Wniosek 1. Jeśli $x \leftrightarrow y$, to x powracający wtw, gdy y powracający.

Definicja 2 (chwilowy/powracający nieprzywiedlny ł.M.). Jeśli ł.M. jest nieprzywiedlny, to albo wszystkie stany są chwilowe (ł.M. jest *chwilowy*), albo wszystkie stany są powracające (ł.M. jest *powracający*).

Fakt 3. (X_n) powracający nieprzywiedlny ł.M., wówczas $\forall_{x,y} F_{xy} = 1$.

Wniosek 4. Nieprzywiedlny powracający ł.M. o dowolnym rozkładzie początkowym odwiedza każdy stan z prawdopodobieństwem 1, tzn. $\mathbb{P}_{\Pi} (\forall_{y \in E} \exists_n X_n = y) = 1$.

Przykład 5. W notatkach są przykłady.

Okresowość ł.M.

Definicja 6 (okres). $x \in E$, okresem stanu $x \in E$ nazywamy liczbę $o(x) = \text{NWD}\{n \ge 1 : p_{x,x}(n) = 0\}$

Fakt 7. $x \leftrightarrow y \implies o(x) = o(y)$

Wniosek 8. Jeśli ł.M. jest nieprzywiedlny, to wszystkie stany mają ten sam okres.

Definicja 9 (okres). (X_n) nieprzywiedly ł.M. *Okresem* takiego łańcucha nazywamy okres dowolnego jego stanu.

Mówimy, że łańcuch jest *okresowy*, jeśli ma okres większy niż 1, a *nieokresowy*, jeśli ma okres równy 1.

Fakt 10. Jeśli nieprzywiedlny ł.M. jest nieokresowy, to $\forall_{x,y} \exists_{n_0} \forall_{n \geq n_0} p_{x,y}(n) > 0$.

Wniosek 11. Dla nieprzywiedlnego nieokresowego ł.M. o skończonej przestrzeni stanów E istnieje n_0 takie, że $\forall_{n \geq n_0} \forall_{x,y} p_{x,y}(n) > 0$.

Rozkłady stacjonarne

Definicja 12. Rozkład probabilistyczny $\Pi = (\pi_x)_{x \in E}$ nazywamy stacjonarnym dla ł.M. o macierzy przejścia $P = (p_{x,y})_{x,y \in E}$, jeśli $\forall_x \mathbb{P}_{\Pi}(X_1 = x) = \pi_x$.