Tarea 2 Métodos Computacionales Departamento de Física Universidad de los Andes

Valeria Martín Hernández

201631501

Mayo 2019

${\rm \acute{I}ndice}$

1.	Ejei	rcicio 2	: Transformadas de Fourier	
	1.1.	Signal.	dat y signalSuma.dat:	
		1.1.1.	Grafica general	
		1.1.2.	Grafica de la transforma de fourier para las seniales	
		1.1.3.	Espectograma	
	1.2.		or.txt:	
		1.2.1.	Grafica general	
		1.2.2.	Grafica transformada de fourier	
			Espectograma	
2. Ejercici		rcicio 2	: Ecuaciones diferenciales ordinarias	
	2.1.	Primer	ra grafica para $\omega=1^*\sqrt{\frac{k}{m}}$	
			Grafica de las mayores amplitudes para cada uno de los 100 omegas generados \dots 10	
	2.3.	Grafica	a de los cuatro omegas	

1. Ejercicio 2: Transformadas de Fourier

1.1. Signal.dat y signalSuma.dat:

1.1.1. Grafica general

Figura 1: Grafica de las seniales.

1.1.2. Grafica de la transforma de fourier para las seniales

Figura 2: Grafica de las transformadas de fourier para las dos primeras seniales.

1.1.3. Espectograma

Figura 3: Espectogramas de las dos primeras seniales.

1.2. Temblor.txt:

1.2.1. Grafica general

Figura 4: Grafica de los datos de temblor.txt

1.2.2. Grafica transformada de fourier

Figura 5: Grafica de las transformada de fourier de los datos de temblor.txt

1.2.3. Espectograma

Figura 6: Espectograma del temblor

2. Ejercicio 2: Ecuaciones diferenciales ordinarias

2.1. Primera grafica para $\omega = 1*\sqrt{\frac{k}{m}}$

Figura 7: Desplazamiento del edificio en el tiempo

$2.2.\,$ Grafica de las mayores amplitudes para cada uno de los 100 omegas generados

Figura 8: Mayores amplitudes para cada omega

2.3. Grafica de los cuatro omegas

Los omegas se escogieron al revisar la figura 8. Estos omegas se pueden revisar tanto en Plotshw2.py como en Edificio.cpp.

Figura 9: Desplazamiento para omega=4.04266

Figura 10: Desplazamiento para omega=0.402837

Figura 11: Desplazamiento para omega=3.92266

Figura 12: Desplazamiento para omega=2.32274