TMA4268 Statistical Learning

Module 6: Solution sketches

Thiago G. Martins, Department of Mathematical Sciences, NTNU

Spring 2022

For the least square estimator, the solution can be found in the first session here.

For the maximum likelihood estimator, the solution can be found here.

```
library(ISLR) # Package with data for an Introduction to S
             # Learning with Applications in R
# Load Credit dataset
data(Credit)
# Check column names
names(Credit)
## [1] "ID" "Income"
                               "Limit"
                                           "Rating"
                                                       "Ca
## [7] "Education" "Gender"
                                           "Married"
                               "Student"
                                                       "E:
# Check dataset shape
dim(Credit)
## [1] 400 12
head(Credit)
```

##

1

333

```
# Exclude 'ID' column
credit data <- subset(Credit, select=-c(ID))</pre>
# Counting the dummy variables as well
credit_data_number_predictors <- 11</pre>
# Take a look at the data
head(credit_data)
```

						0-			
##	1	14.891	3606	283	2	34	11	Male	1
##	2	106.025	6645	483	3	82	15	Female	Υe

Income Limit Rating Cards Age Education Gender Studen

4 71 ## 3 104.593 7075 514 11 Male

3 36 ## 4 148.924 9504 681 11 Female 2 68 ## 5 55.882 4897 357 16 Male

6 80.180 8047 569 4 77 10 Male Balance

```
Selection
(best_subset_method=regsubsets(Balance~.,credit_data,nvmax=by Forward Stepwise Selection
(regfit.fwd=regsubsets(Balance~.,credit_data,nvmax=credit_data)
Backward Stepwise Selection
(regfit.fwd=regsubsets(Balance~.,credit_data,nvmax=credit_data)
and Hybrid Stepwise Selection
(regfit.fwd=regsubsets(Balance~.,credit_data,nvmax=credit_data)
```

Similar analysis as previous exercise, simply replace Best Subset

library(glmnet) # Package Lasso and Elastic-Net Regularized
Generalized Linear Models

```
x train <- model.matrix(Balance~.,credit data training)[,-:
y train <- credit data training$Balance
x test <- model.matrix(Balance~., credit data testing)[,-1]
y test <- credit data testing$Balance
ridge_mod <- glmnet(x_train,y_train,alpha=0)</pre>
set.seed(1)
cv.out=cv.glmnet(x_train, y_train,alpha=0)
plot(cv.out)
```

```
lasso_mod <- glmnet(x_train,y_train,alpha=1)
set.seed(1)
cv.out=cv.glmnet(x_train, y_train,alpha=1)
plot(cv.out)</pre>
```


Income

Rating ## Cards

Education

Limit

Age

```
x <- model.matrix(Balance~.,credit_data)[,-1]</pre>
credit_pca <- prcomp(x, center = TRUE, scale. = TRUE)</pre>
print(credit_pca)
## Standard deviations (1, .., p=11):
    [1] 1.66007642 1.26685832 1.05356810 1.04926273 1.0032
##
## [7] 0.97830708 0.90714714 0.63722533 0.51174012 0.0461
##
## Rotation (n \times k) = (11 \times 11):
##
                                 PC1
                                               PC2
                                                             P
```

-0.586332930 0.017502630 -0.02435173

-0.586751867 0.014971105 -0.0046307

-0.019086978 -0.008549632 0.4790057

-0.122783390 -0.071116603 0.10718849

0.026797471 0.096557225 -0.4754183

```
library(pls)
set.seed(1)

pcr_model <- pcr(Balance~., data=credit_data_training,scale)
validationplot(pcr_model,val.type="MSEP")</pre>
```



```
library(pls)
set.seed(1)

plsr_model <- plsr(Balance~., data=credit_data_training,scavalidationplot(plsr_model,val.type="MSEP")</pre>
```

