Dữ Liệu Lớn

Linear Regression

Thân Quang Khoát

khoattq@soict.hust.edu.vn

Viện Công nghệ thông tin và Truyền thông Trường Đại Học Bách Khoa Hà Nội

Năm 2019

Nội dung khoá học

- Overview of data analytics/science
- Basic statistics
- Python and programming tools
- Exploratory data analysis
- Data integration and preprocessing
- Prediction with machine learning
- Data visualization
- Evaluation of analysis results
- Basics of natural language processing
- Anomaly detection
- Big data analysis
- Capstone project

Học có giám sát

Học có giám sát (Supervised learning)

- Tập dữ liệu học (training data) bao gồm các quan sát (examples, observations), mà mỗi quan sát được gắn kèm với một giá trị đầu ra mong muốn.
- Mục đích là học một hàm (vd: một phân lớp, một hàm hồi quy,...) phù hợp với tập dữ liệu hiện có và khả năng tổng quát hoá cao.
- Hàm học được sau đó sẽ được dùng để dự đoán cho các quan sát mới.
- Phân loại (classification): nếu đầu ra (output y) thuộc tập rời rạc và hữu hạn.
- □ Hồi quy (regression): nếu đầu ra (output y) là các số thực.

Hồi quy tuyến tính: Giới thiệu

- Bài toán hồi quy: cần học một hàm y = f(x) từ một tập học cho trước D = {(x₁, y₁), (x₂, y₂), ..., (xӎ, yӎ)} trong đó yᵢ ≈ f(xᵢ) với mọi i.
 - □ Mỗi quan sát được biểu diễn bằng một véctơ n chiều, chẳng hạn $\mathbf{x}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{in})^T$.
 - Mỗi chiều biểu diễn một thuộc tính (attribute/feature)
- Mô hình tuyến tính: nếu giả thuyết hàm y = f(x) là hàm tuyến tính.

$$f(\mathbf{x}) = w_0 + w_1 x_1 + ... + w_n x_n$$

■ Học một hàm hồi quy tuyến tính thì tương đương với việc học véctơ trọng số $\mathbf{w} = (w_0, w_1, ..., w_n)^T$

Hồi quy tuyến tính: Ví dụ

Hàm tuyến tính f(x) nào phù hợp?

0.13	-0.91
1.02	-0.17
3.17	1.61
-2.76	-3.31
1.44	0.18
5.28	3.36
-1.74	-2.46
7.93	5.56

Ví dụ: f(x) = -1.02 + 0.83x

Phán đoán tương lai

- Đối với mỗi quan sát $\mathbf{x} = (x_1, x_2, ..., x_n)^T$:
 - Giá trị đầu ra mong muốn c_x
 (Không biết trước đối với các quan sát trong tương lai)
 - Giá trị phán đoán (bởi hệ thống)

$$y_x = w_0 + w_1 x_1 + ... + w_n x_n$$

- Ta thường mong muốn y_x xấp xỉ tốt c_x
- Phán đoán cho quan sát tương lai $\mathbf{z} = (z_1, z_2, ..., z_n)^T$
 - Cần dự đoán giá trị đầu ra, bằng cách áp dụng hàm mục tiêu đã học được f:

$$f(z) = w_0 + w_1 z_1 + ... + w_n z_n$$

Học hàm hồi quy

- Mục tiêu học: học một hàm f* sao cho khả năng phán đoán trong tương lai là tốt nhất.
 - \Box Tức là sai số $|c_z f(z)|$ là nhỏ nhất cho các quan sát tương lai z.
 - Khả năng tổng quát hóa (generalization) là tốt nhất.
- Vấn đề: Có vô hạn hàm tuyến tính!!
 - Làm sao để học? Quy tắc nào?

- Dùng một tiêu chuẩn để đánh giá.
 - Tiêu chuẩn thường dùng là hàm lỗi (generalization error, loss function, ...)

Hàm đánh giá lỗi (loss function)

- Định nghĩa hàm lỗi E
 - □ Lỗi (error/loss) phán đoán cho quan sát $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

$$r(\mathbf{x}) = [c_x - f^*(\mathbf{x})]^2 = (c_x - w_0 - w_1 x_1 - \dots - w_n x_n)^2$$

Lỗi của hệ thống trên toàn bộ không gian của x:

$$E = E_x[r(x)] = E_x[c_x - f^*(x)]^2$$

Mục tiêu học là tìm hàm f* mà E là nhỏ nhất:

$$f^* = \operatorname{arg\,min}_{f \in \boldsymbol{H}} \boldsymbol{E}_x \left[r(\boldsymbol{x}) \right]$$

- Trong đó H là không gian của hàm f.
- Nhưng: trong quá trình học ta không thể làm việc được với bài toán này.

Hàm lỗi thực nghiệm

- Ta chỉ quan sát được một tập **D** = {(**x**₁, y₁), (**x**₂, y₂), ..., (**x**_M, y_M)}. Cần học hàm f từ **D**.
- Lỗi thực nghiệm (empirical loss; residual sum of squares)

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

- \square RSS/M là một xấp xỉ của $\mathbf{E}_{\mathbf{x}}[\mathbf{r}(\mathbf{x})]$ trên tập học \mathbf{D}
- Nhiều phương pháp học thường gắn với RSS.

Bình phương tối thiểu (OLS)

Cho trước D, ta đi tìm hàm f mà có RSS nhỏ nhất.

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f)$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2 \quad (1)$$

- Đây được gọi là bình phương tối thiểu (least squares).
- Tìm nghiệm w* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ $M_x(n+1)$ mà hàng thứ i là $A_i = (1, x_{i1}, x_{i2}, ..., x_{in});$ B^{-1} là ma trận nghịch đảo; $y = (y_1, y_2, ..., y_M)^T$.
- Chú ý: giả thuyết A^TA tồn tại nghịch đảo.

Bình phương tối thiểu: thuật toán

- Input: **D** = {(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)}
- Output: w*
- Học w* bằng cách tính:

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ $M_x(n+1)$ mà hàng thứ i là $A_i = (1, x_{i1}, x_{i2}, ..., x_{in});$ B^{-1} là ma trận nghịch đảo; $y = (y_1, y_2, ..., y_M)^T$.
- Chú ý: giả thuyết A^TA tồn tại nghịch đảo.
- Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Bình phương tối thiểu: ví dụ

Kết quả học bằng bình phương tối thiểu

0.13	-1
1.02	-0.17
3	1.61
-2.5	-2
1.44	0.1
5	3.36
-1.74	-2.46
7.5	5.56

$$f^*(x) = 0.81x - 0.78$$

Bình phương tối thiểu: nhược điểm

- Nếu A^TA không tồn tại nghịch đảo thì không học được.
 - Nếu các thuộc tính (cột của A) có phụ thuộc lẫn nhau.
- Độ phức tạp tính toán lớn do phải tính ma trận nghịch đảo.
 - →Không làm việc được nếu số chiều n lớn.
- Khả năng overfitting cao vì việc học hàm f chỉ quan tâm tối thiểu lỗi đối với tập học đang có.

Ridge regression (1)

■ Cho trước $\mathbf{D} = \{(\mathbf{x}_1, \, \mathbf{y}_1), \, (\mathbf{x}_2, \, \mathbf{y}_2), \, ..., \, (\mathbf{x}_M, \, \mathbf{y}_M)\}$, ta đi giải bài toán: $f^* = \arg\min_{f \in \mathbf{H}} RSS(f) + \lambda \|\mathbf{w}\|_2^2$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{f \in \mathbf{H}} (y_i - \mathbf{A}_i \mathbf{w})^2 + \lambda \sum_{j=0}^{n} w_j^2$$
 (2)

Trong đó $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$ được tạo ra từ \mathbf{x}_i ; λ là một hằng số phạt ($\lambda > 0$).

- Đại lượng hiệu chỉnh (phạt) $\lambda \| \mathbf{w} \|_2^2$
 - Có vai trò hạn chế độ lớn của w* (hạn chế không gian hàm f).
 - Đánh đổi chất lượng của hàm f đối với tập học **D**, để có khả năng phán đoán tốt hơn với quan sát tương lai.

Ridge regression (2)

Tìm nghiệm w* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}_{n+1})^{-1} \mathbf{A}^T \mathbf{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ Mx(n+1) mà hàng thứ i là $(1, x_{i1}, x_{i2}, ..., x_{in})$; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$; \mathbf{I}_{n+1} là ma trận đơn vị cỡ n+1.
- So sánh với phương pháp bình phương tối thiểu:
 - Tránh được trường hợp ma trận dữ liệu suy biến. Hồi quy Ridge luôn làm việc được.
 - Khả năng overfitting thường ít hơn.
 - Lỗi trên tập học có thể nhiều hơn.
- Chú ý: chất lượng của phương pháp phụ thuộc rất nhiều vào sự lựa chọn của tham số λ.

Ridge regression: thuật toán

- Input: **D** = {(\mathbf{x}_1 , \mathbf{y}_1), (\mathbf{x}_2 , \mathbf{y}_2), ..., (\mathbf{x}_M , \mathbf{y}_M)}, hằng số λ>0
- Output: w*
- Học w* bằng cách tính:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó **A** là ma trận dữ liệu cỡ Mx(n+1) mà hàng thứ i là $A_i = (1, x_{i1}, x_{i2}, ..., x_{in});$ B^{-1} là ma trận nghịch đảo; $y = (y_1, y_2, ..., y_M)^T$.
- Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Chú ý: để tránh vài ảnh hưởng xấu từ độ lớn của y, ta nên loại bỏ thành phần w₀ trong đại lượng phạt ở công thức (2). Khi đó nghiệm w* sẽ thay đổi một chút.

Ridge regression: ví du

Xét tập dữ liệu Prostate gồm 67 quan sát dùng để học, và 31 quan sát dùng để kiểm thử. Dữ liệu gồm 8 thuộc tính.

	Least	
W	squares	Ridge
0	2.465	2.452
lcavol	0.680	0.420
lweight	0.263	0.238
age	-0.141	-0.152
lbph	0.210	0.002
svi	0.305	0.094
lcp	-0.288	-0.051
gleason	-0.021	0.232
pgg45	0.267	-0.056
Test RSS	0.521	0.492

Ridge regression: $anh hưởng của \lambda$

W* = (w₀, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP) thay đổi khi cho λ thay đổi.

Câu hỏi ôn tập

- Viết chi tiết từng bước giải để tìm nghiệm cho bài toán (1) và (2).
- Tìm nghiệm của bài toán (2) khi loại bỏ w₀ ra khỏi đại lượng phạt.