Natural Language Processing NLP

- و هي من أساسيات الـ ML & DL
- تختص بشكل أساسي في التعامل مع النصوص و ما يسمي تحليل الإنطباع Sentiment Analysis
 - يتم استخدامها عبر اثنين من الموديلوز في sklearn وهي:

preprocessing.LabelEncoder preprocessing.OneHotEncoder feature_extraction.text.CountVectorizer لتحويل النصوص في الفيتشرز الي ارقام لصناعة مصفوفة الواحد من النصوص لقراءة النصوص الطويلة و معالجتها

LabelEncoder

من اجل تحويل البيانات الغير رقمية (سترنج او بوليان) الي ارقام, من اجل عمل التوقع او التصنيف, يتم استيراد هذين المكتبتين من سكليرن تسمية متغير باسم الدالة انكودر, مع مراعاة انها ستقوم باختيار كل قيمة مرة واحدة دون تكرار و يكون الهدف هو منع ادخال اي string للخوارزم لانه سيعجز عن فهمها, ولكن فقط ارقام يستطيع حسابها , و يتم تطبيقها على العمود المطلوب (الذي يحتوي على الاسماء) فتتحول البيانات من نصوص الي ارقام

خطوات تنفيذها:

- تكوين الـ df
 - استدعائها
- عمل الكائن
- تطبيقها على العمود المحدد في الـ df
 - عمل التحويل transform
- إضافة او تعديل العمود في الـ df بالارقام الجديدة
 - يمكننا رؤية قائمة النصوص
 - و يمكننا عمل التحويل العكسى

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

le.fit(df['score'])

le.transform(df['score'])

df['score'] = le.transform(df['score'])

list(le.classes_)

list(le.inverse_transform([2, 2, 1]))

OneHotEncoder

و هي تقوم بتحويل العمود الذي يحتوي على نصوص الي عدد من الأعمدة الجديدة , يساوي عدد الكلمات المختلفة , بحيث كل عمود يكون فيه اصفار و قيمة 1 فقط عندما تتواجد القيمة

Country	Age	Salary	Purchased	
France	44	72000	No	
Spain	27	48000	Yes	
Germany	38	54000	No	
Spain	38	61000	No	
Germany	48	nan	Yes	
France	35	58000	Yes	
Spain	nan	52000	No	
France	48	79000	Yes	
Germany	50	83000	No	
France	37	67000	Yes	

	0	1	2	3	4
0	1	8	0	44	72888
1	0	.0.	1	27	48000
2	0	1	θ	30	54000
3	0	8	1	38	61000
4	0	1	Ð	40	63777.8
5	1	0	Θ	35	58000
6	0	θ	1	38.7778	52000
7	1	0	0	48	79888
8	θ	1	θ	50	83000
9	1	0	0	37	67000

ohe = OneHotEncoder()

ohe.fit(data_ value)

ohe.transform(data_value).toarray()

from sklearn.preprocessing import OneHotEncoder

df['Female'] = newmatrix[0]

• تكوين الـ df

خطوات تنفيذها:

- عمل الكائن
- تطبيقها على المصفوفة المطلوبة بعد تحويلها
- عمل التحويل transform و صياغته في مصفوفة جديدة قدم عمل مقلوب لها
 - إضافة أو تعديل العمود في الـ df بالارقام الجديدة

CountVectorizer

و هي تقوم بقراءة النصوص الأطول, و حذف الكلمات المألوفة, ثم عمل وظيفة مشابهة لوظيفة LabelEncoder , و بعدها يمكن استخدام اى خورازم معين لعمل التصنيف او التوقع

و يتم استدعائها بالكود