

XOR Problem

SVM Solution

$$X_1 = (1,1)^t, y_1 = +1$$

 $X_2 = (-1,-1)^t, y_2 = +1$
 $X_3 = (-1,1)^t, y_3 = -1$
 $X_4 = (1,-1)^t, y_4 = -1$

$$k(X_i, X_j) = (X_i \cdot X_j + 1)^2$$

Wolfe Dual:

$$Max L(\vec{\alpha}) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} k(X_{i}, X_{j}) + \sum_{i} \alpha_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \forall i$$
$$\alpha_i \ge 0, \quad \forall i$$

From symmetry
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha$$

$$L = -16\alpha^2 + 4\alpha$$

$$\frac{dL}{d\alpha} = -32\alpha + 4$$

$$\frac{dL}{d\alpha} = 0 \implies \alpha = \frac{1}{8}$$

$$b = -\sum_{i} \alpha_{i} y_{i} k(X_{i}, X_{j}) + y_{j}$$
 for any j , s.t. $\alpha_{j} \neq 0$

$$b=0.$$

The Classifier,
$$g(X) = \sum_{i} \alpha_{i} y_{i} k(X_{i}, X) + b = 0$$

 $g(X) = x_{1}x_{2} = 0.$

The XOR problem in the original x_1-x_2 feature space is shown at the left; the two red patterns are in category ω_1 and the two black ones in ω_2 . These four training patterns x are mapped to a six-dimensional space by $1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2$ and x_2^2 . In this space, the optimal hyperplane is found to be $g(x_1, x_2) = x_1x_2 = 0$ and the margin is $\sqrt{2}$. A two-dimensional projection of this space is shown at the right. The hyperplanes through the support vectors are $\sqrt{2}x_1x_2 = \pm 1$, and correspond to the hyperbolas $x_1x_2 = \pm 1$ in the original feature space, as shown.