

Alunos: Alexandre Almeida, Heron Goulart, João Pedro Pedrosa, Shai Vaz e Roberto Orenstein

Questão 1

Passos Iniciais

Séries em Nível, Log-Nível e Log-Diferença

Data

Teste De Phillips-Perron (PPT)

- Fizemos os Testes de Phillips-Perron da série log-nível e log-diferença
- O teste indica que a série log-nível é não estacionária e tem raíz unitária
- O outro teste indica que a série logdiferença é estacionária

Table 1: Teste Philips Perron: Série Log Nível

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-18.5791	0.0930023	8	Phillips-Perron Unit Root Test	stationary

Table 2: Teste Philips Perron

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-2404.682	0.01	8	Phillips-Perron Unit Root Test	stationary

Funções de Autocorrelação

 Assim, com a série log-diff escolhida fizemos e avaliamos as seguinte funções de autocorrelação e autocorrelação parcial

Minimização dos Critérios de Informação

Table 3: BIC Minimizer Model

Term	Estimate	Standard Error
ar1	-1.7401133	0.0257552
ar2	-0.8770843	0.0258495
ma1	1.6310849	0.0354612
ma2	0.7419635	0.0358254

Table 4: AIC Minimizer Model

Term	Estimate	Standard Error
ar1	-1.7390897	0.0259024
ar2	-0.8760746	0.0260392
ma1	1.6294213	0.0356304
ma2	0.7402674	0.0360618
intercept	0.0004274	0.0002373

Resultados ARMA(2,2)

	Dependent variable:
	$\Delta \log(P)$
ar1	-1.739***
	(0.026)
ar2	-0.876***
GI 2	(0.026)
ma1	1.629***
	(0.036)
ma2	0.740***
	(0.036)
intercept	0.0004*
1	(0.0002)
Observations	2,013
Log Likelihood	6,154.515
σ^2	0.0001
Akaike Inf. Crit.	-12,297.030
Note:	*p<0.1; **p<0.05; ***p<0.01

Análise dos Resíduos

Resíduos da ARMA(2,2)

Autocorrelação dos Resíduos

Autocorrelação dos ε da regressão ARMA(2,2)

Autocorrelação dos Quadrados dos Resíduos

Autocorrelação parcial dos ϵ^2 da regressão ARMA(2,2)

Autocorrelação dos ϵ^2 da regressão ARMA(2,2)

Teste de Ljung-Box de autocorrelação serial: série de resíduos

Estatística de Teste	P Value	Lags	Method
216.9475	0.93558	250	Box-Ljung test

Assim, não podemos rejeitar a hipótese nula de não haver autocorrelação serial nos resíduos, como era esperado olhando para as funções.

Teste de Ljung-Box de autocorrelação serial: série de resíduos ao quadrado

Estatística de Teste	P Value	Lags	Method
2751.789	0	250	Box-Ljung test

Rejeitamos portanto a hipótese nula de ausência de autocorrelação serial no quadrado dos resíduos. Concluímos que embora não haja correlação entre os resíduos, há correlação serial entre seu quadrados resíduos.

Modelo aplicado: Garch(1,1)

Hansen, Peter R., and Asger Lunde. 2005. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?" Journal of Applied Econometrics 20 (7): 873–89. https://doi.org/10.1002/jae.800.

$$\Delta \log(P_t) = c + \phi_1 \Delta \log(P_{t-1}) + \phi_2 \Delta \log(P_{t-2}) + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \epsilon_t$$

$$\epsilon_t | \mathcal{I}_t \sim \mathcal{N}(0, \sigma_t^2),$$

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 + \eta_t$$

Resultados GARCH(1,1)

	Dependent variable:
	$\Delta \log(P)$
c	0.002***
	(0.0005)
ϕ_1	-0.952***
	(0.033)
φ ₂	-0.903***
	(0.034)
ψ_1	0.952***
	(0.041)
ψ_2	0.902***
-	(0.035)
ω	0.00000***
	(0.00000)
α_1	0.202***
	(0.025)
β_1	0.777***
	(0.023)
Observations	2,013
Log Likelihood	-6.649.232
Akaike Inf. Crit.	-6.598
Bayesian Inf. Crit.	-6.576
Note:	*p<0.1; **p<0.05; ***p<0.01

Previsão da série

Prediction with confidence intervals

Volatilidade condicional (sd): forecasting

Previsão da volatilidade

Questão 2

Passos Iniciais

 Adaptando o modelos de Crochane (2005) e Fama-French (1993) dividimos a regressão em duas etapas:

1. Etapa painel

$$R_{i,t}^e = R_{i,t} - Rf_{i,t} = a_i + \widehat{\beta_{i,Mkt}}(R_{Mkt,t} - Rf) + \widehat{\beta_{i,SMB}}SMB + \widehat{\beta_{i,HML}}HML + \epsilon_{i,t}$$

2. Etapa Cross-Section

$$\mathbb{E}[R_{i,t}^e] = \alpha + \beta_{i,Mkt} \widehat{\lambda_{Mkt}} + \beta_{i,SMB} \widehat{\lambda_{SMB}} + \beta_{i,HML} \widehat{\lambda_{HML}} + \eta_i$$

Regressão em Painel

 Primeiramente regredimos em painel, achando assim os seguintes valores para os Betas

Resultados do Painel

		Retorno	s Brutos		E	xcesso d	le retorn	os
Portfólios	a	β_{Mkt}	β_{SMB}	β_{HML}	a	β_{Mkt}	β_{SMB}	β_{HML}
BIG HiBM	0.093	1.174	-0.173	1.013	-0.176	1.177	-0.171	1.011
$\operatorname{BIG}\ \operatorname{LoBM}$	0.367	1.027	-0.153	-0.266	0.098	1.030	-0.151	-0.269
$\mathrm{ME1}\ \mathrm{BM2}$	-0.138	1.070	1.535	0.207	-0.406	1.073	1.538	0.205
$\mathrm{ME1}\ \mathrm{BM3}$	0.126	1.073	1.244	0.544	-0.142	1.076	1.246	0.541
$\mathrm{ME1}\ \mathrm{BM4}$	0.348	0.939	1.221	0.578	0.079	0.942	1.224	0.575
${ m ME2~BM1}$	0.030	1.085	1.133	-0.215	-0.239	1.088	1.136	-0.218
${ m ME2~BM2}$	0.288	1.018	0.991	0.124	0.019	1.021	0.994	0.121
${ m ME2~BM3}$	0.292	0.987	0.823	0.346	0.024	0.990	0.825	0.343
ME2~BM4	0.301	0.964	0.811	0.569	0.033	0.967	0.814	0.566
${ m ME2~BM5}$	0.315	1.066	0.916	0.881	0.047	1.069	0.919	0.878
ME3 BM1	0.143	1.127	0.807	-0.219	-0.125	1.130	0.810	-0.222
ME3~BM2	0.370	1.016	0.541	0.039	0.101	1.019	0.544	0.037
ME3~BM3	0.328	0.983	0.441	0.324	0.060	0.986	0.443	0.322
ME3~BM4	0.326	0.996	0.468	0.565	0.057	0.999	0.470	0.562
ME3~BM5	0.210	1.111	0.578	0.860	-0.059	1.114	0.581	0.858
ME4~BM1	0.330	1.074	0.331	-0.338	0.061	1.077	0.334	-0.341
$\rm ME4~BM2$	0.280	1.026	0.231	0.108	0.011	1.029	0.233	0.105
ME4~BM3	0.282	1.004	0.204	0.344	0.013	1.007	0.207	0.342
ME4~BM4	0.287	1.036	0.204	0.567	0.018	1.039	0.207	0.564
ME4~BM5	0.115	1.186	0.315	0.947	-0.153	1.189	0.317	0.944
${ m ME5~BM2}$	0.276	0.973	-0.194	0.024	0.007	0.976	-0.191	0.021
ME5~BM3	0.262	0.957	-0.237	0.329	-0.006	0.960	-0.235	0.326
ME5~BM4	0.031	1.029	-0.189	0.664	-0.238	1.032	-0.186	0.661
SMALL HiBM	0.399	0.975	1.306	0.900	0.130	0.978	1.309	0.898
SMALL LoBM	-0.426	1.275	1.464	0.360	-0.695	1.278	1.466	0.358

Regressão em Cross-Section

- Em seguida há uma regressão em cross-section assim achando os lambdas vistos na tabela ao lado
- Podemos então concluir que apenas a constante se altera e os lambdas se mantêm, o que faz sentido pela teoria.
- A seguir, os resultados da regressão com os lambdas: precificação do risco dos fatores.

	Depen	ident variable:
	Expected Return	Expected Excess Return
	(1)	(2)
λ_{Mkt}	-0.984***	-0.984***
	(0.323)	(0.323)
λ_{SMB}	0.117**	0.117**
	(0.046)	(0.046)
λ_{HML}	0.371***	0.371***
	(0.064)	(0.064)
Constant	1.982***	1.715***
	(0.334)	(0.334)
Observations	25	25
\mathbb{R}^2	0.679	0.679
Adjusted R^2	0.633	0.633
Residual Std. Error $(df = 21)$	0.124	0.124
F Statistic ($df = 3; 21$)	14.783***	14.783***

Note:

*p<0.1; **p<0.05; ***p<0.01

Regressão: visualização das inclinações lambdas

Questão 3

Dados

```
ipca <- rbcb::get_series(code = 433, start_date = "2001-07-01", end_date = "2023-07-01")
ipca <- ipca %>%
    set_names(c("Date", "MoM")) %>%
    mutate(
        MoM = ifelse(Date == "2001-07-01", 0, MoM),
        Index = 100 * cumprod(MoM / 100 + 1),
        IndexLog = log(Index),
        IndexLogDiff = c(NA, diff(IndexLog))
)
```

Repare que ao realizar as transformações indicadas no enunciado, obtivemos exatamente o mesmo dado inicial, afinal a diferença de log é uma aproximação para uma variação percentual. Ou seja, apenas perdemos uma observação e pioramos a qualidade do dado porque a aproximação pela primeira diferença dos logs introduz um erro.

Série Temporal

Log-Diferença do Índice de Inflação

Teste Phillips Perron e Teste Dickey Fulleraumentado

Table 1: Teste Philips Perron

Statistic: Dickey-Fuller Z	P	Parameter:	Method	Alternative
(alpha)	Value	Truncation lag		Hypothesis
-95.03949	0.01	5	Phillips-Perron Unit Root Test	stationary

Table 2: Teste Dickey-Fuller Aumentado

Statistic: Dickey-Fuller	P Value	Parameter: Lag order	Method	Alternative Hypothesis
-3.563361	0.0371268	12	Augmented Dickey-Fuller Test	stationary

Ao analisarmos o p-value do teste de raiz unitária do Phillips-Perron, podemos rejeitar a hipótese nula e concluir que a série é estacionária. O Teste de Dickey-Fuller aumentado que aplicamos à série temporal indica que a série é estacionária. Isso é sustentado pelo valor-p, que é menor do que o nível de significância comum. Portanto, podemos rejeitar a hipótese de que a série possui uma raiz unitária.

Funções de Autocorrelação

Autocorrelation Function: Série Log-Dif

Partial Autocorrelation Function: Série Log-Dif

Modelo Arma

	Models				
	ARIMA(1,0,1)	ARIMA(1,0,2)	ARIMA(1,0,3)	ARIMA(1,0,4	
	(1)	(2)	(3)	(4)	
ar1	0.669***	0.658***	0.602***	0.367**	
	(0.069)	(0.092)	(0.119)	(0.171)	
ma1	-0.029	-0.019	0.028	0.265	
	(0.092)	(0.107)	(0.126)	(0.171)	
ma2		0.015	0.053	0.193*	
		(0.077)	(0.087)	(0.104)	
ma3			0.063	0.189**	
			(0.077)	(0.081)	
ma4				0.181**	
				(0.077)	
intercept	0.005***	0.005***	0.005***	0.005***	
	(0.001)	(0.001)	(0.001)	(0.001)	
Observations	264	264	264	264	
Log Likelihood	1,158.117	1,158.136	1,158.449	1,160.557	
σ^2	0.00001	0.00001	0.00001	0.00001	
Akaike Inf. Crit.	-2,308.234	-2,306.271	-2,304.898	-2,307.113	

*p<0.1; **p<0.05; ***p<0.01

Auto Arima

Table 3: Information Criteria Minimizer Model

Term	Estimate	Standard Error	
ar1	0.6520244	0.0464532	
intercept	0.0050400	0.0005318	

Ele sugere que o melhor modelo é, na realidade, o AR(1). Isso ocorre utilizando qualquer dos três critérios como base (AIC, BIC ou AICc) . Vamos visualizar, no próximo slide, os modelos pelos critérios da informação

Critérios de Informação

	Models				
	AR(1)	ARIMA(1,0,1)	ARIMA(1,0,2)	ARIMA(1,0,3)	ARIMA(1,0,4
	(1)	(2)	(3)	(4)	(5)
ar1	0.652***	0.669***	0.658***	0.602***	0.367**
	(0.046)	(0.069)	(0.092)	(0.119)	(0.171)
ma1		-0.029	-0.019	0.028	0.265
		(0.092)	(0.107)	(0.126)	(0.171)
ma2			0.015	0.053	0.193*
			(0.077)	(0.087)	(0.104)
ma3				0.063	0.189**
				(0.077)	(0.081)
ma4					0.181**
					(0.077)
intercept	0.005***	0.005***	0.005***	0.005***	0.005***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Observations	264	264	264	264	264
Log Likelihood	1,158.069	1,158.117	1,158.136	1,158.449	1,160.557
σ^2	0.00001	0.00001	0.00001	0.00001	0.00001
Akaike Inf. Crit.	-2,310.138	-2,308.234	-2,306.271	-2,304.898	-2,307.113

Note:

*p<0.1; **p<0.05; ***p<0.01

Note que o modelo que escolhemos originalmente, tem a maior log verossimilhança! Este seria o melhor modelo, portanto, se o critério de decisão fosse esse. Mas ao utilizarmos o critério de informação, punimos o modelo pelo aumento na quantidade de parâmetros.

Decidindo pela minimização dos critérios de informação, o modelo 5, um AR(1), é de fato o melhor modelo. Embora a análise da FAC e FACP tenha nos levado ao modelo ARMA(1,4), o modelo AR(1) é mais parcimonioso e prosseguiremos com ele.

Table 4: Decision Criteria

Model	Log Likelihood	AIC	BIC
ARIMA(1,0,1)	1158.117	-2308.234	-2293.930
ARIMA(1,0,2)	1158.136	-2306.271	-2288.392
ARIMA(1,0,3)	1158.449	-2304.898	-2283.443
ARIMA(1,0,4)	1160.557	-2307.113	-2282.082
AR(1)	1158.069	-2310.138	-2299.410

Previsão

12 Month Forecast for AR(1)

Podemos também plotar as previsões para o modelo ARIMA(1,0,4), que foi obtido pela análise da FAC e FACP.

12 Month Forecast for ARIMA(1,0,4)

