AppAttack

Finding Name: Clickjacking Vulnerability (Nessus Scan and VM Execution)

Name	Team	Role	Project	Quality Assurance	Is this a re-tested Finding?
Nikola Nicholas Krcevinac	OnTrack	Pen-Tester	AppAttack	Darryl Ooi	No

Was this Finding Successful?	
Yes	

Finding Description

The OnTrack web application was found to be vulnerable to Clickjacking. This type of attack happens when the attacker loads the legitimate application within an <iframe> and tricks the user into clicking elements they didn't intend to interact with, like a login button or form submission.

The root cause of this issue is the absence of key security headers in the HTTP response, mainly the **X-Frame-Options** and **Content-Security-Policy** (**frame-ancestors**) headers which exploit the lack of these HTTP headers. This allows the OnTrack site to be embedded in a malicious site as demonstrated in the evidence section further down. Also, in evidence you will see the Nessus scan screenshots of the findings.

This vulnerability was confirmed using a simple crafted HTML page to frame the OnTrack website. When opened in a browser, it rendered the full interface behind a transparent layer and placed a click button on top, proving the success of the attack.

Risk Rating

Impact: Severe Likelihood: High

Impact values								
Very Minor Minor		Significant	Major	Severe				
Risk that holds	Risk that holds	Risk that holds	Risk that holds	Risk that holds				
little to no impact.	minor form of	enough impact to	major impact to be	severe impact and				
Will not cause	impact, but not	be somewhat of a	of threat. Will	is a threat. Will				
damage and regular	significant enough	threat. Will cause	cause damage that	cause critical				
activity can	to be of threat. Can	damage that can	will impede regular	damage that can				
continue.	cause some damage	impede regular	activity and will	cease activity to be				
	but not enough to	activity but will be	not be able to run	run.				
	impede regular	able to run	normally.					
	activity.	normally.						

Likelihood

Rare	Unlikely	Moderate	High	Certain
Event may occur	Event could occur	Event may occur	Event occurs at	Event is occurring
and/or if it did, it	occasionally and/or	and/or happens.	times and/or	now and/or
happens in specific	could happen (at		probably happens a	happens
circumstances.	some point)		lot.	frequently.

Business Impact

This vulnerability poses a high risk to the user trust and application integrity for the university for teacher and students using OnTrack. An attacker could socially engineer techniques to make the user visit a malicious site and provide legitimate OnTrack application embedded in a hidden iframe. This can lead to:

- Unauthorized account access
- Accidental permission changes
- Credential theft
- Reduced trust in the application's security

Affected Assets

- http://10.0.2.15:3000/ (Doubtfire API)
- http://10.0.2.15:4200/ (OnTrack Frontend)
- http://10.0.2.15:4200/assets
- http://10.0.2.15:4200/assets/icons

Evidence

For your evidence, I have provided below three images showing my Nessus scan with the hosts, port output, plugins and their description explaining what attacks can happen for this issue:

This below is the network address assigned to the OnTrack website on my Kali VM machine as reference:

```
[serve:angular17]
[serve:angular17] Watch mode enabled. Watching for file changes ...
[serve:angular17] → Local: http://localhost:4200/
[serve:angular17] → Network: http://10.0.2.15:4200/
[serve:angular17] → Network: http://172.18.0.1:4200/
[serve:angular17] → press h + enter to show help
[serve:angular17] 1:10:49 AM [vite] Internal server error: Invalid URL
[serve:angular17] at new URL (node:internal/url:806:29)
[serve:angular17] at nathnameWithoutBasePath (/home/kali/doubtfire-denloy/doubtfire-web/node)
```

Clickjacking Proof of Concept (POC)

Step 1: Create a Malicious HTMP File

1. First, I use "nano clickjack-OnTrack.html" to create a malicious HTML file for this attack as seen below: (Change IP address depending on OnTrack network address):

The image below shows the file that has been created and the folder it is in:

Step 2: Serve the HTML File

1. I will now use "python3 -m http.server 8000' to run my html:

2. Now that I am running my server I can now visit the OnTrack site at "http://10.0.2.15:8000/clickjack.html" which I will continue in step 3.

Step 3: Verifiction of the Vulnerability

Below I accessed the malicious page via browser at "http://10.0.2.15:8000/clickjack.html". This successfully overlaid a button on the OnTrack login form.

Explanation:

This demonstration illustrates a **Clickjacking vulnerability** affecting the OnTrack web application. While the "Click Me" button in this proof-of-concept (PoC) does not currently trigger any real action, its purpose is to show that a malicious actor could **embed the OnTrack site into an invisible or transparent iframe** and overlay deceptive content (like fake buttons) on top of it.

If an attacker aligned their fake button over a **real and functional UI element** (e.g., "Sign In", "Confirm", "Allow access", or even "Delete Account"), the user could be tricked into clicking that **underlying real button** while believing they are interacting with the attacker's page. In a real-world scenario, this could be used to:

- Hijack user sessions
- Trigger actions without the user's consent
- Abuse user privileges if the session is authenticated
- Execute unintended or dangerous operations in the context of the user

Therefore, although this demo is surface level, it **proves that the application is vulnerable** to clickjacking and that **additional security controls are required to prevent this type of attack** from being exploited by a real adversary.

Remediation Advice

To mitigate this vulnerability, the OnTrack development team should:

1. **Set the X-Frame-Options header** to DENY or SAMEORIGIN to prevent the application from being embedded in external frames.

X-Frame-Options: DENY

- 2. Configure a Content Security Policy with the frame-ancestors directive: Content-Security-Policy: frame-ancestors 'none';
- 3. Regularly scan for missing HTTP headers and implement CSP best practices.

References

- Internal Nessus Report
- Clickjacking OWASP
- X-Frame-Options and Content Security Policy

Contact Details

Name/Teams: Nicholas Krcevinac Email: s222564328@deakin.edu.au

Pentest Leader Feedback.

Great job Nicholas!