Teoría de Juegos

José Angel, Nuria, Heriberto

The strategy profile $s^D \in S$ is a strict dominant strategy equilibrium if $s^D_i \in S_i$ is a strict dominant strategy for all $i \in N$.

Prueba por contradicción.

Queremos demostrar que si existe un equilibrio en estrategias estrictamente dominantes s^D , entonces es único. Para ello, supongamos que hay dos perfiles distintos de equilibrio en estrategias estrictamente dominantes, $s^D \neq t^D$. Elige un jugador j tal que $s_j^D \neq t_j^D$.

Como s_j^D es estrictamente dominante para j, para todo s_{-j} y toda $a \neq s_j^D,$

$$v_{j}(s_{j}^{D},s_{-j})>v_{j}(a,s_{-j}).$$

Tomando $s_{-j}=t_{-j}^D$ y $a=t_{j}^D$, se obtiene

$$v_{j}(s_{j}^{D},t_{-j}^{D})>v_{j}(t_{j}^{D},t_{-j}^{D}). \quad (1)$$

Como t_{j}^{D} también sería estrictamente dominante para j, para todo s_{-j} y toda $a \neq t_{j}^{D}$,

$$v_{j}(t_{j}^{D},s_{-j})>v_{j}(a,s_{-j}).$$

Tomando $s_{-j} = s_{-j}^D$ y $a = s_j^D$, se obtiene

$$v_j(t^D_j, s^D_{-j}) > v_j(s^D_j, s^D_{-j}). \quad (2)$$

Pero (2) contradice la dominancia estricta de s_j^D evaluada en s_{-j}^D , que exige

$$v_j(s_j^D, s_{-j}^D) > v_j(t_j^D, s_{-j}^D).$$

La contradicción muestra que no pueden existir dos perfiles distintos. Por tanto, el equilibrio en estrategias estrictamente dominantes es único.