BBM105 - Databases

Slides: Invitation to Computer Science 5th Edition (Chapter 14)

Databases

- Bit
 - Most basic unit of data
 - Combined into groups of eight called bytes
- Fields
 - Group of bytes
- Record
 - Collection of related fields

Databases (continued)

- Data file
 - Stores related records
- Database
 - Made up of related files

Figure 14.3 Data Organization Hierarchy

	Field 1	Field 2	Field 3
Record 1			
Record 2			
Record 3			
Record 4			
Record 5			

Figure 14.4 Records and Fields in a Single File

ID	LASTNAME	FIRSTNAME	BIRTHDATE	PAYRATE	HoursWorked
149	Takasano	Frederick	5/23/1966	\$12.35	250

Figure 14.5 One Record in the Rugs-For-You Employees File

Database Management Systems

- Manage the files in a database
- Entity
 - Fundamental distinguishable component
- Attribute
 - Category of information
- Primary key
 - Attribute or combination of attributes that uniquely identifies a tuple

Employees					
<u>ID</u>	LASTNAME	FirstName	BIRTHDATE	PAYRATE	HoursWorked
116	Kay	Janet	3/29/1956	\$16.60	94
123	Perreira	Francine	8/15/1987	\$ 8.50	185
149	Takasano	Frederick	5/23/1966	\$12.35	250
171	Kay	John	11/17/1954	\$17.80	245
165	Honou	Morris	6/9/1988	\$ 6.70	53

Figure 14.6 Employees Table for Rugs-For-You

Database Management Systems (continued)

- Query languages
 - Enable user or another application program to query the database, in order to retrieve information
- Composite primary key
 - Needed to identify a tuple uniquely
- Foreign key
 - Key from another table that refers to a specific key, usually the primary key

Database Systems

- The big commercial database vendors:
 - Oracle
 - IBM (with DB2)
 - Microsoft (SQL Server)
 - Sybase
- Some free database systems:
 - Postgres
 - MySQL
 - Predator

INSURANCEPOLICIES **DATEISSUED** EMPLOYEEID **PLANTYPE** 10/18/1974 171 B2 C1 6/21/1982 171 149 B2 8/16/1990 5/23/1995 149 **A1**

12/18/1999

Figure 14.7 Insurance Policies Table for Rugs-For-You

C2

149

Figure 14.8 Three Entities in the Rugs-For-You Database

Functionality of a DBMS

The programmer sees SQL, which has two components:

- Data Definition Language DDL
- Data Manipulation Language DML
 - query language

Behind the scenes the DBMS has:

- Query engine
- Query optimizer
- Storage management
- Transaction Management (concurrency, recovery)

How the Programmer Sees the DBMS

Tables:

SSN	Name	Category	
123-45-6789	Charles	undergrad	
234-56-7890	Dan	grad	
	•••		

SSN	CID
123-45-6789	CSE444
123-45-6789	CSE444
234-56-7890	CSE142

CID	Name	Quarter
CSE444	Databases	fall
CSE541	Operating systems	winter

 Still implemented as files, but behind the scenes can be quite complex

Queries

- Find all courses that "Mary" takaes
 - SELECT C.name
 FROM Students S, Takes T, Courses C
 WHERE S.name="Mary" and
 S.ssn = T.ssn and T.cid = C.cid
- What happens behind the scene?
 - Query processor figures out how to answer the query efficiently.

Transactions

- A *transaction* = sequence of statements that either all succeed, or all fail
- Transactions have the ACID properties:
 - A = atomicity (a transaction should be done or undone completely)
 - C = consistency (a transaction should transform a system from one consistent state to another consistent state)
 - I = isolation (each transaction should happen independently of other transactions)
 - D = durability (completed transactions should remain permanent)

Other Considerations

- Performance issues
 - Affect the user's satisfaction with a database management system
- To significantly reduce access time:
 - Create additional records to be stored along with the file
- Distributed databases
 - Allow the physical data to reside at separate and independent locations that are electronically networked together

Summary

- E-business
 - Every part of a financial transaction is handled electronically
- Opening an online store
 - Requires a significant amount of planning
- Database
 - Allows data items to be stored, extracted, sorted, and manipulated
- Relational database model
 - Conceptual model of a file as a two-dimensional table