线性代数 练习七

- 一、填空题(每小题3分,共30分)
- 1、排列 24135 的逆序数为____。

3、设 $f = x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3$ 为正定二次型,则a的取值范围是

4、矩阵
$$A = \begin{bmatrix} 1 & 2 \\ x & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & y \\ 1 & 0 \end{bmatrix}$, 且 $AB = BA$,则 $x = 1$, $y = 2$ 。

- 7、已知向量 $\alpha = (2, a+1, 1)^T$, $\beta = (a, 2, -6)^T$ 正交,则 $\alpha = ____.$
- 8、 若n元线性方程组有无穷多解, 且其系数矩阵的秩为r , 则 r 与n 的 关 系 必 为
- 9、设有一个四元非齐次线性方程组 $Ax=b, r(A)=3, \alpha_1, \alpha_2, \alpha_3$ 为其解向量,且 $\alpha_1 = [1,2,3,1]^T$, $\alpha_2 + \alpha_3 = [4,4,8,2]^T$, 则此方程组的一般解为
- 10、 加个 n 维向量组成的向量组, 当 n _____ m 时一定线性相关。
- 二、单选题(每小题3分,共15分)
- 1、对任意n阶矩阵A和B,总有()。
- (A) |AB| = |BA| (B) AB = BA (C) $(AB)^T = A^T B^T$ (D) $(AB)^{-1} = A^{-1} B^{-1}$
- 2、设A 是3阶方阵,且|A|=4,则 $|A^*|=()$ 。
 - (B) 16
- (D) 12
- (A)4 (B)16 (C)8 3、若 α , β , γ 线性无关, α , β , δ 线性相关,则()。
- (A) α 必可由 β , γ , δ 线性表示; (B) β 必不可由 α , γ , δ 线性表示;
- (C) δ 必不可由 α , β , γ 线性表示; (D) δ 必可由 α , β , γ 线性表示;

4、已知方程组
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + 3x_3 = 0 \end{cases}$$
有非零解,则常数 a 为()
$$2x_1 + 3x_2 + ax_3 = 0$$

- (A) 1
- (B) 2 (C) 3
 - (D) 4

5、向量组 $\alpha_1 = (1,2,3,4)^T$, $\alpha_2 = (2,3,4,5)^T$, $\alpha_3 = (3,4,5,6)^T$, $\alpha_4 = (4,5,6,7)^T$ 的秩是(:)。

- (A) 4

- (B) 1 (C) 2 (D) 3

三、(9分) 计算 n 阶行列式
$$D = \begin{bmatrix} 3 & 2 & 2 & \cdots & 2 \\ 2 & 3 & 2 & \cdots & 2 \\ 2 & 2 & 3 & \cdots & 2 \\ \cdots & \cdots & \cdots & \cdots \\ 2 & 2 & 2 & \cdots & 3 \end{bmatrix}_n$$

四、 (10 分) 已知
$$AX - B = X$$
, 其中 $A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 2 \\ 2 & 0 \\ 1 & 0 \end{pmatrix}$, 求 X .

五、
$$(10\, \mathcal{G})$$
 设 $\alpha_1 = \begin{pmatrix} 1\\2\\3\\-1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1\\-1\\-3\\1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 5\\4\\3\\-1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 5\\1\\-3\\1 \end{pmatrix}$, 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个极

大线性无关组, 并将其余的向量用它线性表示。

六、(10 分.设有线性方程组
$$\begin{cases} x_1 + x_2 + kx_3 = -2 \\ x_1 + kx_2 + x_3 = -2 \end{cases}$$
,问 k 取何值时,
$$kx_1 + x_2 + x_3 = k - 3$$
 此方程组(1)有唯一解;(2)无解;(3)有无穷多解?并在有无穷多解时求其通解。

七、求一个正交变换x = Py,把二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 6x_3^2 + 4x_1x_2 + 6x_1x_3 + 6x_2x_3$ 化为标准型。

八、证明题(每题 3 分): 1. 己知方阵 A 满足 $A^2 - A - 2E = O$,	其中 E 是单位矩阵,	证明 $A+2E$ 可逆,	并求(A+2E) ⁻¹ 。

2. 设实对称矩阵 A 和 B 是相似矩阵,证明:存在正交矩阵 T ,使得 $T^{-1}AT = B$.