DIGITAL CIRCUITS

Week-5, Lecture-3 Number System

Sneh Saurabh 31st August, 2018

Digital Circuits: Announcements/Revision

Signed Number Representation in Binary

- Positive numbers are represented by positional number system (as explained)
- Negative numbers can be represented in three ways:
 - 1. Sign-and-magnitude
 - 2. 1's complement
 - 3. 2's complement
- Sign is represented by the leftmost bit

Signed Number Representation: Sign and Magnitude

- Sign is represented by the leftmost bit
- Sign bit is 0 for positive numbers and 1 for negative numbers
- Example: In four-bit representation
 - **+** 5: 0101
 - **■** -5: 1101
- Easy to understand
- Difficult to implement in hardware compared to other systems

Signed Number Representation: 1's complement

- Let the number be represented with *n* −bits
- Let the negative number be *K* and the corresponding positive number be *P*
- In 1's complement $K = (2^n-1) P$

Problem: Given n = 4. Represent -5 using 1's complement

Solution:

- $(5)_{10} = (0101)_2$
- $(-5)_2 = (2^4 1)_{10} (0101)_2 = (15)_{10} (0101)_2$
- \Rightarrow = $(1111)_2 (0101)_2 = (1010)_2$

Can be obtained by simply complementing each bit of the number (including sign bit)

Signed Number Representation: 2's complement

- Let the number be represented with n −bits
- Let the negative number be *K* and the corresponding positive number be *P*
- In 2's complement $K = 2^n P$

Problem: Given n = 4. Represent -5 using 2's complement.

Solution:

$$\triangleright$$
 (5)₁₀= (0101)₂

$$(-5)_2 = (2^4)_{10} - (0101)_2 = (16)_{10} - (0101)_2$$

$$\rightarrow$$
 = $(10000)_2 - (0101)_2 = (1011)_2$

■ Can be obtained by simply adding +1 to the 1's complement

To quickly find 2's complement:

 Start looking the bits from right to left: copy all bits that are zero and the first bit that is one; then simply complement rest of the bits

Example:

- Given Number: 10110 100
- 2's complement: 01001 100

Signed Number Representation: A table

Table 5.2	Interpretation of four-bit signed integers.		
$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	- 7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Addition of signed number: Sign and Magnitude

- Addition of numbers with the same sign: use adder and retain the sign-bit
- Addition of numbers with opposite sign:
 - > Sign of result depends on the absolute value of the two numbers
 - Comparator will be required
 - Subtraction is required
- Hardware for addition of numbers in sign/magnitude form is not efficient
- Sign and magnitude representation is not used in computers

Addition of signed number: 1's complement

Table 5.2	Interpretation	of four-bit	signed in	tegers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

- There is a carry out from sign-bit position
- Carry out from sign-bit can be added to LSB to get correct result
- Extra addition will be required in certain cases

Addition of signed number: 2's complement

Table 5.2 Interpretation of four-bit signed integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

- There is a carry out from sign-bit position, which can be ignored
- Irrespective of sign of the operand, the same adder circuit can be used

ignore

ignore

Subtraction of signed number: 2's complement

Table 5.2 Interpretation of four-bit signed integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

 Find 2's complement of subtrahend and then add to minuend

Subtraction of signed number: 2's complement

Table 5.2 Interpretation of four-bit signed integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	- 7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

 Find 2's complement of subtrahend and then add to minuend

 Subtraction operation can be realized using addition operation (after taking 2's complement of subtrahend)

N-bit adder (recap...)

- To add two unsigned numbers, circuit is designed similar to what is done in hand-calculation
- Least Significant Bit (LSB) is on the right and Most Significant Bit (MSB) is on the left
- Bits are added starting from right using Full Adders
- Carry bits propagate from right to left

Adder and Subtractor unit

Hardware is shared between addition and subtraction: reduces complexity and cost

For addition:

- $\overline{Add}/Sub = 0$: $y_0, y_1, ...$ reaches adder as it is
- $c_0 = 0$: carry-in is 0 for the LSB
- Normal addition is done

For subtraction:

- $\overline{Add}/Sub = 1$: $y_0, y_1, ...$ gets inverted before adder
- $c_0 = 1$: carry-in is 1 for the LSB
- 2's complement of Y is obtained

Binary codes: Introduction

- A binary number of n-digits can be represented by n binary circuit elements, each having an output signal corresponding to 0 and 1
- Binary codes are patterns/group of zeros and ones
- Any discrete information that is distinct within a group can be represented using binary codes
- Binary codes merely change the symbol representing data: the meaning of data is not changed
- Motivation for using binary code is ease of manipulation, storage or transmission of data

Binary codes: Number of bits

- An n-bit binary code is a group of n-bits that assumes up to 2^n combination of zeroes and ones
- Each combination represent one element of the set that is being encoded: code should be unique for each element
- Though minimum number of bits required to represent 2^n elements is n, there is no maximum number of bits that can be used in encoding (some bits may be unused)