Egzamin Planowanie Układów Komunikacyjny

Imię i nazwisko:	 	
Numer albumu:	 Data:	

Pytania:

- 1. Jakie badania i pomiary są wykonywane w ramach kompleksowych badań ruchu. Wymień je i krótko scharakteryzuj.
- 2. Wymień 5 rozwiązań (infrastrukturalnych lub tzw. miękkich) w zakresie zrównoważonej mobilności, które mogłyby zachęcić mieszkańców dużego miasta (np. Krakowa) do rezygnacji z podróży samochodem. Scharakteryzuj te rozwiązania wskazując ich wady i zalety.
- 3. Planujesz nowe osiedle mieszkaniowe. Na jakiej podstawie określisz liczbę miejsc parkingowych i generowany przez to osiedle ruch? Jaki przyjmiesz kształt sieci obsługującej to osiedle i dlaczego taki?
- 4. Omów najważniejsze cele i środki polityki transportowej w miastach.
- 5. Na wykresie poniżej przedstaw zmienność w ciągu doby dwóch wybranych aktywności:

- , gdzie: p to p-wo wykonania aktywności, a τ to godzina w dobie (z zakresu od 6 do 22).
- 6. Na wykresie poniżej przedstaw częstość w ciągu doby podróży w dwóch wybranych motywacjach:

- , gdzie: p to liczba podróży, a τ to godzina w dobie (z zakresu od 6 do 22).
- 7. Dla poniższej tabeli początków (wiersz) i końców (kolumna) podróży zaznacz wybrane:
 - (a) dwie motywacje o dużej liczbie podróży (symbol D).
 - (b) dwie motywacje o niewielkiej liczbie podróży (symbol S).
 - (c) dwie motywacje incydentalne (statystycznie nie wykonywane) (symbol I).

i opisz przykładową podróż z każdej grupy.

	D	Р	S	U	I
D					
Р					
S					
U					
I					

- 8. Podaj przykład trzech typowych i trzech sporadycznych dobowych łańcuchów podróży miejskich.
- 9. Podaj zmienne objaśniające dla formuł produkcji i atrakcji w dwóch wybranych motywacjach:

$$P_o^m \quad A_d^m$$

gdzie P i A to odpowiednio produkcja i atrakcja w rejonie o, lub d, w motywacji podróży m.

10. Dla przedstawionych na schemacie rejonów komunikacyjnych:

i określonych dla nich wartości produkcji i atrakcji:

o, d	P	A
1	100	-
2	200	-
3	300	-
4	400	-
5	-	200
6	-	800

oblicz wartości w więźbie ruchu dla:

(a) podróży nieobligatoryjnych (np. dom-kino), zakładając model grawitacyjny o dużym oporze przestrzeni i brak ograniczeń w atrakcji po stronie celu podróży.

o, d,	5	6
1		
2		
3		
4		

(b) podróży obligatoryjnych (np. dom-szkołą), zakładając bilansowanie produkcji z atrakcją i model proporcjonalny.

o, d,	5	6
1		
2		
3		
4		

(c) podróży obligatoryjnych (np. dom-szkoła), zakładając bilansowanie produkcji i atrakcji i model grawitacyjny o dużym oporze przestrzeni (podaj wartości szacunkowe oddające istotę modelu).

o, d,	5	6
1		
2		
3		
4		

- 11. Wymień kryteria podróży istotne dla podróżnego przy wyborze środka transportu po stronie: KZ | KI
- 12. Dla przedstawionej poniżej sieci drogowej określ obciążenie (liczbę pojazdów q_a) na moście (odcinek przerywany) i wynikający z niego czasu przejazdu (t_a) . Wartości w rejonach oznaczają liczbę pojazdów jaka w ciągu godziny szczytu porannego chce dojechać do celu podróży. Załóż, że wszystkie odcinki są równe i czas przejazdu każdego z nich w ruchu swobodnym wynosi 1 minutę.
 - (a) załóż, że przepustowość wszystkich odcinków jest nieograniczona.
 - (b) załóż, że przepustowość (Q_a) mostu (odcinek przerywany) wynosi 500 pojazdów na godzinę, pozostałe odcinki mają nieograniczoną przepustowość. Czas przejazdu oszacuj korzystając z funkcji: $t_a = t_a^0 \cdot (1 + (q_a/Q_a)^2)$. Podaj szacunkową wartość zbliżoną do warunków równowagi Wardop'a.

