Guide pratique des techniques du son

Enregistrement, mixage et spatialisation, appliqués à la musique

Jean-Loup Pecquais

Table des matières

Avant-propos

Ce livre est né de la nécessité d'un support de cours pour la formation professionnelle "Technique de Prise de Son", dispensée par l'auteur. Il intègre donc l'ensemble des notions abordées, expliquées en détail, ainsi que des exemples sonores.

Ce livre est écrit dans la philosophie de l'Open Source. L'intégralité de son contenu est donc disponible gratuitement. Son code source est accessible dans un dépôt GitHub. Ainsi, il est possible à tout à chacun de reporter les éventuelles erreurs ou de proposer des modifications. La grande majorité des outils utilisés pour sa rédaction et la création du contenu sont open source : R & Rmarkdown, Python, FAUST et draw.io.

A qui s'adresse cet ouvrage

Ce livre s'adresse à toutes personnes désireuses d'en apprendre plus sur le son ainsi que sur les métiers de preneur de son et de mixeur. Ainsi, il fait état des principes physiques nécessaires à la bonne appréhension des techniques de travail des métiers susnommés, avec le souci de les rendre accessibles à toutes et tous.

Il pourra donc servir aux musiciens, aux étudiants, et pourquoi pas, à certains professionnels des métiers du son et du divertissement en général.

Mise à jour

La distribution numérique de ce livre permet une mise à jour régulière de son contenu. Cela implique deux choses :

- Certaines sections peuvent être incomplètes, et seront complétées plus tard
- C'est une bonne idée de revenir consulter ce site régulièrement

Pour l'instant, ce livre n'inclut pas encore d'exemples sonores, cela est en cours de création.

Structures

Dans un premier temps, le livre aborde des principes généraux, aussi bien sur la physique que sur l'environnement de production de la musique enregistrée. Est ensuite abordé l'ensemble de la chaîne audio, en y explicitant le rôle et le fonctionnement de chacun de ses composants. L'objectif est de fournir une base technique objective au preneur de son.

Dans un second temps, le livre détaille un ensemble de techniques de prise de son et de mixage, insistant particulièrement sur les mécanismes généraux de la prise et sur l'écoute critique.

La partie dédiée à la pratique du mixage son n'est pas encore disponible en ligne.

À propos de l'auteur

Jean-Loup Pecquais est formateur et consultant dans le monde de l'audio professionnel (FLUX:: Immersive, Whiti Audio, Arkalya). Il est plus particulièrement spécialisé dans les techniques de mixage sonore immersives. Il est diplômé de l'ENS Louis-Lumière en 2019.

partie I Généralités

1 Oreille et audition

L'oreille est l'organe qui, chez l'Homme, permet d'entendre les sons environnants. Comme nous le détaillerons dans le chapitre suivant, le son est une vibration de l'air. Afin que celle-ci puisse être audible, l'oreille doit d'abord transformer cette vibration de l'air (caractérisée par une variation de pression) en signal électrique finalement transmis à notre cerveau.

On distingue ainsi entendre, perception passive du son, et écouter, qui suppose une participation active de l'auditeur.

Le sens lié à cette faculté de perception du son se nomme l'ouïe.

Note

Nous ne discuterons pas ici du rôle de l'oreille dans l'équilibre.

Cet organe se décompose classiquement en trois parties, l'oreille externe, l'oreille moyenne et l'oreille interne.

1.1 L'oreille externe

Comme son nom l'indique, l'oreille externe est la partie visible de notre organe de l'audition. Elle est caractérisée par ce pavillon à la forme si particulière. Le rôle de ce **pavillon auricu-laire** permet de "collecter" le son. Sa forme applique une emprunte fréquentielle sur le son, donnant une information principalement d'ordre spatial. Ce pavillon joue donc un rôle important dans notre capacité à localiser les sons, avec une précision maximale lorsque l'évènement sonore se trouve devant nous.

Note

Comme nous le verrons plus tard, la forme de notre tête et même de notre torse a également un rôle important dans notre capacité à localiser des évènements sonores dans l'espace.

L'oreille externe comporte aussi le canal auditif, avec à son terme le tympan. Ce dernier est une simple membrane, vibrant de façon homologue à l'onde sonore lui provenant. L'ensemble

Figure 1.1: Schéma de l'oreille

de ce système de "captation" possède un rendement maximal sur les fréquences autour de 3 kHz (fréquences aiguës).

1.2 L'oreille moyenne

Derrière le tympan se trouve l'oreille moyenne, et plus particulièrement une collection de trois os, nommés "marteau", "enclume" et "étrier". Le **marteau** est directement relié au tympan et transmet les vibrations du tympan à l'"**enclume**" puis à l'"**étrier**". Ce dernier permet la transmission du son à l'oreille interne par la fenêtre ovale.

Nous y trouvons aussi la trompe d'eustache, reliée à la gorge, réalisant ainsi un équilibrage de la pression entre celle de l'oreille interne et celle nous environnant.

Le rôle principal de cette oreille moyenne est de réaliser une adaptation d'impédance acoustique entre l'air et le milieu liquide, dans lequel baigne notre oreille interne. En d'autres termes, elle permet un transfert efficace de l'énergie sonore vers l'oreille interne. Sans cette étape, notre sens de l'audition serait grandement amoindri.

Évoquons également le **muscle stapédien**. Il permet, lorsqu'il est contracté, de limiter l'amplitude de mouvement des trois os évoqués précédemment. Il agit alors comme une protection lorsque nous sommes confrontés à de forts niveaux sonores. Si cette rigidification n'avait pas lieu, notre tympan serait beaucoup plus facilement arraché par des stimulus sonores importants.

Cependant, ce muscle stapédien échappe à notre contrôle cognitif et est donc mis en action par réflexe. Son temps de mise en action est d'au moins 40 millisecondes (ms) après l'émission d'un son supérieur à 90-100 décibel (dB). Pire, la protection maximale n'est atteinte que 150 ms plus tard. Cela signifie que, si nous sommes exposés à des déflagrations sonores très importantes (armes à feu, explosions, etc.), notre **réflexe stapédien** n'aura pas le temps de s'activer, et notre système auditif sera sévèrement endommagé.

1.3 L'oreille interne

Nous avons précédemment évoqué l'attachement de l'étrier à la fenêtre ovale. Cette dernière fait elle-même partie de la cochlée, où commence l'oreille interne. Cette cochlée prend une forme de coquille d'escargot et renferme la membrane basilaire et l'organe de Corti, récepteur de l'audition. Son ensemble est immergé dans différentes lymphes (milieu liquide).

La membrane basilaire court le long de la cochlée et près de 30 000 récepteurs ressemblant à de petits cheveux la parcourent. Cette membrane vibre lorsque la lymphe change de pression. Sur l'ensemble de sa longueur est répartie notre sensibilité aux différentes fréquences. La partie proche de l'oreille moyenne est plus sensible aux aiguës, alors que la zone en bout de son

enroulement est plus sensible aux graves. On a donc une correspondance entre fréquence et emplacement sur la membrane basilaire. Lorsque les récepteurs vibrent suffisamment fortement, un signal électrique est émis par l'organe de Cortie dans le système nerveux.

La diminution de sensibilité, voire la perte de certaines fréquences audible dans l'audition, est associée à la mort de ces récepteurs peuplant la membrane basilaire. Ce phénomène est irréversible et peut aboutir à l'apparition d'acouphènes.

Avertissement

L'oreille est un organe fragile, dont l'endommagement est irréversible. Il convient donc d'en prendre soin en limitant :

- son exposition à de forts niveaux sonores
- son exposition au bruit

Dans les cas où l'exposition est contrainte (voire souhaité en concert par exemple), il est vivement conseillé de porter des protections auditives (bouchons d'oreilles).

Il est également bon de rappeler que, dans la législation française, les niveaux sonores de diffusions dans des lieux de spectacles sont normés et ne doivent pas dépasser certains seuils. L'ingénieur du son affecté au mixage est donc responsable du respect de ces

En studio, il n'existe pas de norme de niveau de diffusions dans les casques ou les écoutes, mais l'ingénieur du son reste tout de même responsable de ce que les musiciens entendent, et donc de toute perte d'audition de l'un d'eux lors d'une session de travail.

2 Quantifier et qualifier le son

Le son peut s'appréhender de plusieurs façons différentes. Particulièrement, sa description physique et psychoacoustique est très précieuse pour tous les praticiens du son. Il convient donc, afin de pouvoir proposer un dispositif cohérent de prise de son, de comprendre la physique élémentaire du son ainsi que d'être capable de le décrire efficacement.

2.1 Phénomène physique

2.1.1 Quelques définitions

Le son est une vibration mécanique d'un fluide. Dans le cadre de ce cours, nous ne considérerons que l'air comme médium de propagation. Cette onde cause une variation de la pression dans l'espace. Nous, les êtres humains, le percevons grâce à notre ouïe. Il s'agit donc, par définition, d'un phénomène ondulatoire et peut être caractérisé par un nombre d'oscillations par seconde, aussi appelé fréquence. On estime que notre espèce est sensible aux fréquences allant de 20 Hz (très grave) jusqu'à 20 000 Hz (très aigu).

On parlera d'évènement sonore pour parler généralement de phénomènes physiques produisant une onde sonore.

Les sons composés d'une seule fréquence se nomment **sons purs**. Cependant, de tels signaux n'existent pas dans la nature, et sont souvent utilisés afin de réaliser des mesures ou des tests psychoacoustiques.

Dans notre environnement, les sons sont donc composés de plusieurs fréquences. La fréquence la plus grave d'un son est sa **fréquence fondamentale**. Les autres sont alors appelées **partiels**. Si ces partielles ont pour fréquence un multiple de la fréquence fondamentale, alors on les nomme **harmoniques**.

Plus généralement, on admettra que la composition fréquentielle, ou spectrale, de tout son peut être décomposée par une somme de sinusoïde. L'outil permettant de passer de la représentation temporelle d'un signal à sa représentation fréquentiel s'appelle la **transformée de Fourrier.**

Figure 2.1: Onde sinusoïdale et visualisation de son spectre

Figure 2.2: Signal carré et visualisation de son spectre

La fréquence fondamentale donne la **hauteur** du son (sa note en musique par exemple). Les partiels enrichissent cette fréquence fondamentale et créés le **timbre** d'un son. C'est en partie grâce au timbre que l'on peut reconnaître différents instruments de musiques jouant la même note.

Un son se caractérise également par l'évolution de son amplitude au cours du temps. On parle alors de son **enveloppe**. Un modèle courant d'enveloppe est l'ADSR : Attack, Decay, Sustain, Release, soit Attaque, Décroissance, Maintient et Relâchement.

Figure 2.3: Exemple d'enveloppe ADSR

Lorsque son temps et très bref, l'ensemble *attaque* et *décroissance* forme les **transitoires**. Cette partie du signal est responsable de la sensation percussive du son.

2.1.2 Relation entre temps, distance et fréquence

Il est important de garder à l'esprit que les notions de temps, de fréquence et de distance sont étroitement liées. Nous avons vu ci-dessus que tous les sons peuvent être décrits par une somme de sinusoïde. Leur fréquence la plus grave, dite fondamentale, permet de définir la **période**. La période est le temps que met un signal à répéter son motif oscillatoire (voir schémas 3.1 et 3.2). Le lien mathématique entre fréquence et période est très simple, car l'un est l'inverse de l'autre :

$$f = \frac{1}{T}$$

Si nous étudions les fréquences extrêmes, audibles par notre ouïe, nous trouvons que pour $f_{min}=20\,Hz$, sa période $T_{f_{min}}=50\,ms$. Pour $f_{max}=20\,000\,Hz$, $T_{f_{max}}=0.5\,ms$.

Une onde sonore est également caractérisée par sa **célérité**. Celle-ci est constante dans un milieu donné. Dans l'air, à une température de $15\,^{\circ}C$ et au niveau de la mer, sa célérité c est de $340\,m.s^{-1}$. On admettra cette valeur pour réaliser l'ensemble de nos différents calculs.

Comme son unité l'indique, la célérité du son est homogène à une distance divisée par un temps, soit :

$$c = \frac{d}{t}$$

Suivant cette formule, nous pouvons alors calculer la **longueur d'onde** correspondant à une fréquence. La longueur d'onde se note λ .

$$\lambda = cT \iff \lambda = \frac{c}{f}$$

Si nous étudions à nouveau les bornes minimale et maximale de notre audition, nous trouvons que $\lambda_{f_{min}}=17\,m$ et $\lambda_{f_{max}}=17\,mm$.

Nous pouvons également calculer le temps de propagation du son. En pratique, nous serons souvent intéressés par le temps de propagation séparant deux points dans l'espace (par exemple, le temps séparant deux microphones par rapport à un instrument).

$$t = \frac{d_2 - d_1}{c}$$

Figure 2.4: Distance entre deux microphones.

2.2 Perception du son

Nous avons abordé quelques notions de physique permettant de mieux caractériser le phénomène sonore. Comme indiqué au début de ce chapitre, le son peut également être discuté sous l'angle de notre ouïe, et donc, de notre perception. Cette branche de la science se nomme la psychoacoustique et cherche à étudier la façon dont nous percevons le son.

Notre corps, et a fortiori notre cerveau, sont des machines extrêmement complexes. Nous sommes équipés d'une multitude de capteurs permettant de sentir le contact d'une matière, des odeurs, d'entendre, de goûter, de voir, de positionner nos membres dans l'espace, de ressentir la douleur, etc. Pris indépendamment, chacun de ces sens est déjà un phénomène complexe à décrire, mais il existe en plus une grande interdépendance entre ceux-ci. Par exemple, l'interdépendance entre la vision et l'audition est à l'origine d'un certain nombre de mécanismes biaisant notre écoute.

Nous nous bornerons au fil de ce cours à quelques notions liées à l'ouïe et à son interdépendance à d'autre sens quand cela sera pertinent.

2.2.1 Spectre, timbre et vocabulaire

D'un point de vue perceptif, le spectre d'un évènement sonore est facilement remarquable. Il est, par contre, beaucoup plus difficile à qualifier. Il n'est pas rare de rencontrer les adjectifs "chaud", "brillant", "rond", "aéré", "ouvert", "sombre", voir d'autres encore plus ésotérique, pour tenter de communiquer la sensation ressentie à l'écoute de tel ou tel son.

Cette difficulté liée à l'absence de vocabulaire commun quant à la qualification le son emmène systématiquement la redéfinition de ce vocable en fonction de son interlocuteur. En effet, le mot "rond" ne signifiera pas forcément la même chose selon à qui on s'adresse. Une stratégie possible consiste à questionner son interlocuteur sur l'utilisation de ses adjectifs tout en cherchant à y associer des exemples sonores.

Nous pouvons tout de même nous essayer à cet exercice pour nous permettre d'avoir un vocabulaire commun au fil de ce cours. Vous aurez sans doute compris qu'il n'y aura, dans les termes employés, aucun critère absolu.

Proposition d'association entre bandes de fréquences et sensation.

- 20 Hz 80 Hz : Subharmonique, sensation tripale
- 80 Hz 160 Hz : Grave, sensation d'assise
- 160 Hz 380 Hz : bas-médium, sensation de « chaleur », voir « boueux »
- 380 Hz 1400 Hz : Medium, sensation de « boîte » quand trop présent, sonne « creux » quand trop absent
- 1400 Hz 3200 Hz : Haut-medium : zone de sensibilité maximale de l'oreille.
- 3200 Hz 8000 Hz : Aigu, apporte de la précision voir de l'agressivité

Figure 2.5: Proposition de découpage du spectre

• 8000 Hz — 20 000 Hz : Air, apporte une sensation d'ouverture voir de finesse

Il est intéressant de former son oreille à reconnaître une plage de fréquence, ainsi que d'y associer son propre vocabulaire et une sensation. Les appellations proposées ci-dessus ne sont à prendre que comme guides et n'ont pas valeur de référence. Cela favorise une écoute critique et analytique.

Aussi, les fréquences graves ont un effet masquant sur les fréquences plus aiguës. Ce phénomène est dû au fonctionnement de notre oreille, et plus particulièrement de la cochlée.

2.2.2 Pression acoustique & niveau sonore

Nous l'avons abordé plus haut, lorsqu'une onde sonore se déplace dans l'air, on constate la variation de la pression atmosphérique en ce point. Dès lors, il est facile de corréler l'amplitude de la variation de la pression avec le niveau sonore entendu (ou mesuré).

L'unité du système international de la pression est le **pascal** (**Pa**). Or, il est très rare de parler de la pression acoustique en pascal, car la variation de cette pression exprimée en pascal ne correspond pas à ce que nous percevons. En d'autres termes, si la pression acoustique exprimée en pascal double, nous ne percevons pas un son deux fois plus fort.

Notre oreille fonctionne de façon logarithmique, et non linéairement, face à une variation de pression acoustique. C'est pour cela que l'on parle généralement de **niveau de pression acoustique**, où **SPL** (pour Sound Pressure Level en anglais), qui s'exprimera en **décibel**. La relation entre la variation de pression et le niveau de pression acoustique se fait grâce à la relation :

$$L_p = 20 \, \log_{10} \left(\frac{p_{eff}}{p_{ref}} \right) \qquad p_{ref} = 20 \mu Pa \label{eq:peff}$$

Si la pression acoustique double, on observe une augmentation du niveau sonore de 6 dB SPL. Lorsqu'on ressent un doublement du niveau sonore, on observe une augmentation de 20 dB.

La pression acoustique est divisée par deux à chaque doublement de distance.

La question se complexifie lorsque l'on rajoute la dimension fréquentielle à la question de la perception du niveau sonore. En effet, nous percevons des niveaux sonores différents pour différentes fréquences pourtant émises au même niveau de pression acoustique. Pour inclure cette dépendance fréquentielle, nous avons mis en place une unité de mesure : la sonie ou bruyance (loudness en anglais). Il est donc possible ensuite de définir des courbes d'isosonie, c'est-à-dire des courbes indiquant un niveau sonore de perception égale en fonction de la fréquence et du niveau de pression acoustique.

Figure 2.6: Courbes d'isosonie, aussi dites de Fletcher-Munson

Que conclure de cet abaque?

- Notre oreille ne perçoit pas les fréquences de manière égale.
- Notre zone de sensibilité maximale se situe dans l'aigu (3k-4k Hz).

• Notre perception d'un matériau sonore en fonction du niveau auquel nous l'écoutons!

2.2.3 Positionnement dans l'espace

Notre système auditif nous permet de situer l'émission d'un son dans l'espace. Cette capacité de localisation repose sur un ensemble de facteurs étroitement liés entre eux.

On qualifie notre écoute de **binaurale**, littéralement, écouter avec deux oreilles. La présence de deux "capteurs de pression" (oserait-on parler de microphones ?) sur les faces latérales de notre crâne et un premier élément expliquant notre capacité de localisation du son.

En effet, l'espacement de nos oreilles (en moyenne 15 cm), créer un décalage temporel entre nos deux canaux d'écoutes. Ce léger retard entendu d'un côté ou de l'autre nous permettra de placer un son plutôt à gauche ou plutôt à notre droite. On appelle cet écart de temps **différence de temps interaural**, ou **ITD** (interaural time difference en anglais) et se note Δt .

On pourrait d'ailleurs, grâce aux formules de ce début de chapitre, calculer le retard maximal moyen entre nos deux oreilles.

$$\Delta t_{max} = \frac{d}{c} = \frac{0.15}{340} = 0.4 \, ms$$

Si nos oreilles sont espacées de quelques centimètres, notre tête les séparant représente un obstacle acoustique non négligeable. De plus, les pavillons des oreilles imposent également une certaine directivité à notre écoute. En première approximation, on pourra donc considérer que l'ensemble formé par la tête et les pavillons implique une atténuation linéaire des ondes sonores, elle-même fonction de l'angle d'incidence. On appelle cette différence de niveau **différence d'intensité interaural**, ou **ILD** (interaural level difference) et se note Δi . On considère que si la différence de niveau de pression acoustique entre les deux oreilles est supérieure à 20 dB, on entendra l'évènement sonore complètement latéralisé.

L'ombre acoustique que représentent la tête et le pavillon n'est en réalité pas du tout linéaire en fréquence. La modification du timbre induite par ce système n'est pas perçue par notre cerveau comme une information de couleur, mais bien comme une information de spatialisation. Ainsi, selon l'angle d'incidence de l'évènement sonore, son spectre sera filtré d'une certaine manière qui permettra à notre cerveau de le positionner dans l'espace. La réponse en fréquence d'une tête se nomme **HRTF** (**Head Related Transfer Function**).

Enfin, nous sommes également capables de déterminer la distance d'un évènement sonore. La plupart des paramètres permettant d'évaluer cette distance sont relatifs. Cela signifie que l'évènement doit être comparé à un autre pour pouvoir le repositionner dans l'espace. On pourra alors comparer :

Figure 2.7: Illustration de l'ITD

- Leurs niveaux sonores : un évènement sonore plus fort paraît plus proche
- Leurs timbres : l'absorption de l'air aura pour effet de diminuer les fréquences aiguës
- La sensation de réverbération associée : plus le signal de l'évènement sonore semblera solliciter la réponse acoustique du lieu, plus celui-ci semblera fort.
- Le temps d'arrivée des premières réflexions : le son direct d'un évènement sonore lointain arrivera quasi simultanément avec ses premières réflexions. Le son direct d'un évènement sonore proche arrivera avant ses premières réflexions.

Le chapitre suivant traitera des notions d'acoustique élémentaire ainsi que de la réverbération.

3 Acoustique des salles

Tout environnement, sollicité par un évènement sonore, produit une réponse acoustique. Cette réponse acoustique est appelée réverbération. Elle est caractéristique d'un lieu et peut, dans certains cas, être une alliée précieuse dans notre travail. Dans d'autres, elle est source de problèmes et complexifie grandement notre travail d'écoute analytique.

3.1 Généralités

3.1.1 La réverbération

Afin d'étudier l'acoustique d'une salle, on procède à la mesure de sa réponse impulsionnelle. Pour se faire, on émet dans le lieu à mesurer un signal audio impulsionnel (clappement de main, explosion d'un ballon, émission d'une impulsion de Dirac grâce à un haut-parleur), et l'on enregistre le résultat à l'aide d'un microphone de mesure.

La réponse impulsionnelle d'une salle est généralement décrite en deux temps : le temps des premières réflexions et le temps du champ diffus.

Les premières réflexions sont les premiers rebonds d'une onde sonore sur les parois d'une salle et sont caractéristiques de la signature acoustique du lieu. Ces rebonds reviennent à l'auditeur avec un certain temps. Ce retard se nomme souvent « pré-délai » dans les moteurs de réverbération artificiels. Ce prédélai est fonction de deux paramètres :

- la taille de la pièce ; plus la pièce est petite, plus les premières réflexions reviendront à l'auditeur rapidement.
- les positions de la source sonore et de l'auditeur ; plus l'auditeur est proche de la source, plus les premières réflexions arriveront après le son direct, plus l'auditeur est loin de la source, plus les premières réflexions arriveront en même temps que le son direct.

Lorsque les premières réflexions elles-mêmes auront rebondi plusieurs fois sur les parois du lieu, le phénomène d'écho des premières réflexions va se muer en champs diffus, par nature plus dense. La longueur du champ diffus se mesure grâce au RT60. Cette méthode de mesure propose de regarder le temps que met la réverbération à perdre 60 dB. Ce temps permettra ensuite de donner une longueur de réverbération.

Figure 3.1: Schéma d'une réponse impulsionnelle de réverbération.

3.1.2 Calcul du temps de réverbération

L'équation de Sabine permet de calculer le temps de réverbération d'une salle à partir de son volume et du coefficient d'absorption de ses matériaux.

$$RT_{60} = 0.1611 \times \frac{V}{\sum_{i=0}^k S_i.\alpha_i}$$

V s'exprime en m^3 et S en m^2 . α est le coefficient d'absorption du matériau, en sabins. Ce coefficient est compris entre 0 et 1, plus il est important plus le matériau est absorbant.

En guise d'exemple sur l'utilisation de la formule ci-dessus, prenons le cas d'une pièce de $25 \, m^2$ ($5 \, m$ par $5 \, m$) et de $2.40 \, m$ de hauteur. Nous considérons que le sol est en parquet et les murs en plâtre. Nous avons donc $25 \, m^2$ de parquet et $4 \times (5 \times 2.4) = 48 \, m^2$. On trouve sur les sites de fabricant de matériaux que le plâtre peint a un coefficient d'absorption de 0.05 sabins et le bois un coefficient de 0.15 sabins. Notre calcul final.

$$RT_{60} = 0.1611 \times \frac{25 \times 2.4}{25 \times 0.15 + 48 \times 0.05} \approx 1.57 \, s$$

On peut dès lors calculer la **distance critique**, distance à partir de laquelle on entendra autant un évènement sonore que la réponse acoustique de la salle à son stimulus.

$$d_c\approx 0.057\times \sqrt{\frac{V}{RT60}}$$

Dans notre exemple $d_c \approx 0.35 \, m$.

Il est souvent considéré que la taille de la pièce joue un rôle déterminant sur la longueur de réverbération. L'équation de Sabine indique bien que le coefficient d'absorption des matériaux y joue un rôle beaucoup plus important. Le modèle de réverbération de l'IRCAM va jusqu'à complètement décorréler la taille de la pièce simulée du temps de réverbération. Au final, la taille de l'espace joue davantage sur la structure temporelle des échos, et donc, principalement sur les premières réflexions.

3.1.3 Limite de l'équation de Sabine

Il convient d'observer plusieurs réserves quant à l'utilisation de l'équation de Sabine. Premièrement, elle ne tient pas compte de l'aspect fréquentiel lié à l'absorption des matériaux. En effet, le temps de réverbération des graves est presque toujours plus long que celui des aigus. Afin de contourner ce problème, on pourra chercher des coefficients d'absorption tenant compte de la fréquence et ainsi résoudre l'équation de Sabine pour certaines plages fréquentielles.

L'équation de Sabine pose également problème pour de petits espaces (régie d'écoute par exemple) en prédisant un temps de réverbération trop long. Dans ce cas, l'équation d'Eyring est plus adaptée.

$$RT_{60} = -0.1611 \times \frac{V}{\sum_{i=0}^{k} S_{i}. \ln(1-\alpha_{i})}$$

:warning: L'équation d'Eyring n'améliore pas non plus la problématique fréquentielle.

3.1.4 L'indice de "Speech Clarity" C50

L'indice d'intelligibilité (noté C_{50}), ou "Speech Clarity" en anglais, indique la faculté d'une pièce à permettre une bonne compréhension d'une voix parlée. Son principe repose sur la mesure de l'énergie de la réponse impulsionnelle de la pièce avant 50 ms et après 50 ms. On en fait ensuite un rapport logarithmique pour obtenir une valeur en décibel.

$$C_{50} = 10 \times \log \frac{Energie(<50ms)}{Energie(>50ms)} \, dB$$

Plus la valeur du C_{50} est grande, plus la salle concentre la majorité de son énergie avant les 50 ms de propagation de la réverbération. À l'inverse, plus le C_{50} est faible, plus la salle a une énergie prédominante après 50 ms de temps de propagation. Dans ce cas une voix parlée paraîtra moins intelligible, car la réponse acoustique de la pièce engendrera un effet de fusion et de masquage.

3.1.5 Le phénomène d'onde stationnaire

La plupart des pièces de vie sont des salles rectangulaires. Dans ce cas, les surfaces sont toutes parallèles. Ce type de salle est particulièrement propice à l'apparition d'ondes stationnaires. Une onde stationnaire est un phénomène acoustique provoquant l'augmentation de volume de certaines fréquences (ventre) et la disparition d'autres (nœuds).

Nous aborderons ici ce phénomène sous l'angle de l'acoustique des salles, mais il est applicable dans d'autres situations, comme la vibration d'une corde par exemple.

Figure 3.2: Les points rouges représente les noeuds, les amplitudes maximales sont les ventres. Infographie par Lucas Vieira

Il est possible de calculer les fréquences d'un mode grâce aux formules vues au chapitre précédent :

$$f(n) = \frac{c}{2L}.n$$

où $c = 340 \, m.s^{-1}$, L est la longueur considérée de la pièce. Pour n = 1 on trouve le **mode propre**. Pour n > 1 on trouvera tous les **modes harmoniques**.

Étudions la fréquence du mode propre pour deux cas théoriques : une salle de 16 m 2 (4x4) et une autre de 49 m 2 (7x7). On trouvera donc :

$$f(1)_{L=4m} = 42.5\,Hz \quad f(1)_{L=7m} = 24\,Hz$$

On en déduit donc que, plus la pièce est grande, plus la fréquence des modes propres sera grave. Il convient également de considérer la distance de chaque surface parallèle, car les pièces sont rarement cubiques. Cela implique donc la présence de trois modes propres, plus leurs modes harmoniques, pour une seule et même salle.

3.2 Premières réflexions et filtre en peigne

Nous avons vu que la réponse acoustique, ou réverbération, d'une salle se décompose généralement en deux parties, la première étant les premières réflexions. Ces premières réflexions sont donc, comme leur nom l'indique, les premiers rebonds que nous entendons suite à un évènement sonore.

Dans de petites pièces, les premières réflexions peuvent être entendues si proche du son direct que cela génère un type de filtrage bien particulier appelé **filtre en peigne**.

Figure 3.3: Filtre en peigne correspondant à un retard d'une milliseconde

Toujours en utilisant les formules définies au premier chapitre, on établit la relation suivante :

$$fc = \frac{1}{2t} = \frac{c}{2d}$$

Où fc correspond à la fréquence d'annulation la plus grave du filtre en peigne. Les autres fréquences se calculent grâce à la relation f(n) = fc * n. Le phénomène de filtre en peigne est donc également harmonique.

Ainsi, on peut calculer les filtres en peignes présents au point d'écoute d'une régie de mixage ou de prise de son grâce à la mesure du chemin des premières réflexions.

Figure 3.4: Ensemble des premières reflexions entendues par une oreille pour une enceinte (hors plafond et plancher/bureau).

La réflexion du son sur une paroi est tout à fait comparable à de l'optique géométrique. Une onde sonore arrivant avec un angle d'incidence α sur une surface sera réfléchie avec le même angle. Ainsi, il est souvent conseillé d'utiliser un miroir lorsque l'on positionne des traitements acoustiques. Lorsque la personne assise au point d'écoute voit une enceinte dans un miroir placé sur un mur, on sait alors qu'il faudra placer le panneau à la place du miroir.

On se rend donc compte que l'influence des filtres en peigne générés par les premières réflexions est très importante. Ce phénomène à lui seul explique l'intérêt d'une grande régie d'écoute. En effet, plus une pièce est grande, plus l'écart de temps entre le son direct et les premières réflexions est important. Cela implique deux choses :

- Notre cerveau favorisera le son direct plus facilement (effet de précédence)
- À partir d'une certaine taille, l'effet du filtre en peigne se mue en information d'acoustique pour notre cerveau. Au-delà de 40 ms (trajet d'une première réflexion d'environ 14 m), l'écart entre le son direct et les premières réflexions est tel que nous entendons un écho (effet Haas).

Afin de réduire au maximum les effets des filtres en peignes, il est recommandé de placer des traitements aux points de réflexion critique par rapport à la position d'écoute (voir schéma ci-dessus).

Figure 3.5: Même filtre en peigne, avec une atténuation de 20 dB sur la reflexion

3.3 Traitement acoustique

Grâce aux différents points abordés ci-dessus, nous avons maintenant bien l'idée que l'acoustique d'un lieu est un des facteurs les plus déterminants sur le rendu sonore. Mais c'est aussi celui sur lequel il est plus difficile et technique d'intervenir.

On favorisera au maximum une architecture optimisée pour l'acoustique. Dans ce but, il convient de n'avoir aucune surface parallèle, cela permettant de grandement limiter l'apparition d'ondes stationnaires. On choisira également des matériaux avec des propriétés acoustiques intéressantes (plâtre et carrelage sont à proscrire, au profit du bois par exemple).

On se posera ensuite la question des endroits de la pièce les plus propices pour y positionner un évènement sonore (enceinte, musicien, etc.). On cherchera donc un point où la contribution des différents modes semble équilibrée. Pour cela, il suffit de se munir d'une enceinte et d'y diffuser une musique ou un signal test qui nous est familier. En déplaçant l'enceinte, on pourra évaluer la contribution acoustique de la pièce en différents points.

Une fois ces considérations prises en compte, on pourra alors aborder le traitement de l'acoustique.

Il ne faut pas confondre isolation acoustique et traitement acoustique. Dans le premier cas, on chercher a limiter la contribution sonore d'un lieu sur son environnement, dans l'autre on cherche à améliorer la propagation du son dans un espace donné. Une isolation acoustique satisfaisante nécessite de lourds travaux, voire l'aménagement d'une "boîte dans une boîte". Ces notions d'acoustiques dépassent le cadre de ce cours.

3.3.1 Les types de traitements

On trouve, en général, deux types de traitements :

- Les absorbeurs, qui réduisent l'énergie d'une onde sonore à son impact.
- Les diffuseurs, qui répartissent l'énergie d'une onde sonore dans l'espace.

Dans un lieu où la quantité de réverbération est jugée trop importante, on utilisera des absorbeurs. À l'inverse, dans un lieu où l'on souhaite préserver la quantité de réverbération, mais en évitant les phénomènes de modes ou de filtre en peignes, on utilisera des diffuseurs.

Dans de petits lieux, l'usage de diffuseur semble contre-productif, la priorité étant d'absorber au maximum les premières réflexions, celle-ci arrivant très rapidement après l'émission du son direct.

3.3.2 Considération d'acoustique pour le travail de son

Il est vivement recommandé d'installer un studio, de prise de son ou de monitoring, dans un lieu plutôt grand. En effet, plus le lieu est grand, plus il sera facile de positionner un point de prise de son ou d'écoute suffisamment éloigné des parois afin de minimiser l'influence des premières réflexions. Aussi, plus le lieu est grand, plus l'espace y sera suffisant pour installer des traitements acoustiques. Certains types de traitements, comme les basstraps, peuvent prendre une place bien trop importante pour être installée dans des pièces de dimension habituelle (chambres, bureau, etc.). On se rappellera aussi de choisir une pièce de travail avec le minimum de surface parallèle, afin de limiter les ondes stationnaires.

En ce qui concerne les traitements en eux-mêmes, il est vivement recommandé de traiter en priorité le bas du spectre. L'ajout de basstrap est donc prioritaire sur le reste des traitements. Plus la longueur d'onde à traiter est grande (donc la fréquence grave), plus la taille des matériaux devra être importante. On retrouve donc le point abordé précédemment : traiter une pièce correctement, demande un certain espace. Par ailleurs, il est important que les traitements appliqués à un lieu soient linéaires en fréquence, c'est-à-dire qu'il ne se concentre pas sur une seule zone du spectre. Cela arrive souvent avec les kits de mousses peu onéreux, mais n'ayant une réelle efficacité que dans les médiums et hautes fréquences.

Pour une régie d'écoute, on sera tenté de privilégier des traitements d'absorption. En effet, une réverbération trop longue dans une régie de monitoring risque fort de fausser certaines prises de décisions (distance des microphones à la source, quantité de réverbération, etc.). À l'inverse, une pièce avec un temps de réverbération trop court pourra créer un sentiment d'inconfort, voire de malaise.

Pour une salle de prise de son, l'idéal est de disposer d'un grand espace avec un traitement acoustique principalement basé sur de la diffusion, pour ensuite disposer de traitements absorbants amovibles permettant de sculpter le rendu acoustique en fonction de la prise de son à réaliser. Pour des petits lieux (- de $25~{\rm m}^2$), on cherchera à absorber au maximum afin de limiter les effets de filtre en peigne.

4 Notions élémentaires d'électronique

Les chapitres précédents nous ont permis d'aborder un certain nombre de notions fondamentales sur le son ainsi que sur l'acoustique des salles. Nous allons maintenant aborder quelques notions d'électricité et d'électronique. Le but n'est pas de savoir lire un schéma électronique, ou de comprendre comment réaliser tel ou tel circuit, mais bien d'aborder les quelques notions indispensables pour le travail du son.

Durant tout son trajet dans le milieu analogique, le signal sonore est représenté par un courant électrique. Il est donc régi par les mêmes règles que n'importe quel autre courant, même s'il possède une certaine spécificité, comme son oscillation. Un courant électrique se caractérise par le déplacement d'électrons dans un matériau conducteur (le métal par exemple). Un matériau, comme le plastique, qui ne permet pas aux électrons de se déplacer, est qualifié d'**isolant**.

Les électrons font partie des composants de l'atome. Ils sont chargés négativement et se déplacent donc dans le sens inverse du courant.

4.1 Les grandeurs physiques

Commençons par aborder les grandeurs physiques liées à l'électricité.

4.1.1 L'intensité

L'intensité électrique, notée I et exprimée en Ampère (A), est une grandeur permettant de mesurer le débit du courant électrique. Ceci est parfaitement analogue à un débit d'eau. Si un robinet est faiblement ouvert, l'écoulement de l'eau sera faible, s'il est complètement ouvert, le débit sera fort.

4.1.2 La tension

La tension, généralement notée **U** et exprimée en **Volt** (**V**), désigne une différence de potentiel entre deux points d'un circuit. Imaginons deux réservoirs d'eau, remplis d'un volume différent et connectés par une valve. Dans ce cas, la différence de potentiel serait la différence du volume d'eau entre les deux réservoirs. En d'autres termes, s'il n'y a pas de tension, il n'y a pas de débit.

On choisit, en général, la masse, valant zéro volt, comme point de référence.

Dans le cas de l'audio, la tension électrique du signal sonore est homologue à la variation de pression.

Tout comme la pression acoustique, il est possible de rendre compte d'une variation de tension électrique à un niveau sonore en décibel. Le relation liant la tension et le niveau est :

$$L_{dB} = 20 \log(\frac{U}{U_{ref}})$$

Il existe plusieurs valeurs pour U {ref}, donnant lieu à différentes unités de mesures :

- dBm, définie à l'apparition du téléphone, propose $U_{ref} = 0.775V$ pour une impédance de 600ω . Cette impédance correspond à celle des lignes téléphoniques.
- dBu / dBv, qui ne tient plus compte de la charge d'impédance, $U_{ref}=0.775V.$
- dBV, où $U_{ref} = 1V$

Lorsque la tension double, le niveau augmente de six décibels. Lorsque la tension est multiplié par dix, le niveau augmente de vingt décibels.

On peut également définir l'augmentation du niveau sonore par rapport à la puissance du signal. On admet que :

$$P = \frac{U^2}{Z}U = \sqrt{P \times Z}$$

Où P est la puissance. En remplaçant dans l'équation précédente, on trouve :

$$L_{dB} = 20 \log(\frac{\sqrt{P}}{\sqrt{P_{ref}}}) = 10 \log(\frac{P}{P_{ref}})$$

Lorsque la puissance double, le niveau augmente de trois décibels. Lorsque la puissance est multiplié par dix, le niveau augmente de dix décibels.

On utilisant la loi d'ohm (voir ci-dessous) et la relation entre la puissance, la tension et l'impédance, on trouve également que :

$$P = U \times I$$

4.1.3 L'impédance

Nous connaissons, en général, la **loi d'Ohm**. Celle-ci permet de donner une relation entre l'intensité du courant et sa tension, aux bornes d'un composant d'un circuit (aussi appelé dipôle).

$$U = R \times I$$

Où R est la résistance du dipôle. Elle traduit la facilité d'un courant à se déplacer dans le dipôle. Pour reprendre les analogies ci-dessus, la résistance correspondrait à une valve. À tension constante, si la résistance tend vers zéro, le débit est très important. Si la résistance tend vers l'infini, le débit sera très faible. Si elle est nulle, alors nous sommes dans le cas d'un court-circuit (interrupteur fermé). Si elle est infinie, cela traduit une absence de connexion entre deux points d'un circuit (interrupteur ouvert). L'unité de cette résistance est l'**ohm**.

L'impédance traduit elle aussi l'opposition d'un circuit au passage d'un courant électrique, mais dans le cas d'une **tension oscillante**. Dès lors, l'impédance englobe les effets de résistance, de capacitance et d'inductance (voir ci-dessus).

4.2 Les composants électroniques

4.2.1 Les composants passifs

Figure 4.1: Représentation d'une résistance et de son symbole

Étudions maintenant les composants électroniques les plus communs. Nous avons en premier les **résistances**. Ce sont des dipôles purement résistifs. Leur valeur s'exprime en **ohm**. Une résistance s'oppose donc au passage du courant. Pour rappel, la tension a ses bornes est $U = R \times i$.

Viennent ensuite les **condensateurs**. Ils sont constitués de matériaux conducteurs séparés par une couche isolante. La relation entre tension et intensité à ses bornes en régime oscillant est :

Figure 4.2: Représentation d'un condensateur et de son symbole

$$U = Z_c \times I$$

Où Z_c est l'impédance d'un condensateur idéal. Nous pouvons ici la même analyse que plus haut, quand Z_c tend vers l'infini le courant ne passe plus, quand Z_c tend vers 0, le débit est important. L'impédance d'un condensateur est fonction de sa **capacité** (noté **C**, et s'exprime en **farads**).

$$Z_c = \frac{1}{jC\omega} = 2\pi f$$

Si la fréquence f tend vers l'infini, Z_c tend vers zéro, si la fréquence tend vers zéro, Z_c tend vers l'infini. On constate donc que l'impédance d'un condensateur varie en fonction de sa fréquence. On peut assimiler un condensateur à un interrupteur ouvert en basse fréquence et à un interrupteur fermé en haute fréquence.

Figure 4.3: Symbole d'une bobine

Terminons sur les bobines. Ces composants sont constitués d'un enroulement de câble en cuivre et possède une **inductance** notée **L** et s'exprimant en **henrys**. Étudions à nouveau la relation entre tension et intensité, aux bornes d'une bobine :

$$U = Z_L \times I$$

Où Z_L est l'impédance d'une bobine idéale. Cette impédance se calcule grâce à la relation suivante :

$$Z_L = j\omega L = 2\pi f$$

Si la fréquence f tend vers l'infini, Z_L tend vers l'infini. Si f tend vers zéro, alors Z_L tend vers zéro. On observe donc le comportement inverse du condensateur. Une bobine se comporte comme un court-circuit en basse fréquence et comme un interrupteur ouvert en haut fréquence.

On admet j comme un outil mathématique permettant de simplifier certaines écritures et certains calculs. On l'appelle le nombre complexe, tel que $j^2=-1$. Dans nos applications, sa présence dans les relations des impédances de condensateur et de bobine implique un déphasage de $-\frac{\pi}{2}$ pour un condensateur, et, de $\frac{\pi}{2}$ pour une bobine.

L'association de résistances, de condensateurs et de bobines donne des circuits RL, RC où RLC, permettant de réaliser des **opérations de filtrage** sur le signal.

4.2.2 Tubes & semi-conducteurs

Figure 4.4: Tubes, transistor et circuits intégrés

Les **tubes**, tubes à vide, ou parfois, lampes, sont historiquement les premiers composants permettant d'amplifier le signal, contre une certaine tension d'alimentation. On les retrouve donc dans les préamplificateurs, égaliseurs, compresseurs, et autres amplificateurs jusque dans les années soixante. Ils sont alors progressivement remplacés par les **transistors**, composants appelés **semi-conducteurs**. Ces transistors permettent de réaliser la même amplification du signal qu'une lampe, mais sont beaucoup plus petits et demandent aussi moins de puissance électrique pour réaliser le même facteur d'amplification (aussi appelé **gain**). Peu de temps après la mise au point des transistors, les **circuits intégrés** sont inventés. Ces petites boîtes renferment plusieurs transistors, et peuvent également servir à l'amplification de signaux.

Il est très important de savoir que l'invention du transistor et des circuits intégrés est sans doute l'avancée technologique la plus importante du siècle dernier. Elle a permis le développement exponentiel de l'industrie informatique grâce à la miniaturisation des composants.

L'utilisation de tubes, de transistors ou de circuits intégrés au sein des machines audio, est souvent associée à une certaine « couleur ». Il y aurait donc un son des tubes, un son des transistors et un son des circuits intégrés. Les différences entre ces dipôles apparaissent principalement dans les zones de **non-linéarité** des composants, typiquement dans leur zone de saturation. La saturation apparaît lorsque la tension du signal amplifiée dépasse la tension d'alimentation du composant responsable de cette amplification. On observe alors l'apparition de certaines harmoniques. La distribution des harmoniques générés est différente en fonction du dipôle utilisé.

Il est compliqué d'attribuer une couleur sonore particulière à un composant. En effet, le comportement d'un composant est fondamentalement conditionné par la topologie du circuit dans lequel il est utilisé ainsi que par les autres composants qui l'entourent. Il convient donc, à l'humble avis de l'auteur, d'être relativement prudent sur des expressions telles que « son des tubes » ou « son des transistors », particulièrement quand il s'agit de dire que l'une des technologies « sonnerait mieux » que l'autre. L'histoire de l'électronique musicale regorge d'exemples et de contre-exemples pour chacune de ces affirmations.

4.3 L'influence de l'impédance entre différents appareils.

Sur la fiche technique des appareils, on trouve des valeurs pour son impédance d'entrée et son impédance de sortie. Imaginons que nous connections un appareil A dans un appareil B. En pratique, nous faisons en sorte que l'impédance de sortie de l'appareil A soit dix fois inférieure à l'impédance d'entrée de l'appareil B. À partir du moment où ces impédances sont proches, voire que l'impédance de sortie de A soit plus grande que celle d'entrer de B, nous allons atténuer le signal transitant entre les deux appareils. Étudions de plus près ce phénomène.

Soit le schéma électronique ci-dessous. On appelle U_{out} la tension de sortie de l'appareil A et Z_{out} son impédance de sortie. De façon similaire, on appelle U_{in} la tension d'entré de l'appareil B et Z_{in} son impédance d'entré.

Dans ce circuit, $Z_{eq}=Z_{in}+Z_{out}$ et $U_{out}=Z_{eq}\times i$. Alors, $i=\frac{U_{out}}{Z_{eq}}=\frac{U_{out}}{Z_{in}+Z_{out}}$. Toujours grâce au circuit ci-dessus, on peut dire que $U_{in}=Z_{in}\times I$. En remplaçant dans l'expression précédente on trouve : $\frac{U_{in}}{Z_{in}}=\frac{U_{out}}{Z_{in}+Z_{out}}$

$$\frac{U_{in}}{U_{out}} = \frac{Z_{in}}{Z_{in} + Z_{out}} = \frac{1}{1 + \frac{Z_{out}}{Z_{in}}}$$

Dès lors, si Z_{in} est très grand devant Z_{out} , alors U_{in} tend vers U_{out} . Si Z_{out} est très grand devant Z_{in} , alors U_{in} tend vers 0.

Cela nous amène à démontrer l'affirmation ci-dessus. Maintenant, nous savons que dans un circuit, l'impédance varie en fonction de la fréquence. Dès lors, une mauvaise adaptation

d'impédance ne fera pas que diminuer l'amplitude du signal, mais filtrera aussi une partie de spectre, généralement les hautes fréquences.

On considère aussi l'adaptation d'**impédance en tension**. Lorsque que nous considérons la **puissance** les relations sont différentes (cf section sur les hautparleurs).

5 Description d'une production musicale type

Afin de comprendre quels vont être les enjeux du preneur de son, il convient de comprendre dans quel contexte il intervient. Certes, il est le premier métier du son à rentrer en scène, mais l'œuvre à enregistrer a déjà très probablement eu une longue vie. Elle a été composée, arrangée, peut-être même déjà interprétée au cours de concerts.

À ce stade, le preneur de son aura un regard neuf sur la matière. Il aura donc le potentiel de permettre aux créateurs de prendre du recul sur leur travail. Il convient d'ailleurs de rappeler qu'un preneur de son, aussi talentueux et créatif soit il, est un assistant de création. Cela signifie qu'il met à disposition une compétence technique à un d'artiste pour lui permettre d'avancer sur son projet. Cela implique également que celui ou celle qui a le mot final sur le choix des orientations esthétiques est l'artiste en question. Il convient donc, en tant que preneur de son, d'être force de proposition, tout en sachant respecter le choix (qu'ils soient bons ou mauvais) des artistes.

D'un point de vue sonore, le travail de prise de son est absolument critique. Ce sera à ce moment que va se jouer la majorité des choix esthétiques. Il convient donc de réunir les conditions optimales pour :

- offrir aux musiciens et musiciennes la chance de donner leur meilleure interprétation possible
- réaliser une prise de son en adéquation avec l'orientation esthétique du projet

La plupart des choix faits à la prise de son ne pourront pas être renégociés a posteriori. Il convient donc de mettre d'accord les artistes, le directeur artistique et le preneur de son sur les moyens à mettre en œuvre.

5.1 les acteurs de la réalisation d'une œuvre enregistrée

Nous allons ici rapidement discuter des différents rôles apparaissant dans la production d'une œuvre musicale enregistrée. Ceux-ci sont volontairement très séparés, bien que dans les cas pratiques, une personne puisse en incarner plusieurs.

Le compositeur est la personne qui a composé la mélodie et l'harmonie de l'œuvre.

L'arrangeur est chargé de l'orchestration (choix des instruments) et l'écriture des différentes partitions.

Text is not SVG - cannot display

Figure 5.1: Entonnoir de la production musicale

L'interprète a la responsabilité de retranscrire une partition le plus justement possible, à la fois dans sa dimension technique et sensible.

Le directeur artistique (ou DA) supervise l'ensemble de l'enregistrement. Il aura, par exemple, à choisir le preneur de son, le mixeur ou dans quel studio enregistrer. Lors de la session d'enregistrement, il aura à diriger les musiciens (comme un réalisateur dirige ses acteurs au cinéma) afin de leur faire jouer la meilleure interprétation possible pour l'œuvre. Lors du mixage, il sera le principal interlocuteur du mixeur. Pour faire court : il est le garant de l'orientation esthétique du projet.

Le producteur finance l'ensemble de projets. C'est donc un investisseur qui attend un retour sur investissement.

L'appellation abusive de « producteur » pour parler du directeur artistique vient d'un anglicisme du mot « producer ». Le producteur est donc bien l'équivalent du directeur artistique dans les pays anglo-saxons. Si le DA a besoin d'un certain talent, le producteur a surtout besoin d'argent.

Le preneur de son est chargé d'enregistrer les musiciens et musiciennes. Il a donc un rôle premier très technique : il doit inscrire sur un support les ondes sonores produites par ces musiciens. Il a également un rôle esthétique très important, d'un point de vue sonore, car le choix du dispositif de prise de son aura un fort effet sur la suite de la vie de l'œuvre.

Le mixeur intervient après la prise de son et doit réaliser une sommation de l'ensemble des points de captations (microphone) vers un format écoutable par le grand public (mono, stéréo, 5.1, Ambisonique, Dolby Atmos, etc.). Son rôle esthétique est fortement contraint par le travail de prise de son. Si celle-ci est réussie, il pourra amplifier et bonifier les choix de production. Dans le cas contraire, il devra lutter pour essayer de faire sortir le meilleur d'une matière imparfaite.

Le technicien de mastering est le dernier maillon de la chaîne. Son rôle premier sera de préparer le travail de mixage à aux supports de diffusion. Il se devra également d'offrir une oreille nouvelle sur le travail réalisé au mixage.

5.2 La préproduction

La préproduction concerne toutes les étapes d'une œuvre enregistrée qui ont lieu avant ledit enregistrement. On parlera donc en premier lieu de la composition et particulièrement de l'arrangement.

La qualité d'un arrangement aura une influence énorme sur la facilité à mixer une œuvre. Si les instruments sont astucieusement répartis sur l'ensemble du spectre sonore, cela sera une difficulté de moins à gérer au mixage par exemple.

Il est aussi courant pour des artistes de réaliser des « démos ». Celles-ci sont souvent des enregistrements réalisés en home studio afin de définir un cap esthétique pour la suite de la production sonore. C'est un atout extrêmement précieux pour un preneur de son, cela permet de rapidement identifier quel est le projet esthétique de l'œuvre.

5.3 La production

C'est ici que le travail du preneur de son commence. L'étape de production consiste à fixer les interprétations définitives. Le premier objectif est donc de s'assurer du bon enregistrement de tous les canaux prévus. Bien sûr, l'enjeu n'est pas seulement technique, mais aussi esthétique. Et il n'est pas moindre, les choix pris lors de la prise de son seront des carcans impossibles à outrepasser lors de la phase de mixage. Enfin, l'élément le plus déterminant de cette étape est d'obtenir des musiciens leurs meilleures interprétations. La présence d'un directeur artistique est d'une aide précieuse afin de diriger et d'orienter les musiciens. Il permet aussi de faire le lien entre les artistes et l'équipe technique, en exprimant les besoins des uns aux autres.

Sur les projets les plus modestes, le poste de directeur artistique est souvent sacrifié. Il en va donc à l'ingénieur du son de, parfois, remplir ce rôle.

5.4 La postproduction

Arrivé à ce stade, la majorité du travail est déjà accompli, il ne reste que le mixage et le mastering. Classiquement, chacune de ces tâches incombe à un technicien différent. Le travail du mixeur consistera à réaliser la sommation, généralement en stéréo, de l'ensemble des canaux enregistrés lors de la prise de son. Afin de faire cohabiter tous ces signaux, il est commun d'utiliser des traitements pour les répartir sur l'ensemble du spectre et de gérer leur dynamique. Parfois, ces traitements remplissent un rôle esthétique, en déformant le signal d'origine pour aboutir à une nouvelle matière.

Une fois le travail du mixeur terminé, le mastering commence. Le but et d'homogénéiser l'ensemble des titres d'un disque, en volume, en dynamique et en couleur. Ensuite, il convient aussi de définir le niveau de sortie général du disque. La dernière étape consistera à monter l'ordre des morceaux pour le disque, d'y inscrire les métadonnées (nom de l'artiste, des titres, genre musical, etc.) et de générer le fichier final, dédier à l'exploitation.

partie II Outils et équipements

6 Le chemin du signal

La première mission d'un preneur de son est d'assurer l'arrivée à bon port des signaux dans l'enregistreur. En effet, toute notion de mise en scène sonore et d'esthétique devient très secondaire si le contenu n'a pas été enregistré.

Le diagramme ci-dessous reprend les principaux étages rencontrés par un signal audio dans un contexte de production numérique. Il est essentiel d'être le plus familier possible avec ces différents composants.

Figure 6.1: Le chemin du signal. Elle peut-être agrandie en ouvrant l'image dans un nouvel onglet.

Nous pourrions catégoriser à partir de ce schéma différents « milieux ». Tout d'abord, nous avons le **milieu acoustique**, où nous trouverons toutes sortes d'instruments de musique, les différents lieux dans lesquels ils pourront s'y trouver. C'est donc le domaine de l'onde sonore mécanique.

On trouve ensuite le **milieu analogique**, où l'onde sonore est représentée, de façon analogue, par des grandeurs électriques. Celles d'un signal sonore dans un circuit analogique sont fonc-

tion, par exemple, de la variation de la pression atmosphérique provoquée en un point par une onde sonore. Les éléments clefs du milieu analogique sont les préamplificateurs et les amplificateurs, mais on trouve aussi certains traitements, comme les égaliseurs et les compresseurs. On définira « analogique » comme une représentation dans laquelle les grandeurs (tension, courant, etc.) qui entrent dans les calculs sont représentées par des grandeurs analogues et qui varient de manière identique (définition du CNRTL).

Pour passer du milieu acoustique au milieu analogique, et vice-versa, on utilise des microphones et des haut-parleurs. Tous deux sont des **transducteurs**, permettant de transformer une énergie en une autre. Le microphone transforme une énergie mécanique en énergie électrique. Le haut-parleur réalise l'opération inverse.

On en vient ensuite au **milieu numérique**. Fondamentalement, le signal est toujours de nature électrique, mais il a subi une opération très importante nommée **échantillonnage**. On a donc mesuré à intervalle régulier la tension électrique générée par l'onde sonore. Le passage par le numérique permet une myriade de traitements sur le signal, beaucoup plus complexes que ceux permis par l'électronique analogique. L'audio numérique permet aussi un stockage de l'information à moindre coût et l'acheminement d'un grand nombre de voies (canaux) grâce à un faible nombre de modulations (câble).

L'appareil permettant de passer du milieu analogique au milieu numérique est le **convertis-seur analogique/numérique**. Il ne s'agit pas d'un transducteur, car les signaux d'entrées et de sorties sont de même nature électrique. Pour opérer l'opération inverse, on utilise un **convertisseur numérique/analogique**.

Le **milieu informatique** nous permet d'utiliser des applications relatives aux traitements du son par le biais d'ordinateurs. Il s'agit aujourd'hui indubitablement de notre outil de travail principal. Nous y réalisons la grande majorité des traitements audio, ainsi que l'enregistrement et le routage des sources.

Le lien entre un ordinateur et un convertisseur A/N/A se fait grâce à un **bus de sérialisation** associé à un **pilote** (ou **driver**). L'ensemble des deux permet de mettre en forme la donnée numérique et de la rendre compréhensible à l'ordinateur.

Chaque élément évoqué ci-dessus sera abordé dans des sections dédiées dans la suite de ce livre.

7 Les microphones

Un microphone est un **transducteur** permettant de transformer une onde acoustique en signal électrique. Cette opération est réalisée par une membrane. Selon la nature du microphone, cette membrane pourra être constituée d'une feuille métallique d'un condensateur ou encore être rattachée à une bobine.

Le microphone est l'outil principal du preneur de son. Le choix du modèle et sa position dans l'espace est déterminants sur le rendu sonore d'une captation. Ces deux paramètres ont par ailleurs une certaine interdépendance : une position souhaitée du microphone pouvant influencer le choix du modèle et vice-versa.

7.1 Petit historique des microphones

Sans vouloir rentrer dans un récit exhaustif sur l'invention et l'évolution des microphones, relater les moments clefs de cette technologie permet d'avoir une vision globale du marché d'aujourd'hui.

La nécessité de capter un évènement sonore grâce à un microphone provient de trois besoins :

- le transmettre (télécommunication)
- l'amplifier (concert, spectacle vivant)
- l'enregistrer (industrie du disque)

En 1876, Alexandre Graham Bell propose un système à base liquide, permettant de transformer une onde sonore en tension électrique. Le système ne fut jamais réellement exploité, car le rendu sonore était jugé trop peu satisfaisant.

Le premier type de microphone utilisé industriellement est le **microphone à charbon** (au UK, par David Edward Hugues, aux US par Emile Berliner et Thomas Edison. Le brevet sera d'ailleurs disputé, avec un gain de cause pour Edison malgré des démonstrations publiques de Hugues antérieur aux publications d'Edison). En raison de sa faible bande passante et de son niveau de bruit élevé, il se révèle de piètres qualités pour l'enregistrement et la transmission de la musique. Il aura, par contre, une place de choix dans les téléphones durant de longues décennies.

Un premier brevet, peut-être même le premier, pour un **microphone dynamique** à bobine mobile est attribué à l'ingénieur et industriel allemand Ernst Werner von Siemens en 1877. La

technologie de la bobine mobile a été mise en pratique dans les années 1920 lorsque la Marconi-Sykes Company a créé le magnétophone pour la radio britannique. Ils s'imposent d'abord dans le monde du concert, dès les années 40, pour leur grande résistance mécanique.

Viennent ensuite les **microphones à condensateur**, dont les premiers modèles remontent à 1916, par le chercheur Edward Wente. Ces microphones sont tout d'abord réputés assez capricieux, leurs réponses en fréquences pouvant varier significativement en fonction de l'humidité de l'air et de la température.

À cause de ces variations sonores présentes dans les premiers microphones à condensateur, on leur préférera un temps les **microphones à ruban**. Ils sont inventés en 1923 par Harry Olson. Ils sont par contre d'une grande fragilité mécanique.

George Neumann est un des noms à connaître dans cette histoire des microphones. On lui doit, entre autres, la stabilisation des microphones statiques. Il sera aussi le premier à produire un microphone (U87) utilisant un transistor en lieu et place des traditionnels tubes.

À partir des années 1970, les microphones dynamiques sont adoptés en studio d'enregistrement, notamment portés par la marque Shure. Ces microphones ont la grande qualité d'être très robustes, et remplaceront leurs homologues à ruban dans bien des cas.

Depuis, les principales améliorations ont concerné la robustesse d'une part, et la miniaturisation des dispositifs d'autre part, menant ainsi au développement des capsules MEMS.

7.2 Les types et technologies de microphones

Avant d'aborder en détail certaines constructions de microphones, il convient de faire attention à certains raccourcis associant des méthodes de fabrications à un niveau présumé de qualité. Par exemple, il est commun d'associer les microphones à électret à une construction « bas de gamme ». Or, c'est oublier que la série 4000 de chez DPA, considérée par beaucoup comme une référence indétrônable de la prise de son, ne contient que des microphones à électret. Les MEMS souffrent du même biais, ceux-ci se retrouvent pourtant de plus en plus souvent sur des microphones ambisoniques, comme le Zyla ou le SPC mic.

Nous allons maintenant aborder les types de microphones suivants :

- Les microphones électrostatiques/à condensateur
- Les microphones à ruban
- Les microphones dynamiques

Figure 7.1: Neumann U87, Schoeps CMC64, Line Audio CM4

7.2.1 Les microphones électrostatiques/à condensateur

Ce sont, historiquement, les premiers microphones à permettre une captation du spectre audible satisfaisante. Ils sont cependant très sensibles aux conditions de température et d'humidité et il fallut attendre les années trente pour que ce problème cesse. Ils nécessitent une alimentation externe, appelée alimentation fantôme, normalisée à +48V. Il existe deux familles de microphones électrostatiques, les **condensateurs à hautes fréquences** et **condensateur polarisés en courant continu**.

Les microphones à condensateur polarisés en courant continu ont le fonctionnement le plus commun. Un courant continu vient polariser la capsule/condensateur. Lorsqu'une onde sonore rencontre la capsule, une de ses armatures se déforme et génère une variation de tension analogue à la variation de pression.

Les microphones à condensateur à haute fréquence proposent une approche différente. Un oscillateur est intégré dans le microphone et la variation de pression enregistrée par le condensateur vient moduler la fréquence de cet oscillateur. Le signal est ensuite démodulé dans la plage audible. Cette méthode de construction offre une impédance de sortie plus faible et une plus grande résistance aux variations de conditions climatiques.

Concernant leurs caractéristiques, ces microphones possèdent des réponses en fréquence souvent très linéaire et une excellente réponse en transitoire. Leur niveau de sortie (sensibilité) est élevé. Leur impédance de sortie est basse.

Exemples : Neumann U87/AKG C414/Shoeps CMC4/Série 4000 DPA/Série MKH Sennheiser

Figure 7.2: Royer R121, Cascade Vinjet, Coles 4038

7.2.2 Les microphones à ruban

Les microphones à ruban souvent préférés à leurs homologues statiques dans les débuts de la musique enregistrée. Leur fonctionnement repose sur l'utilisation d'une feuille métallique placée entre deux aimants. Lorsqu'une onde sonore rencontre cette feuille (le ruban), celleci vibre et perturbe le champ électromagnétique créé par les aimants et génère une tension analogue à la variation de pression.

D'un point de vue sonore, les microphones à ruban ont souvent un bas du spectre assez généreux et une réponse plutôt douce pour les hautes fréquences. Ils sont aussi connus pour avoir une impédance de sortie assez élevée et un niveau de sortie faible. Attention à l'alimentation fantôme (+48V), elle peut endommager le microphone.

Exemples: Royer R121/Cohles/Beyerdynamic M160

7.2.3 Les microphones dynamiques

Les microphones dynamiques sont conçus pour des conditions d'utilisation rudes, où les niveaux sonores sont élevés et où le risque de chute est important. Ils sont donc monnaie courante en sonorisation. Leur membrane est attachée à une bobine entourant un aimant. Lorsqu'une onde sonore la met en vibration, la bobine se déplace autour de l'aimant, et, par perturbation du champ électromagnétique, génère une tension de sortie analogue à la variation de pression.

Leur réponse en fréquence est souvent accidentée, particulièrement dans le haut du spectre. Cela peut être vu comme un inconvénient ou comme un outil de « coloration » du son. Comme leurs homologues à ruban, ils possèdent un niveau de sortie faible et une impédance de sortie élevée.

Exemples: Shure SM57/Electrovoice RE20/Sennheiser MD441

Figure 7.3: Shure SM57, Electro-Voice RE20, Sennheiser MD441

7.2.4 La taille des membranes

La taille des membranes influe sur la captation du son. Plus la capsule est grande, plus les fréquences aiguës seront diffractées et donc atténuées dans la prise de son. Un microphone à petite membrane est donc techniquement un microphone plus « juste ». Cependant, l'emploi de large membrane permet aussi d'adoucir un surplus d'énergie dans le haut du spectre.

7.2.5 Microphones à tubes ou transistors?

Historiquement, les tubes ont été les premiers composants électroniques à permettre l'amplification du signal. Le transistor est apparu à la fin des années 40 et a permis de remplir les mêmes fonctions qu'un tube, par une consommation moindre et avec un encombrement beaucoup plus faible.

Certains microphones continuent à être fabriqués avec des tubes, préférant leur comportement vis-à-vis du son. Une écrasante majorité est cependant fabriquée avec des transistors.

Le choix entre un microphone à tube et un microphone à transistor semble cependant anecdotique par rapport à son type, à son placement et à sa directivité.

7.3 Timbre et directivité

La directivité d'un microphone permet de décrire sa capacité à réaliser une « écoute » sélective de son environnement. On rencontre les directivités suivantes :

- Omnidirectionnel : capte l'ensemble du champ sonore de façon indifférenciée.
- Hypercardioïde : compromis entre Omnidirectionnel et cardioïde.
- Cardioïde : capte à l'avant, mais rejette à l'arrière du microphone.