

Grundbegriffe der Informatik

Inoffizielle Zusammenfassung der Vorlesung im WS24/25 von Torsten Ueckerdt

Inhaltsverzeichnis

1	Men	Mengen, Alphabete, Abbildungen									
	1.1	Mengen									
		1.1.1 Notation									
		1.1.2 Teilmengen									
		1.1.3 Mengenoperationen									
		1.1.4 Mengengesetze									
	1.2	Alphabete									
	1.3	Relationen und Abbildungen	•								
		1.3.1 Relationen									
		1.3.2 Eigenschaften von Relationen									
		1.3.3 Abbildungen									
2	Wör	Wörter									
	2.1	Wörter									
	2.2	Das leere Wort									
	2.3	Konkatenation									
		2.3.1 Konkatenation von Wörtern									
		2.3.2 Iterierte Konkatenation									
3	Auss	Aussagenlogik 1									
	3.1										
	3.2	Alphabet der Aussagenlogik									
		3.2.1 Aussagenlogische Konnektive									
		3.2.2 Formale Syntax									
	3.3										
	3.4										
	3.5										
		3.5.1 Das Aussagenkalkül									
		3.5.2 Beweise im Aussagenkalkül									
4	Indu	Induktion									
	4.1	Vollständige Induktion	. 1								
	4.2	Varianten vollständiger Induktion									
5	Forr	nale Sprachen	1								
		Formula Sprachen	1								

Inhaltsverzeichnis

	5.2	Produkte und Potenzen formaler Sprachen									
		5.2.1 Produkte									
		5.2.2 Potenzen									
	5.3	Konkatenationsabschluss formaler Sprachen									
6	Zahl	endarstellungen und Kodierungen 18									
	6.1	Von Wörtern zu Zahlen und zurück									
		6.1.1 Division mit Rest									
		6.1.2 k-äre Darstellung von Zahlen									
	6.2	Von einem Alphabet zum anderen									
		6.2.1 Übersetzungn allgemein									
		6.2.2 Homomorphismen									
		6.2.3 Präfixfreie Codes									
	6.3	Huffman-Kodierung									
		6.3.1 Algorithmus zur Berechnung von Huffman-Codes 20									
7	Kontextfreie Grammatiken 22										
	7.1	Kontextfreie Grammatiken									
	7.2	Ableitungen									
	7.3	Erzeugte formale Sprache									
	7.4	Ableitungsbäume									
8	Prädikatenlogik 25										
	8.1	Syntax prädikatenlogischer Formeln									
		8.1.1 Relationen und Funktionen									
		8.1.2 Signatur									
	8.2	Semantik prädikatenlogischer Formeln									
		8.2.1 Auswertung									
		8.2.2 Modelle									
9	Algorithmen 29										
•	9.1	Der Algorithmus									
	9.2	<i>O</i> -Notation									
10	Grap	hen 31									
-0	-	Graphen									
	10.1	10.1.1 Definition									
		10.1.2 Arten von Graphen									
		10.1.2 Arten von Graphen									
	10.2	Bäume und Wälder									
	10.2										
	10.3	Bipartite Graphen33Euler-Touren33									
	10.4	Euler-Toutell									
11		iche Automaten 34									
	11.1										
	11.2	Beispiel eines Endlichen Automaten									

1 Mengen, Alphabete, Abbildungen

1.1 Mengen

- "Behälter"mit Öbjekten"
- Menge kann Objekt enthalten oder nicht
- Beispiel: Menge mit Zahlen $1, 2, 3: M = \{1, 2, 3\} = \{3, 2, 1\} = \{1, 1, 3, 2, 3, 3, 3, 2, 1, 2\}$

Kardinalität

- Anzahl der Elemente in einer Menge (Schreibe: |A| oder #A)
- $|A| \in \mathbb{N}_0 \cup \{\infty\}$

1.1.1 Notation

Pünktchen

- ohne explizite Definition ($\mathbb{N}_+ = \{1, 2, 3, 4, \cdots\}$ und $\mathbb{N}_0 = \{0, 1, 2, 3, \cdots\}$
- Achtung: Gefahr von Missverständnissen

Set Comprehension

- Sei P(x) eine Aussage, welche für jedes Objekt x wahr oder falsch ist
- $\{x \in M | P(x)\}$ enthält genau die $x \in M$, für die P(x) wahr ist
- alternativ geht auch $\{x|P(x)\}$
- nur harmlose Aussagen erlaubt, nicht bspw. $A = \{x : x \notin A\}$

1.1.2 Teilmengen

- es seien A und B zwei Mengen
- *A* Teilmenge von *B* und *B* Obermenge von *A*
 - $-A \subseteq B \text{ oder } B \subseteq B$
- A = B wenn $A \subseteq B \land B \subseteq A$
- A echte Teilmenge von B, wenn $A \subseteq B$, aber $A \neq B$ (schreibe $A \subset B$)

1.1.3 Mengenoperationen

- Vereinigung $A \cup B = \{x | x \in A \lor x \in B\}$
- **Durchschnitt** $A \cap B = \{x | x \in A \lor x \in B\}$
 - Eine Menge *A* ist *disjunkt* zu einer Menge *B* wenn gilt $A \cap B = \emptyset$
- Mengendifferenz $A \setminus B = \{x \in A | x \notin B\}$
- Karthesisches Produkt $A \times B = \{(a, b) | a \in A \land b \in B\}$
 - $-M^2 = M \times M, M^3 = M \times M \times M$
 - Paare $(x, y) \neq (y, x)$
- Potenzmenge $2^M = \mathfrak{B}(M) = \mathcal{P}(M) = \{A | A \subseteq M\}$
- Indikatorfunktion

$$\chi_A = \begin{cases} 1, \text{ falls } x \in A \\ 0, \text{ falls } x \notin A \end{cases}$$

- "Große" Vereinigung $\bigcup_{i \in I} M_i = \{x | \exists i \in I : x \in M_i\}$
- "Großer"Durchschnitt $\cap_{i \in I} M_i = \{x | \forall i \in I : x \in M_i\}$

1.1.4 Mengengesetze

Seien A, B, C Mengen. Dann gilt

- $A \cup A = A$ und $A \cap A = A$ (Idempotenzgesetz)
- $A \cup B = B \cup A$ und $A \cap B = B \cap A$ (Kommutativgesetz)
- $(A \cup B) \cup C = A \cup (B \cup C)$ und $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativgesetz)
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ und $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Distributivgesetz)

1.2 Alphabete

Ein Alphabet ist eine nichtleere endliche Menge von Zeichen oder Symbolen. Zeichen sind elementare Bausteine für Inschriften.

Beispiele:

- $A = \{ | \}, A = \{ 0, 1 \}, \cdots$
- $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$
- ASCII
- Unicode ≈ 100.000 Zeichen

1.3 Relationen und Abbildungen

1.3.1 Relationen

- sind Paare in Beziehung stehender Elemente
- Unicode: Angabe aller Paare (a, n), für die $n \in \mathbb{N}_0$ der Code Point von $a \in A_U$ ist (bspw. (A, 65) $(\alpha, 945), \ldots$)
- Relation R: Teilmenge $R \subseteq A \times B$
 - binäre Relation von A und B
 - $-(a,b) \in R$ (gelesen: "a steht in Relation R zu b")
 - Schreibe auch aRb statt $(a, b) \in R$

1.3.2 Eigenschaften von Relationen

Sei $R \subseteq A \times B$ eine Relation.

- $\forall a \in A \exists b \in B : (a, b) \in R \ (R \text{ ist } linkstotal)$
 - Sprich: "Jedes Element aus A hat mind. einen Partner in B"
- $\forall a_1, a_2 \in A, b \in B : [(a_1, b) \in R \land (a_2, b) \in R] \implies a_1 = a_2 \ (R \text{ ist linkseindeutig})$

Sprich: "Jedes Element aus B hat höchstens einen Partner in A"

• $\forall b \in B \exists a \in A : (a, b) \in R \ (R \text{ ist } \mathbf{rechtstotal})$

Sprich: "Jedes Element aus B hat mind. einen Partner in A"

• $\forall a \in A \ b_1, b_2 \in B : [(a, b_1) \in R \land (a, b_2) \in R] \implies b_1 = b_2 \ (R \ \text{ist } \mathbf{rechtseindeutig})$ Sprich: "Jedes Element aus A hat höchstens einen Partner in B"

1.3.3 Abbildungen

- sind spezielle Relationen die linkstotal und rechtseindeutig sind
- zu ihnen gehören
 - der **Definitionsbereich** A und
 - der **Zielbereich** B
 - die Abbildungsvorschrift
 - analog für Relationen
- Schreibweise:
 - $-R:A \rightarrow B$
 - $-(a, b) \in R$ schreibt man auch als R(a) = b
 - b heißt der Funktionswert an der Stelle a
- nicht linkstotale, aber rechtstotale Relationen heiße partielle Funktionen
- eine Abbildung, die linkseindeutig ist, heißt injektiv
- eine Abbildung, die rechtstotal ist, heißt surjektiv
- eine Abbildung heißt bijektiv, wenn sie sowohl injektiv als auch surjektiv ist

Beispiele

- $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto \begin{cases} \frac{n}{2}, \text{ falls } n \text{ gerade} \\ 3n+1, \text{ falls } n \text{ ungerade} \end{cases}$
- seien A, B Mengen: $B^A := \{f | f \text{ ist Funktion } f : A \to B\}$

2 Wörter

2.1 Wörter

Ein Wort ist eine Liste, eine Aneinanderreihung an Zeichen, d.h. eine Zeichenkette. Es existiert eine klare Reihenfolge der Zeichen.

Ein Wort über dem Alphabet A ist eine Abbildung

$$w: [n] \rightarrow A \text{ mit } [n] := \{i \in \mathbb{N}_0 | 1 \le i \land i \le n\}$$

- Länge eines Wortes: |w|
- Menge der Wörter der Länge n über Alphabet A: A^n
- Menge aller Wörter über Alphabet *A*:

$$A^* = A^0 \cup A^1 \cup A^2 \cup \cdots$$
$$= \bigcup_{i \in \mathbb{N}_0} A^i = \{ w | \exists i \in \mathbb{N}_0 : w \in A^i \}$$

Formalistisch ist A^* die Menge aller Abbildungen $w:[n]\to A$ mit $n\in\mathbb{N}_0$

Beispiel: w = hallo, formal $w : [5] \rightarrow \{a, h, l, o\}$ mit

$$w(1) = h, w(2) = a, w(3) = l, w(4) = l, w(5) = o$$

2.2 Das leere Wort

- besteht aus 0 Symbolen, schreibe ε
- formal ist es eine Abbildung $\varepsilon:[0] \to A$ also $\varepsilon:\emptyset \to A$
 - \implies Relation ε ist linkstotal und rechtseindeutig
- ist das neutrale Element von Wörtern bzgl. Konkatenation (2.3)

Für jedes Alphabet A gilt $\forall w \in A^* : w \cdot \varepsilon = w = \varepsilon \cdot w$

2.3 Konkatenation

2.3.1 Konkatenation von Wörtern

Anschaulich werden hier Wörter hintereinander geschrieben.

• (Definition) Seien $w_1:[m]\to A_1$ und $w_2:[n]\to A_2$ zwei Wörter. Dann ist die Konkatenation definiert als

$$w_1 \cdot w_2 : [m+n] \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i), & \text{falls } 1 \le i \le m \\ w_2(i-m), & \text{falls } m < i \le m+n \end{cases}$$

• nicht kommutativ, da

$$BAUM \cdot STAMM = BAUMSTAMM \neq STAMMBAUM = STAMM \cdot BAUM$$

- aber assoziativ, es gilt: $(w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)$ (für jedes Alphabet A und alle $w_1, w_2, w_3 \in A^*$
- für jedes Alphabet A, jedes $w \in A^*$ und jedes $n \in \mathbb{N}_0$ gilt: $|w^n| = n \cdot |w|$ (Länge von Wortpotenzen)

2.3.2 Iterierte Konkatenation

- bei Potenzen von Wörtern wird Potenzschreibweise verwendet (bspw. $w^3 = w \cdot w \cdot w$)
- eine Definition wäre $w^n = \underbrace{w \cdot w \cdot \ldots \cdot w}_{n\text{-mal}}$ (schlecht, da Pünktchen verwendet werden!)
- deswegen induktive Definition

$$w^0 = \varepsilon$$
$$\forall n \in \mathbb{N}_+ : w^n = w^{n-1} \cdot w$$

3 Aussagenlogik

3.1 Aussagen

- korrekte Aussagen sind nur wohldefiniert, Kausalität irrelevant!
- (Zweiwertigkeit) Jede Aussage entweder wahr oder falsch
- (Extensionalität) Wahrheitswert zusammengesetzter Aussagen durch Wahrheitswerte der Teilaussagen eindeutig festgelegt

Operationen

- $\neg P$: "Nicht P"(**Negation**)
- $P \wedge Q$: "P und Q"(**Konjunktion**, logisches Und)
- $P \lor Q$: "P oder Q"(**Disjunktion**, logisches Oder)
- $P \rightarrow Q$: "P impliziert Q" \iff "Wenn P, dann Q"(Implikation, logische Folgerung)

3.2 Alphabet der Aussagenlogik

• Aussagevariablen sind P_0, P_1, P_2, \dots

```
Var_{AL} \subset \{ \mathbf{P}_i | i \in \mathbb{N}_0 \}
```

• kurz P, Q, R, S

3.2.1 Aussagenlogische Konnektive

- ¬ bindet am stärksten
- ∧ bindet am zweitstärksten
- V bindet am drittstärksten
- → bindet am viertstärksten
- ↔ bindet am schwächsten

3.2.2 Formale Syntax

- Alphabet: $A_{AL} = \{(,), \neg, \wedge, \vee, \rightarrow\} \cup \text{Var}_{AL}$ bspw. $(P_0 \vee P_1) \rightarrow P_0$, aber auch v)) $P_{42} \neg ($
- Funktionen für Konnektive

$$f_{\neg}: A_{AL}^* \to A_{AL}^* \qquad G \mapsto (\neg G)$$

$$f_{\wedge}: A_{AL}^* \times A_{AL}^* \to A_{AL}^* \quad (G, H) \mapsto (G \wedge H)$$

$$f_{\vee}: A_{AL}^* \times A_{AL}^* \to A_{AL}^* \quad (G, H) \mapsto (G \vee H)$$

$$f_{\rightarrow}: A_{AL}^* \times A_{AL}^* \to A_{AL}^* \quad (G, H) \mapsto (G \to H)$$

• induktive Definition syntaktisch korrekter Formeln

$$M_0 = \operatorname{Var}_{AL}$$

$$\forall n \in \mathbb{N}_+ : M_n = M_{n-1} \cup f_{\neg}(M_{n-1})$$

$$\cup f_{\wedge}(M_{n-1} \times M_{n-1})$$

$$\cup f_{\vee}(M_{n-1} \times M_{n-1})$$

$$\cup f_{\rightarrow}(M_{n-1} \times M_{n-1})$$

- alle Formeln zusammen For $_{AL} = \bigcup_{i \in \mathbb{N}_0} M_i$
- Abkürzung $(G \leftrightarrow H) \iff ((G \rightarrow H) \land (H \rightarrow G))$

3.3 Boolsche Funktionen

- Menge der Wahrheitswerte $\mathbb{B} = \{\mathbf{w}, \mathbf{f}\}$
- boolsche Funktion ist eine Abbildung $f: \mathbb{B}^k \to \mathbb{B}$

$$b_{\neg}(x)$$
 $\neg x$ Negation $b_{\wedge}(x,y)$ $x \wedge y$ Konjunktion (Und) $b_{\vee}(x,y)$ $x \vee y$ Disjunktion (Oder) $b_{\rightarrow}(x,y)$ $x \Longrightarrow y$ Implikation

• Wahrheitswerte der obigen boolschen Funktionen

x_1	x_2	$b_{\neg}(x_1)$	$b_{\wedge}(x_1,x_2)$	$b_{\vee}(x_1,x_2)$	$b \rightarrow (x_1, x_2)$
f		w	f	f	w
	\mathbf{w}	w	f	\mathbf{w}	\mathbf{w}
	f		f	\mathbf{w}	f
w	\mathbf{w}	f	w	w	\mathbf{w}

- Anzahl der boolschen Funktionen $|\mathbb{B}^{\mathbb{B}^k}| = |\mathbb{B}|^{|\mathbb{B}^k|} = 2^{(2^k)}$

3.4 Semantik aussagenlogischer Formeln

Im folgenden sei V eine Menge von Aussagevariablen

- Interpretation $I: V \to \mathbb{B}$
- \mathbb{B}^V als Menge aller Interpretationen
- definiere die **Auswertung** $val_I(F)$ für jede aussagenlogische Formel F

$$val_I : For_{AL} \rightarrow \mathbb{B} = \{\mathbf{w}, \mathbf{f}\}$$

- *I* ist **Modell** einer Formel *G*, wenn $val_i(G) = w$
- *I* ist **Modell** einer Formelmenge Γ , wenn *I* Modell jeder Formel $G \in \Gamma$ ist
- schreibe $\Gamma \models G$ (jedes Modell von Γ auch ein Modell von G)
- schreibe $\models G$ statt $\emptyset \models G$ für Tautologien (G für *alle* Interpretationen wahr
- G erfüllbar $\iff \exists I \in \mathbb{B}^V : val_I(G) = w$
- zwei Formeln *G*, *H* heißen **äquivalent**, wenn für jede Interpretation *I* gilt:

$$val_I(G) = val_I(H)$$

Schreibe $G \equiv H$

3.5 Beweisbarkeit im Aussagenkalkül

3.5.1 Das Aussagenkalkül

Kalkül allgemein

- Alphabet A
- syntaktisch korrekte Formeln $For \subseteq A^*$
- **Axiome** $Ax \subseteq For$
- Schlussregeln $R \subseteq For_{AL}^k$

Aussagenkalkül für die Aussagenlogik

- Alphabet A_{AL}
- syntaktisch korrekte Formel
n $For_{AL} \subseteq A_{AL}^*$
- **Axiome** $Ax_{AL} \subseteq For_{AL}$

Axiome sind Formeln die gegeben sind.

- Schlussregel Modus Ponens $MP \subseteq For_{AL}^3$

 $MP = \{(G \rightarrow H, G, H) | G, H \in For_{AL}\}$. "Mit $G \rightarrow H$ und G bekommen wir auch H"

Ableitungen

- nutzen Prämissen, Axiome und Schlussregeln
- wichtiger Bestandteil von Beweisen
- endliche Folge $(G1, \ldots, G_n)$ von Formeln mit
 - $-G_n = G$ (irgendwo, kann auch weiter vorne sein)
 - Jedes G_i entweder Axiom, Prämisse oder Bestandteil einer Schlussregeln $(G_{i_1},G_{i_2},G_i)\in MP \text{ mit } i_1,i_2< i$
- schreibe $\Gamma \vdash G$

3.5.2 Beweise im Aussagenkalkül

- formal eine Ableitung aus $\Gamma = \emptyset$
- schreibe $\vdash G$
- G heißt **Theorem** des Aussagenkalküls

Beispiel eines Beweises im Aussagenkalkül

Beispiel eines Beweises: $(\neg P \rightarrow P) \rightarrow P$

$$G_1(\neg P \to \neg P) \to ((\neg P \to P) \to P)$$
 Ax_{AL3}
 $G_2 \neg P \to \neg P$
 $G_3(\neg P \to P) \to P$ $MP(1, 2)$

4 Induktion

4.1 Vollständige Induktion

Ein Beweisprinzip, welches auf einer fundamentalen Eigenschaft der natürlichen Zahlen beruht.

Allgemeines Muster eines Beweises (M Menge, A Aussage)

- 1. (**Induktionsanfang**, IA) zeigen, dass für das kleinste Element n_0 aus M gilt: $A(n_0) = w$
- 2. (**Induktionsvoraussetzung**, IV) nötige Voraussetzung, welche als wahr angenommen wird damit IS gilt. Meistens sie so aufgebaut:

Sei festes $n \in M$ derart, dass A(n-1) = w

3. (Induktionsschritt, IS) folgern, dass folgendes gilt

$$[\forall n \in M : A(n-1) = w] \implies A(n) = w$$

Sprich: "zeige A_n ist wahr, falls A_{n-1} wahr ist für ein beliebiges $n \in \mathbb{N}_+$ "

Beispiel: $A_n = [\forall A \forall w \in A^* : |w^n| = n \cdot |w|]$ Induktionsanfang (n = 0)

$$\forall A \forall w \in A^* : |w^0| = |\varepsilon| = 0 = 0 \cdot |w|$$

Induktionsschritt ($n \in \mathbb{N}_+$)

$$\forall A \forall w \in A^* : |w^n| = |w^{n-1} \cdot w| = |w^{n-1}| + |w| \stackrel{A_{n-1}}{=} (n-1) \cdot |w| + |w| = n \cdot |w|$$

4.2 Varianten vollständiger Induktion

- Induktionsanfang an anderer Stelle (z.B. $n_0 = 1$ statt $n_0 = 0$)
- mehrere Induktionsanfänge

z.B IA für $n \le 2$: A_0, A_1, A_2 sind wahr. Dann der IS für $n \ge 3$

- starke Induktion. Hier werden im Induktionsschritt $\it alle$ "früheren Aussagen" verwendet (nicht nur von A(n-1))

Also A(n) ist wahr, falls A(k) für alle k < n wahr ist

• geschachtelte Induktion. Nützlich für Funktionen, welche auf Matrizen (bspw. $A^{p\times q}$) definiert sind

Für $A_{m,n}$ gibt es äußere Induktion über m und innere Induktion über n

5 Formale Sprachen

5.1 Formale Sprachen

Eine formale Sprache L über einem Alphabet A ist eine Teilmenge aller Wörter über A, also $L \subseteq A^*$

- Syntax, Dinge die formal korrekt sind (auf syntaktischer Ebene korrekt)
- Semantik, die Bedeutung syntaktisch korrekter Dinge

Beispiel $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$ ist die formale Sprache der Dezimaldarstellungen ganzer Zahlen

- 1, $-22 \in A$
- $2 33 -21 \notin A$

5.2 Produkte und Potenzen formaler Sprachen

5.2.1 Produkte

Seien L_1, L_2 formale Sprachen. Dann ist das Produkt der beiden Sprachen definiert als

$$L_1 \cdot L_2 := \{ w_1 w_2 | w_1 \in L_1, w_2 \in L_2 \}$$

Das Produkt formaler Spachen ist assoziativ (aufgrund der Assoziativität der Konkatenation)

$$L_1 \cdot L_2 \cdot L_3 = \{w_1 w_2 w_3 | w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\}$$

Beispiel: Java Deklarationen (fast). Seien $S = \{\text{int, double, char}\}, B = \{a, ..., z\}, Z = \{0, ..., 9\}$ Sprachen

$$L := S \cdot \{ \sqcup \} \cdot B \cdot (B \cup Z \cup \{ \varepsilon \}) \cdot \{ : \}$$

- int $\sqcup x2$; $\in L$
- double \sqcup w; \in *L*
- leider aber nicht char $\sqcup \sqcup hugo \sqcup ; \notin L$

Das neutrale Element ε verändert eine Sprache nicht $L \cdot \{\varepsilon\} = L = \{\varepsilon\} \cdot L$

5.2.2 Potenzen

Die Potenz *n* einer Sprache *L* ist induktiv definiert (wie bei Wörtern)

$$L^{0} = \{\varepsilon\}$$

$$\forall n \in \mathbb{N}_{+} : L^{n} = L \cdot L^{n-1}$$

- man kann Tupel als Wörter auffassen
- dann sind die Definitionen von Potenzen von Alphabeten und Sprachen "dasselbe"
- es gilt $L^* = A^*$

5.3 Konkatenationsabschluss formaler Sprachen

• Konkatenationsabschluss L^* von L (kleenesche Hülle)

$$L^* = \bigcup_{i \in \mathbb{N}_0} L^i$$

• ε -freier Konkatenationsabschluss L^+ von L (positiver Abschluss)

$$L^+ = \bigcup_{i \in \mathbb{N}_+} L^i$$

•
$$L^* = L^0 \cup L^+$$

Beispiel:

$$L = \{a\}^* \cup \{b\}^* = \{\varepsilon, a, aa, ..., b, bb, ...\}$$

Dann enthält L^* z.B.

- $aa \cdot \varepsilon \cdot aaaa \cdot b$
- bbb $\cdot \varepsilon \cdot a$

Achtung bei L^+ " ε -freier" Konkatenationsabschluss

- wenn $\varepsilon \in L$, dann ist auch $\varepsilon \in L^+$!
- ebenfalls gilt $\emptyset^* = \{\varepsilon\}$

6 Zahlendarstellungen und Kodierungen

6.1 Von Wörtern zu Zahlen und zurück

6.1.1 Division mit Rest

Sei $x \in \mathbb{N}_0$ und $y \in \mathbb{N}_+$

- x **div** $y \in \mathbb{N}_0$ (ganzzahlige Division von x durch y)
- $x \mod y \in \mathbb{N}_0$ (Rest der ganzzahligen Division von x durch y)

$$0 \le x \mod y < y$$

• es gilt: $\forall x \in \mathbb{N}_0, y \in \mathbb{N}_+$

$$x = y \cdot (x \text{ div } y) + (x \text{ mod } y)$$

6.1.2 k-äre Darstellung von Zahlen

Sei $k \in \mathbb{N}_0$ mit $k \geq 2$ und Z_k Alphabet mit k Ziffern $(x_{k-1} \cdots x_0 \in Z_k^*)$

- Konvertierung von Wort zu Zahl: $\mathrm{Num}_k:Z_k^*\to\mathbb{N}_0$ (linksinvers zu $\mathrm{Repr}_k)$

$$\operatorname{Num}_k(w) = \begin{cases} \varepsilon, & \text{falls } w = 0 \\ k \cdot \operatorname{Num}_k(w_1) + \operatorname{Num}_k(w_2), & \text{falls } w \neq \varepsilon \text{ mit } w_1 \in Z_k^*, w_2 \in Z_k \end{cases}$$

- Konvertierung von Zahl zu Wort: $\operatorname{Repr}_k:\mathbb{N}_0\to Z_k^+$

$$\operatorname{Repr}_k(i) = \begin{cases} \mathbf{i}, & \text{falls } n < k \\ \operatorname{Repr}_k(i \text{ div } k) \cdot \operatorname{Repr}_k(i \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Es gilt für alle $n, k \in \mathbb{N}_0$ $(k \ge 2)$: $\operatorname{Num}_l(\operatorname{Repr}_k(n)) = n$

- binäre Darstellung für k = 2
- ternäre Darstellung für k = 3

6.2 Von einem Alphabet zum anderen

6.2.1 Übersetzungn allgemein

- sind Abbildungen $t: L_A \to L_B$ (L_A, L_B Sprachen)
- von einer Zahlendarstellung in eine andere $\operatorname{Trans}_{n,m}: Z_n^* \to Z_m^*$

$$\operatorname{Trans}_{n,m} = \operatorname{Repr}_m \circ \operatorname{Repr}_n$$

- wichtig für bspw. Verschlüsselung, Kompression, Fehlererkennung und Fehlerkorrektur
- wenn t injektiv, kann man von $t(w) \in L_B$ eindeutig zu $w \in L_A$
- injektive Übersetzungen heißen Kodierungen
 - für w ∈ L_A ist t(w) ∈ L_B das zugehörige **Codewort**
 - das Bild von t heißt der Code

6.2.2 Homomorphismen

• eine Abbildung $h:A^*\to B^*$, mit A,B Alphabete, heißt **Homomorphismus**, wenn $\forall w_1,w_2\in A^*:$

$$h(w_1w_2) = h(w_1)h(w_2)$$

- es gilt $h(\varepsilon) = \varepsilon$ für alle Homomorphismen
- *h* heißt ε -frei, wenn $\forall x \in A : h(x) \neq \varepsilon$

Beispiel: Sei *h* Homomorphismus, h(a) = 10 und h(b) = 001

$$h(bab) = h(ba) \cdot h(b)$$
$$= h(b) \cdot h(a) \cdot h(b)$$
$$= 001 \cdot 10 \cdot 001$$
$$= 00110001$$

Der induzierte Homomorphismus

Seien A,B Alphabete, $f:A\to B^*$ Abbildung. Dann ist der durch f induzierte Homomorphismus $f^{**}A^*\to B^*$

$$f^{**}(w) = \begin{cases} \varepsilon, & \text{falls } w = \varepsilon \\ f^{**}(w')f(x), & \text{falls } w = w'x \text{ mit } w' \in A^*, x \in A \end{cases}$$

Beispiel: f(0) = aba, f(1) = bb

$$f^{**}(0010) = f^{**}(001)f(0) = f^{**}(001) \cdot aba$$

= $f^{**}(00)f(1) \cdot aba = f^{**}(00) \cdot bb \cdot aba$
= ...
= $aba \cdot aba \cdot bb \cdot aba = abaababbaba$

6.2.3 Präfixfreie Codes

Im folgenden sei A Alphabet und $w \in A^*$ Wort.

• ein Wort $a \in A^*$ heißt **Präfix** von w, wenn

$$\exists b \in A^* : a \cdot b = w$$

• ein Wort $b \in A^*$ heißt **Suffix** von w, wenn

$$\exists a \in A^* : a \cdot b = w$$

- ε ist immer sowohl Präfix als auch Suffix von w
- ein Homomorphismus $h:A^*\to B^*$ heißt **präfixfrei**, wenn $\forall x_1,x_2\in A$ mit $x_1\neq x_2:h(x_1)$ kein Präfix von $h(x_2)$
- ein präfixfreier Homomorphismus ist immer injektiv, aber h im allgemeinen nicht surjektiv

6.3 Huffman-Kodierung

- liefert kürzest mögliche präfixfreie Codes ("ideale Kodierung")
- Bestandteil von z.B. zip, gzip, png, ...

6.3.1 Algorithmus zur Berechnung von Huffman-Codes

• Anzahl an Vorkommen von x in w: $|w|_x$

$$|w|_{x} = \begin{cases} 0, & \text{falls } w = \varepsilon \\ 1 + |w'|_{x}, & \text{falls } w = w'x \text{ mit } w' \in A^{*} \\ |w'|_{x}, & \text{falls } w = w'y \text{ mit } w' \in A^{*}, y \neq x \end{cases}$$

• erfolgt in zwei Phasen (1. Konstruktion eines "Baumes", 2. Ablesen des Codes aus dem Baum)

Für Schritt $i \in \mathbb{N}_+$ sei M_i die Menge der Symbole mit ihren Häufigkeiten.

$$M_1 := \{(|w|_x, \{x\})\} \ (x \in A)$$

$$M_{i+1} := (M_i \setminus \{(k_1, X_1), (k_2, X_2)\} \cup \{(k_1 + k_2, X_1 \cup X_2)\})$$

Wobei (k_1, X_1) , (k_2, X_2) die Elemente aus M_i mit den kleinsten Häufigkeiten sind

- der Baum ist gewurzelt (Knoten (|w|, A))
- Blätter des Baumes sind Zeichen $x \in A$
- jeder innere Knoten hat genau zwei Kinder

Beispiel: w = afebfecaffdeddccefbeff

- dieser entstehende Homomorphismus ist präfixfrei!
- Kodierung erfolgt durch Ablesen der Kodierungen (gehe auf kürzestem Weg von Wurzel zu jedem Blatt für x)
- Dekodierung erfolgt analog
- beim obigen Beispiel ist h(c) = 100

7 Kontextfreie Grammatiken

7.1 Kontextfreie Grammatiken

- Grammatik $G = (\Sigma, V, S, R)$
- Σ Alphabet der **Terminalsymbole**
- V Alphabet der **Nichtterminalsymbole** bzw. Variablen
- es gilt $\Sigma \cap V = \emptyset$
- $S \in V$ ist das **Startsymbol**
- $R \subseteq V \times (\Sigma \cup V)^*$ endliche Menge an **Ableitungsregeln** (Schreibe: $A \to \beta$) Sprich: $man\ kann\ Symbol\ X\ ersetzen\ durch\ Wort\ w$

Beispiel:
$$G = (\{a, b\}, \{X\}, X, \{X \rightarrow \varepsilon, X \rightarrow aXb\})$$

Ersetzung aus aXabXX wird aaXbabXX

7.2 Ableitungen

Sei $X \rightarrow w$ eine Ableitungsregel

- linke Seite X ist immer eine Variable
- Terminalsymbole können nicht ersetzt werden
- Ableitungen sind kontextfrei (Ersetzung immer überall möglich, auch unabhängig vom Kontext)
- die Ableitung \rightarrow ist binäre Relation ($\rightarrow \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$
- im allgemeinen, keine Eigenschaften (nicht linkstotal, rechtstotal, linkseindeutig und rechtseindeutig)

Ableitungsfolgen

Für alle $u, v \in (\Sigma \cup V)^*$ sind die Ableitungsfolgen " $\overset{i}{\rightarrow}$ " und " $\overset{*}{\rightarrow}$ " definiert als

$$u \xrightarrow{0} v \text{ wenn } u = v$$

$$\forall i \in \mathbb{N}_{+} : u \xrightarrow{i} v \text{ wenn } \exists w \in (\Sigma \cup V)^{*} : u \to w \xrightarrow{i-1} v$$

$$u \xrightarrow{*} v \text{ wenn } \exists i \in \mathbb{N}_{0} : u \xrightarrow{i} v$$

Beispiel: $G = (\{a, b\}, \{X\}, X, \{X \rightarrow \varepsilon, X \rightarrow aXb\})$

- $X \rightarrow aXb \rightarrow aaXbb \rightarrow aabb$
- $X \stackrel{2}{\rightarrow} aaXbb$
- $X \stackrel{4}{\rightarrow} aaabbb$
- $abb \xrightarrow{0} abb$

Kompakte Notation

- statt $\{X \to w_1, X \to w_2, X \to w_3, X \to w_4, X \to w_5\}$, schreibe $\{X \to w_1|w_2|w_3|w_4|w_5\}$
- im vorherigen Beispiel: $G = (\{a, b\}, \{X\}, X, R)$ mit

$$R = \{X \rightarrow \mathbf{a}X\mathbf{b}|\varepsilon\}$$

7.3 Erzeugte formale Sprache

Die von $G = (\Sigma, V, S, R)$ erzeugte formale Sprache L(G) ist definiert als

$$L(G) = \{ w \in \Sigma^* | S \xrightarrow{*} w \}$$

- formale Sprachen von einer Grammtik erzeugt, heißen kontexfrei
- L(G) erhält nur Wörter aus Σ^*
- die Ableitung $S \to \ldots \to w$ für $w \in L(G)$ enthält aber Variablen

Beispiel:
$$G = (\{a, b\}, \{X\}, X, \{X \rightarrow \varepsilon, X \rightarrow aXb\})$$

- für alle $i \in \mathbb{N}_0$ gilt: $X \stackrel{*}{\to} a^i b^i$, also $\{a^i b^i | i \in \mathbb{N}_0\} \subseteq L(G)$
- Umgekehrt zeigt man: für jedes $i \in \mathbb{N}_0$: wenn $X \stackrel{i+1}{\longrightarrow} w$, dann $w = \mathbf{a}^i \mathbf{b}^i$ oder $w = \mathbf{a}^{i+1} X \mathbf{b}^{i+1}$ es gilt also $L(G) \subseteq \{\mathbf{a}^i \mathbf{b}^i | i \in \mathbb{N}_0\}$
- $\Longrightarrow L(G) = \{\mathbf{a}^i \mathbf{b}^i | i \in \mathbb{N}_0\}$

7.4 Ableitungsbäume

- sind übersichtlicher als schrittweise Ableitungen
- beginne mit Startsymbol als Wurzel
- Ableitung $X \to w$: von erstztem X zu jedem Symbol von w eine separate Kante nach unten

Beispiel: Syntax aussagenlogischer Formeln

- $G = (\Sigma, \{X\}, X, R)$ mit $\Sigma = \operatorname{Var}_{AL} \cup \{(,), \neg, \land, \lor, \rightarrow\}$
- Regelmenge R

$$R = \{X \to P_i | P_i \in Var_{AL}\}$$
$$\cup \{X \to (\neg X) | (X \neg X) | (X \lor X) | (X \to X)\}$$

8 Prädikatenlogik

- vieles kann in Aussagenlogik nicht dargestellt werden \implies Prädikatenlogik
- bekannte Elemente (aus Aussagenlogik): Variablen, logische Verknüpfungen, Klammern
- neue Elemente: Quantoren, Relationen, Funktionen, Konstanten

8.1 Syntax prädikatenlogischer Formeln

- Prädikatenlogik besteht aus drei syntaktischen Einheiten
- Terme: aus Variablensymbole, Funktionssymbole
- atomare Formeln: aus Terme (mithilfe von Relationssymbolen)
- prädikatenlogische Formeln: aus atomaren Formeln unter Verwendung aussagenlogischer Konnektive und Quantoren

8.1.1 Relationen und Funktionen

- Objekte bekommen Werte einer **Definitionsmenge** D zugewiesen
- Funktionen $f: D^k \to D$, ar(f) = k heißt **Stelligkeit** von f (engl. arity)
- Konkrete Beispiele für Funktionen

$$- f(x_1, x_2) = x_1 + x_2$$
 (Addition $a + b$)

$$- f(x_1, x_2, x_3) = x_1^{x_3} + x_2^{x_3} (a^n + b^n)$$

$$- f(x_1, x_2) = x_1 x_2$$
 (Konkatenation uv)

$$- f() = c$$
 (Konstante c)

• Relationen $R \subseteq D^k = \{(x_1, ..., x_k) | x_1, ..., x_k \in D\}, ar(R) = k$

8.1.2 Signatur

- Alphabet Var_{PL} sind **Variablensymbole** (x_i , endlich viele $i \in \mathbb{N}_0$, kurz x, y, z)
- Alphabet Fun_{PL} sind **Funktionssymbole** (jede $\mathbf{f}_i \in \operatorname{Fun}_{PL}$ hat **Stelligkeit** $ar(\mathbf{f}_i) \in \mathbb{N}_0$, kurz \mathbf{f} , \mathbf{g} , \mathbf{h})
- Alphabet Rel_{PL} sind **Relationssymbole/Prädikatensymbole** (jedes $R_i \in Rel_{PL}$ hat **Stelligkeit** $ar(R_i) \in \mathbb{N}_0$)
- eine Signatur ist definiert als $S = (Var_{PL}, Fun_{PL}, Rel_{PL})$
- Alphabet für Prädikatenlogik

$$A_S = \{\neg, \land, \lor, \rightarrow, (,,,), \lor, \exists\} \cup \operatorname{Var}_{PL} \cup \operatorname{Fun}_{PL} \cup \operatorname{Rel}_{PL}$$

Terme

- Menge Ter_S der Terme
- $\forall x \in Var_{PL} : x \in Ter_S$ (jede Variable ist ein Term)
- $\forall f \in Fun_{PL}, t_1, \dots, t_{ar(f)} \in Ter_S$, dann ist

$$f(t_1, \ldots, t_{ar(f)}) \in Ter_S$$

Atmorare Formeln

Menge AtFor_S der atmoaren Formeln. Wenn $R \in Rel_{PL}, t_1, \dots, t_{ar(R)} \in Ter_S$, dann ist

$$\mathbf{R}(t_1,\ldots,t_{ar(\mathbf{R})}) \in \mathsf{AtFor}_S$$

Formeln

- Menge For_S der Formeln
- $\forall A \in \text{AtFor}_S : A \in \text{For}_S \text{ (jede atomare Formel ist eine Formel)}$
- $\forall x \in Var_{PL}, A \in For_S : (\forall xA), (\exists xA) \in For_S$
- $\forall A, B \in \text{For}_S$, dann ist

$$\neg A, (A \land B), (A \lor B), (A \rightarrow B) \in \text{For}_S$$

Beispiel: "Satz des Euklid"

$$\forall x \exists y : (y \ge x) \land y \text{Primzahl}$$

• Signatur $S = (Var_{PL}, Fun_{PL}, Rel_{PL})$

$$Var_{PL} = \{x, y\}, Fun_{PL} = \emptyset, Rel_{PL} = \{R, S\}, ar(R) = 2, ar(S) = 1$$

• Formel $F = \forall x \exists y \ R(y, x) \land S(y)$

8.2 Semantik prädikatenlogischer Formeln

8.2.1 Auswertung

Interpretationen Sei $S = (Var_{PL}, Fun_{PL}, Rel_{PL})$ Signatur.

- (D, I) ist **Interpretation** von S
- $D \neq \emptyset$ heißt **Universium** (engl. *domain*)
- um zu schauen, ob Formel F wahr oder falsch, wird **Variablenbelegung** β : Var_{PL} benötigt

Beispiel: $\beta(\mathbf{x}) = 3$ und $\beta(\mathbf{y}) = 42$

Auswertungsfunktion - Terme

Sei $S = (\operatorname{Var}_{PL}, \operatorname{Fun}_{PL}, \operatorname{Rel}_{PL})$ Signatur, (D, I) Interpretation von $S, \beta : \operatorname{Var}_{PL} \to D$ Variablenbelegung.

Definiere die Auswertung von Termen $\operatorname{tval}_{D.I.\beta}: \operatorname{Ter}_S \to D$

• für Variablen $\mathbf{x} \in \text{Var}_{PL}$

$$tval_{D,I,\beta}(\mathbf{x}) = \beta(\mathbf{x})$$

• für zusammengesetzte Terme $f(t_1, ..., t_k)$ (k = ar(f))

$$\operatorname{tval}_{D,I,\beta}(\mathbf{f}(t_1,\ldots,t_k)) = I(\mathbf{f})(\operatorname{tval}_{D,I,\beta}(t_1),\ldots,\operatorname{tval}_{D,I,\beta}(t_k))$$

Auswertungsfunktion – Formeln

Sei $S = (\operatorname{Var}_{PL}, \operatorname{Fun}_{PL}, \operatorname{Rel}_{PL})$ Signatur, (D, I) Interpretation von $S, \beta : \operatorname{Var}_{PL} \to D$ Variablenbelegung.

Definiere die Auswertung von Formeln $val_{D,I,\beta} : For_S \to \mathbb{B}$

• für atomare Formeln $A \in AtFor_S$

$$A = \mathbf{R}(t_1, \dots, t_k)$$
 ($\mathbf{R} \in \text{Rel}_{PL}$ mit $ar(\mathbf{R}) = k$ und Terme t_1, \dots, t_k)

$$\operatorname{val}_{D,I,\beta}(\mathbb{R}(t_1,\ldots,t_k)) = \begin{cases} w, & \text{falls } (\operatorname{tval}_{D,I,\beta}(t_1),\ldots,\operatorname{tval}_{D,I,\beta}(t_k)) \in I(\mathbb{R}) \\ f, & \text{falls } (\operatorname{tval}_{D,I,\beta}(t_1),\ldots,\operatorname{tval}_{D,I,\beta}(t_k)) \notin I(\mathbb{R}) \end{cases}$$

• für zusammengesetzte Formel $F \in For_S$

$$F = \neg A, (A \land B), (A \lor B), (A \rightarrow B) (A, B \in \text{For}_S)$$

Analog wie in Aussagenlogik, z.b. $\operatorname{val}_{D,I,\beta}(A \wedge B) = \operatorname{val}_{D,I,\beta}(A) \wedge \operatorname{val}_{D,I,\beta}(B)$

• für zusammengesetzte Formel $F \in \text{For}_S$

$$F = (\forall xA), (\exists xA) (A \in For_S)$$

neue Variablenbelegung wird benötigt $\beta_{\mathbf{x}}^d: \mathrm{Var}_{PL} \to D$ (Überschreibung der Belegung von \mathbf{x} in β durch $d \in D$

$$\beta_{\mathbf{x}}^{d}(\mathbf{y}) = \begin{cases} \beta(\mathbf{y}), & \text{falls } \mathbf{y} \neq \mathbf{x} \\ d, & \text{falls } \mathbf{y} = \mathbf{x} \end{cases}$$

$$\operatorname{val}_{D,I,\beta}(\forall \mathbf{x}A) = \begin{cases} w, & \text{falls } \mathbf{für \ jedes} \ d \in D : \operatorname{val}_{D,I,\beta_{\mathbf{x}}^{d}}(A) = w \\ f, & \text{sonst} \end{cases}$$

$$\operatorname{val}_{D,I,\beta}(\exists \mathbf{x}A) = \begin{cases} w, & \text{falls } \mathbf{für \ mindestens \ ein} \ d \in D : \operatorname{val}_{D,I,\beta_{\mathbf{x}}^{d}}(A) = w \\ f, & \text{sonst} \end{cases}$$

Beispiel einer Formalisierung in Prädikatenlogik

"Wenn es jeden Tag eine GBI-Vorlesung gibt, dann gibt es auch am Mittwoch eine GBI-Vorlesung."

- $S = (\{x, m\}, \{G\}, \emptyset)$
- $F = (\forall x G(x)) \rightarrow G(m)$
- Interpretation: D = {Mo, Di, Mi, Do, Fr, Sa, So}
 I(G) = {d ∈ D|Es gibt eine GBI-Vorlesung am d}
- Auswertung: β : Var_{PL} \rightarrow D, β (**x**) = Sa, β (**m**) = Mi. Dann gilt

$$\operatorname{val}_{D,I,\beta}((\forall x G(x)) \to G(m)) = w$$

Dies gilt immer!

8.2.2 Modelle

- (D, I) ist **Modell** für $G \in \text{For}_S$, wenn (D, I) Interpretation für G und $\forall \beta : \text{val}_{D,I,\beta}(G) = w$
- (D, I) ist **Modell** für $\Gamma \subseteq \text{For}_S$, wenn (D, I) Modell $\forall G \in \Gamma$
- schreibe $\Gamma \models G$ (jedes Modell von Γ auch Modell von G
- schreibe $H \models G$, wenn $\{H\} \models G$
- schreibe $\models G$ statt $\emptyset \models G$ wenn G allgemeingültig (Tautologie)
- zwei Formeln $G, H \in \text{For}_S$ sind **logisch äquivalent**, wenn für jede Interpretation (D, I) von S und jede Variablenbelegung β gilt: $\text{val}_{D,I,\beta}(G) = \text{val}_{D,I,\beta}(H)$

9 Algorithmen

9.1 Der Algorithmus

- endliche Beschreibung
- Abfolgen von Schritten: elementare Anweisungen + endlich viele Schritte
- endliche Eingabe → endliche Ausgabe
- Determinismus nächste elementare Anweisung eindeutig festgelegt
- Ablauf klar nachvollziehbar

Adjazenzmatrix

- $|V| \times |V|$ Matrix A_G indiziert nach Knoten
- $A_G[u, v] = \begin{cases} 1, & \text{falls } uv \in E \\ 1, & \text{falls } uv \notin E \end{cases}$

9.2 O-Notation

- Laufzeit = Anzahl ausgeführter Anweisungen
- Bestimmung durch Abschätzungen der Laufzeit
- verschiedene Laufzeiten: best case, average case, worst case (eigentlich oft worst-case Abschätzungen)

Seien $f, g: \mathbb{N}_+ \to \mathbb{N}_+$ Funktionen

• f wächst **höchstens so schnell** wie g, wenn

$$\exists c > 0 \exists n_0 \in \mathbb{N}_+ \forall n \geq n_0 : f(n) \leq c \cdot g(n)$$

Schreibe: $f(n) \in O(g(n))$

• f wächst **mindestens so schnell** wie g, wenn

$$\exists c > 0 \exists n_0 \in \mathbb{N}_+ \forall n \geq n_0 : f(n) \geq c \cdot g(n)$$

Schreibe: $f(n) \in \Omega(q(n))$

• f wächst **genauso schnell** wie g, wenn

$$f(n) \in O(q(n))$$
 und $f(n) \in \Omega(q(n))$

Schreibe: $f(n) \in \Theta(g(n))$

Rechenregeln und Gesetze

- $a \cdot f(n) \in \Theta(f(n))$ (Konstante Faktoren)
- $n^a \in O(n^b) \iff a \le b$ (Monome)
- $[f_1(n) \in O(g_1(n)) \land f_2(n) \in O(g_2(n))]$ $\implies f_1(n) \cdot f_2(n) \in O(g_1(n) \cdot g_2(n))$ (**Produkte**)
- $[f(n) \in O(g(n)) \land g(n) \in O(h(n))] \implies f(n) \in O(h(n))$ (Transitivität)

Klassen von Funktionen Sei $f: \mathbb{N}_+ \to \mathbb{N}_+$ Funktion

- $O(f) = \{g : \mathbb{N}_+ \to \mathbb{N}_+ | \exists c > 0 \exists n_0 \in \mathbb{N}_+ \forall n \ge n_0 : g(n) \le c \cdot f(n) \}$
- $\Omega(f) = \{g : \mathbb{N}_+ \to \mathbb{N}_+ | \exists c > 0 \exists n_0 \in \mathbb{N}_+ \forall n \ge n_0 : g(n) \ge c \cdot f(n) \}$
- $\Theta(f) = O(f) \cap \Omega(f)$

10 Graphen

10.1 Graphen

10.1.1 Definition

Ein **Graph** G = (V, E) besteht aus

- endliche Knotenmenge ${\cal V}$
- Kantenmenge $E\subseteq \binom{V}{2}=\{\{u,v\}|u,v\in V,u\neq v\}$ $e\in E$ ist paar aus Knoten u,v. Schreibe e=uv

10.1.2 Arten von Graphen

• Vollständiger Graph $K_n \ (n \in \mathbb{N}_+)$

$$V(K_n) = \{v_1, \ldots, v_n\}, E(K_n) = \begin{pmatrix} V \\ 2 \end{pmatrix}$$

• **Pfad** P_n $(n \in \mathbb{N}_+)$

$$V(P_n) = \{v_1, \dots, v_n\}, E(P_n) = \{v_i v_{i+1} | i \in [n-1]\}$$

Die Länge von P_n ist n-1.

• Kreis C_n $(n \in \mathbb{N}_+, n \ge 3)$

$$V(C_n) = \{v_1, \dots, v_n\}, E(C_n) = E(P_n) \cup \{v_1v_n\}$$

Die Länge von C_n ist n.

• Komplementgraph $\overline{G} = (V', E')$

$$V' = V, E' = \{ uv \in \binom{V}{2} \mid uv \notin E \}$$

• Kantengraph L(G) = (V', E')

$$V' = E, E' = \{ e_1 e_2 \in \binom{E}{2} \mid |e_1 \cap e_2| = 1 \}$$

Teilgraphen

Seien $G = (V_G, E_G), H = (V_H, E_H)$ Graphen.

$$H$$
 ist Teilgraph von $G \iff V_H \subseteq V_G \land E_H \subseteq E_G$

Schreibe: $H \subseteq G$

spezielle Teilgraphen:

- $H \subseteq G$ vollständig $\implies V_H$ heißt **Clique** von G
- $H \subseteq G$ Pfad $\Longrightarrow H$ Pfad in G
- $H \subseteq G$ Kreis $\Longrightarrow H$ Kreis in G

10.1.3 Eigenschaften

Sei G = (V, E) Graph

- Cliquenzahl von G ist $\omega(G) = \max\{|A| : A \subseteq V \text{ Clique}\}$
- G zusammenhängend, wenn zwischen allen zwei Knoten ein Pfad in G existiert
- G kreisfrei, wenn G keinen Kreis enthält
- inklusionsmaximale, zusammenhängende Teilgraphen von G: Komponenten / Zusammenhangskomponenten

10.2 Bäume und Wälder

Sei G = (V, E) Graph mit n = |V| Knoten

- G ist **Baum**, wenn zusammenhängend und kreisfrei (hat n-1 Kanten)
- Bäume sind maximal kreisfrei und minimal zusammenhängend
- zwischen zwei Knoten in G gibt exakt einen Pfad
- jeder Teilgraph von *G* hat einen Knoten mit höchstens einer inzidenten Kante
- G ist **Wald**, wenn jede Komponente von G ein Baum ist

Weitere Notation von Bäumen

- Wurzel ist ausgezeichneter Knoten, also beliebiger Knoten mit Namen "Wurzel"
- Blätter sind Knoten mit ≤ 1 Nachbarn
- innere Knoten sind Knoten mit ≥ 2 Nachbarn
- **Kinder** von Knoten v sind Nachbarn mit größerem Abstand zur Wurzel

10.3 Bipartite Graphen

Sei G = (V, E) Graph und $\chi(G) = \min\{k \in \mathbb{N}_+ : G \text{ hat eine k-F\"arbung}\}$

G ist bipartit $\iff \chi(G) \leq 2$

• bipartite Graphen ëinfachünd gut verstanden

10.4 Euler-Touren

Euler-Tour ist ein Pfad, um jede Kante einer Folge von Knoten genau einmal abzulaufen

Knotengrad

Die Anzahl der zu v inzidenten Kanten in G ist definiert als

$$deg(v) = |N(v)|$$

Es gilt für G = (V, E) Graph mit $deg(v) \neq 0$ für jeden Knoten

G hat eine geschlossene Euler-Tour

 \iff G ist zusammenhängend und $\forall v \in V : deg(v) \mod 2 = 0$

11 Endliche Automaten

11.1 Endliche Automaten

Ein Endlicher Automat $\mathcal{A} = (Q, q_0, \Sigma, \delta, F)$ besteht aus

- Q Zustandsmenge (endlich)
- $q_0 \in Q$ Startzustand
- Σ Eingabealphabet
- $\delta: Q \times \Sigma \to Q$ Zustandsübergangsfunktion
- $F \subseteq Q$ akzeptierte Zustände
- erkannte bzw. akzeptierte formale Sprache

$$L(\mathcal{A}) = \{ w \in \Sigma^* | \delta_*(q_0, w) \in F \}$$

Zustandsübergangsfunnktionen Sei $w \in \Sigma^*$ das eingegebene Wort in einen Endlichen Automaten

• $\delta_*: Q \times \Sigma^* \to Q$ am Ende erreichter Zustand

$$\delta_*(q,\varepsilon) = q$$

$$\forall w \in \Sigma^* \forall x \in \Sigma : \delta_*(q,wx) = \delta(\delta_*(q,w),x)$$

• $\delta_{**}: Q \times \Sigma^* \to Q^+$ Folge der durchlaufenen Zustände

$$\delta_{**}(q, \varepsilon) = q$$

$$\forall w \in \Sigma^* \forall x \in \Sigma : \delta_{**}(q, wx) = \delta_{**}(q, w) \cdot \delta_*(q, wx)$$

Akzeptanz Sei $w \in \Sigma^*$ eingegebenes Wort in einen EA

- w wird **akzeptiert**, falls $\delta_*(q_0, w) \in F$
- w wird **abgelehnt**, falls $\delta_*(q_0, w) \notin F$

11.2 Beispiel eines Endlichen Automaten

Sei $\mathcal{A} = (Q, q_0, \Sigma, \delta, F)$ Endlicher Automat mit

- $Q = \{q_0, q_a, q_b, q_f, q_r\}$
- $\Sigma = \{a, b\}$
- $F = \{q_f\}$

Dieser kann mithilfe eines Graphen visualisiert werden

- $\delta_*(q_0, \text{aaaba}) = q_r$
- $\delta_{**}(q_0, \text{aaaba}) = q_0 q_a q_a q_a q_f q_r$
- $\delta_*(q_0, \text{aaaba}) = q_r \notin F \text{ wird abgelehnt}$
- $\delta_*(q_0, \text{aaab}) = q_f \in F \text{ wird akzeptiert}$