Department of Computer Science & Engineering

计算机系统结构实验指导书-LAB4

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	1 of 14
	作者	修改日期		41
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

1. 概述

1 2 3

1.1 实验名称

简单的类 MIPS 单周期处理器实现 -寄存器、存储器与有符号扩展

1.2 实验目的

- 1. 理解 CPU 的寄存器、存储器、有符号扩展
- 1. Register 的实现
- 2. Data Memory 的实现
- 3. 有符号扩展的实现
- 4. 使用行为仿真

1.3 实验预计时间

约 120~150 分钟

1.4 实验报告与验收办法

- 1) 实验报告和工程文件在第十二周星期五晚上 23 点前提交
- 2) 无法验收,报告中检查三个模块仿真结果)

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	2 of 14
	作者	修改日期		1
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

2. 新建工程

1 2 3

2.1 实验描述

2.1.1 新建工程

- 1. 新建工程 lab04
- 2. 选择 FPGA 参数:

选择 xc7k325tffg676-2

- 3. 点击 Next
- 4. 点击 Finish。

	标题	文档编号	版本	页
——— _{上海交通大学} ——— 计算机科学与工程系	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	3 of 14
	作者	修改日期		41
Dept. of Computer Science & Engineering	CETC	3/21/2019		公廾

1 2 3

3.1 实验描述

3.1.1 模块描述

寄存器是指令操作的主要对象, 32 位的 MIPS 中共有 32 个 32 位的寄存器。

寄存器模块

3.1.2 新建模块源文件

新建文件 Registers,确定 I/O 端口定义,这里加入了时钟信号 Clk

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	4 of 14
	作者	修改日期		<i>(</i> 1
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

Copyright © 2020 SJTU Department of Computer Science & Engineering. All rights reserved.

3.1.3 编写功能

由于不确定 WriteReg, WriteData, RegWrite 信号的先后次序,可采用时钟的下降沿作为写操作的同步信号,以防止发生错误。

```
31
32
          reg [31:0] regFile[31:0];
33
34
          always @ (readRegl or readReg2 or writeReg)
35
36
              begin
                   // ToDo
37
38
               end
39
40
          always @ (negedge Clk)
41
   巨
              begin
42
                  // ToDo
43
44
```

3.1.4 仿真测试

- 1. 测试文件名可取 Registers_tb
- 2. 添加如下激励信号,进行行为仿真。使用 Clk 作为时钟输入,仿真周期自定,时钟周期可设为 200ns。

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	5 of 14
	作者	修改日期		<i>(</i> 1
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

```
59
    initial begin
   百
60
            // Initialize Inputs
61
62
63
            //Current Time: 285ns
64
            #285;
65
            regWrite = 1'bl;
                     = 5'b10101;
66
            writeReg
67
            68
69
            //Current Time: 485ns
70
            #200;
71
            writeReg = 5'b01010;
72
            writeData = 32'b0000000000000001111111111111111;
73
74
            #200;
75
            regWrite = 1'b0;
            writeReg = 5'b000000;
76
77
            78
79
            //Current Time: 735ns
80
            #50;
81
            readRegl = 5'bl0101;
            readReg2 = 5'b01010;
82
83
84
        end
```

3. 下面给出给出仿真波形样例(这是原先线下要检查的也是你做仿真要得到的 请截图):

3.2 实验报告

	标题	文档编号	版本	页
	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	6 of 14
	作者	修改日期		/ /
	CETC	3/21/2019		公升

4. 内存单元模块

4.1 实验描述

4.1.1 模块描述

存储器本模块与 register 类似,由于写数据也要考虑信号同步,因此也需要时钟。内存单元 的实现,也可用系统 Block Memory 来生成。参见本手册最后附录的部分图示。

4.1.2 新建模块源文件

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	7 of 14
	作者	修改日期		۲.
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

Copyright © 2020 SJTU Department of Computer Science & Engineering. All rights reserved.

4.1.3 编写功能

端口声明好了,可编写如下格式两个 Verilog 代码的 always 语句块:

```
14
          reg [31:0] memFile[0:63];
15
          always@ ( /* conditions */ )
16
17
            begin
18
              // ToDo
19
            end
20
21
          always@ (/* which edg */)
    22
            begin
23
             // ToDo
24
            end
```

4.1.4 功能仿真

- 1. 文件名可取 dataMemory_tb
- 2. 添加激励信号如下,设定不同的输入。请覆盖所有的情况,以保证逻辑的正确

```
21
           //-----Current Time: 185ns
22
           #185;
23
           memWrite = 1'b1;
24
           address = 32'b00000000000000000000000000000000111;
25
           26
27
           #100;
28
           memWrite = 1'b1;
           writeData = 32'hffffffff;
29
           30
31
32
           #185;
33
           memRead = 1'b1;
34
           memWrite = 1'b0;
           //----
35
36
37
           #80;
38
           memWrite = 1;
39
           address = 8;
           writeData = 32'haaaaaaaa;
40
41
42
           #80;
43
           memWrite = 0;
44
           memRead = 1;
45
           //----
```

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	8 of 14
Dept. of Computer Science & Engineering	作者	修改日期		41
	CETC	3/21/2019		公升

图 A 和图 B 其实相同,只是采用了不同进制且时钟名不同而已

4. 观察波形是否满足逻辑,如果有错,检查代码,重新仿真。

4.2 实验报告

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	9 of 14
	作者	修改日期		* 1 *
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升

5. 带符号扩展

1 2 3

5.1 实验描述

5.1.1 模块描述

将 16 位有符号数扩展为 32 位有符号数。

补码:

- (1) 正数的补码:与原码相同。
- +9的补码是00001001。
- (2) 负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。求-7的补码。

因为给定数是负数,则符号位为"1"。

后七位: +7 的原码 (0000111) →按位取反 (1111000) →加 1 (1111001) 所以-7 的补码是 11111001。

PS: 带符号扩展只需要在前面补足符号即可。

5.1.2 新建模块源文件

5.1.3 实现功能

```
有多种方法将符号补齐,例如:
    module signext(
        input [15:0] inst,
        output [31:0] data
    );
    assign data= //How to;
endmodule
```

5.1.4 仿真测试

- 1. 添加激励信号,进行行为仿真
- 2. 观察波形是否满足设计逻辑
- 3. 参考波形如下(这个原先也是要检查的):

5.2 实验报告

PS: 寄存器、存储器和有符号扩展这三个模块的报告也可以合并起来最后总结写

附录:

	标题	文档编号	版本	页
—————————————————————————————————————	计算机系统结构实验指导书 LAB4	CSE-COA-LAB-004	0.5	11 of 14
	作者	修改日期		4 1
Dept. of Computer Science & Engineering	CETC	3/21/2019		公升