1. Let $\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k\}$ be a set of k orthonormal vectors in \mathbb{R}^n that span a subspace \mathcal{W} and let Z be a matrix formed by taking these as column vectors.

$$Z = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k]$$

(Note in R this would be the cbind function to form the vectors into a matrix.) Show that $Z^TZ = I$ where I is the identity matrix. What is the dimension of this identity? (Subsequently when it is important we will notate the identity matrix as I_m where m refers to the dimension.)

- 2. Show that the trace of the matrix ZZ^T is k. Under what circumstances will $ZZ^T = I$?
- 3. Define: The *projection* of $\mathbf{y} \in \mathbb{R}^n$ onto a subspace \mathcal{W} as the vector \mathbf{u} such that $\mathbf{y} = \mathbf{u} + \mathbf{v}$, $\mathbf{u} \in \mathcal{W}$ and $\mathbf{v} \in \mathcal{W}^{\perp}$.

From lecture we know that if a projection exists it is unique – so we can talk about the projection.

(This is not exactly how projection is defined in the course reference notes but is how it was presented in class lecture, followed by a proof of existence and uniqueness.)

From Problem (1) define the $n \times n$ matrix $P = ZZ^T$. Show that for any \mathbf{y} , $\mathbf{u} = P\mathbf{y}$ is the projection. Show that $(I - P)\mathbf{y}$ is the projection onto \mathcal{W}^{\perp} .

- 4. Let X be an $n \times k$ matrix where the columns are linearly independent. Show that X^TX has full rank (k) and show that $P = X(X^TX)^{-1}X^T$ is a projection onto the subspace spanned by the columns of X.
- 5. Classical treatments of linear algebra tend to present the singular value decomposition (svd) at the end of a course if at all. However, it is an extremely useful way to categorize all matrices and hence all linear maps between \mathbb{R}^k and \mathbb{R}^n . Let X be any $n \times k$ matrix, then

$$X = UDV^T$$

with

- U an $n \times k$ matrix where the columns form an orthonormal basis ($U^T U = I_k$)
- D is a $k \times k$ diagonal matrix with nonnegative elements (some of the D can be zero and the convention is to sort these in descending order.)
- V is an $k \times k$ orthonormal matrix $(V^T V = I_k)$

(The proof of this is long and involved and we will just take this result on trust!)

If A is a square matrix and invertible show that $A^{-1} = VD^{-1}U^{T}$.

Show that $X^T X = V D^2 V^T$.

Based on this previous result explain how to construct a G-inverse for X^TX , that is identify a matrix, A, such that $X^TX(A)X^TX = X^TX$.

6. When was the singular value decomposition invented? If possible identify its inventor(s)? Is it difficult to compute the SVD of a matrix in R?