Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Физика с элементами компьютерного моделирования»

ДОМАШНАЯ РАБОТА №4

Вариант 1

Выполнил:
Суханкулиев Мухаммет,
студент группы N3246
Aberlo.
(подпись)
Проверил:
Бочкарев Михаил Эдуардович,
инженер, физический факультет
(отметка о выполнении)
(подпись)

Санкт-Петербург 2025 г.

1 ЗАДАЧА 1

1.1 Условие

Рассмотреть предельный переход для формулы Планка: $u_{\omega,T}=\frac{\hbar\omega^3}{\pi^2c^2}\bigg[\frac{1}{\frac{\hbar\omega}{e^{kT}-1}}\bigg]$, при $\frac{\hbar\omega}{kT}\ll 1$ (закон Рэлея-Джинса).

1.2 Дано

Формула Планка:

$$u(\omega,T) = \frac{\hbar\omega^3}{\pi^2 c^3} \cdot \frac{1}{e^{\frac{\hbar\omega}{kT}} - 1}$$

при $\frac{\hbar\omega}{kT}\ll 1$ получить закон Рэлея-Джинса.

1.3 Решение

Из условия имеем, что энергия кванта $\hbar \omega$ мала по сравнению с характерной тепловой энергией kT. В этом случае можно воспользоваться разложением экспоненты в ряд Тейлора:

$$e^{\frac{\hbar\omega}{kT}} \approx 1 + \frac{\hbar\omega}{kT} + \frac{1}{2!} \left(\frac{\hbar\omega}{kT}\right)^2 + \cdots$$

При $\frac{\hbar\omega}{kT}\ll 1$ оставим только первый порядок:

$$e^{\frac{\hbar\omega}{kT}} - 1 \approx \frac{\hbar\omega}{kT}$$

Подставим это приближение в формулу Планка:

$$u(\omega, T) \approx \frac{\hbar \omega^3}{\pi^2 c^3} \cdot \frac{1}{\frac{\hbar \omega}{kT}} = \frac{\omega^2 kT}{\pi^2 c^3}$$

Это и есть формула Рэлея—Джинса для спектральной плотности энергии теплового излучения.

Ответ:

В пределе $\frac{\hbar\omega}{kT}$ $\ll 1$ формула Планка сводится к закону Рэлея-Джинса:

$$u(\omega,T) \approx \frac{\omega^2 kT}{\pi^2 c^3}$$

2 ЗАДАЧА 2

2.1 Условие

Получить закон Вина ($\omega_{max} \propto T$) из формулы Планка.

2.2 Дано

Формула Планка:

$$u(\omega, T) = \frac{\hbar \omega^3}{\pi^2 c^3} \cdot \frac{1}{e^{\frac{\hbar \omega}{kT}} - 1}$$

Получить закон Вина.

2.3 Решение

Чтобы найти ω_{max} , необходимо продифференцировать $u(\omega,T)$ по ω и приравнять производную к нулю:

$$\frac{du}{d\omega} = 0$$

Для удобства введем $x=\frac{\hbar\omega}{kT}$. Тогда формула Планка:

$$u(x,T) = \frac{\hbar}{\pi^2 c^3} \cdot \left(\frac{kT}{\hbar}\right)^3 \cdot x^3 \cdot \frac{1}{e^x - 1} = \frac{(kT)^3}{\pi^2 c^3 \hbar^2} \cdot \frac{x^3}{e^x - 1}$$

Теперь максимум u(x,T) соответствует максимуму функции:

$$f(x) = \frac{x^3}{e^x - 1}$$

Найдем производную f(x) и приравняем ее к нулю:

$$f'(x) = \frac{3x^2(e^x - 1) - x^3e^x}{(e^x - 1)^2} = 0$$

Условие экстремума:

$$3x^{2}(e^{x} - 1) - x^{3}e^{x} = 0$$
$$3(e^{x} - 1) - xe^{x} = 0$$
$$3e^{x} - 3 - xe^{x} = 0$$
$$e^{x}(3 - x) = 3$$

Находим численное решение:

$$x_{max} \approx 2.821$$

Так как $x = \frac{\hbar \omega}{kT}$, то:

$$\omega_{max} = \frac{x_{max}kT}{\hbar} \approx \frac{2.821 \cdot kT}{\hbar}$$

То есть $\omega_{max} \propto T$. Это и есть закон Вина.

Ответ:

Закон Вина $\omega_{max} \propto T$ получен из формулы Планка.