- INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

 Date——FN/AN 3 Hrs. Full Marks: 50 No. of Students 66

 End Spring Semester 2011-2012 Deptt: MATHEMATICS Sub No: MA 50002/ MA 51002

 ——Yr. B.Tech.(H)/B.Arch.(H)/M.Sc. Sub. Name: Measure Theory & Integration

 Instruction: Answer all questions, which are of equal values
- 1. (a) Show that if f is absolutely continuous, then f has a derivative almost everywhere.
 - (b) Let g be a nonnegative measurable function on [0,1]. Then show that $\ln \int g(t) dt \ge \int \ln(g(t)) dt$, whenever the right hand side is defined.
- 2. (a) Let ϕ have a second derivative at each point of (a, b). Show that ϕ is convex iff $\phi''(x) \geq 0$ $\forall x \in (a, b)$.
 - (b) Let f(x) = |x|. Find D^+f , D_+f , D^-f , and D_-f at x = 0.
- 3. (a) Define f on [0,1] by f(0)=0, $f(x)=x^p\sin(\frac{1}{x})$ for x>0, where $p\geq 2$. Show that f is of bounded variation on [0,1].
 - (b) State and prove Holder's inequality.
- 4. (a) State and prove Jordan decomposition theorem.
 - (b) Let $\nu(E) = \int_E x e^{-x^2} dx$. Find the positive, negative and null sets with respect to ν .
- 5. (a) Show that if $f(x,y) = \frac{x^2 y^2}{(x^2 + y^2)^2}$, $(x,y) \neq (0,0)$, then $\int_0^1 \int_0^1 f(x,y) \, dy \, dx$ does not exist but $\int_0^1 dx \int_0^1 f(x,y) \, dy = \frac{\pi}{4}$ and $\int_0^1 dy \int_0^1 f(x,y) \, dx = -\frac{\pi}{4}$. Does this contradict Fubini's theorem? Justify your result.
 - (b) Let μ and ν be complete measures. Show that $\mu \times \nu$ need not be complete.
- 6. (a) Let $f \in L(0,a)$ and $g(x) = \int_x^a \frac{f(t)}{t} dt$ $(0 < x \le a)$. Then show that $g \in L(0,a)$ and $\int_0^a g dx = \int_0^a f dx$.
 - (b) If f is integrable on [a, b] and $\int_a^x f(t) dt = 0 \ \forall x \in [a, b]$, show that f(t) = 0 a.e. in [a, b].
- 7. (a) Let g be integrable over E and let $\{f_n\}$ be a sequence of measurable functions such that $|f_n| \leq g$ on E and for almost all x in E we have $f(x) = \lim_{n \to \infty} f_n(x)$. Then show that $\int_E f = \lim_{n \to \infty} \int_E f_n$.
 - (b) If f is an integrable function on $(-\infty, \infty)$, show that $\lim_{n\to\infty} \int_{-\infty}^{\infty} f(x) \cos nx \, dx = 0$.
- 8. (a) Show that if $\{x: f(x) = \alpha\}$ is measurable, then f is not necessarily measurable.
 - (b) Show that if f is measurable function and f = g a.e., then g is measurable.
- 9. (a) Show that every Borel set is measurable.
 - (b) Let f be absolutely continuous on [a, b], then show that $T_a^b(f) = \int_a^b |f'|$.
- 10. (a) Show that $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.
 - (b) Show that we may have strict inequality in Fatou's lemma.