AYUDANTÍA 3

1. Fracciones continuas

El algoritmo de fracción continua realiza una correspondencia uno a uno entre los irracionales y los conjuntos de enteros a_0, a_1, a_2, \ldots con a_1, a_2, \ldots positivos. También hace una correspondencia uno a uno entre los racionales θ y conjuntos finitos de enteros a_0, a_1, \ldots, a_n con $a_1, a_2, \ldots, a_{n-1}$ positivos con $a_n \geq 2$.

Para cualquier θ racional, con el algoritmo descrito en BAKER [1], podemos reescribir θ de la siguiente forma

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}.$$

$$\vdots \frac{1}{a_n}$$

La representación de θ como fracción continua suele denotarse como $[a_0, a_1, \ldots, a_n]$, en el caso de que θ sea irracional, entonces el algoritmo no terminaría y la notación que recibiría es $[a_0, a_1, a_2, \ldots]$. Si θ fuese irracional y para algún m se tiene que $a_{m+n} = a_n$ para todo n suficientemente grande, entonces diremos que el irracional es **periódico** y lo denotaremos como

$$[a_0,\ldots,a_{n-1},\overline{a_n,\ldots,a_{m+n-1}}].$$

Lema 1.1: θ es un irracional cuadrático si y solo si es periódico.

 $\underline{Ejercicio}$ 1: Escriba $\sqrt{2}$ como fracción continua y reescriba $[\bar{1}]$ de la forma $\frac{a+\sqrt{b}}{c}.$

Ejercicio 2: Sea n > 0 entero tal que -1 es residuo cuadrático módulo n (i.e. $-1 \equiv a^2 \mod n$ para algún a). Entonces n es suma de cuadrados.

2. Aproximación Diofantina

Ejercicio 3: Muestre que la suma $a^{-b}+a^{-b^2}+a^{-b^3}+\dots$ es trascedental para cualquier $a\geq 2$, y $b\geq 3$.

Ejercicio 4: Pruebe que π es irracional.

Referencias

- 1. Baker, A. A Concise Introduction to the Theory of Numbers (Cambridge University Press, 1984).
- 2. Hua, L. K. y Shiu, P. *Introduction to Number Theory* (Springer-Verlag Berlin Heidelberg, 1982).
- 3. OEIS COLLABORATION, T. The on-line encyclopedia of integer sequences https://www.oeis.org. 2024.

Correo electrónico: rseplveda@uc.cl