Държавен изпит, Компютърни науки, Конспект 2012г., въпрос 19: Описание на метода на резолюцията

Нека D, D_1 и D_2 са предикатни дизюнкти (тоест – множества от предикатни литерали).

Дефиниция: Казваме, че D е либерална резолвента на D_1 и D_2 , ако съществуват субституции ξ_1 и ξ_2 и литерал L, такива, че $L \in D_1\xi_1, L^{\partial} \in D_2\xi_2$ и $D = (D_1\xi_1 \setminus \{L\}) \cup (D_2\xi_2 \setminus \{L^{\partial}\}).$

Когато човек прилага метода на резолюцията на ръка, той си служи с либерална резолюция. Когато машината прилага метода на резолюцията, либералната резолюция става неудобна: машината не може да провери по разумен начин всички възможни субституции. Затова, когато искаме да програмираме метода на резолюцията, си служим с предикатна резолюция. Тя е много по-тясно ограничена; при дадени два дизюнкта D_1 и D_2 , техните предикатни резолвенти могат лесно да бъдат изброени (с точност до преименуване).

Дефиниция: Казваме, че D е предикатна резолвента на D_1 и D_2 , ако съществуват субституции η и σ , такива, че:

- (i) η е преименуваща за D_2 , като D_1 и $D_2\eta$ нямат общи променливи
- (ii) σ е най-общ унификатор за някакво подмножество D_1' на D_1 и някакво подмножество $D_2'\eta$ на $D_2\eta$ с премахнати отрицания¹, като при това за всяко $L \in D_1 \setminus D_1'$ имаме $L\sigma \not\in D_1'\sigma$ и за всяко $M \in D_2\eta \setminus D_2'\eta$ имаме $M\sigma \not\in D_2'\eta\sigma$
 - (iii) $D = (D_1 \setminus D_1') \sigma \cup (D_2 \eta \setminus D_2' \eta) \sigma$.

С други думи: по дадени D_1 и D_2 , първо избираме преименуваща субституция η , такава, че D_1 и $D_2\eta$ да нямат общи променливи. После избираме едно подмножество D_1' на D_1 , състоящо се само от положителни литерали, и едно подмножество $D_2'\eta$ на $D_2\eta$, състоящо се само от отрицателни литерали. Премахваме отрицанията от всички членове на $D_2'\eta$, обединяваме полученото с D_1' , и намираме най-общия унификатор σ на така образуваното множество. Проверяваме, че σ , която "залепва" D_1' и $D_2'\eta$, оставя остатъците от D_1 и $D_2\eta$ "встрани". И, най-накрая, обединяваме образите на тези остатъци под σ , за да получим резолвентата D.

Либералната резолютивна изводимост е коректна (ако от някое множество S от дизюнкти се извежда празният дизюнкт, то то е неизпълнимо) и пълна (ако S е неизпълнимо, то от него се извежда празният дизюнкт). Иска ни се да се уверим, че и предикатната резолютивна изводимост е такава – тоест, че с ограничаването на възможните резолвенти не сме загубили нищо.

Понеже всяка предикатна резолвента е също така и либерална резолвента, предикатната резолютивна изводимост е коректна. За да видим, че тя и пълна, ни е необходима следната

 $^{^{1}}$ Ако това не е съвсем ясно – вижте подробното обяснение на български след дефиницията.

²Това на лекции го рисувахме на дъската.

Лема за повдигането: Нека K е либерална резолвента на D_1 и D_2 . Тогава съществуват предикатна резолвента D на D_1 и D_2 и субституция ξ , такива, че $K=D\xi$.

С помощта на тази лема може да се докаже, че ако от едно множество S от дизюнкти има либерален извод на празния дизюнкт, то от него има и предикатен извод на празния дизюнкт. Оттук пълнотата на предикатната резолютивна изводимост следва.