哈尔滨工业大学 (威海)

推免生数值分析 上机实验报告 (2022 级)

姓名: 王斯

学号: (80170217).

指导教师: 陈 忠

数值实验一

上机时间: 4月15日 地点: 岩盆

1.实验题目:用递推公式求积分,求解函数值。

2.实验目的:熟悉编程语言,用循环语句编译迭代过程;观察实验数据,分析误差;理解递推计算的稳定性问题。

3. 上机求解

考虑函数 $f(x) = \frac{1-\cos x}{x^2}$ 对于任意的 x, $0 \le f(x) \le 1/2$. 计算函数值

方案 (1): f(1.2×10⁻⁵)= 0·49999 73297490)

又由于 $\cos x = 1 - 2\sin^2(x/2)$, 重新计算函数 $f(x) = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2$ 的函数值

分析哪种结果更好。

海江的结果更好、海小计算过程中出现相近数相道,导到一种数数字报失很大。

结果分析: 以计算机 long 精度计算为例,方案 (1) 的计算过程如下:

$$\cos(1.2 \times 10^{-5}) = 0.99999999999$$

$$1 - \cos(1.2 \times 10^{-5}) = 0.0000000001 = 10^{-10}$$

$$(1.2 \times 10^{-5})^2 = 1.44 \times 10^{-10}$$

$$f(1.2 \times 10^{-10}) = \frac{10^{-10}}{1.44 \times 10^{-10}} = 0.6944...$$

同时,方案(2)的计算过程如下:

$$1.2 \times 10^{-5}/2 = 0.000006$$

$$\sin(1.2 \times 10^{-5}/2) = 5.9999999999400$$

$$\frac{\sin(x/2)}{x/2} = 0.99999999999900$$

$$f(1.2 \times 10^{-5}) = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2}\right)^2 = 0.499...$$

说明我们在计算过程中要避免: 扣近 表相流 极失放火数字。

题目 3. 用递推公式求解积分:

$$I_n = \int_0^1 \frac{x^n}{a+x} dx, \quad n = 0, 1, \dots, 10$$

其中 a 为参数, 分别为 a=0.05 及 a=15.注意到

$$I_n + aI_{n-1} = \int_0^1 \frac{x^n + ax^{n-1}}{a+x} dx = \int_0^1 x^{n-1} dx = \frac{1}{n}, \quad n = 0, 1, \dots, 10$$

所以有两种方案:

方案 (1):
$$I_n = -aI_{n-1} + \frac{1}{n}$$
, $n = 1, 2, \dots, 10$

方案 (2):
$$I_{n-1} = \frac{1}{a} \left(-I_n + \frac{1}{n} \right), n = 10, 9, \dots, 0$$

请根据表中给出的初始值,利用循环语句。计算其它的积分值。

n	方案	(1)	方案 (2)		
n	a=0.05	a=15	a=0.05	a=15	
0	3.04452	0.06454	0.926986X1013	0.0645385	
1	0847774	0.03190	-0.463493x10'	0.0319222	
2	0.4576113	0.02150	0-231747 X10"	0.0211673	
3	0-310453	0.010833	-0.112873X1010	0.0158245	
4	0.234477	0.087500	0.579366X108	0.0126326	
5	0.188276	e -1.12500	-0.289683X1V	0.0105112	
6	V.157253	16.8542	0.1448412106	0.00899932	
7	0.134994	-252,670	7241.94	0.00786736	
8	0.118250	379. v. 2	361.222	0.00698963	
9	0.105200	- 56852.43	-18.0	0.00626667	
10	0.09 47400	852786.60	0.10000	0.00600	

结果分析: 比较用方案(1)和方案(2)方法得到的结果。

釋川 191<1日甘沒差随差法代次数 增加而减少,191>1时 沒差增数 落山 [91>1日 沒差随着进代次数 增加而减少,191<1时 沒差增大。 不管哪种方案,都需要输入初始数据 I_0 (或 I_{10})。由于计算机存储数据时具有 舍入误差或者计算初始数据时具有误差,计算机实际开始计算的初始值为 \tilde{I}_0 (或 \tilde{I}_{10}).记 $e_n=\left|I_n-\tilde{I}_n\right|$.对于方案(1),我们有

$$e_n = |I_n - \tilde{I}_n| = |a| |I_{n-1} - \tilde{I}_{n-1}| = |a| e_{n-1} = \dots = |a|^n e_0$$

所以|a|为每次迭代误差的放大或缩小系数,当|a|>1时,误差会越来越大;当|a|<1时,误差会越来越小。同理,对于方案(2),我们有

$$e_{n-1} = \left| I_{n-1} - \tilde{I}_{n-1} \right| = \left| \frac{1}{a} \right| \left| I_n - \tilde{I}_n \right| = \left| \frac{1}{a} \right| e_n = \dots = \left| \frac{1}{a} \right|^i e_{n+i-1}$$

所以,与方案(1)截然相反,当|a|>1时,误差会越来越小;当|a|<1时,误差会越来越大。

4.思考题:实验的难点、遇到的问题及解决方案。

实验的难知是是有效数字在"均中的损失变化"。 进代停止多件与新出级的控制一个形式。

数值实验二

上机时间: 4月12日 地点: 宿宝

1.实验题目: 求解线性方程组

$$\begin{pmatrix} -0.002 & 2 & 2 \\ 1 & 0.78125 & 0 \\ 3.996 & 5.5625 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 1.3816 \\ 7.4178 \end{pmatrix}$$

(精确解 $x = (1.92730, -0.698496, 0.900423)^T$)

2.实验目的: 能够应用 Gauss 列主元素消元法、LU 分解法求解线性方程组的数值解。

3.程序流程图:

(1) Gauss 列主元素消元法:

$$A^{(n-1)} = \begin{pmatrix} 3.996 & 5.565 & 4 \\ 0 & 1.0027846 & 2.002002 \\ 0 & 0 & -9.39047247 \end{pmatrix} \qquad x = \begin{pmatrix} 1.9273 \\ -0.698496 \\ 0.9094233 \end{pmatrix}$$

(2) LU 分解:

$$L = \begin{bmatrix} 1 & 0 & 6 \\ -500^{\circ} & 1 & 0 \\ -1998 & 3.99843821 \end{bmatrix}, U = \begin{bmatrix} -0.001 & 2 & 2 \\ 0 & 1000.781251000 \\ 0 & 0 & 1.56128025 \end{bmatrix}, y = \begin{bmatrix} 0.4 \\ 2013816x = \begin{bmatrix} 1.9073 \\ -0.698496 \\ 0.9004233 \end{bmatrix}$$

5.结果分析: 比较用不同方法得到的结果的区别。

Ganss 法与 LU法(Doolittle)得到创结果相目.

LU法安Ganss 法裁定直接求解方程组的解,沒有截断误差。 LU法最后约解方程组 Lysb 两次求解可能会叠加之前 变形的误差。而Ganss 法在对自线上元素为勘数时也会定生 很大误差

6.思考题:实验的难点、遇到的问题及解决方案。

Gmss法军车车机 季数矩阵 A 与同时的变换 因此将矩阵变换 放为矩阵 P"一"A"一" 影出 P"",见了 b相应 型换也可视为 b""= p"的 b"。

数值实验三

上机时间: 4413日 地点: 263

1.实验题目:应用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解线性方程组:

$$\begin{cases} 10x_1 - x_2 = 9 \\ -x_1 + 10x_2 - 2x_3 = 7 \\ -2x_2 + 10x_3 = 6 \end{cases}$$

取初始值 $x^{(0)} = (0,0,0)^T$,精确到 10^{-5} 。($x = (0.99555, 0.95725, 0.79110)^T$)

2.实验目的: 能够应用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解线性方程组,分析方法的收敛性。

3.程序流程图:

Jacobi 迭代法: 空(A) b 公解A 为 L, D. U B = Z - D A X (i + D b) 歩(本) 本解

 定义 A.b.

分解 A.b. L.D.U

BG=(-L+D)-1U

x(ift) = -BGx(i) + (D+L)-1b

定代が解。

数值方法	方程的数值解	迭代次数n	
Jacobi	7 = (0.99578887 0.95789313 0.7915-7715)	\$ 10	
Ganss—Seidel	x = (0.99 578947) 0.957 89473 0.7915 7895)	\$8	

5.结果分析: (比较两种方法的收敛性)

Ganss-Seidel法收敛更快,达到相同精度要求的需要的这代次数更少,书约计算次数

- 6.思考题: 1、实验的难点、遇到的问题及解决方案。
 - 2、如何判定迭代终止?
- 1. 新起的统施于两种进行注的进行矩阵马马马的放解,得出进代知于近则进行进行地对

2. *1/2 | (
$$\chi^{(i+1)} - \chi^{(i)}$$
) = $|e_1^2 + e_2^2 + e_3^2|$

R) $|e_1| \cdot |e_2| \cdot |e_3| \cdot |e$

数值实验四

上机时间: 4A1313 地点: 宿舍

- **1.实验题目**:构造 5 次、10 次 Lagrange 插值多项式、Hermit 插值多项式和三次样条插值多项式(自然边界条件)逼近函数 $f(x) = \frac{1}{1+9x^2}$
- **2.实验目的**: 能够对给定的数据构造 Lagrange 插值多项式、Hermit 插值多项式和三次样条插值多项式

3.程序流程图:

Lagrange 超值 (5次10次) 选取始值点: 5次: [0, 2, 4, 8, 8, 10] 10: 1. 2, 3, 4, 5, 6, 7, 8, 9, 10] 梅兰插曲多碳、Lagrange 插旗基础表 Hermit Hate: 求导函数 -> 选取抵债点、 [0, 5, 10] $[0, \frac{10}{3}, \frac{20}{3}, 10]$ 构造 lagrange 插道整数 抽造插位多项式 样生曲线 或配数,一一送取插值点[0,2,4.6,8,10] 一 主要短选群场程组 都 一 构造插值的强制

	2476.				
-	数值方法		逼近函数		
-	Lagrange 插值多项式	5 12/200 - 0.000231	-K. 04 X/V-6 X9 + 0.	1-0.0815X3-0.0	10.431x2-/081x+1
2- [0.27V	Hermit 插值多项式	20			20272 x7 + 0.0241x6 - 2-266x + 1
λο [0,2] X \$ = -0. p3/{χ ³ }	三次样条插值多项式	- U.30 S	x2 +5.55 x10-17	x + 1	$0.0168 \times 4 + 0.112 \times 3$
-0.813×+1	果分析: (画出原函数	片 (XX) = 4.3(X (X)		. 056777> -	0.275X7+0.770X
X=[2,4]	1.0	3—11/3/2/10/2/10/2	orig fcn	1.02 x2 +	1.11×10-6x + 1.
S(X) = -0.0398X3	0.8 Hern	nite	5th Lagr 10th Lagr Herm		SON = 0.0318X3
- 0.429 X2 + 145X	0.6	2 Lagr	Sample		-0.6136X*+1
-1.76 ×	0.4	V			XC[2.4] S(X) = -0.0398x3
XG[4,6] S1x2=-0.0102x3	0.0 - 101/2 Log		A COLUMN TO THE PARTY OF THE PA		+ 0.429 x2 - 1.472 x
+0.170 x2 -0.929x +	1.71	2 4 6 x (a) Fig1	8 10 _	~+	+1.572
	习题:观	•		的某一个数值	XCL4,6)
	x -2	-1 0	1	2	S1X7 = 0.0102 X3
SON = 0.002 BS 3 - 0.0625 X2 +0.469 X	$p_2(x)$ 3	1 1	6 1	5	- 0.926x -1.624
-1.174	对前三场进	83 Lagrange #	值		he[6,8]
Xe[8, (0]	得 Lia	V=X=+X+1 6	现后海吸均石	佐国弘	5x1= -0.00273X3 +v.0625X2
0.000x 29 x3 +	0.015972-0.1577+0	.515]			- 6.470 X +1.167
Six) > Good	12小铁值	在前三元中.			XG[8,16] S(X) = 0.00052973
	对抗三项进行	lagrange 15/15			- 0.0159x2+0.156x
		= 2X-+ 3X +1	第一项在国家	礼,	-0.507.
	-		第二玩木丸,		
			P2(X)=1, X	= 1为锆台	美值

数值实验五

上机时间: 4月14日 地点: 花至

1.实验题目:对给定的数据分别求出 3 次、4 次多项式的曲线拟合;再根据数据曲线形状,求出不同形式的曲线拟合,并用图示出数据曲线及拟合的曲线。

х	0.0	0.1	0.2	0.3	0.5	0.8	1.0
у	1.0	0.41	0.50	0.61	0.91	2.02	2.46

2.实验目的:对于给定的数据作出较好的曲线拟合

3.程序流程图:

- 3次拟合多项式: fw=6.62 x³+12.8 x²-4.65x³ +0.927
- 4次拟合多项式f₄(N) ×85×4 -12.3 7³+16.27×2-5.30×+0.943

5.结果分析:

根据拟台曲线于数据的接近程度,到发现4次曲线相较于3次曲线提升的也不大,

凝红程俊基本类似,

对于1010人明显偏离趋势的数据点,拟的比较强美的1010。

6.思考题:实验的难点、遇到的问题及解决方案。

第36的双作品在了红的多项式的城市最后多数的求解的有效对人个线性分程式组、计算量占编程的程度均较大

数值实验六

上机时间: 4月17日 地点: 名宝

- 1.实验题目: 用复合求积公式和 Romberg 公式计算定积分 $\int_{1}^{3} \frac{100}{x^{2}} \sin \frac{10}{x} dx$. $(\int_{1}^{3} (\frac{10}{x})^{2} \sin \frac{10}{x} dx \approx -1.426014)$ 误差界为 $\varepsilon = 10^{-5}$.
- 2.实验目的:会应用数值方法求得给定的定积分。
- 3.程序流程图:

$$\frac{1}{1000} = \frac{1}{1000} = \frac{$$

N	$T_{i,1}$	$T_{i,2}$	$T_{i,3}$	$T_{i,4}$	•••
1	-56.52	-52-23	-23.86	-6.828	
2	-12.80	- 14.40	-1.152	-1.299	
3	-11.97	-0.2685	-1-309	-1-424	
4	- 0.08280	-1.326	-1-426	_1-426	

5.结果分析:

精形公式划分不多, 豆醇、误差(展大, 而且即使复化第形公式划分不断增加, 每向真值的致也较慢

Romberg 积分法本此爱化方法能更快收敛,季指计算资深

6.思考题:实验的难点、遇到的问题及解决方案。

彩色的对像和在于建筑公式的构造、以及计算结果的存储路。 可以利用 Bothon 到表升展的分流复现。

数值实验七

上机时间: 4A14A 地点: 名言

1.实验题目: 用迭代法求方程 $f(x) = 2x^3 - x - 1 = 0$ 的根(真解 $x = 1, -0.5 \pm 0.5i$), 要求ε<10-4.

2.实验目的: 能够应用二分法、Newton 法、割线法求解非线性方程的数值解。

选取解区间: [-2.2]

选取初值:

4.程序流程图:

Newton : 1.

基金数 → 描述 Newton 送代公式 → 进代至 Xin-Xico104

	二分法	Newton 迭代	割线法
<i>x</i> ₀	-2	<i>-6.</i> ₹0	0
x_1	2,	-0,241	2
<i>x</i> ₂	ı	- 0.48	0.143
<i>X</i> ₃	0 15	- 0.80	0.292
X_n	6.99997	1.0000	(1.00C
n	15	23	1 1
近似收敛阶 r	1	0.63	0.75

请用下面公式计算一个近似收敛阶: $r(n) \approx \frac{\log \left(\frac{x_{n+2} - x_{n+1}}{x_{n+1} - x_n}\right)}{\log \left(\frac{x_{n+3} - x_{n+2}}{x_{n+2}}\right)}$

5.结果分析: (1、简要说明初值的选取对迭代法和结果的影响。2、比较不同方

法得到的结果的好坏。) ①Newton 法收敛最慢应选代次数最多,更初值的影响大, 也会以这代前几步 没是很大、但最近的好好,

②割线性收敛块与Newton法相近,受初值影响也较大,收 致最快, 迭代次数最少, 较 Newton法为优, 也免于计算最上数

6.思考题:如果要求解方程的复根,应该怎么处理? ③ 二分沒 短礼的复数而不大, 每收约小块、但最经结果较在水化还数中引入复数, 先求实织 其他两法为大、 再花虚幻、然后进行加知、