MATEMÁTICA

Função composta e função inversa

MÓDULO 06 FRENTE

FUNÇÃO BIJETORA

Uma função f: $A \to B$ é bijetora se, e somente se, essa função atende às seguintes condições.

- i) A sua imagem (Im) é igual ao seu contradomínio (CD). Observe que, ao representarmos simbolicamente uma função f na forma f: A → B, o conjunto A é o domínio da função, e o conjunto B é o contradomínio da função. Portanto, a condição é satisfeita se, e somente se, Im = B.
- Para quaisquer elementos x₁ e x₂ do domínio A, com x₁ ≠ x₂, tem-se f(x₁) ≠ f(x₂).
 Em outras palavras, cada elemento da imagem deve estar relacionado com um único elemento do domínio.

Exemplos

1º) Exemplo em forma de diagrama

Verificando a condição i, temos que:

Domínio: $D = A = \{9, 16, 25, 36\}$

Contradomínio: $CD = B = \{3, 4, 5, 6\}$

Imagem: $Im = \{3, 4, 5, 6\}$

Logo, CD = Im.

Verificando a condição ii:

Podemos observar que cada elemento da imagem está relacionado com um único elemento do domínio.

2º) Exemplo em forma de gráfico

Verificando a condição i, temos que:

Domínio: D = [3, 10]

Contradomínio: CD = [5, 18]

Imagem (projeção do gráfico no eixo das ordenadas):

Im = [5, 18]

Logo, CD = Im.

Verificando a condição ii:

Podemos observar que cada elemento da imagem está relacionado com um único elemento do domínio. Para tal verificação, basta traçarmos linhas paralelas ao eixo das abscissas, a partir da imagem. Cada uma dessas linhas deve interceptar a curva em um único ponto, para que a condição seja satisfeita.

FUNÇÃO INVERSA

Considere o diagrama a seguir:

No diagrama, está indicada uma função ${\bf f}$ que associa a cada elemento de ${\bf A}$ a sua imagem em ${\bf B}$. A função inversa de ${\bf f}$, indicada por ${\bf f}^{-1}$, é a função que associa a cada elemento de ${\bf B}$ a sua imagem em ${\bf A}$.

Observe que f deve ser uma função bijetora.

Uma função bijetora f: $A \to B$ é inversível, e sua inversa é a função f^{-1} : $B \to A$ se, e somente se, para todo $(x, y) \in f \to (y, x) \in f^{-1}$.

Cálculo da função inversa - regra prática

- i) Trocar x por y e y por x.
- ii) Isolar o novo y.

Exemplos

Determinar a função inversa das seguintes funções.

10)
$$f(x) = 3x$$

(trocar
$$\mathbf{x}$$
 por \mathbf{y} e \mathbf{y} por \mathbf{x}): $x = 3y$

(isolar o novo
$$y$$
): $y = \frac{x}{3}$

Assim, indicamos na forma
$$f^{-1}(x) = \frac{x}{3}$$
.

2°)
$$f(x) = \frac{x-1}{x+2}$$
, para $x \neq -2$

(trocar \mathbf{x} por \mathbf{y} e \mathbf{y} por \mathbf{x}):

$$x = \frac{y-1}{y+2} \Rightarrow y-1 = xy + 2x \Rightarrow y-xy = 2x + 1$$

(isolar o novo y):

$$y(1-x) = 2x + 1 \Rightarrow y = \frac{2x+1}{1-x}, \text{ para } x \neq 1$$

Assim, indicamos na forma
$$f^{-1}(x) = \frac{2x+1}{1-x}$$
.

OBSERVAÇÃO

Os gráficos da função \mathbf{f} de sua inversa \mathbf{f}^{-1} são simétricos em relação à bissetriz dos quadrantes ímpares.

Exemplo

Esboçando os gráficos das funções f(x) = 3x e $f^{-1}(x) = \frac{x}{3}$ em um mesmo sistema de eixos e considerando $f: \mathbb{R} \to \mathbb{R}$, temos:

EXERCÍCIO RESOLVIDO

- **01.** (UFV-MG) Seja **f** a função real tal que f(2x 9) = x, para todo **x** real. A igualdade $f(c) = f^{-1}(c)$ se verifica para **c** iqual a
 - A) 5
- C) 3
- E) 1

- B) 7
- D) 9

Resolução:

Cálculo de f(c):

Fazendo
$$2x - 9 = k$$
, temos $x = \frac{k+9}{2}$. Portanto, temos que $f(k) = \frac{k+9}{2}$. Logo, podemos dizer que $f(x) = \frac{x+9}{2}$.

Então, para
$$x = c$$
, temos $f(c) = \frac{c+9}{2}$.

Cálculo de f⁻¹(c):

Temos
$$f(x) = \frac{x+9}{2}$$
.

Trocando \mathbf{x} por \mathbf{y} e \mathbf{y} por \mathbf{x} , temos:

$$x = \frac{y+9}{2} \Rightarrow y = 2x - 9 \Rightarrow f^{-1}(x) = 2x - 9$$

Logo, para x = c, temos $f^{-1}(c) = 2c - 9$.

Fazendo $f(c) = f^{-1}(c)$, obtemos:

$$\frac{c+9}{2} = 2c - 9 \Rightarrow 4c - 18 = c + 9 \Rightarrow 3c = 27 \Rightarrow c = 9$$

FUNÇÃO COMPOSTA

Sejam as funções \mathbf{f} e \mathbf{g} , tais que f: A \rightarrow B e g: B \rightarrow C, conforme a figura a seguir:

Considere uma função h: $A \rightarrow C$ que produz os mesmos resultados que as funções \mathbf{f} e \mathbf{g} aplicadas em sequência, ou seja, que relaciona cada elemento de \mathbf{A} com o correspondente elemento de \mathbf{C} sem passar pelo conjunto \mathbf{B} . Tal função \mathbf{h} é denominada função composta de \mathbf{f} e \mathbf{g} .

Denotamos a função composta h(x) por q(f(x)) ou q o f(x).

Como exemplo, considere os conjuntos A, B e C representados a seguir e sejam as funções $f\colon A\to B$ e $g\colon B\to C$, tais que f(x)=x+3 e $g(x)=x^2-1$. Vamos descobrir a expressão matemática da função g(f(x)), que relaciona os elementos de A com os elementos de C.

Para calcularmos a expressão da função g(f(x)), devemos substituir o \mathbf{x} na expressão de g(x) por f(x).

Assim, como $g(x) = x^2 - 1$, temos:

$$g(f(x)) = f(x)^2 - 1$$

Mas, f(x) = x + 3. Portanto, temos:

$$g(f(x)) = g(x + 3) = (x + 3)^2 - 1 = x^2 + 6x + 9 - 1$$

Assim,
$$g(f(x)) = x^2 + 6x + 8$$
.

Observe que essa expressão realmente relaciona os elementos de **A** com os elementos de **C**.

- Para x = 1, temos $g(f(1)) = 1^2 + 6.1 + 8 = 15$.
- Para x = 2, temos $g(f(2)) = 2^2 + 6.2 + 8 = 24$.
- Para x = 3, temos $g(f(3)) = 3^2 + 6.3 + 8 = 35$.
- Para x = 4, temos $q(f(4)) = 4^2 + 6.4 + 8 = 48$.

EXERCÍCIOS RESOLVIDOS

- **02.** Sejam as funções f: $\mathbb{R} \to \mathbb{R}$ e g: $\mathbb{R} \to \mathbb{R}$ tais que f(x) = 2x + 3 e g(x) = x 2. Calcular:
 - A) f(g(2))

Resolução:

$$f(g(2)) = f(0) = 3$$

B) $f \circ g \circ g(1)$

Resolução:

f o g o g(1) =
$$f(g(g(1))) = f(g(-1)) = f(-3) = -3$$

C) f(g(x))

Resolução:

$$f(g(x)) = 2g(x) + 3 = 2(x - 2) + 3 = 2x - 1$$

D) $g \circ f(x)$

Resolução:

g o
$$f(x) = g(f(x)) = f(x) - 2 = 2x + 3 - 2 = 2x + 1$$

03. Considere as funções f(x) = 4x + 11 e f(g(x)) = 6x - 10. Determinar a expressão de g(x).

Resolução:

Pela definição de função composta, temos que f(g(x)) = 4g(x) + 11. Igualando esse resultado com a expressão fornecida, temos:

$$4g(x)+11=6x-10\Rightarrow 4g(x)=6x-21\Rightarrow g(x)=\frac{6x-21}{4}$$

04. Sejam as funções h(x) = 5x - 3 e t(h(x)) = 15x + 32. Determinar a expressão de t(x).

Resolução:

$$t(h(x)) = 15x + 32 \Rightarrow t(5x - 3) = 15x + 32$$
 (I)

Vamos denotar 5x - 3 por **k**. Assim, temos:

$$5x - 3 = k \Rightarrow x = \frac{k+3}{5}$$

Substituindo na expressão (I), temos:

$$t(k) = 15.\left(\frac{k+3}{5}\right) + 32 \Rightarrow t(k) = 3k + 9 + 32 \Rightarrow$$

$$t(k) = 3k + 41$$

Daí, se a expressão vale para \mathbf{k} , a mesma também vale para \mathbf{x} , ou seja, $\mathbf{t}(x) = 3x + 41$.

05. (UFU-MG) Seja **f** uma função real de variável real definida

$$por \ f(x) = \begin{cases} x+1, \ se \ x \geq 0 \\ f(f(-x)), \ se \ x < 0 \end{cases}.$$

Então, f(−1) é igual a

- A) 0
- B) 1
- C) 2
- D) -1
- E) 3

Resolução:

Para x = -1, temos f(-1) = f(f(1)).

Mas
$$f(1) = 1 + 1 \Rightarrow f(1) = 2$$
.

Logo,
$$f(-1) = f(2)$$
.

Mas
$$f(2) = 2 + 1 \Rightarrow f(2) = 3$$
.

Logo,
$$f(-1) = 3$$
.