CURRENT MODE PWM CONTROL CIRCUITS

DESCRIPTION

The UTC UC3842A/3843A provide the necessary functions to implement off-line or DC to DC fixed frequency current mode, controlled switching circuits with a minimal external part count

FEATURES

- *Low external part count.
- *Low start up current (Typical 0.12mA)
- *Automatic feed forward compensation
- *Pulse-by-Pulse current limiting
- *Under-voltage lockout with hysteresis
- *Double pulse Suppression
- *High current totem pole output to drive MOSFET directly
- *Internally trimmed band gap reference
- *500kHz operation

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

PARAMETER	SYMBOL	VALUE	UNIT	
Supply Voltage(Low Impedance Source)	Vcc	30	V	
Supply Voltage(Icc<30mA)	Vcc	Self Limiting	V	
Output Current (Peak)	lo	+-1	Α	
Output Energy(capacity Load)		5	μЈ	
Analog Inputs(pin 2,3)	VI(ANA)	-0.3 ~ +6.3	V	
Error Amplifier Output Sink Current	ISINK(EA)	10	mA	
Power Dissipation	PD DIP-8	at Tamb<=25°C 1.0	W	
	SOP-8	at Tamb<=25°C 0.5	W	
Lead Temperature(Soldering 10 Sec)	Tlead	300	°C	

UTC UNISONIC TECHNOLOGIES CO., LTD.

(continued)

PARAMETER	SYMBOL	VALUE	UNIT
Storage Temperature	Tstg	-65 ~ + 150	°C
Operating junction temperature	Tj	+150	°C

Note 1: Ta>25°C, PD derated with 8mW/°C.

ELECTRICAL CHARACTERISTICS (0°C <=Ta<= 70° C,Vcc=15V,RT=10k Ω ,CT=3.3nF,unless otherwise specified)

Specified)	CVMDO	TEST CONDITIONS	NAINI	TVD	MAN	LINUT
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Reference Section	1/		4.0			
Output Voltage	VREF	Tj=25°C,Io=1mA	4.9	5	5.1	V
Line Regulation	ΔV REF	12<=VIN<=25V		6	20	mV
Load Regulation	ΔV REF	1<=lo=20mA		6	25	mV
Temperature Stability		(Note 2)		0.2	0.4	mV/°C
Total Output Variation		Line, Load, Temp(note 2)	4.82		5.18	V
Output Noise Voltage	Vosc	10Hz<=f<=10kHz,Tj=25°C (note 2)		50		uV
Long Term Stability		Ta=25°C,1000Hrs(note 2)		5	25	mV
Output Short Circuit	Isc		-30	-100	-180	mA
Oscillator Section						
Initial Accuracy	f	Tj=25°C	47	52	57	kHz
Voltage Stability	Δf/ΔVcc	12<=Vcc<=25V		0.2	1	%
Temperature Stability		Tmin<=TA<=Tmax(note 2)		5		%
Amplitude	Vosc	Vpin 4 peak to peak		1.7		V
Error Amplifier Section						
Input Voltage	VI(EA)	Vpin 1=2.5V	2.42	2.50	2.58	V
Input Bias Current	IBIAS			-0.3	-2	μΑ
AVOL		2 <=Vo<=4V	60	90		dB
Unity Gain Bandwidth		Tj=25°C (note 2)	0.7	1		MHz
PSRR		I2<=Vcc<=25V	60	70		dB
Output Sink Current	Isink	Vpin 2=2.7V,Vpin 1=1.1V	2	6		mA
Output Source Current	Isource	Vpin 2=2.3V,Vpin 1=5V	-0.5	-0.8		mA
Vout High	Voн	Vpin 2=2.3V, RL=15kΩ to GND	5	6		V
Vout Low	Vol	Vpin 2=2.7V,Vpin 1=1.1V		0.7	1.1	V
Current Sense section						
Gain	G۷	(note 3,4)	2.85	3	3.15	V/V
Maximum Input signal	VI(MAX)	Vpin 1=5V(note 3)	0.9	1	1.1	V
PSRR		12<=Vcc<=25V		70		dB
Input Bias Current	IBIAS			-2	-10	μΑ
Delay to Output		Vpin 3=0 to 2V		150	300	ns
Output Section						
Output Low Level	Vol	Isink=20mA		0.1	0.4	V
, , , , , , , , , , , , , , , , , , , ,		Isink=200mA		1.5	2.2	V
Output High Level	Voн	Isource=20mA	13	13.5		V
'		Isource=200mA	12	13.5		V
Rise Time	tR	Tj=25°C,CL=1nF(note 2)		50	150	ns
Fall Time	tF	Tj=25°C,CL=1nF(note 2)		50	150	ns
Under-Voltage Lockout Outpu	t Section	,,- \ \> -/	1			
Start Threshold	VTH(ST)	UTC3842A	14.5	16	17.5	V
	/	UTC3843A	7.8	8.4	9	V
Min. Operating Voltage	VOPR(min)	After Turn On UTC3842A	8.5	10	11.5	-
		UTC3843A	7	7.6	8.2	V

UTC UNISONIC TECHNOLOGIES CO., LTD.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Maximum Duty Cycle	D(MAX)		95	97	100	%
Minimum Duty Cycle	D(MIN)				0	%
Total Standby Current						
Start-up Current	Ist			0.12	0.3	mA
Operating Supply Current	ICC(opr)	Vpin 2=Vpin 3=0V		11	17	mA
Vcc Zener Voltage	Vz	lcc=25mA		34		V

note 2:These parameters, although guaranteed ,are not 100% tested in production.

note 3:Parameters measured at trip point of latch with Vpin 2=0.

note 4:Gain defined as:

$$A = \frac{\Delta Vpin 1}{\Delta Vpin 3} ; 0 \le Vpin 3 \le 0.8V$$

note 5:Adjust Vcc above the start threshold before setting at 15V.

OPEN-LOOP LABORATORY TEST FIXTURE

High peak current associated with capacity loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in single point GND. The transistor and $5k\Omega$ potentio-meter are used to sample the oscillator waveform and apply an adjustable Ramp to Pin 3.

UNDER-VOLTAGE LOCKOUT

During Under-Voltage Lockout, the output driver is biased to a high impedance state. Pin 6 should be shunt to GND with a bleeder resistor to prevent activating the power switch with output leakage currents.

UTC UNISONIC TECHNOLOGIES CO., LTD.

ERROR AMPLIFIER CONFIGURATION

Error amplifier can source or sink up to 0.5mA

CURRENT SENSE CIRCUIT

Peak current (Is) determined by the formula: Ismax=10V/Rs.

A small RC filter be required to suppress switch transients.

SLOPE COMPENSATION

A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converts requiring duty cycles over 50%. Note that capacitor C, forms a filter with R2 to suppress the leading edge switch spikes.

UTC

UNISONIC TECHNOLOGIES CO. LTD

4

OSCILLATOR SECTION

Dead time VS $CT(RT>5k\Omega)$ Timing Resistance Vs Frequency

SHUTDOWN TECHNIQUES

Shutdown UTC UC3842A accomplished by two methods; either raise pin 3 above 1V or pull Pin 1 below a voltage two diode drops above ground. Either method caused the output of PWM comparator to be high(refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at pins 1 and/or 3 is removed . In one example, an externally latched shut -down may be accomplished by adding an SCR which be reset by cycling Vcc below the lower UVLO threshold. At this point the reference turns off allowing the SCR to reset.

UTC UNISONIC TECHNOLOGIES CO. LTD

TYPICAL PERFORMANCE CHARACTERISTICS

Output Saturation Characteristics

Error Amplifier Open-Loop Frequency Response

Icc Temperature Drift

Istart Temperature Drift 550 500 Vcc=9V 450 400 350 250 L -50 -25 25 50 100 125 Temperature (°C)

UTC UNISONIC TECHNOLOGIES CO. LTD