Sorption Method for Purification of Ittrium-90 Radionuclides and Separation of ⁹⁰Sr/⁹⁰Y Pair

V. V. Milyutin^{a,*}, N. A. Nekrasova^a, and G. V. Kostikova^a

^a Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,
Moscow, 119071 Russia
*e-mail: vmilyutin@mail.ru

Received November 4, 2020; revised January 11, 2021; accepted January 14, 2021

Abstract—Deep purification of the stripped ⁹⁰Y obtained after the ⁹⁰Sr/⁹⁰Y pair extraction separation with D₂EHPA from chemical impurities (Cr, Mn, Ni, Pb, Fe, Zr) employing the TODGA-containing sorbent AXIONIT MND 40T was considered. Also, a two-stage sorption separation of the ⁹⁰Sr/⁹⁰Y pair without using the extraction method was developed. At the first stage the ⁹⁰Y was separated from ⁹⁰Sr with Purolite D5041 phosphate cation exchange resin, and at the second stage, ⁹⁰Y deep purification was carried out on the AXIONIT MND 40T sorbent. The prepared ⁹⁰Y in radiochemical purity meets the requirements for radiopharmaceuticals.

Keywords: sorption, separation, strontium, yttrium, radiopharmaceutical

DOI: 10.1134/S1066362221060102

INTRODUCTION

Radionuclide 90 Y is one of the first radioactive isotopes to be used for radiotherapy and the interest in 90 Y continues although more than 30 radionuclides are currently used for this purpose. This interest is due to its convenient nuclear-physical properties: a half-life of 64.2 h and a maximum β -energy of 2.27 MeV. 90 Y is used for a variety of therapeutic purposes including radioimmunotherapy with labeled antibodies, treatment of liver tumors and rheumatoid arthritis [1].

 90 Y is formed during the decay of the long-lived radioisotope 90 Sr, which is a fission product of uranium. One of the important requirements for the safe clinical use of 90 Y is deep purification from 90 Sr, which has a high affinity for bone tissue and can cause bone marrow damage. The regulated 90 Sr content in the 90 Y radiopharmaceuticals used in nuclear medicine for therapeutic procedures should not exceed 2×10^{-6} Ci/Ci of 90 Y. In addition, there are strict requirements for the heavy metal content, which in a 90 Y radiopharmaceutical in total should not exceed $10 \mu g$ per 1 Ci of ^{90} Y [2, 3].

In order to produce the final product with the required purity, an ⁹⁰Y multistage purification from chemical and radiochemical impurities is carried out,

mainly by liquid extraction and ion exchange methods [1]. Each of these methods has its own limitations and disadvantages. Thus, ion-exchange methods for producing ⁹⁰Y are quite simple to implement, however, the long duration of sorption processes (18–20 h) leads to significant losses of the finished product due to its decomposition. In practice, isotope generators are often used. Their action is based on the sorption separation of the ⁹⁰Sr/⁹⁰Y pair on a sulfonic cation exchange resin, for example, Dowex 50W×8. In this case, the ⁹⁰Y yield is 90–98%, but the ⁹⁰Sr impurity gradually increases due to the radiation destruction of the resin. Moreover, additional operations of chemical treatment of eluates are required to convert ⁹⁰Y into a form suitable for further use (0.01 mol/dm³ HCl solution).

The method of liquid extraction employing di-2-ethylhexylphosphoric acid (D₂EHPA) is currently considered the most effective method for separating an equilibrium ⁹⁰Y/⁹⁰Sr mixture. The extraction proceeds rather quickly: the total time of the ⁹⁰Y extraction process is 30–60 min, the yield of the target product is more than 95%, and the ⁹⁰Sr content in the finished product is less than 10⁻⁶%. However, the obtained ⁹⁰Y contains, in addition to residual amounts of ⁹⁰Sr, impurities of corrosion products (Fe, Ni, Cr, Pb, etc.)

and extractant radiolysis product, which brings about the need for additional purification of the stripped ⁹⁰Y.

In [4, 5], extraction-chromatographic methods of 90 Y extraction and purification are described, which combine the sorption and extraction advantages. The methods consist in passing a solution containing 90 Sr/ 90 Y vapor through columns with a D₂EHPA-based solid extractant (TVEX).

In addition to organophosphate compounds, extractants based on diglycolic acid diamides, in particular, tetraoctyldiglycolamide (TODGA), can be used as an active component in the TVEX composition. DGA resin sorbent based on styrene-divinylbenzene copolymer and TODGA is produced by Triskem International (France) and is used for the extraction and separation of radioactive REE and TPE for radioanalysis [6]. There is no information on the use of TODGA-containing sorbents to produce high-purity ⁹⁰Y.

The nature of the REE sorption (by the example of the ¹⁵²Eu sorption) on the TVEX-TODGA was previously considered in [7, 8]. Due to the fact that yttrium is a chemical analogue of REE, it can be assumed that the patterns of the europium and yttrium sorption on the studied sorbents will be similar.

In the study we investigated the possibility of deep purification of the yttrium-90 after extraction separation of ⁹⁰Y from ⁹⁰Sr with D₂EHPA using a TODGA-containing AXIONIT MND 40T, TVEX of Russian production, and we also studied the conditions for the sorption separation of ⁹⁰Y from ⁹⁰Sr using phosphate cation exchange resin and AXIONIT MND 40T sorbent.

EXPERIMENTAL

Sorption purification of stripped ⁹⁰Y. In the extraction separation of the ⁹⁰Sr/⁹⁰Y pair using D₂EHPA, the stripped ⁹⁰Y is obtained containing 5 M nitric acid, trace amounts of ⁹⁰Sr, and chemical impurities, mainly corrosion products of structural materials. Table 1 shows the composition of the model solution simulating the stripped ⁹⁰Y.

The experiments were carried out under dynamic conditions employing a TODGA-containing TVEX of AXIONIT MND 40T grade ("Axion-Rare and Precious Metals" JSC, Russia). A styrene-

divinylbenzene copolymer was used as a carrier. The TODGA content in the sorbent was 40 wt %, the granule size was 0.315–0.50 mm. For purification, the initial solution was passed through a plastic column filled with AXIONIT MND 40T sorbent, the volume of the sorbent in the column was 4 cm³. Before the experiments, the sorbent was treated in a column with a 5 M nitric acid solution for 2 h. At the sorption stage the initial solution was passed through the column at a rate of 6.0 column volumes per an hour [(c.v.)/h]. The filtrate at the column outlet was collected and tested for the amounts of chemical impurities.

After the end of the sorption, a 3 M HCl solution was passed through the column at a rate of 3.0 c.v./h to remove the initial solution residues. Desorption of ⁹⁰Y was performed with 0.01 M HCl. The passing rate was 3.0 c.v./h, the solution volume was 6 c.v. The supply of the solutions during pre-treatment and at all stages was carried out using a peristaltic pump from bottom to top. The total time of sorption purification was 5–6 h.

Sorption separation of the ⁹⁰Sr/⁹⁰Y pair. The ⁹⁰Sr/⁹⁰Y pair separation experiments were carried out employing a model solution containing 1.5 g/dm³ strontium and 0.15 mg/dm³ yttrium nitrates and 0.01–0.3 M nitric acid therewith a label of the equilibrium ⁹⁰Sr/⁹⁰Y pair was introduced into the model solution in an amount of about 10⁵ Bg/dm³.

At the first stage of separation, the initial solution was passed through a plastic column filled with 4.5 cm³ D5041 phosphate cation exchange resin (Purolite, Great Britain). Then the sorbent was washed with a 0.01–0.3 M HCl solution and ⁹⁰Y was stripped with a 3 M HCl solution. The flow rate of the solutions was 3.0 c.v./h, the solution volume was 6 c.v. In the filtrate and desorbate, the specific total beta activity was determined.

At the second stage of separation, hydrochloric acid desorbate was passed through a plastic column filled with 4.5 cm³ AXIONIT MND 40T sorbent. Then the sorbent was washed with a 3 M HCl solution and ⁹⁰Y was stripped with a 0.01 M HCl solution. The flow rate of the solutions was 3.0 c.v./h, the solution volume was 6 c.v. In the filtrate and desorbate, the specific total beta activity was determined for at least 35 days. The setup scheme is shown in Fig. 1.

Fig. 1. Setup scheme for ⁹⁰Sr/⁹⁰Y pair sorption separation.

The analysis of solutions for the content of chemical elements was carried out by mass spectrometry by an Agilent 7500ce inductively coupled plasma mass spectrometer (ICP-MS) (Agilent Technologies, Japan). The specific activities of ⁹⁰Sr and ⁹⁰Y in solutions were determined by a direct radiometric method using an SKS-50M spectrometric complex (Green Star Technologies, Russia).

RESULTS OF DISCUSSION

Sorption purification of stripped ⁹⁰Y. The results of the sorption purification of the model solution

simulating the stripped ⁹⁰Y from strontium and other chemical impurities using the AXIONIT MND 40T sorbent are listed in Table 1.

The presented results show that when using the sorption method of purification, which includes the $^{90}\mathrm{Y}$ sorption stages on the AXIONIT MND 40T sorbent, washing and elution of yttrium with 0.01 M HCl, deep purification of the stripped $^{90}\mathrm{Y}$ from residual strontium amounts as well as from equipment corrosion products, is observed. The purification factors (K_{pur}) of yttrium from strontium, chromium, manganese, nickel, and lead are more than 100. The K_{pur} for iron and zirconium ions is 54 and 40, respectively. The lowest purification

Table 1. Compositions of the initial strip solution and the treated solution (desorbate)

Solution	Concentration in solution, mg/dm ³										
	Sr	Y	Al	P	Ca	Cr(III)	Mn(II)	Fe(III)	Ni	Zr	Pb
Initial (5 M HNO ₃)	14	0.14	24	3.5	21	27	26	97	27	0.4	24
Treated (0.01 M HCl)	0.12	0.15	8.9	0.9	5.8	0.1	0.09	1.8	0.15	0.01	0.1
Purification factor	117	_	2.7	3.9	3.6	270	289	54	180	40	240

Fig. 2. Relative beta activity (A/A_{in}) vs. the exposure time of (a) filtrates and (b) desorbates in 3 M HCl obtained after sorption with a D5041 cation exchange resin. HNO₃ concentration in solution during sorption, M: (1) 0.01, (2) 0.1, (3) 0.2, (4) 0.3. The dotted line is the calculated 90 Y decay curve.

efficiency is observed for impurities of aluminum, phosphorus, and calcium ($K_{pur} = 2.7-3.9$).

During the experiments, three consecutive treatment cycles were carried out without replacing the sorbent. The results obtained showed that the purification factors remain at a constant level.

Sorption separation of the 90 Sr/ 90 Y pair. The sorption method was tested for direct separation of the 90 Sr/ 90 Y pair without using the extraction method. The sorption completeness of 90 Y and 90 Sr on the first column filled with phosphate cation exchange resin D5041 can be evidenced by the change in the relative beta activity $(A/A_{\rm in})$ of the filtrate over 35–50 days. The results are shown in Fig. 2a, curve I.

These results demonstrate that sorption from a $0.01 \,\mathrm{M}$ HNO₃ solution is accompanied by the combined sorption of $^{90}\mathrm{Sr}$ and $^{90}\mathrm{Y}$. The relative beta activity of the filtrate changes relatively little over time and its equilibrium value is about 20% of the initial value. With an increase in the nitric acid concentration the time dependence of the A/A_{in} value of the filtrate changes sharply. At a $0.2-0.3 \,\mathrm{M}$ HNO₃ concentration at first the A/A_{in} value is ~ 0.4 , and the equilibrium value, 0.8-0.9. This fact indicates that during the sorption of the equilibrium $^{90}\mathrm{Sr}/^{90}\mathrm{Y}$ mixture in this acidity range, almost all $^{90}\mathrm{Sr}$ remains in the filtrate, and $^{90}\mathrm{Y}$ is completely sorbed on the column. When the sorbent is washed after sorption with $0.2-0.3 \,\mathrm{M}$ HCl, additional elution of residual amounts of $^{90}\mathrm{Sr}$ occurs.

The above is confirmed by the time dependences of the relative beta activity of hydrochloric acid desorbates (3 M) obtained after sorption with a D5041 cation exchange resin from solutions with different HNO₃ concentrations (Fig. 2b). Figures 2b shows, for clarity, the calculated decay curve of pure radionuclide ⁹⁰Y calculated according to the radioactive decay law.

The results on Fig. 2b show that hydrochloric acid desorbates obtained after the 90 Sr/ 90 Y pair sorption by the D5041 cation exchange resin from 0.2–0.3 M HNO₃ solutions and washing with HCl solutions of the same concentrations contain almost pure 90 Y. The residual activity of desorbates after keeping for 45 days does not exceed 0.1% of the initial activity of the solution, and the experimental and calculated decomposition curves of desorbates almost completely coincide.

Due to the fact that even deeper purification of ⁹⁰Y from ⁹⁰Sr is required for use in the production of radiopharmaceuticals, the obtained hydrochloric acid desorbates were subjected to additional purification with the TODGA-containing sorbent AXIONIT MND 40T. Sorbents of this type are capable of efficient sorption of REE and Y in strongly acidic media including hydrochloric acid. In acid solutions with a concentration of less than 0.1 M the sorption of REE(Y) sharply decreases, which makes it possible to carry out their desorption.

To experimentally verify this fact we used hydrochloric acid desorbate obtained after ⁹⁰Sr/⁹⁰Y

Fig. 3. Experimental (*solid line*) and calculated (*dashed line*) curve of the relative beta activity $(A/A_{\rm in})$ vs. the exposure time of the desorbate (0.01 M HCl) after sorption by the AXIONIT MND 40T sorbent.

pair sorption by the cation exchange resin D5041 from a 0.2 M HNO₃ solution and washing with 0.2 M HCl. Desorbate containing 3 M HCl, 90 Y desorbed from the first column, and residual impurities were passed through a plastic column filled with 4.5 cm³ AXIONIT MND 40T sorbent. Then the sorbent was washed with a 3 M HCl solution and 90 Y was desorbed with a 0.01 M HCl solution. The passing rate of solutions was 3.0 c.v./h, the solution volume was 6 c.v. Figure 3 shows the experimental and calculated curves of the relative beta activity ($A/A_{\rm in}$) vs. the exposure time of the desorbate (0.01 M HCl) after sorption by the AXIONIT MND 40T sorbent.

The results in Fig. 3 show that hydrochloric acid desorbates obtained after additional purification with the AXIONIT MND 40T sorbent contain only ⁹⁰Y. The residual activity of desorbates after keeping for 45 days is at the near the detection limits of the recording equipment. The portion of ⁹⁰Sr activity in ⁹⁰Y-containing desorbate is less than 10⁻⁶%.

CONCLUSIONS

The studies carried out made it possible to develop a sorption method for deep purification of nitric acid 90 Y desorbate after extraction separation of a pair of 90 Sr/ 90 Y with D₂EHPA from 90 Sr and chemical impurities, corrosion products of equipment. The method consists in the features of 90 Y sorption by a TOGDA-based solid extractant—AXIONIT MND 40T sorbent. In HNO₃

solutions with a concentration above 3 M the complete yttrium extraction occurs, while the sorption of strontium and corrosion products on this sorbent practically does not occur. This allows at the sorption stage to carry out deep purification of ⁹⁰Y from ⁹⁰Sr and a wide range of chemical impurities (chromium, manganese, nickel, lead, iron, zirconium).

The unique sorption properties of the AXIONIT MND 40T sorbent make it possible to afford pure 90Y radiopharmaceuticals without employing the extraction method that is complex in hardware implementation. At the first stage of the process, selective sorption of ⁹⁰Y from weakly acidic media is carried out on a phosphate cation exchange resin, where the main part of 90Sr is separated and passed into the filtrate. Desorption of ⁹⁰Y from the phosphate cation exchange resin with 3 M HCl and then ⁹⁰Y sorption from the hydrochloric acid desorbate on the AXIONIT MND 40T sorbent allow deep purification both from residual amounts of 90Sr and from chemical impurities of corrosion products. Elution of ⁹⁰Y from the AXIONIT MND 40T sorbent is easily carried out with a dilute solution of hydrochloric acid, which is the preferred medium for obtaining 90Y-based radiopharmaceuticals.

ACKNOWLEDGMENTS

The authors are grateful to the Center for Collective Use of Instruments of the Institute of Physics and Chemistry, Russian Academy of Sciences, for help in carrying out mass spectrometric measurements.

FUNDING

This work was carried out with partial funding from the Ministry of Science and Higher Education of the Russian Federation.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Kodina, G.E., *Metody polucheniya radiofarma-tsevticheskikh preparatov i radionuklidnykh generatorov dlya yadernoi meditsiny: ucheb. posobie dlya vuzov* (Methods for Obtaining Radiopharmaceuticals and Radionuclide Generators for Nuclear Medicine: Textbook. Textbook for Universities), Moscow: MEI, 2014.

- 2. Wike, J.S., Guyer, C.E., Ramey, D.W., and Phillips, B.P., *Appl. Radiat. Isot.*, 1990, vol. 41, no. 9, p. 861.
- 3. *Izotopy: svoistva, poluchenie, primenenie* (Isotopes: Properties, Production, Application), Baranova, V.Yu., Ed., Moscow: FIZMATLIT, 2005.
- 4. Malinin, A.B., Kurchatova, L.N., Tronova, I.N., Basyura, N.A., Gromova, N.P., Tikhomirova, E.A., and Kurenkov, N.V., *Radiokhimiya*, 1984, vol. 26, no. 4, p. 500.
- 5. Shapovalov, V.V., Mel'nichenko, N.A., Nerozin, N.A., Tkachev, S.V., Togaeva, N.R., and Kham'yanov, S.V., *Radiochemistry*, 2012, vol. 54, no. 4, p. 388.

- https://doi.org/10.1134/S1066362212040133
- 6. Horwitz, E.P., McAlister, D.R., Bond, A.H., and Barrans, R.E., *Solvent Extr. Ion Exch.*, 2005, vol. 23, p. 219.
- 7. Milyutin, V.V., Gelis, V.M., Nekrasova, N.A., Firsova, L.A., Kharitonov, O.V., and Baulin, V.E., *Radiochemistry*, 2015, vol. 57, no. 5, p. 513. https://doi.org/10.1134/S1066362215050100
- 8. Milyutin, V.V., Nekrasova, N.A., and Bessonov, A.A., *Radiochemistry*, 2021, vol. 63, no. 1, p. 35. https://doi.org/10.1134/S1066362221010069