The letter k denotes an algebraically closed field.

Exercise 1. Let X be a topological space.

- (i) If Y is a subset of X, show that $\dim Y \leq \dim X$.
- (ii) Assume that $X = \bigcup_{\alpha \in A} U_{\alpha}$ with U_{α} an open subset of X for each $\alpha \in A$. Show that $\dim X = \sup_{\alpha \in A} \dim U_{\alpha}$.

Exercise 2. Given $f \in k[x,y]$, we denote by $\varphi_f: \mathbb{A}^2_k \to \mathbb{A}^1_k$ the map $(u,v) \mapsto f(u,v)$.

- (i) For $t \in k = \mathbb{A}^1_k$, recall why $\varphi_f^{-1}\{t\}$ is an algebraic set in \mathbb{A}^2_k .
- (ii) Find f such that $\varphi_f^{-1}\{t\}$ is irreducible for all $t \in k$.
- (iii) Find f such that $\varphi_f^{-1}\{t\}$ is irreducible for all $t \in k \{0\}$ but $\varphi_f^{-1}\{0\}$ is not irreducible.

Exercise 3. (i) Let R be a principal ideal domain. Show that dim $R \in \{0, 1\}$.

- (ii) Let $Y = V(y x^2) \subset \mathbb{A}^2_k$. Show A(Y) is a polynomial ring in one variable over k.
- (iii) Let $Z = V(xy-1) \subset \mathbb{A}^2_k$. Show A(Z) is not a polynomial ring in one variable over k.
- (iv) Show that Y and Z are irreducible, and compute their dimensions.

Exercise 4. Consider the map $\varphi: \mathbb{A}^1_k \to \mathbb{A}^2_k$ given by $t \mapsto (t^2, t^3)$. Show that $\varphi(\mathbb{A}^1_k)$ is an irreducible closed subset $Z \subset \mathbb{A}^2_k$, and that the induced map $\mathbb{A}^1_k \to Z$ is bijective.