

Encryption & Decryption — 3

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa, Tulsa, OK 74104
sujeet@utulsa.edu

EDUCATION

Secure Encryption Systems

- Modern techniques are based on "Hard Problems" (NP-Complete Problems)
- Involve heuristic search (2ⁿ possibilities)
- Satisfiability

— Pick
$$v_1 v_2$$
, v_3 : Boolean such that $(v_1) \land (v_2 \lor v_3) \land (\neg v_3 \lor \neg v_1)$ is True

Knapsack

$$-$$
 Pick $v_1 v_2$, $v_3 ε {0,1}$ such that $v_1*a_1 + v_2*a_2 + v_3*a_3 = T$ (Target sum)

Classes P, NP and EXP

Class P

• Set of problems whose solutions run in time bounded by "polynomial functions" of the size of the problems

Class NP

• Set of problems whose solutions run in time bounded by polynomial functions of the size of the problems "assuming the ability to guess perfectly"

Class EXP

 Set of problems whose solutions run in time bounded by "exponential functions" of the size of the problems

Classes P, NP and EXP (contd.)

Fundamental Result: $P \subseteq NP \subset EXP$

Is: $P \subseteq NP$ or P = NP? Not known!

Some Comments

- NP-Complete problem does not guarantee that there is no solution easier than exponential
- Every NP-Complete problem has a solution that runs in time proportional to 2ⁿ; feasible if n is small
- Non-determinism can be modeled by "threads"
- Interceptors may use other information to simplify the task of breaking the encryption

Secret & Public Encryption Algorithms

Secret Key Algorithms (Symmetric)

- One key for encryption and decryption $(K_E = K_D = K)$
- $C = \{P\}_{K} \text{ and } P = \{C\}_{K}$
- One key per channel (#keys = n*(n-1)/2)

Public Key Algorithms (Asymmetric)

- Separate keys for encryption and decryption $(K_E \neq K_D)$
- $C = \{P\}_{K_E} \text{ and } P = \{C\}_{K_D}$
- $C = \{P\}_{KD} \text{ and } P = \{C\}_{KE}$
- T Two keys per user (#keys = 2*n)

Public Key Algorithms

Public Key Algorithms (Asymmetric)

- Key Pair: (K_A^{priv}, K_A^{pub})
- K_A^{priv}: Private Key; K_A^{pub}: Public Key
- K_A^{priv} is kept by secret by A
- K_A^{pub} is distributed widely by A
- A \rightarrow Receiver: $C = \{P\}_{K_A}^{priv}$ (and $P = \{C\}_{K_A}^{pub}$)
- Sender \rightarrow A: $C = \{P\}_{K_A}^{\text{pub}} \text{ (and } P = \{C\}_{K_A}^{\text{priv}})$

Merkle-Hellman Algorithm

Merkle-Hellman (1978)

- Encodes a binary message as a solution to the knapsack problem
- NP-complete problem
- Simple knapsack (linear time)
- Hard knapsack (exponential time)
- "One way" encryption

General Knapsack

- Given $S = [a_1, a_2, ..., a_n]$ and target sum T,
- Find V= $[v_1, v_2, ..., v_n]$, $v_i \in \{0,1\}$ such that $\sum_{i=1}^{n} a_i v_i = T$
- E.g., if S = [9, 5, 2, 13] and T = 24, then V = [1, 0, 1, 1]

Superincreasing Knapsack

- Each $a_k \in S$ satisfies the condition: $a_k > \sum_{j=1}^{k-1} a_j$
- E.g., S = [1, 2, 5, 13] is a superincreasing knapsack

Sending an Encrypted Message

- Receiver picks a simple (superincreasing) knapsack (S), multiplier (w) and modulus (n) (w and n are co-prime)
- S = [1, 2, 6]; w = 11; n = 13 (n prime; larger than 9)
- Receiver computes "hard knapsack" ($H = [h_1, h_2, h_3]$)
- $h_i = w * s_i \mod n$
- $h_1 = w * s_1 \mod n = 11 * 1 \mod 13 = 11 \mod 13 = 11$
- $h_2 = w * s_2 \mod n = 11 * 2 \mod 13 = 22 \mod 13 = 9$
- $h_3 = w * s_3 \mod n = 11 * 6 \mod 13 = 66 \mod 13 =$

Sending an Encrypted Message (contd.)

- Receiver sends H = [11, 9, 1] to sender
- Receiver keeps S, w and n secret
- Suppose sender wishes to transmit P = 101 010 011

• P:

1 0 1 0 1 0 0 1 1

1191 1191 1191

• C:

12

9

10

Decrypting an Encrypted Message

- $H = w * S \mod n$
- $^{\bullet}$ C = H * P = w * S * P mod n
- $w^{-1} * C = w^{-1} * H * P = w^{-1} * w * S * P = S * P mod n$
- $w^{-1} * C_i = S * P_i \mod n$ (note: S = [1, 2, 6]
- $6 * 12 = 72 \mod 13 = 7 = 101$
- $6 * 9 = 54 \mod 13 = 2 = 010$
- $^{\bullet}_{\bullet}6 * 10 = 60 \mod 13 = 8 = 011$

Cryptanalysis

- Modulus n: 200 bits long
- s_i are chosen to be approx. 2^{200} apart!
- Knapsack has approx. 200 terms (m = 200)
 - —Choose m random numbers between 0 and 2^{200}

$$-s_i = 2^{200*i-1} + r_i$$

- Each term is 200 to 400 bits long
- 1 opn/ μ s: 10^{47} years to try 2^{200} choices for each s_i
- Hard to break for large values of n & m

Weaknesses

• Shamir (1980): If modulus n is known, it is possible to determine simple knapsack S in polynomial time

RSA Algorithm

Rivest-Shamir-Adelman (1978)

- Based on factoring large numbers (200 digits)
- Best factorization algorithm is exponential
- No known weaknesses
 - —Choose large n = p*q (p, q: prime numbers)
 - —Choose e relatively prime to $\varphi(n) = (p-1)*(q-1)$
 - $-d = e^{-1} \bmod \varphi(n)$
- Encryption key: (e, n); Decryption key: (d, n)
- $C = P^e \mod n$; $P = C^d \mod n$
- $C = P^d \mod n$; $P = C^e \mod n$

RSA Algorithm (contd.)

RSA Mathematics

- Euler totient function $(\varphi(n))$: number of positive integers less than n that are relatively prime to n
- If p: prime, then $\varphi(p) = p 1$
- If n = p * q and p, q: prime, then $\phi(n) = \phi(p) * \phi(q) = (p 1) * (q 1)$

Euler-Fermat Result

• For any integer x, if n and x are rel. prime, then $x^{\phi(n)} \equiv 1 \mod n$

RSA Algorithm (contd.)

E-F result: P, p rel prime

Main Result:
$$(P^e)^d \equiv (P^d)^e \equiv P \mod n$$

•
$$e * d \equiv 1 \mod \varphi(n)$$
 where $n = p*q$

•
$$e * d \equiv k * \phi(n) + 1$$
 for some integer k

$$\bullet P^{p-1} \equiv 1 \mod p$$

•
$$P^{k\phi(n)} \equiv 1 \mod p$$
 (p-1) is a factor of $\phi(n)$

•
$$P^{k\phi(n)+1} \equiv P \mod p$$

•
$$P^{k\phi(n)+1} \equiv P \mod p$$
 multiplying by P
• $P^{k\phi(n)+1} \equiv P \mod q$ same result for q
• $(P^e)^d = P^{ed} = P^{k\phi(n)+1} = P \mod p = P \mod p$

•
$$(P^e)^d = P^{ed} = P^{k\varphi(n)+1} = P \mod p = P \mod q$$

$$(P^e)^d = P \mod n \qquad n = p*q$$

RSA Algorithm (contd.)

RSA Encryption

- Suppose p = 3 and q = 11
- n = 33 and $\varphi(n) = (p-1)*(q-1) = 20$
- Choose e = 13 (relatively prime to 20)
- Find d such that $e * d \equiv 1 \mod 20 \Rightarrow d = 17$
- Public key (e, n) = (13, 33)
- Private key (d, n) = (17, 33)
- Plaintext P = 7
- $C = 7^{13} \mod 33 = 13$
- $P = 13^{17} \mod 33 = 7$

RSA Algorithm (contd.)

Using RSA

- Choose primes p, q (100 digits each)
- Calculate n = p*q (200 digits/512 bits; 1024bits recommended for secure applications)
- Choose large e relatively prime to $\varphi(n)$
- Compute d such that $e * d \equiv 1 \mod \varphi(n)$
- Public key (e, n)
- Private key (d, n)
- Can discard p, q, φ(n)
- Primality Test (iteration k: Prob(p is not prime) = 1/2^k)

$$-\gcd(p, r) = 1$$

Digital Signature Algorithms

• El Gamal Algorithm (1984)

- Pick p: prime; a < p and x < p; (p-1) has a large prime factor: q
- Compute: $y = a^x \mod p$
- Private key: x; Public key: y (and p, a)

• Message Signing (m: message)

- Pick k: 0 < k < p-1 (relatively prime to p-1)
- Compute: $r = a^k \mod p$
- Compute: $s = k^{-1}*(m x*r) \mod (p-1) (k*k^{-1} \equiv 1 \mod (p-1))$
- Message Signature: r & s

Signature Verification

- Compute: y^rr^s mod p
- Compute: a^m mod p
- Check: $y^r r^s \mod p \equiv a^m \mod p$

Digital Signature Algorithms (contd.)

- U.S. Digital Signature Algorithm (1994)
 - -DSS (Digital Signature Standard)
 - El Gamal Algorithm with restrictions
 - p: 170 digits long $(2^{511}$
 - q: prime factor of p-1 $(2^{159} < q < 2^{160})$
 - Hash value of m: H(m) used instead of m
 - Computations of r and s taken mod q
 - Changes simplify the algorithm
 - Changes weaken encryption

Cryptographic Hash Algorithms

- Simpler than Digital Signature Algorithms
- Hash function (f) produces "digest" of data/message
- $S \rightarrow R$: m, f(m)
- R: computes new f(m) & compares with old f(m)
- Difficult to "invert," i.e., change m and f(m)
- XOR bits: $10101010 \ 00101111 \rightarrow 1$ (Prob = 1/2)
- XOR bytes: $10101010 \ 00101111 \ \rightarrow \ 10000101$ (Prob = $1/2^8$)
- NSF

Most digests are between 100 to 1,000 bits

Secure Hash Algorithm (SHA)

- Designed for Digital Signature Standard (DSS)
- NIST (1992-1995)
- Input: $\leq 2^{64}$ bits; Digest: 160 bits
- Operations: XOR, + mod 2³², left circular shift(n,v)
- Algorithm: Non-linear function; interweaves bits
 - Pad message: Multiple of 512 bits (msg 1 0...0 <64-bit length>) (512 bits = 16 32-bit words: $W_0 \dots W_{15}$)
 - Expand to 80 words: $W_0 \dots W_{79}$
 - Initialize 5 32-bit pattern constants: $H_0^0 \dots H_4^0$
 - Perform 80-step 4-round diffusion algorithm: digest = $H_0^{80} \dots H_4^{80}$

MD4 and MD5 Hash Algorithms

- MD4 (Rivest, 1991-92)
 - Exceptionally fast, less secure
 - 16-word block (512 bits)
 - 48-step 3-round diffusion algorithm
 - 4 pattern constants (128 bits)
- MD5 (Rivest, 1992)
 - Slower, more secure
 - 16-word block (512 bits)
 - 64-step 4-round diffusion algorithm
 - 4 pattern constants (128 bits)

Quantum Cryptography

Rationale

- One-Time Pad: Only provably unbreakable system
- Requires a long, unpredictable string of numbers
 - -String generation
 - -String communication
- Quantum cryptography addresses both problems
- Based on physics instead of mathematics
- Quantum Key Distribution (QKD)

Photons

- Assume four directional orientations (-, |, <, >,)
- Orientations and | can be distinguished with high certainty, but < and > sometimes appear as – or |
- Orientations < and > can be distinguished with high certainty, but – and | sometimes appear as < or >

• Polarizing Filters (+ and o)

- -+ Rectilinear Filter: Discriminates and |, but has 50% probability of counting < and > as or |
- o Circular Filter: Discriminates < and >, but has 50% probability of counting − and | as < or >

- BB84: Protocol: Bennett and Brassard (1984)
 - Sender sends a stream of photons to receiver
 - Sender uses + or o filter to control each photon being sent
 - Receiver uses + or o filter and records photon orientation
 - Nobody can eavesdrop without disrupting communication
 - Using a filter to view a photon disrupts the communication
 - E.g., A rectilinear + filter allows photons, and some <
 and > photons, but blocks all | photons

http://fredhenle.net/bb84/

BB84 Protocol

- -S & R: -& < represent 0; | & > represent 1
- S: Sends series of photons to R and records orientation
- R: Uses + or o filters at random and records orientation
- -R: Sends series of filters used to S (public channel)
- S: Sends the correct filters used to R (public channel)
- R: Determines which photons received were correct
- Inefficient, only half the bandwidth of the communications channel carries meaningful data
- Problems with sending and receiving photons

- IBM T.J. Watson Research Center (U.S.)
 - Aunt Martha's Coffin (1989): 1 foot
- Id Quantique (Switzerland)
 - Optical fiber system: 20 miles
- MagiQ Technologies (U.S.)
 - Optical fiber system: 65 miles
 - Cost: \$70,000 to \$100,000

- Los Alamos/NIST (U.S.)
 - Optical fiber system (2007): 100 miles
- European Consortium (Canary Islands, Spain)
 - Air (2007): 90 miles
- Satellite Transmission (250 miles) is a possibility

