Controle de Um Veículo em Ambiente Simulado

Alison de Oliveira Tristão Otacilio Ribeiro S. Netto

Coleta de dados

Imagens

Imagem_0 Imagem_1 Imagem_2 Imagem_3

Controle

Esquerda Direita Velocidade

CSV

imagem_0, 0, 1.0, 3.0 imagem_1, -1, 1.0, 4.0 imagem_2, 1, 1.0, 5.0

Rede Neural

Camada	Tipo	Kernel	Stride	Ativação	Saída	Feat. Map
1	input₁	84x84x1			84x84x1	1
2	Conv2D	8x8	4x4	Sigmoid	20x20x32	32
3	Conv2D	4x4	2x2	Sigmoid	9x9x64	64
4	Conv2D	3x3	2x2	Sigmoid	4x4x64	64
5	Flatten				1024	
6	Concatenate				1024+ <i>input</i> ₂	
7	Dense			Sigmoid	512	
8	Dense			Sigmoid	512	
9	Dense			Tanh	2	

Acurácia e Função Custo - automático

Desempenho

Seed Fixa Seed Aleatória

Acurácia e Função Custo - Sem Velocidade

Acurácia e Função Custo

Treinamento humano 1º tentativa (fail)

Balanceamento dos Dados

```
# salva as fotos sem zoom
if counter >= 30:
    if(retaCount1 < maxCount and input[0] == 0 and car.true speed < 30 and car.true speed > 1.0):
        add image and input to array(screen, input, car.true speed)
        retaCount1 += 1
    elif(curvaEsquerdaCount1 < maxCount and input[0] == -1 and car.true_speed < 30 and car.true_speed > 1.0):
        add_image_and_input_to_array(screen, input, car.true_speed)
        curvaEsquerdaCount1 += 1
    elif(curvaDireitaCount1 < maxCount and input[0] == 1 and car.true_speed < 30 and car.true_speed > 1.0):
        add_image_and_input_to_array(screen, input, car.true_speed)
        curvaDireitaCount1 += 1
    elif(retaCount2 < maxCount and input[0] == 0 and car.true_speed > 30):
        add image and input to array(screen, input, car.true speed)
        retaCount2 += 1
    elif(curvaEsquerdaCount2 < maxCount and input[0] == -1 and car.true speed > 30):
        add_image_and_input_to_array(screen, input, car.true_speed)
        curvaEsquerdaCount2 += 1
    elif(curvaDireitaCount2 < maxCount and input[0] == 1 and car.true_speed > 30):
        add image and input to array(screen, input, car.true speed)
        curvaDireitaCount2 += 1
```

Acurácia e Função Custo

Treinamento humano 2º tentativa (Success)

Demonstração

Referências

s-a-

KERAS. Applications. Disponível em: https://keras.io/api/applications/. Acesso em: 04 out. 2024.

OPENCV. OpenCV Documentation.

Disponível em: https://opencv.org/. Acesso em: 04 out. 2024.

VERGOTTEN. Optimizers: A comprehensive study of optimizers in deep learning.

Medium, 07 nov. 2019. Disponível em: https://medium.com/@vergotten/optimizer

comprehensive-study-of-optimizers-in-de ep-learning-80a54490181f. Acesso em: 04

