

CLAIMS

What is claimed is:

- 1 1. A memory cell comprising:
 - 2 a first PMOS transistor;
 - 3 a first NMOS transistor coupled to the first PMOS transistor;
 - 4 a second PMOS transistor; and
 - 5 a second NMOS transistor coupled to the second PMOS transistor;
 - 6 the first and second PMOS transistors receiving a bias control signal.
- 1 2. The memory cell of claim 1 further comprising:
 - 2 a first storage node coupled between the first PMOS transistor and the
 - 3 first NMOS transistor; and
 - 4 a second storage node coupled between the second PMOS transistor and
 - 5 the second NMOS transistor.
- 1 3. The memory cell of claim 2 wherein the bias control signal delivers a
2 forward bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a standby mode.
- 1 4. The memory cell of claim 3 wherein the forward bias voltage enables the
2 first storage node to maintain a storage value by providing an off-state leakage
3 current from the first PMOS transistor.
- 1 5. The memory cell of claim 2 wherein the bias control signal delivers a
2 reverse bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a read mode.

1 6. The memory cell of claim 5 wherein the reverse bias voltage prevents the
2 memory cell from switching its value during the read mode.

1 7. A memory device comprising:
2 an N-well;
3 a plurality of memory cells, each memory cell including:
4 a P-channel component; and
5 a N-channel component, the P-channel component being formed
6 within the N-well;
7 a gap cell formed within the N-well; and
8 a contact within the gap cell that provides a bias control signal to each of
9 the P-channel components within a memory cell.

1 8. The memory device of claim 7 wherein the P-channel component of each
2 memory cell comprises:
3 a first PMOS transistor; and
4 a second PMOS transistor, the first and second PMOS transistors receiving
5 a bias control signal.

1 9. The memory device of claim 8 wherein the N-channel component of each
2 memory cell comprises:
3 a first NMOS transistor coupled to the first PMOS transistor; and
4 a second NMOS transistor coupled to the second PMOS transistor;

1 10. The memory device of claim 9 further comprising:
2 a first storage node coupled between the first PMOS transistor and the
3 first NMOS transistor; and
4 a second storage node coupled between the second PMOS transistor and

5 the second NMOS transistor.

1 11. The memory device of claim 10 wherein the bias control signal delivers a
2 forward bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a standby mode.

1 12. The memory device of claim 11 wherein the forward bias voltage enables
2 the first storage node to maintain a storage value by providing an off-state
3 leakage current from the first PMOS transistor.

1 13. The memory device of claim 10 wherein the bias control signal delivers a
2 reverse bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a read mode.

1 14. The memory device of claim 13 wherein the reverse bias voltage prevents
2 the memory cell from switching its value during the read mode.

1 15. A computer system comprising:

2 a microprocessor; and

3 a cache memory device, the cache memory device including:

4 a plurality of memory cells, each memory cell including a P-
5 channel component and a N-channel component, the P-channel
6 component formed within the N-well;

7 a gap cell formed within the N-well; and

8 a contact within the gap cell that provides a bias control signal to
9 each of the P-channel components within a memory cell.

1 16. The computer system of claim 15 wherein the P-channel component of
2 each memory cell comprises:

3 a first PMOS transistor; and

4 a second PMOS transistor, the first and second PMOS transistors receiving
5 a bias control signal.

1 17. The computer system of claim 16 wherein the N-channel component of
2 each memory cell comprises:

3 a first NMOS transistor coupled to the first PMOS transistor; and
4 a second NMOS transistor coupled to the second PMOS transistor;

1 18. The computer system of claim 17 further comprising:

2 a first storage node coupled between the first PMOS transistor and the
3 first NMOS transistor; and
4 a second storage node coupled between the second PMOS transistor and
5 the second NMOS transistor.

1 19. The computer system of claim 18 wherein the bias control signal delivers a
2 forward bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a standby mode.

1 20. The computer system of claim 19 wherein the forward bias voltage
2 enables the first storage node to maintain a storage value by providing an off-
3 state leakage current from the first PMOS transistor.

1 21. The computer system of claim 18 wherein the bias control signal delivers a
2 reverse bias voltage to the first and second PMOS transistors whenever the
3 memory cell is operating in a read mode.

1 22. The computer system of claim 21 wherein the reverse bias voltage
2 prevents the memory cell from switching its value during the read mode.

1 23. The computer system of claim 15 wherein the cache memory device is

2 coupled to the microprocessor.

1 24. The computer system of claim 15 wherein the cache memory device is
2 included within the microprocessor.