Name:	
VIP ID:	

- Write your name and VIP ID in the space provided above.
- This test has three (3) pages, including this one.
- You have seventy-five (75) minutes to complete both tests.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- 20% of this test is obtained from the optimization problem in Test#4.
- No books or notes may be used on this test. You may use a calculator, if you want.

Page	Max. points	Your points
2	40	
3	40	
Test#4	20	
Total	100	

Problem 1 (20 pts). Find the critical values of the function $h(x) = \frac{x-2}{x^2+1}$. Indicate whether they are local maxima, local minima, or neither.

Problem 2 (10 pts). Find an equation of the normal line to the curve $y = \sin x + \sin^2 x$ at the point (0,0)

$$y =$$

Problem 3 (10 pts). The curve with equation $y^2 = x^3 + 3x^2$ is called the **Tschirnhausen cubic**. At what points does this curve have horizontal tangents?

Problem 4. Compute the following limits:

[10 pts]
$$\lim_{x \to 0^+} x \ln(x) =$$

[10 pts]
$$\lim_{x \to \infty} \frac{1 - x - x^2}{5x^2 - 9} =$$

$$[10 \text{ pts}] \lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{4x} = \boxed{}$$

$$[10 \text{ pts}] \lim_{x \to \infty} x^{1/x} = \boxed{}$$