Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2005.
df

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	OXY	0_3	PM
0	2005- 11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	14.
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.
2	2005- 11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	14.
3	2005- 11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	15.
4	2005- 11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	5.
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	5.
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.
236997	2006- 01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	4.
236998	2006- 01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	5.
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.
237000	237000 rows × 17 columns										
4	1000 ^ 17	COIUII	11113								
4											

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20070 entries, 5 to 236999
Data columns (total 17 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             20070 non-null object
 1
    BEN
             20070 non-null float64
 2
    CO
             20070 non-null float64
 3
    EBE
             20070 non-null float64
 4
    MXY
             20070 non-null float64
 5
             20070 non-null float64
    NMHC
 6
    NO_2
             20070 non-null float64
 7
    NOx
             20070 non-null float64
 8
    OXY
             20070 non-null float64
 9
    0 3
             20070 non-null float64
 10
    PM10
             20070 non-null float64
 11
    PM25
             20070 non-null float64
 12
    PXY
             20070 non-null float64
 13
    SO 2
             20070 non-null float64
 14
    TCH
             20070 non-null float64
 15
    TOL
             20070 non-null float64
 16 station 20070 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 2.8+ MB
```

```
In [7]:
```

```
data=df[['TCH', 'SO_2', 'PM25']]
data
```

Out[7]:

	тсн	SO_2	PM25
5	1.38	10.39	17.600000
22	1.29	6.94	6.020000
25	1.45	6.20	10.260000
31	1.38	10.60	21.870001
48	1.29	6.89	5.350000
236970	1.28	7.13	6.380000
236973	1.33	10.94	10.270000
236979	1.31	26.65	0.860000
236996	1.28	7.06	1.490000
236999	1.30	11.07	2.110000

20070 rows × 3 columns

Line chart

In [8]:

```
data.plot.line(subplots=True)
```

Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [9]:

data.plot.line()

Out[9]:

<AxesSubplot:>

Bar chart

In [10]:

b=data[0:50]

In [11]:

b.plot.bar()

Out[11]:

<AxesSubplot:>

Histogram

In [12]:

data.plot.hist()

Out[12]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [13]:

data.plot.area()

Out[13]:

<AxesSubplot:>

Box chart

In [14]:

data.plot.box()

Out[14]:

<AxesSubplot:>

Pie chart

In [16]:

```
b.plot.pie(y='PM25' )
```

<AxesSubplot:ylabel='PM25'>

Scatter chart

In [17]:

```
data.plot.scatter(x='PM25' ,y='S0_2')
```

Out[17]:

<AxesSubplot:xlabel='PM25', ylabel='S0_2'>

In [18]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 20070 entries, 5 to 236999
Data columns (total 17 columns):
 # Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype	
0	date	20070 non-null	object	
1	BEN	20070 non-null	float64	
2	CO	20070 non-null	float64	
3	EBE	20070 non-null	float64	
4	MXY	20070 non-null	float64	
5	NMHC	20070 non-null	float64	
6	NO_2	20070 non-null	float64	
7	NOx	20070 non-null	float64	
8	OXY	20070 non-null	float64	
9	0_3	20070 non-null	float64	
10	PM10	20070 non-null	float64	
11	PM25	20070 non-null	float64	
12	PXY	20070 non-null	float64	
13	S0_2	20070 non-null	float64	
14	TCH	20070 non-null	float64	
15	TOL	20070 non-null	float64	
16	station	20070 non-null	int64	
<pre>dtypes: float64(15), int64(1), object(1)</pre>				

memory usage: 2.8+ MB

```
In [19]:
```

```
df.describe()
```

Out[19]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000
mean	1.923656	0.720657	2.345423	5.457855	0.179282	66.226924
std	2.019061	0.549723	2.379219	5.495147	0.152783	40.568197
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.690000	0.400000	0.950000	1.930000	0.090000	36.602499
50%	1.260000	0.580000	1.480000	3.800000	0.150000	60.525000
75%	2.510000	0.880000	2.950000	7.210000	0.220000	89.317499
max	26.570000	8.380000	29.870001	71.050003	1.880000	419.500000
4						>

In [20]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [21]:

sns.pairplot(df1[0:50])

Out[21]:

<seaborn.axisgrid.PairGrid at 0x1f1a19f5880>

In [23]:

```
sns.distplot(df1['PM10'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]:

<AxesSubplot:xlabel='PM10', ylabel='Density'>

In [24]:

sns.heatmap(df1.corr())

Out[24]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [25]:
```

```
In [26]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [27]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[27]:

LinearRegression()

In [28]:

```
lr.intercept_
```

Out[28]:

28078953.562257644

In [29]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[29]:

	Co-efficient
BEN	-9.534329
СО	39.995397
EBE	-13.644591
MXY	3.903344
NMHC	75.785405
NO_2	0.134611
NOx	-0.277371
OXY	3.049895
O_3	0.009189
PM10	0.048081
PXY	2.947113
SO_2	0.184869
тсн	66.848427
TOL	-0.661424

In [30]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[30]:

<matplotlib.collections.PathCollection at 0x1f1af3ad970>

ACCURACY

```
8/4/23, 9:59 AM
                                             madrid 2005 - Jupyter Notebook
 In [31]:
 lr.score(x_test,y_test)
 Out[31]:
 0.2814926859369915
 In [32]:
 lr.score(x_train,y_train)
 Out[32]:
 0.31357804533999745
 Ridge and Lasso
 In [33]:
 from sklearn.linear_model import Ridge,Lasso
 In [34]:
 rr=Ridge(alpha=10)
 rr.fit(x_train,y_train)
 Out[34]:
 Ridge(alpha=10)
 Accuracy(Ridge)
 In [35]:
 rr.score(x_test,y_test)
```

```
Out[35]:
0.28138194302671393
In [36]:
rr.score(x_train,y_train)
Out[36]:
0.3133587604071677
In [37]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[37]:
```

Lasso(alpha=10)

```
In [38]:
```

```
la.score(x_train,y_train)
```

Out[38]:

0.06383146639556181

Accuracy(Lasso)

```
In [39]:
la.score(x_test,y_test)
Out[39]:
0.06585478293735003
```

Accuracy(Elastic Net)

```
en.intercept_
```

Out[42]:

28079049.89809796

In [43]:

prediction=en.predict(x_test)

```
In [44]:
en.score(x_test,y_test)
Out[44]:
```

Evaluation Metrics

```
In [45]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
36.80409153704738
```

36.80409153704738 1541.142825495358 39.257391985400126

0.17213950569078307

Logistic Regression

```
In [46]:
from sklearn.linear_model import LogisticRegression

In [47]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
```

```
target_vector=df[ 'station']
In [48]:
```

```
feature_matrix.shape
Out[48]:
```

(20070, 14)

```
In [49]:
target_vector.shape
```

Out[49]: (20070,)

In [50]:

```
from sklearn.preprocessing import StandardScaler
```

```
In [51]:
fs=StandardScaler().fit_transform(feature_matrix)
In [52]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[52]:
LogisticRegression(max_iter=10000)
In [53]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [54]:
prediction=logr.predict(observation)
print(prediction)
[28079006]
In [55]:
logr.classes_
Out[55]:
array([28079006, 28079024, 28079099], dtype=int64)
In [56]:
logr.score(fs,target_vector)
Out[56]:
0.879023418036871
In [57]:
logr.predict_proba(observation)[0][0]
Out[57]:
0.9998967601812779
In [58]:
logr.predict_proba(observation)
Out[58]:
```

Random Forest

array([[9.99896760e-01, 3.21124597e-30, 1.03239819e-04]])

```
In [59]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [60]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[60]:

RandomForestClassifier()

```
In [61]:
```

In [62]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[62]:

In [63]:

```
grid_search.best_score_
```

Out[63]:

0.8684603271751554

In [64]:

```
rfc_best=grid_search.best_estimator_
```

In [65]:

Conclusion

Accuracy

Linear Regression: 0.31357804533999745

Ridge Regression:0.3133587604071677

Lasso Regression:0.06585478293735003

ElasticNet Regression:0.17213950569078307

Logistic Regression:0.879023418036871

Random Forest: 0.0.8684603271751554

Logistic Regression is suitable for this dataset