GPUnit

Daniel Bagnell Jason Economou Rajkumar Jayachandran Tim McJilton Gabriel Schwartz Andrew Sherman

Advisor: Prof. Jeremy Johnson Stakeholders: Prof. Steve McMillan Alfred Whitehead The Leiden Observatory

January 25, 2011

Overview

Introduction

Purpose

Purpose of GPUnit Target Audiences

Components and Features

Experiment Management
Diagnostics
Command Line Interface
Parallelism and Distribution

User Interface

Cluster Control Cluster Control Module Specification

Final Goals

Motivation

- ► Astrophysics researchers need to simulate star clusters and galaxies.
- ▶ Every star pulls on all of the others: $O(n^2)$ for the naive case.
- ► Stars evolve over time, mass changes.

Figure: N-Body Simulation: 1024 Stars

Astrophysical Multipurpose Software Environment (AMUSE)

Figure: AMUSE Architecture

State of AMUSE

- ► Currently used by researchers to run large-scale simulations.
- Scripts, diagnostics, logging are all written by hand.
- AMUSE API/programming knowledge is required to create experiments.

Purpose of GPUnit

- Ease the use of AMUSE
- Create/Design/Modify experiments
- Select, configure, swap out modules and initial conditions

Target Audiences

- Physics Students
- Observational Astrophysicists
- ► Theoretical Astrophysicists

Experiment Management

- Experiments include a specification for:
 - Initial Conditions, Variables
 - Module Selection
 - Logging
 - Diagnostics
- Allows experiments to be repeated and shared.

Diagnostics

- Diagnostics read the state of the system while it is computing, and output selected metrics.
- Features include:
 - Configurable output data formats
 - Sensible default diagnostics provided
 - An interface to create custom diagnostics
- ▶ Diagnostics can include a visual display of the system state.

Command Line Interface

- ▶ The command line interface gives the user ability to:
 - Make small changes to the experiment before running
 - Run headless experiments
 - Control experiment distribution across a cluster
 - Easily repeat experiments

Parallelism and Distribution

- Modules are independent, can run at the same time.
- No need to share data until the end of a time interval.
- Some exceptions if a special event occurs
- User interaction can be required.
- ► GUI will provide a display of all nodes on the cluster.
- Command line provides a list of free nodes if desired.

Experiment Editor

Figure: Experiment Editor

Cluster Control

Figure: Cluster View

Module Specification

Figure: Module Editor

Final Goals

- ► Integration into AMUSE
- Users can download AMUSE and create/run experiments right away.
- Open AMUSE up for use by a non-programmer audience.