

Lecture 19

EECS 311 Analog Circuits

Xuyang Lu 2023 Fall

1/63

Frequency Response

00000

Bode Plot

y substituting $j\omega$ for s

$$H(j\omega) = K \frac{(j\omega - z_1)(j\omega - z_2)\dots(j\omega - z_{m-1})(j\omega - z_m)}{(j\omega - p_1)(j\omega - p_2)\dots(j\omega - p_{n-1})(j\omega - p_n)}$$
(3)

$$\mid j\omega - p_i \mid = \sqrt{\sigma_i^2 + (\omega - \omega_i)^2} \tag{4}$$

$$\angle (s - p_i) = \tan^{-1} \left(\frac{\omega - \omega_i}{-\sigma_i} \right)$$
 (5)

Frequency Response Example

Frequency Response

Frequency Response Example

Frequency Response Example

• Each pole or zero contributes a change in the slope of the asymptotic plot of \pm 20 dB/decade above its break frequency. A complex conjugate pole or zero pair gives a total change in the slope of \pm 40 dB/decade.

- For lefthand plane
 - Slope changes by -20 dB/decade
 - Phase decreases by 90°
- Zero

Frequency Response

- Slope changes by 20 dB/decade
- Phase increase by 90°

Constructing Magnitude Bode Plot

- $H(s) = \frac{1}{s+1} \Rightarrow H(j\omega) = \frac{1}{j\omega+1}$
- $\angle H(j\omega) = -\tan^{-1}(\omega)$
- $\angle H(j\omega) = \begin{cases} 0^{\circ} & \omega \ll 1 \\ -90^{\circ} & \omega \gg 1 \end{cases}$

The behavior for a zero is similar. The phase increases by 90° and passes though the midpoint of 45° at the break point

Constructing Magnitude Bode Plot

We can extend the results for simple repeated poles and zeroes as before using the more general function

$$H(s) = (s+a)^{\pm r} \Rightarrow H(j\omega) = (j\omega + a)^{\pm r}$$
(6)

$$\angle H(j\omega) = \begin{cases} 0^{\circ} & \omega \ll a \\ \pm r90^{\circ} & \omega \gg a \end{cases}$$
 (7)

$$\angle H(ja) = \pm r45^{\circ} \tag{8}$$

Unstable (right half plane) poles and zeros have opposite behavior

Zero @ Origin

- H(s) = s
- $\mid H(j\omega)\mid = \omega \Rightarrow \omega = 1 \Rightarrow \log\mid H(j\omega)\mid = 0dB$
- Slope 20 dB/decade

Pole @ Origin

Frequency Response

- $H(s) = \frac{1}{s}$ and $s = j\omega$
- $\angle H(j\omega) = -90^\circ$ Phase always at -90°
- $\mid H(j\omega) \mid = \frac{1}{\omega} \Rightarrow \omega = 1 \Rightarrow \log(1) = 0 \text{ dB}$
- Slope $-20~\mathrm{dB/}$ decade

Bode Plot Example

•
$$H(s) = \frac{s}{(1+\frac{s}{10})(1+\frac{s}{10^4})}$$

Zero @ 0

Pole @ -10

Pole @ -10^4

Bode Plot Example

$$H(s) = \frac{1000}{s + 100} = \frac{10}{1 + \frac{s}{100}} \tag{9}$$

$$G_{DC} = 10 = 20 \log 10 = 20 \text{ dB}$$
 (10)

Pole at -100.

Bode Plot

- Remember for a RC circuit
- $V_{\text{out}} = \frac{1}{1+i\omega CR} V_{in}$
- $\omega_p = -\frac{1}{RC} \Rightarrow$
- $Av(\omega) = \frac{1}{1+j\omega/\omega_n}$

- Ideal · Gain is Infinite
- Gain is finite, bandwidth infinite
- Gain is finite, bandwidth finite
- Assume single pole amplifier
- A0 is the DC gain,
- $A(j\omega) = \frac{Ao}{1+i\omega/\omega n}$

Finite Op-amp Bandwidth

Bode Plot

Typical op-amps have every low 3dB bandwidth

$$A(j\omega) = \frac{A_0}{1 + j\omega/\omega_p}$$
 (11)

- $\omega_{\mathbf{t}}$ is ω Where $|A(j\omega)| = 1$
- $A(j\omega) = \frac{A_0}{1+j\omega/\omega_h}$
- $1 = \frac{A_0}{\omega_{T/\omega_b}} \Rightarrow \omega_T = A_0 \omega_b$
- $\omega_T = A_0 \omega_h$
- Gain bandwidth product (GBW) important parameter

Finite Op-amp Bandwidth

- $\omega_{\mathbf{t}}$ is ω Where $|A(j\omega)| = 1$
- $A(j\omega) = \frac{A_0}{1+j\omega/\omega_{\text{\tiny L}}}$
- $1 = \frac{A_0}{\omega_{T/\omega_b}} \Rightarrow \omega_T = A_0 \omega_b$
- $\omega_T = A_0 \omega_b$
- Gain bandwidth product (GBW) important parameter

Non-Inverting Amplifier

Bode Plot

$$v_O = \frac{A_0}{1 - \frac{s}{\omega_n}} \left(v_I - \beta v_O \right) \tag{12}$$

$$v_O\left(1 - \frac{s}{\omega_p}\right) + A_0\beta v_O = A_0 v_I$$
 (13)

$$\frac{v_O}{v_I} = \frac{A_0}{1+\beta A_0 - s/\omega_p} = \frac{A_0}{1+\beta A_0} \frac{1}{1-\frac{s}{\omega_p(1+\beta A_0)}} \tag{14} \label{eq:volume}$$

• This tells me the bandwidth of a noninverting amplifier is $\omega_p \left(1 + \beta A_0\right)$

NMOS

Frequency Response

$$C_{GS} = W_{ov} + 1/2 (WLC_{ox})$$
 (15)

$$C_{SB} = WEC_j + 2(W+E)C_{jsw}$$
 (17)

$$C_{GD} = WC_{ov} + 1/2 (WLC_{ox})$$
 (16)

$$C_{DB} = WEC_j + 2(W+E)C_{jsw}$$
 (18)

NMOS

$$C_{GS} = WC_{ov} + 2/3 (WLC_{ox})$$
 (19)

$$C_{GD} = WC_{ov} \tag{20}$$

$$C_{SB} = WC_j + 2(W+E)C_{jsw}$$
 (21)

$$C_{DB} = WEC_j + 2(W+E)C_{jsw}$$
 (22)

Calculate ${\cal C}_{SB}$ and ${\cal C}_{DB}$ of the two structures below.

NMOS

Solution:

Frequency Response

Left:
$$C_{DB} = \frac{W}{2}EC_j + 2\left(\frac{W}{2} + E\right)C_{jsw}$$
 (23)

Parasitic Capacitance 000000000

Right:
$$C_{DB} = C_{SB} = WEC_j + 2(W + E)C_{jsw}$$
 (24)

$$C_{SB} = 2\left[\frac{W}{2}EC_j + 2\left(\frac{W}{2} + E\right)C_{jsw}\right]$$
$$= WEC_j + 2(W + 2E)C_{jsw}$$
(25)

Drain junction capacitance is greatly reduced

Complete Small-Signal Model

Only when MOSFET is off should we need to consider C_{GB} , which includes the gate oxide capacitance and the depletion region capacitance in series.

Spice Model

NINAOC NA - I - I

NIMOS Model			
LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
$NSUB = 9\mathrm{e} + 14$	$LD \ = 0.08\mathrm{e} - 6$	UO = 350	$LAMBDA\ = 0.1$
TOX = 9e - 9	PB = 0.9	CJ = 0.56e - 3	$CJSW\ = 0.35\mathrm{e} - 11$
MJ = 0.45	MJSW = 0.2	$CGDO\ = 0.4\mathrm{e} - 9$	JS = 1.0e - 8
PMOS Model			
$LEVEL \ = 1$	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
$NSUB = 5\mathrm{e} + 14$	LD = 0.09e - 6	UO = 100	$LAMBDA\ = 0.2$
TOX = 9e - 9	PB = 0.9	CJ = 0.94e - 3	$CJSW\ = 0.32\mathrm{e} - 11$
MJ = 0.5	MJSW = 0.3	$CGDO\ = 0.3\mathrm{e} - 9$	JS = 0.5e - 8

- No energy is store in the circle. In general, a one pole one zero system
- $\bullet \ H(S) = \frac{a_0 + a_1 S}{1 + b S}$

- \bullet The low frequency is represented by a_0
- $\bullet \ a_0=H(s)\mid_{c_1=0}=H^\circ$
- The time constant determines b1 (This is the pole of the system)
- $\bullet \ b_1 = \tau = RC_1$
- ullet The ratio of a_0 and a_1 determines the location of the zero

- $\bullet \ H(S) = \frac{a_0 + a_1 S}{1 + bs}$
- $\bullet \ H_i(s) = \tfrac{a_0 + \alpha_1^i C_i s}{1 + \beta_1^i C_i s}$
- (It is easy to convince ourselves that a1 is also related to the capacitor.)
- The transfer function shall be valid for all capacitor values including zero and infinity.
- the first denominator coefficient b1, is simply given by the sum of these zero-value time constants (ZVT)
- $b_1 = \sum_{i=1}^N \tau_i^0$

• $H_i(s)=rac{a_0+lpha_1^iC_is}{1+eta_1^iC_is}\mathrm{C1}$ goes to inf $\mathrm{H(s)}=rac{lpha_1}{eta_1}$

$$H(s) = \frac{H^0 + H^1 \tau s}{1 + \tau s} \tag{26}$$

- If it is an inductor, $au = rac{L_1}{R_0}$
- To find the time constant, remove the cap/ind nulling all the sources, find the resistance.
- ullet To find transfer constant H_0 , it is just the low frequency gain.
- To find the transfer constant H_1 , we look into high frequency response, so the cap shall be shorted. For inductor it is the opposite.

$$H^0 = 1 \tag{27}$$

$$\tau = RC_1 \tag{28}$$

$$H^1 = 0 (29)$$

$$H(s) = \frac{1}{1 + RCS} \tag{30}$$

- We do zero frequency response to find out ${\cal H}_0$
- $\bullet \ H^0 = \tfrac{R_1}{R_1 + R_2}$
- \bullet We null sources to find τ_1
- $\bullet \ \tau_1 = \left(R_1 \parallel R_2\right) C_1$
- \bullet We short circuit to find ${\cal H}_1$
- $H^1 = 1$
- $H(s) = \frac{R_1}{R_1 + R_2} \frac{1 + R_1 C_1 S}{1 + (R_1 \parallel R_2) C_1 S}$

Frequency Response

(32)

 $H^{\pi}=0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへ○ 34/63

Frequency Response

$$\tau = (R_1 \parallel r_\pi) C_\pi \tag{33}$$

$$H(S) = \frac{H^0}{1 + \tau S} \tag{34}$$

If there is a zero in the system, then we can test it with a shorted cap/ open ind and see if the output still have some value.

- Low frequency, $Vx = V_{in}$
- Vout is voltage divider,
- $H^0=rac{R_2}{R_2+r_m}$ (assume it's a bjt)
- $H^1 = \frac{R_2}{R_2 + r_1}$
- $\bullet \ R_2 \left(g_m v_x i_x \right) + v_x = R_1 i_x$
- $\bullet \ R = \frac{R_1 + R_2}{1 + g_m R_2}$
- You can imagine the existence of a zero and a pole.

transistor model statement for the 2N696 .model Q2N696 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=65.62 Ne=1.208 Ise=19.48f Ikf=.2385 Xtb=1.5 Br=9.715 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=9.393p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 Tr=58.98n Tf=408.8p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.model NPN ($C_{je}=20~{
m fF}$, $C_{jc}=20~{
m fF}$, $\beta_0=100$, $C_{js}=50~{
m fF}$, $\tau_F=2~{
m ps}$, $C_L=150~{
m fF}$) c_{je} Zero bias B-E depletion capacitance

We can use those parameters to determine small signal parameters. a collector current of 1mA which give you a Gm=40mS $\beta_0=100$

- $C_{\pi} = C_{je} + C_b = 100 \text{fF}$
- $C_L = \tilde{C}_{out} + C_{js} = 200 \text{fF}$
- $C_b = g_m \tau_F = 80 fF$
- $R_1 = 1K\Omega$
- $R_2 = 2K\Omega$

- $b_1 = \sum_i \tau_i^0 = \tau_\pi^0 + \tau_\mu^0 + \tau_L^0$
- $H^0 = -57$
- $\tau_{\pi}^0 \approx 70 \mathrm{ps}$ $\tau_{\mu}^0 \approx 1200 \mathrm{ps}$ $\tau_L^0 = 400 \mathrm{ps}$
- $\omega_h \approx 1/b_1 \approx 2\pi \cdot 95 \text{MHz}$
- This allows you to determine the lowest operating frequency, and also the contribution of each nodes in the circuit.

42/63

•
$$R_{\pi}^0 = r_{\pi} \parallel \frac{R_1 + R_2}{1 + g_m R_2}$$

$$\begin{array}{l} \bullet \ R_{\mu}^{0} = \\ R_{\mathrm{left}} \ + R_{\mathrm{right}} \ + G_{m} R_{\mathrm{left}} \ R_{\mathrm{right}} \end{array}$$

$$\bullet \ R_{\rm left} \, \equiv R_B \parallel [r_\pi + (1+\beta) R_E]$$

•
$$R_{\text{right}} \equiv R_C$$

•
$$G_m = \frac{g_m}{1 + g_m R_2}$$

$$\bullet \ R_{\theta}^0 \approx \tfrac{R_2 + R_3}{1 + g_m R_2}$$

$$\bullet \ b_1 = \sum_{i=1}^N \tau_i^0$$

Frequency Response

Further discussion on P and Z

- $H(s) = \frac{H^0 + H^1 \tau s}{1 + \tau s} = H^{\circ} \frac{1 + \frac{H^1}{H^0} \tau s}{1 + \tau s}$
- $P = -\frac{1}{\tau}$
- $Z = -\frac{1}{H^1} = \frac{H^0}{H^0} \tau \left(-\frac{1}{\tau} \right)$
- $Z = \frac{H^0}{H^1} P$

Further discussion on P and Z

$$H(s) = \frac{H^0 + H^1 \tau S}{1 + \tau S} = H^0 \frac{1}{1 + \tau S} + H^1 \frac{\tau S}{1 + \tau S}$$
 Low path filter High path filter (35)

 $s(t) = H^{0} \left(1 - e^{-t/\tau} \right) u(t) + H^{1} e^{-t/\tau} u(t)$ (36)

The final waveform also tells you the existence of poles and zeros.

$$H(s) = \frac{a_0 + a_1 S + a_2 S^2 + \dots}{1 + b_1 S + b_2 S^2 + \dots}$$
(37)

- Only the caps and inductors produces S.
- To get a_1 we have to have a cap (or inductor)

ullet We can also infer that the s^2 term comes from two capacitors.

$$\bullet \ H(s) = \frac{a_0 + \left(\sum_{i=1}^N \alpha_i^i C_i\right) s + \left(\sum_i^{1 \le i < j \le N} \alpha_j^{ij} C_i C_j\right) s^2 + \dots}{1 + \left(\sum_{i=1}^N \beta_i^i C_i\right) s + \left(\sum_i^{1 \le i < j \le N} \sum_j^{ij} \beta_2^{ij} C_i C_j\right) s^2 + \dots}$$

If we set all c's except ci as zeros

•
$$H_i(s) = \frac{a_0 + \alpha_1^i C_i s}{1 + \beta_1^i C_i s}$$

$$\bullet \ \tau_i^0 = R_i^0 C_i$$

$$\bullet \ \beta_1^i = R_i^0$$

•
$$b_1 = \sum_{i=1}^N \tau_i^0$$

- $b_1 = \sum_{i=1}^{N} \tau_i^0$
- ullet coefficient b_1 is the sum of all zero valued time constant.
- $a_1 = \sum_{i=1}^N \tau_i^0 H^i$
- This allows us to find out the dominant time constant.

N th order system

It is a two cap system, therefore the number of poles are two.

It is a system with an infinite response of zero if we short both capacitors, so there is no zeros.

Frequency Response

- $H(S) = \frac{1}{1+3RCS+(RC)^2S^2}$ $b_1 = \sum_{i=1}^{N} \tau_i^0 = \tau_1^0 + \tau_2^0$
- $\tau_1^0 = RC$
- $\tau_2^0 = 2RC$
- $b_1 = 3R_c$

$$H(S) = \frac{1}{1 + 3RCS + (RC)^2 S^2} \tag{38}$$

 If the impedance seen by one cap does not change as we open or short the other cap, we say that the two-time constant are uncoupled to each other, and the expression can be written as

$$H(s) = \frac{H^0}{(1 + \tau_1 S)(1 + \tau_2 S)} \tag{39}$$

• We now have the 3RC term. The question is whether it is true in this case to determine $(RC)^2S^2$

N^{th} order system

We now know how to calculate a_1 , b_1 , and a_0 .

$$H(s) = \frac{a_0 + \left(\sum_{i=1}^{N} \alpha_1^i C_i\right) s + \left(\sum_{i=1}^{1 \le i < j \le N} \alpha_j^{ij} C_i C_j\right) s^2 + \dots}{1 + \left(\sum_{i=1}^{N} \beta_1^i C_i\right) s + \left(\sum_{i=1}^{1 \le i < j \le N} \sum_{j} \beta_2^{ij} C_i C_j\right) s^2 + \dots}$$
(42)

 ${\cal A}_O$ is the zero frequency response. ${\cal B}_1$ is the summation of time constant ${\cal A}_1$ can be obtained from infinite time response.

$$b_2 = \sum_{i}^{i < j < N} \sum_{j}^{0} \tau_j^i \tag{43}$$

- ullet That means you don't repeat au 12 and au 21
- ullet au_j^i means the time constant of element j when element I is infinite frequency

$$a_2 = \sum_{j} \sum_{i=1}^{i < j < N} \tau_i^0 \tau_j^i H^{ij}$$
 (44)

ullet We can expect b_n is a multiple summation of the product of many time constants

$$b_n = \sum_{i=1}^{1 \le i < j < k} \sum_{i=1}^{k} \sum_{j=1}^{k} \dots \tau_i^0 \tau_j^i \tau_k^{ij} \dots$$
 (45)

$$a_n = \sum_{i=1}^{1 \leqslant i < j < k} \sum_{i=1}^{N} \dots \tau_i^0 \tau_j^i \tau_k^{ij} \dots H^{ijk\dots}$$

$$\tag{46}$$

I will skip the derivations and show you how to use it.

Frequency Response

- $H(s) = \frac{a_0 + a_1 s + a_2 s^2}{1 + b_1 s + b_2 s^2}$
- $b_2 = \tau_1^0 \tau_2^1 = \tau_2^0 \tau_1^2$
- $\bullet \ a_2 = \tau_1^0 \tau_2^1 H^{12} = \tau_2^0 \tau_1^2 H^{12}$
- $b_1 = \tau_1^0 + \tau_2^0$
- $\bullet \ a_1 = \tau_1^0 H^1 + \tau_2^0 H^2$

- Two pole and one zero
- How do we test this?
- $H^0 = 0$

$$\tau_1^0 = R_1 C_1 \tag{47}$$

$$\tau_2^0 = (R_1 + R_2) \, C_2 \tag{48}$$

Parasitic Capacitance

上海交通大學

N^{th} order system

Frequency Response

$$\tau_2^1 = R_2 C_L \tag{49}$$

$$\tau_1^2 = (R_1 \parallel R_2) C_1 \tag{50}$$

$$H^1 = 0 (53)$$

$$\tau_1^0 \tau_2^1 = R_1 C_1 R_2 C_2 = \tau_2^0 \tau_1^2 \qquad (51)$$

$$H^2 = \frac{R_2}{R_{5/2} + R_{1/2}} \qquad (54)$$

Two poles and one zero

Bode Plot

- $H^0 = \frac{R_2}{R_2 + r_m}$
- $\tau_{\pi}^{0} = C_{\pi} \frac{R_{1} + R_{2}}{1 + a R_{2}}$
- $\tau_{\mu}^{0} = C_{\mu}R_{1}$
- $\bullet \ \tau_{\mu}^{\pi} = C_{\mu} \left(R_1 \parallel R_2 \right)$
- $H^{\mu} = 0$
- $H^{\pi} = \frac{R_2}{R_1 + R_2}$
- $H^{\mu\pi} = 0$

- Now we can write out the transfer function. If we assume that $R_2>>R_1$
- \bullet And $R_2>>R_m$ $H^0=\frac{R_2}{R_2+r_m} \eqno(57)$

$$\tau_{\pi}^{0} = C_{\pi} \frac{R_1 + R_2}{1 + g_m R_2} = r_m C_{\pi}$$
 (58)

$$\tau_{\mu}^{0} = C_{\mu} R_{1} \tag{59}$$

Frequency Response

$$\tau_{\mu}^{\pi} = C_{\mu} \left(R_1 \parallel R_2 \right) = C_{\mu} R_1 \tag{60}$$

$$H^{\mu} = 0 \tag{61}$$

$$H^{\pi} = \frac{R_2}{R_1 + R_2} \tag{62}$$

$$\tau_{\pi}^{0}\tau_{\mu}^{\pi} = r_{m}R_{1}C_{\pi}C_{\mu} \tag{63}$$

$$H^{\pi}\tau_{\pi}^{0} = r_{m}C_{\pi}\frac{R_{2}}{r_{m} + R_{2}} = H^{0}r_{m}C_{\pi} \tag{64}$$

•
$$H(S) = H^0 \frac{1 + r_m C_{\pi} S}{1 + (r_m C_{\pi} + R_1 C_{\mu}) S + r_m C_{\pi} R_1 C_{\mu} S^2} = \frac{H^0}{1 + R_1 C_{\mu} S}$$

• This essentially tells us the dominate pole is the C_μ , because C_π shares current between the capacitor and the resistor, so that it tells us to improve the bandwidth of operation, we need to use a inductor or some topology to cancel the effect of C_μ

Bandwidth Estimation

- The whole system can be expressed as the product of a high pass and a low pass transfer function.
- If I'm designing an analog circuit, I can use transfer function to estimate bandwidth, assuming I care about the lowpass one.
- For low frequency system, in many cases we can assume a zeroless system.
- For example, in common-source stage and the source-follower stage, the zero's frequencies are comparable to the cut-off frequency of the transistor itself

Bandwidth Estimation

- $\bullet \ H(s) \approx \frac{a_0}{1 + b_1 s + b_2 s^2 + \ldots + b_n s^n}$
- At dc $(\omega=0)$, the only term in the denominator that matters is the leading 1.
- As the frequency goes up and starts approaching the wh, the first term that becomes non-negligible would be b1, so in the vicinity of the ω h
- The system is pretty much
- $H(s) \approx \frac{a_0}{1+b_1s}$
- This tells us, in order to find out the cutoff frequency,
- We calculate b1

Bandwidth Estimation

•
$$\omega_h pprox rac{1}{b_1} = rac{1}{\sum_{i=1}^N au_i^0}$$

•
$$\frac{a_1}{1+b_1S+b_2S^2} \Rightarrow H(j\omega) = \frac{a_0}{(1-b_2\omega^2)+j\omega b_1}$$

• It is a conservative estimation of bandwidth