5.11 Quiz: Transformations

1. A reflection is performed on a triangle, $\triangle SIT \rightarrow \triangle RUN$, as shown below.

Write the letter or letters for each corresponding object.

2. A translation maps A to A', as shown, $A(1,3) \rightarrow A'(4,-2)$.

- (a) Apply the same translation to $B(4,4) \rightarrow B'(x,y)$ on the grid. Mark and label point B' as an ordered pair.
- (b) Which translation mapped $A \to A'$?
 - (A) Right 3, up 1
 - (B) Left 3, down 1
 - (C) Right 5, down 3
 - (D) Right 3, down 5
 - (E) None of the above

- 3. A 70° clockwise rotation centered at P maps $\triangle ABC \rightarrow \triangle A'B'C'$, below.
 - (a) Complete the diagram by labeling the vertices of the triangle image. (remember the primes)
 - (b) True or false: rotation is a rigid motion.
 - (c) Is the *orientation* maintained or reversed by the rotation?

4. A reflection is performed on a line segment, mapping $\overline{AB} \to \overline{A'B'}$, as shown.

- (a) Apply the same reflection to C. Plot and label the image C' as an ordered pair.
- (b) Which correctly identifies the reflection?
 - (A) Reflect over the x-axis
 - (B) Reflect over the y-axis
 - (C) Reflect over the x-axis, then the y-axis
 - (D) Reflect over the y-axis, then the x-axis
 - (E) None of the above

- 5. The transformations we study have specific details that *fully characterize* the transformation. Next to each item, write the name of the appropriate transformation: translation, dilation, rotation, or reflection.
 - (a) The center and the scale factor k
 - (b) The line over which it is performed
 - (c) The center, the degree measure and direction
 - (d) The horizontal and vertical distances

6. What are the two transformations applied mapping $\triangle ABC \rightarrow \triangle A'B'C' \rightarrow \triangle A''B''C''$, as shown in the diagram? Fully characterize the two transformations, in order.

7. Dilate the triangle by a scale factor k=2 centered at the origin, $\triangle ABC \rightarrow \triangle A'B'C'$. Complete the table of the coordinates and plot and label the image on the grid.

$$A(0,0) \rightarrow$$

$$B(2,-2) \rightarrow$$

$$C(2,0) \rightarrow$$

8. Rotate the triangle 180° counterclockwise around the origin, $\triangle ABC \rightarrow \triangle A'B'C'$. Complete the table of the coordinates and plot and label the image on the grid.

$$A(0,0) \rightarrow$$

$$B(4,2) \rightarrow$$

$$C(4,0) \rightarrow$$

9. $\triangle ABC$ is shown with vertices A(1,2), B(5,1), and C(6,4). First, translate the triangle left 7 and up 2, then reflect it across the x-axis.

Plot and label $\triangle A'B'C'$ and $\triangle A''B''C''$ on the graph.

- 10. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given that BC = 10, DE = 15.
 - (a) Find the value of the scale factor k.
 - (b) Given AB = 12, find AD
 - (c) Given AE = 12, find AC

- 11. A point labeled C and vector (1,3) are shown Geogebra/classic. Identify the following objects and tools.
 - (a) Circle the vector
 - (b) Make an "X" where to click for the menu "Name & Value" that will label point C as an ordered pair.
 - (c) Mark with an arrow the menu where the "Translate by vector" tool is found.

- 12. Perform a composition of two transformations using Geogebra/classic. Paste an image of your work in this Classkick slide using the "camera" tool.
 - (a) Plot $\triangle ABC$, A(2,1), B(5,4), C(5,1)
 - (b) Mark a point at the origin.
 - (c) Rotate the triangle 180° counter clockwise around the origin.
 - (d) Reflect the image $\triangle A'B'C'$ across the y-axis, producing $\triangle A''B''C''$.