Fiche d'exercices $n^{\circ}3$: géométrie et algèbre linéaire dans \mathbb{R}^2 et \mathbb{R}^3

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Exercice 1. Calculer la norme des vecteurs \overrightarrow{u} et \overrightarrow{v} suivants, ainsi que leur produit scalaire.

a)
$$\overrightarrow{u} = (1,5), \overrightarrow{v} = (3,1)$$

a)
$$\overrightarrow{u} = (1,5), \ \overrightarrow{v} = (3,1)$$
 b) $\overrightarrow{u} = (\cos \alpha, -\sin \alpha), \ \overrightarrow{v} = (\sin \alpha, \cos \alpha)$
c) $\overrightarrow{u} = (2,3), \ \overrightarrow{v} = (-3,2)$ d) $\overrightarrow{u} = (1,0,2), \ \overrightarrow{v} = (-4,7,2)$

c)
$$\overrightarrow{u} = (2,3), \overrightarrow{v} = (-3,2)$$

d)
$$\overrightarrow{u} = (1,0,2), \ \overrightarrow{v} = (-4,7,2)$$

$$e)$$
 $\overrightarrow{u} = (-2, 0, 1), \overrightarrow{v} = (0, 3, 8)$

e)
$$\overrightarrow{u} = (-2, 0, 1), \ \overrightarrow{v} = (0, 3, 8)$$
 f) $\overrightarrow{u} = (1, 2, -1, 2), \ \overrightarrow{v} = (3, 1, 1, -3)$

Exercice 2. Pour quelles valeurs du paramètre t les vecteurs \overrightarrow{u} et \overrightarrow{v} sont-ils orthogonaux?

a)
$$\overrightarrow{u} = (t-1, 2t-3), \ \overrightarrow{v} = (3, -1)$$
 b) $\overrightarrow{u} = (3t, 2+t, -t), \ \overrightarrow{v} = (1, 1, 2)$

b)
$$\vec{u} = (3t, 2+t, -t), \vec{v} = (1, 1, 2)$$

c)
$$\vec{u} = (t - 1, 2t, 2), \ \vec{v} = (1, 2, -1)$$

c)
$$\overrightarrow{u} = (t-1, 2t, 2), \ \overrightarrow{v} = (1, 2, -1)$$
 d) $\overrightarrow{u} = (t^2 + 1, 2t, t^2 - 1), \ \overrightarrow{v} = (t^2, -t, 1)$

Exercice 3. Calculer la distance entre les points A et B.

a)
$$A = (3,4), B = (2,1)$$

$$A = (1,6), B = (4,2)$$

a)
$$A = (3,4), B = (2,1)$$
 b) $A = (1,6), B = (4,2)$ c) $A = (3,1,2), B = (1,-1,1)$

Exercice 4. Pour quelles valeurs du paramètre t les vecteurs \overrightarrow{u} et \overrightarrow{v} sont-ils colinéaires?

a)
$$\overrightarrow{u} = (1 - t, 2 + t), \ \overrightarrow{v} = (3, 4)$$
 b) $\overrightarrow{u} = (5t, 6), \ \overrightarrow{v} = (6t, 7)$ c) $\overrightarrow{u} = (2, 1), \ \overrightarrow{v} = (3 - t, 2 - t)$

b)
$$\vec{v} = (5t, 6), \ \vec{v} = (6t, 7)$$

c)
$$\overrightarrow{u} = (2,1), \overrightarrow{v} = (3-t,2-t)$$

Exercice 5. Calculer les déterminants suivants :

$$c) \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix}$$

$$d) \begin{vmatrix} 3 & 8 \\ 2 & 5 \end{vmatrix}$$

$$e) \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$$

$$f)$$
 $\begin{vmatrix} 1+i & 1\\ 3i & -1-i \end{vmatrix}$

Exercice 6. Les 3 vecteurs $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ sont-ils coplanaires?

a)
$$\overrightarrow{u} = (1,2,3), \ \overrightarrow{v} = (-1,3,4), \ \overrightarrow{w} = (1,0,2)$$

a)
$$\overrightarrow{u} = (1, 2, 3), \ \overrightarrow{v} = (-1, 3, 4), \ \overrightarrow{w} = (1, 0, 2)$$
 b) $\overrightarrow{u} = (1, -1, 1), \ \overrightarrow{v} = (2, 2, 1), \ \overrightarrow{w} = (0, -4, 1)$

Exercice 7. Calculer les déterminants suivants :

$$c) \quad \begin{vmatrix} 1 & x & y \\ 0 & 2 & z \\ 0 & 0 & 3 \end{vmatrix}$$

$$\begin{array}{c|cccc}
 a & 0 & 5 \\
 0 & 0 & c \\
 0 & b & 0
\end{array}$$

$$e) \quad \left| \begin{array}{ccc} 0 & b & 7 \\ 11 & 0 & c \\ a & 0 & 0 \end{array} \right|$$

$$g) \quad \begin{vmatrix} 1 & 0 & 0 \\ 6 & 9 & 2 \\ 4 & -1 & 0 \end{vmatrix}$$

$$\begin{vmatrix}
i & j & k \\
1 & 3 & 2 \\
2 & 1 & 4
\end{vmatrix}$$

$$k) \quad \left| \begin{array}{ccc} i & j & k \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{array} \right|$$

$$l) \quad \begin{vmatrix} 1 & -1 & 0 & 1 \\ 0 & -1 & 0 & 2 \\ 3 & -2 & 2 & 1 \\ 1 & 4 & 2 & 1 \end{vmatrix}$$

Exercice 8. Calculer l'aire du triangle ABC :

a)
$$A = (1,0), B = (2,3), C =$$

a)
$$A = (1,0), B = (2,3), C = (4,4)$$
 b) $A = (0,1), B = (2,1), C = (-1,2)$

c)
$$A = (2,1), B = (-2,1), C = (1,1)$$
 d) $A = (1,1), B = (2,2), C = (0,3)$

$$A = (1,1), B = (2,2), C = (0,3)$$

Exercice 9. Calculer le volume du tétraèdre ABCD :

a)
$$A = (0, -1, 0), B = (0, 4, 1), C = (1, 4, 2), D = (0, 0, 2)$$

b)
$$A = (1,0,0), B = (0,2,3), C = (1,4,4), D = (0,-1,0)$$

Exercice 10. Calculer le produit vectoriel des vecteurs \overrightarrow{u} et \overrightarrow{v} , et vérifier que le vecteur résultat $\overrightarrow{u} \wedge \overrightarrow{v}$ est bien orthogonal à \overrightarrow{u} et \overrightarrow{v} .

a)
$$\overrightarrow{u} = (1,0,0), \ \overrightarrow{v} = (0,0,-1)$$
 b) $\overrightarrow{u} = (1,0,0), \ \overrightarrow{v} = (1,1,1)$

c)
$$\overrightarrow{u} = (2,3,1), \ \overrightarrow{v} = (1,2,1)$$
 d) $\overrightarrow{u} = (1,1,1), \ \overrightarrow{v} = (-3,2,1)$

e)
$$\overrightarrow{u} = (1,0,1), \ \overrightarrow{v} = (x,0,-1)$$
 f) $\overrightarrow{u} = (\cos \alpha, -\sin \alpha, 0), \ \overrightarrow{v} = (\sin \alpha, \cos \alpha, 0)$

g)
$$\overrightarrow{u} = (3, 2, -1), \ \overrightarrow{v} = (2, 1, z)$$
 h) $\overrightarrow{u} = (1, 2, 2), \ \overrightarrow{v} = (3, 1, 1)$

Exercice 11. Trouver l'intersection des droites \mathcal{D}_1 et \mathcal{D}_2 .

a)
$$\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2, x+y=0\}, \quad \mathcal{D}_2 = \{(x,y) \in \mathbb{R}^2, 2x+y=1\}$$

b)
$$\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2, 2x + y = 1\}, \quad \mathcal{D}_2 = \{(x,y) \in \mathbb{R}^2, x + 2y = 5\}$$

c)
$$\mathcal{D}_1 = \{(2s-1, s+2), s \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(1-2t, 3-t), t \in \mathbb{R}\}$$

d)
$$\mathcal{D}_1 = \{(1+4t,2+t), t \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(x,y), x+2y=11\}$$

e)
$$\mathcal{D}_1 = \{(x,y), 2x - y = 3\}, \quad \mathcal{D}_2 = \{(s-1,3+2s), s \in \mathbb{R}\}$$

$$\mathcal{D}_1 = \{(1 + \lambda, 2 - \lambda), \lambda \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(x, y), x + 4y = 3\}$$

g)
$$\mathcal{D}_1 = \{(1+t,2-t), t \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(1+s,2+s), s \in \mathbb{R}\}$$

h)
$$\mathcal{D}_1 = \{(5-t, 2t-1), t \in \mathbb{R}\}, \mathcal{D}_2 = \{(1+s, 2+3s), s \in \mathbb{R}\}$$

Exercice 12. Trouver l'équation de la droite \mathcal{D} passant par les points A et B.

a)
$$A = (1,2)$$
, $B = (3,1)$ b) $A = (3,0)$, $B = (2,-1)$ c) $A = (1,0)$, $B = (2,3)$

Exercice 13. Trouver le point d'intersection M de la droite \mathcal{D}_1 passant par les points A et B, avec la droite \mathcal{D}_2 passant par les points E et F, où A = (0,1), B = (4,3), E = (1,3), F = (3,1).

Exercice 14. Trouver la projection orthogonale du point M sur la droite \mathcal{D} .

a)
$$M = (1,2)$$
, $\mathcal{D} = \{(2t, 1+t), t \in \mathbb{R}\}$ b) $M = (1,3)$, $\mathcal{D} = \{(4-t, 2+2t), t \in \mathbb{R}\}$

c)
$$M = (1, -3)$$
, $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, x + 2y + 3 = 0\}$ $d)$ $M = (1, 5)$, $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, x - y = 2\}$

e)
$$M = (-1,1)$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, -2x + y = 3\}$ f) $M = (1,0,1)$, $\mathcal{D} = \{(2t,t-1,-t+4), t \in \mathbb{R}\}$

Exercice 15. Calculer l'aire du triangle déterminé par les droites \mathcal{D}_1 , \mathcal{D}_2 et \mathcal{D}_3 :

$$\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2, x + y = 0\}$$

$$\mathcal{D}_2 = \{(x,y) \in \mathbb{R}^2, 2x - y = 2\}$$

$$\mathcal{D}_3 = \{(x,y) \in \mathbb{R}^2, 4x + y + 2 = 0\}$$

Exercice 16. Trouver l'équation paramétrique de la droite \mathcal{D} passant par le point M et orthogonale au plan \mathcal{P} .

a)
$$M = (1, 2, 4), \mathcal{P} = \{(x, y, z), x + y + z = 3\}$$

b)
$$M = (-1,0,0), \mathcal{P} = \{(x,y,z), x + 2y + 3z = 7\}$$

c)
$$M = (1, 2, 4), \mathcal{P} = \{\alpha(1, 0, 3) + \beta(0, 1, 0), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$$

d)
$$M = (1, -2, 1), \mathcal{P} = \{\alpha(1, -1, 1) + \beta(0, 1, 1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$$

Exercice 17. Trouver l'équation cartésienne du plan $\mathcal{P} = \{M + \alpha \overrightarrow{u} + \beta \overrightarrow{v}, \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}.$

$$a) \quad M = (1,0,1), \ \overrightarrow{u} = (1,1,0), \ \overrightarrow{v} = (1,0,0) \\ \qquad b) \quad M = (1,0,0), \ \overrightarrow{u} = (1,2,3), \ \overrightarrow{v} = (1,0,1)$$

Exercice 18. Trouver l'équation cartésienne du plan \mathcal{P} déterminé par les points A, B et C.

a)
$$A = (1,0,1), B = (1,1,0), C = (1,0,0)$$
 b) $A = (2,0,1), B = (1,1,1), C = (-1,0,-1)$

Exercice 19. Trouver l'équation cartésienne du plan \mathcal{P} contenant le point A et la droite \mathcal{D} .

a)
$$A = (1,0,1), \mathcal{D} = \{(1+t,2-t,-1+t), t \in \mathbb{R}\}$$
 b) $A = (-1,1,0), \mathcal{D} = \{(1+2t,t,1-t), t \in \mathbb{R}\}$

$$A = (-1, 1, 0), \ \mathcal{D} = \{(1+2t, t, 1-t), t \in \mathbb{R}\}\$$

Exercice 20. Trouver une représentation paramétrique du plan \mathcal{P} .

a)
$$\mathcal{P} = \{(x, y, z), x + y + z = 3\}$$

a)
$$\mathcal{P} = \{(x, y, z), x + y + z = 3\}$$
 b) $\mathcal{P} = \{(x, y, z), x + 2y - 2z = 1\}$

Exercice 21. Soient \mathcal{P}_1 et \mathcal{P}_2 deux plans dans \mathbb{R}^3 . Trouver la forme paramétrique de la droite $\mathcal{D} = \mathcal{P}_1 \cap \mathcal{P}_2$.

a)
$$\mathcal{P}_1 = \{(x, y, z), x + y + z = 3\}, \ \mathcal{P}_2 = \{(x, y, z), x - 2y + z = 0\}$$

b)
$$\mathcal{P}_1 = \{(x, y, z), x + y - z = -1\}, \ \mathcal{P}_2 = \{(x, y, z), x + 2y + 3z = 0\}$$

c)
$$\mathcal{P}_1 = \{(x, y, z), 2x - z = 1\}, \ \mathcal{P}_2 = \{(x, y, z), x + y = 2\}$$

Exercice 22. Trouver une représentation cartésienne de la droite \mathcal{D} .

a)
$$\mathcal{D} = \{(1,0,2) + t(1,1,1), t \in \mathbb{R}\}$$
 b) $\mathcal{D} = \{(1+t,2-t,t-3), t \in \mathbb{R}\}$

b)
$$\mathcal{D} = \{(1+t, 2-t, t-3), t \in \mathbb{R}\}$$

Pour vous entrainer...

Exercice 23. Trouver les valeurs du paramètre t pour lesquelles les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

a)
$$\overrightarrow{u} = (-1 - t, 5 + t), \ \overrightarrow{v} = (1, -1)$$
 b) $\overrightarrow{u} = (1 - t, 1), \ \overrightarrow{v} = (3, 1 - t)$

b)
$$\vec{u} = (1 - t, 1), \ \vec{v} = (3, 1 - t)$$

Exercice 24. Calculer les déterminants suivants :

$$a) \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$$

$$b) \begin{vmatrix} 1 & 7 \\ 0 & 2 \end{vmatrix}$$

$$c) \begin{vmatrix} 8 & 0 \\ 3 & 0 \end{vmatrix}$$

$$d) \begin{vmatrix} 1 & -7 \\ 3 & 21 \end{vmatrix}$$

$$a) \, \left| \begin{array}{cc|c} 0 & 1 \\ 1 & 0 \end{array} \right| \qquad b) \, \left| \begin{array}{cc|c} 1 & 7 \\ 0 & 2 \end{array} \right| \qquad c) \, \left| \begin{array}{cc|c} 8 & 0 \\ 3 & 0 \end{array} \right| \qquad d) \, \left| \begin{array}{cc|c} 1 & -7 \\ 3 & 21 \end{array} \right| \qquad e) \, \left| \begin{array}{cc|c} e^{i\frac{\pi}{3}} & 1+i \\ 1-i & e^{i\frac{2\pi}{3}} \end{array} \right|$$

Exercice 25. Calculer les déterminants suivants :

$$\begin{array}{c|cccc}
a) & 2 & 1 & 4 \\
5 & 2 & 3 \\
8 & 7 & 3
\end{array}$$

$$\begin{array}{c|cccc}
b) & & 1 & 3 & 2 \\
4 & 1 & 3 \\
2 & 2 & 0
\end{array}$$

$$\begin{array}{c|cccc} c & 1 & 0 & 2 \\ 1 & 3 & 4 \\ 0 & 6 & 0 \end{array}$$

$$e) \quad \begin{array}{|c|c|c|c|c|} X & 1 & X \\ 1 & 1 & 2 \\ X & 0 & 2 \end{array}$$

$$f) \quad \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$

$$g) \quad \left| \begin{array}{ccc} 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 1 \end{array} \right|$$

Exercice 26. Calculer l'aire du triangle ABC :

a)
$$A = (0,0), B = (-2,1), C = (3,0)$$

$$a) \quad A=(0,0), \ B=(-2,1), \ C=(3,0) \qquad b) \quad A=(t,1+t), \ B=(1,t), \ C=(2-t,1-t)$$

Exercice 27. Calculer le volume du tétraèdre ABCD :

$$a) \quad A=(1,1,0), \ B=(0,1,1), \ C=(1,0,1), \ D=(1,1,1)$$

b)
$$A = (1,2,3), B = (0,1,-1), C = (2,1,0), D = (0,1,0)$$

Exercice 28. Calculer le produit vectoriel des vecteurs \overrightarrow{u} et \overrightarrow{v} , et vérifier que le vecteur résultat $\overrightarrow{u} \wedge \overrightarrow{v}$ est bien orthogonal à \overrightarrow{u} et \overrightarrow{v} .

a)
$$\vec{u} = (1, 2, 1), \ \vec{v} = (0, 1, -1)$$

a)
$$\vec{u} = (1, 2, 1), \ \vec{v} = (0, 1, -1)$$
 b) $\vec{u} = (3, 2, 0), \ \vec{v} = (-1, 2, -1)$

Exercice 29. Trouver l'intersection des droites \mathcal{D}_1 et \mathcal{D}_2 .

a)
$$\mathcal{D}_1 = \{(1+2s, 3-s), s \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(x,y), x-2y+1=0\}$$

b)
$$\mathcal{D}_1 = \{(s-1, s-2), s \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(3-t, 2-t), t \in \mathbb{R}\}$$

c)
$$\mathcal{D}_1 = \{(x,y), 2x + y + 1 = 0\}, \quad \mathcal{D}_2 = \{(1+t, 3-2t), t \in \mathbb{R}\}$$

d)
$$\mathcal{D}_1 = \{(t-2, t-1), t \in \mathbb{R}\}, \quad \mathcal{D}_2 = \{(-1+2s, 3-s), s \in \mathbb{R}\}$$

Exercice 30. Trouver l'équation de la droite \mathcal{D} passant par les points A et B.

a)
$$A = (2,3)$$
, $B = (3,2)$

$$(b) \quad A = (4,1) \ , \ B = (2,2)$$

b)
$$A = (4,1)$$
, $B = (2,2)$ $c)$ $A = (-2,1)$, $B = (1,3)$

Exercice 31. Trouver le point d'intersection M de la droite \mathcal{D}_1 passant par les points A et B, avec la droite \mathcal{D}_2 passant par les points E et F, où A = (2,0), B = (4,4), E = (1,1), F = (5,3).

Exercice 32. Trouver la projection orthogonale du point M sur la droite \mathcal{D} .

a)
$$M = \left(\frac{3}{2}, 2\right)$$
, $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, 2x + y = 3\}$ b) $M = (4, 0)$, $\mathcal{D} = \{(x, y) \in \mathbb{R}^2, 3x - y = 2\}$

b)
$$M = (4,0)$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, 3x - y = 2\}$

c)
$$M = (1, -2, 1)$$
, $\mathcal{D} = \{(t - 2, 1 - 2t, 2t + 1), t \in \mathbb{R}\}$

Exercice 33. Trouver l'équation paramétrique de la droite \mathcal{D} passant par le point M et orthogonale au plan \mathcal{P} .

a)
$$M = (2, 1, -3), \mathcal{P} = \{(x, y, z), 2x - y + z = 1\}$$

b)
$$M = (-1, 2, 0), \mathcal{P} = \{\alpha(0, 1, 2) + \beta(-1, 1, 1), \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}$$

Exercice 34. Trouver l'équation cartésienne du plan $\mathcal{P} = \{M + \alpha \overrightarrow{u} + \beta \overrightarrow{v}, \alpha \in \mathbb{R}, \beta \in \mathbb{R}\}.$

a)
$$M = (0, -1, 1), \ \overrightarrow{u} = (2, 1, 1), \ \overrightarrow{v} = (0, 1, 1)$$

a)
$$M = (0, -1, 1), \ \overrightarrow{u} = (2, 1, 1), \ \overrightarrow{v} = (0, 1, 1)$$
 b) $M = (1, 2, -1), \ \overrightarrow{v} = (1, 0, 1), \ \overrightarrow{v} = (-1, 0, 1)$

Exercice 35. Trouver l'équation cartésienne du plan \mathcal{P} déterminé par les points A, B et C.

a)
$$A = (1, 2, -1), B = (-1, 2, 1), C = (1, 0, 1)$$
 b) $A = (2, -2, 0), B = (1, -1, 1), C = (0, 0, 1)$

b)
$$A = (2, -2, 0), B = (1, -1, 1), C = (0, 0, 1)$$

Exercice 36. Trouver l'équation cartésienne du plan \mathcal{P} contenant le point A et la droite \mathcal{D} .

a)
$$A = (-1, 2, 1), \mathcal{D} = \{(1-t, 1+t, 1+2t), t \in \mathbb{R}\}$$
 b) $A = (1, 1, 1), \mathcal{D} = \{(t, 1-t, 2+t), t \in \mathbb{R}\}$

b)
$$A = (1, 1, 1), \mathcal{D} = \{(t, 1-t, 2+t), t \in \mathbb{R}\}$$

Exercice 37. Trouver une représentation paramétrique du plan \mathcal{P} .

a)
$$\mathcal{P} = \{(x, y, z), 2x - y + z = 1\}$$
 b) $\mathcal{P} = \{(x, y, z), x - 2y - z = 2\}$

b)
$$\mathcal{P} = \{(x, y, z), x - 2y - z = 2\}$$

Exercice 38. Soient \mathcal{P}_1 et \mathcal{P}_2 deux plans dans \mathbb{R}^3 . Trouver la forme paramétrique de la droite $\mathcal{D} = \mathcal{P}_1 \cap \mathcal{P}_2$.

a)
$$\mathcal{P}_1 = \{(x, y, z), 2x + y - z = 3\}, \ \mathcal{P}_2 = \{(x, y, z), x + 2y + z = 0\}$$

b)
$$\mathcal{P}_1 = \{(x, y, z), -x + y - z = 1\}, \ \mathcal{P}_2 = \{(x, y, z), x - 2y - z = 2\}$$

Exercice 39. Trouver une représentation cartésienne de la droite $\mathcal{D} = \{(1,1,-1) + t(0,2,1), t \in \mathbb{R}\}$

Pour aller plus loin...

Exercice 40. On considère dans \mathbb{R}^2 le parallélogramme construit sur les vecteurs $\overrightarrow{u} = (a,b) \neq 0$ (0,0) et $\overrightarrow{v}=(c,d)\neq(0,0)$, c'est-à-dire le parallélogramme EFGH, où E=(0,0), F=(a,b), G = (a + c, b + d) et H = (c, d).

- 1. Trouver la projection orthogonale P du point H sur la droite passant par les points E et F.
- 2. Calculer la distance entre P et H.
- 3. Calculer l'aire du parallélogramme EFGH.

Exercice 41. Un rayon de lumière est envoyé depuis le point A = (1,0,1) dans la direction du vecteur \overrightarrow{v} . Pour quelle(s) valeur(s) de \overrightarrow{v} le rayon réfléchi dans le miroir d'équation x-y+z=1passe-t-il par le point T = (3, 2, 3)?

Exercice 42. Un rayon de lumière est envoyé depuis le point A = (1,1,2) dans la direction du vecteur $\overrightarrow{v} = (-1, -1, -1)$. Trouver l'équation du plan \mathcal{P} passant par le point M = (2, 0, 0) pour lequel le rayon réfléchi dans le miroir \mathcal{P} passe par le point T=(-2,-2,1).