

$$40 - 4(J_{1}+J_{2}) - 10J_{1} = 0 =) \quad 40 - 14J_{1} - 4J_{2} = 0$$

$$35 - 4(J_{1}+J_{2}) - 5J_{2} = 0 =) \quad 35 - 4J_{1} - 9J_{2} = 0$$

$$40 - \frac{135}{2} + (-4 + \frac{0.7}{2})J_{2} = 0$$

$$-\frac{165}{2} + \frac{55}{2}J_{2} = 0 =) \quad J_{2} = \frac{165}{55} =) J_{2} = 3A = J_{22}$$

$$40 - 14J_{1} - 12 = 0 =) \quad 28 = 14J_{1} =) \quad J_{1} = 2A = J_{32}$$

Puesto que hay varios mallos con varios fuentes, huy que aplicar necesariamente las leges de Kirchhaff. No es es sufriciente con calcular una "resistencia equivalente" de todo el circuito.

a t=0, a en el condensador es 0 => V_c = 0, el voltage en q es 0 y par la tambo, es como si sus termholes estuvieram cortocircuitodos. La única resistencia en el circuito es entences do de 1,2 MZ:

$$J(t=0) = \frac{120 \text{ V}}{42.10^6 \text{ Z}} = 10^{-4} \text{ A} = 0.1 \text{ mA}$$

Para $t \Rightarrow \infty$, el condensodor se ha cargodo y ya no circula minguno corriente por el $(J_c = 0)$, por lo tombo odría como un circuito obiento y la resistencia del circuito es $R_{eq} = 1,2M_{Z} + 6cok_{Z}$ $R_{eq} = 1,8M_{Z}$

$$= 7 \qquad \text{I} (+30) = \frac{120 \text{ V}}{1.8 \cdot 10^6 \text{ R}} = 6,67 \cdot 10^5 \text{ A} = 0,0667 \text{ mA}$$

La carga en el condensodor para $t \Rightarrow p$ es la que corresponde al potencial V_c en el condensodor. V_c es igual a la carda de potencial en la resistenção de 600 k/2 debido a la corriente $T(t \Rightarrow p)$: $V_c = 6,67.10^{5}A.600.10^{3}$ z = 40V

=>
$$Q(+ \rightarrow a) = V_c \cdot \dot{q} = 40V \cdot 2,5.10^6 F = 10^{-4} \dot{q}$$

(ojo: $V_c \neq 120V$) | |)

(3) Olos iones son delerodos por una diferencia de potencial
Que no conocernos. Por lo tento, no tiene sentido intentar
velound su velouded con su thin (que no conocernos)
To que salvems es que pasam con la
$V = \frac{t}{R}$
V es la velocidad seleccionada. El campo B
con los datos que vos deus as 177
electrico E es el que hay entre las placas, con los datos que nos dem es: $E = \frac{\Delta V}{d} = \frac{160 \text{ V}}{0,002 \text{ m}}$
=8000
- N- E 80 000 -
6 Fin um apportionation to make
6) En un espectrómetro de misas, $R = \frac{m V}{9 B}$
Puesto que los iones han pasado por un selector de velocidad
Puesto que los imes han pasodo por un selector de velocidad, ambos isótopos entran con la misma V. Por lo tanto
Resproporcional a m (puesto que V, 9, 13 son las mismas)
$\frac{R_{238}}{R_{235}} = \frac{M_{238}}{M_{235}} = \frac{238}{235} = \frac{2}{1013}$
10 - 8 1012 - 22

 $K_{238} = K_{235} \cdot 2,013 = 38,6 \text{ cm} \cdot 1,013 = 39,1 \text{ cm}$ $\Delta R = 39,1 \text{ cm} - 38,6 \text{ cm} = 0,5 \text{ cm}$

$$V = -m B \cdot \omega \delta$$

$$= -m \cdot B \cdot \omega \delta$$

Si
$$\frac{B}{B}$$
 $\frac{1}{1}$ $\frac{1}{2}$ $\frac{B}{B}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{B}{2}$ $\frac{1}{2}$ \frac

$$\Delta U = -7,5.10^{-3} J$$