

### OSLO Kwaliteit van Wegen en Wegmarkeringen: Thematische werkgroep 2

Welkom!

Vrijdag 12 mei 2023 Virtuele werkgroep – Microsoft Teams

We starten om 09:05



### Praktische afspraken

Geluid van het publiek is standaard **gedempt**.





Gebruik het **handje** als je iets wilt zeggen.
Interactie wordt aangemoedigd!

Vragen, opmerkingen en voorstellen kunnen via de chatfunctie meegedeeld worden. Interactie wordt aangemoedigd!





ja/nee vragen kunnen beantwoord worden via de chat:

> Akkoord = +1 Niet akkoord = - 1 Onverschillig = 0

### Doel van vandaag

Voorstelling van het sneuvelmodel aan de hand van use cases en een overzicht van de bestaande standaarden die van toepassing zijn.



Presentatie en discussie over de verschillende bestaande standaarden



Voorstelling sneuvelmodel & capteren van input adhv interactieve oefening

# **Agenda**

| 09u05 - 09u10 | Welkom en agenda                      |
|---------------|---------------------------------------|
| 09u10 - 09u15 | Aanleiding en context                 |
| 09u15 - 09u25 | Basis Implementatiemodel              |
| 09u25 - 09u40 | Overzicht van de aanpassingen         |
| 09u40 - 09u50 | Onze aanpak                           |
| 09u50 - 10u00 | Pauze                                 |
| 10u00 - 11u30 | Sneuvelmodel adhv bestaande use cases |
| 11u30 - 11u45 | Q&A en volgende stappen               |

# **Aanleiding en Context**



# **MLaaS**



### Samengevat

Wat? Het in kaart brengen van wegen, markeringen en materialisatie en het herkennen

van hun kwaliteitsaspecten.

Hoe? Door het gebruiken van machine learning algoritmes die data genereren op basis

van fotomateriaal.

Waarom? De verzamelde data wordt gebruikt in zowel operationele processen als bij

het nemen van beleidsbeslissingen.

### Samengevat





# Open Standaarden voor Linkende Organisaties (OSLO)





### **Bottom-up**





# **Basis Implementatiemodel**



### Scope MLaaS



# **Scope MLaaS**

| Classificatie + Vaststelling |                                                        |                  | Doel      | Kwaliteit / Hu                                    | uidige staat ir           |
|------------------------------|--------------------------------------------------------|------------------|-----------|---------------------------------------------------|---------------------------|
| Wegen                        | Wegmarkering                                           | Materialisatie   | <b>——</b> | kaart brengen van de<br>Wegen (mbt materialisatie |                           |
| Rijbaan                      | Pijlen, stoplijn,<br>haaientanden                      | Asfalt, beton,   |           | •                                                 | nateriansatie<br>arkering |
| Trottoir                     | Witte lijnen,<br>stippellijnen,                        | Klinkers, beton, |           |                                                   | Gevolg                    |
| Fietspad                     | Fietssuggestiestroken<br>, Fietser-markering           | Asfalt, beton,   |           | ,                                                 | , and the second          |
| Voetweg                      | Zebrapaden                                             | Klinkers, beton, |           | Herstelling en/of                                 |                           |
| Parkeerfaciliteiten          | Parkeervakken<br>(mindervaliden),<br>Elektrisch laden, |                  |           |                                                   | nilderen                  |
|                              |                                                        |                  |           |                                                   |                           |

### Bestaande standaarden

| Concepten                                             | Bestaande standaard            |                                     |
|-------------------------------------------------------|--------------------------------|-------------------------------------|
|                                                       | Optie 1:                       | Optie 2:                            |
| Wegen, materialisatie,  Markeringen                   | OSLO:<br>Openbaar Domein       | AWV OTL: Verharding en Wegfundering |
| Markeningen                                           |                                | AWV OTL: Signalisatie               |
| Observaties van objecten                              | OSLO: Observaties en Metingen  |                                     |
| Sensoren (camera's)                                   | OSLO: Sensoren en bemonstering |                                     |
| Kwaliteitsresultaten, kwaliteitskenmerken, procedures | OSLO: Datakwaliteit            |                                     |

OTL: ObjectTypenBibliotheek van alle assets/infrastructuurobjecten

### Indeling model



# Overzicht van de aanpassingen



### Overzicht van de aanpassingen

- Misvattingen
  - Geometrie Artefact (AWV)
  - Positionering AI
- Klassen
  - LIDARpuntenwolk als RuimtelijkbemonsteringsObject
  - MarkeringKOD (m.b.t. kleuren)
- Relaties
  - Verwijdering ligt-op relatie bij Laag

### **Geometrie Artefact (AWV)**



### GeometrieType



Bij instantiatie (in bvb csv of excel) worden de waarden als wkt-string opgenomen in de 'geometry' kolom.

### Systeem, Platform en Toestel



Positionering AI in combinatie met camera



### LIDARpuntenwolk



Definitie: Drie-dimensionele set van meetpunten verkregen door een actief remote sensing systeem vh type LIDAR.

Gebruik: Bv om een 3D-beeld van het terrein op te bouwen en gebouwen, vegetatie etc te detecteren.

### **MarkeringKOD**

Uitbreiding van de codelijst AWV laat toe om meerdere kleuren die van toepassing zijn voor Roeselare te modelleren.



## **Data**



### **Data Wegmarkeringen**

- Data Wegmarkeringen
  - Output:
    - Aanduiding soort 'markering'
      - Classificatie tussen verschillende markeringen op basis van coördinaten.
      - Is er een geografische overlay? Zodoende een inschatting kan gemaakt worden welke openbaar domein objecten er binnen dezelfde geometrie liggen.
    - Kwaliteitsresultaat
      - Hoe wordt de kwaliteit van de markeringen verder gespecificeerd?
  - Vragen:
    - Betekenis van 'occluded'?
    - Wordt de 'id' ook voor andere data gebruikt?

```
"type" : "Feature",

"geometry" : {

    "type" : "LineString",

    "coordinates" : [

        [ 61285.4400000004, 181243.785 ],

        [ 61280.949, 181241.4329999997 ]

    ]

},

"properties" : {

    "id" : 349,

    "output" : "attention-line",

    "occluded" : 0,

    "Shape_Leng" : 5.06961389117
}
```

### **Data Al**

- Al (Software)
  - Hoe wordt de accuraatheid van de Al of Machine Learning uitgedrukt?
    - Is hiervoor werkelijke data beschikbaar?
  - o Toekomstige verwachtingen?
  - Concept 'Versionering van een software applicatie' is nog niet opgenomen binnen de huidige OSLO-trajecten. Wel reeds van toepassing binnen andere ontologiën (vb. Schema.org).
    - Vanuit OSLO Verkeersmetigen is hiervoor ook vraag naar, waardoor een standaard manier van semantisch modellering uitgewerkt wordt.
    - Binnen dit implementatiemodel kan de link met bv schema.org gelegd worden.



### **Use Case**





Stad Roeselare wil via luchtfoto's de kwaliteit van de Westlaan in kaart brengen. Hiervoor wordt gekeken naar de kwaliteit van de wegen, wegmarkering en materialisatie. Hiervoor wordt een machine learning algoritme gebruikt om deze kwaliteitsaspecten in kaart te brengen.

Stad Roeselare maakt gebruik van een algoritme om de kwaliteit van de Westlaan in kaart te brengen.





#### KwaliteitsObservatieprocedure

Specificatiedocument met info over de software (AI).

#### Kwaliteitskenmerk

Welk type kenmerken worden opgenomen m.b.t. kwaliteit?

#### KwaliteitsSensor

De AI (Machine Learning) die van toepassing is om de kwaliteit in kaart te brengen.

Stad Roeselare laat een helikopter met gemonteerde LIDAR 3D scanner overvliegen om een 3D beeld van **de Westlaan** te genereren.





#### LIDARpuntenwolk

Drie-dimensionele set van meetpunten verkregen door een actief remote sensing systeem vh type LIDAR.

Om de kwaliteit in kaart te brengen, moet een duidelijk onderscheid gemaakt worden tussen **de markeringen**, de weg en de materialisatie van de Westlaan.





#### Wat is een Markering?

Abstracte als noemer voor de verschillende types van markeringen.

#### Waarom MarkeringKOD?

Deze klasse zorgt voor een uitbreiding van het modellatie bij AWV om te kunnen voldoen aan de eisen van Roeselare. Momenteel opgenomen om codelijst van kleuren uit te breiden.

Om de kwaliteit in kaart te brengen, moet een duidelijk onderscheid gemaakt worden tussen de markeringen, de weg en de materialisatie van de Westlaan.





#### **AWV: OTL**

#### Wat is een Laag?

Abstracte voor de gemeenschappelijke eigenschappen van de onderliggende verhardingsen funderings-onderdelen.

#### **Openbaar Domein**

#### Wat is een Deel?

Afzonderlijk te onderscheiden element dat ofwel direct of indirect bevestigd is aan het aardoppervlak.

Op basis van **AI** worden de **kwaliteitskenmerken** in kaart gebracht. Dit **resultaat** kan finaal leiden tot beleidsbeslissingen.





#### Wat is een KwaliteitsResultaat?

Het resultaat van de evaluatie van de KwaliteitsObservatie.

- KwantitatiefResultaat
   De waarden of informatie over de waarden verkregen door het toepassen van een kwaliteitsmaat
- Conformiteitsresultaat Informatie over het resultaat van de evaluatie van de verkregen waarde(n) volgens een gespecifieerd conformiteitskwaliteitsniveau.
- BeschrijvendResultaat

  Een subjectieve evaluatie van een Element in tekstuele vorm.

### **Sneuvelmodel**





### **Mobiele Sensor Units**



### **Mobiele Sensor Units**

KPMG: Uitgevoerde analyse van bestaande urban projecten m.b.t. mobiele sensor units

Use Case RSL: Plaatsen van sensoren op een rijdend voertuig, waarbij de captatie van gegevens zo breed mogelijk wordt gelaten.

Scope Sessies OSLO: Duiding rond data-standaard ODALA Air & Water

Link met implementatiemodel van MLaaS?

Rapport use cases

### **ODALA Air & Water**

- ODALA Air & Water
  - Air Quality
  - Water Quality
  - o OSLO: Waterkwaliteit
- Gap? Nog geen Nederlandse standaard voor luchtkwaliteit



### Link met implementatie model MLaaS?

- Structuur van de modellen blijft gelijkaardig
- Belangrijk om duidelijkheid te scheppen in:
  - Wat is het onderzocht object?
  - Hoe wordt het begrensd deel van het geobserveerd object omschreven? (vlak, lijn, puntenwolk...)
  - Welke kenmerken worden onderzocht?
  - o Hoe wordt het resultaat tot uiting gebracht?

| Object | Deel vh Object | Observatie | Sensor &<br>Kenmerk | Resultaat |
|--------|----------------|------------|---------------------|-----------|
|        |                |            |                     |           |

### Mural oefening



- Welke use cases zien jullie binnen MSU?
  - o Bijvoorbeeld: Ik wil een overzicht van alle borden in de stad
- Welke resultaten willen jullie hieruithalen en hoe willen jullie deze uitdrukken?
  - Bijvoorbeeld: Dit overzicht wil ik kunnen vergelijken met de inventaris om ontbrekende borden te identificeren

# **Q&A en Next Steps**



### Volgende stappen OSLO



Verwerken van alle input uit de thematische werkgroep.



Rondsturen van een verslag van deze werkgroep. Feedback is zeker welkom.



Model duiden a.d.h.v. datavoorbeeld

### Volgende stappen Roeselare



Werkelijke data voorzien m.b.t. specificaties van de AI, output gelinkt aan kwaliteit...



Helder krijgen hoe de kwaliteit in kaart dient gebracht te worden via welke kenmerken voor markeringen en wegen/materialisatie.

### **Planning**

Thematische werkgroep 3 op woensdag **28 juni 2023** (09h00 - 12h00)



### Feedback & Samenwerking



Feedback kan per e-mail worden gegeven aan de volgende personen:

- digitaal.vlaanderen@vlaanderen.be
- laurens.vercauteren@vlaanderen.be
- arne.scheldeman@vlaanderen.be
- lorenzo.vylders@vlaanderen.be



Feedback/input kan gegeven worden via GitHub:

https://github.com/Informatievlaanderen/ OSLOthema-wegenEnWegmarkeringen Via het aanmaken van issues

#### Waarom doen we...?

Moeten we niet ... toevoegen?

Kunnen we niet beter ...?



Hoe zit het met ...?

### **Bedankt**

