

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

LEADER & ACHIEVER COURSE

PHASE: MLA, MAZA, MAZB, MAZC, MAZD, MAZL, MAZN, MAZO, MAAX, MAAY, MAPA, MAPB, LAKSHYA

TARGET: PRE MEDICAL 2025

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 21-03-2025

	ANSWER KEY																													
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	1	1	1	4	2	3	1	1	1	4	4	2	2	4	4	1	4	4	2	3	1	2	2	4	2	1	2	2	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	3	3	4	4	3	1	4	1	3	2	3	1	2	1	4	2	1	1	1	3	2	3	3	2	4	4	4	4	4	4
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	2	4	4	2	3	4	3	1	2	3	3	2	1	1	3	3	2	3	2	2	3	4	1	3	3	2	2	2	1	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	2	1	1	3	2	2	2	2	1	3	2	2	2	1	3	4	2	3	2	1	3	3	1	3	3	1	1	3	1
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	3	1	1	2	4	3	1	3	4	1	1	3	2	3	1	3	4	3	1	3	2	2	3	3	4	1	1	4	3	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	2	2	2	1	3	3	1	1	4	1	1	2	2	3	3	1	4	1	2	1	2	2	3	1	1	2	3	3	4

HINT - SHEET

- 1. Ans (3) NCERT XII Pg. No: 221
- 2. Ans (1) NCERT-XII Page No. # 224
- 3. Ans (1) NCERT-XII Pg. # 225
- 4. Ans (1)
 NCERT XII Page No. 224
- 5. Ans (4) NCERT-XII, Pg. No. # 191, 192, 194, 195
- 6. Ans (2) NCERT-XII, Pg. # 194, 195, 207, 220
- 7. Ans (3)
 NCERT XII, Page No. 193, 208, 213, 206
- 8. Ans (1) NCERT XII, Page No. 194-196

- 9. Ans (1) NCERT-XII, Pg. # 207
- 10. Ans (1) NCERT-XII, Pg. # 198
- 11. Ans (4) NCERT Pg. # 210
- 12. **Ans (4)**NCERT Pg. # 207
- 13. **Ans (2)**NCERT Pg. # 207
- **14. Ans (2)** NCERT Pg. # 207
- 19. Ans (4) NCERT, Pg. # 209
- **20. Ans (2)** NCERT, Pg. # 201

ALLEN®

- **22. Ans (1)** NCERT, Pg. # 201,202
- 25. Ans (4) NCERT Pg. # 201, 202
- **26. Ans (2)** NCERT, Pg # 207, 208
- **27. Ans (1)** NCERT, Pg # 209, 210
- 28. Ans (2) NCERT Pg. # 198, 199
- **29. Ans (2)** NCERT-XII, Pg. # 202
- **30. Ans (1)** NCERT, Pg. # 199
- 31. Ans (3) NCERT Pg. # 200
- 32. Ans (3) NCERT Pg. # 201
- **33. Ans (4)** NCERT Pg. No. # 200
- **34. Ans (4)** NCERT Pg. No. # 199
- **35. Ans (3)** NCERT Pg. No. # 198
- **36. Ans (1)** NCERT Pg. No. # 190, Module
- **38. Ans (1)** NCERT XII Pg. # 201
- 39. Ans (3) NCERT Pg # 206
- **42. Ans (1)** NCERT XII Pg. # 200
- **43. Ans (2)** NCERT-XII, Pg. 210
- **44. Ans (1)** NCERT, Pg. # 210, 211

- **46. Ans (2)** Module No. 11, Page No. 7
- **47. Ans (1)** NCERT Pg#157
- **48. Ans (1)** NCERT Pg#130
- **49.** Ans (1) NCERT Pg#136
- **50. Ans (3)** NCERT Pg#159
- **51. Ans (2)** NCERT Pg#158,159
- **52. Ans (3)** NCERT Pg#158,159
- 53. Ans (3) NCERT Pg#131
- **54. Ans (2)** NCERT Pg#142
- 55. Ans (4) NCERT Pg. # 142, 143
- **56. Ans (4)** NCERT-XII, Pg. # 149, Para-8.1
- 57. **Ans (4)**NCERT Pg. 161
- 58. Ans (4) NCERT-XII, Pg. # 153 (E), 150 (H)
- **59. Ans (4)** NCERT-XII, Pg. # 160 (E), 158 (H)
- **60. Ans (4)** NCERT-XII, Pg. # 154
- 61. Ans (2)
 Macrophage
- **62. Ans (4)** Module No. # 11, Pg. No. # 3
- **63. Ans (4)** Module No. # 11, Pg. No. # 3

64. Ans (2)

NCERT (XII) Pg # 160

- 65. Ans (3)
 NCERT Pg. # 142
- **66. Ans (4)** NCERT Pg. # 134,135
- 67. Ans (3)
 NCERT Pg. # 131
- **68. Ans (1)** NCERT Pg. # 132
- **69. Ans (2)** NCERT Pg. # 138 147
- **70. Ans (3)** NCERT Pg. # 136 (E), 149 (H)
- 71. Ans (3)
 Module-11, Pg.# 87
- **72. Ans (2)** 1953
- 73. Ans (1)
 Module-11, PG-96
- 74. **Ans** (1) NCERT-XII
- **75. Ans (3)** NCERT, Pg. # 122(E), 133(H)
- **76. Ans (3)** NCERT, Pg. # 114
- 77. Ans (2)
 NCERT Pg. # 124
- **78. Ans (3)** NCERT, Pg. # 121
- **79. Ans (2)** NCERT, Pg. # 124
- 80. Ans (2) NCERT, Pg. # 115(E), 126(H)
- 81. **Ans (3)**NCERT-XII

- **82. Ans (4)** NCERT-XII Page No. 114, Fig-6.2
- **83. Ans (1)** NCERT XII Pg # 123
- 84. Ans (3) NCERT, Pg. # 119
- 85. Ans (3) NCERT-XII Pg. No. # 130,133, 134
- 86. Ans (2)
 Module 11 Pg # 91
- 87. Ans (2)
 Homo erectus
- 88. Ans (2) Module-11, Pg. # 91
- 89. Ans (1) NCERT Page No. 122
- 90. Ans (3) NCERT-XII, Pg. No. # 131, 132
- 91. Ans (3)
 Here both diode are R.B.

92. Ans (2)

 \therefore $n_i = 10^{10}$ & $n_h = N_A = 10^{15}$ atom / cm³ From mass-action law

$$n_i^2 = n_e \cdot n_h$$

$$\therefore n_e = \frac{n_i^2}{n_h} = \frac{\left(10^{10}\right)^2}{10^{15}} = \frac{10^{20}}{10^{15}} = 10^5 \text{ cm}^{-3}$$

93. Ans (1)

In forward bias

 $i_{diffusion} > i_{drift}$ \downarrow \downarrow due to majority due to minority

charge carriers charge carriers \therefore $I_{forward}$ is always greater than $I_{reverse}$

94. Ans (1)

$$Y = A \cdot B + (A + B) \cdot A$$

$$= A \cdot B + A \cdot A + A \cdot B$$

$$= A \cdot B + A + A \cdot B$$

$$= A (B + 1 + B)$$

$$= A$$

95. Ans (3)

In LED photons are emitted due to recombination of e-holes.

96. Ans (2)

Antimony is pentavalent impurity so semiconductor becomes N type and impurity becomes donor impurity.

Due to impurity conductivity increase so resistance decrease.

97. Ans (2)

The order of energy band gap is

Conductors < Semiconductors < Insulators

98. Ans (2)

Depletion layer produce due to diffusion of majority charge carriers.

$$I = \frac{V - V_0}{R} = \frac{3 - 0.7}{300} = 7.67 \text{ mA}$$

$$I_z = \frac{P_z}{V_z} = \frac{600 \times 10^{-3}}{24} = 25 \times 10^{-3} \text{ A}$$

Voltage drop across R = 32 - 24 = 8 V

$$R = \frac{8}{25 \times 10^{-3}} = 320 \Omega$$

$$Y = (A + B) \cdot B$$

$$Y = A \cdot B + A$$

$$= A(B+1)$$

$$= A$$

103. Ans (2)

$$v = \frac{C}{\mu} = \frac{3 \times 10^8}{1.33} = \frac{9}{4} \times 10^8 \text{ m/s}$$

$$t = \frac{\text{dist}}{\text{speed}} = \frac{500 \times 4}{9 \times 10^8} = 2.22 \text{ }\mu\text{s}$$

104. Ans (2)

$${}_{2}\mu_{1} \times {}_{3}\mu_{2} \times {}_{4}\mu_{3} = \frac{\mu_{1}}{\mu_{2}} \times \frac{\mu_{2}}{\mu_{3}} \times \frac{\mu_{3}}{\mu_{4}}$$
$$\frac{\mu_{1}}{\mu_{4}} = {}_{4}\mu_{1}$$

105. Ans (1)

$$m = -\frac{v}{u} = -\left(\frac{-10}{-30}\right) = -\frac{1}{3}$$

 $v_1 = |m|^2 v_0 = 1 \text{ cm/s}$

106. Ans (3)

$$i = 45^{\circ}$$
; $A = 60^{\circ}$; $e = 45^{\circ}$

$$\delta_{\min} = i + e - A = 45 + 45 - 60$$

$$\delta_{\min} = 30^{\circ}$$

$$\mu = \frac{\sin\left(\frac{\delta_{min} + A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$= \frac{\sin\left(\frac{30 + 60}{2}\right)}{\sin\left(\frac{60}{2}\right)} = \frac{1/\sqrt{2}}{1/2}$$

$$\mu = \sqrt{2}$$

107. Ans (4)

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

$$\mu_1 = 1; \ \mu_2 = \frac{3}{2}; \ u = 30$$

$$R = 10 \text{ cm}$$

$$\therefore \frac{1}{v} - \frac{3}{2 \times 30} = \frac{\left(1 - \frac{3}{2}\right)}{10}$$

$$\frac{1}{v} = \frac{1}{20} + \frac{1}{20}$$

$$\frac{1}{v} = 0 \Rightarrow v = \infty$$

108. Ans (2)

$$P = \frac{100}{f(cm)} = (\mu - 1) \left[\frac{2}{R(cm)} \right] \times 100$$

$$(\mu - 1)\left(\frac{2}{5}\right) \times 100 = 20$$

$$\mu - 1 = \frac{1}{2} \Rightarrow \mu = \frac{3}{2}$$

109. Ans (3)

$$M.P. = \frac{\beta}{\alpha} = \frac{f_o}{f_e}$$

$$\alpha = \frac{1^{\circ}}{2}$$
; $f_0 = 100$ cm; $f_e = 2$ cm

$$\beta = \frac{f_0}{f_0} \alpha = \frac{100}{2} \times \frac{1^{\circ}}{2} = 25^{\circ}$$

110. Ans (2)

$$f_0 = 60 \text{ cm}$$
; $f_e = ?$; M.P. = 20

M.P. =
$$\frac{f_0}{f_e} \Rightarrow f_e = \frac{60}{20} = 3 \text{cm}$$

111. Ans (1)

112. Ans (3)

Angle of incidence $i = 45^{\circ}$

For blue and green

$$i_c > i$$

For red $i_c < i$.

113. Ans (3)

When light ray travels parallel to the base, the light suffers minimum deviations.

So, for minimum deviation, $\delta_{min} = 40^{\circ}$

$$i = e = 45^{\circ}$$
 (from graph)

114. Ans (1)

Using the lens formula:

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

Here, u = -30, cm, v = 20, cm

$$\frac{1}{f} = \frac{1}{20} - \frac{1}{-30} = \frac{1}{20} + \frac{1}{30} = \frac{5}{60} = \frac{1}{12}$$
So, $f = 12$ cm

115. Ans (3)

$$\lambda = 500 \text{ nm}; d = 1 \text{ mm}; D = 1 \text{ m}$$

$$I = \frac{I_{\text{max}}}{2} = I_{\text{max}} \cos^2(\phi/2)$$

$$\frac{\phi}{2} = \frac{\pi}{4} \Rightarrow \phi = \frac{\pi}{2}$$
 (phase difference)

∴ Path difference

$$\Delta x = \frac{\phi}{2\pi}. \lambda = \frac{\pi \lambda}{2 \times 2\pi}$$

$$\Delta x = \frac{\lambda}{4} \qquad \dots (i)$$

As
$$\Delta_X = \frac{yd}{D}$$
(ii)

From (i) and (ii)
$$y = \frac{\lambda}{4} \times \frac{D}{d}$$

$$y = \frac{500 \times 10^{-9} \times 1}{4 \times 10^{-3}}$$
$$= 1.25 \times 10^{-4} \text{ m}$$

116. Ans (3)

$$\frac{A}{B} = \frac{3}{5}$$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{A+B}{A-B}\right)^2 = \left(\frac{5+3}{5-3}\right)^2 = \frac{16}{1}$$

117. Ans (1)

$$d' = 3d; \beta' = \frac{\lambda D}{d'}$$

$$\beta' = \frac{\lambda D}{3d} = \frac{\beta}{3}$$

118. Ans (1)

$$\lambda_{blue} < \lambda_{yellow}$$

$$\beta = \frac{\lambda D}{d}; \beta \alpha \lambda$$

119. Ans (3)

Width of central maxima = $\frac{2\lambda D}{d}$

As per question,

Width = d

$$\therefore d = \frac{2\lambda D}{d}$$

or D =
$$\frac{d^2}{2\lambda}$$

120. Ans (1)

$$n\lambda_1 = \frac{(2n+1)}{2}\lambda_2 \qquad [n=1]$$

$$n_2 = \frac{2\lambda_1}{3} = \frac{2 \times 660}{3} \text{nm}$$

440 nm

121. Ans (3)

$$n_1\lambda_1=\frac{(2n_2+1)\lambda_2}{2}$$

$$n_1 = 1$$
 $n_2 = 3$

$$\lambda_1 = \frac{7}{2}\lambda_2$$

$$\lambda_1 = 3.5 \lambda_2$$

122. Ans (1)

$$\langle I \rangle = I_0 \langle \cos^2 \theta \rangle_0^{2\pi}$$

= $\frac{I_0}{2}$

124. Ans (2)

NCERT-XII, Pg. # 282, Part-2

Because photo-current exists only for $\lambda < \lambda_0$

125. Ans (4)

Using photoelectric equation

$$eV_s = E - \phi$$

$$1.24 \text{ eV} = E - 2.48 \text{ eV}$$

$$\Rightarrow$$
 E = 3.72 eV = $\frac{12400}{\lambda}$ eV - Å

$$\Rightarrow \lambda = \frac{12400}{3.72} \text{Å} = \frac{1000}{3} \text{Å}$$

NCERT-XII, Pg. # 284, Part-2

126. Ans (3)

Intensity $I = \frac{xhc}{A\lambda}$ and for same $I \Rightarrow x \propto \lambda$

from the graphs, it is clear that $(i_p)_1 \leq (i_p)_2 \Rightarrow x_1 \leq x_2$

$$\Rightarrow \lambda_1 < \lambda_2 \text{ or } \nu_1 > \nu_2$$

but here V_{o} is same, therefore from photo electric equation

$$eV_0 = h\nu - \phi \implies \nu_1 > \nu_2 \text{ means } \phi_1 > \phi_2$$

127. Ans (1)

$$p = \frac{hv}{c} = \frac{6.6 \times 10^{-34} \times 1.5 \times 10^{13}}{3 \times 10^{8}}$$
$$p = 3.3 \times 10^{-29} \text{ Kg m/s}$$

128. Ans (3)

$$\begin{split} \lambda &= \frac{h}{\sqrt{2mqV_{P.D}}} \Rightarrow \lambda \propto \frac{1}{\sqrt{mqV}} \\ \frac{\lambda_P}{\lambda_\alpha} &= \sqrt{\frac{m_\alpha q_\alpha V_\alpha}{m_P q_P V_P}} = \sqrt{\frac{4m_P \times 2e \times 400}{m_P \times e \times 100}} = \sqrt{\frac{32}{1}} \\ &= \frac{4\sqrt{2}}{1} \end{split}$$

129. Ans (4)

$$\therefore \lambda = \frac{h}{P} = \frac{h}{mv}$$

$$= \frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 1.45 \times 10^{6}}$$

$$= 0.5 \times 10^{-9} = 5 \times 10^{-10} \text{ m}$$

$$= 5 \text{ Å}$$

130. Ans (1)

NCERT, Pg. # 320

Electron & positron has charges equal in magnitude but their nature is opposite.

131. Ans (1)

Conceptual

132. Ans (3)

NCERT, Pg. # 299

$$L = mvr = \frac{nh}{2\pi}$$

133. Ans (2)

NCERT Pg. #311

$$E = mc^2$$

$$m = \frac{E}{c^2} = \frac{18 \times 10^8}{(3 \times 10^8)^2}$$
$$= 2 \times 10^{-8}$$
$$= 20 \ \mu g$$

134. Ans (3)

(1) Fission and fusion, both are exothermic nuclear reaction.

(2) $\left(\frac{B.E}{A}\right)$ depends on mass no.not on the atomic no.

135. Ans (1)

NCERT, Pg. # 312

141. Ans (2)

NCERT-XII, Part-II; Page No: 166, Article No: 6.4.3, Edition 2023 - 24.

143. Ans (3)

Phenol + NaOH \longrightarrow Sodium Phenoxide Sodium Phenoxide + $CO_2 \longrightarrow$ Salicyclic acid Kolbe-Schmidt reaction.

146. Ans (1)

147. Ans (1)

p-Dichlorobenzene being most symmetrical; so have strongest lattice to melt.

152. Ans (2)

$$\begin{array}{c} CH_3-C-H+HCN \xrightarrow{\bigodot OH} CI-CH \xrightarrow{OH} \xrightarrow{H_3O^+} CH_3-CH-COOH \\ O & OH \\ Lactic acid \end{array}$$

154. Ans (2)

Aldol is β -Hydroxy carbonyl compound.

157. Ans (3)

Vitamin C is water soluble.

159. Ans (1)

Na₂S + conc. HNO₃ \rightarrow H₂S \uparrow NaCN + conc. HNO₃ \rightarrow HCN