

APPARATUS AND METHOD FOR IDENTIFYING LIQUID TYPE OF GASOLINE

Publication number: JP2004101385

Publication date: 2004-04-02

Inventor: TAKAHATA TAKAYUKI; KAWANISHI TOSHIAKI;
YAMAGISHI KIYOSHI

Applicant: MITSUI MINING & SMELTING CO

Classification:

- International: F02D41/00; G01N25/18; F02D41/00; G01N25/18;
(IPC1-7): C10L1/06; G01N25/20; B67D5/32; F02D15/00;
F02D45/00; F02P5/15; G01N25/08

- european: F02D41/00F; G01N27/18; G01N33/28F

Application number: JP20020264543 20020910

Priority number(s): JP20020264543 20020910

Also published as:

EP1538438 (A1)
WO2004025287 (A1)
AU2003262058 (A1)

[Report a data error here](#)

Abstract of JP2004101385

PROBLEM TO BE SOLVED: To accurately and rapidly identify the types of gasoline which have various compositions and have different distillation characteristics.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-101385

(P2004-101385A)

(43) 公開日 平成16年4月2日(2004.4.2)

(51) Int.Cl. ⁷	F I	テーマコード(参考)	
G01N 25/20	G01N 25/20	Z	2 G040
B67D 5/32	B67D 5/32	C	3 E083
F02D 15/00	F02D 15/00	Z	3 G022
F02D 45/00	F02D 45/00	3 1 2 Z	3 G084
F02P 5/15	F02D 45/00	3 6 4 K	3 G092
審査請求有 請求項の数 20 O L (全 19 頁) 最終頁に続く			

(21) 出願番号 特願2002-264543 (P2002-264543)

(22) 出願日 平成14年9月10日 (2002.9.10)

(71) 出願人 000006183

三井金属鉱業株式会社

東京都品川区大崎1丁目11番1号

(74) 代理人 100081994

弁理士 鈴木 俊一郎

(74) 代理人 100103218

弁理士 牧村 浩次

(74) 代理人 100107043

弁理士 高畠 ちより

(74) 代理人 100110917

弁理士 鈴木 亨

(72) 発明者 ▲高▼畠 幸行

埼玉県上尾市原市1333の2 三井金属

鉱業株式会社総合研究所内

最終頁に続く

(54) 【発明の名称】ガソリンの液種識別装置およびガソリンの液種識別方法

(57) 【要約】

【課題】蒸留性状の相違する様々な組成のガソリンについて、正確にしかも迅速にガソリンの種類を識別する。

【解決手段】ヒーターと、ヒーターの近傍に配設された識別用液温センサーとを備えた液種識別センサーヒーターに、パルス電圧を所定時間印加して、前記ヒーターによって、被識別ガソリンを加熱し、識別用液温センサーの初期温度とピーク温度との間の温度差に対応する電圧出力差V0によって、液種を識別する。

【選択図】 図2

【特許請求の範囲】

【請求項 1】

ガソリンの種類を識別するガソリンの液種識別装置であって、
 液種識別装置本体内に導入された被識別ガソリンを一時滞留させるガソリン液種識別室と
 前記ガソリン液種識別室内に配設された液種識別センサーヒーターと、
 前記液種識別センサーヒーターから一定間隔離して、前記ガソリン液種識別室内に配設
 された液温センサーとを備え、
 前記液種識別センサーヒーターが、ヒーターと、該ヒーターの近傍に配設された識別用液
 温センサーとを備え、
 前記液種識別センサーヒーターに、パルス電圧を所定時間印加して、前記ヒーターによつ
 て、前記ガソリン液種識別室内に一時滞留した被識別ガソリンを加熱し、前記識別用液温
 センサーの初期温度とピーク温度との間の温度差に対応する電圧出力差 V_0 によって、液種を識別するよう構成した識別制御部を備えることを特徴とするガソリンの液種識別装
 置。
10

【請求項 2】

前記電圧出力差 V_0 が、前記パルス電圧を印加する前の初期電圧を所定回数サンプリング
 した平均初期電圧 V_1 と、前記パルス電圧を印加した後のピーク電圧を所定回数サンプリ
 ングした平均ピーク電圧 V_2 との間の電圧差、すなわち、
20

$$V_0 = V_2 - V_1$$

であることを特徴とする請求項 1 に記載のガソリンの液種識別装置。

【請求項 3】

前記識別制御部が、予め識別制御部に記憶された所定の参考ガソリンについての、温度に
 対する電圧出力差の相関関係である検量線データに基づいて、
 前記被識別ガソリンについて得られた前記電圧出力差 V_0 によって、ガソリンの種別を識
 別するように構成されていることを特徴とする請求項 1 から 2 のいずれかに記載のガソリ
 ンの液種識別装置。
30

【請求項 4】

前記識別制御部が、前記被識別ガソリンの測定温度における電圧出力差 V_0 についての液
 種電圧出力 V_0 を、
 所定の値参考ガソリンについての測定温度における電圧出力差についての出力電圧と相
 関させて補正するように構成されていることを特徴とする請求項 1 から 3 のいずれかに記
 載のガソリンの液種識別装置。
40

【請求項 5】

前記液種識別センサーヒーターが、ヒーターと、識別用液温センサーとが絶縁層を介して
 積層された積層状液種識別センサーヒーターであることを特徴とする請求項 1 から 3 のい
 ずれかに記載のガソリンの液種識別装置。

【請求項 6】

前記液種識別センサーヒーターのヒーターと識別用液温センサーとが、それぞれ金属フィ
 ンを介して、被識別ガソリンと接触するように構成されていることを特徴とする請求項 1
 から 5 のいずれかに記載のガソリンの液種識別装置。
50

【請求項 7】

前記液温センサーが、金属フィンを介して、被識別ガソリンと接触するように構成されて
 いることを特徴とする請求項 1 から 6 のいずれかに記載のガソリンの液種識別装置。

【請求項 8】

ガソリンの種類を識別するガソリンの液種識別方法であって、
 ヒーターと、該ヒーターの近傍に配設された識別用液温センサーとを備えた液種識別セン
 サーヒーターに、パルス電圧を所定時間印加して、前記ヒーターによって、被識別ガソリ
 ンを加熱し、前記識別用液温センサーの初期温度とピーク温度との間の温度差に対応する
 電圧出力差 V_0 によって、液種を識別することを特徴とするガソリンの液種識別方法。
50

【請求項 9】

前記電圧出力差 V_0 が、前記パルス電圧を印加する前の初期電圧を所定回数サンプリングした平均初期電圧 V_1 と、前記パルス電圧を印加した後のピーク電圧を所定回数サンプリングした平均ピーク電圧 V_2 との間の電圧差、すなわち、

$$V_0 = V_2 - V_1$$

であることを特徴とする請求項 8 に記載のガソリンの液種識別方法。

【請求項 10】

予め記憶された所定の参照ガソリンについての、温度に対する電圧出力差の相関関係である検量線データーに基づいて、

前記被識別ガソリンについて得られた前記電圧出力差 V_0 によって、ガソリンの種別を識別することを特徴とする請求項 8 から 9 のいずれかに記載のガソリンの液種識別方法。 10

【請求項 11】

前記被識別ガソリンの測定温度における電圧出力差 V_0 についての液種電圧出力 V_{out} を、

所定の 値参考ガソリンについての測定温度における電圧出力差についての出力電圧と相関させて補正することを特徴とする請求項 8 から 10 のいずれかに記載のガソリンの液種識別方法。

【請求項 12】

前記液種識別センサーヒーターが、ヒーターと、識別用液温センサーとが絶縁層を介して積層された積層状液種識別センサーヒーターであることを特徴とする請求項 8 から 11 のいずれかに記載のガソリンの液種識別方法。 20

【請求項 13】

前記液種識別センサーヒーターのヒーターと識別用液温センサーとが、それぞれ金属フィンを介して、被識別ガソリンと接触するよう構成されていることを特徴とする請求項 8 から 12 のいずれかに記載のガソリンの液種識別方法。

【請求項 14】

前記液温センサーが、金属フィンを介して、被識別ガソリンと接触するよう構成されていることを特徴とする請求項 8 から 13 のいずれかに記載のガソリンの液種識別方法。

【請求項 15】

ガソリンの種類を識別する自動車のガソリンの液種識別装置であって、
ガソリンタンク内またはガソリンポンプの上流側または下流側に、請求項 1 から 7 のいずれかのガソリンの液種識別装置を配設したことを特徴とする自動車のガソリンの液種識別装置。 30

【請求項 16】

ガソリンの種類を識別する自動車のガソリンの液種識別方法であって、
ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、請求項 8 から 14 のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別することを特徴とする自動車のガソリンの液種識別方法。

【請求項 17】

自動車の排気ガスの低減装置であって、
ガソリンタンク内またはガソリンポンプの上流側または下流側に、請求項 1 から 7 のいずれかのガソリンの液種識別装置を配設するとともに、
前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、着火タイミングを調整する着火タイミング制御装置を備えることを特徴とする自動車の排気ガスの低減装置。 40

【請求項 18】

自動車の排気ガスの低減方法であって、
ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、請求項 8 から 14 のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別するとともに、 50

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、着火タイミングを調整することを特徴とする自動車の排気ガスの低減方法。

【請求項19】

自動車の排気ガスの低減装置であって、

ガソリンタンク内またはガソリンポンプの上流側または下流側に、請求項1から7のいずれかのガソリンの液種識別装置を配設するとともに、

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、ガソリンの圧縮率を調整するガソリン圧縮制御装置を備えることを特徴とする自動車の排気ガスの低減装置

【請求項20】

10

自動車の排気ガスの低減方法であって、

ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、請求項8から14のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別するとともに、

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、ガソリンの圧縮率を調整することを特徴とする自動車の排気ガスの低減方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

20

本発明は、ガソリンの種類を識別するガソリンの液種識別装置およびガソリンの液種識別方法に関する。

【0002】

【従来の技術】

従来より、自動車の排気ガスには、未燃焼のハイドロカーボン(HC)、NO_xガス、SO_xガスなどの汚染物質が含まれているため、これを低減するために、例えば、SO_xではガソリン中のSを除去したり、触媒によって未燃焼のHCを燃焼することによって低減することが行われている。

【0003】

すなわち、図14に示したように、自動車システム100は、空気をオートマックエレメント(フィルター)102を取り入れて、空気流量センサー104を介してエンジン106に送り込んでいる。また、ガソリンタンク108内のガソリンをガソリンポンプ110を介して、エンジン106に送り込んでいる。

30

そして、A/Fセンサー112の検出結果に基づいて、所定の理論空燃比となるように燃料噴射制御装置114でエンジン106での燃料の噴射が制御されるようになっている。

【0004】

そして、エンジン106からの排気ガスは、排気ガス中のハイドロカーボン(HC)が触媒装置116で燃焼された後、酸素濃度センサー118を介して、排気ガスとして排出されるようになっている。

【0005】

40

【発明が解決しようとする課題】

ところで、このような自動車システムにおいて、世界中で販売されているガソリンには、図15に示したように、蒸留性状の相違する(蒸発のし易さの相違する)様々なガソリンが存在する。

すなわち、図15は、ガソリンの蒸留性状を示すものであり、パーセントと温度との関係、例えば、横軸50% (T50) のところは、各種のガソリンがその50%が蒸発する温度は何かを示している。

【0006】

この図15に示したように、例えば、標準ガソリンNo. 8に対して、A2のガソリンは、最も重質な(蒸発しにくい)ガソリンを示し、No. 7のガソリンは、最も軽質な(蒸発し易い)ガソリンを示している。

50

従って、下記の表1に示したように、例えば、標準ガソリンNo. 3で理論空燃比となるように調整した自動車において、より重質なガソリンA2を用いた場合には、排気ガス中のHCの量は少ないが、特にエンジン、触媒装置が暖まっていないエンジン始動時において、トルクが不足しまうことになる。

【0007】

逆に、より軽質なガソリンNo. 7を用いた場合には、トルクは十分であるが、理論空燃比を上回ってしまい、特にエンジン、触媒装置が暖まっていないエンジン始動時において、排気ガス中のHCの量が多くなってしまい、環境に与える影響が大きく好ましくない。

【0008】

【表1】

10

調整ガソリン	使用ガソリン	トルク	排気ガス (HC)
No. 3	No. 3	○	○
No. 3	No. 2	×	○
No. 3	No. 7	○	×

【0009】

ところで、本発明者等は、特許文献1において、既に、通電により発熱体を発熱させ、この発熱により感温体を加熱し、発熱体から感温体への熱伝達に対し被識別流体により熱的影響を与え、感温体の電気抵抗に対応する電気的出力に基づき、被識別流体の種類を判別する流体識別方法であって、発熱体への通電を周期的に行う方法を提案している。

20

【0010】

しかしながら、この流体識別方法では、発熱体への通電を周期的に行う（多パルスを行う）必要があるので、識別に時間を要することになり、瞬時に流体を識別することは困難である。また、この方法は、例えば、水と空気と油などの性状のがなり異なる物質に対して、代表値によって流体識別を行うことが可能であるが、性状のがなり近似した、上記のようなガソリン同士の正確で迅速な識別を行うことは困難である。

【0011】

【特許文献1】

30

特開平11-158561号公報（特に、段落【0042】～段落【0049】参照）
本発明は、このような現状に鑑み、蒸留性状の相違する様々な組成のガソリンについて、正確にしかも迅速にガソリンの種類を識別することの可能なガソリンの液種識別装置およびガソリンの液種識別方法を提供することを目的とする。

【0012】

また、本発明は、このようなガソリンの液種識別装置およびガソリンの液種識別方法を用いた自動車のガソリンの液種識別装置および自動車のガソリンの液種識別方法を提供することを目的とする。

さらに、本発明は、このようなガソリンの液種識別装置およびガソリンの液種識別方法を用いた、排気ガスを効率的に低減できるとともに、燃費を向上すること可能な自動車の排気ガスの低減装置および自動車の排気ガスの低減装置を提供することを目的とする。

40

【0013】

【課題を解決するための手段】

本発明は、前述したような従来技術における課題及び目的を達成するために発明なされたものであって、本発明のガソリンの液種識別装置は、ガソリンの種類を識別するガソリンの液種識別装置であって、

液種識別装置本体内に導入された被識別ガソリンを一時滞留させるガソリン液種識別室と

前記ガソリン液種識別室内に配設された液種識別センサーヒーターと、

前記液種識別センサーヒーターから一定間隔離間して、前記ガソリン液種識別室内に配設

50

された液温センサーとを備え、

前記液種識別センサーヒーターが、ヒーターと、該ヒーターの近傍に配設された識別用液温センサーとを備え、

前記液種識別センサーヒーターに、パルス電圧を所定時間印加して、前記ヒーターによって、前記ガソリン液種識別室内に一時滞留した被識別ガソリンを加熱し、前記識別用液温センサーの初期温度とピーク温度との間の温度差に対応する電圧出力差 V_0 によって、液種を識別するように構成した識別制御部を備えることを特徴とする。

【0014】

また、本発明のガソリンの液種識別方法は、ガソリンの種類を識別するガソリンの液種識別方法であって、

10

ヒーターと、該ヒーターの近傍に配設された識別用液温センサーとを備えた液種識別センサーヒーターに、パルス電圧を所定時間印加して、前記ヒーターによって、被識別ガソリンを加熱し、前記識別用液温センサーの初期温度とピーク温度との間の温度差に対応する電圧出力差 V_0 によって、液種を識別することを特徴とする。

【0015】

このように構成することによって、パルス電圧を所定時間印加するだけで良いので、短時間の加熱で、しかも、ガソリンを引火する温度に加熱することなく、正確かつ迅速にガソリンの種類を識別することが可能である。

20

すなわち、ガソリンの動粘度とセンサー出力との相関関係を利用し、自然対流を利用してあり、しかも、1パルスの印加電圧を利用しているので、正確かつ迅速にガソリンの種類を識別することが可能である。

【0016】

また、本発明は、前記電圧出力差 V_0 が、前記パルス電圧を印加する前の初期電圧を所定回数サンプリングした平均初期電圧 V_1 と、前記パルス電圧を印加した後のピーク電圧を所定回数サンプリングした平均ピーク電圧 V_2 との間の電圧差、すなわち、

$$V_0 = V_2 - V_1$$

であることを特徴とする。

【0017】

このように構成することによって、1パルスの印加電圧に対して、所定回数のサンプリングの平均値に基づいて、電圧出力差 V_0 を正確に得ることができるので、正確かつ迅速にガソリンの種類を識別することが可能である。

30

また、本発明のガソリンの液種識別装置は、前記識別制御部が、予め識別制御部に記憶された所定の参照ガソリンについての、温度に対する電圧出力差の相関関係である検量線データーに基づいて、

前記被識別ガソリンについて得られた前記電圧出力差 V_0 によって、ガソリンの種別を識別するように構成されていることを特徴とする。

【0018】

また、本発明のガソリンの液種識別方法は、予め記憶された所定の参照ガソリンについての、温度に対する電圧出力差の相関関係である検量線データーに基づいて、

40

前記被識別ガソリンについて得られた前記電圧出力差 V_0 によって、ガソリンの種別を識別することを特徴とする。

【0019】

このように構成することによって、予め記憶された所定の参照ガソリンについての、温度に対する電圧出力差の相関関係である検量線データーに基づいて、被識別ガソリンについて得られた電圧出力差 V_0 によって、ガソリンの種別を識別するので、より正確で迅速にガソリンの種別を識別することが可能である。

また、本発明のガソリンの液種識別装置は、前記識別制御部が、前記被識別ガソリンの測定温度における電圧出力差 V_0 についての液種電圧出力 V_{out} を、

所定の 値参照ガソリンについての測定温度における電圧出力差についての出力電圧と相関させて補正するように構成されていることを特徴とする。

50

【0020】

また、本発明のガソリンの液種識別方法は、前記被識別ガソリンの測定温度における電圧出力差 V_0 についての液種電圧出力 V_{out} を、

所定の 値参照ガソリンについての測定温度における電圧出力差についての出力電圧と相関させて補正することを特徴とする。

このように構成することによって、被識別ガソリンの測定温度における電圧出力差 V_0 についての液種電圧出力 V_{out} を、所定の 値参照ガソリンについての測定温度における電圧出力差についての出力電圧と相関させて補正するので、温度による電圧出力差 V_0 の影響をなくして、液種電圧出力 V_{out} をガソリンの性状とより正確に相関関係を付与することができ、さらに正確で迅速にガソリンの種別を識別することが可能である。 10

【0021】

また、本発明は、前記液種識別センサーヒーターが、ヒーターと、識別用液温センサーとが絶縁層を介して積層された積層状液種識別センサーヒーターであることを特徴とする。このように構成することによって、機械的動作を行う機構部分が存在しないので、経時劣化やガソリン中の異物などにより動作不良をひきおこすことなく、正確にかつ迅速にガソリンの液種体識別を行うことができる。

【0022】

しかも、センサー部を極めて小型に構成できるので、熱応答性が極めて良好で正確なガソリンの液種識別を行うことができる。

また、本発明は、前記液種識別センサーヒーターのヒーターと識別用液温センサーとが、それぞれ金属フィンを介して、被識別ガソリンと接触するように構成されていることを特徴とする。 20

【0023】

このように構成することによって、液種識別センサーヒーターのヒーターと識別用液温センサーとが、直接被識別ガソリンと接触しないので、経時劣化やガソリン中の異物などにより動作不良をひきおこすことなく、正確にかつ迅速にガソリンの液種体識別を行うことができる。

また、本発明は、前記液温センサーが、金属フィンを介して、被識別ガソリンと接触するように構成されていることを特徴とする。

【0024】

このように構成することによって、液温センサーが、直接被識別ガソリンと接触しないので、経時劣化やガソリン中の異物などにより動作不良をひきおこすことなく、正確にかつ迅速にガソリンの液種体識別を行うことができる。 30

また、本発明の自動車のガソリンの液種識別装置は、ガソリンの種類を識別する自動車のガソリンの液種識別装置であって、

ガソリンタンク内またはガソリンポンプの上流側または下流側に、前述のいずれかのガソリンの液種識別装置を配設したことを特徴とする。

【0025】

また、本発明の自動車のガソリンの液種識別方法は、ガソリンの種類を識別する自動車のガソリンの液種識別方法であって、 40

ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、前述のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別することを特徴とする。

【0026】

このように構成することによって、自動車において、正確かつ迅速にガソリンの種類を識別することが可能である。

また、本発明の自動車の排気ガスの低減装置は、ガソリンタンク内またはガソリンポンプの上流側または下流側に、前述のいずれかのガソリンの液種識別装置を配設するとともに、

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、着火タイミングを調整する着火タイミング制御装置を備えることを特徴とする。 50

【0027】

また、本発明の自動車の排気ガスの低減方法は、自動車の排気ガスの低減方法であって、ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、前述のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別するとともに、前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、着火タイミングを調整することを特徴とする。

【0028】

このように構成することによって、ガソリンの種類の識別結果に基づいて着火タイミングを調整することができるので、ガソリンの種類に応じて、適切な着火タイミングを得ることができる。

10

従って、特にエンジン、触媒装置が暖まっていないエンジン始動時においても、トルクが減少することなく、排気ガス中のHCの量も低減でき、しかも燃費の向上も図ることができる。

【0029】

また、本発明の自動車の排気ガスの低減装置は、ガソリンタンク内またはガソリンポンプの上流側または下流側に、前述のいずれかのガソリンの液種識別装置を配設するとともに、

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、ガソリンの圧縮率を調整するガソリン圧縮制御装置を備えることを特徴とする。

【0030】

また、本発明の自動車の排気ガスの低減方法は、自動車の排気ガスの低減方法であって、ガソリンタンク内またはガソリンポンプの上流側または下流側のガソリンを、前述のいずれかのガソリンの液種識別方法を用いて、ガソリンの種類を識別するとともに、

20

前記ガソリンの液種識別装置で識別されたガソリンの種類に基づいて、ガソリンの圧縮率を調整することを特徴とする。

【0031】

このように構成することによって、ガソリンの種類の識別結果に基づいてガソリンの圧縮率を調整することができるので、ガソリンの種類に応じて、適切なガソリンの圧縮率を得ることができる。

従って、特にエンジン、触媒装置が暖まっていないエンジン始動時においても、トルクが減少することなく、排気ガス中のHCの量も低減でき、しかも燃費の向上も図ることができる。

30

【0032】

【発明の実施の形態】

以下、本発明の実施の形態（実施例）を図面に基づいてより詳細に説明する。図1は、本発明のガソリンの液種識別装置の実施例の概略上面図、図2は、図1のA-A線での断面図、図3は、図1の図1の右側面図、図4は、図1の左側面図、図5は、図2の液種識別センサー装着状態を示す部分拡大断面図、図6は、液種識別センサーの断面図、図7は、液種識別センサーの薄膜チップ部の積層状態を示す部分拡大分解斜視図、図8は、本発明のガソリンの液種識別装置の実施例の概略回路構成図、図9は、本発明のガソリンの液種識別装置を用いた液種識別方法を示す時間-電圧の関係を示すグラフ、図10は、本発明のガソリンの液種識別装置を用いた液種識別方法を示す検量線を示すグラフ、図11は、本発明のガソリンの液種識別装置を用いた液種識別方法の出力補正方法を示すグラフである。

40

【0033】

図1および図2に示したように、本発明のガソリンの液種識別装置10は、液種識別装置本体12と、液種識別装置本体12の内部に形成された第1の流路14と、第2の流路16とを備えている。

図1の矢印で示したように、ガソリン流入口18から第1の流路14に流入した被識別ガソリンが、アルコール分検出室56を通過するようになっている。そして、被識別ガソリ

50

ンは、アルコール分検出室56を通過した後、第2の流路16に入り、ガソリン液種識別室20に一時滞留するよう構成されている。このガソリン液種識別室20には、その上部の略トラック形状の液種識別センサー用開口部22が形成されている。

【0034】

この液種識別センサー用開口部22には、図2に示したように、液種識別センサー24が接着されている。

図5に示したように、液種識別センサー24は、液種識別センサーヒーター25と、この液種識別センサーヒーター25から一定間隔離隔して配置された液温センサー28とを備えている。そして、これらの液種識別センサーヒーター25と、液温センサー28とは、モールド樹脂30によって一体的に形成されている。

10

【0035】

また、図6に示したように、この液種識別センサーヒーター25には、リード電極32と、薄膜チャップ部34とを備えている。また、液種識別センサーヒーター25には、モールド樹脂30から液種識別センサー用開口部22を介して、ガソリン液種識別室20内に突設して、被識別ガソリンと直接接触する金属製のフィン36を備えている。そして、これらのリード電極32と、薄膜チャップ部34と、フィン36とは、ホンディングワイヤー38にて相互に電気的に接続されている。

【0036】

一方、液温センサー28も、液種識別センサーヒーター25と同様な構成となっており、それぞれ、リード電極32と、薄膜チャップ部34と、フィン36、ホンディングワイヤー38を備えている。

20

図7に示したように、薄膜チャップ部34は、例えば、 Al_2O_3 からなる基板40と、 PT からなる温度センサー（感温体）42と、 SiO_2 からなる層間絶縁膜44と、 TaS iO_2 からなるヒーター（発熱体）46と、 Ni からなる発熱体電極48と、 SiO_2 からなる保護膜50と、 Ti/Au からなる電極パッド52とを順に積層した薄膜状のチャップから構成されている。

【0037】

なお、液温センサー28の薄膜チャップ部34も同様な構造であるが、ヒーター（発熱体）46を作用させずに、温度センサー（感温体）42のみを作用させるように構成している。

30

そして、この液種識別センサー24で、被識別ガソリンの液種が識別された後、被識別ガソリンは、ガソリン液種識別室20から、ガソリン排出口54を介して外部に排出されるようになっている。

【0038】

一方、ガソリン流入口18を介して第1の流路14に流入した被識別ガソリンは、その後、アルコール分検出室56にて一時滞留した状態で、アルコール検出センサー58によつて、ガソリンにアルコールが含まれる場合には、アルコール分が検出された後、アルコール分検出室56から第2の流路16のガソリン排出口54を介して排出されるようになっている。なお、このアルコール検出の詳細については、本実施例では省略する。

40

【0039】

また、図1および図2では、液種識別センサー24およびアルコール検出センサー58に接続される回路基板部材、これを被う蓋部材を省略している。

本発明のガソリンの液種識別装置10では、図8に示したような回路構成となっている。図8において、液種識別センサー24の液種識別センサーヒーター25の識別用液温センサー26と、液温センサー28とが、二つの抵抗64、66を介して接続されて、プリッジ回路68を構成している。そして、このプリッジ回路68の出力が、増幅器70の入力に接続されて、この増幅器70の出力が、識別制御部を構成するコンピュータ72の入力に接続されている。

【0040】

また、液種識別センサーヒーター25のヒーター74が、コンピュータ72の制御によつ

50

て印加電圧が制御されるようになっている。

このように構成されるガソリンの液種識別装置10では、以下のようにして、ガソリンの液種識別が行われる。

先ず、ガソリンの液種識別装置10の第1の流路14のガソリン流入口18から被識別ガソリンを流入させて、第2の流路16のガソリン液種識別室20一時滞留させた状態とする。

【0041】

そして、図8および図9に示したように、コンピュータ72の制御によって、液種識別センサーヒーター25のヒーター74に、パルス電圧Pを所定時間、この実施例の場合には、4秒間印加し、センシング部、すなわち、図8に示したように、センサーブリッジ回路68のアナログ出力の温度変化を測定する。
10

すなわち、図9に示したように、液種識別センサーヒーター25のヒーター74にパルス電圧Pを印加する前のセンサーブリッジ回路68の電圧差を、1秒間に所定回数、この実施例の場合には、256回サンプリングし、その平均値を平均初期電圧V1とする。この平均初期電圧V1の値は、識別用液温センサー26の初期温度に対応する。

【0042】

そして、図9に示したように、液種識別センサーヒーター25のヒーター74に、所定のパルス電圧P、この実施例では、10Vの電圧を4秒間印加する。次に、所定時間後、この実施例では、8秒後からの1秒間に所定回数、この実施例では、256回ピーク電圧をサンプリングした値を平均ピーク電圧V2とする。この平均ピーク電圧V2は、識別用液温センサー26のピーク温度に対応する。
20

【0043】

そして、電平均初期電圧V1と平均ピーク電圧V2との間の電圧差、すなわち、

$$V_0 = V_2 - V_1$$

から電圧出力差V0を得る。

そして、このような方法で、図10に示したように、予め所定の参照ガソリンについて、この実施例では、最も重質な（蒸発しにくい）ガソリンA2と、最も軽質な（蒸発し易い）ガソリンNO.7について、温度に対する電圧出力差の相関関係である検量線データーを得ておき、これを、識別制御部を構成するコンピュータ72に記憶させておく。
30

【0044】

そして、この検量線データーに基づいて、コンピュータ72において比例計算を行い、被識別ガソリンについて得られた電圧出力差V0によって、ガソリンの種別を識別するように構成されている。

具体的には、図11に示したように、被識別ガソリンの測定温度Tにおける電圧出力差V0についての液種電圧出力Voutを、所定の 値参照ガソリン（この実施例では、ガソリンA2とガソリンNO.7）についての測定温度における電圧出力差についての出力電圧と相関させて補正するようになっている。

【0045】

すなわち、図11(A)に示したように、検量線データーに基づいて、温度Tにおいて、ガソリンA2の電圧出力差V0-A2、ガソリンNO.7の電圧出力差V0-7、被識別ガソリンの電圧出力差V0-Sが得られる。
40

そして、図11(B)に示したように、この際の 値参照ガソリンの液種出力を、所定の電圧となるように、すなわち、この実施例では、ガソリンA2の液種出力を3.5V、ガソリンNO.7の液種出力を0.5Vとして、被識別ガソリンの液種電圧出力Voutを得ることによって、ガソリンの性状と相関を持たせることができるようにになっている。

【0046】

この被識別ガソリンの液種電圧出力Voutを、予め検量線データーに基づいて、コンピュータ72に記憶されたデータと比較することによって、ガソリンの液種識別を正確かつ迅速に（瞬時に）行うことが可能となる。

なお、以上のガソリンの液種識別方法は、自然対流を利用して、ガソリンの動粘度とセン

サー出力が相関関係を有している原理を利用してゐるものである。

【0047】

また、このようなガソリンの液種識別方法においては、図15に示したガソリンの蒸留性状において、蒸留性状T30～T70で行うとより相関関係があることがわかつてあり、望ましいものである。

図12は、このように構成されるガソリンの液種識別装置10を、自動車システムに適用した実施例を示す、図14と同様な概略図である。

【0048】

なお、図14と同じ構成部材には、同じ参考番号を付してその詳細な説明を省略する。この自動車システム100では、ガソリンタンク108内またはガソリンポンプ110の上流側に、ガソリンの液種識別装置10を配設している。
10

このガソリンの液種識別装置10によって、ガソリンタンク108内またはガソリンポンプ110の上流側または下流側（なお、この実施例では、説明の便宜上、上流側の場合を示した）のガソリンの液種識別を行つてガソリンの種類に応じて、制御装置120の制御によって、着火タイミング制御装置122によって、着火タイミングを調整するように構成されている。

【0049】

すなわち、例えば、軽質な（蒸発し易い）ガソリンN.O.7が識別された場合には、着火タイミングを早め、逆に、重質な（蒸発しにくい）ガソリンA2が識別された場合には、着火タイミングを遅めるように制御される。
20

これによつて、特にエンジン、触媒装置が暖まつていなければエンジン始動時においても、トルクが減少することなく、排気ガス中のHCの量も低減でき、しかも燃費の向上も図ることができる。

【0050】

図13は、このように構成されるガソリンの液種識別装置10を、自動車システムに適用した実施例を示す、図14と同様な概略図である。

なお、図14と同じ構成部材には、同じ参考番号を付してその詳細な説明を省略する。この自動車システム100では、ガソリンタンク108内またはガソリンポンプ110の上流側に、ガソリンの液種識別装置10を配設している。

【0051】

このガソリンの液種識別装置10によって、ガソリンタンク108内またはガソリンポンプ110の上流側または下流側（なお、この実施例では、説明の便宜上、上流側の場合を示した）のガソリンの液種識別を行つてガソリンの種類に応じて、制御装置120の制御によって、ガソリン圧縮制御装置124によって、ガソリンの圧縮率を調整するように構成されている。
30

【0052】

すなわち、例えば、軽質な（蒸発し易い）ガソリンN.O.7が識別された場合には、圧縮率を低くし、逆に、重質な（蒸発しにくい）ガソリンA2が識別された場合には、圧縮率を高めるように制御される。

これによつて、特にエンジン、触媒装置が暖まつていなければエンジン始動時においても、トルクが減少することなく、排気ガス中のHCの量も低減でき、しかも燃費の向上も図ることができる。
40

【0053】

以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されることはなく、例えば、パルス電圧P、サンプリング回数などは適宜変更することができるなど本発明の目的を逸脱しない範囲で種々の変更が可能である。

【0054】

【発明の効果】

本発明によれば、パルス電圧を所定時間印加するだけで良いので、短時間の加熱で、しかも、ガソリンを引火する温度に加熱することなく、正確かつ迅速にガソリンの種類を識別
50

することが可能である。

すなわち、ガソリンの動粘度とセンサー出力との相関関係を利用し、自然対流を利用してあり、しかも、1パルスの印加電圧を利用しているので、正確かつ迅速にガソリンの種類を識別することが可能である。

【0055】

また、本発明によれば、1パルスの印加電圧に対して、所定回数のサンプリングの平均値に基づいて、電圧出力差 V_0 を正確に得ることができるので、正確かつ迅速にガソリンの種類を識別することが可能である。

また、本発明によれば、予め記憶された所定の参考ガソリンについての、温度に対する電圧出力差の相関関係である検量線データーに基づいて、被識別ガソリンについて得られた電圧出力差 V_0 によって、ガソリンの種別を識別するので、より正確で迅速にガソリンの種別を識別することが可能である。10

【0056】

また、本発明によれば、被識別ガソリンの測定温度における電圧出力差 V_0 についての液種電圧出力 V_{out} を、所定の 値参考ガソリンについての測定温度における電圧出力差についての出力電圧と相関させて補正するので、温度による電圧出力差 V_0 の影響をなくして、液種電圧出力 V_{out} をガソリンの性状とより正確に相関関係を付与することができ、さらに正確で迅速にガソリンの種別を識別することが可能である。

【0057】

また、本発明によれば、機械的動作を行う機構部分が存在しないので、経時劣化やガソリン中の異物などにより動作不良をひきおこすことがなく、正確にかつ迅速にガソリンの液種体識別を行うことができる。20

しかも、センサー部を極めて小型に構成できるので、熱応答性が極めて良好で正確なガソリンの液種識別を行うことができる。

【0058】

また、本発明によれば、液種識別センサーヒーターのヒーターと、識別用液温センサーと、液温センサーとが、直接被識別ガソリンと接触しないので、経時劣化やガソリン中の異物などにより動作不良をひきおこすことがなく、正確にかつ迅速にガソリンの液種体識別を行うことができる。

また、本発明によれば、自動車において、正確かつ迅速にガソリンの種類を識別することができるとともに、ガソリンの種類の識別結果に基づいて着火タイミングを調整することができるので、ガソリンの種類に応じて、適切な着火タイミングを得ることができる。30

【0059】

また、本発明によれば、自動車において、正確かつ迅速にガソリンの種類を識別することができるとともに、ガソリンの種類の識別結果に基づいてガソリンの圧縮率を調整することができるので、ガソリンの種類に応じて、適切なガソリンの圧縮率を得ることができます。

従って、特にエンジン、触媒装置が暖まっていないエンジン始動時においても、トルクが減少することなく、排気ガス中のHCの量も低減でき、しかも燃費の向上も図ることができるなどの幾多の顕著で特有な作用効果を奏する極めて優れた発明である。40

【図面の簡単な説明】

【図1】図1は、本発明のガソリンの液種識別装置の実施例の概略上面図である。

【図2】図2は、図1のA-A線での断面図である。

【図3】図3は、図1の図1の右側面図である。

【図4】図4は、図1の左側面図である。

【図5】図5は、図2の液種識別センサー装着状態を示す部分拡大断面図である。

【図6】図6は、液種識別センサーの断面図である。

【図7】図7は、液種識別センサーの薄膜チップ部の積層状態を示す部分拡大分解斜視図である。

【図 8】図 8 は、本発明のガソリンの液種識別装置の実施例の概略回路構成図である。

【図 9】図 9 は、本発明のガソリンの液種識別装置を用いた液種識別方法を示す時間一電圧の関係を示すグラフである。

【図 10】図 10 は、本発明のガソリンの液種識別装置を用いた液種識別方法を示す検量線を示すグラフである。

【図 11】図 11 は、図 10 は、本発明のガソリンの液種識別装置を用いた液種識別方法の出力補正方法を示すグラフである。

【図 12】図 12 は、本発明のガソリンの液種識別装置 10 を、自動車システムに適用した実施例を示す、図 14 と同様な概略図である。

【図 13】図 13 は、本発明のガソリンの液種識別装置 10 を、自動車システムに適用した実施例を示す、図 14 と同様な概略図である。 10

【図 14】図 14 は、従来の自動車システムの概略図である。

【図 15】図 15 は、ガソリンの蒸留性状を示すグラフである。

【符号の説明】

1 0	液種識別装置	
1 2	液種識別装置本体	
1 4	第 1 の流路	
1 6	第 2 の流路	
1 8	ガソリン流入口	
2 0	ガソリン液種識別室	20
2 2	液種識別センサー用開口部	
2 4	液種識別センサー	
2 5	液種識別センサーヒーター	
2 6	識別用液温センサー	
2 8	液温センサー	
3 0	モールド樹脂	
3 2	リード電極	
3 4	薄膜チップ部	
3 6	フィン	
3 8	ホンディングワイヤー	30
4 0	基板	
4 4	層間絶縁膜	
4 8	発熱体電極	
5 0	保護膜	
5 2	電極パッド	
5 4	ガソリン排出口	
5 6	アルコール分検出室	
5 8	アルコール検出センサー	
6 4	抵抗	
6 8	センサーブリッジ回路	40
7 0	増幅器	
7 2	コンピュータ	
7 4	ヒーター	
1 0 0	自動車システム	
1 0 4	空気流量センサー	
1 0 6	エンジン	
1 0 8	ガソリンタンク	
1 1 0	ガソリンポンプ	
1 1 2	センサー	
1 1 4	燃料噴射制御装置	50

116 触媒装置
 118 酸素濃度センサー
 120 制御装置
 122 着火タイミング制御装置
 124 ガソリン圧縮制御装置
 P パルス電圧
 T 測定温度
 V0 電圧出力差
 V1 電平均初期電圧
 V2 平均初期電圧
 Vout 液種電圧出力

10

【図1】

【図2】

【図 3】

【図 4】

【図 5】

【図 6】

【図7】

【図8】

【図9】

【図10】

【图 1-1】

【図 1 2】

【 1 3 】

【图 1-4】

【 15 】

薦留性狀

フロントページの続き

(51)Int.Cl.⁷G 01 N 25/08
// C 10 L 1/06

F I

G 01 N 25/08
F 02 P 5/15
C 10 L 1/06

テーマコード(参考)

X

(72)発明者 川 西 利 明

埼玉県上尾市原市1333の2 三井金属鉱業株式会社総合研究所内

(72)発明者 山 岸 喜代志

埼玉県上尾市原市1333の2 三井金属鉱業株式会社総合研究所内

F ターム(参考) 2G040 AB08 AB11 BA06 BA24 CB02 DA02 DA12 EA02 EB02 EC02

GA05 GA07 XA05

3E083 AA01 AD13

3G022 EA01 GA00

3G084 BA17 BA22 DA02 DA10 EA05 EA11 EB25 FA14

3G092 AA12 AB04 AB05 BA08 DD00 EA08 EB01 FA18 FA24 HB05X