Рубежный контроль №2

Тема: Методы построения моделей машинного обучения

Титов Е.А. ИУ5-65Б

Загрузка необходимых библиотек:

```
Ввод [1]:
```

```
as as pd
y as np
orn as sns
n import preprocessing
n import svm
n.model_selection import train_test_split
n.model_selection import cross_val_score
t import XGBClassifier

n.metrics import accuracy_score, balanced_accuracy_score
n.metrics import precision_score, recall_score, fl_score, classification_report
n.metrics import confusion_matrix
n.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, med
n.metrics import roc_curve, roc_auc_score

n.ensemble import AdaBoostClassifier
n.impute import SimpleImputer
```

Ввод [2]:

```
data = pd.read_csv('./HRDataset_v14.csv', sep=",")
TARGET_COL_NAME = 'RecruitmentSource'
TARGET_IS_NUMERIC = data[TARGET_COL_NAME].dtype != 'O'
TARGET_IS_NUMERIC
```

Out[2]:

False

Ввод [3]:

data

Out[3]:

${\bf Employee_Name} \\ {\bf Employee_Name} \\ {\bf Employ} \\ {\bf MarriedID\ MarritalStatusID} \\ {\bf GenderID\ EmpStatusIDDeptID\ PerfS} \\$

	0	Adinolfi, Wilson K	10026	0	0	1	1	5
	1	Ait Sidi, Karthikeyan	10084	1	1	1	5	3
	2	Akinkuolie, Sarah	10196	1	1	0	5	5
	3	Alagbe,Trina	10088	1	1	0	1	5
	4	Anderson, Carol	10069	0	2	0	5	5
3	06	Woodson, Jason	10135	0	0	1	1	5
3	07	Ybarra, Catherine	10301	0	0	0	5	5
3	80	Zamora, Jennifer	10010	0	0	0	1	3
3	09	Zhou, Julia	10043	0	0	0	1	3
3	10	Zima, Colleen	10271	0	4	0	1	5

311 rows × 36 columns

Ввод [4]:

data.shape

Out[4]:

(311, 36)

Ввод [5]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 36 columns):

Data	columns (cocal so columns).			
#	Column	Non-	-Null Count	Dtype
0	Employee_Name	311	non-null	object
1	EmpID	311	non-null	int64
2	MarriedID	311	non-null	int64
3	MaritalStatusID	311	non-null	int64
4	GenderID	311	non-null	int64
5	EmpStatusID	311	non-null	int64
6	DeptID	311	non-null	int64
7	PerfScoreID	311	non-null	int64
8	FromDiversityJobFairID	311	non-null	int64
9	Salary	311	non-null	int64
10	Termd	311	non-null	int64
11	PositionID	311	non-null	int64
12	Position	311	non-null	object
13	State	311	non-null	object
14	Zip	311	non-null	int64
15	DOB	311	non-null	object
16	Sex	311	non-null	object
17	MaritalDesc	311	non-null	object
18	CitizenDesc	311	non-null	object
19	HispanicLatino	311	non-null	object
20	RaceDesc	311	non-null	object
21	DateofHire	311	non-null	object
22	DateofTermination	104	non-null	object
23	TermReason	311	non-null	object
24	EmploymentStatus	311	non-null	object
25	Department	311	non-null	object
26	ManagerName	311	non-null	object
27	ManagerID	303	non-null	float64
28	RecruitmentSource	311	non-null	object
29	PerformanceScore	311	non-null	object
30	EngagementSurvey	311	non-null	float64
31	EmpSatisfaction	311	non-null	int64
32	SpecialProjectsCount	311	non-null	int64
33	LastPerformanceReview_Date	311	non-null	object
34	DaysLateLast30	311	non-null	int64
35	Absences	311	non-null	int64
dt.vpe	es: float64(2), int64(16), o	biect	(18)	

dtypes: float64(2), int64(16), object(18)

memory usage: 87.6+ KB

Ввод [6]:

```
# проверим есть ли пропущенные значения data.isnull().sum()
```

Out[6]:

Employee Name	0
Employee_Name EmpID	0
MarriedID	0
MaritalStatusID	0
GenderID	0
	0
EmpStatusID	0
DeptID	-
PerfScoreID	0
FromDiversityJobFairID	0
Salary	0
Termd	0
PositionID	0
Position	0
State	0
Zip	0
DOB	0
Sex	0
MaritalDesc	0
CitizenDesc	0
HispanicLatino	0
RaceDesc	0
DateofHire	0
DateofTermination	207
TermReason	0
EmploymentStatus	0
Department	0
ManagerName	0
ManagerID	8
RecruitmentSource	0
PerformanceScore	0
EngagementSurvey	0
EmpSatisfaction	0
SpecialProjectsCount	0
LastPerformanceReview_Date	0
DaysLateLast30	0
Absences	0
dtype: int64	

Удалим колонки, которые не влияют на целевой признак

Построим heatmap для лучшего визуального представления всез корреляций

Ввод [7]:

```
cmap = sns.cm.rocket_r
ax = sns.heatmap(data.corr(), cmap=cmap)
```



```
data = data.drop(columns=['Employee_Name', 'EmpID', 'DateofTermination', 'ManagerID'
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 32 columns):

#	Column		-Null	Count	Dtype
0	MarriedID		non-r		int64
1	MaritalStatusID	311	non-r	null	int64
2	GenderID	311	non-r	null	int64
3	EmpStatusID	311	non-r	null	int64
4	DeptID	311	non-r	null	int64
5	PerfScoreID	311	non-r	null	int64
6	FromDiversityJobFairID	311	non-r	null	int64
7	Salary	311	non-r	null	int64
8	Termd	311	non-r	null	int64
9	PositionID	311	non-r	null	int64
10	Position	311	non-r	null	object
11	State	311	non-r	null	object
12	Zip	311	non-r	null	int64
13	DOB	311	non-r	null	object
14	Sex	311	non-r	null	object
15	MaritalDesc	311	non-r	null	object
16	CitizenDesc	311	non-r	null	object
17	HispanicLatino	311	non-r	null	object
18	RaceDesc	311	non-r	null	object
19	DateofHire	311	non-r	null	object
20	TermReason	311	non-r	null	object
21	EmploymentStatus	311	non-r	null	object
22	Department	311	non-r	null	object
23	ManagerName	311	non-r	null	object
24	RecruitmentSource	311	non-r	null	object
25	PerformanceScore	311	non-r	null	object
26	EngagementSurvey		non-r		float64
27	EmpSatisfaction		non-r		int64
28	SpecialProjectsCount		non-r		int64
29	LastPerformanceReview_Date		non-r		object
30	DaysLateLast30	_	non-r	-	int64
31	Absences	311	non-r	null	int64
			110		

dtypes: float64(1), int64(15), object(16)

memory usage: 77.9+ KB

Обработка пропусков

Ввод [9]:

```
# Импьютация наиболее частыми значениями
imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent')

imputed = {}

for col in data:
    contains_nan = data[col].isnull().sum() != 0
    if contains_nan:
        data_imp = data[[col]]
        data_imp = imp.fit_transform(data_imp)
        imputed[col] = data_imp

for col_name in imputed:
    df = pd.DataFrame({col_name:imputed[col_name].T[0]})
    data[col_name] = df.copy()

data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 311 entries, 0 to 310
Data columns (total 32 columns):

#	Column	Non-Null Count Dtype
0	MarriedID	311 non-null int64
1	MaritalStatusID	311 non-null int64
2	GenderID	311 non-null int64
3	EmpStatusID	311 non-null int64
4	DeptID	311 non-null int64
5	PerfScoreID	311 non-null int64
6	FromDiversityJobFairID	311 non-null int64
7	Salary	311 non-null int64
8	Termd	311 non-null int64
9	PositionID	311 non-null int64
10	Position	311 non-null object
11	State	311 non-null object
12	Zip	311 non-null int64
13	DOB	311 non-null object
14	Sex	311 non-null object
15	MaritalDesc	311 non-null object
16	CitizenDesc	311 non-null object
17	HispanicLatino	311 non-null object
18	RaceDesc	311 non-null object
19	DateofHire	311 non-null object
20	TermReason	311 non-null object
21	EmploymentStatus	311 non-null object
22	Department	311 non-null object
23	ManagerName	311 non-null object
24	RecruitmentSource	311 non-null object
25	PerformanceScore	311 non-null object
26	EngagementSurvey	311 non-null float64
27	EmpSatisfaction	311 non-null int64
28	SpecialProjectsCount	311 non-null int64
29	LastPerformanceReview_Date	311 non-null object
30	DaysLateLast30	311 non-null int64
31	Absences	311 non-null int64
al +a	oo. floot(1/1) int(1/1E) o	b = a a + (1 C)

dtypes: float64(1), int64(15), object(16)

memory usage: 77.9+ KB

Кодирование строковых признаков (LabelEncoding)

Ввод [10]:

```
not_number_cols = data.select_dtypes(include=['object'])
number_cols = data.select_dtypes(exclude=['object'])
```

Ввод [11]:

```
le = preprocessing.LabelEncoder()

for col_name in not_number_cols:
    data[col_name] = le.fit_transform(data[col_name])

data
```

Out [11]:

MarriedID MaritalStatusIDGenderID EmpStatusIDDeptID PerfScoreID FromDiversityJobF

0	0	0	1	1	5	4	
1	1	1	1	5	3	3	
2	1	1	0	5	5	3	
3	1	1	0	1	5	3	
4	0	2	0	5	5	3	
306	0	0	1	1	5	3	
307	0	0	0	5	5	1	
308	0	0	0	1	3	4	
309	0	0	0	1	3	3	
310	0	4	0	1	5	3	

311 rows × 32 columns

Масштабируем числовые данные

Ввод [12]:

```
scaler = preprocessing.MinMaxScaler()
number_fields_source = number_cols.loc[:, number_cols.columns!=TARGET_COL_NAME] if T
for col_name in number_fields_source:
    data[col_name] = scaler.fit_transform(data[[col_name]])
data
```

Out [12]:

${\bf Married ID\,Marital Status ID Gender ID\,\,Emp Status ID Dept ID\,\,Perf Score ID\,From Diversity Job For Control of Contr$

0	0.0	0.00	1.0	0.0	0.8	1.000000
1	1.0	0.25	1.0	1.0	0.4	0.666667
2	1.0	0.25	0.0	1.0	8.0	0.666667
3	1.0	0.25	0.0	0.0	8.0	0.666667
4	0.0	0.50	0.0	1.0	8.0	0.666667
306	0.0	0.00	1.0	0.0	8.0	0.666667
307	0.0	0.00	0.0	1.0	8.0	0.000000
308	0.0	0.00	0.0	0.0	0.4	1.000000
309	0.0	0.00	0.0	0.0	0.4	0.666667
310	0.0	1.00	0.0	0.0	0.8	0.666667

311 rows × 32 columns

Делим выборку на обучающую и тестовую

Ввод [13]:

```
target = data[TARGET_COL_NAME]
data_X_train, data_X_test, data_y_train, data_y_test = train_test_split(
    data, target, test_size=0.2, random_state=1)
```

Ввод [14]:

```
data_X_train.shape, data_y_train.shape
```

```
Out[14]:
((248, 32), (248,))
```

```
data_X_test.shape, data_y_test.shape
Out[15]:
((63, 32), (63,))
Ввод [16]:
np.unique(target)
Out [16]:
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
Метод опорных векторов
Ввод [17]:
svr_1 = svm.LinearSVC()
svr_1.fit(data_X_train, data_y_train)
/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_ba
se.py:985: ConvergenceWarning: Liblinear failed to converge, increase
the number of iterations.
 warnings.warn("Liblinear failed to converge, increase "
Out [17]:
LinearSVC()
Ввод [18]:
data_y_pred_1 = svr_1.predict(data_X_test)
accuracy_score(data_y_test, data_y_pred_1)
Out [18]:
0.2698412698412698
Ввод [19]:
f1_score(data_y_test, data_y_pred_1, average='micro')
Out [19]:
0.2698412698412698
Ввод [20]:
f1_score(data_y_test, data_y_pred_1, average='macro')
Out [20]:
0.19544586132821426
```

Ввод [15]:

```
Ввод [21]:
f1_score(data_y_test, data_y_pred_1, average='weighted')
Out [21]:
0.25382983030041856
Ввод [22]:
svr_2 = svm.LinearSVC(C=1.0, max_iter=10000)
svr_2.fit(data_X_train, data_y_train)
/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_ba
se.py:985: ConvergenceWarning: Liblinear failed to converge, increase
the number of iterations.
  warnings.warn("Liblinear failed to converge, increase "
Out [22]:
LinearSVC(max_iter=10000)
Ввод [23]:
data_y_pred_2 = svr_2.predict(data_X_test)
accuracy_score(data_y_test, data_y_pred_2)
Out [23]:
0.4603174603174603
Ввод [24]:
f1_score(data_y_test, data_y_pred_2, average='micro')
Out [24]:
0.4603174603174603
Ввод [25]:
f1_score(data_y_test, data_y_pred_2, average='macro')
Out [25]:
0.35007859826700405
Ввод [26]:
f1_score(data_y_test, data_y_pred_2, average='weighted')
Out [26]:
0.48227841861382226
Ввод [27]:
svr_3 = svm.LinearSVC(C=1.0, penalty='l1', dual=False, max_iter=10000)
svr_3.fit(data_X_train, data_y_train)
Out [27]:
LinearSVC(dual=False, max_iter=10000, penalty='11')
```

```
Ввод [28]:
data_y_pred_3_0 = svr_3.predict(data_X_train)
accuracy_score(data_y_train, data_y_pred_3_0)
Out [28]:
0.7943548387096774
Ввод [29]:
data_y_pred_3 = svr_3.predict(data_X_test)
accuracy_score(data_y_test, data_y_pred_3)
Out [29]:
0.5714285714285714
Ввод [30]:
f1_score(data_y_test, data_y_pred_3, average='micro')
Out [30]:
0.5714285714285714
Ввод [31]:
f1_score(data_y_test, data_y_pred_3, average='macro')
Out [31]:
0.5131972789115646
Ввод [32]:
f1_score(data_y_test, data_y_pred_3, average='weighted')
Out [32]:
0.5757105064247922
Градиентный бустинг
Ввод [33]:
ab1 = AdaBoostClassifier()
ab1.fit(data_X_train, data_y_train)
data_y_pred_1 = ab1.predict(data_X_test)
data_y_pred_1_0 = ab1.predict(data_X_train)
```

accuracy_score(data_y_train, data_y_pred_1_0)

Out [33]:

0.7661290322580645

```
Ввод [34]:
accuracy_score(data_y_test, data_y_pred_1)
Out[34]:
0.6031746031746031
Ввод [35]:
f1_score(data_y_test, data_y_pred_1, average='micro')
Out [35]:
0.6031746031746031
Ввод [36]:
f1_score(data_y_test, data_y_pred_1, average='macro')
Out [36]:
0.634920634920635
Ввод [37]:
f1_score(data_y_test, data_y_pred_1, average='weighted')
Out [37]:
0.5149911816578483
```

Выводы

При использовании метода опорных векторов наилучшую точность (0.794) показала модель с параметрамиC=1.0, penalty='ll', dual=False, max_iter=10000 . При дальнейшей манипуляции с параметрами можно было бы добиться неплохих результатов.

При использовании градиентного бустинга в целом показатели гораздо выше, предпочтительнее использовать его.