Electric Circuits Variables and Components

Electric Circuit or Network

- Network Interconnection of two or more circuit elements
- Electric Circuit if the network contains at least one closed path, it is also an electric circuit

Units - SI System (International System of Units)

Base units:

Base Quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

Derived units:

- work or energy: joule (J) → 1 J = 1 kg m² s⁻²
- power (rate of doing work): watt (W) \rightarrow 1 W = 1 J/s

SI: Units and Prefixes

Any measurement can be expressed in terms of a unit, or a unit with a "prefix" modifier.

FACTOR	NAME	SYMBOL
10-9	nano	n
10-6	micro	μ
10-3	milli	m
10 ³	kilo	k
106	mega	M

Example: $12.3 \text{ mW} = 0.0123 \text{ W} = 1.23 \times 10^{-2} \text{ W}$

Electric Circuit Variables

- Charge
- Current
- Voltage
- Power and Energy

Circuit Variable - Charge

- Law of conservation of charge Charge cannot be created or destroyed, only transferred
- Matter is made of atoms, each atom consist of electrons (negative charge), protons (positive charge), and neutrons
- Charge symbol is Q or q
- In SI system, the fundamental unit of charge is **Coulomb** (**C**). It is defined in terms of Amperes
- Counts the number of electrons (or positive charges) present
- Charge on a single electron is -1.602×10^{-19} C
- One Coulomb is large unit for charge, 6.24×10^{18} electrons
- Charge is always multiple of electron charge

Circuit Variables - Current and Charge

Coulomb is defined in terms of **Ampere** by counting the total charge that passes through an arbitrary cross section of a wire during an interval of one second

Charge in Motion - **Current** is the rate of charge flow:

1 ampere = 1 coulomb/second (or 1 A = 1 C/s)

Circuit Variables - Current and Charge

Current (designated by I or i) is the rate of flow of charge in a specified direction $i = \frac{dq}{dt}$

Current must be designated with both a direction and a magnitude

Unit – Ampere (A)

These two currents are the same:

$$Q = \int_{t_0}^{t} i \, dt$$

Circuit Variables - Current

Circuit Variables - Current

PRACTICE

2.4 In the wire of Fig. 2.7, electrons are moving *left* to *right* to create a current of 1 mA. Determine I_1 and I_2 .

$$\begin{array}{c} \longrightarrow I_1 \\ \hline I_2 \longleftarrow \end{array}$$

FIGURE 2.7

Circuit Variable and Component - Voltage

■ **FIGURE 2.8** A general two-terminal circuit element.

DC current enters terminal A, through the element and leaves out of terminal B

Pushing charge through this element requires energy – voltage or potential difference

Voltage across the two terminals is a measure of the work required to move charge through the element

Circuit Variable - Voltage

When 1 J of work is required to move 1 C of charge from A to B, there is a voltage of 1 volt between A and B.

Unit: volt and 1 V = 1 J/C

Voltage (V or *v*) across an element requires both a magnitude and a polarity.

Example: (a)=(b), (c)=(d)

Circuit Variable - Voltage

Circuit Variable - Power: p = vi

The power required to push a current i (C/s) into a voltage v (J/C) is p = vi (J/s = W). Unit – Watt (W)

Positive power – Power is absorbed by the element

Negative power – Power is supplied by the element

Passive sign convention is satisfied if the direction of current is selected such that the current enters through positive terminal of the voltage and p = +vi and if the current enters through the negative voltage terminal p = -vi

Circuit Variable - Power

- Law of conservation of energy algebraic sum of power in a circuit, at any instant of time, must be ZERO
- The sum of all power supplied must be absorbed by the other element

Example: Power Absorbed

How much power is absorbed by the three elements above?

$$P_a = +6 \text{ W}, P_b = +6 \text{ W}, P_c = -20 \text{ W}.$$

(Note: (c) is actually supplying power)

Circuit Variable - Energy (W)

Power is rate of work or energy $p = \frac{dw}{dt}$

Energy is integral of power

$$w(t) = \int_{t_0}^t p \ dt = \int_{t_0}^t vi \ dt$$

Energy determines total electricity need or how long your battery will last

Energy Example: Battery

Energy in units of joules (J) or watt-hours (Wh)

1 Wh = 3600 J

Battery capacity often given in amp-hours (Ah) $W = \text{(battery voltage)} \times \text{(capacity in Ah)}$

A 1.5 V battery with capacity of 2 Ah:

- Has total energy of 3 Wh = 10.8 kJ
- Can supply a circuit drawing 200 mA for 10 h

Circuit Components or Elements

A circuit element usually has two terminals (sometimes three or more).

The relationship between the voltage *v* across the terminals and the current *i* through the device defines the circuit element model.

Circuit Element - Voltage Sources

Independent Voltage Source:

An ideal voltage source is a circuit element that will maintain the specified voltage v_s across its terminals.

The current will be determined by other circuit elements.

Circuit Element - Current Sources

Independent Current Source

An ideal current source is a circuit element that maintains the specified current flow i_s through its terminals.

The voltage is determined by other circuit elements.

Dependent Sources

Dependent current sources (a) and (b) maintain a *current* specified by another circuit variable.

Dependent voltage sources (c) and (d) maintain a *voltage* specified by another circuit variable.

Example - Power

PRACTICE

2.9 Find the power absorbed by each element in the circuit in Fig. 2.20.

■ FIGURE 2.20

Resistance

Resistance (R) – is a property of a material to resist the flow of electric current

Resistance of an object is a function of its length, *I*, cross sectional area *A* and the material's resistivity

$$R = \rho \frac{l}{A}$$

The resistance is measured in Ohms (Ω)

Resistivity is in ohm-m

Good conductors, copper and aluminum, has low resistivities

Insulators, mica and paper, has high resistivities

Circuit Element - Resistor

Circuit element used to model the current resisting behaviour of a material is a RESISTOR.

Ohm's Law

Power Absorption

Resistors absorb power: since v = iR

$$p = vi = v^2/R = i^2R$$

Positive power means the device is absorbing energy.

Power is always positive for a resistor!

Example: Resistor Power

A 560 Ω resistor is connected to a circuit which causes a current of 42.4 mA to flow through it.

Calculate the voltage across the resistor and the power it is dissipating.

Wire Gauge and Resistivity

The resistance of a wire is determined by the resistivity of the conductor as well as the geometry:

$$R = \rho l/A$$

[In most cases, the resistance of wires can be assumed to be 0 ohms.]

Conductance

We sometimes prefer to work with *the* reciprocal of resistance (1/R), which is called conductance (symbol G, unit siemens (S)).

A resistor R has conductance G = 1/R.

Ohm's law (i-v equation) can be written as

$$i = Gv$$

Open and Short Circuits

An open circuit between A and B means I = 0.

Voltage across an open circuit: any value.

An open circuit is equivalent to $R = \infty \Omega$.

A short circuit between A and B means v = 0.

Current through a short circuit: any value.

A short circuit is equivalent to $R = 0 \Omega$.