COMP111: Artificial Intelligence

Section 6. Adversarial search (Game playing)

Frank Wolter

Outline

We will look at how search can be applied to playing games

- ► Types of Games
- Perfect play:
 - minimax algorithm
 - $ightharpoonup \alpha \beta$ pruning
- ▶ Playing with limited resources (heuristics)

Games vs. search problems

- ► In search we make all moves. In games we play against an unpredictable opponent:
 - solution is a strategy specifying a move for every possible move of the oponent.
- A method is needed for selecting good moves that stand a good chance of achieving a winning state whatever the opponent does!
- Because of combinatorial explosion, in practice we must approximate using heuristics.

Types of Games

- ► In some games we have a fully observable environment. The position is known completely. These are called games with perfect information.
- Examples: chess, go, backgammon, monopoly.
- ▶ In others we have a partially observable environment. For example, we cannot see the opponents cards. These are called games with imperfect information.
- Examples: battleships, bridge, poker.
- Some games are deterministic: chess, go.
- Others have an element of chance: backgammon, monopoly, bridge, poker

The games we consider

We consider special kinds of games

- Deterministic
- ► Two-player
- Zero-sum:
 - the utility values at the end are equal and opposite
 - example: one wins (+1) the other loses (-1).
- Perfect information

Problem Formulation

The search graph gives for every state the successor states obtained by making a move. The set of goal states is replaced by a utility function.

- ► Initial state s_{start}:
 - ▶ Initial board position. Which player moves first.
- Successor function:
 - provides for every state s and move the new state after the move.
- Terminal test
 - Determines when the game is over
- Utility function
 - Numeric value for terminal states
 - ► E.g. Chess +1, -1, 0
 - ► E.g. Backgammon +192 to -192

Possible Development

Game Tree

- Each level labelled with player to move
- ► Each level represents a ply
 - ► Half a turn
- ▶ Represents what happens with competing agents

Introducing MIN and MAX

MIN and MAX are two players:

- MAX wants to win (maximise utility)
- MIN wants MAX to lose (minimise utility for MAX)
- MIN is the opponent.

Both players will play to the best of their ability

- MAX wants a strategy for maximising utility assuming MIN will do best to minimise MAX's utility
- Consider minimax value of each state: the utility of a state given that both players play optimally.

Example Game Tree

Minimax Value

- ► The utility (=minimax value) of a terminal state is given by its utility already (as an input).
- ► The utility (=minimax value) of a MAX-state (when MAX moves) is the maximum of the utilities of its successor states.
- ► The utility (=minimax value) of a MIN-state (when MIN moves) is the minimum of the utilities of its successor states.
- ► Thus, we can compute the minimax value recursively starting from the terminal states.

Formally, let Succ(s) denote the set of successors states of state s. Define the function MinimaxV(s) recursively as follows:

$$\operatorname{MinimaxV}(s) = \left\{ \begin{array}{ll} \operatorname{Utility}(s) & s \text{ is Terminal} \\ \max_{n \in \operatorname{Succ}(s)} \operatorname{MinimaxV}(n) & \operatorname{MAX \ moves \ in} \ s \\ \min_{n \in \operatorname{Succ}(s)} \operatorname{MinimaxV}(n) & \operatorname{MIN \ moves \ in} \ s \end{array} \right.$$

Minimax algorithm

- ► Calculate minimax value of each state using the equation above starting from the terminal states.
- Game tree as minimax tree:

Minimax Tree

- ▶ MIN takes the minimal value from its successors.
- ▶ MAX takes the maximal value from its successors.

Consider

Properties of minimax

Assume MAX always move to the state with the maximal minimax value.

- Optimal: against an optimal opponent. Otherwise MAX will do even better. There may, however, be better strategies against suboptimal opponents.
- ▶ Time complexity: can be implemented (depth-first) so that time complexity is b^m (branching factor b, depth m).
- ► Space complexity: can be implemented (depth-first) so that space complexity is *bm*.

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games

- ▶ 10¹⁵⁴ paths to explore
- infeasible

But do we need to explore every path?

Removing redundant information: α - β -Pruning

If you know half-way through a calculation that it will succeed or fail, then there is no point in doing the rest of it!

Cutoffs and Heuristics

- Cutoff search according to some cutoff test.
- Problem: utitilies are defined only at terminal states.
- Solution: Evaluate the pre-terminal leaf states using heuristic evaluation function rather than using the actual utility function.

Cutoff Value

Instead of MiniMaxV(s) we compute CutOffV(s).

Assume that we can compute a function Evaluation(s) which gives us a utility value for any state s which we do not want explore (every cutoff state).

Then define CutOffV(s) recursively:

$$\operatorname{CutoffV}(s) = \left\{ \begin{array}{ll} \operatorname{Utility}(s) & s \text{ is Terminal} \\ \operatorname{Evaluation}(s) & s \text{ is Cutoff} \\ \operatorname{\mathsf{max}}_{n \in \operatorname{Succ}(s)} \operatorname{CutoffV}(n) & s \text{ is MAX} \\ \operatorname{\mathsf{min}}_{n \in \operatorname{Succ}(s)} \operatorname{CutoffV}(n) & s \text{ is MIN} \end{array} \right.$$

Example: Chess (I)

- Assume MAX is white
- Assume each piece has the following material value:
 - ightharpoonup pawn = 1;
 - ▶ knight = 3;
 - ightharpoonup bishop = 3;
 - ightharpoonup rook = 5;
 - ightharpoonup queen = 9;
- \triangleright let w = sum of the value of white pieces
- ightharpoonup let b = sum of the value of black pieces

Evaluation(s) =
$$\frac{w - b}{w + b}$$

Example: Chess (II)

- ► The previous evaluation function naively gave the same weight to a piece regardless of its position on the board...
- Let X_i be the number of squares the *i*th piece attacks

$$\operatorname{Evaluation}(s) = \operatorname{\textit{piece}}_1 \operatorname{\textit{value}} * X_1 + \operatorname{\textit{piece}}_2 \operatorname{\textit{value}} * X_2 + \dots$$

Game playing: summary

- Minimax algorithm (with α - β pruning) fundamental for game playing.
- ▶ Not efficient enough for games such as chess, go, etc.
- Evaluation functions are needed to replace terminal states by cutoff states.
- Various approaches to define evaluation function.
- Most successful approach: machine learning. Evaluate positions using experience from previous games.