

Pesquisa Operacional

Atividade 3

Questão 6

Uma incubadora tecnológica atua no campo levando softwares para os produtores rurais otimizarem sua produção. Um dos produtores apresentou o seguinte problema: ele deseja produzir batata, cebola e tomate. Seu objetivo é escolher quantos hectares (ha) devem ser plantados de cada cultura, havendo uma disponibilidade de 450 ha.

A produção estimada por hectare é de 600 sacas de batata, 350 sacas de cebola e 720 sacas de tomate. O consumo de água por hectare para cada cultura é de 5.500m3 para batata, 4.700m3 para cebola e 5.250m3 para tomate.

O custo da água é de R\$0,07/m3. O produtor precisa produzir, no mínimo, 80.000 sacas de batata, 50.000 sacas de cebola e 110.000 sacas de tomate.

Elabore um programa linear para minimizar o custo de água e aproveitar toda a terra disponível. Analise as afirmações apresentadas. Utilize valores inteiros para as variáveis de decisão.

- I) A otimização leva a um custo mínimo superior a R\$150.000,00.
- II) Devem ser plantados 180 hectares de cebola.
- III) O custo mínimo é atingido com o plantio de 134 hectares de batata.

É correto o que se afirma em:

Observação: para resolver a questão no solver, utilize as variáveis de quantidade de hectares de batatas, cebolas e tomates, nessa respectiva ordem.

Alternativas

Alternativa 1: II, apenas.

Alternativa 2: I e II, apenas.

Alternativa 3: I e III, apenas.

Alternativa 4: II e III, apenas.

Alternativa 5: I, II e III.

Solução

Resumo dos Dados

	Produção (sacas/ha)	Consumo Água (m³)	Produção Mín.	Custo Água (R\$)
Batata	600	5.500	80.000	385,00
Cebola	350	4.700	50.000	329,00
Tomate	720	5.250	110.000	367,50
Disponibilidade (ha)	450	-	-	-

Função Objetivo

Sejam:

 $X_1 = Batata$

 $X_2=Cebola$

 $X_3 = Tomate$

 $MinZ = 385X_1 + 329X_2 + 367, 5X_3$

In []:

Restrições

Sejam:

Produção Batata: $600X_1 \geq 80000$

Produção Cebola: $350X_2 \geq 50000$

Produção Tomate: $720X_3 \geq 110000$

Não Negatividade: $X_1,X_2,X_3\geq 0$

Resultado Solver

4	А	В	С	D	Е
1	Variáveis	x1	x2	х3	
2		134	143	153	
3					
4	Função Objetivo	154.864,50			
5					
6	Restrições				
7	Produção Mín. Batata	80400	>=	80000	
8	Produção Mín. Cebola	50050	>=	50000	
9	Produção Mín. Tomate	110160	>=	110000	
10	Produtividade	430	<=	450	
11					

A otimização do Solver indica que para minimizar os custos, são necessários a produção de **134 sacas de Batata**, **143 sacas de Cebola** e **153 sacas de Tomate**.

O custo mínimos é de R\$ 154.864,50.

Assim a resposta correta é: **Alternativa 3: I e III apenas**.

in []:
