Interfacing 8255 PPI with 8085 using I/O and memory mapped

Signals of 8255

4/24/2020

Step 1:

Lower order of 8-bit address A0-A7 is separated from AD0-AD7 using address latch/buffer (Ex: IC 74373) and ALE signal.

The separated address lines A0-A7 are connected to A0-A7 input pins of 8255 and the separated data bus D0-D7 are connected to D0-D7 pins of 8255.

Reset out of 8085 is connected to reset pin of 8255.

Step 2:

8255 does not have internal (separate) control logic generator, hence the IO/M(bar), RD(bar) and WR(bar) control signals are not connected directly to 8255. These pins are 1st given to decoder and decoded using 3:8 decoder (Ex: IC 74138).

The generated control signals IOR(bar) and IOW(bar) are connected to RD(bar) and WR(bar) input of 8155.

Step 3:

An active low signal of chip select logic is obtained decoding remaining address lines of lower order addresses A2- A7.

Chip select logic and IO port address for this interfacing circuit are as:

Chip select address lines	Address lines to select port	HEX address	Selected I/O						
A7	A6	A5	A4	АЗ	A2	A1	AO		
1	0	0	0	0	0	0	0	80H	PORT A
1	0	0	0	0	0	0	1	81H	PORT B
1	0	0	0	0	0	1	0	82H	PORT C
1	0	0	0	0	0	1	1	83H	Chip select register

Interfacing of the 8085 microprocessor with the 8255 PPI

 Determine the ports (port A, port B and port C) and control word register CWR addresses either by using peripheral mapped technique or memory mapped technique.

a. Peripheral or I/O mapped addressing technique:

~	~CS (chip select)				ect)	Port/r	egister selects	HEX address	Port/register
A ₇	A_6	A_5	A_4	A_3	A ₂	A ₁	A_0		
0	0	0	0	0	1	0	0	04H	Port A
0	0	0	0	0	1	0	1	05H	Port B
0	0	0	0	0	1	1	0	06H	Port C
0	0	0	0	0	1	1	1	07H	CWR

Interfacing 8255 with 8085 using memory mapped STA LDA

b. Memory mapped I/O addressing technique:

			~CS	ct)	nip s	sele	ect)							Port/regi	ster	selects	HEX address	Port/register
A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A۹	A ₈	A ₇	A ₆	A ₅	A	4 A3	A_2	A ₁	Αo			
1	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0		8000H	Port A
1	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	1		8001H	Port B
1	0	0	0	0	0	0	0	0	0	0 (0	0	0	1	0		8002H	Port C
1	0	0	0	0	0	0	0	0	0	0 (0	0	0	1	1		8003H	CWR

A **parallel interface** refers to a multiline channel, with each line capable of transmitting several bits of data simultaneously. ... In contrast, a "**serial interface**" uses a **serial port**, a single line capable of only transmitting one bit of data at a time; a computer mouse connection is a good example.

A **parallel port** is a type of <u>interface</u> found on <u>computers</u> (<u>personal</u> and otherwise) for connecting peripherals. The name refers to the way the data is sent; parallel ports send multiple <u>bits</u> of data at once,

There are many types of parallel ports, but the term has become most closely associated with the **printer port** or <u>Centronics port</u>

Today, the parallel port interface is virtually non-existent because of the rise of <u>Universal Serial Bus</u> (USB) devices, along with network printing using <u>Ethernet</u> and <u>Wi-Fi</u> connected printers.

Parallel port on computer

- ■The Centronics <u>parallel</u> <u>interface</u> is an older and still widely-used standard <u>I/O</u> interface for connecting <u>printer</u> s and certain other devices to computers.
- •a 36- <u>pin</u> male and female connector at the printer or other device.
- ■The cable plugs into a 25-pin parallel port on the computer.
- Data flows in one direction only, from the computer to the printer or other device
- In addition to eight parallel data lines, other lines are used to read status information and send control signals.
- •Centronics Corporation designed the original Centronics parallel interface for dot matrix printers. In 1981, IBM used this interface as an alternative to the slower one-bit-at-atime serial interface

Female 36-pin Centronics Connector

(Centronics parallel interface male and female)

Pin Description of Centronics parallel interface:-

Centronics parallel interface with computer and printer

PC			Printer
DB 25 socket			CP36 socket
1	Strobe	-	1
2 3	D0	-	2 3
] 3	D1	-	
4 5	D2	-	4 5
5	D3	-	5
6 7	D4	-	6
(D5		7
8	D6		8
9	D7		9
10 11	Adknowledge		10
12	Busy	_	11
13	Paper Empty Select		12 13
14	Auto Linefeed		14
15	Error		32
16	Init	_	31
17	Select In	- -	36
18-25	Signal GND	<u> </u>	19-30
	Shield		17
	+5 VDC (opt.)		18