Informatique pour tous

En général, il y a plusieurs algorithmes différents pour résoudre le même problème.

```
def sommel(n):
    res = 0
    for i in range(n+1):
        res += i*i
    return res
```

En général, il y a plusieurs algorithmes différents pour résoudre le même problème.

```
def somme1(n):
    res = 0
    for i in range(n+1):
        res += i*i
    return res
```

```
def somme2(n):
    return n*(n+1)*(2*n+1)/6
```

Certains sont plus rapides que d'autres...

Définition

La **complexité** d'un algorithme est le nombre d'opérations élémentaires qu'il réalise, exprimé en fonction de la taille de l'entrée.

Définition

La **complexité** d'un algorithme est le nombre d'opérations élémentaires qu'il réalise, exprimé en fonction de la taille de l'entrée.

Exemples d'opérations élémentaires :

- opérations sur les nombres : +, −, *, \
- comparaisons de nombres : ==, <=, <, !=
- sur les listes : L.append(e), L[i]...

```
def sommel(n):
    res = 0
    for i in range(n+1):
        res += i*i
    return res
```

Complexité:

```
def sommel(n):
    res = 0
    for i in range(n+1):
        res += i*i
    return res
```

Complexité : 2n + 3 (n + 2 additions et n + 1 multiplications).

```
def somme2(n):
    return n*(n+1)*(2*n+1)/6
```

Complexité:

```
def sommel(n):
    res = 0
    for i in range(n+1):
        res += i*i
    return res
```

Complexité : 2n + 3 (n + 2 additions et n + 1 multiplications).

```
def somme2(n):
    return n*(n+1)*(2*n+1)/6
```

Complexité : 6 (2 additions, 3 multiplications et une division).

On s'intéresse souvent à l'**ordre de grandeur** de la complexité quand la taille de l'entrée est grande, en négligeant les constantes (souvent trop difficiles à calculer exactement).

La notation suivante (« grand O ») permet d'estimer l'ordre de grandeur d'une complexité :

La notation suivante (« grand O ») permet d'estimer l'ordre de grandeur d'une complexité :

Définition

$$f(n) = O(g(n)) \iff \exists A, f(n) \leq Ag(n), \text{ pour } n \text{ assez grand}$$

La notation suivante (« grand O ») permet d'estimer l'ordre de grandeur d'une complexité :

Définition

$$f(n) = O(g(n)) \iff \exists A, \ f(n) \leq Ag(n), \ \text{pour } n \text{ assez grand}$$

« O(f(n)) » signifie donc : « au plus une constante fois f(n) ».

La notation suivante (« grand O ») permet d'estimer l'ordre de grandeur d'une complexité :

Définition

$$f(n) = O(g(n)) \iff \exists A, f(n) \leq Ag(n), \text{ pour } n \text{ assez grand}$$

« O(f(n)) » signifie donc : « au plus une constante fois f(n) ».

Exemple : on dira qu'un algorithme de complexité 5 + 2n est en complexité O(n).

En pratique : pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

En pratique : pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

•
$$18n^3 - n + 20 =$$

<u>En pratique</u>: pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

•
$$18n^3 - n + 20 = O(n^3)$$

En pratique : pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

- $18n^3 n + 20 = O(n^3)$
- $n \ln(n) + 3n^2 =$

<u>En pratique</u>: pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

- $18n^3 n + 20 = O(n^3)$
- $n \ln(n) + 3n^2 = O(n^2)$

<u>En pratique</u>: pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

•
$$18n^3 - n + 20 = O(n^3)$$

•
$$n \ln(n) + 3n^2 = O(n^2)$$

•
$$2^n + 25n^3 =$$

<u>En pratique</u>: pour mettre une complexité sous la forme O(...), on conserve seulement le terme dominant (le plus grand), sans la constante.

•
$$18n^3 - n + 20 = O(n^3)$$

•
$$n \ln(n) + 3n^2 = O(n^2)$$

•
$$2^n + 25n^3 = O(2^n)$$

On considère que print est une opération élémentaire.

```
for i in range(n):
    print(i)
```

Complexité:

On considère que print est une opération élémentaire.

```
for i in range(n):
    print(i)
```

Complexité : *n*.

```
for i in range(n):
    for j in range(p):
        print(i, j)
```

Complexité:

On considère que print est une opération élémentaire.

```
for i in range(n):
    print(i)
```

Complexité : n.

```
for i in range(n):
    for j in range(p):
        print(i, j)
```

Complexité : np.

```
for i in range(n):
    for j in range(i):
        print(i, j)
```

Complexité:

```
for i in range(n):
    for j in range(i):
        print(i, j)
```

Complexité :
$$0 + 1 + 2 + 3 + ... + n - 1 = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} = O(n^2)$$
.

```
for i in range(n):
    print(i)
for j in range(n):
    print(j)
```

Complexité:

```
for i in range(n):
    for j in range(i):
        print(i, j)
```

Complexité :
$$0 + 1 + 2 + 3 + ... + n - 1 = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} = O(n^2)$$
.

```
for i in range(n):
    print(i)
for j in range(n):
    print(j)
```

Complexité : 2n = O(n).

Question

Écrire un algorithme pour calculer le nombre de diviseurs d'un entier n. Quelle est sa complexité ?

```
nb_div = 0
for d in range(1, n+1):
    if n % d == 0:
        nb_div = nb_div + 1
```

```
nb_div = 0
for d in range(1, n+1):
    if n % d == 0:
        nb_div = nb_div + 1
```

On effectue n fois les opérations n % d == 0 et nb_div = nb_div + 1.

```
nb_div = 0
for d in range(1, n+1):
    if n % d == 0:
        nb_div = nb_div + 1
```

- On effectue n fois les opérations n % d == 0 et nb_div = nb_div + 1.
- ② On effectue une fois les opérations nb_div = 0 et n+1.

```
nb_div = 0
for d in range(1, n+1):
    if n % d == 0:
        nb_div = nb_div + 1
```

- On effectue n fois les opérations n % d == 0 et nb_div = nb_div + 1.
- ② On effectue une fois les opérations nb_div = 0 et n+1.
- **3** Au total, il y a 2 + 2n opérations, c'est à dire O(n).

Si d divise n alors $\frac{n}{d}$ divise aussi n. On peut donc compter deux fois les diviseurs jusqu'à \sqrt{n} .

Si d divise n alors $\frac{n}{d}$ divise aussi n. On peut donc compter deux fois les diviseurs jusqu'à \sqrt{n} .

```
nb_div = 0
for d in range(1, int(n**0.5)):
    if n % d == 0:
        nb_div = nb_div + 2
if d * d == n:
    nb_div = nb_div + 1
```

Complexité:

Si d divise n alors $\frac{n}{d}$ divise aussi n. On peut donc compter deux fois les diviseurs jusqu'à \sqrt{n} .

```
nb_div = 0
for d in range(1, int(n**0.5)):
    if n % d == 0:
        nb_div = nb_div + 2
if d * d == n:
    nb_div = nb_div + 1
```

Complexité : $O(\sqrt{n})$.

Cet algorithme est donc meilleur que le précédent.

Question

Écrire une fonction premier déterminant si un entier est premier.

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité?

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité? ça dépend... si n est pair, même grand, premier(n) s'arrête pour d=2.

Différentes notions de complexité

On distingue :

- Complexité dans le pire des cas : le plus grand nombre possible d'opérations réalisées.
- Complexité dans le meilleur des cas : le plus petit nombre possible d'opérations réalisées.
- Complexité en moyenne : le nombre moyen d'opérations réalisées.

Si on ne précise pas de quelle complexité on parle, il s'agit de la complexité dans le pire des cas.

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité dans le pire des cas :

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité dans le pire des cas : $O(\sqrt{n})$, si n est premier.

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité dans le meilleur des cas :

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité dans le meilleur des cas : O(1), si n est pair.

Question

Écrire une fonction premier déterminant si un entier est premier.

```
def premier(n):
    for d in range(2, int(n**0.5) + 1):
        if n % d == 0:
            return False
    return True
```

Complexité en moyenne : ?? (difficile à calculer).

Question

Écrire une fonction tous_premiers telle que tous_premiers(n) renvoie la liste des nombres premiers entre 1 et n.

Question

Écrire une fonction tous_premiers telle que tous_premiers(n) renvoie la liste des nombres premiers entre 1 et n.

```
def tous_premiers(n):
    res = []
    for i in range(2, n+1):
        if premier(i):
            res.append(i)
    return res
```

Complexité dans le pire des cas?

Question

Écrire une fonction appartient déterminant si un élément appartient à une liste.

Complexité dans le pire cas?

Question

Écrire une fonction appartient déterminant si un élément appartient à une liste.

Complexité dans le meilleur cas?

Question

Écrire une fonction maximum renvoyant le maximum d'une liste.

Complexité dans le pire cas?

Question

Écrire une fonction maximum renvoyant le maximum d'une liste.

Complexité dans le meilleur cas?

Ordres de grandeur

Complexités typiques :

- O(1) (constante) : instantané.
- $O(\ln(n))$ (logarithmique) : très rapide.
- O(n) (linéaire) : rapide.
- $O(n^a)$, a > 1 (polynomiale): assez lent.
- $O(a^n)$, a > 1 (exponentielle) : très lent.

Ordres de grandeur

Temps d'exécutions pour un processeur à 1 Ghz (10^9 opérations élémentaires par seconde), en fonction du nombre n d'opérations élémentaires et de la complexité :

Complexité	$n = 10^2$	$n = 10^4$	$n = 10^6$
In(<i>n</i>)	7 ns	13 ns	20 ns
n	100 ns	$10^{-5}~{ m s}$	1 ms
n ²	$10~\mu s$	100 ms	17 min
n ³	1 ms	17 s	32 ans
2 ⁿ	10 ¹³ ans	•••	

Algorithme d'Euclide

```
def pgcd(a, b):
    while b != 0:
        a, b = b, a % b
    return a
```

Algorithme d'Euclide

Soient a_k et b_k , $k \ge 0$, la suite des valeurs prises par a et b.

On peut montrer (et on admet) que $b_k \leq \frac{b_{k-2}}{2}$, $\forall k \geq 2$. Alors :

$$b_{2k} \le \frac{b_{2k-2}}{2} \le \dots \le \frac{b_0}{2^k}$$

Donc quand $\frac{b_0}{2^k} < 1$, $b_{2k} = 0$ et la boucle s'arrête. Or :

$$\frac{b_0}{2^k} < 1 \Longleftrightarrow k > \log_2(b_0)$$

Donc il y a au plus $2\log_2(b)$ itérations du while : pgcd est $O(\log(b))$.