数理统计

基本概念

- 1. 总体: 研究对象的全体
 - 。 一般为所研究对象的某个(或某些)数量指标所有可能取值的全体,它对应着一个随机变量(一维或者多维)。 记为 X 。
 - \circ 随机变量 X 的分布函数和数字特征又称为总体的分布函数和数字特征。
- 2. 个体:组成总体的每一个基本单元

即总体数量指标的某次取值,亦即随机变量 X 的某次取值,用 x_i 表示。

- 3. 样本: 从总体中抽取的部分个体 (对总体进行多次观测的结果)
 - 。 对样本中每个个体,在获知其观测结果之前,它有可能取到总体的所有可能取值,故可用随机变量 X_i 表示(X_i 通常假定与总体 X 同分布)。
 - 。 样本表示为 (X_1,X_2,\cdots,X_n) ,n 为样本容量,在一次试验中样本的观测值 (x_1,x_2,\cdots,x_n) 称为样本的一个实现,或称为总体 X 的一个容量为 n 的样本值。
- 4. 简单随机样本:指总体的一个样本 (X_1,X_2,\cdots,X_n) ,该样本满足:
 - 。 X_1, X_2, \cdots, X_n 与 X 有相同的分布
 - 。 X_1, X_2, \cdots, X_n 相互独立
- 5. 统计量
 - 。 设 (X_1,X_2,\cdots,X_n) 是取自总体 X 的一个样本,现在有一个实值连续函数 $g(r_1,r_2,\cdots,r_n)$ 其不含有未知参数,则称随机变量 $g(X_1,X_2,\cdots,X_n)$ 为统计量。
 - 。设 (x_1,x_2,\cdots,x_n) 是一个样本值,称 $g(x_1,x_2,\cdots,x_n)$ 为统计量 $g(X_1,X_2,\cdots,X_n)$ 的一个观察值。

NOTE: 统计量是随机变量,比如 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

样本的统计特征

设总体 X 的分布函数为 $F_X(x)$,则样本 (X_1, X_2, \cdots, X_n) 的联合分布函数为:

$$F(x_1,x_2,\cdots,x_n)=\prod_{i=1}^n F_X(x_i)$$

总体分布的直接近似

- 频率分布表(离散型): 用一张表来统计样本中出现每个值的频率。
- 频率直方图(连续型): 统计样本中每个点落在区间段内的频率。

经验分布函数

• 定义: 设总特的样本值 x_1,x_2,\cdots,x_n ,又设 Y_n 等可能地取到这 n 哥值中的每一个,称 Y_n 的分布函数 $F_n(x)$ 为总体 X 的经验分布函数。若设 $x_1 \leq x_2 \leq \cdots x_n$,则

$$F_n(x) = egin{cases} 0, & x < x_1 \ k/n, & x_k \leq x < x_{k+1}, & k = 1, 2, \cdots, n-1 \ 1, & x_n \leq x \end{cases}$$

• 意义: $\forall x$, 事件 $A=\{X\leq x\}$ 在 n 次 Bernoulli 试验中发生次数,等于 x_1,x_2,\ldots,x_n 中小于 x 的个数,其频率 $f_n(A)$ 等于 $F_n(x)$,而 P(A)=F(x) ,由 Bernoulli 大数定律, $\forall \epsilon>0$,有

$$\lim_{n\to+\infty} P\{|F_n(x) - F(x)| < \epsilon\} = 1$$

即 $F_n(x)$ 依概率收敛于 F(x) 。 更强的,我们有:

$$P\{\lim_{n o +\infty} sup_{-\infty < x < +\infty} |F_n(x) - F(x)| < \epsilon\} = 1$$

常用统计量

设 (X_1,X_2,\ldots,X_n) 是来自总体 X 的一个容量为 n 的样本,设 $E(X)=\mu,\;\;D(X)=\sigma^2$,则有统计量:

1. 样本均差:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\circ E(\bar{X}) = \mu, \ D(\bar{X}) = \frac{\sigma^2}{n}$$

2. 样本方差:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

 $\circ E(S^2) = \sigma^2$

NOTE: 这里除以 n-1 是因为 $ar{X}$ 也是随机变量,而不是常数。只有除以 n-1 才能保证 $E(S^2)$ 即 S^2 的期望值是 D(X) 。

3. 样本标准差:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

4. 样本 k 阶原点矩:

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

5. 顺序统计量与极差

对样本 (X_1,X_2,\ldots,X_n) ,将其由小到大进行排序 $X_{(1)}\leq X_{(2)}\leq\cdots\leq X_{(n)}$,则称 $(X_{(1)},X_{(2)},\cdots,X_{(n)})$ 为顺序统计量,并称 $X_{(k)}$ 为 第 k 个顺序统计量。称 $X_{(1)}$ 和 $X_{(n)}$ 为最大和最小顺序统计量,称 $D_n=X_{(n)}-X_{(1)}$ 为极差(统计量)。

来自正态总体常用统计量及其分布

$\chi^2(n)$ 分布(n 为自由度)

• 定义:设 X_1, X_2, \cdots, X_n 为标准正态总体 N(0,1) 的容量为 n 的样本,则称如下统计量为 χ^2 统计量:

$$\chi^2 \stackrel{\Delta}{=} \sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

其分布称为自由度为 n 的 χ^2 分布。其概率密度满足:

$$f(x) = egin{cases} rac{1}{2^{n/2}\Gamma(n/2)}e^{-rac{x}{2}}x^{rac{n}{2}-1}, & x>0 \ 0, & x\leq 0 \end{cases}$$

• 性质:

1.
$$E(\chi^2) = nE(X_i^2) = n$$

2.
$$D(\chi^2) = nD(X_i^2) = 2n$$

3. 设 $X_1 \sim \chi^2(n_1), \;\; X_2 \sim \chi^2(n_2)$, $X_1, \; X_2$ 相互独立,则

$$X_1 + X_2 \sim \chi^2(n_1 + n_2)$$

4.
$$n \to +\infty$$
, $\chi^2 \to$ 正态分布

t(n) 分布 (n 为自由度)

• 定义: 设 $X \sim N(0,1), Y \sim \chi^2(n)$, X,Y相互独立,则称统计量:

$$T = rac{X}{\sqrt{Y/n}} \sim t(n)$$

为 t 统计量, 其分布称为自由度为 n 的 t 分布, 其密度函数为:

$$f(t) = rac{\Gamma(rac{n+1}{2})}{\sqrt{n\pi}\Gamma(rac{n}{2})}(1+rac{t^2}{n})^{rac{n+1}{2}} \ -\infty < t < +\infty$$

• 性质:

1. $f_n(t)$ 是偶函数

2.
$$n
ightarrow +\infty, \; f_n(t)
ightarrow rac{1}{\sqrt{2\pi}} e^{-rac{t^2}{2}}$$

F(n,m) 分布 (n,m 分别为第一、二自由度)

• 定义: 设 $X \sim \chi^2(n), \ Y \sim \chi^2(m)$, X,Y 相互独立, 则称:

$$F \stackrel{\Delta}{=} rac{X/n}{Y/m} \sim F(n,m)$$

为 F 统计量,其分布称为第一、二自由度分别为 n,m 的 F 分布。其分布密度函数为:

$$f(t,n,m) = egin{cases} rac{\Gamma(rac{n+m}{2})}{\Gamma(rac{n}{2})\Gamma(rac{m}{2})} (rac{n}{m})^{rac{n}{2}} t^{rac{n}{2}-1} (1+rac{n}{m}t)^{-rac{n+m}{2}}, & t>0 \ 0, & t\leq 0 \end{cases}$$

• 性质:

1. 若
$$F \sim F(n,m)$$
 ,则 $rac{1}{F} \sim F(m,n)$

2. 设 F(n,m) 的上侧分位数为 $F_{lpha}(m,n)$,则 $F_{1-lpha}(n,m)=rac{1}{F_{lpha}(m,n)}$

■ 证明:

$$\begin{split} &P(F > F_{1-\alpha}(n,m)) \\ &= 1 - \alpha \\ &= P(\frac{1}{F} \le \frac{1}{F_{1-\alpha}(n,m)}) \\ &= 1 - P(\frac{1}{F} > \frac{1}{F_{1-\alpha}(n,m)}) \\ &\Rightarrow P(\frac{1}{F} > \frac{1}{F_{1-\alpha}(n,m)}) = \alpha \end{split}$$

由于

$$rac{1}{F} \sim F(n,m)$$

故结论成立

正态总体的样本均值与样本方差的一些结论

设总体 $X \sim N(\mu\sigma^2)$,样本为 (X_1, X_2, \cdots, X_n)

1. 样本均值:

$$ar{X} \sim N(\mu, rac{\sigma^2}{m})$$

。 证明:直接利用 $ar{X}=rac{1}{n}(X_1+X_2+\cdots+X_n)$ 以及 X_i 相互独立的性质即可。

2.
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n (\frac{X_i - \bar{X}}{\sigma^2}) \sim \chi^2(n-1)$$

3. $\frac{(n-1)S^2}{\sigma^2}$ 与 $ar{X}$ 相互独立,即样本均值与样本方差相互独立。

4.
$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\divrac{S}{\sigma}=rac{ar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$