Examen final n° 1 de l'analyse l

Exercice 1 (5 pts). Les assertions suivantes sont-elles vraies? Justifier votre réponse.

- (1). a = 0, 11111...+0, 22222...+0, 33333...+0, 44444...+0, 55555... est un nombre rationnel.
- (2). La somme et le produit de deux irrationnels peuvent très bien être des nombres rationnels.
- (3). Soient A et B deux parties bornées de \mathbb{R} , alors

$$A \subset B \Longrightarrow \inf A \leq \inf B$$
.

(4). Toute suite bornée est convergente.

Exercice 2 (7 pts). Soient A et B deux parties non vides bornées de \mathbb{R} .

1. Montrer que

$$\sup(A \cup B) = \max\{\sup A, \sup B\}.$$

2. Soient les ensembles

$$A = \{ x \in \mathbb{R} : |1 - 3x| < 2 \}$$

et

$$B = \{1 + \frac{n}{n-2}, n \in \mathbb{N}, n \ge 3\},\$$

déterminer $\sup(A \cup B)$ et $\max(A \cup B)$.

Exercice 3 (8 pts). On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence;

$$\begin{cases} u_0 = \frac{4}{3} \\ u_{n+1} = \frac{7u_n + 4}{3u_n + 3}, & n \in \mathbb{N} \end{cases}$$

- 1. Calculer u₁ et u₂.
- 2. Trouver a et b tels que $u_{n+1} = \frac{a}{b} \frac{1}{u_n + 1}$
- 3. Montrer que : $\forall n \in \mathbb{N}, \quad 0 < u_n < 2$
- Etudier la monotonie de la suite (u_n)_{n∈N}.
- 5. Que peut-on déduire?
- 6. Déterminer, si elle existe, la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- 7. Soit

$$A = \{u_n, n \in \mathbb{N}\}.$$

Déterminer la borne supérieure, la borne inférieure, le maximum et le minimum de A.

-

Corrigé de l'examen final n° 1 de l'analyse l

Exercice 1 (5 pts). Les assertions suivantes sont-elles vraies? Justifier votre réponse.

(1). a = 0.111111...+0.22222...+0.33333...+0.44444...+0.55555... est un nombre rationnel.

Remarquons que

0.25

$$0.11111... = \frac{1}{9};$$

$$0.22222... = \frac{2}{9}; ... 0.55555... = \frac{5}{9}.$$

D'où

$$\alpha = \frac{1}{9} + \frac{2}{9} + \dots + \frac{5}{9} = \frac{1+2+\dots+5}{9} = \frac{15}{9} \in \mathbb{Q}.$$

01

0.25

(2). La somme et le produit de deux irrationnels peuvent très bien être des nombres rationnels.

Vraie.

Exemple: $1 + \sqrt{2}$ et $1 - \sqrt{2}$ sont deux nombres irrationnels avec

$$(1+\sqrt{2})+(1-\sqrt{2})=2\in\mathbb{Q}$$
 et $(1+\sqrt{2})(1-\sqrt{2})=-1\in\mathbb{Q}$.

Soient A et B deux parties bornées de R, alors

$$A \subset B \Longrightarrow \inf A \le \inf B$$
. Fausse. 0.25

Contre exemple : On a

$$A = \{0\} \subset B = \{0, -1\}$$
 mais $\inf A = 0 > \inf B = -1$.

(4). Toute suite bornée est convergente. Fausse. En effet,

0.25

La suite du terme général $u_n = (-1)^n$ est bornée car $\forall n \in \mathbb{N}, -1 \leqslant u_n \leqslant 1$ (ou bien $|(-1)^n| \leqslant 1$), mais elle est divergente (n'admet pas de limite).

Exercice 2 (7 pts). Soient A et B deux parties non vides bornées de \mathbb{R} .

1. Montrer que

$$\sup(A \cup B) = \max\{\sup A, \sup B\}.$$

Remarquons que A et B sont deux ensembles non vides et bornés de \mathbb{R} , alors $\sup A$, $\sup B$ et $\sup(A \cup B)$ existent. On a

$$x \in A \cup B \Longrightarrow x \in A$$
 ou $x \in B$
$$\Longrightarrow x \le \sup A \quad \text{ou} \quad x \le \sup B$$

$$\Longrightarrow x \le \max \{ \sup A, \sup B \}.$$

7

0.5

Donc $\max\{\sup A, \sup B\}$ est un majorant de $A \cup B$, mais par définition $\sup(A \cup B)$ est le plus petit des majorants de $A \cup B$, alors

$$\sup(A \cup B) \le \max\{\sup A, \sup B\}. \tag{1}$$

D'autre part,

$$A \subset A \cup B$$
 et $B \subset A \cup B$,

d'où

$$\sup A \le \sup(A \cup B)$$
 et $\sup B \le \sup(A \cup B)$.

donc

$$\max\{\sup A, \sup B\} \le \sup(A \cup B). \tag{2}$$

De (1) et (2) nous avons $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

Deuxième méthode : Comme l'ensemble $\mathbb R$ est totalement ordonné, on a soit $\sup A \le \sup B$ soit $\sup B \le \sup A$.

Si $\sup A \leq \sup B$, alors

$$\max \{ \sup A, \sup B \} = \sup B$$

et on doit montrer que

$$\sup(A \cup B) = \sup B.$$

Comme $B \subset A \cup B$, on a

$$\sup B \le \sup(A \cup B). \tag{3}$$

D'autre part, sup B est un majorant de A et de B (car sup $A \leq \sup B$), donc

$$\forall x \in A \cup B, \qquad x \le \sup B,$$

D'où sup B est un majorant de $A \cup B$, mais par définition sup $(A \cup B)$ est le plus petit des majorants de $A \cup B$, alors

$$\sup(A \cup B) \le \sup B. \tag{4}$$

De (3) et (4) nous avons $\sup(A \cup B) = \sup B$.

On montre de la même façon que si $\sup B \leq \sup A$, alors $\sup (A \cup B) = \sup A$.

2. On a

$$A = \{x \in \mathbb{R} : |1 - 3x| < 2\}$$

$$x \in A \iff |1 - 3x| < 2$$

$$\iff -2 < 1 - 3x < 2$$

$$\iff -3 < -3x < 1$$

$$\iff -\frac{1}{3} < x < 1$$

$$\iff x \in \left] -\frac{1}{3}, 1\right[$$

01

Donc $\sup A = 1$.

$$B = \{1 + \frac{n}{n-2}, n \in \mathbb{N}, n \ge 3\}.$$

La suite $(1 + \frac{n}{n-2})_{n \ge 3}$ est une suite décroissante donc sup $B = u_3 = 4$.

01

$$\sup(A \cup B) = \max\{\sup A, \sup B\} = 4$$
 et $\max(A \cup B) = 4$ ($\operatorname{car} 4 \in A \cup B$). $0.5 + 0.5$

Exercice 3 (8 pts).

$$\begin{cases} u_0 = \frac{4}{3} \\ u_{n+1} = \frac{7u_n + 4}{3u_n + 3}, & n \in \mathbb{N} \end{cases}$$

1.
$$u_1 = \frac{40}{21}$$
 et $u_2 = \frac{124}{283}$.

0.25 X2

2. On a

$$\frac{a}{b} - \frac{1}{u_n + 1} = \frac{au_n + a - b}{b(u_n + 1)}$$

donc a=7 et b=3 . D'où

$$u_{n+1} = \frac{7}{3} - \frac{1}{u_n + 1}.$$

3. Montrons par récurrence que : $\forall n \in \mathbb{N}, \quad 0 < u_n < 2.$ Pour n = 0, on a $0 < u_1 = \frac{4}{3} < 2$. Donc l'inégalité est vraie.

Supposons que l'inégalité est vraie jusqu'à l'ordre n, c'est-à-dire supposons que $0 < u_n < 2$ et montrons qu'elle est vraie à l'ordre n+1, c'est-à-dire montrons que $0 < u_{n+1} < 2$. La relation de récurrence nous donne

$$0 < u_n < 2 \Longrightarrow 1 < u_n + 1 < 3 \Longrightarrow -1 < -\frac{1}{u_n + 1} < -\frac{1}{3}$$

$$\Longrightarrow \frac{7}{3} - 1 < \frac{7}{3} - \frac{1}{u_n + 1} < \frac{7}{3} - \frac{1}{3}$$

$$\Longrightarrow \frac{4}{3} < \frac{7}{3} - \frac{1}{u_n + 1} < 2$$

02,8

Par conséquent,

$$0 < u_{n+1} < 2$$
.

D'où

$$\forall n \in \mathbb{N} : 0 < u_n < 2.$$

Étude de la monotonie de (u_n)_{n∈N}.

Première méthode : Nous avons, $u_{n+1} = f(u_n)$ avec $f(x) = \frac{7}{3} - \frac{1}{x+1}$, x > 0. Puisque $f'(x) = \frac{1}{(x+1)^2}$, x > 0, alors f est croissante sur]0, 2[. 01.5

Comme $0 < u_n < 2$, $u_0 < u_1$ et f est croissante sur]0, 2[, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

Deuxième méthode : On a

$$u_{n+1} - u_n = \frac{-3u_n^2 + 4u_n + 4}{(3u_n + 3)^2} = \frac{-(3u_n + 2)(u_n - 2)}{(3u_n + 3)^2}.$$

Comme $0 < u_n < 2$, alors $u_{n+1} - u_n \ge 0$. Par conséquent la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- 5. La suite $(u_n)_{n\in\mathbb{N}}$ est croissante majorée par 1, donc elle converge vers une limite l, avec $0 < l \le 2$.
- 6. Comme $u_{n+1} = \frac{7u_n + 4}{3u_n + 3}$, alors passons à la limite, on obtient

$$l = \frac{7l+4}{3l+3} \Longrightarrow -3l^2 + 4l + 4 = 0 \Longrightarrow l = 2$$
 on $l = -\frac{2}{3} < 0$ (exclue).

Donc

01

$$l = 2.$$

7.
$$\sup A = 2$$
, $\inf A = \min A = u_0 = \frac{4}{3}$ et le $\max A$ n'existe pas.

0.25 x 4