Гомоморфизм и изоморфизм колец

Определение. Гомоморфизмом колец A и B называется отображение $\varphi: A \to B$, сохраняющее константы 0, 1:

$$\varphi(0_A) = 0_B, \qquad \varphi(1_A) = 1_B,$$

а также операции сложения и умножения:

$$\varphi(a+a')=\varphi(a)+\varphi(a'), \qquad \varphi(a\cdot a')=\varphi(a)\cdot \varphi(a').$$

Определение. Ядром ($\ker(\varphi)$) гомоморфизма $\varphi:A\to B$ называется подмножество в A, которое переводится под действием φ в 0_B . То есть $\ker(\varphi)=\{a\in A\mid \varphi(a)=0_B\}$.

Определение. Образом $(im(\varphi))$ гомоморфизма $\varphi: A \to B$ называется подмножество в B, которое является множеством всех образов элементов из A. То есть $im(\varphi) = \{b \in B \mid \varphi(a) = b, \ a \in A\}$.

- **1.** Докажите, что свойство $\varphi(0_A) = 0_B$ выводится из остальных.
- **2.** Докажите, что $\varphi(-a) = -\varphi(a)$.
- **3.** Докажите, что $\varphi(a^{-1}) = (\varphi(a))^{-1}$.
- **4.** Верно ли, что любой изоморфизм колец является гомоморфизмом? Верно ли обратное?
- **5.** Определите, является ли отображение φ гомоморфизмом. Если является, то найдите его ядро и образ:
- a) $\varphi: \mathbb{Z} \to \mathbb{Z}$, $\varphi(n) = 5n$,
- $\mathsf{6)}\; \varphi: \mathbb{Z}_3 \to \mathbb{Z}_{12}, \quad \varphi(x) = 4x,$
- B) $\varphi : \mathbb{Z} \to \mathbb{Z}$, $\varphi(x) = x \pmod{10}$,
- Γ) φ : $\mathbb{C} \to \mathbb{C}$, $\varphi(a+bi) = a-bi$,
- д) $\varphi : \mathbb{R} \to \mathbb{Z}$, $\varphi(x) = [x]$,
- e) $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\varphi(x, y) = x + y$,
- \ddot{e}) $\varphi : \mathbb{R}[x] \to \mathbb{R}$, $\varphi(p) = p(1)$,
- ж) $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\varphi(x, y) = xy$,
- 3) $\varphi : \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$, $\varphi(f) = f(1)$,

$$\mathrm{M})\; \varphi: M_2(\mathbb{Z}) \to \mathbb{Z}, \quad \; \varphi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a.$$

$$\mathbf{K})\;\varphi:\mathbb{C}\to\mathbb{R}^{2\times 2},\qquad \varphi(a+b\,i)=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

л)
$$\varphi : \mathbb{Z} \to \mathbb{Z}$$
, $\varphi(n) = n^k$.

м)
$$\varphi : \mathbb{Z}_p \to \mathbb{Z}_p$$
, $\varphi(n) = n^p$, p — простое.

- **6.** Существует ли гомоморфизм $\mathbb{Z} \to \mathbb{Z}_n$?
- 7. Существует ли гомоморфизм $\mathbb{Z}_n \to \mathbb{Z}$?
- **8.** Докажите, что не существует гомоморфизма $\mathbb{C} \to \mathbb{R}$
- 9. Докажите, что из $\mathbb Z$ и $\mathbb Z$ существует лишь тождественный гомоморфизм.
- **10.** Пусть $f: A \to B$ гомоморфизм. Докажите, что f изоморфизм тогда, и только тогда, когда найдется $g: B \to A$, такое, что fg и gf тождества.
- **11.** Докажите, что множество матриц $R = \left\{ \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}, n \in \mathbb{Z} \right\}$ является кольцом. Докажите, что $R \cong \mathbb{Z}$.
- **12.** Докажите, что ядро гомоморфизма $\varphi: A \to B$ является идеалом в кольце A.
- **13.** Докажите, что образ гомоморфизма $\varphi:A\to B$ является подкольцом кольца B.
- **14.** Пусть I идеал кольца A. Докажите, что отображение $\varphi: A \to A/I$, которое ставит в соответствие элементам кольца их классы эквивалентности в A/I является гомоморфизмом. То есть $\varphi(a) = a + I$. Такой гомоморфизм называется каноническим.
- **15.** Докажите, что если J идеал кольца A, содержащий I (т.е. $I \subset J$), то $\varphi(J)$ идеал в A/I.
- **16.** Покажите, что из предыдущей задачи следует, что если I максимальный идеал, то A/I поле.
- **17.** Пользуясь результатом предыдущей задачи, постройте поле из 8 элементов.