Course outline

- Fundamentals
 - Notation
 - Functions
 - Approximation
- Series
 - Summation
 - Taylor series
- September 1 Linear algebra
 - Representing big, complex, data
 - Systems of equations
 - Dimension reduction
- Probability
 - Discrete random variables
 - Continuous random variables & integration
- Optimisation
- Revision

But firstly...

Congratulations!

And thank you.

Housekeeping

Tutorial changes this week

- TU03 will be in Hughes 323, Weds 12-1pm (usually Weds 3pm)
- TU04 will be in Hughes 322, Thurs 2-3pm (usually Weds 2pm)

(If you're in these tutorials and can't make these times, please feel free to join another tutorial this week)

* Course notes: 95% complete

SELTs

- I really really appreciate your feedback!
- You will help create change in this course.
- Particular topics:
 - Python labs
 - Ordering of material (+ volume)
 - Connections to real data science

Exam-writing philosophy

- \bullet Proportion of exam marks per topic \approx proportion of lectures per topic
- $\approx 70\text{-}80\%$ "core" marks, $\approx 20\text{-}30\%$ "advanced" marks

Preparing for the exam

Make sure you can do (in roughly this order):

- Examples from lectures
- Tutorial questions
- All assignments
- The practice exam
- Practice questions
- Problems from the Sacred Texts/course readings

Look for extra problems on the areas you feel weakest!

Survey results

Preparing for the exam

Pre-exam consultation times:

- Tue 5 Nov, 1-3pm (Sophie IW 6.33)
- Wed 5 Nov, 1-3pm (Lewis IW 6.46)
- Tue 12 Nov, 11am-1pm (Lewis IW 6.46)
- Thu 21 Nov, 10am-1pm (Sophie IW 6.33)

*Now finalised, apart from rescheduled 5 Nov session TBD

"Advanced" content in red

Fundamentals (≈ 3 lectures)

- Notation: sets, functions, etc
- Fermi estimation
- Functions: definition, composition, 1-1 functions, inverse functions

Summation and series (≈ 3 lectures)

- Notation & manipulation
- ** Proof by induction
 - Multiple summation
- ✓ Infinite series & limits
 - Convergence of infinite series: ratio test

Taylor series (≈ 3 lectures)

- Deriving Taylor polynomials
- Common Maclaurin series
- Error theorem & error bounds
- Intervals of convergence To ho test again!
- Gradient descent and Taylor series

Matrices (≈ 3 lectures)

- Matrices & vectors ways of representing "big "date
- Special matrices (e.g., identity)
- Matrix operations:
 - addition & subtraction
 - transposition
 - scalar multiplication
 - matrix multiplication

Linear algebra (≈ 6 lectures)

- Systems of equations are the basis of linear regression
- Gauss-Jordan elimination
- (Reduced) row echelon form
 Inverse matrices A A A = A A = I
 - Determinants (and their relation to the topics above!)

Eigenvalues & eigenvectors (≈ 5 lectures)

- Eigenvalues/vectors satisfy $Ax = \lambda x$
- Characteristic equation $|\lambda I A| = 0$ to find eigenvalues
- Gauss-Jordan to find eigenvectors

Linear (in)dependence of vectors eq.
$$3\chi_1 + 2\chi_2 = 0 \Rightarrow \chi_1 = \frac{1}{2}$$
.

• Eigenspaces (the set of all eigenvectors for a particular λ) dependent.

- Diagonalisation $P^{-1}AP = D$
- Applications:
 - Dynamical systems (Spotted Owl aww so cute)
 - Principal component analysis —eigenchor p

 - ► Google's PageRank

Probability: fundamentals (≈ 5 lectures)

- Counting:
 - ▶ Permutations without replacement
 - ► Combinations without replacement
 - Permutations with replacement
 - Combinations with replacement
- Binomial coefficient and theorem
- Axioms of probability
- Conditional probability
- Bayes theorem & naive Bayes classifiers
- Law of Total Probability
- · Independent events.

Probability: random variables (≈ 6 lectures)

- Discrete random variables:
 - ► Definition & properties
 - ► Expectation & variance
 - Bernoulli, binomial, Poisson
 - Ranking items with ratings
- Continuous random variables:
 - Probability density functions, probabilities are integrals
 - Expectation & variance
 - Integration recap:
 - * Improper integrals
 - Integration by parts

If you enjoyed:

Statistics-y/Data Science-y examples

- Linear regression (Boston housing)
- Logistic regression (Titanic dataset)
- PCA
- Wisconsin breast cancer dataset

Then you should check out:

STATS 2107 Statistical Modelling & Inference

If you enjoyed:

Probability & random variables

- Google's PageRank
- Text generation (from labs)
- Markov chains
- Ranking products by rating

Then you should check out:

MATHS 2013 Probability & Statistics II

If you enjoyed:

Linear algebra applications

- The spotted owl (so cute)
- Optimisation
- Programming

Then you should check out:

APP MTH 2105 Optimisation & Operations Research II

If you enjoyed:

Gradient descent

- Machine learning
- Optimisation (e.g. http://fa.bianp.net/teaching/2018/eecs227at/)
- Programming, sklearn
- (Multivariate) calculus

Then you should check out:

APP MTH 3104 Optimisation III

And a shameless plug

If you enjoyed:

The things I like to research

- Online social networks: Reddit, Twitter, ...
- Text data/natural language processing/sentiment analysis
- hedonometer.org lab example

Then you should check out:

- http://maths.adelaide.edu.au/lewis.mitchell/
- @lewis_math
- Hedonometer at MOD (before Sunday)

So once again...

Congratulations! (Really.)

And thank you. (Really.)

Survey results

Taylor series revision

Example

Find the Taylor polynomial of degree 3 for the function $f(x) = \frac{1}{x}$ about the centre a = -3.

Taylor series revision

Example

Find the Taylor polynomial of degree 3 for the function $f(x) = \frac{1}{x}$ about the centre a = -3.

Example

- Find the Taylor series for $f(x) = (x+1)^k$ around the centre a=0.
- What is its radius of convergence?
- What is the error when using 3 terms of this series to approximate $\sqrt{2}$?

Summation and series revision

Example

Evaluate:

•

$$\sum_{i=1}^{n} i(4i^2 - 3)$$

•

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \left[\left(\frac{i}{n} \right)^2 + 1 \right]$$

Summation and series revision

Key formulae

$$\lim_{n \to \infty} \frac{1}{n^k} = 0, \quad k > 0$$

$$\lim_{x \to 0} e^{-x} = 0$$

Ratio test:

$$r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

if r < 1 the series converges, if r > 1 the series diverges, if r > 1 the ratio test is incomparation.

if r=1 the ratio test is inconclusive.

Summation and series revision

Example

Apply the ratio test to each of the following series to investigate convergence.

•

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$$

•

$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

Eigenvalues/eigenvectors/PCA revision

Example

Show (1,1) is an eigenvector of

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

and find its corresponding eigenvalue.

Example

Show 5 is an eigenvalue of

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

and find its corresponding eigenspace.