Simplicial complexes and simplicial sets

Simplicial complex and associated chain complex

Let K_{\bullet} be a simplicial complex. We have seen how to construct $C_{\bullet}(K_{\bullet}, A)$, the associated chain complex.

In practice, it can be quite annoying to keep track of ordering on \mathcal{K}_0 we had to choose.

A way to overcome this problem is to consider all the possible orderings at once. To do it, view an ordering on $\sigma \in K_r$ as a bijection

$$f: \{0, 1, \cdots, r\} \rightarrow \sigma$$

and consider the cochain complex generated, in degree r, by all such bijections as σ runs over K_r .

Differential

Let $\widetilde{C}_{\bullet}(K_{\bullet}, A)$ be the resulting graded A-module.

Differential in this setting can be defined similarly;

$$df = \sum_{i=0}^{r} (-1)^i f_i$$

where f_i is obtained from the ordered simplex f from removing the i-th vertex.

Comparing two chain complexes

Let K_{\bullet} be a simplicial complex. Choose an ordering on K_0 . We have a map

$$\phi \colon C_{\bullet}(K_{\bullet}, A) \to \widetilde{C}_{\bullet}(K_{\bullet}, A).$$

Proposition

The map ϕ satisfies $d\phi = \phi d$.

Comparing two chain complexes, continued

The map

$$\phi\colon C_{\bullet}(K_{\bullet},A)\to \widetilde{C}_{\bullet}(K_{\bullet},A).$$

has a natural section, say ψ , given by the following formula. Let $f'\colon\{0,1,\cdots,r\}\to\sigma$ be a bijection. Then there is a chosen ordering $f\colon\{0,1,\cdots,r\}\to\sigma$ which we used for C_{ullet} . We get a sign $\epsilon(f,f')=\pm 1$.

$$\psi(f') = \epsilon(f, f')f.$$

Proposition

Two maps ϕ and ψ induce isomorphisms at the level of homology groups. Furthermore, they are inverses to each other.

Even bigger complex

We can relax the condition that

$$f: \{0, 1, \cdots, r\} \rightarrow \sigma$$

is a bijection. Instead, one can consider arbitary maps.

It becomes more cumbersome to make geometric interpretations, but algebraically more convenient.