A primer in statistics – Random variables

Sensor fusion & nonlinear filtering

Lars Hammarstrand

DISCRETE-VALUED RANDOM VARIABLES

Probability mass function, pmf

 The probability mass function (pmf) of a discrete-valued random variable is denoted, Pr{z} or P{z}, where

$$Pr\{z = i\} \ge 0$$
 for all i
 $\sum_{z} Pr\{z\} = 1$.

Example: A fair dice

$$\Pr\{z=i\} = \begin{cases} \frac{1}{6} & \text{if } i=1,2,\ldots,6\\ 0 & \text{otherwise.} \end{cases}$$

CONTINUOUS-VALUED RANDOM VARIABLES

Probability density function (pdf)

• The probability density function (pdf) of a continuous-valued random variable is denoted p(z), where

$$p(z) \ge 0$$
 for all z , and $\int p(z) dz = 1$

Example: Uniform distribution

• Suppose z is uniformly distributed between 0 and 2π , it's pdf is then

$$ho(z) = egin{cases} rac{1}{2\pi} & ext{if } 0 \leq z < 2\pi \ 0 & ext{otherwise}. \end{cases}$$

A primer in statistics – Conditional, Joint and marginal distributions

Sensor fusion & nonlinear filtering

Lars Hammarstrand

CONDITIONAL DISTRIBUTIONS

 Conditional distributions are indispensable components in sensor fusion, filtering and Bayesian estimation in general.

Conditional distribution (product rule)

- Let x and z be two random variables with the joint pdf p(x, z).
- The conditional density function, p(z|x), is defined through

The conditional density function,
$$p(z|x)$$
, is defined through
$$p(x,z) = p(z|x)p(x),$$
 and if $p(x) \neq 0$ this implies that
$$p(z|x) = \frac{p(x,z)}{p(x)}.$$

• Interpretation: p(z|x) describes the distribution of z given that x is known.

CONDITIONAL DISTRIBUTIONS

Example: Candy problem

- Every day Sara decides how many pieces of candy she can have for an after lunch snack.
- With 40% probability she tosses a coin, heads means 1 piece and tails means 0 pieces
- With 60% probability she throws a dice (number on the dice = number of candies).

• If z denotes number of candies she eats
$$\Pr \{z = i | \text{Sara tosses a coin} \} = \begin{cases} 0.5 & \text{if } i = 0,1 \\ 0 & \text{otherwise} \end{cases}$$

$$\Pr \{z = i | \text{Sara throws a dice} \} = \begin{cases} 1/6 & \text{if } i = 1,2,...,6 \\ 0 & \text{otherwise} \end{cases}$$

LAW OF TOTAL PROBABILITY

 Many important results in non-linear filtering is obtained from the law of total probability.

Law of total probability (sum rule)

• If x takes values in a set S_x , the law of total probability states that

Discrete:
$$\Pr\{z\} = \sum_{x \in S_x} \Pr\{x, z\} = \sum_{x \in S_x} \Pr\{z | x\} \Pr\{x\}$$

Continuous:
$$p(z) = \int_{x \in S_x} p(x, z) dx = \int_{x \in S_x} p(z|x)p(x) dx$$

LAW OF TOTAL PROBABILITY

Example: Candy pmf

• To calculate the pmf for the number of candies we use

$$\Pr\{z\} = \sum_{x \in S_x} \Pr\{z \mid x\} \Pr\{x\},$$

where x is either 'Sara tosses a coin' or 'Sara throws a dice'. 60%

• Hint: First calculate the joint probability of
$$Pr\{z, x\}$$

A primer in statistics – Expectation, covariance and the Gaussian distribution

Sensor fusion & nonlinear filtering

Lars Hammarstrand

EXPECTED VALUE AND COVARIANCE

 Probability distributions are often characterized by their mean vectors and covariance matrices.

Expected value (mean vector)

• The expected value (mean) of a random vector $\mathbf{x} = [x_1, x_2, \dots, x_m]^T$ is

$$\mathbb{E}\left\{\mathbf{x}\right\} = \int \mathbf{x} \, p(\mathbf{x}) \, d\mathbf{x}$$

where $\int d\mathbf{x}$ is shorthand for $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 \dots dx_m$.

Covariance matrix

• The covariance matrix is $(\mathbf{x} \text{ is a column vector})$ $\text{Cov}\left\{\mathbf{x}\right\} = \mathbb{E}\left\{\underbrace{\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]^{\mathsf{T}}}_{\mathbf{x}}\right\}$

 For discrete-valued random variables the above integrals are replaced by the corresponding summations.

GUESS THAT COVARIANCE

Example: Guess that covariance

• Suppose we have independent samples from a zero-mean random vector $\mathbf{x} = [x_1, x_2]^T$. What is the covariance matrix of \mathbf{x} ?

LAW OF LARGE NUMBERS

 The law of large numbers states that sample averages converge to expected values.

Law of large numbers

• If x_1, x_2, \ldots are independent and identically distributed random variables distributed according to p(x), then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n x_i=\mathbb{E}_{p(x)}\{x\}.$$

Example: Throwing a dice many times...

• ...the average face value converges to the expected value

$$\frac{1+2+3+4+5+6}{6}=3.5$$

GAUSSIAN DISTRIBUTIONS

 The most important distribution is the Gaussian distribution (at least in this course).

Gaussian distribution

- We write $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{Q})$ to denote that \mathbf{x} is a Gaussian random variable with mean $\boldsymbol{\mu}$ and covariance \mathbf{Q} .
- The pdf of **x** is

$$ho(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{Q}) = \frac{1}{\sqrt{\left|2\pi\mathbf{Q}\right|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\mathbf{Q}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where | · | denotes the determinant.

GAUSSIAN DISTRIBUTIONS

Linear combination of indep. Gaussian random variables

- Let $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\scriptscriptstyle{X}}, \mathbf{Q}_{\scriptscriptstyle{X}})$ and $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_{\scriptscriptstyle{Y}}, \mathbf{Q}_{\scriptscriptstyle{Y}})$.
- Then a linear combination of x and y,

$$z = Ax + By$$

where **A** and **B** are deterministic matrices, is also Gaussian with mean

$$oldsymbol{\mu}_{\!\scriptscriptstyle Z} = \mathbb{E}\left\{ \mathsf{A}\mathsf{x} + \mathsf{B}\mathsf{y}
ight\} = \mathsf{A}oldsymbol{\mu}_{\!\scriptscriptstyle X} + \mathsf{B}oldsymbol{\mu}_{\!\scriptscriptstyle Y}$$

and covariance

$$\mathbf{Q}_{z} = \operatorname{Cov} \left\{ \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} \right\} = \operatorname{Cov} \left\{ \mathbf{A}\mathbf{x} \right\} + \operatorname{Cov} \left\{ \mathbf{B}\mathbf{y} \right\} + \operatorname{Cov} \left\{ \mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y} \right\} + \operatorname{Cov} \left\{ \mathbf{B}\mathbf{y}, \mathbf{A}\mathbf{x} \right\}$$

$$= \mathbf{A}\mathbf{Q}_{x}\mathbf{A}^{T} + \mathbf{B}\mathbf{Q}_{y}\mathbf{B}^{T}.$$

PROBABILITY THEORY - KEY RESULTS

Conditional distributions:
$$\begin{cases} p(x,z) = p(z|x)p(x) \\ p(z|x) = \frac{p(x,z)}{p(x)} \end{cases}$$

Law of total probability:
$$\begin{cases} p(z) = \int_{x} p(x, z) dx \\ p(z) = \int_{x} p(z|x)p(x) dx \end{cases}$$

1st and 2nd moments:
$$\begin{cases} \mathbb{E}\left\{\mathbf{x}\right\} = \int \mathbf{x} \, p(\mathbf{x}) \, d\mathbf{x} \\ \operatorname{Cov}\left\{\mathbf{x}\right\} = \mathbb{E}\left\{\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]^{T}\right\} \end{cases}$$

Gaussian pdf:
$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{Q}) = \frac{1}{\sqrt{|2\pi\mathbf{Q}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{Q}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$