Digital Logic Circuits, Digital Component and Data Representation

Course: MCA-I
Subject: Computer Organization
And Architecture
Unit-1

The World is Not Just Integers

- Programming languages support numbers with fraction
 - Called floating-point numbers
 - Examples:

```
3.14159265...(\pi)
```

0.00000001 or 1.0×10^{-9} (seconds in a nanosecond)

86,400,000,000,000 or 8.64×10^{13} (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

- We use a scientific notation to represent
 - Very small numbers (e.g. 1.0×10^{-9})
 - Very large numbers (e.g. 8.64×10^{13})
 - Scientific notation: $\pm d \cdot f_1 f_2 f_3 f_4 \dots \times 10^{\pm e_1 e_2 e_3}$

Floating-Point Numbers

- Examples of floating-point numbers in base 10 ...
 - -5.341×10^3 , 0.05341×10^5 , -2.013×10^{-1} , -201.3×10^{-3}
- Examples of floating-point numbers in base 2 \(\frac{1}{\ldots} \) decimal point
 - -1.00101×2^{23} , 0.0100101×2^{25} , -1.101101×2^{-3} , -1101.101×2^{-6}
 - Exponents are kept in decimal for clarity

 binary point →
 - The binary number $(1101.101)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 13.625$
- Floating-point numbers should be normalized
 - Exactly one non-zero digit should appear before the point
 - In a decimal number, this digit can be from 1 to 9
 - In a binary number, this digit should be 1
 - Normalized FP Numbers: 5.341×10^3 and -1.101101×2^{-3}
 - NOT Normalized: 0.05341×10^5 and -1101.101×2^{-6}

Floating-Point Representation

- A floating-point number is represented by the triple
 - S is the Sign bit (0 is positive and 1 is negative)
 - Representation is called sign and magnitude
 - E is the Exponent field (signed)
 - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
 - F is the Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

S	Exponent	Fraction
---	----------	----------

Value of a floating-point number = $(-1)^S \times val(F) \times 2^{val(E)}$

Next...

- Floating-Point Numbers
- IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

IEEE 754 Floating-Point Standard

- Found in virtually every computer invented since 1980
 - Simplified porting of floating-point numbers
 - Unified the development of floating-point algorithms
 - Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
 - 1-bit sign + 8-bit exponent + 23-bit fraction

S	Exponent ⁸	Fraction ²³
---	-----------------------	------------------------

- Double Precision Floating Point Numbers (64 bits)
 - 1-bit sign + 11-bit exponent + 52-bit fraction

S	Exponent ¹¹	Fraction ⁵²								
(continued)										

Normalized Floating Point Numbers

• For a normalized floating point number (S, E, F)

S
$$F = f_1 f_2 f_3 f_4 \dots$$

- Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$
 - IEEE 754 assumes hidden 1. (not stored) for normalized numbers
 - Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number is

$$\begin{array}{l} (-1)^S \times (1 \cdot F)_2 \times 2^{\mathrm{val}(E)} \\ (-1)^S \times (1 \cdot f_1 f_2 f_3 f_4 \dots)_2 \times 2^{\mathrm{val}(E)} \\ (-1)^S \times (1 + f_1 \times 2^{-1} + f_2 \times 2^{-2} + f_3 \times 2^{-3} + f_4 \times 2^{-4} \dots)_2 \times 2^{\mathrm{val}(E)} \\ -1)^S \text{ is 1 when } S \text{ is 0 (positive), and -1 when } S \text{ is 1 (negative)} \end{array}$$

Biased Exponent Representation

- How to represent a signed exponent? Choices are ...
 - Sign + magnitude representation for the exponent
 - Two's complement representation
 - Biased representation
- IEEE 754 uses biased representation for the exponent
 - Value of exponent = val(E) = E Bias (Bias is a constant)
- Recall that exponent field is 8 bits for single precision
 - E can be in the range 0 to 255
 - -E=0 and E=255 are reserved for special use (discussed later)
 - -E = 1 to 254 are used for normalized floating point numbers
 - Bias = 127 (half of 254), val(E) = E 127
 - val(E=1) = -126, val(E=127) = 0, val(E=254) = 127

Biased Exponent – Cont'd

- For double precision, exponent field is 11 bits
 - E can be in the range 0 to 2047
 - -E=0 and E=2047 are reserved for special use
 - -E = 1 to 2046 are used for normalized floating point numbers
 - Bias = 1023 (half of 2046), val(E) = E 1023
 - val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023
- Value of a Normalized Floating Point Number is

$$(-1)^{S} \times (1 \cdot F)_{2} \times 2^{E-\text{Bias}}$$

$$(-1)^{S} \times (1 \cdot f_{1} f_{2} f_{3} f_{4} \dots)_{2} \times 2^{E-\text{Bias}}$$

$$(-1)^{S} \times (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4} \dots)_{2} \times 2^{E-\text{Bias}}$$

Examples of Single Precision Float

- Solution:
 - Sign = 1 is negative
 - Exponent = $(011111100)_2 = 124$, E bias = 124 127 = -3
 - Significand = $(1.0100 \dots 0)_2 = 1 + 2^{-2} = 1.25$ (1. is implicit)
 - Value in decimal = $-1.25 \times 2^{-3} = -0.15625$
- What is the decimal value of?
 01000010010011001100000000000000000
- Solution:
 - Value in decimal 1.01001100 ... $0)_2 \times 2^{130-127} = (1.01001100 ... 0)_2 \times 2^3 = (1010.01100 ... 0)_2 = 10.375$

Examples of Double Precision Float

• What is the decimal value of this Double Precision float?

(0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Solution:
 - Value of exponent = $(10000000101)_2$ Bias = 1029 1023 = 6
 - Value of double float = $(1.00101010 \dots 0)_2 \times 2^6$ (1. is implicit) = $(1001010.10 \dots 0)_2 = 74.5$
- What is the decimal value of?
- Do it yourself! (answer should be $-1.5 \times 2^{-7} = -0.01171875$)

Converting FP Decimal to Binary

- Convert –0.8125 to binary in single and double precision
- Solution:

```
0.8125 = (0.1101)_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = \frac{13}{16}
```

- Fraction bits can be obtained using multiplication by 2
 - $0.8125 \times 2 = 1.625$
 - $0.625 \times 2 = 1.25$
 - $0.25 \times 2 = 0.5$
 - $0.5 \times 2 = 1.0$
- Stop when fractional part is 0

Single Pecision

- Fraction = $(0.1101)_2$ = $(1.101)_2 \times 2^{-1}$ (Normalized)
- Exponent = -1 + Bias = 126 (single precision) and 1022 (double)

 Double Precision

Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

- Exponent bias = 254 127 = 127 (largest exponent for SP)
- Significand = $(1.111 ... 1)_2$ = almost 2
- Value in decimal $\approx 2 \times 2^{127} \approx 2^{128} \approx 3.4028 \dots \times 10^{38}$
- Solution for Double Precision:

- Value in decimal $\approx 2 \times 2^{1023} \approx 2^{1024} \approx 1.79769 \dots \times 10^{308}$
- Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:

- Exponent bias = 1 127 = -126 (smallest exponent for SP)
- Significand = $(1.000 \dots 0)_2 = 1$
- Value in decimal = $1 \times 2^{-126} = 1.17549 \dots \times 10^{-38}$
- Solution for Double Precision:

- Value in decimal = $1 \times 2^{-1022} = 2.22507 \dots \times 10^{-308}$
- Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

- Zero
 - Exponent field E = 0 and fraction F = 0
 - +0 and -0 are possible according to sign bit S
- Infinity
 - Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum E = 255
 - For double precision with 11-bit exponent: maximum E = 2047
 - Infinity can result from overflow or division by zero
 - $-+\infty$ and $-\infty$ are possible according to sign bit S
- NaN (Not a Number)
 - NaN is a special value represented with maximum E and $F \neq 0$
 - Result from exceptional situations, such as 0/0 or sqrt(negative)
 - Operation on a NaN results is NaN: Op(X, NaN) = NaN

Denormalized Numbers

- IEEE standard uses denormalized numbers to ...
 - Fill the gap between 0 and the smallest normalized float
 - Provide gradual underflow to zero
- Denormalized: exponent field E is 0 and fraction $F \neq 0$
 - Implicit 1. before the fraction now becomes 0. (not normalized)
- Value of denormalized number (S, 0, F)

Single precision: $(-1)^S \times (0.F)_2 \times 2^{-126}$

Double precision: $(-1)^S \times (0 \cdot F)_2 \times 2^{-1022}$

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value				
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$				
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$				
Zero	0	0	± 0				
Infinity	255	0	# 8				
NaN	255	nonzero	NaN				

Double-Precision	Exponent = 11	Fraction = 52	Value				
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$				
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$				
Zero	0	0	± 0				
Infinity	2047	0	± 8				
NaN	2047	nonzero	NaN				

Floating-Point Comparison

- IEEE 754 floating point numbers are ordered
 - Because exponent uses a biased representation ...
 - Exponent value and its binary representation have same ordering
 - Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction ⇒ larger magnitude
 - $0 < (0.F)_2 \times 2^{E_{min}} < (1.F)_2 \times 2^{E-Bias} < \infty (E_{min} = 1 Bias)$
 - Because sign bit is most significant ⇒ quick test of signed
- Integer comparator can compare magnitudes

Next...

- Floating-Point Numbers
- IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

Floating Point Addition Example

- Consider Adding (Single-Precision Floating-Point):

 - $+ 1.1000000000000110000101_2 \times 2^2$
- Cannot add significands ... Why?
 - Because exponents are not equal
- How to make exponents equal?
 - Shift the significand of the lesser exponent right
 - Difference between the two exponents = 4 2 = 2
 - So, shift right second number by 2 bits and increment exponent
 - $1.1000000000000110000101_2 \times 2^2$
 - $= 0.0110000000000001100001 01_2 \times 2^4$

Floating-Point Addition – cont'd

```
    Now, ADD the Significands:

\times 2^4
+ 1.100000000000110000101
                                    \times 2^2
\times 2^4
+ 0.0110000000000001100001 01 \times 2^{4} (shift right)
+10.0100010000000001100011 01 \times 2^{4} (result)
  Addition produces a carry bit, result is NOT normalized
 Normalize Result (shift right and increment exponent):
  + 10.0100010000000001100011
                                    01 \times 2^{4}
= + 1.0010001000000000110001 101 \times 2^{5}
```

Rounding

- Single-precision requires only 23 fraction bits
- However, Normalized result can contain additional bits

```
1.0010001000000000110001 \downarrow 1 01 \times 2^{5}
```

- Two extra bits are needed for rounding $\frac{1}{1}$ Sticky Bit: S = 1
 - Round bit: appears just after the normalized result
 - Sticky bit:appears after the round bit (OR of all additional bits)
- Since RS = 11, increment fraction to round to nearest
 - $1.0010001000000000110001 \times 2^{5}$

10010

+1

 $\frac{1.0010001000000000110010 \times 2^{5}}{2^{5}}$

(Rounded)

Floating-Point Subtraction Example

- Sometimes, addition is converted into subtraction
 - If the sign bits of the operands are different
- Consider Adding:

❖ 2's complement of result is required if result is negative

Floating-Point Subtraction – cont'd

- + 1.0000000101100010001101 \times 2⁻⁶
- $-1.0000000000000010011010 \times 2^{-1}$
- 0.111101111111110111010101 10011 \times 2⁻¹ (result is negative)
- * Result should be normalized
 - → For subtraction, we can have leading zeros. To normalize, count the number of leading zeros, then shift result left and decrement the exponent accordingly.

 Guard bit
 - 0.11110111111110111010101 (\mathbf{j}) 0011 × 2⁻¹
 - 1.11101111111111101110101011 0011 × 2⁻² (Normalized)
- Guard bit: guards against loss of a fraction bit
 - ♦ Needed for subtraction, when result has a leading zero and should be normalized.

Floating-Point Subtraction – cont'd

Next, normalized result should be rounded

❖ Since R = 0, it is more accurate to truncate the result even if S = 1. We simply discard the extra bits.

❖ IEEE 754 Representation of Result

```
    1
    0
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

Rounding to Nearest Even

- Normalized result has the form: $1. f_1 f_2 ... f_l \mathbf{R} \mathbf{S}$
 - The round bit **R** appears after the last fraction bit f_l
 - The sticky bit S is the OR of all remaining additional bits
- Round to Nearest Even: default rounding mode
- Four cases for **RS**:
 - Result is Exact, no need for rounding
 - **RS** = 01 → **Truncate** result by discarding **RS**
 - RS = 11 → Increment result: ADD 1 to last fraction bit
 - RS = 10 → Tie Case (either truncate or increment result)
 - Check Last fraction bit f_l (f_{23} for single-precision or f_{52} for double)
 - If f_l is 0 then truncate result to keep fraction even
 - If f_l is 1 then increment result to make fraction even

Additional Rounding Modes

- IEEE 754 standard specifies four rounding modes:
- 1. Round to Nearest Even: described in previous slide
- 2. Round toward +Infinity: result is rounded up Increment result if sign is positive and \mathbf{R} or $\mathbf{S} = \mathbf{1}$
- 3. Round toward -Infinity: result is rounded down Increment result if sign is negative and \mathbf{R} or $\mathbf{S} = \mathbf{1}$
- 4. Round toward 0: always truncate result
- Rounding or Incrementing result might generate a carry
 - This occurs when all fraction bits are 1
 - Re-Normalize after Rounding step is required only in this case

Example on Rounding

- Round following result using IEEE 754 rounding modes:
- Round to Nearest Even: Round Bit L Sticky Bit
 - Increment result since RS = 10 and $f_{23} = 1$

 - Renormalize and increment exponent (because of carry)
- Round towards $+\infty$:
- Round towards $-\infty$: Truncate result since negative
- Round towards 0: Increment since negative and $\mathbf{R} = \mathbf{1}$

Truncate always

Floating Point Addition / Subtraction

1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger

exponent.

Start

- 2. Add / Subtract the significands according to the sign bits.
- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Shift significand right by $d = |E_X - E_Y|$

Add significands when signs of X and Y are identical, Subtract when different X - Y becomes X + (-Y)

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Floating Point Adder Block Diagram

Next...

- Floating-Point Numbers
- IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

Floating Point Multiplication Example

- Consider multiplying:
 - $-1.110\ 1000\ 0100\ 0000\ 1010\ 0001_2\ \times\ 2^{-4}$
- \times 1.100 0000 0001 0000 0000 0000₂ \times 2⁻²
- Unlike addition, we add the exponents of the operands
 - Result exponent value = (-4) + (-2) = -6
- Using the biased representation: $E_Z = E_X + E_Y Bias$
 - $-E_X = (-4) + 127 = 123$ (*Bias* = 127 for single precision)
 - $-E_V = (-2) + 127 = 125$
 - $-E_Z = 123 + 125 127 = 121$ (value = -6)
- Sign bit of product can be computed independently
- Sign bit of product = $Sign_X XOR Sign_Y = 1$ (negative)

Floating-Point Multiplication, cont'd

• Now multiply the significands:

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

- 24 bits \times 24 bits \rightarrow 48 bits (double number of bits)
- \bigstar Multiplicand \times 0 = 0 Zero rows are eliminated
- \bigstar Multiplicand \times 1 = Multiplicand (shifted left)

Floating-Point Multiplication, cont'd

 Normalize Product: $-10.101110001111110111111001100... \times 2^{-6}$ Shift right and increment exponent because of carry bit • Round to Nearest Even: (keep only 23 fraction bits) 1.01011100011111011111100 X Round bit = $\mathbf{1}$, Sticky bit = $\mathbf{1}$, so increment fraction **IEEE 754 Representation**

Floating Point Multiplication

Start

- 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent
- 2. Multiply the significands. Set the result sign to positive if operands have same sign, and negative otherwise
- 3. Normalize the product if necessary, shifting its significand right and incrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Biased Exponent Addition $E_z = E_x + E_y - Bias$

Result sign $S_Z = S_X \operatorname{\mathbf{xor}} S_Y \operatorname{\mathbf{can}}$ be computed independently

Since the operand significands $1.F_X$ and $1.F_Y$ are ≥ 1 and ≤ 2 , their product is ≥ 1 and ≤ 4 .

To normalize product, we need to shift right at most by 1 bit and increment exponent

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Extra Bits to Maintain Precision

- Floating-point numbers are approximations for ...
 - Real numbers that they cannot represent
- Infinite variety of real numbers exist between 1.0 and 2.0
 - However, exactly 2²³ fractions represented in Single Precision
 - Exactly 2⁵² fractions can be represented in Double Precision
- Extra bits are generated in intermediate results when ...
 - Shifting and adding/subtracting a p-bit significand
 - Multiplying two p-bit significands (product is 2p bits)
- But when packing result fraction, extra bits are discarded
- Few extra bits are needed: guard, round, and sticky bits
- Minimize hardware but without compromising accuracy

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - Integer comparator used to compare magnitude of FP numbers
- Includes special exceptional values: NaN and ±∞
 - Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞ , and $1/\infty$ is 0
 - Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - Between smallest normalized number $1.0 \times 2^{E_{min}}$ and zero
 - Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - Gradual underflow to zero

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - Extra bits to maintain precision: guard, round, and sticky
 - Four rounding modes
 - Division by zero yields Infinity
 - Zero divide by zero yields Not-a-Number
 - Other complexities
- Implementing the standard can be tricky
 - See text for description of 80x86 and Pentium bug!
- Not using the standard can be even worse

Accuracy can be a Big Problem

Value1	Value2	Value3	Value4	Sum
1.0E+30	-1.0E+30	9.5	-2.3	7.2
1.0E+30	9.5	-1.0E+30	-2.3	-2.3
1.0E+30	9.5	-2.3	-1.0E+30	0

- * Adding double-precision floating-point numbers (Excel)
- Floating-Point addition is NOT associative
- Produces different sums for the same data values
- * Rounding errors when the difference in exponent is large

Next...

- Floating-Point Numbers
- IEEE 754 Floating-Point Standard
- Floating-Point Addition and Subtraction
- Floating-Point Multiplication
- MIPS Floating-Point Instructions

MIPS Floating Point Coprocessor

- Called Coprocessor 1 or the Floating Point Unit (FPU)
- 32 separate floating point registers: \$f0, \$f1, ..., \$f31
- FP registers are 32 bits for single precision numbers
- Even-odd register pair form a double precision register
- Use the even number for double precision registers
 - \$f0, \$f2, \$f4, ..., \$f30 are used for double precision
- Separate FP instructions for single/double precision
 - Single precision: add.s, sub.s, mul.s, div.s (.s extension)
 - Double precision: add.d, sub.d, mul.d, div.d (.d extension)
- FP instructions are more complex than the integer ones
 - Take more cycles to execute

FP Arithmetic Instructions

Instruction	Meaning	Format					
add.s fd, fs, ft	(fd) = (fs) + (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	0
add.d fd, fs, ft	(fd) = (fs) + (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	0
sub.s fd, fs, ft	(fd) = (fs) - (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	1
sub.d fd, fs, ft	(fd) = (fs) - (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	1
mul.s fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	0	ft ⁵	fs ⁵	fd ⁵	2
mul.d fd, fs, ft	$(fd) = (fs) \times (ft)$	0x11	1	ft ⁵	fs ⁵	fd ⁵	2
div.s fd, fs, ft	(fd) = (fs) / (ft)	0x11	0	ft ⁵	fs ⁵	fd ⁵	3
div.d fd, fs, ft	(fd) = (fs) / (ft)	0x11	1	ft ⁵	fs ⁵	fd ⁵	3
sqrt.s fd, fs	(fd) = sqrt (fs)	0x11	0	0	fs ⁵	fd ⁵	4
sqrt.d fd, fs	(fd) = sqrt (fs)	0x11	1	0	fs ⁵	fd ⁵	4
abs.s fd, fs	(fd) = abs (fs)	0x11	0	0	fs ⁵	fd ⁵	5
abs.d fd, fs	(fd) = abs (fs)	0x11	1	0	fs ⁵	fd ⁵	5
neg.s fd, fs	(fd) = - (fs)	0x11	0	0	fs ⁵	fd ⁵	7
neg.d fd, fs	(fd) = - (fs)	0x11	1	0	fs ⁵	fd ⁵	7

FP Load/Store Instructions

Separate floating point load/store instructions

♦ lwc1: load word coprocessor 1

♦ ldc1: load double coprocessor 1

General purpose register is used as the base register

Instruction		Meaning	Format			at
lwc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x31	\$t0	\$f2	$im^{16} = 40$
ldc1	\$f2, 40(\$t0)	(\$f2) = Mem[(\$t0)+40]	0x35	\$t0	\$f2	$im^{16} = 40$
swc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x39	\$t0	\$f2	$im^{16} = 40$
sdc1	\$f2, 40(\$t0)	Mem[(\$t0)+40] = (\$f2)	0x3d	\$t0	\$f2	$im^{16} = 40$

* Better names can be used for the above instructions

```
\diamondsuit 1.s = lwc1 (load FP single), 1.d = ldc1 (load FP double)
```

 \Rightarrow s.s = swc1 (store FP single), s.d = sdc1 (store FP double)

FP Data Movement Instructions

❖ Moving data between general purpose and FP registers

♦ mfc1: move from coprocessor 1 (to general purpose register)

♦ mtc1: move to coprocessor 1 (from general purpose register)

Moving data between FP registers

♦ mov.d: move double precision float = even/odd pair of registers

Instruc	ction	Meaning	Format					
mfc1	\$t0, \$f2	(\$t0) = (\$f2)	0x11	0	\$tO	\$f2	0	0
mtc1	\$t0, \$f2	(\$f2) = (\$t0)	0x11	4	\$t0	\$f2	0	0
mov.s	\$f4, \$f2	(\$f4) = (\$f2)	0x11	0	0	\$f2	\$f4	6
mov.d	\$f4, \$f2	(\$f4) = (\$f2)	0x11	1	0	\$f2	\$f4	6

FP Convert Instructions

- Convert instruction: cvt.x.y
 - ♦ Convert to destination format x from source format y
- Supported formats

```
\Rightarrow Single precision float = .s (single precision float in FP register)
```

- ♦ Double precision float = .d (double float in even-odd FP register)
- ♦ Signed integer word = .w (signed integer in FP register)

Instruction	Meaning	Format					
cvt.s.w fd, fs	to single from integer	0x11	0	0	fs ⁵	fd ⁵	0x20
cvt.s.d fd, fs	to single from double	0x11	1	0	fs ⁵	fd ⁵	0x20
cvt.d.w fd, fs	to double from integer	0x11	0	0	fs ⁵	fd ⁵	0x21
cvt.d.s fd, fs	to double from single	0x11	1	0	fs ⁵	fd ⁵	0x21
cvt.w.s fd, fs	to integer from single	0x11	0	0	fs ⁵	fd ⁵	0x24
cvt.w.d fd, fs	to integer from double	0x11	1	0	fs ⁵	fd ⁵	0x24

FP Compare and Branch Instructions

- ❖ FP unit (co-processor 1) has a condition flag
 - ♦ Set to 0 (false) or 1 (true) by any comparison instruction
- * Three comparisons: equal, less than, less than or equal
- * Two branch instructions based on the condition flag

Instruc	ction	Meaning	Format					
c.eq.s	fs, ft	cflag = ((fs) == (ft))	0x11	0	ft ⁵	fs ⁵	0	0x32
c.eq.d	fs, ft	cflag = ((fs) == (ft))	0x11	1	ft ⁵	fs ⁵	0	0x32
c.lt.s	fs, ft	cflag = ((fs) < (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3c
c.lt.d	fs, ft	cflag = ((fs) < (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3c
c.le.s	fs, ft	cflag = ((fs) <= (ft))	0x11	0	ft ⁵	fs ⁵	0	0x3e
c.le.d	fs, ft	cflag = ((fs) <= (ft))	0x11	1	ft ⁵	fs ⁵	0	0x3e
bc1f	Label	branch if (cflag == 0)	0x11	8	0	im ¹⁶		
bc1t	Label	branch if (cflag == 1)	0x11	8	1		im ¹⁶	

Example 1: Area of a Circle

```
.data
      .double
                           3.1415926535897924
  pi:
  msg: .asciiz
                          "Circle Area = "
.text
main:
  ldc1 $f2, pi
                          # $f2,3 = pi
  li $\vert v0, 7
                           # read double (radius)
                           # $f0,1 = radius
  syscall
  mul.d $f12, $f0, $f0
                           # $f12,13 = radius*radius
  mul.d $f12, $f2, $f12
                           # $f12,13 = area
  la $a0, msg
  li $v0, 4
                           # print string (msg)
  syscall
         $v0, 3
  li
                           # print double (area)
                           # print $f12,13
  syscall
```

Example 2: Matrix Multiplication

```
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
  for (int i=0; i!=n; i=i+1)
   for (int j=0; j!=n; j=j+1) {
     double sum = 0.0;
     for (int k=0; k!=n; k=k+1)
        sum = sum + y[i][k] * z[k][j];
     x[i][j] = sum;
}
```

- Matrices x, y, and z are n×n double precision float
- Matrix size is passed in a0 = n
- Array addresses are passed in \$a1, \$a2, and \$a3
- What is the MIPS assembly code for the procedure?

Address Calculation for 2D Arrays

- Row-Major Order: 2D arrays are stored as rows
- Calculate Address of: X[i][j]
 - = Address of $X + (i \times n + j) \times 8$ (8 bytes per element)

- $Address of Y[i][k] = Address of Y + (i \times n + k) \times 8$
- Address of Z[k][j] = Address of Z + (k×n+j)×8

Matrix Multiplication Procedure – 1/3

Initialize Loop Variables

```
mm: addu $t1, $0, $0  # $t1 = i = 0; for 1<sup>st</sup> loop
L1: addu $t2, $0, $0  # $t2 = j = 0; for 2<sup>nd</sup> loop
L2: addu $t3, $0, $0  # $t3 = k = 0; for 3<sup>rd</sup> loop
sub.d $f0, $f0, $f0  # $f0 = sum = 0.0
```

- Calculate address of y[i][k] and load it into \$f2,\$f3
- Skip i rows (i×n) and add k elements

```
L3: mul $t4, $t1, $a0  # $t4 = i*size(row) = i*n addu $t4, $t4, $t3  # $t4 = i*n + k sll $t4, $t4, 3  # $t4 = (i*n + k)*8 addu $t4, $a2, $t4  # $t4 = address of y[i][k] l.d $f2, 0($t4)  # $f2 = y[i][k]
```

Matrix Multiplication Procedure – 2/3

- Similarly, calculate address and load value of z[k][j]
- Skip k rows (k×n) and add j elements

```
mul $t5, $t3, $a0  # $t5 = k*size(row) = k*n
addu $t5, $t5, $t2  # $t5 = k*n + j
sll $t5, $t5, 3  # $t5 = (k*n + j)*8
addu $t5, $a3, $t5  # $t5 = address of z[k][j]
l.d $f4, 0($t5)  # $f4 = z[k][j]
```

• Now, multiply y[i][k] by z[k][j] and add it to \$f0

```
mul.d $f6, $f2, $f4  # $f6 = y[i][k]*z[k][j]
add.d $f0, $f0, $f6  # $f0 = sum
addiu $t3, $t3, 1  # k = k + 1
bne $t3, $a0, L3  # loop back if (k != n)
```

Matrix Multiplication Procedure – 3/3

• Calculate address of x[i][j] and store sum

```
mul $t6, $t1, $a0  # $t6 = i*size(row) = i*n
addu $t6, $t6, $t2  # $t6 = i*n + j
sll $t6, $t6, 3  # $t6 = (i*n + j)*8
addu $t6, $a1, $t6  # $t6 = address of x[i][j]
s.d $f0, 0($t6)  # x[i][j] = sum
```

• Repeat outer loops: L2 (for j = ...) and L1 (for i = ...)

```
addiu $t2, $t2, 1  # j = j + 1
bne $t2, $a0, L2  # loop L2 if (j != n)
addiu $t1, $t1, 1  # i = i + 1
bne $t1, $a0, L1  # loop L1 if (i != n)
```

• Return:

```
jr $ra # return
```

Reference

Reference Book

- Computer Organization & Architecture 7e By Stallings
- Computer System Architecture By Mano
- Digital Logic & Computer Design By Mano