# Map-Reduce for large-scale data processing

from Mining of Massive Datasets (课程教参第二章) http://www.mmds.org

### MapReduce

- Large scale computing for data mining
- Challenges:
  - How to distribute computation?
  - Distributed/parallel programming is hard
- Map-reduce addresses all of the above
  - Google's computational/data manipulation model
  - Elegant way to work with big data

### Single Node Architecture



**Machine Learning, Statistics** 

"Classical" Data Mining

# Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
  - ~4 months to read the web
- Takes even more to do something useful with the data!
- A standard architecture for such problems:
  - Cluster of commodity Linux nodes
  - Commodity network (ethernet) to connect them

### **Cluster Architecture**



Each rack contains 16-64 nodes



# Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
  - How do you distribute computation?
  - How can we make it easy to write distributed programs?
  - Machines fail:
    - One server may stay up 3 years (1,000 days)
    - If you have 1,000 servers, expect to loose 1/day
    - Estimated ~1,000 machines fail every day in Google

### Idea and Solution

- Issue: Copying data over a network takes time
- Idea:
  - Bring computation close to the data
  - Store files multiple times for reliability
- Map-reduce addresses these problems
  - Google's computational/data manipulation model
  - Elegant way to work with big data
  - Storage Infrastructure File system
    - Google: GFS. Hadoop: HDFS
  - Programming model
    - Map-Reduce

### Storage Infrastructure

#### Problem:

If nodes fail, how to store data persistently?

#### Answer:

- Distributed File System:
  - Chunks stored on nodes with redundancy
  - Provides global file namespace
- Typical usage pattern
  - Huge files (~TB)
  - Data is rarely updated in place
  - Reads and appends are common

# Distributed File System

#### Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

#### Master node

- i.e. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might be replicated

#### Client library for file access

- Talks to master to find chunk servers
- Connects directly to chunk servers to access data

# Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
  - Seamless recovery from disk or machine failure



Bring computation directly to the data!

Chunk servers also serve as compute servers

# Programming Model: MapReduce

MapReduce is a style of programming designed for:

- 1. Easy parallel programming
- 2. Invisible management of hardware and software failures
- 3. Easy management of very-large-scale data It has several implementations, including **Hadoop, Spark**, and the original Google implementation just called "MapReduce"

# Programming Model: MapReduce

#### Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file
- Sample application:
  - Analyze web server logs to find popular URLs

### Task: Word Count

#### Case 1:

 File too large for memory, but all <word, count> pairs fit in memory

#### Case 2:

- Count occurrences of words:
  - words(doc.txt) | sort | uniq -c
    - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
  - Great thing is that it is naturally parallelizable

### MapReduce: Overview

- Sequentially read a lot of data
- Map:
  - Extract something you care about
- Group by key: Shuffle and Sort
- Reduce:
  - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

# MapReduce: The Map Step



e.g., car . 10, apple . 2

bike: 8; car: 5

car: 2: apple: 10...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

# MapReduce: The Reduce Step



bike: 8

car: 10, 5, 3

bike: 8

car : 17

# More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
  - Map(k, v)  $\rightarrow$  <k', v'>\*
    - Takes a key-value pair and outputs a set of key-value pairs
      - E.g., input key is the filename, value is a single line in the file;
      - k' word, v' count
    - There is one Map call for every (k,v) pair
  - Reduce(k', <v'>\*) → <k', v">\*
    - All values v' with same key k' are reduced together and processed in k' order
    - There is one Reduce function call per unique key k'

## MapReduce: Word Counting

### Provided by the programmer

#### MAP:

Read input and produces a set of key-value pairs

#### Group by key:

Collect all pairs with same key

### Provided by the programmer

#### Reduce:

Collect all values belonging to the key and output

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in

"The work we're doing now
-- the robotics we're doing - is what we're going to
need ......

man/mache partnership.

Big document

```
(The, 1)
(crew, 1)
(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)
```

(key, value)

```
(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)
...
```

(key, value)

```
(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)
...
```

(key, value)

# Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
  for each word w in value:
     emit(w, 1)
reduce(key, values):
// key: a word; value: an iterator over counts
      result = 0
      for each count v in values:
            result += v
      emit(key, result)
```

### Map-Reduce: Environment

#### **Map-Reduce environment takes care of:**

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

# Map-Reduce: A diagram

#### MAP:

Read input and produces a set of key-value pairs

Intermediate

#### Group by key:

Collect all pairs with (Hash merge, Shuffle, Sort, Partition)

#### Reduce:

Collect all values belonging to the key and output



### Map-Reduce: In Parallel



#### All phases are distributed with many tasks doing the work

### Map-Reduce

- Programmer specifies:
  - Map and Reduce and input files
- Workflow:
  - Read inputs as a set of key-valuepairs
  - Map transforms input kv-pairs into a new set of k'v'-pairs
  - Sorts & Shuffles the k'v'-pairs to output nodes
  - All k'v'-pairs with a given k' are sent to the same reduce
  - Reduce processes all k'v'-pairs grouped by key into new k''v''-pairs
  - Write the resulting pairs to files
- All phases are distributed with many tasks doing the work



### **Data Flow**

- Input and final output are stored on a distributed file system (FS):
  - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

### Coordination: Master

- Master node takes care of coordination:
  - Task status: (idle, in-progress, completed)
  - Idle tasks get scheduled as workers become available
  - When a map task completes, it sends the master the location and sizes of its R intermediate files
  - Master pushes this info to reducers
- Master pings workers periodically to detect failures

### **Refinement: Combiners**

- Often a Map task will produce many pairs of the form  $(k,v_1)$ ,  $(k,v_2)$ , ... for the same key k
  - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
  - combine(k, list( $v_1$ ))  $\rightarrow v_2$
  - Combiner is usually same as the reduce function



### **Refinement: Combiners**

- Back to our word counting example:
  - Combiner combines the values of all keys of a single mapper (single machine):



• Much less data needs to be copied and shuffled!

# Problems Suited for Map-Reduce

### Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
  - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
  - That is, the sum of the page sizes for all URLs from that particular host
- Other examples:
  - Link analysis and graph processing
  - Machine Learning algorithms [1]

[1] Map-Reduce for Machine Learning on Multicore, CT Chu et al.

## Example: Join By Map-Reduce

- Compute the natural join R(A,B) ⋈ S(B,C) (on R.B=S.B)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

| A              | В     |
|----------------|-------|
| a <sub>1</sub> | $b_1$ |
| $a_2$          | $b_1$ |
| $a_3$          | $b_2$ |
| $a_4$          | $b_3$ |



| В     | C                     |   |
|-------|-----------------------|---|
| $b_2$ | <b>C</b> <sub>1</sub> |   |
| $b_2$ | $c_2$                 | = |
| $b_3$ | <b>C</b> <sub>3</sub> |   |

| A     | C                     |
|-------|-----------------------|
| $a_3$ | C <sub>1</sub>        |
| $a_3$ | $c_2$                 |
| $a_4$ | <b>c</b> <sub>3</sub> |

S

R

### Map-Reduce Join

- A Map process turns:
  - Each input tuple R(a,b) into key-value pair (b,(a,R))
  - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

### **Implementations**

#### Hadoop

- An open-source implementation in Java
- Uses HDFS for stable storage
- Download: https://hadoop.apache.org/

#### Spark

- Spark can process data in-memory
- Generally outperforms Hadoop, works well for smaller data sets that can all fit into a server's RAM.
- Has MLlib for machine learning
- Download: <a href="https://spark.apache.org/">https://spark.apache.org/</a>

They all have **standard-alone versions**, that you can try on a single computer.