SUPPLEMENT: LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914

THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION,
THE AUSTRALIAN SQUARE KILOMETER ARRAY PATHFINDER (ASKAP) COLLABORATION, THE BOOTES COLLABORATION,
THE DARK ENERGY SURVEY AND THE DARK ENERGY CAMERA GW-EM COLLABORATIONS, THE Fermi GBM COLLABORATION,
THE Fermi LAT COLLABORATION, THE GRAVITATIONAL WAVE INAF TEAM (GRAWITA), THE INTEGRAL COLLABORATION,
THE INTERMEDIATE PALOMAR TRANSIENT FACTORY (IPTF) COLLABORATION, THE INTERPLANETARY NETWORK,
THE J-GEM COLLABORATION, THE LA SILLA-QUEST SURVEY, THE LIVERPOOL TELESCOPE COLLABORATION,
THE LOW FREQUENCY ARRAY (LOFAR) COLLABORATION, THE MASTER COLLABORATION, THE MAXI COLLABORATION,
THE MURCHISON WIDE-FIELD ARRAY (MWA) COLLABORATION, THE PAN-STARRS COLLABORATION,
THE PESSTO COLLABORATION, THE PI OF THE SKY COLLABORATION, THE SKYMAPPER COLLABORATION,
THE Swift COLLABORATION, THE TAROT, ZADKO, ALGERIAN NATIONAL OBSERVATORY, AND C2PU COLLABORATION,
THE TOROS COLLABORATION, AND THE VISTA COLLABORATION

(See the end matter for the full list of authors.) (Received 2016 April 27; Accepted 2016 May 4; Published 2016 July 20)

ABSTRACT

This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

Keywords: gravitational waves; methods: observational

1. PAST AND PRESENT FOLLOW-UP PROGRAM

The first gravitational-wave (GW)-triggered electromagnetic (EM) observations were carried out during the 2009–2010 science run of the initial LIGO and Virgo detectors (Abadie et al. 2012b), featuring real-time searches for unmodeled GW bursts and compact binary coalescences (CBCs; Abadie et al. 2012b,a). GW candidates were identified typically within 30 minutes—and their inferred sky locations were used to plan follow-up observations with over a dozen optical and radio telescopes on the ground plus the Swift satellite (Gehrels et al. 2004). Tiles were assigned to individual facilities to target known galaxies that were consistent with the GW localizations and that were within the 50 Mpc nominal binary neutron star (BNS) detectability horizon. Eight GW candidates were followed up. Though none of the GW candidates were significant enough to constitute detections and the EM candidates found were judged to be merely serendipitous sources (Evans et al. 2012; Aasi et al. 2014), the program demonstrated the feasibility of searching in real time for GW transients, triggering follow-up, and analyzing GW and EM observations jointly.

The present program of follow-up of gravitational-wave candidates involves a large number of facilities and observer teams. Instead of centrally planning the assignment of tiles to facilities, we have set up a common EM bulletin board for facilities and observers to announce, coordinate, and visualize the footprints and wavelength coverage of their observations. The new program builds on the Gamma-ray Coordinates Network (GCN)¹ system that has long been established for broadband follow-up of gamma-ray bursts (GRBs). We distribute times and sky positions of event candidates via machine-readable GCN Notices, and participating facilities communicate the results of observations via short bulletins, GCN Circulars. A key difference is that GRB Notices and Circulars are instantly public, whereas GW alert Notices and follow-up Circulars currently are restricted to participating groups until the event candidate in question has been published. After four high-confidence GW events have been published, further high-confidence GW event candidates will be promptly released to the public.

2. COMPARISON OF GRAVITATIONAL-WAVE SKY MAPS

In the main Letter (Abbott et al. 2016a), we introduced four GW sky maps produced with different methods: cWB (Klimenko et al. 2016), LIB (Lynch et al. 2015), BAYESTAR (Singer & Price 2016), and LALInference (Veitch et al. 2015). cWB and LIB treat the GW signal as an unmodeled burst; BAYESTAR and LALInference assume that the source is a CBC. The LALInference sky map should be regarded as the authoritative one for this event. Table 1 shows that the areas of the 10%, 50%, and 90% confidence regions vary between the algorithms. For this event, cWB produces

Table 1. Description of Sky Maps

		Area ^a			Comparison ^b			
	10%	50%	90%	$ heta_{\mathrm{HL}}{}^{\mathrm{c}}$	cWB	LIB	BSTR	LALInf
cWB	10	100	310	43^{+2}_{-2}	_	190	180	230
LIB	30	210	750	45^{+6}_{-5}	0.55	_	220	300
BSTR	10	90	400	45^{+2}_{-2}	0.64	0.56	_	360
LALInf	20	150	630	46^{+3}_{-3}	0.60	0.57	0.90	_

^a Area of credible level (deg²). Note that the LALInference area is consistent with but not equal to the number reported in Abbott et al. (2016b) due to minor differences in sampling and interpolation.

smaller confidence regions than the other algorithms. While cWB produces reasonably accurate maps for typical binary black hole (BBH) signals, it can systematically misestimate the sizes of large confidence regions (Essick et al. 2015). The other algorithms are self-consistent even in this regime. Only the LALInference results account for calibration uncertainty (systematic errors in the conversion of the photocurrent into the GW strain signal). Because systematic errors in the calibration phase affect the measured arrival times at the detectors, the main effect is to broaden the position uncertainty relative to the other sky maps.

Table 1 also shows the intersections of the 90% confidence regions as well as the fidelity $F(p,q)=\int\sqrt{pq}\,\mathrm{d}\Omega\in[0,1]$ between the two maps p and q. All these measures show that the sky maps are similar but not identical. Typically, this level of quantitative disagreement is distinguishable by eye and has been observed in large simulation campaigns (Singer et al. 2014; Berry et al. 2015; Essick et al. 2015) for approximately 10%-20% of the simulated signals. This even includes the bi-modality of LIB's $\theta_{\rm HL}$ distribution (see the inset of Fig. 2 of the main paper), which is associated with a degeneracy between sky location and the handedness of the binary orbit projected on the plane of the sky. Similar features were noted for BNS systems as well (Singer et al. 2014).

3. GAMMA-RAY AND X-RAY OBSERVATIONS

The *Fermi* Gamma-ray Burst Monitor (GBM; Meegan et al. 2009), *INTEGRAL* (Winkler et al. 2003), and the Inter-Planetary Network (IPN; Hurley et al. 2010) searched for prompt high-energy emission temporally coincident with the GW event. Although no GRB in coincidence with GW150914 was reported, an offline analysis of the *Fermi* GBM (8keV–40MeV) data revealed a weak transient with a duration of $\sim 1 \text{s}$ (Connaughton et al. 2016). A similar analysis was performed for the instruments on board *INTE-GRAL* (Winkler et al. 2003), particularly the spectrometer's anticoincidence shield (SPI–ACS, von Kienlin et al. 2003,

75 keV–1 MeV) ². No significant signals were detected, setting upper limits on the hard X-ray fluence at the time of the event (Savchenko et al. 2016). Data from the six-spacecraft, all-sky, full-time monitor IPN, (*Odyssey*–HEND, *Wind*–Konus, *RHESSI*, *INTEGRAL*–SPI-ACS, and the *Swift*–BAT³) revealed no bursts around the time of GW150914 apart from the weak GBM signal (K. Hurley et al. 2016, in preparation).

The Fermi Large Area Telescope (LAT), MAXI, and Swift searched for high-energy afterglow emission. The LIGO localization first entered the Fermi LAT field of view (FOV) at 4200s after the GW trigger and was subsequently observed in its entirety over the next 3 hr and every 3 hr thereafter at GeV energies (Ackermann et al. 2016). The entire region was also imaged in the 2-20 keV X-ray band by the MAXI Gas Slit Camera (Matsuoka et al. 2009) aboard the International Space Station from 86 to 77 minutes before the GW trigger and was re-observed during each subsequent ~ 92 minute orbit (N. Kawai et al. 2016, in preparation). The Swift X-ray Telescope (XRT; Burrows et al. 2005) followed up the GW event starting 2.25 days after the GW event, and covered five tiles containing eight nearby galaxies for a total $\sim 0.3 \, \rm deg^2$ area in the 0.3-10 keV energy range. A 37 point tiled observation of the Large Magellanic Cloud was executed a day later. The Swift UV/Optical Telescope (UVOT) provided simultaneous ultraviolet and optical observations, giving a broadband coverage of 80% of the Swift XRT FOV. Details of these observations are given in Evans et al. (2016).

4. OPTICAL AND NEAR-IR OBSERVATIONS

The optical and near-infrared observations fell into roughly two stages. During the first week, wide FOV (1-10 deg²) telescopes tiled large areas to identify transient candidates, and then larger but narrower FOV telescopes obtained classification spectroscopy and fur-The wide FOV instruments included ther photometry. DECam on the CTIO Blanco telescope (Flaugher et al. 2015; Dark Energy Survey Collaboration et al. 2016), the Kiso Wide Field Camera (KWFC, J-GEM; Sako et al. 2012), La Silla QUEST (Baltay et al. 2007), the Global MASTER Robotic Net (Lipunov et al. 2010), the Palomar 48 inch Oschin telescope (P48) as part of the intermediate Palomar Transient Factory (iPTF; Law et al. 2009), Pan-STARRS1 (Kaiser et al. 2010), SkyMapper (Keller et al. 2007), TAROT-La Silla (Boër et al. 1999, node of the TAROT-Zadko-Algerian National Observatory-C2PU collaboration), and the VLT Survey Telescope (VST@ESO; Capaccioli & Schipani 2011, GRAvitational Wave Inaf TeAm, Brocato et al. 2016, in preparation)⁴ in the optical band, and the Visible and Infrared

b Fidelity (below diagonal) and the intersection in deg² of the 90% confidence regions (above diagonal).

^cMean and 10% and 90% percentiles of polar angle in degrees.

² INTEGRAL's coded-mask imager (IBIS, Ubertini et al. 2003, 20–200 keV) was pointed far outside the GW localization region.

³ The *Swift* Burst Alert Telescope did not intersect the GW localization at the time of the trigger

⁴ ESO proposal ID:095.D-0195,095.D-0079

Survey Telescope (VISTA@ESO; Emerson et al. 2006)⁵ in the near infrared. They represent different classes of instruments ranging in diameter from 0.25 to 4 m and reaching apparent magnitudes from 18 to 22.5. About one-third of these facilities followed a galaxy-targeted observational strategy, while the others tiled portions of the GW sky maps covering 70–590 deg². A narrow (arcminute) FOV facility, the 1.5 m EABA telescope in Bosque Alegre operated by the TOROS collaboration (M. Diaz et al. 2016, in preparation), also participated in the optical coverage of the GW sky maps. *Swift* UVOT observed simultaneously with XRT, giving a broadband coverage of 80% of the *Swift* XRT FOV.

A few tens of transient candidates identified by the widefield telescopes were followed on the 10 m Keck II telescope (DEIMOS; Faber et al. 2003), the 2 m Liverpool Telescope (LT; Steele et al. 2004), the Palomar 200 inch Hale telescope (P200; Bracher 1998), the 3.6 m ESO New Technology Telescope (within the Public ESO Spectroscopic Survey of Transient Objects, PESSTO; Smartt et al. 2015), and the University of Hawaii 2.2 m telescope (SuperNovae Integral Field Spectrograph, SNIFS). The follow-up observations of the candidate counterparts are summarized in Table 3 of the main paper.

An archival search for bright optical transients was conducted in the CASANDRA-3 all-sky camera database of BOOTES-3 (Castro-Tirado et al. 2012) and the all-sky survey of the Pi of the Sky telescope (Mankiewicz et al. 2014), both covering the entire southern sky map. The BOOTES-3 images are the only observations simultaneous to GW150914 available to search for prompt/early optical emission. They reached a limiting magnitude of 5 due to poor weather conditions (GCN 19022). The Pi of the Sky telescope images were taken 12 days after GW150914 and searched for transients brighter than $R < 11.5 \, \text{mag}$ (GCN 19034).

5. RADIO OBSERVATIONS

The radio telescopes involved in the EM follow-up program have the capability to observe a wide range of frequencies with different levels of sensitivity, and a range of FOVs covering both the northern and southern skies (Tables 2 and 3 of the main paper). The Low Frequency Array (LOFAR; van Haarlem et al. 2013) and the Murchison Widefield Array (MWA; Tingay et al. 2013) are phased array dipole antennas sensitive to meter wavelengths with large FOVs (≈50 deg² with uniform sensitivity for the LOFAR observations carried out as part of this follow-up program; and up to 1200 deg² for MWA). The Australian Square Kilometer Array Pathfinder (ASKAP; Schinckel et al. 2012) is an interferometric array composed of 36 12 m diameter dish antennas. The Karl G. Jansky Very Large Array (VLA; Perley et al. 2009) is a 27 antenna array, with dishes of 25 m diameter. Both ASKAP and VLA are sensitive from centimeter to

decimeter wavelengths.

MWA started observing 3 days after the GW trigger with a 30 MHz bandwidth around a central frequency of 118 MHz and reached an rms noise level of about 40 mJy beam⁻¹ in a synthesized beam of about 3'. The ASKAP observations used the five-element Boolardy Engineering Test Array (BETA; Hotan et al. 2014), which has an FOV of $\approx 25 \deg^2$ and FWHM synthesized beam of 1' - 3'. These observations were performed with a 300 MHz bandwidth around a central frequency of 863.5 MHz, from \approx 7 to \approx 14 days after the GW trigger, reaching rms sensitivities of 1 - 3 mJy beam⁻¹. LOFAR conducted three observations from \approx 7 days to \approx 3 months following the GW trigger, reaching a rms sensitivity of $\approx 2.5 \,\mathrm{mJy\,beam^{-1}}$ at 145 MHz, with a bandwidth of 11.9 MHz and a spatial resolution of $\approx 50''$. ASKAP, LOFAR, and MWA all performed tiled observations aimed at covering a large area of the GW region.

The VLA performed follow-up observations of GW150914 from ≈ 1 to ≈ 4 months after the GW trigger⁶, and targeted selected candidate optical counterparts detected by iPTF. VLA observations were carried out in the most compact array configuration (D configuration) at a central frequency of ≈ 6 GHz (primary beam FWHP of $\approx 9'$, and synthesized beam FWHP of $\approx 12''$). The rms sensitivity of these VLA observations was $\approx 8-10~\mu \mathrm{Jy}~\mathrm{beam}^{-1}$.

Software: Astropy (Robitaille et al. 2013), HEALPix (Górski et al. 2005)

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector, and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educació,

⁵ ESO proposal ID:095.D-0771

⁶ VLA/15A-339, PI: A. Corsi

Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.

The Australian SKA Pathfinder is part of the Australia Telescope National Facility which is managed by CSIRO. The operation of ASKAP is funded by the Australian Government with support from the National Collaborative Research Infrastructure Strategy. Establishment of the Murchison Radioastronomy Observatory was funded by the Australian Government and the Government of Western Australia. ASKAP uses advanced supercomputing resources at the Pawsey Supercomputing Centre. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

A.J.C.T. acknowledges support from the Junta de Andalucía (Project P07-TIC-03094) and Univ. of Auckland and NIWA for installing of the Spanish BOOTES-3 station in New Zealand, and support from the Spanish Ministry Projects AYA2012-39727-C03-01 and 2015-71718R.

Funding for the DES Projects has been provided by the United States Department of Energy, the United States National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas,

Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.

The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.

The Fermi LAT Collaboration acknowledges support for LAT development, operation, and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS (France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board (Sweden). Science analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully acknowledged. The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany.

GRAWITA acknowledges the support of INAF for the project "Gravitational Wave Astronomy with the first detections of adLIGO and adVIRGO experiments."

This works exploited data by INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), and with the participation of Russia and the USA. The SPI ACS detector system has been provided by MPE Garching/Germany. We acknowledge the German INTEGRAL support through DLR grant 50 OG 1101.

IPN work is supported in the US under NASA Grant NNX15AU74G.

This work is partly based on observations obtained with the Samuel Oschin 48 in Telescope and the 60 in Telescope at the Palomar Observatory as part of the Intermediate Palomar Transient Factory (iPTF) project, a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe. M.M.K. and Y.C. acknowledge funding from the National Science Foundation PIRE program grant 1545949. A.A.M. acknowledges support from the Hubble Fellowship HST-HF-51325.01. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

J-GEM is financially supported by KAKENHI Grant No. 24103003, 15H00774, and 15H00788 of MEXT Japan, 15H02069 and 15H02075 of JSPS, and the "Optical and Near-Infrared Astronomy Inter-University Cooperation Program" supported by MEXT.

The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council.

LOFAR, the Low Frequency Array designed and constructed by ASTRON, has facilities in several countries, which are owned by various parties (each with their own funding sources), and that are collectively operated by the International LOFAR Telescope (ILT) foundation under a joint scientific policy. R. Fender acknowledges support from ERC Advanced Investigator Grant 267697.

MASTER Global Robotic Net is supported in parts by Lomonosov Moscow State University Development programm, Moscow Union OPTICA , Russian Science Foundation 16-12-00085, RFBR15-02-07875, National Research Foundation of South Africa.

We thank JAXA and RIKEN for providing MAXI data. The MAXI team is partially supported by KAKENHI Grant Nos. 24103002, 24540239, 24740186, and 23000004 of MEXT, Japan.

This work uses the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the observatory site. Support for the operation of the MWA is provided by the Australian Government Department of Industry and Science and Department of Education (National Collaborative Research Infrastructure Strategy: NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. The MWA acknowledges the iVEC Petabyte Data Store and the Initiative in Innovative Computing and the CUDA Center for Excellence sponsored by NVIDIA at Harvard University.

Pan-STARRS is supported by the University of Hawaii and the National Aeronautics and Space Administration's Planetary Defense Office under grant No. NNX14AM74G. The

Pan-STARRS-LIGO effort is in collaboration with the LIGO Consortium and supported by Queen's University Belfast. The Pan-STARRS1 Sky Surveys have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, and the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), and the Los Alamos National Laboratory. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programs 188.D-3003, 191.D-0935.

Some of the data presented herein were obtained at the Palomar Observatory, California Institute of Technology.

S.J.S. acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222] and STFC grants ST/I001123/1 and ST/L000709/1. M.F. is supported by the European Union FP7 programme through ERC grant No. 320360. K.M. acknowledges support from the STFC through an Ernest Rutherford Fellowship.

F.O.E. acknowledges support from FONDECYT through postdoctoral grant 3140326.

Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project No. CE110001020.

Funding for *Swift* is provided by NASA in the US, by the UK Space Agency in the UK, and by the Agenzia Spaziale Italiana (ASI) in Italy. This work made use of data supplied by the UK *Swift* Science Data Centre at the University of Leicester. We acknowledge the use of public data from the *Swift* data archive.

The TOROS collaboration acknowledges support from Ministerio de Ciencia y Tecnología (MinCyT) and Consejo Nacional de Investigaciones Cientificas y Tecnológicas (CONICET) from Argentina and grants from the USA NSF PHYS 1156600 and NSF HRD 1242090.

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. VST and VISTA observations were performed at the European Southern Observatory, Paranal, Chile. We acknowledge ESO personnel for their assistance during the observing runs.

This is LIGO document LIGO-P1600137-v2.

REFERENCES

Aasi, J., Abadie, J., Abbott, B. P., et al. 2014, ApJS, 211, 7Abadie, J., Abbott, B. P., Abbott, R., et al. 2012a, A&A, 541, A155—. 2012b, A&A, 539, A124

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, arXiv:1602.08492, https://dcc.ligo.org/LIGO-P1500227/public/main —. 2016b, Phys. Rev. Lett., 116, 241102,

https://dcc.ligo.org/LIGO-P1500218/public/main Ackermann, M., Ajello, M., Albert, A., et al. 2016, ApJL, 823, L2 Baltay, C., Rabinowitz, D., Andrews, P., et al. 2007, PASP, 119, 1278 Berry, C. P. L., Mandel, I., Middleton, H., et al. 2015, ApJ, 804, 114 Boër, M., Bringer, M., Klotz, A., et al. 1999, A&AS, 138, 579 Bracher, K. 1998, Mercury, 27, 4

Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Sci. Rev., 120, 165

Capaccioli, M., & Schipani, P. 2011, The Messenger, 146, 2

 Castro-Tirado, A. J., Tello, J. C., Cunniffe, R., et al. 2016, GCN, 19022, 1
 Castro-Tirado, A. J., Jelínek, M., Gorosabel, J., et al. 2012, in Astronomical Society of India Conference Series, Vol. 7, Second Workshop on Robotic Autonomous Observatories, 313–320

Connaughton, V., Burns, E., Goldstein, A., et al. 2016, ArXiv e-prints, arXiv:1602.03920

Cwiek, A., Zarnecki, A. F., Mankiewicz, L., et al. 2016, GCN, 19034, 1 Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, MNRAS, 460, 1270

Emerson, J., McPherson, A., & Sutherland, W. 2006, The Messenger, 126, 41

Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., & Klimenko, S. 2015, ApJ, 800, 81

Evans, P. A., Fridriksson, J. K., Gehrels, N., et al. 2012, ApJS, 203, 28Evans, P. A., Kennea, J. A., Barthelmy, S. D., et al. 2016, MNRAS, arXiv:1602.03868

Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, in Proc. SPIE, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood, 1657–1669
Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hotan, A. W., Bunton, J. D., Harvey-Smith, L., et al. 2014, PASA, 31, e041
Hurley, K., Golenetskii, S., Aptekar, R., et al. 2010, in American Institute of Physics Conference Series, Vol. 1279, Deciphering the Ancient Universe With Gamma-ray Bursts, ed. N. Kawai & S. Nagataki, 330–333

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, in Proc. SPIE, Vol. 7733, Ground-based and Airborne Telescopes III, 77330E

Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1Klimenko, S., Vedovato, G., Drago, M., et al. 2016, Phys. Rev. D, 93, 042004

Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395Lipunov, V., Kornilov, V., Gorbovskoy, E., et al. 2010, Advances in Astronomy, 2010, 30

Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., & Robinet, F. 2015, ArXiv e-prints, arXiv:1511.05955

Mankiewicz, L., Batsch, T., Castro-Tirado, A., et al. 2014, in Revista Mexicana de Astronomia y Astrofisica, vol. 27, Vol. 45, Revista Mexicana de Astronomia y Astrofisica Conference Series, 7–11

Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999 Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791

Perley, R., Napier, P., Jackson, J., et al. 2009, IEEE Proceedings, 97, 1448 Robitaille, T. P., Tollerud, E. J., Greenfield, P., et al. 2013, A&A, 558, A33 Sako, S., Aoki, T., Doi, M., et al. 2012, in Proc. SPIE, Vol. 8446, Proc. SPIE 6

Savchenko, V., Ferrigno, C., Mereghetti, S., et al. 2016, ApJL, 820, L36
Schinckel, A. E., Bunton, J. D., Cornwell, T. J., Feain, I., & Hay, S. G. 2012, in Proc. SPIE, Vol. 8444, Ground-based and Airborne Telescopes IV, 84442A

Singer, L. P., & Price, L. R. 2016, Phys. Rev. D, 93, 024013
Singer, L. P., Price, L. R., Farr, B., et al. 2014, ApJ, 795, 105
Smartt, S. J., Valenti, S., Fraser, M., et al. 2015, A&A, 579, A40
Steele, I. A., Smith, R. J., Rees, P. C., et al. 2004, in Proc. SPIE, Vol. 5489, Ground-based Telescopes, ed. J. M. Oschmann, Jr., 679–692
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007
Ubertini, P., Lebrun, F., Di Cocco, G., et al. 2003, A&A, 411, L131
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2
Veitch, J., Raymond, V., Farr, B., et al. 2015, Phys. Rev. D, 91, 042003
von Kienlin, A., Beckmann, V., Rau, A., et al. 2003, A&A, 411, L299
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1

AUTHORS

B. P. Abbott¹, R. Abbott¹, T. D. Abbott², M. R. Abernathy¹, F. Acernese^{3,4}, K. Ackley⁵, C. Adams⁶, T. Adams⁷, P. Addesso³, R. X. Adhikari¹, V. B. Adya⁸, C. Affeldt⁸, M. Agathos⁹, K. Agatsuma⁹, N. Aggarwal¹⁰, O. D. Aguiar¹¹, L. Aiello^{12,13}, A. Ain¹⁴, P. Ajith¹⁵, B. Allen^{8,16,17}, A. Allocca^{18,19}, P. A. Altin²⁰, S. B. Anderson¹, W. G. Anderson¹⁶, K. Arai¹, M. C. Araya¹, C. C. Arceneaux²¹, J. S. Areeda²², N. Arnaud²³, K. G. Arun²⁴, S. Ascenzi^{25,13}, G. Ashton²⁶, M. Ast²⁷, S. M. Aston⁶, P. Astone²⁸, P. Aufmuth⁸, C. Aulbert⁸, S. Babak²⁹, P. Bacon³⁰, M. K. M. Bader⁹, P. T. Baker³¹, F. Baldaccini^{32,33}, G. Ballardin³⁴, S. W. Ballmer³⁵, J. C. Barayoga¹, S. E. Barclay³⁶, B. C. Barish¹, D. Barker³⁷, F. Barone^{3,4}, B. Barr³⁶, L. Barsotti¹⁰, M. Barsuglia³⁰, D. Barta³⁸, S. Barthelmy³⁹, J. Bartlett³⁷, I. Bartos⁴⁰, R. Bassiri⁴¹, A. Basti^{18,19}, J. C. Batch³⁷, C. Baune⁸, V. Bavigadda³⁴, M. Bazzan^{42,43}, B. Behnke²⁹, M. Bejger⁴⁴, A. S. Bell³⁶, C. J. Bell³⁶, B. K. Berger¹, J. Bergman³⁷, G. Bergmann⁸, C. P. L. Berry⁴⁵, D. Bersanetti^{46,47}, A. Bertolini⁹, J. Betzwieser⁶, S. Bhagwat³⁵, R. Bhandare⁴⁸, I. A. Bilenko⁴⁹, G. Billingsley¹, J. Birch⁶, R. Birney⁵⁰, S. Biscans¹⁰, A. Bisht^{8,17}, M. Bitossi³⁴, C. Biwer³⁵, M. A. Bizouard²³, J. K. Blackburn¹, C. D. Blair⁵¹, D. G. Blair⁵¹, R. M. Blair³⁷, S. Bloemen⁵², O. Bock⁸, T. P. Bodiya¹⁰, M. Boer⁵³, G. Bogaert⁵³, C. Bogan⁸, A. Bohe²⁹, P. Bojtos⁵⁴, C. Bond⁴⁵, F. Bondu⁵⁵, R. Bonnand⁷, B. A. Boom⁹, R. Bork¹, V. Boschi^{18,19}, S. Bose^{56,14}, Y. Bouffanais³⁰, A. Bozzi³⁴, C. Bradaschia¹⁹, P. R. Brady¹⁶, V. B. Braginsky⁴⁹,

M. Branchesi^{57,58}, J. E. Brau⁵⁹, T. Briant⁶⁰, A. Brillet⁵³, M. Brinkmann⁸, V. Brisson²³, P. Brockill¹⁶, A. F. Brooks¹, D. A. Brown³⁵, D. D. Brown⁴⁵, N. M. Brown¹⁰, C. C. Buchanan², A. Buikema¹⁰, T. Bulik⁶¹, H. J. Bulten^{62,9}, A. Buonanno^{29,63}, D. Buskulic⁷, C. Buy³⁰, R. L. Byer⁴¹, L. Cadonati⁶⁴, G. Cagnoli^{65,66}, C. CAHILLANE¹, J. C. BUSTILLO^{67,64}, T. CALLISTER¹, E. CALLONI^{68,4}, J. B. CAMP³⁹, K. C. CANNON⁶⁹, J. CAO⁷⁰, C. D. Capano⁸, E. Capocasa³⁰, F. Carbognani³⁴, S. Caride⁷¹, J. C. Diaz²³, C. Casentini^{25,13}, S. Caudill¹⁶, M. Cavaglià²¹, F. Cavalier²³, R. Cavalieri³⁴, G. Cella¹⁹, C. B. Cepeda¹, L. C. Baiardi^{57,58}, G. Cerretani^{18,19}, E. CESARINI^{25,13}, R. CHAKRABORTY¹, T. CHALERMSONGSAK¹, S. J. CHAMBERLIN⁷², M. CHAN³⁶, S. CHAO⁷³, P. Charlton⁷⁴, E. Chassande-Mottin³⁰, H. Y. Chen⁷⁵, Y. Chen⁷⁶, C. Cheng⁷³, A. Chincarini⁴⁷, A. Chiummo³⁴, H. S. Cho⁷⁷, M. Cho⁶³, J. H. Chow²⁰, N. Christensen⁷⁸, Q. Chu⁵¹, S. Chua⁶⁰, S. Chung⁵¹, G. Ciani⁵, F. Clara³⁷, J. A. CLARK⁶⁴, F. CLEVA⁵³, E. COCCIA^{25,12,13}, P.-F. COHADON⁶⁰, A. COLLA^{79,28}, C. G. COLLETTE⁸⁰, L. COMINSKY⁸¹, M. Constancio Jr. 11 , A. Conte 79,28 , L. Conti 43 , D. Cook 37 , T. R. Corbitt 2 , N. Cornish 31 , A. Corsi 71 , S. CORTESE³⁴, C. A. COSTA¹¹, M. W. COUGHLIN⁷⁸, S. B. COUGHLIN⁸², J.-P. COULON⁵³, S. T. COUNTRYMAN⁴⁰, P. COUVARES¹, E. E. COWAN⁶⁴, D. M. COWARD⁵¹, M. J. COWART⁶, D. C. COYNE¹, R. COYNE⁷¹, K. CRAIG³⁶, J. D. E. Creighton¹⁶, J. Cripe², S. G. Crowder⁸³, A. Cumming³⁶, L. Cunningham³⁶, E. Cuoco³⁴, T. DAL CANTON⁸, S. L. DANILISHIN³⁶, S. D'ANTONIO¹³, K. DANZMANN^{17,8}, N. S. DARMAN⁸⁴, V. DATTILO³⁴, I. DAVE⁴⁸, H. P. DAVELOZA⁸⁵, M. DAVIER²³, G. S. DAVIES³⁶, E. J. DAW⁸⁶, R. DAY³⁴, D. DEBRA⁴¹, G. DEBRECZENI³⁸, J. DEGALLAIX⁶⁶, M. DE LAURENTIS^{68,4}, S. DELÉGLISE⁶⁰, W. DEL POZZO⁴⁵, T. DENKER^{8,17}, T. DENT⁸, H. DERELI⁵³, V. DERGACHEV¹, R. T. DEROSA⁶, R. DE ROSA^{68,4}, R. DESALVO⁸⁷, S. DHURANDHAR¹⁴, M. C. DÍAZ⁸⁵, L. DI FIORE⁴, $M.\ Di\ Giovanni^{79,28},\ A.\ Di\ Lieto^{18,19},\ S.\ Di\ Pace^{79,28},\ I.\ Di\ Palma^{29,8},\ A.\ Di\ Virgilio^{19},\ G.\ Dojcinoski^{88},$ V. Dolique⁶⁶, F. Donovan¹⁰, K. L. Dooley²¹, S. Doravari^{6,8}, R. Douglas³⁶, T. P. Downes¹⁶, M. Drago^{8,89,90} R. W. P. Drever¹, J. C. Driggers³⁷, Z. Du⁷⁰, M. Ducrot⁷, S. E. Dwyer³⁷, T. B. Edo⁸⁶, M. C. Edwards⁷⁸, A. EFFLER⁶, H.-B. EGGENSTEIN⁸, P. EHRENS¹, J. EICHHOLZ⁵, S. S. EIKENBERRY⁵, W. ENGELS⁷⁶, R. C. ESSICK¹⁰, T. ETZEL¹, M. EVANS¹⁰, T. M. EVANS⁶, R. EVERETT⁷², M. FACTOUROVICH⁴⁰, V. FAFONE^{25,13,12}, H. FAIR³⁵, S. FAIRHURST⁹¹, X. FAN⁷⁰, Q. FANG⁵¹, S. FARINON⁴⁷, B. FARR⁷⁵, W. M. FARR⁴⁵, M. FAVATA⁸⁸, M. FAYS⁹¹, H. Fehrmann⁸, M. M. Fejer⁴¹, I. Ferrante^{18,19}, E. C. Ferreira¹¹, F. Ferrini³⁴, F. Fidecaro^{18,19}, I. Fiori³⁴ D. FIORUCCI³⁰, R. P. FISHER³⁵, R. FLAMINIO^{66,92}, M. FLETCHER³⁶, J.-D. FOURNIER⁵³, S. FRANCO²³, S. F. Frasconi¹⁹, Z. Frei⁵⁴, A. Freise⁴⁵, R. Frey⁵⁹, V. Frey²³, T. T. Fricke⁸, P. Fritschel¹⁰, V. V. Frolov⁶, $P. \ Fulda^5, M. \ Fyffe^6, H. \ A. \ G. \ Gabbard^{21}, J. \ R. \ Gair^{93}, L. \ Gammaitoni^{32,33}, S. \ G. \ Gaonkar^{14}, F. \ Garufi^{68,4}, Garufi^$ A. GATTO³⁰, G. GAUR^{94,95}, N. GEHRELS³⁹, G. GEMME⁴⁷, B. GENDRE⁵³, E. GENIN³⁴, A. GENNAI¹⁹, J. GEORGE⁴⁸, L. GERGELY⁹⁶, V. GERMAIN⁷, A. GHOSH¹⁵, S. GHOSH^{52,9}, J. A. GIAIME^{2,6}, K. D. GIARDINA⁶, A. GIAZOTTO¹⁹, K. GILL⁹⁷, A. GLAEFKE³⁶, E. GOETZ⁹⁸, R. GOETZ⁵, L. GONDAN⁵⁴, G. GONZÁLEZ², J. M. G. CASTRO^{18,19}, A. GOPAKUMAR⁹⁹, N. A. GORDON³⁶, M. L. GORODETSKY⁴⁹, S. E. GOSSAN¹, M. GOSSELIN³⁴, R. GOUATY⁷, C. Graef³⁶, P. B. Graff⁶³, M. Granata⁶⁶, A. Grant³⁶, S. Gras¹⁰, C. Gray³⁷, G. Greco^{57,58}, A. C. Green⁴⁵, P. GROOT⁵², H. GROTE⁸, S. GRUNEWALD²⁹, G. M. GUIDI^{57,58}, X. GUO⁷⁰, A. GUPTA¹⁴, M. K. GUPTA⁹⁵, K. E. GUSHWA¹, E. K. GUSTAFSON¹, R. GUSTAFSON⁹⁸, J. J. HACKER²², B. R. HALL⁵⁶, E. D. HALL¹, G. HAMMOND³⁶, M. HANEY⁹⁹, $M.\ M.\ Hanke^8, J.\ Hanks^{37}, C.\ Hanna^{72}, M.\ D.\ Hannam^{91}, J.\ Hanson^6, T.\ Hardwick^2, K.\ Haris^{100}, J.\ Harms^{57,58}$ G. M. HARRY¹⁰¹, I. W. HARRY²⁹, M. J. HART³⁶, M. T. HARTMAN⁵, C.-J. HASTER⁴⁵, K. HAUGHIAN³⁶, A. HEIDMANN⁶⁰, M. C. Heintze^{5,6}, H. Heitmann⁵³, P. Hello²³, G. Hemming³⁴, M. Hendry³⁶, I. S. Heng³⁶, J. Hennig³⁶, A. W. HEPTONSTALL¹, M. HEURS^{8,17}, S. HILD³⁶, D. HOAK¹⁰², K. A. HODGE¹, D. HOFMAN⁶⁶, S. E. HOLLITT¹⁰³, K. Holt⁶, D. E. Holz⁷⁵, P. Hopkins⁹¹, D. J. Hosken¹⁰³, J. Hough³⁶, E. A. Houston³⁶, E. J. Howell⁵¹, Y. M. Hu³⁶, S. Huang⁷³, E. A. Huerta^{104,82}, D. Huet²³, B. Hughey⁹⁷, S. Husa⁶⁷, S. H. Huttner³⁶, T. Huynh-Dinh⁶, A. IDRISY⁷², N. INDIK⁸, D. R. INGRAM³⁷, R. INTA⁷¹, H. N. ISA³⁶, J.-M. ISAC⁶⁰, M. ISI¹, G. ISLAS²², T. ISOGAI¹⁰, B. R. $IYER^{15}$, K. $IZUMI^{37}$, T. $JACQMIN^{60}$, H. $JANG^{77}$, K. $JANI^{64}$, P. $JARANOWSKI^{105}$, S. $JAWAHAR^{106}$, F. Jiménez-Forteza⁶⁷, W. W. Johnson², D. I. Jones²⁶, R. Jones³⁶, R. J. G. Jonker⁹, L. Ju⁵¹, C. V. Kalaghatgi^{24,91}, V. Kalogera⁸², S. Kandhasamy²¹, G. Kang⁷⁷, J. B. Kanner¹, S. Karki⁵⁹, M. KASPRZACK^{2,23,34}, E. KATSAVOUNIDIS¹⁰, W. KATZMAN⁶, S. KAUFER¹⁷, T. KAUR⁵¹, K. KAWABE³⁷, F. KAWAZOE^{8,17}, F. Kéfélian 53 , M. S. Kehl 69 , D. Keitel 8,67 , D. B. Kelley 35 , W. Kells 1 , R. Kennedy 86 , J. S. Key 85 , A. KHALAIDOVSKI⁸, F. Y. KHALILI⁴⁹, I. KHAN¹², S. KHAN⁹¹, Z. KHAN⁹⁵, E. A. KHAZANOV¹⁰⁷, N. KIJBUNCHOO³⁷, C. Kim⁷⁷, J. Kim¹⁰⁸, K. Kim¹⁰⁹, N. Kim⁷⁷, N. Kim⁴¹, Y.-M. Kim¹⁰⁸, E. J. King¹⁰³, P. J. King³⁷, D. L. Kinzel⁶, J. S. KISSEL³⁷, L. KLEYBOLTE²⁷, S. KLIMENKO⁵, S. M. KOEHLENBECK⁸, K. KOKEYAMA², S. KOLEY⁹, V. KONDRASHOV¹, A. KONTOS¹⁰, M. KOROBKO²⁷, W. Z. KORTH¹, I. KOWALSKA⁶¹, D. B. KOZAK¹, V. KRINGEL⁸, A. Królak^{110,111}, C. Krueger¹⁷, G. Kuehn⁸, P. Kumar⁶⁹, L. Kuo⁷³, A. Kutynia¹¹⁰, B. D. Lackey³⁵, M. LANDRY³⁷, J. LANGE¹¹², B. LANTZ⁴¹, P. D. LASKY¹¹³, A. LAZZARINI¹, C. LAZZARO^{64,43}, P. LEACI^{29,79,28}, S. Leavey³⁶, E. O. Lebigot^{30,70}, C. H. Lee¹⁰⁸, H. K. Lee¹⁰⁹, H. M. Lee¹¹⁴, K. Lee³⁶, A. Lenon³⁵, M. Leonardi^{89,90},

```
J. R. LEONG<sup>8</sup>, N. LEROY<sup>23</sup>, N. LETENDRE<sup>7</sup>, Y. LEVIN<sup>113</sup>, B. M. LEVINE<sup>37</sup>, T. G. F. Li<sup>1</sup>, A. LIBSON<sup>10</sup>,
     T. B. Littenberg^{115}, N. A. Lockerbie^{106}, J. Logue^{36}, A. L. Lombardi^{102}, J. E. Lord^{35}, M. Lorenzini^{12,13},
        V. Loriette<sup>116</sup>, M. Lormand<sup>6</sup>, G. Losurdo<sup>58</sup>, J. D. Lough<sup>8,17</sup>, H. Lück<sup>17,8</sup>, A. P. Lundgren<sup>8</sup>, J. Luo<sup>78</sup>,
              R. LYNCH<sup>10</sup>, Y. Ma<sup>51</sup>, T. MacDonald<sup>41</sup>, B. MacHenschalk<sup>8</sup>, M. MacInnis<sup>10</sup>, D. M. MacLeod<sup>2</sup>,
             F. Magaña-Sandoval<sup>35</sup>, R. M. Magee<sup>56</sup>, M. Mageswaran<sup>1</sup>, E. Majorana<sup>28</sup>, I. Maksimovic<sup>116</sup>,
       V. MALVEZZI<sup>25,13</sup>, N. MAN<sup>53</sup>, I. MANDEL<sup>45</sup>, V. MANDIC<sup>83</sup>, V. MANGANO<sup>36</sup>, G. L. MANSELL<sup>20</sup>, M. MANSKE<sup>16</sup>,
  M. MANTOVANI<sup>34</sup>, F. MARCHESONI<sup>117,33</sup>, F. MARION<sup>7</sup>, S. MÁRKA<sup>40</sup>, Z. MÁRKA<sup>40</sup>, A. S. MARKOSYAN<sup>41</sup>, E. MAROS<sup>1</sup>,
 F. MARTELLI<sup>57,58</sup>, L. MARTELLINI<sup>53</sup>, I. W. MARTIN<sup>36</sup>, R. M. MARTIN<sup>5</sup>, D. V. MARTYNOV<sup>1</sup>, J. N. MARX<sup>1</sup>, K. MASON<sup>10</sup>,
         A. MASSEROT<sup>7</sup>, T. J. MASSINGER<sup>35</sup>, M. MASSO-REID<sup>36</sup>, F. MATICHARD<sup>10</sup>, L. MATONE<sup>40</sup>, N. MAVALVALA<sup>10</sup>,
    N. MAZUMDER<sup>56</sup>, G. MAZZOLO<sup>8</sup>, R. MCCARTHY<sup>37</sup>, D. E. MCCLELLAND<sup>20</sup>, S. MCCORMICK<sup>6</sup>, S. C. MCGUIRE<sup>118</sup>,
       G. McIntyre<sup>1</sup>, J. McIver<sup>1</sup>, D. J. McManus<sup>20</sup>, S. T. McWilliams<sup>104</sup>, D. Meacher<sup>72</sup>, G. D. Meadors<sup>29,8</sup>,
           J. MEIDAM<sup>9</sup>, A. MELATOS<sup>84</sup>, G. MENDELL<sup>37</sup>, D. MENDOZA-GANDARA<sup>8</sup>, R. A. MERCER<sup>16</sup>, E. MERILH<sup>37</sup>,
   M. MERZOUGUI<sup>53</sup>, S. MESHKOV<sup>1</sup>, C. MESSENGER<sup>36</sup>, C. MESSICK<sup>72</sup>, P. M. MEYERS<sup>83</sup>, F. MEZZANI<sup>28,79</sup>, H. MIAO<sup>45</sup>,
C. MICHEL<sup>66</sup>, H. MIDDLETON<sup>45</sup>, E. E. MIKHAILOV<sup>119</sup>, L. MILANO<sup>68,4</sup>, J. MILLER<sup>10</sup>, M. MILLHOUSE<sup>31</sup>, Y. MINENKOV<sup>13</sup>,
            J. MING<sup>29,8</sup>, S. MIRSHEKARI<sup>120</sup>, C. MISHRA<sup>15</sup>, S. MITRA<sup>14</sup>, V. P. MITROFANOV<sup>49</sup>, G. MITSELMAKHER<sup>5</sup>,
          R. MITTLEMAN<sup>10</sup>, A. MOGGI<sup>19</sup>, M. MOHAN<sup>34</sup>, S. R. P. MOHAPATRA<sup>10</sup>, M. MONTANI<sup>57,58</sup>, B. C. MOORE<sup>88</sup>,
  C. J. MOORE<sup>121</sup>, D. MORARU<sup>37</sup>, G. MORENO<sup>37</sup>, S. R. MORRISS<sup>85</sup>, K. MOSSAVI<sup>8</sup>, B. MOURS<sup>7</sup>, C. M. MOW-LOWRY<sup>45</sup>,
C. L. MUELLER<sup>5</sup>, G. MUELLER<sup>5</sup>, A. W. MUIR<sup>91</sup>, A. MUKHERJEE<sup>15</sup>, D. MUKHERJEE<sup>16</sup>, S. MUKHERJEE<sup>85</sup>, N. MUKUND<sup>14</sup>,
             A.\ Mullavey^6,\ J.\ Munch^{103},\ D.\ J.\ Murphy^{40},\ P.\ G.\ Murray^{36},\ A.\ Mytidis^5,\ I.\ Nardecchia^{25,13},
L. NATICCHIONI<sup>79,28</sup>, R. K. NAYAK<sup>122</sup>, V. NECULA<sup>5</sup>, K. NEDKOVA<sup>102</sup>, G. NELEMANS<sup>52,9</sup>, M. NERI<sup>46,47</sup>, A. NEUNZERT<sup>98</sup>,
          G. Newton<sup>36</sup>, T. T. Nguyen<sup>20</sup>, A. B. Nielsen<sup>8</sup>, S. Nissanke<sup>52,9</sup>, A. Nitz<sup>8</sup>, F. Nocera<sup>34</sup>, D. Nolting<sup>6</sup>,
M. E. N. NORMANDIN<sup>85</sup>, L. K. NUTTALL<sup>35</sup>, J. OBERLING<sup>37</sup>, E. OCHSNER<sup>16</sup>, J. O'DELL<sup>123</sup>, E. OELKER<sup>10</sup>, G. H. OGIN<sup>124</sup>,
                J. J. OH<sup>125</sup>, S. H. OH<sup>125</sup>, F. OHME<sup>91</sup>, M. OLIVER<sup>67</sup>, P. OPPERMANN<sup>8</sup>, R. J. ORAM<sup>6</sup>, B. O'REILLY<sup>6</sup>,
     R. O'SHAUGHNESSY<sup>112</sup>, D. J. OTTAWAY<sup>103</sup>, R. S. OTTENS<sup>5</sup>, H. OVERMIER<sup>6</sup>, B. J. OWEN<sup>71</sup>, A. PAI<sup>100</sup>, S. A. PAI<sup>48</sup>,
   J. R. Palamos<sup>59</sup>, O. Palashov<sup>107</sup>, N. Palliyaguru<sup>71</sup>, C. Palomba<sup>28</sup>, A. Pal-Singh<sup>27</sup>, H. Pan<sup>73</sup>, C. Pankow<sup>82</sup>,
        F. PANNARALE<sup>91</sup>, B. C. PANT<sup>48</sup>, F. PAOLETTI<sup>34,19</sup>, A. PAOLI<sup>34</sup>, M. A. PAPA<sup>29,16,8</sup>, H. R. PARIS<sup>41</sup>, W. PARKER<sup>6</sup>,
       D. PASCUCCI<sup>36</sup>, A. PASQUALETTI<sup>34</sup>, R. PASSAQUIETI<sup>18,19</sup>, D. PASSUELLO<sup>19</sup>, B. PATRICELLI<sup>18,19</sup>, Z. PATRICK<sup>41</sup>,
        B. L. PEARLSTONE<sup>36</sup>, M. PEDRAZA<sup>1</sup>, R. PEDURAND<sup>66</sup>, L. PEKOWSKY<sup>35</sup>, A. PELE<sup>6</sup>, S. PENN<sup>126</sup>, A. PERRECA<sup>1</sup>,
       M. Phelps<sup>36</sup>, O. Piccinni<sup>79,28</sup>, M. Pichot<sup>53</sup>, F. Piergiovanni<sup>57,58</sup>, V. Pierro<sup>87</sup>, G. Pillant<sup>34</sup>, L. Pinard<sup>66</sup>,
   I. M. Pinto<sup>87</sup>, M. Pitkin<sup>36</sup>, R. Poggiani<sup>18,19</sup>, P. Popolizio<sup>34</sup>, A. Post<sup>8</sup>, J. Powell<sup>36</sup>, J. Prasad<sup>14</sup>, V. Predoi<sup>91</sup>,
        S. S. Premachandra<sup>113</sup>, T. Prestegard<sup>83</sup>, L. R. Price<sup>1</sup>, M. Prijatelj<sup>34</sup>, M. Principe<sup>87</sup>, S. Privitera<sup>29</sup>,
     G. A. Prodi<sup>89,90</sup>, L. Prokhorov<sup>49</sup>, O. Puncken<sup>8</sup>, M. Punturo<sup>33</sup>, P. Puppo<sup>28</sup>, M. Pürrer<sup>29</sup>, H. Qi<sup>16</sup>, J. Qin<sup>51</sup>,
        V.\ Quetschke^{85},\ E.\ A.\ Quintero^1,\ R.\ Quitzow-James^{59},\ F.\ J.\ Raab^{37},\ D.\ S.\ Rabeling^{20},\ H.\ Radkins^{37},
P. RAFFAI<sup>54</sup>, S. RAJA<sup>48</sup>, M. RAKHMANOV<sup>85</sup>, P. RAPAGNANI<sup>79,28</sup>, V. RAYMOND<sup>29</sup>, M. RAZZANO<sup>18,19</sup>, V. RE<sup>25</sup>, J. READ<sup>22</sup>,
       C. M. Reed^{37}, T. Regimbau^{53}, L. Rei^{47}, S. Reid^{50}, D. H. Reitze^{1,5}, H. Rew^{119}, S. D. Reyes^{35}, F. Ricci^{79,28},
         K.\ Riles^{98},\ N.\ A.\ Robertson^{1,36},\ R.\ Robie^{36},\ F.\ Robinet^{23},\ A.\ Rocchi^{13},\ L.\ Rolland^7,\ J.\ G.\ Rollins^1,
       V. J. Roma<sup>59</sup>, R. Romano<sup>3,4</sup>, G. Romanov<sup>119</sup>, J. H. Romie<sup>6</sup>, D. Rosińska<sup>127,44</sup>, S. Rowan<sup>36</sup>, A. Rüdiger<sup>8</sup>,
   P. Ruggi<sup>34</sup>, K. Ryan<sup>37</sup>, S. Sachdev<sup>1</sup>, T. Sadecki<sup>37</sup>, L. Sadeghian<sup>16</sup>, L. Salconi<sup>34</sup>, M. Saleem<sup>100</sup>, F. Salemi<sup>8</sup>,
          A. SAMAJDAR<sup>122</sup>, L. SAMMUT<sup>84,113</sup>, E. J. SANCHEZ<sup>1</sup>, V. SANDBERG<sup>37</sup>, B. SANDEEN<sup>82</sup>, J. R. SANDERS<sup>98,35</sup>,
        B. SASSOLAS<sup>66</sup>, B. S. SATHYAPRAKASH<sup>91</sup>, P. R. SAULSON<sup>35</sup>, O. SAUTER<sup>98</sup>, R. L. SAVAGE<sup>37</sup>, A. SAWADSKY<sup>17</sup>,
             P. SCHALE<sup>59</sup>, R. SCHILLING<sup>†8</sup>, J. SCHMIDT<sup>8</sup>, P. SCHMIDT<sup>1,76</sup>, R. SCHNABEL<sup>27</sup>, R. M. S. SCHOFIELD<sup>59</sup>,
   A. SCHÖNBECK^{27}, E. SCHREIBER^8, D. SCHUETTE^{8,17}, B. F. SCHUTZ^{91,29}, J. SCOTT^{36}, S. M. SCOTT^{20}, D. SELLERS^6,
 D. SENTENAC<sup>34</sup>, V. SEQUINO<sup>25,13</sup>, A. SERGEEV<sup>107</sup>, G. SERNA<sup>22</sup>, Y. SETYAWATI<sup>52,9</sup>, A. SEVIGNY<sup>37</sup>, D. A. SHADDOCK<sup>20</sup>,
           S. SHAH<sup>52,9</sup>, M. S. SHAHRIAR<sup>82</sup>, M. SHALTEV<sup>8</sup>, Z. SHAO<sup>1</sup>, B. SHAPIRO<sup>41</sup>, P. SHAWHAN<sup>63</sup>, A. SHEPERD<sup>16</sup>,
 D. H. SHOEMAKER<sup>10</sup>, D. M. SHOEMAKER<sup>64</sup>, K. SIELLEZ<sup>53,64</sup>, X. SIEMENS<sup>16</sup>, D. SIGG<sup>37</sup>, A. D. SILVA<sup>11</sup>, D. SIMAKOV<sup>8</sup>,
        A. SINGER<sup>1</sup>, A. SINGH<sup>29,8</sup>, R. SINGH<sup>2</sup>, A. SINGHAL<sup>12</sup>, A. M. SINTES<sup>67</sup>, B. J. J. SLAGMOLEN<sup>20</sup>, J. R. SMITH<sup>22</sup>,
 N. D. SMITH<sup>1</sup>, R. J. E. SMITH<sup>1</sup>, E. J. SON<sup>125</sup>, B. SORAZU<sup>36</sup>, F. SORRENTINO<sup>47</sup>, T. SOURADEEP<sup>14</sup>, A. K. SRIVASTAVA<sup>95</sup>,
      A. STALEY<sup>40</sup>, M. STEINKE<sup>8</sup>, J. STEINLECHNER<sup>36</sup>, S. STEINLECHNER<sup>36</sup>, D. STEINMEYER<sup>8,17</sup>, B. C. STEPHENS<sup>16</sup>,
    R. STONE<sup>85</sup>, K. A. STRAIN<sup>36</sup>, N. STRANIERO<sup>66</sup>, G. STRATTA<sup>57,58</sup>, N. A. STRAUSS<sup>78</sup>, S. STRIGIN<sup>49</sup>, R. STURANI<sup>120</sup>,
     A. L. Stuver^6, T. Z. Summerscales^{128}, L. Sun^{84}, P. J. Sutton^{91}, B. L. Swinkels^{34}, M. J. Szczepańczyk^{97},
       M. TACCA<sup>30</sup>, D. TALUKDER<sup>59</sup>, D. B. TANNER<sup>5</sup>, M. TÁPAI<sup>96</sup>, S. P. TARABRIN<sup>8</sup>, A. TARACCHINI<sup>29</sup>, R. TAYLOR<sup>1</sup>,
       T. THEEG<sup>8</sup>, M. P. THIRUGNANASAMBANDAM<sup>1</sup>, E. G. THOMAS<sup>45</sup>, M. THOMAS<sup>6</sup>, P. THOMAS<sup>37</sup>, K. A. THORNE<sup>6</sup>,
  K. S. THORNE^{76}, E. THRANE^{113}, S. TIWARI^{12}, V. TIWARI^{91}, K. V. TOKMAKOV^{106}, C. TOMLINSON^{86}, M. TONELLI^{18,19}, M. TONELLI^{18,19}
   C. V. TORRES<sup>‡85</sup>, C. I. TORRIE<sup>1</sup>, D. TÖYRÄ<sup>45</sup>, F. TRAVASSO<sup>32,33</sup>, G. TRAYLOR<sup>6</sup>, D. TRIFIRÒ<sup>21</sup>, M. C. TRINGALI<sup>89,90</sup>,
```

L. Trozzo^{129,19}, M. Tse¹⁰, M. Turconi⁵³, D. Tuyenbayev⁸⁵, D. Ugolini¹³⁰, C. S. Unnikrishnan⁹⁹,

A. L. Urban¹⁶, S. A. Usman³⁵, H. Vahlbruch¹⁷, G. Vajente¹, G. Valdes⁸⁵, N. van Bakel⁹, M. van Beuzekom⁹,

J. F. J. van den Brand^{62,9}, C. Van Den Broeck⁹, D. C. Vander-Hyde^{35,22}, L. van der Schaaf⁹,

J. V. van Heijinigen⁹, A. A. van Veggel³⁶, M. Vardaro^{42,43}, S. Vass¹, M. Vasúth³⁸, R. Vaulin¹⁰, A. Vecchio⁴⁵,

G. Vedovato⁴³, J. Veitch⁴⁵, P. J. Veitch¹⁰³, K. Venkateswara¹³¹, D. Verkindt⁷, F. Vetrano^{57,58},

A. Viceré^{57,58}, S. Vinciguerra⁴⁵, D. J. Vine⁵⁰, J.-Y. Vinet⁵³, S. Vitale¹⁰, T. Vo³⁵, H. Vocca^{32,33}, C. Vorvick³⁷,

D. Voss⁵, W. D. Vousden⁴⁵, S. P. Vyatchanin⁴⁹, A. R. Wade²⁰, L. E. Wade¹³², M. Wade¹³², M. Walker²,

L. Wallace¹, S. Walsh^{16,8,29}, G. Wang¹², H. Wang⁴⁵, M. Wang⁴⁵, X. Wang⁷⁰, Y. Wang⁵¹, R. L. Ward²⁰,

J. Warner³⁷, M. Was⁷, B. Weaver³⁷, L.-W. Wei⁵³, M. Weinert⁸, A. J. Weinstein¹, R. Weiss¹⁰, T. Welborn⁶,

L. Wen⁵¹, P. Wessels⁸, T. Westphal⁸, K. Wette⁸, J. T. Whelan^{112,8}, D. J. White⁸⁶, B. F. Whiting⁵,

R. D. Williams¹, A. R. Williamson⁹¹, J. L. Willis¹³³, B. Willke^{17,8}, M. H. Wimmer^{8,17}, W. Winkler⁸,

C. C. Wipf¹, H. Wittel^{8,17}, G. Woan³⁶, J. Worden³⁷, J. L. Wright³⁶, G. Wu⁶, J. Yablon⁸², W. Yam¹⁰,

H. Yamamoto¹, C. C. Yancey⁶³, M. J. Yap²⁰, H. Yu¹⁰, M. Yvert⁷, A. Zadroźny¹¹⁰, L. Zangrando⁴³,

M. Zanolin⁹⁷, J.-P. Zendri⁴³, M. Zevin⁸², F. Zhang¹⁰, L. Zhang¹¹, M. Zhang¹¹⁹, Y. Zhang¹¹², C. Zhao⁵¹,

M. Zhou⁸², Z. Zhou⁸², X. J. Zhu⁵¹, M. E. Zucker^{1,10}, S. E. Zuraw¹⁰², J. Zweizig¹

(The LIGO Scientific Collaboration and the Virgo Collaboration)

J. Allison 134,135 , K. Bannister 134,135 , M. E. Bell 134,135 , S. Chatterjee 136 , A. P. Chippendale 134 , P. G. Edwards 134 , L. Harvey-Smith 134 , Ian Heywood 134,137 , A. Hotan 138 , B. Indermuehle 134 , J. Marvil 134 , D. McConnell 134 , T. Murphy 139,135 , A. Popping 140,135 , J. Reynolds 134 , R. J. Sault 84,134 , M. A. Voronkov 134 , M. T. Whiting 134

(THE AUSTRALIAN SQUARE KILOMETER ARRAY PATHFINDER (ASKAP) COLLABORATION)

- A. J. Castro-Tirado^{141,142}, R. Cunniffe¹⁴¹, M. Jelínek¹⁴³, J. C. Tello¹⁴¹, S. R. Oates¹⁴¹, Y.-D. Hu¹⁴¹, P. Kubánek¹⁴⁴, S. Guziy¹⁴⁵, A. Castellón¹⁴⁶, A. García-Cerezo¹⁴², V. F. Muñoz¹⁴², C. Pérez del Pulgar¹⁴², S. Castillo-Carrión¹⁴⁷, J. M. Castro Cerón¹⁴⁸, R. Hudec^{143,149}, M. D. Caballero-García¹⁵⁰, P. Páta¹⁴⁹, S. Vitek¹⁴⁹, J. A. Adame¹⁵¹, S. Konig¹⁵¹, F. Rendón^{141,151}, T. de J. Mateo Sanguino¹⁵², R. Fernández-Muñoz¹⁵³, P. C. Yock¹⁵⁴, N. Rattenbury¹⁵⁴, W. H. Allen¹⁵⁵, R. Querel¹⁵⁶, S. Jeong^{141,157}, I. H. Park¹⁵⁷, J. Bai¹⁵⁸, Ch. Cui¹⁵⁹, Y. Fan¹⁵⁸, Ch. Wang¹⁵⁸, D. Hiriart¹⁶⁰, W. H. Lee¹⁶¹, A. Claret¹⁴¹, R. Sánchez-Ramírez¹⁴¹, S. B. Pandey¹⁶², T. Mediavilla¹⁶³, L. Sabau-Graziati¹⁶⁴ (The BOOTES Collaboration)
- T. M. C. ABBOTT¹⁶⁵, F. B. ABDALLA^{166,137}, S. ALLAM¹⁶⁷, J. ANNIS¹⁶⁷, R. ARMSTRONG¹⁶⁸, A. BENOIT-LÉVY^{169,166,170}, E. BERGER¹⁷¹, R. A. BERNSTEIN¹⁷², E. BERTIN^{169,170}, D. BROUT¹⁷³, E. BUCKLEY-GEER¹⁶⁷, D. L. BURKE^{174,175}, D. CAPOZZI¹⁷⁶, J. CARRETERO^{177,178}, F. J. CASTANDER¹⁷⁷, R. CHORNOCK¹⁷⁹, P. S. COWPERTHWAITE¹⁷¹, M. CROCCE¹⁷⁷, C. E. CUNHA¹⁷⁴, C. B. D'ANDREA^{176,26}, L. N. DA COSTA^{180,181}, S. DESAI^{182,183}, H. T. DIEHL¹⁶⁷, J. P. DIETRICH^{182,183}, Z. DOCTOR¹⁸⁴, A. DRLICA-WAGNER¹⁶⁷, M. R. DROUT¹⁷¹, T. F. EIFLER^{173,185}, J. ESTRADA¹⁶⁷, A. E. EVRARD⁹⁸, E. FERNANDEZ¹⁷⁸, D. A. FINLEY¹⁶⁷, B. FLAUGHER¹⁶⁷, R. J. FOLEY^{186,187}, W.-F. FONG¹⁸⁸, P. FOSALBA¹⁷⁷, D. B. FOX¹⁸⁹, J. FRIEMAN^{167,184}, C. L. FRYER¹⁹⁰, E. GAZTANAGA¹⁷⁷, D. W. GERDES¹⁹¹, D. A. GOLDSTEIN^{192,193}, D. GRUEN^{174,175}, R. A. GRUENDL 186,194, G. GUTIERREZ 167, K. HERNER 167, K. HONSCHEID 195,196, D. J. JAMES 165, M. D. JOHNSON 194, M. W. G. JOHNSON¹⁹⁴, I. KARLINER¹⁸⁷, D. KASEN^{197,193}, S. KENT¹⁶⁷, R. KESSLER¹⁸⁴, A. G. KIM¹⁹³, M. C. KIND^{186,194}, K. KUEHN¹⁹⁸, N. KUROPATKIN¹⁶⁷, O. LAHAV¹⁶⁶, T. S. LI¹⁹⁹, M. LIMA^{200,180}, H. LIN¹⁶⁷, M. A. G. MAIA^{180,181}, R. MARGUTTI²⁰¹, J. MARRINER¹⁶⁷, P. MARTINI^{195,202}, T. MATHESON²⁰³, P. MELCHIOR¹⁶⁸, B. D. METZGER²⁰⁴, C. J. MILLER^{205,191}, R. MIQUEL^{206,178}, E. NEILSEN¹⁶⁷, R. C. NICHOL¹⁷⁶, B. NORD¹⁶⁷, P. NUGENT¹⁹³, R. OGANDO^{180,181}, D. Petravick¹⁹⁴, A. A. Plazas¹⁸⁵, E. Quataert²⁰⁷, N. Roe¹⁹³, A. K. Romer²⁰⁸, A. Roodman^{174,175}, A. C. ROSELL^{180,181}, E. S. RYKOFF^{174,175}, M. SAKO¹⁷³, E. SANCHEZ²⁰⁹, V. SCARPINE¹⁶⁷, R. SCHINDLER¹⁷⁵, M. SCHUBNELL¹⁹¹, D. SCOLNIC¹⁸⁴, I. SEVILLA-NOARBE^{209,186}, E. SHELDON²¹⁰, N. SMITH¹⁸⁸, R. C. SMITH¹⁶⁵, M. Soares-Santos¹⁶⁷, F. Sobreira¹⁸⁰, A. Stebbins¹⁶⁷, E. Suchyta¹⁷³, M. E. C. Swanson¹⁹⁴, G. Tarle¹⁹¹, J. Thaler¹⁸⁷, D. Thomas¹⁷⁶, R. C. Thomas¹⁹³, D. L. Tucker¹⁶⁷, V. Vikram²¹¹, A. R. Walker¹⁶⁵, R. H. WECHSLER^{41,174,175}, W. WESTER¹⁶⁷, B. YANNY¹⁶⁷, Y. ZHANG⁹⁸, J. ZUNTZ²¹² (THE DARK ENERGY SURVEY AND THE DARK ENERGY CAMERA GW-EM COLLABORATIONS)
 - V. CONNAUGHTON²¹³, E. BURNS²¹⁴, A. GOLDSTEIN^{215,216}, M. S. BRIGGS²¹⁷, B.-B. ZHANG^{218,219}, C. M. HUI²¹⁶, P. JENKE²¹⁸, C. A. WILSON-HODGE²¹⁶, P. N. BHAT²¹⁸, E. BISSALDI²²⁰, W. CLEVELAND²¹³, G. FITZPATRICK²¹⁸,

```
    M. M. GILES<sup>221</sup>, M. H. GIBBY<sup>221</sup>, J. GREINER<sup>222</sup>, A. VON KIENLIN<sup>222</sup>, R. M. KIPPEN<sup>223</sup>, S. McBreen<sup>224</sup>,
    B. MAILYAN<sup>218</sup>, C. A. MEEGAN<sup>218</sup>, W. S. PACIESAS<sup>213</sup>, R. D. PREECE<sup>217</sup>, O. ROBERTS<sup>224</sup>, L. SPARKE<sup>225</sup>,
    M. STANBRO<sup>214</sup>, K. TOELGE<sup>222</sup>, P. VERES<sup>218</sup>, H.-F. YU<sup>222,226</sup>, L. BLACKBURN<sup>171</sup>
    (THE Fermi GBM COLLABORATION)
```

- M. ACKERMANN²²⁷, M. AJELLO²²⁸, A. ALBERT²²⁹, B. ANDERSON^{230,231}, W. B. ATWOOD²³², M. AXELSSON^{233,234}, L. Baldini^{235,229}, G. Barbiellini^{236,237}, D. Bastieri^{238,239}, R. Bellazzini²⁴⁰, E. Bissaldi²⁴¹, R. D. Blandford²²⁹, E. D. BLOOM²²⁹, R. BONINO^{242,243}, E. BOTTACINI²²⁹, T. J. BRANDT²⁴⁴, P. BRUEL²⁴⁵, S. BUSON^{244,246,247}, $G.\ A.\ CALIANDRO^{229,248},\ R.\ A.\ CAMERON^{229},\ M.\ CARAGIULO^{249,241},\ P.\ A.\ CARAVEO^{250},\ E.\ CAVAZZUTI^{251},$ E. Charles²²⁹, A. Chekhtman²⁵², J. Chiang²²⁹, G. Chiaro²³⁹, S. Ciprini^{251,253}, J. Cohen-Tanugi²⁵⁴, L. R. COMINSKY²⁵⁵, F. COSTANZA²⁴¹, A. CUOCO^{242,243}, F. D'AMMANDO^{256,257}, F. DE PALMA^{241,258}, R. DESIANTE^{259,242}, S. W. DIGEL²²⁹, N. DI LALLA²⁴⁰, M. DI MAURO²²⁹, L. DI VENERE^{249,241}, A. DOMÍNGUEZ²²⁸, P. S. DRELL²²⁹, R. Dubois²²⁹, C. Favuzzi^{249,241}, E. C. Ferrara²⁴⁴, A. Franckowiak²²⁹, Y. Fukazawa²⁶⁰, S. Funk²⁶¹, P. Fusco^{249,241}, F. Gargano²⁴¹, D. Gasparrini^{251,253}, N. Giglietto^{249,241}, P. Giommi²⁵¹, F. Giordano^{249,241}, M. GIROLETTI²⁵⁶, T. GLANZMAN²²⁹, G. GODFREY²²⁹, G. A. GOMEZ-VARGAS^{262,13}, D. GREEN^{263,244}, I. A. GRENIER²⁶⁴ J. E. GROVE²⁶⁵, S. GUIRIEC^{244,266}, D. HADASCH²⁶⁷, A. K. HARDING²⁴⁴, E. HAYS²⁴⁴, J.W. HEWITT²⁶⁸, A. B. HILL^{269,229}, D. HORAN²⁴⁵, T. JOGLER²²⁹, G. JÓHANNESSON²⁷⁰, A. S. JOHNSON²²⁹, S. KENSEI²⁶⁰, D. KOCEVSKI²⁴⁴, M. KUSS²⁴⁰, G. La $Mura^{239,267}$, S. $Larsson^{233,231}$, L. $Latronico^{242}$, J. Li^{271} , L. $Li^{233,231}$, F. $Longo^{236,237}$, F. $Loparco^{249,241}$, M. N. LOVELLETTE²⁶⁵, P. LUBRANO²⁵³, J. MAGILL²⁶³, S. MALDERA²⁴², A. MANFREDA²⁴⁰, M. MARELLI²⁵⁰, M. MAYER²²⁷, M. N. MAZZIOTTA²⁴¹, J. E. MCENERY^{244,263,272}, M. MEYER^{230,231}, P. F. MICHELSON²²⁹, N. MIRABAL^{244,266}, T. MIZUNO²⁷³, A. A. MOISEEV^{247,263}, M. E. MONZANI²²⁹, E. MORETTI²⁷⁴, A. MORSELLI¹³, I. V. Moskalenko²²⁹, M. Negro^{242,243}, E. Nuss²⁵⁴, T. Ohsugi²⁷³, N. Omodei²²⁹, M. Orienti²⁵⁶, E. Orlando²²⁹, J. F. ORMES²⁷⁵, D. PANEQUE^{274,229}, J. S. PERKINS²⁴⁴, M. PESCE-ROLLINS^{240,229}, F. PIRON²⁵⁴, G. PIVATO²⁴⁰, T. A. PORTER²²⁹, J. L. RACUSIN²⁴⁴, S. RAINÒ^{249,241}, R. RANDO^{238,239}, S. RAZZAQUE²⁷⁶, A. REIMER^{267,229}, O. REIMER^{267,229}, D. SALVETTI²⁵⁰, P. M. SAZ PARKINSON^{232,277,278}, C. SGRÒ²⁴⁰, D. SIMONE²⁴¹, E. J. SISKIND²⁷⁹, F. Spada²⁴⁰, G. Spandre²⁴⁰, P. Spinelli^{249,241}, D. J. Suson²⁸⁰, H. Tajima^{281,229}, J. B. Thayer²²⁹, D. J. THOMPSON²⁴⁴, L. TIBALDO²⁸², D. F. TORRES^{271,283}, E. TROJA^{244,263}, Y. UCHIYAMA²⁸⁴, T. M. VENTERS²⁴⁴, G. VIANELLO²²⁹, K. S. WOOD²⁶⁵, M. WOOD²²⁹, S. ZHU²⁶³, S. ZIMMER^{230,231} (THE Fermi LAT COLLABORATION)
 - E. Brocato²⁸⁵, E. Cappellaro²⁸⁶, S. Covino²⁸⁷, A. Grado²⁸⁸, L. Nicastro²⁸⁹, E. Palazzi²⁸⁹, E. Pian^{289,290}, L. Amati²⁸⁹, L. A. Antonelli^{285,291}, M. Capaccioli²⁹², P. D'Avanzo²⁸⁷, V. D'Elia^{285,291}, F. Getman²⁸⁸, G. Giuffrida^{285,291}, G. Iannicola²⁸⁵, L. Limatola²⁸⁸, M. Lisi²⁸⁵, S. Marinoni^{285,291}, P. Marrese^{285,286}, A. Melandri²⁸⁷, S. Piranomonte²⁸⁵, A. Possenti²⁹³, L. Pulone²⁸⁵, A. Rossi²⁸⁹, A. Stamerra^{290,294}, L. Stella²⁸⁵, V. Testa²⁸⁵, L. Tomasella²⁸⁶, S. Yang²⁸⁶ (The GRAvitational Wave Inaf Team (GRAWITA))
 - A. BAZZANO²⁹⁵, E. BOZZO²⁹⁶, S. BRANDT²⁹⁷, T. J.-L. COURVOISIER²⁹⁶, C. FERRIGNO²⁹⁶, L. HANLON²⁹⁸, E. KUULKERS²⁹⁹, P. LAURENT³⁰⁰, S. MEREGHETTI³⁰¹, J. P. ROQUES³⁰², V. SAVCHENKO³⁰³, P. UBERTINI²⁹⁵ (THE *INTEGRAL* COLLABORATION)
 - M. M. Kasliwal 304 , L. P. Singer 39,215 , Y. Cao 304 , G. Duggan 304 , S. R. Kulkarni 304 , V. Bhalerao 14 , A. A. Miller 185,304,305 , T. Barlow 304 , E. Bellm 304 , I. Manulis 306 , J. Rana 14 , R. Laher 307 , F. Masci 307 , J. Surace 307 , U. Rebbapragada 185 , D. Cook 304 , A. Van Sistine 16 , B. Sesar 308 , D. Perley 309 , R. Ferreti 310 , T. Prince 304 , R. Kendrick 311 , A. Horesh 306

(THE INTERMEDIATE PALOMAR TRANSIENT FACTORY (IPTF) COLLABORATION)

- K. Hurley³¹², S. V. Golenetskii³¹³, R. L. Aptekar³¹³, D. D. Frederiks³¹³, D. S. Svinkin³¹³, A. Rau²²², A. von Kienlin²²², X. Zhang²²², D. M. Smith²³², T. Cline^{39,314}, H. Krimm^{247,315} (The InterPlanetary Network)
- F. Abe^{316} , M. Doi^{317} , K. Fujisawa 318 , K. S. Kawabata 319 , T. Morokuma 317 , K. Motohara 317 , M. Tanaka 320 , K. Ohta 321 , K. Yanagisawa 322 , M. Yoshida 319 (The J-GEM Collaboration)

- C. Baltay³²³, D. Rabinowitz³²³, N. Ellman³²³, S. Rostami³²³ (The La Silla–QUEST Survey)
- D. F. Bersier³²⁴, M. F. Bode³²⁴, C. A. Collins³²⁴, C. M. Copperwheat³²⁴, M. J. Darnley³²⁴, D. K. Galloway^{325,326}, A. Gomboc^{327,328}, S. Kobayashi³²⁴, P. Mazzali³²⁴, C. G. Mundell³²⁹, A. S. Piascik³²⁴, Don Pollacco³³⁰, I. A. Steele³²⁴, K. Ulaczyk³³⁰ (The Liverpool Telescope Collaboration)
 - J.W. Broderick³³¹, R.P. Fender³³², P.G. Jonker^{333,52}, A. Rowlinson^{331,334,135}, B.W. Stappers²¹², R.A.M.J. Wijers³³⁴

(THE LOW FREQUENCY ARRAY (LOFAR) COLLABORATION)

- V. Lipunov³³⁵, E. Gorbovskoy³³⁵, N. Tyurina³³⁵, V. Kornilov³³⁵, P. Balanutsa³³⁵, A. Kuznetsov³³⁵, D. Buckley³³⁶, R. Rebolo³³⁷, M. Serra-Ricart³³⁷, G. Israelian³³⁷, N. M. Budnev³³⁸, O. Gress³³⁸, K. Ivanov³³⁸, V. Poleshuk³³⁸, A. Tlatov³³⁹, V. Yurkov³⁴⁰
 (The MASTER Collaboration)
 - N. Kawai 341 , M. Serino 342 , H. Negoro 343 , S. Nakahira 344 , T. Mihara 342 , H. Tomida 345 , S. Ueno 345 , H. Tsunemi 346 , M. Matsuoka 342 (The MAXI Collaboration)
- S. $CROFT^{347,348}$, L. $FENG^{349}$, T. M. O. $FRANZEN^{350}$, B. M. $GAENSLER^{351,139,135}$, M. $JOHNSTON-HOLLITT^{352}$, D. L. $KAPLAN^{16}$, M. F. $MORALES^{131}$, S. J. $TINGAY^{350,135,353}$, R. B. $WAYTH^{350,135}$, A. $WILLIAMS^{350}$ (The Murchison Wide-field Array (MWA) Collaboration)
- S. J. SMARTT³⁵⁴, K. C. CHAMBERS³⁵⁵, K. W. SMITH³⁵⁴, M. E. HUBER³⁵⁵, D. R. YOUNG³⁵⁴, D. E. WRIGHT³⁵⁴, A. SCHULTZ³⁵⁵, L. DENNEAU³⁵⁵, H. FLEWELLING³⁵⁵, E. A. MAGNIER³⁵⁵, N. PRIMAK³⁵⁵, A. REST³⁵⁶, A. SHERSTYUK³⁵⁵, B. STALDER³⁵⁵, C. W. STUBBS³⁵⁷, J. TONRY³⁵⁵, C. WATERS³⁵⁵, M. WILLMAN³⁵⁵

 (THE PAN-STARRS COLLABORATION)
 - F. OLIVARES E. ^{358,359}, H. CAMPBELL ³⁶⁰, R. KOTAK ³⁵⁴, J. SOLLERMAN ³¹⁰, M. SMITH ²⁶, M. DENNEFELD ³⁶¹, J. P. ANDERSON ³⁶², M. T. BOTTICELLA ²⁸⁸, T.-W. CHEN ²²², M. D. VALLE ²⁸⁸, N. ELIAS-ROSA ²⁸⁶, M. FRASER ³⁶⁰, C. INSERRA ³⁵⁴, E. KANKARE ³⁵⁴, T. KUPFER ³⁰⁴, J. HARMANEN ³⁶³, L. GALBANY ^{358,364}, L. LE GUILLOU ^{365,366}, J. D. LYMAN ³³⁰, K. MAGUIRE ³⁵⁴, A. MITRA ³⁶⁶, M. NICHOLL ¹⁷¹, A. RAZZA ^{358,364}, G. TERRERAN ^{286,354}, S. VALENTI ^{367,368}, A. GAL-YAM ³⁶⁹ (THE PESSTO COLLABORATION)
 - A. ĆWIEK¹¹⁰, M. ĆWIOK³⁷⁰, L. MANKIEWICZ³⁷¹, R. OPIELA³⁷¹, M. ZAREMBA³⁷⁰, A. F. ŻARNECKI³⁷⁰ (THE PI OF THE SKY COLLABORATION)
 - C. A. Onken 20,135 , R. A. Scalzo 20,135 , B. P. Schmidt 20,135 , C. Wolf 20,135 , F. Yuan 20,135 (The Skymapper Collaboration)
 - P. A. Evans³⁷², J. A. Kennea⁷², D. N. Burrows⁷², S. Campana²⁸⁷, S. B. Cenko^{39,373}, P. Giommi²⁹¹, F. E. Marshall³⁹, J. Nousek⁷², P. O'Brien³⁷², J. P. Osborne³⁷², D. Palmer³⁷⁴, M. Perri^{291,285}, M. Siegel⁷², G. Tagliaferri²⁸⁷

(THE Swift COLLABORATION)

A. Klotz³⁷⁵, D. Turpin³⁷⁵, R. Laugier⁵³ (The TAROT, Zadko, Algerian National Observatory, and C2PU Collaboration)

M. Beroiz^{85,376}, T. Peñuela^{85,183}, L. M. Macri³⁷⁷, R. J. Oelkers³⁷⁷, D. G. Lambas³⁷⁸, R. Vrech³⁷⁸, J. Cabral³⁷⁸, C. Colazo³⁷⁸, M. Dominguez³⁷⁸, B. Sanchez³⁷⁸, S. Gurovich³⁷⁸, M. Lares³⁷⁸, J. L. Marshall³⁷⁷, D. L. DePoy³⁷⁷, N. Padilla³⁷⁹, N. A. Pereyra⁸⁵, M. Benacquista⁸⁵
(The TOROS Collaboration)

```
N. R. TANVIR<sup>372</sup>, K. WIERSEMA<sup>372</sup>, A. J. LEVAN<sup>330</sup>, D. STEEGHS<sup>330</sup>, J. HJORTH<sup>309</sup>, J. P. U. FYNBO<sup>309</sup>, D. MALESANI<sup>309</sup>,
B. MILVANG-JENSEN<sup>309</sup>, D. WATSON<sup>309</sup>, M. IRWIN<sup>360</sup>, C. G. FERNANDEZ<sup>360</sup>, R. G. MCMAHON<sup>360</sup>, M. BANERJI<sup>360</sup>, E. GONZALEZ-SOLARES<sup>360</sup>, S. SCHULZE<sup>379,358</sup>, A. DE U. POSTIGO<sup>380,309</sup>, C. C. THOENE<sup>380</sup>, Z. CANO<sup>381</sup>, S. ROSSWOG<sup>310</sup>
                                                                  (THE VISTA COLLABORATION)
                                                   <sup>1</sup>LIGO, California Institute of Technology, Pasadena, CA 91125, USA
                                                         <sup>2</sup>Louisiana State University, Baton Rouge, LA 70803, USA
                                                           <sup>3</sup>Università di Salerno, Fisciano, I-84084 Salerno, Italy
                                     <sup>4</sup>INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
                                                             <sup>5</sup>University of Florida, Gainesville, FL 32611, USA
                                                        <sup>6</sup>LIGO Livingston Observatory, Livingston, LA 70754, USA
     <sup>7</sup>Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
                                  <sup>8</sup>Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany
                                                       <sup>9</sup>Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
                                              <sup>10</sup>LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
                                        <sup>11</sup>Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, SP, Brazil
                                                       <sup>12</sup>INFN, Gran Sasso Science Institute, I-67100 L'Aquila, Italy
                                      <sup>13</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Roma "Tor Vergata," I-00133 Roma, Italy
                                              <sup>14</sup>Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
                          <sup>15</sup>International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India
                                                    <sup>16</sup>University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
                                                       <sup>17</sup>Leibniz Universität Hannover, D-30167 Hannover, Germany
                                                                    <sup>18</sup>Università di Pisa, I-56127 Pisa, Italy
                                                                 <sup>19</sup>INFN, Sezione di Pisa, I-56127 Pisa, Italy
                                        <sup>20</sup> Australian National University, Canberra, Australian Capital Territory 0200, Australia
                                                        <sup>21</sup>The University of Mississippi, University, MS 38677, USA
                                                    <sup>22</sup>California State University Fullerton, Fullerton, CA 92831, USA
                                              <sup>23</sup>LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
                                                              <sup>24</sup>Chennai Mathematical Institute, Chennai, India
                                                          <sup>25</sup>Università di Roma "Tor Vergata," I-00133 Roma, Italy
                                    <sup>26</sup>School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
                                                            <sup>27</sup>Universität Hamburg, D-22761 Hamburg, Germany
                                                               <sup>28</sup>INFN, Sezione di Roma, I-00185 Roma, Italy
                              <sup>29</sup>Albert-Einstein-Institut, Max-Planck-Institut f
ür Gravitationsphysik, D-14476 Potsdam-Golm, Germany
<sup>30</sup>APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13,
                                                                                      France
                                                           <sup>31</sup>Montana State University, Bozeman, MT 59717, USA
                                                                <sup>32</sup>Università di Perugia, I-06123 Perugia, Italy
                                                             <sup>33</sup>INFN, Sezione di Perugia, I-06123 Perugia, Italy
                                                <sup>34</sup>European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
                                                              <sup>35</sup>Syracuse University, Syracuse, NY 13244, USA
                                                  <sup>36</sup>SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
                                                         <sup>37</sup>LIGO Hanford Observatory, Richland, WA 99352, USA
                                           <sup>38</sup>Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
                                                    <sup>39</sup>NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
                                                             <sup>40</sup>Columbia University, New York, NY 10027, USA
                                                              41 Stanford University, Stanford, CA 94305, USA
                                           <sup>42</sup>Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
                                                              <sup>43</sup>INFN, Sezione di Padova, I-35131 Padova, Italy
                                                                   44CAMK-PAN, 00-716 Warsaw, Poland
                                                   <sup>45</sup>University of Birmingham, Birmingham B15 2TT, United Kingdom
                                                          <sup>46</sup>Università degli Studi di Genova, I-16146 Genova, Italy
                                                             <sup>47</sup>INFN, Sezione di Genova, I-16146 Genova, Italy
```

⁴⁸RRCAT, Indore MP 452013, India

```
<sup>49</sup>Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
                                 <sup>50</sup>SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
                                  <sup>51</sup>University of Western Australia, Crawley, Western Australia 6009, Australia
         <sup>52</sup>Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
                     <sup>53</sup> Artemis, Université Côte d'Azur, CNRS, Observatoire Côte d'Azur, CS 34229, Nice cedex 4, France
                          <sup>54</sup>MTA Eötvös University, "Lendulet" Astrophysics Research Group, Budapest 1117, Hungary
                            <sup>55</sup>Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France
                                             <sup>56</sup>Washington State University, Pullman, WA 99164, USA
                                        <sup>57</sup>Università degli Studi di Urbino "Carlo Bo," I-61029 Urbino, Italy
                                        <sup>58</sup>INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
                                                  <sup>59</sup>University of Oregon, Eugene, OR 97403, USA
<sup>60</sup>Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France
                                     <sup>61</sup> Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
                                       62 VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
                                             <sup>63</sup>University of Maryland, College Park, MD 20742, USA
            <sup>64</sup>Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
     <sup>65</sup>Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, F-69622 Villeurbanne, France
             <sup>66</sup>Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS, Université de Lyon, F-69622 Villeurbanne, Lyon, France
                               <sup>67</sup>Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
                     <sup>68</sup>Università di Napoli 'Federico II', Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
                 <sup>69</sup>Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
                                                   <sup>70</sup>Tsinghua University, Beijing 100084, China
                                                <sup>71</sup>Texas Tech University, Lubbock, TX 79409, USA
                                       <sup>72</sup>The Pennsylvania State University, University Park, PA 16802, USA
                                       <sup>73</sup> National Tsing Hua University, Hsinchu City, 30013, Taiwan R.O.C.
                                   <sup>74</sup>Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
                                                 <sup>75</sup>University of Chicago, Chicago, IL 60637, USA
                                                     <sup>76</sup>Caltech CaRT, Pasadena, CA 91125, USA
                                <sup>77</sup>Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
                                                  <sup>78</sup>Carleton College, Northfield, MN 55057, USA
                                             <sup>79</sup>Università di Roma "La Sapienza," I-00185 Roma, Italy
                                                <sup>80</sup>University of Brussels, Brussels B-1050, Belgium
                                             <sup>81</sup>Sonoma State University, Rohnert Park, CA 94928, USA
                                                <sup>82</sup>Northwestern University, Evanston, IL 60208, USA
                                             <sup>83</sup>University of Minnesota, Minneapolis, MN 55455, USA
                                        <sup>84</sup>The University of Melbourne, Parkville, Victoria 3010, Australia
                                   <sup>85</sup>The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
                                        <sup>86</sup>The University of Sheffield, Sheffield S10 2TN, United Kingdom
               <sup>87</sup>University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
                                              <sup>88</sup>Montclair State University, Montclair, NJ 07043, USA
                                     ^{89}Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
                         <sup>90</sup>INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
                                             <sup>91</sup>Cardiff University, Cardiff CF24 3AA, United Kingdom
                         <sup>92</sup>National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
                            <sup>93</sup>School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
                                94 Indian Institute of Technology, Gandhinagar, Ahmedabad, Gujarat 382424, India
                                         95 Institute for Plasma Research, Bhat, Gandhinagar 382428, India
                                             <sup>96</sup>University of Szeged, Dóm tér 9, Szeged 6720, Hungary
                                        <sup>97</sup>Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
                                               <sup>98</sup>University of Michigan, Ann Arbor, MI 48109, USA
                                         <sup>99</sup>Tata Institute of Fundamental Research, Mumbai 400005, India
                                          <sup>100</sup>IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
                                              <sup>101</sup> American University, Washington, D.C. 20016, USA
                                        <sup>102</sup>University of Massachusetts-Amherst, Amherst, MA 01003, USA
```

```
104 West Virginia University, Morgantown, WV 26506, USA
                                                       <sup>105</sup>University of Białystok, 15-424 Białystok, Poland
                                             <sup>106</sup>SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
                                                <sup>107</sup>Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
                                                        <sup>108</sup>Pusan National University, Busan 609-735, Korea
                                                           <sup>109</sup>Hanyang University, Seoul 133-791, Korea
                                                             <sup>110</sup>NCBJ, 05-400 Świerk-Otwock, Poland
                                                                111 IM-PAN, 00-956 Warsaw, Poland
                                                <sup>112</sup>Rochester Institute of Technology, Rochester, NY 14623, USA
                                                          <sup>113</sup>Monash University, Victoria 3800, Australia
                                                        <sup>114</sup>Seoul National University, Seoul 151-742, Korea
                                               <sup>115</sup>University of Alabama in Huntsville, Huntsville, AL 35899, USA
                                                             <sup>116</sup>ESPCI, CNRS, F-75005 Paris, France
                                           <sup>117</sup>Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
                                            <sup>118</sup>Southern University and A&M College, Baton Rouge, LA 70813, USA
                                                 <sup>119</sup>College of William and Mary, Williamsburg, VA 23187, USA
    120 Instituto de Física Teórica, University Estadual Paulista/ICTP South American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil
                                               <sup>121</sup>University of Cambridge, Cambridge CB2 1TN, United Kingdom
                                                     <sup>122</sup>IISER-Kolkata, Mohanpur, West Bengal 741252, India
                                 <sup>123</sup>Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
                                                124 Whitman College, 345 Boyer Ave, Walla Walla, WA 99362 USA
                                            <sup>125</sup>National Institute for Mathematical Sciences, Daejeon 305-390, Korea
                                                 <sup>126</sup>Hobart and William Smith Colleges, Geneva, NY 14456, USA
                                 <sup>127</sup> Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland
                                                     <sup>128</sup>Andrews University, Berrien Springs, MI 49104, USA
                                                            <sup>129</sup>Università di Siena, I-53100 Siena, Italy
                                                        <sup>130</sup>Trinity University, San Antonio, TX 78212, USA
                                                      <sup>131</sup>University of Washington, Seattle, WA 98195, USA
                                                          <sup>132</sup>Kenyon College, Gambier, OH 43022, USA
                                                    <sup>133</sup> Abilene Christian University, Abilene, TX 79699, USA
                                       <sup>134</sup>CSIRO Astronomy and Space Science, PO Box 76, Epping NSW 1710, Australia
                                               135 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
                                       <sup>136</sup>Cornell Center for Astrophysics and Planetary Science, Ithaca, NY 14853, USA
                         <sup>137</sup>Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
                      <sup>138</sup>CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Technology Park, Kensington WA 6151, Australia
                             <sup>139</sup>Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
<sup>140</sup>International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, M468, 35 Stirling Highway, Crawley, Perth, WA, 6009,
                                                                              Australia
                                 <sup>141</sup>Instituto de Astrofísica de Andalucía (IAA-CSIC), P.O. Box 03004, E-18080 Granada, Spain
<sup>142</sup>Departamento de Ingeniería de Sistemas y Automática, Escuela de Ingenierías, Universidad de Málaga, Unidad Asociada al CSIC, Dr. Pedro Ortiz Ramos,
                                                                      E-29071 Málaga, Spain
                            <sup>143</sup>Astronomical Institute, Academy of Sciences of the Czech Republic 251 65 Ondřejov, Czech Republic
                        <sup>144</sup>Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Praha 8, Czech Republic
                                           <sup>145</sup>Nikolaev National University, Nikolska str. 24, 54030 Nikolaev, Ukraine
                                <sup>146</sup>Facultad de Ciencias, Universidad de Málaga, Bulevard Louis Pasteur, E-29010 Málaga, Spain
                     <sup>147</sup>Enseñanza Virtual y Laboratorios Tecnológicos, Universidad de Málaga, Jiménez Fraud 10, E-29071 Málaga, Spain
                                <sup>148</sup>ISDEFE for the SMOS FOS (ESA-ESAC), E-28692 Villanueva de la Cañada (Madrid), Spain
            <sup>149</sup>Czech Technical University, Faculty of Electrical Engineering, Dep. of Radioelectronics, Technická 2 166 27 Praha, Czech Republic
                           <sup>150</sup>Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Praha 4, Czech Republic
                       <sup>151</sup>Estación de Sondeos Atmosféricos (ESAt) de El Arenosillo (CEDEA-INTA), E-21130 Mazagón, Huelva, Spain
152 Departamento de Ingeniería Electrónica, Sistemas Informáticos y Automática, Universidad de Huelva, E.T.S.I. de La Rábida, E-21819 Palos de la Frontera
                                                                           (Huelva), Spain
           153 Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM/UMA-CSIC), E-29750 Algarrobo Costa (Málaga), Spain
```

¹⁰³University of Adelaide, Adelaide, South Australia 5005, Australia

```
<sup>154</sup>Department of Physics, University of Auckland, Private Bag 92019, New Zealand
                                            <sup>155</sup>Vintage Lane Observatory, RD3, 7273 Blenheim, New Zealand
                                 <sup>156</sup>National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand
                                      <sup>157</sup>Department of Physics, Sungkyunkwan University (SKKU), Suwon, Korea
                                      <sup>158</sup>Yunnan Astronomical Observatory, CAS, Kunming 650011, Yunnan, China
                              <sup>159</sup> National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China
                   <sup>160</sup>Instituto de Astronomía, Universidad Nacional Autónoma de México, 22800 Ensenada, Baja California, México
      161 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo Postal 70-264, Cd. Universitaria, 04510 México DF, México
                            <sup>162</sup> Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002, India
                     163 Escuela Politécnica Superior, Universidad de Cádiz, Avda. Ramón Puyol, E-11202 Algeciras (Cádiz), Spain
          164 División de Ciencias del Espacio, Instituto Nacional de Técnica Aerospacial (INTA), E-28850 Torrejón de Ardoz (Madrid), Spain
                  <sup>165</sup>Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
                      166 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
                                    <sup>167</sup>Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
                         <sup>168</sup>Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
                                     <sup>169</sup>CNRS, UMR 7095, Institut d'Astrophysique de Paris, F-75014, Paris, France
                  <sup>170</sup>Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d'Astrophysique de Paris, F-75014, Paris, France
                          <sup>171</sup>Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, United States
                                      <sup>172</sup>Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101, USA
                           <sup>173</sup>Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
               <sup>174</sup>Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
                                         <sup>175</sup>SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
                             <sup>176</sup>Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
            177 Institut de Ciències de l'Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona, Spain
<sup>178</sup>Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain
           <sup>179</sup>Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701, USA
              180 Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
                                      <sup>182</sup>Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
                     <sup>183</sup>Ludwig Maximillian Universität Munich, Faculty of Physics, Schellingstrasse 4, D-80799 Munich, Germany
                               <sup>184</sup>Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
                               <sup>185</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
                           <sup>186</sup>Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA
                               <sup>187</sup>Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
                 <sup>188</sup>University of Arizona, Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA
<sup>189</sup>Department of Astronomy & Astrophysics, Center for Particle & Gravitational Astrophysics, and Center for Theoretical & Observational Cosmology,
                                              Pennsylvania State University, University Park, PA 16802, USA
                                    <sup>190</sup>CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
                                     <sup>191</sup>Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
                    <sup>192</sup>Department of Astronomy, University of California, Berkeley, 501 Campbell Hall, Berkeley, CA 94720, USA
                                <sup>193</sup>Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
                           <sup>194</sup>National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
                      <sup>195</sup>Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
                                    <sup>196</sup>Department of Physics, The Ohio State University, Columbus, OH 43210, USA
                                 <sup>197</sup>Departments of Physics and Astronomy, University of California, Berkeley, CA, USA
                                       <sup>198</sup>Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
 <sup>199</sup>George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M
                                                       University, College Station, TX 77843, USA
        <sup>200</sup>Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05314-970, São Paulo, SP, Brazil
                 ^{201}Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003, USA
                                  <sup>202</sup>Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
                            <sup>203</sup>National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA
                                     <sup>204</sup>Columbia Astrophysics Laboratory, Pupin Hall, New York, NY, 10027,USA
                                    <sup>205</sup>Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
                                     <sup>206</sup>Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
```

```
<sup>207</sup>Department of Astronomy & Theoretical Astrophysics Center, University of California, Berkeley, CA 94720-3411, USA
                        <sup>208</sup>Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK
                            <sup>209</sup>Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
                                            <sup>210</sup>Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA
                                      <sup>211</sup>Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
     <sup>212</sup>Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
                                 <sup>213</sup>Universities Space Research Association, 320 Sparkman Dr. Huntsville, AL 35806, USA
                            <sup>214</sup>Physics Dept, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35899, USA
                                                              <sup>215</sup>NASA Postdoctoral Program Fellow
                               <sup>216</sup>Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
                      <sup>217</sup>Dept. of Space Science, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35899, USA
                               <sup>218</sup>CSPAR, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35899, USA
                                <sup>219</sup>Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada, Spain
                                          <sup>220</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
                                                        <sup>221</sup>Jacobs Technology, Inc., Huntsville, AL, USA
                           <sup>222</sup>Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748, Garching, Germany
                                                      <sup>223</sup>Los Alamos National Laboratory, NM 87545, USA
                                 <sup>224</sup>School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4, Ireland
                                                         <sup>225</sup>NASA Headquarters, Washington DC, USA
                      <sup>226</sup>Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, D-85748, Garching, Germany
                                           <sup>227</sup>Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany
                   <sup>228</sup>Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978, USA
 <sup>229</sup>W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National
                                             Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
                                 <sup>230</sup>Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
                              <sup>231</sup>The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Sweden
<sup>232</sup>Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz,
                                                                   Santa Cruz, CA 95064, USA
                          <sup>233</sup>Department of Physics, KTH Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm, Sweden
                       <sup>234</sup>Tokyo Metropolitan University, Department of Physics, Minami-osawa 1-1, Hachioji, Tokyo 192-0397, Japan
                               <sup>235</sup>Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa, Italy
                                       <sup>236</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy
                                              <sup>237</sup>Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
                                       <sup>238</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
                               <sup>239</sup>Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, I-35131 Padova, Italy
                                          <sup>240</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy
                                          <sup>241</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
                                       <sup>242</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
                       <sup>243</sup>Dipartimento di Fisica Generale "Amadeo Avogadro", Università degli Studi di Torino, I-10125 Torino, Italy
                                              <sup>244</sup>NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
                                    <sup>245</sup>Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau, France
     <sup>246</sup>Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
<sup>247</sup>Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
                                       <sup>248</sup>Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy
                              <sup>249</sup>Dipartimento di Fisica "M. Merlin" dell'Università e del Politecnico di Bari, I-70126 Bari, Italy
                                       <sup>250</sup>INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy
                                         <sup>251</sup>Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma, Italy
         <sup>252</sup>College of Science, George Mason University, Fairfax, VA 22030, resident at Naval Research Laboratory, Washington, DC 20375, USA
                                       <sup>253</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
                        <sup>254</sup>Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier, France
                          <sup>255</sup>Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928-3609, USA
                                                  <sup>256</sup>INAF Istituto di Radioastronomia, I-40129 Bologna, Italy
                                         <sup>257</sup>Dipartimento di Astronomia, Università di Bologna, I-40127 Bologna, Italy
                                       <sup>258</sup>Università Telematica Pegaso, Piazza Trieste e Trento, 48, I-80132 Napoli, Italy
```

```
<sup>259</sup>Università di Udine, I-33100 Udine, Italy
                          <sup>260</sup>Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
                                            <sup>261</sup>Erlangen Centre for Astroparticle Physics, D-91058 Erlangen, Germany
                    <sup>262</sup>Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
                       <sup>263</sup>Department of Physics and Department of Astronomy, University of Maryland, College Park, MD 20742, USA
           <sup>264</sup>Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette, France
                                   <sup>265</sup>Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352, USA
                                                           <sup>266</sup>NASA Postdoctoral Program Fellow, USA
      <sup>267</sup>Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
                               <sup>268</sup>University of North Florida, Department of Physics, 1 UNF Drive, Jacksonville, FL 32224, USA
                           ^{269}School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
                                               <sup>270</sup>Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
                                      <sup>271</sup>Institute of Space Sciences (IEEC-CSIC), Campus UAB, E-08193 Barcelona, Spain
                                                               <sup>272</sup>email: Julie.E.McEnery@nasa.gov
                      <sup>273</sup>Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
                                                 <sup>274</sup>Max-Planck-Institut für Physik, D-80805 München, Germany
                                    <sup>275</sup>Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
                            <sup>276</sup>Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
                                  <sup>277</sup>Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
                                      <sup>278</sup>The University of Hong Kong, Laboratory for Space Research, Hong Kong, China
                                            <sup>279</sup>NYCB Real-Time Computing Inc., Lattingtown, NY 11560-1025, USA
                            <sup>280</sup>Department of Chemistry and Physics, Purdue University Calumet, Hammond, IN 46323-2094, USA
                                    <sup>281</sup>Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
                                              <sup>282</sup>Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany
                                         <sup>283</sup>Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
                                    <sup>284</sup>Department of Physics, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
                            <sup>285</sup>INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00078 Monte Porzio Catone (RM), Italy
                                  <sup>286</sup>INAF—Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy
                                     <sup>287</sup>INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate, Italy
                                <sup>288</sup>INAF—Osservatorio Astronomico di Capodimonte, salita Moiariello 16, I-80131 Napoli, Italy
                        <sup>289</sup>INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna, Italy
                                             <sup>290</sup>Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126 Pisa, Italy
                                            <sup>291</sup>ASI-Science Data Center, via dl Politecnico s.n.c., I-00133 Roma, Italy
                <sup>292</sup>Dip. di Fisica Ettore Pancini, University of Naples Federico II, C.U. Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy
                         <sup>293</sup>INAF—ORA—Osservatorio Astronomico di Cagliari, Via della Scienza n. 5, I-09047 Selargius (CA), Italy
                           <sup>294</sup>INAF—Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025, Pino Torinese (To), Italy
                         <sup>295</sup>INAF—Institute for Space Astrophysics and Planetology, Via Fosso del Cavaliere 100, I-00133 Rome, Italy
                         <sup>296</sup>ISDC, Department of astronomy, University of Geneva, chemin d'Écogia, 16 CH-1290 Versoix, Switzerland
                            <sup>297</sup>DTU Space—National Space Institute Elektrovej—Building 327 DK-2800 Kongens Lyngby Denmark
                               <sup>298</sup>Space Science Group, School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
           <sup>299</sup>European Space Astronomy Centre (ESA/ESAC), Science Operations Department, E-28691, Villanueva de la Ca nada, Madrid, Spain
300 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10 rue Alice Domont et
                                                          Léonie Duquet, F-75205 Paris Cedex 13, France
                                                  ^{301} \mathrm{INAF}, IASF-Milano, via E.Bassini 15, I-20133 Milano, Italy
                             <sup>302</sup>Université Toulouse; UPS-OMP; CNRS; IRAP; 9 Av. Roche, BP 44346, F-31028 Toulouse, France
303 François Arago Centre, APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie
                                                               Duquet, 75205 Paris Cedex 13, France
                                <sup>304</sup>Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
                                                                         ^{305}Hubble Fellow
                           <sup>306</sup>Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel
                           <sup>307</sup>Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
                                      <sup>308</sup>Max Planck Institute for Astronomy, Knigstuhl 17, D-69117 Heidelberg, Germany
                           <sup>309</sup>Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen, DK-2100, Denmark
                  <sup>310</sup>Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
```

```
<sup>312</sup>University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450, USA
                                   <sup>313</sup>Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia
                                                                            ^{314}Emeritus
                            <sup>315</sup>Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046 USA
                   <sup>316</sup>Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
                       <sup>317</sup>Institute of Astronomy, Graduate School of Science, The University of Tokyo, Mitaka, Tokyo 181-0015, Japan
                          <sup>318</sup>The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Yamaguchi 753-8511, Japan
                      <sup>319</sup>Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
                     <sup>320</sup>Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
                                         <sup>321</sup>Department of Astronomy, Kyoto University, Kyoto, Kyoto 606-8502, Japan
                  <sup>322</sup>Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232, Japan
                                              <sup>323</sup>Physics Department, Yale University, New Haven, CT 06520, USA
                                           <sup>324</sup> Astrophysics Research Institue, Liverpool JMU, Liverpool L3 5RF, UK
                                 325 Monash Centre for Astrophysics (MoCA), Monash University, Clayton VIC 3800, Australia
                                      <sup>326</sup>School of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia
                                             327 University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
                            <sup>328</sup>Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
                                                  <sup>329</sup>Department of Physics, University of Bath, BA2 7AY, UK
                                 <sup>330</sup>University of Warwick, Department of Physics, Gibbet Hill Road, Coventry, CV4 7AL, UK
                       <sup>331</sup>ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands
                               332 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
                             333 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
               <sup>334</sup> Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
               <sup>335</sup>Lomonosov Moscow State University, Sternberg Astronomical Institute, 13, Universitetskiy prospekt, Moscow, 119234, Russia
                              <sup>336</sup>South African Astronomical Observatory, PO Box 9, 7935 Observatory, Cape Town, South Africa
                             <sup>337</sup>The Instituto de Astrofisica de Canarias, Calle Via Lactea, s/n, E-38200 La Laguna, Tenerife, Spain
                                <sup>338</sup>Applied Physics Institute, Irkutsk State University, 20, Gagarin blvd,, Irkutsk, 664003, Russia
               <sup>339</sup>Kislovodsk Solar Station of the Main (Pulkovo) Observatory RAS, P.O.Box 45, ul. Gagarina 100, Kislovodsk, 357700, Russia
                       <sup>340</sup>Blagoveschensk State Pedagogical University, Lenin str., 104, Amur Region, Blagoveschensk, 675000, Russia
                                 <sup>341</sup>Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8851, Japan
                                             <sup>342</sup>MAXI team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
                          <sup>343</sup>Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
<sup>344</sup>JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba,
                                                                      Ibaraki 305-8505, Japan
   <sup>345</sup>Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa
                                                                          252-5210, Japan
                     <sup>346</sup>Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
                         <sup>347</sup>University of California, Berkeley, Astronomy Dept., 501 Campbell Hall #3411, Berkeley, CA 94720, USA
                                       <sup>348</sup>Eureka Scientific, Inc., 2452 Delmer Street Suite 100, Oakland, CA 94602, USA
                 <sup>349</sup>Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
                             350 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
                          <sup>351</sup>Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada
                  <sup>352</sup>School of Chemical & Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
                                 353 Osservatorio di Radio Astronomia, Istituto Nazionale di Astrofisica, Bologna, I-40123, Italy
                   <sup>354</sup>Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK
                                     355 Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA
                                   <sup>356</sup>Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
                                          <sup>357</sup>Department of Physics, Harvard University, Cambridge, MA 02138, USA
                                              <sup>358</sup>Millennium Institute of Astrophysics, Casilla 36D, Santiago, Chile
                             <sup>359</sup>Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, Chile
                               <sup>360</sup>Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
               <sup>361</sup>Institut d'Astrophysique de Paris, CNRS, and Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014, Paris, France
                                     <sup>362</sup>European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
```

311 Lockheed Martin Space Systems Company, Palo Alto, CA 94304

```
    363 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väiäläntie 20, FI-21500 Piikkiö, Finland 364 Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 365 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7585, LPNHE, F-75005, Paris, France
    366 CNRS, UMR 7585, Laboratoire de Physique Nucleaire et des Hautes Energies, 4 place Jussieu, F-75005 Paris, France 367 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117, USA 368 Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA 369 Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel 370 Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland 371 Center for Theoretical Physics of the Polish Academy of Sciences, 02-668 Warszawa, Poland 372 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 373 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA 374 Los Alamos National Laboratory, B244, Los Alamos, NM, 87545, USA
    375 L'Institut de Recherche en Astrophysique et Planétologie, CNRS UMR 5277/UPS, 14 avenue Edouard Belin, F-31400 Toulouse, France
```

³⁷⁶University of Texas at San Antonio, San Antonio, TX, USA
³⁷⁷Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843, USA

378 Universidad Nacional de Córdoba, IATE, Laprida 854, Córdoba, Argentina
 379 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
 380 Instituto de Astrofísica de Andalucía, Consejo Superior de Investigaciones Científicas, Glorieta de la Astronomía s/n, E-18008 Granada, Spain
 381 Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, 107 Reykjavík, Iceland