ebmb

Solve multiband Eliashberg equations

O 11.		
()uflina		
— Outtille ——		

This software provides three programs:

- 1. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 4) on a cut-off imaginary axis and optionally continues the results to the real axis via Padé approximants.
 - A material is defined by nothing but an ELIASHBERG spectral function or, as fallback, an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings, COULOMB pseudo-potentials and, if desired, the band densities of BLOCH states, otherwise assumed to be constant.
- 2. critical finds the critical point via the bisection method varying a parameter of choice. Superconductivity is defined by the kernel of the linearized gap equation (Eq. 5) having an eigenvalue greater than or equal to unity.
- 3. tc finds the critical temperature for each band separately via the bisection method. Superconductivity is defined by the order parameter exceeding a certain threshold. Usually, it is preferable to use critical.

```
—— Installation ——
```

The makefile is designed for the *GNU* or *Intel* Fortran compiler:

```
$ make FC=gfortran FFLAGS=-03
```

```
___ I/O ____
```

• Parameters are defined on the command line:

The available keys and default values are listed in Table 1.

- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains
 one or more double precision floating point numbers, for ebmb the format defined in
 Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

(replace) decides whether an existing (file) is used or overwritten.

Given a band structure, its discretized domain and n-1 filters, an input file with the density of states resolved for n subdomains is generated like this:

Let $h = k_{\rm B} = 1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n = (2n+1)\pi T$ and $\nu_n = 2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = i\omega_{n}[1 - Z_{i}(n)]1 + \underbrace{Z_{i}(n)\,\Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)}\boldsymbol{\sigma}_{1} + \chi_{i}(n)\boldsymbol{\sigma}_{3},$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = -T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis by means of PADÉ approximants.³ The electron-phonon coupling matrices and the rescaled COULOMB pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{\uparrow}{\underset{\text{Einstein}}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}}, \\
U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(N_{C}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(N_{C})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}} \tag{2}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$. Alternatively, if the band density $n_i(\varepsilon)$ of Bloch states with energy ε per spin, band and unit cell is given,

$$\frac{1}{\mu_{ij}^*(N_{\text{C}})} = \frac{1}{\mu_{ij}^*} + \ln \frac{2\omega_{\text{E}}}{D} + \frac{1}{\pi} \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{i}(\varepsilon)}{n_{i}(\mu_{0})} \begin{cases} \frac{1}{\varepsilon - \mu_{0}} \arctan \frac{\varepsilon - \mu_{0}}{\omega_{N_{\text{C}}}} & \text{for } \varepsilon \neq \mu_{0}, \\ \frac{1}{\omega_{N_{\text{C}}}} & \text{otherwise,} \end{cases}$$
(3)

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, respectively. The latter ensures that the particle number is conserved:

$$2\sum_{i}\int_{-\infty}^{\infty} d\varepsilon \frac{n_{i}(\varepsilon)}{e^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n \approx 1 - 4T\sum_{i}\int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[\sum_{n=0}^{N-1} \frac{\varepsilon-\mu+\chi_{i}(n)}{\Theta_{i}(\varepsilon,n)} + \frac{\arctan\frac{\varepsilon-\mu}{\omega_{N}}}{2\pi T}\right].$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(4)

¹Y. Nambu, Phys. Rev. **117**, 648 (1960)

²G. M. ELIASHBERG, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. **29**, 179 (1977)

At the critical temperature, $\Delta_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} \left[\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m) \right].$$
(5)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^N(n)$ in the kernel $K_{ij}(n,m)$. For a given scalar $\alpha^2 F(\omega)$, an effective phonon frequency can be calculated in different ways. We follow ALLEN and DYNES, who define the logarithmic average frequency

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right]$$

and the second-moment average frequency

$$\overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty d\omega \, \alpha^2 F(\omega) \, \omega}.$$

and choose $\overline{\omega}_2$ for $\omega_{\rm E}$ in Eqs. 2 and 3 for rescaling μ^* .

—— Acknowledgment ———

Parts of the program are inspired by the $\mathsf{EPW}\ \mathsf{code}^5$ and work of Malte Rösner.

—— Contact —

Any feedback may be directed to jan.berges@uni-bremen.de.

⁴P. B. ALLEN and R. C. DYNES, Phys. Rev. B **12**, 905 (1975)

⁵See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

			20	•				ical me
key file form	default none F16.12	unit - -	Symbol - -	output file number edit descriptor	ebrill + +	*C + +	رن ^ن + +	Jeanable — —
tell	true	- ~	– Т	use standard output?	+	+	+	_
T omegaE cutoff cutoffC	10 0.02 15 ω_N	K eV ω_E	$\omega_{\rm E}$ ω_{N} $\omega_{N_{\rm C}}$	temperature EINSTEIN frequency overall cutoff frequency COULOMB cutoff frequency	+ + + + +	+ + + + +	+ + + + +	+ +
lambda, lamda muStar, mu* muC	1 0 0	1 1 1	$\lambda_{ij} \ \mu^*_{ij} \ \mu_{ij}$	electron-phonon coupling rescaled Сооцомв potential unscaled Сооцомв parameter	+ + + + .	+ + + +	+ + + +	+ + +
dos, DOS a2f, a2F	none	1	- - -	number of bands file with density of states file with ELIASHBERG function	+ + + +	+ + +	+ + +	_ _ _
n mu conserve chi	- 0 true true	1 eV - -	<i>n</i> ₀ μ ₀ –	initial occupancy number initial chemical potential conserve particle number? consider energy shift?	+ + + +	+ + + +	+ + + +	_ _ _ _
limit	250000	1	-	maximum number of iterations	+	+	+	_
epsilon error zero rate	$10^{-13} 10^{-5} 10^{-10} 10^{-1}$	a.u. a.u. eV 1	- - -	negligible float difference bisection error negligible gap at $T_{\rm c}$ (threshold) growth rate for bound search	+ - -	+ + + +	+ + - +	_ _ _ _
lower upper clip eta, 0+ resolution measurable	0 - 15 0 0 false	eV eV ω _E eV 1	- - - -	minimum real-axis frequency maximum real-axis frequency maximum real-axis frequency infinitesimal energy 0 ⁺ resolution of real-axis solution find measurable gap?	+ + + + + +			
unscale rescale imitate	true true false	- - -	_ _ _	estimate missing muC from mu*? use μ_{ij}^* rescaled for cutoff? use $Z_i(n)$ biased by cutoff?	+ + -	+ + -	+ + +	_ _ _
normal power	false true	_	_	enforce normal state? power method for single band?	+	_	_ +	_ _
				r			•	

Table 1: Input parameters.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements of which are separated by commas. It is impossible to vary more than one element at once.
- ullet dos has lines $arepsilon/\mathrm{eV}$ $n_1/\mathrm{a.u.}$ $n_2/\mathrm{a.u.}$... with arepsilon ascending but not necessarily equidistant.
- ullet a2F has lines ω/eV $\alpha^2F_{1,1}$ $\alpha^2F_{2,1}$... with ω ascending but not necessarily equidistant.

 $\langle \text{CHARACTERS key} \rangle : \langle n_1 \times \ldots \times n_r \text{ NUMBERS value} \rangle$ associate key with value

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS
REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

imaginary-axis results						
iomega	Matsubara frequency (without i)					
Delta	gap	$\Delta_i(n)$				
Z	renormalization	$Z_i(n)$				
chi	energy shift	$\chi_i(n)$				
phiC	constant Соисомв contribution	ϕ_{C_i}				
status	status (steps till convergence or -1)	_				
occupancy results						
n0	initial)	n_0				
n	final } occupancy number	n				
mu0	initial) shamical natantial	μ_0				
mu	final } chemical potential	μ				
effective parameters a2F given						
lambda	electron-phonon coupling	λ_{ij}				
omegaE	EINSTEIN frequency	ω_{E}				
omegaLog	logarithmic average frequency	$\omega_{ m log}$				
omega2nd	second-moment average frequency	$\overline{\omega}_2$				
omega	frequency	ω				
Re[Delta]	real] gap	$arDelta_i(\omega)$				
<pre>Im[Delta]</pre>	imaginary } gap	$\Delta_i(\omega)$				
Re[Z]	real renormalization	7.(4)				
<pre>Im[Z]</pre>	imaginary fremormatization	$Z_i(\omega)$				
Re[chi]	real } energy shift	$\chi_i(\omega)$				
<pre>Im[chi]</pre>	unayunary J	$\chi_i(\omega)$				
measurable	neasurable results measurable=true					
Delta0	measurable gap $\Delta_{0i} = \text{Re}$	$[\Delta_i(\Delta_{0i})]$				
status0	status of measurable gap	_				

Table 3: Keys used in binary output.