TQ03D 电路板工作说明书

T. Q.

V4.0	PCB – TQ03D	2012-3-30
	ARM, 仅增补 BpOut 功能定义	2013-5-7

参考: EEC19 板设计说明书

1. 前言

TQ03D 电路板, 秉承 TQ03 系列电路板, 基本维持 TQ03 板电路架构、运转流程和 PC 数据接口协议。在此基础上, 开展阵列涡流线圈动态配置方案(简称 DEAC --- Dynamic Eddy Array Configure)和逐通道的驱动线圈平衡方案。

结合 TQ03 系列板的发展历程,列示 TQ03D 板的主要特性如下:

- 频率发生方案及其参数组合不变,能输出的最高正弦波频率仍为 5MHz; (始于 A 板)
- A/D 芯片为 16-bit、40MHz (Max); (始于 C 板)
- EX-32 协议,即按 32 位格式向上位机传输采集数据; (已在部分 B 板和所有 C 板实施)
- 滤波方式(RF、LF)及其参数不变,但从这里开始上位机只向下传递系数 a;
- 驱动幅值仍为 1~8V 可调,但改由硬件操作串行 D/A,上位机只要向下传递幅值参数;
- 逐通道(信道)驱动/接收线圈的动态配置;
- 逐通道(信道)的线圈驱动电流平衡;

2. 电路运行进程进程

在启动电路工作后(置位 Running), TQ03D 板即进入多通道运转循环,循环流程、步骤大概是:

- (1) 电路初始化,设置决定正弦波幅值的参考电位。
- (2) 启动多通道项目循环,根据项目数量(ChAmount),从第一个项目开始到最后一个项目,顺序进行,周而复始。根据硬件、软件之间的采集数据存储、转移状态,决定本轮的采集数据是否被存储,即置位/复位 SaveEnable。项目号是顺序增加的,表示信号通道。
 - 如果是 RF 直传模式(TransMode = 1),则项目数参数无效,电路只在上位机规定的通道上(TransChn)运行。
- (3) 以项目号作为索引,读出当前信号通道的上述各参数,并分解重置;
- (4) 运行当前通道的正弦波发生、驱动、接收、放大、采集,以及 RF 滤波,检波,LF 滤波等数字信号处理,是否存储数据则根据 SaveEnable 状态。

每通道的工作任务可以分别设置, 当前支持常规涡流、快速涡流、磁记忆等检测模式。

- 一个通道可能包含一个或多个正弦波形,详见附-1、附-3。
- (5) 完成该通道检测后, 电路状态转移:
 - 若项目循环未满,即转入下一个项目(项目号增1)。 转到第(3)步。
 - 若项目循环已满,即转入第一个项目(项目号归 0),若本轮数据有被存储,向存储控制状态机发出一个通知信号。
 - 转到第(3)步。
- (6)

.....

3. 软件操作进程

在进入应用程序后,置 PowerOn = 1, Running = 0,设置好各电路参数。

主机程序处理涡流采集进程(与硬件相关部分):

- (1) 置 Running = 1, 进入采样流程。
- (2) 等待 SampReady = 0, 从 ExchangeRam 读取一轮采集数据。
- (3) 向硬件发出 ReStart 信号,通知读写控制状态机(ExStateMachine)开放下一轮数据的存储。
- (4) 返回第二步,进入下一循环,周而复始。

在检测过程中,需要修改参数时,应先置 Running = 0,再重置参数,设置完毕后置 Running = 1。 退出检测程序前,置 PowerOn = 0。

4. 信号、参数、数据的名称定义

将参数划分为全局参数和通道参数。对于通道参数,每个通道需分别设置。 表-4.1 至表-4.2 列出主机可操作的参数、数据。

表-4,1 全局参数

名称 (及操作)	定义描述				
PowerOn (WR)	1位, 1/0 将开通/关断部分电路的工作。				
	进入检测程序时置位,退出检测程序时复位				
Running (WR)	1位, 1/0将允许/停止检测电路的运行,在为0时还将复位一些电路的工作状态。				
	设置或修改电路参数前应先停止电路运行,设置完毕后或启动采样前开启电路运行				
ReStart (W)	1位,读取完一轮数据后通知	口硬件(也可	在读取一轮数据之前发出以提高速度)		
SampReady (R)	1位,判别:	0	至少一轮采集数据已经准备好		
		1	尚无数据供主机程序读取		
ChAmount[7:0](WR)	8位,循环的项目(通道)数,	赋值范围	L ~ 128		
TransMode	1位,	0	正常检测模式		
		1	RF 直传模式		
TransChn[6:0]	7位,RF 直传模式时的通道				
TransAmount			考附-4。软件需要计算这个数值并依此从 Ex-Mem		
	读出正确点数的 RF 采集数据	居,但无需	向硬件传递这个参数。		
SineAmplitude[3:0]	4位,取值1~8(V)	tet time to the time	Detail with the		
AdOffset[7:0]	. = .		位移量,取值在 -100 ~ +100 间。		
BpOut[7:0] (WR)	8位,	D[0]	OC 门输出		
	输出仪器控制信号	D[1]	OC 门输出		
		D[2]	OC 门输出,可作为延时报警(AlmD)		
		D[3]	OC 门输出,可作为实时报警(AlmR)		
		D[4]	OC 门输出,专用于 LED 显示控制		
		D[5]	CMOS 电平输出		
		D[6]	OC 门输出,专用于蜂鸣器控制		
		D[7]	输出 SupplyTurnOff (= 1 时将关闭电源)		
BpIn[7:0] (R)	8位,	D[1:0]	第一路外部时钟输入的 B、A 相		
	用以从外部控制	D[2]	第一路外部触发信号 A(Scan1A)		
	仪器运行。	D[3]	第一路外部触发信号 B(Scan1B)		
		D[5:4]	第二路外部时钟输入的 B、A 相		
		D[6]	第二路外部触发信号 A(Scan2A)		
		D[7]	第二路外部触发信号 B(Scan2B)		
TimerInt[31:0] (R)	32 位,是按内部时钟 10kHz	计时的计时	付值		
TimerExt1[31:0] (R)	32 位(signed),是对第一路外	部时钟进行	宁可逆计数的计数值		
TimerExt2[31:0] (R)	32 位(signed),是对第二路外	部时钟进行	宁可逆计数的计数值		
TimerIntClear(W)	1位,清零 TimerInt[31:0]				
TimerExt1Clear(W)	1位,清零 TimerExt1[31:0]				
TimerExt2Clear(W)	1位,清零 TimerExt2[31:0]				
TimerExt1ClrMode(W)	1位,置1时允许 Scan1A 上	升沿清零"	TimerExt1 (Scan1A 与 TimerExt1Clear 相或)		
TimerExt2ClrMode(W)	1位,置1时允许 Scan2A 上升沿清零 TimerExt2 (Scan2A 与 TimerExt2Clear 相或)				
TimersLen (W)	1位,控制计时器数值的锁存	字,为1时	允许在计数的同时更新锁存器数值。		
		3			

	软件在读取计时计数值之前,须先将其置0;读完后,须将其置1				
SampData[31:0](R)	32 位, RF 或 X/Y 采集数据。详见表-6.2				
PcbSN[15:0](R)	16位,	详见附-5			
PcbFN[15:0](R)	16位,				
PcbCfg[15:0](R)	16位,				

表-4.2 通道参数

名称 (及操作)	定义描述									
ChJob[3:0]	4位,规定本通道任务 0 常规涡流									
			1		快速涡流					
			2		磁记忆					
F (屏幕示值)	正弦波频率,取值剂						工步冲	以长生14	≥ */-	
	(仅作为屏幕调整参				··· · · · ·		正弦波		>安义,	
Wck	用以产生 F 频率正弦		彡时钟 ,	也是 R	F 采样频	率	详见附-	1		
	(软件不能向硬件直									
WckDivisor[15:0]	16 位,是从 40MHz	生成 Wcl	k 的除数	ζ						
WpAmount[11:0]	12 位,表示由 Wck	生成一个	正弦波	形的点数	数					
WpDelta[23:0]	24 位,表示由 Wck	跳点生成	正弦波	形的累加	加增量					
CoilNumforPickB[7:0]	8位,选择接入接收	电路 B 箱	う人的线	圈号			阵列线圈及探头驱动 等参数设置, 详见附-2			
CoilNumforPickA[7:0]	8位,选择接入接收	电路 A 箱	う 人的线	圈号						
CoilNumforDriveB[7:0]	8位,选择接入驱动	J电路 B 箱	计出的线	圈号						
CoilNumforDriveA[7:0]	8位,选择接入驱动	J电路 A 箱	前出的线	圈号						
DriveBalance[3:0]	4位,调整驱动电路	A、B输	出的电阻	狙平衡						
DriveResistanceSel	1位,	,								
DriveResistancesei	选择驱动电路输出电	- M	1	50 —	次姆					
ProbeGain[2:0]	3位,	数值	0	1	2	3	4	5	6	7
ProbeGaiii[2:0]	设置探头前置增益	增益	0dB	5dB	10dB	15dB	20dB	25dB	30dB	35dB
RfLpCoef[15:0]	16 位,设置 Rf 低通滤波系数(系数 a)					V. T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- WL. \ 1	⇔ +*	
RfHpCoef[15:0]	16 位,设置 Rf 高通滤波系数(系数 a)				关于 III 附-3	化 滤波系	: 数计算	,参考		
LfLpCoef[15:0]	16 位,设置 Lf 低通滤波系数(系数 a)				C-114					
LfHpCoef[15:0]	16 位,设置 Lf 高通滤波系数(系数 a)									

5. 主机数据接口协议

5.1. 电路接口规范

仿照 PC 机软驱的 FC-34 接插线排,实现主机与 TQ03 板之间的通讯,接口规范定义如图示。

MD15	1 18	MD14
MD13	2 19	MD12
MD11	3 20	MD10
MD9	4 21	MD8
GND	5 22	GND
MD7	6 23	MD6
MD5	7 24	MD4
MD3	8 25	MD2
MD1	9 26	MD0
GND	10 27	_ GND
MWR	11 28	MRD
MA3	12 29	MA2
MA1	13 30	MA0
MHBE	14 31	MCS1
MCS0	15 32	
	16 33	_ GND
GND	17 34	GND

信号(组)名	定义				
MD[15:0]	主机 16 位数据信号总线,可选择按 8/16 位				
. ,	操作				
MA[3:0]	主机地址信号线				
	主机地址段 0 选通信号(低有效),				
MCS0	用以选通涡流板(TQ03 版)。				
WCSO	对于 PC-ISA 系统,安排地址范围是				
	D0020 ~ D002F				
	主机地址段1选通信号(低有效),				
MCS1	用以选通超声板(TQ02 板)。				
WCSI	对于 PC-ISA 系统,安排地址范围是				
	D0010 ~ D001F				
MWR	主机写控制信号(低有效)				
MRD 主机读控制信号(低有效)					
MHBE	主机数据高字节允许信号(低有效)				

图- 5.1 主机数据接口电路与信号定 >>

对于 PC104 系统,只按 8 位数据总线操作,高字节数据 MD[15:8]和高字节允许信号 MHBE 无效,在电路板上可能用一个 FC-26 接插线排代替 FC-34 线排。

5.2. 系统 - 本地总线扩展

在这里, 主机将其 TQ03 板视为一个外部存储器, 按 Byte(8-Bit)/ Word(16-Bit)组织, 以 MCS0 寻访, TQ03 板上 安排了 16 个 Byte (或 8 个 Word) 的系统地址。

本地的内容要通过扩展地址(64K-Byte)来寻访,扩展地址由主机预置,或在数据读写过程中由电路自动累加。因此,在主机与本地之间,需要设立一种系统-本地的地址扩展模式。实现途径是将这些系统地址看作是一些特殊端口,或者说,从硬件看,将系统地址线 MA[3:0]看做是一组控制线,规定 TQ03 板实施一系列约定的操作。

表-5.1 按照 8-Bit 数据格式, 列出这些端点的功能协议。扩展地址自动增长时是增长 1-Byte。这时 MD[15:8]无效。

表-5.2 按照 16-Bit 数据格式,列出这些端点的功能协议。扩展地址自动增长时是增长 1-Word。

对于 PC-ISA 系统来说,这两个表所引述地址(端点)是相对于系统地址 D0020 的偏移地址。

表-5.1 主机 - 本地端点功能定义(按 8-bit 数据宽度)

端点 MA[3:0]	标识	描述
0	CheckBkAddrLB	主机读取扩展地址低字节,即:BkA[7:0] => MD[7:0]
1	CheckBkAddrHB	主机读取扩展地址高字节,即:BkA[15:8] => MD[7:0]
2	PresetBkAddrLB	主机设置扩展地址低字节,即: MD[7:0] => BkA[7:0]
3	PresetBkAddrHB	主机设置扩展地址高字节,即: MD[7:0] => BkA[15:8]
4	WriteInc0B	主机向当前扩展地址写人数据(MD[7:0]),且扩展地址不变
6	WriteInc1B	主机向当前扩展地址写入数据(MD[7:0]),随即扩展地址增 1-Byte
8	ReadInc0B	主机从当前扩展地址读出数据(MD[7:0]),且扩展地址不变
A	ReadInc1B	主机从当前扩展地址读出数据(MD[7:0]),随即扩展地址增 1-Byte

表-5.2 主机 - 本地端点功能定义(按 16-bit 数据宽度) (暂不可用)

端点 MA[3:0]	标识	描述
0	CheckBkAddrW	主机读取扩展地址低字节,即: BkA[15:0] => MD[15:0]
2	PresetBkAddrW	主机设置扩展地址低字节,即: {MD[15:1],1'b0} => BkA[15:0]
4	WriteInc0W	主机向当前扩展地址写入数据(MD[15:0]),且扩展地址不变
6	WriteInc1W	主机向当前扩展地址写入数据(MD[15:0]),随即扩展地址增 1-Word
8	ReadInc0W	主机从当前扩展地址读出数据(MD[15:0]),且扩展地址不变
A	ReadInc1W	主机从当前扩展地址读出数据(MD[15:0]),随即扩展地址增 1-Word

5.3. (······)

6. 本地扩展地址安排

主机对 TQ03 板的进行读写的数据内容,都要通过本地扩展地址访问。

表-6.1 按照 8-Bit 数据格式列出这些 Byte 地址内容。

表-6.1 TQ03D 板本地扩展地址分配表

地址	内容、作用		
0000	读 PcbSn[7:0]		
0001	读 PcbSn[15:8]		
0002	读 PcbFn[7:0]		
0003	读 PcbFn[15:8]		
0004	读 PcbCfg[7:0]		
0005	读 PcbCfg[[15:8]		
		D[0]	SampReady (低表示采样好)
		D[3:1]	(未用)
0006	读	D[4]	PwOn
0000	RunStatus[7:0]	D[5]	Running
		D[6]	SupplyWillbeOff (低表示要求关闭电源)
		D[7]	(未用)
000F	写、读 CaliMode [7:0]	(用于调试硬	件,软件无需亦不可操作)
0010	写 PwOn		D[0]
0011	写 Running		D[0]
0015	写、读 ChAmount[7:0]		
0016	写、读 TransCh	ın[6:0]	D[6:0]

		TransMode	D[7]				
0018	写、读 AdOffs	set[7:0]					
0010	J () () () ()	, ioj					
001F	写、读 SineAmplitude[3:0] D[3:0]						
0020	写 ReStart		D0=1(动作)				
0022	写 TimerLen		D[0]				
0023	写	TimerExt1ClrMode TimerExt2ClrMode	D[1] D[2]	可同时或分别置位/复位			
		TimerIntClear	D0 = 1 (动作)				
0024	写	TimerExt1Clear	D1 = 1 (动作)	可同时或分别清零			
		TimerExt2Clear	D2 = 1 (动作)				
002E	读RtKey[7:0]	, 其中, bit[7] 是旋转计数 bit[6:0] 计数器/	数器中的按键(=1 时有效 中是一次变化量(signed)	(t),			
002F	读 Keyboard[7			表示长按键(超过 1.2 秒)			
0030	读 TimerInt[7:0						
0031	读 TimerInt[15						
0032	读 TimerInt[23	:16]					
0033	读 TimerInt[31	:24]					
0034	读 TimerExt1[7:0]					
0035	读 TimerExt1[1	15:8]					
0036	读 TimerExt1[2	23:16]					
0037	读 TimerExt1[3	31:24]					
0038	读 TimerExt2[7:0]					
0039	读 TimerExt2[15:8]					
003A	读 TimerExt2[2	23:16]					
003B	读 TimerExt2[3	31:24]					
003C	读 BpIn[7:0]						
003E	写、读 BpOut	[7:0]					
0400 ~ 07FF	写、读 TestRam (用于调试,将来不予保留)						
1000 ~ 13FF	从 ExchangeRam 读检测数据,见表-6.2						
2000 ~ 27FF	写波形及探头控制参数到 WparamsRam, 见表-6.3						
3000 ~ 31FF	写 LF 滤波系数	效到 LfCoefRam,见表-6.	4				

表-6.2 ExchangeRam 检测数据排列(1k-Byte, 1000~13FF)

地址	内容	每通道需要 8-Byte
000	XD[7:0]	
001	XD[15:8]	
002	XD[23:16]	
003	XD[31:24]	Of CP0
004	YD[7:0]	Of Ch0
005	YD[15:8]	
006	YD[23:16]	
007	YD[31:24]	
008 ~	ı	Of Ch1
~ 00F	ı	Of Ch1
ı	'	1
1		
;		!
3F8 ~	-	
	:	Of CH127
~ 3FF		

对于磁记忆检测,数据从 XD 读出, YD 无效;

对于 RF 直传模式,则是一个通道的 RF 数据,最多 256 点(4-Byte /点)。

表 6.3 WparamsRam 内的参数排列 (2k-Byte, 2000~27FF)

地址	内容	内容				
000	WpDivisor[7:0]					
001	WpDivisor[15:8]					
002	WpAmount[7:0]					
003	D[7:4] ChJob[3:0]		D[3:0] WpAmoun	t[11:8]		
004	WpDelta[7:0]					
005	WpDelta[15:8]					
006	WpDelta[23:16]					
007	D[7:4] ProbeBal[3:0]	D[3] DriveResis	stanceSel	D[2:0] ProbeGain[2:0]	Of Ch0	
008	CoilNumforPickB[7:0]	1		,		
009	CoilNumforPickA[7:0]					
00A	CoilNumforDriveB[7:0]					
00B	CoilNumforDriveA[7:0]					
00C	RfLpCoef[7:0]					
00D	RfLpCoef[15:8]	RfLpCoef[15:8]				
00E	RfHpCoef[7:0]	RfHpCoef[7:0]				
00F	RfHpCoef[15:8]	RfHpCoef[15:8]				
010 ~						
~ 01F						

1	1 1
1	1
ı	1
ı	1
ı	1
7F0 ~	Of Ch127
~ 7FF	

表-6.4 LfCoefRam 内的参数排列 (512-Byte, 3000~31FF)

地址	内容	每通道需要 4-Byte		
000	LfLpCoef[7:0]			
001	LfLpCoef[15:8]	Of Cho		
002	LfHpCoef[7:0]	Of Ch0		
003	LfHpCoef[15:8]			
008 ~ ~ 00F	1	Of Ch1		
	1 1 1	1		
1FC ~ ~ 1FF		Of Ch127		

7. (······)

附-1 TQ03 版激励频率及其正弦波形生成

A1-1. 硬件设立一个 ROM, 存放 2048 点的一个周期的正弦波形数据。正弦数据按 8-bit 二进制数, ROM 内各点数据: $127.5 + 127.5 * \sin(2 * pi * k / 2048)$, $k = 0, 1, 2, \ldots$, 2047

图 2.2 2048 点单周期正弦表

当以 Wck 频率,按 2048 点从 ROM 逐点读出时,再经 D/A 转换,即可生成一个频率为 WCK/2048 的正弦波。

记为: F0 = F(k), k = 0, 1, 2, ..., 2047

若按 M 点以跳点方式(步进 2048/M)读出,则是一个频率为 WCK/M 的正弦波。

记为: $F = F(k*2048/M), \qquad M = 4*(2,3,...,2048/4) = 4*(2,3,...,512), \\ k = 0,1,2,...,M-1$

限制:一个周期的正弦波形点数(M)最少是8点,最多是2048点。

要生成一个预期的涡流检测频率需要确定3个参数:

- # 波形时钟 Wck;
- # 一个周期的正弦波形点数 M;
- # 跳点读出 ROM 数据的步进增量 2048/M。

因此, 电路设置有:

- # 一个 16 位分频器, 用以从基时钟(BCK = 40MHz)分频产生 WCK; (40MHz / (Divisor + 1))
- # 一个 12 位计数器, 用以计数输出波形点数;
- # 一个 27 位累加器, 划分为 11 位整数和 16 位小数, 整数部分[26:16]连接 ROM 地址线[10:0]。

相应地,根据各通道的正弦频率,上位机软件要对每个通道设置3个参数:

- # WpDivisor[15:0]: 时钟分频数值,按 (40 * 1000000 / Wck) 1 计算;
- # WpAmount[11:0]: 波形点数 M, 按 4*{2,3,...,512} 给出;
- # WpDelta[23:0]: 累加器增量,按 2048/M 计算,一般不是整数,其中 高 8 位[23:16]是整数部分,低 16 位[15:0]是小数部分。
- A1-2. 显然,并不能产生任意频率的正弦波,此外,在频率点上,还应注意合理安排其疏密、均匀。 首先是要确定波形时钟 Wck,然后按 M = Wck/F 计算波形点数 M。 除了在高频段(100KHz 及以上), M 只好较少外,在其它频段,应让 M 大于 400 点。 考虑将正弦频率分段,指定 Wck。这里是一种可能方案:

F	Wck	M (pts)		
5000KHz ~ 20KHz	40MHz	8 ~ 2000		
19.0KHz ~ 10KHz	20MHz	1052 ~ 2000		
9.9KHz ~ 4.0KHz	8MHz	808 ~ 2000		
3.9KHz ~ 2.0KHz	4MHz	1024 ~ 2000		
1.9KHz ~ 800Hz	1.6MHz	840 ~ 2000		
790Hz ~ 400Hz	800KHz	1012 ~ 2000		
390Hz ~ 160Hz	320KHz	820 ~ 2000		
150Hz ~ 80Hz	160KHz	1064 ~ 2000		
79Hz ~ 32Hz	64KHz	808 ~ 2000		
31Hz ~ 16Hz	32KHz	1032 ~ 2000		
15Hz ~ 8Hz	16KHz	1064 ~ 2000		
7Hz ~ 4Hz	8KHz	1144 ~ 2000		
3Hz ~ 2Hz	4KHz	1332 ~ 2000		
1HZ	2KHz	2000		

在计算累加器增量 WpDelta 时,为提高精度,建议这样处理:

从 2048 / M 得到的整除部分,直接作为整数部分,赋予 WpDelta[23:16];

从 2048 / M 得到的余数部分, 先乘上 65536, 再除以 M, 赋予 WpDelta[15:0]。

A1-3. 虽然磁记忆检测不需要正弦波形,但在涡流\磁记忆混合检测系统,为了不影响涡流驱动的连续性,就在磁记忆检测时输出正弦波形,其正弦频率取 80KHz:

设置 Wck = 40MHz, 波形点数取 500点。

其波幅在纯磁记忆检测系统设置为 5V, 在混合检测系统由涡流参数调整。

附-2 TQ03D 板探头设置

A2-1. 仪器可逐通道动态配置线圈阵列,从阵列中选择分别接入仪器 DriveA、DriveB、PickA、PickB 的线圈。同一个线圈可同时接入这 4 个电路节点,但在一个节拍(通道),任何一处节点只能有一个线圈接入,也可以放空不接,对于输入节点(PickA/B)来说,还可以选择接地。

TQ03D 板支持最多 256 个线圈的阵列。线圈编码按 8 位数排列, 范围从 0 到 255, 但将最后 8 个编码(248~255) 留作特殊用途。

255 : 空;

254: 地;

253~248 暂未定义,将来可能用于内置平衡线圈。

因此, 探头实际线圈数目为 248 个, 编码范围 0~247。

仪器由 4 组 8 位编码分别控制 4 个电路节点和线圈阵列之间的切换,记为:

 $CoilNumforPickB[7:0],\ CoilNumforPickA[7:0],\ CoilNumforDriveB[7:0],\ CoilNumforDriveA[7:0]_{\circ}$

A2-2. 仪器以参数 DriveResistanceSel 控制切换探头驱动内阻,可选择 50 或 100 欧姆驱动内阻。(取消)

SEL	0	1
内阻	100 欧姆	50 欧姆

A2-3. 仪器以参数 DriveBalance[3:0]控制一个数字电位器,微调 A/B 端驱动电阻,实现探头驱动平衡。 DriveBalance[3:0]取值范围 $0\sim15$,中值是 8。

建议屏幕可调示值设为 -8~0~+7, 向硬件传递数字 0~15。

探头设置示意图

附-3 IIR 高低通滤波系数计算

A3-1. 以一阶 IIR 低通为例, 其滤波迭代计算式基本型:

$$Y_n = aX_n + (1-a) \times Y_{n-1}$$
 , 其中, X_n 是输入系列, Y_n 是输出系列;

其系数计算: $a = \cos(2\pi f_C T) + \sqrt{\cos^2(2\pi f_C T) - 4 \times \cos(2\pi f_C T) + 3} - 1$ 其中,

T 是信号采样周期,对于 RF 与 LF 滤波,其取值的计算方法不同;

 f_{C} 是设定的滤波截止频率 (半功率点),

$$f_C$$
 取 $0 \sim f_T/2$, 若 $f_C \geq f_T/2$, 让 $f_C = f_T/2$; ($f_T = 1/T$)

按照上式计算, a 随 f_C ($0 \sim f_T/2$) 在 $0 \sim 0.82843$ 之间正向单调。

上位机软件将这两个小数转换为16位无符号整数再传递给硬件。

$$A = a \times 65535$$

约定, 关闭低通, 置 a = 1, 即 A = 65535 = 0xFFFF; 关闭高通, 置 a = 0, 即 A = 0。

A3-2. 关于 RF 滤波的截止频率 f_C 、采样周期 T

采样频率即为 Wck, 即T = 1/Wck, 注意不同通道的 Wck 可能不同。

讨论一下滤波通带的设置:

取低通滤波的 3dB 截止频率为正弦频率 F 的 1.1 ~ 10 倍,

(在高频段, 10 * F 不可超过 Wck/2 = Bck/2 = 20MHz)

取高通滤波的 3dB 截止频率为正弦频率 F 的 0.1 ~ 0.9。

屏幕可调参数按这种样式设计,以便调试。但用户程序不给出此项参数,而是将该参数蕴含在程序内部。

暂定: 用户程序的 RF-HP 按 0.3 * F 计, RF-LP 按 4 * F 计。

A3-3. 关于 LF 滤波的截止频率 f_C 、采样周期 T

截止频率屏幕可调,建议设置其调整范围:

低通: 10Hz~2000Hz, 最小步进 1Hz

高通: 0.1Hz~100Hz, 最小步进 0.1Hz (改为0.1Hz~500Hz)

采样周期即为一轮多通道检测所需时间,是每个通道所需时间之和。下面讨论一个通道的持续时间。

一个通道包含一个或若干个完整的正弦波周期。正弦波周期时间较容易计算: M*1/Wck。但一个通道包含几个正弦周期则受如下因素影响。

(1) 开始一个通道时等待探头和电路稳定的延迟:在常规涡流检测模式下,有两条原则同时起作用:一是至少 10us 的延迟,二是延迟须是一个或若干个完整正弦周期。

延迟周期数 = Quot(400/M)

澄清一下整数除法计算式 Quot(x/y):

若 x 能被 y 整除: Quot(x/y) = x/y, 如 Quot(16/8) = 2;

若不能整除,即有余数: Quot(x/y) = x/y + 1,如 Quot(20/16) = 2,Quot(15/16) = 1

在快速涡流模式下(这种模式主要用于如 EEC24K 型号仪器或远场涡流仪器),不作延迟。

对于磁记忆检测模式,已在附-1的 A1-3项说明其等效波形频率为 80KHz,波形点数为 500 点,故其固定延迟周期为 Quot(400/500) = 1,延迟时间为 1/(0.8MHz) = 12.5us。

(2) 一个通道的最少采集点数是 400 点(以 Wck 频率采集), 当一个正弦周期不足 400 点时, 就要再增加若干个完整的正弦周期来完成采样, 这样, 一个通道的采集需要一个或多个正弦周期。采集周期数的确定与延迟周期数相同。即:

采集周期数 = Quot(400/M)

综上所述,一个通道的持续时间为:

常规涡流模式: 2 * Quot(400/M) * M / Wck

快速涡流模式: Quot(400/M) * M / Wck

磁记忆检测模式: 2 * Quot(400/M) * M / Wck = 25us

再将各通道的时间累加求和,即为一轮多通道检测所需时间,即采样周期。

附-4 RF 直传模式下的采集点数

当仪器作探头正弦波形显示时,需要将 RFDSP 输出的数据直接传送 PC。考虑:对这种特殊模式,只运行一个通道,但可从现有通道列表中任意指定一个。

一个波形最多是 2048 点(最少 8 点),输出(记为 TransAmount)最多是 256 点,需要予以压缩。压缩比率(记为 CptRate)按下式计算:

CptRate = Quot(M/256) ,可见,1 <= CptRate <= 8 。 再确定输出点数:

TransAmount = Quot(M/CptRate) \circ

```
例如,当 M <= 256 时,CptRate = 1, TransAmount = M;
当 M == 260 时,CptRate = 2, TransAmount = 130;
当 M == 512 时,CptRate = 2, TransAmount = 256;
当 M == 516 时,CptRate = 3, TransAmount = 173。
```

电路得到 CptRate 的方法: M 最大值是 2048, 用 12 位数字信号表示为 WpAmount[11:0];

将其减去 1 后的有效位是 11 位的数字信号: WpAmountMinus1[10:0]; 用 3 位数字信号表示压缩比率: CptRate[2:0],可简单连线: CptRate[2:0] = WpAmountMinus1[10:8]。

附-5 关于版本号控制

上位机从 TQ04D 板读出下列信息, 其意义约定如下:

1. 以 16 位数字 PcbSn[15:0]表示关于电路板系列号,按 4 位 16 进制"XXXX"来表示。

其中, Sn[15:8]固定为 03, 表示 TQ03 系列板; Sn[7:4]固定为 4, 表示 D 版; Sn[3:0]用以表示 FPGA-HDL 版本, 初版为 0。

2. 以 16 位数字 PcbFn[15:0]表示电路板功能限制

其中, Fn[15:8]未定义, 暂置为 FF;

Fn[7:0]是板上跳线,配合软件,限制电路板实现的功能和通道数。

Fn[2:0]: 限制某种型号仪器的最大通道数(记为 N)。

将 Fn[2:0]视为 3 位二进制数,表示 $0 \sim 7$ 中的一个数,记为 k。

通道数限制为:

 $N=2 \wedge k$, 即 $N \neq 2$ 的 k 次方。

下表具体列出受限通道数与 Fn[2:0]的关系。

Fn[2:0]	000	001	010	011	100	101	110	111
受限通道数	1	2	4	8	16	32	64	128

Fn[7:3]限制仪器检测功能:

Fn[3] = 1 时支持常规涡流检测;

Fn[4] = 1 时支持快速涡流检测(和分选功能);

Fn[5] = 1 时支持远场涡流检测;

Fn[6] = 1 时支持磁记忆检测;

Fn[7] = 1 时支持漏磁检测。

3. 以 16 位数字 PcbCfg[15:0]表示电路板配置。暂未定义。