

ECE-2002 Computer Organization and Architecture

Dr. Kritika Bansal School of Electronics Engineering, VIT-AP

- >The control unit performs two basic tasks:
 - Sequencing: The control unit causes the processor to step through a series of micro-operations in the proper sequence, based on the program being executed.
 - **Execution**: The control unit causes each micro-operation to be performed.
- Implementation of Control unit is broadly of two types
 - Hardwired implementation
 - Microprogrammed implementation

➤ The inputs are:

Clock: The control unit causes one micro-operation (or a set of simultaneous micro-operations) to be performed for each clock pulse.

Instruction register: The opcode and addressing mode of the current instruction are used to determine which micro-operations to perform during the execute cycle.

Flags: These are needed by the control unit to determine the status of the processor and the outcome of previous ALU operations.

Control signals from control bus: The control bus portion of the system bus provides signals to the control unit.

> The outputs are:

Control signals within the processor: These are two types: those that cause data to be moved from one register to another, and those that activate specific ALU functions.

Control signals to control bus: These are also of two types: control signals to memory, and control signals to the I/O modules.

Example- Fetch Cycle

How control signal is used for fetch cycle

- MAR <- PC
 - Control unit activates signal to open gates between PC and MAR
- MBR <- memory
- PC <- PC+1
 - Control unit activates signal to open gates between MAR and address bus
 - Control unit activates Memory read control signal
 - Control unit activates signal to open gates between data bus and MBR
 - Control unit activates signal to logic that add 1 to the contents of PC
- IR <- MBR
 - Control unit activates signal to open gates between MBR and IR

Data Paths and Control Signals

Data Paths, Micro-operations and Control Signals

 C_W = Write control signal to system bus.

Control Unit with Decoded Inputs

- ➤ Different control signals for different instructions
- To simplify, unique logic input for each opcode

Example

- For each control signal, to derive a Boolean expression of that signal as a function of the inputs
- Let us consider a single control signal, C5, which causes data to be read from the external data bus into the MBR
- Let us define two new control signals,

P and Q, that have the

following interpretation:

PQ = 00 Fetch Cycle

PQ = 01 Indirect Cycle

PQ = 10 Execute Cycle

PQ = 11 Interrupt Cycle

Example

	Micro-operations	Active Control Signals
Fetch:	$t_1: MAR \leftarrow (PC)$	C_2
	t ₂ : MBR ← Memory	C_5, C_R
	$PC \leftarrow (PC) + 1$	
	t_3 : IR \leftarrow (MBR)	C ₄
Indirect:	t_1 : MAR \leftarrow (IR(Address))	C ₈
	t ₂ : MBR ← Memory	C_5, C_R
	t_3 : IR(Address) \leftarrow (MBR(Address))	C ₄
Interrupt:	t_1 : MBR \leftarrow (PC)	C ₁
	t_2 : MAR \leftarrow Save-address	
	$PC \leftarrow Routine-address$	
	t_3 : Memory \leftarrow (MBR)	C_{12}, C_W

 C_R = Read control signal to system bus.

C_W = Write control signal to system bus.

PQ = 00 Fetch Cycle

PQ = 01 Indirect Cycle

PQ = 10 Execute Cycle

PQ = 11 Interrupt Cycle

 Then C5 can be defined using the Boolean expression as:

$$C_5 = \overline{P} \cdot \overline{Q} \cdot T_2 + \overline{P} \cdot Q \cdot T_2$$

 That is, the control signal C5 will be asserted during the second time unit of both the fetch and indirect cycles.

Example

	Micro-operations	Active Control Signals
Fetch:	$t_1: MAR \leftarrow (PC)$	C_2
	t ₂ : MBR ← Memory	C_5, C_R
	$PC \leftarrow (PC) + 1$	
	$t_3: IR \leftarrow (MBR)$	C ₄
Indirect:	t_1 : MAR \leftarrow (IR(Address))	C ₈
	t ₂ : MBR ← Memory	C_5, C_R
	t_3 : IR(Address) \leftarrow (MBR(Address))	C_4
Interrupt:	t_1 : MBR \leftarrow (PC)	C_1
	t_2 : MAR \leftarrow Save-address	
	$PC \leftarrow Routine-address$	
	t_3 : Memory \leftarrow (MBR)	C_{12}, C_W

- C5 is also needed during the execute cycle.
- Assume that there are only three instructions that read from memory: LDA, ADD and AND.
- Then C5 can be defined using the Boolean expression as:

$$C_5 = \overline{P} \cdot \overline{Q} \cdot T_2 + \overline{P} \cdot Q \cdot T_2 + P \cdot \overline{Q} \cdot (LDA + ADD + AND) \cdot T_2$$

 C_R = Read control signal to system bus.

 C_W = Write control signal to system bus.

PQ = 00 Fetch Cycle

PQ = 01 Indirect Cycle

PQ = 10 Execute Cycle

PQ = 11 Interrupt Cycle