

Trabalho 3.1

Módulo Receptor UART

Entrega:

Entrega
24/04

Objeto de Estudo:

- 1. Decodificadores;
- 2. Protocolos de Comunicação;
- 3. Protocolo UART;
- 4. Máquinas de Estados Finitos (FSM);
- 5. Técnicas de Simulação;
- 6. VHDL;
- 7. Testbench;

Procedimento:

 Projete um circuito lógico, descrito em VHDL, que seja capaz de realizar a recepção de dados através do protocolo serial UART (*Universal Asynchronous Receiver/Transmitter*). Utilize como referência para a sua implementação o diagrama apresentado na Figura 1.

Figura 1 – Diagrama de Referência.

2. A entidade do circuito lógico deverá ser nomeada como "uart_rx". A Tabela 1 apresenta os nomes, os tipos e as características funcionais das interfaces da entidade do circuito lógico "uart_rx".

Porta	Descrição	Sentido	Tipo
clock_in	Referência de relógio master.	Entrada	std_logic
reset_in	Reset Síncrono.	Entrada	std_logic
data_p_out	Dado de saída paralelizado.	Saída	std_logic_vector(7 downto 0)
data_p_en_out	Habilitação do dado de saída paralelizado.	Saída	std_logic
uart_data_rx	Dado serial de entrada.	Entrada	std_logic
uart_rate_rx_sel	Seleção da taxa de recepção	Entrada	std_logic_vector(1 downto 0)

Tabela 1 - Interfaces da entidade.

3. A Figura 2 apresenta o protocolo UART que deverá ser implementado tanto para a recepção.

Figura 2 – Protocolo UART.

4. A taxa de recepção de dados (*baud rate*) deverá ser de selecionada através dos bits de entrada denominados "uart_rate_rx_sel". Esta taxa de transmissão deverá respeitar as condições apresentada na Tabela 2.

uart_rate_rx_sel	Taxa de Transmissão [bps]
00	9600
01	19200
10	28800
11	57600

Tabela 2 - Interfaces da entidade.

 Considere que a referência de relógio deste circuito "clock_in" possui uma frequência de 100MHz.

Critérios de Avaliação:

A Avaliação desta experiência seguirá os critérios indicados abaixo:

- 1) Códigos Fontes / Correção Funcional (70%);
- 2) Scripts de Síntese Lógica (10%)
- 3) Constraints *.sdc (10%)
- 4) Relatórios (10%);
 - i) Relatório de Timing;
 - ii) Relatório de Área;
 - iii) Relatório de Potência;

Relatório / Código:

O relatório contendo as informações sobre o desenvolvimento dos itens anteriores deverá ser postado na **Área Moodle** da disciplina **até a data de entrega** prevista nesta especificação.

1. Terminal (via paxos):

source /soft64/source_gaph module load incisive genus genus -gui

2. No terminal do Genus defina a biblioteca e abra os arquivos de descrição do projeto:

set_db library /soft64/design-kits/stm/65nm-cmos065_536/CORE65GPSVT_5.1/libs/CORE65GPSVT_nom_1.00V_25C.lib read_hdl -vhdl ./uart_rx.vhd elaborate uart_rx

read_sdc ./constraints.sdc
syn_generic

syn_map

report_timing report_power report_area