

706.088 INFORMATIK 1

ÜBERBLICK

-) Datenstrukturen
- > Zahlensysteme
- > Bit-Operatoren

DATENSTRUKTUREN

DATENSTRUKTUREN

Dienen dem systematischen Ablegen und Aufrufen von Daten.

- > Speicherung
- Organisation
- > Effizienz
- regelt Art des Zugriffs

DATENSTRUKTUREN BEISPIELE

- Tupel
- Array
- > assoziatives Array (Dictionary)
- Warteschlange (FiFo)
- > Stapelspeicher (LiFo)
- Graphen
- > Bäume (Binärbaum)

ARRAY

```
a = [1,"b","III",4,5]
a[0]
a[2]
a[5]
```

```
1
'III'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
```

DICTIONARY

```
d = {"element1": 1, "myelement": "python", "python": 3.5}
d['element1']
d['python']
d['myelement']
```

```
1
3.5
'python'
```

WARTESCHLANGE (FIFO)

By This Image was created by User:Vegpuff. - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php? curid=7586271

WARTESCHLANGE (FIFO)

```
import queue
q = queue.Queue()
q.put(1)
q.put(2)
q.put("last")

q.get()
q.empty()
q.get()
q.get()
q.get()
q.get()
```

```
1
False
2
'last'
True
```

STAPELSPEICHER (LIFO)

STAPELSPEICHER (LIFO)

```
import queue
q = queue.LifoQueue()
q.put(1)
q.put(2)
q.put("last")

q.get()
q.empty()
q.get()
q.get()
q.get()
q.get()
q.get()
```

```
'last'
False
2
1
True
```

GRAPHEN

- bestehen aus Kanten und Knoten
- > Eigenschaften:
 - » gerichtete Graphen: Kanten haben Richtung
 - » ungerichtete Graphen können in beide Richungen 'begangen' werden.
 - » gewichtet: Kanten haben Gewicht
 - » zyklisch: Weg von Knoten A zurück zu A ohne eine Kante mehrfach zu gehen

GRAPHENOPERATIONEN

- > Hinzufügen eines Knotens (mit oder ohne Kanten)
- > Entfernen des Knotens A, entfernt auch alle Kanten zu A
- > Es gibt keine Kanten ohne Knoten an beiden Enden

BÄUME

Sonderform von Graphen

- > Bäume: zusammenhängende, azyklische Graphen
 - » gerichtet
 - » ungerichtet
 - » Binärbaum: maximal 2 Nachkommen pro Knoten

ZAHLENSYSTEME

Za DE ZI MALEX

> Dezimal-system: Basis 10 (std. Integer)

```
Zahlen Präfix
0-9 "" (keiner)
```

```
>>> i = 123
>>> i
123
>>> f = int("99")
>>> f
99
>>>
```

Zahl**HEX**räfix

> Hexadezimal-system: Basis 16

Zahlen	Präfix
0-9, A-F	"0x"

```
>>> h = 0xA

>>> h

10

>>> h2 = 0xFF

>>> h2

255
```

Zahle OKTArafix

> Oktal-system: Basis 8

```
Zahlen Präfix

0-7 "00" (Null-O)
```

```
>>> 0 = 007

>>> 0

7

>>> 02 = 00144

>>> 02

100
```

Za**Ban Ä**Rfix

> Binär-system oder Dual-system: Basis 2

Zahlen	Präfix
0,1	"0b"

```
>>> b = 0b101

>>> b

5

>>> b2 = 0b111111

>>> b2

63
```

BINÄRSYSTEM

- > Basis für Computer
- > Reduktion auf 2 Zustände
 - » 0: kein Strom, Spannung
 - >> 1: Strom, Spannung

BINÄRSYSTEM

- > Einzelne Stelle heisst: Bit (Binary Digit)
- rechteste Stelle: Least Significant Bit (LSB)
- Iinkeste Stelle: Most Significant Bit (MSB)

BINÄRSYSTEM

```
# Dezimal
i = 2*10**3 + 0*10**2 + 1*10**1 + 6*10**0 # 2016

# Binär
b = 1*2**3 + 1*2**2 + 0*2**1 + 1*2**0 # 13
```

BINÄRSYSTEM UMRECHNUNG (N=2)

- \rightarrow x(10) \rightarrow x(n):
 - $x/n \Rightarrow y$, Rest z
 - » z an Stelle 0
 - $y \Rightarrow x \text{ wenn } y = 0$
 - » von Vorne für Stelle 1, 2, ...
 - >> wenn y = 0 fertig.

BINÄRSYSTEM UMRECHNUNG

25(10) → binär:

- \rightarrow 25/2 \Rightarrow 12, Rest 1
-) 1 an Stelle 0 (LSB)
- \rightarrow 12/2 \Rightarrow 6, Rest 0
- > 0 an Stelle 1
- \rightarrow 6/2 \Rightarrow 3, Rest 0
- > 0 an Stelle 2
- **>** ...

- \rightarrow 3/2 \Rightarrow 1, Rest 1
- > 1 an Stelle 3
- \rightarrow 1/2 \Rightarrow 0, Rest 1
- > 1 an Stelle 4
- > fertig: 11001

RECHNEN IM BINÄRSYSTEM

Grundregeln für Addition:

0 + 0	= 0
0 1 1	1
0 + 1	= 1
1+0	= 1
1 + 1	= 0 (1 Übertrag)
1+1+1	= 1 (1 Übertrag)

BINÄRE ADDITION

```
+

0101101 = 45

0110110 = 54

1111 = Übertrag

1100011 = 99
```

BINÄRE SUBTRAKTION

Computer führt Addition auf Subtraktion zurück: möglich durch Zweier-Komplementbildung

- Darstellung von negativen Zahlen:
 - » MSB trägt Information über Vorzeichen
- > Limit an darstellbaren Zahlen:
 - » s: verfügbaren Bits
 - » Kleinste darstellbare Zahl: -2**(s-1)
 - » Größte darstellbare Zahl: 2** (s-1)-1

POSITIVE UND NEGATIVE BINÄRZAHLEN

bin	dec	bin	dec
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

SWEIER-KOMPLEMENTBIEDUNG

- > ist MSB 1, ist die Zahl negativ
- > Schritt 1: alle Bits invertieren
- Schritt 2: zum Schluss 1 addieren

5(10) → - 5	0101(2)	-5(10) → 5	1011(2)
Schritt 1: invertieren	1010		0100
Schritt 2: +1	1011		0101

6(10) - **SUBTRAKTON** -2(10)

Entspricht einer Addition mit dem Zweier-Komplement

- > Was geschieht mit Überläufen?
 - » werden verworfen

6(10) - 2(10)	\rightarrow	6(10) + -2(10)
6(10)	0110	
-2(10)	1110	
	1 0100	= 4

3*2 MULTIPEIKATION

kann **manchmal** durch Verschieben der Bits nach links durchgeführt werden

> Multiplikation mit 2**n: (Shiften um n Bits)

3*2		20*8	
3	011	20	010100
2 (2**1)	10	8 (2**3)	001000
6	110	160	010100000

AUSNAHMEN MULTIPLIKATION

Bei Multiplikation mit Zahlen ungleich 2**n

```
13(10) * 5(10)

1101 * 101

+ 0000

+ 1101

1000001 = 65
```

4//2 = 2 **DIVISYON**3

kann **manchmal** durch Verschieben der Bits nach rechts durchgeführt werden

Division mit 2**n: (Shiften um n Bits)

4//2 = 2		24//8 = 3	
4	100	24	11000
2 (2**1)	10	8 (2**3)	01000
2	10	3	11

AUSNAHMEN DIVISION

Bei Division mit Zahlen ungleich 2**n

LIMITIERUNG DER DARSTELLBAREN ZAHLEN

- > Gängige Computer haben 32-bit oder 64-bit Architektur:
 - 32-bit: max positive Zahl 2**32 1
 - » 64-bit: max positive Zahl 2**64 1
 - » Python kann in Version 3 gut mit langen Zahlen umgehen.
 - » Grundproblem bleibt generell für Computer bestehen.

1 12

UMWANDLUNG VON 64-BIT IN 16-BIT

> Ariane 5 Explosion 🗗 🛗

BITOPERATOREN

Operator Zuweish TOREN

Operatoren für Binärdarstellung

Operator	Zuweisung	Ergebnis
~X		bitweises Komplement
		(Einerkomplement) (= -x-1)
~x+1		Zweierkomplement (= -x)
x & y	x &= y	bitweises UND (AND)
x y	x = y	bitweises ODER (OR)
x ^ y	x ^= y	bitweises ausschließendes ODER (XOR)
x << n	χ <<= n	shiften von x um n Bit nach links
x >> n	χ >>= n	shiften von x um n Bit nach rechts

BITOPERATOREN

```
>>> a = 0b1001

>>> b = 0b0110

>>> bin(a | b)

'0b1111'

>>> bin(a & b)

'0b0'

>>> bin(a ^ b)

'0b1111'

>>> bin(~a)

'-0b1010'

>>> bin(~a & b)

'0b110'
```

BITOPERATOREN

```
>>> a = 0b1001

>>> b = 0b0110

>>> b >>= 1

>>> b

3

>>> bin(b)

'0b11'

>>> bin(a ^ b)

'0b1010'

>>> a << 2

36

>>> bin(a << 2)

'0b100100'
```

FRAGEN?

NÄCHSTES MAL

2016-11-23 16:00