1 Sea fe C(R) y H: R→R la función definida por:

$$H(x) = \int_{x^2}^{x^3} f(t) dt$$
.

Prueba que H es derivable y calcula su derivada.

Según el Teorema Fundamental del Cálculo, dado un intervalo \mathcal{G} , $f\colon \mathcal{G} \to \mathbb{R}$ una función continua $g: \mathbb{I} \to \mathbb{R}$ funciones derivables definidas en un intervalo \mathbb{I} con $g(\mathbb{I})$, $h(\mathbb{I})$ c \mathcal{G} , entonces la función $F: \mathbb{I} \to \mathbb{R}$ definida por :

$$F(x) = \int_{g(x)}^{h(x)} f(t) dt$$

es derivable y F'(x) = f(h(x)) h'(x) - f(g(x)) g'(x), para todo $x \in I$.

En nuestro caso, $f \in C(\mathbb{R})$ por lo que f es continua en \mathbb{R} . Por otro, lado, las funciones $g,h:\mathbb{R} \to \mathbb{R}$ dadas por $g(x)=x^2$ y $h(x)=x^3$ son derivables en todo \mathbb{R} y $g(\mathbb{R})$, $h(\mathbb{R}) \subset \mathbb{R}$. Por tanto, la función $H:\mathbb{R} \to \mathbb{R}$ definida por:

$$H(x) = \int_{x^2}^{x^3} f(t) dt$$

es derivable en todo P., por el Teorema Fundamental del Cálculo, y su derivada es:

$$H'(x) = f(x^3) \cdot 3x^2 - f(x^2) \cdot 2x$$
, para todo $x \in \mathbb{R}$.