

- Bookmaker
 - Person/Organization Who Takes Bets and Pays Off Bets in Sports
 - AKA a Bookie (Individual)
 - AKA a Sportsbook (Organization)
 - AKA The Real Winner
 - AKA Someone Who Profits Off Stupidity
- Five Online Sportsbooks for US Bettors
 - Bovada
 - 5Dimes
 - BetOnline
 - GTBets
 - Youwager

- UNC is Favored by 12 Points Over Duke
 - Why? Because I Like Working at UNC
 - Known as the "Point Spread"
 - Often Expressed: UNC 12 / DUKE + 12
 - Bookmaker

$$P(UNC - DUKE > 12) = P(UNC - DUKE < 12) \approx 50\%$$

- Negative Implies Favorite
- UNC Wins and Score is 87 to 65
- Bet on UNC = Winning Bet (UNC DUKE) 12 > 0
- Total Points is Expected to Be 150
 - Known as the "Over/Under"
 - Similar to Betting on Point Spread
 - Even Probability Below 150 and Above 150

- Unit
 - Popular Term in Sports Betting
 - Measurement of the Size of Someone's Bet
 - +25 Units Doesn't Mean Anything and is Arbitrary
 - What is Better?
 - Person 1: Started with \$100 and Now Has \$800
 - Person 2: Started with \$1000 and Now Has \$8000
 - If Each Unit is \$1,
 - Person 1 is Up 700 Units
 - Person 2 is Up 7000 Units
 - If Each Unit is 1% of Bankroll,
 - Person 1 is Up 700 Units
 - Person 2 is Up 700 Units

- Odds
 - Ratio of Probability of Winning to Probability of Losing
 - Fractional Representation:
 - **10/1**
 - **1/1**
 - 1/10 or 0.1/1
 - American Representation:
 - **+** 1000
 - 100 or -100
 - **-** 1000
 - Interpretation for Payout
 - Bet \$1 to Win \$10 or Bet \$100 to Win \$1000
 - Bet \$1 to Win \$1 or Bet \$100 to Win \$100
 - Bet \$1 to Win \$0.10 or Bet \$1000 to Win \$100

- Payout Odds
 - Bookmakers Use Odds to Payout
 - Suppose Team Has 50% Chance of Winning
 - Fair Odds is 1/1 (100 or -100)
 - Most Common Odds is 10/11 (-110)
 - Interpretation of Typical Odds
 - Bet \$11 to Win \$10 (Total=\$21)
 - Bet \$110 to Win \$100
 - Formula: Total Amount If You Win

 $Total = Base + Bet \times Fractional Odds$

Formula: Total Amount If You Lose

Total = Base - Bet

- How Bettors Make Money
 - p = Probability Gambler Wins a Point Spread Bet
 - When is Expected Profit \$0 If Betting \$11 $E[Profit] = 10p 11(1-p) = 0 \qquad \qquad p = 0.524$
 - If Gambler Wins More Than 52.4% of Time, Gambler Wins Long Term
- How Bookmakers Make Money
 - Vig = Bookmaker's Mean Profit Per Dollar Bet
 - Suppose We Bet \$11 on Bet With Odds 10/11 and Win
 - Suppose Bo Bets \$11 on Same and Loses
 - Bookmaker Gets \$22 and Pays \$21 to Us

$$Vig = \frac{\$1}{22} = 4.5\%$$

- Money Line
 - Gamblers Don't Only Have to Bet on Events with 50% Chance
 - Money Line Allows Bettor to Bet on Who Wins Outright
 - Money Line in 2007 NBA Finals
 - -450 Spurs
 - +325 Cavaliers
 - Negative Implies Favored
 - Interpretation
 - Bet \$450 on Spurs and Get \$100 if Spurs Win
 - Bet \$100 on Cavaliers and Get \$325 If Cavs Win

- Money Line
 - Strategy for Betting on Spurs
 - Want Expected Profit to Be More Than \$0
 - p = Probability Spurs Win

$$E[Profit] = (100) \times p + (-450) \times (1-p) > 0$$

- Believe Spurs Have 82% Chance of Winning or Higher
- Strategy for Betting on Cavs
 - Want Expected Profit to Be More Than \$0

$$E[Profit] = (-100) \times p + (325) \times (1 - p) > 0$$

Believe Spurs Have 76% Chance of Winning or Lower

- Arbitrage Betting Opportunity
 - Combination of Bets Without Risk
 - Consider the Following Betting Lines

Bookie 1 Colts -122 Bears +112Bookie 2 Colts -135 Bears +125

- Bookie 1 Offers Better Odds on Colts = Take Colts
- Bookie 2 Offers Better Odds on Bears = Take Bears

- Arbitrage Betting Opportunity
 - Suppose You Bet x Dollars with Bookie 1
 - Suppose You Bet \$100 Dollars with Bookie 2
 - Profit if Colts Win

$$\left(\frac{100}{122}\right)x - 100 > 0$$
 if $x > 122

Profit if Bears Win

$$125 - x > 0$$
 if $x < 125

Betting Between \$122 and \$125 With Bookie 1 Guarantees Win

- Parlay
 - Multi-Event Wager Involving Typically 2 to 10 Bets
 - Can Involve Mixture of Completely Different Bets/Events
 - Gives You Worse Odds to Win, But Larger Potential Reward
 - All Bets Must Win for You to Win
 - Suppose You Parlay Two Bets
 - Each Bet Has 50% Chance of Winning
 - $P(Win) = 0.5 \times 0.5 = 0.25$
 - $P(Lose) = 0.5 \times 0.5 + 0.5 \times 0.5 + 0.5 \times 0.5 = 0.75$
 - Fair Odds = 3/1
 - Losing is 3 Times More Likely
 - Actual Odds 2.6/1

Parlay

- House Edge for Parlay if Betting \$100
 - For Fair Odds, Expected Profit is \$0
 - For 2.6/1 Odds, Expected Profit is ... $E[Profit] = 0.25 \times 260 0.75 \times 100 = -10$
 - House Expected to Win \$10
 - Percent of Bet = +10%
- Table of Payoffs

Number of Bets	Actual Odds	Standard Payout Odds	House Percentage Edge
2	3–1	2.6-1	10
3	7-1	6–1	12.50
4	15–1	12–1	18.75
5	31–1	25–1	18. <i>7</i> 5
6	63–1	35–1	43.75

- Parlay
 - Correlated Events in Parlays
 - Bet 1: Tom Brady Throws Touchdown to Gronkowski $P(Win\ Bet\ 1) = 0.5 = 50\%$
 - Bet 2: Tom Brady Throw 3 Touchdowns $P(Win\ Bet\ 2) = 0.5 = 50\%$
 - Notice the Following Conditional Probability $P(Win\ Bet\ 1|Win\ Bet\ 2) = 90\%$
 - Fair Odds If Events are Independent: 3/1
 - Probability of Winning Parlay $P(Win\ Parlay) = P(Win\ Bet\ 2) \times P(Win\ Bet\ 1|Win\ Bet\ 2) = 45\%$
 - Fair Odds for This Parlay: 1.22/1
 - Suppose You Bet \$100 and Win
 - You Should Win \$122
 - You Will Win \$300

- Teaser
 - Multi-Event Wager Like a Parlay But Pay Less
 - Two Events and Need to Win Both
 - K-Point Teaser (Bettor Alters Point Spreads by K)
 - Situation
 - **Game 1:** *UNC* 12 / *DUKE* + 12
 - Game 2: NC STATE -6 / WF + 6
 - Example of 4-Point Teaser Taking UNC and WF
 - **Game 1:** *UNC* -8 / *DUKE* +8
 - **Game 2:** NC STATE 10 / WF + 10
 - To Win Teaser, We Need ...
 - UNC to Win by More Than 8 Points
 - WF to Lose by Fewer Than 10 Points
 - Notice that the Point Spreads Got "Better"

- Teaser
 - Either Game "Pushes" = Teaser "Pushes
 - In Football, Teasers Usually Involve 6, 6.5, or 7 Points
 - Typical Teaser Payoff Grid

Number of Teams	6-Point Teaser	6.5-Point Teaser	7-Point Teaser	
2	-110	-120	-130	Bet
3	+180	+160	+150	
4	+300	+250	+200	
5	+450	+400	+350	
6	+700	+600	+500	Bet

Bet \$130 to Win \$100

Bet \$100 to Win \$500

- History of 7-Point Teasers
 - Win 70.6% of the Time
 - Push 1.5% of the Time
 - Lose 27.9% of the Time

- Teaser
 - Probability of Winning Teaser

$$P(Win) = 0.706 \times 0.706 = 0.4984$$

Probability of Pushing Teaser

```
P(Push) = 0.015 \times 0.015 + 0.015 \times 0.985 + 0.985 \times .015 = 0.0298
```

Probability of Losing Teaser

$$P(Lose) = 0.279 \times 0.279 + 0.279 \times 0.721 + 0.721 \times .279 = 0.4802$$

Expected Profit of 7-Point Teaser Bet of \$130

$$E[Profit] = 0.4984 \times 100 + 0.0298 \times 0 + 0.4802 \times (-130) = -\$12.58$$

- Steven Levitt
 - Famous for Freakonomics
 - Showed Bookmakers Can Get a Profit Exceeding 4.5% Per Dollar Bet
 - People Believe Bookmakers Try to Set "Prices" So Half on Both Sides
 - NFL Data Shows Contradiction to This Notion
 - 1/2 of Games Have Uneven Split of Bets
 - Specifically Seen in Games Where Home Team is Underdog
 - Most Wagers on Visiting Team In These Cases
 - Bookmakers Set Unfair Spreads to Exploit Systematic Biases
 - Bookmakers are Gambling With Gamblers

- Implications on Gamblers
 - Percent of Bets That Win

	Underdog	Favorite
Home	57.7%	49.1%
Away	50.4%	47.8%

- Conclusion: Favorites Are Not Good Bets (<50%)
- Example
 - UNC is 10 Points Better Than Duke
 - You Know Most People Will Bet on UNC
 - Bookmaker Line: UNC -12/ Duke +12
 - Trap People Who Have Definite Biases

- Expected Earnings
 - Probability Bookie Wins = 50.55%
 - Probability Bookie Loses = 49.45%
 - Expected Earnings Per \$10 Bet (10/11 Odds)

$$E[Earnings] = (-10) \times 0.4945 + (11) \times 0.5055 = 0.6156$$

If Bets Were Evenly Split on Both Sides

$$E[Earnings] = (-10) \times 0.5 + (11) \times 0.50 = 0.50$$

- Bettor Should Bet on All Home Underdogs
- Results Independent of Size of Spread
- Results Consistent Over Time

- Work by Flepp, Nuesch, and Franck
 - Analyzed This For Over/Under Bet in Soccer Matches
 - Focused on the Over of 2.5 Goals
 - Most Fans Are Biased to Bet on Over
 - 80% of Money Waged on the Over Bet
 - Average Number of Goals Between 2.4 and 2.6
 - Discovered that Bettors Don't Attempt to Modify the Over/Under Bet to Take Advantage of Bettors
 - Why Do You Think This is the Case?

FINAL INSPIRATION

The only cure for a gambling addiction is losing all your money.

-Mahatma Mario