

30-765

Redes de Computadores II

MSc. Fernando Schubert

CAMADA DE REDE

Modelo OSI

7 - APLICAÇÃO

- 6 APRESENTAÇÃO
- 5 SESSÃO
- 4 TRANSPORTE
- 3 REDE
- 2 ENLACE
- 1 FÍSICA

Arquitetura TCP/IP

4 - APLICAÇÃO

- 3 TRANSPORTE
- 2 INTERNET
- 1 ACESSO À REDE

CAMADA DE REDE

CAMADA DE REDE NO MODELO OSI

- Objetivo: prover funcionalidades para modos de transmissão com e sem conexão para entidades da camada de transporte
- Estabelecer, manter e terminar conexões entre sistemas abertos (isto é, redes)
- Promover troca de unidades de dados de serviços de redes: pacotes
- Manter endereçamento entre hosts de redes distintas
- Qualidade de serviço

- O protocolo TCP/IP utiliza três esquemas para encaminhar dados através das redes até o hospedeiro:
 - 1. Endereçamento: O endereço IP que identifica cada host na Internet.
 - 2. Roteamento: Gateways encaminham dados para a rede correta.
 - 3. Multiplexação: Protocolo e número do port encaminham dados ao módulo correto de SW no host.

OBJETIVO DO ENDEREÇAMENTO IP (IPV4)

- O protocolo IP é "o" protocolo da camada 3 da Internet: camada de rede
- A principal funcionalidade da camada 3: roteamento
- Na Internet o encaminhamento dos pacotes é feito pelo protocolo IP
- Mas o roteamento envolve outros protocolos ditos de roteamento BGP, OSPF, RIP

- Definido pela RFC 791 https://datatracker.ietf.org/doc/html/rfc791
- Representação:
 - Número inteiro de 32 bits
 - Permite até 2^32 endereços (4 294 967 296 combinações)
 - Um número inteiro de 32 bits pode ser muito grande e de difícil memorização

```
11000000 10101000 00001010 00000001 = 3.232.238.081
0 31
```

- Notação decimal:
 - Representado por 4 números (octetos)
 - Permite até 2^32 endereços

- Notação decimal:
 - Representado por 4 números (octetos)
 - Permite até 2^32 endereços

- Hierarquia de endereçamento
 - Identificador de rede (prefixo de rede)
 - Identifica cada rede de forma individual e única
 - Identificador de estação
 - Identifica cada estação de forma individual e única

Identificador de rede	Identificador de estação	
		31

- Atribuição de endereços:
 - Endereços IP não são atribuídos às estações e roteadores
 - Endereços IP são a atribuídos às interfaces de estações e roteadores
 - Cada interface de estações e roteadores deve ter um endereço IP
 - Estações multihomed e roteadores possuem diversos endereços IP

- Atribuição de endereços:
 - Diferentes prefixos de rede devem ser adotados para diferentes redes físicas
 - Um único prefixo de rede deve ser compartilhado por interfaces de uma mesma rede física
 - Um único identificador de estação deve ser atribuído a cada interface de uma rede física

- Atribuição de endereços:
 - Diferentes prefixos de rede devem ser adotados para diferentes redes físicas
 - Um único prefixo de rede deve ser compartilhado por interfaces de uma mesma rede física
 - Um único identificador de estação deve ser atribuído a cada interface de uma rede física

- Capacidade:
 - o Permite a configuração de um variado número de redes de diferentes tamanhos

Classe	Número de redes	Número de estações
Α	27	224
В	214	2 ¹⁶
С	2 ²¹	28

• Espaço de endereçamento:

Classe	Intervalo de endereços	
Α	0.0.0.0 a 127.255.255.255	
В	128.0.0.0 a 191.255.255.255	
С	192.0.0.0 a 223.255.255.255	
D	224.0.0.0 a 239.255.255.255	
E	240.0.0.0 a 255.255.255.255	

• Espaço de endereçamento:

Classe	Intervalo de endereços	
Α	0.0.0.0 a 127.255.255.255	
В	128.0.0.0 a 191.255.255.255	
С	192.0.0.0 a 223.255.255.255	
D	224.0.0.0 a 239.255.255.255	
E	240.0.0.0 a 255.255.255.255	

REDES CLASSES A

- Cada endereço de rede da classe:
 - A possui 8 bits de prefixo de rede com o bit mais significativo definido para 0 e um número de rede de 7 bits, seguido por um número de host de 24 bits.
 - Mais modernamente redes de Classe A são chamadas de /8 (pronuncia-se barra
 8) porque apresentam prefixo de rede 8 bits.

Redes /8	F6 (1989)
Número máximo de redes *	$2^{7}-2=126$
Número máximo de Hosts por rede **	2^{24} -2 = 16 777 214
Espaço IPv4	50%

7	Prefixo	Sufixo	Significado
*	tudo 0	0.0.0.0 /8	este computador (usado para bootstrap)
- 0	127	127.0.0.0 /8	reservado para função loopback
**	Rede	tudo 0s	Esta rede
	Rede	tudo 1s	Broadcast

Tabela 1: Endereços especiais

REDES CLASSES B

 Cada endereço de rede da classe B possui 16 bits de prefixo de rede com os dois bits mais significativos definidos para 10 e um número de rede de 14 bits, seguido por um número de host de 16 bits. Mais modernamente redes de Classe B são chamadas de /16 porque apresentam prefixo de rede 16 bits. Os endereços de classe B tem-se esgotado rapidamente.

Redes /16	
Número máximo de redes	$2^{14} = 16384$
Número máximo de Hosts por rede **	2^{16} -2 = 65534
Espaço IPv4	25%

REDES CLASSES C

 Cada endereço de rede da classe C possui 24 bits de prefixo de rede com os três bits mais significativos definidos para 110 e um número de rede de 21 bits, seguido por um número de host de 8 bits. Mais modernamente redes de Classe C são chamadas de /24 porque apresentam prefixo de rede 24 bits.

Redes /24	
Número máximo de redes	$2^{21} = 2\ 097\ 152$
Número máximo de Hosts por rede **	$2^{8}-2=254$
Espaço IPv4	12.5%

REDES CLASSES C

 Cada endereço de rede da classe C possui 24 bits de prefixo de rede com os três bits mais significativos definidos para 110 e um número de rede de 21 bits, seguido por um número de host de 8 bits. Mais modernamente redes de Classe C são chamadas de /24 porque apresentam prefixo de rede 24 bits.

Redes /24	
Número máximo de redes	$2^{21} = 2\ 097\ 152$
Número máximo de Hosts por rede **	$2^{8}-2=254$
Espaço IPv4	12.5%

ENDEREÇOS POSSÍVEIS E VÁLIDOS

- Endereços possíveis:
 - Conjunto de endereços que compartilham um mesmo prefixo de rede
- Endereços válidos:
 - Conjunto de endereços possíveis que podem ser atribuídos às interfaces

Classe	Prefixo de rede	Endereços possíveis	Endereços válidos
Α	10	10.0.0.0 a 10.255.255.255	10.0.0.1 a 10.255.255.254
В	172.16	172.16.0.0 a 172.16.255.255	172.16.0.1 a 172.16.255.254
С	192.168.10	192.168.10.0 a 192.168.10.255	192.168.10.1 a 192.168.10.254

ENDEREÇOS ESPECIAIS - ENDEREÇO DO COMPUTADOR

- O endereço 0.0.0.0/8 significa "este computador".
 - Este endereço é usado pelo protocolo de start up de um computador para obter o endereço IP do próprio host.
 - Como o próprio protocolo IP é utilizado para este fim e este protocolo exige um endereço fonte o endereço 0.0.0.0/8 é utilizado.

ENDEREÇOS ESPECIAIS - ENDEREÇO DE LOOPBACK

- O endereço cujo prefixo é 127/8 é utilizado para testar uma aplicação TCP/IP no próprio computador.
 - Dois programas que querem se comunicar via rede podem ser testados desta forma.
 - Toda mensagem enviada para o endereço de prefixo 127. por exemplo, 127.0.0.1
 é roteado para o outro programa tentando receber do mesmo endereço.

ENDEREÇOS ESPECIAIS - ENDEREÇO DA REDE

 O endereço que começa com um prefixo de rede e é seguido de zeros serve para designar o prefixo atribuído à rede e não os computadores da rede.

ENDEREÇOS ESPECIAIS - ENDEREÇO DE BROADCAST

 O endereço prefixo seguido de 1s serve para enviar um pacote para todos os hosts de uma rede (endereço de broadcast)

ENDEREÇOS ESPECIAIS

ENDEREÇOS PRIVADOS

Conceito:

 Conjunto de endereços reservados que podem ser utilizados de forma aberta por qualquer organização em suas redes locais

Classe	Endereços possíveis	
Α	10.0.0.0	
В	172.16.0.0 – 172.31.0.0	
С	192.168.0.0 - 192.168.255.0	

ENDEREÇOS PRIVADOS

- Benefícios:
 - Otimiza o espaço de endereços IP
 - Provê um mecanismo de segurança
- Limitações
 - Estações e redes privadas não podem ser visíveis externamente na internet
 - Datagramas com endereços privados trafegam apenas na inter-rede privada
 - Solução:
 - NAT (Network Address Translator)

ENDEREÇOS PÚBLICOS X PRIVADOS

- Endereços públicos:
 - São alocados oficialmente a uma organização por uma instituição autorizada da internet
 - Possuem unicidade global
 - Devem ser solicitados por organizações que desejam conectar-se à internet
- Endereços privados:
 - Não são oficialmente alocados por instituições autorizada da internet
 - Possuem unicidade apenas local, sendo único apenas na inter-rede privada

MÁSCARA DE REDE

- Objetivo:
 - Delimitar a posição do prefixo de rede e do identificador da estação
- Representação:
 - Padrão de 32 bits
 - Possui bits 1 no prefixo de rede
 - Possui bits 0 no identificador da estação

MÁSCARA DE REDE

- Notação decimal:
 - Representada por 4 números decimais separados por pontos
 - Cada número decimal está associado a um determinado byte da máscara
- Notação de contagem de bits:
 - Representado por um número inteiro que indica a quantidade de bits em 1 da máscara

0	31
11000000 10101000 00001010	00000001
11111111 11111111 11111111	00000000
192.168.10.1 255.255.255.	0
192.168.10.1/24	

 Problema: Crescimento exponencial da Internet impactando no sistema de roteamento da Internet global

- Eminente exaustão dos endereços Classe B
 - Distribuição inapropriada de endereços classe B no passado.
 - Mais endereços classe C por organização, gerando mais entradas nas tabelas de roteamento globais.
 - Eventual exaustão do espaço de endereços do IPv4
- Como escalar o sistema de roteamento para suportar o rápido crescimento do tamanho das tabelas de roteamento globais da Internet?

- CIDR ou "supernetting" é o novo (atual) esquema de endereçamento da Internet. Foi definido pelo IETF em 1995 nas RFC's 1517 a 1520.
- Característica:
 - Elimina o conceito tradicional de redes classes A, B e C (daí o nome classless), substituindo-o pelo conceito genérico de prefixo de rede.
 - É o prefixo de rede que é usado para se determinar o ponto de divisão entre o NetID e o HostID.
 - Roteadores que suportam CIDR não se baseiam nos três primeiros bits do endereço IP mas, sim, no tamanho do prefixo.
 - Propicia uma alocação eficiente do E.E do IPv4, já que permite especificar de redes de tamanho arbitrário.

- Seja um ISP com um prefixo /20, como em 200.23.16.0/20.
 - Isso representa um espaço de 212 ou 4.096 endereços possíveis.
 - Esse espaço poderia ser distribuído pelo ISP entre 8 (23) organizações, cada uma delas com um espaço de 29 ou 512 endereços.

ISP's block	11001000 00010111 000	0000 00000000	200.23.16.0/20
Organization 0	11001000 00010111 0001	000000000	200.23.16.0/23
Organization 1	11001000 00010111 0001	0010 00000000	200.23.18.0/23
Organization 2	11001000 00010111 0001	0100 00000000	200.23.20.0/23
•••		••••	••••
Organization 7	11001000 00010111 0001	<u>111</u> 0 00000000	200.23.30.0/23

BLOCOS CIDR

CIDR Prefix Length	Dotted Decimal	# Individual Addresses	# of Classful Networks
/13	255.248.0.0	512 K	8 Bs or 2048 Cs
/14	255.252.0.0	256 K	4 Bs or 1024 Cs
/15	255.254.0.0	128 K	2 Bs or 512 Cs
/16	255.255.0.0	64 K	1 B or 256 Cs
/17	255.255.128.0	32 K	128 Cs
/18	255.255.192.0	16 K	64 Cs
/19	255.255.224.0	8 K	32 Cs
/20	255.255.240.0	4 K	16 Cs
/21	255.255.248.0	2 K	8 Cs
/22	255.255.252.0	1 K	4 Cs
/23	255.255.254.0	512	2 Cs
/24	255.255.255.0	256	1 C
/25	255.255.255.128	128	1/2 C
/26	255.255.255.192	64	1/4 C
/27	255.255.255.224	32	1/8 C

EFICIÊNCIA CIDR

- Num ambiente classful, um Internet Service Provider-ISP só pode alocar endereços /8, /16 ou /24.
- Usando CIDR, o ISP pode distribuir blocos do seu espaço de endereços que atendam as necessidades específicas de cada cliente.
- Consequentemente, isso confere maior flexibilidade e permite melhor utilização do espaço de endereçamento alocado ao ISP.

EXEMPLO CIDR

 Seja um cliente que requeira 800 endereços de hosts. Em vez de lhe ser atribuído um endereço Classe B (e, portanto, desperdiçar ~64700 endereços) ou quatro Classes C's individuais (e introduzir 4 novas rotas nas tabelas de roteamento da Internet global), poderia lhe ser atribuído um bloco de endereços /22, que corresponde a 210 endereços IP ou então a 4 redes /24 contíguas.

ISP's Block:	<u>11001110.00000000.01</u> 000000.00000000	206.0.64.0/18
Client Block:	11001110.00000000.010001	206.0.68.0/22
Class C #0:	<u>11001110.00000000.01000100</u> .00000000	206.0.68.0/24
Class C #1:	<u>11001110.00000000.010001</u> 01.00000000	206.0.69.0/24
Class C #2:	<u>11001110.00000000.010001</u> 10.00000000	206.0.70.0/24
Class C #3:	<u>11001110.00000000.010001</u> 1.00000000	206.0.71.0/24