

Grundbegriffe der Informatik **Tutorium 33**

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 8.12.2016

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken Zur Rekapitulation...

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken Zur Rekapitulation...

Relationen vol. 2

Was ist ein Alphabet, was eine formale Sprache?

Kontextfreie Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken Zur I

Zur Rekapitulation...

- Was ist ein Alphabet, was eine formale Sprache?
- Was kennen wir für Operationen auf formalen Sprachen?

Kontextfreie Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Zur Rekapitulation...

- Was ist ein Alphabet, was eine formale Sprache?
- Was kennen wir für Operationen auf formalen Sprachen?

Betrachte
$$L := \{a^nba^n : n \in \mathbb{N}\}.$$

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Zur Rekapitulation...

Relationen vol. 2

- Was ist ein Alphabet, was eine formale Sprache?
- Was kennen wir für Operationen auf formalen Sprachen?

Betrachte $L := \{a^n b a^n : n \in \mathbb{N}\}$. Wie kann man diese Sprache darstellen?

Kontextfreie Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.ur Kontextfreie Grammatik lukas.bach@student.kit.

Ein Tupel G = (N, T, S, P) mit

Kontextfreie Grammatiken

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie Grammatik

Ein Tupel G = (N, T, S, P) mit

N Alphabet (Nichtterminalsymbole)

Grammatiken

Kontextfreie

Kontextfreie Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.um Lukas Bach.

lukas bach@student kit

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- *T* Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- S ∈ N (Startsymbol)
- $P \subseteq N \times (N \cup T)^*$ mit $|P| \in \mathbb{N}_0$

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
- $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
- Was ist $N \times (N \cup T)^*$?

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
- $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
- Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
- $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
- Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$: $N \times (N \cup T)^* = \{(S, abSAcB), (A, SSS), (B, BSabc), ...\}$.

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach.

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
- $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
- Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$: $N \times (N \cup T)^* = \{(S, abSAcB), (A, SSS), (B, BSabc), ...\}$.
- Andere Schreibweise: $P : N \rightarrow (N \cup T)^*$.

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
 - $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
 - Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$: $N \times (N \cup T)^* = \{(S, abSAcB), (A, SSS), (B, BSabc), ...\}$.
- Andere Schreibweise: $P: N \rightarrow (N \cup T)^*$.
- Für $(X, w) \in P$ schreibt man $X \to w$

Kontextfreie Grammatiken

Maximilian Staab,

Kontextfreie

Grammatiken

Relationen vol. 2

maximilian.staab@fsmi.ur Lukas Bach, lukas bach@student kit.

Kontextfreie Grammatik

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit $N \cap T = \emptyset$ (Terminalsymbole)
- $S \in N$ (Startsymbol)
 - $P \subseteq N \times (N \cup T)^* \text{ mit } |P| \in \mathbb{N}_0$
 - Was ist $N \times (N \cup T)^*$? Bei $T := \{a, b, c\}, N = \{S, A, B\}$: $N \times (N \cup T)^* = \{(S, abSAcB), (A, SSS), (B, BSabc), ...\}$.
 - Andere Schreibweise: $P : N \rightarrow (N \cup T)^*$.
 - Für $(X, w) \in P$ schreibt man $X \to w$
 - Statt $\{X \to w_1, X \to w_2\}$ schreibt man auch $\{X \to w_1 | w_2\}$

Grundbegriffe Ableitungsschritt der Informatik

Maximilian Staab,

 ${\tt lukas.bach@student.kit.edu}$

Kontextfreie Grammatiken

Ableitungsschritt

Maximilian Staab.

maximilian.staab@fsmi.uni_karlsruhe.de, Lukas Bach, Erinnerung: $N=Nichtterminalsymbole,\ T=Terminalsymbole.$

lukas bach@student kit edu

Ableitungsschritt

Kontextfreie Grammatiken

Ableitungsschritt

Maximilian Staab.

maximilian.staab@fsmi.uni_karlsruhe.de, Lukas Bach, Erinnerung: $N=Nichtterminalsymbole,\ T=Terminalsymbole.$

lukas bach@student kit edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ Grammatiken

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar

Relationen vol. 2

Kontextfreie

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

Relationen vol. 2

Kontextfreie

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

• $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$

Relationen vol. 2

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Relationen vol. 2

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Notation

 $u \Rightarrow v$

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

$$u \Rightarrow v$$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

 $u \Rightarrow v$

Beispiel

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

S

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

$$u \Rightarrow v$$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

$$lacksquare$$
 $S\Rightarrow aSa$

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

$$u \Rightarrow v$$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

$$lacksquare S \Rightarrow aSa \Rightarrow aaSaa$$

Ableitungsschritt

Maximilian Staab,

maximilian.staab@fsmi.uni_karlsruhe.de, Lukas Bach, Erinnerung: N=Nichtterminalsymbole, T=Terminalsymbole.

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

$$u \Rightarrow v$$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

$$lacksquare S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa$$

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Notation

 $u \Rightarrow v$

Beispiel

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

lacksquare $S\Rightarrow aSa\Rightarrow aaSaa\Rightarrow aaaBaaa\Rightarrow aaabaaa.$

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Ableitungsschritt Kontextfreie

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Grammatiken

Notation

 $u \Rightarrow v$

Beispiel

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

• $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa \Rightarrow aaabaaa$. Fertig.

Ableitungsschritt

Maximilian Staab,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Notation

 $u \Rightarrow v$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

- $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa \Rightarrow aaabaaa$. Fertig.
- aaaSaaa ⇒ aaaabaaaa!

Ableitungsschritt

Maximilian Staab,

maximilian.staab $@fsmi.uni_karlsruhe.de,$ Lukas Bach, Erinnerung: $N=Nichtterminalsymbole,\ T=Terminalsymbole.$

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Ableitungsschritt

 $v \in (N \cup T)^*$ ist in einem Schritt aus $u \in (N \cup T)^*$ ableitbar, wenn

- $u = w_1 X w_2$ und $v = w_1 w_X w_2$ für $w_1, w_2 \in (N \cup T)^*$
- und $X \rightarrow w_X$ in P

Relationen vol. 2

Notation

$$u \Rightarrow v$$

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

- $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa \Rightarrow aaabaaa$. Fertig.
- aaaSaaa ⇒ aaaabaaaa! ⇒ heißt eine Ableitung!

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.e

Ableitungsfolge

Kontextfreie Grammatiken Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cap T)^*$ gelte:

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cap T)^*$ gelte:

Relationen vol. 2

• $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken

Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cap T)^*$ gelte:

- $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.
- $u \Rightarrow^{i+1} v$ genau dann, wenn ein $w \in (N \cup T)^*$ existiert, für das $u \Rightarrow w \Rightarrow^i v$ gilt. Für $u \Rightarrow^i v$ sagt man "v ist aus u in i Schritten ableitbar".

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken

Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cap T)^*$ gelte:

Relationen vol. 2

- $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.
- $u \Rightarrow^{i+1} v$ genau dann, wenn ein $w \in (N \cup T)^*$ existiert, für das $u \Rightarrow w \Rightarrow^i v$ gilt. Für $u \Rightarrow^i v$ sagt man "v ist aus u in i Schritten ableitbar".

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken

Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

Für $u, v \in (N \cap T)^*$ gelte:

Relationen vol. 2

- $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.
- $u \Rightarrow^{i+1} v$ genau dann, wenn ein $w \in (N \cup T)^*$ existiert, für das $u \Rightarrow w \Rightarrow^i v$ gilt. Für $u \Rightarrow^i v$ sagt man "v ist aus u in i Schritten ableitbar".

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Dann qilt $aaaSaaa \Rightarrow^0 aaaSaaa$

Ableitungsfolge

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Ableitungsfolge

Kontextfreie Grammatiken

Relationen vol. 2

Für $u, v \in (N \cap T)^*$ gelte:

• $u \Rightarrow^0 v$ genau dann, wenn u = v gilt.

Wir definieren \Rightarrow^i für $i \in \mathbb{N}_0$ folgendermaßen:

• $u \Rightarrow^{i+1} v$ genau dann, wenn ein $w \in (N \cup T)^*$ existiert, für das $u \Rightarrow w \Rightarrow^i v$ gilt. Für $u \Rightarrow^i v$ sagt man "v ist aus u in i Schritten ableitbar".

$$G:=(\{S,B\},\{a,b\},S,\{S\rightarrow aBa|aSa,B\rightarrow b\})$$
 Dann gilt $aaaSaaa\Rightarrow^0$ $aaaSaaa$ und $aaaSaaa\Rightarrow^2$ $aaaabaaaa$

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie

Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$

Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie

Grammatiken

Relationen vol. 2

Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken

Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$.

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Relationen vol. 2

Beispiel

 $G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Relationen vol. 2

Beispiel

 $G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$

Dann gilt $S \Rightarrow^* aaaSaaa$

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Relationen vol. 2

Beispiel

 $G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$

Dann gilt $S \Rightarrow^* aaaSaaa$

und $aSa \Rightarrow^* aaaabaaaa$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Ableitbarkeit

Kontextfreie Grammatiken Für $u, v \in (N \cup T)^*$ gelte $u \Rightarrow^* v$ genau dann, wenn ein $i \in \mathbb{N}_0$ existiert, mit $u \Rightarrow^i v$. Man sagt dann "v ist aus u ableitbar".

Relationen vol. 2

Beispiel

 $G:=(\{S,B\},\{a,b\},S,\{S
ightarrow aBa|aSa,B
ightarrow b\})$ Dann gilt $S\Rightarrow^*$ aaaSaaa und aSa \Rightarrow^* aaaabaaaa aber aSa \Rightarrow abba.

Ableitungsbaum

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Ableitungsbaum

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Startsymbol ist Wurzel

Ableitungsbaum

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Startsymbol ist Wurzel

Relationen vol. 2

Nichtterminale sind innere Knoten

Ableitungsbaum

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

- Startsymbol ist Wurzel
 - Nichtterminale sind innere Knoten
 - Für X ⇒ w sind die Zeichen von w die Kinder von X

Ableitungsbaum

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Kontextfreie Grammatiken

- Startsymbol ist Wurzel
- Nichtterminale sind innere Knoten
- Für X ⇒ w sind die Zeichen von w die Kinder von X
- Terminale sind die Blätter

Ableitungsbaum

Maximilian Staab. maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach. lukas bach@student kit edu

Kontextfreie Grammatiken

Relationen vol. 2

- Startsymbol ist Wurzel
- Nichtterminale sind innere Knoten
- Für $X \Rightarrow w$ sind die Zeichen von w die Kinder von X
- Terminale sind die Blätter

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa|aSa, B \rightarrow b\})$$

Ableitungsbaum

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

- Startsymbol ist Wurzel
- Nichtterminale sind innere Knoten
- Für X ⇒ w sind die Zeichen von w die Kinder von X
- Terminale sind die Blätter

$$G:=(\{S,B\},\{a,b\},S,\{S
ightarrow aBa|aSa,B
ightarrow b\})$$

Dann gilt $S\Rightarrow^*$ aaabaaa

Übung zu Kontextfreien Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.upi karlerube de Lukas Bach.

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Gegeben ist die Kontextfreie Grammatik (N, T, S, P) mit:

- Nichtterminalsymbolen $N := \{A, B, S\}$.
- Terminal symbolen $T := \{a, b, c\}$
- Startsymbol S
- Produktionen $P := \{S \to aaS | bbS | SAS | \varepsilon, A \to cB, B \to a, b, c, \varepsilon\}$.

Übung zu Kontextfreien Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.upi karlerube de Lukas Bach.

lukas.bach@student.kit.

Kontextfreie

Grammatiken

Relationen vol. 2

Gegeben ist die Kontextfreie Grammatik (N, T, S, P) mit:

- Nichtterminalsymbolen $N := \{A, B, S\}$.
- Terminalsymbolen $T := \{a, b, c\}$
- Startsymbol S
- Produktionen $P := \{S \rightarrow aaS|bbS|SAS|\epsilon, A \rightarrow cB, B \rightarrow a, b, c, \epsilon\}.$

Aufgabe: Welche der folgenden Wörter sind ableitbar? Konstruiere den Ableitungsbaum und zeige, wie sie abgeleitet werden.

- ccbbcbbbbcbbaaaa?
- aabbaabbaabb?
- c?

Formale Sprachen erzeugen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Formale Sprachen erzeugen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Erzeugte Sprache

Kontextfreie Grammatiken Sei G = (N, T, S, P) eine kontextfreie Grammatik.

Formale Sprachen erzeugen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Erzeugte Sprache

Kontextfreie Grammatiken

Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir $L(G) := \{w \in T^* | S \Rightarrow^* w\}$ die von G erzeugte Sprache.

Formale Sprachen erzeugen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Erzeugte Sprache

Kontextfreie Grammatiken

Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir

Relationen vol. 2

Kontextfreie Sprache

Eine formale Sprache L heißt genau dann kontextfrei, wenn eine kontextfreie Grammatik G existiert, mit L(G) = L.

 $L(G) := \{ w \in T^* | S \Rightarrow^* w \}$ die von G erzeugte Sprache.

Formale Sprachen erzeugen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Erzeugte Sprache

Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir $L(G) := \{w \in T^* | S \Rightarrow^* w\}$ die von G erzeugte Sprache.

Relationen vol. 2

Kontextfreie Sprache

Eine formale Sprache L heißt genau dann kontextfrei, wenn eine kontextfreie Grammatik G existiert, mit L(G) = L.

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Formale Sprachen erzeugen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Erzeugte Sprache

Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir $L(G) := \{w \in T^* | S \Rightarrow^* w\}$ die von G erzeugte Sprache.

Relationen vol. 2

Kontextfreie Sprache

Eine formale Sprache L heißt genau dann kontextfrei, wenn eine kontextfreie Grammatik G existiert, mit L(G) = L.

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Dann ist
$$L(G) = \{a^nba^n | n \in \mathbb{N}_+\}$$

Verständnisfragen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas bach@student kit edu

Kontextfreie Grammatiken

$$\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$$

Welche Wörter lassen sich in drei Schritten ableiten?

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

- $\bullet G = (\{X\}, \{a, b\}, X, \{X \to \varepsilon | aX | bX\})$
 - Welche Wörter lassen sich in drei Schritten ableiten?
 - \rightarrow {aa, ab, ba, bb}

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

- $G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$
 - Welche Wörter lassen sich in drei Schritten ableiten?
 - \rightarrow {aa, ab, ba, bb}

Relationen vol. 2

• Was ist *L*(*G*)?

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas bach@student kit edu

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
- Was ist *L*(*G*)?
- $\rightarrow L(G) = \{a, b\}^*$

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
- Was ist *L*(*G*)?
- $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \to \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
- Was ist *L*(*G*)?
- $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?
- $\rightarrow G_1 := (\{X\}, \{a, b\}, X, \{X \rightarrow X\}) \text{ oder } G_2 := (\{X\}, \{a, b\}, X, \{\}))$

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
- Was ist L(G)?
- $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?
- $\rightarrow G_1 := (\{X\}, \{a, b\}, X, \{X \rightarrow X\}) \text{ oder } G_2 := (\{X\}, \{a, b\}, X, \{\}))$
 - Wahr oder falsch? Wenn $w_1 \Rightarrow w_2$ gilt, dann gilt auch $w_1 \rightarrow w_2$

Verständnisfragen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Kontextfreie Grammatiken

Relationen vol. 2

 $\bullet G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon | aX | bX\})$

- Welche Wörter lassen sich in drei Schritten ableiten?
- \rightarrow {aa, ab, ba, bb}
 - Was ist *L*(*G*)?
- $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit $L(G) = \{\}$?
- $\rightarrow G_1 := (\{X\}, \{a, b\}, X, \{X \rightarrow X\}) \text{ oder } G_2 := (\{X\}, \{a, b\}, X, \{\}))$
 - Wahr oder falsch? Wenn $w_1 \Rightarrow w_2$ gilt, dann gilt auch $w_1 \rightarrow w_2$
 - Was ist der Unterschied von \Rightarrow und \Rightarrow *?

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach,

Kontextfreie

Grammatiken

lukas.bach@student.kit.

Aufgaben zu kontextfreien Grammatiker

Sei $L_1 := \{wbaaw'|w, w' \in \{a, b\}^*\}$. Konstruiere eine Grammatik G_1 mit $L(G_1) = L_1$.

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

Aufgaben zu kontextfreien Grammatiken

Kontextfreie Grammatiken

Relationen vol. 2

Sei $L_1 := \{wbaaw'|w,w' \in \{a,b\}^*\}$. Konstruiere eine Grammatik G_1 mit $L(G_1) = L_1$.

 $\rightarrow G_1 := (\{X,Y\},\{a,b\},X,\{X\rightarrow YbaaY,Y\rightarrow aY|bY|\epsilon\}).$

Maximilian Staab

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas bach@student kit e

■ Sei $L_1 := \{wbaaw'|w, w' \in \{a, b\}^*\}$. Konstruiere eine Grammatik G_1 mit $L(G_1) = L_1$.

 $\rightarrow G_1 := (\{X, Y\}, \{a, b\}, X, \{X \rightarrow YbaaY, Y \rightarrow aY|bY|\epsilon\}).$

• Welche Sprache erzeugt $G_2 = (\{S, X, Y\}, \{a, b\}, S, P_2)$ mit $P_2 = \{S \rightarrow X | Y, X \rightarrow aaXb | aab, Y \rightarrow aYbb | abb\}$?

Kontextfreie Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.e

Relationen vol. 2

Aufgaben zu kontextfreien Grammatiken

- Kontextfreie Grammatiken Sei $L_1 := \{wbaaw'|w, w' \in \{a, b\}^*\}$. Konstruiere eine Grammatik G_1 mit $L(G_1) = L_1$.
 - $\rightarrow G_1 := (\{X,Y\},\{a,b\},X,\{X\rightarrow YbaaY,Y\rightarrow aY|bY|\epsilon\}).$
 - Welche Sprache erzeugt $G_2 = (\{S, X, Y\}, \{a, b\}, S, P_2)$ mit $P_2 = \{S \rightarrow X | Y, X \rightarrow aaXb | aab, Y \rightarrow aYbb | abb\}$?
 - $\to L(G_2) = \{a^{2k}b^k | k \in \mathbb{N}_+\} \cup \{a^kb^{2k} | k \in \mathbb{N}_+\}$

Beispiel zu kontextfreien Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \rightarrow XX | (X) | \varepsilon\})$$

Kontextfreie

Grammatiken

Beispiel zu kontextfreien Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \rightarrow XX | (X) | \varepsilon\})$$

Kontextfreie

Welche Wörter sind ableitbar?

Grammatiken

Beispiel zu kontextfreien Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \rightarrow XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

- Welche Wörter sind ableitbar?
- → "wohlgeformte Klammerausdrücke"

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie

Welche Wörter sind ableitbar?

Grammatiken

→ "wohlgeformte Klammerausdrücke"

Relationen vol. 2

Welche Eigenschaften besitzen diese Wörter?

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie

Welche Wörter sind ableitbar?

Grammatiken

Relationen vol. 2

Welche Eigenschaften besitzen diese Wörter?

$$\to N_{(}(w) = N_{)}(w)$$

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

Welche Wörter sind ableitbar?

Relationen vol. 2

ightarrow "wohlgeformte Klammerausdrücke"

Welche Eigenschaften besitzen diese Wörter?

 $\rightarrow N_{(}(w) = N_{)}(w)$ Ist diese Eigenschaft hinreichend?

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

Welche Wörter sind ableitbar?

Relationen vol. 2

Welche Eigenschaften besitzen diese Wörter?

 $\rightarrow N_{(}(w) = N_{)}(w)$ Ist diese Eigenschaft hinreichend?

ightarrow Nein, es muss gelten: Für alle Präfixe v von w gilt $N_{(v)} \geq N_{(v)}$

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

- Welche Wörter sind ableitbar?
- ightarrow "wohlgeformte Klammerausdrücke"

- Welche Eigenschaften besitzen diese Wörter?
- $\rightarrow N_{(}(w) = N_{)}(w)$ Ist diese Eigenschaft hinreichend?
- \rightarrow Nein, es muss gelten: Für alle Präfixe v von w gilt $N_{(}(v) \geq N_{)}(v)$
- Andere Grammatik möglich, die alle wohlgeformten Klammerausdrücke erzeugt?

Beispiel zu kontextfreien Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

Kontextfreie Grammatiken

- Welche Wörter sind ableitbar?
- ightarrow "wohlgeformte Klammerausdrücke"

- Welche Eigenschaften besitzen diese Wörter?
- $\rightarrow N_{(}(w) = N_{)}(w)$ Ist diese Eigenschaft hinreichend?
- \rightarrow Nein, es muss gelten: Für alle Präfixe v von w gilt $N_{(}(v) \geq N_{)}(v)$
- Andere Grammatik möglich, die alle wohlgeformten Klammerausdrücke erzeugt?

$$\rightarrow G = (\{X\}, \{(,)\}, X, \{X \rightarrow (X)X | \varepsilon\})$$

Grenze kontextfreier Grammatiken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Es gibt auch Sprachen, die wir nicht mit einer kontextfreien Grammatik erzeugen können!

Relationen vol. 2 erzeugen konnen

Grenze kontextfreier Grammatiken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Es gibt auch Sprachen, die wir nicht mit einer kontextfreien Grammatik erzeugen können!

Relationen vol. 2

Beispiel aus der Vorlesung:

$$L_{vv} = \{vcv | v \in \{a, b\}^*\} \subseteq \{a, b, c\}^*$$

Grundbegriffe Relationen der Informatik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Relationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiker

Relationen vol. 2

Erinnerung Relationen

Es seien A und B Mengen.

Relationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiker

Relationen vol. 2

Erinnerung Relationen

Es seien A und B Mengen. Eine Teilmenge $R \subseteq A \times B$ heißt Relation.

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatike

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

lukas.bach@student.kit.e Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie

$$S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$$

das Produkt der Relationen R und S.

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

lukas.bach@student.kit.e Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie $S \circ R := \{(a,c) \in A \times C | \exists b \in B \text{ mit } (a,b) \in R \land (b,c) \in S\}$

das Produkt der Relationen *R* und *S*.

Relationen vol. 2 Bemerkung

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

lukas.bach@student.kit.e Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie

 $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$

Grammatiken

das Produkt der Relationen R und S.

Relationen vol. 2

Bemerkung

 $S \circ R$ ist eine Relation auf A und C

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

lukas.bach@student.kit. Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie

 $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$

das Produkt der Relationen R und S.

Relationen vol. 2

Bemerkung

 $S \circ R$ ist eine Relation auf A und C, bildet also von A nach C ab.

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

lukas.bach@student.kit. Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie Grammatiker $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$ das Produkt der Relationen $B \in S \cap S$

Relationen vol. 2

Bemerkung

 $S \circ R$ ist eine Relation auf A und C, bildet also von A nach C ab.

Assoziativität des Produktes

Es seien A, B, C und D Mengen und $R \subseteq A \times B$, $S \subseteq B \times C$ sowie $T \subseteq C \times D$ Relationen.

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

Lukas bach@student.kit. Es seinen A, B und C Mengen und $R \subseteq A \times B, S \subseteq B \times C$ Relationen.

Dann ist

Kontextfreie Grammatiker $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$ das Produkt der Relationen $B \in S \cap S$

Relationen vol. 2 Ben

Bemerkung

 $S \circ R$ ist eine Relation auf A und C, bildet also von A nach C ab.

Assoziativität des Produktes

Es seien A, B, C und D Mengen und $R \subseteq A \times B, S \subseteq B \times C$ sowie $T \subseteq C \times D$ Relationen. Dann gilt

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach,

Definition Produkt von Relationen

Lukas.bach@student.kit. Es seinen A,B und C Mengen und $R\subseteq A\times B,S\subseteq B\times C$ Relationen.

Dann ist

Kontextfreie Grammatiker $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$ das Produkt der Relationen $B \in S \cap S$

Relationen vol. 2

Bemerkung

 $S \circ R$ ist eine Relation auf A und C, bildet also von A nach C ab.

Assoziativität des Produktes

Es seien A, B, C und D Mengen und $R \subseteq A \times B$, $S \subseteq B \times C$ sowie $T \subseteq C \times D$ Relationen. Dann gilt $(T \circ S) \circ R = T \circ (S \circ R)$.

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatike

Homogene Relation

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation.

Kontextfreie Grammatiko

Homogene Relation

Maximilian Staab. maximilian.staab@fsmi.ur Lukas Bach,

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, lukas.bach@student.kit.e wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie

Maximilian Staab.

Homogene Relation

maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatikei

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Maximilian Staah

Homogene Relation

maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatike

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Relationen vol. 2

Potenz von Relationen

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.e

Homogene Relation

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatikei

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Relationen vol. 2

Potenz von Relationen

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Dann definieren wir R^i für $i \in \mathbb{N}_0$ folgendermaßen:

Maximilian Staab,

maximilian.staab@fsmi.un Lukas Bach, lukas.bach@student.kit.e

Homogene Relation

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatike

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Relationen vol. 2

Potenz von Relationen

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Dann definieren wir R^i für $i \in \mathbb{N}_0$ folgendermaßen:

$$R^0 := I_M$$

Homogene Relation

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatike

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Relationen vol. 2

Potenz von Relationen

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Dann definieren wir R^i für $i \in \mathbb{N}_0$ folgendermaßen:

- $R^0 := I_M$
- Für alle $i \in \mathbb{N}_0 : R^{i+1} := R^i \circ R$

Homogene Relation

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. R heißt homogen, wenn A = B und heterogen, wenn $A \neq B$ gilt.

Kontextfreie Grammatikei

Identität

Sei M eine Menge. $I_M := \{(x, x) | x \in M\}$

Relationen vol. 2

Potenz von Relationen

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Dann definieren wir R^i für $i \in \mathbb{N}_0$ folgendermaßen:

- $R^0 := I_M$
- Für alle $i \in \mathbb{N}_0 : R^{i+1} := R^i \circ R$

Also $R^4 = R \circ R \circ R \circ R$.

Grundbegriffe Reflexitivität der Informatik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Reflexitivität

Maximilian Staab.

maximilian.staab@fsmi.uni_karlsrube_de Lukas Bach,

Satz über das neutrale Element lukas bach@student kit

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. Dann gilt:

 $R \circ I_B = R = I_A \circ R$.

Kontextfreie

Reflexitivität

Maximilian Staab,

maximilian.staab@fsmi.uni karlsruba da Lukas Bach.

lukas.bach@student.kit.

Satz über das neutrale Element

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. Dann gilt:

Kontextfreie Grammatike $R \circ I_B = R = I_A \circ R.$

Relationen vol. 2

Reflexivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Wenn für alle $x \in M$: $(x, x) \in R$, nennt man R reflexiv.

Reflexitivität

Maximilian Staab,

maximilian.staab@fsmi.uni.karlsrube.de Lukas Bach.

lukas.bach@student.kit.

Satz über das neutrale Element

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. Dann gilt:

Kontextfreie Grammatike $R \circ I_B = R = I_A \circ R.$

Relationen vol. 2

Reflexivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Wenn für alle $x \in M$: $(x, x) \in R$, nennt man R reflexiv.

Also jedes Element der Definitionsmenge der Relation wird auf sich selbst abgebildet (und vielleicht auch auf andere Elemente abgebildet).

Reflexitivität

Maximilian Staab,

maximilian.staab@fsmi.uni.karlsrube

lukas.bach@student.kit.

Satz über das neutrale Element

Es seien A und B Mengen und $R \subseteq A \times B$ eine Relation. Dann gilt:

Kontextfreie Grammatike $R \circ I_B = R = I_A \circ R.$

Relationen vol. 2

Reflexivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Wenn für alle $x \in M$: $(x, x) \in R$, nennt man R reflexiv.

Also jedes Element der Definitionsmenge der Relation wird auf sich selbst abgebildet (und vielleicht auch auf andere Elemente abgebildet).

Lemma

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. R ist genau dann reflexiv, wenn $I_M \subseteq R$ gilt.

Grundbegriffe Transitivität der Informatik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Transitivität

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatike

Transitivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Transitivität

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie Grammatike

Transitivität

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. R heißt transitiv, wenn:

Transitivität

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatike

Transitivität

R heißt transitiv, wenn:

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Relationen vol. 2

 $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

Transitivität

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Kontextfreie Grammatike

Transitivität

R heißt transitiv, wenn:

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Relationen vol. 2

 $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

Lemma

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. R ist genau dann transitiv, wenn $R \circ R \subseteq R$.

```
Maximilian Staab.
```

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei $M := \{1, 2, 3\}.$

Kontextfreie

• Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv?

```
Maximilian Staab,
```

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei
$$M := \{1, 2, 3\}.$$

Kontextfreie

Grammatike

• Ist
$$R := \{(1,1), (1,2), (2,3)\}$$
 transitiv? Nein!

```
Maximilian Staab.
```

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei
$$M := \{1, 2, 3\}.$$

Kontextfreie

• Ist
$$R := \{(1,1), (1,2), (2,3)\}$$
 transitiv? Nein!

Ist R reflexiv?

```
Maximilian Staab.
```

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei $M := \{1, 2, 3\}.$

Kontextfreie

• Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!

Ist R reflexiv? Nein!

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei $M := \{1, 2, 3\}.$

Kontextfreie

• Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!

Ist R reflexiv? Nein!

Relationen vol. 2

Wie müsste R aussehen, um transitiv zu sein?

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Soi M:

Sei $M := \{1, 2, 3\}.$

Kontextfreie

• Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!

Ist R reflexiv? Nein!

Relationen vol. 2

Wie müsste R aussehen, um transitiv zu sein?

■ Ist $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$ reflexiv?

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sei $M := \{1, 2, 3\}.$

Kontextfreie

• Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!

Ist R reflexiv? Nein!

Relationen vol. 2

Wie müsste R aussehen, um transitiv zu sein?

• Ist $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$ reflexiv? Nein!

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edAufgaben

Sai M:-

Sei $M := \{1, 2, 3\}.$

Kontextfreie Grammatike

- Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!
- Ist R reflexiv? Nein!

- Wie müsste R aussehen, um transitiv zu sein?
- Ist $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$ reflexiv? Nein!
- Ist S transitiv?

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.edAufgaben

Kontextfreie

Sei $M := \{1, 2, 3\}.$

■ Ist $R := \{(1,1), (1,2), (2,3)\}$ transitiv? Nein!

Ist R reflexiv? Nein!

Relationen vol. 2

Wie müsste R aussehen, um transitiv zu sein?

■ Ist $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$ reflexiv? Nein!

Ist S transitiv? Ja!

Wie müsste S aussehen, um reflexiv zu sein?

Reflexiv-transitive Hülle

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Kontextfreie

Grammatiken

Reflexiv-transitive Hülle

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach.

Definition

 ${}^{lukas.bach@student.kit.}$ Sei M eine Menge und $R\subseteq M imes M$ eine homogene Relation.

Dann nennt man $R^*:=\bigcup_{i\in\mathbb{N}_0}R^i$ die reflexiv-transitive Hülle von R.

i∈

Relationen vol. 2

Kontextfreie

Reflexiv-transitive Hülle

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Definition

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Kontextfreie Grammatikei Dann nennt man $R^*:=\bigcup_{i\in\mathbb{N}_0}^{-}R^i$ die reflexiv-transitive Hülle von R.

Relationen vol. 2

Satz

- R* ist reflexiv
- R* ist transitiv
- R^* ist die kleinste Relation, die reflexiv und transitiv ist und $R \subseteq R^*$ erfüllt.

Reflexiv-transitive Hülle

Maximilian Staab maximilian.staab@fsmi.ur Definition Lukas Bach. lukas.bach@student.kit.

Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation.

Dann nennt man $R^* := \bigcup R^i$ die reflexiv-transitive Hülle von R. $i \in \mathbb{N}_0$

Kontextfreie

Relationen vol. 2

Satz

- R* ist reflexiv
- R* ist transitiv
- \blacksquare R^* ist die kleinste Relation, die reflexiv und transitiv ist und $R \subseteq R^*$ erfüllt.

Bemerkung

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene, reflexive und transitive Relation. Dann gilt $R^* = R$.

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas.bach@student.kit.edAufgaben

Kontextfreie

• Sei $M = \{1, 2, 3\}$ und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

```
Maximilian Staab.
```

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas.bach@student.kit.edAufgaben

Kontextfreie

• Sei
$$M = \{1, 2, 3\}$$
 und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

$$\rightarrow \ R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edAufgaben

Kontextfreie

• Sei $M = \{1, 2, 3\}$ und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

Grammatike

 $\rightarrow \ R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$

Relationen vol. 2

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Was ist $(R^*)^*$?

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edAufgaben

Kontextfreie

Grammatike

• Sei
$$M = \{1, 2, 3\}$$
 und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

$$\rightarrow \ R^* = \{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$$

Relationen vol. 2

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Was ist $(R^*)^*$?

$$\rightarrow (R^*)^* = R^*$$

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach, lukas.bach@student.kit.ed Aufgaben

Kontextfreie

Grammatike

• Sei
$$M = \{1, 2, 3\}$$
 und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

$$\rightarrow \ R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Relationen vol. 2

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Was ist $(R^*)^*$?

$$\rightarrow (R^*)^* = R^*$$

■ $M := \{1, 2, 3, 4\}$ und $R := \{(1, 2), (2, 3), (3, 4), (4, 1)\} \subseteq M \times M$. Ist R reflexiv? Ist R transitiv?

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas.bach@student.kit.ed Aufgaben

Kontextfreie

Grammatike

• Sei
$$M = \{1, 2, 3\}$$
 und $R := \{(1, 1), (1, 2), (2, 3)\}$ Was ist R^* ?

$$\rightarrow R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Relationen vol. 2

■ Sei M eine Menge und $R \subseteq M \times M$ eine homogene Relation. Was ist $(R^*)^*$?

$$\rightarrow (R^*)^* = R^*$$

■ $M := \{1, 2, 3, 4\}$ und $R := \{(1, 2), (2, 3), (3, 4), (4, 1)\} \subseteq M \times M$. Ist R reflexiv? Ist R transitiv? Nein und nein!

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Die Relationen R und S über \mathbb{N}_0 seien gegeben durch:

Kontextfreie Grammatiker

■ Für alle $a, b \in \mathbb{N}_0$: $aRb \Leftrightarrow a|b$ (a ist Teiler von b)

■ Für alle $a, b \in \mathbb{N}_0$: $aSb \Leftrightarrow ggT(a, b) = 1$

Relationen vol. 2 Prüfe auf Reflexivität und Transitivität!

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Die Relationen R und S über \mathbb{N}_0 seien gegeben durch:

Kontextfreie Grammatike

- Für alle $a, b \in \mathbb{N}_0$: $aRb \Leftrightarrow a|b$ (a ist Teiler von b)
- Für alle $a, b \in \mathbb{N}_0$: $aSb \Leftrightarrow ggT(a, b) = 1$

Relationen vol. 2

Prüfe auf Reflexivität und Transitivität!

→ R ist transitiv, aber nicht reflexiv.

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Die Relationen R und S über \mathbb{N}_0 seien gegeben durch:

Kontextfreie Grammatiker

- Für alle $a, b \in \mathbb{N}_0$: $aRb \Leftrightarrow a|b$ (a ist Teiler von b)
- Für alle $a, b \in \mathbb{N}_0$: $aSb \Leftrightarrow ggT(a, b) = 1$

Relationen vol. 2

Prüfe auf Reflexivität und Transitivität!

- → R ist transitiv, aber nicht reflexiv.
- ightarrow S ist reflexiv, aber nicht transitiv. [TODO]

Maximilian Staab,

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

Kontextfreie Grammatike

