JPX Stock Exchange

A Time-Series Project
Predicting the Sharpe Ratio of Stocks

Jim Petoskey
Flatiron School
Capstone Project

Outline

Business Opportunity

Summary

Data

Methods

Results

Conclusions

Further Study

Business Opportunity

- JPX Stock Exchange Increase Trading
 - Increase trading to increase revenue
 - Provide institutional investors with machine learning models that predict daily stock direction.

Summary

- It is possible to predict the daily direction of stocks from the Sharpe Ratio.
- Machine Learning Models make it possible to accurately predict stock direction and accrue returns when stocks are bought and shorted at scale.
- Returns are generated by buying 200 and shorting 200 stocks on a daily basis.
- Sharpe Ratio is predicted on a given day, then:
 - Stocks are bought at the close of the following business day and sold at close the day following that.

Data

- 2000 stocks with 4.5 years of data
 - Data from additional stocks provided to improve modeling
- Financial Data Utilized
 - Trading Information, Income Statements, Market Sector, Issued Shares,
- New Information Produced 12 Features
 - Improvised Sharpe Ratio, Daily Return, Weekly Moving Average, etc.

Methods

- Find best method of modelling data to predict Sharpe Ratio
 - Use ARIMA, LSTM Neural Network, and Random Forest Regressor
- RMSE used as method for calculating error and comparing models.

- Model Forecast predicts Sharpe Ratio on daily basis
 - Sharpe Ratio prediction greatly enhanced by calculating an expected Sharpe Ratio using Sharpe's equation for Ex-Post Sharpe Ratio.

Results Summary

- Most volatile stock's predictions shown for each model.
 - ARIMA Model
 - 2. Prophet Model
 - Not elaborated upon as very similar to ARIMA
 - 3. LSTM Neural Network Model
 - 4. Random Forest Regressor 1 Model for all Stocks
 - 5. Random Forest Regressor Individually Modelled
- RMSE Plot and Kaggle Scores Presented

Results ARIMA Model

- ARIMA had a low Kaggle score of -1.43.
- Model predicted near the mean because it could not determine any pattern, trend, or seasonality to follow.

Results LSTM Model

- LSTM was not scored due to high computational expense.
- Likely would have scored similarly to the ARIMA model due to similar predictions for each stock.
- Model predicted near the mean likely because this was the best way to lower error.

Results Single Random Forest Regressor Model

- Model predicts much further away from the mean with similar or less error than ARIMA or LSTM
- Improvised Sharpe Ratio calculation most important feature.
 - Nearly 4 times as important as next most utilized feature.

Results Individual Random Forest Regressor Models

- Model with least error for Stock 9663.
- Illustrates how predicting volatile stocks important for differentiating between stocks' Sharpe Ratio.
- Predictions clearly much better than previous Random Forest Regressor between days 65 – 90.

Results

Results

Conclusions

- Institutional Investors and Retail Investors, in some cases, will be able to profit from daily investing at a large scale.
 - Important to understand that a large portfolio minimizes risk.
- Increased trading on JPX Stock Exchange likely
 - Random Forest Regressors are producing positive returns.
- Increasing revenue likely for JPX Stock Exchange due to competition.
- Recommend creating relationships between data scientists in competition and institutional investors.

Future Work

Add Options Data

- Information leading to model interpretation of Sharpe Ratio important
- Need to test whether options information can improve predictions.

Test Additional Regressor Model Types

Bayesian Regressors thought to be strong stock market model types.

Further Investigate Neural Networks

- .Many Neural Networks with options for layers are possible
- Want Neural Network that risks predictions further from mean

Questions & Answers

Contact Information:

- Jim Petoskey Data Scientist
 - Jim.Petoskey.146@gmail.com
 - Phone: (734) 649-3182
 - linkedin.com/in/jimpetoskey/