Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И.Ульянова (Ленина) (СПбГЭТУ «ЛЭТИ») Кафедра МО ЭВМ

ПРЕЗЕНТАЦИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ НА ТЕМУ:

«ПРИМЕНЕНИЕ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ РАСПОЗНАВАНИЯ ОБЪЕКТОВ В ВИДЕОПОТОКЕ»

ВЫПОЛНИЛА: СТУДЕНТКА ГРУППЫ 3303 ХАНУКАШВИИЛИ В.Д.

РУКОВОДИТЕЛЬ: АССИСТЕНТ ЧЕРНОКУЛЬСКИЙ В.В.

САНКТ-ПЕТЕРБУРГ

Рассматриваемая задача

Рисунок 1 – Система машинного обучения

Актуальность работы

- Работа является частью большого проекта по автоматизации учета товара на складе
- Разработка ведется в рамках выполнения заказа фирмы и в результате позволит:
 - повысить точность и эффективность учета продукции;
 - снять с работников часть задач;
 - снизить переработку сотрудников;
 - уменьшить число продукции с дефектом.

Цель и задачи ВКР

Цель – применение сверточных нейронных сетей для распознавания объектов в видеопотоке.

Задачи:

- □ анализ и выбор алгоритмов распознавания объектов;
- □ сбор и предобработка тренировочных данных;
- проведение обучения нейронной сети;
- □ тестирование полученных результатов.

Архитектура сверточной нейронной сети

Рисунок 2 – Пример архитектуры сверточной нейронной сети

Алгоритмы распознавания объектов с применением сверточной нейронной сети

Таблица 1 – Сравнение алгоритмов распознавания объектов

	Средняя	Количеств	Среднее	Требуемая	Наличие
Критерий	точность	о кадров в	время	производительн	лит-ры
		секунду	обучения	ость	по
				компьютера	алгорит
Алгоритм					му
SSD	64.3	29	15	110.56	+
YOLOv3	69.6	30	15	140.69	+
Faster R-CNN	76.4	5	19	131.55	+
R-CNN	71.6	7	20	116.79	-
DPM	65.5	17	17	67.82	-

Подготовка тренировочных данных

Этапы подготовки тренировочных данных:

- □ выбор классов объектов;
- □ сбор тренировочных данных;
- □ предобработка тренировочных данных;
- □ модификация параметров нейронной сети.

Информация об обучении

- □ Количество изображений для обучения 300
- □ Количество классов объектов 3:
 - Pepsi;
 - Coca cola;
 - Sprite.
- □ Время обучения:
 - YOLOv3 − 15 часов;
 - Faster R-CNN 20 часов.

Средства разработки

- □ Операционная система Ubuntu
- □ Среда разработки Google Colab
- □ Язык программирования Python

Процесс обучения

Рисунок 3 – Процесс обучения нейронной сети алгоритма YOLOv3

Рисунок 4 – Процесс обучения нейронной сети алгоритма Faster R-CNN

Сравнение полученных результатов

Таблица 2 – Показатели результатов обучения

Оцениваемый	Время	Средняя	Максимальное	Среднее время
параметр	обучения, ч	точность	количество	распознавания
		распознаван	обнаруженных	объектов, мс
		ия объектов,	объектов	
Алгоритм		%		
YOLOv3	15	75.6	1	179.6
Faster R-CNN	20	68.1	2	315.7
Faster R-CNN	20	68.1	2	315.7

Результаты тестирования

Рисунок 5 – Результат тестирования алгоритма YOLOv3

Рисунок 6 – Результат тестирования алгоритма Faster R-CNN

Апробация работы

Реализованное решение было представлено в зимней школе «Инженерное лидерство», в рамках олимпиады «Я – профессионал»

- □ Результаты конкурса -https://ssau.ru/news/16297-v-samarskom-universitete-sostoyalas-zimnyaya-shkola-inzhenernoe-liderstvo
- Репозиторий проекта https://github.com/valerosha/NEWcnn

Заключение

По итогам выполнения работы:

- □ проведен сравнительный анализ среди существующих алгоритмов распознавания объектов, и были выбраны два из них YOLOv3 и Faster R-CNN;
- подготовлена тренировочная выборка и проведено обучение нейронной сети;
- □ проведено тестирование обученной сверточной нейронной сети на основе видеоданных из Internet и видеопотока с web-камеры.

Дальнейшая разработка

- □ интеграция реализованной работы с основным проектом;
- □ обучение сверточной нейронной сети большему количеству классов продукции, которые есть в ассортименте склада;
- □ применение алгоритма распознавания объектов в задаче: «Распознавание морских навигационных целей».