Rich Mirror Alignment

23/05/2016

Claire Prouve

- How does it work?
- What's new in 2016?
- Current status

RICH Mirror Alignment

RICH 1: 4 primary mirrors 16 secondary mirrors

RICH 2: 54 primary mirrors 40 secondary mirrors

Misaligned mirrors will affect the PID due to incorrectly predicted Cherenkov angle!

Misalignment

Identify misalignment:

$$\Delta\theta_{C}(\Phi) = \theta_{meas.} - \theta_{exp.}$$

$$\Delta\theta_{C}(\Phi) = \rho_{y} \cos(\Phi)$$

$$+ \rho_{z} \sin(\Phi)$$
Misalignments
on detector plane

Overview procedure

Events from HLT1 line

database

Select high energy tracks and reconstruct them under the pion hypothesis.

Fill histograms with $\Delta\theta$ vs. Φ distribution of unambiguous photons

for each mirror combination.

140 120 100 100 80 60 40 20

Replace database and perform another iteration.

Alignment converged!

9

YES

Produce new database and verify if the convergence criteria was met.

Fit misalignments on detector plane for each mirror combination and determine individual mirror misalignments.

What's new in 2016?

Disentangling mirror-pairs

Each pair of **primary mirror p** and **secondary mirror s** has 2 equations:

$$\begin{array}{l} A_{p,s}^{y}\alpha_{p}^{y} + B_{p,s}^{y}\beta_{s}^{y} + a_{p,s}^{y}\alpha_{p}^{z} + b_{p,s}^{y}\beta_{s}^{z} = \Theta_{p,s}^{y} \\ A_{p,s}^{z}\alpha_{p}^{z} + B_{p,s}^{z}\beta_{s}^{z} + a_{p,s}^{z}\alpha_{p}^{y} + b_{p,s}^{z}\beta_{s}^{y} = \Theta_{p,s}^{z} \end{array}$$

Results of fit to histogram

Magnification factors

individual mirror tilts

Problem: not enough information to fully constrain the solution

RICH1: 8 equations for 10 unknowns

Rotation of primary mirrors followed by according rotation of secondary mirrors yields same results

→ Need additional constraint

Disentangling – until 2016

RICH1:

 fix primary mirrors, align secondary mirrors

RICH2:

- Left half:
 system of equations
 linking all mirrors
 starting from
 primary mirror 12.
- Equivalent for right half

Disentangling – from 2016

L2 regularization (ridge regression):

Advantages:

- does not tend to set many x's to zero (unlike L1 regularization)
- stable (unlike L1 regularization)
- more stable than the previous method
- → Fewer iterations needed to converge

Further improvements

Magnification coefficients:

- translate the misalignment-on-the-detector-plane into actual mirror tilts
- Previously calculated for every alignment for each iteration on data
- Tested using the same set for all alignments and all iterations
- No significant difference in resulting mirror tilts and procedure 9 times faster!!!

Improved method for fitting histograms:

- use same Gaussian width for each slice in phi
- → Same resulting mirror-tilts and 3 times faster

Current status

First alignment 2016

- Started from completely unaligned mirrors
- Calculated the magnification factors
- In the global tag cond-20160517
- Improvement in resolution w.r.t. last alignment: RICH1 0.1 mrad, RICH2 unchanged

More news & future plans

All following alignments:

- Performed with all new improvements, starting from new database
- Converged after first iteration
- ~ 6 minutes per alignment
- Alignment will be run for each fill to monitor behavior over time

- Tune scale factors for RICH1 HLT1 line
- Update to AlignmentOnline v11 (use newest Brunel version)
- Monitoring (most parts done, need to be put together when Roel is ready)
- Parallelize the fits
- Tune the factor in front of the regularization term

Some plots

Backup

Cherenkov angle resolution

Limiting factors to Cherenkov angle resolution:

	$\sigma \left[\mathrm{mrad} \right]$		
	RICH1		RICH2
	Aerogel	$\mathrm{C_4F_{10}}$	CF_4
Emission point	0.4	0.8	0.2
Chromatic dispersion	2.1	0.9	0.5
Pixel size	0.5	0.6	0.2
Tracking	0.4	0.4	0.4
Total	2.6	1.5	0.7

New HLT Lines

- Trigger on tracks that will populate the hardest-to-populate mirror-pairs
- usually the very outer mirrors
- Other tracks in the events will populate the rest

RICH2 line:

p > 40 GeV **&&** χ^2 < 2 **&&** 2.65 < η < 2.80 (-2.59 < Φ < -2.49) || (-0.65 < Φ < -0.55) || (0.45 < Φ < 0.65) || (2.49 < Φ < 2.59)

RICH1 line:

p > 10 GeV **&&** χ^2 < 2 **&&** 1.6 < η < 2.04 (-2.65 < Φ < -2.3) || (-0.8 < Φ < -0.5) || (0.5 < Φ < 0.8) || (2.3 < Φ < 2.65)

Need to reconstruct ~10 times less events!

Magnification coefficients

Magnification coefficients: Translate the tilt on the detector plane into actual mirror tilts

Magnification coefficients are calculated new for each iteration:

- Introduce 8 rotations: primary and secondary mirrors rotated around ±y and ±z axis respectively
- Rotate about 0.3 mrad (half the resolution of RICH2)
- Reconstruct events for each rotation and evaluate the tilts on the detector plane

Need to reconstruct all events 9 times!

$$\Theta^y \approx 2.0 \,\alpha^y - 0.9 \,\beta^y$$
 and $\Theta^z \approx 1.8 \,\alpha^z + 0.6 \,\beta^z$.