Diseño de pavimentos rígidos Método AASHTO 93 en Excel

Rhonner Ramírez

JT Escuela

17 de marzo de 2022

1 Particularidad de la ecuación final de diseño

- 1 Particularidad de la ecuación final de diseño
- 2 Fundamentos del diseño en Excel

- 1 Particularidad de la ecuación final de diseño
- Fundamentos del diseño en Excel
- 3 Desviación estándar normal en base a la confiabilidad en Excel

- Particularidad de la ecuación final de diseño
- Pundamentos del diseño en Excel
- 3 Desviación estándar normal en base a la confiabilidad en Excel
- Ejemplo aplicativo

- 1 Particularidad de la ecuación final de diseño
- Pundamentos del diseño en Excel
- 3 Desviación estándar normal en base a la confiabilidad en Excel
- Ejemplo aplicativo
- Ejercicio propuesto

- 1 Particularidad de la ecuación final de diseño
- Pundamentos del diseño en Excel
- 3 Desviación estándar normal en base a la confiabilidad en Excel
- Ejemplo aplicativo
- Ejercicio propuesto
- Conclusiones

Ecuación final de diseño

$$\log W_{18} = Z_R S_0 + 7,35 \log(\mathbf{D} + 1) - 0,06 + \frac{\log[\Delta PSI/(4,5 - 1,5)]}{1 + 1,624 \times 10^7/(\mathbf{D} + 1)^{8,46}} + (4,22 - 0,32p_t) \log \left\{ \frac{S_c C_d(\mathbf{D}^{0,75} - 1,132)}{215,63J[\mathbf{D}^{0,75} - 18,42/(E_c/k)^{0,25}]} \right\}$$

D en pulgadas (in)

¿Puedes despejar D en la ecuación?

Fundamentos del diseño en Excel

Ecuación final de diseño

$$\log W_{18} = Z_R S_0 + 7,35 \log(\mathbf{D} + 1) - 0,06 + \frac{\log[\Delta PSI/(4,5 - 1,5)]}{1 + 1,624 \times 10^7/(\mathbf{D} + 1)^{8,46}} + (4,22 - 0,32p_t) \log \left\{ \frac{S_c C_d(\mathbf{D}^{0,75} - 1,132)}{215,63J[\mathbf{D}^{0,75} - 18,42/(E_c/k)^{0,25}]} \right\}$$

Fundamentos del diseño en Excel

Ecuación final de diseño

$$\log W_{18} = Z_R S_0 + 7,35 \log(\mathbf{D} + 1) - 0,06 + \frac{\log[\Delta PSI/(4,5 - 1,5)]}{1 + 1,624 \times 10^7/(\mathbf{D} + 1)^{8,46}} + (4,22 - 0,32p_t) \log \left\{ \frac{S_c C_d(\mathbf{D}^{0,75} - 1,132)}{215,63J[\mathbf{D}^{0,75} - 18,42/(E_c/k)^{0,25}]} \right\}$$

Artificio

$$0 = Z_R S_0 + 7,35 \log(\mathbf{D} + 1) - 0,06 + \frac{\log[\Delta PSI/(4,5-1,5)]}{1 + 1,624 \times 10^7/(\mathbf{D} + 1)^{8,46}} + (4,22 - 0,32p_t) \log\left\{\frac{S_c C_d(\mathbf{D}^{0,75} - 1,132)}{215,63J[\mathbf{D}^{0,75} - 18,42/(E_c/k)^{0,25}]}\right\} - \log W_{18}$$

Artificio (continuación)

$$f(D) = Z_R S_0 + 7,35 \log(\mathbf{D} + 1) - 0,06 + \frac{\log[\Delta PSI/(4,5 - 1,5)]}{1 + 1,624 \times 10^7/(\mathbf{D} + 1)^{8,46}} + (4,22 - 0,32\rho_t) \log\left\{\frac{S_c C_d(\mathbf{D}^{0,75} - 1,132)}{215,63J[\mathbf{D}^{0,75} - 18,42/(E_c/k)^{0,25}]}\right\} - \log W_{18}$$

Desviación estándar normal en base a la confiabilidad en Excel (

Una automatización importante adicional no muy comentada en libros de texto...

Confiabilidad, probabilidad de falla y desviación estándar normal

$$p = 1 - R$$

 $Z_R = INV.NORM(1 - R, 0, 1) = INV.NORM(p, 0, 1)$

Donde:

- R Confiabilidad
- p Probabilidad de falla
- Z_R Desviación estándar normal

Flujograma de diseño en Excel

Ejemplo

Diseñe un pavimento rígido de una sola capa por el método AASHTO 93 en Excel. Los datos del tráfico y suelo subrasante son los siguientes:

$$ESAL = W_{18} = 9 \times 10^5$$

 $k = 64 \text{ pci}$

Ejemplo
Datos adicionales:

Variable	Símbolo	Valor
Módulo de elasticidad	E_c	$3,6 imes 10^6$ psi
Módulo de ruptura	S_c	615 <i>psi</i>
Coeficiente de transferencia de carga	J	3,2
Coeficiente de drenaje	C_d	1,0
Cambio de serviciabilidad	ΔPSI	2,10
Desviación estándar normal	Z_R	-0,842
Error estándar combinado	S_0	0,35

Solución

Ejercicio propuesto

Diseñe un pavimento rígido de una sola capa por el método AASHTO 93 en Excel. Los datos del tráfico y suelo subrasante son los siguientes:

$$ESAL = W_{18} = 9 \times 10^5$$
$$k = 64 \text{ pci}$$

Ejercicio propuesto

Datos adicionales:

Variable	Símbolo	Valor
Módulo de elasticidad	E_c	$3,6 imes 10^6$ psi
Módulo de ruptura	S_c	615 <i>psi</i>
Coeficiente de transferencia de carga	J	3,2
Coeficiente de drenaje	C_d	1,0
Cambio de serviciabilidad	ΔPSI	2,10
Confiabilidad	R	90 %
Error estándar combinado	S_0	0,35

Preguntas

Hora de responder algunas preguntas...

Conclusiones

- 1 La ecuación final de diseño es una ecuación en la que no se puede despejar el espesor D.
- 2 La herramienta Solver de Excel facilita la solución de la ecuación final de diseño.
- 3 La desviación estándar normal es un parámetro que depende de la confiabilidad y que puede ser obtenido mediante la función INV.NORM(1-R,0,1).
- A mayor confiabilidad ↑, mayor espesor ↑ y menor probabilidad de falla ↓.

Número de ejes equivalentes	<i>W</i> ₁₈ ↑	
Módulo de reacción de la subrasante	<i>k</i> ↓	
Confiabilidad	R ↑	$D\uparrow$
Resistencia del concreto	$f_c^{'}\downarrow$	
Cambio de serviciabilidad	$\Delta PSI \downarrow$	

Referencias

American Association of State Highway and Transportation Officials [AASHTO]. (1993).
 AASHTO guide for design of pavement structures. AASHTO.

Referencias

- Rondón, H. A. & Reyes, F. A. (2015). Pavimentos: Materiales, contrucción y diseño.
 Editorial Macro & Ecoe Ediciones.
- Huang, Y. H. (2004). Pavement Analysis and Design. Pearson.
- Ministerio de Transportes y Comunicaciones [MTC]. (2014). *Manual de carreteras: Suelos, geología, geotecnia y pavimentos*. MTC.
- Ministerio de Vivienda Construcción y Saneamiento [MVCS]. (2012). CE. 010 Pavimentos urbanos. MVCS.