Hierarchical Multi-Task Network For Race, Gender and Facial Attractiveness Recognition

Speaker: Jinhai Xiang Huazhong Agricultural University

CONTENTS

01 Introduction

O2 Proposed Methods

1 Experiments

Conclusion and Future Works

01 Introduction

Pursing beauty is the nature of human beings.

Ancient times

Nowadays

Figure 1: Facial coordinates with hair and skin sample regions as represented by the facial feature extractor. Coordinates are used for calculating geometric features and asymmetry. Sample regions are used for calculating color values and smoothness. The sample image, used for illustration only, is of T.G. and is presented with her full consent.

Facial attractiveness can be automatically predicted by data-driven models.

- 1. Perrett, David I., Karen A. May, and Sin Yoshikawa. "Facial shape and judgements of female attractiveness." Nature 368.6468 (1994): 239
- 2. Kagian, A., Dror, G., Leyvand, T., Cohen-Or, D., Ruppin, E.: A humanlike predictor of facial attractiveness. **NIPS**, pp. 649–656 (2007)
- 3. Rothe, R., Timofte, R., Van Gool, L.: Some like it hot-visual guidance for preference prediction. In: Proceedings CVPR 2016, pp. 1–9 (2016)

Typical Facial Beauty Analysis

Golden Ratio Rules

Typical Facial Beauty Analysis

Vertical Thirds and Horizontal Fifths

1. David Zhang, Fangmei Chen, Yong Xu et al., Computer models for facial beauty analysis, Springer, 2016.

Typical Facial Beauty Analysis

Averageness Hypothesis

Average face is more attractive than component face.

Typical Facial Beauty Analysis

Hand-crafted Features + Machine Learning Classifier/Regressor

- Feature extraction
 - geometry features
 - texture features
 - color features
- Modeling methods
 - SVR
 - KNN
 - NN

Recent Advance in Facial Beauty Analysis

Deep Learning for facial attractiveness regression

The architecture of PI-DCNN for facial attractiveness prediction

Moving from hand-crafted features to deep learning.

- 1. Jie Xu, Lianwen Jin, Lingyu Liang, Ziyong Feng, Duorui Xie, Huiyun Mao, "Facial attractiveness prediction using psychologically inspired convolutional neural network (pi-cnn)", **ICASSP**, 2017.
- 2. Duorui Xie, Lingyu Liang, Lianwen Jin, Jie Xu, Mengru Li, "Scut-fbp: A benchmark dataset for facial beauty perception", SMC, 2015.

Recent Advance in Facial Beauty Analysis

Label Distribution Learning

Algorithm 1 Structural Label Distribution Learning(SLDL)

```
1: Input: D = \{(\boldsymbol{x}_1, \boldsymbol{d}_1), \cdots, (\boldsymbol{x}_N, \boldsymbol{d}_N)\}, C, \epsilon

2: Q \longleftarrow \varnothing

3: repeat

4: compute (\boldsymbol{w}, \xi) in Eq.(12)

5: for i = 1, \cdots, N do

6: \hat{\boldsymbol{d}}_i \longleftarrow \arg\max_{\hat{\boldsymbol{d}}_i \in V} \Delta(\boldsymbol{d}_i, \hat{\boldsymbol{d}}_i) + \langle \boldsymbol{w}, \psi(\boldsymbol{x}_i, \hat{\boldsymbol{d}}) \rangle

7: end for

8: if \frac{1}{N} \sum_{i=1}^{N} \Delta(\boldsymbol{d}_i, \hat{\boldsymbol{d}}_i) - \frac{1}{N} \sum_{i=1}^{N} \langle \boldsymbol{w}, \delta \psi_i(\hat{\boldsymbol{d}}_i) \rangle > \xi + \epsilon then

9: Q \longleftarrow Q \bigcup (\hat{\boldsymbol{d}}_1, \cdots, \hat{\boldsymbol{d}}_N)

10: end if

11: until Q has no change

12: return (\boldsymbol{w}, \xi)
```


Figure 1: Two images with ratings. The histograms show the number of the raters giving the corresponding ratings.

^{1.} Ren, Yi, and Xin Geng. "Sense beauty by label distribution learning." Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI). 2017.

Recent Advance in Facial Beauty Analysis

Ranking

^{1.} Lin, Luojun, Lingyu Liang, and Lianwen Jin. "R 2-ResNeXt: A ResNeXt-Based Regression Model with Relative Ranking for Facial Beauty Prediction." 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018.

Recent Advance in Facial Beauty Analysis

Analysis on Deep Facial Beauty Prediction Models

^{1.} Liu, Xudong, et al. "Understanding beauty via deep facial features." Proceedings of the IEEE **Conference on Computer Vision and Pattern Recognition Workshops**. 2019.

Challenges in Facial Beauty Analysis

- Diverse pose
- Expression
- Low resolution
- Different races & genders

It is still quite difficult to develop accurate facial beauty predictors.

- 1. Douglas Gray, Kai Yu, Wei Xu, Yihong Gong, "Predicting facial beauty without landmarks", ECCV, 2010.
- 2. Lingyu Liang, Luojun Lin, Lianwen Jin, Duorui Xie, Mengru Li, "Scut-fbp5500: A diverse benchmark dataset for multi-paradigm facial beauty prediction", ICPR, 2018.

Proposed Methods

Components of HMTNet

- How to form discriminative representation?
 Feature Aggregator
- How to construct task-specific layers?
 Hierarchical Branch Strategy
- How to better supervise model training?
 Smooth Huber Loss

Feature Aggregator

- Low-level features contain more detailed information, such as blob, texture, etc.
- High-level representation embeds rich semantic meaning.
- Low-level information (such as facial geometric information) also contributes to beauty perception.

Recall from Vertical Thirds and Horizontal Fifths ("三庭五眼" in Chinese).

Feature Aggregator

$$f_{avg} = \frac{1}{C} \sum_{i=1}^{C} fm_i, \quad fm_i, f_{avg} \in \mathbb{R}^{w \times h \times c}$$
 (1)

$$f_{concat} = fm_1 \otimes \cdots \otimes fm_C, \quad f_{concat} \in \mathbb{R}^{w \times h \times c \times C}$$
 (2)

Feature aggregator can form more discriminative representation by aggregating features from different layers for diverse recognition tasks.

Hierarchical Branch Strategy

Existing multi-task models often reuse the features in the last layers directly [22, 24, 23].

^{1.} Ranjan, Rajeev, Vishal M. Patel, and Rama Chellappa. "Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition." IEEE **Transactions on Pattern Analysis and Machine Intelligence** 41.1 (2017): 121-135.

Hierarchical Branch Strategy

Branch out task-specific layers by the learning difficulty of decision boundary.

Hierarchical Branch Strategy

We take a different fashion for branch strategy. Namely, the sub-networks for relative easier tasks are branched out in relative lower layers and embed coarser information, while the sub-networks for difficult tasks are branched out in relative higher layers.

The advantages of this strategy is that we can not only form more informative and richer representations, but also reduce the computational burden as well.

Optimization Object

- MSE Loss is widely used in conventional facial beauty prediction task.
- MSE Loss gives a more stable and closed form solution, but it is easily influenced by outliers.
- MAE Loss is more robust to outliers, but its derivatives are not continuous.

Optimization Object

https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

Optimization Object

$$Loss_{g} = -glog(\hat{g}) - (1 - g)log(1 - \hat{g})$$

$$Loss_{r} = -\sum_{i} r_{i}log(\hat{r}_{i})$$

$$Loss_{a} = \begin{cases} \sum_{i} log(cosh(a_{i} - \hat{a}_{i})) & if |a_{i} - \hat{a}_{i}| \leq \delta \\ \sum_{i} \delta |a_{i} - \hat{a}_{i}| - \frac{1}{2}\delta^{2} & otherwise \end{cases}$$

- We introduce a new loss function for solving FBP task, which is called "Smooth Huber Loss". It follows a Huber fashion, but it's smoother, and is more robust to outliers.
- It achieves best performance compared with MSE, MAE and Smooth L1 Loss. (see Ablation Analysis).

Architecture of HMTNet

Fig. 1: Overall architecture of HMT-Net. The portrait image is resized to 224×224 pixels with RGB channels, and then fed into HMT-Net. RNet and GNet are used to recognize the race and gender, respectively. ANet is utilized to predict the facial attractiveness score. The parameters in low layers can be shared among three sub-networks (GNet, RNet and ANet). All the layers are fully convolutional, and all three branched layers are trained jointly.

03 Experiments

Datasets

- SCUT-FBP5500
 5500 portrait images with rich annotation (beauty score, gender, race, etc.)
- SCUT-FBP
 500 Chinese female facial images

Experimental Results

Table 2. Performance comparison on SCUT-FBP5500.

Model	MAE	RMSE	PC
AlexNet [18, 16]	0.2938	0.3819	0.8298
ResNet-18 [19, 16]	0.2818	0.3703	0.8513
ResNeXt-50 [20, 16]	0.2518	0.3325	0.8777
CRNet [26]	0.2835	0.3677	0.8558
HMTNet (Ours)	0.2501	0.3263	0.8783

Ablation Analysis

Effects of Multi-task Joint Training

Table 3. Evaluation on joint training.

With	ı Joint Trair	ning	Witho	ut Joint Tra	ining
Acc_r	Acc_g	PC	Acc_r	Acc_g	PC
99.26%	98.16%	0.8783	98.62%	97.56%	0.8616

Effects of Smooth Huber Loss

Table 4. Evaluation on different loss functions.

Loss Function	MAE	RMSE	PC
MSE Loss	0.2556	0.3372	0.8693
L_1 Loss	0.2500	0.3299	0.8753
Smooth L_1 Loss	0.2531	0.3313	0.8738
Smooth Huber Loss	0.2501	0.3263	0.8783

Ablation Analysis

• Effects of Feature Transferability on Multi-task Training

Table 5. Performance comparison on SCUT-FBP.

Methods	PC
Combined Features+Gaussian Reg [17]	0.6482
CNN-based [17]	0.8187
Liu et al. [27]	0.6938
KFME [28]	0.7988
RegionScatNet [5]	0.83
PI-CNN [6]	0.87
CRNet [26]	0.8723
Ours	0.8977

By fitting a simple linear regression model with <u>deep features learned by HMTNet</u>, our method achieves the best performance on SCUT-FBP dataset with a large margin compared with others.

Deep Feature Visualization

We list both precisely predicted and imprecisely predicted images. Surprisingly and interestingly, HMTNet seems to show more bias on attractive faces since the predicted values of attractive faces are more accurate than those with unattractive faces.

We can see that eyes play a significant role in facial beauty perception. The fashionable hairstyle also contribute to beauty impression.

predicted facial attractiveness score groundtruth facial attractiveness score

Analyze Your Face in Real-time

Face Beauty: 2.877

Race:Asian

Gender:female

Conclusion and Future Works

Conclusion

- We propose a novel multi-task network with fully convolutional architecture named HMTNet, to simultaneously recognize a person's gender, race and facial beauty score with very promising results.
- We introduce a useful loss function in FBP task for beauty attractiveness regression.

Future Works

- Integrate more sub-tasks (such as facial landmark localization) to embed discriminative geometry information in MTL model.
- Explore more advanced regression loss functions to supervise model training.
- Adopt GANs to generate more portrait images to enhance model learning.
- Explore NAS to search more advanced architecture.

Q&A

Speaker: Jinhai Xiang Huazhong Agricultural University

Thanks

Speaker: Jinhai Xiang Huazhong Agricultural University