Chapitre 17

Limites et comparaisons

Isaac Newton (1642 – 1727)

« Je ne sais pas ce que j'ai pu sembler être aux yeux du monde, mais à mes yeux je n'ai été qu'un enfant, jouant sur le rivage et heureux de trouver de temps à autre un galet plus lisse ou un coquillage plus beau que les autres, alors que le grand océan de la vérité s'étendait devant moi, encore inexploré. »

 $\begin{tabular}{l} Is a a c \ Newton \\ The \ Portsmouth \ Papers \\ \end{tabular}$

Newton

Physicien, mathématicien, alchimiste, passionné d'astronomie, grand argentier de l'État et homme d'Église, Sir Isaac Newton fut un génie comme l'histoire en a peu connu.

Père du principe de la gravitation universelle, des lois du mouvement, du principe d'actionréaction, du télescope, du calcul différentiel... Newton a marqué l'histoire par son œuvre, impressionnante tant par sa profondeur que son étendue.

Sommaire

I.	Adhérence, intérieur et voisinagesp. 4
II.	Limites : définition
III.	Opérations sur les limitesp. 11
IV.	Limites et inégalitésp. 14
\mathbf{V} .	Relations de comparaison

Dans tout ce chapitre, I est un intervalle de \mathbb{R} tel que $\ell(I) > 0$.

I. Adhérence, intérieur et voisinages

1. Adhérence

Définition 1

L'adhérence de I dans $\overline{\mathbb{R}}$, notée \overline{I} est définie par

 $\overline{I} := I \cup \{ \text{les bornes de } I \}.$

Exemples

- $\overline{]0,1[} = [0,1]$
- $\overline{]0,1]} = [0,1]$ $\overline{]0,+\infty[} = [0,+\infty[\cup\{+\infty\}$
- $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

On rappelle que « $-\infty$ » et « $+\infty$ » ne sont que des symboles et en aucun cas des nombres.

Exercice 2

- 1) A-t-on $\overline{\overline{I}} = \overline{I}$?
- 2) A-t-on $\overline{I} \cap \mathbb{R} = I$?

2. Intérieur

Définition 3

L'intérieur de I, noté \mathring{I} ou \widehat{I} est défini par

 $\mathring{I} := I \setminus \{ \text{les bornes de } I \}.$

Exemple

• [0,1] =]0,1[

Exercice 4

Caractériser les intervalles d'intérieur vide.

3. Voisinages

Dans ce paragraphe, on introduit le formalisme des voisinages. Il est tout à fait analogue au formalisme « APCR » qu'on a introduit pour les suites.

Définition 5

Soit $a \in \overline{I}$.

• Soit P(f) un prédicat de f, fonction réelle.

Soit $f: I \longrightarrow \mathbb{R}$.

On dit que P(f) est vrai au voisinage de a et on note « P(f) au $\mathcal{V}(a)$ » ssi

$$ightharpoonup \underline{quand\ a \in \mathbb{R}}: \qquad \exists \delta > 0:\ P\Big(f\big|_{I \cap [a-\delta,a+\delta[}\Big) \text{ est vraie}\Big)$$

$$ightarrow \underline{quand\ a=+\infty}: \ \exists A\in\mathbb{R}:\ P\Big(fig|_{I\cap[A,+\infty[}\Big) \ \text{est\ vraie}$$

$$ightarrow \underline{quand\ a=-\infty}: \ \exists A\in\mathbb{R}:\ P\Big(fig|_{I\cap]-\infty,A]\Big)$$
 est vraie

• Soit Q(x) un prédicat de $x \in \mathbb{R}$.

On dit que Q(x) est vrai au voisinage de a et on note « Q(x) au $\mathscr{V}(a)$ » ssi

$$ightharpoonup$$
 quand $a \in \mathbb{R}$: $\exists \delta > 0: \forall x \in]a - \delta, a + \delta[, Q(x)]$

$$ightharpoonup$$
 quand $a = +\infty$: $\exists A \in \mathbb{R} : \forall x \in [A, +\infty[, Q(x)]]$

$$ightharpoonup quand\ a = -\infty: \ \exists A \in \mathbb{R}: \ \forall x \in]-\infty, A],\ Q(x)$$

Exemples

• $P(f) = \ll f$ est croissante ».

On considère la fonction $f: \left\{ egin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^2 - 42 \end{array} \right.$. Alors,

$$\triangleright f$$
 est croissante au $\mathscr{V}(+\infty)$.

$$\triangleright f$$
 est décroissante au $\mathscr{V}(-\infty)$.

 $\triangleright f$ n'est ni croissante ni décroissante au $\mathcal{V}(0)$.

• $sin(\cdot)$ est strictement croissante au $\mathcal{V}(0)$.

 $\bullet \ \left\{ \begin{array}{l} \mathbb{R} +^* \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{x} \quad \text{n'est pas born\'ee au } \mathscr{V}(0) \ \textit{ie} \quad \forall \delta > 0, \\ x \longmapsto \frac{1}{x} \quad \text{n'est pas born\'ee}. \\ \end{array} \right.$

- $\cos(x) > 0$ au $\mathcal{V}(0)$.
- $\frac{1}{x} \leqslant 1$ au $\mathscr{V}(+\infty)$.
- $\frac{\exp\left(\sqrt{x}\right)}{2} > x^{42}$ au $\mathscr{V}(+\infty)$.

II. Limites: définition

1. Les neuf cas

Définition 6

 $Soit \ f:I \longrightarrow \mathbb{R}.$

Soient $a \in \overline{I}$ et $\ell \in \overline{\mathbb{R}}$.

On dit que f tend vers ℓ en a ou que f(x) tend vers ℓ quand x tend vers a, et on note

$$f(x) \underset{x \to a}{\longrightarrow} \ell$$
 ou $f(x) \underset{a}{\longrightarrow} \ell$ ou $f \underset{a}{\longrightarrow} \ell$

 $_{\mathrm{ssi}}^{\Delta}$...

a) Premier cas : $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$

Définition 7

$$f(x) \underset{x \to a}{\longrightarrow} \ell$$
 ssi $\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in I, \ |x - a| \leqslant \delta \implies |f(x) - \ell| \leqslant \varepsilon$

Autrement dit : « Quitte à être très proche de a, je peux être, après application de la fonction $f(\cdot)$ aussi proche que je veux de ℓ »

Remarque

• Dans cette définition, on peut remplacer le « $|f(x) - \ell| \le \varepsilon$ » par « $|f(x) - \ell| \le 2\varepsilon$ » ou par « $|f(x) - \ell| \le 50\varepsilon$ », etc.

Exemples

 $\bullet \ \sqrt{x} \underset{x \to 0}{\longrightarrow} 0.$

« Si x est petit, \sqrt{x} est petit. »

• $\sqrt{x} \xrightarrow[x \to 2]{} \sqrt{2}$.

« Si x est proche de 2, \sqrt{x} est proche de $\sqrt{2}$. »

Fait 8

Si f est définie en a (ie si $a \in I$) alors

$$f(x) \xrightarrow[x \to a]{} \ell \implies \ell = f(a).$$

 $D\'{e}monstration. \longrightarrow \text{ Soit } \varepsilon > 0 \text{ et soit } \delta > 0 \text{ tel que } \forall x \in I, \ |x - a| \leqslant \delta \implies |f(x) - \ell| \leqslant \varepsilon.$

Comme $a \in I$ et $|a - a| \leq \delta$, on a $|f(a) - \ell| \leq \varepsilon$.

Ainsi, on a montré que

$$\forall \varepsilon > 0, |f(a) - \ell| \leq \varepsilon.$$

On sait que dans ce cas, on a nécessairement $|f(a) - \ell| = 0$, ie $f(a) = \ell$.

Remarque

Ainsi, le cas intéressant est quand $a \notin I$.

Exemples

- $\bullet \ \frac{\sin(x)}{x} \underset{x \to 0}{\longrightarrow} 1.$
- $\bullet \ \, \text{On considère} \,\, f: \left\{ \begin{array}{l} \mathbb{R} \, \longrightarrow \, \mathbb{R} \\ \\ x \longmapsto \begin{cases} 1 \quad \text{si } x = 0 \\ 0 \quad \text{sinon} \end{array} \right. \, \text{Alors, } f \text{ n'a pas de limite en 0.}$
- b) Deuxième cas : $a \in \mathbb{R}$ et $\ell = +\infty$

Définition 9

$$f(x) \underset{x \to a}{\longrightarrow} +\infty \qquad \text{ssi} \qquad \forall A \in \mathbb{R}, \ \exists \delta > 0: \ \forall x \in I, \ |x - a| \leqslant \delta \implies f(x) \geqslant A$$

Une fonction f qui tend vers $+\infty$ en a ne peut pas être définie en a.

Remarque

• Dans cette définition, on peut remplacer le « $\forall A \in \mathbb{R}$ » par « $\forall A \geqslant 0$ ».

Exemple

$$\bullet \ \, \text{On considère} \, \, f: \left\{ \begin{array}{l} \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ \\ x \longmapsto \frac{1}{x} \end{array} \right. \, \, \text{Alors on a} \, \, f(x) \underset{x \to 0}{\longrightarrow} +\infty.$$

c) Troisième cas : $a = +\infty$ et $\ell \in \mathbb{R}$

Définition 10

$$f(x) \underset{x \to +\infty}{\longrightarrow} \ell$$
 ssi $\forall \varepsilon > 0, \exists x_0 \in \mathbb{R} : \forall x \in I, x \geqslant x_0 \implies |f(x) - \ell| \leqslant \varepsilon$

Exemples

- $\bullet \ \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0.$
- $\operatorname{arctan}(x) \xrightarrow{\pi} \frac{\pi}{2}$

d) Quatrième cas : $a = +\infty$ et $\ell = +\infty$

Définition 11

$$f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$$
 ssi $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R} : \forall x \in I, x \geqslant x_0 \implies f(x) \geqslant A$

Exemples

- $x \xrightarrow[x \to +\infty]{} +\infty$. $\exp(x) \xrightarrow[x \to +\infty]{} +\infty$. $\lfloor x \rfloor \xrightarrow[x \to +\infty]{} +\infty$.

e) Autres cas

Exercice 12

- 1) Quels sont les autres cas?
- 2) Donner les définitions dans ces cas-là.

2. Fonctions convergentes

Définition 13

Soit $a \in \overline{I}$ et soit $f: I \longrightarrow \mathbb{R}$. On dit que f converge en a ssi $\exists \ell \in \mathbb{R} : f(x) \underset{x \to a}{\longrightarrow} \ell$.

3. Unicité de la limite

Proposition-définition 14

Soient $f: I \longrightarrow \mathbb{R}$, $a \in \overline{I}$ et $\ell_1, \ell_2 \in \overline{\mathbb{R}}$.

• Alors,

$$\begin{cases} f(x) \underset{x \to a}{\longrightarrow} \ell_1 \\ f(x) \underset{x \to a}{\longrightarrow} \ell_2 \end{cases} \implies \ell_1 = \ell_2.$$

• Dans ce cas, cet unique $\ell \in \overline{\mathbb{R}}$ est appelé la limite de f en a et est noté

 $\lim_{x \to a} f(x)$ $\lim_{a} f(x)$ $\lim_{a} f$.

Démonstration. — On laisse au lecteur le soin, à titre d'exercice, de démontrer cette assertion.

4. Limites par valeurs inférieures et supérieures

Définition 15

Soit $f: I \longrightarrow \mathbb{R}$, soit $a \in \overline{I} \cap \mathbb{R}$ et soit $\ell \in \overline{\mathbb{R}}$.

• On dit que f(x) tend vers ℓ quand x tend vers a par valeurs supérieures ssi

$$f|_{I\cap]a,+\infty[}(x) \xrightarrow[x\to a]{} \ell.$$

On note alors

$$f(x) \underset{x \to a}{\underset{>}{\longrightarrow}} \ell$$
 ou $f(x) \underset{x \to a^{+}}{\longrightarrow} \ell$ ou $f(x) \underset{a^{+}}{\longrightarrow} \ell$ ou $f \underset{a^{+}}{\longrightarrow} \ell$.

• De même, on définit « f(x) tend vers ℓ quand x tend vers a par valeurs inférieures » et les notations correspondantes.

Exemples

• Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. Alors, on a

$$f \xrightarrow[0^+]{} 1 \qquad \iff \qquad \forall \varepsilon > 0, \exists \delta > 0 : \forall x \in]0, \delta[, |f(x) - 1| \leqslant \varepsilon.$$

ullet On considère la fonction $g: \left\{egin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto \lfloor x \rfloor \end{array}
ight.$. Alors, on a

$$\begin{cases} \lim_{x \to 0^+} g(x) = 0\\ \lim_{x \to 0^-} g(x) = -1 \end{cases}$$
 et $g(0) = 0$.

Proposition 16

Soit $f: I \longrightarrow \mathbb{R}$, soit $a \in I$ et soit $\ell \in \mathbb{R}$. Alors, on a

$$f(x) \underset{x \to a}{\longrightarrow} \ell \iff \begin{cases} f(a) \underset{x \to a^{-}}{\longrightarrow} \ell \\ f(x) = \ell \\ f(x) \underset{x \to a^{+}}{\longrightarrow} \ell \end{cases}$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

5. Cas d'une fonction non définie en un point

Définition 17

Soit $a \in \mathring{I}$ et soit $f: I \setminus \{a\} \longrightarrow \mathbb{R}$. Soit $\ell \in \overline{\mathbb{R}}$.

On dit que ftend vers ℓ en a ssi

$$f(x) \underset{\stackrel{\longrightarrow}{x \to a}}{\longrightarrow} \ell$$
 et $f(x) \underset{\stackrel{\longrightarrow}{x \to a}}{\longrightarrow} \ell$.

On note alors

$$f(x) \underset{\neq}{\xrightarrow{x \to a}} \ell.$$

Exemples

• Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $a \in \mathbb{R}$. On verra bientôt que

$$f$$
 est dérivable en a $\overset{\Delta}{ssi}$ $\exists \ell \in \mathbb{R} : \frac{f(x) - f(a)}{x - a} \underset{\neq}{\xrightarrow{x \to a}} \ell.$

 $\bullet \ \ \mathsf{On} \ \mathsf{a} \ \frac{1}{x^2} + 1 \underset{\stackrel{x \to 0}{\neq}}{\longrightarrow} + \infty.$

III. Opérations sur les limites

1. Une fonction convergente est localement bornée

Proposition 18

Soient $f: I \longrightarrow \mathbb{R}$, $a \in \overline{I}$ et $\ell \in \mathbb{R}$. Alors,

$$f(x) \underset{x \to a}{\longrightarrow} \ell \implies f \text{ est born\'ee au } \mathcal{V}(a).$$

Démonstration. — Cf. cours.

Remarque

• On remarquera évidemment l'analogie avec le résultat suivant portant sur les suites

$$\forall (u_n)_n \in \mathbb{R}^{\mathbb{N}}, \quad (u_n)_n \text{ converge } \Longrightarrow (u_n)_n \text{ born\'ee.}$$

Exemple

- On considère $f: \left\{ \begin{array}{ll} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{x} \end{array} \right.$
 - \triangleright On a $f(x) \underset{x \to +\infty}{\longrightarrow} 0$. Donc, f est bornée au $\mathcal{V}(+\infty)$.
 - \triangleright Mais, f n'est pas bornée sur \mathbb{R}_+^* .

2. Opérations algébriques sur les limites

On dispose pour les limites de fonctions de résultats analogues à ceux pour les limites de suites. On laisse au lecteur le soin de les énoncer et de les démontrer.

Exemples

Soit $a \in \overline{I}$, soient $f, g: I \longrightarrow \mathbb{R}$ et soient $\ell_1, \ell_2 \in \mathbb{R}$.

• On a

$$\begin{cases}
f \longrightarrow \ell_1 \\
g \longrightarrow \ell_2
\end{cases} \implies \left(f + g \longrightarrow \ell_1 + \ell_2 \quad \text{et} \quad fg \longrightarrow \ell_1 \ell_2\right).$$

• On a

$$\left. egin{aligned} f & \longrightarrow +\infty \\ g & \text{born\'ee au } \mathscr{V}(a) \end{aligned} \right\} \implies f + g & \longrightarrow +\infty.$$

• etc.

3. Composition des limites

a) Cas fonctions - fonctions

Théorème 19

Soient I et J des intervalles et soient $f: I \longrightarrow J$ et $g: J \longrightarrow \mathbb{R}$. Soit $a \in \overline{I}$, soit $b \in \overline{J}$. Soit $\ell \in \overline{\mathbb{R}}$.

Alors, on a

$$\left. \begin{array}{l} f(x) \underset{x \to a}{\longrightarrow} b \\ g(X) \underset{X \to b}{\longrightarrow} \ell \end{array} \right\} \implies g \circ f(x) \underset{x \to a}{\longrightarrow} \ell.$$

Démonstration. — Cf. cours.

Exemples

• On a
$$\sin\left(\frac{1}{x}\right)\underset{x\to+\infty}{\longrightarrow} 0$$
. En effet, on a

$$\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0 \quad \text{ et } \quad \sin(X) \underset{X \to 0}{\longrightarrow} 0.$$

$$\bullet \ \, \text{On a In} \bigg(\frac{\ln(x)}{\ln(x) + 1} \bigg) \underset{x \to +\infty}{\longrightarrow} 0. \\$$

En effet,

⊳ on a

$$\frac{\ln(x)}{\ln(x)+1} = \frac{\ln(x)}{\ln(x)\left(1+\frac{1}{\ln(x)}\right)} = \frac{1}{1+\underbrace{\frac{1}{\ln(x)}}_{x\to +\infty}} \xrightarrow[x\to +\infty]{} 1;$$

$$\triangleright$$
 et $ln(X) \xrightarrow[X \to 1]{} 0$.

b) Application: calcul d'une limite en un point fini en se ramenant à 0!!

On veut calculer $\lim_{x\to a} f(x)$:

- On pose x = a + h.
- On pose g(h) = f(a+h).
- On calcule $\lim_{h\to 0} g(h)$.
- Par composition des limites, le résultat trouvé vaut $\lim_{h\to 0} f(a+h)$.

Exemple

• Calculons $\lim_{\substack{x \to \pi \\ <}} \frac{\sin(x)}{\sqrt{\pi - x}}$.

Cf. cours

c) Cas suites – fonctions

Le résultat précédent se transpose au cas où l'on compose une suite par une fonction. En effet, si $f: \mathbb{R} \longrightarrow \mathbb{R}$ et si $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^N$, on peut considérer la « suite composée $f \circ (u_n)_n$ », qui n'est autre que $(f(u_n))_{n \in \mathbb{N}}$.

Théorème 20

Soient $f: I \longrightarrow \mathbb{R}$ et $(u_n)_n \in I^{\mathbb{N}}$. Soit $a \in \overline{I}$. Soit $\ell \in \overline{\mathbb{R}}$.

Alors, on a

$$\left. \begin{array}{l} u_n \longrightarrow a \\ f(x) \underset{x \to a}{\longrightarrow} \ell \end{array} \right\} \implies f(u_n) \longrightarrow \ell.$$

Exemple

• On a $\arctan(\sqrt{n}+1) \longrightarrow \frac{\pi}{2}$. En effet,

 \triangleright on a $\sqrt{n}+1\longrightarrow +\infty$;

$$ightharpoonup$$
 et $\operatorname{arctan}(x) \underset{x \to +\infty}{\longrightarrow} \frac{\pi}{2}$.

Exercice 21

Énoncer le théorème dans le cas « suites – suites ».

d) Application : $\cos(\cdot)$ n'a pas de limite en l'infini

Théorème 22

- 1) La fonction $f: \left\{ \begin{array}{ll} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \cos\left(\frac{1}{x}\right) \end{array} \right.$ n'admet pas de limite en 0.
- 2) La fonction $\cos(\cdot)$ n'admet pas de limite en $+\infty$.

 $D\'{e}monstration.$ — Cf. cours.

IV. Limites et inégalités

1. Passage à la limite dans les inégalités larges

Proposition 23

Soit $f: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soit $\ell \in \mathbb{R}$.

Alors, on a

$$\left. \begin{array}{l} f \geqslant 0 \text{ au } \mathscr{V}(a) \\ f(x) \mathop{\longrightarrow}\limits_{x \to a} \ell \end{array} \right\} \implies \ell \geqslant 0.$$

Démonstration. — Cf. cours.

Remarques

- On verra plus loin qu'on a une réciproque partielle quand on a des inégalités strictes. C'est le rétro-passage à la limite dans les inégalités strictes.
- Attention, évidemment, on ne peut pas passer à la limite dans les inégalités strictes.

Exercice 24

Trouver un contre-exemple à l'implication fausse

$$\left. \begin{array}{l} f>0 \text{ au } \mathscr{V}(a) \\ f(x) \mathop{\longrightarrow}\limits_{x \to a} \ell \end{array} \right\} \implies \ell > 0.$$

Corollaire 25

Soient $f, g: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soient $\ell_1, \ell_2 \in \mathbb{R}$. Soit $M \in \mathbb{R}$.

On suppose que $f \xrightarrow{a} \ell_1$ et $g \xrightarrow{a} \ell_2$.

Alors, on a

- 1) $f \leqslant g$ au $\mathscr{V}(a) \implies \ell_1 \leqslant \ell_2$
- 2) $f \leqslant M$ au $\mathscr{V}(a) \implies \ell_1 \leqslant M$
- 3) $f \geqslant M$ au $\mathcal{V}(a) \implies \ell_1 \geqslant M$

2. Rétro-passage à la limite dans les inégalités strictes

Proposition 26

Soit $f: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soit $\ell \in \mathbb{R}$ tel que $f(x) \xrightarrow{a} \ell$.

Alors, on a

$$\ell>0 \quad \Longrightarrow \quad \exists \varepsilon_0>0: \ \left(f\geqslant \varepsilon_0 \text{ au } \mathcal{V}(a)\right).$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

3. Théorèmes d'encadrement

a) Données

Dans ce paragraphe, on considère :

- $f, g: I \longrightarrow \mathbb{R}$ des fonctions;
- $a \in \overline{I}$ un élément de I ou l'une des ses bornes ;
- $\ell \in \overline{\mathbb{R}}$.

b) Théorème des gendarmes

Théorème 27 (Théorème des gendarmes)

$$\left. \begin{array}{l} f \leqslant g \leqslant h \text{ au } \mathscr{V}(a) \\ f \underset{a}{\longrightarrow} \ell \\ h \underset{a}{\longrightarrow} \ell \end{array} \right\} \implies g \underset{a}{\longrightarrow} \ell.$$

 $D\'{e}monstration.$ — Laissée en exercice.

c) Réflexe : calcul d'une limite nulle par contrôle de la valeur absolue

Corollaire 1

$$\left. \begin{array}{l} |f| \leqslant g \text{ au } \mathscr{V}(a) \\ g \mathop{\longrightarrow}\limits_{a} 0 \end{array} \right\} \implies f \mathop{\longrightarrow}\limits_{a} 0$$

Corollaire 2

$$\left. \begin{array}{l} f \text{ born\'ee au } \mathcal{V}(a) \\ g \mathop{\longrightarrow}\limits_{a} 0 \end{array} \right\} \implies fg \mathop{\longrightarrow}\limits_{a} 0$$

d) Étude d'un exemple

Exemple

• Déterminons $\lim_{\substack{x \to 0 \\ \neq 1}} x \sin\left(\frac{1}{x}\right)$.

Cf. cours.

e) Divergence par minoration

Proposition 28

On suppose que $f \leqslant g$ au $\mathcal{V}(a)$. Alors, on a

$$\bullet \ f \xrightarrow{a} + \infty \implies g \xrightarrow{a} + \infty$$

$$\bullet \ g \xrightarrow{a} -\infty \ \Longrightarrow \ f \xrightarrow{a} -\infty$$

4. Théorèmes de la limite monotone

Théorème 29

Soit $f: I \longrightarrow \mathbb{R}$ une fonction croissante.

1) Soit $a \in \mathring{I}$ (donc, $a \in I$ et donc $a \in \mathbb{R}$).

Alors, $\lim_{x\to a^-} f(x)$ et $\lim_{x\to a^+} f(x)$ existent et sont finies et on a

$$\lim_{x \to a^{-}} f(x) \leqslant f(a) \leqslant \lim_{x \to a^{+}} f(x).$$

2) Si b est la borne supérieure de I (on a $b \in \overline{\mathbb{R}}$).

Alors, $\lim_{x\to b^-} f(x)$ existe dans $\overline{\mathbb{R}}$ et on a :

- a) si f est bornée au $\mathscr{V}(b),$ alors $\lim_{x\to b^-}f(x)\in\mathbb{R}\,;$
- b) sinon, $\lim_{x \to b^{-}} f(x) = +\infty$
- 3) Si b est la borne inférieure de I (on a $b \in \overline{\mathbb{R}}$).

Alors, $\lim_{x\to b^+} f(x)$ existe dans $\overline{\mathbb{R}}$ et on a :

- a) si f est bornée au $\mathcal{V}(b)$, alors $\lim_{x\to b^+} f(x) \in \mathbb{R}$;
- b) sinon, $\lim_{x \to b^+} f(x) = -\infty$

Remarque

ullet On a évidemment un énoncé analogue quand f est décroissante et on laisse au lecteur le soin de l'énoncer.

Exemple

• On considère la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x \longmapsto \begin{cases} -1 & \text{si } x < 2 \\ 0 & \text{si } x = 2 \\ 1 & \text{si } x > 2 \end{array} \right.$. Alors, f est croissante.

Démonstration. — Cf. cours.

V. Relations de comparaison

Dans cette partie, on fixe $a \in \overline{I}$ et on considère f et g deux fonctions définies sur I ou sur $I \setminus \{a\}$.

1. Définitions

a) Négligeabilité

Définition 30

On dit que f est négligeable devant g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &= \mathop{\mathrm{o}}_a(g) &\quad \text{ou} \quad f(x) &= \mathop{\mathrm{o}}_a(g(x)) \\ &\quad \text{ou} \quad f(x) &= \mathop{\mathrm{o}}_{x \to a}(g(x)) \quad \text{ou} \quad f(x) = \mathrm{o}(g(x)) \text{ quand } x \to a \\ \\ &\stackrel{\Delta}{\mathrm{ssi}} \ \exists \varepsilon : I \longrightarrow \mathbb{R} \quad : \quad \begin{cases} f &= \varepsilon g \text{ au } \mathscr{V}(a) \\ \varepsilon &\xrightarrow{a} 0 \end{cases} \end{split}.$$

b) Équivalence

Définition 31

On dit que f est équivalente à g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &\underset{a}{\sim} g & \quad \text{ou} \quad f(x) \underset{a}{\sim} g(x) \\ & \quad \text{ou} \quad f(x) \underset{x \rightarrow a}{\sim} g(x) \quad \text{ou} \quad f(x) \sim g(x) \text{ quand } x \rightarrow a \\ \\ & \quad \overset{\Delta}{\text{ssi}} \ \exists \theta : I \longrightarrow \mathbb{R} \quad : \quad \begin{cases} f = \theta g \text{ au } \mathscr{V}(a) \\ \theta \underset{a}{\longrightarrow} 1 \end{cases} \end{split}.$$

c) Domination

Définition 32

On dit que f est dominée par g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &= \mathop{\mathrm{O}}_a(g) \quad \text{ ou } \quad f(x) = \mathop{\mathrm{O}}_a(g(x)) \\ & \text{ ou } \quad f(x) = \mathop{\mathrm{O}}_{x \to a}(g(x)) \quad \text{ ou } \quad f(x) = \mathrm{O}(g(x)) \text{ quand } x \to a \\ \\ &\overset{\Delta}{\mathrm{ssi}} \ \exists M \in \mathbb{R} : |f| \leqslant M|g| \text{ au } \mathscr{V}(a). \end{split}$$

2. En pratique!!

En pratique, comme pour les équivalents de suites, on compare f à g en étudiant le quotient $\frac{f}{g}$. Si g ne s'annule pas au $\mathcal{V}(a)$ sauf éventuellement en a, on a

En pratique

$$f = \underset{a}{\mathbf{o}}(g) \iff \frac{f}{g} \underset{a}{\longrightarrow} 0$$

$$f \underset{a}{\sim} g \iff \frac{f}{g} \underset{a}{\longrightarrow} 1$$

$$f = \mathop{\rm O}_a\left(g\right) \iff \frac{f}{g} \text{ est born\'ee au } \mathscr{V}(a)$$

3. Cas particuliers très importants !!!

Dans des cas simples mais importants, le langage des équivalents, petits « o » et grands « O » permet de reformuler des propriétés remarquables des fonctions.

À retenir!

Trois réflexes

• Soit $\ell \in \mathbb{R}$ tel que $\ell \neq 0$. Alors,

$$f \underset{a}{\sim} \ell \iff f(x) \xrightarrow{a} \ell.$$

$$f = \underset{a}{\text{o}}(1) \iff f(x) \xrightarrow{a} 0$$

$$\boxed{f = \mathop{\mathrm{o}}_a(1) \iff f(x) \mathop{\longrightarrow}_a 0}$$

$$\boxed{f = \mathop{\mathrm{O}}_a(1) \iff f \text{ est born\'ee au } \mathscr{V}(a)}$$

4. Inversion des ordres de comparaison!!

Proposition 33

Quand on inverse des fonctions, on inverse leur ordre de comparaison :

$$f = \mathop{\mathrm{o}}_a\left(g\right) \quad \Longrightarrow \quad \frac{1}{g} = \mathop{\mathrm{o}}_a\left(\frac{1}{f}\right).$$

5. Exemples!!!

a) Exemples quand $x \to +\infty$

•
$$ln(x) = o(x)$$

•
$$x = o(x^3)$$

$$\bullet \ \frac{1}{x} = o(1)$$

•
$$4x\sqrt{x} + \ln(x) \sim 4x\sqrt{x}$$

$$\bullet \left[\frac{1}{x} + \frac{8}{x^2} \sim \frac{1}{x} \right]$$

e de ce dernier équivalent est que

$$\Rightarrow \frac{8}{x^2}$$
 tend vite vers 0;

$$\Rightarrow \frac{1}{x}$$
 tend moins vite vers 0;

$$ightharpoonup donc, \frac{8}{x^2} = o\left(\frac{1}{x}\right).$$

b) Exemples quand $x \to 0$

$$\bullet \quad 5x^2 + \sqrt{x} - 6x - x^3 \sim \sqrt{x}$$

 $\overline{\text{Ici, il faut comprendre que}}$ pour les puissance de x, les ordres de comparaison quand $x \to 0$ sont inverses de ceux, usuels, quand $x \to +\infty$.

Ainsi, on a

$$\forall a, b \in \mathbb{R}, \quad a > b \implies x^a = \underset{x \to 0}{\text{o}} (x^b).$$

Ici, on a donc

$$\Rightarrow x^2 = o(\sqrt{x}) \text{ donc } 5x^2 = o(\sqrt{x})$$

$$ightharpoonup x = o(\sqrt{x}) \text{ donc } -6x = o(\sqrt{x})$$

$$\Rightarrow x^3 = o(\sqrt{x}) \text{ donc } -x^3 = o(\sqrt{x})$$

et donc

$$> 5x^2 = o(\sqrt{x})$$

$$\triangleright -6x = o(\sqrt{x})$$

$$\Rightarrow -x^3 = o(\sqrt{x})$$

et donc

$$5x^2 + \sqrt{x} - 6x - x^3 \sim \sqrt{x}.$$

• Qui est le plus petit entre $\frac{1}{x}$ et $\frac{1}{x^2}$ au $\mathcal{V}(0)$? Cf. cours

c) Exemples quand $x \to 1$

On s'intéresse aux fonctions définies au voisinage de 1 telles que f(1) = 0 ou $f(x) \xrightarrow{1} \pm \infty$. On veut connaître la vitesse à laquelle elle tendent vers 0 ou, au contraire, la vitesse à laquelle elles « explosent ».

•
$$\frac{1}{x-1} + 3\ln(x) \sim \frac{1}{x-1}$$

•
$$(x-1)^2 = o_1(x-1)$$

•
$$6(x-1) + 3(x-1)^2 + \frac{2}{3}(x-1)^3 \sim_{x\to 1} 6(x-1)$$

6. Équivalents remarquables

Proposition 34

On a

- $\sin(x) \sim x$
- $\ln(1+x) \sim x$
- $\exp(x) 1 \sim x$
- $\bullet \ \sqrt{1+x} 1 \underset{0}{\sim} \frac{x}{2}$
- Plus généralement, si $\alpha \in \mathbb{R}^*$, on a $(1+x)^{\alpha} 1 \underset{0}{\sim} \alpha x$.
- En particulier (pour $\alpha = -1$), on a $\frac{1}{1+x} 1 \sim -x$.

 $D\acute{e}monstration.$ — Il s'agit de faire apparaı̂tre des taux d'accroissement. On laisse au lecteur le soin de le mettre en œuvre.

7. Développements asymptotiques

a) Notation

Notation 35

Soit $a \in \overline{I}$.

Soient $f, g, h: I \longrightarrow \mathbb{R}$.

 $On\ note$

$$f = g + \underset{a}{\circ}(h) \quad \text{ ou } \quad f(x) = g(x) + \underset{a}{\circ}(h(x))$$
 ou
$$f(x) = g(x) + \underset{x \to a}{\circ}(h(x)) \quad \text{ ou } \quad f(x) = g(x) + o(h(x)) \text{ quand } x \to a$$

$$\overset{\Delta}{\text{ssi}} f - g = \underset{a}{\circ}(h).$$

Remarques

- On a alors $f = g + \varphi$, où φ est une fonction vérifiant $\varphi = \underset{a}{\circ} (h)$.
- Si besoin est, on pourra aussi écrire

$$f = g + \varepsilon h$$

où $\varepsilon(\cdot)$ est une fonction qui tend vers 0 en a.

b) Dictionnaire Petits « o » \longleftrightarrow Équivalents !!!

Proposition 36

$$\begin{split} f \mathop{\sim}_a g &\iff & f = g + \mathop{\mathrm{o}}_a(f) \\ &\iff & f = g + \mathop{\mathrm{o}}_a(g). \end{split}$$

 $D\'{e}monstration.$ — On a les équivalences successives :

$$\begin{split} f &\sim g \iff \frac{f}{g} \xrightarrow{a} 1 \\ &\iff \frac{f}{g} - 1 \xrightarrow{a} 0 \\ &\iff \frac{f - g}{g} \xrightarrow{a} 0 \\ &\iff f - g = \underset{a}{\circ} (g) \\ &\iff f = g + \underset{a}{\circ} (g). \end{split}$$

8. Développements asymptotiques remarquables!!!

a) Le résultat

Proposition 37

On a, quand $x \to 0$,

- $\bullet \ \exp(x) = 1 + x + \mathrm{o}(x)$
- $\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$
- $\forall \alpha \neq 0$, $(1+x)^{\alpha} = 1 + \alpha x + o(x)$
- $\frac{1}{1+x} = 1 x + o(x)$

Démonstration. — Il s'agit de la traduction dans le langage des développements asymptotiques des équivalents remarquables donnés plus haut qui, rappelons-le, sont des traductions dans le langage des équivalents de limites de taux d'accroissement et donc d'existences de nombres dérivés.

Remarques

Plus généralement :

• si f est dérivable en 0 et si $f'(0) \neq 0$, on a

$$f(x) - f(0) \underset{0}{\sim} f'(0)x$$

ie
$$f(x) = f(0) + f'(0)x + \underset{0}{\circ} (x).$$

• si f est dérivable en a et si $f'(a) \neq 0$, on a

$$f(a+h) = f(a) + f'(a)h + o_0(h)$$

ce qui s'écrit aussi f(x) = f(a) + f'(a)(x - a) + o(x - a).

b) Application

$$\text{Calculons } \lim_{x \to 0} \frac{2 \exp(x) - \sqrt{1+x} - \frac{1}{1+x}}{x}.$$
 Cf. cours.

9. Croissance comparées

Proposition 38

Soient $\alpha, \beta \in \mathbb{R}$ et soient a, b > 0. On a

•
$$\alpha < \beta \implies x^{\alpha} = \underset{+\infty}{\text{o}} (x^{\beta})$$

•
$$\alpha > 0 \implies \ln(x)^{\beta} = \underset{+\infty}{\text{o}} (x^{\alpha})$$

•
$$a > 1 \implies x^{\alpha} = \underset{+\infty}{\text{o}} (a^x)$$

•
$$a < b \implies a^x = \underset{+\infty}{\text{o}} (b^x)$$

Exemple

• On a
$$\ln(x)^{50} = \mathop{\mathrm{o}}_{+\infty} \left(\sqrt{x} \right)$$
.

10. Propriétés

Les relations $\underset{a}{\sim}$, o et $\underset{a}{\text{O}}$ vérifient exactement les mêmes propriétés que leurs analogues séquentiels.

Exemples

$$\bullet \left. \begin{array}{l} f \sim g \\ g \neq 0 \text{ au } \mathscr{V}(a) \end{array} \right\} \implies \frac{1}{f} \sim \frac{1}{g}$$

$$\bullet \begin{cases}
f = o(g) \\
a \\
\lambda \in \mathbb{R}^*
\end{cases} \implies f = o(\lambda g)$$

$$\begin{cases}
f_1 = \underset{a}{\circ}(g) \\
\bullet \quad f_2 = \underset{a}{\circ}(g) \\
\lambda \in \mathbb{R}
\end{cases} \implies f_1 + \lambda f_2 = \underset{a}{\circ}(g)$$

Autrement dit, l'ensemble des fonctions $f:I\longrightarrow \mathbb{R}$ telles que $f=\mathop{\mathrm{o}}_a(g)$ est un \mathbb{R} -espace vectoriel.

11. L'équivalence conserve localement le signe !!!

Proposition 39

Soient $f, g: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$.

- $\bullet \begin{cases} f \underset{a}{\sim} g \\ f > 0 \text{ au } \mathscr{V}(a) \end{cases} \implies g > 0 \text{ au } \mathscr{V}(a)$ $\bullet \text{ Plus g\'en\'eralement, } f \underset{a}{\sim} g \implies f \text{ et } g \text{ ont m\'eme signe au } \mathscr{V}(a).$