Vanishing of Littlewood-Richardson polynomials is in P

Colleen Robichaux University of Illinois at Urbana-Champaign

Joint work with:

Anshul Adve (University of California at Los Angeles) Alexander Yong (University of Illinois at Urbana-Champaign)

Workshop on Representation Theory, Combinatorics, and Geometry, University of Virginia, October 20, 2018

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$ be a partition with n nonnegative parts.

Definition

The **initial diagram** for λ is a grid with n rows and $m \geq n + \lambda_1 - 1$ columns in which the Young diagram of λ is in the northwest corner.

For example, $\lambda = (4, 2, 1, 0)$

Definition

A **local move** is a mutation of any 2×2 subsquare of the form

The configurations of +'s in the grid resulting from local moves on the initial diagram for λ are called **plus diagrams**.

For example,

To a diagram T, we can assign weights,

$$wt_x(T) = \prod_i x_i^{+'s \text{ in row } i}$$

Or finer,

$$wt_{x,y}(T) = \Pi_{(i,j)\in T}(x_i - y_j)$$

For example, for the following $T \in Plus((3,2,0))$,

$$\left(\begin{array}{cccc} + & \cdot & \cdot & \cdot & \cdot \\ + & \cdot & + & \cdot & \cdot \\ \cdot & \cdot & + & \cdot & + \end{array}\right)$$

$$wt_x(T) = x_1 x_2^2 x_3^2$$

$$wt_{x,y}(T) = (x_1 - y_1)(x_2 - y_1)(x_2 - y_3)(x_3 - y_3)(x_3 - y_5).$$

We can realize the Schur function as

$$s_{\lambda}(X) = \sum_{Plus(\lambda)} wt_{x}(T)$$

which forms a \mathbb{Z} -linear basis of Sym[X] and similarly the factorial Schur function as

$$s_{\lambda}(X;Y) = \sum_{Plus(\lambda)} wt_{x,y}(T)$$

which forms a $\mathbb{Z}[Y]$ -linear basis of $Sym[X] \otimes_{\mathbb{Z}} \mathbb{Z}[Y]$.

Structure Coefficients

Then we can discuss their structure coefficients:

$$s_\lambda(X)s_\mu(X) = \sum_
u c^
u_{\lambda,\mu} s_
u(X)$$

where $c_{\lambda,\mu}^{\nu} \geq 0$ is called the **Littlewood-Richardson coefficient**. Extending this,

$$s_{\lambda}(X;Y)s_{\mu}(X;Y) = \sum_{\nu} C^{\nu}_{\lambda,\mu}(Y)s_{\nu}(X;Y)$$

where $C_{\lambda,\mu}^{\nu}$ is called the **Littlewood-Richardson polynomial**. For example, using $\lambda = \mu = (1,0)$ we can express

$$s_{(1,0)}(x_1, x_2; Y)^2 = s_{(2,0)}(x_1, x_2; Y) + s_{(1,1)}(x_1, x_2; Y) + (y_3 - y_2)s_{(1,0)}(x_1, x_2; Y).$$

Complexity of $c_{\lambda,\mu}^{ u}$

Theorem (DeLoera, McAllister, 2006; Mulmuley, Narayanan, Sohoni, 2012)

 $c_{\lambda,\mu}^{
u}
eq 0$ can be decided in polynomial time.

Theorem (Adve, Robichaux, Yong, 2017)

 $C^{\nu}_{\lambda,\mu}(Y) \not\equiv 0$ can be decided in polynomial time.

Eigenvalue Problem

Problem

For A, B, C $r \times r$ Hermitian matrices with real eigenvalues λ, μ, ν , how does A + B = C constrain $(\lambda, \mu, \nu) \in (\mathbb{R}^r)^3$?

Horn (1962) conjectured a recursive list of inequalities, and Klyachko (1998) proved another list of inequalities. Klyachko's inequalities are satisfied by $(\lambda,\mu,\nu)\in\mathbb{Z}_{\geq 0}^{3r}\iff c_{N\lambda,N\mu}^{N\nu}\neq 0$ for some N, which imply those of Horn given another result.

Theorem (Knutson-Tao, 1999)

$$c_{\lambda,\mu}^{\nu} \neq 0 \iff c_{N\lambda,N\mu}^{N\nu} \neq 0 \text{ for all } N \in \mathbb{Z}_{>0}.$$

These inequalities precisely control the vanishing of $c_{\lambda,\mu}^{\nu}$.

A Variation on the Eigenvalue Problem

Problem

For A, B, C Hermitian matrices with real eigenvalues λ, μ, ν , how does $A + B \ge C$ constrain $(\lambda, \mu, \nu) \in (\mathbb{R}^r)^3$?

Friedland (2000) proved inequalities that constrain those eigenvalues.

Theorem (Anderson-Richmond-Yong, 2013)

$$C_{\lambda,\mu}^{\nu} \not\equiv 0 \iff C_{N\lambda,N\mu}^{N\nu} \not\equiv 0 \text{ for all } N \in \mathbb{Z}_{>0}.$$

Combining this result with Friedland's, they show that Friedland's inequalities control the vanishing of $C_{\lambda \mu}^{\nu}$.

Proving the Complexity of $\mathcal{C}^{ u}_{\lambda,\mu}$

Our proof is a modification of the argument of Mulmuley, Narayanan, Sohoni.

We use a combinatorial rule for $C^{\nu}_{\lambda,\mu}$ in terms of edge-labeled tableaux of Thomas and Yong to construct a polytope $P^{\nu}_{\lambda,\mu}$ where

- $lacksquare P^{
 u}_{\lambda,\mu}\cap \mathbb{Z}^{2\ell(
 u)\ell(\mu)}
 eqarnothing$ if and only if $C^{
 u}_{\lambda,\mu}>0$, and
- $P_{\lambda,\mu}^{\nu} = P_{N\lambda,N\mu}^{N\nu}.$

For example, T is an edge-labeled tableau that would be detected by $C_{(4,4,3),(4,2,1)}^{(3,2,2)}$ is

$$T = \begin{array}{|c|c|c|c|}\hline & & & & \\ & & 1 & 1 \\ \hline & 1 & 2 & 3 \\ \hline & 2 & 3 & 3 \\ \hline & 3 & 3 & \\ \hline \end{array}$$

Proof Sketch

- $\begin{array}{l} \blacksquare \ P^{\nu}_{\lambda,\mu} \neq \varnothing \iff C^{\nu}_{\lambda,\mu} \not\equiv 0. \\ (\Rightarrow) \ P^{\nu}_{\lambda,\mu} \neq \varnothing \ \text{implies there exists a rational vertex.} \\ \text{Then for some N, $NP^{\nu}_{\lambda,\mu} = P^{N\nu}_{N\lambda,N\mu}$ has a lattice point.} \\ \text{By construction of $P^{N\nu}_{N\lambda,N\mu}$, $C^{N\nu}_{N\lambda,N\mu} \not\equiv 0$.} \\ \text{By equivariant saturation, $C^{\nu}_{\lambda,\mu} \not\equiv 0$.} \end{array}$
- Considering the linear programming problem and any objective function, we need to know the feasibility.
 - Simplex method has worst case exponential complexity.
 - Ellipsoid method has polynomial time complexity.

Conclusion and Summary

- The factorial schur functions $s_{\lambda}(X; Y)$ enrich the ordinary schur functions $s_{\lambda}(X)$.
- Through a variation on the eigenvalue problem, we discussed a connection between eigenvalues λ, μ, ν of matrices $A + B \geq C$ and when $C_{\lambda,\mu}^{\nu} \not\equiv 0$.
- We proved $C_{\lambda,\mu}^{\nu}\not\equiv 0$ is polynomial time to decide by combining combinatorial rule with equivariant saturation and integer programming.