ЛИТЕРАТУРА

1. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и за-дачи по курсу процессов и аппаратов. Л., Химия, 1976.

- 2. ГОСТ 11987—81. Аппараты выпарные трубчатые. 3. Справочник химика. М.—Л., Химия, т. 111, 1962, 1006 с., т. V., 1966, 974 с.
- 4. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначения. М., ЦИНТИХИМ-НЕФТЕМАШ, 1979. 38 с. 5. Мищенко К. П., Полторацкий Г. М. Термодинамика и
- строение водных и неводных растворов электролитов. Изд. 2-е, Л., Химия, 1976. 328 с. 6. Воробыва Г. Я. Коррозионная стойкость материалов в агрес-
- сивных средах химических производств. Изд. 2-е, М., Химия,
- Касаткин А. Г. Основные процессы и аппараты химической технологии. Изд. 9-е, М., Химия, 1973. 750 с.
- Викторов М. М. Методы вычисления физико-химических величин и прикладные расчеты. Л., Химия, 1977. 360 с. Чернышов А. К., Поплавский К. Л., Заичко Н. Д. Сборник
- номограмм для химико-технологических расчетов. Л., Химия, 1974. 200 с.
- 10. Тананайко Ю. М., Воронцов Е. Г. Методы расчета и исследования пленочных процессов. Киев, Техніка, 1975. 312 с.

- 11. Теплотехнический справочник. Т. 2. М., Энергия, 1972.

- 896 с.
 12. ОСТ 26716—73. Барометрические конденсаторы.
 13. ГОСТ 1867—57. Вакуум-насосы низкого давления.
 14. Калач Т. А., Радун Д. В. Выпарные станции. М., Машгиз, 1963, 400 c.
- 15. Чернобыльский И. И. Выпарные установки. Киев, изд. Киевского университета, 1960. 262 с. 16. Лебедев П. Д., Щукин А. А. Теплоиспользующие установки
- промышленных предприятий. М., Энергия, 1970. 408 с. Таубман Е. И. Расчет и моделирование выпарных установок.
- М., Химия, 1970. 216 с.
 18. Олевский В. М., Ручинский В. Р. Роторно-пленочные тепло-и массообменные аппараты. М., Химия, 1977. 206 с.
- Удыма П. Г. Аппараты с погружными горелками. М., Ма-шиностроение, 1965. 192 с.
- Попов Н. П. Выпарные аппараты в производстве минераль-
- ных удобрений. М., Химия. 1974. 126 с. 21. Кичигин М. А., Костенко Г. Н. Теплообменные аппараты и выпарные установки. М., Госэнергоиздат, 1955. 392 с. 22. Лащинский А. А., Толчинский А. Р. Основы конструирова-
- ния и расчета химической аппаратуры. Л., Машиностроение, 1970, 752 c.
- 23. Кувшинский М. Н., Соболева А. П. Курсовое проектирование по предмету «Процессы и аппараты химической промышленности». М., Высшая щкола, 1980. 223 с.

ГЛАВА VI

АБСОРБЦИОННАЯ УСТАНОВКА

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- a удельная поверхность, м $^2/\text{м}^3$; D коэффициент диффузии, м $^2/\text{c}$;
- d диаметр, м;
- поверхность массопередачи, м²;
- G расход инертного газа, кг/с;
- g ускорение свободного падения, м/с2;
- H, \tilde{h} высота, м;
 - К коэффициент массопередачи;
 - К коэффициент массопередати,
 L расход поглотителя, кг/с;
 М масса вещества, передаваемого через поверхность массопередачи в единицу времени, кг/с;
- M_{6y} мольная масса бензольных углеводородов, кг/кмоль; m коэффициент распределения; P давление, $M\Pi a$;

 - T температура, Қ; U — плотность орошения, $M^3/M^2 \cdot C$;
 - w скорость газа, м/с;
 - х концентрация жидкости;
 - y концентрация газа:
- $\Delta \overline{\mathrm{X}}_{\mathtt{Cp}}$ средняя движущая сила абсорбции по жидкой фазе, Kr/Kr:
- $\Delta \widetilde{Y}_{\mathtt{CP}}$ средняя движущая сила абсорбции по газовой фазе, Kr/Kr:
 - β коэффициент массоотдачи;
 - ε свободный объем, м³/м³;

 - ho плотность, $\kappa r/m^3$; μ вязкость, $\Pi a \cdot c$; λ коэффициент трения;
 - σ поверхностное натяжение, H/M;
 - ф коэффициент смачиваемости;
 - ξ коэффициент сопротивления;
 - Re критерий Рейнольдса;
 - Fr критерий Фруда;
 - Гс критерий гидравлического сопротивления;
 - Nu диффузионный критерий Нуссельта; Pr' диффузионный критерий Прандтля.
- Индексы:
 - к конечный параметр; н начальный параметр;

 - х жидкая фаза;
 - у газовая фаза;
 - ср средняя величина;
 - 0 при нормальных условиях;

 - в вода; * равновесный состав.

ВВЕДЕНИЕ

Области применения абсорбционных процессов в вромышленности весьма обширны: получение готового продукта путем поглощения газа жидкостью, разделение газовых смесей на составляющие их компоненты, очистка газов от вредных примесей, улавливание ценных компонентов из газовых выбросов.

Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или, по крайней мере, влиянием этой реакции на скорость процесса можно пренебречь. Вследствие этого физическая абсорбция не сопровождается тепловым эффектом. Если в этом случае начальные потоки газа и жидкости незначительно различаются по температуре, то такую абсорбцию можно рассматривать как изотермическую. С этого наиболее простого случая начнем рассмотрение расчета процесса абсорб-

Основная сложность, с которой встречаются студенты при проектировании абсорберов, заключается в правильном выборе расчетных закономерностей для определения кинетических коэффициентов из большого числа различных, порой противоречивых, зависимостей, представленных в технической литературе. Расчеты по этим уравнениям, обычно справедливым для частных случаев, приводят зачастую к различающимся, а иногда к заведомо неверным результатам. Рекомендуемые здесь уравнения выбраны после тщательного анализа и сравнительных расчетов в широком интервале переменных, проверки адекватности расчетных данных с опытными, полученными на реальных системах.

В данной главе приведены примеры расчетов насадочного и тарельчатого абсорберов по основному кинетическому уравнению массопередачи. Другие методы рассмотрены в главе VII на примере расчета ректификационных колонных аппаратов. На рис. VI.1 дана схема абсорбционной установки. Газ на

гла рис. v1.1 дана схема аосородионной установки. газ на абсорбцию подается газодувкой 1 в нижнюю часть колонны 2, где равномерно распределяется перед поступлением на контактный элемент (насадку или тарелки). Абсорбент из промежуточной емкости 9 насосом 10 подается в верхнюю часть колонны и равномерно распределяется по поперечному сечению абсорбера с помощью оросителя 4. В колонне осуществляется противоточное взаимодействие газа и жидкости. Очищенный газ, пройдя брызгоотбойник 3, выходит из колонны. Абсорбент стекает через гидрозатвор в промежуточную емкость 13, откуда насосом 12 направляется на регенерацию в десорбер 7, после предварительного подогрева в теплообменнике-рекуператоре 11. Исчерпывание поглощенного компонента из абсорбента производится в кубе 8, обогреваемом, как правило, насыщенным водяным па-

Рис. VI.1. Принципиальная ехема абсорбционной установки: 1— вентилятор (газодувка); 2— абсорбер; 3— брызгоотбойник; 4, 6— оросители; 5— холодильник; 7— десогбер; 8— куб десорбера; 9, 13— емкости для абсорбента; 10, 12— насосы; 11— теплообменвик-рекуператор.

ром. Перед подачей на орошение колочны абсорбент, пройдя теплообменник-рекуператор 11, дополнительно охлаждается в холодильнике 5.

Задание на проектирование. Рассчитать абсорбер для улавливания бензольных углеводородов из коксового газа каменноугольным маслом при следующих условиях:

1. Производительность по газу при нормальных

условиях $V_0 = 13.9 \text{ м}^3/\text{c}.$

углеводородов бензольных 2. Концентрация в газе при нормальных условиях:

на входе в абсорбер $y_{\rm H}=35\cdot 10^{-3}~{\rm kr/m^3};$ на выходе из абсорбера $y_{\rm K}=2\cdot 10^{-3}~{\rm kr/m^3}.$ 3. Содержание углеводородов в поглотительном

масле, подаваемом в абсорбер, $x_{\rm tt}=0.15~\%$ (масс.). 4. Абсорбция изотермическая, средняя температура потоков в абсорбере t = 30 °C.

5. Давление газа на входе в абсорбер P =

 $= 0.119 \text{ M}\Pi a.$

Улавливание бензольных углеводородов из коксового газа каменноугольным маслом представляет собой процесс многокомпонентной абсорбции, когда из газа одновременно поглощается смесь компонентов — бензол, толуол, ксилол и сольвенты. Инертная часть коксового газа также состоит из многих компонентов — H₂, CH₄, CO, N₂, CO₂, O₂, NH₃, Н2 и др. Сложным является и состав каменноугольного масла, представляющего ссбой смесь ароматических углеводородов (двух- и трехкольчатых) и гетероциклических соединений с примесью фенолов.

Для упрощения приведенных ниже расчетов газовая смесь и поглотитель рассматриваются как бинарные, состоящие из распределяемого компонента (бензольные углеводороды) и инертной части (носителей); физические свойства их приняты осреднен-

Для линеаризации уравнения рабочей линии абсорбции составы фаз выражают в относительных концентрациях распределяемого компонента, а нагрузки по фазам — в расходах мнертного носителя. В приведенных ниже расчетах концентрации выражены в относительных массових долях распределяемого компонента, а нагрузки — в массовых расходах носителей.

1. РАСЧЕТ НАСАДОЧНОГО АБСОРБЕРА

Геометрические размеры колонного массообменного аппарата определяются в основном поверх-

ностью массопередачи, необходимой для проведения данного процесса, и скоростями фаз.

Поверхность массопередачи может быть найдена основного уравнения массопередачи [1]:

$$F = \frac{M}{K_x \overline{\Delta X}_{\text{cp}}} = \frac{M}{K_y \overline{\Delta Y}_{\text{cp}}}$$
 (VI.1)

где K_x , K_y — коэффициенты массопередачи соответственно по жидкой и газовой фазам, кг/(м²-с).

1.1. ОПРЕДЕЛЕНИЕ МАССЫ ПОГЛОЩАЕМОГО ВЕЩЕСТВА И РАСХОДА ПОГЛОТИТЕЛЯ

Массу переходящих из газовой смеси в поглотитель бензольных углеводородов M находят из уравнения материального баланса:

$$M = G(\overline{Y}_{H} - \overline{Y}_{K}) = L(\overline{X}_{K} - \overline{X}_{H})$$
 (VI.2)

где L, G — расходы соответственно чистого поглотителя и инертной части газа, кг/с; $\overline{X}_{\rm H}$, $\overline{X}_{\rm K}$ — начальная и конечная концентрации бензольных углеводородов в поглотительном масле, кг БУ/кг М; $\overline{Y}_{\rm H}$, $\overline{Y}_{\rm K}$ — начальная и конечная концентрации бензольных углеводородов в газе, кг БУ/кг Γ .

Пересчитаем концентрации и нагрузки по фазам для получения выбранной для расчета размерности:

$$\overline{Y}_{\rm H} = \frac{y_{\rm H}}{\rho_{\rm 0}y - y_{\rm H}} \qquad \overline{X}_{\rm H} = \frac{x_{\rm H}}{100 - x_{\rm H}} \qquad (VI.3)$$

где ρ_{0y} — средняя плотность коксового газа при нормальных условиях [2].

$$\overline{Y}_{\rm H} = \frac{35 \cdot 10^{-3}}{0.44 - 35 \cdot 10^{-3}} = 0.0864 \text{ kg By/kgg}$$

$$\overline{Y}_{\rm K} = \frac{2 \cdot 10^{-3}}{0.44 - 2 \cdot 10^{-3}} = 0,0045 \text{ kg by/kgs}$$

$$\overline{X}_{\rm H} = \frac{0.15}{100 - 0.15} \approx 0.0015 \; {
m kg} \; {
m by/kgm}$$

Конечная концентрация бензольных углеводородов в поглотительном масле \overline{X}_{κ} обусловливает его расход, который, в свою очередь, влияет на размеры абсорбера и часть энергетических затрат, связанных перекачиванием жидкости и ее регенерацией. Поэтому \bar{X}_{κ} выбирают, исходя из оптимального расхода поглотителя [3]. В коксохимических производствах расход поглотительного каменноугольного масла L принимают в 1,5 раза больше минимального L_{\min} [4]. В этом случае конечную концентрацию $\overline{X_{\mathtt{R}}}$ определяют из уравнения материального баланса, используя данные по равновесию (рис. VI.2 и VI.3):

$$M = L_{\min} \left(\overline{X}_{\overline{Y}_{H}}^{*} - \overline{X}_{H} \right) = 1.5 L_{\min} \left(\overline{X}_{H} - \overline{X}_{H} \right) \quad (V1.4)$$

Отсюда

$$\overline{X}_{\rm R} = \frac{\overline{X}_{\rm \overline{Y}H}^* + 0.5\overline{X}_{\rm H}}{1.5} =$$

=
$$\frac{0.0432 + 0.5 \cdot 0.0015}{1.5}$$
 = 0.0293 krby/krM

где $\overline{X}_{Y\mathrm{H}}^*$ — концентрация бензольных углеводородов в жидкости, равновесная с концентрацией их в газе.

Рис. VI.2. Зависимость между содержанием бензольных углеводородов в коксовом газе \overline{Y} и каменноугольном масле \overline{X} при температуре 30 °C [2]:

1 -- равновесная линия; 2 -- рабочая линия.

Рис. VI.3. Схема распределения концентраций в газовом и жидкостном потоках в абсорбере,

Расход инертной части газа

$$G = V_0 (1 - y_{00}) (\rho_{0y} - y_{H})$$
 (VI.5)

где y_{05} — объемная доля бензольных углеводородов в газе, равная

$$y_{06} = \frac{y_{\mathrm{H}}}{M_{\mathrm{BV}}}$$
 $v_{0} = \frac{35 \cdot 10^{-3}}{83}$ 22,4 = 0,0094 м³ БУ/м³ Г

Тогда

$$G = 13.9 (1 - 0.0094) (0.44 - 0.035) = 5.577 \text{ kg/c}$$

Производительность абсорбера по поглощаемому компоненту

$$M = G(\overline{Y}_H - \overline{Y}_R) = 5,577(0,0864 - 0,0045) = 0,457 \text{ kg/c}$$
(VI.6)

Расход поглотителя (каменноугольного масла) равен:

$$L = \frac{M}{\overline{X}_{\text{K}} - \overline{X}_{\text{H}}} = \frac{0,457}{0,0293 - 0,0015} = 16,44 \text{ kg/c}$$

Тогда соотношение расходов фаз, или удельный расход поглотителя равен:

$$l = L/G = 16,44:5,577 = 2,94 \text{ kg/kg}$$

1.2. РАСЧЕТ ДВИЖУЩЕЙ СИЛЫ

В насадочном абсорбере жидкая и газовая фазы движутся противотоком. Принимая модель идеального вытеснения, движущего силу определяют по формуле [1]:

$$\Delta \overline{Y}_{\rm cp} = \frac{\Delta \overline{Y}_{\rm 6} - \Delta \overline{Y}_{\rm M}}{2.3 \lg (\overline{\Delta Y}_{\rm 6}/\overline{\Delta Y}_{\rm M})}$$
 (VI.7)

где $\Delta \overline{Y}_6$ и $\Delta \overline{Y}_{\rm M}$ — бо́льшая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кг БУ/кг Γ (см. рис. VI.2 и VI.3).

В данном примере
$$\Delta \overline{Y}_6 = \overline{Y}_{\text{H}} - \overline{Y}_{\overline{X}^{\text{K}}}^{\bullet}$$
 и $\Delta \overline{Y}_{\text{M}} = \overline{Y}_{\text{K}} - \overline{Y}_{\overline{X}^{\text{H}}}^{\bullet}$, где $\overline{Y}_{\overline{X}^{\text{H}}}^{\bullet}$ и $\overline{Y}_{\overline{X}^{\text{K}}}^{\bullet}$ — концентрации бензольных углеводородов в газе, равновесные с концентрациями в жидкой фазе (поглотителе) соответ-

ственно на входе в абсорбер и на выходе из него (см. рис. VI.2):

$$\begin{split} \Delta \overline{Y}_6 &= 0,0864 - 0,0586 = 0,0278 \text{ Kr } \text{ БУ/Kr } \Gamma \\ \Delta \overline{Y}_\text{M} &= 0,0045 - 0,0030 = 0,0015 \text{ Kr } \text{ БУ/Kr } \Gamma \\ \Delta \overline{Y}_\text{Cp} &= \frac{0,0278 - 0,0015}{2,3 \text{ Ig } (0,0278/0,0015)} = 0,009 \text{ Kr } \text{ БУ/Kr } \Gamma \end{split}$$

1.3. РАСЧЕТ КОЭФФИЦИЕНТА МАССОПЕРЕДАЧИ

Коэффициент массопередачи K_y находят по уравнению аддитивности фазовых диффузионных сопротивлений [1]:

$$K_y = \frac{1!}{1/\beta_y + m/\beta_x}$$
 (VI.8)

где β_x и β_y — коэффициенты массоотдачи соответственно в жид-кой и газовой фазах, кг/(м²-с); m — коэффициент распределения, кг M/кг Γ_{ullet}

Для расчета коэффициентов массоотдачи необходимо выбрать тип насадки и рассчитать скорости потоков в абсорбере. При выборе типа насадки для

Рис. VI. 4. Виды насадок:

a — деревянная хордовая насадка; δ — кольца Рашига впавал и с упорядоченной укладкой; ϵ — кольцо с вырезами и внутренними выступамн (кольцо Палля); ϵ — керамические седла Берля; δ — седла «Инталокс»; ϵ — кольцо с крестообразными перегородками; ∞ — кольца с внутренники спиралями; ϵ — пропеллерная насадка.

Таблица VI.1. Характеристики насадок (размеры даны в мм)

Насадки	а, м ² /м ³	ε, M ³ /N ³	<i>d</i> _Э , м	о. кг/м ^а	Число штук в 1 м ^в
Регуля	рны	е нас	адкі	4	
Деревянная хордовая	}	1		1	
(10×100), шаг в свету					
10	100	0,55	0,022	210	
20	65	0,68	0,042	145	
30	48	0,77	0,064	110	
Керамические кольца		1	1		1
Рашига					
$50 \times 50 \times 5$	110	0,735	0,027	650	8 500
$80\times80\times8$	80	0,72	0,036	670	2 200
$100 \times 100 \times 10$	60	0,72	0,048	670	1 050

Неупорядоченные насадки

Керамические кольца	-		1	- 1	
Рашига					
$10\times10\times1,5$	440	0,7	0,006	700	700 000
$15\times15\times2$	330	0,7	0,009	690	$220\ 000$
$25\times25\times3$	200	0.74	0,015	530	50 000
$35\times35\times4$	140	0.73	0,022	530	18 000
$50\times50\times5$	90	0.735	0,035	530	6000
Стальные кольца Рашига					
$10 \times 10 \times 0.5$	500	0,83	0,007	960	770 000
$15\times15\times0,5$	350	0,9.2	0,012	660	$240\ 000$
$25\times25\times0.8$	220	0,92	0,017	640	55 000
$50\times50\times1$	110	0,95	0,035	430	7 000
Керамические кольца					
Палля					
$25\times25\times3$	220	0,74	0,014	610	46 000
$35\times35\times4$	165	0,73	0,018	540	18 500
$50\times50\times5$	120	0,78	0,026	520	5 800
$60\times60\times6$	96	0,79	0,033	520	3 350
Стальные кольца Палля		'			
$15\times15\times0.4$	380	0,9	0,010	525	230 000
$25 \times 25 \times 0.6$	235	0,9	0,015	490	52 000
$35 \times 35 \times 0.8$	170	0,9	0,021	455	18 200
$50 \times 50 \times 1.0$	108	0,9	0,033	415	6 400
Керамические седла Бер-		, ,			
ля		l	1		
12,5	460	0,68	0,006	720	570 000
25	260	0,€9	0,011	670	78 000
38	165	0,7	0,017	670	30 500
Керамические седла «Ин-					ļ
талокс»		1	1	-4-	700 000
12,5	625	0,78	0,005	545	730 000
19	335	0,77	0,009	560	229 000
25	255	0,775	0,012	545	84 000
38	195	0,81	0,017	480	25 000
50	118	0,79	0,027	530	9 350
		1	1	İ	ł

Примечание: a — удельная поверхность; ϵ — свободный объем; d_g — эквивалентный днаметр; ϱ — насыпная плотность.

проведения массообменных процессов руководствуются следующими соображениями [3; 5]:

во-первых, конкретными условиями проведения процесса — нагрузками по пару и жидкости, различиями в физических свойствах систем, наличием в потоках жидкости и газа механических примесей, поверхностью контакта фаз в единице объема аппарата и т. д.;

во-вторых, особыми требсваниями к технологическому процессу — необходимостью обеспечить небольшой перепад давления в колонне, широкий интервал изменения устойчивой работы, малое время пребывания жидкости в аппарате и т. д.

в-третьих, особыми требованиями к аппаратурному оформлению — создание единичного или серийно выпускаемого аппарата малой или большой единичной мощности, обеспечение возможности ра-

боты в условиях сильно коррозионной среды, создание условий повышенной надежности и т. д.

В коксохимической промышленности особое значение при выборе насадки имеют следующие факторы: малое гидравлическое сопротивление абсорбера, возможность устойчивой работы при сильно изменяющихся нагрузках по газу, возможность быстро и дешевыми способами удалять с поверхности насадки отлагающийся шлам и т. д. Таким требованиям отвечают широко используемые деревянная хордовая и металлическая спиральная насадки.

В рассматриваемом примере выберем более дешевую насадку — деревянную хордовую, размером 10×100 мм с шагом в свету 20 мм (см. табл. V[.1). ${
m V}$ дельная поверхность насадки a=65 м $^2/{
m M}^3$, свободный объем $\epsilon = 0.68~{
m M}^3/{
m M}^3$, эквивалентный диаметр $d_{\mathfrak{p}}=0.042$ м, насыпная плотность ho=145 кг/м 3 . Устройство различных видов насадки показано на рис. VI.4, их характеристики приведены в табл. VI.1.

1.4. РАСЧЕТ СКОРОСТИ ГАЗА и диаметра абсорбера

Предельную скорость газа в насадочных абсорберах можно рассчитать по уравнению [1]:

$$\lg\left[\frac{\omega_{\pi\rho}^{2}\rho_{y}}{gd_{9}\varepsilon^{2}\rho_{x}}-\left(\frac{\mu_{x}}{\mu_{B}}\right)^{0.16}\right]=A-B\left(\frac{L}{G}\right)^{1/4}\left(\frac{\rho_{y}}{\rho_{x}}\right)^{1/8}$$
(VI.9)

где $w_{\Pi P}$ — предельная фиктивная скорость газа, м/с; μ_x , μ_B вязкость соответственно поглотителя и воды при 20 °C, Па·с; А, В — коэффициенты, зависящие от типа насадки.

Значения коэффициентов A и B приведены ниже [3]:

Тип насадки	A	В
Трубчатая	$0.47 + 1.5 \lg \frac{d_a}{0.025}$	1,75
Плоскопараллельная, хордовая	$\begin{matrix} 0\\ 0,062\\ -0,073\\ -0,49\\ -0,33\\ -0,58\end{matrix}$	1,75 1,55 1,75 1,04 1,04 1,04

Пересчитаем плотность газа на условия в абсор-

$$\rho_y = \rho_{0y} \frac{T_0}{T_0 + t} \cdot \frac{P}{P_0} = 0.44 \frac{273}{273 + 30} \cdot \frac{1.19 \cdot 10^5}{1.013 \cdot 10^5} = 0.464 \text{ kg/m}^3$$

Предельную скорость $w_{\rm np}$ находим из уравнения (VI.9):

$$\lg \left[\frac{\omega_{\pi p}^{2},464}{9,8 \cdot 0,042 \cdot 0,68^{2} \cdot 1060} \left(\frac{16,5 \cdot 10^{-3}}{10^{-3}} \right)^{0,16} \right] =$$

$$= -1,75 (2,94)^{1/4} \left(\frac{0,464}{1060} \right)^{1/8}$$

Решая это уравнение, получим $w_{\pi p} = 6{,}05\,$ м/с. Выбор рабочей скорости газа обусловлен многими факторами. В общем случае ее находят путем технико-экономического расчета для каждого конкретного процесса [3]. Коксовый газ очищают от различных примесей в нескольких последовательно соединенных аппаратах. Транспортировка больших объемов газа через них требует повышенного избыточного давления и, следовательно, значительных энергозатрат. Поэтому при улавливании бензольных углеводородов основным фактором, определяющим рабочую скорость, является гидравлическое сопротивление насадки. С учетом этого рабочую скорость w принимают равной 0,2-0,5 от предельной.

Примем $w = 0.2w_{\rm np} = 0.2 \cdot 6.05 = 1.21$ м/с. Диаметр абсорбера находят из уравнения рас-

$$d = \sqrt{\frac{4V}{\pi w}} = \sqrt{\frac{4V_0 \cdot \frac{(T_0 + t)}{T_0} \cdot \frac{P_0}{P}}{\pi w}} \quad (VI.10)$$

где V — объемный расход газа при условиях в абсорбере, м $^3/c_{\bullet}$

$$d = \sqrt{\frac{4.13.9 \cdot \frac{(273 + 30)}{273} \cdot \frac{1,013 \cdot 10^5}{1,19 \cdot 10^5}}{3,14 \cdot 1,21}} = 3,71 \text{ m}$$

Выбираем [6] стандартный диаметр обечайки абсорбера $d=3.8\,$ м. При этом действительная рабочая скорость газа в колоние будет равна:

$$w = 1.21 (3.71/3.8)^2 = 1.15 \text{ m/c}$$

Приведем нормальные ряды диаметров колонн (в м), принятые в химической и нефтеперерабатывающей промышленности:

в химической промышленности — 0,4; 0,5; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,2; 2,6; 3,0;

в нефтеперерабатывающей промышленности -1,0; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,4; 2,6; 2,8; 3,0; 3,2; 3,4; 3,6; 3,8; 4,0; 4,5; 5,0; 5,5; 6,0; 6,4; 7,0; 8,0; 9,0.

1.5. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ОРОШЕНИЯ И АКТИВНОЙ ПОВЕРХНОСТИ НАСАДКИ

Плотность орошения (скорость жидкости) рассчитывают по формуле

$$U = L/\rho_x S \tag{VI.11}$$

где S — площадь поперечного сечения абсорбера, M^2 .

Подставив, получим:

$$U := \frac{16,44}{1060 \cdot 0.785 \cdot 3.8^2} = 13.7 \cdot 10^{-4} \text{ m}^3/(\text{m}^2 \cdot \text{c})$$

При недостаточной плотности орощения и неправильной организации подачи жидкости [3] поверхность насадки может быть смочена не полностью, а часть смоченной поверхности практически не участвует в процессе массопередачи.

Существует некоторая минимальная эффективная плотность орошения U_{\min} , выше которой всю поверхность насадки можно считать смоченной. Для пленочных абсорберов ее находят по формуле

$$U_{\min} = a\Gamma_{\min}/\rho_x \tag{VI.12}$$

Здесь

$$\Gamma_{\min} = 3.95 \cdot 10^{-8} \sigma^{3.6} \mu_x^{0.49}$$
 (VI.13)

где Γ_{min} — минимальная линейная плотность орошения, кг/(м·с); σ — поверхностное натяжение, мH/м;

$$\Gamma_{\min} = 3.95 \cdot 10^{-8} \cdot 20^{3.6} \cdot 16,5^{0.40} = 7.55 \cdot 10^{-3} \text{ kg/(m·c)}$$

Тогда

$$U_{\text{min}} = \frac{65 \cdot 7,55 \cdot 10^{-3}}{1060} = 4,63 \cdot 10^{-4} \text{ m}^3/(\text{m}^2 \cdot \text{c})$$

В проектируемом абсорбере плотность орошения U выше U_{\min} , поэтому в данном случае коэффициент смачиваемости насадки ф равен 1.

Для насадочных абсорберов минимальную эффективную плотность орошения U_{\min} находят по соотношению [3]:

$$U_{\min} = aq_{3d} \tag{VI.14}$$

где $q_{3\Phi}$ — эффективная линейная плотность орошения, м²/с. Для колец Рашига размером 75 мм и хордовых насадок с шагом более 50 мм $q_{3\Phi}=0.033\cdot 10^{-3}$ м²/с, для всех остальных насадок $q_{3\Phi}=0.022\cdot 10^{-3}$ м²/с.

Коэффициент смачиваемости насадки у для колец Рашига при заполнении колонны внавал можно определить из следующего эмпирического уравнения [7]:

$$\psi = 0,122 (U\rho_x)^{1/3} d_{_{\rm H}}^{-1,2} \sigma^{-m}$$
 (VI.15)

где $m = 0.133d_{\rm H}^{-0.5}$.

При абсорбции водой и водными растворами хорошо растворимых газов смоченная поверхность насадки уменьшается [3]. Поэтому полная смачиваемость достигается при более высоких значениях Γ . Для таких систем значение Γ_{min} может быть рассчитано по уравнению

$$\frac{\Gamma_{\min}}{\mu_x} = A \operatorname{Re}_y^{0.4} \left(\frac{\rho_x \Delta \sigma^3}{\mu_x^4 g} \right)^{0.2}$$
 (VI.16)

Коэффициент А зависит от краевого угла смачивания и изменяется в пределах 0,12-0,17.

Величину $\Delta \sigma$ определяют как разницу между поверхностным натяжением жидкости, подаваемой на орошение колонны, и вытекающей из нее.

 $\mathcal{oldsymbol{\mathcal{I}}}$ оля активной поверхности насадки ψ_a может быть найдена по формуле [3]:

$$\psi_{\mathbf{a}} = \frac{3600U}{a (p + 3600qU)}$$
 (VI.17)

где р и q — коэффициенты, зависящие от типа насадки [3]. Подставив, получим:

$$\psi_{a} = \frac{3600 \cdot 0,00137}{65 \left(0,0078 + 3600 \cdot 0,0146 \cdot 0,00137\right)} = 0,95$$

Таким образом, не вся смоченная поверхность является активной. Наибольщая активная поверхность насадки достигается при таком способе подачи орошения, который обеспечивает требуемое число точек орошения n на 1 м 2 поперечного сечения колонны [3]. Это число точек орошения определяет выбор типа распределительного устройства [3].

1.6. РАСЧЕТ КОЭФФИЦИЕНТОВ МАССООТДАЧИ

Для регулярных насадок, к которым относится и хордовая, коэффициент массоотдачи в газовой фазе β_u находят из уравнения [1; 3]:

$$Nu'_{y} = 0.167 \operatorname{Re}_{y}^{0.74} \operatorname{Pr}_{y}^{\prime 0.23} (l/d_{9})^{-0.47}$$
 (VI.18)

где $\mathrm{Nu'} = \beta_y d_0 / D_y$ — диффузионный критерий Нуссельта для газовой фазы.

Отсюда β,, (в м/с) равен:

$$\beta_y = 0.167 \frac{D_y}{d_9} \operatorname{Re}_y^{0.74} \operatorname{Pr}_y'^{0.33} (l/d_9)^{-0.47}$$
 (VI.19)

где D_y — коэффициент диффузии бензольных углеводородов в газовой фазе, м²/с; $\mathrm{Re}_y = w d_3 \varrho_y / \varepsilon \mu_y$ — критерий Рейнольдса для газовой фазы в насадке;

 $\Pr_y' = \mu_y/\rho_y D_y -$ диффузионый критерий Прандтля

 μ_y — вязкость газа, Па с [2]; l — высота элемента насадки, м.

Для колонн с неупорядоченной насадкой коэффициент массоотдачи β_u можно находить из уравнения

$$Nu'_{u} = 0.407 Re_{u}^{0.655} Pr'_{u}^{0.33}$$

Коэффициент диффузии бензольных углеводородов в газе можно рассчитать по уравнению [1; 3; 8; 9]

$$D_{y} = \frac{4.3 \cdot 10^{-8} T^{\frac{3}{2}}}{P\left(v_{\rm BY}^{\frac{1}{3}} + v_{\Gamma}^{\frac{1}{3}}\right)^{2}} V^{\frac{1}{M_{\rm BY}} + \frac{1}{M_{\Gamma}}} \quad (VI.20)$$

где $M_{\rm BY},~M_{\rm \Gamma}$ — мольные массы соответственно бензольных углеводородов и коксового газа, кг/моль; $v_{\rm BY},~v_{\rm \Gamma}$ — мольные объемы бензольных углеводородов и коксового газа в жидком состоянии при нормальной температуре кипения, см³/моль.

Подставив, получим:

$$D_{y} = \frac{4,3 \cdot 10^{-8} \cdot 303^{3/2}}{0,119 (96^{1/3} + 21,6^{1/3})^{2}} \sqrt{\frac{1}{83} + \frac{1}{10,5}} = \frac{1,17 \cdot 10^{-5} \text{ M}^{2}/\text{c}}{10,68 \cdot 0,0127 \cdot 10^{-3}} = 2618$$

$$\text{Re}_{y} = \frac{1,15 \cdot 0,042 \cdot 0,464}{0,68 \cdot 0,0127 \cdot 10^{-3}} = 2618$$

$$\text{Pr}'_{y} = \frac{0,0127 \cdot 10^{-3}}{0,464 \cdot 1,17 \cdot 10^{-5}} = 2,34$$

$$\beta_{y} = 0,167 \frac{1,17 \cdot 10^{-5}}{0,042} \cdot 2618^{0,74}2,34^{0,33} \left(\frac{0,1}{0,042}\right)^{-0,47} = 0,0137 \text{ M/c}$$

Выразим β_y в выбранной для расчета размерности: $\beta_y = 0.0137 \rho_y = 0.0137 \cdot 0.464 =: 0.00636$ кг/(м² · c)

Коэффициент массоотдачи в жидкой фазе β_x находят из обобщенного уравнения, пригодного как для регулярных (в том числе и хордовых), так и для неупорядоченных насадок [1; 3]:

$$Nu'_{x} = 0.0021 Re_{x}^{0.75} Pr'_{x}^{0.5}$$
 (VI.21)

где $\mathrm{Nu}_x = \frac{\beta_x \delta_{\Pi\mathrm{p}}}{D_x}$ — диффузионный критерий Нуссельта для жидкой фазы.

Отсюда β_x (в м/с) равен:

$$\beta_x = 0.0021 \frac{D_x}{\delta_{\text{np}}} \operatorname{Re}_x^{0.75} \operatorname{Pr}_x^{'0.5}$$
 (VI.22)

где D_x — коэффициент диф рузии бензольных углеводородов в камєнноугольном масле, м²/с; $\boldsymbol{\delta}_{\text{пр}} = (\mu_x^2/\rho_x^2 g)^{1/3}$ — іприведенная толщина стекающей пленки жидкости, м; $\text{Re}_x = 4U\rho_x/a\mu_x$ — модифицированны і критерий Рейнольдса для стекающей по насадке пленки жидкости;

для стекающей по насадке пленки жидкости, $\Pr_x' = \mu_x/\rho_x D_x$ — диффузионный притерий Прандтля для

В разбавленных растворах коэффициент диффузии D_x может быть достаточно точно вычислен по уравнению [3; 8; 9]:

$$D_{x} = 7.4 \cdot 10^{-12} \frac{(\beta M)^{0.5} T}{1^{1/2} \nu_{\text{BV}}^{0.6}}$$
 (VI.23)

где M — мольная масса каменноугольного масла, кг/кмоль; T — температура масла, K; μ_x — вязкость масла, $M\Pi a \cdot c$; $\upsilon_{\rm BY}$ — мольный объем бензольных углеводородов, см³/моль; β — параметр, учитывающий ассоциацию молекул.

Подставив, получим:

$$\begin{split} D_{\mathbf{x}} &= \frac{7,4\cdot 10^{-12}\,(1\cdot 170)^{0,5}\,303}{16,5\cdot 96^{0,6}} - = 1,15\cdot 10^{-10}\ \text{m}^2/\text{c} \\ \delta_{\mathrm{Hp}} &= \left[\frac{(16,5\cdot 10^{-3})^2}{1060^2\cdot 9,8}\right]^{1/3} = 2,88\cdot 10^{-4}\ \text{m} \\ \mathrm{Re}_{\mathbf{x}} &= \frac{4\cdot 0,00137\cdot 1060}{65\cdot 16,5\cdot 10^{-3}} = 5,41 \\ \mathrm{Pr}_{\mathbf{x}}' &= \frac{16,5\cdot 10^{-3}}{1060\cdot 1,15\cdot 10^{-10}} = 1,31\cdot 105 \end{split}$$

$$\beta_x = 0.0021 \, \frac{1.15 \cdot 10^{-10}}{2.88 \cdot 10^{-4}} \, 5.41^{0.75} \, (1.31 \cdot 10^5)^{0.5} = 1.065 \cdot 10^{-6} \, \text{m/c}$$

Выразим eta_x в выбранной для расчета размернести:

 $\beta_x=1,065\cdot 10^{-6}\rho_x=1,065\cdot 10^{-6}\cdot 1060=1,13\cdot 10^{-3}$ кг/(м²·с) Находим коэффициент массопередачи по газовой фазе K_y по уравнению (VI.8):

$$K_y = \frac{1}{0.00636} + \frac{1}{1.13 \cdot 10^{-3}} = 0.000519 \text{ kr/(M}^2 \cdot \text{c})$$

1.7. ОПРЕДЕЛЕНИЕ ПОВЕРХНОСТИ МАССОПЕРЕДАЧИ И ВЫСОТЫ АБСОРБЕРОВ

Поверхность массопередачи, в абсорбере по уравнению (VI.1) равна:

$$F = \frac{0.457}{0.003519 \cdot 0.009} = 9.78 \cdot 10^4 \text{ m}^2$$

Высоту насадки, требуемую для создания этой поверхности массопередачи, рассчитаем по формуле

$$H = \frac{F}{0.785ad^2\psi_{\mathbf{a}}} \tag{VI.24}$$

Подставив, получим:

$$H = \frac{9,78 \cdot 10^4}{0,785 \cdot 65 \cdot 3,8^2 \cdot 0,95} = 140 \text{ M}$$

Обычно высота скрубберов не превышает 40—50 м, поэтому для осуществления заданного процесса выберем 4 последовательно соединенных скруббера, в каждом из которых высота насадки равна 35 м.

Во избежание значительных нагрузок на нижние решетки насадки ее укладывают в колонне ярусами, по 20—25 решеток в каждом. Каждый ярус устанавливают на самостоятельные поддерживающие опоры, конструкции которых даны в справочнике [6]. Расстояние между ярусами хордовой насадки составляет обычно 0,3—0,5 м [4].

Принимая число решеток в каждом ярусе 25, а расстояние между ярусами 0,3 м, определим высоту насадочной части абсорбера:

$$H_{\mathrm{H}} = H + 0.3 \left(\frac{H}{25l} - 1 \right) = 35 + 0_{\mathrm{g}} 3 \left(\frac{35}{25 \cdot 0.1} - 1 \right) = 38.9 \mathrm{\ M}$$

Расстояние между днищем абсорбера и насадкой определяется необходимостью равномерного распределения газа по поперечному сечению колонны. Обычно это расстояние принимают равным 1—1,5 d.

Расстояние от верха насадки до крышки абсорбера зависит от размеров распределительного устройства для орошения насадки и от высоты сепарационного пространства, в котором часто устанавливают каплеотбойные усгройства для предотвращения брызгоуноса из колонны. Примем это расстояние равным 2,4 м. Тогда общая высота одного абсорбера:

$$H_a = H_H + 1,05d + 2,4 = 38,9 + 1,05 \cdot 3,8 + 2,4 = 45,3 \text{ M}$$

1.8. РАСЧЕТ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ АБСОРБЕРОВ

Необходимость расчета гидравлического сопротивления ΔP обусловлена тем, что оно определяет энергетические затраты на транспортировку газо-

вого потока через абсорбер. Величину ΔP находят по формуле [3]:

$$\Delta P = \Delta P_{c} \cdot 10^{bU} \tag{VI.25}$$

где $\Delta P_{\rm C}$ — гидравлическое сопротивление сухой (неорошаемой жидкостью) насадки, Па; U — плотность орошения, ${\rm M}^3/({\rm M}^2\cdot{\rm C})$; b — коэффициент.

Ниже приведены значения b для различных

насадок [3]:

, , _				
Насадка	b	Насадка		b
Кольца Рашига в уклад- ку		Кольца Палля (50 мм) Блоки керамические		126 151
50 mm	144	Седла «Инталокс» 25 мм		33
Кольца Рашига впавал 25 мм 50 мм		Седла Берля (25 мм)	•	30

Гидравлическое сопротивление сухой насадки $\Delta P_{\mathbf{c}}$ определяют по уравнению

$$\Delta P_{\rm c} = \lambda \frac{H}{d_3} \cdot \frac{\omega_0^2}{2} \rho_y \tag{VI.26}$$

где λ — коэффициент сопротивления хордовой насадки [10]:

$$\lambda = 6.64/\text{Re}_{y}^{0.375}$$
 (VI.27)

 $ω_0$ — скорость газа в свободном сечении насадки (в м/с); $ω_0 = ω/ε$.

Подставив, получим:

$$\lambda = 6.64/2618^{0.375} = 0.347$$

$$\Delta P_{\rm c} = 0.347 \, \frac{140}{0.042} \cdot \frac{\left(\frac{1.15}{0.68}\right)^2 \cdot 0.464}{2} = 767 \, \Pi {\rm a}$$

Коэффициент сопротивления беспорядочных насадок, в которых пустоты распределены равномерно по всем направлениям (шары, седлообразная насадка), рекомендуется [3] рассчитывать по двучленному уравнению:

$$\lambda = 133/\text{Re}_y + 2,34$$
 (VI.28)

Коэффициент сопротивления беспорядочно насыпанных кольцевых насадок можно рассчитывать по формулам:

при ламинарном движении ($Re_{\nu} < 40$)

$$\lambda = 140/\text{Re}_y \tag{VI.29}$$

при турбулентном движении (${\rm Re}_y > 40$)

$$\lambda = 16/\text{Re}_y^{0.2} \tag{VI.30}$$

Коэффициент сопротивления регулярных насадок находят по уравнению

$$\lambda = \lambda_{TP} + \xi (d_0/l) \tag{VI.31}$$

где λ_{Tp} — коэффициент сопротивления трению; ξ — коэффициент местного сопротивления:

$$\xi=4.2/\epsilon^2-8.1/\epsilon+3.9$$

Гидравлическое сопротивление орошаемой насадки ΔP равно:

$$\Delta P = 767 \cdot 10^{119 \cdot 0,00137} = 1116 \text{ }\Pi a$$

Общее сопротивление системы абсорберов определяют с учетом гидравлического сопротивления газопроводов, соединяющих их (см. гл. I).

Анализ результатов расчета насадочного абсорбера показывает, что основное диффузионное сопротивление массопереносу в этом процессе сосредоточено в жидкой фазе, поэтому можно интенсифицировать процесс абсорбции, увеличив скорость жидкости. Для этого нужно либо увеличить расход абсорбента, либо уменьшить диаметр абсорбера. Увеличение расхода абсорбента приведет к соответствующему увеличению нагрузки на систему регенерации абсорбента, что связано с существенным повы-

шением капитальных и энергетических затрат (возрастают расходы греющего пара и размеры теплообменной аппаратуры). Уменьшение диаметра абсорбера приведет одновременно к увеличению рабочей скорости газа, что вызовет соответствующее возрастание гидравлического сопротивления абсорберов. Ниже приведены результаты расчета абсорбера при рабочей скорости газа $w=2,15\,$ м/с, практически вдвое превышающей принятую ранее:

	w = 1.15 M/c	ш ≕2,15 м/с
$U, M^3/(M^2 \cdot c)$	0,00137	0,00252
β_x , $\kappa r/(M^2 \cdot C)$	0,00113	0,00178
β_{μ} , $\kappa_{\Gamma}/(M^2 \cdot C)$	0,00636	0,01
K_{μ} , $\kappa_{\Gamma}/(M^2 \cdot C)$	0,000519	0,00082
F, M^2	97 800	61 900
d, M	3,8	2,8
Н, м	140	163
ΔP , Πa	1 116	4 920
Число абсорберов	4	5

Как видно из приведенных данных, повышение интенсивности процесса приводит к значительному уменьшению диаметра колонны при некотором возрастании высоты насадки и к существенному повышению гидравлического сопротивления.

Приведенный расчет выполнен без учета влияния на основные размеры абсорбера некоторых явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, неизотермичность процесса и др.), которые в ряде случаев могут привнести в расчет существенные ошибки. Эти явления по-разному проявляются в аппаратах с насадками разных типов. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [3; 8].

2. РАСЧЕТ ТАРЕЛЬЧАТОГО ЗАБСОРБЕРА

Большое разнообразие тарельчатых контактных устройств затрудняет выбор оптимальной конструкции тарелки. При этом наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и др.) выдвигаются требования, обусловленные спецификой производства: большой интервал устойчивой работы при изменении нагрузок по фазам, возможность использования тарелок в среде загрязненных жидкостей, возможность защиты от коррозии и т. п. Зачастую эти характеристики тарелок становятся превалирующими, определяющими пригодность той или иной конструкции для использования в каждом конкретном процессе. Для предварительного выбора конструкции тарелок приведенными пользоваться данными, можно в табл. VI.2 [3; 11].

При выборе тарелки должны учитываться важнейшие показатели данного процесса. Тарелки, для которых одному из предъявленных требований соответствует балл 0, отвергаются; для остальных тарелок баллы суммируются. Самой пригодной можно считать тарелку с наибольшей суммой баллов.

Для более правильного выбора надо рассмотреть оценки по отдельным показателям, обращая особое внимание на баллы 1 и 5, причем решение обычно является компромиссным между желательными и нежелательными характеристиками. При этом учитывают и такие факторы, как промышленный опыт эксплуатации, возможность быстрого изготовления и т. д. Окончательный выбор определяется техникоэкономическим анализом.

		_								Типт	арели	и								
Показатель	1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	17	18	19	20
Нагрузки по жидкости и газу												_					_			
большие	2	1	3	4	4	4 5	4 5	5	2 4	$\begin{vmatrix} 4\\2 \end{vmatrix}$	3	5 2	3	4 3	4 4	$\begin{vmatrix} 4 \\ 3 \end{vmatrix}$	5	4 4	5 1	$\begin{vmatrix} 4 \\ 3 \end{vmatrix}$
малые Большая область устойчивой ра- боты	3 4	3	3 4	2 4	3 5	5	5	5	4	1	1	1	2	3	4	3	3	4	3	3
Малое гидравлическое сопротив-	С	0	0	3	2	3	2	2	3	4	3	4	3	3	4	3	5	3	4	4
Малый брызгоунос	1	1	2	3	3	3	4	3	5	4	4	4	4	4	4	4	5	3	5	4
Малый запас жидкости Малое расстояние между тарел-	C 3	0 2	0 3	3 4	4 5	3 4	3 4	3 4	3 5	4 5	3 5	4	2 4	3 5	3 5	5 4	5 4	3,	5 4	5 4
ками Большая эффективность	4	3	4	4	4	5	4	5	5	4	4	3	4	4	4	3	3	4	4 5	4
Большая интенсивность Реагирование на изменение нагру-	2 3	$\begin{vmatrix} 1\\2 \end{vmatrix}$	3 4	3	5 4	5	4 5	5	5 3	1	1	0	4 2	3	3	3	5 3	3	3	3
зок Малые капитальные затраты	2	1	3	4	3	4	3	3	4	5	5	2	3	4	4	4	4	4	4	4
Малый расход металла	2	2	3	4	3	4	4	3	3	5	5	$\frac{2}{2}$	4	5	4	5	5	4	5	5
Легкость монтажа	1 2	1 1	3	4	$\begin{bmatrix} 2\\2 \end{bmatrix}$	4 3	4 3	3 2	3	5 5	5	4	3	5 4	5 3	4 3	4 3	4 3	4	3
Легкость осмотра, чистки и ремонта	1	1	3		-			_	*	ľ	_	_		*		ਁ	•	ľ	Ť	
Возможность обработки взвесей	1	0	0	1	0	1	1	1	0	4	3	5	3	3	3	2 3	$\frac{2}{3}$	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	2 3	$\frac{2}{3}$
Легкость пуска и остановки	4	4	4	3	3	$\begin{vmatrix} 4\\2 \end{vmatrix}$	5 2	4 2	4 3	$\begin{vmatrix} 2\\3 \end{vmatrix}$	3	2 5	3	3	2	0	0	0	0	0
Возможность отвода тепла Возможность использования в агрессивных средах	2	1	$\frac{1}{2}$	3	2	$\frac{2}{2}$	2	$\frac{2}{2}$	1	4	4	3	2	4	3	2	$\frac{0}{2}$	$\frac{0}{2}$	2	2

Примечания. 1. Обозначение типов тарелок:

I — колпачковая с круглыми колпачками;

1 — колпачковая с круглыми колпачками;
 2 — колпачковая с прямоугольными колпачками;
 3 — «Юнифлакс»;
 4 — ситчатая с переливом;
 5 — ситчатая с направыяющими отбойниками;
 6 — клапанная с круглыми клапанами;
 7 — клапанная с прямоугольными клапатами;
 8 — бамластная;
 9 — колпачково-ситчатая;
 1 — репетиатая провальная:

10 — решетчатая провальная;

11 — дырчатая провальная;
12 — трубчатая провальная;
13 — волнистая провальная;
14 — провальная с разной перфорацией;
15 — Киттеля;
16 — чешуйчатая;
17 — пластинчатая;
18 — Гипронефтемаша;

19 — каскадная;

20 - Бентури.

2. Соответствие каждой тарелки тому или иному показателю оценено по следующей шкале: 0 — не пригодна; 1 — сомнительно привгодна (целесообразно рассмотреть возможность замены другим типом тарелки); 2 — пригодна; 3 — вполне пригодна; 4 — хорошо пригодна; 5 — отлично пригодна.

Ниже в качестве примера приводится расчет абсорбера с тарелками провального типа.

Массу улавливаемых бензольных углеводородов и расход поглотительного масла определяют так же, как для насадочного абсорбера (см. раздел 1.1).

При расчете движущей силь в аппаратах с переточными тарелками (ситчатыми, клапанными, колпачковыми) необходимо учитыкать влияние на нее поперечной неравномерности пстока жидкости, продольного перемешивания жидности, уноса и продольного перемешивания газа по рекомендациям, приведенным в литературе [5]. Пример такого расчета рассмотрен в главе VII.

В колоннах с провальными тарелками с достаточной достоверностью можно принять поршневое движение газа и полное перемешивание жидкости на каждой ступени. В этом случае, пренебрегая влиянием уноса жидкости, при большом числе тарелок в колонне движущую силу можно рассчитывать как для противоточного аппарата с непрерывным контактом фаз. Оценочный расчет показывает, что в нашем примере число тарелок велико, поэтому можно воспользоваться указанным приближением и определить движущую силу как среднелогарифмическую разность концентраций (см. раздел 1.2).

2.1. РАСЧЕТ СКОРОСТИ ГАЗА и диаметра абсорбера

Скорость газа в интервале устойчивой работы провальных тарелок может быть определена с помощью уравнения [1; 3]:

$$Y = Be^{-4X} \tag{VI.32}$$

Здесь

$$X = (L/G)^{1/4} (\rho_y/\rho_x)^{1/8}$$

$$Y = \frac{w^2}{gd_3F_c^2} \cdot \frac{\rho_y}{\rho_x} \left(\frac{\mu_x}{\mu_B}\right)^{0.16}$$

где w — скорость газа в колонне, м/с; d_3 — эквивалентный диаметр отверстия или щели в тарелке, м; $F_{\bf c}$ — доля свободного сечения тарелки, м²/м²; μ_x , μ_B — вязкость соответственно поглотительного масла и воды при температуре 20 °C, Па с.

Подставив, получим:

$$X = \left(\frac{16,44}{5,577}\right)^{1/4} \left(\frac{0,464}{1060}\right)^{1/8} = 0,498$$

Коэффициент B равен 2,95 для нижнего и 10 для верхнего пределов нормальной работы тарелки. Наиболее интенсивный режим работы тарелок соответствует верхнему пределу, когда B = 10, однако с учетом возможного колебания нагрузок по газу принимают B = 6 - 8.

Приняв коэффициент B = 8, получим:

$$Y = 8.2,72^{-4.0,498} = 1,092$$

По каталогу [12] (см. приложение VI.1) выберем решетчатую провальную тарелку со свободным сечением $F_{\rm c}=0.2$ м²/м² и шириной щели $\delta=6$ мм; тогда $d_{\rm e}=2$ $\delta=2\cdot0.006=0.012$ м. Тогда

$$Y = \frac{w^2}{9,8.0,012.0,2^2} \cdot \frac{0,464}{1060} \left(\frac{16,5 \cdot 10^{-3}}{10^{-3}}\right)^{0.16} = 1,092$$

Отсюда w = 2,74. м/с.

Для ситчатых тарелок рабочую скорость газа можно рассчитать по уравнению [7]:

$$w = 0.05 \sqrt{\rho_x/\rho_y} \tag{VI.33}$$

Для клапанных тарелок

$$\omega^{1,85} = \frac{G}{S_0} \cdot \frac{2g}{\xi_{0\mu}} \qquad (VI.34)$$

где G — масса клапана, кг; S_0 — площадь отверстия под клапаном, $\mathbf{m}^{\mathbf{a}}$; ξ — коэффициент сопротивления, который может быть принят равным 3.

В колонне с колпачковыми тарелками предельно допустимую скорость рекомендуется рассчитывать по уравнению [1

$$w = \frac{0.0155}{d_v^{2/3}} \sqrt{\frac{\rho_x}{\rho_y} h_{K}}$$
 (VI.35)

где $d_{\rm K}$ — диаметр колпачка, м; $h_{\rm K}$ — расстояние от верхнего края_колпачка до вышерасположенной тарелки, м.

Диаметр абсорбера находят из уравнения расхода (VI.10):

$$d = \sqrt{\frac{4 \cdot 13.9 \frac{(273 + 30)}{273} \cdot \frac{1.013 \cdot 10^5}{1.19 \cdot 10^5}}{3.14 \cdot 2.74}} = 2.47 \text{ M}$$

Принимаем [6] (см. раздел 1.4) стандартный **д**иаметр обечайки абсорбера d=2,6 м. При этом действительная скорость газа в колонне будет равна:

$$w = 2,74 (2,47/2,6)^2 = 2,47 \text{ m/c}$$

2.2. РАСЧЕТ КОЭФФИЦИЕНТА МАССОПЕРЕДАЧИ

Обычно расчеты тарельчатых абсорберов проводят **н**о модифицированному уравнению массопередачи, в котором коэффициенты массопередачи для жидкой K_{xf} и газовой K_{yf} фаз относят $\hat{\mathbf{k}}$ единице рабочей площади тарелки:

$$M = K_{xf} F \, \Delta \overline{X}_{cp} = K_{uf} \, F \Delta \overline{Y}_{cp} \qquad (VI.36)$$

где M — масса передаваемого вещества через поверхность массопередачи в единицу времени, кг/с; F — суммарная рабочая площадь тарелок в абсорбере, м².

Необходимое число тарелок п определяют делением суммарной площади тарелок F на рабочую площадь одной тарелки f:

$$n = F/f \tag{VI.37}$$

Коэффициенты массопередачи определяют по уравнениям аддитивности фазовых диффузионных со-

$$K_{xf} = \frac{1}{\frac{1}{\beta_{xf}} + \frac{1}{m\beta_{yf}}} \qquad K_{yf} = \frac{1}{\frac{1}{\beta_{yf}} + \frac{m}{\beta_{xf}}} \qquad (VI.38)$$

где β_{xf} и β_{uf} — коэффициенты массоотдачи, отнесенные к единице рабочей площади тарелки соответственно для жидкой и газовой фаз, $\kappa \Gamma/(M^2 \cdot C)$.

В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи для рассматриваемого случая. На основании сопоставительных расчетов рекомендуем использовать обобщенное критериальное уравнение [13], применимое для различных конструкций барботажных тарелок:

$$Nu' = APe'^{0.5}\Gamma c \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{0.5}$$
 (VI.39)

При этом для жидкой фазы

$$\operatorname{Nu}_{x}' = \frac{\beta_{xf}l}{D_{x}}$$
 $\operatorname{Pe}_{x}' = \frac{Ul}{(1-\varepsilon)D_{x}}$

для газовой фазы

$$\operatorname{Nu}_y' = \frac{\beta y f l}{F_c D_y}$$
 $\operatorname{Pe}_y' = \frac{w l}{\varepsilon D_y}$

це A — коэффициент; D_x , D_y — коэффициенты молекулярной диффузии рассоответственно пределяемого компонента в жидкости и газе, м²/с;

 $\frac{U}{1-\varepsilon}$, $\frac{w}{\varepsilon}$ средние скорости жидкости и газа в барботаж-

ном слое, м/с; $\varepsilon - \text{газосодержание барботажного слоя, } \mathbf{M}^3/\mathbf{M}^3;$ $\Gamma \mathbf{C} = \frac{\Delta P_\Pi}{\rho_X g l} - \text{критерий гидравлического сопротивления, } \mathbf{x}\mathbf{a} - \mathbf{m}^3/\mathbf{M}^3$ рактеризующий относительную удельной поверхности массопередачи на тарелке;

 $\Delta P_{\rm II} = g \rho_{\rm A} h_0$ — гидравлическое сопротивление барботажного газожидкостного слоя (пены) на тарелке, Па; h_0 — высота слоя светлой (неаэрированной) жидкости

на тарелке, м; t — характерный линейный размер, равный среднему диаметру пузырька или газовой струи

В интенсивных гидродинамических режимах характерный линейный размер $\it l$ становится, по данным ряда авторов [13], практически постоянной величиной, мало зависящей от скоростей фаз и их физических свойств. В этом случае критериальные уравнения, решенные относительно коэффициентов массоотдачи, приводятся к удобному для расчетов виду:

в барботажном слое, м.

$$\beta_{xf} = 6.24 \cdot 10^5 D_x^{0.5} \left(\frac{U}{1 - \varepsilon} \right)^{0.5} h_0 \left(\frac{\varepsilon \mu_y}{\mu_x + \mu_y} \right)^{0.5} \quad (VI.40)$$

$$\beta_{yf} = 6.24 \cdot 10^5 F_c D_y^{0.5} \left(\frac{w}{\epsilon}\right)^{0.5} h_0 \left(\frac{\mu_y}{\mu_x + \mu_y}\right)^{0.5}$$
 (VI.41)

2.3. РАСЧЕТ ВЫСОТЫ СВЕТЛОГО слоя жидкости

Высоту светлого слоя жидкости на тарелке h_0 находят из следующего соотношения [3]:

$$\Delta P_{\Pi} = g \rho_x h_0 = g \rho_x (1 - \varepsilon) h_{\Pi} \qquad (VI.42)$$

где h_{Π} — высота газо-жидкостного барботажного слоя (пены) на тарелке, м.

Отсюда

$$h_0 = (1 - \varepsilon) h_{\Pi}$$

Высоту газо-жидкостного слоя для провальных тарелок определяют из уравнения [3]:

$$Fr = \frac{0,0011B}{C} \cdot \frac{\rho_x}{\rho_y}$$
 (VI.43)

где $F_T=w_0^3/gh_{\rm II}$ — критерий Фруда; w_0 — скорость газа в свободном сечении (щелях) тарелки, м/с; В — коэффициент — см. уравнение (VI.32).

Величина C в уравнении (VI.43) равна:

$$C = (U^6 \mu_x^2 \rho_x / g \sigma^3)^{0.6067}$$
 (VI.44)

Для провальных тарелок без переливных устройств плотность орошения U равна:

$$U = L/\rho_x 0,785d^2$$
 (VI.45)

Подставив, получим:

$$U = \frac{16,44}{1060 \cdot 0,785 \cdot 2,6^2} = 0,0029 \text{ m}^3/(\text{m}^2 \cdot \text{c})$$

Тогда

$$C = \left(\frac{0,0029^{6} (16,5 \cdot 10^{-3})^{2} 1060}{9,8 (29 \cdot 10^{-3})^{3}}\right)^{0.067} = 0,165$$

Пересчитаем коэффициент В (который ранее был принят равным 8) с учетом действительной скорости газа в колонне:

$$B = 8(2,47/2,74)^2 = 6.5$$

Подставив, получим:

$$Fr = \frac{0,0011 \cdot 6,5 \cdot 10 \cdot 50}{0,165 \cdot 0,464} = 99$$

Отсюда находим высоту газо-жидкостного слоя

$$h_{\rm II} = \frac{w_0^2}{g\,{\rm Fr}} = \frac{w^2}{F_{\rm c}^2 g\,{\rm Fr}} = \frac{2,47^2}{0,2^2 \cdot 9} = 0.157\,{\,}_{\rm M}$$

Газосодержание барботажного слоя находят по уравнению [3]:

$$\varepsilon = 1 - \frac{0.21}{\sqrt{F_c} \text{ Fr}^{0.2}} = 1 - \frac{0.21}{\sqrt{0.2} \cdot 99^{0.2}} = 0.812 \text{ m}^3/\text{m}^3$$

Тогда высота светлого слоя жидкости:

$$h_0 = (1 - 0.812) \, 0.157 == 0.0295 \, \mathrm{m}$$

Для барботажных тарелок других конструкций газосодержание можно находить по единому урапнению [3]:

$$\varepsilon = \sqrt{\frac{Fr}{r}} / (1 + \sqrt{\frac{Fr}{r}})$$
 (VI.47)

(VI.46)

где $Fr = w^2/gh_0$.

Для колпачковых тарелок высоту светлого слоя жидкости можно находить по уравнению [3]:

$$h_0 = 0.0419 + 0.19 h_{\text{nep}} - 0.0135 w \sqrt{\rho_y} + 2.46q$$
 (VI.48)

где $h_{\text{пер}}$ — высота переливной перегсродки, м; q — линейная плотность орошения, м³/(м·с), равная q=Q/b; Q — объемный расход жидкости, м³/с; b — ширина переливной перегородки, м. Для ситчатых и клапанных тарелок в практических расчетах можно пользоваться уравнением [3]:

$$h_0 = 0.787q^{0.21}h_{\text{nep}}^{0.56}w_{\text{me}}^m[1 - 0.31 \exp(-0.11\mu_x)]\left(\frac{\sigma_x}{\sigma_B}\right)^{0.09}$$

где m — показатель степени, равный 0,05—4,6 $\mathit{h}_{\mathrm{nep}}$. Здесь μ_{x} — **B** M Π a·c, σ_x , $\sigma_B = B MH/M_{\bullet}$

2.4. РАСЧЕТ КОЭФФИЦИЕНТОВ **МАССООТДАЧИ**

Рассчитав коэффициенты молекулярной диффузии бензольных углеводородов в масле $D_{\mathbf{x}}$ и газе $D_{\mathbf{u}}$ (см. раздел 1.6), вычислим коєффициенты массоот-

$$\begin{split} \beta_{xf} &= 6.24 \cdot 10^{5} \left(1.15 \cdot 10^{-10}\right)^{0.5} \left(\frac{0.0029}{1 - 0.812}\right)^{0.5} \times \\ &\times 0.0295 \left(\frac{0.0127}{16.5 + 0.0127}\right)^{0.5} = 0.000678_{\pounds}^{T} \text{M/c} \\ \beta_{yf} &= 6.24 \cdot 10^{5} \cdot 0.2 \left(1.17 \cdot 10^{-5}\right)^{0.5} \left(\frac{2.47}{0.812}\right)^{0.5} \times \\ &\times 0.0295 \left(\frac{0.0127}{16.5 + 0.0127}\right)^{0.5} = 0.61 \text{ M/c} \end{split}$$

Выразим β_{xf} и β_{yf} в выбранной для расчета размерности:

$$\beta_{xf} = 0.000678\rho_x = 0.000678 \cdot 1060 = 0.719 \text{ kg/(m}^2 \cdot \text{c})$$

 $\beta_{yf} = 0.61\rho_y = 0.61 \cdot 0.464 = 0.283 \text{ kg/(m}^2 \cdot \text{c})$

Коэффициент массопередачи K_{ut} :

$$K_{yf} = \frac{1}{1/0,283 + 2/0,719} = 0,158 \text{ K} r/(\text{M}^2 \cdot \text{c})$$

2.5. РАСЧЕТ ЧИСЛА ТАРЕЛОК АБСОРБЕРА

Число тарелок абсорбера находим по уравнению (VI.37).

Суммарная поверхность тарелок F равназ

$$F = \frac{0.457}{0.158 \ 0.009} = 321 \ \text{m}^2$$

Рабочую площадь тарелок с перетоками f определяют с учетом площади, занятой переливными устрой-

$$f = \varphi 0,785d^2$$
 (VI.50)

где ϕ — доля рабочей площади тарелки, M^2/M^2 ; d — диаметр абсорбера, м.

Рабочая площадь f провальной тарелки может быть принята равной сечению абсорбера, т. е. $\phi = 1$. Тогда требуемое число тарелок равно n= $= 321/0,785 \cdot 2,6^2 = 61.$

2.6. ВЫБОР РАССТОЯНИЯ МЕЖДУ ТАРЕЛКАМИ И ОПРЕДЕЛЕНИЕ ВЫСОТЫ АБСОРБЕРА

Расстояние между тарелками провального типа принимают равным или несколько больше суммы высот барботажного слоя $h_{\rm II}$ и сепарационного пространства h_c :

$$h \gg h_{\rm n} + h_{\rm c} \tag{VI.51}$$

Высоту сепарационного пространства вычисляют, исходя из допустимого брызгоуноса с тарелки, принимаемого равным 0,1 кг жидкости на 1 кг газа. Рекомендовано [3] расчетное уравнение для определения брызгоуноса е с тарелок различных конструкций:

$$e = Af \frac{w^m}{h_c^n} \tag{VI.52}$$

где f — поправочный множитель, учитывающий свойства жидкости и равный 0,0565 $(\rho_x/\sigma)^{1,1}$; σ — в $_{\rm M}{\rm H}/_{\rm M}$.

Коэффициент A и показатели степеней m и nданы ниже:

Тарелки	A	m	n
Провальные (дырчатая, решетча-			
тая, волнистая)	$1.4 \cdot 10^{-4}$	2,56	2,56
Клапанная и балластная	$6.5 \cdot 10^{-5}$	2.15	2.5

Значения e для тарелок других конструкций рассчитывают по уравнениям, приведенным ниже.

Для ситчатых тарелок

$$e = 0.000077 (73/\sigma) (w/h_c)^{3.2}$$
 (VI.53)

Для колпачковых тарелок унос жидкости можно определять из следующей зависимости [3]:

$$3600Eh_{c}^{2,59}\mu_{x}\sigma^{0,4} = f\left(w \ \sqrt{\rho_{y}/\rho_{x}}\right)$$
 (VI.54)

где E — масса жидкости, уносимой с 1 м 2 свободной площади сечения колонны (за вычетом переливного устройства), кг/(${\rm M}^2\cdot{\rm c}$); ${\rm \mu_x}$ — в мПа·с; ${\rm \sigma}$ — в мН/м.

Значения $f(w\sqrt{\rho_u/\rho_x})$ приведены на рис. VI.5.

Рис. VI.5. График для определения уноса на колпачковых тарелках.

Для провальных тарелок по уравнению (VI.52) найдем:

$$0.1 = 1.4 \cdot 10^{-4} \cdot 5.65 \cdot 10^{-2} \left(\frac{1060}{20} \right)^{1.1} \cdot \frac{2.47^{2.56}}{h_c^{2.56}}$$

Решая относительно $h_{\rm c}$, получим: $h_{\rm c}=0.343$ м. Тогда расстояние между тарелками

$$h = 0.157 + 0.343 = 0.5 \text{ M}$$

Расстояние между тарелками стальных колонных аппаратов следует выбирать из ряда: 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 900; 1000; 1200 мм.

Выберем расстояние между тарелками абсорбера, равным $h=0.5\,$ м. Тогда высота тарельчатой части абсорбера

$$H_{\rm T} = (n-1) h = (61-1) 0.5 = 30 \text{ M}$$

Примем (см. раздел 1.7) расстояние между верхней тарелкой и крышкой абсорбера 2,5 м; расстояние между нижней тарелкой и днищем абсорбера 4,0 м. Тогда общая высота абсорбера

$$H_a = 30 + 2.5 + 4.0 = 36.5 \text{ m}$$

2.7. РАСЧЕТ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ТАРЕЛОК АБСОРБЕРА

Ги**д**равлическое сопротивление тарелок абсорбера определяют по формуле

$$\Delta P_{\mathbf{a}} = \Delta P n \tag{VI.55}$$

Полное гидравлическое сопротивление одной тарелки ΔP складывается из трех слагаемых:

$$\Delta P = \Delta P_{\rm c} + \Delta P_{\rm H} + \Delta P_{\rm \sigma} \tag{VI.56}$$

Ги**д**равлическое сопротивление сухой (неорошаемой) тарелки

$$\Delta P_{\rm c} = \xi \, \frac{w^2}{2F_{\rm c}^2} \, \rho_y \tag{VI.57}$$

Значения коэффициентов сопротивления ξ сухих тарелок различных конструкций приведены ниже [3; 5]:

Тарелка	ţ
Колпачковая	4,0-5,0
Клапанная	
Ситчатая	 1,1-2,0
Провальная с шелевидными отверстиями.	 . 1,4—1,5

Принимая $\xi = 1,5$, получим:

$$\Delta P_{\rm c} = 1.5 \frac{2.47^2 \cdot 0.464}{0.2^2 \cdot 2} = 53.0 \text{ } \Pi \text{a}$$

Гидравлическое сопротивление газо-жидкостного слоя (пены) на тарелке

$$\Delta P_{\Pi} = g \rho_x h_0 \tag{VI.58}$$

$$\Delta P_{\rm fl} = 9.8 \cdot 1060 \cdot 0.0295 = 306 \, \Pi a$$

Гидравлическое сопротивление, обусловленное силами поверхностного натяжения [3]:

$$\Delta P_{\sigma} = 4\sigma/d_{3}$$
 (VI.59)
 $\Delta P_{\sigma} = 4 \cdot 20 \cdot 10^{-3}/0,012 = 6,7 \text{ }\Pi_{2}$

Тогда полное гидравлическое сопротивление

$$\Delta P = 53 + 306 + 6.7 = 365.7$$
 Па

Гидравлическое сопротивление всех тарелок абсорбера

$$\Delta P_a = 365,7.61 = 22310 \text{ }\Pi a$$

3. СРАВНЕНИЕ ДАННЫХ РАСЧЕТА НАСАДОЧНОГО И ТАРЕЛЬЧАТОГО АБСОРБЕРОВ

Результаты расчетов насадочного и тарельчатого абсорберов приведены ниже:

Параметр	Насадочный абсорбер	Тарельчатый абсорбер
Диаметр, м	3,8 45,3 2053 4 1,15	2,6 36,5 194 1 2,47
Гидравлическое сопротивление контактных элементов, Па	1116	22 310

Сравнение этих данных и их анализ показывают, что применение тарельчатого абсорбера позволяет существенно сократить размеры колонн, однако при этом значительно возрастают энергетические затраты на преодоление газовым потоком сопротивления абсорбера. Окончательное решение о применении того или другого типа аппаратов может дать лишь полный сравнительный технико-экономический расчет.

Учет влияния на протекание процесса массопередачи таких явлений, как брызгоунос в тарельчатых колоннах, перемешивание и байпасирование потоков, показан на примере расчета процесса ректификации (см. гл. VII).

Схема расчета насадочных и тарельчатых аппаратов для проведения процесса физической абсорбции, не осложненной химической реакцией, одновременно протекающими тепловыми процессами (неизотермическая абсорбция); процессами, связанными с промежуточным отбором или рециркуляцией жидкости, существенно отражающихся на структуре потоков, показана на рис. VI.6.

Примеры расчетов осложненных процессов абсорбции приведены в монографии [3].

Рис. VI.6. Схема расчета абсорбционных аппаратов.

приложения

Приложение 1. Конструкции колонных аппаратов

Колонные аппараты предназначены для проведения процессов тепло- и массообмена (ректифинация, дистилляция, абсорбция, десорбция) в химической, нефтехимической, нефтеперерабатывающей и других отраслях промышленности.

Колонные аппараты изготовляют диаметром 400—4000 мм: для работы под давлением до 16 кгс/см² (1,6 МПа) — в царговом (на фланцах) исполнении корпуса, для работы под давлением до 40 кгс/см² (4,0 МПа), под атмосферным давлением или под вакуумом (с остаточным давлением не ниже 10 мм рт. ст.) — в цельносварном исполнении корпуса.

Колонные аппараты в зависимости от их диаметра изготовляют с тарелками различных типов. Т пы колонных тарельча-

тых аппаратов приведены в табл. VI.3.

Колонные аппараты диаметром 400—4000 мм оснащаются стандартными контактными и распред лительными тарелками, опорными решетками для насадочных аппаратов, опорами, люками, поворотными устройствами, дницами и фланцами.

ками, поворотными устройствами, дницами и фланцами.
Колонные аппараты днаметром 400--800 мм с насыпной насадкой изготовляют в царговом исполнении. Для равномерного
распределения жидкости по поверхности насадки аппараты оснащены распределительными тарелками гипов ТСН-III и перераспределительными тарелками типа ТСН-II. Каждый ярус

насадки опирается на опорную решетку.

Колонные аппараты диаметром 1000—2800 мм с насыпной насадкой изготовляют с цельносварным корпусом и съемной крышкой. Для равномерного распределения жидкости по поверхности насадки аппараты оснащены распределительными тарелками типа ТСН-III и перераспределительными типа ТСН-III.

Распределительную тарелку типа TCH-III устанавливают в верхней части аппарата, перераспределительную тарелку типа TCH-II — под опорной решеткой для насадки (кроме нижней опорной решетки). Каждый ярус насадки опирается на опорную решетку. Высоту яруса насадки указывает заказчик. Для каждого яруса насадки на корпусе аппарата имеется два люка диаметром 500 мм каждый.

На корпусе цельносварного тарельчатого аппарата предусмотрены люки для обслуживания тарелок. Люки рекомендуется предусматривать для каждых 5—10 тарелок, располагая их через один с диаметрально противоположных сторон корпуса

предусматривать для каждых 5—10 гарелок, располагая их через один с диаметрально противоположных сторон корпуса. Люки изготовляют по ОСТ 26-2000—77,ОСТ 26-2015—77. Для колонн диаметром 1000—1600 мм рекомендуются диаметр люка 500 мм, расстояние между тарелками в месте установки люка 800 мм; для колонн диаметром свыше 1600 мм диаметр люка 600 мм, расстояние между тарелками в месте установки люка 800 и 1000 мм. Для обслуживания тарелок типов ТКП и ТСО рекомендуемый диаметр люка 450 или 500 мм.

Минимальные толщины стенок корпуса колонного аппарата зависят от диаметра аппарата:

Днаметр аппарата, мм	Толщина стенки, мм
10001800	10
2000—2600	12
2800—3200	14
34003800	18
4000	24

Тсблица VI.3. Типы колонных тарельчатых аппаратов

								Ря	д ди	амет	гров	кол	оннь	ıx aı	ппар	атов	э, мі	4				
Тип аппарата	Тип гарелк и			500	009	800	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000
	TCK-1 (OCT 26-01-282—7	4)	+	+	+	+	+									 						
КСК (с колпачковыми тарелками)	TCK-P (OCT 26-808-73)						+	+	+-	+	+	+	+	+	+	+	+	+	+	+		
,	ТСК-РЦ, ТСК-РБ (ОСТ 26-1111—74)		-						+	+	+	+	+	+	+	+	+	+	+	+		_
КСС (с¶ситчатыми тарел- ками)	ТС, ТС-Р, 1 ⁻ С-Р2, ТС-Р1 ТС-РБ (ОСТ 26-805—73	Ц, В)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
КСР (с решетчатыми та-	TCP (OCT 26-675—72)		+	+	+	+	+	+	+	+	+											
релками)	TP (OCT 26-666—72)											+	+	+	+	+	+.	- -	+	+		
КСН (с насыпной насад- кой)	TCH-II, TCH-III (OCT 26-705—73)		+	+	+	+	+	+		- -	+	+	+	+	+	+	+	+	+	+		
ККП (с клапанными та-	ТКП однопоточные (ОСТ 26-02:-1401—77)						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
релками)	ТКП двухпоточные (ОСТ 26-02-1401—77)				-							+	+	+	+	+	+	+	+	+	+	+

Приложение 2. Тарелки колонных аппаратов

Тарелка колпачковая типа ТСК-І

Тарелка типа ТСК-І.

Техническая характеристика тарелок типа ТСК-1

OCT 26-01-282—71

Днаметр колон- ны D, мм	Свободное сече- ние колониы, м²	Длина линии барботажа, м	етр сли- м ²	дь слива,	(адь паро- патруб- м ³	нтельная Дь для ца паров,	h _д пря h		<i>h_д при h</i>		колпач-	егр кол- d, мм	f, MM		Исполн 1	ение ко	элпачка		коли в кг h = 5 H _t = для и	псса тачка (при * 20 мм, 300 мм) испол-
Диамет иы <i>D</i> .	Свобод ние кол	Длина барбот	Периметр ва <i>L</i> c, м²	Плсщедь м²	Площадь вых п ков, м ²	Относител площадь прохода %	15 20	30	Число ков	Днамет пачка	Mar		<i>h</i> , мм	<i>Н</i> ₁ , мм	<i>h</i> , мм	К, мм	l He	2		
400	0,126	1,33	0,302	0,005	0,008	6,35			7	60	90	50		60			10	10,7		
500	0,196	2,45	0,4	0,007	0,015	8			13	60	90	50		60			13	13,88		
600	0,28	3,25	0,48	0,012	0,027	10	530	540	13	80	110	55	15; 20	70	20; 30	0—10	18	21,3		
800	0,503	6	0,57	0,021	0,049	9,7			24	80	110	55		70			28	30,4		
						9			37	80	110	55		70			3 9	42,7		
1000	0,78	9,3	0,8	0,05	0,073	A			"								1			

Сехническая характеристика тарелок типа ТСК-Р (по ОСТ 26-808—73)

				(110 00			, 					_		
Диаметр колонны D, мм	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	360
Свободное сечение колонны, м ²	0,78	1,13	1,54	2,01	2,54	3,14	3,81	4,52	5,31	6,16	7,07	8,04	9,08	10,18
Длина линии барботажа, м	10,8	12,3	15,4	20,7	25,8	36,4	44,6	52,8	60,3	72,8	80,4	75,4	83,8	87,6
Периметр слива $L_{\mathbf{c}}$, м	0,665	0,818	1,09	1,238	1,419	1,455	1,606	1,775	2,032	2,096	2,39	2,36	2,62	2,88
Сечение перелива, м ²	0,064	0,099	0,198	0,269	0,334	0,33	0,412	0,505	0,674	0,686	0,902	0,88	1,128	1,441
Свободное сечение тарелки, м ²	0,09	0,129	0,162	0,219	0,272	0,385	0,471	0,557	0,638	0,769	0,849	1,18	1,32	1,37
Относительная площадь для прохода паров, %	11,5	11,4	10,5	10,9	10,7	12,2	12,3	12,3	12,1	12,5	12,1	14,6	14,5	13,5
Масса, кг	57,8	68,6	90,3	118,3	146	179,3	211,6	240,8	305	349,7	355	509	546	582

Техническая характеристика тарелок типов ТСК-РЦ и ТСК-РБ (по ОСТ 26-1111—74)

			(110 00	,1 20-1111	• • • •					
		00	16	00	18	00	20	00	22	00
Диаметр колонны Д, мм			тск-рц		тск-рц	TCK-PB	тск-рц	тск-рб	тск-рц	тск-рв
Тип тарелки	тск-рц	тск-рб						1.4	3.	8
Свободное сечение колонны,	1,	54	2,	01 	2,5	04		14		
	. 15	5,1	16	,97	23,	.88	27	,65	37	<u>,7 </u>
Длина линии барботажа, м		1,932	2,74	2,22	3,15	2,304	3,55	2,792	3,95	2,77
Периметр слива, м	2,34		<u> </u>	0,311	0,277	0,334	0,404	0,536	0,426	0,464
Сечение перелива, м ²	0,211	0,251	0,259	''				292	0,3	398
Свободное сечение тарелки, M^2	0,1	34	0,1	.79	0,2		<u> </u>			
Относительная площадь для	8	,7	8,	,91	9,	92	9	,3 	10	,44
прохода паров, %	<u> </u>	136	161	155	184	176	242	233	308	298
Масса, кг	140	100	 _	600	<u> </u>	00	33	200	36	500
Диаметр колонны D , мм		,		тск-рь	TCK-PH	тск-рь	тск-рц	тск-рв	тск-рц	TCK-PE
Тип тарелки	тск-рц	тск-рь	ТСК-РЦ	1CK-FB	<u>!</u>		1 0	04	10	,18
Свободное сечение колонны,	4.	,52	5	,31	6,	16 	0,	,04		
M ²	10	0.02	5	5,3	67	,87	62	2,2	83	,84
Длина линии барботажа, м	<u> </u>	2,824	4,75	3,368	5,15	3,412	5,95	4,446	6,75	4,896
Периметр слива, м	4,35	0,458	0,582	0.696	0,629	0,674	1,064	1,372	1,273_	1,582
Сечение перелива, м2	0,444				0.3	717	0.	975	1,3	318
Свободное сечение тарелки, м ²	0,	518 	0,	584 					1 19	2,95
Относительная площадь для прохода паров, %	11,45		11		11	,63 	<u> </u>	2,13	<u> </u>	<u> </u>
Масса, кг	362	340	373	356	443	441	593	557	694	668

Примечание. Зазор К (см. рис.) принимать по ГОСТ 9634-75.

Ситчатая тарелка типа ТС.

Tехническая характеристика тарелок типа TC OCT 26-805--73

				Диаметр отв	ерстия <i>d</i> , мм					
			3	4	5	8				
Диаметр колонны <i>D</i> , мм	Свободное сечение колонны, м ²	Рабочее сечение тарелки, м²]	Шаг между оті	верстиями t, м	Сечение пере- лива, м ²	Относи- тельная площадь перели-	Перн- метр слива, м	Масса, кг	
			7-12	8-13	10-18	16-25		ва, %		
			Относит	ельное свободн	ое сечение тар	елки, %				
400	0,126	0,051	6,62—2,26	9,1-2,56	9,1-2,78	9,1—3,7	0,004	3,81	0,302	8,2
500	0,196	0,089	7,57—2,62	10,3—2,93	10,3—3,18	10,3-4,22	0,1	3,6	0,4	10
600	0,28	0,14	8,2—2,8	11,2—3,2	11,2-3,46	11,2—4,6	0,1	4,3	0,48	13,6
800	0,51	0,41	10,25—3,49	14—3,96	13,9-4,3	14—5,7	0,016	4,1	0,57	21
1000	0,785	0,713	10—3,38	13,6—3,86	13,64,2	13,6—5,55	0,036	4,6	0,8	41,5
							1			

Техническая характеристика тарелок типов ТС-Р и ТС-Р2 (ОСТ 26-805—73)

	1	Свобод-	l		Диаметр отн	верстия d, мм		ī		1	
Днаметр		ное се-	Рабочее	3	4	5	1 8	Сечение	Относи- тельная	Пери-	Mac-
колониы	Тип тарелки	че ние	сечение		Шаг между от	верстиями t, м	М	перели-	площадь	метр слива	ca.
. D, mm	Tapenan	Колонны, м ²	тарелки	7-12	8-15	10-17	16-15	ва, м⁴	перели-	$L_{\rm C}$, M	кг
-	<u> </u>	1	<u> </u>	Относит	ельное свободн	ное сечение та	релки, %	<u> </u>	ва, %	_c, _	 ,
1200	TC-P	1,13	1,01	8,4-2,75	11,1-3,13	11,1—3,4	11,1-4,5	0,06	5,3	0,722	62
	TC-P2	1,13	0,896	7,65-2,6	10,4—2,97	10,4-3,25	10,4-4,28	0,117	10,53	0,884	58
1400	TC-P	1,54	1,368	8,5-3,48	13,93,96	13,9-4,3	13,9—5,71	0,087	5,65	0,86	72
	TC-P2	1,54	1,072	8,5-3,23	12,9—3,67	12,9—3,99	12,9-5,29	0,234	19,2	1,135	73
1600	TC-P	2,01	1,834	10,4-3,58	14,7—4,06	14,7—4,42	14,7—5,86	0,088	4,4	0,795	89
	TC-P2	2,01	1,426	10,3—3,5	14,1-3,98	14,1-4,32	14,1-5,74	0,292	14,5	1,28	85
180 0	TC-P	2,54	2,294	13,8-4,7	18,8-5,34	18,8—5,8	18,8-7,69	0,123	4,85	1,05	115
	TC-P2	2,54	1,64	13,2-4,5	18-5,14	185,57	18-7,4	0,45	17,7	1,52	96,5
2000	TC-P	3,14	2.822	11,6-3,95	15,8-4,5	15,8—4,89	15,8—6,49	0,159	5,06	1,19	120
	TC-P2	3,14	2,09	8,2-2,78	11,4-3,17	11,4—3,44	11,4—4,57	0,525	16,7	1,66	107
2200	TC-P	3,8	3,478	13,3—4,48	17,9—5,08	17,9—5,52	17,9—7,32	0,161	4,25	1,24	138
	TC-P2	3,8	2,46	7,9-2,68	10,7-3,06	10,7—3,32	10,7—4,37	0,67	15	1,85	137
2400	TC-P	4,52	3,9	11,1—3,78	15,3—4,29	15,3—4,62	15,3—6,18	0,317	6,9	1,57	172
	TC-P2	4,52	2,96	9,2-6,12	12,5—3,59	12,5—3,85	12,5—5,11	0,77	17	2	162,5
2600	TC-P	5,3	4,784	12,2—4,17	16,7—4,73	16,7—5,3	16,76,81	0,258	4,88	1,54	200
-	TC-P2	5,3	3,27	7,5-2,58	10,42,9	10,4—3,15	10,4—4,18	1,015	19,2	2,25	188
2800	TC-P	6,16	5,64	13,7—4,65	18,6—5,28	18,6—5,73	18,6—7,6	0,26	4,2	1,575	218 '
	TC-P2	6,16	3,96	7,75—2,64	10,52,99	10,5—3,26	10,5—4,32	1,1	17,0	2,385	189 .
3000	TC-P	7,06	6,43	12,54,27	17,14,83	17,1-5,25	17,1—6,96	0.315	4,4	1,715	340
	TC-P2	7,06	4,52	5,51,87	7,5—2,12	7,46—2,31	7,5-3,06	1,27	18	2,61	220
3200	TC-P	8,04	7,268	13-4,42	17,7-5,02	17,7—5,45	17,7—7,23	0,385	4,7	1,86	265
	TC-P2	8,04	5,03	8,7—2,96	11,83,37	11,83,65	11,8—4,85	1,505	18,7	2,74	255
3400	TC-P	9,06	8,308	11,94,07	16,3-4,61	16,3—5	16,3—6,64	0,376	4,15	1,905	290
	TC-P2	9,06	5,88	9,2-3,12	12,5—3,56	12,5—3,85	12,5—5,13	1,59	17,6	2,87	270
3600	TC-P	10,2	9	11,9—4,05	16,2—4,6	16,2—5	16,2—6,64	4,59	5,7	2,37 $2,24$	305
}	TC-P2	10,2	6,3	8,11-2,75	11,13,13	11,1—3,4	11,1—4,52	1,95	19,1	3,1	295

Примечания. 1. Шаг расположения отверстий принимается в указанных пределах через 1 мм. 2. В таблице указана масса тарелки при шаге между отверстиями 10 мм и диаметре отверстия 3 мм. Расстояние между тарелками для колонных аппаратов диаметром 400—1000 мм $H_t=300$ мм, для колонных аппаратов диаметром 1200—3600 мм $H_t=500$ мм. 3. Плотность при подсчете массы 7,85.

Техническая харлктеристика тарелок типов ТС-РЦ и ТС-РБ (ОСТ 26-805—73)

Диаметр колонны D, мм	140	(16	500	18	300	20	000	22	00
Тип тарелки	тс-рц	тс-рь	тс-рц	тс-ръ	тс-рц	тс-ръ	тс-рц	тс-рь	тс-рц	тс-рв
Свободное сечение колонны,	1,5	j. f	2,	01	2,5	54	3,	14	3,8	3
Рабочее сечение тарелки, м ² Относительное свободное се- чение, %	1,0)78	1,	44	1,9	928	2,	2	2,9	92
при d, мм при t, мм 8 16—25 5 10—18 4 8—15 3 7—12 Сечение перелива, м ² Относительная площадь пе-	6,82-2,32 9,28-2,64 9,28-2,86 9,28-3,8 0,211 0,251 13,7 16,3		$\begin{array}{c ccccc} 7,48-2,55 \\ 10,18-2,89 \\ 10,18-3,14 \\ 10,18-4,17 \\ 0,259 & 0,311 \\ 12,9 & 15,4 \\ \end{array}$		8,81—2,99 11,99—3,41 11,99—3,7 11,99—4,91 0,277 0,334 10,9 13,2		12,6- 12,6-	-3,15 -3,58 -3,89 -5,16 0,536 17,1	9,64- 13,13- 13,13- 13,13- 0,426 11,2	-4.05
⁷ релива, % Периметр слива <i>L</i> _{сл} , м Масса, кг	2,34 123	1,932 119 ±	2,74 140	2,22 134	3,15 157	2,304 149	3,55 208	2,792 199	3,95 263	2,77 251
Диаметр колонны D, мм	24	(-0	26	000	28	300	32	200	36	00
Тип тарелки	тс-рц тс-ре		тс-рц	тс-рц тс-рв		тс-ръ	тс-рц	тс-ръ	тс-рц	TC-PB
Свободное сечение колонны, м ²	4,5	52	5,:	3	6,	16	8,0	04	10,	2
Рабочее сечение тарелки, м ² Относительное свободное сечение, % при d, мм при t, мм 8 16—25 5 10—18 4 8—15 3 7—12 Сечение перелива, м ² Относительная площадь перелива, %	ри t , мм $16-25$ $10,48-3,56$ $9,93-3,38$ $10-18$ $14,26-4,05$ $13,5-3,84$ $8-15$ $14,26-4,4$ $13,5-4,17$ $7-12$ $14,26-5,84$ $13,5-5,53$ $0,444$ $0,458$ $0,582$ $0,696$		10,62 14,46 14,46 14,46 0,629 10,2	857 3,61 4,11 4,46 5,92 0,674 10,9	9,33- 12,7- 12,7- 12,7- 1,064 13,2	-3,17 -3,61 -3,92 -5,2 1,372 17,1	9,93- 13,5- 13,5- 13,5- 1,273 12,5	325 -3,39 -3,86 -4,19 -5,56 1,582 15,5		
Периметр слива L_{cn} , м Масса, кг	4,35 360	$2,824 \\ 280$	4,75 305	3,368 288	5,15 360	3,412 358	5,95 525	4,446 488	6,75 600	4,896 570

Решетчатая тарелка типа ТС-Р

Решетчатая тарелка типа ТС-Р.

Техническая характеристика тарелок типа ТС-Р (ОСТ 26-675—72)

ко. Д,	ое ж²							Шаг t, мм									Kī			
Дивметр н лонны мм	одное ние в гы, м ³	D_1 ,	D ₂ ,	D_3 ,	D4,	<i>b</i> ,	S, MM	8	10	12	14	15	18	20	22	24	28	32	36	Масса, в
Диал лонн мм	Свободно сечение лонны, м								·	(Этноси	гельное	свободн	ое сече	ние таре	лки, м ²	1/M ²			Ma
400	0,125	380	360	386	395	4 6		0,18	0,15 0,23	0,13 0,18	0,11 0,15	0,1 0,13	0,09 0,12	0,08 0,11	0,07 0,09	0,06 0,07	0,06	0,05	- 	5,1
500	0,196	480	460	485	495	4 6		0,19	0,15 0,24	0,14	0,12 0,15	0,11 0,14	0,1 0,13	0,09	0,07 0,09	0,06 0,08	0,07	0,06	_	7,6
600	0,283	580	560	585	595	4 6	2,5	0,2	0,17 0,25	0,15 0,2	0,13 0,19	0,12 0,15	0,11 0,14	0,1	0,08	0,07 0,09	0,08	0,07		10
800	0,503	780	760	785	795	4 6		0,21	0,17	0,15	0,13 0,19	0,11 0,16	0,1	0,09	0,08	0,07	0,09	0,08	_	14,7

Распределительная тарелка типа TCH-II

Тарелка типа TCH-II.

Техническая характеристика та_гелок типа TCH-11 (OCT 26-705—73)

D.	HOE KO-					Ж	(идко	стной	патрубок
Диаметр лониы мм	Свободное сечение к лонны, м ²	D ₁ . мм	D ₂ , MM	h, mm	<i>h</i> ₁ , мм	д, мм	t, MM	количе- ство п	свобод- ное се- чение, м ²
400 500 600 800 1000 1200 1400 1600 2000 2200 2400 2600 2800	0,126 0,196 0,283 0,503 0,785 1,13 1,539 2,01 2,545 3,141 3,801 4,524 5,309 6,157	320 350 380 480 580 780 980 1170 1170 1570 1770 1770 2000	300 330 360 460 560 760 960 1150 1150 1350 1750 1750 1950	185 215 315 350 470 510 520 645 705 730 745 845 900 915	50 50 130 130 210 210 310 310 310 380 380 380	32 32 32 45 45 45 57 57 57 57 57	80 80 80 80 95 95 95 95 95 95	13 19 25 25 37 61 110 110 156 212 276 276 352	0,0006 0,0006 0,0006 0,0013 0,0013 0,0013 0,0022 0,0022 0,0022 0,0022 0,0022 0,0022
ЧН				Парам	етры т	грели	СИ	•	,
колонны	рабо- чее	сечен		макси- мально допу- стимая	ОТ	сло ep-			релки, кг ировочно)
мм	сече- ние, м ²	СЛИВ2 М ²	1, н	агрузка о жид-	сл	ли нва Д(ко-		угле- оди-	из леги- рован-

4			Парамет	гры т грелкі	И	
колонны	рабо-		макси- мально допу-	число отгер-		релки, кг іровочно)
Диаметр <i>D</i> , мм	чее сече- ние, м ²	сечение слива, м ²	стимая нагрузка по жид- кости, м ² /(м ³ ·ч)	СТИЙ СЛИВА ЖИД(КО- СТИ П1	из угле- роди- стой стали	из леги- рован- ной стали
400	0.00	0.0070	105			2.5
400	0,08	0,0078	195	<u> </u>	6,1	3,5
500	0,096	0,0115	180	4	9	5,1
600	0,173	0,0151	165	4:	11,4	7
800	0,181	0,0326	200	4:	16,4	9
1000	0,264	0,0471	190	(i	27,3	14,5
1200	0,478	0,0793	220	6	37,1	19,8
1400	0,754	0,144	320	6	48,8	24,6
1600	1,075	0,2421	330	6	65	40,8
1800	1,075	0,2421	270	6	73,1	45,1
2000	1,474	0,3433	300	- 8	110,5	81,3
2200	1,936	0,4665	335	8	142,6	110,3
2400	2,461	0,6073	365	8	193	137,5
2600	2,461	0,6073	320	8	200	141
2800	3,141	0,7749	345	8	230	180,5
		'		·		1

Распределительная тарелка типа ТСН-111

Техническая характеристика тарелок типа TCH-III (ОСТ 26-705—73)

D, 0	ģ					Ж	идко	стной 1	патрубок
Диаметр и лонны мм	Свободное сечение ко- лонны, м²	<i>D</i> ₁ , мм	D ₂ ,	D ₃ ,	<i>h</i> , мм	<i>d</i> , мм	£, MM	количе- ство <i>п</i>	свобод- ное сече ние, м²
400	0,126	320	260	110	_	32	l —	12	0,0006
500	0,196	350	290	110		32		16	0,0006
600	0,283	380	460	130	_	32		21	0,0006
800	0,503	480	560	160	_	45		24	0,0013
1000	0,785	580	660	190		45	80	30	0,0013
1200	1,13	780	860	220	150	45	80	54	0,0013
1400	1,539	980	1060	260	150	45	80	96	0,0013
1600	2,01	1170	1250	310	150	57	95	96	0,0022
1800	2,545	1170	1250	310	150	57	95	96	0,0022
2000	3,141	1370	1450	330	180	57	95	142	0,0022
2200	3,801	1570	1650	360	180	57	95	194	0,0022
2400	4,524	1770	1850	400	200	57	95	254	0,0022
2600	5,309	1770	1850	400	200	57	95	254	0,0022
2800	6,157	2000	2080	410	200	57	95	330	0,0022

2800	6,157	1 2000 2	080 410	200 57	95 330	0,0022
- HO			Параме	тры тарелкі	к	
тр колон. мм	рабо- чее	сечение	макси- мально до- пустимая	число операций для	(ориенти	тарелки ровочно), кг
Диаметр ны D, мм	сече- ние, м ²	слива. M ²	нагрузка по жид- кости, м ³ /м ³ ·ч	слива жидко- сти n ₁	из угле- родистой стали	из леги- рованной стали
400	0,08	0,0073	180	8	5,6	3,8
500	0,098	0.0097	155	8	6,9	4,7
600	0,113	0,0127	145	8	7,4	5
800	0,181	0,0313	190	10	10,9	7,6
1000	0,264	0,0391	175	12	14,4	9,7
1200	0,478	0,0703	190	18	23,6	15,7
1400	0,754	0,1249	250	22	35,8	24,5
1600	1,075	0,2112	280	26	52,3	34
1800	1,075	0,2112	240	26	52,3	34
2000	1,474	0,3125	270	30	68,4	52,4
2200	1,938	0,4268	305	34	89,8	72,2
2400	2,461	0,558	330	38	113,5	90
2600	2,461	0,558	290	38	113,5	90
2800	3,141	0,7261	320	42	145,1	114,4

	Mac	са тарелки, кг (не б	олее) * * ।
F		из углеродистой ста	эли
Диаметр колонны D, мм	общая	в том числе деталей из коррозионно- стойкой стали	из легирован- ной стали
1000	80	45	55
1200	95	55	70
1400	125	70	90
1600	145	80	100
1800	170	100	125
2000	200	120	145
2200	225	135	170
2400	270	160	200
2600	290	175	220
2800	330	200	240
3000	360	220	270
3200	470	280	350
3400	500	300	395
3600	570	340	445
3800	620	370	480
4000	670	400	520

Клапанная прямоточная однопоточная тарелка типа ТКП

Tехническая характеристика однопоточных тарелок типа $TK\Pi$ (OCT 26-02-1401—77)

		1						Шаг г	, MM				
						50			75			100	
Диаметр колонны <i>D</i> , мм	Свобод- ное сече- ние ко- лонны, м ²	Рабочее сечение тарелки, м ²	Пери- метр слива, м	Сеченне пере- лива, м²	Относи- тельное свобод- ное сече- ние та- релки,	Число клапа- нов *	Число рядов клапа- нов на поток	Относи- тельное свобод- ное сече- ние та- релки,	Число кла- па- нов *	Число рядов кла- панов на поток	Относи- тельное свобод- ное сече- ние та- релки, %	Число кла- па- нов	Число рядов кла- панов на поток
		<u> </u>	·	Таре	елка мо	дифик	ации А						
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3400 3600 3800 4000	0,78 1,13 1,54 2,01 2,55 3,14 3,80 4,52 5,30 6,15 7,07 8,04 9,08 10,20 11,30 12,60	0,5 0,79 1,1 1,47 1,83 2,24 2,76 3,21 3,21 3,84 4,41 5,01 5,76 6,44 7,39 8,08 8,96	0,84 0,97 1,12 1,26 1,43 1,6 1,74 1,92 2,05 2,23 2,4 2,54 2,72 2,85 3,03 3,2	0,14 0,17 0,22 0,27 0,3 0,45 0,52 0,66 0,74 0,87 1,03 1,14 1,32 1,4 1,61 1,82	7,69 10,44 11,42 13,23 13,23 13,65 14,26 14,55 14,91 15,25 14,87 15,32 15,38 15,87 15,8	48 94 140 212 268 342 432 524 630 748 838 982 1112 1290 1424 1590	6 9 12 15 17 19 22 24 27 29 31 34 36 39 41 43	5,12 6,63 7,79 8,25 8,46 9,36 9,44 9,55 9,98 10,12 9,95 10,51 10,22 9,84 10,45 10,67	32 60 96 132 172 234 286 344 422 496 560 674 740 800 938 1072	4 6 8 10 11 13 15 16 18 19 21 23 24 26 27 29	5,57 5,84 6,90 7,03 7,13 7,20 7,71 7,75 7,28 7,70 7,62 7,83 8,66 8,08	50 72 102 140 176 216 260 326 380 410 496 556 636 780 812	5 6 8 9 10 11 12 14 15 16 17 18 20 21 22
	, ,	, ,	•		елка м			Б .	. 26	. 5	1 4 48	1 28	1 4
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000	0,78 1,13 1,54 2,01 2,55 3,14 3,80 4,52 5,30 6,15 7,07 8,04 9,08 10,20 11,30 12,60	0,6 0,93 1,3 1,65 2,17 2,68 3,18 3,77 4,52 5,35 5,94 6,88 7,76 8,73 9,54 10,78	0,76 0,84 0,93 1,12 1,2 1,32 1,51 1,65 1,73 1,8 2,04 2,11 2,26 2,38 2,57 2,64	0,09 0,1 0,12 0,18 0,19 0,23 0,31 0,37 0,39 0,4 0,56 0,58 0,68 0,73 0,88 0,91	10,3 13,36 14,34 14,72 16 16,87 16,57 17,23 18,23 18,58 18,18 18,82 18,91 19,11 19,08 19,38	64 120 176 236 328 422 502 620 770 910 1024 1210 1368 1554 1720 1946	8 12 16 18 22 25 27 30 34 38 39 43 46 49 51	5,76 7,57 10,12 10,5 10,62 10,15 11,23 11,43 12,35 12,45 12,15 12,76 12,66 12,77 12,665 12,98	36 68 124 168 216 254 340 412 522 610 684 818 918 9136 1140 1304	5 8 11 12 15 17 18 20 23 25 26 29 31 33 34 37	4,48 6,01 7,46 7,86 7,1 8,88 5,7 8,78 9,14 9,31 9,3 9,68 9,67 9,72 9,84	54 92 126 144 222 260 316 386 456 524 620 688 786 876 988	6 8 9 11 13 14 15 17 19 20 22 23 25 26 28

Число клапанов на тарелке может быть уменьшено на 5 % по сравнению с указанным в таблице.
 Приведена масса при расстоянии между тарелками 600 мм.

	Масса тарелки, кг (не более) ***							
Днаметр колонны <i>О</i> ∎	из углерс	<i>r</i>						
мм	общая	в том числе деталей из коррозионно- стойкой стали	из легирован- ной стали					
1400	190	60	125					
1600	230	70	140					
1800	270	80	160					
2000	360	110	210					
2200	390	120	230					
2400	430	130	275					
2600	470	145	300					
2800	520	155	330					
3000	570	170	370					
3200	620	185	420					
3400	680	210	470					
3600	750	230	520					
3800	820	250	560					
4000	900	270	620					

Двухпоточная тарелка типа ТКП.

Клапанная прямоточная двухпоточная тарелка типа ТКП

Tехническая характеристика двухпоточных тарелок типа $TK\Pi$ (ОСТ 26-02-1401--76)

2	<u> </u>	<u>.</u>	.		IIIar t, mm								
ОНН	слива ",		50			75			100				
Диаметр кол Д. мм	Свободное сечение колонны, м ^а	Рабочее с ечение 1 релки, м ²	Периметр сли	Сечение пере- лива *, м²	Относи- сельное свобод- ное сече- ние та- релки,	Число клапа- нов * *	Число рядов клапа- нов на поток	Относи- тельное свобод- ное сече- ние та- релки. %	Число клапа- нов **	Число рядов клапа- нов на поток	Относи- тельное свобод- ное сече- ние та- релки, %	Число клапа- нов **	Число рядов клапа- нов на поток
						Гарелк	а моди	фикаци	и А				
1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000	1,54 2,01 2,55 3,14 3,80 4,52 5,30 6,15 7,07 8,04 9,08 10,18 11,34 12,57	1,02 1,25 1,72 2,08 2,51 2,93 3,62 4,36 4,74 5,59 6,23 7,68 8,75	1,88 2,24 2,4 2,64 3,02 3,3 3,46 4,08 4,22 4,76 5,14 5,28	0,22 0,33 0,38 0,46 0,53 0,69 0,76 0,81 1,03 1,12 1,32 1,43 1,69 1,79	6,3 7,24 8,09 8,95 9,12 9,56 11,4 12,32 11,68 12,35 12,3 12,75 12,8 13,4	78 116 164 224 276 344 480 604 656 788 890 1032 1148 1336	3 4 6 7 8 9 11 13 13 15 16 17 18 20	5,65 5,14 6,24 5,94 6,56 7,4 8,66 8,03 8,66 8,61 8,3 8,65 8,79	90 104 156 180 236 312 424 452 536 624 672 776 876	3 4 5 5 6 7 9 10 11 11 12		124 136 192 256 332 344 416 452 540 580 680	
Тарелка модификации Б													
1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3606 3800 4000	1,54 2,01 2,55 3,14 3,80 4,52 5,30 6,15 7,07 8,04 9,08 10,!8 11,34 12,57	1,42 1,88 2,41 2,92 3,39 4,03 4,89 5,39 6,18 7,11 8,07 8,93 10,00	2,06 2,26 2,4 2,72 2,98 3,24 3,3 3,66 3,92 4,08 4,26 4,46 4,7	0,26 0,3 0,32 0,32 0,5 0,55 0,55 0,58 0,77 0,83 0,89 0,95 1,11 1,22	9,75 9,27 11,35 11,63 11,69 13,35 14,02 14 14,29 14,28 15,5 15,3 16,04		5 7 9 10 11 13 15 16 17 19 21 22 24	5,65 6,91 7,66 8,05 7,57 9,3 9,4 9,44 9,34 10,11 10,42 10,5 10,68	90 140 192 244 272 392 464 532 600 732 840 940	3 5 6 7 7 9 10 11 13 14 15	5,65 5,13 6,24 5,94 6,45 7,15 7,48 7,09 7,5 7,8 8,05 7,7 8,1	90 104 156 180 232 308 368 396 480 564 652 692 800	3 4 5 5 6 7 8 8 9 10 11 11

Приведены минимальные сечения переливов (одного центрального и двух боковых) и минимальный периметр слива.
 Число клапанов на тарелке может быть уменьшено на 5 % по сравнению с указанными в таблице.
 Приведена масса при расстоянии между тарелками 600 мм.

Решетчатая тарелка типа ТР

Тарелка типа ТР.

Техническая характеристика решетчатых тарелок типа TP (ОСТ 26-666—72)

. KG-		s. MM	ь,	Шаг щелей <i>t</i> , мм				
$D_{\mathbf{r}}^{\mathbf{K}}$	Матернал тарелки			8	10	12	14	
Диаметр и лонны D , мм	матернал тарсями		ММ	Относительное свобод- ное сечение тарелки, м²/м²				
1000	Легированная сталь Углеродистая сталь	2 4	4	0,22	0,17 0,27	0,15 0,22	0,13 0,19	
1200	Легированная сталь Углеродистая сталь	2 4	4 6	0,24	$0,21 \\ 0,32$	0,16 0,24	$0,14 \\ 0,20$	
1400	Легированная сталь Углеродистая сталь	2 4	4 6	0,25 —	0,21 0,32	0,18 0,26	0,16 0,23	
1600	Легированная сталь Углеродистая сталь	2 4	4 6	0,26 —	0,20 0,31	$0,17 \\ 0,25$	$0,14 \\ 0,21$	
1800	Легированная сталь Углеродистая сталь	2 4	4 6	0,28	0,22 0,32	0,18 0,27	0,15 0,23	
2000	Легированная сталь Углеродистая сталь	2 4	4 6	0,26	0,20 0,31	0,17 0,26	0,15 0,28	
2200	Легированная сталь Углеродистая сталь	2 4	6	0,27	$0,20 \\ 0,32$	0,18	0,15 0,22	
2400	Легированная сталь Углеродистая сталь	2 4	4 6	0,27	0,22 0,31	0,18 0,27	0,16 0,22	
2600	Легированная сталь Углеродистая сталь	2 4	6	0,3	0,21 0,31	0,18	0,16 0,24	
2800	Легированная сталь Углеродистая сталь	2 4	4 6	0,27	0,24 0,36	0,19 0,28	0,16 0,23	
3000	Легированная сталь Углеродистая сталь		6	0,28	0,22 0,33	0,18 0,28	0,16 0,24	

	Шаг щелей <i>t</i> , мм								
, Ko									Масса тарелки,
метр	16	18	20	22	24	28	32	36	кг (не более)
Дивметр лонны мм	Относ								
		1							
1000	0,11 0,16	0,10 0,15	0,09 0,14	0,08 0,12	0,07 0,11	0,09	0,08	0,07	38 55
1200	0,12 0,18	0,11 0,16	0,10 0,14	0,09 0,13	0,08 0,12	0,11	0,09	0,08	49 72
1400	0,16 0,20	0,12 0,17	0,10 0,16	0,09 0,15	0,08 0,14	0,11	0,1	0,09	60 91
1600	0,13 0,19	0,11 0,17	0,10 0,15	0,09 0,14	0,08 0,13	0,11	0,1	0,09	79 123
1800	0,14 0,20	0,12 0,18	0,11 0,16	0,10 0,15	0,09 0,13	0,11	0,1	0,09	94 148
2000	0,13 0,20	0,12 0,18	0,10 0,16	0,09 0,15	0,08 0,13	0,11	0,1	0,09	129 199
2200	0,13 0,20	0,12 0,18	0,11 0,16	0,10 0,14	0,09 0,13	0,12	0,1	0,09	151 235
2400	0,14 0,20	0,12 0,18	0,11 0,16	0,10 1,15	0,09 0,13	0,12	0,1	0,09	196 301
2600	0,14 0,20	0,12 0,18	0,11 0,16	0,10 0,15	0,09 0,14	0,12	0,1	0,09	228 335
2800	0,14 0,20	0,12 0,18	0,11 0,16	0,10 0,15	0,09		0,1	0,09	249 367
3000	0,14 0,21	0,12 0,18	0,11 0,16	0,10 0,15			0,1	0,09	285 389

ЛИТЕРАТУРА

- 1. Касаткин А. Г. Основные процессы и аппараты химической технологии. Изд. 9-е, М., Химия, 1973. 750 с.
- 2. Справочник коксохимика. Т. 3, М., Металлургия, 1966. 391 с.
- 3. Рамм В. М. Абсорбция газов. М., Химия, 1976. 655 с.
- 4. Коробчанский И. Е., Кузнецов М. Д. Расчет аппаратуры для улавлигания комсования. М., Металлургия, 1972. 295 с.

 5. Александров И. А. Ректификационные и абсорбционные аппараты. М., Химия, 1978. 277 с.
- 6. Лащинский А. А., Толчинский А. Р. Основы конструирования и расчеты химической аппаратуры. Л., Машиностроение, 1970. 752 с.
- 7. Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорбционных аппаратов. Киев, Техніка, 1970. 208 с.
- 8. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и за-дачи по курсу процессов и аппаратов. Л., Химия, 1976. 552 c.
- 9. *Б ретшнайдер С.* Свойства газов и жидкостей. М.—Л., Химия, 1970. 535 с.
- 10. Хоблер Т. Массопередача и абсорбция. Л., Химия, 1964. 479 c.
- 11. Дытнерский Ю. И. Хим. и нефт. машиностроение, 1964, № 3, c. 13—15.
- 12. Колонные аппараты. Каталог. М., ЦИНТИХИМНЕФТЕ-МАШ, 1978. 31 с.
- 13. Касаткин А. Г., Дытнерский Ю. И., Кочереин Н. В. Теплои массоперенос. Минск, Наука и техника, т. 4, 1966, c. 12—17.