Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №3.2.5

по курсу общей физики на тему:

«Свободные и вынужденные колебания в электрическом контуре»

Работу выполнил: Балдин Виктор (группа Б01-303)

Долгопрудный 16 ноября 2024 г.

Содержание

Cвободные колебания – колебания, происходящие за счёт энергии заранее запасённой в системе (в процессе колебаний энергия в систему не попадает). Обозначим как $\gamma = \frac{R}{2L}$ – коэффициент затухания, тогда возникает классификация «режимов» колебаний в контуре:

- 1. Затухающие $(0 < \gamma < \omega_0)$.
- 2. Критический режим ($\gamma = \omega_0$).
- 3. Апериодический режим ($\gamma > \omega_0$).

Критическое сопротивление – сопротивление цепи, при котором происходит переход на апериодический режим Вынужденные колебания – колебания, происходящие за счёт действия периодической внешней силы. В данной работе мы будем изучать различные свойства и параметры как свободных, так и вынужденных колебаний в RLC контуре.

Цели работы:

- 1. Изучение свободных колебаний в RLC контуре:
 - Сравнить зависимость периода колебаний цепи от ёмкости с теоретической.
 - Определение зависимости логарифмического декремента затухания от сопротивления цепи.
 - Определение критического сопротивления контура.
- 2. Изучение вынужденных колебаний в RLC контуре:
 - Построение резонансных кривых колебательного контура: АЧХ и ФЧХ.
 - Определение декремента затухания колебательного контура по нарастанию колебаний и по их затуханию.
 - Проанализировать картину биений.
- 3. Определение добротности контура различными способами.

2. Теоретическая часть

Для RLC контура (рис. 1) применим 2 правило Кирхгофа:

$$RI + U_C + L\frac{dI}{dt} = 0. (1)$$

Подставив в уравнение (1) выражение для тока через 1-ое правило Кирхгофа, и разделив обе части уравнения на CL, получим:

$$\frac{d^2U_C}{dt^2} + \frac{R}{L}\frac{dU_C}{dt} + \frac{U_C}{CL}. (2)$$

Произведём замены $\gamma=\frac{R}{2L}$ — коэффициент затухания, $\omega_0^2=\frac{1}{LC}$ — собственная круговая частота, $T_0=\frac{2\pi}{\omega_0}=2\pi\sqrt{LC}$ — период собственных колебаний. Тогда уравнение (2) примет вид:

Рис. 1. Описываемый RLC контур

$$\ddot{U_C} + 2\gamma \dot{U_C} + \omega_0^2 U_C = 0, \tag{3}$$

где точкой обозначено дифференцирование по времени. Будем искать решение данного дифференциального уравнения в классе функций следующего вида:

$$U_C(t) = U(t)e^{-\gamma t}$$
.

Получим:

$$\ddot{U} + \omega_1^2 U = 0, \tag{4}$$

где

$$\omega_1^2 = \omega_0^2 - \gamma^2 \tag{5}$$

Для случая $\gamma < \omega_0$ в силу того, что $\omega_1 > 0$, получим:

$$U_C(t) = U_0 \cdot e^{-\gamma t} \cos(\omega_1 t + \varphi_0). \tag{6}$$

Для получения фазовой траектории представим формулу (6) в другом виде:

$$U_C(t) = e^{-\gamma t} (a\cos\omega_1 t + b\sin\omega_1 t), \tag{7}$$

где а и в получаются по формулам:

$$a = U_0 \cos \varphi_0, \qquad b = -U_0 \sin \varphi_0.$$

В более удобном виде запишем выражения для напряжения на конденсаторе и токе через катушку:

$$U_C(t) = U_{C0} \cdot e^{-\gamma t} (\cos \omega_1 t + \frac{\gamma}{\omega_1} \sin \omega_1 t), \tag{8}$$

$$I(t) = C\dot{U}_C = -\frac{U_{C0}}{\rho} \frac{\omega_0}{\omega_1} e^{-\gamma t} \sin \omega_1 t.$$
 (9)

Введём некоторые характеристики колебательного движения:

$$\tau = \frac{1}{\gamma} = \frac{2L}{R},\tag{10}$$

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \gamma T_1 = \frac{1}{N_\tau} = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},\tag{11}$$

где Θ – логарифмический декремент затухания, U_k и U_{k+1} – два последовательных максимальных отклонения величины в одну сторону, N_{τ} – число полных колебаний за время затухания τ .

Теперь рассмотрим случай вынужденных колебаний под действием внешней внешнего синусоидального источника. Для этого воспользуемся методом комплексных амплитуд для схемы на рисунке (рис. 1):

$$\ddot{I} + 2\gamma \dot{I} + \omega^2 I = -\varepsilon \frac{\Omega}{L} e^{i\Omega t}.$$
 (12)

Решая данное дифференциальное уравнение получим решение:

$$I = B \cdot e^{-\gamma t} \sin(\omega t - \Theta) + \frac{\varepsilon_0 \Omega}{L\phi_0} \sin(\Omega t - \varphi). \tag{13}$$

Нетрудно видеть, что частота резонанса будет определяться формулой:

$$\omega_0 = \frac{1}{2\pi\sqrt{LC}}. (14)$$

Способы измерения добротности:

1. с помощью потери амплитуды свободных колебаний:

$$Q = \frac{1}{n} \ln \frac{U_k}{U_{k+n}},\tag{15}$$

- 2. с помощью амплитуды резонанса можно получить добротность (в координатах U_C/U_0 , где U_0 амплитуда колебаний напряжения источника, от частоты генератора). Отсюда нетрудно определить декремент затухания $\gamma = \frac{\omega_0}{2Q}$,
- 3. с помощью среза AЧX на уровне 0.7 от максимальной амплитуды, тогда «дисперсия» $(\Delta\Omega)$ будет численно равна коэффициенту γ , то есть $Q = \frac{\nu_0}{2\Delta\Omega}$.
- 4. с помощью нарастания амплитуд в вынужденных колебаниях:

$$Q = \frac{\omega_0 n}{2 \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}}. (16)$$

3. Экспериментальная установка

Схема установки для изучения собственных колебаний представлена на рисунке (2), по ходу работы она будет претерпевать некоторые изменения, связанные со съёмом сигнала с различных её частей, что на принцип работы не повлияет, основным же изменением будет смена работы генератора сигналов, соответствующий режим будет описан в практической части, при переходе на него. Пунктиром показана схема подключения при снятия данных о колебаниях в фазовой плоскости, на рисунке (3) изображена схема установки для исследования АЧХ, ФЧХ и наблюдения биений.

Рис. 2. Схема установки для изучения собственных колебаний

Рис. 3. Схема установки для изучения вынужденных колебаний и биений

Красным прямоугольником выделен колебательный контур, «состояния» элементов так же будут описаны в практической части. Конденсатор (C_1) между генератором сигналов и колебательным контуром служит для того, чтобы импеданс генератора был много меньше импеданса колебательного контура и не влиял на процессы, происходящие в контуре.

4. Практическая часть

Соберём установку с рисунка 2, выставим L=100 мГн, R=0 Ом, C=0 мкФ, однако контур сам по себе обладает некоторым C_0 , благодаря которому свободные колебания могут быть реализованы, а их затухание будет обеспечено активным сопротивлением катушки индуктивности. Переведём генератор сигналов в режим «Pulse», установим частоту 100 Гц, максимальную амплитуду (20 В), длительность импульсов 10 мкс. Благодаря таким настройкам генератор будет лишь периодически возбуждать колебания в контуре, оставляя их свободными. Будем измерять зависимость периода собственных колебаний от ёмкости конденсатора, период определим с помощью курсоров осциллографа, устанавливая их на «бугры» (данные см. в приложении п. 1). Построим в координатах $T(\sqrt{C})$ полученную зависимость и отложим там же теоретически рассчитанное значение:

Рис. 4. График зависимости периода собственных колебаний от корня из ёмкости системы

Как видим, прямая практических измерений лежит выше теоретической, это связано в первую очередь с неидеальностью контура, из-за этого период возрастает, так же с тем, что реальная ёмкость цепи несколько больше, чем ёмкость конденсатора.

Снимем зависимость амплитуды от количества колебаний при разных сопротивлениях контура (данные см. в приложении п. 2). По каждому измерению рассчитаем логарифмический декремент затухания:

$$\Theta = \frac{1}{n} \cdot \ln(\frac{U_m}{U_{m+n}}). \tag{17}$$

Построим график зависимости $1/\Theta^2$ от $1/R_{\Sigma}^2$, где R_{Σ} – суммарное активное сопротивление контура (сопротивление индуктивности измерена в последнем пункте с помощью LCR-измерителя). Получим:

В ходе измерений невозможно точно установить начало отсчёта амплитуды, из-за чего значения декремента несколько разнятся, в зависимости от того, какая часть сигнала использовалась как источник (положительная или отрицательная), эта проблема частично решается усреднением значений (так как связанное с этим эффектом отклонение близко к

Рис. 5. График зависимости логарифмического коэффициента затухания от сопротивления цепи в линеализирующих координатах

погрешности измерений), для этого количество измерений положительной и отрицательной частей совпадают.

По углу наклона рассчитаем $R_{\rm kp}$: $R_{\rm kp}=2\pi\sqrt{\tan(\alpha)}=6.2\pm0.4$ кОм. Из теории получим: $R_{\rm kp}=\sqrt{L/C}=8.16\pm0.07$ кОм. И посмотрим при каком R на практике происходит переход в апериодический режим: $R_{\rm kp}=3$ кОм.

Однако точно отличить апериодический режим от быстро затухающего невозможно (нет точного определения), так что будем считать, что следующий режим уже апериодический: Так же на этом снимке прекрасно видна причина неточного установления начала

Рис. 6. Форма сигнала колебаний, которые считаем апериодическими

отсчёта амплитуды. Снимем спирали на фазовой плоскости, по каждой спирали получим данные о падении амплитуд и так же, как мы делали для предыдущего пункта, рассчитаем декременты затухания и через них получим добротность по формуле:

$$Q = \pi/\Theta. \tag{18}$$

Переведём источник сигнала в синусоидальный режим, соберём схему в соответствии с

R_{Σ} , Om	$Q_{ m cuhyc}$	$Q_{ m фазовая}$	$Q_{ m теоретическая}$
169.1 ± 1.0	18.7 ± 1.1	18.0 ± 0.9	24.14 ± 0.25
309.1 ± 1.0	10.8 ± 0.6	10.7 ± 0.3	13.2 ± 0.12
449.1 ± 1.0	7.9 ± 0.4	7.9 ± 0.4	9.09 ± 0.08
519.1 ± 1.0	6.8 ± 0.3	7.0 ± 0.3	7.86 ± 0.07
589.1 ± 1.0	6.8 ± 0.7	5.8 ± 0.3	6.93 ± 0.06
729.1 ± 1.0	5.0 ± 0.3	4.9 ± 0.3	5.6 ± 0.05
379.1 ± 1.0	9.3 ± 0.6	9.2 ± 0.5	10.77 ± 0.09
659.1 ± 1.0	5.6 ± 0.5	5.4 ± 0.3	6.19 ± 0.05

рис. 2. Будем снимать зависимость амплитуды колебаний и разности фаз между генератором и колебаниями в системе от частоты генератора вблизи резонанса (6 к Γ ц) (результаты измерений см. в приложении п.3). Построим АЧХ в нормированных на резонанс координатах U/U_0 от ν/ν_0 . Будем аппроксимировать данные точки функцией Лоренца:

$$y = \frac{A}{\sqrt{1 - (\frac{x-a}{c})^2}} + s.$$

Рис. 7. Амплитудно-частотная характеристика системы при $R=140~{
m Om}$ – красная кривая, при $R=280~{
m Om}$ – синяя кривая

С помощью ширины среза на уровне 1 sqrt2 получим добротность по формуле:

$$Q = \frac{\nu_0}{2\Delta\Omega} \tag{19}$$

Ширина резонансной кривой, измеренная на уровне $\frac{A}{\sqrt{2}}$ при сопротивлении магазина 140 Ом равна: $\Delta\Omega_{140}=0.055\pm0.005$. Ширина резонансной кривой, измеренная на уровне $\frac{A}{\sqrt{2}}$

при сопротивлении магазина 280 Ом равна: $\Delta\Omega_{280}=0.092\pm0.005$. Добротность, рассчитанная с помощью АЧХ, при сопротивлении магазина 140 Ом равна: $\Omega_{140}=18.7\pm1.7$. Добротность, рассчитанная с помощью АЧХ, при сопротивлении магазина 280 Ом равна: $\Omega_{280}=11.2\pm0.6$.

Построим Φ ЧХ, для этого пересчитаем ΔX в разность фаз, для этого воспользуемся формулой:

$$\Delta \varphi = \frac{1}{\sqrt{LC}} \Delta X. \tag{20}$$

Нормируем его по π , так же измерения при 240 Ом необходимо совместить по фазе (измерялось ΔX не между ближайшими горбами). Аппроксимировать точки будем с помощью функции:

$$y = \frac{\arctan(-a \cdot (x - s))}{\pi} + r.$$

Получим график:

Рис. 8. Фазо-частная характеристика системы при $R=140~{\rm Om}$ – красная кривая, при $R=280~{\rm Om}$ – синяя кривая

Как видим, по синим точкам не удалось получить искомый вид зависимости, это связано с тем, что нам не хватило области измерений, чтобы застать характерные изгибы нашей функции, так что аппроксимировать к этим точкам смысла нет, уберём их из рассмотрения. Чтобы определить добротность, проведём 2 пунктирные линии на уровнях 0.75 и 0.25. Из нетрудный теоретических соображений можно понять, что через разницу абсцисс этих точек можно определить добротность системы по формуле:

$$Q = \frac{\nu_0}{\Delta \nu}.\tag{21}$$

Добротность, рассчитанная с помощью ФЧХ, при сопротивлении магазина 140 Ом равна: $Q_{\Phi \Psi X} = 43.0 \pm 0.4$.

Далее переведём генератор в режим испускания цугов и будем снимать показания при установлении колебаний и их спада, будем похожим на пункты 3-4 образом получать данные об изменении амплитуд, через что нетрудно определить добротность по формулам.

Для установления колебаний:

$$Q = \frac{1}{n} \cdot \ln(\frac{U_0 - U_m}{U_0 - U_{m+n}}). \tag{22}$$

Для затухания, формула такая же, как и пунктах 3-4:

$$Q = \frac{1}{n} \cdot \ln(\frac{U_m}{U_{m+n}}) \tag{23}$$

Получим следующие добротности:

Добротность, рассчитанная с помощью логарифмического декремента затухания, при затухании колебаний и сопротивлении магазина 140 Ом равна: $Q_{140u} = 16.5 \pm 1.3$.

Добротность, рассчитанная с помощью логарифмического декремента затухания, при затухании колебаний и сопротивлении магазина 280 Ом равна: $Q_{140\,\mathrm{u}}=10.7\pm0.5$.

Добротность, рассчитанная с помощью логарифмического декремента затухания, при установлении колебаний и сопротивлении магазина 140 Ом равна: $Q_{1401} = 17.6 \pm 1.0$.

Добротность, рассчитанная с помощью логарифмического декремента затухания, при установлении колебаний и сопротивлении магазина 280 Ом равна: $Q_{140\mathrm{u}}=10.9\pm1.0$.

Пронаблюдаем картину биений:

Рис. 9. Картина наблюдаемых биений

На данной картине биений мы можем наблюдать два участка, первый — установление вынужденных колебаний, такой режим происходит из-за того, что разница частот генератора и колебательной системы мала по сравнению с характерным временем установления постоянного режима вынужденных колебаний, через некоторое время после установления произойдёт затухание амплитуды колебаний, связанное с нарастающей разностью фаз между генератором и системой. Через некоторый промежуток времени такая картина повторится.

В ходе вычислений погрешностей в основном использовалась классическая модель погрешности:

$$\sigma = \sqrt{(\sigma_{\text{случ}})^2 + (\sigma_{\text{систем}})^2}.$$

Для обычных математических операций использовалась модель о сумме квадратов относительных погрешностей величин, входящих в формулу:

$$\varepsilon = \sqrt{\varepsilon_1^2 + \varepsilon_2^2}.$$

Для обработки случайных погрешностей при повторных измерениях использовалась следующая модель:

$$\sigma = \frac{1}{\sqrt{n}} \cdot \sqrt{\sum_{i} (x_i - x_{\rm cp})^2}.$$

Аппроксимация производилась с помощью метода $curve_fit$ из библиотеки SciPy, соответственно модель вычисления случайной погрешности при аппроксимации Хи-квадрат. За более детальным описанием можно обратиться к исполняемому коду.

6. Вывод

1. В ходе сравнения зависимости с теоретической была обнаружена некоторая небольшая ёмкость колебательной системы (исключая магазин ёмкостей), которая смещает зависимость T(C) на некоторую константу, однако, достаточно мала, чтобы изменить характер зависимости (изменений установить не удалось).

Рис. 10. График зависимости периода собственных колебаний от корня из ёмкости системы

2. Удалось снять зависимость логарифмического декремента затухания от активного сопротивления цепи (погрешность составила порядка 5%), основной причиной такой погрешности послужили наводки, которые «размазывали сигнал», особенно на пиках амплитуд, делая невозможным поддерживать точность на уровне точности приборов. График данной зависимости в линеализирующих координатах:

Рис. 11. График зависимости логарифмического коэффициента затухания от сопротивления цепи в линеализирующих координатах

- 3. Определили критическое сопротивление, при котором характер колебаний меняется на апериодический, тремя способами: теоретическим $R_{\rm kp}=8.16\pm0.07$ кОм, по наклону графика зависимости логарифмического декремента затухания от сопротивления цепи $R_{\rm kp}=6.2\pm0.4$ кОм, с помощью наблюдением за картиной колебаний $R_{\rm kp}=3$ кОм. Как видим, значения довольно сильно отличаются, это связано с неточностью $R_{\rm kp}$ по своей природе.
- 4. Были сняты АЧХ и ФЧХ для вынужденных колебаний в цепи, проведена аппроксимация соответствующих теоретических зависимостей к экспериментальным точкам, функции из теории хорошо ложатся на точки, однако при этих измерениях возникли ещё большие наводки, сделали случайную погрешность кратно больше системной ($\sigma_{\text{случ}} \sim 7\sigma_{\text{сист}}$), однако из-за аппроксимации они не имею большого вклада в итоговые результаты.

Рис. 12. Амплитудно-частотная характеристика системы при $R=140~{\rm Om}$ – красная кривая, при $R=280~{\rm Om}$ – синяя кривая

Рис. 13. Фазо-частная характеристика системы при $R=140~{\rm Om}$ – красная кривая, при $R=280~{\rm Om}$ – синяя кривая

5. Удалось определить логарифмические декременты затухания по установлению и затуханию вынужденных колебаний, получены значения декремента для двух значений сопротивления магазина:

при
$$R=140$$
 Ом $\Theta_{\rm затух}=0.19\pm0.015;$ $\Theta_{\rm устан}=0.179\pm0.01,$ при $R=280$ Ом $\Theta_{\rm затух}=0.293\pm0.013;$ $\Theta_{\rm устан}=0.29\pm0.03.$

Как видим, значения хорошо совпадают в пределах погрешностей.

6. Удалось понять, что такая картина биений получается из-за комбинации установления вынужденных колебаний, и только после этого классических биений. Однако на установке посылались цуги довольно большой длины, так что последняя часть данной картины была уже простыми затухающими колебаниями.

Рис. 14. Картина наблюдаемых биений

7. Результаты измерения добротности вышеизложенными способами изложены в таблице:

	Свободные колебания			Вынужденные колебания			
R	Теоретическое	Декремент затухания	Спираль	АЧХ	ФЧХ	Нарастание	Затухание
$R_1 = 169 \mathrm{OM}$	24.1 ± 0.3	19 ± 1	18 ± 1	$18,7 \pm 2$	43 ± 0.4	17.6 ± 1	$16,5 \pm 1$
$R_2 = 309 \; \mathrm{Om}$	$13,2 \pm 0,1$	10.8 ± 0.6	10.7 ± 0.3	$11,2 \pm 0,6$	-	$10,9 \pm 1$	10.7 ± 0.5

Как видим, почти все добротности хорошо совпали (максимальное различие 1σ), однако добротность Φ ЧХ сильно выбивается из результатов, вероятно, где-то потерян коэффициент, так же, как и ожидалось, теоретическая добротность выше практической, что связано с лишними сопротивлениями в реальной цепи.