Comprehensive Examination CSE - 2019 Batch

1	Present F	lowing state	able of an FS	M with two states					
	Present F				A and B, one input and o	one output:	ļ,		
1			Input	Next State A	Next State B	Output	1.		
1	State A 0	B 0	0	0	0	1	3		
1	0	1	0	1	0	0	2.		
1	1	0 1	0	0 1	1 0	0	4		
	0	0	1	0	1	0	3.		1.0
	0	1	1	0	0	1	5		
	1	0 1	1	0	1 0	1 1	4.		
							6		
			B=0, what is th B=1 with Out		of an input string which	will take the			
							1. {a(cd)^nb n>=1}		
2 (a-	n+b)(cd)*(a	a+b) denot	es the follow	ving set			2. $\{a(cd)^n >= 1\} U\{b(cd)^n n >= 1\}$		3.0
							3. $\{a(cd)^na n>=0\}U\{a(cd)^nb n>=0$ U[a(cd)^nb n>=0}U\{a(cd)^nb n>=0U[a(cd)^nb	=0}U{b(cd)^na n>=0}U{b(cd)^nb r	n>=0}
							4. {ac^nd^nb n>=1}		
							1.		
							11101000		
						2.			
-2	24 is 2's co	mplement	form is				01111111		
3									1.0
							3.		
							01001000		
							4. 00111111		
							1.		
							2 input ANDs on	ılv	
							2 input AIVDS on	ny	
							2.		
	A 21	bit binary	nultiplier ca	an be implemen	ted using		2 input X-ORs a	nd 4-input AND gates only	
4									2.0
							3. XOR gates and shift registers		
							4.		
							Two (2) input NC	ORs and one XNOR gate	
							1.		
							Address registrar		
							2. Program counter		
5 A	·	_ registrar	stores the i	ntermediate arit	thmetic and logic re	sults in it.	3.		4.0
Ĭ							Index registrar		1.0
							4.		
							Accumulator		
- 1									

S.NO.	Questions	Choices	Answers
		1. Structure	
		2. Memory	
6	A class is a	3. Template	3.0
		4. Function	
		1. default constructor	
		2. parameterized constructor	
7	A constructor without any arguments is	3. none	1.0
		4. overloading	
		1. that takes all default arguments	
		2. have to be called explictly	
8	A default constructor is one that	3. gets called automatically	1.0
		4. does take many parameters	
		1.	
		n 2. n/2	
9	A finite automata that will accept only string X of length n will have many states		3.0
		3. n+1	
		4. infinite	
		1. the data members of the derived class of A.	
		2. public data members and member functions.	
10	A friend function to a class A cannot access	3. protected data members and member functions.	1.0
		4. private data members and member functions.	
		Can closely model objects in the real world.	
		2. bring together all aspects of an entity in one place.	
11	A property which is not true for classes is that they	3. permit data to be hidden from other classes.	2.0
		4. are removed from memory when not in use.	
_		1.3	
		2. 4	
12	A quadruple is a record structure with fields.	3.1	2.0
		4. 2	
		1.	
		Zero addressing 2.	
	A Stack-organised Computer uses instruction of	Two-addressing	
13		3.	1.0
		Indirect addressing	
		4. Index addressing	
		1. Restricted to methods of the same class	
1.4	A construction of the first	2. Restricted to methods of other classes	1.0
14	Access to private data is	3. Available to methods of the same class and other classes	1.0
		4. Not an issue because the program will not compile	
		1. constant	
		2. non static	
15	All member functions are to it's class by default	3. dynamic	4.0
		4. static	
\dashv		1. The LR(1) parser for G has S-R conflicts.	
		2. The LR(0) parser for G has S-R conflicts.	
16	An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if	3. The LALR(1) parser for G has reduce-reduce conflicts	1.0
		4. The SLR(1) parser for G has S-R conflicts.	
		I. Is optimized to occupy less space	
1.7	An optimizing compiler	2. Optimized the code	2.0
17		3. Is optimized to take less time for execution	I
1/		4. Secured Code	

S.NO.	Questions	Choices	Answers
		1. Exactly one leftmost derivation for a string w	
		2. At most one leftmost and one rightmost derivation for a string w	
18	An unambiguous grammar has	3. At most one rightmost derivation for a string w	1.0
		4. Exactly one leftmost and rightmost derivation for a string w	
		Exactly one leftmost derivation for a string w	
		-	
		At most one leftmost and one rightmost derivation for a string w	
19	An unambiguous grammar has	3. At most one rightmost derivation for a string w	1.0
17			1.0
		Exactly one leftmost and rightmost derivation for a string w	
		1. integrated circuits	
		2. binary coding schemes	
20	ASCII, EBCDIC, and Unicode are examples of	3. two-state systems	1.0
		4. adapter cards	
		1. {b^na^mc^p n,m,p>=1}	
21	baa*c denotes the set	2. {ba^nc n>=0}	3.0
		3. {ba^nc n>=1}	3.0
		4. {w w is a string of a,b,c}	
		1. encoder	
		2. carry look ahead	
22	BCD to seven segment is a	3. comparator	1.0
		4. decoder	
		1. 2	
		2. 4	
23	Calculate the person months for a project that was completed in two months with two people working on it.	3. 1	2.0
		4. 8	
		1. sizeof(int) * 2	
		2. sizeof(int) + sizeof(float)	
24	class A { int a; static float b; } ; What is the size of class A?	3. sizeof(int)	2.0
		4. sizeof(float)	
		1. nothing	
		nothing initializes the data member with 0	
25	class n{ int a=0;}obj; what will happen?		3.0
		3. error	
		4. initializes the object with 0	
		1. deep copy	
26	class n (nublicy int *ar) a ny assigning a-n is asilad?	2. shallow copy	2.0
26	class n{ public: int *a;}o,p; assigning o=p is called?	3. error	2.0
		4. constructor	
		1. error	
	class n{ public: int a;}	2. 10	
27	obj; obj.a=10; cout << a;	3. 1	1.0
		4. 0	
		<u> </u>	1
ł			

S.NO.	Questions	Choices	Answers
		1.0	
		2. error	
28	class n{ public: int a=7;}p,q; cout<< n.a;	3. depends on compiler	2.0
		4. 7	
		1.	
		3	
	Consider the regular language $L = (111 + 11111)^*$. The minimum number of states in any DFA	2. 5	
29	accepting the language is	3.	4.0
ı		8	
		4. 9	
		index addressing mode.	
		-	
• •	Content of the program counter is added to the address part of the instruction in order to obtain the	2. register mode.	
30	effective address is called.	3. implied mode.	4.0
		4.	
		relative address mode.	
		1. are directly accessible in the derived class	
		2. are visible in the derived class	
31	Data Members of the base class that are marked private:	3. exist in memory when the object of the derived class is created the derived class	4.0
		4. does exist in memory when the object of the derived class is created	
		1. 1111	
		2.	
	Decimal number 9 in Gray code is	1101	
		3.	
32		1100	2.0
		4.	
		1110	
		There is no relationship between the phase in which a defect is discovered and its repair cost	
		The most expensive defect to correct is the one detected during the	
33	During a software development project two similar requirements defects were detected. One was detected in the requirements phase, and the other during the implementation phase. Which of the	implementation phase.	2.0
	following statements is mostly likely to be true?	The most expensive defect to correct is the one detected during the requirements phase.	
		4. The cost of fixing either defect will usually be similar.	
		1. people, product, process, project	1
		2. people, product, performance, process	
34	Effective software project management focuses on four P's which are	3. people, performance, payoff, product	1.0
		4. people, process, payoff, product	
		1. Indexed Allocation and used in Windows OS	
		2. used in Windows OS	
35	FAT file system is	3. about storage in RAM	1.0
		4. Indexed Allocation.	
		1. helper	1
		2. header	
36	Files whose names end in .h are called files	3. handy	2.0
		4. helping	

S.NO.	Questions	Choices	Answers
		1. type-1	
		2.	
37	Finite automata recognizesgrammars	type-3	2.0
31		3. type-0	2.0
		4.	
		type-2	
		1. Boolean values	
		Bootean values	
		2.	
38	Floating point representation is used to store	real integers	2.0
		3. integers	
		4. whole numbers	
		Only parameters of the basic type	
		2. Only one parameter	
39	Function templates can accept	3. Any type of parameters	1.0
		Only parameters of the derived type	
		1. Use-case Diagram	+
		2. Sequence Diagram	
40	Functional requirements of a system is modelled using	3. Class Diagram	1.0
		4. Package Diagram	
		1.	\vdash
	Given an arbitrary non-deterministic finite automaton (NFA). with N states, the maximum number of states in an equivalent minimized DFA is at least.	N^2	
		2.	
41			3.0
		3. 2^N	
		4. N!	
		1. 1, 2 and 3	
	Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L^* ?	2.	
	1) abaabaaabaa 2) aaaabaaaa	2. 2, 3 and 4	
42	3) baaaaabaaaab 4) baaaaabaa	3. 1, 2 and 4	3.0
	1) vaaaavaa		
		4.	
		1, 3 and 4	
		1. not possible	
43	Having more than one constructor in a class is	2. compile time polymorphism	3.0
.5		3. constructor overriding	
		4. error	igsquare
		1. 16	
		2. 26	
44	How many DFAs exit with two state over the input alphabet (a,b)		4.0
		3. 32	
		4. 64	
		1.16	
		2. 64	
45	How many possible outputs would a decoder have with a 6-bit binary input?	3. 128	2.0
		4. 32	
		<u> </u>	

S.NO.	Questions	Choices	Answers
	-	1. 2	
		2. 4	
46	How many select lines would be required for an 8-line-to-1-line multiplexer?	3. 3	3.0
		4. 8	
		1. three	
		2. four	
47	How many stages are there in process improvement?	3. five	4.0
	4.	4. six	
		1.	\vdash
		12	
		2. 14	
48	How many two state FA can be drawn over alphabet {0,1} which accepts(0+1)*	3.	3.0
		20	
		4. 15	
		1. delete(var-name);	
		2. dalloc(var-name);	
49	How will you free the allocated memory?	3. free(var-name);	3.0
		4. remove(var-name);	
		1. for (; ;)	\vdash
		2. if (1)	
50	Identify the invalid statement from the following	3. break(0)	3.0
		4. while(false)	
		1. (10011000)	igdash
	If a register containing binary data (11001100) is subjected to arithmetic shift left operation, then the content of the register after 'ashl' shall be	2.	
		(11001100)	
51		3.	1.0
		(1101100)	
		4. (10011001)	
		1. intranet	\vdash
		2. ERP	
52	If a university sets up web-based information system that faculty could access to record student grades and to advise students, that would be an example of an	3. extranet	1.0
		4. CRM	
			igdash
		1. n+2	
		2.	
	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	n+1	2.0
		3. n	
		4. n-1	
		1. n+2	
		2.	
54	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.		2.0
		3. n	
		4. n-1	
		1.	\sqcup
		1. m+2	
	If there is a complete DFA M1 recognizing a language L1 and has m states out of which two are	2.	
55	final states then the machine M recognizing L1 complement will have final states.	m	1.0
	suiço.	3. m-2	
		4.2	

Name	S.NO.	Questions	Choices	Answers
Section Sect			1. X(class X* arg)	
A NKW mg			2. X(X& arg)	
1. A CAN Mail 1. A grammeters to the left of that variable must have default values 2. A grammeters in the life of that variable must have default values 2. A grammeters in the life of that variable must have default values 2. A grammeters in the life of that variable must have default values 2. A most of the other prototype can have default values 2. A most of the prototype can have de	56	If X is the name of the class, what is the correct way to declare copy constructor of X?	3 Y(X* ara)	2.0
A constitution of the second			· -	
A second parameter is the right of that variable must have default values to any variable in a function promptye's parameter ion, here is no that parameters in the function promptyee must have default values to any variable in a function promptye's parameter ion, here is no other parameters in that prototype can know default values to any variable in a function promptye's parameter ion, here is no other parameters in that prototype can know default values to a not aclass to define edjects in musty different programs, you should define the class to a new parameter in the prototype can know default values to a new parameter in the function prompty and parameter in the function prompty and parameter in the function of a positive integer by a power of two can be replaced by left shirt, which case the content of a positive value of a sample of the color of a positive integer by a power of fore can be replaced by left shirt, which case the color of a positive value of a sample color of a positive integer by a power of fore can be replaced by left shirt, which case the color of a positive integer by a power of fore can be replaced by left shirt, which case case is not most methods. The importance in the function prompty and can be replaced by left shirt, which case the color of a positive integer by a power of fore can be replaced by left shirt, which case case is not most methods. The importance in the function of a positive integer by a power of fore can be replaced by left shirt, which case case is not most methods. The integer of a positive integer by a power of fore can be replaced by left shirt, which case case is not most methods. The is an enampter of the other function and one for the other integers. The is an enampter of the other integers by a power of fore can be replaced by left shirt, which case case is the color of positive integer by a power of fore can be replaced by left shirt, which case case is the color of positive integer by a power of fore can be replaced by left shirt, which case case is the				
2 2 2 2 2 2 2 2 2 2			1. all parameters to the left of that variable must have default values	
Some content and the content was a content			2. all parameters to the right of that variable must have default values	
1. cext 2. source 2. source 3. header 3. hea	57	If you assign a default value to any variable in a function prototype's parameter list, then	3. all other parameters in the function prototype must have default values	2.0
Source S			4. no other parameters in that prototype can have default values	
Source S			1 text	
Second S				
Second S		you want to use a class to define objects in many different programs, you should define the class		3.0
1. to convert the 4-bit BCD into Gray code 2.0		in a C++ file	3. header	
2. to convert the 4-bit BCD into 7-bit code 2.0			4. program	
10 10 10 10 10 10 10 10			1. to convert the 4-bit BCD into Gray code	
Some converting and the statements of the form x := y means			2. to convert the 4-bit BCD into 7-bit code	
1. new 2. his 3. malloc 4. delete 1. malloc() 2. delete 3. new 4. his 3. malloc 4. delete 3. new 4. his 3. malloc 4. delete 3. new 4. his 3. malloc() 4. delete 4. malloc()	59	In a BCD-to-seven-segment converter, why must a code converter be utilized?	3. to convert the 4-bit BCD into 10-bit code	2.0
1. new 2. his 3. malloc 4. delete 1. malloc() 2. delete 3. new 4. his 3. malloc 4. delete 3. new 4. his 3. malloc 4. delete 3. new 4. his 3. malloc() 4. delete 4. malloc()				
2. this 3. malloc 4. delete 5. del			<u> </u>	
Solid Soli			1. new	
A delete A new A this A delete A delete A delete A delete A new A this A delete A delete			2. this	1.0
1. malloc() 2. delete 3. new 4. this 1. Software Product Engineering 2. Software Quality Assurance 3. Software Subcontract Management 4. Software Quality Management 5. Software Quality Management 6. Software Quality Management 6. Software Quality Management 6. Software Quality Management 7. Software Quality Management 8. Software Quality Management 9. Somplement 2. 2's complement 2. 2's complement 2. 2's complement 4. 's complement 1. The value of x is assigned to y or the value of y is assigned to x. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 5. The value of x is assigned to y. 6. The value of x is assigned to y. 6. The value of x is assigned to y. 6. The value of x is assigned to y. 7. Software Quality Management 8. Software Quality Management 9. Somplement 1. The value of x is assigned to y or the value of y is assigned to x. 9. Somplement 1. The value of x is assigned to y or the value of y is assigned to x. 9. The value of x is assigned to y. 1. The value of x is assigned to y. 2. The value of x is assigned to y. 3. The value of x is assigned to y. 4. The value of x is assigned to y. 5. One for the public data and one for the auxiliary functions 6. One for the primary functions and one for the other functions 7. One for the void functions and one for the other functions 8. One for the void functions and one for the implementations 9. Software Quality Assurance 1. One for the void functions and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable	60	In C++, dynamic memory allocation is accomplished with the operator	3. malloc	
2. delete 3. new 4. this 1. Software Product Engineering 2. Software Quality Assurance 3. Of Warre Subcontract Management 4. Software Subcontract Management 4. Software Quality Manag			4. delete	
Solid Soli	_		1. malloc()	
Solid Soli	61		2. delete	
4. this 1. Software Product Engineering 2. Software Quality Assurance 3. Software Subcontract Management 4. Software Quality Management 4. Software Quality Management 4. Software Quality Management 4. Software Quality Management 2. 2's complement 2. 2's complement 3. In computers, subtraction is generally carried out by 1. 9's complement 4. 1's complement 5. The value of x is assigned to y or the value of y is assigned to x. 5. The value of x is assigned to x. 6. The value of x is assigned to x. 7. The value of x is assigned to x. 8. The value of x is assigned to x. 8. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The value of x is assigned to x. 9. The		In C++, dynamic memory allocation is achieved with the operator		3.0
1. Software Product Engineering 2. Software Quality Assurance 3. Software Quality Management 4. Software Quality Management 5. Software Quality Management				
2. Software Quality Assurance 3. Software Subcontract Management 4. Software Quality Management 2. 2's complement 2. 2's complement 2. 2's complement 2. 2's complement 4. In secondary complement 4. In secondary complement 4. In the types of Three-Address statements, copy statements of the form x := y means 1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to y. 3. The value of x is assigned to y. 4.			4. this	
62 In CMM, the life cycle activities of requirements analysis, design, code, and test are described in 4. Software Subcontract Management 4. Software Quality Management 4. Software Quality Management 4. Software Quality Management 1. 9's complement 2. 2's complement 3. 10's complement 4. Software Quality Management 2. 2's complement 4. In the types of Three-Address statements, copy statements of the form x := y means 1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 5. One for the public data and one for the auxiliary functions 2. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2. Strength Reduction 3. Induction Variable 2. Strength Reduction 3. Induction Variable			1. Software Product Engineering	
A Software Quality Management			2. Software Quality Assurance	
1. 9's complement 2. 2's complement 3. 10's complement 4. 1's complement 5. The value of y is assigned to y or the value of y is assigned to x. 3. 3. 3. 3. 3. 3. 3.	62	In CMM, the life cycle activities of requirements analysis, design, code, and test are described in	3. Software Subcontract Management	1.0
9's complement 2. 2's complement 3. 10's complement 4. 1's complement 4. 1's complement 4. 1's complement 4. 1's complement 5. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to x. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 5. One for the primary functions and one for the auxiliary functions 5. One for the void functions and one for the other functions 6. One for the declarations and one for the implementations 6. Useless Code 6. Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of 6. Nultiplication Variable 6. Variable 2.0 Induction Variable 7. Variable 2.0 Induction Variable 2.0			4. Software Quality Management	
9's complement 2. 2's complement 3. 10's complement 4. 1's complement 4. 1's complement 4. 1's complement 4. 1's complement 5. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to x. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 4. The value of x is assigned to y. 5. One for the primary functions and one for the auxiliary functions 5. One for the void functions and one for the other functions 6. One for the declarations and one for the implementations 6. Useless Code 6. Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of 6. Nultiplication Variable 6. Variable 2.0 Induction Variable 7. Variable 2.0 Induction Variable 2.0			1.	
63 In computers, subtraction is generally carried out by 3. 10's complement 4. 1's complement 1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0				
1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to y and the value of y is assigned to x. 4. The value of x is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the other functions 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0			2. 2's complement	
10's complement 4. 1's complement 1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to x. 4. The value of x is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the other functions 4. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0	63	In computers, subtraction is generally carried out by	3.	2.0
1's complement 1. The value of x is assigned to y or the value of y is assigned t o x. 2. The value of x is assigned to y and the value of y is assigned t o x. 3. The value of y is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2. O			10's complement	
1. The value of x is assigned to y or the value of y is assigned to x. 2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of y is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0				
2. The value of x is assigned to y and the value of y is assigned to x. 3. The value of x is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2. The value of x is assigned to y. 3. Induction Variable			1's complement	
In the types of Three-Address statements, copy statements of the form x := y means 3. The value of y is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the other functions 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2. One for the public data and one for the other functions 4. One for the declarations and one for the implementations 2. One for the void functions and one for the implementations 3. Induction Variable			1. The value of x is assigned to y or the value of y is assigned t o x.	
3. The value of y is assigned to x. 4. The value of x is assigned to y. 1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0			2. The value of x is assigned to y and the value of y is assigned t o x.	
1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0	64	In the types of Three-Address statements, copy statements of the form $x := y$ means	3. The value of y is assigned to x.	3.0
1. one for the primary functions and one for the auxiliary functions 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0			4. The value of x is assigned to y.	
65 Many programmers separate a class into two files: 2. one for the public data and one for the private data 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable 2.0				
Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of Multiplication Variable 3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction 3. Induction Variable				
3. one for the void functions and one for the other functions 4. one for the declarations and one for the implementations 1. Useless Code 2. Strength Reduction faster on most machines. This is an example of 2.0	65	Many programmers separate a class into two files:		4.0
Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of 1. Useless Code 2. Strength Reduction 3. Induction Variable		<u> </u>	3. one for the void functions and one for the other functions	
Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of 2. Strength Reduction 3. Induction Variable				
66 Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of 3. Induction Variable			1. Useless Code	
faster on most machines. This is an example of 3. Induction Variable		Multiplication of a positive integer by a nower of two can be replaced by left shift, which executes		
4. Loop unwinding			3. Induction Variable	2.0
			4. Loop unwinding	

S.NO.	Questions	Choices	Answers
П	Control	1. input data select lines	
		2. the internal OR gate	
67	One can safely state that the output lines for a demultiplexer are under the direct control of the:	3. the internal AND gates	1.0
		4. Input data line	
		Three arguments	
		2. Two arguments	
68	Overloading a prefix increment operator by means of a member function takes	3. No argument	3.0
		4. One argument	
\dashv		different names and different argument lists	
		2. different names and the same argument list	
69	Overloading involves writing two or more functions with	3. the same name and the same argument list	4.0
		4. the same name and different argument lists	
		1. malloc() and calloc()	
		2. malloc() and memalloc()	
70	Specify the 2 library functions to dynamically allocate memory?	3. alloc() and memalloc()	1.0
		4. memalloc() and faralloc()	
\longrightarrow			
	State the acronym of POMA in coftware project management	1. Project Organization Monitoring Adopting	
71		2. Planning Origanizing Monitoring Adjusting	2.0
,	ome and another of 1 own 1 m oon made project management	3. project oriented maintenance and administration	
		4. Project Orientation Mapping Adjusting	
	Templates improve	1. inheritance	
		2. reusability	
72		3. class	2.0
		4. functions	
		1. p	
		2. Epsilon	3.0
73	The Epsilon-Closure of any state q will contain the state irrespective of q.	3. q	
		4. Final State	
		1. 0.1111	
		2	
74	The binary value for 0.4375 is	0.0111	2.0
/4	The binary value for 0.4575 is	3.	2.0
		0.0011	
		4. 0.1010	
\neg		1. appears inside the definition of the derived class	
		2. ppears inside the definition of the derived class constructor	
75	The call to the parameterized constructor of base class in the derived class	3. appears at the statement where the derived class object is created	2.0
		4. appears in the member initialization list of the derived class	
		constructor	
		1. Software reuse	
, l	The find and the first f	2. Software Security	2.0
76	The fundamental notions of software engineering does not account for ?	3. Software Validation	3.0
		4. Software processes	
		1	

S.NO.	Questions	Choices	Answers
		Context-sensitive but not context-free	
		2. Recursive but not Context-free	
	The Leaves :- L (ODIGOT) 3.0 1.2 :-		
77	The language is $L=\{0^p1^q0^r \mid p,q,r^{-3} \mid 0,p^{-1} \mid r\}$ is	3. Regular	4.0
		4. Context-free	
		1. strnstr()	
70		2. strrchr()	2.0
78	The library function used to find the last occurrence of a character in a string is	3. laststr()	2.0
		4. strstr()	
		1.	
		Electronic Switching System	
79	The major source of data for other systems are:	2. Transaction Processing Systems	2.0
		3. Decision Support System	
		4. Management Information System	
		1. private	+
		2. protected	
80	The members of a class in c++ by default, are	3. public	1.0
		4. mandatory to specify	
		1. Infinite	
		2. One	
81	The minimum length for strings in the regular expression ($10^* + 001^*$)* is	3. Zero	3.0
		4. Two	
		1. 10's Complement	\vdash
		2. 2's complement	
		3.	
82	The negative numbers in the binary system can be represented by	Sign magnitude	2.0
		4. I's complement	
		1.	
		8 half-adders, 8 full-adders	
		o har addrs, o fan addrs	
		2.	
		1 half-adders, 15 full-adders	
83	The number of full and half-adders required to add 16-bit numbers is		2.0
		3.	
		16 half-adders, 0 full-adders	
		4. 4 half-adders, 12 full-adders	
		1.	+
		m-n	
	The number of states in a machine M recognizing L1UL2 will be where n	2.	
84	is the number of states in A1 and m is the number of states in M2.	m+n	2.0
		3. m+n+1	
		4. n-m	

S.NO.	Questions	Choices	Answers
85	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2 .	1. m-n 2. m+n 3. m+n+1 4. n-m	2.0
86	The number of states in DFA is the number of states in NFA for the same Language.	1. Greater then 2. equal to 3. less then 4. greater then or equal to	3.0
87	The processor 80386/80486 and the Pentium processor uses bits address bus:	1. 36 2. 32 3. 16	2.0
88	The set of all strings over the alphabet $\{a,b\}$ (including epsilon) is denoted by	1. (a+b)^+ 2. a^+b^+ 3. a*b* 4. (a+b)*	4.0
89	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
90	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
91	The special memory used to store the micro routines of a computer is	Control table Control store Control mart Control shop	2.0
92	The system having memory elements are called.	sequential circuits complex circuits combinational circuits description of the sequence of th	1.0

S.NO.	Questions	Choices	Answers
		1.6	
		2. 31	
93 TI	he term m45 should be made up of at least literals.	3.4	2.0
		4. 5	
+		1. Team, Organization, contractor	
		2. Project, Strategic, Activity	
94 TI			4.0
		4. Project, Organization, Team	
		1. priming	
т,	the military is a formal to a section.	2. pretest	
95 be	he while loop is referred to as a(n) loop because the loop condition is tested at the eginning of the loop	3. initial	2.0
		4. beginning	
		1. global variable in the C++ language	
		2. function in the C++ language	
96 TI	he word ease used in the switch statement represents a		3.0
		4. data type in the C++ language	
		1. void and free	2.0
07 T		2. public and private	
97 Tv	wo access specifiers in C++ are	3. int and double	
		4. formal and informal	
		1. Actors	
		2. Objects	1.0
98 U	secase analysis focuses upon	3. Data	
		4. Entities	
		1. Local	
		2. Global	
99 V	'ariables inside parenthesis of functions declarations have level access.	3. Module	1.0
		4. Universal	
+		1. A type of memory used in super computers	
		An illusion of extremely large main memory	
100 V	Cirtual memory is		2.0
		3. An extremely large main memory	
		4. An extremely large secondary memory	
		1.	
		IGP	
		2. EGP	
	WE RECEIVED "404 – PAGE NOT FOUND" MESSAGE, WHEN WE BROWSE THE WEB PAGE. WHICH PROTOCOL PROVIDES THIS MESSAGE?	3.	1
101	WEBTAGE. WHICHTROTOCOLTROVIDES THIS MESSAGE.	SNMP	4.0
		4.	
		ICMP	

S.NO.	Questions	Choices	Answers
		1.	
		1 and 2	
		2.	
	What are the minimum number of 2-to-1 multiplexers required to generate a 2- input AND	1 and 3	
102	gate and a 2-input Ex-OR gate?		1.0
		3.	
		1 and 1	
		4. 2 and 2	
		1. ptr is array of pointers to 10 integers	
103	What does the following declaration mean?	2. ptr is a pointer to an array of 10 integers	2.0
103	int (*ptr)[10];	3. ptr is an array of 10 integers	2.0
		4. ptr is an pointer to array	
		1. A Flip flop	
104	What is an Accumulator?	2. A counter	3.0
		A Sequential Logic Circuit A Combinational Logic Circuit	
		A Combinational Logic Circuit A Combinational Logic Circuit	
		A Comomatonal Logic Circuit A Sequential Logic Circuit	
105	What is an ALU?	A Combination of Combinational Circuit and Sequential Circuit	2,3
		4. A flip flop	
		Last two sum bits are different	
		2. Last two carrys are same	
106	What is the condition for setting the Overflow flag in status register?	3. Last two sum bits are same	3.0
		4. Last two carrys are different	
		1. n/2	
107		2. n-1	2.0
107	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a	3. 2n-1	2.0
		4. 2^n	
		1. 50-20-30	
108	What is the recommended distribution of effort for a software project?	2. 50-30-20	4.0
	. ,	3. 30-40-30 4. 40-20-40	
		1. no return type	
		2. int	
109	What is the return type of the conversion operator function?	3. void	1.0
	What is the forms type of the conversion operator function.	4. float	
		1. S0 = 1, S1 = 0, S2 = 1 2. S0 = 1, S1 = 1, S2 = 0	
110	What is the status of the inputs S0, S1, and S2 of the 74151 eight-line multiplexer in order for the output Y to be a copy of input 15?	2. S0 = 1, S1 = 1, S2 = 0 3. S0 = 0, S1 = 1, S2 = 0	1.0
		4. S0 = 0, S1 = 0, S2 = 1	
		cannot access any of its class data members	
		cannot modify values of its class data members	
111	What is true about constant member function of a class?	cannot modify values of its class data members which are mutable	2.0
		4. can modify values of its class data members	
		1	1

S.NO.	Questions	Choices	Answers
	•	1.005	
	What will be the output of the following and third a vaid main() (int is int of 21-5. for	2.500	
112	What will be the output of the following code #include void main() { int i; int a[3]=5; for $(i=2;i>=0;i-)$ { printf(?%d\n?,a[i]); } }	3. 5 garbage garbage	3.0
		4. 5 null null	
		1.	
		Memory Read cycle	
		2.	
113	When an instruction is read from the memory, it is called	Fetch cycle	3.0
		3. Instruction cycle	
		4. Memory write cycle	
		1. Two	
	When FA M is given which recognizes language L and reverse of L is found by using M then	2. Three	
114	there can beFinal states	3.	3.0
		Only one	
		4. Any number	
		1.	+
		3	
	When there is complete DFA with Five states out of which two are final states if F is modified	2.	
115	such that it recognizes complement of the original language then there will be at least final states.	2	3.0
	inidi suics.	3. 5	
		4. 7	
		1. dot	
116	When there is more than one final state in the reduced FA, then its regular expression will contain	2. binary +	4.0
110	operator surely	3. star	4.0
		4. unary +	
		1. M1 OR M2	
	When the state of	2. M1 AND M2	
117	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	3. M2	2.0
		4. M1	
		Two level directory structure	
		2. Acyclic directory structure	
118	Which directory implementation is used in most Operating System?	3. Single level directory structure	4.0
		Tree directory structure	
		1. double funct(char x)	
119	Which is not a proper prototype?	2. void funct();	1.0
117	miner is not a proper prototype:	3. char x();	1.0
		4. intfunct(char x, char y);	
		1.	
		191.168.1.1/24	
		2.	
		191.168.1.1/16	
120	WHICH OF THE DELOW IS CALLED OF ASSURES ADDRESS		2.0
120	WHICH OF THE BELOW IS CALLED CLASSLESS ADDRESS?	3.	2.0
		191.168.1.1/8	
		4.	
		191.168.1.1/4	

S.NO.	Questions	Choices	Answer
		1. SMTPMP	
121	WHICH OF THE DELOW IS NOT AN EMAIL IDEATOGOLS	2. IMAP	1.0
121	WHICH OF THE BELOW IS NOT AN EMAIL PROTOCOL?	3. POP	4.0
		4. SNMP	
		1. call displayName	
		2. call displayName ()	
122	Which of the following calls a function named displayName, passing it no actual arguments?	3. displayName	4.0
		4. displayName()	
_		1. nondeterministic PDA to deterministic PDA	
		2. nondeterministic FSA to deterministic FSA	
123	Which of the following conversion is not possible (algorithmically)?		1.0
		3. regular grammar to context-free grammar	
		4. nondeterministic TM to deterministic TM	
		1. Leftmost derivation	
	Which Ch. C. H	Leftmost derivation traced out in reverse	
124	Which of the following derivations does a top-down parser use while parsing an input string? The input is assumed to be scanned in left to right order.	3. Rightmost derivation	1.0
		Rightmost derivation traced out in reverse	
		1. compare();	
		2. cmp();	
125	Which of the following functions compares two strings?	3. stringcompare();	4.0
		4. strcmp();	
		1. a;	
		2. *a;	
126	Which of the following gives the memory address of a variable pointed to by pointer a?	3. &a	3.0
		4. address(a);	
		1. Quadraples	
		Postfix notation and Three address code	
127	which of the following intermediate language can be used in intermediate code generation?	3. Triples	1,3,2
		Infix notation and two address code	
		1. void funct(int) { printf(?Hello"); }	
128	Which of the following is a complete function?	2. int funct();	4.0
		3. void funct(x) { printf(?Hello"); }	
		4. int funct(int x) { return x=x+1; }	
		1. void ~Country()	
120	Which of the following is a valid destructor of the class name "Country"	2. int ~Country(Country obj)	4.0
129	which of the following is a valid destructor of the class fiame. Country	3. int ~Country()	4.0
		4. Country()	
		1. void * operator new () { }	
		2. int operator ++() { }	
130	which of the following is an incorrect definition inside a class?	3. void operator delete(void * ptr) { }	2.0

S.NO.	Questions	Choices	Answers
		1. The output toggles if one of the inputs is held HIGH.	
131	Which of the following is correct for a gated D flip-flop?	2. Only one of the inputs can be HIGH at a time.	4.0
		3. The output complement follows the input when enabled.	
		4. Q output follows the input D when the enable is HIGH.	
		1. Collaborative technologies	
		2. Knowledge asset management	
132	Which of the following is not a technology driver for an information system?	3. Enterprise applications	2.0
		4. Object technologies	
		1. Copy Constructor	
		2. Friend Constructor	
133	Which of the following is not a type of constructor?	3. Default Constructor	2.0
		4. Parametrized Constructor	
		1. /*	\Box
		2. //	
134	Which of the following is the insertion operator?	3. <<	4.0
		4. >>	
		Hardware and software costs	\vdash
		Effort costs (the costs of paying software engineers and managers)	
135	Which of the following is/are main parameters that you should use when computing the costs of a software development project?	3. Travel and training costs	4.0
		4. All the parameters required given in the option.	
		1. internal	\vdash
		2. protected	
136	Which of the following language feature is not an access specifier in C++?	3. public	1.0
		4. private	
		1. (aaa+ab+a)+(bbb+bb+a)	+
		2.	
	Which of the following regular expression denotes a language comprising of all possible strings	((a+b) (a+b) (a+b))*	
	over {a,b} of length n where n is a multiple of 3?	3. (aaa+bbb)* 4.	2.0
		(a+b+aa+bb+aba+bba)*	
		1. $r^* s^* = r^* + s^*$	\Box
		2. $(r + s)^* = (r^*s^*)^*$	
138	Which of the following regular expression identities are true?	3. $(r + s)^* = r^* + s^*$	2.0
		4. $(r + s)^* = r^* s^*$	
		1. int f2() { static int i; i++; return i; }	+
		2. int f3(static int i) { return 300;}	
139	Which of the following results in a compile-time error?	3. static int f1() { return 100; }	3.0
		4. static int a;	

S.NO.	Questions	Choices	Answer
		1. FCFS	
1.40		2. Round Robin	
140	Which of the following scheduling algorithm comes under preemptive scheduling?	3. Multilevel Queue Scheduling	2.0
		4. Largest Job First	
		1 (underscore)	
		2 (hyphen)	
141	Which of the following special symbol is allowed in a variable name?	3. (pipeline)	1.0
		4. * (asterisk)	
		1. For $R = RI^*$, $L(R)$ is empty if and only if $L(RI)$ is empty	
		2. For $R = (RI)$, $L(R)$ is empty if and only if $L(RI)$ is empty	
142	Which of the following statement is false?	3. For $R = R1R2$, $L(R)$ is empty if and only if either $L(R1)$ or $L(R2)$ is empty.	1.0
		4. If $R = RI + R2$, $L(R)$ is empty if and only if both $L(RI)$ and $L(R2)$ are empty.	
		1. If there is a PDA by acceptance state that accept L, then there is also a PDA by empty stack that accept L $$	
	Which of the following statement is false?	2. If there is a NPDA that accept L, then there is also a DPDA that accept L.	
143		3. If there is a PDA by empty stack, then there is also a CFG G that accept L.	
		4. If there is a CFG G that accepts L, then there is also a PDA that accept L.	
		Turing recognizable languages are closed under union and complementation.	
144	Which of the following statements is/are FALSE?	Turing decidable languages are closed under intersection and complementation	
144		Turing recognizable languages are closed under union and intersection.	
		For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.	t
		Removing left recursion alone	
		2. Factoring the grammar alone	
145	Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?	3. Removing left recursion and factoring the grammar	4.0
		4. Removing left recursion, left factoring and ambiguity of the grammar	
		1. this.x	-
		2. *this.x	
146	Which of the following ways are legal to access a class data member using this pointer?	3. this->x	3.0
		4. *this-x	
		1. An LR(k) parser.	
	Which one of the following is a top-down parser?	2. An LALR(k) parser	4.0
147		la a	I ^{+.0}
147	which one of the following is a top-down parser:	Operator precedence parser. Recursive descent parser.	

S.NO.	Questions	Choices	Answers
		1. Master schedule.	
		2. Staff appraisals.	
148	Which one of the following is a valid project Key Performance Indicator (KPI)?	3. Management buy in.	4.0
		4. Milestone achievement.	
		1. virtual void Display(void){0};	
		2. void Display(void) = 0;	
149	Which one of the following is the correct way to declare a pure virtual function?	3. virtual void Display(void) = 0;	3.0
		4. virtual void Display = 0;	
		4. Virtuai void Dispiay – 0;	
		1. The set of all strings containing at least two 0's	
		The set of all strings that begin and end with either 0 or 1.	
150	Which one of the following languages over alphabet $\{0,1\}$ is described by the regular expression: $(0+1)*0(0+1)*0(0+1)*?$	2	1.0
130	(0+1)*0(0+1)*0(0+1)*:	The set of all strings containing at most two 0's.	1.0
		4.	
		The set of all strings containing the substring 00.	
		1. Build & Fix Model	
		2. RAD Model	
151	Which one of the following models is not suitable for accommodating any change?	3. Waterfall Model	3.0
		4. Prototyping Model	
		1.	\vdash
		0*(11*0)*	
		2. 0*1*01	
152	Which one of the following regular expressions over $\{0,1\}$ denotes the set of all strings not containing 100 as a substring?	3.	1234.0
132	ovaluming 100 as a sucsaming.	0*(10+1)*	1234.0
		4.	
		0*1010*	
		To identify the health and safety strategies and procedures to be used	
		on the project	
		To establish the extent of work required prior to project commissioning and the handover	
153	Which one of the following statements best defines the purpose of a Product Breakdown Structure (PBS)?	3. To define how the products are produced by identifying derivations	4.0
	(125).	and dependencies	
		4. To define the hierarchy of deliverables that are required to be	
		produced on the project	
		1. The project team.	
1.54	NI A D I A N A N A N A N A N A N A N A N A N A	2. The chief executive.	
154	Who owns the Project Management Plan (PMP)?	3. The project manager.	3.0
		4. The project support office.	
		1. a*b*	
	Write the regular expression to denote the language L over ? = { a,b} such that all the string do not	2. b*a*	
155	contain the substring "ab".	3. (ab)*	24.0
		4. (ba)*	
		1.	+
		Von-Neuman architecture	
		von-redundii dicintecture	
		2.	
156	Zero address instruction format is used for	RISC architecture	4.0
		3.	
		CISC architecture	
		4. Stack-organized architecture	
		ı	

S.NO.	Questions	Choices	Answers
		1.	
		Steeper	
		2.	
	In a slab under steady state conduction if the thermal conductivity increases along the thickness, the	Flatter	
157	temperature gradient along the direction will become	3.	3.0
		Constant	
		4.	
		mixed pattern	
		1.	
		2 sec	
		2.	
	The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as 1-mm-dia sphere. The properties of the junction are $k = 35 \text{ W/m}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^{3}$,	10 sec	
158	and $C_p = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h =$	3.	3.0
	210 W/m ² °C. The time taken by the thermocouple to read 99 percent of the initial temperature difference	28 sec	
	unidate	4.	
		63 sec	
		65 566	
		1.	
		increase	
		2.	
		decrease	
159 A	Assuming flow to be laminar, if the diameter of the pipe is halved, then the pressure drop will	3.	1.0
		remain same	
		4.	
		be quadrupled	
		1.	
		ML ⁻¹ T ⁻¹	
		2.	
160	Dimension of absolute viscosity is	MLT ⁻¹	1.0
100	Difficultion of absolute viscosity is	3.	1.0
		ML ⁻¹ T	
		4.	
		MLT	
		1.Octal code	
		2.Grey code	
	Which of the following is minimum error code?	3.Binary code	
161		4.	2.0
		Excess 3 code	
		1.	
		4 circuits	
		2.	
	When used with an IC, what does the term "QUAD" indicate?	2 circuits	
162	2012 manage	3.	1.0
		8 circuits	
		4.	
		6 circuits	

S.NO.	Questions	Choices	Answers
		1.	
		1011	
		2.	
163	Adding 1001 and 0010 gives	1111	1.0
105	rading 1001 and 0010 gives		1.0
		3.	
		4.	
		1010	
		1.	
		0	
		2.	
164	Radix of binary number system is?		3.0
	· · · · · · · · · · · · · · · · · · ·	3.	
		<u> 2</u> .	
		4.	
		A&B	
		1. is connected to Q	
165	SR Flip flop can be converted to T-type flip-flop if?	2.R is connected to Q	4.0
	P P P	3.Both S and R are shortend	
		4.S and R are connected to Q and Q' respectively	
		1.	
		JK flip-flop does not need a clock pulse	
		2.	
		there is feedback in JK flip-flop	
166	The main difference between JK and RS flip-flop is that?		3.0
		3. JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of junction cathode multivibrator	
		Set of capacitor used to register input instructions in a digital computer	
		2.Set of paper tapes and cards put in a file	
		3.	
167	Register is a	Temporary storage unit within the CPU having dedicated or general	3.0
		purpose use	
		4.Part of the auxiliary memory	
		1. addition	
		addition	
		2.	
		subtraction	
168	Magnitude comparator compares using operation of	3.	xnor1
		multiplication	
		4.	
		division	
			<u> </u>

.NO.	Questions	Choices	Answei
		1.	
		Both input zero	
		2.	
		zero at R and one at S	
169	An SR flip flop cannot accept the following input entry		4.0
		3.	
		zero at S and one at R	
		4.	
		Both inputs one	
		1.	
		equal	
		2.	
170	One operation that is not given by magnitude comparator	less	2.0
		3.	
		greater	
		4.	
		addition	
			4
		1.	
		a*	
		2.	
		a	
171	Automaton accepting the regular expression of any number of a's is:	3.	1.0
		a*b*	
		4.	
		abc	
		1	+
		Q	
		2.	
172	Let L be a set accepted by a nondeterministic finite automaton. The number of states in non- deterministic finite automaton is Q . The maximum number of states in equivalent finite	2 Q	4.0
	automaton that accepts L is	3.	
		2 raise to power Q *1	
		4.	
		2 raise to power Q	
		1.	
		4	
		2.	
		3	
173	Number of final state require to accept $\Phi(phi)$ in minimal finite automata.	3.	4.0
		1	
		ľ.	
		4.	
		0	

S.NO	Questions	Choices	Answer
174	The embedded c program is converted by cross compiler to	the machine code corresponding to the processor of the PC used for application development 2. the machine code corresponding to a processor which is different from the processor of the PC used for application development 3. the machine code for all the microcontrollers 4.	2.0
175	The regular expression $0*(10*)*$ denotes the same set as	assemble code of the PC used for application development 1. $(1*0)*1*$ 2. $0+(0+10)*$ 3. $(0+1)*10(0+1)*$ 4. $(0+1)*$	1.0
176	Which of the following statements is/are FALSE? (1) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. (2) Turing recognizable languages are closed under union and complementation. (3) Turing decidable languages are closed under intersection and complementation (4) Turing recognizable languages are closed under union and intersection.	1. 1 and 4 only 2. 1 and 3 only 3. 2 only 4.	3.0
177	Two automata are equal when	both are under union both are under same language both are having equal number of states both are having same number of final states	2.0

S.NO.	Questions	Choices	Answers
		1.	
		2 states	
		2.	
	What is the minimum number of states needed to a DFA over Σ = (a, b) which accept those words	4 states	
178	from Σ such that the number of a is even and the number of b is divisible by three.	3.	3.0
		6 states	
		4.	
		5 states	
		1.	
		yx	
ı		2.	
		xyx	
	If a language is denoted by a regular expression L = (x)*(x y x),	3.	4.0
	then which of the following is not a legal string within L ?		
ı		X	
		4.	
		xyxyx	
		1.	
		(a + b)	
		2.	
180	The CFG s> as bs a b	$(a + b) (a + b)^*$	2.0
	is equivalent to regular expression	3.	2.0
		(a+b)(a+b)	
		4.	
		(a+b)(a+b)(a+b)(a+b)	
		1.	
		Pumping Lemma	
		2.	
		RE	
		3.	
181	is used to check whether the language is not regular.	MN Theorem	1.0
		4.	
		Pigeon hole principle	
		1.	-
		the instruction set architecture	
		2.	
	The minimum number of page frames that must be allocated to a running process in a virtual	page size	
182	memory environment is determined by		1.0
		3.	
		physical memory size	
		4.	
		number of processes in memory	

.NO.	Questions	Choices	Answer
		1.	
		11	
	A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry	2.	
102	contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The size of the cache tag directory is	14	4.0
		3.	
		27	
		4.	
		16	
		1.	1
		before the CPU time slice expires	
		2.	
184	Pre-emptive scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run	1.0
		3.	
		when it requests IO	
		4.	
		None of mentioned	+
		Are easier to develop than single programming systems	
		2.	
		Execute each job faster	
185	Multiprogramming systems		3.0
		3.	
		Execute more jobs in the same time	
		4.	
		Are used only on large main frame computers	
		1.	
		4	
		2.	
	The DMA controller has registers	2	
186	The DMA contioner has registers	3.	3.0
		3	
		4	
		1	
		1	
		1.	
		X	
	The truth table $X Y f(X,Y)$		
	$egin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}$	2.	
		X+Y	
107			1.0
	represents the Boolean function	3.	
		X'Y'	
		4.	
		Y	
		1	1

Questions th of the following regular expression denotes a language comprising of all possible as over $\Sigma = \{a,b\}$ of length n where n is a multiple of 3? The following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64, in of the following most closely approximates the maximum input size of a problem that can ved in 6 minutes?	1. (a+b+aa+bb+aba+bba)* 2. (aaa+bbb)* 3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None	3.0 3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	(a+b+aa+bb+aba+bba)* 2. (aaa+bbb)* 3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	2. (aaa+bbb)* 3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	(aaa+bbb)* 3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	3. ((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
the of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	((a+b) (a+b) (a+b))* 4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	3.0
th of the following statement is true? The that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. The following most closely approximates the maximum input size of a problem that can	4. (aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	(aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	(aaa+ab+a)+(bbb+bb+a) 1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	1.NFA is more powerful than DFA 2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	2.DFA is more powerful than NFA 3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	3. NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512 1.	
me that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. In of the following most closely approximates the maximum input size of a problem that can	NFA and DFA have equal power 4.None 1.256 2.2048 3.1024 4.512	
n of the following most closely approximates the maximum input size of a problem that can	4.None 1.256 2.2048 3.1024 4.512 1.	4.0
n of the following most closely approximates the maximum input size of a problem that can	1.256 2.2048 3.1024 4.512 1.	4.0
n of the following most closely approximates the maximum input size of a problem that can	1.	4.0
n of the following most closely approximates the maximum input size of a problem that can	1.	4.0
n of the following most closely approximates the maximum input size of a problem that can ved in 6 minutes?	1.	
ved in 6 minutes.		
		Į.
	symmetric key encryption algorithm 2.	ı
	2.	
	asymmetric key encryption algorithm	
nal encryption system is:		2.0
•	3.	
	not an encryption algorithm	
	4.	
	none of the mentioned	
	1.	
	var=100	
ide < stdio.h >		
mi)	[2.	
edef auto int AI;	var=AI	
var=100; ntf("var=%d",var);	3.	4.0
ım 0;		
	var=0	
he output	4.	
	Error	
		<u> </u>
	1.	
ide < stdio.h >	myName=ABCDEFG(size=7)	1
in()	2.	
edef char* string; ng myName="ABCDEFG";	Error	1.0
	3.	4.0
ntf("myName=%s (size=%d)",myName,sizeof(myName));	mvName=ABCDEFG(size=4)	1
ttf("myName=%s (size=%d)",myName,sizeof(myName)); urn 0;		
artf("myName=%s (size=%d)",myName,sizeof(myName)); arm 0;	4.	
ntf("myName=%s (size=%d)",myName,sizeof(myName));	myName=ABCDEFG(size=8)	
artf("myName=%s (size=%d)",myName,sizeof(myName)); arm 0;	1	$\vdash \vdash$
ntf("myName=%s (size=%d)",myName,sizeof(myName)); nm 0; he output		1
ntf("myName=%s (size=%d)",myName,sizeof(myName)); um 0; he output de < stdio.h >	Error	
ntf("myName=%s (size=%d)",myName,sizeof(myName)); nm 0; he output		
ntf("myName=%s (size=%d)",myName,sizeof(myName)); nm 0; the output tide < stdio.h > tin() edef int AAA,BBB,CCC,DDD;	2.	
atf("myName=%s (size=%d)",myName,sizeof(myName)); urn 0; the output ade < stdio.h > tin() edef int AAA,BBB,CCC,DDD; A aaa=10;		3.0
tif("myName=%s (size=%d)",myName,sizeof(myName)); um 0; the output de < stdio.h > uin() edef int AAA,BBB,CCC,DDD; A aaa=10; B bbb=20; C ccc=30;	10,10,10,10	,
tif("myName=%s (size=%d)",myName,sizeof(myName)); Inn 0; the output de < stdio.h > ini() edef int AAA,BBB,CCC,DDD; A aaa=10; B bbb=20; C ccc=30; D ddd=40;	10,10,10,10	
tif("myName=%s (size=%d)",myName,sizeof(myName)); im 0; the output ide < stdio.h >	10,10,10,10	
tif("myName=%s (size=%d)",myName,sizeof(myName)); Inn 0; the output de < stdio.h > ini() edef int AAA,BBB,CCC,DDD; A aaa=10; B bbb=20; C ccc=30; D ddd=40;	10,10,10,10 3. 10,20,30,40	
tif("myName=%s (size=%d)",myName,sizeof(myName)); im 0; the output ide < stdio.h >	10,10,10,10 3.	
-	ne output de < stdio.h > n()	### (### ### ### ### ### ### ### ### ##

	Southed a saddle to S		
1i. {	include < stato.ii >	1.	
		10012,12100	
	typedef struct	2.	
	int empid; int bsal;	0,0	
195	}EMP;	3.	1.0
	EMP E={10012,15100}; printf("%d,%d",E.empid,E.bsal);	Error	
,	return 0;	4.	
ľ	End the country	10012,10012	
F	ind the output	1.	
	include < stato.n >	0 1 2 255	
	unsigned char var=0;	2.	
196	{	255	1.0
170	printf("%d ",var);	3.	1.0
}		256	
F	find the output	4.	
		blank screen as output	
	include <stdio.h></stdio.h>		
	define MORILE ()x01		
	define LAPPY 0x02	1.	
{		I have purchased: 2.	
	unsigned char item=0x00;	I have purchased:Mobile, Lappy	
	the standard		2.0
	<pre>printf("I have purchased:"); if(item & MOBILE){</pre>	I have purchased:Mobile,	
	<pre>printf("Mobile, ");</pre>	4.	
	<pre>if(item & LAPPY) { printf("Lappy");</pre>	I have purchased:Lappy	
	1	1 m. 10 p. 11 m. 12 m. 1	
}	return 1;		
\dashv		1.	
#	include <stdio.h></stdio.h>	13	
i	nt main()	2.	
1	char flag=0x0f;	d	
198	flag &= ~0x02; printf("%d",flag);	3.	1.0
		22	
}		4.	
P	redict the Output.	10	
		10	
		1.	
	include <stdio.h> nt main()</stdio.h>	c = 12	
{		2.	
		c = 10	
	0 (2 2 2) /	3.	3.0
		c = 2	
}	return 0;	4.	
F	ind the output.	c = 0	
\bot			

	Choices	Answers
	1.	
de <stdio.h> e FUN(x,y) x##y</stdio.h>	Error	
in()	2. 1010	
=10,a2=20; "%d%d",FUN(a,1),FUN(a,2));	3.	4.0
0;	2020	
ne output	4.	
is output	1020	
	1.	
de <stdio.h> e LARGEST(x,y) (x>=y)?x:y</stdio.h>	a=10,b=20,largest=20	
in()	2.	
1=10,b=20,l=0; ADGET(0+4-b+4)	a=11,b=21,largest=20	
ARGEST(a++,b++);	3.	4.0
tf("a=%d,b=%d,largest=%d",a,b,l); rn 0;	a=11,b=21,largest=21	
	4.	
ne output	a=11,b=22,largest=21	
	1.	
de <stdio.h></stdio.h>	Error	
e MAX 100 in()	2.	
e MAX 20	MAx=100	3.0
"MAX=%d",MAX); 0;	3.	3.0
	MAx=20	
ne output	4.	
	MAX=10020	
	1.	
de <stdio.h></stdio.h>	Error	
e MAX 10 in()	2. 1 3 4 5 6 7 8 9 10 11	
array[MAX]={1,2,3},tally; tally=0;tally< sizeof(array)/sizeof(int);tally+=1)	3.	3.0
rintf("%d ",*(tally+array)); rn 0;	123000000	
ne output	4.	
is output	000000000	
	1.	
de <stdio.h> e MAX 99</stdio.h>	990	
in()	2. 9999	
tf("%d",MAX); def MAX	3.	3.0
tf("%d",MAX); rn 0;	Error	
	4.	
ne output	MAXMAX	
	1.	
	IncludeHelp	
de <stdio.h> e TEXT IncludeHelp</stdio.h>	2.	
in()	TEXT	
tf("%s",TEXT); m 0;	3.	3.0
	Error	
ne output	4.	
	TEXT IncludeHelp	
tf("% rn 0;		%s",TEXT); 3. Error 4.

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	#define TRUE 1 int main()	1	
	{ if(TRUE)	2.	
	printf("1");	Error	
	printf("2"); else	3.	2.0
	<pre>printf("3"); printf("4");</pre>	2	
	return 0;	4.	
	}		
	Find the output.	12	
		1.	
	#include <stdio.h></stdio.h>	Hello	
	#define TRUE 1	2.	
	int main() {	Hello Hello Hello (infinite times)	
207	int loop=10; while(printf("Hello ") && loop);	3.	4.0
	,	Hello (10 times)	
	Tr. 1d	4.	
		Hello (11 times)	
		1.	
	#include <stdio.h> #define VAR1 VAR2+10</stdio.h>	VAR2+10	
	#define VAR2 VAR1+20	2.	
	int main()	VAR1+20	
208	{ printf("%d",VAR1);	3.	3.0
	motivum Or	Error	
	}	4.	
	Find the output	10	
	#include <stdio.h> #include < string.h ></stdio.h>		
	struct student	1.	
	{	Mike Thomas	
	}std;	INTRE THOMAS	
	,	2.	
200	strepy(tempstd-/name, rhomas),	Mike Mike	2.0
209	return tempStd->name; }	3.	3.0
	int main()	ThomasThomas	
	{	4.	
	strcpy(std.name,"Mike "); printf("%s%s",std.name,fun(&std));	ThomasMike	
	return 0;		
	Find the output	1.	
	#include <stdio.h> #include <string.h></string.h></stdio.h>	Inclu	
	int main()		
	{ char s1[]="IncludeHelp";	2.	
210	char s2[10];	IncluGARBAGE_VALUE	1.0
∠10	suncpy(\$2,\$1,5);	3.	1.0
	printf("%s",s2); return 0;	Error	
	}	4.	
	Find the output	IncludeHelp	
		<u> </u>	I

S.NO.	Questions	Choices	Answers		
		1.			
	#Include \stalo.n>	IncludeHelp.Com			
	#include <string.h> int main()</string.h>	2.			
211	char str1[]="IncludeHelp",str2[]=".Com";	udeHelp	2.0		
211	printf("%s",strl+strlen(str2)); return 0;	3.	2.0		
	}	Error			
	Find the output	4.			
		IncludeHelp4			
		1.			
	#include <stdio.h> #include <string.h></string.h></stdio.h>	50501150			
	#include String.in/	2.			
212	char str[50]="IncludeHelp";	1150	2.0		
	printf("%d%d",strlen(str),sizeof(str)); return 0;	3.			
	}	1111			
	Find the output	4.			
		5011			
	#include <stdio.h></stdio.h>	1.			
	#include <string.h> int main()</string.h>	0			
	{ int val=0;	2.			
213	char str[]="IncludeHelp.Com";	1	3.0		
213	val=strcmp(str,"includehelp.com"); printf("%d",val);	3.	5.0		
	return 0;	-1			
	}	4.			
		Error			
	#include <stdio.h></stdio.h>	1.			
	#define OFF 0 #if debug == OFF	1122			
	int a=11; #endif	2.			
	int main()	Error	1.0		
2	int b=22;	3.	1.0		
	printf("%d%d",a,b);	1111 			
	return 0; }	4.			
	Find the output	2222			
	#include <stdio.h></stdio.h>	1.			
	int main()	Garbage			
	{ char *text="Hi Babs.":	2.			
215	char x=(char)(text+3);	B	4.0		
		3.			
		Error			
	retum 0; }	4.			
	Find the output	Null			
	#include <stdio.h></stdio.h>	1.			
	int main()	Garbage			
	{ char *text="Hi Babs.";	2.			
216	<pre>char x=(char)(text[3]);</pre>	B	2.0		
	printf/"0/a\n" v\-	3.			
	return 0;	Error			
	Find the output	4.			
	i ma ane output	Null			

include <stdio.h></stdio.h>	1.	Answers
include <stdio.h></stdio.h>		
	Complie time error	
nt main()	2. 10	
int anyVar=10; printf("%d",10); return 0;		2.0
xtern int anyVar;	Run Time error	
find the output	4. No output	
include <stdio.h></stdio.h>	1. Error	
nt main()	2.	
int x=2.3; const char c1=(float)x; const char c2=(int)x;		2.0
printf("%d,%d\n",c1,c2);		
return 0;	4.	
find the output		
include <stdio.h></stdio.h>	1.	
truct sample	0	
int a;	2.	
sample;	100	
	3.	2.0
sample.a=100; printf("%d",sample.a); return 0;	ERROR 4.	
	arning	
include <stdio.h></stdio.h>		
	1.	
return str;	ERROR	
har* fun2(void)		
char *str="Hello";		4.0
	4.	
include <stdio.h></stdio.h>	1.	
char *str="IncludeHelp"; return str;	2.	
nt main()		
char *x;	3.	2.0
printf("str value = %s",x);		
	4.	
rind the output	No output	
	include <stdio.h> int main() int x=2.3; const char cl=(float)x; const char c2=(int)x; printf("%d,%d\n",cl,c2); return 0; ind the output include <stdio.h> ruct sample int a; sample.a=100; printf("%d",sample.a); return 0; ind the output include <stdio.h> rut main() sample.a=100; printf("%d",sample.a); return 0; ind the output include <stdio.h> har* fin1(void) char str[="Hello"; return str; thar* fun2(void) char *str="Hello"; return str; int main() printf("%s,%s",fun1(),fun2()); return 0; ind the output include <stdio.h> har* strFun(void) char *str="IncludeHelp"; return str; int main() printf("%s,%s",fun1(),fun2()); return 0; ind the output include <stdio.h> har* strFun(void) char *str="IncludeHelp"; return str; it main() char *x:="IncludeHelp"; return str; it main() char *x:="x:=x:strFun();</stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h>	A

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h></stdio.h>	step1: 1	
	int fooo(void) {	step2: 1	
	static int num=0; num++;	step3: 1	
	return num;	2.	
	} int main()	step1: 1	
222	{ int val;	step2: 2	2.0
222	val=fooo(); printf("step1: %d\n",val);	step3: 3	2.0
	val=fooo(); printf("step2: %d\n",val);	3.	
	val=fooo();	step1: 0	
	printf("step3: %d\n",val); return 0;	step2: 0	
	}	step3: 0	
	Find the output	4.	
		ERROR	
		1.	
	#include <stdio.h></stdio.h>	Start debuggingIncludeHelp	
	int main() {	2.	
	#ifdef debug printf("Start debugging");	IncludeHelp	
223	#endif printf("IncludeHelp");	3.	2.0
	return 0;	Error	
	}	4.	
	Find the output	debug	
-		1.	
	#include <stdio.h> int main()</stdio.h>	00 01 02 03 04	
	{ int a[5]={0x00,0x01,0x02,0x03,0x04},i; i=4;	2.	
	while(a[i]) {	04 03 02 01 00	
224	printf("%02d ",*a+i); i;	3.	3.0
	}	04 03 02 01	
	}	4.	
	Find the extent	01 02 03 04	
\blacksquare			
	#include <stdio.h> int main()</stdio.h>	1.	
	{ int $a[5]=\{1,2,3,4,5\},b[5]=\{10,20,30,40,50\},$ tally;	1 2 3 4 5	
	for(tally=0;tally< 5;++tally) **(**: (**!!**) **(**!!**) **(**!!**)	2.	
225	*(a+tally)=*(tally+a)+ *(b+tally);	10 20 30 40 50	3.0
	for(tally=0;tally< 5;tally++) printf("%d ",*(a+tally));	3.	
	return 0;	11 22 33 44 55	
	}	4.	
	Find the output	Error	
		1.	
		Error	
	#include <stdio.h> int main()</stdio.h>	2.	
226	{ static int array[]={10,20,30,40,50}; printf("%d%d",*array,*(array+3)* *array);	1040	4.0
226	return 0;	3.	4.0
) Find the content	10300	
	Find the output	4.	
		10400	
			1

nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	1. Error 2. A,A,A B,B,B C,C,C D,D,D E,E,E 3. B,B,B C,C,C D,D,D,D E,E,E 4.	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	2. A,A,A B,B,B C,C,C D,D,D E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	A,A,A B,B,B C,C,C D,D,D E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	B,B,B C,C,C D,D,D E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; nd the output</stdio.h>	C,C,C D,D,D E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	D,D,D E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	E,E,E 3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
nclude <stdio.h> main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output</stdio.h>	3. B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
main() static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output	B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
static int x[]={'A','B','C','D','E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output	B,B,B C,C,C D,D,D E,E,E F,F,F	3.0
for(tally=0;tally< sizeot(x)/sizeot(int); tally+=1) printf("%c,%c,%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1); return 0; and the output	C,C,C D,D,D E,E,E F,F,F	3.0
return 0;	D,D,D E,E,E F,F,F	
nd the output	E,E,E F,F,F	
	F,F,F	
	4.	
	E,E,E	
	D,D,D	
	C,C,C	
	B,B,B	
	A,A,A	
		├
nclude <stdio.h></stdio.h>	1.	
main()	\0IncludeHelpTRUE	
char result,str[]="\0IncludeHelp"; result=printf("%s",str);	2.	
if(result)	\0IncludeHelpFALSE	
printf("TRUE"); else	3.	4.0
printf("FALSE"); return 0;	Error	
· · · · · · · · · · · · · · · · · · ·	4.	
nd the output	FALSE	
	1.	
	IncludeHelp	
nclude <stdio.h></stdio.h>		
printf("%s".str):		3.0
return 0;		
The second secon		
	No output	
	1.	
	HelloFriends	
	HelloFriends	
nclude <std10.h> main()</std10.h>	2.	
char strf]="Hello%s%dFriends":	Hello%s%dFriends	
printf(str);	H H 0/ 0/ IF: 1	3.0
printi(\lambda); printf("\sets",str);		3.0
nd the output	Garbage value	1
or r	clude <stdio.h> main() char str[8]="IncludeHelp"; printf("%s",str); return 0; d the output clude <stdio.h> main() char str[]="Hello%s%dFriends"; printf(str); printf("n"); printf("%s",str); return 0;</stdio.h></stdio.h>	the description of the output

#include <stdio.h> int main() {</stdio.h>	1. value is = %d	
int main() {	variation 7 da	
[E	2.	
char str[]="value is =%d"; int a='7';	value is = %c	
mi a - /, str[11]='c'; printf(str,a);	3.	4.0
return 0;	value is = 55	
Find the output	4.	
rind the output	value is = 7	
	I.	
#include <stdio.h></stdio.h>	A 0 0 0 0 0 0 0 0	
int main() {	2.	
char X[10]={'A'},i; for(i=0: i<10: i++)	A	
printf("%d ",X[i]);	3.	4.0
}	A 32 32 32 32 32 32 32 32 32 32	
Find the output		
	Error	
	1.	
#include <stdio.h></stdio.h>	Error	
int main() {		
printf("%c\n",*&*str);		3.0
return 0;). I	
Find the output	4	
	4, 4, 4	
	1, 4	
#include <stdio.h></stdio.h>	2.	
float a=125.50;	4, 4, 8	
char c='A';	1, 1	
printf("%d,%d,%d\n",sizeof(a),sizeof(b),sizeof(125.50));	3.	4.0
return 0;	4, 4, 4	
What will be the output on a 32 bit compiler	1, 1	
	4.	
		\perp
#includa <etdia h=""></etdia>		
#include <stdio.n> infinition if finition if</stdio.n>		
if((-100 && 100) (20 && -20))		
else	3.	1.0
print("%s","Condition is faise."); return 0;	No output	
Find the output	4.	
ir na aic output	Error	
I.		
	char X[10]=('A').; for(i=0; i<10; i++) printf("%d",X[i]); return 0; } Find the output #include <stdio.h> int main() { char *str="IncludeHelp"; printf("%c\n",*&*str); return 0; } Find the output #include <stdio.h> int main() float ==125.50; int b=125.50; char c='A'; printf("%d,%d\n",sizeof(a),sizeof(b),sizeof(125.50)); printf("%d,%d\n",sizeof(c),sizeof(65)); return 0; } What will be the output on a 32 bit compiler. #include <stdio.h> int main() { if (-100 && 100) (20 && -20)) printf("%s","Condition is true."); else printf("%s","Condition is false.");</stdio.h></stdio.h></stdio.h>	

.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	Ι.	
	{	10	
	if(10L == a)	2.	
	else if(10=a)		
20	printi(10),	10L	2.0
236	printf("0");		2.0
	}	10L10	
	Find the output.	4.	
		Error	
	#include <stdio.h></stdio.h>	1.	
	int main() {	Hello	
	int a=10; if(a==10)	2.	
	f printf("Hello");	HelloOK	
237	break;		4.0
	} also	3.	
	{ printf("Hii");	OK	
	} return 0:	4.	
	Find the output.	Error	
		1.	\square
	#include <stdio.h></stdio.h>	1.234	
	int in O	2.	
	{ int a=15;	1.234000	
238	float b=1.234;		3.0
	return 0;	1.234000	
	Fredict the output:	4.	
		Error	
	#include <stdio.h> int main()</stdio.h>		
	{ .	1.	
	101(1-0,1 < 5,1 + 1)	0IHelp 1IHelp 2IHelp 3IHelp 4IHelp	
	{ if(i*i > 30)	2.	
		0IHelp 1IHelp 2IHelp 4IHelp	
239	printf("%d",i);	3.	1.0
	lbl: printf("IHelp ");	1 IHelp	
	}	4.	
	return 0:	Error	
	Tird da a mana		
	Find the output	1.	\vdash
		size of array is = 20	
	int main()	2.	
	int MAX=10;		
240	int array[MAX]; printf("size of array is = %d",sizeof(array);	size of array is = 40	2.0
	return 0;	3.	
		size of array is = 4	
	Find the output	4.	
		Error	
_			

S.NO.	Questions	Choices	Answers
	#include <stdio.h> int main()</stdio.h>	1. No output	
	{ int pn=100;	2.	
	if(pn>20)	Hiiiii	
241	<pre>if(pn<20) printf("Heyyyyy");</pre>	3.	2.0
	else printf("Hiiiii");		
	retum 0;	Неууууу	
		4.	
	Find the output.	HeyyyyyHiiiii	
	#include <stdio.h></stdio.h>	1.	
	int main()	ERROR	
	int var=100;	2.	
	iii vai 200,	200200	
242	printf("%d",var); }	3.	4.0
	printf("%d",var); return 0;	100100	
	}	4.	
	Find the output	200100	
		1.	
		value of var = 250	
		includehelp.com	
	#include <stdio.h> int main()</stdio.h>		
	{ int var=250;	2.	
	printf("value of var = %d\n",var);	value of var = 250	
243	"includehelp.com";	includehelp	2.0
	printf("%s\n","includehelp"); return 0;	3.	
	}	Error	
	Find the output	4.	
		value of var = 250	
		Garbage	
	#include <stdio.h> int main()</stdio.h>	1.	
	{	Error	
	int iVal; char cVal;	2.	
	void *ptr; // void pointer iVal=50; cVal=65;	value =50,size= 4	
	pt=&iVal	value =65,size= 4	
244	printf("value =%d,size= %d\n",*(int*)ptr,sizeof(ptr));	3.	2.0
	ptr=&cVal	value =50,size= 4	
	printf("value =%d,size= %d\n",*(char*)ptr,sizeof(ptr)); return 0;	value =65,size= 1	
	}		
		4.	
	-	Garbage value	
	#include <stdio.h> int main()</stdio.h>	1.	
	{ static int var[5];	01000	
	int count=0;	2.	
245	var[++count]=++count;	0 2 0 0 0	3.0
243	for(count=0;count<5;count++) printf("%d ",var[count]);	3.	3.0
		0 0 2 0 0	
	return 0; }	4.	
	Find the output	00000	
		I.	

	Questions	Choices	Answers
	#include <stdio.h> int main()</stdio.h>	1.	
	struct sample {	12, 12	
	int a;	2.	
246	sample *s;	12, 0	4.0
	}t;	3.	
	<pre>printf("%d,%d",sizeof(sample),sizeof(t.s)); return 0;</pre>	Error	
	}	4. 12, 4	
	This the output		
	#include <stdio.h> int main()</stdio.h>	1.	
	struct std	Name: Mike, Age: 26	
	char name[30];	2.	
247	;;	Name: Garbage, Age: Garbage 3.	1.0
	struct std $s1={\text{"Mike",26}};$	Name: Null, Age: 26	
		4.	
	}	Error	
	Find the output		igsquare
	#include <stdio.h> int main()</stdio.h>	1.	
	typedef struct tag{	ERROR	
	int a;	2.	
		IHelp, 10	
248	h1=h2·	3.	4.0
	h1.str[1]='h'; printf("%s,%d",h1.str,h1.a);	IHelp, 0	
	return 0;	4.	
	Find the output	Ihelp, 10	
\dashv		1.	
	#include <stdio.h> int main()</stdio.h>	10,10	
	t _	2.	
	int i;	10,0	
249	int j; };	3.	4.0
		0,10	
	printf("%d,%d\n",var.i,var.j); }	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>		\dagger
	int main() {	1.	
	{	A,B,0	
	int intVal;	2.	
250	} ;	A,B,16961	2.0
	union values val;	3.	
	printf("'n%c,%c,%d",val.chrVal[0],val.chrVal[1],val.intVal);	B,B,66	
	return 0;	4. A,A,65	
		يد مير ميرت	
	rina aic output	1	
	Find the output		

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	CHARCO	
	int main()		
	union values	1.	
	{ unsigned char a;	44,44,300	
	unsigned char b;	2.	
	unsigned int c; };	1,2,300	
251			1.0
	union values val; val.a=1;	3.	
	val.b=2; val.c=300;	2,2,300	
		4.	
	printf("%d,%d,%d",val.a,val.b,val.c); return 0;	256,256,300	
	}		
	Find the output		
	•	1.	
	#include <stdio.h></stdio.h>	2004	
	int main()	2.	
	{ void *ptr;	2001	
252	++ptr;		2.0
	printf("%u",ptr); return 0;	3.	
	}	2000	
	Find the output	4.	
		ERROR	
	#include <stdio.h></stdio.h>	1.	
	struct employee { int empId;	Id: 3, Age: 24, Name: Mike	
	char *name;		
	int age; };	2.	
	int main()	Id: 3, Age: 23, Name: Mike	3.0
253	{ struct employee emp []={ {1,"Mike",24}, {2,"AAA",24}, {3,"BBB",25}, {4,"CCC",30} };	3.	3.0
	printf("Id: %d, Age: %d, Name: %s", emp[2].empId,3[emp].age,(*(emp+1)).name);	Id: 3, Age: 30, Name: AAA	
	return 0;	4.	
	}	Error	
	Find the output		
		1.	
	#include <stdio.h> void main()</stdio.h>	Case-2	
	{ int a=2;	2.	
	switch(a)	Message	
	{ printf("Message\n");	3.	
254	default:	Message	
254	case 2:	Case-2	4.0
	printf("Case-2\n"); case 3:		
	printf("Case-3\n");	4.	
	} printf("Exit from switch\n");	Case-2	
	} Find the output	Case-3	
	ր ուս աշ օսւրս։	Exit from switch	
<u> </u>			

S.NO.	Questions	Choices	Answer
	#include <stdio.h></stdio.h>		
	void main(){ static int staticVar;		
	int j;		
	for(j=0;j<=5;j+=2) switch(j){	1.	
	case 1:	0	
	staticVar++; break;	2.	
	case 2:		
255	staticVar+=2; case 4:		1.0
233	staticVar%=2;	3.	1.0
	j=-1;	2	
	continue; default:	4.	
	staticVar;		
	continue;	Error	
	printf("%d",staticVar);		
	}		
	Find the output		
		1.	
		2	
	#include <stdio.h></stdio.h>	2	
	void main(){ int a=0;	2.	
	a=5 2 1;		
256	printf("%d",a);	3.	2.0
	}	0	
	Find the output.		
		4.	
		8	
	#include <stdio.h></stdio.h>		
	void main(){	1.	
	int a=1; switch(a/2)		
	{	Case NULL	
	case NULL: printf("Case NULL\n");	2.	
	break;	Case ZERO	
257	case 0:	3.	4.0
	printf("Case ZERO\n"); break;		
	default:	Case DEFAULT	
	printf("DEFAULT\n"); break;	4.	
	}	Error	
	}		
	Find the output		
		1.	
	#include <stdio.h> void main()</stdio.h>	Case-2	
	{	2.	
	int a=2; int b=a;		
		Error: case expression not constant	
	switch(b)	3.	
250	{ case a:	Message	2.0
258	printf("Case-a\n"); break;		2.0
	case 3: printf("Case-3\n"); break;	Case-2	
	default:	4.	
	<pre>printf("No option\n"); break; }</pre>	Case-2	
	printf("Exit from switch");	Case-3	
	}	Cube 5	
	Find the output	Exit from switch	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	void main()	After loop cnt= 1	
	int cnt=1;	2.	
	while(cnt>=10) {	1,	
259	<pre>printf("%d,",cnt); cnt+=1;</pre>	After loop cnt= 2	1.0
	} printf("\nAfter loop cnt=%d",cnt);	3.	
	printf("\n");	After loop cnt= 2	
	}	4.	
	Find the output	11	
		1.	
		ABCDE	
		A B C D E	
		2.	
ı	#include <stdio.h></stdio.h>	A B C D	
ı	void main()	A B C D	
	{ int i,j,charVal='A';	A B C D	
	for(i=5;i>=1;i)	A B C D	
260	$\begin{cases} & \text{for}(j=0,j< i;j++) \end{cases}$		3.0
	printf("%c ",(charVal+j)); printf("\n");	A B C D	
	} }	A B C	
	}	A B	
	Identify the output	A	
		4.	
		ч. А В С D Е	
		ABCD	
		ABC	
		A B	
		A	
ı	#include <stdio.h> void main()</stdio.h>		
	{ int i=1;	1.	
	while (i<=5) {	Error	
	printf("%d",i);	2.	
	if (i==5) goto print;	12345includehelp.com	
261	i++; }	3.	1.0
	} fun()	1234includehelp.com	
	{ print:	4.	
	print("includehelp.com");	l includehelp.com 2includehelp.com 3includehelp.com 4includehelp.com 5includehelp.com	
	}	-	
	Find the output	1.	-
	#include <stdio.h></stdio.h>	Value of intVar=23, x=21	
	void main(){	2.	
262	int intVar=20,x; x=++intVar,intVar++,++intVar;		1.0
	printf("Value of intVar=%d, x=%d",intVar,x); }	3.	
	Find the output	Value of intVar=21, x=21	
	•	4.ERROR	
l		14 FRROR	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	void main() {	#0#1#2#3#4#5#6###	
	int tally; for(tally=0;tally<10;++tally)	2.	
	{ printf("#");	#0#1#2#3#4#5#6#7#8#9#10	
263	if(tally>6) continue;	3.	1.0
	printf("%d",tally);	#0#1#2#3#4#5##7#8#9#10	
	,	4.	
	Find the output	#0#1#2#3#4#5#	
		1.	
		34	
	#include <stdio.h></stdio.h>	2.	
	void main() { unsigned char c=290;	290	
264	printf("%d",c);	3.	1.0
	Cind the output	Garbage value	
	Find the output	4.	
		Error	
		1.	
		0 1 2 infinity	
	#include <stdio.h> void main()</stdio.h>	2.	
	char cnt=0;	1 2 2 127	
265	for(;cnt++;printf("%d",cnt));	3.	4.0
	printf("%d",ent); }	0	
	Find the output	4.	
		1.	-
	#include <stdio.h<< td=""><td>Hello</td><td></td></stdio.h<<>	Hello	
	#include <string.h></string.h>	2.	
	int main()	Error	
266	{ char str[];	3.	2.0
	strcpy(str,"Hello"); printf("%s",str);	NULL	
	return 0;	4.	
	Find the output	NO OUTPUT	
		1.	-
		sum=30	
	#include	2.	
	<pre>#define SUM(x,y) int s; s=x+y; printf("sum=%d\n",s); int main()</pre>	10,20	
267	{	3.	1.0
	SUM(10,20); return 0;	Error	
	}	4.	
	Find the output	sum=0	
		I.	
	#include	11, 11	
	int main() {	2.	1
	char ch=10; void *ptr=&ch	10, 11	
268	printf("%d,%d",*(char*)ptr,++(*(char*)ptr)); return 0;	3.	1.0
	}	Error	
	Find the output	4.	
		1	1
		10, 10	

S.NO.	Questions	Choices	Answers
	#include	1.	
	int main() {	ВВВВВ	
	char *str []={"AAAAA","BBBBB","CCCCC","DDDDD"}; char **sptr []={str+3,str+2,str+1,str};	2.	
269	char ***pp;	cccc	3.0
209	pp=sptr; ++pp;	3.	3.0
	printf("%s",**++pp+2); return 0;	ВВВ	
	}	4.	
	Find the output	Error	
		1.	
	#include	5	
	int main() {	2.	
270	int a=10,b=2; int *pa=&a,*pb=&b	5.0	1.0
270	printf("value = %d", *pa/*pb); return 0;	3.	1.0
	}	ERROR	
	Find the output	4.	
		No output	
	#include void fun(int *ptr)	1.	
	{	100,100	
	*ptr=100; }	2.	
	int main() {	50,50	
271	int num=50; int *pp=#	3.	3.0
	fun(& *pp); printf("%d,%d",num,*pp);	50,100	
	return 0;	4.	
		Error in function calling	
	Find the output	1.	
	#include #define FUN(x) x*x	2	
	int main()	2.	
	int val=0;	12864	
272	val=128/FUN(8); printf("val=%d",val);	3.	2.0
	return 0; }	40	
	Find the output	4.	
	-	1	
		1.	
	#include	43	
	int main ()	2.	
	static int a[={10, 20, 30 40, 50};	140	
213	static int *p[]= {a, a+3, a+4, a+1, a+2}; int **ptr=p;	3.	2.0
	ptr++; printf ("%d%d", ptr p, **ptr);	89	
	} The output of the program is	4.	
		78	
		1.	<u> </u>
	Himshudo zatdio ho	Hello	
	#define TRUE 1	2.	
	int main() {	ERROR	
274	switch(TRUE) {	3.	3.0
	printf("Hello"):	No output	
	} find the output	4.	
	n ma are output	Garbage	
			<u> </u>

.NO.	Questions	Choices	Answer
	#include <stdio.h> enum numbers</stdio.h>	1. 0, 1, 2, 3, 3, 4, 5, 0, 1	
	{ zero, one, two, three , four=3,five,six,seven=0,eight };	2. 0, 1, 2,3,3,1,2,3,4	
275	void main() { printf("%d,%d,%d,%d,%d,%d,%d,%d,%d,%d",zero,one,two,three,four,five,six,seven,eight); }	3. 0,1,2,3,3,1,2,3,4	1.0
	What will be the output.	4. 0, 1, 2, 3, 3, 4, 5, 0, 9	
		1.	
	#include <stdio.h> int main() { char val=250;</stdio.h>	-5 2.	
276	int ans; ans= val+ !val + ~val + ++val; printf("%d",ans);	-6 3.	2.0
	return 0; } Find the output.	0 4.	
		6	
	#include <stdio.h></stdio.h>	1. 1, 0.8, 0.75	
	int main() { float a,b; a=3.0f;	2. 0, 0.7, 0.75	
277	b=4.0f; printf("%.0f,%.1f,%.2f",a/b,a/b,a/b); return 0;	3. 0, 0.8, 0.75	3.0
	Find the output.	4. Error: Invalid format Specifier	
		1. value of a=10	
	<pre>#include <stdio.h> int main() { float a; (int)a= 10;</stdio.h></pre>	2. value of a=10.000000	
278	printf("value of a=%d",a); return 0; }	3. value of a=0	4.0
	Find the output	4. L-Value required	
\dashv		1.	+
	#include <stdio.h> int main()</stdio.h>	0 0 1 2 1	
279	int i=-1,j=-1,k=0,l=2,m; m=i++&&j++&&k++ ++; printf("%d %d %d %d %d",i,j,k,l,m);	0 0 1 3 2	3.0
	return 0; }	0 0 1 3 1	
	Find the output	4. 0 1 1 3 1	
	#include <stdio.h></stdio.h>	1. 24, 24	
	int main() { int intVar=24; ctatic int v=intVar=	2. 24, 0	
280	static int x=intVar; printf("%d,%d",intVar,x); return 0;	3. Error: Illegal Initialization	3.0
	Find the output of this program, (program name is: static_ec.c)	4. Run time error	
		ixun unic citoi	

S.NO.	Questions	Choices	Answe
		1.	
	#include <stdio.h> int main()</stdio.h>	0	
	{	2.	
201	-100;	-100	
281	printf("%d",ok); return 0;	3.	2.0
	}	100	
	Find the output.	4.	
		Error	
\dashv		1.	
		ERROR	
	#inalyda zotdia h	2.	
	mo		
	{ int var;		
	var=10; printf("value of var= %d\n" var\)		
282	var = + +10;		3.0
	return 0;		
	}		
	Find the output		
		value of var= 11	
		1.	
		x=100	
		x=100	
	#include <etdio h=""></etdio>	2.	
	int main(){	x=100	
	int x; x=100,30,50;	x=50	
283	printf("x=%d\n",x); x=(100,30,50);	3.	2.0
	printf("x=%d\n",x); return 0;		
	}		
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	Hello	
ľ	void main() {	2.	
	int a=10; switch(a){	ок	
284	case 5+5:	3.	3.0
	default:	Hello	
	<pre>printf("OK\n"); }</pre>	ОК	
	} Find the output	4.	
ľ	i ind the output	Error	
\dashv		I.	
		var : E, 69	
	#include <stdio.h> void main()</stdio.h>		
	{ unsigned short var='B';	2.	
,,	var+=2;	var : E, 68	1.0
285	var++; printf("var : %c , %d ", var,var);	3.	1.0
	}	var : D, 69	
	Find the output	4.	
		var : D, 68	
		I	1

S.NO.	Questions	Choices	Answers
	#include <stdio.h> void main()</stdio.h>		
	{	1.	
	int a=2; switch(a/2*1.5)	One	
	{ case 1:	2.	
	printf("One");	Two	
286	break; case 2:	3.	4.0
	printf("Two"); break;		
	default:	Other	
	printf("Other"); break;	4.	
	}	Error	
) Find the output		
	Find the output #include <stdio.h></stdio.h>		
	void main()	1.	
	short a=2;	One	
	switch(a) {	2.	
	case 1L:		
287	printf("One\n"); break;	Two	2.0
207	case 2L: printf("Two\n");	3.	2.0
	break;	Else	
	default: printf("Else\n");	4.	
	break;	Error	
	}		
	Find the output	1.	
	#include <stdio.h> void main()</stdio.h>	2 nd	
	{		
	short day=2; switch(day)	2.	
	{ case 2: case 22:	22 nd	
288	printf("%d nd",day);	3.	3.0
	break; default:	Error	
	printf("%d th",day);	4.	
	break; }	2 nd	
	} Find the output	22 nd	
	- Indiano Guipin		
		1.	
	#include <stdio.h> int main() {</stdio.h>	Addition is $= 20$	
	int a,b,c;	2.	
	a=0x10; b=010; c=a+b;	Addition is = 24	
289	printf("\nAddition is= %d",c);	3.	2.0
	return 0;	Addition is = Garbage	
	Find the output.	4.	
	r.···	Error	
		1.	
		AABB1	
	#inahda zetdia h	AABB1	
	#include <stdio.h> void main()</stdio.h>	2.	
	{ int x;	1	
	x = (printf("AA") printf("BB"));	1	
290	<pre>printf("%d",x); printf("\n");</pre>		4.0
	x=(printf("AA")&&printf("BB"));	3.	
	x - (printit (AA)&&printit (BB)), printf("%d",x);	AABB1	
	}	AA1	
	Find the output	4.	
		AA1	
		AABB1	

NO.	Questions	Choices	Answe
291	\$a = array(null => 'a', true => 'b', false => 'c', 0 => 'd', 1 => 'e', " => 'f'); echo count(\$a), "'n"; What will be printed?	1.2 2.3 3.4 4.5	2.0
292	\$a = array(); if (\$a[1]) null; echo count(\$a), "\n"; What will be printed?	1.0 2.1 3.2 4.Code wont work	1.0
		1.	
		Incremental development	
		2.	
		Agile	
293	What is the most common approach for the development of application system now?	3.	1.0
		Waterfall	
		4.	
		None of the options	
		1.	
		RAW	
		2.	
		CHAR	
294	data type can store unstructured data	3.	1.0
		NUMERIC	
		4.	
		VARCHAR	
		1.	
		infrastructure mode	
		2.	
		ad-hoc mode	
295	A wireless network interface controller can work in	3.	3.0
		both infrastructure and ad-hoc mode	
		4.	
		none	
		1.	
		The omitted value takes "undefined"	
		2.	
	Consider the code snippet given below	This results in an error	
	var count = [1,,3];	3.	1.0
	What is the observation made?	This results in an exception	
		4.	
		Can't predict	
		1.	
		x = -(-y); w = (x = (y = z));	
		<pre>q = a?b:(c?d:(e?f:g));</pre>	
	Consider the following javascript statements	2. x = a?b:(c?d:(e?f:g));	
207	n =	x = arb:(cra:(err:g)); $q = \sim (-y); w = (x = (y = z));$	
297	x - ~-y; w = x = y = z; q = a?b:c?d:e?f:g;	3.	4.0
	The above code snippet is equivalent to:	x = (x = (y = z)); w = ~(-y); q = a?b:(c?d:(e?f:g));	
		4.	
		$x = \sim (-y); w = (x = (y = z));$	
		q = (c?d:(e?f:g));	

S.NO.	Questions	Choices	Answers
		1.	
		text==pattern	
		2.	
	Consider the following statements	text.equals(pattern)	
298	var text = "testing: 1, 2, 3"; // Sample text var pattern = /\d+/g // Matches all instances of one or more digits	3.	4.0
	In order to check if the pattern matches with the string "text", the statement is	text.test(pattern)	
		4.	
		pattern.test(text)	
		1.	
		Partial Key	
		2.	
		Candidate Key	
299	is the minimal super key	3.	2.0
		Surrogate Key	
		4.	
		Unique Key	
300	is a built - in JavaScript function which can be used to execute another function after a given time interval.	1.Timeout() 2.TimeInterval() 3.setTimeout() 4.All of the above	3.0
		1.	
		alter	
		2.	
		update	
301	command can be used to modify a column in a table	3.	1.0
		set	
		4.	
		create	
		1.	
		Constraints	
		2.	
302	is preferred method for enforcing data integrity	Stored Procedure	1.0
	,	3.	
		Triggers	
		4.	
		Cursors	
		1.	
		very low	
		2.	
		low	
303	66.6% risk is considered as	3.	4.0
		moderate	
		4.	
		high	
304	8086 microprocessor is interfaced to 8253 a programmable interval timer. The maximum number by which the clock frequency on one of the timers is divided by	1.216 2.28 3.210 4.220	1.0
			_

S.NO.	Questions	Choices	Answers
		1.	
		User Interfaces	
		2.	
		Web Services	
305	Which activity most easily lends itself to incremental design?	3.	3.0
		Enterprise resource planning	
		4.	
		Embedded Sofftware	
		1.Gantt Chart 2.	
		Structure Chart	
		3.	
306	Graphical representation of the project, showing each task and activity as horizontal bar whose length is proportion to time taken for a completion of that activity is called	Pert Chart	1.0
	tength is proportion to time taken for a completion of that activity is called		
		4.	
		Time Line	
		1.	
		Software suffers from exposure to hostile environments	
		2.	
		Defects are more likely to arise after software has been used often	
3017.	Software deteriorates rather than wears out because	3.	3.0
		Multiple change requests introduce errors in component	
		interactions	
		4.	
		Software spare parts become harder to order	
		1.Estimation and planning 2.	
		Analysis and design	
		3.	
3018	The 40-20-40 rule suggests that the least amount of development effort can be spent on	Coding	3.0
		4.	
		Testing	
		1.	
		A reasonable approach when requirements are well defined	
		2.	
2.000		A Useful approach when a customer cannot define requirements clearly	
3019.	The prototyping model of software development is	3.	2.0
		The best approach to use projects with larger development teams	
		4.	
		A risky model that rarely produces a meaningful product	
		1.	
		component analysis	
		2.	
		requirements modification	
310	In reuse-oriented software engineering the last stage is	3.	3.0
	· ———		
		system validation	
		4.	
		system design	

S.NO.	Questions	Choices	Answers
		1.	
		Feasibility study	
311		2.	
	Which of the following is not a part/product of requirements engineering?	Requirements validation	4.0
	3	3.	
		System models	
		4.	
		Architectural design 1.	
		you decide what software you will use to program	
		2.	
		you develop a prototype and show it to the client	
3 112 s	oftware Specification is the process where	3.	3.0
		You find out what services are required from the system	
		4.	
		none	
		1.	
		everything is coded at once, so the customer receives the full	
		product	
		2.	
2 1/2 1/	That is an advantage of incremental delivery?	replacement systems are easily developed with full features that clients expected from the old system	3.0
31D V	nat is an advantage of incremental derivery:	3.	3.0
		Customers can use prototypes and gain experience that informs their requirements for later systems	
		4.	
		none of the mentioned	
		1.waterfall model 2.	
		Incremental model	
		3.	
31:4.	This is a software development process model	Boehm's Spiral model	4.0
		4.	
		all	
		1.	
		architectural design	
		2.	
1- 1	What is the type of software design that defines interfaces between system	Interface Design	
315	components?	3.	2.0
		component Design	
		4.	
		database design	
		1.	
		454	
	The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a 2 file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The		
316	minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is		3.0
		3.	
		456 4.	
		4. 457	

Ans
3.0
4.0
4.0
1.0
4.0
2.0
2.0

S.NO.	Questions	Choices	Answers
		1.	
		Indirect addressing	
	A Stock amoniped Computer was instructive of	2.	
322	A Stack-organized Computer uses instruction of	Two-addressing	3.0
		3.	
		Zero addressing	
		4.	
		Index addressing	
		1.	
		19	
		2.	
	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of	20	
323	bits for the TAG field is	3.	2.0
		21	
		4.	
		22	
		1.	
		Encoder	
		2.	
	A circuit that converts n inputs to 2^n outputs is called	Decoder	
324	A circuit that converts it inputs to 2° it outputs is cannot	3.	1.0
		Comparator	
		4.	
		Carry Look Ahead	
		1.	
		849	
		2.	
	A Program Counter contains a number 825 and address part of the instruction contains the number	850	
	24. The effective address in the relative address mode, when an instruction is read from the memory is		2.0
	•	3.	
		801	
		4.	
		802	
		1.	
		It makes it seem like there's more memory in the computer	
		2.	
		It reduces the number of memory copies required	
	Buffering is useful because		
326		3.	4.0
		It allows all device drivers to use the same code	
		4.	
		It allows devices and thee CPU to operate asynchronously	

S.NO	Questions	Choices	Answe
3327	Consider a 6-stage instruction pipeline, where all stages are perfectly balanced. Assume that there is no cycle-time overhead of pipelining. When an application is executing on this 6-stage pipeline, the speedup achieved with respect to non-pipelined execution if 25% of the instructions incur 2 pipeline stall cycles is	1. 1 2. 2 3. 4 4.5	3.0
328	Consider a join (relation algebra) between relations r(R)and s(S) using the nested loop method. There are 3 buffers each of size equal to disk block size, out of which one buffer is reserved for intermediate results. Assuming size(r(R))	1. Relation r(R) is in the outer loop. 2. Relation s(S) is in the outer loop. 3. Join selection factor between r(R) and s(S) is more than 0.5 4. Join selection factor between r(R) and s(S) is less than 0.5.	1.0
329	Consider a main memory system that consists of 8 memory modules attached to the system bus, which is one word wide. When a write request is made, the bus is occupied for 100 nanoseconds (ns) by the data, address, and control signals. During the same 100 ns, and for 500 ns thereafter, the addressed memory module executes one cycle accepting and storing the data. The (internal) operation of different memory modules may overlap in time, but only one request can be on the bus at any time. The maximum number of stores (of one word each) that can be initiated in 1 millisecond is	1. 5535 2. 65335 3. 53892 4. 10000	4.0
330	Consider two processors P1 and P2 executing the same instruction set. Assume that under identical conditions, for the same input, a program running on P2 takes 25% less time but incurs 20% more CPI (clock cycles per instruction) as compared to the program running on P1 If the clock frequency of P1 is 1GHz, then the clock frequency of P2 (in GHz) is	1. 1.5 2. 1.6 3. 1.7 4.	2.0
3331	Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called	1. relative address mode. 2. index addressing mode. 3. register mode 4.	1.0

S.NO.	Questions	Choices	Answers
		1.	
332		8	
		2.	
	How many address bits are needed to select all memory locations in the 16K × 1 RAM?	3.	3.0
		14	
		4.	
		16	
		1.	
		Width of tag comparator	
		2.	
	If the associativity of a processor cache is doubled while keeping the capacity and block size unchanged, which one of the following is guaranteed to be NOT affected?	Width of set index decoder	
333	unchanged, which one of the following is guaranteed to be NOT affected?	3.	4.0
		Width of way selection multiplexer	
		4.	
		Width of processor to main memory data bus	
		1.	
		11 bits	
		2.	
334	mapping. Then each word of cache memory shall be	21 bits	3.0
		3. 16 bits	
		4.	
		20 bits	
		1.	
		interrupt of lower priority	
		2.	
		interrupt of higher priority	
335	If two interrupts, one of higher priority and other of lower priority occur simultaneously, then the service provided is for	3.	2.0
		both the interrupts	
		4.	
		none of the mentioned	
		1.	
		binary sequence	
	Minterms are arranged in map in a sequence of	2.	
336	and a second sec	gray code	2.0
		3.	
		binary variables	
		4. BCD code	
		200	

S.NO.	Questions	Choices	Answers
		1.	
		As an alternative to register allocation at compile time	
		2.	
337	Register renaming is done is pipelined processors	For efficient access to function parameters and local variables	3.0
		3.	
		To handle certain kinds of hazards	
		4.	
		As part of address translation	
		1.	
		X + Y + Z	
		2.	
		XY + YZ	
338	Simplified form of the boolean expression $(X + Y + XY) (X + Z)$ is		3.0
		3.	
		X+YZ	
		4.	
		XZ + Y	
		1.	
	The 16-bit 2's complement representation of an integer is 1111 1111 1111 0101, its decimal representation is	1	
		2.	
		2	4.0
339		3.	4.0
		3	
		4.	
		-11	
		1.	
		Absolute	
		2.	
	The addressing mode used in an instruction of the form ADD R1, R2 is	Indirect	
340	The addressing mode used in an instruction of the form ADD K1, K2 is	3.	3.0
		Index	
		4.	
		Register	
		1.	
		10 address, 16 data lines	
		2.	
	The capacity of a memory unit is defined by the number of words multiplied by the number of	11 address, 8 data lines	
341	bits/word. How many separate address and data lines are needed for a memory of 4 K \times 16?	3.	4.0
		12 address, 12 data lines	
		4.	
		12 address, 16 data lines	
		,	

S.NO.	Questions	Choices	Answers
		1.	
		read by host to get input	
		2.	
	The data-in register of I/O port is	read by controller to get input	
342		3.	1.0
		written by host to send output	
		4.	
		written by host to start a command	
		1.	
		Flash memory	
		2.	
343	The Firmware are stored in read-only memory or chips.	Dynamic random access memory	3.0
5.5		3.	2.0
		EEPROM	
		4.	
		Random-access memory	
		1.	
		hit ratio	
		2.	
	The performance of cache memory is frequently measured in terms of a quantity called	miss ratio	1.0
344		3.	1.0
		average ratio	
		4.	
		ratio	
		1.	
		-256	
		2.	
245	The smallest integer than can be represented by an 8-bit number in 2?s complement form is	-128	2.0
345		3.	2.0
		-127	
		4.	
		1	
		1.	
		JK flip flop needs a clock pulse	
		2.	
		There is a feedback in JK flip-flop	
346	The main difference between JK and RS flip-flop is that		3.0
		5.	
		JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of Junction cathode multi-vibrator	

S.NO.	Questions	Choices	Answers
		1. Clock rate	
		2.	
347	The rate at which a computer clock deviates from a perfect reference clock is called as	Clock speed	3.0
		3.	
		clock drift rate 4.	
		Transmission Bandwidth	
_			
		1. 21	
		2.22	
	The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-		
348	way set associative cache is bits		4.0
		23	
		4.	
		24	
		1.	
		3	
		2.	
349	To build a mod-19 counter the number of flip-flops required is	3	2.0
		3.	
		,	
		4.	
		9	
		1.	
		69282	
		2.	
		69272	
350	Using 10's complement 72532- 3250 is		1.0
330		3. 	1.0
		69252	
		4.	
		69232	
		1.	
		How they are initiated	
		2.	
351	What is the main difference between traps and interrupts?	The kind of code that's used to handle them	1.0
		3.	
		Whether or not the scheduler is called	
		4.	
		How the operating system returns from them	

S.NO.	Questions	Choices	Answers
		1.	
		Memory Read cycle	
		2.	
252	When an instruction is read from the memory, it is called	Fetch cycle	2.0
352		3.	3.0
		Instruction cycle	
		4.	
		Memory write cycle	
		1.	
		move R1, R2	
		2.	
		move LOC1, LOC2	
353	Which amongst the following refers to Absolute addressing mode		1.0
		3.	
		move LOC1, R2	
		4.	
		move LOC2, R1	
		I.	
		RAID level 1	
		2.	
	Which level of RAID refers to disk mirroring with block striping?	RAID level 2	1.0
354		3.	
		RAID level 0	
		4.	
		RAID level 3	
		1.	
		1 ⊕ 0 = 1	
		2.	
		1 ⊕ 1 ⊕ 0 =1	
	Which of the following logic expression is incorrect?		
355			2.0
		3.	
		$1 \oplus 1 \oplus 1 = 1$	
		4.	
		1 ⊕ 1 = 0	
		1.	
		FIFO	
		2.	
356	Which of the following paging algorithms is most likely to be used in a virtual memory system?	Second chance	3.0
		3.	
		Least Recently Used	
		4.	
		Least Frequently Used	
		peasi riequentiy Oscu	1

.NO.	Questions	Choices	Answei
		1.	
		expansion bus	
	Which one of the following connects high-speed high-bandwidth device to memory subsystem and	2.	
357	CPU.	PCI bus	1.0
		3.	
		SCSI bus	
		4.	
		none of the mentioned	
			_
		1.	
		Distributed parity	
		2.	
		No Parity	
358	Which one of these is characteristic of RAID 5?		1.0
		3.	
		All parity in a single disk	
		4.	
		Double Parity	
			+
		1.	
		RAID I	
	Which two RAID types use parity for data protection?	2.	
		RAID 4	
359		3.	4.0
		RAID 1+0	
		4.	
		RAID 5	
		1.	+
		-10111	
		2.	
	X=1010100 and Y=1000011 using 1's complement Y-X is	-10011	
360	A-1010100 and 1-1000011 using 18 complement 1-A is		3.0
		3.	
		-10001	
		4.	
		-11001	
		1.	+
		Zero	
		2.	
	The minimum number of NAND gates required to implement the Boolean function. A + AB' + AB'C is equal to	1	1.0
361	•	3.	1.0
		4	
		4.	
		7	

S.NO.	Questions	Choices	Answers
		1.	
		ab + (cd)' + cd + bd'	
		2.	
		a(b+c)+cd	
	Which of the following boolean expressions is not logically equivalent to all of the rest?	3.	
362		ab + ac + (cd)'	3.0
		4.	
		bd' + c'd' + ab + cd	
		1.	
		Encoder	
		2.	
	Which of the following unit will choose to transform decimal number to binary code?	Decoder	
363	,	3.	1.0
		Multiplexer	
		4.	
		Counter	
		1.Width of tag comparator	
	If the associativity of a processor cache is doubled while keeping the capacity and block size	2. Width of set index decoder	
364	unchanged, which one of the following is guaranteed to be NOT affected?	3. Width of way selection multiplexer	4.0
		4. Width of processor to main memory data bus	
		Hash function	
		2.	
365	The correspondence between the main memory blocks and those in the cache is given by	Mapping function	2.0
303		3.	2.0
		Locale function	
		4.	
		Assign function	
		1.	
		33	
	TI	2.	
	The stage delays in a 4-stage pipeline are 800, 500, 400 and 300 picoseconds. The first stage (with delay 800 picoseconds) is replaced with a functionally equivalent design involving two stages with	34	
	respective delays 600 and 350 picoseconds. The throughput increase of the pipeline ispercent.	3.	1.0
		35	
		4.	
		32	
		1.	
		driver	
		2.	
	What is the software that runs a computer, including scheduling tasks, managing storage, and handling communication with peripherals?	application suitex 3.	2.0
367	• • • • • • • • • • • • • • • • • • • •	operating system	3.0
		4.	
		bluetooth technology	

S.NO.	Questions	Choices	Answer
		1.2n	
		2.	
		(2n-1)/2	
	For an undirected graph with n vertices and e edges, the sum of the degree of each vertex isequal to	3.2e	3.0
		4.	
		pow(e,2)/2	
		1.	
		higher-age	
		2.	
369		increase-age	3.0
307	Which attribute is used to extend the lifetime of a cookie?	3.	3.0
		max-age	
		4.	
		lifetime	
		1.	
		Internal Style	
		2.	
		Inline Style	
370	<h2 style="color:blue">I am Blue</h2> is way of styling HTML elements	3.	2.0
		External Style	
		4.	
		Default	
		1.	
		Web 1.0	
		2.	
371		Web 2.0	1.0
3/1	is referred to as Static Web	3.	
		Web 3.0	
		4.	
		Web 4.0	
		1.	
		10, 8, 7, 3, 2, 1, 5 2.	
		10, 8, 7, 2, 3, 1, 5	
272	A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order		1.0
3/2	traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted into the heap in that order. The level-order traversal of the heap after the insertion of the elements is:	3.	1.0
	order. The rever-order traversar of the neap after the insertion of the elements is.	10, 8, 7, 1, 2, 3, 5	
		4.	
		10, 8, 7, 5, 3, 2, 1	
		1.	1
		full binary tree 2.	
	A binary tree in which if all its levels except possibly the last, have the maximum number of nodes	AVL tree	
373	and all the nodes at the last level appear as far left as possible, is known as	3.	1.0
		threaded tree	1
		4.	
		•	1
		complete binary tree	

S.NO.	Questions	Choices	Answers
		1.	
374		34	
		2.	
	A binary tree T has 20 leaves. The number of nodes in T having two children is	99	4.0
	A binary tree 1 has 20 leaves. The number of nodes in 1 having two children is	3.	
		/	
		4. 19	
		1.	
		2.	
	A process executes the code	4	
	fork (); fork ();	3.	3.0
	fork (); The total number of child processes created is	7	3.0
	The total number of clinic processes ordated is	4	
		8	
		1.	
		both as a server and a client	
		2.	
		As Client always	
376	A Search engine can serve as		1.0
		3.	
		As Server always	
		4.	
		Neither client nor server	
		1.	
		Generalization	
		2.	
277	Analista Calan American middle mann at the investment of the D. Harrife	Association	1.0
3//	An object of class A receives a message with an argument that is an instance of class B. Identify the type of relationship between class A and Class B:	3.	1.0
		Aggregation	
		4.	
		Realization	
		1.	
		505	
		2.	
378	Consider an undirected graph G where self-loops are not allowed. The vertex set of G is $\{(i, j): 1 = i = 12, 1 = j = 12\}$. There is an edge between (a, b) and (c, d) if $ a - c = 1$ and $ b - d = 1$. The	506	2.0
370	i = 12, $1 = j = 12$. There is an edge between (a, b) and (c, d) if $ a - c = 1$ and $ b - d = 1$. The number of edges in this graph is	3.	2.0
		507	
		4.	
		508	
		1.	
		1/8 2.	
		1	
379	Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is ½. What is the expected number of unordered cycles of length	3.	3.0
	three?	7	
		4.	
		8	
			ļ

s.no.	Questions	Choices	Answers
		1. The function returns 0 for all values of j.	
	Consider the C function given below. int f(int j)	,	
	{ static int i = 50;	2.	
	int k; if (i = j)	The function prints the string something for all values of j.	
380	{	3.	4.0
	<pre>printf("something"); k = f(i);</pre>	The function returns 0 when $j = 50$.	
	return 0; }	·	
	else return 0; }	4.	
	Which one of the following is TRUE?	The function will exhaust the runtime stack or run into an infinite loop when $j = 50$.	
		1.	
		ABCD EFGH	
	Consider the following function written the C programming language.	2.	
	void foo (char * a) { if (* a & & * a ! =' ') {	ABCD	
	putchar (*a);		1.0
		3.	
	} The output of the above function on input 'ABCD EFGH' is	HGFE DCBA	
		4.	
		DCBA	
		1.	
		+-167*2?5-34*	
	Consider the following New-order strategy for traversing a binary tree:	2.	
	1)Visit the root; 2)Visit the right subtree using New-order;	+ 1 * 6 7 ? 2 - 5 * 3 4	3.0
	3)Visit the left subtree using New-order; The New-order traversal of the expression tree corresponding to the reverse polish expression 3 4 *	3.	3.0
	5 - 2 ? 6 7 * 1 + - is given by:	-+1 - 70 : 2 - 3 - 4 3	
		4.	
		.176*+2543*-?-	
		1.	
	Consider the following program: int f(int *p, int n)	2	
	$ \begin{cases} if (n \le 1) \text{ return } 0; \end{cases} $	2.	
383	else return max (f (p+1, n-1),p[0]-p[1]); }		3.0
	int main() {	3.	
	int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	4.	
	The value printed by this program is	4	
		1.	
		15	
	Consider the following recursive C function. Void get (int n)	2.	
	$\{if(n<1) \text{ return};$	25	
304	get (n-1) get (n-3);	3.	2.0
	printf ("%d",n); If get(6) function is being called in main () then how many times will the get() function be invoked		
	before returning to the main ()?	4.	
		24	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the function func shown below:	7	
	int func(int num) { int count = 0;	2.	
	while (num) {	8	2.0
	count++; num>>= 1;	3.	3.0
	} return (count);	9	
	} The value returned by func(435)is	4.	
	7.10 value (0.11110 o. j. 11110 (155).15	0	
		1.	
		80 30 62 114 77 9 99	
		2.	
		114 30 62 77 9 99	
386	For the array (77,62,114,80,9,30,99), write the order of the elements after two passes using the Radix sort	3.	2.0
		9 114 30 62 77 80 99	
		4.	
		9 30 62 77 80 99 114	
		1.	
			
		2.	
387	How can you make a list that lists the items with numbers?	3.	2.0
	Tow can you make a list that lists the fellis with humbers.		
		<d>></d>	
		4.	
			
		1.	
		using System.out.println 2.	
		using Document.Write("Hello World")	
388		3.	4.0
300	How do you write "Hello World" in PHP?	"Hello World"	1.0
		4.	
		using echo("Hello World")	
		1.	
		UDP	
		2.	
		ТСР	
389	HTTP is implemented over	3.	2.0
		SMTP	
		4.	
		РОР	
		1	
		1.	
		isolated 2.	
390		complete	2.0
3,0	If every node u in G adjacent to every other node v in G, A graph is said to be	3.	2.0
		finite 4.	
		strongly connected	

S.NO.	Questions	Choices	Answers
		1. A tree has no bridges 2.	
391	In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is true?	A bridge cannot be part of a simple cycle 3.	4.0
	ionowing statements is true:	Every edge of a clique with size 3 is a bridge (A clique is any compete sub graph of a graph) 4.	
		A graph with bridges cannot have a cycle	ļ
		I. GET	
		2.	
		POST	
392	In HTTP, which method gets the resource as specified in the URI	3.	3.0
		PUT .	
		4. TRACE	
		I.	
		Providing the library for the Java program	
		2.	
393	Java package is a grouping mechanism with the purpose of	Controlling the visibility of the classes, interfaces and methods	2.0
393		3.	2.0
		Replacing header file used in C/C++	
		4.	
		An application framework	
		I.	
		full: (REAR+1) mod n==FRONT empty: REAR ==FRONT 2.	
		(REAR) mod n=FRONT	
394	Assume that the insertion and deletion operations are carried out using REAR and FRONT as	empty: REAR ==FRONT	1.0
	array index variables, respectively. Initially, REAR = FRONT = 0 . The conditions to detect queue full and queue empty are		
		(REAR+1) mod n==Rear empty: REAR ==FRONT 4.	
		full: (FRONT+1) mod n==FRONT	
		empty: REAR ==FRONT	-
	The following function computes the maximum value contained in an integer array	a != n	
	int maximum value contained in an integer array pf] of size n (n >= 1). int max(int *p, int n) {	2.	
	min a=0, b=n-1; while () {	b != 0	
395	if $(p[a] \le p[b])$ { $a = a+1$; } else { $b = b-1$; }	3.	4.0
	} return p[a];	b > (a+1)	
	} The missing loop condition is	4.	
		b != a	
		1. 	
		2.	
		<ins></ins>	
396	The following HTML element helps making animated text	3.	4.0
		<mark></mark>	
		4.	
		<marquee></marquee>	

S.NO.	Questions	Choices	Answers
		1.	
		63	
		2.	
397	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary	64	2.0
5,,	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary search tree, such that the resulting tree has height 6, is	3.	2.0
		65	
		4.	
		66	
		1.	
		To cache page translation information	
		2.	
398	The purpose of a TLB is	To cache frequently used data 3.	2.0
		To hold register values while a process is waiting to be run	
		4.	
		To hold the start and length of the page table	
		1.	
		 /	
		2.	
399		<h></h>	3.0
	The following HTML element is used to display horizontal line	3.	
		<hr/>	
		4.	
		<h2></h2>	
		1.	
		static	
		2.	
400	To prevent any method from overriding, the method has to declared as,	const	3.0
.00			5.0
		3.	
		final 4.	
		extends	
		1.	
		multiprogramming	
		2.	
401		multiuser interfacing	1.0
401		3.	1.0
		Random scheduling	
		4.	
		Variable cpu cycles	
		1.	
		ServletRequest and ServletResponse 2.	
		HttpServletRequest and HttpServletResponse	
402	What are the parameters of the service method?		2.0
		3.	
		HttRequest and HttpResponse 4.	
		Request and Response	
		-	•

493 What does ISP stand for?	Answei
Auto	
What does ISP stand for? What does ISP stand for? What does the following bit of JavaScript print out? What does the following bit of JavaScript print out? VIT a = [1,3,4,5]; console logf[s[4], a[1], a[5]]); What does the following bit of JavaScript print out? VIT a = [1,3,4,5]; console logf[s[4], a[1], a[5]]); What is cell pudding? What is cell pudding? What is cell pudding? What is cell pudding? What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? What will be printed as the output of the following program? public class testincr What will be printed as the output of the following program? public class testincr public class testi	
401 What does JSP stand for? Java Server Pages	
What does the following bit of JavaScript print out? What does the following bit of JavaScript print out? What does the following bit of JavaScript print out? S, undefined 2. S, undefined 40. Var a = [1,3,4,5]; console log[[a]4], a[1], a[5]]; 5.0, undefined 4. S, unll, undefined 4. Used to separate cell walls from their contents 2. Used to separate cell walls from their contents 2. Used to merge two cells 4. Used to merge two cells 4. Leavingut type="text"> 2. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1	3.0
Autor Script Program	
Java Script Program	
Automatical Content	
Sundefined	
Aut	
What does the following bit of JavaScript print out? var a = [1,3,4,5]; console.log([a[4], a[1], a[5])); 405 What is cell padding? 406 What is the correct HTML for making a text input field? What will be printed as the output of the following program? public state void main(String args[]) 407 What will be printed as the output of the following program? public state void main(String args[]) 408 So, anndefined 4. Smull, undefined 4. Used to separate cell walls from their contents 2. Used to set space between cells 4. Used to provide width to a cell 4. input type="text"> input type="text"="> input type	
404 var a = [1,3,4,5]; console.log([a[4], a[1], a[5]]);	
console.log([a[4], a[1], a[5])); console.log([a[4], a[1], a[5])); 5.0,undefined 4. 5.mull,undefined 1. Used to separate cell walls from their contents 2. Used to set space between cells 3. Used to provide width to a cell 4. Used to merge two cells 1. <input type="text"/> 2. 2. 405 What is the correct HTML for making a text input field? 4. <input type="text"/> 2. <input type="text"/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input type="text" =""/> 4. <input text"="" type="text</td><td></td></tr><tr><td>console.log([a[4], a[1], a[5])): 5.0,undefined 4. 5,null,undefined 1. Used to separate cell walls from their contents 2. Used to set space between cells 3. Used to provide width to a cell 4. Used to merge two cells 1. </td><td>1.0</td></tr><tr><td>405 What is the correct HTML for making a text input field? What will be printed as the output of the following program? public class testincr { What will be printed as the output of the following program? public state void main(String args[]) 4. 5.mult, undefined 1. Used to separate cell walls from their contents 2. Used to set space between cells 4. Used to merge two cells 1. -input type="/> 2. -textfield> 3. -input type="textfield"> 4. -textinput type="textfield"> 4. -	
Saull,undefined 1. Used to separate cell walls from their contents	
A05 What is cell padding? 1. Used to separate cell walls from their contents	
What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? What will be printed as the output of the following program? public class testiner What will be printed as the output of the following program? public class testiner Used to set space between cells Used to provide width to a cell 4.	
405 What is cell padding? 3. Used to set space between cells 4. Used to provide width to a cell 4. Used to merge two cells 1. <input type="text"/> 2. <textfield> 3. <input type="textfield"/> 4. <textfield> 3. <textf< td=""><td></td></textf<></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield></textfield>	
What is cell padding? What is cell padding? 3. Used to provide width to a cell 4. Used to merge two cells 1. <input type="text"/> 2. <textfield> 3. <input type="textfield"/> 4. <textinput type="textfield"> 4. <textinput type="text"> 1. 1 = 0 2. 1 = 1 407. 407. 407. 407. 407. 408. 3 = 408. 409. 4</textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textfield></textfield></textfield></textfield></textfield></textfield></textfield>	
What is cell padding? 3. Used to provide width to a cell 4. Used to merge two cells 1. <input type="text"/> 2. <itextfield> 3. <input type="textfield"/> 4. <textfield> 3. <input type="textfield"/> 4. <textinput type="textfield"> 4. <textinput text"="" type="tex</td><td></td></tr><tr><td>What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? What will be printed as the output of the following program? public class testincr { public static void main(String args[])} 3. Used to provide width to a cell 4. Used to merge two cells 1. <input type="> 1. I = 0 What will be printed as the output of the following program? public static void main(String args[]) 407 407 408 109 110 120 130 1407 1407 150 160 170 180 180 180 180 180 180 18</textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textinput></textfield></textfield></textfield></textfield></itextfield>	
Used to provide width to a cell 4. Used to merge two cells 1. <input type="text"/> 2. <textfield> 3. <input type="textfield"/> 4. <textinput type="textfield"> 4. <textinput type="textfield"> 4. <textinput type="text"> What will be printed as the output of the following program? public class testincr public static void main(String args[]) 407 417 428 Used to provide width to a cell 4. Used to merge two cells 1. <textifield> 3. <input type="textfield"/> 4. <textinput type="textfield"> 2. I = 0 I = 1 3. 407 407 407 407 407 407 407 40</textinput></textifield></textinput></textinput></textinput></textfield>	2.0
4. Used to merge two cells 1. input type="text"> 2. textfield> 3. input type="textfield"> 4. textingut type="textfield"> 4. textingut type="text"> 1. 1 = 0 What will be printed as the output of the following program? public class testincr public class testincr public static void main(String args[]) 4. 1. 1 = 0 2 = 1 1 = 1 3 = 3	
Used to merge two cells 1. input type="text"> 2. input type="text"> 2. input type="textfield> 3. input type="textfield"> 4. input type="textfield"> Input type="text"> Input type="textfield"> Input type="textfi	
406 What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? Under type="text"> **cextifield** **simput type="textfield"> **4. **ctextinput type="text"> I. I = 0 What will be printed as the output of the following program? public class testincr **public class testincr **public static void main(String args[]) **Text	
406 What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? 4. <textinput type="text"> 4. <textinput type="text"> 1. I = 0 What will be printed as the output of the following program? public class testincr public static void main(String args[]) 407 407 408 409 409 400 400 400 400 400</textinput></textinput>	
What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? input type="textfield"> 4. <textinput type="text"> I. I = 0 What will be printed as the output of the following program? public class testincr { public static void main(String args[])} I = 1 407</textinput>	
What is the correct HTML for making a text input field? What is the correct HTML for making a text input field? Input type="textfield"> 4. <textinput type="text"> Input type="text"> What will be printed as the output of the following program? public class testincr { public static void main(String args[]) 407 { 3. I = 1</textinput>	
What is the correct HTML for making a text input field? 3. <input type="textfield"/> 4. <textinput type="text"> What will be printed as the output of the following program? public class testincr { public static void main(String args[]) 407. { 1</textinput>	
what is the correct HTME for making a text input netu: <pre> <pre></pre></pre>	1.0
4. <textinput type="text"> 1.</textinput>	
<pre></pre>	
What will be printed as the output of the following program? public class testincr { public static void main(String args[])} I = 1 407 { 3	
What will be printed as the output of the following program? public class testiner { public static void main(String args[]) 407 { I = 0 2. I = 1	
What will be printed as the output of the following program? public class testincr { public static void main(String args[]) 407 { I = 1 3	
public class resulted [public static void main(String args[]) 407 { 1 = 1 3	
public static void main(String args[]) 407 {	
lint $i = 0$:	2.0
$ \mathbf{i} = \mathbf{i} + \mathbf{i} + \mathbf{i} $	
System.out.println(" I = " +i); } 4.	
}	

S.NO.	Questions	Choices	Answers
		1.	
		getYear()	
		2. getYYYY()	
408	Which method is used to get the year of a date object in YYYY format in Javascript.	3.	1.0
		getFullYear()	
		4.	
		get4Year()	
		1.	
		Text	
		2.	
		Password	
409	Which of the following input controls that cannot be placed using <input/> tag?	3.	4.0
		Submit	
		4.	
		Textarea	
		1.	
		body:color=black	
		2.	
		{body;color:black}	
410	Which is the correct CSS syntax?	[oddy, color. black]	4.0
	Which is the contest cast of main.	3.	
		{body:color=black(body}	
		4.	
		body {color: black}	
		1.	
		n + 9378 2.	
411		2^ n-1	2.0
711	Which of the following asymptotic notation is the worst among all?	3.	2.0
		2^ n - 1 4.	
		2n ? 1	
		1.	
		(i) and (ii) only 2.	
		(ii) and (iii) only	2.0
412	(ii)FTP (iii)TCP	3.	3.0
	(iv)POP3	(ii) and (iv) only 4.	
		(iv) only	
		1.	
		valign	
		2.	
,,,		bgcolor	4.6
413	Which of these is not a valid attribute of element?	3.	4.0
		align	
		4.	
		rowspan	

S.NO.	Questions	Choices	Answers
		1.	
		GET 2.	
		HEAD	
	Which of these methods has no restrictions on content size when a form is submitted.		
414		3.	3.0
		POST	
		4. PUT	
		1.	
		Google	
		2.	
		Archie	
415	Which one is the first search engine in internet?	3.	2.0
		AltaVista	
		4.	
		WAIS	
		1.	
		45	
		2.	
		67	
416	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is	3.	2.0
		34	
		4.	
		78	
		1.	
		Browser enriched mail client	
		2.	
417		HTML-enabled mail client	2.0
417		3.	2.0
		Rich Text mail client	
		4.	
		client server mail client	
		1.	
		a prompt	
		2.	
410		an error message	2.0
418	An incorrectly typed command will cause the operating system to display	3.	2.0
		a question mark	
		4.	
		causes exception	
		1.	
		<tdleft></tdleft>	
419		2.	
			4.0
	Choose the correct HTML to left-align the content inside a table cell	3.	
		4.	
1			

S.NO.	Questions	Choices	Answers
	Consider the below code fragment: if (fork $k() = 0$)	1. $u= x + 10$ and $v = y$	
	{ a= a+5; printf("%d, %d \n", a, &a);	2.	
	} else	u= x + 10 and v!= y	3.0
	{ a= a ? 5; printf("%d %d \n", 0, &a);	3.	
	Let u, v be the values printed by parent process and x, y be the values printed by child process. Which one of the following is true?	u + 10 = x and $v = y4.$	
		u + 10= x and v != y 1.	1
	Consider the following C code segment: int a, b, c = 0; void prtFun(void);	31 41 42	
	main() { static int a = 1; /* Line 1 */ prtFun();	2. 42	
	a += 1; prtFun() printf("'n %d %d", a, b);	61 61 3.	4.0
	} void prtFun(void) { static int a=2; /* Line 2 */ int b=1;	42 62	4.0
	a+=++b; printf("\n %d %d", a, b); }	20 4.	
	What output will be generated by the given code segment if: Line 1 is replaced by auto int a = 1; Line 2 is replaced by register int a = 2;	42 42 20	
	Consider the following C program. #include <stdio.h></stdio.h>	1.	
	int f1 (void); int f2 (void); int x = 10;	434 2.	
422	int main () { int x=1;	230	2.0
	x+=f1()+f2()+f3()+f2(); printf("%d", x);	3. 43	2.0
	return 0;	4.	
	int f1(){int x=25; x++; return x;} int f2(){static int x =50; x++; return x;} int f3(){x*=10; return x}; The output of the program is	432	
	ine output of the program is	1.	1
	Consider the following program: int f(int *p, int n)	1	
	$ \begin{cases} if (n \le 1) \text{ return } 0; \end{cases} $	2.	
423	else return max (f (p+1, n-1),p[0]-p[1]); } int main()	3.	3.0
	{ int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	3	
	The value printed by this program is	1 4 . 4	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h></iostream.h>		
	using namespace std;	1.	
	void myFunction(int& x, int* y, int* z) { static int temp=1;	3 3 3 2	
	temp += (temp + temp) - 1;	2.	
	x += *(y++ +*z) + temp - ++temp; *y=x;	3 2 3 3	
424	x=temp; *z= x;	3.	gar3
	cout <td>3 2 3 2</td> <td></td>	3 2 3 2	
	}	4.	
	int main() { int i = 0;	3133	
	$\inf j = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\};$ i=i++-++i;	5133	
	myFunction(i, j, &i); return 0;		
	}		
		1.	
		save	
		2.	
		dontresize	
425	If you don't want the frame windows to be resizeable, simply add what to the lines?	3.	3.0
		noresize	
		4.	
		Delete	
		I.	
		BSD Unix	
		2.	
		Windows	
426	Sockets originate from	3.	1.0
		Linux	
		4.	
		Mac	
		1.	
		10,20,15,23,25,35,42,39,30	
		2.	
427	The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which	15,10,25,23,20,42,35,39,30	4.0
127	one of the following is the postorder traversal sequence of the same tree?	3.	1.0
		15,20,10,23,25,42,35,39,30	
		4.	
		15,10,23,25,20,35,42,39,30	
	William and Call City Company	1.	
	What will be the output of the following C program? void count(int n){	3 1 2 2 1 3 4 4 4	
	static int d=1; printf("%d ", n);		
	print('%d ', n); printf('%d ', d); d++;	2.	
428	if(n>1) count(n-1);	3 1 2 1 1 1 2 2 2 3.	1.0
	printf("%d ", d); }	3122134	
	, void main() { count(3);	D122134	
	}	4.	
		3121112	

S.NO.	Questions	Choices	Answers
		1.	
		In the section	
		2.	
420		In the section	, ,
429	Where in an HTML document is the correct place to refer to an external style sheet?	3.	head
		At the end of the document	
		4.	
		At the top of the document 1.	
		title,body,form and script	
		2.	
430	Which of the following is included in the head section of HTML	title,meta tag,script and CSS	2.0
		3.	
		title, meta tag,css and form 4.	
		title, body,script and CSS	
		1.	
		CGI	
		2.	
431		HTML	3.0
431	Which of these is Server side technology?	3.	3.0
		JavaScript	
		4. CSS	
			-
		1.	
		2.	
422		<tdleft></tdleft>	1.0
432	Which of the following in HTML is used to left align the content inside a table cell?	3.	4.0
		4.	
		1.	
		A cookie is a piece of code that has the potential to compromise the	
		security of an internet user	
		2.	
433	Which one of the following statements is NOT correct about HTTP cookies?	A cookie gains entry to the user's work area through an HTTP header	1.0
	The state of the following same is not a contract account to the state of the state	3.	
		A cookie has an expiry date and time	
		4.	
		Cookies can be used to track the browsing pattern of a user at a particular site	f
	Consider the following program:	1.	
	Consider the following program: int f(int *p, int n)		
	{ if (n <= 1) return 0; else return max (f (p+1, n-1),p[0]-p[1]);	2.	
131	}	3.	3.0
	int main() {	3	
	int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	4.	
	} The value printed by this program is		
		 4	

S.NO.	Questions	Choices	Answer
		1.	
		GET	
		2.	
		HEAD	
435	Which of these methods has no restrictions on content size when a form is submitted.	3.	3.0
		POST	
		4.	
		PUT	
		1.	
		Stack	
		2.	
	datastructure used in pushdown automata.	агтау	
436		3.	1.0
		queue	
		4.	
		linked list	
	Consider the following:		+
		1.Inorder successor of the root 2.	
	temp=root->left;	Maximum element in the right subtree of root	
	while(temp->right!=NULL)	3.	
437	temp=temp->right;	Minimum element in the right subtree of root	4.0
	return temp;	4.	
		Inorder predecessor of the root	
		morder predecessor of the root	
	The above code snippet for a BST with the address of the root node in pointer 'root' returns		1
		Class attribute	
		2.	1.0
438	is used to define a special CSS style for a group of HTML elements	name attribute	1.0
436		3.	4.0
		group attribute	
		4.	
		id attribute	
		1.	1
		method attribute	
		2.	
		action attribute	1.0
439	The attribute defines the action to be performed when the form is submitted	3.	
		onSubmit attribute	
		4.	
		onClick attribute	
		1.	
		S1 is a serializable schedule	
		2.	1.0
	R1(A); W1(A); R2(B); R2(A); R1(B); W2(A+B); W1(B); where R1 and W1 are	A deadlock will occur if 2DL is used	
	read and write operations of transaction T1 and R2 and W2 are read and write operations of transaction T2.		4.0
		3.	
	minor of the following is correct regarding schedule 31:	S1 is a conflict serializable schedule	
		4.	1
		S1 is a view serializable schedule	

S.NO.	Questions	Choices	Answers
		1.	
		switching algebra	
		2.	
		arithmetic algebra	
441	Boolean algebra is also called		1.0
		3.	
		linear algebra	
		4.	
		algebra	
		1.	
		generate code	
		2.	
442	Software prototyping helps to	provide thorough testing	2.0
		3.	
		explore possible software solutions	
		4.	
		collect initial software requirements	
		1.	
		Primary	
		2.	
	Activities such as documentation and software configuration management are what	Validation	
	kind of process activities?	3.	4.0
		Design	
		4.	
		supporting	
		1.	
		quickest to complete	
		2.	
		highest-priority	
444	In incremental delivery the services are typically delivered first	3.	2.0
		cheapest	
		4.	
		most fun to code	
		1.	
		degrade	
		2.	
		improve	
445	In incremental development system structure tends to as many new increments are added.	3.	1.0
		develop its own AI	
		4.	
		shrink	

S.NO.	Questions	Choices	Answers
		1.	
		of the developers to the clients	
		2.	
446	Software specifications are intended to communicate the system needs	to marketing	3.0
110		3.	3.0
		of the clients to the developers	
		4.	
		to the general public	
		1.	
		Incremental development	
		2.	
	This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process	The waterfall model	
447	phases such as requirements specification, software design, implementation, testing, and so on	3.	2.0
	costing, and so on	Reuse-oriented software engineering	
		4.	
		Boehm's spiral model	
		1.	
		A simplified representation of a software process	
		2.	
448	What is a software process model?	A presentation put together in Powerpoint	1.0
110	what is a software process moder:	3.	1.0
		A work flow model of the software's components	
		4.	
		A prototype of the final software product	
		1.	
		architectural design	
		2.	3.0
	What is a type of software design that designs system data structures to be used	interface Design	
	in a database?	3.	2.0
		component Design	
		4.	
		Database design	
		1.	
		The Waterfall Method	
		2.	
	What is based on the idea of developing an initial implementation, exposing this	Incremental Development	
450	to user comment and evolving it through several versions until an adequate system has been developed?	3.	2.0
	nas seen developed.	Reuse-oriented Software Engineering	
		4.	
		Implementation And Unit Testing	
		1.	
		Architectural design	
		2.	
		Database design	
451	What is NOT part of the design process	3.	4.0
		Component design	
		component acorgii	1
		4. Validation testing	

S.NO.	Questions	Choices	Answers
		1.	
		Requirements Definition	
		2.	
450		System and Software Design	
452	Which is not part of the waterfall method?	3.	4.0
		Implementation and Unit Testing	
		4.	
		System Validation	
		1.	
		It is possible to gather more of the requirements up front	
		2.	
		Time to market is faster because there is less overhead	
453	Which statement best describes a benefit of Incremental development over the	3.	3.0
433	waterfall model		3.0
		It is easier to get customer feedback on the development work that's been done	
		4.	
		It is easier to reuse existing components.	
		1. 	
		Picture quality	
		2.	
151	adds to the costs of Software Development because it usually means that work that	Production	4.0
454	has been completed has to be redone	3.	4.0
		Software speed	
		4.	
		Change	
		1.	
	Given the following structure template, choose the correct syntax for accessing the 5th subject marks of the 3rd student:	stud[2].marks[4]	
	struct stud	stud[2].marks[+]	
	{	2.	
455	int marks[6];	stud[4].marks[2]	3.0
433	char sname[20];		3.0
	char rno[10];	3.	
	}s[10];	s[2].marks[4]	
		4.	
		s[4].marks[2] 1.	
		a float	
		2.	
456	By default, any real number in C is treated as	a double	1.0
-		3.	
		a long double	
		4.	
		depends on the memory model	
		1.	
		Analyze results	
		2.	
		Plan test	
457	is the 1st step in the testing process	3.	2.0
		Release product	
		4.	
		Conduct tests	
i			
			l

S.NO.	Questions	Choices	Answers
		1.	
		Hypermedia message	
		2.	
158	A set of documents in which a given document can contain text, graphics video and audio clips as well as embedded references to other documents world wide web	Hypertext document	3.0
150	pages are called as 	3.	3.0
		Hypermedia Documents	
		4.	
		Path rectangular grid of Pixels	
		1.	
		User interface issues	
		2.	
459	A software requirements specification (SRS) document should avoid discussing which one of the following?	Non-functional requirements	1.0
		3.	
		Design specification	
		4.Interfaces with third party softwareKey	
		1.	
		40	
		2.	
460	bytes,record pointer is 10 bytes long and block pointer is 8 bytes long. The	50	2.0
	maximum number of keys that can be accommodated in each non-leaf node of the tree is	3.	2.0
		60	
		4.	
		70	
		1.	
		analysis, design,coding,testing	
		2.	
461		planning, analysis, design, coding	4.0
401	Extreme Programming process model includes framework activities such as	3.	4.0
		planning,analysis,coding,testing	
		4.	
		planning, design, coding, testing	
		1.	
		enter and leave scope	
		2.	
		inherit parent class	
462	For automatic objects, constructors and destructors are called each time the objects —	3.	1.0
		are constructed	
		4.	
		are destroyed	
		1.	
		Trust	
		2.	
		Competence	
463	Important capability needed for an agile software developer is	3.	3.0
		Decision-making	
		4.	
		HardworkKey	

S.NO.	Questions	Choices	Answers
		1.	
		Analysis	
		2.	
		Coding	
464	In which phase is Agile Modeling(AM) carried out	3.	3.0
		Planning	
		4.	
		TestingKey	
		1.	
		Machine language	
		2.	
465	Mnemonic codes and variable names are used in	Assembly language	2.0
		3.	
		high level language	
		4.	
		Used nowhere	
		1.	
		The linear sequential model	
		2.	
		Fountain model	
466	Waterfall model of software development is also termed as	3.	1.0
		Spiral model	
		4.	
		Concurrent development model	
		Concurrent development model	
		1.	
		Fire Dispatch Systems	
		2.	
467	Which of the following is not a life white Contact 2	Nuclear Reactors	4.0
467	Which of the following is not a Life-critical System?	3.	4.0
		Power Utilities	
		4.	
		Inventory Management	
		1.	
		A destructor has void return type.	
		2.	
		A destructor has integer return type.	
468	Which of the following statement is correct about destructors?	3.	3.0
		A destructor has no return type.	
		4.	
		A destructors return type is always same as that of main()	
	#include <iostream.h></iostream.h>	1.	
	using namespace std; int main()	20	
	{	2.	
	int x=20; if(!(!x)&&x)	10	
469	cout< else	3.	1.0
	tx=10; cout< return 0;	1	
	}	4.	
	}	0	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h> using namespace std;</iostream.h>	1.	
	typedef int * IntDtr-	62010206	
	Int manify { IntPtr A, B, C;		
	A = new int(3);	2.	
470	The line line line line line line line lin	72010107	2.0
	$C = 1ew \ln(9);$ D = 10; E = 20;	3.	
	*A = *B;	71020106	
	B = &E D = (*B)++;	4.	
	*C= (*A)++ * (*B); E= *C++ - *B;	10720107	
	cout<<*A<<*B<<*C< return 0; }	10/2010/	
-		1.	-
		a->next=c	
		2.	
		b->next=c	
471	If a, b, c, are three nodes connected in sequence in a singly linked list, find the valid statement that may help to change this list to a circular linked list?	3.	4.0
		a->next=c	
		4.	
		c->next=b	
		1.	
		After the CPU time slice expires	
		2.	
472		to allow starving processes to run	1.0
4/2	Round Robin scheduling is the strategy of temporarily suspending a running process	3.	1.0
		when it requests IO	
		4.	
		when OS wait	
		if there are more than two processes competing for that resource	
		2. if there are only two process completing for that resource	
473	With a single resource, deadlock occurs	3.	1.0
		if there is a single process competing for that resource	
		4.	
		it never occur in this case	
\dashv		1.	+
		Distributed	
		2.	
		Network	
474	OS pays more attention on the meeting of the time limits.	3.	3.0
		Real time	
		4.	
		Desktop	
		<u> </u>	

S.NO.	Questions	Choices	Answers
		1.	
	Consider a software program that is artificially seeded with 100 faults. While testing this program, 159 faults are detected, out of which 75 faults are from those artificially seeded faults. Assuming	121	
		2.	
175			4.0
	number of undetected real fault is	3.	4.0
		432	
		4.	
		428	
		1.	
		s1 == s2	
	Given the code	2.	
476	String s2 = ? VIT ?;	s1 = s2	13.0
	Which of the following would equate to true?	3.	
		s3 == s1	
		4.	
		s3=s1 1.	
		0	
		2.	
		3	
477	Suppose T is a binary tree with 14 nodes. What is the minimum possible depth of T?	3.	2.0
		4	
		4.	
		5	
$\vdash\vdash$		1.	-
		<form></form>	
		2.	
		<title></td><td></td></tr><tr><td>478</td><td>The following HTML element contains meta data which is not displayed inside the document</td><td>3.</td><td rowspan=2>2.0</td></tr><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><frame></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><STYLESHEET></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td>450</td><td></td><td><STYLE></td><td>2.0</td></tr><tr><td>4/9</td><td>To link your Web page to a style sheet, you must use the tag</td><td>3.</td><td>3.0</td></tr><tr><td></td><td></td><td>link></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><web></td><td><u> </u></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><0 ></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td>480</td><td>Which of these will create a shuffled list?</td><td>43.</td><td>1.0</td></tr><tr><td></td><td></td><td>3.
<d⊳</td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td>Nested list</td><td></td></tr><tr><td>igsqcup</td><td></td><td></td><td><u> </u></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table></title>	

S.NO.	Questions	Choices	Answers
		1.	
		Stream Control Transmission Protocol (SCTP).	
		2.	
		Transport Layer Security (TSL).	
481	Which one of the following is a cryptographic protocol used to secure HTTP connection?	3.	2.0
		Explicit Congestion Notification (ECN).	
	4	4.	
		Resource Reservation Protocol.	
		1.	
		Bubble Sort	
		2.	
482	Which of the following is example of in-place algorithm?	Merge Sort 3.	3.0
		Insertion Sort	
		4.	
		1.	
		79n²+43n	
		2.	
		65n ³ +34n	
483	Which of these is asymptotically bigger?	3.	2.0
		6*2 ⁿ	
		4.	
		5*2n	
484	bit in ICW1 indicates whether the 8259A is cascade mode or not	1.LTIM=0 2.LTIM=1 3.SNGL=1 4.SNGL=0	4.0
485	messages are typically used for diagnostic or control purposes or generated in response to	1.ICMP 2.TCP 3.UDP 4.IP	1.0
	errors in IP operations.		
486	gives the number of bits that can be transmitted over a network in a fixed time period. cryptography refers to encryption methods in which both the sender and receiver share the	1.Latency 2.Jitter 3.Bandwidth 4.Delay 1.Symmetric 2.Asymmetric 3.Ceaser key 4.Asymmetric key	1.0
	same key. is responsible for the final encapsulation of higher-level messages into frames that are sent		
488	over the network using the physical layer. appends to the address a slash character and the decimal number of leading bits of the	1.Data link layer 2.Network layer 3.Application layer 4.Session layer	1.0
489	routing prefix.	1.CIDR 2.TCP 3.UDP 4.IP	1.0
490	is assigned to an organization by a global authority.	1.Subnet ID 2.Supernet ID 3.Host ID 4.Network ID 1.	4.0
		Cartesian product	
		2.	
		Difference	
491	produces the relation that has attributes of R1 and R2	3.	1.0
		Intersection	
		4.	
		Product	
	should leave trade of multiple file described as secret 11 and 1 PTD 12 at		
492	should keep track of multiple file downloads requested by a particular FTP application, or multiple telnet connections from a single terminal client, or web page retrievals from a web server.	1.Transport layer 2.Application layer 3.Presentation layer 4.Session layer	
493	functions as a request-response protocol in the client-server computing model.	1.HTTP 2.IP 3.TCP 4.UDP	1.0
		time division multiplexing	
		2	
		orthogonal frequency division multiplexing	
494	is commonly used in wireless LAN.	orthogonal frequency division multiplexing 3.	2.0
		space division multiplexing	
		space division multiplexing 4.	
		long division multiplexing	
		nong arrision manupicanig	

S.NO.	Questions	Choices	Answers
		1.	
		Long term	
		2.	
105		Short trem	1.0
495	scheduler selects the jobs from the pool of jobs and loads into the ready queue.	3.	1.0
		Medium term	
		4.	
		None of these	
		1.	
		Long term scheduler	
		2.	
		Short term scheduler (CPU Scheduler)	
496	does the job of allocating a process to the processor.	3.	4.0
		Medium term scheduler	
		4.	
		Dispatcher	
497	has a dedicated communication path between stations	1.Circuit switching 2.Frame relay 3.Packet switching 4.ATM	1.0
		1.	
		Translation Look-aside buffer	
		2.	
	is a high speed cache used to hold recently referenced page table entries as a part of	Inverse page table	
498	paged virtual memory	3.	1.0
		Segmented page table	
		4.	
		Hierarchical page table	
		1.	
		Best Fit	
		2.	
		Worst Fit	
499	memory management scheme will produce least fragement	3.	1.0
		First Fit	
		4.	
		None of these	
		1.	
		AR (Address Register)	
		2.	
		XR (Index Register)	
500	register keeps tracks of the instructions stored in program stored in memory.	3.	3.0
		PC (Program Counter)	
		4.	
		AC (Accumulator)	
		Replace the page that will not be used for a longest period of time	
		2.	
501	states that it is Optimal Replacement algorithm	Replace the page that will not be used for a shortest period of time	1.0
201	saics and it is opinion repracement algorithm	3.	1.0
		Replace the page that will be used for a longest period of time	
		4.	
		Replace the page that will be used for a shortest period of time	
502	algorithm is used for the flow control of data between sender and receiver.	1.Dijkstra 2.RIP 3.Leaky bucket 4.Go Back N	4.0

503 the		1. Web Servers	
503 th		Wah Sarvare	
503 the		WCO SCIVCIS	
503 th		2.	
503 th		Web Downloading Utilities	
	programs automatically connects to web sites and download documents and save	3.	2.0
		Stay Connected	
		4.	
		Offline Browsers	
504	signal prevent the microprocessor from reading the same data more than one	1.pipelining 2.handshaking 3.controlling 4.signaling	2.0
505	function in PHP returns a list of response headers sent (or ready to send)	1.header() 2.headers_list() 3.header_sent() 4.header_send() 1.	2.0
		Prototype	
		2.	
506 ou	is an initial version of a software system that is used to demonstrate concepts, try ut design options, and find out more about the problem and its possible solutions.	Architectural Design	1.0
300 00	at design options, and find out more about the problem and its possible solutions.	3.	1.0
		Subsystem	
		4.	
		Module	
-+		1	-
		Process	
		_	
		2.	
507	is a basic unit of CPU utilization	Thread	2.0
307	is a basic unit of CFO duffization	3.	2.0
		Process Control Block	
		4.	
		Program Counter	
\dashv		1.Transaction	
		2.Optimization	
508	is a logical unit of access to a DBMS		1.0
		3.Schema	
		4.Data	
		1.	
		Q needs to send at least 2 HTTP requests to S, each necessarily in a	
		separate TCP connection to server S 2.	
		Q needs to send at least 2 HTTP requests to S, but a single TCP	
	a graphical HTML browser resident at a network client machine Q accesses a static HTML	connection to server S is sufficient	
wl	by bebage from a HTTP server S. The static HTML page has exactly one static embedded image which is also at S. Assuming no caching, which one of the following is correct about the HTML	3.	2.0
we	rebpage loading (including the embedded image)?	A single HTTP request from Q to S is sufficient, and a single TCP	
		connection between Q and S is necessary for this	
		4.	
		A single HTTP request from Q to S is sufficient, and this is possible	
$-\!\!\!\!+$		without any TCP connection between Q and S 1.	+
		1,048,576 locations	
		2.	
		2,097,152 locations	1, ^
510 A	a 20-bit address bus can locate	3.	1.0
		4,194,304 locations	
		4.	
		8,388,608 locations	
511			4.0
311 A	a 32-bit address bus allows access to a memory of capacity	1.1 GB 2.16 MB 3.64 MB 4.4 GB	4.0

S.NO.	Questions	Choices	Answers
		1.	
		m	
		2.	
512	A D two of order in hos maximum of shildren	m + 1	1.0
312	A B-tree of order m has maximum of children	3.	1.0
		m - 1	
		4.	
		m/2	
513	A binary code that progresses such that only one bit changes between two successive codes is:	1.Gray code 2.excess-3 code 3.8421 code 4.nine's-complement code	1.0
514	A certain 5-bit self-complementary code is used to represent the 10 decimal digits 0 through 9. Given that (246) in decimal is represented as 00010 00100 00110 in this code, what is the representation for (375)?	1.00110 00100 00010 2.00011 00111 00101 3.11001 11101 11011 4.11101 11011 11001	4.0
		1.	
		connect () system call returns successfully	
	A client process P needs to make a TCP connection to a server process S. Consider the following	2.	
	situation: the server process S executes a socket(), a bind() and a listen() system call in that order, following which it is preempted. Subsequently, the client process P executes a socket() system call	connect () system call blocks	3.0
	followed by connect() system call to connect to the server process S. The server process has not	3.	5.0
	executed any accept() system call. Which one of the following events could take place?	connect () system call returns an error	
		4.	
		connect () system call results in a core dump	
		1.	
		Common Cost Estimation Model.	
	A COCOMO model is	2.	
-1.c		Constructive Cost Estimation Model.	
516		3.	2.0
		Complete Cost Estimation Model.	
		4.	
		Comprehensive Cost Estimation Model.	
517	A collection of unused memory reserved for dynamic allocation is called	1.Heap 2.Static 3.array 4.stack dynamic	1.0
518	A comparison between ring and Johnson counters indicates that:	1.A ring counter has fewer flip-flops but requires more decoding circuitry 2.A ring counter has an inverted feedback path 3.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has an inverted feedback path	4.0
		1.	
		1.6 seconds	
		2.	
	A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a	2 seconds	
519	rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps?	3.	2.0
	4	5 seconds	
		4.	
		8 seconds	
520	A data structure where elements can be added or removed at either end but not in the middle	1.linked lists 2.Stacks 3.Queues 4.Deque	4.0
		1.	
		Mutation testing	
		2.	
50.	A Coult simulation continue to the investigation is	Stress testing	1.0
521	A fault simulation testing technique is	3.	1.0
		Black box testing	
		4.	
		White box testing	
522	A grammar that produces more than one parse tree for some sentence is called	1.Ambiguous 2.Irregular 3.Regular 4.Unambiguous	1.0

S.NO.	Questions	Choices	Answers
31.10.	Questions	1.	rinswers
	A group of hits that tell the computer to perform a specific operation is known as	Instruction code	
		2.	
		Micro-operation	
523		3.	1.0
		Accumulator	
		4.	
		Register	
524	A J-K flip-flop is in a "no change" condition when	1.J = 1, K = 1 2.J = 1, K = 0 3.J = 0, K = 1 4.J = 0, K = 0	4.0
		1.	
		aaa	
		2.	
	A language is represented by a regular expression (a)*(a+ba). Which of the following string does	aba	
525	not belong to the regular set represented by the above expression.	3.	3.0
		ababa	
		4.	
		aa	
		1.	
	A layer-4 firewall cannot	block HTTP traffic during 9:00PM and 5:00AM	
		2.	
		block all ICMP traffic	
526		3.	1.0
220		stop incoming traffic from a specific IP address but allow outgoing	1.0
		traffic to same IP	
		4.	
		block TCP traffic from a specific user on a specific IP address on multi-	
		user system during 9:00PM and 5:00AM	
527	A linear collection of data elements where the linear node is given by means of pointer is called	1.primitive list 2.node list 3.linked list 4.array	3.0
		1.	
		Definite blocking	
		2.	
		Starvation	
528	A major problem with priority scheduling is	3.	2.0
		Low priority	
		4.	
		None of these	
		1.	
		15 states	
		2.	
529	A minimum state DFA accepting the language L={w/w belongs {0,1}*} number of 0s and 1s in w	7 states	1.0
329	are divisible by 3 and 5, respectively} has	3.	1.0
		9 states	
		4.	
		8 states	
530	A network that contains multiple hubs is most likely configured in which topology?	1.Mesh 2.Tree 3.Bus 4.Star	2.0
223			1

S.NO.	Questions	Choices	Answers
		1.	
		True	
		2.	
		False	
531	A NFA converted to DFA has more than one final state.	3.	1.0
		may be true	
		4.	
		always true	
		·	
		1. Where each record in table A can have one or more matching records in table B	
532	A one to many relationship (of table A to Table B) is	2. Where each record in table B can have one or more matching records in table A $$	1.0
		3. Where each record in Table B is required to have a match in table A	
		4. Where each record in table A is required to have a match in table B	
		1.can reduce the cost of using an information utility 2.allows	
533	A packet switching network	communications channel to be shared among more than one user 3.can reduce the cost of using an information utility and allows communications channel to be shared among more than one user 4.is	3.0
		free 1.	
		when the page is not in the main memory	
		2.	
534	A page fault occurs	when the page is in the cache memory	1.0
331	A page fault occurs	3.	1.0
		when the process enters the blocked state	
		4.	
		when the process is in the ready state	
535	A parameterized constructor with all arguments initialized is same as	1.default constructor 2.parameterized constructor 3.overriding	1.0
	1	4.overloading 1.	
		encapsulating PPP frames inside ethernet frames	
		2.	
536	A point-to-point protocol over ethernet is a network protocol for	encapsulating ethernet frames inside PPP frames	1.0
220	- Point to point protects over the first in a network protector to	3.	1.0
		for security of ethernet frames	
		4.	
		for security of PPP frames	
537	A primary key, if combined with a foreign key creates	1.Many to many relationships between the tables that connect them 2.Network model between the tables connect them 3.one to many relationship between the tables that connect them 4.Parent child relationship between the tables that connect them	4.0
		relationship between the tables that connect them 1.	+
		be loyal to the organization	
		2.	
538	A professional software engineer must:	build trust from customers	4.0
-		3.	
		socialize with customers	
		4.	
		be loyal to the organization and build trust from customers	
			1

s.no.	Questions	Choices	Answers
·		1.	
		Partial Dependencies	
		2.	
530	A relation R is said to be in 2NF when it does not have	Transitive Dependencies	1.0
339	A relation K is said to be in 2141 when it does not have	3.	1.0
		Multivalued Attributes	
		4.	
		Both Partial dependencies and Multivalued Dependencies	
		1.the same as a flat file database	
		2.one that consists of two or more tables that are joined in some way	
540	A relational database is	3.one that consists of two or more tables	4.0
		4.a database that is able to process tables, queries, forms, reports and macros	
541	A ring counter is same as.	1.up-down counter 2.parallel adder 3.shift register 4.ALU	3.0
		1.	
		attribute	
		2.	
5.40		degree	
542	A set of possible data values is called	3.	4.0
		domain	
		4.	
		tuple	
543	A shift register can be used for.	1.Digital delay line 2.Serial to parallel conversion 3.All of these	4.0
		4.Parallel to serial conversion 1.	1
		analog modulation	
		2.	
		digital modulation	
544	A single channel is shared by multiple signals by	3	3.0
		multiplexing	
		4.	
		none of the mentioned	
			
		1.Database	
545	A software package designed to store and manage databases	2.DBMS	2.0
		3.Data Model	
		4.Data	
		1.Three-address Instruction	
	A shall arraying a summature by	2. Two-address Instruction	
546	A stack organized computer has	3.One-address Instruction	4.0
		4. Zero-address Instruction	
		1.	
547	2.0	TRUE	
547		2.	2.0
		False	
		3. 4.	1
		1. Within the class definition 2. Outside the class definition 3. When the	۵.
548	A static data member is given a value	Within the class definition 2.Outside the class definition 3.When the program is exeuted 4.Never Loombinational gates 2.flip-flops 3.both flip-flops and latches 4.both	2.0

Questions	Choices	Answers
	1.	
	196	
	2.	
A system uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to	192	
begin with. The system first accesses 100 distinct pages in some order and accesses the same 100	3.	1.0
pages but now in the reverse order now many page rathis will occur?	197	
	195	
	1.	
Si 2.	Secondary key	
	2.	
	Alternate key	
A table can have only one	3.	4.0
	Unique key	
	Primary key	
	1.	
	allows easy storage and retrieval of file names	
	2.	
	is not essential when we have millions of files	
A tree sturctured file directory system	3.	1.0
		debated unnecessary teature
	none of these	
A value that has no defined value is expressed in PHP with the following keyword:	1. undef 2.null 3.Cant Define 4.There is no such concept in PHP	2.0
A variable P is called pointer if	and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA	1.0
A variable P is called pointer if		1.0
A variable 1 is called politica in	points to the address of first element in DATA	1.0
	1.	
	virtual table	
	2.	
	subset of the table	
A view is a	3.	1.0
	base table	
	super table	
	I.	\vdash
		1.0 2.0 1.0
A Winchaster diek is a	Removable disk	1.0
A winchester disk is a	3.	1.0
	Flexible disk	
	1	1
	4.	
	4. None of these	
	A system uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to begin with. The system first accesses 100 distinct pages in some order and accesses the same 100 pages but now in the reverse order how many page faults will occur? A table can have only one A tree sturctured file directory system A value that has no defined value is expressed in PHP with the following keyword: A variable P is called pointer if A variable P is called pointer if A view is a	A system uses TPC policy for page replacement. In has 4 page frames with no pages loaded to begin with The system first accesses 100 distinct pages in some order and accesses the same 100 ages but arow in the reverse order how many page faults will occur? 4. 195 A table can have only one A tree sturctured file directory system A tree sturctured file directory system A tree sturctured file directory system A variable P is called pointer if Dak stack 2. Removable disk A View is a

S.NO.	Questions	Choices	Answers
		1.	
		7	
		2.	
	A complete binary min-heap is made by including each integer in [1;1023] exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus,	8	2.0
	the root is at depth 0. The maximum depth at which integer 9 can appear is	3.	
		9	
		4.	
559	Abstraction is	Having public members 2.having private member and public function friend function 4.friend classes	2.0
		1. developer	
		2. end users	
560	2.0	3.	2.0
		test team 4.	
		systems engineers	
		1.	
		ROM	
		2.	
		SRAM	
561	Access time is faster for	3.	2.0
		DRAM	
		4.	
		ERAM	
562	Additive rule	1.cyan+ magenta+ Yellow= white 2.Red + Green + Blue = white 3.cyan+ Green+ Yellow= white 4.cyan+ magenta+ Yellow= Black	2.0
		1.	
		0023H	
		2.	
563	Address line for TRAP is?	0024H 3.	2.0
		0033H	
		4.	
		0099Н	
		1.	
		address latch enable	
		2.	
561	ALE stands for	address level enable	1.0
304	ALE stands for	3.	1.0
		address leak enable	
		4.	
	A CONTROL OF THE CONT	address leak extension	<u> </u>
565	ALGORITHM HAS THE TO THE PROBLEM IN NUMBER OF STEPS	1.SOLUTION & FINITE 2.PROBLEM & INFINITE 3.SOLUTION & INFINITE 4.PROBLEM & FINITE	1.0
566	All devices/host connect to a central switch in topology.	1.Star 2.Ring 3.Bus 4.Tree	1.0
		Bottom up testing	
		2.	
	All the modules of the greatern are interested and tracted as a second s	Top-down testing	
567	All the modules of the system are integrated and tested as complete system in the case of	3.	4.0
		Sandwich testing	
		4.	
		Big-Bang testing	
		!	

S.NO.	Questions	Choices	Answer
		1.	
		SLR , LALR	
		2.	
	Among simple LR (SLR), canonical LR, and look-ahead LR (LALR), which of the following pairs identify the	CLR, LALR	
	method that is very easy to implement and the method that is the most powerful, in that order?	3.	3.0
		SLR, CLR	
		4.	
		SLR	
		1.	_
		2.	
569	An activity is said to be critical if slack time is equal to		1.0
20,	. In add by 10 said to 60 children in saidt dine 10 cquar to	3.	1.0
		2	
		4.	
		3	
570	An advantage of the database approach is	1.Elimination of the data redundancy 2.Ability to associate related data	4.0
570	The devantage of the didductive approach is	3.Increase security 4.All of the options 1.relation	10
		2.domain	
571	An Entity from an ER diagram can be represented in the relational model by a		1.0
		3.functional dependency	
		4.single attribute	
		1.short frame	
		2.runt frame	
572	2 An ethernet frame that is less than the IEEE 802.3 minimum length of 64 octets is called	3.mini frame	2.0
		4.man frame	
		1.Postfix notation 2.Syntax trees 3.Three address code 4.Postfix notation,	
573	An intermediate code form is	Syntax trees and Three address code	4.0
		1.	
		255.255.0.0	
		2.	
	An organization has a class B network and wishes to form subnets for 64 departments. The subnet	255.255.64.0	
574	mask would be:	3.	4.0
		255.255.128.0	
		4.	
		255.255.252.0	
	A second size of the state of t		
	Any code inside a loop that always computes the same value can be moved before the loop. This is called	variable 4.Algebraic Transformation	1.0
		1.	
		types of messages exchanged	
		2.	
		message format, syntax and semantics	
576	Application layer protocol defines	3.	4.0
5/6		rules for when and how processes send and respond to messages	
		la	
		4. all of the mentioned	

S.NO.	Questions	Choices	Answers
		1.	
	2. for Architecture of the database can be viewed as 3.	two levels	
		2.	
		four levels	
577		3.	3.0
		three levels	
		4.	
		one level	
		1.	
		->, %, +, =	
	2.	2.	
		=, +, %, ->	
578	Arrange the operators according to their precedence: $+$, $\frac{9}{6}$, $->$, $=$	3	1.0
		%, +, =, ->	
		70, 1, -, ~	
		0/ > - 1	
		%, ->, =, +	
		1.	
		1000	
		2.	
	Assume that a table R with 1000 records is to be joined with another table S with 10000 records.	10000	
	What is the maximum number of records that would result in if we join R with S and the equi-join attribute of S is the primary key?	3.	1.0
		1,00,00,000	
		4.	
		11000	
		1.Derived class constructor followed by Base class constructor. 2.Base	
580	Assume that we have constructor functions for both base class and derived class. Now consider the declaration in main(). Base $*P = \text{New Derived}$; in what sequence will the constructor be called?	class constructor followed by derived class constructor. 3.Base class constructor will not be called. 4.Derived class constructor will not be	2.0
	ucciai ation in main(). Base * r = New Derived, in what sequence will the constitution be cancer:	called.	
581	Assume the base address of CS is 3000H and IP is 2000H. Calculate the memory address.	1.32000H 2.3000H 3.30000H 4.2000H 1.	1.0
		ksort()	
		2.	
582	Assume you would like to sort an array in ascending order by value while preserving key	asort()	2.0
	associations. Which of the following PHP sorting functions would you use?	3.	
		krsort()	
		4.	
		sort()	
		1.	
		17-JUL-00	
		2.	
	Assuming today is , 10 July 2000, what is returned by this statement: SELECT	10-JUL-00	
583	to_char(Last_DAY(sysdate), 'DD-MON-RR') FROM dual;	3.	4.0
		31-DEC-00	
		4.	
		31-JUL-00	
504	Disamondada sida sa a a a a a a a a a a a a a a a a a	1.sorted linked list 2.sorted binary trees 3.sorted linear array 4.pointer	1.0
584	Binary search algorithm can not be applied to	array	4.0
585	Bit stuffing refers to	1.inserting a '0' in user data stream to differentiate it with a flag 2.inserting a '0' in flag data stream to avoid ambiguity 3.appending a nibble to the flag sequence 4.appending a nibble to the user data stream	1.0
585	Bit stuffing refers to		

an be send over guided and unguided media as analog signal using	frequency modulation 4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	2.0
an be send over guided and unguided media as analog signal using	2. amplitude modulation 3. frequency modulation 4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	
an be send over guided and unguided media as analog signal using	amplitude modulation 3. frequency modulation 4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	
an be send over guided and unguided media as analog signal using	3. frequency modulation 4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	
llowing modern system engineering practices simulation of reactive systems is no longer	frequency modulation 4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	
llowing modern system engineering practices simulation of reactive systems is no longer	4. phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	phase modulation 1. true 2. false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	1. true 2. false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	true 2. false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	2. false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	false 3. 4. 1. 2.0True 2.	2.0
llowing modern system engineering practices simulation of reactive systems is no longer	3. 4. 1. 2.0True 2.	
llowing modern system engineering practices simulation of reactive systems is no longer	1. 2.0True 2.	1
llowing modern system engineering practices simulation of reactive systems is no longer	2.0 _{True}	
sarv	[2.]	
	PAY OF	2.0
	FALSE	
	3. 4.	
	CPU and RAM	
	2.	
	RAM and ROM	
e memory acts between		1.0
	CPU and Hard Disk	
	4.	
	None of these	
	1.	
	59	
	2.	
late the block number in free storage management of files system with number of bits per	51	
is 8, the bit vector is		1.0
01010101, offset of first 1 bit is 3	45	
	4.	
	53	
	1.	
	6.2 micro second	
	2.	
	7.8 micro second	
Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is		3.0
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is	2.2 micro second	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	4.	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	3.2 micro second	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB		
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	1.	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB		•
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator 2.	
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator 2. a Binary operator	2.0
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator 2. a Binary operator 3.	2.0
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator 2. a Binary operator 3. a Ternary operator	2.0
late the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is t-ratio in paging hardware with TLB	a Unary operator 2. a Binary operator 3.	2.0
l: t-		3.2 micro second 1.

Change cannot be easily accommodated in most software systems, unless the system was designed with change in mind. Changes made to an information system to add the desired but not necessarily the required features is called Changes made to an information system to add the desired but not necessarily the required features is called 3. Corrective maintenance. 4. Perfective maintenance. 595 Class IP addresses are used for large organizations 1.A 2.B 3.D 4.C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.71			т
Sumple control be scally accommodated in most software systems, unless the system was designed 1.0	S.NO.	Questions	Choices	Answers
pose processes the early eccumendated in most software systems, unless the system was designed with changes in mond. Processifive maintenance.				
### Office the components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses and components that exhalts functional, layer, or communicational collection are relatively Clauses are decomposed time that the collection are relatively Clauses are and continue to a control function are relatively Clauses are and continue to a control function are relatively Clauses are a		Change cannot be easily accommodated in most software systems, unless the system was designed		
Catagor made to an information system to add the desired but not necessarily the expinied formers is called			2.	1.0
Changes made to an information system to add the desired but not necessarily the adaptive maintenance. 2. Adaptive maintenance. 3. Adaptive maintenance. 4. Properties in adiabation. 595 Class. IP addresses are used for large organizations. 596 Class. If or a 2, low much memory the complex allocates for this class. 597 Lip. 10 Lip. 598 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and maintain. 599 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and supplements. Feel, and maintain. 599 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and supplements. Feel, and maintain. 599 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and advantage of the phylogeneous and composed that exhibit fluorional, layer, or communicational collections are relatively and advantage of the phylogeneous and collections are relatively and a supplements. Feel, and maintain. 590 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and advantage of the phylogeneous and collections. 590 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and an advantage of the phylogeneous and collections. 590 Class and composed that exhibit fluorional, layer, or communicational collections are relatively and an advantage of the phylogeneous are relatively and a supplement free, and maintain. 590 Class and composed that exhibit fluorional, layer, or communicational are relatively and phylogeneous are relatively and an advantage of the phylogeneous are relati			False	
Changes made to an information system to add the desired but not necessarily the Adaptive maintenance. Adaptive m			3. 4.	
Changes made to an information system to add the desired but not necessarily the Adaptive maintenance. Adaptive m			1.	
Sanges made to an information system to add the desired but not necessarily the adaptive maintenance. 4. Ormetive maintenance. 4. Perfective maintenance. 4. Perfective maintenance. 4. Perfective maintenance. 5. Two			Preventative maintenance.	
per required features is called Convenience maintenance.			2.	
Consider a scale of the second		Changes made to an information system to add the desired but not necessarily the	Adaptive maintenance.	
Curretive maintenance. 4. Perfective maintenance. 4. Perfective maintenance. 4. Perfective maintenance. 1. 2. 23 3.12 4.02 1.0 1.0 1022 3.4 genetic on compiler 4.4 4.0 1.0 1.0 590 Class m_1 int m_1; how much memory the compiler allocates for this class 1. 2. 23 3.12 pends on compiler 4.4 1. orce 2. 1. orce 2. 1. orce 2. fishe 3. 4. 1. orce 2. fishe 3. 4. 1. orce 2. fishe 4. ompile time polymorphism is 5. finetion overloading 2-template 3-function overriding 4-abstraction 4. organization overriding for maintenance. 1. organization overriding for maintenance. 1. organization overriding for maintenance. 1. organization overriding for maintenance. 2. organization overriding for maintenance. 1. organization overriding for maintenance. 2. organization overriding for maintenance. 3. finetion overriding for maintenance. 4. organization overriding for maintenance. 4. organization overriding for maintenance. 5. finetion overriding for maintenance. 6. fishe	594	required features is called	3.	4.0
A Perfective maintenance. 1.0		•	Corrective maintenance	
Perfective maintenance. Perfective maintenance.				
Class Paddresser are used for large organizations 1.4 2.B 3.D 4.C 1.0			4.	
Journal of the programming versality to the user by providing facilities as positive to mentarction so reducing 2 template 3 function overriding 4 abstraction 1.0			Perfective maintenance.	
Classes and components that cohibit functional, layer, or communicational cohesion are relatively 2 false 3, 4, 4 1 1 1 1 1 1 1 1 1	595	Class IP addresses are used for large organizations	1.A 2.B 3.D 4.C	
The computer size addressing mode techniques for	596	class n{ int a;}; how much memory the compiler allocates for this class	1	4.0
1.0 1.0			1.	
Classes and components that exhibit functional, layer, or communicational cohesion are relatively case by the implement, test, and maintain. Classes and components that exhibit functional, layer, or communicational cohesion are relatively case by the implement, test, and maintain. Classes and components that exhibit functional, layer, or communicational cohesion are relatively cases by the case of the components that exhibit functional, layer, or communicational cohesion are relatively cases by the case of the case			true	
Classes and component that exhibit functional, layer, or communicational cohesion are relatively 2. In the classes and component that exhibit functional, layer, or communicational cohesion are relatively 2. In the classes and components that exhibit functional, layer, or communicational cohesion are relatively 2. In the classes of implement, test, and maintain. 598 Compile time polymorphism is 1. In the classes of implement, test, and maintain. 1. In the classes of implement, test, and maintain. 1. In the classes of implement, test, and maintain. 2. In the classes of implement test and maintain. 2. In the classes of instruction 2. In the classes of instruction 3. In the field of instruction 4. In the classes of instru	597	1.0	2.	1.0
Classes and components that exhibit functional, layer, or communicational cohesion are relatively 2. Classes and components that exhibit functional, layer, or communicational cohesion are relatively 2. Table Compile time polymorphism is Compi			false	
Classes and components that exhibit functional, layer, or communicational cohesion are relatively easy to implement, test, and maintain. 599 Compile time polymorphism is 1.0 1.1 1.1 1.2 1.0 1.0 1.0 1.0			3. 4.	
Computers use addressing mode techniques for			1.	
22. Computers use addressing mode techniques for			true	
False Compile time polymorphism is Influetion overloading 2.template 3.function overriding 4.abstraction I. giving programming versatility to the user by providing facilities as pointers to memory counters for loop control 2. to reduce no. of bits in the field of instruction 3. specifying rules for modifying or interpreting address field of the instruction 4. All of these Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 7 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 1 states scenarios: Consider 1 states scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 7 scenarios: Consider 8 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 1 states scenarios: Consider 1 states scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 1 states scenarios: Consider 1 states scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 1 states scenarios: Consider 1 states scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 8 scenarios: Consider 9 scen	598		2.	1.0
Computers use addressing mode techniques for		ousy to implement, tost, and mannam.	false	
1. giving programming versatility to the user by providing facilities as pointers to memory counters for loop control 2.			2.4	
giving programming versatility to the user by providing facilities as pointers to memory counters for loop control 2. to reduce no. of bits in the field of instruction 3. specifying rules for modifying or interpreting address field of the instruction 4. All of these 1. 1. Orgy on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Both are true 2. Both are False 3. 1. Consider 2 scenarios: 1. Both are False 1. Consider 2 scenarios: 1. Solt is true, C2 is false 4. C1 is frue, C2 is false 4. C1 is false, C2 is true 603. Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0	599	Compile time polymorphism is	1.function overloading 2.template 3.function overriding 4.abstraction	1.0
pointers to memory counters for loop control 2. to reduce no. of bits in the field of instruction 3. specifying rules for modifying or interpreting address field of the instruction 4. All of these 1. 1. 0-rely on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Consider 2 scenarios: 1. Both are true 1. 2. 2. 2. 3. 3. 4. 602 Consider 2 scenarios: 1. Both are true 1. Both are False 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			1.	
Computers use addressing mode techniques for 2. to reduce no. of bits in the field of instruction 3. specifying rules for modifying or interpreting address field of the instruction 4. All of these 1. 1.0 rely on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Both are true 2. consider 2 aconanous: 2. consider 2 aconanous: 2. consider 3 aconanous: 3. Solution 1 and 1 an			giving programming versatility to the user by providing facilities as	
to reduce no. of bits in the field of instruction 3. specifying rules for modifying or interpreting address field of the instruction 4. All of these Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 soenarios: Consider 2 soenarios: Consider 2 soenarios: Cit For DEA (e, E, S, eq. T), if F = e, then L = E* since F = Final states set e = Total states set choose the correct option? Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0				
Consider 2 scenarios: Consider 3 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 1 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 7 scenarios: Consider 8 scenarios: Consider 8 scenarios: Consider 9 scenarios: Conosider 9 scenarios: Consider 9 scenarios: Consider 9 scenarios:			2.	
Specifying rules for modifying or interpreting address field of the instruction 4. All of these 1. 1.0-rely on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Both are true Consider 2 scenarios: C1: For DFA (s, \(\tilde{\chi}\), \(to reduce no. of bits in the field of instruction	
instruction 4. All of these Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 7 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 2	600	Computers use addressing mode techniques for	3.	4.0
4. All of these Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 5 scenarios: Consider 602 Merce F = Final states set Per Total states set Choose the correct option 7 Consider 2 scenarios: Consider 3 scenarios: Consider 5 scenarios: Consider 602 Consider 6 scenarios: Consider 6 scenarios: Consider 2 scenarios: Consider 6 scenarios: Consider 7 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 8 scenarios: Consider 9				
All of these Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 602 In Fig. 4, then L = In Sec. 5 scenarios: Consider 603 Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 5 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 2 scenarios: C			instruction	
Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 4 scenarios: Consider 5 scenarios: Consider 602 In Both are true Consider 602 In F = 0, then L = E* Where F = Final states set P = Total states set Consider 2 scenarios: Consider 5 scenarios: Consider 603 Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 1 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 2 scenarios: Consider 5 scenarios: Consider 6 scenarios: Consider 6 scenarios: Consider 8 scenarios: Consider 9 scenarios: Consider 9 scenarios: Consider 2 scenarios: Consider 9 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 3 scenarios: Consider 3 scenarios: Consider 4 scenarios: Consider 3 scenarios: Consider 5 scenarios: Consider 5 scenarios:			4.	
1.0 rely on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Consider 2 scenarios: C1: For DFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* C2: For NFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* Where F = Final states set φ = Total states set Choose the correct option? 1. Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			All of these	
1.0 rely on basis path testing 2. exercise the logical conditions in a program module 3. select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Consider 2 scenarios: C1: For DFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* C2: For NFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* Where F = Final states set φ = Total states set Choose the correct option? 1. Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			<u> </u>	\vdash
Condition testing is a control structure testing technique where the criteria used to design test cases is that they Condition testing is a control structure testing technique where the criteria used to design test cases is that they Consider 2 scenarios: Consider 2 scenarios: Consider 2 scenarios: Consider 4, \$\(\phi\), \$\			1.0 _{rely} on basis path testing	
Condition testing is a control structure testing technique where the criteria used to design test cases select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Both are true C1: For DFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* C2: For NFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* Where F = Final states set φ = Total states set Choose the correct option? Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.0 Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.				
select test paths based on the locations and uses of variables 4. focus on testing the validity of loop constructs 1. Consider 2 scenarios: C1: For DFA (\$\phi\$, \$\bar{\phi}\$, \$\bar{\phi}\$, \$\phi\$, \$\ph		Condition testing is a control structure testing technique where the criteria used to design test cases		
4. focus on testing the validity of loop constructs 1. Both are true 2. consider 2 scenarios: C1: For DFA (φ, Σ, δ, qo, F),	601	is that they		1.0
focus on testing the validity of loop constructs 1. Consider 2 scenarios: C1: For DFA (\$\phi\$, \$\Sigma\$, \$\qquad \text{qo}\$, \$\qqq\$, \$\qqqq\$, \$\qqqq\$, \$\qqqq\$, \$\qqqq\$, \$\qqqq\$, \$\qqqq\$, \$\qqq\$				
Consider 2 scenarios: C1: For DFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ C2: For NFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ Where $F = Final$ states set $\phi = Total$ states set Choose the correct option? C1: For DFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ Where $F = Final$ states set C1 is true, C2 is false 4. C1 is false, C2 is true C1 is false, C2 is true				
Consider 2 scenarios: C1: For DFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ C2: For NFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ Both are False 3.0 4. Choose the correct option? Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0			locus on testing the validity of loop constructs	
C1: For DFA (ϕ , Σ , δ , qo, F),			1.	
C1: For DFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ C2: For NFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$ Where $F = F$ in all states set C1 is true, C2 is false Choose the correct option? C1 is false, C2 is true C1 is false, C2 is true C1 is false, C2 is true		Consider 2 scenarios:	Both are true	
if F = φ, then L = Σ* C2: For NFA (φ, Σ, δ, qo, F), if F = φ, then L = Σ* Where F = Final states set φ = Total states set Choose the correct option? C1 is true, C2 is false 4. C1 is false, C2 is true C1 is false, C2 is true			2.	
if F = φ, then L = Σ* Where F = Final states set φ = Total states set Choose the correct option? Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0		if F = ϕ , then L = Σ *	Both are False	
where r = rinal states set \$\phi\$ = Total states set C1 is true, C2 is false 4. C1 is false, C2 is true C1 is false, C2 is true C1 is false, C2 is true 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0	602	if F = ϕ , then L = Σ^*		3.0
Choose the correct option? Choose the correct option? Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1.0				
Choose the correct option? C1 is false, C2 is true C3 Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 10			C1 is true, C2 is false	
Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly 1.199 2.200 3.Any number between 0 and 199 4.Any number between 1 0		Choose the correct option ?	4.	
			C1 is false, C2 is true	
	602	Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly	1.199 2.200 3.Any number between 0 and 199 4.Any number between	1.0
	003			1.0

Questions	Choices	Answ
	1.	
	8	
	2.	
	2.	
er a DFA over $\sum = \{a, b\}$ accepting all strings which have number of a's divisible by 6 and number of b's	14	
by 8. What is the minimum number of states that the DFA will have?	3.	4.0
	15	
	4.	
	48	
er a hash table with 9 slots. The hash function is $h(k) = k \mod 9$. The collisions are resolved		
ining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The	1.3, 3, and 3 2.3, 0, and 1 3.4, 0, and 1 4.3, 0, and 2	2.0
um, minimum, and average chain lengths in the hash table, respectively, are		
	1.	
	8 MSS	
	2.	
er an instance of TCP's Additive Increase Multiplicative Decrease(AIMD) algorithm where	HANGS	
dow size at the start of the slow start phase is 2 MSS and the threshold at the start of the	14 MSS	3.0
insmission is 8 MSS. Assume that a time out occurs during the fifth transmission. Find the tion window size at the end of the tenth transmission.	3.	3.0
non window size at the end of the tenth transmission.	7 MSS	
	4.	
	12 MSS	
er an undirected graph G with 100 nodes. The maximum number of edges to be included is	1.2451 2.4950 3.9900 4.4851	4.0
	1.	
	5	
	2.	
	3	
er S->SS a what is the number of different derivation trees for aaaaa	3.	3.0
	14	
	4.	
	7	
	1.	
	aaaabb	
er the CFG with {S,A,B) as the non-terminal alphabet, {a,b) as the terminal alphabet, S as the start	2.	
and the following set of production rules	-1111	
aB S> bA b A> a	aabbbb	3.0
bs A> as	3.	3.0
aBB A> bAA	aabbab	
of the following strings is generated by the grammar?		
	4.	
	abbbba	
	1.	
	16	
	16ms	
	2.	
er the data of previous question. Suppose that the sliding window protocol is used with the window size of 2 ⁿ where is the number of bits identified in the previous question and	18ms	
whidow size of 2.4 where is the number of bits identified in the previous question and wledgments are always piggybacked. After sending 2\(^1\) i frames, what is the minimum time		3.0
acknowledgments are always piggybacked. After sending 2 ⁻¹ frames, what is the minimum time the sender will have to wait before starting transmission of the next frame? (Identify the closest	3.	
der will have to wait before starting transmission of the next frame? (Identify the closest	20ms	
	4.	
der will have to wait before starting transmission of the next frame? (Identify the closest		
der will have to wait before starting transmission of the next frame? (Identify the closest	22mg	1
der will have to wait before starting transmission of the next frame? (Identify the closest	22ms	
		to the frame processing time). 20ms 4.

S.NO.	Questions	Choices	Answers
		1.	
		2.	
611	Consider the DFAs M and N given above. The number of states in a minimal DFA that accepts the		1.0
	language $L(M) \cap L(N)$ is	3.	1.0
		4.	
612	Consider the following array of elements. {89,19,50,17,12,15,2,5,7,11,6,9,100}. The minimum number of interchanges needed to convert it into a max-heap is	1.4 2.2 3.5 4.3	4.0
	Consider the following C code segment.		
	<pre>for (i = 0, i<n; i++)<="" pre=""></n;></pre>		
	<pre>for (j=0; j<n; j++)="" pre="" {<=""></n;></pre>		
613	<pre>if (i%2) { x += (4*j + 5*i);</pre>	4.0	4.0
	x +- (4-) + 3-1); y += (7 + 4*j); }		
	}		
_	Which one of the following is false? Consider the following C declaration		
	struct {		
	short s [5] union {		
614	float y; long z;	1.10 bytes 2.18 bytes 3.22 bytes 4.14 bytes	2.0
	}u; } t;		
	Assume that objects of the type short, float and long occupy 2 bytes, 4 bytes and 8 bytes, respectively. The memory requirement for variable t, ignoring alignment		
	considerations, is	1	
		6	
	Consider the following code segment.	2	
	x = u - t; y = x * v;	8	
615	x = y + w; y = t - z;	3.	4.0
	y = x * y;	9	
	The minimum number of total variables required to convert the above code segment to static single assignment form is	4.	
		10	
		1.	
		true false	
	Consider the following code snippet	2.	
	var al = [,,,];	false true	
616	<pre>var a2 = new Array(3); 0 in a1</pre>	3.	1.0
	0 in a2	true true	
	Result of Javascript is:	4.	
		false true	
617	Consider the following code snippet: var $a = [1,2,3,4,5]$; a.slice(0,3); What is the possible output for the above code snippet?	1.Returns [1,2,3] 2.Returns [4,5] 3.Returns [1,2,3,4] 4.Returns [1,2,3,4,5]	1.0
	Consider the following code snippet function oddsums(n)	1. Returns [1,4,9,16,25]	
	<pre>{ let total = 0, result=[];</pre>	2.	
	for(let x = 1; x <= n; x++) { let odd = 2*x-1;	Returns [1,2,3,4,5]	
618	<pre>let odd = 2*x-1; total += odd; result.push(total);</pre>	3.	1.0
	} return result;	Returns [3,6,9,12,15]	
) What would be the output if	4.	
	What would be the output if oddsums (5);	Returns [1,3,5,7,9]	
	Consider the following code: var a = []; a.unshift(1); a.unshift(22); a.shift(); a.unshift(3,[4,5]);		
619	Consider the following code: var $a = []$, a.diishin(1), a.diishin(22), a.shiff(), a.shiff(); a.shiff(); The final output for the shiff() is	1.1 2.[4,5] 3.[3,4,5] 4.Exception	1.0

S.NO.	Questions	Choices	Answers
	Consider the following function double f(double x)		
	{ if (abs(x*x - 3) < 0.01) return x;	1.1.723 2.1.732 3.0.732 4.1.733	2.0
	Helice return $f(x/2 + 1.5/x)$;	11.1/25 2.11/52 5.07/52 1.11/55	2.0
	Give a value q (to 2 decimals) such that f(q) will return q:		
		1.	
	Consider the following javascript code snippet:		
	<pre>var a = []; a.unshift(1);</pre>	2.	
621	<pre>a.unshift(22); a.shift();</pre>	[4,5]	1.0
	<pre>a.unshift(3,[4,5]); a.shift();</pre>	3.	
	<pre>a.shift(); a.shift();</pre>	[3,4,5]	
	The final output for the shift() is	4.	
		Exception	
	Consider the following program in C language:	1.	
	#include	Compilation fails.	
	main() {	Execution results in a run-time error.	
	int i; int *pi = &i	3.	4.0
	scanf(?%d?,pi); printf(?%d\n?, i+5);	On execution, the value printed is 5 more than the address of variable i	
	} Which one of the following statements is TRUE?	4.	
	Consider the following statements for priority queue :	On execution, the value printed is 5 more than the integer value entered	
	S1: It is a data structure in which the intrinsic ordering of the elements does determine the result	1 Dat \$1 and \$2 and income 2 \$1 in come 4 and \$2 in income 4 2 Date	
623	of its basic operations. S2: The elements of a priority queue may be complex structures that are ordered on one or several	1.Both S1 and S2 are incorrect 2.S1 is correct and S2 is incorrect 3.Both S1 and S2 are correct 4.S1 is incorrect and S2 is correct	4.0
	fields. Which of the following is correct?		
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d	l only	
	X -> .cX, c/d X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
624	X -> .d, \$	3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	1 and 4 only	
	1. Cannot be merged since look aheads are different.	4.	
	 Can be merged but will result in S-R conflict. Can be merged but will result in R-R conflict. 	1,2,3,4	
	4. Cannot be merged since goto on c will lead to two different sets.		
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d X -> .cX, c/d	1 only	
	X -> .c., c/d X -> .c.X, \$	2.	
	X -> .cx, \$ X -> .d, \$	2 only	
625		3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	3 and 4 only	
	1. Cannot be merged since look aheads are different. 2. Can be merged but will result in S-R conflict.	4.	
	Can be merged but will result in R-R conflict. Cannot be merged since goto on c will lead to two different sets.	1,2,3,4	
	T. Cambe be merged since goto on a will lead to two different sets.	1.	
		LL(1)	
		2.	
	Consider the grammar shown below.	SLR(1) but not LL(1)	
626	S → C C C → c C d	3.	1.0
		LALR(1) but not SLR(1)	
		4.	
		LR(1) but not LALR(1)	
		· · · · · · · · · · · · · · · · · · ·	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the grammar with the following translation rules and E as the start symbol.	200	
	E \rightarrow E1 # T { E.value = E1.value * T.value }	2.	
627	T{ E.value = T.value } T - T1 & F { T.value = T1.value + F.value }	180	3.0
027	F{T.value = F.value } F - num { F.value = num.value }	3.	3.0
		160	
	Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.	4.	
		40	
		1.	
		n1 <n2<n3< td=""><td></td></n2<n3<>	
	Consider the grammar	2.	
	S → (S) a	n1=n3 <n2< td=""><td></td></n2<>	
628	Let the number of states in SLR(1), LR(1) and LALR(1) parsers for the grammar be n1, n2 and n3 respectively. The following relationship holds good	3.	2.0
	respectively. The following foliations in foliate good	n1=n2=n3	
		4.	
		n1>n2>n3	
		1.	
	Consider the intermediate code given below:		
	1. i = 1 2. j = 1	5 and 7	
	3. t1 = 5 * i 4. t2 = t1 + j	2.	
629	5. t3 = 4 * t2 6. t4 = t3	6 and 7	2.0
	7. a[t4] = -1 8. j = j + 1	3.	
	<pre>9. if j <= 5 goto(3) 10. i = i + 1</pre>	5 and 2	
	11. if i < 5 goto(2)	4.	
	The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are	7 and 8	
		1.	
		mn	
		2.	
	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the	m+n	
630	maximum size of join is:	3.	1.0
		(m+n)/2	
		4.	
		2(m+n)	
		1.	
		mn	
		2.	
		m + n	
631	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the maximum size of join is:	3.	1.0
		(m+n)/2	
		4.	
		2(m + n)	
		1.	_
		3	
		2.	
		5	
	Consider the regular language L = (111 + 11111)*. The minimum number of states in any DFA accepting this languages is:		4.0
	iai iyuayoo is.	5.	
		8	
		4.	
		9	
			l

sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	3. BCNF 4. 4NF 1. 9 + 5 + 2 2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2	2.0
> project_name}, {employee_name>-> dependent_name}}, what is the highest normal form tisfies? sider the translation scheme shown below TR TY TY TY TY TY TY TY TY TY	2. 3NF 3. BCNF 4. 4NF 1. 9 + 5 + 2 2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	2.0
> project_name}, {employee_name>-> dependent_name}}, what is the highest normal form tisfies? sider the translation scheme shown below TR TY TY TY TY TY TY TY TY TY	3NF 3. BCNF 4. 4NF 1. 9+5+2 2. 95+2+ 3. 952++ 4. ++952 1.422.343.324.30 1. values 2.	2.0
> project_name}, {employee_name>-> dependent_name}}, what is the highest normal form tisfies? sider the translation scheme shown below TR TY TY TY TY TY TY TY TY TY	3. BCNF 4. 4NF 1. 9+5+2 2. 95+2+ 3. 952++ 4. ++952 1.422.343.324.30 1. values 2.	2.0
sider the translation scheme shown below $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	BCNF 4. 4NF 1. 9 + 5 + 2 2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	4. 4NF 1. 9 + 5 + 2 2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	4NF 1. 9+5+2 2. 95+2+ 3. 952++ 4. ++952 1.422.343.324.30 1. values 2.	
sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	1. 9+5+2 2. 95+2+ 3. 952++ 4. ++952 1.422.343.324.30 1. values 2.	
sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	9 + 5 + 2 2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
sider the translation scheme shown below TR TR Trefrint ('+'); R ε num (print (num.val);) In the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the translation scheme will print in the image of the image	2. 9 5 + 2 + 3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
+ T {print ('+');} R ε + num {print (num.val);} enum is a token that represents an integer and num.val represents the corresponding integer value. For an it string '9 + 5 + 2', this translation scheme will print usider two strings A ='qpqrr' and B = 'pqprqrp'. Let x be the length of the LCS between A and B let y be the number of such longest common subsequences between A and B. Then x + 10y =	3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
.+ T {print ('+');} R ε .num {print (num.val);} enum is a token that represents an integer and num.val represents the corresponding integer value. For an at string '9 + 5 + 2', this translation scheme will print assider two strings A ='qpqrr' and B = 'pqprqrp'. Let x be the length of the LCS between A and B let y be the number of such longest common subsequences between A and B. Then x + 10y =	3. 9 5 2 + + 4. + + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	
t string '9 + 5 + 2', this translation scheme will print usider two strings $A = 'qpqrr'$ and $B = 'pqprqrp'$. Let x be the length of the LCS between A and B let y be the number of such longest common subsequences between A and B . Then $x + 10y = 0$	4. ++952 1.422.343.324.30 1. values 2.	2.0
asider two strings A ='qpqrr' and B = 'pqprqrp'. Let x be the length of the LCS between A and B let y be the number of such longest common subsequences between A and B. Then $x+10y=$	+ + 9 5 2 1.42 2.34 3.32 4.30 1. values 2.	2.0
let y be the number of such longest common subsequences between A and B. Then $x + 10y =$	1.42 2.34 3.32 4.30 1. values 2.	2.0
let y be the number of such longest common subsequences between A and B. Then $x + 10y =$	1. values 2.	2.0
let y be the number of such longest common subsequences between A and B. Then $x + 10y =$	1. values 2.	2.0
	values 2.	
	2.	
		1
	distillet values	1
ant function in SQL returns the number of	3.	1.0
	4.	
	columns	
	1.	
	Batch	
	2.	
	Real Time	
J Scheduling is the basis of operating system	3.	2.0
	Multi-programming	
	4.	
	network	
	1.	
	Error	
	2.	
	Table created	
tte table student_\$(id number(4), namee varchar2(10)); reponse would be	3.	2.0
	Table created with error	
	4.	
	Table created with data	
ating additional function similar to template function is called	1.implicit specialization 2.explicit specialization 3.abstraction 4.template	4.0
	1.which is written in a language that is same as the source language.	
ss-compiler is a compiler	2.that runs on one computer but produces object code for different type of computer. 3.that generates object code for its host machine. 4.which is written in a language that is different from the source language.	2.0
J	Scheduling is the basis of operating system e table student_\$(id number(4), namee varchar2(10)); reponse would be ting additional function similar to template function is called	groups 4. columns 1. Batch 2. Real Time 3. Multi-programming 4. network 1. Error 2. Table created 3. Table created 4. Limplicit specialization 3.abstraction 4.template overriding 1. Limplicit specialization 2.explicit specialization 3.abstraction 4.template overriding 1. Which is written in a language that is same as the source language. 2-chat runs on one computer but produces object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for different type of computer. 3.that generates object code for its host machine. 4. which is

S.NO.	Questions	Choices	Answers
		1.	
		to find some insecurity in a cryptographic scheme	
		2.	
		to increase the speed	
641	Cryptanalysis is used	3.	1.0
		to encrypt the data	
		4.	
		none of the mentioned	
		1.	-
		fixed size bit string	
		nace size on sumg	
		2.	
642	Cryptographic hash function takes an arbitrary block of data and returns	variable size bit string	1.0
012	cryptographic main function takes an arontary block of said and feeding	3.	1.0
		both (a) and (b)	
		4.	
		None	
(12	Currently there is no single standard file type that can be used to play audio using the audio	1.Use JavaScript to determine the web browser in use 2.Use Adobe	
643	element consistently on all browsers. Which is the solution that the audio element provides to resolve this conflict?	Flash to play the audio 3.Include multiple audio file formats in the src attribute 4.No Solution	
		rely on basis path testing	
		2.	
	1.0	exercise the logical conditions in a program module 3.	
644	1.0		1.0
		select test paths based on the locations and uses of variables	
		4. focus on testing the validity of loop constructs	
		1.	
		data is defined separately and not included in programs.	
		2.	
		programs are not dependent on the physical attributes of data	
645	Data independence means	3	4.0
		programs are not dependent on the logical attributes of data	
		4.	
		programs are not dependent on both physical and logical attributes of data	
		1.does exist in memory when the object of the derived class is created	
646	Data Members of the base class that are marked private:	2.exist in memory when the object of the derived class is created the derived class 3.are visible in the derived class 4.are directly	2.0
		accessible in the derived class	
		1.does exist in memory when the object of the derived class is created 2.exist in memory when the object of the derived class is created	
647	Data Members of the base class that are marked private:	the derived class 3.are visible in the derived class 4.are directly accessible in the derived class	2.0
		1.	-
		Physical file	
		2.	
648	Data Store Symbol in DFD represents a	Data Structure	2.0
UT0	Zam Store Symbol in D1 D represents a	3.	[5
		Logical file	
		4.	
		ALL	
649	DB, DW and DD directives are used to place data in particular location or to simplyallocate space	1.f ull address of labels 2.offsets of full address of labels and variables	2.0
UT7	without preassigning anything to space. The DW and DD directories areused to generate	3.full address of variables 4.offsets	1

S.NO.	Questions	Choices	Answers
		1.	
		Data Control Language	
		2.	
		Data Console Language	
650	DCL stands for	3.	1.0
		Data Console Level	
		4.	
		Data Control Level	
		1.	
		allows the virtual address space to be independent of the physical	
		memory	
		2.	
		allows the virtual address space to be a multiple of the physical memory	
651	Demand paged memory allocation	size _	1.0
		3.	
		allows deadlock to be detected in paging schemes	
		4.	
		is present only in Windows NT	
		1.All of the options	
	Desirable properties of relational database design include	2.minimizing update anomalies	
652		3.minimizing redundancy	1.0
		4.minimizing insertion/deletion anomalies	
		1.	
		String instructions	
		2.	
		Stack instructions.	
653	Direction flag is used with	3.	1.0
		Arithmetic instructions	
		4.	
		Branch instructions	
		Branch instructions	
654	Divide and conquire mechanism is used in	1.selection sort 2.merge sort 3.quick and merge sorts 4.indexed	3.0
	-	sequential search 1.	
		Description of logical structure of database.	
		2.	
		Addition of new structures in the database system.	
655	DML is provided for	3.	3.0
		Manipulation & processing of database.	
		4.	
		Definition of physical structure of database system.	
		1.	
		Drops only the values from the table	
		2.	
651		drops structure of the table along with values	2.0
050	Drop SQL clause	3.	2.0
		None of the options	
		4.	
		changes the structure of the table	
657	Duality principle is used when SE is	1.square 2.symmetric 3.asymmetricd 4.translated	2.0

.NO.	Questions	Choices	Answer
		1.	
		applications, data, technology infrastructure	
	1.0	2. communications, organization, financial infrastructure	
658	1.0	3.	1.0
		network, database, reporting structure	
		4.	
		systems, requirements, data structure 1.6	
		2.5	
659	Each counter of IC 8254 can work indiffernt modes of operation	3.4	1.0
		4.3	
		1.	
		symmetric key encryption algorithm	
		2.	
660	ElGamal encryption system is	asymmetric key encryption algorithm	2.0
000	Erounal energypton system is	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
		1.	
		Ultraviolet rays	
		2.	
		infrared rays	
661	EPROM is generally erased by using	3.	1.0
		12 V electrical pulse	
		4.	
		24 V electrical pulse	
		1.	
		pure ethernet	
		2.	
		ethernet over SDH	
662	Ethernet in metropolitan area network (MAN) can be used as	3.	4.0
		ethernet over MPLS	
		4.	
		combination of all of the above mentioned	
		1.	
		reduce the granularity of the plan	
		2.	
663	3.0	analyze requirements in depth	3.0
003		3.	3.0
		get all team members to "sign up" to the plan	
		4. begin design	
		1.	
		Are not iterative in nature	
		2.	
		Can easily accommodate product requirements changes	
664	2.0	3.	2.0
		Generally produce throwaway systems	
		4.	
			1
		Are not specific to applications	

ragmentation of the file system titput stdio.h > =0; y==10) ak; "%d ",++tally); titput stdio.h> ; signed char c=(int)x; %e\n",c);	1. 0 1 2 3 4 5 6 7 8 9 10 2. 0 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 10 1. Error 2. 65	3.0
ragmentation of the file system titput stdio.h > =0; y==10) ak; "%d ",++tally); titput stdio.h> ; signed char c=(int)x; %e\n",c);	3. can be removed by compaction 4. can be avoided by Segmentation 1. 0 1 2 3 4 5 6 7 8 9 10 2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	3.0
stdio.h > =0; y==10) ak; ""%d ",++tally); htput stdio.h> ; signed char c=(int)x; %c\n",c);	1. 0 1 2 3 4 5 6 7 8 9 10 2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	3.0
stdio.h > =0; y==10) ak; "%d ",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	1. 0 1 2 3 4 5 6 7 8 9 10 2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
stdio.h > =0; y==10) ak; ""%d ",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	0 1 2 3 4 5 6 7 8 9 10 2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
stdio.h > =0; y==10) ak; ""%d ",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
stdio.h > =0; y==10) ak; ("%d ",++tally); httput stdio.h > ; signed char c=(int)x; %c\n",c);	2. 0 1 2 3 infinte times 3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
=0; y==10) ak; ("%d",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	3. 1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
y==10) ak; ("%d",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	1 2 3 4 5 6 7 8 9 10 4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A 4.	
ak; "%d",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	4. 1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A	3.0
ak; "%d",++tally); httput stdio.h> ; signed char c=(int)x; %c\n",c);	1 2 3 4 5 6 7 8 9 1. Error 2. 65 3. A	3.0
ntput stdio.h> ; signed char c=(int)x; %c\n",c);	1. Error 2. 65 3. A 4.	3.0
stdio.h> ; signed char c=(int)x; %c\n",c);	Error 2. 65 3. A 4.	3.0
stdio.h> ; signed char c=(int)x; %c\n",c); ntput	Error 2. 65 3. A 4.	3.0
stdio.h> ; signed char c=(int)x; %c\n",c); ntput	2. 65 3. A 4.	3.0
; signed char c=(int)x; %c\n",c); ntput	65 3. A 4.	3.0
; signed char c=(int)x; %c\n",c); utput	3. A 4.	3.0
signed char c=(int)x; %c\n",c); httput	A.	3.0
//c\n",c); ntput	4.	
utput		
ntput	NULL	
stdio.h>	1.	
ole	Error	
	2.0,A,10.5 3.	1.0
10.5;	0,A,10.500000 4.	
	4. No Error, No Output	
mple s;	No Enor, No Output	
₀d, シ₀c, シ₀t¨,s.a,s.b,s.c);		
	1.	
	Error	
	2.	
ntput:	101,	
	Value is = 103	
	3.	3.0
0; %d\n"+1,a);	d	
7-1 : 0/ 48 + 2 - >-	ue is = 100	
	4.	
	100	
	100	
1 8	tput: tdio.h>); ddn"+1,a); falue is = %d"+3,a);	in the state of th

S.NO.	Questions	Choices	Answer
		1.	
	Find the output:	23	
	#include <stdio.h></stdio.h>	2.	
	int main()	Error	
670	int a=23;	3.	1.0
	; ;printf("%d",a);	;23;	
	; return 0;	4.	
	·	;23	
		1.	
		В	
	Find the output:	2.	
	#include <stdio.h> void main()</stdio.h>	A	
671	{ const char var='A';	3.	3.0
	++var;	ERROR	
	printf("%c",var); }	4.	
		66	
-		1.	
		44	
	FIND THE OUTPUT:	2.	
	#include <stdio.h></stdio.h>	45	
672	void main()		2.0
	int x=10;	3.	
	x += (x++)+(++x)+x; printf("%d",x);	46	
	}	4.	
		47	
		1.	
		x= 60	
	Find the output:	2.	
	#include <stdio.h></stdio.h>	x= 70	
673	void main()	3.	4.0
	int x=(20 40) && (10);	x=0	
	$printf("x=%d",x);$ }	4.	
		x= 1	
		1.	
		ERROR: can not modify var.	
	Find the output:	2.	
	#include <stdio.h> void main()</stdio.h>	ERROR: L-Value required	
674	{	3.	2.0
	char var=10; printf("var is = %d",++var+++);	12	
	}	4.	
		ERROR: Expression syntax	
675	First derivative approximation says that values of constant intensities must be	1.1 2.0 3.positive 4.negative	2.0
		1.For the given PS and NS what will be the inputs 2.For the given PS	
676	Flip-flop excitation tables shows that	and NS what will be the outputs 3.For the given PS and NS what will be the type of flip-flops 4.For the given PS and NS what will be the values	4.0
677	Following can be used to implement a SOP function without changing it into minterms	of NS and PS respectively 1.MUX 2.PLA 3.ROM 4.DeMUX	4.0
011	onowing can be used to implement a SOT function without changing it into initiethis	TATION LA LIN SACON TADONION	17.0

S.NO.	Questions	Choices	Answers
		1.	
		The waterfall model	
		2. prototyping model	
678	For a well understood data processing application it is best to use	3.	1.0
		the evolutionary model	
		4.	
		the spiral model	
		1.	+
		3.0 2.	
		data object hierarchy.	
679	For purposes of behavior modeling a state is any	3.	3.0
		observable mode of behavior.	
		4. well defined process.	
		1.	
		A field in a table that matches a key field in another table	
		2.	
		A field in a table that contains data that is also contained elsewhere in another table	
680	Foreign Key is	3.	1.0
		A key that consists of more than one field	
		4.	
		A field in a table that has the same name as a key field in another table	
		1.	
		i=2	
		2.	
	Frames of 1000 bits are sent over a 10 ⁶ bps duplex link between two hosts. The propagation time is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the	i=3	
001	link). What is the minimum number of bits, i will be required to represent the sequence numbers	3.	4.0
	distinctly? Assume that no time gap needs to be given between transmission of two frames.	i=4	
		4.	
		i=5	
		1.	
		20	
		2.	
692	FTP server listens for connection on port number	21	2.0
062	FIF server fisteris for confection on port number	3.	2.0
		22	
		4.	
		23	
683	Functions that combines to produce $f(x,y)$	1.illumination and frequency 2.intensity and reflectance 3.illumination and radiance 4.illumination and reflectance	4.0
		1.	
		Consumes less power	
		2.	
684	Generally Dynamic RAM is used as main memory in a computer system as it	has higher speed	2.0
JU-1	Constant, Dynamic to the to used as main memory in a computer system as it	3.	2.0
		has lower cell density	
		4.	
		needs refreshing circuitry	

S.NO.	Questions	Choices	Answers
		1.	
		waterfall, componet-based, iterative	
		2.	
685	Generic process models are:	waterfall, structural, component-based	4.0
003	Cellette process models are.	3.	4.0
		sequential, waterfall, iterative	
		4.	
		component-based, object-oriented, iterative	
		1.	
		strstr()	
		2.	
606	Given a comma-separated list of values in a string, which function from the given list can create an	extract	2.0
686	array of each individual value with a single call in PHP?	3.	3.0
		explode()	
		4.	
		strtok()	
687	Given a hash table T with 25 slots that stores 2000 elements, the load factor a for T is	1.80 2.0.0125 3.8000 4.1.25	2.0
		1.	
		substr(\$email, strpos(\$email, "@"));	
		2.	
		strstr(\$email, "@");	
688	Given a variable \$email containing the string user@example.com, which of the following PHP statements would extract the string example.com?	3.	4.0
		strchr(\$email, "@");	
		, © <i>/</i> /	
		4.	
		substr(\$email, strpos(\$email, "@")+1);	
689	Given an array that represents elements of arithmetic progression in order. It is also given that one element is missing in the progression, the worst case time complexity to find the missing element	1.theta(n) 2.theta(nLogn) 3.theta(Logn) 4.theta(1)	3.0
	efficiently is: Given CF=0, BX=00111011 01110101 ROR BX,1. The result is	1.CF=1 BX=10011101 10111010 2.CF=1 BX=10100111 01101110	1.0
		3.CF=0 BX=01001110 11011101 4.CF=0 BX=01010011 10110111 1.	
		An attributes of an entity can have more that one value	
		2.	
		An attribute of an entity can be composite	
691	Given the basic ER and relational models, which of the following is INCORRECT?	3.	3.0
	-	In a row of a relational table, an attribute can have more than one value	
		4.	
		In a row of a relational table, an attribute can have exactly one value or a	
		NULL value	
692	Given the Code segment CS = 1000H and the offset BX=0050H. Calculated physical address is	1.10000Н 2.10050Н 3.11050Н 4.11000Н	2.0
693	Given the Extra segment ES = 52B9H and the offset BX=D470H. Calculated physical address is	1.60000Н 2.70000Н 3.11000Н 4.11050Н	4.0
694	Given the frequency f=1.5MHZ for 8253 timer the value of time period T is	1.10ms 2.0.66us 3.1ms 4.100ms	2.0
		1.	
		A is a key for R	
		2.	
695	Given the functional dependencies, {AB -> CDE and A -> E}, for relation schema R =	BE is a key for R	3.0
	(A,B,C,D,E) we can infer the following:	3.	5.0
		AB is a key for R	
		4.	
		B is a key for R	

S.NO.	Questions	Choices	Answers
5.110.	Anconono	1.	2 1125 17 01 8
		1.2.12	
		1, 2 and 3	
		2.	
	Given the language L = {ab, aa, baa}, which of the following strings are in L*?	1, 2 and 4	
696	abaabaaabaa aaaabaaaa	2	2.0
	2) aaaabaaaa 3) baaaaabaaaab	3.	
	4) baaaaabaa	1, 3 and 4	
		4.	
		2, 3 and 4	
		2, 3 and 4	
		1.	
		DDL	
		2.	
		TCL	
697	Grant and revoke are statements.	3.	3.0
		DCL	
		4.	
		DML	
		1.	
		coaxial cable	
		Coaxiai Caule	
		2.	
		twisted pair cable	
698	High speed ethernet works on	3.	3.0
		optical fiber	
		4.	
		none of the mentioned	
699	How can we count the number of elements in an array?	1.Using sizeof() 2.count() 3.Writing a user defined function and using array_search() 4.using sizeof() and count()	4.0
700	TT	1.Using JavaScript 2.Using the 'text' attribute 3.Using the 'placeholder'	4.0
700	How can you specify default text in an input field?	element 4.Using the 'placeholder' attribute	4.0
701	How do I create PHP arrays in a HTML ?	1.< input name= MyArray[]/> 2.< input ="MyArray[]" /> 3.< input name="MyArray[]" /> 4.< input MyArray[] />	3.0
		1.One is not a method of the String object. 2.substr() takes three	
702	How do substring() and substr() differ?	arguments, substring() only two. 3.Only one accepts a desired string	3.0
		length as an argument. 4.Besides the spelling, nothing.	
703	How do we access the value of 'd' later? $a = array('a', 3 \Rightarrow 'b', 1 \Rightarrow 'c', 'd');$	1.\$a[0] 2.\$a[1] 3.\$a[2] 4.\$a[4] 1.Setting zero paddings and margins 2.By displaying our list as block	4.0
704	How do we prevent margins, borders and padding from overlapping?	elements 3.Using table cells 4.By displaying our list as inline elements	2.0
705	How do we submit form data without a Sumbit button?	1.Using header() function 2.Using Javascript 3.Using	4.0
igwdap		fdf_set_submit_form_action() fucntion 4.using header() and javascript	\perp
-	How do you check queue is full in array implementation How do you get information from a form that is submitted using the "get" method?	1.if(rear==size) 2.if(front==size) 3.if(rear==-1) 4.if(front==-1) 1.Request.QueryString; 2.\$_GET[]; 3.Request.Form; 4.\$_POST[];	2.0
	How is a J-K flip-flop made to toggle?	1.J = 0, K = 0 2.J = 0, K = 1 3.J = 1, K = 0 4.J = 1, K = 1	4.0
	How many bits are required to store one BCD digit?	1.1 2.2 3.3 4.4	4.0
	, ,	1.	
		six	
		2.	
		seven	
710	How many diagrams are here in Unified Modelling Language?	3.	4.0
		eight	
		4.	
		nine	
	How many different states does a 3-bit asynchronous counter have?	1.2 2.4 3.8 4.16	3.0
	How many flip-flops are required to construct a mod10 counter?	1.10 2.8 3.5 4.4	4.0
-	How many flip-flops are required to make a MOD-32 binary counter? How many instances of an abstract class can be created?	1.3 2.4 3.5 4.6 1.13 2.5 3.1 4.0	3.0 4.0
/ 1 *†	mon many instances of an abstract class can be eleated:	2.12 2.13 TiV	17.0
/14	prow many installess of all austract class call be created?	1.13 2.3 3.1 4.0	

S.NO.	Questions	Choices	Answer
	·	1.	
		2.	
		2	
715	How many minimum states are required in a DFA to find whether a given binary string has odd number of 0's		2.0
, 15	or not, there can be any number of 1's.	3.	12.0
		4.	
		4	
	How many nodes in a tree have no ancestors.	1.2 2.n 3.1 4.0	3.0
717	How many operating modes are available in 8253A.	1.1 2.2 3.6 4.3	3.0
718	How many transistors does the 8086 have	1.29,000 2.10,000 3.129,000 4.110,000	1.0
	·	1.dateObjectName = new Date([parameters]) 2.dateObjectName.new	
719	How to create a Date object in JavaScript?	Date([parameters]) 3.dateObjectName := new Date([parameters])	1.0
	J 1	4.dateObjectName Date([parameters])	
720	How to create a memory without a name during the execution of the program?	1.malloc() 2.Queue 3.stack 4.list	1.0
		1.remove(var-name); 2.free(var-name); 3.delete(var-name); 4.dalloc(var-	
721	How will you free the allocated memory?	name);	2.0
	How will you handle the overflow condition of a linked queue through code(note: new_node is a	1.if(rear==size) 2.if(new_node==0) 3.if(front==size)	1
722	newly created node in a memory)	1.if(rear=size) 2.if(new_node==0) 3.if(front==size) 4.if(new_node==null)	1.0
	mewry created flode in a memory)		\vdash
		1.	
		user datagram protocol	
			1
		2.	
		transmission control protocol	
723	HTTP client requests by establishing a connection to a particular port on the server.		2.0
	1 7 6	3.	
		broader gateway protocol	
		broader gateway protocor	
		4.	
		RIP	
		[.	-
		1.	
		40	
		2.	
		28	
724	IC 8237 hasmany pins		1.0
		3.	
		24	
		[1
		4.	
			1
		20	1
			1
		1.	
			1
			1
		2.	
			1
		2	1
725	IC 8257 hasmany channels for data transfer		4.0
123	10 025 / masmany chamics for data transfer	3.	1.0
		3	
			1
		4.	1
			1
		4	1
	-	1.only code segment 2.data and code segment 3.only data segment	4.0
726	Identify different segments in a program	4.data, code, stack and extra segments	4.0
726	Identify different segments in a program	ridata, code, stack and extra segments	
	Identify different segments in a program Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD		2.0
726 727		1.00010111B 2.0001X111B 3.00010101B 4.00110111B	2.0
727	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD countdown.	1.00010111B 2.0001X111B 3.00010101B 4.00110111B	-
727	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD		2.0
727 728	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD countdown. Identify the addressing mode for the instruction MOV AH,47H	1.00010111B 2.0001X111B 3.00010101B 4.00110111B 1.Immediate addressing mode 2.Direct addressing mode 3.Based addressing mode 4.Indirect addressing mode	2.0
727 728	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD countdown.	1.00010111B 2.0001X111B 3.00010101B 4.00110111B 1.Immediate addressing mode 2.Direct addressing mode 3.Based	-

S.NO.	Questions	Choices	Answers
		1.	
		1024	
		2.	
		1023	
730	If a class B network on the Internet has a subnet mask of 255.255.248.0, what is the maximum		3.0
	number of hosts per subnet?	3.	
		2046	
		4.	
		2047	
	If a class C is derived from class B, which is derived from class A, all through public inheritance,	1.protected and public data only in C and B 2.protected and public data	
731	then a class C member function can access	only in C. 3.private data in A and B. 4.protected data in A and B.	4.0
732	If a constructor function is defined in private section of a class, then	1. The object cannot be created 2. Only its member functions and friends may declare objects of the class 3. Only its friends may declare objects of	2.0
132	if a constructor function is defined in private section of a class, then	the class 4.Only its member functions may declare objects of the class	2.0
		1.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=1 . 2.CF=0,PF=1,AF=0,ZF=0,SF=1,OF=1	
733	If AL= 7FH and instruction ADD AL,1 is given, specify the contents of the six status flag	3.CF=0,PF=1,AF=1,ZF=0,SF=1,OF=1	4.0
72.4		4.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=0	2.0
734	If AL=C0H, Determine the content of the register AL after SAL AL,1 instruction is executed.	1.E0H 2.80H 3.0CH 4.0EH 1.	2.0
		10	
		2.	
	If all page frames are initially empty, and a process is allocated 3 page frames in real memory and	7	
	references its pages in the order 1 2 3 2 4 5 2 3 2 4 1 and the page replacement is FIFO, the total	3.	4.0
	number of page faults caused by the process will be	8	
		4.	
		9	
		1.	
		Functional Cohesion	
	If all tasks must be executed in the same time-span, what type of cohesion is being exhibited?	2.	
		Temporal Cohesion	
736		3.	2.0
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.Class C is friend of Class A 2.Class A is friend of Class C 3.Class A and Class C don't have any friend relationship 4.Class A and Class C are	
737	If class A is friend of class B and if class B is friend of class C, which of the following is true?	mutual friends	4.0
		1.	
		correct.	
		2.	
	If every requirement stated in the Software Requirement Specification (SRS) has only one	unambiguous.	
738	interpretation, SRS is said to be	3.	2.0
750		consistent.	
		4	
		4.	
		4. verifiable.	
	If inspected in a browser, what will be the total width of the div in the following code snippet?	verifiable.	1.6
	If inspected in a browser, what will be the total width of the div in the following code snippet? #container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}		1.0
	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	verifiable.	1.0
	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	verifiable. 1.664px 2.660px 3.644px 4.600px	1.0
	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular	1.0
	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2.	1.0
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2. context-free	
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2. context-free	1.0
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2. context-free	
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2. context-free 3. context-sensitive	
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	verifiable. 1.664px 2.660px 3.644px 4.600px 1. regular 2. context-free 3.	

S.NO.	Questions	Choices	Answers
		I.	
		n	
		2.	
		n+1	
741	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson		2.0
	construction will have states.		
		n+2	
		4.	
		n-1	
742	If p and q are assigned the values 2 and 3 respectively then the statement $P = q++$	1.assigns a value 5 to p 2.assigns a value 3 to p 3.gives an error message	2.0
		4.assigns a value 4 to p 1."New Text"? 2.para1.value="New Text";	
743	If paral is the DOM object for a paragraph, what is the correct syntax to change the text within the paragraph?	3.para1.firstChild.nodeValue= "New Text"; 4.para1.nodeValue="New	2.0
	If the class name is X, what is the type of its "this" pointer?	Text"; 1.X* 2.const X* const 3.X& 4.X* const	3.0
,	in the value main to 1, what is the type of he and pointer.	1.	5.0
		2^42	
		2.	
		2^18	
	If the disk size is 2 ³⁰ bytes and block size is 2 ¹² bytes then find how many such blocks are		2.0
743	there?	3.	2.0
		2^360	
		4.	
		2^30	
746	If the PIC outputs the type number of C8H, the CPU will retrive the vector stored in the address	1.00320H - 00323H 2.00324H - 00327H 3.00223H - 00226H 4.00140H - 00143H	
		1.	
		m,n	
		2.	
		n,m	
	If the size of logical address space is 2 to the power of m, and a page size is 2 to the power of n addressing units, then the high order bits of a logical address designate		4.0
	the page number, and the low order bits designate the page offset.	5.	
		m-n,m	
		4.	
		m-n,n	
		1.	
		N+1	
		2.	
	If there are n relations how many number of join conditions has to be applied to retrieve the data	N	3.0
,	from all the n relations?	3.	
		N-1	
		4.	
		A Number in the range 0 toN.	
749	If we create a file by 'ifstream', then the default mode of the file is	1.ios :: out 2.ios :: in 3.ios :: app 4.ios :: binary	1.0
		1.	
		Y->Z	
		2.	
		Z->Y	
750	If X->Y and X->Z then		3.0
		3.	
		X->YZ	
		4.	
		Doesn't hold	
			1

		1.	1
		True	
		2.	
751	If $x \rightarrow y$ then $y \rightarrow x$. This statement is	False	3.0
		3.	
		Can't Say	
		4.	
		Doesn't hold	
		1.	
		X> Y	
		2.	
		Y>X	
52	F Y is a subset of X then	3.	2.0
		Y>> X	
		4.	
		X is a sub set of Y	
753	f you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the	1.'r', 'a', 't' 2.'t', 'a', 'r' 3.'r', 't', 'a' 4.'t', 'r', 'a'	1.0
	order of the characters when you dequeue all the elements?	1.	\vdash
		multiplication	
		2.	
		addition	
54 I	IMUL source is a signed	3.	1.0
		subtraction	
		4.	
		division	
ightharpoonup			
755	in 8086 microprocessor one of the following statements is not true	1.Coprocessor is interfaced in MAX mode 2.Coprocessor is interfaced in MIN mode 3.I/O can be interfaced in MAX / MIN mode 4.Supports pipelining	2.0
756	in 8086 microprocessor the following has the highest priority among all type interrupts	1.TYPE 255 2.DIV 0 3.NMI 4.OVER FLOW	3.0
		1.	
		TRAP	
		2.	
,57	in 8086, Example for Non maskable interrupts are	RST6.5	1.0
]	ii 0000, Example for Non maskable interrupts are	3.	1.0
		INTR	
		4.	
		RST6.6	
\dashv		1.	
		always be evaluated	
		2.	
		be evaluated only if the definition is L-attributed	
758 l	n a bottom-up evaluation of a syntax directed definition, inherited attributes can	3.	2.0
		be evaluated only if the definition has synthesized attributes	
		4.	
		never be evaluated	
\dashv		1.components are arranged hierarchically 2.there is no beginning and no	
759	n a circular linked list	end 3.forward and backward traversal within the list is permitted 4.components are arranged from top to bottom	2.0

S.NO.	Questions	Choices	Answers
		1.	
		parsing of the program	
		2.	
		the code generation	
760	In a compiler, keywords of a language are recognized during	3.	3.0
		the lexical analysis of the program	
		4.	
		dataflow analysis	
		·	<u> </u>
		1.	
		Student credit hours	
		2.	
	In a concentral model for a university, which of the following could make ammonistaly be	Course prerequisites	
	In a conceptual model for a university, which of the following could most appropriately be represented via a recursive relationship?	3.	2.0
		Parking sticker assignments	
		4.	
		Final exam schedules	
762	In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is True?	1.A tree has no bridge 2.A bridge cannot be part of a simple cycle 3.Every edge of a clique with size>=3 is a bridge (A clique is any complete subgraph of a graph) 4.A graph with bridges cannot have a cycle	4.0
\dashv		1.	
		from I/O to memory	
		2.	
762	In a DMA write operation the data is transferred	from memory to I/O	1.0
703		3.	1.0
		from memory to I/O	
		4.	
		from I/O to I/O	
\dashv	In a microprocessor, the service routine for a certain interrupt starts from a fixed location		
	of memory which cannot be externally set, but the interrupt can be delayed or rejected. Such aninterrupt is	1.maskable and non-vectored 2.non-maskable and vectored 3.maskable and vectored 4.non-maskable and non-vectored	3.0
	uniter up 10	1.	
		For shortest path routing between LANs	
		2.	
		For avoiding loops in the routing paths	
	In a network of LANs connected by bridges, packets are sent from one LAN to another through intermediate bridges. Since more than one path may exist between two LANs, packets may have to		2.0
	be routed through multiple bridges. Why is the spanning tree algorithm used for bridge-routing?	3.	
		For fault tolerance	
		4.	
		For minimizing collisions	
	In a syntax directed translation schema ,if value of an attribute of a node is function of the values of the attributes of its children , then it is called	1.Inherited attributes 2.Synthesized attributes 3.Canonical attributes 4.Derived attributes	2.0
		1.	
		500 metres of cable.	
		2.	
		200 metres of cable.	
767	In a token ring network the transmission speed is 10^7 bps and the propagation speed is 200	3.	3.0
/	metres/micro second. The 1-bit delay in this network is equivalent to:		[
		20 metres of cable.	
		4.	
		50 metres of cable.	

S.NO.	Questions	Choices	Answer
		segmentation and page tables are stored in the cache and do not add any substantial overhead	
768	In a virtual memory environment	slow down the computer system considerable3.	1.0
		segmentation and page tables are stored in the RAM 4. only page table is stored in cache	
		1. 1111110001	
	In access lists and groups which one of the following is correct for the 'RWX' notation of the order 'group, owner, public'	2. 110111001 3.	2.0
		001111110 4. 001110111	
	In an array representation of binary tree, the left child of i th node is located at	1.2i+2 2.(i-1)/2 3.(i-2)/2 4.2i+1	4.0
771	In an array representation of binary tree, the right child of i th node is located at	1.(i-2)/2 2.(i-1)/2 3.2i+2 4.2i+1 1. rectangle 2.	3.0
772	In an E-R diagram an entity set is represent by a	ellipse 3. diamond box	1.0
		4. circle	
772		1. rectangle 2. square	
//3	In an E-R diagram attributes are represented by	3. ellipse 4.	3.0
774	In any undirected graph, the sum of the degrees of all nodes is:	triangle Lis twice number of edges 2.is always ODD 3.need not be even 4.must	1.0
775	In Assembly language programming, minimum number of operands required for an instruction is/are	be even 1. Zero 2. One 3. Two 4.	1.0
776	In asynchronous serial communication the physical layer provides	Three 1. start and stop signalling 2. flow control 3. both (a) and (b) 4. none of the mentioned	3.0
777	In binary heap, whenever the root is removed then the rightmost element of last level is replaced by the root. Why?	1.To make sure that it is still complete binary tree 2.It is the easiest possible way 3.Because left and right subtree might be missing 4.maximum value is contained by the root node	1.0

NO.	Questions	Choices	Answers
		1.not Null	
		2.Null	
//8	In case of entity integrity, the primary key may be	3.a foreign key	1.0
		4.any value	
		1.	
		cannot be a member of the software team	
		2.	
779	3.0	cannot be a customer	2.0
		3.	
		controls and facilitates the process 4.	
		must be an outsider	
		1.Major difference between LAN and WAN is that the later uses	
780	In context of OSI or TCP/IP computer network models, which of the following is false?	switching element 2.Network layer is connection oriented 3.A repeater is used just to forward bits from one network to another one 4.A gateway is	2.0
\dashv		used to connect incompatible networks 1.	
		transpositional ciphers	
		2.	
781 I	In cryptography, the order of the letters in a message is rearranged by	substitution ciphers	1.0
		3.	
		both (a) and (b)	
		4.	
		none of the mentioned	
		1.	
		Half the baud rate.	
		2.	
		Twice the baud rate.	
782	In Ethernet when Manchester encoding is used, the bit rate is:	3.	1.0
		Same as the baud rate.	
		4.	
		Grows exponentially	
\dashv		1.	_
		transmission control protocol	
		2.	
		user datagram protocol	
783	In FTP protocol, client contacts server using as the transport protocol.	3.	1.0
		datagram congestion control protocol	
		4.	
		stream control transmission protocol	
784 J	In general tree to binary tree conversion, the two links of the binary tree node points to	1.two leaf nodes in the general tree 2.its right child and sibling in the genral tree 3.its left child and sibling in the general tree 4.its left and	4.0
_		right child in the general tree	
		1.	
		multiple HTTP requests are sent on a single TCP connection without waiting for the corresponding responses	
		2.	
		multiple HTTP requests can not be sent on a single TCP connection	
785	In HTTP pipelining	3.	1.0
		none of the mentioned	
		multiple HTTP requests are sent in a queue on a single TCF 4. none of the mentioned	? connection

Second Comment Seco	S.NO.	Questions	Choices	Answers
First Come First Serve	786	In interactive environments such as time-sharing systems, the primary requirement is to provide reasonably good response time and in general, to share system resources equitably. In such situations, the scheduling algorithm that is most popularly applied is	Shortest Remaining Time Next (SRTN) Scheduling 2. Priorities Based Preemptive Scheduling 3. Round Robin Scheduling	3.0
In procuring, RegiSary Object Method tent) is used to search a string and returns 1.1 he tents is somewhere in the middle of the army 2.17he tent is not in the same of all 3.1 he tents is the descripted in the army 2.17h tents in some the search algorithm the West case occurs when 1.2 he tents is a state of the control that army or is not charted in the number. The detail the humble 2. For all pair of remands 3.For all pair of remands 4.Coly for a certain pair of remands 3.For all pair of remands 4.Coly for a certain pair of remands 3.For all pair of remands 4.Coly for a certain pair of remands 3.For all pair of remands 4.Coly for a certain pair of remands 3.For all pair of remands 4.Coly for a certain pair of remands 3.For all pair of remands 4.Coly for a certa				
The tenn's somewhere in the middle of the large 2. The tenn's ton in the middle of the large 3. The tenn's ton in the state demonst in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the last element in the army 4. The tenn's ton in the condition of the last colored in the last element in the army 4. The tenn's ton in the condition of the last colored in the last element in the army 4. The tenn's ton in the condition of the last colored in the last element in the army 4. The tenn's ton in the condition of the last colored in t			First Come First Serve	
the tarray at all This item is the last clement in the array of all This item is the last clement in the array of an Other at all shared clement in the array of an other at all shared clement in the array of an	787	In javascript, RegExp Object Method test() is used to search a string and returns		1.0
Second control bus signal So.S.I and S2 are sent out in	788		the array at all 3.The item is the last element in the array 4.The item is the last element in the array or is not there at all	4.0
he first column will take precedence the column is skipped the column is skipped the column will take precedence the column value of the column will take precedence the column take tolumn will take precedence the column take takes the column takes the colu	789		shared 2. decoded 3. encoded 4.	3.0
reminals 4.Only for a certain pair of terminals Float, string	790	In mysql_fetch_array(),if two or more columns of the result have the same field names, what action is taken?	the first column will take precedence 2. the column is skipped 3. the last column will take precedence 4.	3.0
In PHP, array values are keyed by_values (called indexed arrays) or using_values (called associative arrays). Of course, these key methods can be combined as well. Positive number, negative number 3.	791	In operator precedence parsing , precedence relations are defoned		3.0
file before server executes it In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by Mutual Exclusion 4. Semaphore In software engineering development, if there are no applicable theories, people often use adhoc approach. In software engineering development, if there are no applicable theories, people often use adhoc approach.	792	In PHP, array values are keyed by values (called indexed arrays) or using values (called associative arrays). Of course, these key methods can be combined as well.	1. Float, string 2. Positive number, negative number 3. String, Boolean 4.	4.0
In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by Mutual Exclusion 4. Semaphore In software engineering development, if there are no applicable theories, people often use adhoc approach. False			1.include[] 2.#include() 3.include() 4.#include{}	3.0
In software engineering development, if there are no applicable theories, people often use adhoc approach. True 2. False	794	In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by	Terminating the process. 2. Aging 3. Mutual Exclusion 4.	2.0
	/45	approach.	True 2. False	1.0

S.NO.	Questions	Choices	Answer
		1.	
		true	
796	2.0	2.	1.0
		false	
		3. 4.	
		1.	
		The operand is inside the instruction	
		2.	
		The address of the operand is inside the instruction	
797	In the absolute the addressing mode	3.	1.0
		The register containing the address of the operand is specified inside the instruction	
		4.	
		The location of the operand is implicit	
		1.view level	
798	In the architecture of a database system external level is the	2.conceptual level	1.0
170	in the membersial of a database system external level is the	3.logical level	1.0
		4.physical level	
		1.In both AST and CFG, let node N2 be the successor of node N1. In the	
	In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the	input program, the code corresponding to N2 is present after the code corresponding to N1 2.For any input program, neither AST nor CFG will	4.0
,,,	following is True?	contain a cycle 3.Each node in AST and CFG corresponds to at most one statement in the input program 4.The maximum number of successors of	1
		a node in an AST and a CFG depends on the input program	_
	In the context of object-oriented software engineering a component contains	4.0	4.0
	In the following code snippet, what is the correct value of the left margin? margin: 10px 5px 20px 15px;	1.10px 2.5px 3.20px 4.15px	4.0
		1.	
		Greater than 100	
		2.	
	To the multi-measurement and incomment the main measurement appointing of	only one	
	In the multi-programming environment, the main memory consisting of number of process.	3.	4.0
		Greater than 50	
		4.	
		More than one	
		1.	-
		uniform resource identifier	
		2.	
803	In the network HTTP resources are located by	unique resource locator	1.0
		3.	
		unique resource identifier	
		4.	
		unique resource identifier	
		1.	
		a file	
		2.	
00.4	In the approximation and item(a) what do	a record	10
804	In the operation read_item(x), what does x mean?	3.	4.0
		a disk block	
		4.	
		all of the options	

S.NO.	Questions	Choices	Answers
		1.	
		only the process which has control of the processor is found	
		2.	
805	In the running state	all the processes waiting for I/O to be completed are found	1.0
803	in the fullning state	3.	1.0
		all the processes waiting for the processor are found	
		4.	
		everything in these options are found	
		1.	
		does not increase	
		2.	
	In the slow start phase of the TCP congestion control algorithm, the size of the congestion window	increases linearly	
806		3.	4.0
		increases quadratically	
		4.	
		increases exponentially	
		1.	
		In the first loop	
		2.	
		in the first and second loop	
807	In the spiral model 'risk analysis' is performed	3.	3.0
		In every loop	
		4.	
		before using spiral model 1.	_
		entire IP packet	
		2.	
		IP header	
808	In tunnel mode IPsec protects the	2	1.0
		IP payload	
		4.	
		none of the mentioned	
		1.Control Coupling	
809	In what type of coupling, the complete data structure is passed from one module to another?	2.Stamp Coupling	2.0
007		3.External Coupling	2.0
		4.Content Coupling	
		1.	
		Absolute	
		2.	
		Immediate	
810	In which addressing mode the operand is given explicitly in the instruction	3.	2.0
		Indirect	
		4.	
		Direct	
		1.Class for which copy constructor is defined 2.Class for which two or	_
811	In which case is it mandatory to provide a destructor in a class?	more than two objects will be created 3.Almost in every class 4.Class whose objects will be created dynamically	4.0
. 1			

S.NO.	Questions	Choices	Answers
		1.	
		active mode	
		2.	
812	In which mode FTP, the client initiates both the control and data connections.	passive mode	2.0
		3.	
		active mode and passive mode	
		4.	
		none of the mentioned	<u> </u>
813	In which topology, if there are n devices in a network, each device has n-1 ports for cables?	1.Mesh 2.Star 3.Ring 4.Bus 1.	1.0
		1978	
		2.	
		1979	
814	In which year, 8086 was introduced?		1.0
		3.	
		1977	
		4.	
		1981	
		1.	
		TRUE	
815	2.0	2.	1.0
		FALSE	
		3. 4.	
		1.	
		multiple access point are inter-connected with each other	
		2.	
016		there is no access point	1.0
816	In wireless distribution system	3.	1.0
		only one access point exists	
		4.	
		none of the mentioned	
		1.	
		connected basic service sets	
		2.	
		all stations	
817	In wireless network an extended service set is a set of	3.	1.0
		all access points	
		4.	
		all nodes	
			1
		1. Floory disk	
		Floppy disk	
		2.	
818	Information retrieval is faster from	Magnetic tape	3.0
		3.	
		Hard disk	
		4.	
		CD	
		1	

S.NO.	Questions	Choices	Answer
		1.	
		missing Select keyword	
		2.	
819	Insert into Emp(101, 'XXX') gives the following error	Missing Values	2.0
		3.	
		both of the errors	
		4.	
		No of the errors	
		1.	
	int main()	x=100,y=200	
	int x,y;	2.	
	x=(100,200);	x=200,y=200	
820	y=100,200;	3.	4.0
	printf(" $x = \%d, y = \%d$ ", x, y);	ERROR	
	return 0;	4.	
	Find the output	x=200,y=100	
		1.	
		Sequence Diagram + Collaboration Diagram	
		2.	
		Activity Diagram + State Chart Diagram	
821	Interaction Diagram is a combined term for	3.	1.0
		Deployment Diagram + Collaboration Diagram	
		4.	
		None	
822	Internet Explorer uses property to create transparent images.	1moz-opacity:x 2.filter: alpha(opacity=x) 3.filter: beta(opacity=x) 4 IE-opac:y	2.0
	Interpolation search is an improved variant of binary search.	1.in sorted form and equally distributed 2.in sorted form and but not	
823	It is necessary for this search algorithm to work that data collection should be	equally distributed 3.equally distributed but not sorted 4.unsorted and not evenly distributed	1.0
		1.	
		transport layer	
		2.	
924	IDC as is designed to mustide the associate at the	network layer	2.0
024	IPSec is designed to provide the security at the	3.	2.0
		application layer	
		4.	
		session layer	
825	It is difficult to design asynhronous sequential circuit because.	1.External clock is to be provided 2.It is using Flip flops 3.It is more complex 4.Generally they involve stability problem	4.0
		1.	
		True	
826	It is ok to have a single ideal approach to develop a software.	2.	2.0
		False	
		3. 4.	
		1.	
		False	
927	It would be ideal if all of computer science theories can be used in software engineering.	2.	2.0
027		True	
027			
627		3. 4.	
	JavaScript RegExp Object has modifier 'i' to	3. 4. 1.Perform case-sensitive matching 2.Perform case-insensitive matching 3.Perform both case-sensitive & case-insensitive matching 4.None of the	2.0

S.NO.	Questions	Choices	Answers
		1.	
		Cartesian Product	
		2.	
		Combination of Union and Cartesian product	
829	Join is equal to	-	3.0
	·	3.	
		Combination of selection and Cartesian product	
		4.	
		Combination of intersection and Cartesian product	
		1.84-2-1	_
830	K-map follow following code for marking adjacent variables	1.84-2-1 2.Gray Code 3.2421 4.8421	2.0
		1.	
		P Only	
	Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge	2.	
831	weight is increased by the same value, then which of the following statements is/are TRUE? P: Minimum spanning tree of G does not change. Q: Shortest path between any pair of vertices	Q Only	1.0
	does not change	3.	
		Neither P nor Q	
		4.	
		Both P and Q	
		1.	
		2	
		2	
	Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1		2.0
	and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model?	3.	2.0
	represent this situation in the relational model?	4	
		4.	
		5	
		5	
833	Let G be a graph with n vertices and m edges, What is the tightest upper bound on the running time on Depth First Search of G? Assume that the graph is represented using adjacency matrix		4.0
833	on Deput First Search of G? Assume that the graph is represented using adjacency matrix	1.O(n) 2.O(m+n) 3.O(mn) 4.O(n^2)	4.0
		1.	
		l=P=r	
		2	
	Let G be the CFG, l be the number of left most derivations, r be the number of right most	<=P>=r	
	derivations and P be the number of parse trees. Assume 1, r and P are computed for a particular string. For a given CFG 'G' and given string 'w', what is the relation between 1, P, r?	3.	1.0
		>=P<=r	
		4.	
		<=P<=r	
		1.	
		G(x) contains more than two terms	
		2.	
	Let $G(x)$ be the generator polynomial used for CRC checking. What is the condition that should be	$G(x)$ does not divide $1+x^k$, for any k not exceeding the frame length	
835	satisfied by $G(x)$ to detect odd number of bits in error?	3.	3.0
		1+x is a factor of G(x)	
		4.	
		G(x) has an odd number of terms.	

S.NO.	Questions	Choices	Answers
		1.	
		L1' is recursive and L2' is recursively enumerable	
	Lat 14 has a secure in language, and let 12 has a secure in language which	2.	
836	Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE?	L1' is recursive and L2' is not recursively enumerable	2.0
850	L1'> Complement of L1	3.	2.0
	L2'> Complement of L2	L1' and L2' are recursively enumerable	
		4.	
		L1' is recursively enumerable and L2' is recursive	
837	Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds?	1.t1=5 2.t1>t2 3.t1 4.t1=t2	2.0
020	Let $T(n)$ be the function defined by $T(n) = 1$ and $T(n) = 2T(n/2) + n$,	$1.T(n) = O(n) 2.T(n) = O(\log 2n) 3.T(n) = O(n) 4.T(n) = O(n2)$	3.0
	which of the following is TRUE ?	1.	
		n+1	
		2.	
		n	
839	Let w be any string of length n is {0,1}*. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic finite automaton that accepts L?	3.	1.0
		n-1	
		4.	
		2n+1	
		1.Peephole optimization 2.DFA and Constant folding 3.Basic Code	
840	Local and loop optimization in turn provide motivation for	Analysis 4.Data flow analysis	4.0
841	LOCK prefix is used most often	1.during normal execution. 2.during DMA accesses 3.during interrupt servicing. 4.during memory accesses	3.0
842	Logical addressing is used in layer	1.Network 2.Transport 3.Physical 4.Session	1.0
		1.	
		rely basis path testing	
843	1.0	2.	2.0
043		exercise the logical conditions in a program module	2.0
		3. select test paths based on the locations and uses of variables	
		4.	
		focus on testing the validity of loop constructs 1.	
		backup and low volume data	
		The second second	
		2.	
		backup and high volume data	
844	Magnetic tapes are good storage media for	2	2.0
		3.	
		storing original but low volume data	
		4.	
		storing original but high volume data	
845	Manager salary details are hidden from the employee. This is	1.Conceptual level data hiding 2.Physical level data hiding 3.External level data hiding 4.None of mentioned	1.0
		1.	
		TRUE	
846	1.0	2.	2.0
		FALSE	
		3. 4.	

.NO.	Questions	Choices	Answei
		1.	
		P-4. Q-1, R-2, S-3	
	Maketa all the control of Control A with a control of the control of Control	2.	
	Match all items in Group 1 with correct options from those given in Group 2.	P-3, Q-1, R-4, S-2	
347	Group 1 Group 2 P. Regular expression 1. Syntax analysis		2.0
	Q. Pushdown automata 2. Code generation R. Dataflow analysis 3. Lexical analysis	3.	
	S. Register allocation 4. Code optimization	P-3, Q-4, R-1, S-2	
		4.	
		P-2, Q-1, R-4, S-3	
		1.	
	Match the following:	i'	
	List-I List-II	a	
	A. Lexical analysis 1. Graph coloring B. Parsing 2. DFA minimization	2.	
	C. Register allocation 3. Post-order traversal	ь	
348	D. Expression evaluation 4. Production tree	3.	2.0
	Codes: A B C D	c	
	(a) 2 3 1 4 (b) 2 1 4 3	4	
	(c) 2 4 1 3	4.	
	(d) 2 3 4 1	d	
849	Memory elements in clocked sequential circuits are called.	1.latches 2.gates 3.signals 4.flipflop	4.0
		1.	
		Read only memory	
		2.	
		Programmable Memory	
350	Memory unit accessed by content is called	3.	4.0
		Virtual Memory	
		4.	
		Associative Memory	
	Mode of communication in which transmission takes place in both directions, but only in one		
351	direction at a time is called	1.simplex 2.four wired 3.full duplex 4.half-duplex	4.0
		1.	
		adaptive maintenance	
		2.	
		corrective maintenance	
352	Modifying the software to match changes in the ever changing environment is called	3.	1.0
		perfective maintenance	
		4.	
		preventive maintenance	
		1.	
		Component reuse is common in the software world.	
		o component rease is common in the software world.	
		2. 4.0Reusable components are too expensive to use.	
0.53	Markan American and the second of the land	3.	1.0
533	Most software continues to be custom built because	Software is easier to build without using someone else's components	1.0
		4.	
		Off-the-shelf software components are unavailable in many application domains.	

S.NO.	Questions	Choices	Answers
	Multiple choice examination answer sheets can be evaluated automatically by	Optical Mark Reader 2.	
854		Optical Character Reader 3.	1.0
		Magnetic tape reader	
		4. Magnetic ink character reader.	
		1. persistent HTTP	
855	Multiple object can be sent over a TCP connection between client and server in	2. nonpersistent HTTP 3.	1.0
		both persistent HTTP and nonpersistent HTTP 4.	
956	Multiple veriable dealeration of some data turn can be avaided by 2	p-persistent HTTP	1.0
856	Multiple variable declaration of same data type can be avoided by?	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.0
		frame filter 2.	
857	Network layer firewall works as a	packet filter 3.	2.0
		both (a) and (b) 4. none of the mentioned	
	Network models are complicated by physical keys, but the relation model is	1.Slower because it uses logical keys 2.Slower because it uses physical keys 3.Faster because it uses physical keys 4.Faster because it uses logical keys 1.Banyan (VINES) 2.Microsoft NT advanced server 3.SCO Unix	4.0
859	Network operating system that does not support symmetric multi-processing (SMP) is	4.Novell Network 3.X	4.0
860	NOR Gate does NOT follow	DeMorgan's Theorem 2.Associative Law 3.Commutative Law Distributive Law	4.0
861	Normalisation of database is used to	1.Minimise Errors 2.Improve Security 3.Eliminate redundancy 4.Improve security	3.0
862	Number of the times the instruction sequence below will loop before coming out of loop is, MOV AL, 00h A1: INC AL JNZ A1	1.255 2.01 3.00 4.256 1.	4.0
		Object Database Connectivity.	
863	ODBC stands for	Oral Database Connectivity.	4.0
		Oracle Database Connectivity. 4.	
		Open Database Connectivity.	
864	One application of a digital multiplexer is to facilitate:	1.data generation 2.serial-to-parallel conversion 3.data selector 4.parity checking	1.0
		1. unit testing. 2.	
865	One of the fault base testing techniques is	beta testing. 3. Stress testing.	4.0
		4. mutation testing.	
		1	

Res Provided in an IP dragoma is the Time to Live (TTL) field. Which of the following statements have explains the reset for this field? Come of the beater fields in an IP dragoma is the Time to Live (TTL) field. Which of the following statements have explains the reset for this field? Come of the main advantage of sainty are unabout to make partially and the prevent packet looping.	S.NO.	Questions	Choices	Answers
Section of the based relation in IP datagems in the Time to Live (TTL) field. Which of the following better the based to optimize throughput autonomic best explains the need for this field?			1.	
Provide the second in odd in an IP dampara is the Time to Live (TTL) field. Which of the following in the transit box explains the need for this field? Provide the second in operation of the beauting provided in an IP dampara is the Time to Live (TTL) field. Which of the following in the transit provided in an IP dampara is the Time to Live (Ttl). The data applicate hosping the transit distinct of the main advantage of using are attribute is manufactured in the ITML fill of the dampating the ITML fill of the dampating the ITML fill of the papers of Lang information coats in compares is to manufacture in the ITML fill of the dampating the ITML fill of the papers of Lang information coats in compares is to a manufacture require and scenarior analysis simpler.			It can be used to priortize packets	
see of the learner folds in and Pulmageman in the Time to Live (TTL) field. While of the following his earn be used to optimize throughput to the set of to this feld? 857 One of the main advantage of using recutations in a minimum and partiage of using recutations in a minimum and partiage and remained analysis simpler analysis straight and partiage of using recutations in a minimum and partiage of using recutations in a minimum and partiage of using recutations in a minimum and partiage and remained analysis simpler analysis straight and partiage and remained analysis straight and partiage and remained analysis straight analysis straight analysis straight analysis straight and partiage and remained analysis straight anal				
successors best exceptained the need for this field? 1 can be used to optimize throughput 1 can be used to prevent packed coping 2 can prove the register allocation. 1 can be used to prevent packed to the first built disc this simplifies the STML disc this paper and correct positions of the state of resing the modelment of resistency and the modelment of resing the modelment of resing the	966	One of the header fields in an IP datagram is the Time to Live (TTL) field. Which of the following	It can be used to reduce delays	4.0
Record R			3.	4.0
15 can be used to prevent packet looging 15 can be used to prevent packet looging 16 can be used to prevent looging 16 can be used to prevent looging 16 can be used to packet loo			It can be used to optimize throughput	
Recommend of the matin advantage of using or nitribuit is analogation in the HTML file 41 simplifies the HTML file of 11 s			4.	
Management Man			It can be used to prevent packet looping	
See Paper	867	One of the main advantage of using src attribute is		4.0
2. mprove error recovery and error reporting 1. more recovery and error reporting 2. mprove error recovery and error reporting 3. more recovery and error			1.	
Some Cross of the purposes of using intermediate code in completes is to			make parsing and semantic analysis simpler	
868 or of the purposes of using intermediate code is compilers is to increases the chances of reusing the machine-independent code optimizer of nother compilers. 4 improve the register allocation. 879 overloading + operator requires return type as object because, 870 overloading involves writing two or more functions with			2.	
868 or of the purposes of using intermediate code is compilers is to increases the chances of reusing the machine-independent code optimizer of nother compilers. 4 improve the register allocation. 879 overloading + operator requires return type as object because, 870 overloading involves writing two or more functions with			improve error recovery and error reporting	
Increase the chances of reusing the machine-independent code optimizer in other compilers. A	868			3.0
In other compiles.			increase the chances of reusing the machine-independent code optimizer	
Improve the register allocation. Interference parameter has to be returned 2.binary addition requires that a sail overfoading functions require that 4.binary addition requires that a sail overfoading functions require that 4.binary addition requires that a sail overfoading functions require that 4.binary addition requires that a sail overfoading functions require that 4.binary addition requires that a sail overfoading functions requires a class with an overfoading function and fifteent argument lists 4.bin became name and different paths 4.bin became name and diff				
Leference parameter has to be returned 2 binary addition requires that 3 all overloading functions require that 4 chain of additions 3 all overloading functions require that 4 chain of additions sum argument in 52. Afferent manes and different manes and mane and desire mane and desir			4.	
870 Overloading involves writing two or more functions with			improve the register allocation.	
San Overloading involves writing two or more functions with	869	overloading + operator requires return type as object because.		3.0
Section Sect		orentaling special requires retain type as object occurrency	,	15.0
State Stat	870	Overloading involves writing two or more functions with	same argument list 3.the same name and different argument lists 4.the	3.0
an overloaded operator. 4 requires a class with an overloaded [] operator. Packets of the same session may be routed through different paths in: Packets of the same session may be routed through different paths in: Paging Paging			1.usually make use of a constructor that takes arguments. 2.allows you to	
Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the same session may be routed through different paths in: Secretary Packets of the s	871	Overloading the function operator	create objects that act syntactically like functions. 3.requires a class with an overloaded operator. 4.requires a class with an overloaded [] operator	3.0
2. TCP and UDP 3. UDP, but not TCP 4. Neither TCP nor UDP 1. solves the memory fragmentation problem 2. allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.				
R72 Packets of the same session may be routed through different paths in: 1 TCP and UDP 3 . UDP, but not TCP 4 . Neither TCP nor UDP 1. Solves the memory fragmentation problem 2. allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-one model 2. Many-to-one model 3. one-to-one model 4. in one-to-one model 4. in one-to-one model 4.			TCP, but not UDP	
872 Packets of the same session may be routed through different paths in: 873 Paging			2.	
873 Paging			TCP and UDP	
4. Neither TCP nor UDP 1. solves the memory fragmentation problem 2. allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. do one-to-one model	872	Packets of the same session may be routed through different paths in:	3.	2.0
873 Paging 1. 874 Paging 1. 875 Paging 1.0 876 Paging 1.0 877 Paging 1.0 878 Paging 1.0 879 Paging			UDP, but not TCP	
R73 Paging 1.0			4.	
solves the memory fragmentation problem 2. allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. one-to-one model 4. one-to-one model 4. one-to-one model 4. one-to-one model 4. one-to-one model 4. one-to-one model 4. one-to-one model 4.			Neither TCP nor UDP	
2. allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. one-to-one model 4.			1.	
allows modular programming 3. allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. 4. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.			solves the memory fragmentation problem	
Paging			2.	
Paging			allows modular programming	
allows structured programming 4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. avoids deadlock	873			1.0
4. avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4. avoids deadlock				
avoids deadlock 1. Many-to-one model 2. Many-to-many 3. one-to-one model 4.				
1. Many-to-one model 2. Many-to-many 3. one-to-one model 4.				
874 Parallelism and concurrency is fully achieved in which of the following thread model 874 Parallelism and concurrency is fully achieved in which of the following thread model 3. one-to-one model 4.				
Parallelism and concurrency is fully achieved in which of the following thread model 3. one-to-one model 4.				
Parallelism and concurrency is fully achieved in which of the following thread model 3. one-to-one model 4.				
Parallelism and concurrency is fully achieved in which of the following thread model 3. one-to-one model 4.				
one-to-one model 4.	874	Parallelism and concurrency is fully achieved in which of the following thread model		1.0
4.	8/4	raranensm and concurrency is fully achieved in which of the following thread model		
			one-to-one model	
All the models				
			All the models	

S.NO.	Questions	Choices	Answers
		1.	
		Mapping	
		2.	
875	Passing the request from one schema to another in DBMS architecture is called as	Communication	1.0
075	r assing the request from one senema to another in DDAG architecture is cance as	3.	1.0
		Relational	
		4.	
		network	
876	Pee hole optimization	1.Local optimization 2.Loop optimization 3.Constant folding 4.Data flow analysis	3.0
		1.	
		true	
877	2.0	2.	4.0
		false	
		3. 4.	
		1.	
		mechanical specifications of electrical connectors and cables	
		2.	
878	Physical layer provides	electrical specification of transmission line signal level	4.0
0,0	1.1,000.00,00	3.	
		specification for IR over optical fiber	
		4.	
		all of the mentioned	
		1.	
		1	
	Pick an incorrect declaration:	2.	
	1. int x[5];	2	
879	2. int $x[5]=\{1,2,3,4,5\}$;	3.	4.0
	3. int $x[5] = \{1,2\}$	3	
	4. int x[];	4.	
		4	
880	Pick the odd one out.	1.[] 2.() 3.:: 4.~	3.0
		1.	
		Coupling objects together more tightly	
		2.	
881	Polymorphism reduces the effort required to extend an object system by	2.0enabling a number of different operations to share the same name. 3.	4.0
		making objects more dependent on one another	
		4. removing the barriers imposed by encapsulation.	
	Popular application of flip-flop are.	1. Shift registers 2. Transfer register 3. Counters 4. All of these	4.0
883	Postorder Tree travsersal is recursive	1.LDR 2.LRD 3.DLR 4.DRL 1.Value is =1250 2.	2.0
	PREDICT THE OUTPUT:	Value is =80	
	#include <stdio.h></stdio.h>	3.	
884	void main() {	Value is =125	2.0
	int $a=10,b=2,x=0;$ x=a+b*a+10/2*a;	4.	
	printf("value is =%d",x); }	Error	
00.7	Prim's algorithm is a method available for finding out the minimum cost of a spanning tree.	1.0(1) 2.0(#*a) 2.0(#.10xx) 4.0(x)	2.0
885	Its time complexity is given by:	1.O(1) 2.O(n*n) 3.O(n logn) 4.O(n) 1.	3.0
Q0 <i>E</i>	Program flow graphs are identical to program flowshorts	true	2.0
000	Program flow graphs are identical to program flowcharts.		2.0
		false	
		3. 4.	

S.NO.	Questions	Choices	Answei
		1.	
		interrupt recognized	
		2.	
		execution of RST instruction	
887	PSW is saved in stack when there is a	3.	1.0
		Execution of CALL instruction	
		4.	
		All of these	
		1.	
		TRUE	
888	Quantitative methods for assessing the quality of proposed architectural designs are readily available.	2.	2.0
	avanable.	FALSE	
		3. 4.	
		1.	
		Relational Algebra	
		2.	
		Tuple Relational Calculus	
889	Query Tree uses	3.	4.0
		Domain Relational Calculus	
		4.	
		All of the options	
890	Relations produced from an E - R model will always be in	1.3 NF 2.B CNF 3.2 NF 4.1 NF	1.0
	Relocating bits used by relocating loader are specified by	1.Relocating loader itself 2.Linker 3.Assembler 4.Macro processor	2.0
		1.	
		FIFO Page replacement algorithm	
		2.	
002	Replace the page that has not be used for the longest period of time. This principle is adopted by	Optimal Page replacement algorithm	1,0
892		3.	4.0
		Round robin scheduling algorithm	
		4.	
		LRU Page replacement algoorithm	
		1.	+
		Allows multiple tasks to simultaneously use resource	
		2.	
		Forces only one task to use any resource at any time	
893	Resource locking	3.	2.0
		Can easily cause a dead lock condition	
		4.	
		Is not used for disk drives	
			\bot
		1.	
		Client	
		2.	
804	Rick management is one of the most important inho for a	Investor	4.0
074	Risk management is one of the most important jobs for a	3.	4.0
		Production team	
		4.	
			1
		Project manager	
895	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory & is executed. This type of loading is called	Project manager 1. Static loading 2. Dynamic loading 3. Dynamic linking 4. Overlays	3.0

outine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory & is executed. This type of loading is called	Dynamic linking 4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	2.0
outine is not loaded until it is called. All routines are kept on disk in a relocatable load format. He main program is loaded into memory & is executed. This type of loading is called	2. Dynamic loading 3. Dynamic linking 4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	
outine is not loaded until it is called. All routines are kept on disk in a relocatable load format. He main program is loaded into memory & is executed. This type of loading is called	Dynamic loading 3. Dynamic linking 4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	
outine is not loaded until it is called. All routines are kept on disk in a relocatable load format. He main program is loaded into memory & is executed. This type of loading is called	3. Dynamic linking 4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	
un time polymorphism is achieved by	Dynamic linking 4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	
	4. Overlays 1.friend function 2.virtual function 3.operator overloading 4.function overloading 1. All palindromes 2. All odd length palindromes.	2.0
	Overlays 1. friend function 2. virtual function 3. operator overloading 4. function overloading 1. All palindromes 2. All odd length palindromes.	2.0
	1. friend function 2. virtual function 3. operator overloading 4. function overloading 1. All palindromes 2. All odd length palindromes.	2.0
	overloading 1. All palindromes 2. All odd length palindromes.	2.0
-> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	1. All palindromes 2. All odd length palindromes.	
.> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	2. All odd length palindromes.	
-> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	All odd length palindromes.	
-> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of		
-> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of		
	3.	2.0
	Strings that begin and end with the same symbol	
	4.	
	All even length palindromes	
	1.	
	true	
)	2.	2.0
	false	
	3. 4.	
	1.	
	Displays the department ID along with the average salary of employees	
ELECT department_id, 11 v G(salary) 1 ROW employees writere 11 v G(salary) > 0000 GROOT		2.0
	None of the options	
	Displays a error	
	2.	
ELECT department_id, COUNT(last_name) FROM employees;	3.	2.0
	None of the options	
	salary in their department	
	2.	
ELECT employee_id, last_name FROM employees WHERE salary = (SELECT MIN(salary)		1.0
COM employees GROUP BY department_id);	3.	1.0
	None of the options	
	4.	
	Displays the employee_id, name of employees and their salary	
		L
	ELECT department_id, COUNT(last_name) FROM employees;	true 2. false 3.4. Line is a state of the department ID along with the average salary of employees in each department if their average of salary is greater than 8000. ELECT department_id, AVG(salary) FROM employees WHERE AVG(salary) > 8000 GROUP 3. Displays the department ID along with the average salary of employees 4. None of the options 1. Displays a error 2. Displays a error 2. Displays the department ID along with the number of employees in each department. 3. None of the options 4. Displays the department ID along with the number of employees in each department. 3. None of the options 4. Displays department ID and a null value 1. Displays the employee id and name of employees who gets minimum salary in their department 2. ELECT employee id, last name FROM_employees WHERE salary = (SELECT_MIN(salary) Effort 3. None of the options 4. Silary in their department 2. ELECT employee id, last name FROM_employees WHERE salary = (SELECT_MIN(salary) Effort 3. None of the options 4. Silary in their department 3. None of the options 4. Silary in their department 3. None of the options 4. Silary in their department 4. Silary in their department 5. Silary in their department 6. Silary in their department 6. Silary in their department 7. Silary in their department 8. Silary in th

S.NO.	Questions	Choices	Answers
		1.	
		Displays number of days an employee has worked in the company.	
		2.	
002	CELECT Last come CVCDATE Line das FROM combined	Displays number of months an employee has worked in the company.	1.0
903	SELECT last_name, SYSDATE-hire_date FROM employees;	3.	1.0
		Error	
		4.	
		None of the mentioned	
		1.	
ı		the selection operation in relational algebra	
ı		2.	
ı		the selection operation in relational algebra, except that select in SQL	
904	Select operation in SQL is equivalent to	retains duplicates	4.0
704	Select operation in SQL is equivalent to	3.	7.0
ı		the projection operation in relational algebra	
ı		4.	
		the projection operation in relational algebra, except that select in SQL retains duplicates	
			-
		1.	
		r1(x), w2(y)	
		2.	
905	Select the conflicting operation:	r1(x), w1(x)	3.0
903	Select the conflicting operation.	3.	3.0
		w1(y), w2(x)	
		4.	
		r1(x), $w2(x)$	
906	SELECT THE HIGHEST PRIORITY OPERATOR	1.&& 2., 3.?: 4.++	4.0
907	Shift reduce parsers are	1. Vertical parser 2.top down and bottom up parser 3. Bottom up parser 4. Top down parser	3.0
908	Simple network management protocol (SNMP) is implemented with a daughter board in	1.the nodes 2.the server 3.the hubs 4.a separate PC that managers the	3.0
909	Skewed binary trees can be efficiently represented using	1.Arrays 2.Linked lists 3.Stacks 4.Queues	2.0
		1.	
	2.0	True	
910	2.0	2.	1.0
		False	
		3. 4. 1.	1
		True	
911	Software engineering includes system engineering.	2.	1.0
		False	1.7
		3. 4.	
		1.Customer visible usage scenarios	+
		2.	
912	4.0	Important software features	2.0
		3.System inputs and outputs 4.	
		ALL	
		I.	
		True	
913	Software is a product and can be manufactured using the same technologies used for other engineering artifacts.	2.	2.0
	engineering arritation	False	
		3. 4.	

S.NO.	Questions	Choices	Answer
		1.	
		true	
	Software validation is achieved through a series of tests performed by the user once the software is deployed in his or her work environment.	2.	2.0
		false	
		3. 4.	
		1.	
		they enhance the portability of the compiler to other target processors	
		2.	
		program analysis is more accurate on intermediate code than on machine code	
915	Some code optimizations are carried out on the intermediate code because	3.	1.0
		the information from dataflow analysis cannot otherwise be used for optimization	
		4.	
		the information from the front end cannot otherwise be used for	
		optimization	
916	Some code optimizations are carried out on the intermediate code because	1. The information from data flow analysis cannot otherwise be used for optimization 2. They enhance the portability of the complier to other target processors 3. The information from the front end cannot otherwise be used for optimization 4. Program analysis is name accurate on intermediate code than on machine code	2.0
917	Specify the 2 library functions to dynamically allocate memory?	1.alloc() and memalloc() 2.malloc() and calloc() 3.memalloc() and	2.0
		faralloc() 4.malloc() and memalloc() 1.	
		join operation done on a non-key attribute	
		2.	
		outer join operation	
918	Spurious tuples are formed because of		1.0
		3.	
		transitive dependencies	
		4.	
		inner join	
		1.	
		White box testing	
		2.	
		Stress testing	
919	SRS is also known as specification of	3.	4.0
		Integrated testing	
		4.	
		Black box testing	
		Black oux testing	
		1.	
		12	
		2.	
	Station A needs to send a message consisting of 9 packets to Station B using a sliding window (window size 3) and go-back-n error control strategy. All packets are ready and immediately	14	
920	available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever	3.	3.0
	get lost), then what is the number of packets that A will transmit for sending the message to B?	16	
!		4.	
		T.	
		18	

S.NO.	Questions	Choices	Answer
		1. 20	
		2.	
921	Station A uses 32 byte packets to transmit messages to Station B using a sliding window protocol. The round trip delay between A and B is 80 milliseconds and the bottleneck bandwidth on the path	40	2.0
	between A and B is 128 kbps. What is the optimal window size that A should use?	3. 160	
		4.	
		320	
		1.	
	2.0	true	
922	2.0	2.	4.0
		false 3. 4.	
923	String length is found by the condition Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements.	$ \begin{array}{l} \text{I.str[i]!=NULL 2.str[i]!=sizeof(str) 3.str[i]>='\0'} \text{ 4.str[i]!='\0'} \\ \text{I.Full: (FRONT+1) mod n} = \text{REAR, empty: REAR} = \text{FRONT 2.Full:} \\ \end{array} $	4.0
924	Suppose a circular queue of capacity (ii = 1) elements is implemented with an array of in elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	REAR == FRONT, empty: (REAR+1) mod n == FRONT 3.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 4.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT	4.0
925	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	$\begin{split} &1. Full: (REAR+1) \bmod n = FRONT, empty: REAR == FRONT2. Full: (REAR+1) \bmod n == FRONT, empty: (FRONT+1) \bmod n == REAR \\ &3. Full: REAR == FRONT, empty: (REAR+1) \bmod n == FRONT4. Full: (FRONT+1) \bmod n == REAR, empty: REAR == FRONT \end{split}$	1.0
926	Suppose P, Q, R, S, T are sorted sequences having lengths 20, 24, 30, 35, 50 respectively. They are to be merged into a single sequence by merging together two sequences at a time, The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.672 2.740 3.358 4.354	3.0
927	Suppose P, Q, R, S, T are sorted sequences having lengths 20,24,30,35,50 respectively. They are to be merged into a single sequence by merging together two sequences at a time. The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.368 2.338 3.348 4.358	4.0
		1. 94	
		2.	
	Suppose the round trip propagation delay for a 10 Mbps Ethernet having 48-bit jamming signal is	416	
928	46.4 micro sec. The minimum frame size is:	3.	4.0
		464 4.	
		512	
929	Suppose x is dead, that is, never subsequently used, at the point where the statement x=y+z appears in a basic block. Then this statement may be safely removed without changing the value of	1.Common subexpression elimination 2.Dead code elimination 3.Renaming temporary variables 4.Loop invarient	2.0
930	the basic block. This transformation is known as Suppose you want to delete the name that occurs before 'Vellore' in an alphabetical listing. Which of the following data structures shall be most efficient for this operation?	1.Circular linked list 2.Dequeue 3.Linked list 4.Doubly linked list	2.0
	which of the following data structures shall be most efficient for this operation:	1.	
		True	
931	Symantec Antivirus is a customized product.	2.	2.0
		False	
932	Synchronous counters eliminate the delay problems encountered with asynchronous (ripple) counters because the.	1.input clock pulses are applied simultaneously to each stage 2.input clock pulses are applied only to the first and last stages 3.input clock pulses are applied only to the last stage 4.input clock pulses are not used to activate any of the counter stages	4.0
933	Syntax for creating a RegExp object: (i). var txt=new RegExp(pattern,modifiers); (ii). var txt=/pattern/modifiers; Which of the above mentioned syntax is correct?	1.(i) only 2.(ii) only 3.Both (i) and (ii) 4.None of these	3.0
934	Synthesized attribute can be easily simulated by a	I.LR grammar 2.Ambiguous grammar 3.LL grammar 4.LF grammer I.	1.0
		to see how well the system supports their work	
		2.	
	System prototypes allow users	to start working on the system 3.	1.0
935		J.	
935		to put the system to production	
935		to put the system to production 4.	

.NO.	Questions	Choices	Answer
		1.	
		State diagram	
		2.	
		Activity diagram	
936	System reactions to external events is depicted by	3.	1.0
		Usecase diagram	
		4.	
		Sequence diagram	
		1	_
		1.	
	2.0	TRUE	
937		2.	1.0
		FALSE	
		3. 4.	+-
	1.0	true	
938		2.	1.0
		false	
		3. 4.	+
939	1.0	True	2.0
939		2.	3.0
		False	
	Theis neither an input nor an output; it is an internal bit programmed via the PC4(Port A) or	3. 4.	
240	PC2(Port B)bits	1.IFB 2.INTR 3.INTE 4.NMI	3.0
941	The instruction is used to specify the number of stop bits, data bits,parity bit, and baud rate clock factor for the 8251 UART	1.bit set/reset 2.Mode 3.Command 4.Code	2.0
		1.	
		1 Kbyte	
		2.	
		64 Kbyte	
942	The 1 MB byte of memory can be divided into segment	3.	2.0
		33 Kbyte	
		4.	
		34 Kbyte	
		1.	+
		the condition of result of ALU operation	
		2.	
		the condition of memory	
943	The 16 bit flag of 8086 microprocessor is responsible to indicate		1.0
		3.	
		the result of addition	
		4.	
		the result of subtraction	
944	The 16-bit data segment value is 1000H and the offset is 2000H. calculated physical address is	1.10000Н 2.11000Н 3.12000Н 4.12500Н	3.0
- 11	-		10.0
	The 16-bit stack segment value is 5D27H and the offset is 2C30H. calculated physical address is		

S.NO.	Questions	Choices	Answers
		1. internal 2. data	
946	The bus controller device decodes the signals to produce the control bus signal	external 4.	3.0
		address	
947	The translates internet domain and host names to IP address.	1. domain name system 2. routing information protocol 3. network time protocol	1.0
		4. internet relay chat	
948	The method of an Array object adds and/or removes elements from an array.	1. Slice 2. Reverse 3. Shift 4. Splice	4.0
949	The ensures that only one IC is active at a time to avoid a bus conflict caused by two ICs	1.control bus 2.control instructions 3.address decoder 4.CPU	3.0
	writing different data to the same bus The property specifies the stack order of an element		4.0
951	The access method used for magnetic tape is	1. Direct 2. Random 3. Sequential 4. None of these	3.0
952	The address resolution protocol (ARP) is used for:	1. Finding the IP address using DNS 2. Finding the IP address of the default gateway 3. Finding the IP address that corresponds to a MAC address 4. Finding the MAC address that corresponds to an IP address	4.0
953	The advantage of DBMS over file systems is	1. redundancy 2. data dependence 3. multiple user 4. single user	1.0

S.NO.	Questions	Choices	Answers
		1.	
		data, hardware, software, people	
954	1.0	2.	1.0
751		data, documentation, hardware, software	1.0
		3. data, hardware, software, procedures	
		4.documentation, hardware, people, procedures	
		1.	
		base 64 encoding	
		2.	
055		base 32 encoding	1.0
933	The ASCII encoding of binary data is called	3.	1.0
		base 16 encoding	
		4.	
		base 8 encoding	
		1.	
		seek time	
		2.	
		turnaround time	
956	The average time required to reach a storage location in memory and obtain its contents is called the	3.	3.0
		access time	
		4.	
		transfer time	
		1.	
ı			
		Bucket Hash	
		2.	
957	The best index for exact match query is	Quad tree	1.0
		3.	
		B Tree	
		4.	
		B+ Tree	
		1.software developers do not need to do any testing	
958	1.0	2.a test team will test the software more thoroughly	4.0
750		3.testers do not get involved with the project until testing begins	1.0
		4.arguments between developers and testers are reduced	
		1.	
		examine the system model for errors	
		2.	
	4.0	have the customer look over the requirements	
959	1 .0	3.	2.0
		send them to the design team and see if they have any concerns	
		4.	
		use a checklist of questions to examine each requirement	
		1.	
		8	
		2.	
		6	
960	The BIU contains FIFO register of size bytes	3.	2.0
		4	
1			
		4.	
		12	

S.NO.	Questions	Choices	Answer
		1.	
		queue	
		2.	
		register	
961	The BIU prefetches the instruction from memory and store them in	3.	1.0
		memory	
		4.	
		stack	
962	The call to the parameterized constructor of base class in the derived class	I ppears inside the definition of the derived class constructor 2.appears in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where	4.0
		the derived class object is created	
963	The call to the parameterized constructor of base class in the derived class	1.ppears inside the definition of the derived class constructor 2.appears in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where the derived class object is created	4.0
904	The combination of Sixteen adjacent squares in four variable K-map represent the function equal to	1.Four literal 2.One literal 3.Unity 4.Zero	3.0
$\overline{}$	The counters of 8253 can be operated in modes of operation.	1.4 2.3 3.6 4.5	3.0
		1.	
		cycles in the program	
		2.	
966	The cyclomatic complexity metric provides the designer with information regarding the number of	errors in the program	4.0
		3.	
		3.0independent logic paths in the program 4.	
		statements in the program	
967	The data structure required for Breadth First Traversal on a graph is	1.tree 2.array 3.stack 4.queue	4.0
	THE DATA TYPE IS ALL ABOUT	1.NAME VALUE ADDRESS 2.BITS BYTES WORD 3.SIZE LIMITS	4.0
	The decimal equivalent of hexadecimal number of 'A580' is	RESTRICTIONS 4.TYPE SIZE RANGE 1.43286 2.42368 3.43288 4.48632	2.0
970	The default copy constructor performs	1.Deep Copy 2.Shallow Copy 3.Soft Copy 4.Hard Copy	2.0
971	The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in decreasing order. Which of the following sequences can not be the degree sequence of any graph? I. 7, 6, 5, 4, 4, 3, 2, 1 II. 6, 6, 6, 6, 3, 3, 2, 2 III. 7, 6, 6, 4, 4, 3, 2, 2 IV. 8, 7, 7, 6, 4, 2, 1, 1	1.IV only 2.III and IV 3.I and II 4.II and IV	4.0
	1. 7, 0, 0, 1, 1, 0, 2, 1 11. 0, 0, 0, 0, 0, 2, 2 111. 7, 0, 0, 1, 1, 2, 2, 2 111. 0, 7, 7, 0, 1, 2, 1, 1	1.	
		Architectural design	
		2.	
		Interface design	
972	The design process related to data structures and their representation is	3.	4.0
		Component design	
		4.	
		Database design	
		-	
973	The difference between linear array and a record is	1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array	3.0
-	The Document object is which part of the object?	1.Tree 2.System 3.Window 4.Screen	3.0
975	The efficient data structure to insert/delete a number in a stored set of numbers is	1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1.	2.0
		depicts relationships between data objects	
ı '			
		12	I
		2. deniate functions that transforms the data flow.	
976	The entity relationship diagram	2. depicts functions that transform the data flow	1.0
976	The entity relationship diagram	3.	1.0
976	The entity relationship diagram	3. indicates how data are transformed by the system	1.0
976	The entity relationship diagram	3.	1.0
976	The entity relationship diagram	3. indicates how data are transformed by the system	1.0

S.NO.	Questions	Choices	Answers
		1.	
		Pascal	
		2.	
978	The external system bus architecture is created using from architecture	Dennis Ritchie	4.0
,,,	The state and the state as the state as a st	3.	
		Charles Babbage	
		4.	
		Von Neumann	
		1.	
		data centric architecture	
		2.	
		service oriented architecture	
979	The file transfer protocol is built on	3.	3.0
		client server architecture	
		4.	
		peer to peer architecture	
980	The first processor to include Virtual memory in the Intel microprocessor familywas	1.Pentium 2.80486 3.80286 4.80386	3.0
	The following is not a Relational Model Constraint	Referential Integrity Constraint 2.Check Constraint 3.Foreign Key Constraint 4.Entity Integrity Constraint	1.0
		1.	
		Equi-join	
		2.	
	The following SQL is which type of join: SELECT CUSTOMER_T. CUSTOMER_ID, ORDER_T. CUSTOMER_ID, NAME, ORDER_ID FROM CUSTOMER_T,ORDER_T;	Natural join	
982		3.	4.0
		Outer join	
		4.	
		Cartesian join	
		1.	-
		Define the specification for computer-based system	
		2.	
	40	Develop defect free computer-based systems	
983	4.0	3.	1.0
		Verify the correctness of computer-based systems	
		4.	
		ALL	<u>L</u> _
		1.	
		ltrim	
		2.	
		lpad	
984	The function used to remove the leading spaces is	3.	1.0
		rpad	
		4.	
		rtrim	
		1.	-
00.5	The goal of product engineering is to translate the customer's desire for a set of defined capabilities into a working product	TRUE	1.0
985	into a working product.		1.0
		FALSE	
		3. 4.	
		r· ··	

S.NO.	Questions	Choices	Answers
		1.	
		ambiguous	
		2.	
		left-recursive	
986	The grammar A \rightarrow AA (A) ϵ is not suitable for predictive-parsing because the grammar is	3.	2.0
		right-recursive	
		4.	
		an operator-grammar	
		1.	
		LL(1) but not LR(1)	
		2.	
		LR(1)but not LR(1)	
987	The grammar S → aSa bS c is	3.	3.0
		Both LL(1)and LR(1)	
		4.	
		Neither LL(1)nor LR(1)	
		1.	
		Polling	
		2.	
		Interrupt	
988	The Hardware mechanism that enables a device to notify the CPU is called	3.	2.0
		Systems Call	
		4.	
		None of these	
		1.	
		Inter process communication	
		2.	
		Thrashing	
989	The high paging activity is called	3.	2.0
		Context Switching	
		4.	
		Working Set	
		1.	
		DMA Controller	
		2.	
		Interrupt Controller	
990	The IC 8237 is a	3.	1.0
		Keyboard controller	
		4.	
		Serial Interface Controller	
		1.	
		24	
		2.	
		28	
991	The IC 8251 A hasmany pins	3.	3.0
		40	
		4.	
		30	

S.NO.	Questions	Choices	Answers
		1.	
		24	
		2.	
992	The IC 8254 hasmany pins	28	1.0
		3.	
		34	
		4.	
		40	
		1.	
		2.	
993	The IC 8254 hasmany 16 bit counters	2	3.0
		3.	
		4.	
		4	
		1.	
		20	
		2.	
994	The IC 8279 hasmany pins	30	4.0
,,,	many pino	3.	4.0
		40	
		4.	
		10	
		1.	
		IC 8251A	
		2.	
995	The IC Number for USART is	IC8259	1.0
		3.	
		IC5255	
		4.	
		IC 8254	
		1.	
		on the property of locality of reference	
		2.	
		on the heuristic 90-10 rule	
996	The idea of cache memory is based	3.	1.0
		on the fact that references generally tend to cluster	
		4.	
		all of these	
		1.	
		accuracy	
		2.	
997	The importance of software design can be summarized in a single word	complexity	3.0
		3.	
		4.0efficiency 4.	
		quality	

S.NO.	Questions	Choices	Answers
		1.	
		Build & FIX Model & Waterfall Model	
		2.	
	The Incremental Model is a result of combination of elements of which two models?	Linear Model & RAD Model	
998	The mercinetian reduct is a result of combination of clements of which two models.	3.	3.0
		Linear Model & Prototyping Model	
		4.	
		Waterfall Model & RAD Model	
		1.	
		A reasonable approach when requirements are well defined.	
		2.	
		A good approach when a working core product is required quickly.	
999	The incremental model of software development is	3.	2.0
		The best approach to use for projects with large development teams.	
		4.	
		A revolutionary model that is not used for commercial products.	
		1.	
		8 bit	
		2.	
		16 bit	
1000	The intel 8086 microprocessor is a processor		2.0
	Free and cook manage cooks to aprocessor	3.	
		32 bit	
		4.	
		4bit	
	The internal block diagram of 80286 contains functional parts. The interrupt cycle ends when the instruction is executed	1.6 2.4 3.2 4.8 1.IRET 2.CALL 3.PUSH 4.POP	3.0
		1.	
		Is always regular and context free	
		2.	
		Is always regular	
1003	The intersection of CFL and regular language	3.	3.0
		Is always context free	
		4.	
		Need not be regular	
		1.	
		8 bits	
		2.	
		4 bits	
1004	The IP is bits in length	3.	4.0
		16 bits	
		4.	
		32 bits	
		1.	1
		Both a and b are equal in value, type and reference address	
		2.	
		Both a and b are equal in value	
1005	The javascript statement a===b refers to	Both a and b are equal in value 3.	3.0
		Both a and b are equal in value and type	
		4.	
		There is no such statement	

S.NO.	Questions	Choices	Answers
		1.	
		Process control block	
		2.	
1006	The kernel keeps track of the state of each task by using a data structure called	Process Status Word 3.	1.0
		Memory control block	
		4.	
		None of these	
		1.	+-+
		Regular	
		2.	
	The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described	context free	
1007		3.	1.0
		Recursive	
		4.	
		Deterministic context free	
		1.	
		not recursive	
		2. is recursive and is a deterministic CFL	
1008	The language L= {0 ⁱ 21 ⁱ i≥0 } over the alphabet {0,1, 2} is:	3.	2.0
		is a regular language	
		4.	
		is not a deterministic CFL but a CFL	
		1.	\vdash
		Machine language	
		2.	
1009	The language that the computer can understand and execute is called	Application software	1.0
100)		3.	
		System program	
		4.	
		None of these 1.	+-+
		Regular language	
		2.	
		context free but not regular	
1010	The language {a ^m b ⁿ C ^{m+n} m, n ≥ 1} is	3.	2.0
		context sensitive but not context free	
		4.	
		type-0 but not context sensitive	
		1.	
		2	
	The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is	2. 3	
1011	יים ואיז איז פון איז	3.	2.0
	a*b*(ba)*a*	4	
		4.	
		5	
1012	The length property belongs to which of the following objects?	1.Window 2.Element 3.History 4.Document	2.0
1013	The levels of hierarchy in inheritance helps to handle	1.flexibility 2.complexity 3.detailed information 4.security	4.0
l			

S.NO.	Questions	Choices	Answers
		1.	
		Deterministic pushdown automata	
		2.	
	The lexical analysis for a modern language such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?	Finite state automata	
1014	,	3.	2.0
		Non-deterministic pushdown automata	
		4.	
		Turing machine	
1015	The library function used to find the last occurrence of a character in a string is	1.strnstr() 2.laststr() 3.strrchr() 4.strstr()	3.0
1013	The notary function used to find the distrocourtence of a character in a suring is	1.	5.0
		A reasonable approach when requirements are well defined.	
		2.	
		A good approach when a working program is required quickly.	
1016	The linear sequential model of software development is	3.	1.0
		The best approach to use for projects with large development teams.	
		4.	
		An old fashioned model that cannot be used in a modern context.	
		1.	
		Classical life cycle model	
		2.	
		Spiral model	
1017	The linear sequential model of software development is also known as the	3.	3.0
		Waterfall model	
		4.	
		Incremental Model	
		1.	-
		Accumulator	
		2.	
1018	The load instruction is mostly used to designate a transfer from memory to a processor register	Instruction Register	1.0
1010	known as	3.	1.0
		Program counter	
		4.	
		Memory address Register	
1019	The main purpose of a data link content monitor is to	1. detect problems in protocols 2.determine the type of switch used in a data link 3.determine the flow of data 4.determine the type of switching used in data link	1.0
\dashv		1.	
		7	
		2.	
		0	
1020	The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is		2.0
- 320		3.	[
		9	
		4.	
		6	
l			

S.NO.	Questions	Choices	Answers
	The maximum size of payload field in ethernet frame is	1. 1000 bytes	
1021		2. 1200 bytes	4.0
		3. 1300 bytes 4.	
		1500 bytes	
		2^n 2.	
1022	The maximum window size for data transmission using the selective reject protocol with n-bit frame sequence numbers is:	2^(n-1)	2.0
		2^n - 1 4.	
		2^(n-2)	
		TTL to RS 232C Level converter	
1023	The MC 1488 is	2. RS-232 to TTL level converter	1.0
	THE IVE 1400 IS	3. Bidirectional Level converter	
		4. Unidirectional level converter	
		1. Segmentation	
1024	The machenism that being a mass into manner, only when it is needed is called	2. Fragmentation	3.0
		Demand Paging	
		4. Page Replacement	
1025	The members of a class, by default, are	1.private 2.protected 3.public 4.mandatory to specify 1.	3.0
		main memory 2.	
1026	The memory unit that communicates directly with the CPU is called the	Secondary memory	1.0
		3. shared memory	
		4. auxiliary memory	
		I. memory	
		2. I /O device	
1027		3. processor	1.0
		4. register	

S.NO.	Questions	Choices	Answers
	· ·	1.	
		carry flag	
		2.	
		conditional flag	
1028	The microprocessor determines whether the specified condition exists or not by testing the	3.	2.0
		common flag	
		4.	
		sign flag	
	The minimum number of arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 4X^3 + 6^3 + 6$ for a given value of X using only one temporary variable is.	1.6 2.9 3.8 4.7	4.0
\Box	The minimum number of arithmetic operations required to evaluate the polynomial	1.62.7.2.0.4.0	2.0
1030	$P(X)=X^5+4X^3+6X+5$ for a given value of X using only one temporary variable.	1.6 2.7 3.8 4.9	2.0
1031	The minimum number of nodes in a binary tree of depth d (root at level 0) is	1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d	2.0
		1.	
		Hardware	
		2	
		Software	
1032	The MMU (Memory Management Unit) is a	3.	1.0
	, ,	Firmware	
		4.	
		Malware	
\vdash		1	
		1.	
		TRUE	
1033	The nature of collaboration is such that all system requirements are defined by consensus of a committee of customers and developers.	2.	2.0
	committee of customers and developers.	FALSE	
1001		3. 4.	
1034	The node type for document returns the value	1.2 2.9 3.3 4.8	4.0
		1.	
		0	
		2.	
		2	
1035	The number of auxiliary memory required for a Push Down Machine (PDM) to behave like a Finite		1.0
1000	State Machine (FSM) is	3.	1.0
		4	
		4	
1036	The number of clock pulses needed to shift one byte of data from input to the output of a 4-bit shift	1.10 2.12 3.16 4.32	3.0
1030	register is.		
	The number of components in a graph with n nodes and 1 edge are	1.n 2.n-2 3.n-1 4.n-3	3.0
	The number of components in a graph with n nodes and 1 edge are The number of counters available in internal block diagram of 8253 is	1.n 2.n-2 3.n-1 4.n-3 1.2 2.1 3.3 4.4	3.0
1039	The names of countries available in internal block diagram of 6233 IS	1. 2.1 3.3 4.4	5.0
		Greater	
		2.	
		less	
1040	The number of states in DFA isthan the number of states in NFA for the same Language.		2.0
	and the second s	3.	
		greater equal	
		4.	
		equal	
1041	The number of tokens in the following C statement is	2.0	4.0
	printf(" $i = \%d$, & $i = \%x$ ", i, &i);		
1042	The operation of processing each element in the list is known as	1.Sorting 2.Merging 3.Inserting 4.Traversal	4.0
1043	The other name for MODE 0 in 8253 timer is	1.software triggered strobe 2.Programmable one shot 3.Interrupt on terminal count 4.Square wave rate generator	3.0

S.NO.	Questions	Choices	Answers
		1.	
		bit-by-bit delivery	
		2.	
1044	The physical layer concerns with	process to process delivery	1.0
1011	The physical layer concerns with	3.	1.0
		application to application delivery	
		4.	
		Hop by hop delivery	
		1.	
ı		line coding	
		2.	
ı		channel coding	
1045	The physical layer is responsible for	3.	4.0
		modulation	
		4.	
		all of the mentioned	
		1.	
		data link layer	
		2.	
1046	The physical layer translates logical communication requests from the into hardware specific operations.	network layer	1.0
1040		3.	1.0
		trasnport layer	
		4.	
		application layer	
		1.	
		decrements the total length by 1	
		2.	
		increments the total length by 1	
1047	The pop() method of the array in javascript does which of the following task?	3.	1.0
		prints the first element but no effect on the length	
		4.	
		don't return the value of deleted element	
		1.	
		physical signalling sublayer	
		2.	
		physical data sublayer	
1048	The portion of physical layer that interfaces with the media access control sublayer is called	3.	1.0
		physical address sublayer	
		4.	
		none of the mentioned	
1040	The postfix expression for * + a b - c d is?	1.ab + cd - * 2.ab + cd * - 3.ab + - cd * 4.ab cd + - *	1.0
	The postfix form of the expression (A+ B)*(C*D- E)*F / G is	1.AB + CD* E - *F *G / 2.AB + CD* E - F **G / 3.AB+ CD*E - FG /**	3.0
	The preorder traversal sequence of a binary search tree is 30,20,10,15,25,23,39,35,42. Which one	4.AB + CDE * - * F *G / 1.10,20,15,23,25,35,42,39,30 2.15,10,25,23,20,42,35,39,30	
1051	of the following is the postorder traversal sequence of the same tree?	3.15,20,10,23,25,42,35,39,30 4.15,10,23,25,20,35,42,39,30	4.0

1052		1.	
1052			
1052		reading	
1052		2.	
1052		writing	
1	The process of retaining data for future use is called	3.	3.0
		storing	
		4.	
		coding	
\dashv		1.	
		Association	
		2.	
		Decomposition	
1053 v	The project planner examines the statement of scope and extracts all important software functions which is known as	3.	3.0
		Planning process	
		4.	
		ALL	
		1.	
		Another name for component-based development.	
		2.	
		Another name for component-based development.	
1054	3.0	3.	4.0
		A high speed adaptation of the linear sequential model.	
		4.	
		ALL	
\dashv		1.attribute	
		2.relation	
1055	The RDBMS terminology for a row is	3.degree	4.0
		4.tuple	
\dashv		1.	-
		may be different	
		2.	
1056	The recognizing capabilities of NDFSM and DFSM	must be different	3.0
		3.	
		must be same	
		4.	
		none of the mentioned	
1057	The relational model uses some unfamiliar terminology. A tuple is equivalence to a:	1.record 2.field 3.file 4.database	1.0
		1.	
		Interrupt	
		2.	
1050	The removal of process from active contention of CPU and reintroduce them into memory later is	Swapping	
1058 k	known as	3.	2.0
		Signal	
		4.	
		Thread	
1050	The matrices while voice the kinger :- 0	1.List should be small in number 2.List should be large in number 3.List	2.0
	The restriction while using the binary search is?	should be sorted 4.No restriction	3.0
	The result evaluating the postfix expression (10 5 + 60 6 / * 8 –) is The searching technique that takes O (1) time to find a data is	1.284 2.142 3.213 4.71 1.Binary Search 2.Linear Search 3.Tree Search 4.Hashing	2.0 4.0

S.NO.	Questions	Choices	Answer
		1.	
		S < STBR	
		2.	
		S > STBR	
1062	The segment number S is legal if	3.	3.0
		S < STLR	
		4.	
		S > STLR	
1063	The simplest image processing technique is	1.coordinates transformation 2.intensity transformation 3.spatial transformation 4.domain transformation	1.0
1064	The situation when in a linked list START=NULL is	1.overflow 2.underflow 3.housefull 4.saturated	2.0
	The smallest element of an array's index is called its	1.lower bound 2.range	1.0
		D. extract 3.upper bound 4.ion 1.	1
		2 states	
		2.	
		3 states	
1066	The smallest finite automation which accepts the language $\{x \mid \text{length of } x \text{ is divisible by } 3\}$ has :	3.	3.0
		4 states	
		4.	
		5 states	
1067	The space factor when determining the efficiency of algorithm is measured by	1.Counting the average memory needed by the algorithm 2.Counting the minimum memory needed by the algorithm 3.Counting the maximum	1
1067		memory needed by the algorithm 4.Counting the maximum disk space	3.0
_		needed by the algorithm 1.	1
		Ends with the delivery of the software product	
1068	4.0	Ends with the derivery of the software product	2.0
1008		Is not more chaotic than the incremental model	2.0
		3.Do not Include project risks evaluation during each iteration 4.Includes	
_		feasibility risks 1.	
		IBM	
		2.	
1000		Barry Boehm	
1069	The spiral model was originally proposed by	3.	2.0
		Pressman	
		4.	
		Royce	
		1.	
		Specifies a range to test	
		2.	
		specifies between which tables the data is present	
1070	The SQL BETWEEN operator	3.	1.0
		specifies the columns between which columns the data is present	
		4.	
		None of the options	I
	The starting address for counter 0 of 8253 is 0038H, then port address for control word register is		3.0

S.NO.	Questions	Choices	Answers
	-	1.	
		depicts relationships between data objects	
		2.	
		depicts functions that transform the data flow	
1072	The state diagram	3.	1.0
		indicates how data are transformed by the system	
		4.	
		indicates system reactions to external events	
1073	The status that cannot be operated by direct instructions is	1.Z 2.Cy 3.P 4.AC	4.0
1074	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static functions	4.0
1075	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static	4.0
	·	functions 1.circuit switching 2.Message Switching 3.Packet switching 4.Frame	
1076	The switching method fixes the path from source to destination is	Relay	1.0
1077	The syntax of Eval is	1.[objectName.]eval(numeriC) 2.[objectName.]eval(string) 3. [EvalName.]eval(string) 4.[EvalName.]eval(numeriC)	2.0
		1.	
		detailed view	
		2.	
		domain view	
1078	The system engineering process usually begins with the	aomain view	1.0
		4.0element view	
		4.	
		world view	
		1	
		Function, performance and constraints of a computer-based system	
1079	1.0	2. implementation of each allocated system	3.0
1075		3.	3.0
		element software architecture	
		4.time required for system simulation	
	The tightest upper bound for the worst case performance of quicksort implemented on an array of	1.T(n! logn) 2.O(n logn) 3.O(n^2) 4.O(n^3)	3.0
	n elements by always chosing the pivot as the central element is The time complexity to build a heap with a list of n numbers is		2.0
	The time complexity to build a heap with a list of n numbers is The topology with highest reliability is	1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2) 1.ring topology 2.star topology 3.bus topology 4.mesh topology	4.0
		1.	
		28	
		2.	
	The color of the Colors of the	40	
1083	The total number of pins for the IC 8255 is	3.	2.0
		30	
		4.	
		20	
1084	The two statements that can be used to change the flow of control are	1.switch and do-while 2.if and while 3.if and switch 4.break and	3.0
		continue 1.	
		none of the options	
		2.	
1005		the SELECT clause only	2.0
1085	The UNION SQL clause can be used with	3.	2.0
		the UPDATE clause only	
		4.	
		the DELETE and UPDATE clauses	

S.NO.	Questions	Choices	Answers
		1.	
		debug programs following the detection of run-time errors	
1006	The use of treeschility tables halps to	2.	3.0
1086	The use of traceability tables helps to	determine the performance of algorithm implementations 3.	3.0
		identify, control, and track requirements changes	
		4.Analyze design changes	
1087	The value in AL=11011010 after the operation of CBW, the result is	1.AX=1101 1010 1111 1111 2.AX=1101 1010 0000 0000	3.0
	<u>-</u>	. 3.AX=1111 1111 1101 1010 4.AX=0000 0000 1101 1010 1.	
		Object oriented file implementation	
		2.	
		Structured programming file implementation	
1088	The virtual file system provides us the following	3.	2.0
		Linked file allocation	
		4.	
		Indexed file allocation	
		1.	
		encoding	
		2.	
		decoding	
1089	The work of EU is	3.	3.0
		processing	
		4.	
		calculations	
		I.	
		size of the budget 2.	
		size of the product being built	
1090		3.	3.0
		software process being used 4.	
		stakeholders needs	
1001	The worst case running time to search for an element in a balanced binary search tree with n*2^n	1.d . / 1	2.0
1091	elements is The worst case running time to search for an element in a balanced in a binary search tree with	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
1092	*2'n elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
		1.	
		(1-p)^(n-1)	
		2. np(1-p)^(n-1)	
1093	There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each time slot. What is the probability that only one station transmits in a given time slot?	3.	2.0
		y(1-p)^(n-1)	
		4.	
		1-(1-p)^(n-1)	
1094	There is no connection setup phase in	1.Frame relay 2.Virtual Circuit Switching 3.Datagram 4.ATM	3.0
1074		1. Praine teray 2. Virtual Circuit Switching 3. Datagram 4. A TW	5.0
		when excessive swapping takes place	
		2.	
		when you thrash your computer	
1095	Thrashing occurs	3.	1.0
		whenever deadlock occurs	
		4.	
		when no swapping takes place	
			-

	Questions	Choices	Answei
1096	Thresholding function in contrast stretching creates	1.binary image 2.high quality image 3.low quality image 4.enhanced image	1.0
097	To create an alias Objects have to be passed by	1.address 2.reference 3.value 4.field by field	2.0
.098	To Delete an item from a Queue identify the correct set of statements	1.Q[REAR] = item; REAR ++ 2.item = Q[FRONT]; FRONT++ 3.item = Q[REAR]; FRONT ++ 4.item = Q[FRONT]; REAR ++	2.0
1099	To determine the architectural style or combination of styles that best fits the proposed system, requirements engineering is used to uncover	algorithmic complexity characteristics and constraints control and data design patterns	2.0
1100	To interface memory with the microprocessor, connect register the lines of the address bus must be added to address lines of the chip.	1. single 2. memory 3. multiple 4. triple	2.0
1101	To operate correctly, starting a ring counter requires	1.presetting all the flip-flops 2.clearing one flip-flop and presetting all the others 3.presetting one flip-flop and clearing all the others 4.clearing all the flip-flops	1.0
1102	Today the increased power of the personal computer has brought about an abandonment of the practice of team development of software	1. True 2. false 3. 4.	1.0
1103		1.Statement that enables to start any DBMS 2.Statement that is executed by the user when debugging an application program 3.Statement that is executed automatically by the system as a side effect of a modification to the database 4.Condition the system tests for the validity of the database user	3.0
1104	Two computers C1 and C2 are configured as follows. C1 have IP address as 203.197.2.53 and netmask 255.255.128.0. C2 have IP address as 203.197.75.201 and netmask 255.255.192.0. Which one of the following statements is true?	1. C1 and C2 both assume they are on the same network 2. C2 assumes C1 is on same network, but C1 assumes C2 is on a different network 3. C1 assumes C2 is on same network, but C2 assumes C1 is on a different network 4. C1 and C2 both assume they are on different networks.	3.0
105	·	1. True 2. False 3. Cant Say 4.	1.0
		1.deleting database 2.modifying or adding record occurrences 3.revising	2.0

	1.	1
• • • • • • • • • • • • • • • • • • •		
	customers	
	2.	
	3.0experienced programmers	2.0
osability questionnaires are most meaningful to the interface designers when completed by		2.0
	project managers	
Osing miked list flode representation, inserting a flode in general tree is performed effecting	1.not possible 2.by merging with an existing node 3.after introducing a new link 4.after converting to binary tree	2.0
Jsing the 8259A, the INT input of the 8086 can be expanded to accomodeate up to prioritized interrupt inputs	1.60 2.64 3.16 4.32	2.0
Usually a pura virtual function	1. Will be called only to delete an object 2. Is defined only in derived class	2.0
,	3. Will never be called 4. Has complete function body	-
	Cache Memory	2.0
virtual memory is the portion of	3.	3.0
	Hard Disc	
	4.	
	None of these	
	1.	
	A5/2 cipher	
	2.	
	h5/4 cipher	
Voice privacy in GSM cellular telephone protocol is provided by		1.0
	b5/8 cipher	
	1.COMPACT DISK 2.HARD DISK 3.RANDOM ACCESS MEMORY	3.0
	1.	
	architecture interface component	
1.0		1.0
		1.0
	Information, function, behavior	
	4.	
	NONE	
	1.	
,	Risk monitoring	
the risk?		1.0
		'
,	Risk analysis	
	4.	
	Risk identification	1
	Using linked list node representation, inserting a node in general tree is performed efficently Using the 8259A, the INT input of the 8086 can be expanded to accomodeate up to	Usability questionnaires are most meaningful to the interface designers when completed by product users 4. project managers Product users 4. Into possible 2 by merging with an existing node 2 affer introducing a new 1250A, the INT input of the 8006 can be expanded to accommodente up to

S.NO.	Questions	Choices	Answers
		1.	
		too slow	
		2.	
		unreliable	
1116	What characteristic of RAM memory makes it not suitable for permanent storage?		3.0
		3.	
		it is volatile	
		4.	
		too bulky	
		1.'c' means argument count 'v' means argument vector 2.'c' means	
1117	What do the 'c' and 'v' in argv stands for?	argument count 'v' means argument vertex 3.'c' means argument configuration 'v' means argument visibility 4.'c' means argument control	1.0
		'v' means argument vector	
		1.Match one or more characters that are not open paranthesis 2.Match zero or more characters that are open paranthesis 3.Match zero or more	
1118	What does /[^(]* regular expression indicate?	characters that are not open paranthesis 4.Match one or more characters	2.0
<u> </u>		that are open paranthesis	
1119	What does explode function in php do	1.Used to convert a string to an array 2.Used to split a given string into the number of chunks specified 3.Used to split a string by a string 4.Used	1.0
		to split string into two equal halves	
_	What does microprocessor speed depends on	1.Clock 2.Address bus width 3.Data bus width 4.Size of register	2.0
	What does parseFloat(9+10) evaluates to in JavaScript? What does the following declaration mean?	1.19 2.910 3.9109 4.91 1.ptr is array of pointers to 10 integers 2.ptr is a pointer to an array of 10	1.0
1122	int (*ptr)[10];	integers 3.ptr is an array of 10 integers 4.ptr is an pointer to array	2.0
		1.	
		1 => 'b'	
		2.	
	What elements will the following script output?	Town and the same that	
1123	php</td <td>True => 'a', a => 'b'</td> <td>3.0</td>	True => 'a', a => 'b'	3.0
	\$array = array (true => 'a', 1 => 'b'); var dump (\$array);	3.	3.0
	var_dump (sarray), ?>	NULL	
		4.	
		0 => 'a', 1 => 'b'	
		·	
1124	What gets printed? \$str = 'a\\b\n'; echo \$str;	1.ab(newline) 2.a\b(newline) 3.a\b\n 4.a\b(newline)	3.0
1125	What happens if no file path is given in include() function?	1.PHP continues to execute the script. 2.Results in a fatal error 3.Include path is made use of 4.It haults the script.	3.0
		1.	
		Software is set of programs	
		2.	
		Software is documentation and configuration of data	
1126	What is a Software ?	3.	3.0
		Software is set of programs and Software is documentation and	
		configuration of data	
		4.	
		Software is a set of documents.	
		I none of them 2. A master alook triscope all the flip floor at a time 2	
1127	What is asynchronous counter.	1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own	4.0
		clock	
		1.	
		block cipher	
		2.	
		stream cipher	
1128	What is data encryption standard (DES)?		1.0
		3.	
		bit cipher	
		4.	
		none of the mentioned	
		1	

1. idle time between frames 2. idle time between frame bits What is interframe gap? 3.		
2. idle time between frame bits		
idle time between frame bits		
1129 What is interframe gan?		
What is interframe gap?		
, ,	1.0	.0
idle time between packets		
4.		
none of the mentioned		
1 Shifting the data in all file flow	s simultaneously 2.Loading data in two	
1130 What is meant by parallel-loading the register? of the flip-flops 3.Loading data in	all flip-flops at the same time 3.0	.0
4.Momentarily disabling the sync 1131 What is the best case for linear search 1.O(n) 2.O(1) 3.O(log n) 4.O(2n)	hronous SET and RESET inputs 2.0	.0
1132 What is the code to start displaying the time when document loads? 1. onload = displayTime; 2. window	w. = displayTime; 3.window.onload =	
display I me; 4.window.onioad =	O of the result is zero 2 I SD of the	0
1133 What is the condition for resetting(s=0) the S flag in status register? result is one 4.LSB of the result is one 4.LSB of t		.0
What is the correct CSS syntax for making all the elements bold? 1.p {tont-weight:bold;} 2.p style="font-size:bold">	="text-size:bold" 3.p {text-size:bold}	.0
1.mysqli_db(host,username,passw	vord,dbname);	
2.mysqli_connect(host,username,	password,dbname);	
1135 What is the correct way to connect to a MySQL database? 3.mysqli_open(host,username,pas	ssword,dbname); 2.0	.0
4.		
mysqli_connect(,,)		
1136 What is the data structures used to perform recursion? 1.list 2.queue 3.stack 4.Tree	3.0	.0
1137 What is the default execution time set in set_time_limit()? 1.20 secs 2.30 secs 3.40 secs 4.50		
1138 What is the default size of a file set in upload_max_filesize? 1.1 MB 2.2 MB 3.2.5 MB 4.3 ME	2.0 2rint can take multiple parameters where	.0
What is the difference between echo and print? What is the difference between echo and print? as echo cannot 3.Echo can take m cannot 4.Print is a function where	ultiple parameters where as print 3.0	.0
What is the following style an example of? img[alt~="Pie"] 1.Attribute Match 2.Exact Value 4.Subcode Match	Match 3.Contains Value Match 3.0	.0
1.		
1 NF		
2.		
What is the highest normal form level satisfied by the following table design? R= 2 NF (A1 A2 A3 A4 A4) F=(A1 A3 A3 A4) Kgy = (A1 A2)		
	2.0	.0
3 NF		
4.		
BCNF		
1.		
$_{ m n/2}$		
2.		
What is the maximum number of reduce moves that can be taken by a bottom-up parser for a grammar with no	2.0	.0
lepsilon- and unit-production (i.e., of type A -> ε and A -> a) to parse a string with n tokens?		
2n-1		
4.		
2^n		
1.		
Any size		
2.		
2^16 bytes-size of TCP header		
What is the maximum size of data that the application layer can pass on to the TCP layer below? 3.	1.0	.0
2^16 bytes		
4.		
1500 bytes		_
The state of the s	1.0	.0
1144 What is the minimum number of NAND gates required to implement A + AB' + AB'C? 1.0 2.1 3.2 4.3 1.Define pattern matching technic	gues 2.Define subpatterns within the	

S.NO.	Questions	Choices	Answe
	what is the need of segmenting the memory in 8086	1.Increase the memory accessibility 2.Increase the memory addressibility 3.easy to retrieve data 4.faster access	
		S.easy to retrieve data 4.faster access 1.	
		a, d, c, b	
		2.	
147	What is the normal order of activities in which traditional software testing is organized? a.		1.0
14/	integration testing b. system testing c. unit testing d.validation testing	b, d, a, c	1.0
		3. 3.0c, a, d, b	
		4.	
		d, b, c, a	-
		Requirements Definition, System & Software Design, Implementation & Unit Testing, Integration & System Testing, Operation & Maintenance.	
		2.	
		Requirements Definition, Integration & System Testing, System &	
		Software Design, Implementation & Unit Testing, Operation &	
		Maintenance.	
148	What is the order of the stages in the waterfall mode?	3.	1.0
		System & Software Design, Requirements Definition, Operation & Maintenance, Implementation & Unit Testing, Integration & System	
		Testing.	
		4.	
		Implementation & Unit Testing, Requirements Definition, System &	
		Software Design, Integration & System Testing, Operation &	
		Maintenance.	
		1.	
		10***24000	
		2.	
		****24000	
1149	what is the output for the following function? LPAD(salary,10, **')		2.0
		3.	
		24000****	
		4.	
		error	
		1.	
		1,2	
	What is the output?	2	
	#include <stdio.h></stdio.h>	2.	
1150	void main()	3,2	1.0
1150	int a=3,b=2;	3.	1.0
	a=a==b==0;	0,0	
	printf("%d,%d",a,b); }	4.	
		2,3	
		1.	-
		Used to register a global variable	
		2.	
	NA 41 4 CG GEGGGOVES	Used to initialize a session	2.0
1151	What is the purpose of \$_SESSION[]?	3.	3.0
		Used to store variables of the current session	
		4.	
		Used to initialize a cookie	
		land and account	2.0
1152	What is the result of the following code snippet? window.location ==== document.location	1.False 2.True 3.0 4.1 1. Find the last occurrence of the string within a string 2. Find the first	
	What is the result of the following code snippet? window.location === document.location What is the strpos() function used for?	1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first	2.0
1153	What is the strpos() function used for?	1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first occurrence 4.Search for all occurrence within a string	
1153 1154		1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first	2.0 1.0 3.0

S.NO.	Questions	Choices	Answers
		1.	
		security algorithm for ethernet	
		2.	
		security algorithm for wireless networks	
1157	What is Wired Equivalent Privacy(WEP)?	3.	2.0
		security algorithm for USB	
		4.	
		None	
		1.	
		wi-fi protected access	
		2.	
1158	What is WPA?	wired protected access	1.0
		3.	
		wired process access	
		4.	
		wi-fi process access	
		1.	
		Read/Write. Creates a new file. Returns FALSE and an error if file	
		already exists	
		2.	
1150	What is yet made in fanon() yeard for 0	Write only. Creates a new file. Returns TRUE and an error if file already exists	1.0
1139	What is x+ mode in fopen() used for?	3.	1.0
		Read/Write. Opens and clears the contents of file	
		4.	
		Write. Opens and clears the contents of file	
1160	What keyword covers unhandled possibilities?	1.other 2.default 3.contingency 4.all 1.Relaional	2.0
	What kind of schema it is?	2.Logical Schema	
1161	Student(sid, sname, dob, address, pincode)	3.Conceptual Schema	1.0
		4.External View	
		1.	
		GD library	
		2.	
11.60		ZIP library	
1162	What library do you need in order to process images?	3.	1.0
		Win32 API library	
		4.	
		BOGUS library	
		1.	
		num is unsigned integer	
		2.	
		num is unsigned float	
1163	What type of declaration is this:	3.	4.0
	unsigned num;		
		num is unsigned character	
		4.	
		Invalid declaration	
1164	What type of register would shift a complete binary number in one bit at a time and shift all the	L DIPO 2 DISO 3 SIPO 4 SISO	4.0
1104	stored bits out one bit at a time?	1.PIPO 2.PISO 3.SIPO 4.SISO	7.0

S.NO.	Questions	Choices	Answers
		1.	
	What will be the output?	Declaration Error	
	#include <stdio.h> int main()</stdio.h>	2.	
1165	{ extern int ok;	value of ok = 1000	2.0
	printf("value of ok = %d",ok); return 0;	3.	
	}	value of $ok = 0$	
	extern int ok=1000;	4.	
		Linking Error	
1166	What will be the result of the expression 13 & 25	1.25 2.38 3.9 4.12	3.0
		High paging activity	
		2.	
		Z. Thrasing happens	
1167	What will be the status of a computer during storage compaction		4.0
		3.	
		Working set model developed	
		4.	
		It will sit idle	
1168	What will happen if the first argument of open() is omitted?	1.Error Page 2.Remains in the same page 3.about:blank 4.Open the first page in the history	3.0
		1.	
	What will the following script output?	78	
	php</td <td>2.</td> <td></td>	2.	
	Correy = orrey (1 2 2 5 9 12 21 24 55);	19	
	\$\text{\$\sum = 0;} \text{for (\$\\$i = 0; \$\\$i < 5; \$\\$i++) \{}	3.	1.0
	\$sum += \$array[\$array[\$i]]; }	NULL	
	echo \$sum; ?>	4.	
		5	
1170	What would be the output of the below code fragment? var a = ["s","a","v","e"];	1.Undefined 2.save 3.vase 4.S	2.0
1170	document.write(a.join(""));	1.	2.0
		true	
1171	1.0	2.	1.0
11/1		false	1.0
		3. 4.	
		1.	
		Primary Key constraint	
		2.	
		Referential Integrity Constraint	
1172	When a new row is inserted the constraints that can be violated are	3.	1.0
		all of the options	
		4.	
		Domain Constraint	
		1. 3.0high coupling	
		2.	
1173	When a single item that triggers other data flow along one of many paths of a data flow diagram,	poor modularity 3.	1.0
	characterizes the information flow.	transaction flow	
		4.	
		transform flow	

S.NO.	Questions	Choices	Answers
		1.	
		HTTP protocol	
		2.	
1174	When displaying a web page, the application layer uses the	FTP protocol	1.0
		3.	
		SMTP protocol 4.	
		IMAP Protocol	
1175	When operated in slave mode, the PIC outputs its type number only if the cascaded address received on CAS0-CAS2 matches the address programmed in bits D0-D2	1.ICW1 2.ICW2 3.ICW3 4.ICW4	4.0
		1. 4.0low coupling	
		2.	
1176	When the overall flow in a segment of a data flow diagram is largely sequential and follows straight-line paths, is present.	good modularity	3.0
	straight-line paths, is present.	3.	
		transaction flow 4.	
	When the pre-order and post-order traversal of a Binary Tree generates the same output, the tree	transform flow	+
1177	when the pre-order and post-order traversar of a binary free generates the same output, the free can have maximum	1.Three nodes 2.Two nodes 3.One node 4.Any number of nodes	3.0
		1.	
		automata	
		2.	
1178	When there are infinite distinguishable strings then there cannot be a	finite automata 3.	2.0
		regular expression	
		4.	
		both finite automata and regular expression	
		1.	_
		Prints an exception error	
		2.	
		Prints an overflow error	
1179	When there is an indefinite or an infinity value during an arithmetic value computation, javascript	3.	3.0
		Displays "Infinity"	
		4.	
		Prints the value as such	
1180	When used with the datalist element, what is the list attribute in HTML5 used to accomplish?	1.Local databases 2.Drop down lists 3.Autocompletion 4.Global	3.0
1100	when used with the databast element, what is the list attribute in TT viles used to decomplish.	Databases 1.	5.0
		M2	
		2.	
		M1 and M2	
1181	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	3.	2.0
		M1	
		4.	
		M1 or M2	
		1.	
		Primary Key	
		2.	
	when you were asked to design a relation, you come across a situation, where passport number is	Not Null	
1182	to be included for the people. All the students wont be having passport. So what constraint you would be using?	3.	4.0
		Default	
		4.	
		Unique	

S.NO.	Questions	Choices	Answers
		1.	
		Register values	
		2.	
	Which of the following is shared between all of the threads in a process? Assume a kernel level	File descriptors	
1183	thread implementation	3.	2.0
		Scheduler priority	
		4.	
		Local variables	
1104	Which buffer is a parallel to serial converter that receives a parallel byte for conversion into a	I Townside of the Control of the Con	1.0
1184	serial signal and further transmission onto the communication channel.	1.Transmit buffer 2.Receive buffer 3.Data bus buffer 4.Modem control 1.	1.0
		INSTR	
		2.	
1185	Which character function can be used to return a specified portion of a character string?	SUBSTRING	3.0
1105	which character random can be used to retain a specified portion of a character suring.	3.	3.0
		SUBSTR	
		4.	
		POS	
		1.image-background:url('R4R_Logo.jpg') 2.background-	
1186	Which command we use to set an image on background?	image:url('R4R_Logo.jpg') 3.bg-image:url('R4R_Logo.jpg') 4.background-image:href('R4R_Logo.jpg')	2.0
1187	Which Data structure is best suited for the UNDO operation in Windows	1.Both Stack and Queues 2.Queues 3.Stack 4.Arrays	3.0
		1.	
		External	
		2.	
		Conceptual	
1188	Which database level is closest to the users?	3.	1.0
		Internal	
		4.	
		Physical	
		1	
		1.	
		NEXT_DAY	
		2.	
		LAST_DAY	
1189	Which date function is used to obtain the date of next Wednesday	3.	3.0
		NEXT_DATE	
		4.	
		All of the options	
\dashv		1.	
		Architectural design	
		2.	
1190	4.0	Component-level design	3.0
1120		3.	3.0
		Data design	
		4.	
		Interface design	
		1	1

S.NO.	Questions	Choices	Answer
		1.	
		Single level directory structure	
		2.	
		Two level directory structure	
1191	Which directory implementation is used in most of the Operating Systems?	3.	3.0
		Tree directory structure	
		4.	
		Acyclic directory structure	
		1.	
		Single level directories	
		2.	
		Two level directories	
1192	Which directory implementation method creates more dangling pointers?	3.	4.0
		Tree Structured Diretories	
		4.	
		Acyclic graph directories	
1193	Which element is used to draw graphics images on a web page?	1.script 2.audio 3.embed 4.canvas	4.0
		1.	
		Unit Testing	
		2.	
		Integration Testing	
1194	Which granularity level of testing checks the behavior of module cooperation?	3.	2.0
		Acceptance Testing	
		4.	
		Regression Testing	
	Which header file should be included to use functions like malloc() and calloc()?	1.string.h 2.dos.h 3.memory.h 4.stdlib.h	4.0
1196	Which Instruction word is used to specify the number of stop bits, data bits, parity bit and the baud rate clock factor for the 8251A USART	1.Mode 2.Command followed by Mode 3.Command 4.Mode followed by command	4.0
		1.	
		SQL cannot support object-orientation	
		2.	
		The same query can be written in many ways, each with vastly different	
1107	Which is a major problem with SQL?	execution plans.	2.0
1197	which is a major problem with SQL:	3.	2.0
		SQL syntax is too difficult for non-computer professionals to use	
		4.	
		SQL creates excessive locks within the database	
		SQL creates excessive locks within the database	
		1.	
		Safe State	
		2.	
		Unsafe State	
1198	Which is not related to deadlock avoidance?	3.	3.0
		Safe Sequence	
		4.	
		Resource sequence	

S.NO.	Questions	Choices	Answers
		1.	
		Entry level personnel	
		2.	
1199	Which is one of the most important atalahaldar from the fallowing 9	Middle level stakeholder	4.0
	Which is one of the most important stakeholder from the following?	3.	4.0
		Managers	
		4.	
		Users of the software	
		1.	
		var txt = new Array(1:"tim",2:"kim",3:"jim")	
		2.	
		var txt = new Array:1=("tim")2=("kim")3=("jim")	
1200	Which is the correct way to write a JavaScript array?	3.	3.0
		var txt = new Array("tim","kim","jim")	
		4.	
		var txt = new Array="tim","kim","jim"	
		1.	
		Stack	
		2.	
1201	Which is used to store critical pieces of data during subroutines and interrupts	Queue	1.0
1201	which is used to store critical pieces of data during subrodumes and interrupts	3.	1.0
		Accumulator	
		4.	
		Data register	
	Which item is an example of a physical network address?	1.IP address 2.MAC address 3.Workstation name 4.www.proprofs.com	2.0
1203	Which JavaScript function is most useful for finding errors?	1.Confirm 2.Prompt 3.Debug 4.Alert	3.0
		Software interrupts	
		2.	
		Interrupt-driven I/O	
1204	Which method bypasses the CPU for certain types of data transfer?	3.	4.0
		Polled I/O	
		4.	
		Direct memory access (DMA)	
		1.	
		getDriver() method 2.	
		class.forName()	
1205	Which method is used for loading the driver in Java JDBC.	3.	1.0
		createStatement()	
		4.	
		getConnection()	
		1.	
		stringVariable.substring(subString)	
		2.	
		stringVariable.find(subString)	
1206	Which method is used to search for a substring?	3.	3.0
		stringVariable.indexOf(subString)	
		4.	
		stringVariable.indexOf(charAt(0))	

S.NO.	Questions	Choices	Answe
		1.	
		Waterfall Model	
		2.	
		Prototyping Model	
1207	Which model can be selected if user is involved in all the phases of SDLC?	3.	3.0
		RAD Model	
		4.	
		Prototyping Model and RAD model	
		1.	
		design model	
		2.	
1208	3.0	implementation model	2.0
		3. user model	
		4.	
		client model	
		1.	
		CDMA	
		2.	
1200	Which making a second of the IEEE 002 11 standard Commission I ANO	CSMA/CA	
1209	Which multiple access technique is used by IEEE 802.11 standard for wireless LAN?	3.	2.0
		ALOHA	
		4.	
		CSMA/CD	
1210	Which of the below given sorting techniques has highest best-case runtime complexity?	1.bubble sort 2.insertion sort 3.quick sort 4.selection sort	3.0
	Which of the following (in file scope) leads to a compile-time error?	1.const int a=90; 2.const int f1() { return 100; } 3.int f2() const { return	3.0
1211	which of the following (in the scope) reads to a complic-time error:	200; } 4.const int f3(const int i) { return 300;}	3.0
		1. 3.0Develop overall project strategy	
		2.	
	Which of the following activities is not one of the four things that need to be accomplished by the	Identify the functionality to deliver in each software increment	
1212	generic planning task set?	3.	4.0
		Create a detailed schedule for the complete software project	
		4.	
		Devise a means of tracking progress on a regular basis	
		1.	
		1 and 4	
	Which of the following addressing modes are suitable for program	2.	
	relocation at run time?	1 and 2	
	Absolute addressing Based addressing	3.	4.0
	3. Relative addressing	2 and 3	
	4. Indirect addressing	4.	
		1,2 and 4	
1214	Which of the following algorithm design technique is used in the quick sort algorithm?	1.Greedy method 2.Backtracking 3.Divide and conquer 4.Dynamic programming	3.0
1215	Which of the following algorithm is Minimum Spanning Tree in graph	1.Dijiktra's algorithm 2.AVL Tree algorithm 3.Kruskal's algorithm	3.0
		4.Merge algorithm 1.Dijiktra's algorithm 2.Prim's algorithm 3.Kruskal's algorithm 4.Merge	_
1216	Which of the following algorithm is used to find the shortest path between two nodes in graph	algorithm	1.0

S.NO.	Questions	Choices	Answers
		1.	
	Which of the following are decidable?	I and II	
	I. Whether the intersection of two regular languages is infinite	2.	
	II. Whether a given context-free language is regular	I and IV	
1217	III. Whether two push-down automata accept the same language	3.	3.0
	IV. Whether a given grammar is context-free	II and III	
		4.	
		I and III	
		1.	
		enctype='multipart/form-data'	
		2.	
		enctype='singlepart/data'	
1218	Which of the following attribute is needed for file upload via form?	3.	1.0
		enctype='file'	
		4.	
		enctype='form-data/file'	
		1.	
		Column	
		2.	
1219	Which of the following can be a valid column name?	1966_Invoices	3.0
		3.	
		Catch_#22	
		4.	
		#Invoices	
1220	Which of the following can't be done with client-side JavaScript?	1. Validating a form 2. Sending a form's contents by email 3. Storing the form's contents to a database file on the server 4. Testing the form	3.0
	Which of the following case does not exist in complexity theory?	1.Average case 2.Worst case 3.Best case 4.Null case	4.0
	Which of the following command words need to be programmed to operate a single PIC in fully nested mode with an 8086 microprocessor	1.ICW1 and ICW2 2.ICW1, ICW2 and ICW4 3.ICW2 and ICW3 4.ICW1 and ICW4	2.0
	Which of the following correctly describes C++ language?	1.Statically typed language 2.Dynamically typed language 3.Both	4.0
		Statically and dynamically typed language 4.Type-less language 1.	
		It is the position in a sentential form where the next shift or reduce	
		operation will occur	
		2.	
		It is non-terminal whose production will be used for reduction in the next step	
		3.	
1224	Which of the following describes a handle (as applicable to LR-parsing) appropriately?	It is a production that may be used for reduction in a future step along	4.0
		with a position in the sentential form where the next shift or reduce	
		operation will occur	
		4.	
		It is the production p that will be used for reduction in the next step along with a position in the sentential form where the right hand side of	
		the production may be found	
1225	Which of the following explains cookies nature?	1.Non Volatile 2.Volatile 3.Intransient 4.Transient	4.0
		1.	
		Contiguous allocation	
		2.	
100	Which of the fell principal for the second of the second o	Linked allocation	2.0
1226	Which of the following file access method needs a relative block number 'n'?	3.	3.0
		Direct access	
		4.	
		Sequential access	
		1	1

ich of the following function is used to terminate the script execution in PHP? ich of the following function sets first n characters of a string to a given character? ch of the following grammar rules violate the requirements of an operator grammar? P, Q, R are terminals, and r, s, t are terminals. $ P \to Q R P \to Q S R$	die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	2.0
ch of the following function sets first n characters of a string to a given character?	2. quit() 3. die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	2.0
ch of the following function sets first n characters of a string to a given character?	quit() 3. die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	2.0
ch of the following function sets first n characters of a string to a given character?	3. die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	2.0
ch of the following function sets first n characters of a string to a given character?	die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	2.0
ch of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to E$ $P \to Q \ t \ R \ r$	die() 4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ch of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to E$ $P \to Q \ t \ R \ r$	4. exit() 1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ch of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to E$ $P \to Q \ t \ R \ r$	exit() 1. strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ch of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to E$ $P \to Q \ t \ R \ r$	1.strset() 2.strnset() 3.strinit() 4.strcset() 1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ch of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to Q \ S \ R$ $P \to E$ $P \to Q \ t \ R \ r$	1. 1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ s \ R$ $P \to \emptyset \ s \ R$ $P \to \varepsilon$ $P \to Q \ t \ R \ r$	1 and 3 only 2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ s \ R$ $P \to \emptyset \ s \ R$ $P \to \varepsilon$ $P \to Q \ t \ R \ r$	2. 1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
terminals, and r, s, t are terminals. $P \to Q \ R$ $P \to Q \ s \ R$ $P \to \emptyset \ s \ R$ $P \to \varepsilon$ $P \to Q \ t \ R \ r$	1 only 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
$P \rightarrow Q R$ $P \rightarrow Q S R$ $P \rightarrow \varepsilon$ $P \rightarrow Q t R r$	 3. 2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix 	1.0
$P \rightarrow Q \text{ s R}$ $P \rightarrow \epsilon$ $P \rightarrow Q \text{ t R r}$	2 and 3 only 4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
$P \rightarrow Q t R r$	4. 1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
	1,2,3 and 4 only 1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ich of the following intermediate language can be used in intermediate code generation?	1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ich of the following intermediate language can be used in intermediate code generation?	1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	
ich of the following intermediate language can be used in intermediate code generation?		\vdash
	notation and two address code	1.0
	1.	
	All Statements Coverage	
	2.	
	Control Structure Coverage	
ich of the following is a black box testing strategy?	3.	3.0
	Cause-Effect Graphs	
	4.	
	ALI.	
	I.	
	=	
	2.	
	LIKE	
ich of the following is a comparison operator in SQL?	3.	4.0
	BETWEEN	
	4.	
	all of the options	
		<u> </u>
ich of the following is a dynamic model that shows how the system interacts with its	interaction model	2.0
nominent as it is used?	3.	2.0
	environmental model	
	4.	
	both system context and interaction	
		Ь
ii	ch of the following is a black box testing strategy? ch of the following is a comparison operator in SQL? ch of the following is a dynamic model that shows how the system interacts with its ronment as it is used?	Control Structure Coverage 3. Cause-Effect Graphs 4. ALL 1. = 2. LIKE 3. BETWEEN 4. all of the options 1. system context model 2. interaction model 3. ch of the following is a dynamic model that shows how the system interacts with its ronment as it is used?

S.NO.	Questions	Choices	Answers
		1.	
		SELECT NULL FROM EMPLOYEE;	
		2.	
1234	Which of the following is a legal expression in SQL?	SELECT NAME FROM EMPLOYEE;	2.0
1234	which of the following is a legal expression in SQL:	3. SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;	2.0
		SELECT NAME FROM EMPLOTEE WHERE SALART - NOLL, 4.	
		None of the options	
		rone of the options	
		1.	
		difficult to update	
		2.	
		lack of data independence	
1235	Which of the following is a problem of file management system?	3.	4.0
		data redundancy	
		4.	
		all options given	
		1.	
		PERT	
		2.	
	Which of the following is a project scheduling method that can be applied to software	CPM	
1236	development?	3.	4.0
		CMM	
		4.	
		both PERT and CPM	
		1.X.25 level 2-ISO 2.Source routing and Domains Naming Usenet	
1237	Which of the following is a wrong example of network layer	3.X.25 packet land protocols (PLP-ISO) 4.Internet protocol (I/P) ARPA NET	1.0
1238	which of the following is an incorrect definition inside a class?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void operator delete(void * ptr) { } 4.int operator ++() { }	2.0
1239	which of the following is an incorrect definition inside a class?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void	2.0
		operator delete(void * ptr) { } 4.int operator +++() { } 1.It is a class of which stream is an object. 2.Using cin, the data can be	
1240	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class.	1.0
		1.	
		Place the user in control	
		2.	
		Reduce the user's memory load	
1241	Which of the following is golden rule for interface design?	3.	4.0
		Make the interface consistent	
		4.	
		ALL	
		1.	
		Cache memory	
		2.	
		Secondary memory	
1242	Which of the following is lowest in memory hierarchy?	3.	3.0
		Registers	
		4.	
		RAM	
ì			

S.NO.	Questions	Choices	Answer
		1.	
		Join	
		2.	
1243	Which of the following is not a binary operator in relational algebra?	Semi-Join	4.0
12 13	which of the following is not a official operator in rotational algebra.	3.	1.0
		Assignment	
		4.	
		Project	
		1.	
		Instruction cache	
		2.	
		Instruction register	
1244	Which of the following is not a form of memory?	3.	3.0
		Instruction opcode	
		4.	
		Translation-a-side buffer	
		1.	
		atomicity	
		2.	
		consistency	
1245	Which of the following is not a property of a transaction?	3.	4.0
		dirty read	
		4.	
		durability	
		1.	
		evaluations to be performed	
		2.	
		amount of technical work	
1246	Which of the following is not a SQA plan for a project?	3.	2.0
		audits and reviews to be performed	
		4.	
		documents to be produced by the SQA group	
	Which of the following is not a valid attribute of the INPUT tag?	1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH	4.0
1248	Which of the following is NOT a valid PHP comparison operator?	1.!= 2.>= 3.&&& 4.=== 1.	3.0
		Communications components	
		2.	
	Which of the following is not an example of infrastructure components that may need to be	Database components	
1249	integrated into the software architecture?	3.	2.0
		4.0Interface components	
		4.	
		Memory management components	
1250	Which of the following is not characteristics of a relational database model	1.Complex logical relationships 2.Treelike structure 3.Tables 4.Records 1.	2.0
		Specification delays	
		2.	
1251	Which of the following is not considered as a risk in project management?	Product competition	4.0
1431		3.	
		1.1 overmor	1
		Testing	
		4. Staff turnover	

S.NO.	Questions	Choices	Answers
		1. Magnetic tape	
		Nagnenc tape 2.	
		Printer	
1252	Which of the following is not hardware:	3.	4.0
		VDU terminal	
		4.	
		Assembler	
		1.	
		All design should be as simple as possible, but no simpler	
		2.	
1253	Which of the following is not one of Hooker's core principles of software engineering practice?	A software system exists only to provide value to its users.	3.0
		3.	
		Pareto principle (20% of any product requires 80% of the effort)	
		4. 3.0Remember that you produce others will consume	
		1.	
		Create unit tests before you begin coding	
		2. 3.0Create a visual layout that aids understanding	
1254	Which of the following is not one of the principles of good coding?	3. Keep variable names short so that code is compact	4.0
		4.	
		Write self-documenting code, not program documentation	
1255	Which of the following is not possible using PHP?	1.Deleting files from the server 2.Redirect a visitor to another page 3.Set	4.0
		the value of the window statusbar 4.Obtain the IP address of a Visitor 1.	
		File permissions	
		2.	
		Program Counter	
1256	Which of the following is not the attribute of FCB?	3.	4.0
		Access Control List	
		4.	
		Pointers to file control blocks	
1257	Which of the following is not the characteristic of constructor?	1. They should be declared in the public section. 2. They do not have return type. 3. They can not be inherited. 4. They can	4.0
		be virtual. 1.	
		Functional Cohesion	
		2.	
		Temporal Cohesion	
1258	Which of the following is the best type of module cohesion?	3.	3.0
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.	
		Control Coupling	
		2. Storm Coupling	
1259	Which of the following is the worst type of module coupling?	Stamp Coupling 3.	3.0
		External Coupling	
		4.	
		Content Coupling	
ı			

S.NO.	Questions	Choices	Answers
		1.	
		Every subset of a regular set is regular.	
		2.	
1260		Every finite subset of a non-regular set is regular.	1.0
1260	Which of the following is TRUE?	3.	1.0
		Every finite subset of a non-regular set is regular.	
		4.	
		Infinite union of finite sets is regular.	
		1.	
		The complement of a recursive language is recursive.	
		2.	
		The complement of a recursively enumerable language is recursively	
1261	Which of the following is true?	enumerable	1.0
1201	which of the following is true:	3.	1.0
		The complement of a recursive language is either recursive or recursively enumerable	
		4.	
		The complement of a context-free language is context-free	
		1.	
		Every relation in 2NF is also in BCNF	
		2.	
		A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R	
1262	Which of the following is TRUE?	3.	3.0
		Every relation in BCNF is also in 3NF	
		4.	
		No relation can be in both BCNF and 3NF	
		Segmentation is faster than paging	
		2.	
1263		Paging is faster than segmentation	2.0
	Which of the following is true?	3.	
		Pages are unequal sized pieces	
		4.	
		Segments are equal sized pieces	
1264	Which of the following is useful in traversing a given graph by breadth first search?	1.List 2.Queue 3.Set 4.Stack	2.0
		1.	
		Do not allows developers to make changes to the delivered increment	
1265	Which of the following is valid reason for collecting customer feedback concerning delivered software?	2.0Delivery schedule can be revised to reflect changes	4.0
	sonware?	3.	
		Developers can not identify changes to incorporate into next increment	
		4.Delivery schedule can't be revised to reflect changes	
		1.	
		Create	
		2.	
1266	Which of the following is/are the DDL statements?	Drop	4.0
1200	Which of the following is/are the DDL statements?	3.	4.0
		Alter	
		4.	
		All of the options	
		<u>I</u>	1

S.NO.	Questions	Choices	Answers
Si. (O.	Virgorous.	1.L1 and L2 only 2.	11115111111
		L1 and L3 only	
	Which of the following languages are context-free?	3.	
1267	$L1 = \{a^mb^na^nb^m \mid m, n \ge 1\}$		2.0
	$L2 = \{a^m b^n a^m b^n \mid m, n \ge 1\}$	L3 only	
	L3 = $\{a^mb^n \mid m = 2n + 1\}$	4.	
		L1 only	
		1.	\vdash
		Segmentation	
		2.	
1260		Pure Demand Paging	1.0
1200	Which of the following memory allocation scheme suffers from External fragmentation?	3.	1.0
		swapping	
		4.	
		paging	
		1.	
		A binary relationship	
		2.	
		A ternary relationship	
1269	Which of the following most certainly implies the need for an entire table to implement?	3.	4.0
		A recursive relationship	
		4.	
		An identifying relationship	
1270	Which of the following name does not relate to stacks?	1.FIFO lists 2.LIFO list 3.Push-down lists 4.Piles	1.0
		1.	
		PROJECTION	
		2.	
		SELECTION	
1271	Which of the following operation is used if we are interested in only certain columns of a table?	3.	1.0
		UNION	
		4.	
		JOIN	
1272	Which of the following operator can be overloaded through friend function?	1> 2.= 3.() 4.*	4.0
1273	Which of the following operators has an associativity from Right to Left?	1.+= 2.== 3.<< 4.<=	3.0
		1.	
		architecture	
		2.	
	Which of the following pattern is the basis of interaction management in many web-based	repository pattern	
1274	systems?	3.	3.0
		model-view-controller	
		4.	
		different operating system	
		1.	
		Membership problem for CFGs	
		2.	
		Ambiguity problem for CFGs.	
1275	Which of the following problems is undecidable?	3.	2.0
		Finiteness problem for FSAs	
		4.	
		Equivalence problem for FSAs.	
		1	

S.NO.	Questions	Choices	Answers
		Deciding if a given context-free grammar is ambiguous.	
		Deciding if a given string is generated by a given context-free grammar3.	
1276	Which of the following problems is undecidable?	Deciding if the language generated by a given context-free grammar is empty	1.0
		4. Deciding if the language generated by a given context-free grammar is finite.	
		1. Change management	
1277	Which of the following process is concerned with analyzing the costs and benefits of proposed changes?	2. Version management	1.0
		3.System building4.	
		Release management	
1278	Which of the following property allows you to specify an element's position with respect to the browser window?	1.relative 2.fixed 3.static 4.absolute	1.0
		1. Product risk 2.	
1279		Project risk 3. Business risk	1.0
		4. Programming risk	
		1. People risks 2.	
1280	Which of the following risks are derived from the organizational environment where the software is being developed?	Technology risks 3.	4.0
		Estimation risks 4. Organizational risks	
		I. Managerial risks	
		2. Technology risks	
1281	Which of the following risks are derived from the software or hardware technologies that are used to develop the system?	3. Estimation risks	2.0
		4. Organizational risks	
1282	Which of the following statements about queues is incorrect?	1.Queues are first-in, first-out (FIFO) data structures 2.Queues can be implemented using arrays 3.Queues can be implemented using linked lists 4.New nodes can only be added at the front of the queue	4.0
1283	Which of the following statements are true in c++?	Class members are public by default. 2.Structures can not have functions as members. 3.Classes can not have data as public members. 4.Structures can have functions	1.0

S.NO.	Questions	Choices	Answers
		1.	
	Which of the following statements are TRUE?	I and II	
	I. There exist parsing algorithms for some programming languages	2.	
1284	whose complexities are less than $O\left(n^3\right)$. II. A programming language which allows recursion can be implemented	I and IV	2.0
1204	with static storage allocation. III. No L-attributed definition can be evaluated in The framework	3.	2.0
	of bottom-up parsing. IV. Code improving transformations can be performed at both source	III and IV	
	language and intermediate code level.	4.	
		I, II and III	
1285	Which of the following statements best describes the operation of a synchronous up-/down-counter?	1.In general, the counter can be reversed at any point in its counting sequence. 2.The counter can be reversed, but must be reset before counting in the other direction. 3.The counter can count in either direction, but must continue in that direction once started. 4.The count sequence cannot be reversed, once it has begun, without first resetting the counter to zero.	1.0
		It is a degree to which software running on one platform can easily be converted to run on another platform.	
		2.	
		It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
	Which of the following statements explains portability in non-functional requirements?	3.	
1286	Which of the following statements explains portability in non-functional requirements?	The ability of the system to behave consistently in a user-acceptable manner when operating within the environment for which the system was intended.	1.0
		4.	
		It is a degree to which software running on one platform can easily be converted to run on another platform as well as It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
		1.	
		Every NFA can be converted to an equivalent DFA	
		2.	
1287	Which of the following statements is false?	Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine	4 0
1207	Tribol of the following statements to take:	3.	
		Every regular language is also a context-free language	
		4.	
		Every subset of a recursively enumerable set is recursive	
1288	Which of the following statements is NOT valid about operator overloading?	1. Overloaded operator must have at least one operand of its class type. 2. Only existing operators can be overloaded. 3. The overloaded operators follow the syntax rules of the original operator. 4. The arity of the operator can be changed	3.0
1289	Which of the following statements is NOT valid about operator overloading?	1.Overloaded operator must have at least one operand of its class type. 2.Only existing operators can be overloaded. 3. The overloaded operators follow the syntax rules of the original operator. 4. The arity of the operator can be changed	4.0
1290	Which of the following statements is true?	1.An INPUT field of type password provides excellent security 2.An INPUT field of type password provides a masked field but no real security 3.A maximum length can not be set for a password field 4.A password INPUT field can only be included in a FORM that uses the get METHOD	4.0
1291	Which of the following statements is true?	1.Quadraples have some disadvantages over triples notation for an optimizing compiler 2.For optimizing compiler, moving a statement that defines a temporary value requires us to change all references to that statements. It is an overhead for triples notation 3.For optimizing compiler, triples notation has important benefit where statements are often moved around as it incurs no movements or change 4.All the statements are false	2.0
1292	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree vertices is even,Q: Sum of degrees of all vertices is even	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
1293	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
/5	vertices is even,Q: Sum of degrees of all vertices is even		I

S.NO.	Questions	Choices	Answers
		1.	
		Avoidance strategies	
		2.	
1204	Which of the following strategies means that the impact of the risk will be reduced?	Minimization strategies	2.0
1294		J.	2.0
		Contingency plans	
		4.	
		ALL	
		1.	
		socket	
		2.	
		bind	
1295	Which of the following system calls results in the sending of SYN packets?	3.	4.0
		listen	
		4.	
		connect	
		1.	
	 F	Branching	
		2.	
	Which sales are the sales and the sales are	Merging	
1296	Which of the following term is best defined by the statement "The creation of a new codeline from a version in an existing codeline"?	3.	1.0
		Codeline	
		4.	
		Mainline	
		1.	
		Underestimated development time	
		2.	
	which of the following term is best defined by the statement. Derive traceability information to	Organizational restructuring	
1297	maximize information hiding in the design."?	3.	3.0
		Requirements changes	
		4.	
		None	
		1.	
		Technology change	
		2.	
	which of the following term is best defined by the statement. The anderlying technology on	Product competition	
1298	which the system is built is superseded by new technology."?	3.	1.0
		Requirements change	
		4.	
		None	
		1.	
		Staff turnover	
		2.	
	Which of the following term is best defined by the statement: "There will be a change of	Technology change	
1299	organizational management with different priorities."?	3.	3.0
		Management change	
		4.	
		Product competition	

S.NO.	Questions	Choices	Answers
		1.	
		Competence	
		2.	
1300	Which of the following traits need to exist among the members of an agile software team?	Decision-making ability	4.0
		3. 4.0Mutual trust and respect	
		4.	
		ALL	
1301	Which of the following tree may have smaller elements in its left subtree and larger element in its	1.B+ Tree 2.AVL Tree 3.Binary tree 4.Binary search Tree	4.0
\dashv	right subtree	1.p {color:red;text-align:center}; 2.p {color:red;text-align:center} 3.p	+
1302	Which of the following ways below is correct to write a CSS?	{color:red;text-align:center;} 4.p (color:red;text-align:center;)	3.0
		direct access from a magnetic tape	
		2.	
		direct access from a hard disk	
1303	Which of the following would cause quickest access		2.0
		3.	
		direct access from a floppy disk	
		4.	
		direct access from a cassette tape	
		1.	+
		I and II only	
		2.	
	Which of the regular expressions given below represent the following DFA?	I and III only	
1304	I) 0*1(1+00*1)* II) 0*1*1+11*0*1	3.	3.0
	III) (0+1)*1	II and III only	
		4.	
		I,II,III	
1205	Which of these contains an executable statement?	1.// var a = 0; // var b = 0; 2./* var a = 0; // var b = 0; */3./* var a = 0; */	3.0
1303	which of these contains an executable statement:	var b = 0; 4.// var a = 0; /* var b = 0; */	3.0
		Adequacy	
		2	
		Feasibility	
1306	Which of these does not belong to the basic principles of good product design?	3.	4.0
		Portability	
		4.	
		Economy	
		·	
		cost estimation	
	Which of these framework activities is not normally associated with the user interface design processes?	2. 1.0interface construction	3.0
	A COUNTY .	3. interface validation	
		4.	
I		user and task analysis	

S.NO.	Questions	Choices	Answei
		1.	
		Software engineering belongs to Computer science	
		2.	
		Software engineering is a part of more general form of System Engineering	
1308	Which of these is incorrect?	3.	3.0
1500	, men or alege to incontent.	Computer science belongs to Software engineering	
		4.	
		Software engineering is concerned with the practicalities of developing and delivering useful software	
		1.	
		Behavioral elements	
		2.	
		Class-based elements	
309	Which of these is not an element of an object-oriented analysis model?	3.	4.0
		Data elements	
		4.	
		Scenario-based elements	
1310	Which of these sets of HTML5 attributes can be used for form validation?	1.required, pattern, min and max 2.auto, fixed, number 3.number, text, currency 4.input, radio,checkbox	1.0
1311	Which one is not a self complementary code?	1.8 4 -2 -1 2.4 8 1 2 3.4 4 3 -2 4.2 4 2 1	3.0
		1.Network Model	
1312	Which one of the following is currently the most popular data model?	2.Object Model 3.Notation Model	4.0
		4.Relational Model	
		1.	
		Linked allocation	
		2.	
		Fixed Indexed allocation	2.0
1313	Which one of the file allocation scheme cannot be adopted for dynamic storage allocation	3.	
		Variable Indexed allocation	
		4.	
_		Contiguous allocation	
		1.	
		RSA algorithm	
		2.	
1214	Which one of the following algorithm is not used in asymmetric-key cryptography?	diffie-hellman algorithm	3.0
1314	which one of the following algorithm is not used in asymmetric-key cryptography:	3.	3.0
		electronic code book algorithm	
		4.	
		ECC	
		1.	
		НТТР	
		2.	
		FTP	
315	Which one of the following allows a user at one site to establish a connection to another site and		3.0
	then pass keystrokes from local host to remote host?	3.	
		telnet	
		4.	
		none of the mentioned	
1216	Which one of the following correctly describes the meaning of 'namespace' feature in C++?	Inamespaces provide facilities for organizing the names in a program to avoid name clashes 2.Namespaces refer to space between the names in a program 3.Namespaces refer to the memory space allocated for names	1.0

S.NO.	Questions	Choices	Answers
		1. collision detection	
		2.	
		Acknowledgement of data frames	
1317	Which one of the following event is not possible in wireless LAN.	3.	1.0
		multi-mode data transmission	
		4.	
		none of the mentioned	
	stre	I.	
		stream control transmission protocol (SCTP)	
		2.	
1318	Which one of the following is a cryptographic protocol used to secure HTTP connection?	transport layer security (TSL)	2.0
1510	The same of the color mig is a copposition protect and to see the first of the color mig is a copposition of the color mig is a copposition of the color mig is a copposition of the color migration of the co	3.	2.0
		explicit congestion notification (ECN)	
		4.	
		resource reservation protocol	
		1.	
		Availability	
		2.	
		Testability	
1319	Which one of the following is a requirement that fits in a developer's module?	3.	2.0
		Usability	
		4.	
		Flexibility	
		1.	
		dynamic host configuration protocol	
		2.	
		simple network management protocol	
1320	Which one of the following is an internet standard protocol for managing devices on IP network?	3.	2.0
		internet message access protocol	
		4.	
		media gateway protocol	
		1.	_
		A basic block is a sequence of instructions where control enters the	
		sequence at the beginning and exits at the end.	
		2.	
1321	Which one of the following is FALSE?	Available expression analysis can be used for common subexpression elimination.	2.0
		3.	
		Live variable analysis can be used for dead code elimination.	
		4.	
		$x = 4 * 5 \Rightarrow x = 20$ is an example of common subexpression	
		elimination.	
		1	1

S.NO.	Questions	Choices	Answers
		1.	
1222		There is unique minimal DFA for every regular language	
		2. Every NFA can be converted to an equivalent PDA	
	Which one of the following is FALSE?	3.	4.0
1322		Complement of every context-free language is recursive	
		4.	
		Every nondeterministic PDA can be converted to an equivalent	
		deterministic PDA	
		1.	
		Elicitation	
		2.	
1222		Design a model	2.0
1323	Which one of the following is not a step of requirement engineering?	3.	2.0
		Analysis	
		4.	
		Documentation	
		1.	
		FAT	
		2.	
1324	Which one of the following is not a windows file system?	NTFS	4.0
1321		3.	1.0
		FAT32	
		4.	
		EXT	
		1.	3.0
		media gateway protocol	
		2.	
1325	Which one of the following is not an application layer protocol?	dynamic host configuration protocol 3.	
		resource reservation protocol	
		4.	
		session initiation protocol	
		1.	
		application layer protocols are used by both source and destination	3.0
		devices during a communication session	
		2.	
1326		application layer protocols implemented on the source and destination host must match	
		3.	
		both the options	
		4.	
		1.	
		Killing a process	
	Which one of the following is not the process of Deadlock Recovery?	2.	4.0
1327		Rollback to the previous state	
		3.	
		Selecting a Victim	
		4.	
		Delaying the process	
	<u>I</u>	1	1

S.NO.	Questions	Choices	Answers
		1.provide security	
1328	Which are each Cillumina is another than 1975 and DD 10	2.develop applications	2.0
	Which one of the following is not the responsibility of the DBA?	3.periodically tunes the database	2.0
		4.restores the system after a failure	
1329	Which one of the following is the recurrence equation for the worst case time complexity of the Quicksort algorithm for sorting n>=2 numbers? In the recurrence equations given in the options below, c is a constant.	1.T(n)=2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 4.T(n)=2T(n-2)+cn	1.0
1330	Which one of the following is the very first task executed by a session enabled page?	Delete the previous session 2.Start a new session 3.Check whether a valid session exists 4.Handle the session	3.0
	Which one of the following is True at any valid state in shift-reduce parsing?	Viable prefixes appear only at the bottom of the stack and not inside 2.	
1331		Viable prefixes appear only at the top of the stack and not inside 3.	3.0
		The stack contains only a set of viable prefixes 4.	
		The stack never contains viable prefixes	
		1. 10101010	
		2.	
		10101011	
1332	Which one of the following is used as the start frame delimeter in ethernet frame?	3.	2.0
		00000000	
		4.	
		11111111	
		1.	
		The set of all strings containing the substring 00.	
		2.	
	Which one of the following languages over the alphabet {0,1} is described by the regular expression:	The set of all strings containing at most two 0's.	3.0
1333	(0+1)*0(0+1)*0(0+1)*?	3.	
		The set of all strings containing at least two 0's.	
		4.	
		The set of all strings that begin and end with either 0 or 1.	
		1.	
		Build & Fix Model	
		2.	
	Which one of the following models is not suitable for accommodating any change?	Prototyping Model	4.0
1334		3.	
		RAD model	
		4.	
		Waterfall Model	
	Which one of the following modulation scheme is supported by WiMAX?	1. binary phase shift keying modulation	
		2.	
		quadrature phase shift keying modulation	
1335		3.	4.0
		quadrature amplitude modulation	
		4.	
		all of the mentioned	

NO.	Questions	Choices	Answ
1226	Which one of the following protocol delivers/stores mail to reciever server?	simple mail transfer protocol	
		2.	
		post office protocol	1.0
30		3.	1.0
		internet mail access protocol	
		4.	
		hypertext transfer protocol	
		1.	\vdash
		a and b	
		2.	
37	Which one of the following regular expressions over {0, 1} denotes the set of all strings not	b and c	14.0
,	containing 100 as a substring (a) 0*(11)*0* (b) (0*1010)* (c) 0*1*010 (d) 0*(10)*01*	3.	
		only c	
		4.	
		only b	
_		1.	
		Any relation with two attributes is in BCNF	
		2.	
		A relation in which every key has only one attribute is in 2NF	
38	Which one of the following statements if FALSE?	3.	4.0
		A prime attribute can be transitively dependent on a key in a 3 NF relation.	
		4.	
		A prime attribute can be transitively dependent on a key in a BCNF relation.	
	Which one of the following uses 8B/6T encoding scheme	1.100 Base-T1 2.100 Base-T4 3.100 Base TX 4.100 Base-FX	2.0
40	Which property is used to obtain browser vendor and version information?	1. modal 2.version 3.browser 4.navigator 1.	4.0
		session initiation protocol	
		session initiation protocor	1.0
	Which protocol is a signalling communication protocol used for controlling multimedia	2.	
41		session modelling protocol	
71	communication sessions?	3.	1.0
		session maintenance protocol	
		4.	
		none of the mentioned	
		1.	
	Which question no longer concerns the modern software engineer?	Why does computer hardware cost so much?	
			1.0
		2.	
42		Why does software take a long time to finish?	
		3.	
		Why does it cost so much to develop a piece of software?	
		4.	
		Why can't software errors be removed from products prior to delivery?	
		1.Radix search 2.Linear search 3.Binary search 4.Indexd sequential	1
	Which searching technique is better, if unsorted array is given as input	search	2.0
	Which segments of a seven-segment display would be active to display the decimal digit 2?	1.a, c, d, f, and g 2.a, b, c, d, and g 3.a, b, d, e, and g 4.a, b, c, d, e, and f	3.0

S.NO.	Questions	Choices	Answer
		1.	
 		Sum	
		2.	
		Count	
1345	Which SQL functions is used to count the number of rows in a SQL query?	3.	2.0
		Max	
		4.	
		ALL	
		1.	
		goto xyz	
		2.	
		int x = 20	
1346	Which statement does not require semicolon?		3.0
		3.	
		#define MAX 100	
		4.	
		do {} while(count<=100)	
		1.Standard form must consists of minterms 2.All standard form are	
1347	Which statement is true:	canonical forms 3.Canonical form can consist of a term with a literal missing 4.All canonical form are standard form	1.0
		1.	
		coaxial cable	
		2.	
1249	Which transmission media has the highest transmission speed in a network?	twisted pair cable	3.0
1340	which transmission media has the ingliest transmission speed in a network:	3.	3.0
		optical fiber	
		4.	
		electrical cable	
		1.	
		form	
		2.	2.0
	Which of these is a stand alone tag?	frame	
1349		3.	
		table	
		4.	
		anchor	
1350	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree(BST)in the	1.65 2.67 3.83 4.69	2.0
	sequence shown, the element in the lowest level is	1.	
		Time consuming	
		2.	
		Process entered in to critical section may close the file	
1351	Why 'critical section' is not imposed on file systems instead 'file locks' when more than one process tries to access the file?	3.	3.0
		we cannot satify the three conditions of mutual exclusion, progress and	
		bounded waiting	
		4.	
			1
		we cannot use semaphore	

S.NO.	Questions	Choices	Answers
1352	WiMAX MAC layer provides an interface between	higher transport layers and physical layer	
		application layer and network layer 3.	1.0
		data link layer and network layer 4.	
		none of the mentioned 1.	
		simplex communication 2.	
1353		half duplex communication 3.	2.0
		full duplex communication 4.	
		none of the mentioned	
		wireless maximum communication 2.	2.0
1354	WiMAY stands for	worldwide interoperability for microwave access 3.	
		worldwide international standard for microwave access 4.	
		none of the mentioned	
	WiMAX uses the	orthogonal frequency division multiplexing 2.	1.0
1355		time division multiplexing 3.	
		space division multiplexing 4.	
		all of the mentioned 1.	
		radio waves 2.	4.0
1356		microwaves 3.	
		infrared 4.	
		all of the mentioned	
	Write Through technique is used in which memory for updating the data	Virtual memory 2.	4.0
1357		Main memory 3.	
		Auxiliary memory 4.	
		Cache memory 1.getElementById() 2.getElementsByTagName()	
1358	You can find the element you want to manipulate by way?	3.getElementsByClassName() 4.All of the these	4.0

S.NO.	Questions	Choices	Answers
1359	You have an array of n elements, Suppose you implement quicksort by always choosing the central element of the array as the pivot, Then the tightest upper bound for the worst case performance is	1.O(log n) 2.O(n) 3.O(n^2) 4.O(1)	3.0
1360	You have to sort a list L consisting of a sorted list followed by a few "random" elements. Which of the following sorting methods would be especially suitable for such a task?	1.Bubble sort 2.Selection sort 3.Quick sort 4.Insertion sort	4.0
1361	You need to check the size of a file in PHP function. \$size = X(filename); Which function will suitably replace 'X'?	1. filesize 2. size 3. sizeofFile 4. getSize	1.0
1362	'Aging registers' are	Counters which indicate how long ago their associated pages have been referenced. Registers which keep track of when the program was last accessed 3. Counters to keep track of last accessed instruction Counters to keep track of the latest data structures referred	1.0