一、是非题(每小题1分,共20分)

- 1. 类氢原子的核外电子的能量与主量子数 n 与角量子数 1 有关。
- 2. 原子中核外电子的运动具有波粒二象性,没有经典式的轨道,并需要用统计规律来描述。
- 3. H_2S 分子与 H_2O 分子的空间构型均为折线形,表明 S 原子和 0 原子的杂化轨道成键。
- 4. 共价分子中形成的 π键, 不决定分子的几何构型。
- 5. H₂O 的熔点比HF高,所以O-H...O 氢键的键能比F-H...F 氢键的键能大。
- 6. 热和功是系统和环境变换或传递的能量,受过程的制约,不是系统自身的性质,所以不是状态函数。
- 7. 在化学热力学中所谓标准条件是指:在 298. 15K 下,系统中各气体物质的分压均为标准压力,或者溶液中溶质浓度均为标准浓度。
- 8. Q_n 、 Q_n 之间的换算只适合气相反应,不适合有凝聚相参与的反应。
- 9. 对于一个定温反映,如果 $\Delta H_m > \Delta G_m$,则该反应必是熵增的反应。
- 10. 化学平衡是指系统中正逆反应活化能相等的状态。
- 11. 在一定温度下, ΔG 值越大,平衡常数 K^{θ} 值就越小。
- 12. 反应 $H_2(g) + I_2(g) = 2HI(g)$ 的速率方程为 $v = kC(H_2) \cdot C(I_2)$,则该反应为基元反应。
- 13. 催化剂能改变反应方程,降低反应的活化能,改变反应的 ΔG_m 。
- 14. 在相同温度下, $0.10mol \cdot L^{-1}C_6H_{12}O_6$ 和 $0.10mol \cdot L^{-1}CO(NH_2)_2$ 水溶液的渗透压相同(两者均为非电解质溶液)。
- 15. 如将弱电解质溶液的浓度稀释,则该溶液的解离度也将变小。
- 16. 规定在 $1.01325 \times 10^5 Pa$ 条件下,被空气饱和了的水与冰处于平衡时的温度就是 $0^{\circ}C$ 。
- 17. 氧化还原反应, $Cu + 2Ag^+ = Cu^{2+} + 2Ag$,改写为 $1/2Cu + Ag = 1/2Cu^{2+} + 2Ag$, E^{θ} 不变。
- 18. 铜的浓差电池, 其原电池图式可表示为:

$$(-)Cu \mid Cu^{2+}(1.0mol \cdot L^{-1}) \mid |Cu^{2+}(0.0010mol \cdot L^{-1}) \mid Cu(+)$$

19. 在氧化还原反应中若两个电对的电极电势相差较大,则该反应的速率较大。20. 在标准状态下,两个电对如果能够组成原电池,那么 E^{θ} 较小的,一定做原电池的负极。

二、不定项选择题(每小题2分,共40分)

1. 下列关于四个量子数n,1,m,m。, 其中不合理的是:

(A) 1, 1, 0, +1/2 (B) 2, 1, 0, -1/2 (C) 3, 2, 0, +1/2 (D) 5, 3, 0, +1/2

2. 已知某元素+4 价离子的电子排布式为1	$s^2 2s^2 2p^6 3s^2 3p^6$,	该元素在元素周期表
中所属的分区为:		
$(A) s \ \overline{\times} \qquad \qquad (B) \ ds \ \overline{\times}$	(C) p \overline{X}	$(D) q \overline{X}$
3. 下列分子中键角为120°的是:	(2)	(= X
$(A) C_2H_2 \qquad (B) C_6H_6$	(C) BF_3	(D) NH_3
4. 下列分子中既有 σ 键又有 π 键的是:		
(A) N_2 (B) $MgCl_2$	(C) CO_2	(D) CH_4
5. 下列物质熔点由低到高的排列顺序为:		
$(A) CCl_4 < CO_2 < SiC < CsCl$	$(B) CO_2 < CCl_4 <$	
$(C) CO_2 < CCl_4 < CsCl < SiC$	(D) CCl4 < CO2 <	CsCl < SiC
6. 下列物质的标准摩尔生成焓等于零的是		
(A) 红磷 (B) 金刚石	=	
7. 对于反应: $2NH_3(g) = N_2(g) + 3H_2(g)$,	在一定的温度和	标准条件下,反应的
ΔU^{θ} 与 ΔH^{θ} 之间的关系是:		
$(A) \Delta U^{\theta} < \Delta H^{\theta}$	(B) $\Delta U^{\theta} > \Delta H^{\theta}$	
$(C) \Delta U^{\theta} = \Delta H^{\theta}$	(D) 无法判断	
8. 下列物质中 $S_m^{\theta}(298.15K)$ 最大的是:		
(A) $CH_4(g)$ (B) $C_2H_4(g)$	(C) $C_2H_6(g)$	(D) $C_6H_6(g)$
9. 对于反应 $N_2(g)+3H_2(g)$ \Longrightarrow $2NH_3(g)$	$\Delta_r H_m^{\theta}(298.15K)$	$=-92.2kJ\cdot mol^{-1}$,
若升温到 $100^{\circ}C$, 对 $\Delta_{c}H_{m}^{\theta}$ 和 $\Delta_{c}S_{m}^{\theta}$ 的影响]是:	
(A) 增大 (B) 减小		(D) 不能判断
10. 对于一个化学反应, 在室温下, 下列		
(A) $\Delta_{r}G_{m}^{\theta}$ 越负,反应速度越快	(B) $\Delta_r H_m^{\theta}$ 越	负,反应速度越快
(C) 活化能越大,反应速度越快		弘小,反应速度越快
11. 下列表述正确的是:		
(A) $\Delta G_m^{\theta}(T) = \Delta H_m^{\theta}(298.15K) - T\Delta S_m^{\theta}(298.15K)$	8.15 <i>K</i>)	
(B) $\Delta G_m = \Delta H_m^{\theta} T - \Delta S_m^{\theta}$		
(C) 因为 $\ln K^{\theta} = -\Delta G_m^{\theta} / RT$,故我们完全	全可以用 K^{θ} 来判断	所反应的自发性方向
(D) 通常温度对 ΔG^{θ} 值的影响较大		
12. PCl_5 的分解反应: $PCl_5(g) = PCl_3(g)$	$+Cl_2(g)$, 200 °C $\stackrel{.}{\cup}$	达到平衡时有 48.5%
分解, 300 ° C 达到平衡时有 97% 分解。则	下列说法正确的是	:
(A) 此反应为放热反应	(B) 此反应为	7吸热反应
(A) 此反应为放热反应 (C) 升高温度,平衡逆向移动	(D) 压力改变	E 对平衡无影响
13. 下列关于理想难挥发非电解质稀溶液		
(A) 稀溶液的蒸汽压等于纯溶剂的蒸汽	压乘以溶液的摩尔	分数
(B) 稀溶液的沸点升高,凝固点降低		1 序子 V.
(C) 稀溶液的 $K_f(K_b)$ 只与溶剂本身有关		
(D) 利用稀溶液的沸点升高,凝固点降		
14. 已知具有相同物质的量浓度的 NaCl、		,和CH ₃ COOH 的稀
溶液,一定温度下,其溶液的沸点由高到	引低的顺序是:	

(A) $C_6H_{12}O_6 < CH_3COOH < NaCl < H_2SO_4$ (B) $CH_3COOH < NaCl < H_2SO_4 < C_6H_{12}O_6$ (C) $NaCl < H_2SO_4 < CH_3COOH < C_6H_{12}O_6$ (D) $H_2SO_4 < NaCl < CH_3COOH < C_6H_{12}O_6$ 15. 配制 pH = 5.0 的缓冲溶液,缓冲体系最好选择: (A) 一氯乙酸 ($pK_a^{\Theta} = 2.86$) -一氯乙酸盐 (B) 氨水 ($pK_a^{\Theta} = 4.74$) -氯化铵 (C) 六亚甲基四胺($pK_a^{\Theta} = 8.85$)
(D) 醋酸($pK_a^{\Theta} = 4.74$)-醋酸盐 16. 在标准条件下降将氧化还原反应 $Fe^{2+} + Ag^{+} = Fe^{3+} + Ag$ 装配成原电池, 原电 池符号为: (已知 $E^{\Theta}(Fe^{3+}/Fe^{2+})=0.771V$, $E^{\Theta}(Ag^{+}/Ag)=0.7996V$) (A) $(-)Fe^{2+} | Fe^{3+} | | Ag^{+} | Ag(+)$ (B) $(-)Ag | Ag^{+} | | Fe^{3+} | Fe^{2+} (+)$ (C) $(-)Pt | Fe^{2+}, Fe^{3+} || Ag^{+} | Ag(+)$ (D) $(-)Ag | Ag^+ || Fe^{2+}, Fe^{3+} | Pt(+)$ 17. MnO, 能氧化浓盐酸中的 Cl^- , 发生如下反应: $MnO_2(s) + 2Cl^- + 4H^+ \rightarrow Mn^{2+} + Cl_2(g) + 2H_2O$ 但却不能氧化稀盐酸,这是因为: (已知 $E^{\Theta}(MnO_2/Mn^{2+}) = 1.224V$, $E^{\Theta}(Sn^{2+}/Sn) = -0.137V$) (A) 两个电对的标准电极电势相差很大 (B) 酸度增加, $E^{\Theta}(MnO_3/Mn^{2+})$ 增大。 (C) $c(Cl_2)$ 增加, $E(Cl_2/Cl^-)$ 增大 (D) 浓度增大, 反映速率增大 18. 铁制罐头盒上镀有一层锡, 当锡层破坏后, 被腐蚀的金属是: (己知 $E^{\Theta}(Fe^{2+}/Fe) = -0.447V$, $E^{\Theta}(Sn^{2+}/Sn) = -0.137V$) (A) Sn (B) Fe(C) Sn和Fe (D) 不能判断 19.25°C时,已知氧化还原电对: Fe^{3+}/Fe^{2+} Cu^{2+}/Cu Sn^{4+}/Sn^{2+} E^{Θ}/V +0.771 +0.337 +0.151 它们之中氧化和还原能力最强的是: (A) Sn^{4+} , Fe^{2+} (B) Cu^{2+} , Cu (C) Fe^{3+} , Cu (D) Fe^{3+} , Sn^{2+} 20. 金属表面因其吸附的氧气分布不均匀而被腐蚀时,金属溶解处的氧气浓度和 该处氧电对的电极电势的大小相对其他区域各为 (A) 较大和较小 (B) 较小和较大 (C) 较大和较大 (D) 较小和较小 三、填空题: (每个空1分,共20分) 1.29 号元素的核外电子排布式为(1)_____,外层价电子构型为(2)_____, 2. 请写出 L-色氨酸(2-氨基-3-吲哚基丙酸)分子中标注有数字的原子杂化轨道 的类型: ①0 原子(8) ; ②C 原子(9) ; ③C 原子(10)

- 3. 判断化学反应,使用吉布斯函数变(自由能)判据的条件为(13)_____、(14)____、(15)____。使用熵增原理判据的条件是(16)____。 4. 如果一个反应是放热反应,而反应的熵变小于零,则该反应在(17)_____是可以自发的。
- 5. 已知下列反应在某一温度下的 $\Delta_{\cdot}G_{\cdot\cdot\cdot}^{\theta}$ 和 K^{θ}
 - (1) $N_2(g) + 1/2O_2(g) = N_2O(g)$ $\Delta rG_{m1}^{\theta}, K_1^{\theta}$
 - (2) $N_2O_4(g) = 2NO_2(g) \Delta rG_{m2}^{\theta}, K_2^{\theta}$
 - (3) $1/2N_2(g) + O_2(g) = NO_2(g) \Delta r G_{m3}^{\theta}, K_3^{\theta}$

则反应 $2N_2O(g) + 3O_2(g) = 2N_2O_4(g)$ 的 $\Delta_r G_m^{\theta} = (18)$

 $K^{\theta} = (19) \underline{\hspace{1cm}}_{\circ}$

6. 工业上在铁板上电镀锌时,如果没有氢的(20)______, 阴极析出是氢气而不是金属锌。(已知 $E^\Theta(H^+/H_2)=0V, E^\Theta(Zn^{2+}/Zn)=-0.761V$)

四、计算题(共20分)

(一)(本题5分)

利用标准热力学函数的数据估算反应:

$$N_2(g) + 2H_2(g) = 2NH_3(g)$$

 物质 (状态)	N ₂ (g)	H ₂ (g)	NH ₃ (g)
$\Delta_f H_m^{\theta}$ (298.15K)/kJ·mol ⁻¹	0	0	-46.43
S_m^{θ} (298.15K)/J·mol ⁻¹ ·K ⁻¹	191.5	130.6	192.3
$\Delta_f G_m^{\theta}$ (298.15K)/kJ·mol ⁻¹	0	0	-16.43

- (1) 求温度 298.15K 时,反应的 ΔG_m^{θ} ;说明常温下合成氨的可行性。
- (2) 在温度 400K 时,此时的标准平衡常数 K^{θ} ;
- (3) 估算在标态下,该反应能自发进行的最高温度。

(二)(本题5分)

已知 $K_b^{\Theta}(F^-) = 2.83 \times 10^{-11}$ 。用 HF 和 NaF 组成体积为 2 升的缓冲溶液。计算

- (1) 当该溶液中含有 0.10mo1 HF 和 0.30mo1 NaF 时,溶液的 pH 值为多少?
- (2) 在 (1) 中加入 0.40 克氢氧化钠固体,如完全溶解后体积不变,此时溶液的 pH 值为多少? (已知氢氧化钠分子量为 40)
 - (3) 当缓冲溶液的 pH 值为 3.15, 问溶液中 HF 和 F^- 的比值是多少?

(三)(本题6分)

298K 时, Fe^{3+} / Fe^{2+} 电极(其中[Fe^{3+}] = $1mol \cdot L^{-1}$,[Fe^{2+}] = $0.1mol \cdot L^{-1}$) 和 Cu^{2+} / Cu 电极(其中[Cu^{2+}] = $0.1mol \cdot L^{-1}$)构成原电池。

己知 $E^{\Theta}(Fe^{3+}/Fe^{2+}) = 0.771V$, $E^{\Theta}(Cu^{2+}/Cu) = 0.337V$

- (1) 写出此原电池的电池符号、电极反应及电池反应;
- (2) 计算电动势E值;
- (3) 计算电池反应的标准平衡常数 K^{θ} 值。

(四)(本题 4 分)

已知 $25\,^{\circ}C$ 时的标准电极电势如下: $E^{\theta}(AgCl/Ag) = 0.221V, E^{\theta}(Ag^{+}/Ag) = 0.7996V$

求算该温度下AgCl的溶度积 K_S^{θ} 。

一、判断题

- 1. 原子轨道是指核外电子绕核高速运动时的运动轨迹。
- 2. 所有原子的原子轨道能级都是山主量子数和角量子数共同决定的。
- 3. 一般说来,第一电离能越大的元素,其金属性越强。
- 4. 每个原子轨道最多只能允许两个电子存在。
- 5. 第三周期元素中电负性最大的元素基态价电子构型为 $2s^23p^5$ 。
- 6. 热力学标准态是温度为 298. 15K,气体分压为 100. 0kPa,溶液浓度为 1. 0 $mol \cdot L^{-1}$ 时的状态。
- 7. P 电子与 p 电子配对形成的化学键可以是 π 键也可以是 σ 键。
- 8. 共价键和氢键都具有饱和性和方向性,而离子键和金属键都没有饱和性和方向性。
- 9. 原电池是将氧化还原反应分别在两个电极上进行,每个电极上发生一个半电池反应,因此所有原电池反应都是氧化还原反应。
- 10. 色散力既存在于非极性分子之间,也存在于极性分子之间。
- 11. 标准热力学数据的规定是: 298K、标准态下,参考单质的 $\Delta_f H_m^\Theta = 0$
- 12. NH_3 分子中采取的是 sp^3 杂化,且四个杂化轨道具有相同的能量。
- 13. 温度升高可加快反应速率是由于能够提高反应速率常数。
- 14. 根据稀溶液的依数性,0.5%的葡萄糖($C_6H_{12}O_6$)水溶液和 0.5%的蔗糖($C_{12}H_{22}O_{11}$)水溶液具有相同的渗透压。
- 15. $MgSO_4$ 晶体的晶格能和熔点都比 K_3SO_4 晶体的要高。
- 16. 一定温度下,零级反应的反应速率不随反应物的浓度和时间的变化而变化。
- 二、不定项选择题(每小题 2 分, 共 20 分, 全对得分, 选对但

不全者得1分,多选、错选不得分)

- 1. 分子的空间构型为:
- A. 正三角形 B. 正四而体 c. 三角双锥 D. 正八而体
- 2. 根据价层电子互斥理论,下列粒子的空间构型正确的有:
- A: SF₆ (正八而体)

- B:[Fe(CN)₆]³⁻ (正八面体)
- $C: Ag(NH^3)_2^+$ (角形)
- D: ClO₄ (正四面体)
- 3根据布朗斯特酸碱质子理论,下列物质能够被称为酸的有
- A. SO_2

B. NH_4^+

C. *H*₂*O*

- D. CH₃CH₂OH
- 4. 下列哪组 n、1、m 量子数是正确的?
- A.3, 2, 2
- B. 3, 0, 1
- C. 3, 2, 1
- D. 5, 4, -1
- 5. 己知 298K 时热分解反应 $MgCO_3(s)$ \longrightarrow $MgO(s) + CO_2(g)$ 的 $\Delta_r H_m^\Theta = 101.59$

 $kJ \cdot mol^{-1}$, $\Delta_r G_m^{\Theta} = 49.15 kJ \cdot mol^{-1}$, 下列温度下能使 $MgCO_3(s)$ 自发分解的有

- A. 451KB. 581KC. 479KD. 617K
- 6. 同一温度下, 若反应(1)、(2)、(3)的关系为(1)-2(2)=(3),则

反应的平衡常数 K_3^{Θ} 为

A. $\left[K_1^{\Theta}\right]^{2K_2^{\Theta}}$

B. $K_1^{\Theta} \notin K_2^{\Theta}$

C. $K_1^{\Theta} / \left[K_2^{\Theta} \right]^2$

- D. $\lceil K_2^{\Theta} \rceil g \sqrt{K_1^{\Theta}}$
- 7. 在 H_2S , H_2O , NH_3 和 CH_4 分子中,将它们按照分子中的键角从大到小排序

应该是

- A. H_2S , H_2O , NH_3 , CH_4
- B. CH_4, H_2S, NH_3, H_2O
- C. CH_4 , NH_3 , H_2O , H_2S
- D. H_2S , CH_4 , NH_3 , H_2O
- 8. 在含有 $0.10mol \cdot L^{-1}$ 的氨水和 $0.10mol \cdot L^{-1}$ 的 NH₄C1 的混合液中加入一倍的水,发生明显变化的是()
- A. 氨水的解离度 B. pH 值 C. 氨水的浓度 D. K_b^{Θ}
- 9. 已知电对 $Sn^{4+} + 2e^- \rightarrow Sn^{2+}$ 的 $E^{\Theta} = +1.51V$ 下列表述正确的是()

- A. $\frac{1}{2}Sn^{4+} + e^{-} \rightarrow \frac{1}{2}Sn^{2+}$ 的 $E^{\Theta} = +0.755V$
- B. $2Sn^{4+} + 4e^{-} \rightarrow 2Sn^{2+}$ ∱ $E^{\Theta} = +3.02V$
- C. $3Sn^{4+} + 6e^{-} \rightarrow 3Sn^{2+}$ 竹 $E^{\Theta} = +4.53V$
- D. $\frac{1}{2}Sn^{4+} + e^{-} \rightarrow \frac{1}{2}Sn^{2+}$ 的 $E^{\Theta} = +1.51V$
- 10. 有关电化学腐蚀的正确说法是()
- A. 析氢腐蚀发生在阳极上
- c. 两种腐蚀都发生在阴极上 B. 吸氧腐蚀发生在阴极上
- D. 两种腐蚀都发生在阳极上

三、填空题(每小题2分,共2分)

- 1. 由等温方程可知,任意温度下都是"自发过程"的条件是 $\Delta_r H$ 0,并且 $\Delta_r S$
- 0。(填"大于",或"小于")
- 2. 配合物 $[Cu(NH_3)_4]SO_4$ 的名称为______,配位原子为_____。
- 3. 正催化剂可以改变反应历程,降低_____,从而提高_____。
- 4. 若某一级反应的半衰期为30天,则该一级反应进行90%时所需的时间为__天(取整数)。
- 5. 化学反应 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ 在温度为 300K 时的标准平衡常数为
- 4.84×10²⁴ 则 400K 时的标准平衡常数为 (己知

 $\Delta_r H_m^\Theta = -197.78kJ \cdot mol^{-1}$, $R = 8.314J \cdot mol^{-1} \cdot K^{-1}$,保留 2 位小数)。可见,升高

温度,平衡_____("向正向移动"、"向逆向移动"、"不移动")将

6. 将 3. 0g 摩尔质量为 60. 0 g / mol 的某物质溶解在 50. 0g 纯水中,则此溶液的

- 7. 己知,则在四种物质中______的氧化能力最强,______的还原能力最强。
- 8. 己知下列化学反应方程式

己知苯甲酸的 $K_a^{\Theta} = 6.46 \times 10^{-5}$, 为将 100 m1 , $0.6 \text{mol} \cdot L^{-1}$. 的苯甲酸溶液调节

至 pH=5,需加入______克 NaOH 固体(保留两位小数)。

10. 己知某难溶强电解质 AB3 在水中的溶解度为 sg/1000g 水, 其分子量为 M,

- 11. 热力学封闭系统是指与环境只有_____交换,没有_____交换的系统。
- 12. 温室效应主要是由于 和 等温室气体在大气中大量积聚导致的。

四、计算题(共40分)

- 1. (9分)利用标准热力学函数估算反应: $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$ (1)在 873K 时的标准摩尔吉布斯函数变和标准平衡常数。
 - (2) 若此时系统中各组分气体的分压为 $P(CO_2) = P(H_2) = 127kPa$,

 $P(CO) = P(H_2O) = 76kPa$ 计算此条件下反应的摩尔吉布斯函数变,并判断反应进行的方向。

	CO ₂ (g)	H ₂ (g)	CO(g)	H ₂ O(g)
$\triangle_{\mathbf{f}}H_{\mathbf{m}}^{\Theta}/\mathrm{kJ\cdot mol^{-1}}$	-393.5	0	-110.5	- 241.8
$S_m^{\Theta}/J \cdot mol^{-1} \cdot K^{-1}$	213.7	130.7	197.7	188.8

2. (11 分)298K 时, N_2O_5 的分解反应: $N_2O_5(g) = 2NO_2(g) + 1/2O_2(g)$ 其浓度与反应速率的关系如下:

实验序号	N ₂ O ₅ 的初始浓度	反应速率(N ₂ O ₅ 的浓度减小)
	$/\text{mol}\cdot\text{L}^{-1}$	$/\text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$
(1)	0.064	5.12×10 ⁻⁵
(2)	0.032	2.56×10^{-5}

- (1) 写出该反应的速率方程表达式:
- (2) 求反应的速率常数:
- (3) 求该温度下 N_2O_5 分解的半衰期:
- (4) 若该反应的活化能为 136. 73kJ• *mol*⁻¹ , 计算温度升高 10℃时,该反应

的速率常数。

 $3 \cdot (6 \, f)$ AgCl 沉淀中加入一定量的 KI 溶液后发现白色 AgCl 沉淀减少了,与此同时又生成了 AgI 黄色沉淀。平衡后测得溶液中 I^- 的浓度为 5×10^8 mol/L。

己知在实验温度下 K_{sp}^{Θ} (AgC1) =1.77×10⁻¹⁰, $K_{sp}^{\Theta}(AgI)$ = 8. 51×10^{-17}

- (1) 求实验温度下反应 $AgCl+I^-PAgI+Cl^-$ 的标准平衡常数。
- (2) 求平衡时溶液中Cl⁻的浓度。
- (14分) 若 298K 时电池反应

$$2MnO_4^-(aq) + 8H^+(aq) + 6I^-(aq) \rightarrow 2MnO_2(s) + 4H_2O(l) + 3I_2(s)$$

的 $\Delta_r G_m^{\Theta} = -662$. 38kJ/mo1, $E^{\Theta}(I_2/I^-) = 0.535$ V,F-96500J/V•mo1,试回答下列问题:

- (1) 计算该原电池的标准电动势:
- (2) 写出该原电池的正负极反应式,并写出该原电池的电池符号;
- (3) 计算电对 $E^{\Theta}(MnO_{A}^{-}/MnO_{2})$ 的值:
- (4) 若将原电池反应的 pH 值为 6, 其它离子的浓度均为 1mo1/L, 试计算该原电池的电动势,并判断此时该电池反应自发进行方向。