Imperial College London

Regularisation in statistics and Machine Learning

Guillem HURAULT January 24, 2019

Background

Linear regression

$$Y = X\beta + \epsilon$$

- Y the vector of response $(N \times 1)$
- X the design matrix $(N \times p)$
- β the vector of parameters $(p \times 1)$
- ϵ the vector of errors $(N \times 1)$

Ordinary Least Squares (OLS)

$$\begin{split} \hat{\beta} &= \underset{\beta}{\operatorname{argmin}} \, ||Y - X\beta||_2^2 \\ \hat{\beta} &= (X^t X)^{-1} X^t Y \end{split}$$

Problem: overfitting

Solution: Penalise the coefficients

Ridge (L_2 , Tikhonov) regularisation

$$\begin{split} \hat{\beta} &= \operatorname*{argmin}_{\beta} ||Y - X\beta||^2 + \lambda_2 ||\beta||_2^2 \\ \hat{\beta} &= (X^t X + \lambda_2 I)^{-1} X^t Y \end{split}$$

Equivalent to OLS with constraint $||\beta||_2^2 < t$

- Encourage grouping of highly correlated variables (multicollinearity)
- Strong shrinkage

Solution: Penalise the coefficients

Lasso (L_1) regularisation

$$\hat{\beta} = \operatorname*{argmin}_{\beta} ||Y - X\beta||^2 + \lambda_1 |\beta|$$

Equivalent to OLS with constraint $|\beta| < t$

- Encourage sparse model (set coefficients to 0)
- Smaller shrinkage compared to ridge
- Tends to select variable randomly in the presence of multicollinearity

Geometric interpretation

Bayesian interpretation

Bayes' theorem:
$$p(\theta|x) = \frac{p(x|\theta) p(\theta)}{p(x)} \propto p(x|\theta) p(\theta)$$

- ullet $||Y-Xeta||^2 \propto$ Gaussian log-likelihood
- $\lambda_2 ||\beta||_2^2 \propto$ log prior of a Gaussian distribution: $\beta |\sigma^2 \sim \mathcal{N}(0, \frac{\sigma^2}{\lambda_2})$
- $\lambda_1 |\beta| \propto \log$ prior of a Laplace distribution: $\beta |\sigma \sim \text{Laplace}(0, \frac{\sigma}{\lambda_1})$

Hence, $\hat{\beta}$ is the **Maximum A Posteriori** (MAP) estimate

Other methods

Elastic Net: Mixture of L_1 and L_2

$$\hat{\beta} = \mathop{\rm argmin}_{\beta} ||Y - X\beta||^2 + \lambda_2 ||\beta||_2^2 + \lambda_1 |\beta|$$

- Sparsity of the lasso
- · Robust to multicollinearity as in ridge

Bridge penalty: L_p regularisation

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} ||Y - X\beta||^2 + \lambda_{\rho} ||\beta||_{\rho}^{\rho}$$

Overshrinkage

- ullet Correcting for the double shrinkage in Elastic Net: $\hat{eta}^{
 m new}=(1+\lambda_2)\hat{eta}$
- Hybrid Lasso: Lasso followed by OLS
 - 1. Apply Lasso for variable selection
 - 2. Apply OLS on the subset of predictors selected by the Lasso
- Relaxed Lasso
 - 1. Apply Lasso for variable selection
 - 2. Apply Lasso on the subset of predictors selected by the Lasso
- Horseshoe

The Horseshoe

Bayesian linear regression $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$ with the horseshoe prior:

$$\begin{cases} \beta_i | \lambda_i, \tau & \sim \mathcal{N}(0, \lambda_i^2 \tau^2) \\ \lambda_i & \sim C^+(0, 1) \end{cases}$$

- λ_i are the local shrinkage parameters
- ullet au is the global shrinkage parameter

Shrinkage profile

 $\kappa_i = \frac{1}{1+\lambda_i^2}$ is the random shrinkage coefficient

- $\kappa_i = 0$: no shrinkage (full signal)
- $\kappa_i = 1$: total shrinkage (no signal)

Regularised Horseshoe

• Set a prior for τ with a prior guess p_0 for the number of non-zero coefficients

$$au | \sigma \sim C^+(0, rac{p_0}{D-p_0} rac{\sigma}{\sqrt{N}})$$

ullet Specify the shrinkage with a prior guess s on the scale of the signal

$$eta_i | \lambda_i, au, c \sim \mathcal{N}(0, ilde{\lambda_i}^2 au^2)$$
 $eta_i^2 = rac{c^2 \lambda_i^2}{c^2 + au^2 \lambda_i^2}$
 $c \sim \mathsf{Student-t}_{
u}(0, s^2)$

Presentation

Objective

Compare the different regularisation methods in terms of coefficient estimation and predictive power, by investigating:

- Different patterns of β
- Multicollinearity
- Different SNR

Toy data

$$Y \sim \mathcal{N}(X\beta, \sigma^2 I)$$

- $N_{\text{train}} = 100$ observations for training
- $N_{\text{test}} = 1000$ observations for testing
- p = 80 features

- No multicollinearity (e.g. principal components)
- *SNR* = 2

Multicollinearity in predictors

Multicollinearity in predictors

Multicollinearity in predictors

Prior number of relevant parameters for the horseshoe

- So far, I assumed an oracle guess for the horseshoe: $p_0 = K$, the true number of non-zero features.
- What if the prior is wrong?
 - $p_0 = \frac{K}{2}$ (underestimating)
 - $p_0 = 2K$ (overestimating)
- Let's assume:
 - Multicollinearity
 - SNR = 2

Prior number of relevant parameters for the horseshoe

Uncertainty estimates for the horseshoe

Conclusion (1)

About the Lasso

- Hybrid Lasso or Relaxed Lasso outperforms simple lasso
- Lasso-based regularisation seems the best option when the underlying model is sparse...

Conclusion (1)

About the Lasso

- Hybrid Lasso or Relaxed Lasso outperforms simple lasso
- Lasso-based regularisation seems the best option when the underlying model is sparse...
- ullet ... But the patterns of eta shouldn't influence much the choice of regularisation
- Similarly, the SNR shouldn't influence much the choice of regularisation
- However, multicollinearity is important

Conclusion (2)

About Ridge/Elastic Net

- Ridge outperforms Lasso in the presence of multicollinearity
- Elastic Net seems like a good compromise between Lasso and Ridge
- Rescaling Elastic Net coefficient is usually a bad idea
- Relaxed/Hybrid Elastic Net ?

Conclusion (3)

About the horseshoe

- Horseshoe is in the top regardless of the situation
- A bad guess for the number of relevant parameters for the horseshoe has little effect
- Horseshoe can provide uncertainty estimates