第15教学周12.12

1.2 Distributions

 Ω : Open subset.

定义0.1. The dual space.

- $\mathcal{E}'(\Omega)$: the dual space of $\mathcal{E}(\Omega)$ endowed with the weak-* topology induced by $\mathcal{E}(\Omega)$.
- $\mathcal{D}'(\Omega)$: the dual space of $\mathcal{D}(\Omega)$ endowed with the weak-* topology induced by $\mathcal{D}(\Omega)$.
- $S'(\mathbb{R}^d)$: the dual space of $S(\mathbb{R}^d)$ endowed with the weak-* topology induced by $S(\mathbb{R}^d)$.

注记0.2.

$$\mathcal{E}'(\Omega) \hookrightarrow \mathcal{D}'(\Omega),$$
 (0.1)

$$\mathcal{E}'(\mathbb{R}^d) \hookrightarrow \mathcal{S}'(\mathbb{R}^d) \hookrightarrow \mathcal{D}'(\mathbb{R}^d).$$
 (0.2)

• $u \in \mathcal{D}'(\Omega) \iff \forall \text{ compact set } K \subset \Omega, \text{ there exists } m_K \geq 0 \text{ and } C_K > 0 \text{ such that}$

$$|\langle u, \varphi \rangle| \le C_K \sup_{x \in K, |\alpha| < m_K} |\partial^{\alpha} \varphi(x)|, \quad \forall \varphi \in C_c^{\infty}(\Omega), \operatorname{supp} \varphi \subset K.$$
 (0.3)

• $u \in \mathcal{E}'(\Omega) \iff \exists \text{ compact set } K \subset \Omega, \ m \geq 0 \text{ and } C > 0 \text{ such that}$

$$|\langle u, \varphi \rangle| \le C \sup_{x \in K, |\alpha| \le m} |\partial^{\alpha} \varphi(x)|, \quad \varphi \in C^{\infty}(\Omega).$$
 (0.4)

• $u \in \mathcal{S}'(\mathbb{R}^d) \iff \exists \ m \geq 0 \text{ and } C > 0 \text{ such that}$

$$|\langle u, \varphi \rangle| \le C \sum_{|\alpha|, |\beta| \le m} \|x^{\alpha} \partial^{\beta} \varphi\|_{L^{\infty}(\mathbb{R}^d)}, \quad \varphi \in \mathcal{S}(\mathbb{R}^d). \tag{0.5}$$

例0.3. 1. $L^1_{loc}(\Omega) \subset \mathcal{D}'(\Omega)$.

- 2. P.V. $\frac{1}{x} \in \mathcal{S}'(\mathbb{R})$.
- 3. $\delta_0 \in \mathcal{E}'(\mathbb{R}^d)$.
- 4. Radon measure $\mu \in \mathcal{D}'(\Omega)$.

Multiplication of a distribution with a C^{∞} function

命题0.4. Let $u \in \mathcal{D}'(\Omega)$ and $a \in C^{\infty}(\Omega)$. Then the mapping

$$au: \mathcal{D}(\Omega) \mapsto \mathbb{C}$$
 (0.6)

defined by

$$\langle au, \varphi \rangle := \langle u, a\varphi \rangle, \quad \forall \varphi \in C_c^{\infty}(\Omega),$$
 (0.7)

is linear and continuous. That is, $au \in \mathcal{D}'(\Omega)$.

1.3 Distributional derivatives

 $\mathcal{E} \times 0.5$. If $\alpha \in \mathbb{N}_0^d$ and $u \in \mathcal{D}'(\Omega)$, the distributional derivative (or the derivative in the sense of distributions) of order α of the distribution u is the mapping $\partial^{\alpha}u : \mathcal{D}(\Omega) \to \mathbb{C}$ defined by

$$\partial^{\alpha} u(\varphi) := (-1)^{|\alpha|} \left\langle u, \partial^{\alpha} \varphi \right\rangle, \quad \forall \varphi \in C_{c}^{\infty}(\Omega).$$

命题0.6. For each $\alpha \in \mathbb{N}_0^d$ and each $u \in \mathcal{D}'(\Omega)$ we have $\partial^{\alpha} u \in \mathcal{D}'(\Omega)$.

命题0.7. The following properties of distributional differentiation hold.

- 1. Any distribution is infinitely differentiable (i.e., $\mathcal{D}'(\Omega)$ is stable under the action of ∂^{α} for any $\alpha \in \mathbb{N}_0$).
- 2. If $u \in \mathcal{D}'(\Omega)$ and $k, \ell \in \{1, ..., n\}$ then $\partial_k \partial_\ell u = \partial_\ell \partial_k u$ in $\mathcal{D}'(\Omega)$.
- 3. If $u_j \xrightarrow[j \to \infty]{\mathcal{D}'(\Omega)}$ and $\alpha \in \mathbb{N}_0^n$, then $\partial^{\alpha} u_j \xrightarrow[j \to \infty]{\mathcal{D}'(\Omega)} \partial^{\alpha} u$.
- 4. For any $u \in \mathcal{D}'(\Omega)$ and any $a \in C^{\infty}(\Omega)$ we have $\partial_j(au) = (\partial_j a) u + a (\partial_j u)$ in $\mathcal{D}'(\Omega)$.

 \mathcal{Z} X0.8 (weak derivatives). If $f \in L^1_{loc}(\Omega)$ and $\alpha \in \mathbb{N}_0^d$, we say that $\partial^{\alpha} f$ belongs to $L^1_{loc}(\Omega)$ in a weak (Sobolev) sense provided there exists some $g \in L^1_{loc}(\Omega)$ with the property that

$$\int_{\Omega} g\varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} f \partial^{\alpha} \varphi dx \quad \text{for every} \quad \varphi \in C_0^{\infty}(\Omega).$$

Linear partial differential operator of order m

$$P(x,\partial) = \sum_{|\alpha| \le m} a_{\alpha}(x)\partial^{\alpha}.$$
 (0.8)

EX0.9. Let $u, f \in L^1_{loc}(\Omega)$. Then $P(x, \partial)u = f$ is said to hold in the weak (or Sobolev) sense if

$$\int_{\Omega} f \varphi \, dx = \int_{\Omega} \left[P^{\top}(x, \partial) \varphi \right] u \, dx, \quad \forall \varphi \in C_c^{\infty}(\Omega).$$

作业

 P_{289} 1, 6, 9, 14;