

Elektromagnetska polja

RJEŠAVANJE STATIČKIH ELEKTRIČNIH POLJA

Diferencijalna jednadžba potencijala

• Gaussov zakon u diferencijalnom obliku:

$$\nabla \cdot \vec{D} = \rho_s$$
 ; $\vec{D} = \varepsilon \vec{E}$; $\vec{E} = -\nabla \varphi \implies \nabla \cdot (\nabla \varphi) = -\frac{\rho_s}{\varepsilon}$

• Poissonova jednadžba:

$$\Delta \varphi = -\frac{\rho_s}{\epsilon}$$

• Laplaceova jednadžba $(\rho_s = 0)$:

$$\Delta \varphi = 0$$

Rješenja Laplaceove i Poissonove jednadžbe su jedinstvena

9.3.2007

EMP - Rješavanje statičkih električnih polja 2

Metoda odslikavanja

- Zadana raspodjela naboja u ograničenom prostoru
 - Rješenje je jedinstveno
 - Moraju biti zadovoljeni uvjeti na granicama
 - Najjednostavniji problem: točkasti naboj ispred uzemljene ravnine

električnih polja

Polje dva jednaka točkasta naboja suprotnih iznosa
 φ = 0
 φ = 0

9.3.2007
EMP - Rješavanje statičkih električnih polja
4

• Budući da su zadovoljeni svi uvjeti na granicama ($\varphi=0$ i $\vec{E}\perp$ na granicu) to je rješenje problema

- Primjenjujemo za rješavanje polja iznad površine tla
- Naboj -Q zovemo odslikani naboj

9.3.2007 EMP - Rješavanje statičkih električnih polja

Beskonačno dugi dvožični vod nabijen nabojem linijske gustoće ±λ =10 nC/m nalazi se na visini h=1m iznad zemlje. Vodiči su razmaknuti za 2d=2m. Odredite jakost električnog polja u točakama A i B prema slici.

