Radiative cooling of H₃O⁺, HD₂O⁺, H₂DO⁺ and D₃O⁺

Vladlen V. Melnikov,^{1,*} Sergei N. Yurchenko,² Jonathan Tennyson,² and Per Jensen³

¹Siberian Institute of Physics & Technology,

Tomsk State University, Tomsk, 634050 Russia

²Department of Physics & Astronomy,

University College London, London WC1E 6BT, UK

³FB C - Theoretische Chemie, Bergische

Universität Wuppertal, 42097 Wuppertal, Germany

(Dated: May 27, 2016)

Abstract

A theoretical study of the radiative lifetimes of hydronium ion and its isotopologues is presented. Ab initio potential energy and the dipole moment surfaces of the ground electronic states of $\rm H_3O^+$ have been used to calculate ro-vibrational energy levels, wavefunctions and Einstein coefficients of the systems under consideration. A detailed analysis of the stability of the ro-vibrational states have been carried out and the most long-living states of the hydronium ions. The estimated radiative lifetimes and cooling functions for low temperatures (approximately below 100 K) are presented.

I. INTRODUCTION

2. Proper quantum number designations for the (rotational) energy levels discussed. The quantum numbers for H3O+ and D3O+ are non standard but probably sufficient to uniquely identify each level. This probably acceptable if not ideal (it is better to conventional notation). For H2DO+ and HD2O+ the quantum numbers given are insufficient to characterise the level in question and this does not work: a full asymmetric top description ie Ka and Kc are required.

Molecules in Universe are found in a wide variety of environments: from diffuse clouds with very low temperatures to atmospheres of planets, brown dwarfs and cool stars which are significantly hotter. In order to investigate the evolution of such complex systems it is essential to have reasonable models of constituent species and for this purpose the radiative and cooling properties are of great importance.

Although interstellar molecular clouds are usually characterised as cold, they are not really fully thermalized. Whether a species attains thermal equilibrium with the environment depends on the radiative lifetimes of its states and the rate for collisional excitations to the states: this is normally characterised by the critical density. In such regions radiative lifetimes are also important for models of the many species which are observed to mase. The long lifetimes associated with certain excited states can lead to population trapping and non-thermal distributions. Such behaviour was observed for the H_3^+ molecule both in space? ? and at the laboratory,? ? in both cases leading to the unexpected state distributions.

Dissociative recombination of hydronium has also been extensively studied in ion storage rings. From the lifetimes calculated below, one can expect that H_3O^+ and it isotopomers will be the subject of population trapping in a similar manner to that observed for H_3^+ in storage rings. Dissociative recombination of hydronium has been postulated as the possible cause of emissions of from super-excited water in cometary coma? and the mechanism for a spontaneous infrared water laser?

Hydronium and its isotopologues play an important role in planetary and interstellar chemistry. These molecular ions are found to exist abundantly in both diffuse and dense molecular clouds as well as in comae. Moreover H_3O^+ is a water indicator of water and can be used to estimate its abundance when the direct detection is unfeasible. Due to such importance these ions have been the subject of numerous theoretical and experimental

Radiative and cooling properties for H₃O⁺, HD₂O⁺, H₂DO⁺ and D₃O⁺ are not available in the literature. In the present work a theoretical study of the ro-vibrational states of these ions is carried out. Using an *ab initio* potential energy surface (PES) and an *ab initio* dipole moment surface (DMS)[?] for the ground electronic states of H₃O⁺, ro-vibrational energy levels, wavefunctions and Einstein coefficients of the systems under consideration are computed employing the nuclear-motion program TROVE.[?] Lifetimes of individual states and overall cooling rates are calculated and analyzed. Recently the same methodology was used to estimate the sensitivities of hydronium ions transitions to the variation of the proton-to-electron mass ratio.[?]

We present a detailed analysis of the stability of the ro-vibrational states and identify the most long-living states of these ions. This study is based on the methodology? developed very recently as part of the ExoMol project? The ExoMol projects aims at the comprehensive description of spectroscopic properties of molecules important for atmospheres of exoplanets and cool stars. The molecular lifetimes and cooling functions are now part of the new ExoMol data format?

II. THEORY AND COMPUTATION

Ro-vibrational energy levels and wavefunctions of the ions under study were calculated variationally employing the TROVE program. Similar approach has already been successfully used for ro-vibrational calculations of the XY₃ type molecules ??????? including ammonia, which is also characterized by a non-rigid 'umbrella' motion as H_3O^+ . The inversion barrier of H_3O^+ is 1167 cm⁻¹, which is lower than 1791 cm⁻¹ found for of ammonia. As a result the inversion splitting is significantly larger, 55.35 cm⁻¹ (Ref. ?) against 0.793 cm⁻¹ (Ref. ?).

We used the *ab initio* PES and DMS of H₃O^{+?}? computed using the MRCI/aug-cc-pwCV5Z (5Z) and MRCI/aug-cc-pwCVQZ (QZ) levels of theory. The complete basis set (CBS) extrapolation was used for the Born-Oppenheimer PES (see Ref. ? for details).

For all TROVE ro-vibrational computations the orders of kinetic and potential energy expansions were set to 6 and 8, respectively. We used the Morse-type basis functions for stretching modes and numerical basis functions (numerical solutions of corresponding 1D problem obtained within the framework of the Numerov-Cooley scheme) for bending vibrations. The *ab initio* equilibrium H₃O⁺ structure is characterized by the O-H bond length of about 0.9758 Å and H-O-H angle close to 111.95°. The vibrational basis set is controlled by the polyad number defined by

$$P = 2(v_1 + v_2 + v_3) + v_4 + v_5 + v_6/2, (1)$$

where v_1 , v_2 , v_3 represent the quanta of the stretching, v_4 and v_5 are of the asymmetric bending and v_6 is of the inversion primitive basis set functions. For this work the maximal polyad number P_{max} was set to 28. The computational details of the basis set construction can be found in Ref. ? as well as the details of the calculations of Einstein coefficients A_{if} . The latter were computed for all possible initial, i, and final, f, states lying below 6000 cm⁻¹ relatively to the zero point energy. According to our estimations this energy range is sufficient to deal with thermodynamic temperatures up to 100 K.

The lifetimes of the states were computed as given by?

$$\tau_i = \frac{1}{\sum_f A_{if}},\tag{2}$$

where the summation is taken over all possible the *final* states f states for the given *initial* state i. The Einstein coefficients (1/s) are defined as follows:

$$A_{if} = \frac{8\pi^4 \tilde{\nu}_{if}^3}{3h} (2J_i + 1) \sum_{A=X,Y,Z} |\langle \Psi^f | \bar{\mu}_A | \Psi^i \rangle|^2,$$
 (3)

where h is Planck's constant, $\tilde{\nu}_{if}$ (cm⁻¹) is the wavenumber of the line, $(hc \, \tilde{\nu}_{if} = E_f - E_i)$, J_i is the rotational quantum number for the initial state, Ψ^f and Ψ^i represent the ro-vibrational eigenfunctions of the final and initial states respectively, $\bar{\mu}_A$ is the electronically averaged component of the dipole moment (Debye) along the space-fixed axis A = X, Y, Z (see also ?).

At the temperature T the cooling function, W(T), is the total power emitted by a molecule and is given by the following expression:?

$$W(T) = \frac{1}{4\pi Q(T)} \sum_{i,f} A_{if} hc\tilde{\nu}_{if} (2J_i + 1) g_i \exp\left(\frac{-c_2\tilde{E}_i}{T}\right), \tag{4}$$

where $\tilde{\nu}_{if}$ is frequency wavenumber of the transition $i \to f$, J_i is the rotational quantum number of the initial state and g_i is its nuclear spin degeneracy factor. The exponential term is the Boltzmann factor, c_2 is the second radiation constant and \tilde{E}_i is the wavenumber of the corresponding state. The partition function, Q(T), is defined as

$$Q(T) = \sum_{i} g_i(2J_i + 1) \exp\left(\frac{-c_2\tilde{E}_i}{T}\right). \tag{5}$$

Partition functions were computed for each ion employing complete sets of obtained rovibrational energies.

The same PES and DMS were used for each isotopologue, meaning that no allowance was made for the failure of the Born-Oppenheimer approximation. The energies of all four isotopologues of H_3O^+ considered are very different not only due to the mass changes, but also due to the different symmetries these species belong to. We used molecular symmetry group $\mathcal{D}_{3h}(M)$ to classify the ro-vibrational states of the symmetric species H_3O^+ and D_3O^+ , and $C_{2v}(M)$ for the asymmetric istopologues H_2DO^+ and HD_2O^+ . The difference in the Einstein coefficients are also quite profound, especially between symmetric and asymmetric isotopologues. Special attention should be paid to the situation when isotope substitution of an ion is considered. In this case the position of the center-of-mass is displaced and, as a consequence, the total molecular dipole moment is changed due to its nuclear contribution (see, for example, Ref. ?). The lifetimes of different isotopologues are also expected to differ significantly due to the factors above as well as due to the different selection rules and nuclear statistics. Selection rules for J are

$$J' - J'' = 0, \pm 1 \quad \text{and} \quad J' - J'' > 0.$$
 (6)

The symmetry selection rules for H_3O^+ are

$$A_2' \leftrightarrow A_2'', \quad E' \leftrightarrow E'',$$
 (7)

for D_3O^+ are

$$A_1' \leftrightarrow A_1'', \quad A_2' \leftrightarrow A_2'', \quad E' \leftrightarrow E'',$$
 (8)

while those for H_2DO^+ and HD_2O^+ are

$$A_1 \leftrightarrow A_2, \quad B_1 \leftrightarrow B_2.$$
 (9)

Nuclear spin statistics? results in three distinct forms of D_3O^+ , so-called ortho $(A_1, g_{ns} = 10)$, meta $(E, g_{ns} = 8)$ and para $(A_2, g_{ns} = 1)$. For H_3O^+ , only ortho $(A_2, g_{ns} = 4)$ and para $(E, g_{ns} = 2)$ states exist, and ro-vibrational states with symmetries of A'_1 and A''_1 are missing. H_2DO^+ and HD_2O^+ both support ortho and para states: B_1 and B_2 are ortho $(g_{ns} = 9)$, and A_1 and A_2 are para $(g_{ns} = 3)$ for H_2DO^+ , with ortho and para labels swapped for HD_2O^+ , i.e. A_1 and A_2 are ortho $(g_{ns} = 12)$, and B_1 and B_2 are para $(g_{ns} = 6)$.

III. RESULTS AND DISCUSSION

The quality of the spectroscopic model employed here for the lifetime calculations along with the *ab initio* PES and variational method is demonstrated by Table ??, which compares calculated energies of the isotopologues of H_3O^+ with available experimental values. These are very good results for a pure *ab initio* PES and suggesting that our model should be more than appropriate for purposes of the present study.

An overview of the lifetimes of the ro-vibrational states (J < 6) for the hydronium ions under study is given in Fig. ??. In general the lifetimes exhibit the expected gradual reduction with the increase of energy with some islands of meta-stable states. The complete list of lifetimes for all four isotopologues are give as supplementary material to this paper.

Lifetimes τ of the most long-lived states of the ions are presented in Table ??, which lists states characterized by the longest lifetimes. Infinitely long lifetimes can be expected for the lowest state of each nuclear-spin symmetry corresponding ortho and para (and meta for D_3O^+). In addition the $(3, 3, A_2'')$ for both H_3O^+ and D_3O^+ cannot decay via any dipole-allowed transitions so shows up as having an infinite lifetime.

The meta-stable states with the longest lifetimes correspond to the low-lying, pure rotational (small J) states, which have the smallest numbers of channels and/or the lowest probability for transitions downwards. Therefore the meta-stable states of the more symmetric species H_3O^+ and D_3O^+ (\mathcal{D}_{3h}) with stricter selection rules live significantly longer (tens to thousands of years) compared to the days of HD_2O^+ and H_2DO^+ (\mathcal{C}_{2v}). For example, D_3O^+ has four meta-states with the lifetimes longer than 100 years. The longest lived of these, at 3816 years, is the state (J = 4, K = 1, E''). In comparison, the longest-lived meta-state of H_2DO^+ ($J = 2^+_{2,0}, A_1$) has a lifetime of 265 days.

Another important effect from the symmetry lowering $\mathcal{D}_{3h} \to \mathcal{C}_{2v}$ is related to the non-zero

TABLE I: Vibrational energies in cm⁻¹: comparison with experiment.

State	Sym.	Expt.	Ref.	Calc.	Diff.
$\overline{\mathrm{H_{3}O^{+}}}$					
ν_2^+	A_1	581.17	[?]	579.07	2.10
$2\nu_{2}^{+}$	A_1	1475.84	[?]	1470.67	5.17
$ u_1^+$	A_1	3445.01	[?]	3442.61	2.40
$\begin{array}{c} \nu_1^+ \\ \nu_3^+ \\ \nu_4^+ \end{array}$	E	3536.04	[?]	3532.58	3.46
$ u_4^+ $	E	1625.95	[?]	1623.02	2.93
0-	A_1	55.35	[?]	55.03	0.32
$ u_2^-$	A_1	954.40	[?]	950.94	3.46
$ u_1^- $	A_1	3491.17	[?]	3488.32	2.85
ν_3^-	E	3574.29	[?]	3571.04	3.25
$ u_4^-$	E	1693.87	[?]	1690.65	3.22
D_3O^+					
$ u_2^+$	A_1	453.74	[?]	451.58	2.16
$ u_3^+$	E	2629.65	[?]	2627.14	2.51
0-	A_1	15.36	[?]	15.38	-0.02
$ u_2^-$	A_1	645.13	[?]	642.79	2.34
$ u_3^-$	E	2639.59	[?]	2637.10	2.49
$\mathrm{H_2DO^+}$					
0-	B_1	40.56	[?]	40.39	0.17
$ u_1^+$	A_1	3475.97	[?]	3473.27	2.70
$ u_1^- $	B_1	3508.63	[?]	3505.51	3.12
$ u_3^+$	B_2	3531.50	[?]	3528.07	3.43
$ u_3^- $	A_2	3556.94	[?]	3553.63	3.31
$\mathrm{HD_2O^+}$					
	B_1	26.98	[?]	26.92	0.06

perpendicular dipole moment components of H_2DO^+ and HD_2O^+ . This is also illustrated in Fig. ??. The center-of-mass of an asymmetric ion is shifted from its geometric center, which causes a non-zero x dipole moment component. Therefore the orthogonal transitions ($\Delta K = \pm 1$) of H_2DO^+ and HD_2O^+ should be stronger than those of H_3O^+ and D_3O^+ . Besides, this component is bigger for HD_2O^+ than for H_2DO^+ owing to the greater displacement of the molecule center-of-mass. This is the likely reason why lifetimes of the HD_2O^+ states are shorter on average compared to those of H_2DO^+ . The z dipole moment component also changes with isotopic substitutions, see Fig. ??.

The lifetimes for the longest living states from Table ?? of D_3O^+ are about 25 times

TABLE II: Longest lifetimes of four ion hydronium ions: all states considered are for the vibration-inversion ground state. The notations $(J, K, \Gamma, \text{state})$ and $(J_{K_a, K_c}, \Gamma, \text{state})$ are used for symmetric and asymmetric isotopolouges are used.

State	Energy, cm^{-1}	au
$\mathrm{H_{3}O^{+}}$		(years)
$(1,0,A_2',0^+)$	22.47	∞
$(1, 1, E'', 0^+)$	17.38	∞
$(3, 3, A_2'', 0^+)$	88.96	∞
$(5, 5, E'', 0^+)$	209.58	140
$(2,1,E'',0^+)$	62.29	26.2
$(2,2,E',0^+)$	47.03	23.9
$(4,4,E',0^+)$	144.13	17.7
D_3O^+		(years)
$(0,0,A_1',0^+)$	0.00	∞
$(1,0,A_2',0^+)$	11.33	∞
$(1, 1, E'', 0^+)$	8.78	∞
$(3,3,A_2'',0^+)$	45.02	∞
$(5, 5, E'', 0^+)$	106.15	3816
$(2, 2, E', 0^+)$	23.79	857
$(4,4,E',0^+)$	72.48	594.4
$(3,3,A_1'',0^+)$	45.02	190.4
$\mathrm{H_2DO^+}$		(days)
$(0_{0,0}^+, A_1)$	0.00	∞
$(1_{1,1}^+, B_1)$	15.70	∞
$(1_{1,0}^+, B_2)$	18.07	265.4
$(2_{2,1}^+, A_2)$	55.82	89.1
$(2_{2,0}^+, A_1)$	56.60	4.8
$(1_{0,1}^+, A_2)$	11.69	3
$\mathrm{HD_2O^+}$		(days)
$(0_{0,0}^+, A_1)$	0.00	∞
$(1_{1,1}^+, B_1)$	9.53	∞
$(1_{1,0}^+, B_2)$	14.24	21.6
$(2_{2,1}^+, A_2)$	35.35	8.9
$(1_{0,1}^{+},A_2)$	12.19	1.8
$(2_{2,0}^+, A_1)$	27.77	1.4

longer than of H_3O^+ . Apparently, this is mainly caused by the shrinking of separation between the ro-vibrational energy levels (and lowering of $\tilde{\nu}_{if}$ in Eq. (??)) which results in

lower Einstein-A coefficients and thus higher τ .

It is interesting to note the presence of vibrationally excited meta-stable states in Fig. ?? between 1000 and 2000 cm⁻¹. For example, the $(J=4,K=4,E'',\nu_4^-)$ state of H₃O⁺ has the significant lifetime of 22 s. Similarly, the state $(J=4,K=4,A''_1,\nu_4^-)$ of D₃O⁺ lives 39 s.

FIG. 1: Calculated lifetimes of the ro-vibrational states (J < 6) of ${\rm H_3O^+}$ and isotopologues. Lifetime values are plotted in logarithmic scale.

Calculated radiative cooling functions of H_3O^+ and isotopologues are shown in Fig. ??.

One can see that at temperatures above 30 K the cooling W(T) decreases with increasing numbers of deuterium atoms. This can be easily understood from Eqs. (??,??): W(T) is proportion to $\tilde{\nu}_{if}^4$, and $\tilde{\nu}_{if}$ is approximately inverse proportional to the mass of hydrogen for the rotational states (populated at these temperatures).

Therefore at moderate and high temperatures the lighter isotopologues are better coolers. However, Fig. ?? shows that at lower temperatures their roles are changed: H_3O^+ is an inefficient cooler and cooling by the heavier species begins to dominate. This is due to (i) the larger rotational constants and thus larger separations between the lowest (coldest) meta-stable rotational states of H_3O^+ , H_2DO^+ , HD_2O^+ , and D_3O^+ which are 47.03 cm⁻¹ (2,2,E'', 0⁻ CHECK AND ADD THE INVERSION STATE), 11.70 cm⁻¹ (1,0, A_2), 12.19 cm⁻¹ (1,0, A_2), and 23.8 cm⁻¹ (2,2,E'), respectively and (ii) fewer states of H_3O^+ due to the nuclear statistics. Therefore it is more difficult to cool H_3O^+ than D_3O^+ at temperatures below 20–50 K.

The longest meta-stable states (in the absence of the collisions and stimulated emissions) are found for D_3O^+ : the population in the (J=4,E'') state can be trapped for 3816 years. This is relatively 'hot' state (160 K), at least for the standards of the molecular cooling, e.g. storage rings. Such meta-stable states will hamper cooling of this molecule to the few Kelvin level. The molecule with the shortest-lived meta-stable states is HD_2O^+ , which can still live for days.

IV. CONCLUSIONS

A theoretical study of the ro-vibrational states of four hydronium ion isotopologues has been carried out. *Ab initio* potential energy and electric dipole moment surfaces were used to calculate ro-vibrational energy levels, corresponding wavefunctions and Einstein coefficients for these ions. The results of an analysis of the stability of the ro-vibrational states, calculated radiative lifetimes and cooling functions for temperatures below 100 K are presented.

Our calculations show that the isotopic substitution with deuterium and especially the associated asymmetry of the centre-of-mass has a significantly effect on the lifetimes. A number of long-living meta-stable states are identified, which can lead to corresponding population trapping. The cooling function of the main (lightest) isotopologue dominates at

FIG. 2: Calculated cooling functions of H_3O^+ and isotopologues.

higher temperatures (T > 30 K) among the four spices studied. However this changes it the very low temperatures, when the cooling of H_3O^+ becomes significantly less efficient due to the large separation of the energies and also absence of the A'_1 and A''_2 states.

The results obtained can be used to assess the cooling properties of hydronium ion, for applications in ion storage rings and elsewhere.

Acknowledgments

This work was supported in part by "The Tomsk State University Academic D.I. Mendeleev Fund Program" grant No. 8.1.51.2015, and in part by the ERC under the Advanced Investigator Project 267219 (SNY). SNY and JT thank the support of the COST action MOLIM (CM1405). We thank Andreas Wolf for suggesting the idea of this work.

^{*} Corresponding author. E-mail: melnikov@phys.tsu.ru

FIG. 3: Illustration of the change of the centers-of-mass due to the isotopic substitutions in ${\rm H_3O^+}$.