Verjetnost z mero - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Matija Vidmarja

2021/22

Kazalo

Me	rljivost in mera	3
1.1	Merljive množice	3
1.2	Mere	4
1.3	Merljive preslikave in generirane σ -algebre	6
1.4	Borelove množice na razširjeni realni osi $[-\infty, \infty]$	
	in Borelova merljivost numeričnih funkcij	9
1.5	Argumenti monotonega razreda	11
1.6	Lebesgue-Stieltjesova mera	13
Inte	egracija na merljivih prostorih	15
2.1	Lebesgueov integral	15
2.2	Konvergenčni izreki s posledicami	17
2.3	Rezultati, ki se tičejo menjave vrsrnega reda	
	integracije	19
2.4	Nedoločena integracija in absolutna zveznost	21
2.5	Prostori L in nekaj integralskih neenakosti	23
Ver	jetnost kot normalizirana mera	25
3.1		25
3.2		
	1.1 1.2 1.3 1.4 1.5 1.6 Inte 2.1 2.2 2.3 2.4 2.5 Ver 3.1	 1.1 Merljive množice 1.2 Mere 1.3 Merljive preslikave in generirane σ-algebre 1.4 Borelove množice na razširjeni realni osi [-∞, ∞] in Borelova merljivost numeričnih funkcij 1.5 Argumenti monotonega razreda 1.6 Lebesgue-Stieltjesova mera Integracija na merljivih prostorih 2.1 Lebesgueov integral 2.2 Konvergenčni izreki s posledicami 2.3 Rezultati, ki se tičejo menjave vrsrnega reda integracije 2.4 Nedoločena integracija in absolutna zveznost 2.5 Prostori L in nekaj integralskih neenakosti Verjetnost kot normalizirana mera 3.1 Osnovni pojmi

1 Merljivost in mera

1.1 Merljive množice

Definicija 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ (t.j. $\mathcal{A} \in 2^{2^{\Omega}}$). Potem rečemo, da je \mathcal{A} zaprta za:

• c^Ω (t.j. za komplement v Ω)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad \forall A : (A \in \Omega \implies \Omega \setminus A \in \mathcal{A});$$

• \cap (t.j. za preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad A_1 \cap A_2 \in \mathcal{A} \ \text{brž ko je } \{A_1, A_2\} \subset A;$$

 \bullet \cup (t.j. za unije)

$$\overset{\text{def}}{\Longleftrightarrow} \quad A_1 \cup A_2 \in \mathcal{A} \text{ brž ko je } \{A_1, A_2\} \subset A;$$

• \ (t.j. za razlike)

$$\stackrel{\text{def}}{\iff} A_1 \setminus A_2 \in \mathcal{A} \text{ brž ko je } \{A_1, A_2\} \subset A;$$

• $\sigma \cap$ (t.j. za števne preseke)

$$\stackrel{\text{def}}{\iff} \quad \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A} \ \text{ za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \text{ iz } \mathcal{A};$$

• $\sigma \cup$ (t.j. za števne unije)

$$\overset{\text{def}}{\Longleftrightarrow} \quad \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A} \ \text{ za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \text{ iz } \mathcal{A}.$$

Definicija 1.2. $\mathcal A$ je $\sigma\text{-}algebra$ na Ω

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 (Ω, \mathcal{A}) je merljiv prostor

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \emptyset \in \mathcal{A} \text{ in } \mathcal{A} \text{ je zaprt za } \mathsf{c}^\Omega \text{ in za } \sigma \cup.$$

V primeru, da A je σ -algebra na Ω :

- A je \mathcal{A} -merljiva $\stackrel{\text{def}}{\iff} A \in \mathcal{A}$;
- $\mathscr B$ je pod- σ -algebra $\begin{center} & \del{def} \end{center} \begin{center} \mathscr B \end{center}$ je σ -algebra na Ω in $\mathscr B\subset\mathcal A.$

Trditev 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ zaprta za \mathbf{c}^{Ω} in naj bo $\emptyset \in \mathcal{A}$. Potem je \mathcal{A} σ -algebra na Ω , če je \mathcal{A} zaprta za števne preseke, in v tem primeru je \mathcal{A} zaprta za \cap , \cup in \setminus .

1.2 Mere

Definicija 1.3. Naj bo (Ω, \mathcal{F}) merljiv prostor in $\mu : \mathcal{F} \to [0, \infty]$. μ je mera na $(\Omega, \mathcal{F}) \stackrel{\text{def}}{\iff}$

- $\bullet \ \mu(\emptyset) = 0;$
- $\mu\left(\bigcup_{n\in\mathbb{N}}\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$ za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki sestoji iz paroma disjunktnih dogodkov.

Lastnosti:

- Mera μ na (Ω, \mathcal{F}) je $kon\check{c}na \iff \mu(\Omega) < \infty$.
- Mera μ na (Ω, \mathcal{F}) je $verjetnostna^1 \iff \mu(\Omega) = 1$
- Mera μ na (Ω, \mathcal{F}) je σ -končna $\stackrel{\text{def}}{\Longleftrightarrow}$ obstaja zaporedje $(A_n)_{n\in\mathbb{N}}$ v \mathcal{F} , da je

$$\bigcup_{n\in\mathbb{N}} = \Omega \quad \text{in}$$

$$\mu(A_n) < \infty, \quad \forall n\in\mathbb{N}$$

 (Ω,\mathcal{F},μ) je prostor z mero $\stackrel{\mathrm{def}}{\Longleftrightarrow}~\mu$ je mera na (Ω,\mathcal{F}) . Če je μ mera na (Ω, \mathcal{F}) potem je $\mu(\Omega)$ masa mere μ . Če je $A \in \mathcal{F}$, potem je:

• $A \text{ je } \mu\text{-}zanemarljiv} \iff \mu(A) = 0;$

¹Tudi: μ je verjetnost.

• A je μ -trivialna $\stackrel{\text{def}}{\Longleftrightarrow} A$ ali $\Omega \setminus A$ je μ -zanemarljiva

Če imamo poleg tega še lastnost $P(\omega)$ v $\omega \in A$, potem

• $P(\omega)$ drži μ -skoraj povsod (μ -s.p.) v $\omega \in A \iff \bigoplus$

$$A_{\neg P} := \{ \omega \in \Omega \mid \neg P(\omega) \in \mathcal{F} \text{ in } \mu(A_{\neg P}) = 0 \};$$

• $P(\omega)$ drži μ -skoraj gotovo (μ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow} P(\omega)$ drži μ -skoraj povsod in μ je verjetnostna.

Pdrži $\mu\text{-skoraj povsod na}\ A \iff P(\omega)$ drži $\mu\text{-skoraj povsod v}\ \omega\in A.$ Podobno za ostale.

Trditev 1.2. Naj bo μ mera na (Ω, \mathcal{F}) . Potem:

(i) μ je aditivna:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

za vsaki disjunktivni množici $A, B \in \mathcal{F}$.

(ii) μ je monotona:

$$\mu(A) \leq \mu(B),$$

če je $A \subset B$ in $A, B \in \mathcal{F}$

(iii) μ je zvezna od spodaj:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \uparrow -\lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nepadajoče glede na inkluzijo: $A_n\subset A_{n+1}\ \forall n\in\mathbb{N}$.

(iv) μ je števno subaditivna:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) \leq \sum_{n\in\mathbb{N}}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} .

(v) Naj bo μ končna:

$$\mu(\Omega \setminus A) = \mu(\Omega) - \mu(A) \ \forall A \in \mathcal{F}.$$

Naprej, μ je zvezna od zgoraj:

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right) = \downarrow -\lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nenaraščajoča glede na inkluzijo: $A_n\supset A_{n+1}\ \forall n\in N.$

(vi) Za vsak $A \in \mathcal{F}$ je

$$\mathcal{F}\big|_A := \{B \cap A \mid B \in \mathcal{F}\}$$

 σ -algebra na A in $\mu_A := \mu|_{\mathcal{F}|_A}$ je mera na $(A, \mathcal{F}|_A)$.

Definicija 1.4. $\mu_A := \mu \big|_{\mathcal{F} \big|_A}$ rečemo *mera* μ *zožana na* A oz. *zožitev* μ *na* A.

1.3 Merljive preslikave in generirane σ -algebre

Definicija 1.5. Naj bo $\mathcal{A} \subset 2^{\Omega}$:

$$\sigma_{\Omega}(\mathcal{A}) := \bigcap \{ \mathcal{F} \in 2^{2^{\Omega}} \mid \mathcal{F} \text{ σ-algebra na } \Omega \text{ in } \mathcal{F} \supset \mathcal{A} \},$$

rečemo σ -algebra z A na Ω . Če sta \mathcal{B}_1 in \mathcal{B}_2 obe σ -algebri na Ω , potem definiramo

$$\mathscr{B}_1 \vee \mathscr{B}_2 := \sigma_{\Omega}(\mathscr{B}_1 \cup \mathscr{B}_2)$$

in ji rečemo skupek \mathscr{B}_1 in \mathscr{B}_2 . Bolj splošno, če imamo družino σ -algebr $(B_\lambda)_{\lambda\in\Lambda}$ na Ω , potem postavimo

$$\bigvee_{\lambda \in \Lambda} \mathscr{B}_{\lambda} \; := \; \sigma_{\Omega} \left(\bigcup_{\lambda \in \Lambda} \mathscr{B}_{\lambda} \right).$$

Definicija 1.6. Naj bo $f: \Omega \to \Omega'$. Če je dana σ -algebra \mathcal{F}' na Ω' , potem definiramo

$$\sigma^{\mathcal{F}'}(f) := \{ f^{-1}(A'); A' \in \mathcal{F}' \}.$$

Začetno strukturo f glede na \mathcal{F}' (tudi, σ -algebra generirana s f glede na \mathcal{F}'). Če je dana σ -algebra \mathcal{F} na Ω , potem definiramo

$$\sigma_{\mathcal{F}}^{\Omega'}(f) := \{ A' \in 2^{\Omega'} \mid f^{-1}(A') \in \mathcal{F} \}$$

končno strukturo f na Ω' glede na \mathcal{F} . Če sta dani σ -algebri \mathcal{F} na Ω in σ -algebra \mathcal{F}' na Ω , potem rečemo: f je \mathcal{F}/\mathcal{F}' -merljiva $\stackrel{\mathrm{def}}{\Longleftrightarrow}$

$$f^{-1}(A') \in \mathcal{F}, \quad \forall A' \in \mathcal{F}'.$$

Definicija 1.7. Če je $\mathcal F$ σ -algebra na Ω in je $\mathcal F'$ σ -algebra na Ω' , potem označimo

$$\mathcal{F}/\mathcal{F}' \; := \; \{ f \in \Omega'^\Omega \mid f \text{ je } \mathcal{F}/\mathcal{F}'\text{-merljiva} \}.$$

Definicija 1.8. Za $A \subset \Omega$ definiramo $\mathbb{1}_{A_{\Omega}} : \Omega \to \{0, 1\},$

$$\mathbb{1}_{A_{\Omega}}(x) \ := \ \begin{cases} 1 \, ; & x \in A, \\ 0 \, ; & x \notin A, \end{cases}, \quad x \in \Omega,$$

ki ji rečemo $indikatorska funkcija A na ambientnem prostoru<math display="inline">\Omega.^2$

Trditev 1.3. Za σ -algebre $\mathcal{F}, \mathcal{G}, \mathcal{H}$, kjer $f \in \mathcal{F}/\mathcal{G}$ in $g \in \mathcal{G}/\mathcal{H}$ je

$$g \circ f \in \mathcal{F}/\mathcal{H}$$
.

Trditev 1.4. Naj bo $f: \Omega \to \Omega'$:

- (i) Za σ -algebro \mathcal{F}' na Ω' je $\sigma^{\mathcal{F}'}(f)$ σ -algebra na Ω ; ona je najmanjša (glede na inkluzijo) σ -algebra \mathcal{G} na Ω , da je $f \in \mathcal{G}/\mathcal{F}'$.
- (ii) Za σ -algebro $\mathcal F$ na Ω je $\sigma_F^{\Omega'}(f)$ σ -algebra na Ω' ; ona je največja (glede na inkluzijo) σ -algebra $\mathcal G'$ na Ω , da je $f \in \mathcal F/\mathcal G$.

²Ponavadi namesto $\mathbb{1}_{A_{\Omega}}$ pišemo le $\mathbb{1}_{A}$.

(iii) Za σ -algebro \mathcal{F} na Ω in σ -algebro \mathcal{F}' na Ω' je

$$f \in \mathcal{F}/\mathcal{F}' \iff \sigma^{\mathcal{F}'}(f) \subset \mathcal{F} \iff \mathcal{F}' \subset \sigma^{\Omega'}_{\mathcal{F}}(f).$$

(iv) Naj bo $\mathcal{A}'\sigma 2^{\Omega'}$ ter $\mathcal F$
 $\sigma\text{-algebra na}\ \Omega.$ Potem je

$$f \in \mathcal{F}/\sigma_{\Omega'}(\mathcal{A}') \iff (f^{-1}(A') \in \mathcal{F}, \ \forall A' \in \mathcal{A}').$$

Velja tudi

$$\sigma^{\sigma_{\Omega'}(\mathcal{A}')}(f) = \sigma_{\Omega}(\{f^{-1}(A') \mid A' \in \mathcal{A}'\}).$$

Definicija 1.9. Sled \mathcal{A} na A definiramo kot

$$\mathcal{A}\big|_A := \{B \cap A \mid B \in \mathcal{A}\}.^3$$

Trditev 1.5 (Sledi komutirajo v generirani σ -algebri). Naj bo $\mathcal{A} \subset 2^{\Omega}$ in $A \subset \Omega$. Potem je

$$\sigma_A(\mathcal{A}|_A) = \sigma_{\Omega}(\mathcal{A})|_A.$$

Trditev 1.6. Naj bo $f: \Omega \to \Omega'$ in naj bo \mathcal{F} σ -algebra na Ω ter \mathcal{F}' σ -algebra na Ω' .

(i) Če je $A'\subset \Omega'$ in $f:\Omega\to A',$ potem je

$$f \in \mathcal{F}/\mathcal{F}' \iff f \in \mathcal{F}/(\mathcal{F}'\big|_{A'}).$$

(ii) Če je $A \in \Omega$ in $f \in \mathcal{F}/\mathcal{F}'$, potem

$$f|_A \in (\mathcal{F}|_A)/\mathcal{F}'$$
.

(iii) Če je $(A_i)_{i\in\mathbb{N}}$ zaporedje v \mathcal{F} in $\Omega = \bigcup_{i\in\mathbb{N}} A_i$ in je $f\big|_{A_i} \in (\mathcal{F}\big|_{A_i})/\mathcal{F}'$ $\forall i\in\mathbb{N}$, potem je

$$f \in \mathcal{F}/\mathcal{F}'$$

.

³Zapis je isti kot za zožitev, vendar ne pomeni isto.

1.4 Borelove množice na razširjeni realni osi $[-\infty, \infty]$ in Borelova merljivost numeričnih funkcij

Definicija 1.10. Definirajmo razširjeno realno os:

$$[-\infty, \infty] := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$$
$$[-\infty, a] := \{-\infty\} \cup (-\infty, a] \quad \text{za } a \in \mathbb{R} \cup \{-\infty\}$$

Relacijo \leq na $\mathbb R$ razširimo na $[-\infty,\infty]$ kot sledi:

$$-\infty \le x \le \infty \quad \forall x \in [-\infty, \infty].$$

Temu ustrezno imamo " $(<) := (\leq) \setminus (=)$ ", itd.

Definicija 1.11. Borelovo σ -algebro na $[-\infty, \infty]$ definiramo kot

$$\mathscr{B}_{[-\infty,\infty]} \ := \ \sigma_{[-\infty,\infty]}(\{[-\infty,a] \mid a \in \mathbb{R}\}).$$

Za $A \subset [-\infty, \infty]$ je

$$\mathscr{B}_A := \mathscr{B}_{[-\infty,\infty]}|_A$$

Borelova σ -algebra na A. Elementom Borelovih σ -algebr pravimo Borelove množice.

Definicija 1.12. Funkcija f je numerična, če je $\mathcal{Z}_f \in [-\infty, \infty]$.

Definicija 1.13. Če je funkcija f numerična:

- $\bullet \ \sigma(f) \ := \ \sigma^{\mathscr{B}_{[-\infty,\infty]}}(f);$
- če je $\mathcal F$ σ -algebra na domeni f, je f $\mathcal F$ -merljiva $\stackrel{\mathrm{def}}{\Longleftrightarrow} f$ je $\mathcal F/\mathscr B_{[-\infty,\infty]}$ -merljiva;
- če je $g: \mathcal{D}_f \to [-\infty, \infty]$, je

$$g\wedge f\ :=\ \min\{g,f\}^4$$

$$g \vee f := \max\{g, f\}.$$

Definiramo pozitivni in negativni del f:

$$f^+ := f \vee 0$$

$$f^- := (-f) \vee 0$$

Opomba.

- $\bullet \ f = f^+ f^-$
- $|f| = f^+ + f^-$

Definicija 1.14. Dogovorimo se

$$0 \cdot (\pm \infty) := 0 =: (\pm \infty) \cdot 0$$

$$\infty + (-\infty) := 0 =: (-\infty) + \infty.$$

Preostanek aritmetike na $[-\infty,\infty]$ definiramo na naraven način, npr.

$$a \cdot \infty := \operatorname{sgn}(a) \cdot \infty \quad \operatorname{za} \ a \in [-\infty, \infty] \setminus \{0\}$$

$$a + \infty := \infty \quad \operatorname{za} \ a \in (-\infty, \infty]$$

$$\infty - \infty := \infty + (-\infty) = 0$$

$$itd.$$

Trditev 1.7. Če je $A \subset [-\infty, \infty]$ in je $f : A \to [-\infty, \infty]$ zvezna, potem je $f \in \mathcal{B}_A/\mathcal{B}_{[-\infty,\infty]}$. Če je $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ za σ -algebro \mathcal{F} , potem je

$$\{f+g,f\cdot g\}\subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$$

in

$$\{\{f \leq g\}, \{f = g\}, \{f < g\}\} \subset \mathcal{F}$$

.

Trditev 1.8. Naj bo \mathcal{F} σ -algebra in $(f_n)_{n\in\mathbb{N}}$ zaporedje v $\mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$. Potem je

$$\{\sup_{n\in\mathbb{N}} f_n, \inf_{n\in\mathbb{N}} f_n, \limsup_{n\to\infty} f_n, \liminf_{n\to\infty} f_n\} \subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}.$$

Če je $f_n \geq 0 \ \forall n \in \mathbb{N}$, potem je

$$\sum_{n\in\mathbb{N}} f_n \in \mathcal{F}/\mathscr{B}_{[0,\infty]}.$$

Definicija 1.15. Naj bo \mathcal{F} σ -algebra. Za $\{f,g\} \subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$ je

$$\{f \vee g, f \wedge g, f^+, f^-, |f|\} \subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}.$$

Za zaporedje $(f_n)_{n\in\mathbb{N}}$ v $\mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$ je

 $\{\{f_n \text{ konverg., ko } n \to \infty\}, \{f_n \text{ konverg. } v \mathbb{R}, \text{ ko } n \to \infty\}, \{\lim_{n \to \infty} f_n = f_\infty\}\} \subset \mathcal{F}.$

1.5 Argumenti monotonega razreda

Definicija 1.16. Naj bo \mathcal{F} σ -algebra na Ω in $f:\Omega\to[0,\infty)$:

f je \mathcal{F} -enostavna $\stackrel{\mathrm{def}}{\Longleftrightarrow} f \in \mathcal{F}/\mathscr{B}_{[0,\infty)}$ in \mathcal{Z}_f je končna.

Trditev 1.9. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f : \Omega \to [0, \infty]$. Potem je f \mathcal{F} -enostavna \iff

$$f = \sum_{i=1}^{n} c_i \mathbb{1}_{A_i},$$

za neke c_i , $i \in [n]$, iz $[0, \infty)$, neke A_i , $i \in [n]$, iz \mathcal{F} in nek $n \in \mathbb{N}$. Naprej; če je $f \in \mathcal{F}/\mathscr{B}_{[0,\infty]}$, potem je

$$\left(\left(2^{-n} \lfloor 2^n f \rfloor \right) \wedge n \right)_{n \in \mathbb{N}}$$

zaporedje \mathcal{F} -enostavnih funkcij, ki ne padajo kf (celo enakomerno na vsaki množici na kateri je f omejena).

Posledica (Izrek o monotonem razredu). Naj bo \mathcal{F} σ -algebra na Ω in $\mathcal{M}\subset\mathcal{F}/\mathscr{B}_{[0,\infty]}$. Če je

$$\mathbb{1}_A \in \mathcal{M} \quad \forall A \in \mathcal{F}$$

in je ${\mathcal M}$ zaprta za nenegativne linearne kombinacije (je stožec)^5 in je ${\mathcal M}$

$$\{m_1, m_2\} \subset \mathcal{M}, \ \{c_1, c_2\} \subset (0, \infty) \ \Rightarrow \ c_1 m_1 + c_2 m_2 \in \mathcal{M}$$

 $^{^5}$ Pomeni:

zaprta za nepadajoče limite⁶ potem je

$$\mathcal{M} = \mathcal{F}/\mathscr{B}_{[0,\infty]}.$$

Trditev 1.10 (Doob-Dynkinova faktorizacijska lema). Naj bo $X: \Omega \to A$, (A, \mathcal{A}) merljiv prostor. Potem je

$$Y \in \sigma^{\mathcal{A}}(X)/\mathscr{B}_{[-\infty,\infty]} \iff \exists h \in \mathcal{A}/\mathscr{B}_{[-\infty,\infty]}, \text{ da je } Y = h \circ X = h(X).$$

Definicija 1.17. Naj bo $\mathcal{D}\subset 2^{\Omega}.$ D je Dynkinov sistem (tudi $\lambda\text{-sistem})$ na $\Omega \iff$

- $\Omega \in \mathcal{D}$,
- $B \setminus A \in \mathcal{D}$ brž ko je $\mathcal{D} \ni A \subset B \in \mathcal{D}$,
- če je $(A_i)_{i\in\mathbb{N}}$ je nepadajoče zaporedje v \mathcal{D} je tudi $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{D}$.

 \mathcal{D} je π -sistem $\stackrel{\text{def}}{\Longleftrightarrow}$ \mathcal{D} je zaprt za \cap .

Trditev 1.11. Naj bo $\mathcal{D} \subset 2^{\Omega}$. Potem je \mathcal{D} Dynkinov sistem \iff

- $\Omega \in \mathcal{D}$,
- \mathcal{D} zaprta za c^{Ω} ,
- $(A_i)_{i\in\mathbb{N}}$ zaporedje iz \mathcal{D} , $A_i \cap A_j = \emptyset$ za $i \neq j$ iz $\mathbb{N} \Longrightarrow \bigcup_{n\in\mathbb{N}} A_i \in \mathcal{D}$.

 $\mathcal D$ je $\sigma\text{-algebra na }\Omega\iff\mathcal D$ je $\lambda\text{-sistem na }\Omega$ in $\pi\text{-sistem}.$

Definicija 1.18. Za $L \subset 2^{\Omega}$ postavimo

$$\lambda_{\Omega}(L) \;:=\; \bigcap \{\mathcal{D} \in 2^{2^{\Omega}} \mid \mathcal{D} \text{ je λ-sistem in } \mathcal{D} \supset L\}.$$

$$\lim_{n\to\infty} f_n \in \mathcal{M}$$

⁶Pomeni: $(f_n)_{n\in\mathbb{N}}$ nepadajoče zaporedje iz \mathcal{M} , potem je

Trditev 1.12. Naj bo L π -sistem in $L \subset 2^{\Omega}$. Potem je

$$\lambda_{\Omega}(L) = \sigma_{\Omega}(L).$$

Posledica (π - λ izrek/Dynkinova lema). Naj bo L π -sistem in \mathcal{D} λ -sistem na Ω , $L \subset \mathcal{D}$. Potem je

$$\sigma_{\Omega}(L) \subset \mathcal{D}.$$

Trditev 1.13. Naj bosta μ, ν meri na merljivem prostoru $(E, \mathcal{E}), L \subset \mathcal{E}$ π -sistem, $\sigma_E(L) = \mathcal{E}$. Predpostavimo, da je $\mu|_L = \nu|_L$ in da obstaja zaporedje $(L_n)_{n \in \mathbb{N}}$ iz L, ki je nepadajoče ali sestoji iz paroma disjunktnih množic, in za katerega je

- $\bullet \ \mu(L_n) = \nu(L_n) < \infty,$
- $\bullet \bigcup_{n \in \mathbb{N}} L_n = E.$

Potem je

$$\mu = \nu$$

.

1.6 Lebesgue-Stieltjesova mera

Izrek 1.1 (Lebesgue-Stieltjesov izrek). Naj bo $F : \mathbb{R} \to \mathbb{R}$, nepadajoča in zvezna z desne (ca'd). Potem obstaja natanko ena mera μ na $\mathscr{B}_{\mathbb{R}}$, da je

$$\mu([a,b]) = F(b) - F(a) \quad \forall a \le b \in \mathbb{R}.$$

Definicija 1.19. μ iz prejšnjega izreka rečemo mera prirejena F v Lebesgue-Stieltjesovem smislu in jo označimo z dF. V posebne primernu primeru, ko je $F = \mathrm{id}_{\mathbb{R}}$ ji rečemo Lebesgueva mera in jo označimo

$$\mathscr{L} := d(\mathrm{id}_{\mathbb{R}}).$$

Trditev 1.14. Naj bo $F: \mathbb{R} \to \mathbb{R}$ ca'd, nepadajoča. Potem je dF:

 $\bullet \ \sigma$ -končna \iff je Fomejena:

$$dF(\mathbb{R}) = \lim_{n \to \infty} dF((-n, n])$$

• verjetnostna $\iff \lim_{\infty} F - \lim_{-\infty} F = 1.$

Za $x \in \mathbb{R}$ je

$$dF(\{x\}) = F(x) - F(x^{-}),$$

$$\{x\} = \bigcap_{n \in \mathbb{N}} (x - \frac{1}{n}, x].$$

2 Integracija na merljivih prostorih

2.1 Lebesgueov integral

Definicija 2.1. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero $f \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$.

(a) Za f, ki je \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \sum_{a \in \mathcal{Z}_f} d\mu(\{f = a\}) \ = \ \sum_{a \in \mathcal{Z}_f} d\mu(f^{-1}(\{a\})).$$

(b) Za $f \ge 0$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu := \sup \{ \int g \, d\mu \mid g \le f, \ g \ \mathcal{F}\text{-enostavna} \}.$$

(c) Za $\neg (f \ge 0)$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \int f^+ \, d\mu - \int f^- \, d\mu.$$

Dogovor.

$$\mu[f] \ = \ \mu^x[f(x)] \ := \ \int f(x) \, \mu(dx) \ := \ \int f \, d\mu$$

Če je še $A \in \mathcal{F}$, potem označimo še

$$\mu[f;A] := \mu^x[f(x); x \in A] := \int_A f(x) \,\mu(dx) := \int_A f \,d\mu := \int f \mathbb{1}_A \,d\mu.$$

Integral f proti μ je dobro definiran $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \wedge \int f^- d\mu < \infty;$$

f je μ -integrabilna $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \ \lor \int f^- d\mu \ < \ \infty.$$

Definicija 2.2. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero:

$$L^1(\mu) \ := \ \{f \in \mathcal{F}/\mathscr{B} \mid f \text{ je μ-integrabilna}\}.$$

Za $g: \Omega \to \mathbb{C}$ z $\{\Re(g), \Im(g)\} \subset L^1(\mu)$ je

$$\int g \, d\mu \ := \ \int \mathfrak{R}(g) \, d\mu + i \int \mathfrak{I}(g) \, d\mu.$$

Izrek 2.1. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero. Integral ima naslednje lastnosti:

(i) Aditivnost:

$$\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu,$$

za $\{f,g\}\subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$ z $\mu[f^-]\vee \mu[g^-]<\infty$

(ii) Integral indikatorja:

$$\int \mathbb{1}_A d\mu = \mu(A), \quad \forall A \in \mathcal{F}.$$

V posebnem primeru je $\mu[0]=0$ in torej $\mu[f^+]-\mu[f^-]=\mu[f]$ $\forall f\in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}.$

- (iii) Integrali, ki so 0 in so končni: za $f \in \mathcal{F}/\mathscr{B}_{[0,\infty]}$:
 - $\bullet \ \mu[f] = 0 \iff f = 0 \text{ s.p.-}\mu$
 - $\mu[f] < \infty \Longrightarrow f < \infty$ s.p.- μ .
- (iv) Trikotniška neenakost:

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu, \quad \forall f \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}.$$

- (v) Integral "ne vidi" množic z mero 0: če je $\{f,g\}\subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$ in je f=g s.p.- μ , potem je $\mu[f]=\mu[g]$ in je $\mu[f]$ d.d. $\iff \mu[g]$ je d.d.
- (vi) Monotonost: če je $\{f,g\}\subset \mathcal{F}/\mathscr{B}_{[-\infty,\infty]},\,g\leq f$ in $\mu[g^-]<\infty,$ potem je

$$\int g \, d\mu \, \leq \, \int f \, d\mu.$$

(vii) Homogenost:

$$\int cf \, d\mu = c \int f \, d\mu$$

za vse $f \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$ za katere je $\mu[cf^-] \wedge \mu[cf^+] < \infty$, za $\forall c \in [-\infty,\infty]$.

Vsi integrali v (i),(ii),(iii),(vi) so d.d. Enako velja za (vii), razen, ko je c=0 in $\mu[f^+]=\mu[f^-]=\infty$.

Trditev 2.1. Naj bosta $a \leq b$ realni števili in $f : [a, b] \to \mathbb{R}$. Če je f zvezna, potem je \mathscr{L} -integrabilna in

$$\int_{[a,b]} f \, d\mathscr{L} \; = \; \int_a^b f(x) \, dx.$$

2.2 Konvergenčni izreki s posledicami

Izrek 2.2. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $(f_n)_{n \in \mathbb{N}}$ zaporedje iz $\mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$.

- (i) Naj bo $g\in \mathcal{F}/\mathscr{B}_{[0,\infty]}$ z $\mu[g]<\infty$ in $f_n^-\leq g\ \forall n\in\mathbb{N}.$ Potem velja:
 - (a) Polzveznost od spodaj (Fatou):

$$\int \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu$$

(b) Monotona konvergenca (Lévy):

$$\int \lim_{n \to \infty} f_n \, d\mu = \uparrow - \lim_{n \to \infty} \int f_n d\mu$$

(ii) Naj bo $g \in \mathcal{F}/\mathscr{B}_{[0,\infty]}$ μ -integrabilna z $|f_n| \leq g \ \forall n \in \mathbb{N}$. Potem velja dominirana konvergenca (Lebesgue):

$$\lim_{n \to \infty} \int |f_n - \lim_{m \to \infty} f_m| \, d\mu = 0$$

in v posebnem je

$$\lim_{n\to\infty} \int f_n d\mu = \int \lim_{n\to\infty} f_n d\mu,$$

če seveda $\exists \lim_{m\to\infty} f_m$ (povsod).

Posledica. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $(f_n)_{n \in \mathbb{N}}$ zaporedje iz $\mathcal{F}/\mathscr{B}_{[0,\infty]}$. Potem je

$$\int \sum_{n \in \mathbb{N}} f_n \, d\mu = \sum_{n \in \mathbb{N}} \int f_n \, d\mu,$$

kjer so integrali d.d.

Posledica. Naj bo $(\mu_n)_{n\in\mathbb{N}}$ zaporedje mer na merljivem prostoru (Ω, \mathcal{F}) . Potem je $\sum_{n\in\mathbb{N}} \mu_n$ mera na (Ω, \mathcal{F}) :

$$\left(\sum_{n\in\mathbb{N}}\mu_n\right)(A) = \sum_{n\in\mathbb{N}}\mu_n(A), \quad A\in\mathcal{F}.$$

Poleg tega je za $\forall f \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$:

$$\int f d(\sum_{n \in \mathbb{N}} \mu_n) \text{ je d.d. } \iff \left(\sum_{n \in \mathbb{N}} \int f^+ d\mu_n\right) \wedge \left(\sum_{n \in \mathbb{N}} \int f^- d\mu_n\right) < \infty$$

in tedaj je

$$\int f d(\sum_{n \in \mathbb{N}} \mu_n) = \sum_{n \in \mathbb{N}} \int f d\mu_n.$$

Definicija 2.3. Naj bo $(\Omega, \mathcal{F}, \mu)$ porostor z mero, (Ω', \mathcal{F}') merljiv prostor, $f \in \mathcal{F}/\mathcal{F}'$. Potem definiramo

$$f *_{\mathcal{F}'} \mu$$
 oz. $\mu \circ_{\mathcal{F}'} f^{-1}$ oz. $\mu_{f_{\mathcal{F}'}}$

kot preslikavo $f *_{\mathcal{F}'} \mu : \mathcal{F}' \to [0, \infty]$, dano s predpisom

$$(f *_{\mathcal{F}'} \mu)(A') := \mu(f^{-1}(A')), \quad A' \in \mathcal{F}'.$$

To preslikavo imenujemo potisk mere μ naprej pod f glede na \mathcal{F}' . Če je μ verjetnostna, rečemo temu porazdelitev.

Posledica (Izrek o sliki mer). Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, (Ω', \mathcal{F}') merljiv prostor, $f \in \mathcal{F}/\mathcal{F}'$. Potem je $f * \mu$ mera na \mathcal{F}' , verjetnostna, če je μ verjetnostna. Če je $g \in \mathcal{F}'/\mathscr{B}_{[-\infty,\infty]}$, je

$$\int g d(f * \mu) = \int g \circ f d\mu,$$

pri čemer je integral na levi d.d. ⇔ je to res za integral na desni.

Posledica (Odvajanje pod integralskim znakom). Naj bo $(\mathcal{X}, \Sigma, \mu)$ prostor z mero, \mathcal{O} odprt v \mathbb{R} . $F: \mathcal{X} \times \mathcal{O} \to \mathbb{R}$ in naj velja:

- $\forall t \in \mathcal{O} \text{ je } \mathcal{F}(\cdot, t) \in L^1(\mu);$
- $\forall x \in \mathcal{X}$ je $\mathcal{F}(x,\cdot)$ odvedljiva.

Naj naprej $\exists g \in \Sigma/\mathscr{B}_{[0,\infty]}$ z $\mu[g] < \infty$ tako, da je

$$\left| \frac{\partial F}{\partial t}(x,t) \right| \leq g(x), \quad \forall (x,t) \in \mathcal{X} \times \mathcal{O}.$$

Potem velja:

- (a) $\forall t \in \mathcal{O} \text{ je } (\mathcal{X} \ni x \mapsto \frac{\partial F}{\partial t}(x,t)) \in L^1(\mu);$
- (b) $(\mathcal{O} \ni t \mapsto \int F(x,t) \mu(dx))$ je odvedljiva;
- (c) $t \in \mathcal{O}$:

$$\frac{d}{dt} \int F(x,t) \, \mu(dx) \; = \; \int \frac{\partial F}{\partial t}(x,t) \, \mu(dx).$$

2.3 Rezultati, ki se tičejo menjave vrsrnega reda integracije

Definicija 2.4. Naj bosta (Ω, \mathcal{F}) in (Ω', \mathcal{F}') merljiva prostora. Potem definiramo

$$\mathcal{F} \otimes \mathcal{F}' := \sigma_{\Omega \times \Omega'} \left(\{ A \times A' \mid (A, A') \in \mathcal{F} \times \mathcal{F}' \} \right),$$

in ji rečemo produktna σ -algebra \mathcal{F} in \mathcal{F}' .

Trditev 2.2. Če je $A \subset \mathbb{R}^2$ in $f: A \to [-\infty, \infty]$ zvezna, potem je

$$f \in \mathscr{B}_A/\mathscr{B}_{[-\infty,\infty]}.$$

Trditev 2.3. Naj bosta (Ω, \mathcal{F}) in (Ω', \mathcal{F}') merljiva prostora. Potem je $\mathcal{F} \otimes \mathcal{F}'$ najmanjša (glede na inkluzijo) σ -algebra na $\Omega \times \Omega'$ glede na katero sta merljivi kanonični projekciji, tj. $\mathcal{F} \otimes \mathcal{F}'$ je najmanjša σ -algebra \mathcal{G} na $\Omega \times \Omega'$, da je:

- $(\Omega \times \Omega' \ni (\omega, \omega') \mapsto \omega) \in \mathcal{G}/\mathcal{F};$
- $(\Omega \times \Omega' \ni (\omega, \omega') \mapsto \omega') \in \mathcal{G}/\mathcal{F}'$.

Naprej, če je $f \in \mathcal{F} \otimes \mathcal{F}'/\mathscr{B}_{[-\infty,\infty]}$, potem je $f(\omega,\cdot) \in \mathcal{F}'/\mathscr{B}_{[-\infty,\infty]}$, $\forall \omega \in \Omega$ in $f(\cdot,\omega') \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$, $\forall \omega' \in \Omega'$. Obratno, naj bo (G,\mathcal{G}) merljiv prostor; potem je

$$(f, f') \in \mathcal{G}/\mathcal{F} \otimes \mathcal{F}' \iff f \in \mathcal{G}/\mathcal{F} \text{ in } f' \in \mathcal{G}/\mathcal{F}'.$$

Izrek 2.3. Naj bosta $(\Omega, \mathcal{F}, \mu)$ in $(\Omega', \mathcal{F}', \mu')$ prostora z mero, μ in μ' σ -končni.

(i) Obstaja natanko ena mera ν na $\mathcal{F}\otimes\mathcal{F}'$, ki jo označimo $\mu\times\mu'$, za katero velja

$$\nu(A \times A') = \mu(A)\mu'(A'), \quad \forall (A, A') \in \mathcal{F} \times \mathcal{F}'.$$

- (ii) Naj bo $f\in (\mathcal{F}\otimes\mathcal{F}')/\mathscr{B}_{[-\infty,\infty]}$ in naj velja
 - (a) $f \geq 0$ (Tonelli) ali
 - (b) $\int |f| d(\mu \times \mu') < \infty$ (Fubini) ali
 - (c) $\iint f^-(\omega, \omega') \, \mu(d\omega) \, \mu'(d\omega') \wedge \iint f^-(\omega, \omega') \, \mu'(d\omega') \, \mu(d\omega) < \infty$

Potem je

- $(\Omega' \ni \omega' \mapsto \int f(\omega, \omega') \mu(d\omega)) \in \mathcal{F}'/\mathscr{B}_{[-\infty, \infty]};$
- $(\Omega \ni \omega \mapsto \int f(\omega, \omega') \, \mu'(d\omega')) \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]};$
- $\int f^{-}(\omega, \omega') \, \mu(d\omega) < \infty$ s.p.- μ' v ω' ;
- $\int f^{-}(\omega, \omega') \, \mu'(d\omega') < \infty \text{ s.p.-}\mu \text{ v } \omega;$

in

$$\int f d(\mu \times \mu') = \iint f(\omega, \omega') \, \mu(d\omega) \, \mu'(d\omega')$$
$$= \iint f(\omega, \omega') \, \mu'(d\omega') \, \mu(d\omega).$$

Vsi zunanji integrali zgoraj so d.d.

Definicija 2.5. Notacijo $\mu \times \mu'$ zadržimo, $\mu \times \mu'$ rečemo produkt μ in μ' .

Trditev 2.4. $(\Omega, \mathcal{F}, \mu)$ prostor z mero, (Ω', \mathcal{F}') merljiv prostor, $X \in \mathcal{F}/\mathcal{F}'$, (A, \mathcal{A}) še en merljiv prostor, da je

$$D_A := \{(x, x) \mid x \in A\} \in \mathcal{A} \otimes \mathcal{A}$$

in $\{f,g\} \subset \mathcal{F}'/\mathcal{A}$. Potem je f(X) = g(X) s.p.- $\mu \iff f = g$ s.p.- $X_*\mu$.

2.4 Nedoločena integracija in absolutna zveznost

Definicija 2.6. Naj bosta $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $f \in \mathcal{F}'/\mathscr{B}_{[-\infty,\infty]}$ in naj bo integral f pod μ d.d. Potem preslikavi

$$f \cdot \mu := \left(\mathcal{F} \in A \mapsto \int_A f \, d\mu \right)$$

rečemo nedoločeni integral f proti μ^7 , ali tudi tudi μ -nedoločeni integral f.

Definicija 2.7. Naj bosta μ in ν dve meri na merljivem prostoru (Ω, \mathcal{F}) . μ je absolutno zvezna glede na ν (pišemo $\mu \ll \nu$) $\stackrel{\text{def}}{\Longrightarrow}$

$$\nu(A) = 0 \implies \mu(A), \quad \forall A \in \mathcal{F}.$$

 μ je ekvivalentna ν , (pišemo $\mu \sim \nu$) $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\mu \ll \nu$$
 in $\nu \ll \mu$.

Trditev 2.5. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $f \in \mathcal{F}/\mathscr{B}_{[0,\infty]}$. Potem je $f \cdot \mu$ mera, ki je absolutno zvezna glede na μ ; naprej

$$\int g \, d(f \cdot \mu) \; = \; \int g \, f(d\mu)$$

za vse $g \in \mathcal{F}/\mathscr{B}_{[-\infty,\infty]}$, pri čemer je integral na levi d.d. \iff je integral na desni d.d. in v slednjem primeru je

$$g\cdot (f\cdot \mu) \ = \ (gf)\cdot \mu.$$

Če je f > 0 s.p.- μ , potem je $f \cdot \mu \sim \mu$.

⁷Beri: glede na μ .

Trditev 2.6. Naj bo (X, \mathcal{A}, μ) prostor z mero, $\{f, g\} \subset \mathcal{A}/\mathscr{B}_{[-\infty, \infty]}$.

(a) Denimo, da je $\int_{\{f>g\}} f^+ d\mu \vee \int_{\{f>g\}} g^- d\mu < \infty$ in $\int_{\{f>g\}} f d\mu \leq \int_{\{f>g\}} g d\mu$. Potem je

$$f < g$$
 s.p.- μ .

(b) Denimo, da je μ σ -končna, $\left(\int f^+ d\mu \wedge \int f^- d\mu\right) \vee \left(\int g^+ d\mu \wedge \int g^- d\mu\right) < \infty$ in $\int_A f d\mu \leq \int_A g d\mu$, $\forall A \in \mathcal{A}$. Potem je

$$f \leq g$$
 s.p.- μ .

Posledica. Naj bo (X, \mathcal{A}, μ) prostor z mero, $\{f, g\} \subset \mathcal{A}/\mathscr{B}_{[-\infty, \infty]}$. Denimo, da je $\int_A f \, d\mu = \int_A g \, d\mu$, $A \in \mathcal{A}$, pri čemer sta $\mu[f]$ in $\mu[g]$ d.d. Če je f (ali/torej g) μ -integrabilna ali če je μ σ -končna, potem je

$$f = g$$
 s.p.- μ .

V primeru, ko sta f in g μ -integrabilna, potem je, ceteris paribus, enakost $\int_A f \, d\mu = \int_A g \, d\mu$ dovolj preveriti za $A \in \Pi \cup \{X\}$, kjer je Π nek π -sistem, ki generira $\mathcal A$ na X.

Izrek 2.4 (Radon-Nikodym). Naj bosta μ in ν σ -končni meri na istem merljivem prostoru $(\Omega, \mathcal{F}), \, \mu \ll \nu$. Potem obstaja $f \in \mathcal{F}/\mathscr{B}_{[0,\infty]}$, enolična do enakosti s.p.- μ , za katero je

$$\mu = f \cdot \nu,$$

f > 0 s.p.- μ .

Definicija 2.8. Funkcijo f iz zgornjega izreka označimo z

$$\frac{d\mu}{d\nu}$$
.

Rečemo ji Radon-Nikodymov odvod.

Posledica. Naj bodo $\mu \ll \nu \ll \lambda$ σ -končne mere na $\sigma - algebri$. Potem je $\mu \ll \lambda$ in

$$\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda}$$
 s.p.- λ .

Torej, če je $\mu \sim \nu$,

$$1 = \frac{d\mu}{d\nu} \frac{d\nu}{d\mu} \quad \text{s.p.-}\mu \text{ in s.p.-}\nu.$$

2.5 Prostori L in nekaj integralskih neenakosti

Definicija 2.9. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $p \in [1, \infty)$ in $f \in \mathcal{F}/\mathscr{B}_{[-\infty, \infty]}$, definiramo:

• prostor L^p :

$$||f||_{p_{\mu}} := \left(\int |f|^p d\mu \right)^{\frac{1}{p}},$$
 $L^p(\mu) := \{ f \in \mathcal{F}/\mathscr{B}_{\mathbb{R}}; ||f||_{p_{\mu}} < \infty \},$

• prostor L^{∞} :

$$||f||_{\infty_{\mu}} := \inf\{M \in [0, \infty]; |f| \le M \text{ s.p.-}\mu\},$$

 $L^{\infty}(\mu) := \{f \in \mathcal{F}/\mathscr{B}_{\mathbb{R}}; ||f||_{\infty_{\mu}} < \infty\}.$

Za zaporedje $(f_n)_{n\in\mathbb{N}_0}$ v $L^q(\mu), q\in[1,\infty]$, rečemo da $f_n\xrightarrow{n\to\infty} f_0$ v $L^q(\mu)$ $\stackrel{\text{def}}{\Longleftrightarrow}$

$$||f_n - f_0||_{q_\mu} \xrightarrow{n \to \infty} 0.$$

Za $\{f,g\} \subset L^2(\mu)$,

$$\langle f, g \rangle = \int f g \, d\mu.$$

Trditev 2.7. Naj bo μ končna mera in $p \leq q, \, \{p,q\} \subset [1,\infty].$ Potem je

$$L^q(\mu) \subset L^p(\mu).$$

Trditev 2.8. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $\{f, g\} \subset \mathcal{F}/\mathscr{B}_{[-\infty, \infty]}$. Imamo sledeče neenakosti:

(i) Markov:

$$\mu[f; f \ge a] \ge a \cdot \mu(f \ge a), \quad \forall a \in [-\infty, \infty];$$

torej $\mu[f] \geq a \mu(f \geq a)$ za $\forall a \in [0, \infty],$ brž ko je $f \geq 0.$

(ii) Minkowski:

$$||f + g||_p \le ||f||_p + ||g||_p, \quad \forall p \in [1, \infty]$$

(iii) Hölder:

$$||fg||_1 \le ||f||_p ||g||_q, \quad \forall \{p,q\} \subset [1,\infty], \ p^{-1} + q^{-1} = 1.$$

V posebnem p = q = 2, Cauchy-Schwartzova neenakost.

(iv) Jensen:

naj bo μ verjetnostna, $f \in L^1(\mu)$, $\varphi : I \to \mathbb{R}$ konveksna, I odprt interval, $f : \Omega \to I$. Potem je $\varphi \in \mathscr{B}_I/\mathscr{B}_{\mathbb{R}}$, $\int (\varphi \circ f)^- d\mu < \infty$, $\int f d\mu \in I$ in

$$\int \varphi \circ f \, d\mu \ \geq \ \varphi \left(\int f \, d\mu \right).$$

Najprej, za $\forall p \in [1, \infty]$ je $\|\cdot\|_p$ seminorma na $L^p(\mu)$, ki je realni linearen prostor, in v njem je $\|\cdot\|_p$ -limita zaporedje, če obstaja, s.p.- μ enolično določena; obstaja *čee* je dano zaporedje Cauchyjevo v seminormi $\|\cdot\|_p$. Končno, $\langle\cdot,\cdot\rangle$ je skalarni semiprodukt na $L^2(\mu)$.

3 Verjetnost kot normalizirana mera

3.1 Osnovni pojmi

Definicija 3.1. *Verjetnostni prostor* je prostor z mero $(\Omega, \mathcal{F}, \mathbb{P})$ pri čemer je \mathbb{P} verjetnostna. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor; A je \mathbb{P} -skoraj gotov $(\mathbb{P}$ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow} A \in \mathcal{F}$ in $\mathbb{P}(A) = 1$.

Če je (E, \mathcal{E}) merljiv prostor, potem elementom \mathcal{F}/\mathcal{E} rečemo slučajni elementi z vrednostmi v (E, \mathcal{E}) ; v posebnem primeru, ko je $(E, \mathcal{E}) = (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ jim rečemo slučajne spremenljivke.

Za slučajni element X: $X \sim_{\mathbb{P}} Q \iff X$ ima zakon Q pod \mathbb{P} , t.j. $X_*\mathbb{P} = Q$. Za dva slučajna elementa, ki imata vrednosti v istem merljivem prostoru rečemo, da sta enako porazdeljena \iff imata isti zakon. Porazdelitvena funkcija slučajne spremenljivke X je preslikava $F_X : \mathbb{R} \to [0,1]$ dana z $F_X(x) = \mathbb{P}(X \leq x)$ za $x \in \mathbb{R}$.

Slučajna spremenljivka X je $diskretna \stackrel{\text{def}}{\Longleftrightarrow} \exists C$ števna podmnožica \mathbb{R} , da je $\mathbb{P}(X \in C) = 1$. Slučajna spremenljivka X je $absolutno zvezna \stackrel{\text{def}}{\Longleftrightarrow} \mathbb{P}_X \ll \mathscr{L}$. Slučajna spremenljivka X je $zvezna \stackrel{\text{def}}{\Longleftrightarrow} F_X$ je zvezna.

Bivarianten slučajni vektor je element $\mathcal{F}/\mathscr{B}_{\mathbb{R}^2}$, torej slučajen vektor z vrednostmi v $(\mathbb{R}^2,\mathscr{B}_{\mathbb{R}^2})$; (X,Y) je absolutno zvezen $\stackrel{\text{def}}{\Longleftrightarrow} \mathbb{P}_{(X,Y)} \ll \mathscr{L}^2$, itd.

Trditev 3.1. Naj bo X slučajni element na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v merljivem prostoru (E, \mathcal{E}) in $f \in \mathcal{E}/\mathscr{B}_{[-\infty,\infty]}$. Potem je

$$\mathbb{P}[f(X)] = \mathbb{P}_X[f],$$

pri čemer je upanje na levi strani d.d. čee je d.d upanje na desni strani.

Za slučajno spremenljivko X je F_X ca'd, \uparrow in $\lim_{\infty} F_X = 0$, $\lim_{\infty} F_X = 1$.

Če je X diskretna slučajna spremenljivka, potem obstaja najmanjša števna množica $C\subset\mathbb{R}$, da $\mathbb{P}(X\in C)=1$, ki ji rečemo podpora X, označimo

s supp(X):

$$supp(X) = \{x \in \mathbb{R}; \ \mathbb{P}(X = x) > 0\},\$$

narprej, za $f \in \mathscr{B}_{\mathbb{R}}/\mathscr{B}_{[-\infty,\infty]}$ je

$$\mathbb{P}[f(X)] = \sum_{x \in \text{supp}(X)} f(x)\mathbb{P}(X = x),$$

če je le
$$\sum_{x \in \text{supp}(X)} f^+(x) \mathbb{P}(X = x) \wedge \sum_{x \in \text{supp}(X)} f^-(x) \mathbb{P}(X = x) < \infty$$
.

Če je X absolutno zvezna, potem je zvezna in obstaja do \mathscr{L} -s.p. natančno enolična funkcija $f \in \mathscr{B}_{\mathbb{R}}/\mathscr{B}_{[0,\infty]}$ za katero je $\mathbb{P}_X = f \cdot \mathscr{L}$; ta f označimo f_X in ji rečemo gostota X; naprej za $g \in \mathscr{B}_{\mathbb{R}}/\mathscr{B}_{[-\infty,\infty]}$ je

$$\mathbb{P}[g(X)] = \int g(x) f_X(x) \mathcal{L}(dx),$$

pri čemer so integrali d.d. brž ko je $\int g^+ f d\mathcal{L} \wedge \int g^- f d\mathcal{L} < \infty$.

Končno, za to da je slučajna spremenljivka X absolutno zvezna je posebno in zadostno, da $\exists f \in \mathscr{B}_{\mathbb{R}}/\mathscr{B}_{[0,\infty]}$, da je

$$\mathbb{P}(X \le x) = \int_{[-\infty, x]} f \, d\mathcal{L}, \quad \forall x \in \mathbb{R}$$

in v tem primeru je fgostota za $X.^{9\,10}$

Definicija 3.2. Zadržimo notacijo za gostoto f_X , supp(X); za diskretno slučajno spremenljivko X. Definiramo $verjetnostno \ masno \ funkcijo \ X$ kot

$$p_X := (\operatorname{supp}(X) \ni x \mapsto \mathbb{P}(X = x)).$$

Trditev 3.2.

(1) Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor. Če je X slučajna spremenljivka, potem je $F_X \in \mathscr{B}_{\mathbb{R}}/\mathscr{B}_{[0,1]}$ in $\mathcal{F}_X(x) \sim_{\mathbb{P}} \mathscr{L}_{[0,1]}$ čee je X zvezna.

⁸Potem je tudi $\mathbb{P}[f(X)]$ d.d.

 $^{^9}$ Bolj splošno je ekvivalentno preveriti $\mathbb{P}(X\in A)=\int_A f\,d\mathscr{L}$ za $A\in\Pi\cup\{\mathbb{R}\},$ kjer je Π nek $\pi\text{-sistem},$ ki generira $\mathscr{B}_{\mathbb{R}}$ na $\mathbb{R}.$

 $^{^{10}\}mathbb{P}_X = dF_X$

(2) Obratno, naj bo $U \sim_{\mathbb{P}} \mathscr{L}_{[0,1]}$. Če je $F : \mathbb{R} \to \mathbb{R}$ porazdelitvena funkcija (ca'd, \uparrow , $\lim_{-\infty} F = 0$, $\lim_{\infty} F = 1$) in če vpeljemo

$$F^{\leftarrow}(x) := \inf\{v \in \mathbb{R}; \ F(v) > u\}, \quad x \in (0, 1),$$

potem je

$$F^{\leftarrow}(U) \sim_{\mathbb{P}} dF.^{11}$$

Definicija 3.3. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor, $(X_n)_{n \in \mathbb{N}}$ zaporedje v $\mathcal{F}/\mathscr{B}_{\mathbb{R}}$ in $X \in \mathcal{F}/\mathscr{B}_{\mathbb{R}}$. $(X_n)_{n \in \mathbb{N}}$ konvergira k X v \mathbb{P} -verjetnosti $\stackrel{\text{def}}{\Longrightarrow}$

$$\forall \varepsilon \in (0, \infty) : \mathbb{P}(|X_n - X| \ge \varepsilon) \xrightarrow{n \to \infty} 0.$$

Trditev 3.3. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor. Če je $(X_n)_{n \in \mathbb{N}}$ zaporedje v $\mathcal{F}/\mathscr{B}_{\mathbb{R}}$, ki konvergira k $X \in \mathcal{F}/\mathscr{B}_{\mathbb{R}}$ s.g.- \mathbb{P} ali v $L^q(\mathbb{P})$ za nek $q \in [1, \infty]$, potem konvergira tudi v \mathbb{P} -verjetnosti.

3.2 Neodvisnost

 $^{^{-11}}F^{\leftarrow}$ je desni inverz F oz. kvantilna funkcija F.