Project PtOWSN: Modeling OpenWSN MAC Layer using Ptolemy II

Antonio Iannopollo, Ben Zhang

Outline

- Motivation and Goals
- Background on OpenWSN
- Ptolemy Modeling
- Demo
- Results

Motivation and Goals

- Gap between WSN application design and deployment phase
- We want to investigate, in a simulation environment, the energy consumption, time synchronization scalability of the network
- Build part of the **tools** for Swarmlet development using OpenWSN stack and the Ptolemy framework

Background

application	CoAP, HTTP
transport	UDP, TCP
IP/routing	IETF RPL
adaptation	IETF 6LoWPAN
medium access	IEEE802.15.4e
phy	IEEE802.15.4-2006

IEEE802.15.4e - TSCH

Time-Slotted (Synchronized) Channel Hopping Tunable trade-off using different schedules

- packets/second
- latency
- robustness
- energy consumption

IEEE802.15.4e - Synchronization

- Synchronization
 - Slot Synchronization
 - Absolute Slot Number Synchronization

Re-synchronization

Energy Background

TABLE II

CURRENT DRAWN BY THE ATMEL AT86RF231 RADIO CHIP FOR

DIFFERENT STATES (THEORETICAL AND MEASURED)

GenericMode	AT86RF231 Mode	Current	Measured
Sleep	TRX_OFF	0.4mA	0.49mA
ToReady	TRX_OFF	5.6mA	N/A
	$\Rightarrow PLL_ON$		
Ready	PLL_ON	5.6mA	5.4mA
Tx	BUSY_TX	11.6mA (0dBm)	13.7mA (0dBm)
ToListen	TRX_OFF	12.3mA	N/A
	$\Rightarrow PLL_ON$		
	$\Rightarrow RX_ON$		
Listen	RX_ON	12.3mA	11.6mA
Rx	RX_ON	12.3mA	11.6mA

TABLE I
MAPPING FROM PERIODS IN TEMPLATE TO STATES OF MOTE MODULES

,			
Period in Template	State of motes	μ P state	Radio state
StartOfTimeslot	NewSlot	Active	Sleep
TsTxOffset	TxDataOffset	Active	Sleep
	PostTxDataOffset	Sleep	Sleep
	TxDataPrepare	Active	ToReady
	PostTxDataPrepare	Sleep	Ready
TxPacket	TxDtataStart	Active	ТоТх
	TxData	Active	Tx
	PostTxData	Sleep	Tx
TsRxAckDelay	TxRxAckOffset	Active	Sleep
	PostTxRxAckOffset	Sleep	Sleep
AGT	RxAckPrepare	Active	ToListen
	RxAckReady	Sleep	Listen
RxAck	RxAckStart	Active	Rx
	RxAck	Sleep	Rx
	PostRxAck	Active	Sleep
BeforeEnd	Sleep	Sleep	Sleep
EndOfTimeslot	EndSlot	Active	Sleep

Demo 1: Time Synchronization

vergil ~/repos/ModelingOpenWSN/apps/demo_sync.xml

Demo 2: Multihop Transmission

vergil ~/repos/ModelingOpenWSN/apps/demo_multihop_dict_nopower.xml

Case Study

NodeId	Schedules				
-3i + 0	ADV	TX	RX	OFF	$k \times \text{OFF}$
3i + 1	ADV	RX	OFF	TX	$k imes exttt{OFF}$
3i + 2	ADV	OFF	TX	RX	$k imes exttt{OFF}$

Schedule A, B, C — k = 0, 144, 306

Results: Time Synchronization

Results: Energy

Node Power Consumption

Conclusion

- We modeled OpenWSN TSCH protocol in Ptolemy
- We studied properties (time synchronization, energy) of a particular network and schedule
- The model can serve as a platform for future Swarmlet construction

Q & A

