

Nome: Daniela dos Santos Tomás

Turma: 2LEIC12

27 de abril de 2022

Duração 90 minutos. Respostas certas, 1 valor, erradas, -0.25. Pode consultar unicamente o formulário entregue com este enunciado. Pode usar calculadora ou PC, mas unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

- lação é $2 \hat{i}$ m/s. A partir desse instante e até t = 5 segundos, a força resultante, em unidades SI, é $\vec{F} = 3 \hat{\imath} + 7 t \hat{\jmath}$. Após esse intervalo a força resultante é nula. Determine a velocidade do corpo em t = 13 s.
 - **A.** $21.5 \hat{i} + 45.5 \hat{j}$
- **D.** $9.5 \hat{i} + 17.5 \hat{j}$
- **B.** $17.0 \hat{i} + 87.5 \hat{j}$
- **E.** $21.5 \hat{i} + 295.8 \hat{j}$
- **C.** $9.5 \hat{i} + 43.8 \hat{j}$

Sua resposta: Em branco

2. A caixa retangular na figura é homogénea, com 60 cm de largura na base e 80 cm de altura. Quando o camião acelera, numa estrada horizontal, existe suficiente atrito entre a superfície do camião e a caixa para evitar que esta deslize sobre a superfície do camião; no entanto, para que a caixa não rode, a aceleração não pode ultrapassar um valor máximo. Encontre essa aceleração máxima do camião.

- **A.** 7.35 m/s^2
- **C.** 6.53 m/s^2
- **E.** 3.92 m/s^2

- **B.** 4.20 m/s^2
- **D.** 5.88 m/s^2

Sua resposta: Em branco

- 3. Um jovem leva uma mochila cheia de livros às costas. Considerando as forças seguintes:
 - 1. Peso da mochila e dos livros, na vertical.
 - 2. Força de contacto entre a mochila e as costas do jovem, na horizontal.
 - 3. Tensão nas fitas da mochila, com componentes horizontal e vertical.

Quais dessa forças aparecem no diagrama de corpo livre do jovem (sem incluir a mochila)?

- **A.** 1, 2 e 3
- **C.** 1 e 2
- E. 2 e 3

- **B.** 1
- **D.** 1 e 3

Sua resposta: E (+1)

- 4. Para comunicar-se com a estação na Terra, uma sonda espacial envia sinais de raio que se propagam com velocidade constante de 3×10^8 m/s (velocidade da luz). Se as ondas enviadas pela sonda demoram 21.7 minutos em chegar à Terra, determine a distância entre a sonda e a Terra.
 - **A.** $6.5 \times 10^8 \text{ km}$
- **D.** $3.9 \times 10^8 \text{ km}$
- **B.** $6.5 \times 10^7 \text{ km}$
- **E.** 4.2×10^7 km
- **C.** $3.9 \times 10^7 \text{ km}$
- Sua resposta: D (+1)

- 1. Em t = 0 o vetor velocidade dum corpo rígido de 2 kg em trans- 5. Um corpo rígido pode rodar à volta de dois eixos fixos paralelos entre si. Quando o corpo roda à volta do eixo 1, o seu momento de inércia é I_1 e quando roda à volta do eixo 2, o seu momento de inércia é I2. Sabendo que o centro de massa do corpo encontra-se a 3 cm do eixo 1 e a 5 cm do eixo 2, qual das seguintes afirmações é verdadeira?
 - **A.** Se o corpo for homogéneo I_1 e I_2 serão iguais.
 - **B.** I_1 é menor que I_2 .
 - **C.** I_1 e I_2 são iguais.
 - **D.** I_1 é maior que I_2 .
 - **E.** A relação entre I_1 e I_2 depende da massa.

Sua resposta: B (+1)

- 6. Uma bicicleta tem rodas com 26.8 cm de raio. Calcule a velocidade angular das rodas quando essa bicicleta se desloca com velocidade uniforme sobre uma estrada, sem que a rodas deslizem, demorando 44 s a percorrer 400 m.
 - **A.** 17.0 rad/s
- **C.** 25.4 rad/s
- E. 21.2 rad/s

- **B.** 29.7 rad/s
- **D.** 33.9 rad/s

Sua resposta: D (+1)

- 7. Num instante em que o vento sopra a 50 km/h em direção este, a velocidade dum avião em relação ao ar é 800 km/h, na direção norte. Determine o módulo da velocidade do avião em relação à terra.
 - A. 750 km/h
- C. 802 km/h
- E. 740 km/h

- **B.** 850 km/h
- **D.** 860 km/h

Sua resposta: B (-0.25)

- 8. Um ponto segue uma trajetória circular. A aceleração angular em função do tempo é dada pela expressão $\alpha = \ddot{\theta} = 6 t$ (unidades SI). Se em t = 0 o ponto estava em repouso com ângulo θ igual a 0, determine o ângulo θ , em radianos, em t = 2.2 s.
 - **A.** 66.02
- **C.** 5.32
- E. 31.94

- **B.** 10.65
- **D.** 26.62

Sua resposta: E (-0.25)

- **9.** Em t = 0 a componente y da posição de uma partícula é 4 m e a componente y da sua velocidade é nula. Sabendo que a componente y da aceleração verifica a expressão $a_v = 2 t$ (unidades SI), determine a componente y da posição em t = 6 s.
 - **A.** 471.2 m
- C. 76.0 m
- E. 38.0 m

- **B.** 228.0 m
- **D.** 190.0 m

Sua resposta: C (+1)

10. Encontre o vetor deslocamento entre t = 1 e t = 2 de um ponto, 15. A quantos quilómetros por hora equivale uma velocidade de sabendo que o vetor velocidade em função do tempo verifica a equação: $\vec{v} = 2 t^2 \hat{\imath} + 3 e^{-2t} \hat{\jmath}$ (unidades SI).

A. $4.7 \hat{i} + 0.18 \hat{i}$

D. $5.3 \hat{i} - 0.027 \hat{j}$

B. $0.67 \hat{i} - 0.2 \hat{j}$

E. $0.67 \hat{i} + 1.3 \hat{j}$

C. $5.3 \hat{i} + 1.5 \hat{j}$

Sua resposta: A (+1)

11. Uma roda com raio de 10 cm pode rodar livremente em torno do seu eixo que está fixo, com momento de inércia $5.2 \times 10^{-3} \text{ kg} \cdot \text{m}^2$. Determine a força tangencial que deve ser aplicada na roda, a 10 cm do eixo, para produzir aceleração angular de 6 rad/s².

A. 1.25 N

C. 0.12 N

E. 0.31 N

B. 0.21 N

D. 0.62 N

Sua resposta: Em branco

sem deslizar, numa estrada plana e horizontal. Num instante o valor da velocidade do ponto A, que está à mesma altura do centro da roda mas sobre a superfície do pneu, é 8 m/s. Determine o valor da velocidade do centro da roda, C, nesse mesmo instante.

A. 8.0 m/s

 $C. 4.6 \, \text{m/s}$

E. 4.0 m/s

B. 11.3 m/s

D. 5.7 m/s

Sua resposta: Em branco

13. Um corpo rígido tem movimento de translação, sem rotação. Em unidades SI, a sua aceleração tangencial é dada por: $a_t = 6 s^2$, onde s é a posição na trajetória. O corpo parte do repouso em s = 1 m. Encontre o valor absoluto da sua velocidade em s = 2 m.

A. 6.93 m/s

 $C. 3.46 \, \text{m/s}$

E. 5.29 m/s

B. 4.38 m/s

D. 6.11 m/s

Sua resposta: E (+1)

14. A força \vec{F} , com módulo de 48 N, faz acelerar os dois blocos na figura, sobre uma mesa horizontal, sem que o bloco de cima deslize em relação ao outro bloco. As forças de atrito nas rodas podem ser desprezadas. Calcule o módulo da força de atrito entre os dois blocos.

A. 5 N

C. 7 N

E. 6 N

B. 8 N

D. 9 N

Sua resposta: Em branco

18000 mm/s?

A. 5

C. 500

E. 64.8

B. 5×10^3

D. 6.48×10^4

Sua resposta: E (+1)

16. As quatro maiores luas de Júpiter foram descobertas por Galileu Galilei em 1610. O movimento duma delas, Ganímedes, à volta de Júpiter, é aproximadamente circular uniforme com raio 1070.4×10^3 km e período 7.15 dias. Determine o módulo da aceleração de Ganímedes relativa a Júpiter.

A. 0.0357 m/s^2

D. 0.712 m/s^2

B. 0.282 m/s^2

E. 0.983 m/s^2

C. 0.111 m/s^2

Sua resposta: B (-0.25)

12. A roda da frente duma bicicleta tem 29 cm de raio e desloca-se, 17. Dois vetores \vec{a} e \vec{b} , diferentes de zero, verificam a propriedade:

$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

Qual das seguintes relações é sempre verdadeira?

A. $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$

 $\mathbf{C.} \ \vec{a} \cdot \vec{b} = 0$

B. $\vec{a} + \vec{b} = \vec{a} - \vec{b}$

D. $\vec{a} = \vec{b}$

Sua resposta: A (-0.25)

18. Determine a velocidade da barra no instante em que a velocidade do carrinho é 50 m/s, para a direita, e a velocidade do cilindro é 10 m/s, para baixo, sabendo que a barra permanece sempre horizontal.

A. 12 m/s

C. 8 m/s

E. 9 m/s

B. 15 m/s

D. 10 m/s

Sua resposta: D (+1)

19. Se T representa unidades de tempo, L unidades de comprimento e M unidades de massa, as unidades de força são:

A. M L/T

C. ML^2

 $B. M L/T^2$

 \mathbf{D} , $\mathbf{M}^2 \mathbf{L}/\mathbf{T}$

Sua resposta: B (+1)

20. Um piloto de corridas de aviões, com 90 kg, executa um loop vertical de 300 m de raio, com velocidade constante em módulo. Sabendo que a força vertical exercida no piloto pela base do assento do avião é igual a 2205 N, no ponto mais baixo do loop, calcule a mesma força no ponto mais alto do loop.

A. 220 N

C. 2205 N

E. 882 N

B. 441 N

D. 1323 N

Sua resposta: Em branco