0 1 Oscar et la dame rose (2009) drama Listening in to a conversation between his do... 1 2 Cupid (1997) thriller A brother and sister with a past incestuous r... 2 3 Young, Wild and Wonderful (1980) adult As the bus empties the students for their fie... 3 4 The Secret Sin (1915) drama To help their unemployed father make ends mee... 5 The Unrecovered (2007) drama The film's title refers not only to the un-re... 4 (3178, 4)

test_data = pd.read_csv('/content/test_data.txt',sep=':::', names=['ID','TITLE','GENRE','DESCRIPTION'])
display(test_data.head())
test_data.shape

<ipython-input-3-cfe35ffed055>:1: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex stest_data = pd.read_csv('/content/test_data.txt',sep=':::', names=['ID','TITLE','GENRE','DESCRIPTION'])

	ID	TITLE	GENRE	DESCRIPTION	
0	1	Edgar's Lunch (1998)	L.R. Brane loves his life - his car, his apar	NaN	
1	2	La guerra de papá (1977)	Spain, March 1964: Quico is a very naughty ch	NaN	
2	3	Off the Beaten Track (2010)	One year in the life of Albin and his family \dots	NaN	
3	4	Meu Amigo Hindu (2015)	His father has died, he hasn't spoken with hi	NaN	
4	5	Er nu zhai (1955)	Before he was known internationally as a mart	NaN	
(9822, 4)					

test_solution_data = pd.read_csv('/content/test_data_solution.txt',sep=':::', names=['ID','TITLE','GENRE','DESCRIPTION'])
display(test_solution_data.head())
test_solution_data.shape

<ipython-input-4-018f6a31a9ab>:1: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex !
test_solution_data = pd.read_csv('/content/test_data_solution.txt',sep=':::', names=['ID','TITLE','GENRE','DESCRIPTION'])

	ID	TITLE	GENRE	DESCRIPTION	
0	1	Edgar's Lunch (1998)	thriller	L.R. Brane loves his life - his car, his apar	
1	2	La guerra de papá (1977)	comedy	Spain, March 1964: Quico is a very naughty ch	
2	3	Off the Beaten Track (2010)	documentary	One year in the life of Albin and his family \dots	
3	4	Meu Amigo Hindu (2015)	drama	His father has died, he hasn't spoken with hi	
4	5	Er nu zhai (1955)	drama	Before he was known internationally as a mart	
(3202, 4)					

```
plt.figure(figsize=(15,8))
sns.countplot(x = train_data['GENRE'], order = train_data['GENRE'].value_counts().index)
plt.xticks(rotation=50)
plt.grid(linestyle='--',color='black')
plt.title('Number of Movies per Genre')
plt.ylabel('Number of Movies')
plt.xlabel('Genre')
plt.show()
```



```
train_data['DESCRIPTION_length'] = train_data['DESCRIPTION'].apply(len)
plt.figure(figsize=(15,8))
sns.barplot(x='GENRE',y='DESCRIPTION_length', data=train_data)
plt.xticks(rotation=90)
plt.grid()
plt.show()
```



```
top_genre = train_data['GENRE'].value_counts().head(10)
top_genre
      drama
                      799
                      749
     documentary
                      441
      comedy
                      315
      short
      horror
                      129
      thriller
                      112
      action
                       80
     reality-tv
                       60
                       59
     western
     family
                       47
     Name: GENRE, dtype: int64
plt.figure(figsize=(20,10))
top_genre.plot(kind='bar', color='red')
plt.title('Top 10 most frequent genres')
plt.grid()
plt.ylabel('Number of Movies')
plt.xlabel('Genre')
```

plt.show()


```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from \ sklearn.metrics \ import \ accuracy\_score, \ classification\_report, confusion\_matrix
train_data['DESCRIPTION'].fillna("", inplace=True)
test_data['DESCRIPTION'].fillna("", inplace=True)
train_data.isnull().sum()
     ID
                             0
     TITLE
                             0
     GENRE
                             0
     DESCRIPTION
     DESCRIPTION_length
     dtype: int64
test_data.isnull().sum()
     ID
                      0
     TITLE
                     0
     GENRE
                      0
     DESCRIPTION
                      0
     dtype: int64
tvf = TfidfVectorizer(stop_words='english', max_features=100000)
x_train =tvf.fit_transform(train_data['DESCRIPTION'])
x_test =tvf.transform(test_data['DESCRIPTION'])
x_train
     <3178x26830 sparse matrix of type '<class 'numpy.float64'>'
              with 145577 stored elements in Compressed Sparse Row format>
```

```
<9822x26830 sparse matrix of type '<class 'numpy.float64'>'
                           with 0 stored elements in Compressed Sparse Row format>
label = LabelEncoder()
y_train = label.fit_transform(train_data['GENRE'])
y_test = label.transform(test_solution_data['GENRE'])
y_train
           array([ 8, 24, 1, ..., 7, 7, 26])
y_train
           array([ 8, 24, 1, ..., 7, 7, 26])
x\_train\_sub, \ x\_Val, \ y\_train\_sub, \ y\_Val = train\_test\_split(x\_train,y\_train, y\_train, y
test_size=0.2,random_state=111)
print(x_train_sub.shape)
print(x_Val.shape)
print(y_train_sub.shape)
print(y_Val.shape)
           (2542, 26830)
           (636, 26830)
           (2542,)
           (636,)
clf = LinearSVC()
clf.fit(x_train_sub,y_train_sub)
y_val_predict = clf.predict(x_Val)
print('Validation Accuracy:',accuracy_score(y_Val,y_val_predict))
print('validation \ classification \ report : \ \ \ \ ', classification\_report(y\_Val,y\_val\_predict))
           Validation Accuracy: 0.5094339622641509
           validation classification report :
                                          precision
                                                                     recall f1-score
                                                                                                              support
                                  0
                                                   0.00
                                                                       0.00
                                                                                             0.00
                                                                                                                        8
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                       13
                                                   1.00
                                                                        0.12
                                                                                             0.22
                                                                                                                        8
                                  3
                                                   0.00
                                                                       0.00
                                                                                             0.00
                                                                       0.00
                                                                                             0.00
                                  4
                                                   0.00
                                                                                                                        4
                                                                                                                      87
                                  5
                                                   0.43
                                                                       0.41
                                                                                             0.42
                                                                       0.00
                                  6
                                                   0.00
                                                                                            0.00
                                                                                                                        5
                                  7
                                                   0.61
                                                                       0.87
                                                                                            0.72
                                                                                                                    153
                                  8
                                                   0.48
                                                                       0.77
                                                                                             0.59
                                                                                                                    165
                                  9
                                                   1.00
                                                                        0.08
                                                                                             0.15
                                                                                                                      12
                                10
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                        4
                                11
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                        2
                                12
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                13
                                                   0.67
                                                                        0.30
                                                                                             0.41
                                                                                                                       27
                                14
                                                   0.00
                                                                       0.00
                                                                                             0.00
                                15
                                                   0.00
                                                                       0.00
                                                                                             0.00
                                                                                                                        1
                                                                                             0.00
                                16
                                                   0.00
                                                                       0.00
                                                                                                                        2
                                                                                             0.00
                                17
                                                   0.00
                                                                       0.00
                                                                                                                        4
                                18
                                                   0.50
                                                                        0.10
                                                                                             0.17
                                                                                                                      10
                                19
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                      11
                                20
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                        6
                                21
                                                   0.32
                                                                        0.21
                                                                                             0.26
                                                                                                                      57
                                22
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                        6
                                23
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                24
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                       24
                                25
                                                   0.00
                                                                        0.00
                                                                                             0.00
                                                                                                                        2
                                                                                            0.71
                                                                                                                        8
                                26
                                                   0.83
                                                                       0.62
                                                                                             0.51
                                                                                                                    636
                   accuracy
                                                   0.22
                                                                        0.13
                 macro avg
                                                                                             0.14
                                                                                                                    636
           weighted avg
                                                   0.44
                                                                       0.51
                                                                                             0.44
                                                                                                                    636
           /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
                _warn_prf(average, modifier, msg_start, len(result))
           /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
                _warn_prf(average, modifier, msg_start, len(result))
           /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are i
               _warn_prf(average, modifier, msg_start, len(result))
```

y_pred = clf.predict(x_test)
print('test classification report : \n', classification_report(y_test,y_test))

test classification report :

test trassili	cation report	•		
	precision	recall	f1-score	support
0	1.00	1.00	1.00	88
1	1.00	1.00	1.00	32
2	1.00	1.00	1.00	48
3	1.00	1.00	1.00	42
4	1.00	1.00	1.00	15
5	1.00	1.00	1.00	428
6	1.00	1.00	1.00	25
7	1.00	1.00	1.00	734
8	1.00	1.00	1.00	842
9	1.00	1.00	1.00	33
10	1.00	1.00	1.00	11
11	1.00	1.00	1.00	6
12	1.00	1.00	1.00	19
13	1.00	1.00	1.00	134
14	1.00	1.00	1.00	47
15	1.00	1.00	1.00	10
16	1.00	1.00	1.00	13
17	1.00	1.00	1.00	8
18	1.00	1.00	1.00	46
19	1.00	1.00	1.00	48
20	1.00	1.00	1.00	37
21	1.00	1.00	1.00	323
22	1.00	1.00	1.00	28
23	1.00	1.00	1.00	18
24	1.00	1.00	1.00	92
25	1.00	1.00	1.00	10
26	1.00	1.00	1.00	65
accuracy			1.00	3202
macro avg	1.00	1.00	1.00	3202
weighted avg	1.00	1.00	1.00	3202

from chloson noise boses import MultinomialND