This presentation

- Intuition about linear algebra
- Matrix-vector and matrix-matrix multiplications
- Using linear algebra to express ML algorithms
- Worked example gradient descent in linear algebra

Language of ML: linear algebra

Calculations with vectors and matrices

$$egin{cases} 2x+3y=8 \ x-y=1 \end{cases}$$
 $\begin{bmatrix} 2 & 3 \ 1 & -1 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 8 \ 1 \end{bmatrix}$

Calculations with vectors and matrices

 Should stay linear: just addition and scalar multiplication. No curves.

Calculations with vectors and matrices

 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Calculations with vectors and matrices

[3] 4]

Calculations with vectors and matrices

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

- Calculations with vectors and matrices
- For example, scaling a vector

$$0.5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad - \begin{bmatrix} 1.5 \\ 2 \end{bmatrix}$$

- Calculations with vectors and matrices
- For example, scaling a vector

$$-0.5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad \qquad \begin{bmatrix} -1.5 \\ -2 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication
- Corresponds to a sort of squishing of space

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

Language of ML: linear algebra – why do we care?

 Machine learning algorithms are implemented and defined in linear algebra. Linear regression prediction:

$$\hat{Y} = X^T \hat{\beta}$$

Language of ML: linear algebra – why do we care?

- Games require parallel calculations of many transformations of 3D vectors to rotate and show objects in 3D as you move around.
 - This has given us GPUs which are geared to do that immensely quickly and in parallel (GeForce GTX 690: ~5622 * 10^9/second)
 - And now TPUs or Tensor Processing Units which are geared more towards ML applications.
- Take advantage of that!

Language of ML: linear algebra – why do we care?

Get rid of all the loops in your code and make it much faster.
 Win-win!

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Vector addition:

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Vector addition:

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

Vector transpose (from column vector to row vector):

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}^T = \begin{bmatrix} 3 & 4 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 & 1 \\ 40 & 45 & 9 \end{bmatrix} = ERROR$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Matrix transpose:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 2 & 8 \\ 3 & 9 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Matrix transpose:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 2 & 8 \\ 3 & 9 \end{bmatrix}$$

Note: vector special case of matrix where one dimension is 1.

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of columns in A matches # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 10 \\ 8 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 1 vector times 2 by 2 matrix is undefined

of columns in A does not match # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of columns in A matches # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of rows in matrix and number of columns in vector defines shape new vector

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \\ 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \\ 0 \cdot 10 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \\ 32 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -3 by 2 matrix times 2 by 1 vector becomes 3 by 1 vector.

of rows in matrix and number of columns in vector defines shape new vector

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 \\ ? \\ ? \end{cases}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ ? & ? \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & ? \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix A * each element in the *column* of matrix B.
- -2 by 2 matrix times 2 by 2 matrix becomes 2 by 2 matrix.

of columns in A matches # of rows in B

Matrix-matrix multiplication is non-commutative: order matters!

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

$$\begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 36 & 48 \\ 136 & 159 \end{bmatrix}$$

$$2 \cdot 3 = 6$$

$$3 \cdot 2 = 6$$

 That's a lot of mathiness. How is this useful for linear regression?

 $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene + \theta_2 \cdot Gene + \theta_n \cdot Gene$

That's a lot of mathiness. How is this useful for linear

regression?

Gene 1

Sample 1

Sample 2

Sample 2.

Sample 3 -2Sample 3 -2Sample 5

Sample m

42

 $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene 1 + \theta_2 \cdot Gene 2 + \theta_n \cdot Gene n$

That's a lot of mathiness. How is this useful for linear

 regression?

 Gene 1
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 Sample 1
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 Sample 2
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 Sample m
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$egin{array}{c|c} oldsymbol{ heta}_0 & 3 \\ -0.5 \\ ... & 5 \\ -1 \end{array}$$

That's a lot of mathiness. How is this useful for linear

$$egin{array}{c|c} eta_0 & 3 \\ -0.5 \\ ... & 5 \\ -1 \end{array}$$

To get vector of predictions from vector of thetas and matrix of data, want to multiply them

That's a lot of *mathiness*. How is this useful for linear

$$\theta_0$$
 θ_1
 -0.5
 θ_n
 -1

To get vector of predictions from vector of thetas and matrix of data, want to multiply them

Dimensions don't match, easy fix: new feature

That's a lot of *mathiness*. How is this useful for linear regression? $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \ 1 + \theta_2 \cdot Gene \ 2 + \theta_n \cdot Gene \ n$

That's a lot of *mathiness*. How is this useful for linear regression? $h_{\theta}(x) = \theta_{0} + \theta_{1} \cdot Gene \ 1 + \theta_{2} \cdot Gene \ 2 + \theta_{n} \cdot Gene \ n$

×—× ERROR

That's a lot of mathiness. How is this useful for linear

regression?

That's a lot of mathiness. How is this useful for linear

regression?

That's a lot of mathiness. How is this useful for linear

regression?

That's a lot of mathiness. How is this useful for linear

regression?

	Intercept	Gene 1	Gene 2	Gene n
Sample 1	1	2	3	-2
Sample 2	1	8	9	1
Sample	1	0	4	5
Sample m	1	5	-2	2

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)

[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)
[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)

[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Summary

- Linear algebra is the basis of ML: algorithms are defined in it and run quickly due to hardware optimised for matrix and vector operations
- Using linear algebra cuts down on code complexity
- You always add a "dummy" feature that is 1 to multiply with θ_0
- We covered how to multiply and add matrices and vectors, and showed that matrix multiplication is non-commutative: order matters!

Summary

- In a very real way we are just using linear algebra as
- fancy bookkeeping, and computer hardware is optimized for this as many operations can be expressed in terms of this bookkeeping.

Numpy details

 During the computer lab, try to make your basic unit a column vector. That is, a 2D array that looks like this:

```
array([[0],
[1]
[5]])
```

- When you subset things, numpy automatically makes single lists
 1D. To make a 1D array 2D again, use array[:,np.newaxis]
- For your thetas, too, don't use a list like so: [0.5, -0.3, 0.8], but make it 2D.
- To check whether something is the right form, you can check that array.ndim == 2, for instance.

 Goal gradient descent: take a small step in every parameter such that you get closer to the minimum of the cost. Return new theta's.

$$\theta_{0new} = \theta_{0} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_{1} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{1}^{(i)})$$

$$\theta_{2new} = \theta_{2} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{2}^{(i)})$$

We have data, known values, and initial theta's:

$$X = \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix}; y = \begin{bmatrix} 10.23 \\ -4 \end{bmatrix}; params = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Get predicted values:

$$\begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} @ \begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{vmatrix} = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix}$$

2 by 3 times 3 by 1 gives 2 by 1 (rows by columns)

Get errors:

Where did the ² go?

$$errs = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix} - y = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix} - \begin{bmatrix} 10.23 \\ -4 \end{bmatrix} = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

$$J=rac{1}{2m}\sum (\mathrm{pred}-y)^2$$

$$J = rac{1}{2m} \sum (\mathrm{pred} - y)^2 \;\;\;\;\;\; rac{\partial J}{\partial \mathrm{pred}} = rac{1}{m} (\mathrm{pred} - y)$$

$$\theta_{0new} = \theta_{0} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_{1} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{1}^{(i)})$$

$$\theta_{2new} = \theta_{2} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{2}^{(i)})$$

$$errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

Calculate, for each feature, sum of each error times that feature:

$$\begin{bmatrix} -1 \\ 1.5 \end{bmatrix}^T = \begin{bmatrix} -1 & 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1.5 \end{bmatrix} @ \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} =$$

$$errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 \cdot 1 + 1.5 \cdot 1 & -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 & -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

Calculate, for each feature, sum of each error times that feature:

$$\begin{bmatrix} -1 \\ 1.5 \end{bmatrix}^T = \begin{bmatrix} -1 & 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1.5 \end{bmatrix} @ \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} =$$

$$-1 \cdot 1 + 1.5 \cdot 1$$
 $-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2$

$$\begin{bmatrix} -1 \cdot 1 + 1.5 \cdot 1 \\ -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 \end{bmatrix} -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

$$\theta_{0new} = \theta_0 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_1 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)})$$

$$\theta_{1new} = \theta_1 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}) \quad \theta_{2new} = \theta_2 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)})$$

 $errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$

Now all that we need to do is multiply with α/m and subtract from our old theta's:

$$\alpha/m \cdot \begin{bmatrix} -1 \cdot 1 + 1.5 \cdot 1 & -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 & -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) & \frac{\alpha}{m}(-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2) & \frac{\alpha}{m}(-1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2) \end{bmatrix}$$

Transpose it:

$$\left[\frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) \quad \frac{\alpha}{m}(-1 \cdot feat_{1}val_{1} + 1.5 \cdot feat_{1}val_{2}) \quad \frac{\alpha}{m}(-1 \cdot feat_{2}val_{1} + 1.5 \cdot feat_{2}val_{2})\right]^{T} = \left[\begin{array}{c} \frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) \\ \frac{\alpha}{m}(-1 \cdot feat_{1}val_{1} + 1.5 \cdot feat_{1}val_{2}) \\ \frac{\alpha}{m}(-1 \cdot feat_{2}val_{1} + 1.5 \cdot feat_{2}val_{2}) \end{array}\right]$$

So finally:

$$\begin{bmatrix} \theta_{0old} \\ \theta_{1old} \\ \theta_{2old} \end{bmatrix} - \begin{bmatrix} \frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) \\ \frac{\alpha}{m}(-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2) \\ \frac{\alpha}{m}(-1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2) \end{bmatrix} = \begin{bmatrix} \theta_{0new} \\ \theta_{1new} \\ \theta_{2new} \end{bmatrix}$$

$$\theta_{1new} = \theta_1 - \left| \frac{a}{m} \sum_{i=1}^m ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}) \right|$$

Relevant XKCD

Computer Lab

- Practicing vector and matrix operations with numpy
- Changing cost function, hypothesis function, and gradient descent to work with matrices and vectors
- Working with a real biological dataset

HAVE FUN!

(and/or suffer if it's too hard... but then tell me and I shall try to ease your suffering)