

(Determinate) Finite Antomata.

FA = (Q, 20, F, D, 8)

Q - finite set of states

g∈Q: intial state

FEQ: Set of final states

∑ : input olphabeta

8 : transition function

Any DFA has a unique directed graph representation

This DFA does not accept.

Def: A language Is regular if it is a coupled.

by some DFA.

[01,::]

Regular operation:

A and B. are some

1 Union: AUB

is f

Example 1. Let $\Sigma = \{0,1\}$, $\Gamma = \{0,1,X,\mathbb{B}\}$, $Q = \{q_0,q_1,q_2,q_3,q_4,q_5\}$, $F = \{q_5\}$ and $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow,\rightarrow\}$ the transition function given for the following table:

		\sim 1	X	\mathbb{B}
q_0	(q_1, X, \rightarrow)			$(\mathbb{B}, \mathbb{B}, \rightarrow)$
$(q_1)(q_1,0,\rightarrow)$	(q_2, X, \rightarrow))		
q_2	(q_3, X, \leftarrow)			
q_3	$(q_3, 0, \leftarrow)$	$(q_3, 1, \leftarrow)$	(q_3, X, \leftarrow)	(q_4,\mathbb{B}, o)
q_4	(q_1, X, \rightarrow)		(q_4, X, \rightarrow)	
q_5				

where the empty entries mean that there is no transition defined. The input that the machine accepts are strings that look like $0^n 1^n$.

			not defeat
input	0	$(90,0) \rightarrow (9, \times -$	-) -1 T
input		(%,1) -7. []	not accept
input.	jo	\longrightarrow \bigcirc	not except.
i nput	0	(2,0) + (9, X -)	

Decider:

= {0, |} = {all pusibly W=.0[...

A TM is a decider of it halts on every word we I*

Also, L(M) = { WEZ* | Macropt. w}

If $L = \sum_{i=1}^{k} that is accepted by some TM,$ then Lis semi-decidable.

If L = L(M) for some decider M,
then Lis decidable.

Haliting problem:

Language ATM = { \(\text{M}, \text{W}\) input w.

masing madin

Q: Is Arm semi-decidable?

A: ATM is undecidable.

 $(h_n) \notin L(h_n)$ this e L(Mn)

Done with step I

Done with step I.

Halting Assume Am is decidable by a TM (H)

D now. can be interpreted as

() On input (Mi), simulale Hon- (Mi, (Mi)) of H accept its input, then veject; it I reject its input, then accept.

Decider:

<u>_</u>*

= {0, |} = {all pusibly W=.0 |...

A TM is a decider of it halts on every word $w \in \Sigma^*$.

Also, L(M) = { WEIX. | Macropt. w)