ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

TRANG BỊ ĐIỆN - ĐIỆN TỬ TRONG MÁY CÔNG NGHIỆP

EXERCISE 1

GVHD: TS. LÊ ĐỨC HẠNH

DANH SÁCH THÀNH VIÊN:

\Box STT	Họ và tên	MSSV
1	Võ Hữu Dư	2210604
2	Dương Quang Duy	2210497
3	Trần Quang Đạo	2210647

Mục lục

1	Thiết kế mạch khuếch đại dùng opamp tạo sóng ngõ ra và kiển	ı tra lại	
	bằng proteus		2
	1.1 Câu a. $\mathbf{v_o} = 0.5 \cdot \mathbf{v_1} - 3 \cdot \mathbf{v_2} + 4 \cdot \mathbf{v_3}$		2
	1.1.1 Tính toán mạch khuếch đại dùng opamp		2
	1.1.2 Kiểm tra lại bằng proteus		3
	1.2 Câu b. $\mathbf{v_o} = 0.5 \cdot \mathbf{v_1} - 3 \cdot \mathbf{v_2} + 4 \cdot \mathbf{v_3}$		3

1 Thiết kế mạch khuếch đại dùng opamp tạo sóng ngõ ra và kiểm tra lại bằng proteus

$1.1 \quad C \\ \\ \hat{a} \\ u \\ \\ a. \\ v_o = 0.5 \cdot v_1 - 3 \cdot v_2 + 4 \cdot v_3 \\ \\ \\$

1.1.1 Tính toán mạch khuếch đại dùng opamp

Hình 1: Mạch khuếch đại dùng opamp

Giả sử KĐTT là lý tưởng

$$\Rightarrow \begin{cases} I^+ = I^- = 0 \\ V_{A1} = V_{B1} = V_{A2} = V_{B2} = 0 \end{cases}$$

Dòng điện đầu ra Opamp thứ nhất là:

$$V_{out1} = -\frac{R_{F1}}{R_1} \cdot V_1 - \frac{R_{F1}}{R_3} \cdot V_3 \tag{1}$$

Dòng điện đầu ra Opamp thứ hai là:

$$V_{out2} = -\frac{R_{F2}}{R_4} \cdot V_{out1} - \frac{R_{F2}}{R_2} \cdot V_2 \tag{2}$$

Thế (1) vào (2) ta được:

$$\begin{split} V_{out2} &= -\frac{R_{F2}}{R_4} \cdot \left(-\frac{R_{F1}}{R_1} \cdot V_1 - \frac{R_{F1}}{R_3} \cdot V_3 \right) - \frac{R_{F2}}{R_2} \cdot V_2 \\ &= \frac{R_{F1} \cdot R_{F2}}{R_1 \cdot R_4} \cdot V_1 + \frac{R_{F1} \cdot R_{F2}}{R_3 \cdot R_4} \cdot V_3 - \frac{R_{F2}}{R_2} \cdot V_2 \end{split}$$

Theo đề bài ta có: $V_{out2} = 0.5 \cdot V_1 - 3 \cdot V_2 + 4 \cdot V_3$

$$\Rightarrow \begin{cases} \frac{R_{F1} \cdot R_{F2}}{R_1 \cdot R_4} = 0.5 \\ \frac{R_{F1} \cdot R_{F2}}{R_3 \cdot R_4} = 4 \\ \frac{R_{F2}}{R_2} = 3 \end{cases}$$

Chọn $R_2 = 50k\Omega \Rightarrow R_{F2} = 150k\Omega$.

Chọn $R_1 = 200k\Omega$, $R_4 = 150k\Omega \Rightarrow R_{F1} = 100k\Omega \Rightarrow R_3 = 25k\Omega$.

1.1.2 Kiểm tra lại bằng proteus

- Sử dụng Proteus để mô phỏng mạch như hình 1
- Sử dụng các linh kiện: Opamp, Resistor, Voltage Source Sine, Ground
- Gán các giá trị điện trở như giá trị tính được ở trên.
- Cho các giá trị điện áp đầu vào $V_1=1V,\,V_2=2V,\,V_3=3V.$
- Kết quả mô phỏng được như hình 2

Hình 2: Mạch khuếch đại dùng opamp

• Ta thấy giá trị điện áp đầu ra $V_{out} = 0.5V_1 - 3V_2 + 4V_3 = 0.5 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 = 6.5V$ giống với đồ thị analog \Rightarrow Kết quả mô phỏng proteus giống với giá trị tính toán.

$1.2 \quad \text{Câu b.} v_o = 0.5 \cdot v_1 - 3 \cdot v_2 + 4 \cdot v_3$