DFS Worksheet

1. Label each vertex with its discovery and finish time stamp.

Vertex	d	f
a	1	10
e	2	9
f	3	8
h	4	7
g	5	6
b	11	16
С	12	15
d	13	14

2. Draw the depth-first tree. (Augment with back, cross and forward edges.)

3. Show the discovery-finish range for vertices a, f and b on a number-line.

Topological Sorting on DAGs.

- 1. The figure above should be near and dear to your hearts! Do you see why it had better be an acyclic graph?
 - Yes, because you need prerequisite classes to take more advance classes. For example, class 442 cannot be a prereq for class 261 since you would not be able to graduate. Therefore, it needs to be an acyclic graph.
- 2. (Quickly) perform a DFS on the DAG in the figure, labeling each vertex with its finish time stamp.

Vertex	d	f
306	1	2
341	3	6
442	4	5
261	7	14
262	8	13
403	9	10
406	11	12
358	15	16

3. Now, list the vertices in topological order based on the finish times above. $358 \rightarrow 261 \rightarrow 262 \rightarrow 406 \rightarrow 403 \rightarrow 341 \rightarrow 442 \rightarrow 306$