Today: Outline

- Neural networks cont'd
- Types of networks: Feed-forward networks, convolutional networks, recurrent networks
- ConvNets: multiplication vs convolution; filters (or kernels); convolutional layers; 1D and 2D convolution; pooling layers; LeNet, CIFAR10Net
- Reminder: Pre-lecture material due Fri 28
 PS2 Self Score due Mar 3
- Announcement: BU Productions visiting next class

Neural Networks III

Network Architectures

Neural networks: recap

Learn parameters via gradient descent

$$\min_{\Theta} J(\Theta)$$

Backpropagation efficiently computes cost (forward pass) and gradient (backward pass)

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Network architectures

Feed-forward

Fully connected

Recurrent

Neural Networks III

Convolutional Architectures

- Recall, a neuron can be thought of as learning to spot certain features in the input
- E.g., this neuron detects change from high to low (light to dark) between 3rd and 4th inputs

- Must have a new neuron for each new location of pattern???
- This is not efficient
- Solution: use convolution instead of multiplication

Input

- New weights are of size 2 x 1; called filter, or kernel
- New output is the size of input minus 1 because of boundary
- New convolutional neurons all share the same weights! This is much more efficient; we learn the weights once instead of many times for each position

Padded Input

- New output is the size of input minus 1 because of boundary
- We can fix the boundary effect by padding the input with 0 and adding one more neuron

Padded Input

 Note, we move the filter by 1 each time, this is called stride

Padded Input

- Note, we move the filter by 1 each time, this is called stride
- Stride can be larger, e.g. here is stride 2

Padded Input

To summarize, this layer has

- Input 5 x 1, padded to 6 x 1
- Kernel 2 x 1 with weights [+1,-1]
- Stride 2
- Output 3 x 1

Padded Input

- We can add another filter, this time to detect opposite change with weights [-1 +1]
- Unique filters are called channels

- We can add another filter, this time to detect opposite change with weights [-1 +1]
- Unique filters are called channels

simplified view

- We can add another filter, this time to detect opposite change with weights [-1 +1]
- Unique filters are called channels

Convolutional Neural Networks

For images and other 2-D signals

Representing images

Fully connected Reshape into a vector **Input Layer**

2D Input: fully connected network

Vectorize input by copying rows into a single column

2D Input: fully connected network

Problem: shifting, scaling, and other distortion changes location of features

2D Input: fully connected network

154 input change from 2 shift left

77: black to white 77: white to black

Convolution layer in 2D

• detect the same feature at different positions in the input, e.g. image

preserve input topology

Convolution layer in 2D

Output map

Convolution layer in 2D

 $a = f(w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + \cdots + w_{33}x_{33})$

What weights correspond to these output maps?

These are output maps before thresholding

Hint: filters look like the input they fire on

Where is Waldo?

filter

Input

What will the output map look like?

filter

Input

What will the output map look like?

filter

Output

Here is Waldo

filter

Input

Stacking convolutional layers

- Each layer outputs multi-channel feature maps (like images)
- Next layer learns filters on previous layer's feature maps

Pooling layers

- Convolution with stride > 1 reduces the size of the input
- Another way to downsize the feature map is with pooling
- A pooling layer subsamples the input in each sub-window
 - max-pooling: chose the max in a window
 - mean-pooling: take the average

Pooling layer

- the pooling layers reduce the spatial resolution of each feature map
- Goal is to get a certain degree of shift and distortion invariance

Pooling layer

- the weight sharing is also applied in pooling layers
- for mean/max pooling, no weights are needed

Putting it all together...

Convolutional Neural Network

A CNN is a better architecture for 2D signals

LeNet

Deep Convolutional Networks The Unreasonable Effectiveness of Deep Features

Maximal activations of pool₅ units

[R-CNN]

Rich visual structure of features deep in hierarchy.

conv₅ DeConv visualization [Zeiler-Fergus]

Convolutional Neural Nets

Why they rule

Why CNNs rule: Sparsity

- CNNs have sparse interactions, because the kernel is smaller than the input
- E.g. in thousands or millions pixel image, can detect small meaningful features such as edges
- Very efficient computation!
 - For m inputs and n outputs, matrix multiplication requires $O(m \times n)$ runtime (per example)
 - For k connections to each output, need only $O(k \times n)$ runtime
- Deep layers have larger effective inputs, or receptive fields

Why CNNs rule: Parameter sharing

- Kernel weights are shared across all locations
- Statistically efficient learn from more data
- Memory efficient store only k parameters, since k << m, this is much smaller than $m \times n$.

Why CNNs rule: Translation invariance

- Output is invariant to translation of input
 - spatial translation for images
 - temporal translation for time sequences
- useful when some function of a small local window is useful when applied to multiple input locations
- Note, not invariant to other transformations of input, such as large image rotation
- Pooling provides additional invariance to distortions

Convolutional Neural Nets

Example

CIFAR-10 Demo ConvJS Network

RELU: rectified linear unit

RELU function
$$g(x) = \max(0, x)$$

input (32x32x3)

filter size 5x5x3, stride 1

filter size 5x5x3, stride 1

input (32x32x3)

conv (32x32x16) params: 16x5x5x3+16 = 1216

filter size 5x5x3, stride 1

input (32x32x3)

pool (16x16x16) pooling size 2x2, stride 2

filter size 5x5x3, stride 1

input (32x32x3)

pool (16x16x16) pooling size 2x2, stride 2

filter size 5x5x16, stride 1

RELU

conv (16x16x20) params: 20x5x5x16+20 = 8020

pool (8x8x20) pooling size 2x2, stride 2

input (32x32x3)

One more conv+RELU+pool:

conv (8x8x20)
filter size 5x5x20, stride 1
relu (8x8x20)
pool (4x4x20)
pooling size 2x2, stride 2
parameters: 20x5x5x20+20 = 10020

fc (1x1x10); parameters: 10x320+10 = 3210

softmax (1x1x10)

Dog cat Car

Testing the network

Show top three most likely classes

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html