





## Other stuff

|    | CompoundID | SMILES                  | molecule_annotation      | highlighted_atoms   |
|----|------------|-------------------------|--------------------------|---------------------|
| 1  | * cmpd_0   | (=0)N1CC0[C@H](C)C1     | example annotation       | [5, 6, 7, 8, 9, 10] |
| 2  | cmpd_1     | CCCC1)c1ccccc1OC(F)F    |                          | 0                   |
| 3  | cmpd_2     | @H]3CCCc4cccc2c43)C1    |                          | П                   |
| 4  | cmpd_3     | CC[NH2+]CC1)C(=0)[O-]   |                          | П                   |
| 5  | cmpd_4     | (=O)n1C)CC[C@H](C)C3    |                          | П                   |
| 6  | cmpd_5     | ))(=O)c3cccs3)CC2)cc1Cl |                          | 0                   |
| 7  | cmpd_6     | )[C@@]1(C#N)C(=0)OC     |                          | П                   |
| 8  | cmpd_7     | O)N(Cc1ccsc1)Cc1ccco1   |                          | П                   |
| 9  | cmpd_8     | +]CC(C)(C)COc1ccccc1F   |                          | П                   |
| 10 | cmpd_9     | nnn2)cc1)Nc1cc(CI)ccc1F |                          | П                   |
| 11 | cmpd_10    | )@H]1C=C[C@H](CO)C1     |                          | П                   |
| 12 | * cmpd_11  | 2cc(Br)cnc2Cl)n[nH]c1=S | other example annotation | [7, 6]              |
| 13 | cmpd_12    | C(=O)c1ccc2c(c1)nnn2C   |                          | П                   |
| 14 | cmpd_13    | O)C[NH+]1CCOc1ccccc1    |                          | 0                   |
| 15 | cmpd_14    | lc2ccc3c(c2)OCCCO3)c1   |                          | П                   |
| 16 | cmpd_15    | F)c1ccc(F)cc1)c1ccccc1F |                          | 0                   |
| 17 | cmpd_16    | ccc(F)c2)c(=O)n(C)c1=O  |                          | 0                   |
| 18 | * cmpd_17  | ))cn1CC(=O)Nc1ccccc1CI  | third example annotation | 0                   |
| 19 | cmpd_18    | -]1CCC(C[NH+](C)C)CC1   |                          | 0                   |
| 20 | cmpd_19    | cc1Cl)N1CC[NH+](C)CC1   |                          | 0                   |
| 21 | cmpd_20    | c23)N1C[NH+]1CCCCC1     |                          | 0                   |
| 22 | cmpd_21    | [C@H]2Cc2cccc2)ccc1F    |                          | 0                   |
| 23 | cmpd_22    | NCc3ccccc3)CCC2=O)c1    |                          | D                   |
| 24 | cmpd_23    | (=O)=O)C2)CCC[NH2+]1    |                          | 0                   |
| 25 | cmpd_24    | =O)CNc1nc2cc(Br)ccc2s1  |                          | D                   |
| 26 | cmpd_25    | Nc1ccc(OC)nc1)c1ccccc1  |                          | 0                   |
| 27 | cmpd_26    | CC(=O)N1CCc2cccc2C1     |                          | D                   |
| 28 | cmpd_27    | cc3)CC2)cc1[N+](=O)[O-] |                          | D                   |
| 29 | cmpd_28    | 2CCC(C)(C)[C@H]2O)C1    |                          | 0                   |
| 30 | cmpd_29    | C(=O)N(C)C2)nc2cccc21   |                          | 0                   |
| 31 | * cmpd_30  | Vc3ccc(Br)c(C)c3)CC2)n1 |                          | [4, 5, 6]           |

## Written code to store annotations + highlighted atoms in a csv file

- Highlighted atoms determined by canonical atom ordering
  - · Atom indices as determined by rdkit
- Molecule annotation would come from annotation box (screen 3)
- Highlighted atoms pulled from highlight feature in ketcher
  - How does ketcher save highlights (if it even does)??
- Compound with annotations and/or highlights are indicated with an asterisk near the compound id
- If uploaded csv is title example\_cmpds.csv, the output csv will be called example\_cmpds\_annotated.csv
  - i.e. <original file name>\_annotated.csv
  - Table below is made using example\_cmpds.csv file
- · Need to implement to site
- Maybe this csv can be saved and automatically show up in recent files (screen 1)

## Additional things to think about

- Saving stuff
  - · Save ketcher edits
    - · Save/save-as button for ketcher edits and annotations
  - Auto-save??
  - Once user registration implemented save to user profile/workspace
- Implementing similarity search across multiple files
  - Multiple files the user uploads
  - External database?
- If we have large file (millions of molecules), how can we efficiently conduct similarity search
  - In the backend exclude molecules past a certain threshold of molecular weight, then perform similarity test on those remaining
    - Molecules of vastly different MWs are very unlikely to have similar properties
  - Add more filters for users to fine tune their searches
    - Molecule type
    - · Molecular weight (as above)
    - · Contains certain substructure
    - · Boiling point/melting point/freezing point
    - pH
    - · etc.
- · Generate additional properties from external databases
- Implementing ML to predict molecule properties not found in external databases
- Embed and display 3D structures of molecules with their atomic properties mapped to atom nodes
- Embed and display PDB of protein target associated with a given proteinligand interaction
- Option for running selected compounds through ML/computational backend pipelines