Introduccion La primera Variación Ejemplo Tarea

Optimización Numérica sin restricciones

Oscar Dalmau

Centro de Investigación en Matemáticas CIMAT

23 de abril de 2020

Introduccion La primera Variación Ejemplo Tarea

Orden del Tema

- 1 Introduccion
- 2 La primera Variación Ecuacion de Euler-Lagrange
- 3 Ejemplo
- 4 Tarea

Problema con Valores en la Frontera

Encontrar u(x) tal que

$$-u''(x) + \kappa u(x) = f(x); x \in I = [0, 1]$$

$$u(0) = a; \qquad u(1) = b$$

es equivalente a resolver

$$u^* = \arg\min_{u} J[u]$$

donde
$$u(0) = a$$
, $u(1) = b$ y

$$J[u] := \frac{1}{2} \int_0^1 \left(\kappa u(x)^2 - 2f(x)u(x) + \left(u'(x) \right)^2 \right) dx$$

Problema con Valores en la Frontera

Nota que

$$J[u] := \frac{1}{2} \int_0^1 \left(\kappa u(x)^2 - 2f(x)u(x) + \left(u'(x) \right)^2 \right) dx$$

se puede reescribir como

$$J[u] := \frac{\kappa}{2} \int_0^1 (u(x) - g(x))^2 + \frac{1}{\kappa} (u'(x))^2 dx + cte$$

forma discreta

$$J(\mathbf{u}) := \frac{1}{2} \sum_{i=1}^{n} (u_i - g_i)^2 + \frac{1}{2} \lambda \sum_{i=1}^{n-1} (u_{i+1} - u_i)^2$$

Brachistochrone

El inicio: En junio de 1696, John Bernoulli planteó el siguiente reto

Dado los puntos A y B encontrar el camino AMB que debe seguir un punto M, que se mueve bajo su propio peso, desde A hasta B en el menor (brachisto) tiempo (chrone) posible.

El problema anterior conduce a resolver el siguiente problema

$$\min_{y} J[y] \quad = \quad \frac{1}{\sqrt{2g}} \int_a^b \sqrt{\frac{1 + (y')^2}{y_a - y}} dx$$

Soluciones enviadas: G. W. Leibniz (1697), Isaac Newton (1697), John Bernoulli (1697), James Bernoulli (1697) y Guillaume l'Hopital (1697).

Introduccion La primera Variación Ejemplo Tarea

La brachistochrone es un problema particular, del siguiente problema más general que conduce a *determinar una función* y(x) *que minimice o maximice la siguiente integral*:

$$\min_{y} J[y(x)] = \int_{a}^{b} f(x, y(x), y'(x)) dx$$

Ejemplo

La curva mas corta en el plano

Cual es la curva mas corta entre dos puntos (a,y_a) y (b,y_b) en el plano.

Para lo anterior hay que minimizar el funcional de longitud de arco:

$$\min_{y} J[y] = \int_{a}^{b} \sqrt{1 + (y')^2} dx$$

Formulacion del problema

El objetivo es minimizar la siguiente integral definida:

$$J[y] = \int_a^b f(x, y, y') dx$$

sujeto a las condiciones de frontera

$$y(a) = y_a \qquad y(b) = y_b$$

 $J[\cdot]$ es un funcional, ie, un operador que mapea funciones a un numero real

Espacios de funciones

Algunos espacios de funciones usados en el calculo variacional:

- a) C[a,b] el espacio de funciones real valuadas que son continuas en el intervalo [a,b]
- b) $C^1[a,b]$ el espacio de funciones real valuadas que son continuas y que tienen derivadas continuas en en el intervalo [a,b]
- c) $C^2[a,b]$ el espacio de funciones real valuadas que son continuas y que tienen primeras y segundas derivadas continuas en en el intervalo [a,b]

Estremo de funcional

Luego, el problema consiste en buscar el extremo de un funcional.

La palabra 'extremo' la introdujo Paul du Bois-Reymond (1879), para evitar repetir la expresión 'máximo o mínimo'

Orden del Tema

- 1 Introduccion
- 2 La primera Variación Ecuacion de Euler-Lagrange
- 3 Ejemplo
- 4 Tarea

La idea principal de Euler es convertir el problema variacional en un problema n-dimensional y luego pasar al limite $n \to \infty$

1.- Se divide el intervalo [a,b] en n+1 subintervalos iguales $[x_i,x_{i+1}]$, es decir, $a=x_0,x_1,\cdots,x_n,x_{n+1}=b$

$$x_i = x_0 + i\Delta x$$

luego

$$\Delta x = x_{i+1} - x_i = \frac{b-a}{n+1}$$

pues

$$x_{n+1} = x_0 + (n+1)\Delta x$$

$$x_0 = a$$

$$x_{n+1} = b$$

- 2.- Reemplazar la funcion y(x) por la poligonal $(x_0,y_0)=(a,y_a),(x_1,y_1),\cdots,(x_n,y_n),(x_{n+1},y_{n+1})=(b,y_b)$ donde $y_i=y(x_i)$
- 3.- Aproximar J[y] mediante, $s_k = y_{k+1} y_k$

$$J(\mathbf{y}) = \sum_{i=0}^{n} f(x_i, y_i, \frac{s_i}{\Delta x}) \Delta x$$

donde y_1, y_2, \dots, y_n son las incógnitas.

3.- Calcular $\frac{\partial J(\cdot)}{\partial u}$ mediante

$$J(\cdot) = \dots + f(x_k, \mathbf{y_k}, \frac{y_{k+1} - \mathbf{y_k}}{\Delta x}) \Delta x + f(x_k, y_{k-1}, \frac{\mathbf{y_k} - y_{k-1}}{\Delta x}) \Delta x + \dots$$

$$\begin{split} \frac{\partial J(\cdot)}{\partial y_k} &= f_{\mathbf{y}}(x_k, y_k, \frac{s_k}{\Delta x}) \Delta x - \frac{1}{\Delta x} f_{\mathbf{y}'}(x_k, y_k, \frac{s_k}{\Delta x}) \Delta x \\ &+ \frac{1}{\Delta x} f_{\mathbf{y}'}(x_{k-1}, y_{k-1}, \frac{s_{k-1}}{\Delta x}) \Delta x \end{split}$$

4.- Dividiendo por Δx y dando paso el limite

$$\frac{1}{\Delta x} \frac{\partial J(\cdot)}{\partial y_k} = f_y(x_k, y_k, \frac{s_k}{\Delta x}) \\
- \frac{f_{y'}(x_k, y_k, \frac{s_k}{\Delta x}) - f_{y'}(x_{k-1}, y_{k-1}, \frac{s_{k-1}}{\Delta x})}{\Delta x} \\
x_k \to x, \quad y_k \to y, \quad \frac{s_k}{\Delta x} \to y' \\
x_{k-1} \to x, \quad y_{k-1} \to y, \quad \frac{s_{k-1}}{\Delta x} \to y'$$

5.- Se da paso el limite para obtener la derivada variacional

$$\frac{\delta J(\cdot)}{\delta y} = f_y(x, y, y') - \frac{\partial}{\partial x} f_{y'}(x, y, y')$$

La derivada variacional juega el papel de la derivada parcial

6.- Se iguala a cero derivada variacional para obtener un minimo, lo que conduce a la ecuacion de Euler-Lagrange:

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

Ejemplo

La curva mas corta en el plano

Cual es la curva mas corta entre dos puntos (a,y_a) y (b,y_b) en el plano.

$$J[y] = \int_a^b \sqrt{1 + (y')^2} dx$$

Ecuacion de Euler-Lagrange

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

Ejemplo

Ecuacion de Euler-Lagrange

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$
$$-\frac{d}{dx} \frac{y'}{\sqrt{1 + (y')^2}} = 0$$

como se anula la derivada, la funcion es una constante 'c' y haciendo calculos

$$\frac{y'}{\sqrt{1+(y')^2}} = c$$
$$y' = \alpha$$

y se concluye que $y = \alpha x + \beta$ (una recta)

Derivacion de la ecuacion de Euler-Lagrange usando el Método de Lagrange. Se parte del problema siguiente

Minimizar la integral definida:

$$J[y] = \int_a^b f(x, y, y') dx$$

sujeto a las condiciones de frontera

$$y(a) = y_a$$
 $y(b) = y_b$

Supongamos que $y=\hat{y}(x)$ resuelve el problema. Ahora se introduce una pequeña variacion h(x)

$$y(x) = \hat{y}(x) + h(x)$$

donde

$$h(a) = 0 \qquad h(b) = 0$$

Las asunciones de Lagrange consideran pequeñas variaciones debiles, es decir

$$h(x) = \epsilon \eta(x)$$

 $\eta(a) = 0, \qquad \eta(b) = 0$

donde $h(x),\,h'(x)$ son del mismo orden (pequeños), $\eta(x)$ es independiente de ϵ y $\epsilon\approx 0$

$$J(\epsilon) := J[\hat{y} + \epsilon \eta] = \int_a^b f(x, \hat{y} + \epsilon \eta, \hat{y}' + \epsilon \eta') dx$$

La variacion total es

$$\Delta J = J(\epsilon) - J(0)$$

$$= \int_a^b f(x, \hat{y} + \epsilon \eta, \hat{y}' + \epsilon \eta') dx - \int_a^b f(x, \hat{y}, \hat{y}') dx$$

$$= \int_a^b [f(x, \hat{y} + \epsilon \eta, \hat{y}' + \epsilon \eta') dx - f(x, \hat{y}, \hat{y}')] dx$$

Usando Taylor alrededor de $\epsilon = 0$

$$J(\epsilon) = J(0) + \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon + \frac{1}{2}\left(\frac{d^2J}{d\epsilon^2}|_{\epsilon=0}\right)\epsilon^2 + O(\epsilon^3)$$

Luego, de $\Delta J = J(\epsilon) - J(0)$ se tiene

$$\Delta J = \delta J + \frac{1}{2}\delta^2 J + O(\epsilon^3)$$

$$\delta J := \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon$$

$$\delta^2 J := \left(\frac{d^2J}{d\epsilon^2}|_{\epsilon=0}\right)\epsilon^2$$

donde δJ y $\delta^2 J$ son la primera y la segunda variación respectivamente

La primera variacion es

$$\delta J := \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon$$

$$= \epsilon \int_a^b [f_y(x,\hat{y},\hat{y}')\eta + f_{y'}(x,\hat{y},\hat{y}')\eta']dx$$

Si $J(0)=J[\hat{y}]$ es un minimo, entonces $J(\epsilon)\geq J(0),$ es decir $\Delta J\geq 0.$

Nota: Si a = bh + o(h) y $a \ge 0$ entonces b = 0.

Por lo tanto se tiene que cumplir que $\delta J = 0$

Si $J(0)=J[\hat{y}]$ es un minimo, entonces $J(\epsilon)\geq J(0)$, es decir $\Delta J\geq 0.$

Como la primera variacion tiene un exponente impar en ϵ , podriamos modificar el signo anterior \geq seleccionando ϵ positivo o negativo, por lo que J(0) no seria un minimo, por lo tanto se tiene que cumplir que $\delta J=0$ (Este es el mismo argumento usado para la condicion necesaria $\nabla f=0$), ie,

$$J(\epsilon) = J(0) + \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon + o(\epsilon)$$

como $o(\epsilon) \to 0$, si J(0) es un minimo entonces $\delta J = \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon = 0.$

- Luego si hay un extremo es necesario que $\delta J = \left(\frac{dJ}{d\epsilon}|_{\epsilon=0}\right)\epsilon = 0.$ Es decir $\frac{dJ}{d\epsilon}|_{\epsilon=0}$ = 0 donde $J(\epsilon) := J[\hat{y} + \epsilon \eta]$
- Al mismo tiempo, si es un minimo entonces $\delta^2 J \geq 0$, y si es un maximo entonces $\delta^2 J \leq 0$,

Nota: Sea $a = bh^2 + o(h^2)$ entoncs $a \ge 0$ si y solo si $b \ge 0$.

Condicion necesaria de la primera variacion

Una condicion necesaria para que el funcional J[y] tenga un minimo (maximo) local en $y=\hat{y}(x)$ es que la primera variacion de J[y] se anule, es decir,

$$\delta J = 0,$$

para $y = \hat{y}(x)$ y para todas las variaciones admisible $\eta(x)$.

Vamos a realizar una simplificacion a la primera variacion (simplificacion de Lagrange) que se basa en la integrtacion por partes

$$\delta J = \epsilon \int_{a}^{b} [f_{y}(x, \hat{y}, \hat{y}')\eta + f_{y'}(x, \hat{y}, \hat{y}')\eta'] dx$$

$$\int_{a}^{b} f_{y'}(x, \hat{y}, \hat{y}')\eta' dx = f_{y'}(x, \hat{y}, \hat{y}')\eta|_{x=a}^{x=b} - \int_{a}^{b} \frac{d}{dx} f_{y'}(x, \hat{y}, \hat{y}')\eta dx$$

$$= - \int_{a}^{b} \frac{d}{dx} f_{y'}(x, \hat{y}, \hat{y}')\eta dx$$

pues
$$\eta(a) = \eta(b) = 0$$

Como la siguiente igualdad

$$\int_{a}^{b} \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right]_{y = \hat{y}, y' = \hat{y}'} \eta(x) dx = 0$$

se cumple para toda funcion η entonces necesariamente el coeficiente de eta tiene que ser cero, ie,

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

Nota: Este fue el argumento de Lagrange, sin embargo en una carta de Euler a Lagrange le dice que esto no es evidente y que debe ser probado... La prueba la realizó Du Bois-Reymond en 1879 (Teorema fundamental del Calculo variacional)

Teorema fundamental del Calculo variacional

Si $g(x) \in C^1[a,b]$ y si

$$\int_{a}^{b} g(x)\eta(x)dx = 0$$

para toda $\eta(x) \in C^1[a,b]$ tal que $\eta(a) = \eta(b) = 0$, entonces

$$g(x) = 0$$

para toda $x \in [a, b]$

Supongamos, sin perdida de generalidad que existe un punto donde g sea positiva en (a,b). Entonces, por continuidad, existe un intervalo donde g(x)>0 para $x\in [x_1,x_2]\subset [a,b]$. Definamos $\eta(x)=(x-x_1)^2(x-x_2)^2$ para $x\in [x_1,x_2]$ y $\eta(x)=0$ para $x\notin [x_1,x_2]$, luego

$$\int_{a}^{b} g(x)\eta(x)dx = \int_{x_{1}}^{x_{2}} g(x)(x-x_{1})^{2}(x-x_{2})^{2}dx > 0$$

pues $g(x)(x-x_1)^2(x-x_2)^2>0$ para $x\in[x_1,x_2]$, lo que es una contradiccion con la hipotesis. Por tanto g(x)=0 para $x\in(a,b)$ y por la continuidad g(a)=g(b)=0

Comentario: Para poder aplicar el teorema anterior se debe garantizar que g(x) sea continua en [a,b]. Aplicando la regla de la cadena

$$g(x) = f_y - \frac{d}{dx} f_{y'}$$

$$= f_y - \frac{\partial f_{y'}}{\partial x} \frac{dx}{dx} - \frac{\partial f_{y'}}{\partial y} \frac{dy}{dx} - \frac{\partial f_{y'}}{\partial y'} \frac{dy'}{dx}$$

$$= f_y - \frac{\partial f_{y'}}{\partial x} - \frac{\partial f_{y'}}{\partial y} y' - \frac{\partial f_{y'}}{\partial y'} y''$$

Luego hay que agregar una condicion mas y es que $\hat{y}'' \in C[a, b]$ o que $\hat{y} \in C^2[a, b]$. Finalmente se obtiene el siguiente Teorema

Condicion de Euler- Lagrange

Condicion necesaria de Euler-Lagrange

Las funciones $\hat{y} \in C^2[a,b]$ que producen un extremo de

$$J[y] = \int_a^b f(x, y, y') dx$$

satisfacen la ecuación diferencial de Euler -Lagrange

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

Ejemplo 1. Usando la aproximacion poligonal de Eule

$$J[y] = \int_0^2 [(y')^2 + 6x^2y]dx, \ y(0) = 2, \ y(2) = 4$$

Consideremos
$$n=3$$
, $\Delta=(2-0)/(3+1)=0.5$, $x=[0;0.5;1;1.5;2]$, $\mathbf{y}=[2,y_1,y_2,y_3,4]$

$$J(\mathbf{y}) = \sum_{i=0}^{n} \left[\left(\frac{y_{i+1} - y_i}{\Delta} \right)^2 + 6x_i^2 y_i \right]$$

Ejemplo 1. Usando la aproximacion poligonal de Eule

$$J(\mathbf{y}) = \sum_{i=0}^{n} \left[\left(\frac{y_{i+1} - y_i}{\Delta} \right)^2 + 6x_i^2 y_i \right]$$

$$\frac{\partial J}{\partial y_1} = 2\frac{y_1 - y_0}{\Delta^2} - 2\frac{y_2 - y_1}{\Delta^2} + 6x_1^2$$

$$\frac{\partial J}{\partial y_2} = 2\frac{y_2 - y_1}{\Delta^2} - 2\frac{y_3 - y_2}{\Delta^2} + 6x_2^2$$

$$\frac{\partial J}{\partial y_3} = 2\frac{y_3 - y_2}{\Delta^2} - 2\frac{y_4 - y_3}{\Delta^2} + 6x_3^2$$

Ejemplo 1. Usando la aproximación poligonal de Eule

$$2y_1 - y_2 + 0y_3 = -3\Delta^2 x_1^2 + y_0$$

-y_1 + 2y_2 - y_3 = -3\Delta^2 x_2^2
$$0y_1 - y_2 + 2y_3 = -3\Delta^2 x_3^2 + y_4$$

Resolviendo $\mathbf{y} = [2,0;1,5625;1,3125;1,8125;4,0]'$

Ejemplo 1. Usando Euler-Lagrange

Luego b = 2, a = -1

$$J[y] = \int_0^2 [(y')^2 + 6x^2y] dx, \ y(0) = 2, \ y(2) = 4$$

$$f(x, y, y') = (y')^2 + 6x^2y$$

$$0 = f_y - \frac{d}{dx} f_{y'} = 6x^2 - 2\frac{d}{dx} y' = 6x^2 - 2y''$$

$$y'' = 3x^2$$

$$y = \frac{1}{4}x^4 + ax + b$$

37/41

Ejemplo 1. Usando Euler-Lagrange

Solucion exacta

$$y = \frac{1}{4}x^4 - x + 2$$

Evaluando $\mathbf{x} = [0; 0.5; 1; 1.5; 2]$ se obtiene $\mathbf{y} = [2.0; 1.5156, 1.2500, 1.7656; 4.0]'$

Ejemplo 1. Usando Euler-Lagrange

Solucion aproximada

$$y'' = 3x^{2}$$

$$\frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}} = 3x_{i}^{2}$$

Luego

$$2y_1 - y_2 + 0y_3 = -3h^2x_1^2 + y_0$$

-y_1 + 2y_2 - y_3 = -3h^2x_2^2
$$0y_1 - y_2 + 2y_3 = -3h^2x_3^2 + y_4$$

donde $h=\Delta.$ El sistema anterior coincide con el obtenido por el Método de Euler.

Tarea

 Derivar las ecuaciones de Euler Lagrange usando el Método de Lagrange de

$$\int_{x} \int_{y} F(x, y, f, f_{x}, f_{y}) dx dy$$

$$\int_{x} \int_{y} F(x, y, u, v, u_{x}, v_{x}, u_{y}, v_{y}) dx dy$$

$$\text{donde } f, u, v : \mathbb{R}^{2} \to \mathbb{R}$$

$$f_{x} = \frac{\partial f}{\partial x}, \quad f_{y} = \frac{\partial f}{\partial y}$$

$$u_{x} = \frac{\partial u}{\partial x}, \quad u_{y} = \frac{\partial u}{\partial y}$$

$$v_{x} = \frac{\partial v}{\partial x}, \quad v_{y} = \frac{\partial v}{\partial y}$$

Tarea

1 Obtener las ecuaciones de Euler-Lagrange de

$$\int_{x} \int_{y} (f - g)^{2} + \lambda \|\nabla f\|^{2} dx dy$$
$$\int_{x} \int_{y} (p - q - p_{x}u - q_{x}v)^{2} + \lambda (\|\nabla u\|^{2} + \|\nabla v\|^{2}) dx dy$$

donde $f,u,v:\mathbb{R}^2\to\mathbb{R}$ y $g,p,q:\mathbb{R}^2\to\mathbb{R}$ son funciones dadas.