

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor	Mr.Abdul Basit/Mr.Nadeem/Ms.Asma/Ms.Javeria/Ms.Urooj	Semester	Spring
Batch/Section(s)	2021/BS-CS A,B,C,D,E,F,G,H,J,K,L; BS-AI A,B ;BS-CY A,B	Year	2022
Course Title	Differential Equations (MT-1006)	Credit Hours	3
Prerequisite(s)	MT1003- Calculus and Analytical Geometry	Course TA	

Text Book (1)	A first course in Differential Equations (DE) with modeling applications/		
	Dennis G. Zill (Latest Editions).		
Text Book (2)	Differential Equations with Boundary-Value Problems/ Dennis G. Zill		
Ref. Book	Elementary Differential Equations (DE) with applications. /		
	C. H. Edwards. David, E.		

Course	The objective is to impart training to the students in this important branch of		
Objective	Mathematics. Students are expected to learn, Convergence/Divergence of Series,		
	system of linear equations & Differential Equations arising from different Physical		
	systems. Attempt will be made to introduce the students how to solve Linear		
	systems, Ordinary & Partial Differential Equations using different techniques.		
	Concept of Fourier Series will also be explained for PDE's solution.		

No.	Assigned Program Learning Outcome (PLO)		Tools
01	An ability to identify, formulate, research literature and analyze complex	R	
	engineering problems reaching substantiated conclusions using first		
	principles of mathematics, natural science and engineering sciences.		

I = Introduction, R = Reinforcement, E = Evaluation. A = Assignment, Q = Quiz,/M = Midterm, F = Final, DE = Differential Equation.

No.	Course Learning Outcome (CLO) Statements	Tools
01	Solution of different type of ODE's using different methods.	Q1, A1, M1, F
02	Solution of some basic ODE's like Linear, Exact, Bernouli etc.	A2, M1, Q2, M2, F
03	Existence/Independence of solutions of Initial/Boundary value problems for first & second order ODE's through different techniques	A2, Q2, M2, F
04	Solution of 2nd and higher order differential equations	Q2, M2, A2, Q3, F
05	solution of PDE's by Fourier series using orthogonal set of functions	Q3, A3, M2, F

Week	Contents/Topics	Exercises	CLO
		_	_
Y	1st Order DE	1.1,1.2	1
	Basic concepts, formation and solution of differential		
	equations		
	Initial value problems Separable variables	22224	2
	Linear Equations.	2.2,2.3,2.4	
2,3	Exact Equations		
	Solution by Substitution	2.5	2
	Equations (Homogeneous & Bernoulli's DE) reducible to	2.5	_
	linear equations & Riccati.		
5	1st Order DE arising from real life	3.1-3.3	3
6	Midterm 1	3.1 3.3	
	2 [™] and Higher Order DE	4.1	3-4
	Initial and Boundary value problem, Existence of a unique		
7	solution. Homogeneous DEs', Linear Dependence and		
	Independence. Wronskian and non-homogeneous Linear		
	Differential Equation		
	Reduction of order. 4.2	4.2-4.7	4
	Homogeneous Linear Equations with Constant		
	Coefficients. 4.3		
	Undetermined coefficients-Superposition approach 4.4		
8-10	The operator D, Inverse operator 1/ D, Solution of		
0-10	differential equations by operator D methods, Special		
	cases. 4.5		
	Undetermined coefficients-Annihilator approach. 4.5		
	Variation of parameters. 4.6		
	Cauchy Euler equation. 4.7		
11	Midterm 2		
	Orthogonal Functions and Fourier Series	11.1-11.3	5
	Orthogonal Functions	(DE with	
12-13	Fourier Series	BVP book)	
	Fourier Cosine & Sine Series (Periodic functions and		
	expansion of periodic functions in Fourier series and		
	Fourier coefficients.)		_
	Partial Differential Equations	12.2-12.5	5
14-15	Basic concepts and formation of partial differential	(DE with	
	equations. Linear homogeneous partial differential	BVP book)	
	equations and relations to ordinary differential equations.		
	Classical Equations & Boundary Value Problems.		
	Heat Equation. Wave Equation.		
	Laplace Equation.		
16	Final Exam		
	I IIIGI LAGIII		

Grading Criteria:

Marks Distribution:

Particulars	% Marks
1. Quizzes (at least 3)	10
2. Assignments (at least 3)	10
4. First Mid Exam	15
5. Second Mid Exam	15
6. Final Exam	50
Total:-	100

Important Instructions to be followed for this Course

- Be in classroom on time. Any student who arrives more than 5 min late in the class would be marked LATE. Anybody coming to class more than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or any other electronic devices before entering the class.
- Maintain the decorum of the class room all the time.
- Avoid a conversation with your classmates while lecture is in progress.
- Use parliamentary language in the class room as well as in assignments. Refrain from using
 impolite, vulgar or abusive language in the class room as well as in class presentations and
 assignments.
- Submit your assignments on time, no assignment will be accepted after the deadline.
- There would be no re- take of any quiz.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing.
- Work in groups, whenever appropriate.
- Apply the learned principles and gained knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments and presentations.
- Always bring your text Books with you in the class.

No	te:	Students ar	e welcome a	ill the t	time to g	get help	from th	e Teacher
----	-----	-------------	-------------	-----------	-----------	----------	---------	-----------

Signature:	 Date:31-01-2022