Test 2 2016 Calculator Free Section

Name:	Score:	/ 31
Italiic.		

Section 1 is worth 50% of your final test mark.

No calculators or notes are to be used.

Access to approved Sample Mathematics Specialist formulae sheet is permitted. Time limit = 35 minutes.

1. [5 marks: 2, 3]

The functions f(x) and g(x) are given by $f(x) = \sqrt{2x+4}$ and $g(x) = \frac{1}{2}x^2 - 4$.

a) Determine and simplify f(g(x)).

$$fg(x) = \int 2(1x^2 - 4) + 4$$

$$= \int x^2 + 2$$

b) State the largest possible domain for g(x) so that $f \circ g(x)$ is a function, and the range of $f \circ g(x)$.

$$\begin{array}{c}
\mathbb{R} \\
\Rightarrow \frac{1}{2}x^2 - 4 \Rightarrow -2 \\
& \frac{1}{2}x^2 - 4 \Rightarrow -2
\end{array}$$

$$\begin{array}{c}
\frac{1}{2}x^2 - 4 \Rightarrow -2 \\
& \frac{1}{2}x^2 \Rightarrow 2
\end{array}$$

$$\begin{array}{c}
x^2 \Rightarrow 4 \\
x & = -2 \\
x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2 \\
x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

$$\begin{array}{c}
x & = -2, & x & = 2
\end{array}$$

2. [3 marks: 2, 1] The graph of y = f(x) is shown.

- a) Draw the graph of y = f(|x|) on the same axes.
- b) Briefly explain how to obtain the graph of y = |f(x)| from y = f(x).

Reflect any values of f(x) < C about the x axis.

3. [1, 2, 2, 4 = 9 marks]

Given $f(x) = (x-1)^2 - 5$ and $g(x) = \sqrt{1+x}$, determine:

a)
$$f(0) = -4$$

b)
$$fg(3) = g(3) = 2$$

 $f(2) = -4$
 $f(3) = -4$

c) Explain why fg(x) is a function for the natural domain of g(x) whereas gf(x) is not a function for the natural domain of f(x).

 $\frac{2}{3}\sqrt{1+x} \xrightarrow{20} \frac{\mathbb{R}_{3}(x-1)^{2}-5}{\mathbb{R}_{3}(x-1)^{2}-5}$ The range of g(x) is a subset of the domain of f(x) for the notion domain of g(x). is fg(x) is a function. If f(x) is not a $\mathbb{R}_{3}(x-1)^{2}-5 \xrightarrow{2-5} \frac{2}{3}\sqrt{1+x}$ The range of f(x) is not a $\mathbb{R}_{3}(x-1)^{2}-5 \xrightarrow{2-5} \frac{2}{3}\sqrt{1+x}$ The range of f(x) is not a

subset of the domain of g(x) for the natural domain of F(x). gF(x) is not a function.

d) Find the largest possible domain for f(x) so that the inverse of f(x) is a function. Using this domain for f(x), state the equation of $f^{-1}(x)$ and state the domain and range of $f^{-1}(x)$.

 $\begin{cases} x \in \mathbb{R} : x = 1 \\ x = (y - 1)^2 - 5 \end{cases}$

JX+5 +1=4

Domain & XER: X = -53

$$f'(x) = -\sqrt{x+5} + 1$$

 $\begin{cases} 5cere: x > -53 \end{cases}$
 $\begin{cases} yere: y = 13 \end{cases}$

4. [2, 3, 1 = 6 marks]

a) Sketch the function $f(x) = 2 - \sqrt{x+1}$ on the axes below

b) Sketch the function $\frac{1}{f(x)}$ on the axes below

Use your sketch to state the domain of $\frac{1}{f(x)}$

{x∈R: x >1, x +3}

5. [8 marks]

Sketch the following curve on the axes provided, showing any working out in the space provided. Label any important features such as intercepts, asymptotes, turning points, . behaviour of the function approaching asymptotes and behaviour of the function for very large and very small values of x.

$$y = \frac{3(x-2)}{x(x+6)}$$

$$x \rightarrow -6$$

$$x \rightarrow -6$$

$$y \rightarrow -8$$

Roots 0 = 3(x-2) x = 2 : (2,0) 4 intercept: No yintercept)

Vertical asymptoks: x=0, x=-6/

$$y = \frac{3x - 6}{x^2 + 6x}$$

as x = 1 0 y = 3x y-0/

$$\frac{dy}{dx} = \frac{(x^2 + 6x)(3) - (3x - 6)(2x + 6)}{(x^2 + 6x)^2}$$

$$\frac{dy}{dx} = \frac{3x^2 + 18x - 6x^2 - 6x + 36}{(x^2 + 6x)^2}$$

$$0 = -3x^{2} + 12x + 36$$

$$(x^{2} + 6x)^{2}$$

$$0 = x^2 - 4x - 12$$

$$x=6$$
 $x=-2$ V

$$y = \frac{12}{72}$$
 $y = \frac{-12}{-8}$

Name:	Score:	/ 28

Section 2 is worth 50% of your final test mark.

Calculators allowed and 1 page of A4 notes, writing on both sides. Access to approved Sample Mathematics Specialist formulae sheet Time limit = 25 minutes. is permitted.

[6 marks]

Use an algebraic method to solve: $|3x+3| \ge |x-2|$

$$2 < -1$$

$$-(3x+3) \ge -(x-2)$$

$$-3x-3 \ge -x+2$$

$$-5 \ge 2x$$

$$-\frac{5}{2} \ge x$$

$$\frac{5}{2} \ge x$$

$$\frac{5}{2} \ge x$$

$$\frac{5}{2} \ge x$$

$$3x+3 \ge -(x-2)$$

$$x \geqslant -\frac{5}{2}$$

$$x \leq -\frac{5}{2}$$
, $x \geq -\frac{1}{4}$.

- [2, 2, 2, 3 = 9 marks]
- Solve |7-3x| = c, giving your solution(s) in terms of c. 3)

$$\frac{7-3}{3} = 3$$

The graphs of f(x) = |x-3| and $g(x) = 7 - \left| \frac{x}{2} + \frac{5}{2} \right|$ are shown below. b)

Solve g(x) = f(4). (i)

(ii) Solve
$$|x-3| \ge 7 - \left|\frac{x}{2} + \frac{5}{2}\right|$$

 $x \le -3$, $x \ge 5$

Given that the solution to $|ax + b| = 7 - \left| \frac{x}{2} + \frac{5}{2} \right|$ is $-5 \le x$, determine all (iii) possible values for a and b.

$$(-5,7)$$
 $(9,0)$
 $y = -\frac{7}{14} \times + C$

$$0 = -\frac{1}{9} (9) + C$$

$$0 = -\frac{1}{2}(a) + c$$

$$y = -\frac{1}{2}x + \frac{q}{2}$$

$$|0 \times + b| = -\frac{1}{2} \times + \frac{9}{2}$$

$$a = \frac{1}{2}$$
, $b = \frac{9}{2}$

$$a = \frac{1}{2}, b = -\frac{9}{2}$$

§ [6 marks]

Rewrite |2x - 5| + |x + 3| = y as a piecewise function.

$$x = -3$$

$$-(2x-5)-(x+3)=y$$

$$-2x+5-x-3=y$$

$$-3x+2=y$$

$$-3 \le x \le \frac{5}{2}$$

$$-(2x-5)+(x+3)=y$$

$$-2x+5+x+3=y$$

$$-x+8=y$$

$$x > \frac{5}{2}$$

$$2x - 5 + x + 3 = 4$$

$$3x - 2 = 4$$

$$y = \begin{cases} -3x + 2, & x < -3 \\ -x + 8, & -3 \le x \le \frac{5}{2} \\ 3x - 2, & x > \frac{5}{2} \end{cases}$$

9 [3, 2, 2 = 7 marks]

a) For each graph below that shows a function, on the same axes sketch the inverse function. For those that do not show a function, clearly indicate which graph(s) and briefly give your reasoning in the space below the graph.

b)
$$f(x) = \sqrt{x} - 3$$
 and $g(x) = (x + 2)^2$

i) Obtain an expression for fg(x)

$$f_{g}(x) = \sqrt{(x+x)^{2}} - 3 /$$

 $f_{g}(x) = |x+x| - 3 /$

ii) Draw fg(x) on the axes below

