Московский физико-технический институт

Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне.

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы**: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

$$\mathrm{div}\;\mathbf{E}=4\pi\rho,$$

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ arphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. \tag{4}$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $son \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего по-тенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ – электронный ток насыщения, а минимальное $I_{i\text{H}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1=-I_2=I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{ii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} \ln \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и $\it геттерный$ узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка ($\it retternormal retternormal$

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр

R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Ход работы

Измеряем напряжение зажигания в лампе: $U_{\text{заж}} = 25.7 \pm 0.2 \text{ B}$. С помощью вольтметра V_1 и амперметра A_1 снимаем BAX разряда $U_1 = f(I_p)$ для тока в диапазоне $0.5 \div 5$ мА (см. Таблица 1). Построим график:

По наклону определим максимальное сопротивление заряда (с учётом того, что вольтметр подключен через делитель напряжения с коэффициентом 10): $R_{max} = (7.6 \pm 0.2) \cdot 10^4 \text{Om}$.

С помощью вольтмертра V_2 и амперметра A_2 снимем ВАХ двойного зонда $I_2=f(U_2)$ при фиксированного токе разряда I_p в трубке в диапозоне $-25 \div 25$ В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для $I_p=5$ мА, $I_p=3$ мА и $I_p=1.5$ мА (Таблица 2).

Результаты измерений представим на графиках с отцентрованными $\left(I_0 = \frac{1}{2} \sum I\right)$:

Приближая кривые формулой $I = A \operatorname{th}(BU) + CU$, найдём токи насыщения $I_{i \text{H}}$ и температуры электронов T_e .

Считая концентрации ионов и электронов равными, найдём их, пользуясь формулой (7). Рассчитаем плазменную частоты ω_p по формуле (5) и радиус Дебая r_D , оценим среднее число ионов в дебаевской сфера N_D по формуле (4) и степень ионизации α , приняв $P\approx 1$ мбар, и занесём все результаты в таблицу.

I_p , мА	$T_e, 10^3 \text{ K}$	$n_e, 10^{14} \text{ m}^{-3}$	$\omega_p,~10^4~{ m pag/c}$	$r_D, 10^{-4} \text{ M}$	$N_D, 10^5$	$\alpha, 10^{-7}$
5.0	55 ± 6	9.9 ± 8	1.87 ± 0.10	5.1 ± 0.3	5.5	75
3.0	47 ± 4	5.8 ± 4	1.26 ± 0.08	6.2 ± 0.5	5.7	37
1.5	45 ± 4	3.1 ± 2	1.04 ± 0.05	8.3 ± 0.8	7.4	19

Вывод

Полученные результаты по порядку совпадают с табличными (Wikipedia). Все зависимости имеют именно такой вид, как предсказывала теория.

Результаты измерений

U_1 , B	27.72	27.68	28.26	28.56	29.8	31.55	35.36	35.3
I_p , MA	4.00	3.50	3.00	2.50	2.00	1.50	1.00	0.50

Таблица 1: Зависимость $U_1 = f(I_p)$.

5mA		3mA		1.5mA	
$I_2, \mu A$	U_2, V	$I_2, \mu A$	U_2, V	$I_2, \mu A$	U_2, V
90.14	25	52.29	25	25.39	25
91.15	22	50.46	22	24.54	22
89.75	19	48.79	19	23.77	19
86.45	16	46.96	16	22.87	16
79.72	13	44.36	13	21.94	13
67.76	10	39.45	10	19.69	10
56.81	8	33.58	8	16.95	8
41.61	6	25.12	6	12.76	6
23.11	4	14.37	4	7.15	4
2.13	2	1.72	2	0.44	2
-14.6	0.5	-8.79	0.5	-5.12	0.5
-18.5	-0.5	-13.55	-0.5	-8.12	-0.5
-31.56	-2	-23.12	-2	-13.66	-2
-50.17	-4	-34.75	-4	-19.57	-4
-66.67	-6	-44.15	-6	-24.22	-6
-79.37	-8	-50.89	-8	-27.36	-8
-88.8	-10	-55.26	-10	-29.63	-10
-98.88	-13	-59.74	-13	-31.63	-13
-104.83	-16	-62.36	-16	-33.06	-16
-108.37	-19	-64.67	-19	-34.35	-19
-109.9	-22	-66.8	-22	-35.67	-22
-109.44	-25	-68.95	-25	-36.85	-25

Таблица 2: Зависимость $I_2 = f(U_2)$