LABORATORIO 4

Unidad 5

Camila Paladines

Computación Científica

Profesor: Hernán Darío Vargas Cardona, PhD

Mayo 21 de 2021

RESUMEN

En este informe se describen los resultados conseguidos al implementar algoritmos en Python para la obtención de respuestas a problemas matemáticos, como lo es el cómputo de la derivada y la integral de una función. Las derivadas son calculadas mediante los Métodos de Diferenciación Finita: Hacia Adelante, Hacia Atrás y Centrada. Las integrales son calculadas mediante las Reglas de Cuadratura Compuesta: Punto Medio, Trapezoide y Simpson. Además, se realizan algunos análisis sobre los métodos utilizados aplicándolos a funciones de diferente complejidad, donde se observa su comportamiento dependiendo de diversos factores. También se calcula la complejidad computacional y la exactitud, con el fin de comparar los métodos y determinar cuál obtuvo mejores resultados para las funciones usadas.

ABSTRACT

This report describes the results achieved by implementing algorithms in Python to obtain answers to mathematical problems, such as the computation of the derivative and the integral of a function. The derivatives are computed by the Finite Differentiation Methods: Forward, Backward and Centered. The integrals are calculated by the Composite Quadrature Rules: Midpoint, Trapezoid and Simpson. In addition, some analyses are made on the methods used by applying them to functions of different complexity, where their behavior is observed depending on different factors. The computational complexity and accuracy are also calculated, in order to compare the methods and determine which one obtained better results for the functions used.

Contenido

1.	Intr	oducci	iór	1																				1
2.	Mat	teriales	s y	M	[étc	do	os																	2
	2.1.	Mater	ial	es .																				2
	2.2.	Métod	los																					2
		2.2.1.	Γ	ifer	enc	iac	ió	n	nu	\mathbf{m}	ér	ic	a											2
		2.2.2.	Iı	nteg	grac	ión	n	ur	né	ri	ca													3
3.	Res	ultado	s (de !	las	Si	m	ula	ac	io	n	es												4
	3.1.	Difere	nci	aci	ón .																			4
		3.1.1.	Е	jen	ıplo	1																		4
		3.1.2.	E	jer	plo	2																		8
		3.1.3.	Е	jer	plo	3																		13
	3.2.	Integra	aci	ón																				17
		3.2.1.	Е	jer	ıplo	1																		17
		3.2.2.	E	jem	ıplo	2																		18
		3.2.3.	Е	jem	plo	3																		18
4.	Disc	cusión	\mathbf{y}	An	ális	sis																		19
	4.1.	Difere	nci	aci	ón .																			19
	4.2.	Integra	aci	ón										•								•		19
5.	Con	clusio	ne	\mathbf{s}																				20
6.	Refe	erencia	as																					21

Índice de Figuras

1.	D.F.H.Adelante del Ejemplo 1	5
2.	D.F.H.Atrás del Ejemplo 1	6
3.	D.F.C. del Ejemplo 1	7
4.	Métodos del Ejemplo 1	8
5.	D.F.H. Adelante del Ejemplo 2	10
6.	D.F.H.Atrás del Ejemplo 2	11
7.	D.F.C. del Ejemplo 2	12
8.	Métodos del Ejemplo 2	13
9.	D.F.H.Adelante del Ejemplo 3	14
10.	D.F.H.Atrás del Ejemplo 3	15
11.	D.F.C. del Ejemplo 3	17
12.	Métodos del Ejemplo 3	17
Índio	ce de Tablas	
1.	D.F.H.Adelante del Ejemplo 1 (Derivadas)	4
2.	D.F.H. Adelante del Ejemplo 1 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	4
3.	D.F.H. Atrás del Ejemplo 1 (Derivadas)	5
4.	D.F.H. Atrás del Ejemplo 1 (Tiempo y Error) \hdots	6
5.	D.F.C. del Ejemplo 1 (Derivadas)	6
6.	D.F.C. del Ejemplo 1 (Tiempo y Error)	7
7.	Métodos del Ejemplo 1	8
8.	D.F.H. Adelante del Ejemplo 2 (Derivadas)	9
9.	D.F.H. Adelante del Ejemplo 2 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	9
10.	D.F.H. Atrás del Ejemplo 2 (Derivadas)	10
11.	D.F.H. Atrás del Ejemplo 2 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	11
12.	D.F.C. del Ejemplo 2 (Derivadas)	11
13.	D.F.C. del Ejemplo 2 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	12
14.	D.F.H.Adelante del Ejemplo 3 (Derivadas)	14

Laboratorio 4

15.	D.F.H. Adelante del Ejemplo 3 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	14
16.	D.F.H. Atrás del Ejemplo 3 (Derivadas)	15
17.	D.F.H. Atrás del Ejemplo 3 (Tiempo y Error) $\ \ldots \ \ldots \ \ldots$	15
18.	D.F.C. del Ejemplo 3 (Derivadas)	16
19	D.F.C. del Eiemplo 3 (Tiempo y Error)	16

1. Introducción

2. Materiales y Métodos

2.1. Materiales

Para el desarrollo de esta unidad se usó Python 3.7, con las siguientes librerías:

- numpy. Para funciones matemáticas como promedio, desviación estándar, entre otros.
- pyplot. Para graficar las funciones en el plano y las estadísticas de los métodos con respecto a su exactitud y tiempo de ejecución.
- time. Para calcular los tiempos de cómputo de cada uno de los métodos en diferenciación e integración.
- sympy. Para modelar la variable t dentro de las operaciones de los métodos de diferenciación e integración.

2.2. Métodos

2.2.1. Diferenciación numérica

Dada una función f(x), su primera derivada f'(x) se puede hallar mediante los siguientes métodos, con un $h \in \mathbb{R}$ seleccionado:

■ Diferencias Finitas Hacia Adelante

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Diferencias Finitas Hacia Atrás

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

■ Diferencias Finitas Centrada

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Además, se puede hallar su segunda derivada f''(x) mediante la siguiente expresión:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

2.2.2. Integración numérica

Dada una función f(x), su integral definida $\int_a^b f(x) dx$ se puede hallar mediante los siguientes métodos con las reglas de cuadratura compuesta:

■ Regla del Punto Medio

$$I(f) = M_c(f) = \sum_{i=1}^{n} (x_i - x_{i-1}) f\left(\frac{x_{i-1} + x_i}{2}\right)$$

■ Regla del Trapezoide

$$I(f) = T_c(f) = \frac{1}{2} \sum_{i=1}^{n} (x_i - x_{i-1}) \left[f(x_{i-1}) + f(x_i) \right]$$

■ Regla de Simpson

$$I(f) = S_c(f) = \frac{1}{6} \sum_{i=1}^{n} (x_i - x_{i-1}) \left[f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_i) \right]$$

3. Resultados de las Simulaciones

3.1. Diferenciación

3.1.1. Ejemplo 1

Para la función f(x) que se muestra a continuación:

$$f(x) = 5x^4 + 10x^3 + 15x^2 + x + 7$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 20x^3 + 30x^2 + 30x + 1$$

Diferencias Finitas Hacia Adelante

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Adelante:

h	$\mathbf{f}'(\mathbf{x})$
1	$20x^3 + 60x^2 + 80x + 31$
0.3	$20,0x^3 + 39,0x^2 + 40,8x + 6,535$
0.05	$20,0x^3 + 31,5x^2 + 31,55x + 1,775625$
0.007	$20.0x^3 + 30.21x^2 + 30.21098x + 1.10549171499995$

Cuadro 1: D.F.H.Adelante del Ejemplo 1 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0002865791	40.0200200200	30.2542900815
0.3	0.0003674030	8.5410060060	6.7960778275
0.05	0.0003929138	1.2766260010	1.0016174935
0.007	0.0003767014	0.1756318551	0.1371237561

Cuadro 2: D.F.H.Adelante del Ejemplo 1 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-1, 1]:

Figura 1: D.F.H.Adelante del Ejemplo 1

Diferencias Finitas Hacia Atrás

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Atrás:

h	$\mathbf{f}'(\mathbf{x})$
1	$20x^3 + 20x - 9$
0.3	$20,0x^3 + 21,0x^2 + 22,8x - 2,735$
0.05	$20,0x^3 + 28,5x^2 + 28,55x + 0,274374999999999$
0.007	$20,0x^3 + 29,79x^2 + 29,79098x + 0,895488284999953$

Cuadro 3: D.F.H.Atrás del Ejemplo 1 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-1, 1]:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0003020763	20.0200200200	10.6639798730
0.3	0.0003807545	6.7410060060	4.9541326783
0.05	0.0003736019	1.2266260010	0.9502828016
0.007	0.0003933907	0.1746518551	0.1361175049

Cuadro 4: D.F.H.Atrás del Ejemplo 1 (Tiempo y Error)

Figura 2: D.F.H.Atrás del Ejemplo 1

Diferencias Finitas Centrada

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Centrada:

h	$\mathbf{f'}(\mathbf{x})$
1	$20x^3 + 30x^2 + 50x + 11$
0.3	$20,0x^3 + 30,0x^2 + 31,8x + 1,9$
0.05	$20,0x^3 + 30,0x^2 + 30,05x + 1,025$
0.007	$20,0x^3 + 30,0x^2 + 30,00098x + 1,00048999999999$

Cuadro 5: D.F.C. del Ejemplo 1 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método

mencionado anteriormente:

h	Tiempo	$\mathbf{Error}\;(\bar{\mathbf{e}})$	Error $(\sigma_{\rm e})$
1	0.0005316734	12.5075075075	8.7842201067
0.3	0.0005333424	1.1256756757	0.7905798096
0.05	0.0004818439	0.0312687688	0.0219605503
0.007	0.0004441738	0.0006128679	0.0004304268

Cuadro 6: D.F.C. del Ejemplo 1 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-1, 1]:

Figura 3: D.F.C. del Ejemplo 1

Comparación de los métodos

En la siguiente tabla se puede observar las derivadas calculadas por cada método, con un h=1:

Que se puede ver mejor en la siguiente gráfica:

Método	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
Hacia Adelante	0.00028	40.02002	30.25429
Hacia Atrás	0.00021	20.02002	10.66398
Centrada	0.00038	12.50751	8.78422

Cuadro 7: Métodos del Ejemplo 1

Figura 4: Métodos del Ejemplo 1

3.1.2. Ejemplo 2

Para la función f(x) que se muestra a continuación:

$$f(x) = 3^{x+2}$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 3^{x+2}\log(3)$$

Diferencias Finitas Hacia Adelante

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Adelante:

h	$\mathbf{f}'(\mathbf{x})$
1	$18 \cdot 3^x$
0.4	$12,4165254130956 \cdot 3^x$
0.06	$10,2206666174247 \cdot 3^x$
0.008	$9,9310883338062 \cdot 3^x$

Cuadro 8: D.F.H.Adelante del Ejemplo 2 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0001871586	576.4225938765	507.7829220821
0.4	0.0002374649	179.6959240779	158.2979612247
0.06	0.0002160072	23.6719763021	20.8531473711
0.008	0.0001940727	3.0963604704	2.7276497906

Cuadro 9: D.F.H.Adelante del Ejemplo 2 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [2, 5]:

Figura 5: D.F.H.Adelante del Ejemplo 2

Diferencias Finitas Hacia Atrás

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Atrás:

h	$\mathbf{f'}(\mathbf{x})$	
1	$6 \cdot 3^x$	
0.4	$8,00113466301178 \cdot 3^x$	
0.06	$9,56867815482534 \cdot 3^x$	
0.008	$9,84418744924346 \cdot 3^x$	

Cuadro 10: D.F.H.Atrás del Ejemplo 2 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-1, 1]:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0001800060	276.2221103278	243.3299315745
0.4	0.0002372265	134.0340375931	118.0734343007
0.06	0.0001940727	22.6542328510	19.9565955201
0.008	0.0002789497	3.0782711140	2.7117144918

Cuadro 11: D.F.H.Atrás del Ejemplo 2 (Tiempo y Error)

Figura 6: D.F.H. Atrás del Ejemplo 2

Diferencias Finitas Centrada

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Centrada:

h	$\mathbf{f'}(\mathbf{x})$	
1	$12 \cdot 3^x$	
0.4	$10,2088300380537 \cdot 3^x$	
0.06	$9,89467238612502 \cdot 3^x$	
0.008	$9,88763789152483 \cdot 3^x$	

Cuadro 12: D.F.C. del Ejemplo 2 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método

mencionado anteriormente:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0002086163	150.1002417743	132.2264952538
0.4	0.0002739429	22.8309432424	20.1122634620
0.06	0.0002558231	0.5088717255	0.4482759255
0.008	0.0004060268	0.0090446782	0.0079676494

Cuadro 13: D.F.C. del Ejemplo 2 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo $[-1,\ 1]$:

Figura 7: D.F.C. del Ejemplo 2

Comparación de los métodos

En la siguiente gráfica se puede observar las derivadas calculadas con cada método, con un h=1:

Figura 8: Métodos del Ejemplo 2

3.1.3. Ejemplo 3

Para la función f(x) que se muestra a continuación:

$$f(x) = \sin(2x^3)$$

Su derivada analítica f'(x) es la siguiente:

$$f'(x) = 6x^2 \cos(2x^3)$$

Diferencias Finitas Hacia Adelante

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Adelante:

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [2, 5]:

h	$\mathbf{f}'(\mathbf{x})$
1	$-\sin(2x^3) + \sin(2x^3 + 6x^2 + 6x + 2)$
0.2	$-5.0\sin(2x^3) + 5.0\sin(2x^3 + 1.2x^2 + 0.24x + 0.016)$
0.03	$-33,33\sin(2x^3) + 33,33\sin(2x^3 + 0.18x^2 + 0.0054x + 5.4 \times 10^{-5})$
0.004	$-250.0\sin(2x^3) + 250.0\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7})$

Cuadro 14: D.F.H.Adelante del Ejemplo 3 (Derivadas)

h	Tiempo	$\mathbf{Error} (\bar{\mathbf{e}})$	Error $(\sigma_{\mathbf{e}})$
1	0.0001449585	0.8342250659	0.5176513102
0.2	0.0002148151	0.2882652848	0.1580405199
0.03	0.0001780987	0.0436308915	0.0241637126
0.004	0.0001888275	0.0058181619	0.0032225803

Cuadro 15: D.F.H.Adelante del Ejemplo 3 (Tiempo y Error)

Figura 9: D.F.H.Adelante del Ejemplo 3

Diferencias Finitas Hacia Atrás

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Hacia Atrás:

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método

h	$\mathbf{f'}(\mathbf{x})$	
1	$\sin(2x^3) - \sin(2x^3 - 6x^2 + 6x - 2)$	
0.2	$5.0\sin(2x^3) - 5.0\sin(2x^3 - 1.2x^2 + 0.24x - 0.016)$	
0.03	$33,33\sin(2x^3) - 33,33\sin(2x^3 - 0.18x^2 + 0.0054x - 5.4 \times 10^{-5})$	
0.004	$250.0\sin(2x^3) - 250.0\sin(2x^3 - 0.024x^2 + 9.6 \times 10^{-5}x - 1.28 \times 10^{-7})$	

Cuadro 16: D.F.H.Atrás del Ejemplo 3 (Derivadas)

mencionado anteriormente:

h	Tiempo	Error (ē)	Error $(\sigma_{\mathbf{e}})$
1	0.0001571178	0.8342250659	0.5176513102
0.2	0.0002036095	0.2882652848	0.1580405199
0.03	0.0001914501	0.0436308915	0.0241637126
0.004	0.0001811981	0.0058181619	0.0032225803

Cuadro 17: D.F.H.Atrás del Ejemplo 3 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-1, 1]:

Figura 10: D.F.H. Atrás del Ejemplo
 $3\,$

Diferencias Finitas Centrada

En la siguiente tabla se muestran las derivadas calculadas f'(x) con cada valor de h usando el método de Diferencias Finitas Centrada:

h	$\mathbf{f}'(\mathbf{x})$		
1	$-\sin(2x^3 - 6x^2 + 6x - 2)/2 + \sin(2x^3 + 6x^2 + 6x + 2)/2$		
0.2	$-2.5\sin(2x^3 - 1.2x^2 + 0.24x - 0.016) + 2.5\sin(2x^3 + 1.2x^2 + 0.24x + 0.016)$		
0.03	$-16.7\sin(2x^3 - 0.18x^2 + 0.0054x - 5.4 \times 10^{-5}) + 16.67\sin(2x^3 + 0.18x^2 + 0.0054x + 5.4 \times 10^{-5})$		
0.004	$ -125\sin(2x^3 - 0.024x^2 + 9.6 \times 10^{-5}x - 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-5}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-7}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-7}x + 1.28 \times 10^{-7}) + 125\sin(2x^3 + 0.024x^2 + 9.6 \times 10^{-7}x + 1.28 \times 10^{-$		

Cuadro 18: D.F.C. del Ejemplo 3 (Derivadas)

A continuación se describen el tiempo de ejecución (en segundos), el error promedio (\bar{e}) y la desviación del error (σ_e) para cada valor de h usando el método mencionado anteriormente:

h	Tiempo	Error (\bar{e})	Error $(\sigma_{\mathbf{e}})$
1	0.0002501011	0.7206591346	0.3395537771
0.2	0.0002789497	0.0666257737	0.0206545798
0.03	0.0002791882	0.0015740637	0.0003740845
0.004	0.0002813339	0.0000280122	0.0000066134

Cuadro 19: D.F.C. del Ejemplo 3 (Tiempo y Error)

Las derivadas calculadas en cada valor de h por el método mencionado se pueden ver en la siguiente gráfica, en un intervalo [-0.5, 0.5]:

Comparación de los métodos

En la siguiente gráfica se puede observar las derivadas calculadas con cada método, con un h=1:

Figura 11: D.F.C. del Ejemplo $3\,$

Figura 12: Métodos del Ejemplo 3

3.2. Integración

3.2.1. Ejemplo 1

- 3.2.2. Ejemplo 2
- 3.2.3. Ejemplo 3

- 4. Discusión y Análisis
- 4.1. Diferenciación
- 4.2. Integración

5. Conclusiones

6. Referencias

- Material del curso, disponible en BlackBoard
- \blacksquare Bornemann, F., 2016. Numerical linear algebra. 1st ed. Simson, W.
- Mathews, J., Fink, K., Fernández Carrión, A. & Contreras Márquez, M., 2011. Métodos Numéricos con MATLAB. 3rd ed. Madrid: Pearson Prentice Hall.
- Librería Numpy
- Librería Pyplot (Matplotlib)
- <u>Librería Time</u>
- Librería Sympy