Laguerre-Gauss Preprocessing: Line Profiles as Image Features

Alejandro Murillo-González Olga Lucía Quintero Montoya Guillermo Paniagua Castrillón José David Ortega Pabón

Contents

- Introduction
- Method
- Results
- Discussion
- Q&A

Introduction

- Reduce an image's feature space.
- Preserve enough information for classification tasks.

Figure 1. Overview of Laguerre-Gauss Preprocessing. A line profile of the image is obtained, which is later used as input to a classifier. Source: Own elaboration.

Method

- We use Fourier Analysis
 - Laguerre-Gauss Spatial Filter (LGSF) [1]

$$LG(x,y) = (i\pi^2\omega^4)(x+iy)\exp\{-\pi^2\omega^2(x^2+y^2)\}$$
 (1)

This Kernel enhances edges and reduces low- and high- frequency noise [1, 2].

Method

Algorithm 1: Laguerre-Gauss Preprocessing

```
Data: image, \omega
s \leftarrow size(image);
filter \leftarrow LaguerreGaussFilter(\omega, s);
image_{FT} \leftarrow FourierTransform(image);
filter_{FT} \leftarrow FourierTransform(filter);
convolved \leftarrow \text{image}_{FT} \cdot \text{filter}_{FT};
shifted \leftarrow shift(convolved);
x-profile \leftarrow LineProfile(shifted, axis = x);
y-profile \leftarrow LineProfile(shifted, axis = y);
return x-profile, y-profile
```

Results

Figure 2. Line Profiles obtained using Laguerre-Gauss Preprocessing on a dataset of aerial images. Source: Own elaboration.

Results

			Train		Validation		Test	
Model	Data	Size	Accuracy	F1	Accuracy	F1	Accuracy	F1
kNN	Flattened	951.2 MB	0.9257	0.93/0.91	0.9286	0.93/0.91	0.9183	0.92/0.90
	LP	30.0 MB	0.9030	0.91/0.88	0.8900	0.90/0.86	0.9046	0.91/0.89
MLP	Flattened	4.4 MB	0.5747	0.72/0.0	0.5720	0.72/0.0	0.5730	0.72/0.0
	LP	376.4 kB	0.8012	0.82/0.76	0.8116	0.83/0.77	0.7990	0.82/0.76

Table 1. Results of Aerial Images classification. The F1 score is reported for each class in the next order: (0) No object of interest / (1) object of interest. The Flattened data type means images whose pixels were transformed to a column vector, which will later be used as input to the model. LP data type represents the image features (line profiles) obtained using Laguerre-Gauss Preprocessing.

kNN: k-Nearest Neighbors classifier. MLP: multilayer perceptron.

Source: Own elaboration.

Discussion

 The introduced methodology can be used to learn a robust image classifier.

- The use of features from the frequency domain might lead to generalization to diverse environments, where it highlights relevant shapes regardless of background noise.
- The LGSF distributes homogeneously and smoothly the intensity in the Fourier spectrum due to its isotropic feature [1, 2]. This resulted in characteristic frequencies that allowed learning relevant shapes within an image.

Questions?

Contact Alejandro Murillo-González amurillog@eafit.edu.co

@AlejandroMllo

Code + Paper

https://bit.ly/3710FHY

References

- [1] Paniagua, J. G., Quintero, O. L., and Sierra-Sosa, D. Laguerre-gauss filters in reverse time migration image reconstruction. Brazilian Journal of Geophysics, 35(2):81–93, 2018. ISSN 1809-4511. doi: 10.22564/rbgf.v35i2.822. URL https://sbgf.org.br/revista/index.php/rbgf/article/view/822.
- [2] Guo, C.-S., Han, Y.-J., Xu, J.-B., and Ding, J. Radial Hilbert transform with laguerre-gaussian spatial filters. Opt. Lett., 31(10):1394–1396, May 2006. doi: 10.1364/OL.31.001394. URL http://ol.osa.org/abstract.cfm?URI=ol-31-10-1394.