DLD (DIGITAL LOGIC DESIGN)

Dr. Kamal Kishor Jha Assistant Professor IIIT Vadodara

Textbooks

- "Digital Design" By M. Morris Mano.
- Complementary Material "Logic and Computer Design Fundamentals" by M. Morris Mano & Charles R Kime.
- "Digital Design", F. Vahid, 2010 (2nd Edition).
- "Digital Design and Computer Architecture", D.M. Harris and S.L. Harris, Morgan Kaufmann, 2013 (2nd Edition).

Digital

- Concerned with the interconnection among digital components and modules
 - » Best Digital System example is General Purpose Computer

Logic Design

- Deals with the basic concepts and tools used to design digital hardware consisting of logic circuits
 - » Circuits to perform arithmetic operations (+, -, x, ÷)

 Digital Signal: Decimal values are difficult to represent in electrical systems. It is easier to use two voltage values than ten.

Digital Signals have two basic states:

```
1 (logic "high", or H, or "on")
0 (logic "low", or L, or "off")
```

Digital values are in a binary format. Binary means 2 states.

on

A good example of binary is a light (only on or off)

Power switches have labels "1" for on and "0" for off.

Motivation

- Microelectronic technologies have revolutionized our world: cell phones, internet, rapid advances in medicine, etc.
- The Semiconductor industry grown tremendously.

Motivation

 The semiconductor industry is projected to reach \$726.73 billion by 2027.

The Digital Revolution

• IC (Integrated Circuit): Many digital operations on the same material.

The Digital Revolution

Evolution Of Computers And Computer Technology

Building complex circuits

Scope

Subjects	Building Blocks	Theory
Combinational Logic	AND, OR, NOT, XOR	Boolean Algebra
Sequential Network	AND, OR, NOT, FF	Finite State Machine
Standard Modules	Operators, Interconnects, Memory	Arithmetics, Universal Logic
System Design	Data Paths, Control Paths	Methodologies

Analog and Digital Signal

- Analog system
 - The physical quantities or signals may vary continuously over a specified range.
- Digital system

- The physical quantities or signals can assume only

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
 - Digits 0 and 1
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Binary digital signal

Decimal Number System

- Base (also called radix) = 10
 - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

- Integer & fraction
- Digit Weight
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Octal Number System

- Base = 8
 - -8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Binary Number System

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Bit x Weight"
- Formal Notation
- Groups of bits 4 bits = Nibble

8 bits = Byte

11000101

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

The Power of 2

Addition

Decimal Addition

Binary Addition

Column Addition

Binary Subtraction

Borrow a "Base" when needed

b

Binary Multiplication

Bit by bit

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Number Base Conversions

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

```
Example: (0.625)_{10} Integer Fraction Coefficient 0.625 * 2 = 1 . 25 a_{.1} = 1 0.25 * 2 = 0 . 5 a_{.2} = 0 0.5 * 2 = 1 . 0 a_{.3} = 1

Answer: (0.625)_{10} = (0.a_{.1} a_{.2} a_{.3})_{2} = (0.101)_{2}

MSB LSB
```

Decimal to Octal Conversion

Example: (175)₁₀

		Quotient	Remainder	Coefficient
175	/8=	21	7	$a_0 = 7$
21	/8=	2	5	$a_1 = 5$
2	/8=	0	2	$a_2 = 2$

Answer: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Example: $(0.3125)_{10}$

Integer Fraction Coefficient
$$0.3125 * 8 = 2 . 5 a_{-1} = 2$$

 $0.5 * 8 = 4 . 0 a_{-2} = 4$

Answer: $(0.3125)_{10} = (0.a_{.1} a_{.2} a_{.3})_{8} = (0.24)_{8}$

Binary - Octal Conversion

Works both ways (Binary to Octal & Octal to Binary)

Binary - Hexadecimal Conversion

- 16 = 2⁴
- Each group of 4 bits represents a hexadecimal digit

Example:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
C	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex & Hex to Binary)

Octal - Hexadecimal Conversion

 Convert to Binary as an intermediate step Example:

Works both ways (Octal to Hex & Hex to Octal)

Complements

- 1's Complement (Diminished Radix Complement)
 - All '0's become '1's
 - All '1's become '0's

Example (10110000),

 \Rightarrow (01001111),

If you add a number and its 1's complement ...

10110000 +01001111 11111111

Complements

- 2's Complement (Radix Complement)
- Take 1's complement then add 1
 - Toggle all bits to the left of the first '1' from the right

Example:

```
Number: 10110000 10110000

1's Comp.: 01001111

+ 1

01010000 01010000
```

Boolean Algebra and Switching Functions

Two-input AND (·)

AND	AB	Y
	0 0	0
	0 1	0
	1 0	0
	1 1	1
A	_	

Two-input OR (+)

OR	AΒ	Y
	0 0	0
	0 1	1
	1 0	1
	1 1	1

$$\begin{array}{c} A \\ 1 \end{array}$$

$$A \longrightarrow A$$

One-input NOT (Complement, ')

NOT	A	Y
	0	1
	1	0

For an AND gate, 0 at input blocks the other inputs and dominates the output 1 at input passes signal A For an OR gate, 1 at input blocks the other inputs and dominates the output 0 at input passes signal A

X = A

 $X = \overline{A}$

Logic Function	Boolean Notation
AND	A.B
OR	A+B
NOT	Ā
NAND	Ā,B
NOR	Ā+B
EX-OR	(A.B) + (Ā.B) or A ⊕ B
EX-NOR	(Ā.B) + or Ā⊕ B

Universal Gate

 NAND and NOR Gates are called Universal Gates because AND, OR and NOT gates can be implemented &created by using these gates.

NAND Gate Implementations

NOR Gate Implementations

Boolean Operations and Expressions

Boolean Addition

Logical OR operation

Ex 4-1) Determine the values of A, B, C, ar. _ ____ke the sum term A+B'+C+D'

Sol) all literals must be '0' for the sum term to be '0'

$$A+B'+C+D'=0+1'+0+1'=0 \rightarrow A=0, B=1, C=0, and D=1$$

Boolean Multiplication

-Logical AND operation

Ex 4-2) Determine the values of A, B, C, a

1

Sol) all literals must be '1' for the product term to be '1'

AB'CD'=
$$10'10'=1 \rightarrow A=1$$
, B=0, C=1, and D=0

Basic Identities of Boolean Algebra

Basic Identities of Boolean Algebra

1.
$$X+0=X$$

3.
$$X+1=1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$10. X+Y=Y+X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

$$2. X \cdot 1 = X$$

The relationship between a single variable X, its complement

X', and the binary constants 0 and I

11.
$$XY = YX$$
 Commutative

13.
$$X(YZ) = (XY)Z$$
 Associative

15.
$$X + YZ = (X + Y)(X + Z)$$
 Distributive

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$
 DeMorgan's

Laws of Boolean Algebra

Commutative Law: the order of literals does not matter

$$A + B = B + A$$

$$AB = BA$$

$$\begin{array}{c|c} A & & \\ \hline B & & \\ \hline \end{array} \longrightarrow \begin{array}{c} AB & \equiv \begin{array}{c} B & \\ \hline \end{array} \longrightarrow \begin{array}{c} BA \end{array}$$

Associative Law: the grouping of literals does not matter

$$A + (B + C) = (A + B) + C (=A+B+C)$$

$$A(BC) = (AB)C (=ABC)$$

■ Distributive Law: A(B+C) = AB+AC

$$(A+B)(C+D) = AC + AD + BC + BD$$

Rules of Boolean Algebra

- ✓ A+0=A In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing
- ✓ A•0=0 In math if 0 is multiplied with you get 0. If you AND anything with 0 you get 0
- ✓ A•1 = A

 ANDing anything with 1 will yield the anything
- ✓ A+A = A ORing with itself will give the same result
- \checkmark A+A'=1 Either A or A' must be 1 so A + A' =1
- ✓ A∘A = A ANDing with itself will give the same result
- ✓ A•A' =0 In digital Logic 1' =0 and 0' =1, so AA'=0 since one of the inputs must be 0.
- \checkmark A = (A')' If you not something twice you are back to the beginning

$$\checkmark$$
 A + A'B = A + B

If A is 1 the output is 1 If A is 0 the output is B

$$\checkmark$$
 A + AB = A

$$\sqrt{(A + B)(A + C)} = A + BC$$

DeMorgan's Theorem

$$-F'(A,A',\cdot,+,1,0) = F(A',A,+,\cdot,0,1)$$

 DeMorgan's theorem will help to simplify digital circuits using NORs and NANDs his theorem states

$X \longrightarrow X + Y$	$= \sum_{Y}^{X} - \sum_{X \in Y} - \bar{X}\bar{Y}$
NOR	Negative-AND

Ing	outs	0	Output		
×	Y	XY	X + Y		
0	0	1	1		
0	1	1	1		
1	0	1	1		
1	1	0	0		

Ing	outs	Outp	ut	
×	Y	X + Y	XY	
0	0	1	- 1	
0	1	0	0	
1	0	0	0	
1	1	0	0	

Thank You