判断题

1-1-1 分数 2 作者 Yuchen Mao Let Σ be a set of at least two characters, each having a frequency. In any optimal prefix-free code for Σ , at least two characters have the same coding length. 0 F T 评测结果 答案正确 得分 2分 1-2-1 分数 2 作者 Yuchen Mao Let T(n) be the running time of quicksort on an input of size n. We already know that T(n) is a random variable whose value depends on the random choices of quicksort, and that the expectation of T(n) is $O(n \log n)$. Is the following statement true or false? The minimum possible value of T(n) can be as small as $\Theta(n)$, and the maximum possible value can be as large as $\Theta(n^2)$. F \circ T 评测结果 答案正确 得分 2分 1-3-1 分数 2 作者 叶德仕 单位 If P = NP then NP = co-NP. F 评测结果 答案错误

1-4-2 分数 2 作者 叶德仕 单位 We have an approximation algorithm ALG for a minimization problem X. For any given $\varepsilon > 0$, the approximation ratio of ALG is $1 + \varepsilon$ and the running time is $O(2^{1/\varepsilon}n^3)$, where n is the input size of the problem X. Then the algorithm ALG is an FPTAS. F T 评测结果 答案错误 0分 得分 作者 刘一辰 单位 1-5-1 分数 2 Insert 2,9,5,6,1,8, and 3 one by one into an initially empty AVL tree. Then the preorder traversal sequence of the resulting tree must be {5,2,1,3,8,6,9}. T 评测结果 答案正确 得分 2分 1-6-1 分数 2 作者 叶德仕 单位 For a leftist heap, the NPL of each node is 1 greater than the NPL of its right child. T F 评测结果 答案正确 得分 2分 1-7-2 分数 2 作者 卜佳俊 单位 In the dynamic indexing situation, the auxiliary index is usually updated when a new document comes to the document collection. T F 评测结果 答案正确 得分 2分 1-8-2 分数 2 作者 卜佳俊 单位 There are two statements about Local Search: • For any local search algorithm, searching a better solution in the neighborhood may not be done in polynomial time. • For any local search algorithm, it takes polynomial time to find the local minimum. Only one of the statements above is correct. T 评测结果 答案正确 得分 2分 1-9-2 分数 2 作者 陈越 单位 Common CRCW allows concurrent access for both reads and writes, if all the processors are trying to write the same value.

T

F

1-10-2 分数 2 作者 陈越 单位

The time taken to check if a partial solution satisfies the restrictions is relatively hard (that is, no definite polynomial-time method works) to estimate during backtracking.

○ T○ Fⅰ 评测结果 答案错误得分 0分

1-11-1 分数 2 作者 陈昊 单位

In amortized analysis, the change in potential should in general be positive for low-cost operations and negative for high-cost operations.

1-12-2 分数 2 作者 陈昊 单位

Given 2000 runs and 10 tapes. If simple k-way merge is used, the minimum number of passes required is 5 (runs generation pass is not counted).

▼ T下 F评测结果 答案正确得分 2分

1-13-1 分数 2 作者 丁尧相 单位

The recurrent equation T(n)=nT(n/2)+n can be solved by the master theorem.

○ T

 评测结果
 答案正确

 得分
 2分

选择题

2-1-1 分数 3 作者 Yuchen Mao 单位

Consider the Knapsack Problem. How many of the following statements are true?

- If all the items have the same weight, then we can obtain an optimal solution by selecting items in decreasing order of profits.
- If all the items have the same profit, then we can obtain an optimal solution by selecting items in increasing order of weights.
- If all the items have the same efficiency (that is, profit-to-weight ratio), then we can obtain an optimal solution by selecting items in increasing order of weights.
- A. 0
- B. 1
- C. 2
- O D. 3

评测结果 答案正确

得分 3分

- A. 2.87
- B. 2.94
- C. 2.97
- D. 3

评测结果 答案正确

得分 3分

2-3-1 分数 3 作者 Yuchen Mao 单位

Consider the hiring problem. Assume that the n candidates arrive in random order, and that no two candidates have the same performance. Let k be some even number (偶数) in the range [1, n]. We use the following algorithm.

```
interview the first k candidates, but hire none of them for candidates i = k+1 to n  \mbox{if candidate i is better than at least half of the first k candidates } \mbox{hire candidate i}
```

It is easy to see that the above algorithm may hire more than one candidates. How many candidates will be hired in expectation?

- \bigcirc A. $\frac{(n-k)(k+2)}{2k+2}$
- \bigcirc B. $\frac{(n-k)}{k+1}$
- \circ C. $\frac{2(n-l)}{l}$
- \bigcirc D. $\frac{(n-k)\ln(n-k)}{k+1}$

评测结果 答案正确

得分 3分

2-4-1 分数3	作者 叶德仕	单位			
A Hamiltonian Cycle (or Circuit) in a graph is a cycle that visits every vertex exactly once and returns to the starting vertex. Finding a Hamiltonian Cycle is a well-known NP-complete problem. Let's consider the following two new variants Hamiltonian problems: P1) Long Cycle problem : A Long Cycle in a graph G is a cycle that goes through at least half of the vertices of G.	of the				
P2) Hamiltonian Path problem: A graph G has a Hamiltonian path from s to t if there is an s to t path that visits all of the vertices of G exactly once.					
Which of the following statement is correct:					
A. Only the Long Cycle problem is NP-Complete.					
B. Only the Hamiltonian Path problem is NP-complete.					
C. Both the Long Cycle problem and the Hamiltonian Path problem are NP-complete.					
O. None of the Long Cycle problem and the Hamiltonian Path problem are NP-complete.					
评测结果 答案错误					
得分 0分					
2-5-1 分数 3	作者 叶德仕	单位			

In the Activity Selection Problem:

we are given a set of activities $S=\{a_1,a_2,\ldots,a_n\}$ that wish to use a resource. Each a_i takes place during a time interval $[s_i,f_i)$. Activities a_i and a_j are compatible if $s_i\geq f_j$ or $s_j\geq f_i$ (i.e. their time intervals do not overlap). Our goal is to select a maximum-size subset of mutually compatible activities.

We propose a greedy rule "Shortest-First" that select the interval which is the **shortest** (but not overlapping the already chosen intervals). What is the **approximation ratio** of the greedy algorithm for the activity selection problem?

A. 3/2

B. 2

O C. 3

 $\, \bigcirc \,$ D. no constant approximation ratio.

评测结果答案正确得分3分

2-6-1 分数 3 作者 刘一辰 单位

Insert 2,9,5,6,1,8, and 3 one by one into an initially empty Splay tree. Which one of the following statements is TRUE about the resulting tree?

A. 5 and 9 are siblings

B. 8 is the parent of 5

C. 1 and 8 are siblings

O. 3 is the parent of 2

评测结果 答案正确

2-7-1 分数 3 作者

Merge the two leftist heaps in the figure. How many of the following statements is/are FALSE?

- 8 and 9 are siblings
- 6 and 7 are siblings
- 1 and 3 have the differernt NPL
- along the left path from the root, we have 1, 3, 6,10

- A. 1
- B. 2
- O C. 3
- O. 4

评测结果 答案正确

2-8-1 分数 3

There are 100000 documents in the document collection. The statistic data for one query is shown in the following table.

	Relevant	Irrelevant
Retrieved	10000	30000
Not Retrieved	40000	20000

Which one of the following statements about the statistics is True?

- A. The Recall is 0.25.
- B. The Precision is 0.1.
- C. The Precision is 0.2.
- D. None of the above statements is correct.

 评测结果
 答案正确

 得分
 3分

2-10-1 分数 3 作者 陈越

In the theory of parallel algorithms using PRAM, which one of the following statements is FALSE?

- A. The work complexity of a parallel algorithm is never less than the best sequential time for the same problem.
- B. Parallel computing makes debugging simpler since the data processing is more visible.
- O. The run time of a parallel algorithm depends not only on the size of the problem, but also on the number of available processors.
- O. To measure the performance of a parallel algorithm, it is asymptotically equivalent to consider the following two methods: (1) W(n) operations and T(n) time; and (2) P(n) = W(n)/T(n) processors and T(n) time.

评测结果答案正确得分3分

得分

0分

2-11-1 分数 3 作者 陈越 单·

Consider two parallel algorithms for the same problem, with a total of $W_i(n)$ operations in $T_i(n)$ time (i=1,2). If $W_1(n)=O(n)$, $T_1(n)=O(n)$, and $W_2(n)=O(\log n)$, $T_2(n)=O(\log n)$. Then:

- A. the first algorithm is more efficient than the second algorithm
- O B. the first algorithm is less efficient than the second algorithm
- O. the performances of the two algorithms are asymptotically equivalent
- D. none of the other three options are correct

 评测结果
 答案正确

 得分
 3分

There are four basic operations on red-black trees that perform **structural modifications**: node insertions, node deletions, rotations, and color changes. We shall prove that any sequence of m RB-INSERT and RB-DELETE operations on an initially empty red-black tree causes O(m) structural modifications in the worst case. We count the structural modifications in each step (e.g. Case 1 in RB-DELETION) as one unit operation (cost = 1).

We define the weight of each node based on its state, and the potential of the Red-Black Tree T is represented by the following function:

$$\Phi(T) = \sum_{x \in T} g(x)$$

where g(x) is calculated for all nodes $x \in T$ of the Red-Black Tree.

We define the weight of a **red node** x as g(x) = 0.

For black nodes, which of the following definitions work?

- \circ A. \bullet g(x)=1: If the black node has **no red children**.
 - g(x) = 0: If the black node has **one red child**.
 - g(x) = 2: If the black node has **two red children**.
- \circ B. \circ g(x)=1: If the black node has **no red children** or **one red child**.
 - g(x) = 2: If the black node has **two red children**.
- lacksquare C. g(x)=0: If the black node has **no red children**.
 - g(x) = 1: If the black node has **one red child**.
 - g(x) = 2: If the black node has **two red children**.
- lacktriangle D. g(x)=1: If the black node has **no red children**.
 - g(x)=2: If the black node has **one red child**.
 - g(x) = 0: If the black node has **two red children**.

评测结果 答案错误

得分 0分

2-14-2 分数 3

Suppose that replacement selection is applied in **external sorting** to generate longer runs with a priority queue of size 4. Given the sequence of nu 94, 37, 92, 14, 63, 15, 99, 48, 56, 23, 60, 31, 17, 43, 8, 90, 166, 100}. How many of the following states are **TRUE**?

- 3 runs will be generated
- 14 is in the first runs
- The length of the longest run is 10
- 166 is in the last runs
- A. 1
- B. 2
- C. 3
- D. 4

评测结果 答案错误

得分 0分

2-15-1 分数 3 作

If a binomial queue consists of 3 trees, which of the following numbers can NOT be its number of nodes?

- A. 6
- B. 26
- C. 28
- D. 1041

2-16-1	分数 3		作者 丁尧相	单位

A key advantage of binomial queue is that its amortized time cost of insertion is O(1). To prove this argument, a key observation is that if inserting one new key in the queue takes time cost c, it will lead to increasing m trees in the queue, where m equals to

- \bigcirc A. -c
- lacksquare B. 2-c
- \odot C. c-2
- O D. c

评测结果 答案正确

得分 3分

2-17-1 分数 3 作者 丁尧相 单位

What is the tightest solution to the recurrent function $T(n) = 2T(n/2) + n \log n$?

- \bigcirc A. $T(n) = O(n \log n)$
- lacksquare B. $T(n) = O(n \log^2 n)$
- \bigcirc C. $T(n) = O(n^2)$
- \bigcirc D. $T(n) = O(n^2 \log n)$

评测结果 答案正确

得分 3分

2-18-1 分数 3 作者 丁尧相 单位

How many of the following arguments are TRUE?

- 1. In comparison to dynamic programming, divide-and-conquer algorithms are usually more suitable for problems with highly overlapping sub-problems.
- 2. In the divide-and-conquer solution to the "closest pair of points in the plane" problem, sorting the points in both X and Y axes at the beginning of the whole algorithm is essential to achieve the $O(n \log n)$ time complexity.
- 3. Consider the view point of treating function $T(n) = aT(n/b) + n^c$ as a recursion tree. If $T(n) = O(n^c)$, then the time cost is dominated by the root of the tree.
- A. 0
- B. 1
- C. 2

O D. 3

评测结果 答案正确

得分 3分

2-19-1 分数 3 作者 杨洋 单位

Suppose a red-black tree T contains $N(N \ge 2)$ internal nodes, we denote the height of T as h(T) and the black-height of T as bh(T). Which of the following statements must be FALSE (assume the height of an empty tree is 0)?

- \bigcirc A. $h(T) \leq 2bh(T)$
- B. $h(T) = 3\lceil \log_2(N+1) \rceil$
- ullet C. The number of leaf nodes (NIL) in T is 2N-1
- ullet D. The number of leaf nodes (NIL) in T is 3N-5

2-20-1 分数 3 作者 叶德仕 单位

Merge the two skew heaps in the following figure. How many of the following statements is/are FALSE?

- the null path length of 1 is 2
- 12 is the left child of 6
- the depths of 4 and 9 are the same


```
O A. 0
```

B. 1

O C. 2

O D. 3

评测结果 答案正确得分 3分

Given a B+ Tree of order odr, please calculate the maximum number of keys that can be inserted into the current tree root without causing any split operation.

```
typedef struct BpTreeNode BpTreeNode;
struct BpTreeNode {
   BpTreeNode** childrens; /* Pointers to childrens. This field is not used by leaf nodes. */
   ElementType* keys;
   BpTreeNode* parent;
   bool is
Leaf; /* 1 if this node is a leaf, or 0 if not */
   int numKeys; /* This field is used to keep track of the number of valid keys.*/
int odr;
int Solve(BpTreeNode * const root){
   BpTreeNode * node = root;
   if (node->isLeaf) {
       return (order-node->numKeys)>0 ? order-node->numKeys : 0
                                                                                    3分;
   int ans = 0;
   for(int i = 0;  i<=node->numKeys
                                               3分; i++)
       ans += Solve(node->childrens[i]);
   return ans;
```

```
      评测结果
      答案正确

      得分
      6分
```