Questão 1 [Total: 1,5 ponto]

Em cada um dos testes abaixo, qual é a conclusão? Responda em formato de texto curto — uma linha para cada teste —, contemplando a hipótese nula de cada teste. Considere 91.8% de confiança.

Teste	valor-p
Teste de autocorrelação de Ljung-Box	0.0951
Teste de normalidade de Jarque-Bera	0.0498
Teste de normalidade de Shapiro-Wilk	0.0516
Teste de heterocedasticidade condicional (ARCH-LM)	0.0458
Teste de erro de especificação (RESET)	0.1196

Questão 2 [Total: 3 pontos]

Assuma que o retorno do seu portfólio (r_t) seja um processo estocástico. Existem dois cenários possíveis:

- Cenário 1: $r_t = 10 + 0.84r_{t-1} + \varepsilon_t$
- Cenário 2: $r_t = 66 + \varepsilon_t 0.92\varepsilon_{t-1}$

onde ε_t é um ruído branco com $\sigma^2 = 3.32$.

Em qual dos dois cenários o retorno ajustado ao risco (média dos retornos dividida pelo desvio-padrão dos retornos) é maior? Justifique matematicamente. Todo resultado utilizado na justificativa deve ser derivado na prova (caso contrário, não será aceito).

Questão 3 [Total: 3 pontos]

Seja y_t uma variável aleatória tal que o seu processo estocástico é dado por: $(1-0.34L)(1-0.6L)y_t = \varepsilon_t$. O processo é explosivo? Justifique matematicamente. Todo resultado utilizado na justificativa deve ser derivado na prova (caso contrário, não será aceito).

Questão 4 [Total: 3 pontos]

Seja y_t uma variável aleatória tal que o seu processo estocástico é dado por: $y_t = 8 + 0.73y_{t-1} + \varepsilon_t$. Qual é o impacto de $\varepsilon_3 = 1$ (choque no período 3) em y_{13} (valor de y no período 13)? Justifique matematicamente. Todo resultado utilizado na justificativa deve ser derivado na prova (caso contrário, não será aceito).