Section I:

AMENDMENT UNDER 37 CFR §1.121 to the CLAIMS

Claim 1 (currently amended):

A method of producing a two-dimensional sensor array for imaging, saidmethod comprising the steps of:

determining a plurality of sensor positions, each position having a spacing in a first axis from a datum point according to a first non-uniform <u>predictable deterministic</u> distribution schema, and each position having a spacing in a second axis from said datum point according to a second <u>predictable deterministic</u> non-uniform distribution schema;

providing a two-dimensional array of sensors, each sensor being positioned on said array according to the determined positions in said first and second axes; and

providing a means for sampling said sensors such that a two-dimensional imaging sensor array having non-uniform sensor distribution is realized.

Claim 2 (original):

The method as set forth in Claim 1 wherein said first schema comprises a pseudo-random schema.

Claim 3 (original):

The method as set forth in Claim 1 wherein said first schema comprises a nonlinear polynomial schema.

Claim 4 (original):

The method as set forth in Claim 1 further comprising the step of assigning one or more reference identifiers to said first and second non-uniform distribution schema.

Claim 5 (original):

The method as set forth in Claim 1 wherein said second schema comprises a pseudo-random schema.

Claim 6 (original):

The method as set forth in Claim 1 wherein said second schema comprises a nonlinear polynomial schema.

Claim 7 (currently amended):

The method as set forth in Claim 1 further comprising the steps of:

creating a dithered set of data samples by sampling said <u>non-uniformly spaced</u> sensors, <u>said dithered set of data samples representing an image</u>; and

performing interpolation to synthesize a set of data samples representing uniformly spaced data samples from said dithered set of data samples, said uniformly spaced data samples representing said image according to uniformly distributed sensors.

Claim 8 (original):

The method as set forth in Claim 7 wherein said step of performing interpolation to synthesize a set of data samples representing uniformly spaced data samples comprises performing linear interpolation.

Claim 9 (original):

A computer readable medium encoded with software for creating a synthesized uniformly-spaced data set from a dithered data set in an imaging system, said software when executed by a processor causing the processor to perform performing the steps of:

receiving a dithered set of data samples, said dithered set of data samples
representing an image sampled by a plurality of sensors, wherein said sensors are
positioned positions with a spacing in a first axis from a datum point according to a first
non-uniform predictable deterministic distribution schema, and each sensor having a
position spacing in a second axis from said datum point according to a second predictable
deterministic non-uniform distribution schema; and

performing interpolation to synthesize a set of data samples representing uniformly spaced data samples from said dithered set of data samples, said uniformly spaced data samples representing said image according to uniformly distributed sensors.

Claim 10 (original):

The computer readable medium as set forth in Claim 9 wherein said software for performing interpolation comprises software for performing linear interpolation.

Claim 11 (original):

The computer readable medium as set forth in Claim 9 further comprising software for performing the step of receiving a reference identifier associated with distribution schema of said dithered data set, and wherein said software for performing interpolation comprises software for performing interpolation based upon said distribution schema.

Claim 12 (currently amended):

A digital imaging system comprising:

a sensor array means, said sensor array having a set of sensors arranged in first axis in a non-uniform <u>predictable deterministic</u> manner according to a first schema and in a second axis in a non-uniform <u>predictable deterministic</u> manner according to a second schema;

- a sampling means for sampling said sensors; and
- a dithered data set creation means for storing data samples from said sampling means.

Claim 13 (original):

The digital imaging system as set forth in Claim 12 wherein said sensors of said sensor array means are arranged in said first axis according to a pseudo-random schema.

Claim 14 (original):

The digital imaging system as set forth in Claim 12 wherein said sensors of said sensor array means are arranged in said first axis according to a nonlinear polynomial schema.

Claim 15 (not entered).

Claim 16 (original):

The digital imaging system as set forth in Claim 12 wherein said sensors of said sensor array means are arranged in said second axis according to a pseudo-random schema.

Claim 17 (original):

The digital imaging system as set forth in Claim 12 wherein said sensors of said sensor array means are arranged in said second axis according to a polynomial schema.

Claim 18 (original):

The digital imaging system as set forth in Claim 12 further comprising an interpolation means for synthesizing a uniformly-spaced data sample set from said dithered data sample set.

Claim 19 (original):

The digital imaging system as set forth in Claim 18 wherein said interpolation means comprises a linear interpolation means.

Claim 20 (original):

The digital imaging system as set forth in Claim 18 further comprising a means for receiving an reference identifier associated with said first and second distribution schema and selecting an interpolation means according to said first and second distribution schema.