

Atty. Dkt. No. 016777/0310

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Kaare M. GAUTVIK et al.

Title: Production of Human Parathyroid

Hormone From Microorganisms

Appl. No.: 08/340,664

Filing Date: November 16, 1994

Examiner: L. Spector

Art Unit: 1647

AUG 17

DECLARATION OF KAARE M. GAUTVIK, M.D.

PURSUANT TO 37 C.F.R. § 1.132

Mail Stop NON-FEE AMENDMENT Commissioner for Patents PO Box 1450 Alexandria, Virginia 22313-1450

Sir:

I, KAARE M. GAUTVIK, declare as follows:

- 1. I am a co-inventor of the above-captioned application.
- 2. I am a citizen of Norway residing at Bregnevn 3, 0875 Oslo, Norway. I am fluent in English. My curriculum vitae is attached hereto as exhibit A.
- 3. The standard hPTH(1-84) referred to on page 7, line 19, of the specification is synthetic hPTH obtained from chemical supply companies, including Peptide Institute Protein Research Foundation, Penninsula Laboratories, Sigma, and Bachem.
- 4. I participated in the experiment detailed below to study the purity of the synthetic hPTH obtained from Peptide Institute Protein Research Foundation, Penninsula

Laboratories, Sigma, and Bachem as compared to recombinant hPTH produced according to the claimed invention. The experiment was performed on November 30, 1989 and the commercial hPTH preparations were purchased from 1986-1989.

Experimental Method

5. 0.2 μg of hPTH(1-84) obtained from Peptide Institute Protein Research Foundation, Penninsula Laboratories, Sigma, and Bachem, and from hPTH(1-84) produced according to the claimed invention, was analyzed on an SDS-PAGE gel. The protein bands were stained by silver nitrate. Silver nitrate is the most sensitive stain to disclose impurities. The hPTH(1-84) was loaded onto the gel as follows. Where available, lot numbers, catalog numbers, and date of arrival to the laboratory are provided.

Lane 1: BRL, low molecular weight standard

Lane 2: Peptide Institute Protein Research Foundation, lot no 350306, arrived July 1986

Lane 3: Penninsula Laboratories, arrived July 27th 1986

Lane 4: Sigma P-7036, arrived before October 1st, 1987

Lane 5: Bachem, lot no ZF567, arrived July 1989

Lane 6: Bachem, lot no 734B, arrived February 1989

Lane 7: *E.coli* PTH (recombinant) (produced according to claimed invention)

Lane 8: Yeast PTH (recombinant) (produced according to claimed invention)

Lane 9: Yeast (Q26) PTH (recombinant) (produced according to claimed invention)

Lane 10: BRL, low molecular weight standard

Results

- 6. A photograph of the SDS-PAGE gel obtained from the above-described experiment is provided as Exhibit B. Since the lanes of the gel were loaded with the same amount of hPTH(1-84), 0.2 μg, according to the manufacturer's description, the intensity/size of the bands should be the same. However, as shown in the SDS-PAGE gel picture attached as Exhibit B, the intensity/size of the bands is not the same for the hPTH(1-84) obtained from Peptide Institute Protein Research Foundation, Penninsula Laboratories, Sigma, and Bachem (lanes 2-6), as compared to the recombinant hPTH produced according to the claimed invention (lanes 7-9). Further, impurities (shadows appearing above or below the main band) are apparent in the lanes containing hPTH(1-84) obtained from Peptide Institute Protein Research Foundation, Penninsula Laboratories, Sigma, and Bachem, but are virtually absent in the lanes containing recombinant hPTH produced according to the claimed invention. A more detailed analysis of the results of the gel is provided below.
- 7. Lane 2: The molecular weight of the main band is higher than the expected molecular weight for hPTH(1-84). Impurities are seen on the photograph above and below the major band. The material in lane 2 contains less hPTH(1-84) than the manufacturer's stated quantity.
- 8. Lane 3: The molecular weight of the main band is higher than the expected molecular weight for hPTH(1-84). Impurities are seen on the photograph above and below the major band. The material in lane 3 contains less hPTH(1-84) than the manufacturer's stated quantity.
- 9. Lane 4: Low molecular weight impurities are present. The material in lane 4 contains less hPTH(1-84) than the manufacturer's stated quantity. The impurities lead to false weight estimations.
- 10. Lane 5: Low molecular weight impurities are present. The material in lane 5 contains less hPTH(1-84) than the manufacturer's stated quantity. The impurities lead to false weight estimations.

- 11. Lane 6: Low molecular weight impurities are present. The material in lane 6 contains less hPTH(1-84) than the manufacturer's stated quantity. The impurities lead to false weight estimations.
- 12. Lane 7: The hPTH(1-84) is more than 95% pure hPTH(1-84) of the correct molecular weight. There is virtually no material above or below the major protein band.
- 13. Lane 8: The hPTH(1-84) is more than 95% pure hPTH(1-84) of the correct molecular weight. There is virtually no material above or below the major protein band.
- 14. Lane 9: QPTH moves a little faster than hPTH(1-84) because of one amino acid residue substitution, and there is no sign of impurities
- 15. Although the synthetic hPTH (1-84) obtained from Peptide Institute Protein Research Foundation, Penninsula Laboratories, Sigma, and Bachem was impure, this synthetic hPTH (1-84) was used as a hPTH (1-84) standard in my lab. The impure hPTH (1-84) standard was used to confirm in early experiments the identity and characteristics of hPTH (1-84) produced according to the claimed invention. The impurities present in the synthetic hPTH (1-84) standard did not as such, affect the usefulness of the synthetic hPTH (1-84) as a qualitative "standard."
- 16. As a consequence of impurities and incorrect amounts provided by the commercial producers, the specific biological activity of even their best preparation was found to be about 30% below that of the recombinant hormone. (*See*, e.g., exhibit C, Reppe, S., et al., 1991, JBC, 22:14198-14201, Figure 5).

Atty. Dkt. No. 016777/0310 Appln. No. 08/340,664

17. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated: 07.27.64

Kaare M. Gautvik, i

CURRICULUM VITAE RELEVANT PUBLICATIONS

KAARE M. GAUTVIK, M.D., PhD, CHIEF CONSULTANT

Personal and marital status:

Name: Kaare M. Gautvik

Bregnevn. 3, 0875 Oslo, Norway Home address:

Business address: Institute of Medical Biochemistry, University of Oslo,

P.O.Box 1112 Blindern, 0317 Oslo, Norway

47-22851055 (work); 47-22235137 (home) Telephones:

Date and place of birth: 11th of December 1939 in Oslo.

No.: 111239.39311 Social Security:

Married to: Vigdis Teig Gautvik, date of birth: 24th of March 1947

Children: Lars Erlend Sakrisvold Gautvik, date of birth: 9th of January 1964

Silja Marie Sakrisvold Gautvik, date of birth: 31th of March 1973, Ole Martin Teig Gautvik, date of birth: 21th of

January 1982

Education and Clinical Specialities:

August 1958-June 64, Medical School at the University of Oslo.

- 1967-69, Courses in mathematics involving geometry, statistics and mathematical analysis.
- May 1970, Disputation for the medical doctor degree at the University of Oslo.
- 1985, Specialist in clinical chemistry, and physiology and nuclear medicine. 4.
- 1986, Specialist in occupational health medicine.

Employment:

- June 1964-June 1965, working at Tromsø University Hospital at medical and surgical departments. 1.
- July 1965 until December 1965, working as a general practioner in Siøvegan, Troms.
- One year military service as a major in The Norwegian Air Force, working mainly at the Norwegian Institute for Aviation and Space Medicine.
- From 1967, position as post-doctoral researcher at The Institute of Physiology, University of Oslo.
- From September 1969, promoted to Assistant Professor at the University of Oslo, Institute of Physiology.
- Leader and responsible for clinical and experimental endocrinological laboratory of Institute for Surgical Res., 6. The National Hospital, Oslo, from 1973-89.
- 7. From 1976-1978, training as a specialist in clinical chemistry at the Norwegian Radium Hospital, Oslo.
- From August 1983 appointed to full professor at the Institute of Medical Biochemistry, Medical Faculty, University of Oslo.

(At the same time receiving offers of professor chairs at the Institute of Physiology, Medical Faculty and at the Institute of Physiology and Biochemistry, Faculty of Odontology).

From Jnuary 2002 employment as senior consultant at Department of Clinical Chemistry, Labaratory Division, Ulleval University Hospital and professor II at the University of Oslo.

Post-doctoral training abroad:

- For three months in 1967, I worked as a lecturer at the Department of Physiology.
 - Medical School, Birmingham University, England.
- From August 1971 to July 1973 in receipt of Fogarty international post-doctoral fellowship at the Department of Pharmacology, Harvard School of Dental Medicine and Harvard Medical School.
- 1980, 4 months Visiting Professor at Institute of Genetics, BMC, Uppsala University, Sweden.
- 1995/96, 12 months Visiting Research Professor, The Scripps Research Institute,
 - Dept. Mol. Biology, La Jolla, San Diego, USA.
- 1997. 3 months Visiting Research Professor, The Scripps Research Institute, Dept. Mol. Biology, La Jolla, San Diego, USA.

Teaching responsibility:

- One year teaching in aviation medicine for medical personnel and pilots. 1.
 - I have given lectures and courses for medical students in following subjects:

Haematology, kidney physiology, endocrinology, circulation, respiration and gastrointestinal physiology.

From 1983 organized and given lectures and courses in molecular genetics at undergraduate and postgraduate level for students in medicine and sciences.

- 3. Organized interfaculty advanced courses within molecular endocrinology.
- Lectures have been given in the following subjects at post-doctoral courses:
 - Diseases of the thyroid gland (1973); Regulation of circulation in the gastrointestinal system (1973); Local hormones (1975); Endocrinology (annually from 1978); Tumour markers (1979); Calcium metabolism (annually from 1980); Ligands for peptide hormonereceptors, and Nuclein acid biochemistry (1984); TRH-receptors in prolactin-producing cells (1985). Molecular biology in medical research (yearly from 1983). Biochemical analysis on bone material (1991).
- Invited lectures: Several places in the U.S., in Sweden, in Finland, and in England, as well as different places in Norway, a total of 37 as of 1995.

- Chief organizer of post graduate scientific courses for the Medical Faculty at University of Oslo, 1986-1991.
- Organizer of international scientific meetings within the frame of the following societies:
 Acta Endocrinologica (European International Endocrine Society), The Scandinavian Physiology and Pharmacology Meetings, and the Norwegian Biochemical Society.
- 8. Introduced teaching in Molecular Biology for students at the Medical Faculty, Oslo.
- 9. Invited as Symposium Lecturer at international meetings in physiology and endocrinology and molecular biology as exemplified below:

Examples of specially invited symposium lectures:

- February, 1990: "Production of recombinant human parathyroid hormone in E.coli and Saccharomyces cerevisiae and its potential use as drug in osteoporosis" by Kaare M. Gautvik, Eli Lilly Co., Indianapolis, USA, in a Biotechnology meeting.
- June, 1990: Symposium lecturer and organizer: "Hormone receptors and cellular signal transduction. The XXII Nordic Congress in Clinical Chemistry, Trondheim, Norway."
- July, 1990: Symposium lecturer: "Transmembrane signal systems involved in the regulation of prolactin secretion by hypothalamic peptide hormones in cultured pituitary cells. 2nd European Congress of Endocrinology, Ljubljana, Yuqoslavia.
- July, 1990: Symposium lecture: "Successful cloning and production of human parathyroid hormone (hPTH) in yeast as a secretory product". 5th European Congress on Biotechnology, Copenhagen, Denmark. (Unable to attend, and the lecture was held by cand.scient. Siur Reppe).
- August, 1990: Symposium lecture: "Processing and stability of human parathyroid hormone produced in E.coli and S.cerevisiae studied by in vitro mutagenesis". Workshop/Symposium on site-directed mutagenesis and protein engineering, Tromsø, Norway.
- 6. December, 1990: Invited by Professor Guo Hui-Yu, Guangzhou, China and Professor G.L. French, Hong Kong. Lecture entitled: "Expression of human parathyroid hormone as a secretory protein in prokaryotic and eukaryotic microorganisms". The Second International Conference on Medical Microbiology and Biotechnology Towards 2000, Guangzhou, China. (Did not attend as a protest against the punishment of the students rebellion in Peking).
- January 1991: Invited to a Workshop by Dr. Stephen Green, Central Toxicology Laboratory, ICI, Alderly Park, Maccelesfield SK10 4TJ, UK. Lecture entitled: "Synergistic effects of hormones and fatty acid on peroxisomal 8oxydation, enzyme activities and mRNA levels".
- January 1991: Invited to a Protein Engineering Meeting by Professor Ian Campbell, Biochemistry Department, Oxford University, Oxford, UK. Lecture entitled: "Cloning and expression of human parathyroid hormone in microorganisms".
- Invited by Professors T.T. Chen, D.A. Powers, B. Cavari, Maryland Biotechnology Institute, Baltimore, MD, to held a symposium lecture at the 2nd International Marine Biotechnology Conference, October 13-16, 1991, Baltimore, Maryland, USA. (Could not attend).
- May 1991: Invited by Professor Jan Carlstedt-Duke, Karolinska Institutet, Huddinge, to held a lecture in the seminar series "Novum Lectures in Cellular and Molecular Biology".
- 11. January 1992: Invited by Professor Armen H. Tashjian, Department of Molecular and Cellular Toxicology, Harvard School of Public Health and Department of Biological Chemistry on Molecular Pharmacology, Harvard Medical School, Boston, USA. Lecture entitled: "Use of antisense RNA in delineation of the mechanism of action of Gcoupled hormones".
- August 1993: Invited by Norwegian Society of Charted Engineers, The Blindern Conference. Lecture entitled: "Experience from industrializing basal research".
- 13. November 1993: Invited by Karolinska sjukhuset, Stockholm, to held a lecture at "Graduate course in molecular endocrinology a problem oriented approach". The lecture is entitled: "Region specific actions of parathyroid hormone in target tissues".
- 14: February 1994: Invited by GBF, Gesellschaft für Biotechnologische Forschung mbH, Braunschweig. Lecture entitled: "Expression of human parathyroid hormone in microorganisms and animal cells with special reference to signal sequence efficacy and intracellular modifications".
- 15. September 1994: Invited by Professor K. Dharmalingam, Department of Biotechnology, Madurai Kamaraj University, India, to held a lecture in the symposium "Gene expression systems", XVIth IUBMB, New Delhi. Lecture entitled: "Expression of human parathyroid hormone in microorganisms, insect cells, mammalian cells and as a milk protein in transgenic mice".
- 16. November 1994: Invited by Professor A. Taschjian Jr., Harvard School and Public Health, Boston, to held a lecture in a seminar. Lecture entitled: "Certain structural and functional characteristics of the human TRH receptor cDNA and mapping of the gene".
- 17. February 11-13, 1995: Cairns, Australia, Workshop on "Animal models in the prevention and treatment of osteopenia".
- 18. February 1995: Int. Meeting of Calcified tissue research, Melbourne, Australia.
- 19. May 1996: Dublin University Program. "How to identify patients at risk for development of ostoporosis".
- September 1996: Lecture at Scripps Research Institute, San Diego. "Unique hypothalamic specific mRNAs expressed by molecular subtraction hybridization".
- September 1996: Invited seminar at the Astra Research Center, Montreal. "Cloning and expression of human polypeptide hormones with biomedical potential".
- November 1996: Invited lecturer, The Norwegian Rheumatological Society, Oslo, "PTH (parathyroidea hormone) The biochemical foundation for treatment of osteoporosis".
- December 1996: Invited at Nordic Conference for Medical Treatment of Osteogenesis Imperfecta, Holmen Fjordhotel, Asker, Norway. "Characteristics of bone remodelling in patients with osteogenesis imperfecta".

- January 1997: Invited lecturer at The Salgrenska Hospital in Sweden. "Characterization and functional analysis of novel hypothalamus genes as identified by directional tag substraction".
- 25. 1998: Guest lecturer at Scripps Research Institute: "Hypothalamic calcium-calmodulin kinase-cloning and functional aspects".
- February 1999: Only invited speaker from abroad at National Osteoporosis Congress in Rio de Janeiro, Brazil.
- 27. 2000: Lecture at NPS-Allelix company and Toronto University: "Parathyroid hormone regulated bone remodelling".
- 28. May 2000, Rio de Janeiro, Brazil. Member of the International Scientific Panel at the International Congress in Osteoporosis.

Honorary lectures and prizes:

- 1. In 1984 recipient of Professor Olav Torgersen's Prize and Memorial lecture. This prize and lecture was created by Professor Torgersen, the University of Oslo, who was one of the founders of the Society for Promotion of Cancer Research in Norway. Because he contributed with personal money, the prize and lecture had his name. The title of my lecture was: "The medullary thyroid carcinoma: a special type of familial and hormone producing cancer".
- 2. In 1984 I was given the international science prize called The Nordic Insulin Prize instituted by Professor Jacob E. Poulsen, who worked at the University of Copenhagen. This prize is given within endocrinology and the candidate is chosen from all the countries in Northern Europe. The money was donated by the Insulin Laboratory now the company Novo-Nordisk. At that time, only one Norwegian had previously received this prize. The prize was given for my studies regarding how hormones exerted their biological actions in target cells.
- The Gunnerus Prize was given in 1986 by the Royal Society of Norwegian Scientists. This is a prize which is given to a scientist selected by this society for scientific merits obtained and again it was within the field of hormone structure and action.
- In 1987 I received a prize within biotechnology created by the Research Park at the University of Oslo, which at that time was called the Innovation Centre, University of Oslo.
- 5. Novum Lectures in Cellular and Molecular Biology, which was associated with a scientific prize. Invited by Professor Jan-Åke Gustafsson at Novum, Huddinge, The Karolinska Institute, Sweden, in 1991. This was given based on my research with human parathyroid hormone in relation to its first cloning, expression and studies of actions.
- Lectures at Harvard School of Public Health in Cellular and Molecular Biology in 1995, regarding cloning of hormone genes and their characterizations. Invited by Professor A.H. Tashjian Jr. at the Department of Molecular and Cellular Toxicology, Harvard School of Public Health and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA.
- Given a 3 years economical "Group Research Support of 0.8 M NOK per year from 1997" after national and international project evaluations.
- 8. Scientific prize (Abstract award) 1997, at the Endocrine Society "Cloning and Organization of the human TRH-receptor Gene".
- 9. Norwegian Endocrine Society Prize (S.Reppe) for "Sox4 a PTH regulated transcription factor in bone".
- 10. Endocrine Society 1998: Poster Award: Cloning and regulation of the thyroliberin receptor gene.
- 11. Norwegian Endocrine Society prize 1998: Hormone regulated bone remodelling.
- 12. American Society for Bone and Mineral Research (ASBMR); 1999 Best Poster Award: The Transcription factor Sox-4 is expressed in developing cartilage and bone cells.

Consulting appointments:

- 1. Senior honorary consultant for NPS Biotechnology, Salt Lake City, Colorado, USA.
- 2. Consultant for Karolinska Institute, Stockholm, Sweden.

Referee activity:

I am or have been working as referee for the following international journals:

Endocrinology, J. Expl. Cell Res., Acta Physiol. Scand. (Kbh.), Eur. J. Endocrinol. (Acta Endocrinol. Scand. (Kbh.), Eur. J. Clin. Invest., Hormone Research, Acta Obstet. Gynecol. Scand., Journal of Endocrinological Investigation, Eur. J. Biochem., Experimental Cell Research, J. Biol. Chem.

Guidance for the academic doctor degree: Twenty three and 5 ongoing.

Supervision of postgraduate candidates: Presently three.

Supervision of students' main degrees: Nineteen.

Guest research workers from abroad: In my group we have had research visitors for periods of one to three years from Polen, Bulgaria, Sweden, Tyskland, Denmark, Iceland, India, Israel and USA.

Member of committees for the academic doctor degree in Norway and abroad: 15.

Member of advisory international/national committees for evaluation of professor positions:14.

Honorary Societies: Member of the Norwegian National Academy of Science and Letters

Professional memberships: Norwegian Society of Biochemistry, Norwegian Society of Physiology, Norwegian Society of Endocrinology, Endocrine Society (USA), American Society for Bone and Mineral Research (USA)

Medical Faculty Responsibilities:

- 1. An elected member of the Medical Faculty 1987-1990.
- 2. A member of the Research Council at the Medical Faculty 1987-1990.
- 3. Chairman of Postgraduate Courses for Ph.D. and Dr.med. students at the Medical Faculty 1986-1991.
- 4. Member of the Institute Group Committee for the Preclinical Sciences from 1989 and present.
- 5. Member of the Medical Faculty's councel for evaluation of postgraduate applications from 1989-1993.
- 6. Committee member of the Medical Faculty's Scientific Instrument Board, 1996-.
- 7. Committee for Medical Research collaboration and interaction between University of Oslo and the National Hospital, 2000-.

National- and International Research Council Responsibilities:

1. Leader of Chemical Peptide Synthesis Core facility 1984-1989.

- Chairman for the Biotechnology Committee as a representative for Norwegian Research Council in an inter research council body, 1986-1989
- Member of The Norwegian Research Council for Science and the Humanities (NAVF) Committee for Physiology and Pharmacology, 1986-1989
- Development and function as responsible leader of the nationwide core facility for peptide synthesis, 1988-1991.
- 5. Member of the Premedical Institute Group Committee for Preclinical Sciences from 1989-2003.
- 6. Member of the International Scientific Board of Novo-Nordisk Research Committee, 1989-2001.
- 7. Member of the CIBA Foundation Scientific Advisory Panel from 1995 elected as representative from Norway, 1989-present.
- 8. Chairman of the Research Council in the Norwegian Association for Osteoporosis, 1993-2003.
- 9. Leader of DNA Sequencing Core facility of the Institute of Basic Science, 1999-present.
- 10. Consultant and peer reviewer within Wallenberg Consortium North Technology Platforms DNA; SNP (single nucleotride polymorphism) Technologies and the Platform for Proteomics on behalf of the Board of the Wallenberg Consortium North, Stockholm, Sweden, 2001-2004.
- 11. Coordinator for Marie Curie Training Sites Fellowship No MCFH-200-00040: "Oslo Doctoral Training Site for Diagnosis" and Therapy of Osteoporosis"—2001-2005.
- 12. Coordinator of EU 6.Program STREP contract no 502941, "Molecular mechanisms of bone homeostasis" (OSTEOGENE). Eight partners in 5 countries-2003-2006

Awards and fellowships:

1967, 3 months, I worked as a lecturer at the Department of Physiology, Medical School, Birmingham University, England.

1971 to July 1973 in receipt of Fogarty international post-doctoral fellowship at the Department of Pharmacology, Harvard School of Dental Medicine and Harvard Medical School.

1980, 4 months Visiting Professor at Institute of Genetics, BMC, Uppsala University, Sweden.

1995/96, 12 months Visiting Research Professor, The Scripps Research Institute, Dept. Mol. Biology, La Jolla, San Diego, USA.

1997 Awarded for 3 years the Norwegian Research Council's Science Prize for outstanding research.

2001 Promoted by EU to become Oslo Doctoral Training Site for Diagnosis & Therapy Of Osteoporosis, received by a group consisting of scientists from University of Oslo, IMBA and the National Hospital.

2002 Member of CNS Molecular Biology group (leader Ivar Walaas) appointed as a "Research Theme Priority" at the Medical Faculty. 2002- 2007

2004 OSTEOGENE (Molecular mechanisms of bone homeostasis) project given the highest priority and the only selected for presentation within Health Region East 2004.

Other professional activities:

- Founder of the Norwegian Association for Osteogenesis Imperfecta 1978 (Norsk Forening for Osteoporosis Imperfecta) together with Mrs. L. Myhre.
- Founder of the Norwegian Association for Osteoporosis (Norsk Osteoporoseforening) 1993, together with Norwegian Women Public Health Association (NKS).

Patents

I.Two U.S. patents, U.S. Patent No. 5.010 010 and No. 5.420.242 are held with international extensions in Europe, Japan, Canada, and Australia. In addition, three Divisional Applications are submitted to the U.S. Patent Office and elsewhere. These patents and patent applications in the different countries are covering specific methods related to the production, purification and characterization of PTH in microorganisms for the use in treatment of osteoporosis.

II. Inventor in patent application from Scripps Research Institute on: Novel hypothalamic mRNAs, the corresponding peptides and their functions.

Publications: More than 200 original articles published in internationally well reputated and refereed journals. Relevant articles are cited in relation to description of the research activities:

A BRIEF DESCRIPTION OF THE MAIN RESEARCH PROJECTS AND RELEVANT REFERENCES

A.STUDIES OF HYPOTHALAMIC SPECIFIC mRNAs OBTAINED BY A NOVEL SENSITIVE SUBTRACTION HYBRIDIZATION PROCEDURE

The results so far from our refinement and usage of a powerful and highly sensitive novel subtractive nucleic acid hybridization method have been successful. The generated hypothalamic subtraction library appears to give a specific and comprehensive representation of mRNAs that are not present in other brain areas as hippocampus and cerebellum. We have so far described several novel peptides: hypocretin (the cause of Narcolepsy) and several very interesting peptides, e.g. novel CaM kinase (see list of references). Another CNS peptide is somatostatin-like, called cortistatin, structure similarity with somatostatin; P25 and Vat 1, two uniquely expressed peptides in distinct regions of the brain.

1. Gautvik, K.M., de Lecea, Luis, Gautvik, V.T., Danielson, P.E., Tranque, P., Dopazo, A., Bloom, F.E. and Sutcliffe, J.G. Overview of the most prevalent hypothalamus-specific mRNAs identified by directional tag PCR subtraction.

Proc. Natl. Acad. Sci. USA (PNAS) 93: 8733-8738, 1996.

2.de Lecea, L., Criado, J.R., Prospero-Carcia, O., <u>Gautvik, K.M.</u>, Schweitzer, P., Danielson, P.E., Dunlop, C.L.M.Siggin G.R., Henriksen, S.J. and Sutcliffe, J.G. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381: 242-245, 1996.
3.de Lecea, L., Kilduff, T.S., Peyron, C., Gao, X-B., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L.F., Gautvik, V.T., Bartlett II, F.S., Frankel, W.N., Van den Pol, A.N., Bloom, F.E., <u>Gautvik, K.M.</u> and Sutcliffe, J.G. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA (PNAS) 95: 322-327, 1998.

B. ISOLATION AND CHARACTERIZATION OF mRNAs SPECIFIC FOR THE BONE CELL PHENOTYPE OBTAINED BY SUBTRACTION HYBRIDIZATION

By using the same novel subtractive hybridization procedure as employed and described above, we have generated a subtracted cDNA library using the osteosarcoma phenotype cDNA library as made from three different human osteosarcoma cells from which is subtracted the cDNA library obtained from normal human osteoblasts. The subtraction is performed by using cDNA from osteosarcoma cells minus RNA transcribed from the corresponding cDNA library of the normal osteoblast. These are experiments in progress and we are about to describe individual cones obtained from a subtracted library of about 400.000 independent colonies. The aim of this study is to identify those mRNAs which are overexpressed or lacking in the osteosarcoma phenotype and compile these results in order to have a greater understanding regarding how a normal cell is transformed into this tumor type (Olstad et al. ,2003)

C.ISOLATION AND CHARACTERIZATION OF MRNAs SPECIFIC FOR PARATHYROID HORMONE GENE ACTIVATION IN BONE CELLS ("Bone anabolic genes")

Parathyroid hormone is the most important physiological regulator of bone formation. This hormone therefore is assumed to represent an important drug in the prevention and especially treatment of postmenopausal osteoporosis. However, as a succession of our previous work regarding the studies of this hormone, we have continued to search for a complete overview of all gene products that parathyroid hormone is stimulating in bone cells in order to isolate the mRNAs and corresponding proteins which may be of sentral importance for the development of osteoporosis - or which may be called "the genes for osteoporosis". Again by using the same molecular substraction method as described in Chapter II, C, we use this time parathyroid stimulated normal bone cells cDNA library minus RNA transcribed from generated libraries of normal bone cells. This work is almost completed in a highly successful manner. We have isolated more than 40 genes which are involved in PTH anabolic action in bone, and among those we are searching for the gene(s) causing postmenopausal osteoporosis.

D. As a complementation and to the activities described above, we have embarked on defining the bone phenotype in female and male osteoporosis within the context of the EU project OSTEOGENE (see above). About 100 patients and controls will have bone biopsies which will be prepared and analysed for their global gene expression and differences at the micro- and ultrastructural level. I am the coordinator of this activity including 5 countries and where Oslo university and three hospitals (Ulleval university hospital, the National Hospital and Lovisenberg hospital are working closely together. This is a direct consequence and follow up of previous research representing patient related basic and translational science aiming to solve the mechanisms of osteoporosis, the most common disease in women of 50 yrs of age.

THE MAIN RESEARCH ACTIVITIES DURING THE LAST 8 YEARS AND FUTURE SCIENTIFIC ENGAGEMENT:

PARATHYROID HORMONE (PTH) AND PARATHYROID HORMONE RELATED PROTEIN (PTHrP)

The aim for this work was to produce:

- i) Recombinant parathyroid hormone for structure activity studies in relation to bone cell activation.
- ii) Study intracellular processing and trafficking of these hormones and to compare signal sequence efficacy in different host expression systems.

We were the first in the world to clone and produce full-length <u>human recombinant parathyroid hormone</u> in mg quantities. For this work we developed gene constructs, vector modifications, fermentation technological improvements as well as complete methods for down-stream technology. The final product is PTH identical and more than 99% pure and has shown full chemical, biochemical and biological identity with the intact hormone. These results are written in the following articles that are printed.

We have also been as indicated by the list of references below, the first in the world to express secreted human parathyroid hormone in mammalian cells as well as a secretory milk product in transgenic mice. In addition, we have been the first to develop full-length PTH polypeptides with agonist and antagonist functions.

- 1. Høgset, A., Blingsmo, O.R., Gautvik, V.T., Sæther, O., Jacobsen, P.B., Gordeladze, J.O., Alestrøm, P. and Gautvik, K.M. Expression of human parathyroid hormone in Escherichia coli. BBRC 166: 50-60, 1990.
- 2.Gabrielsen, O.S., Reppe, S., Sletten, K., Øyen, T.B., Sæther, O., Høgset, A., Blingsmo, O.R., Gautvik, V.T., Gordeladze, J.O., Alestrøm, P. and Gautvik, K.M. Expression and secretion of human parathyroid hormone in Saccharomyces cerevisiae. Gene 90(2): 255-262, 1990. 3.Høgset, A., Blingsmo, O.R., Sæther, O., Gautvik, V.T., Holmgren, E., Josephson, S., Gabrielsen, O.S., Gordeladze, J.O., Alestrøm, P. and Gautvik, K.M. Expression and characterization of a recombinant human parathyroid hormone secreted by E.coli employing the staphylococcal protein A promoter and signal sequence. J. Biol. Chem. 265: 7338-7344, 1990.
- In this regard we have received acceptance for an <u>international patent</u> on gene constructions, plasmids, the process and the down-stream technology. In the further work we have by using <u>in vitro</u> mutagenesis, created full length <u>parathyroid hormone agonist</u> which has shown to be protease resistant and have interesting biological actions regarding mobilization of calcium from bone.
- Both the intact hormone as well as the agonist will represent important medical drugs for use in diagnostics as well as represent a potential drug for treatment of various diseases.
- 4. Reppe, S., Olstad, O.K., Blingsmo, O.R., Gautvik, V.T., Sæther, O., Gabrielsen, O.S., Øyen, T.B., Gordeladze, J.O., Haflan, A.K., Tubb, R., Morrison, N., Tashjian, A.H. Jr., Alestrøm, P. and <u>Gautvik, K.M.</u> Successful cloning and production of human parathyroid hormone (hPTH) in yeast as a secretory product. ECB, 5th European Congress on Biotechnology, Copenhagen July 8-14, 1990. (Invited).
- 5. Reppe, S., Gabrielsen, O.S., Olstad, O.K., Morrison, N., Sæther, O., Blingsmo, O.R., Gautvik, V.T., Gordeladze, J.O., Haflan, A.K., Voelkel, E.F., Øyen, T.B., Tashjian A.H. Jr. and Gautvik, K.M. Production of recombinant human parathyroid hormone in yeast: Synthesis, purification, and biological characterization of a Lys-26Gln site directed mutant. J. Biol. Chem. 266: 14198-14201, 1991.
- 6.Forsberg, G., Brobjer, M., Holmgren, E., Bergdahl, K., Persson, P., Gautvik, K.M. and Hartmanis, M. Thrombin and H64A subtilisin cleavage of fusion proteins for preparation of human recombinant parathyroid hormone. J. Protein Chem. 10(5): 517-526. 1991.
- 7.Olstad, O.K., Reppe, S., Gabrielsen, O.S., Hartmanis, M., Blingsmo, O.R., Gautvik, V.T., Haflan, A.K., Christensen, T.B., Øyen, T.B. and Gautvik, K.M. Isolation and characterization of two biologically active O-glycosylated forms of human parathyroid hormone produced in

Saccharomyces cerevisiae. Identification of New Motif for O-glycosylation. Eur. J. Biochem. 205: 311-319, 1992.

8.Kareem, B.N., Rokkoknes, E., Høgset, A., Holmgren, E. and Gautvik, K.M. A method for the evaluation of the efficiency of signal sequences for secretion and correct N-terminal processing of human parathyroid hormone produced in Escherichia coli. Anal. Biochem. 204: 26-33, 1992.

Recently we have expressed the first known full length antagonist for hPTH, a long sought for molecule of considerable clinical interest. The compound has a binding KD which is 2-4 times less than the natural hormone, but shows a more than 100-fold reduced biological activity. 9.Rian, E., Jemtland, R., Olstad, O.K., Gordeladze, J.O. and Gautvik, K.M. Expression of biologically active human parathyroid hormone-related protein (1-141) in Saccharomyces cerevisiae. Eur. J. Biochem. 213: 641-648, 1993.

- 10.Rian, E., Jemtland, R., Olstad, O.Kr., Endresen, M.J., Grasser, W.A., Thiede, M.A., Henriksen, T., Bucht, E. and Gautvik, K.M. Parathyroid hormone-related protein is produced by cultured endothelial cells; A possible role in angiogenesis. Biochem. Biophys. Res. Commun. 198(2): 740-747, 1994.
- 11.Kareem, N.B., Rokkones, E., Høgset, A., Holmgren, E. and Gautvik, K.M. Translocation and processing of various human parathyroid peptides in E.coli are differentially affected by protein A signal sequence mutation. Eur. J. Biochem. 220: 893-900, 1994:
- 12. Rokkones, E., Kareem, B.N., Olstad, O.K., Høgset, A., Schenstrøm, K., Hansson, L. and Gautvik, K.M. Expression of human parathyroid hormone in mammalian cells, Escherichia coli and Saccharomyces cerevisiae. J. Biotechnol. 33: 293-306, 1994.
- 13.Olstad, O.K., Morrison, N.E., Jemtland, R., Jüppner, H., Segre, G.V. and Gautvik, K.M. Differences in binding affinities of human PTH(1-84) do not after biological potency: A comparison between chemically synthesized hormone and recombinant forms. Peptides 15: 1261-1265, 1994.
- 14.Rokkones, E., Fromm, S.H., Kareem, N.B., Olstad, O.K., Høgset, A., Klungeland, H., Iversen, J., Bjøro, K. and Gautvik, K.M. Human parathyroid hormone as a secretory peptide in milk of transgenic mice. J. Cell. Biochem. 59: 168-176 1995.
- 15. Olstad, O.K., Jemtland, R., Loseth, O.P., Bringhurst, F.R. and Gautvik, K.M. Expression and characterization of a recombinant human parathyroid hormone partial agonist with antagonistic properties: Gly-hPTH(-1+84). Peptides 16: 1031-1037, 1995.
- 16.Mathavan, S., Gautvik, V.T., Rokkones, E., Olstad, O.K., Kareem, B.N., Maeda, S. and Gautvik, K.M. High level production of human parathyroid hormone in Bombyx mori larvae and BmN cells using recombinant baculovirus. Gene 167: 33-39, 1995.
- 17. Olstad, O.K, Reppe, S., Løseth, O.P., Jemtland, R. and Gautvik, K.M. Binding and Cyclic AMP Stimulation by N-terminally Deleted Human PTHs (3-84 and 4-84) in a Homologous Ligand Receptor System. J. Bone & Mineral Res. 12: 1348-1357, 1997.
- 18. Jemtland, R., Lee, K. and Segre, G.V. Heterogeneity among cells that express osteoclast-associated genes in developing bone. Endocrinology 139(1): 340-349, 1998.
- 19. Jemtland, R., Rian, E., Olstad, O.K., Haug, E., Bruland, O.S., Bucht, E. and Gautvik KM. Two human osteoblast-like osteosarcoma cell line show distinct expression and differential regulation of parathyroid hormone-related protein. J. Bone Miner. Res. 14(6): 904-14, 1999.
- 20.Reppe, S., Rian, E., Jemtland, R. Olstad, O.K., Gautvik, V. and Gautvik, K.M. SOX-4 mRNA is expressed in the embryonic growth plate and regulated via the PTH / PTHrP receptor in osteoblast-like cells. J.Bone Min.Res.,15,2402-2412, 2001.
- 21.Olstad, O.K., Reppe, S., Rian, E., Gautvik, V., Ohlsson, C., Bruland, Ø. and Gautvik, K.M. Overview of human osteosarcoma specific or enriched mRNAs, as identified by directional tag PCR subtraction. Anticancer Research 23;2201-2216.
- 22.Rian, E., Reppe, S., Olstad, O.K., Gautvik, V.T., Jemtland, R., Bruland, Ø., and Gautvik, K.M. Regulation of osteoblastic gene expression by parathyorid hormone (1-84) in a human osteosarcoma cell line: Characterization by subtraction library technology. Submitted 2004.

4 10 BHB

BEST AVAILABLE COPY

EXHIBIT B

Characterization of a K26Q Site-directed Mutant of Human Parathyroid Hormone Expressed in Yeast*

(Received for publication, February 25, 1991)

Sjur Reppeद, Odd S. Gabrielsen‡, Ole Kristoffer Olstad§, Nancy Morrison¶, Olav Sæther§, Ola R. Blingsmo§, Vigdis T. Gautvik§, Jan Gordeladze§, Anne Karine Haflan**, Edward F. Voelkel‡‡, Tordis B. Øyen‡, Armen H. Tashjian, Jr.‡‡, and Kaare M.Gautvik§¶

From the ‡Department of Biochemistry, University of Oslo, P. O. Box 1041 Blindern, 0316 Oslo 3, Norway, the §Institute of Medical Biochemistry and Biotechnology Centre, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo 3, Norway, the ¶Institute for Surgical Research, The National Hospital, University of Oslo, Pilestredet 32, 0027 Oslo 1, Norway, the **Center for Industrial Research, P. O. Box 124 Blindern, 0314 Oslo 3, Norway, and the ‡Laboratory of Toxicology, Harvard School of Public Health and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Human parathyroid hormone (hPTH) is susceptible to proteolytical cleavage both in humans and when expressed as a secretory product in Escherichia coli (Høgseth, A., Blingsmo, O. R., Sæther, O., Gautvik, V. T., Holmgren, E., Hartmanis, M., Josephson, S., Gabrielsen, O. S., Gordeladze, J. O., Alestrøm, P., and Gautvik, K. M. (1990) J. Biol. Chem. 265, 7338-7344) and Saccharomyces cerevisiae (Gabrielsen, O. S., Reppe, S., Sæther, O., Blingsmo, O. R., Sletten, K., Gordeladze, J. O., Høgset, A., Gautvik, V. T., Alestrøm, P., Øyen, T. B., and Gautvik, K. M. (1990) Gene (Amst.) 90, 255-262). In the latter system, one major site of cleavage was identified (Arg25-Lys26 Lys27). To produce hPTH resistant to this proteolytic processing, a point mutation changing Lys26 to Gln was introduced, and the modified gene expressed in S. cerevisiae as a fusion protein with the α -factor leader sequence. The resulting major form of hPTH secreted to the growth medium was of full length showing that the mutation had eliminated internal processing. Consequently, the yield of the mutant hormone was significantly higher than obtained with the natural peptide. Using improved purification procedures, a significantly higher purity was also obtained. The secreted mutant hPTH-(1-84,Q26) had the correct size, full immunological reactivity with two different hPTH antisera, correct amino acid composition and N-terminal sequence, and correct mass as determined by mass spectrometry. Furthermore, the introduced mutation did not reduce the biological activity of the hormone as judged from its action in three biological assay systems: 1) a hormonesensitive osteoblast adenylate cyclase assay; 2) an in vivo calcium mobilizing assay in rats; and 3) an in vitro bone resorption assay.

Gene fusions with the mating pheromone α -factor leader sequence have been widely used to express, correctly process, and efficiently secrete human proteins of medical interest in Saccharomyces cerevisiae (1-4). Contrary to the situation in higher eukaryotes where the propeptide processing signal seems to involve proximal residues in addition to the doublet of basic amino acids (5, 6), there is no evidence that yeast yscF endopeptidase (KEX2 gene product) requires more than a pair of basic amino acids to process a propeptide, although a Lys-Lys pair is a poor substrate for the enzyme (6, 7). Since the probability of finding two consecutive basic amino acids (Lys-Arg, Arg-Lys, or Arg-Arg) in a random protein sequence is rather high, many heterologous proteins risk to be aberrantly processed during secretion in yeast. Thus, in several cases where such sites have been present in the mature peptides, the secretion products were reported to be either partially (8) or completely (9) cleaved, heterogeneous (10), or to contain extra unidentified peptides (11), suggesting aber-

The mature human parathyroid hormone (hPTH)¹ illustrates this problem because it contains two potential processing sites (Arg-Lys) in the 84-amino acid-long molecule. Hence, when the hPTH gene, fused to the α-factor leader, was expressed in S. cerevisiae, a significant fraction of the synthesized protein was cleaved at the first of these sites. The cleavage site was localized after the two basic amino acids (Arg²⁵-Lys²⁶) Lys²⁷), suggesting that the yscF protease is involved (12).

In the present report we describe the production in yeast of a mutant hPTH where the internal putative yscF cleavage site has been removed by in vitro mutagenesis, substituting lysine at position 26 (Lys²6) by glutamine (Gln²6). As a consequence, the major degradation product hPTH-(27-84) (12) was no longer found in the growth medium while the yield of full-length hormone increased. The secreted hPTH-(1-84,Q26) had correct size, mass, sequence, and immunoreactivity. Furthermore, the introduced mutation did not reduce the biological activity of the hormone as judged from its action in several biological test systems.

^{*}This project has been supported in part by the company Selmer-Sande A/S, by The Royal Norwegian Council for Scientific and Industrial Research Grants PT 15.18471 and PT 15.15449, by the Anders Jahre's Foundation for the Promotion of Science, and by the Rakel and Otto K. Bruun's legacy. The project was also funded by a research grant from the Nordic Yeast Research Program to OSG and a Research Grant DK 10206 from the National Institutes of Health (to A. H. T.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[¶] To whom correspondence should be addressed: Dept. of Biochemistry, University of Oslo, P. O.Box 1041 Blindern, 0316 Oslo 3, Norway. Tel.: 47-2-45-61-73; Fax: 47-2-45-41-94.

¹ The abbreviations used are: hPTH, Human parathyroid hormone; hPTH-(1-84), full-length (84 amino acids long) human parathyroid hormone with no mutations; hPTH-(1-84,Q26), full-length human parathyroid hormone where amino acid Lys²⁶ is mutated to Gln²⁵; prefix y, produced in yeast (S. cerevisine); prefix s, synthetic (commercial preparation).

FIGURE 1.

SDS PAGE of concentrated seast growth gredwox containing mutated and non-mutated BPILL. Aliquous of concentrated provide medium from year wirsh 51910 transformed with the repression pissmids pullsPFH-Q16 (lane 3) and pxtUsFFH-2 (12) (lane 2) were multipaced by 15% PAGE to the presence of 0.1% SDS, and visualized by alver staining as described in dissertate and friethods. Lane 4: molecular size markers.

FIGURE 2A.

HPLC multiposition of years derived hPTH(1.84.026). Yeast medians concentrated on S Sephartose FF was further purified as described in Materials and Methods. The ciution profile from the first HPLC step, a Vydac C18 cotsma, is shown. The peak containing \$45PH(1.8-9/2016) is marked. Several peaks probably represent non-peptide how molecular weight substances from the fermentation broth since they do not give rise to bands when analysed by 50SP-AUC.

FIGURE 2B.

FIGURE 2B.
The childney profile from the second HPLC step. a Waters Nova-Pok C18 cotume, isoceratic etuleto, with an analysis of the final purity of phPTII(i-84/26) (for mg) is revealed by SDS PACE and silver staining. Lane 2 shows phPTII(i-84/26) from the main HPLC peak. The molecular weight marker in the 3 if the same as in hPTII greduced in E.coli. Lane 1 shows a shower migrating bormone (0.6 mg) which 1s O-glycesylated (empathshed results), and that ethers in the mloor front peak from the second HPLC.

Table 1
N-terminal suriou orid sequence of phPTH(1-84,Q26),
10
Ser-Val-Ser-Olu-Tite-Gla-Lou-Ret-His-Ann-Lou-Gly-Lys-Ris-Lou20
20
Ann-Ger-Net-Olu-Arg-Val-Glu-Typ-Lou-Arg-Gla-Lys-Lou-Gla-Anp
See Materials and Methods for experimental details.

Table 2
Total amine acid composition of yaPTH(1-84,Q26).

As	ybPTII(I-#4,Q26) Found Theory		yhPTH(1-84) Found Theory		skPTH(1-84) [†] Found Theory		
A41	10,4	10	10.3	10	19,4	10	•••••
Gia	11.4	12	10.7	11	10.8	11	
Ser	7.4	7	7.3	7	7.4	7	
Gly	4.6	à i	4.4	4	4.5	4	
His	3.7	4	3.8	4	3.7	4	
Thr	1.2	i	1.3	i	1,1		
Ala	6.9	i	6.7	,	6.8	Ť	
Arg	5.3	5	5.4	5	5.4	5	
Pro	3.3	3	3.2	ì	3.0	3	
Val	7.5	•	7.8	i	7,7	i i	
Mes	1.8	ž	1.8	1	1.7	1	
He	0.9	ĭ	0.9	i	0.8	ì	
Leu	9.3	10	1.4	t Ò	9.7	10	
Phe	1.2	· ř	1.1	ï	1.1	· i	
Lys	7.6	i	8.7	•	8.8	ė	
Trp	nd.	ï	ad.	i	#d.	i	
Som	83.1	84	\$2.9	84	62.9	84	***************************************

1) Backem standard BPTH See Materials and Methods for experimental details.

FIGURE 3.

Pinone description may spectrometry analysis of partitled recombinates the PHttl-84.028). The spectrum shows the ion abundance as a function of mass over charge.

FIGURE 4.

Adenviate excluse-stimulating activity of rhPTH(1-84.026)
Purified recombinant hPTH(1-84.026) L.-.) was assayed for biotogical activity in a hormone-sentilire octoobast adenviate cycluse (AC) assay as described in Materials and Methods, Relative AC activity means relative to control-activity set equal to 1. Each point gives the mean value of triblicate analysis. hPTH(1-94) from Backen L.L. was used as referenced.

FIGURE 5.

(a. vira Induction of hypercustremia b) vhPTH(1-84.0)(a)

Parathyrodections/ord math Wistar rats were tested for induction of hypercaternia by yhPTH(1-84.02(a) und Bachem shPTH(1-84.43 standard as described in Materials and Methods. Blood samples were drawn at 0, 1, 2, 3, 4, 5, and 6 hours after injection of PTH (2,4g of vhPTH(1-84.02(a) and 2.75 µg of shPTH(1-84.0). The induxed hypercaternia is given as change (a) in serum calcium concentration above the awo-time control value.

FIGURE 6.

h nice home reportation-silmutating activity of shPTH(1.840.25)

Dose response celestionships for shPTH(1.84), yhPTH(1.84), and yhPTH(1.84.Q26) as home rescription-silmutating agents. Each point gives the mean value and the brackets give (he SE for groups of S to 21 homes. Results were obtained from up to S independent experiments and were packed where statistically valid. The medium calcium concentration from control bones was 7.3 ± 0.05 mg/d for 33 apparate homes and is shown by the open square and dashed horizontal line. The treatment needed was 72 hours.

MATERIALS AND METHODS AND RESULTS²

DISCUSSION

The hPTH appears to be especially sensitive to proteolytic degradation. Large amounts of hPTH fragments are found in the parathyroid gland (13), and only about 10% of circulating hPTH immunoreactive peptides are full-length hormone (14, 15). Similarly, degradation of hPTH has been a major problem when the hormone is expressed in heterologous organisms (16, 17). Improved yields of intact hormone have been obtained by secretion of the hormone into the growth medium, either in Escherichia coli (18) or in S. cerevisiae (12) or by expressing hPTH as an intracellular fusion protein in E. coli (19, 20). Even in these systems, proteolytically cleaved forms may be produced reducing the yield of intact hormone.

The present results show that hPTH can be expressed in a correctly processed and secreted in a largely intact form in S. cerevisiae after the introduction of a single, structurally conservative mutation in the 26th amino acid (Lys²⁶ \rightarrow Gln). The hormone produced resists the frequent cleavage found in the non-mutated hormone (12).

The increase in final yield from shake flask cultures of pure full-length hormone agonist is 5-10-fold compared with that obtained with the nonmutated hormone expressed in the same system (12) using identical culture conditions (results not shown). An improved purification procedure gave homogeneous hPTH-(1-84,Q26) after two high performance liquid chromatography steps.

The mutation was introduced in a region of hPTH previously found to be essential for biological activity (13) and within a triplet of basic amino acids conserved between the rat (21), porcine (22), bovine (23), and human hormone (24, 25). However, no difference between the activity of recombinant yhPTH-(1-84,Q26) and standard shPTH-(1-84) could be detected in three different biological assays: an adenylate cyclase assay, measurement of the ability to induce hypercalcemia in parathyroidectomized rats, and the mouse calvarial assay for bone resorption-stimulating activity. It is possible that the dibasic site in hPTH in fact functions as an easily attacked proteolytic site that destabilises the hormone and thus allows more rapid fluctuations in the hormone levels. A more degradation-resistant hPTH agonist could therefore be of potential importance when used as a medical drug due to different pharmacokinetics.

hPTH is one of the primary calcium-regulating hormones in the body and acts principally on kidney and bone cells, stimulating renal calcium reabsorption, phosphate excretion, and bone remodelling, respectively (26–28), resulting in anabolic as well as catabolic effects. Its overall physiological action is probably to generate a positive calcium balance and enhance bone formation. A fragment of hPTH together with 1,25-(OH)₂ vitamin D₃ have also been reported to induce bone formation in humans (29, 30), and one of the major areas of potential use of a recombinant hPTH is therefore in the treatment of postmenopausal osteoporosis. To evaluate such applications, sufficient supplies of recombinant hPTH or its agonists are essential.

Acknowledgment—We are grateful to Dr. Knut Sletten, Department of Biochemistry, University of Oslo, Norway, for doing the amino acid sequence and composition analysis.

REFERENCES

- Brake, A. J., Merryweather, J. P., Coit, D. G., Heberlein, U. A., Masiarz, F. R., Mullenbach, G. T., Urdea, M. S., Valenzuela, P., and Barr, P. J. (1984) Proc. Natl. Acad. Sci U. S. A. 81, 4642-4646
- Vlasuk, G. P., Bencen, G. H., Scarborough, R. M., Tsai, P.-K., Whang, J. L., Maack, T., Camargo, M. J. F., Kirsher, S. W., and Abraham, J. A. (1986) J. Biol. Chem. 261, 4789–4796
- Zsebo, K. M., Lu, H.-S., Fieschko, J. C., Goldstein, L., Davis, J., Duker, K., Suggs, S. V., Lai, P.-H., and Bitter, G. (1986) J. Biol Chem. 261, 5858-5865
- Loison, G., Findeli, A., Bernard, S., Nguyen-Juillerst, M., Marquet, M., Riehl-Bellon, N., Carvallo, D., Guerra-Santos, L., Brown, S. W., Courtney, M., Roitsch, C., and Lemoine, Y. (1988) BioTechnology 6, 72-77
- 5. Harris, R. B. (1989) Arch. Biochem. Biophys. 275, 315-333
- Foster, D. C., Sprecher, C. A., Holly, R. D., Gambee, J. E., Walker, K. M., and Kumar, A. A. (1990) Biochemistry 29, 347-354
- Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089
- Jacobson, M. A., Forma, F. M., Buenaga, R. F., Hofmann, K. J., Schultz, L. D., Gould, R. J., and Friedman, P. A. (1989) Gene (Amst.) 85, 511-516
- Innis, M. A., Holland, M. J., McCabe, P. C., Cole, G. E., Wittman, V. P., Tal, R., Watt, K. W. K., Gelfand, D. H., Holland, J. P., and Meade, J. H. (1985) Science 228, 21-26
- Mullenbach, G. T., Tabrizi, A., Blacher, R. W., and Steimer, K. S. (1986) J. Biol. Chem. 261, 719-722
- Moody, A. J., Norris, F., Norris, K., Hansen, M. T., and Thim, L. (1987) FEBS Lett. 212, 302-306
- Gabrielsen, O. S., Reppe, S., Sæther, O., Blingsmo, O. R., Sletten, K., Gordeladze, J. O., Høgset, A., Gautvik, V. T., Alestrøm, P., Øyen, T. B., and Gautvik, K. M. (1990) Gene (Amst.) 90, 255– 262
- Cohn, D. V., and Elting, J. (1983) Recent Prog. Horm. Res. 39, 181-209
- Gautvik, K. M., Gautvik, V. T., and Halvorsen, J. F. (1983b) Scand. J. Clin. Lab. Invest. 43, 553-564
- Slatopolsky, E., Martin, K., Morrissey, J., and Hruska, K. (1982)
 J. Lab. Clin. Med. 90, 309-316
- Born, W., Freeman, M., Hendy, G. N., Rapoport, A., Rich, A., Potts, J. T. J., and Kronenberg, H. M. (1987) Mol. Endocrinol.
- Rabbani, S. A., Yasuda, T., Bennett, H. P. J., Sung, W. L., Zahab,
 D. M., Tam, C. S., Goltzman, D., and Hendy, G. N. (1988) J. Biol. Chem. 263, 1307-1313
- Høgset, A., Blingsmo, O. R., Sæther, O., Gautvik, V. T., Holmgren, E., Hartmanis, M., Josephson, S., Gabrielsen, O. S., Gordeladze, J. O., Alestrøm, P., and Gautvik, K. M. (1990) J. Biol. Chem. 265, 7338-7344
- Wingender, E., Bercz, G., Blöcker, H., Frank, R., and Mayer, H. (1989) J. Biol. Chem. 264, 4367-4373
- Gardella, T. J., Rubin, D., Abousamra, A. B., Keutmann, H. T., Potts, J. T., Kronenberg, H. M., and Nussbaum, S. R. (1990) J. Biol. Chem. 265, 15854-15859
- Heinrich, G., Kronenberg, H. M., Potts, J. T., Jr., and Habener, J. F. (1984) J. Biol. Chem. 259, 3320-3329
- Sauer, R. T., Niall, H. D., Hogan, M. L., Keutmann, H. T., O'Riordan, J. L. H., and Potts, J. T. J. (1974) Biochemistry 13, 1994–1999
- Kemper, B., Habener, J. F., Potts, J. T., Jr., and Rich, A. (1976) Biochemistry 15, 20-25
- Keutmann, H. T., Sauer, M. M., Hendy, G. N., O'Riordan, J. L. H., and Potts, J. T. J. (1978) Biochemistry 17, 5723-5729
- Vasicek, T. J., McDevitt, B. E., Freeman, M. W., Fennick, B. J., Hendy, G. N., Potts, J. T., Jr., Rich, A., and Kronenberg, H. M. Proc. Natl. Acad. Sci. U. S. A. 80, 2127-2131
- Norman, A. W., Roth, J., and Orci, L. (1982) Endocr. Rev. 3, 331-366
- 27. Morel, F. (1983) Recent Prog. Horm. Res. 39, 271-304
- Potta, J. T. J., Kronenberg, H. M., and Rosenblatt, M. (1982) Adv. Protein Chem. 35, 323-396
- Reeve, J., Meunier, P. J., Parsona, J. A., Bernat, M., Bijvoet, O. L. M., Courpron, P., Edouard, C., Klenerman, L., Neer, R. M., Renier, J. C., Slovik, D., Vismans, F. J. F. E., and Potts, J. T. Jr. (1980) *Br. Med. J.* 280, 1340-1351
- 30. Slovik, D. M., Rosenthal, D. I., Doppelt, S. H., Potts, J. T. Jr.,

² Portions of this paper (including "Materials and Methods," "Results," Figs. 1-6, and Tables 1 and 2) are presented in miniprint at the end of this paper. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are included in the microfilm edition of the Journal that is available from Waverly Press.

- Daly, M. A., Campbell, J. A., and Neer, R. M. (1986) J. Bone Miner. Res. 1, 377-381
- Carter, B. L. A., Irani, M., Mackay, V. L., Seale, R. L., Sled-ziewski, A. V., and Smith, R. A. (1987) in DNA Cloning: A Practical Approach (Glover, D. M., ed) Vol. III, pp. 141-161, IRL Press, Oxford
- 32. Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Methods
- Kuitkei, I. A., Roberts, J. D., and Zakour, R. A. (1987) Methods Enzymol. 154, 367-382
 Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
 Botstein, D., Falco, S. C., Stewart, S. E., Brennan, M., Scherer, S., Stinchcomb, D. T., Struhl, K., and Davis, R. W. (1979) Gene (Amt.) 8, 17-24 (Amst.) 8, 17-24
- 35. Gautvik, K. M., Teig, V., Halvorsen, J. F., Arnesen, E., Myhre, L., Heimann, P., and Tollman, R. (1979) Scand. J. Clin. Lab. Invest. 39, 469-478

- 36. Laemmli, U. K. (1970) Nature 227, 680-685
- 37. Bürk, R. R., Eschenbruch, M., Leuthard, P., and Steck, G. (1983) Methods Enzymol. 91, 247-254
- 38. Towbin, H., Staehelin, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 4350-4354
- 39. Matsudaira, P. (1987) J. Biol. Chem. 262, 10035-10038
- 40. Gautvik, K. M., Gordeladze, J. O., Jahnsen, T., Haug, E., Hansson, V., and Lystad, E. (1983) J. Biol. Chem. 258, 10304-10311
- 41. Gautvik, K. M., Gordeladze, J. O., Moxheim, E., and Gautvik, V. T. (1984) Eur. Surg. Res. 16, 41-54
- 42. Robinson, D. R., Tashjian, A. H., and Levine, L. (1975) J. Clin. Invest. 56, 1181-1188
- 43. Ivey, J. L., Wright, D. R., and Tashjian, A. H. (1976) J. Clin. Invest. 58, 1327-1338

Supplemental material

Characterization of a K26Q site directed mutant of human parathyroid hormone expressed in yeast

Sjur Reppe, Odd S. Gabrielsen, Ols Kristoffer Obind, Nancy Morrison, Olav Sørther, Ola R. Billegume, Vigdis T. Gautvik, Jan Gordeledze, Anne Karins Haflan, Edward F. Voelkel, Tordis B. Øyen, Armen H. Tashilan Jr., and Kaare

MATERIALS AND METHODS

Plasteids, strains and culture conditions.

The Secherospecs exvertises strain used for hPTH expression was BJ1991 (0, tryl, srul-52, trul, srpl-1122, sep4-3). Yeast ceth were transformed by the lithium method (31), and transformed prove at MPC in YNBGC medium (0.67% yeast altragen base, 1% glacose, 1% cassation acids (0.000)). The pullXPTH-2 plasmid used as a reference for expression of authentic APTH-1401 in yeast, and the subctone M13PTH-3, have been described previously (12; US Putent application no.921654).

In vitre mutacenesis of the n-factor kPTH fusion sens.

la_rira matarascia of the a-factor_bFTH fusion_sens.

The inappropriate processing of bFTH secreted from yeast (cleaved at the site: Arg25.Lgs264Lgs27 (123), might be eliminated by a charge from Lgs26 to Gls26 to destroy the potential year processing sits. To introduce this charge, the subclose MILFTH-3 was modified by in site matagements using the "Multa-general to true matagements bit" (Blo-Rad) based on the method of Kunket et al., (33) and the matagements of tipeoucleotide: S-GGCTGGGTCAGAAGCTGG-3. Positive phases (containing MILFTH-250 were verified by DNA exquenting (33). The entire expression cannot between a Bamill set a filled-in Ecolit cits was industed from MILFTH-Q26 and inserted between the Bamill set Prof.l site of the yeast details vector VED26 (34). This expression plasmid was designated poUXPTH-Q26 and used to transform the yeast strain BJ1991.

Detection of hFTH in culture media.

Radiolnesssoussay of hFTH in yess culture media was parformed as described (12,35). For electrophoretic analysis, years tailure media were concentrated on 5 Sepharose FF as previously electrical for the property of the previous of SEG (36), and ether sained with silver (37) or analyses further by protein biotiling using innessions FDE (36), and ether sained with silver (37) or analyses further by protein biotiling using innessions FDE Transfer Membranes (silliprore) and the betfirm of Durbh or of Christian (1877) and STRII(143) was purchased (1871).

Parification of hFTH from yeast culture medium. The charified culture medium was concentrated on a S Sepharose Fast Flow column previously confidence with 0.3M gylone, pel 3.0. The medium was adjusted to pH 3.0 with 1 M HCl before loading. The column was then wanted with 0.1M acetic celd (adjusted to pH 6.0) and eluted with 8.1M Naj.HPG., pH 8.5. HFTH contacts with the Agga peak. This step also resulted in a partial purification of the hormone. Fleat purification was obtained by a two-step reverse phase HFLC procedure. In the first step a Vydac pretchippspide Cilc celumn (250-46 nm, purchased from The separation group?, Heaperia, CA,USA) was employed with a gradient from 68-60% element 8 (clusant 61-23 frifthorocentic acid in 70% acotomittle and 30% mill(I) water, and clusant 81-23 frifthorocentic acid in 70% acotomittle and 30% mill(I) water, and clusant 81-23 frifthorocentic acid in 70% acotomittle and 30% mill(I) water, and clusant 81-23 frifthorocentic acid in 70% acotomittle and 50% frifthorocentic acid in 70% acotomittle and 50% frifthorocentic acid in 70% acotomittle and 50% frifthorocentic acid in 70% acotomittle acid in 70% acotomities were monitored by UV at 228 nm.

N-forminal sensonos. anison acid commodition and mass ascentrometry.

Proteins to be sequenced were purified either by HPLC as described above or by SDS polyacrytanide gatelectropheresis inflowed by biotting note Immobilion PVDF membranes (39). Automated Edman degradation was performed on a 477A Protein Sequencer with an on-disc 120A peapsthiologisation among acid enalyser from Applied Biosystems (Fortier City, CA, USA). All reagests were chatined from Applied Biosystems. The anison acid competition was analysed on a Biotronic SP4100 amino acid sansiyer after hydrotysis of 36 µg of the hPTti peptide in 6M HCl (special purity), 18.05% thioglycol acid, for 24 hr at 110 °C.

The medicular mass of purified recombinate hPTH(1-84,Q26) was determined by 2½Cp plasma described mass spectrometry as described (18), and was hindly performed by Dr. Maris Harisansis, KahlGen AB, Stockholm.

Advantate crease arms for APTH.

The adenyists evenue stimulating activity of the recombinant bPTH was assayed as previously described using UMR 186 consenarous cell membranes (12,44,41). Synthetic hPTH(1-44) from Signa was used as reference standard.

Signs was used as reference standard.

Assay of hPTH-induced hyperculcumia in rats
Male Wistar rats (154-250 g) were parathyroidectomized using electrocautery 18 hours prior to the
start of the experiment. The assimals were fasted overraight, and attacethetized the next day using
Hypnorm Doracium (6.2 mirrat). The careted sarrey was cannotated using polyephyleno-96 tubing.
The canasts was connected to a syrings containing Ringers Accesses, '92 however attacets, and the separatized. Five minutes after injection of 200 µi of the beparishzed Ringers, a baselies beds
sample was drawn (300 µi). The animatis were trachestomized to prevent respiratory failure due to
samage to the recurrent laryugest nerve cunning through the thyroid gands. FTH was then higher
substancously in the nect in a volume of 200 µi of the PFHH-440 and hPTH(1-440,240) were
disnotived in 100 µi 0.810 secule acid. After dissovings, the stabilizes were brought up in 300 µi of
Ringers Accesses containing 15 howine allments. Blood margins were drawn from the caretid artery
if 1, 2, 1, 4, 5, and 6 hours after the injection of PTH. The rats waver re-happarizined 5 minutes
before drawing each blood sample using 200 µi of (the heparialized Ringers solution. The
concentrations of PTH west were described by animo acid analysis. hPTH(1-440,240) were used
it respects to consensate for a discrepancy between what was habiled on the Rachen valid (in gPTH), and
what we determined by anable acid unalysis (0,73 mg PTH)). The blood samples were
centrifuged for 10 minutes, and the pleasma was analysed for calcium using a Cobust Automatyzer
(Cobus Bio, Roche Diagnossich).

Bose rescribios-timulatine activity

Bose reargitos-timulating activity was measured using accessed mosts calvarfs as previously described (42,45). The encition was bulbecco's Modified Eagle's madium (DMEM) supplemented with 15% best-inscribated (54-69°C for 38 min) horse serum bouchation of calvaria from 4- to 3-day-sid mice was performed at 37°C in a roller dram apparatus under an atmosphere of 59°S O₂, 50°C O₂, and 45°S N₂. Calvariase were preductained for 16 hours before experimental treatment was begun. The medium was these changed, and fresh control medium or medium containing atmosphere produced matast hermone (phPTH(1-84,0); past derived horsones (phPTH(1-84,0); rest derived matast hermone (phPTH(1-84,025)) was added. Bone remorption was determined by measuring the accumulation of 40°Ca²⁺ in the exitance medium during the 72-hour treatment period. The concentration of total calcium in the hone culture medium was measured in 460 µl analytic by calcium-selective electrode using a Nova 7+7 sustomatic calcium analyzer (10°VA Bloomedical, Walthem, MA, USA). Results in each experiment were subjected to a samples of variance, and the SE values were calculated from the residual error term of that analytis. Experiments were pooled when the variances were nonbetterogeneous. The shPTH(1-44) standard was from Bechem (Lot no. 070559).

RESULTS

RESULTS

Energine and secretion of hTH(1-M-004) in rest.

In prevent the internal processing of hTH occuring during secretion in year, a point mutation was introduced in one of of the hTH gas changing typins-26 to pintamine in the peptide. The mutation gas was expressed in Sectarowayers convicted after fundes to the occuring the processing of the processing of the provided accurately and the processing of the processing of

Partification
To parify yhPH(1-84,Q26), growth medium was first concentrated using a S Sepharese FF
cotome (yielding 70% pure yhFH(1-84,Q26)) (Fig.1). The hFTH peak from the first HFLC step
contained predoculemently yhFH(1-84,Q26), but also some glycosysted hormone with reduced
migration is SDS PAGE (Fig.1a). After a second forceste BFLC chromotography, only a single
hand was seen after SDS PAGE (Fig.18). When the yield from state-flust cultures of pure
yhFH(1-84,Q26) was compared with itself of yhFH(1-84,4). 5-10 (sed higher yields were obtained,
consistent with our previous cultures of the fraction of full length hormone (up to 20%) produced
with an expression plasmid encoding non-mentated hPTH(1-84) (12).

Was an expression passion encourage unconstant or Fitting 1. (1) and the passion in the passion in the passion in the passion of the phFH(1-84,024) product was verified by N-terminal amino setd sequencing showing correct animo-terminal sequence (Table 1). In particular, the expected change from Lys to Cin in position 25 was confirmed. The amiso acid composition of the particle phFH(1-84,026) in shown in Table 2. Except for one Try that is not revealed under the conditions must, the expected composition and total number of amino acid residues were found. Therefore, so C-terminal degradation had occurrent. To substantiate that the purified phFH(1-84,026) representant the latest hormone, must spectrum our passion of \$42,025 deliant conduction and product an above in Fig. A. moderniar mass of \$42,025 deliant conduction. This when corresponds well with the theoretical molecular mass of \$47,011-484,0240 (calculated from the amino acid composition, of \$41,025 deliant conduction in the conduction of the conduction of \$47,011-484,0240 (calculated from the amino acid composition, of \$41,025 deliant conduction of the cond

Ricitorical characterization.

The biological activity of the yhPTH(1-84,Q26) was tested by three different assays. The puryPTH(1-8,Q26) was first analyzed for its ability to stimulate the adenyistic cyclese activity is UMR 186 cateoasrcome crits (48,41) (Fig.4). The stimulation curve colacides with that of purchastic properties of the properties of th

Secondly, the purified yhFTH(I-84,Q2s) and a standard shFTH(I-84) were emayed for it to induce hypercalcomic in parallyredectomized rats (Fig.5). The yhFTH(I-84,Q2s) he **re biological activity stimulatory effect comparable to or slightly above that of the AFTH control.

Finally, the yhPTH(1-84,Q26) was tested for direct activity on hone by amaying its bon-recognition-climinating activity using annexasi moses calvaria, yhPTH(1-84,Q26) silendaried bon-recognition is view with a postency similar to that of shPTH(1-84,Q26) and yhPTH(1-94) (Fig.54). A (line-course experiment similarly showed that yhPTH(1-84,Q26) and the same bone resorption climinating activity as the non-mixted hormone (not shown). Thus, we have found so indicative of reduced blooglest activity resulting from the introduced motation.