Spring 2021

DIS 0A

Truth Tables

True 1 (Q VTrue)

Determine whether the following equivalences hold, by writing out truth tables. Clearly state bV (OAb) whether or not each pair is equivalent.

- (a) $P \wedge (O \vee P) \equiv P \wedge O$
- $\forall \mathsf{eS} \ (\mathsf{b}) \ (P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
 - XOR.

The truth table of XOR (denoted by \oplus) is as follows.

			. A 10
Α	В	$A \oplus B$	ANU
F	F	F	F
F	T	Т 🗕	5 T
T	F	حج	5 1
Т	T	F	(T)
			-

1. Express XOR using only (\land,\lor,\lnot) and parentheses.

(nANB) V (nBNA) (AVB) ~ ~ (ANB)

2. Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.

Whenever (A OB) is true,

3. Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

(alb) a divides b"	original implication; P=Q	contrapositive in Q=>7P
3 Converse an	d Contrapositive Gowerse Q >F	inverse; $\neg P \Rightarrow \neg Q$

Consider the statement "if a natural number is divisible by 4, it is divisible by 2".

(a) Write the statement in propositional logic. Prove that it is true or give a counterexample.

- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$.)
 - (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.

Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.

(a) $\forall x ((\exists y \ Q(x,y)) \Rightarrow P(x))$ $\neg \exists x \ \forall y \ (P(x,y) \Rightarrow \neg Q(x,y))$ $\forall x \ \exists y \ (\exists y \ P(x) \Rightarrow Q(x,y))$	$ \begin{array}{c} (Q(x,y) \Rightarrow P(x)) \\ (x,y) \land (\exists y \ Q(x,y)) \end{array} $	equivalent
---	--	------------

$$\begin{array}{lll}
\neg \exists_{x} \forall_{y} \left(P(x,y) \Rightarrow \neg Q(x,y) \right) \\
&= \neg \exists_{x} \forall_{y} \left(\neg P(x,y) \lor \neg Q(x,y) \right) \\
&= \forall_{x} \exists_{y} \left(\neg \left(\neg P(x,y) \lor \neg Q(x,y) \right) \right) \\
&= \forall_{x} \exists_{y} \left(P(x,y) \land Q(x,y) \right) \\
&= \nabla_{x} \exists_{y} \left(P(x,y) \land Q(x,y) \right) \\
&= \nabla_{x} \exists_{y} \left(P(x,y) \land Q(x,y) \right)
\end{array}$$
The solution of the stribute !!

 $\exists y \left(P(x_1 y) \land Q(x_1 y) \right)$ $\exists y \left(Q(x_1 y) \right)^{i}$ $\exists y \left(Q(x_1 y) \right)^{i}$ $P(x_1 y) = {}^{i} y \text{ is equal to } 5x^{i}$ $Q(x_1 y) = {}^{i} y \text{ is equal to } 10x^{i}$