CO: Computer Organization

Day 4

Indian Institute of Information Technology, Sri City

Jan - May - 2018

http://co-iiits.blogspot.in/

Arithmetic Operations on Integers

 C_4 is available at $9\mathcal{T}$. C_8 is available at $17\mathcal{T}$. C_{12} is available at $25\mathcal{T}$. C_{16} is available at $33\mathcal{T}$. S_{15} is available at $32\mathcal{T}$

C_4 is available at $9\mathcal{T}$.

 C_8 is available at 17T. C_{12} is available at 25T. C_{16} is available at 33T. S_{15} is available at 32T

 C_4 is available at $9\mathcal{T}$. C_8 is available at $17\mathcal{T}$. C_{12} is available at $25\mathcal{T}$. C_{16} is available at $33\mathcal{T}$.

 C_4 is available at $9\mathcal{T}$. C_8 is available at $17\mathcal{T}$. C_{12} is available at $25\mathcal{T}$. C_{16} is available at $33\mathcal{T}$.

 C_4 is available at $9\mathcal{T}$. C_8 is available at $17\mathcal{T}$. C_{12} is available at $25\mathcal{T}$. C_{16} is available at $33\mathcal{T}$. S_{15} is available at $32\mathcal{T}$

 C_4 is available at $3\mathcal{T}$. C_8 is available at $5\mathcal{T}$.

 C_{12} is available at 7T.

 C_{16} is available at $9\mathcal{T}$.

 S_{15} is available at $10\mathcal{T}$

... Latency of N-bit Adder using L-bit CLAs $:(2\frac{N}{L}+2)\mathcal{T}.$

C_4 is available at $3\mathcal{T}$.

 C_8 is available at $5\mathcal{T}$.

 C_{12} is available at 7T.

 C_{16} is available at $9\mathcal{T}$.

 S_{15} is available at 10T

 \therefore Latency of N-bit Adder using L-bit CLAs : $(2\frac{N}{L}+2)\mathcal{T}$.

 C_4 is available at $3\mathcal{T}$. C_8 is available at $5\mathcal{T}$.

 C_{12} is available at 77. C_{16} is available at 97.

 \therefore Latency of N-bit Adder using L-bit CLAs : $(2\frac{N}{L}+2)\mathcal{T}$.

 C_4 is available at $3\mathcal{T}$. C_8 is available at $5\mathcal{T}$. C_{12} is available at $7\mathcal{T}$.

 C_{16} is available at 9T.

 S_{15} is available at 107

 \therefore Latency of N-bit Adder using L-bit CLAs : $(2\frac{N}{L}+2)\mathcal{T}$.

 C_4 is available at $3\mathcal{T}$.

 C_8 is available at $5\mathcal{T}$.

 C_{12} is available at $7\mathcal{T}$.

 C_{16} is available at $9\mathcal{T}$.

 S_{15} is available at $10\mathcal{T}$

 \therefore Latency of N-bit Adder using L-bit CLAs : $(2\frac{N}{T}+2)\mathcal{T}$.

 C_4 is available at $3\mathcal{T}$.

 C_8 is available at $5\mathcal{T}$.

 C_{12} is available at $7\mathcal{T}$.

 C_{16} is available at $9\mathcal{T}$.

 S_{15} is available at $10\mathcal{T}$

 \therefore Latency of N-bit Adder using L-bit CLAs : $(2\frac{N}{L}+2)\mathcal{T}$.

'M' Integer Additions. Each Integer of size N-bits.

- **①** Using N-bit adders and L-bit CLAs: $M(2\frac{N}{L}+2)\mathcal{T}$.
- ullet How could we design a Pipeline Adder. ${f ?}$ \odot
- **o** Pipeline can have $\frac{N}{L}$ Stages.
- In each stage performs L-bit addition using CLA Adder.

'M' Integer Additions. Each Integer of size N-bits.

- **①** Using N-bit adders and L-bit CLAs: $M(2\frac{N}{L}+2)\mathcal{T}$.
- How could we design a Pipeline Adder. ? ©
- **o** Pipeline can have $\frac{N}{L}$ Stages.
- In each stage performs L-bit addition using CLA Adder.

'M' Integer Additions. Each Integer of size N-bits.

- **①** Using N-bit adders and L-bit CLAs: $M(2\frac{N}{L}+2)\mathcal{T}$.
- How could we design a Pipeline Adder. ? ©
- **o** Pipeline can have $\frac{N}{L}$ Stages.
- In each stage performs L-bit addition using CLA Adder.

$$X_1Y_1(S_{3-0})$$

$$X_1Y_1(S_{7-0})$$
 $X_2Y_2(S_{3-0})$

$$X_1Y_1(S_{11-0})$$
 $X_2Y_2(S_{7-0})$ $X_3Y_3(S_{3-0})$

$$X_1 Y_1(S_{15-0}) \quad X_2 Y_2(S_{11-0}) \quad X_3 Y_3(S_{7-0}) \quad X_4 Y_4(S_{3-0})$$

The delay of a 4-bit adder is $4\mathcal{T}$ and a ISB (Inter Stage Buffer) is $2\mathcal{T}$. \therefore Duration of pipeline clock signal is: $6\mathcal{T}$.

Then the time to perform 'M' additions is: (4 + M - 1)6T

Praveen (IIT Madras) CO-IIITS-2018

$$X_1 Y_1(S_{3-0})$$

 $X_2 Y_2(S_{3-0})$

ICS-110

6 / 6

$$X_1 Y_1(S_{11-0}) \quad X_2 Y_2(S_{7-0}) \quad X_3 Y_3(S_{3-0})$$

$$(1.11)^{11}(915-0)$$
 $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$ $(1.11)^{11}(915-0)$

The delay of a 4-bit adder is 47 and a ISB (Inter Stage Buffer) is 27 \therefore Duration of pipeline clock signal is: 6 \mathcal{T} .

Then the time to perform 'M' additions is: (4 + M - 1)6T.

CO-IIITS-2018

Praveen (IIT Madras)

4 D > 4 D P + 4 E P + 4 E P + 2 P + 9 Q Q P

$$X_1 Y_1(S_{3-0}) \ X_1 Y_1(S_{7-0}) \ X_2 Y_2(S_{3-0}) \ X_1 Y_1(S_{11-0}) \ X_2 Y_2(S_{7-0}) \ X_3 Y_3(S_{3-0})$$

$$X_1Y_1(S_{15-0})$$
 $X_2Y_2(S_{11-0})$ $X_3Y_3(S_{7-0})$ $X_4Y_4(S_{3-0})$

The delay of a 4-bit adder is $4\mathcal{T}$ and a ISB (Inter Stage Buffer) is $2\mathcal{T}$ \therefore **Duration of pipeline clock signal is:** $6\mathcal{T}$.

Then the time to perform 'M' additions is: (4 + M - 1)6T.

4□▶ 4□▶ 4 = ▶ 4 = ▶ 9 < ○</p>

The delay of a 4-bit adder is $4\mathcal{T}$ and a ISB (Inter Stage Buffer) is $2\mathcal{T}$. Duration of pipeline clock signal is: $6\mathcal{T}$.

Then the time to perform 'M' additions is: (4 + M - 1)6T.

$$\begin{array}{cccc} & & & & X_1\,Y_1(S_{3-0}) \\ & & & X_1\,Y_1(S_{7-0}) & X_2\,Y_2(S_{3-0}) \\ & & & X_1\,Y_1(S_{11-0}) & X_2\,Y_2(S_{7-0}) & X_3\,Y_3(S_{3-0}) \\ & & & X_1\,Y_1(S_{15-0}) & X_2\,Y_2(S_{11-0}) & X_3\,Y_3(S_{7-0}) & X_4\,Y_4(S_{3-0}) \end{array}$$

The delay of a 4-bit adder is $4\mathcal{T}$ and a ISB (Inter Stage Buffer) is $2\mathcal{T}$.

\therefore Duration of pipeline clock signal is: 6 \mathcal{T} .

Then the time to perform 'M' additions is: (4 + M - 1)6T.

Praveen (IIT Madras) CO-IIITS-2018 ICS-110 6/6

$$\begin{array}{ccc} & & X_1 Y_1(S_{3-0}) \\ & & X_1 Y_1(S_{7-0}) & X_2 Y_2(S_{3-0}) \\ & & X_1 Y_1(S_{11-0}) & X_2 Y_2(S_{7-0}) & X_3 Y_3(S_{3-0}) \\ X_1 Y_1(S_{15-0}) & X_2 Y_2(S_{11-0}) & X_3 Y_3(S_{7-0}) & X_4 Y_4(S_{3-0}) \end{array}$$

The delay of a 4-bit adder is $4\mathcal{T}$ and a ISB (Inter Stage Buffer) is $2\mathcal{T}$.

 \therefore Duration of pipeline clock signal is: 6 \mathcal{T} .

Then the time to perform 'M' additions is: (4 + M - 1)6T.

Praveen (IIT Madras) CO-IIITS-2018 ICS-110 6/6