Wednesday, Feb 22

Iteratively Weighted Least Squares

Iteratively weighted least squares can be used when we assume that the variance is proportional to a function of the mean so that

$$Var(Y_i) \propto h[E(Y_i)],$$

where h is some specified function, implying that our weights should be

$$w_i = \frac{1}{h[E(Y_i)]}.$$

Because $E(Y_i)$ is unknown we can use the estimate \hat{y}_i to obtain weights

$$w_i = \frac{1}{h(\hat{y}_i)}.$$

Because \hat{y}_i depends on the weights used in the weighted least squares algorithm, and w_i depends on \hat{y}_i , we can use the following algorithm known as *iteratively weighted least squares*.

- 1. Estimate the model using ordinary least squares where all $w_i = 1$.
- 2. Compute weights as $w_i = 1/h(\hat{y}_i)$.
- 3. Estimate the model using weighted least squares with the weights $w_i = 1/h(\hat{y}_i)$.

The second and third steps can be repeated until the estimates and thus the weights stop changing. Typically only a few iterations are necessary.

Example: Consider again following data from a study on the effects of fuel reduction on biomass.

```
library(trtools) # for biomass data
m.ols <- lm(suitable ~ -1 + treatment:total, data = biomass)</pre>
summary(m.ols)$coefficients
                 Estimate Std. Error t value Pr(>|t|)
                              0.04183
treatmentn:total
                   0.1056
                                        2.524 1.31e-02
treatmenty:total
                   0.1319
                              0.01121 11.773 7.61e-21
d <- expand.grid(treatment = c("n","y"), total = seq(0, 2767, length = 10))</pre>
d$yhat <- predict(m.ols, newdata = d)</pre>
p <- ggplot(biomass, aes(x = total, y = suitable, color = treatment)) +
  geom_point() + geom_line(aes(y = yhat), data = d) + theme_minimal() +
  labs(x = "Total Biomass (kg/ha)", y = "Suitable Biomass (kg/ha)",
    color = "Treatment")
plot(p)
```


Assume that $Var(Y_i) \propto E(Y_i)$, which means the weights should be $w_i = 1/E(Y_i)$. We can program the iteratively weighted least squares algorithm as follows.

```
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {
  m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
  print(coef(m.wls)) # optional
  biomass$w <- 1 / predict(m.wls)
}</pre>
```

Now let's take a look at the residuals.

```
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
   geom_point() + theme_minimal() +
   labs(x = "Predicted Value", y = "Studentized Residual",</pre>
```


That may not be quite enough. Suppose we assume that $Var(Y_i) \propto E(Y_i)^p$ where p=2.

Predicted Value

```
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {
  m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
  biomass$w <- 1 / predict(m.wls)^2
}</pre>
```

Now let's take a look at the residuals.

```
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Predicted Value", y = "Studentized Residual",
        color = "Treatment")
plot(p)</pre>
```


Better. Maybe too much? We could try p = 1.5 or something like that. The residuals do get a little strange for higher predicted values, but we'll leave it here.

The model is $E(S_i) = \beta_1 n_i t_i + \beta_2 y_i t_i$, where n_i and y_i are indicator variables for if the *i*-th plot was treated or not by fuel reduction. We can also write the model as

$$E(S_i) = \begin{cases} \beta_1 t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ \beta_2 t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

We can use $\beta_2 - \beta_1$ for inferences about the treatment effect.

The contrast function from the **trtools** package can also do this. It can make inferences for a difference of differences.

```
contrast(m.wls,
  a = list(treatment = "y", total = 1),
  b = list(treatment = "y", total = 0),
  u = list(treatment = "n", total = 1),
  v = list(treatment = "n", total = 0))
```

estimate se lower upper tvalue df pvalue

(-1,1),0 0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937

```
0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937
```

This estimates $E(Y_a) - E(Y_b) - [E(Y_u) - E(Y_v)]$. This can also be done using the emtrends function from the emmeans package.

```
library(emmeans)
emtrends(m.wls, ~treatment, var = "total") # estimate slopes
```

```
treatment total.trend SE df lower.CL upper.CL n 0.125 0.0183 104 0.0888 0.161 y 0.189 0.0149 104 0.1593 0.219
```

Confidence level used: 0.95

```
pairs(emtrends(m.wls, ~ treatment, var = "total")) # estimate difference between slopes
```

```
contrast estimate SE df t.ratio p.value n-y -0.0639 0.0236 104 -2.707 0.0079
```

Recall that both the **emmeans** and **trtools** packages have a **contrast** function. To avoid conflicts or having to use **trtools**::contrast to call te contrast function from the **trtools** package later, we can unload the **emmeans** package usin detach.

```
detach(package:emmeans)
```

Yet another approach to compare the slopes is to change the parameterization. Consider the following model.

```
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients</pre>
```

```
Estimate Std. Error t value Pr(>|t|) total 0.18892 0.01493 12.656 8.836e-23 total:treatmentn -0.06386 0.02359 -2.707 7.937e-03
```

From summary we can see that this model can be written as

$$E(S_i) = \beta_1 t_i + \beta_2 t_i n_i,$$

where n_i is an indicator variable where $n_i = 1$ if the treatment was not applied to the *i*-th plot, add $n_i = 0$ otherwise, so we can also write the model as

$$E(S_i) = \begin{cases} (\beta_1 + \beta_2)t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ \beta_1 t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

Note that the meaning of β_1 and β_2 have changed here. The slopes of the lines with and without treatment are β_1 and $\beta_1 + \beta_2$, respectively, and the difference between the slopes is $\beta_1 - (\beta_1 + \beta_2) = -\beta_2$. So inferences for β_2 are for the difference in the slopes (after we reverse the sign). Although not necessary, we can change the reference category to avoid having to reverse the sign.

```
biomass$treatment <- relevel(biomass$treatment, ref = "y")
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients</pre>
```

```
Estimate Std. Error t value Pr(>|t|) total 0.12506 0.01827 6.847 5.428e-10 total:treatmenty 0.06386 0.02359 2.707 7.937e-03
```

Now the model can be written as

$$E(S_i) = \beta_1 t_i + \beta_2 t_i n_i,$$

or

$$E(S_i) = \begin{cases} \beta_1 t_i, & \text{if the } i\text{-th plot was not treated by fuel reduction,} \\ (\beta_1 + \beta_2)t_i, & \text{if the } i\text{-th plot was treated by fuel reduction.} \end{cases}$$

Note: For some reason the reference category (y) is getting an indicator variable here, where normally it does not. I am not sure if this is a bug or intentional, but it appears to be due to the somewhat unusual parameterization I am using.

Parametric Models for Heteroscedasticity

Example: Consider the following data where variability appears to vary by treatment.

```
library(trtools) # for pulse data

p <- ggplot(pulse, aes(x = pulse1, y = pulse2, color = treatment)) +
    geom_point() + theme_minimal() +
    labs(x = "Pulse Before", y = "Pulse After", color = "Treatment") +
    theme(legend.position = c(0.85,0.2))
plot(p)</pre>
```


There is one case with missing values on pulse1 and pulse2.

```
subset(pulse, !complete.cases(pulse)) # show observations with missing data
```

```
height weight age gender smokes alcohol exercise treatment pulse1 pulse2 year 76 173 64 20 female no yes moderate sat NA NA 97
```

This will cause problems so we are going to remove it.

pulse <- subset(pulse, complete.cases(pulse)) # overwrite pulse with only complete cases</pre>

Let's consider a simple linear model.

```
m <- lm(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse)
summary(m)$coefficients</pre>
```

t value Pr(>|t|)

Estimate Std. Error

```
(Intercept)
                      59.41757
                                   10.4467
                                            5.68767 1.171e-07
treatmentsat
                     -51.25896
                                   15.7451 -3.25554 1.524e-03
pulse1
                       0.89363
                                    0.1357 6.58544 1.841e-09
treatmentsat:pulse1
                     -0.01437
                                    0.2049 -0.07011 9.442e-01
pulse$yhat <- predict(m)</pre>
pulse$rest <- rstudent(m)</pre>
p \leftarrow ggplot(pulse, aes(x = yhat, y = rest, color = treatment)) +
  geom_point() + theme_minimal() +
  labs(x = "Predicted Value", y = "Studentized Residual",
    color = "Treatment") +
  theme(legend.position = c(0.8,0.2))
plot(p)
```


Consider that the model assumed by ${\tt lm}$ is

$$E(Y_i) = \beta_0 + \beta_1 t_i + \beta_2 x_i + \beta_3 t_i x_i, \tag{1}$$

$$Var(Y_i) = \sigma^2, \tag{2}$$

where Y_i is the second pulse measurement, t_i is an indicator variable for the treatment (i.e., $t_i = 1$ if the *i*-th observation was from the sitting treatment condition, and $t_i = 0$ otherwise), and x_i is the first pulse

measurement. Maybe it would make sense to have something like

```
\operatorname{Var}(Y_i) = \begin{cases} \sigma_s^2, & \text{if the } i\text{-th observation is from the sitting treatment,} \\ \sigma_r^2, & \text{if the } i\text{-th observation is from the running treatment.} \end{cases}
```

We can estimate such a model using the gls function from the nlme package.

```
library(nlme) # should come with R
m <- gls(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse,</pre>
 method = "ML", weights = varIdent(form = ~ 1|treatment))
summary(m)
Generalized least squares fit by maximum likelihood
  Model: pulse2 ~ treatment + pulse1 + treatment:pulse1
 Data: pulse
   AIC BIC logLik
  763.1 779.3 -375.6
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | treatment
Parameter estimates:
  sat
       ran
1.000 5.723
Coefficients:
                     Value Std.Error t-value p-value
(Intercept)
                   59.42 15.755 3.771 0.0003
treatmentsat
                    -51.26
                              16.058 -3.192 0.0019
                            0.205 4.367 0.0000
pulse1
                      0.89
treatmentsat:pulse1 -0.01
                             0.209 -0.069 0.9452
Correlation:
                    (Intr) trtmnt pulse1
treatmentsat
                    -0.981
                    -0.980 0.962
pulse1
treatmentsat:pulse1 0.962 -0.980 -0.981
Standardized residuals:
   Min
             Q1
                    Med
                             QЗ
                                    Max
-2.0920 -0.7688 0.1026 0.5886 2.1968
Residual standard error: 3.634
Degrees of freedom: 109 total; 105 residual
Note the different syntax for extracting standardized residuals.
pulse$yhat <- predict(m)</pre>
pulse$resz <- residuals(m, type = "p") # note different syntax</pre>
p \leftarrow ggplot(pulse, aes(x = yhat, y = resz, color = treatment)) +
  geom_point() + theme_minimal() +
  labs(x = "Predicted Value", y = "Standardized Residual",
    color = "Treatment")
plot(p)
```


Here is an example with the ${\tt CancerSurvival}\ {\tt data}.$

```
library(Stat2Data)
data(CancerSurvival)
m <- gls(Survival ~ Organ, data = CancerSurvival,
    method = "ML", weights = varIdent(form = ~ 1|Organ))
summary(m)</pre>
```

Generalized least squares fit by maximum likelihood Model: Survival ~ Organ Data: CancerSurvival AIC BIC logLik 976.8 998.4 -478.4

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | Organ Parameter estimates:

Stomach Bronchus Colon Ovary Breast 1.0000 0.6119 1.2455 3.0141 3.5504

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	1395.9	371.0	3.763	0.0004
OrganBronchus	-1184.3	374.5	-3.162	0.0025
OrganColon	-938.5	385.5	-2.435	0.0179
OrganOvary	-511.6	565.2	-0.905	0.3691
OrganStomach	-1109 9	383 2	-2 896	0 0053

Correlation: (Intr) OrgnBr OrgnCl OrgnOv OrganBronchus -0.991 -0.962 0.953 OrganColon OrganOvary -0.656 0.650 0.632 OrganStomach -0.968 0.959 0.932 0.635 Standardized residuals: MinMed QЗ Q1 Max -1.1613 -0.6824 -0.2878 0.1748 3.3435 Residual standard error: 332.7 Degrees of freedom: 64 total; 59 residual CancerSurvival\$yhat <- predict(m)</pre> CancerSurvival\$resz <- residuals(m, type = "p")</pre> $p \leftarrow ggplot(CancerSurvival, aes(x = yhat, y = resz, color = Organ)) +$ geom_point() + theme_minimal() + labs(x = "Predicted Value", y = "Standardized Residual", color = "Organ") plot(p) 3 2 Standardized Residual Organ **Breast Bronchus** 8 Colon Ovary Stomach 0 -1500 1000

Comments about parametric models for heteroscedasticity.

Advantages: Potentially very effective if we can specify an accurate model for the variance.

Predicted Value

Disadvantages: If we do not specify an accurate model for the variance, it may bias estimation of parameters concerning the expected response.

Heteroscedastic Consistent Standard Errors

The idea is to estimate the model parameters using ordinary least squares, but estimate the standard errors in such a way that we do not assume homoscedasticity This is sometimes called *heteroscedastic consistent standard errors*, robust standard errors, or sandwich estimators.

Example: Consider again the cancer survival data.

```
m <- lm(Survival ~ Organ, data = CancerSurvival)
```

The **sandwich** package provides resources for using heteroscedastic-consistent standard errors. Technically, what is being estimated is the *covariance matrix* of the parameter estimators.

```
library(sandwich) # for vcovHC used below
vcov(m) # bad estimate if there is heteroscedasticity
```

	(Intercept)	${\tt OrganBronchus}$	${\tt OrganColon}$	OrganOvary	OrganStomach
(Intercept)	40752	-40752	-40752	-40752	-40752
OrganBronchus	-40752	67121	40752	40752	40752
OrganColon	-40752	40752	67121	40752	40752
OrganOvary	-40752	40752	40752	115464	40752
${\tt OrganStomach}$	-40752	40752	40752	40752	75235

vcovHC(m) # better estimate if there is heteroscedasticity

	(Intercept)	${\tt OrganBronchus}$	${\tt OrganColon}$	OrganOvary	OrganStomach
(Intercept)	153504	-153504	-153504	-153504	-153504
OrganBronchus	-153504	156256	153504	153504	153504
OrganColon	-153504	153504	164908	153504	153504
OrganOvary	-153504	153504	153504	394879	153504
OrganStomach	-153504	153504	153504	153504	163498

The square root of the diagonal elements are the standard errors.

```
sqrt(diag(vcov(m))) # bad estimates of the standard errors
```

```
(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach 201.9 259.1 259.1 339.8 274.3
```

sqrt(diag(vcovHC(m))) # better estimates of the standard errors

```
(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach 391.8 395.3 406.1 628.4 404.3
```

But the usual way to interface with the functions in the sandwich package is through other functions.

```
Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept)
                1395.9
                            201.9
                                   6.915 3.770e-09
                                                     992 1799.9
OrganBronchus
              -1184.3
                            259.1 -4.571 2.530e-05 -1703 -665.9
OrganColon
                -938.5
                            259.1 -3.622 6.083e-04 -1457 -420.1
OrganOvary
                -511.6
                            339.8 -1.506 1.375e-01 -1192 168.4
OrganStomach
              -1109.9
                            274.3 -4.046 1.533e-04 -1659 -561.1
```

confint(m) # bad confidence intervals due to bad standard error estimates

```
2.5 % 97.5 % (Intercept) 992 1799.9 OrganBronchus -1703 -665.9 OrganColon -1457 -420.1 OrganOvary -1192 168.4 OrganStomach -1659 -561.1
```

```
library(lmtest) # for coeftest and coefci used below
coeftest(m, vcov = vcovHC) # better standard error estimates
t test of coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  1396
                             392
                                     3.56 0.00073 ***
OrganBronchus
                -1184
                              395
                                    -3.00 0.00400 **
OrganColon
                  -938
                              406
                                    -2.31 0.02434 *
OrganOvary
                              628
                                    -0.81 0.41886
                  -512
                                    -2.74 0.00801 **
OrganStomach
                -1110
                              404
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
coefci(m, vcov = vcovHC)
                          # better confidence intervals
                2.5 % 97.5 %
(Intercept)
               611.9 2179.9
OrganBronchus -1975.3 -393.3
OrganColon
             -1751.1 -125.9
             -1769.0 745.8
OrganOvary
OrganStomach -1919.0 -300.8
Both lincon and contrast will accept a fcov argument to provide a function to estimate standard errors.
lincon(m, fcov = vcovHC)
                                                          pvalue
              estimate
                              lower upper tvalue df
                         se
                               611.9 2179.9 3.5628 59 0.0007337
(Intercept)
               1395.9 391.8
OrganBronchus -1184.3 395.3 -1975.3 -393.3 -2.9961 59 0.0039950
OrganColon
               -938.5 406.1 -1751.1 -125.9 -2.3111 59 0.0243421
               -511.6 628.4 -1769.0 745.8 -0.8141 59 0.4188611
OrganOvary
              -1109.9 404.3 -1919.0 -300.8 -2.7449 59 0.0080080
OrganStomach
organs <- sort(unique(CancerSurvival$Organ)) # sorted organ names
contrast(m, a = list(Organ = organs),
 cnames = organs, fcov = vcovHC)
         estimate
                      se lower upper tvalue df
Breast
          1395.9 391.80 611.93 2179.9 3.563 59 7.337e-04
           211.6 52.46 106.61 316.6 4.033 59 1.604e-04
Bronchus
Colon
            457.4 106.79 243.72 671.1 4.283 59 6.884e-05
Ovary
            884.3 491.30 -98.75 1867.4 1.800 59 7.698e-02
           286.0 99.97 85.96 486.0 2.861 59 5.836e-03
Stomach
lincon(m, a = c(1,0,0,0,1), fcov = vcovHC)
              estimate
                          se lower upper tvalue df
                                                     pvalue
                   286 99.97 85.96
                                     486 2.861 59 0.005836
(1,0,0,0,1),0
You can use a similar approach with the emmeans function from the emmeans package, but there the
argument is vcov.
library(emmeans)
emmeans(m, ~Organ, vcov = vcovHC)
```

SE df lower.CL upper.CL

Organ

emmean

```
Breast
           1396 391.8 59
                             611.9
                                        2180
Bronchus
            212 52.5 59
                                         317
                             106.6
Colon
            457 106.8 59
                             243.7
                                         671
Ovary
            884 491.3 59
                             -98.8
                                        1867
Stomach
            286 100.0 59
                              86.0
                                         486
```

Confidence level used: 0.95

```
pairs(emmeans(m, ~Organ, vcov = vcovHC), adjust = "none", infer = TRUE)
```

```
contrast
                   estimate SE df lower.CL upper.CL t.ratio p.value
Breast - Bronchus
                     1184.3 395 59
                                        393
                                              1975.3
                                                       2.996 0.0040
Breast - Colon
                      938.5 406 59
                                        126
                                              1751.1
                                                       2.311 0.0243
Breast - Ovary
                      511.6 628 59
                                       -746
                                              1769.0
                                                       0.814 0.4189
Breast - Stomach
                     1109.9 404 59
                                        301
                                              1919.0
                                                       2.745
                                                              0.0080
Bronchus - Colon
                     -245.8 119 59
                                       -484
                                                -7.7
                                                      -2.066 0.0432
Bronchus - Ovary
                     -672.7 494 59
                                      -1661
                                               315.9
                                                      -1.362 0.1785
Bronchus - Stomach
                      -74.4 113 59
                                       -300
                                               151.5
                                                      -0.659 0.5124
Colon - Ovary
                     -426.9 503 59
                                      -1433
                                               579.1
                                                      -0.849 0.3992
Colon - Stomach
                      171.4 146 59
                                               464.1
                                                        1.172 0.2460
                                       -121
Ovary - Stomach
                      598.3 501 59
                                       -405
                                              1601.6
                                                       1.193 0.2375
```

Confidence level used: 0.95

Use the function waldtest in place of anova when using heteroscedastic-consistent standard errors.

```
m.full <- lm(Survival ~ Organ, data = CancerSurvival)
m.null <- lm(Survival ~ 1, data = CancerSurvival)
waldtest(m.null, m.full, vcov = vcovHC)</pre>
```

Wald test

```
Model 1: Survival ~ 1

Model 2: Survival ~ Organ
    Res.Df Df F Pr(>F)

1 63
2 59 4 3.52 0.012 *
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Comments about heteroscedastic-consistent standard errors:

Advantages: Does not require us to specify a variance structure/function. We let the data inform the estimator.

Disadvantages: Highly dependent on the data to help produce better estimates of the standard errors, and tends to work well only if n is relatively large.

Note: There are a variety of variations of the "sandwich" estimator. Different estimators can be specified through the type argument to vcovHC so instead of writing vcov = vcovHC or fcov = vcovHC we write vcov = function(m) vcovHC(m, type = "HCO") or vcov = function(m) vcovHC(m, type = "HCO") if we wanted to use that particular type of estimator (sometimes called "White's estimator").