Chapter 2: Linear Transformations and Matrices

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 2.4: Invertibility and Isomorphisms

Exercise 2.4.8. Let A and B be $n \times n$ matrices such that $AB = I_n$. Prove

- (a) A and B are invertible.
- (b) $A=B^{-1}$ (and hence $B=A^{-1}$). (We are in effect saying that for square matrices, a "one-sided" inverse is a "two-sided" inverse.)
- (c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.

Proof of (a). Regard $V = M_{n \times n}(F)$ as a finite-dimensional vector space over F. Given $X \in M_{n \times n}(F)$, consider the subset V_X of V defined by

$$V_X = \{XY : Y \in \mathsf{M}_{n \times n}(F)\}.$$

- (1) $V_0 = 0$.
- (2) $V_{I_n} = V$. In general, $V_X = V$ for any invertible matrix $X \in M_{n \times n}(F)$.
- (3) V_X is a subspace of V for any $X \in M_{n \times n}(F)$.
- (4) There is a descending sequence of subspaces

$$\mathsf{V}\supseteq\mathsf{V}_X\supseteq\cdots\supseteq\mathsf{V}_{X^k}\supseteq\cdots$$

This sequence must be stationary since V is finite-dimensional, that is,

$$V_{X^k} = V_{X^{k+1}} = \cdots$$

for some k. (Descending chain condition.) In particular, $B^k = B^{k+1}C$ for some $C \in \mathsf{V}$. Multiply with A^k on the left to get $I_n = BC$. $(A^kB^k = A^{k-1}(AB)B^{k-1} = A^{k-1}B^{k-1} = \cdots = I_n.)$

(4) Since $AB = I_n$ and $BC = I_n$, $A = AI_n = A(BC) = (AB)C = I_nC = C$, or $AB = BA = I_n$. By definition of invertibility, A and B are invertible.

Proof of (b). By (a), $A = B^{-1}$ and $B = A^{-1}$. \square

Proof of (c). Let V be a finite-dimensional vector space, and let $S, T : V \to V$ be linear such that ST is invertible. Show that S and T are invertible. Let

$$\beta = \{\beta_1, ..., \beta_n\}$$

be an ordered basis for V where $n = \dim(V)$. Let $A = [S]_{\beta}$ and $B = [T]_{\beta}$. So

$$AB = [\mathsf{S}]_\beta [\mathsf{T}]_\beta = [\mathsf{ST}]_\beta = [\mathsf{I}_\mathsf{V}]_\beta = I_n$$

(Theorem 2.11). By (a), $A = [S]_{\beta}$ and $B = [T]_{\beta}$ are invertible, or S and T are invertible (Theorem 2.18). \square

Section 2.7: Homogeneous Linear Differential Equations with Constant Coefficients

Exercise 2.7.3. Find a basis for the solution space of each of the following differential equations

- (a) y'' + 2y' + y = 0
- (b) y''' = y'
- (c) $y^{(4)} 2y^{(2)} + y = 0$
- (d) y'' + 2y' + y = 0
- (e) $y^{(3)} y^{(2)} + 3y^{(1)} + 5y = 0$.

Use Theorem 2.35.

Proof of (a). The auxiliary polynomial is $t^2 + ty + 1 = (t+1)^2$. $\{e^{-t}, te^{-t}\}$ is a basis for the solution space. \square

Proof of (b). The auxiliary polynomial is $t^3 - t = t(t-1)(t+1)$. $\{1, e^t, e^{-t}\}$ is a basis for the solution space. \square

Proof of (c). The auxiliary polynomial is $t^4 - 2t^2 + 1 = (t-1)^2(t+1)^2$. $\{e^t, te^t, e^{-t}, te^{-t}\}$ is a basis for the solution space. \square

Proof of (d). Same as (a). \square

Proof of (e). The auxiliary polynomial is

$$t^3 - t^2 + 3t + 5 = (t+1)(t-1-2i)(t-1+2i).$$

 $\{e^{-t},e^{(1+2i)t},e^{(1-2i)t}\}$, or $\{e^{-t},e^t\cos(2t),e^t\sin(2t)\}$ is a basis for the solution space. \square

Exercise 2.7.4. Find a basis for each of the following subspaces of C^{∞} .

(a)
$$N(D^2 - D - I)$$

(b)
$$N(D^3 - 3D^2 + 3D - I)$$

(c)
$$N(D^3 - 6D^2 - 8D)$$

Use Theorem 2.35.

Proof of (a). The auxiliary polynomial is

$$t^{2} - t - 1 = \left(t - \frac{1 + \sqrt{5}}{2}\right) \left(t - \frac{1 - \sqrt{5}}{2}\right).$$

 $\left\{e^{\frac{1+\sqrt{5}}{2}t},e^{\frac{1-\sqrt{5}}{2}t}\right\}$ is a basis for the solution space. \Box

Proof of (b). The auxiliary polynomial is $t^3-3t^2+3t-1=(t-1)^3$. $\{e^t,te^t,t^2e^t\}$ is a basis for the solution space. \square

Proof of (c). The auxiliary polynomial is $t^3 + 6t^2 + 8t = t(t+2)(t+4)$. $\{1, e^{-2t}, e^{-4t}\}$ is a basis for the solution space. \square

Exercise 2.7.5. Show that C^{∞} is a subspace of $\mathcal{F}(\mathbb{R},\mathbb{C})$.

Proof.

- (1) $0 \in \mathcal{F}(\mathbb{R}, \mathbb{C})$ clearly.
- (2) Given any $f,g\in \mathsf{C}^\infty$. For any nonnegative $k,\,\mathsf{D}^k(f+g)=\mathsf{D}^k(f)+\mathsf{D}^k(g)$ holds. Thus $f+g\in \mathsf{C}^\infty$.
- (3) Given any $f \in \mathcal{F}(\mathbb{R}, \mathbb{C})$, $r \in \mathbb{C}$. For any nonnegative k, $\mathsf{D}^k(cf) = c\mathsf{D}^k(f)$ holds. Thus $cf \in \mathsf{C}^{\infty}$.

By Theorem 1.3, C^{∞} is a subspace. \square