Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Trabajos prácticos 3 y 4

Temas: Cálculo de raíces. Autovalores y autovectores

Profesor Titular: Manuel Carlevaro Jefe de Trabajos Prácticos: Diego Amiconi Ayudante de Primera: Lucas Basiuk

1. Trabajo práctico 03: Raíces de ecuaciones.

1.1. Método de bisección

Utilice el método de bisección para aproximar todos los ceros reales de la función

$$f(x) = e^x + x^2 - x - 4$$

Utilice una tolerancia absoluta de 10^{-5} como criterio de finalización. Muestre en forma de tabla los valores intermedios calculados. Estime la cantidad de pasos necesarios para obtener una precisión de 10^{-8} .

1.2. Método de Newton-Raphson

Aproxime los ceros de la función del problema anterior utilizando el método de Newton-Raphson. Compare la velocidad de convergencia de ambos métodos al iniciarlos con la estimación inicial en algunos de los extremos de los intervalos utilizados con el método de bisección.

2. Trabajo práctico 04: Autovalores y autovectores.

2.1. Autovalores y autovectores

Considere la matriz

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$$

1

- a) Encuentre los autovalores de A.
- b) Determine los autovectores asociados.

2.2. Método de las potencias

Utilice el método de las potencias para hallar el autovalor y el autovector dominantes del problema 2.1.

2.3. Método QR

Utilice el método QR para obtener los autovalores de la matriz \boldsymbol{A} del problema 2.1.