

Who are we?

Lecturers:

Dr S **Waqar** Nabi

Dr Yiannis Giannakopoulos

Tutors:

Laura Larios-Jones

Ethan Hunter

Setting the scene

First: Defining "Algorithm"

- Dictionary (common English) definition:
 - "A procedure for solving a (mathematical) problem in a finite number of steps that frequently involves repetitions of an operation;
 - broadly: a step-by-step method for accomplishing some task."
- E.g.
 - recipe for a dish
 - multiplying numbers

Importance of Algorithms

"If we can specify an algorithm to solve a problem, then we can automate its solution."

And where do ALGORITHMS fit in the picture?

One Definition of Computer Science places Algorithms at the heart of it^[1]

Computer Science is the study of *Algorithms*, including:

- 1. Their formal and mathematical properties
 - "Studying the behaviour of algorithms to determine whether they are correct and efficient".
- 2. Their hardware realizations
 - "Designing and building computer systems that are able to execute algorithms".
- 3. Their linguistic realizations
 - "Designing programming languages and translating algorithms into these languages so that they can be executed by the hardware".
- 4. Their applications
 - "Identifying important problems, and designing correct and efficient software packages to solve these problems".

ALGORITHMS & COMPUTERS - SOME BACK STORY

"In 1812 he [Babbage] was sitting in his rooms in the Analytical Society looking at a table of logarithms, which he knew to be full of mistakes, when the idea occurred to him of computing all tabular functions by machinery. The French government had produced several tables by a new method. Three or four of their mathematicians decided how to compute the tables, half a dozen more broke down the operations into simple stages, and the work itself, which was restricted to addition and subtraction, was done by eighty computers who knew only these two arithmetical processes. Here, for the first time, mass production was applied to arithmetic, and Babbage was seized by the idea that the labours of the unskilled computers [people] could be taken over completely by machinery which would be quicker and more reliable."

Some Key Figures

Why algorithms are called algorithms

Also worth checking out:

- The Big Bang Ada Lovelace & Charles Babbage Strange But True https://www.youtube.com/watch?v=4kueyMlmxhY
- Early Computing: Crash Course Computer Science #1
 https://www.youtube.com/watch?v=O5nskjZ_GoI
- Logic (Podcast, "In our Times")

https://www.bbc.co.uk/programmes/b00vcqcx

Ada Lovelace: Great Minds

Who Was Aristotle? (Famous Philosophers)

i .	,	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.		Data.		Working Variables.									Result Variables.				
Number of Operation	Nature of Operation.					1V ₁ 00 0 0 1	1V ₂ 0 0 0 2	1V ₃ O 0 0 4	°V4 0000 000	°V.5 O 0 0 0 0	°V ₆ ○ 0 0 0 0	°V7 00 00 00	%8 ○ 0 0 0	°v,	°V ₁₀ O O O O O	°V ₁₁ O 0 0 0 0	°V ₁₂ O 0 0 0	°V ₁₃ O 0 0 0 0	B, in a decimal O fraction.	B ₃ in a October B ₃ in a decimal October B ₃ fraction.	Bo in a decimal Out	oV ₂₁ . O 0 0 0 B ₇
2 - 3 - 4 - 5 - 6	- 11 + 11 + 21 + 11 - 01	$V_4 - {}^{1}V_1$ $V_5 + {}^{1}V_1$ $V_6 \div {}^{2}V_4$ $V_{11} \div {}^{1}V_2$ $V_{13} - {}^{2}V_{11}$	1V ₄ , 1V ₅ , 1V ₆ 2V ₄ 2V ₅ 1V ₁₁ 2V ₁₁ 1V ₁₃ 1V ₁₀	$ \begin{cases} 1V_2 = 1V_2 \\ 1V_3 = 1V_3 \\ 1V_4 = 2V_4 \\ 1V_1 = 1V_1 \\ 1V_5 = 2V_6 \\ 1V_1 = 1V_1 \\ 2V_6 = 0V_6 \\ 2V_4 = 0V_4 \\ 1V_1 = 2V_{11} \\ 1V_2 = 1V_2 \\ 2V_{11} = 0V_{11} \\ 1V_{13} = V_{13} \\ 1V_1 = 1V_1 \\ 1V_2 = 1V_2 \\ 1V_3 = 1V_{13} \\ 1V_4 = 1V_3 \\ 1V_1 = 1V_1 \end{cases} $	$= 2 n$ $= 2 n - 1$ $= 2 n + 1$ $= 2 n - 1$ $= \frac{2 n - 1}{2 n + 1}$ $= \frac{1}{2} \cdot \frac{2 n - 1}{2 n + 1}$ $= -\frac{1}{2} \cdot \frac{2 n - 1}{2 n + 1} = A_0$ $= n - 1 (= 3)$	136-20	2 2	n n	2 n 2 n - 1 0	2 n 2 n + 1 0	2 n	::				$ \begin{array}{r} 2n - 1 \\ \hline 2n + 1 \\ \hline 1 & 2n - 1 \\ \hline 2 & 2n - 1 \\ \hline 0 \end{array} $		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$	20 20 20 20 20 20 20 20 20 20 20 20 20 2			
9 -	× 11	V ₂₁ × ³ V ₁₁ V ₁₂ + ¹ V ₁₃	¹ V ₁₂	$ \begin{cases} 1V_2 = 1V_2 \\ 0V_7 = 1V_7 \\ 1V_6 = 1V_6 \\ 0V_{11} = 3V_{11} \\ \end{cases} \\ \begin{cases} 1V_{21} = 1V_{21} \\ 3V_{11} = 3V_{11} \\ \end{cases} \\ \begin{cases} 1V_{22} = 1V_{21} \\ 1V_{13} = 3V_{13} \\ \end{cases} \\ \begin{cases} 1V_{10} = 2V_{10} \\ 1V_{1} = 1V_1 \\ \end{cases} $	$=-\frac{1}{2}\cdot\frac{2n-1}{2n+1}+B_1\cdot\frac{2n}{2}$		2 				2 n	2 2 			 n - 2	$\frac{2n}{2} = \Lambda_1$ $\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	Bi			
17 18. 19 20	+ 11 + 12 + 13 + 13 + 13 + 13 + 13 + 13	$V_1 + {}^1V_7$ $V_6 + {}^2V_7$ $V_8 \times {}^3V_{11}$ $V_6 - {}^1V_1$ $V_1 + {}^2V_7$ $V_6 + {}^3V_7$ $V_9 \times {}^4V_{11}$ $V_{11} \times {}^5V_{12} \times {}^5V_{13}$	1V ₉ 5V ₁₁	$\left\{ {}^{1}V_{22} = {}^{1}V_{22} \right\}$	$= 2n - 1$ $= 2 + 1 = 3$ $= \frac{2n - 1}{3}$ $= \frac{2n}{2} \cdot \frac{2n - 1}{3}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{4}$ $= \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{4} = \Lambda_3$ $= B_3 \cdot \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{3} = B_3 \Lambda$ $= \Lambda_0 + B_1 \Lambda_1 + B_3 \Lambda_3$ $= n - 3 (= 1)$	1 1					2 n - 1 2 n - 2 2 n - 2	4 4	2n-1 3 0			31	B ₂ A ₃	$\left\{A_3 + B_1 A_1 + B_2 A_3\right\}$		Ba		
				The same		THE STATE OF THE S		H	lere foll	ows a re	petition	of Ope	rations t	hirteen	to twent	y-three.	150					-
24 25	40.0		1V ₂₄	$. \begin{cases} {}^{4}V_{13} = {}^{0}V_{13} \\ {}^{0}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{5}V_{6} = {}^{0}V_{6} \\ {}^{5}V_{7} = {}^{0}V_{7} \end{cases}$				 n + 1			0	0	-						1			В

Other pivotal figures

Alan Turing (1912 – 1954)

David Hilbert

Kurt Gödel

Stephen Kleene

Alonzo Church

This course and Algorithms

- Understanding algorithms
- Writing and programming algorithms
- Analyzing algorithms
- Learning about "data structures" that together with algorithms can be used to solve real world problems
- Developing basic concepts of logic and mathematics needed to treat algorithms formally
- Developing skills in using a computer language to solve problems using algorithms and data structures

Applications of Algorithms

A wee sample only...

- Optimization
- Operations Research
- Logistics

- Cryptography
- Cryptocurrencies and distributed ledgers

GET PEOPLE TO
CELESTIAL BODIES...
...OTHER THAN
EARTH!

WORK ON MAKING MACHINES SMART -"ARTIFICIAL {xn}CR = INTELLIGENCE" (AI) f(x) 4> fg∈[0,1): ∀x,x €x. $|(x_n-g)<\varepsilon n\geq n_0:(x_n-g)<\varepsilon$ $\{x_n\} \cdot \{y_n\} = \{x_n \cdot y_n\} : 13$ $\{x_n\} \cdot \{y_n\}_{a_n} \{x_n, y_n\} : 13$

language •

HELP LINGUISTICS
FIGURE OUT HOW
OUR BRAINS DEAL
WITH LANGUAGE(S)

- Artificial Intelligence
- Machine Learning

Incentives & Fairness

Decision making under uncertainty

