Static-15

Title

Closed section beam under a torsional moment

Description

Find the shear stresses and the angle of twist for a square box cantilever beam subjected to a torsional moment at the free end.

(a) Cantilever beam under a torsional moment

Structural geometry and analysis model

Model

Analysis Type

3-D static analysis

Unit System

in, lbf

Dimension

Length 1500 in Width 150 in Depth 150 in

Element

Plane stress element

Material

Modulus of elasticity E = 7.5 psiPoisson's ratio v = 0.3

Element Property

Size $a \times b = 375 \text{ in} \times 75 \text{ in}$ Thickness t = 3 in

Boundary Condition

Nodes 33~40; Constrain all DOFs.

Load Case

Torsional moment is applied to the free end, expressed in terms of equivalent couples.

Torsional moment = 300.0 lbf-in

Equivalent loads, $P_1 = 0.25$ lbf and $P_2 = 0.5$ lbf (Refer to the figure shown above)

Results

Stresses

Elem	Load	Node	Sig-XX (lbf/in*)	Sig-YY (lbf/in*)	Sig-ZZ (lbf/in*)	Sig-XY (lbf/in*)	Sig-YZ (lbf/in*)	Sig-XZ (lbf/in*)	Sig-Max (Ibf/in*)	Sig-Min (Ibf/in*)	Angle ([deg])	Sig-EFF (Ibf/in=)
1	CASE1	Cent	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
- 1	CASE1	1	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
1	CASE1	2	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
- 1	CASE1	10	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
1	CASE1	9	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
2	CASE1	Cent	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
2	CASE1	2	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
2	CASE1	3	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
2	CASE1	11	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
2	CASE1	10	0,00e+000	0,00e+000	0,00e+000	-2,22e-003	0,00e+000	0,00e+000	2,22e-003	-2,22e-003	-45,0000	3,85e-003
3	CASE1	Cent	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
3	CASE1	3	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
3	CASE1	4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
3	CASE1	12	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
3	CASE1	11	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
4	CASE1	Cent	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
4	CASE1	4	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
4	CASE1	5	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
4	CASE1	13	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003
4	CASE1	12	0,00e+000	0,00e+000	0,00e+000	0,00e+000	0,00e+000	2,22e-003	2,22e-003	-2,22e-003	-45,0000	3,85e-003

Displacements

Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
1	CASE1	0,000000	-1,155556	-1,155556	0,000000	0,000000	0,000000
2	CASE1	0,000000	-1,155556	0,000000	0,000000	0,000000	0,000000
3	CASE1	0,000000	-1,155556	1,155556	0,000000	0,000000	0,000000
4	CASE1	0,000000	0,000000	1,155556	0,000000	0,000000	0,000000
5	CASE1	0,000000	1,155556	1,155556	0,000000	0,000000	0,000000
6	CASE1	0,000000	1,155556	0,000000	0,000000	0,000000	0,000000
7	CASE1	0,000000	1,155556	-1,155556	0,000000	0,000000	0,000000
8	CASE1	0,000000	0,000000	-1,155556	0,000000	0,000000	0,000000

Comparison of Results

Theoretical calculation

Shear stress
$$(\tau_{xy}) = \frac{T}{2a^2t} = 0.002222$$
 psi

Angle of twist
$$(\phi) = \frac{TL}{ta^3 G} = 0.0154074 \text{ rad}$$

Where, T: Torsional moment (300 lbf-in)

L : Length of the cantilever beam (1500 in)

a : Section dimension (150 in)t : Thickness of the box (3 in)

G: Shear modulus of elasticity (E/2(1+v)=7.5/2(1+0.3)=2.8846)

FEM analysis

Shear stress $(\tau_{xy}) = 0.0022222$ psi (all elements)

Angle of twist (ϕ) = (nodal displacement)/(distance from the center to the node)

=
$$(\sqrt{1.155556^2 + 1.155556^2})/(\sqrt{2} \cdot 150/2)$$

= 0.0154074 rad

* Angle of twist is calculated using the displacement at the node 1.

Units: psi, rad

Result	Theoretical	MIDAS/Civil		
Shear stress (τxy)	0.0022222	0.0022222		
Angle of twist (ϕ)	0.0154074	0.0154074		

References

Timoshenko, S. and Goodier, J. N., "Theory of Elasticity", McGraw-Hill, New York, 951, p. 299.