SEQUENCE LISTING

<110> Novartis AG

<120> Three-Dimensional Structure of the Catalytic Domain of ZAP-70 Protein Tyrosine Kinase, Methods and Use Thereof

<130> 4-32688

<160> 6

<170> PatentIn version 3.0

<210> 1

<211> 619

<212> PRT

<213> human

<400> 1

Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly Ser Ile Ser 1 5 10 15

Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met Ala Asp Gly
20 25 30

Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly Tyr Val Leu 35 40 45

Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile Glu Arg Gln 50 55 60

Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His Cys Gly Pro
65 70 75 80

Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys 85 90 95

Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu Pro Gln Pro 100 105 110

Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg

		115	5				120)				125	;		
Gln	Thr 130		ь Гуз	Lev	. Glu	135		Ala	Leu	ı Glu	140		Ile	:.Ile	ser
Gln 145		Pro	Gln	ı Val	. Glu 150		Leu	Ile	Ala	Thr 155		Ala	His	Glu	Arg 160
Met	. Pro	Trp	Tyr	His 165		Ser	Leu	Thr	Arg		Glu	Ala	Glu	Arg 175	Lys
Leu	Tyr	Ser	Gly		Gln	Thr	Asp	Gly 185		Phe	Leu	Leu	Arg 190		Arg
Lys	Glu	Gln 195		Thr	Tyr	Ala	Leu 200		Leu	Ile	Tyr	Gly 205	Lys	Thr	Val
Tyr	His 210	Tyr	Leu	Ile	Ser	Gln 215		Lys	Ala	Gly	Lys 220	Tyr	Суз	Ile	Pro
Glu 225		Thr	Lys	Phe	Asp 230	Thr	Leu	Trp	Gln	Leu 235	Val	Glu	Tyr	Leu	Lys 240
Leu	Lys	Ala	Asp	Gly 245	Leu	Ile	Tyr	Cys	Leu 250	Lys	Glu	Ala	Cys	Pro 255	Asn
Ser	Ser	Ala	Ser 260	Asn	Ala	Ser	Gly	Ala 265	Ala	Ala	Pro	Thr	Leu 270	Pro	Ala
His	Pro	Ser 275	Thr	Leu	Thr	His	Pro 280	Gln	Arg	Arg	Ile	Asp 285	Thr	Leu	Asn
Ser	Asp 290	Gly	Tyr	Thr	Pro	Glu 295	Pro	Ala	Arg	Ile	Thr 300	Ser	Pro	Asp	Lys
Pro 305	Arg	Pro	Met	Pro	Met 310	Asp	Thr	Ser	Val	Tyr 315		Ser	Pro	Tyr	Ser 320
Asp	Pro	Glu	Glu	Leu 325	Lys	Asp	Lys	Lys	Leu 330	Phe	Leu	Lys	Arg	Asp 335	Asn
Leu	Leu	Ile	Ala 340	Asp	Ile	Glu	Leu	Gly 345	Cys	Gly	Asn	Phe	Gly 350	Ser	Val
Arg	Gln	Gly 355	Val	Tyr	Arg	Met	Arg 360	Lys	Lys	Gln	Ile	Asp 365	Val	Ala	Ile
Lys	Val 370	Leu	Lys	Gln	Gly	Thr 375	Glu	Lys	Ala	Asp	Thr 380	Glu	Glu	Met	Met

Arg Glu Ala Gln Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg Leu Ile Gly Val Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met Ala Gly Gly Pro Leu His Lys Phe Leu Val Gly Lys Arg Glu Glu Ile Pro Val Ser Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly Met Lys Tyr Leu Glu Glu Lys Asn Phe Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Val Asn Arg His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys Ala Leu Gly Ala Asp Asp Ser Tyr Tyr Thr Ala Arg Ser Ala Gly Lys Trp Pro Leu Lys Trp Tyr Ala Pro Glu Cys Ile Asn Phe Arg Lys Phe Ser Ser Arg Ser Asp Val Trp Ser Tyr Gly Val Thr Met Trp Glu Ala Leu Ser Tyr Gly Gln Lys Pro Tyr Lys Lys Met Lys Gly Pro Glu Val Met Ala Phe Ile Glu Gln Gly Lys Arg Met Glu Cys Pro Pro Glu Cys Pro Pro Glu Leu Tyr Ala Leu Met Ser Asp Cys Trp Ile Tyr Lys Trp Glu Asp Arg Pro Asp Phe Leu Thr Val Glu Gln Arg Met Arg Ala Cys Tyr Tyr Ser Leu Ala Ser Lys Val Glu Gly Pro Pro Gly Ser Thr Gln Lys Ala Glu Ala Ala Cys Ala

<210> 2

<211> 322

<212> PRT

<213> human

<400> 2

Arg Ile Thr Ser Pro Asp Lys Pro Arg Pro Met Pro Met Asp Thr Ser 1 10 15

Val Tyr Glu Ser Pro Tyr Ser Asp Pro Glu Glu Leu Lys Asp Lys Lys 20 25 30

Leu Phe Leu Lys Arg Asp Asn Leu Leu Ile Ala Asp Ile Glu Leu Gly 35 40 45

Cys Gly Asn Phe Gly Ser Val Arg Gln Gly Val Tyr Arg Met Arg Lys 50 55 60

Lys Gln Ile Asp Val Ala Ile Lys Val Leu Lys Gln Gly Thr Glu Lys 65 70 75 80

Ala Asp Thr Glu Glu Met Met Arg Glu Ala Gln Ile Met His Gln Leu 85 90 95

Asp Asn Pro Tyr Ile Val Arg Leu Ile Gly Val Cys Gln Ala Glu Ala 100 105 110

Leu Met Leu Val Met Glu Met Ala Gly Gly Gly Pro Leu His Lys Phe 115 120 125

Leu Val Gly Lys Arg Glu Glu Ile Pro Val Ser Asn Val Ala Glu Leu 130 135 140

Leu His Gln Val Ser Met Gly Met Lys Tyr Leu Glu Glu Lys Asn Phe 145 150 155 160

Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Val Asn Arg His 165 170 175

Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys Ala Leu Gly Ala Asp 180 185 190

Asp Ser Tyr Tyr Thr Ala Arg Ser Ala Gly Lys Trp Pro Leu Lys Trp 195 200 205

Tyr Ala Pro Glu Cys Ile Asn Phe Arg Lys Phe Ser Ser Arg Ser Asp 210 215 220

Val Trp Ser Tyr Gly Val Thr Met Trp Glu Ala Leu Ser Tyr Gly Gln 225 230 235 240

Lys Pro Tyr Lys Lys Met Lys Gly Pro Glu Val Met Ala Phe Ile Glu 245 250 255

Gln Gly Lys Arg Met Glu Cys Pro Pro Glu Cys Pro Pro Glu Leu Tyr 260 265 270

Ala Leu Met Ser Asp Cys Trp Ile Tyr Lys Trp Glu Asp Arg Pro Asp 275 280 285

Phe Leu Thr Val Glu Gln Arg Met Arg Ala Cys Tyr Tyr Ser Leu Ala 290 295 300

Ser Lys Val Glu Gly Pro Pro Gly Ser Thr Gln Lys Ala Glu Ala Ala 305 310 315 320

Cys Ala

<210> 3

<211> 74

<212> DNA

<213> unknown

<400> 3
cagatggata cacccetgag ccagcactgg aagttetgtt ccaggggccc cgcataacgt
ccccagacaa accq

<210> 4

<211> 20

<212> DNA

<213> unknown

```
<400> 4 acaacgcacagaatctagcg
```

- <210> 5
- <211> 74
- <212> DNA
- <213> unknown

<400> 5
cacactccca gcccacccat ccacgctgga agttctgttc caggggccct tgactcatcc
tcagagacga atcg

- <210> 6
- <211> 57
- <212> DNA
- <213> unknown

<400> 6
gctcgaattc tcaatgatga tgatgatgat gggcacaggc agcctcagcc ttctgtg