Machine Learning Lab (PMCA507P)

Reg No: 23MCA1030

Name: Vinayak Kumar Singh

TT B $I \leftrightarrow \bigoplus$ \sqsubseteq \sqsubseteq \sqsubseteq \vdash \vdash \vdash \vdash \vdash \lor \bigcirc

Exercise 5b : Decision Tree Classifier (Split the data set)

Exercise 5b : Decision Tree Classifier (Split the data set)

 $\textbf{Collab url:} \underline{https://colab.research.google.com/drive/1DaWfAzQzPKGcdO23_1fKaok9w698DYT2?usp=sharing} \\$

import numpy as np import pandas as pd

df=pd.read_csv("/content/PlayTennis.csv")
value=['Outlook','Temperature','Humidity','Wind']
4f

	Outlook	Temperature	Humidity	Wind	Play
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

len(df)

14

df.shape

(14, 5)

df.head()

	Outlook	Temperature	Humidity	Wind	Play
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes

df.tail()

	Outlook	Temperature	Humidity	Wind	Play
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes
11	Overcast	Mild	High	Strong	Yes
12	Overcast	Hot	Normal	Weak	Yes
13	Rain	Mild	High	Strong	No

df.describe()

	Outlook	Temperature	Humidity	Wind	Play
count	14	14	14	14	14
unique	3	3	2	2	2
top	Sunny	Mild	High	Weak	Yes
freq	5	6	7	8	9

from sklearn import preprocessing
string_to_int= preprocessing.LabelEncoder()
df=df.apply(string_to_int.fit_transform)
46

	Outlook	Temperature	Humidity	Wind	Play
0	2	1	0	1	0
1	2	1	0	0	0
2	0	1	0	1	1
3	1	2	0	1	1
4	1	0	1	1	1
5	1	0	1	0	0
6	0	0	1	0	1
7	2	2	0	1	0
8	2	0	1	1	1
9	1	2	1	1	1
10	2	2	1	0	1
11	0	2	0	0	1
12	0	1	1	1	1
13	1	2	0	0	0

feature_cols =['Outlook','Temperature','Humidity','Wind']
X = df[feature_cols]
y = df.Play

from sklearn.model_selection import train_test_split X_{train} , X_{test} , y_{train} , y_{test} = train_test_split(X_{train} , Y_{train} ,

from sklearn.tree import DecisionTreeClassifier classifier =DecisionTreeClassifier(criterion="entropy", random_state=100) classifier.fit(X_{train} , y_{train})

DecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy', random_state=100)

 $y_pred=\ classifier.predict(X_test)$

from sklearn.metrics import accuracy_score
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.8

 $\label{lem:data_p} $$ \data_p = pd.DataFrame({'Actual':y_test, 'Predicted':y_pred})$ \data_p $$$

	Actual	Predicted
9	1	1
2	1	1
0	0	0

Evaluating the Algorithm

4 1

from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

precision	recall	f1-score	support
1.00	0.50	0.67	2
0.75	1.00	0.86	3
		0.80	5
0.88	0.75	0.76	5
0.85	0.80	0.78	5
	1.00 0.75 0.88	1.00 0.50 0.75 1.00 0.88 0.75	1.00 0.50 0.67 0.75 1.00 0.86 0.88 0.75 0.76

from sklearn.tree import export_graphviz

import graphviz

dot_data = export_graphviz(classifier, out_file=None, feature_names=feature_cols, class_names=['No', 'Yes'], filled=True, rounded=True, special_char@graph = graphviz.Source(dot_data)
graph

value = [1, 0]

class = No

value = [0, 1]

class = Yes

Outlook ≤ 0.5 entropy = 0.918samples = 9 value = [3, 6] class = Yes False True Wind ≤ 0.5 entropy = 0.0 entropy = 1.0samples = 3 samples = 6 value = [0, 3]value = [3, 3]class = Yes class = No Temperature ≤ 1.5 Outlook ≤ 1.5 entropy = 0.918entropy = 0.918samples = 3 samples = 3 value = [1, 2] class = Yes value = [2, 1] class = No Humidity ≤ 0.5 entropy = 0.0entropy = 0.0entropy = 0.0entropy = 1.0samples = 2 samples = 1 samples = 1 samples = 2 value = [0, 1] value = [2, 0]value = [0, 1] value = [1, 1] class = No class = Yes class = Yes class = No entropy = 0.0entropy = 0.0samples = 1 samples = 1