$$f(n) = 1n^2$$

$$g(n) = 3n + 5$$

Supondo que c = 1

$$n = 1$$
, $f(1) = 1$, $g(1) = 8$

$$n = 2$$
, $f(2) = 4$, $g(2) = 11$

$$n = 3$$
, $f(3) = 9$, $g(3) = 14$

$$n = 4$$
, $f(4) = 16$, $g(4) = 17$

$$n = 5$$
, $f(5) = 25$, $g(5) = 20$

$$n = 6$$
, $f(6) = 36$, $g(6) = 23$

$$m = 5$$

Notação O

 $g(n) \le cf(n)$

$$g(n) = O(f(n))$$

$$(n+1)^2 = O(n^2)$$

$$(n+1)^2 \le cn^2$$

$$n^2 + 2n + 1 \le cn^2$$

$$n^2/n^2 + 2n/n^2 + 1/n^2 \le c$$

$$1 + 2/n + 1/n^2 \le c$$

Supondo n = 1, c = 4

$$1 + 2/1 + 1/1^2 \le c$$

$$1 + 2/n + 1/n^2 \le 4$$

Notação Ω (Ômega) $g(n) \ge cf(n)$

$$3n^3 + 2n^2 + n = \Omega(n^3)$$

$$3n^3 + 2n^2 + n \ge cn^3$$

$$3n^3/n^3 + 2n^2/n^3 + n/n^3 \ge c$$

 $3 + 2/n + 1/n^2 \ge c$
Supondo $n = 1, c = 6$

$$3 + 2/n + 1/n^2 \ge 6$$

 $3 + 0 + 0 \ge 6$
FALSO

$$3n^{3} + 2n^{2} + n = \Omega(n)$$

 $3n^{3} + 2n^{2} + n \ge cn$
 $3n^{3}/n + 2n^{2}/n + n/n \ge c$
 $3n^{2} + 2n + 1 \ge c$
Supondo $n = 1, c = 6$

$$3n^2+2n+1 \ge 6$$

infinito + infinito + 1 \ge 6
VERDADEIRO
n = 2, 12 + 4 + 1 = 17 \ge 6