



#### **ADVANCED DEEP LEARNING (I-ILIA-202)**

CHAPTER 03: RECURRENT NEURAL NETWORKS (RNN)



Sidi Ahmed Mahmoudi





### **PLAN**

Introduction

Recurrent Neural Networks (RNNs)

Vanish Gradient Problem

III. Long Short-Term Memory networks (LSTM)

Conclusion

### **PLAN**

#### Introduction

Recurrent Neural Networks (RNNs)

Vanish Gradient Problem

III. Long Short-Term Memory networks (LSTM)

Conclusion

#### Introduction

- MLP: solve several problems (regression, classification, etc.)
- Convolutional Neural Networks (CNN): improve the results by considering the spatial information of pixels
- Traditional networks: input examples fed to the network → output
- Some problems such as speech recognition require a system that need to store and use the context information
- Example: If I say, "How are". The prediction should consider the **two ordered** inputs "how" and "are" to predict the value of "You"

## Introduction



### Feedforward neural network





### **PLAN**

Introduction

I. Recurrent Neural Networks (RNNs)

. Vanish Gradient Problem

III. Long Short-Term Memory networks (LSTM)

Conclusion

## Feedforward neural network



- **Problem :** predict the next word in a sentence ?
- Input : How
- Real output : are you

Question: what kind of deep neural network can you propose to

solve this problem?











#### Vanilla recurrent neural network



### Vanilla recurrent neural network



# Deep neural networks: reminder



Weights matrix

**Pré-activation** 

**Activation 1** 

**Activation 2** 

```
>>> W = np.random.randn(3, 4)
>>> b = np.random.randn(4)
>>> x = np.random.randn(3)
>>> np.dot(x, W) + b
array([1.87339572, 2.07677249, 1.23722445, 3.25528786])
>>> sigmoid(np.dot(x, W) + b)
array([0.8668507, 0.88862501, 0.77508052, 0.96286266])
>>> np.tanh(np.dot(x, W) + b)
array([0.95390098, 0.96906863, 0.84466214, 0.99702917])
```

#### Vanilla recurrent neural network



$$h_t = f_W(h_{t-1}, x_t)$$
  $\mid$   $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ 

# **RNN**: training



# **RNN**: training



Vanish gradient problem

### **PLAN**

Introduction

Recurrent Neural Networks (RNNs)

II. Vanish Gradient Problem

III. Long Short-Term Memory networks (LSTM)

Conclusion

## The Vanish Gradient Problem



RNN: gradient multiplicated by several small gradients: small gradient values

## **Vanish Gradient Problem**



Vanish gradient: problem when using big neural network

# **The Vanish Gradient Problem**

$$w_{t+1} = w_t - \alpha \frac{\partial L}{\partial w_t}$$



What do you remark?

### **Activations functions**



What do you remark?

## **The Vanish Gradient Problem**

The solution: LSTM

## Vanish Gradient Problem



### **PLAN**

Introduction

Recurrent Neural Networks (RNNs)

Vanish Gradient Problem

III. Long Short-Term Memory networks (LSTM)

Conclusion

### **LSTM**



- Partial solution of vanish gradient problem
- Solution based on memory
- More complex neural network

### **LSTM**



#### Three main operations:

- Forget Gate: ability of forget an information
- Input Gate: ability to add input information
- Output Gate: output considering Forget Gate and Input Gate



```
>>> c_prev.shape
(5,)
>>> h_prev.shape
(5,) <sup>I</sup>
>>> x.shape
(4,)
```



Concatenation >>> x\_h\_prev = np.hstack((x, h\_prev)) >>> x\_h\_prev.shape (9,)



```
>>> Wf.shape
(9, 5)
>>> bf.shape
(5,)
>>> ft = sigmoid(np.dot(x_h_prev, Wf) + bf)
>>> ft.shape
(5,)
```



```
>>> ft
array([0.00605241, 0.02419927, 0.12958965, 0.83141943,
0.5440948 ])
>>> c_prev
array([ 0.38000574, 1.13691447, 1.57618308, -1.01247179,
1.02257568])
```



```
>>> c_prev_forgot = ft<sup>I*</sup>c_prev
>>> c_prev_forgot.shape
(5,)
>>> c_prev_forgot.shape
(5,)
>>>
```



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

```
>>> Ĉt = np.tanh(np.dot(x_h_prev, Wc) + bc)
>>> Ĉt
array([-0.17806474, -0.99993564, 0.99164565, 0.92774236,
-0.99527522])
>>> Ĉt.shape
(5,)
```



$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

```
>>> it = sigmoid(np.dot(x_h_prev, Wi) + bi)
>>> it
array([0.00798643, 0.92300084, 0.22905397, 0.27818745,
0.96195338])
>>> it.shape
(5,)
```



$$\begin{split} i_t &= \sigma\left(W_i \!\cdot\! [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \!\cdot\! [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

```
>>> new_c = it*Ĉt
>>> new_c
array([-0.0014221, -0.92294144, 0.22714037, 0.25808628,
-0.95740836])
>>> new_c.shape
(5,)
```



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

```
>>> c = c_prev*ft + it*Ĉt
>>> c.shape
(5,)
>>> c
```

# **LSTM**: Output Gate



$$o_t \subseteq \sigma(W_o[h_{t-1}, x_t] + b_o)$$
  
 $h_t = o_t * \tanh(C_t)$ 

```
>>> ot = sigmoid(np.dot(x_h_prev, Wo) + bo)
>>> ot.shape
(5,)
>>> h = ot * np.tanh(c)
>>> h.shape
(5,)
```

### **LSTM**: Overview

#### Long-Short Term Memory module: LSTM



long-short term memory modules used in an RNN



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Eugenio Culurciello © 2016

## RNN vs. LSTM



## Conclusion

- RNN: consider temporal information
- Vanish gradient problem
- LSTM: select only pertinent information
- LSTM: partial solution of Vanish problem
- RNN networks : high intensive in computation & Vanish Gradient
- Transformers: new DNN architecture for sequence & low intensive

# RNN use cas applications

#### **Energy**

- Energy consumption prediction
- Electrical daily price prediction
- Energy generation prediction

#### Industry 4.0:

Predictive maintenance, process quality control, etc.

#### Computer vision and video surveillance:

Actions recognition, security, etc.

#### **Text Analysis:**

Text classification, text generation, etc.

#### Etc.



# **Questions?**

# Thank you