Mobile Robots and Autonomous Vehicles

Week 5: Behavior Modeling and Learning

Other approaches: Social Forces

Social Forces Model

- Reactive approach for crowd simulation
- Models interactions within people
- Does not depend on the environment
- Intended destination has to be estimated somehow

- At every time step:
 - Compute the total force for each agent i:

$$m_i \frac{dv_i}{dt} = m_i \frac{\hat{v}_i(t)\hat{e}_i(t) - v_i(t)}{\tau} + \sum_{j \neq i} f_{ij} + \sum_w f_{iw}$$

Compute acceleration and update the agent's position

Desired motion

- At every time step:
 - Compute the total force for each agent i:

$$m_i \frac{dv_i}{dt} = m_i \frac{\hat{v}_i(t)\hat{e}_i(t) - v_i(t)}{\tau} + \sum_{j \neq i} f_{ij} + \sum_w f_{iw}$$

Compute acceleration and update the agent's position

Desired motion

- At every time step:
 - Compute the total force for each agent i:

$$m_i \frac{dv_i}{dt} = m_i \frac{\hat{v}_i(t)\hat{e}_i(t) - v_i(t)}{\tau} + \sum_{j \neq i} f_{ij} + \sum_w f_{iw}$$

Compute acceleration and update the agent's position

Other pedestrians

Desired motion

At every time step:

Static obstacles

Compute the total force for each agent i:

$$m_i \frac{dv_i}{dt} = m_i \frac{\hat{v}_i(t)\hat{e}_i(t) - v_i(t)}{\tau} + \sum_{j \neq i} f_{ij} + \sum_w f_{iw}$$

Compute acceleration and update the agent's position

Other pedestrians

Social Forces: desired motion

$$m_i \frac{\hat{v}_i(t)\hat{e}_i(t) - v_i(t)}{\tau}$$

- $ullet m_i$: Agent's mass
- $\hat{v}_i(t)$: Desired direction
- $\bullet \hat{e}_i(t)$: Desired speed
- $v_i(t)$: Actual velocity
- $\bullet \tau$: Time interval

$$F_{ij} = \{ae^{(r_{ij}-d_{ij})/b} + kg(r_{ij}-d_{ij})\}N_{ij} + \kappa g(r_{ij}-d_{ij})\Delta v_{ji}T_{ij}$$

- a, b, k, κ : tuning variables
- ullet d_{ij} : agent distance
- ullet r_{ij} : sum of agents' radius
- N_{ij} : relative direction from j to i
- g(x): x if colliding, θ otherwise
- ullet T_{ij} : tangential direction
- ullet v_{ji} : tangential velocity difference

$$F_{ij} = \{ ae^{(r_{ij} - d_{ij})/b} + kg(r_{ij} - d_{ij}) \} N_{ij} + \kappa g(r_{ij} - d_{ij}) \Delta v_{ji} T_{ij}$$

- a, b, k, κ : tuning variables

 Collision avoidance
- ullet d_{ij} : agent distance
- r_{ij} : sum of agents' radius
- N_{ij} : relative direction from j to i
- g(x): x if colliding, θ otherwise
- ullet T_{ij} : tangential direction
- ullet v_{ji} : tangential velocity difference

$$F_{ij} = \{ ae^{(r_{ij} - d_{ij})/b} + kg(r_{ij} - d_{ij}) \} N_{ij} + \kappa g(r_{ij} - d_{ij}) \Delta v_{ji} T_{ij}$$

- a, b, k, κ : tuning variables

 Collision avoidance Non-penetration
- ullet d_{ij} : agent distance
- ullet r_{ij} : sum of agents' radius
- ullet N_{ij} : relative direction from j to i
- g(x): x if colliding, θ otherwise
- ullet T_{ij} : tangential direction
- ullet v_{ji} : tangential velocity difference

$$F_{ij} = \{ ae^{(r_{ij} - d_{ij})/b} + \frac{kg(r_{ij} - d_{ij})}{kg(r_{ij} - d_{ij})} \} N_{ij} + \kappa g(r_{ij} - d_{ij}) \Delta v_{ji} T_{ij}$$

- a, b, k, κ : tuning variables

 Collision avoidance Non-penetration
- ullet d_{ij} : agent distance
- ullet r_{ij} : sum of agents' radius
- N_{ij} : relative direction from j to i
- g(x): x if colliding, θ otherwise
- ullet T_{ij} : tangential direction
- ullet v_{ji} : tangential velocity difference

Sliding force

$$F_{iw} = \{ae^{(r_i - d_{iw})/b} + kg(r_i - d_{iw})\}N_{iw} + \kappa g(r_i - d_{iw})(v_i \cdot T_{iw})T_{iw}$$

- a, b, k, κ : tuning variables
- ullet d_{iw} : wall distance
- ullet r_i : agent's radius
- ullet N_{iw} : relative direction from wall
- g(x): x if colliding, θ otherwise
- ullet T_{iw} : tangential direction
- $ullet v_i$: agent's velocity

$$F_{iw} = \{ ae^{(r_i - d_{iw})/b} + kg(r_i - d_{iw}) \} N_{iw} + \kappa g(r_i - d_{iw}) (v_i \cdot T_{iw}) T_{iw}$$

- a, b, k, κ : tuning variables

 Collision avoidance
- ullet d_{iw} : wall distance
- ullet radius:
- ullet N_{iw} : relative direction from wall
- g(x): x if colliding, θ otherwise
- ullet T_{iw} : tangential direction
- $ullet v_i$: agent's velocity

$$F_{iw} = \{ ae^{(r_i - d_{iw})/b} + kg(r_i - d_{iw}) \} N_{iw} + \kappa g(r_i - d_{iw}) (v_i \cdot T_{iw}) T_{iw}$$

- a, b, k, κ : tuning variables

 Collision avoidance Non-penetration
- ullet d_{iw} : wall distance
- ullet radius:
- ullet N_{iw} : relative direction from wall
- g(x): x if colliding, θ otherwise
- ullet T_{iw} : tangential direction
- $ullet v_i$: agent's velocity

$$F_{iw} = \{ae^{(r_i - d_{iw})/b} + kg(r_i - d_{iw})\}N_{iw} + \kappa g(r_i - d_{iw})(v_i \cdot T_{iw})T_{iw}$$

- a, b, k, κ : tuning variables

 Collision avoidance Non-penetration
- ullet d_{iw} : wall distance
- ullet r_i : agent's radius
- ullet N_{iw} : relative direction from wall
- g(x): x if colliding, θ otherwise
- ullet T_{iw} : tangential direction
- $ullet v_i$: agent's velocity

Social Forces vs. HMMs

HMMs

- Infers intentions
- Long-term prediction
- Requires robust data association
- Requires global perception
- Does not model person to person interaction
- Only for original environment

Social Forces

- Models person to person and person to environment interactions
- Works on any environment
- Does not require robust data association.
- Does not infer intention
- Only short-term predictions