Vertex of the Quadratic

 $p_1 = -\frac{b}{2a}$ namely $w(p_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{p}_{1} ext{+}\mathsf{h}$, namely

Given a quadratic $w(p) = a p^2 + b p + c$ compute its value at

 $w(p_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = w(p_1 + h) - w(p_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

 $w(p) = p^2 - 4p + 31$ 250

Example 1.

