OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> June 26, 2017 18:48

CONTENTS

1	Introduction				
	1.1	Cmgu	ii files for cmgui-2.9	3	
	1.2		ions to consider	3	
	1.3		r structure	4	
2	How to work on this document				
3	Diffusion equation				
	3.1	3.1 Equation in general form			
	3.2 Example-0001				
		3.2.1	Mathematical model	6	
		3.2.2	Computational model	6	
		3.2.3	Results	7	
		3.2.4	Validation	7	
4	Linear elasticity				
	4.1 Equation in general form				
	4.2	ple-0101	11		
		4.2.1	Mathematical model	11	
		4.2.2	Computational model	11	
		4.2.3	Results	11	
		4.2.4	Validation	11	
5	Finite elasticity				
6	Navier-Stokes flow 1				
7	Mor	Monodomain 1			

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

[†] Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

8 CellML mod	el	17
LIST OF FIG	2D results, iron reference.	7
Figure 2	2D results, current run	8
Figure 3	3D results, iron reference	8
Figure 4	3D results, current run	9
Figure 5	Results, analytical solution	11
Figure 6	Results, Abaqus reference	12
Figure 7	Results, iron reference	12
Figure 8	Results, current run.	13
LICT OF TAI	D. F.C	
LIST OF TAI		
Table 1	Initials of people working on examples, in alphabetical order (surnames)	4

1 INTRODUCTION

This document contains information about examples used for testing *OpenCMISS-iron*. Read: How-to¹ and [1].

- 1.1 Cmgui files for cmgui-2.9
- 1.2 Variations to consider
 - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

HOW TO WORK ON THIS DOCUMENT

In the Google Doc at https://docs.google.com/spreadsheets/d/1RGKj8vVPqQ-PH0UwMX_ e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

- no mark: to be done
- x: currently working on it
- xx: done

Initials	Full name
СВ	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

$$\partial_t \mathbf{u} + \nabla \cdot \nabla \mathbf{u} = \mathbf{f} \tag{1}$$

3.2 Example-0001

3.2.1 Mathematical model

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{3}$$

$$u = 0$$
 $x = 2, y = z = 1.$ (4)

No material parameters to specify.

3.2.2 Computational model

- This example uses generated meshes
- Commandline arguments are:

length along x-direction

length along y-direction

length along z-direction

number of elements in x-direction

number of elements in y-direction

number of elements in z-direction

interpolation order (1: linear; 2: quadratic)

solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

2.0 1.0 0.0 4 2 0 2 1

2.0 1.0 0.0 8 4 0 2 1

2.0 1.0 1.0 2 1 1 1 0

2.0 1.0 1.0 4 2 2 1 0

2.0 1.0 1.0 8 4 4 1 0

2.0 1.0 1.0 2 1 1 2 0

2.0 1.0 1.0 4 2 2 2 0

2.0 1.0 1.0 8 4 4 2 0

• This is a static problem, i.e., the boundary conditions are applied in one step.

3.2.3 Results

Figure 1: 2D results, iron reference.

3.2.4 Validation

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 2: 2D results, current run.

Figure 3: 3D results, iron reference.

Figure 4: 3D results, current run.

4.1 Equation in general form

$$\label{eq:delta_theta_$$

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation,

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = \mathbf{0}$$
 $\Omega = [0, 160] \times [0, 120], \mathbf{t} \in [0, 5],$ (6)

with time step size $\Delta_t = 1$ and boundary conditions

2D: specify thickness, Young's modulus and Poisson's ratio.

4.2.2 Computational model

- Length, width, height
- Direct/iterative solver
- Generated/user mesh
- Number of elements
- Interpolation order
- Number of solver steps (time steps, load steps)

4.2.3 Results

Figure 5: Results, analytical solution.

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 6: Results, Abaqus reference.

Figure 7: Results, iron reference.

Figure 8: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.