Nodal Domains and Diffusion Processes

Jacob Denson

University of Wisconsin Madison

October 4, 2022

- Georgiev, Mukherjee, Nodal Geometry, Heat Diffusion, and Brownian Motion, Anal. PDE. 12 (2017), 133-148.
- Steinerberger, Lower Bounds on Nodal Sets of Eigenfunctions via the Heat Flow, Comm. Partial Differential Equations. 39 (2014), 2240-2261.
- Øksendal, Stochastic Differential Equations, Springer, 2003.
- Chung, Green, Brown, and Probability and Brownian Motion, World Scientific Publishing Company, 2002.

Nodal Domains

Goal

Study 'asymptotic geometry' of D_{λ} as $\lambda \to \infty$.

Main Result

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

ullet Consider the radius $1/\lambda$ tubular neighborhood

$$T_{1/\lambda}\Sigma = \bigcup_{x \in \Sigma} \{ v \in (T_x \Sigma)^{\perp} : |v|_g \le 1/\lambda \}.$$

The submanifold Σ is 'good' if the geodesic map $T_{1/\lambda}\Sigma \to \mathcal{N}(\Sigma,1/\lambda)$ is an embedding.

- Local condition: All principal curvatures of Σ are $\lesssim \lambda$.
- But no cheating globally!

Main Result

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

- Can replace Σ with a finite union of $\Omega(1/\lambda)$ separated 'good' submanifolds. Or allow finite unions with 'transverse enough' intersections.
- There is $C_M > 0$ such that $D_{\lambda} \subset N(Z_{\lambda}, C_M/\lambda)$.
- Heuristic: Elliptic methods work for $O(1/\lambda)$ localized results. We study stochastic diffusions, which provide cool tools to analyze eigenfunctions!

Uncertainty Principle on Manifolds?

- What would an analogous result look like on \mathbb{R}^d ?
- **Theorem**: Let D_{λ} be a nodal domain in \mathbb{R}^d . Then there is $c_d > 0$ such that if Σ is a finite union of $O(1/\lambda)$ -separated k dimensional planes, then D_{λ} is not contained in $N(\Sigma, c_d/\lambda)$.
- Stronger Result: D_{λ} contains a ball of radius $O(1/\lambda)$.
- Version on Manifolds: Paper proves for any $\varepsilon > 0$, there is $r_0 > 0$ such that if $x_0 \in D_\lambda$ maximizes $|e_\lambda(x_0)|$ in D_λ , then D_λ contains $1 \varepsilon_0$ percent of $B(x_0, r_0\lambda^{-1/2})$.

Continuous Stochastic Processes

- Here are three ways to define continuous stochastic processes:
 - As a Borel-measurable function

$$X:\Omega\to C([0,\infty),M).$$

As a family of correlated random variables

$${X_t:\Omega\to M:t\in[0,\infty)}.$$

 As a law predicting future behaviour from present behaviour, i.e. by defining quantities such as

$$\mathbb{E}^{x}(f(X)) = \mathbb{E}[f(X)|X_0 = x]$$

$$\mathbb{P}^{x}(P(X)) = \mathbb{P}(P(X)|X_{0} = x).$$

Brownian Motion on \mathbb{R}^d

- A stochastic process $\{B_t\}$ such that:
 - For any I = [t, s], given $B_t = x$, the random variable $d_l B = B_s B_t$ is normally distributed with mean x and variance s t.
 - For any family of disjoint intervals $I_1, \ldots, I_N \subset [0, \infty)$, with $I_k = [t_k, s_k]$, the random variables $d_{I_k}B$ are independent from one another.

Itô Diffusions

- Brownian Motion where diffusion is not radially symmetric.
- For each $x \in \mathbb{R}^d$, let A(x) be a $d \times d$ positive semidefinite matrix. Then we have an Itô diffusion $\{X_t\}$ given in law by the 'Stochastic differential equation' dX = A(X)dB.
- For practical purposes, we have

$$X_{t+\delta} - X_t \approx A(X_t)[B_{t+\delta} - B_t]$$

where the difference between the LHS and RHS is a random variable with mean $o(\delta)$, and variance $O(\delta)$.

• Diffuses faster in directions where A has large eigenvalues.

Itô Diffusions

- Can define Itô diffusions on compact Riemannian manifolds M given a section A : M → Hom(TM) of positive definite matrices.
- We can define Brownian motion on a Riemannian manifold such that Brownian motion locally diffuses along geodesics at unit speed.

Connection to Elliptic Operators

• For any diffusion X, we can associate a semielliptic operator L, the *generator* of X, such that for $f \in C^{\infty}(M)$,

$$Lf(x) = \partial_t \{ \mathbb{E}^x [f(X_t)] \} |_{t=0} = \lim_{t \to 0^+} \frac{\mathbb{E}^x [f(X_t)] - f(x)}{t}.$$

- Second order because paths of X are 'half differentiable'.
- For Brownian motion (on \mathbb{R}^d or a manifold M), $L = \Delta/2$.
- 'Morally' apply the Fundamental Theorem of Calculus to get Dynkin's Formula

$$\mathbb{E}^{\times}[f(X_T)] = f(x) + \mathbb{E}^{\times}\left[\int_0^T (Lf)(X_s) ds\right].$$

Application: Escape Times

- In Dynkin's formula, T can be a 'stopping time', i.e. any $[0,\infty)$ valued function of X which doesn't 'predict the future', i.e. if T stops at a time t, it must only stop because of the properties of X on [0,T], and not behaviour on (T,∞) .
- ullet Given an open, bounded set U, let

$$T_U = \inf\{t : X_t \not\in U\}$$

be the *escape time* of *U*.

- If B is Brownian motion on \mathbb{R}^d , and U is the escape time of a ball of radius $R^{1/2}$ centered at x, $\mathbb{E}^x[T_U] = R/n$.
- If B is Brownian motion on M, escape time will be slower if volume expands (negative curvature) and faster if volume contracts (positive curvature). But irrelevant for the values R we care about.

Feynman Kac Formula

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:
 - (1) If $\partial_t u = Lu$ on M with $u_0 = f$, then

$$u(x,t) = \mathbb{E}^{x}[f(X_t)].$$

• (2) $\partial_t u = Lu$ on $D \subset M$ with $u_0 = f$ and u = 0 on ∂M ,

$$u(x,t) = \mathbb{E}^{x}[f(X_t)\chi_t],$$

where $\chi_t = \mathbb{I}(T_D > t)$ kills paths absorbed by ∂D .

• (3) If Lu = 0 on $D \subset M$ with $u = \phi$ on ∂D , then

$$u(x) = \mathbb{E}^{x} \left[\phi(X_{T_D}) \right].$$

• Can also solve $\partial_t u = Lu$ with $\partial u/\partial \eta = 0$ on ∂D using 'reflection on Brownian motion', but a little more technical with singularities.

The Proof

 Theorem: There is c_M > 0 such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

- Assume $e_{\lambda} \geq 0$ on D_{λ} . Let $x^* = \operatorname{argmax}\{e_{\lambda}(x)\}$.
- Let p(x, t) and u(x, t) solve $\partial_t = \Delta$ with initial / boundary conditions:
 - $p_0 = 0$ and p = 1 on ∂D_{λ} .
 - $u_0 = e_{\lambda}$, and u = 0 on ∂D_{λ} .

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

• Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- Two Key Facts Ensuring Convergence:

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \leq 1$ if A is partially normalized.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \le 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_j (\gamma_{ij} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \le 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_j (\gamma_{ij} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.
- Thus $Per(A_i)$ is bounded, monotonic, converges to $P \leq 1$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \le 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_i (\gamma_{ij} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.
- Thus $Per(A_i)$ is bounded, monotonic, converges to $P \leq 1$.
- If $Per(A_i) \ge P \varepsilon$ for $\varepsilon \ll 1$, then

$$P > \operatorname{Per}(A_{i+1}) > (1 + C \cdot \Delta_i) \cdot \operatorname{Per}(A_i) > (1 + C \cdot \Delta_i)(P - \varepsilon).$$

Thus $\Delta_i \lesssim \varepsilon$. Taking $\varepsilon \to 0$ shows $\Delta_i \to 0$.

• Proof that $Per(A_i) \leq 1$:

- Proof that $Per(A_i) \leq 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.

- Proof that $Per(A_i) \leq 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- Proof that $\operatorname{Per}(A_{i+1}) \geq (1 + C\Delta_i) \cdot \operatorname{Per}(A_i)$:

- Proof that $Per(A_i) \leq 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- Proof that $\operatorname{Per}(A_{i+1}) \geq (1 + C\Delta_i) \cdot \operatorname{Per}(A_i)$:
 - Really just more robust form of AGM inequality.

- Proof that $Per(A_i) \leq 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \le 1$.
- Proof that $\operatorname{Per}(A_{i+1}) \geq (1 + C\Delta_i) \cdot \operatorname{Per}(A_i)$:
 - Really just more robust form of AGM inequality.
 - If γ_{ij} are the row sums, then because the column sums are all one,

$$\frac{1}{n}\sum_{i}\gamma_{ij}=1.$$

- Proof that $Per(A_i) \leq 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- Proof that $\operatorname{Per}(A_{i+1}) \geq (1 + C\Delta_i) \cdot \operatorname{Per}(A_i)$:
 - Really just more robust form of AGM inequality.
 - If γ_{ij} are the row sums, then because the column sums are all one,

$$\frac{1}{n}\sum_{j}\gamma_{ij}=1.$$

• AGM implies $\gamma_{i1} \dots \gamma_{in} \ge 1$, and monotonicity follows from

$$\operatorname{Per}(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \operatorname{Per}(A_i).$$

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i \cdot B_i^* A_i B_i)}}.$$

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i \cdot B_i^* A_i B_i)}}.$$

• Goal: Rescale our inputs so that

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \mathsf{det}(A_i)^{p_i}}{\mathsf{det}(\sum p_i \cdot B_i^* A_i B_i)}}.$$

- Goal: Rescale our inputs so that
 - (Isotropy) $\sum p_i B_i^* B_i = I$.

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \mathsf{det}(A_i)^{p_i}}{\mathsf{det}(\sum p_i \cdot B_i^* A_i B_i)}}.$$

- Goal: Rescale our inputs so that
 - (Isotropy) $\sum p_i B_i^* B_i = I$.
 - (Projection) $B_i B_i^* = I$ for each i.

• Sinkhorn: Alternately apply the following two procedures:

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.
 - (Projection Normalization)

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.
 - (Projection Normalization)
 - Let $M_i = B_i B_i^*$.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.
 - (Projection Normalization)
 - Let $M_i = B_i B_i^*$.
 - Replace B_i with $B'_i = M_i^{-1/2}B_i$.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.
 - (Projection Normalization)
 - Let $M_i = B_i B_i^*$.
 - Replace B_i with $B'_i = M_i^{-1/2}B_i$.
 - Then $(B'_i)^*B'_i = I$ for each i.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - Let $M = \sum_i p_i B_i^* B_i$.
 - Replace B_i with $B'_i = B_i M^{-1/2}$.
 - Then $\sum p_i(B_i')^*B_i'=1$, i.e. isotropy holds.
 - (Projection Normalization)
 - Let $M_i = B_i B_i^*$.
 - Replace B_i with $B'_i = M_i^{-1/2}B_i$.
 - Then $(B_i')^*B_i' = I$ for each i.
 - We obtain a sequence $B o B_1 o B_2 o \dots$

• Two Key Facts Ensuring Convergence:

- Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.

Two Key Facts Ensuring Convergence:

- (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
- (2) For some $r \leq Poly(Bits(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

- Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
 - (2) For some $r \leq \text{Poly}(\text{Bits}(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

• Thus convergence occurs as with Sinkhorn iteration provided that $BL(B, p) < \infty$.

- Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
 - (2) For some $r \leq \text{Poly}(\text{Bits}(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

- Thus convergence occurs as with Sinkhorn iteration provided that $BL(B, p) < \infty$.
- (1) and (2) follow from techniques in the study of positive operators.

• A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

• A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

• $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.

• A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

- $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.
- Can reduce the study of non-negative matrices to positive operators: For a non-negative matrix S, T(A) is the diagonal matrix whose entries are precisely the vector Sa, where a is the vector formed from the diagonal entries of A.

• A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

- $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.
- Can reduce the study of non-negative matrices to positive operators: For a non-negative matrix S, T(A) is the diagonal matrix whose entries are precisely the vector Sa, where a is the vector formed from the diagonal entries of A.
- Given T, we have $T^*(A) = \sum p_i B_i^* A B_i$.

Further Connections

• For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all B_i are square matrices).

Further Connections

- For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all B_i are square matrices).
- BL $(B, p) < \infty$ can only hold if $\sum p_i = 1$.

Further Connections

- For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all B_i are square matrices).
- BL $(B, p) < \infty$ can only hold if $\sum p_i = 1$.
- Consider optimizing the quantity

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

analogous to

$$\mathsf{BL}(B,p) = \sup_{A_1,\dots,A_m \succ 0} \sqrt{\frac{\prod_i \mathsf{det}(A_i)^{p_i}}{\mathsf{det}(\sum p_i \cdot B_i^* A_i B_i)}},$$

if all A_i are equal.

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

• (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$Cap(T) = \inf_{A \succ 0} \frac{\det(TA)}{\det(A)}.$$

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

• (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$\mathsf{Cap}(T) = \inf_{A \succ 0} \frac{\det(TA)}{\det(A)}.$$

• For any Brascamp-Lieb data (B, p), there exists a positive $T: M_n \to M_n$ and k such that $Cap(T) = 1/BL(B, p)^{2k}$.

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

• (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$\mathsf{Cap}(T) = \inf_{A \succ 0} \frac{\det(TA)}{\det(A)}.$$

- For any Brascamp-Lieb data (B, p), there exists a positive $T: M_n \to M_n$ and k such that $Cap(T) = 1/BL(B, p)^{2k}$.
- Positive operators are well studied in the quantum information theory literature, so reduction of BL to this theory is useful.

• (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.
 - $\sum p_i B_i^* B_i = I$ holds iff T(I) = I.

- (Isotropy) Let T(A) = ∑p_iB_i*AB_i.
 ∑p_iB_i*B_i = I holds iff T(I) = I.
- (Projection) Let $T(A) = B_i^* A B_i$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.
 - $\sum p_i B_i^* B_i = I$ holds iff T(I) = I.
- (Projection) Let $T(A) = B_i^* A B_i$.
 - $B_i B_i^* = I$ if and only if $T^*(I) = I$.

- (Isotropy) Let $T(A) = \sum_{i} p_i B_i^* A B_i$.
 - $\sum p_i B_i^* B_i = I$ holds iff T(I) = I.
- (Projection) Let $T(A) = B_i^* A B_i$.
 - $B_i B_i^* = I$ if and only if $T^*(I) = I$.
- If (B, p) is a Brascamp-Lieb datum with associated operator $T: M_n \to M_n$, then (B, p) is geometric if and only if T is doubly stochastic, i.e. T(I) = I and $T^*(I) = I$.

• If T is doubly stochastic, Cap(T) = 1.

- If T is doubly stochastic, Cap(T) = 1.
- We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then
$$\operatorname{\mathsf{Cap}}(T_{M_1,M_2}) = \det(M_1)^2 \det(M_2)^2 \cdot \operatorname{\mathsf{Cap}}(T)$$
.

- If T is doubly stochastic, Cap(T) = 1.
- We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then $\operatorname{Cap}(T_{M_1,M_2}) = \det(M_1)^2 \det(M_2)^2 \cdot \operatorname{Cap}(T)$.

Sinkhorn says to iterate

$$T \mapsto T_{I,T(I)^{-1/2}}$$
 and $T \mapsto T_{T^*(I)^{-1/2},I}$.

- If T is doubly stochastic, Cap(T) = 1.
- We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then $\operatorname{\mathsf{Cap}}(T_{M_1,M_2}) = \det(M_1)^2 \det(M_2)^2 \cdot \operatorname{\mathsf{Cap}}(T)$.

Sinkhorn says to iterate

$$T\mapsto T_{I,T(I)^{-1/2}}$$
 and $T\mapsto T_{T^*(I)^{-1/2},I}$.

• If $\operatorname{Cap}(T) > 0$, iteration yields a rescaling arbirarily close to a doubly stochastic operator, in $\operatorname{Poly}(\operatorname{Bits}(B), 1/\varepsilon)$ time.

• To guarantee efficiency, we need to show that for partially normalized T, $Cap(T) \ge 1/e^{Poly(Bits(B))}$.

- To guarantee efficiency, we need to show that for partially normalized T, $Cap(T) \ge 1/e^{Poly(Bits(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.

- To guarantee efficiency, we need to show that for partially normalized T, Cap(T) $\geq 1/e^{\text{Poly}(\text{Bits}(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\mathsf{det}(\sum C_i \otimes B_i) \neq 0 \quad \mathsf{and} \quad \mathsf{Bits}(C) \leq \mathsf{Poly}(d,\mathsf{Bits}(B)).$$

- To guarantee efficiency, we need to show that for partially normalized T, $Cap(T) \ge 1/e^{Poly(Bits(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B))$.

• 'Fairly simple' to show that if $S(A) = \sum C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then $Cap(S \otimes T) \leq Cap(S)^n Cap(T)^d$.

Upper Bounds For Capacity

- To guarantee efficiency, we need to show that for partially normalized T, Cap(T) $\geq 1/e^{\text{Poly}(\text{Bits}(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B))$.

- 'Fairly simple' to show that if $S(A) = \sum C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then $Cap(S \otimes T) \leq Cap(S)^n Cap(T)^d$.
- Since $Cap(L) \leq 1$, it follows that

$$Cap(T) \ge Cap(S \otimes T)^{1/d} \gtrsim (Poly(d, Bits(B))n)^{-O(n)}$$
.

Upper Bounds For Capacity

- To guarantee efficiency, we need to show that for partially normalized T, Cap(T) $> 1/e^{\text{Poly}(\text{Bits}(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \geq (Bits(B) \cdot n)^{-O(n)}$.
- If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B))$.

• 'Fairly simple' to show that if $S(A) = \sum_{i} C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then $Cap(S \otimes T) < Cap(S)^n Cap(T)^d$.

• Since $Cap(L) \leq 1$, it follows that

$$Cap(T) \ge Cap(S \otimes T)^{1/d} \gtrsim (Poly(d, Bits(B))n)^{-O(n)}$$
.

• Invariant theory shows we can choose $d \le n^4[(n+1)!]^2$.

• We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

• We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

• Invariant Theory: Find the ring R of all 'invariant polynomials' f(B) such that

$$f((M,N)\circ B)=f(B)$$

for all $(M, N) \in SL_n \times SL_n$ and all tuples B.

• We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

• Invariant Theory: Find the ring R of all 'invariant polynomials' f(B) such that

$$f((M,N)\circ B)=f(B)$$

for all $(M, N) \in SL_n \times SL_n$ and all tuples B.

• Note: $f_C(B) = \det(\sum C_i \otimes B_i)$ is an invariant homogeneous polynomial under this action for any C_i .

• (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \leq d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_C(B) = \sum c_{\alpha} f_{C(1)}(B)^{\alpha_1} \dots f_{C(n)}(B)^{\alpha_n}.$$

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \leq n^4 [(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_{\mathcal{C}}(B) = \sum c_{\alpha} f_{\mathcal{C}(1)}(B)^{\alpha_1} \dots f_{\mathcal{C}(n)}(B)^{\alpha_n}.$$

• Since $f_C(B) \neq 0$, there must exist i with $f_{C(i)}(B) \neq 0$.

- (Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \leq d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \leq n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_C(B) = \sum c_{\alpha} f_{C(1)}(B)^{\alpha_1} \dots f_{C(n)}(B)^{\alpha_n}.$$

• Since $f_C(B) \neq 0$, there must exist i with $f_{C(i)}(B) \neq 0$.

$$\int_{\mathbb{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbb{R}^{n_i})}^{p_i}.$$

$$\int_{\mathbb{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} \ dx \le \mathsf{BL}(B,p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbb{R}^{n_i})}^{p_i}.$$

• (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbb{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

$$\int_{\mathbb{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbb{R}^{n_i})}^{p_i}.$$

• (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbb{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

• An operator $T: M_n \to M_n$ is rank non-decreasing if for any $A \succeq 0$, $\text{Rank}(TA) \geq \text{Rank}(A)$.

$$\int_{\mathbb{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbb{R}^{n_i})}^{p_i}.$$

• (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbb{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

- An operator $T: M_n \to M_n$ is rank non-decreasing if for any $A \succeq 0$, $\text{Rank}(TA) \geq \text{Rank}(A)$.
- (Gurvits, 2004) $T: M_n \to M_n$ is rank non-decreasing if and only if Cap(T) > 0.

(Gurvits, 2004) $T: M_n \to M_n$ is rank non-decreasing if and only if Cap(T) > 0.

• Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \ldots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \dots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- Define $T_U = D_U \circ T$.

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \dots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- Define $T_U = D_U \circ T$.
- Result follows from the following two facts:

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \dots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \dots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.
 - (2) $Cap(T) = inf_U Cap(T_U)$.

- Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- Given an orthonormal basis $U = \{u_1, \dots, u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.
 - (2) $Cap(T) = inf_U Cap(T_U)$.
- To prove (1) and (2), use a simple trick: Given $A \succeq 0$, find U diagonalizing T(A). Then $T(A) = T_U(A)$.

Thanks For Listening!