

CS 329P: Practical Machine Learning (2021 Fall)

Deep Network Tuning

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Deep Network Tuning

- DL is a programming language to extract information from data
 - Some values will be filled by data later
 - Differentiable
- Various design patterns, from layers to network architecture
- Here we talk about some of them

CS 329P: Practical Machine Learning (2021 Fall)

Batch and Layer Normalizations

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Batch Normalization

- Standardizing data makes the loss smother for linear methods
 - Smooth: $\|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\|^2 \le \beta \|\mathbf{x} \mathbf{y}\|^2$
 - A smaller β allows a larger learning rate
 - Does not help deep NN
- Batch Normalization (BN) standards inputs for internal layers
 - Improves the smoothness to make training easier
 - (Still controversial why BN works)

Batch Normalization

- Reshape input **X** into 2D (no change for 2D input $\mathbf{X} \in \mathbb{R}^{n \times p}$)
 - $\mathbf{X} \in \mathbb{R}^{n \times c \times w \times h} \to \mathbf{X}' \in \mathbb{R}^{nwh \times c}$ (batch n, channel c, width w, height h)
- Normalize by standardization each column $\mathbf{x}_j', j = 1,...,p$
 - $\hat{\mathbf{x}}'_j \leftarrow (\mathbf{x}'_j \text{mean}(\mathbf{x}'_j))/\text{std}(\mathbf{x}'_j)$
- Recovery Y' with $\mathbf{y}_j'=\gamma_j\hat{\mathbf{x}}_j+\beta_j$ as the j-th column, γ_j,β_j are parameters
- Output Y by reshaping Y' to the same shape as X

Batch Normalization Code


```
def batch norm(X, gamma, beta, moving mean, moving var, eps, momentum):
if not torch.is grad enabled(): # In prediction mode
    X hat = (X - moving mean) / torch.sqrt(moving var + eps)
else:
    assert len(X.shape) in (2, 4)
    if len(X.shape) == 2:
        mean = X.mean(dim=0)
        var = ((X - mean)**2).mean(dim=0)
    else:
        mean = X.mean(dim=(0, 2, 3), keepdim=True)
        var = ((X - mean)**2).mean(dim=(0, 2, 3), keepdim=True)
    X hat = (X - mean) / torch.sqrt(var + eps)
    moving mean = momentum * moving mean + (1.0 - momentum) * mean
    moving var = momentum * moving var + (1.0 - momentum) * var
Y = gamma * X_hat + beta
return Y, moving mean, moving var
                                                Full code: http://d2l.ai/chapter_convolutional-
                                                 modern/batch-norm.html
```

Layer Normalization

- If apply to RNN, BN needs maintain separated moving statistics for each time step
 - Problematic for very long sequences during inference
- Layer normalization reshapes input $\mathbf{X} \in \mathbb{R}^{n \times p} \to \mathbf{X}' \in \mathbb{R}^{p \times n}$ or $\mathbf{X} \in \mathbb{R}^{n \times c \times w \times h} \to \mathbf{X}' \in \mathbb{R}^{cwh \times n}$, rest is same with BN
 - Normalizing within each example, up to current time step
 - Consistent between training and inference
 - Popularized by Transformers

More Normalizations

- Modify "reshape", e.g.
 - InstanceNorm: $n \times c \times w \times h \rightarrow wh \times cn$
 - GroupNorm: $n \times c \times w \times h \rightarrow swh \times gn$ with c = sg
 - CrossNorm: swap mean/std between a pair of features
- Modify "normalize": e.g. whitening
- Modify "recovery": e.g. replace γ, β with a dense layer
- Apply to weights or gradients

Summary

- Normalizing inputs of internal layers makes deep NNs easier to train
- A normalization layer performs three steps: reshape input, normalize data, recovery with learnable parameters
 - Notable examples include Batch Normalization for CNNs, Layer Normalization for Transformers