Reinforcement learning in neuroscience - I

Rita Almeida

PhD course 3045, VT 2018

Reinforcement learning

- Goal-directed learning from interactions.
- Learning by trial-and-error what to do in a given situation in order to maximize total reward and minimize total punishment.

- trial-and-error
- sense the situation
- action
- goals
- Difficulties:
 - reward and punishment can be delayed
 - outcomes may depend on a series of actions

Reinforcement learning in different fields

RL in neuroscience and psychology

Learning

Neuroscience of learning:

- Mechanisms:
 - Activity dependent synaptic plasticity
 - Long term potentiation and depression (LTP, LTD)
 - Hebbian learning
 - Dopamine
 - Acetylcholine...
- Structures and circuits:
 - Basal ganglia...
- Cognitive neuroscience / psychology:
 - Implicit versus explicit
 - Associative versus non-associative
 - Classical and operant conditioning...

Learning

Computational approaches to learning:

- Machine / statistical learning:
 - supervised learning learning from examples from a knowledgeable external supervisor.
 - unsupervised learning learning from data.
- Reinforcement learning agent learning from interactions, from own experience.
 - Suitable for problems where it is impractical to have examples of all situations where the agent has to act.
 - Feedback can be delayed.
 - Data is acquired in a sequence.
 - Agent's actions affect the data it receives.

Key aspects of RL

Learning problem where an agent interacts with the environment to achieve a goal.

- Sensation: observe the state of the environment
- Action: Take actions that affect the state of the environment
- Goal: Relating to state of environment and reward

Examples

- Animal learning to get food.
- Robot learning to escape a maze.
- Financial investment.
- Learning to play Backgammon.
- Control an industrial machine to keep a given temperature.

Key aspects of RL

Learning requires trade-off between:

- Exploitation agent prefers actions that were effective before.
- Exploration agent explores actions in order to make better future selections. Assures that:
 - the agent does not get stuck with a good but not optimal action.
 - the expected reward is properly estimated in a stochastic task.
 - the agent adapts when the task is non-stationary.

Elements of RL

Policy: mapping between perceived states and actions.

Can be stochastic.

Reward function: mapping between state (or state-action) to a value summarizing the desirability of that state.

- Agent wants to maximize the total reward.
- Directly given by environment.
- Can be stochastic.

Value function: mapping between state to the long term desirability of that state.

- ► Takes into account total amount of reward the agent expects to accumulate from that state on.
- Action choices are made based on value.
- Value is estimated from all observations the agent does.

Model of the environment: (optional) a model of the behavior of the environment, used for planning.

Defining the RL problem

- ► Agent and environment interact at a sequence of time steps t = 0, 1, 2, 3, . . .
- ▶ Agent observes at step t state $s_t \in S$
- ▶ Agent produces at step t action $a_t \in A$
- ▶ Agent gets resulting reward $r_{t+1} \in \mathcal{R}$
- Agent gets into the resulting state s_{t+1}

$$\cdots \qquad \underbrace{s_t}_{a_t} \underbrace{a_t}_{\bullet} \underbrace{r_{t+1}}_{s_{t+1}} \underbrace{s_{t+1}}_{a_{t+1}} \underbrace{r_{t+2}}_{s_{t+2}} \underbrace{s_{t+3}}_{a_{t+2}} \underbrace{s_{t+3}}_{a_{t+3}} \cdots$$

Defining the RL problem - policy

Policy at step t, π_t : mapping from states to probabilities of selecting each possible action.

$$\pi_t(a, s)$$
 is the probability of $a_t = a$ if $s_t = s$

- RL specifies how the agent changes policy based on experience.
- The goal of the agent is to maximize the reward it receives in the long run.

Defining the RL problem - goals and rewards

Rewards must be defined in a way that maximizing them corresponds to achieving the goal.

Examples:

- Animal learning to select a box to find food: reward +1 when it finds food.
- Learning to escape a maze: reward -1 for each step and +1 to escape.
- Financial investment: reward proportional to the money gained and lost.
- Learning to play chess: reward + / to winning / losing the game
 - Not rewarding for each piece taken!

Defining the RL problem - returns

Return: sum of future rewards.

$$R_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T$$

Discounted return, with the discount rate γ :

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}, \qquad 0 \le \gamma \le 1$$

Does not need a final time step.

Markov decision processes (MDP)

MDPs are reinforcement learning tasks that satisfy the Markov property (assuming finite number of states and reward values):

$$Pr\{s_{t+1} = s', r_{t+1} = r | s_t, a_t\}$$

- If the sate and action spaces are finite finite Markov decision processes. Defined by:
 - ► Transition probabilities:

$$\mathcal{P}_{ss'}^a = Pr\{s_{t+1} = s' | s_t = s, a_t = a\}$$

Expected reward:

$$\mathcal{R}_{ss'}^{a} = E\{r_{t+1}|s_t = s, a_t = a, s_{t+1} = s\}$$

Defining the RL problem - value functions

State-value function (for policy π) estimates how desirable it is for an agent to be in a given state. For MDPs:

$$V^{\pi}(s) = E_{\pi}\{R_t|s_t = s\}$$

Action-value functions (for policy π) estimates how desirable it is for an agent to perform a given action in a given state.

$$Q^{\pi}(s,a) = E_{\pi}\{R_t|s_t = s, a_t = a\}$$

▶ V^{π} and Q^{π} can be estimated from experience.

Bellman equation for V_{π}

Value of a state can be written as a function of values of successor states - recursive relationship.

$$V^{\pi}(s) = E_{\pi}\{R_{t}|s_{t} = s\} = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}|s_{t} = s\}$$

$$= E_{\pi}\{\gamma^{0} r_{t+0+1} + \gamma(\gamma^{0} r_{t+1+1} + \gamma^{1} r_{t+2+1} + \dots)|s_{t} = s\}$$

$$= E_{\pi}\{r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2}|s_{t} = s\}$$

$$= \dots$$

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} [\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s')]$$

Example - gridworld

- Agent can move 1 cell at a time north, south, east and west.
- Actions that take the agent off the grid result in reward -1 and not moving.
- ► Reaching A (B) moves the agent to A' (B') and gives reward +10 (+5).
- All other states reward 0.
- Policy: selecting each direction with equal probability.
- ▶ Discount rate $\gamma = 0.9$

Figure adapted from Sutton and Barto, 1998.

- Expected returns for each position are indicated state-value function.
- For A expected return less that reward and for B larger.

Optimal policies and value functions

- To solve a RL task one wants to find a policy that achieves a lot of reward in the long run.
- ▶ Policy π' is better than π if $V^{\pi'}(s) \ge V^{\pi}(s)$ for all s.

Optimal policies π^* have optimal state-value function:

$$V^*(s) = max_{\pi}V^{\pi}(s)$$

Bellman optimality equation:

$$V^*(s) = max_a \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V^*(s')]$$

Example - gridworld

Optimal Policy and state-value function:

Figure adapted from Sutton and Barto, 1998.

Finding an optimal policy

- Solving the optimality Bellman's equations is many times not feasible.
 - problem has to be MDP
 - environment dynamics have to be known
 - computation time too long
 - memory too little
- Approximations are used.
- Many RL methods can be seen as approximations to solving the Bellman optimality equation.

Bibliography

