

--21. (new) A method of use of a softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which comprises treating washed textile fibre materials with a softener composition which comprises:

- A) a fabric softener;
- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamide, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

wherein

R^1 is OH, OR² or CH₃.

R^2 is CH_3 or CH_2CH_3 .

R^3 is C_1-C_2 -alkoxy, CH_2 , $CH_2CHB^4CH_2NHB^5$, or $CH_2CHB^4CH_2N(COCH_3)B^5$.

or (3) $(CH_2)_3NH$ — CH — C₆H₁₁

or (4) $(CH_2)_3 - N$ NR⁵

R^4 is H or CH_3 .

R^5 is H, $CH_2CH_2NHR^6$, $C(=O)-R^7$ or $(CH_2)_2-CH_3$

z is 0 to 7

R⁶ is H or C(=O)-R⁷,

R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH,

R⁸ is H or CH₃, and

the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

wherein

R⁹ is CH₃, CH₂CH₂ or phenyl,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

A = -CH₂CH(R¹¹)(CH₂)_k,

B = -NR¹²((CH₂)_l-NH)_mR¹² or

n is 0 or 1,

when n is 0, U¹ is N, when n is 1, U¹ is CH,

l is 2 to 8,

k is 0 to 6,

m is 0 to 3,

R¹¹ is H or CH₃,

R¹² is H, C(=O)-R¹⁶, CH₂(CH₂)_pCH₃ or

p is 0 to 6,

R¹⁵ is NH, O, OCH₂CH(OH)CH₂N(butyl), OOCN(butyl)

R¹⁴ is H, linear or branched C₁-C₄alkyl, phenyl or CH₂CH(OH)CH₃,

R¹⁶ is H or linear or branched C₁-C₄alkyl,

R¹⁶ is CH₃, CH₂CH₃ or (CH₂)_qOH,

q is 1 to 6, and

U² is N or CH;

or a dispersed polyorganosiloxane of the formula (8)

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

R¹⁹ is R²⁰-(EO)_m-(PO)_n-R²¹,

m is 3 to 25,

n is 0 to 10,

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_pR²³,

p is 1 to 4,

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂,

R²² is H or CH₃,

R²³ is O or NH,

R²⁴ is linear or branched C₁-C₆alkyl or Si(R²⁵)₃,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH₂CH₂O-,

PO is $-\text{CH}(\text{CH}_3)\text{CH}_2\text{O}-$ or $-\text{CH}_2\text{CH}(\text{CH}_3)\text{O}-$ and
the sum of X₁, Y₁ and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

wherein

R²⁶ is linear or branched C₁-C₂₀alkoxy or CH₂CH(R⁴)R²⁹,

R⁴ is as previously defined,

R²⁹ is linear or branched C₁-C₂₀alkyl,

R²⁷ is aryl, aryl substituted by linear or branched C₁-C₁₀alkyl, linear or branched C₁-C₂₀alkyl substituted by aryl or aryl substituted by linear or branched C₁-C₁₀alkyl,

R²⁸ is

the sum of X², X³, X⁴ and Y² is 20 to 1500, wherein X³, X⁴ and Y² may be independently of each other

0;

or a mixture thereof.

22. (new) A method of use according to claim 21 wherein the polyorganosiloxane is of formula (1):

wherein

R¹ is OH, OR² or CH₃

R² is CH₃ or CH₂CH₃

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or

R^4 is H or CH_3 ,
 R^5 is H, $\text{CH}_2\text{CH}_2\text{NHR}^6$, $\text{C}(=\text{O})\text{-R}^7$,
 R^6 is H or $\text{C}(=\text{O})\text{-R}^7$,
 R^7 is CH_3 , CH_2CH_3 or $\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$,
 R^8 is H or CH_3 , and
the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

wherein

R^9 is CH_3 or CH_2CH_2 ,
 R^{10} is $-\text{O-Si}$ or $-\text{O-R}^9$,
the sum of v and w equals 3, and v does not equal 3,

$\text{A} = -\text{CH}_2\text{CH}(\text{R}^{11})(\text{CH}_2)_k$,

$\text{B} =$

n is 1,
 U¹ is CH,
 k is 0 to 6,
 R¹¹ is H or CH₃,
 R¹³ is OOCN(butyl),
 R¹⁴ is H, linear C₁-C₄alkyl, phenyl,
 R¹⁵ is H or linear C₁-C₄alkyl, and
 U² is N;

or a dispersed polyorganosiloxane of the formula (8);

wherein

R³ is as previously defined,
 R¹⁷ is OH, OR¹⁸ or CH₃,
 R¹⁸ is CH₃ or CH₂CH₃,
 R¹⁹ is R²⁰-(EO)_m-(PO)_n-R²¹,
 m is 3 to 25,
 n is 0 to 10,
 R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_pR²³,
 p is 1 to 4,
 R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂,
 R²² is H or CH₃,
 R²³ is O or NH,
 R²⁴ is linear or branched C₁-C₃alkyl or Si(R²⁵)₃,
 R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,
 EO is -CH₂CH₂O-,
 PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and
 the sum of X, Y, and S is 20 to 1500;

1003052 - 070305

or a dispersed polyorganosiloxane of the formula (9);

wherein

R^{26} is linear C_1-C_{20} alkoxy.

R^4 is as previously defined.

R²⁹ is linear C₁-C_nalkyl.

B^{27} is $CH_2CH(B^4)nevy$

R^{2B} is

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0; or a mixture thereof.

23. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (1) is used, wherein

R^1 is OH or CH_3 .

B^3 is CH_2 , $C_{10}=C_9$

B^4 is H

R^5 is H or $CH_2CH_2NHR^6$

१८५

\mathcal{H} is \mathcal{H} or $\mathcal{C}(\equiv \cup)$ - \mathcal{H} , and

R' is CH_3 , CH_2CH_3 or $\text{CH}_3\text{CH}_2\text{CH}_3$

wherein

R^3 is CH

\mathbb{R}^4 is \mathbb{H}

R^5 is H or $\text{CH}_2\text{CH}_2\text{NHR}^6$.

R^6 is H or C(=O)- R^7 .

B⁷ is CH₂CH-CH₂CH₂CH₂OH or CH₃, and

B_2 is CH_2 or OH

25. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (9) is used, wherein

R^{26} is $CH_2CH(R^4)R^{29}$.

B^4 is H and

B^{27} is 2-phenylpropyl.

26. (new) A method of use according to claim 21 wherein the composition is a liquid aqueous composition.

27. (new) A method of use according to claim 21 wherein the composition is used in a tumble dryer sheet composition.

28. (new) A method of use according to claim 21 in which the polyorganosiloxane is nonionic or cationic.

29. (new) A method of use according to claim 21 in which the composition has a solids content of 5 to 70 % at a temperature of 120°C.

30. (new) A method of use according to claim 21 in which the composition contains a water content of 25 to 90 % by weight based on the total weight of the composition.

31. (new) A method of use according to claim 21 in which the composition has a pH value from 2 to 7.

32. (new) A method of use according to claim 21 in which the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is from 0 to 0.25 % with respect to the silicon content

33. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene, a fatty acid alkanoamide or a polyurethane.

34. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene or a fatty acid alkanolamide.
35. (new) A method of use according to claim 21 wherein the composition comprises a fatty acid alkanolamide.
36. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene.
37. (new) A method of use according to claim 21 wherein the composition is prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.
38. (new) A method of use according to claim 21 wherein composition has a clear appearance.
39. (new) A method of use according to claim 21 in which the composition comprises:
 - a) 0.01 to 70 % by weight, based on the total weight of the composition, of a polyorganosiloxane, or a mixture thereof;
 - b) 0.2 to 15 % by weight based on the total weight of an emulsifier, or a mixture thereof;
 - c) 0.01 to 15 % by weight based on the total weight of at least one additive selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid and a polyurethane, and
 - d) water to 100 %.
40. (new) A tumble dryer sheet comprising a composition as defined in claim 21.--