

Métodos Numéricos

Trabajo Práctico 1

No creo que a él le gustará eso

Resumen

En este trabajo estudiaremos algoritmos para resolver sistemas de ecuaciones para problemas reales mediante una discretización. Se expondrán técnicas para obtener la temperatura en un punto crítico de un parabrisa usando eliminación Gaussiana y Factorización LU, aprovechando las matrices Banda, y la formula Sherman-Morrison Al final del trabajo, se llegarán a conclusiones sobre lo descubierto.

Integrante	LU	Correo electrónico
Armagno, Julián	377/12	julian.armagno@gmail.com
Balbachan, Alexis		
More, Ángel		
Pinzón, Germán		

Palabras claves:

Eliminación Gaussiana. Factorización LU. Punto Crítico. Matrices Banda. Sistemas de ecuaciones. Sherman-Morrison.

$\mathbf{\acute{I}ndice}$

1.	Introducción Teórica	3
	1.1. Temperatura del Parabrisas	3
	1.2. Problemas	3
	1.3. Planteo del Problema	4
2.	Desarrollo	4
3.	Resultados	5
4.	Discusión	6
5.	Conclusiones	7
6.	Apéndices	7

1. Introducción Teórica

El parabrisas la nave del capitán Guybrush Threepwood está siendo atacado por sanguijuelas mutantes. Dicho ataque consiste en aplicar altas temperaturas constantes sobre la superficie del mismo, con el objetivo de lograr romperlo, para poder lograr un ataque más mortifero. La superficie del parabrisas donde se aplica el calor es circular (la sopapa de ataque es circular).

Para defenderse de estos ataques Guybrush cuenta solamente con un sistema de refrigeracion que aplica temperaturas de -100° C a los bordes del parabrisas. El parabrisas se romperá si alcanza una temperatura mayor o igual a los 235° C en el punto central (llamaremos a este punto, *punto crítico*).

Si el sistema de refrigeración no es suficiente para salvar el parabrisas, se puede utilizar un arma para destruir algunas sanguijuelas, pero se desea que sea la menor cantidad posible, siempre y cuando el parabrisas siga en pie, pues dicha arma consume energía que es de vital importancia.

1.1. Temperatura del Parabrisas

Para calcular las temperaturas en el parabrisas se aplicará el siguiente criterio:

En los bordes, como se explicó anteriormente, la temperatura será de -100°C, es decir sean x e y las coordenadas del parabrisas, y T(x,y) la función que devuelve la temperatura en un determinado punto, sea b el ancho y a el alto:

$$T(x,y) = -100^{\circ}C \hspace{1cm} si \hspace{0.2cm} x = 0 \hspace{0.2cm} \lor \hspace{0.2cm} x = b \hspace{0.2cm} \lor \hspace{0.2cm} y = 0 \hspace{0.2cm} \lor \hspace{0.2cm} y = a \hspace{1cm} (1)$$

La temperatura de los puntos que se encuentren dentro del perímetro de la sopapa circular de una sanguijuela será igual a la temperatura aplicada por dicha sanguijuela (T_s) .

$$T(x,y) = T_s$$
 si $(x,y) \in PuntosSanguijuela$ (2)

La temperatura en el resto de los puntos en el estado estacionario satisface la siguiente ecuación.

$$\frac{\delta^2 T(x,y)}{\delta x^2} + \frac{\delta^2 T(x,y)}{\delta y^2} = 0 \tag{3}$$

1.2. Problemas

En el siguiente trabajo veremos como la aritmética finita de las computadoras puede generar distintos problemas.

En principio deberemos representar al parabrisas, el cual está compuesto por infinitos puntos. Sabemos que no es posible representar en una computadora los infinitos puntos del mismo, por lo que se utilizará cierta discretización, la cual haremos variar con el motivo de estudiar el comportamiento de nuestro sistema.

Otro problema que deberemos afrontar es que al trabajar en la búsqueda de soluciones de problemas que conllevan a la utilización de gran cantidad de operaciones matemáticas de punto flotante, en cada operación se puede perder cierta presición, y la acumulación de estos errores puede escalar hasta llegar a una solución no satisfactoria. Esta pérdida de precisión se debe nuevamente a la limitación de las computadoras para representar numeros infinitos.

1.3. Planteo del Problema

Como dijimos anteriormente en nuestro problema teniamos un parabrisas con infinitos puntos, por ser una superficie continua, una forma de pensar el problema es discretizar estos puntos, y trabajar sobre ello. Una vez hecha esta operación, podemos modelar los puntos resultantes con una matriz, donde cada posición de esta matriz represente un punto en el parabrisas.

Al discretizar los puntos, la ecuación (3) para obtener temperaturas en cada punto del parabrisas continuo, se transforma en la siguiente ecuación por diferencias finitas.

$$t_{ij} = \frac{t_{i-1,j} + t_{i+1,j} + t_{i,j-1} + t_{i,j+1}}{4}$$
(4)

Es decir que en el parabrisas discretizado, la temperatura en cada punto se calcula como el promedio de la temperatura de los puntos vecinos (los puntos que estan arriba, abajo, izquierda y derecha).

En nuestro problema nos interesa conocer el punto crítico (el centro del parabrisas), esto además significa conocer la temperatura de sus vecinos, y a su vez los vecinos necesitaran conocer la temperatura de sus otros vecinos. Es decir que en un principio es necesario calcular la temperatura de todos los puntos del parabrisas discretizado. Este problema es modelado mediante un sistema de ecuaciones, en el cual cada ecuación se corresponde con un solo punto del parabrisas. Dicho sistema de ecuaciones lo representamos en una matriz cuyo tamaño es #puntos x #puntos. Finalmente podemos calcular la temperatura en cada punto aplicando eliminación gaussiana sobre la matriz.

Una vez que sabemos qué temperatura hay en el punto crítico, podremos decidir que criterio utilizar para matar sanguijuelas, mediante distintas experimentaciones.

2. Desarrollo

La idea del siguiente experimento, es tratar de ver como se relaciona el tiempo de cómputo necesario para resolver el sistema de ecuaciones planteado, con la calidad de la solución encontrada. Es importante para esto, decir a qué nos referimos cuando hablamos de calidad. Es necesario para responder esta pregunta, recordar que nuestro objetivo es calcular la temperatura en cierto punto del parabrisas. Para lograr esto, lo que hacemos es discretizar la superficie (porque estamos trabajando con aritmética finita) y pasar de una superficie que tiene infinitos puntos a una representación de dicha superficie con una cantidad finita de puntos. Ahora bien, cuando realizamos la discretización y pasamos de un problema en el espacio continuo a uno en el espacio discreto estamos perdiendo información. Entonces cuando hablamos de calidad, nos referimos justamente a cuanta información estamos perdiendo, como costo de modelar en problema de manera discreta.

El experimento se planteó para trabajar con algunas instancias del problema y ver como varía la temperatura en el punto crítico obtenida y el tiempo de cómputo, utilizando el algoritmo de Eliminación Gaussiana (modo 0), en función de la granularidad de la discretización (h).

Ahora que sabemos qué es lo que se intenta determinar en el experimento, vamos a tratar de pensar qué es lo que debería pasar (y luego contrastarlo con los resultados para ver si efectivamente es lo que sucede) a grandes rasgos.

- 1. En cuanto al tiempo de cómputo, sabemos que como vamos a estar utilizando el algoritmo de Eliminación Gaussiana, la cota teórica va a ser $O(n^3)$. El sistema de ecuaciones con el que trabajaremos va a ser de n'xn' donde n' = (b/h-1)x(a/h-1) siendo a (ancho del parabrisas), b (alto del parabrisas), b (granularidad) parámetros del problema. Podemos ver como el tamaño del sistema (y por lo tanto el tiempo de cómputo ya que es una función del tamaño) depende directamente de b, de manera tal que si b es chico, entonces el tamaño es grande. Esto nos dice entonces que, dado una instancia del parabrisas (con sus dimensiones y sanguijuelas), cuanto más chico sea b, más tiempo se va a tardar en resolver el problema.
- 2. Debido a que perdemos información al discretizar el problema porque estamos trabajando con un espacio discreto, cuando en realidad el problema es de naturaleza continua, parece razonable pensar que cuanto más chico sea h, la solución obtenida va a estar más cerca de la real.
- 3. Nuestra última hipótesis se desprende de alguna manera de la que enunciamos en el punto anterior. Si al aumentar el tamaño de nuestra discretización estamos acercándonos más a la verdadera solución del problema y las temperaturas de los puntos dependen de las sanguijuelas, parece razonable pensar que haciendo esto tenemos menos chances de descartar sanguijuelas, ya que nuestra discretización es "más adecuada".

3. Resultados

Las siguientes tres tablas representan los datos tomados de tres instancias del problema. Lo único que vamos a variar en dichas instancias son los radios de las sanguijuelas. Para las tres instancias $a=20,\ b=20,\$ la cantidad de sanguijuelas es 9 y las ubicaciones y temperaturas de cada sanguijuela son las mismas (variando en un rango de 50 a 730) (pueden encontrarse en los archivos de Experimentos/Experimento2/instancias20x20).

Granularidad	Tiempo	Temp. pto crítico
5	3.60E-005	166.425
4	0.000105	177.267
2	0.002355	248.066
1	0.012867	230.499
0.8	0.035207	218.562
0.5	0.224236	227.963
0.4	0.542077	227.558
0.2	8.84272	224.521
0.1	145.142	223.948

Figura 1: En este conjunto de instancias los radios de las sanguijuelas están en el conjunto $\{2,3,4\}$. Podemos observar como efectivamente el tiempo crece cuando el parámetro h de granularidad disminuye. En cuanto a la temperatura del punto crítico, se puede ver como a medida que aumentamos el tamaño de nuestras discretizaciones, se va acercando a un valor cercano a 224 grados.

Granularidad	Tiempo	Temp. pto crítico
5	0.000107	-100
4	0.000246	-100
2	0.004086	-100
1	0.027411	89.5291
0.8	0.066003	53.1171
0.5	0.445484	83.7256
0.4	1.08866	68.3881
0.2	17.9335	96.5599
0.1	289.115	94.5064

Figura 2: En este otro experimento, hemos decidido achicar considerablemente los radios de las sanguijuelas de manera que estén en el rango [0.03,1]. Por un lado, podemos ver que el tiempo sigue aumentando a medida que h disminuye al igual que en el experimento anterior. Sin embargo, se puede ver también que el algoritmo toma más tiempo que antes en resolver cada instancia. De todas formas, lo más llamativo parece encontrarse en las primeras tres entradas de la tabla, en los valores de temperatura del punto crítico. Pareciera como si las primeras tres discretizaciones de nuestro modelo del problema, aproximan tan mal al caso real que quedan descartadas todas las sanguijuelas. Sin embargo, al igual que en el experimento anterior, se cumple que a medida que aumenta el tamaño de la discretización, la temperatura en el punto crítico se acerca a un valor.

Granularidad	Tiempo	Temp. pto crítico
5	0.000111	-100
4	0.000239	-100
2	0.003144	-100
1	0.028953	89.5291
0.8	0.073902	-100
0.5	0.455657	67.3394
0.4	1.13656	-100
0.2	18.4805	45.0856
0.1	297.293	31.8193

Figura 3: Una vez más, volvemos a achicar los radios de las sanguijuelas. Vemos que el tiempo se sigue comportando de manera similar y con las primeras tres instancias del problema ocurre lo mismo que con el experimento anterior. Sin embargo, ahora si está sucediendo algo que contradice una de las hipótesis (la tercera) planteada en el desarrollo ya que vemos que ahora, no pareciera que nos estemos acercando a un valor (el valor de la solución real). Esto se ve en las entradas 6 y 7 de la tabla, cuyas granularidades son 0.8 y 0.4, donde a pesar de que son más chicas que 1 (y por lo tanto las discretizaciones poseen tamaños más grandes), se está obteniendo -100 como temperatura del punto crítico, lo cuál no parece estar bien.

4. Discusión

En los experimentos realizados, vimos como efectivamente el tiempo de cómputo aumenta a medida que el h se achica, ya que el tamaño de la discretización es más grande y, como cada punto de la discretización representa una incógnita en nuestro sistema de ecuaciones, vamos a tener que

resolver un sistema más grande. Por lo tanto, nuestra hipótesis 1. planteada en el Desarrollo de que el valor de h impacta de manera directa en el tiempo de cómputo es correcta y bien reflejada en nuestros experimentos.

Lo que no se ve reflejado en los experimentos, es lo que dicen las hipótesis 1 y 2. Como ambas están relacionadas, vamos a tratarlas de forma conjunto. En la sección de Resultados, podemos ver que el primer experimento no entra en conflicto con lo que dicen estas hipótesis, pero sí el segundo y el tercero. Esto no es casualidad. La diferencia entre el primer experimento y los otros dos radica esencialmente en los radios de las sanguijuelas ya que, omo explicamos en los resultados, los radios se reducen considerablemente en los experimentos 1 y 2. Si consideramos una sanguijuela S_i cuyo radio r_i , cuanto más chico sea r_i más chances existen de que S_i sea una sanguijuela unitaria o, en el peor caso, que sea descartada.

5. Conclusiones

6. Apéndices

Mayúsculas