Differential drive! "two wheels on common axis and can spin indup



but the uheels can rotate indep

ナレイヤしものち:

مد شاده



giant tuctle bot!



# topviev

D what if both uncels spin at a velocity of the rable

SO VL=X VR=X

So than look at motion in world

ferrara, sidenamo, any

XE = ( X b/c wheels spin at



pay





2r raa - 2rc m

1 raa ~ F m

more about AAT = ATA=I & A-1 = AT mtx mult: basically the same info AB = C So what about (AB) = CT \*\*\*\*\*\*() AB FATBT (%) MXN NXK NXM EXN SO (AB)T = CT = BT AT

EXM EXM NXM identity Matrix I = [ . . ] SO TA=A I x= X example of an orthogonal transformation: ex · 2 x 2 Rotation matrix:  $A = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$ Want to show perpendicular columns:  $\vec{u} = \begin{bmatrix} \cos \Theta \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} -\sin \Theta \\ \cos \Theta \end{bmatrix}$ Need to show 3 things 1) are they perpendicular? take u. v = - cos O sin O + Sin O cos O = 0 so we know ULV

Differential drive! "two wheels on common axis and can spin indup



but the uheels can rotate indep

ナレイヤしものち:

ar also



giant tuctle bot!



# topviev

D what if both uncels spin at a velocity of the rable

SO VL=X VR=X

So than look at motion in world

ferrara, sidenamo, any

XE = ( X b/c wheels spin at



2 Little bit harder. What is ve= H VL=-K same speak diff directions

pay





2r raa - 2rc m

1 raa ~ F m

more about AAT = ATA=I & A-1 = AT mtx mult: basically the same info AB = C So what about (AB) = CT \*\*\*\*\*\*() AB FATBT MXN NXK NXM EXN FXM EXN NXM identity Matrix I = [ . . ] SO TA=A I x= X example of an orthogonal transformation: ex · 2 x 2 Rotation matrix:  $A = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$ Want to show perpendicular columns:  $\vec{u} = \begin{bmatrix} \cos \Theta \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} -\sin \Theta \\ \cos \Theta \end{bmatrix}$ Need to show 3 things ① are they perpendicular? take u·v = -cos 0 sin 0 + sin 0 cos 0 = ○ so we know ULV

## Also sharpie

Red per Black per Green per



\* thun let's look at Or Suggestion 1: Krd

dimensional analysis gives is.m.m.

let's derive this:

- . Hulle about brobothoughly
  - · Be ax

ble mon speed means quicker

if 1 is big, limar motion is going to be faster

therefore

- directly a to r
- indirectly related to d



3 VR=R VL=0

this one is tricky!

|       | Orthogonal Transformations                                     |
|-------|----------------------------------------------------------------|
|       | · spatial relationships in 3D                                  |
|       | Def - An nxn matrix. A is an orthogonal                        |
|       | transformation I.F.F (if and only if)                          |
|       | - It has n mutually perpendicular                              |
|       | rows or columns with unit length                               |
|       | · 1 rows must be independent                                   |
|       | (can't be multiples of each other)                             |
|       | ex [1 2] → linearly dependent                                  |
|       | [ 2 6] = independent but                                       |
|       | · to be perpendicular,                                         |
|       | the dot product must be 0                                      |
|       | dot product: X·y = 5. xiy;                                     |
|       | ×· y=0 (perp.)                                                 |
|       | · rows/columns must have unit length                           |
|       | $   \times    = \sqrt{\Sigma \times i} = \sqrt{\times \times}$ |
|       |                                                                |
|       | - The rows or columns of A form an                             |
|       | orthonormal basis of R"                                        |
|       | · basic for space - set of vectors that                        |
|       | can combine to create any vector in                            |
|       | a space                                                        |
|       | · basically first point with more words                        |
| * Mo  |                                                                |
| abou  | + A-1 = AT switches the rows                                   |
| trans | pose and columns                                               |
| pag   | ex: [1 2 3] = 25                                               |
|       | 456 36                                                         |

Medranizal percil

Dull Pencil

This is written in pencil
Also sharpic

Red per Black per Green per

Medranizal percil
Dull Pencil

