Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian system

Andrea Brugnoli

May 11, 2019

Plan

- 1 Introduction
- PH formulation of the Mindlin plate
 - Mindlin-Reissner model for thick Plates
 - Port-Hamiltonian formulation
- 3 Structure preserving discretization
 - Boundary control through forces and momenta
 - Boundary control through kinematic variables
- 4 Discretization procedure
 - Finite-dimensional system
 - Finite element choice
- Numerical simulations
 - Eigenvalues computation
 - Time domain simulations
- 6 Conclusion

Plan

- 1 Introduction
- 2 PH formulation of the Mindlin plate
- 3 Structure preserving discretization
- 4 Discretization procedure
- 5 Numerical simulations
- 6 Conclusion

PH framework and elasticity

The pH framework is appealing for its modularity and for being an interdisciplinary modeling tool.

Main points of interest in this presentation:

- extend the pH framework to linear elasticity in 2D¹;
- make use of the widespread finite element method^{2 3 4}

⁴D. Arnold and J. Lee. "Mixed Methods for Elastodynamics with Weak Symmetry". In: SIAM Journal on Numerical Analysis 52.6 (2014), pp. 2743–2769.

¹A. Macchelli, C. Melchiorri, and L. Bassi. "Port-based Modelling and Control of the Mindlin Plate". In: *Proceedings of the 44th IEEE Conference on Decision and Control.* 2005, pp. 5989–5994.

²P. Kotyczka, B. Maschke, and L. Lefèvre. "Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems". In: *Journal of Computational Physics* 361 (2018), pp. 442–476.

 $^{^3\}mathrm{F.}$ L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. "A structure-preserving Partitioned Finite Element Method for the 2D wave equation". In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control. Valparaíso, CL, 2018, pp. 1–6.

Plan

- Introduction
- 2 PH formulation of the Mindlin plate
 - Mindlin-Reissner model for thick Plates
 - Port-Hamiltonian formulation
- 3 Structure preserving discretization
- 4 Discretization procedure
- 5 Numerical simulations
- 6 Conclusion

The Mindlin-Reissner model

The classical model is a system 3PDEs:

$$\begin{cases} \rho h \frac{\partial^2 w}{\partial t^2} &= \operatorname{div}(\boldsymbol{q}), \\ \rho \frac{h^3}{12} \frac{\partial^2 \boldsymbol{\theta}}{\partial t^2} &= \boldsymbol{q} + \operatorname{Div}(\boldsymbol{M}), \end{cases}$$

with the parameters and variables

- ρ the material density;
- *h* the plate thickness;
- the vertical displacement scalar field w;
- the cross section deflection vector field $\boldsymbol{\theta} = (\theta_x, \theta_y)$;
- the bending symmetric tensor field M;
- \bullet shear stress vector field q;

The divergence of a tensor field is a vector defined column-wise as

$$\operatorname{Div}(\boldsymbol{M}) := \left(\sum_{\alpha=1}^{2} \partial_{x_{\alpha}} m_{\alpha\beta}\right)_{\beta=1,\dots,2}.$$

Constitutive equations

For an homogeneous, isotropic material (Greek indexes equal 1,2)

$$M_{lphaeta} = D_{lphaeta\iota\lambda}K_{\iota\lambda} \qquad q_lpha = C_{lphaeta}oldsymbol{\gamma}_eta$$

The fourth and second order tensor $D_{\alpha\beta\iota\lambda}$ (bending stiffness) and $C_{\alpha\beta}$ (shear stiffness) are symmetric, positive definite.

Constitutive equations

For an homogeneous, isotropic material (Greek indexes equal 1,2)

$$M_{lphaeta} = D_{lphaeta\iota\lambda}K_{\iota\lambda} \qquad q_lpha = C_{lphaeta}oldsymbol{\gamma}_eta$$

The fourth and second order tensor $D_{\alpha\beta\iota\lambda}$ (bending stiffness) and $C_{\alpha\beta}$ (shear stiffness) are symmetric, positive definite.

The variables

$$K := Grad(\theta), \qquad \gamma := grad(w) - \theta.$$

are the bending curvature and shear strain. The symmetric gradient of a vector field is defined as

$$\operatorname{Grad}(\boldsymbol{\theta}) := \frac{1}{2} \left(\nabla \boldsymbol{\theta} + \nabla^T \boldsymbol{\theta} \right).$$

Hamiltonian energy and pH system

The Hamiltonian (total energy) is given by

$$H = \frac{1}{2} \int_{\Omega} \rho h \left(\frac{\partial w}{\partial t} \right)^{2} + \frac{\rho h^{3}}{12} \frac{\partial \theta}{\partial t} \cdot \frac{\partial \theta}{\partial t} + \underbrace{M : K + q \cdot \gamma}_{\text{Potential energy}} d\Omega,$$
Kinetic energy

where $M: K := \sum_{\alpha,\beta} m_{\alpha\beta} \kappa_{\alpha\beta}$ is the tensor contraction.

Port Hamiltonian systems

Linear port Hamiltonian system

$$\begin{cases} \frac{\partial \alpha}{\partial t} = J \frac{\delta H}{\delta \alpha}, \\ H = <\alpha, \, Q\alpha>_{\mathcal{L}^2} \\ e := \frac{\delta H}{\delta \alpha} = Q\alpha, \end{cases}$$

Jargon:

- α : energies;
- *H*: Hamiltonian;
- \bullet e: coenergies.

Operators:

- *J*: skew symmetric unbounded operator;
- Q: bounded symmetric.

How do we get there?

Energy, coenergy variables

Energy variables:

$$egin{align} lpha_w &=
ho h rac{\partial w}{\partial t}, & oldsymbol{lpha}_{ heta} &= rac{
ho h^3}{12} rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{A}_{\kappa} &= oldsymbol{K}, & oldsymbol{lpha}_{\gamma} &= oldsymbol{\gamma}. \end{split}$$

Energy, coenergy variables

Energy variables:

$$egin{aligned} lpha_w &=
ho h rac{\partial w}{\partial t}, & oldsymbol{lpha}_{ heta} &= rac{
ho h^3}{12} rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{A}_{\kappa} &= oldsymbol{K}, & oldsymbol{lpha}_{\gamma} &= oldsymbol{\gamma}. \end{aligned}$$

The coenergies are given by the Hamiltonian variational derivative

$$egin{aligned} e_w &:= rac{\delta H}{\delta lpha_w} = rac{\partial w}{\partial t}, & oldsymbol{e}_ heta &:= rac{\delta H}{\delta oldsymbol{lpha}_ heta} = rac{\partial oldsymbol{ heta}}{\partial t}, \ oldsymbol{E}_\kappa &:= rac{\delta H}{\delta oldsymbol{A}_\kappa} = oldsymbol{M}, & oldsymbol{e}_{\epsilon_s} &:= rac{\delta H}{\delta oldsymbol{lpha}_\gamma} = oldsymbol{q}. \end{aligned}$$

PH system

The classical model is rewritten as port-Hamiltonian system using the energy and coenergy variables

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_{\theta} \\ \boldsymbol{A}_{\kappa} \\ \boldsymbol{\alpha}_{\gamma} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \operatorname{div} \\ 0 & 0 & \operatorname{Div} & \boldsymbol{I}_{2\times 2} \\ 0 & \operatorname{Grad} & 0 & 0 \\ \operatorname{grad} & -\boldsymbol{I}_{2\times 2} & 0 & 0 \end{bmatrix}}_{I} \begin{pmatrix} e_w \\ \boldsymbol{e}_{\theta} \\ \boldsymbol{E}_{\kappa} \\ \boldsymbol{e}_{\gamma} \end{pmatrix},$$

with J skew symmetric and

$$\begin{pmatrix} e_w \\ e_\theta \\ E_\kappa \\ e_\gamma \end{pmatrix} = \underbrace{\begin{bmatrix} 1/(\rho h) & 0 & 0 & 0 \\ 0 & 12/(\rho h^3) & 0 & 0 \\ 0 & 0 & \boldsymbol{D} & 0 \\ 0 & 0 & 0 & \boldsymbol{C} \end{bmatrix}}_{O} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_\theta \\ \boldsymbol{A}_\kappa \\ \boldsymbol{\alpha}_\gamma \end{pmatrix},$$

11/36

with Q coercive.

PH system

$$J = \begin{bmatrix} 0 & 0 & 0 & \text{div} \\ 0 & 0 & \text{Div} & \mathbf{I}_{2\times 2} \\ 0 & \text{Grad} & 0 & 0 \\ \text{grad} & -\mathbf{I}_{2\times 2} & 0 & 0 \end{bmatrix}, \quad Q = \begin{bmatrix} 1/(\rho h) & 0 & 0 & 0 \\ 0 & 12/(\rho h^3) & 0 & 0 \\ 0 & 0 & \mathbf{D} & 0 \\ 0 & 0 & 0 & \mathbf{C} \end{bmatrix}$$

Strong form for the Mindlin plate

$$\begin{cases} \frac{\partial \alpha}{\partial t} &= Je, \\ e &= Q\alpha, \\ H &= <\alpha, Q\alpha >_{\mathcal{L}^2} = <\alpha, e >_{\mathcal{L}^2} \end{cases}$$

$$\alpha := (\alpha_w, \boldsymbol{\alpha}_{\theta}, \boldsymbol{A}_{\kappa}, \boldsymbol{\alpha}_{\gamma}), \qquad e := (e_w, \boldsymbol{e}_{\theta}, \boldsymbol{E}_{\kappa}, \boldsymbol{e}_{\gamma}),$$

$$\alpha, e \in \mathcal{L}^2 = L^2(\Omega) \times L^2(\Omega, \mathbb{R}^2) \times L^2(\Omega, \mathbb{R}^{2 \times 2}_{\text{sym}}) \times L^2(\Omega, \mathbb{R}^2)$$

Boundary variables

Taking the energy rate and applying of the Green theorem

$$\dot{H} = \int_{\partial\Omega} \left\{ w_t q_n + \omega_n m_{nn} + \omega_s m_{ns} \right\} ds.$$

The dynamic boundary variable are defined as

$$egin{aligned} & ext{Shear Force} & q_n := oldsymbol{q} \cdot oldsymbol{n}, \ & ext{Flexural momentum} & m_{nn} := oldsymbol{M} : (oldsymbol{n} \otimes oldsymbol{n}), \ & ext{Torsional momentum} & m_{ns} := oldsymbol{M} : (oldsymbol{s} \otimes oldsymbol{n}), \end{aligned}$$

where $u \otimes v$ denotes the outer product of vectors. The corresponding power conjugated boundary variables are

> Vertical velocity $w_t := \partial_t w,$ Flexural rotation $\omega_n := \partial_t \boldsymbol{\theta} \cdot \boldsymbol{n},$ Torsional rotation $\omega_s := \partial_t \boldsymbol{\theta} \cdot \boldsymbol{s}.$

Boundary variables

Taking the energy rate and applying of the Green theorem

$$\dot{H} = \int_{\partial\Omega} \left\{ w_t q_n + \omega_n m_{nn} + \omega_s m_{ns} \right\} ds.$$

Plan

- Introduction
- 2 PH formulation of the Mindlin plate
- 3 Structure preserving discretization
 - Boundary control through forces and momenta
 - Boundary control through kinematic variables
- 1 Discretization procedure
- Numerical simulations
- 6 Conclusion

Main step to follow

The structure-preserving discretization consists of three steps:

- write the system in weak form;
- 2 perform integrations by parts to get the chosen boundary control;
- select the finite element spaces to achieve a finite-dimensional system.

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J = \begin{bmatrix} 0 & 0 & 0 & \text{div} \\ 0 & 0 & \text{Div} & \mathbf{I}_{2\times 2} \\ 0 & \text{Grad} & 0 & 0 \\ \text{grad} & -\mathbf{I}_{2\times 2} & 0 & 0 \end{bmatrix}$$

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{
m div} := egin{bmatrix} 0 & 0 & 0 & {
m div} \ 0 & 0 & {
m Div} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{
m grad} := egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & {
m Grad} & 0 & 0 \ {
m grad} & 0 & 0 & 0 \end{bmatrix}$$

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

$$J_{\mathbf{I}} := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{I}_{2\times 2} \\ 0 & 0 & 0 & 0 \\ 0 & -\mathbf{I}_{2\times 2} & 0 & 0 \end{bmatrix}$$

Decomposing J in operators to be integrated by parts

$$J = J_{\text{div}} + J_{\text{grad}} + J_{I}$$

From these definitions, it holds

$$J_{\rm div} = -J_{\rm grad}^*,$$

where A^* is the formal adjoint of operator A.

Basic Weak form (before the integration by parts)

$$\left(v, \frac{\partial \alpha}{\partial t}\right)_{\mathcal{L}^2} = (v, Je)_{\mathcal{L}^2}.$$

In order to preserve the pH structure the bilinear form (v, Je) has to give rise to a skew symmetric matrix. Two strategies naturally achieve this goal:

Basic Weak form (before the integration by parts)

$$\left(v, \frac{\partial \alpha}{\partial t}\right)_{\mathcal{L}^2} = (v, Je)_{\mathcal{L}^2}.$$

In order to preserve the pH structure the bilinear form (v, Je) has to give rise to a skew symmetric matrix. Two strategies naturally achieve this goal:

lacktriangledown integrating by parts $J_{
m div}$ (gradient formulation)

Basic Weak form (before the integration by parts)

$$\left(v, \frac{\partial \alpha}{\partial t}\right)_{\mathcal{L}^2} = (v, Je)_{\mathcal{L}^2}.$$

In order to preserve the pH structure the bilinear form (v, Je) has to give rise to a skew symmetric matrix. Two strategies naturally achieve this goal:

- integrating by parts J_{div} (gradient formulation)
- \odot integrating by parts $J_{\rm grad}$ (divergence formulation)

Basic Weak form (before the integration by parts)

$$\left(v, \frac{\partial \alpha}{\partial t}\right)_{\mathcal{L}^2} = (v, Je)_{\mathcal{L}^2}.$$

In order to preserve the pH structure the bilinear form (v, Je) has to give rise to a skew symmetric matrix. Two strategies naturally achieve this goal:

- lacktriangledown integrating by parts J_{div} (gradient formulation)
- \odot integrating by parts $J_{\rm grad}$ (divergence formulation)

Remark: other choices are possible but less physical.

Gradient formulation

If the operator J_{div} is integrated by parts

$$(v, Je) = j_{\text{grad}}(v, e) + f_N(v),$$

the bilinear form

$$\begin{split} j_{\text{grad}}(v,e) &= (J_{\text{div}}^*v,e) + (v,J_{\text{grad}}e) + (v,J_{\text{\emph{I}}}e), \\ &= (-J_{\text{grad}}v,e) + (v,J_{\text{grad}}e) + (v,J_{\text{\emph{I}}}e), \end{split}$$

is skew symmetric.

Gradient formulation

The functional

$$egin{aligned} f_N(v) &= \int_{\partial\Omega} \left\{ oldsymbol{v_w} q_n + oldsymbol{v_{\omega_n}} m_{nn} + oldsymbol{v_{\omega_s}} m_{ns}
ight\} \, \mathrm{d}s, \ &= \int_{\partial\Omega} oldsymbol{v_{\partial}} u_{\partial} \, \mathrm{d}s. \end{aligned}$$

express the boundary control u_{∂} in terms of forces and momenta:

$$\mathbf{u}_{\partial} = \operatorname{Trace}\begin{pmatrix} q_n \\ m_{nn} \\ m_{ns} \end{pmatrix}, \qquad \mathbf{y}_{\partial} = \operatorname{Trace}\begin{pmatrix} w_t \\ \omega_n \\ \omega_s \end{pmatrix}.$$

Divergence formulation

If the operator J_{grad} is integrated by parts

$$(v, Je) = j_{\text{div}}(v, e) + f_D(v), \tag{1}$$

the bilinear form

$$\begin{split} j_{\text{div}}(v,e) &= (v, J_{\text{div}}e) + (J_{\text{grad}}^*v, e) + (v, J_Ie), \\ &= (v, J_{\text{div}}e) + (-J_{\text{div}}v, e) + (v, J_Ie), \end{split}$$

is skew symmetric.

Divergence formulation

The functional

$$f_D(v) = \int_{\partial\Omega} \left\{ v_{q_n} \mathbf{w}_t + v_{m_{nn}} \mathbf{\omega}_n + v_{m_{ns}} \mathbf{\omega}_s \right\} ds,$$

$$= \int_{\partial\Omega} v_{\partial} \mathbf{u}_{\partial} ds.$$

expresses the boundary controls u_{∂} in terms of linear and angular velocities:

Plan

- Introduction
- 2 PH formulation of the Mindlin plate
- 3 Structure preserving discretization
- 4 Discretization procedure
 - Finite-dimensional system
 - Finite element choice
- 5 Numerical simulations
- 6 Conclusion

Homogeneous boundary conditions

Homogeneous boundary conditions:

- Clamped (C): $\mathbf{w_t} = 0$, $\mathbf{\omega_n} = 0$, $\mathbf{\omega_s} = 0$;
- Simply supported hard (S): $w_t = 0$, $m_{nn} = 0$, $\omega_s = 0$;
- Free (F): $q_n = 0$, $m_{nn} = 0$, $m_{ns} = 0$.

The gradient formulation is adopted to discretize the system. This implies that

- variables in Blue are imposed weakly by setting $f_N(v) = 0$
- variables in Red have to be imposed strongly (by select a functional space that incorporates those or by introducing Lagrange multipliers)

Galerkin method

Test and co-energy variables are discretized by a Galerkin Method, while energy variables are retrieve using the relation $\alpha = Q^{-1}e$.

Finite-dimensional system

Replacing the approximated variables into the weak form

$$\begin{bmatrix} \boldsymbol{M} & 0 \\ 0 & 0 \end{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{bmatrix} \boldsymbol{J}_{\mathrm{grad}} & \boldsymbol{G}_D \\ -\boldsymbol{G}_D^T & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{\lambda} \end{pmatrix} + \begin{bmatrix} \boldsymbol{B}_N \\ 0 \end{bmatrix} \boldsymbol{u}_N$$

- G_D accounts for Dirichlet (essential) BCs;
- B_N account for inhomogeneous Neumann (natural) BCs;

21/36

Finite element (FE) choice

Domain of J:

$$\mathcal{D}(J) = H^1(\Omega) \times H^1(\Omega, \mathbb{R}^2) \times H^{\mathrm{Div}}(\Omega, \mathbb{R}^{2 \times 2}_{\mathrm{sym}}) \times H^{\mathrm{div}}(\Omega, \mathbb{R}^2) + \mathrm{BCs}.$$

Heuristic for selecting stable FE

Given the symmetric structure of the problem, all variables (v, e, λ) are discretized by the same FE space (same family, same degree). The analysis were conducted using two different spaces:

- the first order Lagrange polynomials \mathbb{P}_1 ;
- 2 the second order Lagrange polynomials \mathbb{P}_2 .

22 / 36

Plan

- Introduction
- 2 PH formulation of the Mindlin plate
- 3 Structure preserving discretization
- 4 Discretization procedure
- 5 Numerical simulations
 - Eigenvalues computation
 - Time domain simulations
- 6 Conclusion

Eigenvalues analysis for a square plate

Non-dimensional eigenfrequencies:

$$\widehat{\omega}_{mn}^{h} = \omega_{mn}^{h} L \left(\frac{2(1+\nu)\rho}{E} \right)^{1/2} \tag{1}$$

m and n being the numbers of half-waves occurring in the modes shapes in the x and y directions. The only parameters which influence the results are the Poisson's ratio $\nu=0.3$ (fixed) and the thickness-to-span ratio h/L.

The error is computed by 5

$$\varepsilon = \frac{\operatorname{abs}(\widehat{\omega}_{mn}^h - \omega_{mn}^{DR})}{\omega_{mn}^{DR}}.$$
 (2)

24 / 36

The eigenproblem is solved using the QR algorithm.

⁵D.J. Dawe and O.L. Roufaeil. "Rayleigh-Ritz vibration analysis of Mindlin plates". In: *Journal of Sound and Vibration* 69.3 (1980), pp. 345–359.

Eigenvalues for the thick case h/L = 0.1

BCs	Mode	N = 10	N = 20	D-R
CCCC	$\widehat{\omega}_{11}$	1.5999	1.5917	1.594
	$\widehat{\omega}_{21}$	3.0615	3.0410	3.046
CCCC	$\widehat{\omega}_{12}$	3.0615	3.0410	3.046
	$\widehat{\omega}_{22}$	4.3161	4.2682	4.285
	$\widehat{\omega}_{11}$	0.9324	0.9324	0.930
SSSS	$\widehat{\omega}_{21}$	2.2227	2.2226	2.219
ממממ	$\widehat{\omega}_{12}$	2.2227	2.2226	2.219
	$\widehat{\omega}_{22}$	3.4142	3.3608	3.406
	$\widehat{\omega}_{11}$	1.3111	1.3013	1.302
SCSC	$\widehat{\omega}_{21}$	2.4155	2.3966	2.398
SCSC	$\widehat{\omega}_{12}$	2.9082	2.8871	2.888
	$\widehat{\omega}_{22}$	3.8906	3.8458	3.852
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	1.0855	1.0982	1.089
	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7636	1.7461	1.758
	$\widehat{\omega}_{\frac{1}{2}2}^2$	2.6696	2.6575	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	3.2248	3.1997	3.216

Table: Eigenvalues for h/L = 0.1 using \mathbb{P}_1 :

reference, $\epsilon < 2\%$.

Eigenvalues for the thick case h/L = 0.1

BCs	Mode	N = 5	N = 10	D-R
	$\widehat{\omega}_{11}$	1.5976	1.5914	1.594
CCCC	$\widehat{\omega}_{21}$	3.0584	3.0405	3.046
CCCC	$\widehat{\omega}_{12}$	3.0677	3.0405	3.046
	$\widehat{\omega}_{22}$	4.3109	4.2662	4.285
	$\widehat{\omega}_{11}$	0.9304	0.9302	0.930
SSSS	$\widehat{\omega}_{21}$	2.2223	2.2194	2.219
ממממ	$\widehat{\omega}_{12}$	2.2224	2.2194	2.219
	$\widehat{\omega}_{22}$	3.4128	3.4061	3.406
	$\widehat{\omega}_{11}$	1.3053	1.3004	1.302
SCSC	$\widehat{\omega}_{21}$	2.4040	2.3946	2.398
SCSC	$\widehat{\omega}_{12}$	2.9060	2.8858	2.888
	$\widehat{\omega}_{22}$	3.8721	3.8415	3.852
	$\widehat{\omega}_{\frac{1}{2}1}$	1.0845	1.0797	1.089
CCCF	$\widehat{\omega}_{\frac{3}{2}1}^2$	1.7559	1.7425	1.758
	$\widehat{\omega}_{\frac{1}{2}2}^2$	2.6762	2.6547	2.673
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	3.2186	3.1954	3.216

Table: Eigenvalues for h/L = 0.1 using \mathbb{P}_2 : reference, $\boldsymbol{\varepsilon} < 2\%$, $\boldsymbol{\varepsilon} < 5\%$, $\boldsymbol{\varepsilon} < 15\%$.

Eigenvalues for the thin case h/L = 0.01

BCs	Mode	N = 10	N = 20	D-R
CCCC	$\widehat{\omega}_{11}$	0.1967	0.1765	0.1754
	$\widehat{\omega}_{21}$	0.4030	0.3604	0.3576
	$\widehat{\omega}_{12}$	0.4030	0.3604	0.3576
	$\widehat{\omega}_{22}$	0.6431	0.5358	0.5274
SSSS	$\widehat{\omega}_{11}$	0.1706	0.1128	0.0963
	$\widehat{\omega}_{21}$	0.3576	0.2660	0.2406
	$\widehat{\omega}_{12}$	0.3576	0.2660	0.2406
	$\widehat{\omega}_{22}$	0.5803	0.4442	0.3848
	$\widehat{\omega}_{11}$	0.1864	0.1487	0.1411
SCSC	$\widehat{\omega}_{21}$	0.3649	0.2829	0.2668
SCSC	$\widehat{\omega}_{12}$	0.3987	0.3485	0.3377
	$\widehat{\omega}_{22}$	0.6075	0.4933	0.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1238	0.1166	0.1171
	$\widehat{\omega}_{\frac{3}{2}1}^2$	0.2207	0.1954	0.1951
	$\widehat{\omega}_{\frac{1}{2}2}^2$	0.3204	0.3078	0.3093
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	0.4144	0.3751	0.3740

Table: Eigenvalues for h/L = 0.01 using \mathbb{P}_1 : reference, $\varepsilon < 2\%$, $\varepsilon < 5\%$, $\varepsilon < 15\%$, $\varepsilon < 30\%$, $\varepsilon < 50\%$, $\varepsilon < 80\%$.

Eigenvalues for the thin case h/L = 0.01

BCs	Mode	N = 5	N = 10	D-R
	$\widehat{\omega}_{11}$	0.1872	0.1762	0.1754
CCCC	$\widehat{\omega}_{21}$	0.3725	0.3598	0.3576
CCCC	$\widehat{\omega}_{12}$	0.4055	0.3598	0.3576
	$\widehat{\omega}_{22}$	0.6043	0.5335	0.5274
	$\widehat{\omega}_{11}$	0.0963	0.0963	0.0963
SSSS	$\widehat{\omega}_{21}$	0.2422	0.2406	0.2406
	$\widehat{\omega}_{12}$	0.2430	0.2406	0.2406
	$\widehat{\omega}_{22}$	0.3874	0.3848	0.3848
	$\widehat{\omega}_{11}$	0.1492	0.1418	0.1411
SCSC	$\widehat{\omega}_{21}$	0.2827	0.2683	0.2668
SCSC	$\widehat{\omega}_{12}$	0.3608	0.3394	0.3377
	$\widehat{\omega}_{22}$	0.4940	0.4654	0.4608
CCCF	$\widehat{\omega}_{\frac{1}{2}1}$	0.1197	0.1169	0.1171
	$\widehat{\omega}_{\frac{3}{2}1}^2$	0.2092	0.1960	0.1951
	$\widehat{\omega}_{\frac{1}{2}2}$	0.3188	0.3089	0.3093
	$\widehat{\omega}_{\frac{5}{2}1}^{2}$	0.3938	0.3757	0.3740

Table: Eigenvalues for h/L = 0.01 using \mathbb{P}_2 :
reference, $\mathbf{e} \in 2\%$, $\mathbf{e} \in 5\%$, $\mathbf{e} \in 15\%$.

Settings for time domain simulation

We consider a square plate under different BCs and external excitations.

- Finite element space \mathbb{P}_2 ;
- Number of finite elements 10×10 ;
- Integrator Störmer-Verlet;
- Integration step $1[\mu s]$;
- Total simulation time $t_{\text{fin}} = 10[ms]$.

First simulation

Boundary conditions:

- $x = 0 \rightarrow \text{Clamped}$,
- $x = 1 \rightarrow \text{Free}$,
- $y = 0 \rightarrow q_n = f(t), m_{nn} = m_{ns} = 0,$
- $y = 1 \rightarrow q_n = -f(t), m_{nn} = m_{ns} = 0,$

where

$$f(t) = \begin{cases} 10^6 \ [Pa \cdot m], & \forall t < 0.25 \ t_{\text{fin}}, \\ 0, & \forall t \ge 0.25 \ t_{\text{fin}}. \end{cases}$$
 (3)

First simulation

Simulation 1

First simulation

Second simulation

Boundary conditions: The set of BC for the second simulation is

- $x = 0 \rightarrow \text{Clamped}$,
- $x = 1 \rightarrow q_n = g(y, t), m_{nn} = m_{ns} = 0,$
- $y = 0 \rightarrow \text{Clamped}$,
- $y = 1 \rightarrow \text{Clamped}$,

where

$$g(y,t) = \begin{cases} 10^6 \sin\left(\frac{2\pi}{L}y\right) & [Pa \cdot m], \quad \forall t < 0.1 \, t_{\text{fin}}, \\ 0, & \forall t \ge 0.1 \, t_{\text{fin}}. \end{cases}$$
(3)

Second simulation

Simulation 2

Second simulation

Third simulation

Clamped plate subjected to gravity

Simulation 3

Third simulation

Plan

- Introduction
- 2 PH formulation of the Mindlin plate
- 3 Structure preserving discretization
- 4 Discretization procedure
- 5 Numerical simulations
- 6 Conclusion

Conclusion

Present and future developments:

- extend the port Hamiltonian formalism to thin plate⁶;
- model reduction for pHDAE of second order⁷;

⁶A. Brugnoli et al. "Port-Hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates". arXiv preprint:1809.11136, Accepted for publication in Applied Mathematical Modelling. 2019.

⁷H. Egger et al. "On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks". In: *SIAM Journal on Scientific Computing* 40.1 (2018), A331–A365. DOI: 10.1137/17M1125303.

Thank you for your attention. Questions?

References I

D. Arnold and J. Lee. "Mixed Methods for Elastodynamics with Weak Symmetry". In: SIAM Journal on Numerical Analysis 52.6 (2014), pp. 2743–2769.

A. Brugnoli et al. "Port-Hamiltonian formulation and symplectic discretization of plate models. Part I: Mindlin model for thick plates". arXiv preprint:1809.11131, Accepted for publication in Applied Mathematical Modelling. 2019.

A. Brugnoli et al. "Port-Hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates". arXiv preprint:1809.11136, Accepted for publication in Applied Mathematical Modelling. 2019.

F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. "A structure-preserving Partitioned Finite Element Method for the 2D wave equation". In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control. Valparaíso, CL, 2018, pp. 1–6.

References II

D.J. Dawe and O.L. Roufaeil. "Rayleigh-Ritz vibration analysis of Mindlin plates". In: *Journal of Sound and Vibration* 69.3 (1980), pp. 345–359.

R. Durán et al. "Approximation of the vibration modes of a plate by Reissner-Mindlin equations". In: *Mathematics of Computation of the American Mathematical Society* 68.228 (1999), pp. 1447–1463.

H. Egger et al. "On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks". In: *SIAM Journal on Scientific Computing* 40.1 (2018), A331–A365. DOI: 10.1137/17M1125303.

P. Kotyczka, B. Maschke, and L. Lefevre. "Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems". In: Journal of Computational Physics 361 (2018), pp. 442 -476.

A. Logg, K. A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012.

A. Macchelli, C. Melchiorri, and L. Bassi. "Port-based Modelling and Control of the Mindlin Plate". In: *Proceedings of the 44th IEEE Conference on Decision and Control.* 2005, pp. 5989–5994.

References III

P. F. Yao. Modeling and Control in Vibrational and Structural Dynamics. 2011. DOI: 10.1201/b11042.