Recitation 10

Alex Dong

CDS, NYU

Fall 2020

Linear Regression

- ▶ Deep topic, there are entire courses on Linear Regression and friends
- ▶ Very nice to analyze mathematically. Guaranteed solutions via convexity.
- ▶ Combine with *convex* functions for regularization
- ightharpoonup Lasso, L_1 penalty
 - ► Good for variable selection
- ightharpoonup Ridge, L_2 penalty
 - ► The go-to baseline in most cases
- ▶ (&) In practice, don't use linear regression w/out regularization.
 - ► See Intro to Data Science, Machine Learning

Questions: Linear Regression Warm Up

When solving the least squares problem, the optimization problem is $\min_{\beta} ||X\beta - y||_2^2$, $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$. $n \geq d$

- 1. Explain what X, β, y represent
- 2. Geometrically, what are we trying to do?
- 3. How can we obtain the normal equation $X^T X \beta = X^T y$ from this geometric intuition? Hint $Im(A)^{\perp} = Ker(A^T)$
- 4. Under what conditions is X^TX invertible? If X^TX is not invertible, do the normal equations still have a solution?

Solutions 1: Linear Regression Warm Up

When solving the least squares problem, the optimization problem is $\min_{\beta} ||X\beta - y||_2^2$, $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$. $n \geq d$

Solution

- 1. Explain what X, β, y represent.
 - X contains the independent variable observations on in each row, and the features in each column.
 - y contains the corresponding dependent variable observations. β contains the coefficients that transform the independent
 - variable into the dependent variable.
- 2. Geometrically, what are we trying to do? Thinking of this from the framework of linear transformations, we are trying to find a point $\hat{\beta} \in \mathbb{R}^d$, s.t $X\beta \in Im(X) \subset \mathbb{R}^n$ is closest to y.

Solutions 2: Linear Regression Warm Up

When solving the least squares problem, the optimization problem is $\min_{\beta} ||X\beta - y||_2^2$, $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^d$. $n \geq d$

Solution

3. How can we obtain the normal equation $X^T X \beta = X^T y$ from this geometric intuition?

The point closest to y in $\operatorname{Im}(X)$ is the projection of y onto $\operatorname{Im}(X)$. Let $P_{\operatorname{Im}(X)}y=X\hat{\beta}$

$$X\hat{\beta} - y \perp \operatorname{Im}(X)$$

$$X\hat{\beta} - y \in \operatorname{Ker}(X^T) \quad \text{since } Im(A)^{\perp} = Ker(A^T)$$

$$X^T(X\hat{\beta} - y) = 0$$

$$X^T X \hat{\beta} = X^T y$$

Index what conditions is X^T

4. Under what conditions is X^TX invertible? If X^TX is not invertible, do the normal equations still have a solution? X^TX is invertible if rank(X) = d. There is always a solution since $Im(X^TX) = Im(X^T)$ (use SVD, check Rec 8).

Questions: Linear Regression vs PCA

Let $(\vec{x_1}, y_1), ..., (\vec{x_n}, y_n) \in \mathbb{R}^{d+1}$ be a centered dataset. Each $\vec{x_i} \in \mathbb{R}^d$. Let $\beta \in \mathbb{R}^d$. Let $X \in \mathbb{R}^{n \times d}$ (containing $\vec{x_1}, ..., \vec{x_n}$) have full rank). Let y be the vector containing $y_1, ..., y_n$.

The OLS solution is given by $\hat{\beta} = (X^T X)^{-1} X^T y$.

We can use this to generate predictions $\hat{y} = X(X^TX)^{-1}X^T\vec{y}$.

- 1. Recall that $X(X^TX)^{-1}X^T$ is an orthogonal projection, which subspace is this an orthogonal projection onto?
- 2. Let n=1; consider the subspace generated by the first principal component (from PCA) and the line generated by linear regression solution for $\vec{y} = \vec{x}\beta$. Are these the same line? If not, what is the difference?

Solutions 1: Linear Regression vs PCA

Let $(\vec{x_1}, y_1), ..., (\vec{x_n}, y_n) \in \mathbb{R}^{d+1}$ be a centered dataset.

Each $\vec{x_i} \in \mathbb{R}^d$. Let $\beta \in \mathbb{R}^n$. Let $X \in \mathbb{R}^{n \times d}$ be the design matrix.

Let y be the vector containing $y_1, ..., y_n$.

The OLS solution is given by $\hat{\beta} = (X^T X)^{-1} X^T y$.

We can use this to generate predictions $\hat{y} = X(X^TX)^{-1}X^T\vec{y}$.

1. Recall that $X(X^TX)^{-1}X^T$ is an orthogonal projection, which subspace is this an orthogonal projection onto?

Solution

Using SVD, let X have SVD $X = U\Sigma V^T$, then

 $X(X^TX)^{-1}X^T = UU^T$ So $X(X^TX)^{-1}X^T$ is an orthogonal projection onto the columns of U, which span Im(X).

Note: $X \in \mathbb{R}^{n \times d}$, and Im(X) is a d dimensional subspace in \mathbb{R}^n .

Question for you! How interpretable is this? (Answer... not very)

Solutions 2: Linear Regression vs PCA

Let $(\vec{x_1}, y_1), ..., (\vec{x_n}, y_n) \in \mathbb{R}^{d+1}$ be a centered dataset.

Each $\vec{x_i} \in \mathbb{R}^d$. Let $\beta \in \mathbb{R}^n$. Let $X \in \mathbb{R}^{n \times d}$ be the design matrix.

Let y be the vector containing $y_1, ..., y_n$.

The OLS solution is given by $\hat{\beta} = (X^T X)^{-1} X^T y$.

We can use this to generate predictions $\hat{y} = X(X^TX)^{-1}X^T\vec{y}$.

2. Let n=1; consider the subspace generated by the first principal component (from PCA) and the line generated by linear regression solution for $\vec{y} = \vec{x}\beta$. Are these the same line? If not, what is the difference?

Solution

(Check notebook on github)

They are not the same line. PCA is an orthogonal projection that minimizes the L_2 orthogonal distance to the line, while linear regression minimizes the L_2 distance parallel to the y-axis to the line.

Questions: Ridge Regression

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

- 1. Since X is not full rank, what does this say about the features?
- 2. What is the issue with the OLS solution?
- 3. The ridge regression solution is given by $(X^TX + \lambda Id_d)^{-1}X^Ty$. How does this fix the issue?
- 4. Suppose that X has SVD $X = U\Sigma V^T$, and X has singular values $\sigma_1, ..., \sigma_d$. What are the eigenvalues of $X^TX + \lambda Id_d$?
- 5. How does increasing λ affect the condition number of $(X^TX + \lambda Id_d)$?

Solutions: Ridge Regression and Multicollinearity

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

Solution

- 1. Since X is not full rank, what does this say about the features?

 Columns of X are not linearly independent, so some of the features can be perfectly explained by other features.
- 2. What is the issue with the OLS solution? Since X does not have full rank, X^TX doesn't have full rank and is not invertible. So the OLS solution is not well-defined.
- 3. The ridge regression solution is given by $(X^TX + \lambda Id_d)^{-1}X^Ty$. How does this fix the issue? Adding λId_d to X^TX shifts its eigenvalues up, which makes $(X^TX + \lambda Id_d)$ invertible.

Solutions: Ridge Regression and Multicollinearity

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

Solution

4. Suppose that X has SVD $X = U\Sigma V^T$, and X has singular values $\sigma_1, ..., \sigma_d$. What are the eigenvalues of $X^TX + \lambda Id_d$?

Note that $X^TX = V\Sigma^T\Sigma V^T$

Eigvals of $X^T X$: $\sigma_1^2, ..., \sigma_d^2$, (Note: X isn't full rank, so $\sigma_d = 0$) Eigvals of $X^T X + \lambda Id_d$: $\sigma_1^2 + \lambda, ..., \sigma_d^2 + \lambda$.

5. How does increasing λ affect the condition number of $(X^TX + \lambda Id_d)$ vs X^TX ?

Condition number of $X^T X = \frac{\sigma_1^2}{\sigma_d^2} = \infty$

Condition number of $(X^TX + \lambda Id_d) = \frac{\sigma_1^2 + \lambda}{\sigma_d^2 + \lambda}$

Furthermore, for $\lambda_1 > \lambda_2$, we get the relationship $\frac{\sigma_1^2 + \lambda_1}{\sigma_d^2 + \lambda_1} < \frac{\sigma_1^2 + \lambda_2}{\sigma_d^2 + \lambda_2}$