סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

2	דברים חשובים מלינארית 1	1
2	1.1 מטריצות דומות	
2	לכסון	2
2	2.1 וקטורים עצמיים	
2		
3		3
3	מרחב מנה	4
4	חוגיםחוגים	5
4	מלינארית 1 5.1	
4	חבורה 5.1.1	
4	חוג 5.1.2	
5	שדה 5.1.3	
5	5.2 הגדרות חדשות מלינארית 2	
5		
5		
5	חילוק בחוגים	
5		
6	אידאלים 5.3	
6	הוג ראשי 5.4	

1 דברים חשובים מלינארית 1

1.1 מטריצות דומות

 $A=P^{-1}\cdot B\cdot P$ יהיו $A,B\in M_n\left(\mathbb{F}
ight)$ היו דומות אם קיימת מטריצה ו־B דומות כי $A,B\in M_n\left(\mathbb{F}
ight)$ משפט: נתון $A,B\in M_n\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

- .1 A, B דומות
- $[T]_C=A,[T]_{C'}=B$ של על כך ש־C,C' ובסיסים T:V o V פיימת .2
- $[T]_{C'}=B^{-}$ ע כך של C' סיים בסיס אז קיים על עכך של V כך של C כך של C סיים בסיס אז לכל .3

ואם A,B דומות אז:

- $\operatorname{Rank}(A) = \operatorname{Rank}(B), \mathcal{N}(A) = \mathcal{N}(B)$.1
- .tr $(A)=\sum_{i=1}^{n}{(A)_{i,i}}$ באשר $\operatorname{tr}(A)=\operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

2 לכסון

נגדיר מטריצה אלכסונית להיות מטריצה ריבועית $A\in M_n\left(\mathbb{F}\right)$ שבה עבור להיות מטריצה להיות מטריצה היבועית לחיות מטריצה ריבועית היבועית Diag $(\lambda_1,\dots,\lambda_n)$

מטריצה לכסינה היא מטריצה שדומה למטריצה אלכסונית, ו
העתקה לכסינה היא מטריצה שדומה למטריצה אלכסונית. בסי
ס $[T]^B_B$ אלכסונית.

אם T העתקה לכסינה (כלומר מטריצה מייצגת כלשהי לכסינה) אז כל מטריצה מייצגת שלה היא לכסינה.

1.1 וקטורים עצמיים

נגדיר באופן הפוך, ערך עצמי של A להיות היות \overline{v} כך ש־ $abla \lambda \overline{v}$ באופן הפוך, ערך עצמי של $abla \lambda$ הוא ל כך שקיים וקטור עצמי $abla \lambda \lambda$ לערך עצמי ל לערך עצמי $abla \lambda \lambda$

הערכים העצמיים הם האיברים שנמצאים על האלכסון במטריצה האלכסונית שדומה ל-A, עד כדי סידורם על האלכסון.

המרחב של הוקטורים העצמיים הוא א $V_\lambda=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של המרחב של הוקטורים העצמיים הוא $V_\lambda=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$

. הסכום של ה־ V_{λ} השונים הוא סכום ישר

2.2 פולינום אופייני

נסמן ב־ $|\lambda I - A|$ את הפולינום האופייני של $P_A(\lambda) = |\lambda I - A|$. מתקיים:

- זה פולינום מתוקן, כלומר המקדם המוביל הוא 1.
 - $P_A(\lambda)$ שורש של $\lambda \iff A$ שורש של $\lambda \bullet$
 - $.P_A=P_B$ אם A,B דומות אז

 $A\in M_n\left(\mathbb{F}
ight)$ משפט 1.2 המשפט המרכזי: תהא

נגדיר את הריבוי האלגברי של ρ_{α} (רו), להיות כמות הפעמים ש־ $(\lambda-\alpha)$ מופיע בפולינום (ρ_{α} , כלומר ρ_{α} , כלומר ρ_{α} אם הפולינום הוא ρ_{α} ($\lambda-\alpha$) אז ρ_{α} אז ρ_{α} אז ρ_{α} הפולינום הוא ρ_{α} ($\lambda-\alpha$)

 $\dim(V_{\lambda})$ להיות להיות , μ_{λ} , α להיות הגיאומטרי את בנוסף נגדיר את

:מעל \mathbb{F} אמ"ם: A

- \mathbb{F} מתפרק לגורמים לינאריים מעל $P_{A}\left(\lambda
 ight)$.1
 - $.
 ho_{\lambda}=\mu_{\lambda}$, A של λ ערך עצמי.

 $\mu_{\lambda} \leq \rho_{\lambda}$, משפט 2.2 לכל ערך עצמי,

משפט 3.2 עבור ρ_{λ_1} עבור $\lambda_1,\dots,\lambda_k$ הערכים העצמיים, $\lambda_1,\dots,\lambda_k$ ואם ואם $\lambda_1,\dots,\lambda_k$ מתפרק לגורמים אז $\lambda_1,\dots,\lambda_k$ אם $\lambda_1,\dots,\lambda_k$ אם $\lambda_1,\dots,\lambda_k$

A שמורכב מוקטורים עצמיים של בסיס $B\subseteq \mathbb{F}^n$ קיים בסיס A לכסינה לכסינה לכסינה

3 אינווריאנטיות

תהא T:V o U אם אם T:V o V נקרא נקרא נקרא נקרא תת מרחב עורית, תת מרחב או העתקה לינארית, תת מרחב עונך עוריאנטי ווריאנטי ווריאנטי לינארית.

. λ לכל V_{λ} ו ו
י $\ker\left(T\right),Im\left(T\right)$ הן לכל לכל לכל אינווריאנטים הן למרחבים

 $W_1,W_2
eq \{\overline{0}\}$ בנוסף נגדיר תת מרחב T־אינווריאנטי להיות תת פריק עוביק עוביק עוביע עוביע בנוסף נגדיר תת מרחב בנוסף נגדיר תת מקיימים עוביע ביישים $U=W_1\oplus W_2$

מטריצה מייצגת: אם $U\subseteq V$ אינווריאנטי, יהי B בסיס של U. יהי C השלמה לבסיס של U. אינווריאנטי, יהי U בסיס של U ולכן גם לא בתמונה של U (כי U וה כי המקדמים שלמטה לא מופיעים בU ולכן גם לא בתמונה של U והיא מוכלת בU.

4 מרחב מנה

נגדיר את יחס השקילות הבא: $v\sim u\iff v-u\in W$ ו־ $u,v\in V$ עבור

את קבוצת המנה, v/w, שהיא הקבוצה של $[v] = \{u \in V \mid u \sim v\}$ שהיא הקבוצה של להגדיר לפי פעולת המנה, $\lambda \cdot [v] = [\lambda \cdot v]$ וכפל בסקלר [v] + [u] = [v + u]

 $\dim\left(V/W
ight)=\dim\left(V
ight)-\dim\left(W
ight)$ גם מרחב וקטורי, שמקיים גם

5 חוגים

הגדרות מלינארית 1.5

ל, אסוצ^י ר ניטרלי הופכיים חילופית פילוג

5.1.1 חבורה

- :נקראת חבורה אם $\langle G, * \rangle$
- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- ומסומן האיבר הזה האיבר האיד. $\exists e \in G. \forall g \in G. e*g = g*e = g$ כלומר לפעולה, לפעולה, לפעולה. פ e_G
- g של איבר החופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ כאשר איבר יחידה. האיבר החופכי של 4. קיים איבר החופכי, כלומר g^{-1}

זות 5.1.2

- :נקראת חוג אם $\langle R, *, + \rangle$
- תבורה חילופית. $\langle R, + \rangle$.1

- R פעולה אסוצייטיבית על * .2
 - 3. מתקיים חוג הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$
$$(b+c) * a = b * a + c * a$$

בנוסף יש <u>חוג חילופי,</u> (הכפל חילופי), <u>חוג עם יחידה</u> (קיים איבר ניטרלי לכפל), <u>ותחום שלמות</u> הוא חוג חילופי עם יחידה וללא מחלקי 0.

5.1.3 שדה

חוג חילופי עם יחידה כך ש־ $\langle R\setminus\{0\}\,,*
angle$ חבורה חילופית. שדה הוא תחום שלמות, ותחום שלמות סופי הוא שדה.

2 הגדרות חדשות מלינארית 2

5.2.1 חוגי הפולינומים והמטריצות

 $\deg\left(0
ight)=\infty, \deg\left(p
ight)=$ נגדיר את חוג הפולינומים מעל חוג $R\left[x
ight]\subseteq\mathbb{N}$ להיות $R\left[x
ight]\subseteq\mathbb{N}$ להיות $R\left[x
ight]\subseteq\mathbb{N}$ להיות $R\left[x
ight]\subseteq\mathbb{N}$ להיות $R\left[x
ight]\subseteq\mathbb{N}$

- $\deg\left(p+q\right) \leq \max\left(\deg\left(p\right), \deg\left(q\right)\right), \deg\left(p\cdot q\right) \leq \deg\left(p\right) + \deg\left(q\right)$ מתקיימת נוסחת המעלות:
 - . אם R תחום שלמות אז R[x] תחום שלמות.

נגדיר את חוג המטריצות הריבועיות להיות $M_n\left(R\right)$ כאשר R חוג, לפי פעולות כפל וחיבור של מטריצות. זה חוג לא חילופי.

5.2.2 הומומורפיזמים

הומומורפיזם של חוגים זו פונקציה $R_1 \to R_2$ כך ש־ $\varphi(a+b) = \varphi(a) + \varphi(b)$, ו־ $\varphi(a+b) = \varphi(a) + \varphi(b)$ וי $\varphi(a+b) = \varphi(a) + \varphi(b) = \varphi(a) \cdot \varphi(b)$. (ולכן גם $\varphi(a+b) = \varphi(a) \cdot \varphi(b)$

 $M_n\left(R\left[x\right]\right)$ יש למשל הומומורפיזם בין $M_n\left(R\right)\left[x\right]$ לבין

5.2.3 חילוק בחוגים

 $\exists c \in R.b = a \cdot c$ אם $a \mid b$ נאמר כי $a,b \in R$ יהי

בנוסף נקרא ל-a הפיך ב-R אם קיים b כך ש־b כך ש־a בנוסף נקרא ל-a הפיך ב-R אם קיים b כך ש־a כך ש-a בנוסף נקרא ל-a הפיך ב-A אם קיים a כך ש-a כך ש-a בנוסף ההופכי יסומן a

 R^x ונסמן את קבוצת האיברים ההפיכים ב-

5.2.4 חברים

. זה יחס שקילות. a=ub כך ש־ $u\in R^x$ נאמר ש-a,b זה יחס שקילות.

5.3 אידאלים

יהי אידאל אידאל נקרא $I\subseteq R$ יחידה, עם יחילופי עם יחידה חוג חילופי יחידה

- $.I \neq \emptyset$.1
- .2 סגור לחיבור. I
- \underline{R} סגור לכפל באיבר מ־I .3

 \mathbb{Z}_{even} או באופן שקול R^1 דוגמה היא מרחב הקטורי של מרחב וקטורי של תת מרחב וקטורי ב־ $\operatorname{sp}(X)$ הוא $X\subseteq R$ מתקיים:

- $a \mid b \iff \operatorname{sp}(b) \subseteq \operatorname{sp}(a) \bullet$
- $\operatorname{sp}\left(a\right)=\operatorname{sp}\left(b\right)\iff a,b$ חברים
 - $\operatorname{sp}\left(a
 ight)=R\iff$ הפיך a
 - $I \subseteq R$ •
- $\ker \varphi = I$ אידאל פך שים הומומורפיזם אידאל פיים הומומורפיזם פיים אידאל •

הוג ראשי 5.4

 $x_1,\ldots,r_k\in R$ נגדיר לתחום ראשי ואיברים

$$gcd(r_1,...,r_k) = \{d \in R \mid sp(d) = (r_1,...,r_k)\}$$

בנוסף מתקיים:

- $\gcd(r_1,\ldots,r_k)=\{d\cdot u\mid u\in R^x\}$, $\gcd(r_1,\ldots,r_k)$ עבור $d\cdot u$
- $d \in \gcd(r_1, \dots, r_k) \iff (\forall 1 \le i \le k.d \mid r_i) \land (q \mid r_1, \dots, r_k \implies q \mid d) \bullet$
- a,b אם איז פינארי שקול $a,b\in R$ או באופן אם $\gcd(a,b)=1$ אם איים איז $a,b\in R$
 - $(a \mid b \cdot c \implies (a \mid c \lor a \mid b)) \iff$ יקרא ראשוני $0 \neq a \in R \bullet$

.lowest common multiplier ,lcm $(r_1,\ldots,r_k)=\{d\in R\mid {
m sp}\,(d)=igcap_{i=1}^r r_i\}$ נגדיר בנוסף