

Pawpularity

Predicting the Cuteness of a Pet using Computer Vision

Eric Yoon Jae Yun

Project Overview:

"Cuteness Meter (Pawpularity)" - How Attractive Are the Photos?

Pawpularity Training Data

				9										
	Id Sub	ject Focus	Eyes	Face	Near	Action	Accessory	Group	Collage	Human	Occlusion	Info	Blur	Pawpularity
0	0007de18844b0dbbb5e1f607da0606e0	0	1	1	1	0	0	1	0	0	0	0	0	63
1	0009c66b9439883ba2750fb825e1d7db	0	1	1	0	0	0	0	0	0	0	0	0	42
2	0013fd999caf9a3efe1352ca1b0d937e	0	1	1	1	0	0	0	0	1	1	0	0	28
3	0018df346ac9c1d8413cfcc888ca8246	0	1	1	1	0	0	0	0	0	0	0	0	15
					0				55 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

df4dcdf0363487cb9cf5be1...

4204f4403419250c0bc377...

e876bd69c6805e7d83d312...

3d5ac3a8f63e2a41ab8e7c5...

df68a50f7971ab56ca45e6d...

420dd08c4151dc5eb44656...

c5ba46bc5dc8e89bd194ca...

b725e5c376753ee4c1f1077...

1abb3664a2c7bebd416ee1...

Data Analysis: Pawpularity Score Statistics

count	9912.000000
mean	38.039044
std	20.591990
min	1.000000
25%	25.000000
50%	33.000000
75%	46.000000
max	100.000000

Inference:

"Cute Photo" = Pawpularity Score ≥ 33

"Not Cute" = Pawpularity Score < 33

What is a Convolutional Neural Network (CNN)?

VGG-16 Architecture

Changing the architecture to output 1000 features (numbers)

Support Vector Machine (SVM) Classifier

Simplified Process:

1. Plot each data points with the inputs/features

2. Find a hyperplane that best separates two different categories

Comparing Two Methods of Machine Learning

Manually Inputted Variables:

Using all 12 features given from the training data (Eyes, Blur, etc)

Using Neural Networks:

Neural Network creates 1000 features using only the images and "Pawpularity" variables from the training data.

Questions?