1. The following table gives the daily wages in rupees in a commercial organisation:

Daily		30-	32-	34-	36-	38-	40-	42-	44-	46-	48-
wages		32	34	36	38	40	42	44	46	48	50
(Rs.)											
No.	of	3	8	24	31	50	61	38	21	12	2
persons											

Find the mean, median, mode, standard deviation and quartile deviation.

```
 > low = seq(30, 48, 2) 
> high = seq(32, 50, 2)
> x = (high + low) / 2
> f = c(3, 8, 24, 31, 50, 61, 38, 21, 12, 2)
> data = data.frame(x, f)
> mean = mean(rep(x, f))
> cf = cumsum(f)
> n = sum(f)
> mc = min(which(cf >= n/2))
> h = 2
> fr = f[mc]
> c = cf[mc - 1]
> 1 = x[mc] - h/2
> median = 1 + ((n/2 - c) / fr) * h
> m = which(f == max(f))
> fm = f[m]
> f1 = f[m - 1]
> f2 = f[m + 1]
> 1 = x[m] - h/2
> mode = 1 + (fm - f1)/(2*fm - f1 - f2) * h
> sd = sd(rep(x, f))
> q = c()
> cr = c()
> h = c()
> 1 = c()
> qdata = c()
> for(i in c(1, 2, 3)) {
+ q = c(q, min(which(cf >= i*n/4)))
+ cr = c(cr, cf[q[i] - 1])
+ h = c(h, high[q[i]] - low[q[i]])
+ 1 = c(1, x[q[i]] - h[i]/2)
+ qdata = c(qdata, 1[i] + (h[i] / f[q[i]]) * ((i*n/4) - cr[i]))
+ }
> qd = (qdata[3] - qdata[1]) / 2
> data
```

```
x f
1 31 3
2 33 8
3 35 24
4 37 31
5 39 50
6 41 61
7 43 38
8 45 21
9 47 12
10 49 2
> mean
[1] 40.144
> median
[1] 40.29508
> mode
[1] 40.64706
> sd
[1] 3.605449
> qd
```

[1] 2.389219

2. The following table gives the weight(x) (in 1000 lbs.) and highway fuel efficiency (y) (in miles/gallon) for a sample of 13 cars. Calculate the correlation coefficient between weight and fuel efficiency of the vehicles.

Vehicle	X	Y
Chevrolet Camaro	3.545	30
Dodge Neon	2.6	32
Honda Accord	3.245	30
Lincoln Continental	3.93	24
Oldsmobile Aurora	3.995	26
Pontiac Grand Am	3.115	30
Mitsubishi Eclipse	3.235	33
BMW 3-Series	3.225	27
Honda Civic	2.44	37
Toyota Camry	3.24	32

```
Hyundai Accent 2.29 37

Mazda Protégé 2.5 34

Cadillac DeVille 4.02 26
```

```
MAT2001
                                  Lab Assessment 2
                                                                          17BCI0113
                                    L31+L32
Statistics for Engineers
                                                                     Namit Nathwani
2 2.600 32
3 3.245 30
4 3.930 24
5 3.995 26
6 3.115 30
7 3.235 33
8 3.225 27
9 2.440 37
10 3.240 32
11 2.290 37
12 2.500 34
13 4.020 26
> cor
```

Weight vs Fuel Efficiency

plot(x, y, main="Weight vs Fuel Efficiency", xlab="Weight", ylab="Fuel

[1] -0.8977642

Efficieny", col="red")

3.

It is important that scientific researchers in the area of forest products be able to study correlation among the anatomy and mechanical properties of trees. For the study Quantitative Anatomical Characteristics of Plantation Grown Loblolly Pine (Pinus Taeda L.) and Cottonwood (Populus deltoides Bart. Ex Marsh.) and Their Relationships to Mechanical Properties, conducted by the Department of Forestry and Forest Products at Virginia Tech, 29 loblolly pines were randomly selected for investigation. Table 11.9 shows the resulting data on the specific gravity in grams/cm³ and the modulus of rupture in kilopascals (kPa). Compute and interpret the sample correlation coefficient.

Specific Gravity,	Modulus of Rupture,	Specific Gravity,	Modulus of Rupture,
$x~({ m g/cm^3})$	$y \; (\mathrm{kPa})$	$x~({ m g/cm^3})$	y (kPa)
0.414	29,186	0.581	85,156
0.383	29,266	0.557	69,571
0.399	26,215	0.550	84,160
0.402	30,162	0.531	73,466
0.442	38,867	0.550	78,610
0.422	37,831	0.556	67,657
0.466	44,576	0.523	74,017
0.500	46,097	0.602	87,291
0.514	59,698	0.569	86,836
0.530	67,705	0.544	82,540
0.569	66,088	0.557	81,699
0.558	78,486	0.530	82,096
0.577	89,869	0.547	$75,\!657$
0.572	77,369	0.585	80,490
0.548	67,095		

- 7 0.466 44576
- 8 0.500 46097
- 9 0.514 59698
- 10 0.530 67705
- 11 0.569 66088
- 12 0.558 78486
- 13 0.577 89869
- 14 0.572 77369
- 15 0.548 67095
- 16 0.581 85156
- 17 0.557 69571
- 18 0.550 84160
- 19 0.531 73466
- 20 0.550 78610
- 21 0.556 67657
- 22 0.523 74017
- 23 0.602 87291
- 24 0.569 86836
- 25 0.544 82540
- 26 0.557 81699
- 27 0.530 82096
- 28 0.547 75657
- 29 0.585 80490
- > cor(x, y)
- [1] 0.9432149

plot(x, y, main="Specific Gravity vs Modulus of Rupture", xlab="Specific
Gravity", ylab="Modulus of Rupture", col="red")

Specific Gravity vs Modulus of Rupture

4. Calculate the Spearman's rank correlation coefficient between advertisement cost and sales from the following data:

Advertisement	39	65	62	90	82	75	25	98	36
Cost(Rs.in	78								
1000)									
Sales (Rs. in	47	53	58	86	62	68	60	91	51
lakhs)	84								

```
> x = c(39, 65, 62, 90, 82, 75, 25, 98, 36, 78)

> y = c(47, 53, 58, 86, 62, 68, 60, 91, 51, 84)

> cor.test(x, y, method="spearman")
```

Spearman's rank correlation rho