$ext{CS251}$ - Data Structures and Algorithms Fall 2024

PSO 7, Week 8

Question 1

(Insertion and Deletion)

- $(1) \ Insert \ \{15,21,7,24,0,26,3,28,29\} \ into \ an initially \ empty \ Left-Leaning \ Red-Black \ tree.$
- (2) Delete 7 in the final Left–Leaning Red–Black tree obtained in question (1).

(LLRB tree)

- (1) Is it true that the maximum key in a LLRB-tree always appears at a leaf node.
- (2) Given a set of keys $\{1, 2, 3, 4, 5, 6, 7\}$, insertion in what order to an initially empty LLRB-tree will be free of rotation (i.e. no rotation is required)?
- (3) Given $\{1, 2, 3, 4, 5, 6, 7\}$, what is the maximum number of red nodes of a valid LLRB-tree containing these values? Insertion in what order to an initially empty LLRB-tree will result in such a tree?

(True or False)

- (1) 2-3 trees are always perfectly balanced.
- (2) The maximum height of any 2-3 tree with n keys is at most $O(\log_2(n))$.
- (3) The maximum height of any 2-3-4 tree with n keys is at most $O(\log_2(n))$.
- (4) The sequence $\{3,1,5,7,9,13,11\}$ can represent an inorder traversal of a valid Red-Black Tree.
- (5) The maximum number of rotations required for insertion in a LLRB tree is $\Theta(\log n)$.

(Binary search tree)

Find the k^{th} smallest element in a BST in O(h) time, where h is the height of the tree. (You are allowed to modify the BST for free.)

(Adjacency-list Representation)

- 1. Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of a vertex? How long does it take to compute the in-degree of a vertex?
- 2. The transpose of a directed graph G = (V, E) is the graph $G^{\top} = (V, E^{\top})$, where $E^{\top} := \{(v, u) : (u, v) \in E\}$. In other words, G^{\top} is G with all its edges reversed. Describe an efficient algorithm for computing G^{\top} from G for the adjacency-list representations of G and analyze the runtime of your algorithm.
- 3. The square of a directed graph G = (V, E) is the graph $G^2 = (V, E^2)$, where $(u, v) \in E^2$ if and only if G contains a path with at most two edges between u and v. Describe an efficient algorithm for computing G^2 from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

(Adjacency-matrix Representation)

- 1. Give an adjacency-matrix representation for a complete binary search tree on 7 vertices numbered from 1 to 7.
- 2. Show how to determine in O(|V|) time, whether a directed graph G contains a **universal-sink**, i.e. a vertex with in-degree |V|-1 and out-degree 0, given an adjacency-matrix for G.