МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Российский химико-технологический университет имени Д. И. Менделеева

СБОРНИК РАСЧЕТНЫХ РАБОТ ПО ВЫСШЕЙ МАТЕМАТИКЕ

TOM II

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ. РЯДЫ. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Утверждено Редакционным советом университета в качестве учебного пособия

Москва 2016 Авторы: Е. Г. Рудаковская, М. Ф. Рушайло, В. В. Осипчик, О. В. Аверина, Е. М. Чечеткина, Е. Ю. Напеденина, А. Г. Ситин, Ю. Т. Напеденин, К. А. Иншакова

Рецензенты:

Доктор физико-математических наук, проректор по учебной работе Российского химико-технологического университета им. Д. И. Менделеева $B.\ M.\ Apucmob$

Кандидат физико-математических наук, доцент Московского автомобильнодорожного государственного технического университета (МАДИ) *С. А. Изотова*

Сборник расчетных работ по высшей математике: в 3 т.: учеб. посо-С23 бие. Т. II. Обыкновенные дифференциальные уравнения и системы. Ряды. Уравнения в частных производных / Е. Г. Рудаковская, М. Ф. Рушайло, В. В. Осипчик, О. В. Аверина, Е. М. Чечеткина, Е. Ю. Напеденина, А. Г. Ситин, Ю. Т. Напеденин, К. А. Иншакова; под ред. Е. Г. Рудаковской. – М.: РХТУ им. Д. И. Менделеева, 2016. – 120 с. ISBN 978-5-7237-1419-9 (Т. II)

В сборнике расчетных работ по высшей математике подобраны задачи и примеры, охватывающие все разделы программы по дисциплине «Математика» в соответствии с $\Phi\Gamma$ ОС 3 поколения. По каждому разделу приведены вариант типовой расчетной работы с подробным решением, содержащим основные определения, формулы, алгоритм решения конкретной задачи и ответ, а также 30 вариантов индивидуальных заданий.

Предназначено для самостоятельной работы студентов с целью закрепления полученных навыков и подготовки к контрольным работам, зачетам и экзаменам.

УДК 517 (075) ББК 22.161.1

ISBN 978-5-7237-1419-9 (T. II) ISBN 978-5-7237-1377-2

© Российский химико-технологический университет им. Д. И. Менделеева, 2016

Оглавление

РАСЧЕТНАЯ РАБОТА 6. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ	
УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА	4
Примерный вариант расчетной работы с решением	4
Варианты расчетной работы для самостоятельного решения (1–30)	15
РАСЧЕТНАЯ РАБОТА 7. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ	
УРАВНЕНИЯ ВТОРОГО ПОРЯДКА. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ	
УРАВНЕНИЙ	34
Примерный вариант расчетной работы с решением	34
Варианты расчетной работы для самостоятельного решения (1–30)	41
РАСЧЕТНАЯ РАБОТА 8. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ	57
Примерный вариант расчетной работы с решением	57
Варианты расчетной работы для самостоятельного решения (1–30)	62
РАСЧЕТНАЯ РАБОТА 9. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ	78
Примерный вариант расчетной работы с решением	78
Варианты расчетной работы для самостоятельного решения (1–30)	91

РАСЧЕТНАЯ РАБОТА 6. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Примерный вариант расчетной работы с решением

1. Решить уравнение $2(xy + y) \cdot y' + x(y^4 + 1) = 0$

2. Решить уравнение: $y' = e^{x+y} + 2$

3. Решить уравнение: $(x^2 + 2xy)dx + xydy = 0$

4. Решить уравнение: $y' = \frac{x-y+1}{x+y-3}$

5. Решить задачу Коши $y' \cdot \cos^2 x + y = \operatorname{tg} x, y(0) = 0$

6. Решить уравнение: $xy' + y = y^2 \ln x$

7. Решить задачу Коши: $y = xy' + y' \cdot \ln y$, y(0) = 1

8. Решить уравнение: $2x(1+\sqrt{x^2-y})dx - \sqrt{x^2-y}dy = 0$

9. Решить уравнение: $(1 - x^2y)dx + x^2(y - x)dy = 0$

10. В комнате, где температура 20 °C, некоторое тело остыло за 20 мин от 100 до 60 °C. Найти закон охлаждения тела и установить, через сколько минут оно остынет до 30 °C. Повышением температуры в комнате пренебречь.

Решение

1. Для решения дифференциального уравнения I порядка с разделяющимися переменными разделим переменные:

$$2(x+1)y \cdot \frac{dy}{dx} = -x(y^4 + 1),$$
$$\frac{2y}{y^4 + 1}dy = -\frac{xdx}{x + 1}$$

Интегрируем:

$$\int \frac{2ydy}{y^4 + 1} = -\int \frac{xdx}{x + 1},$$

$$\int \frac{dy^2}{(y^2)^2 + 1} = -\int \left(1 - \frac{1}{x + 1}\right) dx,$$

 $arctg y^2 = -x + \ln |x + 1| + c$, где c – произвольная постоянная.

В процессе разделения переменных, т.е. при делении на $(x+1)(y^4+1)$, могло быть потеряно решение $x \equiv -1$.

Легко проверить (подстановкой в исходное уравнение), что $x \equiv -1$ не является решением данного уравнения.

Omsem: $arctg y^2 = ln |x + 1| - x + c$.

2. Данное уравнение приводится к уравнению с разделяющимися переменными с помощью замены:

$$z = x + y,$$

$$z' = 1 + y' \Rightarrow y' = z' - 1.$$

Тогда для функции z = z(x) получим уравнение с разделяющимися переменными: $z' - 1 = e^z + 2$,

$$\frac{dz}{dx} = e^z + 3, \qquad \frac{dz}{e^z + 3} = dx$$

Интегрируем:

$$\int \frac{dz}{e^z + 3} = \int dx \quad (1)$$

Найдем интеграл в левой части уравнения (1):

$$\int \frac{dz}{e^z + 3} = \begin{bmatrix} e^z = t \\ z = \ln t \\ dz = \frac{dt}{t} \end{bmatrix} = \int \frac{dt}{t(t+3)} = \frac{1}{3} \int \frac{dt}{t} - \frac{1}{3} \int \frac{dt}{t+3} = \frac{1}{3} \ln|t| - \frac{1}{3} \ln|t + 3| + c = \frac{z}{3} - \frac{1}{3} \ln(e^z + 3) + c$$

Возвращаясь в равенство (1), получаем:

$$\frac{z}{3} - \frac{1}{3}\ln(e^z + 3) = x + c$$
$$z - \ln(e^z + 3) = 3x + c$$

Делаем обратную замену:

$$x + y - \ln(e^{x+y} + 3) = 3x + c$$
 или $y = \ln(e^{x+y} + 3) + 2x + c$

Omsem: $y = \ln(e^{x+y} + 3) + 2x + c$.

3. Функции $P(x; y) = x^2 + 2xy$ и Q(x; y) = xy – однородные второго измерения. Поэтому данное уравнение является однородным дифференциальным уравнением I порядка.

Запишем уравнение в виде: $x^2 + 2xy + xy \cdot y' = 0$;

$$y' = -\frac{x^2 + 2xy}{xy}$$

Сделаем замену $\frac{y}{x} = u(x) \Rightarrow y = u \cdot x, y' = u'x + u$. Тогда для функции u = u(x) получим уравнение с разделяющимися переменными:

$$u'x + u = -\frac{1 + 2u}{u},$$

$$u'x = -\frac{1 + 2u + u^{2}}{u},$$

$$u'x = -\frac{(1 + u)^{2}}{u}$$

Разделяя переменные и интегрируя, имеем:

$$\frac{udu}{(1+u)^2} = -\frac{dx}{x},$$

$$\int \frac{udu}{(1+u)^2} = -\int \frac{dx}{x} \quad (1)$$

Найдем интеграл в левой части уравнения (1):

$$\int \frac{(u+1)-1}{(1+u)^2} du = \int \frac{du}{1+u} - \int \frac{du}{(1+u)^2} = \ln|1+u| + \frac{1}{1+u} + c$$

Возвращаясь в равенство (1), получаем:

$$\ln|1 + u| + \frac{1}{1 + u} = -\ln|x| + c$$

Делаем обратную замену: $\ln|x+y| + \frac{x}{x+y} = c$, с – произвольная постоянная, кроме того, у уравнения есть особые решения $x \equiv 0$; $y \equiv 0$; $y \equiv -x$, которые были потеряны при разделении переменных.

Omeem:
$$\ln|x + y| + \frac{x}{x+y} = c$$
, $x \equiv 0$; $y \equiv 0$; $y \equiv -x$.

4. Уравнение можно привести к виду однородного дифференциального уравнения. Для этого предварительно решим систему:

$$\begin{cases} x - y + 1 = 0, & \{ y = x + 1, \\ x + y - 3 = 0; \end{cases} \begin{cases} y = x + 1, & \{ x_0 = 1, \\ 2x - 2 = 0; \end{cases}$$

Сделаем замену:

$$x^* = x - x_0 = x - 1, dx^* = dx$$

 $y^* = y - y_0 = y - 2, dy^* = dy$

Тогда уравнение примет вид:

$$\frac{dy^*}{dx^*} = \frac{x^* - y^*}{x^* + y^*}$$

Полученное уравнение является однородным дифференциальным уравнением.

Выполним замену:

$$y^* = u \cdot x^*, \quad \frac{dy^*}{dx^*} = u + x^* \frac{du}{dx^*}$$

Тогда для функции $u\left(x^{*}\right)$ получим уравнение с разделяющимися переменными:

$$u + x^* \cdot \frac{du}{dx^*} = \frac{1 - u}{1 + u}$$

Отсюда, последовательно находим:

$$x^*du = \left(\frac{1-u}{1+u} - u\right)dx^*, \qquad x^*du = \frac{1-2u-u^2}{1+u}dx^*,$$
$$\frac{(1+u)du}{(1-2u-u^2)} = \frac{dx^*}{x^*},$$
$$-\frac{1}{2}\frac{d(1-2u-u^2)}{(1-2u-u^2)} = \frac{dx^*}{x^*}$$

Интегрируя, получаем:

 $\ln |1-2u-u^2|=-2\ln |x^*|+\ln |c|,\ c$ — постоянная производная, $c\neq 0$ или $(1-2u-u^2)\cdot (x^*)^2=c$

Возвращаясь к исходным переменным, получаем общий интеграл исходного уравнения:

$$(x^*)^2 - 2y^* \cdot x^* - (y^*)^2 = c,$$

$$(x-1)^2 + 2(x-1)(y-2) - (y-2)^2 = c,$$

$$x^2 - 2xy - y^2 + 2x + 6y = c + 7, \quad c + 7 = c_1$$

$$(x-y)^2 - 2y^2 + 2x + 6y = c_1$$

Ответ: $(x-y)^2 - 2y^2 + 2x + 6y = c_1, c_1$ – произвольная постоянная.

5. Это линейное дифференциальное уравнение I порядка. Решим его методом вариации произвольных постоянных. Для этого решаем сначала соответствующее однородное уравнение:

$$y' \cdot \cos^2 x + y = 0$$

Разделив переменные, получим:

$$\frac{dy}{y} = -\frac{dx}{\cos^2 x} ,$$

$$\int \frac{dy}{y} = -\int \frac{dx}{\cos^2 x} ,$$

$$\ln|y| = \ln|c| - \operatorname{tg} x ,$$

$$y = ce^{-\operatorname{tg} x}$$

Будем искать решение исходного неоднородного уравнения в виде $y = c(x)e^{-\operatorname{tg} x}$, где c(x) – неизвестная функция.

Подставим в исходное уравнение:

$$y = c(x)e^{-\operatorname{tg} x} u y' = u'(x)e^{-\operatorname{tg} x} - c(x)e^{-\operatorname{tg} x} \cdot \frac{1}{\cos^2 x}$$

Получим уравнение:

$$\cos^2 x \cdot c'(x)e^{-\operatorname{tg} x} - c(x)e^{-\operatorname{tg} x} + c(x)e^{-\operatorname{tg} x} = \operatorname{tg} x,$$
$$c'(x)\cos^2 x \cdot e^{-\operatorname{tg} x} = \operatorname{tg} x$$

Откуда

$$c(x) = \int \frac{e^{\operatorname{tg} x} \cdot \operatorname{tg} x}{\cos^2 x} dx = \int e^{\operatorname{tg} x} \cdot \operatorname{tg} x d(\operatorname{tg} x) = [\operatorname{tg} x = t] =$$

$$\int e^t t \, dt = \begin{vmatrix} \text{Интегрирование по частям} \\ u = t & du = dt \\ dv = e^t dt & v = e^t \end{vmatrix} =$$

$$= te^t - \int e^t dt = te^t - e^t + c = e^{\operatorname{tg} x} (\operatorname{tg} x - 1) + c$$

Находим общее решение дифференциального уравнения:

$$v = tgx - 1 + ce^{-tgx}$$

Используя начальное условие y(0) = 0, найдем значение C:

$$0 = -1 + c$$
, откуда $c = 1$

Получаем частное решение в виде:

$$y = tgx - 1 + e^{-tgx}$$

Omsem: $y = tgx - 1 + e^{-tgx}$.

6. Данное уравнение является уравнением Бернулли. Решим его методом Бернулли. Запишем уравнение в стандартном виде:

$$y' + \frac{y}{x} = y^2 \ln x$$

Полагая, что $y = u(x) \cdot v(x)$, y' = u'v + uv', имеем

$$u'v + uv' + \frac{uv}{x} = u^2v^2 \ln x$$

или
$$u'v + u\left(v' + \frac{v}{x}\right) = u^2v^2 \ln x$$

Разбиваем на два уравнения с разделяющимися переменными:

$$\begin{cases} v' + \frac{v}{x} = 0 \ (c = 0) \end{cases}$$
 (1)
$$u'v = u^2v^2 \ln x$$
 (2)

$$(u'v = u^2v^2 \ln x \tag{2})$$

Решаем уравнение (1):

$$\frac{dv}{dx} = -\frac{v}{x},$$

$$\int \frac{dv}{v} = -\int \frac{dx}{x},$$

$$\ln|v| = -\ln|x|,$$

$$v = \frac{1}{x}$$

Решаем уравнение (2), подставляя в него найденную функцию $v = \frac{1}{r}$

$$u' \cdot \frac{1}{x} = u^2 \frac{1}{x^2} \ln x,$$
$$\frac{du}{u^2} = \frac{\ln x}{x} dx$$

Интегрируем полученное уравнение:

$$-\frac{1}{u} = \frac{\ln^2 x}{2} + c_{1,}, \qquad u = -\frac{2}{\ln^2 x + 2c_1};$$

$$2c_1 = c$$

$$u = -\frac{2}{\ln^2 x + c}$$

Перемножая найденные функции u(x) и v(x), находим общее решение исходного уравнения:

$$y = -\frac{2}{x(\ln^2 x + c)}$$

Кроме того, исходное уравнение имеет особое решение y = 0.

Omsem:
$$y = -\frac{2}{x(\ln^2 x + c)}$$
 , где с – любое число и $y \equiv 0$.

7. Будем считать y независимой переменной (y > 0), а x = x(y) — искомой функцией. Тогда $y'_x = \frac{1}{x'_y}$ и исходное уравнение запишем в виде:

$$y \cdot x' = x + \ln y$$
 или $x' - \frac{x}{y} = \frac{\ln y}{y}$

Полученное линейное уравнение относительно функции x(y) решим методом Бернулли.

Сделаем замену: $x = u(y) \cdot v(y) \Rightarrow x' = u'v + uv'$. Получим:

$$u'v + uv' - \frac{uv}{y} = \frac{\ln y}{y},$$

$$u'v + u(v' - \frac{v}{y}) = \frac{\ln y}{y}$$

Выберем одну конкретную функцию $v \neq 0$ так, чтобы $v' - \frac{v}{y} = 0$,

В итоге получаем два уравнения с разделяющимися переменными:

$$1) \quad v' - \frac{v}{y} = 0$$

$$2) \quad u'v = \frac{\ln y}{y}$$

1) Решаем первое уравнение:

$$\frac{dv}{v} = \frac{dy}{y},$$

$$\int \frac{dv}{v} = \int \frac{dy}{y},$$

$$\ln|v| = \ln|y|,$$

$$v = y$$

2) Решаем второе уравнение, подставляя в него найденную функцию v

$$u'y = \frac{\ln y}{y} , \qquad u' = \frac{\ln y}{y^2} ,$$

$$du = \frac{\ln y}{y^2} dy ,$$

$$\int du = \int \frac{\ln y}{y^2} dy ,$$

Проинтегрируем правую часть по частям:

$$\int \frac{\ln y}{y^2} dy = \begin{bmatrix} u = \ln y & du = \frac{dy}{y} \\ dv = \frac{1}{y^2} dy & v = -\frac{1}{y} \end{bmatrix} =$$
$$= -\frac{\ln y}{y} + \int \frac{dy}{y^2} = -\frac{\ln y}{y} - \frac{1}{y} + c$$

Тогда

$$u = -\frac{1 + \ln y}{y} + c$$

Общее решение имеет вид:

$$x = uv = y\left(c - \frac{1 + \ln y}{y}\right), x = yc - 1 - \ln y$$

Подставим в полученное общее решение начальное условие y(0) = 1

$$0 = c - 1 \Rightarrow c = 1$$

Частное решение имеет вид:

$$x = y - 1 - \ln y$$

Ответ: $x = y - 1 - \ln y$.

8. Обозначим в исходном уравнении:

$$P(x; y) = 2x (1 + \sqrt{x^2 - y}),$$
 $Q(x; y) = -\sqrt{x^2 - y}$

Найдем частные производные $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$:

$$\frac{\partial P}{\partial y} = \frac{2x(-1)}{2\sqrt{x^2 - y}} = -\frac{x}{\sqrt{x^2 - 1}}$$

$$\frac{\partial Q}{\partial x} = -\frac{1 \cdot 2x}{2\sqrt{x^2 - y}} = -\frac{x}{\sqrt{x^2 - 1}}$$

$$= > \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Следовательно, и исходное уравнение является уравнением в полных дифференциалах. Найдем функцию u(x; y), полный дифференциал которой совпадает с левой частью исходного уравнения:

$$du = 2x\left(1 + \sqrt{x^2 - y}\right)dx - \sqrt{x^2 - y}dy,$$

а так как du = 0, то u(x; y) = c – общий интеграл данного уравнения. Для поиска функции u(x; y) решим систему:

$$\begin{cases} \frac{\partial u}{\partial x} = 2x \left(1 + \sqrt{x^2 - y} \right) \\ \frac{\partial u}{\partial y} = -\sqrt{x^2 - y} \end{cases}$$

1) Проинтегрируем первое уравнение системы по переменной x

$$u(x;y) = \int 2x \left(1 + \sqrt{x^2 - y}\right) dx = 2 \int x dx + \int \sqrt{x^2 - y} \cdot 2x \, dx =$$
$$= x^2 + \int \sqrt{x^2 - y} \, dx^2 = x^2 + \frac{2}{3} \sqrt{(x^2 - y)^3} + \varphi(y)$$

2) Подставим найденную функцию u(x; y) во второе уравнение системы для нахождения функции $\varphi(y)$

$$\frac{\partial u}{\partial y} = -\sqrt{x^2 - y} + \varphi'(y)$$
$$-\sqrt{x^2 - y} + \varphi'(y) = -\sqrt{x^2 - y}$$

Следовательно, $\varphi'(y) = 0 \Rightarrow \varphi(y) = c_1$

Искомая функция u(x;y) имеет вид: $u(x;y) = x^2 + \frac{2}{3}\sqrt{(x^2 - y)^3} + c_1$

Итак, общий интеграл исходного уравнения может быть написан в виде:

$$x^{2} + \frac{2}{3}\sqrt{(x^{2} - y)^{3}} = c$$
Omeem: $x^{2} + \frac{2}{3}\sqrt{(x^{2} - y)^{3}} = c$

9. Обозначим в исходном уравнении:

$$P(x; y) = 1 - x^2 y,$$
 $Q(x; y) = x^2 (y - x)$

Найдем частные производные $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$:

$$\frac{\partial P}{\partial y} = -x^2$$

$$\frac{\partial Q}{\partial x} = 2x(y - x) - x^2 = 2xy - 3x^2$$

Откуда получаем:

$$\frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} = \frac{-x^2 - 2xy + 3x^2}{x^2(y - x)} = -\frac{2x(y - x)}{x^2(y - x)} = -\frac{2}{x}$$

Данная дробь является функцией только переменной x: $f(x) = -\frac{2}{x}$.

Следовательно, исходное уравнение имеет интегрирующий множитель, зависящий только от x, который вычисляют по формуле: $\mu(x) = e^{\int f(x) dx}$

$$\mu(x) = e^{-\int \frac{2dx}{x}} = e^{-2|\ln x|} = e^{\ln \frac{1}{x^2}} = \frac{1}{x^2}$$

Умножив данное уравнение на $\mu(x)$, получим уравнения в полных дифференциалах:

$$\left(\frac{1}{x^2} - y\right) dx + (y - x) dy = 0 \quad (1)$$

Обозначим:

$$P_1(x; y) = \frac{1}{x^2} - y,$$
 $Q_1(x; y) = y - x$

Находим

$$\frac{\partial P_1}{\partial y} = -1$$
 и $\frac{\partial Q_1}{\partial x} = -1$ => $\frac{\partial P_1}{\partial y} = \frac{\partial Q_1}{\partial x}$

Найдем функцию u(x; y), для которой полный дифференциал имеет вид:

$$du = \left(\frac{1}{x^2} - y\right)dx + (y - x)dy$$

Составим систему:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{1}{x^2} - y \\ \frac{\partial u}{\partial y} = y - x \end{cases}$$

Из первого уравнения системы находим:

$$u(x;y) = \int \left(\frac{1}{x^2} - y\right) dx = -\frac{1}{x} - yx + \varphi(y)$$

Следовательно,

$$\frac{\partial u}{\partial y} = -x + \varphi'(y)$$

И с учетом второго уравнения системы имеем:

$$-x + \varphi'(y) = y - x$$
$$\varphi'(y) = y$$
$$\varphi(y) = \frac{y^2}{2} + c_1$$

Следовательно

$$u(x; y) = -\frac{1}{x} - yx + \frac{y^2}{2} + c_1$$

Тогда общий интеграл исходного уравнения имеет вид:

$$u(x; y) = c$$

т.е.
$$-\frac{1}{x} - yx + \frac{y^2}{2} = c$$
, c – произвольная постоянная

Кроме того необходимо проверить, не обращается ли функция $\mu(x)$ в ноль и существует ли она при всех значениях x. Проверка показывает, что $x \equiv 0$ также является особым решением исходного уравнения.

Ответ:
$$\frac{y^2}{2} - \frac{1}{x} - yx = c$$
, $x \equiv 0$, $c -$ произвольная постоянная.

10. На основании закона Ньютона (скорость охлаждения тела пропорциональна разности температур) можем записать:

$$\frac{dT}{dt} = K(T - 20) \,,$$

Разделим переменные:

$$\frac{dt}{T-20} = Kdt,$$

Проинтегрируем уравнение:

$$\int \frac{dT}{T - 20} = \int Kdt,$$

$$\ln|T - 20| = Kt + C_{1,}$$

$$T - 20 = Ce^{Kt}$$

Если t=0, то $T=100\,^{\circ}\mathrm{C}\,$ отсюда $\mathit{C}=80\,$, т.е. $\mathit{T}-20=80e^{kt}$

Если
$$t=20$$
, то $T=60$ °C , следовательно $60-20=80e^{20k}$, или $e^{20k}=\frac{1}{2}$,

$$20K = \ln\frac{1}{2} \,, \qquad K = -\frac{1}{20} \ln 2$$

Итак, закон охлаждения тела имеет вид:

$$T-20=80te^{-rac{t}{20}\ln 2}$$
 или $T=20+80\left(rac{1}{2}
ight)^{t/20}$

При T=30 °С имеем $10=80\left(\frac{1}{2}\right)^{t/20}$, или $\left(\frac{1}{2}\right)^{t/20}=\frac{1}{8}$, таким образом, $\frac{t}{20}=3$, t=60 мин.

Ответ: Закон охлаждения тела $T = 20 + 80 \cdot 2^{-\frac{t}{20}}$, тело остынет до 30 °C за 60 минут.

Варианты расчетной работы для самостоятельного решения (1-30)

Вариант 1

1.
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$
.

2.
$$y' = (x - y)^2 + 1$$
.

3.
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
.

4.
$$y' = \frac{x+y-2}{y-x-4}$$
.

5.
$$y' - \frac{y}{x} = x^2$$
, $y(1) = 0$.

6.
$$y' + xy = (1+x)e^{-x}y^2$$
, $y(0) = 1$.

$$7. \quad y' = \frac{1}{x \cos y + \sin 2y}.$$

8.
$$3x^2e^y dx + (x^3e^y - 1)dy = 0$$
.

9.
$$(xy^2 - y^3)dx + (1 - xy^2)dy = 0$$

10. Моторная лодка движется со скоростью $v = 18 \,\mathrm{km/v}$. Через 5 минут после выключения мотора $v = 6 \,\mathrm{km/v}$. Найти путь, пройденный лодкой по инерции за 15 минут, если сопротивление пропорционально скорости лодки.

1.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
.

2.
$$y' = e^{2x+4y} - \frac{1}{2}$$
.

3.
$$xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}$$
.

4.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

5.
$$y' - y \cot x = 2x \sin x, y(\frac{\pi}{2}) = 0.$$

6.
$$xy' + y = 2y^2 \ln x, y(1) = \frac{1}{2}$$
.

7.
$$(y^4 e^y + 2x)y' = y, y(0) = 1.$$

8.
$$(3x^2 + \frac{2}{y}\cos\frac{2x}{y})dx - \frac{2x}{y^2}\cos\frac{2x}{y}dy = 0$$
.

9.
$$(y^2 - 2x - 2)dx + 2ydy = 0$$
.

10. Найти уравнение кривой, проходящей через точку M(0;1), если длина отрезка, отсекаемого любой ее касательной на оси Oy, равна поднормали.

1.
$$\sqrt{4+y^2}dx - ydy = x^2ydy$$
.

2.
$$y' = \frac{1}{\ln(2x+y)} - 2$$
.

$$3. \quad y' = \frac{x+y}{x-y} \, .$$

4.
$$y' = \frac{y+2}{2x+y-4}$$
.

5.
$$y' + y\cos x = \frac{1}{2}\sin 2x$$
, $y(0) = 0$.

6.
$$2(xy' + y) = xy^2$$
, $y(1) = 2$.

7.
$$y^2 dx + (xy-1)dy = 0$$
, $y(1) = e$.

8.
$$(3x^2 + 4y^2)dx + (8xy + e^y)dy = 0$$
.

- 9. $(2y + xy^3)dx + (x + x^2y^2)dy = 0$
- 10. Известно, что скорость v(t) охлаждения тела в воздухе пропорционально разности температур тела T(t) и воздуха. Найти T(t), если за 10 минут температура тела снизилась от 100 до 60 °C, а температура воздуха была постоянной, равной 20 °C.

$$1. \quad \sqrt{3+y^2} dx - y dy = x^2 y dy.$$

2.
$$y' = \frac{5}{(2x+y)\sin(2x+y+1)} - 2$$
.

3.
$$xy' = \sqrt{x^2 + y^2} + y$$
.

4.
$$y' = \frac{x+y-2}{3x-y-2}$$
.

5.
$$y' + y \operatorname{tg} x = \cos^2 x$$
, $y(\frac{\pi}{4}) = \frac{1}{2}$.

6.
$$y' + 4x^3y = 4(x^3 + 1)e^{-4x}y^2$$
, $y(0) = 1$.

7.
$$2(4y^2 + 4y - x)y' = 1$$
, $y(0) = 0$.

8.
$$(2x-1-\frac{y}{x^2})dx - (2y-\frac{1}{x})dy = 0$$
.

9.
$$y^2 dx + (xy - 1)dy = 0$$
.

10. Найти уравнение кривой, проходящей через точку M(0;2), если угловой коэффициент касательной, проведенной в любой точке этой кривой, равен сумме координат точки касания.

1.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$
.

2.
$$y' = \frac{2}{arcta(4x+y)} - 4$$
.

3.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3$$
.

4.
$$y' = \frac{x+3y-4}{5x-y-4}$$
.

5.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = \frac{3}{2}$.

6.
$$xy' - y = -y^2(\ln x + 2)\ln x$$
, $y(1) = 1$.

7.
$$(\cos 2y \cdot \cos^2 y - x)y' = \sin y \cdot \cos y$$
, $y(\frac{1}{4}) = \frac{\pi}{3}$.

8.
$$(y^2 + \frac{y}{\cos^2 x})dx + (2xy + \tan x)dy = 0$$
.

9.
$$y^2 dx - (xy + x^3) dy = 0$$
.

10. Парашютист, масса которого *m*, совершает прыжок. В процессе движения на парашютиста действуют сила тяжести и сила сопротивления воздуха, пропорциональная скорости движения: –*kv*. Найти скорость парашютиста в произвольный момент полета.

Вариант 6

1.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$
.

2.
$$y' = 3x - 2y + 1$$
.

3.
$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$
.

4.
$$y' = \frac{2x+y+1}{x+2y-1}$$
.

5.
$$y' = \frac{1}{x+1}y + e^x(x+1), y(0) = 1.$$

6.
$$2(y' + xy) = (1+x)e^{-x}y^2$$
, $y(0) = 2$.

7.
$$(x\cos^2 y - y^2)y' = y\cos^2 y$$
, $y(\pi) = \frac{\pi}{4}$.

8.
$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0$$
.

9.
$$(x\cos y - y\sin y)dy + (x\sin y + y\cos y)dx = 0.$$

10. Замедляющее действие трения на вращающийся в жидкости диск пропорционально угловой скорости $\omega(t)$. Найти $\omega(t)$, если известно, что за 25 секунд с начала движения угловая скорость снизилась со 100 до 50 об./с.

1.
$$(e^{2x} + 5)dy + ye^{2x}dx = 0$$
.

$$2. \quad y' = \sin(y - x).$$

$$3. \quad y' = \frac{x+2y}{2x-y}.$$

4.
$$y' = \frac{x+y-8}{3x-y-8}$$
.

5.
$$y' - \frac{y}{x} = x \cdot \sin x, y(\frac{\pi}{2}) = 1.$$

6.
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$.

7.
$$e^{y^2}(dx-2xydy) = ydy$$
, $y(0) = 0$.

8.
$$\left(\frac{x}{\sqrt{x^2+y^2}} + \frac{1}{x} + \frac{1}{y}\right)dx + \left(\frac{y}{\sqrt{x^2+y^2}} + \frac{1}{y} - \frac{x}{y^2}\right)dy = 0$$
.

9.
$$y\sqrt{1-y^2}dx + (x\sqrt{1-y^2} + y)dy = 0.$$

10. Через 12 часов после начала опыта численность некоторой популяции бактерий возросла в 3 раза. Во сколько раз увеличится число бактерий через трое суток? Скорость размножения бактерий пропорциональна их количеству.

1.
$$y'y\sqrt{1-x^2} + \sqrt{1-y^2} = 0$$
.

2.
$$y' = (x + y + 1)^2$$
.

3.
$$xy' = 2\sqrt{x^2 + y^2} + y$$
.

4.
$$y' = \frac{x+3y+4}{3x-6}$$
.

5.
$$y' + \frac{y}{x} = \sin x, y(\pi) = \frac{1}{\pi}$$
.

6.
$$2y' + y\cos x = y^{-1} \cdot \cos x(1 + \sin x), \ y(0) = 1.$$

7.
$$(104y^3 - x)y' = 4y, y(8) = 1.$$

8.
$$(\sin 2x - 2\cos(x + y))dx - 2\cos(x + y)dy = 0$$
.

$$9. \qquad (x^2 + y)dx - xdy = 0$$

10. Известно, что скорость распада радия пропорциональна его наличному количеству и что половина его первоначального количества (a) распадется в течение 1600 лет. Определить, какой процент данного количества (a) радия распадется в течение 100 лет.

Вариант 9

1.
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$
.

2.
$$y' = \cos^2(x - y)$$
.

3.
$$3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4$$
.

4.
$$y' = \frac{3y+3}{2x+y-1}$$
.

5.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

6.
$$y' + 4x^3y = 4y^2e^{4x}(1-x^3), y(0) = -1.$$

7.
$$dx + (xy - y^3)dy = 0$$
, $y(-1) = 0$.

8.
$$(xy^2 + \frac{x}{y^2})dx + (x^2y - \frac{x^2}{y^3})dy = 0$$
.

9.
$$\frac{y}{x}dx + (y^3 - \ln x)dy = 0$$
.

10. Моторная лодка движется со скоростью $v = 20 \,\mathrm{km/v}$. Через 6 минут после выключения мотора скорость $v = 5 \,\mathrm{km/v}$. Найти путь, пройденный лодкой по инерции за 15 минут, если сопротивление пропорционально скорости лодки.

1.
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0$$
.

2.
$$y' = \sqrt{2x + y + 1}$$
.

3.
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$
.

4.
$$y' = \frac{x+2y-3}{4x-y-3}$$
.

5.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, \ y(0) = \frac{2}{3}.$$

6.
$$3y' + 2xy = 2xy^{-2}e^{-2x^2}$$
, $y(0) = -1$.

7.
$$(3y\cos 2y - 2y^2\sin 2y - 2x)y' = y$$
, $y(16) = \frac{\pi}{4}$.

8.
$$\left(\frac{1}{x^2} + \frac{3y^2}{x^4}\right) dx - \frac{2y}{x^3} dy = 0$$
.

9.
$$\left(\frac{x}{\sin y} + 1\right) dx + (x \cot y + 1) dy = 0.$$

10. Найти такую кривую, проходящую через точку M(0;3), чтобы угловой коэффициент касательной в любой ее точке равнялся ординате этой точки, уменьшенной на 2 единицы.

Вариант 11

1.
$$y(4+e^x)dy - e^x dx = 0$$
.

2.
$$y' = (10x + 5y + 1)^3$$
.

3.
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$
.

4.
$$y' = \frac{x+5y-6}{7x-y-6}$$
.

5.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$.

6.
$$2xy' - 3y = -(5x^2 + 3)y^3$$
, $y(1) = \frac{1}{\sqrt{2}}$.

7.
$$8(4y^3 + xy - y)y' = 1$$
, $y(0) = 0$.

8.
$$\frac{y}{x^2}\cos\frac{y}{x}dx - (\frac{1}{x}\cos\frac{y}{x} + 2y)dy = 0$$
.

9.
$$\left(\frac{\ln y}{y} - 5y\sin 5x\right)dx + \left(\frac{x}{y^2} + 2\cos 5x\right)dy = 0.$$

10. Замедляющее действие на диск, вращающийся в жидкости, пропорционально угловой скорости $\omega(t)$. Найти $\omega(t)$, если известно, что за 30 секунд с начала движения угловая скорость снизилась со 150 до 30 об./с.

1.
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
.

2.
$$y' = (x + y)^{10} - 1$$
.

3.
$$xy' = \sqrt{2x^2 + y^2} + y$$
.

4.
$$y' = \frac{3y-2x+1}{3x+3}$$
.

5.
$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$.

6.
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$.

7.
$$(2\ln y - \ln^2 y)dy = ydx - xdy, \ y(4) = e^2.$$

8.
$$\left(\frac{x}{\sqrt{x^2+y^2}}+y\right)dx+\left(x+\frac{y}{\sqrt{x^2+y^2}}\right)dy=0$$
.

9.
$$xy^2(xy' + y) = 1$$
.

10. Известно, что скорость охлаждения тела в воздухе пропорционально разности температур тела (T(t)) и воздуха. Найти T(t), если за 20 минут температура тела снизилась от 150 до 50 °C, а температура воздуха была постоянной, равной 25 °C.

1.
$$2xdx - 2ydy = x^2ydy - 2xy^2dx$$
.

2.
$$y' = e^{x+2y}$$
.

3.
$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$
.

4.
$$y' = \frac{y+2}{2x+y-4}$$
.

5.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$.

6.
$$2y' + 3y \cos x = e^{2x} (2 + 3\cos x) y^{-1}, y(0) = 1.$$

7.
$$2(x + y^4)y' = y$$
, $y(-2) = -1$.

8.
$$\frac{1+xy}{x^2y}dx + \frac{1-xy}{xy^2}dy = 0.$$

- 9. $(2x^3 + 5y)y' = y^3 + 3x^2y$.
- 10. Найти уравнение кривой, проходящей через точку M(1;2), если ее подкасательная вдвое больше абсциссы точки касания.

1.
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0$$
.

2.
$$y' = (8x + 2y + 1)^2$$
.

3.
$$xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}$$
.

4.
$$y' = \frac{x+6y-7}{8x-y-7}$$
.

5.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$.

6.
$$3(xy' + y) = xy^2$$
, $y(1) = 3$.

7.
$$y^3(y-1)dx + 3xy^2(y-1)dy = (y+2)dy$$
, $y(\frac{1}{4}) = 2$.

8.
$$\frac{dx}{y} - \frac{x + y^2}{y^2} dy = 0$$
.

9.
$$(x + e^{-2x} + y^2)dx + ydy = 0$$
.

10. Сила тока i(t) в цепи с сопротивлением R, самоиндукцией L и электродвижущей силой E удовлетворяет уравнению: $L\frac{di}{dt}+Ri=E$. Найти i(t), считая L и R постоянными, а E=kt и i(0)=0.

1.
$$(e^x + 8)dy - ye^x dx = 0$$
.

$$2. y' = \sin^2(y - x).$$

3.
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}.$$

4.
$$y' = \frac{6y-6}{5x+4y-9}$$
.

5.
$$y' + \frac{2}{x}y = x^3$$
, $y(1) = -\frac{5}{6}$.

6.
$$y' - y = 2xy^2$$
, $y(0) = \frac{1}{2}$.

7.
$$2y^2dx + (x + e^{\frac{1}{y}})dy = 0, \ y(e) = 1.$$

$$8. \qquad \frac{y}{x^2}dx - \frac{xy+1}{x}dy = 0.$$

9.
$$\left(\frac{y^2}{x} - \frac{2y}{x^3}\right) dx + \left(y - \frac{1}{x^2}\right) dy = 0.$$

10. Известно, что скорость распада радия пропорциональна его наличному количеству и что половина его первоначального количества (a) распадется в течение 1600 лет. Определить, какой процент данного количества (a) радия распадется в течение 200 лет.

Вариант 16

1.
$$\sqrt{5+y^2} + y'y\sqrt{1-x^2} = 0$$

2.
$$y' = \frac{2}{(2x-y)^2}$$
.

3.
$$xy' = 3\sqrt{x^2 + y^2} + y$$
.

4.
$$y' = \frac{2x+y-1}{2x-2}$$
.

5.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$.

6.
$$2xy'-3y=-(20x^2+12)y^3$$
, $y(1)=\frac{1}{2\sqrt{2}}$.

7.
$$(xy + \sqrt{y})dy + y^2 dx = 0$$
, $y(-\frac{1}{2}) = 4$.

8.
$$(xe^x + \frac{y}{x^2})dx - \frac{1}{x}dy = 0$$
.

9.
$$(x^2 - y)dy + x(y - 1)dx = 0$$
.

10. Моторная лодка движется со скоростью v=24 км/ч. Через 5 минут после выключения мотора v=6 км/ч. Найти путь, пройденный лодкой по инерции за 10 минут, если сопротивление пропорционально скорости лодки.

1.
$$6xdx - ydy = yx^2dy - 3xy^2dx$$
.

2.
$$y' = \frac{e^{x+y}}{x+y-4} - 1.$$

3.
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8$$
.

4.
$$y' = \frac{x+y-4}{x-2}$$
.

5.
$$y' - \frac{2xy}{1+x^2} = 1 + x^2$$
, $y(1) = 3$

6.
$$y'+2xy = 2x^3y^3, y(0) = \sqrt{2}$$

7.
$$\sin 2y dx = (\sin^2 2y - 2\sin^2 y + 2x) dy, \ y(-\frac{1}{2}) = \frac{\pi}{4}$$

8.
$$(10xy - \frac{1}{\sin y})dx + (5x^2 + \frac{x\cos y}{\sin^2 y} + y^2\sin y^3)dy = 0$$
.

$$9. \quad ydx - (x + y^2)dy = 0.$$

10. По закону Ньютона скорость охлаждение какого-либо тела в воздухе пропорционально разности между температурой Т тела и температурой воздуха Т₀. Если температура воздуха равна 18 °C и тело в течение получаса охлаждается от 120 до 40 °C, то через сколько времени его температура понизится до 25 °C.

1.
$$y \ln y + xy' = 0$$
.

$$2. \quad y' = \cos(y - x).$$

3.
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}$$
.

4.
$$y' = \frac{2x+y-3}{2x-2}$$
.

5.
$$y' = \frac{2x-1}{x^2}y+1$$
, $y(1) = 1$.

6.
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$.

7.
$$(y^2 + 2y - x)y' = 1$$
, $y(2) = 0$.

- 8. $\left(\frac{y}{x^2+y^2}+e^x\right)dx-\frac{xdy}{x^2+y^2}=0$.
- 9. $(1+3x^2\sin y)dx x\operatorname{ctg} ydy = 0.$
- 10. Замедляющее действие трения на вращающийся в жидкости диск пропорционально угловой скорости ω . Найти $\omega(t)$, если известно, что за 20 секунд с начала движения угловая скорость снизилась с 200 до 50 об./с.

1.
$$(1+e^x)y' = ye^x$$
.

2.
$$y' = \frac{(3x+y)^2}{\ln(3x+y)^2} - 3$$
.

3.
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$
.

4.
$$y' = \frac{2x+y-3}{4x-4}$$
.

5.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$.

6.
$$2y'+3y\cos x = (8+12\cos x)e^{2x}y^{-1}, y(0) = 2$$
.

7.
$$2y\sqrt{y}dx - (6x\sqrt{y} + 7)dy = 0, y(-4) = 1.$$

8.
$$e^{y}dx + (\cos y + xe^{y})dy = 0$$
.

9.
$$(x\cos y - y\sin y)dy + (x\sin y + y\cos y)dx = 0$$

10. Известно, что скорость охлаждения тела в воздухе пропорциональна разности температур тела (T(t)) и воздуха. Найти T(t), если за 15 минут температура тела снизилась от 200 до 50 °C, а температура воздуха была постоянной 25 °C.

1.
$$\sqrt{1-x^2}y'+xy^2+x=0$$
.

2.
$$y' = (x + y)^2$$
.

3.
$$xy' = 3\sqrt{2x^2 + y^2} + y$$
.

4.
$$y' = \frac{x+y+2}{x+1}$$
.

5.
$$y'+2xy=-2x^3$$
, $y(1)=e^{-1}$.

6.
$$4y' + x^3y = (x^3 + 8)e^{-2x}y^2$$
; $y(0) = 1$.

7.
$$dx = (\sin y + 3\cos y + 3x)dy$$
, $y(e^{\frac{\pi}{2}}) = \frac{\pi}{2}$.

8.
$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0$$
.

9.
$$e^{-y}dx + (2 - xe^{-y})dy = 0$$
.

10. Найти уравнение кривой, проходящей через точку M(0;3), если подкасательная в любой точке равна сумме абсциссы точки касания и расстояния от начала координат до точки касания.

Вариант 21

1.
$$6xdx - 2ydy = 2yx^2dy - 3xy^2dx$$
.

2.
$$y' = tg^2(y - x) + 2$$
.

3.
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$$
.

4.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

5.
$$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}$$
, $y(0) = \frac{2}{3}$.

6.
$$8xy'-12y = -(5x^2+3)y^3$$
, $y(1) = \sqrt{2}$.

7.
$$2(\cos^2 y \cos 2y - x)y' = \sin 2y, \ y(\frac{3}{2}) = \frac{5\pi}{4}$$
.

8.
$$xe^{y^2}dx + (x^2ye^{y^2} + tg^2y)dy = 0$$
.

9.
$$\left(1 + \frac{y}{x^2}\right) dx + \left(\frac{1}{x} + \frac{2y}{x^2}\right) dy = 0.$$

10. Моторная лодка движется со скоростью 15 км/ч. Через 10 минут после выключения мотора скорость стала 3 км/ч. Найти путь, пройденный лодкой по инерции за 20 минут, если сопротивление пропорционально скорости лодки.

1.
$$y(1 + \ln y) + xy' = 0$$
.

2.
$$y' = \sqrt{x + y + 5}$$
.

3.
$$xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}$$
.

4.
$$y' = \frac{5y+5}{4x+3y-1}$$
.

5.
$$y'+xy=-x^3$$
, $y(0)=3$.

6.
$$2(y'+y) = xy^2$$
, $y(0) = 2$.

7.
$$\frac{e^y + e^{-y}}{2} dx = \left(1 + x \cdot \frac{e^y - e^{-y}}{2}\right) dy, y(1) = \ln 2.$$

8.
$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0$$
.

9.
$$(x^2 - \sin^2 y)dx + x \sin 2ydy = 0$$
.

10. При брожении скорость прироста действующего фермента пропорциональна его массе. Через 2 часа после начала брожения масса фермента составила 6 г, а после 6 часов — 24 г. Какова была первоначальная масса фермента?

1.
$$(3+e^x)yy'=e^x$$
.

2.
$$y' = 2x - y + 4$$
.

3.
$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}$$
.

4.
$$y' = \frac{3x+2y-1}{x+1}$$
.

5.
$$y' - \frac{2}{x+1}y = e^x(x+1)^2$$
, $y(0) = 1$.

6.
$$y' + xy = (x-1)e^x y^2$$
, $y(0) = 1$.

7.
$$(13y^3 - x)y' = 4y$$
, $y(5) = 1$.

8.
$$(\cos(x+y^2) + \sin x)dx + 2y\cos(x+y^2)dy = 0$$
.

9.
$$(x - 2xy - y^2)dy + y^2dx = 0$$
.

10. Замедляющее действие трения на вращающийся в жидкости диск пропорционально угловой скорости ω . Найти $\omega(t)$, если известно, что за 15 секунд с начала движения угловая скорость снизилась от 250 до 125 об./с.

Вариант 24

1.
$$\sqrt{3+y^2} + \sqrt{1-x^2}yy' = 0$$
.

2.
$$y' = (x - y)^2 + 5$$
.

3.
$$xy' = 2\sqrt{3x^2 + y^2} + y$$
.

4.
$$y' = \frac{x+2y-3}{x-1}$$
.

5.
$$y' + 2xy = xe^{-x^2} \sin x$$
, $y(0) = 1$.

6.
$$2y'-3y\cos x = -e^{-2x}(2+3\cos x)y^{-1}, y(0) = 1.$$

7.
$$y^2(y^2+4)dx + 2xy(y^2+4)dy = 2dy$$
, $y(\frac{\pi}{8}) = 2$.

$$8. \quad \frac{y}{x^2} \cos \frac{y}{x} dx - \left(\frac{1}{x} \cos \frac{y}{x} + 2y\right) dy = 0.$$

9.
$$\left(1 + \frac{1}{3}xy^3\right)dx + (x + x^2y^2)dy = 0.$$

10. Известно, что скорость охлаждения тела в воздухе пропорциональна разности температур тела (T(t)) и воздуха. Найти T(t), если за 10 минут температура тела снизилась от 100 до 65 °C, а температура воздуха была постоянной 30 °C.

$$1. \quad xdx - ydy = yx^2dy - xy^2dx.$$

2.
$$y' = \operatorname{ctg}^2(2y - 6x) + 3$$
.

3.
$$4y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 5$$
.

4.
$$y' = \frac{y-2x+3}{x-1}$$
.

5.
$$y' - \frac{2y}{x+1} = (x+1)^3$$
, $y(0) = \frac{1}{2}$.

6.
$$y'-y=xy^2$$
, $y(0)=1$.

7.
$$(x + \ln^2 y - \ln y)y' = \frac{y}{2}, y(2) = 1.$$

8.
$$(\sin y + y \sin x + \frac{1}{x})dx + (x \cos y - \cos x + \frac{1}{y})dy = 0$$
.

9.
$$\left(2xy + x^2y + \frac{y^3}{3}\right)dx + (x^2 + y^2)dy = 0.$$

10. Известно, что скорость распада радия пропорциональна его наличному количеству и что половина его первоначального количества (а) распадается в течение 1600 лет. Определить, какой процент данного количества (а) радия распадется в течение 400 лет.

Вариант 26

1.
$$\sqrt{5+y^2}dx + 4(x^2y + y)dy = 0$$
.

2.
$$y' = \frac{8}{(x+y)^3}$$
.

3.
$$xy' = \frac{3y^3 + 14yx^2}{2y^2 + 7x^2}$$
.

4.
$$y' = \frac{x+3y-4}{5x-y-4}$$
.

5.
$$y'-y\cos x = -\sin 2x$$
, $y(0) = 3$.

6.
$$y'+y=xy^2$$
, $y(0)=1$.

7.
$$ydx + (2x - 2\sin^2 y - y\sin 2y)dy = 0$$
, $y(\frac{3}{2}) = \frac{\pi}{4}$.

8.
$$(1+\frac{1}{v}e^{\frac{x}{y}})dx + (1-\frac{x}{v^2}e^{\frac{x}{y}})dy = 0.$$

9.
$$(x^2 + y^2 + 2x)dx - 2ydy = 0$$
.

10. Найти уравнение кривой, проходящей через точку M(1;0), если длина отрезка оси абсцисс, отсекаемой ее нормалью, на 2 единицы больше абсциссы точки касания.

1.
$$(1+e^x)yy'=e^x$$
.

2.
$$y' = \sqrt[3]{3x - y} + 2$$
.

3.
$$y' = \frac{x^2 + xy - 5y^2}{x^2 - 6xy}$$
.

4.
$$y' = \frac{4y-8}{3x+2y-7}$$
.

5.
$$y'-4xy = -4x^3$$
, $y(0) = \frac{1}{2}$.

6.
$$2(xy'+y) = y^2 \ln x$$
, $y(1) = 2$.

7.
$$(2xy + \sqrt{y})dy + 2y^2dx = 0$$
, $y(-\frac{1}{2}) = 1$.

8.
$$\frac{(x-y)dx + (x+y)dy}{x^2 + y^2} = 0.$$

9.
$$(e^y + \sin x)dx + \cos xdy = 0.$$

10. Моторная лодка движется со скоростью v=12 км/ч. Через 10 минут после выключения мотора v=3 км/ч. Найти путь, пройденный лодкой по инерции за 20 минут, если сопротивление пропорционально скорости лодки.

1.
$$3(x^2y + y)dy + \sqrt{2 + y^2}dx = 0$$
.

2.
$$y' = 5x + 10y + 2$$
.

3.
$$xy' = 4\sqrt{x^2 + y^2} + y$$
.

4.
$$y' = \frac{2x+3y-5}{5x-5}$$
.

5.
$$y' - \frac{y}{x} = -\frac{\ln x}{x}$$
, $y(1) = 1$.

6.
$$x^2y^2y'+xy^3=1$$
, $y(1)=1$.

7.
$$2(y^3 - y + xy)dy = dx$$
, $y(-2) = 0$.

8.
$$2(3xy^2 + 2x^3)dx + 3(2x^2y + y^2)dy = 0$$
.

- 9. $(x^2\cos x y)dx + xdy = 0.$
- 10. Найти уравнение кривой, проходящей через точку M(1;3), если произведение углового коэффициента касательной, проведенной в любой точке этой кривой, на абсциссу точки касания равно полусумме координат точки касания.

$$1. \quad 2xdx - ydy = yx^2dy - xy^2dx.$$

2.
$$y' = \frac{4}{2x-y}$$
.

3.
$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10$$
.

4.
$$y' = \frac{x+8y-9}{10x-y-9}$$
.

5.
$$y'-3x^2y = \frac{x^2(1+x^3)}{3}$$
, $y(0) = 0$.

6.
$$3y^2y'+y^3=x+1$$
, $y(1)=-1$.

7.
$$ydx - (3x + 1 + \ln y)dy = 0$$
, $y(-\frac{1}{3}) = 1$.

8.
$$2x\cos^2 y dx + (2y - x^2 \sin 2y) dy = 0$$
.

9.
$$y^2 dx + (xy - 1)dy = 0$$
.

10. Известно, что скорость распада радия пропорциональна его наличному количеству и что половина его первоначального количества (а) распадается в течение 1600 лет. Определить, какой процент данного количества (а) радия распадется в течение 800 лет.

1.
$$2x + 2xy^2 + \sqrt{2 - x^2}y' = 0$$
.

2.
$$y' = \frac{5}{(y+5x+1)^2}$$
.

3.
$$xy' = 4\sqrt{2x^2 + y^2} + y$$
.

4.
$$y' = \frac{x-2y+3}{-2x-2}$$
.

- 5. $y'-y\cos x = \sin 2x$, y(0) = 1.
- 6. $(1-x^2)y'-xy=xy^2$, $y(0)=\frac{1}{2}$.
- 7. $\cos y dx = (x + 2\cos y)\sin y dy$, $y(\frac{1}{2}) = 0$.
- 8. $(3x^2y 4xy^2)dx + (x^3 4x^2y + 12y^3)dy = 0$.
- 9. $ydx xdy + \ln x dx = 0$.
- 10. Найти уравнение кривой, проходящей через точку M(1;2), если произведение абсциссы точки касания на абсциссу точки пересечения нормали с осью Ox равна удвоенному квадрату расстояния от начала координат до точки касания.

РАСЧЕТНАЯ РАБОТА 7. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Примерный вариант расчетной работы с решением

- 1. Решить задачу Коши: $y''y^3 + 81 = 0$, y(1) = 3, y'(1) = -3.
- 2. Решить уравнение: $xy'' + y' = x^{\frac{3}{2}}$.
- 3. Решить уравнение: $y'' + 4y = 4 \cos 2x$.
- 4. Решить уравнение: $y'' 4y = e^x((-4x + 4)\cos x (2x + 6)\sin x)$.
- 5. Решить уравнение: $y'' + y = \operatorname{tg} x$.
- 6. Найти решение системы дифференциальных уравнений $\begin{cases} y' = 1 \frac{1}{z}, \\ z' = \frac{1}{y-x}, \end{cases}$ удовлетворяющее начальным условиям: y(0) = -1, z(0) = 1.
- 7. Найти общее решение ЛОДУ: $\begin{cases} y' = y + 2z, \\ z' = 2y + z. \end{cases}$
- 8. Решить ЛНДУ: $\begin{cases} y' = -y 2z + 2e^{-x}, \\ z' = 3y + 4z + e^{-x}. \end{cases}$

Решение

1. Данное уравнение 2-го порядка для функции y = y(x) не содержит явно независимую переменную x.

Принимаем y за новую независимую переменную, а производную 1-го порядка y'(x) — за новую функцию p(y). Тогда $y''(x) = (p(y))_x' = p_y' \cdot y_x' = p'(y) \cdot p(y)$.

Таким образом уравнение F(y,y',y'')=0 сводится к уравнению $F_1(y,p,p')=0$. В нашем случае мы приходим к уравнению: $p'py^3=-81$. Решаем уравнение 1-го порядка с разделяющимися переменными при начальном условии p(3)=-3.

$$pdp = \frac{-81}{y^3}dy; \frac{p^2}{2} = \frac{81}{2y^2} + \frac{C_1}{2}; p^2 = \frac{81}{y^2} + C_1.$$

Подставляя начальные условия, получаем $p(y) = -\frac{9}{y}$.

Вернемся к старым переменным $y'(x) = -\frac{9}{y}$, т.е. пришли к уравнению 1-го порядка, которое является уравнением с разделяющимися переменными. Решаем его: ydy = -9dx; $\frac{y^2}{2} = -9x + C_2$.

Подставляя начальные условия, получаем частный интеграл поставленной задачи Коши.

Omsem:
$$y^2 = -18x + 27$$
.

2. Данное уравнение не содержит явно искомую функцию y(x).

В этом случае можно выполнить подстановку y'(x) = z(x).

Тогда y''(x)=z'(x) и уравнение 2-го порядка F(y,y',y'')=0 для функции y(x) переходит в уравнение 1-го порядка F(x,z,z')=0 для функции z(x). В нашем случае будем иметь следующее уравнение: $xz'+z=x^{\frac{3}{2}}$. Это линейное уравнение 1-го порядка для функции z(x). Решим его: $z'+\frac{1}{x}z=x^{\frac{1}{2}}$. Применим метод Бернулли: $u'v+uv'+\frac{1}{x}uv=x^{\frac{1}{2}}\Rightarrow v'+\frac{1}{x}v=0\Rightarrow v=\frac{1}{x}$, а для функции u(x) получим $u'\cdot\frac{1}{x}=x^{\frac{1}{2}}$, откуда следует $u(x)=\frac{2x^{\frac{5}{2}}}{5}+C_1$ и $y'(x)=\frac{2}{5}x^{\frac{3}{2}}+\frac{C_1}{x}$. Итак, для функции y(x) получили дифференциальное уравнение 1-го порядка с разделяющимися переменными: $dy=\left(\frac{2}{5}x^{\frac{3}{2}}+\frac{C_1}{x}\right)dx\Rightarrow y(x)=\frac{4}{25}x^{\frac{5}{2}}+C_1\ln|x|+C_2$.

3. Заданное уравнение является ЛНДУ 2-го порядка с постоянными коэффициентами с правой частью специального вида, который позволяет воспользоваться методом неопределенных коэффициентов. Общее решение ЛНДУ есть $y(x) = y_{o.o} + \tilde{y}$, где $y_{o.o}(x)$ – общее решение соответствующего

ЛОДУ, $\tilde{y}(x)$ — частное решение заданного ЛНДУ. Найдем общее решение ЛОДУ: y''+4y=0. Характеристическое уравнение имеет вид: $k^2+4=0$. Откуда следует $k_{1,2}=\pm 2i$, т.е. $\alpha=0$, $\beta=2$. Тогда общее решение ЛОДУ будет $y_{o.o}=C_1\cos 2x+C_2\sin 2x$, где C_1 и C_2 — произвольные постоянные. Правая часть исходного уравнения $y''+4y=4\cos 2x$ имеет специальный вид $f(x)=4\cos 2x=M_p(x)\cos 2x+N_q(x)\sin 2x$, здесь p=0, а многочлен $N_q(x)\equiv 0$. S=max(p;q)=0. Составим по правой части ЛНДУ f(x) число $\alpha+\beta i=0+2i=2i$. Это число совпадает с одним из корней характеристического уравнения $\Rightarrow r=1$ вид частного решения есть $\tilde{y}(x)=x(A\cos 2x+B\sin 2x)$, где A и B — неизвестные пока числа (неопределенные коэффициенты многочленов нулевого порядка, S=0). Для определения A и B находим $\tilde{y}'(x), \tilde{y}''(x)$ и подставляем в исходное уравнение:

$$-4A \sin 2x + 4B \cos 2x - 4Ax \cos 2x - 4Bx \sin 2x + 4Ax \cos 2x + 4Bx \sin 2x = 4 \cos 2x.$$

Приводя подобные члены и приравнивая затем коэффициенты при $\cos 2x$, $\sin 2x$ в левой и правой частях последнего выражения, получаем следующую систему уравнений:

$$\begin{cases} -4A = 0 \\ 4B = 4 \end{cases} \Rightarrow \begin{cases} A = 0 \\ B = 1 \end{cases}.$$

Окончательно общее решение заданного уравнения имеет вид:

$$y(x) = y_{0.0}(x) + \tilde{y}(x) = C_1 \cos 2x + C_2 \sin 2x + x \sin 2x.$$

Ombem: $y(x) = C_1 \cos 2x + C_2 \sin 2x + x \sin 2x$.

4. Заданное уравнение является ЛНДУ 2-го порядка с постоянными коэффициентами с правой частью специального вида, который позволяет воспользоваться методом неопределенных коэффициентов. Общее решение ЛНДУ есть $y(x) = y_{o.o} + \tilde{y}$, где $y_{o.o}(x)$ – общее решение соответствующего ЛОДУ, $\tilde{y}(x)$ – частное решение заданного ЛНДУ. Найдем общее решение соответствующего ЛОДУ:

$$y^{\prime\prime}-4y=0.$$

Характеристическое уравнение $k^2 - 4 = 0$ имеет корни $k_{1,2} = \pm 2$.

Следовательно, общее решение ЛОДУ есть

$$y_{o.o.}(x) = C_1 e^{2x} + C_2 e^{-2x},$$

где C_1 и C_2 – произвольные постоянные.

Строим частное решение заданного ЛНДУ.

Правая часть уравнения

$$f(x) = e^{x} ((-4x + 4)\cos x - (2x + 6)\sin x) \Rightarrow$$

$$\Rightarrow \alpha = 1, \beta = 1 \Rightarrow \alpha + i\beta = 1 + i \neq k_1, k_2 \Rightarrow r = 0$$

$$p = q = 1 \Rightarrow S = \max(p, q) = 1$$

Следовательно, частное решение исходного уравнения имеет вид

$$\tilde{y}(x) = e^x ((Ax + B)\cos x + (Cx + D)\sin x).$$

Найдем производные первого и второго порядков от функции $\tilde{y}(x)$:

$$\tilde{y}'(x) = e^x \{\cos x \ (Ax + Cx + A + B + D) + \sin x \ (Cx - Ax + C + D - B)\}.$$
 $\tilde{y}''(x) = e^x \{\cos x \cdot (2Cx + 2A + 2C + 2D) + \sin x \cdot (-2Ax + 2C - 2A - 2B)\}.$ Подставляем функции $\tilde{y}'(x)$, $\tilde{y}''(x)$ в левую часть заданного ЛНДУ и приравняем получившееся выражение к правой части $f(x)$ исходного уравнения. В результате для коэффициентов A , B , C и D получим следующую систему алгебраических уравнений:

$$\begin{cases}
C - 2A = -2 \\
2C + A = 1 \\
A + C + D - 2B = 2 \\
C - A - B - 2D = -3
\end{cases}$$

Откуда находим A = 1, B = 0, C = 0, D = 1. Следовательно общее решение заданного уравнения имеет вид:

$$y(x) = y_{o.o}(x) + \tilde{y}(x) = C_1 e^{2x} + C_2 e^{-2x} + e^x (x \cos x + \sin x).$$

Omsem: $y(x) = C_1 e^{2x} + C_2 e^{-2x} + e^x (x \cos x + \sin x).$

5. Заданное уравнение является ЛНДУ 2-го порядка с правой частью, которая не позволяет применить метод неопределенных коэффициентов. Поэтому для решения этого уравнения применим метод вариации произвольных постоянных (метод Лагранжа).

Находим общее решение соответствующего ЛОДУ:

$$y''+y=0, k^2+1=0\Rightarrow k_{1,2}=\pm i\Rightarrow y_{o.o}(x)=\mathcal{C}_1\cos x+\mathcal{C}_2\sin x,$$
 где \mathcal{C}_1 и \mathcal{C}_2 —произвольные постоянные.

Далее ищем решение заданного ЛНДУ в виде:

$$y(x) = C_1(x)\cos x + C_2(x)\sin x,$$

где $C_1(x)$ и $C_2(x)$ — некоторые непрерывно дважды дифференцируемые функции от x, подлежащие определению. Эти функции находим из следующей системы уравнений:

$$\begin{cases} C_1'(x)\cos x + C_2'(x)\sin x = 0, \\ -C_1'(x)\sin x + C_2'(x)\cos x = \operatorname{tg} x. \end{cases}$$

Решая эту систему относительно функций $C_1'(x)$ и $C_2'(x)$, получаем $C_1'(x) = -\frac{\sin^2 x}{\cos x}$; $C_2'(x) = \sin x$. Откуда будем иметь:

$$C_1(x) = \sin x + \ln \left| \operatorname{tg} \left(\frac{\pi}{4} - \frac{x}{2} \right) \right| + \tilde{C}_1, \ C_2(x) = -\cos x + \tilde{C}_2,$$

где $\tilde{\mathcal{C}}_1$ и $\tilde{\mathcal{C}}_2$ – произвольные постоянные.

Следовательно, общим решением исходного дифференциального уравнения $y'' + y = \operatorname{tg} x$ будет следующее двухпараметрическое семейство функций:

$$y(x) = \tilde{C}_1 \cos x + \tilde{C}_2 \sin x + \cos x \cdot \left(\ln \left| \lg \left(\frac{\pi}{4} - \frac{x}{2} \right) \right| \right).$$

Omsem: $y(x) = \tilde{C}_1 \cos x + \tilde{C}_2 \sin x + \cos x \cdot \left(\ln \left| \lg \left(\frac{\pi}{4} - \frac{x}{2} \right) \right| \right)$.

6. Будем искать общее решение методом исключения, который состоит в приведении заданной системы к одному дифференциальному уравнению. Дифференцируем второе уравнение по независимой переменной *x*:

$$z'' = -\frac{1}{(v-x)^2} \cdot (y'-1).$$

Чтобы исключить из полученного уравнения y и y', заменим в нем y и (y'-1) их значениями из данной системы:

$$y' - 1 = -\frac{1}{z}, \frac{1}{y - x} = z' \Rightarrow z'' = z'^2 \cdot \frac{1}{z}.$$

Откуда будем иметь $\frac{z''}{z'} = \frac{z'}{z} \Rightarrow z' = C_1 z \Rightarrow z(x) = C_2 e^{C_1 x}$.

Для нахождения y(x) воспользуемся вторым уравнением системы:

$$y - x = \frac{1}{z'} = \frac{1}{C_1 z} = \frac{1}{C_1 C_2} e^{-C_1 x}.$$

Откуда $y = x + \frac{1}{c_1 c_2} e^{-C_1 x}$. Следовательно, общим решением заданной системы уравнений будет

$$\begin{cases} y = x + \frac{1}{C_1 C_2} e^{-C_1 x} \\ z = C_2 e^{C_1 x} \end{cases}.$$

Решим теперь поставленную задачу Коши.

Подставим в общее решение вместо x, y, z их начальные значения 0, -1 и 1:

$$-1 = \frac{1}{C_1 C_2}$$
, $1 = C_2 \Rightarrow C_1 = -1$, $C_2 = 1$.

Следовательно, решением задачи Коши будет пара функций

$$y = x - e^x$$
, $z = e^{-x}$.

Omsem: $y = x - e^x$, $z = e^{-x}$.

7. Задана система линейных однородных дифференциальных уравнений (ЛОДУ).

Представим $y(x) = \alpha_1 e^{\lambda x}$, $z(x) = \alpha_2 e^{\lambda x}$, где $\alpha_1, \alpha_2, \lambda$ пока неизвестные параметры. Продифференцируем обе функции по x и подставим y'(x), z'(x), y(x), z(x)в заданную систему уравнений:

$$\begin{cases} \lambda \alpha_1 e^{\lambda x} = \alpha_1 e^{\lambda x} + 2\alpha_2 e^{\lambda x} \\ \lambda \alpha_2 e^{\lambda x} = 2\alpha_1 e^{\lambda x} + \alpha_2 e^{\lambda x} \end{cases}$$

Так как $e^{\lambda x} > 0$, то на $e^{\lambda x}$ можно сократить оба уравнения, соберем также все слагаемые с α_1 и α_2 в правую часть и в итоге получим:

$$\begin{cases} (1-\lambda)\alpha_1 + 2\alpha_2 = 0\\ 2\alpha_1 + (1-\lambda)\alpha_2 = 0. \end{cases}$$

Полученная система уравнений является линейной однородной системой двух алгебраических уравнений с двумя неизвестными α_1 , α_2 . Чтобы эта однородная линейная система имела нулевое решение, необходимо и достаточно, чтобы ее определить равнялся нулю, т.е. λ было корнем так называемого характеристического уравнения

$$\begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = 0; \quad (1 - \lambda)^2 - 4 = 0$$

Откуда следует, что $\lambda_1=3$, $\lambda_2=-1$.

Подставим первый характеристический корень $\lambda_1=3$ в алгебраическую систему уравнений и найдем первое ненулевое решение этой системы. Так как ранг алгебраической системы равен единице, то это решение определяется с точностью до постоянного множителя: $\lambda_1^1=\lambda_2^1=C$. Возьмем для простоты C=1, тогда первым решением системы ЛОДУ будет

$$y_1(x) = e^{3x}, z_1(x) = e^{3x}.$$

Теперь подставим в одно из уравнений алгебраической системы уравнений второе характеристическое число $\lambda_2 = -1$ и определим второе решение алгебраической системы: $\lambda_1^2 = \lambda_2^2 = -1$. Тогда вторым ненулевым решением ЛОС ДУ будет $y_2(x) = e^{-x}$, $z_2(x) = e^{-x}$.

Итак, построена фундаментальная система решений системы ЛОДУ и, следовательно, общим решением заданной системы дифференциальных уравнений будет

$$\begin{cases} y(x) = C_1 y_1(x) + C_2 y_2(x) = C_1 e^{3x} + C_2 e^{-x}, \\ z(x) = C_1 z_1(x) + C_2 z_2(x) = C_1 e^{3x} - C_2 e^{-x}, \end{cases}$$

где C_1 и C_2 – произвольные постоянные.

Omsem:
$$\begin{cases} y(x) = C_1 y_1(x) + C_2 y_2(x) = C_1 e^{3x} + C_2 e^{-x}, \\ z(x) = C_1 z_1(x) + C_2 z_2(x) = C_1 e^{3x} - C_2 e^{-x}. \end{cases}$$

8. Задана система линейных неоднородных дифференциальных уравнений – ЛНДУ. Решим эту систему методом вариации произвольных постоянных (методом Лагранжа).

Соответствующей однородной системой будет следующая система ЛОДУ:

$$\begin{cases} y' = -y - 2z, \\ z' = 3y + 4z. \end{cases}$$

Найдем ее общее решение методом Эйлера, подробно изложенным выше. В результате будем иметь

$$\begin{cases} y(x) = C_1 e^x + 2C_2 e^{2x}, \\ z(x) = -C_1 e^x - 3C_2 e^{2x}, \end{cases}$$

где C_1 и C_2 – произвольные постоянные.

Далее ищем общее решение заданной системы ЛНДУ в виде

$$\begin{cases} y(x) = C_1(x)e^x + 2C_2(x)e^{2x}, \\ z(x) = -C_1(x)e^x - 3C_2(x)e^{2x}, \end{cases}$$

где $C_1(x)$ и $C_2(x)$ – некоторые дифференцируемые функции аргумента x.

Функции $C_1'(x)$ и $C_2'(x)$ находятся из системы уравнений:

$$\begin{cases} C_1'(x)y_1(x) + C_2'(x)y_2(x) = f_1(x) \\ C_1'(x)z_1(x) + C_2'(x)z_2(x) = f_2(x) \end{cases}$$

Здесь $y_1(x), z_1(x)$ — первое решение системы ЛНДУ, а $y_2(x), z_2(x)$ — второе ее решение. В нашем случае для нахождения $C_1'(x)$ и $C_2'(x)$ будем иметь следующую систему уравнений:

$$\begin{cases} C_1'(x)e^x + 2C_2'(x)e^{2x} = 2e^{-x} \\ -C_1'(x)e^x - 3C_2'(x)e^{2x} = e^{-x} \end{cases}$$

Откуда получаем $C_1'(x) = 8e^{-2x}$, $C_2'(x) = -3e^{-3x}$. Следовательно, общим решением заданной системы уравнений будет

$$\begin{cases} y(x) = -2e^{-x} + C_1e^x + 2C_2(x)e^{2x} \\ z(x) = e^{-x} - C_1e^x - 3C_2e^{2x} \end{cases}.$$

Замечание. Частное решение исходной системы дифференциальных уравнений можно было искать в виде $y(x) = ae^{-x}$, $z(x) = be^{-x}$ методом неопределенных коэффициентов, т.е. для решения заданной системы можно было бы избежать применения метода Лагранжа.

Omsem:
$$\begin{cases} y(x) = -2e^{-x} + C_1e^x + 2C_2(x)e^{2x} \\ z(x) = e^{-x} - C_1e^x - 3C_2e^{2x} \end{cases}.$$

Варианты расчетной работы для самостоятельного решения (1-30)

Вариант 1

Решить задачу Коши:

1.
$$4y^3y'' = y^4 - 1$$
; $y(0) = \sqrt{2}$; $y'(0) = \frac{1}{2\sqrt{2}}$.

Решить дифференциальные уравнения:

2.
$$y''x \ln x = y'$$
;
4. $y'' - 4y' + 4y = -e^{2x} \sin 6x$;

3.
$$y'' - 4y' + 3y = (16 - 12x)e^{-x}$$
; 5. $y'' - 2y' + y = e^{x} \ln x$.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = -\frac{1}{z}, \\ z' = \frac{1}{y}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - y, \\ \frac{dy}{dt} = y - 2x + 18t. \end{cases}$$

$$8. \begin{cases} x' = x - 3y, \\ y' = 3x + y. \end{cases}$$

Вариант 2

Решить задачу Коши:

1.
$$y'' = 128y^3$$
; $y(0) = 1$; $y'(0) = 8$.

Решить дифференциальные уравнения:

2.
$$xy'' + y' = 1$$
;

4.
$$y'' + 2y' = -2e^x(\sin x + \cos x)$$
;

3.
$$y'' - y = x^2 + x$$
;

5.
$$y'' + 4y' + 4y = \frac{1}{xe^{2x}}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = -z, \\ z' = \frac{z^2}{y}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 3x + 2y + 4e^{5t}, \\ \frac{dy}{dt} = x + 2y. \end{cases}$$

8.
$$\begin{cases} x' = 2x + y, \\ y' = 3x + 4y. \end{cases}$$

Вариант 3

Решить задачу Коши:

1.
$$y''y^3 + 64 = 0$$
; $y(0) = 4$; $y'(0) = 2$.

Решить дифференциальные уравнения:

2.
$$2xy'' = y'$$
;

4.
$$y'' - 4y' + 5y = (x-1)e^{-x}$$
;

2.
$$2xy = y$$
,
3. $y'' + 2y' + y = (2x - 5)e^{-x}$;

5.
$$y'' + 9y = \frac{1}{\sin 3x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = xy, \\ z' + y' = z + xy. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - 3y, \\ \frac{dy}{dt} = x - 2y + 2\sin t. \end{cases}$$
 8.
$$\begin{cases} x' = x - y, \\ y' = y - 4x. \end{cases}$$

Вариант 4

Решить задачу Коши:

1.
$$y'' + 2\sin y \cos^3 y = 0$$
; $y(0) = 0$; $y'(0) = 1$.

Решить дифференциальные уравнения:

2.
$$xy'' + y' = x + 1;$$

4. $y'' - 2y' + 2y = (6x - 11)e^{-x};$

3.
$$y'' - y' = 2x + 3$$
;
5. $y'' + 4y = \frac{1}{\cos 2x}$

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = \frac{1}{z}, \\ z' = \frac{1}{y}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - 4y + 4e^{-2t}, \\ \frac{dy}{dt} = 2x - 2y. \end{cases}$$
 8.
$$\begin{cases} x' + x + 5y = 0, \\ y' - x - y = 0. \end{cases}$$

Вариант 5

Решить задачу Коши:

1.
$$y'' = 32\sin^3 y \cdot \cos y$$
; $y(1) = \frac{\pi}{2}$; $y'(1) = 4$.

2.
$$tg \ x \cdot y'' - y' + \frac{1}{\sin x} = 0;$$

$$4. \ y'' - 3y' + 2y = (4x + 9)e^{2x}$$

3.
$$3y'' + y' = 6x - 1$$
; 5. $y'' + \frac{1}{9}y = \frac{1}{\cos^2 \frac{x}{3}}$

6.
$$\begin{cases} y' = \frac{z^2}{y}, \\ z' = y. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 3 - 2y, \\ \frac{dy}{dt} = 2x - 2t. \end{cases}$$

8.
$$\begin{cases} x' + x - 8y = 0, \\ y' - x - y = 0. \end{cases}$$

Вариант 6

Решить задачу Коши:

1.
$$y'' = 98y^3$$
; $y(1) = 1$; $y'(1) = 7$.

Решить дифференциальные уравнения:

2.
$$x^2y'' + xy' = 1$$
;

4.
$$y'' + 2y' + 5y = 10\cos x$$
;

3.
$$y'' - 6y' + 8y = xe^{-3x}$$
;

5.
$$y'' - y' = \frac{1}{2 + e^{-x}}$$
.

Решить системы дифференциальных уравнений и выделить решение, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

$$6. \quad \begin{cases} y' = z, \\ z' = y + z. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = x - y + 8t, \\ \frac{dy}{dt} = 5x - y. \end{cases}$$

8.
$$\begin{cases} x' = 3x + 8y, \\ y' = -3y - x. \end{cases}$$

Вариант 7

Решить задачу Коши:

1.
$$y'' \cdot y^3 + 49 = 0$$
, $y(3) = -7$; $y'(3) = -1$.

2.
$$y'' \cdot \text{ctg} 2x + 2y' = 0$$
;

4.
$$y'' + 2y' = 6e^x(\sin x + \cos x)$$
;

3.
$$y'' + y' = 5x^2 - 1$$
;

5.
$$y'' - 2y' + y = 3e^x \sqrt{x-1}$$
.

6.
$$\begin{cases} y' = z^2, \\ z' = y. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} + 2y = 3t, \\ \frac{dy}{dt} - 2x = 4. \end{cases}$$

8.
$$\begin{cases} x' = x + y, \\ y' = 3y - 2x. \end{cases}$$

Вариант 8

Решить задачу Коши:

1.
$$4y^3y'' = 16y^4 - 1$$
, $y(0) = \frac{\sqrt{2}}{2}$; $y'(0) = \frac{1}{\sqrt{2}}$.

Решить дифференциальные уравнения:

2.
$$x^3y'' + x^2y' = 1$$
;

4.
$$y'' + 49y = 14\sin 7x + 7\cos 7x$$
;

3.
$$y'' + y' - 2y = (6x + 5)e^x$$
;

5.
$$4y'' - 4y' + y = e^{-\frac{x}{2}} \ln x$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = -z + x^2, \\ z' = y + e^x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} + 2x - 4y = 0, \\ \frac{dy}{dt} + x - 3y = 3t^2. \end{cases}$$

8.
$$\begin{cases} x' = -7x + y, \\ y' = -5y - 2x. \end{cases}$$

Вариант 9

Решить задачу Коши:

1.
$$y'' + 8\sin y \cdot \cos^3 y = 0$$
, $y(0) = 0$; $y'(0) = 2$.

2.
$$tg x \cdot y'' = 2y'$$
;

4.
$$y'' - 4y' + 4y = e^{2x} \cdot \sin 4x$$
;

3.
$$y'' - y' = 4x^2 - 3x + 2$$
;

5.
$$y'' - 3y' + 2y = \frac{e^x}{3 + e^{-x}}$$
.

6.
$$\begin{cases} y' = z + tg^2 x - 1, \\ z' = -y + tg x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = y - 5\cos t, \\ \frac{dy}{dt} = 2x + y. \end{cases}$$

$$8. \begin{cases} x' = 2x + y, \\ y' = 4y - x. \end{cases}$$

Вариант 10

Решить задачу Коши:

1.
$$y'' = 72y^3$$
; $y(2) = 1$; $y'(2) = 6$.

Решить дифференциальные уравнения:

2.
$$y'' + \frac{2x}{x^2 + 1}y' = 2x$$
;

4.
$$y'' + y = 2\cos 5x + 3\sin 5x$$
;
5. $y'' + 16y = \cot 4x$.

5.
$$y'' + 16y = ctg4x$$
.

3.
$$y'' + 3y' + 2y = (1 - 2x)e^{-x}$$
;

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = y + z - \cos x, \\ z' = -2y - z + \sin x + \cos x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 1 - 2y, \\ \frac{dy}{dt} = 2x - \sin 2t. \end{cases}$$

$$8. \begin{cases} x' = x - 4y \\ y' = x - 3y \end{cases}$$

Вариант 11

Решить задачу Коши:

1.
$$y''y^3 + 36 = 0$$
, $y(0) = 3$; $y'(0) = 2$.

2.
$$x^4y'' + x^3y' = 1$$
;

4.
$$y'' - 4y' + 8y = e^x (2\sin x + \cos x);$$

3.
$$y'' + y' = 49 - 24x^2$$
;

5.
$$y'' + y = \frac{\sin x}{\cos^2 x}$$
.

6.
$$\begin{cases} y' = \frac{z}{y}, \\ z' = y + 1. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2y - 5x, \\ \frac{dy}{dt} = x - 6y + e^{-2t}. \end{cases}$$

8.
$$\begin{cases} x' = 2y - 3x, \\ y' = y - 2x. \end{cases}$$

Вариант 12

Решить задачу Коши:

1.
$$y'' = 18\sin^3 y \cdot \cos y$$
, $y(1) = \frac{\pi}{2}$; $y'(1) = 3$.

Решить дифференциальные уравнения:

2.
$$xy'' + 2y' = 0$$
;

4.
$$y'' - 4y' + 8y = e^x (2\sin x - \cos x);$$

3.
$$y'' + 5y' + 4y = (20 - 16x)e^{-x}$$
; 5. $y'' + 4y = \text{tg}2x$.

5.
$$y'' + 4y = tg2x$$
.

решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = 5y - 3z + xe^{2x}, \\ z' = 3y - z + e^{3x}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = -6x + 3y + t, \\ \frac{dy}{dt} = -4x + 2y. \end{cases}$$

8.
$$\begin{cases} x' - 5x - 3y = 0, \\ y' + 3x + y = 0. \end{cases}$$

Вариант 13

Решить задачу Коши:

1.
$$4y^3y'' = y^4 - 16$$
, $y(0) = 2\sqrt{2}$; $y'(0) = \frac{1}{\sqrt{2}}$.

2.
$$(1+x^2)y'' + 2xy' = x^3$$
;

4.
$$y'' + 2y' + 5y = -\cos x$$
;

3.
$$y'' - 4y' + 3y = -4xe^x$$
;

5.
$$y'' + 3y' + 2y = \frac{1}{1 + 2e^{2x}}$$
.

6.
$$\begin{cases} y' = yz, \\ z' = -y. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 3x + 2y + 4e^{5t}, \\ \frac{dy}{dt} = x + 2y. \end{cases}$$

8.
$$\begin{cases} x' = 2x + y, \\ y' = 3x + 4y. \end{cases}$$

Вариант 14

Решить задачу Коши:

1.
$$y'' = 50y^3$$
, $y(3) = 1$; $y'(3) = 5$.

Решить дифференциальные уравнения:

2.
$$x^5y'' + x^4y' = 1$$
;

4.
$$y'' + 2y' = 3e^x(\sin x + \cos x)$$
;

3.
$$y'' + 2y' - 3y = (8x + 6)e^x$$
;

5.
$$y'' + y = \frac{\cos x}{\sin^2 x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = 2z + e^{3x}, \\ z' = y + x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - y, \\ \frac{dy}{dt} = y - 2x + 18t. \end{cases}$$

8.
$$\begin{cases} x' = x - 3y, \\ y' = 3x + y. \end{cases}$$

Вариант 15

Решить задачу Коши:

1.
$$y'' + 18\sin y \cdot \cos^3 y = 0$$
, $y(0) = 0$; $y'(0) = 3$.

2.
$$(1+x^2)y'' + 2xy' = 12x^3$$
;

4.
$$y'' + 2y' + 5y = x\sin 2x$$
;

3.
$$y'' + 3y' + 2y = x^2 + 2x + 3$$
; 5. $y'' + 4y' + 4y = e^{-2x} \ln x$.

5.
$$y'' + 4y' + 4y = e^{-2x} \ln x$$

6.
$$\begin{cases} y' = 2z - y, \\ z' = 4z - 3y + \frac{e^{3x}}{e^{2x} + 1}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} x' = x - y, \\ y' = x + y + e^t. \end{cases}$$

8.
$$\begin{cases} x' = x + 3y, \\ y' = -x + 5y. \end{cases}$$

Вариант 16

Решить задачу Коши:

1.
$$y''y^3 + 25 = 0, y(2) = -5, y'(2) = -1.$$

Решить дифференциальные уравнения:

2.
$$xy'' + y' + x = 0$$
;

4.
$$y'' - 6y' + 10y = 2e^{3x} \sin 2x$$
;

3.
$$y''-y'=6x^2+3x$$
;

5.
$$y''-y'=\frac{1}{e^x+1}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = y - z + \frac{1}{\cos x}, \\ z' = 2y - z. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - 3y \\ \frac{dy}{dt} = x - 2y + 2\sin t \end{cases}$$

$$8. \quad \begin{cases} x' = x - y \\ y' = y - 4x \end{cases}$$

Вариант 17

Решить задачу Коши:

1.
$$y'' = 32y^3$$
, $y(4) = 1$, $y'(4) = 4$.

2.
$$xy'' - y' + \frac{1}{x} = 0$$
;

4.
$$y'' + 4y = 5(x+2)^2$$
;

3.
$$y''-2y'+y=2xe^{-x}$$
;

5.
$$y''+16y=\frac{1}{\sin^2 4x}$$
.

6.
$$\begin{cases} y' = 2y - z, \\ z' = 2z - y - 5e^x \sin x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2x - 4y + 4e^{-2t} \\ \frac{dy}{dt} = 2x - 2y \end{cases}$$

8.
$$\begin{cases} x' + x + 5y = 0 \\ y' - x - y = 0 \end{cases}$$

Вариант 18

Решить задачу Коши:

1.
$$y'' = 8\sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 2$.

Решить дифференциальные уравнения:

2.
$$xy'' + y' = \sqrt{x}$$
;

4.
$$y'' + 2y' + y = (18x + 21)e^{2x}$$
;

3.
$$y'' + 2y' + y = x^2 + x - 1$$
;

5.
$$9y''+6y'+y=3e^{-x/3}\sqrt{x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = 2y + z + 2e^x, \\ z' = y + 2z - 3e^{4x}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 3 - 2y \\ \frac{dy}{dt} = 2x - 2t \end{cases}$$

8.
$$\begin{cases} x' + x - 8y = 0, \\ y' - x - y = 0. \end{cases}$$

Вариант 19

Решить задачу Коши:

1.
$$y''y^3 + 16 = 0$$
, $y(1) = 2$, $y'(1) = 2$.

2.
$$y''tg x = y'+1;$$

4.
$$y'' + y = 2\cos 3x - 3\sin 3x$$
;

3.
$$7y''-y'=12x$$
;

5.
$$y'' + 2y' + y = 3e^{-x}\sqrt{x+1}$$
.

6.
$$\begin{cases} y' = 4y - 3z + \sin x, \\ z' = 2y - z - 2\cos x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = x - y + 8t \\ \frac{dy}{dt} = 5x - y \end{cases}$$

$$8. \begin{cases} x' = 3x + 8y \\ y' = -3y - x \end{cases}$$

Вариант 20

Решить задачу Коши:

1.
$$y'' + 32\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 4$.

Решить дифференциальные уравнения:

2.
$$y'' tg 5x = 5y';$$

3.
$$y'' + 4y' + 13y = 2x^2 - 1$$
;

4.
$$y'' + 4y' + 4y = x - x^2$$
;

5.
$$4y'' + y = ctg^2 \frac{x}{2}$$

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = -4y - 2z + \frac{2}{e^x + 1}, \\ z' = 6y + 3z - \frac{3}{e^x + 1}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} + 2y = 3t \\ \frac{dy}{dt} - 2x = 4 \end{cases}$$

$$8. \begin{cases} x' = x + y \\ y' = 3y - 2x \end{cases}$$

Вариант 21

Решить задачу Коши:

1.
$$y'' = 50\sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 5$.

2.
$$y'' \frac{e^x - e^{-x}}{e^x + e^{-x}} = y';$$

4.
$$y'' + 2y' + 5y = -2\sin x$$
;

3.
$$y'' + 6y' + 9y = (16x + 24)e^x$$
;

5.
$$y''-y=\frac{1}{1+e^x}$$
.

Найти уравнений, решение дифференциальных системы удовлетворяющее начальным условиям $y\left(\frac{\pi}{2}\right) = -1, z\left(\frac{\pi}{2}\right) = 1$:

6.
$$\begin{cases} y' = y - z + \frac{1}{\sin x}, \\ z' = 2y - z. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} + 2x - 4y = 0\\ \frac{dy}{dt} + x - 3y = 3t^2 \end{cases}$$

8.
$$\begin{cases} x' = -7x + y \\ y' = -5y - 2x \end{cases}$$

Вариант 22

Решить задачу Коши:

1.
$$y'' = 18y^3$$
, $y(1) = 1$, $y'(1) = 3$.

Решить дифференциальные уравнения:

2.
$$x^3y'' + x^2y' = \sqrt{x}$$
;

4.
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$
;

3.
$$y''-4y'=32-384x^2$$
;

5.
$$y'' - 6y' + 9y = e^{3x}(x+1)$$
.

решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = \frac{x}{z}, \\ z' = -\frac{x}{y}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} x' = y - x + e^t \\ y' = x - y + e^t \end{cases}$$

8.
$$\begin{cases} x' = 2x - 5y \\ y' = 5x - 6y \end{cases}$$

Вариант 23

Решить задачу Коши:

1.
$$y''y^3 + 9 = 0$$
, $y(1) = 1$, $y'(1) = 3$.

2.
$$y'' \cot x + y' = -\frac{1}{\cos x}$$
;
3. $y'' - 2y' - 3y = (8x - 14)e^{-x}$;
4. $y'' - 4y' + 8y = e^{x}(3\sin x + 5\cos x)$;
5. $9y'' - 6y' + y = \frac{e^{x/3}}{x}$.

4.
$$y'' - 4y' + 8y = e^x(3\sin x + 5\cos x)$$

3.
$$v'' - 2v' - 3v = (8x - 14)e^{-x}$$

5.
$$9y'' - 6y' + y = \frac{e^{x/3}}{x}$$

6.
$$\begin{cases} y' = \frac{2x}{1+x^2}y, \\ z' = -\frac{1}{x}z + y + x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = y - 5\cos t \\ \frac{dy}{dt} = 2x + y \end{cases}$$

$$8. \begin{cases} x' = 2x + y \\ y' = 4y - x \end{cases}$$

Вариант 24

Решить задачу Коши:

1.
$$y^3y'' = 4(y^4 - 1), y(0) = \sqrt{2}, y'(0) = \sqrt{2}$$
.

Решить дифференциальные уравнения:

2.
$$(x+1)y''+y'=x+1$$
;

4.
$$y'' + 2y' + 5y = -17\sin 2x$$
;

3.
$$y'' + 2y' + y = 2 - 3x^2$$
;

5.
$$y'' + y = \frac{1}{\sin^3 x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(1) = -1, z(1) = 1:

$$6. \quad \begin{cases} xy' = y, \\ z' = y + z \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 1 - 2y \\ \frac{dy}{dt} = 2x - \sin 2t \end{cases}$$

$$\begin{cases} x' = 3x - y \\ y' = 4x - y \end{cases}$$

Вариант 25

Решить задачу Коши:

1.
$$y'' + 4y = \frac{4}{\cos 2x}$$
, $y(0) = 2$, $y'(0) = 0$.

Решить дифференциальные уравнения:

2.
$$(1 + \sin x)y'' = y'\cos x;$$

4.
$$y'' - 3y' + 7y = xe^{-3x}$$
;

3.
$$y'' + 4y' + 4 = (9x + 15)e^x$$
;

5.
$$9y'' + y = tg^2 \frac{x}{3}$$
.

решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = z, \\ z' = \frac{z^2}{y}. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = 2y - 5x \\ \frac{dy}{dt} = x - 6y + e^{-2t} \end{cases}$$

$$8. \begin{cases} x' = 2y - 3x \\ y' = y - 2x \end{cases}$$

Вариант 26

Решить задачу Коши:

1.
$$y'' + y' = \frac{e^x}{2 + e^x}$$
, $y(0) = \ln 27$, $y'(0) = 1 - \ln 9$.

Решить дифференциальные уравнения:

2.
$$xy'' - y' = \frac{1}{\sqrt{x}}$$
;

4.
$$y'' + \frac{y}{4} = x^2 - 1;$$

5. $y'' + 9y = \text{ctg}3x.$

3.
$$y''-5y'+6y=(x-1)^2$$
;

$$5. \quad y'' + 9y = \operatorname{ctg} 3x.$$

 $y'' - 5y' + 6y = (x - 1)^2$; 5. y'' + 9y = ctg3x. Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = y^2 + z, \\ z' = -2yy' + y. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} \frac{dx}{dt} = -6x + 3y + t \\ \frac{dy}{dt} = -4x + 2y \end{cases}$$

8.
$$\begin{cases} x' - 5x - 3y = 0 \\ y' + 3x + y = 0 \end{cases}$$

Решить задачу Коши:

1.
$$y''y^3 + 4 = 0$$
, $y(0) = -1$, $y'(0) = -2$.

Решить дифференциальные уравнения:

2.
$$-xy'' + 2y' = \frac{2}{x^2}$$
;

4.
$$y'' + y = 2\cos 7x - 3\sin 7x$$
;

3.
$$y'' + 3y' = x^3 + 1$$
;

5.
$$y'' + 8y' + 16y = e^{-4x} \frac{\ln x}{x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = \frac{y}{z}, \\ z' = y. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} x' = 3x - 2y + t \\ y' = 3x - 4y \end{cases}$$

$$8. \begin{cases} x' = x - 4y \\ y' = x - 3y \end{cases}$$

Вариант 28

Решить задачу Коши:

1.
$$y'' = 2\sin^3 y \cos y$$
, $y(1) = \frac{\pi}{2}$, $y'(1) = 1$.

Решить дифференциальные уравнения:

$$2. \quad xy'' = y' \ln \frac{y'}{r};$$

4.
$$y''-9y'+18y=(x-1)e^{3x}$$
;

3.
$$y'' - 4y = 5xe^{-x}$$
;

5.
$$y'' + 2y' + y = \frac{\ln(x+2)}{\sqrt{x}}e^{-x}$$
.

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = 4y - 3z + \sin x, \\ z' = 2y - z - 2\cos x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} x' = -x + 4y + t \\ y' = 3x - 5y \end{cases}$$

8.
$$\begin{cases} x' = 3x - 2y \\ y' = 4x + 7y \end{cases}$$

Решить задачу Коши:

1.
$$y^3y'' = -1$$
, $y(1) = 1$, $y'(1) = 0$.

Решить дифференциальные уравнения:

2.
$$y'' = \frac{y'}{x} + x$$
;

4.
$$y'' + 10y' + 26y = -3\sin x$$
;

3.
$$y''-4y'-5y=(1-x)e^{-2x}$$
;

5.
$$y'' - 4y' + 4y = \frac{e^{2x}}{\sqrt{1+3x}}$$
.

Найти решение системы дифференциальных уравнений. удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = 2y - 3z + e^x, \\ z' = y - 2z + 2\sin x. \end{cases}$$

Решить системы дифференциальных уравнений:

7.
$$\begin{cases} x' = 2x + 4y + t \\ y' = 5x + 3y \end{cases}$$

8.
$$\begin{cases} x' = -x + 2y \\ y' = -2x - 5y \end{cases}$$

Вариант 30

Решить задачу Коши:

1.
$$2y'' = 3y^2$$
, $y(-2) = 1$, $y'(-2) = -1$.

Решить дифференциальные уравнения:

$$2. \quad xy" = y' \ln \frac{y'}{x};$$

4.
$$y'' + 8y' + 17y = -5\cos x$$

3.
$$y'' + y' - 6y = (x+2)e^{2x}$$
;

5.
$$y'' + 8y' + 17y = -5\cos x;$$

5. $y'' + 6y' + 9y = \frac{\sqrt{x+1}}{e^{3x}}.$

Найти решение системы дифференциальных уравнений, удовлетворяющее начальным условиям y(0) = -1, z(0) = 1:

6.
$$\begin{cases} y' = y + 2z + 16xe^{x}, \\ z' = 2y - 2z + x. \end{cases}$$

Решить системы дифференциальных уравне 7.
$$\begin{cases} x' = 2x + y + t \\ y' = 2x + 3y \end{cases}$$
 8.
$$\begin{cases} x' = -x \\ y' = -x \end{cases}$$

8.
$$\begin{cases} x' = -7x + y \\ y' = -2x - 5y \end{cases}$$

РАСЧЕТНАЯ РАБОТА 8. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Примерный вариант расчетной работы с решением

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot \sin^2\left(\frac{1}{\sqrt{n}}\right)$$
.;

$$6) \sum_{n=2}^{\infty} \frac{\sqrt[3]{n^2}}{\ln n}.$$

Исследовать ряды на сходимость.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1) \cdot \ln(3n+1)}$$
;

$$\mathbf{B}) \quad \sum_{n=2}^{\infty} \frac{n+1}{2^n \left(n-1\right)}$$

Исследовать ряды на абсолютную и условную сходимость.

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$$
;

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{\pi}{2^n}.$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{(n+1)!}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{3^n \cdot \sqrt{4n+1}}.$$

Вычислить приближенно с точностью $\varepsilon = 0.01$ интеграл: $\int_{-\infty}^{0.4} \frac{1 - e^{-\frac{x}{2}}}{x} dx$. 5.

Решение

1. а) Общий член данного ряда: $u_n = \sqrt{n} \cdot \sin^2 \left(\frac{1}{\sqrt{n}} \right)$.

Необходимым признаком сходимости ряда является: $\lim_{n\to\infty} u_n = 0$.

Найдём указанный предел:

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \sqrt{n} \cdot \sin^2\left(\frac{1}{\sqrt{n}}\right) = \left[\infty \cdot 0\right] = \lim_{n\to\infty} \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} \cdot \sin\left(\frac{1}{\sqrt{n}}\right) = \lim_{n\to\infty} \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}}.$$

$$\cdot \lim_{n\to\infty} \sin\left(\frac{1}{\sqrt{n}}\right) = 1 \cdot 0 = 0;$$

(так как $\lim_{x\to 0} \frac{\sin x}{x} = 1$ — первый замечательный предел).

Ответ: необходимый признак сходимости исходного ряда выполняется.

1. б) Общий член данного ряда: $u_n = \frac{\sqrt[3]{n^2}}{\ln n}$.

$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} \frac{\sqrt[3]{n^2}}{\ln n} = \left[\frac{\infty}{\infty}\right] = \lim_{n\to+\infty} \frac{\left(\sqrt[3]{n^2}\right)'}{\left(\ln n\right)'} = \lim_{n\to+\infty} \frac{\frac{2}{3} \cdot n^{-\frac{1}{3}}}{\frac{1}{n}} = \frac{2}{3} \lim_{n\to+\infty} \frac{n}{n^{\frac{1}{3}}} = \frac{2}{3} \lim_{n\to+\infty} \sqrt[3]{n^2} = +\infty \neq 0.$$

Ответ: необходимый признак сходимости исходного ряда не выполняется.

2. а) Применим интегральный признак Коши-Маклорена.

Рассмотрим функцию
$$f(x) = \frac{1}{(3x+1)\ln(3x+1)}$$
 при $x \in [1; +\infty)$.

Проверим выполнение условий теоремы интегрального признака Коши-Маклорена:

- f(x) > 0 при $x \in [1; +\infty);$
- f(x)-непрерывна при $x \in [1; +\infty);$
- f(x) монотонно убывает при $x \in [1; +\infty)$,

так как
$$f'(x) = -\frac{3(\ln(3x+1)+1)}{(3x+1)^2 \ln^2(3x+1)} < 0$$
 при $x \in [1; +\infty)$.

Так как выполнены все условия указанной теоремы, то можно применить интегральный признак Коши-Маклорена:

$$I = \int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{dx}{(3x+1)\ln(3x+1)} = \frac{1}{3} \lim_{\beta \to +\infty} \left(\int_{1}^{\beta} \frac{d(3x+1)}{\ln(3x+1)} \right) = \frac{1}{3} \lim_{\beta \to +\infty} \left(\ln\left|\ln(3x+1)\right|\right|_{1}^{\beta} \right) =$$

$$= \frac{1}{3} \lim_{\beta \to +\infty} \left(\ln\left|\ln(3\beta+1)\right| - \ln\left|\ln 4\right| \right) = +\infty \Rightarrow I - \text{расходится} \Rightarrow \text{исходный ряд расходится}.$$
Ответ: расходится.

2. б) Общий член данного ряда: $u_n = \frac{\sqrt[3]{n}}{\sqrt{n^5 + 2}}$.

Рассмотрим вспомогательный ряд:

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^5}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{2} - \frac{1}{3}}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{13}{6}}} -$$
это ряд Дирихле

с показателем $p = \frac{13}{6} > 1 \implies$ этот ряд сходится, его общий член $v_n = \frac{1}{n^{\frac{13}{6}}}$.

Применим предельный признак сравнения данного и вспомогательного рядов:

$$q = \lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\sqrt[3]{n \cdot n^{\frac{13}{6}}}}{\sqrt{n^5 + 2}} = \lim_{n \to +\infty} \frac{\sqrt[3]{n \cdot \sqrt{n^5}}}{\sqrt{n^5 + 2} \cdot \sqrt[3]{n}} = \lim_{n \to +\infty} \sqrt{\frac{n^5}{n^5 + 2}} = \lim_{n \to +\infty} \sqrt{\frac{1}{1 + \frac{2}{n^5}}} = 1 \neq 0 \implies$$

исходный и вспомогательный ряды эквивалентны с точки зрения сходимости. Учитывая, что второй эталонный ряд, взятый для сравнения, является сходящимся, то и исходный ряд тоже сходится.

Ответ: сходится.

2. в) Применим признак Д'Аламбера.

$$\begin{split} u_n &= \frac{n+1}{2^n \left(n-1\right)}, \quad u_{n+1} = \frac{\left(n+1\right)+1}{2^{n+1} \left(\left(n+1\right)-1\right)} = \frac{n+2}{2 \cdot 2^n \cdot n}. \\ q &= \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+2}{2 \cdot 2^n \cdot n} \cdot \frac{2^n \left(n-1\right)}{n+1} = \frac{1}{2} \lim_{n \to +\infty} \frac{n+2}{n+1} \cdot \lim_{n \to +\infty} \frac{n-1}{n} = \frac{1}{2} < 1 \implies \text{ряд}. \end{split}$$

Ответ: сходится.

3. a)

сходится.

1) Исходный ряд является знакочередующимся.

Составим для него абсолютный ряд: $\sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)}$, $u_n = \frac{2n+1}{n(n+1)}$ и исследуем его на сходимость.

Рассмотрим вспомогательный ряд: $\sum_{n=1}^{\infty} \frac{1}{n}$ — это расходящийся гармонический

ряд, его общий член $v_n = \frac{1}{n}$.

Применим предельный признак сравнения абсолютного и вспомогательного рядов:

$$q = \lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} \frac{\left(2n+1\right)n}{n\left(n+1\right)} = \lim_{n \to +\infty} \frac{2n+1}{n+1} = 2 \neq 0 \implies \text{абсолютный ряд расходится,}$$

так как проводили сравнение с расходящимся рядом. А значит исходный ряд не сходится абсолютно.

2) Исследуем исходный ряд на условную сходимость. Проверим выполнение условий теоремы признака Лейбница:

$$* \lim_{n \to +\infty} u_n = 0; \quad ** \quad u_n > u_{n+1}.$$

$$* \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{2n+1}{n(n+1)} = \lim_{n \to +\infty} \frac{\frac{2}{n} + \frac{1}{n^2}}{1 + \frac{1}{n}} = \left[\frac{0}{1}\right] = 0 \Rightarrow \text{первое условие выполнено};$$

** Для проверки второго условия рассмотрим функцию

$$f(x) = \frac{2x+1}{x(x+1)} = \frac{2x+1}{x^2+x}$$

Исследуем эту функцию на монотонность:

$$f'(x) = \frac{2(x^2 + x) - (2x + 1)^2}{(x^2 + x)^2} = -\frac{2x^2 + 2x + 1}{(x^2 + x)^2} < 0, \quad \text{при} \quad x \ge 1, \text{а так как } f(n) = u_n, \quad \text{то}$$

 $\left\{u_n\right\}_{n=1}^{+\infty}$ является монотонно убывающей $\Rightarrow u_n > u_{n+1}$.

Значит, все условия теоремы признака Лейбница выполнены ⇒ исходный ряд сходится условно.

Ответ: сходится условно.

3. б)

1) Исходный ряд является знакочередующимся.

Составим для него абсолютный ряд: $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$, $u_n = \sin \frac{\pi}{2^n}$ и исследуем его на сходимость.

Рассмотрим вспомогательный ряд: $\sum_{n=1}^{\infty} \frac{\pi}{2^n}$ — составленный из членов геометрической прогрессии с общим членом $v_n = \frac{\pi}{2^n}$ и знаменателем $q = \frac{1}{2} < 1$, а значит ряд сходится.

Применим первый признак сравнения абсолютного и вспомогательного рядов. Так как $u_n = \sin\frac{\pi}{2^n} < v_n = \frac{\pi}{2^n}$ при $n \ge 1$, то абсолютный ряд сходится \Rightarrow исходный ряд сходится абсолютно.

Ответ: сходится абсолютно.

4. а) Исследуем на сходимость исходный ряд по признаку Д'Аламбера.

$$q = \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{x^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{x^n} \right| = \lim_{n \to +\infty} \left| \frac{x^n \cdot x \cdot (n+1)!}{x^n \cdot (n+2) \cdot (n+1)!} \right| = |x| \cdot \lim_{n \to +\infty} \frac{1}{n+2} = 0 < 1$$

при всех значениях $x \Rightarrow$ исходный ряд сходится при любом $x \in (-\infty; +\infty)$.

Ombem: $x \in (-\infty; +\infty)$.

4. б) Общий член исходного ряда
$$u_n(x) = \frac{(x+4)^n}{3^n \cdot \sqrt{4n+1}}$$
. (1)

1) Применим признак Д'Аламбера для нахождения интервала сходимости исходного ряда:

$$q = \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{(x+4)^{n+1} \cdot 3^n \cdot \sqrt{4n+1}}{(x+4)^n \cdot 3^{n+1} \cdot \sqrt{4n+5}} \right| = \frac{|x+4|}{3} \cdot \sqrt{\lim_{n \to +\infty} \frac{4+\frac{1}{n}}{4+\frac{5}{n}}} = \frac{|x+4|}{3} < 1 \implies |x+4| < 3 \iff 1$$

 \Leftrightarrow $-3 < x + 4 < 3 \Leftrightarrow -7 < x < -1 \Leftrightarrow x \in (-7;-1)$ – интервал сходимости ряда (1).

2) Исследуем ряд (1) на сходимость в точке x = -7:

(2)
$$\sum_{n=1}^{\infty} \frac{(-7+4)^n}{3^n \cdot \sqrt{4n+1}} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt{4n+1}} = \sum_{n=1}^{\infty} \left(-1\right)^n \cdot b_n$$
 – это знакочередующийся ряд.

Составим его абсолютный ряд (3) $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{4n+1}}$.

Сравним ряд (3) с рядом (4) $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ – это положительный

ряд Дирихле с показателем $p = \frac{1}{2} < 1$, а значит ряд (4) расходится.

Найдем предел: $\lim_{n\to +\infty} \frac{b_n}{v_n} = \lim_{n\to +\infty} \frac{\sqrt{n}}{\sqrt{4n+1}} = \frac{1}{2} \neq 0 \Rightarrow$ по 2-му признаку сравнения

рядов с положительными членами, ряд (3) расходится \Rightarrow ряд (2) не сходится абсолютно.

Исследуем ряд (2) на условную сходимость по признаку Лейбница:

a)
$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} \frac{1}{\sqrt{4n+1}} = 0$$
 — BepHo;

б) Рассмотрим функцию
$$f(t) = \frac{1}{\sqrt{4t+1}}, \quad D(f) = \left(-\frac{1}{4}; +\infty\right).$$

Исследуем ее на монотонность:

$$f'(t) = -\frac{2}{\sqrt{(4t+1)^3}} < \forall t \in [1;+\infty), D(f') = (-\frac{1}{4};+\infty),$$
а так как $f(n) = b_n$,

то последовательность $\left\{b_n\right\}_{n=1}^{\infty}$ монотонно убывает.

Тогда по признаку Лейбница ряд (2) сходится условно $\Rightarrow x = -7 \in D(x)$.

3) Исследуем ряд (1) на сходимость в точке x = -1:

(3)
$$\sum_{n=1}^{\infty} \frac{(-1+4)^n}{3^n \cdot \sqrt{4n+1}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{4n+1}} = \sum_{n=1}^{\infty} b_n$$
 – этот ряд расходится (установили в п.

$$2) \Rightarrow x = -1 \notin D(x).$$

Omsem: D(x) = [-7; -1).

5. Разложим функцию $e^{-\frac{x}{2}}$ в ряд Маклорена:

$$e^{-\frac{x}{2}} = 1 + \left(-\frac{x}{2}\right) + \frac{1}{2!}\left(-\frac{x}{2}\right)^2 + \frac{1}{3!}\left(-\frac{x}{2}\right)^3 + \frac{1}{4!}\left(-\frac{x}{2}\right)^4 + \dots = 1 - \frac{x}{2} + \frac{x^2}{8} - \frac{x^3}{48} + \frac{x^4}{384} - \dots$$

Тогда:

$$\int_{0}^{0.4} \frac{1 - e^{-\frac{x}{2}}}{x} dx = \int_{0}^{0.4} \frac{1 - \left(1 - \frac{x}{2} + \frac{x^{2}}{8} - \frac{x^{3}}{48} + \frac{x^{4}}{384} - \dots\right)}{x} dx = \dots = \frac{1}{2} \int_{0}^{0.4} \left(1 - \frac{x^{2}}{4} + \frac{x^{3}}{24} - \frac{x^{4}}{192} + \dots\right) dx = \frac{1}{2} \left(x - \frac{x^{2}}{8} + \frac{x^{3}}{72} - \frac{x^{4}}{768} + \dots\right) \Big|_{0}^{0.4} = \frac{1}{2} \left(0.4 - \frac{0.16}{8} + \frac{0.064}{72} - \frac{0.0256}{768} + \dots\right) = \dots \approx 0.19$$

с точностью $\varepsilon = 0.01$, так как весь «хвост» ряда, начиная с 0.00044, сходящийся знакочередующийся ряд, а значит, (по признаку Лейбница) сумма его не превзойдет по величине первого члена -0.00044 < 0.01

Omeem:
$$\int_{0}^{0.4} \frac{1 - e^{-\frac{x}{2}}}{x} dx \approx 0.19.$$

Варианты расчетной работы для самостоятельного решения (1-30)

Вариант 1

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot \sin\left(\frac{1}{n^2}\right).$$

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^3}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^4 n}.$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+1}}{\sqrt{n^7+n}}$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+1}}{\sqrt{n^7+n}}$$
. B) $\sum_{n=1}^{\infty} \frac{(n+1)^{10}}{n!}$.

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{5^n}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{\sqrt{n^3+1}}$$
.

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{2^n \cdot \sqrt{n^2+5}}$$
.

6)
$$\sum_{n=1}^{\infty} n! x^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{x}^{0.1} \frac{1 - e^{-2x}}{x} dx$. 5.

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n \cdot \left(arctgn - \frac{\pi}{2} \right)$$
.

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^2 + n}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{\ln(3n+2)}{3n+2}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{n-2}{n^4 + 4n^3 + 5n^2}$$
. B) $\sum_{n=1}^{\infty} \frac{4^n}{2n+3}$.

B)
$$\sum_{n=1}^{\infty} \frac{4^n}{2n+3}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{\pi}{n^2}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 2}{\sqrt{n^5 + n}}$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{3^n \cdot \sqrt[3]{n^3 + 1}}.$$

$$6) \sum_{n=1}^{\infty} \frac{x^n}{n!}.$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int_{-r}^{1} \frac{\ln\left(1 + \frac{x}{5}\right)}{r} dx.$ 5.

Вариант 3

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot arcctgn$$
.

6)
$$\sum_{n=1}^{\infty} \frac{2n+1}{5n^2+3n}$$
.

Исследовать ряды на сходимость:

a)
$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \left(\ln^2 n - 25\right)}.$$

6)
$$\sum_{n=1}^{\infty} \frac{2n^2+1}{\sqrt{7n^5+n}}$$
.

B)
$$\sum_{n=1}^{\infty} \frac{3n+n^2}{5^n}$$
.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{\sqrt{n^3+4}}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-1)^n}{4^n \cdot (2n+7)}$$
. 6) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$.

$$6) \sum_{n=1}^{\infty} \frac{x^n}{n^n}$$

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0.7}^{0.2} \sin 25x^2 dx$. 5.

63

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt[3]{n} \cdot \sin^2\left(\frac{1}{\sqrt[3]{n}}\right).$$

$$6) \sum_{n=2}^{\infty} \frac{\sqrt{n}}{\ln \sqrt{n}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{arcctgn}{n^2 + 1}.$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[4]{n^3}}{\sqrt{n^3+3}}$$
. B) $\sum_{n=1}^{\infty} \frac{n^2+5}{(n+2)!}$.

B)
$$\sum_{n=1}^{\infty} \frac{n^2 + 5}{(n+2)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln^3 n}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n^2+1}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{3^n \sqrt[3]{n^2+1}}$$

$$6) \sum_{n=1}^{\infty} n^{n+1} x^n.$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int \cos x^2 dx$. 5.

Вариант 5

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (n+1) \cdot \sin\left(\frac{1}{n+1}\right)$$
. 6) $\sum_{n=1}^{\infty} \frac{2n^2 + 3n + 1}{6n^3 + 5}$.

6)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n + 1}{6n^3 + 5}.$$

Исследовать ряды на сходимости

a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n+2) \cdot \ln^2(3n+2)}$$
. 6) $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^7+5}}$. B) $\sum_{n=1}^{\infty} \frac{7^{2n}}{9n+2}$.

6)
$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^7 + 5}}$$

B)
$$\sum_{n=1}^{\infty} \frac{7^{2n}}{9n+2}$$
.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{(n+1)(n+2)(n+3)}$$
. 6) $\sum_{n=1}^{\infty} (-1)^{n+1} tg \frac{5}{\sqrt{n}}$.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} tg \frac{5}{\sqrt{n}}$$
.

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-5)^n}{5^n \cdot (3n-2)}$$
.

$$6) \sum_{n=1}^{\infty} \frac{x^n}{(n+3)!}.$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int_{x}^{\infty} e^{-6x^2} dx$. 5.

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n \cdot \left(arctg \sqrt{n} - \frac{\pi}{2} \right).$$

6)
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^2+1}}$$
.

2. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{\sqrt{n}}.$$

6)
$$\sum_{n=1}^{\infty} \frac{4n-3}{\sqrt{2n^3+1}}$$
.

B)
$$\sum_{n=1}^{\infty} \frac{5^{2n}}{(n+1)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^{n+1}}{n!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(5n+3)}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+7)^n}{7^n \cdot \sqrt[3]{8n^3+1}}$$
.

6)
$$\sum_{n=1}^{\infty} (n+1)^n (x+1)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{c}^{0.2} \frac{1 - e^{-x}}{x} dx$. 5.

Вариант 7

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot arcctgn^2$$
.

6)
$$\sum_{n=1}^{\infty} \frac{3n-1}{n^2+2}$$
.

Исследовать ряды на сходимост

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{\ln^3(7n-6)}}{7n-6}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{5n^7+3}}$$
 B) $\sum_{n=1}^{\infty} \frac{6^n}{(2n-1)!}$

$$\mathrm{B)} \sum_{n=1}^{\infty} \frac{6^n}{(2n-1)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{\sqrt{(3n-1)^3}}$$
.

$$6) \sum_{n=1}^{\infty} \left(-1\right)^n \sin \frac{\pi}{n^2}.$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-7)^n}{6^n \cdot (5n-2)}$$
.

6)
$$\sum_{n=1}^{\infty} (n+1)!(x+1)^n$$
.

65

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл:

$$\int_{0}^{0.4} \frac{\ln\left(1+\frac{x}{2}\right)}{x} dx.$$

Вариант 8

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^3 \cdot \sin^2 \frac{1}{n^3}$$

$$6) \sum_{n=2}^{\infty} \frac{n^3}{\ln n^2}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=3}^{\infty} \frac{1}{n^2 \cos^2 \frac{\pi}{n}}.$$

6)
$$\sum_{n=1}^{\infty} \frac{3n-1}{\sqrt{2n^3+3}}$$
 B) $\sum_{n=1}^{\infty} \frac{10n+1}{(3n+2)!}$

B)
$$\sum_{n=1}^{\infty} \frac{10n+1}{(3n+2)!}$$

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{5^{n-2}}{(n+1)!}$$

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+3}{\sqrt{3n^3+1}}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{3^n \cdot \sqrt[4]{2n^4 + 3}}$$
 6) $\sum_{n=1}^{\infty} \frac{(x+1)^n}{(2n+1)!}$

$$6) \sum_{n=1}^{\infty} \frac{\left(x+1\right)^n}{\left(2n+1\right)!}.$$

5. Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0.5}^{0.5} \cos(4x^2) dx$.

Вариант 9

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot \left(arctgn - \frac{\pi}{2} \right)$$
. 6) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^5}}$

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^5}}$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=2}^{\infty} \frac{1}{n^2} \cdot \sin \frac{\pi}{n}$$

6)
$$\sum_{n=1}^{\infty} \frac{3n+2}{\sqrt{n^3+4}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{3n+2}{\sqrt{n^3+4}}$$
. B) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdot (2n-1)}{2n+3}$.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{2^n}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{\sqrt{2n^5 + 1}}.$$

66

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{3^n \cdot \sqrt{4n^2 - 1}}$$
 6) $\sum_{n=1}^{\infty} \frac{(x+1)^n}{(n+1)^n}$

$$6) \sum_{n=1}^{\infty} \frac{\left(x+1\right)^n}{\left(n+1\right)^n}.$$

5. Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0.1}^{0.1} \sin(100x^2) dx$.

Вариант 10

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot arcctg \sqrt{n}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{4\sqrt{n} + 7}{2n + 1}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{2}{n^2} \cos \frac{1}{n}.$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 2}}{n + 5n^2}.$$
 B)
$$\sum_{n=1}^{\infty} \frac{7n - 2}{(2n + 3)!}.$$

B)
$$\sum_{n=1}^{\infty} \frac{7n-2}{(2n+3)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{4^n}{(2n+7)!}$$
.

6)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{2}{n \ln n}$$
.

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{5^n \cdot \sqrt{6n-5}}$$
.

6)
$$\sum_{n=1}^{\infty} n^{n+1} (x+2)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int e^{-3x^2} dx$. 5.

Вариант 11

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot tg\left(\frac{1}{\sqrt{n}}\right)$$
.

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^7}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{1}{(8n-3) \cdot \sqrt{\ln(8n-3)}}$$
. 6) $\sum_{n=1}^{\infty} \frac{4n+7}{3n^3+n}$.

6)
$$\sum_{n=1}^{\infty} \frac{4n+7}{3n^3+n}$$

B)
$$\sum_{n=1}^{\infty} \frac{2n+1}{2^n}$$
.

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5n+1}{3^n}$$
.

6)
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{2n+3}{n^2+4}.$$

67

Найти область сходимости ряда: 4.

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+1)^n}{6^n \cdot \sqrt{4n^2+7}}$$
. 6) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{(n+1)!}$.

$$6) \sum_{n=1}^{\infty} \frac{\left(x-2\right)^n}{\left(n+1\right)!}.$$

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл:
$$\int_{0}^{0.2} \frac{1 - e^{-\frac{x}{4}}}{x} dx.$$

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^3 \cdot \left(arctgn - \frac{\pi}{2} \right).$$
 6)
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^3 + 2}}.$$

Исследовать ряды на сходимост

a)
$$\sum_{n=1}^{\infty} \frac{3}{n^2} e^{-\frac{1}{n}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{1+n^4}}{n^2+3n+4}$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{1+n^4}}{n^2+3n+4}$$
. B)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdot ... \cdot (3n-2)}{2^n}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n+2}{5^n}$$

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n+2}{5^n}$$
. 6) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln \sqrt{n}}{n}$.

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{3^n \cdot (4n+1)}$$
.

6)
$$\sum_{n=1}^{\infty} n^{n+1} (x+3)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл:

$$\int_{0}^{0.1} \frac{\ln(1+2x)}{x} dx.$$

Вариант 13

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot arcctgn.$$

6)
$$\sum_{n=1}^{\infty} \frac{2n^3 + 5n + 7}{4n^3 + 5}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{10}{(2n+5) \cdot \ln^7 (2n+5)}$$
. 6) $\sum_{n=1}^{\infty} \frac{n^3}{\sqrt{4n^9+5}}$. B) $\sum_{n=1}^{\infty} \frac{4^{n-1}}{5n-2}$.

6)
$$\sum_{n=1}^{\infty} \frac{n^3}{\sqrt{4n^9+5}}$$

68

B)
$$\sum_{n=1}^{\infty} \frac{4^{n-1}}{5n-2}$$
.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{7n+2}{(2n+1)!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{5n+1}{\sqrt{4n^3+7}}$$
.

Найти область сходимости ряда: 4.

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+5)^n}{5^n \cdot (3n+2)}$$
.

6)
$$\sum_{n=1}^{\infty} (2n-1)! (x-2)^n$$
.

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл: $\int_{0}^{0{,}5} \sin 4x^2 dx$.

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n^3} \cdot tg^2 \left(\frac{1}{\sqrt{n^3}} \right).$$

6)
$$\sum_{n=2}^{\infty} \frac{\sqrt[3]{n^2+1}}{\ln n}$$
.

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{arcctg(3n+2)}}{1+(3n+2)^2}$$
. 6) $\sum_{n=1}^{\infty} \frac{4n+5}{2n^3+n-1}$. B) $\sum_{n=1}^{\infty} \frac{4^{2n}}{1000n}$.

6)
$$\sum_{n=1}^{\infty} \frac{4n+5}{2n^3+n-1}.$$

B)
$$\sum_{n=1}^{\infty} \frac{4^{2n}}{1000n}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+2)}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{7n+3}{n(9n+2)}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{3^n \cdot \sqrt[3]{8n^4 - 7}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{(2n-1)!}$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int_{-\infty}^{\infty} \cos 25x^2 dx$. 5.

Вариант 15

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot \left(arctg \sqrt{n} - \frac{\pi}{2} \right).$$

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{n^2 + n}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{4}{n\sqrt{\ln^2 n + 4}}.$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 3}}{5n^5 + 2n}$$
. B) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{(n+1)!}$.

$$B) \sum_{n=1}^{\infty} \frac{n^2+1}{(n+1)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5^n}{(2n-1)!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(n+1)}$$
.

Найти область сходимости ряда: 4.

a)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n \cdot \sqrt[4]{(5n+2)^3}}$$
.

$$6) \sum_{n=1}^{\infty} \frac{\left(x-1\right)^n}{\left(n+1\right)^n}.$$

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл: $\int_{0}^{0.3} e^{-2x^2} dx$.

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^3 \cdot arcctgn^2$$
. 6) $\sum_{n=1}^{\infty} \frac{2n+5}{n^2+3n}$.

6)
$$\sum_{n=1}^{\infty} \frac{2n+5}{n^2+3n}$$
.

Исследовать ряды на сходимость:

$$\sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$$

6)
$$\sum_{n=1}^{\infty} \frac{3n+1}{2n^3+3}$$

6)
$$\sum_{n=1}^{\infty} \frac{3n+1}{2n^3+3}$$
. B) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{(n+1)!}$.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^{n-2} (5n+1)}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}{n}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+9)^n}{10^n \cdot \sqrt[4]{2n^3 + 7}}.$$

6)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{(n+2)!}$$

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл:
$$\int_{0}^{0.2} \frac{1 - e^{-3x}}{x} dx.$$

Вариант 17

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (n+2) \cdot \arcsin\left(\frac{1}{n+2}\right)$$
. 6) $\sum_{n=1}^{\infty} \frac{16n-7}{4\sqrt{n^3}-1}$.

6)
$$\sum_{n=1}^{\infty} \frac{16n-7}{4\sqrt{n^3}-1}$$
.

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{3}{n^2} tg\left(\frac{2}{n}\right).$$

6)
$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 3}{\sqrt{n^5 + 3n} - 1}$$
. B) $\sum_{n=1}^{\infty} \frac{n+3}{e^n}$.

$$\mathbf{B}) \sum_{n=1}^{\infty} \frac{n+3}{e^n}.$$

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{7}{(n+1)\sqrt{n+2}}$$
.

6)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{9}{n \ln n}$$
.

70

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{4^n \cdot \sqrt[4]{n^2 + 8}}$$
.

6)
$$\sum_{n=1}^{\infty} (n+1)!(x-2)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл:

$$\int_{0}^{0.1} \frac{\ln(1+3x)}{x} dx.$$

Вариант 18

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot \left(1 - \cos \frac{1}{n}\right).$$

6)
$$\sum_{n=1}^{\infty} \frac{7n^2 + 3}{\sqrt{n^5 + 2n}}$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{7}{(2n+1)\sqrt[3]{\ln^4(2n+1)}}$$
. 6) $\sum_{n=1}^{\infty} \frac{\sqrt{(n+2)^3}}{(5n+4)(3n+1)}$. B) $\sum_{n=1}^{\infty} \frac{4^n}{(2n)!}$.

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt{(n+2)^3}}{(5n+4)(3n+1)}.$$

$$\mathrm{B)} \sum_{n=1}^{\infty} \frac{4^n}{(2n)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+n^2}{\sqrt{n+n^7}}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{1+n\sqrt{n}}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+8)^n}{7^n \cdot \sqrt[3]{4n^3+5}}$$
.

$$6) \sum_{n=1}^{\infty} \frac{\left(x+2\right)^n}{n!}.$$

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0}^{0.4} \sin \frac{25x^2}{4} dx$. 5.

Вариант 19

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot \left(\frac{\pi}{2} - arctg\sqrt{n}\right)$$
. 6) $\sum_{n=1}^{\infty} \frac{2n+1}{5\ln n^2 + 3}$.

$$6) \sum_{n=1}^{\infty} \frac{2n+1}{5\ln n^2 + 3}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{21}{(n^2+1)arctgn}.$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n^3 + 1}}{7n^5 + n}.$$
 B)
$$\sum_{n=1}^{\infty} \frac{6n + 5n^2}{(n+2)!}.$$

71

B)
$$\sum_{n=1}^{\infty} \frac{6n+5n^2}{(n+2)!}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n-1}{n!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{(4n-1)(5n+6)}.$$

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+3)^n}{2^n \cdot (7n+2)}$$
. 6) $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n^{n+1}}$.

6)
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n^{n+1}}$$
.

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0.1}^{0.1} \cos 100x^2 dx$. 5.

Вариант 20

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^3 arcctgn$$
.

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{e^{-n^{-2}}}{n^3}$$
.

$$6) \sum_{n=3}^{\infty} tg \frac{\pi}{n}$$

6)
$$\sum_{n=3}^{\infty} tg \frac{\pi}{n}$$
. B) $\sum_{n=1}^{\infty} \frac{7^n}{(2n-1)!}$.

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n^2(1+n)}$$
. 6) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5n-4}{n^2+3}$.

6)
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{5n-4}{n^2+3}$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{5^n \cdot \sqrt[3]{n^3+4}}$$
.

6)
$$\sum_{n=1}^{\infty} (n+1)^n (x+1)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0.5}^{0.5} e^{-\frac{3x^2}{25}} dx$. 5.

Вариант 21

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^4 \cdot \left(1 - \cos\frac{1}{n^2}\right).$$

6)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 2n + 1}{6n^3 + 2n^2 + 4n + 5}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{2}{(n^2+1) \arctan^2 n}$$

6)
$$\sum_{n=1}^{\infty} \frac{n^2 - 7}{n^7 + 5n}$$

72

6)
$$\sum_{n=1}^{\infty} \frac{n^2 - 7}{n^7 + 5n}$$
. B) $\sum_{n=1}^{\infty} \frac{4n - 3}{\sqrt{n \cdot 2^n}}$.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{5n+1}{4^n}$$
.

6)
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{5n+2}{n^2+3n-1}.$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+3)^n}{3^n \cdot (3n-2)}$$
. 6) $\sum_{n=1}^{\infty} \frac{(x+5)^n}{(n+3)!}$.

$$6) \sum_{n=1}^{\infty} \frac{\left(x+5\right)^n}{\left(n+3\right)!}.$$

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл:
$$\int_{0}^{0.3} \frac{1 - e^{-5x}}{x} dx.$$

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt[3]{n^2} \cdot \left(arctgn - \frac{\pi}{2} \right)$$
.

$$6) \sum_{n=1}^{\infty} \frac{5n^2 + 3}{n^2 + n - 1}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{5}{n^2} \sin\left(\frac{3}{n}\right).$$

6)
$$\sum_{n=1}^{\infty} \frac{5n+3}{n\sqrt{n}+2n-1}$$
 B) $\sum_{n=1}^{\infty} \frac{3n+11}{5^{2n}}$.

$$\sum_{n=1}^{\infty} \frac{3n+11}{5^{2n}}.$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{3n^3 + 1}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{4n-3}{(3n+1)(n+3)}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{7^n \cdot \sqrt{4n^2+1}}$$
.

6)
$$\sum_{n=1}^{\infty} (n+2)!(x+7)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл:

$$\int_{0}^{0.3} \frac{\ln\left(1+\frac{x}{3}\right)}{x} dx.$$

Вариант 23

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt[3]{n} \cdot arcctg \sqrt[3]{n}.$$

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^3}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{3}{n^2} \cos\left(\frac{2}{n}\right).$$

6)
$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{(n+2)^2 (n+3)^2}$$
 B) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

$$\mathbf{B}) \sum_{n=1}^{\infty} \frac{n!}{n^n}.$$

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7^n}{n!}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n tg \frac{1}{\sqrt{n}}$$
.

73

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+7)^n}{6^n \cdot (8n-2)}$$
. 6) $\sum_{n=1}^{\infty} (n-1)! (x-1)^n$.

6)
$$\sum_{n=1}^{\infty} (n-1)!(x-1)^n$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int \sin \frac{x^2}{4} dx$. 5.

Вариант 24

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n \cdot (e^{n^{-2}} - 1)$$
.

6)
$$\sum_{n=1}^{\infty} \frac{2n\sqrt{n}-1}{2n+\sqrt{n^3}}$$
.

2. Исследовать ряды на сходимость:

a)
$$\sum_{n=2}^{\infty} \frac{10}{n^2 \sin^2 \frac{\pi}{n}}.$$

6)
$$\sum_{n=1}^{\infty} \frac{5n+9}{3+2n^2\sqrt{n}}$$
. B) $\sum_{n=1}^{\infty} \frac{10^n}{3n+2}$.

B)
$$\sum_{n=1}^{\infty} \frac{10^n}{3n+2}$$
.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n+5}{n^3+4}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n \cdot 3^n}}{3n+1}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{4^n \cdot \sqrt[4]{16n^4 - 3}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{(x+7)^n}{(2n+1)!}$$

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0}^{0.4} \cos \frac{25x^2}{4} dx$. 5.

Вариант 25

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n^2 \cdot \arcsin\left(\frac{1}{n^2}\right)$$
.

$$6) \sum_{n=1}^{\infty} \frac{\lg n}{7^n}.$$

2. Исследовать ряды на сходимость:

a)
$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \sqrt[7]{\ln^4 n}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{5n+1}{3+n^2+4n^3}$$
 B) $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n\cdot 7^n}}$

B)
$$\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n \cdot 7^n}}$$
.

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{7n+1}{9^n}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7n-3}{\sqrt{n^3+2}}$$
.

4. Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-4)^n}{12^n \cdot \sqrt{9n^2-5}}$$
. 6) $\sum_{n=1}^{\infty} \frac{(x-7)^n}{n^n}$.

$$6) \sum_{n=1}^{\infty} \frac{\left(x-7\right)^n}{n^n}.$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int_{0}^{0.4} e^{-\frac{3x^2}{4}} dx$. 5.

Вариант 26

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} n \cdot arctg \frac{1}{n}$$
.

$$6) \sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^7}}.$$

2. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{arctg^{6}(3n+2)}{1+(3n+2)^{2}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{3n-2}{5n^4+2n^3+7n^2}$$
. B) $\sum_{n=1}^{\infty} \frac{4^n}{(2n+3)!}$.

B)
$$\sum_{n=1}^{\infty} \frac{4^n}{(2n+3)!}$$

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin^2 \frac{1}{n}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n^2 + 2}{\sqrt{9n^4 + 7n}}$$

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{3^n \cdot \sqrt[3]{n^3+1}}$$
.

6)
$$\sum_{n=1}^{\infty} n! (x-7)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл: $\int_{-r}^{0,2} \frac{1 - e^{-\frac{x}{4}}}{r} dx$. 5.

Вариант 27

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt[3]{n} \cdot \left(arctgn - \frac{\pi}{2} \right)$$
.

6)
$$\sum_{n=1}^{\infty} \frac{2n\sqrt{n+17}}{5\sqrt{n^3}+3n}.$$

2. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{41}{n^2 \cdot \cos^2 \frac{1}{n}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{2n-1}{\sqrt{7n^3-n}}$$
. B) $\sum_{n=1}^{\infty} \frac{3n+7n^2}{2^n}$.

75

$$\mathbf{B}) \sum_{n=1}^{\infty} \frac{3n+7n^2}{2^n}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n+1) \ln^2 (n+1)}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n^2 - 2}{n^3 + 4}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{7^n \cdot (2n+5)}$$
.

$$6) \sum_{n=1}^{\infty} \frac{\left(x+6\right)^n}{\left(n+6\right)!}.$$

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл: $\int_{0}^{0.1} \frac{\ln\left(1 + \frac{x}{4}\right)}{x} dx$.

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt[3]{n} \cdot \arcsin^2 \left(\frac{1}{\sqrt[3]{n}}\right)$$
.

$$6) \sum_{n=2}^{\infty} \frac{n^4}{\ln^2 \sqrt{n}}.$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{arcctg^3 3n}{9n^2 + 1}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 8}{\sqrt{6n^5 + 3n}}$$
. B) $\sum_{n=1}^{\infty} \frac{n^2 + 5}{e^{7n}}$.

$$\text{B) } \sum_{n=1}^{\infty} \frac{n^2 + 5}{e^{7n}}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{2}{n^3} e^{-2n^{-2}}$$
.

6)
$$\sum_{n=3}^{\infty} (-1)^{n+1} tg \frac{\pi}{n}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{8^n \cdot \sqrt{n}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{(x-11)^n}{n^{n+1}}$$
.

5. Вычислить приближенно с точностью
$$\varepsilon = 0{,}001$$
 интеграл:
$$\int_{0}^{0.4} e^{-\frac{2x^2}{5}} dx.$$

Вариант 29

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (n+1) \cdot \left(e^{\frac{1}{n+1}} - 1 \right)$$
.

$$\delta) \quad \sum_{n=1}^{\infty} \frac{2n^2 + 3n - 1}{6n^4 - 5}$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{\ln^2(3n+2)}{3n+2}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5}{n^7 + 6n^3 - 1}$$
. B)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{e^n}$$
.

B)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{e^n}$$
.

3. Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} \left(-1\right)^n \sin \frac{\pi}{n^3}.$$

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5n-2}{3n+n\sqrt{n}}$$
.

76

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+6)^n}{7^n \cdot (3n+2)}$$
.

6)
$$\sum_{n=1}^{\infty} (n+3)!(x+12)^n$$
.

Вычислить приближенно с точностью $\varepsilon = 0{,}001$ интеграл: $\int_{0}^{0.1} \frac{1 - e^{-4x}}{x} dx$. 5.

Вариант 30

Проверить выполнение необходимого признака сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \sqrt{n} \cdot \left(1 - \cos\frac{1}{\sqrt{n}}\right).$$
 6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{11}}}{\ln n}$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{11}}}{\ln n}$$

Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{4}{n^2 \sin^2 \frac{1}{n}}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{4\sqrt[7]{n^5} - 3}{\sqrt{2n^3 + 1}}.$$
 B)
$$\sum_{n=1}^{\infty} \frac{2^{2n}}{5n + 3}.$$

$$\text{B) } \sum_{n=1}^{\infty} \frac{2^{2n}}{5n+3}$$

Исследовать ряды на абсолютную и условную сходимость:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n^2}$$
.

6)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{5\sqrt{n^3} + 3}$$
.

Найти область сходимости ряда:

a)
$$\sum_{n=1}^{\infty} \frac{(x+9)^n \cdot n}{11^n \cdot (6n^2 - 1)}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{(3n+1)!}$$

Вычислить приближенно с точностью $\varepsilon = 0,001$ интеграл:

$$\int_{0}^{0.4} \frac{\ln\left(1+\frac{2x}{7}\right)}{x} dx.$$

РАСЧЕТНАЯ РАБОТА 9. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Примерный вариант расчетной работы с решением

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 2, & x \in [-4, 0] \\ 4 - x, & x \in (0, 4] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям, для квазилинейного уравнения первого порядка

$$xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = -xy, \qquad \begin{cases} z = 0\\ xy = 1 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 7u_{xt}^{"} + 10u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 0\\ u_{t}^{'}(x;0) = 20x - 5 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения:

$$u''_{tt} = 16u''_{xx},$$

$$0 \le x \le 10, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{5}, & 0 \le x \le 5\\ 10 - x, 5 < x \le 10 \end{cases}$$

$$u'_{t}(x;0) = 0$$

$$u'_{x}(0;t) = u'_{x}(10;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения (уравнения теплопроводности):

$$u'_{t} = 9u''_{xx}, u(x; 0) = 27 \sin 7\pi x$$

$$0 \le x \le 4,5, t \ge 0 \begin{cases} u(0; t) = 0 \\ u'_{x}(4,5; t) = 0 \end{cases}$$

Решение

1. (а) Построим график функции $f(x) = \begin{cases} 2, & x \in [-4, 0] \\ 4 - x, & x \in (0, 4] \end{cases}$ и ее периодического продолжения $f^*(x)$ на всю ось (график f(x) выделен на рисунке жирной линией)

Имеем период T = 2l = 8, l = 4. Тогда ряд Фурье имеет вид

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{4} + b_n \sin \frac{n\pi x}{4} \right) = S(x).$$
 (*)

График S(x) совпадает с графиком $f^*(x)$ в точках непрерывности, а в точках разрыва $S(8n)=\frac{4+2}{2}=3$, $S(8n+4)=\frac{2+0}{2}=1$, $n\in\mathbb{Z}$:

Коэффициенты Фурье находим по формулам

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx \; ; \; a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \; ; \; b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \; ,$$

$$n = 1, 2, 3, \dots$$

Получаем

$$a_0 = \frac{1}{4} \int_{-4}^{4} f(x)dx = \frac{1}{4} \int_{-4}^{0} 2dx + \frac{1}{4} \int_{0}^{4} (4-x)dx = \frac{x}{2} \Big|_{-4}^{0} - \frac{(4-x)^2}{8} \Big|_{0}^{4} = 4 + 2$$

$$= 6$$

и, учитывая, что $\sin \pi n = 0$, $\cos \pi n = (-1)^n$, находим

$$a_n = \frac{1}{4} \int_{-4}^{0} 2\cos\frac{n\pi x}{4} dx + \frac{1}{4} \int_{0}^{4} (4-x)\cos\frac{n\pi x}{4} dx =$$

$$= \frac{2}{\pi n} \sin\frac{n\pi x}{4} \Big|_{-4}^{0} + \left| u = 4 - x \quad du = -dx \\ dv = \cos\frac{n\pi x}{4} dx \quad v = \frac{4}{\pi n} \sin\frac{n\pi x}{4} \right| =$$

$$= 0 - 0 + \frac{(4-x)}{\pi n} \sin\frac{n\pi x}{4} \Big|_{0}^{4} + \int_{0}^{4} \frac{1}{\pi n} \sin\frac{n\pi x}{4} dx = -\frac{4}{\pi^2 n^2} \cos\frac{n\pi x}{4} \Big|_{0}^{4} =$$

$$= \frac{4}{\pi^2 n^2} (1 - \cos\pi n) = \frac{4}{\pi^2 n^2} (1 - (-1)^n).$$
Итак, $a_0 = 6$, $a_n = \frac{4}{\pi^2 n^2} (1 - (-1)^n)$.

Находим

$$b_n = \frac{1}{4} \int_{-4}^{0} 2\sin\frac{n\pi x}{4} dx + \frac{1}{4} \int_{0}^{4} (4-x)\sin\frac{n\pi x}{4} dx =$$

$$= -\frac{2}{\pi n} \cos\frac{n\pi x}{4} \Big|_{-4}^{0} + \left| \frac{u = 4-x}{dv = \sin\frac{n\pi x}{4} dx} \right|_{0}^{4} v = -\frac{4}{\pi n} \cos\frac{n\pi x}{4} =$$

$$= -\frac{2}{\pi n} + \frac{2}{\pi n} \cos\pi n - \frac{(4-x)}{\pi n} \cos\frac{n\pi x}{4} \Big|_{0}^{4} - \int_{0}^{4} \frac{1}{\pi n} \cos\frac{n\pi x}{4} dx =$$

$$= \frac{2}{\pi n} ((-1)^n - 1) - 0 + \frac{4}{\pi n} - \frac{4}{\pi^2 n^2} \sin\frac{n\pi x}{4} \Big|_{0}^{4} = \frac{2}{\pi n} ((-1)^n + 1).$$
Итак, $b_n = \frac{2}{\pi n} ((-1)^n + 1).$

Подставляем найденные коэффициенты в ряд Фурье (*), окончательно имеем:

$$f(x) \sim 3 + \sum_{n=1}^{\infty} \left(\frac{4}{\pi^2 n^2} (1 - (-1)^n) \cos \frac{n\pi x}{4} + \frac{2}{\pi n} ((-1)^n + 1) \sin \frac{n\pi x}{4} \right) = S(x)$$

(б) Разложим функцию $f(x) = 4 - x, x \in (0; 4]$, по синусам кратных дуг в ряд Фурье. Продолжим f(x) нечетным образом на отрезок [-4; 0], а потом периодически продолжим на всю ось:

Имеем период T = 2l = 8, l = 4. Тогда ряд Фурье по синусам имеет вид:

$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{4} = S(x)$$

причем функция S(x) совпадает с продолженной функцией $f^*(x)$ в точках непрерывности, а в точках разрыва имеем $S(8n) = \frac{4+(-4)}{2} = 0$, $n \in \mathbb{Z}$:

Находим b_n :

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx = \frac{1}{2} \int_0^4 (4-x) \sin \frac{n\pi x}{4} dx =$$

$$= \begin{vmatrix} u = 4 - x & du = -dx \\ dv = \sin \frac{n\pi x}{4} dx & v = -\frac{4}{\pi n} \cos \frac{n\pi x}{4} \end{vmatrix} =$$

$$= -\frac{2(4-x)}{\pi n} \cos \frac{n\pi x}{4} \Big|_0^4 - \int_0^4 \frac{2}{\pi n} \cos \frac{n\pi x}{4} dx = \frac{8}{\pi n} - \frac{8}{\pi^2 n^2} \sin \frac{n\pi x}{4} \Big|_0^4 = \frac{8}{\pi n},$$

$$n = 1, 2, \dots$$
Итак, $b_n = \frac{8}{\pi n}$.

Окончательно имеем

$$f(x) \sim \sum_{n=1}^{\infty} \frac{8}{\pi n} \sin \frac{n\pi x}{4} = S(x)$$

(в) Теперь разложим функцию $f(x) = 4 - x, x \in (0; 4]$, по косинусам кратных дуг в ряд Фурье. Продолжим эту функцию четным образом на отрезок [-4; 0], а потом периодически продолжим на всю ось, в качестве периода взяв T = 2l = 8, l = 4:

Поскольку продолженная функция $f^*(x)$ непрерывна на всей числовой прямой, то сумма ряда $S(x) = f^*(x)$, $x \in \mathbb{R}$, а сам ряд имеет вид:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{4} = S(x)$$

Находим коэффициенты a_0 , a_n :

$$a_0 = \frac{2}{l} \int_0^l f(x) dx = \frac{1}{2} \int_0^4 (4 - x) dx = -\frac{(4 - x)^2}{4} \Big|_0^4 = 4,$$

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx = \frac{1}{2} \int_0^4 (4 - x) \cos \frac{n\pi x}{4} dx =$$

$$= \begin{vmatrix} u = 4 - x & du = -dx \\ dv = \cos \frac{n\pi x}{4} dx & v = \frac{4}{\pi n} \sin \frac{n\pi x}{4} \end{vmatrix} =$$

$$= \frac{2(4 - x)}{\pi n} \sin \frac{n\pi x}{4} \Big|_0^4 + \int_0^4 \frac{2}{\pi n} \sin \frac{n\pi x}{4} dx = -\frac{8}{\pi^2 n^2} \cos \frac{n\pi x}{4} \Big|_0^4 =$$

$$= \frac{8}{\pi^2 n^2} (1 - \cos \pi n) = \frac{8}{\pi^2 n^2} (1 - (-1)^n).$$
From $x = 4$, $x = \frac{8}{n^2 n^2} (1 - (-1)^n)$.

Итак, $a_0 = 4$, $a_n = \frac{8}{\pi^2 n^2} (1 - (-1)^n)$, n = 1,2,3,...

Ряд Фурье имеет вид

$$f(x) \sim 2 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^2} \cos \frac{n\pi x}{4} = S(x)$$

2. Для решения квазилинейного уравнения в частных производных первого порядка относительно функции z = z(x; y) запишем систему обыкновенных дифференциальных уравнений вида

$$\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{-xy}$$

Решаем эту систему сначала для одной пары, а потом для другой пары дифференциальных уравнений.

$$\frac{dx}{xz} = \frac{dy}{yz}$$
, $\frac{dx}{x} = \frac{dy}{y}$, $ln|x| = ln|y| + lnC$, $x = C_1y$

Рассмотрим другую пару

$$\frac{dx}{xz} = \frac{dz}{-xy}, \qquad \frac{dx}{z} = -\frac{dz}{y},$$

из полученного решения первой пары выражаем y, а именно $y=\frac{x}{c_1}$, и подставляем в это уравнение

$$\frac{dx}{z} = -\frac{C_1 dz}{x}, \qquad \frac{x^2}{2} = -\frac{C_1 z^2}{2} + \frac{C_2}{2}, \qquad x^2 + C_1 z^2 = C_2.$$

Тогда общее решение исходного уравнения имеет вид $\Phi(C_1; C_2) = 0$, где Φ – произвольная функция двух аргументов.

Имеем
$$C_1 = \frac{x}{y}$$
, $C_2 = x^2 + \frac{xz^2}{y}$ и общее решение $\Phi\left(\frac{x}{y}; x^2 + \frac{xz^2}{y}\right) = 0$.

Поскольку функция z = z(x; y) входит в один из аргументов функции Φ , то можно выразить этот аргумент через другой с помощью произвольной функции одной переменной f:

$$x^2 + \frac{xz^2}{y} = f\left(\frac{x}{y}\right).$$

Это и есть общее решение.

Найдем вид функции f из дополнительных условий $\begin{cases} z=0 \\ xy=1 \end{cases}$. Тогда

$$x^{2} = f(x^{2})$$
, т.е. $f(t) = t$. Имеем частное решение $x^{2} + \frac{xz^{2}}{y} = \frac{x}{y}$ или

$$xy + z^2 = 1.$$

Проверка: Функция z = z(x; y) задана неявно.

$$F(x; y; z) = xy + z^2 = 0$$
. $F'_x = y$; $F'_y = x$; $F'_z = 2z$.

Тогда найдем

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'} = \frac{-y}{2z}; \quad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} = \frac{-x}{2z}$$

Подставим в исходное уравнение и получим тождество:

$$xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = -\frac{xy}{2} - \frac{xy}{2} \equiv -xy.$$

3. Исходное уравнение представляет собой линейное однородное уравнение в частных производных второго порядка

$$A\frac{\partial^2 u}{\partial t^2} + 2B\frac{\partial^2 u}{\partial t \partial x} + C\frac{\partial^2 u}{\partial x^2} = 0,$$

где u = u(x;t) – искомая функция, A = 1, $B = -\frac{7}{2}$, C = 10.

Определяем тип уравнения:

$$\Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = \begin{vmatrix} 1 & -\frac{7}{2} \\ -\frac{7}{2} & 10 \end{vmatrix} = 10 - \frac{49}{4} = -\frac{9}{4} < 0,$$

то есть это уравнение гиперболического типа. Составляем характеристическое уравнение $dx^2 + 7dxdt + 10dt^2 = 0$ и решаем его.

$$\left(\frac{dx}{dt}\right)^2 + 7\frac{dx}{dt} + 10 = 0, \qquad \mathcal{D} = 49 - 40 = 9 > 0, \qquad \frac{dx}{dt} = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

Получаем две характеристики $\varphi_1(x;t) = x + 2t = C_1$, $\varphi_2(x;t) = x + 5t = C_2$.

Переходим к новым переменным $\xi = x + 2t$, $\eta = x + 5t$. Тогда

$$u = u(\xi; \eta) = u(x + 2t; x + 5t), \qquad \frac{\partial u}{\partial t} = 2\frac{\partial u}{\partial \xi} + 5\frac{\partial u}{\partial \eta}, \qquad \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta},$$
$$\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial \xi^2} + 20\frac{\partial^2 u}{\partial \xi \partial \eta} + 25\frac{\partial^2 u}{\partial \eta^2}, \qquad \frac{\partial^2 u}{\partial t \partial x} = 2\frac{\partial^2 u}{\partial \xi^2} + 7\frac{\partial^2 u}{\partial \xi \partial \eta} + 5\frac{\partial^2 u}{\partial \eta^2},$$
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}.$$

Подставим в исходное уравнение:

$$\frac{\partial^2 u}{\partial t^2} - 7 \frac{\partial^2 u}{\partial t \partial x} + 10 \frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial^2 u}{\partial \xi^2} + 20 \frac{\partial^2 u}{\partial \xi \partial \eta} + 25 \frac{\partial^2 u}{\partial \eta^2} - 14 \frac{\partial^2 u}{\partial \xi^2} - 49 \frac{\partial^2 u}{\partial \xi \partial \eta} - 35 \frac{\partial^2 u}{\partial \eta^2} + 10 \frac{\partial^2 u}{\partial \xi^2} + 20 \frac{\partial^2 u}{\partial \xi \partial \eta} + 10 \frac{\partial^2 u}{\partial \eta^2} = -9 \frac{\partial^2 u}{\partial \xi \partial \eta}$$

а значит, по условию

$$-9\frac{\partial^2 u}{\partial \xi \partial \eta} = 0.$$

Получаем каноническое уравнение для гиперболического типа $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0.$

Решаем это уравнение.

$$\frac{\partial u}{\partial \eta} = z, \frac{\partial z}{\partial \xi} = 0 \implies$$

$$z = C_0(\eta), \qquad \frac{\partial u}{\partial \eta} = C_0(\eta), \qquad u = \int C_0(\eta) d\eta + C_1(\xi) = C_2(\eta) + C_1(\xi),$$

где C_1, C_2 — произвольные функции. Заменяем $\xi = x + 2t, \eta = x + 5t$ и получаем общее решение $u(x;t) = C_1(x+2t) + C_2(x+5t)$.

Теперь решаем задачу Коши, то есть находим функции C_1 , C_2 из начальных условий u(x;0)=0, $\frac{\partial u}{\partial t}(x;0)=20x-5$.

$$0 = u(x; 0) = C_1(x) + C_2(x), \qquad \frac{\partial u}{\partial t} = 2C_1' + 5C_2',$$
$$20x - 5 = \frac{\partial u}{\partial t}(x; 0) = 2C_1'(x) + 5C_2'(x).$$

Решаем систему $\begin{cases} C_1(x) + C_2(x) = 0 \\ 2C_1'(x) + 5C_2'(x) = 20x - 5 \end{cases}$ относительно $C_1(x)$, $C_2(x)$. $C_2(x) = -C_1(x) \Rightarrow C_2'(x) = -C_1'(x) \Rightarrow 2C_1'(x) - 5C_1'(x) = 20x - 5,$ $C_1'(x) = -\frac{20}{3}x + \frac{5}{3} \Rightarrow C_1(x) = -\frac{10}{3}x^2 + \frac{5}{3}x + C, C = const,$ $C_2(x) = \frac{10}{2}x^2 - \frac{5}{2}x - C$

Подставим в общее решение:

$$u(x;t) = C_1(x+2t) + C_2(x+5t) =$$

$$= -\frac{10}{3}(x+2t)^2 + \frac{5}{3}(x+2t) + C + \frac{10}{3}(x+5t)^2 - \frac{5}{3}(x+5t) =$$

$$= 70t^2 + 20xt - 5t.$$

Получаем частное решение задачи Коши $u(x;t) = 70t^2 + 20xt - 5t$. Проверка: Найденная функция удовлетворяет условию задачи Коши:

$$u(x;t) = 70t^{2} + 20xt - 5t, u(x;0) = 0,$$

$$\frac{\partial u}{\partial t} = 140t + 20x - 5, \frac{\partial u}{\partial t}(x;0) = 20x - 5,$$

$$\frac{\partial u}{\partial x} = 20t, \frac{\partial^{2} u}{\partial t^{2}} = 140, \frac{\partial^{2} u}{\partial t \partial x} = 20, \frac{\partial^{2} u}{\partial x^{2}} = 0,$$

T.e.

$$\frac{\partial^2 u}{\partial t^2} - 7 \frac{\partial^2 u}{\partial t \partial x} + 10 \frac{\partial^2 u}{\partial x^2} = 140 - 7 \cdot 20 + 10 \cdot 0 = 0.$$

4. Исходное уравнение является уравнением теплопроводности. Решаем задачу с нулевыми краевыми условиями и начальными условиями (смешанная задача), для чего используем метод разделения переменных (метод Фурье).

Ищем ненулевое решение в виде $u(x;t) = X(x) \cdot T(t)$.

$$\frac{\partial^2 u}{\partial t^2} = X(x) \cdot T''(t), \qquad \frac{\partial^2 u}{\partial x^2} = X''(x) \cdot T(t), \quad X(x) \cdot T''(t) = 16X''(x) \cdot T(t).$$

Разделяем переменные $\frac{T''(t)}{16T(t)} = \frac{X''(x)}{X(x)}$. Так как каждая дробь зависит только от одной переменной, то их равенство означает, что они постоянные:

$$\frac{T''(t)}{16T(t)} = \frac{X''(x)}{X(x)} = -\lambda^2 = const.$$

Указанная *const* не может быть положительной, так как в этом случае задача Штурма—Лиувилля не имеет решений, в чем можно непосредственно убедиться (проверить самостоятельно).

Получаем систему обыкновенных дифференциальных уравнений

$$\begin{cases} T''(t) + 16\lambda^2 T(t) = 0 \\ X''(x) + \lambda^2 X(x) = 0. \end{cases}$$

Сначала решаем второе уравнение, которое должно удовлетворять краевым условиям X'(0) = X'(10) = 0, так как

$$u_x'(0;t) = X'(0) \cdot T(t) = 0, u_x'(10;t) = X'(10) \cdot T(t) = 0, \ T(t) \neq 0.$$

Это задача Штурма-Лиувилля: найти решение $X(x) \neq 0$, удовлетворяющее уравнению $X''(x) + \lambda^2 X(x) = 0$ и нулевым условиям X'(0) = X'(10) = 0.

$$X(x) = e^{kx}, \qquad X''(x) = k^2 e^{kx}, \qquad k^2 + \lambda^2 = 0, \qquad k_{1,2} = \pm \lambda i.$$

$$X(x) = C_1 \cos \lambda x + C_2 \sin \lambda x, \qquad X'(x) = -\lambda C_1 \sin \lambda x + \lambda C_2 \cos \lambda x,$$

$$\begin{cases} -\lambda C_1 \sin 0 + \lambda C_2 \cos 0 = 0 \\ -\lambda C_1 \sin 10\lambda + \lambda C_2 \cos 10\lambda = 0 \end{cases}$$

Сначала считаем, что $\lambda \neq 0$. Тогда

$$C_2 = 0$$
, $C_1 \neq 0$, $\sin 10\lambda = 0$, $10\lambda = \pi n$, $n = 1,2,...$

Собственные значения задачи Штурма—Лиувилля $\lambda_n=0.1\pi n$. Находим собственные функции $X_n(x)=C_1\cos 0.1\pi nx+C_2\sin 0.1\pi nx=C_1\cos 0.1\pi nx$, так как $C_2=0$. Поскольку C_1 — произвольная постоянная, $C_1\neq 0$, возьмем $C_1=1$.

$$X_n(x) = \cos 0.1\pi nx$$
, $n = 1,2,3,...$

Если взять $\lambda = 0$, тогда X''(x) = 0, $X(x) = C_1 + C_2 x$, $X'(x) = C_2$. Так как X'(0) = X'(10) = 0, то $C_2 = 0$, $X_0(x) = C_1 = 1$.

Итак, получаем решение задачи Штурма-Лиувилля:

$$\lambda_n = 0.1\pi n$$
, $X_n(x) = \cos 0.1\pi nx$, $n = 0.1.2$, ...

Для каждого значения $\lambda_n = 0.1\pi n$ решаем первое уравнение системы

$$T_n''(t) + 16\lambda_n^2 T_n(t) = 0,$$
 $T_n''(t) + 0.16\pi^2 n^2 T_n(t) = 0,$ $T_n(t) = e^{k_n t}, \quad k_n^2 + 0.16\pi^2 n^2 = 0, \quad k_n = \pm 0.4\pi ni.$

Общее решение для первого уравнения имеет вид

$$T_n(t) = A_n \cos 0.4\pi nt + B_n \sin 0.4\pi nt,$$

где A_n , B_n — произвольные постоянные. Таким образом, получено решение $u_n(x;t) = X_n(x) \cdot T_n(t) = (A_n \cos 0.4\pi nt + B_n \sin 0.4\pi nt) \cos 0.1\pi nx$ для $\lambda=~\lambda_n=0$,1 $\pi n,~n=0$,1,2,...

Будем искать общее решение исходного уравнения в виде ряда:

$$u(x;t) = \sum_{n=0}^{\infty} u_n(x;t) = \sum_{n=0}^{\infty} (A_n \cos 0.4\pi nt + B_n \sin 0.4\pi nt) \cos 0.1\pi nx.$$

Потребуем, чтобы оно удовлетворяло начальным условиям

$$u(x;0) = \varphi(x) = \begin{cases} \frac{x^2}{5}, & 0 \le x \le 5\\ 10 - x, & 5 < x \le 10 \end{cases}, \quad u'_t(x;0) = 0.$$

Получаем

$$\varphi(x) = u(x; 0) = \sum_{n=0}^{\infty} A_n \cos 0.1\pi nx$$
 (*)

 $u'_t(x;t) = \sum_{n=0}^{\infty} (-0.4\pi n A_n \sin 0.4\pi n t + 0.4\pi n B_n \cos 0.4\pi n t) \cos 0.1\pi n x$

$$u'_t(x;0) = \sum_{n=0}^{\infty} 0.4\pi n B_n \cos 0.1\pi n x = 0 \implies B_n = 0 \ \forall n.$$

Соотношение (*) представляет собой разложение функции $\varphi(x)$ в ряд Фурье по косинусам с периодом T = 2l = 20.

$$\varphi(x) = \sum_{n=0}^{\infty} A_n \cos 0.1\pi nx = \begin{cases} \frac{x^2}{5}, & 0 \le x \le 5\\ 10 - x, 5 < x \le 10 \end{cases}.$$

Ищем коэффициенты Фурье A_n :

$$A_0 = \frac{2}{l} \int_0^l \varphi(x) dx = \frac{1}{5} \int_0^5 \frac{x^2}{5} dx + \frac{1}{5} \int_5^{10} (10 - x) dx =$$

$$=\frac{x^3}{75}\bigg|_0^5 - \frac{(10-x)^2}{10}\bigg|_5^{10} = \frac{5}{3} + \frac{5}{2} = \frac{25}{6};$$

$$A_n = \frac{2}{l}\int_0^l \varphi(x)\cos\frac{\pi nx}{l}dx = \frac{1}{5}\int_0^5 \frac{x^2}{5}\cos\frac{\pi nx}{10}dx + \frac{1}{5}\int_0^{10}(10-x)\cos\frac{\pi nx}{10}dx =$$

$$=\frac{1}{25}\left|\begin{array}{c} \text{Интегрируем по частям} \\ u=x^2 & du=2xdx \\ dv=\cos\frac{\pi nx}{10}dx & v=\frac{10}{\pi n}\sin\frac{\pi nx}{10} \end{array}\right| +$$

$$+\frac{1}{5}\left|\begin{array}{c} \text{Интегрируем по частям} \\ u=10-x & du=-dx \\ dv=\cos\frac{\pi nx}{10}dx & v=\frac{10}{\pi n}\sin\frac{\pi nx}{10} \end{array}\right| =$$

$$=\frac{2}{5\pi n}x^2\sin\frac{\pi nx}{10}\bigg|_0^5 - \frac{4}{5\pi n}\int_0^x x\sin\frac{\pi nx}{10}dx + \frac{2}{\pi n}(10-x)\sin\frac{\pi nx}{10}\bigg|_0^{10} +$$

$$+\frac{2}{\pi n}\int_0^1 \cos\frac{\pi nx}{10}dx = \frac{10}{\pi n}\sin\frac{\pi n}{2} - 0 - \frac{4}{5\pi n}.$$

$$\cdot \left|\begin{array}{c} \text{Интегрируем по частям} \\ u=x & du=dx \\ dv=\sin\frac{\pi nx}{10}dx & v=-\frac{10}{\pi n}\cos\frac{\pi nx}{10} \end{array}\right| +$$

$$+0 - \frac{10}{\pi n}\sin\frac{\pi n}{2} - \frac{20}{\pi^2 n^2}\cos\frac{\pi nx}{10}\bigg|_0^{10} =$$

$$=\frac{8}{\pi^2 n^2}x\cos\frac{\pi nx}{10}\bigg|_0^5 - \frac{8}{\pi^2 n^2}\int_0^x \cos\frac{\pi nx}{10}dx - \frac{20}{\pi^2 n^2}\cos\pi n + \frac{20}{\pi^2 n^2}\cos\frac{\pi n}{2} =$$

$$=\frac{40}{\pi^2 n^2}\cos\frac{\pi n}{2} - 0 - \frac{80}{\pi^3 n^3}\sin\frac{\pi nx}{10}\bigg|_0^5 - \frac{20}{\pi^2 n^2}(-1)^n + \frac{20}{\pi^2 n^2}\cos\frac{\pi n}{2} =$$

$$=\frac{60}{\pi^2 n^2}\cos\frac{\pi n}{2} - \frac{20}{\pi^2 n^2}(-1)^n - \frac{80}{\pi^3 n^3}\sin\frac{\pi n}{2}.$$

Итак, найдены коэффициенты Фурье

$$A_0 = \frac{25}{6}$$
, $A_n = \frac{60}{\pi^2 n^2} \cos \frac{\pi n}{2} - \frac{20}{\pi^2 n^2} (-1)^n - \frac{80}{\pi^3 n^3} \sin \frac{\pi n}{2}$.

Окончательно получаем решение смешанной задачи:

$$u(x;t) = \frac{25}{6} + \sum_{n=1}^{\infty} \left(\frac{60}{\pi^2 n^2} \cos \frac{\pi n}{2} - \frac{20}{\pi^2 n^2} (-1)^n - \frac{80}{\pi^3 n^3} \sin \frac{\pi n}{2} \right) \cos \frac{2\pi nt}{5} \cos \frac{\pi nx}{10}$$

5. Исходное уравнение решаем методом разделения переменных (метод Фурье). Ищем **ненулевое** решение в виде $u(x;t) = X(x) \cdot T(t)$.

$$\frac{\partial u}{\partial t} = X(x) \cdot T'(t), \qquad \frac{\partial^2 u}{\partial x^2} = X''(x) \cdot T(t),$$
$$X(x) \cdot T'(t) = 9X''(x) \cdot T(t).$$

Разделяем переменные

$$\frac{T'(t)}{9T(t)} = \frac{X''(x)}{X(x)}.$$

Так как каждая дробь зависит только от одной переменной, то их равенство означает, что они – постоянные (обозначим ее $-\lambda^2$):

$$\frac{T'(t)}{9T(t)} = \frac{X''(x)}{X(x)} = -\lambda^2 = const.$$

Получаем систему обыкновенных дифференциальных уравнений

$$\begin{cases} T'(t) + 9\lambda^2 T(t) = 0\\ X''(x) + \lambda^2 X(x) = 0. \end{cases}$$

Сначала решаем второе уравнение (с учетом преобразованного на языке X(x) граничного условия):

$$X''(x) + \lambda^2 X(x) = 0,$$
 $X(0) = X'(4,5) = 0.$

Получили задачу Штурма-Лиувилля.

$$X(x) = e^{kx}$$
, $X''(x) = k^2 e^{kx}$, $k^2 + \lambda^2 = 0$, $k_{1,2} = \pm \lambda i$.

$$X(x) = C_1 \cos \lambda x + C_2 \sin \lambda x$$
, $X'(x) = -\lambda C_1 \sin \lambda x + \lambda C_2 \cos \lambda x$.

Используем краевые условия для определения C_1, C_2 :

$$X(0)=C_1=0,$$

$$X'(4,5) = -\lambda C_1 \sin 4,5\lambda + \lambda C_2 \cos 4,5\lambda = \lambda C_2 \cos 4,5\lambda = 0.$$

Так как $C_2 \neq 0$, $\lambda \neq 0$ (иначе функция X(x) станет тождественно равна нулю), то $\cos 4.5\lambda = 0$, а значит $4.5\lambda = \frac{\pi}{2} + \pi n$, и, следовательно, собственные значения задачи Штурма-Лиувилля: $\lambda = \lambda_n = \frac{\pi(1+2n)}{9}$, n = 0.1.2, Коэффициент C_2 является постоянной ненулевой величиной, т.е. имеем права принять ее за 1.

Находим собственные функции

$$X_n(x) = C_1 \cos \lambda_n x + C_2 \sin \lambda_n x = \sin \frac{\pi (1 + 2n)x}{9},$$

 $C_1 = 0, C_2 = 1 \neq 0.$

Решаем второе уравнение:

$$T'_n(t) + \frac{(1+2n)^2 \pi^2}{9} T_n(t) = 0,$$

$$\frac{dT_n(t)}{T_n(t)} = -\frac{(1+2n)^2 \pi^2}{9} dt,$$

$$T_n(t) = C_n e^{-\frac{(1+2n)^2 \pi^2}{9} t},$$

где C_n – произвольные постоянные.

Итак, функции $u_n(x;t) = X_n(x) \cdot T_n(t)$ удовлетворяют краевым условиям для n=0,1,2,....

Ищем общее решение в виде ряда

$$u(x;t) = \sum_{n=0}^{\infty} u_n(x;t) = \sum_{n=0}^{\infty} C_n e^{-\frac{(1+2n)^2 \pi^2}{9}t} \cdot \sin \frac{\pi (1+2n)x}{9}.$$

Потребуем выполнение начального условия

$$u(x;0) = \varphi(x) = 27 \sin 7\pi x = \sum_{n=0}^{\infty} C_n \sin \frac{\pi(1+2n)}{9} x.$$

Полученное соотношение есть разложение функции $\varphi(x)$ в ряд Фурье по синусам. Ищем коэффициенты Фурье C_n этого разложения при $T=2l=9,\ l=4,5.$

$$C_n = \frac{2}{4.5} \int_0^{4.5} \varphi(x) \cdot \sin \frac{(1+2n)\pi x}{9} dx = \frac{4}{9} \int_0^{4.5} 27 \sin 7\pi x \cdot \sin \frac{(1+2n)\pi x}{9} dx =$$

$$= 12 \int_0^{4.5} \sin 7\pi x \cdot \sin \frac{(1+2n)\pi x}{9} dx.$$

Используя свойства ортогональности тригонометрической системы, получим, что $C_n=0$, если $7\pi x\neq \frac{(1+2n)\pi x}{9}$, $n\neq 31$, а если n=31, то

$$C_{31} = 12 \int_{0}^{4,5} \sin^{2} 7\pi x \, dx = 6 \int_{0}^{4,5} (1 - \cos 14\pi x) dx = 6x \Big|_{0}^{4,5} - \frac{3}{7} \sin 14\pi x \Big|_{0}^{4,5} =$$

$$= 27 - \frac{3}{7} \sin 63\pi = 27.$$

Таким образом, частное решение получаем из бесконечного ряда, в котором все слагаемые равны нулю, кроме слагаемого с номером n=31 и коэффициентом $C_{31}=27$:

$$u(x;t) = 27e^{-441\pi^2 t} \sin 7\pi x.$$

Варианты расчетной работы для самостоятельного решения (1-30)

Вариант 1

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1, & x \in [-\pi, 0] \\ x - \frac{1}{2}, & x \in (0, \pi] \end{cases}$$

- 2. Найти общее решение: $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z x^2 y^2$
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} + 3u_{xt}^{"} + 2u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 2x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения

$$u''_{tt} = 4u''_{xx}, 0 \le x \le 8, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 4 \\ 8 - x, & 4 < x \le 8 \end{cases} u'_{t}(x;0) = 0 u(0;t) = u(8;t) = 0$$

$$u'_{t} = 2u''_{xx},$$

$$0 \le x \le 0.5, t \ge 0$$

$$u(x; 0) = 19 \sin 5\pi x$$

$$\{u(0; t) = 0 \\ u'_{x}(0.5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \pi, & x \in [-1, 0] \\ x - \pi, & x \in (0, 1] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$(x^{2} + y^{2})\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} = xz; \qquad \begin{cases} x = 4\\ y^{2} + z^{2} = 16 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} - 4u''_{xt} + 3u''_{xx} = 0; \begin{cases} u(x;0) = 3x^2 \\ u'_t(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx}, 0 \le x \le 3, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 1,5 \\ 3 - x, & 1,5 < x \le 3 \\ u'_{t}(x;0) = 0 \end{cases} u(0;t) = u(3;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 5u''_{xx},$$

$$0 \le x \le 1,5, t \ge 0$$

$$u(x; 0) = 8 \cos \pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(1,5; t) = 0 \end{cases}$$

Вариант 3

1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.

- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \frac{1}{2}, & x \in [-\frac{\pi}{2}, 0] \\ x + 1, & x \in (0, \frac{\pi}{2}] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$z\frac{\partial z}{\partial x} - z\frac{\partial z}{\partial y} = y - x;$$

$$\begin{cases} x = 1\\ z = y^2 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 3u''_{xt} + 2u''_{xx} = 0;$$

$$\begin{cases} u(x;0) = 0 \\ u'_t(x;0) = 2x^2 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 16u''_{xx}, 0 \le x \le 12, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 6 \\ 12 - x, & 6 < x \le 12 \end{cases} u'_{t}(x;0) = 0 u(0;t) = u(12;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 8u''_{xx},$$

$$0 \le x \le 2.5, t \ge 0$$

$$u(x; 0) = 17 \sin 3\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(2.5; t) = 0$$

Вариант 4

1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.

- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\frac{1}{2}, & x \in [-\frac{\pi}{2}, 0] \\ -x + 1, & x \in (0, \frac{\pi}{2}] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = z;$$

$$\begin{cases} y = x \\ z = x^3 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} - 4u''_{xt} + 3u''_{xx} = 0; \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 3x^2 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 25u''_{xx},$$

$$0 \le x \le 4, \qquad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 2\\ 4 - x, & 2 < x \le 4 \end{cases} \\ u'_{t}(x;0) = 0 \\ u(0;t) = u(4;t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

Вариант 5

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

(в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\pi, & x \in [-1, 0] \\ -x + \pi, & x \in (0, 1] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$z(x+z)\frac{\partial z}{\partial x} - y(y+z)\frac{\partial z}{\partial y} = 0;$$

$$\begin{cases} x = 1\\ z = \sqrt{y} \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$4u_{tt}^{"} + 8u_{xt}^{"} + 3u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = u''_{xx}, 0 \le x \le 6, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 3 \\ 6 - x, & 3 < x \le 6 \end{cases} u'_{t}(x;0) = 0 u(0;t) = u(6;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 4u''_{xx},$$

$$0 \le x \le 4.5, t \ge 0$$

$$u(x; 0) = 15 \sin 3\pi x$$

$$\begin{cases} u(0; t) = 0 \\ u'_{x}(4.5; t) = 0 \end{cases}$$

Вариант 6

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1, & x \in [-1, 0] \\ x - 1, & x \in (0, 1] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2z;$$
 $z = y = 2x^3$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$3u_{tt}^{"} + 4u_{xt}^{"} + u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 4x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 16u''_{xx},$$

$$0 \le x \le 4, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 2\\ 4 - x, & 2 < x \le 4 \end{cases} \\ u'_{t}(x;0) = 0 \\ u'_{x}(0;t) = u'_{x}(4;t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 2u''_{xx},$$

$$0 \le x \le 3.5, t \ge 0$$

$$u(x; 0) = 4\cos 5\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(3.5; t) = 0 \end{cases}$$

Вариант 7

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \frac{1}{2}, & x \in [-1, 0] \\ -x - 1, & x \in (0, 1] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$2yz\frac{\partial z}{\partial x} - xz\frac{\partial z}{\partial y} + xy = 0; \qquad \begin{cases} z = 0\\ x^2 + y^2 = y \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$4u_{tt}^{"} + 8u_{xt}^{"} + 3u_{xx}^{"} = 0; \quad \begin{cases} u(x;0) = 0 \\ u_{t}^{"}(x;0) = x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 4u''_{xx}, 0 \le x \le 10, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 5 \\ 10 - x, & 5 < x \le 10 \end{cases} u'_{t}(x;0) = 0 u'_{x}(0;t) = u'_{x}(10;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 3u''_{xx},$$

$$0 \le x \le 2.5, t \ge 0$$

$$u(x; 0) = 13 \sin 5\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(2.5; t) = 0$$

Вариант 8

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\frac{1}{2}, & x \in [-\pi, 0] \\ x + \frac{1}{2}, & x \in (0, \pi] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$2xz\frac{\partial z}{\partial x} + 2yz\frac{\partial z}{\partial y} = z^2 - x^2 - y^2; \qquad \begin{cases} x = 2\\ z^2 - y^2 = 4 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$3u_{tt}^{"} + 4u_{xt}^{"} + u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 0 \\ u_{t}^{'}(x;0) = 4x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx}, 0 \le x \le 6, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 3 \\ 6 - x, & 3 < x \le 6 \end{cases} u'_{t}(x;0) = 0 u'_{x}(0;t) = u'_{x}(6;t) = 0$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = u''_{xx},
0 \le x \le 1,5, t \ge 0$$

$$u(x; 0) = 2 \cos 7\pi x
\begin{cases} u'_{x}(0; t) = 0 \\ u(1,5; t) = 0 \end{cases}$$

Вариант 9

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\frac{\pi}{2}, & x \in [-1, 0] \\ x - \frac{\pi}{2}, & x \in (0, 1] \end{cases}$$

- 2. Найти общее решение: $(x+2y)\frac{\partial z}{\partial x} y\frac{\partial z}{\partial y} = 0$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$9u''_{tt} + 8u''_{xt} - u''_{xx} = 0; \qquad \begin{cases} u(x;0) = 9x^2 \\ u'_t(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 25u''_{xx},$$

$$0 \le x \le 5, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 2.5 \\ 5 - x, & 2.5 < x \le 5 \end{cases} \\ u'_{t}(x;0) = 0 \\ u'_{x}(0;t) = u'_{x}(5;t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 5u''_{xx},$$

$$0 \le x \le 0,5, \qquad t \ge 0$$

$$u(x; 0) = 19 \sin 3\pi x$$

$$\begin{cases} u(0; t) = 0 \\ u'_{x}(0,5; t) = 0 \end{cases}$$

Вариант 10

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \frac{\pi}{2}, & x \in [-1, 0] \\ -x - \frac{\pi}{2}, & x \in (0, 1] \end{cases}$$

- 2. Найти общее решение: $(x^2 + y^2)\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} z^2 = 0$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} + 4u_{xt}^{"} + 4u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 4x^{2} \\ u_{t}^{'}(x;0) = 0 \end{cases}$$

$$u''_{tt} = 36u''_{xx},$$

$$0 \le x \le 8, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x, & 0 \le x \le 4 \\ 8 - x, & 4 < x \le 8 \end{cases} \\ u'_{t}(x;0) = 0 \\ u'_{x}(0;t) = u'_{x}(8;t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = u''_{xx},$$

$$0 \le x \le 1,5, \qquad t \ge 0$$

$$u(x; 0) = 8 \cos 5\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(1.5; t) = 0 \end{cases}$$

Вариант 11

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\pi, & x \in [-1, 0] \\ \pi - x, & x \in (0, 1] \end{cases}$$

- 2. Найти общее решение: $xy\frac{\partial z}{\partial x} + (x-2z)\frac{\partial z}{\partial y} = yz$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$9u_{tt}^{"} + 8u_{xt}^{"} - u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = 0 \\ u_{t}^{"}(x;0) = 9x^{2} \end{cases}$$

$$u''_{tt} = u''_{xx}, 0 \le x \le 2, t \ge 0 \begin{cases} u(x; 0) = x(x - 2) \\ u'_t(x; 0) = 0 \\ u(0; t) = u(2; t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = 6u''_{xx},$$

$$0 \le x \le 2,5, \qquad t \ge 0$$

$$u(x; 0) = 17 \sin 3\pi x$$

$$\begin{cases} u(0; t) = 0 \\ u'_{x}(2,5; t) = 0 \end{cases}$$

Вариант 12

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\frac{\pi}{2}, & x \in [-1, 0] \\ -x + \frac{\pi}{2}, & x \in (0, 1] \end{cases}$$

- 2. Найти общее решение: $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2xy\sqrt{1-z^2}$
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 4u''_{xt} + 4u''_{xx} = 0; \qquad \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 4x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx}, 0 \le x \le 3, t \ge 0 \begin{cases} u(x;0) = x(x-3) \\ u'_{t}(x;0) = 0 \\ u(0;t) = u(3;t) = 0 \end{cases}$$

$$u'_{t} = 2u''_{xx},$$

$$0 \le x \le 3.5, t \ge 0$$

$$u(x; 0) = 6 \cos 7\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(3.5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -1, & x \in [-\pi, 0] \\ 1 - x, & x \in (0, \pi] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x\frac{\partial z}{\partial x} - 2y\frac{\partial z}{\partial y} = x^2 + y^2;$$

$$\begin{cases} y = 1\\ z = x^4 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 8u_{xt}^{"} + 7u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = 7x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 16u''_{xx}, 0 \le x \le 1, t \ge 0 \begin{cases} u(x;0) = x(x-1) \\ u'_{t}(x;0) = 0 \\ u(0;t) = u(1;t) = 0 \end{cases}$$

5. Методом Фурье решить смешанную задачу для параболического уравнения.

$$u'_{t} = u''_{xx},
0 \le x \le 4,5, t \ge 0$$

$$u(x; 0) = 15 \sin 9\pi x
\begin{cases} u(0; t) = 0 \\ u'_{x}(4,5; t) = 0 \end{cases}$$

Вариант 14

1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.

- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соѕ кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -\frac{1}{2}, & x \in [-\pi, 0] \\ \frac{1}{2} - x, x \in (0, \pi] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = z^2(x - 3y);$$

$$\begin{cases} x = 1\\ yz + 1 = 0 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 6u''_{xt} + 9u''_{xx} = 0;$$

$$\begin{cases} u(x;0) = 3x^2 \\ u'_t(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = \frac{1}{4}u''_{xx}, \qquad \begin{cases} u(x;0) = x(x-2) \\ u'_t(x;0) = 0 \end{cases}$$

 $0 \le x \le 2, \qquad t \ge 0 \qquad \qquad u(0;t) = u(2;t) = 0$

$$u'_{t} = 3u''_{xx},$$

$$0 \le x \le 3,5, \qquad t \ge 0$$

$$u(x; 0) = 4 \cos \pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(3,5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \frac{1}{2}, & x \in [-\pi, 0] \\ 1 - x, & x \in (0, \pi] \end{cases}$$

- 2. Найти общее решение: $xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} = x$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$25u_{tt}^{"}-10u_{xt}^{"}+u_{xx}^{"}=0; \qquad \begin{cases} u(x;0)=0\\ u_{t}^{"}(x;0)=5x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 4u''_{xx},
0 \le x \le 1, t \ge 0$$

$$\begin{cases} u(x; 0) = x(x-1) \\ u'_t(x; 0) = 0 \end{cases}$$

$$u(0; t) = u(1; t) = 0$$

$$u'_{t} = 7u''_{xx},$$

$$0 \le x \le 2,5, \qquad t \ge 0$$

$$u(x; 0) = 13 \sin 3\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(2,5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} x, & x \in [0,1] \\ 1 - x, & x \in (1,2] \end{cases}$$

- 2. Найти общее решение: $x^2 \frac{\partial z}{\partial x} xy \frac{\partial z}{\partial y} = -y^2$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 6u''_{xt} + 9u''_{xx} = 0; \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 3x^2 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx},
0 \le x \le 2, t \ge 0$$

$$\begin{cases} u(x; 0) = x(x-2) \\ u'_{t}(x; 0) = 0 \\ u'_{x}(0; t) = u'_{x}(2; t) = 0 \end{cases}$$

$$u'_{t} = 9u''_{xx},$$

$$0 \le x \le 1,5, t \ge 0$$

$$u(x; 0) = 12 \cos 3\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0\\ u(1,5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1, & x \in [0,2] \\ 3 - x, & x \in (2,3] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = xz;$$

$$\begin{cases} z = 0 \\ y = x^3 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 8u_{xt}^{"} + 7u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 0 \\ u_{t}^{'}(x;0) = 7x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = u''_{xx},
0 \le x \le 3, t \ge 0$$

$$\begin{cases} u(x; 0) = x(x-3) \\ u'_{t}(x; 0) = 0 \\ u'_{x}(0; t) = u'_{x}(3; t) = 0 \end{cases}$$

$$u'_{t} = 2u''_{xx},
0 \le x \le 2,5, t \ge 0$$

$$u(x; 0) = 9 \sin 7\pi x
 \{u(0; t) = 0
 \{u'_{x}(2,5; t) = 0\}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} x, & x \in [0, \frac{\pi}{2}] \\ & \frac{\pi}{2}, x \in (\frac{\pi}{2}, \pi] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$xy\frac{\partial z}{\partial x} - y^2\frac{\partial z}{\partial y} = ;$$

$$\begin{cases} x = 2\\ yz = \frac{3}{2} \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$25u_{tt}^{"}-10u_{xt}^{"}+u_{xx}^{"}=0; \qquad \begin{cases} u(x;0)=5x^2\\ u_t^{'}(x;0)=0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 16u''_{xx}, 0 \le x \le 8, t \ge 0 \begin{cases} u(x;0) = x(x-8) \\ u'_{t}(x;0) = 0 \\ u'_{x}(0;t) = u'_{x}(8;t) = 0 \end{cases}$$

$$u'_{t} = 5u''_{xx},$$

$$0 \le x \le 3,5, \qquad t \ge 0$$

$$u(x; 0) = 18 \cos \pi x$$

$$\{u'_{x}(0; t) = 0 \\ u(3,5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 3x, & x \in [0, 1] \\ 3, & x \in (1, 2] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z \cdot \text{ctg}y; \qquad \begin{cases} z = x \\ y = x \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 8u_{xt}^{"} + 16u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = 8x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = \frac{1}{9}u''_{xx}, \qquad \begin{cases} u(x;0) = x(x-2) \\ u'_t(x;0) = 0 \end{cases}$$

 $0 \le x \le 2, \qquad t \ge 0 \qquad \qquad u'_x(0;t) = u'_x(2;t) = 0$

$$u'_{t} = 8u''_{xx},$$

$$0 \le x \le 4,5, t \ge 0$$

$$u(x; 0) = 7 \sin 3\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(4,5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} x, & x \in [0, \frac{\pi}{2}] \\ 0, & x \in (\frac{\pi}{2}, \pi] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$\frac{\partial z}{\partial x} + (2e^x - y)\frac{\partial z}{\partial y} = 0; \qquad \begin{cases} x = 0 \\ z = y \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} + 10u_{xt}^{"} + 25u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 10x^{2} \\ u_{t}^{"}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 4u''_{xx},
0 \le x \le 1, t \ge 0$$

$$\begin{cases} u(x; 0) = x(x - 1) \\ u'_{t}(x; 0) = 0 \\ u'_{x}(0; t) = u'_{x}(1; t) = 0 \end{cases}$$

$$u'_{t} = u''_{xx},$$

$$0 \le x \le 3.5, t \ge 0$$

$$u(x; 0) = 16 \cos 9\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(3.5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 2x, & x \in [0, 1] \\ 2, & x \in (1, 2] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2xy;$$
 $z = y = x^2$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} - 8u''_{xt} + 16u''_{xx} = 0; \qquad \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 8x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 16u''_{xx},$$

$$0 \le x \le 4, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 2\\ 4 - x, & 2 < x \le 4 \end{cases} \\ u'_t(x;0) = 0 \\ u(0;t) = u(4;t) = 0 \end{cases}$$

$$u'_{t} = 4u''_{xx},
0 \le x \le 2,5, t \ge 0$$

$$u(x; 0) = 5 \sin 3\pi x
\begin{cases} u(0; t) = 0 \\ u'_{x}(2,5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1, & x \in [0, 1] \\ 2 - x, & x \in (1, 2] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$xy^3 \frac{\partial z}{\partial x} + x^2 z^2 \frac{\partial z}{\partial y} = y^3 z;$$

$$\begin{cases} y = z^2 \\ x = -z^3 \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} + 10u_{xt}^{"} + 25u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = 0\\ u_{t}^{"}(x;0) = 10x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = u''_{xx},$$

$$0 \le x \le 10, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{5}, & 0 \le x \le 5\\ 10 - x, & 5 < x \le 10 \end{cases}$$

$$u'_t(x;0) = 0$$

$$u(0;t) = u(10;t) = 0$$

$$u'_{t} = 2u''_{xx},$$

$$0 \le x \le 1,5, \qquad t \ge 0$$

$$u(x; 0) = 14 \cos 5\pi x$$

$$\{u'_{x}(0; t) = 0\}$$

$$\{u(1,5; t) = 0\}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \frac{x}{2}, & x \in [0, 2] \\ 3 - x, & x \in (2, 3] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$y\frac{\partial z}{\partial x} - xy\frac{\partial z}{\partial y} = 2xz;$$

$$\begin{cases} z = 1\\ y = \frac{x^2}{2} \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 8u''_{xt} + 12u''_{xx} = 0;$$

$$\begin{cases} u(x;0) = 6x^2 \\ u'_t(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 25u''_{xx},$$

$$0 \le x \le 8, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{4}, & 0 \le x \le 4\\ 8 - x, & 4 < x \le 8\\ u'_t(x;0) = 0 \end{cases}$$

$$u(0;t) = u(8;t) = 0$$

$$u'_{t} = 3u''_{xx},$$

$$0 \le x \le 0.5, t \ge 0$$

$$u(x; 0) = 3 \sin 5\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(0,5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1, & x \in [0,3] \\ 4 - x, & x \in (3,4] \end{cases}$$

- 2. Найти общее решение: $(x^3 + 3xy^2)\frac{\partial z}{\partial x} + 2y^3\frac{\partial z}{\partial y} = 2y^2z$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 12u''_{xt} + 27u''_{xx} = 0; \begin{cases} u(x;0) = 9x^2 \\ u'_t(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 4u''_{xx},$$

$$0 \le x \le 2, \qquad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x^2, & 0 \le x \le 1\\ 2 - x, & 1 < x \le 2 \end{cases} \\ u'_t(x;0) = 0 \end{cases}$$

$$u(0;t) = u(2;t) = 0$$

$$u'_{t} = u''_{xx},$$

$$0 \le x \le 1,5, t \ge 0$$

$$u(x; 0) = 12 \cos 7\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(1,5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 1 - x, & x \in [0, 1] \\ 0, & x \in (1, 2] \end{cases}$$

- 2. Найти общее решение: $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = xy + z$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 8u''_{xt} + 12u''_{xx} = 0; \qquad \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 6x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx},$$

$$0 \le x \le 6, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{3}, & 0 \le x \le 3\\ 6 - x, & 3 < x \le 6 \end{cases}$$

$$u'_{t}(x;0) = 0$$

$$u(0;t) = u(6;t) = 0$$

$$u'_{t} = 5u''_{xx},
0 \le x \le 2,5, t \ge 0$$

$$u(x; 0) = 9 \sin 3\pi x
 \{ u(0; t) = 0
 \{ u'_{x}(2,5; t) = 0 \}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} x+1, & x \in [0,1] \\ 2, & x \in (1,2] \end{cases}$$

- 2. Найти общее решение: $y^3 \frac{\partial z}{\partial y} xy^2 \frac{\partial z}{\partial x} = xz$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u''_{tt} + 12u''_{xt} + 27u''_{xx} = 0; \begin{cases} u(x;0) = 0 \\ u'_{t}(x;0) = 9x^2 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 36u''_{xx},$$

$$0 \le x \le 8, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{4}, & 0 \le x \le 4\\ 8 - x, & 4 < x \le 8 \end{cases}$$

$$u'_{t}(x;0) = 0$$

$$u'_{x}(0;t) = u'_{x}(8;t) = 0$$

$$u'_{t} = u''_{xx},
0 \le x \le 3,5, t \ge 0$$

$$u(x;0) = 18 \cos 5\pi x
 \{u'_{x}(0;t) = 0
 u(3,5;t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} 2 - x, & x \in [0, 1] \\ 1, & x \in (1, 2] \end{cases}$$

- 2. Найти общее решение: $xz^2 \frac{\partial z}{\partial x} + yz^2 \frac{\partial z}{\partial y} = x^2y$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$3u_{tt}^{"} + 32u_{xt}^{"} + 64u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 8x^2 \\ u_t^{'}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = u''_{xx},$$

$$0 \le x \le 2, t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} x^2, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases} \\ u'_t(x;0) = 0 \end{cases}$$

$$u'_x(0;t) = u'_x(2;t) = 0$$

$$u'_{t} = 6u''_{xx},$$

$$0 \le x \le 4,5, t \ge 0$$

$$u(x; 0) = 7 \sin 3\pi x$$

$$u(0; t) = 0$$

$$u'_{x}(4,5; t) = 0$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -1, & x \in [0, 2] \\ 3 - 2x, & x \in (2, 3] \end{cases}$$

2. Найти решение, удовлетворяющее указанным начальным условиям.

$$x \frac{\partial z}{\partial x} + z \frac{\partial z}{\partial y} = y;$$

$$\begin{cases} y = 2z \\ x + 2y = z \end{cases}$$

3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 12u_{xt}^{"} + 36u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 4x^{2} \\ u_{t}^{"}(x;0) = 0 \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 4u''_{xx},$$

$$0 \le x \le 12, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{6}, & 0 \le x \le 6\\ 12 - x, & 6 < x \le 12\\ u'_t(x;0) = 0 \end{cases}$$

$$u'_x(0;t) = u'_x(12;t) = 0$$

$$u'_{t} = 2u''_{xx},$$

$$0 \le x \le 3.5, t \ge 0$$

$$u(x; 0) = 16 \cos 7\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(3.5; t) = 0 \end{cases}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} -1, & x \in [0, 2] \\ x - 3, & x \in (2, 3] \end{cases}$$

- 2. Найти общее решение: $xy\frac{\partial z}{\partial x} + (x-2z)\frac{\partial z}{\partial y} = yz$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$3u_{tt}^{"} + 32u_{xt}^{"} + 64u_{xx}^{"} = 0;$$

$$\begin{cases} u(x;0) = 0 \\ u_{t}^{"}(x;0) = 8x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 9u''_{xx},$$

$$0 \le x \le 4, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 2\\ 4 - x, & 2 < x \le 4 \end{cases}$$

$$u'_{t}(x;0) = 0$$

$$u'_{x}(0;t) = u'_{x}(4;t) = 0$$

$$u'_{t} = u''_{xx},
0 \le x \le 2,5, t \ge 0$$

$$u(x; 0) = 5 \sin 9\pi x
 \{u(0; t) = 0
 \{u'_{x}(2,5; t) = 0\}$$

- 1. (a) Разложить функцию f(x) в ряд Фурье на указанном промежутке. Нарисовать график функции, определяющей сумму ряда.
- (б) Разложить функцию f(x) в ряд Фурье по sin кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.
- (в) Разложить функцию f(x) в ряд Фурье по соз кратных дуг на промежутке от 0 до правой границы указанного промежутка. Нарисовать график функции, определяющей сумму ряда.

$$f(x) = \begin{cases} \pi - x, & x \in [0, \frac{\pi}{2}] \\ & \frac{\pi}{2}, x \in (\frac{\pi}{2}, \pi] \end{cases}$$

- 2. Найти общее решение: $(x^2 + y^2)\frac{\partial z}{\partial x} + 2xy\frac{\partial z}{\partial y} + z^2 = 0$.
- 3. Методом характеристик привести уравнение к каноническому виду и найти решение задачи Коши.

$$u_{tt}^{"} - 12u_{xt}^{"} + 36u_{xx}^{"} = 0; \qquad \begin{cases} u(x;0) = 0\\ u_{t}^{"}(x;0) = 4x^{2} \end{cases}$$

4. Методом Фурье решить смешанную задачу для гиперболического уравнения.

$$u''_{tt} = 25u''_{xx},$$

$$0 \le x \le 6, \quad t \ge 0$$

$$\begin{cases} u(x;0) = \begin{cases} \frac{x^2}{3}, & 0 \le x \le 3\\ 6 - x, & 3 < x \le 6\\ u'_t(x;0) = 0 \end{cases}$$

$$u'_x(0;t) = u'_x(6;t) = 0$$

$$u'_{t} = 3u''_{xx},$$

$$0 \le x \le 1,5, t \ge 0$$

$$u(x; 0) = 14 \cos 5\pi x$$

$$\begin{cases} u'_{x}(0; t) = 0 \\ u(1,5; t) = 0 \end{cases}$$

Учебное издание

РУДАКОВСКАЯ Елена Георгиевна РУШАЙЛО Маргарита Федоровна ОСИПЧИК Валерия Владимировна АВЕРИНА Ольга Валентиновна ЧЕЧЕТКИНА Елена Михайловна НАПЕДЕНИНА Екатерина Юрьевна СИТИН Артем Геннадьевич НАПЕДЕНИН Юрий Тимофеевич ИНШАКОВА Ксения Александровна

СБОРНИК РАСЧЕТНЫХ РАБОТ ПО ВЫСШЕЙ МАТЕМАТИКЕ

TOM II

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ. РЯДЫ. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Редактор Е. В. Копасова

Подписано в печать 25.10.2016 г. Формат 60х84 1/16. Усл. печ. л. 7,0. Уч.-изд. л. 7,5. Тираж 500 экз. Заказ

Российский химико-технологический университет имени Д. И. Менделеева Издательский центр Адрес университета и издательского центра: 125047, Москва, Миусская пл., 9