Задача А. Диофантово уравнение

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.25 секунд Ограничение по памяти: 256 мегабайт

Даны натуральные числа a, b и c. Решите в целых числах уравнение ax+by=c. Среди множества решений следует выбрать такое, где x имеет наименьшее неотрицательное значение.

Формат входных данных

Первая строка содержит три целых числа a и b и c $(1 \le a, b, c \le 10^9)$.

Формат выходных данных

Выведите искомые x и y через пробел. Если решения не существует, выведите одну строку «Impossible».

стандартный ввод	стандартный вывод
1 2 3	1 1
10 6 8	2 -2

Задача В. Армия математиков

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У вас есть n математиков. Пусть интеллектуальность i-го математика равна a_i . Для некоторого k назовём i_1,i_2,\ldots,i_k сходкой математиков, если $i_1 < i_2 < i_3 < \ldots < i_k$ и $\gcd(a_{i_1},a_{i_2},\ldots,a_{i_k}) > 1$. Эффективность этой сходки равна $k \cdot \gcd(a_{i_1},a_{i_2},\ldots,a_{i_k})$.

Найдите сумму эффективностей всех сходок математиков. Так как это число может быть очень большим, выведите его по модулю 1000000007 ($10^9 + 7$).

Формат входных данных

Первая строка содержит целое число $n\ (1\leqslant n\leqslant 200000)$ — количество математиков.

Вторая строка содержит n целых чисел a_1, a_2, \ldots, a_n $(1 \leqslant a_i \leqslant 1000000)$ — интеллектуальности математиков.

Формат выходных данных

Выведите одно число — ответ.

Примеры

стандартный ввод	стандартный вывод
3	12
3 3 1	
4	39
2 3 4 6	

Замечание

В первом примере сходки — 1, 2, 1, 2, так что ответ $1 \cdot 3 + 1 \cdot 3 + 2 \cdot 3 = 12$

Задача С. Чиселки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Даны два числа n и k.

Определим q_i . Изначально есть число i. Вы можете изменять его двумя способами:

- 1. Умножить текущее число на какое-то простое $p \leqslant n$.
- 2. Разделить текущее число на какое-то простое $p \leqslant n$ (если делится).

 q_i — количество различных чисел, которые можно получить, если вы можете выполнить эти операции в сумме не более k раз.

Найдите
$$\sum_{i=1}^{n} i \cdot q_i$$
 по модулю $10^9 + 7$.

Формат входных данных

Первая строка содержит два целых числа $n, k \ (1 \leqslant n, k \leqslant 10^6).$

Формат выходных данных

Выведите одно число — ответ на задачу.

стандартный ввод	стандартный вывод
3 1	23
4 2	82

Задача D. Странная функция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив из n целых чисел a_1, a_2, \ldots, a_n , определим

$$f(l,r) = \gcd(a_l, a_{l+1}, ..., a_r) \cdot \left(\left(\sum_{i=l}^r a_i \right) - \max(a_l, a_{l+1}, ..., a_r) \right).$$

Формат входных данных

Первая строка содержит целое число n ($1 \le n \le 50000$). Вторая строка содержит n целых чисел $a_1, a_2, \dots a_n \ (-10^6 \le a_i \le 10^6)$.

Формат выходных данных

Выведите $\max_{1 \leqslant l \leqslant r \leqslant n} f(l,r)$.

стандартный ввод	стандартный вывод
4	15
10 4 5 6	
5	144
7 12 24 6 5	

Задача Е. Чиселки и странные функции

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Есть функция f(n), где f(1) = 1, а для $n \le 2$, f(n) равно количеству различных упорядоченных пар положительных целых чисел (x, y) таких, что x + y = n и gcd(x, y) = 1. Число gcd(a, b) равно наибольшему общему делителю a и b.

Есть функция $g(n) = \sum_{d|n} f(n/d)$. Суммирование проводится по всем положительным целым числам d, делящим n.

Определим $F_k(n)$ так:

$$F_k(n) = egin{cases} f(g(n)) & \text{для } k=1 \\ g(F_{k-1}(n)) & \text{для } k>1 \text{ и } k \text{ mod } 2=0 \\ f(F_{k-1}(n)) & \text{для } k>1 \text{ и } k \text{ mod } 2=1 \end{cases}$$

Найдите $F_k(n)$ по модулю 10000007.

Формат входных данных

В единственной строке находятся два целых числа $n\ (1\leqslant n\leqslant 10^{12})$ и k $(1\leqslant k\leqslant 10^{12})$.

Формат выходных данных

Выведите одно целое число — значение $F_k(n)$ по модулю 100000007.

Примеры

стандартный ввод	стандартный вывод
7 1	6
10 2	4

Замечание

В первом примере есть 6 различных упорядоченных пар (1,6), (2,5), (3,4), (4,3), (5,2) и (6,1), удовлетворяющих x+y=7 и gcd(x,y)=1. Поэтому f(7)=6. В итоге, $F_1(7)=f(g(7))=f(f(7)+f(1))=f(6+1)=f(7)=6$.

Задача F. Кто не будет решать математику — пойдёт красить забор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Миша не любит математику. Из-за этого он не смог решить сложную задачу на Всероссе, не стал призёром и не получил 150000 руб. от Москвы. Чтобы хоть как-то сводить концы с концами Мише приходится подрабатывать, а именно — красить заборы.

Мише очень нравятся зебры, поэтому он пытается найти их везде где только можно. Миша дложен покрасить забор на даче и ему выдали неограниченное количество белой и чёрной краски. Забор является последовательностью досок, некоторые из которых уже покрашены в белый или чёрный цвет, а остальные ещё нет. Менять цвета уже покрашенных досок запрещается, а для остальных Миша может выбрать цвета по своему усмотрению. В данной задаче забор представляется строкой, состоящей из символов «0», «1» и «?», означающих белую доску, чёрную доску и ещё не окрашенную доску соответственно.

Миша считает, что забор похож на зебру, если существуют целые числа a и b ($a>0,b\geqslant 0$), такие что первые a досок забора являются белыми, следующие b досок являются чёрными, затем снова идут a белых досок, далее опять b чёрных и так далее, при этом последний блок может быть не полным. Например, заборы, описываемые строками «01101» (a=1,b=2), «000» (b=0,a может быть любым целым положительным числом) и «00110011» (a=2,b=2) являются зебрами, а «01001» и «101010» — нет.

Помогите Мише раскрасить оставшиеся доски таким образом, чтобы забор являлся зеброй для каких-нибудь чисел a и b ($a > 0, b \ge 0$). Поскольку Миша мечтает покрасить в чёрный цвет всё что он видит, то если подходящих раскрасок забора несколько, выберите среди них ту, в которой как можно больше чёрных досок. Среди таких раскрасок разрешается выбрать любую.

Формат входных данных

Входные данные содержат единственную строку s ($1 \le |s| \le 300000$), состоящую из символов «0», «1» и «?».

Формат выходных данных

Если невозможно раскрасить ещё не покрашенные доски забора таким образом, чтобы он был похож на зебру, то выведите —1 в единственной строке выходных данных. В противном случае выведите какое-нибудь решение с максимальным возможным количеством чёрных досок. Решение выводите как строку из символов «0» и «1», означающих белую и чёрную доску соответственно.

стандартный ввод	стандартный вывод
0?	01
0110?	01101
10?	-1
011011	011011
101	-1

Задача G. k-суммы

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Неизвестный массив состоит из n целых чисел. k-сумма этого массива получается разделением его на подотрезки длины k и суммированием чисел в каждом из подотрезков. Если n не делится на k нацело, то последний подотрезок содержит меньше чем k слагаемых. Другими словами, k-сумма — массив, который можно представить как $(x[1]+\ldots+x[k]), (x[k+1]+\ldots+x[2k])$ и так далее, где последняя сумма, содержащая x[n], может состоять из менее чем k слагаемых. Например, 5-сумма массива из 13 элементов состоит трех сумм (сумма элементов 1-5, сумма элементов 6-10 и сумма элементов 11-13). Очевидно, что нельзя однозначно восстановить изначальный массив по одной его k-сумме, но это становится возможным, если известны несколько его k-сумм для разных k.

Для заданного n и множества k_1, k_2, \ldots, k_m , определите сколько элементов изначального массива можно было бы восстановить, если бы были известны все слагаемые каждой k-суммы. Не составляет труда показать, что количество восстановленных элементов не зависит от самих слагаемых.

Формат входных данных

Первая строка входных данных содержит два целых числа n и m — длина изначального массива и количество k-сумм ($1 \le n \le 10^9$, $1 \le m \le 10$).

Вторая строка содержит m различных целых чисел k_1, k_2, \ldots, k_m $(1 \le k_i \le n)$.

Формат выходных данных

Выведите единственное целое число — количество элементов изначального массива, которые можно было бы однозначно восстановить, если были бы известны все слагаемые каждой k-суммы.

стандартный ввод	стандартный вывод
3 1	1
2	
6 2	2
2 3	
123456789 3	10973937
5 6 9	