MATH 7752 Homework 6

James Harbour

March 17, 2022

Problem 1

(a) Prove that two 3×3 matrices over some field F are similar if and only if they have the same minimal and characteristic polynomials. Is the same true for 4×4 matrices?

Proof. The forward direction is clear, so suppose that $A, B \in M_3(F)$ such that $\mu_A = \mu_B$ and $\chi_A = \chi_B$.

(b) A matrix A is called idempotent if $A^2 = A$. Prove that two idempotent $n \times n$ matrices are similar if and only if they have the same rank. **Hint:** What is the minimal polynomial of an idempotent matrix? How does rank relate to eigenvalue 0?

Proof. Note that a matrix M being idempotent implies that $x^2 - x \in \text{Ann}(M)$, so $\mu_M | x^2 - x$ whence $\mu_M \in \{x, x - 1, x^2 - x\}$. Let A, B be two idempotent $n \times n$ matrices.

The forward direction is true in general, so it suffices to show the reverse direction. Suppose that A and B have the same rank $0 \le k \le n$. If k = 0, then A = B = 0 whence A, B are equal and thus similar, so suppose $k \ne 0$. By the rank-nullity theorem, $\dim(E_0(A)) = n - \operatorname{rk}(A) = n - k = n - \operatorname{rk}(B) = \dim(E_0(B))$. By idempotence, $\mu_A, \mu_B \in \{x, x - 1, x^2 - x\}$. If either μ_A or μ_B is x, then the corresponding matrix is 0 whence k = 0 contradicting that $k \ne 0$. Thus $\mu_A, \mu_B \in \{x - 1, x^2 - x\}$. If either μ_A or μ_B is x - 1 then the corresponding matrix is the identity whence it does not have 0 as an eigenvalue and thus $0 = \dim(E_0(A)) = \dim(E_0(B))$. Note that the other minimal polynomial cannot be $x^2 - x$ as otherwise the eigenspace corresponding to zero would have positive dimension. Thus in this case both matrices are the identity and thus similar. Lastly, suppose that $\mu_A = x^2 - xx(x - 1) = \mu_B$. Then all Jordan blocks in the JCF of A,B have size 1. As A,B have the same dimensions of their 0-eigenspaces, it follows that they have the same number of 0 blocks. But then they have the same number of 1 blocks as this is the only other eigenvalue and all blocks have size 1. Thus, they have the same JCF and are similar.

Problem 2

Let F be an algebraically closed field and V a finite dimensional F-vector space.

(a) Let $S, T \in \mathcal{L}(V)$ such that ST = TS. Let λ be an eigenvalue of S and $E_{\lambda}(S) \leq V$ be the corresponding eigenspace of S. Prove that $E_{\lambda}(S)$ is a T-invariant subspace.

Proof. Let $v \in E_{\lambda}(S)$, so $Sv = \lambda v$. Then

$$S(Tv) = (ST)(v) = (TS)(v) = T(Sv) = T(\lambda v) = \lambda \cdot (Tv)$$

so $Tv \in E_{\lambda}(S)$. Thus $T(E_{\lambda}(S)) \subseteq E_{\lambda}(S)$.

(b) Assume that $T \in \mathcal{L}(V)$ is diagonalizable and let $W \leq V$ be a T-invariant subspace. Prove that $T|_W \in \mathcal{L}(W)$ is also diagonalizable.

Proof. Since T is diagonalizable, $E_{\lambda}(T) = V_{\lambda}(T)$ for all $\lambda \in \operatorname{Spec}(T)$. Let $\lambda \in \operatorname{Spec}(T|_{W}) \subseteq \operatorname{Spec}(T)$ and $w \in W_{\lambda}(T|_{W})$. Then, for some $k \in \mathbb{N}$, $(T - \lambda I)^{k}(w) = (T|_{W} - \lambda I|_{W})^{k}(w) = 0$. Hence $w \in V_{\lambda}(T) = E_{\lambda}(T)$. But $w \in W$ so then $w \in E_{\lambda}(T|_{W})$ whence $E_{\lambda}(T|_{W}) = W_{\lambda}(T|_{W})$. So $T|_{W}$ is diagonalizable. \square

(c) Assume again that $S, T \in \mathcal{L}(V)$ such that ST = TS. Prove that there exists a basis Ω of V such that $[T]_{\Omega}$, and $[S]_{\Omega}$ are both diagonal.

Proof. I am quite sure that this claim is false as stated, so I will add the assumption that S, T are both diagonalizable.

Then as S is diagonalizable,

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(S)} V_{\lambda}(S) = \bigoplus_{\lambda \in \operatorname{Spec}(S)} E_{\lambda}(S).$$

Fix $\lambda \in \operatorname{Spec}(S)$. By part (a), $E_{\lambda}(S)$ is T-invariant whence part (b) implies that $T|_{E_{\lambda}(S)}$ is diagonalizable. So

$$E_{\lambda}(S) = \bigoplus_{\delta \in \operatorname{Spec}(T|_{E_{\lambda}(S)})} E_{\delta}(T|_{E_{\lambda}(S)}).$$

Now we write

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(S)} \bigoplus_{\delta \in \operatorname{Spec}(T|_{E_{\lambda}(S)})} E_{\delta}(T|_{E_{\lambda}(S)}).$$

Since this sum is direct, we may form a basis for V from bases for $E_{\delta}(T|_{E\lambda(S)})$ over this double direct sum, whence this basis is both an eigenbasis for T and S.

(d) Give an example of a vector space V with $\dim_F(V) \geq 3$ and two commuting linear transformations $S, T \in \mathcal{L}(V)$ such that NO basis Ω of V exists such that both $[T]_{\Omega}$, and $[S]_{\Omega}$ are in JCF.

Problem 3

Find the number of distinct conjugacy classes in the group $GL_3(\mathbb{Z}/2\mathbb{Z})$, and specify one element in each conjugacy class.

Proof. Fix $A \in GL_3(\mathbb{Z}/2\mathbb{Z})$. Let $\alpha_1 | \cdots | \alpha_m = \mu_A$ be the invariant factors for A. Then $\deg(\alpha_1) + \cdots + \deg(\alpha_m) = 3$ and $\alpha_1 \cdots \alpha_m = \chi_A$. As $\det(A) \neq 0$, it follows that $\det(A) = 1$ so $\chi_A(x) = x^3 + ax^2 + bx + 1$.

 $\underline{a=0,\ b=0}$: $\chi_A(x)=x^3+1=(x+1)(x^2+x+1)$. Both x+1 and x^2+x+1 are irreducible over $\mathbb{Z}/2\mathbb{Z}$, so each $\alpha_i\in\{x+1,x^2+x+1,x^3+1\}$. Note that $\alpha_m=x+1,x^2+x+1$ are both impossible as they are both not equal to the characteristic polynomial and thus irreducibility would force lower factors to equal α_m and thus would miss the other respective factor. So $\alpha_m=x^3+1$, whence m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 $\underline{a=1,\ b=0}$: $\chi_A(x)=x^3+x^2+1$. This polynomial is irreducible over \mathbb{Z}_2 and already degree 3, so m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 $\underline{a=0,\ b=1}$: $\chi_A(x)=x^3+x+1$. This polynomial is irreducible over \mathbb{Z}_2 and already degree 3, so m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

 $\underline{a=1,\ b=1}$: $\chi_A(x)=x^3+x^2+x+1=(x+1)^3$. In this case, via partitions of 3 we have either m=1 so $\alpha_1=\chi_A,\ m=2$ and $\alpha_1=x+1$ and $\alpha_2=(x+1)^2$, or m=3 and $\alpha_1=\alpha_2=\alpha_3=x+1$. Hence A is similar to one of the following:

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 4

Let V be an n-dimensional vector space over an algebraically closed field and $T \in \mathcal{L}(V)$. Assume that T has just one eigenvalue λ and just one Jordan block. Let $S = T - \lambda I$.

(a) Prove that $rk(S^k) = n - k$, for all $0 \le k \le n$. Deduce that $Im(S^k) = ker(S^{n-k})$, for all $0 \le k \le n$.

Proof. Note that $n_T(k,\lambda) = 1$ for $0 \le k \le n$ by assumption.

We induct on $0 \le k \le n$. For k = 0, $S^0 = I$ so $\operatorname{rk}(S^0) = n = n - 0$.

Now suppose $0 < k \le n$ and that the claim holds for k-1. On one hand, by the induction hypothesis $\operatorname{rk}(S^{k-1}) = n - (k-1)$. On the other hand

$$1 = n_T(k,\lambda) = \operatorname{rk}((T-\lambda I)^{k-1}) - \operatorname{rk}((T-\lambda I)^k) = \operatorname{rk}(S^{k-1}) - \operatorname{rk}(S^k) = n-k+1 - \operatorname{rk}(S^k) \implies \operatorname{rk}(S^k) = n-k.$$

To see that $\operatorname{Im}(S^k) = \ker(S^{n-k})$, note that by the rank nullity theorem we have

$$\dim \ker(S^{n-k}) = n - \operatorname{rk}(S^{n-k}) = n - (n - (n-k)) = n - k = \operatorname{rk}(S^k) = \dim \operatorname{Im}(S^k),$$

so it suffices to show that $\operatorname{Im}(S^k) \subseteq \ker(S^{n-k})$.

Take $w \in \text{Im}(S^k)$. Then $w = S^k v$ for some $v \in V$. Noting that $\text{rk}(S^n) = 0 \implies S^n = O$, we have that $S^{n-k}w = S^{n-k}(S^kv) = S^nv = Ov = 0$, so $w \in \text{ker}(S^{n-k})$.

(b) Let $v \in V$ be any vector which lies outside of $\text{Im}(S) = \ker(S^{n-1})$. Prove that $\{S^{n-1}v, \dots, Sv, v\}$ is a Jordan basis for T.

Proof. As $v \notin \ker(S^{n-1})$, we have that $S^{n-1}v \neq 0$ whilst

$$(T-\lambda I)S^{n-1}v=S^nv=\mathrm{Ov}=0 \implies \mathrm{T}(S^{n-1}v)=\lambda\cdot(S^{n-1}v).$$

If
$$0 \le k < n - 1$$
,

$$(T - \lambda I)S^k v = S(S^k v) = S^{k+1}v \implies T(S^k v) = \lambda S^k v + S^{k+1}v$$

Hence, $\Omega = \{S^{n-1}v, \dots, Sv, v\}$ is a Jordan chain. For ease of notation, let $v_k = S^k v$ for $0 \le k \le n-1$. Then for each $0 \le k \le n-1$, $(T-\lambda I)^{n-k}v_k = 0$ and $(T-\lambda I)^{n-k-1}$ so $v_k \in \ker(T-\lambda I)^{n-k} \setminus \ker(T-\lambda I)^{n-(k+1)}$. Moreover, we have the series

$$0 = \ker(T - \lambda I)^{n-n} \subseteq \ker(T - \lambda I)^{n-(n-1)} \subseteq \dots \subseteq \ker(T - \lambda I)^{n-1} \subseteq \ker(T - \lambda I)^{n-0} = V_{\lambda}(T) = V_{\lambda}(T)$$

so at each step we add in a vector linearly independent from the previously added vectors, whence induction implies that Ω is a linearly independent set and thus a basis by dimensionality. As Ω is a Jordan chain, it follows that $[T]_{\Omega} = J(n, \lambda)$.

Problem 5

Assume again that V is an n-dimensional vector space over an algebraically closed field F and $T \in \mathcal{L}(V)$.

- (a) Assume that T has unique eigenvalue 0 and two Jordan blocks: a 1×1 block and a 2×2 block (so n = 3 in this case). Justify the following algorithm for computing a Jordan basis for T: Take any $v \in V \setminus \ker(T)$ and choose $w \in \ker(T)$ such that $\{w, Tv\}$ is a basis for $\ker(T)$ (why is this possible?); then $\{w, Tv, v\}$ is a Jordan basis for T.
- (b) Assume that T has unique eigenvalue 0 and two Jordan blocks, both of which are 2×2 (so n = 4). State an algorithm for finding a Jordan basis similar to the one in (a).
- (c) Assume that for each $\lambda \in \operatorname{Spec}(T)$ there is only one Jordan λ -block in JCF(T). Describe an algorithm for computing a Jordan basis of T. **Hint:** You just need a minor generalization of the algorithm in the previous problem.

Problem 6

Compute the Jordan canonical form and a Jordan basis for each of the following matrices over \mathbb{Q} :

(a)
$$\begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

Problem 7

Let $F = \mathbb{F}_3$ be the field with 3 elements and let $A \in M_{12}(\mathbb{F}_3)$. Suppose that A satisfies all the following assumptions:

- rk(A) = 10, $rk(A^2) = 9$, $rk(A^3) = 9$.
- $\operatorname{rk}(A I) = 12$.
- rk(A 2I) = 9, $rk((A 2I)^2) = 7$, $rk((A 2I)^3) = 6$.
- (a) Assume in addition that the characteristic polynomial $\chi_A(x)$ splits completely over F (i.e. it splits into linear factors in F[x]). Find the Jordan canonical form of A.

Proof. For brevity, we write $n(k, \lambda) = n_A(k, \lambda)$. Recall that $n_A(k, \lambda) = \text{rk}((A - \lambda I)^{k-1}) - \text{rk}((A - \lambda I)^k)$ gives the number of Jordan blocks corresponding to λ of size at least k. We compute,

$$n(1,0) = \text{rk}(I) - \text{rk}(A) = 12 - 10 = 2$$

$$n(2,0) = \text{rk}(A) - \text{rk}(A^2) = 10 - 9 = 1$$

$$n(3,0) = \text{rk}(A^2) - \text{rk}(A^3) = 9 - 9 = 0$$

whence we have one 0-block of size 1, and one 0-block of size 2,

$$n(1,1) = \text{rk}(I) - \text{rk}(A - I) = 12 - 12 = 0$$

giving that 1 is not an eigenvalue of A, and

$$n(1,2) = \text{rk}(I) - \text{rk}(A - 2I) = 12 - 9 = 3$$

$$n(2,2) = \text{rk}(A - 2I) - \text{rk}((A - 2I)^2) = 9 - 7 = 2$$

$$n(3,2) = \text{rk}((A - 2I)^2) - \text{rk}((A - 2I)^3) = 7 - 6 = 1$$

implying that we have one 2-block of size 1, one 2-block of size 2, and the remaining space given by a single 2-block of size 12 - (2 + 1 + 2 + 1) = 6.

(b) Find all possible RCF's of matrices A satisfying all the bullet assumptions, but not necessarily the extra assumption in (a).

Proof. Embedding F inside its algebraic closure, we have that $RCF_{\overline{F}}(A) = RCF_F(A)$ and $RCF_{\overline{F}}(A)$ is similar to $JCF_{\overline{F}}(A)$ over \overline{F} . However, $B := JCF_{\overline{F}}(A)$ is given above and is in fact inside $M_{12}(F)$, so $RCF_F(A)$ is similar to B over F. Thus $\chi_A = \chi_{RCF(A)} = \chi_B = x^3(x-2)^9$ and $\mu_A = \mu_B = x^2(x-2)^6$. Let $\alpha_1 | \cdots | \alpha_m$ be the invariant factors for A. Then

$$\alpha_1 \cdots \alpha_{m-1} = \frac{x^3(x-2)^9}{x^2(x-2)^6} = x(x-2)^3$$

Via the successive divisibility restriction, one factor of x must appear in α_{m-1} but not in any lower factors. Moreover, we must have that α_{m-1} has at least one factor of x-2 as otherwise the product would not have a factor of x-2. Thus we may write $\alpha_{m-1} = x(x-2)^k$ with $1 \le k \le 3$.

 $\underline{k=1}$: $\alpha_{m-1}=x(x-2)$. Successive divisibility forces m=4 and $\alpha_1=\alpha_2=x-2$.

 $\underline{k=2}$: $\alpha_{m-1}=x(x-2)^2$. Degree constraints force m=3 and $\alpha_1=x-2$.

 $\underline{k=3}$: $\alpha_{m-1}=x(x-2)^3$. Then we have m=2 so $\alpha_1=x(x-2)^3$ by assumption.