MAT257 Notes

Jad Elkhaleq Ghalayini

November 2 2018

1 Multivariate Taylor Series

1.1 Review of Single Variable Taylor Series

Recall the definition of the n^{th} degree Taylor polynomial of f centered at a

$$P_{n,a}(f) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}$$

We define $R_{n,a}$ to be the "remainder", the difference between $P_{n,a}$ and f. We can write this remainder in "Lagrange form" as

$$\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$$

Clearly,

$$\lim_{x \to a} \frac{R_{n,a}(x)}{(x-a)^n} = 0$$

We can now define the Taylor series of f at a to be

$$T_a f = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

1.1.1 Why these coefficients?

Suppose

$$f(x) = \sum_{k=0}^{\infty} a_k (x - a)^k$$

Note

$$\frac{d^n}{dx^n}(x-a)^k = \begin{cases} 0 & \text{if } k < n \\ k! & \text{if } n = k \\ k(k-1)...(k-n+1)(x-a)^{k-n} & \text{if } k > n \end{cases}$$

1.2 Multivariable Case

For example: What's your favorite polynomial? Zero? I'm sure you meant something more like

$$f(x,y,z) = a_{12,8,2}x^{12}y^8z^2 + a_{0,22,0}y^{22} + a_{0,0,1}z + a_{20,20,20}x^{20}y^{20}z^{20}$$

How to do spot $a_{12,8,2}$? Apply:

$$\left. \frac{\partial^{22} f}{\partial x^2 \partial y^8 \partial z^2} \right|_{(x,y,z)=(0,0,0)} = a_{12,8,2} 12!8!2!$$

In general, if f is a sum of terms like

$$a_{\alpha_1,...,\alpha_n}x^{\alpha_1}....x^{\alpha_n}$$

Then

$$a_{\alpha_1,\dots,\alpha_n} = \left. \frac{\partial^{\alpha_1+\dots+\alpha_n} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} \right|_{(x_1,\dots,x_n)=(0,\dots,0)} \frac{1}{\alpha_1! \dots \alpha_n!}$$

1.3 Multi-index notation

We're mathematicians here, and what do mathematicians do, we generalize. But we generalize in such a way such that the general case looks like the specialized case so we don't have to remember different notation when teaching first-years and when doing research. Multi-index notation is a prime example. Compare:

• Let $f: \mathbb{R} \to \mathbb{R}$. Then

$$f = \sum_{k \in \mathbb{N}} \frac{1}{k!} f^{(k)}(a) (x - a)^k$$

• Let $f: \mathbb{R}^n \to \mathbb{R}$. Then

$$f = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} (a) (x - a)^{\alpha}$$

To make this to work, all we have to do is define, for

$$\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$$

the notation

$$\alpha! = \alpha_1! ... \alpha_n!$$

$$|\alpha| = \alpha_1 + ... + \alpha_n$$

$$\partial x^{\alpha} = \partial x_1^{\alpha_1} ... \partial x_n^{\alpha_n}$$

$$(x - a)^{\alpha} = (x_1 - a_1)^{\alpha_1} ... (x_n - a_n)^{\alpha_n}$$

1.3.1 Examples

1.

$$\frac{1}{6!y!}12x^6y^7 = \frac{12}{(6,7)!}(x,y)^{6,7}$$

2.

$$x^5 + x^4y + x^3y^2 + \dots + y^5 = \sum_{\beta+\gamma=5} (x,y)^{(\beta,\gamma)} = \sum_{|\alpha|=5} (x,y)^{\alpha}$$

Note that we're assuming here β, γ are non-negative. On good days you can just do what we did above, but if it worries you, write it down.

3.

$$a_{0,0} + a_{1,0}x + a_{0,1}y + a_{1,1}xy + a_{2,0}x^2 + a_{0,2}y^2 = \sum_{|\alpha| \le 2} a_{\alpha}(x,y)^{\alpha}$$

2 Multivariable Taylor Series

Theorem 1. If $f: \mathbb{R}^n \to \mathbb{R}$ is C^{k+1} then

$$f(a+h) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{x^{\alpha}}(a) h^{\alpha} + \sum_{\alpha} |\alpha| = k + 1 \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(a + \theta h) h^{\alpha}$$

where $\theta \in (0,1)$

Proof. The key idea is

$$F(t) = f(a+th)(\text{Old Taylor} + \text{Chain Rule})$$

More rigorously, we know from single variable calculus that

$$F(t) = F(0) + \frac{F'(0)}{1!}t + \dots + \frac{F^{(k)}(0)}{k!}t^k + \frac{F^{k+1}(\theta)}{(k+1)!}t^{k+1}$$

Set t = 1 to get F(1) = f(a + h). We know F(0) = f(a). We have

$$\left. \frac{dF}{dt} \right|_{t=0} = \left. \frac{d}{dt} f(a+th) \right|_{t=0} = \sum_{i=1}^{n} \left. \frac{\partial f}{\partial x}(a+th) \right|_{t=0} \frac{\partial x_i}{\partial t} = \sum_{i=1}^{n} \left[\left. \frac{\partial f}{\partial x_i}(a+th) \right|_{t=0} \right] h_i = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) h_i$$

We have

$$\left. \frac{d^2 F}{dt} \right|_{t=0} = \sum_{i=1}^n \left[\sum_{j=1}^n \frac{\partial^2 f}{\partial x_j \partial x_i}(a) h_j \right] h_i$$

By the magical process of ...,

$$\left. \frac{d^k F}{dt^k} \right|_{t=0} = \sum_{i_1, \dots, i_k=1}^n \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}} (a) h_{i_1} \dots h_{i_k}$$

Now all we need is some combinatorics, combined with the equality of mixed partials (for C^{k+1} functions), to complete the proof. Recall the *multinomial coefficient*

$$\binom{|\alpha|}{\alpha_1, \dots, \alpha_n} = \frac{|\alpha|!}{\alpha_1! \dots \alpha_n!}$$

is the number of ways of taking $|\alpha|$ things and making k groups of size $\alpha_1, ..., \alpha_n$. We can use this to rewrite the above as

$$F^{(S)}(0) = \sum_{|\alpha|=S} \frac{S!}{\alpha_1! ... \alpha_S!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(a) h^{\alpha}$$

So plugging this into our original expression for the Taylor series of F, where we divide the S^{th} term by $\frac{1}{S!}$, we have

$$F(t) = F(0) + \sum_{i=1}^{k} \sum_{|\alpha|=i} \frac{1}{\alpha_1! \dots \alpha_k!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(a) h^{\alpha} = f(a) + \sum_{|\alpha| \le k} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(a) h^{\alpha}$$

as desired.