

SELECTIVE WITHDRAWAL WORKSHOP

Zhonglong Zhang, PhD, PE, PH
Portland State University, Civil & Environmental Engineering

CE-QUAL-W2 Workshop

July 18 - 20, 2023

Selective Withdrawal

- Selective withdrawal uses stratified flow to pull out water from selected depths of the pool.
- Selective withdrawal for blending of warmer and cooler waters to meet targeted temperature downstream.

Selective Withdrawal Options in CE-QUAL-W2

- The first algorithm allows a single structure or withdrawal up to 10 discrete elevations to which it can be set.
- The second algorithm allows the blending of releases from 2 specified structures or withdrawals to match a user-specified release temperature.
- USGS blending algorithms will allow more complicated dam-operation scenarios to be evaluated somewhat automatically with the model
 Additional user inputs are required to specify the depth of floating outlets, optional constraints on minimum and maximum head and release rates for each outlet, and a priority ranking for each outlet, among others.
- Multi-port withdrawal flow calculations

Selective Withdrawal Calculations

Rules for selective withdrawal when there are two outlets where flow is being split

If $T_{JS1} > T_{target}$ and $T_{JS2} > T_{target}$, take all flow from lower outlet (JS2)

If $T_{JS1} < T_{target}$ and $T_{JS2} < T_{target}$, take all flow from upper outlet (JS1)

If $T_{JS1} > T_{target}$ and $T_{JS2} < T_{target}$, take apportion flow based on flow balance equation

$$Q_{JS1} = \frac{(Q_{sum}(T_{t \ arg \ et} - T_{JS2}))}{(T_{JS1} - T_{JS2})}$$

$$Q_{JS2} = Q_{sum} - Q_{JS1}$$

If water elevation is below the outlet elevation for the upper outlet (JS1), take all flow from the lower outlet (JS2).

Selective Withdrawal Update

- A horizontal withdrawal angle and boundary interference is included into the calculations of the withdrawal zone limits
- Withdrawal zone velocity profile
- Selective withdrawal flow from multi-ports.

Detroit Lake W2 Model

 Detroit lake impounds 455,100 acre-ft of water at full pool, making it one of the largest reservoirs in the Willamette River Basin. The North Santiam River is one of several major tributaries to the Willamette River. The fixed-elevation outlet was given a centerline elevation of 408.4 m. The floating outlet was given a depth (DEPTH) of 2 m and a minimum flow of 11.327 m3/s.

Sullivan, A.B., Rounds, S.A., Sobieszczyk, S., and Bragg, H.M., 2007, Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon: U.S. Geological Survey Scientific Investigations Report 2007–5008

Detroit Lake W2 Model Grids

Detroit Lake W2 Model Inputs: w2_con.csv

GRID/NPROC/CLOSE DIALOG BOX	NWB		NBR	IMX	кмх	NPROC	CLOSEC		
		1	4	66	117	1	ON		
			<u> </u>						
IN/OUTFLOW	NTR		NST	NIW	NWD	NGT	NSP	NPI	NPU
		2	4	0	0	0	0	0	0
el control rules									
CONSTITUENTS	NGC		NSS	NAL	NEP	NBOD	NMC	NZP	
s in COL C - these are checked by the program		1	2	0	0	0	0	1	
out dates or timestep related changes									
MISCELLANEOUS	NDAY		SELECTC	HABTATC	ENVIRPC	AERATEC	INITUWL	ORGCC	SED_DIAG
analyses for fish and eutrophication variables		1000	USGS	OFF	OFF	OFF	OFF	OFF	OFF
ental performance criteria									
TIME CON	TMSTRT		TMEND	YEAR					
These are computed from formula in Column A>	Į.	5.000	364.000	2006					
tter as C rather than organic matter									
DLT CON	NDLT		DLTMIN	DLTINTER					
Time step control parameters		4	0.1	OFF					
DLT DATE	DLTD		DLTD	DLTD	DLTD				
Date of time step change in JDAY		1	1.5	220	280				
DLT MAX	DLTMAX		DLTMAX	DLTMAX	DLTMAX				
Maximum time step in seconds		10	100	10	20				
DLT FRN	DLTF		DLTF	DLTF	DLTF				
Fraction of maximum theoretical time step		0.5	0.5	0.5	0.5				

- 1: floating weir, priority 1, 2.3 m depth, minimum 400 cfs, maximum 5600 cfs
- 2: spillway, priority -1 (nonblended)
- 3: lower power outlet, priority 1, maximum 5600 cfs
- 4: regulating outlet, priority -1 (nonblended), maximum 5600 cfs

STRUCTURES for each branch. These are known ou	BR1
NSTR - Number of branch outlet structures	4
DYNSTRUC - Dynamic elevation of structure control	OFF
STRIC1-Turns ON/OFF interpolation of structure ou	OFF
STRIC2-Turns ON/OFF interpolation of structure ou	OFF
STRIC3-Turns ON/OFF interpolation of structure ou	OFF
STRIC4-Turns ON/OFF interpolation of structure ou	OFF
STRIC5-Turns ON/OFF interpolation of structure ou	OFF
KTSTR1-Top layer above which selective withdrawa	2
KTSTR2-Top layer above which selective withdrawa	2
KTSTR3-Top layer above which selective withdrawa	2
KTSTR4-Top layer above which selective withdrawa	2
KTSTR5-Top layer above which selective withdrawa	2
KBSTR1-Bottom layer below which selective withdr	109
KBSTR2-Bottom layer below which selective withdr	50
KBSTR3-Bottom layer below which selective withdr	109
KBSTR4-Bottom layer below which selective withdr	109
KBSTR5-Bottom layer below which selective withdr	109
SINKC1 - Sink type used in the selective withdrawal	LINE
SINKC2 - Sink type used in the selective withdrawal	LINE
SINKC3 - Sink type used in the selective withdrawal	LINE
SINKC4 - Sink type used in the selective withdrawal	LINE
SINKC5 - Sink type used in the selective withdrawal	LINE
ESTR1-Centerline elevation of structure 1, m	479
ESTR2-Centerline elevation of structure 2, m	469.7
ESTR3-Centerline elevation of structure 3, m	408.4
ESTR4-Centerline elevation of structure 4, m	410
ESTR5-Centerline elevation of structure 5, m	410
WSTR1 - Structure 1 width if "LINE" chosen, Width	6.8
WSTR2- Structure 2 width if "LINE" chosen, Width c	25
WSTR3- Structure 3 width if "LINE" chosen, Width o	6.8
WSTR4- Structure 4 width if "LINE" chosen, Width o	6.8
WSTR5- Structure 5 width if "LINE" chosen, Width o	6.8

Detroit Lake W2 Model Inputs

File type		File name			
Wind sheltering	WSCFN	wsc.npt			
Shading	SHDFN	shade.npt			
Bathymetry	BTHFN	bth1.csv			
Met	METFN	0609_met_stay_raws.npt			
Tributary inflow	QTRFN - tributary flow	0609_french_q_est.npt	0609_boxCan_q_est.npt		
	TTRFN - tributary temp	0609_french_t_est.npt	0609_boxCan_t_est.npt		
Branch inflow	QINFN branch inflow	0609_nsboulder_q.npt	0609_breitenbush_q.npt	0609_blowout_q.npt	0609_kinney_q_est.npt
	TINFN branch temp	0609_nsboulder_t.npt	0609_breitenbush_t.npt	0609_blowout_t.npt	0609_kinney_t_est.npt
	QDTFN Distributed flow	0609_qdt_br1_est.npt	0609_qdt_br2.npt	0609_qdt_br3.npt	0609_qdt_br4.npt
	TDTFN Distributed temp	0609_tdt_br1_est.npt	0609_tdt_br2.npt	0609_tdt_br3.npt	0609_tdt_br4.npt
Precipitation	PREFN flow	0609_pre_detroit.npt	0609_pre_detroit2.npt	0609_pre_detroit3.npt	0609_pre_detroit4.npt
	TPRFN temp	0609_tpr_detroit.npt	0609_tpr_detroit2.npt	0609_tpr_detroit3.npt	0609_tpr_detroit4.npt
Structure outflow	QOTFN	0609_qot_det_max.npt			

US Army Corps of Engineers • Engineer Research and Development Center

W2 Selective Withdrawal Inputs

w2_selective.npt

```
OUT FREQ TFRQTMP
           0.125
Structure outlet control based on time and temperature and branch
                     NUM TCDFREQ
DYNSTR1 CONTROL
             OFF
                           0.125
DYNSTR2
           ST/WD
                                                    TEND
                                                                    NELEV
                                                                            ELEV1
                                                                                    ELEV2
                                  YEARLY
                                             TSTR
              ST
                       1
                                      ON
                                             1.0
                                                    151.0
                                                             10.0
                                                                             340.
                                                                                     330.
MONITOR LOC ISEG
                    ELEV
                          DYNCEL
                    -185
                             OFF
AUTO ELEVCONTROL
             OFF
SPLIT1
            CNTR
                          TSFREQ TSCONV
              ON
                           0.125
                                   0.005
SPLIT2
           ST/WD
                          YEARLY
                                    TSTR
                                            TEND TTARGET
                                                           DYNSEL
                                                                   ELCONT
                                                                            NOUTS TSSHARE
              ST
                              ON
                                            99999
                                                      12.
                                                               ON
                                                                      OFF
                                                                                      OFF
SPLITOUT JS1/NW1 JS2/NW2 JS3/NW3 JS4/NW4 JS5/NW5 JS6/NW6 JS7/NW7 JS8/NW8 JS9/NW9 JS0/NW0
DEPTH
                                  DEPTH4
                                          DEPTH5 DEPTH6 DEPTH7
                                                                  DEPTH8
             2.3
                       0
                                       0
         MINFRC1 MINFRC2 MINFRC3 MINFRC4 MINFRC5 MINFRC6 MINFRC7 MINFRC8 MINFRC9 MNFRC10
MINFRAC
         -11.326
                     0.0
                             0.0
          PRIOR1
PRIORITY
                  PRIOR2
                          PRIOR3
                                  PRIOR4
                                          PRIOR5 PRIOR6 PRIOR7 PRIOR8
                                                                          PRIOR9 PRIOR10
                      -1
                                       -1
```

W2 Selective Withdrawal Inputs

W2 Selective Withdrawal Results

Effect of dam operations on release water temperature, with and without selective withdrawal

Hands-On Exercises

- Review the model inputs
- Review the model outputs of structure water temperature
- Change the following parameters in the selective input file and rerun the model and see the difference of water temperatures in in two_34.csv and str_br1.csv.
- Change the temperature target for
 - 15 °C
 - 20 °C

Questions?

US Army Corps of Engineers • Engineer Research and Development Center