RADC-TR-89-122 In-House Re April 1989

AD-A209 078

ELECTRICAL CHARACTERIZATION OF SIGNAL PROCESSING MICROCIRCUIT

Daniel F. Fayette and Nancy A. Koziarz

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-122 has been reviewed and is approved for publication.

ROBERT W. STEGMAIER, Lt Col, USAF

Acting Chief, Microelectronics Rel Division Directorate of Reliability & Compatibility

Mother Stagnan

APPROVED: JOURNAL BORLL

Technical Director

Directorate of Reliability & Compatibility

JAMES W. HYDE III

Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization. please notify RADC (RBRA) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188							
1a. REPORT S UNCLASSI	ECURITY CLASS	IFICATION		1b. RESTRICTIVE MARKINGS N/A				
2a. SECURITY CLASSIFICATION AUTHORITY N/A				3. DISTRIBUTION / AVAILABILITY OF REPORT				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				Approved for public release; distribution unlimited.				
N/A		_		distributi	on unlimite	<u> </u>		
4. PERFORMING ORGANIZATION REPORT NUMBER(S)				5. MONITORING	ORGANIZATION R	EPORT NL	IMBER(S)	
RADC-TR-	89 - 122 			n/a				
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (If applicable)			7a. NAME OF M	7a. NAME OF MONITORING ORGANIZATION				
Rome Air Development Center RBRA				Rome Air Development Center (RBRA) 7b. ADDRESS (City, State, and ZIP Code)				
6c ADDRESS	(City, State, an	d ZIP Code)		76. ADDRESS (CA	ty, State, and ZIP	Code)		
Griffiss AFB NY 13441-5700 Griffiss AFB NY 13441-5700								
	FUNDING/SPO	INSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICAT	ION NUMBER	
ORGANIZA Rome Air	ATION Developme	ent Center	(if applicable) RBRA	N/A				
SC ADDRESS	City, State, and	ZIP Code)		10. SOURCE OF I	UNDING NUMBER	ts.		
Griffias	AFB NY 13	3441-5700		PROGRAM ELEMENT NO. 62702F	PROJECT NO. 2338	TASK NO.	WORK UNIT ACCESSION NO. 3 R	
11. TITLE (Include Security Classification)								
ELECTRICAL CHARACTERIZATION OF SIGNAL PROCESSING MICROCIRCUIT								
12. PERSONAL AUTHOR(S)								
Daniel F. Fayette and Nancy A. Koziarz 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT								
In-House			82 TO Sep 86		1 1989	73	260	
	NTARY NOTAT	TON						
N/A								
17.	COSATI	CODES	18. SUBJECT TERMS (-	-	•	
FIELD	GROUP	SUB-GROUP	Reliability		arlington T			
14	04		Linear Microci		nalog Switc		Analog MUX	
10 400704	(Canthum on		Device Charact		nelog Multi			
			and identify by block of formed by the R					
Developo	ent Center	pertaining t	o the electrica	1 characteri	zation and	MIL-M-	38510 specifi-	
cation o	f analog m	icrocircuits.	The report is	divided int	o sections	coveri	ng specific	
			electrical characterized with					
Device F			Commercial T			:	Slash Sheet	
	ultipliers		AD534, AD532,			•	/139	
	log Switch		DG180 Series				/111	
	ies Analog		5040 Series,				/105,/116,/123	
		Multiplexers					/190 /141	
		Stor Arrays	2001,2002,20 ors 1524,1525,15		•		/141 /126	
	ng ruise (gulator Re		TL431	4U, 1J61			/148	
		UTY OF ABSTRACT	PT. 🔲 OTIC USERS	21. ABSTRACT SE UNCLASSIFI	CURITY CLASSIFIC	ATION		
	F RESPONSIBLE ROZ LATZ		_ 3.12 43613	22b. TELEPHONE ((315) 330-	include Area Code		FICE SYMBOL C (RBRA)	
		````						

## **ELECTRICAL CHARACTERIZATION**

#### OF

## SIGNAL PROCESSING MICROCIRCUITS

SECTION	TITLE	PAGE
1	Introduction	I-i
II	Analog Multipliers, MIL-M-38510/139	II-i
Ш	JFET Analog Switches, MIL-M-38510/111	III-i
IV	CMOS Series Analog Switches	IV-i
	MIL-M-38510/105	
	MIL-M-38510/116	
•	MIL-M-38510/123	
V	CMOS Series Analog Multiplexers, MIL-M-38510/190	V-i
VI	Darlington Transistor Arrays, MIL-M-38510/141	VI-i
ΛΠ	Regulating Pulse Width Modulators, MIL-M-38510/126	VII-i
VIII	Shunt Regulating Reference, MIL-M-38510/148	VIII-i



Accession For							
NTIS GRA&I							
DTIC	DTIC TAB						
Unaur	rounced	ñ					
Justification							
By							
	Avail and	/or					
Dist   Special							
<b>U</b> ~\	! !	_					

## SECTION I

## TABLE OF CONTENTS

		Page
1.1	Objective	I-1
1.2	MIL-M-38510 Specification Program	I-1
1.3	Scope of Report	I-1
1.4	Approach to Characterization	I-2

#### 1.1 Objective

The objective of this effort is to conduct characterization efforts for analog integrated circuit device types for inclusion into the MIL-M-38510 specification system (General Specification for Microcircuits). The effort includes determination of a device's parameters and its limits as well as static and dynamic test circuits to verify these limits. All of the characterization and specification efforts performed are guided by the fundamental objectives of MIL-M-38510 specification system which are to achieve quality, reliability, interchangeability, and standardization of microcircuits procured for use in military systems.

#### 1.2 MIL-M-38510 Specification Program

Microcircuit devices for US military systems are procured in accordance with MIL-M-38510, General Specification for Microcircuits and requires device manufacturers to perform specified tests. Furthermore, the device manufacturer must incorporate certain controls and procedures in order to become a qualified source for a particular microcircuit device type. Such device types are specified in individual "slash sheets" and incorporated into the MIL-M-38510 specification system.

### 1.3 Scope of Report

- a. AD534, AD532, 4213VM analog multipliers
- > b. 180 J-FET analog switch series .
  - c. 200, 300, 5040 CMOS analog switch series
  - d. 506-509, 506A-509A CMOS multiplexer series
  - e. 2000 darlington transistor array series.
  - f. 1524, 1525, 1526, 1527 regulating pulse width modulators.
  - g. TL431 shunt regulating reference

The determination of electrical parameters, limits, and parameter measurement test circuits is the result of government/industry coordination efforts. The JEDEC JC-41 committee on Linear Integrated Circuits formed the coordination basis for the technical categories included in the generated detail specifications. Such cooperative government/industry efforts have resulted in specification

development to satisfy the interests of both parties by specific tailoring of draft detail specification inputs.

MIL-M-38510 slash sheet development based on the results of the government/manufacture interface includes the following:

- a. Formulation of Table I, Electrical Performance Characteristics, which specifies the device parameters, test conditions and methods.
- b. Formulation of Table II, Electrical Test Requirements; Table III, Group A Inspection; Table IV, Group C Endpoint Electrical parameters.
- c. Design of static and dynamic test circuits, functional schematics, terminal connection diagrams, steady-state power and reverse bias burnin circuits, accelerated burn-in the life test circuits.

#### 1.4 Approach to Characterication

RADC's approach to characterization has evolved over many years of performing electrical evaluations of analog microcircuits for inclusion into the MIL-M-38510 specification system. Two key factors which influence RADC's decision to begin a characterization effort are listed below in their order of importance:

- 1. Present or potential usage of device in military systems
- 2. Level of vendor support

Weighing these factors, RADC will establish a characterization program which upon completion will result in a thorough representation of the device attributes over the full military temperature range. To generate a MIL-M-38510 specification, the characterization plan will perform the following tasks:

a. Obtain a large test sample from all interested vendors, consisting of several different date codes, lots, and variations of the device type series (for example, internal vs. external references on a D/A converter). When acquiring the test sample lots for the evaluation, samples from both vendor and distributors are obtained. Pieces which are procured by RADC are operational over the full military temperature range of -55°C to +125°C, but are not processed to MIL-STD-883 screening requirements. However, test samples obtained from the various

vendors may be screened to MIL-STD-883. Obtaining samples from these two sources allows RADC to view a much broader distribution of parts and thus yielding a more meaningful data base.

- b. Develop test hardware/software for the appropriate automatic test system, with one or more test circuit variations. When needed, supplementary bench tests are included for parameters such as very low noise offset voltage or very fast time based measurements.
- c. Insure test correlation to independent testers, such as vendor automatic test system, bench top ATE, and bench top test circuits.
- d. Develop a complete data base for each test sample lot, which includes all possible static/dynamic parameters over several temperatures, numerous test condition variations, (for example varying power supply voltages, load conditions, source parameters), all possible logic states and power supply turn-on and sequencing. In order to compare test data, vendor data is generally preferred, however, this may not be attainable. Manual bench test data is then obtained, but only as a second choice, since identical test conditions may not be achievable in both the automatic test set-up and the bench test set-up. For example, measurement time on some parameters may cause the device to self-heat, thus significantly affecting the measured data. A measurement accuracy to parameter accuracy ratio of ten to one is desirable. This can be reduced depending on the parameter and the type of measurement. If the desired equipment accuracy is not achievable, the error sources are identified, assessed, and either eliminated or subtracted from the resultant measurement.
- e. Perform extensive data reduction and analysis, including graphical comparisons and presentations to highlight the various limit failures. Also, identification of failures by the respective vendor code and lot date code is included. An example of a data reduction technique is the linearity plot shown in Figure 1.
- f. Design two or more burn-in and operating life test circuits. These could include burn-in circuits developed and recommended by the devices vendors. Verification and optimization of burn-in circuits are performed through extended

burn-in, life testing, and analysis of all failures. Optimum burn-in circuits selected are then included in the final specification.

- g. Generate a MIL-M-38510 specification using the above data to establish the various parametric limits.
- h. Negotiate slash sheet test parameters, limits, test methods and circuits, with all device manufacturers and representative users. The characterization data and proposed slash sheet are sent to selected industry and government agencies, as well as reviewed in formal meetings (JC-41) with device vendors. All essential comments are resolved and incorporated into the final draft of the slash sheet that is now ready for full industry/DOD coordination.

When the coordination period ends, RADC will address all questions and comments and the slash sheet will be dated and issued for DOD/industry use.



LINEARITY

10.0NU	: : :	• • • •			• • •	:	•	•
<b>6</b>						1		
-18.6HU			· · ·			:	:	:
26.63 UE		128 256	386	# 512 BIT CODE	6.40	768	968	1023
END PC LEAST	END POINT LEAST SOUMES	10857 CASE PO 3.16470 AT BI 2.91870 AT BI	PUSITIVE ERROR BIT CODE 519 BIT CODE 519		T CASE INU AT BHU AT	MEGATIVE ERROR BIT CODE 504 BIT CODE 504	3-51GM P01 3.513M 3.512M	3-Sign Points 3-Signu 3-Signu

Figure 1 Linearity Data Reduction Example

## SECTION II

## INTERNALLY TRIMMED ANALOG MULTIPLIERS

## MIL-M-38510/139

## TABLE OF CONTENTS

Para	<u>Title</u>	Page
	List of Figures	II-ii
	List of Tables	II-iii
2.1	Introduction	II-1
2.2	Description of Device Types	II-1
2.3	Test Development	11-5
2.4	Test Results and Data	11-10
2.5	Discussion of Results	II-10
2.6	Test Calculations	II-15
2.7	Conclusions and Recommendations	II-17
2.8	Bibliography	II-20
2.9	Appendix	II-20

## LIST OF FIGURES

<b>Figure</b>	<u>Title</u>	Page
2-1	AD534 Functional Block Diagram	II-2
2-2	AD534 Analog Multiplier Basic Connection	II-2
2-3	AD532 Functional Block Diagram	II-3
2-4	4213 Functional Block Diagram	II-3
2-5	AD532 Analog Multiplier Basic Connection	II-4
2-6	4213 Analog Multiplier Basic Connection	II-4
2-7	AD534 Static and Dynamic Test Circuit	II-7
2-8	AD532/4213 Static and Dynamic Test Circuit	II-8
2-9	Wideband Noise Test Circuit	II <b>-</b> 9
2-10	Noise Measurement Block Diagram	II <b>-</b> 9
2-11	Nonlinearity Error Waveform	II-18
2-12	Nonlinearity Error Bench Test Circuit	II-19

## LIST OF TABLES

Table	Title	Page
2-1	Table of Device Types Specified	11-1
2-2	Test Parameters for Characterization	11-5
2-3	Electrical Parameter Limits	11-21
2-4	Test Data	11-30

#### 2.1 INTRODUCTION

This section reviews the characterization effort for internally trimmed analog multipliers. Analog multipliers have many applications such as analog signal processing, algebraic/trigonometric function synthesis, and accurate voltage controlled oscillators and filters. The identified need and usage in military systems and manufacturer recommendations were factors in selecting these device types for inclusion in MIL-M-38510 general specifications for microcircuits. Table I lists the internally trimmed analog multipliers specified for MIL-M-38510/139.

TABLE 1	TABLE C	OF DEVIC	CE TYPES	SPECIFIED

Device	Generic		
Туре	Type	Manufacturer	Description
13901	AD534T	Analog Devices	1% max. error, 4 quadrant
13902	AD534S	<b>Analog Devices</b>	2% max. error, 4 quadrant
13903	AD532S	Analog Devices	4% max. error, 4 quadrant
13904	4213VM	Burr Browm	4% max. error, 4 quadrant

#### 2.2 DESCRIPTION OF DEVICE TYPES

AD534 Analog Multiplier (Devices 01, 02)

The AD534 is a monolithic laser trimmed four quadrant analog multiplier with an accuracy specification of  $\pm$  1% max (device 01) and  $\pm$  2%max (device 02) for the temperature range of  $-55^{\circ}\text{C}_{\pm}\text{T}_{A}\!\!\leq\!\!125^{\circ}\text{C}$ . Figure 1 shows the functional block diagram for the AD534. Input voltages are transformed to differential currents by three (3) identical voltage to current converters, with trimmed zero offsets, and inputted into the multiplier cell. The product of the X and Y inputs is performed by the multiplier cell which uses the Gilbert's translinear technique. This product is then scaled to 10V by a 10V "buried zener" which is laser trimmed to provide the overall scale factor (SF). This difference between XY/SF and the Z differential currents are then applied to a high gain output amplifier. The relationship between all inputs is shown in the following equation.

$$V_{out} = A (((X1 - X2) (Y1 - Y2))/10 - (Z1 - Z2))$$



Figure 1 AD534 Functional Block Diagram



Figure 2 AD534 Analog Multiplier Basic Connection



Figure 3 AD532 Functional Block Diagram



Figure 4 4213 Functional Block Diagram



Figure 5 AD532 Analog Multiplier Basic Connection



Figure 6 4213 Analog Multiplier Basic Connection

where

A = open loop gain of output amplifier

X, Y, Z = input voltages

Figure 2 shows the basic multiplier connection for the AD534.

AD532, 4213 Analog Multiplier (Devices 03, 04)

The AD532 is a monolithic laser trimmed four quadrant analog multiplier with an accuracy specification of  $\pm$  4% max (device 03) over temperature. The 4213 is a hybrid laser trimmed four quadrant analog multiplier with an accuracy specification of  $\pm$ 4% max (device type 04). For both device types, the X and Y input voltages are fed into high impedance differential amplifiers which transforms the differential input voltages into differential currents. Both X and Y amplifiers offsets are laser trimmed to near zero. The product of the input signals are resolved by the multiplier cell utilizing the Gilbert's linearized transconductance technique. This product then feeds an output amplifier to yield the following output relationship

$$V_{out} = (X1 - X2) (Y1 - Y2)/10$$

Any residual output offset voltages can be zeroed by utilizing the V_{OS} terminal and applying the necessary dc voltage. Figures 3 and 4 show the functional schematics for device 03 and 04 respectively. Figures 5 and 6 shows the basic multiplier connections for device 03 and 04.

#### 2.3 TEST DEVELOPMENT

A listing of the multiplier parameters tested to characterize device types 01 thru 04 are given in Table 2. Table 3 shown in the appendix lists the min/max limits and some of the test conditions used for these parameters.

TABLE 2 TEST PARAMETERS FOR CHARACTERIZATION

<u>Item</u>	Symbol	<u>Parameter</u>
1	MAXY	Multiplier Accuracy
2	MA _{XY} / T	Multiplier Accuracy Drift

3	VOIO	Output Offset Voltage
4	V _{OIO} / T	Output Offset Voltage Drift
5	$V_{IO(x)}, V_{IO(y)}, (V_{IO(z)})$	Input Offset Voltage (V _{IO(z)} device 01, 02 only)
6	V _{IO} / T	Input Offset Voltage Drift
7	+I _{IB} , -I _{IB} , (I _{IB(Z)} )	Input Bias Current (I _{IB} (Z) device 03 only)
8	I _{OS(+)} , I _{OS(-)}	Output Short Circuit Current
9	I, I	Supply Currents
10	CMRR(X), CMRR(Y), (CMRR(Z))	Common Mode Rejection (CMRR(Z)
		devices 01,02,only)
11	V _{OP}	Output Voltage Swing
12	PSRR1, PSRR2	Power Supply Rejection Ratio
13	ts(+), ts(-)	Settling Time
14	SR(+), SR(-)	Slew Rate
15	FT _X , FT _Y	Feedthrough
16	AE _X , AE _Y	Small Signal Amplitude Error
17	NL _X , NL _Y	Nonlinearity
18	NI _(BB)	Wideband Noise

#### Test Philosophy:

The approach to testing was to study typical parameters on a bench top test set-up in conjunction with automatic testing on the Tektronix S3270. The objective of this dual approach was to achieve confidence in testing and to identify anomalies inherent to the analog multipliers.

#### Test Circuits:

The static and dynamic test circuit schematics used to measure the analog multiplier parameters are shown in Figures 7 and 8. All relays are shown in the normally de-energized position. All the parameters can be measured automatically except for settling time, small signal amplitude error, and wideband noise. The settling time test and small signal amplitude error test were performed on the bench. The settling time test requires an oscilloscope to determine how fast the analog multiplier settles to within 2% of it's final value. The small signal amplitude error test requires an oscilloscope to determine when the amplitude of 2Vpp sinewave is reduced by 1%. The wideband noise test was also done on the bench because of the design considerations necessary, and the need of a filter to establish the bandwidth. Schematic diagrams for the wideband noise test circuits are shown in Figures 9 and 10.



Figure 7 AD534 Static and Dynamic Test Circuit



Figure 8 AD532/4213 Static and Dynamic Test Circuit



with.  $\hat{E}_{ij}$  is decisived using a 19% voltageter with a bandwidth of 10 Mz to 100 kHz.

Figure 9 Wideband Noise Test Circuit



- NOTES:
  1. Bandpass filter:
  Passband gain = 40 dB ±0.5 dB,
  Fc lod = 10 Hz ±1 Hz.
  Fc nigh = 100 kHz ±10 kHz.
  Attenuation slope = 12 dB/Oct,
  2. V_NOISE = Heading/100
  3. Voltmeter: MP3400A or equivalent.
  4. ±15 V ex power supply MM5235A or equivalent.

Figure 10 Noise Measurement Block Diagram

#### 2.4 TEST RESULTS AND DATA

A total of 88 devices were tested covering all three device types. Forty 532S parts, thirty-three 534S, ten 534T, and five 4213 parts were tested for all static and dynamic parameters.

#### Parts identification is as follows:

<u>Type</u>	<u>S/N</u>	Package
532S	1176-1195	TO-100, 10-pin can
532S	34 - 53	TO-116, 14-pin DIP
534\$	54 - 73	TO-100, 10-pin can
534S	1-9, 4537, 4538, 4595, 4596, 4600	TO-116, 14-pin DIP
534T	1 - 10	TO-100, 10-pin can
4213	1 - 5	TO-100, 10 pin can

Data sheets generated on the Tektronix S3270 are shown in the appendix. All of the data is within limits unless an asterik and the letter A or B are displayed adjacent to the measured value. Asterik A meaning that the limit is above specification and asterik B meaning that the limit is below specification. The data is shown with three temperatures of -55°C, 25°C, and 125°C adjacent to each other. This allows the user to readily determine temperature variations in data. It should be noted that X and Y nonlinearity data is displayed separately. This was done because X and Y nonlinearity was originally done dynamically. Data is shown with all the parameters needed to perform the necessary calculations for X and Y nonlinearity. These equations will be discussed in a later section of the technical report (Test Calculations).

#### 2.5 DISCUSSION OF RESULTS

For each parameter tested, the yields were generally very good with surprisingly few errors. At  $+25^{\circ}$ C for both the 532's and 534's, the errors were due to the tighter limits at  $+25^{\circ}$ C. For the 4213's, most errors were observed at 25°C and 125°C.

## Multiplier Accuracy ( $MA_{XY}$ )

Most multiplier accuracy errors for both 534 and 532 occured in the second and fourth quadrants ( $MA_{X^{-}Y^{+}}$ ,  $MA_{X^{-}Y^{+}}$ ,  $MA_{X^{-}Y^{+}}$ ). The only errors observed in the first and third quadrants were by generic type 532. Generic device type 4213 passed all multiplier accuracy tests. The yields for all device types was greater than 95%. It should be noted that the error increases over temperature for first and fourth quadrant multiplication and decreases for second and third quadrant multiplication.

## Multiplier Accuracy Drift (MAXYAT)

All device types produced a 100% yield for both -55°C and +125°C. Data taken on the 534 T devices (device 01) was 25% better than the limit. Data on the 534S and 532S devices were 50% better than the specified limit. Data on the 4213V devices was 50% better than the specified limit.

## Output Offset Voltage (VOIO)

This parameter was passed by all device types, according to their specified limits. All measurements of this parameter for 534T devices were 50% better than specified, for 534S devices 60% better, and for 532S and 4213V devices, the data measured was exactly as specified.

## Output Offset Voltage Drift (VOIO AT)

All device types tested produced a 100% yield. Upon examination of data, no temperature trends were observed for any of the three device types tested. Output offset voltage increased with temperature for one device and decreased with temperature for another device in the same lot. Drift measurements for the 534T, 534S, 532S, and 4213V devices were as specified.

## Offset Voltage $(V_{IO}(X), V_{IO}(Y), V_{IO}(Z))$

The offset voltage measurement is a calculation of three different measurements which takes into effect the feedthrough errors and output offset error. Device types 01 and 02 both had yields of better than 95% with device type 03 (532S) having slightly less than 95% yield. Device type 04 (4213V) had a yield of 100%.

## Offset Voltage Drift ( $V_{IO}(X)$ حر), $V_{IO}(Y)$ حT, $V_{IO}(Z)$ حT)

All 88 devices tested for generic types 534T, 534S, 532S, and 4213V passed this parameter to achieve 100% yield. As in the output offset voltage measurement, no temperature trends were observed.

## Input Bias Current (IIB)

Measurements taken on this parameter showed a 100% yield for the four generic types. The measurements for  $+I_{IB}$ ,  $-I_{IB}$ , and  $I_{B(Z)}$  (for 532 only), were 50% better than the vendor agreed upon limit. As can be seen in the appendix, input bias currents increase as the temperature is reduced.

## Input Offset Current (I_{IO})

Input offset current was obtained by subtracting the minus input bias current (- $I_{IB}$ ) from the plus input bias current (+ $I_{IB}$ ). Yields on this parameter were very good with generic type 532S achieving a yield of 90%, 534S a 97% yield, 534T a yield of 80%, and 4213V a yield of 100%. The low yield for the 534T devices was due to the small lot size of 10. All errors except for one occured at -55 $^{\circ}$ C.

## Output Short Circuit Current (IOS)

Output short circuit current was measured with the output shorted to ground for a time less than 25 milli-seconds. The yield was 100% for all four device types over temperature. In all cases, data measured was on the average of 10mA less than the specified limit. Output short circuit current increases as temperature decreases.

## Supply Current (I_{CC}, I_{ee})

The vendor recommended limit for this parameter was 6.0 mA maximum. After characterization, it was agreed to raise the maximum to 6.5 mA for all four device types. All 88 parts that were tested passed this limit. It should be noted that supply current increases slightly as temperature increases.

#### Common Mode Rejection Ratio (CMRR)

This parameter was passed by all four device types over the three temperature ranges. Characterization data showed that on the average common-mode rejection was 20db higher than the minimum specified limit.

## Output Voltage Swing (VOP)

All 83 devices tested, covering generic types 534T, 534S, and 532S passed this parameter to the specified limit. The data obtained, showed that generic type 534 output voltage swing in the minus direction differed from generic type 532 over temperature. For the 534's the output voltage minus parameter decreased as temperature increased, conversely the 532's minus output voltage swing increased as temperature increased. The positive output voltage swing parameter increased as temperature increased for both the 534's and 532's. When characterizing this parameter for generic device type 4213, all devices failed. Upon discussions with Burr Brown, RADC was informed that +15V on input would overdrive the multiplier and caused an inversion at the output. RADC reduced the input conditions to +11V and all parts passed.

#### Power Supply Rejection Ratio (PSRR)

The power supply rejection ratio parameter was specified by the vendor for generic type 532 but not for generic type 534. RADC proposed limits of 100 mV/V for supply voltages ranging from  $\pm$  12V to  $\pm$  15V (PSRR1) and 4.0 mV/V for supply voltages of  $\pm$  15V to  $\pm$  18V (PSRR2) for generic type 534. Proposed limits for generic type 532 were 280 mV/V for supply voltages ranging from  $\pm$  12V to  $\pm$  15V and  $\pm$  40 mV/V for ranges from  $\pm$  15V to  $\pm$  18V. Upon discussion with the vendor, the supply voltage range for the PSSR1 parameter was changed to  $\pm$  13.5V to  $\pm$  15V. Device type 04 exhibited the same behavior as the 03 device. The limit was set to 10 mV/V for device types 01 and 02 and 50 mV/V for device type 03 and 04. All four device types passed these limits over temperature.

### Settling Time (ts(+), ts (-))

Settling time was measured by the circuit in Figure 11 at 25°C. All parts tested for the four device types, passed this parameter according to their specified limits. Examination of the data showed that for generic type 534, ts(+) was on the average 500ns slower than ts(-). No such trends were observed for generic type 532 and generic type 4213.

#### Slew Rate (SR(-), SR(+))

Slew rate was measured by same circuit as settling time (Figure 11) but was done at -55°C and +125°C as well as at 25°C. Device types 01 and 02 had a yield of 100%. On the average slew rates were 5 volts per microsecond faster than the specified limit. Device type 03 had a yield of 90%. Device failures occurred at 55°C and were only marginal (5 volts per microsecond slower). Device type 04 had a 100% yield. For all four device types slew rate increased as the temperature increased.

## Feedthrough ( $FT_X$ , $FT_Y$ )

The yield for this parameter was 100% for all four device types. From the data obtained, all the parts tested had values at least 50% better than the specified limit. The higher limits remained due to the vendor's concern that tighter limits would severely reduce yields. No temperature trends were observed.

## Small Signal Amplitude Error $(AE_X, AE_Y)$

Small signal amplitude error was measured at 25°C and had a yield of 95% combetter for all four device types. On the average, data obtained showed that measurements were 20kHz above the specified limits which is 75kHz for device types 01 and 02 and 70kHz for device types 03 and 04. All failures were marginal and observed when the SSAE(Y) parameter was measured.

## Nonlinearity ( $NL_X$ , $NL_Y$ )

This test was originally done at 25°C and measured by an A.C. test circuit utilizing a sine wave generator and an oscilloscope configured in the X-Y mode. On vendor request, and verification by RADC, this test was changed to a D.C. test and measured over temperature. Generic type 534 was measured utilizing the 3-point method, generic type 532 and generic type 4213V utilize the 5-point method. Correlation and calculations between the two methods will be discussed later in the technical report. Yields were generally good for all four device types.

## Wideband Noise (N_{I(BB)})

This parameter was measured at 25°C with a bandwidth from 10Hz to 100kHz. All devices covering the four device types passed this parameter as specified. Generally, measured values were 5uVrms smaller than the specified limit.

#### 2.6 TEST CALCULATIONS

#### Feedthrough:

The equations to calculate the feedthrough error for both the X and Y amplifier are as follows:

$$FTx = ((XFP + XFM)/2) - V_{OIO}$$

and

$$FTy = ((YFP + YFM)/2) - V_{OIO}$$

where:

XFP = Feedthrough error for plus terminal of the X amplifier (Input conditions: X = 10, Y = 0)

XFM = Feedthrough error for minus terminal of the X amplifier (Input conditions: X = -10, Y = 0)

XFP = Feedthrough error for plus terminal of the Y amplifier (Input conditions:  $X \approx 0$ , Y = 10)

XFM = Feedthrough error for minus terminal of the Y amplifier (Input conditions:  $X \approx 0$ , Y = -10)

 $V_{OIO}$  = Output offset error (Input conditions: X = 0, Y = 0)

Feedthrough error is defined as the output voltage of the multiplier when either input is at zero volts. Theoretically, when either input is at zero, the output should be zero, but a certain fraction of the non-zero input will "feed through" and appear at the output. It should be noted that feedthrough error will increase as the frequency on the nonzero input signal increases. This test was originally a dynamic test but was changed to a static test. This was done per the vendor's request and upon verification and validity of the equations by RADC. As can be seen in the equations both extremes are measured and averaged with one input at zero to achieve feedthrough worst case errors. The output offset voltage is subtracted to nullify any errors due to the output summing amp which is internal to the analog multiplier.

#### Nonlinearity:

The equations to calculate the X and Y nonlinearity parameter are different between generic type 534 and generic types 532 and 4213. This is because of the nonlinearity wave shape between the two types being different. Generic type 534 has a parabolic nonlinearity wave shape and generic type 532 and 4213 have a sinusoidal wave shape. Like feedthrough this test was originally done dynamically, but was changed to a static test. The equations for X and Y nonlinearity for generic type 534 are as follows:

```
+NLx = (((ERR1 + ERR4)/2) - YFP)/2

-NLx = (((ERR2 + ERR3)/2) - YFM)/2

+NLy = (((ERR1 + ERR2)/2) - XFP)/2

-NLy = (((ERR3 + ERR4)/2) - XFM)/2

where:

ERR1 = Multiplier accuracy (X = +10, Y = +10)

ERR2 = Multiplier accuracy (X = -10, Y = -10)

ERR3 = Multiplier accuracy (X = -10, Y = -10)

ERR4 = Multiplier accuracy (X = -10, Y = -10)
```

YFP, YFM, XFP, XFM = defined in feedthrough calculation.

This is known as the three-point test method.

The equations for X and Y nonlinearity for generic types 532 and 4213 are the same as the 534 plus the following.

```
+NL<sub>X</sub>(A) = ERR10-(ERR4-ERR1)/4+(((ERR4+ERR1)/2)+YFP)/2
+NL<sub>X</sub>(B) = ERR12+(ERR4-ERR1)/4+(((ERR4+ERR1)/2)+YFP)/2
-NL<sub>X</sub>(A) = ERR9-(ERR3-ERR2)/4+(((ERR3-ERR2)/2)+YFM)/2
-NL<sub>X</sub>(B) = ERR11+(ERR3-ERR2)/4+(((ERR3+ERR2)/2)+YFM)/2
+NL<sub>Y</sub>(A) = ERR6-(ERR2-ERR1)/4+(((ERR2+ERR1)/2)+XFP)/2
+NL<sub>Y</sub>(B) = ERR8+(ERR2-ERR1)/4+(((ERR2+ERR1)/2)+XFP)/2
-NL<sub>Y</sub>(A) = ERR7-(ERR4-ERR1)/4+(((ERR4+ERR1)/2)+XFM)/2
-NL<sub>Y</sub>(B) = ERR5-(ERR4-ERR1)/4+(((ERR4+ERR1)/2)+XFM)/2
where:
ERR5 = Multiplier accuracy (X = -10, Y = -5)
ERR6 = Multiplier accuracy (X = -10, Y = -5)
ERR7 = Multiplier accuracy (X = -10, Y = +5)
ERR8 = Multiplier accuracy (X = +10, Y = +5)
```

ERR9 = Multiplier accuracy (X = -5, Y = -10)

ERR10 = Multiplier accuracy (X = -5, Y = +10)

ERR11 = Multiplier accuracy (X = +5, Y = -10)

ERR12 = Multiplier accuracy (X = +5, Y = +10)

All other terms are defined in previous calculations.

These equations will be explained by the use of Figure 12 and the equation that applies to it.

To determine the  $+NL_{\chi}(A)$  error, Figure 12 is used with this equation

As can be seen, this equation is divided into three basic sections. The J section is the slope of the line drawn from the endpoints measured. The K section is the factor used to center the curve around the X axis. The variable ERR10 is the location (X = -5, Y = +10) in which the nonlinearity error of interest is measured. All the other equations are based on the same principles as discussed here.

#### 2.7 CONCLUSIONS AND RECOMMENDATIONS

Generic types 534, 532, and 4213 are accurate analog multipliers when multiplying signals between -10V and +10V. This accuracy can be improved by designing with potentiometers to trim for accuracies needed at specific voltage ranges. If potentiometers are used, it should be noted that accuracies at different ranges will be affected.

Both vendors advertise that the 534, 532, and 4213 can be configured to do divider functions and square-root functions. It is recommended that these devices not be used in those configurations. During characterization, it was found that the accuracy of the divider and square-root functions greatly diminishes over temperature.

The testing of nonlinearity was changed from a dynamic test to a static test to reduce the cost of testing. The static test in itself will not give the worst case nonlinearity error but it does guarantee that the error is within 10% of the value measured. If the user is interested in the exact worst case error and the curve it follows, it is recommended that they use the dynamic test circuit shown in Figure 12.



Figure 11 Nonlinearity Error Waveform



	AD.	APTER P	INS	ENERGIZED	VALUE	URIT
TEST	V A	VЬ	VT	RELAYS		
+NLx	20 V p p	+10V	TRIM	к2,к3	Vmax	πV
-NLx	20 V p p	-10V	TRIM	<b>K2,K3,K</b> 5	Vinax	m V
+NLy	+10 v	20 V p p	TRIM	K1,K4	Vmax	m V
-NLy	-1 0 V	20 v p p	TRIM	K1,K4,K5	Vmax	m V

Figure 12 Nonlinearity Error Bench Test Circuit

#### 2.8 BIBLIOGRAPHY

- a. Nonlinear Circuits Handbook, Analog Devices (1976)
- b. Analog Devices Integrated Circuits Data Book (1984)
- c. Electronic Circuits: Digital and Analog, Charles A. Holt, (1978)

#### 2.9 APPENDIX

Table 2-3 lists the test parameters for device types 01-04 as well as test conditions and min/max limits.

532 and 534 analog multiplier data sheets generated on the Tektronix 3270 are shown in Table 2-4.

The best of the	3	Condition	\$ 8 K		Linits	22		
CHECKETATION	i oranic	peragraph 3.4 and figure	peragraph 3.4 and figure & unless otherwise specified	Men Control		Min Hax	X Y	
Multiplier accuracy (-x)(-y)	Mux-y-	ж = -10 v	T _A = 25°C	9.5	0.5	-1.0	1.0	<b>8</b> 5
		by = -10 V	-55°C <u>&lt;</u> T _{A ≤} 125°C	-1.0	1.0	-2.0	2.0	<b>.</b>
Multiplier accuracy (-x)(*y)	inta-y*	Vx = -10 V	TA = 25°C	-0.5	0.5	-1.0	1.0	•
		by = +10 v	-55°C <u>&lt;</u> TA <u>≤</u> 125°C	0.1-	1.0	-2.0	2.0	
	Hury-	V = +10 V	TA = 25°C	-0.5	9.0	-1.0	1.0	
		W = -10 V	-55°C <u>&lt;</u> IA <u>&lt;</u> 125°C	-1.0	1.0	-2.0	2.0	· · · · ·
Hultiplier accuracy (*x)(*y)	inta-y-	ν = +10 v	TA = 25°C	-0.5	9.0	-1.0	1.0	•
		by = +10 V	-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	-1.0	1.0	-2.0	2.0	
Multiplier accuracy drift	År we	Vx - *10 V Vy - *10 V	-55°C <u>c</u> TA <u>6125°C</u>	19.0	0.01	-0.02	0.0	S C
Cutput offset voltage	14010	Vx = Vy = Vz = 0	TA = 25°C	-15.0	15.0	-30.0	30.0	2
	~~~		TA = -55°C	-39.0	39.0	-70.0	70.0	
			TA = 125°C	-45.0	45.0	-80.0	80.0	
Output offset voltage drift	,010 V	-	ATA from -55°C to 25°C ATA from 25°C to 125°C	-300.0	300.0	-500.0	500.0	<b>ک</b> ا د
Offset voltage (x)	A ¹⁰ (x)		TA = 25°C	-10.0	10.0	-20.0	20.0	3
			TA = -55°C	-22.0	22.0	-36.0	36.0	•
			TA = 125°C	-25.0	25.0	-40.0	40.0	
Output offset voltage drift (x)	Voio(x)		ATA from -55°C to 25°C ATA from 25°C to 125°C	1-150.0	150.0	-200.0	200.0	A a
loffset voltage (y)	(A)0(A)		T _A = 25°C	-10.0	10.0	-20.0	20.0	<b>&gt;</b>
			T _A = -55°C	-22.0	22.0	-36.0	36.0	<b>.</b>
			TA = 125°C	-25.0	25.0	-40.0	60.0	<b>.</b>

Table 3. Electrical Parameter Limits Device Type 01 and 02

		(Cond)	tions	_	Lie	22		ſ
CHAITECHET		paragraph 3.4 and figure	paragraph 3.4 and figure & unless otherwise specified		X N	MA MAX MEN DEVICE UZ	X	
Offset voltage drift (y)	(V10(Y)		ATA from -55°C to 25°C ATA from 25°C to 125°C	1-150.0 1150.0	180.0	-200.0	200.0	zh.
Offset voltage (2)	(A)0(z)		TA = 25°C	-15.0	15.0	-30.0	30.0	•
			¥55°C	-39.0	39.0	-70.0	70.0	
			TA = 125°C	-45.0	45.0	-80.0	0.00	
Offset voltage drift (z)	V ₁₀ (z)		ATA from -55°C to 25°C ATA from 25°C to 125°C	-300.0(300.0	300.0	-500.0	500.0	* U
Input bias current (+)	•11•		TA = -55°C	-2.5	2.5	-2.5	2.5	4
			25°C ≤TA ≤125°C	1-2.0	2.0	-2.0	2.0	
Imput bias current (-)	81 ₁₋ 1		¥55° د	-2.5	2.5	-2.5	2.5	
			25°C ≤TA ⊴126°C	-2.0	2.0	-2.0	2.0	
input offset current	01,		J. = ~55°C	-300.0	30 0.0	300.0	300.0	ž
			25°C ≤TA ≤125°C	-250.0	250.0 250.0	-250.0 250.0	250.0	
Output short circuit current (+)	T ₀ S(*)	in - 0; t 25 ns	-55°C <u>5</u> TA <u>2</u> 56°C	-40.0		-40.0		1
			TA = 125°C	-30.0		-30.0		
Output short circuit current (-)	[10S(-)	u = 0; t <25 ns	-56°C <u>4</u> TA <u>4</u> 25°C		0.08		50.0	•
			TA = 125°C		38.0		38.0	
Supply current (+)	J.C.	R. = 00	2°55 <u>412</u> 5°8€		6.5		6.5	•
Supply current (-)	וננ	R. = 00	-55°C <u>≤</u> TA <u>≤</u> 125°C	-6.5		-6.5		•
Common mode rejection ratio (x)	CORR(x)	-10 V <vx <*10="" td="" v<=""><td>7.55- = AT</td><td>165.0</td><td></td><td><b>54</b>.0</td><td></td><td>8</td></vx>	7.55- = AT	165.0		<b>54</b> .0		8
			25°C <u>&lt;</u> TA <u>&lt;</u> 125°C	70.0		0.09		
Common mode rejection ratio (y)	(CHRR(y)	-10 V < Vy < 10 V	. 3°82 = AT .	0.59		54.0		•
			25°C <u>≤</u> 1A <u>≤</u> 125°C	0.0		0.09		•

Table 3. (cont.)

		Conditions				25		
Characteristics		pergraph 3.4 and figure & unless otherwise specified	otherwise specified	MIN	Hin i Max   Min	Rin   Max	×	
(Common mode rejection ratio (2)	IORR(z)	-10 V 2Vy 5*10 V	J.95- = V1	65.0		54.0		<b>9</b>
		Vx = +10 V	25°C 4TA 4125°C	0.0		0.09		
Output voltage swing	ao _A		-55°C <ta <125°c<="" td=""><td>•11.0</td><td></td><td>•11.0</td><td></td><td>&gt;_</td></ta>	•11.0		•11.0		>_
					-11.0		-11.0	e-
Power supply rejection ratio (-)	PSRR1	14.0 V <vs <+15="" v,<br="">Vy = +10 V, Wx = + 6 V</vs>	-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	07-	0.1	-1.0	1.0	<b>≩</b> Ի
Power supply rejection ratio (*)	PSRR2	1415 V 4VS 418 V, Vx = 40 V, Vy = 410 V	-55°C <u>&lt;</u> TA <u>≤</u> 125°C	-4.0	4.0	-4.0	4.0	•
Settling time (+)	  tsi(*)	See figure 5	TA = 25°C		3.0		3.0	SI
Settling time (-)	(ts(-)	See figure 5	TA = 25°C		3.0		3.0	•
Slew rate (+)			-55°C <u>∢</u> IA <u>∢</u> 125°C	18.0		18.0		>  s
Slew rate (-)			-55°C <u>∢</u> TA <u>∢</u> 125°C	•		•		•
Feedthrough (x)	FTx 		-55°C 4TA 4125°C	-35.0	35.0	-60.0	60.0	>
Feedthrough (y)	FTy		-55°C <u>&lt;</u> IA <u>&lt;</u> 125°C	-12.0	12.0	-24.0	24.0	8
Small signal amplitude error (x)	AEX	Vx = 2 V (p-p)  Cc = 1000 pf, Vy = +10 V 1% error	TA 25°C	75.0		75.0		kHz
Small signal amplitude error (y)	AEy	IVy = 2 V(p-p) Cc = 1000 pf, Vx = +10 V 18 error	TA 25°C	•		•		•
Won  inearity (x)	MLX		-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	-0.3	0.3	-0.5	0.5	#FS
Monlinearity (y)	114.7		-55°C <u>&lt;</u> 7A <u>&lt;</u> 125°C	-0.15	0.15	-0.2	0.2	•
Wideband noise	  HI(88) 		TA = 25°C		1.5		1.5	wy ras

Table 3. (cont.)

4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- V V V		į	_		4
CMATACTORYISTICS		Vs = "12 V, M, = 4KL, peragraph 3.4 and figure & unless otherwise specified	aless otherwise specified		ğ	<u> </u>
Multiplier accuracy (-x)(-y)	HAX-y-	ν = -10 v	TA = 25°C	-1.0	1.0	S
		¥y = -10 V	-55°C <ta <125°c<="" td=""><td>1-4.0</td><td>4.0</td><td></td></ta>	1-4.0	4.0	
Multiplier accuracy (-x)(+y)	10x-y+	4 ot - x4	TA = 25°C	1-1.0	1.0	
		4 - +10 V	-55°C 4IA 4125°C	0.4-	0.4	<b>.</b>
Multiplier accuracy (*x)(-y)	May-	lγx = +10 V	TA = 25°C	-1.0	1.0	
		¥y = -10 V	-55°C <ta <125°c<="" td=""><td>-4.0</td><td>0.4</td><td>   </td></ta>	-4.0	0.4	 
Multiplier accuracy (*x) (*y)	ingra,	A 01+ = 4A	TA = 25°C	-1.0	1.0	
		W - *10 V	-56°C <ta <125°c<="" td=""><td>-4.0</td><td>4.0</td><td><b></b></td></ta>	-4.0	4.0	<b></b>
Multiplier accuracy drift	<del>\</del>	A 010 A A A A A A A A A A A A A A A A A	-55°C <ta <125°c<="" td=""><td>-0.04</td><td>0.04</td><td><u> </u></td></ta>	-0.04	0.04	<u> </u>
Output offset voltage	1,010	Vx - Vy - Vz = 0	TA = 25°C	-30.0	90.0	*
			7.55- = AT	-190.0 190.0	190.0	<b></b> -
			TA = 125°C	-230.0	-230.0 230.0	
Output offset voltage drift	<del>- bio</del> n		ATA from -55°C to 25°C ATA from 25°C to 125°C	-2.0  -1-2.0	2.0	<b>2</b> ,0
Offset voltage (x)	[V10(K)		TA = 25°C	-90.0	8.0	*
			7. = -55°C	-100.0	100.0 100.0	<b></b>
			TA = 125°C	-100.0	-100.0 100.0	<b></b> -
Output offset voltage drift (x)	VOID(K)		ATA from -55°C to 25°C ATA from 25°C to 125°C	-800 0 800.0	900.0	<b>&gt;</b> 10
Offset voltage (y)	(V ₁₀ (y)		TA = 25°C	-50.0	50.0	*
			TA = -55°C	1-100.0 100.0	100.0	<b></b> .
			TA = 125°C	-100.01100.0	100.0	

Table 3. Electrical Parameter Limits Device Type 03

Characteristics	Symbol	Conditions Vs = 415 V, R _L = 2kc,	'ou	Lients		## 5
		peregraph 3.4 and figure 4 uni	ess otherwise specified	E	×	
Offset voltage drift (y)	*10(y)		ATA from -55°C to 25°C ATA from 25°C to 125°C	-800.0	800.0	<b>3.</b> 0
Input bies current (2)	(z) ⁸¹ [		-55°C <ia <125°c<="" td=""><td>-12.0</td><td>12.0</td><td>4</td></ia>	-12.0	12.0	4
input bias current (+)	•11•		TA = -55°C	0.4-	9	
			25°C <u>4</u> 74 <u>4</u> 125°C	-2.0	2.0	•
input bies current (-)	91 _I -1		TA = -55°C	4.0	0.4	
			25°C <u>≤</u> TA <u>≤</u> 125°C	-2.0	2.0	
Input offset current	110		TA = -55°C	-400.0 400.0	400.0	ž
		-	25°C ≤7A ≤125°C	-200.0	200.0 200.0	
Output short circuit current (+)	I _{OS} (+)	Ja . 0	-55°C <u>&lt;</u> TA <u>&lt;</u> 25°C	-45.0		1
		•	TA = 125°C	-30.0		
Output short circuit current [-]	I ₀ S(-)	0 - 1	-55°C <u>&lt;</u> TA <u>&lt;</u> 25°C		30.0	•
			TA = 125°C		•	
Supply current (+)	¹ cc	R	-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C		6.5	
Supply current (-)	JEE	 I	-55°C <u>4</u> 7 <u>4 4</u> 125°C	-6.5		
Common mode rejection ratio (x)	OHR(x)	-10 V «V» «+10 V Vy = +10 V	-56°C <u>&lt;</u> 1A <u>&lt;</u> 125°C	0.08		8
Common mode rejection ratio (y)	CHR(y)	-10 V -10 V VX = +10 V	7g55°C 28°C <u>∢</u> 7A <u>∢</u> 125°C	•		•

Table 3. (cont.)

Characteristics	Symbol	Conditions   Lin				i i
		paragraph 3.4 and figure 4 unless	otherwise specified		Mex	
Common mode rejection ratio (y)	OMM(y)	-10 V V Vx = +10 V	74. = -55°C 25°C ∠1A ∠125°C	50.0		
Output voltage swing	ΑOP		-55°C <u>∢</u> 1A <u>∢125°C</u>	10.0		>
					-10.0	
Power supply rejection ratio (-)	PSARI	Is.d V eVs e+15 V,	-55°C <ta td="" ≤125°c<=""><td>-14.0</td><td>44.4</td><td></td></ta>	-14.0	44.4	
Power supply rejection ratio (+)	Psriz		-55°C <u>≤</u> TA <u>&lt;</u> 125°C	-51.0	*S	•
Settling time (*)	(+)\$3	See figure 5	TA = 25°C		2.0	31
Settling time (-)	ts(-)	See figure 5	TA = 25°C			
Slaw rate (*)	(+)		-55°C <ta <125°c<="" td=""><td>25.0</td><td></td><td>&gt; 2</td></ta>	25.0		> 2
Slew rate (-)	sa(-)		-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	35.0		
Feedthrough (x)	FTR	-	-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	-100.0 100.0	100.0	2
Feedthrough (y)	FTy		-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	-80.0	80.0	
Small signal amplitude error (x)	AEx	Yx = 2 V(p-p) Cc = 1000 ps, Vy = +10 V 15 error	TA 25°C	70.0		꾶
Smell signel amplitude error (y)	AEy	ity = 2 V(p-p)  Cc = 1000 pc, Vx = +10 V 15 error	TA 25°C	•		•
Monlinearity (x)	וורא		-55°C <u>&lt;</u> TA <u>&lt;</u> 125°C	9.0-	0.6	¥F.S
Monitoearity (y)	IILy		2.5212 A72 5°62-	₽.0-	9.0	•
Wideband noise	( <b>98</b> )]N		T _A = 25°C		3.0	)

Table 3. (cont.)

Characteristics	Sympo	1 514 - 3V	ittions (, B, = 2kg	Limits	2	Sed
		paragraph 3.4 and figu	paragraph 3.4 and figure 4 unless otherwise specified	Ē	Ě	
Multiplier accuracy (-x)(-y)	   44a-y-	vx = -10 V	₹A = 25°C	-1.0	6.1	S S
		1 1/y = -10 V	-56°C <ta <125°c<="" td=""><td>9.4</td><td>4.0</td><td></td></ta>	9.4	4.0	
Multiplier accuracy (-x)(*y)	 	Vx = -10 V	7A = 25°C	1.0	1.0	
		ly = +10 V	-55°C <ia <125°c<="" td=""><td>0:4</td><td>0.4</td><td></td></ia>	0:4	0.4	
Multiplier accuracy (*x)(-y)	-K+YMI	Vx = +10 V	TA = 25°C	1.0	1.0	
		lby = -10 V	-55°C <u>&lt;</u> 1A <u>&lt;</u> 125°C	0,,	4.0	
Multiplier accuracy (*x)(*y)	Muty.	Vx +10 V	TA = 25°C	-1.0	1.0	
		Wy = +10 V	-55°C <u>&lt;</u> ¹A <u>&lt;</u> 125°C	0.4	0;	
Multiplier accuracy drift	74 74	Vx = *10 V	-55°C <u>≤</u> TA <u>≤</u> 125°C	6.04	9.	د. ا <b>ي</b>
Output offset voltage	1,010	IVx = Vy = Vz = 0	TA = 25°C	-30.0	30.0	*
			TA = -55°C	-100.01100.0	100.0	
			TA = 125°C	Ŀ	.	
Output offset voltage drift	V010		ATA from 25°C to 25°C ATA from 25°C to 125°C	-1.0	1:0	* .º
Offset voltage (x)	) V ₂₀ (x)		TA = 25°C	-40.0	6.0	3
			7 _A = -55°C	- 0.06-	8,	
			TA = 125°C		ļ	
Output offset voltage drift $\{x\}$	\ <u>√010</u> (x)	,	ATA from -55°C to 25°C ATA from 25°C to 125°C	-800.01800.0	0.008	≥  .º
Offset voltage (y)	) ^V 10(Y)		TA = 25°C	0.08	8.0	2
			7 = -55°C	-100.0 100.0	0.00	
			TA = 125°C			

Table 3. Electrical Parameter Limits Device Type 04

Input bias current (*)  Input bias current (*)  Input bias current (*)  Input offset current (-)  Input offset current (-)	paragraph 3.4 and figur	Paragraph 3.4 and figure & unless otherwise specified MRR  4TA from 25°C to 25°C  4TA from 25°C to 125°C  -55°C ≤ TA ≤ 125°C  -6.0  7A = -55°C  TA = -55°C  25°C ≤ TA ≤ 125°C  -6.0  25°C ≤ TA ≤ 125°C  -6.0  TA = -55°C  -6.0  -6.0	┝ <i>╼</i> ┝╤╼┵╾┝╼╼┝╼═┝╼═		3 0 4
		AIA from 25°C to 25°C AIA from 25°C to 125°C -55°C ≤ TA ≤ 125°C TA = -55°C TA = -55°C TA = -55°C TA = -55°C		6.0	3 .0 4
		-55°C ≤ TA ≤ 125°C  TA = -55°C  25°C ≤ TA ≤ 125°C  TA = -55°C  25°C ≤ TA ≤ 125°C  TA = 25°C		6.0	4
		TA = -55°C 25°C <u>c</u> TA <u>c</u> 125°C TA = -55°C 25°C <u>c</u> TA <u>c</u> 125°C	-6.0	2.5	
1 1 1		25°C <u>4</u> TA <u>4</u> 125°C TA = -55°C 25°C <u>4</u> TA <u>4</u> 125°C	-2.5	5:2	
1 1		7A = -55°C 25°C <u>5</u> TA <u>5</u> 125°C 7A = 25°C	-6.0		
1 1		25°C <u>c</u> TA <u>c</u> 125°C TA = 25°C	-	 9	
		TA = 25°C	-2.5	2.5	
į		2	-200.0	200.0	ž
		-55°C 4TA 4125°C	-400.0	400.0	
_	R _L = 0	-55°C <u>&lt;</u> TA <u>&lt;</u> 25°C	-30.0		1
		TA = 125°C	•		
Output short circuit current (-)   1 ₀₅ (-)	Rt = 0	2°55 <u>°</u> <u>√</u> 1 <u>A</u> <u>√</u> 25°C		30.0	•
		TA = 125°C		•	
Supply current (*)	N	-55°C <ta <125°c<="" td=""><td></td><td>6.0</td><td>•</td></ta>		6.0	•
Supply current (-)	R _L	-55°C <u>4</u> TA <u>4</u> 125°C	-6.0		
Common mode rejection ratio (x)   CMM(x)	4 4 4 4 4 4 4 10 4 4 10 4 4 10 4 4 10 4 4 10 4 10 4 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10	-55°C ≤ TA ≤125°C	50.0		8
Common mode rejection ratio (y) (DMR(y)	-6 V < Vy <*10 V  Vx = 710 W	-55°C ≤ 7A ≤ 125°C			•

Table 3. (cont.)

Characteristics	Symbol	Condition   Cond		r tients	2	5
		paragraph 3.4 and figure	4 unless otherwise specified	MIN	T AGY	
Output voltage swing	ъД		-55°C <u>c</u> lA <u>c</u> 125°C	1.10.0		>
					-10.0	
Power supply rejection ratio (-)	PSRRI	12.04. V < VS < 115 V, VS = 115 V, VS = 110 V, VS = 11	-55°C <u>c</u> TA <u>c</u> 125°C	-10.0	-10.0 -10.0	
Power supply rejection ratio (+)	PSRR2	415 V < VS < 418 V,   Vx = +10 V	-55°C <u>c</u> IA <u>c</u> 125°C	0.0	60.0	•
Settling time (*)	(*)\$3	isee rigure 5	7A = 25°C		2.0	ž
Settling time (-)	ts(-)	See figure 5	TA = 25°C			
Slew rate (+)	SR(+)		-55°C <ta <125°c<="" td=""><td>80.0</td><td></td><td><u>-</u></td></ta>	80.0		<u>-</u>
Slew rate (-)	SR(-)		-55°C <ta <125°c<="" td=""><td></td><td></td><td>•</td></ta>			•
Feedthrough (x)	FTx		-55°C <ta <125°c<="" td=""><td>-8. 0.</td><td>98.0</td><td><b>}</b></td></ta>	-8. 0.	98.0	<b>}</b>
Feedthrough (y)	FTy		-55°C ∠TA ∠125°C	0.0	60.0	•
Small signal amplitude error $\{x\}$	AEx	IVx = 2 V (p-p) TA = 25°C ICc = 1000 pf, Vy = +10 V 18 error	TA = 25°C 1 error	0.0		KHZ
Small signal amplitude error (y)	NEy	19 = 2 V(p-p)	TA = 25°C 6 error			•
Monifreer(ty (x)	NLX		-55°C ∠TA <125°C	9.6	9.0	¥.
Monitmearity (y)	N)		-55°C <u>≤</u> tA <u>≤</u> 125°C	₽.0-	4.0	•
Wideband noise	N1(88)		TA = 25°C		3.0	ar vas

Table 3. (cont)

```
OSSERK.ARY:OFF
- - SUURCE TEST SPECIFICATION:
. . . . GENERIC TYPE/COMMENT:
PARM []
 DEVICE>
 54
 54
125 C
 54
 55
 55
NUM6 []
 55
 TEMPS
 -55 C
 52 C
 -55 C
 32 C
 125 C
 (1
 FILE
 ē
 ŏ
 9.950 v
 ٥
 •
 1 MAXY1 (-,-)
 10.01 V .
 10.05 V
 10.01 v
 10-07 V
 7.740 V
 2 HARY1 (0,-)
 1-050MV
 -4.250MV
 1.054FY
 -11.60mV
 19,50HV
 650.0UY
 3 MARY [(+,-)
 -10.09 V
 -7.780 Y
 -10.11 V
 -10.22 v
 4 MAXVI(-,0)
 -10.00 v
 -4.150my
 -1.700PY
 29.25PY
 4.350HV
 -0.300mv
 5 DUTOFF
 22.45HV
 -11.45MV
 -7.300MY
 10.10MV
 -10.45MV
 3.000MV
 22.35MV
 0 4AXY1(+,0)
 2.00my
 7.450MV
 3.600AY
 30.35mV
 -4.250HV
 7 MAXY1(-,+)
 23.05MY
 -10.04 V
 -10,05 V
 -16.01 V
 -10.08 v
 -10.13 V
 4 MARY1(0,+)
 -9.895 V
 -22.35mv
 -4.750MV
 24.30MY
 -0.750MV
 9 MAXY1 (+,+)
 25.70HY
 10.05 A
 9.965 V
 9.935 v
9.955 v
 10.03 V
 7.765 V
 (-,-) SYXAN 01
 7-710 V
 10.05 V
 11 MAXY2(0,-)
 1.185 V
 -27.70MV
 -4.750HY
 -15.39W
-10.07 V
 18-55by
 -700.JUV
 (-,+)SYRAH SI
 19_3584
 -10.13 V
-10.04V
-11.70MV
 -9.900 V
 -10.03. V.
 -10.00 V
 (0,0) SYKAN EL
 -7.486 ¥
 5.750MV
 21.29HV
22.70HV
 -11.35HV
 1.900MV
 -7.050MY
 16.15MY
 -10.45MV
 2.400MY
 -6.550MV
-10.03 V
 (0,+)SYRAM EL
 -250.0UV
 22.70HV
 -0.150PV
 6.700MY
 25.30MV
-7.405 V
 (+,-)SYKAM 61
 *8 -10,13 V
 4.846 Y
 -10.05 Y
 -10.00 V
 17 MARYE(0.+)
 4.356HV
 -3-750MY
 15-10MV
 -4.350W
 7.55emy
 27-19N
7-515 V
 (+,+)SYEAH BI-
 10.02 Y
 7.760 V
 7-720 Y
 10.05 Y
 9.995 ¥
 19 IIOX1
 505.4MA
 51 6- mm
 LOG JOHA
 300.004
 SZO. INA
 305. CHA
 500.0NA
 SKELL OF
 205.0NA
300.0NA
 540,4MA
595,6MA
 -4114-
 310.04A
330.04A
310.04A
 21 13871
 520,0MA
 SE ITAYS
 272
 560.644
 347.684
 200,000
170,000
 540, MA
 228.8HA
 23 11921
 325.0NA
 200.0MA
 410.0MA
 24 11828
25 08CP
26 08CM
27 18CP
 340.0NA
 210_0MA
 730.0NA
 300, mA
 ANO. PES
 515.0MA
 305.0WA
 210 -ONA
 -25.20MA
 -19,10MA
 -11.40MA
 -27.25MA
 -12.60MA
22.50MA
4.790MA
 -20.80MA
 34-10M4
 27.95MA
 20.80MA
 36.70MA
 •
 30.15MA
 4.00544
 4.199MA
-4.198MA
 4-350MA
 4.235MA
 4.460WA
 SE ISCH
 4.440MA

-4.479MA

67.39 08

84.34 08

84.31 08

72.79 08

11.80 v

-13.65 v

153.40v/v
 -4.000M4
 -4.355₩
 -4.745HA
 -4.265MA
 29 -15298
 76-77 06
66-96 08
96-31 08
 64.36 06
110.5 06
94.36 08
73.15 06
 44.16 06
64.43 06
67.72 06
73.62 06
 90.60 06
87.70 06
67.49 06
73.07 06
11.39 V
 30 +ECHAR
 14-58-00
 14.44 00
 JI -YCHRR
 38 +YCMAR
 71.43 00
 72.53 00
 33 OUTVSP
 11.55 V
 11.80 V
 18-10 A
 12-10 v
 34 GUTYSH
 -12.45 V
 -11.75 V
 35 PARR, 15-13
 -12-45 V
 586.8UY/Y
833.4UY/Y
 1.07384/4
 300.0UY/V
403.4UY/V
11.2007
9.9790V
 786.647/4
 100-707/9
 36 PSP9,18-15
 1.01744/4
 1-10384/4
 343.3UY/Y
 390-647/
 37 XOFF
 -250.0UY
 9.550MY
 -7.975HV
 -475.0UV
 -19.25MV
 36 YOFF
 11.88mv
 16.83MY
 -11.05MV
 -3.475MY
 39 LIGH
 5.000MA
 -22.65MY
 15.00MA
 10.00MA
-5.000MA
 AND . 05-
 -5.400NA
 1,000 4
 40 IIOY
 400.00m
 -45,00MA
 15.00mA
 20.00MA
 3,000MA
 41 IIOZ
 -100.0RA
 -65.00MA
 75.00MA
1.475MV
 42 XFTHRU
43 YFTHRU
 35.00MA
 --
 8.675W
 10.1007
 1-200HV
 1.875MV
175.6UV
 400.6UV
 000. JUY
 300.8UV
 75.00UV
 275. OUV
 2.425HV
 44 PYML
 -15,12MV
18,13MV
 47.65MV
 -24.43MY
 -9. LEGHY
 45 MXML
 -9-275W
 -72.77W
 -5.456WY
 2.175MV
 4,00000
```

THE STANCE REPERENCE COOCS 09340H .ARY 10FP - - - - CENERIC TYPE/COMMENTS

* = = = HADC PEFERENCE CODE:

Table 4. AD534 Test Data

```
57
 56
 50
 57
 57
 DEVICE>
 56
PARM ()
 29 C
 125 C
 152 C
 -95 C
 TEMPS
 -55 C
 25 C
:HUMM
 FILE
 0
 0
 .
 ٥
 •
 (1
 9.910 V
 9.985 Y
 17.06 V
 10.01 V
 10.03 Y
 7.715 V
 MAXY1 (-,-)
 -7.100MY
 -9.660HV
 MARTE (0,-)
 550.JUV
 -4.056MY
 -13.45mv
 -3.000my
 -10.13 V
 -10.03 Y
 -10.09 V
 MAXY1 (+,-)
 -10.67 V
 -10.00 V
 -9.925 V
 -16.25MV
 MAXY1 (-, 0)
 6.750HY
 450.6UV
 -9.600MV
 -4.400MV
 -13.80MV
 -4.450MV
 -5.460HY
 OUTOFF
 L. HORY
 -3.55erv
 -12.15MV
 -50.00UY
 -4.500MV
 -7.300AV
 -10.6UMV
 -10.85HY
 4.200MY
 -1.450HY
 MAXY1 (+,0)
 -10.03 V
-1.550#V
 -10.06 V
 MAXY1 (-,+)
 -10.01 Y
 -9.935 V
 -10.18 Y
 -18.89 V
 3.450HY
 -1.650MV
 MAXT1 (0.+)
 -2.250PY
 -9.750PV
 10.03 V
 10.05 V
 9.985 V
10.00 V
 10.00 V
 9.915 V
 9.885 V
 MARYL(+,+)
 (-,-)SYXAN 01
 1.90u V
 -4.550MV
 -6.666W
-9.930 V
 -3.500mv
 -16.80MV
 (-. 0) SYXAM 11
 -2.950MY
 -6.550MV
 -9.975 V
 -10.13 Y
 (-.+) STYAM SI
 -10.00 V
 -10.01 V
 -12.20MY
 -4.60MY
 -13.25MV
 -13.75MV
 (U,-)SYEAM &!
 1.600MV
 -3.55erv
 -50.00UY
 -4.756HY
 -5.650HY
 1.750HY
 -12.15MV
 14 OUTOFF
 -3.700MY
 2.750HV
 -6.ASSMY
 -11.66MY
 -13.45MY
 -7.150MV
 15 MAXY2(+,0)
 1.300MY
 -4.120 V
 -10.13 V
 -+-333 ×
 -10.03 V
 16 MANY2(-,+)
 -10.09 V
 -10.01 Y
 -6.700MY
 350.6UV
 2.700HY
 1.950HV
 -t_700##
 17 MAXY2(0,+)
 7.650MV
 10.61 V
 1.000 ¥
 7-445 V
 4.455 V
 4,990 Y
 18 MAXYE(+,+)
 10.06 V
 545.0MA
555.0MA
 140-0HA
 JES. ONA
 ANG. 085
 215.004
 19 IIBX1
 445. GHA
 AMA. 955
 JZO.ONA
 ANS.EPS
 145.0NA
 SKEII OS
 440,0NA
 295.0NA
 195.084
 375.0MA
 350. ...
 448 , 255
 51 IIBY1
 495.0NA
 53 IIB71
848II 88
 295.4MA
 196.GNA
 555.0AA
 320.OMA
 210.004
 495. DNA
 405.00A
405.20A
 390.0MA
 195.0NA
 340.0MA
 315. OMA
 490.0HA
 360. SNA
 330.0MA
 295.0H4
 190.0MA
 SSOII PS
 AMPT. 05-
 -12.40MA
21.70MA
 -87.60MA
30.10MA
 -21,05MA
31,05MA
 12.59
 25 08CP
26 08CM
27 18CP
 ANDES. 25
ANDES. 22
ANDES. 2
 4,17984
 4,44084
 4.39004
 4-290MA
 -1.30504
 4.700MA
 -4.005MA
 -4.405MA
 4.470ML
 SO TREMOS
 90.14 D8
84.34 D8
 98.51 08
 93.39 08
86.16 08
96.37 08
 86.A7 DE
 89.29 00
 12.27 06
 +XCHER
 03.45 00
 90 SO.00
 47.51 08
 30
 00.44 06
72.90 08
 89.76 06
 93-19 DB
 89.74 08
 31 -TCMRR
 44.74 DE
 72.91 00
 73.12 08
 72.76 08
 72.45 00
 +TCHRR
 73.12 00
 12.10 Y
 12-10 V
 11.50
 11.45
 11.85 Y
 33 OUTVEP
 11.40 Y
 -11.70 V
 -12.05 V
 -11.75 Y
 -12.05 Y
 -12.45 Y
 -12.49. Y
 34 OUTVSH
 -154.9UV/V
-206.7UV/V
 -279.9UV/V
 4433.3UV/V
 -1.413MY/V
 -1.713PY/Y
 35 PSRR, 15-13
 -1-913MA\A
 -t.423WY/Y
 -3.334UY/Y
 -120.0UY/Y
 PSRR, 18-15
 -1.453MY/Y
 14.20MV
 9.775W
 7,225#4
 4.45000
 3_A754V
 37 XQFF
 -350.007
 0.050mv
 2.500HV
 1.100MV
 8.500MY
 38 YOFF
 -3.225HY
 -10.00MA
 5.860MA
 -15.00MA
 -5.000NA
 -5.000ML
 10 IIOx
 5.800MA
 ANDO.EL
 5-000MA
 20.00MA
 30.00MA
 IIOY
 0.400 A
 40
 0.000 b
 5.000A
 AMO 0. 05-
VMO 0 0. 0-
 -15.00MA
 -LO.SONA
 A 000.0
 S. GOONA
 41 IIOZ
 3.150HV
 -7.750MY
 -7.754MV
 2.646MV
 42 XFTHRU
43 YFTHRU
 350.0UY
 125.0UV
 175.0UV
 400.0UY
 475.0UV
 500-0UA
 -7.625HV
 -39,42HY
 -10.48#Y
 -44.17HV
 -4.375HY
 -5.125HY
 44 PINL
 -7.700MV
 -41.45HY
 4.425MY
 -22.25MY
 975.0UV
 4.525MV
 45 HINL
= = = = RAGE REPERENCE CODE:
 OSSARK.ARYSOFF
* = SQURCE TEST SPECIFICATIONS
 SENERIC TYPE/COMMENTS
. . . .
 96
PARM - []
 DEALCE>
 125 C
 TEMPS
FILE>
 129 €
 -57 E
 25 C
NUMB (3
 -93 C
 23 C
 £
 ě
 •
 U
 +.125 ¥
 10.40 Y
 10.08 Y
 9.930 V
 10.03 V
 1 MANT1 (-,-)
 -17.45NV
 -9.950MY
 -10.80MV
 -10.45MY
 -10-10MA
 2 MATT1(8,-)
 -45.75MV
 3 MARY! (+,-)
 -10.09
 -10.09 Y
 -10-11 V
 -10.83 V
 -9.520 Y
 -10.15 V
```

Table 4. (cont.)

```
4 MANY1(-,0)
 -24.50MY
 -18.10mv
 -7.350PY
 -16.15#Y
 -14.46MV
 -11.35MV
 -24.35HV
-21.75MV
 5 OUTOFF
 -10.35mv
 -3.750mv
 -15,10MV
 -4.100m4
 -6.080MY
 -14.25hV
 -2.450mv
 -11.30mv
 -4.400mv
 -5.300MY
 -10.13 V
 7 MAXY1 (-,+)
 -10.13 v
 -7.745 Y
 -10.10 V
 -10.03 V
 -4.920 V
 8 MAXY1(0,+)
 -12.05MV
 3.600mv
 -12.55mv
 -6.600PY
 -1.000MY
 9 MARTI(+,+)
 10.01 V
10.02 V
 1.165 V
 1.495 V
 10.02 V
 7.745 v
10.00 v
 7.925 Y
 10 MARY2(-,-)
 7.740 V
 (-,0)SYXAK 11
 -19.95mv
 -4.250MY
 VMD2.05-
 -14.05MV
 -9.296MY
 12 MAXY2(+,-)
 -10.00 Y
 -0 -10.13 V
 -10.03 v
-10.95#V
 -9.970 V
 -10.13 V
 -4.915 V
 (0,-)SYXAP EI
 -24.13MY
 -17.05MY
 -4.600PV
 -14.40HV
 -7.880HV
 14 OUTOFF
 -24.25MV
 -10.10mv
 -3.250PY
 -15.00MY
 -9.100MY
 -6.080PY
 15 MAEY2(+,0)
 -21.55MV
 -15.20MY
 -4.456MY
 -14.45MV
-10.18 V
 -11.10MV
 -4.896HY
 -10.13 V
-11.95MV
9.965 V
 10 MAXY2(-,+)
 -10.13 V
 -7.100 Y
 *6 -10.13 V
 -18-80 V
 17 MAKY2(0,+)
 -16.15MV
 -1.450MV
9.905 V
 -2.900MV
 -4.450HY
 -1.430MV
 18 MARTE(+,+)
 10.03 V
 10.00 V
 19 IIext
 515.6M4
 366.6NA
 299.UNA
 435.0MA
 250.0NA
 160.0MA
 Sa Ileas
 545.0NA
 SEG. CHA
 216.0MA
 440.0MA
 ANG.005
 165.0NA
 SI IIBYI
 SSS.JMA
 320.0MA
 210.004
 490.0HA
 275.8MA
 185 AMA
 SYCII SS
 535.0MA
 315.0MA
 ANG. 055
 460.0MA
 265.6HA
 179-0MA.
 23 [[921
 520.0NA
 300.0MA
 200.484
 450.0HA
 AND-EES
 170-00A
 EZELL PS
 735.0MA
 400, CMA
 JSS-ONA
 455. ONA
 AND. OES
 135-0WA
 25 0809
 -26.00MA
 -41.40MA-
 -L3.20#4
 -26.65MA
37.35MA
 -20.05MA
 -12-20MA-
 26 08CM
 39.10MA
 31.85MA
 24.05MA
 22.45MA
4.520MA
4.520MA
 39.40MA
 27 ISCP
 4.190MA
 4.410MA
 4.07SHA
 4.435MA
 4.270MA
 26 ISCH
 -4.195MA
 -4.110MA
 -4.400MA
 AMOUNA
 -4.295MA ·
 90.12 08
47.87 08
87.15 08
73.89 08
11.60 V
 40,00 00
43,54 00
40,25 00
72,00 00
12,15 W
 46.76 06
43.41 06
46.11 06
72.97 06
 -KCHAR
 86.36 08
43.22 08
49.19 06
73.43 06
12.85 W
 29
 84.89 UB
84.32 DB
 30
 +XCMRR
 45-49 08
 31
 -YCMAR
 67:41 06
72-96 08:
12-64: V
 38
 .TCHER
 OUTVEP
 -15-10 A.
 12-15 V
 -11.75 v
-340.00V/V
 34
 OUTVSM
 -11-40 ¥
 -12.10 Y
 -13-46 ¥
-560.8UV/V
 35
 PSRR, 15-13
 -846.7UY/Y
 -435.3UY/Y
 -33.3UV/V
-26.70UV/V
 -413.4UV/V
 -[40.6UV/V
25.96#V
 30
 PSRR, 10-15
 -43.30UY/Y
 -270.6UV/V
 -200.8UY/Y
 37
 XOFF
 17.22MV
18.27MV
 30.25mv
 10.53MV
 11.22MV
 38
 TOFF
 18.27MV
 25.73MV
 6.800PY
 15-10MA
 7.02587
 LION
 -30.00hA
 -20.00MA
 -L0.00MA
 -5.004MA
 -10.00MA
 -5.046NA
 40
 40.00mA
40.015-
 IIOT
 3.000MA
 -10.00MA
 30.04MA
 10.00MA
 10-40MA
 41 IIOZ
 -155.0MA
-1.350MV
 -166.8MA
 -5.000MA
 5.000MA
 15-46MA
 XFTHRU
 1.22500
 175.8UV
 125.4UV
 -5.300my
 -2.J25NY
 45 YFTHRU
 150-8UV
 400.007
 575.0UV
 425. BUY
 375.6UV
 454.144
 44 PINL
 -LA_A7MV
 -33.97HV
 -7.950MV
 -24.30HY
 -13.72MV
 1-730HV
 45 MENL
 -10.86NV
 -11.33PY
 -36.27MV
 -11.66MV
 -4.575HY
 .Jeenv
= = = = PAGE MEPERENCE CODE:
 DS34RK.ARY10FF
= = SOURCE TEST SPECIFICATION:
. . . . GENERIC TYPE/COMMENTS
 DEVICE>
 44
 41
 39 C
NUMB
 (1
 TEMPS
 -35 C
 125 C
 -55 C
 25 C
 129 C
 FILE
 ē
 •
 ě
 10.66 V
-9.750HV
 MAXY1 (-,-)
 10,00 Y
 7.916 Y
 1,160 Y
 7.305 Y
 10-43 V
 (-,0) [TXAM 5
 -4.200W
 -5_866MV
 -13.10MV
 -13.55MV
 -13-15MY
 -10.04 V
 3 MANY1(+,-)
 -9.920 V
 -10.05 Y
 -9-905 V
 -10.83 Y
 -10-10 4
 -9.450HY
-7.400HY
 · MANYE (-- 0)
 -5-40 cm
 -0.366NY
-18.75NY
 -18.66MV
 -3-300my.
 5 OUTOFF
6 MAXY1 (+,0)
 -11.20my
-0.350my
 -1-1500Y
 -10.63HV
 -12.15H4
-12.45H4
 -4.900MY
 -1<u>J000</u>V
 -200.0UV
 14.50MY
 7 MARYS (-,+)
 -10.18 Y
 -10.03 V
 -9-125 Y
 -10.10 V
 -10-23 Y
 •6 -10-28 ¥
 8 MAXY1 (0,+)
 -6.100MY
 750.0UV
 -10.80MY
 -11.45MV
 -4.30 my
 9 MANTE (+,+)
 10-05 V
 9-445 V
 1.940 Y
 10.00 V
 10.05 V
```

Table 4. (cont.)

```
10.61 V
-17.70MV
 9.996 V
 7.955 V
 10.05 V
 4.900 v
 10.06 V
 10 MARTZ(-.-)
 -5.900MY
 -14.60MV
 -17.95HV
 -14,05MY
 -19.75MV
 (-,0)STYAM 11
 -9.985 V
 -10.07 Y
 -10.10 V
 -10.03 Y
 -10.01 V
 (-,+)SYXAP 51
 -10.13 V
 -4.750HY
 -2.450HV
 11.30MV
 -4.100HV
 -4.000W
 -7.460MY
 15 4AEYE(-, 6)
 -12.25MV
 -10.90mV
 -13.2044
 -7.500MV
 -1.100mv
 14 OUTOFF
 -11.25PV
 -500. OUY
 -4.20044
 -4.508PV
 -15.80HV
 -600.0UY
 -14.50MY
 IS MAYYE(+,0)
 -10.10 V
 -4.400MV
 -10.13 V
 -9.940 Y
 -10.05 Y
 -14.09 Y
 (+,+)SYXAM d!
 -0.150MY
 --50.0UV
 4.900MV
 17 MARYE(0.0)
 9.976 ¥
 ¥ 50.02 ¥
 7.480 V
 9.870 V
 9-960 V
 (+,+)SYXAH BI
 10.04 V
 815.UNA
 530.0MA
 444.0HA
 165. GNA
 1.400VA
 440.025
 IXBIL PI
 725.0NA
 310.0HA
 1.220UA
 440.JNA
 256.0MA
 105.0MA
 20 II842
 795.0NA
 529. ONA
 275.0HA
 199.044
 1.375UA
 475. GNA
 21 IIBY1
 795.0HA
 535.0NA
 270.0MA
 185.0NA
 1.455UA
 515.0NA
 SYBII SS
 725.0MA
 490.DNA
 1.215UA
 175.0MA
 445. GNA
 440.0ES
 IZBII ES
 495.0NA
 1.255UA
 740.0MA
 24 11922
25 08CP
26 08CM
27 18CP
26 18CM
 170.0MA
 444.0HA
 AND.225
 -15.7004
 -24.25MA
 -27.40MA
-4 34.35MA
 -12.55HA
 -20.75MA
 30.50MA
 32.00MA
 24.45#4
 •
 22.15MA
 27.55MA
 4.306HA
 4.399#4
 4.750HA
 4.180MA
 4,459HA
 4,285MA
 -4.190WA
101.5 08
40.29 08
47.11 06
72.30 08
 4-455MA
87-37 08
88-77 08
 -4.705HA
 -4.330MA
 -4.319MA
 -4.510MA
 93.27 08
67.09 00
92.51 08
72.90 00
 87.40 D8
85.85 D8
84.74 D8
73.07 D8
 87.58 QB
 80.82 D8
83.58 D8
82.34 D8
73.07 D8
 29 -ICHAR
 43.45 06
 30 +XCHAR
 89.53 DB
72.74 DB
 87.85 D8
72.86 D8
11.95 Y
 31 -YCHRR
 32 -YCHRR
 12.10 V
 11.45 Y
 12.25 V
 11.55 V
 33 OUTVAP
 -12.50 Y
 -11.75 V
-246.7UV/V
 -18.304/4
-183.304/4
 -12.10 V
 -12.45 Y
 34 OUTVAM
 -11.70 V
 -173.447/7
 -250-TUA\A
 -500.007/4
 35 PSRR, 15-13
 -446. BUY/Y
 -00.60V/V
11.60NV
27.20NV
 -186-707/4
 -350-004/4
 -214.447/7
 36 PSRR-18-15
 -533.304/4
 13.00W
 3.645HY
2.750HY
 14LATHY
 10-2389
 8.650MY
 37
 XOFF
 VMPA-EL
 LATHY
 9.97584
 TOFF
 18.42MY
 38
 20-1004
 1.400 4
 0-100 A
 1,400 4
 39 IIOX
 4884
 1.000 A
 5.000NA
 5-000NA
 -00.00MA
 -40 .JOHA
 40 IIOY
 -15.00MA
 -5-46004
 3.00MA
 -4.000MA
 -44.00MA
 LIGZ
 5.400MA
 41
 9.175MV
 9.150HY
 --50.0UY
 8.600WV
 325. AUY
 1.42544
 48 XFTHRU
 -450.8UV
 985.0UV
VNEL.04-
 25.00UV
 -1.300mv
 450. OUY
 475.004
 45 YFTHRU
 -10-70MV
 -10.37MY
 -35.45MV
 44 FXML
 -29.15MV
 -4.725HV
 -9_275WV
 -34.70HV
 2.750MY
 4.475HV
 54-10MA
 45 MENL
RADE REPERENCE COORS 09346K.ARYSOFF
SQUACE TEST SPECIFICATIONS
GENERIC TYPE/COMMENTS
 52 C
 41
 65
PARM []
 DEVICE>
 62
 -55 C
 25 C
 125 C
 TEMPS
FILE>
 -95 C
 125 C
NUMB
 IJ
 •
 ě
 ì
 (1
 10.07 V
 10.04 V
 10.01 V
 4.925 Y
 9.945 Y
 10.01 V
 1 MARY1 (-,-)
 -2.400HV
 -4.066HY
 -250.0UV
 -1.500MY
 6.500MV
 (-,0) ITHAM 5
 -10.07 V
 -4.125 V
 -10.03 V
 -10.03 V
 -10.01 Y
 -9.985 Y
 3 MAXY1 (+, +)
 -3.050HV
 -5.JOONY
 -12.6500
 -4.60MY
 4.400MV
 4 MANTE (-, 0)
 -3.700WV
 0.050MV
 -1.350MY
 -4.450MY
 -2.050MY
 S OUTOFF
 -4,350HY
 -4.930WY
 7.050HY
 -1.600MY
 1-20004
 -3-900MV
 . MARTE (+, 4)
 -9.940 V
7.350HV
 -4.135 Y
 *5
 -10.13 V
 -10.18 Y
 -10.02 Y
 -10.05 V
 7 MAYTE (-,+)
 -3.050MV
9.980 V
9.990 V
 -2.450HV
 -0_130m
 -2.250HY
 -2.00 CMY
 4 MARYE (4.+)
 10.03 V
10.05 V
 9.989 V
9.939 V
 9.890 Y
 10.08 Y
 9 MAY71(+,+)
 7.905 4
 10 MARY2(-,-)
 -10.30HY
 VU0.020-
 -10.40HY
 -19.79MV
-10.03 V
 -6.ASONY
 -4.350W
 -1.125 Y
 -10.01 Y
 -10.65 Y
 -10.02 V
 (-,+)STEAM E1
 0.050NV
 -4.150HY
-1.550HY
 -4.756HY
 -7.636M¥
 -1.250W
 -5.100MY
 -3-964HY
 14 QUTOFF
15 MAXTE(+,0)
 -2.200HY
 -4-130MY
 7 .150AV
 1,40000
 -450.8UV
 -4.210HY
 -2.050MV
```

Table 4. (cont.)

10	(+,-)SYZAM	-10.13 V	-9.920 Y	-9.920 V	-10.04 Y	-10.05 V	-9.985 V
17	(+.0)STRAM	-1.050MV	5.400MY	15.00mV	6.900HV	4.960MV	3.700MV
1.0	(+,+) STEAM	10.02 V	9.990 V	9.925 v	10.05 V	4.996 V	9.900 V
19	IIPx1	770.0MA	486.0MA	320.UHA	505.0NA	290.0NA	
	IIOYZ	735.0M4	440.0MA	100.0MA	SIU.ONA	295.0NA	190.0MA
	IIBYI	755.4HA	455.0NA	315.0MA	530.0MA	305.0MA	200.0MA
	SYELL	735.0MA	450.0HA	315.0MA	515.0NA		200.0MA
	11021	785.0NA	460.004	315.0MA		315.0MA	205.0MA
	I I S Z Z	775.UNA	445.0WA	315.0mA	510.0MA	ANG. 0PS	\$10.6MA
25		-30.45MA			509.0MA	290.0HA	195.0HA
26			-23.65*4 A425.12 A4	-15.J5MA	-27.35MA	-20.95MA	-12.90MA
27		4.325MA		23.75MA	44 36.20MA	29.65#4	440E.55
28			4,505M4	4.785MA	4.20544	4.395MA	4.655MA
		-4.365PA	-4,565H4	-4.805MA	-4.239MA	-4,400MA	-4.666MA
59	. •	76.23 06	90.96 DB	90.34 08	90,29 00	90.17 DB	93.14 08
	+KCM4#	67.29 06	07.66 DB	66.56 08	86,07 DB	45.35 00	80-10 08
	-YCHRR	90.95 00	85.47 08	45.44 08	67.03 08	47.45 06	17.45 00
	+YCMAR	73.19 00	73.10 DB	73.11 00	73.03 06	72.45 DG	72.77 08
	OUTYSP	11.55 V	11.40 V	15-10 A	11.60 V	11. <b>85</b> V	12.10 V
	UUTVAH	-11.70 V	-12-05 V	-12.40 Y	-11.79 V	-12.05 Y	-12_45 V
	PSRR, 15-13	-520.7UV/V	-513.444/4	-573.344/4	-466.7UV/V	-540.1UY/Y	-666_7UY/Y
	PARR, 18-15	-516.647/4	-100.7UV/V	-210.0UY/Y	-340.0UV/V	-463.3UV/V	-364_6UY/Y
37	loff	. VHES6.8	1.675MV	-6.225HY	475.0UV	2.775MV	4.475##
34		12.73MV	4 <b>.730</b> kv	-4.325MY	750.0UV	2.350mv	3.47500
39	TIOX	35.00WA	48.00NA	20.00MA	-5.000NA	-5.000MA	-10-2004
. 44	IIOY	AND 0.05	5.000MA	0.000 A	15-00MA	-10-00MA	-1.000A
41	IIOZ	10.00MA	15.00MA	0.000 A	5.000MA '	0.000 A	15-0004
42	xfthru	675.6UY	350_6UV	75.0004	350.0UY	-700.0UV	-1_AZSMV-
43	YFTHRU	125.6UV	175.0UV	275-8UW	285.044	375.0UV	OFF-OUN
44	PXIIL	-3_325MV	-7-A25N4	-0-67500	-36_3007	-34.75WV	-te_4304
45	MENL	3,600ML	750.8UV	1-750my	-2-375#4	-3.800WY	2.0000

Table 4. (cont.)

R A D C STANDARD LIMIT SET SUMMARY

LIMBIM PROGRAM FUMMARY LIBITMS
PRECFEDIMG A LIMIT VALUE IMDICATES A LIMIT NOT REQUIRED BY SPECTIMES IS AN EXTENDED LIMIT IMPOSED BY RACE 1/E

REFERENCE DISK ARRAYSDSSARK, ARYIDFF

SUURCE TEST SPECE

BENEATC TYPE

PELTA LINETO			-			-	-	-	-		I			-	-	~	~	-		-	-	-			-			-		-	-			-			-	-			-	•
A					- AMO.005		- > ::::		- > 27:11	10.26 ×	- MO'007	· · · · · · · ·		B00,000		- > ::::		10.20 V	2.000A	- VN000'8		2,0004A	F. 5004A	2. 400UA	7	30'00W	P. 000HA	¥ 0000	20.121	20122		20'021			- //mee.el	. A/AHOO. T	- AMOU-ST	- AH00'ST	250.04A	230.0MA	250.0MA .	70.00H
IN 0 1250 A		-200,0MV	_	_	>	>	- 10.20	<b>&gt;</b>	>	<b>9.00.</b>	-200,0MV	•	_	-200.0H	-200,0MV	- 10.20 V	-200,000	+.ee.	4	4 .00. A	1.00.	- · · · ·	4	- · · · ·	30.0MA	0.00 A	4	F. 000MA					A 20.	-50.00 V	-10.00MV/V	4.000HV/V	-45.00HV		-250.0NA	•	-250.0NA	74.00.4V
OÉLTA LIMITA M					- 1												~	1				-	-	1	-	~		-				_		-			-		- 1			-
11 9 -55c of	10.20 v			\$00.000		. AND 700	- > ::::	- AMO! 000			POD: ONA .				. AMP'00	- > 000°6	. AMT. 00	- A 62101	F. 6660A	F. 00004	F. 00011		TOOOLA	F. 0000A	7 1117	20.00MA	VH0074	V 000	120.00		100.021	80 0.021	- · · · · · · · · · · · · · · · · · · ·		. ^/^#***	A/AMOO	15.00HV	15.00PV	\$10.0MA	300.00	300.0M	. > > > > > > > > > > > > > > > > > > >
¥ 767-0 EI			•				·•	<b>-</b>	7	7.00°	200,0My	1. 7 05.01	200.007	_	-20°.084	<b>-</b>	-201.0MV	+		4		4 · · · ·	4		30.00A	4	7 0000	4.00m					> 00 · 1	A 11.12	10.0HV/V	4.000HVV	45.00hV		300.0HA	7		70.0am
DELTA LÍMITA M		-	-		-			, , , , , , , ,			-				-			~		-	~		-	~			-			-		-		-			-	-		~	-	
MAX 8 25C 00		. > > > > > - > - > - > - > - > - > - >	- · · · · · · · · · ·	100.0M	106.01			. >******			100.0MV	•	100.0H	100.0KV			100.000	. , , , , ,	2.000UA .	2.000UA .	2.000UA .	2.000LA	2.000UA .	2.000uz	٠,	30.084	. ONOUT	V		120.00	100.050	10 0 0 0 0 1	20°02		. A/AHO	- A/AMODO.T	20.05V	20.00H	250.0MA '	250.0MA "	255.0MA	. Alles.es
MIN & 25C M		2		<b>&gt;</b>		<b>?</b>		-10.0M	7 . 0 0 · c	4.400 ×	-200.0KV	-10.10 v		-10.044		•	-1.0.0HV	>	4		· · · · ·	· • • •	4	A	30.00HA	4	4	<b>4</b>				£	>			4/AU000"6-			-250.0%A	4	₹	>
	MARY1 (-,-) [						- 1(+,-)!YXA		AKY1 (+,+) 1	MAKY2(-,-) [																	-	•							PDRB, 15-131 -			10FF   -	-	Hor f	-	=======================================
111/6			z		0			2	*	=		¥ 2			E E	Ĭ 2	=	=======================================	2	2	2	22	23 1	2	<u>ح</u>	2	~	2	2			25	2	Š	22		× 28	£				X 20

Table 4. (cont.)

Table 4. (cont.)

```
B B B B RAGE REFERENCE CODE: 0532RL.ARY10FF
. . SHINCE FEST SMECIFICATIONS
 GENERIC TYPE/COMMENTS
. . . .
 1177
 1177
 1177
 1176
DAGM [1
 . GEVICE»
 1170
 1174
 -55 C
 152 C
 25 C
 125 C
 TEHRS
 -55 C
 29 C
res. Lanca
 10.08 V
 ō
 0
 0
 FILES
 J
 .
 (1
 10.93 Y
 10.11 Y
 10.05 V
 10.06 Y
 1 MARYE (-.-)
 10.05 Y
 -60.75MV
 -60.66WV
V 01.01- 0+
 40.55MV
 41.55MV
 14.20MV
 --0.45MY
 2 -AXY1(0,-)
 -10.16 V
 -9.950 V
 -4.975 V
 -10.67 V
 3 46X71(+,-)
 -10.06 V
 44.40MV
 -32.45MV
 43.80MY
 28.50MV
 -24,45MV
 -25.90mv
 " MATT1 (-,0)
 -74. 4444
 29.00MV
 20.60MV
 14.75MV
 -75.00MY
 -46.UGHY
 S OUTOFF
 50.15MV
 51.50HV
 42.15MV
 -23. DOMY
 -25.75MY
 -24.95mV
 n -AET1 (+, U)
 -10.20 /
 -9.945 Y
 -9.765 Y
 -10.06 V
 *4 -10-13 Y
 7 -4371(-++)
 -10.12 V
 22.45MV
 29.66#4
 25.20HV
 -71.50MV
 -74.50MY
 -44.00HY
 * **** (0.+)
 10.00 Y
10.02 Y
 10.03 Y
10.05 Y
 10.06 V
10.11 V
 10.47 V
10.10 V
 10.00 V
 4.945 V
 4 MATY1 (+,+)
 10.00 Y
 14 MARY2(-,-)
 -00.JOHY
 14-1500
 20.Jeny
 LOUDONY
 -102.5MV
-10.09 V.
 -42.00HY
 11 MAXYE(0.-)
 49.12 ¥
 +4 -40-40 V
-55-79#V
 -10-18 Y
 4.930 Y
 -9.755 Y
 (-.+) SYXAH SI
 30.30MV
 -53.00MV
 30.40HY
 39.00MV
 (0,-)SYKAM EL
 -40.00MY
 26.75HY
 29.4584
 16-1984
 -72.00MV
 -74.56MY
 14 SUTOFF
 -79.50MV
 70.00MV
 64.60MY
 34L25HV
 -10.JOHY
 -6.400MV
 15 MAXY2(+.0)
 -4.400MV
 -10.02 Y
 -10,10 V
 -10-21 Y
 -9.988 Y
 -0 -10.14 V
 -10.12 V
-75.50mV
 (+.-) SYEAH 01
 33.6684
 22.26HY
 S-ACOMY
 -79.56MV
 -73.00MV
 17 -AZYZ(0.+)
 10.01 Y
 10.05 V
 10.02 V
 10.02 V
 10.00 Y
 10.00 Y
 (+,+)SYEAH 01
 555.AMA
535.AMA
 225.ANA
 AGG_ANA
 52 11921
54 11945
55 11945
56 11945
19 11941
 199.0NA
 455-484
 490.084
 330 .000
 760.486
 525-WA
 010.0NA
 446-244
 795.4MA
 529 ANA
 540.0NA
6.750UA
 429 -484
 400 - 00 E
 175.AHA
 370.0HA . .
 7.150UA
 4.00044
 1.4504
 4.45eu
 -24.79HA
 -10-10#4
 -13-75MA
18.95MA
 -31.40MA
 -23.25#4
 -14.70MA
 24 03CP
 AMOE. 05
 19. LOMA
 21.35MA
 20.10MA
 20.90MA
 35 08CM
 4.486MA
 3.645MA
 3.645MA
-5.705MA
 4.420MA
 3.945MA
 26 ISCP
 -3. 125mA
 -3.060MA
 -4.47 BMA
 -3_920HA
 -4.466MA
 er lach
 66.32 DB
64.97 DB
69.43 DB
62.46 DB
 66.41 06
65.65 06
72.56 06
44.33 06
 43.40 DB
 66.60 DB
 58 -XCMR
 67.95 08
 45.45 08
 62.67 08
 43.47 06
73.50 06
44.39 06
 45.04 08
 Se exches
 45.42 DE
 73.66 08
66.96 08
11.55 V
 79-91 00
 74.86 DG
63.82 DB
 30 -YCMM
 40_42 00-
 31 -YCHRR
 11.45 Y
 11.00 Y
 11.45 V
 11.40 V.
 11.35 Y
 38 OUTVEP
 .-11.20 V
4.373WV/V
 -11.00 Y
 -11.90 v
 -11.66 V
-13.764V/V
 -11.50 Y
 -11.00 Y
 33 QUTYSM
 21.7984/4
 -10.90MY/Y
 -4.833PY/Y
 10.5044/4
 34 -888.15-13
 -11.16HY/V -0 -139.5HY/V
-40.99HV -34.57HV
 -13.74MY/Y
 -12.96HY/Y
 -12.28MV/Y
 -13.21MY/V
 35 PSRR, 18-15
 -11.25MY
 64.05FY
 44.64
 30 XOFF
 03.23MV
 -7.925HY
 -20.23MY
 78.93HY
 -24.75HY
 79.46MV
 74.35MY
 37 10FF
 .
 -4.000NA
 9.400 A
 andu, DS
 55.0044
 40.66WA
 45.40MA
 KOII BE
 ANDU.ES
 APP6.0E
 76.66MA
 -40.1044
 -45.00MA
 -25.40MA
 7011 PE
 20.36MY
 19.09MY
 20.37MY
 50.56MV
2.775MV
 47.99#Y
7.450#¥
 46.98MY
 46 XFTHRU
 4. 930HY
 4.975HY
-3.556HY
 7.47500
 5.600W
 41 YFTHRU
 -7.640WY
 2.42577
 14.50MV
 6-800MV
 3.250#4
 42 PIM
 16.68
 -5 . A 2 GMY
 19.0900
 AS MEML
 22.7299
 MAGE REFERENCE COOR:
 DESERL ARTIOFF
 . . SOURCE TEST SPECIFICATIONS
 SEMERIC TYPE/COMMENTS
 1179
 1179
 1179
 1170
 1170
 PARM []
 DEVICES
 1170
 135 €
 -53 G
 29 C
 145 C.
 -55 C
 NUMB ()
 39 C
 TEMP
```

·. ••

Table 4. AD532 Test Data (cont.)

į

() FILE>	n	0	0	•	u	4
1 "ANY1(-,-)	9.455 V	4,445 V	10.13 V	7.945 V	9.900 V	9.995 V
(-,0) 171AF 5	-31.USMV	-10;45MY	56.60MY	7.300MV	-10.85MV	-56.65MV
3 4AZY1(+,-)	-10.00 V	-10.01 V	+10.03 V	-9.935 V	-9.995 V	-10.12 V
AZY1(-,0)	-n9.0gmv	-38.75MV	21.70mv	-1.400MV	-24.75MV	-58.85MV
3 OUTOFF	-45.15 <b>4</b> 4	-13.35PY	49.40MY	12.60MY	-7.850mv	-48.65MV
6 4AZT1(+,0)	-49.20MY	-14.35hv	47.90HV	0.350mV	-12.05MV	-48.35MY
7 MATT1(-,+)	-10.00 V	-10.07 V	-10.11 V	-9.944 V	-10.03 V	-10.15 Y
# #ART1(0,+)	-40. ugmy	-1.050MV	54.J5#V	76,20mv	4.209PV	-54.40MY
9 MARTI(+,+)	9.244 V	9.990 Y	10.07 V	9.905 V	4.925 V	9.978 V
(-,-) STRAN UI	9.910 V	9,975 V	10.11 V	4.980 A	9.930 V	9,965 Y
11 4WAS(0'-)	-67.50MV	-10.15MV	45.55MV	19,6044	-1.650MV	-36.35MV
14 MAXY2(+,-)	-10.07 V	-10.05 V	-16.66 V	-9.945 V	-10.00 V	-10.13 V
13 =6272(-,0)	-61.35MV	-52,90m4	36.50MV	-5.250HV	-24.00MV	-59.55MV
14 OUTOFF	-45.05NV	-12.30MV -17.50MV	50.45MV 45.55MV	13,49MV 19,75MV	-7.05emv 2.00emv	-46.00MV
15 MAXY2(+,0)	-49.60PV	-10-05 V	-10.07 Y	-9.960 V	-10.05 A	-31.70MV
16 MAXYZ(-,+) 17 MAXYZ(0,+)	-10.03 V -41.28#V	-20.40MY	45.70MV	-2.400MV	-24.65MY	-10.16 V -69.88MV
18 MAEY2(+,+)	9.915 V	9.965 V	10-10 V	7.930 V	9.935 v	7.700 V
19 I10x1	1.605UA	745.0NA	430.0NA	720.0NA	590.0NA	430.0MA
Sx811 05	1-10004	785.004	365.ONA	900-0MA	575.4NA	4L GLONA
21 11871	1.30004	AND . ESD	575.0MA	915.004	585.0NA	480.084
SYMII SS	1'-369UA	700.0MA	635.ONA	910.0MA	SOS. ONA	420.014
23 11821	4.000UA	3.900UA	3.950UA	5.550UA	5.400UA	AUDEELE
24 08CP	-27.50MA	-21.05MA	-13.30MA	-29.45MA	-23.39MA	-15.75MA
-25 OSC#	15.45MA	15.0504	14.4584	21.4504	20.40MA ··	19.10MA
26 ISCP	3.130MA	3.370MA	3.730MA	3.410MA	3.AGGMA	4.200MA
27 ISCH	-3.175MA	-5.425MA	-3.745MA	-3-630MA	-5-360MA	-4.255HA
Se -KCMB&	44,44 08	67.29 08:	66-32- DB	67.63 00	45.49 DB	
50 +XCH88	64-41 DB	66-63 DE .	<b>16.14: 00</b>	6 <del>6</del> .36 06	HALAL DD	the state of
30 -YCHRR	76.39 08	75.00 00	75.44 00°	74 <b>.46</b> 08	75.43 00	70-20-00
31 +4CH48	62.11 06	81.96 OF	80.50 DB	82.44 DB	07-17 DB	79679 DB
32 OUTVAP	10-45 V:	10.78 V	10-00 A	11-20 V	11-25 Y	12-22- A
35 OUTVER	-11.30 V	-10.65 Y	-10.75 V	-11.75 V	-11.25 V	-12-00 V
34 PSPR.15-13	7.427MV/V	-16.61MV/V	-28.JSMY/Y	4.647MV/V	-14.93NV/V	-22.45WY/Y
35 PSNA, 10-LS	-18.34MY/Y	-20.00MY/Y	-21.4384/4	-53.06W4\A	-22.63MY/Y	-53-00HA\A
36 10FF	40.460	18.0584	-50-52HV	~2.150MV	17.37mv	44.5844
37 YOFF	55.05AY	25.55HV	-36.40#4	-4.525AV	12.30MV	33.90HY
	425.0MA	166,684	45.06#4	20.00%	15-00NA	20-2011
39 [IOY 40 XFTHWU	-05.00MA	-75.00NA	-60.DONA	3.000NA -10.13WV	0.000 A	0-000 A
41 YFTHRU	-1 3.95MV 9.645MV	~13.20MV 7.600MV	-14.5 <b>0</b> 87	5.150MV	-0.630AV -0.535×V	~4 <b>.930#</b> 7 <b>.925#</b> V
42 PYML	-51.25HV	-30.72HV	-35. 98#4	-27.45HV	-29.10MY	-32.40#4
43 MINL	3.025HV	225-104	-5-300MV	-1-150HV	-3.389HV	-2_925HV
S S S RADO RE S SUURCE TEST S S S SEMENTO	FERENCE CODE:	OSSERL.ARY:OF	P			
ARM () DEVICES		1146	1100	1181	1101	1161
une () TEMP		<b>59</b> C	129 C	-15 C	S≩: C	125 6
() PILES		40 40 40	•	44 44 4	•	•
: 1 MARY1(-,-)	9,990 V.	10.00 V	10-15 A	10.02 V	10.03 V	19.18 V
2 MARTE (0,-)	-34-36NY	1.000W	20.75MV	18-13MA	30.30mv	66-30HY
3 MAX71(+,-)	-10.07 .V	-10.03 ¥	-10.07 Y	-10.00 V	-10-02 V	-10-10 4
4 MAX71(-,0) 5 OUTOFF	-14-25NV	-84.30NV	-50.66UV	-53.5544	-12.25MY 16.46MY	17.95HV
S QUTOFF • MAXT1(+.4)	-23.46#Y -00.96#Y	-2.400M	26.25MV 27.15MV	3,000W	-4.000W	47,0000
7 MARY1(-,+)	-10-01 V	-10.25W -10.07 V	-10-13 V	-10-07 V	-10-00 Y	17.734V -10.10 Y
	-74647 A	-74641 4	-74644 A	-14641 4		- 24604 4 .

Table 4. (cont.)

```
5 44XY1(0,+)
 -2.450#V
 6.250PV
 38.40MV
 10.35MV
 18.95#V
 39.65MV
 9.990 V
 9.966 V
 4 :48 TT (+,+)
 9.850 V
 9.945 V
 10.08 v
10.11 v
 10.06 Y
 10 MAXTE(-,-)
 10.10 V
 11 -4272(0,-)
 -10.90#4
 -2.000PY
 29.44MV
 1.300MV
 8.750MV
 28.00MY
 14 MAXY2(+,-)
 -4.745 V
 -19.05 v
 -10.12 Y
 -10.05 V
 -19.06 V
 -10.15 V
 -26.45MV
 (0,-)SYKAM &!
 -41.u0mv
 17.00MV
 -14.20MY
 -17.55MV
 5,200my
 14 SUTOFF
 -24.05#Y
 -250.0UV
 31.25my
 3,344HY
 14.70MV
 40.30NY
 15 -AXY2(+,4)
 27.15MV
 4.05umv
 -1.750>
 -13.10MY
 4.30044
 43.25MY
 10 MATY2(-,+)
 -10.04 V
 -10.07 V
 -10.15 V
 -10-13 A
 -10.03 V
 -10.05 V
 0.450mV
1.745 Y
 -4.450my
 21.00mv
 17 MANY2(0,+)
 14.95#4
 56.36MV
 18 -4172(+++)
 9.950 V
 9.985 V
 10.15 V
 10.10 V
 10.01 Y
 is trexi
 480.4MA
 530.0MA
 365.0MA
 1.070UA
760.0NA
 535.0NA
 1.915UA
 1.930UA
 355.9MA
 AUPOS. I
 SKELL OF
 545. OHA
 390.0MA
 1.490UA
 ITRIL IS
 955. UNA
 546. ONA
 355. QNA
 845.0HA
 460,0HA
 1.450UA
 SS TIBAS
 935.UMA
 345.004
 360.UMA
 895.0MA
 450,0MA
 13411 ES
4360 #5
 6.100UA
 3.45QUA
 3.450UA
 5.458UA
 AUPEP.E
 4-190UA
 -24.35MA
 -29.94MA
 -23.30MA
 -15.5544
 -23.20MA
 -15.10MA
 17.10MA
3.735MA
 AMPE. PS
 25 03CM
 18-7584
 16.10MA
 LT. TOMA
 14.70MM
 3.595MA
 26 ISCP
 3.115MA
 3.39504
 3.475HA
 4.266MA
 27 ISCM
 -3-180MA
 -3.425MA
 -3.700MA
 -3-415MA
 -4.230HA
 -3-47 SHA
 50 -1CHAR .
 65.63 08
64.24 08
 67.29 08
 66.45 DB
 72-14 08
 66-66 DB
 45-19-06
 45-17 DA
76-42 DB
 10.47 06
75.22 08
 65.28 06
71.44 06
 29 +ECMMA
 64.64 06
 44-16-00
 73.72 08
 30 -YCHAR
 74.84 08
 73-24 00
 90 26.56
V 95.11
V/VMP6.61-
 31 -YCMMR
 61.19 DB
 62.76 08
 120.0 06
 78.50 DS
 70 J4 00
 12 GUTVSP
 10.95 V
 11.45 V
 10.65 Y
 10.95 Y
 11.20 V.
 -19-46 V
-19-35MV/V
 33 OUTVSP
 -10-44 W
 -11.45 V
 -11-10 A
 -10.70 Y
 34 PSRR, 15-13
 -25.75hv/v
-25.48hv/v
-25.48hv
 14.13HY/Y
 -54-2584/4
 ST-93MA\A
 -17-1944/4
 -21 -33HY/Y
 -22.40NY/Y
 -27.53W/V
--3.63W
 35 PSRR, 18-15
 ~25.26MY/V
~22.47MV

 36 XOFF
 41.4384
 -$4,45W4
10,40M4
 15-30M
 37
 TOFF
 -4.275MY
 -12.00MA
 -47-79
 -42-Janu
 38 110x
 -110.0MA
 LATELMAN
 310-000
 39
 LIOY
 29.00WA
 -3.000MA
 -5-000MA
 40.00MA
 LO-CONA
 -10-00MA:
 40 KFTHRU
 -23.53mv
 -18.52HY
 -14.70MY
 -22.29HV
 -24.43MY
 -29-13114
 5.585MV
-30.15MV
 446244
4458,44-
 41 TETHRU
 5.125mV
 .S.AZSHV
 11.25hv
 4.225PY
 AZ PIML
 -50.44HY
 YMSE, 45-
 -35.17HV
 -39.47MV
 -4.125HY
 45 MINL
 -5.100MY
 -6.00mV
 -4.475HV
 -11.40MV
 -14.25MY
. . . . RAGE REFERENCE CODE: 0532RL.ARTIOFF
. . SOURCE TEST SPECIFICATIONS.
 GENERIC TIPE/COMMENTS
PARM []
 DEVICE>
 5811
 1102
 1102
 1183
 1163
 1183
 92 C
NUMB ()
 TEMPS
 -55 C
 25 C
 125 C
 -55 C
 125 C
 9.970 V
 FILE>
 tì
 0
 Ĭ
 10.05 Y
 10.02 4
 10.07 V
 19.02 V
 1 46271(-,-)
 10.14
 -2.400HY
 2 -AZT1(4,-)
 37.00MY
 24,6624
 30.35hv
 11.40MY
 -4.130MY
 3 MAX71(+,-)
 -9.440 Y
 -10.00 Y
 -10.61 V
 -10.06 Y
 -4.965 V
 -10.10 V
 4 -4271(-,0)
 21.25MV
 -10.00WY
 -14.45HY
 39.50MV
 26.65**
 18.35MV
 40.3000
 -10.05HV
-0.70HV
-0.796 V
-13.25HV
 S OUTOFF
 13.60mV
-16.93mV
 11.29HV
 -22.00NY
 -5.144MY
 6 MARTI (+, 6)
 6.500HV
 51.65RY
 34.85MY
 7 MARY1 (-,+)
 -10.00 4
 -10.07 Y
 -10-15 Y
 -10.13 Y
 -9.990 V
 . -4271(0,+)
 33.55HV
 12.45#4
 -50.00UV
 -0.100NV
 VMDE. DS-
 9-938 Y
 1,165 ¥
 1.750 v
1.764 v
 10.61 V
 10-23 V
 9 MARTI (+,+)
 7,765 Y
 1,105 ×
 10 MARAS(---)
 (-, 0) STEAM [1
 44.35HY
 -1:800m
 -15.10MV
 -23.55HY
 ~29, 90MY
 -1:110 ¥
-5.200#Y
 (-,+)STEAM SI
 -10.05 Y.
 -14-15 A
 -7.405 Y
 -1.176 Y
 -14-11 ¥
 (0,-)STEAM EJ
 -25.20HV
 41.39NV
-4.750NV
 23.35mm
-21.46my
 30.7200
 -15.29NV
47.59NV
 14 QUTQUE
 44.4544
 12.70WV
 44.4500
 44.3584
 15 MARY2(+,0)
 7.900#4
 10.50MV
 54.25hv
```

Table 4. (cont.)

```
-10.05 V
8.800#V
9.995 V
 -10.00 V
 -10.02 V
 -10.12 V
 -4.905 V
 (+,-)SYZAE 61
 -10.14 V
 25.95MV
10.01 V
 (+,0)STEAP
 20.35MV
 17
 -700.0UY
 -15.50MV
 -22.40MV
 10.00 V
 (+,+)SYRAF
 10.05 V
 4.950 V
 14
 10.12 V
 19 IIPX1
 430.JNA
 530.0NA
 350.UNA
 1.205UA
 845.0NA
 530.0MA
 5xP11 05
 495. JNA
 535.04A
 345.0MA
 430.0MA
 1 - 1 75UA
 505.0NA
 21 11871
 ANG. ONA
 535.0NA
 345. ONA
 1-105UA
 435.UNA
 510.0MA
 SVOII SS
 935.0mA
 495. DNA
 340. UNA
 1.200UA
 435.0HA
 515.0NA
 -4.2000A
-30.35MA
 53 11821
 5.900UA
 5.950UA
 5.900UA
 -4.450UA
 -4.750UA
 -23.65PA
 24 OSCP
 +# -30.10PA
 -15.35MA
 -23.55MA
 -15.10MA
 21.70MA
3.960MA
 21.15MA
3.290MA
 25 JSC~
 20.50PA
 19.2504
 AMO4.55
 20.25MA
 3,345#4
 30 LUCP
 4.075MA
 3.440MA
 4.240MA
 -3.950MA
67.19 98
65.45 98
 27 [SC>
 -5.32CMA
 -3.590MA
 -4. U45MA
 -3.640MA
 -4.230MA
 66.46 06
66.57 06
72.62 08
45.35 06
 -40.004
 66.77 DB
65.36 DA
 67.25 00
 66.49 08
 64.33 00
 20
 64.91 D6
72.75 D6
 29 -1CHHH
 65.05 DB
 74.19 06
 75.47 00
 71.50 08
 72.20 06
 34 -TCMAN
 SI -YCHRR
 50.04 08
 44-73 08
 92.15 08
 45-11 00
 47.47 DE
 11.40 V
-11.50 V
 11.55 V
 32 UUTVSP
 11.25 V
 11.30 V
 11,40
 11-46
 -11.55 v
 -10.45
 -11.30 Y
 -11.40 V
 -11.05 V
 33 GUTVSM
 -433.4UY/V
-6.973#Y/Y
 -4-167MAYY
 34 PSRR.15-13
 21.75MV/V
 -7.453MY/Y
 25.98MV/Y
 4.673MY/Y
 -2-150MA\A
 35 PBRR, 18-15
 -5.947MV/V
 -4-520MY/Y
 -1.227HV/V
 36 40FF
 -32.53HV
 -17.66MV
 VHOA. dE-
 -4-45004
 7-625MV
 15-148%
 37
 TOFF
 -48.18MY
 -17.08MV
 -16.90MY
 11.2004
 23.18MY
 30.25#
 36 IIOX
 -65.00MA
 -5.000NA
 5.000MA
 30.40MA
 15.00MA
 25_16NA
 39 1107
 50.00MA
 40.00MA
 5.000MA
 -15.00MA
 0.000 A
 5.000MA
 40,400
 46 AFTHRU
 -20. 324V
 -27.68MY
 -31.JSMV
 50.77MV
 49.42HV
 3.950HV
-46.22HV
 4.475HV
 41 YFTHAU
 4.925MV
 6-750MV
 7.225HY
 0.125HV
 42 PINL
 10.5584
 -36./7MV
 -34.73MV
 13.47MV
 -.....
 LOLDONY
 13-17W6
 45 MINL
 -1.ADOMY
 -LO-ASHY: -
 ~··
 . .
* * * * * ANDC REFERENCE CODE:
 DESERL.ARTERP
= = SOURCE TEST SPECIFICATIONS
= = = GENERIC TYPE/COMMENTS
 1184
125 C
 1184
PARM ()
 DEVICE>
 1184
 1145
 1185
 1145
 TEMP>
FILE>
BMUV
 Ü
 -55 C
 53 C
 -55 C
 15 C
 Las C
 .
 1 44271(-,-)
 14.03 V
 10.05 Y
 19.10 Y
 7.980 Y
 9.970 V
 10.02. V
 23-40MY
10.06 Y
 WEE:01
4 $0.01-
 2 MART1(0,-)
 27.45HV
 14.80MV
 19-10MM
 9.350MY
 -9.780 v
 4.970 V
 4.935 v
 3 MARYI (+,-)
 -9.900 Y
 4 MAXY1(-,0)
 64.55MY
 49,4007
 54.45HY
 29.20MV
 13.50MV
 IN-IOMY
 S OUTOFF
 14.00MV
 100.00
 4.400HV
 9.150MV
35.45MV
 -5.300NY
 -5.200HY
 MARY1 (+, 0)
 72.50#
 59,8000
 63.86MY
 20.05MV
 19-5584
 7 4AXY1(-,+)
 -9.720 Y
 -9.965 Y
 -10.07 V
 -4.935 V
 -9.970 V
 -10-03 Y
 6 MAXT1 (0,+)
 13.40PY
 2.700MY
 1.250MY
 11.50MV
 -6.450MY
 -b. 750HY
 1.765 V
1.760 V
 10.13 V
 9 MARTI (+,+)
 10.03 V
 10.05 V
 1.155 V
 1.995
 10.06 V
 9.970 V
 10 MAXYE(-,-)
 10.05 V
 10.01 V
 v
 -7.050MY
 11 MATT&(0,-)
 -L.ASONY
 3.200MV
 -14.80MY
 -17.20MY
 (-,+)SYZAM 51
 -1,705 Y
 -1.145 Y
 -10.03 Y
 -7.780 Y
 -9.955 Y
 -10.01 Y
 62.65mV
 46.200V
1.3000V
70.500V
 24.55HV
7.000HV
 13 MAIY2(-,0)
 51-20MV
 7.800MV
 9.000M
 1.350mv
78.50mv
 -4.J00HY
 14 OUTOFF
 -6.500MY
 79.500¥
-9.945 ¥
 15 MAX72(+,0)
 47.05HV
-7.765 V
 39.23MY
 33.40HY
 -10.00 Y
 -9.995 Y
 -10.00 Y
 10 MARY2(-,+)
 -10.67 Y
 0.450HV
 17 MARYE(0,+)
 17.90HV
 2.40000
 11.00WY
 -4.450mv
 -1.400W
 10.02 Y
400.004
 10-18 V
 9.955 V
939.00A
919.00A
935.00A
 742-949
742-949
74-96 #
 1.750 V
 18 4AEY2(+,+)
 10.01 V
 979.0MA
925.0MA
 395.00A
395.00A
 630.4MA
 14 IIOM
 SE LIBER
 435. saa
 AV050-1
 55 110AS
57 110A1
 430.0MA
 675.0MA
 925.0MA
 23 11821
 5.350UA
 3.500UA
 3_ASOUA
 5-200UA
```

Table 4. (cont)

			-39 AEMA	-14.45#4	-30.00MA	~23.35MA	-15.00MA
28 0	SCP	-29.00MA .	-45.62#4			20.64#4	19.15MA
25 0	474	19.0044	L9.15M4	17.45MA	21.70M4		
			3.530#4	3.95544	3.460MA	3.700MA	4.170MA
I es	2C.	3.290=4		-3.45544	-3.485MA	-3.715MA	-4.165MA
21 [	3C2	-5.30UMA	-3.540MA			44.33 06	64.61 08
34 -	*C-H#	67.99 08	66.30 DB	-5.33 08	67.76 08		
	LCYAR	66.19 06	64.63 04	64.11 08	65.78 08	64.81 05	<b>63.38</b> 08
			12.32 08	73.72 00	73.00 08	74.03 DS	73.74 D <b>8</b>
30 -	4CMHR	73.04 06		43.41 D#	84.54 00	84.24 08	61.46 06
31 +	+CARh	43.61 08	91.60 04				11.45 V
	IITVSP	11.35 V	11.40 V	V EL.11	11.30 V	11.45 V	
		-11-10 V	-11.65 V	-10.95 V	-11.20 V	-11.40 Y	-10.40 Y
	utvam			-11-82HV/V	16.3984/4	-3.287MV/V	-12.73MV/V
34 P	3PR.15-13	24.5644/4	1.500ma\A		-12.42MV/V	-13.16mv/V	-14.11MY/Y
14 #	SHR, 18-15	-12_J4MV/V	-12.81m4/4	-13.7644/4			-3.450MY
30 1		-22.43MA	-6.950×V	-15.97HY	-12.95MY	-5.400MY	
			4.300MV	-4-135HV	-6.025MY	8.775MY	7.425MV
	uff	-4.025hV		3.DOONA	29.00MA	30.00MA	29.80MA
38 1	LIOX	55.JURA	-5.000MA			25.00MA	5.000MA
39 1	1107	-10.UONA	-40.00MA	0.000 4	10.00MA		20.53HV
	FTHRU	52.53MV	53.70MV	50.33mV	23.10MV	\$5.50WA	
			7.456HV	7.425MV	6-150MV	<b>6.750MY</b>	6.900MA
41 7	rftmau	7.425HV		10.444	1.750HV	-524.8UY	<b>~</b> 6~525₩¥
42 7	PINL	50.POMA	VMEA. 61			-2-175MV	-5_175114
	4 - 44	13_42MV	12.6684	8-304HY	1-700MV	-6401354	- 4 4440 300 0

Table 4. (cont)

R A D C STANDARD LIMIT SET SUMMARY

LIMBUM PROGRAM SUMMARY LIBTING

" PRECEEDING A LINIT VALUE IMDICATES A LIMIT NOT MEGUINEU BY SPEC-THIS IS AN EXTÉNDED LIMIT IMPOSED BY MADE T/E

REFERENCE DION ARRATHOSSZRL, ARVIDEF
SOURCE TEST SPECE

GENERIC TYPE

125C MAX & 125C	700	> 000°C-	MY 400.0MV	· •	700.00V	> 000.6-	A10.004 A1	> •••• >	· >	• >	> 000°0- >	` >	` >	?	> ••••• >	740.002 VI	> • • • • >	A 2.000UA	AU000.5	40000.2 A	V7000.2 V	NA 15.00UA	4 000°0 VI	ANO.00	4.00m	4 0.000 A	1000000	200.00			A 00.02	> •••••	A/AEO. 051 A/AE	5 1/1	2	~ <b>≥</b>	<b>4</b>	` <	ATO.001 AT	> 00 00 >1	140.00% VI
P NIM PL		-10-6	1 - 110. E	1 -400.0	TO	-10.		-	+.6	#		11.01. I	# - T . O.	ā. 9. 7. ~		1.11.	- 1.E	-		-	•••	1 -15.00	1 -30.00	-	-	-	20.05	20.00	1 56.00	20.00		-20.00	-156.0				- T				1 -200.01
Ĭ.			•••••	-						-		-	****	-	-	-	-	-				****		-			-									****	-				
			400.0MV	400.0M	<b>710.01</b>	> ••••	<b>710.01</b>	> = = =	> •••	710.00V	> •••••	490.0H	400.00	<b>780.080</b>	> •••••	<b>10.01</b>	> ••••	4300E-4	4300E-A	4300E	4300E	18.00UA	4	AD. OBMA	4.004.4	4	120.00		20.02	- 120	> 00.0%	> 0.000	/AHO. 081	/ANO	<b>&gt;</b>	>= · · · ·	400.0t	400.0M	100.0M	710.0	A10.00%
355- 6 MIN 1	710	× 07 01 -	-400.0H	VM0.001- 1	-100.0M	-10.4	A	> •••• —	> •••• -	- ************************************	· > 17.01- 1	-400.0M	AM0.001- 1	AND. 001- 1	A -1.01- 1	-100.0M	A ::: -	. V	V :::-	V	4 · · · · ·	1 -15.00UA	1 -30.00MA	4 · · · · ·	V	-1.00m	20.11.01	20:00	20:1: 2	20.11.00	> :: ·	A	-150.0MV/V	1/4H0.05- 1	-100.0MV	-100.0MV	-100.0MA	1 -400.0MA	-100,0MV	>#*******	YNO. 005- 1
DELTA LIMIT				•	•		•	****	•	***		-		•			•			****	-		•					-			•	•			•	-		-			
MAX SO 25C			100.0MV		100.01	> ::::	100.0m	> :::	- · · · · ·	100.00L	> 00.4.	700.00T	100.0M	100.0H	> •••••	100.0M	> :: · ·	4.000.	¥.000€	2.00UA	2.000UA	15.000	V	30.08MA	P.00MA	< :::·	120.00	130.0 00	120.0 00	120.0 01	>	> 1.1.1.	150.0MV/V	~/^X00'05	30.0M	30.02V	Z00,0MA	200.0NA	700.00E	>	<b>******</b>
MIN & 25C		* 51.01.	-10.0AV	-100.0M	-100.0M	> = - = -	-100.00		>	-100,0M	- Fe. 10 V	-100.00	-100.004	-100.0HV	-10.10 V	-100.0M	> •••••	4 :::·			4	-15.00A	-30.00MA	4	- T :: .	4400.4-	21.15	20.05	Se.11 01	21:10	> :.:	~ :	-156	-50.00MVV	-50,00mV	-50.08H	-200.0MA	-200,0MA	-100.0MV	>=	-40.044
TKM/PARAMETER .	MARY I ()	TOTAL COLOR	MANY1()1	OUTOFF	. MANY1 (+, 0)1	MAKY1(-,4)1	MAKY1(0,+)1	1 MAX 11 (+,+)1	1 MAXY2(-,-)1	MANY2(0,-)1	MAKY2(+,-)1	1 MAXY2(-,0)1	DUTOFF	1 MARY2(+, 0)1	MAXY2(-,+)1	1 MAXY2(0,+)1	MAKY2(+,+)1	11011 C	1 11012	IIDVI	11072	1 11011	1 080	1 080	110cm	19CH 1	- KCHHE 1	S SEMEN 1	1 -1CHRR 1		: OUTVEF :	S OUTVER 1	PBBR, 15-131	FBRR, 10-151	XOFF 3	TOFF	1 110x 1	1 110v	T KFTHRU 1	1 TFTMBU 1	t Pant
TXL	- 1		, ~	•	•	_	-	•	-	=	2.5		7	5	2	-	7	-	2	2	~		Ž	52	2	2	77	ž	76	2	32	1	ĭ	<u>.</u>	<b>x</b>	R	Ä	ň	=	₹	7

Table 4. (cont.)

# SECTION III JFET ANALOG SWITCHES MIL-M-38510/111

#### TABLE OF CONTENTS

Para	<u>Title</u>	Page
	List of Figures	III-ii
	List of Tables	III-iii
3.1	Introduction	III-1
3.2	Description of Device Types	III-1
3.3	Test Development	III-1
3.4	Test Results and Discussion	III-3
3.5	Conclusion and Recommendations	III-21
3.6	Bibliography	III-21

#### LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
3.1	Block Diagram	III-2
3.2	Test Circuit	III-4
3.3	Bimodal Distribution	III-8
3.4	Break-Before-Make Test	III-11
3.5	TON Versus TOFF	III-12
3.6	Time Delay Waveforms	III-13

#### LIST OF TABLES

Table	<u>Title</u>	Page
3-1	Device Types	III-1
3-2	Characterization Parameters	III-3
3-3	Electrical Parameter Limits	III-16
3-4	Data Tabulation Summary	III-18

#### 3.1 INTRODUCTION

This section of the report pertains to the characterization of JFET Analog Switches. Analog switches are very similar to a standard mechanical switch. They have higher "on" resistances (ohms vs. milliohms) and cannot handle as much current (milliamps vs. amps) as their mechanical counterpart. However, analog switches have a longer switch life, are smaller in size, and are more reliable and faster (10⁶ operations/sec vs. 200 operations/sec). Table 3-1 lists the JFET analog switches specified for MIL-M-38510/111.

TABLE 3-1 DEVICE TYPES

Device	Generic	Manufacturer	Description
10	181A	Intersil, Siliconix	Dual, 30 ohm SPST switches
02	182A	Intersil, Siliconix	Dual, 75 ohm SPST switches
03	184A	Intersil, Siliconix	Dual, 30 ohm DPST switches
04	185A	Intersil, Siliconix	Dual, 75 ohm DPST switches
05	187A	Intersil, Siliconix	Single, 30 ohm SPDT switches
06	188A	Intersil, Siliconix	Single, 75 ohm SPDT switches
07	190Ä	Intersil, Siliconix	Dual, 30 ohm SPDT switches
08	191A	Intersil, Siliconix	Dual, 75 ohm SPDT switches

#### 3.2 DESCRIPTION OF DEVICE TYPES

The analog switches listed in Table 3.1 are either two or four N-channel junction-type field effect transistors which operate as switches. The block diagram representations are shown in Figure 3.1. The devices are designed with a turn-off time which is faster than its turn-on time to allow a break-before-make action when switching channels. The switch can be activated by using TTL voltage levels on the logic input of the device. The 75 ohm analog switches can handle a +/- 10 volt signal and the 30 ohm switches can pass a +/- 7.5 volt signal from source to drain.

#### 3.3 TEST DEVELOPMENT

The parameters used for characterization of the JFET analog switches are listed in Table 3-2.

#### A. Device Type 01 and 02



#### B. Device Type 03 and 04



# C. Device Type 05 and 06



#### D. Device Type 07 and 08



Figure 3-1 Block Diagram

#### TABLE 3-2 CHARACTERIZATION PARAMETERS

<u>Symbol</u>	<u>Parameter</u>
RDS	Drain to Source (ON) Resistance
I _{S(OFF)}	Source leakage current (OFF)
I _D (OFF)	Drain leakage current (OFF)
$I_{D}(ON), I_{S}(ON)$	Channel leakage current
I _{IL} , I _{IH}	Low, High level input current
Ton, Toff	ON and OFF time
+/- ICC	Positive and negative supply current
$I_{L}$	Logic supply current
I _R	Reference supply current
VCTE	charge transfer error
V _{CT}	Cross talk
v _{ISO}	Channel isolation
t _D	Break-before-make time delay

The testing of all dc parameters was performed on a Tektronix 3270, and the ac parameters were tested using bench-top test equipment. The manufacturer's suggested detail specification formed the baseline for the development of the final specification. The original parameter selection was supplemented with additional parameter categories as determined necessary following investigation of specific system applications. The complete final parameter list is representative of manufacturer's inputs, application engineer requirements and specific Air Force system surveys. The list of parameters which were added to the original suggested specification were crosstalk, isolation, charge transfer error and break-beforemake time delay. The static test circuit for the above parameters is shown in Figure 3-2.

#### 3.4 TEST RESULTS AND DISCUSSION

Drain to Source ON Resistance (RDS)

The ON resistance is measured by applying the drain voltage and -10mA to the source terminal as specified in the slash sheet. A voltage measurement is performed on the source pin, rather than determining the resistance directly. The limit in the slash sheet is specified as a voltage which correlates to the amount of



Figure 3-2 Test circuit (static and dynamic tests) for device types 01 and 02.



Figure 3-2 Test circuit (static and dynamic tests) for device types 03, 04, 07 and 08.



Figure 3-2 Test circuit (static and dynamic tests) for device types 05 and 06.

resistance. An example of this is RDS for device type 01. Drain voltage is -7.5 volts and the limit on the source voltage is -7.8. If the difference between the two voltages is obtained and divided by -10mA, the 30 ohms maximum resistance limit is achieved. An example of a data tabulation and reduction summary recorded from the Tektronix 3270 is shown in Figure 3.3. The figure represents RDS for a test sample of fifteen DG190 devices and reveals a bimodal distribution. Thus type of distribution is common and can be attributed to different manufacturers or possibly the difference between off-the-shelf vs. vendor samples. All data obtained for RDS was well within the specified limits.

#### Source (OFF) leakage current (I_S(OFF))

For source leakage current in the OFF state, set the logic input to the specified voltage in order to open the switch under test. Apply the appropriate voltages to the source and drain and measure the current into the source.

#### Drain OFF leakage current (I_D(OFF))

The Drain (OFF) leakage current is determined in the same manner as  $I_s$ (OFF) except the current into the drain is measured.

# Channel (ON) leakage current $I_D$ (ON), $I_S$ (ON)

Channel (ON) leakage current is determined by closing the switches and applying a voltage to the source and drain. The drain current  $I_D(ON)$  is measured on the first switch and the source current  $I_S(ON)$  is measured on all remaining switches.

#### Input Current (I,, I,H)

The input current is the amount of current associated with each logic input line. Input low current ( $I_{IL}$ ) is measured by applying ground to the logic pin and measuring the current. A 5 volt input is substituted for ground to measure input high current ( $I_{IH}$ ).

# Supply Current (+/- I_C)

The supply current is the amount of current present in the positive and negative supply terminals. The positive and negative supply currents are measured with all logic inputs grounded and repeated with all logic inputs at 5 volts.



USER COMMENT: AUTO HISTOGRAM MODE CENERIC DESCR: DG190AP ANALOG SHITCH SOURCE SPEC: TEMPORARY: DG190AP LOGFILE: JOESIL.LOG:CON

0 TOTAL LIMIT FAILURES

RADC STD HISTOGRAM

FIG. 3.3 **BIMODAL DISTRIBUTION** 

#### Logic Supply Current (I, )

The logic supply current is the amount of current flow into the device's logic supply  $(V_L)$  terminal when it is set to 5 volts. The current is first measured with all logic inputs at ground. The second measure is performed with all logic inputs at 5 volts.

## Reference Supply Current (I_R)

The amount of current flow out of the reference supply  $(V_R)$  terminal of the device is measured for two logic input conditions. The first is with the inputs grounded; the second measurement is performed with the logic inputs at 5 volts. In both cases, the current is measured with the reference supply terminal grounded.

#### Charge Transfer Error (V_{CTF})

For charge transfer error, the source of the switch is grounded and the logic input pin is clocked with a 3 volt 100KHz 50% duty cycle pulse. A 0.01uf load to ground is placed on the drain and the peak to peak voltage present on the drain terminal is measured.

# Cross Talk (V_{CT})

This test is performed only on devices which are monolithic; it does not apply to multi-chip devices. The switches are placed in the closed position. Device type 01, for example, is a dual single pole single throw switch. For this case, a 1 volt peak to peak, 10MHz square wave is placed on source 1, the  $V_{CT}$  peak to peak voltage on drain 2 is measured. The reading can either be in mvp-p or dB. The  $V_{CT}$  in dB is determined by the following equation:

$$dBV_{CT} = -20 \log (V_{OUT}/V_{IN})$$

This test determines the degree of coupling that exists between two adjacent switches in a multi-switch circuit.

#### Channel Isolation (V_{ISO})

To perform the channel isolation test, the switch is placed in the open position and a IVp-p 10MHz square wave is applied to each source in turn. The magnitude of the signal on the corresponding drain is measured; this indicates the

ability of the open switch to isolate between the source and drain. The limit can be expressed in terms of mVp-p or decibels. The  $V_{\mbox{ISO}}$  in db is determined by the following equation:

$$dBV_{ISO} = -20 \log (V_{OUT}/V_{IN})$$

#### Break-Before-Make Time Delay (t_D)

The break-before-make time delay is only performed on device types 05, 06, 07 and 08. The remaining device types do not have the proper switch configuration for this test. The test circuit and waveforms for the break-before-make test are shown in Figure 3.4. A voltage of -7.5 is applied to the source terminals of device types 05 and 07 (-10V is used for device types 06 and 08). A 3 volt, 1KHz square wave with rise and fall times less than or equal to 10ns is applied to the logic input terminal. A load of 1K ohms in parallel with 100pf is placed on the drain of each switch. As can be seen from the figure, the break-before-make time of switch 1 ( $t_{D1}$ ) is measured from the 50% point on the rising edge of the logic input pulse to 90% point of the output pulse ( $V_{O}$  is -7.2 volts for device types 05 and 07 and -9.2V for device types 06 and 08). The measurement of  $t_{D2}$  is made from the 50% point of the input pulse falling edge to the 90% point of the switch 2 output pulse.

Characterization of the JFET (DG180 series) analog switches has revealed interesting information regarding the relationship between T_{ON} and T_{OFF} of opposite state switches being driven by the same driver within a package (break-before-make action). The manufacturer's guarantee of break-before-make action was found to be false for all cases with testing performed at ~55°C (action at 25°C was verified). It was necessary to note this inconsistency in /111 so that users could be made aware of this difference in performance over temperature. The problem arose from the fact that while T_{OFF} basically remained the same across temperature, the T_{ON} was progressively faster as the ambient temperature was lowered (T_{ON} approached T_{OFF}). The break-before-make action is shown in Figure 3.5.

## Turn ON and Turn OFF time (TON, TOFF)

The measurement of  $T_{ON}$  and  $T_{OFF}$  is shown in figure 3.6. The ON and OFF time is a measurement of the amount of time needed to switch the source from 0 to  $+V_S$  and from  $-V_S$  to 0, respectively.





Figure 3.4 Break-before-make test.



 $T_{\mbox{ON}}$  and  $T_{\mbox{OFF}}$  over temperature



- 1. The driver pulse generator shall have the following characteristics:
  - a.  $V_{gen} = 0 \text{ V to 3.0 V}$ .
  - b. Rise time (0.3 V to 2.7v) < 10 ns. c. Fall time (2.7 V to 0.3 V) < 10 ns.
- 2. The source pulse generator shall have the following characteristics:
  - a.  $V_{gen} = -7.5$  V to +7.5 V square wave (device types 01, 03, 05 and 07).
  - b.  $V_{gen} = -10.0 \text{ V to } +10.0 \text{ V square wave (device types 02, 04, 06 and 08)}.$

Figure 3.6 Input-output waveforms for time delay tests.

- 3. For device types 01, 03, 05 and 07:
  - a. V_{source} = +7.5 V for T_{on}.
  - b. V_{source} = -7.5 V for T_{off}.

For device types 02, 04, 06 and 08:

- a. V_{source} = +10.0 V for T_{on}. b. V_{source} = -10.0 V for T_{off}.
- 4. Driver input 1 shall be used to test all switches for device types 03 and 04, switch 1 for device types 05 and 06 and switches 1 and 2 for device types 07 and 08. Driver input 2 shall be used to test all switches for device types 01 and 02, switch 2 for device types 05 and 06 and switches 3 and 4 for device types 07 and 08.



R₁ = 1 kΩ ±5%.  $C_L = 100 \text{ pf } \pm 57 \text{ (} C_L \text{ includes associated)}$ test system capacitance)

Figure 3.6 Input-output waveforms for time delay tests - Continued.

The finalized electrical parameters, conditions and limits for MIL-M-38510/111 are shown in Table 3.3.

An example of Tektronics 3270 test data for device type 07 is shown in Table 3.4. The table reflects the data summary of 15 devices at 25°C.

### Special Problem Parameters

Specific parameters fell into the category of special problem parameters since special consideration had to be given in either their measurement technique or limit determination. These parameters along with their respective problem areas are discussed in the subsequent paragraphs.

Switch leakage in the off state is a critical switch parameter since it is representative of dc (or low frequency) isolation performance. The leakage parameters  $I_S(OFF)$ ,  $I_D(OFF)$ ,  $I_D(ON)$ , and  $I_S(ON)$  exhibited special measurement problems at low temperatures. Although switch performance is capable of leakage measurements of InA or less at room temperature, condensation (frosting) problems at -55 $^{\circ}$ C result in leakage increases that must be accounted for in assigning parameter limit values at this temperature. Typically, leakage performance increases as ambient temperature drops. This real-world manufacturer testing problem resulted in considerably higher limits being assigned to these leakage parameters than were assigned at room temperature.

The turn-off time parameter (T_{OFF}) was redefined. The manufacturer originally suggested that the turn-off point be specified at the 10% mark on the voltage curve. However, electrical characterization of the switches in question showed that the capacitive load attached to the switch output (drain) caused the 10% value to exist at a point far out on the capacitive "tail" curve. Since this capacitive tail varies with the capacitive load value, the switch is actually open long before this 10% value is achieved. A determination was made on this basis for the 90% point on the output curve to be the point of measurement for T_{OFF}.

Charge transfer error  $(V_{CTE})$  was not originally considered a device manufacturering parameter. However, characterization efforts along with application considerations indicate the importance of this parameter in sample-and-hold as well as other applications. Toggling the input driver causes voltage transitions at the gate of the JFET. These transitions result in output (drain) spikes caused by the gate to drain JFET capacitance  $C_{\rm gd}$ . The spiking is a function of the rise time of the transitional voltage at the JFET gate and voltage division of

Characteristic	Symbol	Conditions VL=+5V, VR= GND ±VCC=±15V -55°C <= TA <= 125°C Unless otherwise specified	Device Type	Limits MIN MAX	Units
Resistance		VD= -7.5V, IS=-10mA 2/	01,03	60	Ohme
drain-to-source(on)	RDS	VD= -10V, IS= -10mA 2/	05,07 02,04 06,08	150	Ohme
Source Leakage current (off)	IS(off)	vb=-10v, vs= 10v +vcc= 10v, -vcc= -20v 2/	ALL	-100 100	nA
(000)		VD= -7.5V, VS= +7.5V 2/	01,03	-100 100	Aπ
		VD= -10V, VS= 10V 2/	05,07 02,04 06,08	-100 100	пА
Drain leakage		VD= 10V, VS= -10V	ALL	-100 100	πA
current (off)	ID(off)	+VCC= 10V, -VCC= -20V <u>2/</u> VD= 7.5V, VS= -7.5 V <u>2/</u>	01,03 05,07	-100 100	nA
•		VD= 10V, VS= -10V <u>2</u> /	02,04 06,08	-100 100	πA
Channel leakage		VD= VS= -7.5V 2/	01,03	-200 200	nA
current (on)	ID(on)+ IS(on)	VD= VS= -10V 2/	05,07 02,04 06,08	-200 200	πA
Low Level input current	lil	VIN- GND	ALL	-2501	uA.
High Level input current	IIH	AIM= 2A	ALL	-2 20	uA
Time to turn on	EON	TA= -55°C, 25°C	01,03 05,07	150	nS
		TA= 125 °C	·	300	nS
Time to turn on	tON	TA= -55°C, 25°C	02,04 06,08	250	nS
Time boom off	.0.00	TA= 125°C		350	nS C
Time turn off	tOFF	TA= -55°C, 25°C TA= 125°C	ALL	1 30 200	nS nS
Positive supply current	+1CC	VIN= GND and 5V	01,02 07,08	2.5	mA
			05,06	1.4	mA
		VIN- GND VIN- 5V	03,04 03,04	5 1.7	mA mA
Negative supply current	-ICC	VIN- CND and 5V	01,02 07,08	-8	mA
		VIN- GND	05,06 03,04	-4.8 -8.8	mA Mm
		VIN- SV	03,04	-6.4	πA

TABLE 3.3 Electrical Parameter Limits

Conditions VL= +5V, VR= GND +VCC=±15V -55°C <= TA <= 125°C Device Type Limits Units Characteristic Symbol Unless otherwise specified MIN MAX 01,02,03 BAA. VIN- GND and SV Logic supply 04,07,08 current 5 EA. 05,06 VIN- GND and SV ALL -2.2 BA. IR Reference supply current VCTE VS= GND TA- 25°C 20 æ۷ ALL Charge transfer error f= 10MHz, Vgen= 1 Vpp TA= 25°C VCT 1/ Crosstalk between ALL 60 dB channels Single channel f= 10MHz, Vgen= 1 Vpp VISO TA= 255C 50 dB ALL isolation 05,06 nS Break-before-make τD See figure 10 07,08 time delay

The analog switch shall turn "on" with either a low input (VR<= VIL <= 0.8V) or a high input (2V <= VIH <= VL) as follows.

Notice Tune VIN Switch Off

Device Type	VIN	Switch On	Switch Off
01,02	0.8Vdc	1,2	
·	2.0Vdc		1,2
03,04	0.8Vdc		1,2,3,4
	2.0Vdc	1,2,3,4	
05,06	obvec	2	1
	2.0Vdc	1	2
07,08	0.8Vdc	3,4	1,2
	2.UVdc	1,2	3,4

TABLE 3.3 (cont.) Electrical Parameter Limits

^{1/} For monolithic devices only.

GENERIC DEVICE DESCRIPTION: DG190AP ANALOG SHITCH

PARAMETER	N-MAD	A REAL	•	-		MIN SPEC	ATAC MIN	MEAN OF	STD DEV	MAX DATA	MAX SPEC	
		}	;	Z		LIMIT	VALUE	DATA		VALUE	LIMIT	
ונטר	F -	0		0	۰	O 000 A	555 OUA	878. OUA :	210. OUA	1. 193MA	1. 500MA	• •
ICCH	2 1	0	7	0		O 000 A	555. OUA ::	368 3UA :	20¢. 4UA	1. 175MA	1. SOOMA	••
) IEEL (	F M	Ó	 	0	<b>ព</b>	-5. 000MA :	-3. 860MA :	-3. 447MA :	378. 3UA	-2. 680MA :	O. 000 A	••
IEEH (	F +		4	0	<b>ب</b>	. 000MA	-3. 860MA :	-3. 446MA :	378. 8UA :	-2. 675MA :	O. 000 A	• •
וור ייי	F 10	0	'n,	0	0	₩ 000	2. 815MA :	3. 477MA	308, 8UA :	4. 033MA	4 500MA	•••
HI	1 9	0	•	0		. 000 ₽	2. 815MA :	3. 476MA :	309, 3UA :	4. 030MA	4. 500MA	••
	1 1	0	7	0	<del>-</del> -7	000MA	-1.093MA	-930, 3UA :	93. 15UA :	-750, OUA :	₩ 000 0	٠.
- HE	É 60	~ 0	60	0	<b>?</b> 	- 000MA	-1.093MA	-930, OUA	92. 72UA :	-760, OUA	0.00b A	••
	10	0	9	0	7	250. OUA ::	-60, 75UA	-47, 04UA	8. 375UA	-34 83UA :	O. 000 A	••
11NL2 (	T 01	- 0	0	0	 	250, OUA :	-56. 70UA ::	-45 63UA	7. 941UA	-32, 40JA	O 000 A	••
INI	111	-; 0		0		₩ 000	0.000 A	₩ 000 0	0.000 A	O. 000 ₽		••
I INT C	12 T	-	7	0	0	₩ 000	0.000 A	0 000 A	0.000 A	O. 000 A	10.00NA	••
RDS1 (	T 61 1	20	6	0		: 000 OHMS:	5, 645 DHMS	18, 76 OHMS:	8, 617 OHMS:	23	30, 00 OHMS	ŝ
R052 (	14 1	-	 	0		000 OHMS	5, 615 DHMS:	18, 53 OHMS:	8. 436 OHMS;	26. 45 OHMS:	30.00 DHMS	<u>::</u>
RDS3	151	0	5	0		. 000 DHMS:	5, 725 OHMS:	18, 53 OHMS:	8. 274 OHMS:	25. 35 OHMS:	30, 00 OHMS	<u>::</u>
RDS4	16.1	2 0	6	0		: 000 OHMS:	5. 815 OHMS:	18. 66 DHMS:	8. 211 OHMS:	26. 35 OHMS:	30. 00 OHPI	ŝ
IO(CFF)1	17 T	- O	7	0	•	₩ 000	0.000 A	33 33PA	21. 60PA	60.00PA :	1. 000NA	••
10(CFF)2 (	18 T	<u>۔</u> ٥	60	0		. 000 A	30.00PA	44, 00PA	10. 36PA	60.00PA	1. 000NA	••
ID(OFF)3 (	19 1		•	•		. 000 ₽	30, 00PA	46. 67PA :	11. 75PA	. 60. 00PA	1. 000NA	••
1D(OFF)4	1 20 T	Ñ 0	0	0		₩ 000	0.000 ₽		20. 07PA	60.00PA :	1. 000NA	••
IS(OFF)1 (	21 T	0 2		0		₩ 000	50.00PA	89, 33PA	34, 32PA	150.0PA :	1. 000NA	••
IS((#F)2 (	1 22 T	0 2:	2	0	•	. 000 ₽	60.00PA	98. 67PA	40 51PA :	180.0PA :	1. 000NA	••
IS(0FF)3	23 1	0	Ë	0	<b>o</b> 	₩ 000	50, 00PA	74. 67PA :	16. 42PA	100 OPA	1.000NA	• •
1S(0FF)4 (	1 24 T	ý 0	4	o 		. 000 ₽			11. 46PA	100.0PA	1. 000NA	••
10+15(ON) 1	1 25 T	0	'n	0	•	₩ 000	40 00PA	50, 00PA	5, 345PA :	60, 00PA	2. 000NA	••
10+1S(CN)2(	1 26 T	0	٠ د	0	o 	₩ 000	0.000 A	10. 00PA	14 64PA	30.00PA :	2. 000NA	••
) TD+1S(ON)3(	27 T	0	7	0	•	000 ₽	0.000 A	4. 000PA :	10 S6PA	30, 00PA	2. 000NA	••
10+1S(ON) 4(	1 28 T	~ 0	60	0		₩ 000	0.000 A	0 000 v	0.000 A	0.000 A	2. 000NA	••
10N11	1 29 Ti	0	29 ).	0		: 000 S	SN05 89	96. 85NS	26. 03NS	183, SNS	150, ONS	•
TOFFILL	30 T	ě	0	0	0	S 000	52. 00NS :	\$7 03NS	4 160NS	SN00 29	130. ONS	٠.
TOFF13 (	31 T	0		0	•	: S 000	21. 00NS		3 097NS	71 00NS	130, ONS	••
) EINOL	32 Ti	ю 0	7	•	•	: S 000	27, 00NS		17, 71NS	174. SNS	150, ONS	• •
T0N22 (	33 1	რ 0	<u>ო</u>	0	•	S 000	72. SONS ::		21. 76NS :			••
TOFF 22 (	34 1	ń o	~ •	o 	с 	S 000	52, 00NS		3. 583NS :	64 SONS		••
TOFF 24 (	33.1	č	;	(			41.00		011000			•
	)	,		-	•	0000	23 00NS	SN/1 /C	3, 203NS	SNOS 49	130 ONS	•

Table 3.4 Data Tabulation Summary

 $C_{gd}$  and  $C_{load}$ . The equation representing this action is as follows:

Measurements of this parameter have shown that no significant difference in spike amplitude for a given driver-JFET switch combination exists across the military temperature range. The decision was made to evaluate this parameter at 25°C with the frequency of test to be at initial qualification and at six month intervals.

Single channel isolation ( $V_{\rm ISO}$ ) and crosstalk between channels ( $V_{\rm CT}$ ) were not suggested by manufacturers to be included in the final detail specification. Discussion with users at JC-41 meetings and elsewhere found these parameters to be of importance.  $V_{\rm ISO}$  measures the effectiveness of a single switch in an open state in preventing high frequency ac signals from passing from source to drain.

Investigation has verified that an input to output isolation of 60db at 10MHz is essential and achievable for the DG180 family. A test frequency of 10MHz was selected for the isolation test since many users select DG180 switches for use in this range.

Finally, the break-before-make parameter was added to the detail specification. For switches in opposite states driven by a common driver, break-before-make action is necessary in applications where the sources of two switches cannot be shorted together. Characterization efforts have shown (as previously discussed) that break-before-make action may not occur at -55°C due to a constant turn-off speed over temperature coupled with the decreasing turn-on speed as it approaches -55°C. Appropriate notes were added to the final detail specification to warn the user of this unexpected action for a component commercially advertised as having break-before-make capability.

#### Limit Determination

Upon completion of the final parameter selection list, determination of the electrical limits for the selected parameters was performed. Detailed electrical characterization procedures are required for meaningful values to be obtained.

The concerns for all parameter limits are the same: (1) selection of limits which are specific and accurately represent the component capability, and (2) selection of limits which will be tolerable for the manufacturer during device testing before shipment. The intent of JC-41 committee meetings is to allow adequate technical exchange to balance the concerns of government and industry. The general category of parameter limit assignment is affected by the specific parameter in question, along with electrical characterization findings. The capability of a parameter to function across the military temperature range, as well as the need to perform wide temperature range measurement, is considered in the determination of applicable parameter limits. The frequency of parameter limit testing (100%, lot sample, etc.) is determined after limit selection, and is based on process variations that might surface as part-to-part or lot-to-lot inconsistencies.

The general breakdown of parameter temperature testing and frequency of testing (defined above) is represented as follows:

- (1) All dc electrical parameters are measured across the temperature range on a 100% basis. These include R_{DS} ("on" resistance), all leakages (I_{D(OFF)}, I_{S(OFF)}, etc.), logic input current (I_{IL} and I_{IH}), and power supply currents.
- (2) All ac parameters are measured at 25°C. The following parameters are tested at initial qualification and at six month periodic inspection intervals: V_{CTE} (charge transfer error), V_{CT} (crosstalk), V_{ISO} (isolation), and T_D (break-before-make). These parameters The T_{ON} and T_{OFF} ac parameters are measured 100% at 25°C and lot sample tested at -55°C and 125°C. Refer to MIL-M-38510/111 (Table 2-Page 7 and Table 3-Page 29) and MIL-STD-883°C for numerical subgroup assignments and definitions of the respective subgroup categories.

### Characterization Findings

The parameter and limit selections for the DG180 JFET analog switch family have been determined after an exhaustive in-house characterization effort which considered other parameters in addition to those finally selected. Such areas

included bandpass capability of a closed switch (f+), "ON" resistance variation as a function of analog signal voltage, and "ON" resistance matching tolerance of switches within a given package. These parameters have been rejected either because of their questionable interest to the general population of application engineers, or because they are not critical to device performance or reliability.

In addition to parameter selection and limit determination, the electrical characterization effort included determination of burn-in techniques as appropriate to the total DG180 JFET switch family. Much effort was spent in the determination of these techniques since the DG180 JFET switch family represents the most complex combination of technology requirements and fabrication procedures. Technology involvement includes Standard Bipolar, Schottky, and MOS technologies appear on a single chip. This is further complicated by the fact that this chip drives a JFET device. Considering the fact that this microcircuit is a multi-chip device (driver chips with JFET chips), extreme care must be given to the selection of appropriate burn-in screening techniques to insure reliability for military applications. The selected burn-in configurations were generated from manufacturer input and from results obtained from burn-in test configurations and fixtures developed in-house.

#### 3.5 CONCLUSION AND RECOMMENDATIONS

The analog switches from the various vendors fully meet the requirements of MIL-M-38510/111 when tested.

#### 3.6 BIBLIOGRAPHY

Intersil Catalog, "Hot Ideas in CMOS" (1983/84).

## SECTION IV

## CMOS Analog Switches

## MIL-M-38510/105, /116 and /123

## TABLE OF CONTENTS

		Page
	List of Figures	IV-ii
	List of Tables	IV-iii
4.1	Introduction	IV-1
4.2	Description of Device Types	IV-2
4.4	Test Development	IV-2
4.4	Test Results and Discussion	IV-16
4.5	Conclusion and Recommendations	IV-30
4.6	Bibliography	IV-31

## LIST OF FIGURES

Figure	<u>Title</u>	Page
4.1	Terminal Connections	IV-3
4.2	RDS Test Circuit	IV-18
4.3	RDS(ON) versus $V_{A}$ and Temperature	IV-19
4.4	RDS(ON) versus VA and Power Supply Voltage	IV-20
4.5	IS(OFF) Test Circuit	IV-21
4.6	I _{D(OFF)} Test Circuit	IV-23
4.7	I _{D(ON)} Test Circuit	IV-23
4.8	I _{IL} , I _{IH} Test Circuit	IV-24
4.9	+/-I _{CC} Test Circuit	IV-24
4.10	Input/Output Waveform for Time Delay Test	IV-26
4.11	Isolation Test Circuit	IV-28
4.12	Crosstalk Test Circuit	IV-28
4.13	Charge Transfer Error Test Circuit	IV-28
4.14	Break-Before-Make Test Circuit	IV-29

## LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
4-1	Device Types Specified	IV-1
4.2	Electrical Parameter Limits	IV-10
4.3	Logical Input Threshold	IV-16

#### 4.1 INTRODUCTION

This section of the report pertains to the characterization of CMOS analog switches. The switches possess many benefits, among them are fast switching speeds and very low power dissipation. Table 4.1 list the analog switches specified for MIL-M-38510 /105 /116 and /123. The device types covered by these slash sheets are all TTL input compatible unless denoted otherwise.

TABLE 4.1 DEVICE TYPES SPECIFIED

### / 105 MICROCIRCUIT LINEAR CMOS HIGH LEVEL ANALOG SWITCH WITH DRIVER

DEVICE	GENERIC	MANUF ACTUR ER	DESCRIPTION
01	5040	н, I,S	One-Channel, 75 ohm, SPST Switch
02	5041	H,I,S	Two-Channel, 75 ohm, SPST Switch
03	5042	H,I,S	One-Channel, 75 ohm, SPDT Switch
04	5043	H,I,S	Two-Channel, 75 ohm SPDT Switch
05	5044	H,I,S	One-Channel, 75 ohm DPST Switch
06	5045	H,I,S	Two-Channel, 75 ohm DPST Switch
07	5046	H,I,S	One-Charnel, 75 ohm DPDT Switch
08	5047	H,I	One-Channel, 75 ohm DPST Switch

#### / 116 MICROCIRCUIT, LINEAR, CMOS ANALOG SWITCH WITH DRIVER

DEVICE	GENERIC	MANUFACTURER	DESCRIPTION
01	300	H,I,S	Two-channel, SPST,TTI. Input Compatible
02	301	H,I,S	One-channel, SPDT, TTL Input Compatible
03	<b>3</b> 02	H,I,S	Two-channel, DPST,TTL Inp.t Compatible

04	303	H,I,S	Two-channel, SPDT, TTL Input Compatible
05	304	H,S	Two-channel,SPDT,CMOS Input Compatible
06	305	H,S	One-channel, SPDT, CMOS Input Compatible
07	306	H,S	Two-channel,DPST,CMOS Input Compatible
80	307	H,S	Two-channel, SPDT, CMOS Input Compatible

### /123 MICROCIRCUIT, LINEAR CMOS, NEGATIVE LOGIC ANALOG SWITCH

DEVICE	GENERIC ,	MANUFACTURER	DESCRIPTION
01	300	H,I,S	Dual SPST Switch
02	301	н,І,Ѕ	Quad SPST Switch

* MANUFACTURER CODE : H-HARRIS I-INTENSIL S-SILICONIX

#### 4.2 DESCRIPTION OF DEVICE TYPES

One of the improvements that CMOS analog switches have over JFET switches is that latch-up has been eliminated. The CMOS analog switches covered under MIL-M-38150 /105 possess an analog input signal range of +/-15 volts, very low input and output leakage currents, and high current capability. The devices covered by /116 have low "on" resistance and a fast switching time. Finally, the /123 family devices are low power and have negative logic input. The terminal connections for the device types covered by the three specifications are shown in figure 4.1.

#### 4.3 TEST DEVELOPMENT

The manufacturers' suggested detail specification were used as the baseline document for the development of the final generated military specifications: Additional parameters determined necessary through RADC



Figure 4.1 Terminal Connection /105



Figure 4.1 cont. Terminal Connections /105

## Device type 07





## Device type 08





Figure 4.1 cont. Terminal Connection /105



Figure 4.1 cont. Terminal Connection /105

#### Device types 01 and 05 Case D Case C Case I V, (SUBSTRATE AND CASE) 14 V NCC Dı 13 D2 0, 5 NC ! 12 > NC SIE NC NC CE 1112 GND GND C TOP VIEW TOP VIEW TOP VIEW Device types 02 and 06 Case D Case C Case I V (SUBSTRATE AND CASE) 14 \ V₁ NC C 13 702 12 > NC S₁ (2 1 52 SIL NCC ON CO 1 N NC CE INC NC CE GND C **∄**⊃ ∨₂ GND CT TOP VIEW

Switch states are for logic "1" input (Positive logic)

TOP VIEW

Figure 4.1 cont. Terminal Connection /116

TOP VIEW

#### Device types 03 and 07



#### Device types 04 and 08



Switch states are for logic "l" input (Positive logic)

Figure 4.1 cont. Terminal Connection /116

Device type Ol Case l



Device type 01 Case C IN2 IN_I N C 13 N C GND 12 N C N C \$ 2 D2 Dı VREF <u>v -</u>

Device type 02 Case E



Figure 4.1 cont. Terminal Connection /123

Characteristic	Symbol	Cond	Llons	<del>'T'''''''''''''''''''''''''''''''</del>	Device	210	113	
		unless other	Aise specified	Temperature	type	Hin	Max	Units
Drain - Source	fos.		V _D = -10 V,	Tc = -55°C, 25°C	All	1	75	. 17
"ON" resistance	1	(See figure 3)	V _D * 10 WA	Tc = 125°C	A11	<del> </del>	150	} _
	l	112070 37	15 = -10 mA	TC = -55°C, 25°C TC = 125°C	All		75 150	
	1.	VCC10 V	VD = -7.5 V.	Tc = 55°C, 25°C	All		75	1
		(See	1 s = 10 MA	Tc = 125 °C	All	ļ	150	!
	1	figure 3)	VD = 7.5 V.	Tc = -55°C, 25°C Tc = 125°C	All		150	
Channel "OH" leakage current	ID(OH)	(See figure 4) (See 3.4.1	VS. VD-10 V	Tc = -55°C, 125°C	A11 A11	-200		1. A
	į	tot AIR)	V3:VD: -10 V	Tc = -55°C, 125°C	All	-200	200	
Grain *OFF*	ID(OFF)	(See figure 5)	Vs = -10 V.	Tc = -55°C, 125°C	All	-100	130	
leakage current	-0(0///	(500 3.4.1	VD = 10 V	Tc = 25°C	Ali	1-1	li	1
	ł	for VIN)	VS - 10 V.	TC55°C, 125°C	1-11-	=100	100-	
			V _D = -10 V	TC * 25°C	A11	-1	1	
Source OFF	IS(OFF)	(See figure 6)	VS = 10 V.	Tc = -55°C, 125°C	All	-100	100	Ī
	ł	for VIN)	V ₀ = -10 V	10 = -55°C, 125°C	<del>  711                                  </del>	-100	1180	l
	]	1	AD = 10 A	TC + 25*C	A11	-1	1	ļ
Input current, input voltage low	IIL	AIN . O A	(See figure 7)	Tc = +55°C, 25°C	All	-1 -10	C	-A
	L	<u>i                                      </u>		1	1	1	L	1
Input current, input voltage high	IIH	2 A 2.4 A'	(See figure 7)	TC # -55°C, 25°C	A11 A11	0	10	[
Positive supply	+Icc	VIN - 0 V.	(See figure 8)	Tc * -55°C. 25°C	A11	<del> </del>	12	1
current	"	5 V		TC + 125°C	A11		100	
Negative supply current	-Icc	7 H + 0 V.	(See figure 8)	Tc = -55°C, 25°C	Ail All	-10G		
Logic supply current	+14	VIN . O V.	(See figure 8)	Tc + -55°C, 25°C	All All	:::	10 100	
Reference supply current	118	21 N . O A'	(See figure 8)	Tc = -55°C, 25°C	A.1	-100	1:::	
Turn on time	Lon	(See figure 9)		Tc + -55*C	-}	<del></del>	1776	0.5
	1 ''"			TC . 25.C	1		-50	
	İ	ł		TC + 125*C	}		550	1
Turn off time	1000	(See (1gure 9)		Tc + -55*C	⊣	<del></del>	190	┥
	-011			Tc # 25°C	1		520	
	!	1		TC * 125°C	}	}	400	1
Single channel	VISO	(See figure 10)	Yel HHz Ygem = 1 Vp-p	TC = 25°C	7	50	1	JE.
<u> </u>				1	4		<del> </del>	1
Crosstalk between Channels	VCT .	(See figure 11)	AGEN = 7 Ab-b	Tc * 25 *C	1	1 '5		}
Charge transfer	VCTE	(See figure 12)	VS . GND	TC . 25.C	1		15	EV.
	<u> </u>	ļ,,		1	1	<del></del>	1	<u> </u>
break-before-aake time delay	٤.	(See figure 13)		-55°C ± T _C ± 1:5°C	07			u.>
Griver input	CA	VIN : 0 V	(See 4,4.13)	1:0 + 25.0	ALL	<del> </del>	1 30	<del>!</del>
capacitance		_		_				İ
Capacitanes	c12	(See 4.4.1d)	(awitch off)	Tc = 25°C	7		20	7
	L			<u> </u>	_1	İ	<u> </u>	.1
Switch output apacitance	Cus	(See 4,4,1d)	(awiter off)	TC + 25 *C	1		-0	
Input test	V, AP	C1 + 100 pf	(See 4.5.3)	Tc = 25 °C	4	100	<del> </del> -	<del>                                     </del>
		F2 + 1.5 km		1		1	1	1 .

NOT:

1. The listed resistance limits correspond to the following voltage values

Table 4.2 Electrical Parameter Limits /105

Characteristic	Symbol	Conditions Vcc = +15 V, GND = 0 V	Temperature	Device	Lie	16	Uni
	3,211	Unless Otherwise specified		type	Min	Max	† "
Drain-source ON resistance	RDS	Vp =p10 V, 1s = 10 mA Sec figure 5	TA = -55°C, 25°C TA = 125°C	Ali		50 75	۱ ،
		V _D = 10 V, I _S = -10 eA Sec figure 5	TA = -55°C, 25°C TA = 125°C	All		50 75	
		V _D = -7.5 V, V _{CC} = +10 V, I _S = 10 mA See figure 5	TA = -55°C, 25°C TA = 125°C	All		70 100	
•		V _{CC} = +10 V, V _D = 7.5 V, I _S = -10 mA Sec figure 5	TA = -55°C, 25°C TA = 125°C	All		70 100	
Channel ON leakage current	ID(ON)	VS = VD =-14 V (VIN - see 3.4.1) See figure 6	TA = -55°C, 125°C TA = 25°C	All All	-200 -2	200	nA j
	1	V _S • V _D • → 1 V (V _{1N} - see 3.4.1) See tigure 6	TA * -55°C, 125°C TA * 25°C	All	-100 -1	100	
Drain OFF leakage current	ID(OFF)	V _D = 14 V, V _S = -14 (V _{IN} - see 3.4.1) See figure 9	TA = -55°C, 125°C TA = 25°C	All	-100 -1	100	
		V _D =-14 V, V _S = 14 V (V _{IN} = see 3.4.1) See figure 9	TA = -55°C, 125°C TA = 25°C	All All	-100 -1	100	
Source OFF leakage current	IS(OFF)	V _D = 14 V, V _S = -14 (V _{IN} - see 3.4.1) See figure 10	TA = -55°C, 125°C TA = 25°C	Ali	-100 -1	100	-
		V _D =-14 V, V _S = 14 V (V _{IN} - see 3.4.1) See figure 10	TA = -55°C, 125°C TA = 25°C	All All	-100 -1	100	
nput current input	IIL	V _{IN} = 0 V See figure 8	-55°C =TA =125°C	All	-1		₽.A
nput current input voltage high	IIH	V _{IN} = 5 V See figure 8	-55°C =TA =125°C	01,02,	-1	<b></b>	μA
		VIN = 15 V See figure 8	-55°C =TA =125°C	A11		1	ĄĄ
Positive supply current	*1cc	VIN = 0.8 V See figure 7	TA = -55°C, 25°C	01,02,		0.01	<b>a</b> A
	1		TA = 125°C,	01,02, 03,04	<del>-</del>	0.1	
	1	VIN = 4 V See figure 7	TA = -55°C'	01, 03,04		2.0 2/	
	1		TA = 125°C, 25°C	01,		1.0 3/	
		VIN = 0 V See figure 7	TA = -55°C, 25°C	05,06, 07,08		0.01	
	1		TA = 125°C	05,06,		0.1	-
		VIN = 15 V See figure 7	TA = -55°C, 25°C	05,06, 07,08		1.01	
			TA * 125°C	05,06,	•	5.1	
egative supply current	-Icc	VIN = 0.8 V See figure 7	TA55°C, 25°C	01,02,	-0.01		
	•		TA = 125°C		-0.1		
	1	V _{IN} = 4 V See figure 7	TA = -55°C, 25°C		-0.01		
			TA = 125°C		-0.1		
	1	V _{IN} = 0 V See figure 7	TA = -55°C, 25°C		-0.01		
	}		TA = 125°C	05.06.	-0.1		
		VIN - 15 V See figure 7	TA55°C, 25°C	05,C5, 1	-0.01		
	1	1	TA - 125°C		-0.1		1

See footnotes at end of table-

Table 4.2 cont. Electrical Parameter limits /116

Characteristic	Symbol	Conditions VCC = +15 V, GND = 0 V	Temperature	Device	Limits		Unit
MIST SPEET TO FF		Unless Otherwise specified		type	Min	Max	1
Time to turn ON	CON	See figure 11	TA = -55°C	01,02		260	ne
				05,06		225	•
	1		TA = 25°C	01,02 03,04		300	<b>]</b>
	Ì			05,06 07,08		250	
	ļ	1	TA = 125°C	01,02 03,04		360	}
	]		-	05,06 07,08		290	<u> </u>
Time to turn OFF	COFF	See figure 11	TA = -55°C	01,02 03,04		230	
	l			05,06 07,08		140	} ;
	ļ		TA = 25°C	01,07 03,04		250	
		}		05,06 07,08		150	
	}		TA = 125°C	01,02 03,04		290	
	<u> </u>	<u> </u>		05,06 07,08		160	1
Single channel isolation	V ₁₈₀	f = 1 MHz See figure 12 VGEN = 1 Vp-p	TA = 25°C	All	50		dB
Crosstalk between channels	VCT	f = 1 MHz See figure 13 V _{GEN} = 1 V _{p-p}	TA = 25°C	A11	50		₫₿
Charge transfer error	VCTE	V _S = GND See figure 14	TA = 25°C	Al l		15	<b>#</b> 7
Bresk-before-make time delay	t _D	See figure 13	-55°C =TA = =125°C	02,04 06,08	20		n#
Driver input capacitance	C _{C1}	V _{IN} = 0 V	TA = 25°C	All		6	pf
	C _{C2}	V _{IN} = 15 V	TA = 25°C	Al-1		3.5	•
Switch input capacitance	CIS		TA = 25°C	All		14	pf
Switch output capacitance	cos		TA = 25°C	A11		14	p f
Input test voltage	VZAP	C ₁ = 100 pf, R ₂ = 1.5 k (see 4.5.3)	-55°C =TA = 125°C	A11	400		V

Table 4.2 cont. Electrical Parameter Limits /116

Test	Symbol	Conditions V+ = 15 V, GND = 0 V, V- = -15 V		Device type	Limits		Unit
		unless o	therwise specified		Min	Max	
Switch "ON" resistance	R _{US}	AIN = 0.8 A	TA = -55°C, +25°C	01		70	14
(figure 7)		VS = 10 V I _D = -1 mA	TA = 125°C	7	1	100	"
			TA = -55°C, +25°C	02		175	
			TA = 125°C		{	250	
		V+ = 10 V	TA = -55°C, +25°C	01		100	14
		V- = -10 V	TA = 125°C	]		150	١.
	}	$V_S^{IR} = 7.5 \text{ V}$ $I_D = -1 \text{ mA}$	TA = -55°C, +25°C	02		200	36
			TA = 125°C			250	Ş.
		VIN * 0.8 V VS = -10 V ID = 1 mA	$T_A = -55^{\circ}C, +25^{\circ}C$	01		70	دد
			T _A = 125°C			100	šε
			TA = -55°C, +25°C	02		175	\$4
	}		T _A = 125°C			250	٤٤
	1	V+ = 10 V	T _A = -55°C, +25°C	01		100	١٤
		V- = -10 V VIN = 0.8 V	TA = 125°C	1		150	ŝι
		$V_S^{m} = -7.5 \text{ V}$ $I_D = 1 \text{ mA}$	TA = -55°C, +25°C	02		200	í.
			TA = 125°C			250	٠.
Source "OFF" leakage current (Figure 8)	^I S(QFF)	V _S = 14 V V _D = -14 V V _{IN} = 2.4 V	TA = 25°C	01,02	-2	2	nΑ
			T _A = 125°C		-100	100	nA .
			T _A = -55°C		-100	100	nA
		V _S = -14 V V _D = 14 V V _{IH} = 2.4 V	TA = 25°C	01,02	-č	2	nA
			TA = 125°C		-100	100	n <b>A</b>
			TA = -55°C		-100	100	nΑ
Drain "OFF" leakage current (figure 9)	¹ D(OFF)	V _D = -14 V V _S = 14 V V _{IN} = 2.4 V	TA = 25°C	01,02	-2	2	nΑ
			T _A = 125°C		-100	100	nA
			T _A = -55°C		-100	100	nA
		V _D = 14 V V _S = -14 V V _{IN} = 2.4 V	TA = 25°C	01,02	-2	2	nA
			TA = 125°C		-100	100	nA
			TA = -55°C		-100	100	mΑ

Table 4.2 cont. Electrical Parameter Limits /123

Test	Symbol	Conditions V+ = 15 V, GND = 0 V, V- = -15 V unless otherwise specified		Device type	Limits		Uni
,	3,50			Cype	Min	Max	J 3m1
Channel "Oh" leakaye current (figure 10)	I _D (un)	V _D = V _S = 14 V V _{IN} = 0.8 V	TA = 25°C	01	-2	2	nA DÁ
•			TA = 125°C	01,02	-200	200	nA
	-		TA = -55°C	J	-200	200	nΑ
		VD = VS = -14 V V1N = 0.8 V	V T _A = 25°C	01	-2 -2	2	nA nA
	-		TA = 125°C	01,02	-200	200	nΑ
			TA = -55°C	]	-200	200	nΛ
Low level input current (figure 11)	I _{IL} 1/	V _{IL} = 0.8 V	TA = 25°L	01,02	-0.5	0.5	μА
, rigure 11,		V1H - 2.4 V	TA = 125°C		-1.0	1.0	μA
			TA = -55°C		-1.0	1.0	μA
High level input current (figure 11)	IIH	V _{1L} = 0.8 V V _{1N} = 15 V	T _A = 25°C	01,02	-0.5	0.5	μA
			TA = 125°C		-1.0	1.0	μA
			TA = -55°L	]	-1.0	1.0	μA
Supply current	+1cc	V _{IL} = 0 V (all inputs)	TA = 25°C, 125°C	01,02		1.5	mA
(figure 12)			TA = -55°C			2.0	mA
		V _{IH} = 5 V (all inputs)	TA = 25°C, 125°C	01.02		1.5	mA
			T _A = -55°C			2.0	mΑ
Supply current (figure 12)	-100	V _{JL} = 0 V (all inputs)	T _A = 25°C, 125°C	01,02	-1.5		mA
			T _A = -55°C		-2.0		mΑ
		V _{IH} = 5 V (all inputs)	T _A = 25°C, 125°C	4 ' H	-1.5		r.5
			T _A = -55°£	1 1	-2.0		mA.
apacitance: address	CA	TA = 25 C GND = 0 V f = 1 MHz (see 4.4.1c)	V _{][} = 0 V	01,02		15	μF
apacitance: nput switch	C12	T _L = 25°C UND = U V f = 1 MHz (see 4.4.1c)	V _{IH} = 5 V	01,02		15	j.f

 $[\]underline{1}$ / Input current at one input node.

Table 4.2 cont. Electrical Parameter Limits /123

Test	Symbol	Conditions V+ = 15 V, GND = 0 V, V~ = -15 V	Device type	Limits		Unit
	3,50	unless otherwise specified		Min	Max	
Capacitance: output switch	c _{os}	T _A = 25°C	01,02		20	pF
Off isolation	V _{ISO}	TA = 25°C; f = 200 kHz, Vgen = 1 vp-p (see 4.4.4b)	01,02	60		₫B
Crosstalk between channels	VCT	TA = 25°C, f = 200 kHz, Vyen = 1 vp-p (see 4.4.4b)	U1,02	60		dв
Charge transfer error	VCTE	T _A = 25°C (see 4.4.4b)	01,02	-10	10	mV
Input test voltage	VZAP	C ₁ = 100 pF, R ₂ = 1.5 ku (see 4.5.3)	01,02	400		٧
Turn "ON" time	t(ON)	C _L = 100 pF	01,02		800	ns
		(Figure 13) T _A = -55°C, 25°C			600	ns
Turn "OFF" time	t(OFF)	C _L = 100 pF T _A = 125°C	01,02		650	ns
		$R_{L}^{T} = 1 \text{ k}$ (Figure 13) $T_{A} = -55^{\circ}\text{C}, 25^{\circ}\text{C}$			500	ns

Table 4.2 cont. Electrical Parameter Limits /123

in-house electrical characterization procedures were added. These are crosstalk, isolation, charge transfer error, break-before make time delay, driver input capacitance, and switch input and output capacitances. The final list of tests for MIL-M-38510/105, /116 and /123 are shown in table 4.2. The tests for the three specifications are basically the same, and the discussion of devices throughout the remainder of the report will focus on parts covered by MIL-M-38510/116 (300 series). The switches are placed in either the closed "ON" position or the open "OFF" position using the logic inputs voltages ( $V_{\rm IN}$ ) shown in table 4.3.

TABLE 4.3 INPUT LOGIC THRESHOLDS

DEVICE TYPES	*V _{IN}	SWITCH "ON"	SWITCH "OFF"
01,05	VIL		1,2
	AIH	1,2	
02,06	VIL	2	1
	VIH	1	2
03,07	VIL		1,2,3,4
	VIH	1,2,3,4	••
04,08	VIL	3,4	1,2
	VIH	1,2	3,4

*VIN: device types 01-04 VIL≤0.8v; VIH≥4v device types 05-08 VIL≤3.5v; VIL≥11v

## 4.4 TEST RESULTS AND DISCUSSION

The parameters listed in table 4.2 for MIL-M-38510 /116 were measured using the following test techniques:

Drain to source "ON" resistance RDS is determined by applying a +10mA current to the source and -10V to the drain. The voltage present at the source terminal is measured and RDS is determined using the following equation:

$$RDS = (V_S - V_D)/10mA$$

The test circuit for "ON" resistance is shown in figure 4.2. The test is repeated with a source current of -10mA and a drain voltage of +10V. Each switch within the device is measured.

The variation of "ON" resistance for a closed CMOS switch with respect to voltage variation at the source was examined. The effect was very pronounced when compared to that of a JFET switch under the same conditions. Figure 4.3 displays the switch resistance variation by double humped curves on the graph. It can be seen that the maximum resistance points are generated as the voltages approach the power supply limits (typically 2 to 3 volts less than the supplies). From figure 4.4 it can also be seen that the double humped curves slide upward into increased resistance areas as the power supply voltages drop. As the power supply voltages approach the  $\pm 1/2$ 0 level, the negative analog voltage has a more pronounced effect on the shape of the RDS curve. For this reason RDS "ON" resistance is also tested with the power supply voltages dropped from  $\pm 1/2$ 0 to  $\pm 1/2$ 1 and a drain voltage of  $\pm 1/2$ 2 (source current remains at  $\pm 1/2$ 2 to  $\pm 1/2$ 3. The effect of increasing temperature can be seen in figure 4.3, therefore testing is also performed at  $\pm 1/2$ 3 and  $\pm 1/2$ 5 to verrify the device meets the specified limits.

SOURCE "OFF" LEAKAGE CURRENT (IS(OFF))

The test circuit for source "OFF" leakage current is shown in figure 4.5. The proper logic input voltage is applied to maintain the switch in the "OFF" position and, the current flow present at the source is measured with



$$R_{DS} = \frac{V_S - V_D}{-10 \text{ mA}}$$



Figure 4.2 R_{DS} Test Circuit



Figure 4.3  $R_{DS(ON)}$  versus  $V_A$  and temperature.



Figure 4.4  $R_{DS(ON)}$  versus  $V_A$  and power supply voltage.



1/ Test conditions are from table I.

Figure 4.5  $I_S(OFF)$  Test Circuit

14 volts at the drain and -14 volts at the source. Each switch is placed in the "OFF" position and the current measured. The test is also done with the voltage polarities of the source and drain reversed.

# DRAIN "OFF" LEAKAGE CURRENT (ID(OFF))

The drain "OFF" leakage current is determined in the same manner as I S(OFF) currentdescribed above. The only difference is the amount of current present at the drain terminal in the "OFF" switch is measured. The test circuit is pictured in figure 4.6 .

# CHANNEL "ON" LEAKAGE CURRENT (ID(ON))

The circuit used to determine channel "ON" current is shown in figure 4.7. The figure shows the source and drain are connected together. The current into the sourced-drain combination is measured first with a voltage of -14V applied to source and drain. The measurement is repeated with -14V applied. The logic input voltage is such that the switches are placed in the "ON" position.

## INPUT VOLTAGE, HIGH AND LOW CURRENT (IIH, III)

Input voltage high current,  $I_{IH}$ , is measured at the logic input terminal with the source and the drain open. The current flow present is determined with  $V_{IN}$  set to 15 volts for device types 01-08 and repeated for  $V_{IN}$  set to 5 volts for device types 01-04. The input voltage low current  $I_{IL}$  is measured with Vin set to 0 volts. The test circuit is shown in figure 4.8.

## POSITIVE AND NEGATIVE SUPPLY CURRENT ( +ICC, -ICC)

The circuit used for testing is pictured in figure 4.9. The amount of current at the positive and negative supply terminals is measured with the



Figure 4.6 I_D(OFF) Test Circuit



1/ Test conditions are from table I

Figure 4.7  $I_{D}(ON)$  Test Circuit



Figure 4.8  $I_{IH}$ ,  $I_{IL}$  Test Circuit



1/ Test conditions are from table I.

Figure 4.9  $\pm I_{CC}$  Test Circuit

power supply voltage set to +15 and -15 volts, respectively. The test are performed with various logic input voltages shown in table 4.2.

TURN "ON" , TURN "OFF" TIME (ton, toff)

In order to make the waveforms repeatable, a capacitor and resistor are specified for a load on the drain (CL=100pF includes jig, probe and stray capacitance, and RL=1Kohms). For both the  $t_{\mbox{ON}}$  and  $t_{\mbox{OFF}_{\mbox{\tiny 9}}}$  measurements are taken with the source first set to +10 volts, and then -10 volts. The logic input waveform required to perform this test is shown in figure 4.10. The "ON" time is measured from the 50% point of  $V_{\mbox{\footnotesize{IN}}}$  to the 80% point of Vs; this is also true for the "OFF" time. The 80% point was chosen due to capacitance problems. If the 90% point is selected for the  $t_{\rm OFF}$  measurement, automatic test equipment (ATE) will measure the first downslope of the initial dip which will not represent the proper turn-off time. This would allow  $t_{OFF}$  to appear better than it actually is. The solution is to select a voltage measurement value further down the curve and away from the spiking situation. In the process of doing this, however, a trade off must be made as to how much of a capacitive tail will be acceptable. Thus, for the purpose of ATE compatibility, measurements are made as high on the curve as possible and still be a sufficient amount away from the problem area. For these device types a voltage point of 80% was chosen.

# SINGLE CHANNEL ISOLATION (VISO)

The test circuit is shown in figure 4.11. The amount of isolation afforded by the switch in the "OFF" state is measured by appling a 1 volt peak to peak, 1 MHz sinewave to the source and determining the voltage present across a 1K ohm local resistor connected to the drain. The isolation ( $V_{\rm ISO}$ ) in dB is determined using the following equation:

$$V_{150} = -2010g (V_D/V_S)$$



 $\mbox{\sc MOTES:}$  1. The logic driver shall have the following characteristics:

4.  $V_{LOGIC} = 0$  V to +4 V for parts 01 - 04. VLOGIC = 0 V to +15 V for parts 05 - 08.

b. Rise time (0.4 V to 3.6 V)  $\leq$  10 ns ) Part types 01 - 04 Fall time (3.6 V to 0.4 V)  $\leq$  10 ns Rise time (1.5 V to 13.5 V)  $\leq 20$  ns) Part types 05 - 08 Fall time (13.5 V to 1.5 V)  $\leq 20$  ns)

2. See 3.4.1 for appropriate switching conditions. 3.  $V_{SDURCE} \{V_S\} = *10 \text{ y and } *10 \text{ y for } t_{OM}$ .

VSOUNCE (VS) * +10 V and -10 V for tOFF.

4. Vg * +8 V for +10 V condition in note 3 above.  $V_{\overline{X}}^{-}$  = -8 V for -10 V condition in note 3 above.

Figure 4.10 Input-output waveform for time delay test

## CROSSTALK BETWEEN CHANNELS (VCT)

The setup for load resistors and switch positions for this test is shown in figure 4.12. Crosstalk determines the amount of signal present on the drain of an open switch due to a signal on a closed switch. Apply a 1V p-p, 1MHz sine wave to the source of the "ON" switch and measure the signal at the drain of the "OFF" switch  $V_{\rm CT}$  in dB is found by the following equation:

$$V_{CT} = -20 \log (V_D/V_S)$$

## CHARGE TRANSFER ERROR (V_{CTE})

Charge transfer error indicates the amount of signal present at the drain of an "OFF" switch due to a signal on the logic input terminal. The test circuit input and output waveforms are shown in figure 4.13. A 0.01 $\mu$  capacitor is placed on each drain and a lkhz square wave (tr<=20ns) with a voltage swing of 0 to 4 volts for device types 01-04 (0 to 15 for device types 05-08) applied to the logic input terminal. The measurement is made on the drain terminal as shown in figure 4.13.

## BREAK-BEFORE-MAKE TIME DELAY $(t_D)$

The test circuit and waveforms are shown in figure 4.14. A load resistor (RL=1Kohms) and a load capacitor (Cl= 100pF) are used on the drains to maintain a consistent measurement. As can be seen from the figure the sources are tied first to +10 volts then to -10 volts and the drains are connected to the load. The test is only performed on device types 02,04,06 and 08. The voltage and timing requirements of the logic input signal as well as the measurement points for  $t_{\rm D}$  are pictured in the figure. The break-before make time delay was questionable at -55C for JFET analog switches. This is not the case with CMOS switches; they exhibit a fairly constant time delay over the military temperature range. Therefore  $t_{\rm D}$  is only sample tested at -55C.



Figure 4.11 <u>Isolation test circuit.</u>



Figure 4.12 Crosstalk test circuit.



Figure 4.13 Charge transfer error test circuit.



Figure 4.14 Break-Before-Make Test Circuit

The capacitance parameters tested involved driver input ( $C_{C1},C_{C2}$ ), switch input ( $C_{IS}$ ) and switch output ( $C_{OS}$ ) capacitances. They supply design engineers with necessary information when using the devices in interface applications. The test procedures for measuring these capacitance values are listed in test method 3012.1 of MIL-STD-883. Since the measured values are primarily a function of the fabrication process, the tests are only required for initial qualification and for process changes which affect these values.

#### 4.5 CONCLUSION AND RECOMENDATIONS

Burn-in techniques have also been investigated for the CMOS switch technology. The complexity of the CMOS analog switch family is far less than that of the JFET switch series covered under MIL-M-38510/105, /116, and /123. The device types do not contain multiple technologies, nor are multi-chip or hybrid considerations involved since the devices are strictly monolithic. However, an in-house investigation relating to burn-in techniques was conducted with the results documented in the MIL-M38510/116 detail specification. The circuit shown in the specification are the recommended burn-in circuits. Both JFET and CMOS categories have static, dynamic, and accelerated options available. Requirements directing the use of the options regarding qualification of devices for Classes B and S are documented in the respective detail specifications.

The problem of "ON" resistance variation with analog voltage was discussed at JC-41. Although RADC verified this phenomenon exists, it was determined that the process variations are such that maintenance of process control to obtain the specified electrical limits would be impractical if not impossible. It was decided, however, that inclusion in the detail specification as a design guide would be in the best military interest. All limits determined to be accurate and reasonable by RADC in-house characterization efforts are fully discussed and coordinated at JC-41 meetings.

## 4.6 BIBLIOGRAPHY

- 1. Harris Analog Book (1982)
- 2. Intersil "Hot Ideas In CMOS" Data Book (1983/1984)
- 3. Siliconix Integrated Circuits Data Book (1985)

## SECTION V

## ANALOG MULTIPLEXERS

## MIL-M-38510/190

## TABLE OF CONTENTS

		<u>Page</u>
	List of Figures	V-ii
	List of Tables	V-iii
5.1	Introduction	V-1
5.2	Description of Device Types	V-2
5.3	Test Development	V-2
5.4	Test Results and Discussion	V-7
5.5	Conclusion and Recommendation	V-18
5.6	Bibliography	V-18

### LIST OF FIGURES

Figure	<u>Title</u>	Page
5.1	Functional Diagram	V-3
5.2	Switching Time Test Circuit	V-11
	(Address Input to I/O)	
5.3	Switching Time Test Circuit	V-13
	(Enable to I/O)	
5.4	Break-Before-Make Test Circuit	V-14
5.5	Single Channel Isolation Test Circuit	V-16
5.6	Crosstalk Test Circuit	V-16
5.7	Charge Transfer Error Test Circuit	V-17

# LIST OF TABLES

Table	<u>Title</u>	Page
5-1	Device Type Specified	V-1
5-2	Electrical Parameter Limits	V-19
5-3	Truth Tables	V-6

### 5.1 Introduction

This section of the report deals with the characterizaton of CMOS analog multiplexers/demultiplexers. This device family is very similar to the CMOS analog switch family. The testing philosophy is the same, however test implementation differs due to the different function of the microcircuits. Table 5.1 lists the analog multiplexer/demultiplexer specified for MIL-M-38510/190C.

Table 5.1 Device Types Specified

Device	Generic	Manufacture	Description
01	506,6116	S,I	Single 16-channel MUX/DEMUX
02	506A	Н	Single 16-channel MUX/DEMUX with overvoltage protection
03	507,6216	S,I	Differential 8-channel MUX/DEMUX
04	507A	н	Differential 8-channel MUX/DEMUX with overvoltage protection
05	508A	Н	Single 8-channel MUX/DEMUX with overvoltage protection
06	509A	н	Differential 4-channel MUX/DEMUX with overvoltage protection
07	508,6108	S,I	Single 8-channel MUX/DEMUX
08	509,6208	S,I	Differential 4-channel MUX/DEMUX
Manufactu	rer code S-S	Siliconix I-	Intersil H-Harris

### 5.2 Description of Device Types

The analog multiplexers/demultiplexers covered under MIL-M-38510/190C consist of both single and differential types, with or without overvoltage protection. The functional diagrams for device types 01-08 are shown in figure 5.1. The overvoltage protected device types (02,04,05 and 06) are capable of withstanding a continuous voltage on any input of +/- 20 volts greater than the supply voltages. This protection circuitry should enable the device to withstand signal line surges from other power supplies as well as electro static transients.

### 5.3 Test Development

The analog multiplexer chip can be basically divided into two building blocks, the analog switches and the address logic. The function of both of these blocks can be tested simultaneously if one considers the device as 16 separate switches with all the outputs tied together. The only restriction is that only one switch can be on at a time. Using this model it is possible to measure the parameters listed in table 5.2 (see appendix). Switch "ON" resistances and leakage currents for all the channels are two of the tests. Since each switch is addressed for the aforementioned tests, the decoding logic has been concurrently checked. The truth table for the logic is shown in table 5.3. Specifically, the device would fail the RDS test should the improper input be addressed.

It was decided for the implementation of the switching time tests ( $T_{ON}$  and  $T_{OFF}$ )that only switch 1 and switch 16 would be checked. These switches correspond to an address input logic of all "zeros" or all "ones" (If the device is an eight bit mux, switches 1 and 8 would be used). This is the worst case condition since all of the address lines have to change.

As one would suspect, the break-before-make test is very important. It has direct impact on application (one would not want two of the inputs shorted together). This test can be visualized by superimposing the turning ON of switch 1 and the turning OFF of switch 16, and visa versa. The

### Device types 01 and 02



Figure 5.1 Functional diagrams.

### Device types 03 and 04



Figure 5.1 Functional diagrams - Continued.





Device types 01 and 02

АЭ	A2	Al	AQ.	EN	CHANNEL SELECTED
X	X	X	X	L	HONE
L	L	L	L	н	1
L	L	[ L	н	н	2
L	L	н	Ĺ	н	3
L	L	н	Н	н	4
L	н	L	L	н	5
L	н	L	н	н	6
L	н	н	L	н	7
L	н	н	н	н	8
н	L	L	Ļ	н	9.
н	L	L	н	н	10
н	L	н	L S	н	11
н	L	н	H	н	12
н	н	L	L	н	13
н	н	L	н	н	14
н	н	н	L	н	15
н	н	н	н	н	16

Device types 03 and 04

A2	A1	AQ.	EN	CHANNEL SELECTED
X	1	X	J	NONE
L	L	L	н	1A,!B
L	L	н	н	2A .28
Ł	<b>H</b> :	L	Ħ	3A,3B
L '	н !	d	н	4A.48
н	L,	Ļ	Ħ	5A,58
н	L '	н -	н	86, Aè
н.	н,	L	ਜ	7A.78
н	н	н	rt .	8E, A8

Device types 05 and 07

AZ	Αī	70	EN	CHANNEL SELECTED
1	X	X	L	YONE
L	L	Ł	н	1
L	L	н	H	2
L	н	L	H	3
Ĺ	н	ત	н	4
н	L	L	н	5
н ;	L	н ;	Н	5
н	н	L i	н	7 .
H [	H	H :	н	9

Device types 06 and 08

٢		-		+		_	
	41		40	!	EN	•	CHANNEL SELECTED
	X		X		-		€0HE
	L		ξ.		H		1A.18
	L		4		н		<b>2</b> A, <b>2</b> 3
•	H		_	•	H		22,28
_	н	t	н	:	H		4A . 48

Table 5.3 Truth tables.

break-before-make test is preformed at -55°C on a sample basis. It is interesting to note that both a plus and minus analog voltage is tested for all CMOS switches.

Another switching time associated with the analog multiplexer is the chip enable. This parameter is tested by pulsing the enable pin with the address and input voltage present. By monitoring the output, both the functionality and speed of this parameter is checked.

The device testing was primarily performed with an in-house Tektronix S-3270 Automatic Test System (ATE). Special bench test set-ups were developed to handle selected tests which could not be implemented on ATE equipment due to tester limitations. Parameters tested by bench set-up were the following: crosstalk, isolation and break-before-make.

### 5.4 Test Results and Discussion

The parameters listed table 5.2 (see appendix) were measured by the following techniques:

# Input Clamping Voltage (V_{ICPOS}, V_{ICNEG})

The test is only performed on the device types with overvoltage protection (02,04,05 and 06). For  $V_{\rm ICPOS}$ , 1mA is applied to the enable pin and measure the voltage generated at the enable pin is measured. The same test is also performed on all of the logic inputs. The  $V_{\rm ICNEG}$  test is measured in the same manner except -1mA is applied to the enable and logic pins.

# Input Leakage Current ( $I_{IH}$ and $I_{IL}$ )

High level input leakage current  $I_{\hbox{IH}}$  is determined by applying 4.0 volts sequentially to each address input and measuring the current flow into the

device. Each address input as well as the enable are measured with all unused inputs grounded. Low level input current  $I_{\rm IL}$  is measured in the same manner as  $I_{\rm IH}$  with the exception that 0.8 volts is applied sequentially to each address input and all unused address inputs are tied to 5 volts

Source OFF leakage Current (I_{S(OFF)})

Source OFF leakage current is the amount of current flow into a switch in the open position. The  $I_{S(OFF)}$  measurement is performed by applying 0.8 volts to the enable pin and +10 volts to the source being measured. All remaining unused sources as well as the drain(s) are connected to -10 volts. Measure the current flow into each OFF source sequentially. The test is also performed with -10 volts on the mesured source and +10 volts on the remaining sources and drain(s).

Drain OFF Leakage Current (ID+(OFF), ID-(OFF))

The drain OFF leakage current is the amount of current flow present in the drain while the switch is in the open position. The  $I_{D+(OFF)}$  parameter is determined by appling +10 volts to the drain(s), 0.8 volts to the enable, -10v to the sources and measuring the current flow out of the drain. For I D-(OFF) thevoltage on the sources and drain are reversed and the current flow at the drain(s) is again measured.

Drain ON Leakage Current  $(I_{D(ON)})$ 

The ON leakage current is the amount of current flow into the drain while the switch is in the ON (closed) state. For  $I_{D(ON)}$  connect the drain and each of the sources sequentially to 10 volts, with all unused sources connected to -10 volts. Measure the current flow present at the drain as each switch is closed. The current at the drain is also measured with -10 volts applied to the drain and active source and +10 volts applied to all unused sources.

Overvoltage Protection Drain OFF Leakage Current (ID(OFF) overvoltage)

33 volts are sequentially applied to the sources and 0 volts to the drain(s) for  $I_{D+(0FF)}$  overvoltage. The amount of current is measured at the drain with the enable pin at 0.8 volts (this forces all switches into the opened state). The test is repeated for  $I_{D-(0FF)}$  overvoltage with the sources at -33 volts.

Positive and Negative Supply currents (I+,I-)

The positive and negative supply currents are measured by appling 0 volts to the address lines and +5 volts to the enable pin. The power supplies are set to +15 and -15 volts and all other terminals are disconnected.

Standby Positive and Negative Supply Currents  $(I_{+SBY}, I_{-SBY})$ 

The standby current is determined by applying 0 volts to the address and enable pins, +15 volts to V+, and -15 volts to V-. The amount of current in the V+ and V- terminals is measured to obtain  $I_{+SBY}$  and  $I_{-SBY}$ .

Enable, Address, Output and Input Switch Capacitance (CEN, CA, COS, CIS)

The power supplies V+ and V- are set to 0 volts for all capacitance measurements. The test is performed by measuring the capacitance between the terminal of interest and ground using a capacitance bridge with a 1 MHz sinewave. The following symbols are used for capacitance:

C_{FN} - capacitance between the enable pin and ground.

 $C_A$  - capacitance between the address lines and ground.

Cos - capacitance between the output(s) (drain) and ground.

 $c_{ ext{IS}}$  - capacitance between the inputs (sources) and ground.

The ON resistance RDS1 is determined by placing 10 volts on each source sequentially and forcing 1mA into the drain for device types 01,03 07 and 08 (100uA for device types 02-06). The address logic is stimulated with the values shown in table 5.3 to activate each switch in turn, and the voltage drop between the active source and drain is measured. The resistance is the amount of voltage dropped, divided by the current at the drain. The measurement is also performed with the source voltage equal to -10 volts and the drain current at -1mA for device type 01,03,07 and 08, and -100uA for the remaining devices.

The ON resistance RDS2 is determined in the same manner as RDS1, however the power supplies are lowered from  $\pm 1.5$  volts to  $\pm 1.0$  volts with  $\pm 1.5$  volts applied to the source terminals. The drain currents are lmA and 100uA as defined for the above device types. The measurement is also performed with the source voltage at  $\pm 1.5$  volts.

# Propagation Delay Times: Address Input to I/O $(t_{ON(A)},t_{OFF(A)})$

A typical test circuit for device types 01 and 02 is shown in figure 5.2. The circuits for the other device types are very similar and will not be shown. The only difference is the number of sources (inputs) and drain(s) (outputs). A load resistor of 1Kohm and a capacitor in the range of 95-200pf (large range is needed for ATE equipment) are connected to the output(s). The address lines are connected to a signal source suppling a +4 volt pulse with transition times less than 20ns. For device types 01 and 02, switches 1 and 16 are used for the test (switches 1 and 8 are used for device types 03,04,05 and 07 and switches 1 and 4 for device types 06 and 08). For testing, switch 1 is set to -10 volts, switch 16 is set to ground, and all remaining switches are grounded. A pulse is applied to the address lines and the output pulse is recorded. As can be seen from figure 5.2,  $t_{\rm ON(A)}$  is measured from the 50% point of the input to the 80% of Vc point of the output (Vc is the peak output voltage). The measurement for  $t_{\rm OFF(A)}$  is performed from the 50% point of the falling edge of the input to the 80% of Vc point of

### Device types 01 and 02



Input pulse requirements:  ${}^{V}GEN {}^{a4V}$ THL(1)  a   ${}^{E}TLH(1) \leq 20 ns$ .

DYNAMIC TEST WAVEFORMS

Pigure 5.2 Switching times test circuit and waveforms.

(Address inputs to 1/0)

the output. Further testing is performed with the switch voltages reversed, that is switch 1 is grounded and 16 is at -10 volts. All other switches are grounded.

Propagation Delay Times: Enable to  $I/O(t_{ON(EN)},t_{OFF(EN)})$ 

As in the previous delay time measurement the output load consists of a 1Kohm resistor and 95 to 200pf capacitor. The address lines are connected to ground and a pulse is applied to the enable pin using a signal generator, V GEN at+4V, and rise and fall times < 20nS. Two iterations of  $t_{\rm ON(EN)}$  and t OFF(EN) are performed. The first is with +10 volts connected to all of the switch inputs, the second is with -10 volts connected. The test circuit for the enable to I/O propagation delay is shown in figure 5.3. The input and output waveforms are shown and it can clearly be seen that  $t_{\rm ON(EN)}$  measurement is from the 50% point of  $v_{\rm GEN}$  to the 0.8Vc point of the output. The  $t_{\rm OFF(EN)}$  measurement is performed at the same points only on the falling edge of the output (10 to 0 volt transistion).

Break-Before-Make Time Delay  $(t_D)$ 

For the break-before-make time delay all of the inputs of the device are connected to +10 volts with the address lines connected to a +4 volt pulse generated with transition times less than 20 nS. The output(s) have a 1Kohm load resistor as well as a 95-200pf load capacitor. Since the inputs are at the same potential, the output waveform will contain a small glitch when the address lines are pulsed; this is the break-before- make delay. The test circuit and waveform are shown in figure 5.4. The delay time is measured at the 90% point from ground, and insures a uniform reference point. The testing is repeated with -10 volts connected to the inputs.

Single Channel Isolation  $(V_{ISO})$ 

### Device types 01 and 02



Figure 5.3 Switching times test circuit and waveforms. (Enable to 1/0)



Figure 5.4 Break before make test circuit and waveforms.

This test determines the amount of signal which can leak from an opened switch to the output. For single channel isolation a 1Kohm load is attached to the outputs, and the address lines and the enable are grounded. A one volt peak-to-peak 200KHz sinewave is applied to the inputs by the signal generator ( $V_{\rm GEN}$ ). The test circuit is shown in figure 5.5. With the enable pin at 0 volts all switches are in the open state. The amount of signal present at the output(s) ( $V_{\rm OUT}$ ) is measured and  $V_{\rm ISO}$  is determined by the equation:

VISO=201 og (VGEN/VOUT).

Crosstalk Between Channels (V_{CT})

This test indicates the amount of a signal which passes from an open to a closed switch. The test circuit for crosstalk is shown in figure 5.6. The address lines are connected to ground and a lKohm load is placed on the output(s). The enable pin is set to 5 volts; this will activate switch 1 for device types 01,02,05 and 07 and switches 1A,1B for device types 03,04,06 and 08. A lKohm load is placed on the active switch inputs. All remaining inputs are connected to the signal generator  $V_{\rm GEN}$  (1V p-p 200KHz sinewave). The output peak to peak voltage ( $V_{\rm OUT}$ ) is measured and  $V_{\rm CT}$  is determined by the following equation:

 $V_{CT} = 20\log(V_{GEN}/V_{OUT})$ 

Charge Transfer Error (V_{CTE})

The final test gives an indication of the amount of signal which can be generated at the output(s) due to a signal on the address lines. The test circuit is shown in figure 5.7. In this case the output load(s) consists of a 0.01uf capacitor(s). The input of switch 1 for device types 01,02,05 and 07 (switches 1A and 1B for device types 03,04,06 and 08) are grounded and the remaining inputs are open. The enable pin is set to 5 volts and the address lines are connected to a 0 to 5 volt pulse generator. The output voltage is measured to obtain  $V_{\rm CTF}$ .



Figure 5.5 Single channel isolation test circuit.



Note: The pulse generator has the following characteristics:  $V_{\text{GEN}} = 1V_{p=0}$ ;  2 RR= 200KHz.

Figure 5.6. Crosstalk test circuit.



NOTE: The pulse generator has the following characteristics:  $v_{\rm GEN}^{=-0}$  - 5V

Figure 5.7 Charge transfer error test circuit.

## 5.5 Conclusions and Recommendations

The analog multiplexers/demultiplexers from the various manufacturers fully meet the requirements of MIL-M-38510/1900 when tested.

- 5.6 Bibilography
  - 1. Harris Analog Data Book (1982)
  - 2. Siliconix Integrated Circuits Data Book (1985)
  - Intersil Hot Ideas In CMOS Data Book (1983/1984)
- 5.7 Appendix

Characteristic	fodmy2	Conditions 1/ 2/   Y- # -15 Y, Y+ # +15 Y,   YEN # 4.5 Y, GND # 0 Y	l l Device	Lie	Unit	
	t t	1 -55°C < TA < 125°C 1 Unless otherwise specified	l type	Min	Max	
Positive input clamping voltage	YIC(POS)	ITA = 25°C, Y+ = Y- = 3 Y	1 102,04,05, 106		1.5	Y 1c
Negative input clamping voltage	i     A I C ( MEC )	TA = 25°C, Y* = Y= = 0 Y   IIN = -1 mA	102,04,05, 106	-1.5 	1	 
Imput leakage current 3/	ITIM		417 (	-0.1	1+1.0	A.
Input leakage current 3/	t _{[L}		1 417 1 1	-1.0	-0.1	 
Leakage current into the source terminal of an "OFF" switch	Is(off)		A11	-1     -50	1 50	n <b>A</b>
	{	VS = -[0 V, VEN = 0.3 V   All unused sources to *10 V   IT = 25 C   -55 C \( \) TA \( \) 125 C	ATT	-50	50	
  Leakage current into the   drain terminal of an	(D+(OFF)	IVg = 10 V, VgN = 0.8 V (All unused sources to -10 V	01,02	-20	20	nA
"OFF" switch	, 1	ITA = 25°C	05.06	-10	10	
	Ì	-55°C < TA < 125°C	01,02,	- 500	500	_
	1	1	1 05.07	1-250	250	•
	1	<u>i</u>	36,38	1-125	1 125	1
	} }Io={OFF}	140 -10 4, VEN = 0.3 4	01.02	1 -20	20	-
 	1	IAII unused sources to \$10 V	05.06 07.08	-10	10	<b>-</b> : !
	į	1-55°C < TA < 125°C	11,32,	-500	1 500	-
<b>l</b>	(	1	1 35,34	1-250	: <b>250</b>	
l	1	<u>i</u>	35.38	1-125	1.125	<u> </u>

See footnotes at end of table.

Table 5.2 Electrical Parameter Limits

Characteristic	l   Symmool	Conditions 1/ 2/ Y15 Y, Y15 Y, YEN - 4.5 Y, GNO - 0 Y -55 C < TA < 125 C	Device	Lim	Unit	
	} 	-55°C < T _A < 125°C Unless otherwise specified	i type	Min Max		
eakage current from an	(ID(ON)	Vs = 10 V, Vo = 10 V	01,02	! ! -20_	50	nA
"ON" driver into the switch (drain)		Connect all unused sources  to -10 Y  Ta = 25 C  -55 C < Ta < 125 C	03,34, 05,06 07,08	-10	10	
	ĺ	-\$5°C < TA < 125°C		- 500	1 500 i	•
	t		1 03,04	1-250	7 250 1	-
	1	1	05.07	<u> </u>	11	_
	! .	<u> </u>	06,08	1-125	1 125	-
		V _S ==10 V, V _D = -10 V  Connect all unused sources	01,02	-20	20	-
	}	to 10 Y   Ta = 25°C	05,06	-10	10	
	Ì	-35°C < TA < 125°C	1 01,02,	-500	500	-
	İ		03,04	-250	250	•
	i	ł	05.07	l	11	_
	<u>!</u>		76,08	1-125	125	<u>r</u>
Overvoltage protected, leakage current into the drain terminal of an "OFF" switch	(IO(OFF)	IVS = 33 V, VO = 0 V,	02,04,05,	1-2.0	2.0	ĄĄ
	[ ] ] ]	(  Y _{SN} = -33 Y, Y _D = 0 Y,  Y _{EN} = 0.8 Y	02,04,05, 106	-2.0	2.0	
Positive supply current	(+)	14A = 0 4. 4EM = 5 4	01,03	1	i 14	πA
	1	1 1 1	102.04.05,	l L	2.3	
	} } }	!   	07,08	i	12	l :
legative supply current	[(-)	VA = 0 V. VEN = 5 V	01,03	-14	 	 
	1	1 1 1	102,04,05,	   -1 		!
	1 1	1	07,08	-12	i !	; !
Standby positive supply Current	11+58Y	IVA - 0 V, VEN - 0 V	01,03	i	3.0	TA.
	1 1	[ 	02.04.35.	; !	2.5	! !
	1 1	1	07,08	1	3.5	: :
Standby negative supply current	I - S8 Y	YA - 0 Y. YEN - 0 Y	01,03	i-4.0		í í
	\ 	1	02,34,35,	(-1.0		t C
	1	1	07,08	1-3.5	f	i I

Table 5.2 (Cont.) Electrical Parameter Limits

Characteristic	i i Symbol	1 V	<u>01 t10ns 1/ 2</u> 15 v, v+ . • T 4.5 v, GNO .	5 V. 1	Device	Limits		i Unit
	1	-55°C   Unless	4.5 V. GNO < TA < 125 C otherwise spe	cified	type	Min	Max	ı
Capacitance: Address	ICA		0 V, TA . 25"	c	A11	1	10	ρF
Capacitance: Enable	CEN	Y+ = Y- =     f = 1 MIZ	0 V, TA = 25°	С	All	1	10	pF
Capacitance: Output switch	cos	IV+ . Y			aı	1	90	ρF
	} }	1		) {	02	1	85	1
	1	1		1	03,04		50	
•	! !	1		; {	05,07		1 15	
	) 	 		 	80,00	1	25	
Capacitance: Input Switch	Cis	Y+ = Y- =		1	A11	1	10	
Switch "ON" resistanc	RDS1	145 - 10 V	lig - 1 =A	TA = 25°C	01,03	1	500	.3
	1	1	Í !	TA . 125°C			700	
	1 	i } !	110 • 100 •A	TA = 25°C	02,34	1	1,500	
	1	1	[ ] }	TA - 125°C	ı		2,000	
	} ! !	1 1	{ } !	TA = 25°C	05,06	1	1,500	
	1	1	; ; ;	TA = 125°C			1,300	
	} ! !	! 1	ig = 1 mA	TA = 25°C	07,08	i	400	
	1	!	i	TA = 125°C			500	

See footnotes at end of table.

Table 5.2 (Cont.) Electrical Patameter Limits

Characteristic	Locury	V	15 Y	. Y4	17 - 1 NO -	5 V.	Device	Limits		Unit
		1 -55°C   Unless o	A É	125°C ie spe	cified	type	Min Ma	Max		
Switch "ON" resistance	ROSI	A210 A	10	• -l	34	TA = 25°C	01,03	! ! !	600	а
	)   	j 1 1	j 			TA = 125°C		i i	700	
	 	; ; ;	i Io	<b>-</b> -1	L00 μA	ITA = 25°C	02,04	1 1 1	1,500	
	i 1	i 1 1	i 1			ITA = 125°C		i	2,000	
	 	 	 			TA = 25°C	05,06	i i	1,500	
 	( ) 1	t 1	1			TA - 125°C	 	1	1,300	
	\$ } !	1 1 1	ID		l mA	TA = 25°C	07,08	l l l	400	
	) \ \	j 1 1	1		•	TA - 125°C	 	1	500	
	Rosz			• •	10 A	10 - 1 -	01,03,07, 108	1	1,000	
	   	 	į	<b>!</b>		100 "A	02,04	1	2,400	
]   	   	! !		_		 	05,06	]   	2,200	ı
} 1	 	1 - 10 V.		• •	10 A	10 = -1 mA	101,03,07, 108	1	1,000	
} 	1 1	1				100 .A	02.04	! ! !	2,400	
} 	1 1 !	! 1 }				 	05,36	1	2,200	
Single channel   isolation	Ytso	if a 200 km  See figure	z. Y	GEN	- 1 \	/p-p	AT1	50		18
  Grosstalk between  channels	VCT	f = 200 kH  See figure	z. v	(CEX	• 1 \	(p-p	A	50	1	16
Charge transfer error	YCTE	Y5 - GNO.	544	fig	ure 19	)	All	!	10	. Vir

See footnotes at end of table.

Table 5.2 (Cont.) Electrical Parameter Limits

   Characteristic	Symbol			Device	i Limits		unte
\ \	 			type	Min Max	Max	]
  Greak-Sefore-make  time delay 	to	See figure 16	TA - 25°C	All	5		ns
  Propagation delay  times: Address  inputs to [/0]	ton(A)	R _L = 1 kΩ  C _L = 100 pF  See figures 8.	TA = 25°C	All	1	1.0001	; 
cnannel s		110, 12, and 14	TA = 125°C		1	1,500	
  Enable to 1/0	CON(EN)	IRe a 1 kg ICe = 100 pF ISee figures 9,	TA = 25°C	A11	1	1,000	
 		111, 13, and 15	TA = 125°C			1,500	

i/ Current flowing in either direction between any associated input and output terminals of the switch shall be 30 mA maximum.

Table 5.2 (Cont.) Electrical Parameter Limits

^{2/} Input = source; Output = drain.

^{3/} Input current of one input node.

## SECTION VI

# DARLINGTON TRANSISTOR ARRAY (2000 SERIES)

## MIL-M-38510/141

### TABLE OF CONTENTS

Para	<u>Title</u>	PAGE
	List of Figures	VI-ii
	List of Tables	VI-iii
6.1	Introduction	VI-1
6.2	Description of Device Types	VI-1
6.3	Test Development	VI-1
6.4	Test Results and Data	VI-6
6.5	Conclusions and Recommendations	VI-8
6.6	Bibliography	VI-8
6.7	Appendix	VI-8

## LIST OF FIGURES

Figure	<u>Title</u>	Page
6-1	Transistor Array Schematic (2000 Series)	VI-2
6-2	Transistor Array Static Test Circuit	VI-4
6-3	Transistor Array Dynamic Test Circuit	VI-5

## LIST OF TABLES

Table	<u>Title</u>	Page
6-1	Table of Device Types Specified	VI-1
6-2	Characterization Parameters	VI-3
6-3	Sample Test Data	VI-9

### 6.1 INTRODUCTION

This section of the report reviews the characterization effort for high voltage, high current NPN Darlington Transistor Arrays. Typical applications for the 2000 series darlington transistor array are driving relays, solenoids, lamps, and other devices which have the requirement to be driven from a high voltage, high current source. The 2000 series darlington transistor array is a multi-sourced device with a high DOD system usage. Table I lists the darlington transistor arrays specified for MIL-M-38510/141.

TABLE 1 TABLE OF DEVICE TYPES SPECIFIED

<u>Device</u>	Generic	Manufacturer	Description
01	2001	Sprague	General Purpose, PMOS, CMOS
02	2002	Sprague	14 - 25V PMOS
03	2003	Sprague	5V, TTL, CMOS
04	2004	Sprague	6 - 15V CMOS, PMOS
05	2005	Sprague	High Output TTL

#### 6.2 DESCRIPTION OF DEVICE TYPES

The 2000 series darlington transistor arrays are comprised of seven bipolar silicon NPN darlington pairs which function as inverters. As shown in Figure 1, the emitter of Q1 is connected into the base of Q2 and the collectors of Q1 and Q2 are connected and brought out of the package for the user. The different applications are addressed by changing the components connected to the base of Q1 such as the 7V zener diode, and 10.5K resistor for the 02 device. Furthermore, output protection is achieved with the diodes connected to the collector pair.

#### 6.3 TEST DEVELOPMENT

A list of the darlington transistor array parameters characterized for the respective device types are listed in Table 2.



Figure 1 Darlington Transistor Array Schematic (2000 series)

TABLE 2 CHARACTERIZATION PARAMETERS

<u>Item</u>	<u>Symbol</u>	Parameter
1	Icex	Output leakage current
2	V _{CE} (sat)	Collector-emitter saturation voltage
3	I _{IN} (on)	Input current (on)
4	I _{IN} (off)	Input current (off)
5	V _{IN} (on)	Input voltage (on)
6	h _{FE}	DC forward current transfer ratio
7	$I_{R}$	Clamp diode leakage current
8	٧ _F	Clamp diode forward voltage
9	^t PLH	Turn-on delay
10	^t PHL	Turn-off delay

#### Test Philosophy:

The approach to testing was to test all dc parameters on the LTX77 Analog Microcircuit Test System and the ac parameters on a bench top test circuit. Bench testing of dc parameters was also performed to prove correlation.

### Test Circuits:

The static test circuits are shown in Figure 2 and the dynamic test circuit is shown in Figure 3. All static parameters were measured automatically with the LTX77 Analog Microcircuit Test System. The turn-off delay and turn-on delay parameters were measured on the bench with an oscilloscope due to the limitations of the automatic test equipment utilized.



Figure 2 Transistor Array Static Test Circuit





NOTE: f = 10 KHz Duty cycle = 50%

Figure 3 Transistor Array Dynamic Test Circuit

#### 6.4 TEST RESULTS AND DISCUSSION

For each parameter measured, the yields were excellent with all data well within the specified limits of the specification.

## Output Leakage Current (I_Cex)

The output leakage current measurement was performed by applying 50V to open collectors of the darlington pair and measuring the current across the reverse-biased junction. All the data obtained was well within the specified limit of 10uA (Figure 2a).

### Collector-Emitter Saturation Voltage (V_{CF} (sat))

The collector-emitter saturation voltage was measured under three (3) different collector current conditions ( $I_C = 100 \text{mA}$ , 200 mA, 350 mA). The specified collector current and its respective base current condition were inputted into the darlington pair and the voltage at the output measured to verify that the darlington driver was driven into saturation. All devices passed (Figure 2c).

## Input Current On (I_{IN} (on))

The ON input current parameter was measured by applying a specified input voltage and measuring the current into the device. All devices tested were well within the limit of 650uA, minimum and 1350uA maximum (Figure 2b).

## Input Current Off $(I_{IN} (off))$

The OFF input current parameter was measured by applying a known input current to the base of the darlington pair and then measuring the output voltage to assure that the driver was not in the "on" condition ( $I_c = 500 \text{uA}$ ). If current

measured on the collector output was greater than 500uA, the device was considered "on" and the part failed this specification. All devices passed this test (Figure 2e).

## Input Voltage (on) (V_{IN} (on))

The input ON voltage was measured under three different collector current conditions ( $I_L$  = 200mA, 250mA, 300mA). The specified collector current and the respective input voltage were applied to each driver and the output voltage was measured. If the output voltage measured was less than or equal to 2V, the driver was on and the part passed. All device types passed this parameter (Figure 2d).

### DC Forward Current Transfer Ratio (hFF)

The  $h_{FE}$  for the darlington pair was measured by applying 350mA to the open collector and varying the base input until the voltage measured from the collector to emitter equaled 2V. The DC forward current transfer ratio ( $h_{FE}$ ) was then calculated by the following equation.

$$h_{FE} = I_{C}/I_{B}$$

Figure 2h shows the test circuit. All devices passed.

## Clamp Diode Leakage Current (IR)

The clamp diode leakage current was measured by applying 50V to the COM node (pin 9) and then measuring the reverse-bias leakage current resulting from the clamp diode. Evaluation of the data obtained revealed that the nominal value was an order of magnitude less than the specified limit. All devices passed this parameter. (Figure 2g)

#### Clamp diode forward voltage (V_F)

The clamp diode forward voltage was measured by sourcing 350mA into the collector of the darlington pair. The measured voltage across the diode was the clamp diode forward voltage parameter (Figure 2f). All devices passed this parameter.

# Turn ON Delay (tpi.H); Turn OFF Delay (tpHI)

The turn on and turn off delay times were evaluated using Figure 3. As shown by the waveforms in Figure 3,  $t_{PHL}$  and  $t_{PLH}$  were measured from the 50% point of the input waveform to the 50% point of the output waveform. All device types passed this parameter and were on the average of 300ns faster than the specified limit for both the  $t_{PHL}$  and  $t_{PLH}$  parameters.

#### 6.5 CONCLUSION AND RECOMMENDATIONS

The data obtained for this evaluation showed that the darlington transistor arrays met or were much better than the specifications published by the manufacturer. These devices should meet all the requirements needed for a high power drivers in DOD system designs.

#### 6.6 BIBLIOGRAPHY

Integrated Circuit Engineering Bulletin, Sprague Electric Company (1979).

#### 6.7 APPENDIX

Included in the Appendix are examples of the data obtained during the characterization effort. Data presented was compiled on the LTX77 automatic system and presented in its long form over all three temperatures of -55°C, 25°C, and 125°C.

```
DEVICE 9911
 DEVICE TYPE: 2001
 TEST
 1.0
 0.490 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 1.1
 0.498 UA
 OUT. LEAKAGE CURRENT [1(CEX)];25 DEG. C
 1.2
 0.451 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 1.3
 0.526 UA
 OUT. LEAKAGE CURRENT [1(CEX)]:25 DEG. C
 OUT. LEAKAGE CURRENT [1(CEX)];25 DEG. C
 0.473 UA
 1.5
 0.502 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 1.6
 0.483 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 TEST
 2
 2.0
 1.276 V
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.1
 1.269 V
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.2
 1.261 V
 V(CE)SAT: I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.3
 1.253 V
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.4
 1.245 V
 2.5
 1.263 V
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.6
 1.252 V
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 TEST
 3
 3.0
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 1.052 V
 3.1
 1.048 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.2
 1.043 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.3
 1.039 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.4
 1.034 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.5
 1.044 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.6
 1.938 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 TEST
 4.0
 0.900 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 0.897 V
 4.1
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 0.895 V
 4.2
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 4.3
 0.893 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 4.4
 0.890 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG, C
 4.5
 Q.894 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 4.6
 0.892 V
 V(CE)SAT; I(C)=100MA; I(B) ~250UA; 25 DEG. C
TEST
 6
 6.0
 0.991 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 6.1
 1.313 UA
 6.2
 0.780 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 6.3
 1.183 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 6.4
 1.322 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 0.965 UA
 6.5
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 1.368 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 6.6
TEST
 10
 10.0
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.702 UA
 10.1
 0.384 UA
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
 10.2
 0.529 UA
 DIODE LEAKAGE CURRENT; I(R): 25 DEG. C
 0.559 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.3
 10.4
 0.326 UA
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
 10.5
 0.331 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.6
 0.532 UA
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
TEST
 11
 11.0
 1.462 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.1
 1.470 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.2
 1.465 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.3
 1.456 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 1.443 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.5
 1.629 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
 1.452 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
```

Table 3 Sample Test Data

```
TEST
 12
 12.0
 0.745 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.1
 0.805 UA
 12.2
 0.800 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 0.713 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.3
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.4
 0.645 UA
 12.5
 0.620 UA
 0.568 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.6
TEST
 13
 13.0
 1.321 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.1
 1.310 V
 1.308 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.2
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.3
 1.300 V
 13.4
 1.294 V
 V(CE)SAT; 1(C)=350MA; I(B)=850UA;-55 DEG. C
 1.311 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.5
 1.302 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.6
TEST
 14
 14.0
 1.137 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.1
 1.130 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.2
 1.129 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 1.124 V
 14.3
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.4
 1.121 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.5
 1.130 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.125 V
 14.6
TEST
 15
 15.0
 1.019 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.1
 1.015 V
 15.2
 1.015 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.3
 1.012 V
 15.4
 1.011 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.5
 1.015 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DE64 C
 V(CE)SAT: I(C)=100MA: I(B)=350UA:-55 DEG. C
 15.6
 1.013 V
TEST .
 17
 17.0
 1.359 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 1.563 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 1.195 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 1.522 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.3
 17.4
 1.520 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 1.332 UA
 17.6
 1.445 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
TEST
 21
 21.0
 0.906 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 0.705 UA
 DIODE LEAKAGE CURRENT; 1(R); -55 DEG. C
 0.871 UA
 21.2
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 0.757 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.4
 0.521 HA
 21.5
 0.532 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.6
 0.895 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
TEST
 22
 22.0
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.668 V
 22.1
 1.660 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.2
 1.659 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.639 V
 22.3
 22.4
 1.632 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.5
 1.641 V
 1.644 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.6
```

```
TEST
 23
 23.0
 1.270 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 1.186 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 1.186 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.3
 1.154 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.4
 1.092 UA
 23.5
 1.075 UA
 23.6
 0.926 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.223 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.216 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.203 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.194 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.4
 1.184 V
 24.5
 1.196 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.191 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 0.949 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 0.945 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 0.937 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 0.932 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 0.927 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.5
 0.934 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.6
 0.930 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
TEST
 26
 26.0
 0.756 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.1
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.753 V
 26.2
 0.750 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.747 V
 26.3
 0.744 V
 26.4
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.748 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
 0.747 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
TEST
 28
 28.0
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 2.155 UA
 28.1
 1.640 UA
 28.2
 2.010 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.3
 1.798 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 1.579 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.5
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 1.930 UA
 28.6
 1.307 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
TEST
 32
 32.0
 1.347 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.1
 1.046 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.2
 0.723 UA
 32.3
 0.623 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.4
 0.832 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.5
 0.813 UA
 DIODE LEAKAGE CURRENT; 1(R); 125 DEG. C
 32.6
 0.586 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
TEST
 33
 33.0
 1.651 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.1
 1.612 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.2
 1.594 V
 33.3
 1.574 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.562 V
 33.5
 1.562 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
 1.376 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
```

```
TEST
 12
 12.0
 0.719 UA
 OUT. LEAKAGE CURRENT [I(CEX)]; -55 DEG. C
 12.1
 0.844 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.2
 0.702 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.3
 0.691 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.4
 0.595 UA
 12.5
 0.606 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 0.770 UA
 12.6
TEST
 13
 13.0
 1.318 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.1
 1.311 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.2
 1.304 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.292 V
 13.3
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.4
 1.292 V
 13.5
 1.291 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.6
 1.291 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
TEST
 14
 14.0
 1.129 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.1
 1.123 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.2
 1.118 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.3
 1.111 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.4
 1.111 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.5
 1.111 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.6
 1.111 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
TEST
 15
 15.0
 1.009 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.1
 1.006 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.2
 1.002 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.3
 0.999 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 0.998 V
 15.4
 ♥(CE)SAT;I(C)=100MA;I(B)=350UA;-55 DEG. C
 0.998 V
 15.5
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.6
 0.998 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
TEST
 17
 17.0
 1.904 UA
 IN FUT CURRENT WITH DEVICE OFF; -55 DEG. C
 2.157 UA
 17.1
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 1.159 UA
 INPUT CURRENT WITH DEVICE OFF: -55 DEG. C
 1.154 UA
 17.3
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 1.317 UA
 17.4
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 1.355 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 1.607 UA
 17.6
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
TEST
 21
 21.0
 1.130 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 0.353 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 0.392 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 21.3
 0.905 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.4
 0.716 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 0.216 UA
 21.5
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.6
 0.400 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
TEST
 22
 22.0
 1.691 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.1
 1.677 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.2
 1.675 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.659 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.4
 1.655 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.5
 1.655 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.6
 1.655 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
```

```
TEST
 23
 1.500 UA
 23.0
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 1.373 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 1.411 UA
 23.2
 23.3
 1.266 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.4
 1.335 UA
 23.5
 1.160 UA
 23.6
 1.173 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.225 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.218 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.201 V
 1.193 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.182 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.4
 24.5
 1.193 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.186 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 0.950 V
 V(CE)SAT: I(C)=200MA: I(B)=350: UA:125 DEG. C
 0 135 V
 25.1
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 0.935 V
 V(C&)SAT; I(C)-200MA; I(B)=350; UA; 125 DEG. C
 25.3
 0.930 V
 V(CE)SAT · I(C)-200MA; I(B)=350; UA; 125 DEG C
 25.4
 0.924 V
 V(CE)SAT; I(C)=200MA; I(B)=350: NA:125 DEG. C
 25.5
 U.: 29 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.6
 0.926 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 26
 26.0
 0.755 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.1
 0.752 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.747 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.2
 0.744 V
 26.3
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.741 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.743 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
 0.741 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
TEST
 28
 28.0
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 2.345 UA
 28.1
 2.013 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 2.322 UA
 INPUT CURRENT WITH DEVICE OFF: 125 DEG. C
 28,3
 1.809 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 1.795 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 2.019 UA
 28.5
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.6
 1.524 UA
 INPUT CURRENT WITH DEVICE OFF: 125 DEG. C
TEST
 32
 32.0
 1.500 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.1
 1.056 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.694 UA
 32.2
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.3
 0.661 UA
 DIODE LEAKAGE CURRENT: I(R): 125 DEG. C
 32.4
 0.990 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.5
 0.904 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.6
 0.503 UA
TEST
 33
 33.0
 1.660 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.1
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.621 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.2
 1.606 V
 33.3
 1.584 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.571 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 33.5
 1.571 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
 1.388 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
```

```
TEST
 8
 8.0
 1.478 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.1
 1.419 V
 VOLT. AT INPUT; V(IN)ON-12.4V; 25 DEG. C
 8.2
 1.425 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.3
 1.432 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.4
 1.472 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.5
 1.408 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.6
 1.437 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 TEST
 9
 9.0
 1.614 V
 VOLT. AT INPUT; V(IN) ON=13V; 25 DEG. C
 9.1
 1.545 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 9.2
 1.550 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 9.3
 1.555 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 9.4
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 1.607 V
 9.5
 1.531 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 9.6
 1.564 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
TEST
 10
 10.0
 1.002 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.1
 0.954 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.2
 0.813 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.3
 0.348 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.394 UA
 10.4
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.5
 0.775 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.6
 0.721 UA
TEST
 11
 11.0
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.844 V
 11.1
 1.571 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.2
 1.564 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.3
 1.558 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 1.566 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.5
 1.535 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
 1.539 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
TEST
 12
 12.0
 2.750 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.1
 OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
 2.737 UA
 12.2
 2.871 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.3
 2.891 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.4
 2.811 UA
 12.5
 2.980 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.6
 3.096 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
TEST
 13.0
 1.446 V
 V(CE)SAT;I(C)=350MA;I(B)=850UA;-55 DEG. C
 13.1
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.397 V
 13.2
 1.398 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.3
 1.401 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.4
 1.428 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.5
 1.389 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.6
 1.414 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
TEST
 14
 14.0
 1.205 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.1
 1.180 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.2
 1.180 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.181 V
 14.3
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.4
 1.196 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.5
 1.175 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.6
 1.189 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
```

```
TEST
 15
 15.0
 1.049 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.1
 1.036 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA:-55 DEG. C
 15.2
 1.036 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.3
 1.037 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.4
 1.044 V
 15.5
 1.034 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.6
 1.041 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
TEST
 16
 16.0
 1013.262 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.1
 1013.262 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.2
 971.700 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 16.3
 988.325 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.4
 997.825 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.5
 980.013 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 980.013 UA
 16.6
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
TEST
 17
 17.0
 3.537 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 3.327 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 3.226 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.3
 3.358 UA
 INPUT CURRENT WITH DEVICE OFF: -55 DEG. C
 17.4
 2.979 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 3.825 UA
 17.6
 3.459 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
TEST
 18
 18.0
 1.350 V
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.1
 1.321 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.2
 1.322 V
 18.3
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 1.324 V
 18.4
 1.340 V
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 18.5
 1.315 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.6
 1.331 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
TEST
 19
 19.0
 1.464 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.1
 1.431 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.2
 1.432 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.3
 1.435 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.4
 1.456 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.5
 1.425 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.6
 1.445 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
TEST
 20
 20.0
 1.582 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 20.1
 1.543 V
 VOLT. AT INPUT; V(IN)ON=18V; -55 DEG. C
 20.2
 1.543 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 20.3
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 1.545 V
 20.4
 1.572 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 20.5
 1.535 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 20.6
 1.558 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
TEST
 21
 21.0
 3.594 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 2.993 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 3.109 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 2.826 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.4
 2.487 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.5
 2.645 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 4.154 UA
 21.6
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
```

```
TEST
 22
 22.0
 1.802 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.1
 1.774 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.2
 1.770 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.769 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.4
 1.793 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.5
 1.747 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.6
 1.782 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 TEST
 23
 23.0
 1.311 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 1.177 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 1.184 UA
 23.3
 1.124 UA
 23.4
 1.151 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.5
 1.203 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.6
 1.178 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.383 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.313 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.310 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.314 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.4
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 1.360 V
 24.5
 1.288 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.325 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 1.041 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 1.002 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 1.000 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 1.001 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 1.028 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.5
 0.988 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.6
 1.008 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
TEST
 26
 26.0
 0.807 V
 V(CE)SAT; I(C)=100NA; I(B)=250; UA; 125 DEG. C
 26.1
 0.788 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.2
 0.786 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.3
 0.787 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.800 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.781 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
 0.790 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
TEST
 27
 27.0
 768.255 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.1
 784.879 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.2
 789.629 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.3
 774.192 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 742.130 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.5
 765.879 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.6
 787.254 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
TEST
 28
 28.0
 2.931 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.1
 2.265 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 2.558 UA
 INPUT CURRENT WITH DEVICE OFF: 125 DEG. C
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.3
 2.324 UA
 28.4
 2.047 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.5
 2.254 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.6
 1.699 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
```

```
TEST
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.0
 1.257 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.1
 1.213 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 1.210 V
 29.2
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 1.213 V
 29.3
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.4
 1.242 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 1.197 V
 29.5
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.6
 1.219 V
TEST
 30
 VOLT. AT INPUT; V(IN) ON=11.4V; 125 DEG. C
 1.441 V
 30.0
 VOLT. AT INPUT; V(IN) ON=11.4V; 125 DEG. C
 1.385 V
 30.1
 VOLT. AT INPUT; V(IN) ON=11.4V; 125 DEG. C
 1.383 V
 30.2
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 30.3
 1.387 V
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 1.423 V
 30.4
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 1.365 V
 30.5
 1.395 V
 30.6
 31
TEST
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.0
 1.569 V
 1.504 V
 31.1
 VOLT. AT INPUT; V(IN) ON=13V; 125 DEG. C
 31.2
 1.500 V
 VOLT. AT INPUT; V(IN) ON=13V; 125 DEG. C
 1.503 V
 31.3
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 1.549 V
 31.4
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 1.480 V
 31.5
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 1.512 V
 31.6
TEST
 32
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.0
 1.461 UA
 DIODE LEAKAGE CURRENT; 1(R); 125 DEG. C
 1.185 UA
 32.1
 DIODE LEAKAGE CURRENT; 1(R); 125 DEG. C
 32.2
 1.435 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 1.359 UA
 32.3
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 Q.974 UA
 32.4
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.951 UA
 32.5
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 1.403 UA
 32.6
TEST
 33
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.840 V
 33.0
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.775 V
 33.1
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.770 V
 33.2
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.760 V
 33.3
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 1.806 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.716 V
 33.5
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
 1.749 V
```

DEVICE TYPE: 2002

DEVICE 1673

```
TEST
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.0
 1.496 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.1
 1.436 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 1.444 V
 8.2
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 1.447 V
 8.3
 8.4
 1.495 V
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 1.421 V
 8.5
 VOLT. AT INPUT; V(IN)ON=12.4V; 25 DEG. C
 8.6
 1.454 V
TEST
 9
 VOLT. AT INPUT; V(IN) ON=13V; 25 DEG. C
 9.0
 1.637 V
 9.1
 1.563 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 1.575 V
 9.2
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 1.580 V
 9.3
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 9.4
 1.636 V
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 1.546 V
 9.5
 VOLT. AT INPUT; V(IN)ON=13V; 25 DEG. C
 1.587 V
 9.6
TEST
 10
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 1.326 UA
 10.0
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.469 UA
 10.1
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.2
 0.434 UA
 0.917 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.3
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.761 UA
 10.4
 0.272 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.5
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.424 UA
 10.6
TEST
 11
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.0
 1.912 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.824 V
 11.1
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.826 V
 11.2
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.830 V
 11.3
 1.891 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.794 V
 11.5
 1.829 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
 12
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.0
 2.090 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 1.945 UA
 12.1
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.2
 1.876 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 1.900 UA
 12.3
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 1.868 UA
 12.4
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 2.048 UA
 12.5
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 2.048 UA
 12.6
TEST
 13
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.0
 1.450 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.405 V
 13.1
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 1.405 V
 13.2
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 1.412 V
 13.3
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 1.447 V
 13.4
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.403 V
 13.5
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.6
 1.424 V
TEST
 14
 V(CE)SAT; I(C)=200MA; 1(B)=550UA; -55 DEG. C
 14.0
 1.212 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.187 V
 14.1
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.187 V
 14.2
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.3
 1.190 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.209 V
 14.4
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.5
 1.185 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.197 V
 14.6
```

```
TEST
 15
 15.0
 V(CE)SAT;I(C)=100MA;I(B)=350UA;-55 DEG. C
 1.056 V
 15.1
 1.044 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.2
 1.043 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.3
 1.045 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.4
 1.054 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.5
 1.042 V
 1.048 V
 15.6
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
TEST
 16
 16.0
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 964.575 UA
 16.1
 988.325 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.2
 970.513 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 1002.575 UA
 16.3
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.4
 1002.575 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.5
 997.825 DA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.6
 950.326 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
TEST
 17
 17.0
 2.501 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 2.518 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 2.093 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.3
 2.510 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.4
 2.524 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 2.470 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.6
 2.892 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
TEST
 18
 18.0
 1.359 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.1
 1.331 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 18.2
 1.330 V
 18.3
 1.334 V
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 18.4
 1.357 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.5
 1.329 V
 VOLT. AT INPUT; V(IN) ON=16.8V; -55 DEG. C
 1.341 V
 VOLT. AT INPUT; V(IN)ON=16.8V; -55 DEG. C
 18.6
TEST
 19
 19.0
 1.476 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.1
 1.441 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.2
 1.439 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.3
 1.447 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 1.474 V
 19.4
 VOLT. AT INPUT; V(IN) ON=17.4V; -55 DEG. C
 19.5
 1.438 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 1.454 V
 VOLT. AT INPUT; V(IN)ON=17.4V; -55 DEG. C
 19.6
TEST
 20
 20.0
 1.593 V
 VOLT. AT INPUT; V(IN)ON=18V; -55 DEG. C
 20.1
 1.553 V
 VOLT. AT INPUT; V(IN)ON=18V; -55 DEG. C
 20.2
 1.552 V
 VOLT. AT INPUT; V(IN)ON=18V; -55 DEG. C
 20.3
 1.558 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 20.4
 1.590 V
 VOLT. AT INPUT; V(IN)ON=18V; -55 DEG. C
 20.5
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
 1.551 V
 20.6
 1.571 V
 VOLT. AT INPUT; V(IN) ON=18V; -55 DEG. C
TEST
 21
 21.0
 3.032 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 2.148 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 2.028 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 2.342 UA
 21.4
 2.224 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.5
 1.716 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.6
 2.325 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
```

```
TEST
 22
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.0
 1.873 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.830 V
 22.1
 1.823 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.2
 1.833 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 22.4
 1.870 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.823 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.5
 22.6
 1.847 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
TEST
 23
 23.0
 1.256 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 1.310 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 1.198 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.3
 1.350 UA
 23.4
 1.290 UA
 OUT. LEAKAGE CURRENT [I(CEX)]:125 DEG. C
 23.5
 1.365 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.6
 1.350 UA
TEST
 24
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.0
 1.394 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.320 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.317 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.319 V
 24.4
 1.368 V
 V(CE)SAT: I(C)=350MA: I(B)=500; UA: 125 DEG. C
 24.5
 1.292 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.321 V
 V(CE)SAT: I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 1.045 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 1.002 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 1.000 V
 V(CE)SAT: I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 1.001 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 1.029 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.5
 0.986 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.6
 1.001 V
TEST
 26
 26.0
 0.805 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.1
 0.784 V
 0.782 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.2
 V(CE)SAT: I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.3
 0.783 V
 26.4
 0.796 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.775 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.782 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
TEST
 27
 27.0
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 752.817 UA
 27.1
 732.630 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.2
 758.755 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.3
 797.941 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 769.442 UA
 27.5
 746.880 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.6
 765.879 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
TEST
 28
 28.0
 2.634 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.1
 2.742 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 2.242 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.3
 2.620 UA
 28.4
 2.119 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 1.975 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.5
 28.6
 2.180 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
```

```
TEST
 29
 29.0
 VOLT. AT INPUT; V(IN) ON=11.8V; 125 DEG. C
 1.266 V
 29.1
 1.219 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.2
 1.216 V
 VOLT. AT INPUT; V(IN) ON=11.8V; 125 DEG. C
 29.3
 1.217 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.4
 1.249 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 29.5
 1.201 V
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=11.8V; 125 DEG. C
 1.217 V
 29.6
TEST
 30
 30.0
 1.453 V
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 1.397 V
 30.1
 30.2
 1.395 V
 1.393 V
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 30.3
 1.432 V
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 30.4
 30.5
 1.374 V
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=11.4V; 125 DEG. C
 1.397 V
 30.6
TEST
 31
 31.0
 1.586 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEC. C
 31.1
 1.516 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.2
 1.513 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.3
 1.514 V
 VOLT. AT INPUT; V(IN) ON=13V; 125 DEG. C
 VOLT. AT INPUT; V(IN) ON=13V; 125 DEG. C
 31.4
 1.561 V
 31.5
 1.489 V
 VOLT. AT INPUT; V(IN) ON=13V; 125 DEG. C
 1.517 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.6
TEST
 32
 32.0
 1.888 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 1.284 UA
 32.1
 1.179 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.2
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.3
 1.336 UA
 1.310 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.4
 32.5
 1.059 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 1.053 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.6
TEST
 33
 33.0
 1.875 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.812 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.1
 33.2
 1.803 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.797 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.3
 1.844 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.5
 1.750 V
 1.781 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
```

```
TEST
 8
 8.0
 1.230 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C.
 8.1
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 1.212 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 8.2
 1.226 V
 8.3
 1.216 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 8.4
 1.212 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 8.5
 1.212 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 8.6
 1.194 V
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 TEST
 q
 9.0
 1.584 V
 VOLT. AT INPUT; V(IN)ON-8V; 25 DEG. C
 9.1
 1.557 V
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 9.2
 1.585 V
 VOLT. AT INPUT; V(IN)ON-8V; 25 DEG. C
 9.3
 1.563 V
 VOLT. AT INPUT; V(IN) ON=8V; 25 DEG. C
 9.4
 1.555 V
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 9.5
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 1.558 V
 9.6
 1.528 V
 VOLT. AT INPUT; V(IN) ON=8V; 25 DEG. C
 10
 10.0
 0.749 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.1
 0.760 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.2
 0.643 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.3
 0.268 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.4
 0.323 UA
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
 10.5
 0.560 UA
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
 10.6
 0.503 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
TEST
 11
 11.0
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.613 V
 11.1
 1.415 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.2
 1.401 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.3
 1.390 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 1.384 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.5
 1.379 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
 1.376 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
TEST
 12
 12.0
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 3.378 UA
 12.1
 3.222 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.2
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 3.181 UA
 12.3
 3.078 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.4
 2.605 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.5
 2.524 UA
 OUT. LEAKAGE CURRENT [1(CEX)]; -55 DEG. C
 12.6
 2.111 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
TEST
 13
 13.0
 1.245 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.1
 1.246 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.2
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 1.241 V
 13.3
 1.230 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.4
 1.230 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.5
 1.234 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 13.6
 1.230 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
TEST
 14
 14.0
 1.093 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.1
 1.093 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.2
 1.091 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.3
 1.084 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.4
 1.084 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 14.5
 1.087 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.6
 1.085 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
```

```
TEST
 15.0
 0.994 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.1
 0.994 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.2
 0.993 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.3
 0.990 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.4
 0.990 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.5
 0.991 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.6
 0.990 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
TEST
 16
 16.0
 356.929 UA
 INPUT CURRENT WITH DEVICE ON: +55 DEG. C
 16.1
 368.804 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 16.2
 362.867 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 362.867 UA
 16.3
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 348.617 UA
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 16.4
 16.5
 348.617 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.6
 348.617 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 17
 17.0
 3.652 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 2.908 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 3.585 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.3
 3.708 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.4
 2.933 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 3.531 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.6
 2.507 UA
 INPUT CURRENT WITH DEVICE OFF: -55 DEG. C
 18
 18.0
 1.161 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.1
 1.150 V
 VOLT. AT INPUT; V(IN) ON=6V; -55 DEG. C
 1.157 V
 18.2
 VOLT. AT INPUT; V(IN) ON=6V; -55 DEG. C
 18.3
 1.155 V
 VOLT. AT INPUT; V(IN) ON=6V; -55 DEG. C
 18.4 .
 1.153 V
 VOLT. AT INPUT; V(IN)ON-6V; -55 DEG. C
 18.5
 1.152 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 VOLT. AT INPUT; V(IN)ON-6V; -55 DEG. C
 18.6
 1.152 V
TEST
 19
 19.0
 1.316 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.1
 1.301 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.2
 1.311 V
 VOLT. AT INPUT; V(IN) ON=8V; -55 DEG. C
 19.3
 1.308 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.4
 1.304 V
 VOLT. AT INPUT; V(IN)ON-8V; -55 DEG. C
 19.5
 1.304 V
 VOLT. AT INPUT; V(IN) ON=8V; -55 DEG. C
 19.6
 1.289 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 20
 20.0
 1.634 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 20.1
 1.611 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 1.626 V
 20.2
 20.3
 1.618 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 20.4
 1.615 V
 VOLT. AT INPUT; V(IN) ON=12V; -55 DEG. C
 20.5
 1.617 V
 VOLT. AT INPUT; V(IN) GN=12V; -55 DEG. C
 20.6
 1.588 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
TEST
 21
 21.0
 2.645 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 2.285 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 2.463 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 2.068 UA
 DIODE LEAKAGE CURRENT; 1(R); -55 DEG. C
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.4
 1.820 UA
 21.5
 1.955 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.6
 2.283 UA
 DIODE LEAKAGE CURRENT; 1(R); -55 DEG. C
```

```
TEST
 22
 22.0
 1.632 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.1
 1.453 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.443 V
 22.2
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.432 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.4
 1.428 V
 1.424 V
 22.5
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.422 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.6
TEST
 23
 23.0
 0.866 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 0.844 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 0.816 UA
 OUT. LEAKAGE CURRENT [I(CEX)]:125 DEG. C
 23.3
 0.777 UA
 OUT. LEAKAGE CURRENT [1(CEX)];125 DEG. C
 23.4
 0.719 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.5
 0.690 UA
 23.6
 0.648 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.146 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.140 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.127 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.116 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 1.108 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.4
 24.5
 1.118 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.111 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 0.907 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 0.904 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 0.896 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 0.889 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 0.885 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.5
 0.890 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 0.886 V
 25.6
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
TEST
 26.0
 0.739 V
 V(CE)SAT;I(C)=100MA;I(B)=250;UA;125 DEG. C
 26.1
 0.738 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.2
 0.734 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.3
 0.730 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.729 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.731 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.729 V
 26.6
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
TEST
 27
 27.0
 310.432 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.1
 316.369 UA
 INPUT CURRENT WITH DEVICE ON: 125 DEG. C
 27.2
 310.432 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.3
 302.119 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 310.432 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.5
 324.681 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.6
 320.118 UA
 INPUT CURRENT WITH DEVICE ON: 125 DEG. C
TEST
 28
 28.0
 2.093 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.1
 1.604 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 1.914 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.3
 1.430 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 1.828 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.5
 1.854 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.6
 1.613 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
```

```
TEST
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 29.0
 0.946 V
 VOLT. AT INPUT; V(IN) CN=5V; 125 DEG. C
 0.932 V
 29.1
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 0.949 V
 29.2
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 0.941 V
 29.3
 VOLT. AT INPUT; V(IN)ON-5V; 125 DEG. C
 29.4
 0.929 V
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 29.5
 0.928 V
 VOLT. AT INPUT; V(IN)ON-5V; 125 DEG. C
 29.6
 0.915 V
 30
TEST
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.0
 1.164 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.1
 1.139 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 1.162 V
 30.2
 1.152 V
 30.3
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 1.137 V
 30.4
 VOLT. AT INPUT; V(IN) ON=7V; 125 DEG. C
VOLT. AT INPUT; V(IN) ON=7V; 125 DEG. C
 30.5
 1.133 V
 1.109 V
 30.6
TEST
 31
 VOLT. AT INPUT; V(IN)ON-13V; 125 DEG. C
 1.580 V
 31.0
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 1.539 V
 31.1
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 1.580 V
 31.2
 VOLT. AT INPUT; V(IN)ON-13V; 125 DEG. C
 31.3
 1.560 V
 VOLT. AT INPUT; V(IN)ON-13V; 125 DEG. C
 31.4
 1.533 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.5
 1.531 V
 VOLT. AT INPUT; V(IN)ON-13V; 125 DEG. C
 1.489 V
 31.6
TEST
 32
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.0
 1.043 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.933 UA
 32.1
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.807 UA
 32.2
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.520 UA
 32.3
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.490 UA
 32.4
 DIODE LEAKAGE CURRENT; 1(R); 125 DEG. C
 0.723 UA
 32.5
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.673 UA
 32.6
 33
TEST
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.599 V
 33.0
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.391 V
 33.1
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.369 V
 33.2
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.356 V
 33.3
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.350 V
 33.4
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.345 V
 33.5
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.342 V
 33.6
```

١

DEVICE TYPE: 2004

DEVICE 9858

VOLT. AT INPUT; V(IN)ON=5V; 25 DEG. C

1.082 V

7.6

```
VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
TEST
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 1.331 V
 8.0
 VOLT. AT INPUT; V(IN)ON=6V; 25 DEG. C
 1.306 V
 8.1
 VOLT. AT INPUT; V(IN)ON-6V; 25 DEG. C
 1.362 V
 8.2
 VOLT. AT INPUT; V(IN)ON-6V; 25 DEG. C
 1.327 V
 8.3
 VOLT. AT INPUT; V(IN)ON-6V; 25 DEG. C
 1.322 V
 2.4
 VOLT. AT INPUT; V(IN)ON-6V; 25 DEC. C
 1.308 V
 8.5
 1.284 V
 8.6
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 9
TEST
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 1.766 V
 9.0
 1.719 V
 9.1
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 1.820 V
 9.2
 VOLT. AT INPUT; V(IN)ON-8V; 25 DEG. C
 1.761 V
 9.3
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 1.751 V
 9.4
 VOLT. AT INPUT; V(IN)ON=8V; 25 DEG. C
 1.723 V
 9.5
 1.684 V
 9.6
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10
 TEST
 DIODE LEAKAGE CURRENT; 1(R); 25 DEG. C
 1.178 UA
 10.0
 DIODE LEAKAGE CURRENT; I(R); 25 DEC. C
 0.284 UA
 10.1
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.271 UA
 10.2
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.723 UA
 10.3
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.539 UA
 10.4
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.092 UA
 10.5
 0.274 UA
 10.6
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11
 TEST
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.678 V
 11.0
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.486 V
 11.1
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.457 V
 11.2
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.455 V
 11.3
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.446 V
 11.4
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.446 V
 11.5
 1.448 V
 11.6
 OUT. LEAKAGE CURRENT [1(CEX)]; -55 DEG. C
 TEST
 12
 OUT. LEAKAGE CURRENT [1(CEX)]:-55 DEG. C
 1.968 UA
 12.0
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 1.821 UA
 12.1
 OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
 2.016 UA
 12.2
 OUT. LEAKAGE CURRENT [1(CEX)]; -55 DEG. C
 2.031 UA
 12.3
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 1.725 UA
 12.4
 OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
 1.660 UA
 12.5
 1.574 UA
 12.6
 V(CE)SAT;1(C)=350MA;1(B)=850UA;-55 DEG. C
 1.3
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 TEST
 1.259 V
 13.0
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.255 V
 13.1
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.248 V
 13.2
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.244 V
 13.3
 V(CE)SAT; I(C)=350MA; I(B)=850UA; -55 DEG. C
 1.239 V
 13.4
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.245 V
 13.5
 1.248 V
 13.6
 V(CE)SAT;1(C)=200MA;1(B)=550UA;-55 DEG. C
 14
 TEST
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 1.103 V
 14.0
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.101 V
 14.1
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.097 V
 14.2
 V(CE)SAT; I(C)=200MA; I(B)=550UA; -55 DEG. C
 1.094 V
 14.3
 V(CE)SAT; 1(C)=200MA; 1(B)=550UA;-55 DEG. C
 1.091 V
 14.4
 V(CE)SAT; I(C)=200HA; I(B)=550UA; -55 DLG. C
 1.095 V
 14.5
 1.097 V
 14.6
```

```
TEST
 15.0
 1.003 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 1.001 V
 1...1
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 0.999 V
 15.2
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.3
 0.998 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.4
 0.996 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.5
 0.998 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.6
 0.999 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 16
 16.0
 319.931 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.1
 319.931 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.2
 339.117 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.3
 348.617 UA
 356.929 UA
 16.4
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.5
 348.617 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 330.805 UA
 16.6
 INPUT CURRENT WITH DEVICE ON: -55 DEG. C
 17
 17.0
 2.223 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 2.569 UA
 INPUT CURRENT WITH DEVICE OFF: -55 DEG. C
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.2
 2.258 UA
 17.3
 2.519 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.4
 2.249 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 1.975 UA
 17.5
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.6
 2.107 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
TEST
 18
 18.0
 1.183 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.1
 1.173 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.2
 1.180 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.3
 1.177 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.4
 1.173 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 18.5
 1.174 V
 VOLT. AT INPUT; V(IN)ON=6V; -55 DEG. C
 VOLT. AT INPUT; V(IN)ON-6V; -55 DEG. C
 18.6
 1.167 V
TEST 19
 19.0
 1.348 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.1
 1.330 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.2
 1.341 V
 VOLT. AT INPUT; V(IN)ON-8V; -55 DEG. C
 19.3
 1.338 V
 VOLT. AT INPUT; V(IN) ON=8V; -55 DEG. C
 19.4
 1.334 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.5
 1.334 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
 19.6
 1.320 V
 VOLT. AT INPUT; V(IN)ON=8V; -55 DEG. C
TEST
 20
 20.0
 1.685 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 20.1
 1.654 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 1.675 V
 20.2
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 20.3
 1.669 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
 20.4
 1.660 V
 VOLT. AT INPUT; V(IN) ON=12V; -55 DEG. C
 20.5
 1.662 V
 VOLT. AT INPUT; V(1N) ON=12V; -55 DEG. C
 20.6
 1.639 V
 VOLT. AT INPUT; V(IN)ON=12V; -55 DEG. C
TEST
 21
 21.0
 2.431 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 1.501 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 1.395 VA
 21.2
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 1.803 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.4
 1.600 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 1.029 UA
 21.5
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 1.649 UA
 21.6
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
```

```
TEST
 22
 22.0
 1.515 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.1
 1.461 V
 22.2
 1.449 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.441 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.4
 1.434 V
 DIODE FORWARD VOLTAGE; V(F); ~55 DEG. C
 22.5
 1.432 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.434 V
 22.6
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
TEST
 23
 23.0
 0.685 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.1
 0.755 UA
 0.654 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 23.3
 0.674 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.4
 0.581 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [1(CEX)];125 DEG. C
 23.5
 0.580 UA
 23.6
 0.510 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.155 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.1
 1.149 V
 V(CE)SAT;1(C)=350MA;1(B)=500;UA;125 DEG. C
 24.2
 1.134 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.3
 1.125 V
 V(CE)SAT;I(C)=350MA;I(B)=500;UA;125 DEG. C
 24.4
 1.116 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.5
 1.125 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.6
 1.122 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 25
 25.0
 0.912 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 0.909 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA:125 DEG. C
 25.2
 0.901 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 0.895 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 0.890 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.5
 0.895 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.6
 0.893 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
TEST
 26
 26.0
 0.742 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.1
 0.741 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.2
 0.736 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.3
 0.734 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.731 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.733 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
 0.732 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
TEST
 27
 27.0
 303.307 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.1
 310.432 UA
 27.2
 305.682 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.3
 293.807 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 292.619 UA
 27.5
 300.932 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.6
 305.682 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
TEST
 28
 28.0
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 2.155 UA
 28.1
 1.799 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 1.950 UA
 28.3
 1.540 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 1.790 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.5
 1.901 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.6
 1.570 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
```

```
TEST 29
 29.0
 0.957 V
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 29.1
 0.942 V
 29.2
 0.956 V
 29.3
 0.950 V
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 29.4
 0.939 V
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
 29.5
 0.939 V
 29.6
 0.926 V
 VOLT. AT INPUT; V(IN)ON=5V; 125 DEG. C
TEST 30
 30.0
 1.178 V
 VOLT. AT INPUT; V(IN) ON=7V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.1
 1.152 V
 1.173 V
 30.2
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.3
 1.165 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.4
 1.151 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.5
 1.148 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
 30.6
 1.125 V
 VOLT. AT INPUT; V(IN)ON=7V; 125 DEG. C
TEST 31
 31.0
 1.604 V
 VOLT. AT INPUT; V(IN) OR=13V; 125 DEG. C
 1.562 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.1
 31.2
 1.595 V
 31.3
 1.579 V
 31.4
 1.557 V
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C VOLT. AT INPUT; V(IN)ON=13V; 125 DEG. C
 31.5
 1.555 V
 1.513 V
 31.6
TEST 32
 32.0
 0.912 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.1
 0.732 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.2
 0.757 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.3
 0.463 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.4
 0.404 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEC. C
 DIODE LEAKAGE CURRENT; 1(R); 125 DEG. C
 32.5
 0.561 UA
 32.6
 0.603 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
TEST
 33
 33.0
 1.382 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.1
 0.835 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.2
 1.346 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.270 V
 33.3
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 0.864 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.298 V
 33.5
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.047 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
```

```
DEVICE 2293
 DEVICE TYPE: 2005
 TEST
 OUT. LEAKAGE CURRENT [1(CEX)];25 DEG. C
OUT. LEAKAGE CURRENT [1(CEX)];25 DEG. C
 0.039 UA
 1.0
 1.1
 0.237 UA
 0.247 UA
 OUT. LEAKAGE CURRENT [I(CEX)]:25 DEG. C
 1.2
 0.063 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 1.3
 1.4
 D.282 UA
 OUT. LEAKAGE CUPPENT EI(CEX)];25 DEG. C
OUT. LEAKAGE CUPRENT [I(CEX)];25 DEG. C
 1.5
 0.271 UA
 1.6
 1.198 UA
 OUT. LEAKAGE CURRENT [I(CEX)];25 DEG. C
 TEST
 2
 V(CE)SAT;I(C)=350MA;I(B)=500MA;25 DEG. C
 2.0
 1.307 V
 1.304 V
 2.1
 V(CE)SAT; I(C)=350"A; I(B)=500LA; 25 DEG. C
 V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.2
 1.289 V
 1.281 V
 V(CE)SAT; I(C)=350MA; I(B)=500MA; 25 DEG. C
 2.3
 V(CE)SAT; I(C)=350MA; I(E)=500UA; 25 DEG. C
V(CE)SAT; I(C)=350MA; I(B)=500UA; 25 DEG. C
 2.4
 1.274 V
 1.286 V
 2.5
 V(CE)SAT; I(C) = 350MA; I(B) = 500MA; 25 DEG. C
 1.279 V
 2.6
 TEST
 3
 3.0
 1.066 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.1
 1.064 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 1.055 V
 3,2
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.3
 1.051 V
 V(CE)SAT; I(C)=200MA; I(P)=350UA; 25 DEG. C
 1.047 V
 3.4
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3.5
 1.053 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 1.049 V
 V(CE)SAT; I(C)=200MA; I(B)=350UA; 25 DEG. C
 3,6
 TEST
 4
 4.0
 0.902 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 4.1
 0.902 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
 0.897 V
 4.2
 4.3
 0.895 V
 V(CE)SAT; I(C)=100MA; I(P)=250UA; 25 DEG. C
 V(CE)SAT;I(C)=100MA;I(B)=250UA;25 DEG. C
V(CE)SAT;I(C)=100MA;I(B)=250UA;25 DEG. C
 4.4
 0.893 V
 0.896 V
 4.5
 4.6
 0.894 V
 V(CE)SAT; I(C)=100MA; I(B)=250UA; 25 DEG. C
TEST
 5.0
 1629.409 UA
 INPUT CURRENT WITH DEVICE ON; 25 DEG. C
 INPUT CURPENT WITH DEVICE ON; 25 DEG. C
 5.1
 1662.669 UA
 1648.415 UA
 5.2
 IMPUT CURRENT WITH DEVICE ON; 25 DEG. C
 1691.177 UA
 INPUT CURRENT WITH DEVICE ON; 25 DEG. C
 5.3
 5.4
 1673.360 UA
 INPUT CURPENT WITH DEVICE ON; 25 DEG. C
 5.5
 1681,675 UA
 INPUT CURPENT WITH DEVICE ON; 25 DEG. C
 INPUT CURRENT WITH DEVICE ON; 25 DEG. C
 5.6
 1636.536 UA
TEST
 6.0
 7.771 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 INPHT CUPRENT WITH DEVICE OFF; 25 DEG. C
 6.1
 8.957 UA
 7.667 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
 6.2
 INPUT CUPPENT WITH DEVICE OFF; 25 DEG. C
 6.3
 8.174 UA
 INPUT CURRENT WITH DEVICE OFF: 25 DEG. C INPUT CURRENT WITH DEVICE OFF: 25 DEG. C
 6.4
 7.861 UA
 6.908 UA
 6.5
 6.6
 9.952 UA
 INPUT CURRENT WITH DEVICE OFF; 25 DEG. C
TEST
 9
 9.0
 1.732 V
 VOLT. AT INPUT: V(IN) ON=2.4V: 25 DEG. C
 9.1
 1.756 V
 VOLT. AT IMPUT; V(IN)ON=2.4V; 25 DEG. C
 1.682 V
 VOLT. AT INPUT: V(IN)ON=2.4V; 25 DEG. C
 VOLT. AT INPUT; V(IN)ON=2.4V; 25 DEG. C
 9.3
 1.736 V
 9.4
 1.651 V
 VOLT. AT INPUT; V(IN)ON=2.4V: 25 DEG. C
 9.5
 1.730 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 25 DEG. C
 1.698 V
 9.6
 VOLT. AT INPUT; V(IN)ON=2.4V; 25 DEG. C
```

```
TEST
 10.0
 0.654 114
 DIODE LEARAGE CUPPENT; I(P); 25 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 0.504 UA
 10.1
 10.2
 0.843 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 DIODE LEAKAGE CUPRENT; I(R); 25 DEG. C
 0.717 UA
 10.3
 DIONE LEAKAGE CURRENT; I(R); 25 DEG. C
DIONE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.4
 0.164 UA
 0.321 UA
 10.5
 DIODE LEAKAGE CURRENT; I(R): 25 DEG. C
 0.723 UA
 10.6
TEST
 11
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.0
 1.699 V
 1.639 V
 DIODE FORMADD VOLTACE; V(F); 25 DEG. C
 11.1
 1.623 V
 DIONE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.2
 DINDE FORMARD VOLTACE; V(F); 25 DEG. C
 11.3
 1.603 V
 1.500 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 1.602 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.5
 1.58P V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
TEST
 12
 12.0
 OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
 0.027 10
 12.1
 0.026 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 0.025 UA
 12.2
 OUT. LEAKAGE CURPENT [1(CEX)];-55 DEG. C
OUT. LEAKAGE CUPPENT [1(CEX)];-55 DEG. C
OUT. LEAKAGE CUPPENT [1(CEX)];-55 DEG. C
 12.3
 0.026 UA
 12.4
 0.026 UA
 0.026 UA
 12.5
 OUT. LEAKAGE CURRENT [1(CEX)];-55 DEG. C
 0.027 UA
TEST
 13
 13.0
 1.347 V
 V(CE)SAT:I(C)=350MA:I(B)=850UA;-66 DEG. C
 V(CE)SAT; I(C)=350MA; I(E)=850UA;-55 DEG. C
 13.0
 1.345 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.334 V
 13.0
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.0
 1.328 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 PEG. C
 13.0
 1.326 V
 1.340 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA:-55 DEG.
 13.0
 1.328 V
 V(CF)SAT;I(C)=350MA;I(R)=850UA;-55 DEG. C
 13.0
TEST
 14
 14.0
 1.148 V
 V(CE)SAT;I(C)=200MA;I(B)=550UA;-55 DEG. C
 V(CE)SAT;I(C)=200M;I(B)=550UA;-55 DEG. C
V(CE)SAT;I(C)=200M;I(R)=550UA;-55 DEG. C
 1.147 V
 14.1
 1.141 V
 14.2
 1.137 V
 V(CE)SAT; I(C)=20011/1; I(B)=550UA; -55 DEG. C
 14.3
 V(CE)SAT; I(C) = 200MA; I(B) = 550UA; -55 DEG.
 14.4
 1.136 V
 1.144 V
 V(CE)SAT: I(C)=200MA: I(B)=550UA:-55 DEG. C
 14.5
 1.137 V
 V(CE)SAT; I(C) = 2001A; I(E) = 550UA; -55 DEG. C
 14.6
TEST
 15
 15.0
 1.025 V
 V(CE)SAT; I(C)=100MA; I(R)=350HA;-55 DEG. C
 1.024 V
 V(CE)SAT:I(C)=1001A;I(R)=350UA;-55 PEG. C
 15.1
 1.021 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.2
 V(CE)SAT; I(C)=10014; I(R)=35004; -55 DEG. C
 1.019 V
 15.3
 1.018 4
 V(CE)SAT: I(C)=100MA; I(F)=350UA;-55 DEG. C
 15.4
 1.022 V
 V(CE)SAT: I(C)=100MA; I(B)=350UA; -55 DEG. C
 15.5
 1.018 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.6
TEST
 16.0
 1420.202 UA
 IMPUT CUPPERT WITH DEVICE ON; -55 DEG. C
 INPUT CUPRENT WITH DEVICE ON; -55 DEG. C
 1468,910 HA
 16.1
 1477.225 110
 INPUT CURPENT WITH PEVICE ON; -55 DEG. C
 16.2
 1521,176 04
 IMPUT CUPRENT WITH DEVICE ON; -55 DEG. C
 1€.3
 16.4
 1490.292 UA
 IMPUT CUPRENT WITH DEVICE ON; -55 DEG. C
 INPUT CUPRENT WITH DEVICE ON; -55 DEG. C
 1521.314 UA
 16.5
 1458.219 UA
 INPUT CURPENT WITH DEVICE ON; -55 DEG. C
```

```
TEST
 17
 17.0
 IMPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 39.746 UA
 IMPUT CUPPENT WITH DEVICE OFF; -55 DEG. C
 17.0
 39.746 UA
 39.746 UA
 INPUT CURPENT WITH DEVICE OFF; -55 DEG. C
 17.0
 39.746 UA
 INPUT CURPENT WITH DEVICE OF: -55 DEG. C
 17.0
 39.746 114
 17.0
 IMPUT CUPREMT WITH DEVICE OFF; -55 DEG. C
 39.746 UA
 INPUT CURPENT WITH DEVICE OFF; -55 DEG. C
 17.0
 39.746 UA
 17.0
 IMPUT CUPPENT WITH DEVICE OFF; -55 DEG. C
TEST
 20
 20.0
 1.715 V
 VOLT. AT INPUT; V(In)ON=3.0V; -55 DEG. C
 1.728 V
 20.1
 VOLT. AT IMPUT; V(IN) ON=3.6V; -55 DEG. C
 20.2
 1.687 V
 VOLT. AT IMPUT; V(IN)ON=3.0V; -55 DEG. C
 1.696 V
 VOLT. AT INPUT; V(IN) ON=3.01; -55 DEG. C
 20.3
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 20.4
 1.648 V
 20.5
 1.708 V
 1.677 V
 20.6
TEST
 21
 21.0
 3.658 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 DIONE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.1
 2.528 UA
 2.237 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 2.344 UA
 DIONE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 21.4
 2.561 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 3.002 HA
 21.5
 DIONE LEAKAGE CUPRENT; I(R); -55 DEG. C
 4.985 UA
 DIODE LEAKAGE CURRENT; I(P); -55 DEG. C
 21.6
 22
 DIONE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.0
 1.630 V
 DIONE FORWARD VOLTAGE; V(F); -55 PEG. C
DIONE FORWARD VOLTAGE; V(F); -55 PEG. C
 22.1
 1.605 V
 22.2
 1.596 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.421 V
 1.425 V
 DIONE FORWARD VOLTAGE; V(F); -55 DEG. C
DIONE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.4
 1.417 V
 22.5
 1.408 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.0
TEST
 23
 23.0
 0.024 UA
 OUT. LEAKAGE CUPRENT [I(CEX)];125 DEG. C
 0.025 UA
 OUT. LEAKAGE CURRENT [I(CEX)]:125 DEG. C
 23.1
 0.025 HA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 OUT. LEAKAGE CURRENT [[(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [[(CEX)];125 DEG. C
 23.3
 0.022 UA
 0.023 UA
 23.4
 23.5
 0.025 UA
 OUT. LEAKAGE CURPENT [I(CEX)];125 DEG. C
 23.6
 0.025 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
TEST
 24
 24.0
 1.276 V
 V(CE)SAT; I(C)=350MA; I(B)=500: UA: 125 DEG. C
 24.1
 1.268 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.253 V
 V(CE)SAT; I(C)=350MA; I(E)=500; WA; 125 DEG. C
 1.244 V
 24.3
 V(CE)SAT; I(C)=3501A; I(B)=500; UA; 125 DEG. C
 V(CE)SAT;I(C)=350MA;I(R)=500;UA;125 DEG. C
V(CE)SAT;I(C)=350MA;I(B)=500;UA;125 DEG. C
 1.233 V
 24.4
 24.5
 1.247 V
 24.6
 1.241 V
 V(CE)SAT; I(C)=350MA; I(P)=500; UA; 125 DEG. C
TEST
 25
 25.0
 0.981 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 V(CE) RAT; I(C) = 200MA; I(B) = 350; UA; 125 DEG. C
 25,1
 0.977 V
 25.2
 0.068 V
 V(CE) .f;I(C)=200MA;I(R)=350;UA;125 DEG. C
 25.3
 0.962 V
 V(CE)_AT;I(C)=200MA;I(D)=350;UA;125 DEG. C
 25.4
 2.057 V
 V(CE)SAT;1(C)=200MA;1(P)=350;CA;125 DEG. C
 25.5
 0.064 V
 V(CE)SAT;1(C)=200MA;1(B)=350;UA;125 DEG. C
 0.061 4
 V(CE)SAT; I(C)=200MA; I(P)=350; UA; 125 DEG. C
```

```
TEST
 26.0
 V(CE)SAT;I(C)=100MA;I(R)=250;UA;125 DEG. C
 0.782 V
 26.1
 0.779 V
 V(CE)SAT; I(C)=1001'A; I(B)=250; UA; 125 DEG. C
 26.2
 0.775 V
 V(CE)SAT; I(C)=100MA; I(R)=250; UA; 125 DEG. C
 26.3
 0.773 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.770 V
 V(CE)SAT; I(C)=10CMA; I(B)=250; GA; 125 DEG. C
 26.5
 0.773 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.771 V
 26.6
 V(CE)SAT; I(C)=100MA; I(B)=250; NA; 125 DEG. C
TEST
 27
 27.0
 1681.675 HA
 INPUT CUPRENT WITH DEVICE ON; 125 DEG. C
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C. INPUT CURRENT WITH DEVICE ON; 125 DEG. C.
 27.1
 1711.509 UA
 27.2
 1692.503 HA
 27.3
 1735.404 HA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 1712.835 HA
 27.5
 1754.410 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.6
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 1703.332 UA
TEST
 28
 28.0
 INPUT CUPRENT WITH DEVICE OFF; 125 DEG. C
 3.995 UA
 1.89
 4.108 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C INPUT CURPENT WITH DEVICE OFF; 125 DEG. C
 28.2
 4.471 114
 28.3
 3.595 UA
 INPUT CUPRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 INPUT CUPPENT WITH DEVICE OFF; 125 DEG. C
INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 4.122 UA
 28.5
 4.187 UA
 28.6
 3.410 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
TEST
 31
 31.0
 1.657 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 1.685 V
 31.1
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 1.618 V
 31.2
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.3
 1.662 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.4
 1.579 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.5
 1.651 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.6
 1.510 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
TEST
 32
 32.0
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 1.430 UA
 32.1
 0.925 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.2
 DIONE LEAKAGE CURRENT; I(R); 125 DEG. C
DIONE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.569 UA
 32.3
 0.721 UA
 32.4
 0.904 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.667 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.5
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.6.
 0.537 UA
TEST
 33
 33.0
 1.619 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.1
 1.578 V
 1.562 V
 33.2
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.3
 1.540 V
 DIONE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 DIDDE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.522 V
 33.5
 1.530 V
 DIONE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
 1.520 V
 DIONE FORWARD VOLTAGE; V(F); 125 DEG. C
```

```
TEST
 10
 10.0
 1.151 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.1
 0.813 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.2
 0.303 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.3
 0.385 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 10.4
 0.701 UA
 10.5
 0.641 UA
 10.6
 0.215 UA
 DIODE LEAKAGE CURRENT; I(R); 25 DEG. C
 TEST
 11
 11.0
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1,652 V
 11.1
 1.618 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.2
 1.605 V
 11.3
 1.583 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.4
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 1.574 V
 11.5
 1.577 V
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 DIODE FORWARD VOLTAGE; V(F); 25 DEG. C
 11.6
 1.567 V
TEST
 12
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.0
 0.024 UA
 12.1
 0.024 UA
 0.024 UA
 12.2
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.3
 0.026 UA
 0.024 UA
 12.4
 12.5
 0.023 UA
 OUT. LEAKAGE CURRENT [I(CEX)];-55 DEG. C
 12.6
 0.025 UA
TEST
 13
 13.0
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.365 V
 13.1
 1.364 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.2
 1.353 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.3
 1.345 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.4
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 1.342 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA;-55 DEG. C
 13.5
 1.351 V
 13.6
 1.343 V
 V(CE)SAT; I(C)=350MA; I(B)=850UA:-55 DEG. C
TEST
 14
 14.0
 1.156 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.1
 V(CE)SAT;I(C)=200MA;I(B)=550UA;-55 DEG. C
V(CE)SAT;I(C)=200MA;I(B)=550UA;-55 DEG. C
 1.154 V
 14.2
 1.148 V
 14.3
 1.143 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA;-55 DEG. C
 14.4
 V(CE)SAT;I(C)=200MA;I(B)=550UA;-55 DEG. C
V(CE)SAT;I(C)=200MA;I(B)=550UA;-55 DEG. C
 1.142 V
 14.5
 1.147 V
 14.6
 1.143 V
 V(CE)SAT; I(C)=200MA; I(B)=550UA:-55 DEG. C
TEST
 15
 15.0
 1.027 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.1
 1.027 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 1.023 V
 15.2
 V(CE)SAT; I(C)=100MA; I(B)=350UA:-55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.3
 1.020 V
 15.4
 1.020 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA; -55 DEG. C
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
 15.5
 1.022 V
 15.6
 1.020 V
 V(CE)SAT; I(C)=100MA; I(B)=350UA;-55 DEG. C
TEST
 16
 16.0
 1397.639 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.1
 1477.225 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.2
 1473.662 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.3
 1528.441 UA
 16.4
 1506.922 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
 16.5
 1515.237 UA
 16.6
 1473,662 UA
 INPUT CURRENT WITH DEVICE ON; -55 DEG. C
```

```
TEST
 17
 17.0
 27.252 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.1
 25.362 UA
 17.2
 21.985 UA
 INPUT CURPENT WITH DEVICE OFF; -55 DEG. C
 17.3
 18.950 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.4
 17.074 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.5
 13.486 UA
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 INPUT CURRENT WITH DEVICE OFF; -55 DEG. C
 17.6
 10.541 UA
TEST
 20
 20.0
 1.727 V
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 20.1
 1.731 V
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 20.2
 1.694 V
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 20.3
 1.704 V
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 1.659 V
 20.4
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 1.719 V
 20.5
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
 20.6
 1.683 V
 VOLT. AT INPUT; V(IN)ON=3.0V; -55 DEG. C
TEST
 21
 21.0
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 3.735 UA
 3.146 UA
 21.1
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.2
 3.036 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.3
 2.740 UA
 21.4
 2.785 UA
 DIODE LEAKAGE CURRENT; 1(R); -55 DEG. C
 3.586 UA
 21.5
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
 21.6
 9.427 UA
 DIODE LEAKAGE CURRENT; I(R); -55 DEG. C
TEST
 22
 22.0
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.632 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.1
 1.608 V
 22.2
 1.597 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.3
 1.579 V
 22.4
 1.573 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 22.5
 1.577 V
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 DIODE FORWARD VOLTAGE; V(F); -55 DEG. C
 1.571 V
 22.6
TEST
 23
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.0
 0.026 UA
 23,1
 0.026 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.2
 0.025 UA
 23.3
 0.025 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 0.024 UA
 23.4
 23.5
 0.026 UA
 OUT. LEAKAGE CURRENT [I(CEX)]:125 DEG. C
 0.025 UA
 OUT. LEAKAGE CURRENT [I(CEX)];125 DEG. C
 23.6
TEST
 24
 24.0
 1.309 V
 V(CE)SAT;I(C)=350MA;I(R)=500;UA;125 DEG. C
 24.1
 1.300 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.2
 1.284 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 1.273 V
 24.3
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.4
 1.264 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
 24.5
 1.277 V
 V(CE)SAT;I(C)=350MA;I(B)=500;UA;125 DEG. C
 24.6
 1.268 V
 V(CE)SAT; I(C)=350MA; I(B)=500; UA; 125 DEG. C
TEST
 25
 25.0
 1.000 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.1
 0.995 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.2
 0.986 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.3
 0.980 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
 25.4
 0.974 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
```

```
25.5
 0.981 V
 V(CE)SAT:I(C)=200MA;I(B)=350;UA;125 DEG. C
 25.6
 0.976 V
 V(CE)SAT; I(C)=200MA; I(B)=350; UA; 125 DEG. C
TEST
 26
 26.0
 0.792 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 0.790 V
 V(CE)SAT;I(C)=100MA;I(B)=250;UA;125 DEG. C
V(CE)SAT;I(C)=100MA;I(B)=250;UA;125 DEG. C
 26.1
 0.785 V
 26.2
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.3
 0.782 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.4
 0.779 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.5
 0.783 V
 0.780 V
 V(CE)SAT; I(C)=100MA; I(B)=250; UA; 125 DEG. C
 26.6
 27
TEST
 27.0
 1667.420 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.1
 1729.465 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.2
 1711.647 UA
 INPUT CURRENT WITH DEVICE ON: 125 DEG. C
 1760.349 UA
 27.3
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.4
 1729.465 UA
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 27.5
 INPUT CURRENT WITH DEVICE ON; 125 DEG. C
 1741.343 UA
 1703.194 UA
 INPUT CURRENT WITH DEVICE ON: 125 DEG. C
 27.6
TEST
 28
 28.0
 3.210 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.1
 3.547 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.2
 3.859 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.3
 3.469 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 3.687 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 28.4
 28.5
 3.626 UA
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 INPUT CURRENT WITH DEVICE OFF; 125 DEG. C
 3.467 UA
 28.6
TEST
 31
 31.0
 1.663 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.1
 1.691 V
 1.623 V
 31.2
 31.3
 1.660 V
 31.4
 1.582 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.5
 1.656 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
 31.6
 1.607 V
 VOLT. AT INPUT; V(IN)ON=2.4V; 125 DEG. C
TEST
 32
 32.0
 1.259 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.610 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.1
 32.2
 0.580 UA
 DIODE LEAKAGE CURRENT: I(R): 125 DEG. C
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.3
 0.762 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.4
 0.770 UA
 0.394 UA
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 32.5
 DIODE LEAKAGE CURRENT; I(R); 125 DEG. C
 0.479 UA
 32.6
TEST
 33
 33.0
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.611 V
 33.1
 1.574 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 1.553 V
 33.2
 33.3
 1.531 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.4
 1.513 V
 1.521 V
 33.5
 1.512 V
 DIODE FORWARD VOLTAGE; V(F); 125 DEG. C
 33.6
```

VI-42

## SECTION VII

# REGULATING PULSE WIDTH MODULATORS

## MIL-M-38510/126A

## TABLE OF CONTENTS

<u>Para</u>	<u>Title</u>	Page
	List of Figures	VII-ii
	List of Tables	VII-jii
7.1	Introduction	VII-1
7.2	Device Types	VII-I
7.3	Test Development	VII-6
7.4	Test Results and Discussion	VII-8
7.5	Conclusions and Recommendations	VII-25
7.6	Bibliography	VII-34

# LIST OF FIGURES

Figure	<u>Title</u>	Page
7-1	Block Diagrams	VII-3
7.2	Test Circuits	VII-9
7.3	Error Amplifier Test Circuit	VII-13
7.4	Unity Gain Bandwidth Test Circuit	VII-13
7.5	Circuit Waveforms	VII-16
7.6	Burn-In Circuit 1526	VII-26

# LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
7-1	Device Types Specified	VII-1
7-2	Test Parameters	VII-7
7-3	Additional Test Parameters	VII-8
7-4	Electrical Parameter Limits	VII-28
7-5	1524 Data Listing	VII-3 3

### 7.1 INTRODUCTION

This section reviews the characterization effort for Regulating Pulse Width Modulators (PWM) which are replacing conventional shunt regulators in many power supply applications. Shunt regulator type power supplies operate in a continuous mode and dissipate large amounts of power when the difference between input and output voltage is large. The PWM type power supply, however, switches an output transistor to regulate duty cycle. The transistor is, therefore, either saturated or cutoff which allows high efficiency operation. This high efficiency makes pulse width modulator devices good candidates for inclusion into the MIL-M-38510 general specification system. The device types specified in MIL-M-38510/126 are listed in Table 7.1. The list of manufacturers represent those which were evaluated.

TABLE 7.1 DEVICE TYPE SPECIFICATION

Device	General	Manufacturer	Description
01	1524	LT, SG, U	General Purpose
02	1525	SG, U	Totem-pole 200mA Output NOR Logic
03	1526	LT, M, SG, U	TTL/CMOS Logic Parts
04	1527	LT	Same as 1525 OR Logic Output

LT - Linear Technology

M - Motorola

SG - Silicon General

U - Unitrode

### 7.2 DESCRIPTION OF DEVICE TYPES

A pulse width modulator requires the following four basic elements for operation: voltage reference, error amplifier, oscillator and differential volt $\epsilon$  ge comparator.

The voltage reference provides the stable reference source for the internal circuitry. A transconductance amplifier is used in the error amplifier design to provide output impedances greater than two mega ohms. The oscillator whose frequency is obtained using an external resistor  $(R_T)$  and capacitor  $(C_T)$  produces two waveforms. The first waveform is a logic clock used for internal synchronization; the second is a sawtooth waveform which the voltage comparator combines with the error amplifier output and an external compensation pin to vary the duty cycle of the output transistors.

Figure 7.1 contains the block diagrams of device types 01 through 04. By examining the diagrams apparent differences can easily be seen. Device type 01 is the 1524 and is the oldest of the pulse width modulator designs. It includes the four previously discussed elements as well as a current limiter, shutdown circuit and output stage. The current limiter decreases output pulse width when the input threshold is greater than 200mv. The shutdown circuit removes the drive signal from the comparator to deactivate the output. The output consists of two NPN transistors with open collectors and emitters, which allow switching of either PNP or NPN transistors.

The 1525 and 1527 (Device types 02 and 04) are identical with the exception that the 1525 contains a logical NOR gate in the output stage whereas the 1527 contains a logical OR gate. The following discussion is relevant to both of the devices. Since both devices are based on the 1524, only their differences will be described. The dead time can now be controlled in these later designs by using a small resistor (RD less than 100 ohm) connected between the discharge pin and the C_T pin. By using a capacitor on pin 8, the soft start circuitry gradually increases the duty cycle of the output transistor as the supply voltage is increased over 8 volts. As the capacitor charges to its full potential, the error amplifier takes



Device Type 01 Figure 7-1 Block Diagram



Device Type 02, 04 Figure 7-1 (cont.) Block Diagram



Device Type 03 Figure 7-1 (cont.) Block Diagram

control of the comparator, allowing a steady and even powering of the device. The outputstage has been redesigned into a totem-pole configuration which has a low impedance in both the "on" and "off" state. Logic in the 1525 yields a high output pulse during a transistor on state while the 1527 gives a high output pulse during the transistor "off" state. The final element added was the undervoltage lockout which is activated if the supply voltage is less than 8 volts.

The 1526 is similar to the 1525 in that it contains an error amplifier, comparator, oscillator, reference, undervoltage lockage, soft start, and shutdown. The improvements include the addition of three digital ports (RESET, SYNC and SHUTDOWN) capable of driving TTL and 5V CMOS logic directly. The digital ports are normally at a high state and are activated by driving them low. Pulling RESET low will discharge the soft start capacitor. Releasing RESET allows the device to slowly turn on. The SHUTDOWN pin being pulled LOW will inhibit all output pulses. The final port, SYNC, is used to control the frequency via an external source.

The error amplifier common mode range in the 1524 is 1.8V to 3.4V which was found to be inadequate due to the fact that the range did not cover the reference voltage (5.1V) and ground. The 1525/1527 improved on this by having a range of 1.5V to 5.2V, however, ground was still not in the common mode range. The error amplifier of the 1526 corrects all of the above problems by having a range of 0V to 5.2V.

### 7.3 TEST DEVELOPMENT

A list of parameters used to characterize the pulse width modulators are contained in Table 7.2. The table contains the parameters which are common to all four device types. The parameters which are unique to various PWM's are listed in Table 7.3.

# TABLE 7.2 TEST PARAMETERS

Symbol	Parameter	Element
V _{IO} , I _{IO}	Input Offset Voltage and Current	Error Amplifier
I _{IB}	Bias Current	
CMR	Common Mode Rejection	
A _{VS}	Voltage Gain	
SVRR	Supply Voltage Rejection Ratio	
$G_BW$	Unity Gain Bandwidth	
VREF	Output Voltage	Reference
V _{RLINE} , V _{RLOAD}	Line and Load Regulation	
AV _{IN} AV _{REF}	Ripple Rejection	
Ios	Short Circuit Current	
NO	Noise Voltage	
fosc	Initial Frequency	Oscillator
fosc(min), (max)	Minimum, Maximum Frequency	•
Afosc/AV _{IN}	Voltage Stability	
tpw	Clock Pulse Width	
^V RAMP	Ramp Voltage	
T _R , T _F	Rise and Fall Time	Output
I _C	Collector Current	
V _{OH} , V _{OL}	Output High, Output Low	
ton/tosc	Minimum and Maximum Duty Cycle	Comparator
I _{in}	Power Supply Current	

TABLE 7.3 ADDITIONAL TEST PARAMETERS

Device Type	Symbol	Test Parameters
01	v _{SEN}	Current Limit Sense Voltage
	v _{SD}	Shutdown Voltage
02, 04	Iss, Vss	Soft Start Current, Voltage
	I _{SD} , V _{SD}	Shutdown Current, Voltage
03	$v_{s}$	Current Limit Comp., Sense
·		Voltage
	I _{IBS}	Current Limit Comp., Bias Current
	I _{IL} , I _{IH}	Input Current, Digital Ports
	V _{OLP} V _{OHP}	Output Voltage, Digital Ports
	$v_R$	Under Voltage Lockout
	I _{CS}	Capacitor Charging Current
	v _{EC}	Error Clamp Voltage

The majority of the testing for these parameters was performed using bench top test circuits (shown in Figure 7.2) and equipment, with a limited amount of Automatic Test Equipment being utilized to evaluate the 1524.

### 7.4 TEST RESULTS AND DISCUSSION

### Error Amplifier:

In order to perform proper testing, a nulling amplifier must be used, such as the OP07 which was used in our case. The nulling amp suppresses the natural oscillation tendencies of the error amplifier (E.A.), and also controls the output.



Device Type 01 Figure 7-2 Test Circuit





Figure 7-2 (cont.) Test Circuit

VII-11

The two input voltages are set to 2.5 volts (the center of the error amp common mode range) and  $V_N$  is equal to OV for the following tests: Input Offset Voltage  $V_{IO}$ . Input Bias Current  $I_{IB}$ , and Input Offset Current  $I_{IO}$ , The test circuit is shown in Figure 7.3. The offset voltage is determined by the following equation  $V_{IO} = V_O/Gain$ , ( $V_O$  is measured with relays K1 and K2 closed). The input bias currents are determined by the following method: For  $I_{IB+}$ , close the K1 relay, open the K2 relay and measure  $V_{O1}$  at the output of the error amplifier;  $I_{IB+} = (V_O-V_{O1})/(Gain \times 1000)$ . For  $I_{IB-}$ , open the K1 relay, close the K2 relay and measure  $V_{O2}$  at the output.  $I_{IB-} = (V_O-V_{O2})/(Gain \times 1000)$ . The offset current  $I_{IO}$  is determined by taking the difference between the plus and minus bias currents.

For the common mode rejection (CMR), the  $V_N$  is set to 0 volts and the input voltage to the error amplifier is varied over the common mode range ( $V_{Cm}$ ); this is different for each device type.

$$CMR = 20 \log (\Delta V_{CM}/\Delta V_{O}) \times gain$$

For both the gain (A_{VS}) and supply voltage rejection (SVRR) tests,  $V_{IN}$  is set to 2.5 volts. The voltage gain  $A_{VS}$  measurement is performed by varying the negative input of the nulling Amp ( $V_{N}$ ) over the common mode range of the EA, and measuring the change in  $V_{O}$ .

$$A_{VS} = 10\log ((\Delta V_N/\Delta V_O)* gain)$$

The SVRR is determined by varying the supply voltage to the chip and measuring the change in  $\mathbf{V}_{\mathbf{O}^{\bullet}}$ 

SVRR = 20 log 
$$(\Delta V_C /\Delta V_C)$$
* gain)

Unity Gain Bandwidth ( $G_{BW}$ ) must be determined using a separate test circuit as shown in Figure 7.4. The  $G_{BW}$  is measured by increasing the frequency of  $e_i$ , starting at 100KHz, until the magnitude of  $e_0 = e_i$ . The frequency at which this



Figure 7-3 Error Amplifier Test Circuit



Figure 7-4 Unity Gain Bandwidth Test Cicuit

occurs is the Unity Gain Bandwidth. An alternative method of obtaining  $G_{BW}$  is to apply the minimum limit frequency in  $e_i$  and measure the magnitude of  $e_o$ ; if  $e_o$  is greater than or equal to  $e_i$  the device passes. This method allows the test to be performed by ATE.

### Reference:

Since many of the internal elements of the device are dependent on the reference voltage, a special effort was made to perform thorough testing to insure stability and accuracy. The reference voltage  $V_{\mbox{REF}}$  is determined by measuring the voltage on the reference pin, with only ground and  $V_{\mbox{CC}}$  applied to the device.

Line regulation is found by measuring the difference in the reference voltage when the power supply is varied between 8V and 40V for device type 01 (8V and 35V for device types 02-04). The load regulation measurement is performed in the same way, however, the power supply is held constant and the load current on the reference is varied between 20mA and 0mA. The short circuit limit  $I_{OS}$  is determined by grounding the reference and measuring the current flow out of the reference.

The two remaining tests in the reference section are ripple rejection and output noise (N_O). The ripple rejection is determined by adding a 1 V_{RMS}, 2400Hz sine wave to the supply voltage, and the change in V_{REF} is measured to give  $V_{REF}$ . For frequency components between 10Hz and 10KHz, the noise is found using a filter to block the unwanted frequency on a noise analyzer.

#### Oscillator:

The initial frequency test is used to determine how well the device functions in its normal operating range. This frequency (50KHz for device type 01, 40KHz for device types 02-04) is used for the various tests in the oscillator section, such as initial frequency, voltage and temperature stability, ramp voltage and clock pulse

width. The initial frequency (fosc) is measured using a precision timing resistor and capacitor; both components must be within +/- 0.1% of the specified value. The timing capacitor should be polystyrene, tuned with a mica capacitor for standardization of the components. For device type 03, a 40KHz output frequency is considered a critical frequency for testing. Since the output in the 03 device is twice the frequency of the oscillator, it was determined that the frequency should be measured at the output rather than at the oscillator. The testing of the 01, 02, and 04 device types was performed on the output of the oscillator. For these devices, there is a one to one correspondence between the oscillator and output frequencies. Due to this relationship and the fact that the output requires a greater number of connections in order to function, the oscillator output was chosen for frequency measurements. The capacitor and resistor are chosen in the same manner to measure the minimum and maximum frequencies.

The initial oscillator frequency limit for the 1524 device is specified over a large range (47KHz to 58KHz at 25°C) and is a result of the differences in frequencies between the various vendors. On the average the devices from each vendor showed good accuracy, with a frequency distribution of 3 to 4 percent around the center frequency. (For example, a particular manufacturer has a center frequency of 50KHz and a range of values between 47.5KHz and 52.5KHz. Another has a center frequency of 56KHz and a range of 54.5KHz to 57.5KHz, with the remainder of the manufacturer devices between these two ranges.)

The voltage stability test fosc/  $V_{\rm IN}$ , as the name implies, examines the effect that power supply variations have on the initial frequency. The supply voltage is varied over the full range, and the change in frequency measured. Clock pulse width  $t_{\rm pw}$  for the 1526 device (as shown in Figure 7.5a) is measured from the midpoint of the falling edge to the midpoint of the rising edge.

## A. Ramp And Oscillater Voltage



# B. Output Rise And Fall Time Output A, B



Figure 7-5 Circuit Waveforms

# C. Maximum Duty Cycle

# Output A, B



Device Type 02, 03



Device Type 01, 04

Figure 7-5 (cont.) Circuit Waveforms

# D. Minimum Duty Cycle



Device Type 02, 03



Device Type 04

Figure 7-5 (cont.) Circuit Waveforms

## E. Shut-Down Delay



Figure 7-5 (cont.) Circuit Waveforms

# F. Synchronization Test



Figure 7-5 (cont.) Circuit Waveforms

For the other three device types, the clock waveform is inverted. The final test is ramp voltage which is determined by examining the waveform on the timing capacitor pin shown also in Figure 7.5a. The valley voltage  $(V_{RV})$  is measured from the 0 volt reference point to the minimum value of the waveform. The peak voltage  $(V_{RP})$  is measured from 0 to the maximum value obtained by the wave.

### Output:

The output section tests are as follow: rise and fall time, collector current and output high and low voltages. The rise and fall times are measured on both outputs A and B (shown in Figure 7.5b) and are denoted as  $T_R$  and  $T_F$ . The circuit requires that the timing resistor and capacitor be connected together, and includes a pull up resistor on the collector of the output transistor. The error amplifier is forced high to minimize its effects. As can be seen in the figure, the  $T_R$  is measured from the 10% point to the 90% point and  $T_F$  is from 90% to 10% point.

Collector current I_C is the amount of current flow into the output transistors while in the "ON" state. For the 02, 03 and 04 devices, the output transistors are totem poled together, therefore, there is only one measurement. For device type 01, two separate measurements are required. The two remaining tests are output high V_{OH} and output low V_{OL} voltages which are also referred to as emitter output voltage and saturation voltage, respectively. The timing components are not connected for either test. For output high, the output being measured is turned "ON" by toggling the oscillator with a 5 volt 5OuS pulse occurs. Output low requires the output to be in the "OFF" state. This is accomplished by toggling the oscillator or, in the case of the 1526, by applying ground to the shut down pin. Both tests are performed with a 20mA and a 100mA load on the outputs, (1524 uses a 50mA load).

### Comparator:

The duty cycle adjust range  $t_{ON}/t_{OSC}$  in the comparator section is determined by placing the device in a fully functional state. The timing resistor  $R_T$  and capacitor  $C_T$  are connected, the two inputs to the error amplifier are set equal to the same value within the common mode range, and  $V_C$  is set to the supply voltage. The duty cycle range is obtained by setting the voltage on the comparator input to 0.5 volts and measuring the period of the output  $(t_{OSC})$  and the time in the "ON" state  $(t_{ON})$ . This will give the minimum duty cycle (shown in Figure 7.5d) equal to  $t_{ON}/t_{OSC}$ . If the device is working properly, the transistor should not be ON, and therefore,  $t_{ON}$  will equal zero. The maximum duty cycle is determined by setting the comparator input to 3.6 volts. The output will be in the "ON" state for half of the cycle which results in a duty cycle of 50% (as shown in Figure 7.5c).

The final test common to each device type is power supply current (I_{in}). The test is performed by applying the maximum recommended voltage to the device and recording the input current.

The following tests are unique to the particular device types:

### Device Type 01:

The current limit sense voltage ( $V_{SEN}$ ) is determined by grounding the minus input of the current limit amplifier and varying the input on the plus input until the compensation pin reads 2 volts. This is the trigger point of the current limit amplifier which is defined as  $V_{SEN}$ . Shutdown voltage tests are go/no-go type testing, where the actual trigger point is not located. The limit is applied and the response is examined. The shutdown voltage high  $V_{SD(HI)}$  is measured by applying 1.4 volts to the SHUTDOWN pin and examining the compensation pin. If  $V_{comp}$  is less than or equal to 0.5 volts then  $V_{SD(HI)}$  passes and the device is shutdown.  $V_{SD(LO)}$  is measured by applying 0.4 volts to the SHUTDOWN pin; if  $V_{comp}$  is greater than or equal to 3.6 volts, then  $V_{SD(LO)}$  passes.

### Device Types 02 and 04:

Soft start current  $(I_{SS})$  is determined by grounding the SOFT START and SHUTDOWN pins and measuring the current flow in the soft start. Soft start voltage  $(V_{SS})$  is determined by applying 2 volts to the SHUTDOWN pin and measuring the Soft Start pin.

Shutdown current  $(I_{SD})$  is measured with 2.5 volts connected to the SHUTDOWN pin. Shutdown voltage  $(V_{SD})$  measurement require the timing component to be placed in the circuit, 3.6 volts on the compensation pin, and 20 volts on  $V_{C}$  (pin 13).  $V_{SD(LO)}$  is determined by applying 0.5 volts to the shutdown pin and examining both outputs. For device 02, if either output is greater than 2.5 volts,  $V_{SD(LO)}$  passes. (For device 04 - VSD (LO) passes if either output is less than 2.5 volts).  $V_{SD(HI)}$  is determined by applying 1.6 volts to the SHUTDOWN pin. Device 02 passes if both outputs are less than 2.5 volts. (For device 04 to pass, both outputs must be greater than 2.5 volts).

### Device Type 03:

Under-voltage lockout ( $V_R$ ) is measured to determine if the device turns off when the voltage on the reference drops to low. The supply voltage ( $V_{IN}$ ) and reference ( $V_{REF}$ ) pins are connected together, for  $V_{R(LOW)}$  the two are set to 3.8 volts and the voltage on the reset is measured. A value less than 0.4V indicates the device is turned off. For  $V_{R(HIGH)}$ ,  $V_{IN}$  and  $V_{REF}$  terminals are set to 4.8 volts and the reset pin again measured. A value greater than 2.4V indicates the device is active.

The 1526 possesses three digital ports called SYNC, RESET and SHUTDOWN. The following parameters for these parts are evaluated: input current high and low  $(I_{IH}, I_{IL})$  and output voltage high and low  $(V_{OHP}, V_{OLP})$ . The three ports are tested

in a similar manner. The current limit amplifier inputs are grounded for all twelve tests. For  $I_{IH}$ , 2.4 volts are applied to the port and the current flow into the device is measured. For  $I_{IL}$ , 0.4 volts are applied to the particular port and the current measured. The only difference exists for the current tests on the SYNC pin which requires the timing capacitor pin to be less than or equal to 0.5 volts.  $V_{OHP}$  is determined by forcing a -40uA current into the port and measuring the voltage. For  $V_{OLP}$ , apply 3.6mA to the port and measure the voltage. For the SHUTDOWN port,  $V_{OLP}$  requires the positive input of the current limit comparator to be placed at 120mV and the negative input at ground. The difference on the comparator will cause the shutdown to be driven low. A voltage greater than 3.6 volts on the timing capacitor pin is required to force the  $V_{OLP}$  SYNC low.

The capacitor charging current  $I_{CS}$  is the amount of current in the SOFT START terminal  $C_{SS}$ . To determine  $I_{CS}$ , the  $C_{SS}$  pin is grounded and the current flow is measured. The Error clamp voltage  $V_{EC}$  test is performed by applying 0.4V to the RESET pin and measuring the voltage which appears of the  $C_{SS}$  pin.

The remaining tests, sense voltage  $V_S$  and Input Bias Current  $I_{IBS}$ , pertain to the current limit comparator. The sense voltage is the amount of voltage at the positive input of the comparator required to activate the output. The value is obtained by grounding the negative input of the current limit comparator and increasing the voltage on the positive input until the voltage at the SHUTDOWN pin is less than 0.4V. The voltage which causes the SHUTDOWN to switch is  $V_S$ . The input bias current is measured at both the positive (+ $I_{IBS}$ ) and negative (- $I_{IBS}$ ) current values by taking the current reading referenced to ground.

The burn-in circuit design for all four device types required many iterations due to their high power consumption. With the burn-in temperature specified at 125°C, and the maximum recommended power supply voltage, the devices would exceed

their maximum allowable junction temperature. The burn-in circuit for device type 03 is shown in Figure 7.6. The other three are almost identical and, therefore, are not pictured. In order to alleviate the problem of excessive junction temperature, the recommended supply voltage for device type 02, 03 and 04 were lowered. The supply voltage for the 02 and 04 are set to 30 volts for class B and 27 volts for class S devices; the 03 are set to 20 volts maximum recommended. The operation from 8 volts to 35 volts is allowed if care is taken not to exceed the maximum junction temperature (this might require the uses of a heat sink in some instances). The higher voltage is also allowed in some of the parameter testing, such as for the short period of time when measuring total supply current.

As a result of the testing and discussions with manufacturers, test condition and limits were determined. The tests limits are shown in Table 7.4 for all four device types.

An example of LTX device data for the 1524 is shown in Table 7.5. Due to the large volume of similar data, only a sample is shown here. The timing tests not shown in the printout were performed with a bench top test circuit and all of the devices were within their specified limits.

### 7.5 CONCLUSIONS AND RECOMMENDATIONS

The test data obtained from the various manufacturer's devices indicates that the regulating pulse width modulators will meet all of the specifications set forth in MIL-M-38510/126A. However, the following two issues are of great concern regarding device operation in a circuit:

a. For device type 01, care must be taken if the frequency of the output is critical since a substitution of a different vendor's device could cause an unacceptable frequency shift.



Figure 7-6 Burn-In Circuit 1526

Condition
VIN=20v RT=2 Kohms +/-0.12

		ATHANA KLAN KOPPU +/-0.17			
		CT=0.01uP +/-0.1I	L.	imits	
		(Unless otherwise specified)			
Cheracteristic	Symbol	-55 C <= Tc <= 125 C	MIN	MAI	Unit
MAROR AMPLIFIEM:					
Exput offset voltage	VIO	VCH= 2.5v	-5	5	۵V
input bies current	IIB	VCH= 2.5v	.01	10	u.A
Input offset current	110	VCH= 2.5v	-1	1	u.A
Compensation current	ICOSI	VIM(I)-VIM(NI) >=150mV TC=25 deg C	65	170	uA.
Compensation current	ICOS2	VIN(NI)-VIN(I) >=150mV	-170	-65	uA
(source)		TC=25 deg C			
Common mode rejection		1.8v <= VCH <= 3.4v	70		₫₿
open loop voltage gain	AVS	TC=25 deg C	72		dB
		TC=-55 deg C, 125 deg C	68		dB
Duity gain bendwidth	GBU	TC-25 deg C	3		WRS
reference:					
 Output voltage	VREF	***************************************	4.8	5.2	v
Line regulation	VRLINE	8v <= VIN <= 40v	-20	20	s۷
Load regulation	VRLOAD		-50		æV
lipple rejection	AVIN/	VIN-20v ei=1Vrme f=2400 Hz	50		dB
		TC=25 deg C			
Short circuit		t <= 25ms TC=125 deg C			ev Py
current limit	_	VREF=0 TC=-55,25 deg C	-190		<b>WA</b>
Sutput noise voltage		TC-25 deg C			uV TBA
<b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b>	~~~~~~	10Hz <- f <= 10KHz			
OSCILLATOR:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Maxisum frequency	fosc	ET=2 KObas +/-0.1%	250	***	KHz
	(max)	CT=0.001 uF +/-1.0%			
Initial frequency	fosci	TC=25 deg C	47	58	KHI
Oscillator	fosc2	TC= 125 deg C	45	60	KHZ
requency	f08C3	TC= -55 deg C	45	60	KHz
Frequency change	₹05Cl	8 V<=VIN<=40 V,TC=25 deg C	-2	2	I
with voltage	VOSC		2.4		v
Output amplitude			0.3		uS
Output pulse width lamp voltage	T pw VRAMP		3.0	3.8	y v
Saturation voltage	VSAT	ICT=5mA, VOSC= 5 V,	0.7		Ÿ
	(osc)	TC= 25 deg C	~,,		•
COMPARATOR:					
	NO1	Min value: Vcm=2.5		0.001	z
range	tOSC 2	Vcomp= 0.5V			
		Max value: Vcm- 2.5V Vcomp- 3.8V	45	50	z

Device Type 01
TABLE 7-4 Electrical Peremeter Limits

#### Condition

VIN- 20V RT-2 KOhms +/-0.1% CT-0.01uF +/-0.1%

Limite

-- 10

(Unless Otherwise specified) -55 C <= Tc <= 125 C MIN MAX Cheracteristic Symbol Units OUTPUT SECTION: 3/ VC - 40V 10 Collector leakage ICEX current Saturation voltage V(SAT) VIN(NI)-VIN(I)>=150mV 2 IC = 50mA, Emitter output VEO VIN(NI)-VIN(I) >=150mV 17 TC= 25 deg C, VC=20V, voltage IE - -50mA Rise time TR(tr) VIM(NI)-VIM(I)>=150mV -- 0.4 RC= 2 KOhms, VC=20V, TC=25 deg C, CL=15pF VIN(NI)-VIN(I)>=150mV TR(tf) -- 0.2 Fall time uS RC= 2 kObms, VC=20V, TC=25 deg C, CL= 15pF SHUT DOWN CIRCUIT: VSEM VIN(NI)-VIN(I)>=150mV 190 210 Sense voltage YEOA- 2V, TC-25 deg C 7C= 125 or -55 deg C 165 235 æ۷ s۷ Shutdown 4/ VSD VIN(NI)-VIN(I)>=150mV 1.4 --(high) VED AIR(NI)-AIR(I)>=120FA -- 0.4 (low) TOTAL STANDBY CURRENT:

VIN - 40 V.

***********

Device Type 01
TABLE 7-4 Electrical Parameter Limits

^{1/} Continuous short circuit limits will be less than indicated test limits.

^{2/} tOSC is the period of the output waveform.

^{2/} Each output transistor shall be tested for all parameters listed.

^{4/} This is a go-nogo test, the limit values are used for input voltages.

# Conditions VIN= 20V dc,RT=3.6K0hms+0.1% RD=0 Ohms,CT=0.0luF+0.1% -55 C <= TC <= 125 C

Limits

		-55 C <= TC <= 125 C				
Characteristic	Symbol	(Unless Otherwise Specified)	Hin	Hex		Unite
REFERENCE SECTION:						
Output voltage	VRET	TC=-55 deg C,125 deg C	5	5.2		٧
		TC=25 deg C	5.05	5.15		٧
Line Regulation	VELINE	VIN- 8V to 35V	-30	30		₽V
Load Regulation	VELOAD	IREF = 0 to 20mA	-50	50		<b>≡</b> V
Short Circuit	108 1/	VREF =0V, t<=25mS	-125	••		mA.
Current	_	•				
Output Noise	NO	10 Hz<=f<=10KHz		200		uVRMS
Voltage		TC= 25 deg C				
Ripple Rejection	AVIN	VIN- 20V+1VEMS f=2400Hz	50		2	dB
	AVREF	TC= 25 deg C			•	
OSCILLATOR SECTION:					••••	
	fosc	TC= 25 deg C	37.5			KH2
Initial Frequency	VSAT	IDIS- 5ma, VOSC- 5V	0.5	1.1		v
Securation Voltage	(OSC)	TC= 25 deg C	0.,	•••		•
Oscillator-	fOSC2	TC" -55 deg C	36	44		KHz
	10001	104 033 888 6		~~		
Frequency	VOSC		3.0	**		v
Clock Amplitude		TOTAL C - ES don C	0.3	1.0		uŠ
Clock Pulse Width	Tpw	TC=25 C, -55 deg C	0.3	1.4		uS.
		TC= 125 deg C	-	3.6		v
Ramp Voltage	VRAND	221 20 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.0	1		ž
Voltage Stability	<b>⁴fosc</b>	VIN- 8 to 35V,TC- 25 deg C	-1	-		
Minimum Frequency	fosc	RT= 150KOhma +0.1X		150		Hz.
	(min)	CT= 0.1uF +1.02,RD=0 Ohms	300			KHz
Meximum Frequency	fosc	RT= 2KOhms +0.1Z	300			AD.
	(mex)	CT= 0.001uF +1.02,2D=0 Ohms		0.8		٧
Sync	VSYNC			0.0		•
	(10)					٧
	VSYNC		2.8			4
Sync Input Current	(HI) ISYNC	Sync Voltage= 3.5V		2.5		
sync input current		•				
ERROR AMPLIFIER SECTI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•••••
Input Offset Voltage	VIO		-5	•		<b>■V</b>
Input Bias Current	IIB		.01 -1	10 1		uA uA
Input Offset Current	110			•		· ·
Open Loop			40			dB
Voltage Gain	AVS	VCH- 2.5 V	60			a p
Common Hode	CHAP	UCM m 1 SU en 5 7V	60			dB
Rejection Ratio	CIQUE	VCH = 1.5V to 5.2V	90			
Supply Voltage	aunn	WTW - CU 254	60			dB
Rejection Ratio	SVRR	VIN = 8V to 35V	90			
Unity Gain		AU- 049 61- 9 90-05 4 0	2			MHz
Bandwidth	ari Cbr	AV- OdB, see fig. 8 TC-25 deg C	_	8		A LEE
Output High Level			•	- 0.5		v
Output Low Level	ATO		•	,		•

Device Type 02,04 TABLE 7-4 Electrical Parameter Limits (Cont.)

## Conditiona VIN= 20V dc RT=3.6KOhms+/-0.12

		RD=0 Ohms CT=0.01uF+/-0.1X -55 C <= TC <= 125 C			Limits	
Characteristic	•		erwise Specified)			Units
P.W.M. COMPARATOR SECT	CION:					
Maximum Duty Cycle		2/ VCOHP-	3.6V		50	1
Minimum Duty Cycle	EOSC	1) 2/ VCOMP-			0.001	2
OUTPUT SECTION: 3/			************			
Output Low	VOL	ISINK- 20			0.4	v
	VOL	ISINK- 10	OmA		2	٧
Output High	HOV	I SOURCE-	20mA	18		V
	AOR	ISOURCE-	100mA	17		V
Under Voltage						
Lockout	VUL			6	8	٧
Shutdown Delay	tSD	VED- 3V	TC= 25 deg C, -55 deg C		500	aS
			TC= 125 deg C		700	nS
Rise Time	TR(tr)				600	nS
	TR(tf)			••	300	nS
VC Standby Current		VC- 35V		••		uA.
SOFT START SECTION:						
Soft Start Current	ISS	VSD- OV			-25	uA
Shutdown Input Current	ISD	VSD- 2.5V			1	
Soft Start Voltage	VSS	VED- 2V			0.6	Y
Shutdown Voltage	VSD(LO)				0.5	٧
-	VSD(HI)			1.6	••	٧
Total Supply Current	IIM	VIN- 35V	TC=-55, 25 deg C		20	
•			TC= 125 deg C		18	mA.
			_			

#### Note:

Device Type 02,04 TABLE 7-4 Electrical Parameter Limits (Cont.)

^{1/} Continuous Short Circuit Limits will be less then indicated test limits.
2/ tOSC is the period of the output waveform.
2/ Each output translator shall be tested for all parameters listed. VC= 20V unless otherwise specified.

# Conditions VIN= 15V dc,RT=4.12KOhms+0.1X RD=0 Ohms CT=0.01uF +0.1X Limits -55 C <= TC <= 125 C

		-33 0 /- 10 /- 153 0			
Characteristic	Symbol	(Unless otherwise specified)	HIH	MAX	Unit
EFERENCE SECTION:		·			
eference Output	*******	*********************			
oltage	VREF		4.90	-	V
ine Regulation	VELINE	VIN- 8V to 35V	-20	20	۳V
oad Regulation	VELOAD	ILOAD- One to 20mA	-30	30	₽V
Short Circuit Current	IOS 2/	VREF- OV t<- 25mS	-125	••	<b>=</b> A
Autput Moise Voltage	NO .	10Hs<-f<-10 KHs, Tc=25 deg C	••	200	uVRMS
lipple Rejection	AVREF	VIN- 15V+1VMMS,TC-25 deg C Sinewave @2.4KH2	-	••	dB
SCILLATOR SECTION: 5/					
nitial Frequency	fosc	TC= 25 deg C	38	42	KHz
oltage Stability	<b>A</b> €08C	8V<- VIN<-35V	-1	- · <del>-</del>	2
ecillator	f0SC1	TC= 125 deg C, -55 C	36	44	KHz
requency			•-		
linimum Frequency	fOSC	2T= 150 KOhms +0.1Z			
	(MIN)	CT= 0.20uF +1.0%,RD=0 Ohms		100	Hz
lazimum Frequency	fosc	RT= 2 KOhms +0.12			
	(HAX)	CT= 1.0nF +1.0X,RD=0 Ohms	350	••	KHz
lock Width	Ipu	TC= 25 deg C, -55 C		2	uS
		TC= 125 deg C		3_	uS
lawtooth Peak Voltage	VRP	VIN- 35V	2.5	3.5	٧
lawtooth Valley	****				
/oltage	AKA	VIN- 8V	0.45	••	٧
RROR SECTION:					•••••
Input Offset Voltage	VIO	VCN= .2,5V	-5	5	۳V
input Bies Current	IIB	VCH- 2.5V	-1		u.A
input Offset Current	IIO	YCH- 2.5Y	-0.5	0.5	u.k
pen Loop Voltage Gain	AVS	•	60		dB
Coumon Hode		_			
ejection Ratio	CIOCR	<b>VCA-</b> 0 to 5.2 <b>V</b>	70	••	dB
upply Voltage					
lejection Ratio	SVER	VIN- 8V to 35V,VCH=2.5V	66		dB
Inity Gain	0911		•		<b>W</b> U -
landwidth	GBW	See Fig.8, TC=25 degC,AV=0dB	3		MH z
Output High Level	AHI	Vpinl- Vpin2>=150mV, ICOMP= -100uA	3.6	••	٧
output Low Level	ATO	Vpinl- Vpin2>=150mV, ICOMP= 100uA	••	0.4	y
P.W.M. COMPARATOR:		***********************		••••••	
laximum Duty Cycle	ton(HAX)	1/ YCOMP- 3.6V			******
	EUSC		45	50	Z.
linimum Duty Cycle	tON(MIN)	1/ VCOMP= 0.4V			
	tosc			0.001	1

Device Type 03

TABLE 7-4 Electrical Perameter Limits (Cont.)

#### Conditions VIN= 15V dc RT=4.12KOhms+/-0.1% RD=0 Ohms CT=0.01uF+/-0.12 Limits

-55 C <= TC <= 125 C

		-55 C <- 1C <- 145 C			_
Characteristic	Symbol	(Unless otherwise specified		wi 	Vaits
OUTPUT DRIVERS: 3/					
Saturation Voltage	VCE	VC= 15V, ISINE= 20mA	••	0.3	٧
		ISINC 100mA	10.6	2 .0	V
Output High	AOH	VC= 15V, ISOURCE= 20mA ISOURCE= 100mA	12.5 12.0		v
Ohandean Balan	460	VC=15V TC= -55 C. 25 C		0.5	uS
Shutdown Delay	tSD	TC= 125 deg C	••	0.7	uS
Rise Time	t il	VC= 15V		0.3	uS
Fall Time	t F	VC= 15V		0.2	uS
VC Standby Current	IC	VC= 35V	••	150	uA.
DIGITAL PORTS: SYNC	RESET SHUTDO	OWN 4/			
High Input Current	IIH	VIH- 2.4V	-200		u.A
Low Input Current	IIL	VIL- 0.4v	-360		u.A
High Output Voltage	AOHB	ISOURCE- 40uA	2.4		V
Low Output Voltage	AOLD	ISINK- 3.6mA	••	0.4	V
CURRENT LIMIT COMPARA	ATOR:				
Sense Voltage	٧s		80		<b>-V</b>
Input Bias Current	IIBS		-10		u.A
SOFT START SECTION:		**************************************			
Error Clamp Voltage	VEC		***		v
Gapacitor Charging Current	ICS	•	-150	-50	u.A.
UNDER VOLTAGE LOCKOU	T:				
Reset Output(Low)	VR				
Voltage	(LOW)	VREF- 3.8V		0.4	٧
Reset Output(High)	VR				
Voltage	• •	VREF- 4.8V	2.4	••	V
POWER CONSUMPTION:	-				
Standby Current	IIN	SHUTDOWN= 0.4V VIN= 35V			
		TC= -55, 25 deg C		30	<b></b>
		TC= 125 deg C		25	

#### Notes:

- 1/ tOSC is the period of the output waveform in this case.
- 2/ Continuous Short Circuit limits will be less than indicated test limits.
- 3/ Each output transistor shall be tested for all parameters listed VC= 15V unless otherwise specified.
- 4/ Only use the shutdown pin to descrive the device do not use the Sync pin.
  5/ A 2.7 KOhms pull-up resistor is added to the Sync pin to limit stray capacitance in automatic test equipment.

Device Type 03 TABLE 7-4 Electrical Parameter Limits (Cont.)

TEST 100		
100.0	2550 DGR	TEST TEMPERATURE
TeaT 1	4.05 MA	ICC AT 4UV
Test 2	·	
2.i Teat 3	5.01 V	vest at via=20v
<b>3.</b> ú	7.40 MV	LINE REG S-4CV
TEST 4	-32.52 MV	LCAD REG C-ZOMA VIN=ZUV
Test > <b>5.</b> û	-34.9 <b>4</b> AA	ISC- REF
TeST o	•	
6.4 Test 7	J.C5 UA	COLLECTOR LEAKAGE AT LUV- XSISTOR "A"
7.G Test a	G.ÜĞ UM	COLLECTOR LEAKAGE AT 40V- XSISTOR "6"
. 8.4	1.35 V	VENT AT SCMA- XSISTOR "A"
TEST 10 10.4	17.53 V	EMITTER AL XSISTOR "A"
TEST y 9.0	1.37 V	VSAT AT SOMA- XSISTOR "B"
T2-T 11 11-0	17.78 V	EMITTER NI XSISTOR "3"
TEST 12		ENTITER HT X21210K . 7.
1 <b>2.</b> 0 Tëst 15	J.21 MV	VIC
1 <b>3.</b> j Test 14	1.75 UA	IEIAs (EA)
14.0	U.37 UA	IIO (EA)
Teaf 15 1 <b>5.</b> û	4.23 V	+SWING (EA)
TEST 10 13.C		-SWING (EA)
TEST 17		
17.6 Teat 15	99.7 UA	COMP I LO (REF)
15.C Teat 19	-152.9 UA	COMP (REF)
17.0	-5.17 ux	- DELTA COMP (REF)
Test 23 20.0	73.9 08	AVCL
TesT _1 21.0	63.5 OB	C in it il
TEST 12 22.0	0.77 V	Suites in Table
TesT 25		SHUTDCON THRESH
<b>23.</b> . Tést 44	194.9 MV	CURRENT LIMIT THRESH
24.C Tëst ës	-1.82 MA	OSC I MIRROR (REF)
25.C	1.13 V	OSC SAT Q SONA (REF)
TašT lo <b>2</b> 0.0	4.97 V	OSC CHECK
26.1	2.63 V	CUC CHECK
<b>20.2</b> Test 27	<b>2.</b> 76 ∨	OSC CHECK
27.0	373.5 Km:	
47.1	48.0 Km:	OSC CUTPUT FREG OSC JUTPUT FREE
	-	

Table 7-5 1524 Data Listing

b. When operating devices types 02, 03 and 04 at high voltages, care must be taken not to exceed the maximum junction temperature.

#### 7.6 BIBLIOGRAPHY

- a. Silicon General Product Catalog (1986)
- b. Applications Handbook, Unitrode (1985-86)

#### SECTION VIII

## SHUNT REGULATING REFERENCE

#### MIL-M-38510/148

#### TABLE OF CONTENTS

<u>Para</u>	<u>Title</u>	Page
	List of Figures	VIII-ii
	List of Tables	VIII-ii
8.1	Introduction and Device Description	VIII-1
8.2	Test Development	→ VIII-1
8.3	Test Results and Data	VIII-3
8.4	Conclusions and Recommendations	VIII-8
8.5	Bibliography	VIII-8
8.6	Appendix	VIII-8

#### LIST OF FIGURES

Figure -	<u>Title</u>	Page
8-1	TL431 Schematic and Block Diagram	VIII-2
8-2	TL431 Static Test Circuit	VIII-4
8-3	TL431 Low Frequency Noise Test Circuit	VIII-7

#### LIST OF TABLES

Table	<u>Title</u>	Page	
8-1	Table of Device Types Specified	VIII-1	
8-2	Characterization Parameters	VIII-3	
8-3	Electrical Parameters Limits	VIII-10	
8-4	Sample Test Data	VIII-11	

#### 8.1 INTRODUCTION AND DEVICE DESCRIPTION

This section of the report discusses the characterization effort for the TL431 three terminal programmable shunt regulator diode. The TL431 monolithic voltage reference operates as a low temperature coefficient zener which can be programmed from the range of Vref (2.5V) to 36 volts by two external resistors. Furthermore, the TL431 has a wide operating current range from 1.0mA to 100mA, and a dynamic impedance specification of 0.22 ohms. Characteristics of the reference allows it to replace zenor diodes used in various applications such as power supplies or op-amp designs. The 2.5 volt reference makes it possible to obtain a stable reference from a single 5.0V supply and since the reference operates as a shunt regulator, it can be used as either a positive or negative voltage reference (see Figure 1). The TL431 shunt regulator reference is a multi-sourced device with increasing DOD system usage. Electrical characterization test circuits, test conditions, and limits are specified in MIL-M-38510/148.

TABLE I TABLE OF DEVICE TYPE SPECIFIED

Device	Generic	Manufacturer	Description
01	TL431MJG	Motorola	Programmable Precision Reference

#### 8.2 TEST DEVELOPMENT

A list of the parameters used to electrically characterize the TL431 shunt regulator voltage reference is listed in Table 2.





Figure 1 TL431 Schematic and Block Diagram

TABLE 2 CHARACTERIZATION PARAMETERS

<u>Item</u>	Symbol	Parameter
1	$v_{ref}$	Reference Input Voltage
2	VKA10	Cathode Voltage (10V)
3	VKA36	Cathode Voltage (36V)
4	dVR/dVK	Ratio of Change in VREF to change in VKA
5	IREF	Reference Input Current
6	IMIN	Min Cathode Current for Reg
7	IOFF	Off-State Cathode Current
8	dVR/dT	Reference Voltage Temperature Drift
9	ZKA	Input Impedance
10	No	Noise (0.1 Hz to 10Hz)

#### Test Circuits:

All dc parametric data was taken off the LTX77 Analog Microcircuit Test System, with the noise measurement being made with a bench-top test fixture. The static test circuits are shown in Figure 2 and the noise test circuit is shown in Figure 3.

#### 8.3 TEST RESULTS AND DISCUSSION

Data obtained from the characterization effort revealed that the part performed very well within the manufacturers specified limits, over all three temperature ranges of -55°C, 25°C, 125°C.



Figure 2a



Figure 2b



Figure 2c

Figure 2 TL431 Static Test Circuit

#### Reference Input Voltage (Vref)

The reference input voltage parameter was measured by supplying a known current into cathode of the reference ( $I_R = 10$  mA) and measuring the resultant voltage at that terminal. Data obtained showed that this parameter met the specified limit, with the mean being around 2.47V and the lowest measurement reading 2.466V. See Figure 2a.

#### Cathode Voltage (10V), VKA10

This parameter was measured by using the circuit shown in Figure 2b with R1 = 10K ohm and R2 = 3.33K ohm and measuring the reference terminal pin 8. Measurements taken revealed that the mean value recorded was approximately 9.85V, with a minimum reading of 9.81V and a maximum reading of 9.90V.

#### Cathode Voltage (36V), VKA36

The 36V cathode voltage parameter was measured using the same technique as for the VKA10 parameter, except the specified R2 value equals 746 ohms in Figure 2b. All parts passed the specified limit with minimum reading equal to 35.06V and the maximum measurement equal to 35.39V.

#### Ratio of Change in Vref to Change in VKA, (dVR/dVK)

This measurement was taken at  $T_A = 25^{\circ}$ C, using the test circuit shown in Figure 2b with R2 equal to 3.33K ohms and R2 = 746 ohms. Results obtained show the amount of variance in the reference voltage with respect to changes in the programmed cathode voltage. All 20 pieces tested passed this parameter, with the greatest variance noted at the programmed VKA voltage of 10V.

#### Reference Input Current (IREF)

Using the circuit shown in Figure 2b, the reference input current was measured with R1 =  $\infty$ , and the amount of current inputted into the zener reference was measured with R1 = 10K ohms. This data was taken over all three temperature ranges and all values were well within the specified limit of 4.0uA at ambient and 7.0uA over temperature.

#### Minimum Cathode Current for Regulation (IMIN)

Testing of this parameter is a GO/NO GO test in which a minimum current (IK = ImA) is supplied into the cathode of the zener. The voltage is then measured to verify that the part is in regulation. All parts passed this parameter over all three temperatues. See Figure 2a.

#### Off-State Cathode Current (IOFF)

This measurement is taken using the circuit shown in Figure 2c and verifies the amount of leakage current associated with the reverse bias zener diode. All the references tested passed this parameter, over all three temperatures, with the worst case measurements occuring at  $T_A = 125^{\circ}\text{C}$ .

#### Input Impedance (ZKA)

Using the test circuit shown in Figure 2a, the input impedance is measured by supplying two known currents IK = ImA and IK = 100mA, measuring change in resultant reference voltage, and then dividing this difference by the difference in supplied cathode current. Data obtained shows that the worst case measurement occurred at  $T_A = 125^{\circ}C$  and was still three orders of magnitude less than the specified limit of 0.5 ohms. All devices passed this test.



#### NOTES:

- 1. Test time = 10 seconds. 2.  $V_{\rm OUT}$  measured with differential amplifier 7A22 and lower frequency set to 0.1 Hz.

Figure 3 TL431 Low Frequency Noise Test Circuit

Low Frequency Noise (0.1 Hz to 10 Hz), (No)

This test was done on the bench with the circuit shown in Figure 3. Output of the device under test (DUT) was inputted to a low pass filter and then amplified by 100 via the operational amplifier (OP07) gain circuit. The data obtained shows that the nominal value for 1/F noise is 10uV p-p with a deviation of ±5uVp-p. All parts passed the limit of 20uVp-p.

#### 3.4 CONCLUSIONS AND RECOMMENDATIONS

The data obtained from the analyses showed that the shunt regulator reference voltage device met the specifications supplied by the vendor. It is recommended that DOD system designers utilize these devices if screened per MIL-M-38510/148.

#### 8.5 BIBLIOGRAPHY

Motorola Semiconductor Data Book

#### 8.6 APPENDIX

The appendix contains: Table I of MIL-M-38510/148, sample test data, and waveforms which are too lengthly for insertion within the text of this report.



SN 14 Low Frequency Noise Output Waveform (Horizontal Deflection = 5uV/div) (Vertical Deflection = 1S/div)



SN 17 Low Frequency Noise Output Waveform (Horizontal Deflection = 5uV/div) (Vertical Deflection = 1S/div)

Characteristic	Symbol	Conditions $R_1 = 10 \text{ k}\Omega, \text{ I}_{K} = 10 \text{ mA}$		Limits		Unit
   			3.4) vise specified)	Min	Max	1
Reference input	YREF	VKA = VREF  see figure 3	TA = -55°C.	2.42	2.57	٧
	 	 	TA = +25°C	2.44	2.55	1
Cathode voltage	VKA10	VKA10 = VKA  R2 = 3.33 kΩ, se	ee figure 4	8.00	112.00	V
Cathode voltage	VKA36	VKA36 = VKA   R ₂ = 746Ω, see f	igure 4	31.00	36.00	V
Ratio of change in VREF to change in VKA	V _R V _{K(1)}	VREF = VR2 - VR1   VKA = VKA10 - VR1   R2 = 3.33 kΩ, see figure 4			  -2.70 	mV/V
Ratio of change in VREF to change in VKA	V _R (2)	YREF = YR3 - YR1   YKA = YKA36 - YR1   R2 = 7460, see figure 4		 	-2.00	mV/V
Reference input current	IREF	IIR = IREF isee figure 4	TA = +25°C	-0.1	4.00	Ι μ <b>Α</b>
	!   	! ! !	TA = -55°C, +125°C	-0.1	7.00	μA
Minimum cathode current for regulation	IMIN	VKA = VREF, IK = 1 mA R2 = **, see figure 3		2.40	2.60	V 
Off-state cathode	IOFF	V _{KA} = 36 V, V _{REF} = 0 V   see figure 5		-0.1	1.00	μ <b>Α</b>
Input impedance	ZKA	VKA = VREF. IK = 1.0 mA to			0.50	Ω   Ω
Noise	No	$I_K = 10$ mA $I_{W} = 0.1$ Hz to 10 Hz  see figure 6, $I_A = +25$ °C			20.00	  μΥρ-ρ 

Table 3 Electrical Parameter Limits

DEVIC	E 1			
TEST	1	2.4678	٧	VREF1 AT 25 DEG C
TEST	2	9.8170	٧	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.099	٧	CATHODE VOLTAGE R2=746 OHMS
TEST	4 -	-0.6788	ΜV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3864	MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7589	UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4662	ν	IMIN AT 25 DEG C
TEST	8	0.0149	UA	IOFF AT 25 DEG C
TEST	17	0.0003	OHMS	DYNAMIC IMPEDANCE
TEST	9	3.8042	MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.0022	UA ·	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4610	<b>V</b> .	IMIN AT -55 DEG C
TEST	12	0.0370	UA	IOFF AT -55 DEG C
TEST	18	0.0004	OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	9.3060	MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.3330	UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4347	٧	IMIN AT 125 DEG C
TEST	16	0.1721	UA	IOFF AT 125 DEG C
TEST	19	0.0006	OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

Table 4 Sample Test Data
VIII-11

TEST	1	2.4823 V	VREF AT 25 DEG C
TEST	2	9.8756 V	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.299 V	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.7552 MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3662 MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7590 UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4796 V	IMIN AT 25 DEG C
TEST	8	0.0158 UA	IOFF AT 25 DEG C
TEST	17	0.0004 OHMS	DYNAMIC IMPEDANCE
TESŢ	9	0.7830 MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.0936 UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.7491 V	IMIN AT -55 DEG C
TEST	12	0.1122 UA	IOFF AT -55 DEG C
TEST	18	0.0003 OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	17.2195 MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.2721 UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4390 V	IMIN AT 125 DEG C
TEST	16	0.1674 UA	IOFF AT 125 DEG C
TEST	19	0.0006 OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4780	V	VREF1 AT 25 DEG C
TEST	2	9.8574	٧	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.232	٧	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.8119	ΜV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3139	му	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.6981	UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4751	V	IMIN AT 25 DEG C
TEST	8	0.0121	UA	IOFF AT 25 DEG C
TEST	17	0.0003	OHMS	DYNAMIC IMPEDANCE
TEST	9	6.8483	MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.1240	UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4690	٧	IMIN AT -55 DEG C
TEST	12	0.1278	UA	IOFF AT -55 DEG C
TEST	18	0.0003	OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	13.5450	MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.2113	UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4415	٧	IMIN AT 125 DEG C
TEST	16	0.1987	UA	IOFF AT 125 DEG C
TEST	19	0.0006	OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4742 V	VREF1 AT 25 DEG C
TEST	2	9.8445 V	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.186 V	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.7200 MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3851 MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.6373 UA	REF INPUT CUPRENT AT 25 DEG C
TEST	7	2.4718 V	IMIN AT 25 DEG C
TEST	8	0.0169 UA	IOFF AT 25 DEG C
TEST	17	0.0004 OH	MS DYNAMIC IMPEDANCE
TEST	9	4.8704 MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	1.9110 UA	REF INPUT CURRENT AT ~55 DEG C
TEST	11	2.4665 V	IMIN AT -55 DEG C
TEST	12	0.1559 UA	IOFF AT -55 DEG C
TEST	18	0.0004 OH	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	11.2619 MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.4546 UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4415 V	IMIN AT 125 DEG C
TEST	16	0.2077 UA	IOFF AT 125 DEG C
TEST	19	0.0006 OHM	S DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4726 V	VREF1 AT 25 DEG C
TEST	2	9.8360 V	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.164 V	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.6692 MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3942 MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7284 UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4697 V	IMIN AT 25 DEG C
TEST	8	0.0155 UA	IOFF AT 25 DEG C
TEST	17	0.0004 OHMS	DYMAMIC IMPEDANCE
TEST	9 .	5.9347 MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.2152 UA	REF INPUT CURRENT AT ~55 DEG C
TEST	11	2.4639 V	IMIN AT -55 DEG C
TEST	12	0.0964 UA	IOFF AT -55 DEG C
TEST	18	0.0003 OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	11.5881 MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.3330 UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4339 V	IMIN AT 125 DEG C
TEST	16	0.2055 UA	IOFF AT 125 DEG C
TEST	19	0.0006 OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4762	V	VREF1 AT 25 DEG C
TEST	2	9.8526	٧	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35,225	V	CATHODE VOLTAGE R2=746 OHMS
TEST	4 .	-0.7640 1	MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3057	MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.6373	UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4742	V	IMIN AT 25 DEG C
TEST	8	0.0143	UA	IOFF AT 25 DEG C
TEST	17	0.0003	OHMS	DYNAMIC IMPEDANCE
TEST	9 -	6.3915	MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.0328	UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4671	٧	IMIN AT -55 DEG C
TEST	12	0.0686	UA	IOFF AT -55 DEG C
TEST	18	0.0004	OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	8.3704	MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.3330	UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4237	V	IMIN AT 125 DEG C
TEST	16	0.2198	IJA	IOFF AT 125 DEG C
TEST	19	0.0008	OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4748	V	VREF1 AT 25 DEG C
TEST	2	9.8463	٧	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.201	٧	CATHODE VOLTAGE R2=746 OHMS
TEST	4 -	-0.7267 1	MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3229 1	MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7590	UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4729	٧	IMIN AT 25 DEG C
TEST	8	0.0184	U <b>A</b>	IOFF AT 25 DEG C
TEST	17	0.0003	OHMS	DYNAMIC IMPEDANCE
TEST	9	7.1526	ΜV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.1239	UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4652	V	IMIN AT -55 DEG C
TEST	12	0.1374	UA	IOFF AT -55 DEG C
TEST	18	0.0004	OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	5.9357	MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.3025	UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4382	٧	IMIN AT 125 DEG C
TEST	16	0.1944	UA	IOFF AT 125 DEG C
TEST	19	0.0007	OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4809	V	VREF1 AT 25 DEG C
TEST	2	9.8721	٧	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.287	٧	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.6868	MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.4180	MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7590	UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4787	٧	IMIN AT 25 DEG C
TEST	8	0.0146	UA	IOFF AT 25 DEG C
TEST	17	0.0004	OHMS	DYMAMIC IMPEDANCE
TEST	9	7.0229	MV	CHANGE IN VREF FORM -55 TO 25 DEG C
TEST	10	2.1240	UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4705	٧	IMIN AT -55 DEG C
TEST	12	0.3223	U <b>A</b>	IOFF AT -55 DEG C
TEST	18	0.0004	OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	11.5891	MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.6676	UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4528	٧	IMIN AT 125 DEG C
TEST	16	0.2017	UA	IOFF AT 125 DEG C
TEST	19	0.0005	OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4889 V	VREF1 AT 25 DEG C
TEST	2	9.9014 V	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.393 V	CATHODE VOLTAGE R2=746 OHMS
TEST	4 -	-0.7656 MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5 -	-0.4036 MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.7590 UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4864 V	IMIN AT 25 DEG C
TEST	8	0.0154 UA	IOFF AT 25 DEG C
TEST	17	0.0004 OHMS	DYNAMIC IMPEDANCE
TEST	9	5.3492 MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.2153 UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4803 V	IMIN AT -55 DEG C
TEST	12	0.0401 UA	IOFF AT -55 DEG C
TEST	18	0.0004 OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	13.2627 MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.3025 UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4501 V	IMIN AT 125 DEG C
TEST	16	0.1672 UA	IOFF AT 125 DEG C
TEST	19	0.0006 OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

TEST	1	2.4762 V	VREF1 AT 25 DEG C
TEST	2	9.8494 V	CATHODE VOLTAGE R2=3.33K OHMS
TEST	3	35.202 V	CATHODE VOLTAGE R2=746 OHMS
TEST	4	-0.8297 MV	CHG VREF/CHG VKA R2=3.33K OHMS
TEST	5	-0.3469 MV	CHG VREF/CHG VKA R2=746 OHMS
TEST	6	1.4243 UA	REF INPUT CURRENT AT 25 DEG C
TEST	7	2.4733 V	IMIN AT 25 DEG C
TEST	8	0.0167 UA	IOFF AT 25 DEG C
TEST	17	0.0004 OHMS	DYNAMIC IMPEDANCE
TEST	9	7.9136 MV	CHANGE IN VREF FROM -55 TO 25 DEG C
TEST	10	2.1239 UA	REF INPUT CURRENT AT -55 DEG C
TEST	11	2.4652 V	IMIN AT -55 DEG C
TEST	12	0.0968 UA	IOFF AT -55 DEG C
TEST	18	0.0004 OHMS	DYNAMIC IMPEDANCE AT -55 DEG C
TEST	13	12.7840 MV	CHANGE IN VREF FROM 25 TO 125 DEG C
TEST	14	1.2721 UA	REF INPUT CURRENT AT 125 DEG C
TEST	15	2.4373 V	IMIN AT 125 DEG C
TEST	16	0.2203 UA	IOFF AT 125 DEG C
TEST	19	0.0006 OHMS	DYNAMIC IMPEDANCE AT 125 DEG C

## MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control, Communications and Intelligence (C³I) activities. Technical and engineering support within areas of competence is provided to ESD Program Offices (POs) and other ESD elements to perform effective acquisition of C³I systems. The areas of technical competence include communications, command and control, battle management, information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic, maintainability, and compatibility.

STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATEST STATES