Digital Image Processing (CSE/ECE 478)

Lecture-8: Image Enhancement in Frequency Domain – FT of sampled functions, DFT

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

- Tutorial: Fourier Series and Transforms
- Quiz-1: Wednesday, 9.00 am 9.45 am, Room: H-205
 - Syllabus: Up to today's lecture
 - Format: Derivations and Numericals

Fourier Series

$$g(t) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi nt}{T}}$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-i\frac{2\pi nt}{T}} dt$$

Fourier Transform vs Series

Fourier Series

What if x(t) is non-periodic?

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi nt}{T}}$$

https://i.stack.imgur.com/fKznF.jpg

Fourier Transform

Fourier Transform

$$X(\omega) = \int_{t=-\infty}^{t=\infty} x(t)e^{-i\omega t}dt$$
 $\omega = 2.11$

Inverse Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\omega = \infty} X(\omega) e^{i\omega t} d\omega$$

Fourier Transform (G&W version)

Fourier Transform

$$F(\mu) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi\mu t}dt$$

Inverse Fourier Transform

$$f(t) = \int_{-\infty}^{\infty} F(\mu)e^{j2\pi\mu t}d\mu$$

FT of box function

$$f(t) = \begin{cases} A & y - \frac{W}{2} \leq t \leq \frac{W}{2} \\ 0 & \text{otherwise} \end{cases}$$

FT of box function

a b c

FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to infinity in both directions.

(Some) Properties of FT

- 1				,	1
		Name:	Condition:	Property:	
	1	Amplitude scaling	$f(t) \leftrightarrow F(\omega)$, constant K	$Kf(t) \leftrightarrow KF(\omega)$	
	2	Addition	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega), \cdots$	$f(t) + g(t) + \cdots \leftrightarrow F(\omega) + G(\omega) + \cdots$	
	3	Hermitian	Real $f(t) \leftrightarrow F(\omega)$	$F(-\omega) = F^*(\omega)$	
	4	Even	Real and even $f(t)$	Real and even $F(\omega)$	2
	5	Odd	Real and odd $f(t)$	Imaginary and odd $F(\omega)$	2 [[
	6	Symmetry	$f(t) \leftrightarrow F(\omega)$	$F(t)\leftrightarrow 2\pi f(-\omega)$]
	7	Time scaling	$f(t) \leftrightarrow F(\omega)$, real s	$f(st) \leftrightarrow \frac{1}{ s } F(\frac{\omega}{s})$	4
	8	Time shift	$f(t) \leftrightarrow F(\omega)$	$f(t-t_o)\leftrightarrow F(\omega)e^{-j\omega t_o}$	7
	9	Frequency shift	$f(t) \leftrightarrow F(\omega)$	$f(t)e^{j\omega_o t} \leftrightarrow F(\omega - \omega_o)$	
	10	Modulation	$f(t) \leftrightarrow F(\omega)$	$f(t)\cos(\omega_o t)\leftrightarrow \frac{1}{2}F(\omega-\omega_o)+\frac{1}{2}F(\omega+\omega_o)$	
	11	Time derivative	Differentiable $f(t) \leftrightarrow F(\omega)$	$rac{df}{dt} \leftrightarrow j\omega F(\omega)$	
	12	Freq derivative	$f(t) \leftrightarrow F(\omega)$	$-jtf(t)\leftrightarrow \frac{d}{d\omega}F(\omega)$]
	13	Time convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t) * g(t) \leftrightarrow F(\omega)G(\omega)$	2
	14	Freq convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t)g(t) \leftrightarrow \frac{1}{2\pi}F(\omega) * G(\omega)$]
	15	Compact form	Real $f(t)$	$f(t) = rac{1}{2\pi} \int_0^\infty 2 F(\omega) \cos(\omega t + \angle F(\omega))d\omega$	
	16	Parseval, Energy W	$f(t) \leftrightarrow F(\omega)$	$W \equiv \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$	_

)⁽²⁾:∦-7() (2):-f₍₁⁄

Unit Impulse Function

Impulse $(\delta(t))$ = Derivative of step

$$\delta(t) = 0, \text{ for } t \neq 0.$$

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{+\infty} \delta(t) dt = 1$$

FT of impulse function

Impulse: Sifting Property

$$\int_{a}^{b} \delta(t)dt = \int_{a}^{b} a < 0 < b$$
 otherwise

Impulse: Sifting Property

$$\int_{a}^{b} \delta(t)dt = \begin{cases} 1, & a < 0 < b \\ 0, & \text{otherwise} \end{cases}$$

$$\int_{a}^{b} \delta(t) \cdot f(t)dt$$

a < 0 < b otherwise

Time-shifted Impulse: Sifting Property

Time-shifted impulse

Time-shifted Impulse: Sifting Property

Time-shifted impulse

$$\int_{a}^{b} \delta(t-T) \cdot f(t)dt = \begin{cases} a < T < b \\ otherwise \end{cases}$$

FT of impulse function

$$\int_{a}^{b} \delta(t) \cdot f(t) dt = \int_{a}^{b} \delta(t) \cdot f(0) dt$$

$$= f(0) \cdot \int_{a}^{b} \delta(t) dt$$

$$= \begin{cases} f(0), & a < 0 < b \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{cases} f(t) = \delta(t - T) \\ -j\omega \end{cases}$$

$$\chi(\omega) = e^{-j\omega T}$$

FT of impulse function

Time-shifted Impulse

Time-shifted impulse

Sifting Property

$$\int_{a}^{b} \delta(t-T) \cdot f(t)dt = \begin{cases} f(T), & a < T < b \\ 0, & otherwise \end{cases}$$

FT of time-shifted impulse

$$f(t) = \delta(t - a)$$

$$\mathcal{F}[\delta(t-a)] = F(\mu) = e^{-j2\pi\mu a}$$

Symmetry property of FT

- $f(t) \leftrightarrow F(\mu)$
- $F(t) \leftrightarrow f(-\mu)$

FT of complex exponential

FI Of Complex exponential
$$\delta(t-a) \longleftrightarrow e^{-j\omega a} \qquad e^{-j2\pi\mu a}$$

$$\delta(t-a) \longleftrightarrow e^{-j2\pi\mu a}$$

$$e^{-j2\pi t} \longleftrightarrow \delta(-\mu-a)$$

$$e^{j2\pi t} \longleftrightarrow \delta(-\mu-m)$$

$$e^{j2\pi t} \longleftrightarrow \delta(\mu-m)$$

FT of a periodic function

$$s_{\Delta T}(t) = \sum_{n=0}^{\infty} c_n e^{\frac{j2\pi nt}{\Delta T}}$$

$$c_n = \frac{1}{\Delta T} \int_{-\frac{\Delta T}{2}}^{\frac{\Delta T}{2}} s_{\Delta T}(t) e^{\frac{-j2\pi nt}{\Delta T}} dt$$

$$\mathcal{F}(s_{\Delta T}(t)) = \sum_{n} c_n \delta(\mu - \frac{n}{\Delta T})$$

 $n=-\infty$

FT of impulse train

$$\mathcal{F}(s_{\Delta T}(t)) = \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} \delta(\mu - \frac{n}{\Delta T})$$

Sampling

Sampling = f(t) x Impulse Train

FT of sampled function

$$f(t) \leftrightarrow F(\mu)$$
 $-\mu_{m} m_{n}$

$$\tilde{F}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

FT of sampled function: properties

- Continuous
- Periodic (copies of f(t)'s FT)
- NOTE: FT is continuous

References & Fun Reading/Viewing

- GW DIP textbook, 3rd Ed.,
 - -4.2.4
 - -4.2.5
 - -4.3.1
 - 4.3.2 (FT of sampled functions)
- http://www.thefouriertransform.com/
- A visual introduction to Fourier Transform: https://www.youtube.com/watch?v=spUNpyF58BY
- Fourier Transform, Fourier Series and Frequency Spectrum: https://www.youtube.com/watch?v=r18Gi8lSkfM