Digital Image Processing Chapter 11:

Image Description and Representation

Shape Representation by Using Chain Codes

Why we focus on a boundary?

The boundary is a good representation of an object shape and also requires a few memory.

Chain codes: represent an object boundary by a connected sequence of straight line segments of specified length and direction.

(Images from Rafael C. Gonzalez and Richard E Wood, Digital Image

Image Representation and Description?

Objective:

To represent and describe information embedded in an image in other forms that are more suitable than the image itself.

Benefits:

- Easier to understand
- Require fewer memory, faster to be processed
- More "ready to be used"

What kind of information we can use?

- Boundary, shape
- Region
- Texture
- Relation between regions

The First Difference of a Chain Codes

Problem of a chain code:

a chain code sequence depends on a starting point.

Solution: treat a chain code as a circular sequence and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude.

The first difference of a chain code: counting the number of direction change (in counterclockwise) between 2 adjacent elements of the code.

Example: Chain code: The first Example: difference $0 \rightarrow 1$ $0 \rightarrow 2$ $0 \rightarrow 3$ 3 $2 \rightarrow 3$ $2 \rightarrow 0$ $2 \rightarrow 1$

- a chain code: 10103322
- The first difference = 3133030
- Treating a chain code as a circular sequence, we get the first difference = 33133030

The first difference is rotational invariant.

Polygon Approximation

Represent an object boundary by a polygon

Minimum perimeter polygon consists of line segments that minimize distances between boundary pixels.

Distance-Versus-Angle Signatures

- Represent a 2-D object boundary in term of a 1-D function(*signature*) of radial distance with respect to θ .
- Invariant to translation, but depend on rotation and scaling

Thinning Algorithm 1. Do not remove *end points* Concept: 2. Do not break *connectivity* 3. Do not cause excessive erosion Apply only to contour pixels: pixels "1" having at least one of its 8 neighbor pixels valued "0" **Notation:** Neighborhood $p_2 \mid p_3$ arrangement for the thinning algorithm Example Let $N(p_1) = p_2 + p_3 + K + p_8 + p_9$ 0 0 $T(p_1)$ = the number of transition 0-1 in the ordered sequence p_2, p_3, \dots 1 0 $, p_8, p_9, p_2.$ $N(p_1) = 4$ $T(p_1) = 3$

Thinning Algorithm (cont.)

Step 1. Mark pixels for deletion if the following conditions are true.

a)
$$2 \le N(p_1) \le 6$$

b)
$$T(p_1) = 1$$
 (Apply to all border pixels)

$$\begin{array}{c|cccc}
p_9 & p_2 & p_3 \\
p_8 & p_1 & p_4
\end{array}$$

c)
$$p_2 \cdot p_4 \cdot p_6 = 0$$

$$p_8$$
 p_1 p_2

d)
$$p_4 \cdot p_6 \cdot p_8 = 0$$

$$p_7$$
 p_6 p_5

Step 2. Delete marked pixels and go to Step 3.

Step 3. Mark pixels for deletion if the following conditions are true.

a)
$$2 \le N(p_1) \le 6$$

(Apply to all border pixels)

b)
$$T(p_1) = 1$$

c)
$$p_2 \cdot p_4 \cdot p_8 = 0$$

d)
$$p_2 \cdot p_6 \cdot p_8 = 0$$

Step 4. Delete marked pixels and repeat Step 1 until no change occurs.

Boundary Descriptors

1. Simple boundary descriptors:

we can use

- Length of the boundary
- The size of smallest circle or box that can totally enclosing the object
- 2. Shape number
- 3. Fourier descriptor
- 4. Statistical moments

Fourier Descriptor Properties

Some properties of Fourier descriptors

Transformation	Boundary	Fourier Descriptor
Identity	s(k)	a(u)
Rotation	$s_r(k) = s(k)e^{i\theta}$	$a_r(u) = a(u)e^{i\theta}$
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$

Regional Descriptors

Purpose: to describe regions or "areas"

- 1. Some simple regional descriptors
 - area of the region
 - length of the boundary (perimeter) of the region
 - Compactness

$$C = \frac{A(R)}{P^2(R)}$$

where A(R) and P(R) = area and perimeter of region R

Example: a circle is the most compact shape with $C = 1/4\pi$

- 2. Topological Descriptors
- 3. Texture
- 4. Moments of 2D Functions

Texture Descriptors

- Texture: measures of properties such as smoothness, coarseness, and regularity
 - 1. Statistical method
 - Characterizes texture as smooth, coarse, grainy, etc.
 - 2. Structural method
 - Description based on regularly spaced parallel lines
 - 3. Spectral method
 - Fourier spectrum, detect global periodicity in an image by identifying high-energy, narrow peaks in the spectrum

Statistical Approaches for Texture Descriptors

We can use statistical moments computed from an image histogram:

$$\mu_n(z) = \sum_{i=0}^{K-1} (z_i - m)^n p(z_i)$$

z = intensity

p(z) = PDF or histogram of z

where

$$m = \sum_{i=0}^{K-1} z_i p(z_i)$$

Example: The 2^{nd} moment = variance \rightarrow measure "smoothness"

The 3^{rd} moment \rightarrow measure "skewness"

The 4^{th} moment \rightarrow measure "uniformity" (flatness)

	Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
(A) (B)	Smooth Coarse	82.64 143.56	11.79 74.63	0.002 0.079	-0.105 -0.151	0.026 0.005	5.434 7.783
C	Regular	99.72	33.73	0.017	0.750	0.013	6.674

Texture Descriptors

Purpose: to describe "texture" of the region.

Examples: optical microscope images:

Superconductor (smooth texture)

Cholesterol (coarse texture)

Microprocessor (regular texture)

Structural Approach for Texture Descriptor

- A rule of the form $S \rightarrow aS$, "circles to the right"
- Add new rules : S \rightarrow bA, A \rightarrow cA, A \rightarrow c, A \rightarrow bS, S \rightarrow a
- b means "circle down" and c means "circle to the left."
- We can now generate a string of the form *aaabccbaa* that corresponds to a 3 X 3 **matrix of circles.**

Fourier Approach for Texture Descriptor

- Fourier spectrum is ideally suited for describing the *directionality* of periodic or almost periodic 2-D patterns in an image.
- These *global texture patterns*, although easily distinguishable as concentrations of high-energy bursts in the spectrum,
 - generally are quite difficult to detect with *spatial* methods because of the local nature of these techniques.
 - 1.Prominent peaks in the spectrum give the *principal direction* of the texture patterns.
 - 2. The location of the peaks in the frequency plane gives the fundamental *spatial period* of the patterns
 - 3.Eliminating any periodic components via filtering leaves *nonperiodic image elements*, which can then be described by statistical techniques.

Fourier Approach for Texture Descriptor Concept: convert 2D spectrum into 1D graphs Fourier Original Divide into areas FFT2D coefficient image +FFTSHIFT by angles image Divide into areas Sum all pixels by radius in each area Sum all pixels in each area

Fourier Approach for Texture Descriptor

- Detection and interpretation of the spectrum features just mentioned are simplified by expressing the spectrum in
 - polar coordinates to yield a function $S(r, \theta)$, where S is the spectrum function and r and θ are the variables in this coordinate system.
- For each direction θ ,
 - $S(r, \theta)$ may be considered a 1-D function $S_d(r)$.
 - Similarly, for each frequency r, $S_r(\theta)$ is a 1-D function.
 - Analyzing $S_{\theta}(r)$ for a fixed value of θ yields the behavior of the spectrum (such as the presence of peaks) along a radial direction from the origin, whereas
 - analyzing $S_r(\theta)$ for a fixed value of r yields the behavior along a circle centered on the origin.

Fourier Approach for Texture Descriptor

- By varying these coordinates, we can generate two 1-D functions, S(r) and $S(\theta)$, that constitute a spectral-energy description of texture for an entire image or region under consideration.
- Furthermore, descriptors of these functions themselves can be computed in order to characterize their behavior quantitatively.
- Descriptors typically used for this purpose are
 - the location of the highest value,
 - the mean and variance of both the amplitude and axial variations.
 - and the distance between the mean and the highest value of the function.

Fourier Approach for Texture Descriptor

Original image

2D Spectrum (Fourier Tr.)

S(r)

Another image

 $S(\theta)$

Another $S(\theta)$

Discriminating between the two texture patterns by analyzing their corresponding $S(\theta)$ waveforms would be straightforward

Invariant Moments of Two-D Functions

The normalized central moments of order p + q

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
 where $\gamma = \frac{p+q}{2} + 1$

Invariant moments: independent of rotation, translation, scaling, and reflection

$$\phi_{1} = \eta_{20} + \eta_{02}$$

$$\phi_1 = \eta_{20} + \eta_{02}$$
 $\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$

$$\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$
 $\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$

$$(-\eta_{03})^2$$
 $\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$

$$\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

$$(3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12}) - (\eta_{2})] + \phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{21} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{21} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{21} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{21} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{21} + \eta_{03})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{31} - \eta_{02})[(\eta_{31} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02} - \eta_{02})^{2} - (\eta_{02} - \eta_{02})^{2}] + (\eta_{02} - \eta_{02})[(\eta_{02}$$

$$4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

Moments of Two-D Functions

The moment of order p + q

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$
 $\bar{x} = \frac{m_{10}}{m_{00}}$ $y = \frac{m_{01}}{m_{00}}$

$$=\frac{m_{10}}{m_{00}} \qquad y = \frac{m_{00}}{m_{00}}$$

The central moments of order p + q

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y)$$

$$\mu_{00} = m_{00} \qquad \mu_{01} = \mu_{10} = 0$$

$$\mu_{01} = \mu_{10} = 0$$

$$\mu_{11} = m_{11} - \overline{x}m_{01} = m_{11} - \overline{y}m_{10}$$

$$\mu_{20} = m_{20} - \overline{x}m_{10}$$
 $\mu_{02} = m_{02} - \overline{y}m_{01}$

$$\mu_{21} = m_{21} - 2\bar{x}m_{11} - \bar{y}m_{20} + 2\bar{x}^2m_{01}$$

$$\mu_{30} = m_{30} - 3\bar{x}m_{20} + 2\bar{x}^2m_{10}$$

$$\mu_{30} = m_{30} - 3\overline{x}m_{20} + 2\overline{x}^2m$$

$$\mu_{12} = m_{12} - 2\bar{y}m_{11} - \bar{x}m_{02} + 2\bar{y}^2m_{10}$$

$$\mu_{03} = m_{03} - 3\bar{y}m_{02} + 2\bar{y}^2m_{01}$$

$$\mu_{03} = m_{03} - 3\,\overline{y}m_{02} + 2\,\overline{y}^2m_{03}$$

Example: Invariant Moments of Two-D Functions

Example: Invariant Moments of Two-D Functions

Invariant moments of images in the previous slide

Invariant (Log)	Original	Half Size	Mirrored	Rotated 2°	Rotated 45°
ϕ_1	6.249	6.226	6.919	6.253	6.318
ϕ_2	17.180	16.954	19.955	17.270	16.803
ϕ_3	22.655	23.531	26.689	22.836	19.724
ϕ_4	22.919	24.236	26.901	23.130	20.437
ϕ_5	45.749	48.349	53.724	46.136	40.525
ϕ_6	31.830	32.916	37.134	32.068	29.315
ϕ_7	45.589	48.343	53.590	46.017	40.470

Invariant moments are independent of rotation, translation, scaling, and reflection

Covariance matrix

Covariance matrix

$$\mathbf{C}_x = E\{(\mathbf{x} - \mathbf{m}_x)(\mathbf{x} - \mathbf{m}_x)^T\} = \frac{1}{K} \sum_{k=1}^K \mathbf{x}_k \mathbf{x}_k^T - \mathbf{m}_x \mathbf{m}_x^T$$

- Element c_{ii} of \mathbb{C}_{r} : the variance of x_{i} .
- Element c_{ii} of C_x , is the covariance between elements x_i and x_i .
- $\mathbb{C}_{\mathbf{r}}$ is real and symmetric \rightarrow can find orthonormal eigenvectors.
- If elements x_i and x_i are uncorrelated, their covariance is zero, or $c_{ii} = c_{ii} = 0$.

Principal Components for Description Purpose: to reduce dimensionality of a vector image while maintaining information as much as possible. Spectral band Covariance matrix $\mathbf{C}_x = E\{(\mathbf{x} - \mathbf{m}_x)(\mathbf{x} - \mathbf{m}_x)^T\} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_k \mathbf{x}_k^T - \mathbf{m}_k \mathbf{m}_k^T$

Hotelling transformation

 $y = A(x - m_x)$ Let

← Hotelling transform

Where A is created from eigenvectors of C_x as follows

- Row 1 contain the 1st eigenvector with the largest eigenvalue.
- Row 2 contain the 2nd eigenvector with the 2nd largest eigenvalue.

Then we get

$$\mathbf{m}_{y} = E\{\mathbf{y}\} = 0$$

$$\mathbf{m}_{y} = E\{\mathbf{y}\} = 0$$

$$\mathbf{C}_{y} = \mathbf{A}\mathbf{C}_{x}\mathbf{A}^{T}$$
and
$$\mathbf{C}_{y} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{1} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \lambda_{1} \end{bmatrix}$$

Then elements of $y = A(x - m_x)$ are uncorrelated. The component of y with the largest λ is called the *principal* component.

Principal Components Transform

- C_x and C_y have the same eigenvalues and eigenvectors
- x can be reconstructed from y:

$$\mathbf{x} = \mathbf{A}^T \mathbf{y} + \mathbf{m}_x$$

- Instead of using all the eigenvectors of C_x , we form matrix **A**, from the k eigenvectors corresponding to the k largest eigenvalues, ylelding a transformation matrix of order k x n.
- ullet The y vectors would then be k dimension and the reconstruction will be

$$\hat{\mathbf{x}} = \mathbf{A}_k^T \mathbf{y} + \mathbf{m}_x$$

Principal Components for Describing Boundaries and Regions

- In a single image, each pixel is a 2-D vector of $\mathbf{x} = (a, b)^T$.
- $y = A(x-m_x)$ establishes a new coordinate system
 - whose origin is at the centroid of the population (mean vector) and
 - whose axes are in the direction of the eigenvectors of \mathbf{C}_{r} .
 - A rotation transformation that aligns the data with the eigenvectors

Relational Descriptors ### HOURE 11.30 (a) A simple staircise stricture. (the control of the co

Aligiling a 2-D object with its principal eigenvectors

- Description should be as independent as possible to
 - 1. variations in size,
 - 2. translation and
 - 3. Rotation
- Removing the effects of rotation:
 - by aligning the object with its principal axes.
- The eigenvalues are the variances along the eigen axes and
 - can be used for size normalization.
- The effects of translation are accounted for
 - by centering the object about its *mean*.

