Convolutional Neural Networks

Convolutional Neural Networks

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the connections?
- Can some of these be shared?

Introduction

 Traditional pattern recognition models use hand-crafted features and relatively simple trainable classifiers.

- This approach has the following limitations:
 - It is very tedious and costly to develop hand-crafted features
 - The hand-crafted features are usually highly dependent on one application, and cannot be transferred easily to other applications

Deep Learning

 Deep learning (a.k.a. representation learning) seeks to learn rich hierarchical representations (i.e. features) automatically through multiple stages of feature learning.

Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

Learning Hierarchical Representations

- Hierarchy of representations with increasing level of abstraction. Each stage is a kind of trainable nonlinear feature transform
- Image recognition
 - Pixel → edge → texton → motif → part → object
- Text
 - Character → word → word group → sentence → paragraph → story
- Speech
 - Sound → phoneme → syllable → word → word group → sentence

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product

3

-1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

3 -3

6 x 6 image

 1
 -1
 -1

 -1
 1
 -1

 -1
 -1
 1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	I	1	0	0
1	0	0	0	1	0
0	X	0	0	1	0
0	0	T	0	1	0

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0:
0	0	1	0	1	0

The whole CNN cat dog **Fully Connected** Feedforward network **Flattened**

Max Pooling

	1 -1 -1 -1 -1	1	Filte	r 1		-1 -1 -1	1 1 1	-1 -1 -1	Filter 2
-3	-1	-3	-1		-1		1	-1 -2	1
-3	-3	0 -2	1 -1		-1 -1) (-	1	-2 -4	1

Why Pooling

 Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

is a channel

The whole CNN

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in speech recognition

CNN in text classification

Convolutional Neural Networks

•Questions ?