决策树算法

1、定义

例如有人给我们介绍新的对象的时候,我们就要一个个特点去判断,于是这种判断的过程就可以画成一棵树,例如根据特点依次判断:

如上,决策的形式以树的形式进行示意和编码,就形成了决策树。

2、划分选择

一般的原则是,希望通过不断划分节点,使得一个分支节点包含的数据尽可能的属于同一个类别,即"纯度"越来越高。

3、信息增益准则

我们先对一个节点的纯度进行定义,我们将其称之为信息熵。

$$\operatorname{E}nt(D) = -\sum_{k=1}^{|\gamma|} p_k \log_2(p_k)$$

由于 p_k 都属于[0,1], Ent(D)必定为正值, 值越大说明纯度越低, **值越小说明纯度越高**。

银行贷款数据

ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	-A9	是
5	青年	否	否	一般	否
6	中年	否	否	- 82	否
7	中年	否	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	否	是	非常好	是
11	老年	否	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	-ag	否

信息熵计算(信息熵的值是根据目标值是求信息熵的):

类别(是否给贷款): 否表示不贷款(6个样本),是表示贷款(9个样本);

$$\operatorname{Ent}(D) = -\frac{6}{15}\log_2\frac{6}{15} + (-\frac{9}{15}\log_2\frac{9}{15}) = 0.9709505944546686$$

4、信息增益(ID3 算法)

在定义了信息熵之后,对信息增益进行定义,假设选取属性 a 有 V 个取值, $\{a^1,a^2.....a^V\}$,按照决策树的规则,D 将被划分为 V 个不同的节点数据集, D^V 代表其中第 V 个节点:

$$Gain(D,a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} Ent(D^{v})$$

由此,我们得到了一种选择划分属性的方法,计算以每个属性进行划分子节点得到的信息增益,选择其中最大的作为选择的属性。

信息增益计算:

$$Gain(D,年龄) = Ent(D) - \sum_{\nu=1}^{V} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu})$$

$$= Ent(D) - (\frac{5}{15} Ent(青年) + \frac{5}{15} Ent(中年) + \frac{5}{15} Ent(老年))$$

Ent(青年) =
$$-\frac{2}{5}\log_2\frac{2}{5} + (-\frac{3}{5}\log_2\frac{3}{5}) = 0.9709505944546686$$

Ent(中年) = $-\frac{2}{5}\log_2\frac{2}{5} + (-\frac{3}{5}\log_2\frac{3}{5}) = 0.9709505944546686$
Ent(老年) = $-\frac{4}{5}\log_2\frac{4}{5} + (-\frac{1}{5}\log_2\frac{1}{5}) = 0.7219280948873623$

所以计算得:

$$Gain(D, 年龄) = Ent(D) - \sum_{\nu=1}^{V} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu})$$

$$= Ent(D) - (\frac{5}{15} Ent(青年) + \frac{5}{15} Ent(中年) + \frac{5}{15} Ent(老年))$$

$$= 0.9709505944546686 - (\frac{5}{15} * 0.9709505944546686 + \frac{5}{15} * 0.9709505944546686 + \frac{5}{15} * 0.7219280948873623)$$

$$= 0.08300749985576883$$

$$Gain(D,有工作) = Ent(D) - \sum_{\nu=1}^{\nu} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu})$$

$$= Ent(D) - (\frac{5}{15} Ent(有工作) + \frac{10}{15} Ent(无工作))$$

$$Ent(有工作) = -\frac{0}{5} \log_2 \frac{0}{5} + (-\frac{5}{5} \log_2 \frac{5}{5}) = 0$$

$$Ent(无工作) = -\frac{4}{10} \log_2 \frac{4}{10} + (-\frac{6}{10} \log_2 \frac{6}{10}) = 0.9709505944546686$$

假如最后我们计算出来年龄 A1、有工作 A2、有自己房子 A3、信贷情况 A4,4 个特征的信息增益比分别是: 0.083, 0.324, 0.420, 0.363, 相比较来说其中特征 A3 (有自己房子)的信息增益比最大,所以我们选择特征 A3 为最有特征。

5、信息增益率(C4.5 算法)

信息增益原则对于每个分支节点,都会乘以其权重,也就是说,由于权重之和为1,所以分支节点分的越多,即每个节点数据越小,纯度可能越高。这样会导致信息熵准则偏爱那些取值数目较多的属性。

为了解决该问题,这里引入了信息增益率,定义如下:

$$Gain_{ration}(D, a) = \frac{Gain(D, a)}{IV(a)}$$

$$IV(a) = \sum_{\nu=1}^{V} \frac{|D^{\nu}|}{D} \log_2 \frac{|D^{\nu}|}{D}$$

相当于引入了修正项 IV(a), 它是对于属性 a 的固有值。

需要注意的是,信息增益率原则可能对取值数目较少的属性更加偏爱,为了解 决这个问题,可以先找出信息增益在平均值以上的属性,在从中选择信息增益率 最高的。

6、基尼指数

在 CART 决策树中, 使用基尼指数来选择属性, 首先定义数据集 D 的基尼值:

$$Gini(D) = \sum_{k=1}^{|\gamma|} \sum_{k^{1}=k} p_{k} p_{k^{1}} = 1 - \sum_{k=1}^{|\gamma|} p_{k}^{2}$$

基尼值的计算:

范例 1:

Label=0	5	P(0)=0.5
Label=1	5	P(1)=0.5

Gini(D) =
$$1 - ((\frac{1}{2})^2 + (\frac{1}{2})^2) = 0.5$$

范例 2:

Label=0	2	P(0)=0.2
Label=1	8	P(1)=0.8

Gini(D) =
$$1 - ((\frac{2}{10})^2 + (\frac{8}{10})^2) = 0.32$$

范例 3:

Label=0	0	P(0)=0
Label=1	10	P(1)=1

Gini(D) =
$$1 - ((\frac{0}{10})^2 + (\frac{10}{10})^2) = 0$$

基尼指数(基尼值的加权平均):

$$Gini_{index}(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} Gini(D^v)$$

基尼指数越小,说明纯度越高,我们可以通过选择基尼指数小的属性来划分子节点。

综合案例:

Id	有房者	婚姻	年收入	是否拖欠贷款
1	是	单身	125k	否
2	否	己婚	100k	否
3	否	单身	70k	否
4	是	己婚	120k	否
5	否	离异	95k	是
6	否	己婚	60k	否
7	是	离异	220k	否
8	否	单身	85k	是
9	否	已婚	75k	否
10	否	单身	90k	是

基尼值计算:

有房者:

是(3): Label(是否拖欠贷款): 是(0) 否(3)

Gini(D) =
$$1 - (0^2 + (\frac{3}{3})^2) = 0$$

否(7): Label(是否拖欠贷款): 是(3) 否(4)

Gini(D) =
$$1 - ((\frac{3}{7})^2 + (\frac{4}{7})^2) = \frac{25}{49}$$

Gini 加权平均:

Gini(有房者) =
$$\frac{3}{10} \cdot 0 + \frac{7}{10} \cdot \frac{25}{49} = \frac{5}{14}$$

同理,计算婚姻:

单身/离异(6): Label(是否拖欠贷款): 是(3) 否(3)

Gini(D) =
$$1 - ((\frac{1}{2})^2 + (\frac{1}{2})^2) = 0.5$$

已婚(4): Label(是否拖欠贷款): 是(0) 否(4)

Gini(D) =
$$1 - ((\frac{0}{4})^2 + (\frac{4}{4})^2) = 0$$

Gini 加权平均:

Gini(婚姻) =
$$\frac{6}{10} \cdot 0.5 + \frac{4}{10} \cdot 0 = \frac{3}{10}$$

同理, **计算年收入**(规定>=80k 不会拖欠贷款, <80k 的会拖欠贷款):

>=80k(7): Label(是否拖欠贷款): 是(3) 否(4)

Gini(D) =
$$1 - ((\frac{3}{7})^2 + (\frac{4}{7})^2) = \frac{25}{49}$$

<80k(3): Label(是否拖欠贷款): 是(0) 否(3)

Gini(D) =
$$1 - ((\frac{0}{3})^2 + (\frac{3}{3})^2) = 0$$

Gini 加权平均:

Gini(婚姻) =
$$\frac{7}{10} \cdot \frac{25}{49} + \frac{3}{10} \cdot 0 = \frac{5}{14}$$

比较三者的 Gini 的加权平均值:最小值是婚姻,所以婚姻作为根节点。