On estimating the structure factor of a point process, with applications to hyperuniformity

Diala Hawat.

Guillaume Gautier, Rémi Bardenet, and Raphaël Lachièze-Rey

Université de Lille, CNRS, Centrale Lille ; UMR 9189 – CRIStAL, F-59000 Lille, France. Université de Paris, Map5, Paris, France.

Contents

- Definitions and Motivations
- Structure factor estimators
 - Estimators
 - Tests
 - Comparison of the estimators
- 3 Hyperuniformity diagnostics
 - Effective hyperuniformity
 - Statistical test
 - Tests
- 4 Code availability
- 5 Conclusion

Definitions and Motivations

Hyperuniform or Superhomogeneous

Definitions and Motivations

Let $\mathcal X$ be a stationary point process of $\mathbb R^d$ of intensity ρ , $\mathcal X$ is hyperuniform iff

Variance:

$$\lim_{R\to\infty}\frac{\operatorname{Var}\left(\operatorname{Card}(\mathcal{X}\cap B(0,R))\right)}{|B(0,R)|}=0.$$

S. Torquato, Hyperuniform States of Matter, 2018.

S. Coste, Order, Fluctuations, Rigidities, 2021.

Bird's-Eye

Definitions and Motivations

Y. Jiao, T. Lau, H. Hatzikirou, M Meyer-Hermann, J. C. Corbo, and S. Torquato, *Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem*, 2014.

Image reconstruction

Definitions and Motivations

Ming-Jie Sun, Xin-Yu Zhao, and Li-Jing Li, *Imaging using hyperuniform sampling with a single-pixel camera*, 2018.

■ Monte Carlo integration:

$$\int f(x)\mu(\mathrm{d}x) \approx \sum_{i=1}^N w_i f(\mathbf{x}_i)$$

■ Rate of convergence with a Poisson point process: $O(1/\sqrt{N})$

■ Monte Carlo integration:

$$\int f(x)\mu(\mathrm{d}x) \approx \sum_{i=1}^{N} w_i f(\mathbf{x}_i)$$

Rate of convergence with Sobol sequence: $O(\log(N)^d/N)$

Let $\mathcal{X} \subset \mathbb{R}^d$ be a stationary point process of intensity ρ

Structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

Pair correlation function

$$\mathbb{E}\left[\sum_{\mathbf{x},\mathbf{y}\in\mathcal{X}}^{\neq}f(\mathbf{x},\mathbf{y})\right] = \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}f(\mathbf{x}+\mathbf{y},\mathbf{y})\rho^{2}g(\mathbf{x})\mathrm{d}\mathbf{x}\mathrm{d}\mathbf{y}$$

S. Coste, Order, Fluctuations, Rigidities, 2021.

S. Torquato, Hyperuniform States of Matter, 2018.

Structure Factor

Definitions and Motivations

$$\mathcal{X}$$
 is hyperuniform $\iff \lim_{R \to \infty} \frac{\operatorname{Var}(\operatorname{Card}(\mathcal{X} \cap B(0,R)))}{|B(0,R)|} = 0$

Structure factor

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

Pair correlation function

$$\mathbb{E}\left[\sum_{\mathbf{x},\mathbf{y}\in\mathcal{X}}^{\neq}f(\mathbf{x},\mathbf{y})\right] = \int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}f(\mathbf{x}+\mathbf{y},\mathbf{y})\rho^{2}g(\mathbf{x})\mathrm{d}\mathbf{x}\mathrm{d}\mathbf{y}$$

 \blacksquare \mathcal{X} is hyperuniform iff

$$S(\mathbf{0}) = 0$$

S. Coste, Order, Fluctuations, Rigidities, 2021.

S. Torquato, Hyperuniform States of Matter, 2018.

Definitions and Motivations

$$\mathcal{X}$$
 is hyperuniform $\iff \lim_{\mathbf{k} \to \mathbf{0}} \underbrace{1 + \rho \mathcal{F}(g - 1)(\mathbf{k})}_{S(\mathbf{k})} = 0$

2 Is hyperuniform with $|S(\mathbf{k})| \sim c ||\mathbf{k}||_2^{\alpha}$ in the neighborhood of 0 then,

α	$Var\left[Card(\mathcal{X}\cap B(0,R))\right]$	class
> 1	$O(R^{d-1})$	I
1	$O(R^{d-1}\log(R))$	П
]0, 1[$O(R^{d-\alpha})$	Ш

S. Cost, Order, Fluctuations, Rigidities, 2021.

Ginibre ensemble

Definitions and Motivations

Definitions and Motivations

- Intenity: $\rho_{\text{Ginibre}} = 1/\pi$
- Pair correlation function: $g_{Ginibre}(r) = 1 \exp(-r^2)$
- Structure factor: $S_{\text{Ginibre}}(k) = 1 \exp(-k^2/4)$
- Power decay: $\alpha_{Ginibre} = 2$
- Hyperuniform class: I

Structure factor estimators

Structure factor estimators

Idea

Structure factor estimators Estimators

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

- **Given**: $\mathcal{X}_N = \{\mathbf{x}_i\}_1^N$ a realization of a **stationary** point process \mathcal{X} of intensity ρ in $W = [-L/2, L/2]^d$
- Need: Use \mathcal{X}_N to approximate $S(\mathbf{k}) = 1 + \rho \int_{\mathbb{R}^d} (g(\mathbf{r}) 1) e^{-i\langle \mathbf{k}, \mathbf{r} \rangle} d\mathbf{r}$

$$S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$$

- **Given**: $\mathcal{X}_N = \{\mathbf{x}_i\}_1^N$ a realization of a **stationary** point process \mathcal{X} of intensity ρ in $W = [-L/2, L/2]^d$
- Need: Use \mathcal{X}_N to approximate $S(\mathbf{k}) = 1 + \rho \int_{\mathbb{R}^d} (g(\mathbf{r}) 1) e^{-i\langle \mathbf{k}, \mathbf{r} \rangle} d\mathbf{r}$
- Idea:
 - **1** Use $\alpha_t(\mathbf{r}, W) = \int_{\mathbb{R}^d} t(\mathbf{r} + \mathbf{y}, W) t(\mathbf{y}, W) d\mathbf{y}$ s.t. $\lim_{L \to \infty} \alpha_t(\mathbf{r}, W) = 1$ and $||t||_2 = 1$:

$$\begin{split} S(\mathbf{k}) &= 1 + \rho \int_{\mathbb{R}^d} \lim_{L \to \infty} (g(\mathbf{r}) - 1) \alpha_t(\mathbf{r}, W) e^{-i\langle \mathbf{k}, \mathbf{r} \rangle} \ \mathrm{d}\mathbf{r} \\ &= \lim_{L \to \infty} \mathbb{E}[\widehat{S}(t, \mathbf{k})] - \underbrace{\rho \mathcal{F}(\alpha_t)(\mathbf{k}, W)}_{\epsilon_t(\mathbf{k}, \mathbf{L})} \end{split}$$

2 Reduce bias: Consider the zeros of $\epsilon_t(\mathbf{k}, \mathbf{L})$ as the set of allowed wavevectors of \widehat{S} , or remove the bias term.

Scattering intenisty

Structure factor estimators Estimators

■ Taper:
$$t_0(\mathbf{x}, W) = \frac{1}{\sqrt{|W|}} \mathbb{1}_W(\mathbf{x})$$

$$\mathbf{S}(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\underbrace{\frac{1}{\rho|\mathcal{W}|} \Big| \sum_{\mathbf{x} \in \mathcal{X} \cap \mathcal{W}} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \Big|^2}_{\widehat{S}_{\mathrm{SI}}(\mathbf{k})} \right] - \rho \underbrace{\left(\prod_{j=1}^d \frac{\sin(k_j L/2)}{k_j \sqrt{L}/2}\right)^2}_{\epsilon_0(\mathbf{k}, \mathbf{L})}$$

$$\bullet \epsilon_0(\mathbf{k}, \mathbf{L}) = \begin{cases} 0 & \text{if } \mathbf{k} \in \mathbb{A}_{\mathbf{L}} \\ \rho L^d & \text{as } \|\mathbf{k}\|_2 \to 0 \\ 2^{2d} \prod_{j=1}^d \frac{1}{L K_j^2} & \text{as } \|\mathbf{k}\|_2 \to \infty \end{cases}$$

Allowed wavevectors:

$$\mathbb{A}_{\mathbf{L}} = \{ (k_1, \dots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \dots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \}$$

Scattering intensity estimator

Structure factor estimators Estimators

Estimator:

$$\widehat{S}_{\mathrm{SI}}(\mathbf{k}) = rac{1}{
ho|\mathcal{W}|} \left| \sum_{\mathbf{x} \in \mathcal{X} \cap \mathcal{W}} e^{-i\langle \mathbf{k}, \mathbf{x}
angle} \right|^2$$

2 Allowed wavevectors:

$$\mathbb{A}_{\mathbf{L}} = \left\{ (k_1, \cdots, k_d) \in (\mathbb{R}^d)^*, \exists j \in \{1, \cdots, d\}, n \in \mathbb{Z}^* \text{ s.t. } k_j = \frac{2\pi n}{L} \right\}.$$

- Formulation in the literature:
 - 1 Estimator:

$$\widehat{S}_{\mathrm{SI,s}}(\mathbf{k}) \triangleq \frac{1}{N} \left| \sum_{j=1}^{N} e^{-i \langle \mathbf{k}, \mathbf{x}_j \rangle} \right|^2$$

2 Allowed wavevectors:

$$\mathbb{A}_{\mathbf{L}}^{res} = \left\{ \left(\frac{2\pi n_1}{L}, \cdots, \frac{2\pi n_d}{L} \right) \text{ with, } \mathbf{n} = \left(n_1, \cdots, n_d \right) \in \mathbb{Z}^d \setminus \{\mathbf{0}\} \right\}.$$

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey *On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.*

Tapered estimator

Structure factor estimators Estimators

General case

■ Tapered estimator:

$$S(\mathbf{k}) = \lim_{L \to \infty} \mathbb{E}\left[\underbrace{\frac{1}{\rho} \Big| \sum_{j=1}^{N} t(\mathbf{x}_{j}, W) e^{-i\langle \mathbf{k}, \mathbf{x}_{j} \rangle} \Big|^{2}}_{\widehat{S}_{T}(t, \mathbf{k})} \right] - \underbrace{\rho |\mathcal{F}(t)(\mathbf{k}, W)|^{2}}_{\epsilon_{t}(\mathbf{k}, \mathbf{L})}.$$

- Debiased tapered estimator:
 - 1 Directly debiased:

$$\widehat{S}_{\mathrm{DDT}}(t,\mathbf{k}) \triangleq \frac{1}{\rho} \left| \sum_{j=1}^{N} t(\mathbf{x}_{j},W) e^{-i\langle \mathbf{k},\mathbf{x}_{j} \rangle} - \rho \mathcal{F}(t)(\mathbf{k},W) \right|^{2}$$

2 Undirectly debiased:

$$\widehat{S}_{\mathrm{UDT}}(t, \mathbf{k}) \triangleq \frac{1}{\rho} \left| \sum_{j=1}^{N} t(\mathbf{x}_{j}, W) e^{-i\langle \mathbf{k}, \mathbf{x}_{j} \rangle} \right|^{2} - \rho \left| \mathcal{F}(t)(\mathbf{k}, W) \right|^{2}$$

Preprint: T. Rajala and S. C. Olhede and D. John Murrell *Spectral estimation for spatial point patterns, 2020.*

Multitapered estimator

Structure factor estimators Estimators

$$\widehat{S}_{\mathrm{T}}(t,\mathbf{k}) = rac{1}{
ho} ig| \sum_{j=1}^{N} t(\mathbf{x}_{j},W) e^{-i\langle \mathbf{k}, \mathbf{x}_{j} \rangle} ig|^{2}$$

More generally,

- Family of orthogonal tapers: $(t_q)_{q=1}^P$
- Multitapered estimator:

$$\widehat{S}_{\mathrm{MT}}((t_q)_{q=1}^P, \mathbf{k}) = \frac{1}{P} \sum_{q=1}^P \widehat{S}_{\mathrm{T}}(t_q, \mathbf{k}).$$

Preprint: T. Rajala and S. C. Olhede and D. John Murrell, *Spectral estimation for spatial point patterns. 2020.*

Estimators assuming stationarity and isotropy

Structure factor estimators Estimators

- Structure factor: $S(\mathbf{k}) = 1 + \rho \mathcal{F}(g-1)(\mathbf{k})$
- Isotropic case:

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

Estimators assuming stationarity and isotropy

Structure factor estimators Estimators

Isotropic case:

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

- Ball window : W = B(0, R)
- Radial Taper: $t_0(\mathbf{x}, W) = \frac{1}{\sqrt{|W|}} \mathbb{1}_W(\mathbf{x})$

Isotropic case:

$$S(k) = 1 + \rho \frac{(2\pi)^{d/2}}{k^{d/2-1}} \int_0^\infty (g(r) - 1) r^{d/2} J_{d/2-1}(kr) dr.$$

- Ball window : W = B(0, R)
- Radial Taper: $t_0(\mathbf{x}, W) = \frac{1}{\sqrt{|W|}} \mathbb{1}_W(\mathbf{x})$
- Bartlett's isotropic estimator

$$\widehat{S}_{BI}(k) = 1 + \frac{(2\pi)^{\frac{d}{2}}}{\rho |W| \omega_{d-1}} \sum_{\substack{i,j=1\\i\neq j}}^{N} \frac{J_{d/2-1}(k \|\mathbf{x}_i - \mathbf{x}_j\|_2)}{(k \|\mathbf{x}_i - \mathbf{x}_j\|_2)^{d/2-1}}$$

■ Allowed wavenumbers: $\mathbb{A}_R = \left\{ \frac{x}{R} \in \mathbb{R}, \text{ s.t. } J_{d/2}(x) = 0 \right\}$

Scattering intensity

Structure factor estimators Tests

$$\widehat{S}_{\mathrm{SI}}(\mathbf{k}) = \frac{1}{
ho|W|} \left| \sum_{\mathbf{x} \in \mathcal{X} \cap W} e^{-i\langle \mathbf{k}, \mathbf{x} \rangle} \right|^2$$

Figure: On arbitrary wavevectors **k**

https://github.com/For-a-few-DPPs-more/structure-factor

Scattering intensity

Structure factor estimators

Figure: On allowed wavevectors k

https://github.com/For-a-few-DPPs-more/structure-factor

Multitapered estimator

Structure factor estimators Tests

Structure factor $(S(\mathbf{k}))$

 10^{-2}

Poisson

https://github.com/For-a-few-DPPs-more/structure-factor

Ginibre

Multitapered estimator

Structure factor estimators Tests

Structure factor $(S(\mathbf{k}))$

$$\widehat{S}_{\text{UDT}}(t, \mathbf{k}) \triangleq \frac{1}{\rho} \left| \sum_{j=1}^{N} t(\mathbf{x}_{j}, W) e^{-i\langle \mathbf{k}, \mathbf{x}_{j} \rangle} \right|^{2} - \rho |\mathcal{F}(t)(\mathbf{k}, W)|^{2}$$

Ginibre

Wavenumber (||k||)

 10^{-1}

Poisson

Wavenumber $(||\mathbf{k}||)$

https://github.com/For-a-few-DPPs-more/structure-factor

Exact $S(\mathbf{k})$ mean $\pm 3 \cdot \text{std}$

Bartlett's isotropic estimator

Structure factor estimators

Figure: On allowed wavenumbers k

https://github.com/For-a-few-DPPs-more/structure-factor

Integrated mean square error

Structure factor estimators Comparison of the estimators

Sample integrated variance and MSE across 50 samples

Estimators	iVar	CI[iMSE]	iVar	CI[iMSE]
$\widehat{S}_{\mathrm{SI}}(2\pi\mathbf{n}/L)$	0.32	0.32 ± 0.02	1.31	1.34 ± 0.06
$\widehat{S}_{\mathrm{DDMT}}((t_q)_1^4)$	0.08	0.08 ± 0.007	0.37	0.38 ± 0.02
$\widehat{S}_{\mathrm{BI}}(\frac{x}{R})$	3.9×10^{-3}	$4.0 \times 10^{-3} \pm 3 \times 10^{-4}$	0.057	$0.058 \pm 9 \times 10^{-3}$
	Ginibre		Poisson	

Hyperuniformity diagnostics

Hyperuniformity diagnostics

Hyperuniformity diagnostics Effective hyperuniformity

$$\mathcal{X}$$
 is effectively hyperuniform $\iff H = \frac{\widehat{S}(0)}{\widehat{S}(k_{peak})} \le 10^{-3}$,

- $\widehat{S}(0)$ is a linear extrapolation of the estimated structure factor \widehat{S} in k=0.
- k_{peak} is the location of the first dominant peak value of \hat{S} .

S. Torquato, Hyperuniform States of Matter, 2018.

Hyperuniformity diagnostics Statistical test

- Need: Check if $S(\mathbf{0}) = 0$
- Problem: We don't have an unbiased estimator of $S(\mathbf{0})$
- Idea: Use biased estimators to construct an unbiased estimator

Hyperuniformity diagnostics Statistical test

Need: Check if
$$S(\mathbf{0}) = 0$$

 $(Y_m)_m$ a sequence of approximations of a r.v. Y

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

■ M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

C. Rhee and P.W. Glynn, *Unbiased estimation with square root convergence for SDE models*. 2015

Hyperuniformity diagnostics Statistical test

Need: Check if $S(\mathbf{0}) = 0$

 $(Y_m)_m$ a sequence of approximations of a r.v. Y

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

- M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$
- $\blacksquare \ \mathbb{E}[Z_m] = \mathbb{E}[Y_m] \quad \text{and} \quad Z_m \xrightarrow[m \to \infty]{\text{a.s.}} Z := \sum_{j=1}^M \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}.$
- $Y_m \xrightarrow[m \to \infty]{L^2} Y + \text{some hypotheses} \implies \mathbb{E}[Z] = \mathbb{E}[Y]$

C. Rhee and P.W. Glynn, *Unbiased estimation with square root convergence for SDE models*. 2015

Coupled sum estimator

Hyperuniformity diagnostics Statistical test

Need: Check if
$$S(\mathbf{0}) = 0$$

 $(Y_m)_m$ a sequence of approximations of a r.v. Y

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

- M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$
- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m \geq 1}$, with $W_{\infty} = \mathbb{R}^d$

Need: Check if $S(\mathbf{0}) = 0$

 $(Y_m)_m$ a sequence of approximations of a r.v. Y

$$Z_m = \sum_{j=1}^{m \wedge M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}, \quad m \ge 1$$

- M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$
- Consider an increasing sequence of sets $(\mathcal{X} \cap W_m)_{m \geq 1}$, with $W_{\infty} = \mathbb{R}^d$
- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$ and $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$

Multiscale hyperuniformity test

Hyperuniformity diagnostics Statistical test

Need: Check if
$$S(\mathbf{0}) = 0$$

- Take $Y_m = 1 \wedge \widehat{S}_m(\mathbf{k}_m^{\min})$, $\mathbf{k}_m^{\min} \xrightarrow[m \to \infty]{} \mathbf{0}$, $\{W_m\}_m \uparrow$, and $W_\infty = \mathbb{R}^d$
- $Z = \sum_{j=1}^{M} \frac{Y_j Y_{j-1}}{\mathbb{P}(M \ge j)}$
- M is an \mathbb{N} -r.v. such that $\mathbb{P}(M \ge j) > 0$ for all j, and $Y_0 = 0$

Proposition

Assume that $M \in L^p$ for some $p \ge 1$. Then $Z \in L^p$ and $Z_m \to Z$ in L^p . Moreover,

- 1 If \mathcal{X} is hyperuniform, then $\mathbb{E}[Z] = 0$.
- 2 If \mathcal{X} is not hyperuniform and $\sup_{m} \mathbb{E}[\widehat{S}_{m}^{2}(\mathbf{k}_{m}^{\min})] < \infty$, then $\mathbb{E}[Z] \neq 0$.

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey *On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.*

Multiscale hyperuniformity test

Hyperuniformity diagnostics Statistical test

Need: Check if
$$S(\mathbf{0}) = 0 \iff \mathbb{E}[Z] = 0$$
, with $Z = \sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}$

Test:

- M a Poisson r.v. of parameter λ
- i.i.d. pairs $(\mathcal{X}_a, M_a)_{a=1}^A$ of realizations of (\mathcal{X}, M)
- lacksquare Asymptotic confidence interval $\mathit{CI}[\mathbb{E}[Z]]$ of level ζ

$$CI[\mathbb{E}[Z]] = \left[\bar{Z}_A - z\bar{\sigma}_A A^{-1/2}, \bar{Z}_A + z\bar{\sigma}_A A^{-1/2}\right]$$

with
$$\mathbb{P}(-z < \mathcal{N}(0,1) < z) = \zeta$$

• Assessing whether 0 lies in $CI[\mathbb{E}[Z]]$

Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey *On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.*

Effective hyperuniformity

Hyperuniformity diagnostics Tests

$$\mathcal{X}$$
 is effectively hyperuniform $\iff H = \widehat{S}(0)/\widehat{S}(k_{peak}) \le 10^{-3}$

e Poisson

H for 50 samples from Ginibre and Poisson using Bartlett's isotropic estimator

https://github.com/For-a-few-DPPs-more/structure-factor

Multiscale hyperuniformity test

Hyperuniformity diagnostics Tests

$$\mathcal{X}$$
 is hyperuniform $\iff \mathbb{E}[Z] = \mathbb{E}[\sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}] = 0$

Table: Multiscale hyperuniformity test with 99% confidence level

	\bar{Z}_{50}	$CI[\mathbb{E}[Z]]$	\bar{Z}_{50}	$CI[\mathbb{E}[Z]]$	
Ginibre	0.015	[-0.021, 0.051]	0.007	[-0.003, 0.011]	
Poisson	0.832	[0.444, 1.220]	0.781	[0.560, 1.001]	
Ŝ	$\widehat{\mathcal{S}}_{\mathrm{SI}}$		$\widehat{S}_{\mathrm{BI}}$		

Multiscale hyperuniformity test

Hyperuniformity diagnostics Tests

$$\mathcal{X}$$
 is hyperuniform $\iff \mathbb{E}[Z] = \mathbb{E}[\sum_{j=1}^{M} \frac{Y_j - Y_{j-1}}{\mathbb{P}(M \ge j)}] = 0$

Figure: $CI[\mathbb{E}[\bar{Z}]]$ for a Poisson point process with the scattering intensity, as a function of the number of realizations of Z.

Hyperuniformity class

Hyperuniformity diagnostics Tests

 \mathcal{X} is hyperuniform with $|S(\mathbf{k})| \sim c ||\mathbf{k}||_2^{\alpha}$ in the neighborhood of zero

 α of 50 samples from Ginibre using Bartlett's isotropic estimator

https://github.com/For-a-few-DPPs-more/structure-factor

Code availability

Code availability

Python Package

Code availability

- 1 Open-source Python toolbox called structure_factor 1
- 2 Available on Github and PyPI ²
- 3 Detailed documentation ³
- 4 Jupyter notebook tutorial 4

¹https://github.com/For-a-few-DPPs-more/structure-factor

²https://pypi.org/project/structure-factor/

³https://for-a-few-dpps-more.github.io/structure-factor/

⁴https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks

Conclusion

Conclusion

Conclusion

Conclusion

- Estimators of the structure factor, properties and performances
- Available diagnostics of hyperuniformity and limitations
- The first statistical test of hyperuniformity and limitations
- Python toolbox structure-factor

THANK YOU

Conclusion

Documentation

Preprint

Github: https://github.com/For-a-few-DPPs-more/structure-factor
Documentation: https://for-a-few-dpps-more.github.io/structure-factor/
Preprint: D. Hawat, G. Gautier, R. Bardenet, R. Lachièze-Rey On estimating the structure factor of a point process, with applications to hyperuniformity, 2022.