Definice. Graf G=(V,E) je souvislý, jestliže $\forall u,v\in V$ existuje cesta v G s krajními vrcholy u,v.

Definice. Graf G = (V, E) je souvislý, jestliže pro libovolné rozdělení V na dvě množiny A, B takové, že $A \cap B = \emptyset, A \cup B = V$, platí: $\exists a \in A, b \in B : \{a, b\} \in E$.

Příklad 1.

Dokažte, že jsou si obě definice souvislosti grafu ekvivalentní. Platí tato ekvivalence i pro orientované grafy?

Příklad 2.

Najděte všechny grafy, které jako podgraf neobsahují

- a) cestu délky 2
- b) cestu délky 3

Příklad 3.

Najděte všechny grafy, které neobsahují indukovanou cestu délky 2.

Příklad 4.

U následujících grafů rozhodněte, zda jsou eulerovské:

a) Graf z obrázku:

- b) Pro množinu M=[5] graf $G(2^M,\{\{a,b\}\mid a\cap b=\emptyset\})$
- c) Souvislý graf G s lichým počtem vrcholů, jehož doplněk je eulerovský

Příklad 5.

Mějme graf, ve kterém každou hranu podrozdělíme. Dokažte, že takto upravený graf je bipartitní.

Příklad 6.

Dokažte, že každý eulerovský graf lze rozložit na hranově disjunktní sjednocení kružnic (tedy rozložit na kružnice tak, že žádné dvě nesdílí hrany).

Příklad 7.

Jak vypadají grafy, které lze nakreslit nejvýše k hranově disjunktními tahy?

Příklad 8.

Kolik existuje různých orientovaných grafů, jejichž podkladový graf je grafG o n vrcholech a m hranách?