Регулярные языки

Задание. Для заданного регулярного языка A над алфавитом $\Sigma = \{0,1\}$

- 1. построить диаграмму состояний ДКА, распознающего A;
- 2. реализовать данный ДКА в виде программы, которая для произвольной входной строки w должна выводить историю вычислений ДКА на ней в виде последовательности состояний.

- 1. $A = \{w : w \text{ начинается с 1 и заканчивается на 0}\};$
- 2. $A = \{w : w \text{ содержит хотя бы три } 1\};$
- 3. $A = \{w \colon w \text{ состоит хотя бы из 3-х символов и при этом третий символ } 0\};$
- 4. $A = \{w \colon w \text{ начинается с } 0 \text{ и имеет чётную длину или начинается с } 1 \text{ и имеет нечётную длину}\};$
- 5. $A = \{w : w \text{ содержит 0101 в качестве подстроки}\};$
- 6. $A = \{w : w \text{ не содержит } 110 \text{ в качестве подстроки}\};$
- 7. $A = \{w : w \text{ имеет длину не более пяти}\};$
- 8. $A = \{w : w \text{ является любой строчкой, кроме 11 и 111}\};$
- 9. $A = \{w \colon w$ на каждой нечётной позиции содержит $1\}$;
- 10. $A = \{w : w \text{ содержит хотя бы два 0 и не более одной 1}\};$
- 11. $A = \{w : w \text{ содержит чётное число } 0 \text{ или ровно две } 1\};$
- 12. $A = \{w : w \text{ содержит одинаковое число подстрок 01 и 10}\};$
- 13. $A = \{w : w \text{ содержит ровно три } 0 \text{ или ровно три } 1\};$
- 14. $A = \{w : w \text{ содержит чётное число и 0, и 1}\};$
- 15. $A = \{w : w \text{ содержит нечётное число и 0, и 1}\}.$

Контекстно-свободные языки

Задание. Для заданного КС-языка B над алфавитом $\Sigma = \{0,1\}$

- 1. построить диаграмму состояний МП-автомата, распознающего A;
- 2. реализовать данный МП-автомат в виде программы, которая для произвольной входной строки w должна выводить историю вычислений МП-автомата на ней в виде последовательности состояний и содержимого стэка памяти.

- 1. $B = \{w : w \text{ содержит } 0 \text{ не меньше, чем } 1\};$
- 2. $B = \{w : w \text{ содержит 1 больше, чем 0}\};$
- 3. $B = \{w : w \text{ содержит 1 в два раза больше, чем 0} \};$
- 4. $B = \{0^n 1^i 0^j : n = i \text{ или } n = j\};$
- 5. $B = \{0^{2n}1^n : n \ge 0\};$
- 6. $B = \{w : w = 1^i 0^n 1^j : n = i \text{ или } n = j\};$
- 7. $B = \{w : w \text{ не содержит 0 в три раза меньше, чем 1}\};$
- 8. $B = \{w : w \text{ содержит } 0 \text{ по крайней мере в два раза больше, чем } 1\};$
- 9. $B = \{w : w \text{ содержит 0 не более, чем в два раза больше, чем 1};$
- 10. $B = \{w : w \text{ после каждой подстроки } 0^n, n > 0, \text{ сразу содержит подстроку } 1^n \};$
- 11. $B = \{w : w \text{ после каждой подстроки } 1^n, n > 0, \text{ сразу содержит подстроку } 0^i, i > n\};$
- 12. $B = \{w : w \text{ содержит различное число } 0 \text{ и } 1\};$
- 13. $B = \{w : w \text{ содержит подстроку } 01 \text{ столько же раз, сколько в начале } w \text{ расположено } 0\};$
- 14. $B = \{w : w \text{ содержит подстроку } 01 \text{ столько же раз, сколько в конце } w \text{ расположено } 1\};$
- 15. $B = \{w : w \text{ содержит подстроку } 01 \text{ меньше раз, чем в начале } w \text{ расположено } 0\}.$

Разрешимость по Тьюрингу

Задание. Для заданного языка, в котором предполагается, что КС-грамматика, регулярное выражение или ДКА определены над алфавитом $\{0,1\}$,

- 1. построить описание МТ, решающей его;
- 2. реализовать данную МТ в виде программы.

- 1. $C_{CFG} = \{ \langle G, k \rangle \colon G \text{KC-грамматика, } \operatorname{card}((L(G)) = k, k \in \mathbb{N} \cup \{0, \infty\} \};$
- 2. $C = \{\langle G, x \rangle \colon G \text{KC-грамматика}, \exists y, z \in \Sigma^* \colon yxz \in L(G)\};$
- 3. $A = \{\langle R \rangle : R$ регулярное выражение, $\exists x, y \in \Sigma^* : x111y \in L(R)\};$
- 4. $INFINITE_{DFA} = \{\langle A \rangle : A \coprod KA$ и L(A) бесконечный язык $\}$;
- 5. $A_{\varepsilon,CFG} = \{\langle G \rangle : G \text{KC-грамматика и } \varepsilon \in L(A)\};$
- 6. $ALL_{DFA} = \{\langle A \rangle : A ДКА \ и \ L(A) = \Sigma^* \};$
- 7. $BAL_{DFA} = \{\langle M \rangle : M ДКА,$ который допускает некоторую строку состоящую из одинакового числа 0 и 1 $\}$;
- 8. $PAL_{DFA} = \{ \langle M \rangle : M \text{ДКА}, который допускает некоторый палиндром} \};$
- 9. $E = \{\langle M \rangle \colon M Д K A$, который допускает некоторую строку, в которой 1 больше, чем $0\}$;
- 10. $E_{DFA} = \{\langle A \rangle : A \text{ДКА и } L(A) = \emptyset \};$
- 11. $A = \{\langle G \rangle : G \text{KC-грамматика и } 1^* \subset L(G)\};$
- 12. $S = \{ \langle M \rangle : M ДКА \ \text{и} \ w \in L(M) \iff w^{\mathcal{R}} \in L(M) \};$
- 13. $A = \{ \langle M \rangle : M ДКА,$ который не допускает строки, сожержащие нечетное число $1 \};$
- 14. $EQ_{DFA} = \{ \langle M_1, M_2 \rangle : M_1, M_2 \coprod KA \text{ if } L(M_1) = L(M_2) \};$
- 15. $A_{REX} = \{\langle R, w \rangle \colon R$ регулярное выражение и $w \in L(R)\}$.

Исследование временной сложности

Задание. Для заданного языка

- 1. построить описание МТ с полиномиальной временной сложностью, решающей его;
- 2. построить оценку сложности данной МТ;
- 3. реализовать данную МТ в виде программы;
- 4. провести тестовые исследования, демонстрирующие совпадение фактической временной сложности с теоретической.

- 1. $CONNECTED = \{ \langle G \rangle : G$ связанный неориентированный граф $\};$
- 2. $TRIANGLE = \{ \langle G \rangle : G$ неориентированный граф, содержащий 3-клику $\}$.
- 3. $MODEXP = \{\langle a, b, c, p \rangle : a, b, c, p$ бинарные целые числа такие, что $a^b = c \text{mod } p\};$
- 4. $PERM POWER = \{\langle p, q, t \rangle \colon p, q$ перестановки такие, что $p = q^t\}$, где перестановкой будем называть взаимнооднозначное отображение $p \colon \{1, \dots, k\} \to \{1, \dots, k\}$;
- 5. $UNARY-SSUM = \{\langle s,t \rangle \colon s = \{x_1,\ldots,x_k\}$, существует $\{y_1,\ldots,y_l\} \subset \{x_1,\ldots,x_k\} \colon \sum_{i=1}^l y_i = t\}$, где все числа x_1,\ldots,x_k,t представлены в унарном алфавите;
- 6. $PRIMES = \{m: m$ бинарное простое число $\}$;
- 7. $SPATH = \{ \langle G, a, b, k \rangle : G$ неориентированный граф, содержащий простой путь не длиннее k из вершины a в вершину $b \}$;
- 8. $CNF_2 = \{ \langle \varphi \rangle \colon \varphi$ выполнимая булева формула в КНФ, каждая переменная в которой появляется не более, чем в 2 позициях $\}$;
- 9. $2SAT = \{\langle \varphi \rangle \colon \varphi$ выполнимая булева формула в КНФ, в которой каждая скобка содержит не более двух литералов $\}$;
- 10. $RELPRIME = \{\langle x, y \rangle : x$ и y взаимнопростые числа $\}$;
- 11. $UCYCLE = \{\langle G \rangle : G$ неориентированный граф, который содержит простой цикл $\}$;
- 12. $CYCLE = \{ \langle G \rangle : G$ направленный граф, который содержит направленный цикл $\}$;
- 13. $BIPARTITE = \{\langle G \rangle : G$ двудольный неориентированный граф $\}$, где двудольным называется граф вершины которого могут быть разбиты на два непересекающихся подмножества так, что не существует рёбер между вершинами из одного и того же подмножества;
- 14. $STRONGLY CONNECTED = \{\langle G \rangle : G сильно связанный ориентированный граф, т.е. для любых вершин <math>a$ и b существуют направленные пути из a в b и из b в $a\}$;
- 15. $UPATH = \{\langle G, a, b \rangle \colon G$ неориентированный граф, в котором нет пути из вершины a в вершину $b\}.$

Верификаторы

Задание. Для заданного языка

- 1. построить описание верификатора с полиномиальной временной сложностью и соответствующего сертификата принадлежности;
- 2. реализовать данный верификатор в виде программы;
- 3. провести тестовые исследования, демонстрирующие совпадение фактической временной сложности с теоретической.

- 1. $ISO = \{ \langle G, F \rangle \colon G, F$ изоморфные графы $\}$, где два графа G и F называются изоморфными, если можно переобозначить вершины одного графа G так, чтобы G и F оказались идентичны;
- 2. $HALF-CLIQUE = \{\langle G \rangle \colon G$ неориентированный граф с m вершинами, который содержит клику размером не менее $\frac{m}{2}\};$
- 3. $LPATH = \{ \langle G, a, b, k \rangle : G$ неориентированный граф, содержащий простой путь не короче k из вершины a в вершину $b\}$;
- 4. $DOUBLE SAT = \{ \langle \varphi \rangle \colon \varphi$ булева формула, допускающая по крайней мере 2 подстановки, обращающие её в истину $\}$;
- 5. $CNF_3 = \{ \langle \varphi \rangle \colon \varphi$ выполнимая булева формула в КНФ, каждая переменная в которой появляется не более, чем в 3 позициях $\}$;
- 6. $MAX CUT = \{\langle G, k \rangle : G$ неориентированный граф, который допускает разрез размером k или более $\}$, где разрезом графа называется разбиение его вершин на два непересекающихся подмножества, размером разреза называется число дуг, соединяющих вершины из различных подмножеств разделения;
- 7. $3COLOR = \{\langle G \rangle : G$ неориентированный граф, вершины которого могут быть окрашены в три цвета так, чтобы никакие две смежные вершины не были окрашены одинаково $\}$;
- 8. $SET SPLITING = \{\langle S, C \rangle : S$ конечное множество, $= \{C_1, \dots, C_N\}, C_i \subset S, N > 0$, при этом все элементы S могут быть окрашены в два цвета так, чтобы в составе C не было одноцветных подмножеств $\}$;
- 9. $DOMINATING SET = \{\langle G, k \rangle \colon G$ неориентированный граф, который имеет поглощающее множество размера $k\}$, где поглощающим множеством называется подмножество вершин графа такое, что каждая вершина графа является смежной хотя бы с одной вершиной из данного подмножества;
- 10. $CLIQUE = \{ \langle G, k \rangle \colon G$ неориентированный граф, содержащий k-клику $\}$;
- 11. $HAMPATH = \{\langle G, s, t \rangle \colon G$ ориентированный граф, в котором есть гамильтонов путь из вершины s в вершину $t\};$
- 12. $VERTEX-COVER=\{\langle G,k\rangle\colon G$ неориентированный граф, содержащий покрытие размера $k\};$

- 13. $FEEDBACK VSET = \{ \langle G, k \rangle \colon G$ неориентированный граф, в котором удалив не более k вершин, можно устранить все циклы $\}$;
- 14. $FEEDBACK-VSET=\{\langle G,k\rangle\colon G$ ориентированный граф, в котором удалив не более k рёбер, можно устранить все циклы $\};$
- 15. $SET PACKING = \{\langle S, C, k \rangle : S$ конечное множество, $= \{C_1, \dots, C_N\}, C_i \subset S, N > 0$, при этом существует набор попарно не пересекающихся подмножеств $C_{i_1}, \dots, C_{i_k} \in C\}$.

Игровые задачи

Задание. Для модифицированного поля игры в «крестики-нолики»

- 1. построить программными средствами ориентированный граф состояний игры;
- 2. определить существует ли выигрышная стратегия для первого игрока;
- 3. реализовать данную стратегию (если она существует) или стратегию приводящую к гарантированной ничьей (если выигрышной стратегии не существует) в виде интерактивной игры, в которой первый ход делает компьютер, а оппонентом выступает игрок.

