Reconstrução de Superfícies 3D a Partir de Nuvens de Pontos: Uma Análise Comparativa

1st João Pedro Felicio Prudencio

Centro de Ciências Tecnológicas

UDESC - Universidade do Estado de Santa Catarina

Joinville, Brasil

joao.prudencio@edu.udesc.br

2nd Leandro Ribeiro Rittes

Centro de Ciências Tecnológicas

UDESC - Universidade do Estado de Santa Catarina

Joinville, Brasil
leandro.rittes1990@edu.udesc.br

Abstract—Este artigo compara sistematicamente os principais métodos de reconstrução de superfícies 3D a partir de nuvens de pontos. Analisamos quatro categorias: triangulação, abordagens volumétricas, funções implícitas e deep learning. Para cada uma, detalhamos propostas, funcionamento, resultados e limitações de estudos relevantes. Uma comparação geral final sintetiza o desempenho desses métodos. Concluímos que a escolha ideal depende do contexto, com a integração de técnicas tradicionais e modernas de deep learning mostrando-se promissora para o desafio da reconstrução 3D de dados brutos e ruidosos.

Index Terms—Reconstrução 3D, Nuvens de Pontos, Triangulação, Métodos Volumétricos, Função Implícita, Deep Learning

I. Introdução

A reconstrução de geometrias 3D é uma área de pesquisa fundamental com crescentes aplicações em diversos campos, como engenharia reversa, realidade virtual e aumentada, medicina, robótica, arqueologia e preservação cultural [1]. A base para muitas dessas aplicações reside na capacidade de digitalizar objetos e ambientes do mundo real, transformando-os em representações computacionais que podem ser processadas, analisadas e manipuladas. Esse processo frequentemente se inicia com o escaneamento 3D, uma técnica que, impulsionada pela crescente disponibilidade de dispositivos de escaneamento 3D acessíveis e poderosos, permite a captura de dados espaciais de uma superfície ou objeto [1].

A. Nuvens de Ponto

O escaneamento 3D geralmente produz como resultado inicial uma nuvem de pontos, conforme mostra a Figura 1: um conjunto de coordenadas (x, y, z) que representam amostras da superfície de um objeto, mas sem conexão topológica entre os pontos [1]. Apesar de ser uma forma direta de representar geometria, essa estrutura é limitada para aplicações que exigem superfícies contínuas, como simulações, renderizações ou fabricação.

Para tais aplicações, é comum converter nuvens de pontos em representações geométricas mais estruturadas, como malhas triangulares, superfícies paramétricas ou volumes voxelizados. Essa conversão, conhecida como reconstrução de superfície, é necessária porque nuvens de pontos reais costumam apresentar ruído, ausência de dados e distribuição irregular. O objetivo é transformar essa informação bruta em

uma superfície contínua e coerente, apropriada para uso em engenharia, visualização ou manufatura [2].

Fig. 1. Exemplo de nuvem de pontos [2]

B. Histórico e avanços na área

A reconstrução 3D evoluiu de métodos baseados em modelos geométricos explícitos e priors definidos manualmente [2], para abordagens mais robustas que lidam melhor com a complexidade das nuvens de pontos reais. Com o surgimento do aprendizado profundo, tornou-se possível aprender essas informações diretamente dos dados, ampliando a capacidade dos sistemas em lidar com ruídos, lacunas e variabilidade geométrica [2]. Este artigo examina as principais abordagens de reconstrução 3D, destacando tanto os métodos tradicionais quanto os avanços proporcionados pelo deep learning.

II. FUNDAMENTAÇÃO TEÓRICA

A reconstrução de superfícies a partir de nuvens de pontos busca gerar representações contínuas e coerentes a partir de dados discretos e desordenados. Ao longo do tempo, surgiram diversos métodos com abordagens distintas, incluindo triangulação, técnicas volumétricas, funções implícitas e, mais recentemente, aprendizado profundo [1], [2].

A. Conceitos gerais

Os métodos se dividem entre os que interpolam os pontos da nuvem e os que apenas os aproximam. Além disso, distinguem-se entre representações explícitas (como malhas) e implícitas (como funções escalares no espaço 3D) [1]. A escolha da representação impacta diretamente a robustez do método frente a ruídos, topologias complexas e amostragens irregulares – desafios comuns em nuvens de pontos reais [2].

B. Métodos Baseados em Triangulação

Métodos de triangulação constroem superfícies explícitas conectando diretamente os pontos da nuvem, formando malhas compostas por triângulos, como mostra a Figura 2 [1]. Um dos principais algoritmos é a Triangulação de Delaunay, que em 3D divide o espaço em tetraedros e extrai a superfície a partir das fronteiras desses elementos. Outra abordagem é o Ball-Pivoting Algorithm (BPA), que simula uma esfera rolando sobre a nuvem. Quando a esfera toca três pontos, ela forma um triângulo, e continua a rolar pelas arestas formadas, adaptandose à densidade dos dados [1]. Esses métodos são eficazes para capturar conectividade local, mas podem ser sensíveis a ruído e distribuição irregular dos pontos.

Fig. 2. Exemplo método de triangulação

C. Métodos Volumétricos

Os métodos volumétricos transformam o espaço ao redor da nuvem de pontos em uma grade de voxels e classificam cada célula conforme sua relação com a superfície desejada [1]. Voxels são unidades cúbicas que representam volumes em uma grade tridimensional, semelhantes aos pixels em imagens 2D, mas no espaço 3D. Cada voxel armazena informações sobre uma pequena porção do espaço, como cor, densidade ou distância à superfície, como ilustrado na Figura 3. A superfície é então obtida como a fronteira entre regiões "internas" e "externas". O algoritmo Marching Cubes é amplamente utilizado nesse contexto: ele opera sobre campos escalares (como o Signed Distance Function), avaliando os valores nos vértices de cada cubo para determinar onde a superfície cruza o espaço. Usando uma tabela de casos pré-definidos, gera triângulos que aproximam a geometria local [1]. Esses métodos são robustos a ruídos e eficazes para preencher lacunas, graças à natureza contínua da representação.

D. Métodos de Função Implícita

Esses métodos buscam definir uma função f(x,y,z)=0 cuja superfície de nível zero representa a forma 3D desejada, como é possível ver na Figura 4. Utilizando a nuvem de pontos para inferir essa função, garante-se que os pontos estejam na superfície ou próximos dela, possibilitando modelar topologias complexas e evitando buracos na superfície [2]. Um exemplo popular é o Poisson Surface Reconstruction, que interpreta as normais dos pontos como um campo vetorial e resolve um problema de Poisson para reconstruir uma função indicadora do volume, extraindo a superfície com Marching

Fig. 3. Exemplo método volumétrico [7]

Cubes [2]. Outra técnica comum usa Superfícies de Nível Radial (RBFs) para interpolar a função implícita a partir dos pontos e normais.

Fig. 4. Exemplo de função implicita

E. Métodos Baseados em Deep Learning

Com o avanço do deep learning, surgiram métodos que aprendem diretamente representações e priors de grandes bases de dados, diferenciando-se dos métodos tradicionais baseados em heurísticas [2]. Redes neurais são treinadas para mapear nuvens de pontos para superfícies 3D (ver Figura 5), com diferentes estratégias: geração direta de malhas, aprendizado de funções implícitas (como campos de distância assinada - SDF), reconstrução por voxels e processamento direto de nuvens de pontos via arquiteturas como PointNet e PointNet++ [2]. Esses métodos oferecem maior robustez a ruídos e dados incompletos, além de melhor generalização para novas formas.

Fig. 5. Exemplo de método de aprendizagem profunda

III. METODOLOGIA DE BUSCA

Esta revisão bibliográfica seguiu uma abordagem sistemática para localizar e analisar estudos sobre reconstrução

3D a partir de nuvens de pontos, detalhando as bases de dados utilizadas, as estratégias de busca e os critérios de seleção adotados.

A. Bases de dados utilizadas

Foram consultadas três bases acadêmicas principais:

- IEEE Xplore, por sua relevância em engenharia e ciência da computação, especialmente em reconstrução 3D;
- Google Scholar, como apoio complementar para ampliar os resultados e identificar versões expandidas;
- Web of Science, por seu rigor e cobertura multidisciplinar de publicações de alto impacto.

Essas bases foram escolhidas por sua credibilidade e por fornecerem acesso a trabalhos revisados por pares, assegurando a qualidade das referências.

B. Estratégia de busca

Foram definidas quatro strings específicas, cada uma voltada para um tipo de método de reconstrução 3D:

- ("3D reconstruction" OR "surface reconstruction") AND ("point cloud" OR "3D scanning") AND triangulation AND ("case study" OR application OR evaluation)
- ("3D reconstruction" OR "surface reconstruction") AND ("point cloud" OR "3D scanning") AND volumetric AND ("case study" OR application OR evaluation)
- ("3D reconstruction" OR "surface reconstruction") AND ("point cloud" OR "3D scanning") AND ("implicit function" OR "implicit surface") AND ("case study" OR application OR evaluation)
- ("3D reconstruction" OR "surface reconstruction") AND ("point cloud" OR "3D scanning") AND "deep learning" AND ("case study" OR application OR evaluation)

Essas combinações com operadores booleanos garantiram abrangência e precisão, priorizando artigos com aplicações práticas, validações experimentais ou estudos de caso.

C. Critérios de seleção

Para garantir a relevância dos materiais analisados, os seguintes critérios de inclusão foram aplicados:

- O artigo deveria abordar de forma clara um método de reconstrução 3D a partir de nuvens de pontos ou dados escaneados.
- O método apresentado precisava se enquadrar em uma das quatro categorias abordadas (triangulação, volumétrico, função implícita ou deep learning).
- O artigo deveria apresentar ao menos um estudo de caso, experimento prático ou avaliação empírica dos resultados.

IV. ANÁLISE COMPARATIVA

Nesse contexto, as próximas subseções apresentam e analisam os artigos selecionados para cada método. Inicialmente, são feitas análises individuais de cada artigo, organizadas por abordagem.

A. Triangulação

Três estudos foram analisados nesta seção, todos utilizando triangulação para reconstrução de superfícies 3D a partir de nuvens de pontos, cada um com enfoques e aplicações distintos.

- 1) Miao et al. (2019): Desenvolveram um método voltado à reconstrução de superfícies 3D a partir de imagens multivista, frequentemente ruidosas. Utilizam triangulação de Delaunay para gerar uma malha inicial, seguida pela construção de um grafo duplo que auxilia na definição de vizinhanças. A reconstrução é refinada com corte de grafo para isolar regiões prováveis da superfície e ajustada com base em semelhança fotométrica, recuperando detalhes finos. Testado em conjuntos como Castle e Herzjesu, obteve alta precisão e completude. O principal desafio é o alto custo computacional do processo.
- 2) Lv et al. (2021): Focam na aplicação prática de monitoramento em tempo real da impressão 3D. Usam algoritmos de extração de características (FFT-SIFT e AKAZE) combinados com Structure from Motion (SfM) para gerar nuvens de pontos. A reconstrução se dá por triangulação de Delaunay e mapeamento de textura, resultando em superfícies detalhadas com erro de apenas 0,014% Ápesar da precisão, a abordagem é sensível a variações de iluminação e à uniformidade de cor das pecas, funcionando melhor em ambientes controlados.
- 3) Bernardini et al. (1999): Propõem o Ball Pivoting Algorithm (BPA), método baseado em uma esfera que gira entre pontos vizinhos formando triângulos sucessivamente. É eficiente e robusto, sendo capaz de lidar com milhões de pontos, como demonstrado na digitalização da escultura Pietà de Michelangelo. Sua simplicidade é uma vantagem, mas o resultado depende criticamente do tamanho da esfera: valores inadequados podem causar perdas de detalhe ou falhas na malha.

B. Volumétrico

Os três estudos a seguir aplicam estratégias volumétricas distintas: otimização matemática, amostragem estatística e métodos inspirados em segmentação de imagens.

- 1) Ochmann et al. (2019): Propõem reconstruir o interior de edifícios a partir de nuvens de pontos, gerando modelos 3D com volumes conectados (paredes, pisos e cômodos). Superfícies planas são detectadas e agrupadas automaticamente, e a montagem do modelo é feita por programação linear inteira. Os modelos finais são compatíveis com sistemas BIM. Testes em escaneamentos reais mostraram bons resultados, embora o método dependa da segmentação inicial e seja computacionalmente intensivo.
- 2) Hou et al. (2019): Desenvolvem um sistema para reconstrução em ambientes industriais, guiando robôs na escolha do próximo ponto de escaneamento. Usam mapas volumétricos (Octrees) e estimam a incerteza em cada voxel. O Gibbs Sampling é aplicado para escolher

TABLE I Comparação entre métodos de reconstrução 3D por triangulação

Critério	Miao et al. (2019)	Lv et al. (2021)	Bernardini et al. (1999)
Proposta	Reconstruir superfícies	Medir peças durante a impressão	Criar malhas de forma simples e
	detalhadas com precisão e	3D em tempo real	eficiente a partir de escaneamen-
	robustez		tos
Contexto de aplicação	Reconstrução multivista (várias	Ambientes industriais e impres-	Digitalização 3D de esculturas e
	fotos de cenas reais)	soras 3D	objetos físicos reais
Como funciona	Triangulação, corte de grafo e	Extração de pontos em imagens +	Esfera gira entre pontos para for-
	ajuste por imagens	SFM + triangulação de Delaunay	mar triângulos sucessivos
Tecnologias envolvidas	Delaunay, dual graph, corte de	FFT-SIFT, AKAZE, Structure	Ball Pivoting, conceito próximo
	grafo, Laplace, similaridade de	from Motion (SFM), Delaunay	de alpha-shapes
	imagem		
Datasets utilizados	Castle, Castle-Entry, Fountain,	Peças reais impressas com im-	Esculturas digitalizadas (ex: Pietà
	Herzjesu	pressora 3D (ambiente contro-	de Michelangelo)
		lado)	
Métricas de avaliação	Comparação com modelos reais,	s, Erro relativo (0,014%) e tempo Avaliação visual e conec	
	visualização, precisão geométrica	de resposta	da malha final
Resultados práticos	Malhas mais completas, detal-	- Reconstrução precisa e rápida Malhas eficientes com m	
	hadas e resistentes a ruído	para controle em tempo real	pontos e robustas a ruído leve
Limitações	Alto custo computacional e ajuste	Funciona melhor em ambientes Sensível ao tamanho da esfer	
	delicado de parâmetros	controlados com objetos simples	à densidade dos pontos

TABLE II
COMPARAÇÃO ENTRE MÉTODOS DE RECONSTRUÇÃO 3D POR MÉTODO VOLUMÉTRICO

Critério	Ochmann et al. (2019)	nmann et al. (2019) Hou et al. (2019)	
Proposta	Modelo 3D completo de prédios	elo 3D completo de prédios Melhorar escaneamento com ma-	
	com volumes conectados	pas de ocupação e Gibbs Sampler	volumes a partir de nuvens de
			pontos
Contexto de aplicação	Reconstrução de interiores de	Reconstrução de interiores de Inspeção industrial e	
	edifícios (BIM)	reconstrução com robôs	dados simulados ou escaneados
Como funciona	Detecta planos, segmenta	Usa mapas de voxels e escolhe o	Evolui uma função matemática
	cômodos e resolve equações de	próximo ponto de vista com base	até formar a superfície desejada
	otimização	na incerteza	
Tecnologias principais	RANSAC, segmentação por visi-	Octree, mapas de ocupação,	Campo de fase, indicadores de
	bilidade, programação inteira	Markov Chain Monte Carlo	borda, métodos explícitos
		(Gibbs)	
Datasets utilizados	Escaneamentos reais de prédios	Robôs e sensores industriais, am-	Modelos geométricos simulados
	internos	bientes reais	e malhas simples
Métricas de avaliação	Coerência do modelo, conectivi-	Grau de incerteza, completude do	Avaliação visual e estabilidade
	dade entre cômodos	modelo, entropia numérica	
Resultados práticos	Modelos conectados e	Reconstrução mais precisa e	Superfícies contínuas e estáveis,
	exportáveis para BIM	eficiente, mesmo sem modelo	com menos artefatos
		prévio	
Limitações	Custo computacional e	Exige muito cálculo para grandes	Pouca avaliação quantitativa e
	dependência da segmentação	volumes e mapas	limitação com formas complexas
	inicial		

pontos de vista que revelem novas informações. Testes práticos mostraram boa cobertura e precisão, com a limitação do alto custo computacional em voxels densos.

3) Jeong et al. (2018): Apresentam uma técnica inspirada em segmentação de imagens médicas, usando um campo de fase que evolui até ajustar-se à nuvem de pontos, formando a superfície do objeto. A solução explícita torna o processo rápido. Os resultados visuais foram coerentes em dados simulados, mas faltam métricas quantitativas, e o método tem dificuldades com formas complexas.

C. Funções Implícitas

Esta seção apresenta três métodos que usam funções implícitas para reconstruir superfícies 3D, tratando problemas

como ruído, buracos e dados escassos.

- Funk et al. (2013): O método divide a nuvem de pontos em pequenas regiões chamadas surfels (pequenos pedaços da superfície). Em cada região, ajusta-se um plano usando l1-regularização, uma técnica que reduz o ruído. Depois, essas partes são unidas com funções base (kernels) para formar uma superfície contínua. Testado em dados reais e simulados, funciona bem, mas pode deixar pequenos buracos entre as regiões e exige alto processamento.
- 2) Yang et al. (2007): Para lidar com ruído e pontos fora do lugar (outliers), o método usa o mean shift, que move os pontos para áreas mais densas, limpando o ruído. Os dados são organizados em blocos menores por uma

TABLE III Comparação entre métodos de reconstrução 3D por funções implícitas

Critério	Funk et al. (2013)	Yang et al. (2007)	Beale et al. (2016)	
Proposta	Superfície suave a partir de	Reconstrução de alta qualidade	Ajuste de superfícies simples	
	regiões locais com ajuste robusto	com filtragem e funções radiais	(quadrics) com estatística	
			bayesiana	
Contexto de aplicação	Ambientes internos escaneados	Escaneamentos 3D com ruído e	Modelagem com poucos pontos e	
	por sensores ruidosos	outliers (ex: objetos complexos)	formas geométricas simples	
Como funciona	Divide em blocos locais, ajusta	Aplica mean shift, divide em Oc-	Usa inferência bayesiana para	
	planos com 11-regularização,	tree, usa RBF + Partition of Unity	ajustar superfícies quadráticas	
	combina com kernel			
Tecnologias envolvidas	Surfels, regressão esparsa, kernel	Mean shift, RBF, PoU, subdi-	Probabilidade bayesiana, quadric	
	Gaussiano	visão espacial	fitting, regularização com prior	
Datasets utilizados	Dados sintéticos (Blender) e	Bunny, Dragon (Stanford), es-	Formas simuladas e dados reais	
	câmera estéreo real	caneamentos com ruído	com poucos pontos	
Métricas de avaliação	Avaliação visual, robustez e com-	Avaliação visual, tempo de	Distância de Hausdorff, fideli-	
	pletude	execução, controle de erro por	dade da forma ajustada	
		limiar		
Resultados práticos	Boa reconstrução mesmo com	Alta qualidade visual, com	Ajuste eficiente com poucos da-	
	ruído e buracos	remoção eficaz de ruídos e	dos, respeitando a forma esperada	
		outliers		
Limitações	Pequenos buracos entre blocos e	Processo de filtragem é demor-	Limitado a formas simples (es-	
	custo computacional	ado; falta de métricas quantitati-	feras, cilindros, parábolas)	
		vas		

TABLE IV
COMPARAÇÃO ENTRE MÉTODOS DE RECONSTRUÇÃO 3D COM DEEP LEARNING

Critério	Sharma et al. (2021)	Li et al. (2019)	Kada (2022)	
Proposta	Upsampling de nuvens de pontos	Super-resolução e preenchimento	Reconstrução de telhados simples	
	com predição de normais	de imagens de profundidade	a partir de nuvem de pontos	
Contexto de aplicação	Reconstrução geral de superfícies	Cenas internas com câmeras	Modelagem de edifícios a partir	
	com dados esparsos	RGB-D (ex: robótica, AR)	de dados aéreos (urbanismo)	
Como funciona	Extrai características e gera	Pipeline em três etapas:	Segmenta faces do telhado e es-	
	novos pontos e normais usando	super-resolução, extração de	tima inclinações com ConvPoint	
	redes baseadas em PointNet++	normais/bordas e otimização	e PointNet	
		com base na imagem RGB		
Tecnologias envolvidas	PointNet++, MLPs, Chamfer	DlapSRN, FCNs baseadas em	ConvPoint, PointNet, modelagem	
	Distance, Euclidean Loss	VGG-16, perda híbrida com da-	por semi-espaços (half-space	
		dos RGB e de profundidade	modeling)	
Datasets utilizados	Sintéticos e reais para nuvem de	de NYU-v2, ICL-NUIM, SUNCG- RGBD, Middlebury, ToFMark RoofN3D (118 mil edifíci anotações de telhado)		
	pontos (ex: PointNet++)			
Métricas de avaliação	Chamfer Distance, perda por	or RMSE (mm e pixels), acurácia de IoU, erro angular		
	vizinhança, erro de normais	pose da câmera	acurácia da presença das faces	
Resultados práticos	Nuvens mais densas e suaves,	, Reconstrução com maior fideli- dade geométrica e visual Alta precisão para telhados formas simples		
	com normais consistentes			
Limitações	Suaviza detalhes em bordas afi-	Dependente da qualidade da im- Restrito a telhados retangula		
	adas	agem RGB auxiliar com até quatro faces		

estrutura chamada Octree. Em cada bloco, ajusta uma função local chamada RBF (Radial Basis Function), que representa a superfície. Essas funções são combinadas suavemente para formar o modelo final. O método gera bons resultados visuais, mas é lento e não tem avaliação numérica detalhada.

3) Beale et al. (2016): Focado em formas simples como esferas ou cilindros, o método usa uma abordagem bayesiana, que combina informações conhecidas com os dados para estimar a forma mais provável, mesmo com poucos pontos. É eficaz para formas regulares, mas não funciona bem com superfícies complexas.

D. Deep Learning

Esta subseção analisa três métodos que usam redes neurais profundas (deep learning) para reconstrução 3D a partir de nuvens de pontos. Apesar de diferentes aplicações, todos buscam melhorar a qualidade dos dados ou representar objetos com mais precisão.

 Sharma et al. (2021): O método usa uma rede baseada no PointNet++, que entende tanto detalhes locais quanto o formato geral da nuvem de pontos. Ele faz upsampling (gera mais pontos) e calcula as normais — vetores que indicam a direção da superfície em cada ponto. Isso ajuda a formar superfícies mais suaves. A avaliação, feita com métricas como Chamfer Distance (mede o quão próximos estão os pontos gerados da superfície

TABLE V Comparação entre os quatro métodos de reconstrução 3D

Critério	Triangulação	Volumétrico	Funções Implícitas	Deep Learning
Cenário em que se destaca	Escaneamento cultural e fotogrametria (ex: monumentos)	Arquitetura, engenharia e inspeção industrial com robôs	Reconstrução local com ruído e dados incompletos	Upsampling e reconstrução de padrões geométricos
Precisão	Alta com múltiplas visões e refinamento fotométrico	Alta com segmentações bem feitas	Boa para formas simples; de- pende da função usada	Pode ser muito alta com redes bem treinadas
Velocidade	Média; pode ser lenta com refi- namento e múltiplas imagens	Lenta, devido a otimizações volumétricas	Boa em métodos diretos; lenta com pré-processamentos	Alta na inferência; lenta no treinamento
Eficiência Computacional	Média a baixa em métodos refi- nados	Baixa, especialmente com voxels em grande escala	Variável; alguns métodos são efi- cientes	Alta na execução; exige GPU para treinar
Topologias complexas	Moderada, depende da densidade da malha	Alta, especialmente em espaços bem estruturados	Limitada a superfícies suaves ou primitivas	Alta com redes adaptadas para formas variadas
Robustez a ruído	Boa com visibilidade e refina- mento por deformação	Boa com estratégias probabilísticas como Gibbs	Muito boa com filtragem e regularização	Alta se treinado com ruído nos dados
Preservação de detalhes	Excelente com mapeamento de texturas e ajustes finos	Moderada; depende da resolução dos voxels	Boa em regiões densas; limitada por suavização	Pode perder detalhes em regiões com bordas afiadas
Preenchimento de buracos	Limitado; falha em regiões pouco densas	Excelente; cobre regiões não visíveis	Bom em geral, mas pode deixar falhas entre blocos	Muito bom se houver dados semelhantes no treinamento
Vantagens	Simples, interpretável, boa malha final	Gera modelos volumétricos completos	Superfícies suaves, boa com ruído	Adaptável, escalável, excelente com grandes bases
Limitações	Sensível a parâmetros e pode deixar buracos	Computacionalmente custoso; exige segmentação precisa	Limitado a formas simples; fal- has em junções complexas	Precisa de muitos dados e de- pende da base de treino

- original), mostrou bons resultados, embora o método perca detalhes em áreas com bordas muito acentuadas.
- 2) Li et al. (2019): Foca na melhoria de imagens de profundidade, que são como mapas de distância capturados por câmeras RGB-D. A rede aumenta a resolução da profundidade (super-resolução), aproveitando informações da imagem colorida (RGB), como bordas e formas. Isso gera superfícies 3D mais completas e detalhadas. O método apresentou bons resultados, mas depende bastante da qualidade da imagem RGB.
- 3) Kada (2022): Desenvolve uma rede para reconstruir telhados simples a partir de nuvens de pontos capturadas por drones. Usa convoluções contínuas (ConvPoint) para dividir as superfícies do telhado e redes do tipo Point-Net para estimar suas inclinações. O modelo final é criado pela interseção de planos (half-space modeling). O método é preciso para estruturas simples, mas não funciona bem com telhados complexos.

V. CONCLUSÃO

Esta revisão comparativa analisou quatro categorias principais de métodos para reconstrução 3D a partir de nuvens de pontos: triangulação, volumétricos, funções implícitas e aprendizado profundo. Cada abordagem apresenta vantagens específicas, dependendo do tipo de dado e aplicação. Os métodos de triangulação, como o Ball Pivoting Algorithm (Bernardini et al., 1999), se destacam pela simplicidade e velocidade, sendo eficazes em dados limpos. Abordagens mais elaboradas, como a de Miao et al. (2019), oferecem alta precisão, mas com maior custo computacional. Já o estudo de Lv et al. (2021) mostra sua aplicabilidade em ambientes

industriais controlados. Nos métodos volumétricos, a ênfase está na estruturação espacial e completude dos modelos, como nos trabalhos de Ochmann et al. (2019) e Hou et al. (2019), embora demandem mais processamento. O método de Jeong et al. (2018) oferece uma alternativa experimental com bons resultados visuais. As funções implícitas mostraram boa resistência ao ruído e à incompletude, com destaque para os estudos de Funk et al. (2013) e Yang et al. (2007). O modelo de Beale et al. (2016) é útil com poucos dados, desde que a forma do objeto seja simples. Já os métodos de deep learning, como os de Sharma et al. (2021) e Li et al. (2019), têm grande potencial em melhorar a qualidade da nuvem de pontos, embora ainda enfrentem desafios com formas complexas, como indicado por Kada (2022). Em resumo, a escolha do método mais adequado depende do contexto, qualidade dos dados e objetivo da reconstrução, sendo muitas vezes benéfico combinar abordagens tradicionais com técnicas modernas de aprendizado profundo.

REFERENCES

- A. Khatamian and H. R. Arabnia, "Survey on 3D surface reconstruction," *Journal of Information Processing Systems*, vol. 12, no. 3, pp. 338–357, Sep. 2016
- [2] C. Sulzer, A. Guajardo, B. Diehm, and J. Denzler, "A survey and benchmark of automatic surface reconstruction from point clouds," *IEEE Transactions on Visualization and Computer Graphics*, vol. 29, no. 8, pp. 3668–3682, Aug. 2023.
- [3] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, "The ball-pivoting algorithm for surface reconstruction," *IEEE Transactions* on Visualization and Computer Graphics, vol. 5, no. 4, pp. 349–359, Oct.-Dec. 1999.
- [4] W. Miao, Y. Liu, X. Shi, J. Feng, and K. Xue, "A 3D surface reconstruction method based on Delaunay triangulation," in *Image Analysis*

- and Recognition. ICIAR 2019. Lecture Notes in Computer Science, vol. 11663, pp. 51-60, Springer, Cham, 2019.
- [5] L. Meng, Y. Zhu, S. Zhao, and Y. Wang, "A 3D surface reconstruction method for 3D printing process based on structured light vision," *Applied Sciences*, vol. 11, no. 17, p. 7961, Aug. 2021.
- [6] J. Yang, Z. Wang, C. Zhu, and Q. Peng, "Implicit surface reconstruction from scattered point data with noise," *International Conference on Intelligent Computing*, vol. 5227, pp. 744-753, 2008.
- [7] D. Jeong, Y. Li, H. J. Lee, S. M. Lee, J. Yang, S. Park, H. Kim, Y. Choi, and J. Kim, "Efficient 3D volume reconstruction from a point cloud using a phase-field method," *Mathematical Problems in Engineering*, vol. 2018, Article ID 7090186, 9 pages, 2018.
- [8] L. Hou, X. Chen, K. Lan, R. Rasmussen, and J. Roberts, "Volumetric next best view by 3D occupancy mapping using Markov chain Gibbs sampler for precise manufacturing," *IEEE Access*, vol. 7, pp. 121950– 121960, Aug. 2019.
- [9] S. Ochmann, R. Vock, and R. Klein, "Automatic reconstruction of fully volumetric 3D building models from point clouds," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 158, pp. 18–31, Dec. 2019.
- [10] E. Funk, L. S. Dooley, A. Boerner, and D. Griessbach, "Implicit scene modelling from imprecise point clouds," *The International Archives of* the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-4/W4, pp. 7–11, Dec. 2013.
- [11] D. Beale, Y. L. Yang, N. Campbell, D. Cosker, and P. Hall, "Fitting quadrics with a Bayesian prior," *Computational Visual Media*, vol. 2, no. 2, pp. 107–117, Jun. 2016.
- [12] J. Li, W. Gao, and Y. Wu, "High-quality 3D reconstruction with depth super-resolution and completion," *IEEE Access*, vol. 7, pp. 19371– 19381, Jan. 2019.
- [13] R. Sharma, T. Schwandt, C. Kunert, S. Urban, and W. Broll, "Point cloud upsampling and normal estimation using deep learning for robust surface reconstruction," in *Proceedings of the International Conference* on 3D Vision (3DV), pp. 1–10, Dec. 2021.
- [14] M. Kada, "3D reconstruction of simple buildings from point clouds using neural networks with continuous convolutions (ConvPoint)," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-4/W4-2022, pp. 61–68, Oct. 2022