Nome:

_____ Turma: ____ Valor: 4 • Nota: ____

Estudo dos Gases

1. O volume ocupado por certa massa de um gás ideal varia com a temperatura absoluta de acordo com a tabela:

$V~(\mathrm{m}^3)$	1,0	1,5	2,5	3,5	6,5
T(K)	160	240	400	560	1 040

- (a) Que tipo de transformação o gás está sofrendo?
- (b) Construa um gráfico com os valores da tabela, colocando o volume (V) em ordenadas e a temperatura (T) em abscissas.
- 2. (1 Ponto) O gráfico representa uma transformação isotérmica de certa quantidade de gás ideal e três estados intermediários A, B e C dessa massa gasosa. Usando os dados apresentados, determine a pressão correspondente ao estado B e o volume correspondente ao estado C.

- 3. (1 Ponto) Calcule a variação de volume sofrida por um gás ideal que ocupa inicialmente o volume de $10~\ell$ a 127° C, quando sua temperatura se eleva isobaricamente para 327° C.
- 4. Um recipiente que resiste até a pressão de $3.0 \cdot 10^5 \text{ N/m}^2$ contém gás perfeito sob pressão $1.0 \cdot 10^5 \text{ N/m}^2$ e temperatura 27°C . Desprezando a dilatação térmica do recipiente, calcule a máxima temperatura que o gás pode atingir.
- 5. (1 Ponto) Sob pressão de 5 atm e à temperatura de 0°C, um gás ideal ocupa um volume de 45 ℓ . Determine sob que pressão o gás ocupará o volume de 30 ℓ , se for mantida constante a temperatura.
- 6. Um mol de certo gás ideal exerce a pressão de 1 atm a 0°C. Sendo a constante universal dos gases perfeitos $R=0,082\,\frac{{\rm atm}\cdot\ell}{{\rm mol}\cdot {\rm K}}$, determine o volume ocupado por esse gás.
- 7. Certa massa de um gás ideal ocupa o volume de 49,2 ℓ sob pressão de 3 atm e temperatura de 27°C. A constante universal dos gases perfeitos vale $R=0,082 \, {{\rm atm} \cdot \ell \over {\rm mol \cdot K}}$. Determine:
 - (a) o número n de mols do gás;

- (b) a massa do gás, sendo a massa molar M = 28 g/mol;
- (c) o volume de um mol (volume molar) desse gás nas condições de pressão e temperatura consideradas.
- 8. Certa massa de gás ideal exerce pressão de 3,0 atm quando confinado a um recipiente de volume 3,0 ℓ à temperatura de 27°C. Determine:
 - (a) a pressão que exercerá essa mesma massa quando colocada num recipiente de volume $3.5 \ \ell$ e à temperatura de 177°C ;
 - (b) o volume que deveria ter o recipiente para que a pressão dessa mesma massa gasosa fosse 2,0 atm à temperatura de -23°C.
- 9. Certa massa de gás ideal, sob pressão de 3 atm, ocupa o volume de 20ℓ à temperatura de 27° C. Determine:
 - (a) o volume ocupado pelo gás a 127°C, sob pressão de 6 atm;
 - (b) a pressão que o gás exerce a 27°C, quando ocupa o volume de 40 litros;
 - (c) em que temperatura o volume de 40 ℓ do gás exerce a pressão de 5 atm.
- 10. (1 Ponto) Um recipiente indilatável contém 6,0 mols de um gás perfeito à temperatura de 227°C. Um manômetro acoplado ao recipiente acusa certa pressão. Determine o número de mols do gás que deve escapar para que o manômetro não acuse variação de pressão quando o sistema for aquecido até a temperatura de 327°C.
- 11. Certa massa de metano, cuja massa molar é M=16 g/mol, ocupa o volume de 123 ℓ sob pressão de 2 atm e à temperatura de 327°C. Sendo $R=0,082 \frac{\text{atm} \cdot \ell}{\text{mol} \cdot \text{K}}$ a constante universal dos gases perfeitos e considerando o metano um gás ideal, determine:
 - (a) o número n de mols do gás;
 - (b) a massa do metano;
 - (c) o volume molar do metano nas condições consideradas.