Probabilistic Graphical Models

Lecture 2: Bayesian Networks

Matthew Walter

TTI-Chicago

April 9, 2020

Some slide content courtesy of David Sontag

ullet Consider binary multivariate random variables X_1, X_2, \dots, X_n

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- How many parameters are required to represent the distribution as a table of probabilities?

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- How many parameters are required to represent the distribution as a table of probabilities? $2^n 1$ (e.g., $2^{4600} 1$ for QMR-DT)

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- How many parameters are required to represent the distribution as a table of probabilities? 2^n-1 (e.g., $2^{4600}-1$ for QMR-DT)
- Learning the joint distribution would require a huge amount of data

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- How many parameters are required to represent the distribution as a table of probabilities? 2^n-1 (e.g., $2^{4600}-1$ for QMR-DT)
- Learning the joint distribution would require a huge amount of data
- Inference of conditional probabilities

$$P(X_i | X_j = x) = \frac{P(X_i, X_j = x)}{P(X_j = x)} = \frac{\sum_{X_k \forall k \neq i, j} P(X_1, \dots, X_n)}{\sum_{X_k \forall k \neq j} P(X_1, \dots, X_n)}$$

would require summing over exponentially many values

(e.g., 2^{4596} values to determine $P(\mathsf{flu}=1\,|\,\mathsf{cough}=1,\mathsf{fever}=1,\mathsf{vomiting}=0)$ under QMR-DT)

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- If $P = \{(X_1 ... X_{i-1} \perp X_{i+1} ... X_n \mid X_i) \ \forall i\}$,

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- If $P = \{(X_1 ... X_{i-1} \perp X_{i+1} ... X_n \mid X_i) \ \forall i\}$,

$$P(x_1,...,x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_2)...P(x_n | x_{n-1})$$

then we only need $2n-1 \ll 2^n-1$ parameters!

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- If $P = \{(X_1 ... X_{i-1} \perp X_{i+1} ... X_n \mid X_i) \ \forall i\}$,

$$P(x_1,...,x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_2)...P(x_n | x_{n-1})$$

then we only need $2n-1 \ll 2^n-1$ parameters!

- We need to only learn individual distributions that are much smaller and require far less data
- Inference of conditional probabilities

$$P(X_i \mid X_j = x)$$

would require far fewer summations

- Consider binary multivariate random variables X_1, X_2, \dots, X_n
- If $P = \{(X_1 ... X_{i-1} \perp X_{i+1} ... X_n \mid X_i) \ \forall i\}$,

$$P(x_1,...,x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_2)...P(x_n | x_{n-1})$$

then we only need $2n-1 \ll 2^n-1$ parameters!

- We need to only learn individual distributions that are much smaller and require far less data
- Inference of conditional probabilities

$$P(X_i \mid X_j = x)$$

would require far fewer summations

• But, there are many distributions that can't be modeled $(n-\text{dimensional manifold v.s. } 2n-1 \text{ dimensional subspace in } \mathbb{R}^{2^n})$

- Consider binary multivariate random variables X_1, X_2, \dots, X_n, Y
- Naive Bayes: Suppose $P \vDash \{(X_i \perp \boldsymbol{X}_{-i} \mid Y) \ \forall i\}$,

- Consider binary multivariate random variables X_1, X_2, \dots, X_n, Y
- Naive Bayes: Suppose $P \vDash \{(X_i \perp \boldsymbol{X}_{-i} \mid Y) \ \forall i\}$,

$$P(x_1,...,x_n,y) = P(y)P(x_1 | y)P(x_2 | y)...P(x_n | y)$$

then we only need $2n+1 \ll 2^{n+1}-1$ parameters!

- Consider binary multivariate random variables X_1, X_2, \dots, X_n, Y
- Naive Bayes: Suppose $P \vDash \{(X_i \perp \boldsymbol{X}_{-i} \mid Y) \ \forall i\}$,

$$P(x_1,...,x_n,y) = P(y)P(x_1 | y)P(x_2 | y)...P(x_n | y)$$

then we only need $2n+1 \ll 2^{n+1}-1$ parameters!

 We need to only learn individual distributions that are much smaller and require far less data

- Consider binary multivariate random variables X_1, X_2, \dots, X_n, Y
- Naive Bayes: Suppose $P \vDash \{(X_i \perp \boldsymbol{X}_{-i} \mid Y) \ \forall i\}$,

$$P(x_1,...,x_n,y) = P(y)P(x_1 | y)P(x_2 | y)...P(x_n | y)$$

then we only need $2n+1 \ll 2^{n+1}-1$ parameters!

- We need to only learn individual distributions that are much smaller and require far less data
- Inference of conditional probabilities

$$P(X_i \mid Y = y)$$

would require far fewer summations (zero, in fact)

- Consider binary multivariate random variables X_1, X_2, \dots, X_n, Y
- Naive Bayes: Suppose $P \vDash \{(X_i \perp \boldsymbol{X}_{-i} \mid Y) \ \forall i\}$,

$$P(x_1,...,x_n,y) = P(y)P(x_1 | y)P(x_2 | y)...P(x_n | y)$$

then we only need $2n+1 \ll 2^{n+1}-1$ parameters!

- We need to only learn individual distributions that are much smaller and require far less data
- Inference of conditional probabilities

$$P(X_i \mid Y = y)$$

would require far fewer summations (zero, in fact)

⇒ Tractable learning and inference requires exploiting independencies

Judea Pearl (1936-)

- First proposed Bayesian networks to encode independence relations c. 1988
- Winner of the 2011 ACM Turing Award for invention of Bayesian networks and algorithms for inference in these models
- Professor at UCLA

"[Bayesian networks] not only revolutionized the field of artificial intelligence but also became an important tool for many other branches of engineering and the natural sciences." — Turing Award

Bayesian Network Structure

- ullet G=(V,E) is a directed acyclic graph (DAG) s.t.
 - ullet One node $i \in V$ for each random variable X_i
 - ullet Pa $_{X_i}^G$ denotes the parents of X_i
 - ullet NonDescendants $_{X_i}$ are variables that are not descendents of X_i

Bayesian Network Structure

- ullet G=(V,E) is a directed acyclic graph (DAG) s.t.
 - ullet One node $i \in V$ for each random variable X_i
 - Pa_X^G denotes the parents of X_i
 - ullet NonDescendants $_{X_i}$ are variables that are not descendents of X_i
- G encodes the following *local* independencies

$$I_l(G) = (X_i \perp \mathsf{NonDescendants}_{X_i} \, | \, \mathsf{Pa}_{X_i}^G) \quad \forall X_i$$

i.e., X_i is conditionally independent of $\mathsf{NonDescendants}_{X_i}$ given $\mathsf{Pa}_{X_i}^G$

Bayesian Networks

• A distribution P factorizes according to G iff

$$P(X_i,\dots,X_n) = \prod_{i \in V} P(X_i \,|\, \mathsf{Pa}_{X_i}^G)$$

Bayesian Networks

A distribution P factorizes according to G iff

$$P(X_i,\dots,X_n) = \prod_{i \in V} P(X_i \,|\, \mathsf{Pa}_{X_i}^G)$$

- A Bayesian Network is a pair B = (P, G) for which
 - lacktriangledown P factorizes over G
 - ② P is specified as a set of conditional probability distributions (CPD) $P(X_i \mid \mathsf{Pa}_{X_i}^G)$, one per node specifying probability conditioned on parents

Bayesian Networks

A distribution P factorizes according to G iff

$$P(X_i,\dots,X_n) = \prod_{i \in V} P(X_i \,|\, \mathsf{Pa}_{X_i}^G)$$

- A Bayesian Network is a pair B = (P, G) for which
 - lacktriangledown P factorizes over G
 - ② P is specified as a set of conditional probability distributions (CPD) $P(X_i \mid \mathsf{Pa}_{X_i}^G)$, one per node specifying probability conditioned on parents
- A graph G is both:
 - ullet a compact representation of the conditional independencies that hold under the corresponding distribution P
 - a data structure that provides a skeleton for compactly representing the joint distribution in a factorized way

Parametrization and Representation

Representational (storage, learning, & computation) complexity:

- Joint distribution: Exponential in the number of variables
- Bayesian Network: Exponential in number of parents of each node, linear in the number of nodes

Parametrization and Representation

Representational (storage, learning, & computation) complexity:

- Joint distribution: Exponential in the number of variables
- Bayesian Network: Exponential in number of parents of each node, linear in the number of nodes

- ullet Classify e-mails as spam (Y=1) or not spam (Y=0)
 - Let 1: n index words in a dictionary
 - $X_i = 1$ if word i appears in an e-mail
 - E-mails are drawn according to distribution $P(Y, X_1, \dots X_n)$

- ullet Classify e-mails as spam (Y=1) or not spam (Y=0)
 - Let 1:n index words in a dictionary
 - $X_i = 1$ if word i appears in an e-mail
 - E-mails are drawn according to distribution $P(Y, X_1, \dots X_n)$
- ullet Suppose words are conditionally independent given Y

$$P(y, x_1, ..., x_n) = P(y) \prod_{i=1}^{n} P(x_i | y)$$

- Classify e-mails as spam (Y = 1) or not spam (Y = 0)
 - Let 1:n index words in a dictionary
 - $X_i = 1$ if word i appears in an e-mail
 - E-mails are drawn according to distribution $P(Y, X_1, \dots X_n)$
- ullet Suppose words are conditionally independent given Y

$$P(y, x_1, ..., x_n) = P(y) \prod_{i=1}^{n} P(x_i | y)$$

• Infer (predict) whether an e-mail is spam

$$P(Y = 1 \mid x_1, \dots, x_n) = \frac{P(Y = 1) \prod_{i=1}^n P(x_i \mid Y = 1)}{\sum_{y \in \{0,1\}} P(Y = y) \prod_{i=1}^n P(x_i \mid Y = y)}$$

$$P(Y, X_1, ..., X_n) = P(Y) \prod_{i=1}^n P(X_i | Y)$$

Example: STUDENT

• Consider the following STUDENT Bayesian network

• What is the joint distribution?

Example: STUDENT

Consider the following STUDENT Bayesian network

• What is the joint distribution?

$$P(X_i,\dots,X_n) = \prod_{i \in V} P(X_i \,|\, \mathsf{Pa}_{X_i}^G)$$

Example: STUDENT

Consider the following STUDENT Bayesian network

• What is the joint distribution?

$$\begin{split} P(X_i,\dots,X_n) &= \prod_{i\in V} P(X_i\,|\,\mathsf{Pa}_{X_i}^G) \\ P(D,I,G,S,L) &= P(D)P(I)P(G\,|\,I,D)P(S\,|\,I)P(L\,|\,G) \end{split}$$

Example: Simple Medical Diagnosis

- The flu (F) causes sinus inflammation (S)
- ullet Allergies (A) also cause sinus inflammation
- Sinus inflammation causes a runny nose (R)
- \bullet Sinus inflammation causes headaches (H)

Example: Simple Medical Diagnosis

- The flu (F) causes sinus inflammation (S)
- Allergies (A) also cause sinus inflammation
- Sinus inflammation causes a runny nose (R)
- Sinus inflammation causes headaches (H)

$$P(F, A, S, R, H) = P(F)P(A)P(S | F, A)P(R | S)P(H | S)$$

Bayesian Networks are Generative Models

- Evidence (observed variable) indicated by shaded node
- Can interpret Bayesian network as a generative process. For example, to generate an e-mail we
 - $\textbf{ 0} \ \, \text{ Decide whether it is spam or not spam by sampling } y \sim P(Y)$
 - ② For each word i, sample $x_i \sim P(X_i | Y = y)$

From Factorization to Independencies

Joint distribution for above BN factors as

$$P(D, I, G, S, L) = P(D)P(I)P(G \,|\, I, D)P(S \,|\, I)P(L \,|\, G)$$

From Factorization to Independencies

Joint distribution for above BN factors as

$$P(D,I,G,S,L) = P(D)P(I)P(G\,|\,I,D)P(S\,|\,I)P(L\,|\,G)$$

However, any distribution can be factored as (per chain rule)

$$P(D, I, G, S, L) = P(D)P(I | D)P(G | I, D)P(S | I, D, G)$$

 $\cdot P(L | I, D, G, S)$

From Factorization to Independencies

Joint distribution for above BN factors as

$$P(D, I, G, S, L) = P(D)P(I)P(G | I, D)P(S | I)P(L | G)$$

However, any distribution can be factored as (per chain rule)

$$P(D, I, G, S, L) = P(D)P(I | D)P(G | I, D)P(S | I, D, G)$$

 $\cdot P(L | I, D, G, S)$

• Thus, if P factorizes over G, P exhibits the following independencies $(D \perp I) \quad (S \perp \{D,G\} \mid I) \quad (L \perp \{I,D,S\} \mid G)$ and others...

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

 $(X \perp Y)$?

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y)$$
? No

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

 $(X \perp Y)$? No

• Common Cause (tail-to-tail):

 $(X \perp Y)$?

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y \mid Z)$$
? Yes

 $(X \perp Y)$? No

• Common Cause (tail-to-tail):

 $(X \perp Y)$? No

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y \mid Z)$$
? Yes

 $(X \perp Y)$? No

• Common Cause (tail-to-tail):

 $(X \perp Y)$? No

 $(X \perp Y \mid Z)$? Yes (Naive Bayes)

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y \mid Z)$$
? Yes

 $(X \perp Y)$? No

Common Cause (tail-to-tail):

 $(X \perp Y)$? No $(X \perp Y \mid Z)$? Yes (Naive Bayes)

• Common Effect (v-structure, "explaining away"; head-to-head):

 $(X \perp Y)$?

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y)$$
? No $(X \perp Y \mid Z)$? Yes

Common Cause (tail-to-tail):

$$(X \perp Y)$$
? No $(X \perp Y \mid Z)$? Yes (Naive Bayes)

• Common Effect (v-structure, "explaining away"; head-to-head):

 $(X \perp Y)$? Yes

• Cascade (Markov chain; causal trail; evidential trail; head-to-tail):

$$(X \perp Y)$$
? No $(X \perp Y \mid Z)$? Yes

Common Cause (tail-to-tail):

 $(X \perp Y)$? No $(X \perp Y \mid Z)$? Yes (Naive Bayes)

• Common Effect (v-structure, "explaining away"; head-to-head):

 $(X \perp Y)$? Yes

Common Cause

We will show that $P(X,Y\,|\,Z)=P(X\,|\,Z)P(Y\,|\,Z)$ for any distribution P(X,Y,Z) that factors according to this graph, i.e.,

$$P(X,Y,Z) = P(Z)P(X \mid Z)P(Y \mid Z)$$

Common Cause

We will show that $P(X,Y\,|\,Z)=P(X\,|\,Z)P(Y\,|\,Z)$ for any distribution P(X,Y,Z) that factors according to this graph, i.e.,

$$P(X,Y,Z) = P(Z)P(X \mid Z)P(Y \mid Z)$$

Proof

$$P(X, Y | Z) = \frac{P(X, Y, Z)}{P(Z)} = P(X | Z)P(Y | Z)$$

Active Trail

Let G be a BN structure and $X_1 \leftrightharpoons \ldots \leftrightharpoons X_n$ be a *trail* in G

Active Trail

Let G be a BN structure and $X_1 \leftrightharpoons \ldots \leftrightharpoons X_n$ be a *trail* in G

Let Z be a subset of observed variables

Active Trail

Let G be a BN structure and $X_1 \leftrightharpoons \ldots \leftrightharpoons X_n$ be a *trail* in G

Let Z be a subset of observed variables

The trail is **active** (i.e., dependency/information flow) given $oldsymbol{Z}$ if

- For every v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, X_i or one of its descendents is in Z
- ullet No other node along the trail is in $oldsymbol{Z}$

Let X, Y, and Z be three sets of nodes in graph G

- $m{X}$ and $m{Y}$ are **d-separated** given $m{Z}$ (d-sep $_G(m{X}, m{Y} \,|\, m{Z})$) if there is no "active trail" between any node $X \in m{X}$ and $Y \in m{Y}$ given $m{Z}$
- ullet Alternatively, conditioning on Z "blocks" the path from X to Y
- ullet If d-sep $_G(oldsymbol{X},oldsymbol{Y}\,|\,oldsymbol{Z})$, then $(oldsymbol{X}\,\perpoldsymbol{Y}\,|\,oldsymbol{Z})$ (soundness)

(First proposed by Pearl in 1986)

Let X, Y, and Z be three sets of nodes in graph G

- \pmb{X} and \pmb{Y} are **d-separated** given \pmb{Z} (d-sep $_G(\pmb{X},\pmb{Y}\,|\,\pmb{Z})$) if there is no "active trail" between any node $X\in\pmb{X}$ and $Y\in\pmb{Y}$ given \pmb{Z}
- ullet Alternatively, conditioning on Z "blocks" the path from X to Y
- ullet If d-sep $_G(oldsymbol{X},oldsymbol{Y}\,|\,oldsymbol{Z})$, then $(oldsymbol{X}\perpoldsymbol{Y}\,|\,oldsymbol{Z})$ (soundness)

No active trail $(W \notin Z)$

Let X, Y, and Z be three sets of nodes in graph G

ullet $m{X}$ and $m{Y}$ are **d-separated** given $m{Z}$ (d-sep $_G(m{X}, m{Y} \,|\, m{Z})$) if there is no "active trail" between any node $X \in m{X}$ and $Y \in m{Y}$ given $m{Z}$

Let X, Y, and Z be three sets of nodes in graph G

- \pmb{X} and \pmb{Y} are **d-separated** given \pmb{Z} (d-sep $_G(\pmb{X},\pmb{Y}\,|\,\pmb{Z})$) if there is no "active trail" between any node $X\in\pmb{X}$ and $Y\in\pmb{Y}$ given \pmb{Z}
- ullet For a BN structure G, we define the **global Markov independencies** as the set of independencies that correspond to d-separation

$$I(G) = \{(\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z} : \operatorname{d-sep}_G(\boldsymbol{X}, \boldsymbol{Y} \,|\, \boldsymbol{Z}))\}$$

Let X, Y, and Z be three sets of nodes in graph G

- ullet $m{X}$ and $m{Y}$ are **d-separated** given $m{Z}$ (d-sep $_G(m{X}, m{Y} \,|\, m{Z})$) if there is no "active trail" between any node $X \in m{X}$ and $Y \in m{Y}$ given $m{Z}$
- ullet For a BN structure G, we define the **global Markov independencies** as the set of independencies that correspond to d-separation

$$I(G) = \{(\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z} : \mathsf{d\text{-}sep}_G(\boldsymbol{X}, \boldsymbol{Y} \,|\, \boldsymbol{Z}))\}$$

• D-separation reduces reasoning over statistical independencies (hard problem) to analyzing connectivity in graphs (easy problem)

Let X, Y, and Z be three sets of nodes in graph G

- ullet $m{X}$ and $m{Y}$ are **d-separated** given $m{Z}$ (d-sep $_G(m{X}, m{Y} \,|\, m{Z})$) if there is no "active trail" between any node $X \in m{X}$ and $Y \in m{Y}$ given $m{Z}$
- ullet For a BN structure G, we define the **global Markov independencies** as the set of independencies that correspond to d-separation

$$I(G) = \{(\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z} : \operatorname{d-sep}_G(\boldsymbol{X}, \boldsymbol{Y} \,|\, \boldsymbol{Z}))\}$$

- D-separation reduces reasoning over statistical independencies (hard problem) to analyzing connectivity in graphs (easy problem)
- Enables us to reduce the Bayesian network to only the variables relevant to answering a query

Are X_1 and X_5 d-separated given X_2 and X_3 ?

Are X_1 and X_5 d-separated given X_2 and X_3 ? Yes

Are X_2 and X_3 d-separated given X_1 and X_6 ?

Are X_2 and X_3 d-separated given X_1 and X_6 ? No (v-structure)

Bayes Ball Algorithm (due to Ross Shachter)

- An alternative algorithm for identifying active trails and d-separation
- An undirected path is active iff a Bayes ball travelling along it never encounters a "stop" symbol

ullet No active paths from X to Y when ${m Z}$ are shaded $\longrightarrow (X \perp Y \,|\, {m Z})$

No active paths $(X \perp Y \mid Z)$

One active path $(X \not\perp Y | W, Z)$

D-Separation Algorithm

Given BN structure G, determine whether X and Y d-separated given \boldsymbol{Z}

- Traverse graph from leaves to root (bottom-up) and mark any node that is in Z or has a descendant in Z (i.e., v-structures)
- ② Perform breadth-first search from X along active trails (i.e., stopping at nodes in Z or marked nodes in the middle of a v-structure) generating reachable set R
 - Requires bookkeeping to keep track of whether node was reached via children or parents
- $oldsymbol{0} X$ and Y are d-separated iff $Y \notin \mathbf{R}$

Try this with the graphs on the previous slide

For a BN structure G and any X,Y,\boldsymbol{Z} , we would like

$$\mathsf{d}\text{-}\mathsf{sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

For a BN structure G and any X, Y, \mathbf{Z} , we would like

$$\mathsf{d\text{-}sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\, {\pmb Z}) \Rightarrow P \vDash (X \perp Y\,|\, {\pmb Z})$

For a BN structure G and any X, Y, \mathbf{Z} , we would like

$$\mathsf{d\text{-}sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\,{\bf Z})\Rightarrow P\vDash (X\perp Y\,|\,{\bf Z})$

Definition (Completeness)

For any P that factorizes per G, $P \models (X \perp Y \mid \mathbf{Z}) \Rightarrow \mathsf{d-sep}_G(X, Y \mid \mathbf{Z})$

For a BN structure G and any X, Y, \mathbf{Z} , we would like

$$\mathsf{d\text{-}sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\,{\bf Z})\Rightarrow P\vDash (X\perp Y\,|\,{\bf Z})$

Definition (Completeness)

For any P that factorizes per G, $P \vDash (X \perp Y \mid \mathbf{Z}) \Rightarrow \operatorname{d-sep}_G(X, Y \mid \mathbf{Z})$

Does "completeness" imply the contrapositive: If X and Y are *not* d-separated given \mathbf{Z} , then $P \nvDash (X \perp Y \mid \mathbf{Z})$ for all P that factorize per G?

For a BN structure G and any X, Y, \mathbf{Z} , we would like

$$\mathsf{d}\text{-}\mathsf{sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\,{\bf Z})\Rightarrow P\vDash (X\perp Y\,|\,{\bf Z})$

Definition (Completeness)

For any P that factorizes per G, $P \vDash (X \perp Y \mid \mathbf{Z}) \Rightarrow \operatorname{d-sep}_G(X, Y \mid \mathbf{Z})$

Does "completeness" imply the contrapositive: If X and Y are *not* d-separated given \mathbf{Z} , then $P \nvDash (X \perp Y \mid \mathbf{Z})$ for all P that factorize per G? No! G specifies the topology, not the parameters

Consider the following Bayesian network, where X,Y,Z are boolean

$$P(Z) = 0.9$$

 $P(X \mid Z) = 1$ $P(X \mid \neg Z) = 1$
 $P(Y \mid X) = 0.5$ $P(Y \mid \neg X) = 0.5$

For a BN structure G and any X,Y,\boldsymbol{Z} , we would like

$$\mathsf{d}\text{-}\mathsf{sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\, {\pmb Z}) \Rightarrow P \vDash (X \perp Y\,|\, {\pmb Z})$

Definition (Completeness (alternative))

If $P \vDash (X \perp Y \,|\, \pmb{Z})$ for $\underline{\textit{all}}$ distributions P that factorize over G, then $\operatorname{d-sep}_G(X,Y \,|\, \pmb{Z})$

For a BN structure G and any X, Y, \mathbf{Z} , we would like

$$\mathsf{d\text{-}sep}_G(X,Y\,|\,\boldsymbol{Z}) \Leftrightarrow P \vDash (X\perp Y\,|\,\boldsymbol{Z})$$

Definition (Soundness)

If P factorizes according to G, then $\operatorname{d-sep}_G(X,Y\,|\,{\bf Z})\Rightarrow P\vDash (X\perp Y\,|\,{\bf Z})$

Definition (Completeness (alternative))

If $P \vDash (X \perp Y \,|\, \pmb{Z})$ for $\underline{\it all}$ distributions P that factorize over G, then $\operatorname{d-sep}_G(X,Y \,|\, \pmb{Z})$

Theorem

Let G be a BN structure. If X and Y are **not d-separated** given \mathbf{Z} in G, then X and Y are **dependent given** \mathbf{Z} in <u>some</u> distribution P that factorizes over G

Theorem (Meek 1995)

For almost all distributions P that factorize over G (except for a set of measure zero), we have I(P)=I(G)

In other words, the set of parameterizations for which the distribution is unfaithful are of measure zero.

Implies that most distributions that factorize over G are faithful.

- Let $I(P) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}) \}$ be the set of independence assertions that hold in P (i.e., $P \vDash (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}))$
- A BN structure G is an **I-map** (independence map) for a set of independencies I if $I(G) \subseteq I$
- \bullet A BN structure G is an **I-map** for P if G is an I-map for I(P), i.e., $I(G)\subseteq I(P)$

- Let $I(P) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z}) \}$ be the set of independence assertions that hold in P (i.e., $P \models (\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z})$)
- A BN structure G is an **I-map** (independence map) for a set of independencies I if $I(G) \subseteq I$
- A BN structure G is an **I-map** for P if G is an I-map for I(P), i.e., $I(G) \subseteq I(P)$
 - ullet Any independence asserted by G must hold in P

- Let $I(P) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}) \}$ be the set of independence assertions that hold in P (i.e., $P \vDash (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}))$
- A BN structure G is an **I-map** (independence map) for a set of independencies I if $I(G) \subseteq I$
- A BN structure G is an **I-map** for P if G is an I-map for I(P), i.e., $I(G) \subseteq I(P)$
 - ullet Any independence asserted by G must hold in P
 - \bullet Converse need not be true— $\!P$ may have additional independencies not reflected in G

- Let $I(P) = \{ (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}) \}$ be the set of independence assertions that hold in P (i.e., $P \vDash (\boldsymbol{X} \perp \boldsymbol{Y} \,|\, \boldsymbol{Z}))$
- \bullet A BN structure G is an **I-map** (independence map) for a set of independencies I if $I(G)\subseteq I$
- A BN structure G is an **I-map** for P if G is an I-map for I(P), i.e., $I(G) \subseteq I(P)$
 - ullet Any independence asserted by G must hold in P
 - \bullet Converse need not be true—P may have additional independencies not reflected in G
 - Trivial case: A fully connected graph G is an I-map for any distribution since $I(G)=\emptyset\subseteq I(P)\ \forall P$

Representation Theorem

Theorem (Verma & Pearl, 1998)

Given a BN structure G and joint distribution P over a set of random variables, P factorizes over G iff G is an I-map for P

Representation Theorem

Theorem (Verma & Pearl, 1998)

Given a BN structure G and joint distribution P over a set of random variables, P factorizes over G iff G is an I-map for P

- If $I(G) \subseteq I(P)$, any conditional independency expressed by G holds for all distributions P that factorize over G
- If $I(G) \subseteq I(P)$, any any conditional dependency expressed by G holds for some distributions that factorize over G

Representation Theorem: Proof

Consider one direction: P factorizes over $G \Leftarrow G$ is an I-map for P

Proof

Let T be a topological ordering of the nodes in G, i.e., $\forall i \in T$, Pa^G_i appear before i

Let ν_i be the set of nodes appearing before i in T, excluding Pa_i^G From $I_l(G)$, we have that $\{X_i \perp X_{\nu_i} \mid \mathsf{Pa}_{X_i}^G\}$ Since $I(G) \subseteq I(P)$,

$$P(X_1, \dots, X_n) = \prod_{i \in T} P(X_i \, | \, X_{\nu_i}, \textit{Pa}_{X_i}^G) = \prod_{i \in T} P(X_i \, | \, \textit{Pa}_{X_i}^G)$$

Representation Theorem: Proof (Example)

$$\begin{split} T &= \{1, 2, 3, 4, 5, 6\} \\ \nu_1 &= \emptyset, \ \nu_2 = \emptyset, \ \nu_3 = \{2\}, \ \nu_4 = \{1, 3\} \ \nu_5 = \{1, 2, 4\}, \ \nu_6 = \{1, 3, 4\} \\ P(_1, \dots, X_6) &= \prod_{i \in T} P(X_i \,|\, X_{\nu_i}, \mathsf{Pa}^G_{X_i}) \\ &= P(X_1) P(X_2 \,|\, X_1) P(X_3 \,|\, X_1) P(X_4 \,|\, X_2) P(X_5 \,|\, X_3) P(X_6 \,|\, X_2, X_5) \end{split}$$

- Different BN structures are I-equivalent if they encode the same conditional independencies (and, in turn, the same distributions)
- For a given P, any equivalent BN structure is equally valid

Definition (Skeleton)

The **skeleton** of a Bayesian network graph G over $\mathcal X$ is an undirected graph over $\mathcal X$ with an undirected edge $\{X,Y\}$ for every edge (X,Y) in G

Theorem

Let G_1 and G_2 be two graphs over \mathcal{X} . If G_1 and G_2 have the same skeleton and the same set of v-structures, then they are l-equivalent

Which of the following are equivalent?

Which of the following are equivalent?

Which of the following are equivalent?

Distributions to Graphs

- If $I(G) \subseteq I(P)$, G is an I-map for P and we can use G to identify (and exploit) independencies in P
- Is G missing independencies?
- A graph G is a **minimal I-map** for a set of independencies I if $I(G) \subseteq I$ and removing a single edge from G results in $I(\bar{G}) \not\subseteq I$

Distributions to Graphs

Given a distribution P and its independencies I(P), how do we generate the minimal I-map? (Hint: Recall the factorization proof)

Algorithm 3.2 Procedure to build a minimal I-map given an ordering

```
Procedure Build-Minimal-I-Map (
        X_1, \ldots, X_n // an ordering of random variables in \mathcal{X}
        I // Set of independencies
        Set G to an empty graph over X
        for i = 1, ..., n
          U \leftarrow \{X_1, \dots, X_{i-1}\} // U is the current candidate for parents of X_i
          for U' \subseteq \{X_1, ..., X_{i-1}\}
             if U' \subset U and (X_i \perp \{X_1, \dots, X_{i-1}\} - U' \mid U') \in \mathcal{I} then
               II \leftarrow II'
             // At this stage U is a minimal set satisfying (X_i \perp
                \{X_1, ..., X_{i-1}\} - U \mid U
8
             // Now set U to be the parents of X_i
          for X_i \in U
             Add X_i \to X_i to \mathcal{G}
11
        return G
```

- $I(G) \subseteq I(P)$ if G is an I-map for P, but is G missing independencies?
- A graph G is a **minimal I-map** for a set of independencies I if $I(G) \subseteq I$ and removing a single edge from G results in $I(\bar{G}) \not\subseteq I$
- A graph G is a **perfect map (P-map)** for P if I(G) = I(P)

If I(G) = I(P), then we can read independencies of P directly from G

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Not all distributions P have a perfect map

Hidden Markov Models (HMMs)

- Commonly used to model speech recognition and NLP problems
- Joint distribution can be factored as

$$P(\mathbf{X}, \mathbf{Y}) = P(X_1)P(Y_1 \mid X_1) \prod_{t=2}^{T} P(X_t \mid X_{t-1})P(Y_t \mid X_t)$$

- $P(X_1)$ is the distribution over the starting state
- $P(X_t | X_{t-1})$ is the **transition** probability
- $P(Y_t | X_t)$ is the **emission** (observation) probability

Hidden Markov Models (HMMs)

Joint distribution can be factored as

$$P(\mathbf{X}, \mathbf{Y}) = P(X_1)P(Y_1 \mid X_1) \prod_{t=2}^{T} P(X_t \mid X_{t-1})P(Y_t \mid X_t)$$

- A **homogeneous** HMM uses the same parameters (α and β) for the transition and emission distributions (aka parameter sharing)
 - $P(X_t | X_{t-1}) = \beta_{X_t, X_{t-1}}$, $P(Y_t | X_t) = \alpha_{Y_t, X_t}$
- How many parameters are needed?

Hidden Markov Models (HMMs)

Joint distribution can be factored as

$$P(\mathbf{X}, \mathbf{Y}) = P(X_1)P(Y_1 | X_1) \prod_{t=2}^{T} P(X_t | X_{t-1})P(Y_t | X_t)$$

- A **homogeneous** HMM uses the same parameters (α and β) for the transition and emission distributions (aka parameter sharing)
 - $P(X_t | X_{t-1}) = \beta_{X_t, X_{t-1}}, P(Y_t | X_t) = \alpha_{Y_t, X_t}$
- How many parameters are needed? $(|X_i|-1)|X_i|+(|Y_i|-1)|X_i|$ (e.g., 2+2=4 if Y_i and X_i are binary)

• Consider an n-dim multivariate Gaussian $x \sim \mathcal{N}(\pmb{\mu}, \Sigma)$

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

• Consider an n-dim multivariate Gaussian $x \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

• Consider k different Gaussians $\mathcal{N}(\pmb{\mu}_k, \Sigma_k)$ and let $y \in \{1, \dots, k\}$ be an index with distribution p(y) (alt θ)

• Consider an n-dim multivariate Gaussian $x \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

- Consider k different Gaussians $\mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$ and let $y \in \{1, \dots, k\}$ be an index with distribution p(y) (alt θ)
- Mixture of Gaussians distribution $p(y, \boldsymbol{x})$ can be sampled as
 - Sample $y \sim p(y)$ (sample which Gaussian)
 - Sample $x \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$

 \bullet The marginal distribution $p(x) = \sum\limits_{y \in \{1, \dots, k\}} p(y, x)$

