Contents

- 1. Building blocks of CNN
 - a. Representation of 2d-images.(Single Channel)
 - b. Convolution
 - c. Padding
 - d. Stride
- 2. Multi Channel CNN
- 3. Types of Layers in CNN
 - a. Convolution layer
 - b. Pooling Layer
 - c. Fully Connected
- 4. Advantages of CNN over traditional NN
- 5. 3D CNN

Representation of 2D images

- These 2D images are represented in matrix.
- dimensions= (n_h, n_w, n_c)
- n_h =height of image
- n_w =width of image
- n_c =number of channels
- Single channel image: n_c=1

Convolution

- We convolve an image using a kernel /filter.
- Convolve means
 - Place filter over a region of image
 - Multiply corresponding elements of image and filter.
 - o And add it.
 - This value is O_{ii}.
- Parameters
 - Stride
 - Padding
 - Filter Size
 - Number of filters

Convolution

1-3×1 + 1×1 +2+1 + 0×0 + 5×0 +7×0+1×+ +8×-1+2×-1=-5

3	0	1 0	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3 ⁻¹
01	1	3	1	7	8
4	2	1	6	2	8

6x6

	Convol	ution		
*	① ①	00		=
	<u>(1)</u>	(O)	-1	

-> filter kend

-5	-4	0	8		
-10	-2	2	3		
0	-2	-4	-7		
-3	-2	-3(-16		
4×4					

Basic Convolution

- $n_{h/w}^{l} = (n_{h/w} f) + 1$
- In the given example
 - o n_{h/w}=6
 - o f=3
 - \circ $n^{l}=(6-3)+1=4$

Padding

- Add extra boundary cells to the image
- For 1 layer of padding 2 cells are added to each row and column.
- We do to make input and output dimension to be same
- And a boundary pixels get involved in convolution less number of times compared to center pixels.

Padding

- Valid Convolution: No padding
- Same Convolution: Padding is done to make input size equals to output size.
 - \circ n+2p-f+1=n
 - \circ p=(f-1)/2

Stride

- We skip some possibilities of convolution.
- $n_{h/w}^{l} = (n_{h/w} + 2p-f)/s+1$
- Example:
- stride=2
- Filter size=3
- 7*7---->(7-3)/2+1=(4*4)

Multi Channel CNN

Multi Channel CNN

- Number of Filter channels must be equal to Number of Input channels.
- Single Filter produce a 2D feature map.
- O_{ij} =over a region(conv(img₁k₁)+conv(img₂,k₂)+con(img₃,k₃)).
- Multiple Filters produce multiple feature maps.
- Each feature map is added with it's bias and applied non linearity function.
- And stack them and it's another conv layer.
- n'=(n+2p-f)/s+1
- Dimensions of output of convolution: (n_h, n_w, n_c) .
- n_c =Number of filters in that layer.

Multi Channel CNN

Summary of Notations

- Filter Size : F^[1]
- Padding : P^[1]
- Stride : S^[1]
- Number of Filters: $n_c^{[1]}$
- Input: $(n_h^{[l-1]}, n_w^{[l-1]}, n_c^{[l-1]})$
- Output : $(n_h^{[l]}, n_w^{[l]}, \overline{n_c^{[l]}})$
- Each Filter : $(F^{[1]}, F^{[1]}, n_c^{[1-1]})$
- Weights: (filtersize,filtersize,number of channels,Number of filters)
- $n \times n \text{ image}$ $f \times f \text{ filter}$ padding p stride s $\left| \frac{n+2p-f}{s} + 1 \right| \times \left| \frac{n+2p-f}{s} + 1 \right|$

Pooling Layer

- Commonly used max pooling.
- Used to
 - Reduce the size of representation.
 - Detect features effectively.
- This nothing but a filter over a region and taking value as max in that region.
- Hyperparameters of max pooling:
 - Filter size
 - Stride
 - Padding
- No Parameters to learn.
- Commonly used Hyperparams (f,s): (2,2),(3,2)

Pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Advantages of CNN over Traditional NN

- Parameter Sharing: same parameters are used to for all regions
- Sparsity of Connections: each output node depend only on few nodes of input layer instead of depending on all nodes.

Example Model

3D CNN (Single Channel)

- Each channel consists of 3D data.
- Input Image : (height,width,depth,# of in_channels)
- Kernel size : (F,F,depth',# of in_channels)
- Weights size : (F,F,depth',# of in_channels,# of filters)
- Output size : (height, width, depth, # of filters)
- Mostly height and width are same but depth may not be.
- Same for kernel also
- Convolution Process:
 - Left to right
 - Top to Bottom
 - Go in
- Output of Each filter is 3D data.

