

Проблематика

Требуется алгоритм, который **быстро определяет** аномалии в данных

Open-source

Необходимо использовать только **бесплатные**, **открытые решения**

Сезонность

Внутри дня метрики могут меняться значительно.

Изменения вызванные сезонностью – не аномалии

Аномалия - это что?

Необходимо определить, что считается **«ненормальным» поведением метрик**

Наше решение

Интерфейс, который позволяет анализировать временной ряд и отмечать выявленные аномалии в данных.

Доступные опции:

- Загрузка .tsv файла
- Выбор временного интервала для анализа
- Интерактивные графики
- Выгрузка файла с отмеченными аномалиями

RedLab Hack

Team: ikanam_chipi_chipi

Стек

Алгоритм **машинного обучения** для поиска аномалий с учётом **нескольких признаков** одновременно

Streamlit

Python библиотека для создания веб-интерфейса с возможностью добавления **интерактивных графиков**

Борьба с внутридневной сезонностью

Метрика до обработки

Не всегда понятно – большое значение связано со временем суток или же это аномалия?

Компонента сезонности

Используя библиотеку statsmodels, находим компоненту сезонности

Не аномалии

Throughput Anomalies

метрика до обработки

Уникальность решения

Благодаря тому, что мы учли сезонность, **алгоритм удалил экстремальные значения не «в тупую»**

Алгоритм формирует **anomaly_score** – вероятность, что объект является аномалией.

Можно задать свой трешхолд.

	point	seasonally_adjusted_sum_call_count	seasonally_adjusted_web_response	seasonally_adjusted_apdex	seasonally_adjusted_error_rate	anomaly	anomaly_score
19,531	2024-04-29 13:15:00	3,458.9023	0.0146	0.9958	0.002		0.38
19,532	2024-04-29 13:16:00	3,387.0818	0.1488	0.9946	0.0028		0.78
19,533	2024-04-29 13:17:00	3,392.3141	0.1535	0.9946	0.0026		0.78
19,534	2024-04-29 13:18:00	3,405.3919	0.0185	0.9975	0.0003		0.08

Уникальность решения

Если увеличить трешхолд — с наибольшей вероятностью будут указаны только аномалии.
Уменьшить – все подозрения на аномалии будут отображены.

Интерпретируемость решения

Есть возможность получить ответ на вопрос:

Руководствуясь какими факторами модель определила объект как аномалию?

https://github.com/maxlyara1/find_anomalies_hackathon/blob/main/%D0%98%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D0%B9%D1%81_26_05_2024.mp4

Точность работы модели

TABLE 5 Results on detecting abnormal graphs and anomalies in time series.

	Data	AUC-ROC				AUC-PR					
	Data	DIF (ours)	EIF	LeSiNN	iForest	eGLocalKD	DIF (ours)	EIF	LeSiNN	iForest	eGLocalKD
Graph	HSE	$0.737_{\pm 0.013}$	$0.715_{\pm 0.014}$	$0.702_{\pm 0.001}$	$0.697_{\pm 0.014}$		$0.094_{\pm 0.005}$	$0.088_{\pm 0.004}$	$0.084_{\pm0.000}$	$0.082_{\pm 0.004}$	$0.054_{\pm 0.000}$
	MMP	$0.715_{\pm 0.006}$	$0.663_{\pm 0.012}$			$0.675_{\pm 0.001}$	$0.260_{\pm 0.006}$	$0.216_{\pm 0.006}$	$0.217_{\pm 0.000}$	$0.219_{\pm 0.011}$	$0.233_{\pm 0.001}$
	p53	$0.680_{\pm 0.008}$	$0.597_{\pm 0.017}$	$0.606_{\pm0.000}$	$0.619_{\pm 0.013}$	$0.640_{\pm 0.001}$	$0.177_{\pm 0.006}$	$0.138_{\pm 0.004}$	$0.144_{\pm 0.000}$	$0.143_{\pm 0.004}$	$0.150_{\pm 0.000}$
	PPAR	$0.701_{\pm 0.013}$	$0.716_{\pm 0.005}$		$0.733_{\pm 0.009}$	$0.643_{\pm 0.001}$	$0.127_{\pm 0.008}$	$0.173_{\pm 0.006}$	$0.165_{\pm 0.001}$	$0.208_{\pm 0.012}$	$0.086_{\pm0.000}$
		DIF (ours)	EIF	LeSiNN	iForest	eTranAD	DIF (ours)	EIF	LeSiNN	iForest	eTranAD
	Mars	$0.952_{\pm 0.017}$	$0.980_{\pm 0.006}$	$0.942_{\pm 0.014}$	$0.947_{\pm 0.015}$	$0.947_{\pm 0.016}$	$0.626_{\pm 0.024}$	$0.458_{\pm 0.031}$	$0.400_{\pm 0.009}$	$0.390_{\pm 0.043}$	$0.334_{\pm 0.020}$
Ş	Gait	$0.998_{\pm 0.001}$	$0.997_{\pm 0.001}$	$0.998_{\pm0.000}$	$0.997_{\pm 0.001}$	$0.998_{\pm 0.000}$	$0.835_{\pm 0.064}$				$0.806_{\pm0.010}$
TS	Gait ECG	$0.998_{\pm 0.001} \ 0.997_{\pm 0.001}$		$0.998_{\pm 0.000}$ $0.987_{\pm 0.000}$	$0.997_{\pm 0.001}$ $0.987_{\pm 0.001}$	$0.998_{\pm 0.000}$ $0.976_{\pm 0.001}$	$0.835_{\pm 0.064}$ $0.809_{\pm 0.031}$		$0.829_{\pm 0.010}$		

Статья: https://arxiv.org/abs/2206.06602

Масштабируемость решения

Для использования на практике, в реальном времени есть возможность подключиться к базе данных для прямого доступа к данным

Есть возможность дополнить существующие метрики для увеличения вероятности обнаружения сбоя в работе системы есть

ikanam_chipi_chipi

Аделя СабироваData engineer, designer

Максим ЛяраTeam lead, Data scientist
TG: @maxlyara1

Станислав Палатов
Data scientist