TAs: Mine Dogan and Kaan Ozkara

Linear Programming

Homework 2 Solutions

<u>Problem 1</u> (3 points, Exer. 2.6) in *Convex Optimization Book*): When does one halfspace contain another? Give conditions under which

$$\left\{x \mid a^T x \le b\right\} \subseteq \left\{x \mid \tilde{a}^T x \le \tilde{b}\right\}$$

(where $a \neq 0, \tilde{a} \neq 0$). Also find the conditions under which the two halfspaces are equal.

Solution:

Let $\mathcal{H} = \{x \mid a^T x \leq b\}$ and $\tilde{\mathcal{H}} = \{x \mid \tilde{a}^T x \leq \tilde{b}\}$. The conditions are:

- $\mathcal{H} \subseteq \tilde{\mathcal{H}}$ if and only if there exists a $\lambda > 0$ such that $\tilde{a} = \lambda a$ and $\tilde{b} \geq \lambda b$
- $\mathcal{H} = \tilde{\mathcal{H}}$ if and only if there exists a $\lambda > 0$ such that $\tilde{a} = \lambda a$ and $\tilde{b} = \lambda b$

Let us prove the first condition. The condition is clearly sufficient: if $\tilde{a} = \lambda a$ and $\tilde{b} \geq \lambda b$ for some $\lambda > 0$, then

$$a^T x \le b \Longrightarrow \lambda a^T x \le \lambda b \Longrightarrow \tilde{a}^T x \le \tilde{b}$$

i.e., $\mathcal{H} \subseteq \tilde{\mathcal{H}}$

To prove necessity, we distinguish three cases. First suppose a and \tilde{a} are not parallel. This means we can find a v with $\tilde{a}^Tv \neq 0$ and $a^Tv = 0$. Let \hat{x} be any point in the intersection of \mathcal{H} and $\tilde{\mathcal{H}}$, i.e., $a^T\hat{x} \leq b$ and $\tilde{a}^Tx \leq \tilde{b}$. We have $a^T(\hat{x}+tv) = a^T\hat{x} \leq b$ for all $t \in \mathbf{R}$ However $\tilde{a}^T(\hat{x}+tv) = \tilde{a}^T\hat{x}+t\tilde{a}^Tv$, and since $\tilde{a}^Tv \neq 0$, we will have $\tilde{a}^T(\hat{x}+tv) > \tilde{b}$ for sufficiently large t > 0 or sufficiently small t < 0. In other words, if a and \tilde{a} are not parallel, we can find a point $\hat{x}+tv \in \mathcal{H}$ that is not in $\tilde{\mathcal{H}}$, i.e., $\mathcal{H} \nsubseteq \tilde{\mathcal{H}}$ Next suppose a and \tilde{a} are parallel, but point in opposite directions, i.e., $\tilde{a} = \lambda a$ for some $\lambda < 0$. Let \hat{x} be any point in \mathcal{H} . Then $\hat{x} - ta \in \mathcal{H}$ for all $t \geq 0$. However for t large enough we will have $\tilde{a}^T(\hat{x}-ta) = \tilde{a}^T\hat{x}-t\lambda ||a||_2^2 > \tilde{b}$, so $\hat{x}-ta \notin \tilde{\mathcal{H}}$. Again, this shows $\mathcal{H} \nsubseteq \tilde{\mathcal{H}}$. Finally, we assume $\tilde{a} = \lambda a$ for some $\lambda > 0$ but $\tilde{b} < \lambda b$. Consider any point \hat{x} that satisfies $a^T\hat{x} = b$. Then $\tilde{a}^T\hat{x} = \lambda a^T\hat{x} = \lambda b > \tilde{b}$, so $\hat{x} \notin \hat{\mathcal{H}}$. The proof for the second part of the problem is similar.

Problem 2 (2 points, Exer. 2.9 (a) in Convex Optimization Book):

Voronoi sets and polyhedral decomposition. Let $x_0, \ldots, x_K \in \mathbf{R}^n$. Consider the set of points that are closer (in Euclidean norm) to x_0 than the other x_i , i.e.,

$$V = \{x \in \mathbf{R}^n \mid ||x - x_0||_2 \le ||x - x_i||_2, \quad i = 1, \dots, K\}$$

V is called the Voronoi region around x_0 with respect to x_1, \ldots, x_K Show that V is a polyhedron. Express V in the form $V = \{x \mid Ax \leq b\}$

Solution

x is closer to x_0 than to x_i if and only if

$$||x - x_0||_2 \le ||x - x_i||_2 \iff (x - x_0)^T (x - x_0) \le (x - x_i)^T (x - x_i)$$

$$\iff x^T x - 2x_0^T x + x_0^T x_0 \le x^T x - 2x_i^T x + x_i^T x_i$$

$$\iff 2 (x_i - x_0)^T x \le x_i^T x_i - x_0^T x_0$$

which defines a halfspace. We can express V as $V = \{x \mid Ax \leq b\}$ with

$$A = 2 \begin{bmatrix} x_1 - x_0 \\ x_2 - x_0 \\ \vdots \\ x_K - x_0 \end{bmatrix}, \quad b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ x_2^T x_2 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix}$$

Problem 3 (3 points, Exer. 33 (b)(e) in *Linear Programming Exercises*): Which of the following sets S are polyhedra? If possible, express S in inequality form, i.e., give matrices A and b such that $S = \{x | Ax \le b\}$.

(a) $S = \{x \in \mathbf{R}^n | x \ge 0, \ \mathbf{1}^T x = 1, \ \sum_{i=1}^n x_i a_i = b_1, \ \sum_{i=1}^n x_i a_i^2 = b_2 \}$, where $a_i \in \mathbf{R}, i = 1, \dots, n$, $b_1 \in \mathbf{R}$, and $b_2 \in \mathbf{R}$ are given.

(b) $S = \{x \in \mathbf{R}^n | ||x - x_0|| \le ||x - x_1||\}$, where $x_0, x_1 \in \mathbf{R}^n$ are given. S is the set of points that are closer to x_0 than to x_1 .

Solution:

(a) S is a polyhedron. In fact the definition involves linear inequalities x > 0 and three equality constraints, so we only have to write the equality constraints as two inequalities. This yields a set of n + 6 inequalities:

$$-x_i \leq 0, \quad i = 1, \dots, n$$

$$\mathbf{1}^T x \leq 1$$

$$-\mathbf{1}^T x \leq -1$$

$$\sum_i a_i x_i \leq b_1$$

$$-\sum_i a_i x_i \leq -b_1$$

$$\sum_i a_i^2 x_i \leq b_2$$

$$-\sum_i a_i^2 x_i \leq -b_2.$$

(b) This set is a polyhedron (in fact, a halfspace). By squaring both sides of the inequality $||x-x_0|| \le ||x-x_1||$, we obtain the equivalent condition

$$||x - x_0||^2 \le ||x - x_1||^2 \quad \Leftrightarrow \quad -2x_0^T x + x_0^T x_0 \le -2x_1^T x + x_1^T x_1$$
$$\Leftrightarrow \quad -2(x_0 - x_1)^T x \le ||x_1||^2 - ||x_0||^2,$$

which is a linear inequality.

Problem 4 (3 points, Exer. 35 (a) in Linear Programming Exercises):

Is $\tilde{x} = (1, 1, 1, 1)$ an extreme point of the polyhedron \mathcal{P} defined by the linear inequalities

$$\begin{bmatrix} -1 & -6 & 1 & 3 \\ -1 & -2 & 7 & 1 \\ 0 & 3 & -10 & -1 \\ -6 & -11 & -2 & 12 \\ 1 & 6 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \le \begin{bmatrix} -3 \\ 5 \\ -8 \\ -7 \\ 4 \end{bmatrix}$$
?

If it is, find a vector c such that \tilde{x} is the unique minimizer of $c^T x$ over \mathcal{P} .

Hint: If the objective function is parallel to one of the hyperplanes defining the feasibility region, Do you get an unique minimizer? Try to think of the solution of this problem graphically.

Solution:

To show that \tilde{x} is an extreme point, we apply the rank criterion of page 3-23. The set of active constraints at \tilde{x} is $J = \{1, 2, 3, 4\}$, so we have to check the rank of the matrix

$$A_J = \begin{bmatrix} -1 & -6 & 1 & 3 \\ -1 & -2 & 7 & 1 \\ 0 & 3 & -10 & -1 \\ -6 & -11 & -2 & 12 \end{bmatrix}.$$

The rank of A_J is 4; therefore \tilde{x} is an extreme point.

As vector c we can choose any (strictly) negative combination of the rows of A_J , for example,

$$c = -A_J^T \mathbf{1} = \begin{bmatrix} 8 \\ 16 \\ 4 \\ -15 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 & -6 \\ -6 & -2 & 3 & -11 \\ 1 & 7 & -10 & -2 \\ 3 & 1 & -1 & 12 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}.$$

With this choice of c, we have

$$c^T \tilde{x} = -\mathbf{1}^T A_J \tilde{x} = -\sum_{i \in J} b_i = 13.$$

To show that no other feasible x can have the same or a lower value of $c^T x$, note that if $Ax \leq b$, then

$$c^T x = -\mathbf{1}^T A_J x \ge -\sum_{i \in J} b_i = 13,$$

with equality only if $a_i^T x = b_i$ for i = 1, 2, 3, 4. However, this is a set of four equations in four variables with a nonsingular coefficient matrix A_J . Therefore $x = \tilde{x}$.

<u>Problem 5</u> (4 points, Exer. 47 in *Linear Programming Exercises*)

Consider the polyhedron

$$\mathcal{P} = \{ x \in \mathbf{R}^4 | Ax \le b, Cx = d \}$$

where

$$A = \begin{bmatrix} -1 & -1 & -3 & -4 \\ -4 & -2 & -2 & -9 \\ -8 & -2 & 0 & -5 \\ 0 & -6 & -7 & -4 \end{bmatrix}, b = \begin{bmatrix} -8 \\ -17 \\ -15 \\ -17 \end{bmatrix}$$

and

$$C = \begin{bmatrix} 13 & 11 & 12 & 12 \end{bmatrix}, d = 48$$

Prove that $\hat{x} = (1, 1, 1, 1)$ is an extreme point of \mathcal{P} .

Solution:

We have

$$b - A\hat{x} = (1, 0, 0, 0),$$

i.e., all inequalities except the first one are active. We therefore have to examine the rank of the matrix

$$\begin{bmatrix} -4 & -2 & -2 & -9 \\ -8 & -2 & 0 & -5 \\ 0 & -6 & -7 & -4 \\ 13 & 11 & 12 & 12 \end{bmatrix}$$

The rank is four. Hence \hat{x} is an extreme point.

Problem 6 (3 points, Exer. 36 in *Linear Programming Exercises*):

We define the polydedron

$$\mathcal{P} = \{ x \in \mathbb{R}^5 \mid Ax \le b, -1 \le x \le 1 \},$$

with

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & -2 \\ 0 & -1 & 1 & -1 & 0 \\ 2 & 0 & 1 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

The following three vectors x are in \mathcal{P} :

(a)
$$\hat{x} = (1, -1/2, 0, -1/2, -1)$$

(b)
$$\hat{x} = (0, 0, 1, 0, 0)$$

(c)
$$\hat{x} = (0, 1, 1, -1, 0)$$
.

Are these vectors extreme points in \mathcal{P} ? For each \hat{x} , if it is an extreme point, give a vector c for which \hat{x} is the unique solution of the optimization problem

Solution:

We first work out a simplified version of the general rank test applied to a polyhedron in \mathbb{R}^n defined by a set of inequalities and equalities

$$-1 \le x \le 1$$
, $Ax = b$

Let x be a feasible point. We partition its components in three groups:

$$x_k = -1 \text{ for } k \in J_-, -1 < x_k < 1 \text{ for } k \in J_0, x_k = 1 \text{ for } k \in J_+$$

and denote the sizes of the three sets by $n_{-} = |J_{-}|$, $n_{0} = |J_{0}|$, $n_{+} = |J_{0}|$. To check whether x is an extreme point we have to examine the submatrix of

$$\begin{bmatrix} -I \\ I \\ A \end{bmatrix}$$
,

obtained by keeping only the rows of the first block indexed by J_{-} , the rows of the second block indexed by J_{+} , and all rows of the third block. Up to a reordering of the columns, this is the matrix

$$\begin{bmatrix} -I_{n_{-}} & 0 & 0\\ 0 & I_{n_{+}} & 0\\ A_{-} & A_{+} & A_{0} \end{bmatrix}, \tag{1}$$

where the matrix A_{-} is the submatrix of A with the columns indexed by J_{-} , A_{+} is the submatrix of A with the columns indexed by J_{+} , and A_{0} is the submatrix of A with the columns indexed by J_{0} . The rank of the matrix (1) is $n_{-} + n_{+} + \operatorname{rank}(A_{0})$. The point x is an extreme point if this rank is n, i.e. if $\operatorname{rank}(A_{0}) = n_{0}$.

To summarize, x is an extreme point if

$$\mathbf{rank}\left(\begin{bmatrix} a_{k_1} & a_{k_2} & \cdots & a_{k_{n_0}} \end{bmatrix}\right) = n_0,$$

where k_1, \dots, k_{n_0} are the indices for which $-1 < x_k < 1$, and a_k denotes column k of A.

- (a) Not an extreme point. The submatrix formed by columns 2,3 and 4 of A has rank 2.
- (b) Not an extreme point. The submatrix formed by columns 1,2,4,5 has rank 3.
- (c) Extreme point. The submatrix formed by columns 1 and 5 has rank 2. For c we can take the positive sum of the active constraints:

$$c = A^T \mathbf{1} - A^T \mathbf{1} + e_1 + e_3 - e_4 = (0, 1, 1, -1, 0).$$

<u>Problem 7</u> (2 points, Exer. 28 in *Linear Programming Exercises*): Formulate the following problem as an LP. Find the largest ball

$$\mathcal{B}(x_c, R) = \{x \mid ||x - x_c|| \le R\},\$$

enclosed in a given polyhedron

$$\mathcal{P} = \{x | a_i^T x \le b_i, i = 1, \dots, m\}.$$

In other words, express the problem

maximize
$$R$$

subject to $\mathcal{B}(x_c, R) \subseteq \mathcal{P}$

as an LP. The problem variables are the center $x_c \in \mathbb{R}^n$ and the radius R of the ball.

Solution:

The difficult part of this problem is expressing the constraints

$$\mathcal{B}(x_c, R) \subseteq \mathcal{P} \tag{2}$$

as a set of linear inequalities in R and x_c . We first consider the simpler constraints

$$\mathcal{B}(x_c, R) \subseteq \mathcal{H}_i \tag{3}$$

where \mathcal{H}_i is the halfspace define by the inequality $a_i^T x \leq b_i$. $\mathcal{B}(x_c, R) \subseteq \mathcal{H}_i$ if and only if

$$a_i^T(x_c + Ru) \le b_i$$
, for all u with $||u|| \le 1$,

i.e.,

$$a_i^T x_c + R \max_{\|u\| \le 1} a_i^T u \le b_i.$$

The first term is linear in x_c . To simplify the second term we use the fact that

$$\max_{\|u\| \le 1} a_i^T u = \|a\|_i.$$

(The value of u that achieves the maximum is $i = a_i/\|a_i\|$.)

This means we can express (3) as a linear inequality in x_c and R:

$$a_i^T x_c + R ||a||_i \le b_i.$$

It is now easy to express the constraint (2), by writing at as

$$\mathcal{B}(x_c, R) \subseteq \mathcal{H}_i, \quad i = 1, \cdots, m,$$

and using the equivalent expression we just derived: $\mathcal{B}(x_c, R) \subseteq \mathcal{P}$ if and only if

$$a_i^T x_c + R||a_i|| \le b_i, \quad i = 1, \cdots, m.$$

In conclusion, we can find the largest ball in the polyhedron $\mathcal P$ by solving

$$\begin{aligned} & \text{maximize} & & R \\ & \text{subject to} & & a_i^T x_c + R \|a_i\| \leq b_i, & & i = 1, \cdots, m. \end{aligned}$$

which is an LP in x_c and R.