MTH 201 2024-2025 (1)

Tutorial 2 13/08/2024

- 1. Determine which of the following subsets of \mathbb{R}^n are subspaces of \mathbb{R}^n :
 - (a) $W = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 0\}$
 - (b) $\{x \in \mathbb{R}^n : x_1 + x_n = 2x_3\}$, where x_i denotes the i-th coordinate of $x \in \mathbb{R}^n$ and n > 4.
 - (c) $W = \{x \in \mathbb{R}^n : x_1 + \dots + x_n = 1\}.$
 - (d) $W = \{x \in \mathbb{R}^n : x_1 + \dots + x_n \ge 0\}.$
 - (e) $W = \{x \in \mathbb{R}^n : x_{i+1} x_i = 1, i = 1, 2, \dots, n-1\}.$
 - (f) $W = \{x \in \mathbb{R}^n : x_1 + \dots + x_n = 0\}.$
- 2. Which of the following subsets of $\mathbb{R}[x]$ are subspaces?
 - (a) $\{p(x) \in \mathbb{R}[x] : p(x) = p(1-x)\}.$
 - (b) $\{p(x) \in \mathbb{R}[x] : p(x) \ge 1\}.$
 - (c) $\{p(x) \in \mathbb{R}[x] : p(x) = x^2 p^{(2)}(x) + 4p(x) = 0\}$, where $p^{(2)}(x)$ denotes the second order derivative of p(x).
- 3. Prove that \mathbb{R} is not a finite dimensional vector space over \mathbb{Q} . What is the dimension of \mathbb{R} over \mathbb{Q} ? Is it countable?
- 4. Prove that each $m \times n$ matrix A is row equivalent to one and only one row reduced echelon matrix.
- 5. Let $V = \{p(x) \in \mathbb{R}[x] : \deg p(x) \leq 2n\}$. Compute the dimension of V_0 , where $V_0 := \{p(x) \in V : p(x) \text{ only has even degree terms and } p(1) + p(-1) = 0\}$.
- 6. Find three vectors u, v, w of \mathbb{R}^4 such that the set $\{u, v, w\}$ is linearly dependent whereas each set $\{u, v\}, \{v, w\}$ and $\{u, w\}$ is linearly independent. Extend each linearly independent set to a basis of \mathbb{R}^4 .
- 7. Show that the vectors (1+i,2i) and (1,1+i) in \mathbb{C}^2 are linearly independent over \mathbb{R} . Are they linearly independent over \mathbb{C} as well?
- 8. Let V be a vector space over \mathbb{C} of all functions from \mathbb{R} to \mathbb{C} . Let $f_1(x) = 1$, $f_2(x) = e^{ix}$ and $f_2(x) = e^{-ix}$.
 - (a) Prove that f_1, f_2, f_3 are linearly independent (over \mathbb{C}).

- (b) Let $g_1 = 1, g_2 = \sin x$ and $g_3 = \cos x$. Find an invertible 3×3 matrix P such that $g_i = \sum_{i=1}^3 P_{ij} f_i$.
- 9. Let V be a vector space of 2×2 matrices over a field F. Find a basis A_1, A_2, A_3, A_4 of V such that $A_i^2 = A_i$ for $1 \le i \le 4$.