

♠ Matrix-Vector Products

1 Why

TODO

2 Definition

The matrix-vector product between an $m \times n$ -matrix and an n-vector is the result of the linear combination of the columns of the matrix with the sequence of scalars in the vector. So the matrix-vector product is an m-vector.

2.1 Notation

Let C be a nonempty set. Let $A \in C^{m \times n}$ and let $x \in C^n$. We denote the matrix-vector product of A with x by Ax, read "A x".

If we denote Ax by b, then

$$b_i = \sum_{j=1}^n a_{ij} x_j$$

for $i \in \{1, 2, ..., m\}$. Let

$$A = \left[egin{array}{c} a_1^T \ a_2^T \ dots \ a_m^T \end{array}
ight]$$

Or, if a_i^T is the *i*th row of A, then

$$b_i = a_i^T x$$

for $i \in \{1, 2, ..., m\}$.

