DATA TYPES

Statistics Tutorial Day 2

Prabesh Dhakal 15 April 2019

REVIEW FROM LAST SESSION

- 1. Statistics is the science of collecting, preparing, analyzing, and interpreting data.
- 2. Statistics allows us to: (i) make sense of the world around us, (ii) make decisions, and (iii) make predictions.
- 3. The tools we will use to work with the data and perform calculations is going to be R-Studio.

WHAT ARE WE DOING TODAY?

We briefly revisit the R tasks covered last week.

We talk about different data types and what we can do with them.

We do more exciting things with R.

Please do the following tasks:

- 1. Open R Studio
- 2. Open a new script
- 3. Write a line of code that stores the value 22/7 in an object named custom_pi
- 4. In another line, write this: custom_pi == pi
- 5. Save the file somewhere on your device
- 6. Close R Studio
- 7. Open R Studio
- 8. Run the lines you wrote

What observations could you make? What questions do you have?

Statistics Tutorial Day 2 Prabesh Dhakal, 15 April 2019

- 1. Differentiate between the types of data
- 2. Determine how we can approach them

CLASS EXERCISE - 2

- 1. Where was your starting point this morning in relation to this classroom?
 - Possible entries: N, S, W, E
- 2. What distance (in KM) did you travel to get here?
- 3. How are you feeling this morning?
 - Possible entries: very good, good, okay, bad, very bad
- 4. How did you get here?
 - Possible entries: on foot, bike, car, train, other

BASIC TYPES OF DATA IN STATISTICS

Qualitative **Data**

Nominal Data

- Variables without an order or a rank
- E.g. Gender, religion, ZIP Codes (PLZ)

Ordinal Data

- Variables with an order or a rank
- E.g. letter grades (A/B/C), star ratings

Binary Data

- Variables with only two possible states (also called dichotomous data)
- E.g. Yes/No, Pass/Fail, Head/Tail

Quantitative **Data**

Discrete Data

- Has clear spaces between values, and is generally counted in whole numbers.
- E.g.: no. of students in a class, shoe sizes, etc.

Continuous Data

- Falls on a continuous sequence, and is measurable.
- E.g. height, weight, speed, time to finish a project.

Interval Data

Interval Data

- Ordinal data with constant differences between observations
- No true zero point
- E.g. time, temperature

Ratio Data

- Same as interval data, but with a true zero (a clear definition of 0)
- E.g. age, height, income

WHAT DATA LOOKS LIKE

_	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]	vs [‡]	am ‡	gear ‡	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3

BASIC CALCULATIONS FOR DATA TYPES

	Nominal Data	Ordinal Data	Interval Data	Ratio Data
Frequency distribution				
Median, quartiles, percentiles	X			
Add or subtract		X		
Mean, standard deviation				
Ratio, coefficient of variation	×	×	×	

Statistics Tutorial Day 2

BASIC STATISTICAL TESTS

		Outcome Variables			
		Binary	Categorical	Ordinal	Continuous
S	Binary	Chi-square, Fisher- Exact Tests	Chi-square Test	Wilcoxon	T-test/ Wilcoxon
Variables	Categorical	Chi-square, Fisher- Exact Tests	Chi-square Test	Kruskal- Wallis	ANOVA
redictor	Ordinal	Wilcoxon	Kruskal- Wallis	Spearman Correlation	ANOVA
D	Continuous	T-test/Wilcoxon/ Logistic Regression	ANOVA/ Class Prediction	Ordinal Regression	Correlation/ Linear Regression

- 1. Basic data types in R
- 2. Basic data structures in R

	Example	R Script
Character (or string)	'apple'	a <- 'apple'
Numeric	1.618	b <- 1.618
Integer	3L, -5L	c <- 3L
Booleans	TRUE, FALSE	d <- TRUE
Missing Values	NA	e <- NA

VECTOR OBJECTS IN R

	Example	R Script
Vectors	c(1, 3, 4)	eg_vec <- c(1, 3, 4)

Run the following in R Studio:

- 1. eg_vec <- c(1, 3, 4)
- 2. class(eg_vec)
- 3. typeof(eg_vec)
- 4. eg_vec * 3
- 5. eg_vec * eg_vec
- 6. View(eg_vec)
- 7. eg_vec_1 <- eg_vec * 3
- 8. View(eg_vec_1)

Statistics Tutorial Day 2

GENERAL R TIPS

Here are some functions that you will find useful:

- help(x), builtins(), ?x
- typeof(x), class(x)
- str(x), summary(x)
- getwd(), setwd()
- list.files()
- length(x)

Statistics Tutorial Day 2 Prabesh Dhakal, 15 April 2019

CHECKING DATA TYPES & STRUCTURES

- 1. Know the basic data types and data structures
- 2. Useful functions: typeof(), class(): when in doubt, use them both
- 3. Check the structure of the data structure using: str()
- 4. Check the summary of the data structure using: summary()

Statistics Tutorial Day 2

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- 1. Distribution of the data
- 2. Basic statistics

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de

Statistics Tutorial Day 2 Prabesh Dhakal, 15 April 2019