

N91-10854

Time Dependent Viscous Incompressible Navier-Stokes Equations

By

John W. Goodrich
Computational Fluid Dynamics Branch
Internal Fluid Mechanics Division
NASA Lewis Research Center
Cleveland, Ohio 44135

TIME DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

$$\begin{aligned}\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) - \frac{1}{Re} \Delta \mathbf{u} &= -\nabla p + \mathbf{F}, \quad \text{for } \mathbf{x} \text{ in } \Omega, \text{ and } t > 0, \\ \nabla \cdot \mathbf{u} &= 0, \quad \text{for } \mathbf{x} \text{ in } \Omega, \text{ and } t > 0.\end{aligned}$$

- * Ω is a bounded open region in \mathbf{R}^2 , with boundary $\partial\Omega$.
- * Initial and boundary conditions must be supplied.
- * \mathbf{F} is the volume force per unit mass, assumed to be 0.

⇒ The continuity equation is not given in a time evolution form.
⇒ The pressure gradient couples the continuity equation to the momentum equations.

STREAMFUNCTION EQUATIONS FOR UNSTEADY INCOMPRESSIBLE FLOW

$$\frac{\partial \Delta \psi}{\partial t} = \frac{1}{Re} \Delta^2 \psi + \frac{\partial \psi}{\partial x} \Delta \frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial y} \Delta \frac{\partial \psi}{\partial x}, \quad \text{for } \mathbf{x} \text{ in } \Omega, \text{ and } t > 0;$$

with

$$u(\mathbf{x}, t) = \frac{\partial \psi}{\partial y}, \quad \text{and} \quad v(\mathbf{x}, t) = -\frac{\partial \psi}{\partial x}, \quad \text{for } \mathbf{x} \text{ in } \Omega, \text{ and } t \geq 0.$$

* For Ω in \mathbb{R}^2 .

* Initial and boundary conditions must be supplied.

\Rightarrow Vorticity and pressure do not enter into the streamfunction formulation.

\Rightarrow The velocity solution is always divergence free, and so incompressible.

THE STREAMFUNCTION ALGORITHM FOR UNSTEADY INCOMPRESSIBLE FLOW

$$\begin{aligned}
 & \text{La}(\tilde{\mathbf{z}}^{n+1}) - \frac{\Delta t}{2Re} \text{Bi}(\tilde{\mathbf{z}}^{n+1}) \\
 &= \text{La}(\tilde{\mathbf{z}}^n) + \frac{\Delta t}{2Re} \text{Bi}(\tilde{\mathbf{z}}^n) - \frac{3\Delta t}{2} \left[\delta_x \left(\delta_y (\tilde{\mathbf{z}}^n) \text{La}(\tilde{\mathbf{z}}^n) \right) - \delta_y \left(\delta_x (\tilde{\mathbf{z}}^n) \text{La}(\tilde{\mathbf{z}}^n) \right) \right] \\
 &\quad + \frac{\Delta t}{2} \left[\delta_x \left(\delta_y (\tilde{\mathbf{z}}^{n-1}) \text{La}(\tilde{\mathbf{z}}^{n-1}) \right) - \delta_y \left(\delta_x (\tilde{\mathbf{z}}^{n-1}) \text{La}(\tilde{\mathbf{z}}^{n-1}) \right) \right],
 \end{aligned}$$

with

$$u_{i,j}^n = \frac{1}{2\Delta y} (z_{i,j+1}^n - z_{i,j-1}^n), \quad \text{and} \quad v_{i,j}^n = -\frac{1}{2\Delta x} (z_{i+1,j}^n - z_{i-1,j}^n).$$

* La and Bi are central difference approximations to the Laplace and Biharmonic operators.

* δ_x and δ_y are conventional centered difference operators.

\Rightarrow In \mathbf{R}^2 there is one unknown $\{z_{i,j}^n\}$ per grid cell instead of three.

\Rightarrow The velocity components and streamfunction are all defined at each grid point.

\Rightarrow The discrete solution is exactly incompressible, $\delta_x(u_{i,j}^m) + \delta_y(v_{i,j}^m) = 0$.

\Rightarrow Stability limit is Courant number < 1 .

A MULTIGRID SOLVER FOR THE LINEAR IMPLICIT EQUATIONS

$$\text{La}(\tilde{\mathbf{z}}^{n+1}) - \frac{\Delta t}{2Re} \text{Bi}(\tilde{\mathbf{z}}^{n+1}) = \text{Source Term}(\tilde{\mathbf{z}}^n, \tilde{\mathbf{z}}^{n-1})$$

⇒ Use a multigrid solver for the implicit equations at each time step.

- * The Biharmonic operator is factored as two Laplacians.
- * On a 256 by 256 fine grid, 7 grid levels are used in 6.8 MBytes storage.
- * Point Gauss-Seidel smoothing, linear restriction and prolongation.
- * A V-cycle with 3 iterations per grid level while coarsening, none while refining.
- * 10 to 15 iteration cycles reduce residuals to less than 5.0×10^{-11} .

STREAM FUNCTION CONTOURS
 $Re = 5k$, 128×128 grid, $t = 491.80625$

STREAM FUNCTION CONTOURS - NORMALIZED VECTOR PLOTS
 $Re = 5k$, 128×128 grid, $t = 491.80625$
 $0.5 \leq x \leq 1.0$ and $0.0 \leq y \leq 0.5$

u at $x=0.5$ as a function of y
 $Re=5000$, 128 by 128 grid, $t=491.8$

ORIGINAL PAGE IS
OF POOR QUALITY

STREAM FUNCTION CONTOURS
Re=5k, 96*192 grid, t=4000

PSI — -0.090 — -0.070 — -0.050 — -0.030 — -0.010
 — -0.001 - - - 0.001 - - - 0.010 - - - 0.020

ORIGINAL PAGE IS
OF POOR QUALITY

STREAM FUNCTION SURFACE
 $Re = 5k$, 96×192 grid, $t = 4000$

KINETIC ENERGY SURFACE
 $Re = 5k$, 96×192 grid, $t = 4000$

STREAMFUNCTION CHANGE PER TIME STEP
 Relative L1 norm for the change
 $Re=5k$, 96*192 grid, $3800 \leq t \leq 4100$

STREAM FUNCTION CONTOURS - NORMALIZED VECTOR PLOTS

$Re = 5k$, 96×192 grid, $t = 4100.25$

$0.0 \leq x \leq 1.0$ and $0.85 \leq y \leq 1.35$

STREAM FUNCTION CONTOURS - NORMALIZED VECTOR PLOTS
Re=5k, 96*192 grid, t=4101.25
0.0 <= x <= 1.0 and 0.85 <= y <= 1.35

STREAM FUNCTION CONTOURS - NORMALIZED VECTOR PLOTS
 $Re = 5k$, 96×192 grid, $t = 4101.50$
 $0.0 \leq x \leq 1.0$ and $0.85 \leq y \leq 1.35$

STREAM FUNCTION CONTOURS - NORMALIZED VECTOR PLOTS
 $Re=5k$, 96*192 grid, $t=4102.50$
 $0.0 \leq x \leq 1.0$ and $0.85 \leq y \leq 1.35$

COPYRIGHT PAGE IS
OF POOR QUALITY

SUMMARY: A NEW ALGORITHM

- ⇒ has one unknown per grid cell in two space dimensions;
- ⇒ requires storage that increases linearly with the number of grid points;
- ⇒ CPU time per time step increases linearly with the number of grid points;
- ⇒ is second order accurate in both time and space;
- ⇒ stability limit is Courant number < 1 ;
- ⇒ is robust with respect to Reynolds number.

SUMMARY: A NEW PERIODIC FLOW SOLUTION

- ⇒ is exactly periodic;
- ⇒ does not use a time dependent forcing term;
- ⇒ has no periodic or artificial throughflow boundary conditions;
- ⇒ is probably driven by the wall jet descending from the lid;
- ⇒ is evidence of a Hopf bifurcation;
- ⇒ may lead to period doubling bifurcations and a chaotic flow.