Decision Trees

Nipun Batra and teaching staff

IIT Gandhinagar

August 11, 2025

Table of Contents

- 1. Introduction and Motivation
- 2. Discrete Input, Discrete Output
- 3. Discrete Input, Real Output
- 4. Real Input Discrete Output
- 5. Real Input Real Output
- 6. Pruning and Overfitting
- 7. Summary and Key Takeaways
- 8. Weighted Entropy

The need for interpretability

How to maintain trust in AI

will help cuctain truct

Beyond developing initial trust, however, creators of AI also must work to maintain that trust. Siau and Wang suggest seven ways of "developing continuous trust" beyond the initial phases of product development:

- Usability and reliability. Al "should be designed to operate easily and intuitively,"
 Siau and Wang write. "There should be no unexpected downtime or crashes."
- Collaboration and communication. Al developers want to create systems that perform autonomously, without human involvement. Developers must focus on creating Al applications that smoothly and easily collaborate and communicate with humans.
- Sociability and bonding. Building social activities into AI applications is one way to strengthen trust. A robotic dog that can recognize its owner and show affection is one example, Siau and Wang write.
- Security and privacy protection. Al applications rely on large data sets, so
 ensuring privacy and security will be crucial to establishing trust in the
 applications.
- Interpretability. Just as transparency is instrumental in building initial trust, interpretability – or the ability for a machine to explain its conclusions or actions –

Training Data

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning a Complicated Neural Network

Learnt Decision Tree

Medical Diagnosis using Decision Trees

Source: Improving medical decision trees by combining relevant health-care criteria

Leo Breiman (1928-2005)

Key Points

Major Algorithmic Breakthroughs:

• CART (1984): Classification and Regression Trees

Key Points

Major Algorithmic Breakthroughs:

- CART (1984): Classification and Regression Trees
- Bagging (1994): Bootstrap Aggregating

Key Points

Major Algorithmic Breakthroughs:

- CART (1984): Classification and Regression Trees
- Bagging (1994): Bootstrap Aggregating
- Random Forests (2001): Ensemble of decision trees

Key Points

Major Algorithmic Breakthroughs:

- CART (1984): Classification and Regression Trees
- Bagging (1994): Bootstrap Aggregating
- Random Forests (2001): Ensemble of decision trees
- Two Cultures (2001): Data modeling vs. algorithmic modeling

Definition: Key Complexity Classes

• P: Problems solvable in polynomial time

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP
 - $_{\circ}$ Both in NP and at least as hard as any NP problem

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP
 - Both in NP and at least as hard as any NP problem
 - Example: Boolean satisfiability (SAT)

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP
 - Both in NP and at least as hard as any NP problem
 - Example: Boolean satisfiability (SAT)
- NP-Hard: At least as hard as NP-Complete problems

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP
 - Both in NP and at least as hard as any NP problem
 - Example: Boolean satisfiability (SAT)
- NP-Hard: At least as hard as NP-Complete problems
 - May not be in NP (solutions might not be verifiable quickly)

- P: Problems solvable in polynomial time
 - Example: Sorting n numbers in $O(n \log n)$ time
- NP: Problems where solutions can be verified in polynomial time
 - Example: Given a sudoku solution, verify it's correct
- NP-Complete: Hardest problems in NP
 - Both in NP and at least as hard as any NP problem
 - Example: Boolean satisfiability (SAT)
- NP-Hard: At least as hard as NP-Complete problems
 - May not be in NP (solutions might not be verifiable quickly)
 - Example: Optimization versions of NP-Complete problems

Finding the Optimal Decision Tree

The Problem: Given training data, find the decision tree with highest accuracy

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly \checkmark

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly ✓
- Construction: Exponentially many trees to check X

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly ✓
- Construction: Exponentially many trees to check X

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly ✓
- ullet Construction: Exponentially many trees to check imes

Example: What This Means

No efficient algorithm exists (unless P = NP)

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly
- Construction: Exponentially many trees to check X

Example: What This Means

- No efficient algorithm exists (unless P = NP)
- · Must use heuristics like greedy algorithms

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly ✓
- Construction: Exponentially many trees to check X

Example: What This Means

- No efficient algorithm exists (unless P = NP)
- · Must use heuristics like greedy algorithms
- ID3, C4.5, CART use greedy approaches

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

- Verification: Given a tree, check its accuracy quickly ✓
- Construction: Exponentially many trees to check imes

Example: What This Means

- No efficient algorithm exists (unless P = NP)
- Must use heuristics like greedy algorithms
- ID3, C4.5, CART use greedy approaches
- Good solutions, but no optimality guarantee

Greedy Algorithm

Core idea: At each level, choose an attribute that gives **biggest estimated** performance gain!

 $\mathsf{Greedy} \neq \mathsf{Optimal}$

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild Mild Mild Hot Mild	High High High Normal Normal High Normal High Normal Normal Hormal High High	Weak Strong Weak Weak Strong Strong Weak Weak Weak Strong Strong Weak Strong Strong Strong Strong Strong	No No Yes Yes No Yes No Yes Yes Yes Yes No

• For examples, we have 9 Yes, 5 No

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast	Hot Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild	High High High Normal Normal Normal High Normal High Normal Normal	Weak Strong Weak Weak Strong Strong Weak Weak Weak Strong	No No Yes Yes No Yes No Yes Yes Yes
D13 D14	Overcast Rain	Hot Mild	High Normal High	Strong Weak Strong	Yes No

• For examples, we have 9 Yes, 5 No

D1 Sunny Hot High Weak No D2 Sunny Hot High Strong No D3 Overcast Hot High Weak Yes D4 Rain Mild High Weak Yes D5 Rain Cool Normal Strong No D7 Overcast Cool Normal Strong Yes D8 Sunny Mild High Weak Yes D9 Sunny Cool Normal Weak Yes D10 Rain Mild Normal Weak Yes D10 Rain Mild Normal Weak Yes D11 Sunny Mild High Strong Yes D13 Overcast Mild High Strong Yes D13 Overcast Hot Normal Weak Yes D14 Rain Mild High Strong No	Day	Outlook	Temp	Humidity	Windy	Play
	D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast	Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot	High High Normal Normal Normal High Normal Normal Normal Normal Normal	Strong Weak Weak Weak Strong Strong Weak Weak Strong Strong Weak	No Yes Yes No Yes No Yes Yes Yes Yes Yes

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?

D1 Sunny Hot High Weak No D2 Sunny Hot High Strong No D3 Overcast Hot High Weak Yes D4 Rain Mild High Weak Yes D5 Rain Cool Normal Strong No D7 Overcast Cool Normal Strong Yes D8 Sunny Mild High Weak Yes D9 Sunny Cool Normal Weak Yes D10 Rain Mild Normal Weak Yes D10 Rain Mild Normal Weak Yes D11 Sunny Mild High Strong Yes D13 Overcast Mild High Strong Yes D13 Overcast Hot Normal Weak Yes D14 Rain Mild High Strong No	Day	Outlook	Temp	Humidity	Windy	Play
	D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast	Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot	High High Normal Normal Normal High Normal Normal Normal Normal Normal	Strong Weak Weak Weak Strong Strong Weak Weak Strong Strong Weak	No Yes Yes No Yes No Yes Yes Yes Yes Yes

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?

D1 Sunny Hot High Weak No D2 Sunny Hot High Strong No D3 Overcast Hot High Weak Yes D4 Rain Mild High Weak Yes D5 Rain Cool Normal Strong No D7 Overcast Cool Normal Strong Yes D8 Sunny Mild High Weak No D9 Sunny Cool Normal Weak Yes D10 Rain Mild Normal Weak Yes D11 Sunny Mild High Strong Yes D12 Overcast Mild High Strong Yes D13 Overcast Hot Normal Weak Yes D14 Rain Mild High Strong Yes D15 Overcast Hot Normal Weak Yes D16 Normal Weak Yes D17 Overcast Hot Normal Weak Yes D18 Sunny Mild High Strong Yes D19 Normal Weak Yes	Day	Outlook	Temp	Humidity	Windy	Play
	D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast	Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot	High High Normal Normal Normal High Normal Normal Normal Normal Normal	Strong Weak Weak Weak Strong Strong Weak Weak Strong Strong Weak	No Yes Yes No Yes No Yes Yes Yes Yes Yes

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!

D1 Sunny Hot High Weak No D2 Sunny Hot High Strong No D3 Overcast Hot High Weak Yes D4 Rain Mild High Weak Yes D5 Rain Cool Normal Strong No D7 Overcast Cool Normal Strong Yes D8 Sunny Mild High Weak No D9 Sunny Cool Normal Weak Yes D10 Rain Mild Normal Weak Yes D11 Sunny Mild High Strong Yes D12 Overcast Mild High Strong Yes D13 Overcast Hot Normal Weak Yes D14 Rain Mild High Strong Yes D15 Overcast Hot Normal Weak Yes D16 Normal Weak Yes D17 Overcast Hot Normal Weak Yes D18 Sunny Mild High Strong Yes D19 Normal Weak Yes	Day	Outlook	Temp	Humidity	Windy	Play
	D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13	Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast	Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot	High High Normal Normal Normal High Normal Normal Normal Normal Normal	Strong Weak Weak Weak Strong Strong Weak Weak Strong Strong Weak	No Yes Yes No Yes No Yes Yes Yes Yes Yes

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Hot Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot Mild	High High High Normal Normal High Normal High Normal Normal Normal Normal High	Weak Strong Weak Weak Strong Strong Weak Weak Weak Strong Strong Weak Strong Strong Weak Strong	No No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes Yes You

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!
- Key insight: Problem is "easier" when there is less disagreement

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Hot Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Mild Hot Mild	High High High Normal Normal High Normal High Normal Normal Normal Normal High	Weak Strong Weak Weak Strong Strong Weak Weak Weak Strong Strong Weak Strong Strong Weak Strong	No No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes Yes You

- For examples, we have 9 Yes, 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!
- Key insight: Problem is "easier" when there is less disagreement

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8	Sunny Sunny Overcast Rain Rain Overcast Sunny	Hot Hot Hot Mild Cool Cool Cool Mild	High High High Normal Normal Normal	Weak Strong Weak Weak Weak Strong Strong Weak	No No Yes Yes Yes No Yes No
D9 D10 D11 D12 D13 D14	Sunny Rain Sunny Overcast Overcast Rain	Cool Mild Mild Mild Hot Mild	Normal Normal Normal High Normal High	Weak Weak Strong Strong Weak Strong	Yes Yes Yes Yes Yes No

- For examples, we have 9 Yes,
 5 No
- Would it be trivial if we had 14 Yes or 14 No?
- Yes!
- Key insight: Problem is "easier" when there is less disagreement
- Need some statistical measure of "disagreement"

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Think about it: Which headline tells you more?

• "The sun rose this morning"

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Think about it: Which headline tells you more?

- "The sun rose this morning"
- "It snowed in Death Valley in July"

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Think about it: Which headline tells you more?

- "The sun rose this morning"
- "It snowed in Death Valley in July"

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Think about it: Which headline tells you more?

- "The sun rose this morning"
- "It snowed in Death Valley in July"

The second one! Because it's unexpected.

Definition: The Big Idea

Information is inversely related to probability. Rare events are more informative!

Think about it: Which headline tells you more?

- "The sun rose this morning"
- "It snowed in Death Valley in July"

The second one! Because it's unexpected.

Shannon's insight: The amount of information in an event should be inversely proportional to its probability.

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

Why the negative log?

Probabilities are between 0 and 1

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

- Probabilities are between 0 and 1
- log_2 of values < 1 gives negative numbers

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

- Probabilities are between 0 and 1
- log₂ of values < 1 gives negative numbers
- We want information to be positive

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

- Probabilities are between 0 and 1
- log₂ of values < 1 gives negative numbers
- We want information to be positive
- Hence the negative sign!

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

- Probabilities are between 0 and 1
- log₂ of values < 1 gives negative numbers
- We want information to be positive
- Hence the negative sign!

Shannon's Information Formula:

$$I(x) = -\log_2 p(x)$$

Why the negative log?

- Probabilities are between 0 and 1
- log₂ of values < 1 gives negative numbers
- · We want information to be positive
- · Hence the negative sign!

Why base 2? So information is measured in bits.

Example 1: Summer weather in Phoenix

• Sunny day: p = 0.9

Example 1: Summer weather in Phoenix

• Sunny day: p = 0.9

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

Example 2: Snow in Phoenix in July

• Probability: p = 0.0001 (extremely rare!)

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

Example 2: Snow in Phoenix in July

• Probability: p = 0.0001 (extremely rare!)

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

- Probability: p = 0.0001 (extremely rare!)
- Information: $I = -\log_2(0.0001) = -(-13.29) = 13.29$ bits

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

- Probability: p = 0.0001 (extremely rare!)
- Information: $I = -\log_2(0.0001) = -(-13.29) = 13.29$ bits

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- · Low surprise we expect sunny weather

- Probability: p = 0.0001 (extremely rare!)
- Information: $I = -\log_2(0.0001) = -(-13.29) = 13.29$ bits
- High surprise this would be shocking news!

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- · Low surprise we expect sunny weather

- Probability: p = 0.0001 (extremely rare!)
- Information: $I = -\log_2(0.0001) = -(-13.29) = 13.29$ bits
- High surprise this would be shocking news!

Example 1: Summer weather in Phoenix

- Sunny day: p = 0.9
- Information: $I = -\log_2(0.9) = -(-0.152) = 0.152$ bits
- Low surprise we expect sunny weather

Example 2: Snow in Phoenix in July

- Probability: p = 0.0001 (extremely rare!)
- Information: $I = -\log_2(0.0001) = -(-13.29) = 13.29$ bits
- High surprise this would be shocking news!

Notice: Rare events carry $\sim 90 \times$ more information!

From Single Events to Distributions

Question: What if we have multiple possible outcomes?

From Single Events to Distributions

Question: What if we have multiple possible outcomes?

Example: Weather in Seattle (4 possibilities)

• Rainy: p = 0.5

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

• Rainy: p = 0.5

• Cloudy: p = 0.3

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

• Rainy: p = 0.5

• Cloudy: p = 0.3

• Sunny: p = 0.15

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

• Rainy: p = 0.5

• Cloudy: p = 0.3

• Sunny: p = 0.15

• Snowy: p = 0.05

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

• Rainy: p = 0.5

• Cloudy: p = 0.3

• Sunny: p = 0.15

• Snowy: p = 0.05

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

- Rainy: p = 0.5
- Cloudy: p = 0.3
- Sunny: p = 0.15
- Snowy: p = 0.05

Problem: Each day gives different amounts of information!

• If it's rainy: $I = -\log_2(0.5) = 1.0$ bit

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

- Rainy: p = 0.5
- Cloudy: p = 0.3
- Sunny: p = 0.15
- Snowy: p = 0.05

Problem: Each day gives different amounts of information!

- If it's rainy: $I = -\log_2(0.5) = 1.0$ bit
- If it's sunny: $I = -\log_2(0.15) = 2.74$ bits

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

- Rainy: p = 0.5
- Cloudy: p = 0.3
- Sunny: p = 0.15
- Snowy: p = 0.05

Problem: Each day gives different amounts of information!

- If it's rainy: $I = -\log_2(0.5) = 1.0$ bit
- If it's sunny: $I = -\log_2(0.15) = 2.74$ bits
- If it's snowy: $I = -\log_2(0.05) = 4.32$ bits

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

- Rainy: p = 0.5
- Cloudy: p = 0.3
- Sunny: p = 0.15
- Snowy: p = 0.05

Problem: Each day gives different amounts of information!

- If it's rainy: $I = -\log_2(0.5) = 1.0$ bit
- If it's sunny: $I = -\log_2(0.15) = 2.74$ bits
- If it's snowy: $I = -\log_2(0.05) = 4.32$ bits

Question: What if we have multiple possible outcomes? **Example:** Weather in Seattle (4 possibilities)

- Rainy: p = 0.5
- Cloudy: p = 0.3
- Sunny: p = 0.15
- Snowy: p = 0.05

Problem: Each day gives different amounts of information!

- If it's rainy: $I = -\log_2(0.5) = 1.0$ bit
- If it's sunny: $I = -\log_2(0.15) = 2.74$ bits
- If it's snowy: $I = -\log_2(0.05) = 4.32$ bits

Solution: Take the **expected** (average) information!

Definition: Entropy Formula

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

Entropy = Expected amount of information per observation

Definition: Entropy Formula

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

 $\textbf{Entropy} = \mathsf{Expected} \ \mathsf{amount} \ \mathsf{of} \ \mathsf{information} \ \mathsf{per} \ \mathsf{observation}$

Seattle weather calculation:

= 0.5 + 0.52 + 0.41 + 0.22 = 1.65 bits

(5)

Definition: Entropy Formula

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

 $\textbf{Entropy} = \mathsf{Expected} \ \mathsf{amount} \ \mathsf{of} \ \mathsf{information} \ \mathsf{per} \ \mathsf{observation}$

Seattle weather calculation:

$$H = -p(rain) \log_2 p(rain) - p(cloudy) \log_2 p(cloudy)$$
 (1)

$$-p(sunny) \log_2 p(sunny) - p(snow) \log_2 p(snow)$$
 (2)

$$= 0.5(1.0) + 0.3(1.74) + 0.15(2.74) + 0.05(4.32)$$
 (4)

$$= 0.5 + 0.52 + 0.41 + 0.22 = 1.65 bits$$
 (5)

Definition: Entropy Formula

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

 $\textbf{Entropy} = \mathsf{Expected} \ \mathsf{amount} \ \mathsf{of} \ \mathsf{information} \ \mathsf{per} \ \mathsf{observation}$

Seattle weather calculation:

$$H = -p(rain) \log_2 p(rain) - p(cloudy) \log_2 p(cloudy)$$
 (1)

$$-p(\mathsf{sunny})\log_2 p(\mathsf{sunny}) - p(\mathsf{snow})\log_2 p(\mathsf{snow}) \tag{2}$$

$$= 0.5 + 0.52 + 0.41 + 0.22 = 1.65 bits$$
 (5)

Definition: Entropy Formula

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i} p(x_i) \log_2 p(x_i)$$

 $\textbf{Entropy} = \mathsf{Expected} \ \mathsf{amount} \ \mathsf{of} \ \mathsf{information} \ \mathsf{per} \ \mathsf{observation}$

Seattle weather calculation:

= 0.5 + 0.52 + 0.41 + 0.22 = 1.65 bits

$$H = -p(\text{rain}) \log_2 p(\text{rain}) - p(\text{cloudy}) \log_2 p(\text{cloudy})$$
(1)
- $p(\text{sunny}) \log_2 p(\text{sunny}) - p(\text{snow}) \log_2 p(\text{snow})$ (2)
= $-0.5 \log_2(0.5) - 0.3 \log_2(0.3) - 0.15 \log_2(0.15) - 0.05 \log_2(0.05)$ (3)
= $0.5(1.0) + 0.3(1.74) + 0.15(2.74) + 0.05(4.32)$ (4)

(5)

Case 1: Completely predictable

• Desert: Always sunny (p = 1.0)

Case 1: Completely predictable

• Desert: Always sunny (p = 1.0)

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- $\bullet \ \ \hbox{\bf Zero entropy} = \mathsf{No} \ \mathsf{surprise} = \mathsf{Completely} \ \mathsf{predictable}$

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- $\bullet \ \ \hbox{\bf Zero entropy} = \mathsf{No} \ \mathsf{surprise} = \mathsf{Completely} \ \mathsf{predictable}$

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- **Zero entropy** = No surprise = Completely predictable

Case 2: Maximum uncertainty

• Fair coin: Heads/Tails equally likely (p = 0.5 each)

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- **Zero entropy** = No surprise = Completely predictable

Case 2: Maximum uncertainty

• Fair coin: Heads/Tails equally likely (p = 0.5 each)

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- **Zero entropy** = No surprise = Completely predictable

- Fair coin: Heads/Tails equally likely (p = 0.5 each)
- $H = -0.5 \log_2(0.5) 0.5 \log_2(0.5) = 0.5(1) + 0.5(1) = \mathbf{1.0}$ bit

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- **Zero entropy** = No surprise = Completely predictable

- Fair coin: Heads/Tails equally likely (p = 0.5 each)
- $H = -0.5 \log_2(0.5) 0.5 \log_2(0.5) = 0.5(1) + 0.5(1) = \mathbf{1.0}$ bit

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- Zero entropy = No surprise = Completely predictable

- Fair coin: Heads/Tails equally likely (p = 0.5 each)
- $H = -0.5 \log_2(0.5) 0.5 \log_2(0.5) = 0.5(1) + 0.5(1) = \mathbf{1.0}$ bit
- Maximum entropy = Maximum surprise = Completely unpredictable

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- Zero entropy = No surprise = Completely predictable

- Fair coin: Heads/Tails equally likely (p = 0.5 each)
- $H = -0.5 \log_2(0.5) 0.5 \log_2(0.5) = 0.5(1) + 0.5(1) = \mathbf{1.0}$ bit
- Maximum entropy = Maximum surprise = Completely unpredictable

Case 1: Completely predictable

- Desert: Always sunny (p = 1.0)
- $H = -1.0 \log_2(1.0) = -1.0 \times 0 = \mathbf{0}$ bits
- Zero entropy = No surprise = Completely predictable

Case 2: Maximum uncertainty

- Fair coin: Heads/Tails equally likely (p = 0.5 each)
- $H = -0.5 \log_2(0.5) 0.5 \log_2(0.5) = 0.5(1) + 0.5(1) = \mathbf{1.0}$ bit
- Maximum entropy = Maximum surprise = Completely unpredictable

Key insight: Entropy ranges from 0 (certain) to $log_2(n)$ (uniform over n outcomes)

Why do we care about entropy in ML?

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

• Pure node: All examples same class \rightarrow Low entropy \rightarrow Good split

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

• Pure node: All examples same class \rightarrow Low entropy \rightarrow Good split

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

- Pure node: All examples same class \rightarrow Low entropy \rightarrow Good split
- Mixed node: Examples from different classes → High entropy → Bad split

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

- Pure node: All examples same class \rightarrow Low entropy \rightarrow Good split
- Mixed node: Examples from different classes → High entropy → Bad split

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

- Pure node: All examples same class \rightarrow Low entropy \rightarrow Good split
- **Mixed node**: Examples from different classes \rightarrow **High** entropy \rightarrow Bad split

Strategy: Choose splits that **reduce entropy** the most!

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into **pure** subsets where we can make confident predictions.

- Pure node: All examples same class → Low entropy → Good split
- Mixed node: Examples from different classes → High entropy → Bad split

Strategy: Choose splits that **reduce entropy** the most! This is exactly what **Information Gain** measures.

Entropy

Statistical measure to characterize the (im)purity of examples

Entropy

Statistical measure to characterize the (im)purity of examples $H(X) = -\sum_{i=1}^{k} p(x_i) \log_2 p(x_i)$

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain	Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild	High High High High Normal Normal Normal High Normal	Weak Strong Weak Weak Weak Strong Strong Weak Weak Weak	No No Yes Yes Yes No Yes No Yes Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 Can we use Outlook as the root node?

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain	Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild	High High High High Normal Normal Normal High Normal	Weak Strong Weak Weak Weak Strong Strong Weak Weak Weak	No No Yes Yes Yes No Yes No Yes Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 Can we use Outlook as the root node?

Day	Outlook	Temp	Humidity	Windy	Play
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	Sunny Sunny Overcast Rain Rain Overcast Sunny Sunny Rain	Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild	High High High Normal Normal Normal High	Weak Strong Weak Weak Strong Strong Weak Weak Weak	No No Yes Yes No Yes No Yes Yes
D11 D12 D13 D14	Sunny Overcast Overcast Rain	Mild Mild Hot Mild	Normal High Normal High	Strong Strong Weak Strong	Yes Yes Yes No

- Can we use Outlook as the root node?
- When Outlook is overcast, we always Play and thus no "disagreement"

Information Gain

Reduction in entropy by partitioning examples (S) on attribute A

$$\mathsf{Gain}(S,A) \equiv \mathsf{Entropy}(S) - \sum_{v \in \mathsf{Values}(A)} \frac{|S_v|}{|S|} \mathsf{Entropy}(S_v)$$

Quick Question!

What does entropy measure in the context of decision trees?

A) The depth of the tree

Quick Question!

- A) The depth of the tree
- B) The impurity or "disagreement" in a set of examples

Quick Question!

- A) The depth of the tree
- B) The impurity or "disagreement" in a set of examples
- C) The number of features in the dataset

Quick Question!

- A) The depth of the tree
- B) The impurity or "disagreement" in a set of examples
- C) The number of features in the dataset
- D) The accuracy of the tree

Quick Question!

- A) The depth of the tree
- B) The impurity or "disagreement" in a set of examples
- C) The number of features in the dataset
- D) The accuracy of the tree

Quick Question!

What does entropy measure in the context of decision trees?

- A) The depth of the tree
- B) The impurity or "disagreement" in a set of examples
- C) The number of features in the dataset
- D) The accuracy of the tree

Answer: B) The impurity or "disagreement" in a set of examples - Higher entropy means more mixed classes, lower entropy means more pure subsets.

Create a root node for tree

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-

- Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - Root \leftarrow A

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - \circ Root \leftarrow A
 - For each value (v) of A

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - \circ Root \leftarrow A
 - For each value (v) of A
 - Add new tree branch : A = v

- Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - \circ Root \leftarrow A
 - For each value (v) of A
 - Add new tree branch : A = v
 - Examples_v: subset of examples that A = v

- Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - \circ Root \leftarrow A
 - For each value (v) of A
 - Add new tree branch : A = v
 - Examples_v: subset of examples that A = v
 - If Examples_vis empty: add leaf with label = most common value of Target Attribute

- · Create a root node for tree
- If all examples are +/-, return root with label =+/-
- If attributes = empty, return root with most common value of Target Attribute in Examples
- Begin
 - A ← attribute from Attributes which best classifies Examples
 - \circ Root \leftarrow A
 - For each value (v) of A
 - Add new tree branch : A = v
 - Examples_v: subset of examples that A = v
 - If Examples_vis empty: add leaf with label = most common value of Target Attribute
 - Else: ID3 (Examples_v, Target attribute, Attributes A)

Learnt Decision Tree

Root Node (empty)

Training Data

Day	Outlook	Temp	Humidity	Windy	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Entropy calculated

We have 14 examples in S: 5 No, 9 Yes

Entropy(S) =
$$-p_{No} \log_2 p_{No} - p_{Yes} \log_2 p_{Yes}$$

= $-\frac{5}{14} \log_2 \left(\frac{5}{14}\right) - \frac{9}{14} \log_2 \left(\frac{9}{14}\right) = 0.940$

Outlook	Play
Sunny	No
Sunny	No
Overcast	Yes
Rain	Yes
Rain	Yes
Rain	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rain	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rain	No

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3

No Entropy =
$$-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$$

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3

No Entropy =
$$-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$$

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3 No Entropy = $-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$

Outlook	Play
Overcast	Yes

We have 4 Yes, 0
No Entropy = 0
(pure subset)

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3 No Entropy = $-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$

Outlook	Play
Overcast	Yes

We have 4 Yes, 0
No Entropy = 0
(pure subset)

Outlook	Play
Sunny	No
Sunny	No
Sunny	No
Sunny	Yes
Sunny	Yes

We have 2 Yes, 3 No Entropy = $-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$

Outlook	Play
Overcast	Yes

We have 4 Yes, 0
No Entropy = 0
(pure subset)

Outlook	Play
Rain	Yes
Rain	Yes
Rain	No
Rain	Yes
Rain	No

We have 3 Yes, 2 No Entropy = $-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.971$

Information Gain

$$\mathsf{Gain}(S,\mathsf{Outlook}) = \mathsf{Entropy}(S) - \sum_{v \in \{\mathsf{Rain}, \; \mathsf{Sunny}, \; \mathsf{Overcast}\}} \frac{|\mathcal{S}_v|}{|S|} \mathsf{Entropy}(\mathcal{S}_v)$$

Gain(S, Outlook) = Entropy(S)
$$-\frac{5}{14}$$
 Entropy(S_{Sunny}) $-\frac{4}{14}$ Entropy(S_{Overo}) = $0.940 - \frac{5}{14} \times 0.971 - \frac{4}{14} \times 0 - \frac{5}{14} \times 0.971 = 0.940 - 0.347 - 0 - 0.347 = 0.26$

Information Gain

Learnt Decision Tree

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

• $Gain(S_{Outlook=Sunny}, Temp) = Entropy(2 Yes, 3 No) - (2/5)*Entropy(0 Yes, 2 No) - (2/5)*Entropy(1 Yes, 1 No) - (1/5)*Entropy(1 Yes, 0 No)$

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

• $Gain(S_{Outlook=Sunny}, Temp) = Entropy(2 Yes, 3 No) - (2/5)*Entropy(0 Yes, 2 No) - (2/5)*Entropy(1 Yes, 1 No) - (1/5)*Entropy(1 Yes, 0 No)$

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

- $Gain(S_{Outlook=Sunny}, Temp) = Entropy(2 Yes, 3 No) (2/5)*Entropy(0 Yes, 2 No) (2/5)*Entropy(1 Yes, 1 No) (1/5)*Entropy(1 Yes, 0 No)$
- Gain(S_{Outlook=Sunny}, Humidity) = Entropy(2 Yes, 3 No) (2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No) ⇒ maximum possible for the set

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

- $Gain(S_{Outlook=Sunny}, Temp) = Entropy(2 Yes, 3 No) (2/5)*Entropy(0 Yes, 2 No) (2/5)*Entropy(1 Yes, 1 No) (1/5)*Entropy(1 Yes, 0 No)$
- Gain(S_{Outlook=Sunny}, Humidity) = Entropy(2 Yes, 3 No) (2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No) ⇒ maximum possible for the set

Day	Temp	Humidity	Windy	Play
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

- $Gain(S_{Outlook=Sunny}, Temp) = Entropy(2 Yes, 3 No) (2/5)*Entropy(0 Yes, 2 No) (2/5)*Entropy(1 Yes, 1 No) (1/5)*Entropy(1 Yes, 0 No)$
- Gain(S_{Outlook=Sunny}, Humidity) = Entropy(2 Yes, 3 No) (2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No) ⇒ maximum possible for the set
- $Gain(S_{Outlook=Sunny}, Windy) = Entropy(2 Yes, 3 No) (3/5)*Entropy(1 Yes, 2 No) (2/5)*Entropy(1 Yes, 1 No)$

Learnt Decision Tree

Calling ID3 on (Outlook=Rain)

Day	Temp	Humidity	Windy	Play
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
D10	Mild	Normal	Weak	Yes
D14	Mild	High	Strong	No

• The attribute Windy gives the highest information gain

Learnt Decision Tree

Prediction for Decision Tree

Prediction for Decision Tree

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ?

Prediction for Decision Tree

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ? No

Definition: Depth-Limited Trees

Definition: Depth-Limited Trees

When depth limit is reached, assign the **most common class** in that path as the leaf node prediction.

Depth-0 tree (no decisions):

Definition: Depth-Limited Trees

- Depth-0 tree (no decisions):
 - Always predict the most common class

Definition: Depth-Limited Trees

- Depth-0 tree (no decisions):
 - Always predict the most common class
 - For our dataset: Always predict **Yes**

Definition: Depth-Limited Trees

- Depth-0 tree (no decisions):
 - Always predict the most common class
 - For our dataset: Always predict **Yes**

Definition: Depth-Limited Trees

- Depth-0 tree (no decisions):
 - Always predict the most common class
 - For our dataset: Always predict Yes
- **Depth-1 tree** (single decision):

Quick Question!

In the tennis dataset, why did "Outlook" have the highest information gain?

A) It was the first feature in the dataset

Quick Question!

- A) It was the first feature in the dataset
- B) When Outlook=Overcast, all examples have Play=Yes (pure subset)

Quick Question!

- A) It was the first feature in the dataset
- B) When Outlook=Overcast, all examples have Play=Yes (pure subset)
- C) It has the most possible values

Quick Question!

- A) It was the first feature in the dataset
- B) When Outlook=Overcast, all examples have Play=Yes (pure subset)
- C) It has the most possible values
- D) It was chosen randomly

Quick Question!

- A) It was the first feature in the dataset
- B) When Outlook=Overcast, all examples have Play=Yes (pure subset)
- C) It has the most possible values
- D) It was chosen randomly

Quick Question!

In the tennis dataset, why did "Outlook" have the highest information gain?

- A) It was the first feature in the dataset
- B) When Outlook=Overcast, all examples have Play=Yes (pure subset)
- C) It has the most possible values
- D) It was chosen randomly

Answer: B) When Outlook=Overcast, all examples have Play=Yes - This creates a pure subset with entropy=0, maximizing information gain.

Modified Dataset

Day	Outlook	Temp	Humidity	Wind	Minutes Played
D1	Sunny	Hot	High	Weak	20
D2	Sunny	Hot	High	Strong	24
D3	Overcast	Hot	High	Weak	40
D4	Rain	Mild	High	Weak	50
D5	Rain	Cool	Normal	Weak	60
D6	Rain	Cool	Normal	Strong	10
D7	Overcast	Cool	Normal	Strong	4
D8	Sunny	Mild	High	Weak	10
D9	Sunny	Cool	Normal	Weak	60
D10	Rain	Mild	Normal	Weak	40
D11	Sunny	Mild	High	Strong	45
D12	Overcast	Mild	High	Strong	40
D13	Overcast	Hot	Normal	Weak	35
D14	Rain	Mild	High	Strong	20

Classification trees predict discrete classes (Yes/No, categories)

Classification trees predict discrete classes (Yes/No, categories)

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?
- For classification: Used entropy, information gain

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?
- For classification: Used entropy, information gain

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?
- For classification: Used entropy, information gain
- For regression: Use Mean Squared Error (MSE)

- Classification trees predict discrete classes (Yes/No, categories)
- Regression trees predict continuous numeric values
- Key Question: How do we measure impurity for continuous outputs?
- For classification: Used entropy, information gain
- For regression: Use Mean Squared Error (MSE)

Key Points

Why MSE for Regression?

MSE measures how far predicted values are from actual values.

Lower $\mathsf{MSE} = \mathsf{Better}\ \mathsf{predictions} = \mathsf{Less}\ \mathsf{"impurity"}\ \mathsf{in}\ \mathsf{the}$ data

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the mean of target values

• $(y_i - \bar{y})^2$: Squared difference between actual and mean

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the mean of target values

• $(y_i - \bar{y})^2$: Squared difference between actual and mean

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- $(y_i \bar{y})^2$: Squared difference between actual and mean
- Squaring ensures positive values and penalizes large errors

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- $(y_i \bar{y})^2$: Squared difference between actual and mean
- Squaring ensures positive values and penalizes large errors

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- $(y_i \bar{y})^2$: Squared difference between actual and mean
- Squaring ensures positive values and penalizes large errors
- MSE = 0 when all values are identical (perfect homogeneity)

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- $(y_i \bar{y})^2$: Squared difference between actual and mean
- Squaring ensures positive values and penalizes large errors
- MSE = 0 when all values are identical (perfect homogeneity)

Definition: Mean Squared Error

For a dataset S with n data points and target values y_1, y_2, \dots, y_n :

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- $(y_i \bar{y})^2$: Squared difference between actual and mean
- Squaring ensures positive values and penalizes large errors
- MSE = 0 when all values are identical (perfect homogeneity)
- Higher MSE = More variation = Higher impurity

MSE Calculation: Step 1 - The Complete Dataset

Wind	Minutes Played
Weak	20
Strong	24
Weak	40
Weak	50
Weak	60
Strong	10
Strong	4
Weak	10
Weak	60
Weak	40
Strong	45
Strong	40
Weak	35
Strong	20

Tennis Dataset: Predicting minutes played (continuous target)

MSE Calculation: Step 1 - The Complete Dataset

Wind	Minutes Played
Weak	20
Strong	24
Weak	40
Weak	50
Weak	60
Strong	10
Strong	4
Weak	10
Weak	60
Weak	40
Strong	45
Strong	40
Weak	35
Strong	20

- **Tennis Dataset:** Predicting minutes played (continuous target)
- Goal: Calculate MSE for the entire dataset S

MSE Calculation: Step 1 - The Complete Dataset

Wind	Minutes Played
Weak	20
Strong	24
Weak	40
Weak	50
Weak	60
Strong	10
Strong	4
Weak	10
Weak	60
Weak	40
Strong	45
Strong	40
Weak	35
Strong	20

- **Tennis Dataset:** Predicting minutes played (continuous target)
- Goal: Calculate MSE for the entire dataset S

MSE Calculation: Step 2 - Computing the Mean

Example: Calculating Mean Minutes Played

All target values: 20, 24, 40, 50, 60, 10, 4, 10, 60, 40, 45, 40, 35, 20

Step 1: Sum all values

$$\sum y_i = 20 + 24 + 40 + 50 + 60 + 10 + 4 + 10 + 60 + 40 + 45 + 40 + 35 + 20$$

MSE Calculation: Step 2 - Computing the Mean

Example: Calculating Mean Minutes Played

All target values: 20, 24, 40, 50, 60, 10, 4, 10, 60, 40, 45, 40, 35, 20

Step 1: Sum all values

$$\sum y_i = 20 + 24 + 40 + 50 + 60 + 10 + 4 + 10 + 60 + 40 + 45 + 40 + 35 + 20$$

$$= 458$$

MSE Calculation: Step 2 - Computing the Mean

Example: Calculating Mean Minutes Played

All target values: 20, 24, 40, 50, 60, 10, 4, 10, 60, 40, 45, 40, 35, 20

Step 1: Sum all values

$$\sum y_i = 20 + 24 + 40 + 50 + 60 + 10 + 4 + 10 + 60 + 40 + 45 + 40 + 35 + 20$$

$$= 458$$

Step 2: Divide by number of data points (n = 14)

$$\bar{y} = \frac{458}{14} = 32.71 \text{ minutes}$$

MSE Calculation: Step 3 - Computing Squared Differences

Example: Calculating $(y_i - \bar{y})^2$ for Each Data Point

With $\bar{y} = 32.71$:

Уi	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
20	20 - 32.71 = -12.71	$(-12.71)^2 = 161.54$
24	24 - 32.71 = -8.71	$(-8.71)^2 = 75.86$
40	40 - 32.71 = 7.29	$(7.29)^2 = 53.14$
50	50 - 32.71 = 17.29	$(17.29)^2 = 299.14$
60	60 - 32.71 = 27.29	$(27.29)^2 = 744.74$
10	10 - 32.71 = -22.71	$(-22.71)^2 = 515.74$
4	4 - 32.71 = -28.71	$(-28.71)^2 = 824.26$

MSE Calculation: Step 3 - Computing Squared Differences

Example: Calculating $(y_i - \bar{y})^2$ for Each Data Point

With $\bar{y} = 32.71$:

Уi	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
20	20 - 32.71 = -12.71	$(-12.71)^2 = 161.54$
24	24 - 32.71 = -8.71	$(-8.71)^2 = 75.86$
40	40 - 32.71 = 7.29	$(7.29)^2 = 53.14$
50	50 - 32.71 = 17.29	$(17.29)^2 = 299.14$
60	60 - 32.71 = 27.29	$(27.29)^2 = 744.74$
10	10 - 32.71 = -22.71	$(-22.71)^2 = 515.74$
4	4 - 32.71 = -28.71	$(-28.71)^2 = 824.26$

Continue this for all 14 data points...

MSE Calculation: Step 4 - Complete Squared Differences

Example: All Squared Differences			
Уi	$y_i - \bar{y}$	$(y_i - \bar{y})^2$	
20	-12.71	161.54	
24	-8.71	75.86	
40	7.29	53.14	
50	17.29	299.14	
60	27.29	744.74	
10	-22.71	515.74	
4	-28.71	824.26	
10	-22.71	515.74	
60	27.29	744.74	
40	7.29	53.14	
45	12.29	151.04	
40	7.29	53.14	
35	2.29	5.24	
20	-12.71	161.54	
Sum		4358.86	

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Substituting our values:

$$MSE(S) = \frac{1}{14} \times 4358.86 = 311.35$$

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Substituting our values:

$$MSE(S) = \frac{1}{14} \times 4358.86 = 311.35$$

Interpretation:

• MSE = 311.35 square-minutes

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Substituting our values:

$$MSE(S) = \frac{1}{14} \times 4358.86 = 311.35$$

Interpretation:

- MSE = 311.35 square-minutes
- This measures the "impurity" or variation in our dataset

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Substituting our values:

$$MSE(S) = \frac{1}{14} \times 4358.86 = 311.35$$

Interpretation:

- MSE = 311.35 square-minutes
- · This measures the "impurity" or variation in our dataset
- Higher MSE = More variation in target values

Example: Computing MSE for Complete Dataset

Formula:

$$MSE(S) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Substituting our values:

$$MSE(S) = \frac{1}{14} \times 4358.86 = 311.35$$

Interpretation:

- MSE = 311.35 square-minutes
- · This measures the "impurity" or variation in our dataset
- Higher MSE = More variation in target values
- When we split the data, we want to reduce this MSE

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

where:

• S is the original dataset

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

- S is the original dataset
- S_{v_j} is the subset with attribute value v_j

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

- S is the original dataset
- S_{v_j} is the subset with attribute value v_j
- $|S_{v_j}|$ is the size of subset S_{v_j}

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

- S is the original dataset
- S_{v_j} is the subset with attribute value v_j
- $|S_{v_j}|$ is the size of subset S_{v_j}
- |S| is the size of original dataset

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

- S is the original dataset
- S_{v_j} is the subset with attribute value v_j
- $|S_{v_j}|$ is the size of subset S_{v_j}
- |S| is the size of original dataset

Definition: MSE Reduction Formula

For a split on attribute A with values v_1, v_2, \ldots, v_k :

$$\mathsf{MSE}\ \mathsf{Reduction} = \mathsf{MSE}(S) - \sum_{j=1}^k \frac{|S_{v_j}|}{|S|} \times \mathsf{MSE}(S_{v_j})$$

- S is the original dataset
- S_{v_j} is the subset with attribute value v_j
- $|S_{v_j}|$ is the size of subset S_{v_j}
- |S| is the size of original dataset

Splitting on Wind: Step 1 - Partition the Data

Example: Wind = Weak (8 points)				
Wind	Minutes]		
Weak	20			
Weak	40			
Weak	50			
Weak	60			
Weak	10			
Weak	60			
Weak	40			
Weak	35			
		1		

Example: Wind = Strong (6 points)			
Wind	Minutes]	
Strong	24		
Strong	10		
Strong	4		
Strong	45		
Strong	40		
Strong	20		

• Original dataset: 14 points, MSE = 311.35

Example: Wind = Strong (6 points)			
Wind	Minutes]	
Strong	24		
Strong	10		
Strong	4		
Strong	45		
Strong	40		
Strong	20		

- Original dataset: 14 points, MSE = 311.35
- **After split:** 8 points (Weak) + 6 points (Strong)

Example: Wind = Strong (6 points)			
Wind	Minutes]	
Strong	24		
Strong	10		
Strong	4		
Strong	45		
Strong	40		
Strong	20		
<u> </u>			

• Original dataset: 14 points, MSE = 311.35

• **After split:** 8 points (Weak) + 6 points (Strong)

• Next: Calculate MSE for each subset

Splitting on Wind: Step 2 - MSE for Wind=Weak

Example: Calculating $MSE(S_{Wind=Weak})$

Data points: 20, 40, 50, 60, 10, 60, 40, 35

Splitting on Wind: Step 2 - MSE for Wind=Weak

Example: Calculating $MSE(S_{Wind=Weak})$

Data points: 20, 40, 50, 60, 10, 60, 40, 35

Step 1: Calculate mean

$$\bar{y}_{\text{weak}} = \frac{20 + 40 + 50 + 60 + 10 + 60 + 40 + 35}{8} = \frac{315}{8} = 39.375$$

Splitting on Wind: Step 2 - MSE for Wind=Weak

Example: Calculating $MSE(S_{Wind=Weak})$

Data points: 20, 40, 50, 60, 10, 60, 40, 35

Step 1: Calculate mean

$$\bar{y}_{\text{weak}} = \frac{20 + 40 + 50 + 60 + 10 + 60 + 40 + 35}{8} = \frac{315}{8} = 39.375$$

Step		2:	Calculate	
	Уi	$y_i - 39.375$	$(y_i - 39.375)^2$	
	20	-19.375	375.39	
	40	0.625	0.39	
	50	10.625	112.89	
	60	20.625	425.39	
	10	-29.375	862.89	
	60	20.625	425.39	
	40	0.625	0.39	
	35	-4.375	19.14	
	Sum		2221.87	

squared differences

Example: Final MSE Calculation for Wind=Weak

$$MSE(S_{Wind=Weak}) = \frac{1}{8} \times 2221.87 = 277.73$$

Example: Final MSE Calculation for Wind=Weak

$$MSE(S_{Wind=Weak}) = \frac{1}{8} \times 2221.87 = 277.73$$

Example: Verification Check

• Original MSE for all data: 311.35

Example: Final MSE Calculation for Wind=Weak

$$MSE(S_{Wind=Weak}) = \frac{1}{8} \times 2221.87 = 277.73$$

Example: Verification Check

- Original MSE for all data: 311.35
- MSE for Wind=Weak subset: 277.73

Example: Final MSE Calculation for Wind=Weak

$$MSE(S_{Wind=Weak}) = \frac{1}{8} \times 2221.87 = 277.73$$

Example: Verification Check

- Original MSE for all data: 311.35
- MSE for Wind=Weak subset: 277.73
- Good sign: MSE decreased (less variation within this group)

Example: Final MSE Calculation for Wind=Weak

$$MSE(S_{Wind=Weak}) = \frac{1}{8} \times 2221.87 = 277.73$$

Example: Verification Check

- Original MSE for all data: 311.35
- MSE for Wind=Weak subset: 277.73
- Good sign: MSE decreased (less variation within this group)
- This subset is more "homogeneous" than the full dataset

Example: Calculating $MSE(S_{Wind=Strong})$

Data points: 24, 10, 4, 45, 40, 20

Example: Calculating $MSE(S_{Wind=Strong})$

Data points: 24, 10, 4, 45, 40, 20

Step 1: Calculate mean

$$\bar{y}_{\text{strong}} = \frac{24 + 10 + 4 + 45 + 40 + 20}{6} = \frac{143}{6} = 23.83$$

Example: Calculating $MSE(S_{Wind=Strong})$

Data points: 24, 10, 4, 45, 40, 20

Step 1: Calculate mean

$$\bar{y}_{\text{strong}} = \frac{24 + 10 + 4 + 45 + 40 + 20}{6} = \frac{143}{6} = 23.83$$

Step		۷.	Calculat
	Уi	$y_i - 23.83$	$(y_i - 23.83)^2$
	24	0.17	0.03
	10	-13.83	191.27
	4	-19.83	393.23
	45	21.17	448.17
	40	16.17	261.47
	20	-3.83	14.67
	Sum		1308.84

Calculate squared differences

Example: Calculating $MSE(S_{Wind=Strong})$

Data points: 24, 10, 4, 45, 40, 20

Step 1: Calculate mean

$$\bar{y}_{\text{strong}} = \frac{24 + 10 + 4 + 45 + 40 + 20}{6} = \frac{143}{6} = 23.83$$

Calculate Step 2: squared $(y_i - 23.83)^2$ $y_i - 23.83$ <u>24</u> 0.170.03 -13.83191.27 10 4 -19.83393.23 45 21.17 448.17 40 16.17 261.47 20 -3.8314.67 1308.84 Sum

 $MSE(S_{Wind=Strong}) = \frac{1}{6} \times 1308.84 = 218.14$

differences

Example: Final MSE Reduction Calculation

We have:

• MSE(S) = 311.35 (original dataset)

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Weighted MSE =
$$\frac{8}{14} \times 277.73 + \frac{6}{14} \times 218.14$$

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Weighted MSE =
$$\frac{8}{14} \times 277.73 + \frac{6}{14} \times 218.14$$

$$= 0.571 \times 277.73 + 0.429 \times 218.14$$

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Weighted MSE =
$$\frac{8}{14} \times 277.73 + \frac{6}{14} \times 218.14$$

$$= 0.571 \times 277.73 + 0.429 \times 218.14$$

$$= 158.60 + 93.58 = 252.18$$

Example: Final MSE Reduction Calculation

We have:

- MSE(S) = 311.35 (original dataset)
- $MSE(S_{Wind=Weak}) = 277.73$ (8 points)
- $MSE(S_{Wind=Strong}) = 218.14$ (6 points)

Weighted MSE
$$=$$
 $\frac{8}{14} \times 277.73 + \frac{6}{14} \times 218.14$

$$= 0.571 \times 277.73 + 0.429 \times 218.14$$

$$= 158.60 + 93.58 = 252.18$$

Key Points

What Does MSE Reduction = 59.17 Mean?

• Positive value: The split improves our model!

Key Points

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes

Key Points

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: $(59.17/311.35) \times 100\% = 19\%$ improvement

Key Points

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- **Percentage:** $(59.17/311.35) \times 100\% = 19\%$ improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Key Points

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- **Percentage:** $(59.17/311.35) \times 100\% = 19\%$ improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Key Points

What Does MSE Reduction = 59.17 Mean?

- Positive value: The split improves our model!
- Magnitude: We reduced prediction error by 59.17 square-minutes
- Percentage: (59.17/311.35) × 100% = 19% improvement
- Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

Quick Question!

For regression trees, what criterion do we use instead of Information Gain?

A) Information Gain

Quick Question!

- A) Information Gain
- B) Gini Impurity

Quick Question!

- A) Information Gain
- B) Gini Impurity
- C) Mean Squared Error (MSE) Reduction

Quick Question!

- A) Information Gain
- B) Gini Impurity
- C) Mean Squared Error (MSE) Reduction
- D) Accuracy

Quick Question!

- A) Information Gain
- B) Gini Impurity
- C) Mean Squared Error (MSE) Reduction
- D) Accuracy

Quick Question!

For regression trees, what criterion do we use instead of Information Gain?

- A) Information Gain
- B) Gini Impurity
- C) Mean Squared Error (MSE) Reduction
- D) Accuracy

Answer: C) Mean Squared Error (MSE) Reduction - For regression, we minimize MSE instead of maximizing information gain.

MSE Reduction for Regression Trees

Learnt Tree

Learnt Tree

37.5

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

• How do you find splits?

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute
- Find potential split points (midpoints).

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute
- Find potential split points (midpoints).
- For the above example, we have 5 potential splits: 44, 54, 66, 76, 85

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute
- Find potential split points (midpoints).
- For the above example, we have 5 potential splits: 44, 54, 66, 76, 85
- Calculate the weighted impurity for each split

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- How do you find splits?
- Sort by attribute
- Find potential split points (midpoints).
- For the above example, we have 5 potential splits: 44, 54, 66, 76, 85
- Calculate the weighted impurity for each split
- Choose the split with the lowest impurity

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

• Consider split at 44

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 44
- LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 44
- LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No
- ullet Entropy for LHS = 0, Entropy for RHS = 0.971

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 44
- LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No
- Entropy for LHS = 0, Entropy for RHS = 0.971
- Weighted Entropy = 0.971*5/6 = 0.808

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

• Consider split at 54

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 54
- LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 54
- LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No
- \bullet Entropy for LHS = 0, Entropy for RHS = 0.811

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 54
- LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No
- Entropy for LHS = 0, Entropy for RHS = 0.811
- Weighted Entropy = 0.811*4/6 = 0.541

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

• Consider split at 66

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 66
- LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 66
- LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No
- ullet Entropy for LHS = 0.918, Entropy for RHS = 0.918

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 66
- LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No
- Entropy for LHS = 0.918, Entropy for RHS = 0.918
- Weighted Entropy = 0.918*3/6 + 0.918*3/6 = 0.918

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

• Consider split at 76

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 76
- LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 76
- LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No
- ullet Entropy for LHS = 1, Entropy for RHS = 1

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

- Consider split at 76
- LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No
- Entropy for LHS = 1, Entropy for RHS = 1
- Weighted Entropy = 1*4/6 + 1*2/6 = 1

	_	·
Day	Temperature	Play Tennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

Day	Temperature	PlayTennis
D1	40	No
D2	48	No
D3	60	Yes
D4	72	Yes
D5	80	Yes
D6	90	No

Notebook: decision-tree-real-input-discrete-output.html

Example (DT of depth 1)

Example (DT of depth 2)

Example (DT of depth 3)

Example (DT of depth 4)

Example (DT of depth 5)

Example (DT of depth 6)

Example (DT of depth 7)

Example (DT of depth 8)

Example (DT of depth 9)

Quick Question!

When finding splits for continuous features, how do we determine candidate split points?

A) Use all feature values as split points

Quick Question!

- A) Use all feature values as split points
- B) Use midpoints between consecutive sorted feature values

Quick Question!

- A) Use all feature values as split points
- B) Use midpoints between consecutive sorted feature values
- C) Use random values within the feature range

Quick Question!

- A) Use all feature values as split points
- B) Use midpoints between consecutive sorted feature values
- C) Use random values within the feature range
- D) Use only the minimum and maximum values

Quick Question!

- A) Use all feature values as split points
- B) Use midpoints between consecutive sorted feature values
- C) Use random values within the feature range
- D) Use only the minimum and maximum values

Quick Question!

When finding splits for continuous features, how do we determine candidate split points?

- A) Use all feature values as split points
- B) Use midpoints between consecutive sorted feature values
- C) Use random values within the feature range
- D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted feature values - This ensures we test all meaningful boundaries between different class regions.

Let us consider the dataset given below

What would be the prediction for decision tree with depth 0?

Prediction for decision tree with depth 0. Horizontal dashed line shows the predicted Y value. It is the average of Y values of all datapoints.

What would be the decision tree with depth 1?

Decision tree with depth 1

The Decision Boundary

What would be the decision tree with depth 2?

Decision tree with depth 2

The Decision Boundary

Feature is denoted by X and target by Y. Let the split be at X = s. Define regions: $R_1 = \{x : x \le s\}$ and $R_2 = \{x : x > s\}$.

Feature is denoted by X and target by Y.

Let the split be at X = s.

Define regions: $R_1 = \{x : x \le s\}$ and $R_2 = \{x : x > s\}$.

For each region, compute the mean prediction:

$$c_1 = \frac{1}{|R_1|} \sum_{x_i \in R_1} y_i$$

$$c_2 = \frac{1}{|R_2|} \sum_{x_i \in R_2} y_i$$

Feature is denoted by X and target by Y.

Let the split be at X = s.

Define regions: $R_1 = \{x : x \le s\}$ and $R_2 = \{x : x > s\}$.

For each region, compute the mean prediction:

$$c_1 = \frac{1}{|R_1|} \sum_{x_i \in R_1} y_i$$

$$c_2 = \frac{1}{|R_2|} \sum_{x_i \in R_2} y_i$$
The loss function is

The loss function is:

Loss(s) =
$$\sum_{x_i \in R_1} (y_i - c_1)^2 + \sum_{x_i \in R_2} (y_i - c_2)^2$$

Feature is denoted by X and target by Y.

Let the split be at X = s.

Define regions: $R_1 = \{x : x \le s\}$ and $R_2 = \{x : x > s\}$.

For each region, compute the mean prediction:

$$c_{1} = \frac{1}{|R_{1}|} \sum_{x_{i} \in R_{1}} y_{i}$$

$$c_{2} = \frac{1}{|R_{2}|} \sum_{x_{i} \in R_{2}} y_{i}$$
The less function in

The loss function is:

Loss(s) =
$$\sum_{x_i \in R_1} (y_i - c_1)^2 + \sum_{x_i \in R_2} (y_i - c_2)^2$$

Our objective is to find the optimal split:

Algorithm: Finding the Optimal Split

1. Sort all data points (x_i, y_i) in increasing order of x_i .

Algorithm: Finding the Optimal Split

- 1. Sort all data points (x_i, y_i) in increasing order of x_i .
- 2. Evaluate the loss function for all candidate splits:

$$s = \frac{x_i + x_{i+1}}{2}$$
 for $i = 1, 2, \dots, n-1$

3. Select the split s^* that minimizes the loss function.

Draw a regression tree for Y = $\sin(X)$, $0 \le X \le 2\pi$

Dataset of Y = $\sin(X)$, $0 \le X \le 7$ with 10,000 points

Regression tree of depth 1

Decision Boundary

Regression tree with no depth limit is too big to fit in a slide. It has of depth 4. The decision boundaries are in figure below.

Quick Question!

What is the prediction function for a regression tree leaf node?

A) The median of target values in that region

Quick Question!

What is the prediction function for a regression tree leaf node?

- A) The median of target values in that region
- B) The mode of target values in that region

Quick Question!

What is the prediction function for a regression tree leaf node?

- A) The median of target values in that region
- B) The mode of target values in that region
- C) The mean of target values in that region

Quick Question!

What is the prediction function for a regression tree leaf node?

- A) The median of target values in that region
- B) The mode of target values in that region
- C) The mean of target values in that region
- D) A linear function of the features

Pop Quiz #29

Quick Question!

What is the prediction function for a regression tree leaf node?

- A) The median of target values in that region
- B) The mode of target values in that region
- C) The mean of target values in that region
- D) A linear function of the features

Pop Quiz #30

Quick Question!

What is the prediction function for a regression tree leaf node?

- A) The median of target values in that region
- B) The mode of target values in that region
- C) The mean of target values in that region
- D) A linear function of the features

Answer: C) The mean of target values in that region

- Each leaf predicts the average target value of training samples that reach that leaf.

• Unpruned trees: Can grow very deep and complex

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data
- Solution: Pruning to control model complexity

Stop growing tree before it becomes too complex:

• Maximum depth: Limit tree depth (e.g., max_depth = 5)

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has ¡ N samples

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has ¡ N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has ¡ N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples
- Maximum features: Consider only subset of features at each split

Advantages: Simple, computationally efficient

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has ¡ N samples
- Minimum samples per leaf: Ensure each leaf has ≥ M samples
- Maximum features: Consider only subset of features at each split
- Minimum impurity decrease: Only split if improvement ¿ threshold

Advantages: Simple, computationally efficient **Disadvantages**: May stop too early, miss good splits later

Grow full tree, then remove unnecessary branches:

• Algorithm:

- · Algorithm:
 - 1. Grow complete tree on training data

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain

- · Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$

- · Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes
- Disadvantages: More computationally expensive

Systematic approach to find optimal tree size:

• Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - \circ R(T): Misclassification error on validation set

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Gradually increase α

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Gradually increase α
 - 3. At each α , prune branches that increase cost

Systematic approach to find optimal tree size:

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)

Process:

- 1. Start with full tree ($\alpha = 0$)
- 2. Gradually increase α
- 3. At each α , prune branches that increase cost
- 4. Select α with best cross-validation performance

• Unpruned trees:

- Unpruned trees:
 - Low bias (can fit complex patterns)

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- · Heavily pruned trees:

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

· Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

· Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)
- Risk of underfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- · Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- Optimal pruning: Balances bias and variance

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- · Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- Optimal pruning: Balances bias and variance
- Cross-validation: Essential for finding this balance

• Start simple: Begin with restrictive pre-pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - o max_depth: Start with 3-10
 - o min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50
 - $_{\circ}$ ccp_alpha: Use for cost complexity pruning

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - o max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50
 - ccp_alpha: Use for cost complexity pruning
- Domain knowledge: Consider interpretability requirements

• Interpretability an important goal

- · Interpretability an important goal
- Decision trees: well known interpretable models

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- Greedy approach:

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- Greedy approach:
- Recursively split to maximize "performance gain"

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- · Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:
 - Can overfit easily!

- · Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- · Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:
 - Can overfit easily!
 - Empirically not as powerful as other methods

Entropy =
$$-P(+) \log_2 P(+) - P(-) \log_2 P(-)$$

$$P(+) = \frac{0.1 + 0.1 + 0.3}{1} = 0.5, \quad P(-) = \frac{0.3 + 0.1 + 0.1}{1} = 0.5$$

104 / 108

Candidate Line: $X1 = 4(X1^*)$

Entropy of
$$X1 \leq X1^* = E_{S(X1 < X1^*)}$$

$$P(+) = \frac{0.1 + 0.1}{0.1 + 0.1 + 0.3} = \frac{2}{5}$$
$$P(-) = \frac{3}{5}$$

Entropy of
$$X_1 > X_1^* = E_{S(X_1 > X_1^*)}$$

$$P(+) = \frac{3}{5}$$

$$P(-) = \frac{2}{5}$$

$$IG(X_1 = X_1^*) = E_S - \frac{0.5}{1} \cdot E_{S(X_1 < X_1^*)} - \frac{0.5}{1} \cdot E_{S(X_1 > X_1^*)}$$