1. Let S be a subset (not necessarily a subspace) of a finite dimensional inner product space V. Show that $(S^{\perp})^{\perp} = \text{span } S$, where

span
$$S := \left\{ \sum_{j=1}^{m} \alpha_{j} s_{j} : \alpha_{j} \in \mathbb{C}, s_{j} \in S, m \in \mathbb{N} \right\}$$

is the smallest subspace of V containing S (think of this as the set of all possible linear combinations of vectors from S).

Lemma: To prove the following fact we use the following:

For any subset S of a finite dimensional inner product space V, (span S) $^{\perp} = S^{\perp}$.

Proof. \subseteq : Let $v \in (\text{span } S)^{\perp}$. Since v is perpendicular to any element of span S, it must be perpendicular to any element of S (since $S \subseteq \text{span } S$).

 \supseteq : Let $v \in S^{\perp}$, and let $w = a_1s_1 + \cdots + a_ks_k$ for some spanning set $\{s_1, \ldots, s_k\} \subseteq S$. Then take:

$$\langle w, v \rangle = \langle \sum_{j=1}^k a_j s_j, v \rangle = \sum_{j=1}^k a_j \langle s_j, v \rangle = \sum_{j=1}^k a_j 0 = 0.$$

So $v \perp w$ and therefore $v \in \text{span } S$.

Solution: Let $B = \{b_1, \dots, b_n\}$ be an orthonormal basis for span S.

 \subseteq : Let $v \in \text{span } S$. Then write $v = a_1b_1 + \cdots + a_nb_n$. Let $w \in S^{\perp}$ be given, and note that $w \perp b_i$ for any basis element in S. Take:

$$\langle v, w \rangle = \langle a_1b_1 + \cdots + a_nb_n, w \rangle = a_1 \langle b_1, w \rangle + \cdots + a_n \langle b_n, w \rangle = 0 + \cdots + 0 = 0.$$

And we see that $v \perp w$, so v is perpendicular to any element of S^{\perp} , and $v \in S^{\perp \perp}$.

⊇: Recall the identity $V = (\operatorname{span} S)^{\perp} \oplus \operatorname{span} S$. Then for any $v \in (S^{\perp})^{\perp}$, v = x + y for some $x \in (\operatorname{span} S)^{\perp} = S^{\perp}$ and $y \in \operatorname{span} S$.

Now take the inner product $\langle v, x \rangle = 0$ since $v \perp x$. Expanding,

$$0 = \langle v, x \rangle = \langle x + y, x \rangle = \langle x, x \rangle + \langle y, x \rangle = \langle x, x \rangle + 0 = ||x||^2.$$

Then since ||x|| = 0 we must have x = 0, meaning v = y and $v \in \text{span } S$.

2. Let V and W be finite dimensional inner product spaces and suppose $\ker A = \{0\}$. Find a left inverse for A in terms of A and A^* .

Solution: Begin with the identity,

$$\{0\} = \ker A = \ker A^*A$$
.

So the composition of transformations $A^*A:V\to V$ has zero kernel and is injective, and by rank-nullity it must too surjective. Then this map is invertible, and if we take $(A^*A)^{-1}A^*A = I$, we see that $(A^*A)^{-1}A^*$ is a left inverse for A.

- 3. Let V be a finite dimensional inner product space.
 - (a) We can think of any $x \in V$ as a linear map from $\mathbb{C} \to V$ by setting $x(\lambda) := \lambda x$. You do not have to prove that this is linear. Show that $x^* : V \to \mathbb{C}$ satisfies

$$x^*y = \langle y, x \rangle$$
.

Use this to deduce that the map xy^* is given by $xy^*v = \langle v, y \rangle x$. HINT: The inner product on $\mathbb C$ is assumed to be $\langle z, w \rangle = z\overline{w}$.

(b) Show that if $T: V \to \mathbb{C}$ is any linear map, then there is a vector y so that $T = y^*$.

Solution:

(a) Recall from the definition of an adjoint operator, that the adjoint $x^*:V\to\mathbb{C}$ is given by:

$$\langle x(\lambda), y \rangle_{V} = \langle \lambda, x^{*}(y) \rangle_{\mathbb{C}}$$
$$\langle \lambda x, y \rangle_{V} = \lambda \overline{x^{*}(y)}$$
$$\lambda \langle x, y \rangle_{V} = \lambda \overline{x^{*}(y)}$$
$$\overline{\lambda \langle x, y \rangle_{V}} = \overline{\lambda x^{*}(y)}$$
$$\overline{\lambda \langle y, x \rangle_{V}} = \overline{\lambda x^{*}(y)}$$
$$\langle y, x \rangle_{V} = \overline{\lambda} x^{*}(y)$$
$$\langle y, x \rangle = x^{*}y.$$

Then for the map $xy^*: V \rightarrow V$,

$$x(y^*(v)) = x(\langle v, y \rangle_V) = \langle v, y \rangle x.$$

(b) Choose $y = T^*(1)$. Then, for any $v \in V$,

$$y^*(v) = \langle v, y \rangle_V = \langle v, T^*(1) \rangle_V = \langle Tv, 1 \rangle_{\mathbb{C}} = Tv.$$

And therefore T is induced by $y = T^*(1)$

- 4. Let *V* and *W* be finite dimensional vector spaces. You may find problem 3 useful here.
 - (a) Suppose $T: V \to W$ satisfies rank T=1. Show that there are vectors $x \in W$ and $y \in V$ so that $T=xy^*$.
 - (b) Suppose $T: V \to W$ satisfies rank T = k. Show that T is the sum of k rank one operators. Hint: PT = T where P is the orthogonal projection onto ran T.

Solution:

(a) Since the dimension of the image of T has dimension 1, we must have ran $T = \text{span } \{b\}$ for some $b \in W$. Let $v \in V$, then $Tv = \alpha b$ for some $\alpha \in \mathbb{C}$. Choose x = b, and $y^*(v) = \alpha$. Now we have

$$xy^*(v) = x(y^*(v)) = x(\alpha) = \alpha x = \alpha b = Tv.$$

(b) Let T be linear from V to W of rank k. Then let $\{b_1, \ldots, b_k\}$ be an orthogonal basis for ran T. Then for $1 \le j \le k$ and some $v \in V$, define $T_j v = P_{b_j}(Tv)$. Now:

$$\sum_{j=1}^k T_k v = \sum_{j=1}^k P_{b_j}(Tv) = \sum_{j=1}^k \frac{\langle Tv, b_j \rangle}{\|b_j\|} b_j = Tv.$$

Note the last equality comes from the orthogonal expansion of a vector discussed in class.

5. Suppose that A and B are unitarily equivalent $n \times n$ matrices. That is, there is a unitary matrix U so that $U^*AU = B$. Show that E is an invariant subspace for B if and only if UE is invariant for A. Recall that a subspace E of V is invariant for E for all $V \in E$.

Solution: Suppose that $U^*AU = B$, and recall that from unitary equivalence, we can see that AU = UB;

E is invariant under $B \iff Bv \in E \quad \forall v \in E$

 $\iff Bv = w \in E$

 $\iff UBv = Uw$

 $\iff AUv = Uw$

 $\iff AUv \in UE \quad \forall Uv \in UE$

 \iff *UE* is invariant under *A*.