احصاء اور تحلیلی جیومیٹری

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V	र्व	زيباج
vii	میل کتاب کادیباچه پیک کتاب کادیباچه	میر د
1	ابتدائی معلومات 1.1 مشققی اعداد اور حقیقی خط 1.2 میر به خطور این بر موهد تری	1
1	1.1 خشقی اعداد اور خشقی خط	
16	1.2 من خطران بعشرتاي	

ويباجيه

یہ کتاب اس امید سے لکھی گئی ہے کہ ایک دن اردو زبان میں انجینئری پڑھائی جائے گی۔اس کتاب کا مکمل ہونا اس سے میں ایک اہم قدم ہے۔ طبیعیات کے طلبہ کے لئے بھی یہ کتاب مفید ثابت ہو گی۔

اس کتاب کو Ubuntu استعال کرتے ہوئے XeLatex میں تشکیل دیا گیا ہے جبکہ سوالات کے جوابات WxMaxima میں تشکیل دیا گیا ہے جبکہ سوالات کے جوابات Libre Office Calc کی مدد سے حاصل کیے گئے ہیں۔

درج ذیل کتاب کو سامنے رکھتے اس کو لکھا گیا ہے

Advanced Engineering Mathematics by Erwin Kreyszig

جبکہ اردو اصطلاحات چننے میں درج ذیل لغت سے استفادہ کیا گیا۔

- $\bullet \ \ \, {\rm http://www.urduenglishdictionary.org}$
- $\bullet \ \, http://www.nlpd.gov.pk/lughat/$

آپ سے گزارش ہے کہ اس کتاب کو زیادہ سے زیادہ طلبہ و طالبات تک پہنچائیں اور کتاب میں غلطیوں کی نشاندہی میرے برقی یہ پر کریں۔میری تمام کتابوں کی مکمل XeLatex معلومات

https://www.github.com/khalidyousafzai

سے حاصل کی جاسکتی ہیں جنہیں آپ مکمل اختیار کے ساتھ استعال کر سکتے ہیں۔ میں امید کرتا ہوں کہ طلبہ و طالبات اس کتاب سے استفادہ ہوں گے۔

> خالد خان يوسفزنگ 5 نومبر <u>2018</u>

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

جارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔ یہ طلبہ و طالبات زبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پکھ کرنے کی نیت رکھنے کے باوجود پکھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

2011 أكتوبر 2011

باب1

ابتدائي معلومات

اس باب میں ان معلومات کو پیش کیا گیا ہے جنہیں جانتے ہوئے احصاء کو سمجھا جا سکتا ہے۔

1.1 حقیقی اعداد اور حقیقی خط

اس حصه میں حقیقی اعداد، عدم مساوات، وقفه اور مطلق قیمتوں پر غور کیا جائے گا۔

حقيقى اعداداور حقيقى خط

احصاء کا بیشتر حصہ حقیقی عدد کی نظام کے خواص پر مبنی ہے۔حقیقی اعداد ا وہ اعداد ہیں جنہیں اعشاری صورت میں کھھنا ممکن ہو، مثلاً:

$$-\frac{3}{4} = -0.75000 \cdots$$

$$\frac{1}{3} = 0.33333 \cdots$$

$$\sqrt{2} = 1.4142 \cdots$$

real numbers¹

ہندسوں کا ہمیشہ تک چلتے رہنے کو نقطوں ٠٠٠ سے ظاہر کیا گیا ہے۔

حقیقی اعداد کو کلیر پر بطور نقطے ظاہر کیا جا سکتا ہے۔اس کلیر کو حقیقی خط² کہتے ہیں۔

\Re کی علامت حقیقی عددی نظام یا، اس کے مترادف، حقیقی خط کو ظاہر کرتی ہے۔

حقیقی اعداد کے خواص

حقیق اعداد کے خواص تین گروہوں میں تقسیم کیے جا سکتے ہیں: الجبرائی خواص، خواص درجہ، اور کاملیت۔ الجبرائی خواص کہتی ہیں کہ حساب کے عمومی قواعد کے تحت حقیقی اعداد کو جمع، تفریق، ضرب اور (ماسوائے 0 سے) تقسیم کرتے ہوئے مزید حقیقی اعداد پیدا کیے جا سکتے ہیں۔آپ بھی بھی 0 سے تقسیم نہیں کر سکتے ہیں۔

حقیقی اعداد کی خواص درج ذیل ہیں۔

قواعد برائے عدم مساوات

اگر a ، اور c حقیقی اعداد ہوں، تب:

- $a + c < b + c \iff a < b$.1
- $a c < b c \iff a < b$.2
- $ac < bc \iff a < b$) c > 0 .3
- $-b < -a \iff a < b$ اور $c < ac \iff a < b$ اور c < a

 $real line^2$

1.1. حقیقی اعب داداور حقیقی خط

$$\frac{1}{a} > 0 \iff a > 0 .5$$

$$\frac{1}{b} < \frac{1}{a} \iff a < b$$
 اور $a < b$ دونوں مثبت یا دونوں مثنی ہوں تب $a < b$.6

ورج بالا میں b = a + c + c + c + c + c + c ہو تب اس سے الر میں a + c + c + c + c + c + c ہو تب اس سے آپ اخذ کر سکتے ہیں کہ a + c کی قیمت سے کم ہو گی۔ دھیان رہے کہ عدم مساوات کو مثبت عدم سے ضرب دینے سے عدم مساوات اپنی صورت بر قرار رکھتی ہے جبکہ اس کو منفی عدد سے ضرب دینے سے عدم مساوات کی علامت الٹ ہو جاتی ہے۔

حقیقی عددی نظام کی کاملیت زیادہ گہری خاصیت ہے جس کی درست تعریف مشکل ہے۔ہم کہہ سکتے ہیں کہ حقیقی اعداد کی تعداد اتنی ہے کہ یہ حقیقی خط کو مکمل کر پاتے ہیں، یعنی، حقیقی خط پر کوئی "سراخ" یا "درز" نہیں پایا جاتا ہے۔ احصاء کے کئی مسکوں کا دارومدار حقیقی عددی نظام کے مکمل ہونے پر ہے۔کاملیت کا موضوع زیادہ اعلی درجہ حساب کا حصہ ہے اور اس پر مزید بحث نہیں کی جائے گی۔

🄏 كاذىلى سلسلە

ہم حققی اعداد کے تین خصوصی ذیلی سلسلوں 3 کی وضاحت کرنا چاہتے ہیں۔

- 1. قدرتی اعداد⁴، ^{یع}نی 1، 2، 3، 4، ...
- + 2 ، ± 3 ، ± 2 ، ± 1 ، 0 .2 عدد صحیح، لین
- 3. ناطق اعداد 5 ، یعنی وہ اعداد جنہیں کسر $\frac{m}{n}$ کی صورت میں لکھنا ممکن ہو جہاں m اور n عددی صحیح ہیں اور $n \neq 0$ جے۔اس کی مثال درج ذیل ہیں۔

$$\frac{1}{3}$$
, $-\frac{4}{9}$, $\frac{200}{13}$, $57 = \frac{57}{1}$

sets³ natural numbers⁴ rational numbers⁵ با_1. ابت دائی معلومات

4

ناطق اعداد کو اعشاری روپ میں لکھتے ہوئے حقیقی اعداد کی دو صور تیں ممکن ہیں۔ (الف) مختتم (جو لامتناہی صفروں پر اختتام ہوتی ہے)، مثلاً

$$\frac{3}{4} = 0.75000 \dots = 0.75$$

(ب) دہراتا (جو ایسے ہند سول پر اختتام ہوتا ہے جو بار بار دہراتے رہتے ہیں)، مثلاً

$$\frac{23}{11} = 2.090909 \cdot \cdot \cdot = 2.\overline{09}$$

ناطق اعداد کا سلسلہ حقیقی اعداد کی الجبرائی خواص اور خواص درجہ رکھتے ہیں البتہ یہ کاملیت کی خاصیت نہیں رکھتے ہیں، مثلاً، ایبا کوئی ناطق عدد نہیں پایا جاتا ہے جس کا مربع 2 ہو۔یوں ناطق خط میں اس نقطے پر "سراخ" پایا جاتا ہے جہاں $\sqrt{2}$ کو ہونا چاہیے تھا۔

وہ حقیقی اعداد جو ناطق نہ ہوں غیر ناطق اعداد 6 کہلاتے ہیں۔غیر ناطق اعداد کو اعشاری روپ میں کھنے سے نا مختم اور نا ہی دہراتی صورت ملتی ہے۔ناطق اعداد کی مثالیں π ، $\sqrt{2}$ ، ور \log_{10} ہیں۔

وقفه

حقیقی خط کا ایبا ذیلی سلسلہ جس میں کم سے کم دو اعداد پائے جاتے ہوں اور جس میں ہر دو ارکان کے بی تمام حقیقی اعداد بھی شامل ہوں وقفہ x>4 ہو وقفہ ہے۔ای اعداد بھی شامل ہوں وقفہ x>4 ہو وقفہ ہے۔ ای کے طور تمام حقیقی اعداد وقفہ میں میں کم سلسلہ جبال x=4 ہو بھی وقفہ ہے۔ اس کے برعکس تمام غیر صفر حقیقی اعداد وقفہ نہیں ہیں۔ نہیں ہیں جو نکہ x=4 اس کا حصہ نہیں ہیں۔

جيوم مريائي طور پر حقيقي خط پر قطع يا شعاع يا پورے حقيقي خط كو سلسله ظاہر كرتا ہے۔خطى قطع متناہمي وقفہ 8 جَبكه شعاع يا يورا حقيقي خط لامتناہمي وقفہ 9 كہلاتے ہيں۔

irrational numbers⁶ interval⁷

 $[\]begin{array}{c} \text{finite interval}^8 \\ \text{infinite interval}^9 \end{array}$

1.1. حقیقی اعب اداور حقیقی خط

اگر متناہی وقفہ کے دونوں سر بھی وقفہ کا حصہ ہوں تب یہ بند¹⁰ کہلائے گا، اگر اس کا ایک سر وقفہ کا حصہ ہو تب یہ نصف کھلا¹¹ کہلاتا ہے۔وقفے کے سروں کو یہ نصف کھلا¹¹ کہلاتا ہے۔وقفے کے سروں کو سرحدی نقطے ^{12 کہتے} ہیں۔ تمام سرحدی نقطے ^{13 کہتے} ہیں۔ تمام اندرونی نقطے ^{15 کہتے} ہیں۔ تمام اندرونی نقطوں کو وقفہ کی اندرون ^{16 کہتے} ہیں۔

عدم مساوات كاحل

x پر مبنی عدم مساوات کو حل کرتے ہوئے اعداد کا وقفہ یا وقفے تلاش کرنے کو عدم مساوات کا حل کہتے ہیں۔

مثال 1.1:

 ${\rm closed^{10}}$

half-open¹¹

open¹²

boundary points¹³

boundary¹⁴

 $interior\ points^{15}$

interior¹⁶

6

$$\frac{2}{r-1} \ge 4$$
 (3

$$-\frac{x}{3} < x - 1$$
 (2)

$$-\frac{x}{3} < x - 1$$
 (2 $2x - 4 < x + 1$ (1

حل:

(1

$$2x - 4 < x + 1$$
 $2x < x + 5$
 $x < 5$

حل سلسلہ وقفہ (5,∞−) ہے۔

(2

$$-\frac{x}{3} < x - 1$$
 $-x < 3x - 3$
 $0 < 4x - 3$
 $3 < 4x$
 $\frac{3}{4} < x$
 $\frac{3}{4} < x$
 $\frac{x}{3} < x - 1$
 $-x < 3x - 3$
 $0 < 4x - 3$
 $0 <$

وقفہ $(\frac{3}{4}, \infty)$ حل سلسلہ ہے۔

1.1. حقیقی اعبداد اور حقیقی خط

3) عدم مساوات x < 1 کی صورت میں درست ہو گا چونکہ x < 1 کی صورت میں درست ہو گا چونکہ x < 1 کی صورت میں باتھ منفی ہو گا اور x = 1 پر بایاں ہاتھ غیر متعین ہے۔عدم مساوات کے دونوں ہاتھ کو x = 1 سے ضرب دیتے ہوئے عدم مساوات برقرار رہتا ہے۔

$$\frac{2}{x-1} \ge 4$$

$$2 \ge 4x - 4$$

$$6 \ge 4x$$

$$\frac{3}{2} \ge x$$

$$x$$

$$\frac{3}{2} \ge x$$

حل سلسله نصف کھلا وقفہ $[1,\frac{3}{2}]$ ہے۔

مطلق قيمت

عدد x کی مطلق قیمت 17 جس کو |x| سے ظاہر کیا جاتا ہے کہ تعریف درج ذیل ہے۔

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

 \square |0.88| = 0.88, |0| = 0, |-13| = -(-13) = 13, |-|a|| = |a| :1.2 2 + 3 + 3 = 13

رھیان رہے کہ ہر حقیقی عدد کی مطلق قیمت غیر منفی $|x| \geq |x|$ ہوگی اور صرف x = 0 کی صورت میں x = 0 ہوگا۔ چونکہ x = 0 کی غیر منفی جذر کو x = 0 سے ظاہر کیا جاتا ہے للذا |x| کی متبادل تعریف درج ذیل لی جا سکتی ہے۔

$$|x| = \sqrt{x^2}$$

absolute value¹⁷

ابت دائی معلومات اللہ 1 ابت دائی معلومات

شکل 1.1: مطلق قیت حقیقی خط پر دو نقطوں کے بیج فاصلہ دیتا ہے۔

آپ a کی صورت میں درست ہو گا۔ $\sqrt{a^2}=a$ صرف مثبت a کی صورت میں درست ہو گا۔

جیومیٹر یائی طور پر حقیقی خط پر مبدا 0 سے x تک فاصلے کو |x| ظاہر کرتی ہے۔ زیادہ عمومی طور پر (شکل 1.1) |x-y|=x اور x اور x کے نیج فاصلہ |x-y|=x

ہو گا۔ مطلق قیمت کے درج ذیل خواص پائے جاتے ہیں۔

مطلق قیمت کے خواص

ای کسی مجھی عدد اور نفی عدد کی مطلق قیمتیں ایک جیسی ہوں گی۔ |-a|=|a| .1

عاصل ضرب ہو گا۔ |ab|=|a||b| .2 عاصل ضرب ہو گا۔

و گات مطلق قیمت، مطلق قیمت، مطلق تقسیم کی مطلق تقسیم ہو گا۔ ا $\left| rac{a}{b}
ight| = \left| rac{a}{b!}
ight|$.3

4. $|a+b| \le |a|+|b|$ دو اعداد کے مجموعہ کی مطلق قیت دونوں کے مطلق قیتوں کے مجموعہ سے کم یا اس کے برابر ہو گی۔اس کو تکونی عدم مساوات کہتے ہیں۔

|a| + |b| کی علامتیں مختلف ہوں تب |a+b| کی قیمت سے کم ہو گی۔اس کے علاوہ ہر صورت |a+b| = |a| + |b| ہو گا۔

مثال 1.3:

$$|-2+6| = |4| = 4 < |-2| + |6| = 8$$

 $|2+6| = |8| = |2| + |6|$
 $|-2-6| = |-8| = 8 = |-2| + |-6|$

1.1. حقیقی اعب داداور حقیقی خط

П

مطلق کی علامت قوسین کی طرح کردار ادا کرتی ہے۔مطلق کی علامت کے اندر جمع، منفی وغیرہ مکمل کرنے کے بعد مطلق قیمت حاصل کی جاتی ہے۔

مثال 1.4: مساوات |2x-1|=1 کو حل کریں۔

عل: اس مساوات کے تحت $2x-1=\mp 11$ ہو سکتا ہے لہذا اس کے دو ممکن جوابات ہیں جو مطلق کی علامت کے بغیر دو مساوات سے حاصل کی جاتی ہیں۔

$$2x - 1 = 11$$
 $2x - 1 = -11$
 $2x = 12$ $2x = -10$
 $x = 6$ $x = -5$

مطلق قيمت والےعدم مساوات

عدم مساوات |a| < D ہوں |a| > 0 سے |a| < D عدم مساوات |a| < D ہے۔ یوں |a| < D اور |a| < D عدم مساوات |a| < D ہوں |a| < D عدم مساوات |a| < D ہوں اور |a| <

مطلق قيمتين اور وقفے

اگر D کوئی مثبت عدد ہو، تب

$$|a| < D \iff -D < a < D$$

$$(1.2) |a| \le D \iff -D \le a \le D$$

مثال 1.5: عدم مساوات |x-3| < 7 کو حل کریں اور حل سلسلہ کو حقیقی خط پر ترسیم کریں۔ حل:

$$|x-3| < 7$$
 $-7 < x - 3 < 7$
 $-7 + 3 < x < 7 + 3$
 $-4 < x < 10$
 1.1
 1.1
 1.1
 1.1
 1.1
 1.1
 1.1

باب 1. است دائی معلومات

10

حل سلسله کھلا وقفہ (-4,10) ہے۔

مثال 1.6: عدم مساوات
$$1 < \frac{2}{x}$$
 $\left| 3 - \frac{2}{x} \right|$ کو حل کریں۔ حل:

$$\left|3-\frac{2}{x}\right|<1\iff -1<3-\frac{2}{x}<1$$
 ماوات 1.1 مناوات 3 مناوات 3 $-4<-\frac{2}{x}<-2$ مناوات 3 $2>\frac{1}{x}>1$ مناوات 3 مناوات 3 مناوات 2 مناوات 2 مناوات 3 مناوات 1.1 مناوات 3 مناوات 3 مناوات 3 مناوات 3 مناوات 1.1 مناوات 3 مناوات 3 مناوات 1.1 مناوات

اس مثال میں عدم مساوات پر مختلف حسابی اعمال کا اطلاق کیا گیا۔ آپ نے دیکھا کہ منفی عدد سے ضرب دینے سے عدم مساوات الٹ ہو جاتی ہے۔ اس طرح اگر دونوں ہاتھ مثبت ہوں تب معکوس لینے سے عدم مساوات الٹ ہوتی ہے۔ اصل عدم مساوات اس صورت مطمئن ہوگی جب $\frac{1}{2} < x < 1$ ہو۔ حل سلسلہ کھلا وقفہ $(\frac{1}{2}, 1)$ ہے۔ اصل عدم مساوات اس صورت مطمئن ہوگی جب

مثال 1.7:
$$(-1.5)$$
 عدم مساوات عل کریں۔ حل سلسلہ ترسیم کریں۔ مثال 1.7: $|2x-5| \ge 1$ (الف) $|2x-5| \ge 1$

$$|2x-5| \le 1$$
 $-1 \le 2x-5 \le 1$
 $4 \le 2x \le 6$
 $2 \le x \le 3$
 1.2
 1.5
 5
 5
 5
 5

حل سلسله بند وقفه [2,3] ہے۔

1.1. حقیقی اعب داداور حقیقی خط 11

(ب)

$$|2x - 5| \ge 1$$

$$2x - 5 \ge 1$$

$$2x \ge 6$$

$$x \ge 3$$

$$-(2x - 5) \ge 1$$

$$2x - 5 \le -1$$

$$2x \le 4$$

$$x \le 2$$

 $-\infty$ حل سلسله $(-\infty,2] \cup [3,\infty)$

درج بالا مثال کے دوسرے حل سلسلہ میں و قفوں کی اشتراکی18 کی علامت 🕕 استعال کی گئی ہے۔دو سلسلوں کی اشتراک میں ایک عدد اس صورت پایا جاتا ہے جب یہ عدد کسی ایک یا دونوں سلسلوں میں پایا جاتا ہو۔اس طرح ہم تقاطع ¹⁹ کی علامت 🕥 بھی استعال کرتے ہیں۔دو سلسلوں کی تقاطع میں ایک عدد اس صورت پایا جاتا ہے جب بیہ عدد دونوں سلسلوں میں بایا جاتا ہو۔مثال کے طور پر $[2,3] = [2,4] \cap [1,3]$ ہو گا۔

سوالات

سوال 1.1: عدد أو كو دہراتے ہندسوں كى روب ميں ككھيں جہال دہراتے ہندسوں كے اوير كلير كھينجي گئی ہو۔اسی طرح 💈 ، 👸 اور 8 کو بھی اعشاری روپ میں کھیں۔ $0.\overline{1}, 0.\overline{2}, 0.\overline{3}, 0.\overline{8}$ جواب:

 $union^{18}$

 $[\]rm intersection^{19}$

 $\frac{9}{11}$ اور $\frac{3}{11}$ ، $\frac{2}{11}$ کو اعشاری روپ میں کھیں۔ دہراتے ہندسوں کے اوپر کلیر کھینیں۔ $\frac{1}{11}$ ، اور $\frac{3}{11}$ اور $\frac{3}{11}$ کو بھی اعشاری روپ میں کھیں۔

عدم مساوات

سوال 1.3: x = 2 < x < 6 ہو تب درج ذیل میں کون سے حالی فقرے x = 2 لازماً درست ہیں اور کون سے ضروری نہیں کہ درست ہوں۔

$$-6 < -x < 2 \ j \qquad \qquad \frac{1}{6} < \frac{1}{x} < \frac{1}{2} \ , \qquad \qquad 0 < x < 4 \ l$$

$$1 < \frac{6}{x} < 3 \ , \qquad \qquad 0 < x - 2 < 4 \ .$$

$$-6 < -x < -2 \ \mathcal{U} \qquad \qquad |x - 4| < 2 \ , \qquad \qquad 1 < \frac{x}{2} < 3 \ .$$

سوال 1.4: اگر y = 5 - 1 - y ہو تب درج ذیل میں سے کون سے حمالی فقرے y = 5 - 1 درست ہیں اور کون سے ضروری نہیں کہ درست ہوں۔

عدم مساوات حل کرتے ہوئے حل سلسلہ ترسیم کریں۔

$$2x - \frac{1}{2} \ge 7x + \frac{7}{6}$$
 :1.9 سوال $2x > 4$:1.5 عواب: $x \le -\frac{1}{3}$:جواب: $x < -2$:جواب:

$$\frac{6-x}{4} < \frac{3x-4}{2}$$
 :1.10 سوال $8-3x \ge 5$:1.6

$$\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$$
 :1.11 سوال $x < -\frac{6}{7}$:1.7 سوال $x < \frac{6}{7}$:2.17 شوال $x < \frac{5}{4}$:4.17 شوال $x < \frac{5}{4}$:4.17 شوال $x < \frac{5}{4}$:4.17 شوال $x < \frac{5}{4}$:4.18 شوال $x < \frac{5}{4}$:4.19 شوال x

$$-\frac{x+5}{2} \le \frac{12+3x}{4}$$
 :1.12 سوال $3(2-x) > 2(3+x)$:1.8

1.1. حقیقی اعب داداور حقیقی خط

مطلق قیمت درج ذیل مساوات حل کریں۔

|1-t|=1 :1.16 عوال |y|=3 :1.13 عوال |y|=3 :3.19 جواب:

 $|8-3s|=rac{9}{2}$:1.17 عوال |y-3|=7 :1.14 عوال |y-3|=7

|2t+5|=4 نوال 1.15 يوال |2t+5|=4 يوال |2t+5|=4 يوال $|\frac{s}{2}-1|=1$ يوال $|\frac{s}{2}-1|=1$

عدم مساوات حل کریں۔ حل سلسلہ کو و قفوں یا و قفوں کے اشتراک کی صورت میں کھیں۔ حل سلسلہ ترسیم کریں سوال 1.19 |x| < 2 |x| < 2 -2 < x < 2 جواب: x < 2

 $|x| \le 2$:1.20 well

 $|t-1| \le 3$:1.21 سوال $-2 \le t \le 4$:جواب:

|t+2| < 1 :1.22

|3y-7| < 4 :1.23 سوال $1 < y < \frac{11}{3}$:جواب

|2y+5| < 1 :1.24

 $\left|\frac{z}{5}-1\right| \leq 1$:1.25 عواب: $0 \leq z \leq 10$

$$\left|\frac{3}{2}z-1\right|\leq 2$$
 :1.26 سوال

$$\left|3-\frac{1}{x}\right|<\frac{1}{2}$$
 :1.27 عوال $\frac{2}{7}< y<\frac{11}{3}$ ي $\frac{10}{35}< x<\frac{14}{35}$:جاب:

$$\left|\frac{2}{x}-4\right|<3$$
 :1.28

$$|2s| \geq 4$$
 يوال $(-\infty, -2] \cup [2, \infty)$ يواب:

$$|s+3| \geq \frac{1}{2}$$
 :1.30 well

$$|1-x|>1$$
 عوال 1.31 نام $(-\infty,0)\cup(2,\infty)$

$$|2-3x| > 5$$
 :1.32

$$\left| rac{r+1}{2}
ight| \ge 1$$
 :1.33 يواب : $(-\infty, -3] \cup [1, \infty)$

$$\left|\frac{3}{5}r-1\right|>\frac{2}{5}$$
 :1.34

دو درجی عدم مساوات

دو در جی عدم میاوات حل کرتے ہوئے حل سلسلہ کو ترسیم کریں اور اس کو و قفوں کی اشتراک کی صورت میں $\sqrt{a^2} = |a|$ کا استعال کریں۔ جہاں ضرورت ہو وہاں $\sqrt{a^2} = |a|$ کا استعال کریں۔

$$x^2 < 2$$
 :1.35 سوال $(-\sqrt{2}, \sqrt{2})$ جواب

$$4 \le x^2$$
 :1.36 سوال

$$4 < x^2 < 9$$
 :1.37 سوال $(-3, -2) \cup (2, 3)$ جواب

$$\frac{1}{9} < x^2 < \frac{1}{4}$$
 :1.38 well

1.1. حقیقی اعبداداور حقیقی خط

$$(x-1)^2 < 4$$
 :1.39 سوال
جواب $(-1,3)$

$$(x+3)^2 < 2$$
 :1.40 سوال

$$x^2 - x < 0$$
 :1.41 سوال
جواب $(0,1)$

$$x^2 - x - 2 > 0$$
 :1.42

نظریہ اور مثالیں

سوال 1.43: اس غلط فہمی میں مبتلانہ ہوں کہ |-a|=a ہے۔ کس حقیقی عدد a کے لئے ایبا درست ہے اور کس کے لئے یہ درست نہیں ہے۔ a

جواب: تمام منفی حقیق اعداد کے لئے یہ غلط ہے جبکہ $a \geq 0$ کے لئے درست ہے۔

سوال 1.44: مساوات
$$|x-1|=1-x$$
 کو حل کریں۔

سوال 1.45: سکونی عدم مساوات کا ثبوت۔ $|a+b|=(a+b)^2$ سے شروع کرتے ہوئے تکونی عدم مساوات کو درج ذیل طریقہ سے ثابت کریں۔

$$|a+b|^{2} = (a+b)^{2}$$

$$= a^{2} + 2ab + b^{2}$$

$$\leq a^{2} + 2|a||b| + b^{2}$$

$$\leq |a|^{2} + 2|a||b| + |b|^{2}$$

$$= (|a| + |b|)^{2}$$

$$|a+b| \leq |a| + |b|$$

سوال 1.46: ثابت کریں کہ کسی بھی اعداد a اور b کے لئے |ab|=|a||b| ہو گا۔

x>-1 اور x>-1 اور x>-1 اور x>-1 اور x>-1 ہوں تب x>-1 بارے میں کیا کہا جا سکتا ہے؟ جواب:

سوال 1.48: عدم مساوات $|x|+|y|\leq 1$ ترسیم کریں۔

ووال 1.49 (الف) $\frac{x}{2} = \frac{x}{2}$ اور $g(x) = 1 + \frac{4}{x}$ اور $f(x) = \frac{x}{2}$ کی وہ قیمتیں تلاش کریں جن پر جن پر $\frac{x}{2} > 1 + \frac{4}{x}$ ہوگا۔ (ب) ترسیم سے حاصل میتجہ کو تحلیلی طور پر دوبارہ ثابت کریں۔ جواب: $(-2,0) \cup (4,\infty)$

وال 1.50 (الف) تفاعل $g(x) = \frac{2}{x+1}$ اور $g(x) = \frac{2}{x+1}$ کو ایک جگه ترسیم کرتے ہوئے x کی وہ قیمتیں تلاش کریں جن پر $\frac{3}{x-1} < \frac{2}{x+1}$ ہو گا۔ (ب) ترسیم سے حاصل نتیجہ کو تحکیلی طور پر ثابت کریں۔

1.2 محدد، خطوطاور برهوتري

اس حصہ میں محدد اور خطوط پر نظر ثانی کی جائے گی اور اضافے کی تصور پر بھی غور کیا جائے گا۔

مستوی میں کار تیسی محد د

مستوی میں دو حقیقی قائمہ خطوط شکل 1.2 میں دکھائی گئی ہیں جو ایک دوسرے کو 0 پر قطع کرتی ہیں۔ان خطوط کو مستوی میں محددی محود x کی ہیں۔افقی x محور پر اعداد کو x سے ظاہر کیا جاتا ہے جو دائیں رخ بڑھتے ہیں۔افقط جس پر x اور ہیں۔انتصابی y محور پر اعداد کو y سے ظاہر کیا جاتا ہے اور یہ اعداد اوپر رخ بڑھتے ہیں۔وہ نقطہ جس پر x اور y دونوں y موں محددی نظام کا مبدا x کہلاتا ہے جس کو عموماً حرف y سے ظاہر کیا جاتا ہے۔

مستوی میں نقطہ P سے دونوں محور پر قائمہ خطوط کھنچے جا سکتے ہیں۔اگر P سے x محور پر قائمہ خط y محور پر قائم محور پر قائم کے محد کے مح

coordinate axis²⁰ origin²¹

x-coordinate²²

1.2. محسد د، خطوطاور برمعوتري

شكل 1.2: كار تيسى محدد

 24 کو 24 کو 24 کا 25 عددی جوڑی 25 ہو گا۔ مرتب جوڑی 26 کو نقطے کی محددی جوڑی کا 25 محدد 25 نقط 25 کا محدد 25 مح

محور x کو مبدا دو حصول میں تقسیم کرتا ہے۔ مبدا کے دائیں جانب مثبت x محور x اور مبدا کے بائیں جانب منفی x معور x مبدا ہور x ہو

بيما

ایبا ترسیم، مثلاً رفتار بالمقابل وقت، جس کے دو متغیرات کی اکائیاں مختلف ہوں میں دونوں محور پر اکائی متغیر کو ایک جیسا رکھنے کی کوئی ضرورت نہیں ہوتی ہے۔یوں رفتار بالمقابل وقت کی ترسیم میں محور وقت پر ایک سنٹی میٹر کا فاصلہ

y-coordinate²³

coordinate pair²⁴

positive x-axis²⁵

negative x-axis²⁶

 $^{{\}rm quadrants}^{27}$

ایک سینڈ کو ظاہر کر سکتا ہے جبکہ رفتار کی محور پر ایک سنٹی میٹر کا فاصلہ 25 m s⁻¹ کی رفتار کو ظاہر کر سکتی ہے۔

اس کے برعکس ایسے متغیرات کی ترسیم جو غیر طبعی پیائشوں کو ظاہر کرتی ہو یا ایسے ترسیم جن میں اشکال کا معائنہ کرنا مقصد ہو، ہم دونوں محور کی تناسب پہلو²⁸ایک جیسے رکھتے ہیں لہذا دونوں محور پر پیائثی فیتہ ایک جیسا ہو گا۔

بره هو ترى اور فاصله

ایک نقطہ سے دوسرے نقطے تک حرکت کرنے سے محدد میں کل تبدیلی کو بڑھوتوی²⁹ کہتے ہیں۔ اختامی محدد سے ابتدائی محدد منفی کرنے سے بڑھوتری حاصل ہو گی۔

مثال 1.8: نقط A(4,-3) سے نقط B(2,5) نتقل ہونے سے بڑھوتری x اور بڑھوتری y درج ذیل ہوں گی (شکل 1.3)۔

$$\Delta x = 2 - 4 = 2$$
, $\Delta y = 5 - (-3) = 8$

تعریف: اگر متغیر x کی ابتدائی قیمت x_1 اور اختتامی قیمت x_2 ہو تب x کی بڑھوتری ورج ذیل ہو گی۔

$$\Delta x = x_2 - x_1$$

مثال 1.9: شکل 1.3 میں ابتدائی نقطہ C(5,6) اور اختتامی نقطہ D(5,1) ہے۔ بڑھوتری تلاش کریں۔ حل: $\Delta x=5-5=0$, $\Delta y=1-6=-5$

مستوی میں نقطوں کے بیچ فاصلہ مسلہ فیثاغورث کی مدد سے حاصل کیا جاتا ہے۔

 $[\]begin{array}{c} {\rm aspect\ ratio^{28}} \\ {\rm increments^{29}} \end{array}$

1.2. محدد، خطوطاور براهوتري

شکل 1.3: محد دی بر هوتری مثبت، منفی اور صفر ہو سکتی ہیں

مستوی میں نقطوں کے بیج فاصلے کا کلیہ

را1.4 اور نقط
$$Q(x_2,y_2)$$
 اور نقط $Q(x_2,y_2)$ اور نقط $Q(x_2,y_2)$ اور نقط $Q(x_1,y_1)$ اور نقط $Q(x_1,y_2)$ اور نقط $Q(x_2,y_2)$ اور نقط $Q(x_1,y_2)$ ا

مثال 1.10 (الف)
$$P(-1,2)$$
 اور $Q(3,4)$ اور $Q(3,4)$ فاصلہ ورج ذیل ہو گا۔ $\sqrt{(3-(-1))^2+(4-2)^2}=\sqrt{(4)^2+(2)^2}\sqrt{20}=\sqrt{4\cdot 5}=2\sqrt{5}$

شکل 1.4: دو نقطوں کے چ فاصلہ (مسکلہ فیثاغورث)

شكل 1.5: مساوات اور عدم مساوات كى ترسيم (مثال 1.11)

رب) مبدا سے
$$P(x,y)$$
 تک فاصلہ درج ذیل ہو گا۔ $\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}$

П

ترسيم

متغیرات x اور y پر بینی مساوات یا عدم مساوات کی ترسیم سے مراد ان تمام نقطوں P(x,y) کا سلسلہ ہے جو اس مساوات یا عدم مساوات کو مطمئن کرتے ہوں۔

مثال 1.11: دائرے جن کا مرکز مبدایر ہو

(الف) a>0 کی صورت میں مساوات a>0 ان تمام نقطوں P(x,y) کو ظاہر کرتی ہے a>0 جن کا مبدا سے فاصل a>0 کی $\sqrt{x^2+y^2}=\sqrt{a^2}=a$ ہو۔یہ نقطے مبدا کے گرد رداس a کے دائرے پر پائے جاتے ہیں۔یہ دائرہ مساوات a>0 کی ترسیم ہے (شکل 1.5)۔

 $\leq a$ کو مطمئن کرتے ہوئے نقطوں (x,y) کا مبدا سے فاصل $x^2+y^2\leq a^2$ عدم مساوات کی ترسیم ہو گی (شکل ہے۔ یوں مبدا کو مرکز بناتے ہوئے رداس a کا دائرہ اور اس کی اندرون اس عدم مساوات کی ترسیم ہو گی (شکل a 1.5)۔

اكانى رداس كا دائره جس كا مركز مبدا بوكو اكائى دائره 30 كت بير-

unit $circle^{30}$

1.2. محدد، خطوط اور بزهوتري

شكل 1.6: قطع مكافى (مثال 1.12)

(-2,4) اور (2,4) ، (-1,1) ، (1,1) ، (0,0) ، (0,0) اور (2,4) ، (-1,1) ، (-1,1) ، (-2,4) اور (-2,4) اور (-2,4) ، (-2,4

سيدھے خطوط

 N_1N_2 اور $N_2(x_2,y_2)$ اور $N_1(x_1,y_1)$ اور $N_2(x_2,y_2)$ اور $N_2(x_2,y_2)$ اور کتے ہیں۔

مستوی میں کسی بھی غیر انتصابی خط پر ہر دو نقطوں $N_1(x_1,y_1)$ اور $N_2(x_2,y_2)$ کے لئے درج ذیل نسبت $m=rac{\Delta y}{\Delta x}=rac{y_2-y_1}{x_2-x_1}$

کی قیمت ایک جیسی ہو گی (شکل 1.7)۔

تعریف: درج ذیل شرح

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

 $parabola^{31}$

با__1. ابت دائی معلومات 22

 $\frac{\Delta y}{\Delta x} = \frac{\Delta y'}{\Delta x}$ اور $N_1' Q' N_2'$ مثانی مثانی بین للذا $N_1 Q N_2 : 1.7$ ہو گا

غیر انتصابی خط $N_1 N_2$ کی ڈھلو ان 32 کہلاتی ہے۔

ڈھلوان ہمیں خط کی چڑھائی یا اترائی دیتی ہے۔ مثبت ڈھلوان کے خط پر دائیں رخ جلتے ہوئے چڑھائی نظر آئے گی جبکہ منفی ڈھلوان کے خطیر دائنس رخ جلتے ہوئے اترائی نظر آئے گی۔ڈھلوان کی مطلق قبت جتنی زیادہ ہو چڑھائی یا اترائی ا تنی زیادہ ہو گی۔انتصالی خط کی ڈھلوان کے لئے $\alpha = 0$ کو گا لہذا شرح $\frac{\Delta y}{\Delta x}$ غیر معین ہو گا $\alpha = 0$ خط کی ڈھلوان غیر معین ہے۔ افقی خط کی ڈھلوان 0 ہے۔

مثال 1.13: شكل 1.8 مين 1.1 كي وهلوان

$$m_1 = \frac{1 - (-1)}{4 - 0} = \frac{2}{4} = \frac{1}{2}$$

ہے، لینی، دائیں رخ دو قدم لینے سے ایک قدم چڑھائی چڑھنی پڑتی ہے۔اس طرح L₂ کی ڈھلوان

$$m_2 = \frac{0-2}{3-0} = -\frac{2}{3}$$

ہے، یعنی، دائیں رخ تین قدم چلنے سے دو قدم اترائی اترنی ہو گی۔ ہے۔یوں دائیں رخ چلتے ہوئے

x خط کی چڑھائی یا اترائی کو زاویہ میلان 34 سے بھی نایا جاتا ہے۔ x محور سے گزرتے خط کا زاویہ میلان مثبت ۔ محور سے گھڑی کی الٹ رخ نایا جاتا ہے (شکل 1.9)۔افقی خط کا زاویہ میلان °0 اور انتصابی خط کا زاویہ میلان °90 ہو گا۔اگر زاویہ میلان کو یونانی حرف تہی ϕ سے ظاہر کیا جائے تب $0 \leq \phi \leq 180^\circ$ ہو گا۔

1.2. محسده، خطوط اور بڑھوتری

شكل 1.8: چڑھائى اور اترائى (مثال 1.13)

شکل 1.9: زاویہ میلان x محور سے گھڑی کی الٹ رخ نایا جاتا ہے

(1.10 خط کی ڈھلوان m اور زاویہ میلان ϕ کا تعلق درج ذیل ہے $m= an \phi$

متوازى اور قائمه خطوط

متوازی خطوط کا زاویہ میلان ایک جیسا ہو گا لہذا ان کی ڈھلوان بھی ایک جیسی ہو گی۔اسی طرح ایک جیسی ڈھلوان والے خطوط کا زاویہ میلان ایک جیسا ہو گا لہذا ہے متوازی ہوں گے۔

اگر غیر انتصابی خطوط L_1 اور L_2 آپس میں قائمہ ہوں تب ان کی ڈھلوان m_1 اور m_2 مساوات m_1 کو مطمئن کریں گی۔ یوں ایک خط کی ڈھلوان کا منفی معکوس دوسرے خط کی ڈھلوان کے برابر ہو گا، یعنی:

$$m_1 = -\frac{1}{m_2}, \quad m_2 = -\frac{1}{m_1}$$

شكل 1.11: قائمه خطوط كى دهلوان كا تعلق

شکل 1.10: غیر انتصالی خط کی ڈھلوان اس کے زاویہ میلان کا ٹمینجنٹ ہوتا ہے

شكل 1.12: افقی اور انتصالی خطوط کی مساوات (مثال 1.14)

 $m_2 = an \phi_2 = -rac{h}{a}$ اور $m_1 = an \phi_1 = rac{a}{h}$ اور ثنگل 1.11 میں قائمہ خطوط دکھائے گئے ہیں جہاں $m_1 = an \phi_1 = rac{a}{h}$ ہوگا۔

خطوط کے مساوات

سیدھے خطوط کی مساوات نسبتاً سادہ ہوتی ہیں۔ x محور کے نقطہ a سے گزرتے انتصابی خط پر ہر نقطے کی x محدد a ہو گی۔ای طرح y محور کے نقطہ b سے گزرتے افقی خط کی مساوات a ہو گی۔ای طرح a محور کے نقطہ a سے گزرتے افقی خط کی مساوات a ہو گی۔

x=4 اور y=2 اور y=2 اور y=3 اور انتصابی خطوط کے مساوات بالترتیب y=3 اور y=3 ہوں گی (شکل 1.12)۔

1.2. محسد د، خطوطاور برمعوتري

اگر ہمیں غیر انتصابی سیدھے خط L کی ڈھلوان معلوم ہو اور اس خط پر کوئی نقطہ $N_1(x_1,y_1)$ معلوم ہو تب ہم اس کی مساوات لکھ سکتے ہیں۔اگر اس خط پر N(x,y) کوئی دوسرا نقطہ ہو تب

$$m = \frac{y - y_1}{x - x_1}$$

ہو گا جس کو

 $y-y_1=m(x-x_1)$ \Longrightarrow $y=y_1+m(x-x_1)$ کھا جا سکتا ہے جو اس خط کی مساوات ہے۔

 $y=y_1+m(x-x_1)$ تعریف: نقطہ (x_1,y_1) سے گزرتے ایباخط جس کی ڈھلوان m ہو کی مساوات (x_1,y_1) ہو گی جس کو خط کی نقطہ۔ڈھلوان مساوات (x_1,y_1)

مثال 1.15: نقطہ (3,2) سے گزرتا خط جس کی ڈھلوان $\frac{2}{3}$ ہو کی مساوات تلاش کریں۔ حل:

$$y = 2 - \frac{2}{3}(x - 3)$$
 \implies $y = -\frac{2}{3}x + 4$

П

مثال 1.16: نقطہ (2,-1) اور (3,4) سے گزرتا خط کی مساوات تلاش کریں۔ حل: اس خط کی ڈھلوان

$$m = \frac{-1-4}{-2-3} = \frac{-5}{-5} = 1$$

ہے۔ہم دونوں نقطوں میں سے کوئی ایک لیتے ہوئے خط کی مساوات حاصل کر سکتے ہیں۔طریقہ کار درج ذیل ہے۔

$$y = -1 + 1 \cdot (x - x(-2))$$
 فقط $y = x + 1$ فقط $y = x + 1$

شکل 1.14: غیر انتصابی اور غیر افقی خط کے محوری قطعات

شکل 1.13: دو نقطوں میں گزرتے خط کی مساوات (مثال (1.16)

آپ نے دیکھا کہ دونوں سے ایک جیسی مساوات حاصل ہوتی ہے (شکل 1.13)۔

غیر انتصابی خط y محور کو جس نقطہ پر قطع کرتا ہو اس نقطہ کو خط کا y قطع 36 کہتے ہیں۔ای طرح غیر افتی خط جس نقطہ پر x محور کو قطع کرتا ہو اس نقطہ کو خط کا x قطع 37 قطع 37 قطع کرتا ہو اس نقطہ کو خط کا x قطع 37 قطع کرتا ہو اس نقطہ کو خط کا x قطع 37

غير انتصابی خط جو y محور کو (0,b) په قطع کرتا ہو کی مساوات

y = b + m(x - 0) \Longrightarrow y = mx + b

ہو گی۔

تعریف: درج ذیل مساوات

y = b + m(x - 0) \Longrightarrow y = mx + b

کو خط کی ڈھلوان۔قطع مساوات 38 کہتے ہیں۔اس خط کی ڈھلوان m ہے اور یہ y محور کو b پر قطع کرتا ہے۔

point-slope equation³⁵

 $y\text{-intercept}^{36}$

x-intercept 37

slope-intercept equation 38

1.2. محدد، خطوط اور براهوتري

 $\Box - 2$ کی و هلوان y = 3x - 7 کی و هلوان y = 3x - 7 کی و مثال 1.17: خط y = 3x - 7 کی و مثال 1.17:

درج زیل مساوات کو عمومی خطی مساوات^{39 کہتے} ہیں۔

Ax + By = C (پین بین بین ایک ساتھ صفر نہیں بین A)

ہر سیدھا خط (بشمول غیر معین ڈھلوان کا خط) کو عمومی خطی مساوات کی صورت میں لکھا جا سکتا ہے۔

مثال 1.18: خط 8x + 5y = 20 کی y قطع تلاش کریں۔ 3x + 5y = 20 خط دوپ میں لکھ کر y قطع کو مساوات سے حاصل کرتے ہیں۔

$$8x + 5y = 20$$
$$5y = -8x + 20$$
$$y = -\frac{8}{5}x + 4$$

یوں خط کی ڈھلوان $-rac{8}{5}$ اور y قطع 4 ہے۔

مثال 1.19: مبدا سے گزرتے خطوط کی مساواتیں۔ چونکہ ان خطوط کا y=mx ہوگا۔ شکل 1.15 میں چند مثالیں دکھائی y=mx مثال ہوگا۔ ان کی مساوات کی مساوات کئی ہیں۔ y=mx مثال ہوگا۔ ان کی مساوات کئی ہیں۔

خطوط اورخط كي ابميت

شعاع سیر ہے خط پر چلتی ہے۔اس طرح ساکن جسم کشش ثقل کی بنا سیدھے خط پر حرکت کرتا ہے۔ہم عموماً خط کی مساوات (جنہیں خطبی مساوات ⁴⁰ کہتے ہیں) استعال کرتے ہوئے اس طرح کی طبعی اعمال پر غور کرتے ہیں۔

general linear equation³⁹ linear equations⁴⁰

ابت دائی معلومات اللہ معلومات

شکل 1.15: مبدا سے گزرتا خط کی مساوات y=mx ہے جہاں m خط کی ڈھلوان ہے

بہت سارے اہم مقدار آپس میں خطی تعلق رکھتے ہیں۔ یہ جانتے ہوئے کہ دو مقدار آپس میں خطی تعلق رکھتے ہیں، ہم ان کی مطابقتی قیمتوں کی کسی بھی دو جوڑیوں سے یہ تعلق دریافت کر سکتے ہیں۔ ڈھلوان سے ہمیں چڑھائی معلوم ہوتی ہے یا مقداروں کی تبدیلی کی شرح معلوم ہوتی ہے۔اسی بنا احصاء میں ڈھلوان کلیدی کردار ادا کرتا ہے۔

مثال 1.20: برقی دور میں برقی دباو V اور برقی رو I کا تعلق V ہے جو خطی مساوات ہے۔اس مثال 1.20: R ہے جس کو مزاحمت کہتے ہیں۔

سوالات

بڑھوتری اور کٹوتی ایس کے بڑھوتری Δx اور Δy تاش کریں اور A سے B تک فاصلہ تلاش کریں۔

A(-3,2), B(-1,-2) :1.51

A(-1,-2), B(-3,2) :1.52 سوال

A(-3.2,-2), B(-8.1,-2) :1.53

 $A(\sqrt{2},4), B(0,1.5)$:1.54

دیا گیا مساوات ترسیم کریں۔ترسیم پر تبھرہ کریں۔

1.2. محدد، خطوط اور براهوتري

 $x^2 + y^2 = 1$:1.55 سوال

 $x^2 + y^2 = 2 \quad :1.56$

 $x^2 + y^2 \le 3$:1.57 سوال

 $x^2 + y^2 = 0 \qquad :1.58$

ڈھلوان، خطوط اور محوری قطعات

دیے گئے نقطوں کو ترسیم کریں۔ جہاں ممکن ہو، نقطوں کو ملانے والے خط کی ڈھلوان تلاش کریں۔ خط AB کی قائمہ خطوط کی ڈھلوان تلاش کریں۔

A(-1,2), B(-2,-1) :1.59

A(-2,1), B(2,-2) :1.60 سوال

A(2,3), B(-1,3) :1.61 $\mathcal{A}(2,3)$

A(-2,0), B(-2,-2) :1.62

دیے گئے نقطہ سے گزرتا (الف) انتصابی خط اور (ب) افتی خط کی مساوات تلاش کریں۔

 $(-1,\frac{4}{3})$:1.63

 $(\sqrt{2}, -1.3)$:1.64

 $(0, -\sqrt{2})$:1.65

 $(-\pi,0)$:1.66

خط کی مساوات تلاش کریں۔خط کی تفصیل دی گئی ہے۔

سوال (-1,1) نقطہ (-1,1) سے گزرتا خط جس کی ڈھلوان (-1,1)

با_1. ابت دائی معلومات

سوال 1.68: نقطه (2, -3) سے گزرتا خط جس کی ڈھلوان $\frac{1}{2}$ ہو۔

سوال 1.69: نقطه (3,4) اور (-2,5) سے گزرتا خط-

سوال 1.70: نقطہ (-8,0) اور (-1,3) سے گزرتا خط۔

سوال 1.71: وهلوان $\frac{5}{4}$ اور y قطع 6 ہے۔

سوال 1.72: وهلوان $\frac{1}{2}$ اور y قطع 3 - ہے۔

سوال 1.73: نقط (9- ,12) سے گزرتا جس کی ڈھلوان 0 ہو۔

سوال 1.74: نقطه (2, أي سے گزرتا جس كى كوئى و هلوان نه ہو۔

سوال 1.75: جس کا x قطع y اور y قطع 4 ہو۔

y اور y قطع x اور y قطع y ہو۔

2x + 5y = 15 سے گزرتا ہو اور خط 2x + 5y = 15 کے متوازی ہو۔ :1.77

سوال 1.78: جو نقطہ $(-\sqrt{2},\sqrt{2})$ سے گزرتا ہو اور خط 3 ہو۔ $\sqrt{2}$ ہو۔ $\sqrt{2}$

4,10 کا قائمہ ہو۔ 6x - 3y = 13 کا تائمہ ہو۔

خط کا x قطع اور y قطع تلاش کریں۔ان معلومات کو استعمال کرتے ہوئے خط ترسیم کریں۔ (سوال 1.80 تا سوال 1.83)

3x + 4y = 12 :1.80 سوال

x + 2y = -4 :1.81

 $\sqrt{2}x - \sqrt{3}y = \sqrt{6}$:1.82 سوال

1.5x - y = -3 :1.83

1.2. محدد، خطوطاور براهوتري

سوال 1.84: کیا $Ax + By = C_1$ اور $Bx - Ay = C_2$ اور $B \neq 0$ اور $B \neq 0$ بیں) میں کوئی خاص تعلق پایا جاتا ہے۔ تعلق کی وجہ بیان کریں۔

سوال 1.85: کیا $Ax + By = C_1$ اور $Ax + By = C_1$ اور $Ax + By = C_1$ اور $Ax + By = C_1$ بیں) میں کوئی خاص تعلق پایا جاتا ہے۔ تعلق کی وجہ بیان کریں۔

بڑھوتری اور حرکت

 $\Delta y = -6$ ، $\Delta x = 5$ سوال $\Delta y = -6$ ، $\Delta x = 5$ ابتدائی مقام $\Delta y = -6$ ، $\Delta x = 5$ بیل اس کی بر معوتری $\Delta y = -6$ ، میل مقام تلاش کریں۔

 $\Delta y = 0$ ، $\Delta x = -6$ ابتدائی مقام A(6,0) ہے جبکہ اس کی بڑھوتری $\Delta x = -6$ ہیں۔ ذرہ کا اختتامی مقام تلاش کر س۔

موال 1.88 ایک ذرہ A(x,y) سے B(3,-3) سے B(3,-3) منتقل ہوتا ہے۔اس کی بڑھوتری $\Delta x=5$ اور $\Delta y=6$ بیں۔ابتدائی نقطہ تلاش کریں۔

سوال 1.89: ایک ذرہ A(1,0) سے حرکت کرتے ہوئے مبدا کے گرد گھڑی کی الٹ رخ ایک چکر مکمل کرنے کے بعد A(1,0) کو واپس لوٹنا ہے۔اس کے محدد میں کل تبدیلی کیا ہے؟