

Dată o formulă chimică, există un compus chimic cu această formulă? Dar unul aciclic? Ce structuri poate avea un astfel de compus?

• C_mH_n – poate exista moleculă **aciclică** cu această formulă?

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături?

Dacă da, să se construiască un model de rețea.

Din studii empirice, chestionare, analize ⇒ informații despre numărul de interacțiuni ale unui nod

Este realizabilă o rețea de legături între noduri care să respecte numărul de legături? Dacă da, să se construiască un model de rețea.

Exemplu: Într-o grupă de studenți, fiecare student este întrebat cu câți colegi a colaborat în timpul anilor de studii. Este realizabilă o rețea de colaborări care să corespundă răspunsurilor lor (sau este posibil ca informațiile adunate să fie incorecte)?

- Studentul 1 cu 3
- Studentul 2 cu 3
- Studentul 3 cu 2
- Studentul 4 cu 3
- Studentul 5 cu 2

- Dată o secvenţă de numere s, se poate construi un graf neorientat având secvenţa gradelor s?
- Dar un multigraf neorientat?
- Dar un arbore?
 - Condiţii necesare
 - Condiţii suficiente

Construcția de grafuri cu secvența gradelor dată

Aplicații:

- chimie studiul structurii posibile a unor compuşi cu formula chimică dată
- proiectare de reţele
- biologie rețele metabolice, de interacțiuni între gene/proteine
- > studii epidemiologice în care prin chestionare anonime persoanele declară numărul de persoane cu care au interacționat
- > studii bazate pe simulări de rețele...

Construcția de grafuri neorientate cu secvența gradelor dată.

Algoritmul Havel-Hakimi

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- $d_1 + ... + d_n număr par$
- ∘ $d_i \le n 1$, $\forall i$

Problemă

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale. Să se construiască, dacă se poate, un graf neorientat G cu $s(G) = s_0$.

Condiții necesare pentru existența lui G:

- \circ d₁ + ... + d_n număr par
- $d_i \leq n 1$, $\forall i$

Pentru $s_0 = \{3, 3, 1, 1\}$ – nu există G

⇒ condițiile nu sunt și suficiente

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența s₀ și reluăm până când
 - secvenţa conţine doar $0 \Rightarrow G$
 - secvenţa conţine numere negative ⇒

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența s₀ și reluăm până când
 - secvența conține doar $0 \Rightarrow G$
 - secvenţa conţine numere negative ⇒

G nu se poate construi prin acest procedeu

Se poate construi G altfel?

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența s₀ și reluăm până când
 - secvenţa conţine doar $0 \Rightarrow G$
 - secvenţa conţine numere negative ⇒

G nu se poate construi prin acest procedeu

Teorema Havel-Hakimi ⇒ NU

⇒ Algoritmul anterior = Algoritmul Havel-Havimi

$$s_0 = \{ \ 3, \ 4, \ 2, \ 1, \ 3, \ 4, \ 1, \ 2 \}$$
 etichete vârfuri x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- **Pasul 1** construim muchii pentru vârful de gradul maxim = x_2
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade

$$s_0 = \{ 3, 4, 2, 1, 3, 4, 1, 2 \}$$
 etichete vârfuri x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- Pasul 1 construim muchii pentru vârful de gradul maxim = x_2
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade
 - ⇒ ar fi utilă sortarea descrescătoare a elementelor lui s₀

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Pasul 1.

$$s_0 = \{ \ 4, \ 4, \ 3, \ 3, \ 2, \ 2, \ 1, \ 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Pasul 1.

$$s_0 = \{ \ 4, \ 4, \ 3, \ 3, \ 2, \ 2, \ 1, \ 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

- Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3
- Secvenţa rămasă:

$$s'_0 = \{ \quad 3, \quad 2, \quad 2, \quad 1, \quad 2, \quad 1, \quad 1 \}$$
 etichete vârfuri
$$x_6 \quad x_1 \quad x_5 \quad x_3 \quad x_8 \quad x_4 \quad x_7$$

Pasul 1.

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

- Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3
- Secvenţa rămasă:

$$s'_0 = \{$$
 3, 2, 2, 1, 2, 1, 1} etichete vârfuri x_6 x_1 x_5 x_3 x_8 x_4 x_7

Secvența rămasă ordonată descrescător:

$$s'_0 = \{ & 3, 2, 2, 2, 1, 1, 1 \}$$
 etichete vârfuri
$$x_6 x_1 x_5 x_8 x_3 x_4 x_7$$

Pasul 2.

$$s'_0 = \{$$
 3, 2, 2, 2, 1, 1, 1} etichete vârfuri $x_6 x_1 x_5 x_8 x_3 x_4 x_7$

- Muchii construite: x_6x_1 , x_6x_5 , x_6x_8
- Secvența rămasă:

$$s"_{0} = \{ & 1, 1, 1, 1, 1, 1 \}$$
 etichete vârfuri
$$x_{1} x_{5} x_{8} x_{3} x_{4} x_{7}$$

(este ordonată descrescător)

Pasul 3.

$$s_0^* = \{$$
 1, 1, 1, 1, 1, 1}
etichete vârfuri x_1 x_5 x_8 x_3 x_4 x_7

- Muchii construite: x₁x₅
- Secvenţa rămasă:

$$s'''_{0} = \{ & 0, 1, 1, 1, 1 \}$$
 etichete vârfuri
$$x_{5} x_{8} x_{3} x_{4} x_{7}$$

Secvența rămasă ordonată descrescător:

$$s'''_{0} = \{ & 1, 1, 1, 1, 0 \}$$
 etichete vârfuri
$$x_{7} x_{3} x_{4} x_{8} x_{5}$$

Pasul 4.

$$s'''_0 = \{$$
 etichete vârfuri

$$X_7$$
 X_3 X_4 X_8 X_5

- Muchii construite: x₇x₃
- Secvența rămasă:

$$s^{iv}_0 = \{$$

0, 1, 1, 0}

etichete vârfuri

$$X_3$$
 X_4 X_8 X_5

Secvența rămasă ordonată descrescător:

$$s'''_0 = \{$$

1, 1, 0, 0}

etichete vârfuri

 X_4 X_8 X_3 X_5

Pasul 5.

$$s^{iv}_0 = \{$$
 etichete vârfuri

1, 1, 0, 0}

$$x_4$$
 x_8 x_3 x_5

- Muchii construite: x₄x₈
- Secvența rămasă:

$$s^{iv}_0 = \{$$

etichete vârfuri

STOP

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ cele mai mari d_k numere din s_0

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ cele mai mari d_k numere din s_0 pentru $j \in \{i_1, \ldots, i_{d_k}\}$ execută:

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ cele mai mari d_k numere din s_0 pentru $j \in \{i_1, \ldots, i_{d_k}\}$ execută: adaugă la G muchia $x_k x_j$ înlocuiește d_j în secvența s_0 cu $d_j 1$ dacă $d_j 1 < 0$, atunci scrie NU, STOP.

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie $d_{i_1}, \ldots, d_{i_{d_k}}$ cele mai mari d_k numere din s_0 pentru $j \in \{i_1, \ldots, i_{d_k}\}$ execută: adaugă la G muchia $x_k x_j$ înlocuiește d_j în secvența s_0 cu $d_j 1$ dacă $d_j 1 < 0$, atunci scrie NU, STOP.

Observație. Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s_0 să fie ordonată descrescător.

Complexitate?

Algoritm Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi

O secvență de $n \ge 2$ numere naturale

$$S_0 = \{d_1 \ge \ldots \ge d_n\}$$

cu $d_1 \le n-1$ este secvența gradelor unui graf neorientat (cu n vârfuri)

⇔ secvenţa

$$s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Algoritm Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi

O secvență de $n \ge 2$ numere naturale

$$S_0 = \{d_1 \ge \ldots \ge d_n\}$$

cu d₁ ≤ n-1 este secvența gradelor unui graf neorientat (cu n vârfuri) ⇔ secvența

$$s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Observație: Secvența $s_0' = \{d_2 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n\}$ se obține din s_0 eliminând primul element (adică d_1) și scăzând 1 din primele d_1 elemente rămase – acestea au indicii 2, 3, ..., d_1+1

Algoritm Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge \dots \ge d_n\} \implies s'_0 = \{d_2 - 1, \dots, d_{d_1 + 1} - 1, d_{d_1 + 2}, \dots, d_n\}$$

$$G, \ s(G) = s_0$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \implies s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

$$G, \ s(G) = s_0$$

$$G^*$$
, $s(G^*) = s_0$
 $N_{G^*}(x_1) = \{x_2, ..., x_{d_1+1}\}$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \implies s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

$$G, \ s(G) = s_0$$

 G^* , $s(G^*) = s_0$ $N_{G^*}(x_1) = \{x_2, ..., x_{d_1+1}\}$

elimin x₁

$$G' = G * -x_1, s(G') = s'_0$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \iff s'_0 = \{d_2 - 1, ..., d_{d_1 + 1} - 1, d_{d_1 + 2}, ..., d_n\}$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge \dots \ge d_n\} \iff s_0' = \{d_2 - 1, \dots, d_{d_1 + 1} - 1, d_{d_1 + 2}, \dots, d_n\}$$

$$\text{Fie } G' \text{ cu } s(G') = s_0' = \{d_2 - 1, \dots, d_{d_1 + 1} - 1, d_{d_1 + 2}, \dots, d_n\}$$

Teorema Havel-Hakimi - Demonstrație

$$s_0 = \{d_1 \ge ... \ge d_n\} \iff s'_0 = \{d_2 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n\}$$

Fie
$$G'$$
 cu $s(G') = s'_0$

G:
$$V(G) = V(G') \cup \{x_1\}$$

 $E(G) = E(G') \cup \{x_1 x_2,, x_1 x_{d_1+1}\}$

adăugăm un vârf x_1 pe care îl unim cu $x_2,...,x_{d_1+1}$

Avem
$$s(G) = s_0$$
.

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d_1 este maxim?

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

– eliminăm elementul d_i

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

- eliminăm elementul d_i
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 astfel:

- eliminăm elementul d_i
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Are loc echivalența:

 s_0 este secvența gradelor unui graf neorientat \Leftrightarrow $s_0^{(i)}$ este secvența gradelor unui graf neorientat

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Algoritmului Havel-Hakimi

La un pas vârful poate fi ales arbitrar (nu neapărat cel corespunzător elementului maxim).

Se păstrează însă criteriul de alegere al vecinilor (cu gradele cele mai mari)

Construcția de grafuri cu secvența gradelor dată

 Cu ajutorul transformării t pe pătrat putem obține pornind de la un graf G toate grafurile cu secvența gradelor s(G)
 (și mulțimea vârfurilor V(G))

Construcția de grafuri cu secvența gradelor dată

- Cu ajutorul transformării t pe pătrat putem obține pornind de la un graf G toate grafurile cu secvența gradelor s(G)
 (și mulțimea vârfurilor V(G))
- Mai exact, ar loc următorul rezultat (exercițiu):

Fie G_1 și G_2 două grafuri neorientate cu mulțimea vârfurilor $V=\{1,...,n\}$.

Atunci $s(G_1)=s(G_2) \Leftrightarrow există un şir de transformări t de interschimbare pe pătrat prin care se poate obține graful <math>G_2$ din G_1 .

Construcția de grafuri cu secvența gradelor dată

Teorema Erdös – Gallai (suplimentar)

O secvență de $n \ge 2$ numere naturale $s_0 = \{d_1 \ge ... \ge d_n\}$ este secvența gradelor unui graf neorientat \Leftrightarrow

- $d_1 + \dots + d_n$ par si
- $d_1 + \dots + d_k \le k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}, \forall 1 \le k \le n$

Arbore = graf neorientat conex și aciclic

- Arbore = graf neorientat conex şi aciclic
 - Arbori filogenetici ilustrează evoluții
 - Arbori de dependențe, de joc
 - Probleme de rutare
 - Arbori aleatorii
 - Arbori economici (cu costul minim)
 - Structuri de date...

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

- se închide un ciclu în T

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Rezultă din definiția conexității + un vârf terminal nu poate fi vârf intern al unui lanț elementar

Leme

3. Un arbore cu n vârfuri are n−1 muchii.

Leme

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

Leme

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

- Dacă T este un arbore cu n vârfuri și v este vârf terminal în T, atunci T v este arbore cu n-1 vârfuri și |E(T-v)| = |E(T)|-1
- Aplicăm ipoteza de inducție pentru T-v

Observație

Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Observație

Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Rezultă din definiția conexității + observația:

dintr-un x-y lanţ în G care conţine muchia e se poate
 obţine un x-y lanţ în G-e înlocuind muchia e cu lanţul C-e.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2.
- 3.
- 4
- 5
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4.
- 5.
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n−1 muchii
- 5. T este aciclic și are n-1 muchii
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n-1 muchii
- 5. T este aciclic și are n-1 muchii
- 6. Între oricare două vârfuri din T există un unic lanț elementar.

Construcția de arbori cu secvența gradelor dată

Fie
$$s_0 = \{d_1, ..., d_n\}$$
.

 Condiții necesare pentru ca s₀ să fie secvența gradelor unui arbore?

· Idei de algoritm - cu ce vârf începem construcția?

Construcția de arbori cu secvența gradelor dată

Fie
$$s_0 = \{d_1, ..., d_n\}$$
.

 Condiții necesare pentru ca s₀ să fie secvența gradelor unui arbore?

$$d_1 + \dots + d_n = 2(n-1)$$

- · Idei de algoritm cu ce vârf începem construcția?
 - cu vârf terminal

Teoremă

O secvență de $n \ge 2$ numere naturale $s_0 = \{d_1, ..., d_n\}$ este secvența gradelor unui arbore \Leftrightarrow

$$d_1 + \dots + d_n = 2(n-1)$$

Teoremă

O secvență de $n \ge 2$ numere naturale $s_0 = \{d_1, ..., d_n\}$ este secvența gradelor unui arbore \Leftrightarrow

$$d_1 + \dots + d_n = 2(n-1)$$

Demonstrație - Inducție după n - v. curs

Algoritm

Idee - rezultă din demonstrația inductivă:

La un pas unim un vârf de grad 1 cu un vârful de grad maxim (>1)

Unde intervine în demonstrație faptul că d₁ este maxim?

Algoritm

Idee - rezultă din demonstrația inductivă:

La un pas unim un vârf de grad 1 cu un vârful de grad maxim (>1)

Unde intervine în demonstrație faptul că d₁ este maxim?

Nu intervine, este doar pentru a simplifica scrierea demonstrației

 \Rightarrow putem uni un vârf de grad 1 cu orice vârf de grad > 1

Algoritm

Idee - rezultă din demonstrația inductivă + observația anterioară

- La un pas unim un vârf de grad 1 cu un vârf de grad > 1 şi actualizăm secvența s₀
- Se repetă de n-2 ori
- În final rămân în secvență două vârfuri de grad 1, care se unesc printr-o muchie

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1

$$(2)$$
 X_3

$$X_4$$
 (3)

$$(1)$$
 X_5

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1 - unim
$$x_1$$
 cu x_3
 $s'_0 = \{ 1, 1, 3, 1, 2 \}$
 x_2 x_3 x_4 x_5 x_6

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1 – unim
$$x_1$$
 cu x_3

$$s'_0 = \{ 1, 1, 3, 1, 2 \}$$

 $x_2 x_3 x_4 x_5 x_6$

Pasul 2 – unim x_2 cu x_4

$$s''_0 = \{$$
 1, 2, 1, 2} x_3 x_4 x_5 x_6

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1 – unim
$$x_1$$
 cu x_3

$$s'_0 = \{ 1, 1, 3, 1, 2 \}$$

 $x_2 x_3 x_4 x_5 x_6$

Pasul 2 – unim x_2 cu x_4

$$s''_0 = \{ 1, 2, 1, 2 \}$$

 $x_3 x_4 x_5 x_6$

Pasul 3 – unim x_3 cu x_4

$$s'''_0 = \{$$
 x_4, x_5, x_6

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1 – unim
$$x_1$$
 cu x_3

$$s'_0 = \{ 1, 1, 3, 1, 2 \}$$

 $x_2 x_3 x_4 x_5 x_6$

Pasul 2 – unim x_2 cu x_4

$$s''_0 = \{ 1, 2, 1, 2 \}$$

 $x_3 x_4 x_5 x_6$

Pasul 3 – unim x_3 cu x_4

$$s'''_0 = \{$$
 1, 1, 2} $x_4 x_5 x_6$

Pasul 4 – unim x_4 cu x_6

$$s^{iv}_0 = \{ 1, 1 \}$$

Algoritm - Exemplu

$$s_0 = \{1, 1, 2, 3, 1, 2\}$$
 - are suma 2(n-1)
 $x_1 x_2 x_3 x_4 x_5 x_6$

Pasul 1 – unim
$$x_1$$
 cu x_3

$$s'_0 = \{ 1, 1, 3, 1, 2 \}$$

 $x_2 x_3 x_4 x_5 x_6$

Pasul 2 – unim x_2 cu x_4

$$s''_0 = \{ 1, 2, 1, 2 \}$$

 $x_3 x_4 x_5 x_6$

Pasul 3 – unim x_3 cu x_4

$$s'''_0 = \{$$
 1, 1, 2} $x_4 x_5 x_6$

Pasul 4 – unim x_4 cu x_6

$$s^{iv}_0 = \{ 1, 1 \}$$
 $x_5 x_6$

 au mai rămas în secvență două vârfuri de grad 1, pe care le unim

Algoritm - Pseudocod

- 1. Dacă $d_1 + \dots + d_n \neq 2(n-1)$, atunci scrie NU, STOP.
- 2. Cât timp s_0 conține valori mai mari decât 1 execută //pentru i=1,n-2
 - alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0
 - adaugă la T muchia $x_k x_t$.

Algoritm - Pseudocod

- 1. Dacă $d_1 + \dots + d_n \neq 2(n-1)$, atunci scrie NU, STOP.
- 2. Cât timp s_0 conține valori mai mari decât 1 execută //pentru i=1,n-2
 - alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0
 - adaugă la T muchia $x_k x_t$.
 - elimină d_t din s₀
 - înlocuiește d_k în secvența s₀ cu d_k-1

Algoritm - Pseudocod

- 1. Dacă $d_1 + \dots + d_n \neq 2(n-1)$, atunci scrie NU, STOP.
- 2. Cât timp s_0 conține valori mai mari decât 1 execută //pentru i=1,n-2
 - alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0
 - adaugă la T muchia $x_k x_t$.
 - elimină d_t din s₀
 - înlocuiește d_k în secvența s₀ cu d_k-1
- 3. fie d_k , d_t unicele elemente nenule (egale cu 1) din s_0 ; adaugă la T muchia $x_k x_t$

Algoritm - Pseudocod

- 1. Dacă $d_1 + \dots + d_n \neq 2(n-1)$, atunci scrie NU, STOP.
- 2. Cât timp s_0 conține valori mai mari decât 1 execută //pentru i=1,n-2
 - alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0
 - adaugă la T muchia $x_k x_t$.
 - elimină d_t din s₀
 - înlocuiește d_k în secvența s₀ cu d_k-1
- 3. fie d_k , d_t unicele elemente nenule (egale cu 1) din s_0 ; adaugă la T muchia $x_k x_t$

Complexitate: O(n)

