06 April 2022 12:26

When my Target variable is categorical

Ex: Gender, Location, Status, Education, Exam, interview,

1. Binary outcomes/Binary class

Only two outcome

Yes/No, True/ False, 0/1, Male/Female, Married/ Unmarried, Positive/Negative

2. Multiclass

Location, Education

If my Target variable is Binary class ---> Logistic Regression

Target variable ----> 0 or 1

X Y 0 1

$$Y = Bo + b1x1 + b2x2$$
 -----> -inf to + inf

Y - Y_pred --> error will be higher

$$f(x) = x^2$$

 $f(x) = 2x$
 $f(x) = 2x + 1 --> mx + c$

$$Bo + b1x1 + b2x2 ---- BX$$

$$e^{(BX)}$$
Logit = ----- = 0 to 1
1 + $e^{(BX)}$

Α	В	С	D	Е	F	G	Н	1	J	K
age(x)	Υ	Y_pred	>0.5							
56	1	0.96	1						1	Pos
23	0	0.45	0						0	Neg
35	0	0.23	0				Predicted values			
45	1	0.15	0			TN	0	1		
36	0	0.89	1			0	4	1	FP	Type I Error
65	1	0.96	1		Actual values	1	1	4		
41	0	0.36	0				FN		TP	
63	1	0.87	1			Type II Error				
23	0	0.16	0							
75	1	0.61	1							

Confusion matrix

Sensitivity: Percentage of positives that are successfully classified as positive.

True positive Rate

TPR: TP/(TP + FN)

Specificity: Percentage of negatives that are successfully classified as negatives.

TNR: TN / (TN+FP)

When Specificity is a High Priority, Testing a Medicine is good or Poisonous

		Act	1	+ve	Good	
		0 (Negative)	0	-ve	Posinous	
Predicted classes	0 (Negative)	True Negative (TN). Actually	False Negative(FN)			
		Medicine is good and	Actually Medicine is good and			
		predicted them as good .	predicted them as Poisonous. Hence			
		Hence Recommend to use.	reject all the bulk.			
	1 (Positive)	False Positive(FP)				
		Actually Medicine is	True Positive (TP). Actually			
		Poisonous and predicted	Medicine is Poisonous and predicted			
		them as good. Recommend to	them as Poisonous . Hence reject all			
		use.	the bulk.			

Precision:

The approach here is to find what percentage of the model's positive (1's) predictions are accurate.

(TP) / (TP + FP)

F1 Score:

A good model should have a good precision as well as a high recall. So ideally, I want to have a measure that combines both these aspects in one single metric —the F1 Score.

F1 Score = (2 * Precision * Recall) / (Precision + Recall)