Лабораторная работа №1.

СУБД MS Access: создание и настройка свойств таблиц, проектирование БД (6 часов)

Цель работы: научиться разрабатывать таблицы базы данных в СУБД MS Access.

1. Теоретические сведения о работе с таблицами в СУБД MS Access

Ознакомиться с теоретическим материалом по работе с таблицами баз данных MS Access посредством интерфейса этой СУБД.

Создание первой простой таблицы

В окне базы данных нужно выбрать вкладку **Таблицы** и нажать кнопку **Создать**. При этом откроется окно диалога «Новая таблица», в котором из списка выбирается один из режимов создания таблицы, описанных ниже.

- а) *Режим таблицы* новая таблица создается путем переименования созданных по умолчанию полей (Поле1, Поле2,...) и занесения данных в нее. Лишние поля при этом удаляются. Типы полей подбираются исходя из данных, вносимых в поля.
 - б) Конструктор режим изменения (определения) структуры (макета) таблицы.
- в) *Мастер таблиц* режим автоматического создания таблицы с помощью мастера, исходящего из имеющегося стандартного набора полей.
- г) Импорт таблиц режим создания таблицы путем ее импорта из другой базы данных. Причем другая база данных может быть создана не только в Access, но и в других СУБД: dBASE, Paradox, FoxPro, Btrieve и поддерживающих так называемый стандарт ODBC (Open Data Base Connectivity)- стандарт открытого доступа к базам данных. MS Access позволяет импортировать данные из файлов электронных таблиц: Lotus 1-2-3, MS Excel, текстовых файлов и HTML-документов.
- д) Связь с таблицами создается ссылка на таблицу, физически расположенную в другом файле базы данных (Access, dBASE, Paradox, FoxPro, Btrieve и других СУБД, поддерживающих стандарт ODBC), файле электронных таблиц (Lotus 1-2-3, MS Excel) или текстовом файле.

Основной и наиболее универсальный путь создания таблицы - использование режима Конструктор. Для создания таблицы в этом режиме необходимо:

- 1) определить поля таблицы задать их имена и типы данных (см. соответствующую таблицу типов данных MS Access);
- 2) задать свойства полей;
- 3) дать имя таблице.

Свойства полей задаются при выбранной вкладке **Общие**, содержащей опции (для получения подсказки по какому-либо свойству нужно по нему щелкнуть и нажать клавишу **F1**):

- Размер поля (ограничивает текстовые поля указанным количеством символов);
- *Новое значение* (указывает, каким образом должно генерироваться новое значение счетчика: последовательно или случайным образом);
- *Формат* (указывает формат для даты и чисел, например, 29/12/99; Среда, 29 декабря 1999; 1234.5; \$1,234.50);
- Число десятичных знаков (устанавливает число десятичных знаков, выводимых для денежных и числовых полей);
- *Маска ввода* (только для текстовых полей и полей даты; задает форматирующие символы, которые заполняются автоматически при вводе данных, например, тире в поле ввода телефонного номера);
- *Подпись* (задает текст, который будет использоваться в формах и отчетах или как заголовок колонок в режиме просмотра таблиц);

- *Значение по умолчанию* (указывает значение по умолчанию, которое будет автоматически вводиться в новые записи);
- *Условие на значение* (задается выражение, которое при вводе или редактировании данных поля всегда должно быть истинным, например: <100; Чикаго, Нью-Йорк);
- Сообщение об ошибке (текст сообщения, которое будет выводиться, если вводимое в поле значение не удовлетворяет условию на значение);
- Обязательное поле (указывает, что это поле должно быть обязательно заполнено при вводе данных);
- *Позволить нулевую длину* (разрешает полям текстового типа и типа Мето содержать нулевую длину; по умолчанию, MS Access не сохраняет строки, имеющие нулевую длину);
- Индексированное поле (для ускорения доступа к данным задается построение индекса для полей с типом Текстовый, Числовой, Денежный, Дата / Время, Счетчик).

Индекс - это внутренняя служебная таблица, состоящая из двух столбцов: значения индексируемого поля, включенного в индекс, и местоположения каждой записи таблицы с данным значением индексируемого поля. В индексной таблице производится упорядочение строк по значениям индексируемого поля, и это позволяет использовать методы быстрого поиска строки с заданным значением индексного поля. Можно установить следующие свойства для индексов:

Да (допускаются совпадения). Создается индекс, который включает совпадающие значения полей;

 \mathcal{A} а (совпадения не допускаются). Создается индекс, базирующийся на уникальном значении поля.

Нет. Индекс не создается.

Вкладка Подстановка выбирается для задания свойств столбцов подстановки и содержит следующие свойства.

- *Тип элемента управления*. Указывает тот тип элемента управления, который будет использоваться при выводе поля на форме (только для текстовых, числовых и логических полей). Типы элементов управления включают «Поле» (по умолчанию), «Список» (приводит более одного значения и снабжен полосами прокрутки) и «Поле со списком».
- Тип источника строк. Указывает, откуда берутся данные для списка из таблицы, запроса, набранного пользователем списка или из полей формы или запроса.
- *Источник строк*. Имя таблицы, запроса или оператора SQL, которые будут использоваться в списке или в поле со списком.
- *Присоединенный столбец*. Номер колонки, показанный в источнике строк, значение которого будет использоваться для хранения в данной таблице.
- Число столбцов. Количество столбцов в списке.
- Заглавия столбцов. Указывает имена полей источника строк.
- Ширина столбцов. Ширина раскрывающегося списка или колонок, разделенных точкой с запятой. Если не нужно, чтобы колонки выводились на экран, для них указывается нулевая длина. Например, при установке 0;1;1.5 первая из трех колонка (это может быть присоединенный столбец) не будет выводиться на экран (так как для нее задана ширина 0)..

Создание первичного ключа

Считается, что база данных спроектирована хорошо тогда, когда каждая запись в любой таблице является уникальной. Это означает, что значение некоторого поля (или нескольких полей) не повторяется ни в одной записи в таблице. Такой идентификатор называется *первичным ключом* (или просто *ключом*).

Ключ - минимальный уникальный идентификатор, состоящий из одного или нескольких полей. При проектировании баз данных MS Access чаще всего для ключа используют поля с типом данных Счетчик. Для задания ключа нужно: 1) в режиме Конструктор выделить поле; 2) в меню **Правка** выбрать команду **Ключевое поле** (при этом появится изображение ключа).

Если ключ не определен, то при первом сохранении таблицы Access выведет сообщение об этом и предложит создать ключевое поле. Если это предложение будет принято (что НЕ ОБЯЗАТЕЛЬНО ДЕЛАТЬ, все зависит от структуры создаваемой базы данных), то Access добавит в таблицу поле с именем Код и типом Счетчик.

Просмотр данных

Просмотр данных, содержащихся в таблице, осуществляется в режиме таблицы (выделить необходимую таблицу и нажать кнопку **Открыть**). В этом режиме можно не только просматривать, но и форматировать данные, вставлять и удалять записи, редактировать данные. В этом режиме изменять структуру таблиц (добавлять, удалять поля; изменять свойства полей и т.д.) НЕЛЬЗЯ.

Задание связей между таблицами

Для организации обработки информации, содержащейся более чем в одной таблице задаются связи между таблицами — указываются способы, с помощью которых информация в одной таблице связывается с данными в другой таблице. Например, таблицы «Клиенты» и «Заказы», «Студенты» и «Посещения» могут быть связаны отношением «один-ко-многим» (один клиент может разместить много заказов, на одного студента существует список посещений по датам).

Связь можно установить *покально* (действует только в данном запросе и создается вместе с ним) и *глобально* (действует во всей базе данных). Глобальная связь задается командой из основного меню Сервис / Схема данных или нажатием кнопки Схема данных на панели инструментов. При этом используется технология «drag and drop» («перетащи и брось»): связующее поле перетаскивается из таблицы, находящейся на стороне отношения «один», в таблицу на стороне отношения «многие». При этом появляется диалоговое окно «Связи», в котором отображаются связываемые поля и устанавливаются следующие опции:

- *Обеспечение целостности данных*. Если эта опция выбрана, то при изменении или удалении первичного ключа выдается сообщение о том, что это действие невозможно или произойдет изменение данных в связанной таблице.
- *Каскадное обновление связанных полей*. Если эта опция выбрана, то при изменении первичного ключа автоматически меняется связанный вторичный ключ. Если эта опция не выбрана, то при попытке редактировать первичный ключ появится предупреждение о том, что вносить изменения нельзя.
- *Каскадное удаление связанных полей*. Если выбрана эта опция, то при удалении записи все связанные с первичным ключом записи также удаляются. Если она не выбрана, то появляется предупреждение, что, если имеются записи, связанные с данной записью, удалять ее нельзя.
- Объединение. Применяется для выбора типа объединения, используемого по умолчанию при создании запросов на основе связанных таблиц. Включает указания на то, надо ли выводить на экран только записи, которые имеют общий ключ в обеих таблицах, или же надо вывести одну таблицу полностью и все связанные с ней записи из другой таблицы.

Для того чтобы разорвать существующую связь между таблицами, нужно в окне схемы данных щелкнуть по линии, связывающей поля таблиц и нажать клавишу **Delete**.

Маркеры записи

При перемещении по таблице в областях выделения записей, расположенных в самой крайней левой позиции каждой строки, появляются специальные символы — *маркеры записи*. Назначение этих маркеров приведено ниже.

«Треугольник» - указывает, что данная запись является текущей.

«Карандаш» - показывает, что были внесены изменения в одно или несколько полей записи, которые еще не были сохранены. Ассеss сохраняет эти изменения при переходе к следующей записи. Перед переходом к другой записи можно нажать клавишу **Esc** один раз, чтобы отменить изменения в текущем поле, или дважды, чтобы отказаться от всех поправок, внесенных в запись.

«Звездочка» - отмечает пустую строку в конце таблицы, используемую для создания новой записи.

«Перечеркнутый круг» (значок закрытого доступа) - указывает, что данная запись сейчас редактируется и в другом объекте (в форме или в запросе), или в нее вносит изменения другой пользователь (возникает в том случае, если база данных используется в режиме коллективного доступа). Нужно подождать, пока этот маркер исчезнет - тогда можно начинать редактирование записи.

2. Создание таблиц

Создать и заполнить данными описанные ниже таблицы, определяющие структуру базы данных «Платежи студентов» для ведения учета платежей студентов за время обучения.

Примечание. Таблица «Факультеты» содержит названия всех факультетов вуза. Таблица «НазначенияОплат» содержит информацию о целях оплат студента, например: обучение, экзамен, зачет, лабораторные работы, и т.п.

Таблица «Города»

Название	Тип	Некоторые	Примечание
поля	данных	свойства	
КодГорода	Счетчик	Последовательные целые	Ключевое поле, будет ис-
		числа	пользоваться для связи с
			другими таблицами
Название	Текстовый	Размер поля - 20 симво-	Название города
		лов, индексированное по-	
		ле	

Таблица «Улицы»

Название поля	Тип	Некоторые	Примечание
	данных	свойства	
КодУлицы	Счетчик	Последовательные це-	Первичный ключ
		лые числа	
Название	Текстовый	Размер поля - 30 сим-	Название улицы
		волов, индексирован-	
		ное поле	
КодГорода	Числовой	Длинное целое	Внешний ключ для связи с
			таблицей «Города»

Примечание. Термины «первичный ключ» или «ключевое поле» обозначают поле, находящееся на стороне «один» при связи «один-ко-многим» двух таблиц. При создании такого поля в режиме **Конструктор** MS Access нужно задавать настройку **Ключевое поле**.

Термин «внешний ключ» обозначает поле, находящееся на стороне «многие» при связи «один-ко-многим» двух таблиц. При создании такого поля в режиме **Конструктор** MS Access <u>НЕ НУЖНО</u> задавать настройку **Ключевое поле**.

Таблица «Факультеты»

Название поля	Тип	Некоторые	Примечание	
	данных	свойства		
СокрНазваниеФак	Текстовый	Размер поля - 10 сим-	Ключевое поле, будет ис-	
		волов	пользоваться для связи с	
			другими таблицами	
ПолнНазваниеФак	Текстовый	Размер поля - 30 сим-	Название факультета	
		волов, индексирован-		
		ное поле		

Таблица «Студенты»

Название поля	Тип	Некоторые	Примечание
	данных	свойства	
КодСтудента	Счетчик	Последовательные це-	Ключевое поле
		лые числа, индексиро-	
		ванное поле	
Фамилия	Текстовый	Размер поля - 20 сим-	Фамилия студента
		волов, индексирован-	
**		ное поле	**
Имя	Текстовый	Размер поля - 15 сим-	Имя студента
		волов, индексирован-	
Omygomag	Текстовый	Ное поле	Отуганта отуганта
Отчество	текстовыи	Размер поля - 20 сим-	Отчество студента
		волов, индексированное поле	
КодГорода	Числовой	Длинное целое	Внешний ключ для связи с
Roor opoou	тисловон	длиное целое	таблицей «Города»
КодУлицы	Числовой	Длинное целое	Внешний ключ для связи с
		7	таблицей «Улицы»
Дом	Числовой	Целое	Номер дома, в котором
		,	проживает студент
Корпус	Текстовый	Размер поля - 4 сим-	
		вола	
Квартира	Числовой	Целое	
Телефон	Числовой	Длинное целое	Набирать без разделитель-
			ных знаков
ДатаРождения	Дата/ Время	Краткий формат даты;	Дата рождения студента
		подпись «Дата рожде-	
		«RUH	-
ГодПоступления	Числовой	Длинное целое; усло-	Год поступления в вуз
<i>P</i>	Т	вие на значение <2003	11
Группа	Текстовый	Размер поля - 4 сим-	Название образуется с уче-
		вола, индексирован-	том курса обучения
СокрНазваниеФак	Текстовый	Размер поля - 10 сим-	Внешний ключ для связи с
СокріїизвинисФик	Текстовый	волов, индексирован-	таблицей «Факультеты»
		ное поле	
Примечание	Поле Мето		Прочие сведения о студенте
примечиние	11001C MICHIO		прочис сведения о студенте

Таблица «НазначенияОплат»

Название поля	Тип данных	Некоторые свойства	Примечание
Цель	Текстовый	Размер поля – 30 символов, ин-	Первичный ключ
		дексированное поле	

Таблица «Платежи»

Название поля	Тип	Некоторые	Примечание
	данных	свойства	
КодСтудента	Числовой	Последовательные целые числа,	Внешний ключ
		индексированное поле	для связи с табли-
			цей «Студенты»
ДатаОплаты	Дата/Время	Краткий формат даты; индекси-	Дата получения
		рованное поле	денег вузом
СуммаОплаты	Денежный	Число десятичных знаков 0; ус-	Сумма, перечис-
		ловие на значение >0; индекси-	ленная студентом
		рованное поле	вузу
Цель	Текстовый	Размер поля – 30 символов, ин-	Внешний ключ
		дексированное поле	для связи с табли-
			цей «Назначение
			оплат»

3. Установление связей между таблицами

Установить связи между таблицами, задействовав механизмы обеспечения целостности данных:

«Города» и «Улицы» связать по полю КодГорода. Тип связи - один-ко-многим.

«Города» и «Студенты» связать по полю $Kod\Gamma$ орода. Тип связи - odun-ко-многим.

«Улицы» и «Студенты» связать по полю Код Улицы. Тип связи - один-ко-многим.

«Факультеты» и «Студенты» связать по полю *СокрНазваниеФак*. Тип связи - один-ко-многим.

«НазначениеОплат» и «Платежи» по полю *Цель*. Тип связи - *один-ко-многим*.

«Студенты» и «Платежи» связать по полю *КодСтудента*. Тип связи - *один-ко-многим*.

4. Работа с данными в таблицах

Заполнить данными описанные выше таблицы, определяющие структуру базы данных «Платежи студентов» для ведения учета платежей студентов за время обучения.

Заполнение осуществлять в следующем порядке: сначала вносятся данные в таблицы, стоящие на стороне отношения один (*таблицы-справочники*), потом — в таблицы, стоящие на стороне отношения многие (*оперативные таблицы*).

Данные для заполнения таблиц *подобрать самостоятельно*. Таблица «Студенты» должна содержать **не менее 15 записей**, таблицы «Города», «Улицы», «Факультеты», «Назначения Оплат» - **не менее 7 записей**, таблица «Платежи» - **не менее 30 записей** (по 2 платежа на каждого студента).

5. Контрольное задание

(контрольные задания выполняются согласно номеру своего варианта)

5.1. Сортировка и фильтрация данных в таблицах

Отобрать из таблицы «Студенты» следующую информацию (при необходимости, изменить данные в этой таблице для тестирования фильтра):

- 1) данные о всех студентах заданного факультета из заданного города, отсортированные по фамилиям в алфавитном порядке;
- 2) данные о всех студентах заданной группы из заданного города, отсортированные по дате рождения по возрастанию;
- 3) данные о всех студентах заданного года поступления из заданного города, отсортированные по факультетам в алфавитном порядке;
- 4) данные о всех студентах заданных года поступления и факультета, отсортированные по дате рождения по возрастанию;
- 5) данные о всех студентах из заданного города, прописанных на заданной улице, отсортированные по фамилиям в алфавитном порядке;
- 6) данные о всех студентах заданных факультета и группы, отсортированные по дате рождения по убыванию;
- 7) данные о всех студентах заданных факультета и даты рождения, отсортированные по фамилиям в обратном порядке;
- 8) данные о всех студентах заданных факультета и фамилии, отсортированные по именам в алфавитном порядке;
- 9) данные о всех студентах с заданным именем и отчеством, отсортированные по году поступления по возрастанию;
- 10) данные о всех студентах с заданными именем и факультетом, отсортированные по дате рождения по убыванию;
- 11) данные о всех студентах с заданными именем, датой рождения и факультетом, отсортированные по году поступления по возрастанию;
- 12) данные о всех студентах заданных факультета, города и улицы, отсортированные по фамилиям в алфавитном порядке;
- 13) данные о всех студентах заданных факультета, группы и города, отсортированные по дате рождения по убыванию;
- 14) данные о всех студентах заданных факультета, года поступления и фамилии, отсортированные по дате рождения по возрастанию;
- 15) данные о всех студентах заданного города, не имеющих домашнего телефона, отсортированные по фамилиям в алфавитном порядке.

5.2. Создание полей с подстановкой

Создать в таблицах поля с выбором значений из раскрывающегося списка (тип данных – мастер подстановок), содержащего 10 значений:

- 1) таблица «Студенты», поле Фамилия;
- 2) таблица «Студенты», поле Имя;
- 3) таблица «Студенты», поле Отчество;
- 4) таблица «Студенты», поле ГодПоступления;
- 5) таблица «Студенты», поле *Телефон*;
- 6) таблица «Студенты», поле Группа;
- 7) таблица «Факультеты», поле *ПолнНазвание*;
- 8) таблица «Факультеты», поле СокрНазвание;
- 9) таблица «Города», поле Название;
- 10) таблица «Улицы», поле Название;
- 11) таблица «Студенты», поле Фамилия;

- 12) таблица «Студенты», поле *ГодПоступления*;
- 13) таблица «Студенты», поле Группа;
- 14) таблица «Назначения Оплат», поле *Цель*;
- 15) таблица «Платежи», поле СуммаОплаты.

6. Отчетность

После выполнения заданий в отчет по работе включить:

- 1. описание технологии создания таблиц;
- 2. описание структуры созданных таблиц;
- 3. схему базы данных;
- 4. описание выполнения контрольных заданий.

7. Контрольные вопросы

(ответы нужно знать для защиты работы)

- 1. Какие существуют режимы создания таблиц в СУБД MS Access? Какой режим был использован для создания таблиц при выполнении лабораторной работы?
- 2. Что такое первичный ключ? Как создать первичный ключ в таблице базы данных MS Access?
- 3. Что такое индекс? Для чего применяется индексирование в таблицах баз данных? Как создать индекс при работе в среде СУБД MS Access?
- 4. Охарактеризуйте типы данных, использованные при создании полей таблиц базы данных **Платежи студентов**.
- 5. Охарактеризуйте тип данных Счетчик. Для чего чаще всего применяется этот тип при создании таблиц?
- 6. Что такое свойство поля таблицы? Одинаковы или различны наборы свойств для полей, имеющих различный тип данных? Приведите примеры свойств.
- 7. Охарактеризуйте свойства Условие на значение и Сообщение об ошибке.
- 8. Охарактеризуйте свойство **Размер поля**. К полям каких типов данных оно применимо?
- 9. Что изображается на схеме данных? Для чего создаются связи между таблицами?
- 10. Охарактеризуйте работу механизма обеспечения целостности данных, включаемого при установлении связей между таблицами?
- 11. Что означает наличие следующих маркеров в строке таблицы при работе с данными: «Карандаш», «Треугольник», «Звездочка»?

8. Литература

- 1. Стародубцев Е.Г. Системы управления базами данных. Пособие по дисциплинам "Базы данных", "Технологии организации, хранения и обработки данных", "Разработка приложений баз данных для информационных систем" для студентов специальности 1- $40\,01\,02$ "Информационные системы и технологии (по направлениям)" дневной и заочной форм обучения. Гомель: ГГТУ, $2010\,(\text{м/y}\,3913)$. $30\,\text{c}$.
- 2. Асенчик О.Д., Стародубцев Е.Г. Практическое пособие по теме "СУБД MS Access" для студентов экономических специальностей дневного и заочного отделений. Гомель: ГГТУ, 2001 (м/у 2505), 2005 (м/у 3094, 2-е стереотипное издание м/у 2505). 44 с.
- 3. Презентации лекций «Основы БД», «Работа с таблицами СУБД MS ACCESS».

Лабораторная работа №2. СУБД MS Access: создание запросов (4 часа)

Цель работы: научиться разрабатывать простые запросы базы данных в СУБД MS Access.

1. Теоретические сведения о работе с запросами

Ознакомиться с теоретическим материалом по работе с запросами баз данных MS Access, используя интерфейс этой СУБД.

Создание запроса в режиме конструктора (использование бланка QBE)

Создание запроса на выборку в режиме *Конструктор* выполняется с помощью бланка запроса (бланка QBE) в следующем порядке:

- 1. вкладка Запросы;
- 2. кнопка Создать;
- 3. кнопки Конструктор, ОК;
- 4. добавить нужные таблицы (одну или несколько) в верхнюю часть бланка запроса с помощью диалогового окна «Добавление таблицы»;
- 5. установить связи между таблицами (если таблиц несколько);
- 6. с помощью мыши («перетаскиванием») переместить в нижнюю часть бланка запроса необходимые поля из таблиц;
- 7. задать тип сортировки для тех полей, где это необходимо;
- 8. задать, если необходимо, условия отбора: ограничения, налагаемые на значения полей;
- 9. добавить, при необходимости, вычисляемые выражения (поля);
- 10. отметить, какие поля нужно выводить на экран;
- 11. сохранить запрос под некоторым именем.

Для установки свойств полей запроса нужно: 1) щелкнуть по ячейке поля в строке «Поле»; 2) выбрать команду **Вид / Свойства**; 3) в диалоговом окне «Свойства поля» задать свойства на вкладках «Общие», «Подстановка».

Для задания условий отбора, накладывающих ограничения на значения поля, в соответствующую ячейку строки «Условие отбора» вводится нужное выражение. Это выражение состоит из операторов сравнения и операндов (значений). Если выражение не содержит оператора, то Access будет использовать оператор "=" (равно). Выражения могут соединяться логическими операторами AND и OR.

Приведем некоторые операторы сравнения.

< меньше; > больше; < = меньше или равно; <> не равно; > = больше или равно.

IN - задает используемый для сравнения список значений; например, при условии отбора IN ("Склад1", "Склад2", "Склад3") будут отобраны только данные поля со значениями Склад1, Склад2, Склад3.

Between - определяет диапазон значений, например, Between 10 And 20 означает то же самое, что и выражение > = 10 and < = 20; Between #01.01.97# And #01.09.97# - подходят все даты между 1 января и 1 сентября 1997 года.

Like - оператор для поиска образцов в текстовых полях; при этом используются следующие символы шаблона: "?" - любой символ в данной позиции; "*" - любое количество

символов в данной позиции; "#" - в данной позиции должны стоять цифры. например, в случае условия отбора Like "c*k" подходят все значения, начинающиеся с буквы с и заканчивающиеся на букву k; Like "??00###" - задается строка, состоящая из 7 символов, первые 2 из которых являются произвольными, за ними следуют два нуля, а затем – три любые цифры.

Вычисляемые поля

В запросе можно выполнять вычисления с любыми полями таблицы, а также делать вычисляемое выражение новым полем в наборе записей. При создании таких полей можно использовать: 1) встроенные функции Access; 2) арифметические операции над полями таблицы.

Например, для создания нового поля с именем «Полное имя» из полей с именами «Фамилия», «Имя», «Отчество» в строку «Поле» бланка запроса нужно ввести следующее выражение:

Полное имя: [Фамилия] & " " & [Имя] & " " & [Отчество]

(после двоеточия записывается выражение, согласно которому будут вычисляться значения поля; если имя нового поля не задавать, то по умолчанию будет выведено «Выражение 1»). При построении сложных выражений, которые не помещаются в ячейку, удобно использовать «Построитель выражений». Для этого нужно щелкнуть по пустому полю в бланке запроса (строка "Поле») и нажать кнопку **Построить** на панели инструментов или выбрать команду **Построить** из контекстного меню (при нажатой правой кнопке мыши).

Итоговые запросы на выборку

Эти запросы предназначены для выведения не отдельных записей таблицы, а итоговых значений по группам данных. Например, для вычисления в поле общей суммы, уплаченной студентом за обучение (считается, что платежи осуществлялись частями), нужно нажать на панели инструментов кнопку со значком суммы (Σ) - **Групповые операции**. При этом в бланке запроса появляется строка «Групповая операция» с установкой «Группировка» для каждого поля, занесенного в бланк запроса. Для получения итоговых значений в нужных полях установка «Группировка» заменяется на конкретную итоговую функцию, которую можно ввести с клавиатуры или выбрать из раскрывающегося списка.

Некоторые итоговые функции Access перечислены ниже.

Sum - вычисляет сумму всех значений заданного поля в каждой группе. Используется только для числовых или денежных полей.

Avg - вычисляет среднее арифметическое всех значений данного поля в каждой группе. Используется только для числовых или денежных полей. Не учитывает в вычислениях нулевые значения (Null).

Min (**Max**) - возвращают наименьшее (наибольшее) значение, найденное в этом поле внутри каждой группы. Для текстовых полей возвращают наименьшее (наибольшее) из символьных значений независимо от регистра. Игнорируют значение *Null*.

Count - возвращает число записей, в которых значения данного поля отличны от нулевых значений. Для подсчета числа записей с учетом значений Null в строку «Поле» бланка запроса нужно ввести выражение Count(*).

First (Last) - возвращают первое (последнее) значение этого поля в группе.

Параметрические запросы

Для введения конкретных условий отбора в диалоговом режиме используются запросы с параметром. Чтобы определить параметр, нужно ввести в строку «Условия отбора» вместо конкретного значения (операнда) имя или фразу, заключенную в квадратные скобки []. То, что заключено внутри квадратных скобок, Access рассматривает как *имя параметра*. Это имя

выводится в окне диалога при выполнении запроса, поэтому в качестве имени параметра используют содержательную фразу. В одном запросе можно указать несколько параметров, при этом имя каждого должно быть уникальным и информативным.

Перекрестные запросы

Такие запросы относятся к особому типу итоговых запросов на выборку. Они позволяют увидеть вычисляемые значения в виде перекрестной таблицы, похожей на электронную таблицу. Для преобразования обычного запроса на выборку в перекрестный запрос на выборку нужно в режиме «Конструктор» выбрать в основном меню команду: Запрос / Перекрестный. При этом в бланк запроса добавляется строка «Перекрестная таблица». В этом случае для каждого поля перекрестного запроса можно выбрать одну из четырех установок: «Заголовки строк», «Заголовки столбцов», «Значение» (выводимое в ячейках перекрестной таблицы), «Не отображается». При этом «Значение» отображается в ячейке на пересечении строки и столбца.

Для перекрестного запроса надо определить, по крайней мере, одно поле в качестве заголовков строк, одно поле в качестве заголовков столбцов и одно поле значений. Каждое поле, являющееся заголовком столбцов, должно иметь в строке «Групповая операция» установку «Группировка». Для поля, используемого в качестве заголовка строк, в строке «Групповая операция» должна быть установлена операция «Группировка», выбрана одна из итоговых функций (Міп, Мах, Count и т.д.) или введено выражение, содержащее итоговую функцию. Для поля с установкой «Значение» нужно выбрать одну из итоговых функций или ввести выражение, использующее итоговую функцию.

Запросы действия

К запросам действия относятся запросы на: обновление, добавление, удаление, создание таблицы.

Общая технология создания запроса действия:

- 1) Создать запрос на выборку, где в качестве условий внести выражения, отбирающие данные, предназначенные для обновления, удаления, добавления или формирования новой таблицы.
- 2) Выбрать тип запроса в пункте меню **Запрос**. Для запроса на обновление заполнить строку «Обновление», то есть задать выражения, которые будут заноситься в таблицу вместо старых. Для запроса на добавление или формирование новой таблицы в открывшемся окне ввести имя таблицы, в которую будут добавляться данные, или имя создаваемой таблицы.
- **2.** Создать простой многотабличный запрос, позволяющий редактировать данные в таблице «Платежи» с одновременным выводом данных о студенте. Запрос должен содержать поля *КодСтудента*, *Фамилия*, *Имя*, *Отчество*, взятые из таблицы «Студенты», и поля *ДатаОплаты*, *СуммаОплаты*, *ЦельОплаты*, взятые из таблицы «Платежи».
- **3.** Создать простой многотабличный запрос для вывода списка улиц города Гомеля. Запрос должен содержать поля: *Название* (таблица «Города») и *Название* (таблица «Улицы»). Связь между таблицами установить локально (в пределах данного запроса) по полю *КодГорода*. В бланке запроса для поля *Название* (таблица «Города») в строку Условия отбора внести Гомель.

4. Группировка данных в запросах

- **4.1.** Создать многотабличный запрос с именем «Сумма_1» для подсчета общих сумм оплат студентов за весь период оплат. Запрос должен содержать поля *Фамилия*, *Имя*, *Омчество*, взятые из таблицы «Студенты», и поле *СуммаОплаты*. При создании запроса использовать команду **Вид** → **Групповые операции**. В качестве групповой операции для поля *СуммаОплаты* в раскрывающемся списке указать **Sum** (суммирование), а для остальных полей **Группировка**.
- **4.2.** Создать многотабличный запрос с именем «Сумма_2» путем копирования и последующего редактирования запроса «Сумма_1». Выполнить следующие изменения: 1) добавить в бланк запроса поле *Группа*; 2) удалить из бланка запроса поля *Фамилия*, *Имя*, *Отчество*; 3) выполнить для поля *Группа* установку: Групповая операция **Группировка**.
- **4.3.** Создать многотабличный запрос с именем «Сумма_3» путем копирования и последующего редактирования запроса «Сумма_2». Выполнить следующие изменения установок для поля *Группа*: Групповая операция **Условие**; Вывод на экран нет (снять флажок); Условие отбора: указать номер группы из имеющихся в базе данных.

Сравнить результаты запросов «Сумма 1», «Сумма 2», «Сумма 3».

5. Контрольное задание

(контрольные задания выполняются согласно номеру своего варианта)

5.1. Создание простых многотабличных запросов

Создать многотабличный запрос для вывода следующих сведений о студентах (для факультета выводить полное название):

- 1) фамилия, имя, отчество, полный адрес;
- 2) фамилия, имя, отчество, группа, факультет;
- 3) фамилия, имя, отчество, дата рождения, факультет;
- 4) фамилия, имя, отчество, год поступления, факультет;
- 5) фамилия, имя, отчество, группа, город, улица;
- 6) фамилия, имя, отчество, город, факультет;
- 7) фамилия, имя, отчество, примечание, город, улица;
- 8) фамилия, имя, отчество, телефон, группа, факультет;
- 9) фамилия, имя, отчество, факультет, дата и сумма оплаты;
- 10) фамилия, имя, отчество, дата и цель оплаты, группа;
- 11) фамилия, имя, отчество, даты рождения и поступления;
- 12) код студента, код города, группа, факультет;
- 13) код студента, город, телефон, дата и сумма оплаты;
- 14) код студента, примечание, дата и цель оплаты;
- 15) код студента, полный адрес, дата и сумма оплаты.

5.2. Создание итоговых запросов

Создать запрос для нахождения следующих итоговых показателей, вычисляемых по группам записей (используются группировка данных в запросах и итоговые функции Sum, Avg, Min, Max, Count, First, Last):

1) среднее значение суммы оплаты при одном платеже для каждого студента;

- 2) максимальное значение суммы оплаты при одном платеже для каждого студента;
- 3) минимальное значение суммы оплаты при одном платеже для каждого студента;
- 4) количество платежей для каждого студента;
- 5) общая сумма оплаты студентов каждой группы;
- б) средняя сумма оплаты студентов каждой группы;
- 7) максимальная сумма оплаты студентов каждой группы;
- 8) минимальная сумма оплаты студентов каждой группы;
- 9) количество платежей в каждой группе студентов;
- 10) количество платежей на каждом факультете;
- 11) количество студентов из каждого города;
- 12) общая сумма оплаты студентов каждого города;
- 13) средняя сумма оплаты студентов каждого города;
- 14) последняя дата оплаты для каждого студента;
- 15) первая дата оплаты для каждого студента.

6. Отчетность

После выполнения заданий в отчет по работе включить:

- 1. описание технологии разработки всех созданных запросов;
- 2. описание структуры созданных запросов (при описании структуры запроса указать: схему данных запроса, названия и источники полей запросов, условия отбора, применяемые выражения и итоговые функции);
- 3. распечатку запроса, созданного по заданию 2.4.2.
- 4. описание выполнения контрольных заданий.

7. Контрольные вопросы (ответы нужно знать для защиты работы).

- 1. Какие существуют режимы создания запросов в СУБД MS Access? Какой режим был использован для создания запросов при выполнении лабораторной работы?
- 2. Что такое запрос на выборку? Как создать запрос на выборку в СУБД MS Access?
- 3. Какие бывают связи таблиц в СУБД MS Access? Как связывание таблиц используется при создании запросов в СУБД MS Access?
- 4. Какие операторы сравнения используются в запросах?
- 5. Как используются операторы сравнения Is Null, Is Not Null? Предложите простые примеры их использования.
- 6. Как создать итоговый запрос? Какие итоговые функции при этом можно использовать?
- 7. Как создать запрос с вычисляемыми полями? Какой синтаксис используется для задания вычисляемого поля?
- 8. Как создать запрос с параметром? Какой синтаксис используется для задания параметра?
- 9. Как создать перекрестный запрос? Какие настройки при этом используются?
- 10. Запросы действия каких типов можно создать в СУБД MS Access?
- 11. Как создать запрос на обновление? Какие настройки при этом используются?

- 12. Как создать запрос на удаление? Какие настройки при этом используются?
- 13. Порядок разработки запроса на создание таблицы.
- 14. Какие бывают типы внешних соединений таблиц, как они используются в запросах?
- 15. Что такое вложенные запросы, как они используются?

8. Литература для подготовки

- 1. Стародубцев Е.Г. Системы управления базами данных. Пособие по дисциплинам "Базы данных", "Технологии организации, хранения и обработки данных", "Разработка приложений баз данных для информационных систем" для студентов специальности 1- $40\,01\,02$ "Информационные системы и технологии (по направлениям)" дневной и заочной форм обучения. Гомель: ГГТУ, $2010\,(\text{м/y}\,3913)$. $30\,\text{c}$.
- 2. Асенчик О.Д., Стародубцев Е.Г. Практическое пособие по теме "СУБД MS Access" для студентов экономических специальностей дневного и заочного отделений. Гомель: ГГТУ, 2001 (м/у 2505), 2005 (м/у 3094, 2-е стереотипное издание м/у 2505). 44 с.
- 3. Презентации лекций «Основы БД», «Работа с запросами СУБД MS ACCESS».

Лабораторная работа 3 Пакет AutoCAD: пользовательский интерфейс, основы работы с пакетом (2 часа)

Цель работы:

Освоить основные приемы работы с пользовательским интерфейсом пакета AutoCAD.

ЗАДАНИЯ

1. Изучить:

- а) презентации лекций,
- **б)** соответствующие разделы электронных пособий из папки **Литература по AutoCAD**,

(где рассматриваются основы и начало работы с пакетом AutoCAD).

2. Запустить AutoCAD и изучить основные элементы пользовательского интерфейса и настройки, рассмотренные на лекциях и в электронных пособиях (можно выполнять одновременно с п. 1 задания).

3. Составить отчет, куда включить:

- а) краткое описание и назначение основных элементов пользовательского интерфейса AutoCAD (меню, панели инструментов, инструментальные палитры; окно команд; центр управления; текстовое окно; область редактирования чертежа; строка состояния; функциональные клавиши; контекстное меню);
- **б**) основные настройки параметров рабочего экрана; настройка отображения панелей инструментов; определение границ рисунка, параметров сетки, шага привязки, формата единиц измерения;
 - в) описание основных приемов работы со справочной системой;
- г) описание основных принципов работы с окном команд; центром управления; текстовым окном.

Лабораторные работы 4, 5 Пакет AutoCAD: создание и редактирование графических примитивов (8 часов)

Цель работы:

Освоить основные режимы создания и редактирования двухмерных графических примитивов пакета AutoCAD.

ЗАДАНИЯ

1. Подготовка к работе

Скопировать папку Тренинг-система из папки с заданиями по лабораторным работам 4, 5 (с учебного портала) на диск Е: своей машины (или убедиться, что папка Тренинг-система уже имеется на диске Е). Ознакомиться с файлом readme.txt, описывающим структуру упражнения тренинг-системы по работе с пакетом AutoCAD.

ВНИМАНИЕ!

- Файлы (dwg-файлы) со всеми выполненными далее упражнениями сохранять в *сво-ей* папке (а не в папке Тренинг-система) для *проверки*.
- Исходные файлы из папки Тренинг-система не изменять!
- Протоколы команд (отображаются в текстовом окне при нажатии клавиши **F2**) по каждому упражнению сохранять в отдельном *текстовом файле* (один текстовый файл на все упражнения, в файле указывать номера и названия упражнений) для *проверки*. В текстовый файл включить *подробные пояснения* по использованным командам, ключам (аргументам) команд и другим параметрам, задаваемым для выполнения команд.
- Отчетность по работе включает:
 - 1) демонстрацию своих *dwg-файлов* с выполненными упражнениями и *meк-стового файла* с протоколами команд и подробными пояснениями;
 - 2) при защите работы выполняются задания, аналогичные упражнениям (задания выдаются преподавателем и *не содержат подсказок* по порядку выполнения).

2. Построение ломаных различными способами

2.1. Построение ломаных, используя привязку координат к узлам сетки

Запустить файл 04_L4.dwg из папки Раздел 2. Выполнить упражнение L4.

Справочная информация. Команда LINE формирует отрезок; вызывается с помощью кнопки Отрезок панели инструментов Рисование (Draw). Отрезки могут быть одиночными или объединенными в ломаную линию. Последовательность отрезков может быть замкнутой. В локализованном (русском) AutoCAD ключевое слово, задающее замыкание многоугольника, вводится со знаком подчеркивания: _c (или вместо _c вводится русская буква 3 – см. значения параметров в строке команд).

2.2. Построение ломаных, задавая точки в абсолютных координатах

Запустить файл 01 L1.dwg из папки Раздел 2. Выполнить упражнение L1.

2.3. Построение ломаных, задавая точки в относительных координатах

Запустить файл 02 L2.dwg из папки Раздел 2. Выполнить упражнение L2.

2.4. Построение ломаных, задавая точки в полярных координатах

Запустить файл 03 L3.dwg из папки Раздел 2. Выполнить упражнение L3.

3. Зумирование

3.1. Задание области отображения с помощью рамки

Запустить файл 48 Z1.dwg из папки Раздел 2. Выполнить упражнение Z1.

3.2. Отображение всей области чертежа

Запустить файл 49_Z2.dwg из папки Раздел 2. Выполнить упражнение Z2 (использовать команду основного меню Вид / Зумирование / Все).

3.3. Задание области отображения в режиме реального времени

Запустить файл 50 Z3.dwg из папки Раздел 2. Выполнить упражнение Z3.

4. Панорамирование (в режиме реального времени)

Запустить файл 51_Pa1.dwg из папки Раздел 2. Выполнить упражнение Pa1.

5. Объектная привязка координат

5.1. Привязка к конечным точкам примитивов

Запустить файл 05_L5.dwg из папки Раздел 2. Выполнить упражнение L5.

5.2. Привязка к средним точкам примитивов

Запустить файл 06_L6.dwg из папки Раздел 2. Выполнить упражнение L6.

5.3. Привязка к точке пересечения примитивов

Запустить файл 08_L8.dwg из папки Раздел 2. Выполнить упражнение L8.

5.4. Привязка к центру окружности, дуги или эллипса

Запустить файл 07_L7.dwg из папки Раздел 2. Выполнить упражнение L7.

Справочная информация. При использовании такой привязки нужно указывать мышью на линию дуги, окружности или эллипса, а *не на их центр*. Можно выполнять привязку и к центрам окружностей, являющихся частью тел и областей. При привязке к центру нужно выбирать видимую часть дуги, окружности или эллипса.

5.5. Построение касательной из точки к окружности

Запустить файл 12_L12.dwg из папки Раздел 2. Выполнить упражнение L12.

5.6. Построение перпендикуляров из точки к дуге и отрезку

Запустить файл 13_L13.dwg из папки Раздел 2. Выполнить упражнение L13.

5.7. Построение многоугольника с привязкой к точечному элементу

Запустить файл 11_L11.dwg из папки Раздел 2. Выполнить упражнение L11.

Справочная информация. Точечные элементы (точки) создаются с помощью кнопки Точка

панели инструментов **Рисование** (**Draw**). Точки часто используются в качестве узлов или ссылок для объектной привязки и отсчета расстояний.

5.8. Привязка к произвольной точке примитивов

Запустить файл 10_L10.dwg из папки Раздел 2. Выполнить упражнение L10.

Справочная информация. При такой привязке выполняется привязка к точке на объекте, которая является ближайшей к позиции перекрестья.

6. Работа с полилиниями

Справочная информация. Полилиния представляет собой связанную последовательность линейных и дуговых сегментов и обрабатывается системой как графический примитив. Полилинии используют, если требуется работа с набором сегментов как с целым, хотя допускается их редактирование по отдельности. Можно задавать ширину или полуширину отдельных сегментов, сужать или замыкать полилинию. Полилинии создаются с помощью кнопки

Полилиния панели инструментов **Рисование** (**Draw**).

6.1. Построение полилинии с установкой ширины

Запустить файл 29_P1.dwg из папки Раздел 2. Выполнить упражнение P1.

Справочная информация. В локализованном (русском) AutoCAD ключевое слово, задающее ширину полилинии, вводится со знаком подчеркивания: $_{\mathbf{w}}$ (или вместо $_{\mathbf{w}}$ вводится русская буква $_{\mathbf{w}}$ – см. значения параметров в строке команд).

6.2. Построение полилинии в режиме дуг

Запустить файл 30_P2.dwg из папки Раздел 2. Выполнить упражнение P2.

6.3. Построение окружности с помощью полилинии

Запустить файл 31_P3.dwg из папки Раздел 2. Выполнить упражнение P3.

6.4. Построение полилинии с помощью направления

Запустить файл 32_P4.dwg из папки Раздел 2. Выполнить упражнение P4.

7. Построение многоугольников

Справочная информация. Многоугольники представляют собой замкнутые полилинии; они могут иметь от 3 до 1024 сторон равной длины. Многоугольник можно построить, разными способами: а) вписав его в воображаемую окружность; б) описав его вокруг окружности; в) задав начало и конец одной из сторон. Так как длины сторон многоугольников всегда равны, то с их помощью легко строить квадраты и равносторонние треугольники. Вписанные многоугольники строятся, когда известно расстояние между центром многоугольника и его вершинами; описанные многоугольники - когда известно расстояние между центром многоугольника и серединами его сторон. Многоугольники создаются с помощью кнопки Многоугольника и серединами его сторон. Многоугольники создаются с помощью кнопки Многоугольника и серединами его сторон.

7.1. Построение многоугольника по известной стороне

Запустить файл 35_Pg1.dwg из папки Раздел 2. Выполнить упражнение Pg1.

7.2. Построение многоугольника, вписанного в окружность

Запустить файл 36_Pg2.dwg из папки Раздел 2. Выполнить упражнение Pg2.

7.3. Построение многоугольника, описанного вокруг окружности

Запустить файл 37_Pg3.dwg из папки Раздел 2. Выполнить упражнение Pg3.

7.4. Построение прямоугольника

Запустить файл 34_Re1.dwg из папки Раздел 2. Выполнить упражнение Re1.

Справочная информация. Прямоугольники создаются с помощью кнопки Прямоугольник

панели инструментов Рисование (Draw).

8. Построение окружностей

файлы 15 C1.dwg, 16 C2.dwg, 17 C3.dwg, 18 C4.dwg, Запустить 19 C5.dwg. 20 C6.dwg, 21 C7.dwg, 22 C8.dwg из папки Раздел 2. Выполнить упражнения C1-C8.

9. Построение дуг

Запустить файлы 24_A1.dwg, 25_A2.dwg, 26_A3.dwg, 27_A4.dwg, 28_A5.dwg из папки Раздел 2. Выполнить упражнения А1-А5.

10. Создание текстовых областей

Запустить файлы 41 T1.dwg, 42 T2.dwg, 43 T3.dwg, 44 T4.dwg, 45 T5.dwg, 46 T6.dwg, 47 T7.dwg из папки Раздел 2. Выполнить упражнения T1-T7.

11. Построение блоков

Запустить файлы 40_Ep1, 41_In1.dwg из папки Раздел 3. Выполнить упражнения Ep1, In1.

12. Штриховка

Запустить файлы 52_H1, 53_H2.dwg из папки Раздел 2. Выполнить упражнения H1, H2.

13. Простановка размеров

Запустить файлы 54 R1, 55 R2, 56 R3, 57 R4, 58 R5, 59 R6, 60 R7, 61 R8, 62 R9 из папки Раздел 2. Выполнить упражнения R1-R9.

Задания на защиту лабораторных работ 3, 4, 5

1. Построить многоугольник тремя способами, задавая точки в координатах: а) абсолютных; б) относительных; в) полярных (размеры подобрать самостоятельно).

- 2. Скопировать многоугольник (п. 1) на свободное место рисунка. Соединить отрезками с помощью объектной привязки: а) все несмежные вершины многоугольника; б) середины любых трех сторон многоугольника.
- 3. Построить окружности:

С помощью объектной привязки: а) соединить центры окружностей между собой; б) построить треугольник, стороны которого касаются всех окружностей; в) построить перпендикуляр из любой вершины треугольника к дуге AB.

4. Построить сопряжение окружностей заданных размеров; указать размеры.

5. Скопировать рисунок из п. 4 на свободное место, удалить обозначения размеров. Нарисовать полилинию (выделена красным, см. рисунок ниже) с толщиной 0.9.

6. Построить полилинии (размеры подобрать самостоятельно):

a)

б)

(вторая полилиния – без эффекта тени).

- 7. Построить правильный N-угольник, где N число букв в фамилии студента. Вписать в него окружность. Описать вокруг него окружность. Заштриховать область, ограниченную N-угольником и описанной вокруг него окружностью.
- 8. Выполнить упражнение 71_Тест4 (раздел 2, папка Тренинг-система).
- 9. Построить дуги (нарисованы красным цветом):

10. Построить равносторонний треугольник со стороной 150. Построить дугу по трем точкам – вершинам этого треугольника.

- 11. Создать фрагменты текста (везде в качестве текста использовать свою фамилию и имя).
- а) Текст, центрированный относительно точки:

б) Текст, вписанный между заданными точками:

в) Наклонный текст:

г) Текст, выровненный по ширине.

д) Текст, выровненный вправо:

Лабораторная работа 6

Пакет AutoCAD: создание и редактирование слоев, свойств, трехмерных графических примитивов (4 часа)

Цель работы:

Освоить основные режимы создания и редактирования слоев, свойств, трехмерных графических примитивов пакета AutoCAD.

ЗАДАНИЯ

1. Подготовка к работе

Скопировать папку Тренинг-система из папки с заданиями по лабораторным работам 4, 5 (с учебного портала) на диск Е: своей машины (или убедиться, что папка Тренинг-система уже имеется на диске Е). Ознакомиться с файлом readme.txt, описывающим структуру упражнения тренинг-системы по работе с пакетом AutoCAD.

ВНИМАНИЕ!

- Файлы (dwg-файлы) со всеми выполненными далее упражнениями сохранять в *сво- ей* папке (а не в папке Тренинг-система) для *проверки*.
- Исходные файлы из папки Тренинг-система не изменять!
- Протоколы команд (отображаются в текстовом окне при нажатии клавиши **F2**) по каждому упражнению сохранять в отдельном *текстовом файле* (один текстовый файл на все упражнения, в файле указывать номера и названия упражнений) для *проверки*. В текстовый файл включить *подробные пояснения* по использованным командам, ключам (аргументам) команд и другим параметрам, задаваемым для выполнения команд.

• Отчетность по работе включает:

- 3) демонстрацию своих *dwg-файлов* с выполненными упражнениями и *meк-стового файла* с протоколами команд и подробными пояснениями;
- 4) при защите работы выполняются задания, аналогичные упражнениям (задания выдаются преподавателем и *не содержам подсказок* по порядку выполнения).

1. Работа со слоями

Запустить файл 72_La.dwg из папки Раздел 2. Выполнить упражнение La.

2. Работа со свойствами

Запустить dwg-файлы: 31_Pr1 - 37_Pr7 (7 файлов), 38_Pe1 из папки Раздел 3. Выполнить соответствующие упражнения.

3. Работа с пространством листа и модели, видовыми экранами

Запустить dwg-файлы: 01_Spa1, 02_Spa2, 03_Vpr1, 04_Vpr2, 05_Vpr3 из папки Раздел 4. Выполнить соответствующие упражнения.

4. Работа с трехмерными объектами

Запустить dwg-файлы: 14_Box1, 15_Wed1, 16_Con1, 17_Con2, 18_Cyl1, 19_Sph1, 20_Tor1, 21_Tor2, 22_Tor3, 23_Ext1, 24_Ext2, 25_Ext3, 26_Rev1 из папки Раздел 4. Выполнить соответствующие упражнения.

Выполнить упражнения 27-43, 50 из папки Раздел 4.

Лабораторная работа 7 Пакет AutoCAD: создание и редактирование сложных чертежей (8 часов)

Цель работы:

Получить практические навыки создания и редактирования сложных чертежей в пакете AutoCAD.

1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

См. презентации лекций 9-15 «Использование пакета AutoCAD».

2. ЗАДАНИЕ

- 2.1. Разработать средствами пакета AutoCAD чертеж тепловой схемы по своему варианту, включающий:
 - обозначения элементов тепловой схемы, выполненные в виде блоков AutoCAD (для трубо-, водо-, паропроводов и др. блоки не использовать);
 - графическое меню, содержащее 7 элементов тепловой схемы по своему варианту;
 - связи 10 элементов тепловой схемы (блоков AutoCAD) с таблицей Оборудование базы данных (БД) (см. п. 2.2), описывающей характеристики оборудования, приведенного на тепловой схеме.

Тепловая схема должна соответствовать требованиям ГОСТ, предъявляемым к тепловым схемам (см. пример оформления ниже).

2.2. Разработать БД, описывающую характеристики оборудования, приведенного на тепловой схеме. БД должна соответствовать требованиям нормализации реляционных таблиц и включать сведения об оборудовании, марках оборудования, приведенного на тепловой схеме.

3. ОФОРМЛЕНИЕ ОТЧЕТА

Отчет должен содержать подробное описание выполнения заданий 2.1, 2.2:

- описание действий по созданию тепловой схемы, включая: создание блоков; графического меню; оформление рамки, основной надписи и перечня элементов тепловой схемы;
- описание разработки БД и связывания элементов тепловой схемы с БД;
- копии экранов с разработанной тепловой схемой, графическим меню, схемой БД.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое и как реализуется информационное обеспечение САПР?
- 2. Что такое реляционные базы данных?
- 3. Определение и основные характеристики реляционных таблиц.
- 4. Нормализация реляционных таблиц: первая нормальная форма, зачем она нужна, пример.
- 5. Нормализация реляционных таблиц: вторая нормальная форма, зачем она нужна, пример.
- 6. Нормализация реляционных таблиц: третья нормальная форма, зачем она нужна, пример.
- 7. Основные характеристики СУБД MS Access, типы данных.
- 8. СУБД MS Access: работа с таблицами.
- 9. Связи между таблицами MS Access. Глобальные и локальные связи. Типы связей.
- 10. Использование метода «справочных» и «оперативных» таблиц при проектировании реляционных БД.
- 11. Пакет AutoCAD: работа с текстом.
- 12. Пакет AutoCAD: использование блоков.
- 13. Пакет AutoCAD: общий порядок разработки графических (мозаичных) меню.
- 14. Как разрабатываются и используются слайды в AutoCAD?
- 15. Как используются файлы меню при разработке пользовательских меню в AutoCAD?
- 16. В каких САПР может потребоваться совместное использование AutoCAD с внешними базами данных?
- 17. Как реализуется совместное использование AutoCAD с внешними базами данных?
- 18. Какие режимы работы возможны при совместном использовании AutoCAD с внешними базами данных?