# Ciência de Dados Quântica 2021/22

Kernel Based Methods: Fundamentals

LUÍS PAULO SANTOS

#### Material de Consulta

- ► [Schuld2021] Secs. 2.5.4, 3.6.1; Chap. 6
- "Quantum Unsupervised and Supervised Learning on Superconducting Processors"; A. Sarma, R. Chatterjee, K. Gili, and T. Yu arXiv: quantum-ph, 2022 <a href="https://arxiv.org/pdf/1909.04226.pdf">https://arxiv.org/pdf/1909.04226.pdf</a>
- "Building a quantum kNN classifier with Qiskit: theoretical gains put to practice"; D.J. Kok; MsC Thesis RadBoud University, 2021
  <a href="https://www.ru.nl/publish/pages/913395/daniel\_kok\_4\_maart\_2021.pdf">https://www.ru.nl/publish/pages/913395/daniel\_kok\_4\_maart\_2021.pdf</a>
- "Quantum k-nearest neighbor machine learning algorithm"; Afham, Afrad Basheer and Sandeep K. Goyal; In: arXiv: 2003.09187 [quant-ph] <a href="https://arxiv.org/pdf/2003.09187.pdf">https://arxiv.org/pdf/2003.09187.pdf</a>

#### Kernel Methods: concept

Kernel methods are based on a similarity measure between data points

- ▶ **Definition:** for a data domain  $\chi$  a kernel is a positive semidefinite bivariate function  $\kappa: \chi \times \chi \to \mathbb{R}$ 
  - positive semi-definite means:
    - $\blacktriangleright \varkappa(x,x') \ge 0$
    - $\blacktriangleright \varkappa(x,x') = \varkappa(x',x)^*$

## Examples of classical kernels

| Name               | Kernel                                       |
|--------------------|----------------------------------------------|
| Linear             | $x^Tx'$                                      |
| Gaussian           | $e^{\ x-x'\ ^2}$                             |
| Sigmoid            | $\tanh(\boldsymbol{x}^T\boldsymbol{x}' + c)$ |
| Euclidean distance | $\sqrt{\sum_{i=1}^{N} (x_i - x_i')^2}$       |
| Hamming distance   | Different bits $(x, x')$                     |

#### Quantum Kernel: states overlap

 $|\langle \varphi | \phi \rangle|^2$  - The absolute square value of the inner product of two quantum states, called the **overlap**, can be used as a **measure of similarity** between  $\varphi$  and  $\phi$ 

▶ The SWAP test is commonly used to measure the overlap

#### SWAP test

- Let  $|\varphi\rangle$  and  $|\phi\rangle$  be two n qubits quantum states and consider an additional single qubit ancilla:  $|0\rangle|\varphi\rangle|\phi\rangle = |0\rangle\otimes|\varphi\rangle\otimes|\phi\rangle$
- Apply an Hadamard to the ancilla:

$$(H \otimes \mathbb{I}^n \otimes \mathbb{I}^n)|0\rangle|\varphi\rangle|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|\varphi\rangle|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\varphi\rangle|\phi\rangle + |1\rangle|\varphi\rangle|\phi\rangle)$$

▶ Swap  $|\phi\rangle$  and  $|\phi\rangle$  conditioned on the ancilla being  $|1\rangle$ :

$$CSWAP\left(\frac{1}{\sqrt{2}}(|0\rangle|\varphi\rangle|\phi\rangle + |1\rangle|\varphi\rangle|\phi\rangle)\right) = \frac{1}{\sqrt{2}}(|0\rangle|\varphi\rangle|\phi\rangle + |1\rangle|\phi\rangle\varphi\rangle)$$

Applying another Hadamard to the ancilla results in :

$$|\psi\rangle = (H \otimes \mathbb{I}^n \otimes \mathbb{I}^n) \left( \frac{1}{\sqrt{2}} (|0\rangle|\varphi\rangle|\phi\rangle + |1\rangle|\phi\rangle\varphi\rangle) \right)$$
$$= \frac{1}{2} |0\rangle \otimes (|\varphi\rangle|\phi\rangle + |\phi\rangle\varphi\rangle) + \frac{1}{2} |1\rangle \otimes (|\varphi\rangle|\phi\rangle - |\phi\rangle\varphi\rangle)$$

#### SWAP test

$$|\psi\rangle = \frac{1}{2}|0\rangle \otimes (|\varphi\rangle|\phi\rangle + |\phi\rangle\varphi\rangle) + \frac{1}{2}|1\rangle \otimes (|\varphi\rangle|\phi\rangle - |\phi\rangle\varphi\rangle)$$

- Let  $p_0(|\psi\rangle)$  (respectively  $p_1(|\psi\rangle)$  ) be the probability of measuring  $|0\rangle$  (respectively  $|1\rangle$ ) in the ancilla. It can be shown that:
- lacktriangle Therefore  $|\langle m{arphi}| m{\phi} 
  angle|^2 = p_0(|m{\psi}
  angle)$   $p_1(|m{\psi}
  angle)$

#### SWAP test

```
def overlap:
    counts = execute_swap (shots)
    probs[0] = counts[0]/shots
    probs[1] = counts[1]/shots
    return probs[0] - probs[1]
```



#### Clustering

▶ clustering is an unsupervised learning algorithm partitioning N data points (or feature vectors)  $x^i$  into subsets, or clusters.

The algorithm seeks to find the clusters which minimize the dissimilarity between each cluster's members.

Given a data non-labelled data set  $\mathcal{D} = \{x^1, \dots, x^M\}$  of M data points and the number K of desired clusters, partition  $\mathcal{D}$  into K subsets, minimizing the distance among cluster members.

- 1. randomly select K centroids  $C^k$  from  $\mathcal{D} = \{x^1, \cdots, x^M\}$
- 2. while not stop
  - 1. for each  $x^i \in \mathcal{D}$ 
    - 1. for each cluster with centroid  $C^k$ ,  $k = 1 \cdots K$ 
      - 1. distance<sub>i,k</sub> =  $1 \varkappa(C^k, x^i)$  QUANTUM
    - 2. assign  $x^i$  to cluster k with minimum distance $_{i,k}$
  - 2. for each cluster  $k=1\cdots K$  compute the new centroid as the mean of all the cluster members
  - 3. if (new centroids == previous centroids) stop = True



```
K = ...
                                                                 # set K
centroids = [x^i \text{ for i in random.sample(range(len(D)),k=K)}]
                                                                 # initialize the centroids by randomly select K points within D
stop = False
iterations = 0
while not stop:
  iterations += 1
  clusters = [ [ ] for _ in range(K)]
  for x in D:
       distances = []
                                                                 # compute the distance of x to each centroid
       for centroid in centroids:
            distances.append(1-SWAP_test(centroid,x))
       # find which centroid is at minimum distance
       index min = np.argmin(distances)
       clusters[index min].append(x)
  # compute new centroids
  centroid change = False
  for ndx, cluster in enumerate (clusters):
       new centroid = []
                                                                 # average each feature across all points in the current cluster
       for f in range(n features):
            avg_f = sum(member[f] for member in cluster)/len(cluster)
       new_centroid.append(avg_f)
    if new_centroid!= centroids[ndx]:
       centroids[ndx] = new centroid
       centroid change = True
if not centroid_change: stop = True
```



0 iterations

1 iterations

2 iterations

4 iterations



4 iterations



0 iterations

1 iterations

2 iterations

4 iterations

- ▶ Given a labelled dataset  $\mathcal{D} = \{(x^1, y^1), \cdots, (x^M, y^M)\}$ , select the K closest training inputs relative to the new input x according to the similarity metric of choice =  $x(x, x^i)$
- The respective class y can be chosen as the majority class among the neighbours for a classification task



k = 3

```
Classes = 2
                                     # set number of classes
K = 3
                                     # set K
# p is the point being classified
distances = [1-SWAP\_test(p, x) for x in X]
# sort the indexes and get the K smallest distances
indexes=np.argsort(distances)[:K]
count = [0] * Classes
K_neigh = [Y[ndx] for ndx in indexes]
for y in K_neigh:
   count[y] += 1
classification = np.argmax(count)
```





- The presented approach has a drawback: it requires a different circuit for each different  $\varkappa(x,x^i)$ ,  $i=1\cdots M$
- If all the  $x^i$  can be loaded into a superposition is it possible to simultaneously compute all  $\varkappa(x,x^i)$ ,  $i=1\cdots M$ ?



#### where:

- ▶ after the Hadamards,  $\left|r_{i}\right\rangle = \frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}\left|i\right\rangle$
- $\blacktriangleright \ \mathcal{W} \text{ acts upon } \left| r_{\phi} \right\rangle : \mathcal{W} |i\rangle |0\rangle = \mathcal{W} |i\rangle \left| x^i \right\rangle$



$$p_0 = \frac{1}{2} + \frac{1}{2M} \sum_{i=1}^{M} \|\langle x | x^i \rangle\|^2 ; \quad p_1 = \frac{1}{2} - \frac{1}{2M} \sum_{i=1}^{M} \|\langle x | x^i \rangle\|^2$$

▶ 
$$q(i) = p_0(i) - p_1(i) = \frac{2(F_i - \langle F \rangle)}{M(1 - \langle F \rangle^2)}$$

where  $F_i = \|\langle x | x^i \rangle\|^2$  is the fidelity

 $\langle F \rangle = \sum_{i=1}^{M} F_i / M$  is the average fidelity

$$F_i = \|\langle x | x^i \rangle\|^2 = \frac{M}{2} q(i) [1 - (p_0 - p_1)^2] + (p_0 - p_1)$$



- Execute the circuit T times and let:
  - ▶  $T_n$  be the count of  $r_c = n$ ,  $n \in \{0,1\}$
  - ▶  $c_n(i)$  be the count of  $r_i = i$ , given  $r_c = n$ ,  $n \in \{0,1\}$
- ▶ Then:

  - $ightharpoonup q(i) pprox \overline{q}(i) = \overline{p_0}(i) \overline{p_1}(i)$

$$F_i = \|\langle x | x^i \rangle\|^2 \approx \frac{M}{2} \bar{q}(i) [1 - (\bar{p}_0 - \bar{p}_1)^2] + (\bar{p}_0 - \bar{p}_1)$$

## K-Nearest Neighbours – W operator



#### Kernel density estimation

Kernel density estimation constructs a probabilistic model from data as the sum of a similiraty measure κ between all M training inputs:

$$p(x) = \frac{1}{M} \sum_{m=1}^{M} \kappa(x, x^m)$$



#### Kernel Density Estimation

```
# q is the point whose probability we want
summation = sum ( [SWAP_test(p, x) for x in X] )
p_q = summation / M
```



 $\mathcal{D}$ =[[-8], [-3], [0], [1], [2], [4], [6], [7]] q = [[1.5], [-5]]

### Data separability





Is this really the expected result?