

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

CENTRAL CIRCULATION BOOKSTACKS

The person charging this material is responsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. You may be charged a minimum fee of \$75.00 for each lost book.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

TO RENEW CALL TELEPHONE CENTER, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

FEB 2 1 (2007)

AURUG Z 2000

DEC 0 7 2010

When renewing by phone, write new due date below

UILU-ENG 79 1734

On The Complexity of Inferring Join Dependencies

bу

David Maier

Yehoshua Sagiv

August 1979

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN · URBANA, ILLINOIS

THE LIBRARY OF THE

MAR 2 5 1980

On the Complexity of Inferring Join Dependencies

David Maier

Department of Computer Science

State University of New York

at Stony Brook

Stony Brook, New York 11794

Yehoshua Sagiv+

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

August 1979

(+) The work of this author was supported in part by the National Science Foundation under grant MCS-77-22830

ABSTRACT

It is shown that deciding whether a set of functional dependencies

and one join dependency implies another join dependency is NP-complete.

It is also shown that deciding whether a JD-rule can be applied to a

tableau T is NP-complete. This problem is NP-complete even if T can be

obtained from a tableau corresponding to a join dependency by applying

some FD-rules. As a result, it follows that computing the join of

several relations is NP-hard.

CR categories: 4.33, 5.25

Key words and phrases: functional dependency, multivalued dependency,

join dependency, join, membership algorithm, NP-complete, relational

database.

1. Introduction

The relational model for databases [Cod] uses dependencies as a semantic tool for expressing constraints that the data must satisfy. Functional dependencies and join dependencies (that include multivalued dependencies as a special case) are examples of such dependencies. A utilization of these dependencies in the design of relational databases depends upon the ability to develop membership algorithms, that is, algorithms for deciding whether a set of dependencies Σ implies another dependency σ . Several efficient membership algorithms are known if all the dependencies are functional or multivalued [Bel,BeB,Gal,HIT,Sag], and an exponential time and space algorithm exists for functional and join dependencies [MMS].

In this paper we show that if σ is a join dependency, and Σ is a set of functional dependencies and one join dependency, then deciding whether Σ implies σ is NP-complete. As a by-product of this result, we show that the problem of deciding whether a JD-rule can be applied to a tableau T, and the problem of deciding whether a relation r does not obey a join dependency are NP-complete. The first problem is NP-complete even if T can be obtained from a tableau corresponding to a join dependency by applying some FD-rules. Another by-product is a proof that deciding whether a relation r is not the join of relations r_1, \ldots, r_n is NP-hard. It is easy to give examples in which the join of r_1, \ldots, r_n has an exponential size (measured as a function of the space needed to write down r_1, \ldots, r_n). Therefore, this result indicates that an algorithm for computing the join of r_1, \ldots, r_n whose running time is

polynomial in the size of the output (i.e., the space needed to write down the join of r_1, \ldots, r_n) is unlikely to exist. A similar result is given in [HLY]. However, our result is stronger, since we assume that r_1, \ldots, r_n are projections of some universal instance I.

A recent result [Yan] shows that if σ is a functional or a multivalued dependency, then deciding whether a set Σ of functional and join dependencies implies σ can be done in polynomial time. Thus, the only remaining open problem is to find a lower bound on the complexity of deciding whether a set of join dependencies implies another join dependency. It is interesting to note that the only known algorithm for the more restricted problem of deciding whether a set of multivalued dependencies implies a join dependency is exponential in time and space, and there is no known lower bound [ABU].

2. Basic Definitions

A <u>relation</u> is a two-dimensional table in which columns correspond to <u>attributes</u>, and rows correspond to <u>records</u> or <u>tuples</u>. Each attribute has an associated <u>domain</u> of values, and a tuple is viewed as a mapping from the attributes to their domains. If r is a relation, μ is a tuple of r, and X is a set of attributes, then $\mu[X]$ denotes the values of μ in the X-columns. A set of attributes labeling the columns of a relation is called a <u>relation scheme</u>. If R is a set of attributes labeling the columns of a relation μ the columns of a relation μ is said to be <u>defined on</u> R. We use the letters A,B,C,... to denote attributes, and the letters

...,R,S,...,X,Y,Z to denote sets of attributes (i.e., relation schemes).

A set of attributes is written as a string attributes (e.g., ABCD is the set {A,B,C,D}), and the union of sets of attributes X and Y is written XY. In this paper we assume that all the attributes are drawn from a universal set of attributes U.

A <u>functional dependency</u> (abbr. FD) [Arm, Cod] is a statement of the form $X \to Y$, where both X and Y are sets of attributes. The FD $X \to Y$ holds in a relation r, if for all tuples μ and ν of r, if $\mu[X] = \nu[X]$, then $\mu[Y] = \nu[Y]$.

A <u>multivalued dependency</u> (abbr. MVD) [BFH, Fag, Zan] is a JD with at most two relation schemes. An MVD $*[R_1, R_2]$ is also written $R_1 \cap R_2 \leftrightarrow R_1$ (or equivalently $R_1 \cap R_2 \leftrightarrow R_2$). Conversely, the MVD $X \leftrightarrow Y$ defined on U can be written as the JD *[XY, XZ], where Z = U - X - Y. Both FD's and MVD's have a complete set of inference

rules [Arm, BFH], and polynomial time membership algorithms [Bel, BeB, Gal, HIT, Sag]. An MVD $X \leftrightarrow Y$ holds in a relation r if and only if $X \leftrightarrow Y - X$ holds in r [Fag]. Therefore, we can assume that in an MVD $X \leftrightarrow Y$ the left and right sides (i.e., X and Y) are disjoint.

Let r_1, \dots, r_n be relations defined on R_1, \dots, R_n , respectively. The $\frac{1}{1}$ of r_1, \dots, r_n , written $f(r_n)$ is $f(r_n)$ such that $f(r_n)$ such that $f(r_n)$ are joinable on $f(r_n)$ with a result $f(r_n)$

Let Σ be a set of JD's, and let σ be a JD or an FD. We assume that all the JD's are defined on U. The dependency σ is a consequence of Σ (or σ is implied by Σ) if and only if for all relations r on U, the dependency σ holds in r if all the dependencies of Σ hold in r.

Let Σ be a set of dependencies. A convenient way of representing all the MVD's with a fixed left side that are implied by Σ is by constructing the dependency. The <u>dependency basis</u> of a set of attributes X is a partition of U into pairwise disjoints subsets of attributes X, Y_1, \dots, Y_n such that

- (1) $X \rightarrow Y$ is implied by Σ (1 < i < n), and
- (2) if $X \leftrightarrow Y$ is implied by Σ , then Y is a union of some of the Y_1 's. The existence of the dependency basis follows from the inference rules for MVD's [Fag]. If Σ contains only FD's and MVD's, then the dependency basis can be constructed in polynomial time [Bel,Gal,HIT,Sag].

A <u>tableau</u> [ABU, ASU] is a two-dimensional matrix in which columns correspond to attributes. The rows of a tableau consist of variables of

the following types

- (1) distinguished variables, usually denoted by subscripted a's, and
- (2) nondistinguished variables, usually denoted by subscripted b's.

A variable cannot appear in more than one column, and in each column there is exactly one distingushed variable.

A JD *[R_1, \dots, R_q] has a corresponding tableau T as follows. For each R_i , tableau T has a row w_i with distinguished variables exactly in the R_i -columns, and distinct nondistinguished variable in the rest of the columns. We can also view a tableau as a relation over the domain of distinguished and nondistinguished variables. Note that rows w_1, \dots, w_q of T are joinable on R_1, \dots, R_q , and the resulting row consists only of distinguished variables.

Example 1: Consider the JD *[AB,BCD,AD]. The tableau T_1 corresponding to this JD is

Let Σ be a set of FD's and JD's. Each dependency in Σ has an associated rule that can be applied to any tableau T as follows.

(1) <u>FD-Rules</u>. An FD X \rightarrow Y in Σ has an associated rule for equating variables of T as follows. Suppose that rows w_1 and w_2 of T agree in all the X-columns, but disagree in an A-column, where A is an attribute of Y. If one of w_1 and w_2 has a distinguished variable in its A-column,

then rename the two rows so that w_1 is that row. The FD-rule for X + Y replaces all occurrences of the variable appearing in the A-column of w_2 with the variable appearing in the A-column of w_1 .

(2) <u>JD-Rules</u>. A JD *[S_1, \dots, S_p] in Σ has an associated rule for adding rows to T as follows. If rows w_1, \dots, w_p of T are joinable on S_1, \dots, S_p with a result w, and w is not already in T, then w is added to T.

Each one of The above rules transforms a tableau T to another tableau T'. The rules can be applied repeatedly to a tableau T only a finite nuber of times, and the result is unique (up to renaming of non-distinguished variables) [MMS]. The chase of T under Σ , denoted chase Σ (T), is the tableau obtained by applying the rules associated with Σ to T until no rule can be applied anymore. Let σ be a JD with a corresponding tableau T_{σ} . The JD σ is a consequence of Σ if and only if chase Σ (T_{σ}) contains a row consisting only of distinguished variables [MMS].

Example 2: Let $\Sigma = \{*[AB,BCD,ABD], A \rightarrow B, C \rightarrow A\}$, and let σ be the JD *[AB,BCD,AD] whose corresponding tableau is given in Example 1. The FD-rule for A \rightarrow B can be applied to the first and third rows of the tableau in Example 1, and hence b_4 is identified with a_2 . The resulting tableau is

The first, second, and third rows of the above tableau are joinable on AB,BCD,ABD with a result (a_1,a_2,a_3,a_4) . Thus, applying the JD-rule for *[AB,BCD,ABD] produces the tableau

Applying the FD-rule for $C \to A$ to the second and fourth rows of the above tableau identifies b_3 with a_1 . As a result the second row becomes identical to the fourth row, and hence it can be omitted. The resulting tableau is

No rule for Σ can be applied to the above tableau []

3. NP-Completeness Results Concerning Join Dependencies

3.1 Boolean Expressions and Tableaux

All the results use almost the same reduction from the 3-satisfiability (3-SAT) problem, shown NP-complete in [C]; see also [K,GJ]. Let $Q = F_1 \cdots F_m$ be a Boolean expression in conjunctive normal form, where the F_j 's are clauses of three literals each, and x_1, x_2, \dots, x_n are all the variables appearing in this expression. We denote the variables appearing in a clause F_j by x_j , x_j , and x_j . We assume that n > 4 (and hence m > 1), and each variable appears in at least two clauses. Note that if n < 3, then the satisfiability of Q can be decided in linear time; and if a variable appears in only one clause, then this clause is always satisfied and, hence, it can be omitted. Thus, this variant of the 3-SAT problem is NP-complete.

We now show how Q is used to construct two tableaux that correspond to join dependencies. These tableaux are similar to those used in the NP-completeness proofs given in [ASU]. Each one of them has (m+3n+2) columns. The first m columns correspond to the clauses F_1, \dots, F_m , and they are labeled by the attributes E_1, \dots, E_m . The next 3n columns are divided into three blocks of n columns each. The n columns in each block correspond to the variables x_1, \dots, x_n . The columns of the three blocks are labeled by A_1 's, B_1 's, and C_1 's, respectively. The last two columns are labeled by D_1 and D_2 . The first tableau, denoted by S, represents the m clauses. For each clause F_j containing the variables x_1 , x_2 , and x_3 , tableau S has a row s_j as follows. Row s_j has distinguished variables in the columns for E_j , A_{j_1} , A_{j_2} , A_{j_3} , and D_1 . All

the other columns have distinct nondistnigushed variables. The tableau S has one more row, denoted by s_{m+1} , with distinguished variables in all the E, B, C, and D_2 columns (the rest of the columns have distinct non-distinguished variables). Let S_j be the relation scheme corresponding to row s_j of S (1<j<m+1). That is, S_j contains all the attributes labeling columns in which s_j has distinguished variables. Thus, the tableau S corresponds to the JD *[S_j ,..., S_{m+1}].

The second tableau, denoted by T, represents truth assignments under which clauses of Q are true. For every F_j (1 \leq j \leq m), tableau T has seven rows that represent all the truth assignments under which F_j is true. If ζ is a truth assignment under which F_j is true, then T contains a row w as follows. For 1 \leq i \leq 3, if x_j is assigned 1 under ζ , row w has a distinguished variable in the B_j -column; otherwise, w has a distinguished variable in the C_j -column. Row w has distinguished variables also in the E_j -column and in the D_j -column. The tableau T has two additional rows, denoted by u and v. Row u has distinguished variables in all the E, B, C, and D_j columns (excatly as row s_{m+1} of S). Row v has distinguished variables in all the A and D columns. All the other columns of rows of T contain distinct nondistinguished variables.

Example 3: Consider the Boolean expression

$$(x_1 + \overline{x}_2 + x_3)(x_1 + \overline{x}_3 + x_4)(\overline{x}_1 + x_2 + \overline{x}_4).$$

By a slight abuse of notation, we denote the distinguished variable in each column by an a (without a subscript). The dots stand for distinct nondistinguished variables. The tableau S is

	E 1	E 2	E ₃	A ₁	^A 2	^A 3	A ₄	^B ₁	^B 2	^B 3	B ₄	c_1	c ₂	с ₃	C ₄	D ₁	D 2
s ₁ s ₂ s ₃ s ₄	a	•	•	а	а	а	•	•	•	•	•	•	•		•	а	-1
s ₂		a	•	a	•	a	a	•	•	•	•	•	•	•	•	a	•
รฐ		•	a	a	a	•	a	•	•	•	•	•	•	•	•	a	•
s ₄	a	a	a	•	•	•	•	a	a	a	a	a	a	a	a	•	a
7	İ																

The tableau T is given in Figure 1. []

Let Σ be a set of dependencies that consists of the JD $*[S_1, \dots, S_{m+1}]$, and the FD's $B_1D_1 \rightarrow A_1$, $C_1D_1 \rightarrow A_1$, and $D_1D_2 \rightarrow A_1$ (for $1 \le i \le n$); and let σ be the JD corresponding to the tableau T.

We will show that σ is a consequence of Σ if and only if Q is satisfiable. The proof is an analysis of the computation of chase $_{\Sigma}(T)$. Since the rules associated with Σ can be applied to T in any order, we start by applying the FD-rules. The FD-rules for $D_1D_2 \rightarrow A_4$ (1<1<n) cannot be applied, since no two rows of T agree in the columns for D, and D2. The application of the other FD-rules modifies only the A-columns of T. Note that rows u and v of T are not affected by this modification. After all possible applications of FD-rules to T, each A_{i} -column is going to have exactly two repeated (1) nondistinguished variables, say b_i and \overline{b}_i (1 < i < n). The variable b_i results from the application of the FD-rules for $B_1D_1 \rightarrow A_4$, and can be viewed as representing the truth value 1. The variable \overline{b}_1 results from the application of the FD-rules for $C_1D_1 \rightarrow A_1$, and can be viewed as representing the truth value 0. row w of T representing a truth assignment for a clause F_{i} (with variables x_{j_1} , x_{j_2} , and x_{j_3}) is going to have b_j in the A_j -column, if x_{j_4} is true; otherwise, it is going to have \overline{b}_{j_i} in this column (1 < i < n).

⁽¹⁾ A variable is repeated if it appears in more than one row.

E 1	E 2	E 3	A ₁	A 2	A ₃	A ₄	В1	^B 2	в3	B 4	1	2	3	4	^D 1	D 2	•
a	•	•	•	•	•	•	•	•	•	•	а	а	а	•	а	•	
a	•	•	•	•	•	•	•	•	а	•	а	a	•	•	a	•	
a	•	•	•	•	•	•	•	а	а	•	а	•	•	•	a	.	
a	•	•	•	•	•	•	a	•	•	•	•	а	а	•	а	.	
a	•	•	•	•	•	•	а	•	a	•	•	а	•	•	a	.	
а	•	•	•	•	•	•	a	a	•	•	•	•	а	•	а	.	
a	•	•	•	•	•	•	а	a	а	•	•	•	•	•	а	.	
	а	•	•	•	•	•	•	•	•	•	a	•	а	а	а	.	
•	а	•	•	•	•	•	•	•	•	а	а	•	a	•	a	.	
•	а	•	•	•	•	•	•	•	а	а	а	•	•	•	а	.	
	а	•	•	•	•	•	а	•	•	•	•	•	a	а	a	•	
•	а	•	•	•	•	•	a	•	•	а	•	•	a	•	а	.	
•	а	•	•	•	•	•	а	•	a	•	•	•	•	а	а	.	
	a	•	•	•	•	•	a	•	а	a	•	•	•	•	а	.	
	•	а	•	•	•	•	•	•	•	•	а	•	а	а	a	.	
	•	а	•	•	•	•	•	•	•	а	а	•	а	•	а	.	
	•	a	•	•	•	•	•	•	а	•	а	•	•	a	а	.	
•	•	а	•	•	•	•	•	•	а	а	a	•	•	•	а	.	
	•	а	•	•	•	•	а	٠	•	•	•	•	а	а	а	.	
•	•	а	•	•	•	•	a	•	а	•	•	•	•	а	а	.	
	•	а	•	•	•	•	a	•	а	а	•	•	•	•	а	.	
a	а	a	•	•	•	•	а	a	а	а	a	a	а	а	•	al	
1.	•	•	a	а	а	a	•	•	•	•	•	•	•	•	а	al	

Figure 1

Thus, the truth assignment represented by w is now given in the A-columns of w. It is easy to show that no further applications of FD-rules are possible. Let T' be the tableau obtained by applying the FD-rules to T.

<u>Lemma 1</u>: Suppose that rows w_1, \dots, w_{m+1} of T' are joinable on S_1, \dots, S_{m+1} with a result w, and w is not in T. Then w_{m+1} is u, and for all $1 \le j \le m$, row w_j is a row of T representing a truth assignment for F_j .

 $\frac{2\text{roof}}{2}$: If all the w_1 's are identical, then w is the same row as the w_1 's and, hence, it is in T'. Therefore, it suffices to show that if

either w_{m+1} is not u or some w_j ($j \neq m+1$) is not a row representing a truth assignment for F_j , then all the w_j 's are identical.

Claim 1: If row w_{m+1} or row w_i (for some 1<i < m) has in the E_i -column a nondistinguished variable that appears nowhere else in T', then w_i and w_{m+1} are identical.

Claim 1 follows from the fact that for all $1 \le i \le m$, rows w_i and w_{m+1} agree in the E_i -column, because both S_i and S_{m+1} contain E_i .

Claim 2: If some w_i ($j \neq m+1$) is u, then for all 1<i $\leq m$, row w_i is u.

Claim 2 follows from the fact that for all $1 \le \infty$, the relation scheme S_1 contains the attribute D_1 , and u has in the D_1 -column a non-distinguished variable appearing nowhere else in T'.

Suppose that \mathbf{w}_{m+1} is v. But v has in each \mathbf{E}_1 -column a distinct nondistinguished variables appearing nowhere else in T', and so by Claim 1, every \mathbf{w}_1 is v. So suppose that \mathbf{w}_{m+1} is a row representing a truth assignment for some \mathbf{F}_k . Therefore, row \mathbf{w}_{m+1} has a distinguished variable in the \mathbf{E}_k -column, and in all the other E-columns it has distinct nondistinguished variables appearing nowhere else in T'. By Claim 1, for all $\mathbf{1} \neq \mathbf{k}$, row \mathbf{w}_1 and \mathbf{w}_{m+1} are identical. Row \mathbf{w}_k must have a distinguished variable in the \mathbf{E}_k -column, since \mathbf{w}_{m+1} has a distinguished variable in this column and both \mathbf{S}_k and \mathbf{S}_{m+1} contain \mathbf{E}_k . By Claim 2, row \mathbf{w}_k cannot be u, because there is a row \mathbf{w}_j ($\mathbf{j} \neq \mathbf{m} + \mathbf{l}$) that is not u (since $\mathbf{k} > \mathbf{l}$). Thus, all the \mathbf{w}_1 's ($\mathbf{i} \neq \mathbf{k}$) are equal to a row of T' representing a truth assignment for \mathbf{F}_k , and \mathbf{w}_k is also a row represent-

ing a truth assignment for F_k . But every variable \mathbf{x}_q appears in more than one clause and, hence, the pattern of the distinguished variables in the A-columns of tableau S implies that \mathbf{w}_k represents the same truth assignment as all the other \mathbf{w}_i 's. That is, all the \mathbf{w}_i 's are identical.

So far we have shown that if w_{m+1} is not u, then all the w_i 's are identical. Now suppose that some w_j is not a row representing a truth assignment for F_j . If w_j is u, then Claim 2 implies that for all $1 \le m$, row w_i is u. But w_{m+1} is also u, and so all the w_i 's are identical. If w_j is either v or a row representing a truth assignment for some F_k ($j \ne k$), then w_j has in the E_j -column a nondistinguished variable appearing nowhere else in T', and so by Claim 1, rows w_j and w_{m+1} are identical. But w_{m+1} is u, and so Claim 2 implies that all the w_i 's are identical. []

<u>Corollary 2</u>: Rows w_1, \dots, w_{m+1} of T' are joinable on S_1, \dots, S_{m+1} with a result w not in T' if and only if Q is satisfiable.

Proof: Only if. By Lemma 1, row w_j (1<j<m) represents the following truth assignment for F_j . If x_{j_1} is a variable of F_j , and the A_{j_1} -column of w_j has the repeated nondistinguished variable b_{j_1} , then x_{j_1} is assigned 1. If the A_{j_1} -column of w_j has the repeated nondistinguished variable b_{j_1} , then x_{j_1} is assigned 0. Under this truth assignment F_j is true. But the pattern of the distinguished variables in the A-columns of tableau S implies that in this case there is a truth assignment ψ for all the variables x_1, \dots, x_n such that for all 1<j<m, the truth assignment ψ agrees with the truth assignment represented by

 w_j on the variables of F_j . Hence, each F_j is true under ψ , and Q is satisfiable.

If. Suppose that ψ is a truth assignment that satisfies Q. For all $1 \le j \le m$, let w_j be the row of T' representing the truth assignment for F_j that agrees with ψ on the variables of F_j ; and let w_{m+1} be row u of T'. It is easy to show that the rows w_1, \dots, w_{m+1} are joinable on S_1, \dots, S_{m+1} with a result w not in T'. []

Lemma 3: The JD σ (corresponding to T) is a consequence of Σ if and only if Q is satisfiable.

<u>Proof:</u> Only if. By Corollary 2, if Q is not satisfiable, then the only JD-rule for Σ cannot be applied to T'. Therefore, $\operatorname{chase}_{\Sigma}(T)$ is the result of applying the FD-rules to T, i.e., $\operatorname{chase}_{\Sigma}(T) = T'$. This chase does not contain a row with only distinguished variables and, hence, σ is not a consequence of Σ .

If. Suppose that Q is satisfiable. By Lemma 1 and Corollary 2, an application of the JD-rule for Σ to T' adds a row w that has distinguished variables in all the E, B, C, and D columns. We can apply the FD-rules for $D_1D_2 \to A_j$ (1<j<n) to w and v (the last row of T'), and the result is a row with only distinguished variables. Thus, σ is a consequence of Σ . []

3.2 NP-Completeness Results Concerning Applications of JD-Rules and

Testing Whether Relations Obey Join Dependencies.

Theorem 4: The problem of deciding whether a JD-rule can be applied to a tableau U is NP-complete. This problem is NP-complete even if U can be obtained from a tableau corresponding to a JD by applying some FD-rules.

<u>Proof:</u> At first we will show that the problem is in NP. Suppose we have to decide whether the JD-rule for a JD $*[R_1, \dots, R_q]$ can be applied to a tableau U. We nondeterministically choose q rows w_1, \dots, w_q of U, and check in polynomial time whether they are joinable on R_1, \dots, R_q with a result w not in U.

To show that the problem is complete in NP, the 3-SAT problem can be reduced to this problem as described in Section 3.1. That is, given an instance Q of the 3-SAT problem, we construct the JD $*[S_1, \ldots, S_m]$ and the tableau T. By applying some FD-rules to T, we obtain the tableau T'. By Corollary 2, the JD-rule for $*[S_1, \ldots, S_m]$ can be applied to T' if and only if Q is satisfiable. []

Corollary 5: It is NP-complete whether a JD $*[R_1, \dots, R_q]$ does not hold in a relation r.

<u>Proof</u>: The problem is in NP, since we can nondeterministically find q tuples of r that are joinable on R_1, \dots, R_q with a result that is not a tuple of r.

To show that the problem is complete in NP, we can view the tableau T' as a relation r (by replacing each variable with a distinct constant). By Corollary 2, the JD $*[S_1, ..., S_m]$ does not hold in r if and only if Q is satisfiable. []

3.3 An NP-Completeness Result for Inferring Join Dependencies

Theorem 6: Let Γ be a set of FD's and one JD, and let γ be another JD. The problem of deciding whether γ is a consequence of Γ is NP-complete.

<u>Proof</u>: Let $*[R_1, \dots, R_q]$ be the only JD in Γ . At first we show that the problem is in NP. Let U be a tableau and suppose that $\operatorname{chase}_{\Gamma}(U)$ can be obtained from U by using only the JD-rule for Γ . The following claim shows that any row of $\operatorname{chase}_{\Gamma}(U)$ (that is not in U) can be obtained by a single application of the JD-rule for Γ to some rows of U.

Claim 1: If a tableau U' is obtained by repeatedly applying the JD-rule for Γ to a tableau U, then any row of U' is the result of joining some rows of U on R_1, \dots, R_q .

In order to prove this claim, suppose that the JD-rule for Γ is applied only to the original rows of U until it cannot be applied anymore. Let the resulting tableau be \overline{U} . It suffices to show that the JD-rule for Γ cannot be applied to \overline{U} . So suppose that the JD-rule can be applied to \overline{U} . That is, there are rows w_1, \dots, w_q of \overline{U} that are joinable on R_1, \dots, R_q with a result w not in \overline{U} . If some w_1 is not in U,

then there are rows v_1, \dots, v_q in U that are joinable on R_1, \dots, R_q with a result w_i . But w_i and v_i agree on R_i and, hence, w_i can be replaced with v_i . That is, $w_1, \dots, w_{i-1}, v_i, w_{i+1}, \dots, w_q$ are joinable on R_1, \dots, R_q with a result w_i . It follows that every w_i that is not in U can be replaced with some row in U, and the resulting rows are joinable on R_1, \dots, R_q with a result w_i . Therefore, w_i is also in \overline{U} .

Now suppose that no FD-rule for Γ can be applied to a tableau U, but some FD-rules for Γ can be applied to a tableau U', where U' is obtained from U by applying the JD-rule for Γ several times. there are rows v and w of U' such that some FD-rule for Γ can be applied to v and w. By Claim 1, rows v and w can be generated by applying the JD-rule to rows of U (unless they are already in U). By using a nondeterministic algorithm, rows v and w can be obtained in polynomial time in no more than two applications of the JD-rule for Γ . Therefore, in order to generate any row of chase $_{\Gamma}(U)$, we can always find a sequence of applications of the rules for Γ in which the JD-rule is never used more than twice in a row. Let n be the number of distinct variables in U. Each application of an FD-rule reduces the number of distinct variables by one. Thus, the FD-rules can be applied to U no more than n times. Since each application of an FD-rule is preceded by no more than two applications of the JD-rule for Γ , we can generate any row of chase_r(U) in O(n) applications of the rules for Γ . In particular, we can use a nondeterministic algorithm to generate the row consisting only of distinguished variables (if this row is indeed in chase $_{\Gamma}(U)$) in O(n) applications of the rules for Γ .

The following is a nondeterministic polynomial time algorithm that returns "Yes" if γ is a consequence of Γ . The tableau for γ is denoted by V.

- (1) Nondeterministically create two rows v_1 and v_2 such that each v_1 is either a row of V or can be obtained by joining some rows of V on R_1, \dots, R_q .
- (2) If either v₁ or v₂ consists only of distinguished variables, then return "Yes".
- (3) Add v_1 and v_2 to V (if they are not already there).
- (4) Apply the FD-rules to V until no FD-rule can be applied. If at least one FD-rule has been applied, then go to (1).

Steps (1)-(3) require nondeterministic linear time. Step (4) requires (deterministic) polynomial time [ABU]. Each application of an FD-rule reduces the number of distinct variables in V by one, and Step (1) is repeated only after an application of some FD-rule. Therefore, no more than O(n) rows are added to V, and the algorithm has a nondeteministic polynomial running time.

It remains to be shown that the problem is NP-complete. The 3-SAT problem can be reduced to this problem as described in Section 3.1, and the NP-completeness follows from Lemma 3. []

3.4 An NP-Hard Result for Computing the Join of Several Relations

In this section we show that computing the join of several relations is a hard problem (even if the relations come from a universal instance). We assume familiarity with the definition of the join operator, and the correspondence between tableaux and relational expressions (cf. [ASU]). It should be noted that a similar result is stated in [HLY]. However, our result is stronger, since we assume that the relations are obtained by projection from a universal instance.

Theorem 7: Let E be a relational expression with the join as the only operator, let I be a universal instance, and let r be a relation. The problem whether $E(I) \neq r$ is NP-hard. (E(I) is the value of the expression E for the instance I.)

Proof: We can view the tableau T' of Section 3.1 as a universal instance, and the tableau S as representing the relational expression m *S₁. Thus the 3-SAT problem can be reduced to this problem in the i=1 following way. Given a Boolean expression Q, we construct the relational expression *S₁ corresponding to the tableau S of Section 3.1. i=1 The instance I is obtained from the tableau T' by replacing each variable of T' with a distinct element from the domain of the corresponding attribute. The relation r is the same as the instance I. By Corollary 2, the relation r is not the value of *S₁ for I if and only if Q is satisfiable. []

References

- [ABU] Aho, A. V., C. Beeri, and J. D. Ullman, "The Theory of Joins in Relational Databases," <u>ACM Trans. on Database Systems</u>, Vol. 4, No. 3 (Sept., 1979), pp. 297-314.
- [ASU] Aho, A. V., Y. Sagiv, and J. D. Ullman, "Equivalences Among Relational Expressions," <u>SIAM J. Computing</u>, Vol. 8, No. 2 (May, 1979), pp. 218-246.
- [Arm] Armstrong, W. W., "Dependency Structures of Database Relation-ships," Proc. IFIP 74, North Holland, 1974, pp. 580-583.
- [Bel] Beeri, C., "On the Membership Problem for Multivalued Dependencies in Relational Databases," to appear in <u>ACM Trans. on Database</u>

 Systems.
- [BeB] Beeri, C., and P. A. Bernstein, "Computational Problems Related to the Design of Normal Form Relational Schemas," <u>ACM Trans. on</u>

 Database Systems, Vol. 4, No. 1 (March, 1979), pp. 30-59.
- [BFH] Beeri, C., R. Fagin, and J. H. Howard, "A Complete Axiomatization for Functional and Multivalued Dependencies in Database Relations," Proc. ACM-SIGMOD Int. Conf. on Management of Data, Toronto, Aug., 1977, pp. 47-61.
- [Cod] Codd, E. F., "A Relational Model for Large Shared Data Banks,"

 Comm. ACM, Vol. 13, No. 6 (June, 1970), pp. 377-387.
- [Coo] Cook, S. A., "The Complexity of Theorem Proving Procedures," <u>Procedures</u>, and <u>Annual ACM Symp. on Theory of Computing</u>, May, 1971, pp. 151-158.
- [Fag] gin, R., "Multivalued Dependencies and a New Normal Form for Relational Databases," <u>ACM Trans. on Database Systems</u>, Vol. 2, No.

- 3 (Sept., 1977), pp. 262-278.
- [Gal] Galil, Z., "An Almost Linear Time Algorithm for Computing the Dependency Basis in a Relational Data Base," Res. Rept., Dept. of Mathematical Sciences, Computer Science Division, Tel Aviv University, Tel Aviv, Israel.
- [GaJ] Garey, M. R., and D. S. Johnson, <u>Computers and Intractability</u>: <u>A</u>

 <u>Guide to the Theory of NP-Completeness</u>, Freeman, San Francisco,

 1979.
- [HIT] Hagihara, K., M. Ito, K. Taniguchi, and T. Kasami, "Decision Problems for Multivalued Dependencies in Relational Databases," <u>SIAM</u>
 <u>J. Computing</u>, Vol. 8, No. 2 (May, 1979), pp. 247-264.
- [HLY] Honeyman, P., R. E. Ladner, and M. Yannakakis, "Testing the Universal Instance Assumption," to appear.
- [Kar] Karp, R. M., "Reducibility Among Combinatorial Problems," in <u>Complexity of Computer Computations</u>, (R. E. Miller and J. W. Thatcher, eds.), Plenum Press, New York, 1972, pp. 85-104.
- [MMS] Maier D., A. O. Mendelzon, and Y. Sagiv, "Testing Equivalence of Data Dependencies," to appear in <u>ACM Trans. on Database Systems</u>.
- [Ris] Rissanen, J., "Theory of Relations for Databases A Tutorial Survey," Proc. 7th Symp. on Mathematical Foundations of Computer

 Science, Lecture Notes in Computer Science 64, Springer-Verlag,
 1978, pp. 536-551.
- [Sag] Sagiv. Y., "An Algorithm for Inferring Multivalued Dependencies

 With an Application to Propositional Logic," to appear in JACM.
- [Yan] Yannakakis, M., private communication.
- [Zan] Zaniolo, C., "Analysis and Design of Relational Schemata for

Database Systems," Tech. Rep. UCLA-ENG-7769, Dept. of Comp. Sci., UCLA, July, 1976.

BIBLIOGRAPHIC DATA	1. Report No. UIUCDCS-R-79-985	2	3. Recipi	ent's Accession No.							
4. Title and Subtitle	5. Report	5. Report Date									
			Augu	st 1979							
On the Comple	6.										
7. Author(s) David Maier,	8. Perform	8. Performing Organization Rept. No.									
9. Performing Organization N	Name and Address Computer Science		10. Proje	ct/Task/Work Unit No.							
University of	11. Contr	act/Grant No.									
at Urbana-C	MCS-	77-22830									
Urbana, Illing 12. Sponsoring Organization	13. Type	of Report & Period									
a spendenting organization			Cover	ed							
National Scien	nce Foundation										
Washington, D	.C.		14.	14.							
15. Supplementary Notes											
16. Abstracts											
It is sho	own that deciding whethe	r a set of	functional depende	encies							
and one join o	dependency implies anoth	er join der	endency is NP-com	olete.							
It is also sho	own that deciding whethe	r a JD-rule	can be applied to	а							
tableau T is N	NP-complete. This probl	em is NP-co	emplete even if T	an be							
	a tableau corresponding										
some FD-rules.	As a result, it follo	ws that con	puting the join of								
several relati	ons is NP-hard.										
17. Key Words and Document	Analysis. 17a. Descriptors										
functional dep	endency, multivalued de	pendency, j	oin dependency,								
join, membersh	ip algorithm, NP-comple	to rolatio	nal databasa								
J = == , == == = = = =	-p digoritim, in comple	te, lelatio	nar database								
13t 11 ''' (0 F 1 1											
17b. Identifiers/Open-Ended Terms											
17c. COSATI Field/Group	17c. COSATI Field/Group										
18. Availability Statement			19. Security Class (This	21. No. of Pages							
oracment			Report)	a or rages							
			20. Security Class (This	22. Price							
			Page UNCLASSIFIED								

