日本国特許庁 JAPAN PATENT OFFICE

03.3.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 3月 3日

RECEIVED 15 APR 2004

出 願 番 号

Application Number:

特願2003-055421

WIPO PCT

[ST. 10/C]:

[JP2003-055421]

出 願 人 Applicant(s):

独立行政法人 科学技術振興機構

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月 1日

出証番号 出証特2004-3026809

特願2003-055421

ページ: 1/

【書類名】

特許願

【整理番号】

022987

【提出日】

平成15年 3月 3日

【あて先】

特許庁長官殿

【国際特許分類】

C12N

【発明者】

【住所又は居所】

茨城県つくば市並木2丁目208-301

【氏名】

神戸 敏明

【発明者】

【住所又は居所】

茨城県つくば市手子生浦山1108-2

【氏名】

茂野 ゆき枝

【特許出願人】

【識別番号】

396020800

【氏名又は名称】

科学技術振興事業団

【代理人】

【識別番号】

100089705

【住所又は居所】

東京都千代田区大手町二丁目2番1号 新大手町ビル2

06区 ユアサハラ法律特許事務所

【弁理士】

【氏名又は名称】 社本 一夫

【電話番号】

03-3270-6641

【選任した代理人】

【識別番号】

100076691

【弁理士】

【氏名又は名称】 増井 忠弐

【選任した代理人】

【識別番号】

100075270

【弁理士】

【氏名又は名称】 小林 泰

【選任した代理人】

【識別番号】

100080137

【弁理士】

【氏名又は名称】 千葉 昭男

【選任した代理人】

【識別番号】

100096013

【弁理士】

【氏名又は名称】 富田 博行

【選任した代理人】

【識別番号】

100092886

【弁理士】

【氏名又は名称】 村上 清

【手数料の表示】

【予納台帳番号】

051806

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【プルーフの要否】

【書類名】 明細書

【発明の名称】 新規ウレタン結合分解菌

【特許請求の範囲】

【請求項1】 ロドコッカス属に属し、ウレタン結合分解能を有する微生物、またはその変異株。

【請求項2】 ロドコッカス属に属する微生物がロドコッカス エクイである、請求項1記載の微生物。

【請求項3】 ロドコッカス属に属する微生物がロドコッカス エクイ T B-60株である、請求項1記載の微生物。

【請求項4】· 請求項1乃至3記載の微生物をウレタン化合物と接触させる工程を含む、ウレタン化合物の分解方法。

【請求項5】 ウレタン化合物がポリウレタンの製造原料となる化合物である、請求項4記載の分解方法。

【請求項6】 ウレタン化合物がポリウレタンである、請求項4記載の分解 方法。

【請求項7】 ポリウレタンの分解方法であって、

ポリウレタンと請求項1乃至3記載の微生物を接触させる工程、および ポリウレタンとポリウレタンのエステル結合分解能を有する微生物を接触させる 工程、

を含む、前記ポリウレタンの分解方法。

【請求項8】 ポリウレタンのエステル結合分解能を有する微生物が、ペニバチルスアミロリチカスTB-13株またはコマモナスアシドボランスTB-35株である、請求項7記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は、新規な微生物、および該微生物を用いる 生物学的処理法によるポリウレタンの分解方法に関する。

[0002]

【従来の技術】 近年、プラスチック廃棄物の処理が問題になっている。プラス

チック廃棄物の処理方法としては焼却や埋め立てが主であるが、焼却は地球温暖化の促進、埋め立ては埋立地の減少等の問題を抱えている。例えばポリウレタンは、全世界で年間約600万t,国内では約55万tが消費されている。このうち、その発泡緩衝体は断熱性に優れることから冷蔵庫等の断熱材として大量に利用されている。現在、このポリウレタン廃棄物は不燃ゴミとして埋め立て処分される場合が多いが処分場の不足ならびに環境汚染の問題が生じている。一方、自然環境の点から好ましいものに微生物を利用した生分解法があるが、ポリウレタンは生分解性ではないという問題を有する。

[0003]

ポリウレタンは分子内にウレタン結合及びエステル結合またはエーテル結合を含み、それらの結合が切断されることによって分解が進む。ポリオール部分のエステル結合はカビや細菌によって切断されるという報告が数例ある。Darby(Darby R. T. and Kaplan A. M. : Appl. Mi crobiol. , 16, 900-905 (1968))らはカビによる種々のポリウレタン分解試験を行い、エーテル系よりもエステル系ポリウレタンの方が分解を受け易いことや、イソシアネートやポリオールの種類によって分解特性が異なることを報告している。Kay(Kay,M. J., McCabe,R. W., Morton, L. H. G. : Int. Biodeterio. Biodegrad., 31, 209-225 (1991).)らはエステル系ポリウレタン分解菌として15種類の菌を単離し、分解力の強かったコリネバクテリウム(Corynebacterium)属菌について分解特性を検討した結果について報告している。

[0004]

【非特許文献1】

Darby R. T. and Kaplan A. M. 著、Appl. Microbiol., 16, 900-905 (1968)

【非特許文献2】

Kay, M. J., McCabe, R. W., Morton, L. H. G. 著、Int. Biodeterio. Biodegrad., 31, 209-22

5 (1991)

しかし、ポリウレタン中のウレタン結合の分解に関する知見はほとんどない。 微生物分解に伴って、ウレタン結合が加水分解を受けているという報告は幾つか あるが、ウレタン結合の切断と微生物との因果関係は明らかでない(B. Jan sen et al., Zentralbl Bakteriol., 276, 36(1991), Darby R. T. and Kaplan A. M. : A ppl. Microbiol., 16, 900-905(1968) (非特許文 献1参照))。

【非特許文献3】

B. Jansen et al. 著, Zen.tralbl Bakterio 1., 276, 36 (1991)

一方、低分子のウレタン化合物が微生物によって分解されることはすでに報告されており、その分解はエステラーゼによるものであることが知られている。しかし、そのほとんどは酒類の品種改良やカルバメート系農薬の分解浄化に関するものであり(特開平01-300892、特開平01-240179、特開平02-128689、特開平03-175985、特開平04-104784、特開平04-325079)、ポリウレタンの分解に利用できる技術ではない。ポリウレタン原料となりうる物質の分解菌としてはカビによるものが報告されているが(特開平09-192633)、大量培養が容易な細菌によるものはない。

[0005]

【特許文献1】

特開平01-300892号公報

【特許文献2】

特開平01-240179号公報

【特許文献3】

特開平02-128689号公報

【特許文献4】

特開平03-175985号公報

【特許文献5】

特開平04-104784号公報

【特許文献6】

特開平04-325079号公報

【特許文献7】

特開平09-192633号公報

固体ポリウレタンの分解菌としては、ポリエステル型のポリウレタン分解菌としてペニバチルスアミロリチカスTB-13株(特願平2002-334162)およびコマモナスアシドボランス(Comamonas acidovorans)TB-35株(T. Nakajima—Kambe, F. Onuma, N. Kimpara and T. Nakahara, Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, Vol. 129,39-42,1995)が知られているが、これらの分解菌はウレタン中のエステル結合は分解するが、ウレタン結合はほとんど分解しない。従って、ポリウレタンの細菌による完全分解のために、ウレタン結合を分解する細菌の取得が望まれている。

[0006]

【非特許文献4】

T. Nakajima—Kambe, F. Onuma, N. Kimpara and T. Nakahara, Isolation and charact erization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, Vol. 129, 39-42, 1995

[0007]

【発明が解決しようとする課題】 本発明は、ウレタン化合物を分解することの

できる新規微生物、および該微生物を用いたウレタン化合物の分解方法を提供することを目的とする。特に、ポリウレタンの原料となるウレタン化合物を分解することのできる微生物および該微生物を用いたポリウレタンの分解方法を提供することを目的とする。

[0008]

【課題を解決するための手段】

この問題を解決するため、我々はポリウレタン合成原料として用いられる低分子量ウレタン化合物を分解する微生物のスクリーングを行い、ロドコッカス(Rhodococcus)属に属する微生物が該ウレタン化合物を分解できることを見出した。尚、ロドコッカス属に属する微生物がウレタン化合物の分解能を有することはこれまで知られていなかった。また、本発明者らはロドコッカス属に属する微生物を用いるポリウレタンの分解方法を見出した。

[0009]

即ち、本発明はウレタン化合物、特にポリウレタン合成原料として用いられる低分子量ウレタン化合物を分解する能力を有するロドコッカス属に属する微生物を提供するものであり、また、ロドコッカス属に属する微生物を用いたポリウレタンの分解方法を提供するものである。

[0010]

【発明の実施の形態】

ロドコッカス属に属し、ウレタン化合物分解能を有する微生物は、既に公知の 微生物であってもよく、新たにスクリーニングされた微生物であってもよい。微 生物のスクリーニングの一例を示せば、各地より採取した土壌をポリウレタン合 成原料として用いられる低分子量ウレタン化合物を含む培地の入った試験管に入 れ、30℃にて振とう培養し、一週間ごとに植え継ぎを繰り返した後、培養液中 に白濁や変色が認められたサンプルについて、培養上清をNB平板に希釈塗布し 、30℃で1~3日培養後、生育してきたコロニーをピックアップし、ウレタン 結合分解菌の候補菌株とする。それから、得られた候補株を、トルエンジイソシ アネートとブタノールを反応させて得た低分子量ウレタン化合物(ウレタン化合物 I もまり、おきでは、サンプルについるとは、サールを反応させて得た低分子量ウレタン化合物(ウレタン化合物 I のウレタン結合加水分解産物であるトルエンジアミンの生成が確認された菌を取 得することにより行うことができる。

[0011]

本発明の微生物は、ウレタン結合を有する化合物を分解する能力を有するロドコッカス属菌であればよい。具体的には、代表例として、平成15年2月26日付けで、独立行政法人産業技術総合研究所特許生物寄託センターに寄託申請し、寄託を拒否されたロドコッカス エクイ(Rhodococcus equi)TB-60株が挙げられる。尚、本菌株は自己寄託とし、申請により分譲を認めることとする。ロドコッカス属菌の菌学的性質は、バージーズ・マニュアル・オブ・システマティック・バクテリオロジー(BERGEY'S MANUAL OF Systematic Bacteriology)(第1巻1984年、第2巻1986年、第3巻1989年、第4巻1989年)に記載されている。

[0012]

更に本発明の微生物は、ウレタン結合を分解する能力を有するロドコッカス属 菌であれば、野生株、変異株のいずれでも良い。

変異株は、従来からよく用いられている変異剤であるエチルメタンスルホン酸による変異処理、ニトロソグアニジン、メチルメタンスルホン酸などの他の化学物質処理、紫外線照射、或いは変異剤処理なしで得られる、いわゆる自然突然変異によって取得することも可能である。

[0013]

ロドコッカス属に属する微生物の培養に用いる培地としては、ロドコッカス属に属する微生物が生育できる培地であれば特に制限なく用いることができ、例えば、LB培地(1%トリプトン、0.5%酵母エキス、1%NaC1)が挙げられるがこれらに限定されない。本発明の微生物の生育に使用する培地は、具体的には、本発明の微生物が資化し得る炭素源、例えばグルコース等、及び本発明の微生物が資化し得る窒素源を含有し、窒素源としては有機窒素源、例えばペプトン、肉エキス、酵母エキス、コーン・スチープ・リカー等、無機窒素源、例えば硫酸アンモニウム、塩化アンモニウム等を含有することができる。さらに所望に

より、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等の陽イオンと硫酸イオン、塩素イオン、リン酸イオン等の陰イオンとからなる塩類を含んでもよい。さらに、ビタミン類、核酸類等の微量要素を含有することもできる。炭素源の濃度は、例えば0.1~10%程度であり、窒素源の濃度は、種類により異るが、例えば0.01~5%程度である。また、無機塩類の濃度は、例えば0.001~1%程度である。

[0014]

本発明において分解できるウレタン化合物は、分子構造中にウレタン結合を有するものであればよい。制限的でない例としては、トルエンー2,4ーカルバミン酸ジブチルエステル、トルエンー2,6ージカルバミン酸ジブチルエステル、メチレンビスフェニルジカルバミン酸ジブチルエステル、ヘキサメチレンージカルバミン酸ジブチルエステル、ノルボルネンジカルバミン酸ジブチルエステルおよびそれらを合成原料とするポリウレタンが挙げられる。

[0015]

ポリウレタンとは、分子中にウレタン結合(一NHCOO一)を有する高分子化合物の総称で、多官能イソシアネートとヒドロキル基含有化合物との反応により得られ、エステル、エーテル、アミド、ウレア、カルバメートなどの基を有するポリマーである。ヒドロキシル基もしくはイソシアネート基の官能性数を変化させることで多種多様の分岐あるいは架橋ポリマーを調製することができる。用いるポリオールの種類によってエステル系とエーテル系に大別できる。ポリウレタンは、易加工性、耐腐敗性、耐変質性、低比重等の優れた特性により、弾性体、発泡体、接着剤、塗料、繊維、合成皮革など幅広い用途を持っており、自動車部品としても広く使用されている。本発明の分解方法において適用し得るポリウレタン樹脂の数平均分子量は、特に制限はない。

[0016]

更に本発明は、ウレタン結合を有する化合物を微生物の作用により分解処理する方法を提供する。該方法は、微生物の増殖過程でウレタン結合が分解され栄養源として消費されることを利用する、あるいは微生物の有する酵素の作用によりウレタン結合を分解する作用を利用するもの、すなわち増殖した後の微生物菌体

、例えば休止菌体を利用するものである。あるいは、菌体を常法により凍結乾燥した粉末状の、あるいはその粉末と各種ビタミンやミネラル、必要な栄養源、例えば酵母エキス、カザミノ酸、ペプトン等を配合した後に打錠した錠剤等固形状の形態の調製物としてウレタン化合物の処理に提供しても良い。また、菌株を活性汚泥およびコンポストの成分として利用することもできる。

[0017]

分解に供されるウレタン化合物は、例えば液体の培地中にエマルジョンとして、あるいは粉体の形で加えても良いし、フィルム、ペレット等の塊として加えても良い。なお、培地に対するウレタン化合物の投入量は、0.01~10重量%が望ましい。添加する微生物量は極少量であってもよいが、分解効率を考慮してウレタン化合物に対して0.1重量%以上(湿重量)が好ましい。また、分解に供するウレタン化合物は、1種類であっても複数種類であっても良い。

[0018]

機生物の増殖過程でウレタン結合が分解され栄養源として消費されることを利用する態様では、ウレタン化合物を単一の炭素源として、あるいは単一の炭素・窒素源として与えることもできる。使用し得る培地としては、炭素源としては、ウレタン化合物あるいはグルコース等、及び本発明の微生物が資化し得る窒素源を含有し、窒素源としては有機窒素源、例えばペプトン、肉エキス、酵母エキス、コーン・スチープ・リカー等、無機窒素源、例えば硫酸アンモニウム、塩化アンモニウム等を含有することができる。さらに所望により、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等の陽イオンと硫酸イオン、塩素イオン、リン酸イオン等の陰イオンとからなる無類を含んでもよい。さらに、ビタミン類、核酸類等の微量要素を含有することもできる。炭素源の濃度は、例えば0.1~10%程度であり、窒素源の濃度は、種類により異るが、例えば0.01~5%程度である。また、無機塩類の濃度は、例えば0.001~1%程度である。

[0019]

微生物の有する酵素のウレタン結合を分解する作用を利用する態様、すなわち 増殖した後の微生物菌体、例えば休止菌体を利用する態様では、ウレタン結合の 分解に際し、該微生物の増殖を伴わないため、緩衝液にウレタン化合物を添加した培地などであっても良いが、その他に窒素源、無機塩、ビタミンなどを添加しても良い。緩衝液としては、例えばリン酸緩衝液が挙げられる。

[0020]

ウレタン化合物の分解に要する時間は、分解に供するウレタン化合物の種類、 組成、形状及び量、使用した微生物の種類及びウレタン化合物に対する相対量、 その他種々の培養条件等に応じて変化しうる。

[0021]

本発明において、上記微生物に対し、好気条件で、静置培養、振盪培養あるいは通気培養を行えばウレタン化合物の分解がみられる。好ましくは回転振盪培養が良く、回転数は $30\sim2.50$ 回転/分の範囲であるのが良い。培養条件としては、培養温度は $10\sim50$ $\mathbb C$ 、特に30 $\mathbb C$ 付近が好ましい。また、培地のp Hは $4\sim10$ の範囲、好ましくは7付近であるのが良い。

[0022]

培地中のウレタン化合物の分解の確認は、例えば、分解に供したウレタン化合物の重量減少の測定、残存ウレタン化合物量の高速液体クロマトグラフィ(HPLC)による測定、あるいはウレタン結合加水分解産物であるジアミン化合物の生成の測定により確認することができる。ジアミン化合物の生成の確認は、例えば薄層クロマトグラフィにて生成が予想されるジアミン化合物を標準物質として用いることにより、またはガスクロマトグラフィにより行うことができる。

[0023]

固体ポリウレタンの分解方法の一態様として、ポリエステル型のポリウレタンのエステル結合分解菌として知られるペニバチルスアミロリチカスTB-13株(受託番号FERM P-19104、特願平2002-334162参照)および/またはコマモナスアシドボランスTB-35株と、ウレタン結合分解能を有する本発明の菌を用いることにより、ポリウレタンの完全分解を行うことができる。

[0024]

【実施例】 本発明を実施例によってさらに詳しく説明するが、本発明の範囲は

これらのみに限定されるものではない。

実施例1 ウレタン結合分解菌のスクリーニング

ウレタン化合物の合成方法

分解菌のスクリーニングには、合成したウレタン化合物を使用した(図1)。これらの化合物は、トルエンジイソシアネート(TDI)、メチレンビスフェニルジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、ノルボルネンジイソシアネート(NBDI)などポリウレタンの工業原料として用いられる代表的な 5 種類のイソシアネートとブタノールを反応させ、ウレタン化したものである。これらの化合物(ウレタン化合物 $I \sim V$ 、図 I 参照)はいずれも分子内にウレタン結合を有する物質で、常温では固体で、水に対して不溶であった。

[0025]

培地

分解菌のスクリーニングには、内径22mmの大型試験管に、表1に示した無機塩培地を各10ml分注し、炭素源としてウレタン化合物I~Vのウレタン化合物をそれぞれ約0.1g添加した後、121℃で20分間滅菌したものをスクリーニング培地とした。培地調製に使用した試薬類はいずれも和光純薬工業社製の特級又はそれに準ずるものを用いた。

[0026]

【表1】

表1 スクリーニング用培地

組成	g/l
KH ₂ PO ₄	0.6
K ₂ HPO ₄	1.6
NH ₄ NO ₃	1.0
$MgSO_4 - 7H_2O$	0.2
CaCl ₂ · 2H ₂ O	0.01
FeCl ₃ · 6H ₂ O	0.01
ZnSO ₄ · 7H ₂ O	0.01
MnSO ₄ · 4H ₂ O	0.01
ビタミン混合物	•

pH 7.0

**ビタミン混合物	終濃度
組成	mg/l
ニコチンアミド	10
Ca-パントテン酸	2.5
チアミン HCl	2.5
リポフラピン	1.25
ピリドキシン	0.75
p-アミノベンゾエート	0.6
菜酸	. 0.5
ビオチン	0.1

[0027]

スクリーニング

日本名地から収集した土壌350サンプルをスクリーニング源とした。ウレタン化合物 I ~ V それぞれに対して50本、計250本の試験管を用いた。土壌20サンプルずつを混合して得た土壌サンプルを、上述のスクリーニング培地の入った試験管1本につき0.2 g添加した。これを30℃、1250sc/minで振盪培養し、1週間毎に上清0.5 mlを新たなスクリーニング用培地に移した。この操作を3回繰り返した後、培養液中に白濁や変色が認められた26本の試験管サンプルについて、培養上清を生理食塩水で希釈してNB平板培地上に塗布し、30℃で1~3日培養後、生育してきたコロニーを一つずつピックアップ

した。これらをウレタン結合分解菌の候補菌株とし、NB平板培地で30℃にて 培養後、菌体を20%グリセロール溶液に懸濁し、-80℃で凍結保存した。

[0028]

[0029]

実施例2 ウレタン結合分解菌TB-60株の同定

生理学的試験は一般的な方法に従って行った。同定にはBergey's Manual of Systematic Bacteriology, Baltimore:WILLIAMS&WILKINS Co., (1984)を参考にした。また、米国BIOLOG社製の微生物同定システム(Microlog 3)も使用した。16srDNAの配列決定と解析はダイレクトPCR法を用い、プライマーには真正細菌16SrDNAのほぼ全長を増幅することのできる27Fおよび1492Rのプライマーセットを使用した。

[0 0.3 0]

形態学的·生理学的諸性質試験

TB-60株に関する形態学的・生理学的諸性質試験の結果は表2に示した。本菌株はグラム陽性のコリネ型細菌で、運動性はなく、胞子形成も見られなかった。また、本菌は非常に水分量の多い白色の半液体状コロニーを形成した。オキ

シダーゼ試験は陰性で、カタラーゼ試験は陽性、OF試験では陰性を示した。

[0031]

【表2】

表 2 ウレタン分解菌 TB-60 株の菌学的諸性質

形態学的諸性質

形状 : コリネ型

グラム染色 : 陽性

胞子形成 : 形成しない

運動性 : なし

コロニーの形態 : 白色、半透明、半液体状、

不定形、拡散性

生理学的諸性質

酸素に対する態度 : 好気的

チトクロームオキシダーゼ活性 : 陰性

カタラーゼ活性 : 陽性

O-F 試験 : 陰性

[0032]

BIOLOG同定システムによる同定

BIOLOG細菌同定システムを用いた同定試験の結果、本菌株は95%の確率でロドコッカス エクイと同定された。また、そのほかに50%以上の類似性を持つ菌種は見つからなかった。

[0033]

【表3】

表3 TB-60株のBIOLOGによる同定結果

	可能性	(%)
Rhodococcus equi	7 10 12	95
Corynebacterium hoagii		4
Brevibacterium mcbrellneri		0
Corynebacterium lipophiloflavum		0
Corynebacterium jeikeium		0

[0034]

16SrDNA塩基配列

コロニーダイレクトPCRによって本菌株の16SrDNAのほぼ全長を増幅し、そのうちの上流領域535bp(配列番号1)と下流領域497bp(配列番号2)の塩基配列を決定した。

[0035]

この配列に基づいてBLASTにより相同性検索を行ったところ、上流領域で98%、下流領域で100%の一致率でロドコッカス エクイと認められた。配列より求めた既知の菌種との系統樹を図2に示した。

[0036]

以上の結果から、本菌株はロドコッカス エクイであると同定した。

実施例3 ロドコッカス エクイ TB-60株によるウレタン化合物分解試験

供試菌株

ウレタン化合物分解菌として得られた、ロドコッカス エクイ TB-60株 を用いた。

[0037]

培地および試薬

実験には前述のスクリーニング用培地の他に、それから窒素源を除いた培地を使用し、ウレタン化合物 I を炭素源または炭素・窒素源として培養を行った。実験に用いた試薬類はすべて和光純薬製特級かそれに準ずるものを使用した。

[0038]

培養条件

内径 $16\,\mathrm{mm}$ の小型試験管に、ジエチルエーテルに溶解した2%ウレタン化合物 I を 0. $1\,\mathrm{ml}$ ずつ分注し、ドラフト内でジエチルエータルを十分に揮発させた後、培地 $2\,\mathrm{ml}$ を加え、オートクレープで $1\,2\,0\,\mathrm{C}$ で $2\,0\,\mathrm{分間滅菌}$ した。ロドコッカス エクイ $T\,B-6\,0$ 株を滅菌済み生理食塩水にO. D. 660=0. 2 となるように懸濁したものを各試験管に $1\,0\,0\,\mu\,1$ 植菌し、 $3\,0\,\mathrm{C}$ 、 $3\,0\,0\,\mathrm{r}$ p mで $0\sim1\,0\,\mathrm{Blook}$ 間回転振盪培養を行った。実験は各3 連で行い、無植菌のものを

コントロールとした。

[0039]

菌体生育量の測定

菌体生育量は、培養液のO.D.660を吸光度計で測定した。吸光度の測定にはジャスコエンジニアリング社製の吸光度計V-550を用いた。

[0040]

ウレタン分解量の測定

ウレタン化合物 I 残存量の測定は、高速液体クロマトグラフィ(HPLC)にて行った。培養液にアセトニトリル 2m1 を加え、よく攪拌した後 20 分間静置し、上清をマイクロチューブに移して 12 ,000 r p m、4 $\mathbb C$ で遠心し、さらにその上清を 2m1 容のバイアル瓶に移し、各 $10\mu1$ を試料として HPLCに供した。カラムには東ソー社製 TSK-GEL ODS-80 TM 4.6 mm×15 c mを用い、移動相には 70 %アセトニトリル、流速 0 .6 m 1 / m i n で分析を行った。検出器には UV (240 n m)を用いた。

[0041]

ジアミン生成量の測定

ウレタン結合の分解に伴って生成するトルエンジアミン量は、ガスクロマトグラフィ(GC)にて定量した。培養終了後、培養上清 0.5 m 1 をマイクロチューブに移し、内部標準物質としてジフェニルアミン 100 p p m を含む酢酸エチル溶液 0.5 m 1を加え 10分間よく攪拌した。これを 12,000 r p m、4℃で遠心した後、上層を新しいマイクロチューブに移し、約80 m g の無水硫酸ナトリウムを加えて水分を除去したものを試料として各 2 μ 1を G C に供した。G C 分析には島津製作所製の G C − 2010を使用し、ジフェニルアミンを内部標準として濃度を算出した。カラムには J & W 社製 D B − 1 (0.25 m m × 30 m)を用い、カラム温度 180℃、インジェクター温度 300℃、検出には F I Dを用いた。

[0042]

結果

各培養条件におけるウレタン化合物I残存量の測定結果を図3に示した。ウレ

タン化合物 I を炭素源として与えた系では培養開始 1 0 日でウレタン化合物 I の 約 6 割が減少した。一方、炭素・窒素源として与えた培地においては、ウレタン 化合物 I の減少は観察されたものの、その減少量は少なかった。

ジアミン生成量

ジアミン生成量の測定結果を図4に示した。ウレタン化合物 I を炭素源として与えた系では10日間の培養で約150ppmのトルエンジアミンの生成が認められた。一方、炭素・窒素源として与えた培地においては培養初期に顕著なジアミンが生成は認められたものの、その後の生成量はわずかであった。

[0043]

菌体生育量

菌体生育量の測定結果を図5に示した。ウレタン化合物 I を炭素源として与えたたいでは培養初期に顕著な生育が認められた。一方で炭素・窒素源として与えた培地においては3日目以降も緩やかな増殖が認められた。

[0044]

【発明の効果】 本菌株の純粋培養系を用いたウレタン化合物、特にポリウレタンの集約的分解処理、土壌中やコンポスト中に添加することによる分解処理や肥料として再資源化等への応用が期待される。また、本菌株は細菌であり、一般的に細菌のほうが大量培養が容易であるため、微生物分解処理にはコスト面で有利である点からも有用である。ウレタン中のエステル結合分解菌であるペニバチルスアミロリチカスTB-13株またはコマモナスアシドボランスTB-35株と本発明の微生物を共存させることにより、ポリウレタンの細菌による完全分解が可能となる。

[0045]

【配列表】

SEQUENCE LISTING

<110> 科学技術振興事業団

<120> 新規ウレタン結合分解菌

<130> 022987

<160> 2

<210> 1

<211> 535

<212> DNA

<213> Rhodococcus equi TB-60

<400> 1

tagagtttga tcctggctca ggacgaacgc tggcggcgtg cttaacacat gcaagtcgag 60 cggtaaggcc cttcggggta cacgagcgc gaacgggtga gtaacacgtg ggtgatctgc 120 cctgcactct gggataagcc tgggaaactg ggtctaatac cggatatgag ctcctgtcgc 180 atggcggggg ttggaaaggt ttactggtgc aggatgggcc cgcggcctat cagcttgttg 240 gtggggtaat ggcctaccaa ggcgacgacg ggtagccggc ctgagagggc gaccggccac 300 actgggactg agacacggcc cagactccta cgggaggcag cagtggggaa tattgcacaa 360 tgggcgaaag cctgatgcag cgacgccgc tgagggatga cggccttcgg gttgtaaacc 420 tcttcagca gggacgaag gaaagtgacg gtacctgcag aagaagcacc ggccaactac 480 gtgccagcag cccgcggtaa tacgtagggt gcgagcgttg tccggaatta ctggg

<210> 2

<211> 497

<212> DNA

<213> Rhodococcus equi TB-60

<400> 2

ccttgtggtc ggtatacagg tggtgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg 60

gttaagtccc gcaacgagcg caacccttgt cctgtgttgc cagcgcgtaa tggcgggac 120 tcgcaggaga ctgccggggt caactcggag gaaggtgggg acgacgtcaa gtcatcatgc 180 cccttatgtc cagggcttca cacatgctac aatggccggt acagagggct gcgataccgt 240 gaggtggagc gaatccctta aagccggtct cagttcggat cggggtctgc aactcgaccc 300 cgtgaagtcg gagtcgctag taatcgcaga tcagcaacge tgcggtgaat acgttcccgg 360 gccttgtaca caccgccgt cacgtcatga aagtcggtaa cacccgaagc cggtggccta 420 acccttgtgg agggagccgt cgaaggtggg atcggcgatt gggacgaagt cgtaacaagg 480 tagcctcagt cagtcaa

【図面の簡単な説明】

- 【図1】 図1は、ウレタン結合分解菌のスクリーニングに使用した合成ウレタン化合物の構造を示す。
- 【図2】 図2は、rDNA塩基配列に基づいて求めた既知の菌種との系統樹を示す。
- 【図3】 図3は、各培養条件におけるウレタン化合物 I 残存量の測定結果を示す。
 - 【図4】 図4は、各培養条件におけるジアミン生成量の測定結果を示す。
 - 【図5】 図5は、各培養条件における菌体生育量測定結果を示す。

【書類名】 図面

【図1】

図1 ウレタン化合物の構造

【図2】

図2 16S rDNA 塩基配列を利用した系統解析

【図3】

図3 残存ウレタン化合物 I の経時変化

【図4】

図4 生成トルエンジアミンの経時変化

【図5】

図5 菌体生育量の経時変化

【書類名】 要約書

【要約】 プラスチックの処理方法として自然環境の点から好ましいものに微生物を利用した生分解法があるが、プラスチックは一般に生分解性ではないという問題を有する。本発明は、ウレタン化合物を分解することのできる微生物、および該微生物を用いたウレタン化合物の分解方法を提供する。特に、ポリウレタンの原料となるウレタン化合物を分解することのできる微生物および該微生物を用いたポリウレタンの分解方法を提供することを目的とする。

【選択図】 なし

特願2003-055421

【書類名】

出願人名義変更届(一般承継)

【提出日】 【あて先】 平成15年10月31日 特許庁長官 殿

【事件の表示】

特許庁長官 殿

【出願番号】

特願2003-55421

【承継人】

【識別番号】

503360115

【住所又は居所】
【氏名又は名称】

埼玉県川口市本町四丁目1番8号独立行政法人科学技術振興機構

【代表者】

沖村 憲樹

【連絡先】

〒102-8666 東京都千代田区四番町5-3 独立行政法 人科学技術振興機構 知的財産戦略室 佐々木吉正 TEL 0 3-5214-8486 FAX 03-5214-8417

【提出物件の目録】

【物件名】

権利の承継を証明する書面 1

【援用の表示】

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

【物件名】

登記簿謄本 1

【援用の表示】

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

ページ: 1

特願2003-055421

出願人履歴情報

識別番号

[3 9 6 0 2 0 8 0 0]

1. 変更年月日

1998年 2月24日

[変更理由]

名称変更

住 所

埼玉県川口市本町4丁目1番8号

氏 名 科学技術振興事業団

ページ: 2/E

特願2003-055421

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由]

2003年10月 新規登録

住 所

名

氏

埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構

1日

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.