Convergence for Different Ns and Learning Rates with Gibbs Sampling N=1;Rate=0.35 N=2;Rate=0.35 3.8 \sim N=3;Rate=0.35 • N=4;Rate=0.35 \bullet N=5;Rate=0.35 → N=1:Rate=0.3 **→** N=2;Rate=0.3 3.7 \longrightarrow N=3;Rate=0.3 → N=4;Rate=0.3 \rightarrow N=5;Rate=0.3 → N=1:Rate=0.2 3.6 \sim N=2;Rate=0.2 \sim N=3;Rate=0.2 \sim N=4;Rate=0.2 \rightarrow N=5;Rate=0.2 → N=1;Rate=0.1 3.5 \sim N=2;Rate=0.1 N=3;Rate=0.1 N=4;Rate=0.1 \rightarrow N=5;Rate=0.1 \sim N=1;Rate=0.05 3.4 N=2;Rate=0.05 N=3;Rate=0.05N=4;Rate=0.05 → N=5;Rate=0.05 20 80 40 60 100 **Iterations**