DIFFERENTIATION TEST 2022

UGANDA ADVANCED CERTIFICATE OF EDUCATION PURE MATHEMATICS

DURATION: 3 hours

INSTRUCTIONS: Attempt all the questions in section A and only five questions in section B.

SECTION A: (40 MARKS) Attempt all questions in this section.

- 1. Find the equation of the normal to the curve $y^2 + 3xy = 2x^2 1$ at the point (2,1) (05 marks)
- 2. Find the stationary points of the curve $y = \frac{x+3}{\sqrt{x+1}}$ and distinguish between them. (05 marks)
- 3. Using calculus of small changes, find the approximate value of $\tan 44.2^{\circ}$. (05 marks)
- 4. In a right pyramid with a square base, the sum of its heigh and the perimeter of its base is 36 m. Find the maximum height of the pyramid. (05 marks)
- 5. If $ye^{2x} = A\cos 3x + B\sin 3x$ where A and B are constants, show that $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$.

- 6. Differentiate $x^2 + cos2x$ from first principles. (05 marks)
- 7. Given $2x = t + \frac{1}{t}$ and $2y = t \frac{1}{t}$, show that $\frac{d^2y}{dx^2} = (\frac{2t}{t^2 1})^3$. (05 marks)
- 8. For an expression $R = kT^{\frac{2}{3}}$ where k is constant of proportionality. Calculate the percentage error in R if the error made in T is 2%.

SECTION B: (60 MARKS) Attempt only five questions from this section.

- 9. (a) Show that $e^x \cos x$ has two turning points in the interval $0 \le x \le \pi$. (06 *marks*)
 - (b) A large container in the shape of a right circular cone of height 10m and base radius 1m is catching drips from a tap leaking at a rate of $0.1m^3s^{-1}$. Find the rate at which the surface area of the water is increasing when the water is half way up the cone. (06 marks)
- 10. (a) Show that if $y = x + log_e \left[\frac{(1+x)e^{-2x}}{(1-x)} \right]^{\frac{1}{2}}$ then $\frac{d^2y}{dx^2} = \frac{2x}{(1-x^2)^2}$.
 - (b) One of the stationary points of the curve $y = \frac{ax+b}{x^2+1}$ is (2,1). Find the values of a and b.

. (05 marks)

11. (a) Find the equation of the normal to the curve $\frac{y}{x+siny} = 3$ at the point where $y = \pi$

(06 marks)

- (b) A cylinder of maximum volume V is to be cut from a solid sphere of radius R. Prove that $V = \frac{4\sqrt{3}\pi R^3}{9}$. (06 marks)
- 12. (a) Given that $y = \sqrt{\frac{1-\cos x}{1+\cos x}}$, show that $\frac{dy}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$. (06 marks)
- (b) Find the equation of the tangent and normal to the curve y = ln(3x 5) at the point where x = 2. (06 marks)
- 13. (a) Given $y^3 = \frac{x-1}{(x^2-1)^2}$, show that $\frac{dy}{dx} = \frac{1-3x}{3(x+1)^{\frac{5}{3}}(x-1)^{\frac{4}{3}}}$. (06 marks)
- (b) Find and classify the stationary points of the curve $y = 3x^4 4x^3$. Hence sketch the curve '

. (06 marks)

- 14. (a) A closed hollow right circular cone has internal height a and internal radius a. A solid circular cylinder of height h just fits inside the cone with the axis of the cylinder lying along the axis of the cone. Show that the volume of the cylinder is $\pi h(a-h)^2$. If a is fixed and h may vary, find h in terms of a when the volume of the cylinder is maximum. (06 marks)
- (b) Differentiate the following with respect to x

(i)
$$(lnx)^x$$
 (03 marks)

(ii)
$$10^{\sqrt{1-x^2}}$$
 (03 marks)

- 15. (a) A square of side x cm is cut from each of the corners of a rectangular piece of cardboard 15 cm by 24 cm. The cardboard is then folded to form a box of depth x cm. Find the value of x for which the volume of the box is maximum. (06 marks)
- (b) Differentiate with respect to x:

(i)
$$\frac{(x-1)^2 e^{4x}}{(x+1)^3}$$
 (04 marks)

(ii)
$$\sin^2(\sqrt{1-x^2})$$
 (02 marks)

- 16. (a) A particle moves in a straight line so that after t seconds, its distance from a fixed point O is S metres where $S = t^2 e^{2-t}$. Find the distance of the particle from point O when it first comes to rest and its acceleration at that point. (06 marks)
- (b) If $y^2 2y\sqrt{1 + x^2} + x^2 = 0$. Show that $\frac{dy}{dx} = \frac{x}{\sqrt{1 + x^2}}$. Hence find $\frac{d^2y}{dx^2}$. (06 marks)