Mid Term Exam Marlen Akimaliev BIL622-Numerical Analysis II

Friday $31^{\rm st}$ March, 2017

1 Solve the following Cauchy problem:

1.1 Description

$$y'' + 1/5 \times y' + 3.125 \times y = 0$$

$$y(0) = 0$$

$$y'(0) = 1$$

1.2 Solution

Solution for 100 points as a table in the interval of t at $\left[0;10\right]$ with step size 0.1 is as follows:

t	y1	y2
0.00000	0.00000	1.00000
0.10000	0.10000	1.00000
0.20000	0.20000	0.96875
0.40000	0.38750	0.81348
0.50000	0.46885	0.69238
0.60000	0.53809	0.54587
0.70000	0.59267	0.37772
0.80000	0.63044	0.19251
0.90000	0.64969	-0.00451
1.00000	0.64924	-0.20754
1.10000	0.62849	-0.41043
1.20000	0.58745	-0.60683
1.30000	0.52676	-0.79041
1.40000	0.44772	-0.95502
1.50000	0.35222	-1.09493
1.60000	0.24273	-1.20500
1.70000	0.12223	-1.28086
1.80000	-0.00586	-1.31905
1.90000	-0.13776	-1.31722
2.00000	-0.26949	-1.27417
2.10000	-0.39690	-1.18996

2.20000	-0.51590	-1.06593
2.30000	-0.62249	-0.90471
2.40000	-0.71296	-0.71018
2.50000	-0.78398	-0.48738
2.60000	-0.83272	-0.24238
2.70000	-0.85696	0.01784
2.80000	-0.85517	0.28564
2.90000	-0.82661	0.55288
3.00000	-0.77132	0.81119
3.10000	-0.69020	1.05223
3.20000	-0.58498	1.26792
3.30000	-0.45819	1.45072
3.40000	-0.31311	1.59391
3.50000	-0.15372	1.69176
3.60000	0.01545	1.73979
3.70000	0.18943	1.73496
3.80000	0.36293	1.67577
3.90000	0.53051	1.56235
4.00000	0.68674	1.39657
4.10000	0.82640	1.18196
4.20000	0.94459	0.92371
4.30000	1.03697	0.62853
4.40000	1.09982	0.30448
4.50000	1.13027	-0.03922
4.60000	1.12634	-0.39243
4.70000	1.08710	-0.74441
4.80000	1.01266	-1.08413
4.90000	0.90425	-1.40058
5.00000	0.76419	-1.68316
5.10000	0.59587	-1.92197
5.20000	0.40368	-2.10818
5.30000	0.19286	-2.23433
5.40000	-0.03057	-2.29460
5.50000	-0.26003	-2.28504
5.60000	-0.48854	-2.20378
5.70000	-0.70892	-2.05111
5.80000	-0.91403	-1.82958
5.90000	-1.09699	-1.54394
6.00000	-1.25138	-1.20114
6.10000	-1.37149	-0.81008
6.20000	-1.45250	-0.38149
6.30000	-1.49065	0.07242
6.40000	-1.48341	0.53825
6.50000	-1.42958	1.00181
6.60000	-1.32940	1.44856
6.70000	-1.18455	1.86400
6.80000	-0.99815	2.23417
6.90000	-0.77473	2.54609
7.00000	-0.52012	2.78819
7.10000	-0.24130	2.95073
0000	1 0:-1100	1 =:000,0

```
7.20000
           0.05377
                       3.02614
7.30000
                       3.00933
           0.35638
7.40000
           0.65732
                       2.89796
7.50000
           0.94711
                       2.69255
7.60000
           1.21637
                       2.39658
7.70000
           1.45603
                       2.01646
7.80000
           1.65767
                       1.56145
7.90000
           1.81382
                       1.04343
8.00000
           1.91816
                       0.47661
8.10000
           1.96582
                      -0.12281
8.20000
           1.95354
                      -0.73713
           1.87983
8.30000
                      -1.34761
8.40000
           1.74507
                      -1.93506
8.50000
           1.55156
                      -2.48039
8.60000
           1.30352
                      -2.96526
8.70000
           1.00700
                      -3.37261
8.80000
           0.66974
                      -3.68729
8.90000
                      -3.89659
           0.30101
9.00000
           -0.08865
                      -3.99065
9.10000
          -0.48772
                      -3.96295
9.20000
          -0.88401
                      -3.81053
          -1.26507
9.30000
                      -3.53428
9.40000
           -1.61849
                      -3.13895
9.50000
           -1.93239
                      -2.63317
9.60000
           -2.19571
                      -2.02930
9.70000
           -2.39863
                      -1.34314
9.80000
           -2.53295
                      -0.59357
9.90000
           -2.59231
                       0.19798
10.00000
          -2.57251
                       1.00808
```

I have used the following Python code [1] to evaluate values and plot the graph.

```
Solves a Cauchy problem for a 2nd order ODE by Euler's method
#
#
                 y'' + 1/5y' + 3.125y = 0, y(0) = 0, y'(0) = 1
#
   Equivalent \ problem: \ y[1] = y, \ y[2] = y
#
      y[1], = y[2],
                       y[1](0) = 0
#
      y[2]' = -3.125y[1] - 1/5y[2],
                                       y/2/(0) = 1
#
from math import *
from ode import *
from matplotlib import pyplot as plt
def Func(t, y, f):
                                                        # Right-hand sides of ODEs
        f[1] = y[2]

f[2] = -3.125*y[1]-1/5*y[2]
\# main
y0 = 0; dy0 = 1
                                           \# initial values \implies y(t) = sin(t)
```

```
tmax = 10e0
# time span
ht = 0.1e0
# step size
n = 2
nt = int(tmax/ht + 0.5) + 1
y = [0] * (n+1)
out = open("ode.txt","w")
# open output file
out.write("----t----y1-----y2\n")
t = 0e0
y_{-1} = []
y_{-2} = []
y[1] = y0; y[2] = dy0
# initial values
out.write(("\{0:10.5f\}\{1:10.5f\}\{2:10.5f\}\n").
           format(t,y[1],y[2]))
y_1. append (y[1])
y_2. append (y[2])
while (t+ht \le tmax):
# propagation loop
   Euler (t, ht, y, n, Func)
   t += ht
   y_1. append (y[1])
   y_2. append (y[2])
   out.write(("\{0:10.5f\}\{1:10.5f\}\{2:10.5f\}\n").
              format(t,y[1],y[2]))
out.close()
plt.plot(y_1, y_2)
plt.title("Euler_method")
plt.xlabel('Value_of_y[1]')
plt.ylabel('Value_of_y[2]')
plt . legend (loc=4)
plt.grid()
plt.savefig('1_1.eps', fmt='EPS', dpi=100)
plt.show()
Plot for these values will be as follows:
```

number of 1st order ODEs

number of time steps

solution components

2 Solve the following Boundary Value Problem:

2.1 Description

```
y'' + (x - 1) \times y' + 3.125 \times y = 4 \times x

y(0) = 1

y(1) = 1.368
```

2.2 Solution

I have used the following Python code [2] to evaluate values and plot the graph.

```
y'' + (x-1)y' + 3.125y = 4x
#
        y(0) = 1
        y(1) = 1.368

y1' = y2
#
#
        y2' = 4x - (x-1)y2 - 3.125y1
import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
\mathbf{def} fun(x, y, p):
        x = p[0]
        return np. vstack ((y[1], 4*x-(x-1)*y[1] - 3.125*y[0]))
def bc(ya, yb, p):
        k = p[0]
        return np.array ([ya[0], yb[0], ya[1] - k])
x = np.linspace(0, 1, 5)
y = np.zeros((2, x.size))
y[0, 1] = 1
y[0, 3] = 1.3
```

```
sol = solve_bvp(fun, bc, x, y, p=[5])
print sol.p[0]

x_plot = np.linspace(0, 1, 100)
y_plot = sol.sol(x_plot)[0]
plt.plot(x_plot, y_plot)
plt.grid()
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```

Plot for these values will be as follows:

References

- [1] Introduction to Numerical Programming, http://phys.ubbcluj.ro/ tbeu/INP/programs.html
- [2] scipy.integrate.solve-bvp, https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.integrate.solve-bvp.h