Semaine 17 - Théorie de la dimension et suites récurrentes

Valentin De Bortoli email : valentin.debortoli@gmail.com

Dans la suite k est un corps (on se limite à \mathbb{R} et \mathbb{C}) et E un k-espace vectoriel.

1 Suites périodiques et dimension

Soit $p \in \mathbb{N}$ et $\mathcal{P}_p = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ u_{n+p} = u_n\}.$

- 1 Montrer que \mathcal{P}_p est un espace vectoriel et déterminer sa dimension.
- 2 Donner une base de suites géométriques de cet espace.

2 Une famille libre?

- 1 Montrer que $(x \mapsto \cos(nx))_{n \in \mathbb{N}}$ est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- **2** Que peut-on dire de la dimension de $\mathcal{F}(\mathbb{R},\mathbb{R})$ en tant que \mathbb{R} espace vectoriel?

Remarque : on peut montrer de manière plus générale qu'une famille de fonctions $(f_i)_{i \in [\![1,n]\!]}$ est libre dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ si et seulement si il existe n réels $(x_i)_{i \in [\![1,n]\!]}$ tels que $(f_i(x_j))_{(i,j) \in [\![1,n]\!]^2}$ soit une matrice inversible.

3 Espace vectoriel et fonctions affines

- 1 Soit F l'ensemble des fonctions continues de [-1,1] affines sur [-1,0] et affines sur [0,1]. Montrer que F est un sous-espace vectoriel (de quel espace vectoriel ?).
 - **2** Trouver une base de F.

4 Une base de polynômes

1 Montrer que $(P_k)_{k \in [0,n]}$ avec $P_k = X^k (1-X)^{n-k}$ est une base de $\mathbb{R}_n[X]$.

5 Nombres réels et espace vectoriel

Le but de cet exercice est d'étudier \mathbb{R} comme \mathbb{Q} -espace vectoriel. On note $(p_n)_{n\in\mathbb{N}}$ l'ensemble des nombres premiers rangés par ordre croissant.

- 1 Montrer que $\forall N \in \mathbb{N}$, $(p_n)_{n \in [\![1,N]\!]}$ est une famille libre de \mathbb{R} . En déduire qu'il n'existe pas de base finie de \mathbb{R} comme \mathbb{Q} -espace vectoriel.
- 2 Autre démonstration : si $(x_n)_{n\in \llbracket 1,N\rrbracket}$ est une base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel en déduire que tout $x\in \mathbb R$ est racine d'un polynôme de degré N-1.
- 3 En considérant $2^{1/N}$ en déduire une contradiction (on admettra que X^n-2 est un polynôme irréductible de $\mathbb{Q}[X]$).

Remarque : en fait on peut même montrer en considérant la famille $(\sum_{n\geq 1} \frac{1}{10^{\lfloor a^n \rfloor}})_{a>1}$ que toute base de $\mathbb R$ comme $\mathbb Q$ -espace vectoriel est de cardinal celui de $\mathbb R$. L'existence d'une base de $\mathbb R$ est assurée par l'axiome du choix (bases de Hamel) mais n'est pas constructible.

6 Polynômes à valeurs entières

- $\textbf{1} \quad \text{Montrer que } (P_k)_{k \in \llbracket 0,n \rrbracket} \text{ avec } \forall k \in \llbracket 1,n \rrbracket, \ P_k = \frac{X(X-1)...(X-k+1)}{k!} \text{ et } P_0 = 1. \ \text{Montrer que } (P_k)_{k \in \llbracket 0,n \rrbracket} \text{ base de } \mathbb{R}_n[X].$
 - **2** Montrer que $\forall m \in \mathbb{Z}, \forall k \in [0, n], P_k(m) \in \mathbb{Z}.$
 - 3 En déduire la forme des polynômes de $\mathbb{R}_n[X]$ qui prennent des valeurs entières sur les entiers.

7 Divisibilité et sous-espace vectoriel

Soit A polynôme de $\mathbb{R}_n[X]$.

- 1 Montrer que $F = \{P \in \mathbb{R}_n[X], A|P\}$ est un sous-espace vectoriel.
- 2 Exhiber une base et un supplémentaire de cet espace.

8 Une équation polynômiale

1 Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_{n+1}[X]$ tel que P(0) = 0 et $P(X+1) - P(X) = X^n$.

9 Une somme directe

- 1 Soit $i \in [0, n]$ et $F_i = \{P \in \mathbb{R}_n[X], \forall j \in [0, n] \setminus \{i\}, P(j) = 0, P(i) \neq 0\}$. Montrer que $F_i \cup \{0\}$ est un espace vectoriel.
 - **2** Montrer que $\mathbb{R}_n[X] = F_0 \oplus \cdots \oplus F_n$.

10 Drapeaux

Soit u un endomorphisme de E.

- 1 Montrer que $\forall k \in \mathbb{N}$, $\ker u^k \subset \ker u^{k+1}$. Conjecturer et prouver une propriété similaire sur $\operatorname{Im} u^k$.
- **2** On suppose qu'il existe $p \in \mathbb{N}$ tel que $\ker u^n = \ker u^{n+1}$. Montrer que pour tout $p \in \mathbb{N}, \ p \geq n \ \Rightarrow \ \ker u^p = \ker u^{p+1}$.
- 3 En déduire que pour ce n, $\ker u^n$ et $\operatorname{Im} u^n$ sont en somme directe. Que peut-on dire dans le cas de la dimension finie ?

11 Stabilisation et endomorphismes

Soit u un endomorphisme de E.

- 1 On suppose que u stabilise toutes les droites (sous espaces vectoriels de dimension 1), c'est-à-dire que pour toute droite D, $u(D) \subset D$. Que peut-on dire de u?
- ${\bf 2}$. On suppose maintenant que u stabilise tous les sous-espaces vectoriels de dimension k. Que peut-on dire de u

12 Polynômes annulateurs

Soit u un endomorphisme de E. On suppose que E est de dimension finie.

- 1 Montrer qu'il existe $P \in k[X]$ tel que $P(u) = \sum_{k=0}^{\deg P} a_k u^k = 0$.
- **2** Montrer que u est bijectif si et seulement un de ses polynômes annulateurs vérifie $a_0 \neq 0$.
- 3 Montrer que keru et Imu sont en somme directe si et seulement il existe un polynôme annulateur dont 0 est racine d'ordre au plus 1.
 - 4 Que se passe-t-il en dimension infinie?

13 Une équation fonctionnelle

1 Trouver les fonctions $f \in \mathcal{F}\left(\mathbb{R}_{+}^{*}, \mathbb{R}_{+}^{*}\right)$ qui vérifient : $\forall x \in \mathbb{R}_{+}^{*}, f(f(x)) = 6x - f(x)$.

14 Dominos et pavage

Soit un quadrillage de taille $2 \times n$ $(n \in \mathbb{N}^*)$. On dispose d'une infinité de dominos verticaux 2×1 et horizontaux 1×2 . On note K_n^2 le nombre de pavages possibles du quadrillage avec ces dominos.

- 1 Calculer K_1^2 et K_2^2 .
- 2 Calculer K_n^2 .
- **3** On considère maintenant le cas où le quadrillage est de taille $3 \times n$. On note K_n^3 le nombre de pavages possibles. Que dire si n impair ?
 - 4 On suppose maintenant n pair. Donner K_n^3
 - 5 Vérifier que $3(K_n^3)^2 2$ est un carré.

Remarque : au delà d'un quadrillage de taille $3 \times n$ les récurrences sont d'ordre plus grand que 2 et les expressions deviennent assez difficiles. Il existe de nombreux problèmes de pavages. En voici un des plus connus posés par Stern en 1958 : peut-on recouvrir avec des dominos horizontaux et verticaux un échiquier dont on a retiré les deux coins opposés ? (La réponse est non)