

Diverse Weight Averaging for Out-of-Distribution Generalization

Alexandre Ramé* (Sorbonne & Meta AI)

Matthieu Kirchmeyer* (Sorbonne & Criteo)

Thibaud Rahier (Criteo)

Alain Rakotomamonjy (LITIS & Criteo)

Patrick Gallinari (Sorbonne & Criteo)

Matthieu Cord (Sorbonne & Valeo.ai)

* Equal contribution

Goal: generalization to unseen domains

Two kind of source/target distribution shifts

A bias-variance analysis in OOD

 $\mathbb{E}_{\theta}err_{T}(\theta) = bias^{2} + var$

Low variance

Low bias

High bias

where, with $\bar{f}(x) = \mathbb{E}_{\theta} f_{\theta}(x)$:

- $bias(x, y) = y \overline{f}(x)$,
- $var(x) = \mathbb{E}_{\theta} \left[\left(f_{\theta}(x) \bar{f}(x) \right)^{2} \right].$

High variance

Question: how do bias and var change with correlation and diversity shifts?

Bias as correlation shift

Definition: $bias^2 = \int_T (\mathbb{E}_T[Y|X=x] - \mathbb{E}_\theta f_\theta(x))^2 p_T(x) dx$.

Intuition: bias in OOD increases when the posteriors vary across source and target.

Proposition: for large networks,

$$bias^2 \approx \int_T (\mathbb{E}_T[Y|X=x] - \mathbb{E}_S[Y|X=x])^2 p_T(x) dx$$

Variance as diversity shift

Definition:
$$var_{d_T} = \sum_{x \in d_T} \mathbb{E}_{\theta} \left[\left(f_{\theta}(x) - \bar{f}(x) \right)^2 \right].$$

Intuition: variance increases away from the source training samples.

Proposition: for networks with diagonally dominant NTK [1]:

$$var_{d_T} \propto MMD_{NTK^2}^2(X_{d_S}, X_{d_T}) + \dots$$

	Correlation shift	Diversity shift		
Probabilistic perspective	$p_S(Y X) \neq p_T(Y X)$	$p_S(X) \neq p_T(X)$		
Example	0 9	Side Value		
Datasets	ColoredMNIST, CelebA	OfficeHome, PACS		
	Large bias Small variance	Small bias Large variance		
Bias-variance				
Approaches	Invariance: IRM, Coral Robust optimization: gDRO	This paper: DiWA		

Bias-variance-covariance in ensembling (ENS)

$$\mathbb{E}_{ens}err_T(ens) = bias^2 + \frac{1}{M}var + \frac{M-1}{M}cov,$$
 where the covariance across models verify: $cov \le var$.

Setup: OfficeHome under diversity shift

- train on "Clipart,Product,Photo",
- test on "Art" OOD.

Yet ensembling is costly ...

An empirical insight: linear mode connectivity

Possible when finetunings start from a shared pretrained initialization θ_0 .

Diverse Weight Averaging (DiWA)

$$\theta_{\text{DiWA}} = \frac{1}{M} \sum_{m=1}^{M} \theta_m$$

obtained from a shared pretrained initialization θ_0 . By Taylor expansion around θ_{DiWA} : $f_{WA} \approx f_{ENS} + \mathcal{O}(max_{m=1}^M ||\theta_m - \theta_{WA}||^2)$.

SoTA on DomainBed [1]

Reference benchmark for OOD generalization in computer vision, imposing the code, datasets, training procedures, hyperparameter search etc.

Algo	Cost	PACS	VLCS	ОН	TI	DN	Avg
ERM	1	85.5	77.5	66.5	46.1	40.9	63.3
CORAL	1	86.2	78.8	68.7	47.6	41.5	64.6
SWAD [2]	1	88.1	79.1	70.6	50.0	46.5	66.9
ENS	20	88.1	78.5	71.7	50.8	47.0	67.2
DiWA	1	89.0	78.6	72.8	51.9	47.7	68.0

Previous SoTA: single-run WA

Weights from different runs are more diverse (left) thus their average is better (next slide).

Covariance as diversity

$$\mathbb{E}_{\theta_{WA}}err_T(\theta_{WA}) \approx bias^2 + \frac{1}{M}var + \frac{M-1}{M}cov,$$

where cov is smaller when models are uncorrelated, i.e., functionally diverse.

Legend: Each dot is the accuracy gain of averaging M=3 models over the average accuracy wrt their diversity (normalized count of different errors).

Conclusion

- Bias-variance analysis in OOD
 - ✓ Relate diversity shift to variance
 - ✓ Relate correlation shift to bias.
- New weight averaging strategy
 - ✓ Average all weights obtained from the hyperparameter search
 - ✓ SoTA on DomainBed to tackle diversity shift

arXiv: https://arxiv.org/abs/2205.09739

code: https://github.com/alexrame/diwa

