Computing Equilibria of Repeated And Dynamic Games

Şevin Yeltekin

Carnegie Mellon University

ZICE 2014

January 2014

DYNAMIC GAMES

A specific example: Dynamic Oligopoly

Oligopoly game with endogenous productive capacity.

- Study the nature of dynamic competition and its evolution.
- Study the nature of cooperation and competition.
- Specifically:
 - Is ability to collude affected by the amount of capacity?
 - Do investment decisions increase gains from cooperation or do they deter enterance/competition?
 - Does investment present opportunities to deviate from collusive agreements?

Existing Literature in Dynamic Oligopoly

Existing literature in IO

- Two stage games
 - Firms choose capacities in stage one, prices in stage two
 - Kreps-Scheinkman (1983), Davidson-Deneckere (1986)
- Dynamic games
 - Firms choose capacities and prices over time, but only partial characterization
 - Benoit-Krishna (1987, 1991), Davidson-Deneckere (1990)

Goals revisited

- Limiting assumptions in previous work
 - Capacity chosen at t=0 , OR
 - No disinvestment, OR
 - Examine only equilibria supported by Nash reversion, OR
 - Restrictive functional forms for demand and cost functions
- Our goal: Examine full set of pure strategy Nash equilibria for dynamic games with arbitrary cost and demand functions.
- Study common features of equilibria.

Stage Game: Environment

- N infinitely lived firms.
- Individual state: $x_i \in X_i$
- Aggregate state: $x \in X = \times_{i=1}^{N} X_i$
- Finite action space for player i: A_i , i = 1, ..., N
- Action profiles: $A = \times_{i=1}^N A_i$
- Aggregate state evolution: $g: A \times X \to X$

Stage Game: Payoffs

- Per period payoff function $\Pi_i: A \times X \to \Re$
- Minimal payoffs

$$\underline{\Pi}_i \equiv \min_{a \in A, \ x \in X} \Pi_i(a, x)$$

Maximal payoffs

$$\overline{\Pi}_i \equiv \max_{a \in A, \ x \in X} \Pi_i(a, x)$$

Equilibrium payoffs contained in

$$\mathcal{W} = \times_{i=1}^{N} [\underline{\Pi}_i, \overline{\Pi}_i].$$

Graph of W is compact.

Dynamic Game

- Action space: A^{∞}
- h_t : t-period history:

$$\{\{a_s, x_s\}_{s=0}^{t-1}, x_t\}$$
 with $x_s = g(a_{s-1}, x_{s-1}), a_s \in A$

- Set of t-period histories: H_t
- Preferences:

$$w_i(a^{\infty}, x^{\infty}) = \frac{1 - \delta}{\delta} E_0 \sum_{t=1}^{\infty} \delta^t \Pi_i(a_t, x_t).$$

• Strategies: $\{\sigma_{i,t}\}_{t=0}^{\infty}$ with $\sigma_{i,t}: H_t \to A_i$.

Equilibrium Payoff Correspondence

- SPE payoff correspondence: $V^* \equiv \{V_x^* | x \in X\}$
- \mathcal{P} : set of all correspondences $W \subseteq \mathcal{W}: X \Longrightarrow \Re^N$ s.t.
 - ullet Graph of W is compact
 - Graph of W contained within Graph of \mathcal{P} .
 - V^* may be shown to be an element of \mathcal{P} .

Steps: Computing the Equilibrium Value Correspondence

- 1 Define an operator that maps today's equilibrium values to tomorrow's at each state.
- Show that this operator is monotone and the equilibrium correspondence is its largest fixed point.
- 3 Define approximation for operator and correspondences that
 - Represents correspondence parsimoniously on computer
 - Preserves monotonicity of operator
- 4 Define an appropriately chosen initial correspondence, apply the monotone operator until convergence.

Step 1: Set Valued Dynamic Programming

- Recursive formulation
- Each SPE payoff vector is supported by
 - profile of actions consistent with Nash today
 - continuation payoffs that are SPE payoffs
- ullet Construct self-generating correspondences to find V^*

Step 1: Operator

$$B^*: \mathcal{P} \to \mathcal{P}$$
.

• Let $W \in \mathcal{P}$.

$$B^*(W)_x = \bigcup_{(a,w)} \{ (1 - \delta)\Pi(a,x) + \delta w \}$$

subject to:

$$w \in W_{q(a,x)}$$

and for each $\forall i \in N, \, \forall \tilde{a} \in A_i$

$$(1 - \delta)\Pi_i(a, x) + \delta w_i \ge \Pi_i(\tilde{a}, a_{-i}, x) + \delta \mu_{i, q(\tilde{a}, a_{-i}, x)}$$

where $\mu_{i,x} = \min\{w_i | w \in W_x\}.$

Step 2: Self-generation

A correspondence W is self-generating if :

$$W \subseteq B^*(W)$$
.

An extension of the arguments in APS establishes the following:

- Graph of any self-generating correspondence is contained within $Graph(V^*)$,
- V^* itself is self-generating.

Self-generation visually

Self-generation visually

Step 2: Factorization

 $b \in B^*(\mathcal{W})_x$ if there is an action profile a and continuation payoff $w \in W_{g(a,x)}$, s.t

- b is value of playing a today in state x and receiving continuation value w ,
- for each i, player i will choose to play a_i
- x' = g(a, x) if no defection
- $\tilde{x} = g(\tilde{a}_i, a_{-i}, x)$ if defection.
- punishment value drawn from set $W_{\widetilde{x}}$.

Factorization I

Factorization II

Step 2: Eqm Value Correspondence as Fixed Point

• Monotonicity: B^* is monotone in the set inclusion ordering:

If
$$W_1 \subseteq W_2$$
, then $B^*(W_1) \subseteq B^*(W_2)$

- Compactness: B^* preserves compactness.
- Implications:
 - 1) V^* is the maximal fixed point of the mapping B^* ;
 - 2) V^* can be obtained by repeatedly applying B^* to any set that contains graph of V^* .

Step 3: Approximating Value Correspondences

- Represent candidate value correspondences on computer
- Preserve monotonicity of operator
- Proceed in 2 steps
 - 1 Convexify underlying game.
 - 2 Develop method for approximating convex-valued correspondences.

Step A: Public randomization

- Public lottery with support contained in $W_{g(a,x)}$.
- Public lottery specifies continuation values for the next period
 - Lottery dependent on current actions determines Nash equilibrium for next period.
 - Strategies now condition on histories of actions and lottery outcomes.
- Modified operator:

$$B(W) = co(B^*(co(W))), \qquad W \in \mathcal{P}.$$

- V equilibrium value correspondence of supergame with public randomization.
- B is monotone and V is the largest fixed point of B.

Dynamic Cournot with Endogenous Capacity

- Firm i has sales of $q_i \in Q_i(k_i)$, and unit cost c_i .
- c_M= maintenance cost of machine
- p_S = resale/scrap value of machine
- $c_F = \text{cost of a new machine}$
- Cost of capital maintenance and investment:

$$C(k_i, k_i') = \begin{cases} c_M \cdot k_i + c_F \cdot (k_i' - k_i) & \text{if } k_i' \ge k_i \\ c_M \cdot k_i - p_S \cdot (k_i - k_i') & \text{if } k_i' \le k_i \end{cases}$$

Profit: Dynamic Cournot with Capacity

• Firm i's current profits:

$$\Pi_i(\mathbf{q}, k_i, k_i') = q_i(p(\mathbf{q}) - c) - C(k_i, k_i'),$$

Linear demand curve:

$$p(\mathbf{q}) = \max \{a - \sum_{i=1}^{N} b_i q_i, 0\}.$$

Stage Game: Dynamic Cournot with Capacity

- Action Space:
 - sets of outputs
 - sets of capital stocks
- State Space:
 - set of feasible capital stocks
- $A_i = Q_i \times K_i$
- $X = \times_{i=1}^{N} K_i$

Dynamic Strategies and Payoffs

- Strategies: collection of functions that map from histories of outputs and capital stocks into current output and capital choices.
- Maximize average discounted profits.

$$\frac{(1-\delta)}{\delta} \sum_{t=0}^{t=\infty} \delta^t \Pi_{i,t}(\mathbf{q}, k_i, k_i')$$

Dynamic Duopoly

- Finite action version of the dynamic duopoly game.
- Discretize action space over q_i and k_i
- ullet Full capacity: Actions from interval $[0,ar{Q}]$
- \bullet Partial capacity: Actions from interval $[0,\bar{Q}/2]$
- Firms endowed with 1 machine each.
- 4 states: $(k_1, k_2) \in \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
- 72 hyperplanes for the approximation.
- Example 1: endowed with 1 machine, no entry exit
- Example 2: no endowment, entry and exit

Monopoly and Duopoly

$$\{a=6,\ b_1=b_2=0.3, \beta=0.8,\ c_F=2.5,\ c_M=1.5,\ p_S=1.5,\ c=0.9,\ \bar{Q}=6\} \\ p(q_1,q_2)\ =\ \max{\{a-b(q_1+q_2),0\}}.$$

Table: Monopoly

k	q	k'	V(k)
1	2.0	2	10 1600
1	3.0	2	18.1600
2	6.0	2	19.8000
3	8.5	3	20.1750
4	8.5	3	20.1750

Table: Symmetric Nash Collusion

k	q	k'	V(k)
1	3.00	1	9.9000
2	4.26	1	10.0875

Inner Approximation

Figure: Inner approximation

Error Bounds

Some Equilibrium Paths

Table: Alternating leadership

Node	v_1	v_2	k_1	k_2	q_1	q_2
1	11.9056	7.6628	1	1	2.95	2.95
2	13.0515	7.1230	2	1	6.00	2.54
3	12.8834	7.2910	2	1	5.90	2.64
4	12.6170	7.5536	2	1	5.59	2.95
5	11.8230	8.3070	2	1	5.59	2.95
6	11.6058	8.5131	2	1	5.59	2.95
7	10.9740	9.1151	2	1	5.59	2.95
8	10.5446	9.5231	2	1	5.59	2.95
9	10.0079	10.0332	2	1	5.49	2.95
10			1	2		

Strategies: Fluctuating Market Power

- Firms can do better than *symmetric* Nash collusion in state (2,2) but not in state (1,1). Temptation to deviate with increased capacity too great in (1,1).
- Frontier of equilibrium value sets supported by
 - continuation play where firms alternate having market power.

Table: Worst equilibrium path

Node	v_1	v_2	k_1	k_2	q_1	q_2
1	7.6627	7.6627	1	1	2.95	2.95
2	7.7479	7.7479	2	2	6.00	6.00
3	7.8099	7.8099	2	2	6.00	6.00
4	7.8874	7.8874	2	2	6.00	6.00
5	7.9842	7.9842	2	2	6.00	6.00
6	8.1053	8.1053	2	2	6.00	6.00
7	8.2566	8.2566	2	2	6.00	6.00
8	8.4458	8.4458	2	2	6.00	6.00
9	8.6823	8.6823	2	2	6.00	6.00
10	8.9779	8.9779	2	2	6.00	6.00
11	9.3474	9.3474	2	2	6.00	6.00
12	9.8092	9.8092	2	2	6.00	5.19
13	10.0204	10.0010	2	1	6.00	2.95

Worst Equilibrium

- Following one period of over investment and over production
 - Firms move towards Pareto frontier.
 - Continuation values increasing over time
 - Followed by alternating market power and higher period profits
- Nature of cooperation depends on state and on history.
- Markov perfect egm. cannot capture this.

Reversible and Irreversible Investment, Entry/Exit

Figure: Reversible Inv.

Figure: Irreversible lny.

Table: Irreversible investment equilibrium path

Node	v_1	v_2	k_1	k_2	q_1	q_2
1	3.9984	3.9984	0	0	0.00	0.00
2	6.2480	6.2480	2	2	6.00	6.00
3	6.3099	6.3099	2	2	6.00	6.00
4	6.3874	6.3874	2	2	6.00	6.00
5	6.4843	6.4843	2	2	6.00	6.00
6	6.6054	6.6054	2	2	6.00	6.00
7	6.7567	6.7567	2	2	6.00	6.00
8	6.9459	6.9459	2	2	6.00	6.00
9	7.1823	7.1823	2	2	6.00	6.00
10	7.4779	7.4779	2	2	6.00	5.90
11	7.8016	7.8405	2	2	6.00	3.20
12	6.9707	8.6952	2	2	5.30	3.60
13	6.2300	9.4427	2	2	3.10	5.60
14	6.6255	9.0482	2	2	4.10	4.50

Entry and Exit, $c_1 = 0.6, c_2 = 1.2$

Figure: Start at (1,0)

Entry and Exit , $c_1=0.6, c_2=1.2$

Figure: Start at (1,1)

Figure: $\{Start at, (0,2)\}$

Summary

- Computation of equilibrium value correspondence reveals
 - dynamic interaction and competition missed by simplifying assumptions
 - rich set of equilibrium outcomes that involve
 - fluctuating market power
 - over-investment and over-production when cooperation breaks down
 - worst equilibrium resembles prisoner's dilemma
 - best equilibria resemble battle of the sexes.
 - equilibria with current profit of leading firm less than smaller firm

Supergames with Continuous States

- Approximation substantially more complicated than discrete states.
- Goal: Find an approximation scheme with right properties that preserves outer/inner bounds.
- Use set-valued step functions.
- See unpublished mimeo: Sleet and Yeltekin (2003); "On the approximation of value correspondences".

Number of players

- So far examples have N=2.
- Algorithm applicable to ${\cal N}>2$
- Some computational issues.
 - Computational power. No of optimizations rise exponentially.
 - Choice of hyperplanes non-trivial. [Sampling on a sphere.]
 - Harder to define/calculate error bounds.

Sampling surface of sphere

Figure: Three firms, worst equilibrium path

Worst Equilibrium Path, 3 firms

Continuous Actions

- Discrete Action: Optimizations are LP problems.
- LP has nearly negligible approximation error.
- Using LP ensures outer and inner approx. do not have optimization error.
- NLP methods can introduce optimization errors that distort the inner/outer structure.
- My advice: Stick to discrete actions.

Example: Behavioral Economics Applied to Poverty

- Bernheim, Ray, Yeltekin (2013), "Poverty and Self Control"
- intertemporal allocation problem with credit constraints faced by an individual with quasi-hyperbolic preferences
- use method to study all SPE
- show that there is a poverty trap: no personal rule permits the individual to avoid depleting all liquid wealth. Poverty perpetuates itself by undermining the ability to exercise self-control.

Example: Dynamic Games in Macro Policy Making

- Credible policy designed as dynamic game between planner +continuum of agents with capital.
- One large strategic player + continuum of non-strategic players.
- How does one apply a variant of APS ?
- Use planner's value and tomorrow's marginal utility of capital.

Examples: Dynamic Games in Macro Policy Making

- Optimal Fiscal Policy in a Business Cycle Model without Commitment (Fernandez-Villaverde, Tsyvinski, 2002)
 - Use method to characterize Sustainable/Credible Equilibria.
 Compute eqm strategies and calibrate data to the US.
- On Credible Monetary Policy and Private Government Information (Chris Sleet, JET, 2001).
- Phelan and Stacchetti (Econometrica, 2001): Ramsey tax model w/ capital and no govt commitment.
 - Use planner's value and tomorrow's marginal utility of capital.