Fine-tune models with Trainer

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Dennis LeeData Engineer

Data preparation

Distributed training

Trainer and Accelerator

Ability to Customize

Ease of Use

Trainer and Accelerator

Ability to Customize

Ease of Use

Turbocharge training with Trainer

Trainer library

from transformers import Trainer

- Run model on each device in parallel
- Speed up training, like assembly lines
- Review inputs: dataset, model, metrics
- Develop sentiment analysis for e-commerce

Product review sentiment dataset

```
print(dataset)
```

```
DatasetDict({
    train: Dataset({
        features: ['Text', 'Label'],
        num_rows: 1000
    }), ...})
```

```
print(f'"{dataset["train"]["Text"][0]}": {dataset["train"]["Label"][0]}')
```

```
"I love this product!": positive
```

Convert labels to integers

```
def map_labels(example):
    if example["Label"] == "negative":
        return {"labels": 0}
    else:
        return {"labels": 1}

dataset = dataset.map(map_labels)
print(f'First label: {dataset["train"]["labels"][0]}')
```

```
First label: 1
```

Define the tokenizer and model

Load pre-trained model and tokenizer:

Apply tokenizer to the text field:

```
The first tokenized review is [101, 1045, 2293, 2023, 4031, 999, 102].
```


Define evaluation metrics

```
import evaluate
def compute_metrics(eval_predictions):
    load_accuracy = evaluate.load("accuracy")
    load_f1 = evaluate.load("f1")
    logits, labels = eval_predictions
    predictions = np.argmax(logits, axis=-1)
    accuracy = load_accuracy.compute(predictions=predictions, references=labels)[
        "accuracy"
    f1 = load_f1.compute(predictions=predictions, references=labels)["f1"]
    return {"accuracy": accuracy, "f1": f1}
```

Training arguments

- output_dir: Where to save model
- Specify hyperparameters (e.g.,
 learning_rate and weight_decay)
- save_strategy : Save after each epoch
- evaluation_strategy : Evaluate metrics after each epoch

```
from transformers import (
    TrainingArguments)
training_args = TrainingArguments(
    output_dir="output_folder",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=2,
    weight_decay=0.01,
    save_strategy="epoch",
    evaluation_strategy="epoch",
```

Setting up Trainer

```
{'epoch': 1.0, 'eval_loss': 0.79, 'eval_accuracy': 0.00, 'eval_f1': 0.00}
{'epoch': 2.0, 'eval_loss': 0.65, 'eval_accuracy': 0.11, 'eval_f1': 0.15}
```

```
print(trainer.args.device)
```

сри

Running sentiment analysis for e-commerce

```
sample_review = "This product is amazing!"
input_ids = tokenizer.encode(sample_review, return_tensors='pt')
print(f"Tokenized review: {input_ids}")
```

```
Tokenized review: tensor([[ 101, 2023, 4031, 2003, 6429, 999, 102 ]])
```

Running sentiment analysis for e-commerce

```
output = model(input_ids)
print(f"Output logits: {output.logits}")
Output logits: tensor([[ -0.0538, 0.1300 ]])
predicted_label = torch.argmax(output.logits, dim=1).item()
print(f"Predicted label: {predicted_label}")
Predicted label: 1
sentiment = "Negative" if predicted_label == 0 else "Positive"
print(f'The sentiment of the product review is "{sentiment}."')
The sentiment of the product review is "Positive."
```


Checkpoints with Trainer

• Resume from the latest checkpoint, like pausing a movie

```
trainer.train(resume_from_checkpoint=<mark>True</mark>)
```

```
{'epoch': 3.0, 'eval_loss': 0.29, 'eval_accuracy': 0.37, 'eval_f1': 0.51}
{'epoch': 4.0, 'eval_loss': 0.23, 'eval_accuracy': 0.46, 'eval_f1': 0.58}
```

Resume from specific checkpoint saved in output directory

```
trainer.train(resume_from_checkpoint="model/checkpoint-1000")
```

Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Train models with Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Dennis LeeData Engineer

Trainer and Accelerator

Ability to Customize

Ease of Use

Custom training loops

- Trainer: no custom training loops
- Some advanced tasks in generative AI require two networks

¹ https://www.aitude.com/basics-of-generative-adversarial-network-model/

Trainer and Accelerator

Ability to Customize

Ease of Use

Modifying a basic training loop

```
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
    inputs = inputs.to(device)
    targets = targets.to(device)
    outputs = model(inputs)
    loss = outputs.loss
    loss.backward()
    optimizer.step()
    scheduler.step()
```

- Zero the gradients
- Move data to a specified device:
 .to(device)
- Perform forward pass
- Compute cross-entropy loss
- Compute gradients in a backward pass
- Update model parameters, learning rate

Create an Accelerator object

Accelerator provides an interface for distributed training

```
from accelerate import Accelerator
accelerator = Accelerator(
    device_placement=True
)
```

• device_placement (bool, default True): Handle device placement by default

Define the model and optimizer

Load a pre-trained model

```
from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(
   "distilbert-base-cased", return_dict=True)
```

Optimize model parameters with Adam

```
from torch.optim import Adam

optimizer = Adam(params=model.parameters(), lr=2e-5)
```

Define the scheduler

```
from transformers import get_linear_schedule_with_warmup

lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=num_warmup_steps,
    num_training_steps=num_training_steps)
```

- optimizer (obj): PyTorch optimizer, like Adam
- num_warmup_steps (int): steps to linearly increase lr, set to
 int(num_training_steps * 0.1)
- num_training_steps (int): total training steps, set to
 len(train_dataloader) * num_epochs

Prepare the model for efficient training

• The prepare method handles device placement

```
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
    inputs = inputs.to(device)
    targets = targets.to(device)
```

- Zero the gradients
- Previously moved data to the device

```
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
```

- Zero the gradients
- Previously moved data to the device
- Remove lines that manually move data

```
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
    outputs = model(inputs)
    loss = outputs.loss
    loss.backward()
```

- Zero the gradients
- Previously moved data to the device
- Remove lines that manually move data
- Perform a forward pass
- Compute cross-entropy loss and gradients

```
for batch in dataloader:
    optimizer.zero_grad()
    inputs, targets = batch
    outputs = model(inputs)
    loss = outputs.loss
    accelerator.backward(loss)
    optimizer.step()
    scheduler.step()
```

- Zero the gradients
- Previously moved data to the device
- Remove lines that manually move data
- Perform a forward pass
- Compute cross-entropy loss and gradients
- Replace loss.backward with accelerator
- Update model parameters, learning rate

Summary of changes

Before Accelerator

- Need to manually move data to devices
 - o inputs.to(device)
 - o targets.to(device)
- Compute gradients with loss.backward()

After Accelerator

- Automatic device placement and data parallelism
 - o accelerator.prepare(model)
 - o accelerator.prepare(dataloader)
- Handle gradient synchronization with accelerator.backward(loss)
- Customizable loop
- User-friendly, hardware-agnostic, scalable, and maintainable

Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Evaluate models with Accelerator

EFFICIENT AI MODEL TRAINING WITH PYTORCH

Dennis LeeData Engineer

Why put a model in evaluation mode?

- Training mode
 - Dropout: Set neurons to zero
 - Batch normalization

Dropout and batch normalization

Why put a model in evaluation mode?

- Training mode
 - Dropout: Set neurons to zero
 - Batch normalization
- Evaluation mode disables these layers
- model.eval() activates evaluation mode

Dropout and batch normalization

Disable gradients with torch.no_grad()

- Training requires gradient computation
- torch.no_grad() disables gradients
- Call both model.eval and torch.no_grad:

```
model.eval()
with torch.no_grad():
   outputs = model(**inputs)
```

Computing gradients in backpropagation

Prepare a validation dataset

Load validation split of the MRPC dataset

```
validation_dataset = load_dataset("glue", "mrpc", split="validation")
```

Tokenize the validation dataset

Life of an epoch: training and evaluation loops

- For each epoch, iterate over the train and validation datasets
- First run the model in training mode
- Then run the model in evaluation mode and log metrics after evaluation

```
for epoch in range(num_epochs):
    model.train()
    for step, batch in enumerate(train_dataloader):
        # Perform training step
    model.eval()
    for step, batch in enumerate(eval_dataloader):
        # Perform evaluation step
# Log evaluation metrics
```

Inside the evaluation loop

```
metric = evaluate.load("glue", "mrpc")
model.eval()
for step, batch in enumerate(eval_dataloader):
    with torch.no_grad():
        outputs = model(**batch)
    predictions = outputs.logits.argmax(dim=-1)
    predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
    metric.add_batch(predictions=predictions, references=references)
eval_metric = metric.compute()
print(f"Eval metrics: \n{eval_metric}")
```

```
Eval metrics:
{'accuracy': 0.81, 'f1': 0.77}
```


Log metrics after evaluation

- Tracking tools: notebooks that log metrics; examples are TensorBoard and MLflow
- log_with : use all experiment tracking tools
- .init_trackers(): initialize tracking tools
- .log():track accuracy, f1, epoch
- .end_training(): finish tracking

```
accelerator = Accelerator(project_dir=".",
                          loq_with="all")
accelerator.init_trackers("my_project")
for epoch in range(num_epochs):
   # Training loop is here
   # Evaluation loop is here
    accelerator.log({
        "accuracy": eval_metric["accuracy"],
        "f1": eval_metric["f1"],
   }, step=epoch)
accelerator.end_training()
```

Let's practice!

EFFICIENT AI MODEL TRAINING WITH PYTORCH

