RNA-seq analysis of 6 cell types in regeneration muscle tissue between young and old mice

Partenariat des équipes de:

- Dr. Fabien LE GRAND
- Dr. Bénédicte CHAZAUD
- Dr. Jérôme FEIGE

Contributeurs Principaux:

- PhD Hoang DIEU-HUONG
- IE Johanna GALVIS-LACROUX
- IE William JARASSIER
- IE Pauline MOULLÉ

Major Steps

Experimental design

Pretreatmen t data

Preliminary exploration data

Static
analysis

• Differential Experimental Genes
• Gene Set Enrichment Analysis
• Gene Tissues Specificity (tau)
• Ligands Receptors Analysis

Objectives: Find the pathways and genes differentially expressed between young and old

analysis

Represent the interactome of these changes

Experiment design

Pretreatment RNA-seq data

Filter1: Keep only 40% express gene

Preliminary exploration

Principal Component Analysis

PCA on all data frame

Expression grouping by type cell

PCA for each type of cell

Expression grouping by days post injury

PCA for each type of cell and for each day post injury

Expression slightly grouping by age

Major Steps

upstream analysis

Experimental design

Pretreatmen t data

Preliminary exploration data

Static analysis

Differential Expre

Differential Expressed Genes

downstream analysis

- Gene Set Enrichment Analysis
- Gene Tissues Specificity (tau)
- Ligands Receptors Analysis

Dynamic analysis

Differential expression between 2 time points:

Cell sequenced	D0	D2	D4	D7
Ecs				
FAPs				
Mac-M1				
Mac-M2				
Neutrophils				
MuSc				

Major Steps

Experimental design

Pretreatmen t data

Preliminary exploration data

Static
analysis

Differential Expressed Genes
Gene Set Enrichment Analysis
Gene Tissues Specificity (tau)
Ligands Receptors Analysis

Dynamic
analysis

Axis of analysis

- Young vs Old
 - 1.1. Cell type:
 - Endothelial Cell ECs
 - Neutrophils
 - Muscle Stem Cell MuSCs
- Macrophage 1 Mac_M1
- Macrophage 2 Mac_M2
- FibroAdipogenic Progenitors FAPs
- 1.2. Days post injury: D0, D2, D4 et D7

Shiny App Muscle and Age

Gene specificity to a type cell

Calculate Tau Specificity

Index de spécificité Tau (τ) calculate for each gene at a condition chosen age +Day postInjury:

$$au_{gene} = rac{\sum\limits_{i=1}^{n(nbTypeCell)} (1 - rac{meanTPM_{igene}}{rac{max(meanTPM_{igene})}{1 < i < n}})}{n-1}$$

Table resultat:

GenelD	GeneSymbol	τ	Classification	whichMAX	nbMAX	maxlog10TPM	AgeDay

Gene classification:

- Tau >= 0.8 ~ specific
- 0.5 <=Tau < 0.8 ~ intermediate,
- Tau < 0.5 ~ housekeeping

Keep the cell type the more expressed

If equality, keep the 2 types

Gene specificity to a type cell

Without DEG analyse, the gene specificity dynamique change in young and old condition

Gene specificity to a type cell

DaypostInjury

Are the specific genes in young condition the same as in old condition?

 Without DEG analyse , the gene specificity dynamique change in young and old condition Gene specificity to a type cell **D2 D4** PercentGeneSpe 40 20 Mac-M1 OLD YOUNG 291 130 126 222 447 (64%) (7.47%) (28.6%) (15.8%) (56.2%) (27.9%)OLD 60 YOUNG 0 M1 60 What is maybe interesting? 40 20 Group Genes where the specificity OnlyOld OnlyYoung changes between Y-O 60 ShareYoungOld 40 Genes where the 20 **D4 D7** Neutro 60 MuSCs 20 OLD YOUNG 896 432 232 1284 507 (57.4%)(27.7%)(14.9%)(68%)(26.8%) (5.19%) 60 OLD YOUNG 20 D0 D2 D4 D7 DaypostInjury

I. Differential Expressed Genes (DEG)

- On gene with on less 3 samples with raw count >= 5 (2 460 gene remove)
- DEG Old-Young for each 18 conditions TypeCell.DayPostInjury
- 25% genes are padj<0.05 on less one condition

I. Differential Expressed Genes (DEG)

	ECs	FAP s	sCs	M1	M2	Neut ro
D0	1.6	8.7	8.1	NA	NA	NA
D2	1.0	4.0	32.3	0.5	1.6	5.3
D4	4.7	6.6	23.4	0.3	0.6	NA
D7	10.4	7.0	10.1	NA	2.4	NA

file:///home/bioinfo/BulkAnalysis_plusNetwork/scripreportHTMLts/GeneDEsigniOnMoreOneTimePoint.html

I. Differential Expressed Genes (DEG)

II. Genes Set Enrichment Analysis (GSEA)

- → Algorithme : fGEA use in R
- → Database:
 - Genes Set from Molecular
 Signatures Database (MSigDB)
 species :
 - species = Mus musculus
 - category C2 = online pathway databases and the biomedical literature
 - subcategory = Canonicalpathways ,Reactome database

1. Before

- On each days and cellType
- On top (min padj) 500 genes with a regulation Up and 500 Down
- Sort by log2FoldChange

2. Now

- On each days and cellType
- On "all" genes
- Sort by signed of log2FoldChange *log10(padj)
- Approx 3 000 genes with padj = NA

II. Genes Set Enrichment Analysis (GSEA)

II. Genes Set Enrichment Analysis (GSEA)

file:///home/bioinfo/BulkAnalysis_plusNetwork/reportHTML/fgseaReport.html

NATMI Network Analysis Toolkit for Multicellular Interaction

Base on expression table (TPM) and database Ligand Receptor ConnectomeDB2020:

- Calc specificity of Ligand and Receptor
- Edge weight = specificity Ligand * specificity Receptor

Représentation des réseaux: des graphes orientés pondérés

Bilan Static Analysis

Each gene has the following information for each DaysPostInjury and TypeCell:

- Expression intensity for Old and Young:
 - Raw count
 - TPM (mean replicat TPM) (Normalization by length gene and depth)
- DEG Young vs Old:
 - False Discovery Rate (FDR) with -> padj
 - Intensity and sense of DEG with -> log2FoldChange
- Pathways which it is imply:
 - False Discovery Rate (FDR) with -> padj
 - ((Intensity and sense of regulation of pathway with -> log2FoldChange))
- Sensibility at a type of cell
 - Tau
- Implication on a interaction Receptor Ligands

Objectives

- Created a central table with majors informations and the keys access to all specifics info locate in small table
 - For each genes DEG on less one
- ◆ Number of conditions DEG (padj<0.05)
- Days
- ◆ Type Cell ◆ Code_illustrating trends ex:FAPs_1011
- ◆ Number of Gene Set Enrichment (padj<0.05) ◆ Days
- ◆ Type Cell ◆ Code_illustrating trends ex:FAPs_Up0DownUp

- ◆ Number of Interaction Receptor Ligand
- ◆ Days
- ◆ Type Cell ◆ NumberOnlyYoung/Old/Share ◆ Code trends O&Y

◆ Number Specific & intermediate

- ◆ Days
- ◆ Type Cell ◆ NumberOnlyYoung/Old/Share ◆ Code trends O&Y

- Illustrating trends and try to cross trends
- Exploration of dataset with shiny app
 - Central table with filters -> allow to select a gene
 - Visualisation of his network for Old and Young conditions
 - Find a way to remove the 2 networks to highlight the differences

Objectives

Shiny Application to explore datas

Muscle and Age

L-R pairs

Pathways

About

Ligand-Receptor networks

 $NO\ nodes\ declared\ to\ search\ for.\ Introduce\ a\ single\ one: Lgi3_sCs\ or\ a\ comma\ separated\ list:\ Wnt3_FAPs,\ Kremen1_ECs\ or\ a\ comma\ separated\ list:\ wnt3_ECs\ or\ a\ co$