Ивашенко В.П. БГУИР

- Основы OSTIS
- Принципы
 платформенной независимости и
 платформенной реализации OSTIS
- Анализ недостатков
- Достоинства и перспективы

- OSTIS открытые семантические технологии проектирования интеллектуальных систем (2010 год)
 - унифицированное представление знаний в виде однородных семантических сетей с теоретико-множественной интерпретацией (sc-код)
 - графодинамический подход к представлению и обработке знаний
 - многократное использование компонентов интеллектуальных систем
 - построение интеллектуальных систем, управляемых знаниями
 - и др.

- OSTIS открытые семантические технологии проектирования интеллектуальных систем
 - платформа реализации sc-моделей

- OSTIS открытые семантические технологии проектирования интеллектуальных систем
 - платформа реализации sc-моделей
 - sc-память (sc-хранилище)

- OSTIS открытые семантические технологии проектирования интеллектуальных систем
 - платформа реализации sc-моделей
 - sc-память (sc-хранилище)
 - scp-машина (Semantic Code Programming)

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - наличие спецификации scp-машины

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - обеспечивается моделью унифицированного семантического представления знаний
 - универсальная реализация требует (потенциально) неограниченной sc-памяти, возможности её наращивания «на лету»

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - наличие спецификации scp-машины

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - наличие спецификации scp-машины
 - обеспечивается описанием языка Semantic Code Programming (действий scp-машины) и описанием агента интерпретации хранимых scp-программ

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - наличие спецификации scp-машины
 - спецификации строятся в соответствии с моделью спецификации знаний, позволяющей исследовать всевозможные виды соответствий между формальными моделями онтологий, что позволяет применять для их анализа средства технологии OSTIS

- Принципы платформенной независимости
 - наличие спецификации sc-памяти
 - наличие спецификации scp-машины

интеллектуальная система 1

интеллектуальная система 2

платформа реализации sc-моделей

Платформа 1

Платформа 2

Платформа 3

- Принципы платформенной реализации
 - формальная модель обработки информации (для) платформы

```
<A,G,B,W>
```

- **A** алфавит
- G грамматика
- В множество начальных информационных конструкций
- W множество операций

- Принципы платформенной реализации (полнота)
 - требуется обеспечить отображение множества состояний формальной модели обработки информации *реализуемой* платформы на

множество состояний формальной модели обработки информации *реализующей* платформы

- Принципы платформенной реализации (универсальность)
 - требуется декомпозировать, обеспечить сведение операций формальной модели обработки информации реализуемой платформы

K

композициям наборов операций формальной модели обработки информации реализующей платформы

- уровни управления интеллектуальной системы
 - уровень управления знаниями
 - управление распределённой обработкой потока знаний
 - управление конечными системами множеств
 - управление множествами
 - уровень управления данными
 - управление структурами данных (списки, деревья и т.д.)
 - управление массивами
 - уровень управления устройствами
 - управление памятью

- гарантии
 - производительности
 - затрат
 - потерь

- гарантии затрат памяти
 O(U*logk(U))
 - U размер базы знаний

ПРИНЦИПЫ ПЛАТФОРМЕННОЙ НЕЗАВИСИМОСТИ И

Оценкы паранформы на операций

управление	программная реализация		аппаратная
	последовательная	параллельная	реализация
логическим выводом (CAD)	O(2 ^{2W})	O(2 ^{2W} /N)	O(2 ^{2W} /V)
поиском по образцу	O(U ^w)	$O(W^2*log^k(V)+U^W/N)$	$O(W^2*log^k(V)+U^W/V)$
линейной резолюцией	o(W²)	O(W ²)	O(W ²)
генерацией по образцу	o(W³)	$o(W^2+W^3/N)$	o(W)
множествами	o(W²)	o(W+W ² /N)	o(W)
структурами	o(W²)	$o(W+W^2/N)$	o(W)
массивами	0(W²)	$O(log^k(W)*f(W))$	
памятью	O(log ^k (W)*f(W))	$O(log^k(W)*f(W))$	

f(W) – время доступа к ячейке памяти W – размер входных данных N – число параллельных потоков(V–задач) U – размер базы знаний

• При неполных отображении, декомпозиции или изменении гарантий возможна ограниченная реализация

- принципы реализации систем на базе платформы OSTIS
 - принцип учёта НЕ-факторов (неполнота, нечёткость, неопределённость, их изменение со временем и т.д.)
 - принцип семантического протоколирования работы системы
 - принцип распределённой обработки потока знаний

- принципы реализации систем на базе платформы
 - агентно-ориентированный подход
 - система организуется как иерархия параллельно взаимодействующих агентов

- анализ недостатков
 - как обрабатывать противоречащие знания?
 - как обрабатывать неполные знания?
 - как распараллелить обработку знаний?
 - как обеспечить непротиворечивость и какие возможны гарантии при параллельной асинхронной обработке знаний?
 - как обеспечить производительность и востребованность?

- анализ недостатков
 - как обрабатывать противоречащие знания?
 - использовать принцип учёта НЕ-факторов и сводить противоречивость знаний из внешних источников к их нестационарности, темпоральности в соответствии с семантикой языков модели унифицированного семантического представления знаний, с последующим указанием несоответствия, отличия таких знаний от более стационарных, постоянных

- анализ недостатков
 - как обрабатывать неполные знания?
 - использовать принцип учёта НЕ-факторов и использовать средства интеграции знаний для выявления их сходства и различия и их уточнения при получении новых знаний

- анализ недостатков
 - как распараллелить обработку знаний?
 - использовать принцип учёта НЕ-факторов и использовать средства интеграции знаний для выявления их сходства и различия и их уточнения при получении новых знаний

- анализ недостатков
 - как распараллелить обработку знаний?
 - использовать принцип распределённой обработки потока знаний, включая конвейеризированную обработку знаний

- анализ недостатков
 - как обеспечить непротиворечивость и какие возможны гарантии при параллельной асинхронной обработке знаний?
 - использовать принцип учёта НЕ-факторов, средства интеграции знаний, механизмы и модели синхронизации параллельных процессов, включая блокировки и явную спецификацию асинхронности

- анализ недостатков
 - как обеспечить производительность и востребованность?
 - обеспечить и специфицировать гарантии производительности, затрат и потерь на всех уровнях реализации в платформах и подсистемах
 - использовать апробированные реализации платформенно-независимых компонентов

- достоинства и перспективы
 - возможность представлять любые знания в условиях наличия НЕ-факторов
 - возможность представлять любые метазнания, включая семантические протоколы изменения базы знаний
 - возможность распределённой параллельной обработки потока знаний

- возможность использовать и совмещать различные модели обработки информации (универсальность):
 - поиск на графе состояний
 - динамические сети (сети Петри и т.п.)
 - нейронные сети
 - функциональное программирование
 - классические и неклассические логические модели
 - комбинаторная логика, LISP-вычисления
 - процедурное программирование
 - объектно-ориентированное и агентно-ориентированное программирование
 - модели акторов
 - и пр.

СЕТИ ПЕТРИ

НЕЙРОН

ПРИНЦИПЫ ПЛАТФОРМЕННОЙ НЕЗАВИСИМОСТИ И ПЛАТФОРМЕННОЙ ВЕНЛИЗАЦИИ ОБЛЬГипов интеллектуальных систем:

- интеллектуальная метасистема (ims.ostis)
- система конференции OSTIS (conf.ostis)
- интеллектуальная система по планиметрии
- и др.

ПРИНЦИПЫ ПЛАТФОРМЕННОЙ НЕЗАВИСИМОСТИ И ПЛАТФОРМЕННОЙ БЕАЛИЗАЦИИ ОБТІБ независимость интеллектуальных систем

 возможность развития и совершенствования компонентов интеллектуальных систем

ПРИНЦИПЫ ПЛАТФОРМЕННОЙ НЕЗАВИСИМОСТИ И ПЛАТФОРМЕННОЙ РЕАДИЗАЦИИ ОБТРАфов

- неатомарный агент ввода-вывода
 - агент ввода информации
 - агент формирования ответа (вывода)
- агент обработки запроса (решатель)

- разбор входных данных по простой грамматике
- разбор входных данных алгоритмом Эрли по заданной грамматике
- разбор потока входных данных по адаптируемой грамматике

- процедурная реализации обработки класса обрабатываемых запросов
- система логического вывода планов решения обработки запросов по правилу резолюций
- система логического вывода планов решения задач обработки потока запросов

- формирование ответа по простым грамматическим правилам на специализированном языке
- формирование ответа на естественном языке
- формирование ответа, на основе знаний и адаптации к пользователю

ПРИНЦИПЫ ПЛАТФОРМЕННОЙ НЕЗАВИСИМОСТИ И ПЛАТФОРМЕННОЙ ВЕНЛИЗАЦИИ ОБЛЬГипов интеллектуальных систем:

- интеллектуальная метасистема (ims.ostis)
- система конференции OSTIS (conf.ostis)
- интеллектуальная система по планиметрии
- и др.

