Goal: Assuming that a resistance R is connected across the slip rings of the rectangular conducting loop that rotates in a constant magnetic field $\mathbf{B} = \mathbf{a}_y B_0$, shown in Fig. 7-6, prove that the power dissipated in R is equal to the power required to rotate the loop at an angular frequency ω .

Steps:

1. Determine the emf V and current \mathcal{I} induced in the conducting loop.

Solution:

$$\mathcal{V} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S}$$
$$= \omega B_0 h w \sin \omega t.$$
$$\mathcal{I} = \frac{\omega B_0 h w \sin \omega t}{R}.$$

2. Determine the power dissipated in the resistor.

Solution:

$$P_d = \frac{\mathcal{V}^2}{R}$$
$$= \frac{\omega^2 B_0^2 h^2 w^2 \sin^2 \omega t}{R}.$$

3. What is the magnetic force exerted on side 1-2 of the loop? *Solution:*

$$\mathbf{F}_{12} = \mathbf{a}_z i h B_0.$$

4. What is the velocity of side 1-2 of the loop?

Solution:

$$\mathbf{u}_{12} = \frac{\omega w}{2} \left(\mathbf{a}_y \cos \omega t - \mathbf{a}_z \sin \omega t \right)$$

5. What is the magnetic force exerted on side 4-3 of the loop?

Solution:

$$\mathbf{F}_{43} = -\mathbf{a}_z ih B_0.$$

6. What is the velocity of side 4-3 of the loop?

Solution:

$$\mathbf{u}_{43} = \frac{\omega w}{2} \left(-\mathbf{a}_y \cos \omega t + \mathbf{a}_z \sin \omega t \right)$$

7. What is mechanical power required to rotate coil? (Remember that $P = \mathbf{F} \cdot \mathbf{u}$, where P is power, \mathbf{F} is force, and \mathbf{u} is velocity)

Solution:

$$P_m = -(\mathbf{F}_{12} \cdot \mathbf{u}_{12} + \mathbf{F}_{43} \cdot \mathbf{u}_{43})$$
$$= \omega B_0 h w i \sin \omega t$$
$$= P_d.$$

Answer: Proof problem