# Solution to Exercise 0 - Model Theory (1), 80616

October 20, 2025



Let  $L = \{P\}$  a language where P is unary relation. Define,

$$\varphi_n = \exists x_0 \dots \exists x_n \left( \bigwedge_{i \le n} P(x_i) \land \bigwedge_{i < j \le n} x_i \ne x_j \right), \quad \psi_n = \exists x_0 \dots \exists x_n \left( \bigwedge_{i \le n} \neg P(x_i) \land \bigwedge_{i < j \le n} x_i \ne x_j \right)$$

and let  $T = \{\varphi_n, \psi_n \mid n < \omega\}.$ 

We will show that  $\operatorname{cl}_{\vdash} T$  is  $\omega$ -categorical.

Proof. Let  $\mathcal{M} \models T$  be some model. It can be proved by direct induction that  $|P^{\mathcal{M}}| = \omega$  as well as  $|\neg P^{\mathcal{M}}| = \omega$ . Let us construct  $f : \omega \to M$  such that  $f(n) \in P^{\mathcal{M}}$  for any  $n < \omega$ .  $\mathcal{M} \models \varphi_0 \iff \mathcal{M} \models \exists x \, P(x)$  then let f(0) be such witness. Let us assume that  $f \upharpoonright n$  is defined, then  $\mathcal{M} \models \varphi_{n+1}$ , then by the pigeonhole principle there is some  $a \in \mathcal{M}$  such that  $a \notin f''n$ , and let f(n+1) = a. For the sake of convenience let us redefine f as  $2 \times \omega \to M$  injective function such that f(0,n) is the same as f(n) and  $f(1,n) \notin P^{\mathcal{M}}$ . By CSB we can assume that f is bijection as well, and by the selection of  $\mathcal{M}$  as an arbitrary model of T we can deduce that for any  $\mathcal{M}, \mathcal{N} \models T, \mathcal{M} \cong \mathcal{N}$  by composition of functions as was constructed.  $\square$ 

Let  $L = \{c_n \mid n < \omega\}$  be language consists of constant symbols. Let us define the theory  $T = \{c_i \neq c_j \mid i < j < \omega\}$ . We will show that there are countably many non-isomorphic countable models of T, and that T is complete.

*Proof.* Let us define the model  $\mathcal{M}_n$  such that  $M=\omega$  and,

$$c_i^{\mathcal{M}} = i + n$$

for any  $i < j < \omega$ ,

$$c_i^{\mathcal{M}} = i + n \neq j + n = c_j^{\mathcal{M}}$$

therefore  $\mathcal{M}_n \models T$ .  $\mathcal{M}_n \models k \neq c_i$  for all  $i < \omega$ , in particular  $\mathcal{M}_n \models \exists x \ x \neq c_i$ . It is implied that also,

$$\mathcal{M}_n \models \exists x_0 \dots \exists x_{k-1} \left( \bigwedge_{i < j < k} x_i \neq x_j \land x_i \neq c_l \right) = \varphi_l^k$$

for all  $l < \omega$ . Finally,  $\mathcal{M}_n \not\models \varphi_l^k$  for any k > n, we deduce that  $\mathcal{M}_n \not\cong \mathcal{M}_m$  for any  $n \neq m$ .

We move to show that T is complete. Let us assume toward a contradiction that  $\varphi$  is a sentence such that  $\varphi \notin T$  and  $T \cup \{\varphi\}$  is consistent. By construction of Henkin models we can deduce that  $\mathcal{M}_0 \models \varphi$ , but  $\mathcal{M}_0$  is minimal, namely if  $\mathcal{N} \models T$  then  $\mathcal{M}_0 \subseteq \mathcal{N}$ , then by definition  $T \models \varphi$ , a contradiction.

We will show that  $\operatorname{Th}(\mathbb{N},+,\cdot)$  has  $2^{\aleph_0}$  non-isomorphic countable models.

*Proof.* Let  $f: \omega \to P$  be the map between number and its respective prime in the order induced from  $\mathbb{N}$ , namely  $f(0) = 2, f(1) = 3, \ldots$  assuming that  $A \subseteq \omega$  is some set, we define  $\mathcal{M}_A = (\mathrm{cl}_{+,\cdot}(f(A)), +, \cdot)$ .

$$\mathcal{M}_A \models \exists p \forall x \ p \cdot x = p \cdot x$$

when p acts as numeral, and  $p \cdot x$  is abbreviation to  $x + \cdots + x$  p times. Let us denote this sentence as  $\varphi_p$ , then,

$$\mathcal{M}_A \models \{\varphi_{f(a)} \mid a \in A\}$$

as well,

$$\mathcal{M}_A \not\models \{\varphi_q \mid q \notin \operatorname{cl}_+ A\}$$

Therefore if  $A, B \subseteq \omega$  and  $A \neq B$  then  $\mathcal{M}_A \not\cong \mathcal{M}_B$ , thus there are  $|\mathcal{P}(\omega)|$  non-isomorphic countable models.

Let  $\kappa \geq \omega$  be some cardinal and let L be some language. Let T be a  $\kappa$ -categorical L-theory such that it has no finite models. We will show that T can be incomplete.

*Solution.* Let  $L = \{c_{\alpha} \mid \alpha < \delta\} \cup \{P\}$  for  $\kappa < \delta$ , where  $c_{\alpha}$  is a constant symbol and P is unary relation.

$$T = \{c_{\alpha} \neq c_{\beta} \mid \alpha < \beta < \delta\} \cup \{P(c_{\alpha}) \mid \alpha < \delta\}$$

It follows from the definition of T that if  $\mathcal{M} \models T$  then  $|M| \ge \delta > \kappa$ , therefore there are no models of T of cardinality  $\kappa$ , then the theory is vacuously complete.

Just take  $\kappa = \omega$  and L and T from question 1, we saw that T is  $\omega$ -categorical and has no finite models. We also know that if  $\mathcal{M} \models T$  and  $|M| > \kappa$  then  $|P^{\mathcal{M}}|, |\neg P^{\mathcal{M}}| \ge \omega$ , and therefore it is possible that  $|P^{\mathcal{M}}| = |M|$  or  $|P^{\mathcal{M}}| < |M|$ , then T cannot be complete.

Let  $T=\operatorname{Th}(\mathbb{Q},\leq)$  be DLO.

We will show that T is not  $\kappa\text{-categorical}$  for some uncountable cardinal  $\kappa.$ 

*Proof.* The key here is similar to question 4, we can define  $P(x) \iff x \le c$  for some arbitrary value. This is equivalent to the theory of 4 and 1, and we just talked about why this is not necessarily  $\kappa$ -categorical.