12.EfficientNet

2019年由Google Brain提出,论文地址: <u>EfficientNet: Rethinking Model</u> <u>Scaling for Convolutional Neural Networks</u>

论文提出了一种新的模型缩放方法,它使用一个简单而高效的复合系数来从depth, width, resolution 三个维度放大网络,不会像传统的方法那样任意缩放网络的维度,基于神经结构搜索技术可以获得最优的一组参数(复合系数)。

图43 Compound Scaling

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7 imes 7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

图44 EfficientNet 网络结构

图45 MBConv Block