Math 207: Introduction to Statistics

Chapter 12: The Regression Line

Dr. Ralph Wojtowicz

- Regression Line
 - The Regression Line

- Correlation
 - Correlation Coefficient
 - Magnitude

The Regression Line

- For a given value of x,
 - the regression line estimates the average value for y
 - the point on the line is the predicted y for an individual
- For each increase of one SD in x, there is an increase of r SDs in y.

$$(y - \text{mean}_y) = r \frac{\text{SD}_y}{\text{SD}_x} (x - \text{mean}_x)$$

- The regression line is the line through the data that minimizes the RMS error.
- RMS_{reg} = SD_v $\sqrt{1-r^2}$.
- In vertical strips, the y values approximately have a normal distribution with center on the line and with $SD = RMS_{reg}$.

The Correlation Coefficient

- Given lists x_1, \ldots, x_n and y_1, \ldots, y_n , the correlation coefficient:
 - Is a measure of linear association between the lists
 - Is a measure of the clustering of the (x_i, y_i) points around a line
 - Is a number between -1 and 1
 - Is defined by:

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mathsf{mean}_x}{\mathsf{SD}_x} \right) \left(\frac{y_i - \mathsf{mean}_y}{\mathsf{SD}_y} \right)$$

- = average of the x and y values measured in standard units
- A positive correlation means that the cloud of (x_i, y_i) points slopes up
- A negative correlation means that the cloud of (x_i, y_i) points slopes down

Sign and Magnitude of the Correlation Coefficient

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

• Find the regression line for predicting IQ from income.

$$(y-100) = 0.5 \frac{15}{45,000} (x-90,000)$$
 which is $(y-100) = 0.000167 (x-90,000)$

Regression Line

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

• Find the regression line for predicting IQ from income.

$$(y-100) = 0.5 \frac{15}{45,000} (x-90,000)$$
 which is $(y-100) = 0.000167 (x-90,000)$

• Predict IQ of an individual who makes \$120,000. Put a plus or minus on your estimate. $y = 100 + 0.000167 (120,000 - 90,000) \approx 105$

The
$$\pm$$
 is RMS_{reg} = SD_v $\sqrt{1 - r^2} = 15\sqrt{1 - 0.5^2} \approx 13$.

Regression Line

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

Find the regression line for predicting IQ from income.

$$(y-100) = 0.5 \frac{15}{45,000} (x-90,000)$$
 which is $(y-100) = 0.000167 (x-90,000)$

• Predict IQ of an individual who makes \$120,000. Put a plus or minus on your estimate. $y = 100 + 0.000167 (120,000 - 90,000) \approx 105$

The
$$\pm$$
 is RMS_{reg} = SD_v $\sqrt{1 - r^2} = 15\sqrt{1 - 0.5^2} \approx 13$.

• About 95% of the individuals who made \$120,000 had IQs in what range? $105 \pm 2 \cdot 13$

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

Find the regression line for predicting IQ from income.

$$(y-100) = 0.5 \frac{15}{45,000} (x-90,000)$$
 which is $(y-100) = 0.000167 (x-90,000)$

• Predict IQ of an individual who makes \$120,000. Put a plus or minus on your estimate. $y = 100 + 0.000167 (120,000 - 90,000) \approx 105$

The
$$\pm$$
 is RMS_{reg} = SD_v $\sqrt{1 - r^2} = 15\sqrt{1 - 0.5^2} \approx 13$.

- About 95% of the individuals who made \$120,000 had IQs in what range? $105 \pm 2 \cdot 13$
- Find the regression line for predicting income from IQ.

$$(y-90,000) = 0.5 \frac{45,000}{15} (x-100)$$
 which is $(y-90,000) = 1500 (x-100)$

See Exercise 9 on page 215.

average income
$$\approx$$
 \$90,000, SD \approx \$45,000, average IQ \approx 100, SD \approx 15, $r \approx$ 0.50

Find the regression line for predicting IQ from income.

$$(y-100) = 0.5 \frac{15}{45,000} (x-90,000)$$
 which is $(y-100) = 0.000167 (x-90,000)$

• Predict IQ of an individual who makes \$120,000. Put a plus or minus on your estimate. $y = 100 + 0.000167 (120,000 - 90,000) \approx 105$

The
$$\pm$$
 is RMS_{reg} = SD_y $\sqrt{1 - r^2} = 15\sqrt{1 - 0.5^2} \approx 13$.

- About 95% of the individuals who made \$120,000 had IQs in what range? $105 \pm 2 \cdot 13$
- Find the regression line for predicting income from IQ.

$$(y-90,000) = 0.5 \frac{45,000}{15} (x-100)$$
 which is $(y-90,000) = 1500 (x-100)$

• Predict the income of an individual whose IQ is 120. Put a plus or minus on your estimate.

$$y = 90,000 + 1500 (120 - 100) = 120,000$$

The \pm is RMS_{reg} = SD_v $\sqrt{1 - r^2} = 45,000\sqrt{1 - 0.5^2} \approx $39,000$.

