

Machine Learning

Makine Öğrenmesi – 3

Overall Table of Contents

General Content

- Supervised Learnig Algorithm - Classisfication
- Supervised Algorithm practices Python application
- Projects Solutions

Classification 'a Giriş (Sınıflandırma)

- **⊘** Supervised Learning in 2. tipi olarak Classification

!! Regresyonda target hedef değişkenin sayısal değerlerini; sınıflandırmada ise target değişkenin ait olduğu sınıfları (ya da "etiketi") tahmin eden modelleri oluşturmaya çalışırız.

Classification 'a Giriş

- Classification un hayattaki kullanım alanları
- Binary Classification

Boy	Kilo	Cinsiyet
160	65	K
170	85	E
185	85	Е
188	82	Е
155	50	К
161	58	К
180	68	Е
157	52	К
170	66	K
	160 170 185 188 155 161 180	160 65 170 85 185 85 188 82 155 50 161 58 180 68 157 52

Supervised Learning

Classification 'a Giriş

- **@** Binary Classification
- ≪ Yakınlık» kavramı 'ara mesafe ölçümü'

Classification 'a Giriş

K Nearest Neighbour-KNN Algoritması

K-EN YAKIN KOMŞU Algoritması

Supervised Learning

K Nearest Neighbour-KNN Algoritması

© Öklid mesafesi

K Nearest Neighbour-KNN

Algoritması

- **€** KNN avantajları
- KNN dezavantajları

X

kNN Algorithm

Point () is O. ● 3.1 → 3rd NN therefore predicted to be of class ... O·· ● 4.5 → 4th NN Next, find the nearest neighbours by

ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace. on the classes of the k nearest neigh-bours. Here, the labels were predicted based on the k=3 nearest neighbours.

NEAREST NEIGHBORS

K Nearest Neighbour-KNN Algoritması

Decision boundary kavramı

Evaluation Metrics for Classification Problems Important (Performans Ölçütleri)

- Regresyon kriterleri nasıl olurdu burada?
- Confusion metrics kayramı

Regression

- Classification

		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP + FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN + FP)}$
		Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value TN (TN + FN)	Accuracy $TP + TN$ $TP + TN + FP + FP$

Supervised Learning

Evaluation Metrics for Classification Problems Confusion metrics kayramı: TN-FN-FP-TP

2-SINIFLI (CLASS) SINIFLANDIRMA MODELİ İÇİN HATA MATRİSİ

2-SINIFLI (CLASS) SINIFLANDIRMA MODELİ İÇİN HATA MATRİSİ

		Tahmin Edilen Sınıflar			
lar		Negatif (0)	Pozitif (1)		
Sinf	Negatif (0)	DN	YP		
ek	Pozitif (1)	YN	DP		
Gercek Sınıflar	- HILLAN	<u> </u>			

Evaluation Metrics for Classification Problems Confusion metrics kavramı: TN-FN-FP-TP

Actual

	0	1
0	30	12
1	8	56

SINIFLANDIRMA MODELLERİ İÇİN PERFORMANS DEĞERLENDİRME ÖLÇÜTLERİ

		Tahmin Edilen Sınıflar			
lar		Negatif (0)	Pozitif (1)		
erçek Sınıflar	Negatif (0)	DN	YP		
è	Pozitif (1)	YN	DP		
ē					

Doğruluk (Accuracy): Doğru tahmin edilen hedef değişkenlerin tüm hedef değişkenlerine oranıdır. Model hedef değişkenleri ne kadar doğrulukla tahmin ediyor?

Kesinlik (Precision): Doğru pozitif olarak tahmin edilen gözlemlerin tüm pozitif gözlemlere oranıdır. Doğru bir şekilde pozitif tahmin edilen gözlemlerin gerçekte ne kadarı doğrudur?

Duyarlılık (Recall): Doğru bir şekilde pozitif olarak tahmin edilen gözlemlerin ne kadar başarılı tahmin edildiğini gösterir.

F1 Skoru: Kesinlik (precission) ve Duyarlılığın (Recall) harmonik ortalamasıdır.

 $Doğruluk(Accuracy) = \frac{DP + DN}{DP + DN + YP + YN}$

 $Kesinlik (Precision) = \frac{DP}{DP + YP}$

 $Duyarlılık (Recall) = \frac{DP}{DP + YN}$

 $F1 = 2 * \frac{(Kesinlik * Duyarlılık)}{(Kesinlik * Duyarlılık)}$

All correctly predicted values (7)

All predicted values (10)

x 100 Accuracy = 70 %

Why is Accuracy <u>not</u> a good metric?

All correctly predicted values (60)

All predicted values (63)

Accuracy is very high, but missed 2 actual patient.

Evaluation Metrics for Classification Problems

⊘ Confusion metrics kavramı: TN-FN-FP-TP

Gerçek	Actual V	eri		Tahmin		
Boy	Kilo	Cinsiyet	Etiket	Tahmin Edilen Cinsiyet	Etiket	Hata Türü
170	75	E	0	E	0	DN
180	95	E	0	E	0	DN
160	50	K	1	K	1	DP
165	62	K	1	K	1	DP
167	88	K	1	Е	0	YN

Classification Error Metrics
Confusion Matrix 01
Classification Accuracy 02
Area Under ROC curve
Logarithmic Loss 04
F1 Score 05

Hata Matrisi		Tahmin Edilen Etiketler		
Negatif (0)		Pozitif (1)		
Gerçek/Aktüel Negatif (0) Veri Pozitif (1)		DN=2	YP=0	
		YN=1	DP=2	

	E	0.67	1.00	0.80	2
	K	1.00	0.67	0.80	3
micro av	vg	0.80	0.80	0.80	5
macro av	vg	0.83	0.83	0.80	5
weighted a	vg	0.87	0.80	0.80	5

Evaluation Metrics for Classification Problems

- ROC Curve (Receiver Operating Characteristics)
- **⊘** AUC Area (Area Under the Curve)
- **②** (ROC Eğrisi ve AUC Alanı)

AUC'un olabildiğinde yüksek olması (1'e yakın olmasını) istiyoruz AUC ne kadar yüksekse model o kadar negatif (0) durumları negatif; pozitif (1) durumları da pozitif öngörüyor demektir.

Do you have any questions?

Send it to us! We hope you learned something new.