P.Krause, K. Schweizer

Übungsblatt 1

23.09.2019

Aufgabe 1

Sei X ein metrischer Raum. Welche der folgenden Aussagen ist falsch?

- \bigcirc Falls $U \subseteq X$ offen und nicht leer, so ist U nicht kompakt.
- \bigcirc Die leere Teilmenge $\emptyset \subseteq X$ ist kompakt.
- \bigcirc Falls $U\subseteq X$ nicht beschränkt ist, so ist U
 nicht kompakt.
- \bigcirc Jede nicht leere endliche Teilmenge $F \subseteq X$ ist kompakt.

Aufgabe 2

Sei (X, d) ein metrischer Raum und sei $A \subseteq X$ eine nicht leere Teilmenge. Zu $x \in X$ definieren wir

$$f_A(x) = \inf\{d(x, a) | a \in A\}$$

Zeige, dass die Funktion $f_A: X \to \mathbb{R}$ stetig ist, und dass $A \subseteq X$ genau dann abgeschlossen ist, wenn $A = \{x \in X | f_A(x) = 0\}.$

Aufgabe 3

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $f(x, y, z) = e^{xyz}$. Was ist $\partial_x \partial_y \partial_z f(x, y, z)$?

- $\bigcirc e^{xyz}$
- $\bigcirc xyze^{xyz}$
- $\bigcirc xye^{xyz} + xze^{xyz} + yze^{xyz}$
- $\bigcirc e^{xyz} + 3xyze^{xyz} + x^2y^2z^2e^{xyz}$

Aufgabe 4

Zeige, dass die folgenden Funktionen überall differenzierbar sind und bestimmen Sie deren Jacobi-Matrix.

- (a) $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y))(x^2 y^2, 2xy)$
- (b) $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (\sin(xyz), z^2 \cos(xy^2))$
- (c) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = (y x^2)(y 2x^2)$
- (d) $f: \mathbb{R} \to \mathbb{R}^3, f(t) = (\cos(t), \sin(t), t)$
- (e) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \sin(x)e^y + 3x^3y^5$
- (f) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(r, \theta) = (r\cos(\theta), r\sin(\theta))$
- (g) $f: \{(x, y, z) \in \mathbb{R} | z \neq 1\} \to \mathbb{R}^2, f(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$

Aufgabe 5

Es seien $f: \mathbb{R}^2 \to \mathbb{R}^3$ und $g: \mathbb{R}^3 \to \mathbb{R}^3$ die Funktionen definiert durch

$$f(x,y) = \begin{pmatrix} x \cos(y) \\ x \sin(y) \\ x^2 \end{pmatrix} \qquad g(x,y,z) = \begin{pmatrix} 2 - y^2 \\ y \\ z \end{pmatrix}$$

Berechne das Differential $D(g \circ f) : \mathbb{R}^2 \to \mathbb{R}^{3 \times 3}$ auf zwei Arten:

- (a) indem zuerst explizit die Komposition $g\circ f$ berechnet und abgeleitet wird.
- (b) unter Verwendung der Kettenregel.

Aufgabe 6

Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ zweimal differenzierbar und $x_0 \in U$ ein Punkt mit $Df(x_0) = 0$. Angenommen es gibt Vektoren $v \in \mathbb{R}^n$ und $w \in \mathbb{R}^n$ so, dass

$$D^2 f(x_0)(v,v) < 0$$
 $D^2 f(x_0)(w,w) > 0$

gilt. Was bedeutet dies für die Hesse Matrix von f bei x_0 ?

Aufgabe 7

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (a) Zeige, dass f auf ganz \mathbb{R}^2 differenzierbar ist.
- (b) Zeige, dass f nicht stetig differenzierbar ist.

Aufgabe 8

Sei $\Phi : \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit $\Phi(x) > 0$ für $x \in (1,2)$ und $\Phi(x) = 0$ für $x \notin (1,2)$ und definiere

$$f: \mathbb{R}^2 \to \mathbb{R} \qquad f(x,y) := \begin{cases} \sqrt{x^2 + y^2} \Phi\left(\frac{y}{x^2}\right) & \text{ für } x \neq 0 \\ 0 & \text{ für } x = 0 \end{cases}$$

- (a) Zeige, dass f überall stetig und auf $\mathbb{R}^2 \setminus \{(0,0)\}$ differenzierbar ist.
- (b) Zeige, dass alle Richtungsableitungen von f im Ursprung gleich null sind und trotzdem f im Ursprung nicht differenzierbar ist.

Aufgabe 9

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = \exp(x+y)$. Berechnen Sie die totale Ableitung $D^k f(0,0)$ für k = 1, 2, 3, sowie die Taylorentwicklung von f an der Stelle (0,0) bis zum Grad 3.

Aufgabe 10

Bestimmen Sie die Taylorpolynome vom Grad 2 für folgende Funktionen

- (a) $f(x, y, z) = ze^{\frac{x}{y}}$ an der Stelle a = (1, 1, 1)
- (b) $f(x, y, z) = x^2 + y^2 + z^2 2xyz$ an der Stelle a = (0, 0, 0)