Reverse time models in CMR (Pradel seniority)

Lee Hsiang Liow

Natural History Museum and Centre for Planetary Habitability, University of Oslo, Norway

1.9.2025 Monday

Different classes of CMR (MR) models

CJS models

- Cormack-Jolly-Seber models
- Originally "Closed-population model"
- "conditional upon the animal being released alive at first encounter, and survival and catchability refer only to these marked animals"
- · Developed initially for survival rates
- Translation: we can get extinction rates if we are only interested in the taxa that entered the fossil record and are sampled at least once.

JS models

- Jolly-Seber models
- "Open-population model"
- "unmarked animals in the population have the same probability of capture as marked animals in the population, i.e., that newly captured unmarked animals are a random sample of all unmarked animals in the population"
- Developed for parameters like abundance, population growth, recruitment.
- Translation: we can get extinction rates, origination rates, taxonomic richness and we include those taxa never sampled or have never entered the fossil record.

Which class of model do you expect a greater uncertainty in estimates? Why?

Different classes of models

CJS models

- Cormack-Jolly-Seber (CJS) models
- "Closed-population model"
- http://www.phidot. org/software/mark /docs/book/pdf/ch ap3.pdf

JS models

- Jolly-Seber (JS) models
- "Open-population model"
- http://www.phido t.org/software/m ark/docs/book/pd f/chap12.pdf

RD models

- Robust-design (RD) models
- Hybrid "openclosed population model"
- http://www.phido t.org/software/m ark/docs/book/pd f/chap16.pdf

Within each class, many different model types,

with each model type, you can formulate many different specific models (e.g. time-varying, time constant, covariates)

Closed-population: births and deaths happen in your sampling universe only

Open-population

Robust design (closed and open)

The best of both worlds: Robust Design

Combination of open and closed population models

Parameters: survival, emigration, immigration, detection, population size

RT models

Pr. $CJS(01101|release\ in\ 2) = \phi_2 p_3 \phi_3 (1 - p_4) \phi_4 p_5$

 ϕ_i = probablity that if alive in i, also alive in i+1

Turn 01101 around = 10110

 γ = seniority parameter (complement of origination probability in paleo speak)

 γ_i = probablity that if alive in i, also alive in i-1

Pr. $RT(01101|last\ capture\ in\ 5) = \gamma_5(1-p_4)\gamma_4 p_3\gamma_3 p_2(1-\gamma_2 p_1)$

RT models

$$\phi_t N_t = \gamma_{t+1} N_{t+1}$$

$$E(\lambda_t) = E\left[\frac{N_{t+1}}{N_t}\right]$$

$$E(\lambda_t) = \frac{\phi_t}{\gamma_{t+1}}$$

Pradel seniority model

The Pradel seniority (1996) model (ϕ_t , γ_t , p_t) can be reparameterized in multiple ways, including (ϕ_t , λ_t , p_t) population growth rate (ϕ_t , f_t , p_t), recruitment as functions of covariates, for example

Note that the POPAN; the Link-Barker and Pradel-recruitment; and the Burnham JS and Pradel-lambda formulations.

Maximum likelihood estimation

- statistical approach for estimating the parameters of a model
- parameters are chosen to maximize the likelihood for the assumed model given the data

So do to MLE, we have to

- assume a model (e.g. data generating process) for the data in questions
- derive the likelihood function for our data, given our assumed model

Pradel (1996): Likelihood expression to maximize

In terms of the u_i 's, n_i 's, v_i 's, and d_i 's,

$$L(\phi, p, \gamma, \mu) = \prod_{i=1}^{s} \left(\xi_{i}^{u_{i}} \right) \left(\gamma_{i}^{\sum_{j < i}^{u_{j}} u_{j}} \right) \left(p_{i}^{n_{i}} \right) \left[(1 - p_{i})^{\sum_{j < i}^{u_{j}} - \sum_{j < i}^{u_{j}} v_{j} - n_{i}} \right] \left(\phi_{i}^{\sum_{j > i}^{u_{j}} u_{j}} \right) \left(\mu_{i}^{n_{i} - d_{i}} \right)$$

$$\cdot \left[(1 - \mu_{i})^{d_{i}} \right] \left[(1 - p_{i}(1 - \mu_{i}))^{\sum_{j > i}^{u_{j}} u_{j}} \right] \left(\chi_{i}^{v_{i} - d_{i}} \right)$$

$$/ \left(\sum_{i=1}^{s} \xi_{i} \left\{ \prod_{j=1}^{i-1} \phi_{j}(1 - p_{j}(1 - \mu_{j})) \right\} \left\{ \prod_{j=i+1}^{s} \gamma_{j} \right\} p_{i} \right)^{\sum_{i=1}^{s} u_{i}}. \tag{2}$$

openCR to the rescue

5.1 Non-spatial openCR models

5.1.1 Parameters and model types

Table 2. Parameter definitions and default link functions (nonspatial models)

"Translations"

Parameter	Symbol	Link	Description	р	Sampling probability
р	p	logit	capture probability (recapture probability for CJS)	phi	Survival probability (1-phi is extinction probability)
phi* b	$_{b}^{\phi}$	logit mlogit	apparent survival entry probability of PENT in MARK per capita recruitment rate	b	Similar to 1-gamma but not "scaled"
f*	f	log		f	Per capita origination/speciation
gamma* lambda*	λ	$_{ m logit}$	seniority (Pradel 1996) population growth rate (finite rate of increase)	gamma	Seniority probability (1-gamma is origination probability)
$_{ m SuperN}$	$N \\ B_N$	\log	superpopulation size number of entrants time-specific population size	lamda	Net diversification rate
N	N_j	log		superN	Richness of the whole "data" (including those not seen)
				BN	Number of new taxa appearning
* parameter	s marked wi	th an asteris	k are scaled by the interval between primary sessions.	N	Number of taxa in time interval

Table 3. Parameters of nonspatial \mathbf{openCR} models

Type	Alias	p	phi	b	f	gamma	a lambd	la superN	BN	N
CJS		+	+							
JSSAbCL	PLBb	+	+	+						
JSSAfCL	PLBf	+	+		+				,	Conditional (closed nanulations)
JSSAgCL	PLBg	+	+			+			•	Conditional (closed populations)
JSSAlCL	PLBl	+	+			385	+			
JSSAb		+	+	+				+		
JSSAf		+	+		+			+		
JSSAg		+	+			+		+	(Open populations, hence the estimates of some form of N
JSSAl		+	+				+	+		open populations, hence the estimates of some form of the
JSSAB		+	+						+	
JSSAN		+	+							+

Models with type ending in CL are of the Pradel–Link–Barker type, with aliases as shown.

https://cran.r-project.org/web/packages/openCR/vignettes/openCR-vignette.pdf

Chapters in MARK book most relevant (if not using MARK)

- Chapter 1 (introduction)
- Chapter 4 (dipper example, but skip the MARK specific bits)
- Chapter 5 (goodness of fit –not covered in lectures but important)
- Chapter 6 (more on covariates and link functions)
- Chapter 11 (individual covariates)
- Chapter 12 (Pradel) and 13 (JS models in general)
- Liow, L.H. and Nichols, J.D. (2010) Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: Capture-recapture approaches. In *Short Courses in Paleontology: Quantitative Paleobiology* (Hunt, G. and Alroy, J., eds), pp. 81–94, Paleontological Society (Supplementary has step by step for MARK if you are a windows user)