

BEANIE HAT 2022 - 2023

I	Aı	.GÈBRE
1	GROUPES	9
2	Anneaux	19
	I	NDEX

1	Groupes	
I	GROUPES, SOUS-GROUPES ET MORPHISMES	9
II	Le groupe $\mathbb{Z}/n\mathbb{Z}$	12
III	Ordre d'un élément	14
IV	Groupes monogènes et cycliques	15
V	Sous-groupe engendré par une partie	17
2	Anneaux	
Ι	Anneaux	19
II	L'anneau $\mathbb Z$	23
III	L'anneau $\mathbb{Z}/n\mathbb{Z}$	25
III IV	L'Anneau $\mathbb{Z}/n\mathbb{Z}$ Compléments hors-programme	25 29

I. Groupes, sous-groupes et morphismes

1. GROUPES

DÉFINITION: GROUPE

Soit *G* un ensemble non vide. Soit * une loi de composition interne sur *G*, c'est-à-dire

$$*: \left| \begin{array}{ccc} G \times G & \to & G \\ (a,b) & \mapsto & a \times b \end{array} \right|$$

On dit que (G, *) est un **groupe** si

- * est associative
- * possède un neutre e_G , c'est-à-dire un élément tel que

$$\forall g \in G, g * e_G = e_g * g = g$$

En ce cas, e_G est unique. On l'appelle le neutre de (G, *).

• Tout élément de G possède un symétrique pour *, c'est-à-dire

$$\forall g \in G, \exists h \in G, g * h = h * g = e_G$$

De plus, un tel symétrique est unique. On l'appelle le symétrique de G et on le note $h = g^{-1}.$

• On a aussi

$$\forall g_1, g_2 \in G, (g_1 * g_2)^{-1} = g_2^{-1} * g_1^{-1}$$

• Si de plus * est commutative, on dit que (G, *) est un groupe abélien ou commuta-

Exemple:

$$3 \cdot g = g + g + g$$
$$-2 \cdot g = -(g + g)$$

Exemple:

- $(\mathbb{Z}, +), (\mathbb{R}, +), (\mathbb{C}, +).$
- (E, +) avec E un espace vectoriel.
- $(M_{n,p}(\mathbb{K}),+).$
- k [X].

Exemple:

$$g^4 = g \cdot g \cdot g \cdot g$$

$$g^{-3} = g^{-1} \cdot g^{-1} \cdot g^{-1} = (g \cdot g \cdot g)^{-1}$$

Exemple:

- (\mathbb{R},\cdot) , (\mathbb{C},\cdot) , (\mathbb{R}_+^*,\cdot) .
- Pour $n \in \mathbb{N}^*$, (\mathbb{U}_n, \cdot) le groupe des racines nièmes de l'unité
- (\mathbb{U},\cdot) le groupe des complexes de module 1.
- $(GL_n(\mathbb{K}), \cdot)$ le groupe des matrices carrées inversibles.

Dans le cas où la loi de composition interne est notée +, le grou (*G*, +) est appelé **groupe additif**. + est en général commutative.

- Le neutre est noté 0 ou 0_G.
- Le symétrique d'un élément $g \in G$ est appelé op-
- posé de g et noté -g. Pour $n \in \mathbb{N}^*$, l'élément obtenu par n itérations de g est noté $g + ... + g = n \cdot g$.
- On note par convention
- $0 \cdot g = 0_g$. Pour $n \in \mathbb{Z} \setminus \mathbb{N}$, on note $n\cdot g=-\left((-n)\cdot g\right) .$

On a alors $\forall \, (n,p) \in \mathbb{Z}^2, \forall g \in G,$ $(n+p)\cdot g = n\cdot g + p\cdot g.$

Dans le cas où la loi de composition interne est notée ·, le groupe (G, \cdot) est appelé **groupe multipli-**catif.

- Le neutre est noté 1_G .
- Le symétrique de $g \in G$ est appelé l'inverse de g et est noté g^{-1} . Pour $n \in \mathbb{N}^*$ et $g \in G$,
- l'élément obtenu par *n* itérations de g est noté
- g·...· $g = g^n$. On note $g^0 = 1_G$. Pour $n \in \mathbb{Z}\backslash \mathbb{N}$, on note $g^n = (g^{-n})^{-1} = (g^{-1})^{-n}$.
- $\forall n, p \in \mathbb{Z}^2,$ $g^{n+p} = g^n \cdot g^p.$

Dans le cas générique, la loi de composition interne est notée * ou autrement.

CHAPITRE 1. GROUPES MATHÉMATIQUES - MPI*

Exemple:

- (S_n, \circ) , le groupe symétrique. Pour $g \in S_n$, g est notée sous forme de tableau et est représentée par un graphe.
- Si E est un \mathbb{K} -espace vectoriel, $(GL(E), \circ)$ est le groupe des isomorphismes de E.
- Si $E \neq \emptyset$, on définit une loi de composition interne par $\forall A, B \in E, A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$. On montre que $(P(E), \Delta)$ est un groupe abélien, de neutre \emptyset , et pour lequel le symétrique de A est A.

2. Sous-groupes

DÉFINITION: SOUS-GROUPE

Soit (G, *) un groupe et $H \subseteq G$ une partie non vide.

On dit que H est un **sous-groupe** de G si * définit une loi de H par laquelle H est un groupe.

On a alors $e_G \in H$ le neutre de (H, *).

Exemple:

- \mathbb{Z} est un sous-groupe de $(\mathbb{R}, +)$
- $\{e_G\}$ et G son des sous-groupes de G dits triviaux.

PROPOSITION

Soient (G, *) un groupe et $H \subseteq G$ non vide. Alors H est un sous-groupe de G si et seule-

- $\forall g, h \in H, g * h \in H$ $\forall g \in H, g^{-1} \in H$

Preuve: Vue l'an dernier.

PROPOSITION

Soient (G, *) un groupe et $H \subseteq G$ non vide.

Alors H est un sous-groupe de G si et seulement si $\forall g, h \in H, g * h^{-1} \in H$.

Exemple:

- pour $n \in \mathbb{N}$, $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- (\mathbb{U},\cdot) est un sous-groupe de (\mathbb{C}^*,\cdot) .

THÉORÈME

Soit *I* un ensemble non vide, et $(G_i)_{i \in I}$ une famille de sous-groupes de *G*. Alors

$$\bigcap_{i \in I} G_i = \{ g \in G, \forall i \in I, g \in G_i \}$$

est un sous-groupe de G.

Preuve : Notons $H = \bigcap_{i \in I} G_i$. On a $\forall i \in I, e_g \in G_i$ car G_i est un sous-groupe. Donc $e_g \in H$

donc $H \neq \emptyset$.

Soient $g, h \in H$. Montrons que $g * h^{-1} \in H$.

Soit $i \in I$. On a $g, h \in G_i$. Or G_i est un sous-groupe de G. Donc $g * h^{-1} \in G_i$ donc $g * h^{-1} \in H$. Donc *H* est un sous-groupe.

(LÉGÈREMENT HORS-PROGRAMME)

Soient H_1, H_2 des sous-groupes de (G, *). Alors $H_1 \cup H_2$ est un sous-groupe de G si et seulement si $H_1 \subseteq H_2$ ou $H_2 \subseteq H_1$.

Mathématiques - MPI* CHAPITRE 1. GROUPES

Preuve:

- Si $H_1 \subseteq H_2$, alors $H_1 \cup H_2 = H_2$ est un sous-groupe. De même si $H_2 \subseteq H_1$.
- Par contraposée, si on a $H_1 \nsubseteq H_2$ et $H_2 \nsubseteq H_1$, alors $\exists x \in H_1, x \notin H_2$, et $\exists y \in H_2, y \notin H_1$. On a donc $x, y \in H_1 \cup H_2$. Considérons g = x * y. On a $x^{-1} * g = y \notin H_1$, donc $g \notin H_1$ car H_1 est un sous-groupe. De même, $g \notin H_2$. Donc $g \notin H_1 \cup H_2$. Donc $H_1 \cup H_2$ n'est pas un sous-groupe.

THÉORÈME

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

Preuve:

- Soit $n \in \mathbb{N}$. Considérons $G = n\mathbb{Z}$. $G \subseteq \mathbb{Z}$ et $n \cdot 0 \in n\mathbb{Z}$ donc $G \neq \emptyset$. Soient $x, y \in G$. $\exists p, q \in \mathbb{Z}, x = np, y = nq$. Donc $x - y = n (p - q) \in \mathbb{Z}$. Donc $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- Réciproquement, soit G un sous-groupe de \mathbb{Z} . Si $G = \{0\}$, alors $G = 0\mathbb{Z}$. Sinon, soit $x_0 \in G$ tel que $x_0 \neq 0$. Alors $x_0 \in G$ car G est un groupe. Donc $|x_0| \in G$. Donc $G \cap \mathbb{N}^* \neq \emptyset$.
 - Posons $n = \min(G \cap \mathbb{N}^*)$. Montrons que $G = n\mathbb{Z}$.
 - Soit $g \in n\mathbb{Z}$. $\exists p \in \mathbb{Z}, g = p \cdot n$. Or $n \in G$, et (G, +) est un groupe, donc $g \in G$. Donc $n\mathbb{Z} \in G$.
 - Soit $g \in G$. Par division euclidienne, g = nq + r. Donc $r = g nq \in G$. Or r < n et $n = \min (G \cap \mathbb{N}^*)$. Donc r = 0. Donc g = nq donc $G = n\mathbb{Z}$ donc $G \subseteq n\mathbb{Z}$.

Donc $G = n\mathbb{Z}$.

3. Morphismes de groupes

DÉFINITION: MORPHISME DE GROUPES

Soient (G,*) et (H,\circ) deux groupes, et $\varphi: \left| \begin{array}{ccc} G & \to & H \\ g & \mapsto & \varphi(G) \end{array} \right|$.

On dit que φ est un **morphisme de groupes** si et seulement si

$$\forall g_1, g_2 \in G, \varphi\left(g_1 * g_2\right) = \varphi\left(g_1\right) \circ \varphi\left(g_2\right)$$

PROPOSITION

Avec ces notations, on a:

- $\varphi(e_G) = e_H$
- $\forall g \in G, \varphi(g^{-1}) = (\varphi(g))^{-1}$
- $\forall g \in G, \forall n \in \mathbb{Z}, \varphi(g^n) = (\varphi(g))^n$.

Exemple:

- Pour $\ln : \begin{vmatrix} (\mathbb{R}_{+}^{*}, \cdot) & \to & (\mathbb{R}_{+}, +) \\ x & \mapsto & \ln x \end{vmatrix} :$ $\forall a, b \in \mathbb{R}_{+}^{*}, \ln (a, b) = \ln a + \ln b$

 - $\forall a \in \mathbb{R}_+^*, \forall n \in \mathbb{Z}, \ln(a^n) = n \ln a$
- Pour $e: \begin{pmatrix} (\mathbb{R}, +) & \to & \mathbb{R}_+^* \\ x & \mapsto & e^x \end{pmatrix}$
 - $\forall a,b \in \mathbb{R}, e^{a+b} = e^a e^b$
 - $\forall a \in \mathbb{R}, \forall n \in \mathbb{Z}, e^{na} = (e^a)^n$

DÉFINITION: NOYAU

Soient (G, *), (H, \circ) des groupes et $\varphi : G \to H$ un morphisme de groupes. On appelle **noyau** de φ (noté ker φ) l'ensemble

$$\ker \varphi = \{ g \in G, \varphi(g) = e_H \} = \varphi^{-1}(\{e_H\})$$

CHAPITRE 1. GROUPES MATHÉMATIQUES - MPI*

Théorème

 $\ker \varphi$ est un sous-groupe de G.

Exemple:

- Soit $\varphi : \begin{vmatrix} \mathbb{C}^* & \to & \mathbb{R}^* \\ z & \mapsto & |z| \end{vmatrix}$. Alors $\ker \varphi = \mathbb{U}$. Pour $n \in \mathbb{N}^*$, soit $\varphi : \begin{vmatrix} \mathbb{C}^* & \to & \mathbb{C}^* \\ z & \mapsto & z^n \end{vmatrix}$. Alors $\ker \varphi = \mathbb{U}_n$.
- Soit la fonction signature $\varepsilon: \left| \begin{array}{ccc} S_n & \to & \mathbb{U}_2 \\ \sigma & \mapsto & \varepsilon\left(\sigma\right) \end{array} \right|$. Alors $\ker \varepsilon = A_n$ est appelé groupe alterné d'ordre n. C'est le groupe des permutations paires.

Théorème

Soit φ : $G \rightarrow H$ un morphisme de groupes.

Alors φ est injectif si et seulement si ker $\varphi = \{e_G\}$.

DÉFINITION: IMAGE

Soient (G, *) et (H, \circ) deux groupes, et $\varphi : G \to H$ un morphisme de groupes. On appelle **image** de φ (notée $\Im \varphi$) l'ensemble

$$\Im \varphi = \{h \in H, \exists g \in G, \varphi(g) = h\} = \varphi(G)$$

THÉORÈME

 $\Im \varphi$ est un sous-groupe de H.

DÉFINITION: ISOMORPHISME

Un morphisme de groupes de (G, *) dans (H, \circ) est appelé isomorphisme si et seulement si il est bijectif. En ce cas, sa bijection réciproque φ^{-1} est aussi un isomorphisme de groupes.

II. LE GROUPE $\mathbb{Z}/n\mathbb{Z}$

DÉFINITION: CONGRUENCE

1. Définitions

Dans toute cette partie, on prend

 $n \in \mathbb{N}$ avec $n \geqslant 2$

12

On considère la relation « **congrue à modulo** n » définie sur \mathbb{Z} par

$$\forall x, y \in \mathbb{Z}, x \equiv y [n] \iff n | x - y \iff \exists k \in \mathbb{Z}, x - y = kn$$

PROPOSITION

- La congruence est une relation d'équivalence.
- $\forall x, y \in \mathbb{Z}, x \equiv y[n]$

Preuve:

- Évident.
- Écrivons les deux divisions euclidiennes $x = q_1 n + r_1$ et $y = q_2 n + r_2$.
 - Si $x \equiv y[n]$ alors $\exists k \in \mathbb{Z}$ tel que x y = kn donc $q_1n + r_1 q_2n r_2 = kn$ donc $r_1 - r_2 = (k - q_1 + q_2) n$ donc $n | r_1 - r_2$ or $-n < r_1 - r_2 < n$ donc $n_1 = n_2$.
 - Si $n_1 = n_2$ alors $x y = (q_1 q_2) n$ donc $x \equiv y[n]$.

Définition: $\mathbb{Z}/n\mathbb{Z}$

L'ensemble des classes d'équivalences de \mathbb{Z} par la relation de congruence modulo n est noté $\mathbb{Z}/n\mathbb{Z}$.

Pour $k \in \mathbb{Z}$, sa classe d'équivalence est notée $cl_n(k) = \hat{k}$.

Exemple : Pour n = 2, $\mathbb{Z}/2\mathbb{Z} = \{\hat{0}, \hat{1}\}$ où $\hat{0}$ est l'ensemble des entiers pairs et $\hat{1}$ celui des entiers impairs.

Mathématiques - MPI* CHAPITRE 1. GROUPES

THÉORÈME

$$\mathbb{Z}/n\mathbb{Z} = \{\hat{0}, ..., \widehat{n-1}\}$$

et ces éléments sont deux à deux distincts.

Donc $Card \mathbb{Z}/n\mathbb{Z} = n$.

Preuve:

- De droite à gauche : évident car $\forall k \in \{0, ..., n-1\}, \hat{k} \in \mathbb{Z}/n\mathbb{Z}$.
- Inversement, soit $c \in \mathbb{Z}/n\mathbb{Z}$. Soit $x \in c$. Par division euclidienne, x = qn + r donc $x \equiv r[n]$. Donc $c = \hat{r}$ donc $\mathbb{Z}/n\mathbb{Z} \subseteq \{\hat{0}, ..., \widehat{n-1}\}$
- Soient $k_1, k_2 \in \{\hat{0}, ..., \widehat{n-1}\}$. Supposons que $\widehat{k_1} = \widehat{k_2}$. Montrons que $k_1 = k_2$. $k_1 \equiv k_2[n]$ donc $\exists q \in \mathbb{Z}, k_1 k_2 = nq$. Mais q = 0, donc $k_1 = k_2$.

2. STRUCTURES DE GROUPES

PROPOSITION

Soient $c, d \in \mathbb{Z}/n\mathbb{Z}$. Soient $x \in c$ et $y \in d$.

Alors $\widehat{x+y}$ ne dépend pas du choix de x dans c ni de y dans d.

On peut donc noter cette classe $\widehat{x+y}=c\oplus d$. On a ainsi défini une loi de composition interne \oplus dans $\mathbb{Z}/n\mathbb{Z}$.

Preuve : Soient $x_1, x_2 \in c$ et $y_1, y_2 \in d$. Alors $\exists p, q \in \mathbb{Z}, x_1 = x_2 + np, y_1 = y_2 + nq$. Donc $x_1 + y_1 = x_2 + y_2[n]$. Donc $x_1 + y_1 = x_2 + y_2$.

Théorème

 $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ est un groupe abélien et $\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ x & \mapsto & \hat{x} \end{array} \right|$ est un morphisme de groupes surjectif de noyau $n\mathbb{Z}$.

Preuve:

- \oplus est une loi de composition interne de $\mathbb{Z}/n\mathbb{Z}$. On prouve aisément qu'elle est associative, commutative, symétrique et que $\hat{0}$ est le neutre. Cela fait donc de $\mathbb{Z}/n\mathbb{Z}$ un groupe.
- Soient $x,y \in \mathbb{Z}$. Alors $\varphi(x+y) = \widehat{x+y} = \widehat{x} + \widehat{y} = \varphi(x) + \varphi(y)$. Donc φ est un morphisme de groupes.
- Soit $x \in \mathbb{Z}$. $x \in \ker \varphi \iff \hat{x} = \hat{0} \iff x \equiv 0[n] \iff x \in n\mathbb{Z}$.

Exemple: On peut faire des tableaux d'équivalence pour les additions.

 φ est appelé le morphisme cano-

Dans le groupe de Klein, tout élément est son propre opposé. Ce n'est pas le cas dans $\mathbb{Z}/4\mathbb{Z}$. Donc ces groupes ne sont pas isomorphes.

3. Isomorphismes

Théorème

L'application

$$\psi: \left| \begin{array}{ccc} (\mathbb{Z}, \oplus) & \to & (\mathbb{U}_n, \cdot) \\ c = \hat{k} & \mapsto & e^{\frac{2ik\pi}{n}} \end{array} \right|$$

est bien définie et est un isomorphisme de groupes, c'est-à-dire que l'image de $c=\hat{k}$ ne dépend pas du choix de k dans c.

MATHÉMATIQUES - MPI* CHAPITRE 1. GROUPES

Preuve:

• Soient $k_1, k_2 \in c$. Alors $k_1 \equiv k_2[n]$ donc $\exists p \in \mathbb{Z}, k_1 = k_2 - np$. Donc $e^{\frac{2ik_1\pi}{n}} = e^{\frac{2ik_2\pi}{n} + 2ip\pi} = e^{\frac{2ik_2\pi}{n}}$ donc ψ est bien définie.

- Soient $c, d \in \mathbb{Z}/n\mathbb{Z}, x \in c, y \in d$. Alors $\psi(c \oplus d) = \psi(\widehat{x+y}) = e^{2i\pi\frac{x+y}{n}} = e^{\frac{2i\pi x}{n}} \cdot e^{\frac{2i\pi y}{n}} = \psi(c) \cdot \psi(d)$ donc ψ est bien un morphisme de groupes.
- Montrons que ψ est injective. Soit $c \in \ker \psi$ et $k \in c$. Alors $e^{\frac{2ik\pi}{n}} = 1$. Donc n|k donc $c=\hat{0}$. Donc ker $\psi=\{0\}$ donc ψ est injective. Or, \mathbb{U}_n et $\mathbb{Z}/n\mathbb{Z}$ sont finis et de même cardinal. Donc ψ est bijective.

III. Ordre d'un élément

Dans toute cette section, on a (G, *) un groupe et $a \in G$.

1. Morphisme fondamental

THÉORÈME

L'application $\varphi_a: \begin{pmatrix} (\mathbb{Z},+) & \to & (G,*) \\ k & \mapsto & a^k \end{pmatrix}$ est un morphisme de groupes. Son image est un sous-groupe de G, appelé groupe engendré par a, et noté

$$\langle a \rangle = \left\{ a^k, k \in \mathbb{Z} \right\}$$

Si G est un groupe additif, on a $\langle a \rangle = \{k \cdot a, k \in \mathbb{Z}\}.$

Preuve : Soient $k_1, k_2 \in \mathbb{Z}$. $\varphi_a(k_1 + k_2) = a^{k_1 + k_2} = a^{k_1} * a^{k_2} = \varphi_a(k_1) * \varphi_a(k_2)$.

Définition: Ordre d'un élément d'un groupe

Avec ces notations, $ker\varphi_a$ est un sous-groupe de \mathbb{Z} , donc $\exists!n \in \mathbb{N}$, $ker\varphi_a = n\mathbb{Z}$.

- Si n > 0, n est appellé l'**ordre** de a.
- Si n = 0, φ_a est injectif. On dit alors que a est d'**ordre infini**.

Exemple:

- Pour $G = \mathbb{U}$ et a = j, alors l'ordre de j est 3.
- Pour $G = \mathbb{U}$ et a = i, alors l'ordre de i est 4.
- Pour $G = (GL_2(\mathbb{R}), \cdot)$ et $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, alors l'ordre de S est 4.
- Pour $G = \mathbb{Z}$, alors 1 est d'ordre infini
- Pour $G = (GL_2(\mathbb{R}), \cdot)$ et $T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$,

on prouve facilement que $\forall k \in \mathbb{Z}, T^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$. Donc φ_T est injective, donc T est d'ordre infini.

2. ÉLÉMENTS D'ORDRE INFINI

Proposition

Soit $a \in G$ d'ordre infini. Alors $\widetilde{\varphi_a} : \begin{vmatrix} \mathbb{Z} & \to & \langle a \rangle \\ k & \mapsto & a^k \end{vmatrix}$ est un isomorphisme de groupes. En particulier, l'ensemble $\langle a \rangle$ est infini.

Preuve:

- $\widetilde{\varphi_a}$ est un mmorphisme de groupes car φ_a en est un.

Exemple:

Dans toute cette section, on prend $a \in G$ d'ordre fini n.

- Pour $(\mathbb{Z}, +)$, $\langle 1 \rangle = \mathbb{Z}$, $\langle 2 \rangle = 2\mathbb{Z}$...
- Pour (\mathbb{C}^*, \times) , $\langle 2 \rangle = \{2^k, k \in \mathbb{Z}\}$.

MATHÉMATIQUES - MPI*

CHAPITRE 1. GROUPES

3. ÉLÉMENTS D'ORDRE FINI

PROPOSITION

Pour $k \in \mathbb{Z}/n\mathbb{Z}$, $a^k = e_G$ si et seulement si n|k.

Preuve : En notant $\varphi_a: \left| \begin{array}{ccc} \mathbb{Z} & \to & G \\ k & \mapsto & a^k \end{array} \right|$, on a $\ker \varphi_a = n\mathbb{Z}$. Donc $a^k = e_G$ si et seulement si $k \in \ker \varphi_a$ si et seulement si $k \in n\mathbb{Z}$ si et seulement si n|k.

PROPOSITION

On a $n = Card \langle a \rangle$, $\langle a \rangle = \{e_G, a, a^2, ..., a^{n-1}\}$ et les éléments sont deux à deux distincts.

Preuve:

- Notons $H = \{a^k, k \in [[1, n-1]]\}$. Alors par définition $H \subseteq \langle a \rangle$.
- Soit $x \in \langle a \rangle$. $\exists k \in \mathbb{Z}, x = a^k$. Par division euclidienne, k = nq + r. Donc $x = a^{nq+r} = a^n \in H$.
- Soient $k_1, k_2 \in [[0, n-1]]$ tels que $a^{k_1} = a^{k_2}$. Alors $a^{k_1-k_2} = e_G$ donc $n|k_1 k_2$ donc $k_1 k_2 = 0$, soit $k_1 = k_2$. Donc les éléments sont deux à deux distincts et $Card \langle a \rangle = n$.

Exemple : Dans (\mathbb{C}^*, \times) , les éléments d'ordre fini sont les a tels que $\exists n \geqslant 1$ tel que $a^n = 1$. Ce sont les racines de l'unité.

THÉORÈME

Soit (G, *) un groupe fini et $a \in G$.

Alors *a* est d'ordre fini et l'ordre de *a* divise *Card G*, que l'on appelle aussi l'ordre de *G*. Ainsi, dans un groupe fini, l'ordre d'un élément divise l'ordre du groupe.

Ce théorème est un cas particulier du théorème de Lagrange.

Preuve : Dans le cas où *G* est commutatif :

Pour *N* le cardinal de *G*, on a $\langle a \rangle \subseteq G$, donc *a* est fini donc *a* est d'ordre fini *n*.

Considérons $f: \begin{bmatrix} G \to G \\ x \mapsto a * x \end{bmatrix}$ f est de bijection réciproque $f^{-1}: \begin{bmatrix} G \to G \\ y \mapsto a^{-1} * y \end{bmatrix}$. G étant commutatif, on peut définir $z = \prod_{x \in G} x$. Comme f est bijective, $z = \prod_{x \in G} f(x)$. Donc $\prod x = \prod a * x$.

 $\prod_{x \in G} x = \prod_{x \in G} a * x.$

* étant associative et commutative, $z = a^N * z$, donc en multipliant par z^{-1} , $a^n = e_G$. Donc n|N.

Théorème de Lagrange (hors programme)

Soit *G* un groupe fini et *H* un sous-groupe de *G*. Alors l'ordre de *H* divise l'ordre de *G*.

Preuve : Dans les grandes lignes : $g_1 \lor g_2 \iff \exists h \in H, g_2 = g_1 H$ est une relation d'équivalence.

On écrit alors *G* comme union disjointe des classes d'équivalence de \vee .

On montre que les classes ont toutes le mème cardinal qui est *Card H*.

IV. Groupes monogènes et cycliques

Définition: Groupe monogène et monogène cyclique

Soit (G, *) un groupe.

On dit que G est

- monogène si et seulement si $\exists a \in G, G = \langle a \rangle$. a est alors appelé un générateur de G.
- monogène cyclique si *G* est de plus fini.

Tout groupe monogène est abélien.

CHAPITRE 1. GROUPES MATHÉMATIQUES - MPI*

Exemple:

- $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$.
- $\mathbb{U}_6 = \langle -j \rangle = \langle -j^2 \rangle$.
- $\mathbb{U}_n = \left\langle e^{\frac{2i\pi}{n}} \right\rangle$.
- $\mathbb{Z}/n\mathbb{Z} = \langle \hat{1} \rangle$.

Théorème

Tout groupe monogène infini est isomorphe à $(\mathbb{Z}, +)$.

Preuve : Soit (G, +) un monogène infini, et soit $a \in G$ un générateur.

Alors $G = \langle a \rangle$ infini donc a est d'ordre infini.

Donc $\varphi_a: \begin{bmatrix} \mathbb{Z} & \to & G \\ k & \mapsto & a^k \end{bmatrix}$ est un morphisme de groupes

- surjectif car $G = \langle a \rangle$
- injectif car a est d'ordre infini

Donc φ_a est un isomprhisme.

THÉORÈME

Tout groupe monogène cyclique d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Preuve : Soit *G* d'ordre *n* monogène, et $a \in G$ tel que $G = \langle a \rangle$.

Considérons $\varphi: \begin{vmatrix} \mathbb{Z}/n\mathbb{Z} & \to & \widetilde{G} \\ C = \widehat{k} & \mapsto & a^k \end{vmatrix}$. Alors φ est bien défini.

Soient $k_1, k_2 \in C$. Alors $\exists p \in \mathbb{Z}, k_1 = k_2 + np$. Donc $a^{k_1} = a^{k_2 + np} = a^{k_2} * a^{np}$. Or l'ordre de a est égal au cardinal de $\langle a \rangle$, c'est-à-dire n. Donc $a^{np} = e_G$ donc $a^{k_1} = a^{k_2}$ et φ est bien définie. Soient $C_1, C_2 \in \mathbb{Z}/n\mathbb{Z}$ et $k_1 \in C_1, k_2 \in C_2$.

Alors $k_1 + \bar{k_2} \in C_1 \oplus C_2$ donc $\varphi(C_1 \oplus C_2) = a^{k_1 + k_2} = \varphi(C_1) * \varphi(C_2)$. Donc φ est un morphisme.

Soit $C \in \ker \varphi$ et $k \in C$.

On a $a^k = e_G$ donc n|k donc $C = \hat{0}$. Donc φ est injective.

Or $Card \mathbb{Z}/n\mathbb{Z} = n = Card G$. Donc φ est bijective donc φ est un isomorphisme.

1. Générateurs de $\mathbb{Z}/n\mathbb{Z}$ et \mathbb{U}_n

Théorème

Les générateurs de $\mathbb{Z}/n\mathbb{Z}$ (respectivement \mathbb{U}_n) sont les \hat{k} (respectivement les $e^{\frac{2ik\pi}{n}}$) où $k \in \{1, n-1\}$ vérifie $k \wedge n = PGCD(k, n) = 1$.

Preuve : Dans le cas $\mathbb{Z}/n\mathbb{Z}$ (identique dans \mathbb{U}_n grâce à l'isomorphisme $\hat{k}\mapsto e^{\frac{2ik\pi}{n}}$:

- Soit $C \in \mathbb{Z}/n\mathbb{Z}$ générateur de $\mathbb{Z}/n\mathbb{Z}$. Alors il existe $k \in \{0, ..., n-1\}$ tel que $c = \hat{k}$. Mais $k \neq 0$ car $\langle \hat{0} \rangle = \hat{0} \neq \mathbb{Z}/n\mathbb{Z}$ donc $k \in \{1, n-1\}$.
 - Et comme $\langle C \rangle = \mathbb{Z}/n\mathbb{Z}$, $\hat{1} \in \langle C \rangle$ et il existe $p \in \mathbb{Z}$ tel que $pc = \hat{1}$, soit $pk \equiv 1[n]$. Donc $\exists q \in \mathbb{Z}$, pk + nq = 1.

Donc par le théorème de Bézout, PGCD(k, n) = 1.

• Réciproquement, soit $k \in \{1, ..., n-1\}$ tel que PGCD(k, n) = 1.

Montrons que $\langle \hat{k} \rangle = \mathbb{Z}/n\mathbb{Z}$.

Par définition, on a $\langle \hat{k} \rangle \subseteq \mathbb{Z}/n\mathbb{Z}$.

Soit $C \in \mathbb{Z}/n\mathbb{Z}$ et $x \in C$. Alors $c = \hat{x}$.

Par le théorème de Bézout, comme PGCD(k,n) = 1, $\exists u, v \in \mathbb{Z}$, uk + vm = 1. Donc $u\hat{k} = 1$. Donc $xu\hat{k} = \hat{x}$. Donc $C \subseteq \hat{k}$. Donc $\mathbb{Z}/n\mathbb{Z} \subseteq \langle \hat{k} \rangle$.

Donc $\mathbb{Z}/n\mathbb{Z} = \langle \hat{k} \rangle$.

Mathématiques - MPI* CHAPITRE 1. GROUPES

Exemple : Les générateurs de $(\mathbb{Z}/n\mathbb{Z})$ sont, pour n = ...

- 2:Î
- $3:\hat{1},\hat{2}$
- $4:\hat{1},\hat{3}$
- $5:\hat{1},\hat{2},\hat{3},\hat{4}$
- $6:\hat{1},\hat{5}$
- $7: \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}$
- $8:\hat{1},\hat{3},\hat{5},\hat{7}$

Les éléments générateurs de \mathbb{U}_n sont appelés racines primitives nièmes de l'unité.

V. Sous-groupe engendré par une partie

DÉFINITION: SOUS-GROUPE ENGENDRÉ

Soit (G, *) un groupe et $A \subseteq G$.

On appelle sous-groupe engendré par A l'intersection de tous les sous-groupes de G contenant A

Ce sous-groupe est noté $\langle A \rangle$.

PROPOSITION

Soit $A \in G$.

Alors $\langle A \rangle$ est le plus petit, au sens de l'inclusion, sous-groupe de G contenant A. C'est-à-dire que

- $A \in \langle A \rangle$.
- $\langle A \rangle$ est un sous-groupe de G.
- Si H est un sous-groupe de G contenant A, alors $A \in H$.

Preuve : Notons $(G_i)_{i \in I}$ la famille des sous-groupes de G contenant A. $I \neq \emptyset$ car G est l'un deux. Par définition, $\langle A \rangle = \bigcap_{i \in I} G_i$.

- $\forall i \in I, A \subseteq G_i$, donc $A \subseteq \bigcap_{i \in I} G_i = \langle A \rangle$.
- $\langle A \rangle$ est une intersection de sous-groupes de G, donc un sous-groupe de G.
- Soit H un sous-groupe de G contenant A. Donc il existe $i_0 \in I$ tel que $H = G_{i_0}$ donc $\langle A \rangle = \bigcap_{i \in I} G_i \subseteq G_{i_0} = H$.

Exemple:

- $\langle \emptyset \rangle = \{e_G\}.$
- $\forall a \in G, \langle \{a\} \rangle = \langle a \rangle.$
- $\langle G \rangle = G$
- Si H est un sous-groupe de G, alors $\langle H \rangle = H$.

Définition: Partie Génératrice

Soit $A \subseteq G$.

On dit que A est **génératrice** de G si et seulement si $\langle A \rangle = G$.

Тне́окѐме

Soit $A \subseteq G$ non vide. Alors

$$\langle A \rangle = \{ y \in G \mid \exists n \in \mathbb{N}^*, \exists x_1, ..., x_n \in A, \exists k_1, ..., k_n \in \mathbb{Z}, y = x_1 k^1 * ... * x_n k^n \}$$

CHAPITRE 1. GROUPES MATHÉMATIQUES - MPI*

Preuve : Notons $H = \{y \in G \mid \exists n \in \mathbb{N}, \exists x_1, ..., x_n \in A, \exists k_1, ..., k_n \in \mathbb{Z}, y = x_1k^1 * ... * x_nk^n\}$. Montrons que H est un sous-groupe de G contenant A.

- Soit $x \in A$. Alors $x = x^{-1}$ donc $x \in H$ et $A \subseteq H$.
- $A \neq \emptyset$ donc $H \neq \emptyset$.
- Soient $y, z \in H$. $\exists n, p \in \mathbb{N}$, $\exists x_1, ..., x_n t_1, ..., t_p \in A$, $\exists k_1, ..., k_n, h_1, ..., h_p \in \mathbb{Z}$, $y = x_1^{k_1} * ... * x_n^{k_n}, z = t_1^{k_1} * ... * t_n^{k_n}$. Donc $y * z^{-1} = x_1^{k_1} * ... * x_n^{k_n} * t_p^{-h_p} * ... * t_1^{-h_1}$. Donc H est un sous-groupe de G donc
- Soit $y \in H$. $\exists n \in \mathbb{N}^*, \exists x_1, ..., x_n \in A, \exists k_1, ..., k_n \in \mathbb{Z}, y = x_1^{k_1} * ... * x_n^{k_n}$. $\forall i \in \{1, n\}, x_i \in A \text{ donc } x_i \in \langle A \rangle. \text{ Or } \langle A \rangle \text{ est un groupe donc } y \in \langle A \rangle \text{ donc } H \subseteq \langle A \rangle.$

Exemple : Pour $G = (\mathbb{Z}, +)$, $A = \{k_1, k_2\}$, alors $\langle A \rangle = \{y \in \mathbb{Z}\}$, $\exists p_1, p_2 \in \mathbb{Z}$, $y = p_1k_1 + p_2k_2 = k_3\mathbb{Z}$ où $k_3 = PGCD(k_1, k_2)$. En effet,

- Si $y \in \langle A \rangle$ alors $\exists p_1, p_2 \in \mathbb{Z}, y = p_1 k_1 + p_2 k_2$. Or $k_3 \mid k_1$, donc $k_3 \mid y$, donc $\langle A \rangle \subseteq k_3 \mathbb{Z}$.
- Si $y \in k_3 \in \mathbb{Z}$, $y = qk_3$. Or $\exists u, v \in \mathbb{Z}$, $k_3 = uk_1 + vk_2$. Donc $y = quk_1 + qvk_2 \in \langle A \rangle$.

I. Anneaux

1. DÉFINITION

DÉFINITION: ANNEAU

On appelle **anneau** tout ensemble A non vide muni de deux lois de composition internes notées généralement + et \cdot telles que :

- (A, +) est un groupe abélien de neutre 0_A .
- · est associative et munie d'un neutre noté 1_A .
- · est distributive par rapport à +, c'est-à-dire $\forall x, y, z, \in A$,

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
$$(x + y) \cdot z = x \cdot z + y \cdot z$$

Si, de plus, \cdot est commutative, on dit que A est un **anneau commutatif**.

Exemple:

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- ullet Tout corps $\mathbb K$
- $M_n(\mathbb{K}), K[X]$
- Si A est un anneau, pour $X \neq \emptyset$, $\mathcal{F}(X,A)$ est un anneau.
- Si E est un \mathbb{K} -espace vectoriel, alors $(\mathcal{L}(E), +, \times)$ est un anneau.
- Si $E \neq \emptyset$, $(P(E), \Delta, \wedge)$ est un anneau.

2. Anneau produit

DÉFINITION: ANNEAU PRODUIT

Soient $A_1, ..., A_n$ des anneaux, et $A = A_1 \times ... \times A_n$. Alors A muni des lois + et \cdot définies par

$$\forall (a_1,...,a_n,b_1...,b_n) \in A,$$

$$(a_1,...,a_n) + (b_1,...,b_n) = (a_1+b_1,...,a_n+b_n)$$

$$(a_1,...,a_n) \cdot (b_1,...,b_n) = (a_1 \cdot b_1,...,a_n \cdot b_n)$$

est un anneau appelé **anneau produit**. Ses neutres sont $(0_A, ..., 0_A)$ et $(1_A, ..., 1_A)$.

Preuve:

- (A, +) est le groupe produit, donc un groupe.
- 1_A est le neutre pour ·.
- L'associativité et la distributivité se vérifient par le calcul.

3. Sous-anneau

Définition: Sous-anneau

Soit (A, +) un anneau et $B \subset A$ non vide. On dit que B est un **sous-anneau** de A si et seulement si B est un anneau et $1_B = 1_A$.

- Si $A \neq \{0_A\}$ alors $1_A \neq 0_A$. • $\forall x \in A$,
 - $\forall x \in A$, $\forall x \in A$, $x \cdot 0_A = 0_A \cdot x = 0_A$. On dit que 0_A est l'élément absorbant.

19

Exemple:

- \mathbb{Z} est un sous-anneau de \mathbb{R} .
- Soient E et F non vides tels que $E \subsetneq F$. Alors $(P(E), \Delta, \wedge)$ n'est pas un sous-anneau de $(P(F), \Delta, \wedge)$, car $1_E \neq 1_F$.

PROPOSITION

Soit $(A, +, \cdot)$ un anneau et $B \subset A$ non vide. Alors B est un sous-anneau de A si et seulement si :

- $1_A \in B$
- $\forall x, y \in B, x y \in B, x \cdot y \in B$.

Preuve:

- Si *B* est un sous-groupe, alors c'est évident.
- Réciproquement, avec ces hypothèses, *B* est un sous-groupe de *A*, · est une loi de composition interne de *B*, 1_A ∈ *B* est neutre de · pour *B* donc 1_B existe et 1_B = 1_A, et · est associative et distributive dans *B* car elle l'est dans *A*.

PROPOSITION

Si B est un sous-anneau de A et C est un sous-anneau de B, alors C est un sous-anneau de A.

Preuve : écoule de la caractérisation du sous-anneau.

Dans toute cette section, soit $(A, +, \cdot)$ un anneau commutatif.

Si I est un idéal de A tel que $1_A \in$

I, alors A = I.

4. Idéal d'un anneau comutatif

DÉFINITION : IDÉAL

Soit $I \subset A$. On dit que I est un **idéal** de A si et seulement si :

- *I* est un sous-groupe de *A*.
- $\forall x \in I, \forall a \in A, a \cdot x \in I.$

Exemple:

- A et $\{0_A\}$ sont des idéaux de A.
- $I = 2\mathbb{Z}$ est un idéal de \mathbb{Z} .
- Pour A l'anneau des suites réelles bornées, $I = \left\{ (u_n)_{n \in \mathbb{N}} \in A \mid u_n \xrightarrow{n \to +\infty} 0 \right\}$ est un idéal de A.
- Pour $A = F(\mathbb{R}, \mathbb{R})$, $I = \{ f \in A \mid f(38) = 0 \}$ est un idéal de A.

Si A est un corps et I est un idéal de A, alors $I=\{0\}$ ou I=A. En effet, si $I\neq\{0\}$, alors il existe $x\in I\setminus\{0\}$. Or A est un corps, donc $x^{-1}\in A$ existe. Et comme I est un idéal, $x^{-1}\cdot x\in I$, donc $I_A\in I$, donc I=A.

DÉFINITION

Soit $x \in A$. On définit $xA = \{y \in A, \exists z \in A, y = xz\}$. Alors xA est un idéal de A appelé **idéal engendré** par x.

Un idéal de ce type est appelé idéal principal.

Preuve : Montrons que xA est un idéal de A.

- $xA \neq \emptyset$ car $x = x \cdot 1_A \in xA$.
- Soient $z_1, z_2 \in xA$. Alors $\exists y_1, y_2 \in A, z_1 = xy_1, z_2 = xy_2$. Donc $z_1 z_2 \in xA$. Donc xA est un sous-groupe de (A, +).
- Soit $z \in xA$ et $w \in A$. Alors $\exists y \in A, z = xy$ donc $zw = x(yw) \in A$.

DÉFINITION

Si tout idéal de *A* est principal, on dit que *A* est un **anneau principal**.

Théorème

 \mathbb{Z} est un anneau principal, c'est-à-dire que les idéaux de \mathbb{Z} sont les $n\mathbb{Z}$ où $n \in \mathbb{N}$.

20

Mathématiques - MPI* Chapitre 2. Anneaux

Preuve:

- Si $n \in \mathbb{N}$, alors $n\mathbb{Z}$ est un idéal de \mathbb{Z} .
- Si I est un idéal de \mathbb{Z} , alors I est un sous-groupe de $(\mathbb{Z}, +)$ donc $\exists n \in \mathbb{N}, I = n\mathbb{Z}$

PROPOSITION

Soient I_1 et I_2 deux idéaux de A. Alors $I_1 + I_2 = \{a \in A, \exists b \in I_1, \exists c \in I_2, a = b + c\}$ et $I_1 \cap I_2$ sont des idéaux de A.

De plus, $I_1 + I_2$ est le plus petit idéal de A contenant I_1 et I_2 .

Preuve:

- $I_1 \neq \emptyset, I_2 \neq \emptyset$, donc $I_1 + I_2 \neq \emptyset$. Soient $x, y \in I_1 + I_2$. Alors $\exists a_1, b_1 \in I_1, \exists a_2, b_2 \in I_2, x = a_1 + a_2, y = b_1 + b_2$. Alors $x - y \in I_1 + I_2$. Donc $I_1 + I_2$ est un sous-groupe.
 - Soit $a \in A$ et $x = a_1 + a_2 \in I_1 + I_2$. Alors $ax = aa_1 + aa_2$. Donc $I_1 + I_2$ est un idéal.
- $I_1 \cap I_2$ est un sous-groupe car intersection de sous-groupes. Soit $a \in A$ et $x \in I_1 \cap I_2$. Alors $ax \in I_1, ax \in I_2$ car ce sont des idéaux, donc $ax \in I_1 \cap I_2$. Donc $I_1 \cap I_2$ est un idéal.

5. Divisibilité

Définition: Diviseur de zéro

Soit $(A, +, \cdot)$ un anneau commutatif. On appelle **diviseur de zéro** de A tout élément $a \in A$ tel que $\exists b \in A, a \neq 0, b \neq 0, a \cdot b = 0$.

Définition: Anneau intègre

Un anneau sans diviseur de zéro est appelé anneau intègre.

Proposition

Dans un anneau intègre A, tout élméent non nul est régulier pour la multiplication, c'està-dire vérifie

 $\forall x, y \in A, ax = ay \implies x = y.$

DÉFINITION: DIVISEUR, MULTIPLE

Soient $a, b \in A$.

On dit que a divise b, ou que b est un multiple de a, et on note a|b, si et seulement si $\exists c \in A, b = ac$.

Proposition

Soient $a, b \in A$. Alors :

- a|b si et seulement si $bA \subset aA$.
- | est réflexive et transitive.
- a|b et b|a si et seulement si $\exists c \in A^*$ tel que b = ac, où A^* est l'ensemble des éléments inversibles de A. On dit alors que a et b sont **associés**.

Preuve

- Si a|b alors il existe $c \in A$ tel que b = ac. Montrons que $bA \subset cA$. Soit $d \in bA$. Alors $\exists e \in A, d = be$. Or b = ac donc $d = ace \in aA$ donc $bA \in aA$. Inversement, c'est évident.
- Trivial.
- Avec ces hypothèses, si b=0, alors $c=1_A$ convient. Sinon, $\exists e,a=eb$, sonc d convient. Réciproquement, c'est évident.

Exemple:

- Dans \mathbb{Z} , a|b et b|a si et seulement si $b = \pm a$.
- Dans K[X]. P|Q et Q|P si et seulement si $\exists \lambda \in K^*$, $Q = \lambda P$.

Pour tous $a \in A$, on a $0 = a \times 0$ donc a|0, alors que a n'est pas un diviseur de zéro. La terminologie « diviseur de zéro » est donc ambieuë.

CHAPITRE 2. ANNEAUX Mathématiques - MPI*

6. Morphisme d'anneaux

DÉFINITION: MORPHISME D'ANNEAUX

Soient a et b deux anneaux et $\varphi:A\to B$. On dit que φ est un **morphisme d'anneaux** si et seulement si $\forall a,b\in A$,

- $\varphi(a+b) = \varphi(a) + \varphi(b)$
- $\varphi(ab) = \varphi(a)\varphi(b)$
- $\varphi(1_A) = 1_B$.

 φ est en particulier un morphisme de groupes.

PROPOSITION

 $\forall A \in A, \forall n \in \mathbb{Z}, \forall p \in \mathbb{N}^*,$

- $\varphi(na) = n\varphi(a)$

DÉFINITION: NOYAU D'UN MORPHISME D'ANNEAUX

Soit $\varphi : A \to B$ un morphisme d'anneaux. On définit son **noyau** :

$$\ker \varphi = \{ a \in A \mid \varphi(a) = 0_B \}$$

C'est aussi le noyau de φ en tant que morphisme de groupes.

PROPOSITION

Soient a et b deux anneaux commutatifs, et $\varphi:A\to B$ un morphisme d'anneaux. Alors $\ker \varphi$ est un idéal de a.

Preuve:

- φ est un morphisme d'anneaux donc de groupes donc ker φ est un sous-groupe de A.
- Soit $a \in \ker \varphi$ et $b \in A$. Il est évident que $ab \in \ker \varphi$.

IMAGE D'UN MORPHISME D'ANNEAUX

Soit $\varphi: A \to B$ un morphisme d'anneaux. Son **image** $\Im \varphi = \{b \in B \mid \exists a \in A, \varphi(a) = b\}$ est un sous-anneau de B.

Preuve:

- $\Im \varphi$ est un sous-groupe de (B, +) car φ est un morphisme de groupes.
- 1_B ∈ ℑφ.
- Le reste : évident.

Proposition

Soit φ : $A \rightarrow B$ un morphisme d'anneaux. Alors

- L'image par φ de tout sous-anneau de A est un sous-anneau de B.
- L'image réciproque par φ de tout sous-anneau de B est un sous-anneau de A.

DÉFINITION: ISOMORPHISME D'ANNEAUX

un isomorphisme d'anneaux est un morphisme d'anneaux bijectif.

PROPOSITION

Si φ est un isomorphisme d'anneaux, alors φ^{-1} est également un isomorphisme d'anneaux.

7. ÉLÉMENTS INVERSIBLES

DÉFINITION: INVERSIBLE

Soit $a \in A$. On dit que A est **inversible** si et seulement si $\exists b \in A, ab = 1_A$. L'ensemble des éléments inversibles est noté A^* .

Un élément inversible est parfois appelé **unité**.

Mathématiques - MPI* CHAPITRE 2. ANNEAUX

Proposition

 (A^*, \cdot) est inversible.

DÉFINITION: CORPS

On dit que *A* est un **corps** si et seulement si $A^* = A \setminus \{\}$.

DÉFINITION: SOUS-CORPS

Soient $K \subset L$ deux corps.

Alors *K* est un sous-anneau de *L* et on dit que *K* est un **sous-corps** de *L*, ou que *L* est une extension de K.

Exemple : $\mathbb{Q}(\sqrt{2})$ est un sous-groupe de \mathbb{R} .

DÉFINITION: CARACTÉRISTIQUE D'UN CORPS (HORS-PROGRAMME)

Soit *K* un corps.

L'ordre de 1_K dans le groupe (K, +) est défini caractéristique du corps K. Soit

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{K} \\ n & \mapsto & n \cdot 1_K \end{array} \right|$$

Pour ker $\varphi = p\mathbb{Z}$.

- Si p = 0, φ est injective : on dit que K est de caractéristique nulle.
- Sinon on dit que *K* est de caractéristique *p*.

II. L'anneau $\mathbb Z$

1. Arithmétique dans $\mathbb Z$

DÉFINITION: PGCD

Soient $a, b \in \mathbb{Z}$.

Alors il existe un unique $c \in \mathbb{N}$ tel que $a\mathbb{Z} + b\mathbb{Z} = c\mathbb{Z}$.

De plus, c est l'unique naturel tel que

- c|a
- c|b
- $\forall d \in \mathbb{N}, (d|a) \land (d|b) \implies d|c$

Donc c = PGCD(a, b).

Preuve:

- Soient $a,b \in \mathbb{Z}$. Alors $a\mathbb{Z} + b\mathbb{Z}$ est un idéal de \mathbb{Z} . Donc $\exists ! c \in \mathbb{N}, a\mathbb{Z} + b\mathbb{Z} = c\mathbb{Z}$.
- On a $0 \in b\mathbb{Z}$ donc $a\mathbb{Z} \subset c\mathbb{Z}$. Donc c|a. De même, c|b. Soit $d \in \mathbb{N}$ tel que d|a et d|b. On a $c \in c\mathbb{Z}$ donc $c \in a\mathbb{Z} + b\mathbb{Z}$. Donc $\exists u, v \in \mathbb{Z}, c = au + bv$. Donc d|c. Et si il existe un autre c' qui vérifie la même propriété, alors c'|a, c'|b, et donc c'|c, donc c' = c.

Corollaire

Si $a, b \in \mathbb{Z}$ et c = PGCD(a, b), alors $\exists u, v \in \mathbb{Z}$, au + bv = c.

Preuve : $c \in c\mathbb{Z}$ donc $c \in a\mathbb{Z} + b\mathbb{Z}$.

DÉFINITION: PPCM

Soient $a, b \in \mathbb{Z}$.

Alors il existe un unique $c \in \mathbb{N}$ tel que $a\mathbb{Z} \cap b\mathbb{Z} = c\mathbb{Z}$.

De plus, c est l'unique naturel tel que

- a|c
- b|c
- $\forall d \in \mathbb{N}, (a|d) \land (b|d) \implies c|d$

Donc c = PPCM(a, b).

K est un sous-corps de L si et seulement si

- $K \subset L$
- $\bullet \quad K \neq \emptyset$
- $\forall x, y \in K, x y \in K$. $\forall x, y \in K^*, xy^{-1} \in K$.

On a $xy^{-1} = \frac{x}{y} = y^{-1}x$.

Si p est non nul, alors il est premier. En effet, si on avait $p = qr, q, r \in \mathbb{N}^*$, on aurait $0_k = (q_1 k)(r_1 k).$ Or K est intègre donc $q1_K = 0$ ou $r1_K = 0$. Alors p|q ou p|r donc p = q ou p = r donc p est pre-

Preuve:

• Soient $a, b \in \mathbb{Z}$. Alors $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal de \mathbb{Z} . Donc $\exists ! c \in \mathbb{N}, a\mathbb{Z} + b\mathbb{Z} = c\mathbb{Z}$.

• On a $c \in a\mathbb{Z}$. Donc a|c. De même, b|c. Soit $d \in \mathbb{N}$ tel que a|d et b|d. On a $m \in a\mathbb{Z} \cap b\mathbb{Z}$ donc $d \in a\mathbb{Z} + b\mathbb{Z}$. Donc $d \in c\mathbb{Z}$. Donc c|d. Et si il existe un autre c' qui vérifie la même propriété, alors a|c', b|c', et donc c|c', donc c' = c.

But : trouver une relation de Bézout entre $a,b\in\mathbb{N}$.

- $\bullet \ \ a \times 1 + b \times 0 = a$
- $\bullet \ \ a \times 0 + b \times 1 = b$
- a bq = r
- :
- au + bv = PGCD(a, b)

2. Algorithme d'Euclide

Exemple:

- $37 \times 1 + 15 \times 0 = 37$.
- $37 \times 0 + 15 \times 1 = 15$.
- $37 2 \times 15 = 7$.
- $-2 \times 37 + 5 \times 15 = 1$.

3. Nombres premiers

DÉFINITION: NOMBRE PREMIER

Soit $p \in \mathbb{N}^* \setminus \{1\}$. On dit que p est un **nombre premier** si et seulement si les seuls diviseurs naturels de p sont 1 et p.

Définition: Ensemble des nombres premiers

On note \mathcal{P} l'ensemble des nombres premiers.

PROPOSITION

 \mathcal{P} est infini.

Théorème de décomposition

Tout relatif $a \in \mathbb{Z} \setminus \{0,1,-1\}$ peut se décomposer de manière unique (à l'ordre près des facteurs) sous la forme

$$a = \varepsilon \prod_{i=1}^{n} p_i^{\alpha_i}$$

où $\varepsilon \in \mathbb{Z}^* = \mathbb{U}_2, p_1, ..., p_n \in \mathcal{P},$ et $a_i \in \mathbb{N}^*.$

PROPOSITION

Soient $a, b \in \mathbb{Z} \setminus \{0, 1, -1\}$ tels que $a = \varepsilon \prod_{i=1}^{n} p_i^{\alpha_i}$ et $a = \varepsilon' \prod_{i=1}^{n} p_i^{\beta_i}$ avec

 $p_1,...,p_n\in\mathcal{P},\alpha_i,\beta_i\in\mathbb{N},\varepsilon,\varepsilon'.$ Alors

$$PGCD(a,b) = \prod_{i=1}^n p_i^{\min(\alpha_i,\beta_i)}$$

$$PPCM(a,b) = \prod_{i=1}^{n} p_i^{\max(\alpha_i,\beta_i)}$$

On déduit $|ab| = PGCD(a,b) \times PPCM(a,b)$.

4. COMPLÉMENTS HORS-PROGRAMME

Pour $x \in \mathbb{R}^+$, on pose $\Pi(x) = Card \{ p \in \mathcal{P} \mid p \leq x \}$

Théorème des nombres premiers de Hadamard et de la Vallée Poussin

$$\Pi(x) \sim \frac{x}{\ln(x)}$$

Mathématiques - MPI* CHAPITRE 2. ANNEAUX

DÉFINITION: FONCTION LOGARITHME INTÉGRAL

On définit la fonction logarithme intégral :

$$li(x) = \int_{2}^{x} \frac{dt}{\ln t} + li(2)$$

avec $li(2) \approx 1,04$.

Conjecture

$$\Pi(x) - li(x) = O(\sqrt{x} \ln x)$$

On montre que pour x « petit », $\Pi(x) \leq li(x)$

DÉFINITION: NOMBRES PREMIERS JUMEAUX

 $p, q \in \mathcal{P}$ sont dits **jumeaux** si et seulement si |p - q| = 2.

Exemple: 3 et 5 ou 5 et 7 ou 11 et 13.

CONJECTURE DES NOMBRES PREMIERS

On ne sait pas s'il existe une infinité de nombres premiers.

CONJECTURE DE GOLDBACH

Tout entier pair supérieur à 3 peut s'écrire comme la somme de deux nombres premiers.

Théorème de la progression arithmétique de Dirichlet

Si $a \wedge b = 1$ alors $\{a + bn, n \in \mathbb{N}\} \cap \mathcal{P}$ est infini.

Théorème de Green et de Tao

 $\forall k \ge 1$, il existe une suite de k nombres premiers en progression arithmétique.

III. L'ANNEAU $\mathbb{Z}/n\mathbb{Z}$

1. STRUCTURE

Théorème

Soient $c, d \in \mathbb{Z}/n\mathbb{Z}$. Soit $x \in c, y \in d$.

Alors $\widehat{x \cdot y}$ ne dépend pas du choix de y.

On peut donc la noter $\widehat{x \cdot y} = c \odot d$.

On définit ainsi une loi de composition interne dans $\mathbb{Z}/n\mathbb{Z}$. Et alors $(\mathbb{Z}/n\mathbb{Z}, \oplus, \odot)$ est un anneau commutatif et

$$\begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ & & & & & \\ & & & & & \\ \end{array}$$

est un morphisme d'anneaux surjectif de noyau $n\mathbb{Z}$.

Preuve:

• Soient $x, x' \in c, y, y' \in d$. Alors $\exists k, l \in \mathbb{Z}, x = x' + kn, y = y' + ln$. Donc xy = x'y' + n(lx' + ky' + kln). Donc $\widehat{xy} = \widehat{x'y'}$.

• $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ est un groupe abélien.

Soient $c, d, e \in \mathbb{Z}/n\mathbb{Z}, \hat{x} \in c, y \in d, z \in e$. Alors $d \odot c = \hat{x} \odot \hat{y} = \hat{xy} = \hat{y} \odot \hat{x} = d.c$ donc \odot est commutative.

 $c \odot (d \odot e) = (c \odot d) \odot e$ de la même manière donc \odot est transitive.

 $\hat{1} \odot c = \widehat{1 \cdot x} = c = c \odot 1$ donc $\hat{1}$ est l'élément neutre.

Enfin $c \odot (d \oplus e) = c \odot d + c \odot e$.

Donc c'est un anneau commutatif.

• On sait que $\varphi: \begin{bmatrix} \mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ x & \mapsto & \hat{x} \end{bmatrix}$ est un morphisme de groupes commutatif de noyau $n\mathbb{Z}$.

Soient $x,y \in \mathbb{Z}$. Alors $\varphi(xy) = \widehat{xy} = \widehat{x} \odot \widehat{y} = \varphi(x)\varphi(y)$. Enfin, $\varphi(1) = \widehat{1}$.

 $\mathbb{Z}/n\mathbb{Z}$ est donc un anneau commutatif par les lois $+:(\hat{x},\hat{y})\mapsto \hat{x}+\hat{y}=\hat{x+y}$ et $:(\hat{x},\hat{y})\mapsto \hat{x}\times\hat{y}=\hat{x\times y}$, d'éléments neutres $\hat{0}$ et $\hat{1}$.

ÉLÉMENTS DE Z/nZ

Pour $n \in \mathbb{N}^*$, l'ensemble $\mathbb{Z}/n\mathbb{Z}$ a n éléments :

$$\mathbb{Z}/n\mathbb{Z} = \{\hat{0}, \hat{1}, ..., \widehat{n-1}\}$$

2. ÉLÉMENTS INVERSIBLES

THÉORÈME

Soit $c \in \mathbb{Z}/n\mathbb{Z}$ tel que $c \neq \hat{0}$ et $x \in c$. Alors les assertions suivantes sont équivalentes :

- *c* est inversible.
- c n'est pas un diviseur de zéro.
- PGCD(x, n) = 1.

Preuve:

- 1 vers 2. Un diviseur de zéro n'est jamais inversible.
- 2 vers 3. Supposons que $d = PGCD(x, n) \neq 1$. Alors soient x = dx', n = dn', de telle sorte que PGCD(x', n') = 1.
- Alors xn' = dx'n' = x'n donc $\widehat{xn'} = \widehat{0}$ donc $c \odot \widehat{n'} = 0$. Or d > 1 donc 0 < n' < n. Donc $\widehat{n'} \neq \widehat{0}$ donc c est un diviseur de zéro.
- 3 vers 1. Par le théorème de Bézout, il existe $u, v \in \mathbb{Z}$, xu + nv = 1. Donc $\widehat{xu} = \widehat{1}$ donc $c \odot \widehat{u} = \widehat{1}$. Donc c est inversible et $c^{-1} = \widehat{u}$.

Exemple: Dans $\mathbb{Z}/36\mathbb{Z}$, $\hat{7}$ est inversible car $7 \wedge 36 = 1$. Or $36 - 5 \times 7 = 1$. Donc $-5 \times 7 \equiv 1[36]$. Donc $(\hat{7})^{-1} = \widehat{-5} = \widehat{31}$.

DÉFINITION: GROUPE DES INVERSIBLES

Le groupe des inversibles est le groupe

$$(\mathbb{Z}/n\mathbb{Z})^* = {\hat{x} \mid x \in \{1, ..., n-1\}, PGCD(x, n) = 1}.$$

Exemple:

- $(\mathbb{Z}/4\mathbb{Z})^* = \{\hat{1}, \hat{3}\}$
- $(\mathbb{Z}/6\mathbb{Z})^* = \{\hat{1}, \hat{5}\}$

Proposition

Soit $n \ge 2$.

Alors les trois assertions sont équivalentes :

- $\mathbb{Z}/n\mathbb{Z}$ est un corps
- $\mathbb{Z}/n\mathbb{Z}$ est intègre
- *n* est premier

Ainsi, pour p premier, $\mathbb{Z}/p\mathbb{Z}$ est un corps noté \mathbb{F}_n .

Preuve : $\mathbb{Z}/n\mathbb{Z}$ est un corps

- ⇔ tout élément non nul est inversible
- ⇔ aucun élément non nul n'est un diviseur de zéro

26

MATHÉMATIQUES - MPI*

CHAPITRE 2. ANNEAUX

```
\iff \mathbb{Z}/n\mathbb{Z} \text{ est intègre} \\ \iff \forall k \in \{1,...,n-1\}, \hat{k} \text{ est inversible} \\ \iff \forall k \in \{1,...,n-1\}, PGCD(k,n) = 1 \\ \iff n \text{ est premier.} \\ \\ \text{Exemple}: \mathbb{F}_2 = \{\hat{0},\hat{1}\}
```

3. Compléments hors-programme

```
RECHERCHE DE L'INVERSE
Soit k \in \{1, ..., n-1\} tel que PGCD(k, n) = 1.
Alors \hat{k} \in (\mathbb{Z}/n\mathbb{Z})^*, et (\hat{k})^{-1} = \hat{u} où uk + vn = 1.
```

```
Structure de (\mathbb{Z}/p\mathbb{Z})
```

Si p est premier alors $(\mathbb{Z}/p\mathbb{Z})^* = \{\hat{1}, ..., \widehat{p-1}\}$ est un groupe cyclique. Un générateur de ce groupe est appelé élément primitif.

Exemple : Pour p = 7, $\hat{3}$ est un élément primitif.

4. Théorème chinois

Théorème chinois

Soient $n, p \in \mathbb{N}^* \setminus [1]$ tels que PGCD(n, p) = 1. Alors l'application

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z}/np\mathbb{Z} & \to & (\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}) \\ c = \hat{k} & \mapsto & \left(\hat{k},\hat{k}\right) \end{array} \right|$$

(avec les \hat{k} les classes d'équivalence dans les ensembles correspondants) est bien définie et est un morphisme d'anneaux.

Preuve:

- Soit $c \in \mathbb{Z}/np\mathbb{Z}$ et $k_1, k_2 \in c$. Alors $\exists u, v \in \mathbb{Z}, k_1 = k_2 + unp$ donc $k_1 \equiv k_2[n]$ et $\widehat{k_1} = \widehat{k_2}$, de même pour $\mathbb{Z}/p\mathbb{Z}$, donc φ est bien définie.
- Soient $c_1, c_2 \in \mathbb{Z}/n\mathbb{Z}, k_1 \in c_1, k_2 \in c_2$. Alors on a rapidement que $\varphi(c_1 + c_2) = \varphi(c_1) + \varphi(c_2)$, et de même pour ·. Enfin, $\varphi\left(\hat{1}\right) = \left(\hat{1},\hat{1}\right)$. Donc φ est bien un morphisme d'anneaux.
- Soit $c \in \ker \varphi$ et $k \in c$. Alors $\varphi(c) = (\hat{0}, \hat{0})$ donc $n \mid k$ et $p \mid k$. Or PGCD(n, p) = 1 donc $np \mid k$ donc $\hat{k} = \hat{0}$ donc φ est injective.
- Enfin, $Card \mathbb{Z}/np\mathbb{Z} = mp = Card \mathbb{Z}/n\mathbb{Z} \times Card \mathbb{Z}/p\mathbb{Z}$,

Extension du théorème chinois

Soit $k \ge 2$ et $n_1, ..., n_k \in \mathbb{N}^* \setminus \{1\}$ deux à deux premiers entre eux. Alors

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z}/(n_1...n_k)\mathbb{Z} & \to & \mathbb{Z}/n_1\mathbb{Z} \times ... \times \mathbb{Z}/n_k\mathbb{Z} \\ c = \hat{x} & \mapsto & \left(cl_{n_1}(x),...,cl_{n_k}(x)\right) \end{array} \right|$$

est bien définie et est un morphisme d'anneaux.

Preuve: Identique au cas précédent.

Systèmes de congruences

Soient $n_1,...,n_k$ des entiers supérieurs à 2 premiers entre eux, et soient $a_1,...,a_k \in \mathbb{Z}$. Alors l'ensemble des solutions du système $x \equiv a_1[n_1],...,x \equiv a_k[n_k]$ est une certaine classe $c \in \mathbb{Z}/(n_1...n_k)\mathbb{Z}$.

De plus, $c = \hat{b}$ avec

$$b = \sum_{i=1}^{k} a_i v_i \left(\prod_{j=1 \atop j \neq i} n_j \right)$$

où on a pour tout $i \in \{1, ..., k\}$,

$$u_i n_i + v_i \prod_{j=1 \atop j \neq i} n_j = 1$$

est une relation de Bézout entre n_i et $\prod_{\substack{j=1 \ j \neq i}} n_j$.

Ainsi, x est solution du système si et seulement si $x \equiv b[n_1...n_k]$.

Preuve : Considérons φ le morphisme chinois.

x est solution du système si et seulement si $\left(cl_{n_1}(x),...,cl_{n_k}(x)\right)=\left(cl_{n_1}(a_1),cl_{n_k}(a_k)\right)$. Par φ^{-1} , x l'est si et seulement si $cl_{n_1...n_k}(x)=\varphi^{-1}\left(cl_{n_1}(a_1),...,cl_{n_k}(a_k)\right)=c$. Pour tout $i\in\{1,...,k\}$, n_i et $\prod_{j=1}^{n_j}n_j$ sont premiers entre eux.

Donc on peut trouver une relation de Bézout : $u_i n_i + v_i \prod_{j=1 \atop j \neq i} n_j = 1$.

Posons
$$b = \sum_{i=1}^{k} a_i v_i \left(\prod_{\substack{j=1 \ j \neq i}} n_j \right)$$
.

Alors pour $l \in [1, ..., k]$,

$$b \equiv a_l v_l \prod_{\substack{j=1\\j \neq i}} n_j [nl]$$

$$\equiv al (1 - u_l n_l) [nl]$$

Donc $b \equiv al[nl]$ donc b est solution donc $c = \hat{b}$.

Exemple : Pour $x \equiv 1[5], x \equiv 4[7], x \equiv 2[11]$. Alors $x \equiv b[385]$ avec b comme solution particulière. On a $31 \times 5 - 2 \times 77 = 1, 8 \times 7 - 55 = 1, 16 \times 11 - 5 \times 35 = 1$. Posons $b = 1(-2 \times 77) + 4(-55) + 2(-5 \times 35) = -724 \equiv 46[385]$. Donc $x \equiv 46[385]$.

5. Indicatrice d'Euler et petit théorème de Fermat

DÉFINITION: INDICATRICE D'EULER

On appelle indicatrice d'Euler l'application

$$\varphi: \left| \begin{array}{ccc} \mathbb{N}^* \backslash \left\{1\right\} & \to & \mathbb{N} \\ n & \mapsto & \varphi(n) \end{array} \right|$$

où $\varphi(n) = Card\{k \in \{1, ..., n-1\} \mid PGCD(k, n) = 1\} = Card(\mathbb{Z}/n\mathbb{Z})^*$.

Théorèmi

Si $n, p \in \mathbb{N}^*$ sont premiers entre eux, alors $\varphi(np) = \varphi(n)\varphi(p)$. On dit que φ est une fonction multiplicative.

Mathématiques - MPI* CHAPITRE 2. ANNEAUX

Preuve : Soient n et p permiers entre eux.

Considérons le morphisme chinois $\psi : \mathbb{Z}/np\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Soient $c \in (\mathbb{Z}/np\mathbb{Z})^*$ et $x \in c$. Alors $\psi(c) = \psi(cl_{np}(x)) = (cl_n(x), cl_p(x))$.

Et comme PGCD(x, np) = 1, on a PGCD(x, n) = 1 donc $cl_n(x) \in (\mathbb{Z}/n\mathbb{Z})^*$. De même, $cl_p(x) \in (\mathbb{Z}/p\mathbb{Z})^*$.

On peut donc définir $\widetilde{\psi}$: $\begin{vmatrix} (\mathbb{Z}/np\mathbb{Z})^* & \to & (\mathbb{Z}/n\mathbb{Z})^*, (\mathbb{Z}/p\mathbb{Z})^* \\ c = cl_{np}(x) & \mapsto & (cl_n(x), cl_p(x)) \end{vmatrix}$.

- ψ étant un morphisme d'anneaux, $\widetilde{\psi}$ est un morphisme de groupes.
- $\ker \widetilde{\psi} = \{cl_{nn}(1)\}\ \text{car } \psi \text{ est bijective. Donc } \widehat{\psi} \text{ est injective.}$
- Soient $c_1, c_2 \in (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/p\mathbb{Z})^*$. Posons $c = \psi^{-1}(c_1, c_2)$ et $x \in c$. On a PGCD(x, n) = 1 et PGCD(x, p) = 1. Or n et p sont premiers entre eux donc PGCD(X, np) = 1. Donc $c \in (\mathbb{Z}/n\mathbb{Z})^*$. Donc $\widetilde{\psi}(c) = (c_1, c_2)$ donc $\widetilde{\psi}$ est surjective donc bijective.

Donc $Card(\mathbb{Z}/np\mathbb{Z})^* = Card(\mathbb{Z}/n\mathbb{Z})^* \times Card(\mathbb{Z}/p\mathbb{Z})^*$ et $\varphi(np) = \varphi(n)\varphi(p)$.

Lemme

Soit *p* premier et $\alpha \ge 1$, alors $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$

Preuve : Soit $k \in \{1,...,p^{\alpha}\}$. k n'est pas premier avec p^{α} si et seulement si k et p^{α} ont un diviseur commun si et seulement si p|k si et seulement si $k \in \{p, 2p, ..., p^{\alpha-1}\}$. Donc $Card\left(\mathbb{Z}/p^{\alpha}\mathbb{Z}\right)^* = p^{\alpha} - p^{\alpha-1}.$

Décomposition d'un entier par l'indicatrice d'Euler

Soit $n \ge 2$. Décomposons n en

$$n = \prod_{i=1}^{k} p_i^{\alpha_i}$$

avec p_i des premiers distincts.

Comme φ est multiplicative,

$$\varphi(n) = \prod_{i=1}^k \varphi\left(p_i^{\alpha_i}\right) = \prod_{i=1}^k \left(p_i^{\alpha_i} - p_i^{\alpha_i - 1}\right) = n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$$

Théorème d'Euler

Soit $n \ge 2$ et $a \in \mathbb{Z}$ tel que $a \land 1 = 1$.

Alors $a^{\varphi(n)} \equiv 1[n]$.

Preuve : $\hat{a} \in (\mathbb{Z}/n\mathbb{Z})^*$. Donc l'ordre de \hat{a} dans $(\mathbb{Z}/n\mathbb{Z})^*$ divise l'ordre de $(\mathbb{Z}/n\mathbb{Z})^*$. Or ce dernier vaut $\varphi(n)$. Donc $\hat{a}^{\varphi(n)} = \hat{1}$. Donc $a^{\varphi(n)} \equiv 1 \lceil n \rceil$.

PETIT THÉORÈME DE FERMAT

Soient p un entier premier et $a \in \mathbb{Z}$ tels que $p \nmid a$. Alors $a^{p-1} \equiv \mathbb{I}[p]$.

Preuve: $a \wedge p = 1$ donc $a^{\varphi(p)} \equiv 1[p]$ donc $a^{p-1} \equiv 1[p]$.

IV. Compléments hors-programme

PROPOSITION

Soit $p \ge 3$ impair.

- Si $2^{p-1} \not\equiv 1[p]$ alors p n'est pas premier (par contraposée) Si $2^{p-1} \equiv 1[p]$ alors
- - Soit *p* est premier
 - Soit *p* n'est pas premier. On dit alors que *p* est 2-pseudo-premier.

Hélas, il existe des entiers qui ne sont pas premiers mais qui sont a-pseudos premiers pour tout a. On les appelle nombres de Carmichaël. Il y en a une infinité, et le premier est 561.

V. L'ANNEAU $\mathbb{K}[X]$

Dans toute cette partie, soit K un sous-corps de C.

1. Idéaux de $\mathbb{K}[X]$

Idéaux de $\mathbb{K}[X]$

Les idéaux de $\mathbb{K}[X]$ sont du type $P_0 \cdot \mathbb{K}[X]$ avec P_0 nul ou unitaire. Dans ce cas, P_0 est unique. On l'appelle générateur nul ou unitaire de l'idéal. Ainsi, $\mathbb{K}[X]$ est un anneau principal.

Preuve:

- Soit $I = \{0\}$ l'idéal nul. Alors $I = 0\mathbb{K}[X]$.
- Pour $P_0 \in \mathbb{K}[X]$, on sait que $P_0 \cdot \mathbb{K}[X]$ est un idéal.
- Réciproquement, soit I un idéal non nul de $\mathbb{K}[X]$. Considérons $A = \{\deg P, | P \in I \setminus \{0\}\}$. On a $A \subset \mathbb{N}$, $A \neq 0$, car $I \neq \{0\}$. On a donc l'existence de $d_0 = \min A$ Or $d_0 \in A$ donc il existe $P_1 \in I$ tel que deg $P_1 = d_0$.

 $P_1 \neq 0$ donc notons α son coefficient dominant, et posons $P_0 = \frac{P_1}{\alpha}$. Alors $P_0 \in I$ (car I est idéal), P_0 est unitaire, et deg $P_0 = d_0$.

Montrons que $I = P_0 \cdot \mathbb{K}[X]$.

- $P_0 \in I$ et I est idéal donc $P_0 \mathbb{K}[X] \subset I$.
- Soit $P \in I$. Par division euclidienne, P s'écrit $P_0Q + R$ avec $Q, R \in \mathbb{K}[X]$ et $\deg R < \deg P_0$.

 $P \in I$, $P_0Q \in I$, donc $R = P - P_0Q \in I$. Or deg $R < d_0$ donc R = 0. Donc $P \in P_0 \mathbb{K}[X]$. Donc $I \subset P_0 \mathbb{K}[X]$.

Donc $I = P_0 \mathbb{K}[X]$.

Montrons que P_0 est unique. Soit I un idéal non nul qui vérifie $I = P_0 \mathbb{K}[X] = P_2 \mathbb{K}[X]$, avec P_0 et P_2 unitaires.

Or $P_0 \in I$ donc $P_2|P_0$. De même, $P_0|P_2$.

Donc P_0 et P_2 sont associés. Et comme ils sont unitaires, $P_0 = P_2$.

2. Arithmétique dans $\mathbb{K}[X]$

DÉFINITION: PGCD

Soient $P,Q \in \mathbb{K}[X]$. Alors il existe un unique polynôme $D \in \mathbb{K}[X]$ unitaire non nul tel

$$P\mathbb{K}[X] + Q\mathbb{K}[X] = D\mathbb{K}[X].$$

De plus, D est l'unique poynôme non nul tel que

- D|P
- D|Q
- $\forall R \in \mathbb{K}[X], (R|P) \land (R|Q) \implies R|D$

On appelle D le **PGCD** de P et Q.

Preuve: La preuve est la même que dans Z.

DÉFINITION: PPCM

Soient $P,Q \in \mathbb{K}[X]$. Alors il existe un unique polynôme $M \in \mathbb{K}[X]$ unitaire non nul tel que

 $P\mathbb{K}[X] \cap Q\mathbb{K}[X] = M\mathbb{K}[X].$

De plus, *M* est l'unique poynôme non nul tel que

- PIM
- Q|M
- $\forall R \in \mathbb{K}[X], (P|R) \land (Q|R) \implies M|R$

On appelle M le **PPCM** de P et Q.

Preuve : La preuve est la même que dans \mathbb{Z} .

• Soit I un idéal non nul de K[X]. Alors le polynôme R[X]. This is positional R[X]. This is positional R[X] with a position R[X] with a

définit la matrice P(A). On montre que

 $\mathbb{K}[X] \quad \xrightarrow{} \quad M_n(\mathbb{K})$ $P \quad \mapsto \quad P(A)$

est un morphisme d'an- $\{P \in \mathbb{K}[X] \mid P(A) = 0\},\$

son noyau, est donc un idéal de $\mathbb{K}[X]$. On montre qu'il est non nul. Ĺ'unique polynôme

unitaire $\operatorname{Aer} \varphi =$ appelé n $P_0\mathbb{K}[X]$ est appelé polynôme mi-nimal de la matrice MATHÉMATIQUES - MPI*

CHAPITRE 2. ANNEAUX

3. Irréductibles de $\mathbb{K}[X]$

DÉFINITION: IRRÉDUCTIBLE

Soit $P \in \mathbb{K}[X]$ de degré supérieur à 1.

On dit que *P* est **irréductible** si et seulement si ses seuls diviseurs sont les polynômes constants non nuls et ses polynômes associés.

C'est-à-dire si et seulement si si $P=P_1P_2$ alors $\deg P_1=0$ ou $\deg P_2=0$, soit $P_1\in\mathbb{K}^*$ ou $P_2\in\mathbb{K}^*$.

Exemple: Tout polynôme de degré 1 est irréductible.

PROPOSITION

Un polynôme inversible de degré supérieur ou égal à 2 n'a pas de racine dans K.

Preuve : Si P a une racine λ , $P = (X - \lambda)Q$ donc P n'est pas irréductible.

Exemple: $X^2 + 1$ dans \mathbb{R} .

Théorème de décomposition

Soit $P \in \mathbb{K}[X]$ tel que deg $P \ge 1$.

Alors P se décompose de manière unique (à l'ordre près) sous la forme

$$P = \lambda \prod_{i=1}^{n} P_i^{\alpha_i}$$

où

- $\lambda \in \mathbb{K}^*$
- n ≥ 1
- $P_1,...,P_n$ sont des polynômes irréductibles unitaires.
- $\alpha_i \ge 1$

Preuve: Vue l'an dernier.

Exemple : Dans $\mathbb{R}[X]$, $X^3 - 1 = (X - 1)(X^2 + X + 1)$.

Théorème de d'Alembert-Gauss

C est algébriquement clos.

C'est-à-dire que tout polynôme sur $\mathbb C$ est scindé.

C'est-à-dire que tout polynôme de $\mathbb{C}[X]$ possède au moins une racine dans \mathbb{C} .

Irréductibles dans $\mathbb{C}[X]$

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Irréductibles dans $\mathbb{R}[X]$

Les irréductibles dans $\mathbb{R}[X]$ sont :

- Les polynômes de degré 1
- Les polynômes de degré 2 sans racine réelle

Exemple : X - 38 et $X^2 + X + 1$ sont des irréductibles de $\mathbb{R}[X]$.

VI. Algèbres

Définition: Algèbre

Soit A un ensemble non vide muni de deux lois de composition internes + et \cdot_{int} et d'une loi de composition externe à opérateurs dans un corps \mathbb{K}, \cdot_{ext} .

On dit que $(A, +, \cdot_{int}, \cdot_{ext})$ est une \mathbb{K} -algèbre si et seulement si

- $(A, +, \cdot_{int})$ est un anneau
- $(A, +, \cdot_{ext})$ est un \mathbb{K} -espace vectoriel
- $\forall \alpha \in \mathbb{K}, \forall x, y \in A, \alpha(xy) = (\alpha x)y = x(\alpha y).$

De manière analogue à Z, cette décomposition permet de calculer les PGCD et les PPCM.

Exemple:

- K, $M_n(\mathbb{K})$ et $\mathbb{K}[X]$ sont des K-algèbres.
- $(\mathcal{L}(E), +, \circ, \cdot)$ est une \mathbb{K} -algèbre où E est un \mathbb{K} -espace vectoriel.
- $(P(E), \Delta, \cap, \cdot)$ est une $\mathbb{Z}/2\mathbb{Z}$ -algèbre.

Définition: Sous-algèbre

Soit A une K-algèbre et $B \subset A$. on dit que B est une **sous-algèbre** de A si et seulement si

- $(B, +, \cdot, \cdot)$ est une K-algèbre.
- $1_B = 1_A$.

CARACTÉRISATION D'UNE SOUS-ALGÈBRE

Soit *A* une \mathbb{K} -algèbre et $B \subset A$ non vide.

Alors B est une sous-algèbre de A si et seulement si B est un sous-espace vectorie et un sous-anneau de A, c'est-à-dire si et seulement si $\forall x,y \in B, \forall \lambda \in \mathbb{K}$

- $\lambda x + y \in B$
- $xy \in B$
- $1_A \in B$

DÉFINITION: MORPHISME D'ALGÈBRES

Soient A_1 , A_2 deux algèbres et $\varphi : A_1 \rightarrow A_2$.

On dit que φ est un morphisme d'algèbres si et seulement si $\forall a, b \in A, \forall \lambda \in \mathbb{K}$,

- $\varphi(\lambda a + b) = \lambda \varphi(a) + \varphi(b)$
- $\bullet \ \varphi(ab) = \varphi(a)\varphi(b)$
- $\varphi(1_{A_1}) = 1_{A_2}$

C'est-à-dire φ est une application linéaire et un morphisme d'anneaux.

Exemple:

- $\bullet \ \operatorname{Pour} \alpha \in \mathbb{K}, \, \varphi : \left| \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K} \\ P & \mapsto & P(\alpha) \end{array} \right.$
- Pour B une base de $\ker E$ de dimension $n, \varphi: \left| \begin{array}{ccc} \mathcal{L}(E) & \to & M_n(\mathbb{K}) \\ u & \mapsto & A = M_B(u) \end{array} \right|$

Α	décomposition d'un entier . 29 K	Théorème de Bézout 23 PPCM dans $\mathbb{K}[X]$
algorithme d'Euclide 24 algèbre 31 anneau 19 commutatif 19 intègre 21 principal 20 produit 19 unité 22 élément inversible 22	$\mathbb{K}[X]$ générateur d'idéal 30 idéal 30 irréductible 31 théorème de décomposition 31	$\mathbb{R}[X]$ irréductibles
éléments associés 21	L logarithme intégral 25	sous-algèbre
\mathbb{C} $\mathbb{C}[X]$ irréductibles	M morphisme d'algèbres	sous-anneau 19 caractérisation 20 sous-corps 23 sous-groupe 10 caractérisation 10 engendré 17
D diviseur de zéro21	morphisme de groupes11 image12 noyau11	T théorème chinois
	N	système de congruences 28 théorème de d'Alembert-Gauss 31
G groupe	nombre premier	\mathbb{U}_n générateurs
ordre d'un élément 14 ordre infini	25 théorème de Hadamard et de la Vallée Poussin 24 nombre pseudo-premier 29	$egin{array}{cccccccccccccccccccccccccccccccccccc$
idéal d'un anneau 20 engendré 20 principal 20 indicatrice d'Euler 28	PGCD dans $\mathbb{K}[X]$	groupe des inversibles 26 générateurs 16 recherche de l'inverse 27 structure 25, 27 éléments 26 éléments inversibles 26

