Ada User Guide

From HPC

Contents

- 1 Overview
- 2 Applying for an account
- 3 Accessing Ada
 - 3.1 Logging in
 - 3.2 Moving files to and from Ada
- 4 Partitions, Account, and QoS
 - 4.1 cvit account
 - 4.2 sub account
- 5 File Systems
- 6 Environment Modules
 - 6.1 List of Available Modules
- 7 SLURM Commands
- 8 Job Submission
 - 8.1 Interactive Jobs
 - 8.2 Batch Jobs
- 9 Tips and tricks
 - 9.1 Using Jupyter notebook / TensorBoard on compute nodes
 - 9.1.1 Note

Overview

Ada cluster consists of forty-two Boston SYS-7048GR-TR nodes equipped with dual Intel Xeon E5-2640 v4 processors, providing 40 virtual cores per node, 128 GB of 2400MT/s DDR4 ECC RAM and four Nvidia GeForce GTX 1080 Ti GPUs, providing 14336 CUDA cores, and 44 GB of GDDR5X VRAM and twenty Tyrone SYS-7048GR-TR nodes equipped with dual Intel E5-2640 v4 processors providing 40 virtual cores per node, 128 GB of 2400MT/s DDR4 ECC RAM and four Nvidia GeForce GTX 2080 Ti GPUs providing 17408 cores, and 44 GB of GDDR6 VRAM. The nodes are connected to each other via a Gigabit Ethernet network. All compute nodes have a 1.8 TB local scratch and a 960 GB local SSD scratch. The compute nodes are running Ubuntu 16.04 LTS. SLURM (https://slurm.schedmd.com/) software is used as job scheduler and resource manager. The aggregate theoretical peak performance of Ada is 47.62 TFLOPS (CPU) + 2984 TFLOPS (FP32 GPU).

Applying for an account

An Ada account is available to IIIT faculty, research staff and research students. To apply for a new account, please send an email to hpc@iiit.ac.in (mailto:hpc@iiit.ac.in) with the following information.

- Name
- Roll Number / Employee ID
- Research Center
- Faculty Advisor
- Preferred Login ID

For a CVIT associated account, fill out this form (https://goo.gl/forms/XnOVvteVFbmT2OdQ2). The form requires that you sign-in using your G-suite account, through college ID.

Accessing Ada

Logging in

You can log in to Ada by SSH from IIIT LAN. For accessing Ada from off-campus, IIIT VPN (https://vpn.iiit.ac.in/) must be used.

```
$ ssh -X user_name@ada.iiit.ac.in
```

Moving files to and from Ada

To move a directory from local machine to Ada:

```
$ scp -r local_directory user_name@ada.iiit.ac.in:
{or}
$ rsync -avz local_directory user_name@ada.iiit.ac.in:
```

To move a directory from Ada to local machine:

```
$ scp -r user_name@ada.iiit.ac.in:remote_directory .
(or)
$ rsync -avz user_name@ada.iiit.ac.in:remote_directory .
```

Both scp and rsync transfers files locally or over network. If the transfer is interrupted, rsync has the ability to continue from where it left off when invoked again.

Partitions, Account, and QoS

A partition can be considered as a collection of nodes. There are two partitions in the cluster. The **short** partition has two nodes and is for compiling / debugging codes. The **long** partition is for serial / parallel jobs that need to run for longer than 6 hours.

Partition	Nodes	DefMemPerCPU	MaxMemPerCPU	Gres	Maxtime	Priority
short	gnodes[01-02]	1024 MB	3000 MB	gpu:4	6:00:00	100
long	gnodes[03-40]	1024 MB	3000 MB	gpu:4	Infinite	100

A SLURM account is like a bank account and all users belong to at least one account. The allocated resources to a job are charged to the job's specified account. All users have access to **research** account. The accounts **cvit**, **nlp**, and **ccnsb** are accessible only to users in projects/centres that have contributed hardware to the cluster.

Account	Access	GrpCPUs	GrpTRES=gres/gpu	GrpJobs	GrpSubmitJobs	Allowed QoS
research	ALL	1640	164	820	1640	medium
cvit	CVIT	600	60	300	600	normal
mll	MLL	40	4	20	40	normal
nlp	NLP	80	8	40	80	normal
ccnsb	CCNSB	80	8	40	80	normal
cesp	CESP	40	4	20	40	normal

It is recommended to specify a Quality of Service (QOS) to each job submitted to SLURM. The default QOS for research account is **medium** and it is **normal** for cvit, mll, nlp, cesp and ccnsb accounts.

QoS	MaxCPUsPerUser	MaxTRESPerUser	MaxJobsPerUser	MaxSubmitJobsPerUser	MaxWall	MaxTresPerJob	Priority
low	10	gres/gpu=1	1	4	4-00:00:00	gres/gpu=1	0
medium	40	gres/gpu=4	4	8	4-00:00:00	gres/gpu=4	10
normal	Account limits	Account limits	Account limits	Account limits	Infinite	gres/gpu=4	0

The following command can be used to list the allowed Accounts and QoSes.

```
$ sacctmgr show assoc user=$USER format=Account,QOS,DefaultQOS
```

cvit account

To submit jobs to CVIT account, users should specify SLURM job directive -A \$USER.

e.g.

```
$ sinteractive -c 2 -g 1 -A $USER
```

The following command will show the associations for an account.

```
$ sacctmgr show assoc account=$USER
```

sinteractive is non-standard and restrictive in terms of options and documentation. We recommend **sbatch** and **srun** for the same [1] (https://slurm.schedmd.com/sbatch.html).

Sometimes we reserve nodes and give reservation names for dedicated access. Use a reservation argument to gain access. As of now, the reservation-name = cvit-trial

```
$ srun --reservation <reservation-name> ...
for e.g.
$ srun --reservation cvit-trial --pty --partition=long -A $USER --gres=gpu:2 --mem=10G -n 10 bash -l
```

sub account

A new SLURM account has been created on Ada to utilize the idle nodes/cores/GPUs. The details are as follows:

```
SLURM account: sub (#SBATCH -A sub)
QOS: sub (#SBATCH --qos=sub)
Wall time: 6 hours (#SBATCH --time=6:00:00)
MaxCPUs: 40
Max GPUs: 4
```

The jobs submitted using this account will have low priority and will run only when there are no high priority (QOS: normal,medium) pending jobs. t

File Systems

The cluster provides four types of file storage to users. They are referred here as /home, /share1, /scratch and /ssd_scratch.

The /home located at /home/\$USER is a NFS storage and has a disk quota of 25 GB. This space can be used to store your source code and to build your executables. The data store on /home is backed up every day. The /share1 is a RAID6 storage available on master node and has a quota of 100 GB (CVIT users have a group quota of 6 TB). The space can be used for long-term storage and for transferring large data files to and from compute node /scratch. The /scratch is for storing temporary files created during job run time. The /ssd_scratch is for storing temporary files that required very fast disk I/O access. The files older than 10 days are purged from /scratch and /ssd_scratch.

Space	Purpose	Visibility	Backup	Quota	Total Size	File Deletion Policy
/home	Sofware installation space, storing codes and small files	Master and compute nodes	Yes	25 GB	9.8 TB	None
/share1	Long-term storage	Master node only	No	100 GB / 6 TB	20 TB	None
/share2	Long-term storage	Master node only	No		13 TB	None
/scratch	Temporary storage for large files	Local disk attached to each compute node	No	None	2.0 TB	10 days#
/ssd_scratch	Temporary storage for jobs that require fast I/O	Local disk attached to each compute node	No	None	960 GB	10 days#

[#] File deletion based on creation time (ctime).

Environment Modules

Environment module allows users to set shell environmental variables needed for a software.

To view the list of current loaded modules:

```
[parithi@ada ~]$ module list
Currently Loaded Modulefiles:
1) openmpi/2.1.1 2) namd/2.12
```

To list the installed modules:

```
,....
[root@ada ~]# module avail
         -----/opt/Modules/versions
3.2.10
           -----/opt/Modules/3.2.10/modulefiles
amber/16 gflags/2.2.2 ceres-solver/1.14.0-165-gd7f428e glog/0.3.5 glog/0.4.0
                                                                                          namd/2.13
null
                                                                                           openblas/0.3.6
colmap/3.6-dev.2-15-g6b6e825
cuda/10.0
cuda/9.0
                                             gromacs/2016.3
gromacs/2016.3-plumed
gromacs/2019
                                                                                          opencv/3.3.0
openmpi/2.1.1
openmpi/3.1.0
cuda/9.0

cuda/9.1

cudnn/7.1-cuda-9.1

cudnn/7.3-cuda-10.0

cudnn/7.6-cuda-10.0

cudnn/7-cuda-10.0
                                             gromacs/2019.3-plumed
lammps/7Aug19
lammps/7Aug19-v2
                                                                                          openmpi/4.0.0
openmpi/4.0.1-cuda10
pcl/1.8.1
                                             leptonica/1.78.0
matlab/R2019b
mkl/2019.3.199
                                                                                          plumed/2.5.2
python/3.6.8
python/3.7.4
cudnn/7-cuda-9.0
dot
eigen/3.3.7
ffmpeg/4.0.1
ffmpeg/4.2.1
freesurfer/6.0.0
                                             mkl/2019.4.243
module-git
module-info
                                                                                          singularity/2.5.2
tbb/2018u1-debug
tbb/2018u1-release
                                             modules
mpich/3.3.1
mrtrix/3.0
namd/2.12
                                                                                           tesseract/4.1.0
                                                                                          use.own
VTK/8.2.0
gflags/2.2.1
```

To load a module:

```
[parithi@ada ~]$ module load openmpi/2.1.1
```

To remove/unload a module

```
[parithi@ada ~]$ module unload openmpi/2.1.1
```

To display the changes made by a module to the user shell environment:

```
[parithi@ada ~]$ module disp cuda/8.0

/opt/Modules/3.2.10/modulefiles/cuda/8.0:

module-whatis adds CUDA-8.0 to your environment variable
append-path PATH /usr/local/cuda-8.0/bin
append-path LD_LIBRARY_PATH /usr/local/cuda-8.0/lib64
```

List of Available Modules

Software	Module	Remarks
CUDA 9.0	cuda/9.0	
CUDA 9.1	cuda/9.1	
CUDA 10.0	cuda/10.0	
cuDNN 7	cudnn/7-cuda-9.0	CUDA 9.0
cuDNN 7.6.4	cudnn/7.6.4-cuda-9.0	CUDA 9.0
cuDNN 7.1	cudnn/7.1-cuda-9.1	CUDA 9.1
cuDNN 7	cudnn/7-cuda-10.0	CUDA 10.0
cuDNN 7.3	cudnn/7.3-cuda-10.0	CUDA 10.0
cuDNN 7.6	cudnn/7.6-cuda-10.0	CUDA 10.0
OpenBLAS	openblas/0.3.6	Haswell
OpenCV	opencv/3.3.0	Python 2.7
OpenMPI	openmpi/2.1.1	
OpenMPI	openmpi/3.1.0	
OpenMPI	openmpi/4.0.0	
OpenMPI	openmpi/4.0.1-cuda10	CUDA aware
NAMD 2.13	namd/2.13	
PLUMED 2.5.2	plumed/2.5.2	
GROMACS 2019	gromacs/2019	
GROMACS 2019.3	gromacs/2019.3-plumed	plumed patched
AMBER 16	amber/16	Compiled with GCC-4.7
gflags	gflags/2.2.1	
gflags	gflags/2.2.2	
glog	glog/0.3.5	
glog	glog/0.4.0	
MATLAB	matlab/R2019b	
MPICH	mpich-3.2	Compiled with GCC-5
Intel TBB	tbb/2018u1-release	Compiled with macro TBB_USE_DEBUG=0
Intel TBB	tbb/2018u1-debug	Compiled with macro TBB_USE_DEBUG=1
FFMPEG	ffmpeg/3.4	cuda 9.0, cuvid, nvenc, nonfree, libnpp
FFMPEG	ffmpeg/4.01	

SLURM Commands

Description	Command	Example
Submit a batch job	sbatch (https://slurm.schedmd.com/sbatch.html)	sbatch job_script.sh
Submit an interactive job	sinteractive	sinteractive -c 2 -g 1
Cancel a job	scancel (https://slurm.schedmd.com/scancel.html)	scancel job_id
List all current jobs for an user	squeue (https://slurm.schedmd.com/squeue.html)	squeue -u username
Statistics of a completed job	sacct (https://slurm.schedmd.com/sacct.html)	sacct -j job_idformat=user,jobid,jobname,partition,state,time,start,end,elapsed,allocgres,ncpus,nodelist
Pause a job	scontrol (https://slurm.schedmd.com/scontrol.html)	scontrol hold job_id
Resume a job	scontrol (https://slurm.schedmd.com/scontrol.html)	scontrol resume job_id
Modify attributes of a submitted job	scontrol (https://slurm.schedmd.com/scontrol.html)	scontrol update jobid=job_id TimeLimit=4-00:00:00
Display a job's characteristics	scontrol (https://slurm.schedmd.com/scontrol.html)	scontrol show job job_id
Display information about nodes and partitions	sinfo (https://slurm.schedmd.com/sinfo.html)	sinfo -a

Job Submission

Interactive Jobs

Cores = 10, partition = long, Account = research, GPU = 1

```
parithi@ada ~|$ sinteractive -c 10 -p long -A research -g 1
salloc: Granted job allocation 141
parithi@gnode03:/home/parithi$
```

Batch Jobs

Sample script: NAMD

```
#!/bin/bash
#SBATCH --A research
#SBATCH -- qos=medium
#SBATCH -- 1 20
#SBATCH --gres=gpu:2
#SBATCH --mem-per-cpu=2048
#SBATCH --time=1-00:00:00:00
#SBATCH --mail-type=END
module add namd/2.12
charmrun +p$SLURM_NPROCS namd2 +idlepoll +devices $CUDA_VISIBLE_DEVICES apoal.namd > output-gpul.out
```

Sample script: Python

```
#!/bin/bash
#SBATCH -A $USER
#SBATCH -n 40
#SBATCH -- gres=gpu:4
#SBATCH -- nem-per-cpu=2048
#SBATCH -- time=1-00:00:00
#SBATCH -- mail-type=END
module add cuda/8.0
module add cudn/7-cuda-8.0
```

The variable CUDA_VISIBLE_DEVICES holds the ids of assigned GPUs

Tips and tricks

Using Jupyter notebook / TensorBoard on compute nodes

Please check the following steps to use Jupyter notebook/TensorBoard on ADA/Abacus.

- 1. Start jupyter notebook/ TensorBoard with any port
- 2. Run the following command on your compute node

```
ssh -N -f -R <port1>:localhost:<port2> <user_name>@<local_machine_ip> port1: Any port that you wish to use on local machine (laptop / pc) port2: The port on which you are running your jupyter notebook/TensorBoard (step 1)
```

1. Now you can access your jupyter notebook or TensorBoard on "localhost:port1" from local machine

This is link to sample script click here (https://drive.google.com/open?id=0B80uSIXktkRJdGVZalZrNURndGc)

Note

• To avoid generating the unique authentication token for jupyter notebook every time, set password using following steps:

```
jupyter notebook --generate-config
jupyter notebook password
```

- SSH server is required on the local machine for this method. For windows, you can use following server.
 - bitvise (https://www.bitvise.com/ssh-serve)
- You may also try to add reverse SSH tunnel code in .ssh/config file, Link (https://unix.stackexchange.com/questions/162093/reverse-ssh-tunnel-in-config)

Retrieved from "http://hpc.iiit.ac.in/wiki/index.php?title=Ada_User_Guide&oldid=273"

Category: Pages with syntax highlighting errors

This page was last modified on 11 January 2020, at 04:45.