

Created by:

Austin Hegarty, Cody Rosa, Josh Remillard, and Ryan Shirlock

Introduction

Project Context

- Context of Precipi-Tracker
 - o Historical Rainfall
 - o Water storage
 - Reduce bills
 - o Intended Audience
 - Farmers
 - Off the radar
 - As large as anyone

Goals and Features

- Goals
 - o Build project to fall in line with original idea
 - o Map API
 - o User friendly website
 - o Database
 - o Repo for public
- o Features
 - o Interactive map on web browser
 - Mobile friendly website
 - O Historical rainfall data
 - o Different relative views
 - O Dynamically updated heat-map

Group Member Major and Roles

- Austin Hegarty
 - Software Engineering
 - o Original idea, back-end and light front-end
- Cody Rosa
 - o Software Engineering
 - o Back-end/Database
- Josh Remillard
 - Computer Engineering
 - o Front-end and Fact finding / project research
- Ryan Shirlock
 - Computer Information Technology
 - o Front-end

Design Phase

First Semester (Fall 2024)

Design GANTT Chart

- Used for preliminary planning of our time and resources for the semester
- GANTT website presents it better

Requirement Design

- How will clients view precipitation data
 - o Region view
 - o State view
 - o County view

• How will the date range be selected

Requirement Design

- Where is the data coming from
- Where to store/host the data
- What systems will need to be implemented
- What kind of devices will the clients be using
- Determining which Map API to implement
 - o Google Maps
 - Leaflet.js (OpenStreetMap)

User Interaction

User wants to view precipitation data via PrecipiTracker

User opens Precipi-Tracker
via web browser

- Define how Precipi-Tracker behaves
- Relative to the view the client specifies
- For a given date range

Assessing Data Flow

- How will the data be imported / exported?
- How will the data be used within the application?

Website Design and Model

- Rough prototype
 - O DraftedDecember2024
 - Used to give life to internal design

Preliminary Setup

- GitHub Repository Setup
 - Standard setup for our WebApp
- Lemuria's role in Precipi-Tracker
 - o Database & Webserver
 - Professor Chapin Helped set up Server & SSL Certificate

Implementation Phase

Second Semester (Spring 2025)

Implementation GANTT Chart

- Used for preliminary planning of our time and resources for the semester
- GANTT website presents it better

Frontend implementation - HTML

- Implementing responsive web design
 - Desktop vs Mobile devices
- Considerations for user interaction on multiple platforms
 - O Having a menu structure suitable for use on both types
- Publicly available resources
 - W3Schools used as an example for our menu structure
- Implementing the map API
 - o Adjusting button locations and zoom level boundaries for map
 - o Adding custom overlays for region, state, and county views

Frontend implementation

- Website has evolved throughout the semester
 - Header and menu placement
 - Date range moved into menu
 - Using a standardized hamburger menu icon
 - o Making the map full screen
- Each version has been viewable on Lemuria throughout the semester

Frontend Challenges

- Map API geolocation
 - Depends on an SSL certificate to secure the host-client connection
 - Setbacks with SSL implementation
 - Generating a certificate signing request
 - Time constraints influenced implementation

Backend Implementation

- Python Scripts for Data Conversion
 CoCoRahs_To_SQL_Statements.py
- Database & SQL
 - SQL Reports generated by our conversion script
 - o Database Schema
- PHP
 - o DBConnection.php
 - o Api.php

- JavaScript
 - o Api.js
 - o DataLayer.js
 - o Date.js
 - o Main.js
 - o Map.js
 - o Utils.js

Bug / Defect Testing

Date Bugs

• When date changes were submitted, incorrect dates were passed to the api.php script

• Map Bugs

• If a user happened to increase and decrease their zoom level repeatedly, multiple layers would appear over one another.

• FIPS / ID Defect

o In our original implementation of the database, states were stored with a custom ID created by us, this turned out to cause a lot of issues when matching data via FIPS geographical codes (Federal Information Processing)

Live Demo

Precipi-Tracker

Conclusion

If we had more time...

- Snowfall counterpart
- Update the database automatically
- Dynamically updated legend
- Client geolocation

Citations/Credit

- Group Members
 - o Created the project
- Peter Chapin
 - o Assisted in many backend concerns and issues
- CoCoRaHS
 - O Website which gathered the data we used
- Open Street Map using Leaflet.js
 - o Map API
- Tiger Shape Files and Census Files
 - o Defined the shapes for geographical areas

Releasing Project to Public

- Public since creation of repo
- Intend to keep public for future reference and evolution o ccrdev/precipitracker: Precipi-Tracker Senior Project
- Link to Lemuria: http://lemuria.cis.vermontstate.edu/ptracker/precipitracker/Code/

Questions?