Advertising Dataset - Linear Regression Model

Objective of the Project

- The main objective is to build Linear Regression model to understand the impact of ad budgets on the overall sales with respect to the features.
- The advertising dataset captures the sales revenue generated with respect to advertisement costs across multiple channels like radio, tv, and newspapers.

Brief about Linear Regression

• Linear regression is a type of supervised machine learning algorithm that computes the linear relationship between a dependent variable and one or more independent features. The goal of the algorithm is to find the best linear equation that can predict the value of the dependent variable based on the independent variables.

Linear Regression Model assumptions:

- Linearity: The models of Linear Regression models must be linear in the sense that the output must have a linear association with the input values, and it only suits data that has a linear relationship between the two entities.
- Homoscedasticity: Homoscedasticity means the standard deviation and the variance of the residuals (difference of (y-y^)2) must be the same for any value of x. Multiple Linear Regression assumes that the amount of error in the residuals is similar at each point of the linear model. We can check the Homoscedasticity using Scatter plots.
- Non-multicollinearity: The data should not have multicollinearity, which means the independent variables should not be highly correlated with each other. We can check the data for this using a correlation matrix.
- No Autocorrelation: When data are obtained across time, we assume that successive values of the disturbance component are momentarily independent in the conventional Linear Regression model. When this assumption is not followed, the situation is referred to be autocorrelation.
- Not applicable to Outliers: The value of the dependent variable cannot be estimated for a value of an independent variable which lies outside the range of values in the sample data.
- No Endogeneity Endogeneity refers to situations in which a predictor (e.g., treatment variable) in a linear regression model is correlated to the error term.

Steps followed

- · Import required Libraries
- · Load the dataset
- · Check basic information of the dataset
- Data Visualization
- · Data Preprocessing
- · Find the correlation
- · Split data into dependent and independent variables
- · Split data into Train and test
- Build Model Linear, Lasso, Ridge & Elastic Net method
- · Predict the data
- Evaluate the model r2 score & Performance matrix
- · Compare the accuracy
- Conclusion

Import the required Libraries

In [7]:

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%matplotlib inline

import warnings
warnings.filterwarnings('ignore')
```

Load the dataset - Advertising Sales

In [8]:

```
advt=pd.read_csv(r"C:\Users\manme\Documents\Priya\Stas and ML\Dataset\Advertising.csv")
advt.head(2)
```

Out[8]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4

Check basic information

In [9]:

```
advt.shape
```

Out[9]:

(200, 4)

In [10]:

```
advt.columns
```

Out[10]:

```
Index(['TV', 'radio', 'newspaper', 'sales'], dtype='object')
```

```
In [11]:
```

```
advt.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
     Column
               Non-Null Count Dtype
 0
     TV
               200 non-null
                               float64
                               float64
               200 non-null
 1
     radio
                               float64
     newspaper 200 non-null
 2
 3
     sales
               200 non-null
                                float64
dtypes: float64(4)
memory usage: 6.4 KB
In [69]:
```

```
advt.describe().T.style.background_gradient(cmap='Blues')
```

Out[69]:

	count	mean	std	min	25%	50%	75%	max
TV	200.000000	147.042500	85.854236	0.700000	74.375000	149.750000	218.825000	296.400000
radio	200.000000	23.264000	14.846809	0.000000	9.975000	22.900000	36.525000	49.600000
newspaper	200.000000	30.415750	21.316901	0.300000	12.750000	25.750000	45.100000	93.625000
sales	200.000000	14.022500	5.217457	1.600000	10.375000	12.900000	17.400000	27.000000
4								•

Data Pre Processing

- It is an important step and involves cleaning and transforming raw data to make it suitable for analysis.
- · Checking and removing duplicate values.
- · Check for missing values and treat them
- · Check for outliers and treat them

Checking duplicate values

In [18]:

```
advt.duplicated().sum()
```

Out[18]:

0

Check for missing values

In [19]:

Check for outliers

In [20]:

dtype: int64

```
plt.figure(figsize=(10,5))
sns.boxplot(advt)
plt.show()
```


Handling outlier in 'newspaper'

· Capping method

In [21]:

```
advt['newspaper'].describe()
```

Out[21]:

```
200.000000
count
          30.554000
mean
          21.778621
std
           0.300000
min
25%
          12.750000
          25.750000
50%
75%
          45.100000
         114.000000
max
```

Name: newspaper, dtype: float64

In [22]:

```
news_q1=advt['newspaper'].quantile(0.25)
news_q3=advt['newspaper'].quantile(0.75)
news_iqr=news_q3-news_q1
news_upper= news_q3 +1.5*news_iqr
news_lower= news_q1- 1.5 *news_iqr
```

In [23]:

In [24]:

```
plt.figure(figsize=(10,5))
sns.boxplot(advt)
plt.show()
```


Exploratory Data Analysis

In [60]:

sns.histplot(advt)
plt.show()

In [61]:

```
advt.hist(figsize=(10,10))
plt.show()
```


In [62]:

```
plt.figure(figsize=[8,4])
sns.histplot(advt.sales, color='r', bins=30, kde=True)
plt.title('Sales Distribution')
plt.show()
```


In [63]:

In [71]:

```
sns.pairplot(data=advt, hue='sales')
plt.show()
```


In [72]:

sns.pairplot(advt, x_vars=['TV', 'radio', 'newspaper'], y_vars='sales')
plt.show()

Plotting the regression line

In [64]:

```
plt.figure(figsize =(10,10))
plt.subplot(2,2,1)
sns.regplot(data=advt,x='TV',y='sales',color='y').set_title('The Regression line of TV Vs Sales')
plt.subplot(2,2,2)
sns.regplot(data=advt,x='radio',y='sales',color='r').set_title('The Regression line of Radio Vs Sales')
plt.subplot(2,2,3)
sns.regplot(data=advt,x='newspaper',y='sales',color='g').set_title('The Regression line of Newspaper)
plt.show()
```


50

Find the Correlation by using Heatmap

In [25]:

```
sns.heatmap(advt.corr(), cmap="YlGnBu", annot = True)
plt.show()
```


Split data into independent and Dependent variables

In [26]:

```
x = advt.drop(['sales'],axis=1)
y = advt[['sales']]
```

In [27]:

x.head()

Out[27]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4

```
In [28]:
```

```
y.head()
```

Out[28]:

sales

- 0 22.1
- **1** 10.4
- **2** 9.3
- **3** 18.5
- 4 12.9

Split the data into Training and Testing

In [29]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
```

Build Model

Approach 1

· Linear Regression Method

In [30]:

```
from sklearn.linear_model import LinearRegression
linear_model= LinearRegression()
linear_model.fit(x_train,y_train)
```

Out[30]:

```
LinearRegression
LinearRegression()
```

In [45]:

```
print("Intercept of the Linear model: ", linear_model.intercept_)
print("Coefficients of the Linear model: ", linear_model.coef_)
```

```
Intercept of the Linear model: [2.99690177]
Coefficients of the Linear model: [[ 0.04458387  0.19653672 -0.00288253]]
```

Predict

· by using Linear regression method

In [46]:

```
y_pred_sales =linear_model.predict(x_test)
y_pred_sales_train=linear_model.predict(x_train)
```

Approach 2

· Lasso Regression

In [48]:

```
from sklearn.linear_model import Lasso
lasso = Lasso(alpha=0.1)
lasso.fit(x_train, y_train)
print("Coefficients of the Lasso Model :", (lasso.coef_))
```

Coefficients of the Lasso Model : [0.04456473 0.19590649 -0.00251167]

Predict

· by using Lasso method

In [34]:

```
y_pred_train_lasso = lasso.predict(x_train)
y_pred_test_lasso = lasso.predict(x_test)
```

Approach 3

· Ridge Regression

In [49]:

```
from sklearn.linear_model import Ridge
ridge = Ridge(alpha=0.3)
ridge.fit(x_train, y_train)
print("Coefficients of the Ridge Model :", (ridge.coef_))
```

Coefficients of the Ridge Model : [[0.04458386 0.1965348 -0.00288209]]

Predict

· by using Ridge method

In [36]:

```
y_pred_train_ridge = ridge.predict(x_train)
y_pred_test_ridge = ridge.predict(x_test)
```

Approach 4

Elastic Net Regression

In [50]:

```
from sklearn.linear_model import ElasticNet
elastic = ElasticNet(alpha=0.3, l1_ratio=0.1)
elastic.fit(x_train, y_train)
print("Coefficients of the Elastic Net :", (elastic.coef_))
```

Coefficients of the Elastic Net : [0.04457682 0.19607405 -0.00270793]

Predict

· by using Elastic Net method

In [52]:

```
y_pred_train_elastic = elastic.predict(x_train)
y_pred_test_elastic = elastic.predict(x_test)
```

Evaluate the model

1. By Square Loss function

In [53]:

```
from sklearn import metrics
from sklearn.metrics import r2_score
```

In [54]:

```
print('Linear model r2 Score test accuracy:',r2_score (y_test,y_pred_sales))
print('Lasso r2 Score test accuracy:',r2_score(y_test, y_pred_test_lasso))
print('Ridge r2 Score test accuracy:', r2_score(y_test, y_pred_test_ridge))
print('Elastic Net r2 Score test accuracy:', r2_score(y_test, y_pred_test_elastic))
```

```
Linear model r2 Score test accuracy: 0.8600564143025663
Lasso r2 Score test accuracy: 0.8603039434708047
Ridge r2 Score test accuracy: 0.8600572909687636
Elastic Net r2 Score test accuracy: 0.860255622265056
```

In [55]:

```
print('Linear model r2 Score train accuracy:',r2_score(y_train,y_pred_sales_train))
print('Lasso r2 Score train accuracy:',r2_score(y_train, y_pred_train_lasso))
print('Ridge r2 Score train accuracy:',r2_score(y_train, y_pred_train_ridge))
print('Elastic Net r2 Score train accuracy :', r2_score(y_train, y_pred_train_elastic))
```

```
Linear model r2 Score train accuracy: 0.9067187984110153
Lasso r2 Score train accuracy: 0.9067148519940235
Ridge r2 Score train accuracy: 0.9067187983835776
Elastic Net r2 Score train accuracy: 0.9067170971292787
```

2. Performance Matrix

- · Mean absolute error
- · Mean absolute percent error
- · Mean squared error
- · Root mean squared error

In [56]:

```
from sklearn import metrics
```

In [57]:

```
print('MAE:', metrics.mean_absolute_error(y_test,y_pred_sales))
print('MAPE:', metrics.mean_absolute_error(y_test,y_pred_sales)/100)
print('MSE:', metrics.mean_squared_error(y_test,y_pred_sales))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test,y_pred_sales)))
```

MAE: 1.3628974741922129 MAPE: 0.013628974741922128 MSE: 4.403946798278694 RMSE: 2.098558266591303

Comparison

In [59]:

Out[59]:

	lest r2_score	rain r2_score
Linear	0.861125	0.905512
Lasso	0.861563	0.905510
Ridge	0.861126	0.905512
Elastic Net	0.861403	0.905511

Conclusion

- · r2 score of all 4 methods are almost similar
- Both test and train data accuracy is more than the commonly taken threshold value of 75%

In []:

```
In [ ]:
```