

Chpt.5 Law of Large Number & Central Limit

第五章大数定理及中心极限定理

上节回顾

■ 协方差:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

■ 相关系数:

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

■ 不相关 vs 独立:

X与Y相互独立

X与Y不相关

(X,Y)服从<mark>正态分布</mark>,则X,Y独立与X,Y不相关是等价的,充要条件都是 $\rho = 0$

- 矩
- 多维正态分布

设 $X \sim N(\mu, C)$,B 是一个n 维的可逆矩阵,Y = BX则 $Y \sim N(B\mu, BCB^T)$

思考题

设随机变量(X,Y)服从二元正态分布 $N(0,1;1,4;-\frac{1}{2})$, 求: (1)D(2X-Y); (2) P(2X>Y); (3) (Z_1,Z_2) 的分布, $Z_1=X+Y,Z_2=X-Y.$

解:由题意知:
$$X \sim N(0,1), Y \sim N(1,4), \rho_{XY} = -\frac{1}{2}.$$
(1) 由于 $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}},$
从而 $Cov(X,Y) = \rho_{XY}\sqrt{D(X)}\sqrt{D(Y)} = -\frac{1}{2}\times 1\times 2 = -1.$
故 $D(2X-Y) = D(2X) + D(-Y) + 2Cov(2X, -Y)$
 $= 4D(X) + D(Y) - 4Cov(X,Y)$
 $= 4\times 1 + 4 - 4\times (-1) = 12.$

pp. 3 南开大学计算机学院

想到
$$P(2X > Y) = \iint f(x,y) dx dy$$
, ——不可行!!

由于
$$P(2X > Y) = P(2X - Y > 0)$$
,

根据多元正态的性质2,由于(X,Y)服从二元正态分布, 故其分量 的任意线性组合服从一元正态,即可得, $2X-Y\sim N(-1,12)$.

数
$$P(2X > Y) = P(2X - Y > 0)$$

 $= P(\frac{2X - Y - (-1)}{\sqrt{12}} > \frac{0 - (-1)}{\sqrt{12}}) = 1 - \Phi(\frac{1}{2\sqrt{3}}).$

pp. 4 南开大学计算机学院

(3) $(X,Y) \sim N(0,1;1,4;\frac{-1}{2})$, 求: (Z_1,Z_2) 的分布, $Z_1 = X + Y, Z_2 = X - Y$. 根据多元正态的性质3,即正态变量的线性变换不变性,可知 (Z_1,Z_2) 也服从二元正态分布.

$$\begin{split} E(Z_1) &= E(X) + E(Y) = 1; \ E(Z_2) = E(X) - E(Y) = -1; \\ D(Z_1) &= D(X+Y) = D(X) + D(Y) + 2Cov(X,Y) = 1 + 4 + 2 \times (-1) = 3; \\ D(Z_2) &= D(X-Y) = D(X) + D(Y) - 2Cov(X,Y) = 1 + 4 - 2 \times (-1) = 7; \\ \rho_{Z_1Z_2} &= \frac{Cov(Z_1,Z_2)}{\sqrt{D(Z_1)D(Z_2)}} = \frac{Cov(X,X) - Cov(X,Y) + Cov(Y,X) - Cov(Y,Y)}{\sqrt{3 \times 7}} \\ &= \frac{1 - 4}{\sqrt{3 \times 7}} = -\sqrt{\frac{3}{7}}; \end{split} \qquad \text{If } (Z_1,Z_2) \sim N(1,-1;3,7;-\sqrt{\frac{3}{7}}). \end{split}$$

14

本章工作目标包括两个:

- [1] 对概率论中的一些结论作出严格的证明;
- [2] 为后面的统计作出准备。

概率论早期发展的目的:揭示随机现象的规律性.

概率与频率之间的关系 → 大数定律:研究无穷随机试验序列,刻画 事件的概率与它发生的频率之间的关系。

大量的相互独立的随机因素的综合影响 → 中心极限定理:将观察的 误差看作大量独立微小误差的累加,其分布渐近正态。

5.1 Law of Large Number

问题:频率→概率,如何定义这里的"趋向于"?

在相同的条件下,进行n次独立试验,其中事件A发生的次数记为 n_A ,定义频率 $f_n(A) = \frac{n_A}{n}$,我们说 $f_n(A) \to p$,p 就是事件A发生的概率。

用数列极限的语言来描述就是:

$$\forall \varepsilon > 0, \exists N, \stackrel{\omega}{=} n > N \text{ if }, \left| \frac{n_A}{n} - p \right| \leq \varepsilon$$

上式存在问题

$$\forall \varepsilon > 0, \exists N, \stackrel{\omega}{=} n > N \text{ if }, \left| \frac{n_A}{n} - p \right| \leq \varepsilon$$

其实这里的 n_A 是一个<mark>随机变量</mark>

因此,
$$\left|\frac{n_A}{n}-p\right| \le \varepsilon$$
 表示的是一个事件,说 $n>N$ 时,总有 $\left|\frac{n_A}{n}-p\right| \le \varepsilon$

是不符合逻辑的,只能说以多大的概率上式成立。

$$P\left\{\left|\frac{n_A}{n} - p\right| \le \varepsilon\right\} \to 1$$

$$\lim_{n\to\infty} P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

$$\frac{n_A}{n}$$
依概率收敛于 p

pp. 8 南开大学计算机学院

能否证明频率以概率收敛于概率?

从n重实验看起(n重实验意味着: 独立同分布)

定义

$$X_i = \begin{cases} 1 & \text{第i次实验中} A 出现 \\ 0 & \text{A未出现} \end{cases}$$

$$n_A = X_1 + X_2 + \dots + X_n$$

$$Y_n = \frac{n_A}{n} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

则知道:

$$E(X_i) = p, D(X_i) = p(1-p) = \sigma^2$$

$$E(Y_n) = p$$
, $D(Y_n) = \frac{1}{n}\sigma^2$

$$P\left\{\left|\frac{n_{A}}{n} - p\right| \le \varepsilon\right\} = P\left\{\left|Y_{n} - p\right| \le \varepsilon\right\}$$
$$\ge 1 - \frac{D(Y_{n})}{\varepsilon^{2}} = 1 - \frac{1}{n} \left(\frac{\sigma^{2}}{\varepsilon^{2}}\right)$$

$$1 \ge P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = P\left\{ \left| Y_n - p \right| \le \varepsilon \right\} \ge 1 - \frac{1}{n} \left(\frac{\sigma^2}{\varepsilon^2} \right)$$

$$\lim_{n\to\infty} P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

pp. 10 南开大学计算机学院

[Bernoulli大数定理] 设 n_A 是 n 次独立试验中事件A发生的次数,p 是

事件A在一次试验中发生的概率,则对任意的 $\varepsilon > 0$,有

$$\lim_{n \to \infty} P\left\{ \left| \frac{n_A}{n} - p \right| \le \varepsilon \right\} = 1$$

定义: 一个随机变量的序列 $Y_1,Y_2,\cdots,Y_n,\cdots$,如果对任意 $\varepsilon>0$,有 $\lim_{n\to\infty}P\{Y_n-p|\leq\varepsilon\}=1$,则称序列 Y_n **依概率收敛**到p,记为

$$Y_n \xrightarrow{P} p(n \to \infty)$$

Remark(大数定律含义之一): Bernoulli大数定理说明事件A发生的频率 n_A/n 依概率收敛到事件的概率p。以严格的数学形式表达了我们的直观看法。在实际应用中,当试验次数足够大时,便可以用事件的频率来代替事件的概率p(即如何求一个抽象的概率p)

[车比雪夫大数定理] 设随机变量 X_1, \dots, X_n, \dots 相互独立,且具有相

同的数学期望与方差,记为 $E(X_i) = \mu D(X_i) = \sigma^2 (i = 1, 2, \dots, n, \dots)$ 。

则对任意的 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} (X_1 + \dots + X_n) - \mu \right| \le \varepsilon \right\} = 1$$

也就是说, $\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu$, **当** $n \to +\infty$.

注: 伯努利大数定理是车比雪夫大数定理的特殊形式

pp. 12 南开大学计算机学院

例题:

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立, 且它们的分布律为

$$P\{X_i = \sqrt{i}\} = P\{X_i = -\sqrt{i}\} = \frac{1}{2i}, P\{X_i = 0\} = 1 - \frac{1}{i}, i = 1, 2, \dots$$

请讨论 $\frac{1}{n}\sum_{i=1}^{n}X_i$ 的收敛性

在切比雪夫大数定理里要求期望和方差都存在, 如果期望存在,方差不存在会如何?

类似的大数定理也是存在的,但要求这些随机变量是同分布的。

pp. 14 南开大学计算机学院

[辛钦大数定理] 设随机变量 X_1, \dots, X_n, \dots 相互独立且同分布,数学 期望存在,记为 μ 。则对任意的 $\varepsilon > 0$ 有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} (X_1 + \dots + X_n) - \mu \right| \le \varepsilon \right\} = 1$$

也就是说,
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu$$
, 当 $n \to +\infty$.

注意: 这里我们没有要求它的方差存在。如果方差不存在,也可 以使用辛钦大数定理。

南开大学计算机学院

例题:

设随机变量 $X_1, X_2, \dots, X_n, \dots$, 相互独立同分布, $X_1 \sim U(-1,1)$. 则

(1)
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$
, (2) $\frac{1}{n}\sum_{i=1}^{n}|X_{i}|$, (3) $\frac{1}{n}\sum_{k=1}^{n}X_{i}^{2}$ 分别依概率收敛吗?

如果依概率收敛, 分别收敛于什么? (当 $n \to +\infty$ 时)

Remark (大数定律含义之二):

满足一定条件的随机变量 X_1,\cdots,X_n,\cdots ,当n很大时,算术平均 $\frac{1}{n}(X_1+\cdots+X_n)$ 接近于数学期望 $E(X_i)=\mu$ 。

是供了求随机变量X的数学期望E(X)的近似值的方法:将随机变量X独立重复地观察n次,记第k次观测值为 X_k ,则 X_1,X_2,\cdots,X_n 相互独立,且与X具有同样的分布.那么,当E(X)存在时,由辛钦大数定律,可知当n充分大时,可将n次的平均 $\frac{1}{n}\sum_{i=1}^{n}X_i$ 作为E(X)的近似.

思考:如何求南开大学学生的平均身高?

概括前面的几个定理,可以归结为两点:

事件A发生的频率依概率收敛到事件A的概率 1频率稳定性:

事件A发生的概率为 p	$\rightarrow n_A \qquad p \qquad $
进行n次独立试验,A出现 n_A	$\Rightarrow \frac{A}{n} \xrightarrow{p} p(n \to \infty)$

2 算术均值稳定性:

随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立	$\Rightarrow \frac{1}{1}(X_1 + X_2 + \dots + X_n) \xrightarrow{p} \mu(n \to \infty)$
具有相同的期望 μ 和方差 σ^2 或者同分布且期望 μ 存在	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

pp. 18 南开大学计算机学院

依概率收敛的性质:

若
$$X_n \xrightarrow{P} a$$
, $Y_n \xrightarrow{P} b$, 当 $n \to \infty$ 时, 函数 $g(x, y)$ 在点 (a,b) 处连续, 那么 $g(X_n, Y_n) \xrightarrow{P} g(a,b)$, 当 $n \to \infty$ 时.

如: 当
$$n \to \infty$$
时, $X_n + Y_n \xrightarrow{P} a + b$,
$$X_n \times Y_n \xrightarrow{P} a \times b, X_n / Y_n \xrightarrow{P} a / b \ (b \neq 0).$$

特别地, 若
$$X_n \xrightarrow{P} a$$
, $f(x)$ 在点a连续, 则 $f(X_n) \xrightarrow{P} f(a)$, 当 $n \to \infty$ 时.

南开大学计算机学院

思考题

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 独立同分布, $X_1 \sim U(0,1), \, \text{则}^{\eta} X_1 X_2 \dots X_n$ 依概率收敛吗? 如果依概率收敛,收敛于什么?