The coefficients of the multiple regression model are estimated using sample data with k independent variables

- Interpretation of the Slopes: (referred to as a Net Regression Coefficient)
 - b_1 =The change in the mean of Y per unit change in X_1 , taking into account the effect of X_2 (or net of X_2)
 - $-b_0$ Y intercept. It is the same as simple regression.

- Binary logistic regression is a type of regression analysis where the dependent variable is a dummy variable (coded 0, 1)
- Why not just use ordinary least squares?
 Ŷ = a + bx
 - You would typically get the correct answers in terms of the sign and significance of coefficients
 - However, there are three problems

OLS on a dichotomous dependent variable:

- However, there are three problems
 - The error terms are heteroskedastic (variance of the dependent variable is different with different values of the independent variables
 - 2. The error terms are not normally distributed
 - 3. And *most importantly*, for purpose of interpretation, the predicted probabilities can be greater than 1 or less than 0, which can be a problem for subsequent analysis.

The "logit" model solves these problems:

```
- \ln[p/(1-p)] = a + BX
or
- p/(1-p) = e^{a + BX}
- p/(1-p) = e^a (e^B)^X
Where:
"In" is the natural logarithm, log_{exp}, where e=2.71828
"p" is the probability that Y for cases equals 1, p (Y=1)
"1-p" is the probability that Y for cases equals 0,
  1 - p(Y=1)
"p/(1-p)" is the odds
In[p/1-p] is the log odds, or "logit"
```

Logistic Distribution

 Transformed, however, the "log odds" are linear.

In[p/(1-p)]

Comparing the LP and Logit Models

- The logistic regression model is simply a non-linear transformation of the linear regression.
- The logistic distribution is an S-shaped distribution function (cumulative density function) which is similar to the standard normal distribution and constrains the estimated probabilities to lie between 0 and 1.

Logistic Distribution

With the logistic transformation, we're fitting the "model" to the data better.

Transformed, however, the "log odds" are

10

linear. Ln[p/(1-p)] X = 010 20

- You're likely feeling overwhelmed, perhaps anxious about understanding this.
- Don't worry, coherence is gained when you see similarity to OLS regression:
 - 1. Model fit
 - 2. Interpreting coefficients
 - 3. Inferential statistics
 - 4. Predicting Y for values of the independent variables (the most difficult, but we'll make it easy)

Review & Summary

- In logistic regression, we predict Z, not p, because of Z's convenient mathematical properties
- Z is a linear function of the predictors, and we can translate that prediction into a probability.

Logistic regression predicts the natural logarithm of the odds

• The natural log of the odds is called the "logit" = "Z"

• Formula:

$$Z = log (p/1-p) = B_0 + B_1.X_1 + B_2.X_2 + B_3.X_3...e$$

- B's in logistic regression are analogous to b's in OLS
- B_1 is the average change in Z per one unit increase in X_1 , controlling for the other predictors
- We calculate changes in the log odds of the dependent variable, not changes in the dependent variable (as in OLS).

Interpreting logistic regression results

- In SPSS output, look for:
 - 1) Model chi-square (equivalent to F)
 - 2) WALD statistics and "Sig." for each B
 - 3) Logistic regression coefficients (B's)
 - 4) Exp(B) = odds ratio

Interpreting logistic coefficients

- Identify which predictors are significant by looking at "Sig."
- Look at the sign of B₁
 - * If B_1 is positive, a unit change in x_1 is raising the odds of the event happening, after controlling for the other predictors
 - * If B_1 is negative, the odds of the event decrease with a unit increase in x_1 .

Interpreting the odds ratio

- Look at the column labeled Exp(B)
- \triangleright Exp(B) means "e to the power B" or e^B
- > Called the "odds ratio" (Gr. symbol: Ψ)
- >e is a mathematical constant used as the "base" for natural logarithms
- In logistic regression, e^B is the factor by which the odds change when X increases by one unit.

Interpreting the odds ratio

- New odds / Old odds = e^B = odds ratio
- e.g. if the odds-ratio for EDUC is 1.05, that means that for every year of education, the odds of the outcome (e.g. voting) increase by a factor of 1.05.
- Odds ratios > 1 indicate a positive relationship between IV and DV (event likely to occur)
- Odds ratios < 1 indicate a negative relationship between IV and DV (event less likely to occur)

Let's come up with an example ... run it ... and interpret it ...

- A researcher is interested in the likelihood of gun ownership in the US, and what would predict that.
- She uses the GSS to test the following research hypotheses:
 - 1. Men are more likely to own guns than are women
 - 2. Older people are more likely to own guns
 - 3. White people are more likely to own guns than are those of other races
 - 4. More educated people are less likely to own guns

Variables are measured as such:

Dependent:

Havegun: no gun = 0, own gun(s) = 1

Independent:

- 1. Sex: men = 0, women = 1
- 2. Age: entered as number of years
- 3. White: all other races = 0, white = 1
- 4. Education: entered as number of years

SPSS: Analyze → Regression → Binary Logistic Enter your variables and for output below, under options, I checked "iteration history"

SPSS Output: Some descriptive information first...

Logistic Regression

Case Processing Summary

Unweighted Case	S	N	Percent	
Selected Cases	Selected Cases Included in Analysis			
	Missing Cases	698	34.5	
	Total	2023	100.0	
Unselected Cases	3	0	.0	
Total		2023	100.0	

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
.00	0
1.00	1

Goodness-of-fit statistics for new model come next...

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	180.810	4	.000
	Block	180.810	4	.000
	Model	180.810	4	.000

Test of new model vs. interceptonly model (the null model), based
on difference of -2LL of each. The
difference has a X² distribution. Is
new -2LL significantly smaller?

Step	-2 Log	Cox & Snell R	Nag elker ke R
	likelihood	Square	Square
1	1532.747 ^a	.128	.176

These are attempts to replicate R² using information based on -2 log likelihood, (C&S cannot equal 1)

The -2LL number is "ungrounded," but it has a χ^2 distribution. Smaller is better. In a perfect model, -2 log likelihood would equal 0.

Assessment of new model's predictions

	Observed			Predicted			
	ĺ		R own's	a gun =1			
			.00	1.00	Percentage Correct		
Step 1	R own's a gun =1	.00	740	123	85.7		
1		1.00	301	161	34.8		
	Overall Percentage				68. 0 3		

a. The cut value is .500

Goodness-of-fit statistics for new model come next...

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	180.810	4	.000
	Block	180.810	4	.000
	Model	180.810	4	.000

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R	
	likelihood	Square	Square	
1	1532.747 ^a	.128	.176	

17.6% of the variance in gun ownership is explained by gender, age, race, and education

Classification Table

	Observed			Predicted			
[R own's	a gun =1				
			.00	1.00	Percentage Correct		
Step 1	R own's a gun =1	.00	740	123	85.7		
		1.00	301	161	34.8		
	Overall Percentage				68:0 ⁴		

a. The cut value is .500

Remember When Assessing Predictors, The Odds Ratio or Exp(b)...

$$Exp(b) = \frac{Odds \ after \ a \ unit \ change \ in \ the \ predictor}{Odds \ before \ a \ unit \ change \ in \ the \ predictor}$$

- Indicates the change in odds resulting from a unit change in the predictor.
 - OR > 1: Predictor ↑, Probability of outcome occurring ↑.
 - OR < 1: Predictor ↑, Probability of outcome occurring ↓.

Interpreting Coefficients...

$$ln[p/(1-p)] = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4$$

Variables in the Equation

eb

	В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ⁸ / ₁ sexnew	b1780	.124	39.624	1	.000	.458
X2 age	b2 .020	.004	32.650	1	.000	1.020
X3 White	b3 1.618	.197	67.534	1	.000	5.044
X4 educ	b4023	.020	1.370	1	.242	.977
1 Constant	a -2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

Which b's are significant?

Being male, getting older, and being white have a positive effect on likelihood of owning a gun. On the other hand, education does not affect owning a gun.

We'll discuss the Wald test in a moment...

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

Each coefficient increases the odds by a multiplicative amount, the amount is e^b. "Every unit increase in X increases the odds by eb."

In the example above, $e^b = Exp(B)$ in the last column.

New odds / Old odds = e^b = odds ratio

For Female: $e^{-.780} = .458$... females are less likely to own a gun by a factor of .458.

Age: e^{.020}=1.020 ... for every year of age, the odds of owning a gun increases by a factor of 1.020.

White: $e^{1.618} = 5.044$... Whites are more likely to own a gun by a factor of 5.044.

Educ: $e^{-.023} = .977$... Not significant

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

Each coefficient increases the odds by a multiplicative amount, the amount is e^b. "Every unit increase in X increases the odds by eb."

In the example above, $e^b = Exp(B)$ in the last column.

For Sex: $e^{-780} = .458 \dots$ If you subtract 1 from this value, you get the proportion increase (or decrease) in the odds caused by being male, -.542. In percent terms, odds of owning a gun decrease 54.2% for women.

Age: e^{.020}=1.020 ... A year increase in age increases the odds of owning a gun by 2%.

White: $e^{1.618} = 5.044$...Being white increases the odd of owning a gun by 404%

Educ: $e^{-.023} = .977$... Not significant

Here's another example ... and another way to interpret the results

Equation for Step 1

Variables in the Equation

								95% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	Intervention(1)	1.229	.400	9.447	1	.002	3.417	1.561	7.480
	Constant	288	.270	1.135	1	.287	.750	7	

a. Variable(s) entered on step 1: Intervention.

$$P(Y) = \frac{1}{1 + e^{-(-.288 + 1.229(Intervention))}}$$

See p 288 for an Example of using equation to compute Odds ratio.

We can say that the odds of a patient who is treated being cured are 3.41 times higher than those of a patient who is not treated, with a 95% CI of 1.561 to 7.480.

The important thing about this confidence interval is that it doesn't cross 1 (both values are greater than 1). This is important because values greater than 1 mean that as the predictor variable(s) increase, so do the odds of (in this case) being cured. Values less than 1 mean the opposite: as the predictor increases, the odds of being cured decreases.

Output: Step 1

Model if Term Removed

Variable	Model Log Likelihood	Change in -2 Log Likelihood	df	Sig. of the Change
Step 1 Intervention	-77.042	9.926	1	.002

Removing Intervention from the model would have a significant effect on the predictive ability of the model, in other words, it would be very bad to remove it.

Variables not in the Equation

			Score	df	Sig.
Step 1	Variables	Duration	.002	1	.964
		Duration by Intervention (1)	.043	1	.835
Overall Statistics		.063	2	.969	

The test you choose depends on level of measurement:

Independent Variable	Dependent Variable	Test
Dichotomous	Interval-Ratio Dichotomous	Independent Samples t-test
Nominal Dichotomous	Nominal Dichotomous	Cross Tabs
Nominal Dichotomous	Interval-Ratio Dichotomous	ANOVA
Interval-Ratio Dichotomous	Interval-Ratio	Bivariate Regression/Correlation
Two or More		
Interval-Ratio Dichotomous	Interval-Ratio	Multiple Regression
Interval-Ratio Dichotomous	Dichotomous	Binary Logistic Regression

The Multiple Regression Model building

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

Population slopes Random Error
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + \mathcal{E}$$

- So what are natural logs and exponents?
 - If you didn't learn about them before this class, you obviously don't need to know it to get your degree ... so don't worry about it.
 - But, for those who did learn it, ln(x)=y is the same as:
 x=e^y

READ THE ABOVE LIKE THIS:

when you see "ln(x)" say "the value after the equal sign is the power to which I need to take e to get x"

SO...

y is the power to which you would take e to get x

• So... ln[p/(1-p)] = y is same as: $p/(1-p) = e^{y}$

READ THE ABOVE

LIKE THIS: when you see "ln[p/(1-P)]" say

"the value after the equal sign is

the power to which I need to take

e to get p/(1-p)"

SO...

y is the power to which you would take e to get p/(1-p)

• So... ln[p/(1-p)] = a + bX is same as: $p/(1-p) = e^{a + bX}$

READ THE ABOVE

LIKE THIS:

when you see "In[p/(1-P)]" say "the value after the equal sign is the power to which I need to take e to get p/(1-p)"

SO...

a + bX is the power to which you would take e to get p/(1-p)

- Recall that OLS Regression used an "ordinary least squares" formula to create the "linear model" we used.
- The Logistic Regression model will be constructed by an iterative maximum likelihood procedure.
- This is a computer dependent program that:
 - 1. starts with arbitrary values of the regression coefficients and constructs an initial model for predicting the observed data.
 - 2. then evaluates errors in such prediction and changes the regression coefficients so as make the likelihood of the observed data greater under the new model.
 - 3. repeats until the model converges, meaning the differences between the newest model and the previous model are trivial.
- The idea is that you "find and report as statistics" the parameters that are most likely to have produced your data.
- Model and inferential statistics will be different from OLS because of using this technique and because of the nature of the dependent variable. (Remember how we used chi-squared with classification?)

- So in logistic regression, we will take the "twisted" concept of a transformed dependent variable equaling a line and manipulate the equation to "untwist" the interpretation.
- We will focus on:
 - Model fit
 - 2. Interpreting coefficients
 - 3. Inferential statistics
 - 4. Predicting Y for values of the independent variables (the most difficult)—the prediction of probability, appropriately, will be an S-shape
- Let's start with a research example and SPSS output...

SPSS Output: Some descriptive information first...

Block 0: Beginning Block

Iteration History a,b,c

Iteration		Coefficients
	-2 Log likelihood	Constant
Step 0 1	1713.672	605
2	1713.557	625
3	1713.557	625

Constant is included in the model.

b. Initial -2 Log Likelihood: 1713.557

c. Estimation terminated at iteration number
 3 because parameter estimates changed by
 less than .001.

Maximum likelihood process stops at third iteration and yields an intercept (-.625) for a model with no predictors.

A measure of fit, -2 Log likelihood is generated. The equation producing this:

-2(∑(Yi * In[P(Yi)] + (1-Yi) In[1-P(Yi)])
This is simply the relationship
between observed values for each
case in your data and the model's
prediction for each case. The
"negative 2" makes this number
distribute as a X² distribution.
In a perfect model, -2 log likelihood
would equal 0. Therefore, lower
numbers imply better model fit.

Classification Table a,b

	Observed			Predicted			
			R own's	a gun =1			
			.00	1.00	Percentage Correct		
Step 0	R own's a gun =1	.00	863	0	100.0		
		1.00	462	0	.0		
	Overall Percentage				65.1		

- Constant is included in the model.
- b. The cut value is .500

Originally, the "best guess" for each person in the data set is 0, have no gun!

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	625	.058	117.487	1	.000	.535

Variables not in the Equation

		Score	df	Sig.
Step 0 Variables	sexnew	37.789	1	.000
lf	age	54.909	1	.000
If you added	White	92.626	1	.000
each	educ	.029	1	.866
Overall Sta	tistics	160.887	4	.000

This is the model for log odds when any other potential variable equals zero (null model). It predicts: P = .651, like above. 1/1+e^a or 1/1+.535

Real P = .349

Next are iterations for our full model...

Block 1: Method = Enter

Iteration History a,b,c,d

Iteration	Iteration				Coefficients		
		-2 Log likelihood	Constant	sexnew	age	White	educ
Step 1	1	1546.511	-1.626	629	.017	1.070	019
	2	1533.086	-2.140	765	.020	1.518	023
	3	1532.748	-2.242	780	.020	1.614	023
	4	1532.747	-2.246	780	.020	1.618	023
	5	1532.747	-2.246	780	.020	1.618	023

a. Method: Enter

b. Constant is included in the model.

c. Initial -2 Log Likelihood: 1713.557

d. Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

• $ln[p/(1-p)] = a + b_1X_1 + ... + b_kX_k$, the power to which you need to take e to get:

$$\frac{P}{1-P}$$
 So... $1-P = e^{a + b1X1+...+bkXk}$

• Ergo, plug in values of x to get the odds (= p/1-p).

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
1	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

The coefficients can be manipulated as follows:

$$\begin{aligned} \text{Odds} &= \text{p/(1-p)} = \text{e}^{\text{a+b1X1+b2X2+b3X3+b4X4}} = \text{e}^{\text{a}}(\text{e}^{\text{b1}})^{\text{X1}}(\text{e}^{\text{b2}})^{\text{X2}}(\text{e}^{\text{b3}})^{\text{X3}}(\text{e}^{\text{b4}})^{\text{X4}} \\ \text{Odds} &= \text{p/(1-p)} = \text{e}^{\text{a+.898X1+.008X2+1.249X3-.056X4}} = \text{e}^{\text{-1.864}}(\text{e}^{\text{.898}})^{\text{X1}}(\text{e}^{\text{.008}})^{\text{X2}}(\text{e}^{\text{1.249}})^{\text{X3}}(\text{e}^{\text{-.056}})^{\text{X4}} \end{aligned}$$

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

The coefficients can be manipulated as follows:

$$\begin{aligned} \text{Odds} &= \text{p/(1-p)} = \text{e}^{\text{a+b1X1+b2X2+b3X3+b4X4}} \\ \text{Odds} &= \text{p/(1-p)} = \text{e}^{\text{-2.246-.780X1+.020X2+1.618X3-.023X4}} \\ &= \text{e}^{\text{a}}(\text{e}^{\text{b1}})^{\text{X1}}(\text{e}^{\text{b2}})^{\text{X2}}(\text{e}^{\text{b3}})^{\text{X3}}(\text{e}^{\text{b4}})^{\text{X4}} \\ &= \text{e}^{\text{-2.246}}(\text{e}^{\text{-.780}})^{\text{X1}}(\text{e}^{\text{.020}})^{\text{X2}}(\text{e}^{\text{1.618}})^{\text{X3}}(\text{e}^{\text{-.023}})^{\text{X4}} \end{aligned}$$

Each coefficient increases the odds by a multiplicative amount, the amount is eb. "Every unit increase in X increases the odds by eb."

In the example above, $e^b = Exp(B)$ in the last column.

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

Age: $e^{.020} = 1.020 \dots$ A year increase in age increases the odds of owning a gun by 2%.

How would 10 years' increase in age affect the odds? Recall $(e^b)^X$ is the equation component for a variable. For 10 years, $(1.020)^{10} = 1.219$. The odds jump by 22% for ten years' increase in age.

Note: You'd have to know the current prediction level for the dependent variable to know if this percent change is actually making a big difference or not!

Note: You'd have to know the current prediction level for the dependent variable to know if this percent change is actually making a big difference or not!

Recall that the logistic regression tells us two things at once.

Transformed, the "log odds" are linear.

ln[p/(1-p)]

X

• Logistic Distribution

We can also get p(y=1) for particular folks.

Odds =
$$p/(1-p)$$
; $p = P(Y=1)$

With algebra...

$$Odds(1-p) = p ... Odds-p(odds) = p ...$$

Odds =
$$p+p(odds)$$
 ... Odds = $p(1+odds)$

... Odds/1+odds =
$$p$$
 or

$$p = Odds/(1+odds)$$

Ln(odds) =
$$a + bx$$
 and odds = $e^{a + bx}$ so...

$$P = e^{a+bX}/(1+e^{a+bX})$$

We can therefore plug in numbers for X to get P

If a + BX = 0, then p = .5 As a + BX gets really big, p approaches 1

As a + BX gets really small, p approaches 0 (our model is an S curve)

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step	Male	.898	.151	35.312	1	.000	2.454
1	age	.008	.004	3.405	1	.065	1.008
l	white	1.249	.233	28.658	1	.000	3.487
	educ	056	.023	5.658	1	.017	.946
	Constant	-1.864	.425	19.221	1	.000	.155

a. Variable(s) entered on step 1: Male, age, white, educ.

For our problem,
$$P = e^{-2.246-.780X1+.020X2+1.618X3-.023X4}$$

$$1 + e^{-2.246 - .780X1 + .020X2 + 1.618X3 - .023X4}$$

For, a man, 30, Latino, and 12 years of education, the P equals?

Let's solve for
$$e^{-2.246-.780X1+.020X2+1.618X3-.023X4} = e^{-2.246-.780(0)+.020(30)+1.618(0)-.023(12)}$$

$$e^{-2.246-0+.6+0-.276} = e^{-1.922} = 2.71828^{-1.922} = .146$$

Therefore,

Inferential statistics are as before:

- In model fit, if χ² test is significant, the expanded model (with your variables), improves prediction.
- This Chi-squared test tells us that as a set, the variables improve classification.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	180.810	4	.000
	Block	180.810	4	.000
	Model	180.810	4	.000

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	1532.747 ^a	.128	.176

Classification Table

	Observed			Predicted				
			R own's a gun =1					
			.00	1.00	Percentage Correct			
Step 1	R own's a gun =1	.00	740	123	85.7			
		1.00	301	161	34.8			
	Overall Percentage				68.0			

a. The cut value is .500

Inferential statistics are as before:

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
	age	.020	.004	32.650	1	.000	1.020
	White	1.618	.197	67.534	1	.000	5.044
	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

a. Variable(s) entered on step 1: sexnew, age, White, educ.

 The significance of the coefficients is determined by a "wald test." Wald is χ² with 1 df and equals a two-tailed t² with p-value exactly the same.

So how would I do hypothesis testing? An Example:

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	sexnew	780	.124	39.624	1	.000	.458
ı	age	.020	.004	32.650	1	.000	1.020
ı	White	1.618	.197	67.534	1	.000	5.044
ı	educ	023	.020	1.370	1	.242	.977
	Constant	-2.246	.363	38.224	1	.000	.106

- a. Variable(s) entered on step 1: sexnew, age, White, educ.
- 1. Significance test for α -level = .05
- 2. Critical $X^2_{df=1} = 3.84$
- 3. To find if there is a significant slope in the population,

$$H_o$$
: $\beta = 0$
 H_a : $\beta \neq 0$

- 4.Collect Data
- 5. Calculate Wald, like t (z): $t = b \beta_0$ (1.96 * 1.96 = 3.84)
- 6.Make decision about the null hypothesis
- 7. Find P-value

Reject the null for Male, age, and white. Fail to reject the null for education. There is a 24.2% chance that the sample came from a population where the education coefficient equals 0.