PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 239/52, A61K 31/505, C07D 251/46, 239/70, 487/02, A61K 31/53, C07D 491/052, 401/04, 239/50, 239/48, 239/42, 251/42, 405/14

(11) Internationale Veröffentlichungsnummer:

WO 97/12878

A1 (43) Internationales

Veröffentlichungsdatum:

10. April 1997 (10.04.97)

(21) Internationales Aktenzeichen:

PCT/EP96/04205

(22) Internationales Anmeldedatum:

26. September 1996

(26.09.96)

(30) Prioritätsdaten:

195 36 891.6

4. Oktober 1995 (04.10.95)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KLINGE, Dagmar [DE/DE];
Brückenkopfstrasse 15, D-69120 Heidelberg (DE). AM-BERG, Wilhelm [DE/DE]; Stettiner Ring 24, D-61381
Friedrichsdorf (DE). KLING, Andreas [DE/DE]; Riegeler
Weg 14, D-68239 Mannheim (DE). RIECHERS, Hartmut
[DE/DE]; Müller-Thurgau-Weg 5, D-67435 Neustadt (DE).
UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE). RASCHACK, Manfred [DE/DE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, GE, HU, IL, JP, KR, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: AMINO ACID DERIVATIVES, THE PREPARATION AND USE THEREOF AS ENDOTHELIN ANTAGONISTS

(54) Bezeichnung: AMINOSÄUREDERIVATE, IHRE HERSTELLUNG UND VERWENDUNG ALS ENDOTHELINANTAGONISTEN

(57) Abstract

The invention relates to amino acid derivatives of formula (I), in which the groups have the meaning given in the description. It also relates to the use thereof as inhibitors for endothelin receptors.

(57) Zusammenfassung

Die Erfindung betrifft Aminosäurederivate der Formel (1), in der die Reste die in der Beschreibung angegebene Bedeutung besitzen, sowie deren Verwendung als Hemmstoffe für Endothelinrezeptoren.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Osterreich	GE	Georgien	NE	Niger
ΑŪ	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neusceland
BF	Burkina Faso	1E	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Ruminien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtensiein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	ÜA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	•
FI	Finnland	MN	Mongolei	UZ	Vereinigte Staaten von Amerik. Usbekistan
FR	Frankreich	MR	Mauretanien	VN	- · · · · · · · · · · · · · · · · · · ·
GA	Gabon	MW	Malawi	A14	Vietnam

WO 97/12878 PCT/EP96/04205

AMINOSÄUREDERIVATE, IHRE HERSTELLUNG UND VERWENDUNG ALS ENDOTHELINANTAGONISTEN

Beschreibung

Die vorliegende Erfindung betrifft neue Aminosäurederivate, deren Herstellung und Verwendung

Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das

10 von vaskulärem Endothel synthetisiert und freigesetzt wird.

Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3.

Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle

Isoformen von Endothelin. Endothelin ist ein potenter Vasokonstriktor und hat einen starken Effekt auf den Gefäßtonus. Es

15 ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res.

Commun., 154, 868-875, 1988).

- 20 Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, wurden erhöhte Plasmaspiegel von Endothelin gefunden bei Patienten mit Hypertonie, akutem Myokardinfarkt, pulmonärer
- 25 Hypertonie, Raynaud-Syndrom, Atherosklerose und in den Atemwegen von Asthmatikern (Japan J. Hypertension, <u>12</u>, 79 (1989), J. Vascular Med. Biology <u>2</u>, 207 (1990), J. Am. Med. Association 264, 2868 (1990)).
- 30 Demnach sollten Substanzen, die spezifisch die Bindung von Endothelin an den Rezeptor inhibieren, auch die obengenannten verschiedenen physiologischen Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.
- 35 Es wurde nun gefunden, daß bestimmte Aminosäurederivate gute Hemmstoffe für Endothelinrezeptoren sind.

Gegenstand der Erfindung sind Aminosäurederivate der Formel I

10 in der R eine Formylgruppe, ein Tetrazolyl, Cyano, eine Gruppe COOH oder einen zu COOH hydrolysierbaren Rest bedeutet. Beispielsweise steht R für eine Gruppe

in der R1 folgende Bedeutung hat:

- 20 a) Wasserstoff
 - b) eine Succinylimidylgruppe
- c) ein über ein Stickstoffatom verknüpfter 5-gliedriger He25 tereoaromat wie Pyrrolyl, Pyrazolyl- Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome oder ein bis
 zwei C₁-C₄-Alkyl- oder ein bis zwei C₁-C₄-Alkoxygruppen
 tragen kann;
- 30 d) R1 ferner eine Gruppe

$$O_{k}$$
 $O \longrightarrow (CH_{2})_{p} \longrightarrow S \longrightarrow R^{9}$

in der k die Werte 0,1 und 2, p die Werte 1,2,3 und 4 annehmen und R^9 für

C₁-C₄-Alkyl, C₃-C₇-Cycloalkyl, C₃-C₆-Alkenyl,

C1-C4-Alkyl, C3-C7-Cycloalkyl, C3-C6 Alkenyl,
C3-C6-Alkinyl oder gegebenenfalls substituiertes Phenyl
steht, das durch einen oder mehrere, z.B. ein bis drei
der folgenden Reste substituiert sein kann:
Halogen, Nitro, Cyano, C1-C4-Alkyl, -C1-C4-Halogenalkyl,
Hydroxy, C1-C4-Alkoxy, C1-C4-Alkylthio, Mercapto, Amino,
C1-C4-Alkylamino, C1-C4-Dialkylamino;

WO 97/12878 PCT/EP96/04205

3

e) R1 ferner ein Rest OR10, worin R10 bedeutet:

1

Wasserstoff, das Kation eines Alkalimetalls wie Lithium, Natrium, Kalium oder das Kation eines Erdalkalimetalls wie Calcium, Magnesium und Barium sowie physiologisch verträgliches Alkylammoniumion oder das Ammoniumion.

 $C_3 \cdot C_8 \cdot Cycloalkyl$, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl,

10

15

25

5

C₁-C₈-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl;

CH₂-Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino,

eine C₃-C₆-Alkenyl - oder eine C₃-C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

R¹⁰ kann weiterhin ein Phenylrest sein, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgende Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino;

ein über ein Stickstoffatom verknüpfter 5-gliedriger
Heteroaromat, enthaltend ein bis drei Stickstoffatome,
welcher ein bis zwei Halogenatome und/oder ein bis zwei
der folgenden Reste tragen kann: C₁-C₄-Alkyl,
C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenyl, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl,
4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl,
3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl,
4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl,
1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl,

3,4-Dichlorimidazol-1-yl;

f) R1 ferner ein Rest

worin R11 bedeutet:

10

5

 $C_1-C_4-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$ wie insbesondere vorstehend genannt, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-$ und/oder einen Phenylrest wie oben genannt tragen können;

٢

15

Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt;

g) R1 ein Rest

20

25

worin R12 die gleiche Bedeutung hat wie R11;

30 h) ferner kann R1 bedeuten

$$-n < \frac{R^{13}}{R^{14}}$$

35

wobei \mathbb{R}^{13} und \mathbb{R}^{14} gleich oder verschieden sein können und folgende Bedeutung haben:

40

Wasserstoff, C_1 - C_7 -Alkyl, C_3 - C_7 -Cycloalkyl, C_3 - C_7 -Alkenyl, C_3 - C_7 -Alkinyl, Benzyl, Phenyl, gegebenenfalls substituiert, wie oben beschrieben,

45

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte, z.B. durch C_1 - C_4 -Alkyl substituierte C_4 - C_7 -Alkylenkette, die ein Heteroatom, z.B. Sauerstoff, Stickstoff oder Schwefel

25

35

40

45

5

enthalten kann wie - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, - $(CH_2)_7$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_2$ -S- $(CH_2)_2$ -, - $(CH_2)_2$ -NH- $(CH_2)_2$ -;

5 ein Tetrazol oder ein Nitril sein.

Die übrigen Substituenten haben folgende Bedeutung:

- W Stickstoff oder C-NO₂, ferner kann W für eine CH-Gruppe 10 stehen, wenn ein oder mehrere der Substituenten R², R³, R¹⁵ und/oder R¹⁶ eine Nitrogruppe bedeuten;
 - R² Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogen-alkoxy, Hydroxy, Mercapto, C₁-C₄-Alkylthio, Nitro, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino, Cyano, Phenyl, optional ein-bis dreifach substituiert mit Halogen, Hydroxy, Amino, Monooder Dialkyl (C₁-C₃)-Amino, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Mercapto oder C₁-C₃-Alkylthio;
- oder
 ein fünf- oder sechsgliedriges Heteroaromat, enthaltend
 ein bis drei Stickstoffatome und/oder ein Schwefel- oder
 Sauerstoffatom, welcher ein bis drei Substituenten trägt,
 wie oben beschrieben;

Weiterhin kann R² mit dem benachbarten Kohlenstoffatom und X einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bilden, worin jeweils ein oder zwei Kohlenstoffatome durch ein Heteroatom wie Stickstoff, Schwefel oder Sauerstoff ersetzt sein kann und der ein- bis dreifach durch folgende Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, Amino, C₁-C₃-Alkylamino, C₁-C₃-Dialkylamino;

X Stickstoff oder CR¹⁵ worin R¹⁵ Wasserstoff oder C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₅-Alkylthio, Nitro, Phenyl, Hydroxy, Mercapto, Halogen, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino oder Cyano bedeutet

oder CR¹⁵ mit R² zu einem 5- oder 6-gliedrigen Ring verknüpft ist, wie oben beschrieben, ferner kann CR¹⁵ auch zusammen mit R³ und dessen benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Ring bilden, wie oben beschrieben;

- \mathbb{R}^3 kann dieselbe Bedeutung haben wie R^2 und ferner mit dem benachbarten Kohlenstoffatom und Y zusammen einen 5. oder 6-gliedrigen Alkylen- oder Alkylidenring bilden, worin jeweils ein oder zwei Kohlenstoffatome durch Stickstoff, 5 Sauerstoff oder Schwefel ersetzt sein kann; der 5- oder 6-gliedrige Ring kann optional ein- bis dreifach mit folgenden Resten substituiert sein; Halogen, Nitro, Cyano, Hydroxy, Mercapto, C1-C3-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, Amino, 10 C₁-C₃-Alkylamino oder C₁-C₃-Dialkylamino; Stickstoff im 5-Ring kann auch durch eine Formyl- oder Acetylgruppe substituiert sein; R² und R³ können gleich oder verschieden sein:
- Y Stickstoff oder CR¹⁶, worin R¹⁶ Wasserstoff, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₅-Alkylthio, Nitro, Phenyl, Hydroxy, Halogen, Cyano, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino oder Mercapto bedeutet oder CR¹⁶ zusammen mit R³ und dessen benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Ring bilden, wie oben beschrieben;
 - R⁴ steht für Wasserstoff, C₁-C₇-Alkyl, C₃-C₇-Cycloalkyl; oder Phenyl oder Naphthyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann; Halogen, Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, Phenyl, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino,
- R⁴ kann auch einen fünf- oder sechsgliedrigen Heteroaromaten bedeuten, enthaltend ein Stickstoff-, Schwefeloder Sauerstoffatom, welcher ein bis zwei der folgenden
 Reste tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;
 - außerdem können R⁴ und R⁵ Phenylgruppen sein, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind;
- hat die Bedeutung von C₁-C₇-Alkyl, C₃-C₇-Cycloalkyl oder Phenyl oder Naphtyl, das durch ein bis drei der folgenden Reste substituiert sein kann; Halogen, Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, Phenyl, C₁-C₄-Alkylthio,

10

25

30

35

40

45

Amino, C_1 - C_4 -Alkylamino oder C_1 - C_4 -Dialkylamino, wobei zwei Reste an benachbarten Kohlenstoffatomen zusammen mit diesem über eine Alkylen- oder Alkylidengruppe verbundenen fünf- oder sechsgliedrigen Ring bilden können, bei dem ein oder mehrere Methylen oder Methylidengruppen durch Sauerstoff ersetzt sein können wie zum Beispiel: -(CH_2)₃-, -(CH_2)₄-, -CH=CH-O-, - $O-CH_2-O-$, - $O-(CH_2)_2-O-$ - $CH=CH-CH_2-$ oder -O-CH=CH-O-;

beispielsweise kann R⁵ für folgende Reste stehen:

Weiterhin kann R⁵ ein fünf· oder sechsgliedriger Heteroaromat sein, enthaltend ein Stickstoff·, Schwefel· oder Sauerstoffatom, welcher ein bis zwei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C₁·C₄·Alkyl, C₁·C₄·Halogenalkyl, C₁·C₄·Alkoxy, Phenoxy, C₁·C₄·Alkylthio, C₁·C₄·Alkylamino oder C₁·C₄-Dialkylamino;

Daneben kann R^5 mit R^4 zusammen einen Tricyclus bilden wie oben beschrieben, außerdem kann R^5 ein gegebenenfalls substituierter Phenylrest oder Heteroaromat sein - wie oben beschrieben -, der orthoständig mit R^8 zu einem 6-gliedrigen Ring verknüpft ist, worin Q für eine Einfachbindung und R^8 für eine Gruppe CH- R^{17} stehen müssen;

- R6 Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl
- Z eine Einfachbindung, Sauerstoff, Schwefel, eine Sulfoxidoder Sulfonylgruppe;
- R^7 Wasserstoff oder $C_1 \cdot C_4 \cdot Alkyl$, $C_2 \cdot C_4 \cdot Alkylen$, $C_2 \cdot C_4 \cdot Alkinyl$;

10

O eine Einfachbindung,

R⁸ bedeutet Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkylen, Phenyl oder Benzyl, weiterhin kann R⁸ direkt mit R⁵ verbunden sein, wie oben beschrieben, in dem Fall steht R⁸ für eine Gruppe CH-R¹⁷, worin R¹⁷ Wasserstoff, C₁-C₄-Alkyl, Phenyl oder ein- bis dreifach mit Methoxy substituiertes Phenyl bedeutet, oder für einen der folgenden Reste steht.

Die Verbindungen und auch die Zwischenprodukte zu ihrer Herstellung II, können ein oder mehrere asymmetrische substituierte Kohlenstoffatome besitzen. Solche Verbindungen können als reine 30 Enantiomere bzw. reine Diastereomere oder als deren Mischung vorliegen. Bevorzugt ist die Verwendung einer enantiomerenreinen Verbindung als Wirkstoff.

Gegenstand der Erfindung ist weiter die Verwendung der oben
35 genannten Aminosäurederivate zur Herstellung von Arzneimitteln,
insbesondere zur Herstellung von Hemmstoffen für Endothelinrezeptoren.

Die Herstellung der erfindungsgemäßen Verbindungen erfolgt durch die Umsetzung eines Aminosäurederivats II mit einem Heterocyclenderivat III, in dem R¹⁷ Halogen oder R¹⁸ -SO₂-bedeutet, wobei R¹⁸ C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl sein kann. Darin bedeutet R einen Carbonsäureester oder eine Carbonsäure. Bevorzugt wird II mit R= CO₂H eingesetzt. Entsteht bei der Herstellung von 45 II der Aminosäureester, so wird dieser nach Standardmethoden der Aminosäurechemie zunächst zu der Aminosäure (R=CO₂H) hydrolysiert.

WO 97/12878 PCT/EP96/04205

Die Reaktion findet bevorzugt in einem inerten Lösungsmittel unter Zusatz einer Base statt, wie in der Literatur beschrieben z.B. in J. Am. Chem Soc. 1976, 98, 8472-8475 oder J. Chem. Soc. 15 Perkin Trans I, 1988, 691-696.

Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind Wasser, aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die gegebenenfalls chloriert sein können, wie 20 Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylchlorid und Trichlorethylen, Ether, wie Diisopropylether, Dibutylether, Methyl-tert.Butylether, Propylenoxid, Dioxan und Tetrahydrofuran, Ketone, wie Aceton, Methylethylketon, Methyliso-25 propylketon und Methylisobutylketon, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Alkohole, wie zum Beispiel Methanol, Ethanol, Isopropanol, Butanol und Ethylenglycol, Ester, wie Ethylacetat und Amylacetat, Saureamide, wie Dimethylformamid und Dimethylacetamid, Sulfoxide und Sulfone, wie Dimethylsulfoxid und 30 Sulfolan, Basen, wie zum Beispiel Pyridin, N-Methylpyrrolidon, cyclische Harnstoffe wie 1,3-Dimethylimidazolidin-2-on und 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinon.

Die Reaktion wird dabei bevorzugt in einem Temperaturbereich 35 zwischen 0°C und dem Siedepunkt des Lösungsmittels bzw. Lösungsmittelgemisches durchgeführt.

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkali40 metallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkalioder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid dienen.

Verbindungen der Formel II, soweit sie nicht bekannt sind, sind ebenfalls Gegenstand der Erfindung. Sie können nach bekannter Art hergestellt werden.

5 Die erfindungsgemäßen Verbindungen IIa, in denen R⁶=H und Z eine Bindung bedeuten, können beispielsweise nach einer in Tetrahedron Lett, 1978,30,2651 ff beschriebenen Methode hergestellt werden, indem ein geeignetes Imin IV mit einer Verbindung V mit Hilfe eine Base in einem inerten Solvens zur Reaktion gebracht wird.
10 Gegebenenfalls wird diese Reaktion in einem 2-Phasengemisch mit

einem Phasentransferkatalysator unter Phasentransferbedingungen durchgeführt, beispielsweise in Methylenchlorid und 5-20%iger wäßriger Natronlauge mit einem quartären Ammoniumsalz, wie z.B. Tetra-n-Butylammoniumhydrogensulfat. K hat hierin die

15

Bedeutung von Halogen oder OR^{19} , worin R^{19} für Methylsulfonyl, Toluylsulfonyl oder Trifluormethylsulfonyl steht. Anschließend wird das Imin VI gespalten.

30

35

$$VI \longrightarrow H \xrightarrow{R^4} CO_2R^{10}$$

$$R^5 \qquad NH_2$$

$$IIa$$

Die Hydrolyse von VI zu IIa kann im geeigneten Lösungsmittel mit anorganischen oder organischen, starken Säuren wie z.B. Salz40 säure, Schwefelsäure, Salpetersäure, Phosphorsäure, Perchlorsäure, Essigsäure Trifluormethylsulfonsäure oder Trifluoressigsäure unterschiedlicher Konzentration erfolgen. Als Lösungsmittel können Wasser, C1-C4-Alkohole, Acetonitril, Diethylether, Tetrahydrofuran, Dioxan oder Toluol eingesetzt werden. In der Regel
45 verläuft die Hydrolyse zweistufig. Im ersten Schritt wird VI mit verdünnter Säure zum Aminosäureester IIa hydrolysiert, worin R¹⁰
+ H ist. Danach wird der Aminosäureester mit höher konzentrierter

Säure, bzw einer stärkeren Säure zur Aminosäure IIa verseift, worin $R^{10} = H$ bedeutet.

Setzt man Verbindung IIa mit III zu Ia um, wie oben beschrieben, 5 so erhält man die erfindungsgemäßen Verbindungen Ia, in denen R⁶ Wasserstoff, R⁸ Wasserstoff und Z und Q jeweils eine Einfachbindung bedeuten.

Die erfindungsgemäßen Verbindungen IIb, in denen Z eine Bindung, R^5 ein aromatischer oder heteroaromatischer Rest und R^6 eine C_1 - C_4 -Alkylgruppe bedeuten, werden hergestellt, indem man eine geeignete Phosphonatverbindung VII mit einer Carbonylverbindung VIII in einer Wittig-Horner-Reaktion zu der α , β -ungesättigten Verbindung IX umsetzt.

15

R20 bedeutet dabei C1-C6-Alkyl oder Benzyl.

25

Verbindung IX kann dann nach einer Vorschrift aus Chem.Ber., 1931, 64,1493 ff mit R⁵-H unter Zuhilfenahme eines Friedel-Crafts-Katalysators wie z.B. Aluminiumtrichlorid zum Carbonsäurederivat X umgesetzt werden.

30

35

Verbindungen X können nach bekannten Methoden zu Hydrazinosäurederivaten XII umgewandelt werden, wie z.B. in J. Am. Chem. Soc., 1986, 108 6395-6397 beschrieben. Als Aminierungsreagens dient 40 Dialkylazodicarboxylat XI, wobei R²¹ für 2,2-Dimethylethyl oder

Benzyl steht.

15 Hydrolyse von XII mit einer starken anorganischen oder organischen Säure im geeigneten Lösungsmittel, wie oben beschrieben, führt zum α-Hydrazino-Carbonsäurederivat XIII. Steht R²¹ für Benzyl, so kann die Umsetzung von XII zu XIII auch mittels einer Hydrogenolyse mit Wasserstoff und einem geeigneten Katalysator 20 wie z.B. Palladium auf Aktivkohle, unterschiedlicher Konzentration, beispielsweise 10 % Palladium auf Kohle, erfolgen.

 α -Hydrazinocarbonsäurederivate XIII können mit einem geeigneten 30 Katalysator, z.B. Raney-Nickel, mit Wasserstoff unter Druck, z.B. 10-50 bar, zu den α -Aminosäurederivaten IIb reduziert werden.

Verbindungen IIb können mit III zu den erfindungsgemäßen 40 Verbindungen Ib umgesetzt werden, wie oben beschrieben.

Die Verbindungen IIb können auch hergestellt werden, indem man eine Verbindung XIV mit einer Grignardverbindung XV umsetzt und das Produkt XVI unter Säureeinwirkung zu IIb hydrolysiert, wie in 45 Liebigs Ann., 1977, 1174-1182 analog beschrieben:

Die erfindungsgemäßen Verbindungen IIc, in denen R⁶ C₁·C₄·Alkyl bedeutet und Z für Sauerstoff, Schwefel, S=O oder SO₂ steht, können hergestellt werden, indem ein geeignetes Aziridin XVII mit einem Alkohol oder Thiol R⁶·Z·H zu XVIII geöffnet wird.

25

45

Diese Methode ist beispielsweise in J. Chem. Soc., Perkin Trans II, 1981,121-126, beschrieben. Anschließende Oxidation, z.B. mit meta-Chlorperbenzoesäure in einem geeigneten Lösungsmittel liefert im Fall von Z=Schwefel je nach dem molaren Verhältnis der 30 eingesetzten Komponenten die entsprechenden Verbindungen XVIII mit Z=SO oder SO₂. R²² steht für Wasserstoff oder eine geeignete Schutzgruppe, wie z.B. Benzyl, Benzyloxycarbonyl, tert.-Butyloxycarbonyl. Ist R²² gleich Wasserstoff, so entspricht XVIII IIc. Im Fall von R²² + Wasserstoff muß die Schutzgruppe nach bekannten 35 Methoden hydrolytisch, unter Säurezusatz, oder hydrogenolytisch mit einem geeigneten Katalysator entfernt werden; und man erhält auf diese Weise Verbindung IIe. Die erfindungsgemäßen Verbindungen IIc werden, wie oben beschrieben, mit III zu Ic umgesetzt.

40 Die ebenfalls erfindungsgemäßen Verbindungen XVII können hergestellt werden, indem man bekannte, oder nach bekannten Methoden hergestellte α,β-ungesättigte Carbonylverbindungen XIX z.B. nach J. Org. Chem., 1991, 56, 6744-6 mit einem Aminierungsreagens XX und einem geeigneten Katalysator umsetzt.

10 Die erfindungsgemäßen Verbindungen Id, bei denen Q eine Bindung und R⁸ ungleich Wasserstoff sind, lassen sich herstellen, indem man ein Aminosäurederivat IId (Q bedeutet eine Bindung und R⁸ Wasserstoff) nach bekannten Methoden z.B. in ein N-Benzyloxycarbonylderivat XXI überführt und dieses

15

20

IId

$$R^6 - Z \xrightarrow{R^4} CO_2R^{10} R^7$$

Ease

 XXI
 $R^6 - Z \xrightarrow{R^4} R^7$
 R^7
 $R^8 - K$

Base

 $R^6 - Z \xrightarrow{R^4} R^7$
 R^7
 $R^8 - K$
 $R^8 - K$

in einem inerten Lösungsmittel, z.B. Tetrahydrofuran, mit einer starken Base, z.B. Kalium-tert.-butylat, und einem Alkylierungsmittel R8-K umsetzt, worin K üblicherweise Halogen oder einen Sul-35 fatrest bedeutet. Das hierbei entstandene Derivat XXII kann nach bekannten Methoden zur Aminoverbindung IIe entschützt werden, beispielsweise durch Abspaltung der Benzyloxycarbonylgruppe mit Wasserstoff unter Palladium/Aktivkohle-Katalyse in einem inerten Lösungsmittel.

40

XXII
$$\frac{H_2/Pd/C}{R^6-Z} \xrightarrow{R^4} \frac{CO_2R^{10}}{R^7}$$

$$R^5 \quad NH$$

$$R^8$$
IIe

WO 97/12878 PCT/EP96/04205

15

IIe wird dann zu Verbindungen Id mit III umgesetzt, wie oben beschrieben.

Die erfindungsgemäßen Verbindungen Ie, bei denen Q für eine

5 Gruppe O oder O steht, können beispielsweise hergestellt

C C—O

werden, indem Verbindungen Ia-d unter basischen Bedingungen in einem inerten Lösungsmittel mit XXIII zu Ie umgesetzt werden

10

25

L hat hierin die Bedeutung von Halogen, OR²³, wobei R²³ für einen der folgenden Reste steht:

30 C₁-C₄-Alkyl, Benzyl, Succinimidyl oder 2,4,5-Trichlorphenyl; L kann weiterhin stehen für Azido, p.Tolylsulfonyl, Methylsulfonyl, Trifluormethylsulfonyl oder kann Anhydrid bedeuten.

Die erfindungsgemäßen Verbindungen If, worin R⁵ mit R⁸ verknüpft ist, können aus den Tetrahydroisochinolinderivaten IIf hergestellt werden, die ihrerseits aus den Aminosäurederivaten IId durch Umsetzung mit Aldehyden der Struktur XXIV unter Einwirkung von Säure, z.B. Salzsäure oder Schwefelsäure analog Synthesis, (1990), S. 550-556, hergestellt werden können.

A ≙ Aromat oder

Heteroaromat, ggf. substituiert

10

IIf wird dann zu Verbindung If mit III umgesetzt, wie oben beschrieben.

Verbindungen der Formel I können in enantiomerenreiner Form er15 halten werden, indem man von enantiomerenreinen Verbindungen II
ausgeht, die durch klassische Racematspaltung oder durch enantioselektive Synthesen (wie z.B. Pure Appl.Chem., 1983, 55, 1799 ff;
Helv.Chim.Acta, 1988, 71, 224 ff; J. Am. Chem. Soc, 1988, 110,
1547-1557; Chem.Eng.News, 1989, 25-27)

- 20 in enantiomerenreiner und gegebenenfalls diastereomerenreiner Form hergestellt werden können, und diese Verbindungen II mit III umsetzt, wie oben beschrieben. Eine andere Möglichkeit, enantiomerenreine Verbindungen der Formel I zu erhalten, ist die klassische Racematspaltung racemischer oder diastereomerer Verbindungen
- 25 I mit geeigneten enantiomerenreinen Basen wie z.B. Brucin,
 Strychnin, Chinin, Chinidin, Cinchonidin, Cinchonin, Yohimbin,
 Morphin, Dehydroabietylamin, Ephedrin (-), (+), Deoxyephedrin
 (+), (-), threo-2-Amino-1-(p-nitrophenyl)-1,3-propandiol (+),
 (-), threo-2-(N,N-Dimethylamino)-1-(p-nitrophenyl)-1,3-propandiol
- 30 (+), (-) threo-2-Amino-1-phenyl-1,3-propandiol (+), (-), α-Methylbenzylamin (+), (-), α-(1-Naphthyl)ethylamin (+), (-),
 α-(2-Naphthyl)ethylamin (+), (-), Aminomethylpinon, N,N-Dimethyl-1-phenylethylamin, N-Methyl-1-phenylethylamin, 4-Nitrophenylethylamin, Pseudoephedrin, Norephedrin, Norpseudoephedrin,
- 35 Aminosäurederivate und Peptidderivate.

Bevorzugt sind Verbindungen der Formel I - sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - in denen die Substituenten folgende Bedeutung haben:

- R eine Carbonsäure, ein Carbonsäuresalz oder eine zu einer Carbonsäure hydrolysierbare Gruppe, wie oben beschrieben.
- R² Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Nitro,
 C₁-C₄-Alkoxy, C₁-C₅-Alkylthio, Cyano, Amino, Methylamino,
 Hydroxy oder Dimethylamino;

WO 97/12878

17

- W Stickstoff, C-NO₂, außerdem CH, wenn mindestens einer der Reste \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^{15} und \mathbb{R}^{16} eine Nitrogruppe bedeuten;
- Stickstoff oder CR¹⁵, worin R¹⁵ Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Nitro, Cyano, Halogen oder Phenyl bedeutet oder CR¹⁵ mit R³ und dem benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bildet, worin ein oder zwei Kohlenstoffatome durch ein Heteroatom wie Stickstoff, Sauerstoff oder Schwefel ersetzt sein können und der ein- oder zweifach durch eine C₁-C₃-Alkyl (oder C₁-C₃-Alkoxygruppe) substituiert sein kann; Stickstoff in 5-gliedrigen Ring kann außerdem durch CHO- oder COCH₃-Gruppe substituiert sein;
- 15 R³ kann dieselbe Bedeutung haben wie R² und außerdem mit X und dem benachbarten Kohlenstoffatom einen ggf. substituierten 5-oder 6-Ring bilden, wie oben beschrieben; ferner kann R³ mit dem benachbarten Kohlenstoffatom und Y einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bilden, worin ein bis zwei Kohlenstoffatome durch Stickstoff, Sauerstoff oder Schwefel ersetzt sein können und der ein- bis zweifach durch eine C¹-C³-Alkyl oder C¹-C³-Alkoxygruppe substituiert sein kann und ein Stickstoffatom in einem 5-gliedrigen Ring durch eine CHO- oder COCH³-Gruppe substituiert sein kann;

R⁴ hat die Bedeutung von Wasserstoff, C₁-C₆-Alkyl, C₃-C₇-Cyclo-alkyl oder Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyl, ferner können R⁴ und R⁵ Phenylgruppen bedeuten, die orthoständig über eine direkte Bindung, eine CH₂-Gruppe, eine CH₂-CH₂-Gruppe oder ein Sauerstoffatom miteinander verbunden sind;

R⁵ kann dieselbe Bedeutung haben wie R⁴, außer Wasserstoff und C₁-C₆-Alkyl, zusätzlich kann R⁵ Phenyl bedeuten, das ausschließlich oder zusätzlich zu den obengenannten Resten durch zwei Reste an benachbarten Kohlenstoffatomen substituiert sein kann, die zusammen eine 1,3-Dioxomethylen - oder eine 1,4-Dioxoethylengruppe darstellen und mit den benachbarten Kohlenstoffatomen einen 5-bzw. 6-gliedrigen Ring bilden;

- R6 Wasserstoff oder C₁-C₄-Alkyl;
- Z eine Einfachbindung, Sauerstoff oder Schwefel;
- R⁷ Wasserstoff oder C₁-C₄-Alkyl;

- Q eine Einfachbindung, eine Carbonylgruppe oder eine Oxycarbonylgruppe;
- R8 Wasserstoff oder C₁-C₄-Alkyl.

Besonders bevorzugt sind Verbindungen der Formel I - sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - in denen die Substituenten folgende Bedeutung haben:

- 10 R eine Carbonsäure, ein Carbonsäuresalz oder eine zu einer Carbonsäure hydrolysierbare Gruppe, wie oben beschrieben;
- R² Wasserstoff, Chlor, Methyl, Ethyl, CF₃, Nitro, Methoxy, Ethoxy, Hydroxy, Methylthio, Amino, N-Methylamino oder Dimethylamino;
 - W Stickstoff;
- X Stickstoff oder CR¹⁵, worin R¹⁵ Wasserstoff, Methyl, Nitro oder Cyano bedeutet oder CR¹⁵ mit R³ und dem benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bildet, worin ein Kohlenstoffatom durch Sauerstoff ersetzt sein kann, und der durch eine Methyl- oder Methoxygruppe substituiert sein kann; beispielsweise kann der 5- oder 6-gliedrige Alkylen- oder Alkylidenring folgende Strukturen bedeuten;

40 R³ kann dieselbe Bedeutung haben wie R² und außerdem mit X und dem benachbarten Kohlenstoffatom einen ggf. substituierten 5-oder 6-Ring bilden, wie oben beschrieben; ferner kann R³ mit dem benachbarten Kohlenstoffatom einen ggf. substituierten 5-6-gliedrigen Alkylen- oder Alkylidenring bilden, worin ein bis zwei Kohlenstoffatome durch Stickstoff oder Sauerstoff ersetzt sein können und der durch eine Methyl- oder Methoxy-

gruppe substituiert sein kann; Beispiele für derartige Alkylen oder Alkylidenringe sind:

- R⁴ hat die Bedeutung von Wasserstoff, Methyl, Ethyl, n-Propyl, 1-Methylethyl, Cyclohexyl, oder Phenyl, das durch eine oder zwei Methoxygruppen substituiert sein kann, ferner können R⁴ und R⁵ Phenylgruppen bedeuten, die orthoständig über eine direkte Bindung, eine CH₂- oder CH₂-CH₂-Gruppe miteinander verbunden sind;
- R⁵ bedeutet Cyclohexyl oder Phenyl, das durch Phenyl, eine bis drei Methoxygruppen, oder ausschließlich oder zusätzlich zu einer Methoxygruppe durch zwei Reste an benachbarten Kohlenstoffatomen substituiert sein kann, die zusammen eine 1,3-Dioxomethylen- oder eine 1,4-Dioxoethylengruppe darstellen und mit den benachbarten Kohlenstoffatomen einen 5- bzw. 6-gliedrigen Ring bilden, außerdem kann R⁵ ein gegebenenfalls substituierter Phenylring sein, der orthoständig mit R⁸ zu einem 6-gliedrigen Ring verknüpft ist, wenn Q eine Einfachbindung und R⁸ für eine Gruppe CH-R¹⁷ steht;
 - R6 Wasserstoff, Methyl, Ethyl, n-Propyl oder 1-Methylethyl:

R⁷ Wasserstoff oder Methyl;

35

Q eine Einfachbindung, eine Carbonylgruppe oder eine Oxycarbonylgruppe:

R⁸ Wasserstoff, Methyl oder 1,1-Dimethylethyl,
außerdem kann R⁸ direkt mit R⁵ verbunden sein, wie oben beschrieben, wenn R⁸ für eine Gruppe CH-R¹⁷ steht, worin R¹⁷
Wasserstoff, Methyl, Ethyl, Phenyl oder ein- bis dreifach mit
Methoxy substituiertes Phenyl oder einer der folgenden Reste
bedeutet:

15

$$\frac{1}{2}$$
 $\frac{1}{2}$
 $\frac{1$

Die Verbindungen der vorliegenden Erfindung bieten ein neues therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, Angina Pectoris, akutem Nierenversagen, Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie, Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endotoxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie, benigne Prostata-Hyperplasie, ischämisches und durch Intoxikation verursachtes Nierenversagen bzw. Hypertonie.

Die gute Wirkung der Verbindungen läßt sich in folgenden 20 Versuchen zeigen:

Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_A -Rezeptor-25 exprimierende CHO-Zellen und Meerschweinchen-Kleinhirnmembranen mit > 60 % ET_B - im Vergleich zu ET_A -Rezeptoren eingesetzt.

Membranpräparation

30 Die ET_A-Rezeptor-exprimierenden CHO-Zellen wurden in F₁₂-Medium mit 10 % fötalem Kälberserum, 1 % Glutamin, 100 E/ml Penicillin und 0,2 % Streptomycin (Gibco BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit 35 F₁₂-Medium neutralisiert und die Zellen durch Zentrifugation bei 300 x g gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit Lysispuffer (5 mM Tris-HCl, pH 7,4 mit 10 % Glycerin) gewaschen und danach in einer Konzentration von 10⁷-Zellen/ml Lysispuffer 30 min bei 4°C inkubiert. Die Membranen wurden bei 20.000 x g 40 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

Meerschweinchenkleinhirne wurden im Potter-Elvejhem-Homogenisator homogenisiert und durch differentielle Zentrifugation 10 min bei 45 1.000 x g und wiederholte Zentrifugation des Überstandes 10 min bei 20.000 x g erhalten.

Bindungstests

Für den ET_A· und ET_B-Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris·HCl, pH 7,4 mit 5 mM MnCl₂, 40 μg/ml 5 Bacitracin und 0,2 % BSA) in einer Konzentration von 50 μg Protein pro Testansatz suspendiert und bei 25°C mit 25 pM ¹²⁵ J-ET₁ (ET_A-Rezeptortest) oder 25 pM ¹²⁵ J-RZ₃ (ET_B-Rezeptortest) in Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10·7 M ET₁ bestimmt. Nach 30 min 10 wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris·HCl·Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem 15 Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Funktionelles in vitro-Testsystem für die Suche nach Endothelinrezeptor (Subtyp A)-Antagonisten

20 Dieses Testsystem ist ein funktioneller, auf Zellen basierender Test für Endothelinrezeptoren. Bestimmte Zellen zeigen, wenn sie mit Endothelin 1 (ET1) stimuliert werden, einen Anstieg der intrazellulären Calciumkonzentration. Dieser Anstieg kann in intakten Zellen, die mit Calcium-sensitiven Farbstoffen beladen 25 wurden, gemessen werden.

Aus Ratten isolierte Fibroblasten, bei denen ein endogener Endothelinrezeptor vom A-Subtyp nachgewiesen wurde, wurden mit dem Fluoreszenzfarbstoff Fura 2-an wie folgt beladen: Nach Trypsinie-30 rung wurden die Zellen in Puffer A (120 mM NaCl, 5 mM KCl, 1,5 mM MgCl₂, 1 mM CaCl₂, 25 mM HEPES, 10 mM Glucose, pH 7,4) bis zu einer Dichte von 2 x 10⁶/ml resuspendiert und in 30 min bei 37°C im Dunkeln mit Fura 2-am (2 μM), Pluronics F-127 (0,04 %) und DMSO (0,2 %) inkubiert. Danach wurden die Zellen zweimal mit Puffer A gewaschen und zu 2 x 10⁶/ml resuspendiert.

Das Fluoreszenzsignal von 2 x 10⁵ Zellen pro ml bei Ex/Em 380/510 wurde bei 30°C kontinuierlich registriert. Zu den Zellen wurden die Testsubstanzen und nach einer Inkubationszeit von 3 min ET1 40 zugegeben. Über 30 Minuten wurde die maximale Änderung der Fluoreszenz bestimmt. Die Antwort der Zellen auf ET1 ohne vorherige Zugabe einer Testsubstanz diente als Kontrolle und wurde gleich 100 % gesetzt.

Testung der ET-Antagonisten in vivo

Männliche 250 - 300 g schwere SD-Ratten wurden mit Amobarbital narkotisiert, künstlich beatmet, vagotomisiert und despinali-5 siert. Die Arteria carotis und Vena jugularis wurden kathetisiert.

In Kontrolltieren führt die intravenöse Gabe von 1 $\mu g/kg$ ET1 zu einem deutlichen Blutdruckanstieg, der über einen längeren Zeit10 raum anhält.

Den Testtieren wurde 5 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen Eigenschaften wurde der Blutdruckanstieg in den Testtieren mit 15 dem in den Kontrolltieren verglichen.

Endothelin-1 induzierter "sudden death" an Mäusen

Das Testprinzip besteht in der Hemmung des durch Endothelin

20 verursachten plötzlichen Herztodes der Maus, der wahrscheinlich
durch Verengung der Herzkranzgefäße bedingt ist, durch Vorbehandlung mit Endothelin-Rezeptorantagonisten. Nach intravenöser
Injektion von 10 nmol/kg Endothelin im Volumen von 5 ml/kg
Körpergewicht kommt es innerhalb weniger Minuten zum Tod der

25 Tiere.

Die letale Endothelin-1 Dosis wird jeweils an einem kleinen Tierkollektiv überprüft. Wird die Prüfsubstanz intravenös appliziert, erfolgt meist 5 min danach die im Referenzkollektiv letale Endo-30 thelin-1 Injektion. Bei anderen Applikationsarten verlängern sich die Vorgabezeiten, gegebenenfalls bis zu mehreren Stunden.

Die Überlebensrate wird dokumentiert und effektive Dosen, die 50 % der Tiere 24 h oder länger gegen den Endothelin-Herztod 35 schützen (ED 50) werden ermittelt.

Funktioneller Gefäßtest für Endothelin-Rezeptorantagonisten

An Aortensegmenten des Kaninchens wird nach einer Vorspannung von 40 2 g und einer Relaxationszeit von 1 h in Krebs-Henseleitlösung bei 37°C und einem pH-Wert zwischen 7,3 und 7,4 zunächst eine K*-Kontraktur ausgelöst. Nach Auswaschen wird eine Endothelin-Dosiswirkungskurve bis zum Maximum erstellt.

45 Potentielle Endothelin-Antagonisten werden an anderen Präparaten des gleichen Gefäßes 15 min vor Beginn der Endothelin-Dosis-wirkungskurve appliziert. Die Effekte des Endothelins werden in %

PCT/EP96/04205

23

der K+-Kontraktur berechnet. Bei wirksamen Endothelin-Antagonisten kommt es zur Rechtsverschiebung der Endothelin-Dosiswirkungs-kurve.

- 5 Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.
- 10 Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.
- Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 90 Gew. %.
- 30 Synthesebeispiele

Beispiel 1

WO 97/12878

Di-(3-Methoxyphenyl)-methylbromid

22,53 g (92,2 mmol) Di-(m-Methoxyphenyl)-methylcarbinol wurden in 200 ml Diethylether gelöst und unter Stickstoffatmosphäre 28,76 g (138,3 mmol) Thionylbromid in 20 ml Diethylether gelöst zugetropft. Nach 6 Stunden bei Raumtemperatur wurde das Gemisch auf Eiswasser gegossen, die organische Phase abgetrennt und mit Wasser und gesättigter NaHCO3-Lösung gewaschen, anschließend mit MgSO4 getrocknet und eingeengt. Man erhielt 27,73 g (97,8%) Rohprodukt, das direkt weiter umgesetzt wurde.

Beispiel 2

2-N-(Diphenylmethylen) -amino-3,3-di(3-methoxyphenyl) -propion-säuremethylester

5

- 19,05 g (75,2 mmol) N-Diphenylmethylenyl-glycinmethylester wurden in 200 ml THF gelöst und unter Argonatmosphäre bei -78°C 75 ml einer 1,5 molaren Lösung von LDA in THF langsam zugetropft. Nach 45 Minuten wurden 27,73 g (90,3 mmol) Di-(3-Methoxy-
- 10 phenyl) methyl bromid in 60 ml THF zugetropft. Nach 90 Minuten ließ man auf Raumtemperatur kommen und rührte noch 22 Stunden. Danach wurden 20 ml Phosphatpuffer zugegeben, das THF im Vakuum abgezogen und der Rückstand dreimal mit Essigester extrahiert. Die vereinigten organischen Phasen wurden mit MgSO4 getrocknet und 15 eingeengt. Man erhielt 43,3 g Rohprodukt, das direkt weiter umgesetzt wurde.

Beispiel 3

- 20 2-Amino-3,3-di(3-methoxyphenyl)-propionsäuremethylester
 - 43,3 g (75,2 mmol) 2-N-(Diphenylmethylen)-amino-3,3-di-(3-meth-oxyphenyl)-propionsäuremethylester (Rohprodukt) wurden in 1 l THF gelöst und 506 ml 0,5 normaler Salzsäure zugegeben und 90 Minuten
- 25 bei Raumtemperatur gerührt. Nachdem das THF im Vakuum abgezogen war, wurde der wäßrige Rückstand mit Essigester extrahiert. Dann wurde die wäßrige Phase mit 25%iger Ammoniaklösung alkalisch (pH 9-10) gestellt.
- 30 Anschließend wurde die wäßrige Phase viermal mit Essigester extrahiert. Die vereinigten organischen Phasen wurden mit MgSO₄ getrocknet und eingeengt. Man erhielt 14,27 g (60,1 %) Produkt.

Beispiel 4

- 2-Amino-3,3-di(3-methoxyphenyl)-propionsäure
- 6,0 g (19,0 mmol) 2-Amino-3,3-di-(3-methoxyphenyl)-propionsäure-methylester wurden in 140 ml 6 normaler Salzsäure 6 Stunden unter
- 40 Rückfluß erhitzt. Danach wurde auf 0°C abgekühlt und der Niederschlag abfiltriert, mit Wasser gewaschen und getrocknet. Anschließend wurde der Feststoff in 50 ml Ethanol gelöst, 20 ml Propenoxid zugegeben und 30 Minuten unter Rückfluß erhitzt. Nach dem Abkühlen wurde der Niederschlag abfiltriert, mit Ethanol
- 45 nachgewaschen und getrocknet. Man erhielt 2,20 g (38,4 %) eines weißen Pulvers vom Schmelzpunkt 168-173°C.

Beispiel 5

3,3-Di-(3-methoxyphenyl)-2-(4,6-Dimethoxy-pyrimidin-2-yl-amino)-propionsäure

5

2,20 g (7,3 mmol) 2-Amino-3,3-di-(3-methoxyphenyl)-propionsäure, 0,66 g (3,04 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin und 0,39 g (3,65 mmol) Natriumcarbonat wurden in eine Mischung von 16 ml DMF und 16 ml Wasser eingebracht und 10 Stunden bei 80°C ge-10 rührt. Das Reaktionsgemisch wurde dann mit Wasser und Essigester versetzt. Die wäßrige Phase wurde mit 6 normaler Salzsäure angesäuert und dreimal mit Essigester extrahiert. Nach Trocknen mit MgSO₄ und Einengen erhielt man das Rohprodukt, das mit Dichlormethan/Methanol (50:1) über Kieselgel chromatographiert wurde. Man erhielt 0,455 g (34,1 %) eines weißen Pulvers vom Schmelzpunkt 58-66°C.

Beispiel 6

- 20 3,3-Diphenyl-2-(4,6-Dimethylpyrimidin-2-ylamino)-propionsäure
 - 2,60 g (10,8 mmol) 2-Amino-3,3-diphenylpropionsaure und 0,64 g (4,5 mmol) 2-Chlor-4,6-dimethylpyrimidin wurden in eine Mischung von 16 ml DMF und 16 ml Wasser gegeben, 0,57 g (5,4 mmol)
- 25 Natriumcarbonat zugegeben und die Mischung 24 Stunden bei 80°C gerührt. Danach wurden 100 ml Essigester und etwas Wasser zugesetzt und die Phasen getrennt. Die wäßrige Phase wurde mit 6 normaler Salzsäure angesäuert (pH 1-2). Der entstandene Niederschlag wurde abgesaugt und mit Essigester gewaschen, anschließend getrocknet.
- 30 Man erhielt 0,30 g (19,2 %) eines weißen Pulvers vom Schmelzpunkt 172-174°C.

Beispiel 7

- 35 2-(4,6-Dimethoxytriazin-2-ylamino)-2-(fluoren-9-yl)essigsäure
 - 2,29 g (9,6 mmol) 2-Amino-2-(fluoren-9-yl)-essigsäure, 0,70 g (4,0 mmol) 4,6-Dimethoxy-2-chlortriazin und 0,51 g (4,8 mmol) Natriumcarbonat wurden in eine Mischung von 16 ml DMF und 16 ml
- 40 Wasser eingebracht und 13 Stunden bei 80°C gerührt. Anschließend wurden Essigester und Wasser zugegeben und die Phasen getrennt. Die wäßrige Phase wurde mit 6 normaler HCl angesäuert und dreimal mit Essigester extrahiert. Die organischen Phasen wurden mit MgSO4 getrocknet und eingeengt. Das Rohprodukt wurde über Kieselgel mit
- 45 Essigester/n-Heptan (1:1) chromatografiert. Man erhielt 0,44 g (29,1 %) eines weißen Pulvers; $R_F = 0,135$, Schmp. 182-186°C.

Beispiel 8

- 2-(3-Nitro-6-methoxypyridin-2-ylamino)-3,3-diphenylpropionsäure
- 5 2,50 g (10,4 mmol) 2-Amino-3,3-diphenylpropionsäure, 0,84 g (4,3 mmol) 2-Chlor-3-nitro-6-methoxypyridin und 0,55 g (5,2 mmol) Natriumcarbonat wurden in 18 ml DMF und 18 ml Wasser eingebracht, und die Mischung 5 Stunden bei 80°C gerührt. Anschließend wurde mit Essigester und Wasser versetzt und die Phasen getrennt. Die 10 wäßrige Phase wurde mit 6 normaler Salzsäure angesäuert und dreimal mit Essigester extrahiert. Man trocknete mit MgSO4 und engte im Vakuum ein. Das Rohprodukt wurde mit Isopropanol umkristallisiert. Man erhielt 0,34 g (20,1%) eines gelblichen Pul-

vers vom Schmelzpunkt 172-180°C.

15

Die in folgenden Tabellen 1-5 aufgezeigten Beispiele können nach

den eingangs beschriebenen Methoden hergestellt werden:

20

25

30

35

N N	
со ₂ н 	F 78
gr	R5
1	¤

	7				r—-					r	
Smp [oc]											
>	z	z	z	z	N	Z	Z	Z	Z	Z	z
R3	Ме	Ме	Me	Bt	Bt	Me	OMe	•	•	0	ОМе
×	СН	C- (CH ₂) 3	C- (CH ₂) 3	C- (CH ₂) ₂	Z						
R ²	Me	ОМе	Me	Me	Bt	CF3	CF3	Ме	ОМе	эмо	ОМе
R7	Н	Н	Н	Н	н	H	Ħ	Н	н	н	Ħ
R5	Phenyl	Phenyl	Pheny1	Phenyl	Pheny1	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Pheny1
R4	Н	н	H	н	н	н	×	н	Н	Н	π
Nr.	I-1	1-2	1-3	1-4	I-5	9-1	1-1	8-I	6-I	I-10	1-11

Tabelle 1

1-12 H ONE N NE N N 1-13 H Pheny1 H ONE N N N 1-13 H Pheny1 ME ONE CH N N 1-14 H Pheny1 ME ONE CH N N 1-15 H Pheny1 ME ONE CH N N 1-17 H Pheny1 ME ONE CH N N N 1-18 H Pheny1 H ONE CH N N N N 1-20 H Pheny1 H N<	Nr.	R4	RS	R7	R2	×	R³	¥	Smp [oc]
H Pheny1 H OMe N OMe N H Pheny1 Me OMe CH OMe CH H Pheny1 Me OMe CH Me CH H Pheny1 Me OMe CH Me NH H Pheny1 Me OMe CH NH NH H Pheny1 H OMe C-Me NH NH H Pheny1 H OMe C-Me NH NH H Pheny1 H OMe CH NH NH H Pheny1 H NH NH NH NH NH NH Me Pheny1 H NH CH CH NH	1-12	Н	Phenyl	н	ОМе	N	Ме	N	
H Pheny1 Me OMe CH OME CH H Pheny1 Me OMe CH Me N H Pheny1 Me OMe CH N N H Pheny1 H OMe N H OMe H Pheny1 H OMe CH NH-C NH-C H Pheny1 H OMe CH NH-C NH-C H Pheny1 H OMe CH NH-C NH-C H Pheny1 H NH-C OMe NH-C NH-C H Pheny1 H H NH-C NH-C NH-C H Pheny1 H H NH-C	1-13	H	Phenyl	н	ОМе	Z	ОМе	N	
H Pheny1 Me OMe CH Me N Me N Me N	I-14	×	Phenyl	Me	ОМе	НЭ	ОМе	нэ	
H Pheny1 Me OME CH N=C N H Pheny1 H OME N H -NH·C H Pheny1 H OME N H -NH·C H Pheny1 H OME C·H N N H Pheny1 H H N N N N H Pheny1 H H N	1-15	ж	Phenyl	Me	ОМе	æ	Me	N	
H H OME N H ONE N H C-NO2 H Phenyl H OME C-ME OME C-NO2 N H Phenyl H M M M N <t< td=""><td>I-16</td><td>Ŧ</td><td>Phenyl</td><td>Ме</td><td>ОМе</td><td>НЭ</td><td>N=C</td><td>N</td><td></td></t<>	I-16	Ŧ	Phenyl	Ме	ОМе	НЭ	N=C	N	
H Pheny1 H OMe N H C-NO2 H Pheny1 H OMe C-Me NMe NM H Pheny1 H OMe CH Me NM H Pheny1 H H NM NM CH NM Me Pheny1 H NM CH NMe NM NM Me Pheny1 H NMe CH CF3 NM NM Me Pheny1 H NMe CH NMe NM	1-17	Н	Phenyl	н	ОМе	N	н	O-HN-	
H Pheny1 H OMe C-Me OMe N H Pheny1 H Me Me Mh Me N	1-18	H	Phenyl	Н	ОМе	Z	Н	C-NO2	
H Phenyl H OME CH ME NH2 CH H Phenyl H H N NH2 CH CH CH CH CH CH CH CH N CH N <td< td=""><td>I-19</td><td>æ</td><td>Phenyl</td><td>н</td><td>ОМе</td><td>C-Me</td><td>ОМе</td><td>N</td><td></td></td<>	I-19	æ	Phenyl	н	ОМе	C-Me	ОМе	N	
H H H N NH2 N H	l	π	Phenyl	н	ОМе	нэ	Me	N	188-193
H H H H H H H H H H H H H H H H H OMe CH OMe OMe CH OMe Me Me Me CH Me Me CH Me Me Me CH Me Et CH Et CF3 Me Me Pheny1 H Me CH CH CF3 P	1-21	I	Phenyl	Ħ	н	Z	NH ₂	нэ	
Me Pheny1 H H CH OMe Me Pheny1 H OMe CH Me Me Pheny1 H Me CH Me Me Pheny1 H K CH Et Me Pheny1 H K CH Et Me Pheny1 H Me CH CF3 Me Pheny1 H Me C (CH ₂) 3 - C Me Pheny1 H Me C (CH ₂) 3 - C Me Pheny1 H OMe C (CH ₂) 3 - C Me Pheny1 H OMe C (CH ₂) 3 - C	1-22	H	Phenyl	н	н	Z	Н	Z	
Me Pheny1 H OMe CH OMe Me Pheny1 H Me CH Me Me Pheny1 H Me CH Et Me Pheny1 H Me CH Et Me Pheny1 H Me CH CF3 Me Pheny1 H Me C-(CH ₂) 3 Me Pheny1 H OMe C-(CH ₂) 3 Me Pheny1 H OMe C-(CH ₂) 3 Me Pheny1 H OMe C-(CH ₂) 3	1-23	н	Phenyl	н	н	нэ	ОМе	Z	
Me Pheny1 H OMe CH Me Me Pheny1 H Me CH Et Pe Me Pheny1 H K CH Et CF3 Me Pheny1 H Me CH CF3 CF3 Me Pheny1 H Me CC (CH ₂) 3·C CC (CH ₂) 3·C Me Pheny1 H OMe C· (CH ₂) 3·C CC (CH ₂) 3·C Me Pheny1 H OMe C· (CH ₂) 3·C CC (CH ₂) 3·C	1-24	Ме	Phenyl	Н	ОМе	НЭ	ОМе	N	
Me Pheny1 H Me CH Me Me Pheny1 H Et Et Et Me Pheny1 H Me CH CF3 F Me Pheny1 H Me CH CF3 F Me Pheny1 H Me C-(CH2)3- F Me Pheny1 H OMe C-(CH2)3- F Me Pheny1 H OMe C-(CH2)3- F	I-25	Ме	Phenyl	н	ОМе	нэ	Ме	N	
Me Pheny1 H Me CH Et CH Et Me Pheny1 H Me CH CF3 CF3 Me Pheny1 H OMe CH CF3 CF3 Me Pheny1 H Me C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ·· Me Pheny1 H OMe C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ·· Me Pheny1 H OMe C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ·· C·(CH ₂) ₃ ··	1-26	Ме	Phenyl	Н	Ме	СН	Ме	N	
Me Pheny1 H Et CH Et Me Pheny1 H Me CH CF3 Me Pheny1 H Me C+ (CH ₂) 3- Me Pheny1 H OMe C- (CH ₂) 3- Me Pheny1 H OMe C- (CH ₂) 3- Me Pheny1 H OMe C- (CH ₂) 3-	1-27	Ме	Phenyl	Н	Ме	СН	Et	N	
Me Pheny1 H Me CH CF3 Me Pheny1 H OMe CH (CH ₂) 3- Me Pheny1 H OMe C · (CH ₂) 3- Me Pheny1 H OMe C · (CH ₂) 3- Me Pheny1 H OMe C · (CH ₂) 3-	1-28	Ме	Phenyl	н	Et	НЭ	Et	N	
Me Pheny1 H OMe CH CF3 Me Pheny1 H Me C·(CH ₂) ₃ · Me Pheny1 H OMe C·(CH ₂) ₃ · Me Pheny1 H OMe C·(CH ₂) ₃ ·	1-29	Ме	Phenyl	н	Me	СН	CF_3	N	•
Me Pheny1 H Me C- (CH ₂) 3- Me Pheny1 H OMe C- (CH ₂) 3- Me Pheny1 H OMe C- (CH ₂) 3-O	1-30	Ме	Phenyl	н	ОМе	СН	CF3	N	
Me Pheny1 H OMe C · (CH ₂) 3 · 0 Me Pheny1 H OMe C · (CH ₂) 3 · 0	1-31	Ме	Phenyl	н	Ме	r) - 2	12) 3-	N	
Me Pheny1 H OMe C · (CH ₂) 3 · O	1-32	Ме	Phenyl	н	ОМе	1D) - D	[2] 3-	N	
	1-33	Ме	Pheny1	H	ОМе	но) - о	2) 3-0	N	

																_			·			
Smp (°C)																						
¥	N	N	Z	HO	H	ಕ್ರ	NH-C	NH-C	C-N02	Z	z	z	Z	Z	N	z	z	Z	z	z	Z	Z
R ³	0.86	OMe	ж	OMe	Ме	Ме	N=CH-NH-C	N=CH-NH-C	н	H	x	NH2	инсн3	H	ОМе	Me	Me	ОМе	Me	Me	Et	Bt
×	C- (CH ₂) 3-0	N	8	Z	z	z	Z	z	z	C-Me	C-Me	Z	z	E)	СН	СН	СН	СН	ъ	СН	CH	G
R ²	Ме	ОМе	ОМе	OMe	C1	Me	ОМе	C1	ОМе	OMe	Me	NH2	NHCH3	SMe	ОМе	ОМе	Me	ОМе	OMe	Me	Me	Et
R7	Н	Н	н	H	н	н	Ξ	Ħ	н	H	н	н	н	н	ЭЖ	Же	Ме	Н	н	н	Н	Н
R5	Phenyl	Phenyl	Pheny1	Pheny1	Phenyl	Pheny1	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Pheny1	Pheny1	Pheny1	Pheny1	Phenyl
R4	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Et	Bt	Et	Et	Bt
Nr.	I-34	1-35	1-36	I-37	I-38	1-39	I-40	1-41	I-42	I-43	I-44	I-45	I-46	1-47	I-48	I-49	I-50	I-51	1-52	I-53	I-54	I-55

Nr.	R4	R5	R7	R ²	Х	R³	¥	Smp [oc]
I-56	Et	Phenyl	H.	Ме	СН	CF_3	Z	
1-57	Et	Phenyl	Н	ОМе	СН	CF_3	Z	
I-58	Bt	Phenyl	Н	ОМе	СН	Н	Z	
I-59	Et	Pheny1	Н	SMe	СН	Н	Z	
1-60	Et	Phenyl	Н	Et	СН	ОМе	Z	
1-61	Et	Phenyl	н	Ме	D) -2	C-(CH ₂) ₃ -	N	
1-62	Et	Phenyl	Ħ	ОЖе	כ- (כו	C- (CH ₂) 3-	Z	
I-63	Et	Phenyl	н	Ме	но) -о	C- (CH ₂) ₂ -0	N	
I-64	Et	Phenyl	Н	OMe	но) -о	C-(CH ₂) ₂ -0	N	
I-65	Et	Phenyl	н	ОМе	N	ОМе	N	
99-I	Et	Phenyl	H	2HN	Z	NH2	N	
1-67	Et	Phenyl	н	инме	N	инме	Z	
89-I	Et	Phenyl	Н	ОМе	N	ОМе	НЭ	
69-I	Bt	Phenyl	Н	ЭМ	N	Ме	СН	
1-70	Et	Phenyl	н	13	N	Ме	СН	
1-71	Bt	Phenyl	н	оме	N	-HD=N	N=CH-NH-C	
1-72	Bt	Phenyl	Н	CI	Z	N=CH-	N=CH-NH-C	
1-73	Et	Phenyl	н	ОМе	N	Н	C-NO ₂	
1-74	Bt	Phenyl	Н	ОМе	C-Me	н	z	
I-75	Bt	Phenyl	Н	Ме	C-Me	н	Z	
9 <i>L</i> -1	Bt	Phenyl	Ме	ОМе	СH	ОМе	Z	
I-77	Et	Phenyl	Me	ОМе	СЖ	Me	Z	

																				1	_	
Smp [oc]																						
Υ	Z	N	Z	Z	N	Z	Z	Z	Z	Z	Z	Z	z	N	Z	N	Z	Z	E	Ж	N=CH-NH-C	N=CH-NH-C
R3	Me	ОМе	Ме	Me	Et	Et	CF3	CF3	н	æ	ОМе	[2]3-	12) 3-	2) 2-0	2) 2-0	ОМе	NH ₂	ИНМе	ОМе	Ме	-HO=N	N=CH-
×	£	СН	СН	æ	æ	Н	СН	СН	СН	H	СН	C- (CH ₂) 3-	C- (CH ₂) 3-	C- (CH ₂) ₂ -0	C- (CH ₂) ₂ -0	z	Z	z	z	Z	z	N
R ²	Me	ОМе	ОМе	Me	Me	Bt	Me	ОМе	ОМе	SMe	Bt	Me	ОМе	Me	ОМе	ОМе	NH2	NHMe	ОМе	CJ	OMe	ប
R7	Me	Н	Н	Н	Н	Н	н	H	н	н	н	н	Ħ	н	н	н	н	н	н	н	н	н
R ⁵	Pheny1	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl										
R4	Et	Н	Н	н	Н	Н	Н	Н	н	н	н	Н	H	н	H	Н	н	н	н	H	×	н
Nr.	1-78	62-1	1-80	I-81	1-82	I-83	I-84	1-85	I-86	I-87	I-88	68-I	06-I	I-91	1-92	I-93	I-94	I-95	96-I	1-97	1-98	1-99

æ
]
1

											_							•				
Smp (oc)																						
λ	N	N	N	СН	CH	NH-C	NH-C	СН	Ж	C-NO2	Z	z	Z	Z	N	N	N	N	N	N	Z	Z
R ³	ОМе	NH ₂	NHMe	ОМе	Me	N=CH-NH-C	N=CH-NH-C	Me	Me	н	н	н	OMe	Me	Me	OMe ·	Me	Me	Et	Et	CF3	CF3
×	Z	N	Z	Z	z	Z	Z	z	z	z	C-Me	C-Me	CR	£	H	СН	СН	НЭ	85	СН	CH	ť
R ²	ОМе	NH2	NHMe	ОМе	C1	ОМе	CJ	Me	ОМе	ОМе	ОМе	Me	ОМе	ОМе	Ме	ОМе	оме	Ме	Ме	Et	Me	OMe
R7	Ħ	Н	Н	н	Ξ	H	H	H	Ħ	н	н	H	Ме	Me	Ме	Ŧ	н	н	Н	Н	H	æ
R ⁵	3-Methoxyphenyl	3,4-Dimethoxyphenyl																				
R4	H	н	н	н	x	н	H	H	H	н	H	×	ж	Ŧ	Н	н	Н	Н	Н	Н	н	Æ
Nr.	1-122	1-123	I-124	1-125	1-126	1-127	I-128	1-129	I-130	1-131	1-132	1-133	I-134	I-135	1-136	1-137	I-138	1-139	I-140	I-141	I-142	I-143

												- 1		,								_
Smp [oc]																				·		
¥	N	2	Z	Z	z	z	z	z	z	Z	Ж	5	NH-C	NH-C	CH	CH	C-NO ₂	2	Z	Z	Z	Z
R³	ж	×	ОМе	2)3-	2) 3-	1,3-0	2)2-0	ОМе	NH ₂	NHMe	ОМе	Ме	N=CH-NH-C	N=CH-NH-C	Ме	Me	н	н	Н	ОМе	Ме	Me
×	СН	СН	СН	C- (CH ₂) 3-	C- (CH ₂) 3-	$C-(CH_2)_2-0$	C- (CH ₂) ₂ -0	N	Z	Z	Z	N	Z	N	N	Z	Z	C-Me	С-Ме	СН	СН	СН
R ²	ОМе	SMe	Et	Ме	ОМе	Ме	ОМе	9М0	NH ₂	инме	ОМе	C1	ОМе	C1	Же	ОМе	ОМе	ОМе	Ме	ОМе	ОМе	Me
R ⁷	н	н	н	Н	Н	Н	Н	н	Н	Н	н	н	H	×	×	Н	Н	Н	×	Ме	Me	Me
RS	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl	3,4-Dimethoxyphenyl
R4	H	H	H	H	H	æ	н	I	H	H	H	H	H	H	H	H	H	н	н	н	H	н
Nr.	I-144	1-145	1-146	I-147	I-148	I-149	1-150	1-151	1-152	I-153	I-154	I-155	1-156	1-157	1-158	1-159	1-160	1-161	1-162	1-163	1-164	1-165

							35						
Smp [oc]	228-235 (Zers.)												
¥	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z
R³	ОМе	Ме	Ме	Bt	Et	CF_3	CF3	H	Н	эмо	42) 3-	H ₂) ₃ -	C- (CH ₂) ₂ -C
×	СН	СН	СН	СН	НЭ	СН	СН	СН	СН	СН	C_(CH ₂) ₃ -	C-(CH ₂)3-	с- (сн
R ²	ОМе	ОМе	Ме	Ме	39	Ме	ОМе	ОМе	SMe	Bt	Ме	ОМе	Ме
R7	Н	н	н	Ħ	н	Н	н	н	н	н	H	Н	н
R5	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl										
R4	н	Ŧ	H	H	Н	H	H	H	I	H	×	×	Н
Nr.	I-166	1-167	1-168	1-169	1-170	1-171	1-172	I-173	I-174	1-175	1-176	I-177	1-178

Smp (oc)													
*	Z	z	Z	z	5	ਲ	N=CH-NH-C	N=CH-NH-C	ਲ	ಕ	C-NO ₂	z	z
R3	C- (CH ₂) ₂ -C	OMe	NH ₂	ИНМе	ОМе	Ме	N=CH	N=CH	Ме	Me	I	Ξ	×
×	1D) -D	Z	z	Z	Z	z	z	z	z	z	Z	C-Me	C-Me
R ²	ОМе	ОМе	NH2	инме	ОМе	C1	ОМе	CI	Ме	ОМе	ОМе	ОМе	Ме
R ⁷	н	H	н	Н	Н	Н	н	Н	н	н	н	н	Н
R5	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl
R4	н	н	н	н	н	н	н	н	н	Н	Н	Н	н
Nr.	I-179	1-180	1-181	1-182	1-183	I-184	1-185	1-186	1-187	I-188	I-189	I-190	I-191

Nr.	R4	R ⁵	R ⁷	R2	×	R3	X	Smp [oc]
1-192	Н	3,4(1,3-Dioxomethy- len)phenyl	Ме	ОМе	СН	ОМе	z	
1-193	н	3,4(1,3-Dioxomethy- len)phenyl	Ме	ОМе	НЭ	Ме	Z	
I-194	Н	3,4(1,3-Dioxomethy- len)phenyl	Me	Me	СН	Me	z	
1-195	Cyclohexyl	Cyclohexyl	н	ОМе	СН	ОМе	z	
1-196	Cyclohexyl	Cyclohexyl	Н	ОМе	СН	Me	z	
I-197	Cyclohexyl	Cyclohexyl	Н	ЭЖ	СН	Ме	Z	
1-198	Cyclohexyl	Cyclohexyl	Н	ЭЖ	СН	Et	N	
1-199	Cyclohexyl	Cyclohexyl	Н	Et	СН	Et	z	
1-200	Cyclohexyl	Cyclohexyl	Н	Же	СН	CF3	z	
1-201	Cyclohexyl	Cyclohexyl	Н	9МО	СН	CF_3	z	
1-202	Cyclohexyl	Cyclohexyl	н	ә МО	СН	н	Z	
1-203	Cyclohexyl	Cyclohexyl	н	SMe	æ	н	Z	
I-204	Cyclohexyl	Cyclohexyl	Н	Et	Ж	ОМе	Z	
1-205	Cyclohexyl	Cyclohexyl	Н	Ме	(C) -0	C- (CH ₂) 3-	Z	
1-206	Cyclohexyl	Cyclohexyl	Н	ОМе	C- (C)	C- (CH ₂) 3-	Z	
1-207	Cyclohexyl	Cyclohexyl	Н	Же	HD) -D	C- (CH ₂) ₂ -C	N .	
1-208	Cyclohexyl	Cyclohexyl	н	ОМе	C- (CH	C-(CH ₂) ₂ -C	Z	
1-209	Cyclohexyl	Cyclohexyl	Н	ОМе	Z	ОМе	Z	
1-210	Cyclohexyl	Cyclohexyl	Н	2HN	Z	NH ₂	Z	
I-211	Cyclohexyl	Cyclohexyl	н	NHMe	z	NНМе	z	
1-212	Cyclohexyl	Cyclohexyl	Н	ОМе	N	ОМе	НЭ	

Nr.	R4	R5	R7	R ²	×	R³	¥	Smp [oc]
I-213	Cyclohexyl	Cyclohexyl	Н	CI	N	Э₩	нэ	
1-214	Cyclohexyl	Cyclohexyl	Н	Э МО	N	D-HN-HD=N	-NH-C	
1-215	Cyclohexyl	Cyclohexyl	Н	ιɔ	N	D-HN-HD=N	·NH-C	
1-216	Cyclohexyl	Cyclohexyl	Н	ЭЖ	N	ЭЖ	нэ	
1-217	Cyclohexyl	Cyclohexyl	Н	ә МО	N	Э₩	нэ	
1-218	Cyclohexyl	Cyclohexyl	Н	оме	N	Н	C-NO2	
I-219	Cyclohexyl	Cyclohexyl	н	Э МО	ем-о	н	N	
1-220	Cyclohexyl	Cyclohexyl	H	ЭЖ	ом-о	Н	N	
1-221	Cyclohexyl	Cyclohexyl	Ме	ОМе	СН	9М0	N	
1-222	Cyclohexyl	Cyclohexyl	Ме	ә МО	нэ	Э₩	N	
1-223	Cyclohexyl	Cyclohexy1	Ме	ЭЖ	нэ	Э₩	Z	
1-224	H	p-Phenylphenyl	Н	ә МО	НЭ	ә МО	Z	
1-225	Ŧ	p-Phenylphenyl	Н	ОМе	НЭ	Ме	N	
1-226	×	p-Phenylphenyl	Н	Ме	СН	Ме	Z	
1-227	Н	p-Phenylphenyl	Н	Э₩	НЭ	Et	N	
1-228	H	p-Phenylphenyl	н	Et	НЭ	Et	N	
1-229	. н	p-Phenylphenyl	Н	Же	СН	CF3	N	
1-230	н	p-Phenylphenyl	н	ә МО	НЭ	CF3	N	
I-231	Н	p-Phenylphenyl	н	ә МО	НЭ	н	z	
I-232	н	p-Phenylphenyl	н	ЭЖЅ	НЭ	н	Z	
1-233	Н	p-Phenylphenyl	Н	13	нэ	ОМе	Z	
1-234	н	p-Phenylphenyl	н	Же	C- (CH ₂) 3-	12) 3-	N	
		_						

												39				,	,					
Smp [oc]																:			69		172-174	
*	N	N	N	Z	Z	N	СН	용	NH-C	NH-C	Ж	Ж	C-NO ₂	Z	Z	Z	Z	z	2	z	z	z
R3	2) 3-	2) 2-C	2) 2-C	ОМе	NH2	МНМе	ОМе	Me	N=CH-NH-C	N=CH-NH-C	Me	Me	н	н	Ħ	ОМе	Ме	Me	ОМе	Me	Me	Bt
×	C- (CH ₂) 3-	C- (CH ₂) ₂ -C	C- (CH ₂) ₂ -C	z	z	z	z	z	z	z	z	z	z	C-Me	C-Me	СН	СН	СН	СН	СН	СН	СН
R ²	ОМе	Ме	ОМе	ОМе	NH2	NHMe	ОМе	CI	ОМе	13	Me	ОМе	ОМе	ОМе	Me	ОМе	ОМе	Me	ОМе	ОМе	Me	Me
R7	н	Н	н	н	H	н	×	н	Œ	H	н	н	н	н	Ħ	Ме	Ме	Me	H	H	н	×
R ⁵	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	p-Phenylphenyl	Phenyl	Phenyl	Phenyl	Phenyl
R4	н	Н	Н	н	×	H	H	I	H	×	×	H	Œ	Æ	×	Н	Н	Ŧ	Phenyl	Phenyl	Pheny1	Phenyl
Nr.	1-235	1-236	1-237	1-238	I-239	1-240	1-241	1-242	1-243	I-244	1-245	1-246	1-247	I-248	I-249	1-250	1-251	1-252	I-253	1-254	1-255	I-256

Nr.	R4	R5	R7	R2	×	R3	X	Smp [oC]
1-257	Pheny1	Phenyl	Н	Bt	СН	Et	Z	
1-258	Pheny1	Phenyl	Н	Же	СН	CF3	Z	
1-259	Phenyl	Phenyl	Н	ОМе	Ж	CF3	Z	
1-260	Phenyl	Phenyl	н	ОМе	СН	н	Z	
1-261	Phenyl	Phenyl	н	SMe	СН	Н	Z	
1-262	Phenyl	Phenyl	Н	Et	СН	ОМе	N	
I-263	Phenyl	Phenyl	H	CF3	СН	Н	N	203-208
1-264	Phenyl	Phenyl	ж	Ме	СН	н	Z	
1-265	Phenyl	Phenyl	н	Me	C- (CH ₂) 3-	H ₂) 3-	N	
1-266	Phenyl	Phenyl	Н	9МО	C- (CH ₂) 3-	H ₂) 3-	Z	
1-267	Phenyl	Phenyl	H	Ме	C- (CH	C- (CH ₂) ₂ -C	N	
1-268	Phenyl	Phenyl	н	- ЭМО	но) -о	C- (CH ₂) ₂ -C	N	
1-269	Phenyl	Phenyl	Н	ОМе	N	ОМе	Z	172-175
1-270	Phenyl	Phenyl	н	2HN	N	NH ₂	Z	
1-271	Phenyl	Phenyl	Н	NHMe	N	NHMe	Z	
1-272	Phenyl	Phenyl	Н	Ме	N	Ме	Z	
1-273	Phenyl	Pheny1	Н	SMe	N	SMe	Z	68-75
1-274	Phenyl	Pheny1	Н	н	СН	H	Z	
1-275	Phenyl	Phenyl	н	омо	N	ОМе	СН	
1-276	Phenyl	Phenyl	Н	Cl	N	Me	СН	
1-277	Phenyl	Phenyl	н	оме	N	N=CH-	N=CH-NH-C	
1-278	Phenyl	Phenyl	н	ເລ	Z	N=CH-	N=CH-NH-C	

												42	,	,		,			,	,	,	
Smp (oc)																						
Ã	N	N	N	N	N	N	Z	z	Z	Z	Z	Z	Z	Z	z	5	СН	N=CH-NH-C	N=CH-NH-C	СН	СН	C-NO ₂
R³	Ме	Et	Et	CF3	CF3	Н	Н	OMe	12) 3-	12) 3-	2)2-C	2)2-C	ОМе	NH2	NHMe	OMe	Ме	N=CH-	N=CH-	Me	Me	Н
x	СН	СН	СН	СН	H	СН	НЭ	æ	C- (CH ₂) 3-	C- (CH ₂) 3	C- (CH ₂) ₂ -C	C-(CH ₂) ₂ -C	z	z	z	z	z	Z	z	z	z	z
R ²	Ме	Ме	Bt	Me	ОМе	ОМе	SMe	Bt	Me	ОМе	Ме	ОМе	ОМе	NH2	ИНМе	ОМе	CI	ОМе	CJ	Me	ОМе	ОМе
R ⁷	Н	Н	, н	Н	н	Н	н	H	æ	н	н	Н	н	H	×	н	Н	н	н	H	н	H
RS	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl								
R4	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl								
Nr.	1-301	1-302	1-303	I-304	1-305	1-306	1-307	1-308	I-309	1-310	1-311	1-312	I-313	I-314	1-315	1-316	1-317	1-318	I-319	1-320	1-321	I-322

Smp [oc]						182-186			
Å	N	N	N	N	Z	z	z	z	Z
R3	Н	н	ОМе	Me	Ме	ОМе	ОМе	Me	ОМе
×	C-Me	C-Me	. нэ	픙	СН	z	СН	СН	СН
R2	ОМе	Ме	ОМе	OMe	Ме	ОМе	Оме	Ме	Ме
R7	Н	Н	Ме	Ме	Же	r	т	ш	ж
R5	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl		сн ₂ -сн ₂ —	CH2-CH2	сн ₂ -сн ₂ —
R4	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl		, CH ₂	— CH ₂	(O) - CH;
Nr.	I-323	I-324	1-325	1-326	1-327	1-328	I-329	I-330	1-331

Smp [oc]			
¥	Z	Z	СН
R³	π	н	ОМе
×	C-Me	НЭ	Z
R ²	ОМе	ОМе	ОМе
R ⁷	н	н	ж
R5	сн2-сн2	сн2-сн2	сн2-сн2
R4	(O)	(O) - cH ₂	(O) CH ₂
Nr.	I-332	1-333	I-334

N N	
CO ₂ H	- 7.R
#	CH ₃

4	5										
Smp (oc)											
Y	z	z	z	Z	z	z	Z	z	z	z	Z
R ³	ОМе	Me	Me	Et	Bt	CF3	CF3	н	Ħ	ОМе	Н
×	СН	НЭ	НЭ	СН	СН						
R ²	ОМе	ОМе	Me	Ме	13	ЭW	ОМе	ЭМО	SMe	Bt	CF_3
R7	Ħ	н	н	н	н	н	н	н	H	н	Н
R ⁵	Phenyl										
R4	Pheny1	Pheny1	Pheny1	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
Nr.	1-335	1-336	I-337	1-338	I-339	I-340	I-341	I-342	1-343	I-344	I-345 Phenyl

Tabelle 2

Smp (°C)																						
Ж	Z	Z	СН	Z	Z	z	Z	Z	Z	N	Z	СН	СН	N=CH-NH-C	N=CH-NH-C	N=CH-NH-C	СН	СН	СН	C-N02	N	Z
R³	Н	12) 3-	12) 3-	2) 2-C	2) 2-C	ОМе	NH ₂	NНМе	Me	SMe	Н	ОМе	Ме	N=CH-	-Hጋ=N	N=CH-	Н	CF_3	Ме	н	н	н
×	СН	C- (CH ₂) 3-	C- (CH ₂) 3-	C- (CH ₂) ₂ -C	C- (CH ₂) ₂ -C	N	N	N	N	N	СН	N	N	N	N	N	N	N	N	N	C-Me	C-Me
R ²	Ме	Ме	ОМе	Ме	ОМе	ОМе	NH ₂	ИНМе	Э₩	ЭМЅ	н	Э МО	ເລ	ОМе	IJ	н	SMe	СМез	ОМе	ОМе	ОМе	Me
R ⁷	Н	Н	Me	Ме	Ме	н	н	Н	Н	н	н	н	I	π	H	н	н	н	н	н	н	Н
R ⁵	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl
R4	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
Nr.	1-346	I-347	I-348	I-349	1-350	1-351	1-352	1-353	1-354	1-355	1-356	1-357	1-358	I-359	1-360	1-361	1-362	I-363	I-364	1-365	1-366	1-367

											4	17										
Smp (oc)																						
Υ	C-NO2	C-NO2	C-NH2	СН	НЭ	нэ	СН	нэ	нэ	N	N	N	N	Z	N	Z	Z	z	z	Z	z	N
R ³	Н	Н	Н	ОМе	Н	Me	Ме	ОМе	ОМе	ОМе	Ме	Ме	ОМе	оме	Me	Me	Bt	Bt	CF3	CF3	×	Н
×	СН	СН	СН	C-NO2	C-NO2	C-NO ₂	C-NH2	C-NO ₂	C-NH2	СН	СН	СН	Z	СН	СН	НЭ	НЭ	НО	СН	НЭ	СН	СН
R ²	ОМе	Ме	ОМе	ОМе	ОМе	Me	Me	Me	Me	OMe	ОМе	Me	OMe	ОМе	OMe	Me	Ме	Et	Me	ОМе	ОМе	SMe
R7	Н	Н	Н	н	н	ж	н	н	н	Ме	Me	Me	Me	н	H	н	н	н	н	Ħ	H	н
R5	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
R4	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Ме	Me	Ме	Ме	Ме	Ме	Me	Me	Ме
Nr.	I-368	I-369	1-370	1-371	1-372	1-373	1-374	1-375	1-376	1-377	1-378	I-379	I-380	1-381	1-382	1-383	1-384	1-385	1-386	1-387	I-388	1-389

		1			1	[] A
Me Pheny1 H Me Pheny1 H		Et	СН	ОМе	N	
Me Pheny1 H Me Pheny1 H		CF_3	СН	Н	Z	
Me Phenyl H Me Phenyl H		Me	нэ	Н	N	
Me Pheny1 H		Me	၁) –၁	C- (CH ₂) ₃ -	N	
Me Phenyl H Me Phenyl H		ОМе	כ- (כו	C- (CH ₂) 3-	N	
Me Phenyl H		Me	но) -о	C- (CH ₂) ₂ -C	N	
Me Phenyl H		ОМе	но) -о	C- (CH ₂) ₂ -C	Z	
Me Phenyl H		ОМе	z	ОМе	Z	
Me Phenyl H		NH2	Z	NH ₂	N	
Me Phenyl H		NHMe	N	ИНМе	N	
Me Phenyl H		Ме	N	Ме	N	
Me Phenyl H		SMe	N	SMe	Z	
Me Phenyl H		Н	НЭ	Н	N	
Me Phenyl H		ОМе	N	ОМе	СН	
Me Phenyl H		C1	N	Ме	æ	
Me Phenyl H		ОМе	N	-HD=N	N=CH-NH-C	
Me Phenyl H Me Phenyl H Me Phenyl H		C1	N	-HD=N	N=CH-NH-C	
Me Phenyl H Me Phenyl H Me Phenyl H		Н	N	-HD=N	N=CH-NH-C	
Me Phenyl H		SMe	Z	Н	СН	
Me Phenyl H		СМез	N	CF_3	СН	
	Pheny1 H	ОМе	Z	Ме	СН	
I-411 Me Pheny1 H OMe		ОМе	Z	Н	C-NO2	

												49						,	,
Smp [oc]																			
¥	Z	Z	C-NO2	C-NO2	C-NH2	СН	H	H5	CH	CH	CH	Z	z	Z	z	Z	z	z	Z
R3	Ŧ	H	X	×	×	ОМе	H	Me	Me	ОМе	OMe	ОМе	Me	Me	ОМе	ОМе	Me	Me	Et
×	C-Me	C-Me	СН	СН	СН	C-NO2	C-NO2	C-NO2	C-NH2	C-NO2	C-NH2	СН	CH	CH	z	H	СН	Ð	СН
R ²	ОМе	Me	ОМе	Me	ОМе	ОМе	ОМе	Me	Me	Me	Ме	ОМе	ОМе	Me	ОМе	ОМе	ОМе	Me	Ме
R7	Н	æ	ж	×	×	H	Ŧ	æ	×	Ħ	н	Me	Me	Me	Ме	ж	×	I	н
R5	Phenyl	Pheny1	Phenyl	Phenyl	Pheny1	Pheny1	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy· len)phenyl	3,4(1,3-Dioxomethy- len)phenyl
R ⁴	Ме	Ме	Ме	Ме															
Nr.	1-412	I-413	I-414	1-415	1-416	1-417	1-418	1-419	I-420	1-421	1-422	I-423	I-424	1-425	1-426	1-427	1-428	I-429	1-430

Smp [oc]													
Y	Z	N	N	N	Z	Z	Z	Z	N	Z	Z	Z	Z
R³	Et	CF3	CF3	н	н	Оме	н	н	[2] 3-	[2] 3-	2) 2-C	2) 2-C	ОМе
×	СН	СН	СН	СН	НЭ	СН	СН	Сh	C- (CH ₂) 3-	C-(CH ₂) ₃ -	C-(CH ₂) ₂ -C	C- (CH ₂) 2-C	Z
R ²	Bt	Ме	Оме	ОМе	SMe	Et	CF3	Ме	Ме	ОМе	Me	ОМе	ОМе
R ⁷	н	н	н	н	н	н	н	н	н	н	H	н	Ŧ
R5	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl									
R4	Ме	Ме	Ме	Ме	же	Ме	Ме	Ме	Ме	Me	Ме	Me	Ме
Nr.	1-431	1-432	1-433	I-434	I-435	I-436	I-437	I-438	I-439	I-440	I-441	I-442	I-443

\Box	Τ	1	1	 	Γ	Γ -	J.	<u></u>	<u> </u>	1	T -	<u> </u>	Γ -
Smp [°C]													
¥	Z	Z	z	z	z	ť	5	NH-C	NH-C	NH-C	ť	Đ	5
R3	NH2	NНМе	Me	SMe	×	ОМе	Ме	N=CH-NH-C	N=CH-NH-C	N=CH-NH-C	I	CF3	Ме
×	z	z	z	z	СН	Z	z	z	z	z	z	Z	N
R ²	NH ₂	NHMe	Me	SMe	r	ОМе	ប	ОМе	CI	I	SMe	СМез	ОМе
R7	н	н	H	×	ж	ж	н	ĸ	н	н	н	н	н
R5	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl	3,4(1,3-Dioxomethy- len)phenyl
R4	Ме	Ме	Me _.	Ме	Ме	Ме	Ме	Ме	Ме	Ме	Ме	ме	Ме
Nr.	I-444	I-445	1-446	I-447	I-448	I-449	1-450	1-451	I-452	1-453	I-454	I-455	I-456

Smp [oc]													
¥	C-NO2	Z	Z	C-NO2	C-NO2	C-NH2	СН	нэ	СН	но	СН	СН	Z
R³	Н	Н	н	Н	н	H	ОМе	H	Ме	Ме	ОМе	ОМе	ОМе
×	Z	с-ме	с-ме	нэ	нэ	СН	C-NO2	C-NO2	C-NO2	C-NH2	C-NO2	C-NH2	СН
R ²	эмо	эмо	Ме	әжо	ЭЖ	ОМе	ОМе	эмо	Ме	Же	Ме	Ме	ОМе
R ⁷	н	Н	Н	Н	н	н	Н	н	н	Н	н	н	Ме
R5	3,4(1,3-Dioxomethy- len)phenyl												
R4	Ме	Ме	Me	Ме									
Nr.	I-457	I-458	I-459	I-460	1-461	1-462	I-463	I-464	I-465	I-466	1-467	I-468	1-469

Nr.	R4	R5	R7	R ²	×	R3	¥	Smp [oc]
1-470	Me	3,4(1,3-Dioxomethy- len)phenyl	Ме	ОМе	НЭ	Me	z	
1-471	Ме	3,4(1,3-Dioxomethy- len)phenyl	Me	Ме	СН .	Me	Z	
1-472	Ме	3,4(1,3-Dioxomethy- len)phenyl	Ме	ОМе	Z	ОМе	z	
1-473	Ме	3,4-Dimethoxyphenyl	Н	ОМе	Z	ОМе	Z	
1-474	Ме	3,4-Dimethoxyphenyl	Н	ОМе	СН	ОМе	N	
1-475	Ме	3,4-Dimethoxyphenyl	Н	Ме	НЭ	ОМе	N	
1-476	М	3,4-Dimethoxyphenyl	н	Ме	нэ	Ме	Z	
I-477	Ме	3,4-Dimethoxyphenyl	Н	ОМе	z	ОМе	СН	
I-478	Ме	3,4-Dimethoxyphenyl	Ме	ЭМО	НЭ	ОМе	Z	
I-479	Ме	3,4-Dimethoxyphenyl	Ме	ОМе	z	ОМе	Z	
I-480	Ме	3,4-Dimethoxyphenyl	Н	ОМе	СН	н	Z	
I-481	Ме	3,4-Dimethoxyphenyl	Н	Э МО	С-Ме	Н	N	٠
I-482	Ме	4-Methoxyphenyl	н	ОМе	СН	OMe	Z	
I-483	Ме	4-Methoxyphenyl	H	Же	НЭ	ОМе	N	
I-484	Ме	4-Methoxyphenyl	н	ЭМ	НЭ	Ме	N	
I-485	Ме	4-Methoxyphenyl	н	ә мо	N	9МО	нэ	
I-486	Me	4-Methoxyphenyl	н	ОМе	НЭ	Н	N	
I-487	Ме	4-Methoxyphenyl	н	Э МО	C-Me	Н	N	
I-488	Ме	4-Methoxyphenyl	н	ОМе	z	ә	Z	
I-489	Ме	4-Methoxyphenyl	Ме	ОМе	СН	Э WO	N	
I-490	Me	4-Methoxyphenyl	Ме	ОМе	Z	Э WO	N	

Nr.	R4	R5	R7	R ²	×	R³	Υ	[ე _o] ďლ <u>s</u>
1-491	Me	3-Methoxyphenyl	×	ОМе	СН	ОМе	Z	
1-492	Ме	3-Methoxyphenyl	Н	Ме	СН	ОМе	Z	
1-493	Me	3-Methoxyphenyl	н	Ме	СН	Ме	Z	
I-494	Me	3-Methoxyphenyl	æ	ОМе	N	ОМе	CH	
I-495	Æ	3-Methoxyphenyl	×	ОМе	СН	Н	Z	
I-496	Me	3-Methoxyphenyl	ж	ОМе	C-Me	н	Z	
I-497	Me	3-Methoxyphenyl	н	ОМе	N	- ОМО	N	
I-498	Me	3-Methoxyphenyl	Me	ОМе	СН	- ОМе	Z	
I-499	Me	3-Methoxyphenyl	Me	ОМе	N	ОМе	Z	
I-500	4-Methoxyphenyl	4-Methoxyphenyl	æ	ОМе	СН	ОМе	Z	
1-501	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	СН	Me	Z	
1-502	4-Methoxyphenyl	4-Methoxyphenyl	н	Ме	СН	Ме	Z	
1-503	4-Methoxyphenyl	4-Methoxyphenyl	Н	Ме	СН	Et	z	
1-504	4-Methoxyphenyl	4-Methoxyphenyl	ж	Et	СН	Et	Z	
1-505	4-Methoxyphenyl	4-Methoxyphenyl	Н	Me	СН	CF3	z	
1-506	4-Methoxyphenyl	4-Methoxyphenyl	Н	ОМе	СН	CF3	z	
1-507	4-Methoxyphenyl	4-Methoxyphenyl	Н	ОМе	СН	Н	Z	
1-508	4-Methoxyphenyl	4-Methoxyphenyl	Н	SMe	СН	Н	Z	
1-509	4-Methoxyphenyl	4-Methoxyphenyl	Н	13	СН	ОМе	Z	
1-510	4-Methoxyphenyl	4-Methoxyphenyl	н	CF3	СН	Н	Z	
I-511	4-Methoxyphenyl	4-Methoxyphenyl	Н	ЭЖ	СН	Н	N	
1-512	4-Methoxyphenyl	4-Methoxyphenyl	н	Me	C- (CI	C- (CH ₂) 3-	N	

												-										
Smp (oc)																						
Y	z	Z	N	N	N	Z	N	N	Z	СН	СН	-NH-C	NH-C	N=CH-NH-C	нэ	нэ	СН	C-NO2	N	N	C-NO2	C-NO2
R3	2) 3-) 2-C) 2-C	ОМе	NH2	NHMe	Ме	SMe	Н	ОМе	Ме	N=CH-NH-C	N=CH-NH-C	N=CH-	н	CF_3	Me	Н	Н	Н	н	н
×	C- (CH ₂) 3	C- (CH ₂) ₂ -C	C- (CH ₂) 2-C	N	N	N	Z	N	СН	Z	Z	z	Z	z	z	N	N	N	C-Me	C-Me	СН	НЭ
R ²	ОМе	Ме	ОМе	ОМе	NH ₂	NНМе	Ме	SMe	н	ОМе	C1	ОМе	C1	н	SMe	CMe ₃	ОМе	ОМе	ОМе	Me	ОМе	Ме
R ⁷	Н	Н	н	Н	н	Н	н	н	н	н	Н	н	н	н	н	н	н	Н	н	H	æ	н
R5	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl
R4	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl
Nr.	1-513	1-514	I-515	I-516	1-517	I-518	I-519	1-520	1-521	1-522	1-523	1-524	I-525	1-526	I-527	1-528	1-529	1-530	1-531	1-532	1-533	I-534

	R ⁵	R7	R ²	×	R³	¥	Smp [oc]
4-Methoxyphenyl 4-Methoxyphenyl		Н	ОМе	СН	Ħ	C-NH ₂	
4-Methoxyphenyl 4-Methoxyphenyl		н	ОМе	C-NO ₂	ОМе	СН	
4-Methoxyphenyl 4-Methoxyphenyl	1	н	ОМе	C-NO2	Н	Э	
4-Methoxyphenyl 4-Methoxyphenyl		Н	Me	C-NO ₂	Ме	CH	
4-Methoxyphenyl 4-Methoxyphenyl		Н	Ме	C-NH ₂	Ме	СН	
4-Methoxyphenyl 4-Methoxyphenyl		Н	Ме	C-NO ₂	ОМе	СН	
4-Methoxyphenyl 4-Methoxyphenyl		н	Ме	C-NH2	ОМе	Н	
4-Methoxyphenyl 4-Methoxyphenyl		Ме	ОМе	СН	ОМе	Z	
4-Methoxyphenyl 4-Methoxyphenyl		Ме	ОМе	СН	Me	Z	
4-Methoxyphenyl 4-Methoxyphenyl		Ме	Ме	СН	Me	Z	
4-Methoxyphenyl 4-Methoxyphenyl		Me	ОМе	Z	ОМе	N	
	١						

R ²	x(O)— HN	Y Day
CO ₂ H	z 	R7
R4		R ₂
	Et –	

5 	7										
Smp (°C)											
¥	N	N	N	N	Z	N	N	N	Z	N	N
R3	ОМе	Ме	Ме	Et	73	CF3	cF_3	н	н	оме	H
×	СН	НЭ	нэ	НЭ	НЭ	но	нэ	нэ	нэ	нэ	СН
R2	ОМе	ОМе	Ме	Ме	Et	Ме	ОМе	9МО	SMe	73	CF3
R7	н	x	H	H	H	н	н	н	н	н	н
R5	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Pheny1	Pheny1	Phenyl	Phenyl
R4	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Pheny1	Phenyl	Phenyl	Pheny1	Phenyl
Nr.	I-546	I-547	I-548	I-549	1-550	1-551	I-552	I-553	I-554	I-555	I-556

Tabelle 3

	.,				3									- 1		- 7		-		-	-	
Smp [oC]																						
¥	Z	z	æ	Z	Z	Z	Z	Z	N	Z	N	СН	СН	N=CH-NH-C	N=CH-NH-C	N=CH~NH-C	СН	СН	СН	C-NO2	N	N
R³	н	[2] 3-	12) 3-	2)2-C	2) 2-C	ОМе	NH ₂	NHMe	Ме	SMe	Н	ОМе	Ме	N=CH-	N=CH-	N=CH-	æ	CF_3	Ме	Н	Н	н
X	Ж	$C - (CH_2)_3 -$	C- (CH ₂) 3	C- (CH ₂) ₂ -C	C- (CH ₂) ₂ -C	N	N	N	N	N	СН	N	N	Z	N	N	N	N	N	N	C-Me	C-Me
R ²	Me	Ме	ОМе	Же	OMe	ОМе	NH ₂	NHMe	Ме	SMe	Н	ОМе	C1	ОМе	c1	н	SMe	CMe ₃	оме	ОМе	ОМе	Ме
R7	Н	Н	ЭЖ	Me	Ме	н	н	Н	н	н	Н	H	H	н	H	н	н	Н	H	н	H	H
R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl
R4	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl
Nr.	I-557	I-558	I-559	I-560	1-561	1-562	1-563	1-564	I-565	995-I	I-567	I-568	I-569	1-570	1-571	I-572	1-573	1-574	1-575	I-576	1-577	1-578

											, , , , , , , , , , , , , , , , , , ,	,									_	
Smp [oc]																						
λ	C-NO ₂	C-NO2	C-NH ₂	СН	НЭ	СН	нэ	нэ	нэ	N	N	N	N	Z	Z	N	Z	Z	z	N	Z	z
R3	н	Н	н	ОМе	×	Ме	Ме	ОМе	ОМе	ОМе	Ме	Me	ОМе	ОМе	Me	Me	Et	Et	CF3	CF3	н	H
×	H)	£	СН	C-NO2	C-NO2	C-NO2	C-NH ₂	C-NO2	C-NH2	СН	СН	СН	Z	CH	æ	CH	СН	CH	СН	Ж	СН	СН
R ²	ОМе	Ме	ОМе	ОМе	ОМе	Ме	Me	Me	Ме	ОМе	ОМе	Ме	ОМе	ОМе	ОМе	Ме	Ме	Et	Ме	ОМе	ОМе	SMe
R ⁷	Н	Н	Н	Н	π	н	н	н	Н	ЭЖ	Me	Же	ЭЖ	×	Н	н	н	н	н	н	н	Н
R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-Methoxyphenyl								
R4	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-Methoxyphenyl								
Nr.	1-579	1-580	1-581	1-582	I-583	I-584	I-585	I-586	1-587	I-588	I-589	I-590	I-591	I-592	1-593	I-594	I-595	1-596	1-597	1-598	I-599	1-600

Nr.	R4	R ⁵	R7	R ²	×	R³	Y	Smp [oC]
1-601	4-Methoxyphenyl	4-Methoxyphenyl	Н	Et	СН	ОМе	Z	
1-602	4-Methoxyphenyl	4-Methoxyphenyl	н	CF3	СН	Ħ	Z	
1-603	4-Methoxyphenyl	4-Methoxyphenyl	н	Me	СН	Ħ	Z	
1-604	4-Methoxyphenyl	4-Methoxyphenyl	H	Me	C- (CH ₂) 3-	12) 3-	Z	
1-605	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	C- (CH ₂) 3-	12) 3-	Z	
1-606	4-Methoxyphenyl	4-Methoxyphenyl	н	Ме	С- (СН	C- (CH ₂) ₂ -C	Z	
1-607	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	С- (СН	C- (CH ₂) ₂ -C	Z	
I-608	4-Methoxyphenyl	4-Methoxyphenyl	н	Э МО	N	ОМе	Z	
609-I	4-Methoxyphenyl	4-Methoxyphenyl	н	2HN	N	NH2	Z	
1-610	4-Methoxyphenyl	4-Methoxyphenyl	н	NHMe	Z	NHMe	Z	
I-611	4-Methoxyphenyl	4-Methoxyphenyl	Н	Ме	Z	Me	Z	
1-612	4-Methoxyphenyl	4-Methoxyphenyl	н	SMe	Z	SMe	z	
1-613	4-Methoxyphenyl	4-Methoxyphenyl	н	н	Ж	Н	z	
1-614	4-Methoxyphenyl	4-Methoxyphenyl	H	ОМе	Z	ОМе	СН	
1-615	4-Methoxyphenyl	4-Methoxyphenyl	Н	C1	Z	Me	CH	
1-616	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	N	N=CH-	N=CH-NH-C	
1-617	4-Methoxyphenyl	4-Methoxyphenyl	н	C1	N	N=CH-	N=CH-NH-C	
1-618	4-Methoxyphenyl	4-Methoxyphenyl	н	н	N	N=CH-	N=CH-NH-C	
1-619	4-Methoxyphenyl	4-Methoxyphenyl	H	SMe	Z	Н	СН	
1-620	4-Methoxyphenyl	4-Methoxyphenyl	Н	CMe3	N	CF3	СН	
1-621	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	N	Me	B	
1-622	4-Methoxyphenyl	4-Methoxyphenyl	н	ОМе	N	H	C-NO ₂	

			-,					1								\neg						\neg
Smp (oc)																						
Ϋ́	Z	Z	C-NO2	C-NO ₂	C-NH ₂	НЭ	нэ	НЭ	НЭ	НЭ	СН	N	Z	N	Z	Z	Z	Z	СН	Z	N	N
R³	ж	Н	Н	Н	Н	ОМе	Н	Me	Me	OMe	Э МО	Э WO	ЭЖ	Ме	ОМе	ОМе	ОМе	Me	ОМе	Н	н	ОМе
×	C-Me	C-Me	СН	Ж	CH	C-NO2	C-NO2	C-NO ₂	C-NH2	C-NO2	C-NH2	СН	КЭ	H	Z	HO	СН	£	5	C-Me	z	СН
R ²	ОМе	Ме	ОМе	Ме	ОМе	OMe	ОМе	Me	Me	Me	Ме	ОМе	ОМе	Me	ОМе	ОМе	Me	Me	ОМе	ОМе	ОМе	ОМе
R ⁷	Н	н	Н	Ħ	н	H	Ħ	H	H	Ι	×	Me	Me	Me	Me	Н	н	×	ĸ	Ħ	H	н
RS	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	Phenyl						
R4	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	4-Methoxyphenyl	Et	Et	Et	Et	Bt	Bt	Et
Nr.	1-623	1-624	1-625	I-626	1-627	1-628	1-629	1-630	1-631	I-632	1-633	1-634	1-635	1-636	1-637	1-638	I-639	1-640	I-641	I-642	I-643	I-644

Nr.	R4	R ⁵	R7	R ²	X	R³	¥	Smp [oc]
I-645	Et	Phenyl	Me	ОМе	Z	ОМе	Z	
1-646	Et	Phenyl	Me	Me	СН	оме	N	
1-647	Bt	Phenyl	Me	Ме	СН	Ме	Z	

N N	X X X
СО2Н	R,
R4	R5

Tabelle 4

	3										
Smp [°C]											
¥	Z	N	Z	Z	Z	Z	N .	N	N	Z	N
R³	ә МО	ЭЖ	ЭЖ	Bt	Et	CF_3	CF_3	н	Н	ОМе	Н
×	СН	СН	НЭ	СН	СН	нэ	нэ	нэ	нэ	нэ	НЭ
R ²	ОМе	ОМе	Me	Me	Et	Me	ОМе	ОМе	ЗМе	19	cF_3
R ⁷	н	Н	н	н	Н	н	Н	н	н	н	Н
R5	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Pheny1	Pheny1	Pheny1	Pheny1	Phenyl
R4	Phenyl	Pheny1	Pheny1	Pheny1	Pheny1	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
Nr.	I-648	I-649	I-650	1-651	1-652	I-653	I-654	I-655	1-656	1-657	I-658

													<u>-</u>					1	ī			\neg
Smp (°C)																						
Ā	C-N02	C-N02	C-NH2	СН	СН	СН	СН	СН	СН	N	N	Z	Z	Z	Z	Z	СН	N	Z	Z	Z	Z
R ³	H	Н	Н	ОМе	Н	Ме	Ме	ОМе	ОМе	ОМе	Ме	Me	ОМе	ОМе	Me	Me	ә МО	н	н	ә ₩0	ОМе	ОМе
×	СН	СН	СН	C-NO2	C-NO ₂	C-NO2	C-NH ₂	C-NO2	C-NH ₂	СН	СН	Ж	N	СН	СН	СН	N	НЭ	C-Me	N	нэ	Z
R ²	ОМе	Ме	ОМе	ОМе	ОМе	Ме	Me	Me	Ме	ОМе	ОМе	Же	ОМе	ОМе	ОМе	Ме	ОМе	ОМе	ОМе	омо	ОМе	ОМе
R7	Н	н	ж	Н	Н	н	H	Ħ	н	Ме	Ме	Ме	Me	H	H	Н	Н	н	H	Н	Ме	Me
RS	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	Phenyl	Phenyl
R4	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Me	Ме	Ме	Ме	Ме	Me	Me	Ме	Me
Nr.	1-681	I-682	1-683	I-684	I-685	1-686	I-687	I-688	1-689	069-I	1-691	1-692	I-693	I-694	I-695	969-I	1-697	1-698	1-699	1-700	1-701	1-702

Nr.	R4	R5	R7	R ²	×	R³	λ	Smp [oc]
1-703	Ме	Phenyl	Me	Ме	СН	Ме	N	
1-704	I	Phenyl	æ	ОМе	СН	ОМе	N.	
1-705	π	Phenyl	H	ОМе	НЭ	Ме	N	
1-706	x	Phenyl	н	Me	СН	Ме	N	,
1-707	H	Phenyl	Н	ОМе	N	ОМе	СН	
I-708	I	Phenyl	н	ОМе	СН	н	N	
1-709	×	Phenyl	н	ОМе	C-Me	Н	N	
1-710	н	Phenyl	н	ОМе	N	ОМе	Z	
1-711	æ	Phenyl	Me	ОМе	СН	ОМе	Z	
1-712	×	Phenyl	Ме	Э МО	N	ОМе	Z	
1-713	H	Phenyl	Me	Ме	СН	Ме	Z	

R2	×_~~
z) ¥
CO ₂ H	- K
R	R.5
	MeO-

6	7	
Smp [°C]		·
Struktur	$\begin{array}{c c} \text{Ph} & \text{CO}_2\text{H} & \text{OMe} \\ \hline \text{EtO} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{c c} Ph & CO_2H & Me \\ \hline EtO & & & NH & Me \\ \hline & Ph & & NH & Me \\ \hline & & & NH & Me \\ \hline \end{array}$
Nr.	I-714	I-715

Tabelle 5

Smp [oc]			
Struktur	$EtO \xrightarrow{Ph} CO_2H$ $Ph \longrightarrow NH \xrightarrow{N}$ $Ph \longrightarrow NH \xrightarrow{N}$ $NH \longrightarrow NH \longrightarrow NH$ $NH \longrightarrow NH \longrightarrow NH$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nr.	I-716	I-717	I-718

Smp [oC]	·	·	
Struktur	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me Me NH NH NH NH NH NH
Nr.	1-719	1-720	I-721

Smp [oC]			
Struktur	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} H & CO_2H \\ \hline \\ H & \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Nr.	1-722	1-723	I-724

		,	
Smp [oC]			
Struktur	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} Ph & CO_2H \\ H & & \\ \hline & & \\ Ph & & \\ \hline & & \\ Ph & & \\ \hline & & \\ $	Ph CO ₂ H OH NH OH OH
Nr.	I-725	1-726	I-727

Smp [oC]				
Struktur	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nr.	1-728	1-729	I-730	I-731

Smp [oC]				
Struktur	$\begin{array}{c c} Ph & CO_2H \\ H & & \\ \hline & & \\ $	$\begin{array}{c c} Ph & CO_2H \\ Mes & & \\ \hline & & \\ Ph & & \\ \hline & & \\ Ph & & \\ \hline & \\ \hline & & $	Mes NH CO ₂ H OMe	$\begin{array}{c} \text{CO}_2H & \text{OMe} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Nr.	I-732	1-733	I-73 4	I-735

		/ 4	
[Oo] đws			
Struktur	$\begin{array}{c} co_2H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} co_2H & Me \\ \hline \\ N \\ \hline \\ MeO \end{array}$	$\begin{array}{c} CO_2H & Me \\ \\ N \\ \\ N \\ \\ N \\ \\ Me \end{array}$
Nr.	1-736	I-737	I-738

	<u> </u>	76	ī
Smp [oc]			
Struktur	$ \begin{array}{c c} CO_2H & OMe \\ \hline \\ N & \\ \end{array} $ $ \begin{array}{c c} CO_2H & N \\ \hline \\ N & \\ \end{array} $ $ \begin{array}{c c} OMe \\ OMe \end{array} $	$ \begin{array}{c c} & CO_2H & Me \\ \hline & N & \\ \hline & Me \end{array} $	$\bigcirc \qquad \qquad \bigcirc \qquad \bigcirc$
Nr.	I-742	I-743	I-744

		77	
Smp [°C]			
Struktur	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bigcirc \qquad \bigcirc \qquad$	OMe OMe OMe OMe OMe
Nr.	I-745	I-746	I-747

Smp [oc]			
Struktur	$\bigcirc \qquad \bigcirc \qquad$	Me CO2H N Me Me N Me OMe	CO ₂ H N N Me
Nr.	I-748	I-749	I-750

Smp [oC]			
Struktur	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & & & \\ & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Nr.	I-751	I-752	I-753

Ι

· Patentansprüche

1. Aminosäurederivate der Formel I

10

5

15 in der R eine Formylgruppe, ein Tetrazolyl, Cyano, Nitril, eine Gruppe COOH oder einen zu COOH hydrolysierbaren Rest bedeutet. Beispielsweise steht R für eine Gruppe

20

in der R1 folgende Bedeutung hat:

- 25 Wasserstoff a)
 - b) eine Succinylimidylgruppe
- c) ein über ein Stickstoffatom verknüpfter 5-gliedriger Hetereoaromat wie Pyrrolyl, Pyrazolyl- Imidazolyl und Tri-30 azolyl, welcher ein bis zwei Halogenatome oder ein bis zwei C₁-C₄-Alkyl· oder ein bis zwei C₁-C₄-Alkoxygruppen tragen kann;
- 35 R1 ferner eine Gruppe d)

40

in der k die Werte 0,1 und 2, p die Werte 1,2,3 und 4 annehmen und R9 für

C₁-C₄-Alkyl, C₃-C₇-Cycloalkyl, C₃-C₆-Alkenyl,

45 C3-C6-Alkinyl oder gegebenenfalls substituiertes Phenyl steht, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann:

15

20

25

30

35

40

45

Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, - C_1 - C_4 -Halogenalkyl, Hydroxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Mercapto, Amino, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino;

5 e) R¹ ferner ein Rest OR¹⁰, worin R¹⁰ bedeutet:

Wasserstoff, das Kation eines Alkalimetalls wie Lithium, Natrium, Kalium oder das Kation eines Erdalkalimetalls wie Calcium, Magnesium und Barium sowie physiologisch verträgliches Alkylammoniumion oder das Ammoniumion.

C₃-C₈-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl,

C₁-C₈-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl;

CH₂-Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino,

eine C₃-C₆-Alkenyl - oder eine C₃-C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

 R^{10} kann weiterhin ein Phenylrest sein, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgende Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, Hydroxy, C_1 - C_4 -Alkoxy, Mercapto, C_1 - C_4 -Alkylthio, Amino, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenyl, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3,4-Dichlorimidazol-1-yl;

f) R1 ferner ein Rest

worin R11 bedeutet:

10

5

 $C_1-C_4-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$ wie insbesondere vorstehend genannt, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-$ und/oder einen Phenylrest wie oben genannt tragen können;

15

Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt;

g) R1 ein Rest

20

25

worin R12 die gleiche Bedeutung hat wie R11;

30 h) ferner kann R1 bedeuten

$$- N < \frac{R^{13}}{R^{14}}$$

35

wobei R¹³ und R¹⁴ gleich oder verschieden sein können und folgende Bedeutung haben:

40

Wasserstoff, C_1 - C_7 -Alkyl, C_3 - C_7 -Cycloalkyl, C_3 - C_7 -Alkenyl, C_3 - C_7 -Alkinyl, Benzyl, Phenyl, gegebenenfalls substituiert, wie oben beschrieben,

45

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte, z.B. durch C_1 - C_4 -Alkyl substituierte C_4 - C_7 -Alkylenkette, die ein Heteroatom, z.B. Sauerstoff, Stickstoff oder Schwefel

30

35

enthalten kann wie -. $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, - $(CH_2)_7$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_2$ -S- $(CH_2)_2$ -, - $(CH_2)_2$ -NH- $(CH_2)_2$ -;

5 ein Tetrazol oder ein Nitril sein.

Die übrigen Substituenten haben folgende Bedeutung:

- W Stickstoff oder C-NO₂, ferner kann W für eine CH-Gruppe 10 stehen, wenn ein oder mehrere der Substituenten R², R³, R¹⁵ und/oder R¹⁶ eine Nitrogruppe bedeuten;
- R² Wasserstoff, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogen-alkoxy, Hydroxy, Mercapto, C₁-C₄-Alkylthio, Nitro, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino, Cyano, Phenyl, optional ein- bis dreifach substituiert mit Halogen, Hydroxy, Amino, Monooder Dialkyl (C₁-C₃)-Amino, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Mercapto oder C₁-C₃-Alkylthio;
- oder
 ein fünf- oder sechsgliedriges Heteroaromat, enthaltend
 ein bis drei Stickstoffatome und/oder ein Schwefel- oder
 Sauerstoffatom, welcher ein bis drei Substituenten trägt,
 wie oben beschrieben;

Weiterhin kann R² mit dem benachbarten Kohlenstoffatom und X einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bilden, worin jeweils ein oder zwei Kohlenstoffatome durch ein Heteroatom wie Stickstoff, Schwefel oder Sauerstoff ersetzt sein kann und der ein- bis dreifach durch folgende Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, Amino, C₁-C₃-Alkylamino, C₁-C₃-Dialkylamino;

X Stickstoff oder CR^{15} worin R^{15} Wasserstoff oder C_1 - C_5 -Alkyl, C_1 - C_5 -Alkoxy, C_1 - C_5 -Alkylthio, Nitro, Phenyl, Hydroxy, Mercapto, Halogen, Amino, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino oder Cyano bedeutet

oder CR¹⁵ mit R² zu einem 5- oder 6-gliedrigen Ring verknüpft ist, wie oben beschrieben, ferner kann CR¹⁵ auch zusammen mit R³ und dessen benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Ring bilden, wie oben beschrieben;

- \mathbb{R}^3 kann dieselbe Bedeutung haben wie R^2 und ferner mit dem benachbarten Kohlenstoffatom und Y zusammen einen 5- oder 6-gliedrigen Alkylen- oder Alkylidenring bilden, worin jeweils ein oder zwei Kohlenstoffatome durch Stickstoff, 5 Sauerstoff oder Schwefel ersetzt sein kann; der 5. oder 6-gliedrige Ring kann optional ein- bis dreifach mit folgenden Resten substituiert sein; Halogen, Nitro, Cyano, Hydroxy, Mercapto, C1-C3-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, Amino, 10 C₁-C₃-Alkylamino oder C₁-C₃-Dialkylamino; Stickstoff im 5-Ring kann auch durch eine Formyl- oder Acetylgruppe substituiert sein; R2 und R3 können gleich oder verschieden sein;
- Y Stickstoff oder CR¹⁶, worin R¹⁶ Wasserstoff, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₅-Alkylthio, Nitro, Phenyl, Hydroxy, Halogen, Cyano, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino oder Mercapto bedeutet oder CR¹⁶ zusammen mit R³ und dessen benachbarten Kohlenstoffatom einen 5- oder 6-gliedrigen Ring bilden, wie oben beschrieben;
 - R⁴ steht für Wasserstoff, C₁-C₇-Alkyl, C₃-C₇-Cycloalkyl; oder Phenyl oder Naphthyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann; Halogen, Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, Phenyl, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino,
- R4 kann auch einen fünf- oder sechsgliedrigen Heteroaromaten bedeuten, enthaltend ein Stickstoff-, Schwefeloder Sauerstoffatom, welcher ein bis zwei der folgenden
 Reste tragen kann: Halogen, Cyano, Nitro, C1-C4-Alkyl,
 C1-C4-Halogenalkyl, C1-C4-Alkoxy, Phenoxy, C1-C4-Alkylthio, C1-C4-Alkylamino oder C1-C4-Dialkylamino;
 - außerdem können R⁴ und R⁵ Phenylgruppen sein, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind;
- hat die Bedeutung von C₁-C₇-Alkyl, C₃-C₇-Cycloalkyl oder Phenyl oder Naphtyl, das durch ein bis drei der folgenden Reste substituiert sein kann; Halogen, Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, Phenyl, C₁-C₄-Alkylthio,

10

25

30

35

40

45

Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino, wobei zwei Reste an benachbarten Kohlenstoffatomen zusammen mit diesem über eine Alkylen- oder Alkylidengruppe verbundenen fünf- oder sechsgliedrigen Ring bilden können, bei dem ein oder mehrere Methylen oder Methylidengruppen durch Sauerstoff ersetzt sein können wie zum Beispiel:
-(CH₂)₃-, -(CH₂)₄-, -CH=CH-O-, -O-CH₂-O-, -O-(CH₂)₂-O--CH=CH-CH₂- oder -O-CH=CH-O-;

beispielsweise kann R⁵ für folgende Reste stehen:

Weiterhin kann R⁵ ein fünf- oder sechsgliedriger Heteroaromat sein, enthaltend ein Stickstoff-, Schwefel- oder Sauerstoffatom, welcher ein bis zwei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

Daneben kann R⁵ mit R⁴ zusammen einen Tricyclus bilden wie oben beschrieben, außerdem kann R⁵ ein gegebenenfalls substituierter Phenylrest oder Heteroaromat sein - wie oben beschrieben -, der orthoständig mit R⁸ zu einem 6-gliedrigen Ring verknüpft ist, worin Q für eine Einfachbindung und R⁸ für eine Gruppe CH-R¹⁷ stehen müssen;

- R6 Wasserstoff, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl
- Z eine Einfachbindung, Sauerstoff, Schwefel, eine Sulfinyl oder Sulfonylgruppe;
 - R⁷ Wasserstoff oder C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl;

Q eine Einfachbindung,

R8 bedeutet Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, Phenyl oder Benzyl, weiterhin kann R⁸ direkt mit R⁵ verbunden sein, wie oben beschrieben, in dem Fall steht R⁸ für eine Gruppe CH-R¹⁷, worin R¹⁷ Wasserstoff, C₁-C₄-Alkyl, Phenyl oder ein- bis dreifach mit Methoxy substituiertes Phenyl bedeutet, oder für einen der folgenden Reste steht.

- 2. Verwendung von Verbindungen gemäß Anspruch 1 zur Behandlung von Krankheiten.
- 30 3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß sie als Endothelinantagonisten eingesetzt werden.
- Arzneimittel, enthaltend als Wirkstoff eine Verbindung gemäß Anspruch 1.

Neue Aminosäurederivate, ihre Herstellung und Verwendung

Zusammenfassung

5

Die Erfindung betrifft Aminosäurederivate der Formel I

10

15

in der die Reste die in der Beschreibung angegebene Bedeutung besitzen, sowie deren Verwendung als Arzneimittel.

I

20

25

30

35

40

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/EP 96/04205

			i	90/04203
	FICATION OF SUBJECT MATTER C07D239/52 A61K31/505 C07D251 A61K31/53 C07D491/052 C07D401 C07D239/42 C07D251/42 C07D405	/14	9/70 C0 9/50 C0	7D487/02 7D239/48
	o International Patent Classification (IPC) or to both national class	ilication and IPC		
	SEARCHED ocumentation searched (classification system followed by classifica-	ton symbols)		
IPC 6	CO7D A61K			
Documentat	oon searched other than minimum documentation to the extent that	such documents are in-	luded in the fiel	ds searched
Electronic d	ata base consulted during the international search (name of data ba	sse and, where practical	, search terms us	ed)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	relevant passages		Relevant to claim No.
P,X	WO 95 26716 A (BASF AG) 12 Octob see claim 1	er 1995		1-4
P,X	WO 96 11914 A (BASF AG) 25 April see claim 1	1996		1-10
A	EP 0 517 215 A (UNE INDUSTRIES) 1992 see claim 1	9 December		1
A	EP 0 481 512 A (UBE INDUSTRIES) 1992 see claim 1	22 April		1
A	EP 0 347 811 A (KUNIAI CHEMICAL 27 December 1989 see claim 1	INDUSTRY)		1
Furt	her documents are listed in the continuation of box C.	X Patent family	members are lis	nted in annex.
° Special ca	tegories of cited documents:			international filing date
	ent defining the general state of the art which is not ered to be of particular relevance			it with the application but or theory underlying the
	document but published on or after the international	'X' document of part		the claimed invention
'L' docum	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inven	tive step when th	nnot be considered to e document is taken alone
citatio	n or other special reason (as specified) tent referring to an oral disclosure, use, exhibition or	cannot be consid	ered to involve a	the claimed invention in inventive step when the or more other such docu-
other	means ent published prior to the international filing date but	ments, such combination being obvious to a person skilled in the art.		
	actual completion of the international search	*&* document member of the same patent family Date of mailing of the international search report		
ļ	3 December 1996		2 4. 01	·
Name and	mailing address of the ISA	Authorized office	т	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk			
ľ	Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Gettin	s, M	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter mai Application No PCT/EP 96/04205

Patent document cited in search report	Publication date	Patent memb		Publication date
WO-A-9526716	12-10-95	DE-A- AU-A-	4411225 2135695	05-10-95 23-10-95
WO-A-9611914	25-04-96	DE-A- AU-A-	19533023 3804595	18-04-96 06-05-96
EP-A-517215	09-12-92	JP-A- CN-A- US-A- US-A- JP-A- JP-A- JP-A-	4360887 1067651 5529977 5387575 5148242 5148245 5208962	14-12-92 06-01-93 25-06-96 07-02-95 15-06-93 15-06-93 20-08-93
EP-A-481512	22-04-92	AU-B- AU-A- CA-A- JP-A- US-A-	652961 8597791 2053603 5125058 5178663	15-09-94 30-04-92 20-04-92 21-05-93 12-01-93
EP-A-347811	27-12-89	DE-D- DE-T- JP-A- US-A- US-A-	68914197 68914197 2085262 4968340 5087289	05-05-94 10-11-94 26-03-90 06-11-90 11-02-92

INTERNATIONALER RECHERCHENBERICHT

Inten males Aktenzeichen
PCT/EP 96/04205

A. KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES CO7D239/52 A61K31/505 C07D251/ A61K31/53 C07D491/052 C07D401/ C07D239/42 C07D251/42 C07D405/	04 C07D239/50	C07D487/02 C07D239/48						
Nach der In	sternationalen Patentklassifikation (IPK) oder nach der nationalen Ki		·						
	RCHIERTE GEBIETE								
Recherchier IPK 6	Recherchierter Mindestprüßstoff (Klassifikationssystem und Klassifikationssymbole) 1PK 6 CO7D A61K								
Recherchier	Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen								
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	ame der Datenbank und evtl. vo	erwendete Suchbegriffe)						
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN	<u> </u>							
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden To	aile Betr. Anspruch Nr.						
P,X	WO 95 26716 A (BASF AG) 12.0ktobe siehe Anspruch 1	r 1995	1-4						
P,X	WO 96 11914 A (BASF AG) 25.April siehe Anspruch 1	1996	1-10						
A	EP 0 517 215 A (UNE INDUSTRIES) 9.Dezember 1 1992 siehe Anspruch 1								
A	EP 0 481 512 A (UBE INDUSTRIES) 22.April 1 1992 siehe Anspruch 1								
A	EP 0 347 811 A (KUNIAI CHEMICAL INDUSTRY) 27.Dezember 1989 siehe Anspruch 1								
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamilie									
Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist									
Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbencht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfindenischer Tätigkeit beruhend betrachtet werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte veröff									
ausgeführt) O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beansprüchten Prioritätsdatum veröffentlicht worden ist werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist Weröffentlichung, die Mitglied derselben Patentfamilie ist									
	Abschlusses der internationalen Recherche	Absendedatum des internati	onalen Recherchenberichts						
1	l3.Dezember 1996	2 4. (01. 97						
Name und	Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bedienstet	er						
	Europäisches Patentamt, P.B. 3818 Patentlaan 2 NL - 2280 HV Riswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 spo nl. Fax: (+ 31-70) 340-3016 Gettins, M								

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intel Inales Aktenzeichen
PCT/EP 96/04205

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO-A-9526716	12-10-95	DE-A- AU-A-	4411225 2135695	05-10-95 23 - 10-95
WO-A-9611914	25-04-96	DE-A- AU-A-	19533023 3804595	18-04-96 06-05-96
EP-A-517215	09-12-92	JP-A- CN-A- US-A- US-A- JP-A- JP-A- JP-A-	4360887 1067651 5529977 5387575 5148242 5148245 5208962	14-12-92 06-01-93 25-06-96 07-02-95 15-06-93 15-06-93 20-08-93
EP-A-481512	22-04-92	AU-B- AU-A- CA-A- JP-A- US-A-	652961 8597791 2053603 5125058 5178663	15-09-94 30-04-92 20-04-92 21-05-93 12-01-93
EP-A-347811	27-12-89	DE-D- DE-T- JP-A- US-A- US-A-	68914197 68914197 2085262 4968340 5087289	05-05-94 10-11-94 26-03-90 06-11-90 11-02-92

THIS PAGE BLANK (USPTO)