Einführung in die lineare und kombinatorische Optimierung Serie 2

Maurice Althoff (FU 4745454) Michael R. Jung (HU 502133) Felix Völker (TU 331834)

31. Oktober 2014

Aufgabe 5

a)

 $x_1 \dots$ Anzahl produzierter Müsli-Packungen vom Typ A $x_2 \dots$ Anzahl produzierter Müsli-Packungen vom Typ B $x_3 \dots$ Anzahl produzierter Müsli-Packungen vom Typ C

$$c := \begin{pmatrix} 5\\4\\3 \end{pmatrix} b := \begin{pmatrix} 5000\\11000\\8000 \end{pmatrix} x := \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} A := \begin{pmatrix} 2 & 3 & 1\\4 & 1 & 2\\3 & 4 & 2 \end{pmatrix}$$

LP $P: \max c^T x$ unter den Nebenbedingungen

$$Ax \le b$$
$$x > 0$$

ausgeschrieben:

 $\max 5x_1 + 4x_2 + 3x_3$ unter den Nebenbedingungen

$$2x_1 + 3x_2 + 1x_3 \le 5000 \tag{y_1}$$

$$4x_1 + 1x_2 + 2x_3 \le 11000 \tag{y_2}$$

$$3x_1 + 4x_2 + 2x_3 \le 8000 \tag{y_3}$$

$$x_1, x_2, x_3 \ge 0$$

b)

D: min b^Ty
 unter den Nebenbedingungen $A^Ty \geq c$ $y \geq 0$

ausgeschrieben:

min
$$5000y_1+11000y_2+8000y_3$$
 unter den Nebenbedingungen
$$2y_1+4y_2+3y_3\geq 5$$

$$3y_1+1y_2+4y_3\geq 4$$

$$1y_1+2y_2+2y_3\geq 3$$

$$y_1,y_2,y_3\geq 0$$

c) • Erster Versuch in P:

Wir nehmen möglichst viel von Müsli A, da dieses den meisten Gewinn bringt. Ein zulässiger Vektor wäre $x^1 := \begin{pmatrix} 2500 \\ 0 \\ 0 \end{pmatrix}$. Gewinn wäre $c^T x^1 = 12500$.

• Erster Versuch in *D*:

Wir wissen bereits, dass 12500 eine untere Schranke ist, um möglichst nah heranzukommen muss y_2 möglichst klein sein. Hier sieht man nun, dass $y^1 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ ein zulässiger

Vektor ist. Zielfunktion: $b^T y^1 = 13000$.

Wir wissen also nun: Das Optimum liegt in [12500, 13000].

• Zweiter Versuch in P:

Da Nüsse knapp sind und Müsli B viel davon verbraucht, versuchen wir x_1 groß zu lassen, und ein wenig Müsli C dazu zu nehmen. Da auch Rosinen knapp sind versuchen wir y_1 und y_3 möglichst genau zu treffen. Wenn wir das Gleichungssystem

$$\left(\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 5000 \\ 8000 \end{array}\right)$$

lösen, so erhalten wir $x_1^2=2000, x_3^2=1000$. Da $(2000,0,1000)^T$ zulässig ist versuchen wir diesen. Gewinn: $c^Tx^2=13000$. Nun wir wissen wir wegen $b^Ty^1=13000$, dass dies optimal ist.

Aufgabe 6

- a) $\bullet \{x \in \mathbb{R}^n | \forall 1 \le i \le n : x_i \le 1 \land -x_i \le 1 \}$
 - Setze $I := \{1, \dots, n\}.$ $\left\{ x \in \mathbb{R}^n \middle| \forall S \subseteq I : \left(\sum_{i \in S} x_i \sum_{i \in I \setminus S} x_i \right) \le 1 \right\}$
- b) Setze $c':=\begin{pmatrix}c\\c_0\end{pmatrix}, d':=\begin{pmatrix}d\\d_0\end{pmatrix}$, dann kann man das Problem zunächst umschreiben für $x\in\mathbb{K}^{n+1}$ zu:

$$\min \max \left\{ c'^T x', d'^T x' \right\}$$

$$\underbrace{\begin{pmatrix} A & 0 \\ \mathbf{0} & 1 \\ \mathbf{0} & -1 \end{pmatrix}}_{\mathbf{T}, A'} x' \ge \underbrace{\begin{pmatrix} b \\ 1 \\ -1 \end{pmatrix}}_{\mathbf{T}, b'}$$

Mit der erweiterten Ungleichung wird sichergestellt, dass $x'_{n+1} = 1$ ist, und somit die "Zielfunktionen" wieder die gleichen sind.

2

Als nächstes nutzen wir die Gleichheit $\max\{a,b\} = \frac{a+b+|a-b|}{2}$ und erhalten:

$$\min ((c' + d')^T x' + |(c' - d')^T x'|)$$
$$A'x' \ge b'$$

Aufgabe 7

Aufgabe 8

Bemerkung: Die Aussage ist so nicht ganz richtig, da in 2. und 3. nicht gefordert wird, dass es von jedem Knoten mit einem (Eingangs-)Grad größer Null auch ein (nicht unbedingt gerichteter) Weg zu jedem anderen Knoten mit einem Eingangs-)Grad größer Null existiert. Diese Eigenschaft nennen wir (E).

<u>Lemma:</u> Jeder geschlossene Pfad in einem Digraphen ist eine Vereinigung bogendisjunkter Kreise.

Beweis. Sei $(v_0, v_1, \dots, v_n = v_0)$ ein geschlossener Pfad.

Beweis per Induktion über die Länge n des Pfades:

Induktionsanfang:

Für n=0 und n=1 ist nichts zu zeigen, da hier keine Kante doppelt auftreten kann.

Induktionsvoraussetzung:

Für alle geschlossenen Pfade der Länge $\leq n$ gilt, dass sie eine Vereinigung bogendisjunkter Kreise sind

Induktionsbehauptung:

Für alle geschlossenen Pfade der Länge n+1 gilt, dass sie eine Vereinigung bogendisjunkter Kreise sind.

Induktionsschritt:

- Fall 1: Die Knoten v_0, v_1, \ldots, v_n sind alle paarweise verschieden. In diesem Fall ist nichts zu zeigen, da dann $(v_0, v_1, \ldots, v_{n+1} = v_0)$ ein gerichteter Kreis ist und somit eine "Vereinigung"bogendisjunkter Kreise.
- Fall 2: Es existieren zwei Indizes $i < j \in \{1, 2, \dots, n\}$ mit $v_i = v_j$. Dann sind $(v_1, \dots, v_{i-1}, v_i, v_{j+1}, v_{j+2}, \dots, v_{n+1})$ und $(v_i, v_{i+1}, \dots, v_j)$ zwei untereinander bogendisjunkte, geschlossene Pfade. Diese haben jeweils eine Länge $\leq n$ und sind somit nach Induktionsvoraussetzung eine Vereinigung bogendisjunkter Kreise. Insgesamt ist also auch (v_1, \dots, v_{n+1}) eine Vereinigung bogendisjunkter Kreise.
 - $1.\Rightarrow 2.:D$ enthält einen geschlossenen Pfad der alle Bögen aus A benutzt. (E) gilt also trivialerweise. Außerdem folgt nach obigem Lemma, dass A eine Vereinigung bogendisjunkter Kreise ist.

- $2. \Rightarrow 3.:$ (E) gilt natürlich weiterhin. Betrachte $v \in V$ mit $|\delta^-(v)| = k$. Da A eine Vereinigung bogendisjunkter Kreise ist, liegt v auf genau k bogendisjunkten Kreisen. Folglich existiert zu jeder eingehenden auch eine jeweils verschiedene ausgehende Kante und es gilt somit $|\delta^+(v)| = k$.
- $3. \Rightarrow 1.$: Sei $v_0 \in V$ mit $|\delta^+(v_0)| > 0$. (Falls kein solcher Knoten existiert, ist nichts zu zeigen.) Sei $a_1 = (v_0, v_1)$. Da $|\delta^+(v_1)| = |\delta^-(v_1)|$ finden wir (falls $v_0 \neq v_1$) einen bisher noch nicht besuchten Bogen $a_2 = (v_1, v_2)$. Dies können wir solange fortsetzen, bis wir wieder in v_0 ankommen und dieser keine noch nicht besucht ausgehende Kante hat. Das gilt weil für alle $v \in V$ gilt: $|\delta^+(v)| = |\delta^-(v)|$. Falls $(v_0, a_1, v_1, \ldots, a_n, v_n = v_0)$ noch nicht alle Bögen enthält, so gibt es wegen (E) einen Index 1 < i < n, für den gilt, dass v_i noch einen nicht besuchten ausgehenden Bogen besitzt. Nun können wir das Verfahren von oben mit $v_0' = v_i$ wiederholen.

Dann ist $(v_0, a_0, v_1, \dots, v_i = v'_0, a'_1, v'_1, \dots, v'_{n'} = v_i, a_{i+1}, \dots, v_n)$ ein geschlossener Pfad. Den letzten Schritt können wir wegen (E) solange wiederholen, bis wir jeden Bogen genau einmal besucht haben. Also gilt: D ist eulersch