Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

An Ongoing History of Convolutional Networks

History of Convolutional Neural THIS IS YOUR MACHINE LEARNING SYSTEM? Networks

Machine Learning 101

Types of CNN, 1988-1998

Heads Facebook Al Team

- **LeNet-1** (1988)
 - ~2600 params, not many layers
- **LeNet-5** (1998)
 - 7 layers, gets excellent MNIST performance

tanh or sigmoid

Major contribution, general structure:

avg

conv=>pool=>non-linearity=> ...=>MLP

C3: f. maps 16@10x10 C1: feature maps \$4: f. maps 16@5x5 INPUT 6@28x28 32x32 S2: f. maps C5: layer F6: layer OUTPUT 6@14x14 Full connection Gaussian connections Subsampling Subsampling Full connection Convalutions Convolutions

CNN History

 List of major breakthroughs from 1998 through 2010 in convolutional networks:

• 2010

Al Researcher IDSA, Switzerland

Ciresan Net

- Publishes code for running CNN via GPU
 - Subsequently wins 5 international competitions
 - from stop signs => cancer detection
- Maior contribution: NVIDIA parallelized training algorithms

Figure 2: Forward propagation: a) mapping of kernel 1 grid onto the padded weight matrix; b) mapping the kernel 2 grid onto the partial dot products matrix; c) output of forward propagation.

ImageNet Competition (2010-2016)

https://www.researchgate.net/figure/Winner-results-of-the-ImageNet-large-scale-visual-recognition-challenge-LSVRC-of-the_fig7_324476862

https://www.slideshare.net/nmhkahn/case-study-of-convolutional-neural-network-61556303

Google

- **AlexNet**, Hinton is mentor
 - wins ImageNet competition
- Major contributions:
 - dropout for regularization
 - systematic use of ReLU
 - data expansion
 - overlapping max pool

AlexNet

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / ReLU

Warning

- Oxford VGG Net (Visual Geometry Group)
- Major contributions:
 - small cascaded kernels
 - way more layers (19 versus ~7)
 - "emulates" biology "better"
 - trained on NVIDIA GPUs for 2-3 weeks

11 weight 1 layers	onv3-64	B 13 weight layers	onfiguration C 16 weight layers	D 16 weight layers	E 19 weight							
layers	layers in conv3-64	layers aput (224 × 22	layers									
layers	layers in conv3-64	layers aput (224 × 22	layers									
conv3-64 c	onv3-64		24 PCR image		layers							
conv3-64 c		0.00m/2 6A	input (224 × 224 RGB image)									
		COHV3-04	conv3-64	conv3-64	conv3-64							
	LRN	conv3-64	conv3-64	conv3-64	conv3-64							
maxpool												
conv3-128 c	onv3-128	conv3-128	conv3-128	conv3-128	conv3-128							
		conv3-128	conv3-128	conv3-128	conv3-128							
maxpool												
	onv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
conv3-256 co	onv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
			conv1-256	conv3-256	conv3-256							
					conv3-256							
		max										
	onv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
conv3-512 co	onv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
					conv3-512							
maxpool												
	onv3-512	conv3-512	comv3-512	conv3-512	conv3-512							
conv3-512 co	onv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
					conv3-512							
	maxpool											
FC-4096												
			4096									
			1000									
·		soft-	max									

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	Е
Number of parameters	133	133	134	138	144

Network In Network

- Network in Network NiN
 - · or MLPConv

(a) Linear convolution layer

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering

²Department of Electronic & Computer Engineering

National University of Singapore, Singapore

{linmin, chengiang, eleyans}@nus.edu.sg

(b) Mlpconv layer

Network in Network

NiN, expanded view

J and M >> K and L

Common Choice: J==M and K==L

Convolve with *K*, 1x1 Filters *Equivalently*: each new channel is weighted sum of convolutions complete control of channels size

Structure of Each Tensor: Channels x Rows x Columns

- GoogLeNet
 - or Inception V1
- Major contribution:
 - bottleneck layering
 - parallel NiN

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

https://arxiv.org/pdf/1409.4842.pdf

Types of CNN, 2015 February and December

- Inception V2, Inception V1 with batch normalization
- Inception V3:
 - replace 5x5 with multiple 3x3

Types of CNN, 2015 December

Research

- Major Contributions:
 - "ensembles" not strictly sequential
 - "bio-plausible" with feedback

ResNet

Parametric ReLU PReLU: adaptive trained slope

NiN: triple bypass layer similar to bottelneck

Residual Connection, expanded view

Back Propagation: Two paths, including one without ANY operations that cause the gradient to vanish...

How big are these networks?

How big are these networks?

ResNet, 152 layers (ILSVRC 2015)

Transition Period in Convolutional Networks

- 2012 2017:
 - Add more layers!
 - How can we train it even deeper?
 - Can we run out of memory? Let's try! <a>
- 2017-present:
 - How can we get similar performance with reduced parameters?
 - How should the number of parameters scale for competing resource? Is there an optimum scaling for a given set of resources?

Xception • Major Contributions:

- combining branching / residual blocks
- separable convolutions (fewer trainable params)

Francois Chollet **Google**

https://arxiv.org/pdf/1610.02357.pdf

Separable Convolution Explanation

SqueezeNet (2018)

- Idea: squeeze and expand in each layer
 - Use mostly 1x1 filters
 - downsample later in network

$$SR = \frac{|F_{s1x1}|}{|F_{e1x1}| + |F_{e3x3}|}$$

$$PCT_{3x3} = \frac{|F_{e3x3}|}{|F_{e1x1}| + |F_{e3x3}|}$$

In paper:

- Good SR = 12.5% up to 100%
- Good PCT_{3x3} from 25% up to 100%

Forrest N. landola¹, Song Han², Matthew W. Moskewicz¹, Khalid Ashraf¹, William J. Dully², Kurt Keutzer¹

DoepScale² & UC Berkeley — Stanford University

(forrest1, moskewez, kashraf, keutzer) #eecs.berkeley.edu

[songhan, dally] #stanford.edu

SOUEEZENET: ALEXNET-LEVEL ACCURACY WITH

50x fewer parameters and <0.5MB model size

Efficient Net (2019)

Start with so

Observation 1 - Scaling up any width, depth, or resolution improve racy gain diminishes for bigger me

Observation 2 – In order to purs efficiency, it is critical to balance al width, depth, and resolution during

Depth Scalin

Resolution Scaling: If we use larger resolut Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

depth:
$$d = \alpha^{\phi}$$

width:
$$w = \beta^{\phi}$$

res.:
$$r = \gamma^{\phi}$$

s.t.
$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$

 $\alpha, \beta, \gamma \geq 1$

$$\phi$$
 user specified scaling coefficient

$$\alpha = 1.2$$

$$\beta = 1.1$$

$$\gamma = 1.15$$

where α, β, γ are constants that can be determined by a small grid search. Intuitively, ϕ is a user-specified coefficient that controls how many more resources are available for model scaling, while α, β, γ specify how to assign these extra resources to network width, depth, and resolution re-

optimal values found in paper!

More Modern CNN Architectures

Even more Convolutional Neural Networks

...in TensorFlow

12. More Advanced CNN Techniques as TFData.ipynb

Self Guided Demo

Next Time:

- Intro to Sequential Neural Network Architectures
 - Word Embeddings, 1D CNNs, Transformers
 - Ethics by Case Study