EE121 John Wakerly Lecture #3

Boolean algebra Combinational-circuit analysis

Boolean algebra

- a.k.a. "switching algebra"
 - deals with boolean values -- 0, 1
- Positive-logic convention
 - analog voltages LOW, HIGH --> 0, 1
- Negative logic -- seldom used
- Signal values denoted by variables (X, Y, FRED, etc.)

Boolean operators

• Complement: X' (opposite of X)

AND: X · Y binary operators, described functionally by truth table.

NOT X

1

Χ	Υ	X AND Y	X	Υ	XORY	Х
0	0	0	0	0	0	0
0	1	0	0	1	1	1
1	0	0	1	0	1	-
1	1	1	1	1	1	

• Axiomatic definition: A1-A5, A1'-A5'

More definitions

- Literal: a variable or its complement
 - -X, X', FRED', CS_L
- Expression: literals combined by AND, OR, parentheses, complementation
 - -X+Y
 - $-P \cdot Q \cdot R$
 - $-A+B\cdot C$
 - $-((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$
- Equation: Variable = expression
 - $-P = ((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$

Logic symbols

Theorems

- (T1) X + 0 = X (T1') $X \cdot 1 = X$ (Identities)
- (T2) X + 1 = 1 (T2') $X \cdot 0 = 0$ (Null elements)
- (T3) X + X = X (T3') $X \cdot X = X$ (Idempotency)
- (T4) (X')' = X (Involution)
- (T5) X + X' = 1 (T5') $X \cdot X' = 0$ (Complements)
- Proofs by perfect induction

More Theorems

(T6)
$$X + Y = Y + X$$

(T6') $\mathbf{X} \cdot \mathbf{Y} = \mathbf{Y} \cdot \mathbf{X}$

(Commutativity)

(T7)
$$(X + Y) + Z = X + (Y + Z)$$

(T7') $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

(Associativity)

(T8)
$$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$$

(T8') $(X + Y) \cdot (X + Z) = X + Y \cdot Z$ (Distributivity)

(T9)
$$X + X \cdot Y = X$$

(T9') $X \cdot (X + Y) = X$

(Covering)

(T10)
$$\mathbf{X} \cdot \mathbf{Y} + \mathbf{X} \cdot \mathbf{Y'} = \mathbf{X}$$

(T10') $(X + Y) \cdot (X + Y') = X$

(Combining)

(T11)
$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

(Consensus)

$$(T11') \quad (X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)$$

• N.B. T8', T10, T11

Duality

- Swap 0 & 1, AND & OR
 - Result: Theorems still true
- Why?
 - Each axiom (A1-A5) has a dual (A1'-A5')
- Counterexample:

$$X + X \cdot Y = X \cdot (T9)$$

$$X + (X \cdot Y) = X (T9)$$

$$X \cdot X + Y = X \text{ (dual)} \quad X \cdot (X + Y) = X \text{ (dual)}$$

$$(X \cdot (X + Y) = X \text{ (dual)})$$

 $(X \cdot X) + (X \cdot Y) = X \text{ (T8)}$

$$X + Y = X (T3')$$

$$X + (X \cdot Y) = X (T3')$$

parentheses,

operator precedence!

N-variable Theorems

(T12)
$$X + X + \cdots + X = X$$

(Generalized idempotency)

(T12')
$$\mathbf{X} \cdot \mathbf{X} \cdot \dots \cdot \mathbf{X} = \mathbf{X}$$

(T13)
$$(\mathbf{X}_1 \cdot \mathbf{X}_2 \cdot \cdots \cdot \mathbf{X}_n)' = \mathbf{X}_1' + \mathbf{X}_2' + \cdots + \mathbf{X}_n'$$

(DeMorgan's theorems)

(T13')
$$(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n)' = \mathbf{X}_1' \cdot \mathbf{X}_2' \cdot \dots \cdot \mathbf{X}_n'$$

(T14)
$$[F(X_1, X_2, ..., X_n, +, \cdot)]' = F(X_1', X_2', ..., X_n', \cdot, +)$$

(Generalized DeMorgan's theorem)

(T15)
$$F(X_1, X_2, ..., X_n) = X_1 \cdot F(1, X_2, ..., X_n) + X_1' \cdot F(0, X_2, ..., X_n)$$
 (Shannon's expansion theorems)

(T15')
$$F(X_1, X_2, ..., X_n) = [X_1 + F(0, X_2, ..., X_n)] \cdot [X_1' + F(1, X_2, ..., X_n)]$$

- Prove using finite induction
- Most important: DeMorgan theorems

DeMorgan Symbol Equivalence

Likewise for OR

• (be sure to check errata!)

Even more definitions (Sec. 4.1.6)

- Product term
- Sum-of-products expression
- Sum term
- Product-of-sums expression
- Normal term
- Minterm (n variables)
- Maxterm (n variables)

Truth table vs. minterms & maxterms

Row	X	Υ	Z	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	$X' \cdot Y' \cdot Z'$	X + Y + Z
1	0	0	1	F(0,0,1)	X'.Y'.Z	X + Y + Z'
2	0	1	0	F(0,1,0)	$X' \cdot Y \cdot Z'$	X + Y' + Z
3	0	1	1	F(0,1,1)	$X'\cdot Y\cdot Z$	X + Y' + Z'
4	1	0	0	F(1,0,0)	$X\cdot Y'\cdot Z'$	X'+Y+Z
5	1	0	1	F(1,0,1)	$X\cdot Y'\cdot Z$	X'+Y+Z'
6	1	1	0	F(1,1,0)	$X\cdot Y\cdot Z'$	X'+Y'+Z
7	1	1	1	F(1,1,1)	$X\cdot Y\cdot Z$	X'+Y'+Z'

"Add out" logic function

$$\begin{split} F &= ((X + Y') \cdot Z) + (X' \cdot Y \cdot Z') \\ &= (X + Y' + X') \cdot (X + Y' + Y) \cdot (X + Y' + Z') \cdot (Z + X') \cdot (Z + Y) \cdot (Z + Z') \\ &= 1 \cdot 1 \cdot (X + Y' + Z') \cdot (X' + Z) \cdot (Y + Z) \cdot 1 \end{split}$$

 $= \ (X + Y' + Z') \cdot (X' + Z) \cdot (Y + Z)$

