\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 1 - S2 - Algèbre - Géométrie

vendredi 06 octobre 2017 - Durée 2h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

On se place dans l'espace muni d'un repère orthonormé direct $\mathcal{R} = \left(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$. On note S la surface d'équation

$$(E): \quad xy + \sqrt{3}(x+y)z = 0$$

c'est-à-dire l'ensemble des points de l'espace dont les coordonnées vérifient l'équation (E).

1. Soit

$$A = \begin{pmatrix} 0 & 1 & \sqrt{3} \\ 1 & 0 & \sqrt{3} \\ \sqrt{3} & \sqrt{3} & 0 \end{pmatrix}$$

- **a.** Justifier, sans calcul, que A est diagonalisable.
- **b.** Donner le spectre de A.
- **c.** Montrer qu'il existe un repère orthonormé $\mathcal{R}_1 = \left(0, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$, pour lequel les coordonnées sont notées (x_1, y_1, z_1) , tel que l'équation de S dans \mathcal{R}_1 soit :

$$x_1^2 + 2y_1^2 - 3z_1^2 = 0$$

On ne demande pas de déterminer les vecteurs $\vec{i_1}, \vec{j_1}, \vec{k_1}$.

2. Soit \mathcal{P} le plan d'équation

$$x + y = \sqrt{2}$$

dans le repère initial \mathcal{R} .

- **a.** Donner la matrice, dans la base canonique, de la rotation r d'axe Vect (\overrightarrow{k}) et d'angle $\frac{\pi}{4}$.
- **b.** On note $(\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K})$ l'image par r de la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Justifier que cette nouvelle base est orthonormée.
- **c.** On note \mathcal{R}_2 le repère $\left(O, \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K}\right)$, et (X, Y, Z) les coordonnées dans ce repère. Déterminer les équations de S et \mathcal{P} dans \mathcal{R}_2 .
- **d.** Donner la nature de la courbe C, intersection de S et P.

Exercice 2

On considère $E = \mathbb{R}_2[X]$, muni du produit scalaire :

$$\forall (P,Q) \in E^2, \quad (P|Q) = \int_0^1 P(t)Q(t)dt$$

On définit l'application $\varphi: E \to E$ par :

$$\forall P \in E, \quad \varphi(P(X)) = P(1 - X)$$

- 1. Montrer que φ est un automorphisme orthogonal.
- **2.** Montrer que φ est une symétrie.
- 3. Donner les éléments caractéristiques de la symétrie φ , et vérifier qu'elle est orthogonale.

Exercice 3

On considère la courbe paramétrée :

$$M(t) \left\{ \begin{array}{l} x(t) = \sin^2(t) \\ y(t) = (1 + \cos(t)) \sin(t) \end{array} \right.$$

- 1. Etudier et représenter graphiquement cette courbe dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On déterminera la nature des points stationnaires, le cas échéant.
- **2. a.** Montrer que les vecteurs $\overrightarrow{OM}(t)$ et $\overrightarrow{OM}(t+\pi)$ sont orthogonaux.
 - **b.** Montrer que le milieu I(t) de $[M(t)M(t+\pi)]$ est sur le cercle $\mathscr C$ de centre $\Omega\left(\frac{1}{2},0\right)$ et de rayon à préciser.
 - **c.** Tracer \mathscr{C} , placer M(t), et en déduire $M(t+\pi)$ puis I(t).

Exercice 4

On considère la courbe paramétrée :

$$M(t) \begin{cases} x(t) = \frac{t^3}{t^2 - 1} \\ y(t) = \frac{t(3t - 2)}{3(t - 1)} \end{cases}$$

- 1. Démontrer qu'au voisinage de 1, cette courbe admet une asymptote $\mathcal D$ que l'on déterminera.
- 2. Préciser les positions relatives au voisinage de 1.

Fin de l'énoncé