CS217 - Algorithm Design and Analysis Homework Assignment 1

Group Name: Static

Group Members: Zhenjia Xu, JiaCheng Yang

Zhuolin Yang, Wenda Qiu

12th Oct, 2016

1 Recursion and Dynamic Programming

Exercise 1.1. The pseudocode and the python implementation are displayed below.

```
1  def C(n, k):
2    if (n == 0 and k == 0):
3      return 1;
4    if (n < k):
5      return 0;
6    if (k < 0):
7      return 0;
8    return C(n - 1, k) + C(n - 1, k - 1);</pre>
```

This complexity of the recursion process mainly depends on the additions. Let's define $F_{i,j}$ as when such recursion process start at calculating $\binom{i}{j}$, the number of additions it will do.

obviously, $F_{i,j}$ consists of three parts below:

- $F_{i-1,j-1}$: add the number of addition operations in $\binom{i-1}{j-1}$ to the current answer.
- $F_{i-1,j}$: add the $\binom{i-1}{j-1}$'s answer.
- 1: the number of additions which used to add $\binom{i-1}{i-1}$ and $\binom{i-1}{i}$ up.

Thus we have

$$F_{i,j} = F_{i-1,j-1} + F_{i-1,j} + 1 (1)$$

This is a quite strange and Pascal-like equation. Consider

$$(F_{i,j}+1) = (F_{i-1,j-1}+1) + (F_{i-1,j}+1)$$

We can easily find out that

$$F_{i,j} + 1 = \binom{i}{j} + \binom{i}{j-1} + \binom{i}{j+1}$$

Therefore

$$F_{i,j} = {i \choose j} + {i \choose j-1} + {i \choose j+1} - 1 \tag{2}$$

Hence, the total number of addition operation is

$$\binom{n}{k} + \binom{n}{k-1} + \binom{n}{k+1} - 1$$

The lower bound of the complexity of adding two numbers together being O(1) and the upper bound can be $O(\log \binom{n}{k})$, we can easily figure out that the lower bound of the complexity of this algorithm is

$$O\left(\binom{n}{k} + \binom{n}{k-1} + \binom{n}{k+1}\right) = O\left(\binom{n}{k}\right)$$

While the upper bound is

$$O\left(\binom{n}{k}\log\binom{n}{k}\right)$$

When n = 50, k = 25, this algorithm needs to do about 1.3×10^{16} additions, which is too slow. As the complexity of reading input data is only $O(\log n)$, which is much smaller than the complexity of calculating $\binom{n}{k}$, Hence this algorithm is inefficient.

Exercise 1.2. Here is the python code:

```
1  dp={}
2  def C(n, k) :
3    if (n == k or k == 0) :
4       return 1
5    if (dp.has_key((n, k))) :
6       return dp[(n, k)]
7    dp[(n, k)] = C(n - 1, k - 1) + C(n - 1, k)
8    return dp[(n, k)]
```

Since we use dynamic programing, the runing time depends on how many binomial coefficients we calculate. Consider the formula

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

It's easy to see that the area we calculate is an parallelogram in Pascal's triangle. More specificly, in order to get the answer of $\binom{n}{k}$, there are exactly n-k+1 numbers we calculate in the columns from 1 to k, so we need to do $k \cdot (n-k+1)$ additions.

The time we need for a single addition depends on the length of the result, namely $\log \binom{n}{k}$. So the upper bound of the running time is $O(\log \binom{n}{k} \cdot k \cdot (n-k+1))$. If we consider addition as O(1), we get a lower bound: $O(k \cdot (n-k+1))$. The input size is $O(\log n)$ and the output size is $O(\log \binom{n}{k})$. As you can see, it is not an efficient algorithm but much better than the one in Exercise1.

Exercise 1.3. The additions we need is the same as Exercise2, $k \cdot (n - k + 1)$. But this time the addition can be done in O(1) time because we only need to keep the result modulo 2. So the running time is $O(k \cdot (n - k + 1))$. The input size is $O(\log n)$ and the output size is O(1). It is not an efficient algorithm comparing to the input/output size.

Exercise 1.4.

1. Proof by introduction

Proof. We can easily prove the lemma using induction:

(a) Basic step When $n = 2^1$, the lemma obviously holds because

$$\binom{2}{1} = 0$$

(b) Induction step Assume that the lemma holds where n equals to 2^d , namely

$$\binom{n}{k} = 0$$

when $1 \le k \le n-1$.

Then we will show that the lemma holds when n equals to 2^{d+1} .

According to the hints, on the one hand, the number of paths to the n-th line and the k-th grid equals to

$$\binom{n}{k}$$

On the other hand, we can also calculate the number by Multiplication Principle and Addition Principle, namely

$$\binom{n}{k} = \sum_{i=0}^{n/2} \binom{n/2}{i} * \binom{n/2}{k-i}$$
 (3)

Then our proof divides into three cases:

• When $1 \le k \le n/2 - 1$, it is obviously that

$$\binom{n/2}{k} = 0$$

and

$$\binom{n/2}{0} = \binom{n/2}{n/2} = 1$$

According to the equation (3), we have

$$\binom{n}{k} = \binom{n/2}{k-0} + \binom{n/2}{k-n/2}$$

By assumption, when $1 \le k < n/2$, we have

$$\binom{n/2}{k} = 0$$

Notice that k - n/2 < n/2, so we have

$$\binom{n/2}{k-n/2} = 0$$

Therefore

$$\binom{n}{k} = 0$$

• When k = n/2, it is obviously that

$$\binom{n/2}{k} = \binom{n/2}{k - n/2} = 1$$

Therefore

$$\binom{n}{k} = (1+1) = 2 \equiv 0 \pmod{2}$$

• When $n/2 \le k < n$, it is easy to see that

$$\binom{n/2}{k} = 0$$

And by assumption

$$\binom{n/2}{k-n/2} = 0$$

So that we have

$$\binom{n}{k} = 0$$

(c) Conclusion

By induction, we have

$$\binom{n}{k} \equiv 0 \pmod{2}$$

where $1 \le k \le n-1$ and $n=2^d$ $(d \ge 1)$.

2. Direct Proof

Proof. We can denote the binomial coefficient as $2^p * q$, namely

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = 2^p * q \tag{4}$$

where $2 \nmid q$, $n = 2^d (d \ge 1)$ and $1 \le k \le (n-1)$.

We can easily calculate the exponent p with the formular below

$$p = \sum_{i=1}^d \left\lfloor \frac{n}{2^i} \right\rfloor - \sum_{i=1}^d \left\lfloor \frac{k}{2^i} \right\rfloor - \sum_{i=1}^d \left\lfloor \frac{n-k}{2^i} \right\rfloor$$

Specially when i = d, we have

$$\left\lfloor \frac{n}{2^i} \right\rfloor = 1 \text{ and } \left\lfloor \frac{k}{2^i} \right\rfloor = \left\lfloor \frac{n-k}{2^i} \right\rfloor = 0$$

According to the equation (4), we have

$$p = 1 - 0 - 0 + \sum_{i=1}^{d-1} \left\lfloor \frac{n}{2^i} \right\rfloor - \left\lfloor \frac{k}{2^i} \right\rfloor - \left\lfloor \frac{n-k}{2^i} \right\rfloor$$
$$\ge 1 + \sum_{i=1}^{d-1} \frac{n}{2^i} - \frac{k}{2^i} - \frac{n-k}{2^i} = 1$$

Hence we have

$$2 \mid \binom{n}{k}$$

That is

$$\binom{n}{k} \equiv 0 \pmod{2}$$

Exercise 1.5. We can easily come out an algorithm using the formular which is proved in Ex5. And here comes out of a theorem proved below.

Theorem 1. Let p represents the maximum 2^d which is less than n, then either m > n - p or $m - p \le 0$ holds.

Proof. It is obvirusly that $p \ge \frac{n}{2}$ according to the pseudocode and the definition. Then the proof divided into two cases:

1. If $m \le \frac{n}{2}$, then $m - p \le 0$;

2. If
$$m > \frac{n}{2}$$
, then $m > \frac{n}{2} \ge n - p$.

And with the theorem proved above, we can come up with a algorithm:

Algorithm 1 An efficient method calculating the binomial coefficient

```
1: function BINOM(n, m, p)
       if m > n or m < 0 then
2:
3:
          return 0
4:
       end if
       if n < 2 then:
5:
6:
          return 1
 7:
       end if
       if p = 0 then:
8:
          p = 1
9:
10:
          while p * 2 < n do
              p \leftarrow p * 2
11:
          end while
12:
       else
13:
           while p \ge n do
14:
              p \leftarrow p/2
15:
          end while
16:
       end if
17:
       return (BINOM(n-p, m-p, p) + BINOM(n-p, m, p)) mod 2
18:
19: end function
```

The implementation in python is displayed below

```
def binom(n, m, p = 0):
        if(m > n or m < 0):
2
           return 0;
3
        if(n < 2):
4
            return 1;
5
        if(p == 0):
6
            p = 1;
            while(p * 2 < n):
                p = p * 2;
9
        else:
10
            while(p >= n):
11
                p = p / 2;
12
        return binom(n - p, m - p, p) ^ binom(n - p, m, p);
```

Exercise 1.6. Assume it will form a rho-like process. Considering i is the entrance of the "circle" of the process, we have

$$F'_{i} = F'_{j}$$
 and $F'_{i+1} = F'_{j+1}$

But

$$F'_{i-1} \neq F'_{j-1}$$

If not, you can easily see that i-1 is the entrace of the "circle". But according to the formula

$$F'_{i+1} = F'_i + F'_{i-1}$$

We have

$$F_i' = F_j'$$
 and $F_{i+1}' = F_{j+1}' \Rightarrow F_{i-1}' = F_{j-1}'$

which is a contradictory. Thus the assumption does not hold.

Consider every F'_i , F'_{i+1} can form a pair $\{F'_i, F'_{i+1}\}$. Because $F'_i \in [0, k)$, the number of such pair will not exceed k^2 . According to the Pigeon's Theorm, there must be a cycle-like process whose length doesn't exceed k^2 , so we can find j which satisfied $F'_0 = F'_j$, $F'_1 = F'_{j+1}$ and $F'_n = F'_{n \, mod \, j}$ within the complexity $O(k^2)$. **Exercise 1.7.** The theorem in the homework is the direct inferrence of Lucas's

Exercise 1.7. The theorem in the homework is the direct inferrence of Lucas's Theorem. However Lucas's Theorem holds only when the module number is a prime. Our question is that what if the module number is a composite number?