Invitation to TDA – Theoretical Exercises

Paweł Dłotko, Davide Gurnari, Niklas Hellmer University of Warsaw, Summer 2022

Problem 1 Show that a unit square and unit circle are homeomorphic.

Problem 2 Show that an interval [0,1] is *not* homeomorphic to $[0,\frac{1}{3}] \cup [\frac{2}{3},1]$.

Problem 3 For a given matrix, check if it represent a distance matrix of some discrete metric space. Search for algorithmic criteria that makes a given matrix a distance matrix of some metric space.

Problem 4 Show that a map between metric spaces $f:(X,d) \to (X',d')$ is continuous in the sense of epsilon-delta if and only if it is continuous in the sense that preimages of open sets are open.

Problem 5 Prove that a norm $\|\cdot\|$ on a real vector spaces induces a metric via $d(x,y) = \|x-y\|$.

Problem 6 Let X, Y be i.i.d. random variables sampled from the uniform distribution on [0,1]. Show that $\mathbb{E}(|X-Y|) = 1/3$. (In the lecture, it was incorrectly stated that it would be 1/2).

Problem 7 Search the literature for the proof that Peano curve indeed visits each point in a square.

Problem 8 Which of the axioms of metric are not satisfied by cosine similarity?

Problem 9 Show a deformation retraction from $[0, 1] \times [0, 1]$ to $\{0\} \times [0, 1]$.

Problem 10 Show that there is no deformation retraction from an interval [0,1] to the space $\{0,1\}$.

Problem 11 Show that a convex set is contractible.

Problem 12 Show that star shape set is contractible.