NATIONAL UNIVERSITY OF SINGAPORE

EXAMINATION FOR

(Semester I: 2015/2016)

EE3331C/EE3331E - FEEDBACK CONTROL SYSTEMS

Nov 2015 - Time Allowed: 2.5 Hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains FOUR (4) questions and comprises SIX (6) printed pages.
- 2. Answer all FOUR (4) questions.
- 3. All questions carry equal marks.
- 4. This is a CLOSED BOOK examination.
- 5. Some relevant data are provided at the end of this examination paper.
- 6. Working MUST be provided clearly. Marks will not be awarded if working shown does not match the final answer or when there is no working.

Q.1 A closed-loop system and its root locus plot are shown in Figures Q1-a and Q1-b respectively where K>0.

Figure Q1-a: Feedback Control System.

Figure Q1-b: Root Locus plot.

(a) The plant is
$$G(s) = \frac{(s+a)}{(s^3+bs^2+cs+d)}$$
. Find a,b,c and d .

(5 marks)

(b) Find the range of K for the closed-loop system to be stable? Find all the corresponding closed-loop poles. Do not use your calculator to solve polynomial equations when computing the closed-loop poles.

(8 marks)

(c) The poles of the closed-loop system when K=21 are $-8,-1\pm j\sqrt{3}$. Find, a second-order transfer function that may be used to approximate the behaviour of the third-order closed-loop system, $\frac{Y(s)}{R(s)}$.

(7 marks)

(d) Using the transfer function obtained in part 1(c), calculate the time taken for the closed-loop step response to settle within $\pm 5\%$ of the final value (5% settling time). Hint: The unit step responses of second order systems is given by

$$\mathcal{L}^{-1}\left\{\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}\right\} = K\left\{1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}}\sin\left[\left(\omega_n\sqrt{1 - \zeta^2}\right)t + \tan^{-1}\left(\frac{\sqrt{1 - \zeta^2}}{\zeta}\right)\right]\right\}$$
(5 marks)

Q.2 Figure Q2 shows a feedback control system where $G(s) = \frac{k_{\alpha}}{s + \alpha}$.

Figure Q2: Feedback Control System.

- (a) Find the closed-loop transfer function, $\frac{Y(s)}{R(s)}$ in terms of k_1 , k_2 , k_{α} and α .

 (5 marks)
- (b) The feedback control system in Figure Q2 is to be designed to satisfy the following specifications:
 - The percentage maximum overshoot to a unit step input is 10%.
 - The steady-state error, (E(s) = R(s) Y(s)), for a ramp input to be equal to $\frac{a}{8}$, where a is the ramp magnitude.

Find k_1 and k_2 to meet the specifications. You may express your answer in terms of k_{α} , α and a.

(15 marks)

(c) Prove that no matter what the values of K_{α} and α are, the controller provides enough flexibility to place the poles anywhere in the complex (left-half) plane.

(5 marks)

Q.3 (a) Find the phase-crossover frequency, ω_{cp} , of the transfer function

$$\frac{10}{(s+2)(s^2+2s+5)}.$$

(4 marks)

(b) Sketch the Bode magnitude and phase plots of

$$G(s) = \frac{(s+2)(s-5)}{(s+1)(s+10)}.$$

(6 marks)

(c) The Nyquist contour and the Nyquist plot of the loop transfer function $L(s) = \frac{K(s-1)}{s(s+2)}$ are shown in Figure Q3. Find the range of K for which the resulting closed loop is stable.

(5 marks)

Figure Q3: The Nyquist contour and the Nyquist plot.

(d) Sketch the Nyquist plot for the loop transfer function

$$L(s) = \frac{K(1+4s)}{s^2(1+s)(1+2s)}.$$

(7 marks)

(e) How can you find the velocity error constant, k_v , of a type 1 system from its Bode plot?

(3 marks)

Q.4(a) Find the value of K such that gain margin is 10 dB for the loop transfer function

$$L(s) = \frac{K}{(s+10)(s+1)^2}.$$

(5 marks)

(b) What are the principal effects of lead compensation on system performance?

(4 marks)

(c) The uncompensated loop transfer function of a unity feedback system is

$$L_u(s) = \frac{40}{s(s+2)}.$$

i. Show that the steady-state error is 0.05 with unit ramp input.

(2 marks)

ii. What is the error if the reference is sinusoid with frequency 1 rad/sec and amplitude of 1 unit?

(4 marks)

iii. Design a compensator to improve the phase margin to 50° without compromising the performance for sinusoidal reference input.

(10 marks)

Hint: for compensator
$$C(s) = \frac{Ts+1}{\alpha Ts+1}$$
, $\omega_m = \frac{1}{T\sqrt{\alpha}}$, $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$

DATA SHEET:

SOME USEFUL LAPLACE TRANSFORM RULES

Transform of derivatives, $\mathcal{L}\left\{\frac{dy(t)}{dt}\right\}$	sY(s) - y(0)
Transform of integral, $\mathcal{L}\left\{\int_0^t y(au)d au\right\}$	$\frac{Y(s)}{s}$
Shift in time domain, $\mathcal{L}\{y(t-L)u(t-L)\}$	$Y(s)e^{-sL}$
Shift in s-domain, $\mathcal{L}\left\{y(t)e^{-at}\right\}$	Y(s+a)
Final Value Theorem	$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$

SOME USEFUL LAPLACE TRANSFORMS

Function, $f(t)$	Laplace Transform, $F(s)$	Function, $f(t)$	Laplace Transform, $F(s)$
delta function, $\delta(t)$	1	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
unit step, $u(t)$	$\frac{1}{s}$	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
ke^{-at}	$\frac{k}{s+a}$	$t - \frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{a}{s^2(s+a)}$

SOME DESIGN FORMULAE FOR UNDERDAMPED 2^{nd} ORDER SYSTEM

Standard 2^{nd} order system : $\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

X-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
Percentage overshoot, $\%M_p$	$\%M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$
Settling time (2%), t_s	$t_s = \frac{4}{\zeta \omega_n}$
Rise time, t_r	$t_r = \frac{1.8}{\omega_n}$
Peak time, t_p	$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$