Teorija brojeva

Filip Najman

9 predavanje

31.5.2021.

Zadatak

Izračunajte prve četiri konvergente $\frac{p_0}{q_0}$, $\frac{p_1}{q_1}$, $\frac{p_2}{q_2}$, $\frac{p_3}{q_3}$ u razvoju broja $e=2.7182818284\cdots$ u jednostavni verižni razlomak.

Zadatak

Dokažite da je $[1, 1, 1, \dots] = \frac{\sqrt{5}+1}{2}$.

Zadnji put smo radili:

Teorem (Borel)

Neka su $\frac{p_{n-2}}{q_{n-2}}$, $\frac{p_{n-1}}{q_{n-1}}$, $\frac{p_n}{q_n}$ tri uzastopne konvergente od α . Tada barem jedna od njih zadovoljava nejednakost

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}a^2}.$$

Sada želimo dokazati da je Borelov teorem najbolji mogući.

Teorem

Pretpostavimo da α ima razvoj u verižni razlomak oblika

$$\alpha = [a_0, a_1, \ldots, a_N, 1, 1, 1, \ldots].$$

Tada je
$$\lim_{n\to\infty} \left| \alpha - \frac{p_n}{q_n} \right| = \frac{1}{\sqrt{5}}$$
.

Dokaz: Po dokazu teorema od prošli put uz oznake $\alpha_i = [a_i, a_{i+1}, \dots]$ i $\beta_i = \frac{q_{i-2}}{q_{i-1}}$ za $i \ge 1$ imamo:

$$\left|\alpha - \frac{p_n}{q_n}\right| = \frac{1}{q_n^2(\alpha_{n+1} + \beta_{n+1})}.$$

Ovdje je, za n dovoljno velik, $lpha_{n+1} = [1,1,1,\dots] = rac{\sqrt{5}+1}{2}$ i

$$\frac{1}{\beta_{n+1}} = \frac{q_n}{q_{n-1}} = a_n + \frac{1}{\frac{q_{n-1}}{q_{n-2}}} = a_n + \frac{1}{a_{n-1} + \frac{1}{\frac{q_{n-2}}{q_{n-3}}}}$$

$$= \cdots = [a_n, a_{n-1}, \ldots, a_1] = [\underbrace{1, 1, \ldots, 1}_{n-N}, a_N, \ldots, a_1].$$

Budući da su [1, 1, ..., 1] i [1, 1, ..., 1] susjedne konvergente od

$$\frac{1}{\beta_{n+1}}$$
, slijedi da se $\frac{1}{\beta_{n+1}}$ nalazi između njih. Stoga je lim $\frac{1}{\beta_{n+1}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \sqrt{5} + 1$. Proma toma

 $\lim_{n o \infty} rac{1}{eta_{n+1}} = [1,1,1,\dots] = rac{\sqrt{5}+1}{2}.$ Prema tome,

$$\lim_{n \to \infty} \beta_{n+1} = \left(\frac{\sqrt{5}+1}{2}\right)^{-1} = \frac{\sqrt{5}-1}{2},$$

$$\lim_{n\to\infty}(\alpha_{n+1}+\beta_{n+1})=\sqrt{5}.$$

Teorem (Legendre)

Neka su p, q cijeli brojevi takvi da je $q \ge 1$ i

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}.$$

Tada je $\frac{p}{a}$ neka konvergenta od α .

Dokaz: Možemo pretpostaviti da je $\alpha \neq \frac{p}{q}$; inače je tvrdnja trivijalno zadovoljena.

Tada možemo pisati $\alpha-\frac{p}{q}=\frac{\varepsilon\vartheta}{q^2}$, gdje je $0<\vartheta<\frac{1}{2}$ i $\varepsilon=\pm1$.

Neka je

$$\frac{p}{q}=[b_0,b_1,\ldots,b_{n-1}]$$

razvoj od $\frac{p}{q}$ u jednostavni verižni razlomak, gdje je n izabran tako da vrijedi $(-1)^{n-1}=\varepsilon$. To uvijek možemo postići jer je $[a_0,a_1,\ldots,a_m]=[a_0,a_1,\ldots,a_m-1,1]$.

Definirajmo ω sa

$$\alpha = \frac{\omega p_{n-1} + p_{n-2}}{\omega q_{n-1} + q_{n-2}},\tag{1}$$

tako da je $\alpha = [b_0, b_1 \dots, b_{n-1}, \omega]$ (zbog relacije koja je dokazana ako "uvrstimo" $a_n = \omega$).

Neka je $\frac{p_i}{q_i} = [b_0, b_1, \ldots, b_i]$. Primjetimo da je $p_{n-1}/q_{n-1} = p/q$.

Sada je, po formuli dokazanoj u dokazu Borelovog teorema, imamo $q_n \alpha - p_n = \frac{(-1)^n}{\alpha + 1\alpha + \alpha}$ vrijedi

$$\frac{\varepsilon\vartheta}{q^2} = \alpha - \frac{p}{q} = \frac{1}{q_{n-1}} (\alpha q_{n-1} - p_{n-1}) = \frac{1}{q_{n-1}} \cdot \frac{(-1)^{n-1}}{\alpha_n q_{n-1} + q_{n-2}},$$

$$= \frac{1}{q_{n-1}} \cdot \frac{(-1)^{n-1}}{\omega q_{n-1} + q_{n-2}},$$

pa je $\vartheta = \frac{q_{n-1}}{\omega q_{n-1} + q_{n-2}}$

Rješavanjem ove relacije po ω , dobivamo $\omega=\frac{1}{\vartheta}-\frac{q_{n-2}}{q_{n-1}}$. Odavde slijedi da je $\omega>2-1=1$. Razvijmo ω u jednostavan verižni razlomak: $\omega=[b_n,b_{n+1},b_{n+2},\dots]$.

Budući da je $\omega>1$, svi b_j $(j=n,n+1,\dots)$ su prirodni brojevi.

Stoga je

$$\alpha = [b_0, b_1, \dots, b_{n-1}, b_n, b_{n+1}, \dots]$$

razvoj u jednostavni verižni razlomak od lpha i

$$\frac{p}{q} = \frac{p_{n-1}}{q_{n-1}} = [b_0, b_1, \dots, b_{n-1}]$$

je konvergenta od lpha, što je i trebalo dokazati.

Teorem (Hurwitz)

(i) Za svaki iracionalan broj α postoji beskonačno mnogo racionalnih brojeva $\frac{p}{a}$ takvih da je

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

(ii) Tvrdnja (i) ne vrijedi ukoliko se $\sqrt{5}$ zamijeni s bilo kojom konstantom $A > \sqrt{5}$.

Dokaz: Tvrdnja (i) slijedi direktno iz Borelovog teorema, dok tvrdnja (ii) slijedi iz dva teorema koja smo sada dokazali

Naime, ako iracionalan broj α ima oblik iz Teorema 4, onda se po Legendrevom Teoremu se sva rješenja nejednadžbe $|\alpha - \frac{p}{2}| < \frac{1}{2\pi} \le \frac{1}{2\pi}$ gdie ie $A > \sqrt{5}$ nalaze među konvergentam

 $\left| \alpha - \frac{p}{q} \right| < \frac{1}{Aq^2} \le \frac{1}{A}$, gdje je $A > \sqrt{5}$, nalaze među konvergentama od α , a po Teoremu 4 ovu nejednadžbu zadovoljava samo konačno mnogo konvergenti od α (jer im je limes jednak $\frac{1}{\sqrt{5}} > \frac{1}{A}$).

Teorem (Zakon najboljih aproksimacija)

Neka je α iracionalan broj, te $\frac{p_0}{q_0}$, $\frac{p_1}{q_1}$,... konvergente od α . Tada vrijedi:

(i)
$$|\alpha q_0 - p_0| > |\alpha q_1 - p_1| > |\alpha q_2 - p_2| > \cdots$$

(ii) Ako je $n \ge 1$ i $1 \le q \le q_n$, te ako je $(p, q) \ne (p_{n-1}, q_{n-1})$,

$$(p_n, q_n)$$
, onda je $|\alpha q - p| > |\alpha q_{n-1} - p_{n-1}|$.

Dokaz: Po formuli od prošli put je

$$\begin{aligned} |\alpha q_n - p_n| &= \frac{1}{\alpha_{n+1} q_n + q_{n-1}} < \frac{1}{q_n + q_{n-1}}, \\ |\alpha q_{n-1} - p_{n-1}| &= \frac{1}{\alpha_n q_{n-1} + q_{n-2}} > \frac{1}{(a_n + 1) q_{n-1} + q_{n-2}} \\ &= \frac{1}{q_{n-1} + q_n}, \end{aligned}$$

čime je dokazana tvrdnja (i).

Da bi dokazali (ii), definirajmo brojeve μ, ν pomoću jednadžbi

$$\mu p_n + \nu p_{n-1} = p,$$

$$\mu q_n + \nu q_{n-1} = q.$$

Matrica ovog sustava (s nepoznanicama μ, ν) ima determinantu $p_n q_{n-1} - p_{n-1} q_n = \pm 1$, pa su brojevi μ, ν cijeli brojevi (jer se determinanta pojavljuje u nazivniku u rješenju sustava po Cramerovom pravilu).

Ako je $\nu = 0$, onda je $p = \mu p_n$, $q = \mu q_n$, a to je nemoguće jer je $0 < q < q_n$ i $(p, q) \neq (p_n, q_n)$.

Ako je $\mu = 0$, onda je $p = \nu p_{n-1}$, $q = \nu q_{n-1}$.

Budući da je $(p,q) \neq (p_{n-1},q_{n-1})$, slijedi $\nu \geq 2$ i zato je

$$|\alpha q - p| > 2|\alpha q_{n-1} - p_{n-1}| > |\alpha q_{n-1} - p_{n-1}|.$$

Ako su $\mu \neq 0$, $\nu \neq 0$, onda zbog $1 \leq q \leq q_n$, μ i ν imaju suprotne predznake, pa brojevi $\mu(\alpha q_n - p_n)$ i $\nu(\alpha q_{n-1} - p_{n-1})$ imaju iste predznake.

Stoga je

$$|\alpha q - p| = |\alpha(\mu q_n + \nu q_{n-1}) - \mu p_n - \nu p_{n-1}|$$

$$= |\mu(\alpha q_n - p_n)| + |\nu(\alpha q_{n-1} - p_{n-1})|,$$
pa je, zbog $\mu \nu \neq 0$, $|\alpha q - p| > |\alpha q_{n-1} - p_{n-1}|.$

Razlomke oblika
$$\frac{p_{n,r}}{q_{n,r}} = \frac{rp_{n+1} + p_n}{rq_{n+1} + q_n}$$
, $r = 1, 2, \ldots, a_{n+2} - 1$, $n \ge -1$, nazivamo sekundarne konvergente verižnog razlomka $[a_0, a_1, \ldots]$.

Uočimo:
$$\frac{p_{n,0}}{q_{n,0}} = \frac{p_n}{q_n}$$
, $\frac{p_{n,a_{n+2}}}{q_{n,a_{n+2}}} = \frac{p_{n+2}}{q_{n+2}}$.

Propozicija

Za n paran vrijedi

$$\frac{p_n}{q_n} < \cdots < \frac{p_{n,r}}{q_{n,r}} < \frac{p_{n,r+1}}{q_{n,r+1}} < \cdots < \frac{p_{n+2}}{q_{n+2}},$$

dok za n neparan vrijedi

$$\frac{p_n}{q_n} > \cdots > \frac{p_{n,r}}{q_{n,r}} > \frac{p_{n,r+1}}{q_{n,r+1}} > \cdots > \frac{p_{n+2}}{q_{n+2}}$$
.

Nadalje, za svaki prirodan broj n vrijedi

$$q_{n,r+1}p_{n,r} - p_{n,r+1}q_{n,r} = (-1)^{n+1}.$$
 (2)

Dokaz: Dovoljno je dokazati relaciju (2). Imamo:

$$q_{n,r+1}p_{n,r} - p_{n,r+1}q_{n,r}$$

$$= [(r+1)q_{n+1} + q_n](rp_{n+1} + p_n) - [(r+1)p_{n+1} + p_n](rq_{n+1} + q_n)$$

$$= q_{n+1}p_n - p_{n+1}q_n = (-1)^{n+1}.$$

Definicija

Za beskonačni verižni razlomak $[a_0, a_1, a_2, \dots]$ kažemo da je periodski ako postoje cijeli brojevi $k \geq 0$, $m \geq 1$ takvi da je $a_{m+n} = a_n$ za sve $n \geq k$. U tom slučaju verižni razlomak pišemo u obliku

$$[a_0, a_1, \ldots, a_{k-1}, \overline{a_k, a_{k+1}, \ldots, a_{k+m-1}}],$$

gdje "crta" iznad brojeva a_k, \ldots, a_{k+m-1} znači da se taj blok brojeva ponavlja u nedogled.

Primjer

- (i) Neka je $\beta=[2,3,2,3,\dots]=[\overline{2,3}]$. Tada je $\beta=2+\frac{1}{3+\frac{1}{\beta}}$. To daje kvadratnu jednadžbu za β : $3\beta^2-6\beta-2=0$, pa zbog $\beta>0$, dobivamo da je $\beta=\frac{3+\sqrt{15}}{3}$.
- (ii) Neka je sada $\alpha = [4, 1, \overline{2, 3}]$. Imamo:

$$\alpha = 4 + \frac{1}{1 + \frac{1}{\beta}} = 4 + \frac{\beta}{\beta + 1} = \frac{29 + \sqrt{15}}{7}.$$

Ova dva primjera ilustriraju opću situaciju.

Definicija

Za iracionalan broj α kažemo da je kvadratna iracionalnost ako je α korijen kvadratne jednadžbe s racionalnim koeficijentima.

Teorem (Euler, Lagrange)

Razvoj u jednostavni verižni razlomak realnog broja α je periodski ako i samo ako je α kvadratna iracionalnost.

Dokaz: Neka je $\alpha = [b_0, b_1, \dots, b_{k-1}, \overline{a_0, a_1, \dots, a_{m-1}}]$, te neka je $\beta = [\overline{a_0, a_1, \dots, a_{m-1}}]$, tj. neka je β čisto periodski dio od α . Iz

$$\beta = [a_0, a_1, \ldots, a_{m-1}, \beta]$$

slijedi da je

$$eta=rac{eta p_{m-1}+p_{m-2}}{eta q_{m-1}+q_{m-2}},$$
 where is the distance of the second state of the

a to je kvadratna jednadžba za β (s cjelobrojnim koeficijentima). Budući da je β iracionalan (jer mu je razvoj beskonačan), slijedi da je β kvadratna iracionalnost.

Zapišimo α pomoću β :

$$\alpha = \frac{\beta p + p'}{\beta q + q'},\tag{3}$$

gdje su $\frac{p}{a}$ i $\frac{p'}{a'}$ zadnje dvije konvergente od $[b_0, b_1, \ldots, b_{k-1}]$.

Međutim, β ima oblik $\frac{a+\sqrt{b}}{c}$, pa iz (3) slijedi da i α ima isti oblik. Budući da α nije racionalan, prvi dio teorema je dokazan.

Dokažimo sada obrat. Neka je α kvadratna iracionalnost, tj. neka je $\alpha = \frac{a+\sqrt{b}}{c}$, a, b, $c \in \mathbb{Z}$, b>0, $c \neq 0$ i b nije potpun kvadrat.

Množeći brojnik i nazivnik od α sa |c|, dobivamo

$$\alpha = \frac{ac + \sqrt{bc^2}}{c^2}$$
 ili $\alpha = \frac{-ac + \sqrt{bc^2}}{-c^2}$,

u ovisnosti o tome je li c pozitivan ili negativan.

Stoga α možemo zapisati u obliku

$$\alpha=\frac{s_0+\sqrt{d}}{t_0},$$

gdje su d, s_0 , $t_0 \in \mathbb{Z}$, $t_0 \neq 0$, d nije potpun kvadrat i $t_0 | (d - s_0^2)$.

Sada ćemo opisati razvoj $[a_0, a_1, \dots]$ u jednostavni verižni razlomak broja α . Neka je $\alpha_0 = \alpha$, te neka je

$$a_i = \lfloor \alpha_i \rfloor$$
, $\alpha_i = \frac{s_i + \sqrt{d}}{t_i}$, $s_{i+1} = a_i t_i - s_i$, $t_{i+1} = \frac{d - s_{i+1}^2}{t_i}$.

Imamo:

$$lpha_{i} - a_{i} = rac{s_{i} + \sqrt{d} - a_{i}t_{i}}{t_{i}} = rac{\sqrt{d} - s_{i+1}}{t_{i}} = rac{d - s_{i+1}^{2}}{t_{i}(\sqrt{d} + s_{i+1})}$$

$$= rac{t_{i+1}}{\sqrt{d} + s_{i+1}} = rac{1}{lpha_{i+1}},$$

pa je zaista $\alpha = [a_0, a_1, \dots]$.

Pokažimo sada matematičkom indukcijom da su s_i , t_i cijeli brojevi takvi da je $t_i \neq 0$ i $t_i | (d - s_i^2)$.

To vrijedi za i=0. Ako tvrdnja vrijedi za neki i, onda iz $s_{i+1}=a_it_i-s_i$ slijedi da je broj s_{i+1} cijeli.

Relacija

$$t_{i+1} = \frac{d - s_{i+1}^2}{t_i} = \frac{d - s_i^2}{t_i} + 2a_i s_i - a_i^2 t_i$$

pokazuje da je i t_{i+1} cijeli broj.

Nadalje, $t_{i+1} \neq 0$, jer bi inače $d = s_{i+1}^2$ bio potpun kvadrat.

Konačno, iz
$$t_i = \frac{d - s_{i+1}^2}{t_{i+1}}$$
 slijedi da $t_{i+1} | (d - s_{i+1}^2)$.

Sa α_i' označimo konjugat od α_i , tj. $\alpha_i' = \frac{s_i - \sqrt{d}}{t_i}$. Budući da je konjugat kvocijenta jednak kvocijentu konjugata, imamo: $\alpha_0' = \frac{\alpha_n' p_{n-1} + p_{n-2}}{p_n' q_{n-1} + q_{n-2}}$.

Odavde je

$$\alpha'_n = -\frac{q_{n-2}}{q_{n-1}} \left(\frac{\alpha'_0 - \frac{p_{n-2}}{q_{n-2}}}{\alpha'_0 - \frac{p_{n-1}}{q_{n-1}}} \right).$$

Kad n teži u ∞ , $\frac{p_{n-1}}{q_{n-1}}$ i $\frac{p_{n-2}}{q_{n-2}}$ teže prema α_0 , a $\alpha_0 \neq \alpha'_0$.

Stoga izraz u zagradi teži prema 1, pa je zbog toga pozitivan za dovoljno velike n, recimo za n > N.

Sada je za n>N broj α_n' negativan. No, α_n je pozitivan za $n\geq 1$, pa je $\alpha_n-\alpha_n'=\frac{2\sqrt{d}}{t_n}>0$.

Dakle, $t_n > 0$ za n > N. Nadalje, za n > N imamo:

$$s_n^2 < s_n^2 + t_{n-1}t_n = d \implies |s_n| < \sqrt{d}$$

dok iz $\alpha_n > 1$ i upravo dokazanog slijedi

$$t_n < s_n + \sqrt{d} < 2\sqrt{d}.$$

Odavde slijedi da uređeni parovi (s_n, t_n) mogu poprimiti samo konačno mnogo vrijednosti, pa postoje prirodni brojevi j, k, j < k, takvi da je $s_i = s_k$, $t_i = t_k$.

Sada (4) povlači da je $\alpha_j = \alpha_k$, pa je

$$\alpha = [a_0, \ldots, a_{j-1}, \overline{a_j, a_{j+1}, \ldots, a_{k-1}}],$$

što je i trebalo dokazati.