

Sigs. with special properties

Fast one-time signatures and applications

One-time signatures: definition

Suppose signing key is used to sign a <u>single</u> message

Can we give a simple (fast) construction SS=(Gen,S,V) ?

A wins if $V(pk,m,\sigma) = `accept'$ and $m \neq m_1$

Security: for all "efficient" A, $Adv_{1-SIG}[A,SS] = Pr[A wins] \le negl$

Application: fast online signatures

1. Next section: secure one-time sigs ⇒ secure many-time sigs

- 2. Fast online signatures: signing can be slow on a weak device Goal:
 - Do heavy signature computation <u>before</u> message is known
 - Quickly output signature once user supplies message

Fast online signing using one-time sigs

(Gen, S, V): secure many-time signature (slow) (Gen_{1T}, S_{1T} , V_{1T}): secure one-time signature (fast)

- Gen \rightarrow (pk,sk)
- PreSign(sk): $(pk_{1T}, sk_{1T}) \leftarrow Gen_{1T}$, $\sigma \leftarrow S(sk, pk_{1T})$
- $S_{online}((\sigma, sk_{1T}, pk_{1T}), m): \sigma_{1T} \leftarrow S_{1T}(sk_{1T}, m) \leftarrow fast$ output $\sigma^* \leftarrow (pk_{1T}, \sigma, \sigma_{1T})$
- V_{online} (pk, m, $\sigma^* = (pk_{1T}, \sigma, \sigma_{1T})$): accept if $V(pk, pk_{1T}, \sigma) = V_{1T}(pk_{1T}, m, \sigma_{1T}) = \text{"accept"}$

slow

Sigs. with special properties

Constructing fast one-time signatures

One-time signatures

Goal: one-time sigs from fast one-way functions (OWF)

f: X → Y is a OWF if (1) f(x) is efficiently computable,
(2) hard to invert on random f(x)

• Examples: (1)
$$f(x) = AES(x, 0^{128})$$
 , (2) $f(x) = SHA256(x)$

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

$$m = 0 1 1 \cdots 0 1$$

S(sk, m): σ = (pre-images corresponding to bits of m)

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

S(sk, m): $\sigma = (\text{pre-images corresponding to bits of m})$

f: $X \rightarrow Y$ a one-way function. Msg space: $M = \{0,1\}^{256}$

Gen: generate 2×256 random elements in X

 $V(pk, m, \sigma)$: accept if all pre-images in σ match values in pk

Very fast signature system. Will prove one-time security in a bit.

Not two-time secure:

The attacker can ask for a signature on 0^{128} and on 1^{128} . He gets all of sk which he can use to sign new messages.

Abstraction: cover free set systems

Sets:
$$S_1, S_2, ..., S_{2256} \subseteq \{1, ..., n\}$$

Def:
$$S = \{S_1, S_2, ..., S_{2256}\}$$
 is **cover-free** if $S_i \nsubseteq S_j$ for all $i \neq j$

Example: if all sets in **S** have the same size k then **S** is cover free

Abstract Lamport signatures

f: X \rightarrow Y a one-way function. Msg space: M = $\{0,1\}^{256}$ $\boldsymbol{S} = \{S_1, S_2, ..., S_{2256}\}$ is **cover-free** over $\{1,...,n\}$ H: $\{0,1\}^{256} \rightarrow \boldsymbol{S}$ a bijection (one-to-one)

Gen: generate n random elements in X

Abstract Lamport signatures

f: X
$$\rightarrow$$
 Y a one-way function. Msg space: M = $\{0,1\}^{256}$
 $\boldsymbol{S} = \{S_1, S_2, ..., S_{2256}\}$ is **cover-free** over $\{1,...,n\}$
H: $\{0,1\}^{256} \rightarrow \boldsymbol{S}$ a bijection (one-to-one)

Gen: generate n random elements in X

S(sk, m): $\sigma = ($ pre-images corresponding to elements of H(m))

Why cover free?

Suppose **S** were not cover free

- \Rightarrow exists m_1, m_2 such that $H(m_1) \subset H(m_2)$
- \Rightarrow signature on m₂ gives signature on m₁

S(sk, m): $\sigma = (\text{pre-images corresponding to elements of H(m)})$

Security statement

<u>Thm</u>: if $f: X \rightarrow Y$ is one-way and S is cover-free then Lamport signatures (Lam) are one-time secure.

 $\forall A \exists B: Adv_{1-SIG}[A,Lam] \leq n \cdot Adv_{OWF}[B,f]$

Proving security:

Proving security us (B) adversary y=f(x)pk Signature m_1 Forger choose: $i \leftarrow \{1,...,n\}$ (m,σ) $X_1,...,X_n \leftarrow X$ $f(x_1)$ ··· $f(x_{i-1})$ y $f(x_{i+1})$ ··· $\begin{cases} i \notin H(M_s) \implies we (alg.B) \text{ can generale } \sigma, \\ i \in H(M) \implies \sigma \text{ from alv. tevenls pre-image } \times \end{cases}$ B wins if i cH(m) but idH(m,)

Proving security

$$y=f(x)$$

$$y=f(x)$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_1$$

$$m_1$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_1$$

$$m_2$$

$$m_2$$

$$m_1$$

$$m_2$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m_1$$

$$m_2$$

$$m_1$$

$$m_2$$

$$m_3$$

$$m_4$$

$$m_4$$

$$m_4$$

$$m_1$$

$$m_2$$

$$m_3$$

$$m_4$$

Parameters $(f: X \rightarrow Y \text{ where } X = Y)$

 $S = \{S_1, S_2, ..., S_{2256}\}$ is **cover-free** over $\{1,...,n\}$

In particular: **S** = (all subsets of {1,...,n} of size k)

$$pk \in Y^n \Rightarrow pk \text{ size } = (n \text{ elements of } Y)$$
 $sig. size = (k \text{ elements of } X)$

Msg-space =
$$\{0,1\}^{256}$$
 \Rightarrow $|S|$ = (n choose k) $\geq 2^{256}$

- To shrink signature size, choose small k
 example: k=32 ⇒ n ≥ 3290
- For optimal (sig-size + pk-size) choose n = 261, k = 123 (sig-size + pk-size) $\approx 1.5 \times 256$ elements of X

(3KB)

Further improvement: Winternitz

Gen: generate n random elements in X : $(f: X \rightarrow X)$

Further improvement: Winternitz

$$H: \{0,1\}^{256} \longrightarrow \{0,1,...,d-1\}^n$$

$$depth \\ d \\ f \\ f \\ f \\ n \\ pk \\ \in X^n$$

S(sk, m):
$$\sigma = (pre-images indicated by H(m))$$

Further improvement: Winternitz

ex: $H(0^{256}) = (2, 1, 3, 0, ..., 0, 1)$

$$depth depth dept$$

S(sk, m): $\sigma = (pre-images indicated by H(m))$

H: $\{0,1\}^{256} \rightarrow \{0,1,...,d-1\}^n$

For what H is this a secure one-time signature?

Suppose
$$H(0^{256}) = (2, 1, 3, 0, 0, 1)$$

 $H(1^{256}) = (2, 2, 3, 1, 1, 2)$
Is the signature one-time secure?

- \bigcirc No, from a sig. on 0^{256} one can construct a sig. on 1^{256}
- \bigcirc No, from a sig. on 1^{256} one can construct a sig. on 0^{256}
- Yes, the signature is one-time secure
- It depends on how H behaves at other points

Optimized parameters

For one-time security need that: for all $m_0 \neq m_1$ we have $H(m_0)$ does not "cover" $H(m_1)$

Parameters:

- Time(sign) = Time(verify) = O(n · d)
- pk size = sig. size = (n elements in X)
- msg-space = $\{0,1\}^{256}$ \Rightarrow n > 256 / $\log_2(d)$ (approx.)

(pk size)+(sig. size) $\approx 256 \times (2/\log_2(d))$ elems. of X

For Lamport: (pk size)+(sig. size) $\approx 256 \times (1.5)$ elems. of X

Sigs. with special properties

One-time signatures ⇒ many-time signatures

Review

One-time signatures need not be 2-time secure example: Lamport signatures

Goal: convert any one-time signature into a many-time signature

Main tool: collision resistant hash functions

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

• Gen:

stateful version)
$$Gen_{1T} \longrightarrow (pk_{0123}, sk_{0123})$$

$$(pk_{01}, sk_{01}) \qquad (pk_{23}, sk_{23})$$

$$(pk_{0}, sk_{0}) \qquad (pk_{1}, sk_{1}) \qquad (pk_{2}, sk_{2}) \qquad (pk_{3}, sk_{3})$$

(Gen_{1T}, S_{1T} , V_{1T}): secure one-time signature (fast)

Four-time signature: (stateful version)

• Gen:

$$(pk_0, sk_0)$$
 (pk_1, sk_1) (pk_2, sk_2) (pk_3, sk_3)

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

• Gen:

(Gen_{1T} , S_{1T} , V_{1T}): secure one-time signature (fast)

Four-time signature: (stateful version)

Dan Boneh

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

Dan Boneh

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

 $(Gen_{1T}, S_{1T}, V_{1T})$: secure one-time signature (fast)

Four-time signature: (stateful version)

More generally: 2^d-time signature

Tree of depth d:

• Every signature contains d+1 one-time signatures along with associated pk's

Tree is generated on-the fly:

Signer stores only d secret keys at a time

Stateful signature:

- Signer maintains a counter indicating which leaf to use for signature
- Every leaf must only be used once!

Optimized 2^d-time signatures

Combined with Lamport signatures:

collision resistant hash funs ⇒ many-time signature

With further optimizations:

• For 2^{40} signatures: (stateful) signature size is ≈ 5 KB ... signing time is about the same as RSA signatures

Recall: RSA sig size is 256 bytes (2048 bit RSA modulus)

THE END