Appendix A 757

Table A.14 Quantiles of the Kolmogorov-Smirnov Test Statistics D_n

The table gives the upper $100(1-\alpha)\%$ quantile $\hat{d}_{n,1-\alpha}$ of the sampling distribution of \hat{D}_n such that $P(\hat{D}_n \leq \hat{d}_{n,1-\alpha}) = 1-\alpha$ or $P(\hat{D}_n \geq \hat{d}_{n,1-\alpha}) = \alpha$ (e.g., for n=20 and $\alpha=0.05$, the one-tail critical region is $\mathcal{R} = \{\hat{d}_{20}|\hat{d}_{20} \geq \hat{d}_{20,0.95} = 0.265\}$; the two-tail critical region is $\mathcal{R} = \{\hat{d}_{20}|\hat{d}_{20} \geq \hat{d}_{20,0.95} = 0.294\}$).

One-Sided Test											
$1-\alpha=$	0.90	0.95	0.975	0.99	0.995	$1 - \alpha =$	0.90	0.95	0.975	0.99	0.995
Two-Sided Test											
$1-\alpha =$	0.80	0.90	0.95	0.98	0.99	$1 - \alpha =$	0.80	0.90	0.95	0.98	0.99
n = 1	0.900	0.950	0.975	0.990	0.995	n = 21	0.226	0.259	0.287	0.321	0.344
2	0.684	0.776	0.842	0.900	0.929	22	0.221	0.253	0.281	0.314	0.337
3	0.565	0.636	0.708	0.785	0.829	23	0.216	0.247	0.275	0.307	0.330
4	0.493	0.565	0.624	0.689	0.734	24	0.212	0.242	0.269	0.301	0.323
5	0.447	0.509	0.563	0.627	0.669	25	0.208	0.238	0.264	0.295	0.317
6	0.410	0.468	0.519	0.577	0.617	26	0.204	0.233	0.259	0.290	0.311
7	0.381	0.436	0.483	0.538	0.576	27	0.200	0.229	0.254	0.284	0.305
8	0.358	0.410	0.454	0.507	0.542	28	0.197	0.225	0.250	0.279	0.300
9	0.339	0.387	0.430	0.480	0.513	29	0.193	0.221	0.246	0.275	0.295
10	0.323	0.369	0.409	0.457	0.489	30	0.190	0.218	0.242	0.270	0.290
11	0.308	0.352	0.391	0.437	0.468	31	0.187	0.214	0.238	0.266	0.285
12	0.296	0.338	0.375	0.419	0.449	32	0.184	0.211	0.234	0.262	0.281
13	0.285	0.325	0.361	0.404	0.432	33	0.182	0.208	0.231	0.258	0.277
14	0.275	0.314	0.349	0.390	0.418	34	0.179	0.205	0.227	0.254	0.273
15	0.266	0.304	0.338	0.377	0.404	35	0.177	0.202	0.224	0.251	0.269
16	0.258	0.295	0.327	0.366	0.392	36	0.174	0.199	0.221	0.247	0.265
17	0.250	0.286	0.318	0.355	0.381	37	0.172	0.196	0.218	0.244	0.262
18	0.244	0.279	0.309	0.346	0.371	38	0.170	0.194	0.215	0.241	0.258
19	0.237	0.271	0.301	0.337	0.361	39	0.168	0.191	0.213	0.238	0.255
20	0.232	0.265	0.294	0.329	0.352	40	0.165	0.189	0.210	0.235	0.252

Adapted from L.H. Miller, "Tables of Percentage Points of Kolmogorov Statistics," *JASA*, 51, 1956, 111–121. Reprinted with permission from *The Journal of the American Statistical Association*. Copyright [1956] by the American Statistical Association. All rights reserved.

Table A.15 Quantiles of the Kolmogorov-Smirnov Test Statistic $D_{n,m}$ When n = m

The table gives the upper $100(1-\alpha)$ % quantile $\hat{d}_{n,m}$ of the sampling distribution of $\hat{D}_{n,m}$ such that $P(\hat{D}_{n,m} \leq \hat{d}_{n,m,1-\alpha}) = 1-\alpha$ or $P(\hat{D}_{n,m} \geq \hat{d}_{n,m,1-\alpha}) = \alpha$ (e.g., for n=m=15 and $\alpha=0.05$, the one-tail critical region is $\mathcal{R} = \{\hat{d}_{15,15}|\hat{d}_{15,15} \geq \hat{d}_{15,15,0.95} = 0.40\}$; the two-tail critical region is $\mathcal{R} = \{\hat{d}_{15,15}|\hat{d}_{15,15} \geq \hat{d}_{15,15,0.95} = 0.467\}$).

One-Sided Test											
$1-\alpha=$	0.90	0.95	0.975	0.99	0.995	$1-\alpha =$	0.90	0.95	0.975	0.99	0.995
Two-Sided Test											
$1-\alpha =$	0.80	0.90	0.95	0.98	0.99	$1-\alpha =$	0.80	0.90	0.95	0.98	0.99
n = 3	2/3	2/3				n = 20	6/20	7/20	8/20	9/20	10/20
4	3/4	3/4	3/4			21	6/21	7/21	8/21	9/21	10/21
5	3/5	3/5	4/5	4/5	4/5	22	7/22	8/22	8/22	10/22	10/22
6	3/6	4/6	4/6	5/6	5/6	23	7/23	8/23	9/23	10/23	10/23
7	4/7	4/7	5/7	5/7	5/7	24	7/24	8/24	9/24	10/24	11/24
8	4/8	4/8	5/8	5/8	6/8	25	7/25	8/25	9/25	10/25	11/25
9	4/9	5/9	5/9	6/9	6/9	26	7/26	8/26	9/26	10/26	11/26
10	4/10	5/10	6/10	6/10	7/10	27	7/27	8/27	9/27	11/27	11/27
11	5/11	5/11	6/11	7/11	7/11	28	8/28	9/28	10/28	11/28	12/28
12	5/12	5/12	6/12	7/12	7/12	29	8/29	9/29	10/29	11/29	12/29
13	5/13	6/13	6/13	7/13	8/13	30	8/30	9/30	10/30	11/30	12/30
14	5/14	6/14	7/14	7/14	8/14	31	8/31	9/31	10/31	11/31	12/31
15	5/15	6/15	7/15	8/15	8/15	32	8/32	9/32	10/32	12/32	12/32
16	6/16	6/16	6/25	8/16	12/15	34	8/34	10/34	11/34	12/34	13/34
17	9/29	7/17	7/17	8/22	9/17	36	9/36	10/36	11/36	12/36	13/36
18	6/18	7/18	8/18	9/18	9/19	38	9/38	10/38	11/38	13/38	14/38
19	6/19	7/19	8/19	9/19	9/19	40	9/40	10/40	12/40	13/40	14/40
						Approximation	1.52	1.73	1.92	2.15	2.30
							\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}
						for $n > 40$:					

Adapted from Z.W. Birnbaum and R.A. Hall, "Small Sample Distribution for Multisample Statistics of the Smirnov Type," *The Annals of Mathematical Statistics*, 31, 1960, 710–720, with kind permission from the Institute of Mathematical Statistics.

Appendix A 759

Table A.16 Quantiles of the Kolmogorov-Smirnov Test Statistic $D_{n,m}$ When $n \neq m^*$

The table gives the upper $100(1-\alpha)$ % quantile $\hat{d}_{n,m}$ of the sampling distribution of $\hat{D}_{n,m}$ such that $P(\hat{D}_{n,m} \leq \hat{d}_{n,m,1-\alpha}) = 1 - \alpha$ or $P(\hat{D}_{n,m} \geq \hat{d}_{n,m,1-\alpha}) = \alpha$ (e.g., for n = 6, m = 10, and $\alpha = 0.05$, the one-tail critical region is $\Re = \{\hat{d}_{6,10}|\hat{d}_{6,10} \geq \hat{d}_{6,10,0.95} = 0.567\}$; the two-tail critical region is $\Re = \{\hat{d}_{6,10}|\hat{d}_{6,10} \geq \hat{d}_{6,10,0.95} = 0.633\}$).

One-Sided Test	1 – α =	0.90	0.95	0.975	0.99	0.995
Two-Sided Test	1 – α =	0.80	0.90	0.950	0.98	0.990
n = 1	m = 9	17/18				
	10	9/10				
n = 2	3	5/6				
	4	3/4				
	5	4/5	4/5			
	6	5/6	5/6			
	7	5/7	6/7			
	8	3/4	7/8	7/8		
	9	7/9	8/9	8/9		
	10	7/10	4/5	9/10		
n = 3	m=4	3/4	3/4			
	5	2/3	4/5	4/5		
	6	2/3	2/3	5/6		
	7	2/3	5/7	6/7	6/7	
	8	5/8	3/4	3/4	7/8	
	9	2/3	2/3	7/9	8/9	8/9
	10	3/5	7/10	4/5	9/10	9/10
	12	7/12	2/3	3/4	5/6	11/12
n=4	m=5	3/5	3/4	4/5	4/5	
	6	7/12	2/3	3/4	5/6	5/6
	7	17/28	5/7	3/4	6/7	6/7
	8	5/8	5/8	3/4	7/8	7/8
	9	5/9	2/3	3/4	7/9	8/9
	10	11/20	13/20	7/10	4/5	4/5
	12	7/12	2/3	2/3	3/4	5/6
	16	9/16	5/8	11/16	3/4	13/16
n=5	m=6	3/5	2/3	2/3	5/6	5/6
	7	4/7	23/35	5/7	29/35	6/7
	8	11/20	5/8	27/40	4/5	4/5
	9	5/9	3/5	31/45	7/9	4/5
	10	1/2	3/5	7/10	7/10	4/5
	15	8/15	3/5	2/3	11/15	11/15
	20	1/2	11/20	3/5	7/10	3/4

Table A.16 (Contd.)

One-Sided Test	1 – α =	0.90	0.95	0.975	0.99	0.995
Two-Sided Test	$1 - \alpha =$	0.80	0.90	0.950	0.98	0.990
n = 6	m = 7	23/42	4/7	29/42	5/7	5/6
	8	1/2	7/12	2/3	3/4	3/4
	9	1/2	5/9	2/3	13/18	7/9
	10	1/2	17/30	19/30	7/10	11/15
	12	1/2	7/12	7/12	2/3	3/4
	18	4/9	5/9	11/18	2/3	13/18
	24	11/24	1/2	7/12	5/8	2/3
n = 7	m = 8	27/56	33/56	5/8	41/56	3/4
	9	31/63	5/9	40/63	5/7	47/63
	10	33/70	39/70	43/70	7/10	5/7
	14	3/7	1/2	4/7	9/14	5/7
	28	3/7	13/28	15/28	17/28	9/14
n = 8	m=9	4/9	13/24	5/8	2/3	3/4
	10	19/40	21/40	23/40	27/40	7/10
	12	11/24	1/2	7/12	5/8	2/3
	16	7/16	1/2	9/16	5/8	5/8
	32	13/32	7/16	1/2	9/16	19/32
n=9	m=10	7/15	1/2	26/45	2/3	31/45
	12	4/9	1/2	5/9	11/18	2/3
	15	19/45	22/45	8/15	3/5	29/45
	18	7/18	4/9	1/2	5/9	11/18
	36	13/36	5/12	17/36	19/36	5/9
n = 10	m = 15	2/5	7/15	1/2	17/30	19/30
	20	2/5	9/20	1/2	11/20	3/5
	40	7/20	2/5	9/20	1/2	
n = 12	m = 15	23/60	9/20	1/2	11/20	7/12
	16	3/8	7/16	23/48	13/24	7/12
	18	13/36	5/12	17/36	19/36	5/9
	20	11/30	5/12	7/15	31/60	17/30
n = 15	m = 20	7/20	2/5	13/30	29/60	31/60
n = 16	m=20	27/80	31/80	17/40	19/40	41/80
Large-sample approximation		$1.07\sqrt{\frac{m+n}{mn}}$	$1.22\sqrt{\frac{m+n}{mn}}$	$1.36\sqrt{\frac{m+n}{mn}}$	$1.52\sqrt{\frac{m+n}{mn}}$	$1.63\sqrt{\frac{m+n}{mn}}$

^{*}Let n be the smaller sample size and let m be the larger sample size. If this table does not cover n and m, use the large sample approximation.

Adapted from F.J. Massey, "Distribution Table for the Deviation Between Two Sample Cumulatives," *The Annals of Mathematical Statistics*, 23, 1952, 435–441. Corrections appear in Davis, L.S. (1958), Mathematical Tables and other Aids to Computation, 12, 1952, 262–263, with kind permission from the Institute of Mathematical Statistics.