

Informática Industrial

Introdução ao Python: Aspectos básicos e ambiente de programação

Prof. Guilherme Márcio Soares, Dr. Eng. guilherme.marcio@ufjf.edu.br

Python

- □Linguagem de **alto nível** (mais próxima à linguagem humana) lançada em 1991 por Guido van Rossum.
- □É **interpretada**. Desta forma precisa de um interpretador para executar os programas.

Python

- □Permite o desenvolvimento de aplicações com **menos linhas de código**;
- □Fracamente tipada;
- □ A separação dos blocos de código é realizada por meio de indentação e espaços ao invés do uso de delimitadores como chaves e pontuações.

 Usar IDEs!!
- □ Ecossistema grande e crescente.

```
def perm(1):
                                     NOVA LINHA
            if len(l) <= 1:
INDENT
                                    NOVA LINHA
                                    NOVA LINHA
INDENT
               return[1]
DEDENT
            r = []
                                    NOVA LINHA
            for i in range(len(l)):
                                    NOVA LINHA
                s = 1[:i] + 1[i+1:] NOVA LINHA
INDENT
                p = perm(s) NOVA LINHA
            for x in p:
DEDENT
                                   NOVA LINHA
                r.append(l[i:i+1]+x) NOVA LINHA
INDENT
DEDENT
             return r
```

Configuração do Ambiente de Desenvolvimento

☐Passos:

- 1. Verifique se o interpretador está instalado (**python --version** no terminal)
- 2. Instale a extensão Python no VSCode.
- 3. Execute um programa teste:


```
#Programa para a soma de dois números
a = input("Digite o primeiro operando: ")
b = input("Digite o segundo operando: ")
print("Resultado da soma: ", float(a) + float(b))
```

- ☐ A utilização de bibliotecas em Python é muito facilitada utilizando um sistema de gerenciamento de pacotes.
- □Um dos gerenciadores mais utilizados é o **pip**, que permite a instalação de bibliotecas de maneira muito simplificada.
- □ A partir **da versão 3.4** do Python, o pip já foi incluído no instalador.

- □Uma das grandes vantagens do desenvolvimento em Python é o seu conjunto extenso de bibliotecas.
- □No entanto, a **instalação global** de bibliotecas **não é uma boa prática** na maior parte das vezes, pois em muitos casos, não existe **compatibilidade** de todos os programas com todas as **versões das bibliotecas**.
- □Para evitar este problema, pode-se utilizar o **virtualenv**: uma ferramenta que permite o desenvolvimento de soluções em um **ambiente isolado**.

Fonte: https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

- ☐ Ao criar um **virtualenv**, será criada uma cópia separada de todos os diretórios necessários para a execução de um programa em Python:
 - As bibliotecas comuns do Python (standard library);
 - O gerenciador de pacotes **pip**;
 - O **interpretador** (Python 2.x/3.x);
 - As dependências que estiverem no diretório site-packages;
 - Código-fonte;

Fonte: https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuais

Fonte: https://pythonacademy.com.br/blog/python-e-virtualenv-como-programar-em-ambientes-virtuals

- ☐Utilização de bibliotecas:
- 1. Instale a biblioteca através do comando **pip**;
- 2. Importe a biblioteca no código-fonte;
- ☐ Exemplo de bibliotecas:
- **Numpy¹**: operação com vetores e matrizes;
- Matplotlib²: criação de gráficos e visualizações.

1https://numpy.org/doc/stable/

²https://matplotlib.org/

Coleções

- □Coleções são contêineres para armazenamento de dados. Existem vários tipos de contêineres diferentes:
- **Listas** (**list**) : estruturas similares aos vetores do C++, mas com muito mais recursos. Podem armazenar dados de tipos diferentes nas posições. O acesso aos elementos é realizado por meio de índices.
- Dicionários (dict): estrutura capaz de armazenar dados através da indexação por chaves únicas. Os elementos são alocados de acordo com a lógica chave-valor.
- Tuplas (tuple) : estruturas similares às listas, no entanto são imutáveis.

☐ Cada um dos contêineres listados são **classes** com diferentes métodos e atributos.

Coleções

- ☐ Coleções ordenadas:
- **Pilha** (pode ser implementada com o container **list**): container ordenado em que o primeiro elemento que entra é o último que sai.
- **Fila (deque)** : container ordenado em que o primeiro elemento que entra é o primeiro que sai.

☐ Cada um dos contêineres listados são **classes** com diferentes métodos e atributos.

Condicionais

□ As condicionais em Python seguem a mesma lógica do C++, diferindo somente pela sintaxe.

if expressão_booleana:

expressões

else:

expressões

Cuidado com a indentação!

Loops

- □O loop **while** segue a mesma lógica do C++, isto é, enquanto uma expressão booleana for verdadeira, executa um determinado bloco de código.
- □O **loop** for possui uma lógica um pouco diferente. Sua execução está relacionada à varredura de uma sequência, como *strings*, listas, *tuplas*, etc.

for x in sequencia:

expressões

Cuidado com a indentação!

Desafio

- ☐ Utilize um dicionário para armazenar os parâmetros de um inversor de frequência.
- ☐ A estrutura do dicionário deverá ser:
 - Chave principal: número do parâmetro
 - Valor principal: outro dicionário contendo as informações
- ☐ Após criar o dicionário, crie um código para imprimir todos os parâmetros armazenados utilizando loops.

Paråm.	Descrição	Faixa de Valores	Ajuste de Fábrica	Ajuste do Usuário	Propr.	Grupos	Pág.
P0000	Acesso aos Parâmetros	0 a 9999	0				5-2
P0001	Referência Velocidade	0 a 65535			ro	READ	17-1
P0002	Velocidade de Saída (Motor)	0 a 65535			ro	READ	17-1
P0003	Corrente do Motor	0,0 a 200,0 A			ro	READ	17-1
P0004	Tensão Barram. CC (Ud)	0 a 2000 V			ro	READ	17-1
P0005	Frequência de Saída (Motor)	0,0 a 500,0 Hz			ro	READ	17-2
P0006	Estado do Inversor	0 = Ready (Pronto) 1 = Run (Execução) 2 = Subtensão 3 = Falha 4 = Autoajuste 5 = Configuração 6 = Frenagem CC 7 = Estado Dormir			ro	READ	17-2
P0007	Tensão de Saída	0 a 2000 V			ro	READ	17-3
P0009	Torque no Motor	-1000,0 a 1000,0 %			ro	READ	17-3
P0010	Potência de Saída	0,0 a 6553,5 kW			ro	READ	17-4
P0011	Fator de Potência	-1,00 a 1,00			ro	READ	17-4
			1	_		1	

Dica:

for key, value in a_dict.items(): print(key, '->', value)