Primer parcial

- **1-** Sea un conjunto de *N* osciladores cuánticos.
 - **a-** Calcule el calor específico en los límites de alta y baja temperatura (explique el criterio utilizado para establecer el criterio de altas y bajas temperaturas).
 - **b-** Ahora, repita el mismo problema pero considerando un conjunto de N osciladores de Fermi, es decir, donde el número de ocupación es n=0,1. Desarrolle tanto el enfoque canónico como microcanónico y calcule el \mathcal{C}_v para T>> y T<<, compare los resultados con el inciso anterior.
- **2-** Sea un gas ideal de partículas con grados internos de libertad contenidas en un recipiente de volumen V. Si cada partícula cuenta con dos niveles de energía, el nivel fundamental ($\varepsilon=0$), con degeneración g_1 y el nivel excitado ($\varepsilon>0$), con degeneración g_2 . Calcule:
 - **a-** La energía del sistema. Analice los límites de alta y baja temperatura e interprete físicamente.
 - **b-** El calor específico del sistema, analice nuevamente los límites de alta y baja temperatura y describa la ocupación de los niveles de energía en ambos límites.
 - c- Calcule la ecuación de estado del gas.
- **3-** Considere un péndulo torsional como se ilustra en la figura. La energía del sistema se compone de un término de energía cinética y un término de energía potencial $H=\frac{1}{2}I\dot{\theta}^2+\frac{1}{2}K(\theta-\theta_0)^2$.
 - **a-** Considere que necesita realizar una medición experimental en el sistema, como piensa que se ve afectado el valor de θ_0 , sabiendo que el péndulo se encuentra en una habitación con temperatura T.
 - **b-** Calcule $\langle (\theta \theta_0)^2 \rangle^{1/2}$, analice el resultado.
 - **c-** Calcule $\langle \theta \dot{\theta} \rangle$, analice el resultado.

4- Detalle la distribución de velocidades de Maxwell-Boltzmann para un gas ideal. Discuta las diferencias para un sistema de 3 dimensiones, 2 dimensiones, gases formados por moléculas monoatómicas y diatómicas.