Law And Economics

Tort Law: Unilateral Care

Francisco Poggi

University of Mannheim - Fall 2021

Tort Law

• Tort Law: area of the law that is concerned with civil suits. *Mostly* related to accidental injuries.

Examples of accidental torts:

- Some personal injuries.
- Product Liability.
- Workplace Accidents.
- Medical Malpractice.
- Environmental Accidents.
- Risk zero is, generally, not efficient! However, incentives to curb risks are important.

1

Tort Law

- Examples of intentional torts:
 - Battery (act of physical violence),
 - Assault,
 - Trespass (land, computer, car.)
 - · Defamation,
 - Intentional Infliction of Emotional Distress (e.g. threats).

- Here we focus on *unintentional* torts.
 - Incentives to mitigate risks.
 - Model of precaution.

Other ways to control risk

- Tools to mitigate risky behavior:
 - Safety & Hygine regulations.
 - Criminal penalties.

Tort law: private remedy that gives the right of accident victims to sue injurers for damages.

 $\mbox{Victim} \sim \mbox{Plaintiff} \qquad \mbox{Injurer} \sim \mbox{Defendant}$

Elements of Tort Claim

• Enforcement in hands of the victim.

- Burden of the proof? Plaintiff has to show that:
 - She sustained some damages.
 - ${}^{\bullet}$ Defendant was the cause of those damages.

Causation

- Self-driving technology example.
 - Self-driving cars are safer than regular cars.
 - However, they produce accidents that would not have happenend otherwise.

"The Coming Collision Between Autonomous Vehicles and the Liability System" by Gary Marchant and Rachel Lindor.

Causation

- Golf driving range next to a parking lot.
 - \cdot x height of the safe net.
 - $y \sim F(x)$ height of the ball. (support in [0, 1]).
 - D: damage caused if y > x (deterministic).

• Who caused the damage? The golfer or the range owner that didn't put a taller net?

Actions and outcomes

But-for test: but-for the action, would the outcome be different?

- Golf example: two actions combined cause the damage.
 - Both actions pass the but-for test.

- Other cases where two actions *independently* would have generated the damage.
 - Example: firing squad.
 - No single shooter passes the but-for test.

• For now, we consider a single injurer.

Liability Rules

- How damages should be split between the injurer and the victim?
 - No liability: victim bears all damages.
 - ullet Strict liability: injurer bears all damages, independently of the actions.
 - Negligence rule: Injurer is fully liable if he is found to be at fault.
 - Contributory negligence: Injurer is fully liable unless the victim is found to be at fault.

• What does it mean for the injurer or the victim to be at fault?

Tort Law

- Costs of accidents:
 - Damaged suffered by victims.
 - Cost of precautions by potential injurers.
 - Cost of precautions by potential victims.

- In this section we present a *unilateral* model of precaution:
 - only injurers can affect the probability of accident.

The unilateral Care Model

- x: investment in precaution by injurer.
- a: accident in $\{0,1\}$
- $p(x) := \Pr(a = 1|x)$. Probability of accident.
- D: dollar losses suffered by the victim. Conditional distribution F_x .
- Let $D(x) = E_x[D|a=1]$

Assumption: $p(\cdot)$ and $D(\cdot)$ are decreasing convex functions.

Social Optimum

$$\min_{x \ge 0} \quad E_x[x+D] \quad = \quad \min_{x \ge 0} \quad x + p(x)D(x)$$

Solution x^* .

Care choice by the injurer

- What level of care would the injurer choose?
 - Depends on the liability rule: $\psi(x, D)$.
- Implicit assumption:
 - level of care x is ex-post observable.
 - total damages are ex-post observable.
- Decision problem:

$$\min_{x \ge 0} \quad E_x[x + \psi(x, D)]$$

- Any ψ such that $x^* \in \arg\min_{x \geq 0} E_x[x + \psi(x, D)]$ recovers efficiency.
- What would Coase theorem say about this?

No Liability

$$\psi(x,D) = 0$$

$$\min_{x \ge 0} \qquad x$$

• Efficiency is not achieved.

Strict Liability

$$\psi(x,D) = D$$

$$\min_{x \ge 0} \quad E_x[x+D]$$

- This achieves efficient care: injurer fully internalizes the costs.
- Advantages: low informational requirements.
- Disadvantages: limited liability $\psi < \bar{\psi}$.

Strict (Expected) Liability

$$\psi(x, D) = a \cdot D(x)$$

$$\min_{x \ge 0} \quad E_x[x + aD(x)] \quad = \quad \min_{x \ge 0} \quad x + p(x)D(x)$$

- This achieves efficient care: injurer fully internalizes the costs.
- Limited liability constraint is more likely to be satisfied.
- How informational requirements compare to Strict Liability?
- Disadvantages: sometimes $\psi > D$. More on this later.

Negligence

$$\psi(x,D) = 1_{\{x < \bar{x}\}} \cdot D(x)$$

$$\min_{x \ge 0} E_x[x + a \cdot 1_{\{x < \bar{x}\}} \cdot D(x)] = \min_{x \ge 0} x + 1_{\{x < \bar{x}\}} p(x)D(x)$$

- Injurer would never choose $x > \bar{x}$.
- If the thinks he is going to be liable, then he chooses x^* .
- We have to compare \bar{x} with x^* .

$$\bar{x}$$
 vs $x^* + p(x^*)D(x^*)$

- Chooses \bar{x} iff $\bar{x} \leq x^* + p(x^*)D(x^*)$.
- Efficient to set $\bar{x} = x^*$.

Comparing liability rules: Informational requirements

• Three rules that can achieve efficiency: strict liability, strict expected liability, and negligence.

• Different informational requirements:

	x	$p(\cdot)$	D	$D(\cdot)$
SL	NO	NO	YES	NO
SEL	YES	NO	NO	YES
N	YES	YES	NO	YES

Negligence with noisy observation of x

- Let $\psi(\tilde{x}, D) = 1_{\{\tilde{x} < x^*\}} \cdot D(\tilde{x})$ with $\tilde{x} = x + \epsilon$.
- Let ϵ be normal with an arbitrarily small variance.
- The injurer will not choose x^* .

$$x^* + a \cdot \Pr(\epsilon > 0) \cdot D(x^*)$$

• Then \bar{x} should be chosen higher than x^* to account for this.

Comparing liability rules

• Cost of trials:

- Higher informational requirements \Rightarrow more costly trials.
- Negligence trials are the most expensive ones but they don't ocur in equilibrium.
- Reality might be noisy.

• How damages are split.

- With Strict Liability the injurer bears the equilibrium damages,
- With Negligence the victim does it.

Victim compensation

Why to compensate victims?

Activity Levels

- Same problem as before, with the caveat that the injurer chooses how many times to do the same risky activity.
 - y: activity level.

$$\max_{x,y} \quad B(y) - y[x + p(x) \cdot D(x)]$$

• Activity level is not observable ex-post.

Activity Levels

- Notice that the optimal level of care x^* is independent of y.
- Optimal activity level: $B'(y) = x^* + p(x^*)D(x^*)$.

• For the individual, the activity level will also depend on the liability rule.

$$\max_{x,y} E_x \left[B(y) - y(x + \psi(x, D)) \right]$$

Proability of escaping Liability

Injurers might be able to escape liability for multiple reasons:

- Conceal their identity.
- Difficulty in proving specific cause of injuries.
- Costs of litigation (prevent victims from bringing suits)
- Limited liability.

Therefore, even with strict liability, injurers might take too little precautions.

Judgement-Proof Problem

Sherwin-Williams Case.

Litigation costs

Fix litigation costs at K.

- Paid by the victim.
- Paid by the injurer.
- Split in half.

If we want to maintain efficiency, then the total amount paid by the injurer is fixed. The victim always pays (directly or indirectly).