Übungen zur Linearen Algebra I 3. Übungsblatt

Abgabe bis zum 7.11.19, 9:15 Uhr

Aufgabe 1 (1+1+1+3 Punkte). Eine Permutation $\sigma \in \mathfrak{S}_n$ heißt Zyklus, wenn es $d \ge 2$ und paarweise verschiedene Zahlen $a_1, \ldots, a_d \in \{1, \ldots, n\}$ gibt, sodass

$$\sigma(a) = \begin{cases} a_1 & \text{falls } a = a_d \\ a_{j+1} & \text{falls } a = a_j \text{ mit } j < d, \\ a & \text{falls } a \notin \{a_1, \dots, a_d\}. \end{cases}$$

Wir schreiben dann auch $\sigma=(a_1,a_2,\ldots,a_d)$ und nennen d die Länge des Zyklus.

- (a) Schreiben Sie die Permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \in \mathfrak{S}_5$ auf zwei verschiedene Weisen als Produkt von Zyklen.
- (b) Zeigen Sie, dass die Länge eines Zyklus wohldefiniert ist, d. h. aus $(a_1, \ldots, a_d) = (b_1, \ldots, b_e)$ folgt d = e.
- (c) Sei σ ein Zyklus der Länge d. Wie viele verschiedene Darstellungen der Form $\sigma = (a_1, \dots, a_d)$ gibt es?
- (d) Zeigen Sie mittels vollständiger Induktion, dass sich jedes Element der \mathfrak{S}_n als Produkt von Zyklen der Länge zwei schreiben lässt. (Per Konvention ist in einer Gruppe das leere Produkt gleich ihrem neutralen Element. In der $\mathfrak{S}_1 = \{e\}$ gibt es zwar keine Zyklen der Länge zwei, aber ihr einziges Element ist dennoch das Produkt über diese. Das zeigt den Fall n = 1.)

Aufgabe 2 (3+3) Punkte). Sei G eine endliche Gruppe und H eine Untergruppe. Zeigen Sie:

- (a) #gH = #H für alle $g \in G$.
- (b) $\#G = \#H \cdot \#(G/H)$.

Aufgabe 3 (4 + 2 Punkte). Sei R ein (nicht notwendig kommutativer, nicht notwendig unitärer) Ring. Es gelte $x^2 = x$ für alle $x \in R$. Zeigen Sie:

- (a) R ist kommutativ.
- (b) Ist R ein Körper, so besteht R aus genau zwei Elementen.

Aufgabe 4 (2 + 1 + 3 Punkte). Es sei $d \in \mathbb{Z}$. Auf der Menge $K_d = \mathbb{Q} \times \mathbb{Q}$ definieren wir + und durch

$$(a_0, a_1) +_{K_d} (b_0, b_1) = (a_0 + b_0, a_1 + b_1)$$

und

$$(a_0, a_1) \cdot_{K_d} (b_0, b_1) = (a_0b_0 + a_1b_1d, a_1b_0 + a_0b_1).$$

- (a) Zeigen Sie, dass mit diesen Verknüpfungen K_d ein kommutativer Ring mit Eins ist. (Wieso muss man nicht nachrechnen, dass $(K_d, +_{K_d}, (0, 0))$ eine abelsche Gruppe ist?)
- (b) Zeigen Sie, dass $\iota \colon \mathbb{Q} \to K_d, x \mapsto (x,0)$ ein injektiver unitärer Ringhomomorphismus ist und dass die Gleichung $X^2 \iota(d) = 0$ eine Lösung in K_d besitzt.
- (c) Zeigen Sie die Äquivalenz folgender Aussagen:
 - (i) Mit diesen Verknüpfungen ist K_d ein Körper.
 - (ii) Sind $a, b \in K_d$, so folgt aus $a \cdot_{K_d} b = 0$, dass a = 0 oder b = 0 gilt.
 - (iii) Die Gleichung $X^2 d = 0$ hat keine Lösung in \mathbb{Q} .