<u>PS</u>

LEVEL-I

1.	n th term of 5, 3, 1, -1 (A) 2n - 7	, -3, -5, is (B) 7 - 2n	(C) 2n + 3	(D) 2n + 5			
2.	n^{th} term of 1, $\frac{1}{2}$, $\frac{1}{3}$,	is					
	(A) $\frac{1}{n-1}$	(B) $\frac{1}{n+1}$	(C) $\frac{1}{n}$	(D) $\frac{n}{n-1}$			
3.	Sum of the series $\frac{1}{2}$	$+\frac{1}{2\sqrt{2}}+\frac{1}{4}+\dots$	∞ is				
	(A) 1 + $\frac{1}{\sqrt{2}}$	(B) 1	(C) $\frac{1}{\sqrt{2}-1}$	(D) $\frac{\sqrt{2}}{\sqrt{2}-1}$			
4.	Number of integers b (A) 10	etween 100 and 200, t (B) 20	that are divisible by 5 a (C) 9	are (D) 19			
5.	H.M of 3 and $\frac{1}{3}$ is						
	(A) $\frac{5}{3}$	(B) 1	(C) $\frac{20}{3}$	(D) $\frac{3}{5}$			
6.	5. The n th terms of the two series 3 + 10 + 17 + and 63 + 65 + 67 + are equal, the value of n is						
	(A) 9 (C) 19		(B) 13 (D) none of these				
7.	If n A.M's are inserted between two quantities a and b, then their sum is equal to						
	(A) n(a + b)		(B) $\frac{n}{2}$ (a + b)				
	(C) 2n(a + b)		(D) $\frac{n}{2}$ (a – b)				
8.	If a, b, c are in H.P, then the value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is						
	(A) 1 (C) 3	D – a	(B) 2 (D) none of these				
0		a v b ara in C.D. and	` ,	0 v ² h ² v ² oro in			
9.	(A) H.P (C) A.P	a, x, b are in G.P. and	(B) G.P (D) none of these	nx,b,y arem			
10.	If a, b, c, d, e are in A (A) 2(b + d)	a.P, then (e – a) is equal (B) 2(b – d)	al to (C) 2(d – b)	(D) none of these			
11.	If (2x - 1), (4x - 1), (7 (A) 625/3	7 + 2x) are in G.F (B) 125/3	P, then next term of the (C) 81	e sequence is (D) 9			
12.	In any triangle ABC t (A) 1/2	he angles A, B, C are i (B) $\sqrt{3}/2$	n A.P, then the value of (C) $1/\sqrt{2}$	of sin 2B is given by (D) none of these			

13. If
$$1 + 2 + 3 + \dots + 49 = x$$
, then $1^3 + 2^3 + 3^3 + \dots + 49^3$ is given by (A) x^3 (B) x^2 (C) $x^2 + x$ (D) none of these

- If a, b, c are in A.P and a, b, d are in G.P, then a, a b, d c will be in 14. (C) H.P (D) none of these
- rth term of sequence $\frac{1}{1 \cdot 3 \cdot 5} + \frac{1}{3 \cdot 5 \cdot 7} + \frac{1}{5 \cdot 7 \cdot 9} + \dots$ is given by 15. (A) $\frac{1}{r(r+2)(r+4)}$ (B) $\frac{1}{(2r+1)(2r+3)(2r+5)}$ (C) $\frac{1}{(2r-1)(2r+1)(2r+3)}$ (D) none of these
- If $v_r = \frac{1}{1 + (r 1)r}$, then v_{r-1} is equal to 16. (A) $\frac{1}{1+(r+1)r}$ (B) $\frac{1}{1+(r-1)r}$ (C) $\frac{1}{1+(r-1)(r-2)}$ (D) none of these
- The value of $\log x + \log \left(1 + \frac{1}{x}\right) + \log \left(1 + \frac{1}{1+x}\right) + \log \left(1 + \frac{1}{2+x}\right) + \dots + \log \left(1 + \frac{1}{(n-1+x)}\right)$ 17. (A) $\log \frac{x}{n}$ (B) $\log nx$ (C) $\log (n+x)$ (D) $\log (n-1)x$
- 18. If a, b, c, d are in H.P., then ab + bc + c d is equal to.......
- 19. If the first term of a G.P is 1 and the sum of the third and fifth terms is 90. Then the common ratio if G.P is
 - $(A) \pm 1$
 - $(D) \pm 4$ $(C) \pm 3$
- If a, b, c are in A.P., then $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ will be in 20.
 - A.P.
- G.P. (B)

(B) ± 2

(C)H.P.

- (D) None of these
- 21. The numbers 1, 4, 16 can be three terms (not necessarily consecutive) of
 - (A) no A.P.

(B) only 1 or 2 G.Ps

- (C) infinite number of A.Ps
- (D) infinite number of G.Ps
- If $S_n = \sum_{r=1}^n \frac{1+2+2^2.....r}{2^r}$, then S_n is equal to 22.
 - (A) $2^n (n + 1)$

(C) $(n^2 + 3n + 2)/6$

- If $S_n = nP + \frac{n(n-1)}{2}Q$, where S_n denotes the sum of the first 'n' terms of an A.P. then the 23. common difference is
 - (A) P + Q

(B) 2P + 3Q

(C) 2Q

- a, b, $c \in R^+$ and from an A.P. if abc = 4, then the minimum value of b is 24.

 $(C) (4)^{2/3}$

(D) none of these

(C)
$$a = \frac{3}{2}, r = \frac{1}{2}$$

(D)
$$a = 3$$
, $r = \frac{1}{4}$

The value of $\sum_{r=1}^{n} log \left(\frac{a^{r}}{b^{r-1}} \right)$ is 34.

(A)
$$\frac{n}{2} log \left(\frac{a^n}{b^n} \right)$$

(B)
$$\frac{n}{2} log \left(\frac{a^{n+1}}{b^n} \right)$$

$$(C) \ \frac{n}{2} log \left(\frac{a^{n+1}}{b^{n+1}} \right)$$

$$(D) \ \frac{n}{2} log \left(\frac{a^{n+1}}{b^{n-1}} \right)$$

LEVEL-II

H.P. is

(B) 3rd term

(D) none of these

If $\log_{10}x + \log_{10}y \ge 2$ then the smallest possible value of $x^2 + y^2$ is 27.

(A) 200

(B) 2000

(C) 100

- (D) none of these
- If ab = 4a + 9b, a > 0, b > 0 then minimum value of \sqrt{ab} is 28.

(C) 12

- (D) none of these
- If $ax^3 + bx^2 + cx + d$ is divisible by $ax^2 + c$, then d is equal to 29.

(A) $\frac{ab}{2}$

(C) $\frac{ac}{b}$

- (D) none of these
- The sum of the products of the nine numbers \pm 1, \pm 2, \pm 3, \pm 4, 5 taking two at a time is 30.

(C) -30

- (D) none of these
- If in a series $t_n = \frac{n+1}{(n+2)!}$ then $\sum_{n=0}^{10} t_n$ is equal to 31.

(A) $1 - \frac{1}{10!}$

(B) $1 - \frac{1}{11!}$

(C) $1-\frac{1}{121}$

- (D) none of these
- The value of $\sum_{r=2}^{n} (r-n-2)^3$ is equal to 32.

(A) $\frac{n^2(n+1)^2}{4} - 9$

(B) $\frac{n^2(2n+1)(n+1)}{6}$ - 9

(C) $\frac{(n+1)n(n+1)^2}{4} - 9$

- (D) none of these
- The harmonic means of the roots of equation $(5+\sqrt{2})x^2-(4+\sqrt{5})x+8+2\sqrt{5}=0$ is 33.
 - (A) 2

(C) 6

- (B) 4 (D) 8
- If $x^2 + 9y^2 + 25z^2 = 15yz + 5xz + 3xy$ then x, y, z are in 34.
 - (A) A.P.

(C) H.P.

- (D) none of these
- If $x_1^2 + x_2^2 + x_3^2 + \dots + x_{50}^2 = 50$ and $\frac{1}{x_1^2 x_2^2 x_3^2 \dots x_{50}^2} = A$ then 35.
 - (A) $A_{minimum} = 1$

(C) $A_{minimum} = 50$

- (D) $A_{\text{maximum}} = 50$
- If n is an odd integer greater than or equal to 1 then the value of 36. $n^3 - (n-1)^3 + (n-2)^3 - \dots + (-1)^{n-1}1^3$ is

(A)	$(n+1)^2(2n-1)$
(八)	4

(B)
$$\frac{(n-1)^2(2n-1)}{4}$$

(C)
$$\frac{(n+1)^2(2n+1)}{4}$$

- (D) None of these
- 37. A monkey while trying to reach the top of a pole of height 12 meters takes every time a jump of 2 meters but slips 1 metre while holding the pole. The number of jumps required to reach the top of the pole is .
 - (A) 6
- (B) 10
- (C) 11
- (D) 12
- The sum of n terms of the series $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$ is $\frac{n(n+1)^2}{2}$ 38.

when n is even. When n is odd, the sum is

(A)
$$\frac{n^2(n+1)}{2}$$

(B)
$$\frac{n(n^2-1)}{2}$$

$$(C) n(n+1)^2 (2n+1)$$

- (D) None of these.
- If $1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{(2n-1)3^a + b}{4}$ then (a,b) is : 39. (A) (n-2, 3) (B) (n-1,3) (C) (n,3)

- The sum of infinite series $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots \infty$ is 40.
- (A) $\frac{1}{2}$ (B) 3 (C) $\frac{1}{4}$ (D) ∞
- 41. If a,b,c,d are positive real numbers such that a+b+c+d=2, then M=(a+b)(c+d) satisfies the relation
- (A) $0 \le M \le 1$ (B) $1 \le M \le 2$ (C) $2 \le M \le 3$ (D) $3 \le M \le 4$
- 42. If A.M. and G.M. between two numbers be A and G respectively, then the numbers are
 - (A) A $\pm \sqrt{A^2 G^2}$

(B) G $\pm \sqrt{A^2 - G^2}$

(C) $A + \sqrt{G^2 - A^2}$

- (D) None of these
- 43. The H.M. of two numbers is 4 and their A.M. and G.M. satisfy the relation $2A + G^2 = 27$, then the numbers are :
 - (a) -3.1
- (b) 5, -25 (c) 5, 4 (d) 3, 6
- If $\sum n = 55$ then $\sum n^2$ is equal to 44.
- (b) 506(c) 1185
- (d) 3025
- If $< a_n >$ is an A.P. and $a_1 + a_4 + a_7 + \dots + a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16} =$ 45. (c) 100 (d) none of these
- The interval for which the series $1+(x-1)+(x-1)^2+....\infty$ may be summed, is 46.
 - (a) (0.1)
- (b) (0.2)
- (c) (-1,1) (d) (-2,2)
- 47. The interior angles of a polygon are in A.P. the smallest angle is 120° and The common difference is 5°. Then, the number of sides of polygon is :
 - (a) 5
- (b) 7
- (c) 9
- (d) 15

(A) a positive integer

(B) divisible by n

(C) equal to $n + \frac{1}{n}$

- (D) greater than or equal to n
- If $(1 + x) (1 + x^2) (1 + x^4)$ $(1 + x^{128}) = \sum_{r=0}^{n} x^r$ then n is 61.

(C) 63

- (D) none of these
- 62. If t_n denotes the nth term of the series $2 + 3 + 6 + 11 + 18 + \dots$ then t_{50} is
 - $(A) 49^2 1$

(C) $50^2 + 1$

- $(D) 49^2 + 2$
- Let $t_n = n$ (n!). Then $\sum_{n=1}^{15} t_n$ is equal to 63.
 - (A) 15! -1

(B) 15! +1

(C) 16! -1

- (D) none of these
- The sum of 19 terms of an A.P, whose nth terms is 2n + 1 is 64.
 - (A) 390

(B) 399

(C) 499

- (D) none of these
- 65. Three numbers whose sum is 15 are in A.P., if 8, 6 and 4 be added to then respectively then these are in G.P, then the numbers are
 - (A) 4, 6, 8

(B) 1, 5, 9

(C) 2, 5, 8

- (D) 3, 5, 7
- If x + y + z = 3, then $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is, x, y, z > 066.
 - $\begin{array}{c} (A) \leq 3 \\ (C) \ 4 \end{array}$

- (D) none of these
- If $x = \log_5^3 + \log_7^5 + \log_9^7$ then 67.
 - (A) $x \ge 3/2$

(B) $x \ge \frac{1}{\sqrt[3]{2}}$

(C) $x > \frac{3}{\sqrt[3]{2}}$

- (D) none of these
- If $t_r = 2^{r/2} + 2^{-r/2}$ then $\sum_{r=0}^{10} t_r^2$ is equal to
 - (A) $\frac{2^{21}-1}{2^{10}}+20$

(B) $\frac{2^{21}-1}{2^{10}}+19$

(C) $\frac{2^{21}-1}{2^{20}}-1$

- (D) $3 \times \frac{2^{10} 1}{2^{10}} + 20$
- 69. If (a, b), (c, d), (e, f) are the vertices of a triangle such that a, c, e are in G.P. with common ratio r and b, d, f are in G.P. with common ratio s then the area of the triangle is
 - (A) $\frac{ab}{2}(r+1)(s+2)(s+r)$

(B) $\frac{ab}{2}(r-1)(s+1)(s-r)$

(C) $\frac{ab}{2}(r-1)(s-1)(s-r)$

(D) $\frac{ab}{2}(r+1)(s+1)(s-r)$

LEVEL-III

1.	$\sum_{n=1}^{\infty} \frac{1}{4n^4 + 1}$ equals to (A) 0	(B) 1	(C) ∞	(D) none of these.
2.		$(a^2 + 2(b^2 + c^2) + d^2) = 2$ G.P.	. ,	
3.		ers in the n th group of 1 (13, 15, 17, 19, 21, 23) (B) 2n ³		(D) 4n ³
4.				e series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$
	such that $S - S_n < \frac{1}{3}$ (A) 4	100 , then the least value (B) 5	ue of n is (C) 6	(D) 7
5.	If a, b, c are three $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ (A) 1		ers, then the minimur (C) 3	n value of the expression (D) None of these
6.	$\frac{1}{x_1} + \frac{1}{x_2} + + \frac{1}{x_{50}}$ e	, 50 and $x_1 + x_2$ quals to (B) $(50)^2$	$x_2 + \dots + x_{50} = 50$, the (C) $(50)^3$	nen the minimum value of $(D) (50)^4$
7.	The value of $\frac{1}{6.10}$ + (A) $\frac{1}{(24)^2}$	$\frac{1}{10.14} + \frac{1}{14.18} + \dots \infty $ (B) $\frac{1}{6}$	equals to (C) $\frac{1}{24}$	(D) $\frac{1}{(24)^3}$
8.	Let r th term of a ser (A) 3/2	ies be given by $T_r = \frac{1}{1}$ (B) 1/2	$\frac{r}{-3r^2+r^4}. \text{ Then } \lim_{n\to\infty} \sum_{r=1}^{\infty} \frac{1}{r^2}$ (C) -1/2	$\sum_{r=1}^{n} T_r$ is (D) -3/2
9.				$ a_2 = a_1 - 2 $, $ a_3 = a_2 - 2 $, ean of these numbers is (D) none of these
10.	If x_1, x_2, x_{20} are in (A) $x_1 x_{20}$	H.P. then $x_1 x_2 + x_2 x_3$ (B) 19 $x_1 x_{20}$	+ + $x_{19}x_{20}$ = (C) 20 x_1x_{20}	(D) none of these
11.	The first two terms of	of an HP are $\frac{2}{2}$ and $\frac{12}{2}$	$\frac{2}{3}$. The value of the larg	gest term of the H.P. is
		5 23	3	90010 0. 0.0
	(A) $\frac{72}{73}$	(B) 6	(C) $\frac{1}{6}$	(D) none of these

12.
$$\frac{1}{1^2 \cdot 3^2} + \frac{2}{3^2 \cdot 5^2} + \frac{3}{5^2 \cdot 7^2} + \dots$$
 up to n terms equals to

(A)
$$\frac{n+1}{2n+1}$$

(A)
$$\frac{n+1}{2n+1}$$
 (B) $\frac{n(n+1)}{2(2n+1)^2}$ (C) $\frac{n}{2n-1}$

(C)
$$\frac{n}{2n-1}$$

(D) None of these

13. If
$$abc = 8$$
 and a , b , $c > 0$, then the minimum value of $(2 + a) (2 + b) (2 + c)$ is $(A) 32$ $(B) 64$ $(C) 8$ $(D) 10$

14. Coefficient of
$$x^{49}$$
 in the polynomial $\left(x - \frac{1}{1 \times 3}\right) \left(x - \frac{2}{1 \times 3 \times 5}\right) \dots \left(x - \frac{50}{1 \times 3 \times \dots \times 101}\right)$ is

(A)
$$\frac{1}{2} - \frac{1}{1 \times 3 \times \dots \times 101}$$

(B)
$$-\frac{1}{2} \left(1 - \frac{1}{1 \times 3 \times \dots \times 101} \right)$$

(C)
$$\frac{49}{1 \times 3 \times \dots \times 101}$$

(D)
$$\frac{50}{1 \times 3 \times \dots \times 101}$$

15. Let
$$\sum_{r=1}^{n} r^4 = f(n)$$
, then $\sum_{r=1}^{n} (2r-1)^4 =$

(A) f (2n)
$$-16$$
 f (n); \forall n \in N

(B) f (n)
$$-16 \text{ f}\left(\frac{n-1}{2}\right)$$
, when n is odd

(C) f (n)
$$-16$$
 f $\left(\frac{n}{2}\right)$, when n is even

(D) none of these

16. The co-efficient of
$$x^{n-2}$$
 in $(x-1)(x-2)(x-3)$ $(x-n)$ is

(A)
$$\frac{n(n^2+1)(3n+1)}{24}$$

(B)
$$\frac{n(n^2-1)(3n+2)}{24}$$

(C)
$$\frac{n(n^2+1)(3n+4)}{24}$$

(D) None of these

(a) cab/990

(b) (99c + ab) / 990

(c) (99c + 10a + b) / 99

(d) (99c + 10a + b) / 990

18. If
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \infty = \frac{\pi^4}{90}$$
 then $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty$ is equal to

(a)
$$\frac{\pi^4}{96}$$
 (b) $\frac{\pi^4}{45}$ (c) $\frac{\pi^4}{90}$

(b)
$$\frac{\pi^4}{45}$$

(c)
$$\frac{\pi^4}{90}$$

$$(d)\frac{\pi^4}{46}$$

19.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \dots$$

(a)
$$\frac{n(n+1)(n+2)}{6}$$

(b)
$$\sum n^2$$

(a)
$$\frac{n(n+1)(n+2)}{6}$$
 (b) $\sum n^2$ (c) $\frac{n(n-1)(n-2)}{6}$ (d) none of these

20 If
$$I_n = \int\limits_0^{\pi/4} tan^n \ x \ dx$$
, then $\frac{1}{I_2 + I_4}$, $\frac{1}{I_3 + I_5}$, $\frac{1}{I_4 + I_6}$ are in

(D) none of these

- 22. If $a^x = b^y = c^z = d^u$ and a, b, c, d are in G.P., then x, y, z, u are in
- Let a_1 , a_2 , a_3 , ..., a_{10} be in AP and a_{11} , a_{12} , a_{13} , ..., a_{10} be in AP and a_{10} = 23. $h_{10} = 3$ then $a_4 h_7$ is
 - (A) 2

(C)5

- (D) 6
- 24. In the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, where n consecutive terms have the value n, the 150th term is
 - (A) 17

(C) 18

- (D) none of these
- 25. If a, a_1 , a_2 a_{2n-1} , b are in A.P, a, b_1 , b_2 b_{2n-1} , b are in G.P. and a c_1 , c_2 c_{2n-1} , b are in H.P. where a, b are positive then the equation $a_n x^2 - b_n x + c_n = 0$ has its roots
 - (A) real and unequal

(B) real and equal

(C) imaginary

- (D) do not exist
- If $\sum_{k=1}^{n} \left| \sum_{m=1}^{k} m \right| = an^4 + bn^3 + cn^2 + dn + e$, then 26.
 - (A) $a = \frac{1}{12}$, $e = \frac{1}{12}$

(B) a = 0, e = 0

(C) a = 0, $e = \frac{1}{12}$

- (D) $a = \frac{1}{12}$, e = 0
- 27. In the above question find the values of b, c and d?

.....

- 29. If mth, nth and pth terms of an A.P. and G.P. are equal and are respectively x, y, z then
 - (A) $x^y y^z z^x = x^z y^x z^y$
- (B) $(x y)^x (y z)^y = (z x)^z$
- (C) $(x y)^z (y z)^x = (z x)^y$
- (D) none of these
- Coefficient of x^8 in (x-1)(x-2)(x-3) (x-10) is (A) 980 (B) 1395 (C) 1320 30.

- (D) none of these.
- If the sum to n terms of an A.P. is cn(n-1), where $c \neq 0$. The sum of the squares of these 31. terms is
 - $(A) c^2 n^2 (n + 1)^2$

(B) $\frac{2}{3}$ c²n (n -1) (2n -1)

(C) $\frac{2}{3}$ c²n (n + 1) (2n + 1)

(D) none of these

ANSWERS

- LEVEL -I
 - 1. В 5. D
- C 2. 6. В
- 3. Α
- D

- 9. С
- 10. С
- 7. Α
- 8. В

- 13. В
- 11. В
- 12. В

- C 17.
- В 14. 18. 3ad
- С 15. 19.
- 16. С 20. Α

- С 21.
- 22. D
- 23. D 25. С
- 24. Α 26. В
- 27. C
- 28. Α

	29. 33.	D D	30. 34.	C D	31.	В	32.	D
LEVEL	1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49.	A A B B C C A B B C A B B	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50.	A D B A B C C D C A A B B	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. 51.	A A A B C A A C A D D A B	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48.	C A A C A B C D A A A D
	52.	С	53.	$\frac{n^2\left(n+1\right)^2}{4}-1$	54.	-5555	55.	n – 1 + 2 ⁻ⁿ
	56. 60. 64. 68. 72.	H.P. D B B	57. 61. 65. 69. 73.	B A D C	58. 62. 66. 70. 74.	D D B D	59. 63. 67. 71. 75.	C C C D
LEVEL -III								
	1. 5. 9. 13. 17. 21. 23. 25.	D D A B D H.P. B B	2. 6. 10. 14. 18. 22. 24. 26.	C A B B A H.P. A B	3. 7. 11. 15. 19.	D C B A A	4. 8. 12. 16. 20.	C C B B C
	27.	$\frac{1}{6}$, $\frac{1}{2}$, $\frac{1}{3}$	29.	Α	30.	С	31.	В