HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF ELECTRONICS AND TELECOMMUNICATIONS

PROJECT REPORT

[Hệ Thống Giám Sát Ô Nhiễm Không Khí]

Group Name: Nhóm 17

Student list: Nguyễn Văn Khánh(Leader)

Nguyễn Tùng Lâm

Ngô Tiến Lộc

Phạm Huỳnh

Nguyễn Anh Tuấn

Instructor: Nguyễn Tiến Dũng

Table of Contents

PHẦN 1: GIỚI THIỆU	4
1.1 Động lực:	4
1.2 Mục tiêu:	4
PHẦN 2: CHI TIẾT SẢN PHẨM	4
2.1 Tóm tắt cơ chế điều hành	5
2.2 Mô tả sản phẩm	5
PHẦN 3: LÊN KẾ HOẠCH	7
3.1 Bảng theo dõi tiến độ	7
3.2 Phân chia công việc	8
PHẦN 4: THIẾT KẾ	9
4.1 Sơ đồ khối	9
4.2 Sơ đồ mạch	
Rin Quality: 2839. Pen	9
4.3 Cảm biến không khí	12
4.4 Xử lí tín hiệu và hiển thị thông qua màn hình LED và đèn 3	13
4.5 Nguồn điện	13
4.5 Nguon diện	

4.7 Nguyên lí hoạt động	22
PHẦN 5: KIỂM TRA, CHẠY THỬ	23
PHẦN 6: SẢN PHẨM HOÀN THIỆN	23
TÔNG KÉT	24
TÀI LIỆU THAM KHẢO	25
#1 https://www.youtube.com/watch?v=iFSY-ngf7C8	25
#2 arduino.vn/bai-viet/1545-gioi-thieu-cam-bien-chat-luong-khong-khi-mq135	5 25
BẢNG GIÁ SẢN PHẨM	25
DATASHEET	26
*MQ135	26
*DHT11	28

PHẦN 1: GIỚI THIỆU

1.1 Động lực:

- a. Dự án đáp ứng được những yêu cầu của môn học.
- b. Sinh viên sẽ có cái nhìn và kiến thức thực tế hơn về ngành điện tử.
- c. Tình hình ô nhiễm khu vực Hà Nội nói riêng và các thành phố lớn nói chung khá đáng quan ngại
- d. Dự án không quá phức tạp nhưng lại khá thú vị và có ý nghĩa lớn với người tham gia giao thông

1.2 Mục tiêu:

- a. Hoàn thành thiết bị đo độ ô nhiễm không khí nhỏ gọn, tiện lợi vs độ chính xác ổn định
- b. Hiểu sơ bộ cách sử dụng trang thiết bị điện tử và thiết kế phần mềm nói riêng.
- c. Nắm rõ hơn 9 bước trong quá trình thiết kế sản phầm.

PHÂN 2: CHI TIẾT SẨN PHẨM

2.1 Tóm tắt cơ chế điều hành

2.1.1. Tổng quan về dự án

Hệ thống giám sát ô nhiễm không khí sử dụng cảm biến ô nhiễm không khí để đo lường chỉ số AQI (Air Quality Index) thông qua bo mạch xử lí dữ liệu và chia thành các mức độ ô nhiễm. Thông tin sau đó được hiển thị trên màn hình LED kèm theo cảnh báo bằng 1 số cách thức cho người dùng

2.1.2. Mục đích và phương hướng

Giúp người dùng có thêm thông tin về tình hình ô nhiễm trong ngày và thông báo để người dùng có giải pháp phù hợp.

2.2 Mô tả sản phẩm

2.2.1. Nội dung sản phẩm

Sản phẩm mang tính độc lập và khép kín. Nó không liên quan tới bất kì sản phẩm nào khác hay các hệ thống lớn hơn nào.

2.2.2. Giả định

Giả sử rằng tất cả các trang thiết bị cần thiết đều có sẵn ở Việt Nam.

2.2.3. Ràng buộc

Sản phẩm không có sự can thiệp của vi điều khiển.

2.3. Yêu cầu kĩ thuật

2.3.1. Yêu cầu chức năng

- Đo nồng độ các khí tạp chất, có hại như CO2, NH3, Nox, Ancol, ... và tổng hợp thành chỉ số chất lượng không khí.
- Hiển thị thông số, dữ liệu trên màn hình LED.
- Có 3 mức hiển thị đèn báo xanh vàng đỏ theo từng mức độ.
- 2.3.2. Yêu cầu phi chức năng
- Độ chính xác tốt, sai số trong vùng chấp nhận được.
- Thời gian sử dụng lâu dài, ổn định.
- Kích cỡ nhỏ gọn, tiện lợi, không bị cồng kềnh.
- Giá thành phù hợp với đa số sinh viên, người đi làm.

PHẦN 3: LÊN KẾ HOẠCH

3.1 Bảng theo dõi tiến độ

STT	Công việc	Thời gian	Ngày bắt đầu	Ngày kết thúc
#1	Lên ý tưởng	25 ngày	15/10/2022	8/11/2022
#2	Lên kế hoạch	20 ngày	9/11/2022	28/11/2022
#3	Thiết kế sơ đồ khối	7 ngày	1/12/2022	7/12/2022
#4	Thiết kế từng phần	51 ngày	8/12/2022	17/2/2023
	Code arduino	30 ngày	8/12/2022	8/1/2023
	Cảm biến không khí	7 ngày	9/1/2023	15/1/2023
	Xử lí tín hiệu	7 ngày	28/1/2023	3/2/2023
	Hiển thị màn hình	7 ngày	4/2/2023	10/2/2023
	LED + đèn			
	Nguồn điện	7 ngày	11/2/2023	17/2/2023
#5	Kiểm tra, chạy thử	5 ngày	18/2/2023	23/2/2023
#6	Hoàn thiện bên ngoài	3 ngày	24/2/2023	26/2/2023

3.2 Phân chia công việc

STT	Công việc	Thành viên thực hiện	
#1	Lên ý tưởng	Tất cả thành viên	
#2	Lên kế hoạch	Nguyễn Văn Khánh	
#3	Thiết kế sơ đồ khối	Phạm Huỳnh, Nguyễn Anh Tuấn	
#4	Thiết kế từng phần		
	Code arduino	Ngô Tiến Lộc	
	Cảm biến không khí	Nguyễn Tùng Lâm, Ngô Tiến Lộc	
	Xử lí tín hiệu	Ngô Tiến Lộc, Nguyễn Văn Khánh	
	Hiển thị màn hình	Ngô Tiến Lộc, Phạm Huỳnh	
	LED + đèn		
	Nguồn điện	Phạm Huỳnh, Nguyễn Văn Khánh	
#5	Kiểm tra, chạy thử	Nguyễn Anh Tuấn, Ngô Tiến Lộc	
#6	Hoàn thiện bên ngoài	Tất cả thành viên	

PHẦN 4: THIẾT KẾ

4.1 Sơ đồ khối

4.2 Sơ đồ mạch

Các bộ phận sử dụng

- 1. Board Arduino Uno R3 CH340G
- 2. Màn hình giao tiếp LCD1602
- 3. Module chuyển đổi I2C cho LCD 1602
- 4. Pin 9V, Cáp
- 5. Cảm biến Đo nhiệt độ, độ ẩm DHT11
- 6. Cảm biến MQ135
- 7. Mắt thu hồng ngoại 1838T

- 8. Remote hồng ngoại
- 9. Điện trở
- 10. Đèn Led (đỏ, vàng, xanh)
- 11. Board Test MB-102

4.3 Cảm biến không khí

Nhóm chúng em sử dụng cảm biến MQ135 để đo các khí tạp chất và bất lợi cho sức khỏe. Ngoài ra bọn em còn sử dụng thêm 1 cảm biến phụ là DHT11 với tác dụng là đo nhiệt độ, độ ẩm. Lý do bọn em sử dụng 2 cảm biến này vì giá thành rẻ, độ phổ biến cao và chất lượng ổn định.

4.4 Xử lí tín hiệu và hiển thị thông qua màn hình LED và đèn 3

Board Arduino Uno R3 CH340G có tác dụng xử lí tín hiệu từ 2 cảm biến qua đó hiển thị thông qua màn hình LED và chia thành từng mức độ cảnh báo trên đèn.

4.5 Nguồn điện

Sản phẩm chạy tối ưu nhất trên nguồn 9V.

4.6 Code Arduino

```
//Khai báo thư viện điều khiển hồng ngoại
#include <IRremote.h>
const int RECV_{PIN} = 13;
unsigned long lastTime = millis();
//Khai báo thư viện giao tiếp lcd bằng i2c
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
//Cảm biến nhiệt độ - Độ ẩm
#include "DHT.h" //Khai báo thư viện cho cảm biến nhiệt độ - độ ẩm
DHT11
#define DHT11Pin 7
#define DHTType DHT11
DHT HT(DHT11Pin,DHTType);
//Cảm biến chất lượng không khí
#include "MQ135.h" //Khai báo thư viện cho Cảm biến MQ135
#define PIN_MQ135 A2 //Khai báo chân digital
MQ135 mq135_sensor = MQ135(PIN_MQ135);
```

```
//Khai báo chân đèn:
int ledxanh=9; int ledvang=10; int leddo=11;
void setup() {
Serial.begin(9600);
lcd.begin(16, 2);
//Khởi động bộ thu
IrReceiver.begin(RECV_PIN, true, 2);
HT.begin();
delay(1000);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);
lcd.init(); //Khởi tạo màn hình LCD
lcd.backlight(); //Bật đèn màn hình lCD
lcd.setCursor(2,0);
lcd.print("Air Quality");
lcd.setCursor(4,1);
lcd.print("Detector");
```

```
delay(3000);
lcd.clear();
lcd.setCursor(2,0);
lcd.print("Please Wait");
lcd.setCursor(0,1);
lcd.print("....");
delay(5000);
}
void loop() {
float h = HT.readHumidity();
float t = HT.readTemperature();
float rzero = mq135_sensor.getRZero(); //Lấy hệ số trung bình của thư
viện
float correctedRZero = mq135_sensor.getCorrectedRZero(t,h); //Lấy hệ
số được tính từ nhiệt độ và độ ẩm
                                                  //Lấy khoảng cách tối
float resistance = mq135_sensor.getResistance();
đa mà cảm biến phát hiện ra.
```

```
float ppm = mq135_sensor.getPPM(); //Lấy giá trị ppm trung bình
float correctedPPM = mq135_sensor.getCorrectedPPM(t,h); //Giá trị ppm
chính xác + nhiệt độ,độ ẩm
Serial.print(t);
Serial.print(" ");
Serial.print(h);
Serial.print(" ");
Serial.print("\t Resistance: ");
Serial.print(resistance);
Serial.print("\t Corrected PPM: ");
Serial.print(correctedPPM);
Serial.println("ppm");
delay(500);
if (correctedPPM<600) { digitalWrite(9,HIGH); digitalWrite(10,LOW);
digitalWrite(11,LOW);} //Hiển thị trạng thái led chỉ số ô nhiếm kk mức
tốt
```

```
else if (correctedPPM<1000) { digitalWrite(9,LOW);
digitalWrite(10,HIGH); digitalWrite(11,LOW);} //Hiển thị trạng thái led
chỉ số ô nhiễm kk mức trung bình, kém
else { digitalWrite(9,LOW); digitalWrite(10,LOW);
digitalWrite(11,HIGH);} //Hiển thị trạng thái led chỉ số ô nhiễm không
khí mức xấu , rất xấu
delay(1000);
lcd.clear();
lcd.setCursor(2,0);
lcd.print("Air Quality: ");
lcd.setCursor(4,1);
lcd.print(correctedPPM);
lcd.setCursor(9,1);
lcd.print("ppm");
delay(1000);
if (IrReceiver.decode()) {
uint32_t dataRemote = IrReceiver.decodedIRData.decodedRawData;
if(dataRemote>0){
Serial.println(dataRemote);
if (millis() - lastTime > 250) {
```

```
switch(dataRemote){
                     //Số 1 trên bảng điều khiển
case 4077715200:
lcd.clear();
lcd.setCursor(0,0);
lcd.print("DO AM:");
lcd.setCursor(7,0);
lcd.print(h,0);
lcd.setCursor(9,0);
lcd.print("%");
lcd.setCursor(0,1);
lcd.print("NHIET DO:");
lcd.setCursor(10,1);
lcd.print(t,1);
lcd.setCursor(14,1);
lcd.print("C");
delay(1000);
```

```
}

lastTime = millis();

IrReceiver.resume();//cho phép nhận giá trị tiếp theo
}
```

4.7 Nguyên lí hoạt động

Nguyên lý hoạt động máy đo ô nhiễm môi trường:

Cảm biến MQ135 đo nồng độ khí Co2 Dưới dạng tín hiệu Cảm biến đo nhiệt độ độ ẩm đo Nhiệt độ, Độ ẩm dưới dạng tín hiệu

--> Các tín hiệu được đưa vào Vi xử lý để chuyển đổi .

Tín hiệu nhiệt độ độ ẩm được xử lý về dạng °C,%.

Nồng độ CO2 Được vi xử lý chuyển đổi sang ppm với khả năng chính xác cao dựa trên nhiệt độ, độ ẩm đo được. (Mới mở máy lần đầu delay 5s - sau đó kq được hiển thị liên tục với delay 1s

Kết quả nồng độ Co2 được đưa ra màn hình LCD

Khi nhận được tín hiệu hồng ngoại từ led hồng ngoại, Kết quả Nhiệt độ, độ ẩm được hiển thị lên màn Lcd thay cho kết quả nồng độ Co2 trong 1 khoảng thời gian delay (1s) --> Trở về hiển thị kết quả nồng độ CO2

PHẦN 5: KIỂM TRA, CHẠY THỬ

Nhóm chúng em sử dụng proteus để chạy thí nghiệm và có chạy thử sản phẩm ngoài thực tế. Sản phẩm chạy ổn định và hoạt động đúng yêu cầu, không xảy ra lỗi.

PHẦN 6: SẢN PHẨM HOÀN THIỆN

TỔNG KẾT

Nhóm chúng em đã thiết kế và làm sản phẩm máy giám sát ô nhiễm không khí thành công, đáp ứng đủ các tiêu chí đề ra ban đầu. Chúng em cũng hiểu thêm về quá trình thiết kế 9 bước cũng như nguyên lí hoạt động từng bộ phận của sản phẩm

TÀI LIỆU THAM KHẢO

 $\pmb{\#1} \ \underline{https://www.youtube.com/watch?v=iFSY-ngf7C8}$

#2 arduino.vn/bai-viet/1545-gioi-thieu-cam-bien-chat-luong-khong-khi-mq135

BẢNG GIÁ SẢN PHẨM

Máy đo ô nhiễm không khí					
STT	Tên thiết bị	Số lượng	Giá	Х	Tổng
1	Board Arduino Uno R3 CH340G	1	230.000 đ		438.000 đ
2	Màn hình giao tiếp LCD1602	1	50.000 đ		
3	Module chuyển đổi I2C cho LCD1602	1	29.000 đ		
4	Pin 9V,Cáp	1	11.000 đ		
5	5 Cảm biến Đo nhiệt độ độ ẩm DHT11		35.000 đ		
6	6 Cảm biến MQ135		30.000 đ		
7	Mắt thu hồng ngoại 1838T	1	3.000 đ		
8	Remote hồng ngoại	1	10.000 đ		
9	Điện trở	3			
10	Đèn led(led xanh, led đỏ, led vàng)	1			
11	Board Test MB-102	1	40.000 đ		

DATASHEET

*MQ135

TECHNICAL DATA

MQ-135 GAS SENSOR

FEATURES

Wide detecting scope Fast response and High sensitivity Stable and long life Simple drive circuit

APPLICATION

They are used in air quality control equipments for buildings/offices, are suitable for detecting of NH3,NOx, alcohol, Benzene, smoke, CO_2 , etc.

SPECIFICATIONS

A. Standard work condition

7 L. Duni	11. Standard Work Condition				
Symbol	Parameter name	Technical condition	Remarks		
Vc	Circuit voltage	5V±0.1	AC OR DC		
V_{H}	Heating voltage	5V±0.1	ACOR DC		
R_L	Load resistance	can adjust			
R_H	Heater resistance	33Ω±5%	Room Tem		
P_H	Heating consumption	less than 800mw			

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10 -45	
Tas	Storage Tem	-20 -70	
R_H	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing	30ΚΩ-200ΚΩ	Detecting concentration
	Resistance	(100ppm NH ₃)	scope
			10ppm-300ppm NH ₃
α	Concentration		10ppm-1000ppm
(200/50)	Slope rate	≤0.65	Benzene
NH ₃			10ppm-300ppm
Standard	Temp: 20 ±2	Vc:5V±0.1	Alcohol
Detecting	Humidity: 65%±59	% Vh: 5V±0.1	
Condition			
Preheat time	Over 24 ho	ur	

D. Structure and configuration, basic measuring circuit

Structure and configuration of MQ-135 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive

ΑΪò

components. The enveloped MQ-135 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.2 sensitivity characteristics of the MQ-135

Fig.3 is shows the typical sensitivity characteristics of the MQ-135 for several gases. in their: Temp: 20 Humidity: 65% O₂ concentration 21% RL= $20k\Omega$ Ro: sensor resistance at 100ppm of NH₃ in the clean air. Rs:sensor resistance at various concentrations of gases.

Fig.4 is shows the typical dependence of the MQ-135 on temperature and humidity. Ro: sensor resistance at 100ppm of NH₃ in air at 33%RH and 20 degree.

Rs: sensor resistance at 100ppm of NH₃ at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-135 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 100ppm NH₃ or 50ppm Alcohol concentration in air and use value of Load resistancethat(R_L) about 20 $K\Omega(10K\Omega$ to 47 $K\Omega$).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

*DHT11

Digital-output relative humidity & temperature sensor/module – DHT11

Resisitive-type humidity and temperature module/sensor

1. Feature & Application:

- * Calibrated digital signal *Outstanding long-term stability *Extra components not needed
- * Long transmission distance * Low power consumption *4 pins packaged and fully interchangeable

2. Description:

DHT11 output calibrated digital signal. It utilizes exclusive digital-signal-collecting-technique and humidity sensing technology, assuring its reliability and stability. Its sensing elements is connected with 8-bit single-chip computer.

Every sensor of this model is temperature compensated and calibrated in accurate calibration chamber and the calibration-coefficient is saved in OTP memory.

Small size & low consumption & long transmission distance(20m) enable DHT11 to be suited in all kinds of harsh application occasions. Single-row packaged with four pins, making the connection very convenient.

1

3. Technical Specification:

Model	DHT11		
Power supply	3-5.5V DC		
Output signal	digital signal via single-bus		
Sensing element	Polymer resistor		
Measuring range	humidity 20-90%RH;		
	temperature 0-50 Celsius		
Accuracy	humidity +-4%RH (Max +-5%RH);		
_	temperature +-2.0Celsius		
Resolution or	humidity 1%RH; temperature 0.1Celsius		
sensitivity			
Repeatability	humidity +-1%RH; temperature +-1Celsius		
Humidity hysteresis	+-1%RH		
Long-term Stability	+-0.5%RH/year		
Sensing period	Average: 2s		
Interchangeability	fully interchangeable		
Dimensions	size 12*15.5*5.5mm		

4. Dimensions: (unit----mm)

5. Typical application

3Pin-NULL, MCU=Microcomputer or single-chip computer

6. Operating specifications:

(1) Power and Pins

Power's voltage should be 3-5.5V DC. When power is supplied to sensor, don't send any instruction to the sensor within one second to pass unstable status. One capacitor valued 100nF can be added between VDD and GND for power filtering.

(2) Communication and signal

Single-bus data is used for communication between MCU and DHT11.

7. Electrical Characteristics:

Item	Condition	Min	Typical	Max	Unit
Power supply	DC	3	5	5.5	V
Current supply	Measuring	0.5		2.5	mA
	Stand-by	100	Null	150	uA
	Average	0.2	Null	1	mA

3