Сжатое измерение (Compressed Sensing) и поперечник шара в ℓ_{∞}^{N}

11 мая 2019 г.

Пусть $x \in \mathbb{R}^N$, где размерность N очень велика. Предположим, нам не доступен вектор x, мы можем лишь uзмерить n скалярных произведений:

$$y = (\langle x, \varphi_1 \rangle, \langle x, \varphi_2 \rangle, \dots, \langle x, \varphi_n \rangle) = \Phi x \in \mathbb{R}^n,$$

где n < N (интересен случай, когда n намного меньше N), и хотим восстановить x по y. В общем случае это невозможно. Наложим условие, что x является s-разреженным:

$$||x||_0 := \#\{j \colon x_j \neq 0\} \leqslant s$$

или хотя бы хорошо приближается такими векторами:

$$\sigma_s(x)_1 := \inf_{x': \|x'\|_0 \le s} \|x - x'\|_1.$$

(Например, картинки хорошо приближаются разреженными векторами, в базисе всплесков.)

Рассмотрим задачу

$$||z||_0 \to \min, \quad \Phi z = y.$$

Если любые 2s столбцов матрицы Φ линейно независимы, то z=x для s-разреженных x, поскольку $\|x-z\|_0 \leqslant \|x\|_0 + \|z\|_0 \leqslant 2s$, $\Phi(x-z)=0$. Этого легко добиться для n=2s и любого $N\geqslant n$. Проблема, однако, в том, что для решения задачи придётся перебирать все возможные s-элементные подмножества $\{1,\ldots,N\}$, а это трудно.

Заменим $\|\cdot\|_0$ на $\|\cdot\|_1$:

$$||z||_1 \to \min, \quad \Phi z = y. \tag{1}$$

Задача (1) выпуклая и есть эффективные алгоритмы для её решения. (Почему ℓ_1 , а не ℓ_2 , скажем? Минимизация ℓ_1 -нормы даёт разреженные решения.) Обозначим через $z_{\Phi}(y)$ решение задачи (1). При каких условиях на Φ имеем $z_{\Phi}(\Phi x) = x$ для разреженных векторов?

Всюду далее

$$Ker \Phi = \{x \colon \Phi x = 0\}.$$

Теорема 1. Пусть $\Phi \in \text{Mat}(n \times N)$, $s \in \mathbb{N}$, и выполнено условие:

$$\forall u \in \text{Ker } \Phi \quad \frac{\|u\|_2}{\|u\|_1} \leqslant \frac{1}{4} s^{-1/2}.$$

Тогда для любого $x \in \mathbb{R}^N$ имеем

$$||x - z_{\Phi}(\Phi x)||_2 \leqslant s^{-1/2} \sigma_s(x)_1,$$

$$||x - z_{\Phi}(\Phi x)||_1 \leqslant 4\sigma_s(x)_1.$$

B частности, для s-разреженных x решение задачи (1) единственно и $cosnadaem\ c\ x$.

Замечание: в обратную сторону тоже верно: если $u \in \text{Ker }\Phi$, то $z_{\Phi}(\Phi u) = z_{\Phi}(0) = 0$, $||u||_2 \leqslant s^{-1/2}\sigma_s(u)_1 \leqslant s^{-1/2}||u||_1$.

Вспомним, что величина $\sup_{u\in L^n}\|u\|_2/\|u\|_1$ возникает в поперечнике по Гельфанду:

$$d^{n}(B_{1}^{N}, \ell_{2}^{N}) = \inf_{\operatorname{codim} L^{n} \leqslant n} \sup_{u \in B_{1}^{N} \cap L^{n}} ||u||_{2} = \inf_{\operatorname{codim} L^{n} \leqslant n} \sup_{u \in L^{n}} \frac{||u||_{2}}{||u||_{1}}.$$

Значит, хорошие измерительные матрицы Φ — те, для которых $L^n = {\rm Ker} \, \Phi$ даёт оценку поперечника.

Теорема 2.

$$d^{n}(B_{1}^{N}, \ell_{2}^{N}) = d_{n}(B_{2}^{N}, \ell_{\infty}^{N}) \leqslant C\sqrt{\frac{\log \frac{2N}{n}}{n}}.$$

Замечание 1: верхняя оценка точна, однако мы не будем это доказывать.

Замечание 2: оценка поперечника шара играет ключевую роль в нахождении порядков поперечников классов Соболева $d_n(W_p^r, L_q)$ в той области, где тригонометрические полиномы не оптимальны.

Замечание 3: все известные способы построения оптимальных подпространств — случайные.

Замечание 4: при $n \times N$ получаем, что ℓ_1 и ℓ_2 -нормы пропорциональны на L^n :

$$N^{-1/2} \le \frac{\|u\|_2}{\|u\|_1} \le cn^{-1/2} \asymp N^{-1/2}, \quad u \in L^n.$$

Следствие 1. Для любых n < N существует матрица $\Phi \in \operatorname{Mat}(n \times N)$, позволяющая эффективно восстанавливать s-разреженные вектора $x \in \mathbb{R}^N$ по n измерениям, $\varepsilon \partial e \ s \asymp \frac{n}{\log \frac{2N}{n}}$.

Скажем, что матрица Φ обладает свойством ограниченной изометрии (RIP — Restricted Isometry Property) с параметрами $\delta \in (0,1)$ и $s \in \mathbb{N}$, если

$$(1 - \delta) \|x\|_2 \le \|\Phi x\|_2 \le (1 + \delta) \|x\|_2, \quad \forall x \colon \|x\|_0 \le s.$$

Теорема 3. *Если* $\Phi \sim \text{RIP}(\delta, s)$, *mo*

$$\forall u \in \text{Ker } \Phi \quad \frac{\|u\|_2}{\|u\|_1} \leqslant \frac{2}{1-\delta} s^{-1/2}.$$

Теорема 4. Пусть элементы матрицы Φ — независимые нормальные случайные величины $\Phi_{i,j} \sim N(0,\frac{1}{n}), \ 1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant N, \ \delta \in (0,1).$ Тогда для $s \leqslant c_1(\delta)n/\log(2N/n)$ с вероятностью $> 1 - \exp(-c_2(\delta)n)$ матрица Φ обладает свойством $\mathrm{RIP}(\delta,s)$.

Следствие 2. В качестве оптимальной измерительной матрицы Φ с большой вероятностью можно взять реализацию матрицы из независимых нормальных величин $\Phi_{i,j} \sim \mathcal{N}(0,\frac{1}{n})$.

Замечание: вместо нормальных величин можно брать $\Phi_{i,j} = \pm n^{-1/2}$ со случайными независимыми знаками.

Замечание: нормировка $\mathsf{E}\Phi^2_{i,j}=rac{1}{n}$ обеспечивает равенство

$$\mathsf{E}\|\Phi x\|_2^2 = \sum_{i=1}^n \mathsf{E} \sum_{j=1}^N \xi_{i,j}^2 x_j^2 = \|x\|_2^2.$$

Теорема 2 была доказана с лишним логарифмом в работе Кашина 1977 года, уточнена Глускиным и Гарнаевым. Теорию сжатого измерения разработали Donoho, Tao, Candes в 2000-х.

Перейдём к доказательствам.

Доказательство теоремы 1. Обозначим $u = x - z_{\Phi}(\Phi x)$ и оценим ||u||. Мы имеем $u \in \text{Ker }\Phi$ (по определению z_{Φ}) и $||x - u||_1 = ||z||_1 \leqslant ||x||_1$. Оценка на $||u||_2$ будет следовать из оценки $||u||_1$ и свойства пространства $\text{Ker }\Phi$.

Оценим $||u||_1$. Возьмём T множество s наибольших координат x. Имеем $||u||_1 \le ||u_T||_1 + ||u_{T^c}||_1$,

$$||u_T||_1 \leqslant s^{1/2} ||u_T||_2 \leqslant s^{1/2} ||u||_2 \leqslant s^{1/2} \frac{1}{4} s^{-1/2} ||u||_1 = \frac{1}{4} ||u||_1.$$

Через x_T обозначим вектор x, в котором координаты $j \notin T$ заменены на 0. Через T^c обозначаем дополнение T.

Предположим сначала, что x является s-разреженным, $x = x_T$. Тогда u = 0, иначе

$$||x - u||_1 = ||x_T - u_T||_1 + ||u_{T^c}||_1 \ge ||x||_1 - ||u_T||_1 + ||u_{T^c}||_1 > ||x||_1,$$

что невозможно (т.е.: u не сконцентрирован, поэтому вычитание u увеличивает норму x). В общем случае $||x_{T^c}||_1 = \sigma_s(x)_1$,

$$||u_{T^c}||_1 \leq ||x_{T^c}||_1 + ||(x-u)_{T^c}||_1,$$

$$\|(x-u)_{T^c}\|_1 = \|x-u\|_1 - \|(x-u)_T\|_1 \leqslant \|x\|_1 + \|u_T\|_1 - \|x_T\|_1 = \|x_{T^c}\|_1 + \|u_T\|_1.$$
 Следовательно. $\|u_{T^c}\|_1 \leqslant 2\sigma_s(x)_1 + \|u_T\|_1.$ Отсюда: $\|u\|_1 \leqslant 2\|u_T\|_1 + 2\sigma_s(x)_1 \leqslant \frac{1}{2}\|u\|_1 + 2\sigma_s(x)_1,$ ч.т.д.

Заметим, что теоремы 3 и 4 влекут теорему 2. Действительно, фиксируем $\delta=1/2$, построим RIP-матрицу $(\delta,s),\,s\asymp n/\log(2N/n),$ её нульпространство Кег Φ даст нужную оценку для поперечника.

Доказательство теоремы 3. Возьмём $u \in \text{Ker}\Phi$, $||u||_1 = 1$. Разобьём координаты в \mathbb{R}^N на группы T_j по s штук, в T_0 включим самые большие по модулю координаты, в T_1 — следующие, и т.д.

Очевидно, $\|u\|_2 \leqslant \|u_{T_0}\|_2 + \|u_{T_0^c}\|_2$. Оценим второе слагаемое: пусть $a_0 = \min_{j \in T_0} |u_j|$, тогда $\|u\|_1 \geqslant sa_0$, $a_0 \leqslant 1/s$,

$$||u_{T_0^c}||_2^2 = \sum_{j \notin T_0} |u_j|^2 \leqslant a_0 \sum_j |u_j| \leqslant 1/s.$$

Первое слагаемое оценивается, используя RIP:

$$||u_{T_0}||_2 \leqslant (1-\delta)^{-1} ||\Phi u_{T_0}||_2.$$

В силу $\Phi u=0$, имеем $\Phi u_{T_0}=-\sum_{j\geqslant 1}\Phi u_{T_j}$, норма этого вектора не превосходит $(1+\delta)\sum_{j\geqslant 1}\|u_{T_j}\|_2$. В силу монотонности координат,

$$||u_{T_{i+1}}||_2 \leqslant s^{-1/2} ||u_{T_i}||_1, \quad j \geqslant 0.$$

Действительно, если $a_j := \min_{i \in T_j} |u_i|$, то норма слева не больше $s^{1/2}a_j$, а норма справа не меньше sa_i . Отсюда

$$\sum_{j\geqslant 1} \|u_{T_j}\|_2 \leqslant s^{-1/2} \sum_{j\geqslant 0} \|u_{T_j}\|_1 \leqslant s^{-1/2}.$$

Окончательно получаем

$$||u||_2 \leqslant (1 + \frac{1+\delta}{1-\delta})s^{-1/2}.$$

Для доказательства теоремы 4 нам потребуется утверждение из теории концентрации меры.

Утверждение. Пусть функция $f: \mathbb{R}^k \to \mathbb{R}$ липшицева с константой 1:

$$|f(x) - f(y)| \le ||x - y||_2, \quad \forall x, y \in \mathbb{R}^k.$$

Тогда для нормального вектора $\xi = (\xi_1, \dots, \xi_k)$, где $\xi_j \sim \mathcal{N}(0,1)$ и независимы, и t > 0, имеем

$$\mathsf{P}(|f(\xi)-Mf(\xi)|>t)\leqslant 2\exp(-t^2/2),$$

 $\epsilon \partial e \ Mf(\xi)$ — медиана величины $f(\xi)$.

Из данного утверждения следует, что $f(\xi)$ сильно сконцентрирована вокруг своей медианы M; следовательно, $|\mathsf{E}f(\xi)-M|\leqslant C$, а для $f\geqslant 0$ имеем $|(\mathsf{E}f(\xi)^p)^{1/p}-M|\leqslant C_p,\ p\in [1,+\infty)$. (Упражнение!) Отсюда, в частности, получаем следующее неравенство для неотрицательных f:

$$P(|f(\xi) - (Ef(\xi)^2)^{1/2}| > t) \le c_1 \exp(-c_2 t^2).$$
(2)

Доказательство теоремы 4. Нужно обеспечить неравенства $1-\delta \leqslant \|\Phi x\|_2 \leqslant 1+\delta$ для всех x из множества

$$\Sigma_s^N := \{ x \in \mathbb{R}^N \colon ||x||_2 = 1, \ ||x||_0 \leqslant s \}.$$

Зафиксируем вектор x^* единичной длины. Отождествляя пространство матриц с \mathbb{R}^{nN} , мы видим, что функция $f(M) = \|Mx^*\|_2$ является 1-липшицевой по M:

$$|||M_1x^*||_2 - ||M_2x^*||_2| \le ||(M_1 - M_2)x^*||_2 \le ||M_1 - M_2||_{2\to 2} \le ||M_1 - M_2||_F.$$

Элементы матрицы $\Xi = \sqrt{n}\Phi$ — случайные величины из $\mathcal{N}(0,1)$. Имеем

$$\mathsf{E} f(\Xi)^2 = \sum_{i=1}^n \mathsf{E} \sum_{j=1}^N \xi_{i,j}^2(x_j^*)^2 = n.$$

Следовательно, имеет место концентрация

$$P(|f(\Xi) - n^{1/2}| > t) \le c \exp(-ct^2),$$

$$P(|||\Phi x^*||_2 - 1| > t) \le c \exp(-cnt^2).$$

Мы положим $t := \delta/4$.

Далее мы построим $(\delta/4)$ -сеть \mathcal{M} для множества Σ_s^N и обеспечим неравенство

$$(1 - \delta/4) \|x\|_2 \leqslant \|\Phi x\|_2 \leqslant (1 + \delta/4) \|x\|_2, \quad \forall x \in \mathcal{N}.$$
 (3)

Для каждого набора из координат $T\subset\{1,\ldots,N\},\ |T|=s,$ нужно построить $(\delta/4)$ -сеть в сфере в \mathbb{R}^T . Как хорошо известно, для этого достаточно $(3/(\delta/4))^s\leqslant (c/\delta)^s$ точек. Поскольку всего наборов координат $\binom{N}{s}\leqslant (eN/s)^s,$ получаем

$$|\mathcal{M}| \leqslant (eN/s)^s (c/\delta)^s \leqslant (\frac{cN}{s\delta})^s.$$

Вероятность, что неравенство в (3) нарушится хотя бы для одного $x \in \mathcal{M}$, не превосходит

$$|\mathcal{M}| \cdot c_1 \exp(-c_2 n \delta^2) \leqslant c_1 \exp(-c_2 n \delta^2 + s \log(\frac{c_3 N}{s \delta})).$$

Эта величина меньше $\exp(-c(\delta)n)$ при выбранном нами s, следовательно, с большой вероятностью выполнено (3).

Из (3) и того, что $\mathcal{M}-(\delta/4)$ -сеть для Σ^N_s , вытекает нужное нам неравенство для всего Σ^N_s (упражнение!).