Chapitre X Particules, interactions et phénoménologie

Sommaire

1	Les p	particules du modèle standard 2
	1.1	Les fermions
	1.2	Les bosons
2	Form	nalisme théorique et interactions
	2.1	Lagrangien et équation d'Euler-Lagrange
	2.2	Interaction électromagnétique
	2.3	Interaction électrofaible
	2.4	Mécanisme de Higgs et brisure spontanée de symétrie
	2.5	Interaction forte
3	Succ	ès et limites du modèle standard
	3.1	Succès
	3.2	Limites
4	Au-d	lelà du modèle standard
	4.1	La supersymétrie
	4.2	Modèles à deux doublets de Higgs
	4.3	L'extension supersymétrique minimale du modèle standard 23
5	Phén	noménologie des bosons de Higgs du MSSM
	5.1	Production de bosons de Higgs
	5.2	Désintégration de bosons de Higgs
	5.3	Désintégration des leptons tau
6	Cond	clusion

Ce chapitre présente le contexte dans lequel s'inscrit cette thèse. Le modèle standard est le cadre théorique en place en physique des particules. Il permet de décrire les objets fondamentaux qui composent l'Univers, les particules, ainsi que leurs interactions.

Les particules du modèle standard sont présentées dans la section 1. Le formalisme mathématique permettant de décrire leur comportement, faisant apparaître les forces fondamentales, est introduit dans la section 2. Le modèle standard ainsi construit propose une description de l'Univers à la fois précise et robuste.

Le boson de Higgs, dernière particule découverte à ce jour, a ainsi été postulé près de cinquante ans avant d'être observé. De nombreux succès, dont une présentation non exhaustive est proposée dans la section 3.1, couronnent ainsi le modèle standard. Cependant, malgré plusieurs décennies de prédictions correctement vérifiées, certaines observations montrent que le modèle standard ne saurait prétendre au titre de « théorie du tout ».

Ces limitations au modèle standard, dont certaines sont présentées dans la section 3.2, mènent à de nouveaux modèles dits « au-delà du modèle standard », dont il est question dans la section 4. Parmi eux se trouvent des modèles dit « à deux doublets de Higgs », c'est-à-dire avec un secteur de Higgs plus complexe, comme la supersymétrie.

Il existe plusieurs degrés de complexité dans ces nouveaux modèles, aussi seule l'extension supersymétrique minimale du modèle standard, ou MSSM, sera considérée pour l'analyse menée dans cette thèse. Dans le cadre du MSSM, de nouvelles particules existent et la phénoménologie de ces particules, présentée dans la section 5, motive le choix du type d'événements d'intérêt pour la recherche de cette nouvelle physique.

1 Les particules du modèle standard

Une particule est considérée comme fondamentale si elle ne possède pas de sous-structure observée à ce jour. Le modèle standard décrit le comportement de ces particules fondamentales qui peuvent être catégorisées selon plusieurs critères. Le premier d'entre eux est le « spin », une observable quantique intrinsèque aux particules. Les particules de spin demi-entier sont les fermions, celles de spin entier les bosons.

Figure X.1 – *Les particules fondamentales du modèle standard.*

1.1 Les fermions

Les fermions sont les particules fondamentales de spin demi-entier et suivent donc la statistique de Fermi-Dirac. Ainsi, deux fermions ne peuvent pas occuper le même état quantique, c'est-à-dire avoir chacun de leurs nombres quantiques égaux entre eux, comme exposé par le principe d'exclusion de Pauli. Le modèle standard comprend douze fermions constituant la matière, accompagnés de douze antifermions correspondants pour l'antimatière.

Les fermions peuvent se diviser d'une part en deux catégories, les quarks et les leptons, et d'autre part en trois catégories correspondant à trois « générations », comme illustré sur la figure X.1. La

première génération (quarks u et d, électron e^- et neutrino électronique v_e) correspond aux particules les plus communes; les deuxièmes et troisièmes générations contiennent des particules analogues, plus massives et instables.

1.1.1 Les quarks

Les quarks sont les fermions possédant une charge de couleur. Il existe deux quarks par génération, un quark de type up et un quark de type down, formant un doublet d'isospin faible 1. Il y a donc six quarks au total. Les quarks de type up (u, c et t) portent une charge électrique $+\frac{2}{3}e$ avec ela charge électrique élémentaire, les quarks de type down (d, s et b) une charge $-\frac{1}{3}e$. Les antiquarks possèdent une charge électrique opposée $(-\frac{2}{3}e$ et $+\frac{1}{3}e)$. Les quarks sont donc sensibles à l'interaction électromagnétique.

À l'instar de la charge électrique pour l'interaction électromagnétique, la « couleur »rend les quarks sensibles à l'interaction forte. La charge de couleur peut prendre trois valeurs orthogonales, nommées par convention rouge, verte et bleue, car les particules portant une charge de couleur ne sont pas stables à elles seules et se regroupent pour former des particules composites de charge de couleur nulle, ou de couleur « blanche ». C'est ce que l'on appelle le phénomène de « confinement de couleur », décrit dans la section 2.5.3.

Les particules composées de quarks sont les hadrons. Ces particules sont de couleur blanche, ce qui peut être obtenu de deux manières :

- par association d'un quark rouge, un vert et un bleu; il s'agit d'un « baryon ». Le proton (uud) et le neutron (udd) sont deux exemples de baryons.
- par association d'un quark et d'un antiquark; il s'agit d'un « méson ». En effet, un antiquark porte une « anticouleur ». Ainsi, un quark up (u) rouge et un antiquark down (\bar{d}) « antirouge » forment un pion chargé π^+ .

Enfin, comme tous les fermions, les quarks sont également sensibles à l'interaction faible. Les quarks sont ainsi les seules particules sensibles à toutes les interactions fondamentales décrites par le modèle standard.

1.1.2 Les leptons

Les leptons sont les fermions ne possédant pas de charge de couleur. Ils sont donc insensibles à l'interaction forte. En revanche, ils sont tous sensibles à l'interaction faible. Sur le même principe que pour les quarks, il y a un doublet d'isospin faible de deux leptons par génération, soit six leptons au total. Les leptons d'isospin faible haut sont l'électron (e^-), le muon (μ^-) et le tau (τ^-), ils portent une charge électrique -e (+e pour les antiparticules correspondantes). Les leptons d'isospin faible bas sont les neutrinos. Les neutrinos ne portent pas de charge électrique et interagissent donc uniquement par interaction faible, ce qui en fait des particules difficiles à détecter.

1.2 Les bosons

Les bosons sont les particules fondamentales de spin entier. Ils suivent la statistique de Bose-Einstein qui n'interdit pas la présence de plusieurs bosons ayant tous leurs nombres quantiques égaux entre eux, contrairement à la statistique de Fermi-Dirac.

Les bosons de spin 1 sont les bosons de jauge, ou bosons vecteurs, et sont les médiateurs des interaction fondamentales. Ainsi, le photon (γ) est le boson vecteur de l'interaction électromagnétique. Il est de masse nulle et est électriquement neutre. Les bosons W^+ , W^- et Z sont ceux de l'interaction faible. Le boson Z est électriquement neutre et de masse $m_Z = 91,19 \,\text{GeV}$, les bosons W portent une charge électrique de $\pm e$, ont une masse de $m_W=80,38\,\mathrm{GeV}$ et n'interagissent qu'avec les particules de chiralité ² gauche et les antiparticules de chiralité droite. Enfin, huit gluons (g) sont les médiateurs de l'interaction forte. Ils n'ont ni masse ni charge électrique, mais portent une charge de couleur

^{1.} L'isospin faible est un nombre quantique décrit dans la section 2.3.

^{2.} La chiralité est définie dans la section 2.3.

et une charge d'anticouleur. Un gluon peut donc être chargé « rouge et antibleu ». Si un tel gluon interagit avec un quark bleu, par conservation, ce quark est rouge après interaction.

Le boson de Higgs est de spin nul, il s'agit donc d'un boson scalaire. Ce boson est une conséquence du mécanisme de brisure spontanée de symétrie électrofaible, mécanisme donnant leurs masses aux particules. Ce mécanisme est présenté dans la section 2.4.

2 Formalisme théorique et interactions

Il ne suffit pas de lister les particules fondamentales pour obtenir un modèle, il faut également décrire leur comportement, c'est-à-dire leur évolution à travers le temps et l'espace. Pour cela, le modèle standard se base sur la théorie quantique des champs. Une particule n'est pas un « objet ponctuel » comme en mécanique classique, mais une excitation d'un champ quantique relativiste. Il s'agit alors de décrire l'évolution de ces excitations.

Les lois de la mécanique classique ne sauraient remplir ce rôle. Le comportement des particules fondamentales est obtenu par l'application des équations d'Euler-Lagrange au lagrangien du modèle standard. Afin de comprendre pourquoi ce formalisme mathématique permet effectivement d'obtenir l'évolution des champs quantiques relativistes décrivant les particules, la section suivante consiste en une brève introduction du lagrangien dans le cas de la mécanique classique, suivie d'une généralisation au cas du modèle standard.

2.1 Lagrangien et équation d'Euler-Lagrange

2.1.1 Lagrangien en mécanique Newtonienne

Considérons une particule de masse m, soumise à une force F, se déplaçant dans le temps le long d'une dimension x, d'un point A à t=0 à un point B à $t=\tau$, comme illustré sur la figure X.2.

Comme cela est enseigné dès les premiers cours de physique, la trajectoire de cette particule peut être déterminée à l'aide du principe fondamental de la dynamique, ou seconde loi de Newton, qui s'exprime simplement dans ce cas sous la forme

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = F. \tag{X.1}$$

Nous obtenons la position de la particule à tout instant.

Or, cette méthode ne permet pas de décrire le comportement des particules fondamentales. En effet, à leur échelle, la mécanique quantique prévaut et il n'est pas possible, lorsque l'on observe une particule à un point A puis à un point B, de déterminer la trajectoire exacte suivie par cette particule. La particule peut suivre la trajectoire déterminée avec la mécanique classique, c'est-à-dire celle de la figure X.2, comme toute autre trajectoire reliant A à B, comme illustré sur la figure X.3.

Si le principe fondamental de la dynamique tel que formulé par Newton ne tient plus dans le contexte de la mécanique quantique, il existe un autre principe physique toujours en place, la conservation de l'énergie. Dans le cas de la particule précédemment décrit, il s'agit de la somme de son énergie cinétique T et de son énergie potentielle V, c'est-à-dire

Figure X.2 – Une particule se déplace au cours du temps d'un point A à un point B le long d'une dimension x.

Figure X.3 – Variation de la trajectoire d'une particule se déplaçant au cours du temps d'un point A à un point B.

$$E = T + V = C^{\text{te}} \tag{X.2}$$

où T dépend uniquement de la vitesse de la particule et V uniquement de sa position. Il en va ainsi de même pour les moyennes temporelles de ces grandeurs,

$$E = \langle E \rangle = \langle T \rangle + \langle V \rangle = C^{\text{te}} \tag{X.3}$$

avec, en notant $\dot{x} = \frac{dx}{dt}$

$$\langle T \rangle = \frac{1}{\tau} \int_0^\tau T(\dot{x}(t)) \, \mathrm{d}t \,, \quad \langle V \rangle = \frac{1}{\tau} \int_0^\tau V(x(t)) \, \mathrm{d}t \,.$$
 (X.4)

Nous pouvons alors nous demander de quelle manière ces grandeurs sont modifiées lorsque la trajectoire suivie par la particule varie par rapport à la trajectoire déterminée par la mécanique Newtonienne. La variation de la valeur moyenne de l'énergie potentielle s'exprime

$$\frac{\delta \langle V \rangle}{\delta x(t')} = \frac{1}{\tau} \int_0^{\tau} \frac{\delta V(x(t))}{\delta x(t')} dt = \frac{1}{\tau} \int_0^{\tau} \frac{dV(x(t))}{dx(t)} \delta(t - t') dt = \frac{1}{\tau} \left. \frac{dV}{dx(t)} \right|_{t = t'} = -\frac{1}{\tau} F(x(t')) \tag{X.5}$$

car la force F est à V par $F=-\frac{\mathrm{d}V}{\mathrm{d}x}$. De même, l'énergie cinétique moyenne varie selon

$$\frac{\delta\langle T \rangle}{\delta x(t')} = \frac{1}{\tau} \int_0^{\tau} \frac{\delta T(\dot{x}(t))}{\delta x(t')} dt = \frac{1}{\tau} \int_0^{\tau} \frac{dT(\dot{x}(t))}{dx(t)} \delta'(t-t') dt = -\frac{1}{\tau} \int_0^{\tau} \delta(t-t') \frac{d}{dt} \left(\frac{dT(\dot{x}(t))}{d\dot{x}(t)} \right) dt
= -\frac{1}{\tau} \frac{d}{dt} \left(\frac{dT(\dot{x}(t))}{d\dot{x}(t)} \right) \Big|_{t=t'} = -\frac{1}{\tau} m \left. \frac{d^2 x}{dt^2} \right|_{t=t'}$$
(X.6)

car pour une particule de masse m, en mécanique newtonienne, $T = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2$.

Le long de la trajectoire classique, le principe fondamental de la dynamique est vérifié. Alors, les variations autour de la trajectoire classique sont reliées par

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = F \Leftrightarrow \frac{\delta\langle T \rangle}{\delta x(t')} = \frac{\delta\langle V \rangle}{\delta x(t')} \Leftrightarrow \frac{\delta}{\delta x(t')} (\langle T \rangle - \langle V \rangle) = 0. \tag{X.7}$$

Ainsi, la différence entre l'énergie cinétique et l'énergie potentielle du système étudié semble jouer un rôle particulier lorsque l'on s'intéresse aux différentes trajectoires possibles pour ce système. Définissons alors le lagrangien L du système étudié comme

$$L = T - V. (X.8)$$

Équation d'Euler-Lagrange

L'intégrale au cours du temps du lagrangien est appelée action et est définie comme

$$S = \int_0^{\tau} dt L. \tag{X.9}$$

Compte-tenu de l'équation (X.7), l'action vérifie pour la trajectoire classique

$$\frac{\delta S}{\delta x(t')} = 0, \qquad (X.10)$$

ce qui est connu sous le nom de principe de moindre action. Or,

$$\frac{\delta S}{\delta x(t')} = \int_0^{\tau} dt \left[\frac{\delta L}{\delta x(t)} \delta(t - t') + \frac{\delta L}{\delta \dot{x}(t)} \delta'(t - t') \right] = \frac{\delta L}{\delta x(t')} - \frac{d}{dt} \frac{\delta L}{\delta \dot{x}(t')}, \tag{X.11}$$

ce qui implique

$$\frac{\delta L}{\delta x(t')} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta L}{\delta \dot{x}(t')} = 0. \tag{X.12}$$

Cette équation est l'équation d'Euler-Lagrange et permet d'obtenir toutes les équations du mouvement du système, c'est-à-dire de décrire son évolution au cours du temps.

2.1.3 Lagrangien, champs et symétries

Généralisons le raisonnement précédent à un espace à une dimension temporelle et trois dimensions spatiales. À partir du lagrangien, il est possible de définir la densité lagrangienne $\mathcal L$ telle que

$$L = \int d^3x \, \mathcal{L} \,, \quad S = \int d^4x \, \mathcal{L} \tag{X.13}$$

où x désigne la coordonnée dans l'espace de Minkowski, c'est-à-dire l'espace-temps à quatre dimensions. Considérons maintenant une densité lagrangienne dépendant d'un champ $\phi(x)$ et de ses dérivées $\partial_{\mu}\phi(x)$. Alors,

$$S = \int d^4x \, \mathcal{L}(\phi(x), \partial_\mu \phi(x)) \tag{X.14}$$

et du principe de moindre action résultent les équations d'Euler-Lagrange pour \mathcal{L} ,

$$\frac{\delta S}{\delta \phi} = \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = 0. \tag{X.15}$$

Il s'agit à présent de déterminer la densité lagrangienne \mathcal{L} du modèle standard. Par la suite, nous nommerons la densité lagrangienne \mathcal{L} « lagrangien » dans un souci de praticité.

Un champ quantique peut subir une transformation de jauge locale. Une telle transformation doit laisser la physique inchangée, ainsi le lagrangien du modèle standard est construit pour être invariant sous les transformations de jauges locales du groupe de symétrie

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$
. (X.16)

De cette construction résultent les interactions fondamentales, discutées ci-après.

2.2 Interaction électromagnétique

Le lagrangien libre d'un fermion, c'est-à-dire le lagrangien décrivant le comportement d'un fermion seul, s'exprime

$$\mathcal{L}_{\text{fermion libre}} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi = i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi \tag{X.17}$$

où la notation « slash » pour un objet k signifie $k = \gamma^{\mu}k_{\mu}$, i est l'unité imaginaire (i $^2 = -1$), ψ le spineur de Dirac correspondant au champ fermionique, $\bar{\psi} = \psi^{\dagger}\gamma^{0}$ son adjoint de Dirac, ψ^{\dagger} étant l'adjoint de ψ , γ^{μ} les matrices de Dirac, définies dans l'annexe A, ∂_{μ} la dérivée partielle par rapport à la coordonnée μ dans l'espace-temps de Minkowski et m la masse de la particule considérée. Le terme $\gamma^{\mu}\partial_{\mu}$, par convention de sommation d'Einstein exposée dans l'annexe A, correspond à une somme sur les différentes valeur de μ .

Le lagrangien $\mathcal{L}_{\text{fermion libre}}$ est invariant sous une transformation globale du groupe $U(1)_{em}$ 3, c'està-dire lorsque l'on applique la transformation suivante au spineur ψ

$$\psi \to e^{iQ\alpha}\psi$$
 , $\bar{\psi} \to \bar{\psi}e^{-iQ\alpha}$ (X.18)

où $\alpha \in \mathbb{R}$ et Q est l'opérateur de charge électrique ⁴. En effet, sous une telle transformation,

$$\bar{\psi}\psi \to \bar{\psi}e^{-iQ\alpha}e^{iQ\alpha}\psi = \bar{\psi}\psi$$
 (X.19)

et

$$\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\rightarrow\bar{\psi}e^{-iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(e^{iQ\alpha}\psi\right)=\bar{\psi}e^{-iQ\alpha}e^{iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(\psi\right)+\bar{\psi}e^{-iQ\alpha}\gamma^{\mu}\partial_{\mu}\left(e^{iQ\alpha}\right)\psi=\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\quad(X.20)$$

car α ne dépend pas de l'espace-temps pour une transformation globale.

^{3.} Dans la notation $U(1)_{em}$, « em » signifie électromagnétique. Ce groupe n'apparaît pas dans l'équation (X.16) car nous ne traitons ici que de l'électromagnétisme. Le groupe $U(1)_Y$ est traité dans la section 2.3.

^{4.} Lorsque cet opérateur est appliqué à un champ quantique décrivant un fermion, il permet d'obtenir la valeur de la charge électrique du fermion.

En revanche, pour une transformation locale,

$$i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \rightarrow i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + ie^{-iQ\alpha}\bar{\psi}\gamma^{\mu}\partial_{\mu}\left(e^{iQ\alpha}\right)\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi \tag{X.21}$$

ce qui fait apparaître un terme supplémentaire, $\bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi$, provenant de la transformation du terme $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ de $\mathcal{L}_{\text{fermion libre}}$ qui brise ainsi l'invariance de jauge du lagrangien. Afin de rendre le lagrangien invariant sous les transformations locales du groupe $U(1)_{em}$, il est possible de remplacer la dérivée usuelle ∂_{μ} par la dérivée covariante D_{μ} , telle que

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - ieQA_{\mu} \tag{X.22}$$

où e est la charge électrique élémentaire et A_{μ} un champ de jauge nouvellement introduit, dont la transformation de jauge permet de supprimer le terme supplémentaire qui brise l'invariance de jauge du lagrangien. En effet, le champ A_{μ} se transforme tel que

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$
 (X.23)

Ainsi, en réécrivant le lagrangien du fermion de l'équation (X.17) avec la dérivée covariante,

$$\mathcal{L}'_{\text{fermion libre}} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi = \mathcal{L}_{\text{fermion libre}} + \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi, \tag{X.24}$$

le dernier terme se transforme en

$$\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi \to \bar{\psi}e^{-iQ\alpha}\gamma^{\mu}eQ\left(A_{\mu} + \frac{1}{e}\partial_{\mu}\alpha\right)e^{iQ\alpha}\psi = \bar{\psi}\gamma^{\mu}eQA_{\mu}\psi + \bar{\psi}\gamma^{\mu}Q\partial_{\mu}\alpha\psi \tag{X.25}$$

et le dernier terme obtenu compense exactement le terme brisant l'invariance de jauge dans l'équation (X.21).

Le nouveau terme introduit par l'utilisation de la dérivée covariante, $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$, correspond à l'interaction entre un fermion et le champ de jauge A_{μ} , dont l'intensité est directement proportionnelle à la charge électrique du fermion. Toutefois, le champ A_{μ} ne représente pas encore le photon en l'état, il faut permettre au photon de se propager librement. Pour cela, il faut introduire un terme cinétique qui soit invariant de jauge dans le lagrangien, ce qui peut se faire avec

$$\mathcal{L}_{\text{photon libre}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \tag{X.26}$$

avec $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Un terme de masse pour le champ A_{μ} devrait s'écrire sous la forme $\frac{1}{2}m^2A^{\mu}A_{\mu}$, ce qui n'est pas invariant de jauge. Par conséquent, le champ A_{μ} est de masse nulle.

Le lagrangien complet pour l'interaction électromagnétique ⁵ s'exprime alors

$$\mathcal{L}_{QED} = \underbrace{\bar{\psi} \left(i \cancel{D} - m \right) \psi}_{\text{fermions}} - \underbrace{\frac{1}{4} F_{\mu\nu} F^{\mu\nu}}_{\text{photons}} = \underbrace{\bar{\psi} \left(i \cancel{\partial} - m \right) \psi}_{\mathcal{L}_{\text{fermion libre}}} + \underbrace{\bar{\psi} \gamma^{\mu} e Q A_{\mu} \psi}_{\text{interaction}} - \underbrace{\frac{1}{4} F_{\mu\nu} F^{\mu\nu}}_{\mathcal{L}_{\text{photon libre}}}. \tag{X.27}$$

Le terme d'interaction dans ce lagrangien permet de « connecter » les fermions aux photons dans les diagrammes de Feynman, dont le principe est décrit dans l'annexe B. La « connexion » ainsi obtenue est nommée « vertex ». La structure du terme d'interaction, $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$, impose ainsi la présence au vertex d'un photon (A_{μ}) , d'un fermion entrant ou d'un antifermion sortant (ψ) et d'un fermion sortant ou d'un antifermion entrant $(\bar{\psi})$. Nous obtenons alors les diagrammes de la figure X.4.

Maintenir l'invariance de jauge locale à l'aide de la dérivée covariante fait émerger l'interaction électromagnétique dans le cas de l'invariance de jauge sous $U(1)_{em}$. Dans les sections suivantes, un raisonnement similaire est appliqué afin d'obtenir les interactions électrofaible et forte.

2.3 Interaction électrofaible

Le modèle standard décrit les interactions électromagnétiques et faible comme deux facettes d'une seule et même interaction qui les unifie, l'interaction électrofaible, notée « EW » pour electroweak. Une des raisons pour unifier ces deux forces provient du calcul de la section efficace de production de paire W⁺W⁻. Pour obtenir cette section efficace sans avoir de divergence, ce qui ne saurait

- (a) Un fermion f et un antifermion \bar{f} s'annihilent en un photon γ .
- **(b)** Un photon donne une paire de fermion et antifermion.
- **(c)** Un fermion interagit avec un photon.
- **(d)** Un antifermion interagit avec un photon.

Figure X.4 – Diagrammes de Feynman possibles à partir du terme $\bar{\psi}\gamma^{\mu}eQA_{\mu}\psi$ du lagrangien \mathcal{L}_{QED} .

Figure X.5 – Diagrammes de Feynman de production de paire W^+W^- à l'arbre.

représenter la réalité physique, il est nécessaire de considérer les diagrammes des figures X.5a, X.5b et X.5c. L'analogie entre les diagrammes X.5a et X.5c pousse ainsi à unifier les deux forces.

Nous avons vu précédemment que l'interaction électromagnétique repose sur l'invariance de jauge sous les transformations locale du groupe $U(1)_{em}$. Dans le cas de l'interaction électrofaible, ce groupe de symétrie est $SU(2)_L \times U(1)_Y$. Dans un premier temps, nous ne traiterons que le cas de $SU(2)_L$ avec les leptons et nous verrons toute la richesse supplémentaire de ce groupe par rapport à U(1). Ensuite, nous traiterons de $SU(2)_L \times U(1)_Y$, toujours avec les leptons. Nous verrons ensuite comment traiter les quarks, et nous obtiendrons alors une description de l'interaction électrofaible.

2.3.1 Symétrie $SU(2)_L$ et chiralité

Dans la notation $SU(2)_L$, L signifie « left » car l'interaction faible ne couple que les fermions de chiralité gauche et les antifermions de chiralité droite. Une des propriétés les plus importantes de l'interaction faible est de violer la symétrie de parité (P), ainsi que la symétrie CP où C correspond à la charge électrique. Dans les termes de couplage du lagrangien, un facteur γ^μ correspond à un couplage vectoriel, comme pour l'électromagnétisme. Un facteur $\gamma^\mu \gamma^5$ correspond quant à lui à un couplage vectoriel axial. Un facteur $\gamma^\mu (1-\gamma^5)$ somme ainsi un vecteur à un vecteur axial, ce qui implique une violation de la symétrie de parité. Or, il est possible de projeter un spineur ψ afin d'obtenir sa composante de chiralité gauche ψ_L à l'aide du projecteur chiral γ^5 ,

$$\psi_L = \frac{1}{2}(1 - \gamma^5)\psi. (X.28)$$

Pour les antiparticules décrites par $\bar{\psi} = \psi^{\dagger} \gamma^{0}$,

$$\overline{\psi_L} = (\psi_L)^{\dagger} \gamma^0 = \left(\frac{1}{2} (1 - \gamma^5) \psi\right)^{\dagger} \gamma^0 = \psi^{\dagger} \frac{1}{2} (1 - \gamma^5) \gamma^0 = \psi^{\dagger} \gamma^0 \frac{1}{2} (1 + \gamma^5) = \bar{\psi}_R, \tag{X.29}$$

d'où le couplage entre fermions de chiralité gauche et antifermions de chiralité droite.

L'introduction de la symétrie $SU(2)_L$ amène un nouveau nombre quantique, l'« isospin faible », noté I. Il se comporte mathématiquement comme le spin des particules, d'où son nom isospin. Les fermions de chiralité gauche sont rassemblés en doublet d'isospin faible $I=\frac{1}{2}$, les fermions de chiralité

^{5.} Aussi nommé QED pour Quantum Electro-Dynamics.

droite en singlets d'isospin faible I = 0. Ces derniers sont ainsi invariants sous les transformations de $SU(2)_L$, ce qui se traduit physiquement par une insensibilité à l'interaction faible.

Mis à part les neutrinos qui n'existent, dans le cadre actuel du modèle standard, qu'avec une chiralité gauche 6, les fermions peuvent être de chiralité droite ou gauche. Nous obtenons donc les représentations du tableau X.1.

I	Quarks gauches	Quarks droits	Leptons gauches	Leptons droits
$\frac{1}{2}$	$\begin{pmatrix} u_i \\ d_i \end{pmatrix}_{I}$	-	$\begin{pmatrix} u_i \\ \ell_i \end{pmatrix}_{_T}$	-
0	- -	$u_{i,R}, d_{i,R}$	- -	$\ell_{i,R}$

Tableau X.1 – Représentation des fermions selon leur chiralité et leur isospin faible. L'indice $i \in \{1,2,3\}$ correspond à la génération des particules. Ainsi, les symboles u_i , d_i , ℓ_i et v_i correspondent, respectivement, aux quarks d'isospin faible haut (u, c, t), d'isospin faible bas (d, s, b), aux leptons chargés (e, μ, τ) et aux neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$.

Symétrie SU(2) et interactions entre bosons

Afin d'alléger les notations, nous traitons ici du cas plus général d'un groupe de symétrie SU(2). Pour étendre les résultats à $SU(2)_L$, il suffit de se souvenir que les couplages ont uniquement lieu entre fermions de chiralité gauche et antifermions de chiralité droite. Procédons comme pour l'électromagnétisme et observons ce que l'invariance de jauge implique pour le lagrangien. Sous une transformation de SU(2), les spineurs se transforment selon

$$\psi \to e^{\frac{i}{2}\tau \cdot \alpha(x)}\psi$$
, $\bar{\psi} \to \bar{\psi}e^{-\frac{i}{2}\tau \cdot \alpha(x)}$ (X.30)

où $\alpha \in \mathbb{R}^3$ et τ est un vecteur dont les composantes τ_i sont les générateurs de $SU(2)^7$. Notons que l'équation (X.30) est l'analogue directe de l'équation (X.19).

Afin de simplifier les calculs qui suivent, nous ne considérerons que des transformations infinitésimales. En effet, SU(2) est un groupe non abélien. Cela signifie deux transformations successives aet b de ce groupe ne donnent pas le même résultat selon que l'on applique a puis b ou b puis a, c'està-dire $ab - ba \neq 0$. Ainsi, des termes supplémentaires apparaissent, ou plutôt ne se simplifient pas entre eux. Nous considérons donc les transformations précédentes sous leurs formes infinitésimales, c'est-à-dire au premier ordre en α ,

$$\psi \to \left(1 + \frac{\mathrm{i}}{2} \tau \cdot \alpha(x)\right) \psi, \quad \bar{\psi} \to \bar{\psi} \left(1 - \frac{\mathrm{i}}{2} \tau \cdot \alpha(x)\right).$$
 (X.31)

Les termes du lagrangien du fermion libre, introduit dans l'équation (X.17), se transforment alors comme

$$-m\bar{\psi}\psi \to -m\bar{\psi}\left(1 - \frac{\mathrm{i}}{2}\boldsymbol{\tau} \cdot \boldsymbol{\alpha}(x)\right)\left(1 + \frac{\mathrm{i}}{2}\boldsymbol{\tau} \cdot \boldsymbol{\alpha}(x)\right)\psi = -m\bar{\psi}\psi + \mathcal{O}(\alpha^2) \tag{X.32}$$

$$i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \rightarrow i\bar{\psi}\left(1 - \frac{i}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\gamma^{\mu}\partial_{\mu}\left(\left(1 + \frac{i}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\psi\right) = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\frac{1}{2}\boldsymbol{\tau}\cdot\gamma^{\mu}\partial_{\mu}\boldsymbol{\alpha}(x)\psi + \mathcal{O}(\alpha^{2})$$
(X.33)

ce qui fait apparaître, sur le même principe qu'avec l'interaction électromagnétique, un terme supplémentaire brisant l'invariance de jauge du lagrangien. Définissons une nouvelle dérivée covariante afin de rétablir l'invariance de jauge,

$$D_{\mu} = \partial_{\mu} - \frac{\mathrm{i}}{2} g_I \tau \cdot W_{\mu}(x) \,, \tag{X.34}$$

^{6.} Il n'y a à ce jour aucune raison pour les neutrinos de chiralité droite de ne pas exister. Cependant, ils n'interagissent pas avec la matière dans le cadre du modèle standard. Ainsi, il est possible de les retirer du modèle tout en conservant une description cohérente du comportement des particules.

^{7.} Les générateurs de SU(2) sont des matrices 2×2 s'identifiant aux matrices de Pauli σ_i définies dans l'annexe A. Toutefois, ces générateurs agissent dans le cas de $SU(2)_L$ sur les doublets d'isospin faible alors que les matrices de Pauli agissent sur le spin d'un fermion. Afin d'éviter les confusions, nous utiliserons donc la notation τ .

où l'on introduit g_I la constante de couplage d'isospin faible, ainsi que trois champs de jauge vectoriels $W_u^i(x)$, $i \in \{1,2,3\}$ se transformant tels que

$$W_{\mu} \rightarrow W_{\mu} + \frac{1}{g_I} \partial_{\mu} \alpha - (\alpha \wedge W_{\mu}).$$
 (X.35)

Dans ce cas, le lagrangien du fermion libre se réécrit sous la forme

$$\mathcal{L}'_{\text{fermion libre}} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}\psi - m\bar{\psi}\psi$$
$$= \mathcal{L}_{\text{fermion libre}} + \bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}\psi. \tag{X.36}$$

Ainsi, le terme supplémentaire du lagrangien se transforme tel que

$$\bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi\rightarrow\bar{\psi}\left(1-\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\left(\boldsymbol{W}_{\mu}+\frac{1}{g_{I}}\partial_{\mu}\boldsymbol{\alpha}-(\boldsymbol{\alpha}\wedge\boldsymbol{W}_{\mu})\right)\left(1+\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\right)\psi$$

$$=\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi-\bar{\psi}\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi+\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\frac{\mathrm{i}}{2}\boldsymbol{\tau}\cdot\boldsymbol{\alpha}(x)\psi$$

$$+\bar{\psi}\gamma^{\mu}\frac{1}{2}\boldsymbol{\tau}\cdot\partial_{\mu}\boldsymbol{\alpha}\psi-\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot(\boldsymbol{\alpha}\wedge\boldsymbol{W}_{\mu})\psi+\mathcal{O}(\alpha^{2}).$$
(X.37)

Or,

$$(\tau \cdot a)(\tau \cdot b) = (a \cdot b) + i\tau \cdot (a \wedge b) \Leftrightarrow \tau \cdot (a \wedge b) = i[(a \cdot b) - (\tau \cdot a)(\tau \cdot b)]. \tag{X.38}$$

Ainsi,

$$\tau \cdot (\boldsymbol{\alpha} \wedge \boldsymbol{W}_{\mu}) = \frac{1}{2} \left[\tau \cdot (\boldsymbol{\alpha} \wedge \boldsymbol{W}_{\mu}) - \tau \cdot (\boldsymbol{W}_{\mu} \wedge \boldsymbol{\alpha}) \right]
= \frac{i}{2} \left[\left[(\boldsymbol{\alpha} \cdot \boldsymbol{W}_{\mu}) - (\boldsymbol{\tau} \cdot \boldsymbol{\alpha}) (\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}) \right] - \left[(\boldsymbol{W}_{\mu} \cdot \boldsymbol{\alpha}) - (\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}) (\boldsymbol{\tau} \cdot \boldsymbol{\alpha}) \right] \right]
= \frac{i}{2} \left[(\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}) (\boldsymbol{\tau} \cdot \boldsymbol{\alpha}) - (\boldsymbol{\tau} \cdot \boldsymbol{\alpha}) (\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu}) \right]$$
(X.39)

et nous obtenons alors, en combinant les équations (X.37) et (X.39),

$$\bar{\psi}\gamma^{\mu}\frac{1}{2}g_{I}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi\rightarrow\bar{\psi}\gamma^{\mu}\frac{g_{I}}{2}\boldsymbol{\tau}\cdot\boldsymbol{W}_{\mu}\psi+\bar{\psi}\gamma^{\mu}\frac{1}{2}\boldsymbol{\tau}\cdot\partial_{\mu}\boldsymbol{\alpha}\psi+\mathcal{O}(\alpha^{2}), \qquad (X.40)$$

où le dernier terme obtenu compense exactement le terme brisant l'invariance de jauge dans l'équation (X.33).

À ce stade, l'analogie avec l'électromagnétisme nous pousse à introduire $W_{\mu\nu}$ l'analogue à $F_{\mu\nu}$ tel que $W_{\mu\nu}=\partial_{\mu}W_{\nu}-\partial_{\nu}W_{\mu}$. Or, les invariances de jauge imposées mènent à utiliser une définition légèrement différente,

$$W_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu} + g_{I}(W_{\mu} \wedge W_{\nu}). \tag{X.41}$$

Le lagrangien pour SU(2) s'écrit alors

$$\mathcal{L}_{SU(2)} = \bar{\psi}(i\mathcal{D} - m)\psi - \frac{1}{4}W_{\mu\nu} \cdot W^{\mu\nu}. \tag{X.42}$$

Une nouvelle différence notable et importante vis-à-vis de \mathcal{L}_{QCD} est la non linéarité de $W_{\mu\nu}$ par rapport à W_{μ} et W_{ν} . Cette composante non linéaire ouvre la porte aux interactions directes entre les champs $W^i_{\mu\nu}$, c'est-à-dire entre les bosons, ce qui était impossible avec QED. De nouveaux types de vertex, comme celui de la figure X.6, sont donc possibles dans une théorie de jauge avec une symétrie locale SU(2).

Figure X.6 – *Diagramme de Feynman correspondant à l'interaction entre trois bosons.*

2.3.3 Symétrie $SU(2)_L \times U(1)_Y$ et unification électrofaible

Dans la notation $U(1)_Y$, Y est l'« hypercharge », reliée à Q la charge électrique et à I_3 la projection de l'isospin faible par la relation de Gell-Mann–Nishijima,

$$Q = I_3 + \frac{Y}{2}, \tag{X.43}$$

dont les résultats pour les différents leptons sont présentés dans le tableau X.2.

Mettons ici à profit les raisonnements réalisés précédemment. En effet, nous avons traité dans la section 2.2 de $U(1)_{em}$. Il est possible d'obtenir directement les mêmes résultats pour $U(1)_Y$ en procédant à l'analogie $U(1)_{em} \leftrightarrow U(1)_Y$, avec

$$A_{\mu} \leftrightarrow B_{\mu}$$
, $F_{\mu\nu} \leftrightarrow F_{\mu\nu}^{(B)}$, $e \leftrightarrow g_{Y}$, $Q \leftrightarrow \frac{1}{2}Y$. (X.44)

Champ	ν_e	e_L	e_R
Υ	-1	-1	-2
I	$\frac{1}{2}$	$\frac{1}{2}$	0
I_3	$\frac{1}{2}$	$-\frac{1}{2}$	0
Q	0	-1	-1

De plus, sachant que $SU(2)_L$ couple les fermions de chira- Tableau X.2 - Valeurs des hypercharges, lité gauche et les antifermions de chiralité droite, les résultats isospins faibles et charges électriques pour pour SU(2) sont directement utilisables en ajoutant les projec- les leptons. tions décrites par les équations (X.28) et (X.29).

Nous arrivons donc à la définition de la dérivée covariante pour $SU(2)_L \times U(1)_Y$,

$$D_{\mu} = \partial_{\mu} - ig_{I}I\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} - \frac{i}{2}g_{Y}YB_{\mu}, \qquad (X.45)$$

pouvant agir sur un doublet d'isospin faible, noté L, ou un singlet d'isospin faible, noté R, selon

$$D_{\mu}L = \left[\partial_{\mu} - \frac{\mathrm{i}}{2}g_{I}\boldsymbol{\tau} \cdot \boldsymbol{W}_{\mu} + \frac{\mathrm{i}}{2}g_{Y}B_{\mu}\right]L, \qquad (X.46)$$

$$D_{\mu}R = \left[\partial_{\mu} + ig_{\gamma}B_{\mu}\right]R, \qquad (X.47)$$

compte-tenu des différentes valeurs de Y et I données dans le tableau X.2.

Nous pouvons alors écrire le lagrangien invariant sous $SU(2)_L \times U(1)_Y$ de l'interaction électrofaible,

$$\mathcal{L}_{EW} = i\bar{\psi}\mathcal{D}\psi - \frac{1}{4}\mathbf{W}_{\mu\nu}\cdot\mathbf{W}^{\mu\nu} - \frac{1}{4}F_{\mu\nu}^{(B)}\cdot F^{(B)\mu\nu}, \qquad (X.48)$$

où nous pourrions imaginer que le champ B_{μ} correspond au photon et les champs W_{μ}^{i} aux bosons W^{\pm} et Z. Comme nous allons le voir plus loin, ces quatre bosons sont en fait des combinaisons de ces quatre champs.

Interaction électrofaible pour les quarks

Le lagrangien électrofaible ainsi construit pour les leptons pourrait facilement être réutilisé dans le cas des quarks, ψ étant un champ décrivant un fermion. Cependant, le lagrangien de l'équation (X.48) ne couple entre eux que des fermions de même génération. Or, il a été observé expérimentalement que l'interaction faible peut également coupler des quarks de générations différentes.

Un mécanisme rendant possible de tels couplages a été introduit par Cabibbo, Kobayashi et Maskawa [1-3]. Le principe est de faire, pour les quarks, la distinction entre les états propres de masse, c'est-à-dire ceux que l'on observe, et les états propres de l'interaction faible. Ces deux ensembles d'états propres diffèrent ainsi pour les quarks d'isospin faible bas et sont reliés entre eux par la matrice CKM \mathcal{M}_{CKM} , matrice 3 × 3 unitaire complexe,

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} , \qquad (X.49)$$

où d', s' et b' sont les états propres de l'interaction faible et d, s et b ceux de masse. L'élément de matrice V_{ij} ou son conjugué V_{ij}^* est ainsi un facteur appliqué au vertex pour le calcul de la section efficace des processus impliquant des quarks et l'interaction faible. Ces coefficients ne sont pas prédits par le modèle standard et sont donc mesurés expérimentalement. Les valeurs de leurs modules sont les suivantes [4]

$$|\mathcal{M}_{CKM}| = \begin{pmatrix} 0.974\ 20 \pm 0.000\ 21 & 0.2243 \pm 0.0005 & 0.003\ 94 \pm 0.000\ 36 \\ 0.218 \pm 0.004 & 0.997 \pm 0.017 & 0.0422 \pm 0.0008 \\ 0.0081 \pm 0.0005 & 0.0394 \pm 0.0023 & 1.019 \pm 0.025 \end{pmatrix}. \tag{X.50}$$

Remarquons la structure très prononcée de cette matrice, presque diagonale. Le couplage entre les quarks de générations différentes est faible, ce qui se traduit expérimentalement par des durées de vie de certains hadrons contenant des quarks de deuxième et troisième génération suffisamment longs pour qu'ils se propagent sur quelques millimètres, voire quelques mètres.

Nous avons donc à présent construit un modèle décrivant l'interaction électrofaible pour tous les fermions. Cependant, il n'y a aucun terme de masse dans le lagrangien de l'équation (X.48). En effet, un terme de masse pour les fermions serait de la forme

$$-m\bar{\psi}\psi = -m(\bar{\psi}_R + \bar{\psi}_L)(\psi_R + \psi_L) = -m(\bar{\psi}_R\psi_R + \bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R + \bar{\psi}_L\psi_L) = -m(\bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R). \tag{X.51}$$

Or, ce terme n'est pas invariant sous $SU(2)_L \times U(1)_Y$. Pour les champs W^i_μ et B_μ , des termes de masse violeraient également la symétrie de jauge. Dès lors, il semble difficile pour un tel lagrangien de décrire les forces électromagnétique et faible.

En réalité, ce lagrangien décrit l'interaction « électrofaible ». Les interactions électromagnétique et faible résultent d'un mécanisme de brisure spontanée de symétrie, qui se trouve dans ce cas être le mécanisme de Higgs. Dans la section suivante, nous allons voir comment l'introduction du champ de Higgs amène cette brisure de symétrie et comment nous retrouvons des fermions massifs, le photon et les bosons W^{\pm} et Z.

2.4 Mécanisme de Higgs et brisure spontanée de symétrie

2.4.1 Champ de Higgs et brisure de symétrie

Introduisons un champ complexe, scalaire, massif, le champ de Higgs [5-8], noté ϕ . Il s'agit d'un champ à quatre composantes, qu'il est possible d'écrire sous la forme d'un doublet d'isospin faible,

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_3 + i\phi_4 \\ \phi_1 + i\phi_2 \end{pmatrix} . \tag{X.52}$$

Le champ de Higgs a pour hypercharge Y = +1 et pour isospin faible $I = \frac{1}{2}$. Il se transforme ainsi, respectivement sous $U(1)_Y$ et $SU(2)_L$, selon

$$\begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \rightarrow \begin{pmatrix} e^{i\frac{\beta}{2}} & 0 \\ 0 & e^{i\frac{\beta}{2}} \end{pmatrix} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}, \quad \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \rightarrow e^{\frac{i}{2}\tau \cdot \alpha} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$
(X.53)

La dérivée covariante définie par l'équation (X.45) agit donc sur le champ de Higgs selon

$$D_{\mu}\phi = \left[\partial_{\mu} - \frac{\mathrm{i}}{2}g_{I}\boldsymbol{\tau} \cdot \mathbf{W}_{\mu} - \frac{\mathrm{i}}{2}g_{Y}B_{\mu}\right]\phi, \qquad (X.54)$$

et ce champ de Higgs apporte les termes \mathcal{L}_h au lagrangien du modèle standard, où

$$\mathcal{L}_h = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - V(\phi) \tag{X.55}$$

avec

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2, \quad \lambda > 0. \tag{X.56}$$

Observons le comportement de ce champ autour du minimum du potentiel V, c'est-à-dire autour de sa position d'équilibre. Soit v tel que $v^2=\phi_1^2+\phi_2^2+\phi_3^2+\phi_4^2$. Alors, à la position d'équilibre,

$$\begin{cases}
\frac{\partial V}{\partial \phi}\Big|_{\text{\'eq}} = 0 \\
\frac{\partial^2 V}{\partial \phi^2}\Big|_{\text{\'eq}} \geqslant 0
\end{cases} \Rightarrow
\begin{cases}
\left(2\mu^2 + 4\lambda \frac{v^2}{2}\right) \frac{v}{\sqrt{2}} = 0 \\
2\mu^2 + 12\lambda \frac{v^2}{2} \geqslant 0
\end{cases} \Rightarrow
\begin{cases}
\mu^2 \geqslant 0 \Rightarrow v = 0 \\
\mu^2 < 0 \Rightarrow v^2 = \frac{-\mu^2}{\lambda}
\end{cases} .$$
(X.57)

Ainsi, dans le cas où $\mu^2 < 0$, le potentiel possède une infinité de minimums, situés sur un cercle de rayon $\frac{|v|}{\sqrt{2}}$, comme cela est visible sur la figure X.7. La forme de ce potentiel n'est pas sans rappeler celle d'un chapeau mexicain.

Figure X.7 – Forme du potentiel V selon le signe de μ^2 .

Le condensat de ce champ dans le vide correspond à la position de ce minimum de ce potentiel,

$$\langle \phi \rangle_0 = \frac{v}{\sqrt{2}} \neq 0, \tag{X.58}$$

ce qui implique le phénomène de brisure spontanée de symétrie.

Le minimum de potentiel pour V étant dégénéré, c'est-à-dire qu'il y a une infinité de points au minimum, il est possible de briser la symétrie avec n'importe lequel de ces points. Alors, les observables physiques s'obtiennent en réalisant un développement limité autour du point choisi. Le choix le plus simple est nommé « jauge unitaire ». Dans ce cas,

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + h(x) \end{pmatrix} \tag{X.59}$$

où h correspond à un nouveau champ de Higgs, cette fois-ci physiquement réel.

2.4.2 Masses des bosons

Injectons à présent cette expression de ϕ dans \mathcal{L}_h . Le terme cinétique devient

$$(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) = \frac{1}{2}\partial_{\mu}h\partial^{\mu}h + \frac{(v+h)^{2}}{8}g_{I}^{2}\left(W_{\mu}^{1} + iW_{\mu}^{2}\right)\left(W^{\mu 1} - iW^{\mu 2}\right) + \frac{(v+h)^{2}}{8}\left(g_{I}W_{\mu}^{3} - g_{Y}B_{\mu}\right)\left(g_{I}W^{\mu 3} - g_{Y}B^{\mu}\right) + \mathcal{O}(h^{2}).$$
 (X.60)

Il est possible de développer cette expression et d'identifier les termes quadratiques qui correspondent à des termes de masse pour les bosons physiques, tout en obtenant les combinaisons des champs leurs correspondant,

bosons
$$W^{\pm}$$
: $W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} \left(W^{1}_{\mu} \mp i W^{2}_{\mu} \right)$, $m_{W} = \frac{1}{2} v g_{I}$, (X.61)

photon
$$\gamma$$
: $A_{\mu} = \frac{g_{Y}W_{\mu}^{3} + g_{I}B_{\mu}}{\sqrt{g_{I}^{2} + g_{Y}^{2}}}, \qquad m_{A} = 0,$ (X.62)

boson Z:
$$Z_{\mu} = \frac{g_I W_{\mu}^3 - g_Y B_{\mu}}{\sqrt{g_I^2 + g_Y^2}}, \qquad m_Z = \frac{1}{2} v \sqrt{g_I^2 + g_Y^2}. \tag{X.63}$$

Ces équations peuvent être réécrites en introduisant l'angle de mélange faible 8 noté θ_W [9], tel que

$$\cos \theta_W = \frac{g_I}{\sqrt{g_I^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_I^2 + g_Y^2}}.$$
 (X.64)

Alors,

photon
$$\gamma$$
: $A_{\mu} = B_{\mu} \cos \theta_W + W_{\mu}^3 \sin \theta_W$, $m_A = 0$, (X.65)

boson Z:
$$Z_{\mu} = W_{\mu}^{3} \cos \theta_{W} - B_{\mu} \sin \theta_{W}, \qquad m_{Z} = \frac{m_{W}}{\cos \theta_{W}}. \qquad (X.66)$$

Pour le boson de Higgs lui-même, le terme de masse provient de $V(\phi)$ et donne $m_h = \sqrt{-2\mu^2}$.

Les masses des bosons W^{\pm} , γ et Z ainsi prédites [10] sont expérimentalement confirmées [4, 11-15]. Cependant, la masse du boson de Higgs dépendant de μ , paramètre libre de ce modèle, seule une détermination expérimentale permet de l'obtenir. En 2012, les collaborations ATLAS et CMS ont observé un boson [16-18], confirmé comme étant ce boson de Higgs [19, 20]. Sa masse est déterminée à 125,18 \pm 0,16 GeV [4].

2.4.3 Masses des fermions

Le champ de Higgs peut également interagir avec les fermions. Une telle interaction, entre un champ scalaire et un champ de Dirac, est une interaction de Yukawa et permet d'introduire des termes de masse invariants de jauge pour ces fermions.

Avant la brisure de symétrie, les termes de Yukawa pour un champ ψ dont la composante d'isospin faible bas correspond à une particule de masse m s'exprime

$$\mathcal{L}_{\text{Yukawa}} = -\frac{m\sqrt{2}}{v}\bar{\psi}\phi\psi = -\frac{m\sqrt{2}}{v}\left(\bar{\psi}_L\phi\psi_R + \bar{\psi}_R\phi^{\dagger}\psi_L\right), \qquad (X.67)$$

donnant après la brisure spontanée de symétrie précédemment décrite les termes de masse pour les fermions d'isospin faible bas,

$$\mathcal{L}_{\text{Yukawa}} = -m\bar{\psi}\psi + \frac{m}{\tau}\bar{\psi}h\psi. \tag{X.68}$$

En effet, la brisure de symétrie dans le cas de la jauge unitaire (X.59) laisse la composante d'isospin faible haut du champ de Higgs nulle. Ce formalisme permet donc d'obtenir les termes de masse pour les leptons chargés. Les neutrinos étant considérés dans le lagrangien du modèle standard comme des particules de masses nulles, l'ensemble des leptons est donc traité à ce stade.

Dans le cas des quarks en revanche, il nous faut obtenir des termes de masse pour les quarks d'isospin faible haut. Pour cela, il est possible d'introduire le conjugué de charge du champ de Higgs,

$$\phi^{C} = i\sigma_{2}\phi^{*} = \begin{pmatrix} \phi^{*} \\ -\phi^{-} \end{pmatrix} \tag{X.69}$$

dont l'expression devient après brisure de symétrie dans le cas de la jauge unitaire

$$\phi^{\mathcal{C}} = \frac{-1}{\sqrt{2}} \begin{pmatrix} v + h(x) \\ 0 \end{pmatrix} . \tag{X.70}$$

Cette fois, la composante d'isospin faible haut du champ de Higgs n'est pas nulle et permet d'obtenir des termes de masse pour les quarks d'isospin faible haut.

Ainsi, les termes de Yukawa pour les fermions s'expriment

$$\mathcal{L}_{\text{Yukawa}} = y\bar{\psi}\phi\psi + \text{h.c.} = \sum_{i=1}^{3} y_{i}^{\ell}\bar{\ell}_{i}\phi\ell_{i} + \sum_{i=1}^{3} y_{i}^{d}\bar{d}_{i}\phi d_{i} + \sum_{i=1}^{3} y_{i}^{u}\bar{u}_{i}\phi^{C}u_{i}, \quad y_{i}^{x} = -\frac{\sqrt{2}}{v}m_{i}^{x}$$
 (X.71)

où i correspond à la génération des fermions, ℓ_i , d_i et u_i aux champs listés dans le tableau X.1 et m_i^x à la masse du fermion de type x et de génération i.

^{8.} L'angle de mélange faible est également connu sous le nom d'angle de Weinberg.

2.5 Interaction forte

2.5.1 La couleur

L'interaction forte est la troisième force fondamentale décrite par le modèle standard. L'analogue de la charge électrique pour l'interaction électromagnétique est, dans le cas de l'interaction forte, la « couleur », concept né de l'observation des baryons Δ^{++} , Δ^{-} , Ω^{-} . Dans le modèle des quarks, ces baryons sont composés comme

$$\Delta^{++} = (uuu), \quad \Delta^{-} = (ddd), \quad \Omega^{-} = (sss).$$
 (X.72)

Or, ces baryons sont de spin $\frac{3}{2}$. Les quarks possédant un spin $\frac{1}{2}$, il faudrait alors que pour chacun de ces baryons, les trois quarks les composant aient leurs nombres quantiques égaux, ce qui va à l'encontre du principe de Pauli.

Il est possible de décrire ces baryons sans violer le principe d'exclusion de Pauli en introduisant un nouveau nombre quantique, la couleur. Les quarks portent ainsi une charge de couleur, pouvant prendre trois valeurs orthogonales, nommées par convention rouge, verte et bleue. Les antiquarks portent une anticouleur. Il suffit alors que chaque quark porte une couleur différente, c'est-à-dire

$$\Delta^{++} = (uuu), \quad \Delta^{-} = (ddd), \quad \Omega^{-} = (sss). \tag{X.73}$$

Les baryons ainsi formés de trois quarks (un rouge, un vert et un bleu) portent une charge de couleur globale nulle, ils sont de couleur « blanche », comme cela est visible sur la figure X.8a. Dans le cas des antibaryons formés de trois antiquarks, sur la figure X.8c, c'est l'association des trois anticouleurs qui permet d'obtenir un baryon blanc. Il est également possible de former une particule composite blanche par association d'un quark avec un antiquark portant l'anticouleur correspondante. Les trois combinaisons possibles sont illustrées sur la figure X.8b. Il s'agit alors de mésons.

(a) Un baryon est constitué de trois quarks, un de chaque couleur.

(b) Un méson est constitué d'un quark et d'un antiquark de l'anticouleur correspondante.

(c) Un antibaryon est constitué de trois antiquarks, un de chaque anticouleur.

Figure X.8 – Combinaisons des couleurs des quarks dans les hadrons. La couleur globale est toujours blanche, c'est-à-dire que la charge de couleur globale est nulle.

Les quarks et antiquarks se regroupent ainsi en particules composites, les hadrons (baryons et mésons), dont la neutralité de couleur est confirmée expérimentalement. Ce phénomène est connu sous le nom de « confinement de couleur » et est abordé dans la section 2.5.3.

2.5.2 Symétrie $SU(3)_C$

Afin de décrire l'interaction forte dans le même formalisme que les autre interactions fondamentales, il nous faut un groupe de symétrie. Étant donné qu'il existe trois dimensions de couleur (rouge, verte, bleue), la théorie quantique des champs associée à l'interaction forte se base sur le groupe $SU(3)_C$, où C signifie « couleur ».

Tout comme SU(2), SU(3) est un groupe non abélien. Il est possible de reprendre exactement les mêmes calculs que ceux de la section 2.3.2, en procédant aux changements ⁹

$$\tau \in \mathcal{M}_2(\mathbb{C})^3 \leftrightarrow \lambda \in \mathcal{M}_3(\mathbb{C})^8$$
, $\alpha \in \mathbb{R}^3 \leftrightarrow \theta \in \mathbb{R}^8$, $g_I \leftrightarrow g_s$, $W_\mu \leftrightarrow G_\mu$, $W_{\mu\nu} \leftrightarrow G_{\mu\nu}$ (X.74)

^{9.} La constante de couplage pour l'interaction forte est souvent notée α_s . Nous utilisons ici la notation g_s afin d'illustrer le rôle analogue avec celui g_Y et g_I .

où λ est un vecteur à huit composantes, chacune étant une matrice de Gell-Mann, définies dans l'annexe A et où G_u décrit donc huit gluons, bosons vecteurs de l'interaction forte.

Les gluons portent une couleur et une anticouleur. Lors de chaque interaction, la charge de couleur est conservée, ainsi un quark rouge interagissant avec un gluon bleu-antirouge devient un quark bleu. Le flux de couleur ainsi conservé dans cet exemple est représenté sur la figure X.9.

- **(a)** Diagramme de Feynman de l'interaction.
- **(b)** Représentation du flux de couleur conservé.
- **(c)** *Interprétation en utilisant les anticouleurs.*

Figure X.9 – Interaction entre un quark rouge et un gluon bleu-antirouge, donnant un quark bleu.

Le terme non linéaire $G_{\mu} \wedge G_{\nu}$ dans l'expression de $G_{\mu\nu}$ ¹⁰ est lourd de conséquences. Il permet le couplage entre trois et quatre gluons, comme cela est illustré sur la figure X.10, et donne à l'interaction forte toute sa singularité. En effet, ce terme est responsable de l'initiation de la gerbe partonique qui donne naissance aux jets ¹¹ ainsi que du confinement de couleur.

Figure X.10 – Diagrammes de Feynman correspondant à l'interaction entre trois et quatre gluons.

2.5.3 Confinement de couleur et liberté asymptotique

Le confinement de couleur force les quarks, particules colorées, à s'associer en formant des particules composites, les hadrons, états liés de charge globale de couleur nulle. Ce phénomène empirique peut s'expliquer par la variation en fonction de l'échelle d'énergie de la constante de couplage de l'interaction forte g_s , représentée sur la figure X.11.

Aux basses énergie, g_s diverge. Ainsi, séparer et isoler des particules colorées mène à une énergie potentielle de couleur suffisamment grande pour créer des paires quark-antiquark. Lorsqu'un quark est issu d'une collision en physique des particules, ce processus se réalise et produit un ensemble collimé de particules, un jet.

De plus, à cause de la valeur élevée de g_s aux basses énergies, il n'est pas possible de réaliser des calculs perturbatifs pourtant usuels en théorie quantique des champs. D'autres techniques sont toutefois utilisées, comme la méthode de QCD sur réseau. Son principe est de discrétiser l'espace-temps en un réseau de points. Bien que cette méthode requière d'importantes capacités de calcul et beaucoup de temps, elle permet d'obtenir avec succès les masses des hadrons comme cela se voit sur la figure X.12 pour les hadrons légers.

Les valeurs de g_s à deux échelles d'énergie k et μ sont reliées par la relation

$$g_s(k) = \frac{g_s(\mu)}{1 + \frac{11n_c - 2n_f}{12\pi} g_s(\mu) \ln\left(\frac{k^2}{\mu^2}\right)}$$
(X.75)

^{10.} Obtenue à partir de l'analogie (X.74) appliquée à l'équation (X.41).

^{11.} Les jets sont abordés dans le chapitre « Calibration en énergie des jets ».

Figure X.11 – Mesures de g_s en fonction de l'échelle d'énergie k (points) et prédiction théorique (courbe) [4]. Le degré des calculs perturbatifs de QCD utilisés pour extraire g_s est indiqué entre parenthèses (NLO: next-to-leading order, c'est-à-dire jusqu'à l'ordre suivant le premier degré non nul; NNLO : un ordre de plus que NLO ; etc.).

Figure X.12 – Spectre de masse des hadrons légers [21]. Les lignes horizontales ainsi que les zones grisées sont les valeurs expérimentales et les largeurs de désintégration. Les résultats obtenus en utilisant des calculs de QCD sur réseau sont représentés par des cercles, avec les erreurs associées. Seules les masses des hadrons π , K et Ξ sont sans barre d'erreur, elles sont utilisées pour fixer les paramètres libres du modèle.

avec n_c le nombre de couleurs et n_f le nombre de saveurs de quarks, c'est-à-dire $n_c = 3$ et $n_f = 6$ [22]. Cette relation peut ainsi se réécrire

$$g_s(k) = \frac{6\pi}{21 \ln\left(\frac{k}{\Lambda_{\rm QCD}}\right)}, \quad \Lambda_{\rm QCD} = 218 \pm 24 \,\text{MeV},$$
 (X.76)

avec $\Lambda_{\rm QCD}$ l'échelle d'énergie à laquelle g_s diverge. Il ressort que g_s décroît lorsque l'échelle d'énergie augmente. Cette diminution de g_s aux hautes énergies est la « liberté asymptotique », régime où les particules colorées ne sont plus confinées et peuvent se propager comme des particules libres. Aux LHC, les énergies de collision permettent d'atteindre ce régime.

Succès et limites du modèle standard

3.1 Succès

Le modèle standard a été conçu il y a plus de 50 ans et a évolué avec les nouvelles observations expérimentales. Ses succès sont nombreux, notamment de par son pouvoir prédictif. L'existence de bosons massifs W et Z est ainsi prédite dès la fin des années 60 [10], leur observation est réalisée en 1983 [11-15]. De même, le quark top postulé en 1973 [3] est observé 22 ans plus tard [23, 24]. Dernier tour de force en date, le boson de Higgs, prédit en 1964 [5-8] et observé en 2012 [16, 17].

Le lagrangien du modèle standard s'écrit à ce jour sous la forme

$$\mathcal{L}_{SM} = \underbrace{-\frac{1}{4}\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}}_{\text{bosons vecteurs}} + \underbrace{i\bar{\psi}\mathcal{D}\psi}_{\text{fermions et}} + \underbrace{(D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - V(\phi)}_{\text{boson de Higgs et}} + \underbrace{(y\bar{\psi}\phi\psi + \text{h.c.})}_{\text{(interactions fermions-Higgs)}}$$
(X.77)

où « h.c. » signifie conjugué hermitien et

$$\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu} = G_{\mu\nu} \cdot G^{\mu\nu} + W_{\mu\nu} \cdot W^{\mu\nu} + F_{\mu\nu}^{(B)} F^{(B)\mu\nu}, \qquad (X.78)$$

$$\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu} = \mathbf{G}_{\mu\nu} \cdot \mathbf{G}^{\mu\nu} + \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} + F_{\mu\nu}^{(B)} F^{(B)\mu\nu} , \qquad (X.78)$$

$$\mathcal{D} = \gamma^{\mu} D_{\mu} = \gamma^{\mu} \left[\partial_{\mu} - i g_{I} I \boldsymbol{\tau} \cdot \mathbf{W}_{\mu} - i g_{Y} \frac{Y}{2} B_{\mu} - i g_{s} \frac{C}{2} \boldsymbol{\lambda} \cdot \boldsymbol{G}_{\mu} \right] , \qquad (X.79)$$

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2. \tag{X.80}$$

Le modèle standard ainsi construit permet d'expliquer la plupart des phénomènes observés avec une grande précision. Cependant, il ne propose pas d'explications à certaines observations discutées dans la section suivante.

3.2 Limites

La plupart des phénomènes connus sont parfaitement décrits par le modèle standard et son formalisme, mais ils ne le sont pas tous. En effet, certaines observations présentées de manière non exhaustive ci-après laissent à penser que le modèle standard est une théorie effective à basse énergie et qu'il existe une théorie plus fondamentale au-delà à même de pouvoir les expliquer.

Nombre de générations Le modèle standard ne permet pas de prédire le nombre de générations, aujourd'hui égal à trois. Ainsi, il est tout à fait possible qu'il existe une quatrième génération de fermions (quarks t' et b', leptons τ' et ν_{τ}'). Seule contrainte connue à ce jour, les mesures sur la largeur du Z impliquent que seulement trois générations peuvent présenter des neutrinos de masse inférieure à $\frac{1}{2}m_Z$ [25]. Il faudrait ainsi nécessairement $\nu_{\tau}' > \frac{1}{2}m_Z$. Mesurer avec précision les paramètres de la matrice CKM permet de tester la présence d'une génération supplémentaire de fermions, cette matrice devant être unitaire.

Masse des neutrinos Dans le lagrangien du modèle standard (X.77), les neutrinos ne possèdent pas de masse. Or, des oscillations entre saveurs de neutrinos ont été observées [26, 27]. Ces oscillations impliquent d'une part que les neutrinos possèdent une masse, et d'autre part que les états propres de l'interaction faible ne sont pas les états propres de masse des neutrinos.

Donner une masse aux neutrinos demande d'introduire des neutrinos de chiralité droite, non présents dans le modèle standard. Des telles particules, par construction, n'interagissent ni par interaction forte (pas de charge de couleur), ni par interaction électromagnétique (pas de charge électrique), ni par interaction faible (particules de chiralité droite). Plusieurs hypothèses, comme le mécanisme de Seesaw [28-32], sont avancées afin de décrire de tels neutrinos stériles. Il n'existe à ce jour aucun résultat expérimental permettant de conclure sur la validité de ces hypothèses.

Les états propres de l'interaction faible des neutrinos peuvent être reliés à leurs états propres de masse à l'aide de la matrice PMNS [33], pour Pontecorvo, Maki, Nakagawa et Sakata, analogue à la

matrice CKM 12. Dans ce cas,

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{\mu 2} & U_{\tau 3} \\ U_{e1} & U_{\mu 2} & U_{\tau 3} \\ U_{e1} & U_{\mu 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} , \qquad (X.81)$$

où v_e , v_μ et v_τ sont les états propres de l'interaction faible et v_1 , v_2 et v_3 ceux de masse.

Nombre de paramètres libres Le modèle standard tel que décrit dans la section 2 comporte 19 paramètres libres, listés dans le tableau X.3. Une théorie comportant moins de paramètres libres propose plus de prédictions, sur la masse des particules par exemple, ce qui permet de réaliser plus de comparaisons aux données expérimentales. Parmi ces 19 paramètres libres, 15 13 sont reliés au boson de

Grandeur	Symbole	Valeur	
Masse du quark up	m_u	$2,2^{+0,5}_{-0,4}$	MeV
Masse du quark down	m_d	$4,7_{-0.3}^{+0.5}$	MeV
Masse du quark strange	m_s	95_{-3}^{+9}	MeV
Masse du quark charm	m_c	$1,275^{+0,025}_{-0.035}$	GeV
Masse du quark bottom	m_b	$4.18_{-0.03}^{+0.04}$	GeV
Masse du quark top	m_t	173.0 ± 0.4	GeV
Masse de l'électron	m_e	$0,5109989461\pm0,0000000031$	MeV
Masse du muon	m_{μ}	$105,6583745\pm0,0000024$	MeV
Masse du tau	$m_{ au}$	$1776,86 \pm 0,12$	MeV
Angle de mélange CKM I-II	$ heta_{12}$	$13,01 \pm 0,03$	0
Angle de mélange CKM II-III	θ_{23}	$2,35 \pm 0,09$	0
Angle de mélange CKM I-III	$ heta_{13}$	$0,20\pm0,04$	0
Phase de violation CP CKM	$\delta_{ m CKM}$	70 ± 3	0
Phase de violation CP forte	$\theta_{ m QCD}$	$< 10^{-10}$	
Constante de couplage $U(1)_Y$	gy	$0,34970 \pm 0,00019$	
Constante de couplage $SU(2)_L$	g_I	$0,65295 \pm 0,00012$	
Constante de couplage $SU(3)_C$	g_s	$0,\!1182 \pm 0,\!00012$	
Condensat du champ de Higgs	v	$246 \pm 6 imes 10^{-5}$	GeV
Masse du boson de Higgs	m_h	$125,18 \pm 0,16$	GeV

Tableau X.3 – Valeurs expérimentales des 19 paramètres libres du modèle standard [4].

Higgs. C'est pourquoi l'étude du boson de Higgs est un enjeu majeur en physique des particules.

Notons également que l'introduction de neutrinos massifs, précédemment évoquée, apporte trois nouveaux paramètres libre, les masses des trois neutrinos. De plus, la matrice PMNS permettant de décrire leurs oscillation demande quatre paramètres libres, analogues aux quatre paramètres reliés à la matrice CKM dans le tableau X.3. Il y a donc potentiellement 26 paramètres libres pour un modèle standard incluant les neutrinos massifs.

Ajustement fin Le calcul de la masse du boson de Higgs demande d'introduire des diagrammes de Feynman avec des boucles, comme ceux de la figure X.13.

Dans ce cas, la masse effective du boson de Higgs m_h s'exprime à partir de la masse « nue » m_{h0} à

^{12.} La matrice CKM, introduite dans la section 2.3.4, relie les états propres de l'interaction faible aux états propres de

^{13.} Ces 15 paramètres sont les masses des 6 quarks et des 3 leptons chargés, la masse du Higgs, son condensat dans le vide et les quatre paramètres de la matrice CKM.

Figure X.13 – Diagrammes de Feynman des contributions aux corrections radiatives à la masse du boson de Higgs.

laquelle sont apportées des corrections [34]:

du top, figure X.13a
$$-\frac{3}{8\pi^2}y_t^2\Lambda^2 \sim -(2\,\mathrm{TeV})^2 \qquad (X.82)$$
 des bosons vecteurs, figure X.13b
$$+\frac{1}{16\pi^2}g^2\Lambda^2 \sim +(0.7\,\mathrm{TeV})^2 \qquad (X.83)$$
 du Higgs, figure X.13c
$$+\frac{1}{16\pi^2}\lambda^2\Lambda^2 \sim +(0.5\,\mathrm{TeV})^2 \qquad (X.84)$$
 (X.85)

où y_t^2 est la constante de couplage de Yukawa du quark top défini équation (X.71), g la constante de couplage de l'interaction associée au boson vecteur considéré, λ la paramètre du terme quadratique du potentiel de Higgs (X.56) et Λ l'échelle d'énergie de la « nouvelle physique », c'est-à-dire l'échelle d'énergie où le modèle standard n'est plus valable.

La masse du boson de Higgs s'exprime alors

$$m_h^2 = m_{h0}^2 - \frac{3}{8\pi^2} y_t^2 \Lambda^2 + \frac{1}{16\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2 + \dots$$
 (X.86)

Le boson de Higgs a été observé avec une masse de 125,18 \pm 0,16 GeV. Or, les corrections sont de l'ordre du TeV. Les paramètres dont dépendent ces corrections devraient donc être ajustés jusqu'à la 32^e décimale, ce qui semble peu naturel.

Gravitation Le modèle standard ne propose aucune description de la gravitation. La relativité générale permet de décrire la gravitation à l'échelle macroscopique avec succès, mais cette théorie n'est pas quantifiée. En l'état actuel, l'ajout de la gravitation au modèle standard introduit des infinis qui le rendent non renormalisable. Le modèle standard est donc valide uniquement pour des échelles où la gravitation est négligeable face aux autres interactions (électromagnétique, faible et forte). C'est le cas dans les expériences de physique des particules; aucune d'entre elles n'a observé d'effet gravitationnel dans ses résultats.

Matière noire et énergie noire La matière noire est, par hypothèse, de la matière interagissant gravitationnellement mais pas électromagnétiquement. Son existence est postulée suite à l'observation des galaxies, dont les courbes de vitesses de rotation ne peuvent être expliquées à ce jour avec la relativité générale et la matière ordinaire seulement. Des effets de lentille gravitationnelle vont également en ce sens [35]. Le modèle standard ne propose aucun candidat pour la matière noire. D'autres observations cosmologiques montrent que l'expansion de l'Univers s'accélère. Cette accélération implique l'existence d'une énergie, l'énergie noire, inexpliquée par le modèle standard. Les mesures cosmologiques [36] indiquent que l'Univers est ainsi composé de 68 % d'énergie noire et 27 % de matière noire. Le modèle standard ne décrit donc que 5 % du contenu de l'Univers.

Asymétrie matière-antimatière Pour chaque particule de matière, il existe une antiparticule, dont les nombres quantiques sont opposés. Or, nous vivons dans un Univers composé presque exclusivement de matière. La force électrofaible propose un mécanisme violant la symétrie CP pouvant mener à une asymétrie entre matière et antimatière, lié à la phase complexe de la matrice CKM, δ_{CKM} . Cependant, cet effet est trop faible pour expliquer à lui seul l'asymétrie effectivement observée.

Au-delà du modèle standard

Le modèle standard souffre ainsi de lacunes malgré ses prédictions précises. Des modèles sont développés afin de les combler, ils sont dits « au-delà » du modèle standard (BSM, Beyond Standard Model). Un des modèles BSM les plus prometteurs est la supersymétrie (SUSY), présentée dans la section 4.1. Nous y verrons la nécessité d'introduire un second doublet de Higgs. La SUSY est ainsi un cas particulier de modèle à deux doublets de Higgs (2HDM, 2 Higgs Doublets Model). Les 2HDM sont abordés dans la section 4.2. Puis, le modèle le plus simple de SUSY, l'extension supersymétrique minimale du modèle standard (MSSM, Minimal Supersymmetric extension of Standard Model), est présenté section 4.3.

La supersymétrie 4.1

La supersymétrie (SUSY) [37] introduit une nouvelle symétrie entre fermions et bosons. Ces deux types de particules ne sont plus indépendants, ce sont des saveurs, ou manifestations, d'un champ quantique plus complexe. A chaque particule du modèle standard correspond alors une nouvelle particule du fait de cette symétrie, nommée « superpartenaire ». Les fermions du modèle standard ont des superpartenaires de spin entier, c'est-à-dire des bosons, les « sfermions ». Les bosons du modèle standard ont des superpartenaires de spin demi-entier, c'est-à-dire des fermions, les « bosinos ». Une particule et son superpartenaire ont les mêmes nombres quantiques à l'exception de leurs spins.

De nouvelles interactions sont potentiellement possibles, dans lesquelles les nombres baryonique B et leptonique L ne sont pas conservés et B-L non plus. Or, ce type d'interactions rendent le proton instable, ce qui n'est pas observé expérimentalement. Une nouvelle symétrie est ainsi introduite afin de supprimer ces interactions violant la conservation de B-L, la parité R. L'opérateur de parité Rest défini comme

$$P_R = (-1)^{3(B-L)-2s} (X.87)$$

où s correspond au spin de la particule. Les particules du modèle standard possèdent une parité R égale à 1, leurs superpartenaires une parité R égale à -1. La conservation de cette nouvelle parité permet non seulement de garder le proton stable, mais rend également stable la particule supersymétrique de plus basse masse, notée LSP (Lightest Supersymmetric Particle).

La SUSY est un des modèles BSM les plus prometteurs. Ce type de modèle permet en effet de résoudre, s'il est confirmé expérimentalement, de nombreuses lacunes du modèle standard. Les trois forces fondamentales décrites par le modèle standard pourraient être unifiées grâce à ce modèle. Comme nous l'avons vu dans la section 2, les forces électromagnétique et faible sont déjà unifiées. Toutefois, la force électrofaible et la force forte ne semblent pas s'unifier à haute énergie. Or, les interactions avec les superpartenaires introduits par la SUSY modifient le comportement des constantes de couplage des trois forces fondamentales de manière à les unifier à haute énergie. La SUSY propose également un candidat pour la matière noire dans le cas où la LSP est de charge électrique nulle, potentiellement un neutralino ou un sneutrino. De plus, la SUSY permet de résoudre le problème de l'ajustement fin. La divergence quadratique de la masse du Higgs est naturellement supprimée par les diagrammes à boucles des superpartenaires dont les contributions ont des signes opposées à celles des particules, les fermions ayant des contributions positives et les bosons des contributions négatives [38].

Toutefois, il est impossible de mettre en place la SUSY sans un second doublet de Higgs. Dans le modèle standard, la masse des quarks d'isospin faible haut est obtenue dans la section 2.4.3 à l'aide du conjugué de charge du doublet de Higgs. Cependant, le potentiel supersymétrique contenant les termes de Yukawa, nécessaires à l'obtention des masses des fermions, n'autorise pas l'utilisation du conjugué de charge du doublet de Higgs afin de donner une masse aux quarks d'isospin faible haut [34]. Un second doublet de Higgs, couplé aux fermions d'isospin faible haut, doit nécessairement être introduit [34, 38]. La SUSY est donc un cas particulier de modèle à deux doublets de Higgs.

4.2 Modèles à deux doublets de Higgs

Les modèles à deux doublets de Higgs (2HDM, 2 *Higgs Doublets Model*) introduisent un second doublet de Higgs. Ainsi, au lieu d'avoir uniquement le doublet ϕ défini par (X.52), il en existe deux, ϕ_1 et ϕ_2 . Le potentiel de Higgs (X.56) du modèle standard est remplacé par le potentiel scalaire le plus général possible ¹⁴ brisant spontanément $SU(2)_L \times U(1)_Y$ en $U(1)_{em}$ [38, 39],

$$V(\phi_{1},\phi_{2}) = \lambda_{1} \left(\phi_{1}^{\dagger}\phi_{1} - \frac{1}{2}v_{1}^{2}\right)^{2} + \lambda_{2} \left(\phi_{2}^{\dagger}\phi_{2} - \frac{1}{2}v_{2}^{2}\right)^{2}$$

$$+ \lambda_{3} \left[\left(\phi_{1}^{\dagger}\phi_{1} - \frac{1}{2}v_{1}^{2}\right) + \left(\phi_{2}^{\dagger}\phi_{2} - \frac{1}{2}v_{2}^{2}\right)\right]^{2} + \lambda_{4} \left[\left(\phi_{1}^{\dagger}\phi_{1}\right)\left(\phi_{2}^{\dagger}\phi_{2}\right) - \left(\phi_{1}^{\dagger}\phi_{2}\right)\left(\phi_{2}^{\dagger}\phi_{1}\right)\right]$$

$$+ \lambda_{5} \left[\Re\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\cos\xi\right]^{2} + \lambda_{6} \left[\Im\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\sin\xi\right]^{2}$$

$$+ \lambda_{7} \left[\Re\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\cos\xi\right] \left[\Im\left(\phi_{1}^{\dagger}\phi_{2}\right) - \frac{1}{2}v_{1}v_{2}\sin\xi\right]. \quad (X.88)$$

Le dernier terme de (X.88) peut être éliminé en redéfinissant les phases des champs scalaires. Les paramètres λ_i sont réels et dans le cas de la SUSY, $\lambda_5 = \lambda_6$. Dans le cas sin $\xi \neq 0$, le secteur de Higgs du modèle viole la symétrie CP. Le minimum du potentiel ainsi construit est tel que

$$\langle \phi_1 \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 e^{i\xi} \end{pmatrix}.$$
 (X.89)

Il est possible de définir, à ce stade, une variable importante dans la suite, le rapport des condensats des doublets de Higgs dans le vide,

$$\tan \beta = \frac{\langle \phi_2 \rangle_0}{\langle \phi_1 \rangle_0} = \frac{v_2}{v_1} \tag{X.90}$$

avec $0 \leqslant \beta \leqslant \pi/2$. Il est aussi possible de définir

$$v^2 = v_1^2 + v_2^2. (X.91)$$

De ce formalisme découle l'existence de cinq bosons de Higgs massifs,

deux Higgs chargés :
$$H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta$$
, $m_{H^{\pm}}^2 = \frac{1}{2} \lambda_4 v^2$, (X.92)

un Higgs pseudo-scalaire:
$$A = \sqrt{2} \left(-\Im(\phi_1^0) \sin\beta + \Im(\phi_2^0) \cos\beta \right)$$
, $m_A^2 = \frac{1}{2} \lambda_6 v^2$, (X.93)

ainsi que deux bosons de Higgs scalaires neutres dont les champs quantiques sont mélangés par la matrice

$$\mathcal{M} = \frac{1}{2} \begin{pmatrix} 4v_1^2(\lambda_1 + \lambda_3) + v_2^2\lambda_5 & (4\lambda_3 + \lambda_5)v_1v_2 \\ (4\lambda_3 + \lambda_5)v_1v_2 & 4v_2^2(\lambda_2 + \lambda_3) + v_1^2\lambda_5 \end{pmatrix}. \tag{X.94}$$

Ces deux bosons de Higgs sont

$$h = \sqrt{2} \left(-\Re \left(\phi_1^0 - v_1 / \sqrt{2} \right) \sin \alpha + \Re \left(\phi_2^0 - v_2 / \sqrt{2} \right) \cos \alpha \right) , \tag{X.95}$$

$$H = \sqrt{2} \left(\Re \left(\phi_1^0 - v_1 / \sqrt{2} \right) \cos \alpha + \Re \left(\phi_2^0 - v_2 / \sqrt{2} \right) \sin \alpha \right) , \tag{X.96}$$

où l'angle de mélange α s'obtient par

$$\sin 2\alpha = \frac{2\mathcal{M}_{12}}{\sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2}}, \quad \cos 2\alpha = \frac{\mathcal{M}_{11} - \mathcal{M}_{22}}{\sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2}}$$
(X.97)

^{14.} Des facteurs $\frac{1}{2}$ ont été introduits par rapport à [38, 39] afin de conserver une cohérence sur les définitions de v_1 et v_2 vis-à-vis de la section 2.4 tout en conservant la physique inchangée.

avec $-\pi/2 \le \alpha \le 0$ et dont les masses à l'ordre le plus bas s'expriment, avec $m_h \le m_H$,

$$m_{h,H}^2 = \frac{1}{2} \left(\mathcal{M}_{11} + \mathcal{M}_{22} \mp \sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2} \right).$$
 (X.98)

Enfin, v est fixée par la masse du W,

$$m_W = \frac{1}{2}vg_I. (X.99)$$

Le 2HDM ainsi construit possède 6 paramètres libres :

- m_h , m_H , m_A , $m_{H^{\pm}}$ les masses des bosons de Higgs;
- $\tan \beta$ le rapport des condensats des doublets de Higgs dans le vide;
- α l'angle de mélange des Higgs.

Ce modèle peut être affiné par les observations expérimentales. Par exemple, le changement de saveur par courant neutre (FCNC, Flavor-Changing Neutral Currents), n'est pas observé expérimentalement Afin d'être compatible avec ce fait expérimental [38],

- soit les masses des bosons de Higgs sont élevées, de l'ordre du TeV, supprimant ainsi suffisamment le FCNC pour rester dans les limites observées;
- soit tous les fermions portant une même charge électrique ne sont couplés qu'à un seul doublet de Higgs au plus.

La masse du Higgs du modèle standard n'étant pas de l'ordre du TeV, la seconde option est choisie.

Dans le cas des modèles de type II 15, les fermions d'isospin faible bas sont ainsi couplés à ϕ_1 et ceux d'isospin faible haut à ϕ_2 . Les intensités des couplages des fermions et des bosons avec h, H et A ainsi obtenues, par rapport à celles avec le boson de Higgs du modèle standard, sont présentées dans le tableau X.4.

Couplage avec	h	Н	A
Bosons vecteurs	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
Fermions hauts	$\frac{\cos \alpha}{\sin \beta} - \sin \alpha$	$\frac{\sin \alpha}{\sin \beta}$	$\cot \beta$
Fermions bas	$\frac{-\sin\alpha}{\cos\beta}$	$\frac{\cos \alpha}{\cos \beta}$	aneta

Tableau X.4 – Couplages des bosons de Higgs neutres des modèles de type II par rapport aux couplages du boson de Higgs du modèle standard [38].

Les modèles à deux doublets de Higgs sont donc une extension du modèle standard ajoutant une nouvelle physique, par exemple l'existence de nouveaux bosons de Higgs. Ces modèles, par rapport à d'autres possibilités explorées, apportent le moins de nouveaux paramètres arbitraires possibles, ce qui est un critère important dans l'élaboration d'une nouvelle théorie. Enfin, ils doivent être introduits dans les modèles supersymétriques pour que ceux-ci respectent les observations expérimentales. Nous avons à présent le formalisme nécessaire pour discuter de l'extension supersymétrique minimale du modèle standard.

L'extension supersymétrique minimale du modèle standard

L'extension supersymétrique minimale du modèle standard ou MSSM est un modèle supersymétrique et donc, à ce titre, un cas particulier de modèle à deux doublets de Higgs. Il s'agit du modèle le plus simple permettant d'introduire la supersymétrie tout en étant compatible avec les observations expérimentales à ce jour. Dans le MSSM, les deux doublets de Higgs s'expriment en fonction de ϕ_1 et ϕ_2 introduits dans la section traitant de la supersymétrie comme [38]

$$H_d = \begin{pmatrix} \phi_1^{0*} \\ -\phi_1^- \end{pmatrix}, \quad H_u = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}.$$
 (X.100)

^{15.} Dans les modèle de type I, les fermions ne sont pas couplés à ϕ_1 , mais le sont à ϕ_2 .

L'expression du potentiel de Higgs général des 2HDM (X.88) devient

$$V(H_d, H_u) = \mu_d^2 H_d^{\dagger} H_d + \mu_u^2 H_u^{\dagger} H_u - \mu^2 (H_d \wedge H_u + \text{h.c.})$$

$$+ \frac{g_I^2 + g_Y^2}{8} (H_d^{\dagger} H_d - H_u^{\dagger} H_u)^2 + \frac{g_I^2}{2} (H_d^{\dagger} H_u)^2$$
(X.101)

en posant [34, 38, 39]

$$\begin{split} &\lambda_2 = \lambda_1 \,, \\ &\lambda_3 = \frac{1}{8} (g_I^2 + g_Y^2) - \lambda_1 \,, \\ &\lambda_4 = 2\lambda_1 - \frac{1}{2} g_Y^2 \,, \\ &\lambda_5 = \lambda_6 = 2\lambda_1 - \frac{1}{2} (g_I^2 + g_Y^2) \,, \end{split} \tag{X.102a} \qquad \begin{aligned} &\mu_d^2 = \mu^2 \tan \beta - \frac{1}{2} m_Z^2 \cos(2\beta) \,, \\ &\mu_u^2 = \mu^2 \cot \beta + \frac{1}{2} m_Z^2 \cos(2\beta) \,, \end{aligned} \tag{X.102b} \\ &\mu_u^2 = \mu^2 \cot \beta + \frac{1}{2} m_Z^2 \cos(2\beta) \,, \end{aligned} \tag{X.102b} \qquad \\ &\mu^2 = -\frac{1}{2} v_1 v_2 (g_I^2 + g_Y^2 - 4\lambda_1) \,. \end{aligned} \tag{X.102b}$$

Afin d'assurer la stabilité du vide, le potentiel ne doit pas pouvoir être infiniment bas, ce qui implique $\mu_u^2 + \mu_d^2 > 2\mu^2$ si $|\phi_1^0| = |\phi_2^0|$. La brisure spontanée de symétrie donnant leurs masses aux bosons de l'interaction faible est présente si $\mu^4 > \mu_u^2 \mu_d^2$. Alors, les condensats dans le vide des deux doublets de Higgs sont

$$\langle H_d \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad \langle H_u \rangle_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}.$$
 (X.103)

Les masses des bosons de Higgs s'expriment alors à l'ordre le plus bas

$$m_A^2 = \mu^2(\tan\beta + \cot\beta) = \frac{2\mu^2}{\sin 2\beta},$$
 (X.104)

$$m_{H^{\pm}}^2 = m_A^2 + m_W^2 \,, \tag{X.105}$$

$$m_{h,H}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta} \right),$$
 (X.106)

et l'angle de mélange des Higgs scalaires neutres vérifie

$$\cos 2\alpha = -\frac{m_A^2 - m_Z^2}{m_H^2 - m_h^2} \cos 2\beta , \quad \sin 2\alpha = -\frac{m_A^2 + m_Z^2}{m_H^2 - m_h^2} \sin 2\beta . \tag{X.107}$$

Enfin, la masse du *W* vérifie toujours (X.99) et celle du *Z* peut être exprimée en fonction des paramètres du MSSM. Ainsi,

$$m_W = \frac{1}{2}vg_I \Leftrightarrow m_W^2 = \frac{1}{4}v^2g_I^2, \quad m_Z^2 = \frac{\mu_d^2 - \mu_u^2 \tan^2 \beta}{\tan^2 \beta - 1}.$$
 (X.108)

À l'ordre le plus bas, les masses des bosons de Higgs dépendent donc seulement de deux paramètres libres, m_A et tan β défini par (X.90). Il est à noter que l'équation (X.106) implique l'existence d'un boson de Higgs neutre de masse inférieure à $m_Z = 91,19$ GeV. Toutefois, ceci n'est vrai qu'à l'ordre le plus bas. La prise en compte des corrections radiatives change les expressions de ces masses, en particulier les corrections dues au quark top et à son superpartenaire le stop. La correction à la masse du boson de Higgs léger est ainsi donnée par [34]

$$m_h^2 \to m_h^2 + \delta m_h^2 \simeq m_Z^2 + \frac{3m_t^4}{2\pi^2 v^2} \left[\ln \frac{m_S^2}{m_t^2} + \frac{X_t^2}{m_S^2} \left(1 - \frac{X_t^2}{12m_S^2} \right) \right]$$
 (X.109)

où

$$X_t = A_t - \mu \cot \beta \tag{X.110}$$

est le paramètre de mélange du stop avec A_t la constante de couplage entre les Higgs et le stop et

$$m_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$
 (X.111)

est l'échelle d'énergie de la SUSY, définie comme la moyenne géométrique des masses des stops. Il existe en effet deux états propres de masse du stop, \tilde{t}_1 et \tilde{t}_2 , mélanges des stops de chiralité droite et

Figure X.14 – Masses des bosons de Higgs du MSSM en fonction de m_A pour $\tan \beta = 3$ et 30 dans le cas de mélange maximal du stop avec $m_{\tilde{t}} = 2 \text{ TeV}$ et les autres paramètres de la SUSY fixés à 1 TeV [34].

gauche. Les valeurs des masses corrigées de h, H et H^{\pm} sont tracées sur la figure X.14 en fonction de m_A pour tan $\beta = 3$ et 30 dans le cas de mélange maximal du stop. Ainsi, pour $m_A \lesssim 125$ GeV, H joue le rôle du modèle standard et il existe un Higgs léger. Pour $m_A \gtrsim 125\,\mathrm{GeV}$, h joue le rôle du modèle standard et les bosons de Higgs supplémentaires sont de masses plus élevées.

Les particules du MSSM et leurs superpartenaires sont résumés dans le tableau X.5. Un test expérimental est possible par la recherche d'un signal correspondant aux bosons de Higgs supplémentaires, ce qui est un des sujets de cette thèse. L'étude de la phénoménologie de ces bosons de Higgs, présentée ci-après, nous permet de déterminer les conditions favorables à la recherche d'un tel signal.

Particules			Superpartenaires				
Туре	Spin	Particules	Symboles	Туре	Spin	Particules	Symboles
Fermions	$\frac{1}{2}$	quarks leptons	q ℓ	Sfermions	0	squarks sleptons	$ ilde{ ilde{q}} \ ilde{\ell}$
Bosons	1	gluon bosons W [±] photon boson Z Higgs	g $W^+, W^ \gamma$ Z h, H, A, H^\pm	Bosinos	$\frac{1}{2}$	gluino winos photino zino Higgsinos	$ ilde{ ilde{g}} ilde{ ilde{W}}^+, ilde{W}^- ilde{ ilde{\gamma}} ilde{ ilde{Z}} ilde{ ilde{Z}} ilde{ ilde{h}}, ilde{H}, ilde{A}, ilde{H}^\pm$

Tableau X.5 – Particules et leurs superpartenaires. La présence de plusieurs bosons de Higgs est justifiée par la nécessité d'un second doublet de Higgs. Ce formalisme est décrit dans la section 4.2.

Phénoménologie des bosons de Higgs du MSSM

Pour concevoir une analyse de physique des particules à même de tester le MSSM, il nous faut dans un premier temps déterminer la manifestation du MSSM à observer. Comme cela a été développé dans la section précédente, le MSSM implique l'existence de quatre bosons de Higgs supplémentaires, en particulier deux nouveaux bosons de Higgs neutres, H et A. Si de tels bosons existent, un signal leur correspondant doit pouvoir être observé. Dans la suite, nous nous concentrons donc

sur la phénoménologie des trois bosons de Higgs neutres.

Nous avons vu qu'au premier ordre, les masses des bosons de Higgs s'expriment en fonction de deux paramètres uniquement, m_A et $\tan \beta$. Les couplages des trois bosons de Higgs neutres du MSSM aux autres particules, par rapport aux couplages du boson de Higgs du modèle standard, sont présentés dans le tableau X.4 en fonction de α et β . Or, α et β sont reliés par les équations (X.107), donnant

$$\tan 2\alpha = \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2} \tan 2\beta. \tag{X.112}$$

Les observations expérimentales semblent favoriser $m_A \gg m_Z$ [19, 20, 40]. Dans ce cas, H et A sont de masses similaires et h doit jouer le rôle du boson de Higgs du modèle standard observé expérimentalement en 2012 [16-18]. Cette situation correspond à la limite découplée, dans laquelle

$$\lim_{m_A \gg m_Z} \tan 2\alpha = \tan 2\beta \tag{X.113}$$

d'après (X.112). Alors, dans la limite découplée, $\alpha \sim \beta$ ou $\alpha \sim \beta \pm \frac{\pi}{2}$. Or, $\beta \geqslant 0$ et $\alpha \leqslant 0$ et tan β est contraint par [41]

$$1 < \tan \beta \lesssim \frac{m_t}{m_b} \simeq 42. \tag{X.114}$$

Il ne reste donc plus que la possibilité $\alpha \sim \beta - \frac{\pi}{2}$. Dans la limite découplée, les couplages du tableau X.4 deviennent alors ceux du tableau X.6.

Couplage avec	h	Н	A
Bosons vecteurs	~ 1	~ 0	0
Fermions hauts	~ 1	$\sim -\cot \beta$	$\cot \beta$
Fermions bas	~ 1	\sim tan eta	an eta

Tableau X.6 – Couplages des bosons de Higgs neutres dans la limite découplée du MSSM par rapport aux couplages du boson de Higgs du modèle standard.

Les couplages ainsi obtenus dans le tableau X.6 présentent trois caractéristiques d'intérêt :

- le boson de Higgs le plus léger, *h*, se comporte comme le boson de Higgs du modèle standard, ce qui le rend tout à fait cohérent avec les observations actuelles;
- les bosons de Higgs neutres massifs H et A présentent peu voire aucun couplage aux bosons vecteurs, par exemple la désintégration $A \to ZZ$ est impossible mais $A \to Zh$ est possible;
- les bosons de Higgs neutres massifs *H* et *A* sont couplés de manières similaires aux fermions.

Lorsque $\tan \beta$ augmente, les couplages de H et A aux fermions d'isospin faible bas sont augmentés et ceux aux fermions d'isospin faible haut supprimés. La production des bosons de Higgs neutres supplémentaires, tout comme leurs désintégrations, s'en trouvent donc intrinsèquement liées à la présence de fermions d'isospin faible bas.

5.1 Production de bosons de Higgs

La production de bosons de Higgs au LHC peut être réalisée selon plusieurs modes dont une mesure précise des sections efficaces a pu être réalisée dans le cadre du modèle standard [42-45]. Ces sections efficaces sont représentées en fonction de l'énergie de collision dans le centre de masse sur la figure X.15. Les processus correspondants à ces différents modes sont présentés dans la section 5.1.1 ci-après. Puis, la production des bosons de Higgs du MSSM est discutée dans la section 5.1.2.

5.1.1 Dans le cadre du modèle standard

Le mode de production principal du boson de Higgs du modèle standard h au LHC est la fusion de gluon, avec près de 85 % des bosons de Higgs produits ainsi. Ce mode est noté ggh et est représenté figure X.16a. L'interaction entre gluons et Higgs est réalisée par une boucle de quarks. Le couplage

Figure X.15 – Sections efficaces des modes de production du boson de Higgs du modèle standard [42-45].

Figure X.16 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard par fusion de *gluons (ggh) et fusion de bosons vecteurs (VBF).*

Figure X.17 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard en association avec un boson.

Figure X.18 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du modèle standard en association avec un quark t.

du Higgs aux fermions étant proportionnel à la masse du fermion ¹⁶, le quark top est dominant dans cette boucle.

Le second mode de production de Higgs le plus important au LHC est la fusion de boson vecteur, noté VBF (*Vector Boson Fusion*) et représenté sur les figures X.16b et X.16c. Deux quarks produisent chacun un boson vecteur (W^+ et W^- ou deux Z). Ces deux bosons fusionnent en un boson de Higgs. Bien que la section efficace du VBF soit dix fois moindre que celle du ggh, les deux quarks de l'état final donnent deux jets 17 très caractéristiques. Le calcul de la section efficace de ce processus inclu les corrections QCD 18 au NNLO 19 et les corrections électrofaibles au NLO 19 .

La production d'un boson de Higgs peut également se faire en association avec un boson vecteur, c'est le mode VH. Une paire quark-antiquark produit un boson vecteur de haute énergie (W sur la figure X.17a ou Z sur la figure X.17b). Ce boson radie alors un Higgs, d'où la dénomination « Higgs-strahlung » parfois utilisée pour le mode VH. Les sections efficaces de ces processus sont calculées en prenant en compte les corrections QCD NNLO et les corrections électrofaibles au NLO [45]. Une fusion de gluons peut également amener à une production d'un Higgs en association avec un Z, c'est le cas du processus de la figure X.17c.

Enfin, il est possible de produire un Higgs en association avec des fermions lourds, en particulier des quarks top $(t\bar{t}h)$ ou bottom $(b\bar{b}h)$. Le cas $t\bar{t}h$ est illustré sur la figure X.18. Ces processus contribuent peu à la production de boson de Higgs au LHC dans le cadre du modèle standard. Cependant, la phénoménologie du MSSM peut rendre les modes de production en association avec des quarks b significatifs voire dominants.

5.1.2 Dans le cadre du MSSM

Dans la limite découplée du MSSM, compte-tenu des couplages des bosons de Higgs h, H et A du tableau X.6, les processus présentés dans la section précédente sont modifiés. Ainsi, la fusion de gluons de la figure X.16a permet, dans le MSSM, de produire h, H et A. Il s'agit toujours du mode dominant tant que tan β ne prend pas de valeur élevée. Dans le cas de la production de h et H, la boucle peut également contenir des contributions des squarks stop et sbottom s'ils ont des masses suffisamment basses [47]. Le mode VBF, dont les processus sont présentés sur les figures X.16b et X.16c, permet de produire h et H, mais pas A. Les corrections aux ordres supérieurs de ces diagrammes dues à la QCD supersymétrique sont faibles et celles dues à la force électrofaible supersymétrique de l'ordre du pourcent [42]. Ces nouveaux processus sont représentés sur la figure X.19.

Figure X.19 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM par fusion de gluons (ggH) et fusion de bosons vecteurs (VBF).

Dans le mode VH, le Higgs radié peut également être un H. Les processus de la figure X.17 sont ainsi modifiés en ceux de la figure X.20. Les corrections aux ordres supérieurs de ces diagrammes dues à la QCD supersymétrique sont faibles et celles dues à la force électrofaible supersymétrique ne sont pas connues [42].

Pour de grandes valeurs de tan β , la production de Higgs lourds en association avec des quarks b est un mode dominant. Plusieurs processus participent à ce mode. Sur les figures X.21a et X.21b se

^{16.} Le lecteur pourra se référer à la section 2.4.3, page 14.

^{17.} Le processus de formation de jets à partir de quarks est abordé dans le chapitre « Calibration en énergie des jets ».

^{18.} La chromodynamique quantique (Quantum ChromoDynamic) est abordée dans la section 2.5.

^{19.} Les notations NLO, NNLO, N³LO, etc. signifient *next-to-leading order*, c'est-à-dire jusqu'à l'ordre suivant le premier degré non nul; *next-to-next-to-leading order*, un ordre de plus que NLO; etc.

Figure X.20 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM en association avec un boson.

trouvent les processus analogues à ceux du mode $t\bar{t}h$ du modèle standard présentés figures X.18a et X.18b. Des processus comme ceux des figures X.21c et X.21d sont également envisageables si le quark b est considéré comme présent au sein du proton, c'est le « schéma à cinq saveurs » ou 5fs (5-flavor scheme). Les sections efficaces des processus du mode $b\bar{b}h$ sont calculées au NLO dans le 4fs et au NNLO pour le 5fs.

Figure X.21 – Diagrammes de Feynman de production de boson de Higgs dans le cadre du MSSM en association avec un quark b.

Désintégration de bosons de Higgs

(a) Production en association avec un boson W.

Les bosons de Higgs ont une durée de vie très courte, de l'ordre de 10^{-22} s pour le boson de Higgs du modèle standard par exemple [4]. Leur propagation se fait ainsi sur des distances ne pouvant excéder quelques dizaines de femtomètres, c'est-à-dire $10^{-14}\,\mathrm{m}$, soit moins que le diamètre du noyau d'un atome d'or. Il est donc impossible d'observer directement la présence d'un boson de Higgs, comme cela peut se faire avec d'autres particules plus stables comme les kaons, les muons, les électrons ou les protons pour ne citer qu'eux. Pour détecter ces bosons, il faut donc détecter leurs produits de désintégration.

La désintégration des bosons de Higgs peut se faire sous différentes formes ayant différents rapports de branchement ou BR (Branching Ratio), c'est-à-dire différentes probabilités de survenir vis-àvis des autres formes. La topologie des événements correspondants est également fortement affectée par les produits de désintégration des bosons de Higgs.

Les bosons de Higgs supplémentaires H et A voient leurs couplages aux bosons vecteurs supprimés dans la limite découplée du MSSM. Leurs couplages sont proportionnels à $\tan \beta$ avec les fermions d'isospin faible bas et inversement proportionnels à tan β avec les fermions d'isospin faible

Figure X.22 – Rapports de branchement des bosons de Higgs du MSSM en fonction de m_A pour $\tan \beta = 5$ et 30 [43, 44]. L'effet de $\tan \beta$ sur les couplages de H et A aux fermions est bien visible avec l'augmentation des rapports de branchement au bottom (en rouge) et au tau (en bleu) et la diminution du rapport de branchement au top (en vert).

haut par rapport au couplage de h avec ces mêmes fermions. Les couplages des bosons de Higgs aux fermions sont de plus proportionnels aux masses de ces fermions. Ces rapports de branchement sont représentés sur la figure X.22, page 30, pour les trois bosons de Higgs neutres du MSSM et pour $\tan \beta = 5$ et 30. Pour des masses de H et A suffisamment grandes pour leur permettre de se désintégrer en paire de quarks t, malgré la masse élevée de ce dernier, la suppression des couplages aux fermions d'isospin faible haut par tan β laisse le quark b et le lepton τ avec les rapports de branchement les plus élevés à haut tan β . Les rapports de branchement du boson de Higgs h correspondant au boson de Higgs du modèle standard sont peu affectés par tan β .

La valeur de tan β est un paramètre libre du MSSM pouvant être grand. À haut tan β le quark b et le lepton τ proposent les rapports de branchement les plus grands à H et A. Pour des valeurs modérées voire basses de tan β , le quark top peut éventuellement proposer un rapport de branchement plus grand, mais seulement pour $m_A \gtrsim 350\,\text{GeV}$. Les désintégrations en bb et en $\tau^+\tau^-$ sont donc les plus prometteuses pour la recherche de bosons de Higgs supplémentaires de haute masse.

Bien que le canal de désintégration $h, H, A \rightarrow b\bar{b}$ possède un rapport de branchement 5 à 10 fois supérieur à celui du canal $h, H, A \to \tau^+\tau^-$, il est sujet à de nombreuses sources de bruit de fond au LHC où les collisions ont lieu entre protons. C'est pourquoi le sujet de cette thèse est la recherche d'un boson de Higgs de haute masse se désintégrant en paire de taus, dont l'accessibilité expérimentale est meilleure. La présence de deux leptons tau de haute énergie dans l'état final est en effet une signature bien plus claire que la présence de quarks b. Le diagramme de Feynman correspondant à cette désintégration est présenté sur la figure X.23. Toutefois, les taus ne sont pas des particules stables et ils se désintègrent avant d'entrer dans les parties sensibles du détecteur. Seuls leurs produits de désintégration sont observés.

Figure X.23 – *Diagramme de Feynman d'une désintégration h, H, A* $\rightarrow \tau^+\tau^-$.

5.3 Désintégration des leptons tau

La durée de vie du lepton τ est de 290 fs. Ils se propage ainsi sur des distances inférieures à 87 µm. Le τ n'est donc pas directement observé dans le détecteur, ses produits de désintégration le sont.

Les leptons τ se désintègrent par interaction faible selon $\tau^- \to W^- \nu_\tau$. Le boson W, virtuel, se désintègre ensuite :

- leptoniquement selon $W^- \rightarrow e^- \bar{\nu}_e$ dans 17,82 % des cas;
- leptoniquement selon $W^- \to \mu^- \bar{\nu}_{\mu}$ dans 17,39 % des cas;
- hadroniquement selon $W^- \rightarrow q\bar{q}'$ dans 64,79 % des cas.

Dans le cas de la désintégration hadronique, le phénomène de hadronisation ²⁰ a lieu et les deux quarks donnent un ensemble constitué de quelques hadrons, en général trois ou moins, et éventuellement des particules neutres comme des π^0 , ces derniers se désintégrant majoritairement en deux photons. L'ensemble des particules issues de la désintégration du W forme ainsi un petit jet. Il s'agit d'un « tau hadronique », noté τ_h dans la suite.

Les diagrammes de Feynman correspondant aux désintégrations leptonique et hadronique du τ sont représentés figures X.24a et X.24b. Le tableau X.7a résume plus en détails les rapports de branchement des différents modes de désintégration du τ .

La désintégration d'un τ peut donc se faire selon trois modes différents, $\tau \to \tau_h \nu_\tau$, $\tau \to \mu \nu_\mu \nu_\tau$ et $au o e\, v_e v_ au$. Dans tous les cas, les neutrinos sont invisibles pour le détecteur. Les deux leptons au issus

^{20.} L'hadronisation est présenté dans la section 2.2 du chapitre « Calibration en énergie des jets ».

(a) Désintégration leptonique d'un τ^- . Le lepton ℓ peut être un électron ou un muon.

(b) Désintégration hadronique d'un τ^- .

Figure X.24 – Diagrammes de Feynman de désintégration d'un τ^- .

Mode de désintégration	BR (%)
$ au^- o e^- ar{ u}_e ar{ u}_ au$	17,82
$ au^- o \mu^- ar{v}_\mu ar{v}_ au$	17,39
$ au^- o ext{h}^- ar{ u}_ au$	11,51
$ au^- ightarrow ext{h}^- \pi^0 ar{ u}_ au$	25,93
$ au^- o ext{h}^- \pi^0 \pi^0 ar{ u}_ au$	9,48
$ au^- o ext{h}^- ext{h}^- ext{h}^+ ar{ u}_ au$	9,80
$ au^- ightarrow ext{h}^- ext{h}^- ext{h}^+ \pi^0 ar{ u}_ au$	4,76
Autres modes hadroniques	3,31
$ au^- o au_{ m h}^- ar{ u}_{ au}$	$\overline{64,79}$

⁽a) Rapports de branchement des différents modes de désintégration du τ [4].

(b) Rapports de branchement des six canaux des événe*ments* $h \rightarrow \tau \tau$.

Tableau X.7 – Rapports de branchement des différents modes de désintégration du τ [4] et des différents canaux des *événements* $h \rightarrow \tau \tau$.

de la désintégration du boson de Higgs se désintègrent indépendamment l'un de l'autre. Il existe donc six canaux différents pour les événements où un boson de Higgs se désintègre en paire de τ , listés avec leurs rapports de branchement dans le tableau X.7b.

Dans le cadre de cette thèse, les canaux semi-leptoniques, c'est-à-dire $\mu\tau_h$ et $e\tau_h$ représentant respectivement 22,53 et 23,09 % des événements $h \to \tau \tau$, sont analysés dans le chapitre 5.

Conclusion

Références

- [1] N. Cabibbo. « Unitary Symmetry and Leptonic Decays ». Physical Review Letters 10 (12 juin 1963), p. 531-533. DOI: 10.1103/PhysRevLett.10.531. URL: https://link.aps.org/doi/10. 1103/PhysRevLett.10.531.
- [2] N. Cabibbo. « Unitary Symmetry and Nonleptonic Decays ». Physical Review Letters 12 (2 jan. 1964), p. 62-63. DOI: 10.1103/PhysRevLett.12.62. URL: https://link.aps.org/doi/10. 1103/PhysRevLett.12.62.
- [3] M. Kobayashi & T. Maskawa. « CP-Violation in the Renormalizable Theory of Weak Interaction ». Progress of Theoretical Physics 49.2 (fév. 1973), p. 652-657. DOI: 10.1143/PTP.49.652. eprint: https://academic.oup.com/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf. URL: https://doi.org/10.1143/PTP.49.652.
- [4] Particle Data Group. « Review of Particle Physics ». Physical Review D98 (août 2018). DOI: 10.1103/PhysRevD.98.030001.

- [5] F. ENGLERT & R. Brout. « Broken symmetry and the mass of gauge vector mesons ». Physical Review Letters 13.9 (9 août 1964), p. 321-323. DOI: 10.1103/PhysRevLett.13.321. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.321.
- [6] P. W. Higgs. « Broken symmetries, massless particles and gauge fields ». Physics Letters 12.2 (sept. 1964), p. 132-133. DOI: 10.1016/0031-9163(64)91136-9. URL: https://cds.cern.ch/ record/641590.
- [7] P. W. Higgs. « Broken symmetries and the masses of gauge bosons ». Physics Letters 13.16 (oct. 1964), p. 132-133. DOI: 10.1103/physrevlett.13.508.
- [8] G. S. Guralnik, C. R. Hagen & T. W. B. Kibble. « Global Conservation Laws and Massless Particles ». Physical Review Letters 13.20 (20 nov. 1964), p. 585-587. DOI: 10.1103/PhysRevLett. 13.585. URL: https://link.aps.org/doi/10.1103/PhysRevLett.13.585.
- [9] S. L. Glashow. « Partial-symmetries of weak interactions ». Nuclear Physics 22.4 (1961), p. 579-588. DOI: https://doi.org/10.1016/0029-5582(61)90469-2.
- [10] S. Weinberg. « A model of leptons ». Physical Review Letters 19 (21 nov. 1967), p. 1264-1266. doi: 10.1103/PhysRevLett.19.1264. URL: https://link.aps.org/doi/10.1103/PhysRevLett. 19.1264.
- [11] G. Arnison & coll. « Experimental observation of isolated large transverse energy electrons with associated missing energy at $\sqrt{s} = 540 \,\text{GeV}$ ». Physics Letters **B122**.1 (1983), p. 103-116. DOI: https://doi.org/10.1016/0370-2693(83)91177-2. URL: http://www.sciencedirect. com/science/article/pii/0370269383911772.
- [12] M. Banner & coll. « Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider ». Physics Letters B122.5 (1983), p. 476-485. DOI: https://doi.org/10.1016/0370-2693(83)91605-2. URL: http: //www.sciencedirect.com/science/article/pii/0370269383916052.
- [13] G. Arnison & coll. «Experimental observation of lepton pairs of invariant mass around 95 GeV· c^{-2} at the CERN SPS collider ». Physics Letters **B126**.5 (1983), p. 398-410. DOI: https: //doi.org/10.1016/0370-2693(83)90188-0. URL: http://www.sciencedirect.com/ science/article/pii/0370269383901880.
- [14] P. Bagnaia & coll. « Evidence for $Z^0 \rightarrow e^+e^-$ at the CERN pp collider ». Physics Letters B129.1 (1983), p. 130-140. DOI: https://doi.org/10.1016/0370-2693(83)90744-X. URL: http://www.sciencedirect.com/science/article/pii/037026938390744X.
- [15] G. Arnison & coll. « Further evidence for charged intermediate vector bosons at the SPS collider ». Physics Letters **B129**.3 (1983), p. 273-282. doi: https://doi.org/10.1016/0370-2693(83) 90860-2. URL: http://www.sciencedirect.com/science/article/pii/0370269383908602.
- The ATLAS Collaboration. « Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC ». Physics Letters B716.1 (2012), p. 1-29. DOI: https://doi.org/10.1016/j.physletb.2012.08.020. URL: http://www.sciencedirect. com/science/article/pii/S037026931200857X.
- [17] The CMS Collaboration. « Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC ». Physics Letters B716.1 (2012), p. 30-61. DOI: https://doi.org/10. 1016/j.physletb.2012.08.021. URL: http://www.sciencedirect.com/science/article/ pii/S0370269312008581.
- The CMS Collaboration. « Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV ». Journal of High Energy Physics **06** (juin 2013). DOI: 10.1007/jhep06 (2013) 081.
- G. AAD & coll. « Combined measurement of the Higgs boson mass in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments ». Physical Review Letters 114.19 (mai 2015). DOI: 10.1103/physrevlett.114.191803. URL: http://dx.doi.org/10.1103/PhysRevLett. 114.191803.

- [20] G. AAD & coll. « Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s}=7$ and 8 TeV ». *Journal of High Energy Physics* **08** (août 2016). DOI: 10.1007/jhep08(2016) 045. URL: http://dx.doi.org/10.1007/JHEP08(2016)045.
- [21] S. DÜRR & coll. « Ab Initio Determination of Light Hadron Masses ». *Science* **322**.5905 (nov. 2008), p. 1224-1227. DOI: 10.1126/science.1163233.
- [22] G. P. SALAM. Elements of QCD for hadron colliders. 2010. arXiv: 1011.5131 [hep-ph]. URL: https://arxiv.org/pdf/1011.5131.pdf.
- [23] The CDF Collaboration. « Observation of top quark production in $p\bar{p}$ collisions with the collider detector at Fermilab ». *Physical Review Letters* **74**.14 (avr. 1995), p. 2626-2631. DOI: 10.1103/physrevlett.74.2626. URL: http://dx.doi.org/10.1103/PhysRevLett.74.2626.
- [24] The DØ Collaboration. «Observation of the top quark ». Physical Review Letters 74.14 (avr. 1995), p. 2632-2637. DOI: 10.1103/physrevlett.74.2632. URL: http://dx.doi.org/10.1103/PhysRevLett.74.2632.
- [25] S. Mele. «The Measurement of the Number of Light Neutrino Species at LEP ». Advanced Series on Directions in High Energy Physics 23 (2015), p. 89-106. DOI: 10.1142/9789814644150_0004. URL: http://cds.cern.ch/record/2103251.
- [26] The Super-Kamiokande Collaboration. « Evidence for oscillation of atmospheric neutrinos ». Physical Review Letters 81 (8 août 1998), p. 1562-1567. DOI: 10.1103/PhysRevLett.81.1562. URL: https://link.aps.org/doi/10.1103/PhysRevLett.81.1562.
- [27] The SNO Collaboration. « Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory ». *Physical Review Letters* **89** (1 juin 2002). DOI: 10.1103/PhysRevLett.89.011301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.89.011301.
- [28] J. Schechter & J. W. F. Valle. « Neutrino masses in $SU(2) \times U(1)$ theories ». Physical Review D22 (9 nov. 1980), p. 2227-2235. DOI: 10.1103/PhysRevD.22.2227. URL: https://link.aps.org/doi/10.1103/PhysRevD.22.2227.
- [29] A. DAVIDSON & K. C. WALI. « Family mass hierarchy from universal seesaw mechanism ». *Physical Review Letters* **60** (18 mai 1988), p. 1813-1816. DOI: 10.1103/PhysRevLett.60.1813. URL: https://link.aps.org/doi/10.1103/PhysRevLett.60.1813.
- [30] R. N. Mohapatra & G. Senjanović. « Neutrino masses and mixings in gauge models with spontaneous parity violation ». *Physical Review* **D23** (1 jan. 1981), p. 165-180. doi: 10.1103/PhysRevD.23.165. url: https://link.aps.org/doi/10.1103/PhysRevD.23.165.
- [31] R. N. Mohapatra & G. Senjanović. « Neutrino Mass and Spontaneous Parity Nonconservation ». *Physical Review Letters* **44** (14 avr. 1980), p. 912-915. doi: 10.1103/PhysRevLett.44.912. URL: https://link.aps.org/doi/10.1103/PhysRevLett.44.912.
- [32] M. Gell-Mann, P. Ramond & R. Slansky. « Complex Spinors and Unified Theories » (1979). URL: http://cds.cern.ch/record/133618.
- [33] Z. Maki, M. Nakagawa & S. Sakata. « Remarks on the Unified Model· of Elementary Particles ». Progress of Theoretical Physics 28.5 (nov. 1962), p. 870-880. DOI: 10.1143/PTP.28.870. eprint: https://academic.oup.com/ptp/article-pdf/28/5/870/5258750/28-5-870.pdf. URL: https://doi.org/10.1143/PTP.28.870.
- [34] Y. NAGASHIMA. Beyond the Standard Model of Elementary Particle Physics. Weinheim: Wiley-VCH, juin 2014. URL: http://cds.cern.ch/record/1620277.
- [35] D. Clowe & coll. « A Direct Empirical Proof of the Existence of Dark Matter ». *Astrophysical Journal* **648**.2 (août 2006). DOI: 10.1086/508162. URL: http://dx.doi.org/10.1086/508162.
- [36] P. A. R. Ade & coll. « Planck 2013 results. I. Overview of products and scientific results ». Astronomy & Astrophysics 571 (oct. 2014). DOI: 10.1051/0004-6361/201321529. URL: http://dx.doi.org/10.1051/0004-6361/201321529.

- [37] S. P. Martin. « A Supersymmetry primer ». Advanced Series on Directions in High Energy Physics (juil. 1998), p. 1-98. DOI: 10.1142/9789812839657_0001. URL: http://dx.doi.org/10.1142/ 9789812839657_0001.
- [38] J. F. Gunion & coll. The Higgs hunter's guide. T. 80. Upton, NY: Brookhaven Nat. Lab., 1989. URL: https://cds.cern.ch/record/425736.
- [39] J. F. Gunion & coll. Errata for "The Higgs Hunter's Guide". Rapp. tech. hep-ph/9302272. Fév. 1993. URL: https://cds.cern.ch/record/559892.
- The CMS Collaboration. « Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions ». Journal of High Energy Physics 10 (oct. 2014). DOI: 10.1007/ jhep10(2014)160. URL: http://dx.doi.org/10.1007/JHEP10(2014)160.
- [41] G. Ridolfi, G. Ross & F. Zwirner. «Supersymmetry ». Large Hadron Collider Workshop Proceedings. II. CERN. Geneva: CERN, oct. 1990, p. 606-683.
- [42] LHC Higgs Cross Section Working Group. « Inclusive Observables ». Handbook of LHC Higgs Cross Sections. 1. CERN Yellow Reports: Monographs. Geneva: CERN, 2011. DOI: 10.5170/ CERN-2011-002. URL: https://cds.cern.ch/record/1318996.
- [43] LHC Higgs Cross Section Working Group. « Differential Distributions ». Handbook of LHC Higgs Cross Sections. 2. CERN Yellow Reports: Monographs. Geneva: CERN, 2012. DOI: 10.5170/CERN-2012-002. URL: https://cds.cern.ch/record/1416519.
- [44] LHC Higgs Cross Section Working Group. « Higgs Properties ». Handbook of LHC Higgs Cross Sections. 3. CERN Yellow Reports: Monographs. Geneva: CERN, 2013. DOI: 10.5170/CERN-2013-004. URL: https://cds.cern.ch/record/1559921.
- [45] LHC Higgs Cross Section Working Group. « Deciphering the Nature of the Higgs Sector ». Handbook of LHC Higgs Cross Sections. 4. CERN Yellow Reports: Monographs. Geneva: CERN, oct. 2016. DOI: 10.23731/CYRM-2017-002. URL: http://cds.cern.ch/record/2227475.
- P. Bolzoni & coll. « Vector boson fusion at next-to-next-to-leading order in QCD : Standard model Higgs boson and beyond ». Physical Review D85 (3 fév. 2012). DOI: 10.1103/PhysRevD. 85.035002. URL: https://link.aps.org/doi/10.1103/PhysRevD.85.035002.
- [47] S. Dawson, A. DJOUADI & M. SPIRA. « QCD Corrections to Supersymmetric Higgs Boson Production: The Role of Squark Loops ». *Physical Review Letters* 77.1 (juil. 1996), p. 16-19. DOI: 10.1103/physrevlett.77.16. URL: http://dx.doi.org/10.1103/PhysRevLett.77.16.