CHEMISRTY GUIDE P525-3

Q1 You are provide with the following

- FA₁ which is a solution containing potassiumiadate (KIO₃) and oxalic acid(H₂C₂O₄H₂O)
- FA₂ which is 0.1M sodium thiosulphate
- FA₃ which is 0.05M sodium hydroxide solution

You are required to determine the percentage composition of FA1

Theory:

The hydrogen ion can be analyzed by titration with standard base

$$OH_{(aq)}^+ + H_{(aq)}^+ \to H_2O_{(l)}$$

While the iodate ions can be reduced to iodide by reaction with excess acidified potassium iodide.

$$IO_{3(aq)}^{-} + 5I_{(aq)}^{+} + 6H_{(aq)}^{+} \rightarrow 3I_{2(aq)} + 3H_{2}O_{(l)}$$

And the liberated iodine analyzed by reaction with standard sodium thiosulphate solution.

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} \rightarrow S_4O_{6(aq)}^{2-} + 2I_{(aq)}^+$$

Procedure 1

Pipette 10cm^3 of FA_1 into a conical flask add 2-3 drops of phenolphalein indicator and shake well. Titrate this solution with fa3 from the burette repeat the titration until you obtain consistent readings and record your results in table A

Results for table A:

Volume of pipette used 10.0 cm³

Final burette reading(cm ³)	20.00	40.00	25.00
Initial burette reading(cm ³)	0.00	20.00	5.00
Volume of FA ₃ used (cm ³)	20.00	20.00	20.00

Values used to calculate average volume of FA₃ used, 20.00 ,20.00

Average volume of
$$FA_3 \frac{20.00+20.00}{2} = 20.00cm^3$$

Questions

(a) Calculate the molar concentration of FA₁ with respect to H⁺ ions hence mass per litre of oxalic acid.

 $100cm^3$ of FA_3 contain 0.05moles of OH^-

$$20cm^3$$
 of FA_3 contain $\left(\frac{0.05\times20}{1000}\right)$ moles of OH^-

mole ratio of $OH^-:OH^+$ is 1:1

$$moles\ of\ OH^+$$
that reacted = $\left(\frac{0.05\times20}{1000}\right)moles$

$$1cm^3$$
 of FA_2 contain $\left(\frac{0.05\times20}{1000}\right)$ moles of H^+

$$1000cm^3$$
 of FA_2 contain $\left(\frac{0.05\times20}{1000}\times\frac{1000}{10}\right)$ moles of H^+

= 0.1 M

$$H_2C_2O_4 \to 2H^+ + C_2O_4^{2-}$$

2 moles of H^+ are produced by 1 mole of $H_2C_2O_4$

0.1 mole of
$$H^+$$
 are produced by $\left(\frac{0.1\times 1}{2}\right)$ moles

$$= 0.05M$$

$$R.F.M \ of \ H_2C_2O_4.2H_2O = (1 \times 2) + (12 \times 2) + (16 \times 4) + (2 \times 12)$$

1 mole of $H_2C_2O_4$. $2H_2O$ weigh 126g

 $0.05 moles\ of\ H_2C_2O_4.\ 2H_2O\ weigh\ (0.05\times 126)g$

$$=6.4gl^{-1}$$

Procedure II

Empty the burette, wash it clean and rinse it with distilled water. Then fill it with FA_2 pipette 10cm^3 of FA_1 into a conical flask, add 10cm^3 of 2M sulphuric acid by use of a measuring cylinder and add 10cm^3 of 10% potassium iodide then shake well and titrate the liberated iodide with FA_2 from the burette until the solution is pale black colour of the solution just becomes Colourless

Repeat the titration to obtain consistent results and record your results in the table B-below

Results for table B:

Volume of pipette used _____ 10.0 cm³

Final burette reading(cm ³)	11.20	21.20	31.20
Initial burette reading(cm ³)	0.00	10.00	20.00
Volume of fa2 used(cm ³)	11.20	11.20	11.20

Values of FA₂ used to calculate average volume used 11.20 , 11.20

Average volume of fa2
$$\frac{11.20+11.20}{2} = 11.20$$

Questions:

(b) Calculate the molar concentration of FA₂ with respect to IO₃ ions hence mass per litre of potassium iodate

 $1000cm^3$ of FA_2 contain 0.1 moles of $S_2O_3^{2-}$

$$11.2cm^3$$
 of FA_2 contain $\left(\frac{0.1\times11.2}{1000}\right)$ moles of $S_2O_3^{2-}$

mole ratio of $S_2O_3^{2-}$: I_2 is 2:1

moles of
$$I_2$$
 that reacted = $\left(\frac{1}{2} \times \frac{0.1 \times 11.2}{1000}\right)$ moles

mole ratio of $I_2: IO_3^-$ is 3:1

moles of
$$IO_3^-$$
 that reacted = $\left(\frac{1}{3} \times \frac{1}{2} \times \frac{0.1 \times 11.2}{1000}\right)$ moles

$$10cm^3$$
 of FA_1 contain $\left(\frac{1}{3} \times \frac{1}{2} \times \frac{0.1 \times 11.2}{1000}\right)$ moles of IO_3^-

$$1000cm^3 \ of \ FA_1 \ contain \left(\frac{1}{3} \times \frac{1}{2} \times \frac{0.1 \times 11.2}{1000} \times \frac{1000}{10}\right) moles \ of \ IO_3^-$$

= 0.0186915M

$$R.F.M \ of \ KIO_3 = 39 + 127 + (16 \times 3) = 124$$

 $1\,mole\,of\,KIO_3\,weigh\,214g$

$$0.0186915g~of~KIO_3~weigh~(214 \times 0.0186915)g$$

$$=4gl^{-1}$$

(C) Calculate percentage composition by mass of FA1

$$total\ mass = 6.4 + 4 = 10.4g$$

percenatge of oxalic acid =
$$\left(\frac{6.4}{10.4} \times 100\right)$$

percentage of potassiumiodate = $\left(\frac{4}{10.4} \times 100\right)$

= 38.5%

2. You are provided with substance E, that contains two cations and two anions, carryout the following tests to identify the ions in E .Identify any gas evolved

TEST	OBSERVATION	DEDUCTION
(a)Heat aspatula endful of E	 White Powderly solid 	Non transition metal ion
strongly in the dry test tube	 Yellow residue when 	
	hot turn white on	$ZnO Zn^{2+}$
	cooling	
	 Colourless gas turn 	$CO_2 CO_2C_2O_4^{2-} CH_3COO$
	moist blue litmus	I 6 I-
	paper red and lime	$I_2 from I^-$
	water milky	
	 Purple/violet vapour formed a black 	
	sublimate	
(b)Place 2 spatula endfuls of	Purple/violet fumes	I^- oxidised to I_2
E in a test tube, add 3 drops	form a black sublimate	
of concentrated sulphuric	 Bubbles of Colourless 	
acid and heat	gas which turn moist	
	blue litmus paper red	$CO_2 CO_3^{2-}$
	and lime water milky	
(c)Place two spatula endful	White suspension	Non transition metal ion
of E in atestube, add water		
to dissolve and filter, keep	White residue	
the residue, divide the		Non the maiding model in
filtrate into three portions	Colourless filtrate	Non transition metal ion
(i)To the 1 st portion, add	Yellow ppt	I ⁻
lead(II) nitrate solution and		
then dilute nitric acid (ii)To the 2 nd portion, add	Pale yellow ppt	<i>I</i> -
silver nitrate solution then	Soluble in the acid	
dilute nitric acid	Soldole in the acid	
(iii) To the third portion add	Violet/purple solution in the	I^- oxidised to I_2
bleaching powder and then 3	organic layer	
drops of dilute sulphuric		
acid solution followed by		
carbon tetra chloride. shake		

and leave it to settle		
(d) To the spatula endful of	 Effervescence occurs 	CO_2 CO_3^{2-} comfirmed
E add dilute nitric acid to	Colourless gas turn	
dissolve, then add excess	blue litmus paper red	
sodium hydroxide solution	and lime water milky	Non transition metal ion
hydroxide solution and	Colourless solution	Tion transition metal for
filter. Keep the residue and		
the filtrate.	 White ppt insoluble in 	$Mg^{2+} Ca^{2+} or Ba^{2+}$
the intrace.	excess	Mg^{2+} Ca^{2+} or Ba^{2+}
	- White residue	$Zn^{2+} Pb^{2+} or Al^{3+}$
	- Colorless filtrate	
(e)To the filtrate, add dilute	White ppt soluble in excess	$Al^{3+} Pb^{2+} or Zn^{2+}$
nitric acid until it is just		
acidic and divide the		
resultant solution into three		
portions		
(i)To the first portion, add	White ppt soluble in excess	$Zn^{2+} Pb^{2+} Al^{3+}$
sodium hydroxide solution		
drop wise until in excess.		
(ii) To the second portion	White ppt soluble in excess	Zn^{2+}
add aqueous ammonia till in		
excess		
(iii)Using the third portion	White ppt soluble in excess	Zn ²⁺ comfirmed
carryout a test of your own	aqueous ammom	
choice to confirm the cation		
in the filtrate		
(f) To the residue in (d) add	Colorless solution was formed	$Mg^{2+} Ca^{2+} or Ba^{2+}$
dilute nitric acid to dissolve.		
Divide the resultant solution		
into four parts		
(i)To the first part ,add	White ppt insoluble in excess	$Mg^{2+} Ca^{2+} or Ba^{2+}$
sodium hydroxide drop wise		
drop until in excess		
(ii)To the second part, add	White ppt insoluble in excess	Mg^{2+} or Ba^{2+}
aqueous ammonia solution		_
drop wise until in excess		
(iii)To the third part, add	White ppt	Ba^{2+}
dilute sulphuric acid		
(iv)To the fourth part, add,	White ppt soluble in the acid	Ba^{2+}
ammonia oxalate solution		
followed by ethanoic acid		
v	L	<u></u>

cations in E are _	Ba^{2+}	and	Zn^{2+}	
Anions in E are	I [_]	and	CO ₃ ²⁻	

3. You are provided with solid T which is an organic compound. You are required to carry out the tests below to determine the nature of T

TEST	OBSERVATIONS	DEDUCTIONS
(a)Burn a little of T on a	T burnt with yellow soily	Aromatic compound
spatula end	flame	
(b) Add sodium hydroxide	Solid T dissolved to form a	T is a phenol or a carboxylic
solution to a little of T in	Colourless solution	acid
attest tube and shake well.		
(c) To a little of T in a test	 T is sparingly soluble 	Polar organic
tube add about 5cm ³ of	in solid water	compound of high
water and heat. Test the	 It dissolves on heating 	molecular mass
mixture with litmus paper;	 Solution turns blue 	- T is a phenol or
divide the mixture into five	litmus paper red	carboxylic acid
parts.	1 1	-
(i)To the first part, add	Effervescence occurs	T is a carboxylic acid
sodium carbonate solution		
(ii)To the second part, add	Purple/ violet solution was	T is a phenol
neutral iron(III) chloride	formed	
solutions		
(iii)To the third part add	No observable change	Carbonyl compound absent
bradys reagent		
(iv)To the fourth part add	Sweet fruity smell was	Ester formed so T is phenol
sodium hydroxide solution	produced	
then three drops of		
concentrated sulphuric acid		
followed by ethanoic acid		
and warm. Pour the mixture		
in cold water.		
(V)To the fifth part add an	Sweet fruity smell was	Ester formed so T is
equal volume of ethanol and	produced	carboxylic acid
then three drops of		
concentrated sulphuric acid		
and warm		

Comment on the nature of T

T is an aromatic carboxylic acid with a hydroxyl group attached to the benzene ring

END