Package 'dirinla'

December 30, 2021

```
Type Package
Title Hierarchical Bayesian Dirichlet regression models using Integrated Nested Laplace Approxima-
      tion
Version 1.0.0
Author Joaquín Martínez-Minaya «jomarminaya@gmail.com>>
Maintainer Joaquín Martínez-
      Minaya «jomarminaya@gmail.com>> and Finn Lindgren «Finn.Lindgren@ed.ac.uk>>
Description The R-package dirinla allows the user to fit models in the CoDa context. In particu-
      lar, it allows fit Dirichlet regression models using the Integrated Nested Laplace Approxima-
      tion (INLA) methodology.
License GPL-2
Imports utils,
      Matrix,
      dplyr,
      samplingDataCRT,
     purrr,
     magrittr,
      stringr,
      tidyverse,
      stats,
      ggplot2,
      Rfast,
      Rfast2,
      ggtern,
      gridExtra,
      sn,
      knitr,
      plyr,
      methods,
      INLA
Suggests DirichletReg
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.2
```

2 bdiag_m

R topics documented:

. 2
. 3
. 4
. 5
. 5
. 6
. 8
. 10
. 11
. 12
. 12
. 13
. 14
. 14
. 15
. 15
. 16
. 17
. 18
. 19
. 20
. 20
22

Description

Fast version of Matrix :: .bdiag() – for the case of *many* (k x k) matrices: Copyright (C) 2016 Martin Maechler, ETH Zurich

matrices: Copyright (C) 2016 Martin Maechler, ETH Zurich

Usage

 $bdiag_m(lmat)$

Arguments

lmat list(<mat1>, <mat2>,, <mat_N>) where each mat_j is a k x k 'matrix'

Value

a sparse $(N*k \times N*k)$ matrix of class "dgCMatrix".

data_stack_dirich 3

data_Stack_dirich Preparing ine data	data_stack_dirich	Preparing the data
--------------------------------------	-------------------	--------------------

Description

'data_stack_dirich' prepares the data using inla.stack from the package INLA.

Usage

```
data_stack_dirich(y, covariates, share = NULL, data, d, n)
```

Arguments

У	Response variable in a matrix format.
covariates	String with the name of covariates.
share	Covariates to share in all the cateogries. TODO
data	Data.frame which contains all the covariates.
d	Number of categories.
n	Number of locations.

Value

Matrix A such as eta = A

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

Examples

```
n <- 100
d <- 4
V <- matrix(rnorm(4*n, 0, 1), ncol=4)</pre>
V <- as.data.frame(V)</pre>
names(V) <- c('v1', 'v2', 'v3', 'v4')
covariates <- names(V)</pre>
formula <- y \sim 1 + v1 + v2 | 1 + v1 | 1 + v1
names_cat <- formula_list(formula)</pre>
data_stack_construct <- data_stack_dirich(y</pre>
                                                        = as.vector(rep(NA, n*d)),
                                             covariates = names_cat,
                                             share = NULL,
                                             data
                                                        = V,
                                                        = d,
                                             d
                                                        = n )
```

```
data_stack_dirich_formula

*Preparing the data*
```

Description

'data_stack_dirich_formula' prepares the data using inla.stack from the package INLA.

Usage

```
data_stack_dirich_formula(y, covariates, share = NULL, data, d, n)
```

Arguments

y Response variable in a matrix format.	
covariates String with the name of covariates.	
share Covariates to share in all the cateogries. Not implemented	yet.
data Data.frame which contains all the covariates.	
d Number of categories.	
n Number of locations.	

Value

List with two objects - Object of class inla.stack - Object with class formula

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

Examples

```
n <- 100
d < - 4
V <- matrix(rnorm(4*n, 0, 1), ncol=4)</pre>
V <- as.data.frame(V)</pre>
names(V) \leftarrow c('v1', 'v2', 'v3', 'v4')
covariates <- names(V)</pre>
formula <- y ~ 1 + v1 + v2 | 1 + v1 | 1 + v1
names_cat <- formula_list(formula)</pre>
data_stack_construct <- data_stack_dirich(y</pre>
                                                         = as.vector(rep(NA, n*d)),
                                              covariates = names_cat,
                                              share = NULL,
                                              data
                                                         = V,
                                                          = d,
                                              d
                                                          = n)
```

digamma_red 5

digamma_red

Computing the function digamma

Description

'digamma_red' is the function digamma appropiate for really small values

Usage

```
digamma_red(x, ...)
```

Arguments

x Argument to applied the function digamma.

... Rest of arguments used in the case of digamma functions.

Value

Result of applying digamma function

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

dirichlet_log_pos_x

Dirichlet log posterior function

Description

'dirichlet_log_pos_x' returns the -log posterior Dirichlet distribution asumming multivariate normal prior with precision matrix Qx for elements of the latent field.

Usage

```
dirichlet_log_pos_x(A = A, x, Qx = Qx, y)
```

Arguments

A matrix which links eta with the latent field, i.e., eta = $A \times A$

Vector with the elements of the latent field, i.e., eta = A x.

Qx Precision matrix for the priors of the latent field.

y Vector with the response variable.

Value

A real value showing the -log posterior density is returned

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

6 dirinlareg

dirinlareg

Fitting a Dirichlet regression

Description

'dirinlareg' Main function to do a Dirichlet Regression

Usage

```
dirinlareg(
  formula,
  у,
  data.cov,
  share = NULL,
  x0 = NULL,
  tol0 = 1e-05,
  tol1 = 0.1,
  k0 = 20,
  k1 = 5,
  a = 0.5,
  strategy = "ls-quasi-newton",
  prec = prec,
  verbose = FALSE,
  cores = 1,
  sim = 1000,
  prediction = FALSE,
  data.pred.cov = NULL,
)
```

Arguments

formula	object of class formula indicating the response variable and the covariates of the Dirichlet regression
У	matrix containing the response variable R^nxd, being n number of individuals and d the number of categories
data.cov	data.frame with the covarites, only the covariates!
share	parameters to be fitted jointly.
x0	initial optimization value
tol0	tolerance
tol1	tolerance for the gradient such that $ grad < tol1 * max(1, f)$
k0	number of iterations
k1	number of iterations including the calling to inla
а	step length in the optimization algorithm
strategy	strategy to use to optimize
prec	precision for the prior of the fixed effects
verbose	if TRUE all the computing process is shown. Default is FALSE

dirinlareg 7

cores	Number of cores for parallel computation. The package parallel is used.
sim	Simulations to call inla.posterior.sample and extract linear predictor, alphas and mus. The bigger it is, better is the approximation, but more computational time.
prediction	if TRUE we will predict with the new values of the covariates given in data.pred.cov.
data.pred.cov	data.frame with the values for the covariates where we want to predict.
	arguments for the inla command

Value

model dirinlaregmodel object

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

Examples

```
\#' \#\# In this example, we show how to fit a model using the dirinla package \#\#
### --- 1. Loading the libraries --- ####
library(INLA)
library(DirichletReg)
### --- 2. Simulating from a Dirichlet likelihood --- ####
set.seed(1000)
N < -50 #number of data
V \leftarrow as.data.frame(matrix(runif((4) * N, 0, 1), ncol = 4)) #Covariates
names(V) \leftarrow paste0('v', 1:4)
formula <- y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4
(names_cat <- formula_list(formula))</pre>
x < -c(-1.5, 1, -3, 1.5,
       2, -3 , -1, 5)
mus \leftarrow exp(x) / sum(exp(x))
C <- length(names_cat)</pre>
{\sf data\_stack\_construct} \, < \! -
  data_stack_dirich(y = as.vector(rep(NA, N * C)),
                     covariates = names_cat,
                     data
                            = V,
                     d
                                 = C,
                                 = N)
A_construct <- data_stack_construct
A_construct[1:8, ]
eta <- A_construct %*% x
alpha <- exp(eta)
alpha <- matrix(alpha,</pre>
                 ncol = C,
                 byrow = TRUE)
y_o <- rdirichlet(N, alpha)</pre>
colnames(y_o) \leftarrow paste0("y", 1:C)
head(y_o)
```

8 dirinlaregmodel

```
### --- 3. Fitting the model --- ####
y <- y_o
model.inla <- dirinlareg(
  formula = y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4,
  y = y,
  data.cov = V,
  prec = 0.0001,
  verbose = FALSE)
summary(model.inla)</pre>
```

dirinlaregmodel

Defining a new class

Description

'dirinlaregmodel' is a new object class

Usage

```
dirinlaregmodel(
  call = NULL,
  formula = NULL,
  summary_fixed = NULL,
  marginals_fixed = NULL,
  summary_random = NULL,
  marginals_random = NULL,
  summary_hyperpar = NULL,
  marginals_hyperpar = NULL,
  summary_linear_predictor = NULL,
  marginals_linear_predictor = NULL,
  summary_alphas = NULL,
  marginals_alphas = NULL,
  summary_precision = NULL,
  marginals_precision = NULL,
  summary_means = NULL,
  marginals_means = NULL,
  summary_predictive_alphas = NULL,
  marginals_predictive_alphas = NULL,
  summary_predictive_means = NULL,
  marginals_predictive_means = NULL,
  summary_predictive_precision = NULL,
  marginals_predictive_precision = NULL,
  dic = NULL,
  waic = NULL,
  cpo = NULL,
  nobs = NULL,
  ncat = NULL,
```

dirinlaregmodel 9

```
y = NULL,
data.cov = NULL
)
```

Arguments

call The call of the function dirinlareg.

formula Formula introduced by the user.

summary_fixed List containing a summary of the marginal posterior distributions of the fixed

effects.

 $marginals_fixed$

List containing the marginal posterior distributions of the fixed effects.

summary_random List containing a summary of the marginal posterior distributions of the random

effects.

marginals_random

List containing the marginal posterior distributions of the random effects.

summary_hyperpar

List containing a summary of the marginal posterior distributions of the hyperparameters.

marginals_hyperpar

List containing the marginal posterior distributions of the hyperparameters.

summary_linear_predictor

List containing a summary of the marginal posterior distributions of the linear predictor.

marginals_linear_predictor

List containing the marginal posterior distributions of the linear predictor.

summary_alphas List containing a summary of the marginal posterior distributions of the alphas. marginals_alphas

List containing the marginal posterior distributions of the alphas.

summary_precision

List containing a summary of the marginal posterior distributions of the precision.

marginals_precision

List containing the marginal posterior distributions of the precision.

summary_means List containing a summary of the marginal posterior distributions of the means. marginals_means

List containing the marginal posterior distributions of the means.

summary_predictive_alphas

List containing a summary of the marginal posterior predictive distribution of the alphas.

marginals_predictive_alphas

List containing the marginal posterior predictive distribution of the alphas.

summary_predictive_means

List containing a summary fo the marginal posterior predictive distribution of the means.

marginals_predictive_means

List containing the marginal posterior predictive distribution of the means.

summary_predictive_precision

List containing a summary of the marginal posterior predictive distribution of the precision.

10 extract_fixed

marginals_predictive_precision

List containing the marginal posterior predictive distribution of the precision.

dic List containing the inla output for dic.

waic List containing the inla output for waic.

cpo List containing the inla output for cpo.

nobs Number of observations.

ncat Number of categories.

y matrix containing the response variable R^nxd, being n number of individuals

and d the number of categories

data.cov data.frame with the covarites, only the covariates!

Value

object of list and dirinlaregmodel class.

extract_fixed Extracting marginals fixed of an inla object

Description

'extract_fixed' is a function to extract summary and marginals distribution corresponding to the fixed effects

Usage

```
extract_fixed(inla_model, names_cat)
```

Arguments

inla_model Object of inla class.

names_cat List generated with extract_formula.

Value

summary_fixed Summary of fixed effects for each category. marginals_fixed Marginals for each parameter estimated.

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

```
extract_linear_predictor
```

Extracting posterior distributions from the linear predictor

Description

'extract_linear_predictor' extracts the posterior distribution from the linear predictor

Usage

```
extract_linear_predictor(
  inla_model,
  n,
  d,
  Lk_eta,
  names_cat = names_cat,
  sim,
  verbose,
  cores
)
```

Arguments

inla_model An object of class inla.n Number of observations.d Number of categories.

Lk_eta Cholesky decomposition of the Hessian matrix.

names_cat List generated with extract_formula.

sim simulations for the function inla.posterior.sample

verbose if TRUE all the computing process is shown. Default is FALSE

cores number of cores to be used in the computations

Value

summary_linear_predictor List containing a summary of the marginal posterior distributions of the linear predictor.

marginals_linear_predictor List containing simulations of marginal posterior distributions of the linear predictor.

summary_alphas List containing a summary of the marginal posterior distributions of the alphas.

marginals_alphas List containing simulations of the marginal posterior distributions of the alphas.

summary_precision List containing a summary of the marginal posterior distributions of the precision.

marginals_precision List containing simulations of the marginal posterior distributions of the precision.

summary_means List containing a summary of the marginal posterior distributions of the means.

marginals_means List containing the simulations of the marginal posterior distributions of the means.

12 g0_vector_eta_1

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

formula_list

Formula in to list

Description

'formula_list' reads the formula and generates a list with the name of the covariates used in each category

Usage

```
formula_list(form, y = NULL)
```

Arguments

form Object of class formula.

y Matrix containing the response variable R^nxd, being n number of individuals

and d the number of categories.

Value

A list with the names of the variables used in each category.

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

Examples

```
formula \leftarrow y \sim 1 + v1 + v2 | -1 + v1 | 0 + v2 formula_list(formula)
```

g0_vector_eta_1

Computing gradient vector in eta

Description

'g0_vector_eta' computes the gradient of -loglikelihood

Usage

```
g0_{\text{vector}} = ta_1(A = A, x, y)
```

Arguments

- A Matrix which links eta with the latent field, i.e., eta = $A \times A$
- Vector with the elements of the latent field, i.e., eta = A x.
- y Vector with the response variable.

H0_matrix_eta1

Value

A numeric vector with the gradient in eta.

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

H0_matrix_eta1

Computing expected Hessian for a vector eta

Description

```
'H0_matrix_eta_1' computes the expected Hessian in eta of -loglikelihood
```

'H0_matrix_eta_1' computes the expected Hessian in eta of -loglikelihood

Usage

```
H0_matrix_eta1(eta, d)
H0_matrix_eta1(eta, d)
```

Arguments

eta eta vector to compute the expected Hessian.

d Dimension

Value

Expected Hessian in eta.

Expected Hessian in eta.

Author(s)

```
Joaquín Martínez-Minaya << jomarminaya@gmail.com>>
```

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

14 H_matrix_eta_diag

H0_matrix_eta_x

Computing expected Hessian in eta

Description

```
'H0_matrix_eta_x' computes the expected Hessian in eta of -loglikelihood 'H0_matrix_eta_x' computes the expected Hessian in eta of -loglikelihood
```

Usage

```
H0_matrix_eta_x(eta, d, cores)
H0_matrix_eta_x(eta, d, cores)
```

Arguments

eta Linear predictor resulting of the product Ax.

d Dimension.

cores Number of cores for parallel computation. The package parallel is used.

Value

Expected Hessian in eta.

Expected Hessian in eta.

Author(s)

```
Joaquín Martínez-Minaya << jomarminaya@gmail.com>> Joaquín Martínez-Minaya << jomarminaya@gmail.com>>
```

H_matrix_eta_diag

Computing additional diagonal part for the real Hessian H = H0 + diag

Description

'H_matrix_eta_diag' computes the expected Hessian in eta of -loglikelihood

Usage

```
H_matrix_eta_diag(eta, d, y)
```

Arguments

eta eta vector to compute the expected Hessian.

d Dimension

y Data corresponding to the i-individual

log_beta_mult_eta 15

Value

Elements of the diagonal such as H = H0 + diag

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

log_beta_mult_eta

Calculating the log beta function in eta

Description

'beta_mult_eta' computes the log beta function in eta

Usage

```
log_beta_mult_eta(x)
```

Arguments

Х

Vector of elements.

Value

Numeric value.

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

look_for_mode_x

Finding the mode of the full posterior distribution

Description

'look_for_mode_x' computes optimization algorithms to find the mode of the posterior

Usage

```
look_for_mode_x(
    A = A,
    x0,
    tol0,
    tol1,
    k0,
    a = 0.5,
    y,
    d,
    n,
    strategy = "ls-quasi-newton",
```

16 newton_x

```
Qx,
verbose,
cores
```

Arguments

A Matrix which links latent field with linear predictor	Α	Matrix which	links latent	field with	linear predictor.
---	---	--------------	--------------	------------	-------------------

x0 Initial optimization value.

tol0 Tolerance for |x_new - x_old| and |f_new - f_old|.

tol1 Tolerance for the gradient such that |grad| < tol1 * max(1, |f|)

k0 Number of iterations.

a Step length in the algorithm.

y Response variable. Number of columns correspond to the number of categories.

d Number of categories.n Number of individuals.strategy Strategy to use to optimize.

Qx Prior precision matrix for the fixed effects.

verbose By default is FALSE. If TRUE, the computation process is shown in the scream.

cores Number of cores for parallel computation. The package parallel is used.

Value

x_hat Matrix with the x of the iterations.

Hk Hessian in eta. This Hessian is a combination of the real Hessian (when it is positive definite) and the expected Hessian (when the real Hessian is not positive definite).

gk Gradient in eta.

Lk Cholesky decomposition matrix.

eta Linear predictor.

z New pseudo observation conditioned to eta.

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

newton_x	Newton-Raphson algorithm

Description

'newton_x' computes optimization algorithms to find the mode of the posterior. Line search strategy with Armijo conditions is implemented

Usage

```
newton_x(A, x_hat, gk, Hk, a, Qx, strategy, y, d = d)
```

plot.dirinlaregmodel 17

Arguments

A	Matrix which links eta with the latent field, i.e., eta = $A x$
x_hat	Vector with the elements of the latent field, i.e., $eta_hat = A x_hat$
gk	Gradient in eta.
Hk	Hessian in eta.
а	Step length.
Qx	Precision matrix for the prior of the latent field.
strategy	Strategy to use to optimize. Now, line search strategy with quasi-newton algorithm is the only one avaliable.
У	Vector with the response variable
d	Number of categories.

Value

```
g0: Gradient in x_hat_new. A numeric vector with the gradient in x_hat_new. x_hat_new: New value of x after apply one iteration.
```

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

```
plot.dirinlaregmodel plot of dirinlaregmodel xs
```

Description

'plot.dirinlaregmodel' Method which plots a dirinlaregmodel x

Usage

```
## S3 method for class 'dirinlaregmodel' plot(x, \ldots)
```

Arguments

x Object of class dirinlaregmodel.... Other arguments.

Value

Plotting the posterior of the fixed effects.

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

```
predict.dirinlaregmodel
```

Finding the mode of the full posterior distribution

Description

'predict.dirinlaregmodel' computes the posterior predictive distribution for some given values of the covariates

Usage

```
## S3 method for class 'dirinlaregmodel'
predict(object, data.pred.cov, ...)
```

Arguments

```
object dirinlaregmodel object.

data.pred.cov Data.frame with the covariate values for the variables to predict.

Other arguments.
```

Value

model dirinlaregmodel object

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

Examples

```
### In this example, we show how to fit a model using the dirinla package ###
### --- 1. Loading the libraries --- ####
library(INLA)
library(DirichletReg)
### --- 2. Simulating from a Dirichlet likelihood --- ####
set.seed(1000)
N < -50 #number of data
V \leftarrow as.data.frame(matrix(runif((4) * N, 0, 1), ncol = 4)) \#Covariates
names(V) <- paste0('v', 1:4)</pre>
formula <- y ~ 1 + v1 | 1 + v2 | 1 + v3 | 1 + v4
(names_cat <- formula_list(formula))</pre>
x \leftarrow c(-1.5, 1, -3, 1.5,
       2, -3 , -1, 5)
mus \leftarrow exp(x) / sum(exp(x))
C <- length(names_cat)</pre>
data_stack_construct <-</pre>
  data_stack_dirich(y = as.vector(rep(NA, N * C)),
                     covariates = names_cat,
```

```
data
                                = V,
                                = C,
                     d
                                = N)
                     n
A_construct <- data_stack_construct
A_construct[1:8, ]
eta <- A_construct %*% x
alpha <- exp(eta)
alpha <- matrix(alpha,</pre>
                ncol = C,
                byrow = TRUE)
y_o <- rdirichlet(N, alpha)</pre>
colnames(y_o) <- paste0("y", 1:C)</pre>
head(y_o)
### --- 3. Fitting the model --- ####
y <- y_o
model.inla <- dirinlareg(</pre>
  formula = y \sim 1 + v1 \mid 1 + v2 \mid 1 + v3 \mid 1 + v4,
           = y,
  data.cov = V,
  prec = 0.0001,
  verbose = FALSE)
summary(model.inla)
### --- 4. Predicting for v1 = 0.25, v2 = 0.5, v3 = 0.5, v4 = 0.1 --- ####
model.prediction <- predict(model.inla,</pre>
                data.pred.cov= data.frame(v1 = 0.25,
                                         v2 = 0.5,
                                         v3 = 0.5,
                                         v4 = 0.1)
model.prediction$summary_predictive_means
```

summary.dirinlaregmodel

Summary of dirinlaregmodel objects

Description

'summary.dirinlaregmodel' is a function which gives a summary of a dirinlaregmodel object

Usage

```
## S3 method for class 'dirinlaregmodel'
summary(object, ...)
```

Arguments

object Object of class dirinlaregmodel.
... Other arguments.

20 trigamma_red

Value

Print summary.

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

summary_fast

Summary using the packages Rfast and Rfast2 of a matrix by rows

Description

'summary_fast' summarise a matrix by rows

Usage

```
summary_fast(A)
```

Arguments

Α

matrix to be summarised

Value

A matrix whose columns are "mean", "sd", "0.025quant", "0.5quant", "0.975quant"

Author(s)

Joaquín Martínez-Minaya << jomarminaya@gmail.com>>

Examples

```
A <- matrix(rnorm(10000), ncol = 1000) 
summary_fast(A)
```

trigamma_red

Computing the function trigamma

Description

'trigamma_red' is the function trigamma appropiate for really small values

Usage

```
trigamma_red(x, ...)
```

Arguments

x Argument to applied the function trigamma.

... Rest of arguments used in the case of digamma functions.

trigamma_red 21

Value

Result of applying trigamma function.

Author(s)

Joaquín Martínez-Minaya << joaquin.martinez-minaya@uv.es>>

Index

```
bdiag_m, 2
data_stack_dirich, 3
data_stack_dirich_formula, 4
dgCMatrix, 2
digamma\_red, 5
dirichlet_log_pos_x, 5
dirinlareg, 6
{\tt dirinlaregmodel}, {\color{red} 8}
extract_fixed, 10
extract_linear_predictor, 11
formula\_list, \\ 12
g0_vector_eta_1, 12
H0_matrix_eta1, 13
H0_matrix_eta_x, 14
H_matrix_eta_diag, 14
log_beta_mult_eta, 15
look\_for\_mode\_x, \textcolor{red}{15}
newton_x, 16
plot.dirinlaregmodel, 17
\verb|predict.dirinlaregmodel|, 18|
summary.dirinlaregmodel, 19
summary_fast, 20
trigamma\_red, 20
```