Multiplexer, dekóder, komparátor

Megoldások

1. feladat

a.) V1.0 - F = 1, ha több 1-es van mint 0 (3 db 1-es kell).

$$F(A,B,C,D) = A \cdot B \cdot C + A \cdot B \cdot D + A \cdot C \cdot D + B \cdot C \cdot D$$

b.) V2.0 - F = 1, ha A=1 és még valaki 1, vagy A=0 de B,C,D = 1.

$$F(A,B,C,D) = A \cdot B + A \cdot C + A \cdot D + B \cdot C \cdot D$$

2. feladat.

Teljes összeadó

$$\begin{array}{ccc} - \begin{bmatrix} A & & S \\ - B & & \\ - C_{in} & C_{out} \end{bmatrix} - \end{array}$$

$$S = A \oplus \ B \oplus \ C_{in}$$

$$C_{out} = A \cdot B + A \cdot C_{in} + B \cdot C_{in}$$

\boldsymbol{C}		C_{in}	
Cout	0	0	
	0	1	
٨	1	1	B
A	0	1	

$$\begin{array}{c|c} & \underline{B} \\ \hline 0 & C_{in} \\ A & C_{in} & 1 \end{array}$$

3. feladat

a.) Írjuk fel az értékeket binárisan:

	T ₇	T ₆	T ₅	T ₄	T ₃	T ₂	T_1	T ₀	
68	0	1	0	0	0	1	0	0	
69	0	1	0	0	0	1	0	1	
70	0	1	0	0	0	1	1	0	
71	0	1	0	0	0	1	1	1	
-56	1	1	0	0	1	0	0	0	
-55	1	1	0	0	1	0	0	1	
-54	1	1	0	0	1	0	1	0	
-53	1	1	0	0	1	0	1	1	
	*	k	onstai	ns	*	*	2	K	

3/8-as dekóder

 $\begin{array}{c|c} S_0 & \overline{O_0} \\ S_1 & \overline{O_1} \\ S_2 & \overline{O_2} \\ & \overline{O_3} \\ & \overline{O_4} \\ \overline{E_1} & \overline{O_5} \\ \overline{E_2} & \overline{O_6} \\ E_3 & \overline{O_7} \end{array}$

 T_0 , T_1 – nem kell bekötni

 T_4 , T_5 , T_6 – engedélyező benenetek

 T_2 , T_3 , T_7 – dekóder bemenetek

A tartományon belül vagyunk ha az O_1 (001) vagy O_6 (110) kimenet aktív

0-ban aktív kimenetek: a VAGY kapcsolat megvalósítása NAND kapuval!

b.) [64 ... 79] és [-64 ... -49]

T_7	T_6	T ₅	T ₄	T ₃	T ₂	T_1	T_0	
0	1	0	0	0	0	0	0	64
0	1	0	0		•	•	•	
0	1	0	0	1	1	1	1	79
1	1	0	0	0	0	0	0	-64
1	1	0	0		•	•		
1	1	0	0	1	1	1	1	-49

4. feladat

\mathbf{Z}_7	\mathbb{Z}_6	\mathbb{Z}_5	\mathbb{Z}_4	\mathbb{Z}_3	\mathbb{Z}_2	\mathbf{Z}_1	\mathbf{Z}_0	Decimális		Hexa	
0	1	0	0	0	X	X	X	64 71	64 71	40h 47h	40h 47h
0	1	0	0	1	X	X	X	72 79	72 87	48h 4Fh	48h 57h
0	1	0	1	0	X	X	X	80 87		50h 57h	4011 3/11

5. feladat

Y-t egészítsük ki 4 bites 2-es komplemensre:

a 4. bit 0 (Y pozitív szám)

Kettes komplemes komparálás:

az előjelbiteket felcseréljük.

Ha X negatív, Y biztos nagyobb.

Ha X pozitív → 3 bites pozitív szám:

komparáljuk Y-nal előjel nélküli számként.

c.)

