Basis Representation Theorem - Alternate Proof

James Philip Rowell January 4, 2019 (v01)

Basis Representation Theorem

Let b be a positive integer greater than 1.

For every positive integer n there is a unique sequence of integers $d_0, d_1, d_2, \ldots, d_k$ such that:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0,$$

where $0 \le d_i < b$ for all i in $\{0, 1, 2, \dots, k\}$ and $d_k \ne 0$.

Definition: n is represented in base-b by the string of base-b-digits $(d_k d_{k-1} \cdots d_2 d_1 d_0)_b$

The paper "Counting" proves the "Basis Representation Theorem" by induction but suggests that it could also be proven by generalizing the technique used in exercise 2-iii; that proof follows.

Lemma

Let b be an integer where $b \neq 0$ and $c_0, c_1, c_2, \ldots, c_n$ be a sequence of integers, then:

$$(((\ldots((c_0)b+c_1)b+c_2)b+\ldots c_{n-2})b+c_{n-1})b+c_n)=c_0b^n+c_1b^{n-1}+c_2b^{n-2}+\ldots+c_{n-2}b^2+c_{n-1}b^1+c_nb^0)$$

Proof of Lemma by Induction

Base case:

When n = 1 we have $(c_0)b + c_1 = c_0b^1 + c_1b^0$, and also note that the lemma holds for n = 0 since $(c_0) = c_0b^0$.

Induction step:

Assume the lemma is true for n = k and prove it true for n = k + 1.

$$((((...(((c_0)b + c_1)b + c_2)b + ...c_{k-2})b + c_{k-1})b + c_k)b + c_{k+1})$$

$$= ((c_0b^k + c_1b^{k-1} + c_2b^{k-2} + ... + c_{k-2}b^2 + c_{k-1}b^1 + c_kb^0)b + c_{k+1})$$

$$= c_0b^{k+1} + c_1b^k + c_2b^{k-1} + ... + c_{k-2}b^3 + c_{k-1}b^2 + c_kb^1 + c_{k+1}b^0$$

QED

As a reminder, a statement of the "Euclidean Division Theorem" follows,

Euclidean Division Theorem

For all integers a and b such that b > 0, there exist unique integers q and r such that:

$$a = qb + r$$
 such that $0 < r < b$

Definition: In the above equation:

```
a is the dividend ("the number being divided")
b is the divisor ("the number doing the dividing")
q is the quotient ("from Latin quotiens 'how many times' b goes into a")
r is the remainder ("what's left over after the division")
```

Proof of Basis Representation Theorem

Let b be a positive integer greater than 1 and let n be a positive integer.

Dividing n by b we get non-negative integers q_1 and d_0 such that,

$$n = q_1 b + d_0$$
; where, $0 \le d_0 < b$.

If $q_1 \neq 0$ we continue this process by dividing b into q_1 to get integers q_2 and d_1 such that,

$$q_1 = q_2b + d_1$$
; where, $0 \le d_1 < b$,

As long as the new quotient (i.e., q_2) is non-zero, we continue this process until we get a quotient, say $q_{k+1} = 0$, as follows,

$$\begin{aligned} q_2 &= q_3b + d_2; \text{ where, } 0 \leq d_2 < b \\ q_3 &= q_4b + d_3; \text{ where, } 0 \leq d_3 < b \\ & \dots \\ q_{k-1} &= q_kb + d_{k-1}; \text{ where, } 0 \leq d_{k-1} < b \\ q_k &= q_{k+1}b + d_k; \text{ where, } 0 \leq d_k < b \end{aligned}$$

There must be an integer k for which $q_{k+1} = 0$ because for any $q_i = q_{i+1}b + d_i$ we have,

$$q_i = q_{i+1}b + d_i$$

$$\geq q_{i+1}b + 0$$

$$\geq 2q_{i+1}$$

$$> q_{i+1}$$

Let $q_0 = n$, then the above argument shows that we have a sequence of inequalities,

$$q_0 > q_1 > q_2 > q_3 > \ldots > q_k > q_{k+1}$$

which must terminate with $q_{k+1}=0$ for some $k\geq 0$ since no quotient can be negative. (As an interesting aside, $k=\lfloor log_b(n)\rfloor+1$.)

By back-substituting each expression for q_{i+1} into the previous expression for q_i , starting with our last expression q_k , we get:

$$n = (((\dots(((d_k)b + d_{k-1})b + d_{k-2})b + \dots d_2)b + d_1)b + d_0)$$

By an application of our lemma (noting the change of indices: $d_k = c_0, d_{k-1} = c_1, \ldots, d_1 = c_{k-1}, d_0 = c_k$), then we can conclude that:

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0.$$

Furthermore $0 \le d_i < b$ for all i in $\{0, 1, 2, \dots, k\}$ and $d_k \ne 0$.

 d_k not zero because otherwise q_i would have been zero and the process would have stopped at step k-1

Since Eucl Div Thm guarantees uniqueness, then QED.