第10回 アプリケーションプロトコル

セッション層、プレセンテーション層、アプリケーション層 ネットワークサービスのシステム TCP/IPのアプリケーションプロトコル

重要:プロトコルの階層と機能・特徴

	階層名	機能(項目/特徴)	標準化対象	プ마コル名(注)
7	アプ [°] リケー ション層	アプリケーションプロセスに通信機 能を提供	メール、ファイル転送などアプ リケーション毎の規則・手順	HTTP, FTP SMTP, POP
6	プレセ・ンテー ション層	情報表現形式を統一(コート゚- フォーマット変換、圧縮、暗号化)	抽象構文記法、符号化 規則、データ圧縮手順	JPEG, MPEG MIME, ASCII
5	セッション層	プロセス間の会話制御(セッションの開始~終了を管理)	セッションの設定・解放、会話手順、処理の同期	Unicode RPC, SIP
4	トランスホ [°] ー ト層	エンドプロセス間のデータ交換(多重化、コネクション、フロー制御)	プロセスの識別、送達確 認、再送手順	TCP, UDP
3	ネットワーク 層	ェント・ノート・間のハ・ケット転送(ルーティンク・、中継)	論理アドレス、パケットの分割・結合、転送手順	X.25, IP
2	データリンク 層	隣接ノード間フレーム伝送(プロック 同期、誤り検出、フロー制御)	物理アドレス、アクセス手順、 伝送制御手順	ベーシック手順、 HDLC手順、
1	物理層	ビットの伝送(システム間を接続、 情報と信号の変換)	電気・物理条件:電圧・ コネクタ形状・ビット同期等	イーサネット ⁻ RS232C

注:セッション層~アプリケーション層は、関連するTCP/IPのアプリケーションプロトコルおよび符号化規則を記している。 イーサネットは、物理層とデータリンク層の両方の機能を持つ。 PDUの名称:データリンク層:フレーム、ネットワーク層:パケット、トランスポート層(TCP):セグメント

第3回のスライド ネットワークアーキテクチャとOSI参照モデル アーキテクチャ(建築様式):建築物の構造や設計法工法を含めた全体を意味する ネットワークアーキテクチャ:コンピュータネットワークと通信システムの論理構造や設計方式 階層化されたプロトコルの体系化が重要な要素を占める 通信システム上のアプリケーションプロセス 通信システム上の階層化されたプロトコルおよび通信プログラム 下位の階層は、オペレーティングシステムに含まれる) システム間を接続するネットワーク OSI参照モデル: ネットワークの機能やプロトコルを階層的に分類し、その意義を定義。 ISO (International Organization for Standardization: 国際標準化機構)が制定。 ネットワークやプロトコルの概念、機能などの理解に役立ち、識別の基準にもなるため、広く利用されている OSI(Open System Interconnection):オープン型システムの相互接続

第3回のスライド

第6層(レイヤ6) プレゼンテーション層

データの表現形式の折衝^(注)、識別、解釈を行う

必要に応じて表現形式を変換する

- プオーマル変換、アブリケーション毎の表現形式を標準の形式(転送構文)に変換・コード変換、アマコード体系の整合(EUCとsifi JISの変換による文字化けの防止)・圧縮、暗号:音声、画像の符号化、情報圧縮(MPEG等)、暗号化

注:送受信間で、データの形式や解釈方法を合わせるためのやりとり

第7層(レイヤ7) アプリケーション層

アプリケーションプログラムに通信サービスを提供

- アプリケーション種別毎に機能を規定 ・ファイル転送
 - ・ディレクトリサービス
 - ・電子メール など

インターネットでは、プロトコル上は、セッション層、プレセンテーション層、アプリケーション層を区別せず、 3層を合せてアプリケーション層と呼んでいる。但し、実質的には、各層の機能が存在する。

参考:セッション層の同期とチェックポイント セッションの一時停止 対話1 ・会話をファイルに保存 対話1 以前の会話を確認 t=チェックポイン 中断したあとの通信の再同期 t=チェックポイント 対話2 小同期点で ・ファイルをバックアップ ・ネットワーク設定を保存 ・クロック設定を保存 誤り・抜けが発生した場合、正しく 届いた同期点まで戻し、データを ・会話の終了位置を記録 再送して、処理をやり直す 大同期点で 同期点確認(どの同期点まで送れたか) 再同期

データの圧縮

- 電話の音声帯域 0.3kHz~3.4kHz
 - 標本化周波数 8KHz、8bit量子化
 - $-8bit \times 8000 = 64000bps = 64Kbps$
- 64kbps→32kbps/16kbpsに圧縮
- ・ 音声の符号化(予測符号化技術)
 - 現在の信号を過去の信号で予測。その差分を伝送
 - ADPCM: Adaptive Differential PCM
- 静止画像の符号化
 - JPEG
- 動画像の符号化
 - MPEG1:1.5Mbps(CD-ROM)MPEG2:10Mbps(DVD)
 - MPEG4:数10kbpsにも対応(インターネット)

前回のスライド 重要:ポート番号(well known port numbers)

ポート番号	プロトコル	利用するアプリケーション	
20, 21	FTP	ファイル転送	
23	TELNET	遠隔ログイン	
25	SMTP	電子メール(送信)	
42	NAMESERVER	ホストネームサーバ	
53	DOMAIN(DNS)	IPアドレス、サーバ名問合せ	
69	TFTP	ファイル転送(簡易版)	
79	FINGER	フィンガーコマンド	
80	HTTP	World Wide Web	
110	POP3	電子メール(受信)	
119	NNTP	ネットワークニュース	

ポート番号の0~1024は、プロトコル毎に、サーバ側のプロセス用に決められている。 これを<mark>ウェルノウンポート番号</mark>(well-known port number: よく知られたポート番号)という (クライアントは、プロトコルに応じたポート番号を宛先ポート番号として設定する) クライアント側プロセスのポート番号は、使っていない番号を動的に設定

IPアドレスとドメイン名

- コンピュータが通信相手を一意に特定:(例 133.43.28.1)
- ドメイン名
- 人間がわかりやすいコンピュータの名前:(例 www.ce.nihon-u.ac.jp)
- 日本大学(本部)WWWサーバ
 - www.nihon-u.ac.jp FQDN
 - IPアドレス 133 43 255 56
- 日本大学工学部WWWサーバ

 - FQDN www.ce.nihon-u.ac.jp
 - IPアドレス133.43.28.1
- URLの指定方法: どちらでも同じ内容にアクセス可
 - FQDN http://www.ce.nihon-u.ac.jp/
 - IPアドレス http:// 133.43.28.1/

DNS (Domain Name System)

- DNS:ドメイン名を管理するシステム
 - ポート番号は53、トランスポート層には、UDPを使用
 - 注:プロトコル名は、Domain Namesだが、DNSの方が、一般的
- IPアドレスとFQDNを対応させる
 - 正引き・・・ FQDN → IPアドレス
 - _ 逆引き・・・ IPアドレス → FQDN
- ドメイン名空間およびリソースレコート。
 - 木構造のドメイン名およびデータ(アト゚レス)
- ネームサーバ
 - 上記を保持し、自動配信するためのサーバ。
- リゾルバ
 - ネームサーバから情報を引き出すためのクライアント

参考:ルートネームサーバ

- 世界中で13個(日本には1個)
- 設置場所などは秘密
 - 2007年10月24日にL.ROOTサーバのIP7ドレス変更
- 同一IPアドレスのサーバを複数台設置して、負荷分散しているらしい。
- A ROOT-SERVERS NET 5w6d16h IN A 198 41 0 4
- H.ROOT-SERVERS.NET. 5w6d16h IN A 128.63.2.53
- C.ROOT-SERVERS.NET. 5w6d16h IN A 192.33.4.12
- G.ROOT-SERVERS.NET. 5w6d16h IN A 192.112.36.4
- F.ROOT-SERVERS.NET. 5w6d16h IN A 192.5.5.241
- B.ROOT-SERVERS.NET. 5w6d16h IN A 128.9.0.107 J.ROOT-SERVERS.NET. 5w6d16h IN A 192.58.128.30
- K.ROOT-SERVERS.NET. 5w6d16h IN A 193.0.14.129
- L.ROOT-SERVERS.NET. 5w6d16h IN A 199.7.83.42
- M.ROOT-SERVERS.NET. 5w6d16h IN A 202.12.27.33
- I.ROOT-SERVERS.NET. 5w6d16h IN A 192.36.148.17 E.ROOT-SERVERS.NET. 5w6d16h IN A 192,203,230,10
- D.ROOT-SERVERS.NET. 5w6d16h IN A 128.8.10.90

階層化とカプセル化 上位層のパケットを下位層のカプセル(ヘッダ、トレイラ)で包む アプリケーション層 データ (HTTPデータ) Ω トランスホ゜ート層 ヘッタ゛ データ (TCPセグメント) <u>U</u> ネットワーク層 ヘッダ゛ データ (IPデータグラム/ IPパケット) $\overline{\mathcal{U}}$ データリンク層 ヘッタ゛ ヘッダーヘッタ データ トレイラ (MAC7レーム) 物理層(ビット)