

Gas Turbine Power Plants

Dingyi Shen (LR & FS, 25%) Fan Yi (LR & FS, 25%) Jesse Li (LR & FS, 25%) Ruijie Cao (LR & FS, 25%)

Combustion Chamber

Figure 2. Combustion Chamber. [2]

Function:

The combustion chamber is the area inside the engine where the fuel/air mixture is compressed and then ignited.

Figure 1. Gas (combustion) turbine power plant. [1]

Current Problems

- Low efficiency:
 - 20-45% of fuel energy is converted into a useful work.[3]
 - Remaining fuel energy in form of heat losses is transferred to environment.
 - One possible solution to decrease heat losses from the engine is by insulation of combustion.
 - Plan: Evaluate the application of thermal barrier coating (TBC) on combustion chamber as a solution to reduce the heat loss and design a system with an improved efficiency.

Project Prospects (Method: TBC)

Goal Parameter	Efficiency
Current Efficiency	40-45% ^[3]
Target Efficiency	Increased by at least 3%
Design Variable(s) to be	Coating material [4]
Manipulated in this Project to	(Thermal conductivity),
Attain Target	Coating thickness [5]
Constraint	Operating temperature > 870 °C [6]

Flow Diagram

Nomenclature

Symbol	Description	Unit
Α	Heat transfer area	m ²
C_p	Specific heat capacity	kJ/kg-K
f	Fuel/Air ratio	-
HV	Heating value	J/kg
k	Thermal conductivity	W/m-°C
k _c	Thermal conductivity of the coating material	W/m-°C
L	Wall thickness	m
L _c	Coating layer thickness	m
Q	Heat transfer rate	J/kg
Т	Temperature	°C
η_{th}	Thermal efficiency	-
η_{comb}	Combustion efficiency	-

Appendix: A1. Manufacturer Data

Manufacturer	General Electric	
Model	DLN-2.6 Combustor [6]	
Material	HASTELLOY® X alloy [7]	A nickel-chromium-iron-molybdenum alloy
Thermal conductivity	26.7 W/m-°C ^[7]	Thermal conductivity at 900 °C
Material constraint	Capability of 1177 °C [7]	Still in good condition after operating for 8,700 hours
Inlet temperature	396 - 404 °C [8]	Temperature of the preheated inlet fuel/air mixture
Fuel/Air ratio	83% fuel - 17% air ^[9]	Mass ratio of the inlet fuel and air
Wall thickness	0.01 m ^[10]	The wall thickness of the combustion chamber
Surface area	0.5 m ^{2 [10]}	The effective heat transfer area

A2. Engineering Principles

- Fuel energy:^[3]
 - Work 40 45%
 - Heat losses to coolants 25 30%
 - Heat losses to exhaust gas 25%
 - Friction 5% (neglected)
- Conductive heat transfer (loss):[11]
 - The basic equation of conductive heat transfer is Fourier's law: $\dot{Q} = -k_t A \left(\frac{dT}{dx}\right)$

where Q is the conductive heat transfer rate, k_t is the thermal conductivity of the material, A is the cross-sectional area normal to the heat transfer direction, and dT/dx is the temperature gradient in the direction of heat transfer.

- Thermal efficiency:^[12]
 - The thermal efficiency of a gas turbine power plant is defined as the ratio of net work output to heat input.

A3. Engineering Principles

Figure A3. Schematic of a gas turbine power plant (Brayton cycle). The numbers label the different states in the system.

A4. Conductive Heat Loss

• Conductive heat transfer to the coolants: $\dot{Q} = \frac{A(T_h - T_l)}{L/k}$

where Q is the heat transfer rate, A is the surface area, L is the wall thickness, k is the thermal conductivity of the material, T_h and T_l are the high and low temperatures.

• Conductive heat transfer to the wall with layers in series: $\dot{Q} = \frac{A(T_h - T_l)}{\frac{L}{k} + \frac{L_c}{k_c}}$

where k_c and L_c are the thermal conductivity and the wall thickness of the coating material

A5. Thermal Efficiency

The definition of thermal efficiency gives the following equation:

$$\eta_{th} = rac{\dot{w}_{out} - \dot{w}_{in}}{\dot{q}_{in}}$$

where w_{out} is the total work generated by the curbine, w_{in} is the total work done by the compressor, and q_{in} is the total heat added to the cycle.

• In order to find the heated (q_{in}) added to the cycle, apply energy balance around the combustion chamber:

$$(1+f)C_{pg}(T_3-T_2) + \dot{q} = \eta_{comb}fHV = \dot{q}_{in}$$

where f is the fuel-to-air mass flow ratio, C_{pg} is the specific heat capacity of combustion gas, T_2 and T_3 are the inlet and outlet temperatures of the combustion chamber, q is the rate of heat loss, η_{comb} is the combustion efficiency, and HV is the heating value of the fuel.

A6. Thermal Efficiency Cont.

Work (w_{in}) introduced by the compressor can be calculated as:

$$\dot{w}_{in} = C_p(T_2 - T_1)$$

where C_p is the specific heat capacity, T_1 is the inlet temperature of the compressor.

Work (w_{out}) created by the turbine can be determined as:

$$\dot{w}_{out} = (1+f)C_{pq}(T_3 - T_4)$$

where T_{Δ} is the outlet temperature of the turbine.

• Therefore, the thermal efficiency of a gas turbine plant is then determined $\eta_{th} = \frac{(1+f)C_{pg}(T_3-T_4)-C_p(T_2-T_1)}{n_{somb}fHV}$

References

- [1] "How a Combustion Turbine Plant Works," TVA.com [Online]. Available:
- https://www.tva.com/energy/our-power-system/natural-gas/how-a-combustion-turbine-plant-works. [Accessed: 13-Sep-2020].
- [2] Soares, C., 2015, Gas turbines: a handbook of air, land and sea applications, Elsevier, Amsterdam.
- [3] Diego, V. (2014). Thermal barrier coatings for efficient combustion.
- [4] Singh, P., Kaurase, K. P. and Soni, G.: Study of Materials used in Gas Turbine engine and swirler in combustion chamber, International Journal of Advance Research and Innovative Ideas in Education, 1(1), 39–46, 2015.
- [5] Alam, T., Kumar, B. and Babu, M. N.: Ceramic coating effect on IC engine performance, Proceedings of the International Conference on Nanotechnology for Better Living, doi:10.3850/978-981-09-7519-7nbl16-rps-250, 2016.
- [6] Chen, L., Wu, P., Song, P., Feng, J., 2018. Potential thermal barrier coating materials: RE 3 NbO 7 (RE =La, Nd, Sm, Eu, Gd, Dy) ceramics. Journal of the American Ceramic Society 101, 4503–4508. doi:10.1111/jace.15798
- [7] Balmer, R. T., 2011, "Chapter 4 The First Law of Thermodynamics and Energy Transport Mechanisms," Modern engineering thermodynamics, Elsevier, Amsterdam, pp. 99–146.
- [8] "Burner Thermodynamics," NASA [Online]. Available: https://www.grc.nasa.gov/WWW/K-12/airplane/burnth.html. [Accessed: 09-Nov-2020].
- [9] Oh, Jeong-Seog, et al. "GE 7FA+ e DLN-2.6 Gas Turbine Combustor: Part I Operating Condition Optimization." Journal of the Korean Society of Propulsion Engineers 12.5 (2008): 43-50.
- [10] "Haynes International" [Online]. Available: https://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/HASTELLOY-X-alloy. [Accessed: 9-Nov-2020].
- [11] Haynes, J., Janssen, J., Russell, C., and Huffman, M., 2006, GE Global Research, Niskayuna, NY.
- [12] Stathopoulos, Panagiotis & Fernàndez-Villa, Javier. (2018). On the Potential of Power Generation from Thermoelectric Generators in Gas Turbine Combustors. Energies. 10. 2769. 10.3390/en11102769.

