-layer convolutional neural network for ϕ .

Method	Training Accuracy	Test Accuracy
Cross-Entropy Loss	0.9932	0.8061
Our Method	0.9745	0.8386

Table: CIFAR-10 Results

- Our method yields sensible results and overfits less.
- We actually optimized the true evaluation criterion!
- ▶ Note: state-of-the-art for this dataset gets around 96% test accuracy, but the networks are > 20 layers and use many fancy tricks. Would have been nice to try one of those networks, but they require significant compute to train.

Conclusion

- Contributions of the original paper:
 - Instead of optimizing a convex upper-bound on the loss wrt training data, optimize the true evaluation criterion subject to an adversarial perturbation of the training data.
 - ▶ Constrain adversary so that feature expectations are the same.
 - Training by (sub)gradient descent on Lagrange multiplier.
 - ► Inference by solving an LP.
- Our contributions:
 - Extend their method to simultaneously learn feature function and optimal Lagrange multiplier.
 - Our method allows learning optimal features and scales to high-dimensional input spaces.
 - ▶ Showed signs of life on an image classification task that would have been intractable for the original method.
- ► GitHub repo with implementation of both methods: https://github.com/nikhilmishra000/adversarial/