Deep Learning Assignment 2: Automatic Image Captioning

Team ID: 13 (Backpropagators)

Methodology

Part A: Implementing a Custom Encoder-Decoder Model

1. Custom Encoder-Decoder Model:

• Architecture:

A custom image captioning model was built using the VisionEncoderDecoderModel class from transformers.

Encoder:

A pre-trained Vision Transformer (ViT-Small-Patch16-224, WinKawaks/vit-small-patch16-224) was used as the image encoder.

Decoder:

A pre-trained GPT-2 model (gpt2) was used as the text decoder.

Initialization:

The decoder's tokenizer (*AutoTokenizer for gpt2*) was used to set the model's configuration for padding and BOS tokens.

• Training:

The model was trained on the provided dataset using the AdamW optimizer (learning rate = **5e-5**). Custom early stopping was implemented (patience=3 epochs based on validation loss), saving the best model state.

Also benchmarked it with smolVLM on our dataset.

Part B: Studying Performance Change Under Image Occlusion

• Occlusion & Evaluation:

An occlusion function masked image patches (10%, 50%, 80%). Both SmolVLM and the custom model were evaluated and the generated captions, original captions, image IDs, and occlusion percentages were saved into final raw results.csv for use in Part C.

Part C: Building a BERT-based Classifier

1. Classifier Model and Training:

Architecture:

A classifier was built on top of a pre-trained BERT-base-uncased model (google-bert/bert-base-uncased).

- The formatted input text is tokenized using the BERT tokenizer and sent to the BERT model.
- The pooler output (representation of the [CLS] token) is obtained.
- Dropout is applied to the pooled output.
- The result is passed through a final linear layer to output logits for the 2 classes (SmolVLM vs. Custom).

• <u>Training:</u>

The training was conducted over **5** epochs using a batch size of **16**, a learning rate of **2e-5**, and an AdamW optimizer configured with an epsilon value of **1e-8**. The loss function used is **cross-entropy loss**.

Evaluation Results Summary

Part A: Zero-Shot Evaluation Metrics

Model	BLEU	ROUGE-L	METEOR
SmolVLM	0.0575	0.2319	0.2687
Custom	0.0697	0.2915	0.2392

The **Custom model** consistently outperformed **SmolVLM** in BLEU and ROUGE-L during zero-shot evaluation, indicating better alignment with reference captions.

Part B: Performance on Occluded Images

Occlusion Level: 10%

Model	BLEU	ROUGE-L	METEOR
SmolVLM	0.0525	0.2253	0.2601
Custom	0.0631	0.2837	0.2333

Occlusion Level: 50%

Model	BLEU	ROUGE-L	METEOR
SmolVLM	0.0395	0.1763	0.1932
Custom	0.0435	0.2525	0.2075

Occlusion Level: 80%

Model	BLEU	ROUGE-L	METEOR
SmolVLM	0.0142	0.1045	0.1068
Custom	0.0339	0.2408	0.1980

Both models degraded in performance under image occlusion. However, the **Custom model** showed greater **resilience**, especially at 50% and 80% occlusion.

Performance Change (Occluded - Baseline)

Occlusion	Model	ΔBLEU	ΔROUGE-L	ΔMETEOR
10%	SmolVLM	-0.0050	-0.0066	-0.0086
	Custom	-0.0066	-0.0077	-0.0059
50%	SmolVLM	-0.0180	-0.0556	-0.0755
	Custom	-0.0262	-0.0390	-0.0317
80%	SmolVLM	-0.0433	-0.1275	-0.1619
	Custom	-0.0358	-0.0506	-0.0412

 The Custom model is significantly more robust to visual occlusion than SmolVLM, especially in preserving semantic and structural quality at higher occlusion levels.

Part C: BERT-based Source Classifier

Metric	Score
Macro Precision	0.9861
Macro Recall	0.9857
Macro F1	0.9857
Accuracy	0.9857

 The BERT classifier achieved nearly perfect precision and recall, demonstrating that the captions generated by each model have distinguishable patterns that can be learned effectively.