

CLAIMS

What is claimed is:

- 1 1. A computer server rack, comprising:
 - 2 a plurality of modular server chassis, each chassis configured to hold a plurality of servers
 - 3 and at least one data aggregator coupled to each server in the same chassis via a point to point link;
 - 4 at least one group of AC to DC power supplies;
 - 5 a power bus bar configured to transmit power from the power supplies to a power
 - 6 backplane in each server chassis;
 - 7 wherein DC power is provided to each server in the rack through the power bus bar and the
 - 8 power backplane located in the same chassis.

TOP SECRET//COMINT

- 1 2. The computer server rack of claim 1 further comprising:
 - 2 a second group of AC to DC power supplies configured to transmit power to the power
 - 3 backplane in each server chassis through the power bus bar;
 - 4 wherein DC power from both the first and the second groups of AC to DC power supplies
 - 5 is provided to each server in the rack through the power bus bar and the power backplane located
 - 6 in the same chassis.
- 1 3. The computer server rack of claim 2 wherein servers in a chassis are coupled to a network
- 2 by coupling the aggregator in the same rack to the network.
- 1 4. The computer server rack of claim 3 wherein the aggregator is an IP network switch.

1 5. The computer server rack of claim 3 wherein the aggregator is an Infiniband network
2 switch.

1 6. The computer server rack of claim 3 wherein each server chassis further comprises:
2 a second aggregator coupled to each server in the same chassis via a redundant copy of the
3 point to point link between the first aggregator and each server in the same chassis.

1 7. An method for providing data and power connectivity to a plurality of rack mount servers
2 comprising:

3 housing each server in a chassis;
4 housing a first network switch in each chassis;
5 coupling the first switch to each server in the same chassis with a point to point network
6 link;
7 housing a plurality of chassis in a rack;
8 housing a plurality of power supplies in the rack;
9 transmitting power from the power supplies to a power bus bar;
10 transmitting power from the power bus bar to each chassis; and
11 connecting servers in separate chassis to the same network by coupling the switches in
12 those chassis to one another.

1 8. The method of claim 7 further comprising:
2 housing a second network switch in each chassis; and

3 coupling the second switch to each server in the chassis with the same point to point
4 network link as between each server in the chassis and the first network link.

1 9. The method of claim 8 further comprising:
2 enclosing each server in a blade enclosure.

1 10. The method of claim 9 further comprising:
2 subdividing the power supplies into at least two groups;
3 transmitting power from each group of power supplies to a separate power transmission
4 line in the bus bar;
5 transmitting power from each power transmission line to each server and switch in each
6 chassis through a power backplane at the rear of each chassis.

1 11. The method of claim 9 further comprising:
2 coupling a power connector at the rear of each server blade enclosure with a mating power
3 connector on the power backplane;

1 12. The method of claim 9, further comprising:
2 encapsulating the point to point links in a data backplane; and
3 coupling a data connector at the rear of each server blade enclosure with a mating server
4 data connector on the data backplane.

1 13. The method of claim 12, further comprising:

2 coupling a switch connector at the rear of the switches with a mating switch data connector
3 on the data backplane; and
4 coupling the switches in separate chassis using a data cable.

1 14. The method of claim 7, further comprising:
2 connecting servers in different racks by coupling switches in those racks using a single data
3 cable.

1 15. The method of claim 7, further comprising:
2 connecting servers in a chassis to a network by coupling the switches in those chassis to the
3 network.

1 16. A modular server chassis installable in a rack and configured to hold a plurality of servers
2 comprising:
3 a plurality of server slots, each server slot configured to accept a server encased in a server
4 blade;
5 a plurality of network device slots, each network device slot configured to accept a network
6 device;
7 a data backplane; and
8 a power backplane;
9 wherein network connectivity for each server is provided through point to point links in the
10 data backplane between each server slot and each network device slot.

1 17. The server chassis of claim 16 wherein the server and network device slots are vertical
2 slots.

1 18. The server chassis of claim 16 wherein;
2 the power backplane is configured to transmit power from a plurality of redundant power
3 supplies to each server and network device slot.

1 19. The server chassis of claim 18 wherein;
2 the power backplane further comprises a fuse between the power supply and each device
3 slot.

1 20. The server chassis of claim 18 wherein;
2 the power backplane further comprises a VHDM connector for each server slot and each
3 network device slot configured to mate with a mating connector on the server blades and network
4 devices to transmit power to the server blades and network devices.

1 21. The server chassis of claim 16 wherein the point to point links in the data backplane
2 comprise:
3 an Ethernet link;
4 an infiniband link; and
5 a server management link.

1 22. The server chassis of claim 21 wherein;

2 the data backplane further comprises a VHDM connector for each server slot and network
3 device slot configured to mate with a mating connector on the server blades and network devices to
4 transmit signals along the point to point links between the server blades and network devices.

1 23. The server chassis of claim 17 wherein the server chassis holds 8 server blades, each blade
2 having a 1U width and two switches.

1 24. The server chassis of claim 23 wherein the server chassis has a 6U vertical height.

PCT/EP2019/054703