Оглавление

0.1	Случайный вектор	1
	Неравенство Маркова	
	Неравенство Чебышева	
0.4	Закон больших чисел	2

0.1 Случайный вектор

определение. Пусть случайный опыт $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Случайным вектором $\vec{\xi}$ размерности n, наблюдаемым в опыте G, называется упорядоченный набор случайных величин, наблюдаемых в данном опыте.

Можно доказать эквивалентность следующего определения:

определение. Пусть случайный опыт $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Случайным вектором $\vec{\xi}$ размерности n, наблюдаемым в опыте G, называется функция $\vec{\xi} : \Omega \to \mathbb{R}^n$, такая, что $\vec{\xi}$ $(\mathcal{F}, \mathcal{B}_{\mathbb{R}^n})$ -измерима, т. е. $\forall (B \in \mathcal{B}_{\mathbb{R}^n})[\vec{\xi}^{-1}(B) \in \mathcal{F}]$.

определение. Пусть случайный вектор $\vec{\xi}$ наблюдается в случайном опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Распределением случайного вектора $\vec{\xi}$ называется функция $P_{\vec{\xi}}: \mathcal{B}_{\mathbb{R}^n} \to [0;1]$, определяемая равенством

$$P_{\vec{\xi}}(B) = P(\vec{\xi}^{-1}(B))$$

Можно доказать, что $P_{\vec{\xi}}$ — вероятностная мера на $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$. Этот факт даёт возможность перейти к выборочному вероятностному пространству (аналогично тому, как это было сделано для случайной величины):

$$\langle \Omega, \mathcal{F}, P \rangle \xrightarrow{\vec{\xi}} \left\langle \mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}, P_{\vec{\xi}} \right\rangle$$

и рассматривать в нём непосредственно заданный случайный вектор $\vec{\eta}(\vec{x}) = \vec{x}$. Легко видеть, что в таком случае $\forall (B \in \mathcal{B}_{\mathbb{R}^n})[P_{\vec{\eta}}(B) = P_{\vec{\xi}}(B)].$

0.2 Неравенство Маркова

Пусть
$$\xi \in L_1(\Omega, \mathcal{F}, P)$$
 и $P\{\xi \geqslant 0\} = 1, T > 0$. Тогда
$$P\{\xi \geqslant T\} \leqslant \frac{M\xi}{T}$$

Доказательство.

$$M\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x) =$$
 (т. к. ξ неотрицательна почти наверное)
$$= \int_{\{x \geqslant T\}} x dF_{\xi}(x) + \int_{\{0 \leqslant x < T\}} x dF_{\xi}(x) \geqslant$$
 (т. к. F_{ξ} - неубывающая)
$$\geqslant \int_{\{x \geqslant T\}} x dF_{\xi}(x) \geqslant \int_{\{x \geqslant T\}} T dF_{\xi}(x) = T \int_{\{x \geqslant T\}} dF_{\xi}(x) = T \left(\lim_{x \to +\infty} F_{\xi}(x) - F_{\xi}(T -)\right) = TP\{\xi \geqslant T\}$$

Доказано.

0.3 Неравенство Чебышева

Пусть
$$\xi \in l_2(\Omega, \mathcal{F}, P), \varepsilon > 0$$
. Тогда

$$P\{|\xi - M\xi| \geqslant \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}$$

0.4 Закон больших чисел