

NATURAL LANGUAGE PROCESSING (NLP)

IA FRAMEWORKS

Brendan Guillouet December 16th, 2019

Institut National des Sciences Appliquées

PLAN DE PRÉSENTATION

Introduction

Nettoyage des données

Vectorisation et Word Embedding

Apprentissage

Réseau de neurones récurrents

DATA SCIENCE TOOLS

INTRODUCTION

NATURAL LANGUAGE PROCESSING

Multiple domaines de recherche et une très grande variété d'applications :

- · Recherche d'information.
 - · Moteur de recherche (Google, Yahoo).
- · Reconnaissance de pattern.
 - · Extraction d'information. Scrawling de page.
- · Analyse de sentiments.
 - · Marketing. Commentaires de sites..
- · Génération automatique de textes.
 - · ChatBot, Article de journaux.
- Traduction automatique.
 - · Google Translate, DeepL.
- · Désambiguïsation.
 - · Sécurité.

EXEMPLE : LA CATÉGORISATION DE PRODUITS

OBJECTIF:

Automatiser la catégorisation des produits dans l'arborescence du site. (Concours Datascience.net https://www.datascience.net/fr/challenge/20/details)

DIFFICULTÉS:

- · Données : textuelles.
 - · Algorithmes d'apprentissage non adaptés.
- · Gérer des gros volumes de données (Big Data) :
 - · dizaines de millions de produits.
- · Données réelles :
 - · étape de nettoyage importante.

LES DONNÉES

Données issues du concours proposé par Cdiscount et disponible sur Datascience.

Fichier d'apprentissage de 15.786.885 produits.

- · 47 Catégories de niveau 1.
- · 536 Catégories de niveau 2.
- · 5789 Catégories de niveau 3.

Champ	Type de données	Description				
Identifiant produit	String	Identifiant unique du produit				
Catégorie 1	String	Catégorie de niveau 1				
Catégorie 2	String	Catégorie de niveau 2				
Catégorie 3	String	Catégorie de niveau 3				
Description	String	Description produit				
Libelle	String	Description courte				
Marque	String	Marque du produit				

Table 1 – Données Cdiscount.

EXEMPLES DE DONNÉES

ie	Marque	escription \$	\$
		*	Categorie1 -
ROZANA		Eau minérale gazeuse - Composition moyenne en	VIN - ALCOOL - LIQUIDES
AUCUNE		AUDIGIER Sweats homme sweat à capuche panther	VETEMENTS - LINGERIE
MUSE		Enceinte portable bluetooth fonction main libr	TV - VIDEO - SON
MOLINEL		Pantalon G-Rok Carbone/Orange Taille L Molinel	TENUE PROFESSIONNELLE
MUZZANO		Coque souple Noire pour GOOGLE NEXUS 4 motif D	TELEPHONIE - GPS
AUCUNE		plug ecarteur coloris rasta - plug carteurcol	TATOUAGE - PIERCING
AUCUNE		Brassière HEATGEAR "ENDURE D" UNDER ARMOUR - M	SPORT (NEW)
AUCUNE		La classique OM PRO. Avec un équipage mobile r	SONO - DJ
AMADEUS		Coffret de naissance - COFFRET DE NAISSANCE p	PUERICULTURE
VELOUTE		Yaourt brassé nature - VELOUTE - Yaourt brassé	PRODUITS FRAIS
VIKUITI		Vikuiti MySafeDisplay Film de protection écran	POINT DE VENTE - COMMERCE - ADMINISTRATION
ABOUT BATTERIES	P	Batterie pour JVC GR-D275 series - Batterie po	PHOTO - OPTIQUE
AUCUNE		Originaire d'Europe et connue depuis des milli	PARAPHARMACIE
AUCUNE		Caisson mobile 2 tiroirs mobilier Optima - Cai	MEUBLE
AUCUNE		couleur : linde - 25m de ruban taffetas uni en	MERCERIE

DIFFICULTÉS

- · Bruits liés aux fautes d'orthographes, aux accords, à la conjugaison.
- · Nombreux termes non significatifs.
- · Termes significatifs/Décision liés au contexte.
- · Traitement différent d'une langue à l'autre.
- Transcription aux outils machine learning.
- ⇒ Étape de pré-traitement des données très importante.

NETTOYAGE DES DONNÉES

RACINISATION (STEMMING)

PROBLÈME: Des termes peuvent-être écrits de différentes façons (accents, conjugaison, genre, pluriels...) et néanmoins avoir le même sens.

SOLUTION: Remplacer les mot par leur racine.

EXEMPLE:

- · épée, épee, epée = epe
- vert, verts, verte, vertes = vert
- mange, manger, mangez, mangent = mang

De nombreux algorithmes différents propre aux langues étudiées Algorithme utilisé : Snowball (Porter)

LES "STOPWORD"

PROBLÈME:

Des termes très usuels, donc non différenciateurs, peuvent perturber l'apprentissage.

SOLUTION:

Lors de l'étape de preprocessing, les mots les plus communs sont supprimés à partir d'une liste de **Stopword** :

```
(["a", "afin", "ai", "ainsi", "après", "attendu", "au", "aujourd", "auquel", "aussi", "autre", "autres", "aux", "auxquelles", "auxquels", "avait", "avant", "avec", "avoir", "c", "cer, "ceci", "celle", "celles", "celui", "cependant", "certain", "certaine", "certaines", "certains", "ces", "cette", "ceux", "chez", "ci",])
```

⇒ Également propre à la langue!

AUTRES ÉTAPE DE NETTOYAGES

La plupart de ces étapes varient en fonction des données et de l'objectif à réaliser.

- · Suppression de la ponctuation.
- · Incrémenter les stopwords avec de la connaissance métier.
- Suppression des caractéristiques numériques (sauf pour les marques) ⇒
 Importance de la connaissance métier!
- · Suppression de code HTML (BeautifulSoup).

ILLUSTRATION - CATÉGORIE "TÉLÉPHONIE - GPS"

ILLUSTRATION - CATÉGORIE "TÉLÉPHONIE - GPS"

LIBRAIRIES POUR LE TRAITEMENT DU LANGAGE (TP)

- · NLTK (Python, Spark): Traitement du langage (racinisation, stopwords, ...).
- Lucène (Java) : Librairie d'indexation et de recherche de texte.
- BeautifulSoup : Suppression des balises HTML.
- Regex : Langage de recherche de texte.

TP - NETTOYAGE DES DONNÉES - PYTHON

On définit une fonction de nettoyage :

```
def clean txt(txt):
    ### remove html stuff
    txt = BeautifulSoup(txt,"html.parser",from encoding='utf-8').get text()
    ### lower case
    txt = txt.lower()
    ### special escaping character '...'
    txt = txt.replace(u'\u2026','.')
    txt = txt.replace(u'\u00a0',' ')
    ### remove accent btw
    txt = unicodedata.normalize('NFD', txt).encode('ascii', 'ignore').decode("utf-8")
    ### remove non alphanumeric char
    txt = re.sub('[^a-z]', ' ', txt)
    ### remove french stop words
    tokens = [w for w in txt.split() if (len(w)>2) and (w not in stopwords)]
    ### french stemming
    tokens = [stemmer.stem(token) for token in tokens]
    ### tokens = stemmer.stemWords(tokens)
    return ' '.join(tokens)
```

que l'on va ensuite appliquer sur chaque description de texte.

TP - NETTOYAGE DES DONNÉES - SPARK

Spark possède des Transformer qui permettent d'appliquer ces transformations.

```
STOPWORDS = set(nltk.corpus.stopwords.words('french'))
# Tokenizer
regexTokenizer = RegexTokenizer(inputCol="description", outputCol="tokenizedDescr",
                pattern="[^a-z ]", minTokenLength=3, gaps=True)
dataTokenized = regexTokenizer.transform(dataEchDF)
# StopWordsRemover q
remover = StopWordsRemover(inputCol="tokenizedDescr".
                            outputCol="tokenizedRemovedDescr".
stopWords = list(STOPWORDS))
dataTokenizedRemoved = remover.transform(dataTokenized)
# Stemmer
STEMMER = nltk.stem.SnowballStemmer('french')
def clean_text(tokens):
    tokens stem = [ STEMMER.stem(token) for token in tokens]
    return tokens stem
udfCleanText = udf(lambda lt : clean text(lt), ArrayType(StringType()))
dataClean = dataTokenizedRemoved.withColumn("cleanDescr".
udfCleanText(col('tokenizedRemovedDescr')))
```

· RegexTokenizer = Regex + Tokenizer.

TP - RÉSULTAT - TEMPS NETTOYAGE

OBJECTIFS ET DIFFICULTÉS

- Transformer la liste de mots sous un format **interprétable** par les différents algorithmes d'apprentissage.
- · Gérer le très grand nombre de features.
 - · Exemple sur 21.543 lignes de la catégorie "TÉLÉPHONIE-GPS"
 - · 24.486 mots uniques -> 8.384 après nettoyage.
- · Choisir des poids significatifs.
- \Rightarrow 2 types de solutions :
 - · Basées sur la fréquence (Vectorizer)
 - · Basées sur l'apprentissage (Word Embedding)

VECTORISATION ET WORD EMBEDDING

VECTORISATION

"la langue française a des règles de grammaire et de conjugaison compliquées"

```
"Ia langue française a des règles de grammaire et de conjugaison compliquées" a conjugaison compliquées de des et française grammaire la langue règles V=11, Taille du dictionnaire
```


•

	"la	langue	française	a	des	règles	de	grammaire	et	de	conjugaison	compliquées"
	1	1	1	1	1	1	1	1	1	1	1	1
a	ര്വ	ര	ര		Ø	ര	ര	Ø	M		ര	Ø
conjugaison	0	0	0	0	0	0	0	0			•	0
compliquées	0	0	0	0	0	0	0	0		0	0	•
de	0	0	0	0	0	0	•	0	0		0	0
des		0	0	0	•	0	0	0		0	0	0
et	0	0	0	0	0	0	0	0		0	0	0
française	0	0	•	0	0	0	0	0		0	0	0
grammaire	0	0	0	0	0	0	0	•	0	0	0	0
la	•	0	0	0	0	0	0	0	0	0	0	0
langue		•	0	0	0	0	0	0				0
règles	6											

V = 11, Taille du dictionnaire

COUNT & BINARY VECTORIZER

	"la	langue f	rançaise	a	des	règles	de	grammaire	et	de c	onjugaison	compliquées"
	1	1	Ţ	1	1	1	1	1	1	1	1	1
a	ര്വ	ര	ര		ര	ര	ര	ര	ര	ര	ത്ര	ത്ര
conjugaison		0	0	0	0	0	0	0	0	0	•	0
compliquées		0	0	0	0	0	0	0	0	0	0	•
de		0	0	0	0	0		0	0	•	0	0
des		0	0	0		0	0	0	0	0	0	0
et		0	0	0	0	0	0	0	•	0	0	0
française	0	0	•	0	0	0	0	0	0	0	0	0
grammaire		0	0	0	0	0	0	•	0	0	0	0
la	•	0	0	0	0	0	0	0	0	0	0	0
langue		•	0	0	0	0	0	0	0	0	0	0
règles	\bigcirc	(c)						6		(c)	6	

V = 11, Taille du dictionnaire

COUNT & BINARY VECTORIZER

TF-IDF

Assigner un score d'importance d'un mot, ou d'une association de mots, dans un document relativement à un ensemble de document.

- t: mot ou association de mot.
- · d: un document.
- D: un ensemble de document.

Definition (Formule Générale TF-IDF)

$$tfidf(t,d) = tf(t,d) \times idf(t,D)$$

- tf(t,d): Term-Frequency Nombre d'occurrence du terme t dans le document d.
- *idf*(*t*, *D*) : *Inverse-Document-Frequency* Mesure l'importance du terme *t* dans l'ensemble des documents *D*.

FORMULE DU TF

Le terme tf(t, d) est généralement défini comme le nombre d'occurrences du terme t dans le document d:

$$tf(t,d) = f_{t,d}$$

Cette définition est celle utilisée dans les librairies *scikit-learn* de *Python* et *Mllib* de *Spark*.

Cependant des variations peuvent exister :

binaire	0,1
normalisation logarithmique	$1 + log(f_{t,d})$
normalisation « 0.5 » par le max	$0.5 + 0.5 imes rac{f_{t,d}}{\max_{t' \in d} f_{t',d}}$
normalisation par le max	$K + (1 - K) \times \frac{f_{t,d}}{\max_{t' \in d} f_{t',d}}$

TABLE 2 – Variante du TF (source wikipedia)

FORMULE DE L'IDF

La formule du terme *IDF* varie également d'une implémentation à l'autre.

$log(\frac{N_D}{DF(t,D)})$	
$log(\frac{N_D+1}{DF(t,D)+1})$	MlLib (Spark)
$\log(\frac{N_D+1}{DF(t,D)+1})+1$	scikit-learn (Python)

TABLE 3 - Variante de l'IDF

- N_D : Nombre de documents.
- · DF(t, D): Nombre de documents dans lequel le terme t apparaît.

PROBLÈME DE DIMENSION

- · Vecteur très creux
- Explosion rapide de la dimension
- Préparation au préalable du dictionnaires. (2 lectures du jeu de données).

HASHAGE [WEINBERGER ET AL., 2009]

Vectoriser les descriptions tout en réduisant l'espace de stockage.

$$X \Rightarrow Q$$

Vecteur de taille *V* du dictionnaire et inconnu à l'avance.

Vecteurs de tailles fixes. Taille fixé à l'avance : **n_hash**.

- Une seule passe sur les données pour construire le vecteur (Fonction deterministe).
- Produit vectoriel non biaisé : $\mathbb{E}[\langle \varphi(x), \varphi(x') \rangle] = \langle x, x' \rangle$.

HASHAGE [WEINBERGER ET AL., 2009]

Definition (Fonction de hashage - 1)

$$h: \mathbb{N} \to \{1, \dots, n_hash\}$$

 $i \mapsto j = h(i).$

Definition (Fonction de hashage - 2)

$$\xi \colon \mathbb{N} \to \{1, -1\}$$

 $i \mapsto j = \xi(i).$

Definition (Hashed Feature Map)

$$\phi_j^{\xi,h}(x) = \sum_{i \text{ s.t.} h(i)=j} \xi(i) x_i$$

HASHAGE [WEINBERGER ET AL., 2009]

APPRENTISSAGE ET APPLICATION DE LA VECTORISATION

- Les fonctions de **Hashage** puis de **TF-IDF** sont appliquées sur le jeu de données d'apprentissage.
- · La même fonction de **Hashage** est utilisée sur le jeu de données test.
- Les termes de TF entre un mot t et un document d sont recalculés pour le jeu de données test
- · Les termes d'IDF calculés lors de l'apprentissage sont réutilisés.

N-GRAMS

PROBLÉMATIQUE:

Certains mots n'ont pas le même sens en fonction du contexte.

• Short de bain \neq Short \neq bain

SOLUTION:

On ne considère pas que les mots uniques (unigram) mais les couples de mots (bigram), ou toutes associations de n mots (n-gram).

- · Résout les ambiguïté du langage.
- · Explosion de la taille des vecteurs
 - · Exemple sur 21.543 lignes de la catégorie "TELEPHONIE-GPS"
 - 8.384 unigram, 50.012 bigram, 90.854 trigram...

VECTORISATION ET WORD EMBEDDING

WORD EMBEDDING

MOTIVATIONS

PROBLÈME de la représentation précédente :

Pas de relation entre les mots.

REPRÉSENTATION SOUHAITÉE :

	Man	Woman	King	Queen	Apple	Orange
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97

⇒ Comment construire cette représentation?

Youtube: Recurrent Neural Networks (RNNs) by Andrew NG [Full Course] Playlist

WORD2VEC - GÉNÉRALITÉS

- · Pas de fonction d'activation (ou activation linéaire) sur la couche cachée.
- · La fonction de *loss* est la log-vraissemblance d'un mot sachant son contexte :

$$E = -log(p(Y_j/X_i))$$
 avec :

$$p(Y_j/X_i) = \frac{exp(W_{i,:} \cdot W'_{:,j})}{\sum_{k=1}^{V} exp(W_{k,:} \cdot W'_{:,j})}$$

- · 2 Versions
 - · Continuous Bag of Word (CBOW)
 - Skip-gram

WORD2VEC - SKIP-GRAM

input	output		
la	langue, française		
langue	la, française, a		
français	la, langue, a, des e		
а	langue, française, des, règles		
des	française, a, règles, de		
règles	a, des, de, grammaire		
de	des, règles, grammaire, compliquées		
grammaire	règles, de, compliquées		
compliquées	de, grammaire		

WORD2VEC - SKIP-GRAM

WORD2VEC - CONTINUOUS BAG OF WORDS (CBOW)

input	output	
langue, française	la	
la, française, a	langue	
la, langue, a, des	française	
langue, française, des, règles	а	
française, a, règles, de	des	
a, des, de, grammaire	règles	
des, règles, grammaire, compliquées	de	
règles, de, compliquées	grammaire	
de, grammaire	compliquées	

WORD2VEC - CONTINUOUS BAG OF WORDS (CBOW)

NEGATIVE SAMPLING - MIKOLOV ET AL. [2013B]

· Fonction d'activation par défaut : Softmax

$$p(Y_{j}/X_{i}) = \frac{exp(W_{i,:} \cdot W'_{:,j})}{\sum_{k=1}^{V} exp(W_{k,:} \cdot W'_{:,j})}$$

Chaque neurones est mis à jour à chaque itération.

 Fonction d'activation avec le negative sampling :

$$p(T = 1, /Y_j, X_i) = \frac{1}{1 - exp(W_{i,:} \cdot W'_{:,j})}$$

Nombre limité de neurones mis à jour à chaque itération.

input	output	target	
française	langue	1	
française	mobylette	0	
française	caramel	0	
française	pudding	0	
française	bateau	0	

PROPRIÉTÉS

е	Man	Woman	King	Queen	Apple	Orange
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97

$$e_{king} - e_{man} + e_{woman} = e_{pred} \approx e_{queen}$$

$$\begin{pmatrix} -0.95 \\ 0.93 \\ 0.7 \\ 0.02 \end{pmatrix} - \begin{pmatrix} -1 \\ 0.01 \\ 0.03 \\ 0.04 \end{pmatrix} + \begin{pmatrix} 1 \\ 0.02 \\ 0.02 \\ 0.01 \end{pmatrix} = \begin{pmatrix} 1.05 \\ 0.94 \\ 0.69 \\ -0.01 \end{pmatrix} \approx \begin{pmatrix} 0.97 \\ 0.95 \\ 0.69 \\ 0.01 \end{pmatrix}$$

OTHER EMBEDDINGS

- Glove
- FastText

TP - Vectorisation - Python

Fonctions de hash et de tf-idf séparées.

```
def vectorizer_train(df, columns=['Description', 'Libelle', 'Marque'], nb_hash=10000,
stop words=None):
   #HASH
   # La fonction de FeatureHasher prend en compte le nombre d'apparition de chaque
   #mot.
   df text = map(lambda x : collections.Counter(" ".join(x).split(" ")).
   df[columns].values)
   feathash = FeatureHasher(nb hash)
   data_hash = feathash.fit_transform(map(collections.Counter,df_text))
   # TETDE
   vec = TfidfVectorizer(min df = 1.stop words = stop words.smooth idf=True.
   norm='l2', sublinear_tf=True,use_idf=True, ngram_range=(1,2)) #bi-grams
   tfidf = vec.fit transform(data hash)
   return vec. feathash, tfidf
def apply vectorizer(df. vec. columns =['Description', 'Libelle', 'Marque'].
   feathash):
   df text = map(lambda x : collections.Counter(" ".join(x).split(" ")).
   df[columns].values)
```

TP - VECTORISATION - SPARK

Fonctions de *hash* et de *tf* sont combinées dans un TRANFORMER, et la fonction *idf* dans un second.

```
# Term Frequency
hashing_tf = HashingTF(inputCol="cleanDescr", outputCol='tf', numFeatures=10000)
trainTfDF = hashing_tf.transform(trainDF)

# Inverse Document Frequency
idf = IDF(inputCol=hashing_tf.getOutputCol(), outputCol="tfidf")
idf_model = idf.fit(trainTfDF)
trainTfIdfDF = idf_model.transform(trainTfDF)

# application à l'échantillon test
testTfDF = hashing_tf.transform(testDF)
testTfIdfDF = idf_model.transform(testTfDF)
```


LA RÉGRESSION LOGISTIQUE

- · Par défaut, scikit-learn, MlLib utilisent des algorithmes "one-vs-all"
- · Dans scikit-learn différents solver sont disponible (liblinear, LBFGS, sag...).

SOLUTION GAGNANTES

- Les 4 meilleures solutions ont utilisées des méthodes linéaires Goutorbe et al. [2016]
- · Soltutions à pluisieurs niveaux.
 - · On classifie parmi les 1ère catégories..
 - · ...puis parmi les catégories de niveau 4
- Implémentation de la solution N°2 disponible : https://github.com/ngaude/cdiscount

TP - PIPELINE - SPARK

Cunnting do mingling

Possibilité de combiner les étapes dans un PIPELINE.

```
# Regex + Tokenizer
regexTokenizer = RegexTokenizer(inputCol="description", outputCol="tokenizedDescr",
pattern="[^a-z ]", minTokenLength=3, gaps=True)
# StopWord
remover = StopWordsRemover(inputCol="tokenizedDescr", outputCol="stopTokenizedDescr",
stopWords = list(STOPWORDS))
# Stemmer
stemmer = MvNltkStemmer(inputCol="stopTokenizedDescr", outputCol="cleanDescr")
# Indexer
indexer = StringIndexer(inputCol="categorie1", outputCol="categoryIndex")
# Hasing
hashing tf = HashingTF(inputCol="cleanDescr", outputCol='tf', numFeatures=10000)
# Inverse Document Frequency
idf = IDF(inputCol=hashing tf.getOutputCol(). outputCol="tfidf")
#Logistic Regression
lr = LogisticRegression(maxIter=100, regParam=0.01, fitIntercept=False.
family = "multinomial", tol=0.0001, elasticNetParam=0.0,
featuresCol="tfidf". labelCol="categoryIndex")
```

TP - PIPELINE - SPARK

Définition d'un Transformer personnalisé.

```
class MyNltkStemmer(Transformer, HasInputCol, HasOutputCol):
    akeyword only
    def __init__(self, inputCol=None, outputCol=None):
        super(MyNltkStemmer, self).__init__()
        kwargs = self. input kwargs
        self.setParams(**kwargs)
    akevword only
    def setParams(self, inputCol=None, outputCol=None):
        kwargs = self._input_kwargs
        return self. set(**kwargs)
    def _transform(self, dataset):
        STEMMER = nltk.stem.SnowballStemmer('french')
        def clean text(tokens):
            tokens stem = [ STEMMER.stem(token) for token in tokens]
            return tokens stem
        udfCleanText = udf(lambda lt : clean_text(lt), ArrayType(StringType()))
        out col = self.getOutputCol()
        in col = dataset[self.getInputCol()]
        return dataset.withColumn(out col, udfCleanText(in col))
```

TP - RÉSULTAT - ERREUR PRÉDICTION

TP - RÉSULTAT - TEMPS VECTORIZATION

MOTIVATIONS

De nombreux problèmes de NLP nécessitent de représenter les données sous forme de séquences.

type	X	у
Generation	empty,scalar	text sequence
de texte	Ø, 1, 2	Ceci est généré automatiquement
Classification	text sequence	int
de sentiment	C'était bien mais pas top	2(/5)
Traduction	text sequence	text sequence
automatique	Comment tu vas?	How are you?
Reconnaissance	text sequence	scalar vector
d'entité	Harry Potter est un sorcier	[1, 1, 0, 0, 0]

MOTIVATIONS

MOTIVATIONS

Les réseaux de neurones "classiques" ne sont pas adaptés.

MOTIVATION

- · Taille des séquences différente d'un exemple à l'autre
- · Information entre variable (leur position) n'est pas partagé

- $x_t : 1 \times V$, (OHE representation)
- · V : Taille du dictionnaire
- $y_t : 1 \times 1, (0/1)$
- $a_t: 1 \times H$
- *H* : Nombre de neurones
- N : Nombre de pas de temps (Timestep) (≠ Nombre de couches!)

$$a_t = g_a(a_{t-1} + x_t + b_a)$$

$$\hat{y}_t = g_y(a_t + b_y)$$

- g_a : Fonction d'activation: tanh/ReLu
- g_y : Fonction d'activation: Sigmoïd

- $x_t : 1 \times V$, (OHE representation)
- · V : Taille du dictionnaire
- $y_t : 1 \times 1, (0/1)$
- $a_t: 1 \times H$
- *H* : Nombre de neurones
- N : Nombre de pas de temps (Timestep) (≠ Nombre de couches!)

$$a_t = g_a(a_{t-1}W_{aa} + x_t + b_a)$$

$$\hat{y}_t = g_y(a_t + b_y)$$

- g_a : Fonction d'activation: tanh/ReLu
- g_y : Fonction d'activation : **Sigmoïd**
- $W_{aa}: H \times H, \forall t \in [1, \cdots, n]$

- $x_t : 1 \times V$, (OHE representation)
- · V : Taille du dictionnaire
- $y_t : 1 \times 1, (0/1)$
- $a_t: 1 \times H$
- · H : Nombre de neurones
- N : Nombre de pas de temps (Timestep) (≠ Nombre de couches!)

$$a_t = g_a(a_{t-1}W_{aa} + x_t \mathbf{W}_{\mathbf{x}a} + b_a)$$

$$\hat{y}_t = g_y(a_t + b_y)$$

- g_a : Fonction d'activation: tanh/ReLu
- g_y : Fonction d'activation : Sigmoïd
- $W_{aa}: H \times H, \forall t \in [1, \cdots, n]$
- $W_{xa}: V \times H, \forall t \in [1, \cdots, n]$

- $x_t : 1 \times V$, (OHE representation)
- · V : Taille du dictionnaire
- $y_t : 1 \times 1, (0/1)$
- $a_t: 1 \times H$
- · H: Nombre de neurones
- N : Nombre de pas de temps (Timestep) (≠ Nombre de couches!)

$$a_t = g_a(a_{t-1}W_{aa} + x_t \mathbf{W}_{xa} + b_a)$$

$$\hat{y}_t = g_y(a_t W_y + b_y)$$

- g_a : Fonction d'activation: tanh/ReLu
- g_y : Fonction d'activation: Sigmoïd
- $W_{aa}: H \times H, \forall t \in [1, \dots, n]$
- $W_{xa}: V \times H, \forall t \in [1, \dots, n]$
- $W_y: H \times 1, \forall t \in [1, \cdots, n]$

- $x_t : 1 \times V$, (OHE representation)
- · V : Taille du dictionnaire
- $y_t : 1 \times 1, (0/1)$
- $a_t: 1 \times H$
- · H: Nombre de neurones
- N : Nombre de pas de temps (Timestep) (≠ Nombre de couches!)

$$a_{t} = g_{a}(a_{t-1}W_{aa} + x_{t}W_{xa} + b_{a})$$

$$= g_{a}([a_{t-1}, x_{t}]) \begin{bmatrix} W_{aa} \\ W_{wa} \end{bmatrix} + b_{a})$$

$$= g_{a}([a_{t-1}, x_{t}]W_{a} + b_{a})$$

$$\hat{y}_{t} = g_{y}(a_{t}W_{y} + b_{y})$$

- g_a : Fonction d'activation: tanh/ReLu
- g_y : Fonction d'activation : **Sigmoïd**
- $W_{aa}: H \times H, \forall t \in [1, \cdots, n]$
- $W_{xa}: V \times H, \forall t \in [1, \dots, n]$
- $W_{y}: H \times 1, \forall t \in [1, \dots, n]$
- $W_a: (H+V) \times H, \forall t \in [1, \dots, n]$

RNN - NOTATIONS - GÉNÉRATION DE TEXTE (APPRENTISSAGE)

$$a_t = g([a_{t-1}, x_t]W_a + b_a)$$

$$y_t = g_y(a_tW_y + b_y)$$

- $x_t : 1 \times V$. (OHE representation)
- · V : Taille du dictionnaire
- $\hat{y}_t, y_t : 1 \times V$, (OHE representation)
- $a_t: 1 \times H$
- · H: Nombre de neurones
- N : Nombre de pas de temps (Timestep)
 (≠ Nombre de couches!)
- g_a : Fonction d'activation: tanh/ReLu
- g_a : Fonction d'activation: Softmax
- $W_y: H \times V$, $\forall t \in [1, \dots, n]$
- · $W_a: (H+V) \times H, \forall t \in [1, \cdots, n]$

RNN UNIT

$$a_t = tanh([a_{t-1}, x_t]W_a + b_a)$$

$$\hat{y}_t = softmax(a_tW_y + b_y)$$

DIFFERENT TYPE OF RNN

ONE TO MANY Génération de texte

MANY TO MANY Reconnaissance d'entité

Sentiment classification

MANY TO MANY Traduction automatique

PROBLÈME : Dépendence à long terme :

The cat, which already ate ..., was full.

PROBLÈME: Dépendence à long terme:

The cat, which already ate ..., was full.

The cats, which already ate ..., were full.

PROBLÈME: Dépendence à long terme:

The cat, which already ate ..., was full.

The cats, which already ate ..., were full.

Difficile de retropoprager le gradient

PROBLÈME: Dépendence à long terme:

The cat, which already ate ..., was full.

The cats, which already ate ..., were full.

Difficile de retropoprager le gradient

$$c_t = \text{memory cell}$$
 $c_t = a_t$

$$\hat{y}_t = softmax(c_t W_y + b_y)$$

$$c_t = \text{memory cell}$$
 $c_t = a_t$
 $\Gamma_r = \sigma([c_{t-1}, x_t]W_r + b_r)$
 $\tilde{c_t} = tanh([\Gamma_r * c_{t-1}, x_t]W_c + b_c)$
 $\hat{v_t} = softmax(c_tW_v + b_v)$

$$c_t = \text{memory cell}$$
 $c_t = a_t$
 $\Gamma_r = \sigma([c_{t-1}, x_t]W_r + b_r)$
 $\tilde{c_t} = tanh([\Gamma_r * c_{t-1}, x_t]W_c + b_c)$

$$\hat{y}_t = softmax(c_t W_y + b_y)$$

$$\begin{split} c_t &= \text{memory cell} \\ c_t &= a_t \\ \Gamma_r &= \sigma([c_{t-1}, x_t]W_r + b_r) \\ \tilde{c}_t &= tanh([\Gamma_r * c_{t-1}, x_t]W_c + b_c) \\ \Gamma_u &= \sigma([c_{t-1}, x_t]W_u + b_u) \\ c_t &= \Gamma_u * \tilde{c}_t + (1 - \Gamma_u) * c_{t-1} \\ \hat{y}_t &= softmax(c_tW_y + b_y) \end{split}$$

$$\begin{split} c_t &= \text{memory cell} \\ c_t &= a_t \\ \Gamma_r &= \sigma([c_{t-1}, x_t]W_r + b_r) \\ \tilde{c}_t &= tanh([\Gamma_r * c_{t-1}, x_t]W_c + b_c) \\ \Gamma_u &= \sigma([c_{t-1}, x_t]W_u + b_u) \\ c_t &= \Gamma_u * \tilde{c}_t + (1 - \Gamma_u) * c_{t-1} \\ \hat{y}_t &= softmax(c_tW_y + b_y) \end{split}$$

$$c_{t} = \text{memory cell}$$

$$c_{t} = a_{t}$$

$$\Gamma_{r} = \sigma([c_{t-1}, x_{t}]W_{r} + b_{r})$$

$$\tilde{c}_{t} = tanh([\Gamma_{r} * c_{t-1}, x_{t}]W_{c} + b_{c})$$

$$\Gamma_{u} = \sigma([c_{t-1}, x_{t}]W_{u} + b_{u})$$

$$c_{t} = \Gamma_{u} * \tilde{c}_{t} + (1 - \Gamma_{u}) * c_{t-1}$$

$$\hat{y}_{t} = softmax(c_{t}W_{y} + b_{y})$$

the cats which already ate ... were full
$$c_1^i = 0$$
 $c_2^i = 1$ $c_3^i = 1$ $c_4^i = 1$ $c_5^i = 1$... $c_{n-1}^i = 1$ $c_n^i = 0$ $\Gamma_u^i = 0$ $\Gamma_u^i = 1$ $\Gamma_u^i = 0$ $\Gamma_u^i = 0$ $\Gamma_u^i = 0$... $\Gamma_u^i = 1$ $\Gamma_u^i = 0$

Cola's Blog

$$c_t = \text{memory cell}$$

 $c_t \neq a_t$

$$\hat{y}_t = softmax(a_tW_y + b_y)$$

Cola's Blog

$$c_t = \text{memory cell}$$
 $c_t \neq a_t$
 $\tilde{c_t} = tanh([a_{t-1}, x_t]W_a + b_a)$

$$\hat{y}_t = softmax(a_tW_y + b_y)$$

Cola's Blog

$$c_t = \text{memory cell}$$
 $c_t \neq a_t$ $\tilde{c}_t = tanh([a_{t-1}, x_t]W_a + b_a)$

$$\hat{y}_t = softmax(a_tW_y + b_y)$$

Cola's Blog

$$c_t = \text{memory cell}$$
 $c_t \neq a_t$
 $\tilde{c}_t = tanh([a_{t-1}, x_t]W_a + b_a)$
 $\Gamma_u = \sigma([a_{t-1}, x_t]W_u + b_u)$
 $\Gamma_f = \sigma([a_{t-1}, x_t]W_u + b_f)$
 $c_t = \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1}$
 $\hat{y}_t = softmax(a_tW_v + b_v)$

Cola's Blog

$$c_t = \text{memory cell}$$
 $c_t \neq a_t$
 $\tilde{c}_t = tanh([a_{t-1}, x_t]W_a + b_a)$
 $\Gamma_u = \sigma([a_{t-1}, x_t]W_u + b_u)$
 $\Gamma_f = \sigma([a_{t-1}, x_t]W_u + b_f)$
 $c_t = \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1}$

 $\hat{y}_t = softmax(a_tW_v + b_v)$

Cola's Blog

$$\begin{split} c_t &= \text{memory cell} \\ c_t &\neq a_t \\ \tilde{c}_t &= tanh([a_{t-1}, x_t]W_a + b_a) \\ \Gamma_u &= \sigma([a_{t-1}, x_t]W_u + b_u) \\ \Gamma_f &= \sigma([a_{t-1}, x_t]W_u + b_f) \\ c_t &= \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1} \\ \Gamma_o &= \sigma([a_{t-1}, x_t]W_r + b_o) \\ a_t &= \Gamma_o * tanh(c_t) \\ \hat{y}_t &= softmax(a_tW_y + b_y) \end{split}$$

Cola's Blog

$$\begin{split} c_t &= \text{memory cell} \\ c_t &\neq a_t \\ \tilde{c}_t &= tanh([a_{t-1}, x_t]W_a + b_a) \\ \Gamma_u &= \sigma([a_{t-1}, x_t]W_u + b_u) \\ \Gamma_f &= \sigma([a_{t-1}, x_t]W_u + b_f) \\ c_t &= \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1} \\ \Gamma_o &= \sigma([a_{t-1}, x_t]W_r + b_o) \\ a_t &= \Gamma_o * tanh(c_t) \\ \hat{y}_t &= softmax(a_tW_y + b_y) \end{split}$$

PROBLÈME: Fin de la phrase explique le début.

EXEMPLE : Reconnaissance d'entité (Nom) : Hollande était le président de la France.

PROBLÈME: Fin de la phrase explique le début.

EXEMPLE : Reconnaissance d'entité (Nom) : Hollande était le président de la France.

PROBLÈME: Fin de la phrase explique le début.

EXEMPLE : Reconnaissance d'entité (Nom) : Hollande était le président de la France.

PROBLÈME: Fin de la phrase explique le début.

EXEMPLE : Reconnaissance d'entité (Nom) : Hollande était le président de la France.

PROBLÈME: Fin de la phrase explique le début.

EXEMPLE: Reconnaissance d'entité (Nom):

Hollande était le président de la France.

DEEP RNN

$$\begin{aligned} a_{L1,t} &= tanh([a_{L1,t-1},x_t]W_{L1,a} + b_{L1,a}) \\ a_{Li,t} &= tanh([a_{Li,t-1},a_{Li-1,t}]W_{Li,a} + b_{Li,a}), \forall i > 1 \\ \hat{y}_t &= softmax(a_{L3,t}W_y + b_y) \end{aligned}$$

EXEMPLE: GÉNÉRATION DE TEXTE

x = Pour apple iphone 4 : coque bumper silicone blanc - Cet étui en silicone rigide...

$$X = [X_1, X_2, X_3, X_4, ..., X_n]$$

 $X = [start, OHE(P), OHE(O), OHE(u), ..., END]$
 $Vocabulary = [a, \dots, z, A, \dots, z, 0, \dots, 0, ..., ?, ; ..., !, \dots]$

Apprentissage

3 parties:

- · CATÉGORISATION: NETTOYAGE, VECTORISATION ET APPRENTISSAGE.
 - Part1-1-AIF-PythonNltk-Explore&CleanText-Cdiscount.ipynb
 - Part1-2-AIF-PythonNltkGensim-FeatureExtraction-Cdiscount.ipynb
 - Part1-3-AIF-PythonScikitLearn-Prediction-Cdiscount.ipynb
- · CATEGORISATION: WORKFLOW COMPLET PYTHON/PYSPARK.
 - Part2-1-AIF-PythonWorkflow-Cdiscount.ipynb
 - Part2-2-AIF-PysparkWorkflow-Cdiscount.ipynb
 - Part2-2bis-AIF-PysparkWorkflowPipeline-Cdiscount.ipynb
- · RNN : GÉNÉRATION DE TEXTE.
 - Part3-AIF-PythonKeras-TextGeneration-Cdiscou.ipynb

RÉFÉRENCES

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. *arXiv preprint arXiv*:1409.1259, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv* preprint arXiv:1412.3555, 2014.

REFERENCES II

- Bruno Goutorbe, Yang Jiao, Matthieu Cornec, Christelle Grauer, and Jérémie Jakubowicz. A large e-commerce data set released to benchmark categorization methods. 2016.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):1735–1780, 1997.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *arXiv preprint arXiv*:1301.3781, 2013a.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

 Distributed representations of words and phrases and their compositionality.

 In Advances in neural information processing systems, pages 3111–3119, 2013b.

REFERENCES III

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 1113–1120. ACM, 2009.