Forces

Notation

Let r_i , v_i , m_i , q_i be position, velocity, mass and charge of *i*th particle, respectively. V is the potential of the force field. Let x^{μ} denote (0-indexed) μ th component of x. Let $\partial_n^{\mu} := \partial/\partial (r_n)^{\mu}$ – in particular $(F_n)^{\mu} = -\partial_n^{\mu} V$. Let ε^{μ} be (somewhat incompatibly) unit vector for μ th component.

Chirality

$$V = \frac{1}{2} e_{chi} \sum_{i} (C_i - C_i^{nat})^2$$
$$C_i = \frac{(v_{i-1} \times v_i) \cdot v_{i+1}}{d_0^3}$$

where $v_i = r_{i+1} - r_i$, d_0 is $|v_0|$ in the native state, and C_i^{nat} is C_i in the native state.

$$\partial_n^{\mu} V = e_{chi} \sum_{i} (C_i - C_i^{nat}) \partial_n^{\mu} C_i$$
$$\partial_n^{\mu} C_i = \frac{1}{d_0^3} \partial_n^{\mu} (\underbrace{(v_{i-1} \times v_i) \cdot v_{i+1}}_{f_i})$$

This vanishes for $n \neq i-1, i, i+1, i+2$. For these values,

$$\begin{split} \partial_{i-1}^{\mu} f_i &= \left(-\varepsilon^{\mu} \times v_i \right) \cdot v_{i+1} \\ &= - \left(v_i \times v_{i+1} \right) \cdot \varepsilon^{\mu} \\ \partial_i^{\mu} f_i &= \left(\varepsilon^{\mu} \times v_i - v_{i-1} \times \varepsilon^{\mu} \right) \cdot v_{i+1} \\ &= \left(v_i \times v_{i+1} + v_{i-1} \times v_{i+1} \right) \cdot \varepsilon^{\mu} \\ \partial_{i+1}^{\mu} f_i &= \left(v_{i-1} \times \varepsilon^{\mu} \right) \cdot v_{i+1} + \left(v_{i-1} \times v_i \right) \cdot \left(-\varepsilon^{\mu} \right) \\ &= - \left(v_{i-1} \times v_{i+1} + v_{i-1} \times v_i \right) \cdot \varepsilon^{\mu} \\ \partial_{i+2}^{\mu} f_i &= \left(v_{i-1} \times v_i \right) \cdot \varepsilon^{\mu} \end{split}$$

from the scalar triple product property; let us also recall, that $v \cdot \varepsilon^{\mu} = v^{\mu}$.