course registration database.

Shansi Dong A20466369

1. Create at least one or two tables of the HW2 design

- CREATE TABLE student(
- studentid INT PRIMARY KEY NOT NULL,
- name VARCHAR(50) NOT NULL
-);
- CREATE TABLE course(
- courseid INT PRIMARY KEY NOT NULL,
- coursename VARCHAR(50) NOT NULL,
- credits INT NOT NULL
-);

2. Insert at least 10 records (rows) into each table using SQL

queries.

Query Editor Query History

```
INSERT INTO public.student(
        studentid, name)
        VALUES (1,'Fried'),
        (2,'Tim'),
 5
        (3,'Tom'),
        (4, 'Peter'),
 6
        (5,'Reid'),
        (6, 'Creighton'),
        (7,'Ryan'),
10
        (8,'Martin'),
        (9,'Linda'),
11
        (10, 'Anna'),;
12
```


2. Insert at least 10 records (rows) into each table using SQL queries.

3. Modify (add and delete) columns of a table using SQL queries

4	courseid [PK] integer	•	coursename character varying (50)	credits integer	enrolldate character varying (50)
1		1	Introduction to Algorithms	3	[null]
2		2	Data Structure	3	[null]
3		3	Database organization	3	[null]
4	4 Com		Computer Architecture	3	[null]
5	5 Operatin		Operating Systems	3	[null]
6		6	Software Engineering	3	[null]
7		7	Data Integration	3	[null]
8	8 T		Theory of Computation	3	[null]
9	9 Adva		Advanced OS	3	[null]
10	1	10	Advanced Database Organiz	3	[null]

- 4. Delete a column of a table using SQL queries.
- 5. Restore the deleted column to the table by item 4 using SQL queries.

```
Query Editor Query History

1    create table courseidname(
2    courseid Integer, coursename character varying(50));
3    insert into courseidname(
4        select courseid, coursename from course);
5    alter table course drop coursename;
6    select*from course;
```

Data	Output E	xplair	n Messag	es Notifications
4	courseid [PK] integer		credits integer	
1		1	3	
2		2	3	
3		3	3	
4		4	3	
5		5	3	
6		6	3	
7		7	3	
8		8	3	
9		9	3	
10		10	3	

- 4. Delete a column of a table using SQL queries.
- 5. Restore the deleted column to the table by item 4 using SQL queries.

```
alter table course add coursename character varying(50);
update course
set coursename = (select courseidname.coursename from courseidname
where courseidname.courseid= course.courseid);
select*from course;
```

Query Editor Query History

Data	Output Explain	n Message	es Notifications
4	courseid [PK] integer	credits integer	coursename character varying (50)
1	1	3	Introduction to Algorithms
2	2	3	Data Structure
3	3	3	Database organization
4	4	3	Computer Architecture
5	5	3	Operating Systems
6	6	3	Software Engineering
7	7	3	Data Integration
8	8	3	Theory of Computation
9	9	3	Advanced OS
10	10	3	Advanced Database Organiz

- 6. Remove one table using SQL queries.
- 7. Restore the removed table by item 6 using SQL queries.

```
Query Editor
            Query History
     create table student2(studentid INT PRIMARY KEY NOT NULL,
                         name character varying(20) NOT NULL);
     insert into student2(select studentid, name from student);
      DROP TABLE student:
      select*from student2
CREATE TABLE student(
   studentid INT PRIMARY KEY
                                        NOT NULL,
                      VARCHAR(50) NOT NULL);
    name
Query Editor
             Query History
     insert into student(studentid,name)
     select studentid as studentid, name as name from student2
     SELECT*FROM student
```

Data	Output Explain	n Messages Notifications
4	studentid [PK] integer	name character varying (50)
1	1	Fried
2	2	Tim
3	3	Tom
4	4	Peter
5	5	Reid
6	6	Creighton
7	7	Ryan
8	8	Martin
9	9	Linda
10	10	Anna

- 8. Create at least 10 different queries to search data using a table.
- 1. SELECT* FROM student;
- 2. SELECT *FROM course WHERE credit >= 2;
- 3. SELECT DISTINCT courseid, coursename FROM course;
- 4. SELECT name, COUNT (name) FROM STUDENT GROUP BY name;
- 5. SELECT name, age FROM instructor WHERE ORDER BY GRADE DESC LIMIT 1;
- 6. SELECT AVG(age) FROM instructor;
- 7. SELECT MAX(age) FROM instructor;

- 8. SELECT MIN(age) FROM instructor;
- 9. select length(name) from student;
- 10. SELECT *FROM instructor WHERE age BETWEEN 35 AND 45;

8. Create at least 10 different queries to search data using a table.

- 1. SELECT* FROM student;
- 2. SELECT *FROM course WHERE credit >= 2;
- 3. SELECT DISTINCT courseid, coursename FROM course;
- 4. SELECT name, COUNT(name) FROM STUDENT GROUP BY name;
- 5. SELECT name, age FROM instructor WHERE ORDER BY GRADE DESC LIMIT 1;
- 6. SELECT AVG(age) FROM instructor;
- 7. SELECT MAX(age) FROM instructor;

8. SELECT MIN(age) FROM instructor;

- 9. select length(name) from student;
- 10. SELECT *FROM instructor WHERE age BETWEEN 35 Al

Data Output		Expla	in Messages Notificat	ions	
4	instructorid [PK] integer		name character varying (20)	age integer	
1		2	Alice		36
2		3	Eric		42
3		4	Jonathan		37

Matifications

- 8. Create at least 10 different queries to search data using a table.
- 1. SELECT* FROM student;

Data	Output Expla	in Messages Notifications
4	studentid [PK] integer	name character varying (50)
1	1	Fried
2	2	Tim
3	3	Tom
4	4	Peter
5	5	Reid
6	6	Creighton
7	7	Ryan
8	8	Martin
9	9	Linda
10	10	Anna

- 8. Create at least 10 different queries to search data using a table.
- 2. SELECT *FROM course WHERE credits >= 2;

Data	Output Explain	n Message	es Notifications
4	courseid [PK] integer	credits integer	coursename character varying (50)
1	1	3	Introduction to Algorithms
2	2	3	Data Structure
3	3	3	Database organization
4	4	3	Computer Architecture
5	5	3	Operating Systems
6	6	3	Software Engineering
7	7	3	Data Integration
8	8	3	Theory of Computation
9	9	3	Advanced OS
10	10	3	Advanced Database Organiz

- 8. Create at least 10 different queries to search data using a table.
- 3.SELECT DISTINCT courseid, coursename FROM course;

Data	Output Expla	ain	Messages Notifications
4	courseid [PK] integer	•	coursename character varying (50)
1	10	0	Advanced Database Organiz
2		5	Operating Systems
3	1	8	Theory of Computation
4	,	3	Database organization
5		б	Software Engineering
6		7	Data Integration
7	:	2	Data Structure
8	(9	Advanced OS
9	,	1	Introduction to Algorithms
10		4	Computer Architecture

- 8. Create at least 10 different queries to search data using a table.
- 4.SELECT name, COUNT (name) FROM student GROUP BY name;

ı	name				
4	character	varying (50)	count bigint	<u></u>	
1 1	Tim			1	
2	Tom			1	
3 /	Anna			1	
4 F	Peter			1	
5 N	Martin			1	
6 (Creighton			1	
7 l	Linda			1	
8 F	Fried			1	
9 F	Ryan			1	
10 F	Reid			1	

8. Create at least 10 different queries to search data using a table.

5.SELECT name, age FROM instructor ORDER BY instructorid DESC;

Dat	a Output	Explain	Messages		Notification	
4	name character v	arying (20)	<u></u>	age integer	<u></u>	
1	Ray				48	
2	Jonathan				37	
3	Eric				42	
4	Alice				36	
5	George				34	

8. Create at least 10 different queries to search data using a table.

6.SELECT AVG(age) FROM instructor;

7.SELECT MAX(age) FROM instructor;

8.SELECT MIN(age) FROM instructor;

8. Create at least 10 different queries to search data using a

table.

9.select length(name) from student;

10.SELECT *FROM instructor WHERE age BETWEEN 35 AND 45;

Dat	a Output	Expla	in Messages Notificat	ions	
4	instructorid [PK] integer	Ø	name character varying (20)	age integer	Ø,
1		2	Alice		36
2		3	Eric		42
3		4	Jonathan		37