

Europäisches Patentamt European Patent Office

Office européen des brevets

EP 1 143 002 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

Serial No. 10/620,061 Docket No. 529642000221

- (43) Date of publication: 10.10.2001 Bulletin 2001/41
- (21) Application number: 99961322.7
- (22) Date of filing: 22.12.1999

- (51) Int Cl.7: C12N 15/29, C12N 5/14, C07K 14/415, C07K 16/16, C12P 21/02, C12Q 1/68, A01H 5/00
- (86) International application number: PCT/JP99/07224
- (87) International publication number: WO 00/37644 (29.06.2000 Gazette 2000/26)

- (84) Designated Contracting States: CH DE FR GB IT LI NL
- (30) Priority: 22.12.1998 JP 36560498
- (71) Applicant: National Institute of Agrobiological Sciences Tsukuba-shi, Ibaraki 305-8602 (JP)
- (72) Inventors:
 - FUKUDA, Atsunori Tsukuba-shi Ibaraki 305-8602 (JP)
 - TANAKA, Yoshiyuki Tsukuba-shi Ibaraki 305-8602 (JP)
- (74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

SODIUM/PROTON COUNTERTRANSPORTER GENE (54)

The present inventors successfully cloned the rice Na+/H+ antiporter gene. It is possible to produce salt tolerant plants by using the isolated gene, or genes with equivalent functions.

Description

Technical Field

5 [0001] The present invention relates to a novel Na+/H+ antiporter derived from plants and the DNA encoding the antiporter, as well as methods for producing and using the same.

Background Art

10

15

20

25

30

35

40

50

55

[0002] Salt tolerance of plants is important to both agriculture and environmental protection. Today, one third of the land on earth is said to be dry land. Further, it is anticipated that the proportion of dry land will increase in the future, due to the progressive desertification of both cultivated land and green land. Considering the prediction that the world population in the year 2050 will be 1.5 times that of today and the serious problems of provisions arising as a result, development of cultivars that grow on land ill-fitted for cultivation, especially on dry land, as well as cultivation techniques for the same is a matter of great urgency. The problem with agriculture on dry land is salt accumulation. In a dry climate, evapotranspiration outstrips precipitation and continued irrigation on land where much is desired for drainage leads to plenty of salt accumulation, due to the deposition of salt on the surface by acceleration of rise in subterranean water level that bear salinity. Examples where cultivation becomes impossible as a result are known from the ancient past, represented by the end of Tigris-Euphrates civilization. The problem still arises today. Thus, innovation of agriculture, on dry land and on land where salt is accumulated, to enhance the salt tolerance of plants is of great importance (Toshiaki Tanno (1983) Kagaku to Seibutsu 21:439-445 "Salt tolerance of crops and mechanism of the same"; Yasutaka Uchiyama (1988) Kagaku to Seibutsu 26:650-659 "Agricultural use of salinenvironment").

[0003] There are two kinds of stress related to salt stress against plants, namely stress by osmotic pressure and stress by ionicity. An osmotic pressure stress is a stress whose action is the same as the stress by dehydration. It results from high osmotic pressure, due to high salinity environment around the plant, which leads to a setback of water absorption of the plant and at the same time deprivation of water from the plant body. It is known that a mechanism exists in the plant to avoid the osmotic pressure stress. The core substances associated with this function are ions (such as K+, Na+, Cl-, organic acid, etc.) as well as substances called compatible solutes. The term "compatible solute" refers to substances such as sugar, proline (a kind of amino acid), and glycine betaine (a quaternary ammonium compound), and so on, which do not disturb the metabolic pathway or inhibit enzymatic action, even when accumulated at a high concentration in the cell. Plant cells accumulate these substances which, in turn, preserve the osmotic pressure balance to the external world (Manabu Ishitani, Keita Arakawa, and Tetsuko Takabe (1990) Chemical Regulation of Plants 25:149-162, "Molecular mechanism of salt tolerance in plants").

[0004] Almost no development has been made regarding the mechanism of plants to avoid ionic stress. Absorption of excess Na+ by the plant cell leads to inhibition of intracellular enzyme reaction and finally to metabolic trouble (Toru Match (1997) Chemical Regulation of Plants 32:198-206, "Salt tolerance mechanism of the plant"). Therefore, it is necessary to eliminate the intracellulary accumulated Na+ from the cell or isolate it into intracellular organs, such as vacuoles. The Na+/H+ antiporter (sodium/proton antiporter) is assumed to play the central role in this process. The Na+/H+ antiporters of plant cells are thought to exist on both the cell membrane and the vacuolar membrane. They utilize the pH gradient formed between the biomembranes by the H+ pump (H+-ATPase and H+-PPase), an element that transports H+ as the energy to transport Na+ existing in the cytoplasm out of the cell or into the vacuole. Moreover, it is presumed that plants contacted with salt of high density, have to retain intercellular K+/Na+ ratio high enough, maintaining the osmotic pressure balance between the cell exterior and interior by accumulating Na+ in the vacuole through the Na+/H+ antiporter.

45 [0005] The Na+/H+ antiporters found existing on plasma membrane are well examined in animals, yeasts, bacteria and so on. On the plasma membrane of an animal cell, H+ is carried by the Na+/H+ antiporter, to maintain the balance of H⁺ in the cell, utilizing the Na⁺ concentration gradient between the membranes formed by Na⁺/K⁺-ATPase. Therefore, the antiporter is presumed to be deeply related with intracellular pH modulation, control of the cell volume, as well as Na+ transport through the plasma membrane (Orlowski, J. and Grinstein, S. (1997) J.Biol.Chem. 272:22373-22376; Aronson, P.S. (1985) Ann. Rev. Physiol. 47:545-560). Na+/H+ antiporters exist in various cells of animals and six isoforms (NHE 1 to 6) have been reported (Orlowski, J. and Grinstein, S. (1997) J.Biol.Chem 272:22373-22376).

[0006] The first gene cloned for yeast was the gene (sod2) from fission yeast (Schizosaccharomyces pombe), which was cloned as a gene related to Na+ transport and salt tolerance (Jia, Z.P., McCul lough, N., Martel, R., Hemmingsen, S. and Young, P.G. (1992) EMBO J. 11:1631-1640). Also, a gene with high identity to this gene has been found from a budding yeast (Saccharomyces cerevisiae), as well as Zygosaccharomyces rouxii (named NHA1 and ZSOD2, respectively) (Prior, C. et-al. (1996) FEBS Letter 387:89-93; Watanabe, Y. et al. (1995) Yeast 11:829-838). Two different Na+/H+ antiporter genes (nhaA, nhaB) have been isolated from E.coli (Karpel, R. et al. (1988) J.Biol.Chem. 263: 10408-10410; Pinner, E. et al. (1994) J.Biol.Chem. 269:26274-26279), each closely related to Na+ transport and salt tolerance. With respect to plants, activities in algae and such have been examined (Katz, A. et al. (1989) Biochim. Biophys. Acta 983:9-14).

[0007] On the other hand, there are only reports on activity in plants for antiporters restricted on vacuolar membranes. To date, Na+/H+ antiporters on the vacuoles have been investigated in connection with salt tolerance in halophytes growing in an environment with high salinity (Matoh, T. et al. (1989) Plant Physiol. 89:180-183; Hassidim, M. et al. (1990) Plant Physiol. 94:1795-1801; Barkla, B.J. et al. (1995) Plant Physiol. 109:549-556), as well as in glycophytes with high salt tolerance, like barley and sugar beet (Hassidim, M. et al. (1990) 94:1795-1801; Blumwald, E. et al. (1987) Plant Physiol. 85:30-33; Garbarino, J. and DuPont, F.M. (1988) Plant Physiol. 86:231-236; Garbarino, J. and DuPont, F.M. (1989) Plant Physiol. 89:1-4; Staal, M. et al. (1991) Physiol.Plant. 82:179-184). The above findings indicate that Na+/H+ antiporters are closely related to salt tolerance of plants. There are several reports on characteristics of Na+/ H+ antiporters on the vacuolar membrane. The Km of the antiporter activity for Na+ is about 10mM similar to that on cytomembrane of mammals (Blumwald, E. et al. (1987) Plant Physiol. 85:30-33; Garbarino, J. and DuPont, F.M. (1988) Plant Physiol. 86:231-236; Orlowski, J. (1993) J.Biol.Chem. 268:16369-16377). Moreover, it is known that amiloride and amiloride derivatives, which are specific inhibitors of Na+ transporters, inhibit the Na+/H+ antiporters on the plant vacuolar membrane and that on the mammalian plasma membrane in a competitive manner (Blumwald, E. et al. (1987) Plant Physiol. 85:30-33; Orlowski, J. (1993) J.Biol.Chem. 268:16369-16377; Tse, C.M. et al. (1993) J.Biol.Chem. 268: 11917-11924; Fukuda, A. et al. (1998) Plant Cell Physiol. 39:196-201). These findings suggest the characteristic similarities between Na+/H+ antiporter on the vacuolar membrane of plants and that on mammalian plasma membrane. There are various reports on Na+/H+ antiporter activity of plants as mentioned above, however, in spite of the various trials done, analysis of the substantial part, namely genes as well as proteins thereof, were still left behind (Katz, A. et al. (1989) Biochim.Biophys.Acta 983:9-14; Barkla, B. and Blumwald, E. (1991) Proc.Natl.Acad.Sci.USA 88: 11177-11181; Katz, A., Kleyman, T.R., and Pick, U. (1994) Biochemistry 33:2389-2393).

[0008] Recently, a gene expected to encode a protein that shares amino acid sequence homology with known Na+/ H+ antiporter has been cloned from *Arabidopsis*; however, the function of this gene remains to be resolved (M.P. Apse *et al.* (1998) Final Programme and Book of Abstracts "11th International Workshop on Plant Membrane Biology", Springer; C.P. Darley *et al.* (1998) Final Programme and Book of Abstracts "11th International Workshop on. Plant Membrane Biology", Springer).

[0009] Examples of Na+/H+ antiporter genes isolated from plants are only those isolated from *Arabidopsis*, a dicotyledon, described above. No isolation of genes from monocotyledoneae, including species such as rice and maize, which are industrially useful crops, have been reported until now.

Disclosure of the Invention

15

20

30

35

40

55

[0010] Of all the important crops, rice is a crop with low salt tolerance. Its growth is inhibited to the halves with 150mM NaCl as compared to barley, which is a highly salt tolerant crop, and shows inhibition of the same level with 250 mM NaCl. Garbarino *et al.* reported the suppression of Na⁺ flow to the shoot by accumulating Na⁺ in the vacuole of the root might increase salt tolerance of barleys (Garbarino, J. and DuPont, F.M. (1988) Plant Physiol. 86:231-236). From verifying this fact, it has been known that the Na⁺/H⁺ antiporter activity of the barley root vacuolar membrane increases through treatment with salt. It has also been known that barley has far and away a higher activity than rice (Garbarino, J. and DuPont, F.M. (1988) Plant Physiol. 86:231-236; Fukuda, A. Yazaki, Y., Ishikawa, T., Koike, S., and Tanaka, Y. (1998) Plant Cell Physiol. 39:196-201).

[0011] On the contrary, the activity does not rise in rice even if it is treated with salt (Fukuda, A. Yazaki, Y., Ishikawa, T., Koike, S., and Tanaka, Y. (1998) Plant Cell Physiol. 39:196-201). Further, Na+ transport from root to the shoot of rice is known to be higher than that of the phragmites, which belong to the *Gramineae* family, like rice, and shows higher salt tolerance (Matsushita, N. and Matoh, T. (1991) Physiol.Plant. 83:170-176). Therefore, it is possible that the strength of Na+/H+ antiporter activity of the root vacuolar membrane is deeply associated with rice salt tolerance. These reports indicate that it might be possible to increase salt tolerance of rice by rising Na+/H+ antiporter activity in the rice root. On this account, there was a desire to isolate genes that might increase Na+/H+ antiporter activity of rice.

[0012] This situation led to the present invention, an object of which is to provide an Na+/H+ antiporter derived from monocotyledoneae, preferably rice, and gene(s) encoding the same, as well as a method for producing and using the same. The present invention provides use of the gene for production of salt tolerant plants as a favorable use of the present DNA.

[0013] The present inventors identified a cDNA clone from rice anthotaxy that shares homology with the Na⁺/H⁺ antiporter (*NHX1*) gene from the budding yeast by analyzing a base sequence from the GeneBank higher plants database. Using this sequence as a probe, the present inventors succeeded in newly cloning the full-length gene designated "OsNHX1", which is expected to encode the Na⁺/H⁺ antiporter of rice.

[0014] The isolated OsNHX1 cDNA is approximately 2.3kb and is presumed to encode a protein of 535 amino acids (Figure 1). From an amino acid hydrophobicity analysis, the protein was detected to have 12 transmembrane regions

(Figure 2).

10

15

20

25

30

35

40

45

50

55

[0015] The amino acid sequence predicted from OsNHX1 was detected to have significant identity with the amino acid sequence of NHX1 and mammalian Na+/H+ antiporter (NHE) (Table 1). Specifically, high identity was seen in the transmembrane region supposed to be involved in ion transport (Figure 3).

- [0016] These three proteins (NHX1 from budding yeast, NHE6 from mammals, and OsNHX1) turned out to form a cluster, according to the dendrogram formed for various Na+/H+ antiporters reported to date (Figure 4). The OsNHX1 protein of the present invention is expected to be expressed in intracellular organs, such as vacuoles, and play an important role in the Na+ transport of the vacuolar membrane, due to the report that NHX1 protein is expressed in the late endosome (Nass, R. and Rao, R. (1998) J.Biol.Chem. 273:21054-21060) and the indication that NHE6 protein is also expressed in the cell (Numata, M., Petrecca, K., Lake, N. and Orlowski J. (1998) J.Biol.Chem. 273:6951-6959). [0017] Further, the present inventors succeeded in obtaining transgenic plants by transferring the isolated *OsNHX1*
- gene into the rice callus and redifferentiating them utilizing Agrobacterium method.
- [0018] The present invention relates to a novel Na+/H+ antiporter derived from monocotyledoneae and the DNA coding said antiporter, as well as methods for production and use, especially for the production of salt tolerant plants using same. More specifically, the present invention provides the following:
 - (1) a DNA selected from the group consisting of:
 - (a) a DNA encoding the protein consisting of the amino acid sequence described in SEQ ID NO: 2, and
 - (b) a DNA comprising the coding region of the base sequence described in SEQ ID NO: 1;
 - (2) a DNA encoding the Na+/H+ antiporter derived from monocotyledoneae selected from the group consisting of:
 - (a) a DNA encoding the protein consisting of the amino acid sequence described in SEQ ID NO:2, wherein one or more amino acids are substituted, deleted, inserted and/or added, and
 - (b) a DNA hybridizing under a stringent conditions to the DNA consisting of the base sequence described in SEQ ID NO:1;
 - (3) the DNA of (2), wherein the monocotyledoneae is a plant belonging to the Gramineae family;
 - (4) a vector comprising the DNA of (1) or (2);
 - (5) a transformant cell having the DNA of (1) or (2), or the vector of (4);
 - (6) the transformant cell of (5), wherein the cell is a plant cell;
 - (7) a protein encoded by the DNA of (1) or (2);
 - (8) a method for production of the protein of (7), which comprises the steps of:

cultivating the transformant cell of (5), and recovering the expressed protein from said cell or the supernatant of the culture thereof;

- (9) a transformant plant comprising the transformant cell of (6);
- (10) the transformant plant of (9), wherein the plant is a monocotyledon;
- (11) the transformant plant of (10), wherein the plant is a plant belonging to the Gramineae family;
- (12) the transformant plant of (11), wherein the plant is rice;
- (13) a transformant plant that is the offspring or clone of the transformant plant of any of (9) to (12);
- (14) a material for the breeding of the transformant plant of any of (9) to (13);
- (15) an antibody that binds to the protein of (7);
- (16) a nucleic acid molecule that hybridizes with the DNA described in SEQ ID NO: 1, and which has a chain length of at least 15 nucleotides.
- [0019] The present invention provides a novel Na+/H+ antiporter derived from monocotyledoneae, as well as a DNA encoding the same. The base sequence of the cDNA encoding the Na+/H+ antiporter "OsNHX1", derived from rice and isolated by the present inventors, is indicated in SEQ ID NO: 1. The amino acid sequence of the protein encoded by the cDNA is described in SEQ ID NO: 2.
- [0020] The "OsNHX1" gene showed significant identity with many known amino acid sequences of the Na+/H+ antiporters, and especially high identity was observed at sites related to ion transport. This finding suggests that "OsNHX1" protein plays an important role in Na+ transport in rice. It is supposed that Na+/H+ antiporters of plants are involved in the securement of osmotic pressure balance in the plant body under a high salinity stress. Thus, it is anticipated that the "OsNHX" gene especially can be applied to production of salt tolerant cultivars.
- [0021] Not only "OsNHX1" protein, but also proteins with equivalent functions, are included in this invention. The

term "proteins with equivalent functions to 'OsNHX1' protein" herein means that the object protein functions as an Na⁺/H⁺ antiporter. The activity of an Na⁺/H⁺ antiporter can be detected, for example, by detecting the H⁺ ejection from the biomembrane vesicle due to addition of Na⁺ as the recovery of fluorescence, by monitoring H⁺ concentration gradient between isolated biomembrane vesicle formed by H⁺-ATPase as the fluorescence extinction of acridine orange (Fukuda, A., Yazaki, Y., Ishikawa, T. Koike, S., and Tanaka, Y. (1998) Plant Cell Physiol. 39:196-201).

5

10

15

20

25

30

35

40

50

55

[0022] In one embodiment, the protein with equivalent function to "OsNHX1" is a mutant protein having amino acid sequence with one or more amino acid substitution, deletion, insertion and/or addition to the amino acid sequence of "OsNHX1" protein (SEQ ID NO: 2), and which retains equivalent functions with "OsNHX1" protein. Such proteins can be prepared, for example, according to the following method. A method inducing mutations in the amino acid of "OsNHX1" can be mentioned as one method well known to ordinary skilled in the art. That is, one ordinary skilled in the art can prepare a modified protein with equivalent functions to "OsNHX1" by modifying the amino acid sequence of "OsNHX1" protein (SEQ ID NO: 2). For example, by utilizing a site-directed mutagenesis method (Kramer, W. & Fritz, H. -J. "Oligonucleotide-directed construction of mutagenesis via gapped duplex DNA" Methods in Enzymology 154:350-367, 1987) and such with the purpose to increase protein activity or the like. Mutations of amino acids also happen to occur in nature. The protein of this invention include proteins having amino acid sequence with 1 or more amino acids substitution, deletion, insertion or addition to the natural amino acid sequence of "OsNHX1" protein (SEQ ID NO: 2), and that retain equivalent functions to natural proteins, regardless whether they are artificial or derived from nature. There is no limitation on the part or the number of amino acid in the protein to be modified, so long as the modified protein retains equivalent functions with the natural "OsNHX1" protein. Generally, amino acidmodifications are done to amino acids within 100 amino acids, preferably within 50 amino acids, much more preferably within 20 amino acids, and most preferably within 5 amino acids.

[0023] In another embodiment, the protein having equivalent functions with "OsNHX1" protein is a protein encoded by a DNA derived from monocotyledoneae "that hybridizes to the DNA encoding "OsNHX1" protein (SEQ ID NO: 1), having an equivalent function with "OsNHX1" protein. Techniques such as hybridization techniques (Southern, E.M.: Journal of Molecular Biology, Vol.98, 503, 1975) and polymerase chain reaction (PCR) techniques (Saiki, R.K. et al. Science, Vol.230, 1350-1354, 1985; Saiki, R.K. et al. Science, Vol.239, 487-491, 1988) can be mentioned as techniques known to those skilled in the art for preparing proteins. That is, it is routine for a person skilled in the art to isolate a DNA with high identity to the "OsNHX1" gene from rice or other monocotyledon and obtain proteins with an equivalent function to "OsNHX1" protein from that DNA, using the base sequence of "OsNHX1" gene (SEQ ID NO: 1) or parts thereof as a probe, and oligonucleotides hybridizing specifically to the base sequence of "OsNHX1" gene (SEQ ID NO: 1) as a primer. Such proteins, derived from monocotyledoneae with an equivalent function to the "OsNHX1" protein, obtainable by hybridization technique or PCR technique, are included in the proteins of this invention.

[0024] Monocotyledoneae, preferably plants belonging to the Gramineae family can be mentioned as plants used as the source of genes for isolation by hybridization techniques and PCR techniques. For example, besides rice, barley (Hordeum *vulgare*), wheat (*Triticum aestivum*), maize (*Zea mays*) and so on can be mentioned, as plants belonging to the Gramineae family. However, it is not limited to them.

[0025] Methods for isolating DNA encoding proteins with an equivalent function to the "OsNHX1" protein using the above-described techniques include, for example, but are not limited to, the following. For example, hybridization of cDNA or genomic libraries, prepared from monocotyledoneae with probes (for example, DNA consisting of the base sequence described in SEQ ID NO: 1 or parts thereof) labeled with ³²P and such, is carried out. Conditions for hybridization using ³²P labeled probes are 25°C (without formamide) as a mild condition and usually 42°C, employing hybridization solutions (50% formamide, 5X SSPE, 2X Denhard's solution, 0.1% (w/v) SDS, and 100 μg/ml of herring sperm DNA (Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY), 2nd Ed.)). Prehybridization is carried out at a minimum for more than an hour, and hybridization is performed for 24 hours. Washing of the hybridized filter is carried out at 25°C (wash solution: 2X SSC, 0.1%SDS) for a mild condition (a condition with low stringency), at 42°C (wash solution: 2X SSC, 0.1%SDS) for an ordinary condition, and at 56°C (wash solution: 0.1X SSC, 0.1%SDS) for a stringent condition (a condition with high stringency).

[0026] If the protein encoded by the DNA isolated as above has an equivalent function as "OsNHX1" protein, it generally shows a high amino acid sequence identity with "OsNHX1" protein. The term "high identity" as used herein refers to an identity higher than at least 60%, preferably higher than 80%, more preferably higher than 85%, and much more preferably higher than 90%. The amino acid sequence identity calculated, for example, by a homology analysis program (Lipman, D.J. and Pearson, W.R. (1985) Science 227, 1435-1441) supplied by GENETYX software (Software development corporation).

[0027] The protein of the present invention can be prepared by methods known to those skilled in the art as recombinant proteins or as natural proteins. Recombinant proteins can be prepared, for example, by inserting a DNA encoding the protein of the present invention into an adequate expression vector, transfecting an appropriate cell with the vector and purifying the protein from the transformant cell, as described later on. Alternatively, natural proteins can be pre-

pared, for example, by exposing cell extracts, prepared from cells that express the protein of the present invention (for example, rice cells), to affinity columns to which antibodies, prepared by immunizing appropriate immune animals with prepared recombinant proteins or partial peptides thereof, are attached, and purifying the proteins bound to the column. [0028] Additionally, the present invention provides DNAs encoding the proteins of the present invention described above. The DNAs of the present invention includes genomic DNAs, cDNAs, and chemosynthetic DNAs and so on, and can be any DNA without limitation, so long as it encodes a protein of the present invention. The base sequence of the "OsNHX1" cDNA, included in the present invention, is shown in SEQ ID NO: 1.

[0029] The genomic DNA, as well as the cDNA can be prepared according to conventional methods, known to those skilled in the art. Genomic DNA, for example, can be isolated using PCR, by designing appropriate primers from the base sequence information of the gene of the present invention, and then screening a genomic library using the obtained amplified DNA fragment as a probe. Alternatively, for example, it is possible to isolate the cDNA from a cDNA library according to the same manner.

10

15

20

25

30

40

45

50

55

[0030] The DNA of the present invention can be, for example, utilized in preparation of recombinant proteins, as well as in production of transformant plants with salt tolerance. In preparing recombinant proteins, generally, a DNA encoding the protein of the present invention is inserted into an appropriate expression vector, the expression vector is transferred into an appropriate cell, the transformed cell is cultivated and the expressed protein is purified.

[0031] Recombinant proteins can be prepared, for example, by transferring vectors, having DNAs encoding the protein of the present invention inserted therein, into cells, such as bacterial cells, like *E.coli*, yeast cells, insect cells, mammalian cells, and so on, by known gene transfer methods, like the electroporation method, the calcium phosphate transfection method and such, then expressing the recombinant proteins in the cell. Recombinant proteins expressed in the host cell can be purified according to methods known to those skilled in the art. For example, it is possible to express the protein as a fusion protein, with glutathione S-transferase (GST), using vectors such as pGEX (Pharmacia) in *E.coli*, and purify it using a glutathione column (Shigeo Ohno and Yoshifumi Nishimura (1997) "Cell Engineering supplement: Protocol of protein experiments" Shujun-sha).

[0032] Moreover, to prepare transformant plants using the DNA of the present invention, a DNA encoding the protein of the present invention is inserted into an appropriate vector, the vector is transferred into a plant cell, and the obtained transformed plant cell is regenerated. The transfer of the plant expression vector into the plant cell can be done for example, according to the species, through methods utilizing Agrobacteriums or methods involving the direct transfer into the cell. Methods that utilize Agrobacteriums, for example, are methods of Nagel et al. (Microbiol.Lett. 67:325 (1990)) and methods of Raineri et al. for rice (Bio/Technology 8:33-38(1990)). These are methods in which Agrobacteriums are transformed with plant expression vectors (pUC system and so on. For example, pCAMBIA vector (Medical Research Council), etc.), and the transformed Agrobacteriums are transferred to plant cells using standard methods, like the leefdisk method, the callus method and so on. Methods for the directly transferring a plant expression vector into a cell include the electroporation method, the particle gun method, the calcium phosphate method, the polyethylene glycol method and so.

[0033] There is no limitation on the plant cells to which vectors of the invention may be transferred, but monocoty-ledonous, preferably plants belonging to the *Gramineae* family are mentioned. Plants, like maize except rice, can be mentioned as plants belonging to the Gramineae family. Incidentally, the "plant cell" of the present invention includes various forms of plant cells, such as suspension culture cells, protoplasts, a section from the leaf, callus, and so on.

[0034] For example, methods, like the callus differentiation method (Kyozuka, J. and Shimamoto, K. (1991) Plant Tissue Culture Manual. Kluwer Academic Publishers, pp B1:1-16; Toki, S. (1997) Plant Molecular Biology 15:16-21), the differentiation method utilizing protoplasts (Shimamoto, K. et al. (1989) Nature 338:274-276; Kyozuka, J. et al. (1987) Mol.Gen.Genet. 206:408-413), and such in response to the kind of plant used, can be utilized to regenerate transgenic plants from transgenic plant cells to which vectors are introduced.

[0035] Transgenic plants produced in this way show high Na+/H+ antiporter activity as compared to wild-type plants, and are supposed to acquire salt tolerance thereby. Moreover, once a transformed plant transfected with the DNA of the present invention is obtained, it is possible to gain descendants from that plant body by syngenesis or agamogenesis. Alternatively, plants can be mass-produced from breeding materials (for example, seeds, fruits, ears, tubers, tubercles, stubs, callus, protoplast, etc.) obtained from the plant, as well as descendants or clones thereof. Plant cells transferred with the DNA of the present invention, plant bodies including these cells, descendants and clones of the plant, as well as breeding materials obtained from the plant, its descendant and clones, are included in the present invention.

[0036] Such high Na+/H+ antiporter activity as compared to wild- type plants can be achieved either by high expression of Na+/H+ antiporter (change in quantity) or by expression of Na+/H+ antiporter with higher activity (change in quality), or may be a result of both.

[0037] Further, the present invention provides antibodies binding to the proteins of the present invention described above. Both polyclonal antibodies and monoclonal antibodies are included in the present invention. Preparation of the antibody can be conducted according to methods known to those skilled in the art, for example, using methods of

Harlow *et al.* (Harlow, E. and Lane, D. (1988) Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor; New York). Polyclonal antibodies can be obtained by injecting fusion proteins, synthesized in *E.coli* or synthesized peptides, into a rabbit as antigens, obtaining rabbit antiserum, and purifying antibodies therefrom by affinity chromatography. Monoclonal antibodies can be obtained by injecting antigens to mouse or rats, cloning and preparing hybridomas, and subjecting thus obtained antibody to affinity chromatography.

[0038] Furthermore, the present invention provides nucleic acid molecules that hybridize with the DNA encoding the protein of the present invention, and which have a chain length of at least 15 nucleotides. Such nucleic acid molecules can be used, for example, as probes to detect or isolate the DNA encoding the protein of the present invention, as well as primers to enhance such DNA. Such nucleic acid molecules preferably hybridize specifically to the DNA encoding the protein of the present invention. The term "hybridizes specifically" as used herein means that it hybridizes to the DNA encoding the protein of the present invention but it does not hybridize to DNAs encoding other proteins under a normal hybridization condition, preferably under a stringent condition for hybridization.

[0039] In addition, such nucleic acid molecules can be used as antisense oligonucleotides, ribozymes, and so on, that suppress expression of the protein of the present invention. Derivatives and modified forms of the antisense oligonucleotides can be used in the same manner as the antisense oligonucleotide itself. The antisense oligonucleotide does not have to be completely complementary to the nucleotides constituting the given region of the DNA or mRNA, and may include 1 or more nucleotide mismatches, provided it can suppress expression of the protein. An antisense oligonucleotide and a ribozyme that suppresses expression of a protein of the present invention can be a very useful tool for the function analysis of the protein of the present invention.

Brief Description of the Drawings

[0040]

5

10

15

20

30

35

Figure 1 shows the base sequence and the predicted amino acid sequence of the rice Na+/H+ antiporter (*OsNHX1*) cDNA. The amino acid sequence is expressed in one letter notation.

Figure 2 shows the hydrophobicity plot of the amino acids of the OsNHX1 protein. The abscissa indicates the amino acid residue, and the ordinate indicates the degree of hydrophobicity. Predicted transmembrane regions are shown as boxed numbers.

Figure 3 shows the amino acid sequence comparison between OsNHX1 and other Na+/H+ antiporters. Transmembrane regions (M3 to M6) are indicated above the sequence. Regarding the symbols under amino acids, "*" represents that all amino acids are conserved; ":" and "." represent that amino acid are similar. ": " indicates much more similarity than those indicated by ".". The box with A represents the binding site of the specific inhibitor, amiloride, and the boxes with B represent sites with high identities to the mammalian Na+/H+ antiporter.

Figure 4 shows the result of phylogeny analysis of Na+/H+ antiporter using ClustalX (Thompson, J.D. *et al.* (1994) Nucleic Acids Research, 22:4673-4680)(Neighbor Joining (NJ) method).

Best Mode for Carrying out the Invention

[0041] The present invention will be specifically explained with reference to the following examples. However, it should be noted that the present invention is not limited by these examples.

[Example 1] Cloning of the rice Na+/H+ antiporter gene

45 [0042] A sequence having identity to Na+/H+ antiporter (NHX1) obtained from budding yeast was analyzed from the database for higher plants of GeneBank. A cDNA clone from the cDNA library of rice panicle was identified. The amino acid sequence predicted from the clone had 37% identity with NHX1. It was presumed that the obtained cDNA clone did not have the full-length base sequence. Therefore, using the cDNA clone as a probe and using the cDNA library constructed from mRNA prepared from the root of rice (*Oryza sativa* L. cv Nipponbare) seedling as the template, selection of a cDNA clone having the full-length insertion was performed.

[0043] Rice seeds were imbibed overnight, and placed on cotton mesh suspended over a nutrient solution (0.5 mM NH₄H₂PO₄, 1 mM KNO₃, 0.5 mM MgSO₄, 12.5 μ M Fe-EDTA, 1 mM CaCl₂, micronutrients). Cultivation was performed 7 days with a cultivation condition: day(brightness 40 μ mol m⁻² s⁻¹) for 14 hours at 30°C, night for 10 hours at 25°C, humidity at 75%.

[0044] Poly (A+) RNA from the root of rice seedling was prepared and size fractionated by 5 to 25% sucrose density-gradient by centrifugation. Then, a cDNA library was constructed from the fractions containing relatively large poly (A+) RNAs (Tanaka, Y. et al. (1989) Plant Physiol. 90:1403-1407); Double stranded cDNA was synthesized from size fractioned poly(A+)RNA by the method of Gubler and Hoffman (Gubler, U. and Hoffman, B.J. (1983) Gene 25:263-269),

using oligo dT as the primer. The sample was then size fractioned by high performance liquid chromatography (Tosoh, Tokyo, model CCPD,) using Asahipack GS710 column (Asahi Chemical Industry Co. Ltd., Tokyo; 2.5 X 50 cm). cDNAs larger than 2kb were inserted to the EcoRI site of \(\lambda gt11. \)

[0045] Plaque hybridization was conducted using constructed λ phages having cDNA libraries, and cDNA clones that show identity with the NHX1 as probes. Selecting a vector with the longest cDNA insert from the plaques that showed signal, cloning was performed by inserting the cutout cDNA into a pBluescript (KS+)vector (Stratagene). Confirmation that the obtained cDNA clone is a full-length cDNA was made by the signal size from the Northern hybridization using RNAs extracted from the rice plant body and the obtained clone as the probe. All base sequence of the cDNA, to which the whole isolated gene (referred to as OsNHX1) is inserted, was determined (Figure 1).

[Example 2] Base sequence and amino acid sequence analysis of OsNHX1 gene

[0046] The full-length sequence was 2330 base pairs, the 5' untranslated region was 296 base pairs, the translated region was 1608 base pairs and the 3' untranslated region was 426 base pairs. The protein encoded by *OsNHX1* was predicted to be 535 amino acids long, and the molecular weight was calculated to be 59,070 daltons. 59% of the predicted amino acids sequence was hydrophobic, 22% was neutral amino acids, and 19% was hydrophilic amino acids. Thus, the protein seemed to be highly hydrophobic. The result of hydrophobicity analysis, by the method of Kyte and Doolittle (Kyte, J. and Doolittle, R.F. (1982) J.Mol.Biol. 157:105-132), is shown in Figure 2. Twelve transmembrane regions were detected by the method of TMpred program (Hofmann, K. and Stoffel, W. (1993) Biol.Chem. Hoppe-Seyler 374:166).

[0047] Significant identity was detected for the amino acid sequence predicted from *OsNHX1* with the amino acid sequence of NHX1 and mammalian Na+/H+ antiporter (NHE) (Table 1; NHX1 in the table represents that derived from yeast [*S.cerevisiae*], NHE6 from human, and NHE1 to 4 from rat. The values on the table were calculated by the homology-analyzing program (Lipman, D.J. and Pearson, W.R. (1985) <u>Science 227</u>:1435-1441) of GENETYX (ver.10) software (Software Development Company)). Especially high identity was observed in the transmembrane regions, which were suspected to be involved in ion transport (Figure 3). ⁸³LFFIYLLPPI⁹², a part of the amino acid sequence of OsNHX1 (residues 83-92 of SEQ ID NO.2), is very well conserved in NHX1 and NHE and is expected to be the binding site of amiloride, an inhibiter of the eucaryotic Na+/H+ antiporter (Counillon, L. *et al.* (1993) <u>Proc.Natl.Acad. Sci.USA 90</u>:4508-4512) (Figure 3A). In addition, the 6th and 7th transmembrane regions are well preserved in eucaryotic Na+/H+ antiporter and, thus, is predicted to play an important role in the transport of Na+ and H+ (Orlowski, J. and Grinstein, S. (1997) J.Biol.Chem. 272:22373-22376). The 5th and 6th transmembrane regions in the amino acid sequence of OsNHX1 showed high identity to these regions (Figure 3B). The above results indicate that the protein encoded by *OsNHX1* has the activity of Na+/H+ antiporter.

Ta

Table 1

Amino a	icid sequenc	e identity	of OsNH	X1 to othe	er Na+/H+	antiporter	s (%)
	OsNHX1	NHX1	NHE6	NHE1	NHE2	NHE3	NHE4
OsNHX1	100	29.5	33.0	30.1	29.4	26.7	27.7
NHX1		100	36.1	28.6	29.1	29.3	32.0
NHE6			100	31.9	29.1	31.8	28.6
NHE1				100	48.9	37.1	45.5
NHE2					100	44.7	66.0
NHE3						100	44.6
NHE4		ĺ					100

[0048] Dendrogram of various Na+/H+ antiporters reported to date, namely mammalian NHE, budding yeast (*S. cerevisiae*) NHX1 and NHA1, Sod2 (which is expected to be expressed on the plasma membrane of fission yeast, *S. pombe*), yeast (Zygosaccharomyces *rouxii*) ZSod3, *E.coli* NhaA and NhaB, as well as OsNHX1 (noted as "OsNHX1" in the figures) made according to NJ method, revealed that three of them, that is NHX1, NHE6 and OsNHX1, form a cluster (Figure 4). It has been reported that NHX1 protein is expressed in the late endosome (Nass, R. and Rao, R. (1998) J.Biol.Chem. 273:21054-21060), and it was indicated that NHE6 protein is also expressed in the cell (Numata, M., Petrecca, K., Lake, N. and Orlowski, J., J.Biol.Chem. 273:6951-6959). Therefore, it is expected that OsNHX1 protein is expressed in the intracellular organs, like the vacuole and so on, and plays an important role in Na+ transport in these organs.

35

30

5

10

15

20

25

40

45

50

[Example 3] Production of transformed rice expressing rice Na+/H+ antiporter gene

[0049] OsnHX1 inserted in the BamHI site of pBluescript KS+ (STRATAGENE) was excised with KpnI and Notl. Then, OsnHX1 was inserted downstream of the cauliflower mosaic virus 35S promoter of pMSH1 (for high expression) and pMSH2 (for repressed expression), both of which are derived from Ti-plasmid and are transferred with kanamycin resistance gene and hygromycine resistance gene (pMSH1: Kawasaki, T. et al. (1999) Proceedings of the National Academy of Sciences of the U.S.A. 96:10922-10926; pMSH2: the multi cloning site has the opposite direction compared to pMSH1). Using the constructed vector, the rice callus was transformed with Agrobacterium tumefaciens. The callus was induced from the seed, and screened after the infection with Agrobacterium was complete using hygromycine. The screened callus was differentiated to obtain the transformant plant. Transformation and differentiation were basically performed according to the method of Toki (Toki, S. (1997) Plant Molecular Biology 15,16-21).

Industrial Applicability

[0050] According to the present invention, it is expected that isolated Na+/H+ antiporter gene can render salt tolerance to the plant by expressing it in the plant. Therefore, it may conduce, for example, an increase in the harvest of crops, due to improvements in salt tolerance, by transfer into useful crops such as rice, which will make them resistant to harm by salt in dry land and such.

SEQUENCE LISTING

5 <110 National Institute of Agrobiological Sciences 10 <120> Sodium/Proton antiporter gene 15 <130> MOA-006PCT <150> JP 1998-365604 <151> 1998-12-22 25 <160> 2 30 <170> Patentin Ver. 2.0 35 <210> 1 <211> 2330 <212> DNA 40 <213> Oryza sativa <220> <221> CDS 50 <222> (297)..(1901)

<400> 1

	gaga	agag	gag	11118	glago	g ag	gc I Cg	gcgcg	g aai	gcga	agc	caac	cgag	gag	aggt	cicgai	60
5	acca	aato	cc (gattt	ctca	a co	tgaa	atcco	cco	ccca	acgt	tcc!	cgt	ttc .	aatc	tgttcg	120
0	tctg	gegaa	itc (gaat 1	cttt	g ti	i	ittic	tc1	taati	ttta	ccgg	ggaal	itg	tega	attagg	180
5	cati	caco	caa (cgago	aaga	ig gg	ggag	i gga t	. tgg	gttgg	gtta	aago	tcce	gca	tcttg	gcggcg	240
eo	gaaa	atcto	egc	tetel	tcto	t go	ggt	gggtg	g gc(eggag	gaag	tege	cgc	egg	tgagg	gc atg Met	299
25												•				1	
	ggg	atg	gag	gtg	gcg	gcg	gcg	cgg	ctg	ggg	gct	ctg	tac	acg	acc	tcc	347
30	Gly	Met	Glu	Val	Ala	Ala	Ala	Arg	Leu	Gly	Ala	Leu	Tyr	Thr	Thr	Ser	
				5					10					15			
35	gac	tac	gcg	tcg	gtg	ġtg	tcc	atc	aac	ctg	ttc	gtc	gcg	ctg	ctc	tgc	395
															Leu		
10			20					25					30				
15	gcc	tgc	atc	gtc	ctc	ggc	cac	ctc	ctc	gag	gag	aat	cgc	t gg	gtc	aat	443
	Ala	Cys	He	Val	Leu	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp	Val	Asn	
50		35					40					45					
		i				a 4 -	01-	0.4 -		01-			<u>.</u>		- اس	a t =	401
5														•	gtg		491
	GIU	261	ııe	.inr	на	Leu	116	116	ыу	Leu	Cys.	ınr	ыу	va I	Val	116	

	50				•	55					60					0.5	
5																	
	ttg	ctg	atg.	acc	aaa	ggg	aag	agc	tcg	cac	t t'a	ttc	gtc	ttc	agt	gag	539
10	Leu	Leu	Met	Thr	Lys	Gly	Lys	Ser	Ser	His	Leu	Phe	Val	Phe	Ser	Glu	
				•	70					75					80		
15						·								•			•
	gat	ctc	ttc	ttc	atc	tac	ctc	ctc	cct	ccg	atc	atc	itc	aat	gca	ggt	587
•	Asp	Leu	Phe	Phe	He	Tyr	Leu	Leu	Pro	Pro	He	Ile	Phe	Asn	Ala	Gly	
20				85					90.					95			
25	ttt	cag	gta	aag	aaa	aag	caa	ttc	ttc	cgg	aat	ttc	atg	acg	atc	aca	635
	Phe	Gln	Val	Lys	Lys	Lys	Gln	Phe	Phe	Arg	Asn	Phe	Met	Thr	He	Thr	
30			100					105					110				
	t t a	ttt	gga	gcc	gtc	ggg	aca	atg	ata	tcc	ttt	ttc	aca	ata	tct	a t t	683
35	Leu	Phe	Gly	Ala	Val	Gly	Thr	Met	He	Ser	Phe	Phe	Thr	lle	Ser	lle	
		115					120					125				•	•
40																	
	gct	gcc	att	gca	ata	tic	agc	aga	a.t g	aac	att	gga	acg	ctg	gat	gta	731
45	Ala	Ala	He	Ala	Ile	Phe	Ser	Arg	Met	Asn	He	Gly	Thr	Leu	Asp	Val	
	130					135					140					145	
50												•					
50	gga	gat	ttt	ctt	gca	att	gga	gcc	atc	ttt	tct	gcg	aca	gat	tct	glc	779
	Gly	Asp	Phe	Leu	Ala	He	Gly	Ala	He	Phe	Ser	Ala	Thr	Asp	Ser	Val	
55					150				•	155					160	:	

	tgc	aca	ttg	cag	gtc	ctc	aat	cag	gat	gag	aca	CCC	ttt	ttg	tac	agt	827
5	Cys	Thr	Leu	Gln	Val	Leu	Asn	Gln	Asp	Glu	Thr	Pro	Phe	Leu	Tyr	Ser	
				165					170					175			
													•				
10	ctg	gta	ttc	ggt	gaa	ggt	gtt	gtg	aac	gat	gc t	aca,	tca	att	gtg	ctt	875
	Leu	Val	Phe	Gly.	Glu	Gly	Val	Val	Asn	Asp	Ala	Thr	Ser	He	Val	Leu	
15 .			180				•	185			•		190				
																•	
20	ttc	aac	gca	cta	cag	aac	ttt	gat	ctt	glc	cac	ata	gat	gcg	gc t	gic	923
	Phe	Asn	Ala	Leu	Gln	Asn	Phe	Asp	Leu	Val	His	Ile	Asp	Ala	Ala	Val	•
		195					200					205					
25																	
	gtt	ctg	aaa	ttc	ttg	ggg	aac	ttc	ttt	tat	tta	ttt	ttg	tcg	agc	acc	971
30	Val	Leu	Lys	Phe	Leu	Gly	Asn	Phe	Phe	Tyr	Leu	Phe	Leu	Ser	Ser	Thr	
	210					215					220					225	
35															•		
	ttc	ctt	gga	gta	ttt	gct	gga	ttg	ctc	agt	gca	tac	ata	atc	aag	aag	1019
40	Phe	Leu	Gly	Val	Phe	Ala	Gly	Leu	Leu	Ser	Ala	Tyr	lle	He	Lys	Lys.	
40					230				••	235					240		
															,		
45	cla	tac	att	gga	agg	cat	ict	act	gac	cgt	gag	gtt	gcc	ctt	atg	atg	1067
	Leu	Tyr	Ile	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Leu	Met	Met	
50				245				•	250					255 ·			•
					•												
	ctc	atg	gc t.	tac	çtt	tca	tat	atg	ctg	gc t	gag	ttg	cta	gat	ttg	agc	1115
55	Leu	Met	Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Leu	Asp	Leu	Ser	

	aag	aag	gca	ccg	aat	gaa	aaa	ata	acc	tgg	aga	cag	caa	gt t	gta	ata	1451
5	Lys	Lys	Ala	Pro	Asn	Glu	Lys	Ile	Thr	Trp	Arg	Gln	Gln	Val	Val	He	•
	370					375					380					385	
	tgg	tgg	gct	ggg	ctg	alg	aga	gga	gct	gtg	tcg	att	gct	ctt	gc t	tac	1499
	Trp	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Ile	Ala	Leu	Ala	Туг	
15					390		•			395					400		
							•										
20	aat	aag	ttt	aca	aga	tct	ggc	cat	act	cag	ctg	cac	ggc	aat	gca	ata	1547
	Asn	Lys	Phe	Thr	Arg	Ser	Gly	His	Thr	Gln	Leu	His	Gly	Asn	Ala	He	
				405					410	•		•		415			
25										•							
	alg	atc	acc	agc	acc	atc	act	gtc	gtt	ctt	ttt	agc	act	alg	gta	ttt	1595
30	Met	He	Thr	Ser	Thr	Ile	Thr	Val	Val	Leu	Phe	Ser	Thr	Met.	Yal	Phe	
	•		420				•	425					430				
35																	
	ggg	atg	atg	aca	aag	cca	ttg	atc	agg	ctg	ctg	cta	ccg	gcc	tca	ggc	1643
	Gly	Met	Met	Thr	Lys	Pro	Leu	He	Arg	Leu	Leu	Leu	Pro	Ala	Ser	Gly	•
40		435					440					445					
	•			-	•			•									·
45	cat	cct	gtc	acc	tct	gag	cct	tca	tca	cca	aag	tcc	ctg	cat	tct	cct	1691
								Ser		·	•						
· .	450			,		455					460					465	
50																	
	cto	cia	202	ງຕາ	ρiσ	്രാ	ggt	tct	σar	ctc	gan	aσt	363	ጸቦጥ	aar	at f	1739.
55																	1100.
	ren	ren	1111	261	mei	GIII	GIY	Ser	vzh	rea	GIU	261	1111	1111	กรถ	116	

					470			•		475					480		
5					•												
	gtg	agg	cct	tcc	agc	ctc	cgg	atg	ctc	ctc	acc	aag	ccg	acc	cac	ac t	1787
10	Val	Arg	Pro	Ser	Ser	Leu	Arg	Me.t	Leu	Leu	Thr	Lys	Pro	Thr	His	Thr	
				485					490		•			495			
15																	
	gtc	cac	tac	tac	tgg	cgc	aag	t·t c	gac	gac	gcg	ctg	atg	cga	ccg	atg	1835
	Val	His	Tyr	Tyr	Trp	Arg	Lys	Phe	Asp	Asp	Ala	Leu	Met	Arg	Pro	Met	
20			500					505					510				
25	ttt	ggc	ggg	cgc	ggg	ttc	gtg	ccc	ttc	tcc	cct	gga	tca	cca	acc	gag	1883
	Phe	Gly	Gly	Arg	Gly	Phe	Val	Pro	Phe	Ser	Pro	Gly	Ser	Pro	Thr	Glu	
30		515					520					525				•	
	cag	agc	cat	gga	gga	aga	tgaa	acagi	gc a	aaaga	aatg	ga ga	aatgg	gaat	g		1931
35	Gln	Ser	Hie	Clv	C132	Ara											

gttgatgagg agaatacatg taaaatgtga cagcaaaaga gagaaggcaa gttttgggtt 1991

45

tgtagagttt ggctgctgct aatgagttgt tgatagtgcc tatattcttc agaacttcag 2051

50

atggtgcctc accaaggcct aagagccagg aggaccttct gataatggtt cgggatgatt 2111

535

530

40

ggitiglici gicaggatga accetagtga gigacacagg gigatgiget ecgacaacet 2171

	gtaa	aatti	itg 1	lagat	laac	a go	ccca	11118	, tac	ctg	tcta	cca	ICIII	lag	ttgg	egggtg	2231
5	ttci	itte	cta g	gttgo	caco	c te	gcate	gtaaa	ı atg	gaaa	ttct	ccg	ccaaa	aat	agat	tgtgt	2291
10	gtal	taata	aat i	Lttgo	ttgg	gt te	gaaaa	aaaa	a a a a	aaaa	aaa				•	٠	2330
15																	
	<210	0> 2									•						
20	<21 !	1> 53	35														
	<212	2> PI	RT .									•					
25	<213	3> 0	ryza	sati	iva												
	<400	0> 2															
30	Met	Gly	Met	Glu	Val	Ala	Ala	Ala	Arg	Leu	Gly	Ala	Leu	Туг	Thr	Thr	
	1				5					10					15		•
35																	•
	Ser	Asp	Tyr	Ala	Ser	Yal	Val	Ser	He	Asn	Leu	Phe	Val	Ala	Leu	Leu	•
40				20					25 		,			30			
	Cys	Ala	Cys	Ile	Val	Leu	Gly	His	Leu	Leu	Glu	Glu	Asn	Arg	Trp	Val	
45			35					40					45				
																•	
50	Asn	Glu	Ser	Ile	Thr	Ala	Leu	lle	lle	Gly	Leu	Cys	Thr	Gly	Val	Val	
		50					55					60					
55																	

lle Leu Leu Met Thr Lys Gly Lys Ser Ser His Leu Phe Val Phe Ser

	65					10					(5					80	
5																	
	Glu	Asp	Leu	Phe	Phe	He	Tyr	Leu	Leu	Pro	Pro	Ile	Ile	Phe	Asn	Ala	
10					85			٠		90					95		
				•						,							
15	Gly	Phe	Gln	Val	Lys	Lys	Lys	Gln	Phe	Phe	Arg	Asn	Phe	Met	Thr	Ile	
				100			•		105		•			110			
					:												
	Thr	Leu	Phe	Gly	Ala	Val	Gly	Thr	Met	He	Ser	Phe	Phe	Thr	He	Ser	
			115					120					125				
25																	
	He	Ala	Ala	lle	Ala	He		Ser	Arg	Met	Asn		Gly	Thr	Leu	Asp	
30		130					135					140					
	W . 1	01		D!		4.1		01	4.1	11.	n.	0		T)		0	
35 .		Gly	Asp	Phe	Len		116	Gly	Ala	ile		Ser	Ala	Inr	ASP		
	145					150		•			155					160	
	Val	Cua	Th -		Cin	Vol	Lou	Ann	Cin	400	Cla	Th =	Dro	Dha	Lou	T	
40	Yai	Cys	1111	Leu	165	Yaı	Leu	WZII	GIII	170	GIU	1111	rio	rne	175	1 9 1	
					100			•	••	110					113		
45	Ser	Leu	Val	Dho	Glv	Glu	Clv	Val	Val	A e n	4 s n	Δla	Thr	Ser.	Ile	Val	
	561	Leu	141	180	Uly	Giu	diy	141	185	Vali	νsh	NIG	1111	190	110	141	
50				100					100					130			
	1 en	Phe	Acn	412	Len	Gln	Aen	Phe	Aen	I a II	Val	Hic	ماآ	Asn	Ala	41 a	
55		1116	195	111 a	LCU.	0111	11311	200	, usp	LCU	141	1113	205	uah	ma	1114	
			100		•			- 0					500				

Val	Val	Leu	Lys	Phe	Leu	Gly	Asn	Phe	Phe	Туг	Leu	Phe	Leu	Ser	Ser ·	
	210					215					220					
Thir	Phe	Leu	Gly	Val	Phe	Ala	Gly	Leu	Leu	Ser	Ala	Tyr	lle	lle	Lys	
225			•		230					235					240	
												•				
Lys	Leu	Tyr	Ile	Gly	Arg	His	Ser	Thr	Asp	Arg	Glu	Val	Ala	Leu	Met	
				245	٠.				250					255		
•																
Met	Leu	Met	Ala	Tyr	Leu	Ser	Tyr	Met	Leu	Ala	Glu	Leu	Leu	Asp	Leu	
			260					265			•	1	270			
												•				
Ser	Gly	He	Leu	Thr	Val	Phe	Phe	Cys	Gly	He	Val	Met	Ser	His	Tyr	
		275					280		•			285				
													•			
Thr	Trp	His	Asn	Val	Thr	Glu	Ser	Ser	Arg	Val	Thr	Thr	Lys	His	Ala	
	290					295	•				300					
Phe	Ala	Thr	Leu	Ser	Phe	He	Ala	Glu	Thr	Phe	Leu	Phe	Leu	Tyr	Val	
305					310					315					320	
Gly	Met	Asp	Ala	Leu	Asp	Ile	Glu	Lys	Trp	Glu	Phe	Ala	Ser	Asp	Arg	
									•							
			•													
Pro	Glv	Lvs	Ser	He	Glv	He	Ser	Ser	Ile	Leu	Leu	Glv	Leu	Val	Leu	
	-, •				. •							Ť	350			
	Thr 225 Lys Met Ser Thr Phe 305	210 Thr Phe 225 Lys Leu Met Leu Ser Gly Thr Trp 290 Phe Ala 305	Thr Phe Leu 225 Lys Leu Tyr Met Leu Met Ser Gly Ile 275 Thr Trp His 290 Phe Ala Thr 305 Gly Met Asp	Thr Phe Leu Gly 225 Lys Leu Tyr Ile Met Leu Met Ala 260 Ser Gly Ile Leu 275 Thr Trp His Asn 290 Phe Ala Thr Leu 305 Gly Met Asp Ala Pro Gly Lys Ser								210			Thi	Thir Phe Leu Gly Val Phe Ala Gly Leu Leu Ser Ala Tyr Ile Ile Lys 230

	He	Gly	Arg	Ala	Ala	Phe	Val	Phe	Pro-	Leu	Ser	Phe	Leu	Ser	Asn	Leu
5			355		•			360				•	365	•		
								. •								
0	Thr	Lys	Lys	Ala	Pro	Asn	Glu	Lys	Ile	Thr	Trp	Arg	Gln	Gln	Val	Val
		370					375					380				
15	Ile	Trp	Trp	Ala	Gly	Leu	Met	Arg	Gly	Ala	Val	Ser	Ile	Ala	Leu	Ala
	385					390					395	•				400
20																
	Tyr	Asn	Lys	Phe	Thr	Arg	Ser	Gly	His	Thr	Gln	Leu	His	Gly	Asn	Ala
25			·		405					410					415	
	Ile	Met	He	Thr	Ser	Thr	Ile	Thr	Val	Val	Leu	Phe	Ser	Thr	Met	Val
30				420					425					430		
						٠			•							
35	Phe	Glý	Met	Met	Thr	Lys	Pro	Leu	Ile	Arg	Leu	Leu	Leu	Pro	Ala	Ser
			435					440					445			
10							•		••							
	Glv	His	Pro	Val	Thr	Ser	Glu	Pro	Ser	Ser	Pro	Lys	Ser	Leu	His	Ser
		450					455					460				
15										٠						
	Pro	ua l	Leu	Thr	Ser	Met	Gln	Glv	Ser	Asn	Len	Glu	Ser	Thr	Thr	Asn
50		DCu	LCu	1111	501	470	Oin		501	пор		014	561	1111		
	465					# 1 U					475					480
55	11-	V. 1	A	n		0	T	1	Me 4	1	T	ጥ	1	D	ጥட	tr: -
55	11e	val	Arg	210	261	261	ren	Arg	mei	ren	ren	1 D T	LYS	rro	inr	nıs

485 490 495

5

10

15

20

25

30

35

Thr Val His Tyr Tyr Trp Arg Lys Phe Asp Asp Ala Leu Met Arg Pro

500

505

510

Met Phe Gly Gly Arg Gly Phe Val Pro Phe Ser Pro Gly Ser Pro Thr

515

520

525

Glu Gln Ser His Gly Gly Arg

530

535

Claims

- 1. A DNA selected from the group consisting of:
 - (a) a DNA encoding the protein consisting of the amino acid sequence described in SEQ ID NO: 2, and
 - (b) a DNA comprising the coding region of the base sequence described in SEQ ID NO: 1.
- 2. A DNA encoding an Na+/H+ antiporter derived from monocotyledoneae selected from the group consisting of:
 - (a) a DNA encoding the protein consisting of the amino acid sequence described in SEQ ID NO:2, wherein one or more amino acids are substituted, deleted, inserted and/or added, and
 - (b) a DNA hybridizing under stringent conditions to the DNA consisting of the base sequence described in SEQ ID NO:1.

40

- 3. The DNA of claim 2, wherein the monocotyledoneae is a plant belonging to the Gramineae family.
- 4. A vector comprising the DNA of claims 1 or 2.
- 5. A transformant cell having the DNA of claims 1 or 2, or the vector of claim 4.
 - 6. The transformant cell of claim 5, wherein the cell is a plant cell.
 - 7. A protein encoded by the DNA of claims 1 or 2.

50

8. A method for production of the protein of claim 7, which comprises the steps of :

cultivating the transformant cell of claim 5, and recovering the expressed protein from said cell or the supernatant of the culture thereof.

55

- 9. A transformant plant comprising the transformant cell of claim 6.
- 10. The transformant plant of claim 9, wherein the plant is a monocotyledon.

11. The transformant plant of claim 10, wherein the plant is a plant belonging to the Gramineae family. 12. The transformant plant of claim 11, wherein the plant is rice. 5 13. A transformant plant that is the offspring or clone of the transformant plant of any of claims 9 to 12. 14. A material for the breeding of the transformant plant of any of claims 9 to 13. 15. An antibody that binds to the protein of claim 7. 10 16. A nucleic acid molecule that hybridizes with the DNA described in SEQ ID NO: 1, and which has a chain length of at least 15 nucleotides. 15 20 25 30 35 40 45 50

55

Figure 1

101	GAGAAGAGAGTTTTGTAGCGAGCTCGCGCGAATCCGAACCCAACCGAGAGAGGTCTCCATACCAAATCCCGGATTTCTCAACCTGAATCCCCCCCACGT TCCTCGTTTCAATCTGTTCGTCGCGCAATCGAATCTTTGTTTTTTTT
301	GGATGGAGGTGCCGGGGGGGGGGGGGGGGGGGGGGGGGG
401	CATCUTCTCCGCCACCTCCTCGACGACAATCGCTGGGTCAATGACTCCATCACCGCGCTCATCATCGGGCTCTGCACCGGCGTGGTGATCTTGCTGATG
501	ACCARAGGGAAGAGCTCGCACTTATTCGTCTTCAGTGAGGATCTCTTCTTCATCTACCTCCTCCCTC
601	ANAAGENATTETTCCGGAATTTCATGACGATCACATTATTTGGAGECGTCGGGACAATGATATCTTTTCACAATATCTATTGCTGCCATTGCAATATT X Q P P R N P N T I T L P G A V G T N I S P P T I S I Å A I À I P
701	CAGCAGAATGAACATTGGAACGCTCGATCTAGGAGATTTTCTTGCAATTGGACCCATCTTTTCTGCGACAGATTCTGTCTG
801	CAGGATGAGACACCCTTTTTUTACAGTCTGGTATTCGGTGAAGGTCTTGTGAACGATGCTACATCAATTGTGCTTTTCAACGCACTACAGAACTTTGATC Q D Z T P P L I S L V P G E G V V H D A T S I V L P H A L Q N P D L
901	TTGTCCACATACATGCGGCTGTCGTTCTGAAATTCTTGGGGAACTTCTTTTATTTTTTTGTCGAGCACCTTCCTT
1001	TOCATACATAATCAAGAAGCTATACATTGGAAGGCATTCTACTGACCGTGAGGTTCCCCTTATGATGCTCATGCCTTACCTTTCATATATGCTGGCTG
1101	TIGCINGAITIGAGCGGCATICTCHCCGIATICTICIGGGTATIGTAATUTCACAITACACTIGGCATAACGTCACAGAGAGTTCAAGAGTTACAACAA L L D L S G 1 L T V P P C G I V M S H Y T W H H V T E 5 S R V T T X
1201	AGENCICATTICCAACTCTGTCCTTCATTGCTGAGACTTTTCCTCTTGTTTGGGATGGAT
1301	CAGACCTGCCAAATCCATTGCGATAAGCTCAATTTTGCTAGGATTGGTTCTGATTGGAAGAGCTGCTTTTGTATTCCCGCTGTCGTTCTTGTCCGAACCTA R P G X S I G I S S I L L C L V L I G R A A P V P P L S P L S N L
1401	ACRARGRACGCACCGRATGRARANTANCCTGGGGGCAGCCAAGTTGTAATATGGTCGGCTGGGCTG
1501	ATAAGTTTACAAGATCTGGCCATACTCAGCTGCACGGCAATGCAATAATGATCACCAGCACCATCACTGTGGTTCTTTTTAGCACTATGGTATTTGGGAT K P T R S G B 7 Q L B G N A I M I T S T I T V V L P S T N V P G N
1601	GATGACAAAGCCATTGATCAGGCTGCTGCTACCGGCCTCAGGCCATCCTGTCACCTCTGAGCCTTCATCACCAAAGTCCCTGCATTCTCCTGACA H T K P L I R L L L P A S G H P V T S B P S S P K S L H S P L L T
1701	AGCATGCAAGGTTCTGACCTCGAGAGTACAACCAACATTGTGAGGCCTTCCAGCCTCCGGATGCTCCTCACCAAGCCGACCCACACTGTCCACTACTACT S M Q G S D L E S T T H I V R P S S L R M L L 7 K P T B T V H Y I W
1801	GGCGCAAGTTCGACGACGCGCTGATGCGACCGATGTTTGGCGGGCCCCGGGTTCGTCCCCTTGTCCCCTGGATCACCGAGCAGGCAG
2001 2101 2201	ATCARCACTGCAAAGAAATGAUAATGGAATGGTTGATGAGGGAGAATACATGTAAAATGTGACAGCAAAAGAGAGAG

Figure 2

Figure 3

Α	. <u>M3</u>	M4	
OsNHX1	FSED FFIYLLPPITFNAGFQVKKKQFFR	NFMTITLFGAVGTMISFFTISIAAIAIFSRM	138
NHX1	FNSSYFFNVLLPPITLNSGYELNQVNFFNI	NMLSILIFAIPGTFISAVVIGIILYIWTFLG	179
NHE6	FDPEVFFNILLPPITFYAGYSLKRRHFFR	NLGSILAYAFLGTAISCFVIGSIMYGCVTLM	205
NHE1	LQSDVFFLFLLPPITLDAGYFLPLRQFTE	NLGTILIFAVVGTLWNAFFLGGLLYAVCLVG	219
NHE2	MKTOVFFLYLLPPIVLDAGYFMPTRPFFEI	NLGTIFWYAVVGTLWNSIGIGLSLFGICQIE	80
NHE3	LTPTLFFFYLLPPIVLDAGYFMPNRLFFG	NLGTILLYAVIGTIWNAATTGLSLYGVFLSG	166
NHE4	MDSSTYFLYLLPPTVLESGYFMPTRPFFEI	NIGSILWWAGLGALINAFGIGLSLYFICQIK	184
	: :* *****;; :*: : * ·	•: :• : •:	
		•:	
В	M5	M6	
OsNHX1	NIGTLDVGUFLAIGAIFSATDSVC	TLQVLNQDET-PFLYSLVFGEGVVNDATSIV	192
NHX1	LESIDISFADAMSVGATLSATDPVT	ILSIFNAYKVDPKLYTIIFGESLLNDAISIV	235
NHE6	KVTGQLAGDFYFTTCLLFGAIVSATDPVT	VLAIFHELQVDVELYALLFGESVLNDAVAIV	265
NHE1	GEQINNIGLLUTLLFGSIISAVDPVA	VLAVFEEIHINELLHILVFGESLLNDAVTVV	276
NHEZ	AFGLSDITLLONLLFGSLISAVDPVA	VLAVFENIHVNEQLYILVFGESLLNDAVTVV	137
MICO			
NHE3	LMGELKIGLLUFLLFGSLIAAVDPVA	VLAVFEEVHVNEVLFIIVFGESLLNDAVTVV	223
NHE4		VLAVFEEVHVNEVLFIIVFGESLLNDAVTVV VLAVFEEARVNEQLYMMIFGEALLNDGISVV	

Figure 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/07224 CLASSIFICATION OF SUBJECT MATTER Int.Cl7 C12N15/29, 5/14, C07K14/415, 16/16, C12P21/02, C12Q1/68, A01H5/00 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 C12N15/00-15/90 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) GENBANK/EMBL/DDBJ/GENESEQ SWISSPROT/PIR/GENESEQ BIOSIS (DIALOG), WPI (QUESTEL) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X Biochimica et Biophysica Acta, 1446 (1-2), p.149-155, 1-16 1999 July 7, Atsunori Fukuda et al., "Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa" P,X Proc.Natl.Acad.Sci.USA, 96(4), p.1480-1485, 1999 Feb.16 1-16 Gaxiola, R.A. et al., "The Arabidopsis thaliana proton transporters ,AtNhx1 and Avp1, can function in cation detoxi fication in yeast" WO, 99/47679, A2 (BLUMWALD EDUARDO), P,X 1-16 23 September, 1999 (23.09.99), Full text; Figs. 1 to 8 & AU, 9928214, A J.Biol.Chem., 273, p. 6951-6959, 1998 March 20 1-16 Α Numata M.et al., "Identification of a mitochondorial Na+/H+exchanger" Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or "A" document defining the general state of the art which is not priority date and not in conflict with the application but cited to considered to be of particular relevance understand the principle or theory underlying the invention earlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 28 March, 2000 (28.03.00) 11 April, 2000 (11.04.00) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No.

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/07224

C (Cantinua)	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
`		1
Category*	Citation of document, with indication, where appropriate, of the relevant passages J.Biol.Chem., 267(13), p.9331-9339, 1992 May 5 Orlowski J.et al., "Molecular cloning of putative member of the Na/H exchanger gene family. cDNA cloning, deduce amino acid sequence, and mRNA tissue expression of the ra Na/H exchanger NHE-1 and two structurally related proteins."	d t
Α ·	J.Biol.Chem., 267, p. 9340-9346, 1992 May 5 Tse C.M., et al., "Cloning and sequencing of a rabbit cDN encoding an intestinal and kidney-specific Na(+)/H(+) exchanger isoform (NHE-3)"	
A	Plant and Cell Physiology, 39(2), p.196-201, 1998 Feb. Fukuda Atsunori et al., "Na+/H+ antiporter in tonoplas vesicles from rice roots"	1-16
Х ,	T. Sasaki, et al., "Rice cDNA from Panicle", Genbank accession, No.C91832, 20 April, 1998 (20.04.98)	16
	·	
·		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)