

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 95/18225
C12N 15/12, C07K 14/47, C12N 5/10, A61K 48/00, G01N 33/68, C12Q 1/68, C07K 16/18			(43) International Publication Date: 6 July 1995 (06.07.95)
(21) International Application Number: PCT/GB94/02822		NL-1503 BR Zaandam (NL). PETERS, Dorothea, Johanna, Maria [NL/NL]; Zuster Melboomstraat 267, NL-2331 PH Leiden (NL). ROELFSEMA, Jeroen, Hendrik [NL/NL]; Vijf Meilaan 2006, NL-2321 RR Leiden (NL). SAMPSON, Julian [GB/GB]; 34 Bridge Street, Cardiff CF5 2EL (GB). HALLEY, Dirkje, Jorintje, Johanna [NL/NL]; van Aerseelaan 35d, NL-3039 KD Rotterdam (NL). NELLIST, Mark, David [GB/NL]; Noordmolenstraat 57b, NL-3053 RG Rotterdam (NL). JANSEN, Lambertus, Antonius, Jacobus [NL/NL]; Schokker 37, NL-2991 DJ Barendrecht (NL). HESSELING, Ajenne, Lique, Wilhelma [NL/NL]; Haya van Sameren Downerpad 7, NL-3207 DK Spijkenisse (NL).	
(22) International Filing Date: 23 December 1994 (23.12.94)		(74) Agents: NEWELL, William, Joseph et al.; Wynne-Jones, Laine & James, 22 Rodney Road, Cheltenham, Gloucestershire GL50 1JJ (GB).	
(30) Priority Data: 9326470.3 24 December 1993 (24.12.93) GB 9411900.5 14 June 1994 (14.06.94) GB		(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).	
(71) Applicants (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London WIN 4AL (GB). LEIDEN UNIVERSITY [NL/NL]; P.O. Box 9500, NL-2300 RA Leiden (NL). UNIVERSITY OF WALES COLLEGE OF MEDICINE [GB/GB]; Heath Park, Cardiff CF4 4XN (GB). ERASMUS UNIVERSITY ROTTERDAM [NL/NL]; Burg Ondlaan 50, Postbox 1738, NL-3000 DR Rotterdam (NL).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(72) Inventors; and (75) Inventors/Applicants (for US only): HARRIS, Peter, Charles [GB/GB]; 65 Frelands Road, Oxford OX4 4BS (GB). PERAL, Belen [ES/GB]; 77 Lock Crescent, Kidlington, Oxford OX5 1HF (GB). WARD, Christopher, James [GB/GB]; 30 Benson Road, Oxford OX3 7EH (GB). HUGHES, James [GB/GB]; 225 Crowley Road, Oxford OX4 1XD (GB). BREUNING, Martin, Hendrik [NL/NL]; Brigantijnstraat 57,			
(54) Title: POLYCYSTIC KIDNEY DISEASE 1 GENE AND USES THEREOF			
(57) Abstract			
<p>Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder which frequently results in renal failure, due to progressive cyst development. The major locus, PKD1, maps to 16p13.3. A chromosome translocation is identified associated with ADPKD which disrupts a gene (PBP), encoding a 14 kb transcript, in the PKD1 candidate region. Further mutations of the PBP gene were found in PKD1 patients confirming that PBP is the PKD1 gene. This gene is located adjacent to the tuberous sclerosis (2) locus in a genomic region that is reiterated more proximally on 16p. The duplicate area encodes three transcripts substantially homologous to the PKD1 transcript. Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein. Screening of actual or suspected ADPKD patients for normal or mutated PKD1 can be used for diagnostic purposes. PKD1-associated disorders such as ADPKD may be treated or prevented by PKD1 gene therapy and/or administration of functional PKD1 protein to affected cells.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finnland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam

- 1 -

POLYCYSTIC KIDNEY DISEASE 1 GENE AND USES THEREOF

The present invention relates to the polycystic kidney disease 1 (PKD1) gene, mutations thereof in patients having PKD1-associated disorders, the protein encoded by the PKD1 gene, and their uses in diagnosis and therapy.

Background to the Invention

All references mentioned herebelow are listed in full at the end of the description which are herein incorporated by reference in their entirety. Except where the context clearly indicates otherwise, references to the PBP gene, transcript, sequence, protein or the like can be read as referring to the PKD1 gene, transcript, sequence, protein or the like, respectively.

A landmark study by Dalgaard, 1957 showed that autosomal dominant polycystic kidney disease (ADPKD) also termed adult polycystic kidney disease (APKD) is one of the commonest genetic diseases of man (approximately 1/1000 individuals affected). The major feature of this dominant disease is the development of cystic kidneys which commonly leads to renal failure in adult life. This simple description, however, belies the diverse systemic disorder, affecting many other organs (reviewed in Gabow, 1990) and one which occasionally presents in childhood (Fink, et al., 1993; Zerres, et al., 1993). Extrarenal manifestations include liver cysts (Milutinovic, et al., 1980), and more rarely cysts of the pancreas (Gabow, 1993) and other organs. Intracranial aneurysms occur in approximately 5% of patients and are a significant cause of morbidity and mortality due to subarachnoid haemorrhage (Chapman, et al., 1992). More recently, an increased prevalence of cardiac valve defects (Hossack, et al., 1988), herniae (Gabow, 1990) and colonic

- 2 -

diverticulae (Scheff, et al., 1980) has been reported.

The major cause of morbidity in ADPKD, however, is progressive renal disease characterised by the formation and enlargement of fluid filled cysts, resulting in grossly enlarged kidneys. Renal function deteriorates as normal tissue is compromised by cystic growth, resulting in end stage renal disease (ESRD) in more than 50% of patients by the age of 60 years (Gabow, et al., 1992): ADPKD accounts for 8-10% of all renal transplantation and dialysis patients in Europe and the USA (Gabow, 1993). Biochemical studies have suggested several potential causes of cyst formation and development, including: abnormal epithelial cell growth, alterations to the extracellular matrix and changes in cellular polarity and secretion (reviewed in Gabow, 1991; Wilson and Sherwood, 1991). The primary defect in ADPKD, however, remains unclear and considerable effort has therefore been applied to identifying the defective gene(s) in this disorder by genetic approaches.

The first step towards positional cloning of an ADPKD gene was the demonstration of linkage of one locus now designated the polycystic kidney disease 1 (PKD1) locus to the a globin-cluster on the short arm of chromosome 16 (Reeders, et al., 1985). Subsequently, families with ADPKD unlinked to markers of 16p were described (Kimberling, et al., 1988; Romeo, et al., 1988) and a second ADPKD locus (PKD2) has recently been assigned to chromosome region 4q13-q23 (Kimberling, et al., 1993; Peters, et al., 1993). It is estimated that approximately 85% of ADPKD is due to PKD1 (Peters and Sandkuijl, 1992) with PKD2 accounting for most of the remainder. PKD2 appears to be a milder condition with a later age of onset and ESRD (Parfrey, et al., 1990; Gabow, et al., 1992; Ravine, et al., 1992).

- 3 -

The position of the PKD1 locus was refined to chromosome band 16p13.3 and many markers were isolated from that region (Breuning, et al., 1987; Reeders, et al., 1988; Breuning, et al., 1990; Germino, et al., 1990; Hyland, et al., 1990; Himmelbauer, et al., 1991). Their order, and the position of the PKD1 locus, has been determined by extensive linkage analysis in normal and PKD1 families and by the use of a panel of somatic cell hybrids (Reeders, et al., 1988; 5 Breuning, et al., 1990; Germino, et al., 1990). An accurate long range restriction map (Harris, et al., 1990; Germino, et al., 1992) has located the PKD1 locus in an interval of approximately 600 kb between the markers GGG1 and SM7 (Harris, et al., 1991; 10 Somlo, et al., 1992) (see Figure 1a). The density of CpG islands and identification of many mRNA transcripts indicated that this area is rich in gene sequences. Germino et al (1992) estimated that the candidate 15 region contains approximately 20 genes.

Identification of the PKD1 gene from within this 20 area has thus proved difficult and other means to pinpoint the disease gene were sought. Linkage disequilibrium has been demonstrated between PKD1 and the proximal marker VK5, in a Scottish population 25 (Pound, et al., 1992) and between PKD1 and BLu24 (see Figure 1a), in a Spanish population (Peral, et al., 1994). Studies with additional markers have shown evidence of a common ancestor in a proportion of each 30 population (Peral, et al., 1994; Snarey, et al., 1994), but the association has not precisely positioned the PKD1 locus.

Disease associated genomic rearrangements, 35 detected by cytogenetics or pulsed field gel electrophoresis (PFGE) have been instrumental in the identification of various genes associated with various genetic disorders. Witherto, no such abnormalities

- 4 -

related to PKD1 have been described. This situation contrasts with that for the tuberous sclerosis locus, which lies within 16p13.3 (TSC2). In that case, TSC associated deletions were detected by PFGE within the 5 interval thought to contain the PKD1 gene and their characterisation was a significant step toward the rapid identification of the TSC2 gene (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). The TSC2 gene therefore maps within the candidate 10 region for the hitherto unidentified PKD1 gene; as polycystic kidneys are a feature common to TSC and ADPKD (Bernstein and Robbins, 1991) the possibility of an aetiological link, as proposed by Kandt et al. (1992), was considered.

15 We have now identified a pedigree in which the two distinct phenotypes, typical ADPKD or TSC, are seen in different members. In this family, the two individuals with ADPKD are carriers of a balanced chromosome translocation with a breakpoint within 16p13.3. We 20 have located the chromosome 16 translocation breakpoint and a gene disrupted by this rearrangement has been defined; the discovery of additional mutations of that gene in other PKD1 patients shows that we have identified the PKD1 gene.

25 Summary of the Invention

Accordingly, in one aspect, this invention provides an isolated, purified or recombinant nucleic acid sequence comprising:-

- (a) a PKD1 gene or its complementary strand,
- 30 (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a fragment of a molecule defined in (a) or 35 (b) above. In particular, there is provided a sequence wherein the PKD1 gene has the partial nucleic acid sequence according to Figure 7 and/or 10. The

- 5 -

invention therefore includes a DNA molecule selected from:

- (a) a PKD1 gene or its complementary strand,
- (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a molecule coding for a polypeptide having the partial sequence of Figure 7,
- (d) genomic DNA corresponding to a molecule in 10 (a) above; and
- (e) a fragment of a molecule defined in any of (a), (b), (c) or (d) above.

The PKD1 gene described herein is a gene found on human chromosome 16, and the results of familial studies described herein form the basis for concluding that this PKD1 gene encodes a protein called PKD1 protein which has a role in the prevention or suppression of ADPKD. The PKD1 gene therefore includes the DNA sequences shown in Figures 7 and 10, and all 20 functional equivalents. The gene furthermore includes regulatory regions which control the expression of the PKD1 coding sequence, including promotor, enhancer and terminator regions. Other DNA sequences such as introns spliced from the end-product PKD1 RNA 25 transcript are also encompassed. Although work has been carried out in relation to the human gene, the corresponding genetic and functional sequences present in lower animals are also encompassed.

The present invention therefore further provides a 30 PKD1 gene or its complementary strand having the partial sequence according to Figure 7. In particular, it provides a PKD1 gene or its complementary strand having the partial sequence of Figures 7 and/or 10 which gene or strand is mutated in some ADPKD patients 35 (more specifically, PKD1 patients).

The invention further provides a nucleic acid sequence comprising a mutant PKD1 gene, especially one selected from a sequence comprising a partial sequence according to Figures 7 and/or 10 when:

- (a) [OX114] base pairs 1746-2192 as defined in Figure 7 are deleted 5 (446bp);
- (b) [OX32] base pairs 3696-3831 as defined in Figure 7 are deleted by a splicing defect;
- (c) [OX875] about 5.5kb flanked by the two XbaI sites shown in Figure 3a are deleted and the EcoRI site separating the CW10 (41kb) and JH1 10 (18kb) sites is thereby absent
- (d) [WS53] about 100kb extending between the JH1 and CW21 and the SM6 and JH17 sites shown in Figure 6 and the PKD1 gene is thereby absent, the deletion lying proximally between SM6 and JH13;
- (e) [461] 18bp are deleted in the 75bp intron amplified by the 15 primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
- (f) [OX1054] 20bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;
- (g) [WS212] about 75kb are deleted between SM9-CW9 distally and the 20 PKD1 3'UTR proximally as shown in Figure 12;
- (h) [WS-215] about 160kb are deleted between CW20 and SM6-JH17 as shown in Figure 12;
- (i) [WS-227] about 50kb are deleted between CW20 and JH11 as shown in 25 Figure 12;
- (j) [WS-219] about 27kb are deleted between JH1 and JH6 as shown in Figure 12;
- (k) [WS-250] about 160kb are deleted between CW20 and BLu24 as shown in Figure 12;
- 30 (l) [WS-194] about 65kb is deleted between CW20 and CW10.

The invention therefore extends to RNA molecules comprising an RNA sequence corresponding to any of the DNA sequences set out above. The molecule is preferably the transcript reference PBP and

- 7 -

identifiable from the restriction map of Figure 3a and having a sequence of about 14 Kb.

In another aspect, the invention provides a nucleic acid probe having a sequence as set out above; in particular, this invention extends to a purified nucleic acid probe which hybridises to at least a portion of the DNA or RNA molecule of any of the preceding sequences. Preferably, the probe includes a label such as a radiolabel for example a ^{32}P label.

10 In another aspect, this invention provides a purified DNA or RNA coding for a protein comprising the amino acid sequence of Figure 7 and/or 10, or a protein polypeptide having homologous properties with said protein, or having at least one functional domain or 15 active site in common with said protein.

The DNA molecule defined above may be incorporated in a recombinant cloning vector for expressing a protein having the amino acid sequence of Figure 7 and/or 10, or a protein or a polypeptide having at 20 least one functional domain or active site in common with said protein.

25 In another aspect, the invention provides a polypeptide encoded by a sequence as set out above, or having the amino acid sequence according to the partial amino acid sequence of Figure 7 and/or 10, or a protein or polypeptide having homologous properties with said protein, or having at least one functional domain or active site in common with said protein. In particular, there is provided an isolated, purified or 30 recombinant polypeptide comprising a PKD1 protein or a mutant or variant thereof or encoded by a sequence set out above or a variant thereof having substantially the same activity as the PKD1 protein.

This invention also provides an in vitro method of 35 determining whether an individual is likely to be

- 8 -

affected with tuberous sclerosis, comprising the steps of:

assaying a sample from the individual to determine the presence and/or amount of PKD1 protein or
5 polypeptide having the amino acid sequence of Figure 7 and/or 10.

Additionally or alternatively, a sample may be assayed to determine the presence and/or amount of mRNA coding for the protein or polypeptide having the amino
10 acid sequence of Figure 7 and/or 10, or to determine the fragment lengths of fragments of nucleotide sequences coding for the protein or polypeptide of Figure 7 and/or 10, or to detect inactivating mutations in DNA coding for a protein having the amino acid
15 sequence of Figure 7 and/or 10 or a protein having homologous properties. Said screening preferably includes applying a nucleic acid amplification process to said sample to amplify a fragment of the DNA sequence. Said nucleic acid amplification process
20 advantageously utilizes at least one of the following sets of primers as identified herein:-

AH3 F9 : AH3 B7
3A3 C1 : 3A3 C2
25 AH4 F2 : JH14 B3

Alternatively, said screening method may comprise digesting said sample to provide EcoRI fragments and hybridising with a DNA probe which hybridises to the
30 EcoRI fragment identified (A) in Figure 3(a), and said DNA probe may comprise the DNA probe CW10 identified herein.

Another screening method may comprise digesting said sample to provide BamHI fragments and hybridising
35 with a DNA probe which hybridises to the BamHI fragment

- 9 -

identified (B) in Figure 3 (a), and said DNA probe may comprise the DNA probe 1A1H.6 identified herein.

A method according to the present invention may comprise detecting a PKD1-associated disorder in a patient suspected of having or having predisposition to, said disorder, the method comprising detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 mRNA and/or PKD1 protein in a sample taken from the patient. Such method may comprise 5 detecting and/or evaluating whether the PKD1 DNA is deleted, missing, mutated, aberrant or not expressing 10 normal PKD1 protein. One way of carrying out such a method comprises:

A. taking a biological, tissue or biopsy 15 sample from the patient;

B. detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 mRNA and/or PKD1 protein in the sample to obtain a first set of results;

C. comparing the first set of results with a 20 second set of results obtained using the same or similar methodology for an individual not suspected of having said disorders; and if the first and second sets of results differ in that the PKD1 DNA is deleted, 25 missing, aberrant, mutated or not expressing PKD1 protein then that indicates the presence, predisposition or tendency of the patient to develop said disorders.

A specific method according to the invention comprises extracting a sample of PKD1 DNA or RNA from 30 the PKD1 locus purporting to be PKD1 DNA from a patient, cultivating the sample in vitro and analysing the resulting protein, and comparing the resulting protein with normal PKD1 protein according to the well-established Protein Truncation Test.

35 Less sensitive tests include analysis of RNA using RT PCR (reverse transcriptase polymerase chain

- 10 -

reaction) and examination of genomic DNA.

On the other hand, if step C of the method is replaced by:

C. comparing the first set of results with a
5 second set of results obtained using the same or similar methodology in an individual known to have the or at least one of said disorder(s); and if the first and second sets of results are substantially identical, this indicates that the PKD1 DNA in the patient is
10 deleted, mutated or not expressing normal PKD1 protein.

The invention further provides a method of characterising a mutation in a subject suspected of having a mutation in the PKD1 gene, which method comprises:

15 A. amplifying each of the exons in the PKD1 gene of the subject;

B. denaturing the complementary strands of the amplified exons;

C. diluting the denatured separate,
20 complementary strands to allow each single-stranded DNA molecule to assume a secondary structural conformation;

D. subjecting the DNA molecule to electrophoresis under non-denaturing conditions;

E. comparing the electrophoresis pattern of
25 the single-stranded molecule with the electrophoresis pattern of a single-stranded molecule containing the same amplified exon from a control individual which has either a normal or PKD1 heterozygous genotype; and

F. sequencing any amplification product which
30 has an electrophoretic pattern different from the pattern obtained from the DNA of the control individual.

The invention also extends to a diagnostic kit for carrying out a method as set out above, comprising
35 nucleic acid primers for amplifying a fragment of the DNA or RNA sequences defined above. The nucleic acid

- 11 -

primers may comprise at least one of the following sets:

AH3 F9 : AH3 B7
5 3A3 C1 : 3A3 C2
AH4 F2 : JH14 B3

Another embodiment of kit may combine one or more substances for digesting a sample to provide EcoRI 10 fragments and a DNA probe as previously defined.

A further embodiment of kit may comprise one or more substances for digesting a sample to provide BamHI fragments and a DNA probe as previously defined.

Still further, a kit may include a nucleic acid 15 probe capable of hybridising to the DNA or RNA molecule previously defined.

A vector (such as Bluscript (available from Stratagene)) comprising a nucleic acid sequence set out above; and a host cell (such as E. coli strain SL-1 20 Blue (available from Stratagene)) transfected or transformed with the vector are also provided, together with the use of such a vector or a nucleic acid sequence set out above in gene therapy and/or in the preparation of an agent for treating or preventing a 25 PKD1-associated disorder. Therefore there is further provided a method of treating or preventing a PKD1-associated disorder which method comprises administering to a patient in need thereof a functional PKD1 gene to affected cells in a manner that permits expression of PKD1 protein therein and/or a transcript 30 produced from a mutated chromosome (such as the deleted WS-212 chromosome) which is capable of expressing functional PKD1 protein therein.

The invention also extends to any inventive 35 combination of features set out above or in the following description.

- 12 -

Brief Description Of The Drawings

Figure 1a (top): A long range map of the terminal region of the short arm of chromosome 16 showing the PKD1 candidate region defined by genetic linkage analysis. The positions of selected DNA probes and 5 microsatellites used for haplotype, linkage or heterozygosity analyses are indicated. Markers previously described in linkage disequilibrium studies are shown in bold (from: Harris, et al., 1990; Harris, et al., 1991; Germino, et al., 1992; Somlo, et al., 10 Peral, et al., 1994; Snarey, et al., 1994).

(bottom): A detailed map of the distal part of the PKD1 candidate region showing: the area of 16p13.3 duplicated in 16p13.1 (hatched); C, Cla I restriction sites; the breakpoints in the somatic cell hybrids, N-15 OH1 and P-MWH2A; DNA probes and the TSC2 gene. The limits of the position of the translocation breakpoint found in family 77 (see b), determined by evidence of heterozygosity (in 77-4) and PFGE (see c and text) is also indicated. The contig covering the 77 breakpoint 20 region consists of the cosmids: 1, CW9D; 2, ZDS5; 3, JH2A; 4, REP59; 5, JC10.2B; 6, CW10III; 7, SM25A; 8, SMII; 9, NM17.

Figure 1b: Pedigree of family 77 which segregates 25 a 16;22 translocation; showing the chromosomal composition of each subject. Individuals 77-2 and 77-3 have the balanced products of the exchange - and have PKD1; 77-4 is monosomic for 16p13.3-->16pter and 22q11.21-->22pter - and has TSC.

Figure 1c: PFGE of DNA from members of the 30 77 family: 77-1 (1); 77-2 (2); 77-3 (3); 77-4 (4); digested with Cla I and hybridised with SM6. In addition to the normal fragments of 340 and partially digested fragment of 480 kb a proximal breakpoint fragment of approximately 100 kb (arrowed) is seen in 35 individuals, 77-2, 77-3 and 77-4; concordant with

- 13 -

segregation of the der(16) chromosome.

Figure 2: FISH of the cosmid CW10III (cosmid 6; Figure 1a) to a normal male metaphase. Duplication of this locus is illustrated with two sites of hybridisation on 16p; the distal site (the PKD1 region) is arrowed. The signal from the proximal site (16p13.1) is stronger than that from the distal, indicating that sequences homologous to CW10III are reiterated in 16p13.1.

Figure 3a: A detailed map of the 77 translocation region showing the precise localisation of the 77 breakpoint and the region that is duplicated in 16p13.1 (hatched). DNA probes (open boxes); the transcripts, PKD1 and TSC2 (filled boxes; with direction of transcription indicated by an arrow) and cDNAs (grey boxes) are shown below the genomic map. The known genomic extent of each gene is indicated at the bottom of the diagram and the approximate genomic locations of each cDNA is indicated under the genomic map. The positions of genomic deletions found in PKD1 patients, OX875 and OX114, are also indicated. Restriction sites for EcoR I (E) and incomplete maps for BamH I (B); Sac I (S) and Xba I (X) are shown. SM3 is a 2kb BamH1 fragment shown at the 5' end of the gene.

Figure 3b: Southern blots of BamH I digested DNA from individuals: 77-1 (1); 77-2 (2); and 77-4 (4) hybridised with: left panel, 8S3 and right panel, 8S1 (see a). 8S3 detects a novel fragment on the telomeric side of the breakpoint (12 kb: arrowed) associated with the der(22) chromosome in 77-2, but not 77-4; 8S1 identifies a novel fragment on the centromeric side of the breakpoint (9 kb: arrowed) - associated with the der(16) chromosome - in 77-2 and 77-4. The telomeric breakpoint fragment is also seen weakly with 8S1 (arrowed) indicating that the breakpoint lies in the distal part of 8S1. The 8S3 and 8S1 loci are both

- 14 -

duplicated; the normal BamH I fragment detected at the 16p13.3 site by these probes is 11 kb (see a), but a similar sized fragment is also detected at the 16p13.1 site. Consequently, the breakpoint fragments are much
5 fainter than the normal (16p13.1 plus 16p13.3) band.

Figure 4a: PBP cDNA, 3A3, hybridised to a Northern blot containing ~1 mg polyA selected mRNA per lane of the tissue specific cell lines: lane 1, MJ, EBV-transformed lymphocytes; lane 2, K562, erythroleukaemia; lane 3, FS1, normal fibroblasts; lane 4, HeLa, cervical carcinoma; lane 5, G401, renal Wilm's tumour; lane 6, Hep3B, hepatoma; lane 7, HT29, colonic adenocarcinoma; lane 8, SW13, adrenal carcinoma; lane 9, G-CCM, astrocytoma.
10 A single transcript of approximately 14 kb is seen; the highest level of expression is in fibroblasts and in the astrocytoma cell line, G-CCM. Although in this comparative experiment little expression is seen in lanes 1, 4 and 7, we have demonstrated at least a low level of
15 expression in these cell lines on other Northern blots and by RT-PCR (see later).
20

Figure 4b: A Northern blot containing ~ 20 µg of total RNA from the cell line G-CCM hybridised with cDNAs or a genomic probe which identify various parts
25 of the PBP gene. Left panel, a single ~14 kb transcript is seen with a cDNA from the single copy area, 3A3. Right panel, a cDNA, 21P.9, that is homologous to parts of the region that is duplicated (JH12, JH8 and JH10; see Figure 3a) hybridises to the
30 PBP transcript and three novel transcripts; HG-A (~ 21 kb), HG-B (~ 17 kb) and HG-C (8.5 kb). A similar pattern of transcripts is seen with cDNAs and genomic fragments that hybridise to the area between JH5 and JH13, with the exception of the JH8 area. Middle
35 panel, JH8 hybridises to the transcripts PBP, HG-A and HG-B but not to HG-C.

- 15 -

Figure 4c: A Northern blot of 20mg total fibroblast RNA from: normal control (N); 77-2 (2); 77-4 (4) hybridised with 8S1, which contains the 16;22 translocation breakpoint (see Figure 3). A transcript of ~ 9 kb (PBP-77) is identified in the two patients with this translocation but not in the normal control. PBP-77 is a chimeric PBP transcript formed due to the translocation and is not seen in 77-2 or 77-4 RNA with probes which map distal to the breakpoint.

Figure 5a: FIGE of DNA from: normal (N) and ADPKD patient OX875 (875), digested with EcoR I and hybridised with, left panel, CW10; middle panel, JH1. Normal fragments of 41 kb (plus a 31 kb fragment from the 16p13.1 site), CW10, and 18 kb, JH1, are identified with these probes; OX875 has an additional 53 kb band (arrowed). The EcoR I site separating these two fragments is removed by the deletion (see Figure 3a). The right panel shows a Southern blot of BamH I digested DNA (as above) hybridised with 1A1H.6. A novel fragment of 9.5 kb is seen in OX875 DNA, as well as the normal 15 kb fragment. These results indicate that OX875 has a 5.5 kb deletion; its position was determined more precisely by mapping relative to two Xba I sites which flank the deletion (see figure 3a).

Figure 5b: Northern blot of total fibroblast RNA, as (a), hybridised with the cDNAs, AH4, 3A3 and AH3. A novel transcript (PBP-875) of ~ 11 kb is seen with AH4 (the band is reduced in intensity because the probe is partly deleted) and AH3 (arrowed), which flank the deletion, but not 3A3 which is entirely deleted (see figure 3a). The transcripts HG-A, HG-B and HG-C, from the duplicated area, are seen with AH3 (see figure 4b).

Figure 5c: Left panel; FIGE of DNA from: normal (N) and ADPKD patient OX114 (114), digested with EcoR I and hybridised with CW10; a novel fragment of 39 kb (arrowed) is seen in OX114. Middle panel; DNA, as

- 16 -

above, plus the normal mother (M) and brother (B) of OX114 digested with BamH I and hybridised with CW21. A larger than normal fragment of 19 kb (arrowed) was detected in OX114 but not other family members due to 5 deletion of a BamH I site; together these results are consistent with a 2 kb deletion (see Figure 3a). Right panel; RT-PCR of RNA, as above, with primers flanking the OX114 deletion (see Experimental Procedures). A novel fragment of 810 bp (arrowed) is seen in OX114, 10 indicating a deletion of 446 bp in the PBP transcript.

Figure 5d: RT-PCR of RNA from: ADPKD patient OX32 (32) plus the probands, normal mother (M) and affected father (F) and sibs (1) and (2) using the C primer pair from 3A3 (see Experimental Procedures). A novel 15 fragment of 125 bp is detected in each of the affected individuals.

Figure 6: Map of the region containing the TSC2 and PBP genes showing the area deleted in patient WS-53 and the position of the 77 translocation breakpoint. 20 Localisation of the distal end of the WS-53 deletion was previously described (European Chromosome 16 Tuberous Sclerosis Consortium, 1993) and we have now localised the proximal end between SM6 and JH17. The size of the aberrant Mlu I fragment in WS-53, detected 25 by JH1 and JH17, is 90kb and these probes lie on adjacent Mlu I fragments of 120kb and 70kb, respectively. Therefore the WS-53 deletion is ~ 100kb. Restriction sites for: Mlu I (M); Nru I (R); Not I (N); and partial maps for Sac II (S) and BssH II (H) are 30 shown. DNA probes (open boxes) and the TSC2 and PBP transcripts (filled boxes) are indicated below the line with their known genomic extents (brackets). The locations of the microsatellites KG8 and SM6 are also indicated.

35 Figure 7: The partial nucleotide sequence (cDNA) of the PKD1 transcript extending 5631bp to the 3' end

- 17 -

of the gene. The corresponding predicted protein (also shown in SEQ ID NO: 4:) is shown below the sequence and extends from the start of the nucleotide sequence. The GT-repeat, KG8, is in the 3' untranslated region 5 between 5430-5448 bp. This sequence corresponds to GenBank Accession No. L33243 and is shown in SEQ ID NO: 3:.

Figure 8: The sequence of the probe 1A1H0.6 (also shown in SEQ ID NO: 5:).

10 Figure 9: The sequence (SEQ ID NO: 6:) of the probe CW10 which is about 0.5kb.

Figure 10: The larger partial nucleotide sequence (SEQ ID NO: 1:) of the PKD1 transcript (cDNA) extending from bp 2 to 13807bp to the 3' end of the gene together 15 with the corresponding predicted protein (also shown in SEQ ID NO: 2:). This larger partial sequence encompasses the (smaller) partial sequence of Figure 7 from amino acid no. 2726 in SEQ ID NO: 3: and relates to the entire PKD1 gene sequence apart from its extreme 20 5' end.

Figure 11: A map of the 75bp intron amplified by the primer set 3A3C insert at position 3696 of the 3' sequence showing the positions of genomic deletions found in PKD1 patients 461 and OX1054.

25 Figure 12: A map of the region of chromosome 16 containing the TSC2 and PKD1 genes showing the areas affected in patients WS-215, WS-250, WS-212, WS-194, WS-227 and WS-219; also WS-53 (but cf. Figure 6). Genomic sites for the enzymes Mlul (M), Clal (C), Pvul 30 (P) and Nrul (R) are shown. Positions of single copy probes and cosmids used to screen for deletions are shown below the line which represents ~400kb of genomic DNA. The genomic distribution of the approximately 45kb TSC2 gene and known extent of the PKD1 gene are 35 indicated above. The hatched area respresents an ~50kb

- 18 -

region which is duplicated more proximally on chromosome 16p.

Detailed Description of the Drawings

A translocation associated with ADPKD

5 A major pointer to the identity of the PKD1 gene was provided by a Portuguese pedigree (family 77) with both ADPKD and TSC (Figure 1b). Cytogenetic analysis showed that the mother, 77-2, has a balanced translocation, 46XX t(16;22)(p13.3;q11.21) which was
10 inherited by her daughter, 77-3. The son, 77-4, has the unbalanced karyotype, 45XY-16-22+der(16)(16qter-->16p13.3: :22q11.21-->2qter) and consequently is monosomic for 16p13.3-->16pter as well as for 22q11.21-->22pter. This individual has the clinical phenotype of
15 TSC (see Experimental Procedures); the most likely explanation is that the TSC2 locus located within 16p13.3 is deleted in the unbalanced karyotype.

Further analysis revealed that the mother (77-2), and the daughter (77-3) with the balanced
20 translocation, have the clinical features of ADPKD (see Experimental Procedures), while the parents of 77-2 were cytogenetically normal, with no clinical features of TSC and no renal cysts on ultrasound examination (aged 67 and 82 years). Although kidney cysts can be a
25 feature of TSC, no other clinical signs of TSC were identified in 77-2 or 77-3, making it unlikely that the polycystic kidneys were due to TSC. We therefore investigated the possibility that the translocation disrupted the PKD1 locus in 16p13.3 and proceeded to
30 identify and clone the region containing the breakpoint.

The 77 family was analysed with polymorphic markers from 16p13.3. Individual 77-4 was hemizygous for MS205.2 and GGG1, but heterozygous for SM6 and more proximal markers, locating the translocation breakpoint

- 19 -

between GGG1 and SM6 (see Figure 1a). Fluorescence in situ hybridisation (FISH) of a cosmid from the TSC2 region, CW9D (cosmid 1 in Figure 1a), to metaphase spreads showed that it hybridised to the der(22) 5 chromosome of 77-2; placing the breakpoint proximal to CW9D and indicating that 77-4 was hemizygous for this region consistent with his TSC phenotype. DNA from members of the 77 family was digested with Cla I, separated by PFGE and hybridised with SM6; revealing a 10 breakpoint fragment of ~ 100 kb in individuals with the der(16) chromosome (Figure 1c). The small size of this novel fragment enabled the breakpoint to be localised distal to SM6 in a region of just 60 kb (Figure 1a). A 15 cosmid contig covering this region was therefore constructed (see Experimental Procedures for details). The translocation breakpoint lies within a region duplicated elsewhere on chromosome 16p (16p13.1)

It was previously noted that the region between CW21 and N54 (Figure 1a) was duplicated at a more 20 proximal site on the short arm of chromosome 16 (Germino, et al., 1992; European Chromosome 16 Tuberous Sclerosis Consortium, 1993). Figure 2 shows that a cosmid, CW10III, from the duplicated region 25 hybridises to two points on 16p; the distal, PKD1 region and a proximal site positioned in 16p13.1. The structure of the duplicated area is complex with each fragment present once in 16p13.3 re-iterated two-four times in 16p13.1 (see Figure 2). Cosmids spanning the duplicated area in 16p13.3 were subcloned (see Figure 30 3a and Experimental Procedures for details) and a restriction map was generated. A genomic map of the PKD1 region was constructed using a radiation hybrid, Hy145.19 which contains the distal portion of 16p but not the duplicate site in 16p13.1.

35 To localise the 77 translocation breakpoint, subclones from the target region were hybridised to 77-

- 20 -

2 DNA, digested with *Cla* I and separated by PFGE. Once probes mapping across the breakpoint were identified they were hybridised to conventional Southern blots of 77 family DNA. Figure 3b shows that novel *BamH* I fragments were detected from the centromeric and telomeric side of the breakpoint, which was localised to the distal part of the probe 8S1 (Figure 3a). Hence, the balanced translocation was not associated with a substantial deletion, and the breakpoint was located more than 20 kb proximal to the *TSC2* locus (Figure 3a). These results supported the hypothesis that polycystic kidney disease in individuals with the balanced translocation (77-2 and 77-3) was not due to disruption of the *TSC2* gene, but indicated that a separate gene mapping just proximal to *TSC2*, was likely to be the *PKD1* gene.

The polycystic breakpoint (PBP) gene is disrupted by the translocation

Localisation of the 77 breakpoint identified a precise region in which to look for a candidate for the *PKD1* gene. During the search for the *TSC2* gene we identified other transcripts not associated with TSC including a large transcript (~ 14 kb) partially represented in the cDNAs 3A3 and AH4 which mapped to the genomic fragments CW23 and CW21 (Figure 3a). The orientation of the gene encoding this transcript had been determined by the identification of a polyA tract in the cDNA, AH4: the 3' end of this gene lies very close to the *TSC* gene, in a tail to tail orientation (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). To determine whether this gene crossed the translocation breakpoint genomic probes from within the duplicated area and flanking the breakpoint were hybridised to Northern blots. Probes from both sides of the breakpoint, between JH5 and JH13 identified the 14 kb transcript (Figure 3a and see below for details).

- 21 -

Therefore, this gene previously called 3A3, but now designated the PBP gene extended over the 77 breakpoint and consequently was a candidate for the PKD1 gene. A walk was initiated to increase the extent 5 of the PBP cDNA contig and several new cDNAs were identified using probes from the single copy (non-duplicated) region (see Experimental Procedures for details). A cDNA contig was constructed which extended ~5.7 kb, including ~2 kb into the area that is 10 duplicated (Figure 3a).

Expression of the PBP gene

Initial studies of the expression pattern of the PBP gene were undertaken with cDNAs that map entirely within the single copy region (e.g. AH4 and 3A3). 15 Figure 4a shows that the ~ 14 kb transcript was identified by 3A3 in various tissue-specific cell lines. From this and other Northern blots we concluded that the PBP gene was expressed in all of the cell lines tested, although often at a low level. The two 20 cell lines which showed the highest level of expression were fibroblasts and a cell line derived from an astrocytoma, G-CCM. Significant levels of expression were also obtained in cell lines derived from kidney (G401) and liver (Hep3B). Measuring the expression of 25 the PBP gene in tissue samples by Northern blotting proved difficult because such a large transcript is susceptible to minor RNA degradation. However, initial results with an RNase protection assay, using a region of the gene located in the single copy area (see Experimental Procedures), showed a moderate level of 30 expression of the PBP gene in tissue obtained from normal and polycystic kidney (data not shown). The widespread expression of the PBP gene is consistent with the systemic nature of ADPKD.

- 22 -

Identification of transcripts that are partially homologous to the PBP transcript

New cDNAs were identified with the genomic fragments, JH4 and JH8, that map to the duplicated region (Figure 3a and see Experimental Procedures). However, when these cDNAs were hybridised to Northern blots a more complex pattern than that seen with 3A3 was observed. As well as the ~14 kb PBP transcript, three other, partially homologous transcripts were identified designated homologous gene-A (HG-A; ~ 21 kb), HG-B (~ 17 kb) and HG-C (8.5 kb) (Figure 4b). There were two possible explanations for these results, either the HG transcripts were alternatively spliced forms of the PBP gene, or the HG transcripts were encoded by genes located in 16p13.1. To determine the genomic location of the HG loci a fragment from the 3' end of one HG cDNA (HG-4/1.1) was isolated. HG-4/1.1 hybridised to all three HG transcripts, but not to the PBP transcript and on a hybrid panel it mapped to 16p13.1 (not the PKD1 area). These results show that all the HG transcripts are related to each other outside the region of homology with the PBP transcript and that the HG loci map to the proximal site (16p13.1).

25 An abnormal transcript associated with the 77 translocation

As the PBP gene was transcribed across the region disrupted by the 77 translocation breakpoint, in a proximal to distal direction on the chromosome (see Figure 3a) it was possible that a novel transcript originating from the PBP promotor would be found in this family. Figure 4c shows that using a probe to the PBP transcript that mapped mainly proximal to the breakpoint, a novel transcript of approximately 9 kb (PPP-77) derived from the der(16) product of the translocation was detected. Interestingly, the PBP-77

- 23 -

transcript appears to be expressed at a higher level than the normal PBP product. These results confirmed that the 77 translocation disrupts the PBP gene and supports the hypothesis that this is the PKD1 gene.

5 **Mutations of the PBP gene in other ADPKD patients**

To prove that the PBP gene is the defective gene at the PKD1 locus, we analysed this region for mutations in patients with typical ADPKD. The 3' end of the PBP gene was most accessible to study as it maps 10 outside the duplicated area. To screen this region BamH I digests of DNA from 282 apparently unrelated ADPKD patients were hybridised with the probe 1A1H.6, (see Figure 3a). In addition, a large EcoR I fragment (41 kb) which contains a significant proportion of the 15 PBP gene was assayed by field inversion gel electrophoresis (FIGE) in 167 ADPKD patients, using the probe CW10. Two genomic rearrangements were identified in ADPKD patients by these procedures; each identified by both methods.

20 The first rearrangement was identified in patient OX875 (see Experimental Procedures for clinical details) who was shown to have a 5.5 kb genomic deletion within the 3' end of the PBP gene, producing a smaller transcript (PBP-875) (see Figures 5a, b and 3a 25 for details). This genomic deletion results in a ~3 kb internal deletion of the transcript with the ~500 bp adjacent to the polyA tail intact. In this family linkage of ADPKD to chromosome 16 could not be proven because although OX875 has a positive family history of 30 ADPKD there were no living, affected relatives. However, paraffin-embedded tissue from her affected father (now deceased) was available. We demonstrated that this individual had the same rearrangement as OX875 by PCR amplification of a 220bp fragment spanning 35 the deletion (data not shown). This result and analysis of two unaffected sibs of OX875, that did not

have the deletion, showed that this mutation was transmitted with ADPKD.

The second rearrangement detected by hybridisation was a 2 kb genomic deletion within the PBP gene, in 5 ADPKD patient OX114 (see Experimental Procedures for clinical details and Figures 5c and 3a). No abnormal PBP transcript was identified by Northern blot analysis, but using primers flanking the deletion (see Experimental Procedures) a shortened product was 10 detected by RT-PCR (Figure 5c). This was cloned and sequenced and shown to have a frame-shift deletion of 446 bp (between base pair 1746 and 2192 of the sequence shown in Figure 7). OX114 is the only member of the family with ADPKD (she has no children) and ultrasound 15 analysis of her parents at age 78 (father) and 73 years old (mother) showed no evidence of renal cysts. Somatic cell hybrids were produced from OX114 and the deleted chromosome was found to be of paternal origin by haplotype analysis. The father of OX114 is now 20 deceased but analysis of DNA from the brother of OX114 (OX984) with seven microsatellite markers from the PKD1 region (see Experimental Procedures) showed that he shares the same paternal chromosome, in the PKD1 region, as OX114. Renal ultrasound revealed no cysts 25 in OX984 at age 53 and no deletion was detected by DNA analysis (Figure 5c). Hence, the deletion in OX114 is a de novo event associated with the development of ADPKD. Although it is not possible to show that the ADPKD is chromosome 16-linked, the location of the PBP 30 gene indicates that this is a de novo PKD1 mutation.

To identify more PKD1 associated mutations, single copy regions of the PBP gene were analysed by RT-PCR using RNA isolated from lymphoblastoid cell lines established from ADPKD patients. cDNA from 48 unrelated 35 patients was amplified with the primer pair 3A3 C (see Experimental Procedures) and the product of 260 bp was

- 25 -

analysed on an agarose gel. In one patient, OX32, an additional smaller product (125 bp) was identified, consistent with a deletion or splicing mutation. OX32 comes from a large family in which the disease can be 5 traced through three generations. Analysis of RNA from two affected sibs of OX32 and his parents showed that the abnormal transcript segregates with PKD1 (Figure 5d).

Amplification of normal genomic DNA with the 3A3 C
10 primers generates a product of 418 bp; sequencing showed that this region contains two small introns (5', 75 bp and 3', 83 bp) flanking a 135 bp exon. The product amplified from OX32 genomic DNA was normal in size, excluding a genomic deletion. However,
15 heteroduplex analysis of that DNA revealed larger heteroduplex bands, consistent with a mutation within that genomic interval. The abnormal OX32, RT-PCR product was cloned and sequenced: this demonstrated that, although present in genomic DNA, the 135 bp exon
20 was missing from the abnormal transcript. Sequencing of OX32 genomic DNA demonstrated a G-->C transition at +1 of the splice donor site following the 135 bp exon. This mutation was confirmed in all available affected family members by digesting amplified genomic DNA with
25 the enzyme Bst NI: a site is destroyed by the base substitution. The splicing defect results in an in-frame deletion of 135 bp from the PBP transcript (3696 bp to 3831 bp of the sequence shown in Figure 7). Together, the three intragenic mutations confirm that
30 the PBP gene is the defective gene at the PKD1 locus.

Deletions that disrupt the TSC2 and the PKD1 gene

We previously identified a deletion (WS-53) which disrupts the TSC2 gene and the PKD1 gene (European Chromosome 16 Tuberous Sclerosis Consortium, 1993),
35 although its full proximal extent was not determined. Further study has shown that the deletion extends ~ 100

- 26 -

kb (see Figure 6 for details) and deletes most if not all of the PKD1 gene. This patient has TSC but also has unusually severe polycystic disease of the kidneys. Other patients with a similar phenotype have also been 5 under investigation. Deletions involving both TSC2 and PKD1 were identified and characterised in six patients in whom TSC was associated with infantile polycystic kidney disease. As well as the deletion in WS-53, those in WS-215 and "S-250 also extended proximally 10 well beyond the known distribution of PKD1 and probably delete the entire gene. The deletion in WS-194 extended over the known extend of PKD1, but not much further proximally, while the proximal breakpoints in WS-219 and WS-227 lay within PKD1 itself. Northern 15 analysis of case WS-219 with probe JH8, which lies outside the deletion, showed a reduced level of the PKD1 transcript but no evidence of an abnormally sized transcript (data now shown). Analysis of samples from the clinically unaffected parents of patients WS-53, 20 WS-215, WS-219, WS-227 and WS-250 showed the deletions in these patients to be de novo. The father of WS-194 was unavailable for study.

In a further case (WS-212), renal ultrasound 25 showed no cysts at four years of age but a deletion was identified which removed the entire TSC2 gene and deleted an XbaI site which is located 42bp 5' to the polyadenylation signal of PKD1. To determine the precise position of the proximal breakpoint in PKD1, a 30 587bp probe from the 3' untranslated region (3'UTR) was hybridised to XbaI digested DNA. A 15kb XbaL breakpoint fragment was detected with an approximately equal intensity to the normal fragment of 6kb, indicating that most of the PKD1 3'UTR was preserved on the mutant chromosome. Evidence that a PKD1 transcript 35 is produced from the deleted chromosome in WS-212 was obtained by 3' rapid identification of cDNA ends (RACE)

- 27 -

with a novel, smaller product generated from WS-212 cDNA. Characterisation of this product showed that polyadenylation occurs 546bp 5' to the normal position, within the 3'UTR of PKD1 (231bp 3' to the stop codon at 5 5073bp of the described PKD1 sequence ¹⁴). A transcript with an intact open reading frame is thus produced from the deleted WS-212 chromosome. It is likely that a functional PKD1 protein is produced from this transcript, explaining the lack of cystic disease 10 in this patient. The sequence preceding the novel site of polyA addition is: AGTCAGTATTTATGGTGTAAATGTG(A)n. Although not conforming precisely to the consensus of AATAAA, it is likely that part of this AT rich region acts as an 15 alternative polyadenylation signal if, as in this case, the normal signal is deleted (a possible sequence is underlined).

The WS-212 deletion is 75kb between SM9-CW9 distally and the PKD1 3'UTR proximally. The WS-215 20 deletion is 160kb between CW15 and SM6-JH17. WS-194 has 65kb deleted between CW20 and CW10-CW36. WS-227 has a 50kb deletion between CW20 and JH11 and WS-219 has a 27kb deletion between JH1 and JH6. The distal end of the WS-250 deletion is in CW20 but the precise 25 location of the proximal end is not known. However, the same breakpoint fragment of 320kb is seen with Pvul-digested DNA using probes on adjacent Pvul fragments, CE18 (which normally detects a 245kb fragment) and BLu24 (235kb). Hence this deletion can 30 be estimated ~160kb. b. PFGE analysis of the deletion in WS-219. Mlul digested DNA from a normal control (N) and WS-219 probed with the clones H2, JH1, CW21 and CW10 which detect an ~130kb fragment in normal individuals. CW10 also detects a much smaller fragment 35 from the duplicated region situated more proximally on 16p. A novel fragment of ~100kb is seen in WS-219 with

- 28 -

probes H2 and CW10 which flank the deletion in this patient. JH1 is partially deleted but detects the novel band weakly. The aberrant fragment is not detected by CW-21, which is deleted on the mutant 5 chromosome. BamH1 digested DNA of normal control (N) and WS-219 separated by conventional gel electrophoresis and hybridised to probes JH1 and JH6 which flank the deletion. The same breakpoint fragment of ~3kb is seen with both probes, consistent with a 10 deletion of ~27kb ending within the BamH1 fragments seen by these probes.

Two further deletions

In addition we have characterised two further mutations of this gene which were identified in typical PKD1 families. In both cases the mutation is a 15 deletion in the 75bp intron amplified by the primer pair 3A3C (European Polycystic Kidney Disease Consortium, 1994). The deletions are of 18bp and 20bp, respectively, in the patients 461 and OX1054. Although 20 these deletions do not disrupt the highly conserved sequences flanking the exon/intron boundaries, they do result in aberrant splicing of the transcript. In both cases, two abnormal mRNAs are produced, one larger and one smaller than normal. Sequencing of these cDNAs 25 showed that the larger transcript includes the deleted intron, and so has an in-frame insertion of 57bp in 461, while OX1054 has a frameshift insertion of 55bp. The smaller transcript is due to activation of a 30 cryptic splice site in the exon preceding the deleted intron and results in an in-frame deletion of 66bp in both patients. The demonstration of two additional mutations of this gene in PKD1 patients further confirms that this is the PKD1 gene.

Characterisation of the PKD1 gene

35 To characterise the PKD1 gene further, evolutionary conservation was analysed by zoc

- 29 -

blotting'. Using probes from the single copy, 3' region (3A3) and from the duplicated area (JH4, JH8) the PKD1 gene was conserved in other mammalian species, including horse, dog, pig and rodents (data not shown).

5 No evidence of related sequences were seen in chicken, frog or drosophila by hybridisation at normal stringency. The degree of conservation was similar when probes from the single copy or the duplicated region were employed.

10 The full genomic extent of the PKD1 gene is not yet known, although results obtained by hybridisation to Northern blots show that it extends from at least as far as JH13. Several CpG islands have been localised 5' of the known extent of the PKD1 gene (Figure 6),
15 although there is no direct evidence that any of these are associated with this gene.

20 The cDNA contig extending 5631 bp to the 3' end of the PKD1 transcript was sequenced; where possible more than one cDNA was analysed and in all regions both strands were sequenced (Figure 7). We estimated that this accounts for ~40% of the PKD1 transcript. An open reading frame was detected which runs from the 5' end of the region sequenced and spans 4842 bp, leaving a 3' untranslated region of 789 bp which contains the 25 previously described microsatellite, KG8 (Peral, et al., 1994; Snarey, et al., 1994). A polyadenylation signal is present at nucleotides 5598-5603 and a polyA tail was detected in two independent cDNAs (AH4 and AH6) at position, 5620. Comparison with the cDNAs HG-30 4 and 11BHS21, which are encoded by genes in the duplicate, 16p13.1 region, show that 1866 bp at the 5' end of the partial PKD1 sequence shown in Figure 7 lies within the duplicated area. The predicted amino acid sequence from the available open reading frame extends 35 1614 residues, and is shown in Figure 7. A search of the swiccpot and NBRF data bases with the available

- 30 -

protein sequence, using the Blast programme (Altschul, et al., 1990) identified only short regions of similarity (notably, between amino-acids 690-770 and 1390-1530) to a diverse group of proteins; no highly significant areas of homology were recognised. The importance of the short regions of similarity is unclear as the search for protein motifs with the ProSite Programme did not identify any recognised functional protein domains within the PKD1 gene.

The task of identifying and characterising the PKD1 gene has been more difficult than for other disorders because more than three quarters of the gene is embedded in a region of DNA that is duplicated elsewhere on chromosome 16. This segment of 40-50 kb of DNA, present as a single copy in the PKD1 area (16p13.3), is re-iterated as several divergent copies in the more proximal region, 16p13.1. This proximal site contains three gene loci (HG-A, -B and -C) that each produce polyadenylated mRNAs and share substantial homology to the PKD1 gene; it is not known whether these partially homologous transcripts are translated into functional proteins.

Although gene amplification is known as a major mechanism for creating protein diversity during evolution, the discovery of a human disease locus embedded within an area duplicated relatively recently is a new observation. In this case because of the recent nature of the reiteration the whole duplicated genomic region retains a high level of homology, not just the exons. The sequence of events leading to the duplication and which sequence represents the original gene locus are not yet clear. However, early evidence of homology of the 3' ends of the three HG transcripts which are different from the 3' end of the PKD1 gene indicated that the loci in 16p13.1 have probably arisen

by further reiteration of sequences at this site, after it separated from the distal locus.

To try to overcome the duplication problem we have employed an exon linking approach using RNA isolated 5 from a radiation hybrid, Hy145.19, that contains just the PKD1 part of chromosome 16, and not the duplicate site in 16p13.1. Hence, this hybrid produces transcripts from the PKD1 gene but not from the homologous genes (HG-A, HG-B and HG-C). We have also 10 sequenced much of the genomic region containing the PKD1 gene, from the cosmid JH2A, and have sequenced a number of cDNAs from the HG locus. To determine the likely position of PKD1 exons in the genomic DNA we compared HG cDNAs, (HG-4 and HG-7) to the genomic 15 sequence. We then designed primers with sequences corresponding to the genomic DNA, to regions identified by the HG exons and employing cDNA generated from the hybrid Hy145.19, we amplified sections of the PKD1 transcript. The polymerase Pfu was used to minimise 20 incorporation errors. These amplified fragments were then cloned and sequenced. The PDK1 cDNA contig whose sequence is shown in Figure 10 is made up of (3'-5') the original 5.7 kb of sequence shown in Figure 7, and the cDNAs: gap alpha 22 (890 bp), gap gamma (872 bp), a 25 section of genomic DNA from the clone JH8 (2,724 bp) which corresponds to a large exon, S1-S3 (733 bp), S3-S4 (1,589 bp) and S4-S13 (1,372 bp). Together these make a cDNA of 13,807 bp with the extreme 5' end of the transcript still uncharacterised. When these cDNAs 30 from the PKD1 contig were sequenced an open reading frame was found to run from the start of the contig to the previously-identified stop codon, a region of 13,018 bp. The predicted protein encoded by the PKD1 transcript is also shown in Figure 10 and has 4,339 35 amino acid residues.

- 32 -

We have therefore compelling evidence that mutations of the PKD1 gene give rise to the typical phenotype of ADPKD. The location of this gene within the PKD1 candidate region and the available genetic 5 evidence from the families with mutations show that this is the PKD1 gene. The present invention therefore includes the PKD1 gene itself and the six PKD1-associated mutations which have been described: a de novo translocation, which was subsequently transmitted 10 with the phenotype; two intragenic deletions (one a de novo event); two further deletions; and a splicing defect.

It has previously been argued that PKD1 could be recessive at the cellular level, with a second somatic 15 mutation required to give rise to cystic epithelium (Reeders, 1992). This "two hit" process is thought to be the mutational mechanism giving rise to several dominant diseases, such as neurofibromatosis (Legius, et al., 1993) and tuberous sclerosis (Green, et al., 20 1994) which result from a defect in the control of cellular growth. If this were the case, however, we might expect that a proportion of constitutional PKD1 mutations would be inactivating deletions as seen in these other disorders.

The location of the PKD1 mutations may, however, 25 reflect some ascertainment bias as it is this single copy area which has been screened most intensively for mutations. Nevertheless, no additional deletions were detected when a large part of the gene was screened by 30 FIGE, and studies by PFGE showed no large deletions of this area in 75 PKD1 patients. It is possible that the mutations detected so far result in the production of an abnormal protein which causes disease through a gain 35 of function. However, it is also possible that these mutations eliminate the production of functional protein from this chromosome and result in the PKD1

- 33 -

phenotype by haploinsufficiency, or only after loss of the second PKD1 homologue by somatic mutation.

At least one mutation which seems to delete the entire PKD1 gene has been identified (WS-53) but in 5 this case it also disrupts the adjacent TSC2 gene and the resulting phenotype is of TSC with severe cystic kidney disease. Renal cysts are common in TSC so that the phenotypic significance of deletion of the PKD1 gene in this case is difficult to assess. It is clear 10 that not all cases of renal cystic disease in TSC are due to disruption of the PKD1 gene; chromosome 9 linked TSC (TSC1) families also manifest cystic kidneys and we have analysed many TSC2 patients with kidney cysts who do not have deletion of the PKD1 gene.

15 Preliminary analysis of the PKD1 protein sequence has highlighted two regions which provide some clues to the possible function of the PKD1 gene. At the extreme 5' end of the characterised region are two leucine-rich repeats (LRRs) (amino acids 29-74) flanked by 20 characteristic amino flanking (amino acids 6-28) and carboxy flanking sequences (amino acids 76-133) (Rothberg et al, 1990). LRRs are thought to be involved in protein-protein interactions (Kobe and Deisenhofer, 1994) and the flanking sequences are only 25 found in extracellular proteins. Other proteins with LRRs flanked on the amino and carboxy sides are receptors or are involved in adhesion or cellular signalling. Further 3' on the protein (amino acids 350-515) is a C-type lectin domain (Curtis et al, 30 1992). This indicates that this region binds carbohydrates and is also likely to be extracellular. These two regions of homology indicate that the 5' part 35 of the PKD1 protein is extracellular and involved in protein-protein interactions. It is possible that this protein is a constituent of, or plays a role in assembling, the extracellular matrix (ECM) and may act

- 34 -

as an adhesive protein in the ECM. It is also possible that the extracellular portion of this protein is important in signalling to other cells. The function of much of the PKD1 protein is still not fully known
5 but the presence of several hydrophobic regions indicates that the protein may be threaded through the cell membrane.

Familial studies indicate that de novo mutations probably account for only a small minority of all ADPKD cases; a recent study detected 5 possible new mutations in 209 families (Davies, et al., 1991). However, in our study one of three intragenic mutations detected was a new mutation and the PKD1 associated translocation was also a de novo event. Furthermore,
10 the mutations detected in the two familial cases do not account for a significant proportion of the local PKD1. The OX875 deletion was only detected in 1 of 282 unrelated cases, and the splicing defect was seen in only 1 of 48 unrelated cases. Nevertheless, studies of
15 linkage disequilibrium have found evidence of common haplotypes associated with PKD1 in a proportion of some populations (Peral, et al., 1994; Snarey, et al., 1994) suggesting that common mutations will be identified.
20

Once a larger range of mutations have been characterised it will be possible to evaluate whether the type and location of mutation determines disease severity, and if there is a correlation between mutation and extra-renal manifestations. Previous
25 studies have provided some evidence that the risk of cerebral aneurysms 'runs true' in families (Huston, et al., 1993) and that some PKD1 families exhibit a consistently mild phenotype (Ryynanen, et al., 1987). A recent study has concluded that there is evidence of
30 anticipation in ADPKD families, especially if the disease is transmitted through the mother (Fink, et
35

- 35 -

al., 1994). Furthermore, analysis of families with early manifestation of ADPKD show that there is a significant intra-familial recurrence risk and that childhood cases are most often transmitted maternally
5 (Fink, et al., 1993; Zerres, et al., 1993). This pattern of inheritance is reminiscent of that seen in diseases in which an expanded trinucleotide repeat was found to be the mutational mechanism (reviewed in Mandel, 1993). However, no evidence for an expanding
10 repeat correlating with PKD1 has been found in this region although such a sequence cannot be excluded.

There is ample evidence that early presymptomatic diagnosis of PKD1 is helpful because it allows complications such as hypertension and urinary tract
15 infections to be monitored and treated quickly (Ravine, et al., 1991). The identification of mutations within a family will allow rapid screening of that and other families with the same mutation. However, genetic linkage analysis is likely to remain important for
20 presymptomatic diagnosis. The accuracy and ease of linkage based diagnosis will be improved by the identification of the PKD1 gene as a microsatellite lies in the 3' untranslated region of this gene (KG-8) and several CA repeats are located 5' of the gene (see
25 Figure 1a and 6; Peral, et al., 1994; Snarey, et al., 1994).

Experimental Procedures

Clinical Details of Patients

Family 77

30 77-2 and 77-3 are 48 and 17 years old, respectively, and have typical ADPKD. Both have bilateral polycystic kidneys and 77-2 has impaired renal function. Neither patient manifests any signs of TSC (apart from cystic kidneys) on clinical and
35 ophthalmological examination or by CT scan of the brain.

- 36 -

77-4 is 13 years old, severely mentally retarded and has multiple signs of TSC including adenoma sebaceum, depigmented macules and periventricular calcification on CT scan. Renal ultrasound reveals a small number of bilateral renal cysts.

ADPKD patients

OX875 developed ESRD from ADPKD, aged 46. Progressive decline in renal function had been observed over 17 years; ultrasound examinations documented enlarging polycystic kidneys with less extensive hepatic cystic disease. Both kidneys were removed after renal transplantation and pathological examination showed typical advanced cystic disease in kidneys weighing 1920g and 3450g (normal average 120g).

OX114 developed ESRD from ADPKD aged 54: diagnosis was made by radiological investigation during an episode of abdominal pain aged 25. A progressive decline in renal function and the development of hypertension was subsequently observed. Ultrasonic examination demonstrated enlarged kidneys with typical cystic disease, with less severe hepatic involvement.

OX32 is a member of a large kindred affected by typical ADPKD in which several members have developed ESRD. The patient himself has been observed for 12 years with progressive renal failure and hypertension following ultrasonic demonstration of polycystic kidneys.

No signs of TSC were observed on clinical examination of any of the ADPKD patients.

30 DNA Electrophoresis and Hybridisation

DNA extraction, restriction digests, electrophoresis, Southern blotting, hybridisation and washing were performed by standard methods or as previously described (Harris, et al., 1990). FIGE was performed with the Biorad FIGE Mapper using programme 5 to separate fragments from 25-50 kb. High molecular

- 37 -

weight DNA for PFGE was isolated in agarose blocks and separated on the Biorad CHEF DRII apparatus using appropriate conditions.

Genomic DNA probes and somatic cell hybrids

5 Many of the DNA probes used in this study have been described previously: MS205.2 (D16S309; Royle, et al., 1992); GGG1 (D16S259; Germino, et al., 1990); N54 (D16S139; Himmelbauer, et al., 1991); SM6 (D16S665), CW23, CW21, and JH1 (European Chromosome 16 Tuberous
10 Sclerosis Consortium, 1993). Microsatellite probes for haplotype analysis were KG8 and W5.2 (Snarey, et al., 1994) SM6, CW3 and CW2, (Peral, et al., 1994), 16AC2.5 (Thompson, et al., 1992); SM7 (Harris, et al., 1991), VK5AC (Aksentijevich, et al., 1993).

15 New probes isolated during this study were: JH4, JH5, JH6, 11 kb, 6 kb and 6 kb BamH I fragments, respectively, and JH13 and JH14, 4 kb and 2.8 kb BamH I-EcoR I fragments, respectively, all from the cosmid JH2A; JH8 and JH10 are 4.5 kb and 2 kb Sac I fragments,
20 respectively and JH12 a 0.6 Sac I-BamH I fragment, all from JH4; 8S1 and 8S3 are 2.4 kb and 0.6 kb Sac II fragments, respectively, from JH8; CW10 is a 0.5 kb Not I-Mlu I fragment of SM25A; JH17 is a 2 kb EcoR I fragment of NM17.

25 The somatic cell hybrids N-OH1 (Germino, et al., 1990), P-MWH2A (European Chromosome 16 Tuberous Sclerosis Consortium, 1993) and Hy145.19 (Himmelbauer, et al., 1991) have previously been described. Somatic cell hybrids containing the paternally derived (BP2-10)
30 and maternally derived (BP2-9) chromosomes from OX114 were produced by the method of Deisseroth and Hendrick (1979).

Constructing a cosmid contig

35 Cosmids were isolated from chromosome 16 specific and total genomic libraries, and a contig was constructed using the methods and libraries previously

- 38 -

described (European Chromosome 16 Tuberous Sclerosis Consortium, 1993). To ensure that cosmids were derived from the 16p13.3 region (not the duplicate 16p13.1 area) initially, probes from the single copy area were 5 used to screen libraries (e.g. CW21 and N54). Two cosmids mapped entirely within the area duplicated, CW10III and JC10.2B. To establish that these were from the PKD1 area, they were restriction mapped and hybridised with the probe CW10. The fragment sizes 10 detected were compared to results obtained with hybrids containing only the 16p13.3 area (Hyl45.19) or only the 16p13.1 region (P-MWH2A).

FISH

15 FISH was performed essentially as previously described (Buckle and Rack, 1993). The hybridisation mixture contained 100 ng of biotin-II-dUTP labelled cosmid DNA and 2.5 mg human Cot-1 DNA (BRL), which was denatured and annealed at 37°C for 15 min prior to hybridisation at 42°C overnight. After stringent 20 washes the site of hybridisation was detected with successive layers of fluorescein-conjugated avidin (5 mg/ml) and biotinylated anti-avidin (5 mg/ml) (Vector Laboratories). Slides were mounted in Vectashield (Vector Laboratories) containing 1 mg/ml propidium 25 iodide and 1 mg/ml 4', 6-diamidino-2-phenylindole (DAPI), to allow concurrent G-banded analysis under UV light. Results were analysed and images captured using a Bio-Rad MRC 600 confocal laser scanning microscope.

cDNA screening and characterisation

30 Foetal brain cDNAs libraries in λ phage (Clonetech and Stratagene) were screened by standard methods with genomic fragments in the single copy area (equivalent to CW23 and CW21) or with a 0.8 kb Pvu II-Eco RI single 35 copy fragment of AH3. Six PBP cDNAs were characterised including two previously described, AH4 (1.7 kb), 3A3 (2.0 kb) (European Chromosome 16 Tuberous Sclerosis

- 39 -

Consortium, 1993), and four novel cDNAs AH3 (2.2 kb), AH6 (2.0 kb), A1C (2.2 kb) and B1E (2.9 kb). A Striatum library (Stratagene) was screened with JH4 and a HG-C cDNA, 11BHS21 (3.8 kb) was isolated; 21P.9 is
5 a 0.9 kb Pvu II-EcoR I subclone of this cDNA. A HG-A or HG-B cDNA, HG-4 (7 kb) was also isolated by screening the foetal brain library (Stratagene) with JH8. HG-4/1.1 is a 1.1 kb Pvu II-EcoR I fragment from the 3' end of HG-4. 1A1H.6 is a 0.6 kb Hind III-EcoR I
10 subclone of a TSC2 cDNA, 1A-1 (1.7 kb), which was isolated from the Clonetech library. Each cDNA was subcloned into Bluescript and sequenced utilising a combination of sequential truncation and oligonucleotide primers using DyeDeoxy Terminators
15 (Applied Biosystems) and an ABI 373A DNA Sequencer (Applied Biosystems) or by hand with 'Sequenase' T7 DNA polymerase (USB).

RNA Procedures

Total RNA was isolated from cell lines and tissues
20 by the method of Chomczynski and Sacchi (1987) and enrichment for mRNA made using the PolyAT tract mRNA Isolation System (Promega). For RNA electrophoresis 0.5% agarose denaturing formaldehyde gels were used which were Northern blotted, hybridised and washed by
25 standard procedures. The 0.24 - 9.5 kb RNA (Gibco BRL) size standard was used and hybridisation of the probe (1-9B3) to the 13 kb Utrophin transcript (Love, et al., 1989) in total fibroblast RNA was used as a size marker for the large transcripts.

30 RT-PCR was performed with 2.5 mg of total RNA by the method of Brown et al (1990) with random hexamer primers, except that AMV-reverse transcriptase (Life Sciences) was employed. To characterise the deletion of the PBP transcript in OX114 we used the primers :

- 40 -

AH3 F9 5' TTT GAC AAG CAC ATC TGG CTC TC 3'
AH3 B7 5' TAC ACC AGG AGG CTC CGC AG 3'

in a DMSO containing PCR buffer (Dodé, et al., 1990)
5 with 0.5 mM MgCl₂ and 36 cycles of: 94°C, 1 min; 61°C,
1 min; 72°C, 2 min plus a final extension of 10 min.
The 3A3 C primers used to amplify the OX32 cDNA and DNA
were:

10 3A3 C1 5' CGC CGC TTC ACT AGC TTC GAC 3'
3A3 C2 5' ACG CTC CAG AGG GAG TCC AC 3'

These were employed in a PCR buffer and cycle
previously described (Harris, et al., 1991) with 1mM
MgCl₂ and an annealing temperature of 61°C.

15 PCR products for sequencing were amplified with
Pfu-1 (Stratagene) and ligated into the Srf-1 site in
PCR-Script (Stratagene) in the presence of Srf-1.

RNAse protection

Tissues from normal and end-stage polycystic
20 kidneys were immediately homogenised in guanidinium
thiocyanate. RNA was purified on a cesium chloride
gradient and 30 mg total RNA was assayed by RNase
protection by the method of Melton, et al., (1984)
using a genomic template generated with the 3A3, C
primers.

25 Heteroduplex Analysis

Heteroduplex analysis was performed essentially as
described by Keen et al (1991). Samples were amplified
from genomic DNA with the 3A3, C primers, heated at
95°C for 5 minutes and incubated at room temperature
30 for at least 30 minutes before loading on a Hydrolink
gel (AT Biochem). Hydrolink gels were run for 12-18
hours at 250V and fragments observed after staining
with ethidium bromide.

Extraction and amplification of paraffin-embedded DNA

35 DNA from formalin fixed, paraffin wax embedded
kidney tissue was prepared by the method of Wright and

- 41 -

Manos (1990), except that after proteinase K digestion overnight at 55°C, the DNA was extracted with phenol plus chloroform before ethanol precipitation. Approximately 50 ng of DNA was used for PCR with 1.5 mM 5 MgCl₂ and 40 cycles of 94°C for 1 min, 59°C for 1 min and 72°C for 40 s, plus a 10 min extension at 72°C. The oligonucleotide primers designed to amplify across the genomic deletion of OX875 were:

AH4F2 : 5' - GGG CAA GGG AGG ATG ACA AG - 3'

10 JH14B3 : 5' - GGG TTT ATC AGC AGC AAG CGG - 3'

which produced a product of ~ 220 bp in individuals with the OX875 deletion.

3'RACE analysis of WS-212

3' RACE was completed essentially as described 15 (European Polycystic Kidney Disease Consortium (1994)). Reverse transcription was performed with 5µg total RNA with 0.5µg of the hybrid dT₁₇ adapter primer using conditions previously described (Fronman et al., 1988)). A specific 3' RACE product was amplified with 20 the primer F5 adn adapter primer in 0.5mM MgCl₂ with the program: 57°C, 60s; 72°C, 15 minutes and 30 cycles of 95°C, 40s; 57°C, 60s; 72°C, 60s plus 72°C, 10 minutes. The amplified product was cloned using the TA cloning system (Invitrogen) and sequenced by 25 conventional methods.

References

- Aksentijevich, I., Pras, E., Gruberg, L., Shen, Y., Holman, K., Helling, S., Prosen, L., Sutherland, G.R., Richards, R.I., Ramsburg, M., Dean, M., Pras, M., 30 Amos, C.I. and Kastner, D.L. (1993). Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet. 53, 451-461.

- 42 -

Altschul, S.F., Warren, G., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic alignment search tool. *J. Mol. Biol.* 215, 403-410.

5 Breuning, M.H., Reeders, S.T., Brunner, H., Ijdo, J.W., Saris, J.J., Verwest, A., van Ommen, G.J.B. and Pearson, P.L. (1987). Improved early diagnosis of adult polycystic kidney disease with flanking DNA markers. *Lancet.* ii, 1359-1361.

10 Breuning, M.H., Snijders, F.G.M., Brunner, H., Verwest, A., Ijdo, J.W., Saris, J.J., Dauwerse, J.G., Blondel, L., Keith, T., Callen, D.F., Hyland, V.J., Xiao, G.H., Scherer, G., Higgs, D.R., Harris, P.,
15 Bachner, L., Reeders, S.T., Germino, G., Pearson, P.L. and van Ommen, G.J.B. (1990). Map of 16 polymorphic loci on the short arm of chromosome 16 close to the polycystic kidney disease gene (PKD1). *J. Med. Genet.* 27, 603-613.

20 Brook-Carter, P.T., Peral, B., Ward, C.J., Thompson, P., Hughes, J., Maheshwar, M.M., Nellist, M., Gamble, V., Harris, P.C. & Sampson, J.R. (1994). Deletion of the TSC2 and PKD1 genes associated with
25 severe infantile polycystic kidney disease - a contiguous gene syndrome. *Nature Genetics*, 8, 328-332.

30 Brown, C.J., Flenniken, A.M., Williams, B.R.G. and Willard, H.F. (1990). X chromosome inactivation of the human TIMP gene. *Nucl. Acids Res.* 18, 4191-4195.

35 Buckle, V.J. and Rack, K. (1993). Fluorescent in situ hybridisation. *Human Genetic Disease Analysis: A Practical Approach* (K.E. Davies, Ed.) Vol 2, 59-82. IRL Press, Oxford.

- 43 -

Chapman, A.B., Rubinstein, D., Hughes, R., Stears, J.C., Earnest, M.P., Johnson, A.M., Gabow, P.A. and Kaehny, W.D. (1992). Intracranial aneurysms in autosomal dominant polycystic kidney disease. N. Eng. 5 J. Med. 327, 916-920.

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. 10 Biochem. 162, 156-159.

Curtis, B.M., Scharnowske, S. & Watson, A.J., (1992) Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent 15 binding of human immunodeficiency virus envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA, 89, 8356-8360.

Dalgaard, O.Z. (1957). Bilateral polycystic 20 disease of the kidneys: A follow-up of two hundred and eighty-four patients and their families. Acta Med. Scand. 158, 1-251.

Davies, F., Coles, G.A., Harper, P.S., Williams, A.J., Evans, C. and Cochlin, D. (1991). Polycystic 25 kidney disease re-evaluated: a population-based study. Q. J. Med. 79, 477-485.

Deisseroth, A. and Hendrick, D. (1979). Activation 30 of phenotypic expression of human globin genes from non-erythroid cells by chromosome-dependent transfer to tetraploid mouse erythroleukemia cells. Proc. Natl. Acad. Sci. USA. 76, 2185-2189.

- 44 -

Dodé, C., Rochette, J. and Krishnamoorthy, R. (1990). Locus assignment of human α globin mutations by selective amplification and direct sequencing. Brit. J. Haemat. 76, 275-281.

5

European Chromosome 16 Tuberous Sclerosis Consortium (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 75, 1305-1315.

10

European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes at 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 77, 881-894.

15

Fink, G.M., Johnson, A.M., Strain, J.D., Kimberling, W. J., Kumar, S., Manco-Johnson, M.L., Duley, I.T. and Gabow, P.A. (1993). Characteristics of very early onset autosomal dominant polycystic kidney disease. Journal American Society Nephrology. 3, 1863-1870.

Fink, G.M., Johnson, A.M. and Gabow, P.A. (1994). Is there evidence for anticipation in autosomal-dominant polycystic disease? Kidney Int. 45, 1153-1162.

Fronman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Biochemistry 85, 8998-9002 (1988).

Gabow, P.A. (1990). Autosomal dominant polycystic kidney disease - more than a renal disease. American Journal of Kidney Diseases. XVI, 403-413.

- 45 -

Gabow, P.A. (1991). Polycystic kidney disease: clues to pathogenesis. *Kidney Int.* 40, 989-996.

5 Gabow, P.A., Johnson, A.M., Kaehny, W.D., Kimberling, W.J., Lezotte, D.C., Duley, I.T. and Jones, R.H. (1992). Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. *Kidney Int.* 41, 1311-1319.

10 Gabow, P.A. (1993). Autosomal dominant polycystic kidney disease. *N. Eng. J. Med.* 329, 332-342.

15 Germino, G.G., Barton, N.J., Lamb, J., Higgs, D.R., Harris, P., Xiao, G.H., Scherer, G., Nakamura, Y. and Reeders, S.T. (1990). Identification of a locus which shows no genetic recombination with the autosomal dominant polycystic kidney disease gene on chromosome 16. *Am. J. Hum. Genet.* 46, 925-933.

20 Germino, G.G., Weinstat-Saslow, D., Himmelbauer, H., Gillespie, G.A.J., Somlo, S., Wirth, B., Barton, N., Harris, K.L., Frischauf, A.-M. and Reeders, S.T. (1992). The gene for autosomal dominant polycystic kidney disease lies in a 750-kb CpG-rich region. *Genomics.* 13, 144-151.

25 Green, A.J., Smith, M. and Yates, J.R.W. (1994). Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. *Nature Genet.* 6, 193-196.

30 Harris, P.C., Barton, N.J., Higgs, D.R., Reeders, S.T. and Wilkie, A.O.M. (1990). A long-range restriction map between the α -globin complex and a marker closely linked to the polycystic kidney disease (PKD1) locus. *Genomics.* 7, 195-206.

- 46 -

- Harris, P.C., Thomas, S., Ratcliffe, P.J.,
Breuning, M.H., Coto, E. and Lopez-Larrea, C. (1991).
Rapid genetic analysis of families with polycystic
kidney disease by means of a microsatellite marker.
5 Lancet. 338, 1484-1487.
- Himmelbauer, H., Germino, G.G., Ceccherini, I.,
Romeo, G., Reeders, S.T. and Frischauf, A.-M. (1991).
Saturating the region of the polycystic kidney disease
10 gene with Not I linking clones. Am. J. Hum. Genet. 48,
325-334.
- Hossack, K.F., Leddy, C.L., Johnson, A.M.,
Schrier, R.W. and Gabow, P.A. (1988). Echocardiographic
findings in autosomal dominant polycystic kidney
15 disease. N. Eng. J. Med. 319, 907-912.
- Huston, J., Torres, V.E., Sullivan, P.P., Offord,
K.P. and Wiebers, D.O. (1993). Value of magnetic
resonance angiography for detection of intracranial
20 aneurysm in autosomal dominant polycystic kidney
disease. Journal of the American Society of Nephrology.
3, 1871-1877.
- Hyland, V.J., Suthers, G.K., Friend, K.,
25 MacKinnon, R.N., Callen, D.F., Breuning, M.H., Keith,
T., Brown, V.A., Phipps, P. and Sutherland, G.R.
(1990). Probe, VK5B, is located in the same interval as
the autosomal dominant adult polycystic kidney disease
locus, PKD1. Hum. Genet. 84, 286-288.
- 30
- Keen, J., Lester, D., Inglehearn, C., Curtis, A.
and Bhattacharya, S. (1991). Rapid detection of single
base mismatches as heteroduplexes on Hydrolink gels.
Trends Genet. 7, 5.
- 35

- 47 -

Kimberling, W.J., Fain, P.R., Kenyon, J.B., Goldgar, D., Sujansky, E. and Gabow, P.A. (1988). Linkage heterogeneity of autosomal dominant polycystic kidney disease. *N. Eng. J. Med.* 319, 913-918.

5

Kimberling, W.J., Kumar, S., Gabow, P.A., Kenyon, J.B., Connolly, C.J. and Somlo, S. (1993). Autosomal dominant polycystic kidney disease: Localization of the second gene to chromosome 4q13-q23. *Genomics*. 18, 467-472.

10

Kobe, B. & Deisenhofer, J. (1994) The leucine-rich repeat: a versatile binding motif. *Trends in Biochemical Sciences*, 19, 415-421.

15

Legius, E., Marchuk, D.A., Collins, F.S. and Glover, T.W. (1993). Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. *Nature Genet.* 3, 122-126.

20

Love, D.R., Hill, D.F., Dickson, G., Spurr, N.K., Byth, B.C., Marsden, R.F., Walsh, F.S., Edwards, Y.H. and Davies, K.E. (1989). An autosomal transcript in skeletal muscle with homology to dystrophin. *Nature*.

25

339, 55-58.

Mandel, J-L. Questions of expansion. *Nature Genetics*. 4, 8-9.

30

Melton, D.A., Kreig, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. (1984). Efficient in vitro synthesis of biological active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. *Nucleic Acid Research*. 12, 7035-7056.

35

- 48 -

Milutinovic, J., Fialkow, P.J., Rudd, T.G. and Agodoa, L.Y., Phillips, L.A. and Bryant, J.I. (1980). Liver cysts in patients with autosomal dominant polycystic kidney disease. Am. J. Med. 68, 741-744.

5

Parfrey, P.S., Bear, J.C., Morgan, J., Cramer, B.C., McManamion, P.J., Gault, M.H., Churchill, D.N., Singh, M., Hewitt, R., Somlo, S. and Reeders, S.T. (1990). The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N. Eng. J. Med. 323, 1085-1090.

Peral, B., Ward, C.J., San Millán, J.L., Thomas, S., Stallings, R.L., Moreno, F. and Harris, P.C. (1994). Evidence of linkage disequilibrium in the Spanish polycystic kidney disease 1 population. Am. J. Hum. Genet. 54, 899-908.

Peters, D.J.M. and Sandkuijl, L.A. (1992). Genetic heterogeneity of polycystic kidney disease in Europe. Contributions to Nephrology: Polycystic Kidney Disease. 97, 128-139.

Peters, D.J.M., Spruit, L., Saris, J.J., Ravine, D., Sandkuijl, L.A., Fosdal, R., Boersma, J., van Eijk, R., Nibby, S., Constantinou-Deltas, C.D., Pierides, A., Brissenden, J.E., Frants, R.R., van Ommen, G.-J.B. and Breuning, M.H. (1993). Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nature Genet. 5, 359-362.

Pound, S.E., Carothers, A.D., Pignatelli, P.M., Macnicol, A.M., Watson, M.L. and Wright, A.F. (1992). Evidence for linkage disequilibrium between D16S94 and the adult onset polycystic kidney disease (PKD1) gene. J. Med. Genet. 29, 247-248.

- 49 -

- Ravine, D., Walker, R.G., Gibson, R.N., Forrest, S.M., Richards, R.I., Friend, K., Sheffield, L.J., Kincaid-Smith, P. and Danks, D.M. (1992). Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet. 340, 1330-1333.
- Ravine, D., Walker, R.G., Gibson, R.N., Sheffield, L.J., Kincaid-Smith, P. and Danks, D.M. (1991). Treatable complications in undiagnosed cases of autosomal dominant polycystic kidney disease. Lancet. 337, 127-129.
- Reeders, S.T. (1992). Multilocus polycystic disease. Nature Genet. 1, 235-237.
- Reeders, S.T., Breuning, M.H., Davies, K.E., Nicholls, R.D., Jarman, A.P., Higgs, D.R., Pearson, P.L. and Weatherall, D.J. (1985). A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature. 317, 542-544.
- Reeders, S.T., Keith, T., Green, P., Germino, G.G., Barton, N.J., Lehmann, O.J., Brown, V.A., Phipps, P., Morgan, J., Bear, J.C. and Parfrey, P. (1988). Regional localization of the autosomal dominant polycystic kidney disease locus. Genomics. 3, 150-155.
- Romeo, G., Costa, G., Catizone, L., Germino, G.G., Weatherall, D.J., Devoto, M., Roncuzzi, L., Zucchelli, P., Keith, T. and Reeders, S.T. (1988). A second genetic locus for autosomal dominant polycystic kidney disease. Lancet. ii, 8-10.
- Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Artavanis-Tsakonas, S. (1990) slit: an extracellular protein necessary for development of midline glia and

- 50 -

commissural axon pathways contains both EGF and LRR domains. *Genes and Development*, 4, 2169-2187.

5 Royle, N.J., Armour, J.A.L., Webb, M., Thomas, A. and Jeffreys, A.J. (1992). A hypervariable locus D16S309 located at the distal end of 16p. *Nucl. Acids Res.* 20, 1164.

10 Ryynanen, M., Dolata, M.M., Lampainen, E. and Reeders, S.T. (1987). Localisation of a mutation producing autosomal dominant polycystic kidney disease without renal failure. *J. Med. Genet.* 24, 462-465.

15 Scheff, R.T., Zuckerman, G., Harter, H. Delmez, J. and Koehler, R. (1980). Diverticular disease in patients with chronic renal failure due to polycystic kidney disease. *Ann. Intern. Med.* 92, 202-204.

20 Snarey, A., Thomas, S., Schneider, M.C., Pound, S.E., Barton, N., Wright, A.F., Harris, P.C., Reeders, S.T. and Frischauf, A.-M. (1994). Linkage disequilibrium in the region of the autosomal dominant polycystic kidney disease gene (PKD1). *Am. J. Hum. Genet.* in press.

25 Somlo, S., Wirth, B., Germino, G.G., Weinstat-Saslow, D., Gillespie, G.A.J., Himmelbauer, H., Steevens, L., Coucke, P., Willems, P., Bachner, L., Coto, E., Lopez-Larrea, C., Peral, B., San Millan, J.L., Saris, J.J., Breuning, M.H., Frischauf, A.-M. and Reeders, S.T. (1992). Fine genetic localization of the gene for autosomal dominant polycystic kidney disease (PKD1) with respect to physically mapped markers. *Genomics*. 13, 152-158.

- 51 -

- Thompson, A.D., Shen, Y., Holman, K., Sutherland,
G.R., Callen, D.F. and Richards, R.I. (1992). Isolation
and characterization of $(AC)_n$ microsatellite genetic
markers from human chromosome 16. *Genomics.* 13, 402-
408.
- Wilson, P.D. and Sherwood, A.C. (1991).
Tubulocystic epithelium. *Kidney Int.* 39, 450-463.
- 10 Wright, D.K. and Manos, M.M. (1990). Sample
preparation from paraffin-embedded tissues. *PCR
Protocols: A Guide to Methods and Applications.* 153-
166.
- 15 Zerres, K., Rudnik-Schöneborn, S., Deget, F. and
German working group on paediatric nephrology (1993).
Childhood onset autosomal dominant polycystic kidney
disease in sibs: clinical picture and recurrence risk.
J. Med. Genet. 30, 583-588.

CLAIMS

1. An isolated, purified or recombinant nucleic acid sequence comprising:-

- (a) a PKD1 gene or its complementary strand,
- 5 (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a fragment of a molecule defined in (a) or (b) above.

10 2. A sequence according to claim 1, wherein the PKD1 gene has the partial nucleic acid sequence according to Figure 7 and/or 10.

3. A sequence according to claim 1 or claim 2 comprising a DNA molecule selected from:

- 15 (a) a PKD1 gene or its complementary strand,
- (b) a sequence substantially homologous to, or capable of hybridising to, a substantial portion of a molecule defined in (a) above,
- (c) a molecule coding for a polypeptide having the 20 partial sequence of Figure 7,
- (d) genomic DNA corresponding to a molecule in (a) above; and
- (e) a fragment of a molecule defined in any of (a), (b), (c) or (d) above.

25 4. A nucleic acid sequence comprising a mutant PKD1 gene, selected from those wherein:-

- (a) [OX114] base pairs 1746-2192 as defined in

SUBSTITUTE SHEET (RULE 26)

Figure 7 are deleted (446bp);

(b) [OX32] base pairs 3696-3831 as defined in Figure 7 are deleted by a splicing defect;

(c) [OX875] about 5.5kb flanked by the two XbaI sites shown in Figure 3a are deleted and the EcoR1 site separating the CW10 (41kb) and JH1 (18kb) sites is thereby absent; and

(d) [WS53] about 100kb extending between the JH1 and CW21 and the SM6 and JH17 sites shown in Figure 6 and 10 the PKD1 gene is thereby absent.

5. A nucleic acid sequence comprising a mutant PKD1 gene selected from those wherein-

(a) [461] about 18bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 15 3696 of the 3' sequence as shown in Figure 11;

(b) [OX1054] about 20bp are deleted in the 75bp intron amplified by the primer pair 3A3C insert at position 3696 of the 3' sequence as shown in Figure 11;

(c) [WS212] about 75kb are deleted between SM9-CW9 20 distally and the PKD1 3'UTR proximally as shown in Figure 12;

(d) [WS-215] about 160kb are deleted between CW20 and CW10-CW36 as shown in Figure 12;

(e) [WS-227] about 50kb are deleted between CW20 25 and JH11 as shown in Figure 12;

(f) [WS-219] about 27kb are deleted between JH1 and JH6 as shown in Figure 12; and

(g) [WS-250] about 160kb are deleted between WC20

SUBSTITUTE SHEET (RULE 26)

and BLu24 as shown in Figure 12.

- (h) [WS194] a deletion of about 65kb between CW20 and CW10.
6. An RNA molecule comprising an RNA sequence
5 corresponding to a DNA sequence according to any of claims
1 to 5.
7. An RNA molecule according to claim 6, wherein the
molecule is the transcript referenced PKD1 and identifiable
from the restriction map of Figure 3a and having a sequence
10 of about 14 KB.
8. A nucleic acid probe having a sequence according to
any of the preceding claims and optionally including a
label.
9. A nucleic acid sequence according to any preceding
15 claim, wherein the nucleic acid sequence encoding PKD1 is
operably linked to transcriptional and/or translational
expression signals.
10. An isolated, purified or recombinant polypeptide
comprising a PKD1 protein or a mutant or variant thereof or
20 encoded by a sequence according to any of claims 1 to 9 or
a variant thereof having substantially the same activity as
the PKD1 protein.
11. A polypeptide according to claim 10, wherein the
PKD1 protein has the amino acid sequence according to the
25 partial amino acid sequence of Figure 7 and/or Figure 10.
12. An anti-PKD1 antibody or a labelled anti-PKD1
antibody.
13. A method for screening a subject to determine

whether said subject is a PKD1-associated disorder carrier or a patient having a PKD1-associated disorder, which method comprises detecting the presence of and/or evaluating the characteristics of PKD1 DNA, PKD1 RNA and/or PKD1 polypeptide in a biological sample from said patient.

5 14. A method according to claim 13 which is or includes detecting and/or evaluating whether the PKD1 DNA is mutated, deleted, aberrant or otherwise abnormal, or is not expressing normal PKD1 protein.

10 15. A method according to claim 13 or claim 14, wherein the detection and/or evaluation includes the step of comparing the results thereof with results obtained using a mutated sequence according to claim 4 or claim 5.

15 16. A method according to any of claims 13 to 15, wherein said screening includes applying a nucleic acid amplification process to said sample to amplify a fragment of the PKD1 DNA or cDNA corresponding to the PKD1 RNA.

17. A method according to claim 16, wherein said nucleic acid amplification process uses at least one of the 20 following sets of primers as identified herein:-

AH3 F9 : AH3 B7

3A3 C1 : 3A3 C2

AH4 F2 : JH14 B3

18. A method according to any of claims 13 to 17 which 25 comprises digesting said sample to EcoRI fragments and hybridising with a DNA probe which hybridises to the EcoRI fragment identified (A) in Figure 3(a).

19. A method according to claim 18, wherein said DNA

probe comprises the DNA probe CW10 identified herein.

20. A method according to any of claims 13 to 17 which comprises digesting said sample to provide BamH1 fragments hybridising with a DNA probe which hybridises to the BamH1
5 fragment identified (B) in Figure 3(a).

21. A method according to claim 20, wherein said DNA probe comprises the DNA probe 1A1H.6 identified herein.

22. A vector (such as Bluscript (available from Stratagene)) comprising the nucleic acid sequence of any of
10 claims 1 to 9.

23. A host cell (such as E. coli strain SL-1 Blue (available from Stratgene)) transfected or transformed with a vector according to claim 22.

24. The use of a vector according to claim 23 or a
15 nucleic acid sequence according to any of claims 1 to 11 in gene therapy and/or in the preparation of an agent for treating or preventing a PKD1-associated disorder.

25. A method of treating or preventing a PKD1-associated disorder which method comprises administering to
20 a patient in need thereof a functional PKD1 gene to affected cells in a manner that permits expression of PKD1 protein therein and/or a transcript produced from a mutated chromosome such as the deleted WS-212 chromosome which is capable of expressing functional PKD1 protein therein.

25 26. A diagnostic kit for carrying out a method according to any of claims 13 to 21, comprising nucleic acid primers for amplifying a fragment of a sequence according to any of
Claims 1 to 9.

27. A diagnostic kit according to claim 26, wherein the nucleic acid primers comprise at least one of the following sets:

AH3 F9 : AH3 B7

5 3A3 C1 : 3A3 C2

AH4 F2 : JH14 B3

28. A diagnostic kit for carrying out a method according to claim 18, including one or more substances for digesting a sample to provide EcoRI fragments and a DNA probe as 10 defined in claim 19.

29. A diagnostic kit for carrying out a method according to claim 20, including one or more substances for digesting a sample to provide BamH1 fragments and a DNA probe as defined in claim 21.

15 30. A diagnostic kit for carrying out a method for determining whether said subject is a PKD1-associated disorder carrier or a patient having a PKD1-associated disorder, which includes a nucleic acid probe capable of hybridising to a sequence according to any of claims 1 to 20 11.

10

1/58

Fig. 1c

2/58

Fig. 2

SUBSTITUTE SHEET (RULE 26)

3/58

Fig. 3a

Fig. 3b

4/58

3A3

Fig.4a

Fig.4b

Fig.4c

5/58

Fig. 5b

Fig. 5d

正五

SUBSTITUTE SHEET (RULE 26)

Fig. 6

7 / 58

1	CTCAAOGAGGAACCCCTGADCTGGGGGGAGGAGATCGTGGCCACGGCAAGGCC	60
1	L N E E P L T L A G E E I V A Q G K R S	20
61	GACCGGGGAGGCTGCTGCTATGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	120
21	D P R S L L C Y G G A P G P G C H F S I	40
121	GG	180
41	P E A F S G A L A N L S D V V Q L I F L	60
181	GTGGACTCCAACTCCCTTCCTTGCTATATCAGCAACTACACCGCTCCACCAAGG	240
61	V D S N P F F P F G Y I S N Y T V S T K V	80
241	GGCTCGATGGCATTOCCAGACACAGGGGGGGGGGGGGGGGGGGGGGGGGGG	300
81	A S M A F Q T Q A G A Q I P I E R L A S	100
301	GAGGG	360
101	E R A I T V K V P N N S D W A A R G H R	120
361	AGCTCCGCAACTCCGCAACTCCGCTGGTGGTGGGGGGGGGGGGGGGGGGGG	420
121	S S A N S A N S V V V Q P Q A S V G A V	140
421	GTCACCCCTGGACAGCAGCAACCCCTGGGGGGGGGGGGGGGGGGGGGGGG	480
141	V T L D S S N P A A G L H L Q L N Y T L	160
481	CTGGGACGGGCACTAACCTGCTGAGGAACCTGAGGCACTAACCTGGCAGCTAACCTAACCTAC	540
161	L D G H Y L S E E P Y L A V Y L H S	180
541	GAGGG	600
181	E P R P N E H N C S A S R R I R P E S L	200
601	CAGGG	660
201	Q G A D H R P Y T F F I S P G S R D P A	220
661	GGGAGTTAACATCTGAACCTCTCCAGOCACACTGGCTGGTGGGGGGGGGG	720
221	G S Y H L N L S S H F R . W S A L Q V S W	240
721	GGGGTGTACAGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	780
241	G L Y T S L C Q Y F S E E D M V W R T E	260
781	GGGGCTCTGG	840
261	G L L P L E E T S P R Q A V C L T R H L	260
841	ACGGCGCTGG	900
281	T A F G A S L F V P P S H V R F V F P E	300
901	CGGACAGGGGATGTAAACTACATGTCATGCTGACATGTCATGTCATGTC	960
301	P T A D V N Y I V M L T C A V C L V T Y	320
961	ATGGGTCATGG	1020
321	M V M A A I L H K L D Q L D A S R G R A	340
1021	ATCCCCCTCTGTGGGGCAACGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1080
341	I P F C G Q R G R F K Y E I L V K T G W	360
1081	GG	1140
361	G R G S G T T A H V G I M L Y G V D S R	380
1141	AGGG	1200
381	S G H R H L D G D R A F H R N S L D I F	400
1201	CGGATOGOCACCCGGCACACGGCTGGTACGGTACGGTACGGTACGGTAC	1260
401	R I A T P H S L G S V W K I R V W H D N	420

Figure 7

8 / 58

1261	AAAGGGCTAGGCCGCGCTGCGTGGTTCTCCAGCAAGTCATGGTCAGGGACCTGCAGACGGCA	1320
421	K G L C P A W F L Q H V I V R D L Q T A	440
1321	CGCAGGCCCTCTTCTGGTCATGACTGGCTTTOGGTGGAGACGGAGGGCAAACGGGGC	1380
441	R S A F F L V N D W L S V E T E A N G G	460
1381	CTGGTGGAGAAGGGGGTGCGCGGCCGAGACGGCACCGCTTGGCTCGGGCGCTG	140
461	L V E K E V L A A S D A A L L R F R R L	480
1441	CTGGTGGCTGAGCTCGAGCGTGGCTTCTTGACAAGCACATCTGGCTCTCCATATGGAC	1500
481	L V A E L Q R G F F D K H I W L S I W D	500
1501	CGGCGCGCTCGTACCGGTTTCACTGGCATOCAGAGGGCAACCTGGCTGGCTTCCTCATC	1560
501	R P P R S R F T R I Q R A T C C V L L I	520
1561	TGCCCTCTTCTGGCGCGCAACGGCGTGTGGTAACGGGCTGTTGGCGACTCTGGCTACAGC	1620
521	C L F L G A N A V W Y G A V G D S A Y S	540
1621	ACGGGGCATGTGTCAGGGCTGAGCGGGCTGACCGCTCGAACACAGCTGGCTGGCTCGTG	1680
541	T G H V S R L S P L S V D T V A V G L V	560
1681	TCCAGCGTGGTGTCTAATCGCTCATCTGGCGCATCCCTTCTCTCTTGGATGTGGCGG	1740
561	S S V V V Y P V Y L A I L F L F R M S R	580
1741	ACCAAGGTGGCTGGGAGCGGGAGGGGGACACACTGGCGCAGCAGGCTGGACATCGAC	1800
581	S K V A G S P S P T P A G Q Q V L D I D	600
1801	ACCTCCCTGGACTGCTGGCTGGACAGCTCCCTCAGCTTCAGGCTCGAGCGCTACAGCT	1860
601	S C L D S S V L D S S F L T F S G L H A	620
1861	GAGGCGCTTGTGGACAGATGAAGAGTGACTTGTCTGGATGATTCTAAGAGCTGGTG	1920
621	E A F V G Q M K S D L F L D D S K S L V	640
1921	TGCTGGCGCTCGGGGAGGGAAOGCTCAGTTGGCGAACCTGGCTCAGTGACCGCTCGGCT	1980
641	C W P S G E G T L S W P D L L S D P S I	660
1981	GTGGGTAGCAAATCTGGGGCAGCTGGCACGGGGCGACGGGGCGATGGCTGGGGCGAGAG	2040
661	V G S N L R Q L A R G Q A G H G L G P E	680
2041	CAGGACGGCTCTCGGCTGGCGAGCGGGCTCTGGCTCCAAATCGCTCAGCATCAGAT	2100
681	E D G F S L A S P Y S P A K S F S A S D	700
2101	GAAGACCTGATOCAGGAGGTCCTGGCGAGGGGTCAGCAGCGACGCGCTAACCGAAC	2160
701	E D L I Q Q V L A E G V S S P A P T Q D	720
2161	AOCACATGGAAACGGACCTGCTCAGCAGCTGTOCAGCACTCTGGGAGAAGACAGAG	2220
721	T H M E T D L L S S L S S T P G E K T E	740
2221	AOCCTGGCGCTGGAGGGCTGGGGAGCTGGGGCGAACCGACGGCGTGAACCTGGAA	2280
741	T L A L O R L G E L G P P S P G L N W E	760
2281	CAGGGCGAGGCACGGAGGGCTGCGAGGACAGGACTGGTGGAGGGCTGGCGAAGGGCTG	2340
761	Q P Q A A R L S R T G L V E G L R K R L	780
2341	CTGGCGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCT	2400
781	L P A W C A S L A H G L S L L V A V A	800
2401	GTGGCTGTCAGGGGGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCT	2460
801	V A V S G W V G A S F P P G V S V A W L	820
2461	CTGTOCAGGAGGGACCCCTGGCTGGCTGGAGACACTGAAGGCTTG	2520
821	L S S S A S F L A S F L G W E P L K V L	840

Figure 7 cont'd

9 / 58

2521	CTGGAAACCCCTGTACTTCACTGGTGCCAAAGGGCGTCACCGGATGAAGATGACACC	2580
841	L E A L Y F S L V A K R L H P D E D D T	860
2581	CTGGTAGAGAAGGGCGCTGTGAGCGCTGTGAGGCCAACGCTGCCCCCGCTAACGCCAACCC	2640
861	L V E S P A V T . P V S A R V P R V R P P	880
2641	CAOGGCCTTGCACTCTTCTGGCCAAGGAAGAAGGCCAACGGTCAAGAGGCTACATGGC	2700
881	H G F A L F L A K E E A R K V K R L H G	900
2701	ATGCTGGGAGCCCTCTGGTGTACATGCTTTCTGCTGGTGACCCCTCTGGCCAGCTAT	2760
901	M L R S L L V Y M L F L L V T L L A S Y	920
2761	GGGGATGCGCTCATGOCATGGCAGCGCTAACGCTCTGCAAAGGCCATCAAGCAGGAGCTG	2820
921	G D A S C H G H A Y R L Q S A I K Q E L	940
2821	CACAGCGGGCCTTCTGGCCATCACGCGGTCTGAGGAGCTCTGGCCATGGATGGCCAC	2880
941	H S R A F L A I T R S E E L W P W M A H	960
2881	GTGCTGCTGCGCTACGCTCAAGGGAACCGACTACGCCAGAGCTGGGCCCCAACGGCTG	2940
961	V L L P Y V H G N Q S S P E L G P P R L	980
2941	CGGCAGGTGCGGCTGCAGGAAGCACTCTAACCGAGACCTCTGGGCCCCAGGGTCCACACG	3000
981	R Q V R L Q E A L Y P D P P G P R V H T	1000
3001	TGCTGGGGCGCAGGAGCCCTCAGCACCCAGGATTAGCAAGCTGGCTGGGAGAGCTCTCAC	3060
1001	C S A A G G F S T S D Y D V G W E S P H	1020
3061	AATGGCTGGGGGAAGCTGGGCTATTAGCGCCCGGATCTCTGGGGCATGGTCTGGGGC	3120
1021	N G S G T W A Y S A P D L L G A W S W G	1040
3121	TOCTGTGGCGTGTATGACAGGGGGGCTAACGTCAGGAGCTGGGAGCTGAGCTGGAGGAG	3180
1041	S C A V Y D S G G Y V Q E L G L S L E E	1060
3181	AGCGCGACCCCTGCGCTTCTGAGCACACTGGCTGGACAACAGGAGCGCGCT	3240
1061	S R D R L R F L Q L H N W L D N R S R A	1080
3241	GTGTTCTGGACCTCACCCCTAACGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3300
1081	V F L E L T R Y S P A V G L H A A V T L	1100
3301	CGCGCTGAGTTGG	3360
1101	R L E F P A A G R A L A A L S V R P F A	1120
3361	CTGCGGGCGCTCACGCCGGCGCTCGCTCGCTCTCGCTCACCTCGGTGTGGCTGCTG	3420
1121	L R R L S A G L S L P L L T S V C L L L	1140
3421	TTAGCGCGTGCACITTOGCGCTGGCGAGGCCGCTACTCTGGCACAGGGAGGGCGCTGGCG	3480
1141	F A V H F A V A E A R T W H R E G R W R	1160
3481	GTGCTGGCGCTGGAGCGCTGGGGGGGGCTGGCTGGCTGGCGCTGAGCGGGCGAACGGCA	3540
1161	V L R L G A W A R W L L V A L T A A T A	1180
3541	CTGGTAGCGCTGGCGACCTGGGTGGCGCTGAGCGGAGCTGGACCGGGCTTGTGGCGCG	3600
1181	L V R L A Q L G A A D R Q W T R F V R G	1200
3601	CGCGCGCGCGCTTCACTAACCTGGGTGGCGCTGAGCGGAGCTGGACCGGGCTGGCG	3660
1201	R P R R F T S F D Q V A H V S S A A R G	1220
3661	CTGGCGCGCTGGCTTCTGGCTGGCTGGCTGGCTGGCGCTGGCGCTGGCGCTGGCG	3720
1221	L A A S L L F L L L V K A A Q H V R F V	1240
3721	CGCGAGCTGGTGGCTGGCAAGACATTATGCGCGAGCTGGCGAGGCTGGGGGTG	3780
1241	R Q W S V F G K T L C R A L P E L L G V	1260

Figure 7 cont'd

10 / 58

Figure 7 Cont'd

11 / 58

5101	TAGGGCTGAGGGCCTGCGGCCAGAGCTGGCTCCCCAACACACTGCCTCCCTTGGTAGG	5160
5161	TGTGGTCCCGTTATGGCAAGGGCGCTCTGCCTGGATCGAGCTTGGCTTGGCGGGTG	5220
5221	CTGGGGGACAGCTGTCAGGCCACTCTCATCAACAGAGGCGTGTCACTCGGTCTGGCAA	5280
5281	TGCCCCAGGCCAGGTAGCAAGAGAGCCAGGCCCTGCTGGCATCAGGTCTGGCAA	5340
5341	CTTACCCAGGACTAGGCATGTCAGAGGACCCAGGGTGGTAGAGGAAAGACTCTCTGG	5400
5401	GGCCCTGGCTCCAGGGTGGAGGAAGGTGACTGTGTGTGTGTGCGCGCGCGCGC	5460
5461	GCGACTGTGCTGTAAGGCAAGGCAACCTCAAGGCGCTGGAGCTGGCTGTGCGCTTC	5520
5521	TGTGTACCACTCTCTGTGGCAAGGCGCTCTAGAGCGCTGACACACACACACACAC	5580
5581	ACCAAGCAGACAAAGTCAATAAAAGACCIGCTGACTCCAAAAAAA 5631	

1A1H0.6

1	AAGCTTGGCA	CCATCAAGGG	CCAGTTCAC	TTTGTCCACG	TGATGTCAC	CGGGCTGGAC
61	TACGAGTCCA	ACCTGGTGTG	CTCGAAGTGC	AGGAAAGACA	TGGAGGGCT	TGTGGACACC
121	ACCGTGGCCA	AGATCGTGTG	TGACGCCAAC	CTGGCTTTCG	TGGGGGGCGCA	GATGGGCGCTG
181	CAAGCAATAA	TGGCTTCACA	GGTCATCAT	AGCGCTTCGA	AACCCACCGA	TATCTAACCC
241	TCCAAGTGGG	TTGCGGGCGT	CGCGCACATC	AAAGCGCTOC	CGACAGGGAT	CTCGAGGAA
301	GGCGCGTACT	CCAAACCGAG	CCATCCCTTG	CCTGACCGTC	CGTCCCATAG	CAAAGCGCGT
361	GCACAGACTC	CAGCGAGGAC	CAACCGTGGC	TATGAGGTGG	CGACAGGGAA	CGCGCTCATC
421	TCTTCGGTGG	AGGACTTCAC	CGAGTTTG	TGACGGGGGG	CGCGCTCCCTC	CTGGCACTGGC
481	CTTGGACGGT	ATTGCGTGTG	AGTGAATAA	ATAAAGTCT	GAACCCAGTG	CACAGACATA
541	GAGGCACAGA	TGGC				

Figure 8

WC10F

1	GTCGGGGTC	CCACGTAACG	TTCTGGTGTG	TGTCAGACGT	CGGGGGCTGG	GAAGTGTGCG
61	CAGAAGGGGA	GTACGCTOCTC	ACTCCCTTTCG	TTCTTTTGAC	CTAAAGCTGGC	GAGTGGCACT
121	CCTGAGTTCG	CCTCAGTGTG	CGCCCTGATG	TGCGACCGCC	GTCCATTCTT	CTCTGTTAGGT
181	GGTGGGGTGTG	TG				

CW10R

1	AGGCAGGTCT	CGGGCGAGAG	CAGGGAGAG	CGACCCAAGG	T
---	------------	------------	-----------	------------	---

Figure 9

12/58

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: (Compare Fig.1)

C GGC GGC GGC TGC CGC GTC AAC TGC TCG GGC CGC GGG CTG CGG ACG Gly Ala Ala Cys Arg Val Asn Cys Ser Gly Arg Gly Leu Arg Thr 1 5 10 15	46
CTC GGT CCC GCG CTC CGC ATC CCC GCG GAC GGC ACA GCG CTA GAC GTC Leu Gly Pro Ala Leu Arg Ile Pro Ala Asp Ala Thr Ala Leu Asp Val 20 25 30	94
TCC CAC AAC CTG CTC CGG GCG CTG GAC GTT GGG CTC CTG GCG AAC CTC Ser His Asn Leu Leu Arg Ala Leu Asp Val Gly Leu Leu Ala Asn Leu 35 40 45	142
TCG GCG CTG GCA GAG CTG GAT ATA AGC AAC AAC AAG ATT TCT ACG TTA Ser Ala Leu Ala Glu Leu Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu 50 55 60	190
GAA GAA GGA ATA TTT GCT AAT TTA TTT AAT TTA AGT GAA ATA AAC CTG Glu Glu Gly Ile Phe Ala Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu 65 70 75	238
AGT GGG AAC CGG TTT GAG TGT GAC TGT GGC CTG GCG TGG CTG CGG CGA Ser Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Arg 80 85 90 95	286
TGG GCG GAG GAG CAG CAG GTG CGG GTG CAG CGG OOC GAG GCA GGC ACG Trp Ala Glu Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr 100 105 110	334
TGT GCT GCG CCT GGC TCC CTG CCT GGC CAG CCT CTG CTT GGC ATC CCC Cys Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro 115 120 125	382
TTG CTG GAC AGT GGC TGT GGT GAG GAG TAT GTC GGC TGC CTC CCT GAC Leu Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp 130 135 140	430
AAC AGC TCA GGC ACC GTG GCA GCA GTG TCC TTT TCA GCT GCC CAC GAA Asn Ser Ser Gly Thr Val Ala Ala Val Ser Phe Ser Ala Ala His Glu 145 150 155	478
GGC CTG CCT CAG CCA GAG GGC TGC AGC GGC TTC TGC TTC TCC ACC GGC Gly Leu Leu Gln Pro Glu Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly 160 165 170 175	526
CAG GGC CTC GCA GGC CTC TAG GAG CAG GGC TGG TGC CTG TGT GGG GCG Gln Gly Leu Ala Ala Leu Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala 180 185 190	574
GCC CAG CCC TOC AGT GGC TOC TTT GGC TGC CTG TCC CTC TGC TOC GGC Ala Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly 195 200 205	622
CCC CGG CCA CCT CCT GGC ACC CGC ACC TGT AGG GGC OOC ACC CTC CTC CAG Pro Pro Pro Pro Ala Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln 210 215 220	670
CAC GTC TTC CCT GGC TOC CCA GGG GGC ACC CTG GTG GGG CCC CAC GGA His Val Phe Pro Ala Ser Pro Gly Ala Thr Leu Val Gly Pro His Gly 225 230 235	718

SUBSTITUTE SHEET (RULE 26)

13/58

CCT CTG GCC TCT GGC CAG CTA GCA GGC TTC CAC ATC GCT GGC CGC CTC Pro Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu 240 245 250 255	766
CCT GTC ACT GGC ACA CGC TGG GAC TTC GGA GAC GGC TCC GGC GAG GTG Pro Val Thr Ala Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val 260 265 270	814
GAT GGC GCT GGG CGG GCT GGC TOG CAT CGC TAT GTG CTG CCT GGG CGC Asp Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg 275 280 285	862
TAT CAC CTG ACG GGC GTG CTG GGC CTG GGG GGC GGC TCA GGC CTG CTG Tyr His Val Thr Ala Val Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu 290 295 300	910
GGG ACA GAC GTG CAG GTG GAA GCG GCA CCT GGC GGC CTG GAG CTC GTG Gly Thr Asp Val Gln Val Glu Ala Ala Pro Ala Ala Leu Glu Leu Val 305 310 315	958
TGC CGG TCC TOG GTG CAG AGT GAC GAG AGC CCT GAC CTC ACC ATC CAG Cys Pro Ser Ser Val Gln Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln 320 325 330 335	1006
AAC CGC GGT GGT TCA GGC CTG GAG GGC TAC AGC ATC GTG GGC CTG Asn Arg Gly Gly Ser Gly Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu 340 345 350	1054
GGC GAG GAG CGG GGC CGA CGG GTG CAC CGC CTC TGC CGC TCG GAC ACG Gly Glu Glu Pro Ala Arg Ala Val His Pro Leu Cys Pro Ser Asp Thr 355 360 365	1102
GAG ATC TTC CCT GGC AAC GGG CAC TCC TAC CGC CTG GTG GTG GAG AAG Glu Ile Phe Pro Gly Asn Gly His Cys Tyr Arg Leu Val Val Glu Lys 370 375 380	1150
GCG GGC TGG CTG CAG CGG CAG CAG CAG TGT CAG GGC TCG GGC CGG GGC Ala Ala Trp Leu Gln Ala Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala 385 390 395	1198
GCC CTG CCA ATG GTG GAC AGT CGC CGC GTG CAG CGC TTC CTG GTC TCC Ala Leu Ala Met Val Asp Ser Pro Ala Val Gln Arg Phe Leu Val Ser 400 405 410 415	1246
CGG GTC ACC AGG AGC CTA GAC GTG TGG ATC GGC TTC TCC ACT GTG CAG Arg Val Thr Arg Ser Leu Asp Val Trp Ile Gly Phe Ser Thr Val Gln 420 425 430	1294
GGG GTG GAG GTG GGC CGA CGG CGC CAG CGC GAG GGC TTC AGC CTG GAG Gly Val Glu Val Gly Pro Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu 435 440 445	1342
ACC TGC CAG AAC TGG CTG CCC GGG GAG CGA CAC CGA GGC ACA GCA GGC GAG Ser Cys Gln Asn Trp Leu Pro Gly Glu Pro His Pro Ala Thr Ala Glu 450 455 460	1390
CAC TGC GTC CGG CTC GGG CGC ACC GGG TGG TGT AAC ACC GAC CTG TCC His Cys Val Arg Leu Gly Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys 465 470 475	1438

14 / 58

TCA GCG CGG CAC AGC TAC GTC TGC GAG CTG CAG CCC GGA GGC CCA GTG Ser Ala Pro His Ser Tyr Val Cys Glu Leu Gln Pro Gly Gly Pro Val 480 485 490 495	1486
CAG GAT GGC GAG AAC CTC CTC GTG GGA CGG CCC AGT CGG GAC CTG CAG Gln Asp Ala Glu Asn Leu Leu Val Gly Ala Pro Ser Gly Asp Leu Gln 500 505 510	1534
GGA CCC CTG ACG CCT CTG CCA CAG CAG GAC GGC CTC TCA GCG CGG CAC Gly Pro Leu Thr Pro Leu Ala Gln Gln Asp Gly Leu Ser Ala Pro His 515 520 525	1582
GAG CCC GTG GAG GTC ATG GTA TTC CGG GGC CTG CGT CTG ACC CGT GAA Glu Pro Val Glu Val Met Val Phe Pro Gly Leu Arg Leu Ser Arg Glu 530 535 540	1630
GCC TTC CTC ACC ACG GOC GAA TTT GGG ACC CAG GAG CTC CTC CGG CGG CCC Ala Phe Leu Thr Thr Ala Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro 545 550 555	1678
GCC CAG CTG CGG CTG CAG GTG TAC CGG CTC CTC ACC ACA GCA GGG ACC Ala Gln Leu Arg Leu Gln Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr 560 565 570 575	1726
CCG GAG AAC GGC AGC GAG CCT GAG AGC AGG TCC CGG GAC AAC AGG ACC Pro Glu Asn Gly Ser Glu Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr 580 585 590	1774
CAG CTG GCC CCC CGG TGC ATG CCA GGG GGA CGC TGG TGC CCT GGA GCC Gln Leu Ala Pro Ala Cys Met Pro Gly Gly Arg Trp Cys Pro Gly Ala 595 600 605	1822
AAC ATC TGC TTG CGG CTG GAC GOC TCT TGC CAC CCC CAG GCC TGC GCC Asn Ile Cys Leu Pro Leu Asp Ala Ser Cys His Pro Gln Ala Cys Ala 610 615 620	1870
AAT GGC TGC ACG TCA GGG CCA GGG CTA CCC GGG CCC CCC TAT GCG CTA Asn Gly Cys Thr Ser Gly Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu 625 630 635	1918
TGG AGA GAG TTC CTC TTC TCC GTT GCC CGG GGG CCC CCC CGG CAG TAC Trp Arg Glu Phe Leu Phe Ser Val Ala Ala Gly Pro Pro Ala Gln Tyr 640 645 650 655	1966
TCG GTC ACC CTC CAC CCC CAG GAT GTC CTC ATG CTC CCT GGT GAC CTC Ser Val Thr Leu His Gly Gln Asp Val Leu Met Leu Pro Gly Asp Leu 660 665 670	2014
GTT GGC TTG CAG CAC GAC GCT GGC CCT GGC GOC CTC CTC CTG CAC TGC TCG Val Gly Leu Gln His Asp Ala Gly Pro Gly Ala Leu Leu His Cys Ser 675 680 685	2062
CGG GCT CCC GGC CAC CCT GGT CGC CAG GGC CGG TAC CTC TCC GOC AAC Pro Ala Pro Gly His Pro Gly Pro Gln Ala Pro Tyr Leu Ser Ala Asn 690 695 700	2110
GOC TOG TCA TGG CTG CCC CAC TTG CCA GGC CAG CTG GAG GGC ACT TGG Ala Ser Ser Trp Leu Pro His Leu Pro Ala Gln Leu Glu Gly Thr Trp 705 710 715	2158

15 / 58

GCC TGC CCT GCC TGT GCC CTG CGG CTG CTT GCA GCC ACG GAA CAG CTC Ala Cys Pro Ala Cys Ala Leu Arg Leu Leu Ala Ala Thr Glu Gln Leu 720 725 730 735	2206
AAC GTG CTG CTG CGC TTG AGG CCC AAC CCT GGA CTG CGG ATG CCT GGG Thr Val Leu Leu Gly Leu Arg Pro Asn Pro Gly Leu Arg Met Pro Gly 740 745 750	2254
CGC TAT GAG GTC CGG GCA GAG GTG GCC AAT CGC GTG TCC AGG CAC AAC Arg Tyr Glu Val Arg Ala Glu Val Gly Asn Gly Val Ser Arg His Asn 755 760 765	2302
CTC TOC TGC AGC TTT GAC GTG GTC TOC CCA GTG CCT GGG CTG CGG GTC Leu Ser Cys Ser Phe Asp Val Val Ser Pro Val Ala Gly Leu Arg Val 770 775 780	2350
ATC TAC CCT GCC CCC CGC GAC CGC CGC CTC TAC GTG CCC ACC AAC GGC Ile Tyr Pro Ala Pro Arg Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly 785 790 795	2398
TCA GCC TTG GTG CTC CAG GTG GAC TCT GGT GCC AAC GCC ACG GGC Ser Ala Leu Val Leu Gln Val Asp Ser Gly Ala Asn Ala Thr Ala Thr 800 805 810 815	2446
GCT CGC TCG CCT CGG CGC AGT GTC AGC GCC CGC TTT GAG AAT GTC TGC Ala Arg Trp Pro Gly Gly Ser Val Ser Ala Arg Phe Glu Asn Val Cys 820 825 830	2494
CCT GGC CTG GTG GGC ACC TTC GTG CGC TGC CGC TGG GAG ACC AAC Pro Ala Leu Val Ala Thr Phe Val Pro Gly Cys Pro Trp Glu Thr Asn 835 840 845	2542
GAT ACC CTG TTC TCA GTG GTA GCA CTG CGG TGG CTC AGT GAG GGG GAG Asp Thr Leu Phe Ser Val Val Ala Leu Pro Trp Leu Ser Glu Gly Glu 850 855 860	2590
CAC GTG GTG GAC GTG GTG GTG GAA AAC AGC GCC ACC CGG GCC AAC CTC His Val Val Asp Val Val Val Glu Asn Ser Ala Ser Arg Ala Asn Leu 865 870 875	2638
AGC CTG CGG GTG ACG CGG GAG GAG CGC ATT TGT GCC CTC CGC GCC ACG Ser Leu Arg Val Thr Ala Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr 880 885 890 895	2686
CCC AGC CCC GAG GGC CGT GTA CTG CAG GGA GTC CTA GTG AGG TAC AGC Pro Ser Pro Glu Ala Arg Val Leu Gln Gly Val Leu Val Arg Tyr Ser 900 905 910	2734
CCC GTG GTG GAG GGC CGC TCG GAC ATT GTC TTC CGG TGG ACC ATT AAC Pro Val Val Glu Ala Gly Ser Asp Met Val Phe Arg Trp Thr Ile Asn 915 920 925	2782
GAC AAG CAG TCC CTG ACC TTC CAG AAC GTG GTC TTC ATT GTC ATT TAT Asp Lys Gln Ser Leu Thr Phe Gln Asn Val Val Phe Asn Val Ile Tyr 930 935 940	2830
CAG AGC CGG CGC GTC TTC AAG CTC TCA CTG ACG GCC TCC AAC CAC GTG Gln Ser Ala Ala Val Phe Lys Leu Ser Leu Thr Ala Ser Asn His Val 945 950 955	2878

16/58

AGC AAC GTC ACC GTG AAC TAC AAC GTA ACC GTG GAG CGG ATG AAC AGG Ser Asn Val Thr Val Asn Tyr Asn Val Thr Val Glu Arg Met Asn Arg 960 965 970 975	2926
ATG CAG GGT CTG CAG GTC TCC ACA GTG CGG GCC GTG CTG TCC CCC AAT Met Gln Gly Leu Gln Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn 980 985 990	2974
GCC ACA CTG GTA CTG ACG GGT GTG CTG GTG GAC TCA GCT GTG GAG Ala Thr Leu Val Leu Thr Gly Gly Val Leu Val Asp Ser Ala Val Glu 995 1000 1005	3022
GTG GCC TTC CTG TGG AAC TTT GGG GAT GGG GAG CAG GCC CTC CAC CAG Val Ala Phe Leu Trp Asn Phe Gly Asp Gly Glu Gln Ala Leu His Gln 1010 1015 1020	3070
TTC CAG CCT COG TAC AAC GAG TCC TTC CGG GTT CCA GAC CCC TOG GTG Phe Gln Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val 1025 1030 1035	3118
GCC CAG GTG CTG GTG GAG CAC AAT GTC ATG CAC ACG TAC GCT GGC CCA Ala Gln Val Leu Val Glu His Asn Val Met His Thr Tyr Ala Ala Pro 1040 1045 1050 1055	3166
GGT GAG TAC CTC CTG ACC GTG CTG GCA TCT AAT GGC TTC GAG AAC CTG Gly Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn Leu 1060 1065 1070	3214
ACG CAG CAG GTG CCT GTG ACC GTG CGC CCC TCC CTG CCC TCC GTG GCT Thr Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser Val Ala 1075 1080 1085	3262
GTG GGT GTG AGT GAC GGC GTC CTG GTG GCC GGC CGG CCC GTC ACC TTC Val Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro Val Thr Phe 1090 1095 1100	3310
TAC CGG CAC CGG CTG CCC TCG CCT GGG CGT GTT CTT TAC ACG TGG GAC Tyr Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu Tyr Thr Trp Asp 1105 1110 1115	3358
TTC GGG GAC GGC TCC CCT GTC CTG ACC CAG AGC CAG CGG GCT GCC AAC Phe Gly Asp Gly Ser Pro Val Leu Thr Gln Ser Gln Pro Ala Ala Asn 1120 1125 1130 1135	3406
CAC ACG TAT GCC TOG AGG GGC ACC TAC CAC GTG CGC CTG GAG GTC AAC His Thr Tyr Ala Ser Arg Gly Thr Tyr His Val Arg Leu Glu Val Asn 1140 1145 1150	3454
AAC ACG GTG AGC GGT CGG CGC GOC CAG CGG GAT GTG CGC GTC TTT GAG Asn Thr Val Ser Gly Ala Ala Ala Gln Ala Asp Val Arg Val Phe Glu 1155 1160 1165	3502
GAG CTC CGG CTC AGC GTG GAC ATG AGC CTG GOC GTG GAG CAG CGC Glu Leu Arg Gly Leu Ser Val Asp Met Ser Leu Ala Val Glu Gln Gly 1170 1175 1180	3550
GCC CGC GTG GTG GTC AGC GGC CGG GTG CAG ACG GGC GAC AAC ATC ACG Ala Pro Val Val Val Ser Ala Ala Val Gln Thr Gly Asp Asn Ile Thr 1185 1190 1195	3598

17/58

TGG ACC TTC GAC ATG GGG GAC GGC ACC GTG CTG TCG GGC CGG GAG GCA Trp Thr Phe Asp Met Gly Asp Gly Thr Val Leu Ser Gly Pro Glu Ala 1200 1205 1210 1215	3646
ACA GTG GAG CAT GTG TAC CTG CCG GCA CAG AAC TGC ACA GTG ACC GTG Thr Val Glu His Val Tyr Leu Arg Ala Gln Asn Cys Thr Val Thr Val 1220 1225 1230	3694
GGT GCG GCC AGC CCC GGC CAC CTG GCC CGG AGC CTG CAC GTG CTG Gly Ala Ala Ser Pro Ala Gly His Leu Ala Arg Ser Leu His Val Leu 1235 1240 1245	3742
GTC TTC GTC CTG GAG GTG CTG CCC GTT GAA CCC GGC GOC TGC ATC CCC Val Phe Val Leu Glu Val Leu Arg Val Glu Pro Ala Ala Cys Ile Pro 1250 1255 1260	3790
AOG CAG CCT GAC CGG CTC ACG GGC TAC GTC ACC GGG AAC CGG GGC Thr Gln Pro Asp Ala Arg Leu Thr Ala Tyr Val Thr Gly Asn Pro Ala 1265 1270 1275	3838
CAC TAC CTC TTC GAC TGG ACC TTC GGG GAT GGC TCC TCC AAC ACG ACC His Tyr Leu Phe Asp Trp Thr Phe Gly Asp Gly Ser Ser Asn Thr Thr 1280 1285 1290 1295	3886
GTG CGG CGG TGC CCG ACG GTG ACA CAC AAC TTC ACG CGG AGC GGC ACG Val Arg Gly Cys Pro Thr Val Thr His Asn Phe Thr Arg Ser Gly Thr 1300 1305 1310	3934
TTC CCC CTG GCG CTG GTG CTG TCC AGC CGC GTG AAC AGG GCG CAT TAC Phe Pro Leu Ala Leu Val Leu Ser Ser Arg Val Asn Arg Ala His Tyr 1315 1320 1325	3982
TTC ACC ACC ATC TGC GTG GAG CCA GAG GTG GGC AAC GTC ACC CTG CAG Phe Thr Ser Ile Cys Val Glu Pro Glu Val Gly Asn Val Thr Leu Gln 1330 1335 1340	4030
CCA GAG AGG CAG TTT GTG CAG CTC CGG GAC GAG CGC TGG CTG GTG GCA Pro Glu Arg Gln Phe Val Gln Leu Gly Asp Glu Ala Trp Leu Val Ala 1345 1350 1355	4078
TGT GCG TGG CGC CGG TTC CCC TAC ACC TGG GAC TTT GGC ACC Cys Ala Trp Pro Pro Phe Pro Tyr Arg Tyr Thr Trp Asp Phe Gly Thr 1360 1365 1370 1375	4126
GAG GAA GCG CGC ACC CGT GCG AGG GGC CCT GAG GTG ACG TTC ATC Glu Glu Ala Ala Pro Thr Arg Ala Arg Gly Pro Glu Val Thr Phe Ile 1380 1385 1390	4174
TAC CGA GAC CCA GGC TCC TAT CTT GTG ACA GTC ACC CGG TCC AAC AAC Tyr Arg Asp Pro Gly Ser Tyr Leu Val Thr Val Thr Ala Ser Asn Asn 1395 1400 1405	4222
ATC TCT GCT GCC AAT GAC TCA GGC CTG GTG GAG GTG CAG GAG CGC GTG Ile Ser Ala Ala Asn Asp Ser Ala Leu Val Glu Val Gln Glu Pro Val 1410 1415 1420	4270
CTG GTC ACC AGC ATC AAG GTC AAT GGC TCC CTT CGG CTG GAG CTG CAG Leu Val Thr Ser Ile Lys Val Asn Gly Ser Leu Gly Leu Glu Leu Gln 1425 1430 1435	4318

18/58

CAG CCG TAC CTG TTC TCT GCT GTG GGC CGT GGG CGC CCC GGC AGC TAC Gln Pro Tyr Leu Phe Ser Ala Val Gly Arg Gly Arg Pro Ala Ser Tyr 1440 1445 1450 1455	4366
CTG TGG GAT CTG GGG GAC GGT GGG TGG CTC GAG GGT CGG GAG GTG ACC Leu Trp Asp Leu Gly Asp Gly Gly Trp Leu Glu Gly Pro Glu Val Thr 1460 1465 1470	4414
CAC GCT TAC AAC AGC ACA GGT GAC TTC ACC GTT AGG GTG GCC GGC TGG His Ala Tyr Asn Ser Thr Gly Asp Phe Thr Val Arg Val Ala Gly Trp 1475 1480 1485	4462
AAT GAG GTG AGC CGC AGC GAG GCC TGG CTC AAT GTG ACG GTG AAG CGG Asn Glu Val Ser Arg Ser Glu Ala Trp Leu Asn Val Thr Val Lys Arg 1490 1495 1500	4510
CGC GTG CGG CGG CTC GTC GTC AAT GCA AGC CGC ACG GTG GTG CCC CTG Arg Val Arg Gly Leu Val Val Asn Ala Ser Arg Thr Val Val Pro Leu 1505 1510 1515	4558
AAT GGG AGC GTG AGC TTC AGC ACG TCG CTG GAG GGC AGT GAT GTG Asn Gly Ser Val Ser Phe Ser Thr Ser Leu Glu Ala Gly Ser Asp Val 1520 1525 1530 1535	4606
CGC TAT TCC TGG GTG CTC TGT GAC CGC TGC ACG CCC ATC CCT CGG GGT Arg Tyr Ser Trp Val Leu Cys Asp Arg Cys Thr Pro Ile Pro Gly Gly 1540 1545 1550	4654
CCT ACC ATC TCT TAC ACC TTC CGC TCC GTG GGC ACC TTC AAT ATC ATC Pro Thr Ile Ser Tyr Thr Phe Arg Ser Val Gly Thr Phe Asn Ile Ile 1555 1560 1565	4702
GTC ACG CCT GAG AAC GAG GTG GGC TCC GGC CAG GAC AGC ATC TTC GTC Val Thr Ala Glu Asn Glu Val Gly Ser Ala Gln Asp Ser Ile Phe Val 1570 1575 1580	4750
TAT GTC CTG CAG CTC ATA GAG CGG CTG CAG GTG GTG GGC GGT CGC CGC Tyr Val Leu Gln Leu Ile Glu Gly Leu Gln Val Val Gly Gly Arg 1585 1590 1595	4798
TAC TTC CCC ACC AAC CAC ACG GTA CAG CTG CAG GGC GTG GTT AGG GAT Tyr Phe Pro Thr Asn His Thr Val Gln Leu Gln Ala Val Val Arg Asp 1600 1605 1610 1615	4846
GGC ACC AAC GTC TCC TAC AGC TGG ACT GGC TGG AGG GAC AGG GGC CGG Gly Thr Asn Val Ser Tyr Ser Trp Thr Ala Trp Arg Asp Arg Gly Pro 1620 1625 1630	4894
GCC CTG GGC AGC CGC AAA GGC TTC TCG CTC ACC GTG CTC GAG GGC Ala Leu Ala Gly Ser Gly Lys Gly Phe Ser Leu Thr Val Leu Glu Ala 1635 1640 1645	4942
GGC ACC TAC CAT GTG CAG CTG CGG GGC ACC AAC ATG CTG GGC AGC GGC Gly Thr Tyr His Val Gln Leu Arg Ala Thr Asn Met Leu Gly Ser Ala 1650 1655 1660	4990
TGG GCC GAC TGC ACC ATG GAC TTC GTG GAG CCT GTG GGG TGG CTG ATG Trp Ala Asp Cys Thr Met Asp Phe Val Glu Pro Val Gly Trp Leu Met 1665 1670 1675	5038

19 / 58

GTC ACC GGC TOC CGG AAC CCA GCT GCC GTC AAC ACA AGC GTC ACC CTC Val Thr Ala Ser Pro Asn Pro Ala Ala Val Asn Thr Ser Val Thr Leu 1680 1685 1690 1695	5086
AGT GCC GAG CTG GCT GGT GCC AGT GGT GTC GTA TAC ACT TGG TOC TTG Ser Ala Glu Leu Ala Gly Gly Ser Gly Val Val Tyr Thr Trp Ser Leu 1700 1705 1710	5134
GAG GAG GGG CTG AGC TGG GAG ACC TOC GAG CCA TTT ACC ACC CAT ACC Glu Glu Gly Leu Ser Trp Glu Thr Ser Glu Pro Phe Thr Thr His Ser 1715 1720 1725	5182
TTC CCC ACA CCC GGC CTG CAC TTG GTC ACC ATG ACG GCA GGG AAC COG Phe Pro Thr Pro Gly Leu His Leu Val Thr Met Thr Ala Gly Asn Pro 1730 1735 1740	5230
CTG GGC TCA GCC AAC GCC ACC GTG GAA GTG GAT GTG CAG GTG CCT GTG Leu Gly Ser Ala Asn Ala Thr Val Glu Val Asp Val Gln Val Pro Val 1745 1750 1755	5278
AGT GCC CTC AGC ATC AGG GCC ACC GAG CCC GGA GGC AGC TTC GTG GCG Ser Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly Gly Ser Phe Val Ala 1760 1765 1770 1775	5326
GCC GGG TCC TCT GTG CCC TTT TCG GGG CAG CTG GCC ACG GGC ACC AAT Ala Gly Ser Ser Val Pro Phe Trp Gly Gln Leu Ala Thr Gly Thr Asn 1780 1785 1790	5374
GTG AGC TGG TGC TCG GCT GTG CCC GGC GGC AGC AAG CGT GGC CCT Val Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Ser Lys Arg Gly Pro 1795 1800 1805	5422
CAT GTC ACC ATG GTC TTC CCG GAT GCT GGC ACC TTC TCC ATC CCG CTC His Val Thr Met Val Phe Pro Asp Ala Gly Thr Phe Ser Ile Arg Leu 1810 1815 1820	5470
AAT GCC TCC AAC GCA GTC AGC TGG GTC TCA GCC ACG TAC AAC CTC ACG Asn Ala Ser Asn Ala Val Ser Trp Val Ser Ala Thr Tyr Asn Leu Thr 1825 1830 1835	5518
GCG GAG GAG CCC ATC GTG GGC CTG GTG CTG TGG GGC AGC ACC AAG GTG Ala Glu Glu Pro Ile Val Gly Leu Val Leu Trp Ala Ser Ser Lys Val 1840 1845 1850 1855	5566
GTG GCG CCC GGG CAG CTG GTC CAT TTT CAG ATC CTG CTG GCT GGC GGC Val Ala Pro Gly Gln Leu Val His Phe Gln Ile Leu Leu Ala Ala Gly 1860 1865 1870	5614
TCA GCT GTC ACC TTC CGC CTG CAG GTC GGC GGG GGC AAC CCC GAG GTG Ser Ala Val Thr Phe Arg Leu Gln Val Gly Gly Ala Asn Pro Glu Val 1875 1880 1885	5662
CTC CCC GGG CCC CGT TTC TOC CAC AGC TTC CCC CGC GTC GGA GAC CAC Leu Pro Gly Pro Arg Phe Ser His Ser Phe Pro Arg Val Gly Asp His 1890 1895 1900	5710
GTG GTG AGC GTG CGG GGC AAA AAC CAC GTG ACG TGG GCC CAG CGG CAG Val Val Ser Val Arg Gly Lys Asn His Val Ser Trp Ala Gln Ala Gln 1905 1910 1915	5758

20/58

GTG CGC ATC GTG GTG CTG GAG GCG GTG AGT GGG CTG CAG ATG CGC AAC Val Arg Ile Val Val Leu Glu Ala Val Ser Gly Leu Gln Met Pro Asn 1920 1925 1930 1935	5806
TGC TGC GAG CCT GGC ATC GCC ACG GGC ACT GAG AGG AAC TTC ACA GCC Cys Cys Glu Pro Gly Ile Ala Thr Gly Thr Glu Arg Asn Phe Thr Ala 1940 1945 1950	5854
GCG GTG CAG CGC GGC TCT CGG GTC GCG TAC GCC TGG TAC TTC TCG CTG Arg Val Gln Arg Gly Ser Arg Val Ala Tyr Ala Trp Tyr Phe Ser Leu 1955 1960 1965	5902
CAG AAG GTC CAG GGC GAC TCG CTG GTC ATC CTG TCG GCC CGC GAC GTC Gln Lys Val Gln Gly Asp Ser Leu Val Ile Leu Ser Gly Arg Asp Val 1970 1975 1980	5950
ACC TAC ACG CGC GTG GCC GCG GGG CTG TTG GAG ATC CAG GTG CGC GCC Thr Tyr Thr Pro Val Ala Ala Gly Leu Leu Glu Ile Gln Val Arg Ala 1985 1990 1995	5998
TTC AAC GCC CTG GGC AGT GAG AAC CGC ACG CTG GTG CTG GAG GTT CAG Phe Asn Ala Leu Gly Ser Glu Asn Arg Thr Leu Val Leu Glu Val Gln 2000 2005 2010 2015	6046
GAC GCG GTC CAG TAT GTG GCG CTG CAG AGC GGC CGC TCC TTC ACC AAC Asp Ala Val Gln Tyr Val Ala Leu Gln Ser Gly Pro Cys Phe Thr Asn 2020 2025 2030	6094
GCG TCG CGC CAG TTT GAG GCG GCG ACC AGC CGC AGC CGC CGG CGT GTG Arg Ser Ala Gln Phe Glu Ala Ala Thr Ser Pro Ser Pro Arg Arg Val 2035 2040 2045	6142
GCC TAC CAC TGG GAC TTT GGG GAT GGG TCG CCA GGG CAG GAC ACA GAT Ala Tyr His Trp Asp Phe Gly Asp Gly Ser Pro Gly Gln Asp Thr Asp 2050 2055 2060	6190
GAG CGC AGG GCG GAG CAC TCC TAC CTG AGG CCT GGG GAC TAC CGC GTG Glu Pro Arg Ala Glu His Ser Tyr Leu Arg Pro Gly Asp Tyr Arg Val 2065 2070 2075	6238
CAG GTG AAC GCG TCC AAC CTG GTG AGC TTC TTC GTG CGG CAG CGC ACG Gln Val Asn Ala Ser Asn Leu Val Ser Phe Phe Val Ala Gln Ala Thr 2080 2085 2090 2095	6286
GTG ACC GTC CAG GTG CTG CGC TCC CGG GAG CGG GAG GTG GAC GTG GTC Val Thr Val Gln Val Leu Ala Cys Arg Glu Pro Glu Val Asp Val Val 2100 2105 2110	6334
CTG CGC CTG CAG GTG CTG ATG CGG CGA TCA CAG CGC AAC TAC TTG GAG Leu Pro Leu Gln Val Leu Met Arg Arg Ser Gln Arg Asn Tyr Leu Glu 2115 2120 2125	6382
GCG CAC GTT GAC CTG CGC GAC TGC GTC ACC TAC CAG ACT GAG TAC CGC Ala His Val Asp Leu Arg Asp Cys Val Thr Tyr Gln Thr Glu Tyr Arg 2130 2135 2140	6430
TGG GAG GTG TAT CGC ACC GCG AGC TGC CAG CGG CGG CGG CGC CGA CGG Trp Glu Val Tyr Arg Thr Ala Ser Cys Gln Arg Pro Gly Arg Pro Ala 2145 2150 2155	6478

21 / 58

CGT GTG GCC CTG OOC GGC GTG GAC GTG AGC CGG CCT CGG CTG GTG CTG Arg Val Ala Leu Pro Gly Val Asp Val Ser Arg Pro Arg Leu Val Leu 2160 2165 2170 2175	6526
CGG CGG CTG CGG CTG CCT GTG GGG CAC TAC TGC TTT GTG TTT GTC GTG Pro Arg Leu Ala Leu Pro Val Gly His Tyr Cys Phe Val Phe Val Val 2180 2185 2190	6574
TCA TTT GGG GAC ACG CCA CTG ACA CAG AGC ATC CAG GGC AAT GTG ACG Ser Phe Gly Asp Thr Pro Leu Thr Gln Ser Ile Gln Ala Asn Val Thr 2195 2200 2205	6622
GTG GCC CCC GAG CGC CTG GTG CCC ATC ATT GAG GGT CGC TCA TAC CGC Val Ala Pro Glu Arg Leu Val Pro Ile Ile Glu Gly Gly Ser Tyr Arg 2210 2215 2220	6670
GTG TGG TCA GAC ACA CGG GAC CTG GTG CTG GAT GGG AGC GAG TOC TAC Val Trp Ser Asp Thr Arg Asp Leu Val Leu Asp Gly Ser Glu Ser Tyr 2225 2230 2235	6718
GAC CCC AAC CTG GAG GAC GGC GAC CAG ACG CGG CTC AGT TTC CAC TGG Asp Pro Asn Leu Glu Asp Gly Asp Gln Thr Pro Leu Ser Phe His Trp 2240 2245 2250 2255	6766
GCC TGT GTG GCT TCG ACA CAG ACG GAG CCT GGC EGG TGT GCG CTG AAC Ala Cys Val Ala Ser Thr Gln Arg Glu Ala Gly Gly Cys Ala Leu Asn 2260 2265 2270	6814
TTT GGG CCC CGC GGG AGC ACG ACC GTC ACC ATT CCA CGG GAG CGG CTG Phe Gly Pro Arg Gly Ser Ser Thr Val Thr Ile Pro Arg Glu Arg Leu 2275 2280 2285	6862
GCG CCT GGC GTG GAG TAC ACC TTC AGC CTG ACC GTG TGG AAG GCC GGC Ala Ala Gly Val Glu Tyr Thr Phe Ser Leu Thr Val Trp Lys Ala Gly 2290 2295 2300	6910
CGC AAG GAG GAG GGC ACC AAC CAG ACG GTG CTG ATC CGG AGT GGC CGG Arg Lys Glu Glu Ala Thr Asn Gln Thr Val Leu Ile Arg Ser Gly Arg 2305 2310 2315	6958
GTG CCC ATT GTG TCC TTG GAG TGT GTG TCC TGC AAG GCA CAG GCC GTG Val Pro Ile Val Ser Leu Glu Cys Val Ser Cys Lys Ala Gln Ala Val 2320 2325 2330 2335	7006
TAC GAA GTG AGC CGC AGC TCC TAC GTG TAC TTG GAG GGC CCC TGC CTC Tyr Glu Val Ser Arg Ser Ser Tyr Val Tyr Leu Glu Gly Arg Cys Leu 2340 2345 2350	7054
AAT TGC AGC AGC GGC TCC AAG CGA GGG CGG TGG GCT GCA CGT ACG TTC Asn Cys Ser Ser Gly Ser Lys Arg Gly Arg Trp Ala Ala Arg Thr Phe 2355 2360 2365	7102
AGC AAC AAG ACG CTG GTG CTG GAT GAG ACC ACC ACA TCC ACG GGC AGT Ser Asn Lys Thr Leu Val Leu Asp Glu Thr Thr Ser Thr Gly Ser 2370 2375 2380	7150
GCA GGC ATG CGA CTG GTG CTG GAT GAG ACC ACC ACA TCC ACG GGC GAG Ala Gly Met Arg Leu Val Leu Arg Arg Gly Val Leu Arg Asp Gly Glu 2385 2390 2395	7198

22/58

GGA TAC ACC TTC ACG CTC ACG GTG CTG GGC CGC TCT GGC GAG GAG Gly Tyr Thr Phe Thr Leu Thr Val Leu Gly Arg Ser Gly Glu Glu 2400 2405 2410 2415	7246
GGC TCC GCC TCC ATC CGC CTG TCC CCC AAC CGC CGG CGG CTG GGG GGC Gly Cys Ala Ser Ile Arg Leu Ser Pro Asn Arg Pro Pro Leu Gly Gly 2420 2425 2430	7294
TCT TCC CGC CTC TTC CCA CTG GGC GCT GTG CAC GGC CTC ACC ACC AAG Ser Cys Arg Leu Phe Pro Leu Gly Ala Val His Ala Leu Thr Thr Lys 2435 2440 2445	7342
GTG CAC TTC GAA TCC ACG GGC TGG CAT GAC GCG GAG GAT GCT GGC CGC Val His Phe Glu Cys Thr Gly Trp His Asp Ala Glu Asp Ala Gly Ala 2450 2455 2460	7390
CGG CTG GTG TAC CGC CTG CTG CGG CGC TGT CGC CAG CGC CAC TGC Pro Leu Val Tyr Ala Leu Leu Leu Arg Arg Cys Arg Gln Gly His Cys 2465 2470 2475	7438
GAG GAG TTC TGT GTC TAC AAG CGC ACC CTC TCC ACC TAC GGA CGC GTG Glu Glu Phe Cys Val Tyr Lys Gly Ser Leu Ser Ser Tyr Gly Ala Val 2480 2485 2490 2495	7486
CTG CGC CGG GGT TTC AGG CCA CAC TTC GAG GTG CGC CTG CGC CGT GTG Leu Pro Pro Gly Phe Arg Pro His Phe Glu Val Gly Leu Ala Val Val 2500 2505 2510	7534
GTG CAG GAC CAG CTG GGA CGC GCT GTG GTC CGC CTC AAC AGG TCT TTG Val Gln Asp Gln Leu Gly Ala Ala Val Val Ala Leu Asn Arg Ser Leu 2515 2520 2525	7582
GCC ATC ACC CTC CCA GAG CGC AAC GGC AGC CGA ACG GGG CTC ACA GTC Ala Ile Thr Leu Pro Glu Pro Asn Gly Ser Ala Thr Gly Leu Thr Val 2530 2535 2540	7630
TGG CTG CAC CGG CTC ACC GCT AGT GTG CTC CCA CGG CTG CTG CGG CAG Trp Leu His Gly Leu Thr Ala Ser Val Leu Pro Gly Leu Leu Arg Gln 2545 2550 2555	7678
GCC GAT CGC CAG CAC GTC ATC GAG TAC TOG TTG GCC CTG GTC ACC GTG Ala Asp Pro Gln His Val Ile Glu Tyr Ser Leu Ala Leu Val Thr Val 2560 2565 2570 2575	7726
CTG AAC GAG TAC GAG CGG CGC CTG GAC GTG CGG GCA GAG CGC AAG CAC Leu Asn Glu Tyr Glu Arg Ala Leu Asp Val Ala Ala Glu Pro Lys His 2580 2585 2590	7774
GAG CGG CAG CAC CGA CGC CAG ATA CGC AAG AAC ATC ACG GAG ACT CTG Glu Arg Gln His Arg Ala Gln Ile Arg Lys Asn Ile Thr Glu Thr Leu 2595 2600 2605	7822
GTG TCC CTG AGG GTC CAC ACT GTG GAT GAC ATC CAG CAG ATC GCT GCT Val Ser Leu Arg Val His Thr Val Asp Asp Ile Gln Gln Ile Ala Ala 2610 2615 2620	7870
CGG CTG CGC CAG TGC ATG GGG CGC ACC AGG GAG CTC GTA TGC CGC TCG Ala Leu Ala Gln Cys Met Gly Pro Ser Arg Glu Leu Val Cys Arg Ser 2625 2630 2635	7918

23 / 58

TGC CTG AAG CAG ACG CTG CAC AAG CTG GAG GCC ATG ATG CTC ATC CTG Cys Leu Lys Gln Thr Leu His Lys Leu Glu Ala Met Met Leu Ile Leu 2640 2645 2650 2655	7966
CAG GCA GAG ACC ACG CGG GGC ACC GTG ACG CCC ACC GGC ATC GGA GAC Gln Ala Glu Thr Thr Ala Gly Thr Val Thr Pro Thr Ala Ile Gly Asp 2660 2665 2670	8014
AGC ATC CTC AAC ATC ACA GGA GAC CTC ATC CAC CTG GGC AGC TCG GAC Ser Ile Leu Asn Ile Thr Gly Asp Leu Ile His Leu Ala Ser Ser Asp 2675 2680 2685	8062
GIG CGG GCA CCA CAG CCC TCA GAG CTG GGA GCC GAG TCA CCA TCT CGG Val Arg Ala Pro Gln Pro Ser Glu Leu Gly Ala Glu Ser Pro Ser Arg 2690 2695 2700	8110
ATG GTG CGG TCC CAG GCC TAC AAC CTG ACC TCT GCC CTC ATG CGC ATC Met Val Ala Ser Gln Ala Tyr Asn Leu Thr Ser Ala Leu Met Arg Ile 2705 2710 2715	8158
CTC ATG CGC TCC CGC GTG CTC AAC GAG GAG CGC CTG ACG CTG CGC CGC Leu Met Arg Ser Arg Val Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly 2720 2725 2730 2735	8206
GAG GAG ATC GTG GGC CAG CGC AAG CGC TOG GAC CGG CGG AGC CTG CTG Glu Glu Ile Val Ala Gln Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu 2740 2745 2750	8254
TGC TAT GGC CGC GGC CCA CGG CCT GGC TGC CAC TTC TCC ATC CCC GAG Cys Tyr Gly Gly Ala Pro Gly Pro Gly Cys His Phe Ser Ile Pro Glu 2755 2760 2765	8302
GCT TTC AGC CGG GGC CTG GCC AAC CTC AGT GAC GTG GTG CAG CTC ATC Ala Phe Ser Gly Ala Leu Ala Asn Leu Ser Asp Val Val Gln Leu Ile 2770 2775 2780	8350
TTT CTG GTG GAC TCC AAT CCC TTT CCC TTT GGC TAT ATC AGC AAC TAC Phe Leu Val Asp Ser Asn Pro Phe Pro Phe Gly Tyr Ile Ser Asn Tyr 2785 2790 2795	8398
AOC GTC TCC ACC AAG GTG GGC TOG ATG GCA TTC CAG ACA CAG GGC GGC Thr Val Ser Thr Lys Val Ala Ser Met Ala Phe Gln Thr Gln Ala Gly 2800 2805 2810 2815	8446
GOC CAG ATC CCC ATC GAG CGG CTG GGC TCA GAG CGC GGC ATC ACC GTG Ala Gln Ile Pro Ile Glu Arg Leu Ala Ser Glu Arg Ala Ile Thr Val 2820 2825 2830	8494
AAG GTG CCG AAC AAC TOG GAC TGG GCT GGC CGG GGC CAC CGC AGC TCC Lys Val Pro Asn Asn Ser Asp Trp Ala Ala Arg Gly His Arg Ser Ser 2835 2840 2845	8542
GCC AAC TOC GGC AAC TOC GTT GTG GTC CAG CGC CAG GGC TOC GTC GGT Ala Asn Ser Ala Asn Ser Val Val Val Gln Pro Gln Ala Ser Val Val Gly 2850 2855 2860	8590
GCT GTG GTC ACC CTG GAC AGC AAC CCT CGG GGC GGG CTG CAT CTG Ala Val Val Thr Leu Asp Ser Ser Asn Pro Ala Ala Gly Leu His Leu 2865 2870 2875	8638

24 / 58

CAG CTC AAC TAT ACG CTG CTG GAC GGC CAC TAC CTG TCT GAG GAA CCT Gln Leu Asn Tyr Thr Leu Leu Asp Gly His Tyr Leu Ser Glu Glu Pro 2880 2885 2890 2895	8686
GAG CCC TAC CTG GCA GTC TAC CTA CAC TCG GAG CCC CGG CCC AAT GAG Glu Pro Tyr Leu Ala Val Tyr Leu His Ser Glu Pro Arg Pro Asn Glu 2900 2905 2910	8734
CAC AAC TGC TCG GCT AGC AGG AGG ATC CGC CCA GAG TCA CTC CAG GGT His Asn Cys Ser Ala Ser Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly 2915 2920 2925	8782
GCT GAC CAC CGG CCC TAC ACC TTC TTC ATT TCC CGG GGG AGC AGA GAC Ala Asp His Arg Pro Tyr Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp 2930 2935 2940	8830
CCA CGG GGG AGT TAC CAT CTG AAC CTC TCC AGC CAC TTC CGC TGG TCG Pro Ala Gly Ser Tyr His Leu Asn Leu Ser Ser His Phe Arg Trp Ser 2945 2950 2955	8878
GCG CTG CAG GTG TCC GTG GCC CTG TAC ACG TCC CTG TGC CAG TAC TTC Ala Leu Gln Val Ser Val Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe 2960 2965 2970 2975	8926
AGC GAG GAG GAC ATG GTG TCC CGG ACA GAG CGG CTG CTG CCC CTG GAG Ser Glu Glu Asp Met Val Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu 2980 2985 2990	8974
GAG ACC TAG CGC CGC CAG GCC GTC TGC CTC ACC CGC CAC CTC ACC CGC Glu Thr Ser Pro Arg Gln Ala Val Cys Leu Thr Arg His Leu Thr Ala 2995 3000 3005	9022
TTC GGC GGC AGC CTC TTC GTG CGC CCA AGC CAT GTC CGC TTT GTG TTT Phe Gly Ala Ser Leu Phe Val Pro Pro Ser His Val Arg Phe Val Phe 3010 3015 3020	9070
CCT GAG CGG ACA CGG GAT GTA AAC TAC ATC GTC ATG CTG ACA TGT GCT Pro Glu Pro Thr Ala Asp Val Asn Tyr Ile Val Met Leu Thr Cys Ala 3025 3030 3035	9118
GTG TGC CTG GTG ACC TAC ATG GTC ATG GCC CGC ATC CTG CAC AAG CTG Val Cys Leu Val Thr Tyr Met Val Met Ala Ala Ile Leu His Lys Leu 3040 3045 3050 3055	9166
GAC CAG TTG GAT CGC AGC CGG CGC CGC GOC ATC CCT TTC TGT GGG CAG Asp Gln Leu Asp Ala Ser Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln 3060 3065 3070	9214
CGG CGC CGC TTC AAG TAC GAG ATC CTC GTC AAG ACA GGC TGG GGC CGG Arg Gly Arg Phe Lys Tyr Glu Ile Leu Val Lys Thr Gly Trp Gly Arg 3075 3080 3085	9262
GGC TCA GGT ACC ACG GCC CAC GTG GGC ATC ATG CTG TAT GGG GTG GAC Gly Ser Gly Thr Thr Ala His Val Gly Ile Met Leu Tyr Gly Val Asp 3090 3095 3100	9310
AGC CGG ACC CGC CAC CGG CAC CTG GAC CGC GAC AGA GGC TTC CAC CGC Ser Arg Ser Gly His Arg His Leu Asp Gly Asp Arg Ala Phe His Arg 3105 3110 3115	9358

25 / 58

AAC AGC CTG GAC ATC TTC CGG ATC GCC ACC CGG CAC AGC CTG GGT AGC Asn Ser Leu Asp Ile Phe Arg Ile Ala Thr Pro His Ser Leu Gly Ser 3120 3125 3130 3135	9406
GTC TGG AAG ATC CGA GTG TGG CAC GAC AAC AAA GGG CTC AGC CCT GGC Val Trp Lys Ile Arg Val Trp His Asp Asn Lys Gly Leu Ser Pro Ala 3140 3145 3150	9454
TGG TTC CTG CAG CAC GTC ATC GTC AGG GAC CTG CAG ACG GCA CGC AGC Trp Phe Leu Gln His Val Ile Val Arg Asp Leu Gln Thr Ala Arg Ser 3155 3160 3165	9502
GCC TTC TTC CTG GTC AAT GAC TGG CTT TCG GTG GAG ACG GAG GGC AAC Ala Phe Leu Val Asn Asp Trp Leu Ser Val Glu Thr Glu Ala Asn 3170 3175 3180	9550
GGG GCC CTG GTG GAG AAG GAG GTG CTG GCC CGG AGC GAC GCA GCC CTT Gly Gly Leu Val Glu Lys Glu Val Leu Ala Ala Ser Asp Ala Ala Leu 3185 3190 3195	9598
TTG CCC TTC CGG CGC CTG CTG GTG GCT GAG CTG CAG CGT CGC TTC TTT Leu Arg Phe Arg Arg Leu Leu Val Ala Glu Leu Gln Arg Gly Phe Phe 3200 3205 3210 3215	9646
GAC AAG CAC ATC TGG CTC TCC ATA TGG GAC CGG CGG CCT CGT AGC CGT Asp Lys His Ile Trp Leu Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg 3220 3225 3230	9694
TTC ACT CGC ATC CAG AGG GCC ACC TGC TGC GTT CTC CTC ATC TGC CTC Phe Thr Arg Ile Gln Arg Ala Thr Cys Cys Val Leu Leu Ile Cys Leu 3235 3240 3245	9742
TTC CTG GGC AAC GGC GTG TCG TAC CGG CCT GTT CGC GAC TCT GGC Phe Leu Gly Ala Asn Ala Val Trp Tyr Gly Ala Val Gly Asp Ser Ala 3250 3255 3260	9790
TAC AGC ACG GGG CAT GTG TCC AGG CTG AGC CGG CTG AGC GTC GAC ACA Tyr Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu Ser Val Asp Thr 3265 3270 3275	9838
GTC CCT GTT GGC CTG GTG TCC ACC GTG GTT GTC TAT CCC GTC TAC CTG Val Ala Val Gly Leu Val Ser Ser Val Val Val Tyr Pro Val Tyr Leu 3280 3285 3290 3295	9886
GCC ATC CTT TTT CTC TTC CGG ATG TCC CGG AGC AAG GTG CCT GGG AGC Ala Ile Leu Phe Leu Phe Arg Met Ser Arg Ser Lys Val Ala Gly Ser 3300 3305 3310	9934
CGG AGC CGC ACA CCT GGC GGG CAG CAG GTG CTG GAC ATC GAC AGC TGC Pro Ser Pro Thr Pro Ala Gly Gln Gln Val Leu Asp Ile Asp Ser Cys 3315 3320 3325	9982
CTG GAC TCG TCC GTG CTG GAC AGC TCC TTC CTC ACG TTC TCA GGC CTC Leu Asp Ser Ser Val Leu Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu 3330 3335 3340	10030
CAC GCT GAG GGC TTT GTT GGA CAG ATG AAG AGT GAC TTG TTT CTG GAT His Ala Glu Ala Phe Val Gly Gln Met Lys Ser Asp Leu Phe Leu Asp 3345 3350 3355	10078

26 / 58

GAT TCT AAG AGT CTG GTG TGC TGG CCC TCC GGC GAG GGA AGC CTC AGT Asp Ser Lys Ser Leu Val Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser 3360 3365 3370 3375	10126
TGG CGG GAC CTG CTC AGT GAC CGG TCC ATT GTG GGT AGC AAT CTG CGG Trp Pro Asp Leu Leu Ser Asp Pro Ser Ile Val Gly Ser Asn Leu Arg 3380 3385 3390	10174
CAG CTG GCA CGG GGC CAG GCG CAT GGG CTG GCC CCA GAG GAG GAC Gln Leu Ala Arg Gly Gln Ala Gly His Gly Leu Gly Pro Glu Glu Asp 3395 3400 3405	10222
GCC TTC TCC CTG GCC AGC CCC TAC TCG CCT GCC AAA TCC TTC TCA GCA Gly Phe Ser Leu Ala Ser Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala 3410 3415 3420	10270
TCA GAT GAA GAC CTG ATC CAG CAG GTC CTT CCC GAG GGG GTC AGC AGC Ser Asp Glu Asp Leu Ile Gln Gln Val Leu Ala Glu Gly Val Ser Ser 3425 3430 3435	10318
CCA GGC CCT ACC CAA GAC ACC CAC ATG GAA AGC GAC CTG CTC AGC AGC Pro Ala Pro Thr Gln Asp Thr His Met Glu Thr Asp Leu Leu Ser Ser 3440 3445 3450 3455	10366
CTG TOC AGC ACT CCT GGG GAG AAG ACA GAG AGC CTG GCG CTG CAG AGG Leu Ser Ser Thr Pro Gly Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg 3460 3465 3470	10414
CTG GGG GAG CTG GGG CCA CCC AGC CCA GGC CTG AAC TGG GAA CAG CCC Leu Gly Glu Leu Gly Pro Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro 3475 3480 3485	10462
CAG GCA CGG AGG CTG TCC AGG ACA GGA CTG GTG GAG GGT CTG CGG AAG Gln Ala Ala Arg Leu Ser Arg Thr Gly Leu Val Glu Gly Leu Arg Lys 3490 3495 3500	10510
CCC CTG CTG CGG GGC TGG TGT GGC TCC CTG GCC CAC GGG CTC AGC CTG Arg Leu Leu Pro Ala Trp Cys Ala Ser Leu Ala His Gly Leu Ser Leu 3505 3510 3515	10558
CTC CTG GTG CCT GTG CCT GTC TCA GGG TGG GTG GGT CGG AGC Leu Leu Val Ala Val Ala Val Ser Gly Trp Val Gly Ala Ser 3520 3525 3530 3535	10606
TTC CCC CGG GGC GTG AGT GTT GCG TGG CTC CTG TCC AGC AGC GGC AGC Phe Pro Pro Gly Val Ser Val Ala Trp Leu Leu Ser Ser Ser Ala Ser 3540 3545 3550	10654
TTC CTG GCC TCA TTC CTC GGC TGG GAG CCA CTG AAG GTC TTG CTG GAA Phe Leu Ala Ser Phe Leu Gly Trp Glu Pro Leu Lys Val Leu Leu Glu 3555 3560 3565	10702
GCC CTG TAC TTC TCA CTG GTG CCC AAG CGG CTG CAC CGG GAT GAA GAT Ala Leu Tyr Phe Ser Leu Val Ala Lys Arg Leu His Pro Asp Glu Asp 3570 3575 3580	10750
GAC ACC CTG GTA GAG AGC CGG CCT GTG AGC CCT GTG AGC GCA CGT GTG Asp Thr Leu Val Glu Ser Pro Ala Val Thr Pro Val Ser Ala Arg Val 3585 3590 3595	10798

27 / 58

CCC CGC GTC CGG CCA CCC CAC GGC TTT GCA CTC TTC CTG GGC AAG GAA Pro Arg Val Arg Pro Pro His Gly Phe Ala Leu Phe Leu Ala Lys Glu 3600 3605 3610 3615	10846
GAA GCC CGC AAG GTC AAG AGG CTA CAT GGC ATG CTG CGG AGC CTC CTG Glu Ala Arg Lys Val Lys Arg Leu His Gly Met Leu Arg Ser Leu Leu 3620 3625 3630	10894
GTG TAC ATG CTT TTT CTG CTG GTG ACC CTG CTG GCC AGC TAT GGG GAT Val Tyr Met Leu Phe Leu Leu Val Thr Leu Leu Ala Ser Tyr Gly Asp 3635 3640 3645	10942
GCC TCA TGC CAT GGG CAC GCC TAC CGT CTG CAA AGC GCC ATC AAG CAG Ala Ser Cys His His Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln 3650 3655 3660	10990
GAG CTG CAC AGC CGG GCC TTC CTG GCC ATC ACG CGG TCT GAG GAG CTC Glu Leu His Ser Arg Ala Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu 3665 3670 3675	11038
TGG CCA TGG ATG GCC CAC GTG CTG CTG CCC TAC GTC CAC GGG AAC CAG Trp Pro Trp Met Ala His Val Leu Leu Pro Tyr Val His Gly Asn Gln 3680 3685 3690 3695	11086
TCC AGC CCA GAG CTG GGG CCC CCA CGG CTG CGG CAG CTG CGG CTG CAG Ser Ser Pro Glu Leu Gly Pro Pro Arg Leu Arg Gln Val Arg Leu Gln 3700 3705 3710	11134
GAA GCA CTC TAC CCA GAC OCT CCC GGC CCC AGG GTC CAC ACG TGC TCG Glu Ala Leu Tyr Pro Asp Pro Pro Gly Pro Arg Val His Thr Cys Ser 3715 3720 3725	11182
GCC GCA GGA GGC TTC AGC ACC AGC GAT TAC GAC GTT GGC TGG GAG AGT Ala Ala Gly Gly Phe Ser Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser 3730 3735 3740	11230
CCT CAC AAT GGC TCG GGG ACG TCG GCC TAT TCA GCG CGG GAT CTG CTG Pro His Asn Gly Ser Gly Thr Trp Ala Tyr Ser Ala Pro Asp Leu Leu 3745 3750 3755	11278
GGG GCA TGG TCC TGG GGC TCC TGT GGC GTG TAT GAC AGC GGG GGC TAC Gly Ala Trp Ser Trp Gly Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr 3760 3765 3770 3775	11326
GTC CAG GAG CTG GGC CTG AGC CTG GAG GAG AGC CGC GAC CGG CTG CGC Val Gln Glu Leu Gly Leu Ser Leu Glu Ser Arg Asp Arg Leu Arg 3780 3785 3790	11374
TTC CTG CAG CTG CAC AAC TGG CTG GAC AAC AGG AGC CGC OCT GTG TTC Phe Leu Gln Leu His Asn Trp Leu Asp Asn Arg Ser Arg Ala Val Phe 3795 3800 3805	11422
CTG GAG CTC ACG CGC TAC AGC CGG GGC GTG GGG CTG CAC GCC GGC GTC Leu Glu Leu Thr Arg Tyr Ser Pro Ala Val Gly Leu His Ala Ala Val 3810 3815 3820	11470
AOG CTG CGC CTC GAG TTC CGG CGC GGC CGC CGC CTG GCC GGC CTC Thr Leu Arg Leu Glu Phe Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu 3825 3830 3835	11518

28 / 58

ACC GTC CGC CCC TTT GCG CTG CGC CGC CTC AGC GCG GCC CTC TCG CTG Ser Val Arg Pro Phe Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu 3840 3845 3850 3855	11566
OCT CTG CTC ACC TCG GTG TGC CTG CTG CTG TTC GCC GTG CAC TTC GCC Pro Leu Leu Thr Ser Val Cys Leu Leu Leu Phe Ala Val His Phe Ala 3860 3865 3870	11614
GTG GCG GAG GCG CGT ACT TGG CAC AGG GAA GGG CGC TGG CGC GTG CTG Val Ala Glu Ala Arg Thr Trp His Arg Glu Gly Arg Trp Arg Val Leu 3875 3880 3885	11662
CGG CTC GGA CGC TGG CGG CGG TGG CTG CTG GTG CGG CTG ACG CGG GCG Arg Leu Gly Ala Trp Ala Arg Trp Leu Leu Val Ala Leu Thr Ala Ala 3890 3895 3900	11710
ACG GCA CTG GTA CGC CTC GCC CAG CTG GGT GCC GCT GAC CGC CAG TGG Thr Ala Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp 3905 3910 3915	11758
ACC CGT TTC GTG CGC GGC CGC CGC CGC CGC TTC ACT AGC TTC GAC CAG Thr Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln 3920 3925 3930 3935	11806
GTG GCG CAC GTG AGC TCC GCA GCG CGT CGC CTG CGG GCG TGG CTG CTC Val Ala His Val Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu 3940 3945 3950	11854
TTC CTG CTT TTG GTC AAG GCT GCC CAG CAC GTA CGC TTC GTG CGC CAG Phe Leu Leu Leu Val Lys Ala Ala Gln His Val Arg Phe Val Arg Gln 3955 3960 3965	11902
TGG TCC GTC TTT GGC AAG ACA TTA TGC CGA GCT CTG CCA GAG CTC CTG Trp Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu 3970 3975 3980	11950
GCG GTC ACC TTG GGC CTG GTG CTG CTC CGG GTC CGC GOC TAC GOC CAG CTG Gly Val Thr Leu Gly Leu Val Val Leu Gly Val Ala Tyr Ala Gln Leu 3985 3990 3995	11998
GCC ATC CTG CTC GTG TCT TCC TGT GTG GAC TCC CTC TGG AGC GTG GGC Ala Ile Leu Leu Val Ser Ser Cys Val Asp Ser Leu Trp Ser Val Ala 4000 4005 4010 4015	12046
CAG GGC CTG TTG GTG CTC CCT CCT CCT CCT CCT CCT CCT CCT CCT Gln Ala Leu Leu Val Leu Cys Pro Gly Thr Gly Leu Ser Thr Leu Cys 4020 4025 4030	12071
OCT GCG GAG TCC TGG CAC CTG TCA CGC CCT CTG TGT GTG GGG CTC TGG Pro Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys Val Gly Leu Trp 4035 4040 4045	12142
GCA CTG CGG CTG TGG GGC CGC CTA CGG CTG GGG GCT GTT ATT CTC CGC Ala Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala Val Ile Leu Arg 4050 4055 4060	12190
TGG CGC TAC CAC GCC TTG CGT GGA GAG CTG TAC CGG CGG GCG TGG GAG Trp Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu 4065 4070 4075	12238

29/58

CCC CAG GAC TAC GAG ATG GTG GAC TTG TTC CTG CGC AGG CTG CGC CTC Pro Gln Asp Tyr Glu Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu 4080 4085 4090 4095	12286
TGG ATG CGC CTC ACC AAG GTC AAG GAG TTC CGC CAC AAA GTC CGC TTT Trp Met Gly Leu Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe 4100 4105 4110	12334
GAA CGG ATG GAG CGG CTG CCC TCT CGC TCC TCC AGG GGC TCC AAG GTA Glu Gly Met Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val 4115 4120 4125	12382
TCC CGG GAT GTG CCC CCA CGC GCT GGC TCC GAT GGC TCG CAC CGC Ser Pro Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro 4130 4135 4140	12430
TCC ACC TCC TCC AGC CAG CTG GAT GGG CTG ACC GTG AGC CTG CGC CGG Ser Thr Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg 4145 4150 4155	12478
CTG GGG ACA AGG TGT GAG CCT GAG CGC TCC CGC CTC CAA CGC GTG TTC Leu Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val Phe 4160 4165 4170 4175	12526
GAG GCC CTG CTC ACC CAG TTT GAC CGA CTC AAC CAG GCC ACA GAG GAC Glu Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp 4180 4185 4190	12574
GTC TAC CAG CTG GAG CAG CAG CTG CAC AGC CTG CAA CGC CGC AGG AGC Val Tyr Gln Leu Glu Gln Leu His Ser Leu Gln Gly Arg Arg Ser 4195 4200 4205	12622
AGC CGG CGC CGC CGG TCT TCC CGT GGC CCA TCC CGG CGC CTG CGG Ser Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg 4210 4215 4220	12670
CCA GCA CTG CGC CGC CTT CGC CGG CGC AGT CGG CGT GTG GAC CTG Pro Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser Arg Gly Val Asp Leu 4225 4230 4235	12718
GCC ACT CGC CGC AGC AGG ACA CCT TCG CGC CAA GAA CAA CGT CCA CGC Ala Thr Gly Pro Ser Arg Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro 4240 4245 4250 4255	12765
CAG CAG CAC TTA GTC CTC CTT CCT CGC GGG CGT GGG CGG CGG TGG AGT CGG Gin Gln His Leu Val Leu Leu Pro Gly Gly Gly Gly Pro Trp Ser Arg 4260 4265 4270	12814
AGT GGA CAC CGC TCA GTA TTA CTT TCT GGC GCT GTC AAG GGC GAG CGC Ser Gly His Arg Ser Val Leu Leu Ser Ala Ala Val Lys Ala Glu Gly 4275 4280 4285	12862
CAG GCA GAA TGG CTG CAC GTA GGT TCC CCA GAG AGC AGG CAG CGG CAT Gln Ala Glu Trp Leu His Val Gly Ser Pro Glu Ser Arg Gln Gly His 4290 4295 4300	12910
CTG TCT GTC TGT GGG CTT CAG CAC TTT AAA GAG GCT GTG TGG CGA ACC Leu Ser Val Cys Gly Leu Gln His Phe Lys Glu Ala Val Trp Pro Thr 4305 4310 4315	12958

30 / 58

AGG ACC CAG GGT CCC CTC OOC AGC TCC CTT GGG AAG GAC ACA GCA GTA Arg Thr Gln Gly Pro Leu Pro Ser Ser Leu Gly Lys Asp Thr Ala Val 4320 4325 4330 4335	13006
TTG GAC GGT TTC TAGOCTCTGA GATGCTAATT TATTTOOOOG AGTCTCAGG Leu Asp Gly Phe	13058
TACAGOGGCC TGTCGCGGCC CCCACCGGCT GGGCAGATGT CCCACACTGC TAAGGCTGCT GGCTTCAGGG AGGGTAGGC TGCAACGGCG CCACACCTGCG OCTAACGTTAT TACCTCTCCA GTTCCTACCG TACTCCCTGC ACACGCTCAC TGTTGTTCTC GTGTCAGTAA TTTATATGGT GTTAAAAATGT GTATATTTTT GTATGTCACT ATTTCACCA GGGCTGACGG GCGCTGCGCC AGAGCTGGCC TCCCCAACAA CCTGCTGGCG TTGGTAGGTG TGGTGGCGTT ATGGCAGCGC GGCTGCTGCT TGGATGCGAG CTGGCTTG CGCGGTCTG GGGGGCACAG CTGCTGCGA GCCACTCTCA TCAACCCAGA GGCCTTGTCA TCCCTCCCTTG CCCAGGCGA GGTAGCAAGA GACAGCGGCC CAGGCGCTGCT GGCATCAGGT CTGGGCAAGT ACCAGGACTA GGCATGTCAG AAGACCCAG CGCTGGTACA GGAAAAGACT CCTCTGGGG CCTGGCTCCC ACGGTGGAGG AAGGTGACTG TGTTGTTGTTG TGTTGCGCGG CGCGACGGCG GAGTGTCTG TATGGCCAG CCAGGCTCAA GGCCTCGGA GCTGGCTGTG CCTGCTCTG TGTACCACTT CTGTTGGCAT GGCGCTCT AGAGCGCTGA CACCCCGAAC ACGCGACAC CAAGCAGACA AAGTCAATAA AAGAGCTGTC TGACTGCAAA AAAAAAAA	13118 13178 13238 13298 13358 13418 13478 13538 13598 13658 13718 13778 13807

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Gly Ala Ala Cys Arg Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu 1 5 10 15
--

Gly Pro Ala Leu Arg Ile Pro Ala Asp Ala Thr Ala Leu Asp Val Ser 20 25 30

His Asn Leu Leu Arg Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser 35 40 45

Ala Leu Ala Glu Leu Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu 50 55 60

Glu Gly Ile Phe Ala Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser 65 70 75 80
--

Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Arg Trp 85 90 95

Ala Glu Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys 100 105 110
--

Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu 115 120 125
--

31 /58

Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn
 130 135 140
 Ser Ser Gly Thr Val Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly
 145 150 155 160
 Leu Leu Gln Pro Glu Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln
 165 170 175
 Gly Leu Ala Ala Leu Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala
 180 185 190
 Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro
 195 200 205
 Pro Pro Pro Ala Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His
 210 215 220
 Val Phe Pro Ala Ser Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro
 225 230 235 240
 Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro
 245 250 255
 Val Thr Ala Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp
 260 265 270
 Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr
 275 280 285
 His Val Thr Ala Val Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly
 290 295 300
 Thr Asp Val Gln Val Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys
 305 310 315 320
 Pro Ser Ser Val Gln Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln Asn
 325 330 335
 Arg Gly Gly Ser Gly Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu Gly
 340 345 350
 Glu Glu Pro Ala Arg Ala Val His Pro Leu Cys Pro Ser Asp Thr Glu
 355 360 365
 Ile Phe Pro Gly Asn Gly His Cys Tyr Arg Leu Val Val Glu Lys Ala
 370 375 380
 Ala Trp Leu Gln Ala Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala Ala
 385 390 395 400
 Leu Ala Met Val Asp Ser Pro Ala Val Gln Arg Phe Leu Val Ser Arg
 405 410 415
 Val Thr Arg Ser Leu Asp Val Trp Ile Gly Phe Ser Thr Val Gln Gly
 420 425 430
 Val Glu Val Gly Pro Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu Ser
 435 440 445
 Cys Gln Asn Trp Leu Pro Gly Glu Pro His Pro Ala Thr Ala Glu His
 450 455 460

SUBSTITUTE SHEET (RULE 26)

32 / 58

Cys Val Arg Leu Gly Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys Ser
 465 470 475 480

Ala Pro His Ser Tyr Val Cys Glu Leu Gln Pro Gly Gly Pro Val Gln
 485 490 495

Asp Ala Glu Asn Leu Leu Val Gly Ala Pro Ser Gly Asp Leu Gln Gly
 500 505 510

Pro Leu Thr Pro Leu Ala Gln Gln Asp Gly Leu Ser Ala Pro His Glu
 515 520 525

Pro Val Glu Val Met Val Phe Pro Gly Leu Arg Leu Ser Arg Glu Ala
 530 535 540

Phe Leu Thr Thr Ala Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro Ala
 545 550 555 560

Gln Leu Arg Leu Gln Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr Pro
 565 570 575

Glu Asn Gly Ser Glu Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr Gln
 580 585 590

Leu Ala Pro Ala Cys Met Pro Gly Gly Arg Trp Cys Pro Gly Ala Asn
 595 600 605

Ile Cys Leu Pro Leu Asp Ala Ser Cys His Pro Gln Ala Cys Ala Asn
 610 615 620

Gly Cys Thr Ser Gly Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu Trp
 625 630 635 640

Arg Glu Phe Leu Phe Ser Val Ala Ala Gly Pro Pro Ala Gln Tyr Ser
 645 650 655

Val Thr Leu His Gly Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val
 660 665 670

Gly Leu Gln His Asp Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro
 675 680 685

Ala Pro Gly His Pro Gly Pro Gln Ala Pro Tyr Leu Ser Ala Asn Ala
 690 695 700

Ser Ser Trp Leu Pro His Leu Pro Ala Gln Leu Glu Gly Thr Trp Ala
 705 710 715 720

Cys Pro Ala Cys Ala Leu Arg Leu Leu Ala Ala Thr Glu Gln Leu Thr
 725 730 735

Val Leu Leu Gly Leu Arg Pro Asn Pro Gly Leu Arg Met Pro Gly Arg
 740 745 750

Tyr Glu Val Arg Ala Glu Val Gly Asn Gly Val Ser Arg His Asn Leu
 755 760 765

Ser Cys Ser Phe Asp Val Val Ser Pro Val Ala Gly Leu Arg Val Ile
 770 775 780

Tyr Pro Ala Pro Arg Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser
 785 790 795 800

SUBSTITUTE SHEET (RULE 26)

33/58

Ala Leu Val Leu Gln Val Asp Ser Gly Ala Asn Ala Thr Ala
805 810 815

Arg Trp Pro Gly Gly Ser Val Ser Ala Arg Phe Glu Asn Val Cys Pro
820 825 830

Ala Leu Val Ala Thr Phe Val Pro Gly Cys Pro Trp Glu Thr Asn Asp
835 840 845

Thr Leu Phe Ser Val Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His
850 855 860

Val Val Asp Val Val Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser
865 870 875 880

Leu Arg Val Thr Ala Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro
885 890 895

Ser Pro Glu Ala Arg Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro
900 905 910

Val Val Glu Ala Gly Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp
915 920 925

Lys Gln Ser Leu Thr Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln
930 935 940

Ser Ala Ala Val Phe Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser
945 950 955 960

Asn Val Thr Val Asn Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met
965 970 975

Gln Gly Leu Gln Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn Ala
980 985 990

Thr Leu Val Leu Thr Gly Val Leu Val Asp Ser Ala Val Glu Val
995 1000 1005

Ala Phe Leu Trp Asn Phe Gly Asp Gly Glu Gln Ala Leu His Gln Phe
1010 1015 1020

Gln Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val Ala
1025 1030 1035 1040

Gln Val Leu Val Glu His Asn Val Met His Thr Tyr Ala Ala Pro Gly
1045 1050 1055

Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn Leu Thr
1060 1065 1070

Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser Val Ala Val
1075 1080 1085

Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro Val Thr Phe Tyr
1090 1095 1100

Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu Tyr Thr Trp Asp Phe
1105 1110 1115 1120

Gly Asp Gly Ser Pro Val Leu Thr Gln Ser Gln Pro Ala Ala Asn His
1125 1130 1135

34 / 58

Thr Tyr Ala Ser Arg Gly Thr Tyr His Val Arg Leu Glu Val Asn Asn
1140 1145 1150

Thr Val Ser Gly Ala Ala Ala Gln Ala Asp Val Arg Val Phe Glu Glu
1155 1160 1165

Leu Arg Gly Leu Ser Val Asp Met Ser Leu Ala Val Glu Gln Gly Ala
1170 1175 1180

Pro Val Val Val Ser Ala Ala Val Gln Thr Gly Asp Asn Ile Thr Trp
1185 1190 1195 1200

Thr Phe Asp Met Gly Asp Gly Thr Val Leu Ser Gly Pro Glu Ala Thr
1205 1210 1215

Val Glu His Val Tyr Leu Arg Ala Gln Asn Cys Thr Val Thr Val Gly
1220 1225 1230

Ala Ala Ser Pro Ala Gly His Leu Ala Arg Ser Leu His Val Leu Val
1235 1240 1245

Phe Val Leu Glu Val Leu Arg Val Glu Pro Ala Ala Cys Ile Pro Thr
1250 1255 1260

Gln Pro Asp Ala Arg Leu Thr Ala Tyr Val Thr Gly Asn Pro Ala His
1265 1270 1275 1280

Tyr Leu Phe Asp Trp Thr Phe Gly Asp Gly Ser Ser Asn Thr Thr Val
1285 1290 1295

Arg Gly Cys Pro Thr Val Thr His Asn Phe Thr Arg Ser Gly Thr Phe
1300 1305 1310

Pro Leu Ala Leu Val Leu Ser Ser Arg Val Asn Arg Ala His Tyr Phe
1315 1320 1325

Thr Ser Ile Cys Val Glu Pro Glu Val Gly Asn Val Thr Leu Gln Pro
1330 1335 1340

Glu Arg Gln Phe Val Gln Leu Gly Asp Glu Ala Trp Leu Val Ala Cys
1345 1350 1355 1360

Ala Trp Pro Pro Phe Pro Tyr Arg Tyr Thr Trp Asp Phe Gly Thr Glu
1365 1370 1375

Glu Ala Ala Pro Thr Arg Ala Arg Gly Pro Glu Val Thr Phe Ile Tyr
1380 1385 1390

Arg Asp Pro Gly Ser Tyr Leu Val Thr Val Thr Ala Ser Asn Asn Ile
1395 1400 1405

Ser Ala Ala Asn Asp Ser Ala Leu Val Glu Val Gln Glu Pro Val Leu
1410 1415 1420

Val Thr Ser Ile Lys Val Asn Gly Ser Leu Gly Leu Glu Leu Gln Gln
1425 1430 1435 1440

Pro Tyr Leu Phe Ser Ala Val Gly Arg Gly Arg Pro Ala Ser Tyr Leu
1445 1450 1455

35 / 58

Trp Asp Leu Gly Asp Gly Gly Trp Leu Glu Gly Pro Glu Val Thr His
 1460 1465 1470
 Ala Tyr Asn Ser Thr Gly Asp Phe Thr Val Arg Val Ala Gly Trp Asn
 1475 1480 1485
 Glu Val Ser Arg Ser Glu Ala Trp Leu Asn Val Thr Val Lys Arg Arg
 1490 1495 1500
 Val Arg Gly Leu Val Val Asn Ala Ser Arg Thr Val Val Pro Leu Asn
 1505 1510 1515 1520
 Gly Ser Val Ser Phe Ser Thr Ser Leu Glu Ala Gly Ser Asp Val Arg
 1525 1530 1535
 Tyr Ser Trp Val Leu Cys Asp Arg Cys Thr Pro Ile Pro Gly Gly Pro
 1540 1545 1550
 Thr Ile Ser Tyr Thr Phe Arg Ser Val Gly Thr Phe Asn Ile Ile Val
 1555 1560 1565
 Thr Ala Glu Asn Glu Val Gly Ser Ala Gln Asp Ser Ile Phe Val Tyr
 1570 1575 1580
 Val Leu Gln Leu Ile Glu Gly Leu Gln Val Val Gly Gly Arg Tyr
 1585 1590 1595 1600
 Phe Pro Thr Asn His Thr Val Gln Leu Gln Ala Val Val Arg Asp Gly
 1605 1610 1615
 Thr Asn Val Ser Tyr Ser Trp Thr Ala Trp Arg Asp Arg Gly Pro Ala
 1620 1625 1630
 Leu Ala Gly Ser Gly Lys Gly Phe Ser Leu Thr Val Leu Glu Ala Gly
 1635 1640 1645
 Thr Tyr His Val Gln Leu Arg Ala Thr Asn Met Leu Gly Ser Ala Trp
 1650 1655 1660
 Ala Asp Cys Thr Met Asp Phe Val Glu Pro Val Gly Trp Leu Met Val
 1665 1670 1675 1680
 Thr Ala Ser Pro Asn Pro Ala Ala Val Asn Thr Ser Val Thr Leu Ser
 1685 1690 1695
 Ala Glu Leu Ala Gly Gly Ser Gly Val Val Tyr Thr Trp Ser Leu Glu
 1700 1705 1710
 Glu Gly Leu Ser Trp Glu Thr Ser Glu Pro Phe Thr Thr His Ser Phe
 1715 1720 1725
 Pro Thr Pro Gly Leu His Leu Val Thr Met Thr Ala Gly Asn Pro Leu
 1730 1735 1740
 Gly Ser Ala Asn Ala Thr Val Glu Val Asp Val Gln Val Pro Val Ser
 1745 1750 1755 1760
 Gly Leu Ser Ile Arg Ala Ser Glu Pro Gly Gly Ser Phe Val Ala Ala
 1765 1770 1775

SUBSTITUTE SHEET (RULE 26)

36 / 58

Gly Ser Ser Val Pro Phe Trp Gly Gln Leu Ala Thr Gly Thr Asn Val
 1780 1785 1790

Ser Trp Cys Trp Ala Val Pro Gly Gly Ser Ser Lys Arg Gly Pro His
 1795 1800 1805

Val Thr Met Val Phe Pro Asp Ala Gly Thr Phe Ser Ile Arg Leu Asn
 1810 1815 1820

Ala Ser Asn Ala Val Ser Trp Val Ser Ala Thr Tyr Asn Leu Thr Ala
 1825 1830 1835 1840

Glu Glu Pro Ile Val Gly Leu Val Leu Trp Ala Ser Ser Lys Val Val
 1845 1850 1855

Ala Pro Gly Gln Leu Val His Phe Gln Ile Leu Leu Ala Ala Gly Ser
 1860 1865 1870

Ala Val Thr Phe Arg Leu Gln Val Gly Gly Ala Asn Pro Glu Val Leu
 1875 1880 1885

Pro Gly Pro Arg Phe Ser His Ser Phe Pro Arg Val Gly Asp His Val
 1890 1895 1900

Val Ser Val Arg Gly Lys Asn His Val Ser Trp Ala Gln Ala Gln Val
 1905 1910 1915 1920

Arg Ile Val Val Leu Glu Ala Val Ser Gly Leu Gln Met Pro Asn Cys
 1925 1930 1935

Cys Glu Pro Gly Ile Ala Thr Gly Thr Glu Arg Asn Phe Thr Ala Arg
 1940 1945 1950

Val Gln Arg Gly Ser Arg Val Ala Tyr Ala Trp Tyr Phe Ser Leu Gln
 1955 1960 1965

Lys Val Gln Gly Asp Ser Leu Val Ile Leu Ser Gly Arg Asp Val Thr
 1970 1975 1980

Tyr Thr Pro Val Ala Ala Gly Leu Leu Glu Ile Gln Val Arg Ala Phe
 1985 1990 1995 2000

Asn Ala Leu Gly Ser Glu Asn Arg Thr Leu Val Leu Glu Val Gln Asp
 2005 2010 2015

Ala Val Gln Tyr Val Ala Leu Gln Ser Gly Pro Cys Phe Thr Asn Arg
 2020 2025 2030

Ser Ala Gln Phe Glu Ala Ala Thr Ser Pro Ser Pro Arg Arg Val Ala
 2035 2040 2045

Tyr His Trp Asp Phe Gly Asp Gly Ser Pro Gly Gln Asp Thr Asp Glu
 2050 2055 2060

Pro Arg Ala Glu His Ser Tyr Leu Arg Pro Gly Asp Tyr Arg Val Gln
 2065 2070 2075 2080

Val Asn Ala Ser Asn Leu Val Ser Phe Phe Val Ala Gln Ala Thr Val
 2085 2090 2095

37 / 58

Thr Val Gln Val Leu Ala Cys Arg Glu Pro Glu Val Asp Val Val Leu
2100 2105 2110

Pro Leu Gln Val Leu Met Arg Arg Ser Gln Arg Asn Tyr Leu Glu Ala
2115 2120 2125

His Val Asp Leu Arg Asp Cys Val Thr Tyr Gln Thr Glu Tyr Arg Trp
2130 2135 2140

Glu Val Tyr Arg Thr Ala Ser Cys Gln Arg Pro Gly Arg Pro Ala Arg
2145 2150 2155 2160

Val Ala Leu Pro Gly Val Asp Val Ser Arg Pro Arg Leu Val Leu Pro
2165 2170 2175

Arg Leu Ala Leu Pro Val Gly His Tyr Cys Phe Val Phe Val Val Ser
2180 2185 2190

Phe Gly Asp Thr Pro Leu Thr Gln Ser Ile Gln Ala Asn Val Thr Val
2195 2200 2205

Ala Pro Glu Arg Leu Val Pro Ile Ile Glu Gly Gly Ser Tyr Arg Val
2210 2215 2220

Trp Ser Asp Thr Arg Asp Leu Val Leu Asp Gly Ser Glu Ser Tyr Asp
2225 2230 2235 2240

Pro Asn Leu Glu Asp Gly Asp Gln Thr Pro Leu Ser Phe His Trp Ala
2245 2250 2255

Cys Val Ala Ser Thr Gln Arg Glu Ala Gly Gly Cys Ala Leu Asn Phe
2260 2265 2270

Gly Pro Arg Gly Ser Ser Thr Val Thr Ile Pro Arg Glu Arg Leu Ala
2275 2280 2285

Ala Gly Val Glu Tyr Thr Phe Ser Leu Thr Val Trp Lys Ala Gly Arg
2290 2295 2300

Lys Glu Glu Ala Thr Asn Gln Thr Val Leu Ile Arg Ser Gly Arg Val
2305 2310 2315 2320

Pro Ile Val Ser Leu Glu Cys Val Ser Cys Lys Ala Gln Ala Val Tyr
2325 2330 2335

Glu Val Ser Arg Ser Ser Tyr Val Tyr Leu Glu Gly Arg Cys Leu Asn
2340 2345 2350

Cys Ser Ser Gly Ser Lys Arg Gly Arg Trp Ala Ala Arg Thr Phe Ser
2355 2360 2365

Asn Lys Thr Leu Val Leu Asp Glu Thr Thr Ser Thr Gly Ser Ala
2370 2375 2380

Gly Met Arg Leu Val Leu Arg Arg Gly Val Leu Arg Asp Gly Glu Gly
2385 2390 2395 2400

Tyr Thr Phe Thr Leu Thr Val Leu Gly Arg Ser Gly Glu Glu Gly
2405 2410 2415

38 / 58

Cys Ala Ser Ile Arg Leu Ser Pro Asn Arg Pro Pro Leu Gly Gly Ser
2420 2425 2430

Cys Arg Leu Phe Pro Leu Gly Ala Val His Ala Leu Thr Thr Lys Val
2435 2440 2445

His Phe Glu Cys Thr Gly Trp His Asp Ala Glu Asp Ala Gly Ala Pro
2450 2455 2460

Leu Val Tyr Ala Leu Leu Arg Arg Cys Arg Gln Gly His Cys Glu
2465 2470 2475 2480

Glu Phe Cys Val Tyr Lys Gly Ser Leu Ser Ser Tyr Gly Ala Val Leu
2485 2490 2495

Pro Pro Gly Phe Arg Pro His Phe Glu Val Gly Leu Ala Val Val Val
2500 2505 2510

Gln Asp Gln Leu Gly Ala Ala Val Val Ala Leu Asn Arg Ser Leu Ala
2515 2520 2525

Ile Thr Leu Pro Glu Pro Asn Gly Ser Ala Thr Gly Leu Thr Val Trp
2530 2535 2540

Leu His Gly Leu Thr Ala Ser Val Leu Pro Gly Leu Leu Arg Gln Ala
2545 2550 2555 2560

Asp Pro Gln His Val Ile Glu Tyr Ser Leu Ala Leu Val Thr Val Leu
2565 2570 2575

Asn Glu Tyr Glu Arg Ala Leu Asp Val Ala Ala Glu Pro Lys His Glu
2580 2585 2590

Arg Gln His Arg Ala Gln Ile Arg Lys Asn Ile Thr Glu Thr Leu Val
2595 2600 2605

Ser Leu Arg Val His Thr Val Asp Asp Ile Gln Gln Ile Ala Ala Ala
2610 2615 2620

Leu Ala Gln Cys Met Gly Pro Ser Arg Glu Leu Val Cys Arg Ser Cys
2625 2630 2635 2640

Leu Lys Gln Thr Leu His Lys Leu Glu Ala Met Met Leu Ile Leu Gln
2645 2650 2655

Ala Glu Thr Thr Ala Gly Thr Val Thr Pro Thr Ala Ile Gly Asp Ser
2660 2665 2670

Ile Leu Asn Ile Thr Gly Asp Leu Ile His Leu Ala Ser Ser Asp Val
2675 2680 2685

Arg Ala Pro Gln Pro Ser Glu Leu Gly Ala Glu Ser Pro Ser Arg Met
2690 2695 2700

Val Ala Ser Gln Ala Tyr Asn Leu Thr Ser Ala Leu Met Arg Ile Leu
2705 2710 2715 2720

Met Arg Ser Arg Val Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly Glu
2725 2730 2735

SUBSTITUTE SHEET (RULE 26)

39 / 58

Glu Ile Val Ala Gln Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu Cys
 2740 2745 2750
 Tyr Gly Gly Ala Pro Gly Pro Gly Cys His Phe Ser Ile Pro Glu Ala
 2755 2760 2765
 Phe Ser Gly Ala Leu Ala Asn Leu Ser Asp Val Val Gln Leu Ile Phe
 2770 2775 2780
 Leu Val Asp Ser Asn Pro Phe Phe Gly Tyr Ile Ser Asn Tyr Thr
 2785 2790 2795 2800
 Val Ser Thr Lys Val Ala Ser Met Ala Phe Gln Thr Gln Ala Gly Ala
 2805 2810 2815
 Gln Ile Pro Ile Glu Arg Leu Ala Ser Glu Arg Ala Ile Thr Val Lys
 2820 2825 2830
 Val Pro Asn Asn Ser Asp Trp Ala Ala Arg Gly His Arg Ser Ser Ala
 2835 2840 2845
 Asn Ser Ala Asn Ser Val Val Gln Pro Gln Ala Ser Val Gly Ala
 2850 2855 2860
 Val Val Thr Leu Asp Ser Ser Asn Pro Ala Ala Gly Leu His Leu Gln
 2865 2870 2875 2880
 Leu Asn Tyr Thr Leu Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu
 2885 2890 2895
 Pro Tyr Leu Ala Val Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His
 2900 2905 2910
 Asn Cys Ser Ala Ser Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala
 2915 2920 2925
 Asp His Arg Pro Tyr Thr Phe Phe Ile Ser Pro Gly Ser Arg Asp Pro
 2930 2935 2940
 Ala Gly Ser Tyr His Leu Asn Leu Ser Ser His Phe Arg Trp Ser Ala
 2945 2950 2955 2960
 Leu Gln Val Ser Val Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe Ser
 2965 2970 2975
 Glu Glu Asp Met Val Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu Glu
 2980 2985 2990
 Thr Ser Pro Arg Gln Ala Val Cys Leu Thr Arg His Leu Thr Ala Phe
 2995 3000 3005
 Gly Ala Ser Leu Phe Val Pro Pro Ser His Val Arg Phe Val Phe Pro
 3010 3015 3020
 Glu Pro Thr Ala Asp Val Asn Tyr Ile Val Met Leu Thr Cys Ala Val
 3025 3030 3035 3040
 Cys Leu Val Thr Tyr Met Val Met Ala Ala Ile Leu His Lys Leu Asp
 3045 3050 3055

40 / 58

Gln Leu Asp Ala Ser Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln Arg
3060 3065 3070

Gly Arg Phe Lys Tyr Glu Ile Leu Val Lys Thr Gly Trp Gly Arg Gly
3075 3080 3085

Ser Gly Thr Thr Ala His Val Gly Ile Met Leu Tyr Gly Val Asp Ser
3090 3095 3100

Arg Ser Gly His Arg His Leu Asp Gly Asp Arg Ala Phe His Arg Asn
3105 3110 3115 3120

Ser Leu Asp Ile Phe Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val
3125 3130 3135

Trp Lys Ile Arg Val Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp
3140 3145 3150

Phe Leu Gln His Val Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala
3155 3160 3165

Phe Phe Leu Val Asn Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly
3170 3175 3180

Gly Leu Val Glu Lys Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu
3185 3190 3195 3200

Arg Phe Arg Arg Leu Leu Val Ala Glu Leu Gln Arg Gly Phe Phe Asp
3205 3210 3215

Lys His Ile Trp Leu Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg Phe
3220 3225 3230

Thr Arg Ile Gln Arg Ala Thr Cys Cys Val Leu Leu Ile Cys Leu Phe
3235 3240 3245

Leu Gly Ala Asn Ala Val Trp Tyr Gly Ala Val Gly Asp Ser Ala Tyr
3250 3255 3260

Ser Thr Gly His Val Ser Arg Leu Ser Pro Leu Ser Val Asp Thr Val
3265 3270 3275 3280

Ala Val Gly Leu Val Ser Ser Val Val Val Tyr Pro Val Tyr Leu Ala
3285 3290 3295

Ile Leu Phe Leu Phe Arg Met Ser Arg Ser Lys Val Ala Gly Ser Pro
3300 3305 3310

Ser Pro Thr Pro Ala Gly Gln Gln Val Leu Asp Ile Asp Ser Cys Leu
3315 3320 3325

Asp Ser Ser Val Leu Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu His
3330 3335 3340

Ala Glu Ala Phe Val Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp
3345 3350 3355 3360

Ser Lys Ser Leu Val Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp
3365 3370 3375

Event ID 1000,1001 Logged Every 5 Min in Application Event Log [Q290647]

PSS ID Number: Q290647

Article last modified on 05-02-2001

:2000

=====

The information in this article applies to:

- Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Server

SYMPTOMS

=====

Group Policies are not replicated between domain controllers; therefore, users do not receive Group Policies for computers. Event ID 1000,1001 may be logged in the Application Log every five minutes with the following information:

Type: Error
Event ID: 1000
Source: Userenv
Category: None
User: NT AUTHORITY\SYSTEM

Description: Windows cannot access the registry information at \\<domain>\sysvol\<domain>\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\Machi with (5).

Type: Error
Event ID: 1001
Source: SceCli
Category: None
User: N/A

Description: Security policy cannot be propagated. Cannot access the template.
Error code =3.
\\<domain>\sysvol\<domain>\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\Machi NT\SecEdit\GptTmp.inf.

Type: Error
Event ID: 1000
Source: Userenv
Category: None
User: NT AUTHORITY\SYSTEM

Description: The Group Policy client-side extension Security was passed flags (17) and returned a failure status code of (3).

CAUSE

=====

This issue may occur if you assign improper permissions to the %SystemRoot%\Winnt\Sysvol folder or when you assign improper groups to Bypass Traverse Checking User Rights Assignment.

RESOLUTION

=====

To resolve this issue:

1. Set the folder security permissions. To access the security permissions, right-click the folder, click Properties, and then click the Security tab.

- %SystemRoot%\Winnt\Sysvol:

Administrators: Full Control

Authenticated Users: Read, Read & Execute, and List Folder Contents

Creator Owner: Nothing selected

Server Operators: Read, Read & Execute, and List Folder Contents

System: Full Control

Click to clear: "Allow inheritable permissions from parent to propagate to this object"

- %SystemRoot%\Winnt\Sysvol\Sysvol:

This folder inherits all of its permissions from its parent.

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>:

This folder inherits all of its permissions from its parent.

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>\Policies:

Administrators: Full Control

Authenticated Users: Read, Read & Execute, and List Folder Contents

Creator Owner: Nothing selected

Group Policy Creator Owners: Read, Read & Execute, List Folder Contents, Modify, and Write

Server Operators: Read, Read & Execute, and List Folder Contents

System: Full Control

Click to clear: "Allow inheritable permissions from parent to propagate to this object"

- %SystemRoot%\Winnt\Sysvol\Sysvol\<domain>\Policies:

Click to select for all subfolders and files: "Allow inheritable permissions from parent to propagate to this object"

2. Open Active Directory Users and Computers: Click Start, click Programs, and then click Administrative Tools.

3. Expand Active Directory Users and Computers, and then expand the domain name.

4. Right-click Domain Controllers, and then click Properties.

5. On the Group Policy tab, click "Default Domain Controllers Policy", and then click Edit.

6. Expand the folders:

Computer Configuration

Windows Settings

Security Settings

Local Policies

7. Click User Rights Assignment, and then double-click "Bypass traverse checking". The following default settings should be present:

Authenticated Users

Everyone

Administrators

To add these groups if they are not present, click Add, and then click Browse.

8. At a command prompt, type:

secedit /refreshpolicy machine_policy /enforce

MORE INFORMATION

=====

For additional information, click the article numbers below to view the articles in the Microsoft Knowledge Base:

[Q271213](#) Event ID 1000 and 1001 Repeat Every 5 Minutes in the Event Log

[Q259398](#) SceCli Event ID 1001 and UserEnv Event ID 1000 When Dfs Client Is Disabled

[Q285923](#) Error Messages Every 5 Minutes Report Events 1000, 1001, and 13508, Citing Replication Trouble

Additional query words: GPO; 1000; 1001; permissions; sysvol

=====

Keywords	:	kberrmsg kbtool
Technology	:	kbwin2000AdvServSearch kbwin2000Ssearch kbPictureIt2000 kbWinA
Version	:	:2000
Issue type	:	kbprb

=====

Copyright Microsoft Corporation 2001.

Error Messages Every 5 Minutes Report Events 1000, 1001, and 135 [Q285923]

PSS ID Number: Q285923

Article last modified on 01-30-2001

:2000

The information in this article applies to:

- Microsoft Windows 2000 Server
- Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Datacenter Server

SYMPTOMS

You may find that the following error messages are recorded in Event Viewer every 5 minutes on domain controller computers and every 20 minutes on member server computers:

Userenv 1000

Windows cannot access the registry information at
\domainname.com\sysvol\domainname.com\Policies\{
file://\domainname.com\sysvol\domainname.com\Policies\{31B2F340-016D
D-11D2-945F-00C04FB984F9\}Machine\registry.pol with (1398).

SceCli 1001

Security policy cannot be propagated. Cannot access the template. Error code=3.

Userenv 1000

The Group Policy client-side extension Security was passed flags (17) and returned a failure status code of (3).

NtFrs 13508

Description: The File Replication Service is having trouble enabling replication from (computername) to (computername) for c:\winnt\sysvol\domain; retrying.

RESOLUTION

=====

To resolve this issue, synchronize the computers with the domain controller clock time. Follow these steps:

1. Run the following command on all computers to synchronize the clock time with the domain controller:

"net time \\(domain controller name) /set /y" (without the quotation marks)

2. Stop and then restart the File Replication Service on all servers that are experiencing the problem.

3. Open Event Viewer to make sure that the errors are no longer occurring.

Additional query words:

=====

Keywords :

Technology : kbwin2000AdvServSearch kbwin2000DataServSearch kbwin2000Ssearc

Version : :2000
Issue type : kbprb

=====

Copyright Microsoft Corporation 2001.

41 / 58

Pro Asp Leu Leu Ser Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln
3380 3385 3390

Leu Ala Arg Gly Gln Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly
3395 3400 3405

Phe Ser Leu Ala Ser Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser
3410 3415 3420

Asp Glu Asp Leu Ile Gln Gln Val Leu Ala Glu Gly Val Ser Ser Pro
3425 3430 3435 3440

Ala Pro Thr Gln Asp Thr His Met Glu Thr Asp Leu Leu Ser Ser Leu
3445 3450 3455

Ser Ser Thr Pro Gly Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg Leu
3460 3465 3470

Gly Glu Leu Gly Pro Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro Gln
3475 3480 3485

Ala Ala Arg Leu Ser Arg Thr Gly Leu Val Glu Gly Leu Arg Lys Arg
3490 3495 3500

Leu Leu Pro Ala Trp Cys Ala Ser Leu Ala His Gly Leu Ser Leu Leu
3505 3510 3515 3520

Leu Val Ala Val Ala Val Ser Gly Trp Val Gly Ala Ser Phe
3525 3530 3535

Pro Pro Gly Val Ser Val Ala Trp Leu Leu Ser Ser Ala Ser Phe
3540 3545 3550

Leu Ala Ser Phe Leu Gly Trp Glu Pro Leu Lys Val Leu Leu Glu Ala
3555 3560 3565

Leu Tyr Phe Ser Leu Val Ala Lys Arg Leu His Pro Asp Glu Asp Asp
3570 3575 3580

Thr Leu Val Glu Ser Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro
3585 3590 3595 3600

Arg Val Arg Pro Pro His Gly Phe Ala Leu Phe Leu Ala Lys Glu Glu
3605 3610 3615

Ala Arg Lys Val Lys Arg Leu His Gly Met Leu Arg Ser Leu Leu Val
3620 3625 3630

Tyr Met Leu Phe Leu Leu Val Thr Leu Leu Ala Ser Tyr Gly Asp Ala
3635 3640 3645

Ser Cys His Gly His Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln Glu
3650 3655 3660

Leu His Ser Arg Ala Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu Trp
3665 3670 3675 3680

Pro Trp Met Ala His Val Leu Leu Pro Tyr Val His Gly Asn Gln Ser
3685 3690 3695

42 / 58

Ser Pro Glu Leu Gly Pro Pro Arg Leu Arg Gln Val Arg Leu Gln Glu
3700 3705 3710

Ala Leu Tyr Pro Asp Pro Pro Gly Pro Arg Val His Thr Cys Ser Ala
3715 3720 3725

Ala Gly Gly Phe Ser Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser Pro
3730 3735 3740

His Asn Gly Ser Gly Thr Trp Ala Tyr Ser Ala Pro Asp Leu Leu Gly
3745 3750 3755 3760

Ala Trp Ser Trp Gly Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr Val
3765 3770 3775

Gln Glu Leu Gly Leu Ser Leu Glu Ser Arg Asp Arg Leu Arg Phe
3780 3785 3790

Leu Gln Leu His Asn Trp Leu Asp Asn Arg Ser Arg Ala Val Phe Leu
3795 3800 3805

Glu Leu Thr Arg Tyr Ser Pro Ala Val Gly Leu His Ala Ala Val Thr
3810 3815 3820

Leu Arg Leu Glu Phe Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser
3825 3830 3835 3840

Val Arg Pro Phe Ala Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro
3845 3850 3855

Leu Leu Thr Ser Val Cys Leu Leu Leu Phe Ala Val His Phe Ala Val
3860 3865 3870

Ala Glu Ala Arg Thr Trp His Arg Glu Gly Arg Trp Arg Val Leu Arg
3875 3880 3885

Leu Gly Ala Trp Ala Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr
3890 3895 3900

Ala Leu Val Arg Leu Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp Thr
3905 3910 3915 3920

Arg Phe Val Arg Gly Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln Val
3925 3930 3935

Ala His Val Ser Ser Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu Phe
3940 3945 3950

Leu Leu Leu Val Lys Ala Ala Gln His Val Arg Phe Val Arg Gln Trp
3955 3960 3965

Ser Val Phe Gly Lys Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu Gly
3970 3975 3980

Val Thr Leu Gly Leu Val Val Leu Gly Val Ala Tyr Ala Gln Leu Ala
3985 3990 3995 4000

Ile Leu Leu Val Ser Ser Cys Val Asp Ser Leu Trp Ser Val Ala Gln
4005 4010 4015

43 / 58

Ala Leu Leu Val Leu Cys Pro Gly Thr Gly Leu Ser Thr Leu Cys Pro
4020 4025 4030

Ala Glu Ser Trp His Leu Ser Pro Leu Leu Cys Val Gly Leu Trp Ala
4035 4040 4045

Leu Arg Leu Trp Gly Ala Leu Arg Leu Gly Ala Val Ile Leu Arg Trp
4050 4055 4060

Arg Tyr His Ala Leu Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro
4065 4070 4075 4080

Gln Asp Tyr Glu Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp
4085 4090 4095

Met Gly Leu Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu
4100 4105 4110

Gly Met Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser
4115 4120 4125

Pro Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser
4130 4135 4140

Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg Leu
4145 4150 4155 4160

Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val Phe Glu
4165 4170 4175

Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val
4180 4185 4190

Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly Arg Arg Ser Ser
4195 4200 4205

Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro
4210 4215 4220

Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala
4225 4230 4235 4240

Thr Gly Pro Ser Arg Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln
4245 4250 4255

Gln His Leu Val Leu Leu Pro Gly Gly Gly Pro Trp Ser Arg Ser
4260 4265 4270

Gly His Arg Ser Val Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln
4275 4280 4285

Ala Glu Trp Leu His Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu
4290 4295 4300

Ser Val Cys Gly Leu Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg
4305 4310 4315 4320

Thr Gln Gly Pro Leu Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu
4325 4330 4335

Asp Gly Phe

SUBSTITUTE SHEET (RULE 26)

44/58

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: (Compare Figure 7)

CTC AAC GAG GAG CCC CTG ACC CTG CGG GCC GAG GAG ATC GTG GCC CAG Leu Asn Glu Glu Pro Leu Thr Leu Ala Gly Glu Glu Ile Val Ala Gln 4340 4345 4350 4355	48
GCC AAG CGC TCG GAC CGG CGG AGC CTG CTG TGC TAT GCC GCC CCA Gly Lys Arg Ser Asp Pro Arg Ser Leu Leu Cys Tyr Gly Gly Ala Pro 4360 4365 4370	96
GCG CCT GGC TGC CAC TTC TCC ATC CCC GAG GCT TTC ACC GGG GCC CTG Gly Pro Gly Cys His Phe Ser Ile Pro Glu Ala Phe Ser Gly Ala Leu 4375 4380 4385	144
GCC AAC CTC AGT GAC GTG GTG CAG CTC ATC TTT CTG GTG GAC TCC AAT Ala Asn Leu Ser Asp Val Val Gln Leu Ile Phe Leu Val Asp Ser Asn 4390 4395 4400	192
CCC TTT CCC TTT GGC TAT ATC AGC AAC TAC ACC GTC TCC ACC AAG GTG Pro Phe Pro Phe Gly Tyr Ile Ser Asn Tyr Thr Val Ser Thr Lys Val 4405 4410 4415	240
GCC TOG ATG GCA TTC CAG ACA CAG GOC GGC GOC CAG ATC CCC ATC GAG Ala Ser Met Ala Phe Gln Thr Gln Ala Gly Ala Gln Ile Pro Ile Glu 4420 4425 4430 4435	288
CGG CTG GCC TCA GAG CGC GCC ATC ACC GTG AAG GTG CCC AAC AAC TOG Arg Leu Ala Ser Glu Arg Ala Ile Thr Val Lys Val Pro Asn Asn Ser 4440 4445 4450	336
GAC TGG GCT GCC CGG GGC CAC CGC AGC TOC GCC AAC TOC GOC AAC TOC Asp Trp Ala Ala Arg Gly His Arg Ser Ser Ala Asn Ser Ala Asn Ser 4455 4460 4465	384
GTT GTG GTC CAG CCC CAG GCC TOC GTG GGT GCT GTG GTC ACC CTG GAC Val Val Val Gln Pro Gln Ala Ser Val Gly Ala Val Val Thr Leu Asp 4470 4475 4480	432
AGC ACC AAC CCT CGG GCC CGG CTG CAT CTG CAG CTC AAC TAT ACG CTG Ser Ser Asn Pro Ala Ala Gly Leu His Leu Gln Leu Asn Tyr Thr Leu 4485 4490 4495	480
CTG GAC GGC CAC TAC CTG TCT GAG GAA CCT GAG CGC TAC CTG GCA GTC Leu Asp Gly His Tyr Leu Ser Glu Glu Pro Glu Pro Tyr Leu Ala Val 4500 4505 4510 4515	528
TAC CTA CAC TCG GAG CGC CGG CCC AAT GAG CAC AAC TGC TCG GCT ACC Tyr Leu His Ser Glu Pro Arg Pro Asn Glu His Asn Cys Ser Ala Ser 4520 4525 4530	576
AGG AGG ATC CGC CCA GAG TCA CTC CAG GGT GCT GAC CAC CGG CGC TAC Arg Arg Ile Arg Pro Glu Ser Leu Gln Gly Ala Asp His Arg Pro Tyr 4535 4540 4545	624
ACC TTC TTC ATT TCC CGG GGG AGC AGA GAC CCA CGC CGG AGT TAC CAT Thr Phe Ile Ser Pro Gly Ser Arg Asp Pro Ala Gly Ser Tyr His 4550 4555 4560	672
CTG AAC CTC TCC AGC CAC TTC CGC TGG TCG CGG CTG CAG GTG TCC GTG Leu Asn Leu Ser Ser His Phe Arg Trp Ser Ala Leu Gln Val Ser Val 4565 4570 4575	720

45 /58

GCC CTC TAC ACG TCC CTG TGC CAG TAC TTC ACC GAG GAG GAC ATG GTG Gly Leu Tyr Thr Ser Leu Cys Gln Tyr Phe Ser Glu Glu Asp Met Val 4580 4585 4590 4595	768
TGG CGG ACA GAG GGG CTG CTG CCC CTG GAG GAG ACC TCG CCC CAG Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu Glu Thr Ser Pro Arg Gln 4600 4605 4610	816
GCC GTC TGC CTC ACC CGC CAC CTC ACC GCC TTC GGC GGC ACC CTC TTC Ala Val Cys Leu Thr Arg His Leu Thr Ala Phe Gly Ala Ser Leu Phe 4615 4620 4625	864
GTG CCC CCA AGC CAT GTC CGC TTT GTG TTT CCT GAG CGG ACA GCG GAT Val Pro Pro Ser His Val Arg Phe Val Phe Pro Glu Pro Thr Ala Asp 4630 4635 4640	912
GTA AAC TAC ATC GTC ATG CTG ACA TGT GCT GTG TCG CTG GTG ACC TAC Val Asn Tyr Ile Val Met Leu Thr Cys Ala Val Cys Leu Val Thr Tyr 4645 4650 4655	960
ATG GTC ATG GCC GCC ATC CTG CAC AAG CTG GAC CAG TTG GAT GCC AGC Met Val Met Ala Ala Ile Leu His Lys Leu Asp Gln Leu Asp Ala Ser 4660 4665 4670 4675	1008
CGG CGC CGC ATC CCT TTC TGT GGG CAG CGG GGC CGC TTC AAG TAC Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln Arg Gly Arg Phe Lys Tyr 4680 4685 4690	1056
GAG ATC CTC GTC AAG ACA GGC TGG GGC CGG GGC TCA GGT ACC ACG GCC Glu Ile Leu Val Lys Thr Gly Trp Gly Arg Gly Ser Gly Thr Thr Ala 4695 4700 4705	1104
CAC GTG GGC ATC ATG CTG TAT GGG GTG GAC ACC CGG AGC GGC CAC CGG His Val Gly Ile Met Leu Tyr Gly Val Asp Ser Arg Ser Gly His Arg 4710 4715 4720	1152
CAC CTG GAC GGC GAC AGA GCC TTC CAC CGC AAC AGC CTG GAC ATC TTC His Leu Asp Gly Asp Arg Ala Phe His Arg Asn Ser Leu Asp Ile Phe 4725 4730 4735	1200
CGG ATC GGC ACC CGG CAC AGC CTG GGT AGC GTG TGG AAG ATC CGA GTG Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val Trp Lys Ile Arg Val 4740 4745 4750 4755	1248
TGG CAC GAC AAC AAA GGG CTC AGC CCT GCC TGG TTC CTG CAG CAC GTC Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp Phe Leu Gln His Val 4760 4765 4770	1296
ATC GTC AGG GAC CTG CAG ACG GCA CGC AGC GCC TTC TTC CTG GTC AAT Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala Phe Phe Leu Val Asn 4775 4780 4785	1344
GAC TGG CTT TCG GTG GAG ACG GAG AAC CGG GGC CTG GTG GAG AAG Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly Gly Leu Val Glu Lys 4790 4795 4800	1392
GAG GTG CTG GCC CGG AGC GAC GCA GGC CTT TTG CGC TTC CGG CGC CTG Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu Arg Phe Arg Arg Leu 4805 4810 4815	1440
CTG GTG GCT GAG CTG CAG CGT GGC TIC TTT GAC AAG CAC ATC TGG CTC Leu Val Ala Glu Leu Cln Arg Gly Phe Phe Asp Lys His Ile Trp Leu 4820 4825 4830 4835	1488

46 / 58

TCC ATA TGG GAC CGG CGG CCT CGT AGC CGT TTC ACT CGC ATC CAG AGG Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg Phe Thr Arg Ile Gln Arg 4840 4845 4850	1536
GCC ACC TGC TGC GTT CTC CTC ATC TGC CTC TTC CTG GGC GCC AAC GGC Ala Thr Cys Cys Val Leu Leu Ile Cys Leu Phe Leu Gly Ala Asn Ala 4855 4860 4865	1584
GTG TCG TAC GGG CCT GTT GCC GAC TCT GCC TAC AGC ACG GGG CAT GTG Val Trp Tyr Gly Ala Val Gly Asp Ser Ala Tyr Ser Thr Gly His Val 4870 4875 4880	1632
TCC AGG CTG AGC CGG CTG AGC GTC GAC ACA GTC GCT GTT GGC CTG GTG Ser Arg Leu Ser Pro Leu Ser Val Asp Thr Val Ala Val Gly Leu Val 4885 4890 4895	1680
TCC AGC GTG GTT GTC TAT CCC GTC TAC CTG GGC ATC CTT TTT CTC TTC Ser Ser Val Val Val Tyr Pro Val Tyr Leu Ala Ile Leu Phe Leu Phe 4900 4905 4910 4915	1728
CGG ATG TCC CGG ACC AAG GTG CCT GGG AGC CGG AGC CCC ACA CCT GGC Arg Met Ser Arg Ser Lys Val Ala Gly Ser Pro Ser Pro Thr Pro Ala 4920 4925 4930	1776
GGG CAG CAG GTG CTG GAC ATC GAC AGC TGC CTG GAC TCG TCC GTG CTG Gly Gln Gln Val Leu Asp Ile Asp Ser Cys Leu Asp Ser Ser Val Leu 4935 4940 4945	1824
GAC AGC TOC TTC CTC ACG TTC TCA GGC CTC CAC GCT GAG GGC TTT GTT Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu His Ala Glu Ala Phe Val 4950 4955 4960	1872
GGA CAG ATG AAG AGT GAC TTG TTT CTG GAT GAT TCT AAG AGT CTG GTG Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp Ser Lys Ser Leu Val 4965 4970 4975	1920
TGC TGG CCC TOC GGC GAG GGA AGC CTC AGT TGG CGG GAC CTG CTC AGT Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp Pro Asp Leu Leu Ser 4980 4985 4990 4995	1968
GAC CGG TOC ATT GTG CGT AGC AAT CTG CGG CAG CTG GCA CGG GGC CAG Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln Leu Ala Arg Gly Gln 5000 5005 5010	2016
GCG GGC CAT GGG CTG GGC CCA GAG GAG GAC GGC TTC TCC CTG GGC AGC Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly Phe Ser Leu Ala Ser 5015 5020 5025	2064
CCC TAC TCG OCT GCC AAA TCC TTC TCA GCA TCA GAT GAA GAC CTG ATC Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser Asp Glu Asp Leu Ile 5030 5035 5040	2112
CAG CAG GTG CTT GCC GAG GGG GTC AGC AGC CCA GGC CCT ACC CAA GAC Gln Gln Val Leu Ala Glu Gly Val Ser Ser Pro Ala Pro Thr Gln Asp 5045 5050 5055	2160
2AOC CAC ATG GAA ACG GAC CTG CTC AGC AGC CTG TCC AGC ACT CCT GGG Thr His Met Glu Thr Asp Leu Leu Ser Ser Leu Ser Ser Thr Pro Gly 5060 5065 5070 5075	2208

47/58

GAG AAG ACA GAG ACG CTG CCG CTG CAG AGG CTG GGG GAG CTG GGG CCA Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg Leu Gly Glu Leu Gly Pro 5080 5085 5090	2256
800C AGC CCA GGC CTG AAC TGG GAA CAG CCC CAG GCA GCG AGG CTG TCC Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro Gln Ala Ala Arg Leu Ser 5095 5100 5105	2304
AGG ACA GGA CTG GTG GAG GGT CTG CGG AAG CCC CTG CTG CGG GGC TGG Arg Thr Gly Leu Val Glu Gly Leu Arg Lys Arg Leu Leu Pro Ala Trp 5110 5115 5120	2352
TGT GCC TCC CTG GCC CAC CGG CTC AGC CTG CTC CTG GTG GCT GTG CCT Cys Ala Ser Leu Ala His Gly Leu Ser Leu Leu Val Ala Val Ala 5125 5130 5135	2400
GTG CCT GTC TCA GGG TGG GTG GGT GCG AGC TTC CCC CGG GGC GTG AGT Val Ala Val Ser Gly Trp Val Gly Ala Ser Phe Pro Pro Gly Val Ser 5140 5145 5150 5155	2448
GTT CGG TGG CTC CTG TCC AGC AGC GGC AGC TTC CTG GCC TCA TTC CTC Val Ala Trp Leu Leu Ser Ser Ala Ser Phe Leu Ala Ser Phe Leu 5160 5165 5170	2496
GCG TGG GAG CCA CTG AAG GTC TTG CTG GAA GGC CTG TAC TTC TCA CTG Gly Trp Glu Pro Leu Lys Val Leu Leu Glu Ala Leu Tyr Phe Ser Leu 5175 5180 5185	2544
GTG CCC AAG CGG CTG CAC CGG GAT GAA GAT GAC ACC CTG GTA GAG AGC Val Ala Lys Arg Leu His Pro Asp Glu Asp Asp Thr Leu Val Glu Ser 5190 5195 5200	2592
CGG CCT GTG ACG CCT GTG AGC GCA CGT GTG CCC CGG CCA CCT Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro Arg Val Arg Pro Pro 5205 5210 5215	2640
CAC GGC TTT GCA CTC TTC CTG GCC AAG GAA GAA GGC CGC AAG GTC AAG His Gly Phe Ala Leu Phe Leu Ala Lys Glu Ala Arg Lys Val Lys 5220 5225 5230 5235	2688
AGG CTA CAT GGC ATG CTG CGG AGC CTC CTG GTG TAC ATG CTT TTT CTG Arg Leu His Gly Met Leu Arg Ser Leu Leu Val Tyr Met Leu Phe Leu 5240 5245 5250	2736
CTG GTG ACC CTG GGC AGC TAT GGG GAT GGC TCA TGC CAT GGG CAC Leu Val Thr Leu Ala Ser Tyr Gly Asp Ala Ser Cys His Gly His 5255 5260 5265	2784
GCC TAC CGT CTG CAA AGC GOC ATC AAG CAG GAG CTG CAC AGC CGG GGC Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln Glu Leu His Ser Arg Ala 5270 5275 5280	2832
TTC CTG GCC ATC ACG CGG TCT GAG GAG CTC TGG CCA TGG ATG GOC CAC Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu Trp Pro Trp Met Ala His 5285 5290 5295	2880
GTG CTG CTG CCT TAC GTC CAC CGG AAC CAG TCC AGC CCA GAG CTG GGG Val Leu Leu Pro Tyr Val His Gly Asn Gln Ser Ser Pro Glu Leu Gly 5300 5305 5310 5315	2928
CCC CCA CGG CTG CGG CAG GTG CGG CTG CAG GAA GCA CTC TAC CCTA GAC	2976

SUBSTITUTE SHEET (RULE 26)

48 / 58

CCC CCA CGG CTG CGG CAG GTG CGG CTG CAG GAA CCA CTC TAC CCA GAC Pro Pro Arg Leu Arg Gln Val Arg Leu Gln Glu Ala Leu Tyr Pro Asp 5320 5325 5330	2976
CCT CCC GGC CCC AGG GTC CAC ACG TGC TCG GCC GCA CGA GGC TTC AGC Pro Pro Gly Pro Arg Val His Thr Cys Ser Ala Ala Gly Gly Phe Ser 5335 5340 5345	3024
AAC AGC GAT TAC GAC GTT GGC TGG GAG AGT CCT CAC AAT GGC TCG GGG Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser Pro His Asn Gly Ser Gly 5350 5355 5360	3072
AAG TGG GCC TAT TCA GCG CGG GAT CTG CTG GGG GCA TGG TCC TGG GCC Thr Trp Ala Tyr Ser Ala Pro Asp Leu Leu Gly Ala Trp Ser Trp Gly 5365 5370 5375	3120
TCC TGT GCC GTG TAT GAC ACC GGG CGC TAC GTG CAG GAG CTG GGC CTG Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr Val Gln Glu Leu Gly Leu 5380 5385 5390 5395	3168
AGC CTG GAG GAG AGC CGC GAC CGG CTG CGC TTC CTG CAG CTG CAC AAC Ser Leu Glu Glu Ser Arg Asp Arg Leu Arg Phe Leu Gln Leu His Asn 5400 5405 5410	3216
TGG CTG GAC AAC AGG AGC CGC GCT GTG TTC CTG GAG CTC ACG CGC TAC Trp Leu Asp Asn Arg Ser Arg Ala Val Phe Leu Glu Leu Thr Arg Tyr 5415 5420 5425	3264
AGC CGG GCC GTG GGG CTG CAC GGC GGC GTC ACG CTG CGC CTC GAG TTC Ser Pro Ala Val Gly Leu His Ala Ala Val Thr Leu Arg Leu Glu Phe 5430 5435 5440	3312
CGG GCG GGC CGC CGC CTG CGC CGC CTC AGC GTC CGC CGC CGC CGC CGC Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser Val Arg Pro Phe Ala 5445 5450 5455	3360
CTG CGC CGC CTC ACG CGG GGC CTC TCG CTG CCT CTG CTC ACG TCG GTG Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro Leu Leu Thr Ser Val 5460 5465 5470 5475	3408
TGC CTG CTG CTG TTC CGC GTG CAC TTC CGC GTG CGC GAG CGC CGT ACT Cys Leu Leu Leu Phe Ala Val His Phe Ala Val Ala Glu Ala Arg Thr 5480 5485 5490	3456
TGG CAC AGG GAA CGG CGC TGG CGC GTG CGC CTC CGC GGA CGC TGG CGC Trp His Arg Glu Gly Arg Trp Arg Val Leu Arg Leu Gly Ala Trp Ala 5495 5500 5505	3504
CGG TGG CTG CTG GTG CGC ACG CGG GGC ACG GCA CTG GTA CGC CTC Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr Ala Leu Val Arg Leu 5510 5515 5520	3552
GCC CAG CTG GGT CGC GCT GAC CGC CAG TGG ACC CGT TTC GTG CGC CGC Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp Thr Arg Phe Val Arg Gly 5525 5530 5535	3600
CGC CGG CGC CGC TTC ACT AGC TTC GAC CAG GTG CGC CAC GTG AGC TCC Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln Val Ala His Val Ser Ser 5540 5545 5550 5555	3648

49 / 58

GCA GCC CGT GGC CTG GCG GCC TCG CTG CTC TTC CTG CTT TTG GTC AAG Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu Phe Leu Leu Val Lys 5560 5565 5570	3696
2GCT GCC CAG CAC GTA CGC TTC GTG CGC CAG TGG TCC GTC TTT GGC AAG Ala Ala Gln His Val Arg Phe Val Arg Gln Trp Ser Val Phe Gly Lys 5575 5580 5585	3744
ACA TTA TGC CGA GCT CTG CCA GAG CTC CTG CGG GTC ACC TTG GGC CTG Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu Gly Val Thr Leu Gly Leu 5590 5595 5600	3792
GTG GTG CTC GGG GTA GGC TAC GCC CAG CTG GCC ATC CTG CTC GTG TCT Val Val Leu Gly Val Ala Tyr Ala Gln Leu Ala Ile Leu Leu Val Ser 5605 5610 5615	3840
TCC TGT GTG GAC TCC CTC TGG AGC GTG GCC CAG GCC CTG TTG GTG CTG Ser Cys Val Asp Ser Leu Trp Ser Val Ala Gln Ala Leu Leu Val Leu 5620 5625 5630 5635	3888
TGC CCT GGG ACT GGG CTC TCT ACC CTG TGT CCT GCC GAG TCC TGG CAC Cys Pro Gly Thr Gly Leu Ser Thr Leu Cys Pro Ala Glu Ser Trp His 5640 5645 5650	3936
CTG TCA CCC CTG CTG TGT GTG GGG CTC TGG GCA CTG OGG CTG TGG GGC Leu Ser Pro Leu Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly 5655 5660 5665	3984
GCC CTA CGG CTG GGG GCT GTT ATT CTC CGC TGG CCC TAC CAC GAC GCC TTG Ala Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu 5670 5675 5680	4032
CGT GGA GAG CTG TAC CGG CGG GCC TGG GAG CCC CAG GAC TAC GAG ATG Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu Met 5685 5690 5695	4080
GTG GAG TTG TTC CTG CGC AGG CTG CGC CTC TGG ATG GGC CTC ACC AAG Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp Met Gly Leu Ser Lys 5700 5705 5710 5715	4128
GTC AAG GAG TTC CGC CAC AAA GTC CGC TTT GAA CGG ATG GAG CGG CTG Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met Glu Pro Leu 5720 5725 5730	4176
CCC TCT CGC TCC TCC AGG GGC TCC AAG GTA TCC CGG GAT GTG CGC CCA Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro Asp Val Pro Pro 5735 5740 5745	4224
CCC AGC GCT GGC TCC GAT GGC TCG CAC CGC TCC ACC TCC TCC ACC CAG Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser Thr Ser Ser Gln 5750 5755 5760	4272
CTG GAT GGG CTG AGC GTG AGC CTG GCC CGG CTG GGG ACA AGG TGT GAG Leu Asp Gly Leu Ser Val Ser Leu Gly Arg Leu Gly Thr Arg Cys Glu 5765 5770 5775	4320
CCT GAG CGC TCC CGC CTC CAA GGC GTG TTC GAG CGC CTG CTC ACC CAG Pro Glu Pro Ser Arg Leu Gln Ala Val Phe Glu Ala Leu Leu Thr Gln 5780 5785 5790 5795	4368

50 / 58

TTT GAC CGA CTC AAC CAG GCC ACA GAG GAC GTC TAC CAG CTG GAG CAG Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val Tyr Gln Leu Glu Gln 5800 5805 5810	4416
CAG CTG CAC AGC CTG CAA GGC CGC AGG AGC ACC CGG GCG CCC GGC GGA Gln Leu His Ser Leu Gln Gly Arg Arg Ser Ser Arg Ala Pro Ala Gly 5815 5820 5825	4464
TCT TCC CGT GGC CCA TCC CGG GGC CTG CGG CCA GCA CTG CCC AGC CGC Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg 5830 5835 5840	4512
CIT GCC CGG GGC ACT CGG GGT GTG GAC CTG GGC ACT GGC CCC AGC AGG Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg 5845 5850 5855	4560
ACA CCT TCG GGC CAA GAA CAA CGT CCA CCC CAG CAG CAC TTA GTC CTC Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln Gln His Leu Val Leu 5860 5865 5870 5875	4608
CIT CCT CGC GGG CGT GGG CGG TGG AGT CGG AGT GGA CAC CGC TCA GTA Leu Pro Gly Gly Gly Pro Trp Ser Arg Ser Gly His Arg Ser Val 5880 5885 5890	4656
TTA CIT TCT GCC CCT GTC AAG GCC GAG GGC CAG GCA GAA TGG CTG CAC Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln Ala Glu Trp Leu His 5895 5900 5905	4704
GTA GGT TCC CCA GAG AGC AGG CAG GGG CAT CTG TCT GTC TGT GGG CIT Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu Ser Val Cys Gly Leu 5910 5915 5920	4752
CAG CAC TTT AAA GAG GCT GTG TGG CCA ACC AGG ACC CAG GGT CCC CTC Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg Thr Gln Gly Pro Leu 5925 5930 5935	4800
CCC AGC TCC CIT GGG AAG GAC ACA GCA GTA TTG GAC GGT TTC Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu Asp Gly Phe 5940 5945 5950	4842
TAGCTCTGA GATGCTAATT TATTTCCCCG AGTOCTCAGG TACAGCGGGC TGTCGGGGCG 5950	4902
OCACACCGCT GGGCAGATGT CCCCCACTGTC TAAGGCTGCT CCCTTCAGGG AGGGTTAGGC 5955	4962
2TGACACCGGG OCACCOCTGCC CCTAACGTTAT TACCTCTCCA GTTOCTACCG TACTCCCTGC 6000	5022
AACGCTCTCAC TGTCGTCCTC GTGTCAGTAA TTATATGGT GTAAAAATGT GTATATTTTT 6005	5082
GTATGTCACT ATTTTCACTA GGGCTGAGGG CCCTGCGGCC AGAGCTGGCC TCCCCCAACA 6010	5142
CCCTCTGGCC TTGGTAGGTG TGGCTGGTAT ATGGCACGCC CCCTGGCTGT TGGATGCGAG 6015	5202
CTTGGCTCTG GGCGGGTGT GGGGCCACAG CTGTCCTCCA CCACCTCTCA TCACCCAGA 6020	5262
GGCCCTTGTCAC TCTCCCTCTG CCOCAGGCCA CGTAGCAAGA GAGCAGCGCC CAGGCTCT 6025	5322
GGCATCAGGT CTGGCGAAGT AGCAGGACTA GGCATGTCAG AGGAACCCAG GTGGGTTAGA 6030	5382
GGAAAAGACT CCTCTCTGGG CCTGGCTCC AGGGTGGAGG AAGGTGACTG TGTGCTGCTG 6035	5442
TGTGCTGCGGG CGCGACCGCGC GAGTGTCTG TATGGCCAG GCAGCTCAA GCGCCCTCGGA 6040	5502

51/58

GCTGGCTGTC	OCTGCCTCTG	TGTACCACTT	CTGTTGGCAT	GGGGCTTCT	AGAGGCTOGA	5562
CAOOOOOOCA	AOOOCGAC	CAAGCAGACA	AAGTCATAAA	AAGAGCTGTC	TGACTGCAA	5622
AAAAAAA						5631

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: (Compare Figure 7)

Leu	Asn	Glu	Glu	Pro	Leu	Thr	Leu	Ala	Gly	Glu	Glu	Ile	Val	Ala	Gln
1															15
Gly	Lys	Arg	Ser	Asp	Pro	Arg	Ser	Leu	Leu	Cys	Tyr	Gly	Gly	Ala	Pro
								20	25						30
Gly	Pro	Gly	Cys	His	Phe	Ser	Ile	Pro	Glu	Ala	Phe	Ser	Gly	Ala	Leu
							35	40						45	
Ala	Asn	Leu	Ser	Asp	Val	Val	Gln	Leu	Ile	Phe	Leu	Val	Asp	Ser	Asn
							50	55						60	
Pro	Phe	Pro	Phe	Gly	Tyr	Ile	Ser	Asn	Tyr	Thr	Val	Ser	Thr	Lys	Val
						65	70			75				80	
Ala	Ser	Met	Ala	Phe	Gln	Thr	Gln	Ala	Gly	Ala	Gln	Ile	Pro	Ile	Glu
						85				90					95
Arg	Leu	Ala	Ser	Glu	Arg	Ala	Ile	Thr	Val	Lys	Val	Pro	Asn	Asn	Ser
						100			105						110
Asp	Trp	Ala	Ala	Arg	Gly	His	Arg	Ser	Ser	Ala	Asn	Ser	Ala	Asn	Ser
						115			120						125
Val	Val	Val	Gln	Pro	Gln	Ala	Ser	Val	Gly	Ala	Val	Val	Thr	Leu	Asp
						130			135						140
Ser	Ser	Asn	Pro	Ala	Ala	Gly	Leu	His	Leu	Gln	Leu	Asn	Tyr	Thr	Leu
						145			150						160
Leu	Asp	Gly	His	Tyr	Leu	Ser	Glu	Glu	Pro	Glu	Pro	Tyr	Leu	Ala	Val
						165			170						175
Tyr	Leu	His	Ser	Glu	Pro	Arg	Pro	Asn	Glu	His	Asn	Cys	Ser	Ala	Ser
						180			185						190
Arg	Arg	Ile	Arg	Pro	Glu	Ser	Leu	Gln	Gly	Ala	Asp	His	Arg	Pro	Tyr
						195			200						205
Thr	Phe	Phe	Ile	Ser	Pro	Gly	Ser	Arg	Asp	Pro	Ala	Gly	Ser	Tyr	His
						210			215						220
Leu	Asn	Leu	Ser	Ser	His	Phe	Arg	Trp	Ser	Ala	Leu	Gln	Val	Ser	Val
						225			230						240
Gly	Leu	Tyr	Thr	Ser.	Leu	Cys	Gln	Tyr	Phe	Ser	Glu	Glu	Asp	Met	Val
						245			250						255

52 / 58

Trp Arg Thr Glu Gly Leu Leu Pro Leu Glu Glu Thr Ser Pro Arg Gln
260 265 270

Ala Val Cys Leu Thr Arg His Leu Thr Ala Phe Gly Ala Ser Leu Phe
275 280 285

Val Pro Pro Ser His Val Arg Phe Val Phe Pro Glu Pro Thr Ala Asp
290 295 300

Val Asn Tyr Ile Val Met Leu Thr Cys Ala Val Cys Leu Val Thr Tyr
305 310 315 320

Met Val Met Ala Ala Ile Leu His Lys Leu Asp Gln Leu Asp Ala Ser
325 330 335

Arg Gly Arg Ala Ile Pro Phe Cys Gly Gln Arg Gly Arg Phe Lys Tyr
340 345 350

Glu Ile Leu Val Lys Thr Gly Trp Gly Arg Gly Ser Gly Thr Thr Ala
355 360 365

His Val Gly Ile Met Leu Tyr Gly Val Asp Ser Arg Ser Gly His Arg
370 375 380

His Leu Asp Gly Asp Arg Ala Phe His Arg Asn Ser Leu Asp Ile Phe
385 390 395 400

Arg Ile Ala Thr Pro His Ser Leu Gly Ser Val Trp Lys Ile Arg Val
405 410 415

Trp His Asp Asn Lys Gly Leu Ser Pro Ala Trp Phe Leu Gln His Val
420 425 430

Ile Val Arg Asp Leu Gln Thr Ala Arg Ser Ala Phe Phe Leu Val Asn
435 440 445

Asp Trp Leu Ser Val Glu Thr Glu Ala Asn Gly Gly Leu Val Glu Lys
450 455 460

Glu Val Leu Ala Ala Ser Asp Ala Ala Leu Leu Arg Phe Arg Arg Leu
465 470 475 480

Leu Val Ala Glu Leu Gln Arg Gly Phe Phe Asp Lys His Ile Trp Leu
485 490 495

Ser Ile Trp Asp Arg Pro Pro Arg Ser Arg Phe Thr Arg Ile Gln Arg
500 505 510

Ala Thr Cys Cys Val Leu Leu Ile Cys Leu Phe Leu Gly Ala Asn Ala
515 520 525

Val Trp Tyr Gly Ala Val Gly Asp Ser Ala Tyr Ser Thr Gly His Val
530 535 540

Ser Arg Leu Ser Pro Leu Ser Val Asp Thr Val Ala Val Gly Leu Val
545 550 555 560

Ser Ser Val Val Val Tyr Pro Val Tyr Leu Ala Ile Leu Phe Leu Phe
565 570 575

53 / 58

Arg Met Ser Arg Ser Lys Val Ala Gly Ser Pro Ser Pro Thr Pro Ala
580 585 590

Gly Gln Gln Val Leu Asp Ile Asp Ser Cys Leu Asp Ser Ser Val Leu
595 600 605

Asp Ser Ser Phe Leu Thr Phe Ser Gly Leu His Ala Glu Ala Phe Val
610 615 620

Gly Gln Met Lys Ser Asp Leu Phe Leu Asp Asp Ser Lys Ser Leu Val
625 630 635 640

Cys Trp Pro Ser Gly Glu Gly Thr Leu Ser Trp Pro Asp Leu Leu Ser
645 650 655

Asp Pro Ser Ile Val Gly Ser Asn Leu Arg Gln Leu Ala Arg Gly Gln
660 665 670

Ala Gly His Gly Leu Gly Pro Glu Glu Asp Gly Phe Ser Leu Ala Ser
675 680 685

Pro Tyr Ser Pro Ala Lys Ser Phe Ser Ala Ser Asp Glu Asp Leu Ile
690 695 700

Gln Gln Val Leu Ala Glu Gly Val Ser Ser Pro Ala Pro Thr Gln Asp
705 710 715 720

Thr His Met Glu Thr Asp Leu Leu Ser Ser Leu Ser Ser Thr Pro Gly
725 730 735

Glu Lys Thr Glu Thr Leu Ala Leu Gln Arg Leu Gly Glu Leu Gly Pro
740 745 750

Pro Ser Pro Gly Leu Asn Trp Glu Gln Pro Gln Ala Ala Arg Leu Ser
755 760 765

Arg Thr Gly Leu Val Glu Gly Leu Arg Lys Arg Leu Leu Pro Ala Trp
770 775 780

Cys Ala Ser Leu Ala His Gly Leu Ser Leu Leu Val Ala Val Ala
785 790 795 800

Val Ala Val Ser Gly Trp Val Gly Ala Ser Phe Pro Pro Gly Val Ser
805 810 815

Val Ala Trp Leu Leu Ser Ser Ala Ser Phe Leu Ala Ser Phe Leu
820 825 830

Gly Trp Glu Pro Leu Lys Val Leu Leu Glu Ala Leu Tyr Phe Ser Leu
835 840 845

Val Ala Lys Arg Leu His Pro Asp Glu Asp Asp Thr Leu Val Glu Ser
850 855 860

Pro Ala Val Thr Pro Val Ser Ala Arg Val Pro Arg Val Arg Pro Pro
865 870 875 880

His Gly Phe Ala Leu Phe Leu Ala Lys Glu Glu Ala Arg Lys Val Lys
885 890 895

54/58

Arg Leu His Gly Met Leu Arg Ser Leu Leu Val Tyr Met Leu Phe Leu
 900 905 910

Leu Val Thr Leu Leu Ala Ser Tyr Gly Asp Ala Ser Cys His Gly His
 915 920 925

Ala Tyr Arg Leu Gln Ser Ala Ile Lys Gln Glu Leu His Ser Arg Ala
 930 935 940

Phe Leu Ala Ile Thr Arg Ser Glu Glu Leu Trp Pro Trp Met Ala His
 945 950 955 960

Val Leu Leu Pro Tyr Val His Gly Asn Gln Ser Ser Pro Glu Leu Gly
 965 970 975

Pro Pro Arg Leu Arg Gln Val Arg Leu Gln Glu Ala Leu Tyr Pro Asp
 980 985 990

Pro Pro Gly Pro Arg Val His Thr Cys Ser Ala Ala Gly Gly Phe Ser
 995 1000 1005

Thr Ser Asp Tyr Asp Val Gly Trp Glu Ser Pro His Asn Gly Ser Gly
 1010 1015 1020

Thr Trp Ala Tyr Ser Ala Pro Asp Leu Leu Gly Ala Trp Ser Trp Gly
 1025 1030 1035 1040

Ser Cys Ala Val Tyr Asp Ser Gly Gly Tyr Val Gln Glu Leu Gly Leu
 1045 1050 1055

2 Ser Leu Glu Glu Ser Arg Asp Arg Leu Arg Phe Leu Gln Leu His Asn
 1060 1065 1070

Trp Leu Asp Asn Arg Ser Arg Ala Val Phe Leu Glu Leu Thr Arg Tyr
 1075 1080 1085

Ser Pro Ala Val Gly Leu His Ala Ala Val Thr Leu Arg Leu Glu Phe
 1090 1095 1100

Pro Ala Ala Gly Arg Ala Leu Ala Ala Leu Ser Val Arg Pro Phe Ala
 1105 1110 1115 1120

Leu Arg Arg Leu Ser Ala Gly Leu Ser Leu Pro Leu Leu Thr Ser Val
 1125 1130 1135

Cys Leu Leu Leu Phe Ala Val His Phe Ala Val Ala Glu Ala Arg Thr
 1140 1145 1150

Trp His Arg Glu Gly Arg Trp Arg Val Leu Arg Leu Gly Ala Trp Ala
 1155 1160 1165

Arg Trp Leu Leu Val Ala Leu Thr Ala Ala Thr Ala Leu Val Arg Leu
 1170 1175 1180

8 Ala Gln Leu Gly Ala Ala Asp Arg Gln Trp Thr Arg Phe Val Arg Gly
 1185 1190 1195 1200

Arg Pro Arg Arg Phe Thr Ser Phe Asp Gln Val Ala His Val Ser Ser
 2 1205 1210 1215

55 / 58

Ala Ala Arg Gly Leu Ala Ala Ser Leu Leu Phe Leu Leu Val Lys
1220 1225 1230

Ala Ala Gln His Val Arg Phe Val Arg Gln Trp Ser Val Phe Gly Lys
1235 1240 1245

Thr Leu Cys Arg Ala Leu Pro Glu Leu Leu Gly Val Thr Leu Gly Leu
1250 1255 1260

Val Val Leu Gly Val Ala Tyr Ala Gln Leu Ala Ile Leu Leu Val Ser
1265 1270 1275 1280

Ser Cys Val Asp Ser Leu Trp Ser Val Ala Gln Ala Leu Leu Val Leu
1285 1290 1295

Cys Pro Gly Thr Gly Leu Ser Thr Leu Cys Pro Ala Glu Ser Trp His
1300 1305 1310

Leu Ser Pro Leu Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly
1315 1320 1325

Ala Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu
1330 1335 1340

Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu Met
1345 1350 1355 1360

Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp Met Gly Leu Ser Lys
1365 1370 1375

Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met Glu Pro Leu
1380 1385 1390

Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro Asp Val Pro Pro
1395 1400 1405

Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser Thr Ser Ser Ser Gln
1410 1415 1420

Leu Asp Gly Leu Ser Val Ser Leu Gly Arg Leu Gly Thr Arg Cys Glu
1425 1430 1435 1440

Pro Glu Pro Ser Arg Leu Gln Ala Val Phe Glu Ala Leu Leu Thr Gln
1445 1450 1455

Phe Asp Arg Leu Asn Gln Ala Thr Glu Asp Val Tyr Gln Leu Glu Gln
1460 1465 1470

Gln Leu His Ser Leu Gln Gly Arg Arg Ser Ser Arg Ala Pro Ala Gly
1475 1480 1485

Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg
1490 1495 1500

Leu Ala Arg Ala Ser Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg
1505 1510 1515 1520

Thr Pro Ser Gly Gln Glu Gln Gly Pro Pro Gln Gln His Leu Val Leu
1525 1530 1535

56/58

Leu Pro Gly Gly Gly Pro Trp Ser Arg Ser Gly His Arg Ser Val
 1540 1545 1550

Leu Leu Ser Ala Ala Val Lys Ala Glu Gly Gln Ala Glu Trp Leu His
 1555 1560 1565

Val Gly Ser Pro Glu Ser Arg Gln Gly His Leu Ser Val Cys Gly Leu
 1570 1575 1580

Gln His Phe Lys Glu Ala Val Trp Pro Thr Arg Thr Gln Gly Pro Leu
 1585 1590 1595 1600

Pro Ser Ser Leu Gly Lys Asp Thr Ala Val Leu Asp Gly Phe
 1605 1610

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: (Compare Figure 8)

AGCTTGGCAC CATCAAGGGC CAGTTCAACT TTGTCACGT GATGGTCACC CGCGTGGACT	60
ACGAGTGCAA CCTGGTGTGC CTGGAGTCGA GGAAAGACAT GGAGGGGCTT GTGGACACCA	120
GGTGGCCAA GATCGTGTCT GACCGCAACC TGGCTTGTG GCGCGOCAG ATGCCCTGC	180
ACGCAAATAT CGCGTCACAG GTGCATCATA CGCGCTOCAA CGCCACCGAT ATCTAOCCT	240
CCAAGTGGAT TGCGCGCTC CGCCACATCA ACAGGCTCGG CGAGGGATC TCGGAGGAAG	300
CGCGCTACTC CAACCCAGC CTACCTCTGG TCCACCGCTC GTCGCGATGC AAACCGCTG	360
CACAGACTOC AGCGGACCOAC ACAACCTGGCT ATGAGGTGGG CGAGGGAAAG CGCGTCATCT	420
CCTCGGTGGA GGACTTCACG GAGTTTGTGT GAGGGGGGG CGCTCGCTCC TGCACGTGGCC	480
TGGACCGTA TTGCGCTGCA GTGAAATAAA TAAAGTCCTG ACCCGAGTGC ACAGACATAG	540
AGGCACAGAT TGC	553

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: (Compare Figure 9)

CTGGTGTG TGAGACGTGC GGGGCTGGGA AGTGTGCGCA GAGCGCGAG TACCGTCTC	60
ACTCCTTTTG TTCTTTTGAC GTAAAGCTGGC GAGTGGCACT CGCTGAGTTC CGCTCAGTGC	120
CGCGCTGTAT GTGCGGACCC CGCTGCATTC TTGCTGTTAG GTGGTGGCGG TGTGCGCTGT	180
CGCTGGTGGG CACCGAGAGT CTCTGGGAGC TTGGGGAGG TTGTGCGAAG CCTGAGCTC	240
GAAGTCCCGT TTCCCGCTT TCTGTGCGCT CTCTGAGGCC CAGGGCATCT CTATGAGGGC	300
CTCTGCTGG AGCGCTCTCT GTGGATCTCC TCTGCGATOC TGGCGATGA GTGGGTGATG	360
CGCTGGCAC CATCTGGTGA CAGTGGCGG GCAOOGCTGC CAAATGTGGG TCCCGATCT	420
GCAACCGCT CGCTGGTOC CCTAGGGTAT CGGGTGGTTC TCCACTGCC CTGGCTCCCC	480
CAACCTGGG TGCGCTCTOCC CCTGCTCGTG GGGGAGA	517

Fig. 11

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/GB 94/02822

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/12	C07K14/47	C12N5/10	A61K48/00	G01N33/68
C12Q1/68	C07K16/18			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N A61K C12Q C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	J. AM. SOC. NEPHROL., vol. 4, no. 3, November 1993 page 814 G. GERMINO ET AL 'A novel approach to the identification of the PKD1 gene' see abstract 91p	1-3, 6-23
Y	---	24-30
Y	KIDNEY INTERNATIONAL, vol. 43, no. supp 39, 19 May 1993 pages s20-s25, G. GERMINO ET AL 'Positional cloning approach to the dominant polycystic kidney disease gene, PKD1' see the whole document ---	1-30
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'B' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

- *'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *'A' document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

8 May 1995

19.05.95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Van der Schaal, C

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/GB 94/02822

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>GENOMICS, vol. 13, 1992 pages 144-151, G. GERMINO ET AL 'The gene for autosomal dominant polycystic kidney disease....' cited in the application see the whole document especially page 150, left column, last paragraph</p> <p>---</p> <p>A. GRIFFITHS ET AL 'An introduction to genetic analysis' 1993 , W. FREEMAN AND COMPANY , NEW YORK see page 427 see page 453, left column, last paragraph - right column, paragraph 1 see page 453, right column, last paragraph - page 461</p> <p>---</p> <p>CURRENT OPINION IN GENETICS AND DEVELOPMENT, vol. 3, June 1993 pages 425-431, J. MULLEY ET AL 'Integrating maps of chromosome 16'</p> <p>---</p> <p>EMBL DATABASE, Accession no. T05931, sequence reference HS9312, Sep. 2 1993; M. ADAMS et al 'Expressed sequence tags identify diversity of transcripts from human brain & NATURE GENETICS, vol. 4, 1993 pages 256-267,</p> <p>---</p> <p>EMBL DATABASE, Accession no. T04943 sequence reference HS9431, August 30, 1993 M. ADAMS et al, 'Expressed sequence tags identify diversity of transcripts from human brain & NATURE GENETICS, vol. 4, 1993 pages 256-267,</p> <p>---</p> <p>CELL, vol. 77, 17 June 1994 pages 881-894, C. WARD ET AL 'The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on chromosome 16' see the whole document</p> <p>-----</p>	1-30
X		1-3,6,8, 9
X		1-3,6,8, 9
P,X		1-30
1		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/GB94/02822

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 24 partially and 25 are directed to methods of treatment of the human body the search has been carried out and based on the alleged effect of the compound.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.