McLastname, First N

Patient ID: 123456789

Specimen ID: 119-990-4002-0

DOB: **06/01/1947**

Age: **72** Sex: Male

Account Number: 01818355

Ordering Physician: David Johnson

Corrected Report - Prenatal Spinal Muscular Atrophy (SMA)

genes, including add-on gene(s) for F2 (1 variant), F5 (1 variant), F8, F9, G6PD, GP1BA, GP9, HFE, SERPINA1, TFR2

Specimen Type: Saliva Ethnicity: Ashkenazi Jewish, Caucasian Genetic Counselor: Michael Mull

Fetus ID: Twin A Indication: Carrier Test

Date Collected: 04/29/2019 1142 Local Date Received: 04/29/2019 1620 ET Date Reported: 04/30/2019 1045 ET Date Entered: 06/03/2019 1045 ET

Summary: Negative

DISORDER (GENE)	RESULTS	INTERPRETATIONS
Spinal muscular atrophy (SMN1) NM_000344	<< Result >>	<< Interpretation >>

< General comments section - need to be able to enter text manually or populate with MCC output from RightReport for prenatal report types >

Recommendations

Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual's partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit www. integratedgenetics.com/genetic-counseling or call (855) GC-CALLS (855-422-2557).

Additional Clinical Information

Fragile X syndrome: Fragile X syndrome is an X-linked disorder of intellectual disability with variable severity. Expansions of CGG repeat sequences in the FMR1 gene account for 99% of mutations causing fragile X syndrome. The risk of expansion from a premutation allele of 55-90 repeats to a full mutation in offspring, when transmitted by a carrier female, is reduced with increasing number of AGG interruptions in the CGG repeat sequence (Yrigollen, PMID:22498846; Nolin, PMID:25210937). Greater than 99% of males and approximately 50% of females with the full mutation are intellectually disabled. Other signs and symptoms may include delayed speech and language skills, autism, hyperactivity, developmental delay, increased susceptibility to seizures, macroorchidism in males, a long, narrow face with prominent ears, and joint laxity. Individuals with a premutation do not have fragile X syndrome, but may have an increased risk for fragile X-related disorders. Females may have fragile X-associated primary ovarian insufficiency (FXPOI), which can cause infertility or early menopause. Most males with a premutation and some females are at risk for fragile X-associated tremor and ataxia syndrome (FXTAS), which can affect balance and is associated with tremor and memory problems in older individuals. Treatment is supportive and focuses on educational and behavioral support and management of symptoms. (Santoro, PMID:22017584).

Comments

This interpretation is based on the clinical information provided and the current understanding of the molecular genetics of the disorder tested. References and additional information about the disorders tested are available at www.integratedgenetics.com.

Methods/Limitations

Fragile X syndrome: Repeat-primed PCR is used to detect the number of CGG repeats on each allele of the FMR1 gene. The reportable range is 5-200 repeats. Alleles with expansions above 200 repeats are reported as >200. In females, excluding prenatal specimens, alleles between 55 and 90 repeats are assessed by a PCR assay to determine the number and position of AGG interruptions within the CGG repeats. Interpretation of repeat expansion results is based on the following ranges: Negative: < 45 repeats; intermediate: 45-54 repeats; premutation: 55-200 repeats; full mutation: >200 repeats. The analytical sensitivity of this assay for the detection of expanded alleles in the FMR1 gene is estimated to be >99%. Repeat numbers are typically 1 for alleles containing up to 60 repeats, 3 for alleles containing 61-119 repeats, and 10 for alleles with >119 repeats. Low levels of mosaicism (<5%) and FMR1 variants unrelated to trinucleotide expansion are not detected by this assay.

Electronically released under the direction of < Director Name, Certification>

<Corrected Comments>

McLastname, First N

Patient ID: 123456789

Specimen ID: 119-990-4002-0

DOB: **06/01/1947**

Age: **72** Sex: Male Account Number: 01818355 Ordering Physician: David Johnson

Corrected Report - Prenatal Spinal Muscular Atrophy (SMA)

genes, including add-on gene(s) for F2 (1 variant), F5 (1 variant), F8, F9, G6PD, GP1BA, GP9, HFE, SERPINA1, TFR2

Summary: Positive

DISORDER (GENE)	RESULTS	INTERPRETATIONS
Spinal muscular atrophy (SMN1) NM_000344	<< Result >>	<< Interpretation >>

< General comments section - need to be able to enter text manually or populate with MCC output from RightReport for prenatal report types >

Recommendations

Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual's partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit www. integratedgenetics.com/genetic-counseling or call (855) GC-CALLS (855-422-2557).

Additional Clinical Information

Fragile X syndrome: Fragile X syndrome is an X-linked disorder of intellectual disability with variable severity. Expansions of CGG repeat sequences in the FMR1 gene account for 99% of mutations causing fragile X syndrome. The risk of expansion from a premutation allele of 55-90 repeats to a full mutation in offspring, when transmitted by a carrier female, is reduced with increasing number of AGG interruptions in the CGG repeat sequence (Yrigollen, PMID:22498846; Nolin, PMID:25210937). Greater than 99% of males and approximately 50% of females with the full mutation are intellectually disabled. Other signs and symptoms may include delayed speech and language skills, autism, hyperactivity, developmental delay, increased susceptibility to seizures, macroorchidism in males, a long, narrow face with prominent ears, and joint laxity. Individuals with a premutation do not have fragile X syndrome, but may have an increased risk for fragile X-related disorders. Females may have fragile X-associated primary ovarian insufficiency (FXPOI), which can cause infertility or early menopause. Most males with a premutation and some females are at risk for fragile X-associated tremor and ataxia syndrome (FXTAS), which can affect balance and is associated with tremor and memory problems in older individuals. Treatment is supportive and focuses on educational and behavioral support and management of symptoms. (Santoro, PMID:22017584).

Comments

This interpretation is based on the clinical information provided and the current understanding of the molecular genetics of the disorder tested. References and additional information about the disorders tested are available at www.integratedgenetics.com.

Methods/Limitations

Fragile X syndrome: Repeat-primed PCR is used to detect the number of CGG repeats on each allele of the FMR1 gene. The reportable range is 5-200 repeats. Alleles with expansions above 200 repeats are reported as >200. In females, excluding prenatal specimens, alleles between 55 and 90 repeats are assessed by a PCR assay to determine the number and position of AGG interruptions within the CGG repeats. Interpretation of repeat expansion results is based on the following ranges: Negative: < 45 repeats; intermediate: 45-54 repeats; premutation: 55-200 repeats; full mutation: >200 repeats. The analytical sensitivity of this assay for the detection of expanded alleles in the FMR1 gene is estimated to be >99%. Repeat numbers are typically 1 for alleles containing up to 60 repeats, 3 for alleles containing 61-119 repeats, and 10 for alleles with >119 repeats. Low levels of mosaicism (<5%) and FMR1 variants unrelated to trinucleotide expansion are not detected by this assay.

Electronically released under the direction of <Director Name, Certification>

CF detection rates for prenatal testing				
Disorder (gene) Reference sequence	Population	Detection rate		
Cystic fibrosis	African American	81%		
(CTFR) NM_000492	Ashkenazi Jewish	97%		
	Asian American	55%		
	Caucasian	93%		
	Hispanic	78%		
	Mixed or other ethnic background	For counseling purposes, consider using the ethnic background with the most conservative estimates.		

McLastname, First N

Patient ID: 123456789

Specimen ID: 119-990-4002-0

DOB: **06/01/1947**

Age: **72**

Sex: Male

Account Number: 01818355

Ordering Physician: David Johnson

Corrected Report - Prenatal Spinal Muscular Atrophy (SMA)

genes, including add-on gene(s) for F2 (1 variant), F5 (1 variant), F8, F9, G6PD, GP1BA, GP9, HFE, SERPINA1, TFR2

Patient Details

McLastname, FirstName N 401 Holly Street NW, Atlanta, GA 30318

Phone: 336-436-0515 Patient ID: 1234

Alternate Patient ID: ALTP2318975

Physician Details **David Johnson Remedy Hospital**

2550 McMillan Parkway Burlington, NC 27215

Account Number: 01818355

Physician ID: NPI:

Specimen Details

Specimen ID: 119-990-4002-0

Control ID:

Alternate Control Number: ALTC8975456

Performing Labs

Component Type	ent Type Performed at	
Technical component, processing	Esoterix Genetic Laboratories, LLC, 3400 Computer Drive, Westborough, MA 01581	Bernice Allitto, PhD, FACMG
Technical component, analysis	Laboratory Corporation of America, 1912 TW Alexander Drive, RTP, NC 27709-0150	Anjen Chenn, MD, PhD
Professional component	Esoterix Genetic Laboratories, LLC, 3400 Computer Drive, Westborough, MA 01581	Bernice Allitto, PhD, FACMG

For inquires, the physician may contact the lab at (800) 255-7357

Integrated Genetics is a business unit of Esoteric Laboratories, LLC, a wholly-owned subsidiary of Laboratory Corporation of America Holdings.

This test was developed and its performance characteristics determined by Esoteric Genetic Laboratories, LLC.It has not been cleared or approved by the Food and Drug Administration.

