Logik und diskrete Stukturen

Felix (2807144) & Philipp (2583572) Müller

WS 14/15

Blatt 10

Aufgabe 1

Betrachte $Q = \{a + b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$.

Zeigen Sie, dass Q zusammen mit der Addition und Multiplikation aus \mathbb{R} einen Körper bildet.

• Assoziativität:

$$((a_1 + b_1 \cdot \sqrt{2}) + (a_2 + b_2 \cdot \sqrt{2})) + (a_3 + b_3 \cdot \sqrt{2})$$

$$\equiv (a_1 + b_1 \cdot \sqrt{2}) + (a_2 + b_2 \cdot \sqrt{2}) + (a_3 + b_3 \cdot \sqrt{2})$$

$$\equiv a_1 + a_2 + a_3 + b_1 \cdot \sqrt{2} + b_2 \cdot \sqrt{2} + b_3 \cdot \sqrt{2}$$

$$\equiv (a_1 + b_1 \cdot \sqrt{2}) + ((a_2 + b_2 \cdot \sqrt{2}) + (a_3 + b_3 \cdot \sqrt{2}))$$

• Neutrales Element:

Wir suchen a + e = e + a = a für $a, e \in Q$.

$$a_1 + b_1\sqrt{2} + (a_e + b_e\sqrt{2}) = a_1 + b_1\sqrt{2}$$

Da 0 das neutrale Element der Addition ist können wir $a_e=b_e=0$ wählen.

• Inverses Element:

Es soll gelten, dass

$$x_1 + x_1^{-1} = e = 0, \ x_1, x_1^{-1} \in \mathbb{Q}$$

Daher

$$\equiv (a_1 + b_2\sqrt{2}) + a_1^* + b_1^*\sqrt{2} = 0$$

$$\iff (a_1 + b_1\sqrt{2}) - (a_1 + b_1\sqrt{2}) = 0$$

$$\implies (a_1, b_1)^{-1} = -(a_1, b_1) = (-a_1, -b_1) = x_1^{-1}$$

• Kommutativität

$$\begin{split} x_1+x_2&=x_2+x_1,\ x_1,x_2\in Q\\ &\equiv (a_1+b_1\sqrt{2})+(a_2+b_2\sqrt{2})\\ \text{Mit den Rechenregeln der Addition über }\mathbb{Q}\text{ haben wir}\\ &(a_1+b_1\sqrt{2})+(a_2+b_2\sqrt{2})=(a_2+b_2\sqrt{2})+(a_1+b_1\sqrt{2}) \end{split}$$

Damit haben wir eine abelsche Gruppe.

• Assoziativität der multiplikativen Verknüpfung (Q, \cdot) . Zu zeigen: $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$.

$$((a_1 + b_1 \cdot \sqrt{2})(a_2 + b_2 \cdot \sqrt{2})) \cdot (a_3 + b_3 \cdot \sqrt{2})$$

Mit Rechenregeln aus \mathbb{Q} folgt
$$\equiv (a_1 + b_1 \cdot \sqrt{2})((a_2 + b_2 \cdot \sqrt{2}) \cdot (a_3 + b_3 \cdot \sqrt{2}))$$

Damit haben wir $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$.

• Distributivität

Zu zeigen:
$$x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3, \ x_1, x_2, x_3 \in Q$$

$$(a_1 + b_1 \cdot \sqrt{2}) \cdot ((a_2 + b_2 \cdot \sqrt{2}) + (a_3 + b_3 \cdot \sqrt{2}))$$

Mit den normalen Rechenregeln haben wir wieder
$$\equiv (a_1 + b_1 \cdot \sqrt{2}) \cdot (a_2 + b_2 \cdot \sqrt{2}) + (a_1 + b_1 \cdot \sqrt{2}) \cdot (a_3 + b_3 \cdot \sqrt{2})$$

Aufgabe 2

\odot_7	[1]	$[\![2]\!]$	$[\![3]\!]$	$[\![4]\!]$	$[\![5]\!]$	[6]
[1]	1	2	3	4	5	6
[2]	2	4	6	1	3	5
$[\![3]\!]$	3	6	2	5	1	4
$[\![4]\!]$	4	1	5	2	6	3
[5]	5	3	1	6	4	2
[6]	6	5	4	3	2	1

Wie oben ersichtlich haben wie als erzeugendes Element [3] und [5]. Die Gruppe $(\mathbb{Z}/7\mathbb{Z}, \odot_7)$ ist zyklisch, weil eben solche Erzeuger existieren. Wir haben nämlich

$$3^1 \mod 7 = 3$$

$$3^2 \mod 7 = 2$$

$$3^3 \mod 7 = 6$$

$$3^4 \mod 7 = 4$$

$$3^5 \mod 7 = 5$$

$$3^6 \mod 7 = 1$$

Damit haben wir ein $a \in G$ gefunden, so dass für alle $g \in G$ ein $j \in \mathbb{Z}$ existiert mit $g = a^j$.

Aufgabe 3

Seien $(R_1, +_1, \cdot_1)$ und $(R_2, +_2, \cdot_2)$ Ringe.

- a) Zeigen Sie, dass $(R_1 \times R_2, +, \cdot)$ ein Ring ist
 - Abelsche Gruppe, betrachte $(R_1 \times R_2, +), a_1, b_1 \in R_1, a_2, b_2 \in R_2$

$$(a_1, a_2) + (b_1, b_2) = (a_1 +_1 b_1, a_2 +_2 b_2)$$

$$(b_1, b_2) + (a_1, a_2) = (b_1 +_1 a_1, b_2 +_2 a_2)$$

$$=(a_1+_1b_1,a_2+_2b_2)$$

Die letzte Umformung gilt, da $(R_1, +_1)$ und $(R_2, +_2)$ und damit auch $(R_1, +_1) \land (R_2, +_2)$ abelsch sind.

• Assoziativität Seien $a_1, b_1, c_1 \in R_1$ und $a_2, b_2, c_2 \in R_2$.

$$((a_1, a_2) \cdot (b_1, b_2)) \cdot (c_1, c_2) = (a_1 \cdot_1 b_1, a_2 \cdot_2 b_2) \cdot (c_1, c_2)$$
$$= (a_1 \cdot_1 b_1 \cdot_1 c_1, a_2 \cdot_2 b_2 \cdot_2 c_2)$$

Ebenso andersrum

$$(a_1, a_2) \cdot ((b_1, b_2) \cdot (c_1, c_2)) = (a_1, a_2) \cdot (b_1 \cdot_1 c_1, b_2 \cdot_2 c_2)$$
$$= (a_1 \cdot_1 b_1 \cdot_1 c_1, a_2 \cdot_2 b_2 \cdot_2 c_2)$$

• Distributivität $a_1, b_1, c_1 \in R_1 \land a_2, b_2, c_2 \in R_2$.

$$(a_1, a_2) \cdot ((b_1, b_2) + (c_1, c_2)) = (a_1, a_2) \cdot (b_1 +_1 c_1, b_2 +_2 c_2)$$

$$= (a_1 \cdot_1 (b_1 +_1 c_1), a_2 \cdot_2 (b_2 +_2 c_2))$$

$$= ((a_1 \cdot_1 b_1) +_1 (a_1 \cdot_1 c_1), (a_2 \cdot_2 b_2) +_2 (a_2 \cdot_2 c_2)$$

Somit ist $R_1 \times R_2, +, \times$ ein Ring.

Aufgabe 4

$$x_1 = 6 \text{ und } 17$$

$$x_2 = 4 \text{ und } 13$$

Euklid:

$$17 = 1 \cdot 13 + 4$$

$$13 = 4 \cdot 3 + 1$$

$$3 = 3 \cdot 1 + 0$$

ggT:

$$1 = 13 - (4 \cdot 3)$$

$$= 13 - (17 - 13) \cdot 3$$

$$= 13 - (3 \cdot 17 - 3 \cdot 13)$$

$$= 4 \cdot 13 - 3 \cdot 17$$

$$\implies 4 \cdot 6 \cdot 13 - 3 \cdot 4 \cdot 17 = 108$$