

Graph

A network

1

can be physical - eg- social media connections, connection of computers, electrical circuit, flight paths, maps.

Social media connection

connection of computers

Electrical circuit

Flight paths

Maps

A graph is a non linear data structure consisting of vertices and edges.

A graph will have let of vertices (V) and set of edges (E). A graph can be denoted G(V,E).

components of a graph -

1. Vertices (V)

Can also be known as nodes

L

Can be labelled [unlabelled].

2. Edges (E)

line Asc

Lon be labelled unlabelled

Types of graphs -

In this there will be no edges in the graph.

2. Trivial graph

Graph having single vertex

L

Also known as smallest graph

possible.

A

3. Undirected graph

A graph in which edges will not

have any direction.

4. Directed graph

In this edges will have direction.

5. Connected graph

A graph in which from one nade you can go to any other node.

6. Disconnected graph

A graph in which atleast one node is not reachable from a node.

7. Regular graph

The graph in which the degree of every verten is equal to k is called as a k-regular graph.

Degree of verten A = 2

" " B = 2

" " c = 2

" " <u>"</u> = 2

2-Regular graph

8. Complete graph

In this from each node there is an edge to each other node.

9. Cycle graph

Those graphs where degree of every

verter is 2.

10. Cyclic graph

A graph consisting of atteact one

cycle.

11. Directed acydic graph

Directed graph having no cycles.

12. Bipartite graph

A graph in which we will be dividing vertices into two sets such that vertex in one set will not be containing edges within the same set.

13. weighted geaph

A graph in which edges are specified with a suitable weight.

Trees are restricted types of graph, just with some rules.

Every tree will always be a graph but not all graphs will be trees.

dinked list, heaps and trees are special cases of graphs.

Tree

Graph

Representation of graphs

There are 2 ways to store graphs -

- -) Adjacency matrix
- -> Adjacency list

Adjacency modrin

Graph is represented in the form of a 2D matrix where rows and columns denote vertices.

	0	l	2	3
ס 1	0	١	l	0
1	١	0	1	0
2	١	1	0	1
3	0	0	I	0

Adjacency List

In this graph is represented as collection of linked list.

Basic operations on graph

- 1. Insertion of a node edge in the graph.
- 2. Deletion of a node edge in the graph.
- 3. Seach on graph
- 4. traversal of graph.

DFS (Depth first seach) of a graph

$$\begin{bmatrix}
0 \to 1 & 1 \to 3 & 3 \to 3 \\
1 \to 2 & 0 \to 2 & 2 \to 1
\end{bmatrix}$$

DFS = 0, 1, 2, 3

Topological sorting

tinear ordering of vertices such that if there is an edge 'u or' where 'u' appears before 'v' in the ordering.

Note -

Topological sorting is only possible for DAG - Directed Acyclic Graph

U - V

Con this relation we need a

for this relation we need a directed graph

using DFS

visited 0 1 2 3 4 5 F F F F F F F T T T T T T T

Adjacent nedes

i= 2

Stack

pof off all elements

Topological ordering

the queue

Reduce in degree by I for the adjacent

Detect cycle in a directed graph

Given root of the graph, check whether the graph contains cycle or not.

Eg-

Another eg-

To detect a cycle in a graph we will use DFS technique based upon the idea that a graph will have cycle if it contains back edge in graph.

That node which points to previous

Steps-

- 1. Create a recursive off function which will have parameters current node, visited array and recursion stack.
- d. Mark the current node as insited and also mark the index in the recursion stack.
- 3. Theate a loop for all the vertices, and for each vertex call a recursive

function to check if the node is already visited or not. -

(1) In the recursive call, find the adjacent verter which is not yet visited -

If the adjacent vertex is already marked then return true.

Otherwise call a recursive function on that adjacent vertex.

- (ii) while returning from the recursion call, unmark the current node to represent current node is not a part of the tracing path.
- 4. If any of the function call returns the then stop all the future

function calls and return true.

visited PFFF

Ree stack FFFF

T T T

Adj nodes $0 \rightarrow 1, 2$ $1 \rightarrow 2, 3$ $2 \rightarrow 0$

 $3 \rightarrow X$

0 - Atready visited

Lycle detected

Dijkstra algorithm

Given a graph and a source verter in the graph, find shortest path from source to all the vertices in the given graph.

Source = 0

0 to 2 =
$$|2(0 \rightarrow 1 \rightarrow 2)$$

" 0 to 3 = 19
$$(0 \rightarrow 1 \rightarrow 2 \rightarrow 3)$$

" 0 to
$$S = \{ (0 \rightarrow 7 \rightarrow 6 \rightarrow 5) \}$$

" 0 to 6 = 9
$$(077 \rightarrow 6)$$

" " 0 to
$$7 = 8 (0 \rightarrow 7)$$

" o to
$$\ell = 14 \quad (0 \rightarrow 1 \rightarrow 2 \rightarrow 8)$$

output

Minimum Spanning Tree (MST)

MST is a spanning tree that has

minimum weight among all the spanning

kruskal's Algo

used to find MS7 of a weighted

graph.

trees.

- 1. Sort all the edges in the increasing order of their weights.
- 2. Pick the smallest edge, and then check if it forms a cycle or not. If it forms a cycle or not. If it forms a cycle then discard it, otherwise include.
- 3. Repeat step no 2 unless we have (V-1) edges in the spanning tree.

No of edges in MST =
$$(V-1)$$

weight	Source	destination	~
1	7 8	6	✓
2	8	2	/
2	b	5	/
2 2 4	Ø	1	✓
4	2	5	V
6	&	6	x cycle
7	2	3	V
7	7	8	x cycle
8	Ø	7	✓
8	l	2_	x cycle
9	3	4	
lo	5	4	x cycle
11	1	٦	x cycle
14	3	5	× cycle

Prin's Algorithm

weed to find MST of a directed

graph.

Steps-

- 1. Determine a verten as the starting vertex.
- 2. Find edge connecting to the other vertices.
- 3. Find the minimum edge out of all options.
- 4. Add the chosen edge in the MST, also determine that it does not form a cycle, if it forms a cycle then discord it, otherwise include it.
- 5. Repeat steps 2-4 till there are all the vertices included in the MST.

6. Return the MST and enit.

Cost of MST =
$$9 + 8 + 1 + 2 + 4 + 2 + 7 + 9$$

$$= 37$$