

 $\begin{cases}
y^b - \begin{pmatrix} y^b = \\ y^i \end{pmatrix} = \begin{cases}
y^b = \begin{cases}
x - y^i \\
y = 0
\end{cases}$ lugh (r')=. \frac{1}{r'} \frac{ $\int_{\mathcal{F}} v^b = \int_{\mathcal{F}} v^b(y) y^b = \int_{\mathcal{F}} g(v,y) y^b.$ $\int_{\mathcal{F}} v^b = \int_{\mathcal{F}} v^b(y) y^b = \int_{\mathcal{F}} g(v,y) y^b.$ Now, instead, unider (M,9); a killing field Lvg=0., |v|g=1. V be generates Tsometry, infinitestimel isometry. du(Y,Z)= Yx(Z)-Zx(Y)-x([Y,Z]). Yy(V,7) - 7g(V,Y) - 9(V, [4,7]). = 9(gy, \tau, z) + 9(\tau, y) - 9(\tau, y). - 9(\tau, \tau, z) If V killing > VV is Stew-Symm.

Ex. V killing > - { | D | V | g | = VV. But 1v/g=0 => V_V = 0. So, integne cores of V me goodesics. Il that geodesics are lugh minimity? Delle Calibrations (finally).

Ref: Kerrey, Spinus & Calibrations.

HL. 1982. wherted p-dim subspace of PR" nith &= e, A--- 1 ep & APR". uhre Seiz o.n. hais & spire. G(P,n) = G(P,Rn) = { JEAPRn: R=R, n. nep.
Louisie }. (APRN) & polimer. Dyt p-for y on nCR" is a. Calibration of (I) de=a of x = d(v) = (Vblb,)x. ANE M, 4n(3) ¿1, V3 ∈ G(pin).

(3)

MCU in a p-din subsuffer s.t. Pro (TrM) = 1. Men pl calibrated by la per example, p=1, q=x, L calibrated. Deft M by closed, mented prubufted of Ra, Mod. mini of rol(v). aine U rel oper soubset of M W/C body. and V in cost, anakal submitted with DV=DU.

(1-1).

Colors: Court by home V= Q

(1-1).

Colors: Color Mb (H-L). collimited by it is volume minimis. PA. ml(m): Support of the Sy 4. Sg. Q calib Sq(T) \(\) \(

Kähler letting. Claim: (M,g,J) kähler > w in a Calibration. Cardini (I) in deft frue by Kähler. Te, dus = 0 alvays. (II) N-1. W(xxy)= 9 (30,4). < 17 ×19 (4). 3 1x1914/51. JX | Y => {x,y} cx 1-dm space. $\frac{H^{2}}{H}$ (wintingués (h^{2})). $f \omega^{p}(g) \leq 1$. $\forall g \in G_{\mathbb{R}}(p,2n)$. with eq. if $\xi \in G_{\mathbf{q}}(\mathbf{p}, \mathbf{n})$. NOTE: Once You Vine Käller, then Who is V. Space (?) JV=V. Substantifolds JVNV=204 y & formly R.S. is kähle! lohof munual Subscentifolds! Every, CX Enhanded M. Lenne bet x be a 2-fam. in APP Pin a vi Space. of dim 2p. total Ai, , 2p 70. and on hons. for pt s.b. x= 1,0,002+. + 1,002p. (5).

Jahren Apgrage. Back to H. . & defones a visque of P. whe Se, y ... ezzz o.n. for P. Many funda for homer for W/p: (oute fin) | = fi (w/b) W/p = Z = 1 1 0 2 i - 1 1 0 i . I fins commitals bo. F. (wp) = 2, ... p 0, 2, ... 22p. So, ti (w) / (e, n - n e20) = 2, - . 2p. But hi = wpl(enneri) & 1 (lan 11 - dim coul. for a & line. lajles Ti=1. Vi (=) g-e, N Je, n. nep n Ep. E. FGe(p,n). At of home F(xxy): x(xxy), F: G12(2,2n) > 17. Aps X, Y action may of F. Claim & (xxZ)=0 VZ1Y. 2,=F(xxY), 0,= x, 102=4 and induct on x-1, xxy. on {x,y}.

Coundar f(0)= F(xx ws04+5m02). (f'(0)=0=9in01, + ws04.

Vinistin of y.