CISC 1003 – EXPLORING ROBOTICS

ROBOT CONSTRUCTION: EFFECTORS AND ACTUATORS

Arms, Legs, Wheels, Tracks and What Really Drives Them

ACTUATORS

- An effector: any device on a robot that has an effect (impact or influence) on the physical environment.
 - Wheels on a mobile robot
 - Or legs, wings, fins...
 - Whole body might push objects
 - Grippers on an assembly robot
 - Or welding gun, paint sprayer
 - Speaker, light, tracing-pen

Replicating fossil paths with toilet roll [Prescott & Ibbotson (1997)]

- A spiral 'foraging' trail generated by the robot trace-maker.
 - Control combines thigmotaxis (stay near previous tracks) & phobotaxis (avoid crossing previous tracks)
 - Thigmotaxis: motion in response to a touch stimulus

Phobotaxis: change in the direction of locomotion in response to

a given stimulus

Replicating fossil paths with toilet roll [Prescott & Ibbotson (1997)]

ACTUATORS

Actuators

- Actuator: the mechanism that enables the effector to execute an action or movement.
 - In animals and humans:
 - muscles and tendons are the actuators
 - make the arms and legs and the backs do their jobs.
 - In robots:
 - actuators include electric motors and various other technologies.
 - Connected via transmission:
 - System gears, brakes, valves, locks, springs...

Effectors and Actuators

- terms are often used interchangeably to mean:
 "whatever makes the robot take an action"
 - but they aren't the same thing

Effectors and Actuators

- most simple actuators control one degree of freedom
 - i.e., a single motion
 - e.g., up-down; left-right; in-out

Effectors and Actuators

- how many degrees of freedom a robot has is very important in determining how it can affect its world, and therefor how well, if at all, it can accomplish its task
- More on D.O.F. later...

ACTUATORS

Passive vs. Active Actuation

- The action of actuators and effectors requires some form of energy to provide power.
- Some actuators use passive actuation

Passive Actuation

- Utilizing potential energy (usually gravity) of the effector and its interaction with the environment
 - Instead of active power consumption.
- A glider is an example of this

Passive Actuation

- Utilizing potential energy (usually gravity) of the effector and its interaction with the environment
 - Instead of active power consumption.
- Advantage:
 - No need for extra weight required by energy source (battery, gasoline, etc) and complicated actuators.
- Disadvantage:
 - Dependence on a motivating source that may be transient.
 - · For example, weather may affect glider movement

Movement

A passive walker: a robot that uses gravity and clever mechanics to balance and walk without any motors.*

^{*}The robotics primer, Mataric

Types of Actuators

- Electric motors
 - speed proportional to voltage
 - voltage varied (by pulse width modulation)
- Hydraulics
 - Pressurized liquid
- Pneumatics
 - Pressurized air

ACTUATORS

Types of Actuators

- Others, including:
 - Photo-reactive materials
 - Chemically reactive materials
 - Thermally reactive materials
 - Piezoelectric materials
 - Crystals create a charge when pushed or pressed.

ACTUATORS

Variables Affecting Actuators Choice

- Load (e.g. torque to overcome own inertia)
- Speed (fast enough but not too fast)
- Accuracy (will it move to where you want?)
- Resolution (can you specify exactly where?)

Variables Affecting Actuators Choice

- Repeatability (will it do this every time?)
- Reliability (mean time between failures)
- Power consumption (how to feed it)
- Energy supply & its weight

Robot Motion

- Fundamental question:
 - Where is the robot located?
- Configuration: a specification of the position of all points of a robot

Robot Motion

- Fundamental question:
 - Where is the robot located?
- Configuration: a specification of the position of all points of a robot
- Robot has a rigid body
 - So configuration can be described by the positions of the ends of the robot

Robot Motion

- Fundamental question:
 - Where is the robot located?
- Configuration: a specification of the position of all points of a robot
- C-Space: the space of all configurations
- Degrees of Freedom: the dimension of the space of all configuration

DEGRES OF FREEDOM

- Number of directions in which robot motion can be controlled
- Free body in space has 6 degrees of freedom:
 - Three for position (x,y,z)
 - Three for orientation (roll, pitch, yaw)

- How can we see this?
- Let's say we have a square object

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B
 - What is the constraint on B?
 - B can be located on a sphere
 - The sphere radios is the length between A and B

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B
- Once A and B are fixed, only one angle is possible for point C
 - One additional degree of freedom
 - We have two constraints on the location of C

- How many possibilities for point D?
 - Zero D.O.F. only one possible location

- # of D.O.F.= \sum (Freedom of Points) # of independent constraints
- Since robot is made of rigid bodies:
- # of D.O.F.= \sum (Freedom of bodies) # of independent constraints

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	?	?	
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	?
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	?	?	
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
A	3	0	3
В	3	1	?
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
A	3	0	3
В	3	1	2
С	?	?	
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	?
D	?	?	

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0

- # of D.O.F.= \sum (Freedom of Points) # of independent constraints
- Since robot is made of rigid bodies:
- # of D.O.F.= \sum (Freedom of bodies) # of independent constraints

- How many degrees of freedom are for an object on a linear space?
 - I.e., a car
- 3 degrees of freedom
 - 2 on the linear space
 - One is the angle

- Roll, pitch, yaw:
 - Degrees of freedom used for orientation
 - Yaw refers to the direction in which the body is facing
 - i.e., its orientation within the xy plane
 - Roll refers to whether the body is upside-down or not
 - i.e., its orientation within the yz plane
 - Pitch refers to whether the body is tilted
 - i.e., its orientation within the xz plane

<u>DegreesofFreedom</u>

- If there is an actuator for every degree of freedom, then all degrees of freedom are controllable => holonomic
- Most robots are non-holonomic

- How many degrees of freedom are for an object on a linear space?
 - I.e., a car
- 3 degrees of freedom
 - 2 on the linear space
 - One is the angle
- How many are controllable?
 - 2: straight and turn
 - Can not drive sideways

Degrees of freedom (D.O.F.)

Robot's Variables Affecting D.O.F.

- Number of joints/articulations/moving parts
 - If parts are linked, fewer parameters needed to specify them.
- Number of Individually controlled moving part
 - Need parameters for each to define configuration
 - Often described as 'controllable degrees of freedom'
 - But some may be redundent
 - Two movements may be in the same axis

Locomotion and Manipulations

- Choice of effectors and actuators sets the limits on what the robot can do
- Usually categorized as locomotion or manipulation
 - Locomotion: vehicle moving itself
 - Manipulation: An arm moving things
- In both cases can consider the degrees of freedom in the design

Lab time!

Let's work with our robots!

