

High Performance LLMs From First Principles (2024)

This session:

- Implement efficient inference!
 - What else to learn? (lots!)
- One deep dive: talk numerics

Next/last session:

Pallas deep dive with Sharad Vikram!

My Asks

Please ask lots of questions! Just raise your hand or speak up!

If there are topics you're interested in, message me between sessions.

Join the discord! https://discord.gg/2AWcVatVAw

Do the exercises! Give feedback, ask questions!

Website: https://github.com/rwitten/HighPerfLLMs2024

High Performance Inference (Generate, Batch=1)

- Pass in single token, not multiple tokens.
 - Deal with embedding lookup (jax.lax.dynamic_slice_in_dim)
 - Now NN is silly.
- KV Cache
 - Create KV Cache
 - Read/write from KV cache (jax.lax.dynamic_update_index_in_dim)
 - Fix Attention to work with KV cache
- Time it and compare to memory bandwidth limit.
- Todo (not in class):
 - Quantization!
 - Prefill
 - Batch > 1 (as we saw on rooflines, batch > 1 can give more throughput at the same latency)

Much Much More To Learn!

- Thinking about Performance goes much deeper!
 - Next week, Sharad Vikram, co-inventor of the kernel language Pallas, will explain Pallas!
 - Pallas lets you more directly program the GPUs and TPUs to achieve high performance in cases where pure XLA can't.
- Broadly the other category is ML Modeling (which we haven't covered at all)!
 Many many questions!
 - How should we design the network? What types of layers, what order,
 what mix and what sizes?
 - How should we quantize it?
 - What data should we use?
 - What optimizer should we use?

ML Modeling – try things, measure loss

Typical graph! "Our method" looks good!

Thanks Xu et Al, 2017 for the randomly selected example graph.

ML Modeling – minimizing loss is useful!

TEXT				
Capability	Benchmark Higher is better	Description	Gemini Ultra	GPT-4 API numbers calculated where reported numbers were missing
General	MMLU	Representation of questions in 57 subjects (incl. STEM, humanities, and others)	90.0% CoT@32*	86.4% 5-shot** (reported)
Reasoning	Big-Bench Hard	Diverse set of challenging tasks requiring multi-step reasoning	83.6% 3-shot	83.1% 3-shot (API)
	DROP	Reading comprehension (F1 Score)	82.4 Variable shots	80.9 3-shot (reported)
	HellaSwag	Commonsense reasoning for everyday tasks	87.8% 10-shot*	95.3% 10-shot* (reported)
Math	GSM8K	Basic arithmetic manipulations (incl. Grade School math problems)	94.4% maj1@32	92.0% 5-shot CoT (reported)

Deep dive into "Numerics" – typical mix of Performance and Modeling!

- Generally, it is much faster for computer chips to do math on lower bit representations of numbers than on higher bit representations!
- But lower precision introduces errors so the models learn less quickly (or maybe not at all).
- The first big change was going from float32 (32-bit floats) to bfloat16 (16-bit floats).
 - (Introduced in 2019 by Google!)
- As an example, let's consider summing up a vector.
 - Coding exercise...

Numerics go deep!

- Nowadays, we're training and inferring on models with 8-bit matrix multiplies!
 - For training a ~1.5x
 speedup, very small
 quality gap!
- Typically int8 on TPU and fp8 on GPU.
- (Source Link)

Next/last session:

Pallas deep dive with Sharad Vikram!

Thanks! Ping me (rwitten@google.com) with feedback, suggested topics, etc!