

Ph.D. CANDIDATE · UC IRVINE

1 925-789-0480 | **☑** jordanott365@gmail.com | **☆** www.jordanott.com

Research

Interests

- Learning theories \sim biologically plausible backpropagation
- Sensory motor integration in a reinforcement learning context
- Visual attention and memory mechanisms

Education

Ph.D in Computer Science

Sept. 2018 - Present

UC IRVINE

Orange CA

· Artificial Intelligence

M.S. in Computational Data Science

Aug. 2017 - May 2018

CHAPMAN UNIVERSITY

Orange CA

B.S. in Computer Science Magna Cum Laude

Aug. 2014 - May 2017

CHAPMAN UNIVERSITY

Orange CA

Professional Experience _____

Graduate Student Instructor

Sept. 2018

UC IRVINE

Irvine, CA

Pleasanton, CA

Data Science Intern

June 2018 - Sept. 2018

WORKDAY

- Customer usage modeling
- Predicting load and growth rate of new customers
- Time series forecasting on internal metrics

Graduate Research Intern

May 2017 - Aug. 2017

El Segundo, CA

AEROSPACE CORPORATION

- Deep Learning and High Performance Computing Research
- Predict coordinate location from images when GPS signal becomes unavailable
- Machine learning algorithms to detect anomalies in rocket launch data

Software Engineering Intern

May 2016 - Aug. 2016

TRIPLE RING TECHNOLOGIES

Newark, CA

- · Embedded systems engineering on human implantable devices to monitor glucose levels in patients with Diabetes
- · Developed internal repository tracking application, auto scheduling builds, reporting errors, logging changes
- Software modifications to blood pressure cuffs for medical research, blood oxygenation analysis

Technical Skills	
 Python, Lua, R, Matlab, C++, Java, SQL, Hive Cuda, Caffe, Git, Keras, PyTorch, Tensorflow, Unix 	
Independent Work	
Feedback Attention RNN • Hidden states are passed to lower layers • Attention over incoming hidden states	June 2018
 Relational Localization Ask a neural network relational questions: "What person is farthest from the street light?" The neural network correctly answers and localizes the correct person in the image Adapted from DeepMind's Relational Network 	February 2018
President and Founder	Jan. 2016 - Mar. 2017
 CHAPMAN ROBOTICS RC car controlled by camera and Raspberry Pi to autonomously steer vehicle Create and train a convolutional neural network to steer a car through an environment 	Orange, CA
 MIT: Deep Learning for Self-Driving Cars Competition Car steers through simulation traffic at 75 mph Ranked 6th in the world (as of August 2017) 	Mar. 2017
Honors & Awards	
Most Distinguished Undergraduate Nominee - Cheverton Award One of six undergraduates nominated	2017

2017

Outstanding student organization Nominee

Orange County Computer Club Scholarship

2017

• Chapman robotics was recognized as an outstanding student organization

Ronald M. Huntington Scholarship Award

2017

2017

Publications

- 1. Jordan Ott, Erik Linstead, Nicholas LaHaye, and Pierre Baldi. Learning in the machine: To share or not to share? *In review for Neural Networks*, 2018
- 2. Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and Erik Linstead. A deep learning approach to identifying source code in images and video. MSR-2018, 2018
- 3. Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cristiano Firmani, and Erik Linstead. Learning lexical features of programming languages from imagery using convolutional neural networks. *ICPC-2018*, 2018

Presentations _____

1. Nicholas La
Haye, Jordan Ott, Michael Garay, Hesham El-Askary, and Erik Linstead. Multi-modal object tracking and image fusion using unsupervised deep learning methodologies.

American Geophysical Union, 2017