第二十三届全国青少年信息学奥林匹克联赛初赛

提高组 C++语言试题

竞赛时间: 2017年10月14日14:30~16:30

选手	<i>*************************************</i>	٠.
***	入十 旦	Γ•
~~ J	711112	

A. 32

•	在试题纸上的一	页,答题纸共有2页 律无效。 子设备(如计算器、			
	、单项选择题(共 项)	年15 题,每题 1.5 分	,共计 22.5 分;每	题有	且仅有一个正确
	从()年开始 A. 2020	台,NOIP 竞赛将不真 B. 2021	再支持 Pascal 语言。 C. 2022	D.	2023
	在 8 位二进制补 A. 43	码中,10101011 表 B85	示的数是十进制下的 C43)。 -84
	分辨率为 1600x9 A. 2812.5KB	900、16 位色的位图 B. 4218.75KB],存储图像信息所 C. 4320KB		
	2017年 10月 1日 A. 星期三	日是星期日,1949 ^纪 B. 星期日	平 10 月 1 日是(C.星期六)。 D.	星期二
	设 G 是有 n 个结 才能使得 G 变成 A. m-n+1		的连通图,必须删· C. m+n+1		
6.	若某算法的计算 T(N) = 2T(N / 2) + T(1) = 1	时间表示为递推关系 N log N			
A	则该算法的时间 A. O(N)	夏宗良乃()。 B. O(N log N)	C. O(N log ² N)	D.	O(N ²)
7.)*d的后缀形式是 B.abc+*d*		D.	b + c * a * d
R	由四个不同的占	构成的简单无向连证	通图的个数是 ()) .	

C. 38

B. 35

D. 41

9.	将 7 个名额分给 同的分配方案。	4个	不同的班级,	允许不	有的班	级没有名	召额,	有()种不
A	. 60	B.	84	C.	96		D.	120	
10.	若 f[0] = 0, f[1] = :	1, f[r	n + 1] = (f[n] + f				的增	大,f[i] [;]	将接近于
A	. 1/2	B.	2/3	C.	$\frac{\sqrt{5}-}{2}$	-1	D.	1	
	设 A 和 B 是两个数组,请问任何 ()次比较。		素比较作为基	本运算	章的归				
A	n^2	B.	n log n	C.	2n		D.	2n-1	
12.	在 n(n≥3)枚码如果只有一架天不合格的硬币的	平可	以用来称重且	L称重的	 何硬币	数没有队	見制,		
	a. $A \leftarrow X \cup Y$ b. $A \leftarrow Z$ c. $n \leftarrow A $								
	算法 Coin(A, n)								
	1. $k \leftarrow \lfloor n/3 \rfloor$	41 N		A A		° 1			
			$(X, Y, Z \equiv X)$						n-2k
	4. then	- VV ((1) // V	ν (<i>Δ</i>), ν	V(1)7.) ガリノ ソ A	以I	即里里	
	5. else		_	7					
	6.								
	7. if $n>2$ then go							_,,	
			A中1枚硬币				r个等	,则它	个合格;
	9. if n=1 then A		等,则 A 中乘 更币不合格	到 17 17/1	関申4	`合'恰.			
	正确的填空顺序	是() 。						
A	. b, c, a	B.	c, b, a	C.	c, a,	b	D.	a, b, c	
13.	有正实数构成的第一行的数为 a ₁ a ₂₁ , a ₂₂ ; ···第 n 名	1; 第	二行的数从左	已到右位	衣次为	J		a_{11} a_{21} a_{22} a_{32} a_{33}	
	开始,每一行的	-							
	下一行的两个数 法找出一条从a ₁					111	a_{n2}		a_{nn}

个数的路径,使得该路径上的数之和达到最大。

令 C[i,j]是从 a_{11} 到 a_{ij} 的路径上的数的最大和,并且 C[i,0]=C[0,j]=0, 则 C[i,i]= ()。

- A. $\max\{C[i-1,j-1], C[i-1,j]\} + a_{ij}$
- B. C[i-1,j-1] + C[i-1,j]
- C. $\max\{C[i-1,j-1], C[i-1,j]\} + 1$
- D. $\max\{C[i,j-1],C[i-1,j]\} + a_{ij}$
- 14. 小明要去南美洲旅游,一共乘坐三趟航班才能到达目的地,其中第1个航班 准点的概率是 0.9, 第 2 个航班准点的概率为 0.8, 第 3 个航班准点的概率为 0.9。如果存在第 i 个 (i=1,2) 航班晚点, 第 i+1 个航班准点, 则小明将赶不 上第 i+1 个航班, 旅行失败; 除了这种情况, 其他情况下旅行都能成功。请 问小明此次旅行成功的概率是()。
 - A. 0.5
- B. 0.648
- C. 0.72
- D. 0.74

15. 欢乐喷球: 儿童游乐场有个游戏叫"欢 乐喷球",正方形场地中心能不断喷出 彩色乒乓球,以场地中心为圆心还有一 个圆形轨道,轨道上有一列小火车在匀 速运动,火车有六节车厢。假设乒乓球 等概率落到正方形场地的每个地点,包 括火车车厢。小朋友玩这个游戏时,只 能坐在同一个火车车厢里,可以在自己 的车厢里捡落在该车厢内的所有乒乓 球,每个人每次游戏有三分钟时间,则 一个小朋友独自玩一次游戏期望可以 得到()个乒乓球。假设乒乓球喷 出的速度为 2 个/秒,每节车厢的面积 是整个场地面积的 1/20。

- A. 60
- C. 18
- D. 20
- 二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确 选项, 多选或少选均不得分)
- 1. 以下排序算法在最坏情况下时间复杂度最优的有(
- A. 冒泡排序 B. 快速排序 C. 归并排序 D. 堆排序
- 2. 对于入栈顺序为 a, b, c, d, e, f, g 的序列,下列()不可能是合法的出栈序 列。
 - A. a, b, c, d, e, f, g

B. a, d, c, b, e, g, f

C. a, d, b, c, g, f, e

D. g, f, e, d, c, b, a

- 3. 下列算法中, () 是稳定的排序算法。

- A. 快速排序 B. 堆排序 C. 希尔排序 D. 插入排序
- 4. 以下是面向对象的高级语言的有()。
 - A. 汇编语言 B. C++ C. Fortran
- D. Java
- 5. 以下和计算机领域密切相关的奖项有()。
 - A. 奥斯卡奖 B. 图灵奖 C. 诺贝尔奖

- 王选奖

三、问题求解(共2题,每题5分,共计10分)

1. 如右图所示, 共有 13 个格子。对任何一个格子进行一 次操作,会使得它自己以及与它上下左右相邻的格子中 的数字改变(由1变0,或由0变1)。现在要使得所 有的格子中的数字都变为 0, 至少需要

		1			
	0	0	1		
0	1	0	0	1	
	0	1	1		•
·		0			

2. 如下图所示, A 到 B 是连通的。假设删除一条细的边的代价是 1, 删除一条 粗的边的代价是 2, 要让 A、B 不连通, 最小代价是 (2分), 最 小代价的不同方案数是 (3分)。(只要有一条删除的边不同,就 是不同的方案)

四、阅读程序写结果(共4题,每题8分,共计32分)

1. #include <iostream> using namespace std;

```
return 1;
       for (i = x; i <= m / n; i++)
           ans += g(m - i, n - 1, i);
       return ans;
   }
   int main() {
       int t, m, n;
       cin >> m >> n;
       cout << g(m, n, 0) << endl;</pre>
       return 0;
   }
   输入: 8 4
   输出: ____
2. #include <iostream>
   using namespace std;
   int main() {
       int n, i, j, x, y, nx, ny;
       int a[40][40];
       for (i = 0; i < 40; i++)
           for (j = 0; j < 40; j++)
               a[i][j] = 0;
       cin >> n;
       y = 0; x = n - 1;
       n = 2 * n - 1;
       for (i = 1; i <= n * n; i++) {
           a[y][x] = i;
           ny = (y - 1 + n) \% n;
           nx = (x + 1) \% n;
           if ((y == 0 \&\& x == n - 1) || a[ny][nx] != 0)
              y = y + 1;
           else \{ y = ny; x = nx; \}
       for (j = 0; j < n; j++)
           cout << a[0][j] << " ";
       cout << endl;</pre>
       return 0;
   输入: 3
```

3. #include <iostream> using namespace std; int n, s, a[100005], t[100005], i; void mergesort(int 1, int r) { if (l == r)return; int mid = (1 + r) / 2; int p = 1; int i = 1; int j = mid + 1; mergesort(1, mid); mergesort(mid + 1, r); while (i <= mid && j <= r) { if (a[j] < a[i]) { s += mid - i + 1;t[p] = a[j];p++; j++; } else { t[p] = a[i]; p++; i++; } } while (i <= mid) { t[p] = a[i];p++; i++; while $(j \leftarrow r)$ { t[p] = a[j];p++; for (i = 1; i <= r; i++) = t[i]; a[i]

int main() {

```
cin >> n;
      for (i = 1; i <= n; i++)
          cin >> a[i];
      mergesort(1, n);
       cout << s << endl;</pre>
      return 0;
   }
   输入: 6
        2 6 3 4 5 1
   输出: _____
4. #include <iostream>
   using namespace std;
   int main() {
       int n, m;
      cin >> n >> m;
      int x = 1;
      int y = 1;
       int dx = 1;
      int dy = 1;
       int cnt = 0;
      while (cnt != 2) {
          cnt = 0;
          x = x + dx;
          y = y + dy;
          if (x == 1 | x == n) {
              ++cnt;
              dx = -dx;
          }
          if (y == 1 | y == m) {
              ++cnt;
              dy = -dy;
      cout << x << " " << y << endl;
       return 0;
   输入1:43
   输出 1:
                    (2分)
   输入 2: 2017 1014
```

```
输出 2: _____ (3分)
输入 3: 987 321
输出 3: ____ (3分)
```

五、完善程序(共2题,每题14分,共计28分)

1. (大整数除法)给定两个正整数 p 和 q,其中 p 不超过 10^{100} ,q 不超过 100000,求 p 除以 q 的商和余数。(第一空 2 分,其余 3 分)

输入: 第一行是 p 的位数 n, 第二行是正整数 p, 第三行是正整数 q。输出: 两行, 分别是 p 除以 q 的商和余数。

```
#include <iostream>
using namespace std;
int p[100];
int n, i, q, rest;
char c;
int main() {
   cin >> n;
   for (i = 0; i < n; i++) {
       cin >> c;
       p[i] = c - '0';
   }
   cin >> q;
   rest = (1)
   i = 1;
   while ( (2) \& i < n)  {
       rest = rest * 10 + p[i];
       i++;
    }
    if (rest < q)
       cout << 0 << endl;</pre>
    else {
       cout << <u>(3)</u>;
       while (i < n) {
           rest = (4);
           i++;
           cout << rest / q;
       cout << endl;</pre>
```

2. (最长路径)给定一个有向无环图,每条边长度为 1,求图中的最长路径长度。(第五空 2 分,其余 3 分)

输入:第一行是结点数 n (不超过 100) 和边数 m,接下来 m 行,每行两个整数 a,b,表示从结点 a 到结点 b 有一条有向边。结点标号从 0 到(n-1)。

输出:最长路径长度。

提示: 先进行拓扑排序, 然后按照拓扑序计算最长路径。

```
#include <iostream>
using namespace std;
int n, m, i, j, a, b, head, tail, ans;
int graph[100][100]; // 用邻接矩阵存储图
                     // 记录每个结点的入度
int degree[100];
                    // 记录以各结点为终点的最长路径长度
int len[100];
int queue[100];
                     // 存放拓扑排序结果
int main() {
   cin >> n >> m;
   for (i = 0; i < n; i++)
      for (j = 0; j < n; j++)
          graph[i][j] = 0;
   for (i = 0; i < n; i++)
      degree[i] = 0;
   for (i = 0; i < m; i++)
      cin >> a >> b;
       graph[a][b] = 1;
       (1)
   }
   tail = 0;
   for (i = 0; i < n; i++)
      if (<u>(2)</u>) {
          queue[tail] = i;
         tail++;
   head = 0;
   while (tail < n - 1) {
      for (i = 0; i < n; i++)
       if (graph[queue[head] ][i] == 1) {
                (3);
```

```
if (degree[i] == 0) {
                  queue[tail] = i;
                  tail++;
              }
           }
         (4)
   }
   ans = 0;
   for (i = 0; i < n; i++) {
       a = queue[i];
       len[a] = 1;
       for (j = 0; j < n; j++)
           if (graph[j][a] == 1 \&\& len[j] + 1 > len[a])
              len[a] = len[j] + 1;
       if (<u>(5)</u>)
           ans = len[a];
   cout << ans << endl;</pre>
   return 0;
}
```

