ASTRONOMÍA Y CIENCIA DE DATOS: DE LAS ESTRELLAS A LOS NÚMEROS

Clase 8: Introducción al Aprendizaje Supervisado II: Random Forest

Base del tronco

Bifurcación en ramas principales

Bifurcación en ramas secundarias

Son de hecho bastante similares a un mapa conceptual

Características de los DT

- → Fáciles de interpretar
- → Rápidos
- → Deterministas → (SÍ o NO)
- → Sensible a outliers (casos raros)
- → Comúnmente se sobreajusta a los datos.

Características de los DT

- Fáciles de interpretar
- → Rápidos
- → Deterministas → (SÍ o NO)
- Sensible a outliers (casos raros)
- → Comúnmente se sobreajusta a los datos.

Random Forest Simplified

Random Forest

- número de árboles (n_estimators)
- Características a considerar (max_features)
- → Número maximo de sub-ramas (max_depth)

Random Forest

Características de los DT

- → Fáciles de interpretar
- → Rápidos (en entrenamiento y aplicaciones)
- → Deterministas → (SÍ o NO)
- Sensible a outliers (casos raros)
- → Comúnmente se sobreajusta a los datos.

Características de RF

- → Se complica la interpretación
- → Rápidos (en entrenamiento y aplicaciones)
- → No Deterministas → (entrega un porcentaje de confianza, ej 83%)
- → Más **robusto** con outliers
- → El modelo se vuelve más general a los datos.

Árboles v/s Random Forest

	Árboles	Random Forest
Interpretabilidad	✓ ✓	✓ ⊗
Precisión	✓ ⊗	✓ ✓
Overfitting		✓ ✓
Robustez		✓ ✓
Velocidad	✓ ✓	✓
Clasificación		
Regresión		

y aún quedan un montón de modelos que no hemos mencionado!

Random Forest n montón de modelos que no hemos mencionado!

Random Forest n montón de modelos que no hemos mencionado!

> Redes Neuronales

Random Forest n montón de modelos aue no hemos Super Vector lado! Machine Redes

Redes Neuronales

Random Forest Proceso Gaussiano modelos c Super Vector lado! Machine

Redes Neuronales

Random Forest Proceso Gaussiano modelos c Super Vector lado!

QDA y LA

des nales Random Forest

Proceso

Super Vec

Nearest Neighbors

QDA y LA

des nales

Random oceso AdaBoost arest Super Vec Neighbors QDA y LA nales

Random

Teniendo tantas opciones, ¿cómo evaluamos qué modelo es mejor?

ners

..ales

Dependen del tipo de problema que queremos resolver

Supervisado ———

No supervisado

Métricas de regresión

Buscamos una buena representación de comportamiento

MAE:
$$\frac{\sum_{i=1}^{n} |y_i - f(x_i)|}{n}$$
 RMSLE: $\sqrt{\frac{\sum_{i=1}^{n} (\log(1+y_i) - \log(1+f(x_i)))^2}{n}}$

MSE:
$$\frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{n}$$
 RMSE: $\sqrt{\frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{n}}$

¿Cuando se usa cada una?

Métricas de Clasificación

Métricas de Clasificación

Tipos de errores (FP, FN)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 - score = \frac{2 * Precision * Recall}{Precision + Recall}$$

Accuracy Paradox

Modelo de clasificación de cáncer

Accuracy: 0.96

	Cáncer	No cáncer
Clasific. cáncer	5	0
Clasific. no cáncer	45	950

Usemos otras métricas...

	Cáncer	No cáncer
Clasific. cáncer	5	0
Clasific. no cáncer	45	950

$$TP = 5$$
 Accuracy = 0.96

$$TN = 950$$
 Precision = 1

$$FP = 0$$
 Recall = 0.1

$$FN = 45$$
 F1-score = 0.182

¿Cómo interpretamos este resultado?

Matriz de confusión

airplane	923	4	21	8	4	1	5	5	23	6
automobile	5	972	2					1	5	15
bird	26	2	892	30	13	8	17	5	4	3
cat	12	4	32	826	24	48	30	12	5	7
deer dog	5	1	28	24	898	13	14	14	2	1
dog	7	2	28	111	18	801	13	17		3
frog	5		16	27	3	4	943	1	1	
horse	9	1	14	13	22	17	3	915	2	4
ship	37	10	4	4		1	2	1	931	10
truck	20 plane autor	39	3	3		0%	2	1	9	923

Nos permite visualizar un clasificador multiclase

¿Qué esperamos de un buen clasificador?

Predicted Class

ROC Curve

ROC Curve

https://arogozhnikov.github.io/2015/10/05/roc-curve.html

AUC (Área bajo la curva) y GINI

Comúnmente usada para comparar modelos!

Ay que lataa!