

Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

> André Mitri @andremitri 12/03/2024

Interesse **percentual** ao longo dos anos no Google para o termo "Explainable Artificial Intelligence"

Definição de XAI

According to DARPA, XAI aims to "produce more explainable models, while maintaining a high level of learning performance (prediction accuracy); and enable human users to understand, appropriately, trust, and effectively manage the emerging generation of artificially intelligent partners

Objetivo de XAI

As stated by FAT, "is to ensure that algorithmic decisions as well as any data driving those decisions can be explained to end-users and other stakeholders in non-technical terms"

Understandable Al Comprehensible Al Accurate AI/ML Transparent Al Black box Cognitive science Data science Intelligible ML Responsable Al Interactive Al Explainable Al **Ethics**

Interpretável

- Entender como decisões são tomadas
- Entender como o modelo processa os dados de entrada e chega a uma saída específica.
- Importante em campos onde a transparência é necessária

Explicável

- Fornecer explicações sobre as decisões ou previsões feitas por um modelo.
- Foco em comunicar informações
 sobre o modelo de uma maneira
 que seja compreensível para os
 usuários humanos

Alguns conceitos

motivos XAI

Tradeoff:

Interpretabilidade

X

Acurácia

Estratégias de XAI

Visualização

Surrogate (Substituto)

Modelo mais simples
para explicar um
mais complexo
(Exemplo: LIME)

PARTIAL DEPENDENCE PLOT (PDP)

Representação gráfica que ajuda a visualizar a relação entre uma ou mais variáveis de entrada e as predições do modelo

INDIVIDUAL CONDITIONAL EXPECTATION

Extensão do PDP, releva interações e diferenças individuais desagregando o output do PDP

Métodos de Influência

Métodos de Influência

Análise Sensitiva:

como uma rede neural é influenciada pela perturbação em seus pesos. Verifica se o comportamento e saída da rede se mantém estáveis.

LAYER-WISE RELEVANCE PROPAGATION (LRP):

Redistribui a função de predição de trás para frente, começando na output layer e fazendo backpropagation para input layer. Explica predições relativamente ao estado de máxima incerteza.

Explicação baseada em Exemplos

Protótipos e Críticos

- Protótipos são seleções de instâncias dos dados
- Participação dos itens por similaridade aos protótipos
- Críticos são instâncias não bem representadas pelos protótipos
- Críticos são mostrados ao modelo

Explicações Contrafactuais

- Descrevem condições mínimas para tomada de uma decisão alternativa
- Explicação de uma única predição
 em contraste com exemplos
 adversários, com ênfase em reverter
 a predição e não em explicá-la

Avaliando Explicações

TABLE 2. Summary of explainability techniques.

Techniques	References	Intrinsic/Post-hoc	Global/Local	Model-specific/ Model-agnostic
Decision trees	[139], [140], [141], [142], [143]	I	G	SP
Rule lists	[66], [143], [144], [145], [146]	I	G	SP
LIME	[84], [85], [102], [147]	Н	L	AG
Shapely explanations	[101]	Н	L	AG
Saliency map	[87], [88], [89], [90], [91], [96], [97]	Н	L	AG
Activation maximization	[82], [83]	Н	G	AG
Surrogate models	[106], [107], [84]	Н	G/L	AG
Partial Dependence Plot (PDP)	[108], [51], [110]	Н	G/L	AG
Individual Conditional Expectation (ACI)	[112], [113]	Н	L	AG
Rule extraction	[74], [114], [115], [116], [117], [118]	Н	G/L	AG
Decomposition	[93], [94], [95]	Н	L	AG
Model distillation	[49], [123], [124], [125], [126], [127]	Н	G	AG
Sensitive analysis	[129], [130]	Н	G/L	AG
Layer-wise Relevance Propagation (LRP)	[131]	Н	G/L	AG
Feature importance	[113], [132], [86]	Н	G/L	AG
Prototype and criticism	[133], [134], [135], [136]	Н	G/L	AG
Counterfactuals explanations	[137]	Н	L	AG

I: Intrinsic, H: Post-hoc, G: Global, L: Local, SP: Model-specific, AG: Model-agnostic