1

AE 42

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: Consider the equation $\frac{dy}{dx} + ay = \sin \omega x$, where a and ω are constants. Given y = 1 at x = 0, correct all the correct statement(s) from the following as $x \to \infty$.

(A)
$$y \rightarrow 0$$
 if $a \neq 0$

(B)
$$y \rightarrow 1$$
 if $a = 0$

- (C) $y \rightarrow Aexp(|a|x)$ if a < 0; A is constant
- (D) $y \rightarrow B\sin(\omega x + C)$ if a > 0; B and C are constants

(GATE AE 2023)

Solution::

$$y(0) = 1 \tag{1}$$

$$\frac{dy}{dx} + ay = \sin \omega x \tag{2}$$

Taking Fourier transform on both sides

Function	Fourier transform
$\frac{dy}{dx}$	јωΥ
у	Y
$\sin \omega x$	$\frac{\omega}{2J}(\delta(\omega-\omega_0)-\delta(\omega+\omega_0))$
TABLE 0	

FOURIER TRANSFORM

$$j\omega Y + aY = \frac{\omega}{2j}(\delta(\omega - \omega_0) - \delta(\omega + \omega_0))$$
 (3)

$$\implies Y(s) = \frac{\omega}{2j(\omega + a)} (\delta(\omega - \omega_0) - \delta(\omega + \omega_0)$$
 (4)

Taking inverse laplace transform on both sides

$$y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(s) e^{isx} ds$$
 (5)

$$y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\omega}{2i(\omega + a)} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right) e^{isx} ds$$
(6)

$$y(x) = \mathcal{F}^{-1}{Y(s)} = Ae^{-ax} + (B\cos(\omega x) + C\sin(\omega x))$$
(7)

$$y(x) = \mathcal{F}^{-1}{Y(s)} = Ae^{-ax} + B\sin(\omega x + C)$$
 (8)

Now as $x \to \infty$

- 1) $y \to 0$ if $a \ne 0$ is not true as y depend on a, ω
- 2) $y \rightarrow 1$ if a = 0 is not true as y depend on ω
- 3) $y \to Aexp(|a|x)$ if a < 0 is true as $B\sin(\omega x + C)$ is neglected compared to Ae^{-ax}
- 4) $y \to B \sin(\omega x + C)$ if a > 0; is true as $Ae^{-ax} \to 0$

:. C,D are correct options