

1 Claims 1-34 remain in the application and are listed as follows:

2

3 **1. (Original)** A method comprising:

4 receiving a web page definition having a slicing tree describing an
5 arrangement of a plurality of blocks in the web page; and
6 rendering the web page on a display screen according to the slicing tree.

7

8 **2. (Original)** A method as recited in claim 1 wherein the web page
9 definition further includes block property data associated with one or more of the
10 plurality of blocks.

11

12 **3. (Original)** A method as recited in claim 2 further comprising
13 scaling one or more of the plurality of blocks according to a function of display
14 screen size and the block property data.

15

16 **4. (Original)** A method as recited in claim 2 further comprising
17 selecting a combination of the plurality of blocks to be adapted such that
18 information fidelity is maximized according to the expression:

19

$$IF(P) = \sum_{B_i \in P} IMP_i \cdot IF_{B_i},$$

20 where IMP_i is a value representing importance of block B_i , IF_{B_i} is a value
21 representing information fidelity of block B_i , and $IF(P)$ is the total information
22 fidelity of the web page.

1 **5. (Original)** A method as recited in claim 2 wherein the block
2 property data comprises:

3 an importance field;
4 a minimal perceptible size field;
5 a minimal perceptible height field;
6 a minimal perceptible width field;
7 an adjustability field; and
8 an alternative field.

9
10 **6. (Original)** A method as recited in claim 5 further comprising
11 determining a scaling number using a capacity based ratio algorithm.

12
13 **7. (Original)** A method as recited in claim 1 further comprising
14 summarizing one or more of the plurality of blocks.

15
16 **8. (Original)** A method as recited in claim 1 further comprising
17 associating a scaling factor with one or more of the plurality of blocks.

18 **9. (Original)** A method as recited in claim 1 further comprising
19 generating a binary tree having a plurality of nodes, wherein each node
20 corresponds to a combination of the plurality of blocks.

1 **10. (Original)** A method as recited in claim 9 further comprising
2 maximizing information fidelity subject to:

3
$$\sum_{B_i \in P'} \text{size}(ALT_i) + \sum_{B_i \in P'} MPS_i \leq Area ,$$

4 where ALT_i is an adapted representation of block B_i , $\text{size}(ALT_i)$ is a
5 function that returns the size of ALT_i , MPS_i is a value representing a minimum
6 perceptible size of block B_i , and $Area$ is a value representing the size of the target
7 area in which the web page is rendered.

8

9 **11. (Original)** A method as recited in claim 1 further comprising
10 scaling one or more of the blocks to maximize information fidelity subject to a
11 target area on the display screen.

12

13 **12. (Original)** A computer-readable medium having stored thereon
14 computer-executable instruction for performing a method comprising:

15 generating a web page definition having block property data defining a
16 minimum perceptible size of a plurality of blocks in the web page.

17

18 **13. (Original)** A computer-readable medium as recited in claim 12,
19 the method further comprising generating a slicing tree defining the horizontal and
20 vertical arrangement of the plurality of blocks in the web page.

21

22 **14. (Original)** A computer-readable medium as recited in claim 12
23 wherein the block property data further comprises an importance value, an
24 alternative representation, an adjustment value, a minimum perceptible height
value, and a minimum perceptible width value.

1 **15. (Original)** A computer-readable medium as recited in claim 12
2 wherein the web page definition is dynamically generated on a server side object.
3

4 **16. (Original)** A computer-readable medium as recited in claim 12,
5 the method further comprising adapting one of more of the blocks to fit in a target
6 area based on the minimum perceptible size.
7

8 **17. (Original)** A processor-readable medium having processor-
9 executable instructions for performing a method comprising:
10

11 receiving a web page definition defining a plurality of blocks in a web
page;

12 determining a maximum information fidelity associated with a combination
13 of summarized and unsummarized blocks in the web page; and

14 rendering the web page with the combination of summarized and
15 unsummarized blocks.
16

17 **18. (Original)** A processor-readable medium as recited in claim 17,
18 the method further comprising:
19

20 scaling one or more of the blocks based on a slicing tree definition in the
web page definition.
21
22
23
24
25

1 **19. (Original)** A processor-readable medium as recited in claim 17,
2 wherein the determining a maximum information fidelity comprises:

3 generating a binary tree having a plurality of nodes, each node representing
4 a combination of unsummarized blocks; and

5 performing a depth-first traversal of the binary tree to identify the
6 combination of unsummarized blocks for which the information fidelity is
7 maximized.

8

9 **20. (Original)** A processor-readable medium as recited in claim 19,
10 wherein the performing a depth-first traversal comprises sorting the plurality of
11 blocks in order of decreasing importance.

12

13 **21. (Original)** A processor-readable medium as recited in claim 19,
14 wherein the performing a depth-first traversal comprises determining whether the
15 combinations of unsummarized blocks are valid.

16

17 **22. (Original)** A processor-readable medium as recited in claim 19,
18 wherein the performing a depth-first traversal comprises determining whether the
19 combinations of unsummarized blocks are feasible in accordance with block
20 property data.

21

22 **23. (Original)** A system comprising:
23 a browser operable to browse a web page based on a web page definition
24 comprising a slicing tree defining an arrangement of a plurality of rectangular
25 regions in the web page.

1 **24. (Original)** A system as recited in claim 23, wherein the web page
2 definition further comprises:

3 parametric data associated with one of the plurality of rectangular regions,
4 the parametric data describing adaptability parameters related to the associated
5 rectangular region.

6

7 **25. (Original)** A system as recited in claim 24 further comprising:
8 a proxy module operable to generate an adapted web page definition based
9 on the parametric data; and

10 a rendering module operable to render an adapted web page based on the
11 adapted web page definition.

12

13 **26. (Original)** A system as recited in claim 25, wherein the proxy
14 module is further operable to determine a set of the plurality of rectangular regions
15 to be summarized such that information fidelity of the adapted web page is
16 maximized.

17

18 **27. (Original)** A system as recited in claim 26, wherein the proxy
19 module is further operable to traverse a binary tree having nodes representing sets
20 of unsummarized rectangular regions.

1 **28. (Original)** A method of generating a web page having a plurality
2 of blocks, the method comprising:

3 determining a first information fidelity associated with a first set of the
4 plurality of blocks;

5 determining a second information fidelity related to a second set of the
6 plurality of blocks; and

7 rendering the first set of blocks in a summarized fashion if the first
8 information fidelity is greater than the second information fidelity.

9
10 **29. (Original)** A method as recited in claim 28 further comprising:
11 arranging the plurality of blocks according to a slicing tree.

12
13 **30. (Original)** A method as recited in claim 28 further comprising:
14 scaling a first block based on a minimum perceptible size value associated
15 with the first block and a target display area.

16
17 **31. (Original)** A method as recited in claim 28 further comprising
18 associating an importance value to each block in the plurality of blocks.

19
20 **32. (Original)** A method as recited in claim 31 wherein the
21 importance values range from zero to one.

22
23 **33. (Original)** A method as recited in claim 29 wherein the slicing
24 tree is defined in a markup language file defining the web page.

1 **34. (Original)** A method as recited in claim 33 wherein the markup
2 language file further comprises block property data for each of the plurality of
3 blocks in the web page.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25