Topologie et Calcul Différentiel

Djalil Chafaï 2023 - 2024

Table des matières

1	Espaces Topologiques 3		
	1.1	Espaces à produit scalaire, espaces normés, espaces métriques, espaces topologiques.	3
	1.2	Fermés	3
	1.3	Voisinages, convergence et continuité	3
	1.4	Bases de topologie	4
	1.5	Axiomes de Séparation	4
	1.6	Topologies	5
		1.6.1 Topologie Trace	5
		1.6.2 Topologie Produit	5
		1.6.3 Topologies Initiale et Finale	5
		1.6.4 Topologie Quotient	5
2	Cor	npacité	6
	2.1	Quasi-Compéacité	6
	2.2	Théorème de Tykhonov	6
	2.3	Compacité Métrique	6
	2.4	Compacité Locale	6
	2.5	Compactification d'Alexandrov	7
	2.6	Théorème de Baire	7
3	Cor	nplétude	7
	3.1	Suites de Cauchy	7
	3.2	Espaces Polonais, de Banach, de Hilbert	8
	3.3	Complétion	8
4	Connexité		
	4.1	Connexité, connexité par arcs, composantes connexes	8
	4.2	Connexité Métrique	8
5	Esp	paces de fonctions continues sur un métrique compact	9
6	Oné	érateurs Linéaires Bornés	9
Ū	6.1	Définitions et Duéalité	9
	6.2	Banach-Steinhaus	10
	6.2	Hahn-Banach	10
	6.4	Banach-Schauder	10
	6.5	Algèbres de Banach, Rayon Spectral, Inverse	10
	6.6	Intégrale de Riemann pour les fonctions de la variable réelle à valeurs dans un Banach	
7	Esp	paces de Hilbert	11
•	7.1	Projection Orthogonale sur un Convexe Fermé	11
		.,	

1 Espaces Topologiques

1.1 Espaces à produit scalaire, espaces normés, espaces métriques, espaces topologiques.

Définition 1.1.1. Un produit scalaire sur un \mathbb{K} -ev est une forme linéaire, symétrique (ou hermitienne) et définie positive. Quand $\mathbb{K} = \mathbb{C}$, on dit que le produit scalaire est sesquilinéaire.

Proposition 1.1.1. • *Relation de Pythagore* : $||x + y||^2 = ||x||^2 + ||y||^2 + 2\Re(\langle x, y \rangle)$

- Identité du Parallélograme : $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$
- Inégalité de Chauchy-Schwarz : $|\langle x,y\rangle| \le ||x|| \, ||y||$

Définition 1.1.2. Une norme sur un \mathbb{K} -ev ($\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) est une forme positive sous-additive homogène séparée.

Définition 1.1.3. Une distance ou une métrique sur un ensemble est une forme positive séparée symétrique vérifiant l'inégalité triangulaire.

Définition 1.1.4. Une topologie $\mathcal{O} \in \mathcal{P}(X)$ sur un ensemble X est une collection de partie de X stable par réunion quelconque, intersections finies, contenant l'espace et le vide. On appelle ses éléments des ouverts

1.2 Fermés

Définition 1.2.1. • Un ensemble A est fermé si et seulement si A^C est ouvert.

• L'adhérence d'un ensemble est le plus petit fermé le contenant :

$$\overline{A} = \bigcap_{A \subset F, Fferm\acute{e}} F = \{x \in X, \forall O \in \mathcal{O}, x \in O \rightarrow O \cap A \neq \varnothing\}$$

• L'intérieur de A est le plus grand ouvert qu'il contient :

$$\mathring{A} = \bigcup_{O \subseteq A, Oouvert} = \{x \in X, \exists O \in \mathcal{O}, x \in O \subseteq A\}$$

- La frontière de A est : $\partial A = \overline{A} \setminus \mathring{A}$
- A est dense si d'adhérence égale à X.

Définition 1.2.2. • x est intérieur à A si $x \in \mathring{A}$.

• x est adhérent à A lorsque $x \in \overline{A}$. On dit alors que x est isolé lorsqu'il existe O_x voisinage ouvert de x d'intersection x avec A. Sinon, x esst d'accumulation.

1.3 Voisinages, convergence et continuité.

Définition 1.3.1. Un voisinage d'un point x est une partie qui contient un ouvert contenant x.

Définition 1.3.2. Une suite converge vers x pour une topologie lorsque pour tout voisinage de x, la suite appartient à ce voisinage àper.

Proposition 1.3.1. Si F fermé, $x_n \in F \to x$, alors $x \in F$. La réciproque est fausse en générale.

Théorème 1.3.1. Dans un espace métrique, $x_n \to x$ ssi $d(x_n, x) \to 0$

Définition 1.3.3. Une application f est dite :

- continue en x lorsque pour tout voisinage V de f(x), il existe un voisinage W de x tel que $f(W) \subset V$.
- séquentiellement continue en x lorsque pour toute suite $x_n \to x$, $f(x_n) \to f(x)$.

Proposition 1.3.2. La continuité implique la continuité séquentielle.

Proposition 1.3.3. *Soit* $f: X \to Y$. *On a équivalence entre :*

- f est continue
- Les images réciproques par f des ouverts de Y sont des ouverts de X.
- ullet Les images réciproques par f des fermés de Y sont des fermés de X.

Définition 1.3.4 (Propriété de Fréchet-Urysohn). X vérifie la propriété de Fréchet-Urysohn si :

$$\forall A \subset X, \ x \in \overline{A}, \ il \ existe \ x_n \in A^{\mathbb{N}}, \ x_n \to x$$

Théorème 1.3.2. Si X vérifie la propriété de Fréchet-Urysohn, pour tout espace Y et tout f: $X \to Y$, la continuité équivaut à la continuité séquentielle.

Définition 1.3.5. Un homéomorphisme est une bijection continue de réciproque continue.

1.4 Bases de topologie

Définition 1.4.1. Soit $\mathcal{B} \subset \mathcal{O}$ une famille d'ouverts. \mathcal{B} est une base de \mathcal{O} quand : $\forall O \in \mathcal{O}, \exists (B_i)_i \in \mathcal{B}, O = \cup_i B_i$ ou de manière équivalente quand $\forall O \in \mathcal{O}, x \in O, \exists B \in \mathcal{B}, x \in B \subset O$.

Théorème 1.4.1. Soit $\mathcal{B} \subset \mathcal{O}$ une base. On a :

- $X = \cup_{B \in \mathcal{B}} B$
- $\forall B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B}, x \in B_3 \subset B_1 \cap B_2.$

Réciproquement, si une famille vérifie ces propriétés, alors $\mathcal{O} = \{ \cup_{B \in \mathcal{A}B} \}_{\mathcal{A} \subset \mathcal{B}}$ est la plus petite topologie qui contient \mathcal{B} , appelée topologie engendrée par \mathcal{B} .

Définition 1.4.2. Une base locale au point x est une famille d'ouverts contenant x et dont au moins l'un est inclus dans chaque ouvert contenant x.

Définition 1.4.3. Un espace topologique est :

- à base dénombrable de voisinages si tout point possède une base dénombrable de voisinages.
- à base dénombrable lorsqu'il possède une base dénombrable (c'est plus fort!)
- séparable lorsqu'il existe une partie dénombrable dense.

Théorème 1.4.2. Un espace à base dénombrable est toujours séparable. La réciproque est vraue pour un espace métrisable.

Théorème 1.4.3. Tout espace à base dénombrable de voisinages (en particulier tout espace métrisable) est un espace de Fréchet-Urysohn.

1.5 Axiomes de Séparation

Définition 1.5.1. Axiome T2: Tous deux points peuvent être séparés par deux ouverts distincts.

Théorème 1.5.1. Pour tout espace topologique métrisable :

- Les singletons sont fermés.
- Pour tous fermés F_0, F_1 , il existe f continue valant i sur F_i .

Lemme 1.5.2. Dans un espace métrique, F est fermé si et seulement si $d(x, F) = 0 \Rightarrow x \in F$.

1.6 Topologies

1.6.1 Topologie Trace

Définition 1.6.1. On appelle topologie trace la topologie induite par la topologie de X sur $A \subset X$ est la topologie la moins fine sur A qui rend l'inclusion canonique continue.

Proposition 1.6.1. • La restriction de la métrique induit la topologie trace.

- La définition est emboîtable.
- La fermeture d'un ensemble pour la topologie trace est la trace de sa fermeture. Ce n'est pas vrai pour l'intérieur.
- $Si \ x_n \to x_* \in A \ ssi \ x_n \to x_* \ dans \ X$.
- Si \mathcal{O} est à base dénombrable (resp. de voisinages), \mathcal{O}_A l'est aussi
- $Si \mathcal{O}$ est séparée (axiome T2), \mathcal{O}_A aussi.
- Si \mathcal{O} est métrisable est séparable, alors \mathcal{O}_A est métrisable est séparable.

1.6.2 Topologie Produit

Définition 1.6.2. On appelle topologie produit ou cylindrique sur $X = \prod_{i \in I} X_i$ la topologie engendrée par les $\prod_{i \in I} O_i$ avec $O_i \neq X_i$ sur un nombre fini de i. C'est la topologie la moins fine sur X qui rend les projections canoniques continues.

Lemme 1.6.1. On $a: x_n \to x$ si et seulement si $x_{n,i} \to x_i$ pour tout i.

Proposition 1.6.2. • Si tous les X_i vérifient T2, X vérifie T2

- Si I est au plus dénombrable, et tous les X_i sont à base dénombrable (de voisinages), X l'est aussi.
- Si I est au plus dénombrable ou a le cardinal de \mathbb{R} , et si les X_i sont tous séparables, X aussi.
- Si I est au plus dénombrable, et si les X_i sont métrisables par les d_i , X est métrisable par :
 - $\max_{i}(d_{i}) \ si \ I \ est \ fini$
 - $\max_{i} \min(d_i, 2^{-i})$ si I est infini dénombrable.

1.6.3 Topologies Initiale et Finale

- **Définition 1.6.3.** Soient $f_i: X \to X_i$. La topologie engendrée sur X par les $f_i^{-1}(O_i)$ où O_i est ouvert dans X_i est appelée topologie initiale. C'est la moins fine qui rend f_i continue pour tout i.
 - Soient $g_i: X_i \to X$. La topologie engendrée par les ensembles O tels que $g_i^{-1}(O)$ est ouvert dans X_i est appelée topologie finale. C'est la plus fine qui rend g_i continue pour tout i.

1.6.4 Topologie Quotient

Définition 1.6.4. Soit \sim une relation d'équivalence sur X. La topologie quotient sur X/\sim est la plus fine qui rend la projection canonique continue : $O\subset X/\sim$ est ouvert ssi $[\cdot]^{-1}(O)=\{x\in X\mid [x]\in O\}$ est ouvert dans X. C'est la topologie finale de la projection canonique.

2 Compacité

2.1 Quasi-Compéacité

Définition 2.1.1. Un espace est dit quasi-compact lorsqu'il vérifie la propriété de Borel-Lebesgue : De tout recouvrement par des ouverts on peut extraire un sous-recouvrement fini. Un espace est dit compact lorsqu'il est quasi-compact et séparé.

Définition 2.1.2. Un sous ensemble est quasi-compact lorsqu'il est quasi compact pour la topologie trace.

Proposition 2.1.1.

Dans \mathbb{R}^n , K est compact si et seulement si il est fermé borné.

Si K_1, K_2 sont quasi compacts, $K_1 \cup K_2$ est quasi compact.

Théorème 2.1.1.

Si F est fermé dans K quasi compact, F est quasi compact.

Si K est quasi compact dans X séparé, K est fermé.

Définition 2.1.3. Si X est séparé, $A \subset X$ est relativement compact lorsque \overline{A} est compact.

Théorème 2.1.2. • Si $f: X \to Y$ est continue, X est quasi compact, alors f(X) est quasi-compact.

• Si $f: X \to \mathbb{R}$ et $X \neq \emptyset$ est quasi compact, alors, $\exists x_{\star} \in X$, $f(x_{\star}) = \sup_{x \in X} f(x) < \infty$.

Théorème 2.1.3. Si $f: X \to Y$ est une bijection continue avec X quasi compact et Y séparé, f^{-1} est continue.

2.2 Théorème de Tykhonov

Théorème 2.2.1. Tout produit de (quasi-)compacts est (quasi-)compact.

2.3 Compacité Métrique

Définition 2.3.1. Un ε -réseau est un ensemble A fini tel que tout point est à distance au plus ε d'un point de A.

Lemme 2.3.1. Un espace métrique compact possède un ε -réseau fini pour tout ε .

Théorème 2.3.2. Pour un espace métrisable, on a équivalence entre :

- 1. X est compact
- 2. De toute suite de X on peut extraire une sous-suite convergeant dans X.

Dans ce cas on a :

Lemme de Lebesgue : pour tout recouvrement par des ouverts O_i , il existe r > 0 tel que pour tout $x \in X$, il existe i_x tel que $B(x,r) \subset O_{i_x}$.

2.4 Compacité Locale

Définition 2.4.1. Un espace est localement compact lorsque tout point possède un voisinage quasicompact.

Définition 2.4.2. Un espace est dénombrable à l'infini s'il admet un recouvrement dénombrable par des quasi-compacts (qu'on peut supposer croissants sans perte de généralité).

Lemme 2.4.1. Un espace métrisable compact est localement compact et dénombrable à l'infini, et cela est vrai pour tout ouvert pour la topologie induite.

Théorème 2.4.2. Si un espace est localement compact et dénombrable à l'infini, il existe une suite K_n de quasi-compacts croissante d'union X et tel que tout quasi-compact inclus dans X est inclus dans au moins l'un des K_n . On parle de suite exhaustive de compacts.

2.5 Compactification d'Alexandrov

Théorème 2.5.1. Soit X un espace topologique et un point à l'infini $\infty \notin X$. Soit $X^* = X \cup \{\infty\}$, $\mathcal{O}^* \subset \mathcal{P}(X^*)$ formé par les ouverts de X et les complémentaires dans X^* des quasi-compacts fermés de X. Alors :

- 1. \mathcal{O}^* est une topologie sur X^* .
- 2. X^* est quasi-compact
- 3. L'injection canonique est continue et ouverte
- 4. X* est séparé si et seulement si X est séparé et localement compact.
- 5. X est dense dans X^* si et sseulement si X n'est pas quasi-compact fermé.

2.6 Théorème de Baire

Lemme 2.6.1. Pour X un espace topologique, X est quasi-compact si et seulement si pour toute famille de fermés $(F_i)_{i\in I}$ telle que $\bigcap_{i\in I'}\neq\varnothing$ pour tout $I^{'}\subset I$ fini, on $a:\bigcap_{i}F_i\neq\varnothing$.

Lemme 2.6.2. Si X est quasi-compact éparé alors :

- Tout point et tout fermé ne le contenant pas sont séparables par des ouverts.
- Pour tout $x \in X$ et tout ouvert $O \ni x$, il existe $O' \ni x$ tel que $\overline{O'} \subset O$.

Théorème 2.6.3. Si X est quasi-compact alors il est de Baire : toute intersection d'une suite d'ouverts denses est denses.

3 Complétude

3.1 Suites de Cauchy

Définition 3.1.1. Une suite x_n est de Cauchy lorsque pour tout $\varepsilon > 0$, il existe $N = N_{\varepsilon}$ tel que pour tous $n, m \ge N$, $d(x_n, x_m) < \varepsilon$. Un espace métrique est complet lorsque toute suite de Cauchy converge.

Lemme 3.1.1. Si X est complet, $F \subset X$ est fermé, alors F est complet. Si $A \subset X$ est complet, alors A est fermé.

Lemme 3.1.2. Soit X complet et $X = F_0 \supset F_1 \supset \dots$ une suite décroissante de fermés non vide et de diamètres tendant vers 0. Alors leur intersection est un certain point $x \in X$.

Théorème 3.1.3. Un espace métrique est compact si et seulement si il est complet et admet un ε -réseau pour tout ε .

Théorème 3.1.4. • Les \mathbb{R}^n sont complets

• Les l^p pour $p \in [1, \infty]$ sont conplet.

Théorème 3.1.5. • Si K est compact et Y métrique complet, alors C(K,Y) est métrique complet.

• Si X est localement compact à base dénombrable de voisinages et Y métrique complet alors $\mathcal{C}(X,Y)$ est métrisable complet.

Définition 3.1.2. On définit la distance de Hausdorff entre deux fermés d'un espace métrique de diamètre fini par :

$$d_H(F_1, F_2) < r \Leftrightarrow pour tout x \in F_{1,2}, \exists y \in F_{2,1}, d(x, y) < r$$

On note $\mathcal{F}(X)$ l'ensemble des fermés non-vides de X, et $\mathcal{K}(X)$ l'ensemble des compacts non-vides.

Théorème 3.1.6. • Si X complet, $\mathcal{F}(X)$ et $\mathcal{K}(X)$ sont complets.

• Si X est compact, K(X) est compact.

3.2 Espaces Polonais, de Banach, de Hilbert

Définition 3.2.1. Un espace topologique est :

- polonais lorsqu'il est séparable et métrisable complet
- de Banach lorsque c'est un ev normé complet
- de Hilbert loesque c'est un ev à produit scalaire complet

Théorème 3.2.1. Un ev normé est un espace de Banach ssi toute série absolument convergente est convergente.

3.3 Complétion

Définition 3.3.1. Soit X un espace métrique non complet. Son complété $(X^{'}, d')$ est un espace métrique complet tel que $X \subset X^{'}$ et X est dense dans $X^{'}$. On le construit ainsi :

- Soit \tilde{X} l'ensemble des suites de Cauchy, muni de la relation : $x_n \sim y_n$ ssi pour tout $\varepsilon > 0$, il existe un rang pour lequel les suites sont à distance au plus ε .
- On considère $X' = \tilde{X}/\sim$. On considère la quantité $d'((x_n), (y_n)) = \lim_{n\to\infty} d(x_n, y_n)$. C'est bien une métrique compatible avec la topologie de X'.

Remarque 3.3.0.1. Tous deux complétés sont isomètres.

Lemme 3.3.1. Si $f: X \to Y$ est uniformément continue, Y est complet, il existe une unique fonction continue prolongée sur le complété de X et égale à f sur X.

Théorème 3.3.2. Si X est complet, alors il est de Baire.

4 Connexité

4.1 Connexité, connexité par arcs, composantes connexes

Définition 4.1.1. Un espace est :

- connexe lorsqu'il n'est pas partitionnable en deux ouverts non-vides
- connexe par arcs lorsque les points sont reliés par des arcs

Théorème 4.1.1. • X est connexe ssi \varnothing et X sont les seules parties à la fois ouvertes et fermées.

- ullet X est connexe ssi il n'est pas partitionnable en deux fermés non-vides.
- $Si\ f: X \to Y$ est continue et X connexe (resp. par arcs), alors f(X) est connexe (resp. par arcs)
- Si X est connexe par arcs, alors il est connexe, et la réciproque est fausse.
- $Si \cap_i A_i \neq \emptyset$ avec les A_i connexes (resp. par arcs), $\cup_i A_i$ est connexe (resp. par arcs)
- Si les X_i sont connexes (resp. par arcs), alors $\prod_i X_i$ est connexe (resp. par arcs).

Définition 4.1.2. La composante connexe C_x de $x \in X$ est la plus grande partie connexe de X contenant x. Un espace est totalement discontinu si $C_x = \{x\}$ pour tout x.

4.2 Connexité Métrique

Définition 4.2.1. Un espace métrique est bien echaîné lorsque pour tout $\varepsilon > 0$, et tous $x, y \in X$ il existe une suite finie $x = x_0, x_1, \ldots, x_n = y$ telle que $d(x_i, x_{i+1}) < \varepsilon$ pour tout i.

Théorème 4.2.1. Si un espace est connexe alors il est bien enchaîné, et la réciproque est fausse mais devient vraie en ajoutant la compacité..

5 Espaces de fonctions continues sur un métrique compact

Définition 5.0.1. Pour une suite f_n dans C(K,Y) et f dans C(K,Y):

- $f_n \to f$ pointuellement lorsque pour tout $x \in K, f_n(x) \to f(x)$
- $f_n \to f$ uniformément lorsque la convergence a lieu dans C(K,Y).

Théorème 5.0.1 (De Dini). Si $Y = \mathbb{R}$, si la suite f_n est croissante, et f est continue, la convergence ponctuelle implique la convergence uniforme.

Théorème 5.0.2 (De Heine). Toute fonction $f \in C(K, Y)$ est uniformément continue.

Théorème 5.0.3 (de Arzelà-Ascoli). $A \subset \mathcal{C}(K,Y)$ a une adhérence compacte ssi les deux conditions suivantes sont réalisées :

- Compacité Ponctuelle : $\forall x \in K, \{f(x) \mid f \in A\}$ a une adhérence compacte dans Y.
- La famille A est uniformément équicontinue : pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que pour tout $f \in A$, et tous $x, y \in K$, si $d_K(x, y) < \eta$, alors $d_Y(f(x), f(y)) < \varepsilon$.

Théorème 5.0.4 (de Stone-Weierstrass). Soit \mathcal{A} une sous-algèbre de $\mathcal{C}(K,\mathbb{R})$. vérifiant la propriété de prescription de valeurs arbitraires en deux points arbitraires : pour tous $x,y\in K$, $a,b,\in\mathbb{R}$, il existe $f\in\mathcal{A}$ telle que f(x)=a et f(y)=b. Alors \mathcal{A} est dense dans $\mathcal{C}(K,\mathbb{R})$.

Corollaire 5.0.4.1 (Théorème de Weierstrass). Pour tout $n, K \subset \mathbb{R}^n$, $\mathbb{R}[x_1, \dots, x_n]$ est dense dans $C(K, \mathbb{R})$.

Corollaire 5.0.4.2 (de Stone-Weierstrass Complexe). Si de plus la famille A est stable par conjugaison et à valeurs complexes, elle est dense dans $C(K,\mathbb{C})$.

Corollaire 5.0.4.3. Pour tout $n, K \subset \mathbb{C}^n, \mathbb{C}[z_1, \ldots, z_n, \overline{z_1}, \ldots, \overline{z_n}]$ est dense. En particulier, $\mathbb{C}[e^{i\theta}, e^{-i\theta}]$ est dense dans $\mathcal{C}(S^1, \mathbb{C})$.

6 Opérateurs Linéaires Bornés

6.1 Définitions et Duéalité

Définition 6.1.1. *Soient* X, Y *des* \mathbb{K} *ev normés avec* $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

- $u: X \to Y$ est un opérateur linéaire borné lorsque u est linéaire et qu'il est $M \in [0, \infty[$ tel que pour tout $x \in X$, $\|u(x)\|_{Y} \le M \|x\|_{X}$.
- On note L(X,Y) l'ev des opérateurs linéaires bornés $X \to Y$.
- L(X,Y) est normé par la norme d'opérateur, et a une structure d'algèbre.

Lemme 6.1.1. Pour u linéaire, on a équivalence entre :

- 1. $u \in L(X,Y)$
- 2. u est Lipschitz
- 3. u est uniformément continue
- 4. u est continue
- 5. u est continue en 0.

Lemme 6.1.2. Si Y est un Banach, L(X,Y) est un Banach.

Définition 6.1.2. Si X est un \mathbb{K} -Banach, $L(X,\mathbb{K})$ est appelé dual de X, noté X' ou X^* .

Théorème 6.1.3. Si $p \in [1, \infty)$ et $q = \frac{1}{1 - \frac{1}{p}} = \frac{p}{p-1}$ est le conjugué de Hölder de p, alors :

$$\Phi: \updownarrow^q \to (\updownarrow^p)', y \mapsto \left(x \mapsto \sum_n x_n y_n\right)$$

est une bijection linéaire isométrique : $(\updownarrow^p)^{'}$ est isomorphe à $\updownarrow^q.$

Lemme 6.1.4. Une forme linéaire est continue ssi son noyau est fermé.

6.2 Banach-Steinhaus

Théorème 6.2.1. Si X est un Banach, et Y un evn, alors pour tout $A \subset L(X,Y)$, la bronitude ponctuelle est équivalente à la bornitude uniforme :

$$\forall x \in X, \sup_{u \in A} \|u(x)\|_Y < \infty \Leftrightarrow \sup_{u \in A} \|u\|_{L(X,Y)} < \infty$$

Corollaire 6.2.1.1. Soit u_n dans L(X,Y), où X est un Banach et Y un evn. La convergence ponctuelle entraîne la continuité de la limite.

6.3 Hahn-Banach

Théorème 6.3.1. Soit $X \subset \tilde{X}$ un sous-espace d'un evn sur $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Soit $u \in L(X, \mathbb{K})$ une forme linéaire. Alors il existe $\tilde{u} \in L(\tilde{X}, \mathbb{K})$ telle que $\tilde{u}_{|X} = u$ et $\|\tilde{u}\| = \|u\|$.

Corollaire 6.3.1.1. Si X est un Banach, et $X^{''}$ est sont bidual, l'injection canonique $\iota: X \to X^{''}$ est une isométrie linéaire : $\|\iota(x)\| = \|x\|$.

Corollaire 6.3.1.2. L'application $\Phi: \uparrow^1 \to (\uparrow^\infty)'$, $\Phi(y)(x) = \sum_n x_n y_n$ est une isométrie linéaire non surjective. En d'autres termes :

$$\uparrow^{1} \subsetneq (\uparrow^{\infty})^{'} = (l^{1})^{''}$$

6.4 Banach-Schauder

Théorème 6.4.1 (de Banach-Schauder ou de l'application ouverte). Si X et Y sont des Banach et si $u \in L(X,Y)$ est surjective, alors u est une application ouverte.

Corollaire 6.4.1.1. • (inverse continu) : Si X et Y de Banach et $u \in L(X,Y)$ est bijective, alors $u^{-1} \in L(Y,X)$. On parle de Théorème d'Isomorphisme de Banach.

- (équivalence des normes) : Si $\|\cdot\|$, $\|\cdot\|'$ sont deux normes qui font d'un même espace vectoriel normé X un espace de Banach. S'il existe $c \in (0, \infty)$ telle que $\|\cdot\| \le c \|\cdot\|'$ alors il existe $C \in (0, \infty)$ telle que $\|\cdot\|' \le C \|\cdot\|$.
- (théorème du graphe fermé) : Si X et Y sont deux Banach et $u: X \to Y$ est linéaire, alors $u \in L(X,Y)$ si et seulement si son graphe est fermé dans $X \times Y$.
- (structure des Banach séparables) : tout Banach séparable est isomorphe à quotient de \$\frac{1}{2}\$ par un sous-espace fermé.

6.5 Algèbres de Banach, Rayon Spectral, Inverse

Définition 6.5.1. Si X est un Banach, on définit l'espace vectoriel L(X) normé par $|||u||| = \sup_{\|x\|=1} \|u(x)\|$. Le produit naturel $uv = u \circ v$ en fait une algèbre de Banach : $|||uv||| \le |||u||| |||v|||$. Le rayon spectral de $u \in L(X)$ est $\rho(u) = \lim_{n \to \infty} |||u^n||^{1/n} \le |||u|||$.

Remarque 6.5.0.1. • Lemme de Fekete : Si a_n est sous-additive, $\lim_n \frac{1}{n} a_n = \inf_n \frac{1}{n} a_n$. La formule de ρ fait sens en prenant $a_n = \log |||u^n|||$.

- Le rayon spectral est inchangé avec une norme équivalente.
- On généralise les algèbres de matrices à la dimension infinie.
- En dimension finie, L(X) est isomorphe à \mathcal{M}_n et le rayon spectral est égal au maximum des modules des valeurs propres par décomposition de Jordan.
- Lorsque X est de dimension infinie, il n'y a pas vraiment d'analogue à la décomposition de Jordan. L'équation aux valeurs propres n'est pas une bonne manière de définir le spectre des opérateurs et on définit plutôt :

$$spec(u) = \{ \lambda \in \mathbb{C} \mid u - \lambda \text{Id n'est pas inversible à inverse continu} \}$$

Alors, $\rho(u) = \sup\{|\lambda \mid \lambda \in spec(u)|\}.$

Théorème 6.5.1. Soit X un Banach, et $u \in L(X)$.

1. $Si \ \rho(u) < 1$, alors Id - u est inversible dans L(X) et

$$(\mathrm{Id} - u)^{-1} = \sum_{n=0}^{\infty} u^n$$

2. Si u est inversible et $|||v||| \le |||u^{-1}|||^{-1}$ alors u - v est inversible dans L(X) et :

$$(u-v)^{-1} = (\operatorname{Id} - u^{-1}v)^{-1} u^{-1} = \sum_{n=0}^{\infty} (u^{-1}v)^n u^{-1}$$

3. L'ensemble des $u \in L(X)$ inversibles (groupe linéaire) est un ouvert de L(X).

6.6 Intégrale de Riemann pour les fonctions de la variable réelle à valeurs dans un Banach

Théorème 6.6.1. Soit X un Banach, $[a,b] \subset \mathbb{R}$. On note $\mathcal{A}([a,b],X) \subset \mathcal{C}([a,b],X)$ l'ensemble des fonctions affines par morceaux. C'est un sev de $\mathcal{C}([a,b],X)$ Il existe une unique application liénaire continue $I: \mathcal{C}([a,b]) \to X$ telle que pour tout fonction $f \in \mathcal{A}([a,b],X)$ affine par morceaux associée à une subdivision $a = a_0 < \ldots < a_n = b$ et à des valeurs $f_0, \ldots, f_n \in X$:

$$I(f) = \sum_{i=0}^{n-1} (a_{i+1} - a_i) \frac{f_i + f_{i+1}}{2}$$

On note: $\int_{a}^{b} = I(f)$. De plus pour tout $f \in \mathcal{C}([a,b],X)$:

$$\left\| \int_{a}^{b} f(t) \, \mathrm{d}t \right\| \le \int_{a}^{b} \|f(t)\| \, \mathrm{d}t$$

7 Espaces de Hilbert

7.1 Projection Orthogonale sur un Convexe Fermé

Théorème 7.1.1. Si X est un Hilbert, $C \subseteq X$ un convexe fermé, pour tout $x \in X$, il existe un unique $p_C(x) \in C$ tel que :

$$||x - p_C(x)|| = d(x, C)$$

Corollaire 7.1.1.1. $Si\ X$ est un Hilbert et F est un sev de X fermé alors :

- 1. p_F est linéaire
- 2. $p_F(x)$ est caractérisé par $x p_F(x) \perp F$
- 3. p_F est 1-Lipschitz donc continue
- 4. Si $dimF = n < \infty$, $p_F(x) = \sum_{i=1}^n \langle x, e_i \rangle e_i$
- 5. $X = F \bigoplus F^{\perp} \ et \left(F^{\perp}\right)^{\perp} = F.$