

Classificação de dados gerados por aprendizado não supervisionado com Aprendizado Máquina Extremo

Eduardo Fonseca Rabelo - 11272697 Prof. Dr.: Odemir Martinez Bruno

Machine Learning

Vantagens:

- Otimização de tempo;
- Customização de produtos;
- Solução de problemas.

Machine Learning Supervisionado e Não Supervisionado

Labeled and Unlabeled Data

Combinar entradas para produzir previsões úteis.

ML **Supervisionado** é a utilização de dados **rotulados** no treinamento.

```
Labels — Aquilo que queremos prever;
```

Feature — Variáveis de entrada;

Supervisionado {feature, label}: (x,y)

Não supervisionado {feature, label}: (x,?)

Labeled and Unlabeled Data

Combinar entradas para produzir previsões úteis.

ML **Supervisionado** é a utilização de dados **rotulados** no treinamento.

```
Labels — Aquilo que queremos prever;
```

Feature — Variáveis de entrada;

```
Supervisionado {feature, label}: (x,y)
```

```
Não supervisionado {feature, label}: (x,?)
```

+ semi supervisionado + por reforço + ...

Supervisionado {feature, label}: (x,y)

Não supervisionado

{feature, label}: (x,?)

- Redes Neurais Artificiais;
- Árvores de decisão;
- Máquinas de Vetores de Suporte.

Supervisionado {feature, label}: (x,y)

- Redes Neurais Artificiais;
- Árvores de decisão;
- Máquinas de Vetores de Suporte.

Não supervisionado {feature, label}: (x,?)

- Autoencoders;
- Clustering;
- PCA.

- Método não supervisionado;
- Extrair features removendo redundâncias*;

- Método não supervisionado
- Extrair features removendo redundâncias*. Informações repetitivas

- Método não supervisionado;
- Extrair features removendo redundâncias* Informações repetitivas

- Remoção de ruídos;
- Compressão de dados (JPEG).

Arquitetura básica:

Arquitetura básica:

$$\mathbf{h} = g(\mathbf{x}) \implies \mathbf{x'} = f(\mathbf{h})$$

$$\mathcal{L} = (\mathbf{x}, f(g(\mathbf{x}))) = \mathcal{L}(\mathbf{x}, \mathbf{x'})$$

Autoencoder profundo:

Autoencoder convolucional:

Extreme Learning Machine (ELM)

- Rede Feed-Forward;
- Apenas uma hidden layer;
- Treinamento pelo método de matriz pseudo-inversa;
- Não precisa de treinamento na input layer.

- Rede Feed-Forward;
- Apenas uma hidden layer;
- Treinamento pelo método de matriz pseudo-inversa;
- Não precisa de treinamento na input layer.

Entrada:
$$X = [x_1, x_2, \dots x_N], x \in \mathbb{R}$$

Saída:
$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} y_{11} & \cdots & y_{1D} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{ND} \end{bmatrix}$$

Entrada:
$$X = [x_1, x_2, \dots x_N], x \in \mathbb{R}$$

Saída:
$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} y_{11} & \cdots & y_{1D} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{ND} \end{bmatrix}$$

Função de ativação:

$$h(x) = [h_1, h_2, ..., h_L], \quad h(x) = g(x, w, c)$$

$$g(x, w, c) = \frac{1}{1 + \exp^{-(wx+c)}}$$

Entrada:
$$X = [x_1, x_2, ... x_N], x \in \mathbb{R}$$

Saída:
$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} y_{11} & \cdots & y_{1D} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{ND} \end{bmatrix}$$

$$h(x) = [h_1, h_2, ..., h_L], \quad h(x) = g(x, w, c)$$

Função de ativação:

$$g(x, w, c) = \frac{1}{1 + \exp^{-(wx+c)}}$$

$$H = \begin{bmatrix} h(x_1) \\ \vdots \\ h(x_N) \end{bmatrix} = \begin{bmatrix} h_1(x_1) & \cdots & h_L(x_1) \\ \vdots & \ddots & \vdots \\ h_1(x_N) & \cdots & h_L(x_N) \end{bmatrix}$$

$$H = \begin{bmatrix} g(w_1 \cdot x_1 + c_1) & \cdots & g(w_L \cdot x_1 + c_L) \\ \vdots & \ddots & \vdots \\ g(w_1 \cdot x_N + c_1) & \cdots & g(w_L \cdot x_N + c_L) \end{bmatrix}_{N \times L}$$

Valores aleatórios

$$w = [w_1, w_2, \dots, w_L]$$

$$c = [c_1, c_2, \dots, c_L]$$

Entrada:
$$X = [x_1, x_2, ... x_N], x \in \mathbb{R}$$

Saída:
$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} y_{11} & \cdots & y_{1D} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{ND} \end{bmatrix}$$

$$h(x) = [h_1, h_2, ..., h_L], \quad h(x) = g(x, w, c)$$

Função de ativação:

$$g(x, w, c) = \frac{1}{1 + \exp^{-(wx+c)}}$$

$$H = \begin{bmatrix} h(x_1) \\ \vdots \\ h(x_N) \end{bmatrix} = \begin{bmatrix} h_1(x_1) & \cdots & h_L(x_1) \\ \vdots & \ddots & \vdots \\ h_1(x_N) & \cdots & h_L(x_N) \end{bmatrix}$$

$$H = \begin{bmatrix} g(w_1 \cdot x_1 + c_1) & \cdots & g(w_L \cdot x_1 + c_L) \\ \vdots & \ddots & \vdots \\ g(w_1 \cdot x_N + c_1) & \cdots & g(w_L \cdot x_N + c_L) \end{bmatrix}_{N \times L}$$

Valores aleatórios

$$w = [w_1, w_2, \dots, w_L]$$

$$c = [c_1, c_2, \dots, c_L]$$

Pseudo-inversa

$$\beta = H^{\dagger}Y$$

Contém os pesos recalculados.

$$\beta = [\beta_1, \beta_2, \dots, \beta_L]^T$$

$$\beta = (H^T H + \frac{I}{C})^{-1} H^T Y$$

Métodos e Resultados

Banco de dados - MNIST

- 60000 imagens de teste e 10000 imagens de treino;
- Imagens 28x28 pixels.

```
#Importação dos features/labels de treino e features/labels de teste do MNIST
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

# Normalizar os dados
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0

# Adicionar uma dimensão de canal
x_train = np.expand_dims(x_train, axis=-1)
x_test = np.expand_dims(x_test, axis=-1)
```

Banco de dados - MNIST

- 60000 imagens de teste e 10000 imagens de treino;
- Imagens 28x28 pixels.


```
x \text{ train shape} = (28, 28, 1)
# Encoder
hidden size = 100
latent size = 20
input layer = layers.Input(shape=x train shape)
flattened = layers.Flatten()(input layer)
hidden = layers.Dense(hidden size, activation='relu')(flattened)
latent = layers.Dense(latent size, activation='relu')(hidden)
encoder = Model(inputs=input layer, outputs=latent, name='encoder')
encoder.summary()
# Decoder
input layer decoder = layers.Input(shape=(latent size,))
upsampled = layers.Dense(hidden size, activation='relu')(input layer decoder)
upsampled = layers.Dense(encoder.layers[1].output shape[-1], activation='relu')(upsampled)
constructed = layers.Reshape(x_train_shape)(upsampled)
decoder = Model(inputs=input layer decoder, outputs=constructed, name='decoder')
decoder.summary()
# Autoencoder (combinação do encoder e decoder)
autoencoder input = layers.Input(shape=x train shape)
encoded img = encoder(autoencoder input)
decoded img = decoder(encoded img)
autoencoder = Model(inputs=autoencoder input, outputs=decoded img, name='autoencoder')
autoencoder.summary()
```


$$X' = [x_1, x_2, ... x_N]$$

 O número de epochs não pareceu ser muito importante nesse caso.

Imagens reconstruídas não parecem ter diferença mas...

• Imagens reconstruídas não parecem ter diferença mas...

Autoencoder convolucional:

```
# Codificador (Encoder)
encoder input = layers.Input(shape=input shape)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(encoder input)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 14x14x32
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 7x7x64
encoder output = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x)
encoder = models.Model(encoder_input, encoder_output)
encoder.summary()
# Decodificador (Decoder)
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(encoder output)
x = layers.UpSampling2D((2, 2))(x) # 14x14x64
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x) # 28x28x32
decoder output = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
decoded = models.Model(encoder output, decoder output)
autoencoder = models.Model(encoder input, decoder output)
autoencoder.summary()
```


Autoencoder convolucional:

```
# Codificador (Encoder)
encoder input = layers.Input(shape=input shape)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(encoder input)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 14x14x32
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 7x7x64
encoder output = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x)
encoder = models.Model(encoder_input, encoder_output)
encoder.summary()
# Decodificador (Decoder)
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(encoder output)
x = layers.UpSampling2D((2, 2))(x) # 14x14x64
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x) # 28x28x32
decoder output = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
decoded = models.Model(encoder output, decoder output)
autoencoder = models.Model(encoder input, decoder output)
autoencoder.summary()
```

Arquitetura

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 28, 28, 1)]	0
conv2d_6 (Conv2D)	(None, 28, 28, 32)	320
max_pooling2d_2 (MaxPooling2D)	(None, 14, 14, 32)	0
conv2d_7 (Conv2D)	(None, 14, 14, 64)	18496
max_pooling2d_3 (MaxPoolin g2D)	(None, 7, 7, 64)	0
conv2d_8 (Conv2D)	(None, 7, 7, 128)	73856
conv2d_9 (Conv2D)	(None, 7, 7, 64)	73792
up_sampling2d_2 (UpSamplin g2D)	(None, 14, 14, 64)	0
conv2d_10 (Conv2D)	(None, 14, 14, 32)	18464
up_sampling2d_3 (UpSamplin g2D)	(None, 28, 28, 32)	0
conv2d_11 (Conv2D)	(None, 28, 28, 1)	289

Total params: 185217 (723.50 KB) Trainable params: 185217 (723.50 KB) Non-trainable params: 0 (0.00 Byte)

Autoencoder convolucional:

```
# Codificador (Encoder)
encoder input = layers.Input(shape=input shape)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(encoder input)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 14x14x32
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x) # 7x7x64
encoder output = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x)
encoder = models.Model(encoder input, encoder output)
encoder.summary()
# Decodificador (Decoder)
x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(encoder output)
x = layers.UpSampling2D((2, 2))(x) # 14x14x64
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x) # 28x28x32
decoder output = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
decoded = models.Model(encoder output, decoder output)
autoencoder = models.Model(encoder input, decoder output)
autoencoder.summary()
```

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 28, 28, 1)]	0
conv2d_6 (Conv2D)	(None, 28, 28, 32)	320
max_pooling2d_2 (MaxPoolin g2D)	(None, 14, 14, 32)	0
conv2d_7 (Conv2D)	(None, 14, 14, 64)	18496
max_pooling2d_3 (MaxPoolin g2D)	(None, 7, 7, 64)	0
conv2d_8 (Conv2D)	(None, 7, 7, 128)	73856
conv2d_9 (Conv2D)	(None, 7, 7, 64)	73792
up_sampling2d_2 (UpSamplin g2D)	(None, 14, 14, 64)	0
conv2d_10 (Conv2D)	(None, 14, 14, 32)	18464
up_sampling2d_3 (UpSamplin g2D)	(None, 28, 28, 32)	0
conv2d 11 (Conv2D)	(None, 28, 28, 1)	289

Autoencoder convolucional:

Autoencoder convolucional:


```
# Carregar e preprocessar o dataset MNIST
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], -1).astype('float32') / 255.0
x_test = x_test.reshape(x_test.shape[0], -1).astype('float32') / 255.0

# One-hot encoding das labels
encoder = OneHotEncoder(sparse=False)
y_train_onehot = encoder.fit_transform(y_train.reshape(-1, 1))
y_test_onehot = encoder.transform(y_test.reshape(-1, 1))
```

Converte as labels categóricas em uma representação numérica

```
# Carregar e preprocessar o dataset MNIST
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], -1).astype('float32') / 255.0
x_test = x_test.reshape(x_test.shape[0], -1).astype('float32') / 255.0
# One-hot encoding das labels
encoder = OneHotEncoder(sparse=False)
y_train_onehot = encoder.fit_transform(y_train.reshape(-1, 1))
y_test_onehot = encoder.transform(y_test.reshape(-1, 1))
```

Converte as labels categóricas em uma representação numérica

```
# Parâmetros do modelo ELM
input_size = x_train.shape[1]
hidden_size = 1000  # número de neurônios na camada oculta
output_size = y_train_onehot.shape[1]
```

Definimos o tamanho do modelo

```
# Inicializar pesos da camada oculta aleatoriamente
W = np.random.randn(input_size, hidden_size)
b = np.random.randn(hidden_size)
```

Inicialização de pesos aleatórios

```
# Inicializar pesos da camada oculta aleatoriamente
W = np.random.randn(input_size, hidden_size)
b = np.random.randn(hidden_size)
```

Inicialização de pesos aleatórios

```
# Função de ativação da camada oculta (ReLU)
def relu(x):
    return np.maximum(0, x)

# Calcular a saída da camada oculta
H = relu(np.dot(x_train, W) + b)
```

Criação de matrizes de ativação

```
# Calcular os pesos da camada de saída usando pseudoinversa
H pinv = pinv(H)
beta = np.dot(H_pinv, y_train_onehot)
# Fazer previsões no conjunto de teste
H_test = relu(np.dot(x_test, W) + b)
y pred = np.dot(H test, beta)
# Converter as previsões para labels
y_pred_labels = np.argmax(y_pred, axis=1)
# Avaliar a acurácia
accuracy = np.mean(y_pred_labels == y_test)
print(f'Test accuracy: {accuracy * 100:.2f}%')
```

Cálculo dos pesos da matriz beta pela pseudo-inversa

```
# Calcular os pesos da camada de saída usando pseudoinversa
H pinv = pinv(H)
beta = np.dot(H_pinv, y_train_onehot)
# Fazer previsões no conjunto de teste
H_test = relu(np.dot(x_test, W) + b)
y pred = np.dot(H test, beta)
# Converter as previsões para labels
y_pred_labels = np.argmax(y_pred, axis=1)
# Avaliar a acurácia
accuracy = np.mean(y_pred_labels == y_test)
print(f'Test accuracy: {accuracy * 100:.2f}%')
```

Cálculo dos pesos da matriz beta pela pseudo-inversa

Teste de dados

```
# Calcular os pesos da camada de saída usando pseudoinversa
H pinv = pinv(H)
beta = np.dot(H_pinv, y_train_onehot)
# Fazer previsões no conjunto de teste
H_test = relu(np.dot(x_test, W) + b)
y pred = np.dot(H test, beta)
# Converter as previsões para labels
y pred labels = np.argmax(y pred, axis=1)
# Avaliar a acurácia
accuracy = np.mean(y_pred_labels == y_test)
print(f'Test accuracy: {accuracy * 100:.2f}%')
```

Cálculo dos pesos da matriz beta pela pseudo-inversa

Teste de dados

Verificação de Acurácia

INPUT	ACURÁCIA
MNIST	
DEEP_AUTOENCODER	
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	97,65%
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	97,65%
CONV_AUTOENCODER	

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	97,65%
CONV_AUTOENCODER	97,05%

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	97,65%
CONV_AUTOENCODER	97,05%

INPUT	ACURÁCIA
MNIST	94,34%
DEEP_AUTOENCODER	97,65%
CONV_AUTOENCODER	97,05%

Conclusões

Conclusões

Autoencoders como bons compactadores de imagem, guardando informação relevante apenas em 7 neurônios;

Em autoencoders convolucionais compactou uma imagem 28x28 para 7x7 e foi capaz de reconstruir sem muitos detalhes significativos;

ELM é um bom classificador uma vez que apresentou uma acurácia de 94, 98 e 97% nos dados utilizados.

Conclusões

Possibilidades de verificação:

Trabalhar com banco de dados mais detalhados;

Comparação em métodos de compactação de dados;

Trabalhar com dados ruidosos.

Obrigado!

Gradient Descent

Mas qual o procedimento tomado em:

- Curva convexa;
- Apenas **um mínimo**;
- Análise completa complicada;

Gradient Descent

Estabelecer **pontos de partida** como w1 = 0 e tomar o **gradiente** do ponto.

Gradient Descent: Parâmetros

Learning Rate ou **Step Size**: São hiperparâmetros ajustados pelo programador que ajustam o aprendizado.

Learning Rate baixo:

starting point Small learning rate takes forever! value of weight w,

Learning Rate **alto**:

Queremos trabalhar com modelos que não apresente um grau de complexidade muito alto.

Devemos então trabalhar com uma quantidade de dados razoável para o problema adotado para que possamos evitar trabalhar com um modelo que sempre apresenta **overfit** ou que apresenta uma **complexidade** maior que a necessária.

Portanto, podemos **separar** nosso conjunto de dados em um **subconjunto** que nos auxilie a **verificar** nossos resultados.

O training set deve ser grande o suficiente para ter algum significado estatístico para o modelo com um conjunto de dados variados.

Checagem dupla a partir de um novo subconjunto, o grupo de validação:

Grupo de **validação**:

A validação é feita durante o **treinamento** do modelo para **ajudar** a escolher de forma **imparcial** os melhores parâmetros. Finalmente, o modelo de **teste** é usado **após o treinamento** para verificar a eficiência do aprendizado.

Dados sintéticos Feature Crosses

Os modelos de ML em certo momento podem começar a lidar com exemplos que não trazer a característica da **linearidade**:

$$y' = b + w_1 x_1 + w_2 x_2$$

Os modelos de ML em certo momento podem começar a lidar com exemplos que não trazer a característica da **linearidade**:

$$y' = b + w_1 x_1 + w_2 x_2$$

Os modelos de ML em certo momento podem começar a lidar com exemplos que não trazer a característica da **linearidade**:

$$y' = b + w_1 x_1 + w_2 x_2$$

Os modelos de ML em certo momento podem começar a lidar com exemplos que não trazer a característica da **linearidade**:

$$y' = b + w_1 x_1 + w_2 x_2$$

Uma reta não é suficiente para classificar o conjunto

Podemos criar um **feature sintético** a partir de dois features que apresentam características lineares.

- $x_3 = x_1 x_2$
- Introdução da **não linearidade** ao modelo;
- É visto como apenas mais um atributo pelo modelo:

$$y' = b + w1x_1 + w_2x_2 + w_3x_3$$

Não precisamos mudar o modelo para que ele aprenda a calcular w3.

Regularização Simplicity e Sparsity

Regularização: Simplicity (L2)

- Modelos podem ser muito complexos.
- A complexidade muito alta pode contribuir negativamente causando overfitting.

Regularização: Simplicity (L2)

Como resolver esse problema?

Punir o modelo de acordo com sua complexidade.

```
minimize(Loss(Data|Model)) \rightarrow minimize((Loss(Data|Model) + complexity(Model))
```

Podemos avaliar a complexidade do modelo de duas formas:

- Complexidade como função dos pesos;
- Complexidade relacionada ao número total de features diferentes de zero.

Regularização: Simplicity (L2)

L2 como função dos pesos:

$$|\mathbf{L_2} = ||\mathbf{w}||_2^2 = w_1^2 + w_2^2 + \dots + w_n^2$$

Pesos maiores que 1 tem impacto muito grande.

Solução: minimize $\left((\text{Loss}(\text{Data}|\text{Model}) + \lambda \text{ complexity}(\text{Model}) \right)$ λ : Taxa de Regularização Tenta jogar os pesos para valores próximos de 0

Regularização: Sparsity (L1)

Modelos de muitas dimensões podem demandar bastante RAM.

Isso pode ocorrer de forma natural ou até mesmo na criação de vários **features sintéticos** fazendo-se necessário trabalhar com o que chamamos de **sparse vectors.**

Seria muito conveniente nesses vetores de altas dimensões, conseguirmos eliminar alguns pesos, jogando-os para zero e assim economizando memória.

L1 x L2

 L_1 penaliza $|{
m peso}| o dL_1$ penaliza Constante

Subtrai um valor de um peso e quando passa na descontinuidade assume valores nulos.

 L_2 penaliza peso $^2
ightarrow dL_2$ penaliza $2\cdot$ peso

Sempre multiplica o peso por uma constante $|k| \leq 1, k \neq 0$ Tende a zero mas não é zero.

Modelos de Classificação

Thresholding

Os limites de classificação (**Thresholding**)

Classes positivas e negativas

Negativo e positivo não está ligado à bom e ruim

Matriz de confusão

Classes positivas e negativas —

- Verdadeiro positivo prevê corretamente a classe positiva;
- Verdadeiro negativo prevê corretamente a classe negativa;
- Falso positivo prevê incorretamente a classe positiva;
- Falso negativo prevê incorretamente a classe negativa.

Matriz de confusão

Classes positivas e negativas —

- Verdadeiro positivo prevê corretamente a classe positiva (VP);
- Verdadeiro negativo prevê corretamente a classe negativa (VN);
- Falso positivo prevê incorretamente a classe positiva (FP);
- Falso negativo prevê incorretamente a classe negativa (FN).

Accuracy

Métrica de avaliação do modelo:

$$Accuracy = \frac{\text{N\'umero de previsões corretas}}{\text{N\'umero total de previsões}}$$

Proximidade de estimativa.

Precision x Recall

Precision avalia a margem de acerto em classes **positivas**, relacionando VP e FP.

Recall avalia a taxa de acertos, relacionando VP e FN.

Precision =
$$\frac{VP}{VP + FP}$$

Recall =
$$\frac{VP}{VP + FN}$$

Ambos atuam como **métricas de qualidade**, por isso devem ser analisadas em conjunto.

ROC x AUC

Mas como podemos avaliar se o **Threshold** escolhido apresenta os melhores resultados possíveis?

Receiver operator characteristic curva (ROC), avalia a performance em diferentes **limites** no modelo.

• Taxa de **Verdadeiro Positivo (Recall)** — **TVP**;
$$TVP = \frac{VP}{VP + FN}$$

Taxa de Falso Positivo — TFP.

$$TFP = \frac{FP}{FP + VN}$$

ROC x AUC

Aplicação do algoritmo Area Under the Curve (AUC):

ROC x AUC

Aplicação do algoritmo **Area Under the Curve (AUC):**

Probabilidade do modelo **classificar** o modelo como **positivo** em relação a um **negativo**

Prediction Bias

Parâmetro de avaliação da "**eficiência**" do modelo em relação aos classificações feitas e features observados:

prediction bias = average of predticions - average of labels in data set

Valores próximos de 0 apresentam ótimos resultados.

Introdução de não linearidade diretamente.

Funções de Ativação

Sigmoid:

$$F(x) = \frac{1}{1 + e^{-x}}$$

Rectified Linear Unit (ReLU):

$$F(x) = max(0, x)$$

Softmax

Softmax tem a função de atribuir **probabilidades** para cada classe em um problema de **muitas classes**.

Class	Probability
apple	0.001
bear	0.04
candy	0.008
dog	0.95
egg	0.001

Softmax

Aplicado na última camada, com a restrição de ter o mesmo número de

neurônios que a output layer:

Função de classificação completa;

 Função de classificação parcial (candidate sampling).

Image Classification

Convolutional Neural Networks

Método de extração de informações de imagens.

Método de aprendizado que em que o modelo consegue aprender **features** de forma autônoma sem necessidade de classificação prévia.

Nossa variável de entrada é chamada de **input feature map** tridimensional que transmite as informações de **comprimento**, **largura** e o último relacionado às **cores**.

1. Convolução

Aplicação de um filtro de tamanho n x n menor que a imagem em janelas da imagem.

A partir dessa aplicação podemos computar mais **features**, resultando em um mapa de **output** chamado **convolved feature**.

1. Convolução

O convolutional filter é associado a uma janela específica do input. Quanto mais profunda a nossa convolução, mais features conseguimos extrair.

É importante trabalharmos com uma quantidade de filtros otimizada para nossos problemas para evitar possíveis gargalos computacionais no modelo.

Input Feature Map

2. ReLU

Introdução de não linearidade no sistema através da **Rectified Linear Unit** (**ReLU**) somada a cada etapa de **convolução**.

$$F(x) = max(0,x) = egin{cases} 0, & ext{se x} \leq \ x, & ext{se x} > 0 \end{cases}$$

3. Pooling

Utilização do algoritmo max pooling para processar o sinal depois do output feature map.

- Separação de uma nova janela onde guardamos os maiores valores associadas a essa janela.
- Os parâmetros iniciais devem ser o tamanho do filtro e a distância de cada janela.

Fully Connected Layers

Normalmente a **última camada** do modelo, responsável por **atribuir** uma **probabilidade** de classificação com base nos **features extraídos** nas camadas convolucionais por meio de uma função **softmax**.

Augmentation

Existem alguns métodos internos que nos ajudam a evitar o overfitting.

Aumentam a capacidade de aprendizado do modelo utilizando o mesmo banco de dados.

Modelos Pré treinados

Como modelos de treinamento podem demandar bastante tempo finalizar, podemos usar modelos pré-treinados e adaptá-los segundo as nossas necessidades.

Uma forma de usar modelos pré-treinados é a partir da **extração de features**. Essa extração **retira** representações **da última cama de convolução** de um modelo pré-treinado e depois **usa essas representações como inputs em novos modelos**.