

开机画面使用指南

文档版本 07

发布日期 2019-09-12

版权所有 © 上海海思技术有限公司2019。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HISILIA

HISILICON、海思和其他海思商标均为海思技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文为实现开机画面提供了基本的功能函数和boot命令行,用户可以根据具体应用进行配置。

∭说明

- 未有特殊说明, Hi3559CV100与Hi3559AV100内容一致。
- 未有特殊说明, Hi3559V200、Hi3516AV300与Hi3516DV300内容一致。
- 未有特殊说明, Hi3516EV300、Hi3518EV300、Hi3516DV200与Hi3516EV200内容一致。
- 未有特殊说明, Hi3556V200与Hi3559V200内容一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3559A	V100ES
Hi3559A	V100
Hi3559C	V100
Hi3519A	V100
Hi3516D	V300
Hi3516A	V300
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516E	V300
Hi3518E	V300
Hi3516D	V200

开机画面使用指南 前言

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲危险	用于警示紧急的危险情形,若不避免,将会导致人员死亡或严重 的人身伤害。
▲警告	用于警示潜在的危险情形,若不避免,可能会导致人员死亡或严 重的人身伤害。
▲注意	用于警示潜在的危险情形,若不避免,可能会导致中度或轻微的 人身伤害。
注意	用于传递设备或环境安全警示信息,若不避免,可能会导致设备损坏、数据丢失、设备性能降低或其它不可预知的结果。 "注意"不涉及人身伤害。
□ 说明	用于突出重要/关键信息、最佳实践和小窍门等。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害。

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 07 (2019-09-12)

1.2小节,新增表1-1和表1-2

1.3小节涉及修改

文档版本 06 (2019-07-25)

1.3、1.5和1.7小节涉及修改

文档版本 05 (2019-06-20)

第5次正式版本发布

1.3小节,增加mipi tx驱动接口相关内容。

开机画面使用指南前言

文档版本 04 (2019-05-15)

第4次正式版本发布 1.2小节涉及修改

文档版本 03 (2019-03-30)

第3次正式版本发布

添加Hi3516DV200相关内容

1.1、1.2、1.3、1.5、1.7小节, Hi3516EV200相关内容涉及更新。

1.8小节,涉及更新。

文档版本 02 (2019-03-15)

第2次正式版本发布

添加Hi3516EV300、Hi3518EV300与Hi3516EV200相关内容

1.1小节,涉及更新。

1.2小节, Hi3516EV200典型值更新。

文档版本 01 (2018-12-10)

第1次正式版本发布

添加Hi3559V200相关内容

1.2, 1.4和1.8小节涉及修改

新增1.7小节

文档版本 00B06 (2018-11-20)

第6次临时版本发布

添加Hi3516DV300的相关内容

文档版本 00B05 (2018-10-30)

第5次临时版本发布

1.1、1.2、1.3小节涉及修改

文档版本 00B04 (2018-08-06)

第4次临时版本发布

添加Hi3519AV100的相关内容

文档版本 00B03 (2018-03-15)

第3次临时版本发布

开机画面插用坞齿

添加Hi3559A/C V100的相关内容

文档版本 00B02 (2017-06-30)

第2次临时版本发布 1.2小节,启动图形层涉及修改

文档版本 00B01 (2017-05-25)

第1次临时版本发布

前言

目录

前言	i
***** 1 开机画面使用指南	
1.1 功能简介	
1.2 boot 命令行	1
1.3 boot 函数	
1.4 涉及代码	
1.5 命令行示例	
1.6 支持硬件解码	
1.7 平滑过渡	
1.0	

表格目录

表 1-3	1 视频层所支持的最大分辨	. 3
表 1-2	2 图形层所支持的最大分辨	. 3
	3 芯片差异	5

【 开机画面使用指南

1.1 功能简介

Uboot代码提供功能如下:

- 提供boot环境下VO设备的开启和关闭,涵盖VO典型接口和时序。
- 提供boot环境下VO图形层的开启和关闭。
- 提供boot环境下VO视频层的开启和关闭。
- 提供boot环境下JPEG硬件解码输出RGB格式图像(仅Hi3559AV100支持),配合 VO图形层显示。
- 提供boot环境下JPEG硬件解码输出YVU SEMI-PLANAR420格式图像,配合VO视频层显示。
- VO图形层默认显示格式为ARGB1555,视频层默认显示格式为YVU SEMI-PLANAR420。

□ 说明

Hi3516EV200不支持硬件解码,视频层输入为YVU SEMI-PLANAR420格式图像,图形层输入为ARGB1555格式。

1.2 boot 命令行

● startvo: 启动VO设备

参数:设备号,接口类型,时序

```
hisilicon # help startvo
startvo - open vo device with a certain output interface.
- startvo [dev intftype sync]
```

- <dev>: 设备号,请参见表1-3
- < intftype >: 接口类型,请参见表1-3
- <sync>: 时序类型

Hi3559AV100:

0 (PAL),	1(NTSC),	2(1080P24),	3(1080P25)
4(1080P30),	5(720P50),	6(720P60),	7(1080I50)
8(1080160),	9(1080P50),	10(1080P60),	11(576P50)
12(480P60),	13(800x600),	14(1024x768),	15(1280x1024)

```
16(1366x768), 17(1440x900), 18(1280x800), 19(1600x1200)
20(1680x1050), 21(1920x1200), 22(640x480), 23(960H_PAL)
24(960H_NTSC), 25(1920x2160), 26(2560x1440_30),
27(2560x1440_60)
28(2560x1600_60), 29(3840x2160_24), 30(3840x2160_25),
31(3840x2160_30)
32(3840x2160_50), 33(3840x2160_60), 34(4096x2160_24),
35(4096x2160_25)
36(4096x2160_30), 37(4096x2160_50), 38(4096x2160_60), 39(320x240_60),
40(320x240_50), 41(240x320_50), 42(240x320_60), 43(800x600_50),
44(720x1280_60), 45(1080x1920_60), 46(7680x4320_30)
```

Hi3519AV100上典型值如下:

```
0(PAL), 1(NTSC), 4(1080P30), 6(720P60)
10(1080P60), 21(1920x1200), 26(2560x1440_30),
31(3840x2160_30)
33(3840x2160_60),45(1080x1920_60)
```

Hi3516DV300上典型值如下:

```
2(1080P24),
                   3(1080P25),
                                        4(1080P30),
5(720P50),
6(720P60),
                   7(1080I50),
                                        8(1080160),
9(1080P50),
10(1080P60),
                   11(576P50),
                                       12(480P60),
13(800x600),
14(1024x768),
                   15(1280x1024),
                                      16(1366x768),
17(1440x900),
18(1280x800),
                   19(1600x1200),
                                      20 (1680x1050),
21(1920x1200),
22(640x480),
                   45 (1080x1920)
```

Hi3516EV200上典型值如下:

```
For BT656: 0 (PAL), 1 (NTSC)

For BT1120: 2(1080P24), 3(1080P25), 4(1080P30), 5(720P50)
6(720P60), 7(1080I50), 8(1080I60), 11(576P50)
12(480P60), 13(800x600), 14(1024x768),

22(640x480)

For LCD: 39(320x240P60), 40(320x240P50), 41(240x320P50),
42(240x320P60)
```

说明:上面列举的时序要根据具体的设备和接口类型配合起来使用,具体接口支持的时序类型参考文档《HiMPP V4.0 媒体处理软件开发参考》的"视频输出"章节。

● stopvo: 关闭VO设备

参数:设备号

```
hisilicon # help stopvo
stopvo - stopvo - close interface of vo device.
- stopvo [dev]
```

- <dev>: 设备号,见表1-3
- startvl: 启动视频层

参数: 视频层号, 图像地址 (解码后), 行宽, 显示位置和大小 (x,y,w,h)

```
hisilicon # help startvl
startvl - startvl - open video layer.
- startvl [layer addr stride x y w h]
```

- <layer>: 视频层号,请参见表1-3
- <addr>: 图像地址
- <stride>: 图像存储行宽(stride)

- <x,y,w,h>: 显示位置和大小

表 1-1 视频层所支持的最大分辨

芯片	最大分辨率		
Hi3559AV100	VHD0: 4096x4096 VHD1: 1920x1920		
Hi3519AV100	VHD0: 4096x4096 VHD1: 1920x1920		
Hi3516DV300/ Hi3516AV300	VHD1: 1920x1920 VHD0: 1920x1080		
Hi3559V200	VHD0: 3840x2160		
Hi3556V200	VHD0: 1920x1080		
Hi3516EV200	VHD0: 1920x1080		

● stopvl: 关闭视频层

参数:视频层号

hisilicon # help stopvl stopvl - stopvl - close video layer. - stopvl [layer]

- <layer>: 视频层号,请参见表1-3

● startgx: 启动图形层

参数:图形层号,图像地址(解码后),行宽,显示位置和大小(x,y,w,h)

hisilicon # help startgx startgx - open graphics layer. - startgx [layer addr stride x y w h]

- <layer>: 图形层号,请参见**表1-3**

- <addr>: 图像地址

- <stride>: 图像存储行宽(stride)

- <x,y,w,h>: 显示位置和宽高

表 1-2 图形层所支持的最大分辨

芯片	最大分辨率		
Hi3559AV100	VHD0: 3840x2160 VHD1: 1920x1920		
Hi3519AV100	VHD0: 4096x4096 VHD1: 1920x1920		
Hi3516DV300/ Hi3516AV300	VHD0: 1920x1080		
Hi3559V200	VHD0: 3840x2160		

芯片	最大分辨率		
Hi3556V200	VHD0: 1920x1080		
Hi3516EV200	VHD0: 1920x1080		

● stopgx: 关闭图形层

参数:图形层号

```
hisilicon # help stopgx
stopgx - close graphics layer.
- stopgx [layer]
```

- <layer>: 图形层号,请参见表1-3
- setvobg: 设置设备背景色

参数:图形层号

```
hisilicon # help setvobg
setvobg - setvobg - set vo backgroud color.
- setvobg [dev color]
```

- <dev>: 设备号,请参见表1-3
- <color>: rgb color space
- decjpg: 启动JPEG解码

参数:解码输出格式

```
hisilicon # help decjpg
decjpg - jpgd - decode jpeg picture.
- decjpg [format]
```

- <format>: 0: YVU SEMI-PLANAR 420, 1: ARGB1555, 2:ARGB8888.

使用decjpg需要设置环境变量jpeg_addr、jpeg_size、jpeg_emar_buf、vobuf。jpeg_addr是用于存放JPEG图片原始码流的地址;

ipeg size是JPEG图片原始码流大小;

jpeg_emar_buf是解码JPEG图片过程中使用到的buffer地址,大小为256KB。vobuf是解码JPEG图片后输出RGB图像的存放地址。

如:

```
hisilicon #setenv jpeg_addr 0x90000000
hisilicon #setenv jpeg_size 0xb85f9
hisilicon #setenv jpeg_emar_buf 0x96000000
hisilicon #setenv vobuf 0xa0000000
```

注意

Hi3519AV100/Hi3516DV300/Hi3516AV300/Hi3559V200仅支持YVU SEMI-PLANAR 420输出格式。Hi3516EV200不支持该命令。

表 1-3 芯片差异

芯片	Device	Graphi c layer	Video layer	Interface type
Hi3559AV100ES	[0,1]	{0,1}	{0,1} 不支持PIP 层显示	16(BT.1120), 32(HDMI), 1024(LCD_8BIT), 16384(MIPI_Tx)
Hi3559AV100/ Hi3519AV100	[0,1]	{0,1}	{0,1} 不支持PIP 层显示	16(BT.1120), 32(HDMI), 16384(MIPI_Tx)
Hi3516DV300/ Hi3516AV300/ Hi3559V200	[0]	{0}	{0} 不支持PIP 层显示	32(HDMI), 16384(MIPI_Tx), 512(LCD_6BIT), 1024(LCD_8BIT), 2048(LCD_16BIT), 4096(LCD_18BIT), 8192(LCD_24BIT)
Hi3516EV200	[0]	{0}	{0} 不支持PIP 层显示	16(BT.1120), 512(LCD_6BIT), 1024(LCD_8BIT), 2048(LCD_16BIT)

□说明

- Hi3559AV100ES/Hi3559AV100/Hi3519AV100/Hi3516DV300/Hi3516AV300/Hi3559V200支持内置的HDMI和MIPI_TX接口输出开机画面。当使用MIPI_TX作为接口输出时,需自行修改MIPI_TX中的驱动代码,以适应所接的MIPI屏。BT.1120接口输出功能需要用户自行编写驱动。
- 如果客户使用用户时序,则需要自行修改uboot下面vou_drv.c代码,修改g_stSyncTiming中某一个在支持范围内的时序成自己所接屏幕的时序。对于Hi3516EV200,用户需修改g_stUSER_INTFSYNC_INFO和g_stUSER_SYNC_TIMING中的用户时序参数。
- 对于Hi3516DV300/Hi3516AV300/Hi3559V200的LCD时序,用户需要自行开发lcd驱动,另外vo的时钟配置也需要在vo_drv.c文件中修改VOU_DRV_SetDevClk函数的VO_OUTPUT_USER部分来实现。
- 对于Hi3516EV200的BT1120和LCD时序,用户需要自行开发BT1120和LCD驱动。
- Hi3559V200/Hi3516EV200的开机画面功能默认关闭,需要客户手动打开,打开方法是修改uboot中include\configs\hi35xx.h文件(hi35xx替换为相应芯片),定义CONFIG_OSD_ENABLE宏,如需使用hdmi则需要取消CONFIG_OSD_HDMI_DISABLE的宏定义。
- Hi3516EV200不支持jpeg解码。视频层仅支持YVU SEMI-PLANAR420格式图像。图形层仅支持BMP图像,BMP图像数据的格式仅支持ARGB1555格式。而且为了正常显示图像,该图像宽度要求8对齐并且需要事先垂直翻转。

1.3 boot 函数

以下函数可供用户在boot下编码调用:

startvo

int start_vo(unsigned int dev, unsigned int type, unsigned int
sync);

注意: 不是所有的vo设备都可用,只有表1-3上列出的设备号支持。

stopvo

int stop vo(unsigned int dev);

strarty

int start_videolayer(unsigned int layer, unsigned addr, unsigned int
strd, unsigned int x, unsigned int y, unsigned int w, unsigned int
h);

注意:

- jpeg解码采用硬件解码,输出格式Hi3559AV100上可以选择semi-planar yvu 420,ARGB1555,ARGB8888,Hi3519AV100/Hi3516DV300上可以选择semi-planar yvu 420。
- strd可以从解码JPEG中获取,执行decjpg(命令)后有打印,即stride。
- Hi3516EV200上strd为图像宽度。
- stride需要16bytes对齐,否则图像将显示错误。
- addr即解码后图像的地址,可以从参数vobuf中获取。视频层显示时, y分量地址默认使用addr, c分量地址默认按照如下公式计算:c_addr=addr+stride*h。Hi3516EV200上addr地址为图像所在的内存地址。addr需要满足16bytes对齐。
- 仅支持Baseline码流解码。
- 视频层显示区域不允许超过设备显示区域,否则图像将显示错误。

stopvl

int stop videolayer(unsigned int layer);

strartgx

int start_gx(unsigned int layer, unsigned long addr, unsigned int strd, unsigned int x, unsigned int y, unsigned int w, unsigned int h);

注意:

- 图形层固定显示ARGB1555格式数据,需要显示ARGB8888格式时用户可以自行修改。
- strd可以从解码JPEG中获取,执行decjpg(命令)后有打印,即stride。
- Hi3516EV200上strd为图像宽度。
- stride需要16bytes对齐,否则图像将显示错误。
- addr即解码后图像的地址,可以从参数vobuf中获取。Hi3516EV200上addr地址为图像所在的内存地址,需要满足16bytes对齐,否则图像将显示错误。
- 仅支持Baseline码流解码。
- 图形层显示区域不允许超过设备显示区域,否则图像将显示错误。

stopgx

int stop_gx(unsigned int layer);

setvobg

int set vobg(unsigned int dev, unsigned int rgb);

注意:

- 该接口需要在startvo前设置方可生效;如果startvo后设置,则在下一次 startvo时生效。
- 建议RGB的表现形式使用0xRRGGBB格式,这样会更清晰。

开机画面使用指南

decipg

int jpeg decode (unsigned int format);

注意:

- jpeg decode用于图像解码到内存中。
- 这个调用需要用到四个参数,jpeg_addr是用于存放源图像的内存地址; jpeg_size是图像的大小,以字节为单位;jpeg_emar_buf是解码过程中使用到 的buf地址;vobuf用于存放解码后的图像地址,也就是图形层用于显示的起始位置。
- Hi3516EV200不支持该函数。
- mipi tx驱动接口

mipi tx驱动接口主要包含mipi_tx_module_init、mipi_tx_module_exit、mipi_tx_ioctl、用于对接mipi接口的显示设备。其中mipi_tx_ioctl接口有下列几种功能,HI_MIPI_TX_SET_DEV_CFG、HI_MIPI_TX_SET_CMD、HI_MIPI_TX_DISABLE。详细的使用方法请参阅《MIPI使用指南》,boot中的接口与文档中描述的驱动接口功能无差异,调用形式有差别,boot中的接口不用打开mipi tx设备节点、也不用在调用时传入文件描述符。

注意:

- mipi tx ioctl接口应在mipi tx module init接口调用之后调用。
- Hi3516EV200不支持mipi tx驱动接口

1.4 涉及代码

该开机画面只提供了基本的功能函数,用户可以根据具体应用进行配置,尤其是解码部分可以做得更加灵活。

```
Makefile
include/hi35xx vo.h
include/configs/hi35xx.h
cmd/cmd vo hi35xx.c
cmd/cmd dec.c
cmd/Makefile
product/hiosd/vo/hi35xx(仅列举一层目录内容)
Makfile vou.c vou_coef.h vou_coef_org.c vou_coef_org.h vou_def.h
vou drv.c vou drv.h
                      vou hal.c vou hal.h vou reg.h hi type.h
product/hiosd/hdmi/hdmi_2_0 (仅列举一层目录内容)
boot hdmi intf.c boot hdmi intf.h drv hi hdmi.h hi type.h
product/hiosd/mipi tx/hi35xx(仅列举一层目录内容)
type.h Makefile mipi_tx.c mipi_tx_hal.c hi_mipi_tx.h mipi_tx_hal.h
mipi tx reg.h product/hiosd/dec (仅列举一层目录内容)
jpegd.c jpegd drv.h jpegd error.h jpegd image.c mjpeg func.h
mjpeg image.c hi type.h jpegd drv.c jpegd entry.c jpegd.h
jpegd image.h jpegd reg.h Makefile mjpeg idct.c mjpeg mcu.c
```

□ 说明

- 对于芯片Hi3559AV100ES,上述"hi35xx"使用"hi3559av100es"代替。
- 对于芯片Hi3559AV100, 上述 "hi35xx" 使用 "hi3559av100" 代替。
- 对于芯片Hi3519AV100,上述"hi35xx"使用"hi3519av100"代替。
- 对于芯片Hi3516DV300, 上述 "hi35xx" 使用 "hi3516dv300" 代替。
- 对于芯片Hi3516EV200, 上述 "hi35xx" 使用 "hi3516ev200" 代替, 且不支持product/hiosd目录下hdmi、mipi tx和dec配置。

1.5 命令行示例

下面以Hi3559AV100芯片配置设备DHD0的时序HDMI 1080p@60输出为例。

特别说明: 各芯片DDR下载地址有所不同, 根据芯片来使用DDR地址。

● 设置环境变量,配置ipeg解码参数

setenv jpeg_addr 0x92000000;
setenv jpeg_size 0x8f0b8;
setenv jpeg_emar_buf 0x96000000;
setenv vobuf 0xa0000000;
saveenv

● 解码JPEG到内存

decjpg 0

● 配置DHD0设备启动

startvo 0 32 10

● 配置V0启动

startvl 0 0xa0000000 1920 0 0 1920 1080

● 美闭V0 stopvl 0

● 关闭DHD0设备 stopvo 0

□ 说明

Hi3516EV200芯片不支持前两个步骤,请从设备启动开始配置。

1.6 支持硬件解码

uboot下开机画面支持硬件解码,硬解解码输出RGB格式后可配置图形层显示,硬件解码输出YUV格式后可配置视频层显示。Hi3519AV100/Hi3516DV300仅支持硬件解码输出YUV格式。Hi3516EV200不支持硬件解码。

1.7 平滑过渡

平滑过渡是指开机画面平滑切换至业务画面,期间不关闭显示输出。平滑过渡要求开机画面和业务画面使用相同的接口和时序。

注意

- HDMI平滑过渡要求进入系统后, HDMI相关属性配置和uboot中开机画面配置一致。
- HDMI只支持CEA(Consumer Electronics Association, 消费电子协会)时序的平滑过渡。

1.8 注意事项

- 开机画面启动之后,在系统运行后加载ko,可能会受到配置crg的脚本 crgctrl_hi35xx.sh的影响。如果加载ko有影响,只需要把脚本中对VO和HDMI的配置注释掉即可。
- 配置开机画面通过BT.1120接口显示时,需要自行移植实现BT.1120转HDMI的外设芯片驱动。
- 配置开机画面通过BT.656接口显示时,需要自行移植实现BT.656的外设芯片驱动。
- 配置开机画面通过LCD接口显示时,需要自行移植实现LCD的外设芯片驱动。
- 开机画面如果通过HDMI接口显示时,在进入系统后,如果需要保持开机画面的制式继续显示视频内容,需要在正常开启HDMI的流程中去掉设置hdmi属性的部分。 具体可参考对应芯片SDK包中VO的Sample程序。
- 开机画面如果通过MIPI_TX接口显示时,需要客户根据自己所对接的MIPI_TX自行修改UBOOT中的MIPI_TX驱动代码。代码文件路径: product/hiosd/mipi_tx/hi35xx/。在该路径下的文件mipi_tx.c中的函数mipi_tx_display内,在step 1需根据自身屏幕特性设置MipiTxConfig,在step 2需要根据自身对接的屏设置屏幕初始化序列命令。