Introduction to Graph Theory Lecture 25

Menu

- Paths
- Connected graphs
- Incidence matrix and adjacency matrix of a graph

Walks, paths and circuits

- A sequence of edges of the form
 V_sV_i, V_iV_j, V_jV_k, V_kV_l, V_lV_t is a walk from V_s to V_t.
- If these edges are distinct then the walk is called a trail, and
- if the vertices are also distinct then the walk is called a path.
- A walk or trail is **closed** if $V_s = V_t$.
- A closed walk in which all the vertices are distinct except V_s and V_t, is called a cycle or a circuit.
- The number of edges in a walk is called its length.

Example: Identify whether a path is marked on the graph in each case:

• Solution: (c) is a path, length?

Example: Identify whether a trail, path or circuit is marked on the graph in each case:

• Solution: (a) circuit (b) trail (c) path

Connected graphs

- A graph G is connected if there is a path from any one of its vertices to any other vertex.
- A disconnected graph is said to be made up of components.
- Example 5:
- How many components do the following disconnected graphs have?

Solution:

 (a) Two components
 (b) Three components

Matrix representation of a graph: the incidence matrix

 The incidence matrix of a graph G is a |V| × |E| matrix A.

- The element a_{ii} =
- the number of times that vertex V_i is incident with the edge e_j

Give the incidence matrix of the graph below:

• The incidence matrix for the graph is given

Matrix representation of a graph: the adjacency matrix

 The adjacency matrix of a graph G is a |V| × |V| matrix A.

- The element $a_{ii} =$
- the *number of edges* joining V_i and V_j

Give the adjacency matrix of the graph below:

The adjacency matrix for the graph is given by

V1

 V2
V3
V4
V5
V6

Summary

- Definitions of paths
- Definitions of connected graphs
 Definitions of incidence matrix and adjacency matrix of a graph

Q. How would you design data structure for graphs? What type of data structure can we use to store graphs?

- Self test
- 1. Write down the adjacency and incidence matrices of the graph below.

- Self test
- 2. Draw the graph whose adjacency matrix is given in (a)

$$\begin{pmatrix}
0 & 1 & 1 & 2 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
2 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{pmatrix}$$

(a)

Self test

• 3. Draw the graph whose incidence matrix is given in (b)

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

(b)

Answers

1. The incidence matrix is

The adjacency matrix is

Answers

```
2.
```


abcdefgh

