

GEOMETRÍA Capítulo 4

SECONDARY

RECTAS PARALELAS

MOTIVATING | STRATEGY

ÁNGULOS ENTRE DOS RECTAS PARALELAS Y UNA SECANTE

RECTAS PARALELAS:

Dos rectas son paralelas si están contenidas en un plano y no tienen ningún punto en común.

RECTAS SECANTES:

Dos rectas son secantes si tienen un punto en común.

RECTAS PERPENDICULARES:

Son aquellas rectas secantes que forman ángulos rectos.

ÁNGULOS ALTERNOS INTERNOS

ÁNGULOS CONJUGADOS INTERNOS

α

ÁNGULOS CORRESPONDIENTES

TEOREMAS

1. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, halle el valor de x.

Resolución:

• En $\stackrel{\longleftrightarrow}{L_3}$: ángulos alternos.

$$80^{\circ} = 40$$

20° =
$$\theta$$

• En el gráfico:

$$3\theta = 3x + 2x$$

$$3(20^\circ) = 5x$$

$$60^{\circ} = 5x$$

$$x = 12^{\circ}$$

2. En la figura, $\overrightarrow{L_1} /\!\!/ \overrightarrow{L_2}$. Halle el valor de x.

Resolución:

• En $\stackrel{\longleftarrow}{L_3}$: ángulos conjugados.

$$3\theta + 2\theta = 180^{\circ}$$

$$5\theta = 180^{\circ}$$

$$\theta = 36^{\circ}$$

• En el gráfico:

$$x+17^{\circ} + x + 3x = \theta + \theta$$
 $5x + 17^{\circ} = 2\theta$
 $5x = 2(36^{\circ}) - 17^{\circ}$
 $x = 11^{\circ}$

3. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, halle el valor de x.

- Piden: x
- Recordemos:

$$70^{\circ} = 30^{\circ} + 90^{\circ} - x$$

 $70^{\circ} = 120^{\circ} - x$

$$x = 50^{\circ}$$

4. En la figura, halle el valor de x.

- Piden: x
- Recordemos:

$$20^{\circ} + 2x + 3x = x + 80^{\circ}$$

 $20^{\circ} + 5x = x + 80^{\circ}$

5. Si $\overrightarrow{L_1}$ // $\overrightarrow{L_2}$, halle el valor de x.

Resolución:

• Piden: x

•
$$\stackrel{\longleftarrow}{L_1}$$
 // $\stackrel{\longleftarrow}{L_2}$ // $\stackrel{\longleftarrow}{L_3}$

$$x + 60^{\circ} = 180^{\circ}$$

$$x = 120^{\circ}$$

techos.

6. En la figura se muestra el frontis de una casa. Si el techo forma ángulos iguales a 40° con las paredes laterales, halle la medida del ángulo que forman dichos

- Piden: x
- Trazamos $\stackrel{\longleftarrow}{L_1}$ y $\stackrel{\longleftarrow}{L_2}$ ($\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$)
- Por teorema:

$$x = 40^{\circ} + 40^{\circ}$$

$$x = 80^{\circ}$$

7. La figura representa el corte transversal de la estructura del techo de un depósito de mercancías. Halle el valor de α para construir dicho techo.

- Piden: α
- Trazamos $\overrightarrow{L_1}$ y $\overrightarrow{L_2}$ $(\overrightarrow{L_1} /\!/ \overrightarrow{L_2})$
- Por teorema:

$$\alpha = 180^{\circ} - \alpha + 180^{\circ} - \alpha$$

$$\alpha = 360^{\circ}$$

$$\alpha = 120^{\circ}$$