Matematika I

Séria úloh 4

1. (7b) Daná je všeobecná rovnica kužeľosečky $x^2+2x+y^2+4y+1=0. \label{eq:control}$

Doplňte:

a)	(2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je	
b)	(1b) Typ kužeľosečky je	•
c)	(3b) Napíšte, ak existujú	
	c_1) súradnice stredu kužeľosečky:	
	c_2) súradnice ohniska resp. ohnísk kužeľosečky:	
	c_3) súradnice vrcholu resp. vrcholov kužeľosečky:	
d)	(1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.	

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4 - x^2 - y^2)}{\sqrt{x^2 + y^2 - 1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je trojuholník s vrcholmi A = [1, 1], B = [2, 1] a C = [1, 3].

Výsledok:

- **4.** (4b) Bod M má v sférickej súradnicovej sústave súradnice: $M = \left[2\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, -\sqrt{6}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

 a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici. Charakteristická rovnica je:	5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 9y(x) = e^{-3x}$.
 b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou. Fundamentálny systém riešení je b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice. Partikulárne riešene je c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice. Všeobecné riešenie danej LODR je 6. (4b) Vypočítajte lim xy / (xy) + 9. Výsledok: 7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie f(x, y) = √14 - x² - y² v bode T = [3, 1, z₀]. (2b) Nájdite z₀ a uveďte súradnice dotykového bodu: (4b) Všeobecná rovnica dotykovej roviny τ je: 8. (6b) Daná je funkcia f(x, y) = √4 + x² + y², bod A = [1, 2] a vektor l = (-1, 2). a) (3b) Nájdite gradient funkcie f(x, y) v bode A. Gradient funkcie f(x, y) v bode A je b) (3b) Vypočítajte deriváciu funkcie f(x, y) v bode A v smere vektora l. 	a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
nou. Fundamentálny systém riešení je	Charakteristická rovnica je:
 b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice. Partikulárne riešene je c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice. Všeobecné riešenie danej LODR je 6. (4b) Vypočítajte lim xy / 3 - √xy + 9 Výsledok: 7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie f(x, y) = √14 - x² - y² v bode T = [3, 1, z₀]. (2b) Nájdite z₀ a uvedte súradnice dotykového bodu: (4b) Všeobecná rovnica dotykovej roviny τ je: 8. (6b) Daná je funkcia f(x, y) = √4 + x² + y², bod A = [1, 2] a vektor l = (-1, 2). a) (3b) Nájdite gradient funkcie f(x, y) v bode A. Gradient funkcie f(x, y) v bode A je b) (3b) Vypočítajte deriváciu funkcie f(x, y) v bode A v smere vektora l. 	, , , , , , , , , , , , , , , , , , , ,
Partikulárne riešene je	Fundamentálny systém riešení je
 c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice. Všeobecné riešenie danej LODR je	b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Všeobecné riešenie danej LODR je $\lim_{[x,y]\to[0,0]}\frac{xy}{3-\sqrt{xy+9}}.$ Výsledok:	Partikulárne riešene je
 6. (4b) Vypočítajte	c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
$\lim_{[x,y]\to[0,0]}\frac{xy}{3-\sqrt{xy+9}}.$ Výsledok: 7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\sqrt{14-x^2-y^2}$ v bode $T=[3,1,z_0].$ (2b) Nájdite z_0 a uvedte súradnice dotykového bodu : (4b) Všeobecná rovnica dotykovej roviny τ je: 8. (6b) Daná je funkcia $f(x,y)=\sqrt{4+x^2+y^2},$ bod $A=[1,2]$ a vektor $\vec{l}=(-1,2).$ a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A . Gradient funkcie $f(x,y)$ v bode A je. b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .	Všeobecné riešenie danej LODR je
 Výsledok: (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie f(x, y) = √14 - x² - y² v bode T = [3, 1, z₀]. (2b) Nájdite z₀ a uvedte súradnice dotykového bodu: (4b) Všeobecná rovnica dotykovej roviny τ je: 8. (6b) Daná je funkcia f(x, y) = √4 + x² + y², bod A = [1, 2] a vektor l = (-1, 2). a) (3b) Nájdite gradient funkcie f(x, y) v bode A. Gradient funkcie f(x, y) v bode A je b) (3b) Vypočítajte deriváciu funkcie f(x, y) v bode A v smere vektora l. 	6. (4b) Vypočítajte
 7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie f(x, y) = √14 - x² - y² v bode T = [3, 1, z₀]. (2b) Nájdite z₀ a uveďte súradnice dotykového bodu: (4b) Všeobecná rovnica dotykovej roviny τ je: 8. (6b) Daná je funkcia f(x, y) = √4 + x² + y², bod A = [1, 2] a vektor l = (-1, 2). a) (3b) Nájdite gradient funkcie f(x, y) v bode A. Gradient funkcie f(x, y) v bode A je b) (3b) Vypočítajte deriváciu funkcie f(x, y) v bode A v smere vektora l. 	$\lim_{[x,y]\to[0,0]} \frac{xy}{3-\sqrt{xy+9}}.$
v bode $T=[3,1,z_0].$ (2b) Nájdite z_0 a uveďte súradnice dotykového bodu :	Výsledok:
 (4b) Všeobecná rovnica dotykovej roviny τ je:	
8. (6b) Daná je funkcia $f(x,y) = \sqrt{4 + x^2 + y^2}$, bod $A = [1, 2]$ a vektor $\vec{l} = (-1, 2)$. a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A . Gradient funkcie $f(x,y)$ v bode A je	(2b) Nájdite z_0 a uveďte súradnice dotykového bodu :
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A . Gradient funkcie $f(x,y)$ v bode A je	(4b) Všeobecná rovnica dotykovej roviny τ je:
Gradient funkcie $f(x,y)$ v bode A je	8. (6b) Daná je funkcia $f(x,y)=\sqrt{4+x^2+y^2}$, bod $A=[1,2]$ a vektor $\vec{l}=(-1,2)$.
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .	a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
	Gradient funkcie $f(x,y)$ v bode A je
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je	b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
	Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

 $\mathbf{9.}~(9b)$ Toto je príklad typu C

text text text