序号	页码	原文	更正
1	12		这一问题可用最小二乘法求得拟合多项
1	12	对 w_j 求偏导数并令其为 0 ,可得	
		N	式系数的唯一解,记作 $w_0^*, w_1^*, \dots, w_M^*$.求
		$w_{j} = \frac{\sum_{i=1}^{N} x_{i} y_{i}}{\sum_{i=1}^{N} x_{i}^{j+1}} ,$	解过程这里不予叙述,读者可参阅有关材料.
		$j=0,1,2,\cdots,M$	
		于是求得拟合多项式系数	
		$w_0^*, w_1^*, \cdots, w_M^*$.	
2	77	$F(-x+\mu) - \frac{1}{2} = -F(x-\mu) + \frac{1}{2}$	$F(-x + \mu) - \frac{1}{2} = -F(x + \mu) + \frac{1}{2}$
3	161	$= \log P(Z \mid Y, \theta^{(i+1)}) = 0 (9.23)$	$= \log \left[\sum_{Z} P(Z Y, \theta^{(i+1)}) \right] = 0 $ (9.23)
4	198	$W_{i}(y_{i-1}, y_{i} \mid x) = \sum_{i=1}^{K} w_{k} f_{k}(y_{i-1}, y_{i}, x, i)$	$W_{i}(y_{i-1}, y_{i} \mid x) = \sum_{k=1}^{K} w_{k} f_{k}(y_{i-1}, y_{i}, x, i)$
		(11.23)	(11.23)
5	14	第 13,14 行	第 13,14 行
		可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率.	可以假设复杂的模型有 <mark>较小</mark> 的先验概率, 简单的模型有 <mark>较大</mark> 的先验概率.
6	141	(0.0715,0.0715,0.0715,0.0715,	(0.07143,0.07143,0.07143,0.07143,
		0.0715,0.1666,0.1666,0.1666,0.0715)	0.07143,0.16667,0.16667,0.16667,0.07143)
7	43	第8行(参阅图 3.8)	第8行(参阅图 3.5)
8	119	式(7.73)	式(7.73)
		$f * g \bullet \sum_{i=1}^{m} \sum_{j=1}^{l} \alpha_{i} \beta_{j} K(x_{i}, z_{j})$	$f * g = \sum_{i=1}^{m} \sum_{j=1}^{l} \alpha_i \beta_j K(x_i, z_j)$
9	163	式(9.28)	该编号移到164页第一公式后

10	222	倒数第9行	倒数第9行
		式(B.23)	式(B.24)
11	35	表 2.2 第 6 列	表 2.2 第 6 列
		4	4
		x_3	x_3
		2	1
		0	0
		2	3
		0	-2
12	115	第4行	第 4 行
		损失函数 $[y_i(wx_i + b)]_+$	损失函数 $[-y_i(wx_i+b)]_+$
13	63	5.2.3 信息增益比	5.2.3 信息增益比
		信息增益值的大小是相对训练数	以信息增益作为划分训练数据集的
		据集而言的,并没有绝对意义. 在分	特征,存在偏向于选择取值较多的特征
		类问题困难时,也就是训练数据集的	的问题. 使用信息增益比(information
		经验熵大的时候,信息增益值会偏	gain ratio)可以对这一问题进行校正.这
		大. 反之,信息增益值会偏小. 使用	是特征选择的另一准则.
		信息增益比(information gain ratio) 可	定义 5.3 (信息增益比) 特征 <i>A</i> 对训
		以对这一问题进行校正.这是特征选择的另一准则.	练数据集 D 的信息增益比 $g_R(D,A)$ 定义
		定义 5.3 (信息增益比) 特征 A 对 训练数据集 D 的信息增益比	为其信息增益 $g(D,A)$ 与训练数据集 D
		$g_R(D,A)$ 定义为其信息增益 $g(D,A)$	关于特征 A 的值的熵 $H_A(D)$ 之比,即
		与训练数据集 D 的经验熵 H(D) 之比	$g_R(D,A) = \frac{g(D,A)}{H_A(D)}$ (5.10)
		$g_R(D, A) = \frac{g(D, A)}{H(D)}$ (5.10)	其中
			$H_A(D) = -\sum_{i=1}^n \frac{ D_i }{ D } \log_2 \frac{ D_i }{ D }$
			n 是特征 A 取值的个数.

14	114	证明 可将最优化问题(7.63)写成问题 (7.60) ~ (7.62). 令	证明 可将最优化问题(7.63)写成问题 (7.60) ~ (7.62). 令	
		$1-y_i(w\Box x_i+b)=\xi_i,$	$\left[1-y_i(w\Box x_i+b)\right]_+=\xi_i$	
		$\xi_i \ge 0$	(7.64)	
		(7.64)	则 $\xi_i \geq 0$,式 (7.62) 成立. 由式 (7.6	
		则 $y_i(w \square x_i + b) \ge 1$. 于是 w, b, ξ_i 满		
		足约束条件(7.61)~(7.62). 由(7.64)有	$y_i(w\Box x_i + b) = 1 - \xi_i $	
		$ [1-y_i(w\Box x_i+b)]_+ = [\xi_i]_+ = \xi_i, 所以 $ 最优化问题(7.63)可写成	$1-y_i(w\Box x_i+b)\leq 0 \ \text{III} \ , \xi_i=0 \ ,$	
			$y_i(w \square x_i + b) \ge 1 - \xi_i . \text{id} (7.61)$	
			立. 于是 w,b,ξ_i 满足约束条件(7.61	
			(7.62). 所以最优化问题(7.63)可写成	
15	第 159 页	利用 Jensen 不等式(Jensen inequality)	利用 Jensen 不等式(Jensen inequality) 脚注① 这里用到的是	
			$\log \sum_{j} \lambda_{j} y_{j} \geq \sum_{j} \lambda_{j} \log y_{j} , \qquad $	
			$\lambda_j \geq 0$, $\sum_j \lambda_j = 1$.	
16	第 163	(<mark>原稿)</mark> 那么,完全数据的对数似然函数为		
	页	$\log P(y, \gamma \mid \theta) = \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2]$		
		(修改稿) 加大括号 那么,完全数据的对数似然函数为		
		$\log P(y, \gamma \mid \theta) = \sum_{k=1}^{K} \{ n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2] \}$		
	第	(原稿)		
	163 页	2. EM 算法的 E 步: 确定 Q 函数.		
		$Q(\theta, \theta^{(i)}) = E[\log P(y, \gamma \mid \theta) \mid y, \theta^{(i)}]$		
		$= E\{\sum_{k=1}^{K} n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2]\}$		

		(修改稿) 加大括号		
		2. EM 算法的 E 步: 确定 Q 函数.		
		$Q(\theta, \theta^{(i)}) = E[\log P(y, \gamma \mid \theta) \mid y, \theta^{(i)}]$		
		$= E\{\sum_{k=1}^{K} \{n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2]\}\}$		
	第	(原稿)		
	164 页	$Q(\theta, \theta^{(i)}) = \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{k=1}^{N} \hat{\gamma}_{jk} \left[\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2\right] $ (9.29)		
		(修改稿) 加上大括号,第二个和号的求和指标由 k 改为 j		
		$Q(\theta, \theta^{(i)}) = \sum_{k=1}^{K} \{ n_k \log \alpha_k + \sum_{j=1}^{N} \hat{\gamma}_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2] \}$		
	hh = 0	(9.29)		
17	第 73	(原稿)		
	算法	(4) 自上而下地访问内部结点 t ,如果有 $g(t) = \alpha$,进行剪枝,并对叶结点 t 以多数		
	5.7	表决法决定其类,得到树 T		
		(修改稿) (4) 对 $g(t) = \alpha$ 的内部结点 t 进行剪枝,并对叶结点 t 以多数表决法决定其类,得		
		到树 <i>T</i>		
18	第 73 页	(原稿) (6) 如果 T 不是由根结点单独构成的树,则回到步骤(4).		
	算法	(修改稿)		
	5.7	(6)		
19	第	(原稿)		
	205 页	(6) 计算 $g_{k+1} = g(w^{(k+1)})$, 若 $g_k = 0$, 则停止计算;		
	算法	(修改稿)		
	11.2	(6) 计算 $g_{k+1} = g(w^{(k+1)})$,若 $g_{k+1} = 0$,则停止计算;		
20	第	(原稿)		
	200 页	$\beta_{i}(y_{i} \mid x) = M_{i}(y_{i}, y_{i+1} \mid x)\beta_{i-1}(y_{i+1} \mid x) $ (11.30)		
		(修改稿)		
		$\beta_{i}(y_{i} \mid x) = M_{i+1}(y_{i}, y_{i+1} \mid x)\beta_{i+1}(y_{i+1} \mid x) $ (11.30)		

第	(原稿)		
196	倒数第 11 行 $\lambda_2 = 0.5$		
贝	(修改稿)		
	$\lambda_2 = 0.6$		
<i>5</i> -5-	-		
	(原稿)		
页	第 9 行 $\delta_2(1) = \max\{1 + \lambda_2 t_2, 0.5 + \lambda_4 t_4\} = 1.6$ $\Psi_2(1) = 1$		
	(修改稿)		
	$\delta_2(1) = \max\{1 + \lambda_2 t_2 + \mu_3 s_3, 0.5 + \lambda_4 t_4 + \mu_3 s_3\} = 2.4 \qquad \Psi_2(1) = 1$		
	(原稿)		
	第 12 行 $\delta_3(1) = \max\{1.6 + \mu_5 s_5, 2.5 + \lambda_3 t_3 + \mu_3 s_3\} = 4.3$ $\Psi_3(1) = 2$		
	(修改稿)		
	$\delta_3(1) = \max\{2.4 + \mu_5 s_5, 2.5 + \lambda_3 t_3 + \mu_3 s_3\} = 4.3 \Psi_3(1) = 2$		
	(原稿)		
	第 13 行 $\delta_3(2) = \max\{1.6 + \lambda_1 t_1 + \mu_4 s_4, 2.5 + \lambda_5 t_5 + \mu_4 s_4\} = 3.2$ $\Psi_3(2) = 1$		
	(修改稿)		
	$\delta_3(2) = \max\{2.4 + \lambda_1 t_1 + \mu_4 s_4, 2.5 + \lambda_5 t_5 + \mu_4 s_4\} = 3.9 \Psi_3(2) = 1$		
第	(原稿)		
	式(9.5)左端 $\mu^{(i+1)}$		
J ()	(修改稿)		
	$\mu_j^{(i+1)}$		
第	(原稿)		
198 页	这样,给定观测序列 x ,标记序列 y 的非规范化概率可以通过 $n+1$ 个矩阵的乘积		
$\prod_{i=1}^{n+1} M_i(y_{i-1}, y_i \mid x) 表示,$			
	(修改稿)		
	这样,给定观测序列 x ,相应标记序列 y 的非规范化概率可以通过该序列 $n+1$ 个		
	矩阵 <mark>适当元素</mark> 的乘积 $\prod_{i=1}^{n+1} M_i(y_{i-1}, y_i \mid x)$ 表示.		
	页 第208 第156 式		

25	第 200	(原稿)
	页	$\alpha_i^T(y_i \mid x) = \alpha_{i-1}^T(y_{i-1} \mid x) M_i(y_{i-1}, y_i \mid x), i = 1, 2, \dots, n+1 $ (11.27)
		(原稿)
		$\beta_{i}(y_{i} \mid x) = M_{i}(y_{i}, y_{i+1} \mid x)\beta_{i+1}(y_{i+1} \mid x) $ (11.30)
		(修改稿)
		$\alpha_i^T(y_i \mid x) = \alpha_{i-1}^T(y_{i-1} \mid x)[M_i(y_{i-1}, y_i \mid x)], i = 1, 2, \dots, n+1 $ (11.27)
		(修改稿)
		$\beta_i(y_i \mid x) = [M_i(y_i, y_{i+1} \mid x)]\beta_{i+1}(y_{i+1} \mid x) $ (11.30)
26	第 29 页,	(原稿)
	倒数第	$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \bullet x + b) (公式右边的 x 少了下标 i)$
	2 行公	(修改稿)
	式	$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \bullet x_i + b)$
27	第 104	(原稿)
	页第 8	$\nabla_b L(w,b,\alpha) = \sum_{i=1}^N \alpha_i y_i = 0 (公式右边少个负号)$
		(修改稿)
		$\nabla_b L(w, b, \alpha) = -\sum_{i=1}^N \alpha_i y_i = 0$
28	第 74 页中间	(<mark>原稿)</mark> (2) 样本集合 <i>D</i> 对特征 <i>A</i> 的信息增益比 (<i>C</i> 4.5)
	N I IN	
		$g_R(D,A) = \frac{g(D,A)}{H(D)}$
		其中, $g(D,A)$ 是信息增益, $H(D)$ 是 D 的熵.
		(修改稿) (2) 样本集合 D 对特征 A 的信息增益比(C4.5)
		$g_R(D,A) = \frac{g(D,A)}{H_A(D)}$
		其中, $g(D,A)$ 是信息增益, $H_A(D)$ 是 D 关于特征 A 的值的熵.
29	第 221	(原稿)

		7
	页第 3 行	这是因为搜索方向是 $p_k = -\lambda g_k$,由式(B.8)有
		(修改稿)
		这是因为搜索方向是 $p_k = -H_k^{-1} g_k$,由式(B.8)有
		(修改搜索方向表达式)
30	第 109 页 式	(原稿)
	(7.34)	可以证明 w 的解是唯一的,但 b 的解不唯一, b 的解存在于一个区间[11].
	下第 2 行	(修改稿) 可以证明 w 的解是唯一的,但 b 的解 <mark>可能</mark> 不唯一,而是存在于一个区间[11].
	第 112	(原稿)
	最后 2 行 至	步骤(2)中,对任一适合条件 $0<{\alpha_{j}}^{*}< C$ 的 ${\alpha_{j}}^{*}$,按式(7.51)都可求出 b^{*} ,
	113 页 第1行	但是由于原始问题(7.32)~(7.34)对 b 的解并不唯一[11],所以实际计算时可以取在所有符合条件的样本点上的平均值.
		(修改稿)
		步骤(2)中,对任一适合条件 $0<{\alpha_{_j}}^*< C$ 的 ${\alpha_{_j}}^*$,按式(7.51)都可求出 b^* . 从
		理论上,原始问题(7.32)~(7.34)对 b 的解可能不唯一[11],然而在实际应用中,往往只会出现算法叙述的情况.
	第 132	(原稿)
	页中间	线性可分支持向量机的解 w^* 唯一但 b^* 不唯一.
		(修改稿)
		线性支持向量机的解 w^* 唯一但 b^* 不一定唯一.
31	第 179	
	页第 6 行	此式当 t=1 和 t=T-1 时分别为式(10.17)和式(10.21).
	11	(修改稿) 此式当 t=1 和 t=T−1 时分别为式(10.21)和(10.17).
32	第 119	(原稿)
	页 式	<u></u>
	(7.72)	$g(\bullet) = \sum_{i=1}^{l} \beta_j K(\bullet, z_j) (7.72)$
		(修改稿)
		$g(\bullet) = \sum_{j=1}^{l} \beta_j K(\bullet, z_j) (7.72)$

33	第 227 页	(原稿)	
	至 228 页	$\nabla_{\alpha}L(x^*,\alpha^*,\beta^*)=0$	(C.22)

		$\nabla_{\beta} L(x^*, \alpha^*, \beta^*) = 0$	(C.23)	
		$\alpha_i^* c_i(x^*) = 0, i = 1, 2, \dots, k$	(C.24)	
		$c_i(x^*) \le 0, i = 1, 2, \dots, k$	(C.25)	
		$\alpha_i^* \ge 0$, $i = 1, 2, \dots, k$	(C.26)	
		$h_j(x^*) = 0$, $j = 1, 2, \dots, l$	(C.27)	
		特别指出,式(C.24) 称为 KKT 的对偶互补条件.		
		(修改稿)		
		$\alpha_i^* c_i(x^*) = 0, i = 1, 2, \dots, k$	(C.22)	
		$c_i(x^*) \le 0, i = 1, 2, \dots, k$	(C.23)	
		$\alpha_i^* \geq 0$, $i = 1, 2, \dots, k$	(C.24)	
		$h_j(x^*) = 0$, $j = 1, 2, \dots, l$	(C.25)	
		特别指出,式(C.22)称为 KKT 的对偶互补条件. (删除原式(C.22)(C.23),后面 4 式编号改为(C.22)	至(C.25))	
34	44页图3.5			
		B 点和 C 点各在一直线 附近		
		(修改稿)		
		B点和C点都在其最近直线上		
35	第 140 页 第 4 行	(原稿)		
	第4 1]	两相比较,误分类样本的权值被放大 $e^{2\alpha_m} = \frac{e_m}{1-e_m}$ 倍.		
		(修改稿)		
		两相比较, <mark>由式(8.2)知</mark> 误分类样本的权值被放大 e^{2lpha_m}	$=rac{1-e_{_{m}}}{e_{_{m}}}\stackrel{\dot{ m Th}}{ m C}.$	
		(分子分母颠倒).		
36	第 138 页	(原稿)		
	式 (8.1),	$e_m = P(G_m(x_i) \neq y_i) = \sum_{i=1}^{N} w_{mi} I(G_m(x_i) \neq y_i)$	(8.1)	
	第 139 页 式 (8.8)	$e_m = P(G_m(x_i) \neq y_i) = \sum_{G_m(x_i) \neq y_i} w_{mi}$	(8.8)	

(修改稿)

$$e_{m} = \sum_{i=1}^{N} P(G_{m}(x_{i}) \neq y_{i}) = \sum_{i=1}^{N} w_{mi} I(G_{m}(x_{i}) \neq y_{i})$$
(8.1)

$$e_m = \sum_{i=1}^{N} P(G_m(x_i) \neq y_i) = \sum_{G_m(x_i) \neq y_i} w_{mi}$$
 (8.8)

(添加一个求和号)