ROBustness in NLP over the years

1. Lexical Normalization

u hve to let ppl decide what dey want to do you have to let people decide what they want to do

Lexical Normalization

Situation in 2015:

- Some benchmarks for English: main one LexNorm
- Many models assume gold detection
- Some people working on their own languages
- Differences in models, task definitions and metrics

MoNoise

- ► First multi-lingual normalization model
- SOTA wherever evaluated
- Outputs top-n; succesfully integrated in syntactic parsers.

Parsing

Figure 1: A possible output of the normalization model for the sentence 'ths s nice'.

Parsing

Figure 1: A possible output of the normalization model for the sentence 'ths s nice'.

Performance for syntactic tasks improve when normalizing, even more when integrating the top-n, but still not by a lot.

MultiLexNorm: A Shared Task on Multilingual Lexical Normalization

Rob van der Goot, Alan Ramponi, Arkaitz Zubiaga, Barbara Plank, Benjamin Muller, Iñaki San Vicente Roncal, Nikola Ljubešić, Özlem Çetinoğlu, Rahmad Mahendra, Talha Çolakoğlu, Timothy Baldwin, Tommaso Caselli and Wladimir Sidorenko

MultiLexNorm

Lang.	Language name	Normalization example
DA	Danish	De skarpe lamper gjorde destromindre ek bedre . De skarpe lamper gjorde destro-mindre ikke bedre .
DE	German	ogäj isch hätts auch dwiddern könn Okay ich hätte es auch twittern können
EN	English	u hve to let ppl decide what dey want to do you have to let people decide what they want to do
ES	Spanish	Ousername cuuxamee sii peroo veen yaa eem Ousername escúchame sí pero ven ya eh
HR	Croatian	svi frendovi mi nešto rade , veceras san osta sam . svi frendovi mi nešto rade , večeras sam ostao sam .
ID-EN	Indonesian-English	pdhal not fully bcs those ppl jg sih . padahal not fully because those people juga sih .
IT	Italian	a Roma è cosí primavera che sembra gia giov a Roma è così primavera che sembra già giovedì
NL	Dutch	Kga me wss trg rolle vant lachn Ik ga me waarschijnlijk terug rollen van het lachen
SL	Slovenian	jst bi tud najdu kovanec vreden veliko denarja . jaz bi tudi našel kovanec vreden veliko denarja .
SR	Serbian	komunalci kace pocne kaznjavanje ? komunalci kad počne kažnjavanje ?
TR	Turkish	He o dediyin suala cvb verdim He o dediğin suale cevap verdim
TR-DE	Turkish-German	Ousername Yerimm senii , damkee schatzymm :-* Ousername Yerim seni , danke Schatzym :-* 7

MultiLexNorm

- ▶ ÚFAL: ByT5 for every word; synthetic data
- ▶ HEL-LJU: Pre-classify type of normalization (BERT) \mapsto Char-SMT
- ► MoNoise: Feature-based, generate candidates and rank
- ▶ BLUE: NMT MBart-50
- CL-MoNise: Cross-lingual
- MaChAmp: Normalization as sequence labeling

Results

Results

- ► Include detection in task (= the hardest part)
- ► Multi-lingual benchmark
- Wide variety of models
- Near-human performance for some datasets (in-lang/in-domain)

Open problems

- ► Cross-lingual/multi-lingual normalization
- ▶ Tokenization
- Limited downstream gains; lexical level might not be enough
- Bias in languages
- Bias in data source

2. Multi-task learning

Rob van der Goot Ahmet Üstün Alan Ramponi & Ibrahim Sharaf Barbara Plank

IT University of Copenhagen ● University of Groningen ● University of Trento ● Fondazione the Microsoft Research - University of Trento COSBI ● Factmata ● robv@itu.dk, a.ustun@rug.nl, alan.ramponi@unitn.it ibrahim.sharaf@factmata.com, bapl@itu.dk

MaChAmp

Multi-task learning

MaChAmp at SemEval-2022 Tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets

Rob van der Goot IT University of Copenhagen robv@itu.dk

MaChAmp at SemEval-2023 tasks 2, 3, 4, 5, 7, 8, 9, 10, 11, and 12: On the Effectiveness of Intermediate Training on an Uncurated Collection of Datasets.

Rob van der Goot IT University of Copenhagen robv@itu.dk

MaChAmp @ SemEval 2022-2023

Evaluate effect of:

- Intermediate training with encoder LM's
- Heterogeneous batching
- Dataset smoothing
- Task interactions (correlation study)

SemEval 2022

SemEval Task	Included sub-tasks	Languages	
2: Multilingual Idiomaticity Detection	Idiomaticity detection (1-shot)	EN, PT, GL	
3: PreTENS	1: Binary acceptability	EN, IT, FR	
4: Patronizing and	2: Regression acceptability1: Binary PCL detection	EN, IT, FR EN	
Condescending Language Detection	2: Multi-label PCL classification	EN	
6: iSarcasmEval	 Sarcasm detection Irony-labeling 	EN, AR EN	
	3: Paraphrase sarcasm detection	EN, AR	
10: Structured Senti- ment Analysis	Expressions, entities and relations	CA, EN, ES, EU, NO	
11: MultiCoNER - Multilingual Complex Named	Named Entity Recognition	BN, DE, EN, ES, FA, HI, KO, MI, NL, RU, TR, ZH	
Entity Recognition 12: Symlink	Entities and relations	EN	

Intermediate task finetuning

MaChAmp @ SemEval 2022

Let's do some analysis!

Let's do some analysis!

SemEval 2023

Name	Subtasks	Languages	Size
2. MultiCoNER II	NER	BN, DE, EN, ES, FA, FR, HI, IT, PT, SV, UK, ZH	2,672,490
3. News persuasion	1. News categorization	EN, FR, GE, IT, PO,	741,561
	2. Framing classification	EN, FR, GE, IT, PO, RU	725,740
	3. Persuasion technique classification	EN, FR, GE, IT, PO, RU	19,561,550
4. ValueEval	Human value classification	EN	116,294
5. Clickbait spoiling	1. Spoiler type classification	EN	34,520
	2. Spoiler detection	EN	1,647,176
6. LegalEval	Rhetorical role detection	EN	755,280
•	2. NER	EN	369,205
	3. Legal judgement prediction	EN	5,082
7. Clinical NLI	1. Entailment	EN	21,828
	2. Evidence retrieval	EN	311,687
8. Medical claims	1. Claim identification	EN	549,231
	2. PIO frame extraction	EN	78,864
9. Tweet intimicay	Intimacy Analysis	EN, ES, IT, PT, FR, ZH	73,698
10. Explainable sexism	1. Sexism detection	EN	262,939
	2. Sexism classification	EN	68,043
	3. Fine-grained sexism classifi- cation	EN	68,043
11. Le-Wi-Di	1. Hate speech detection*	EN	14,252
	2. Misogyny detection*	AR	12,788
	3. Abuse detection*	EN	64,738
	4. Offensiveness detection*	EN	145,245
12. AfriSenti-SemEval	Sentiment classification	AM, DZ, HA, IG, KR,	795,449
		MA, PCM, PT, SW,	

MaChAmp @ SemEval 2023

	Result	Rank	l	Result	Rank
task2	73.74	8/18	task8-1	78.40	1/7
task3-1	31.67		task8-2	40.55	1/6
task3-2	38.01		task9	57.47	18/46
task3-3	29.36		task10	?	
task4-1	48	15/42	task11-1	0.69	15/27
task4-2	34	3/20	task11-2	1.11	20/27
task4-2	19	10/12	task11-3	0.47	18/27
task5	?		task11-4	0.61	12/27
task7-1	_		task12	2.26-51.17	33/33
task7-2	75.6	14/19			

Table: Scores and ranking on test data, — means submission failed, and ? means that results are not available yet.

MaChAmp @ SemEval 2023

MaChAmp @ SemEval 2022-2023

Evaluate effect of:

- ► Intermediate training with encoder LM's: +-
- Heterogeneous batching: -
- Dataset smoothing: -
- ► Task interactions (correlation study): +-

What else did I learn?

- ▶ Don't participate in too many tasks at once
- ► How to win?
 - Careful tuning
 - Right LM
 - More data
 - Ensembling
 - Download data early
- Most of the time went into obtaining data, understanding data, format conversion
- CRF layer almost always beneficial
- When an instance has 0-n labels, BCE loss and threshold over logits is best
- Conversion of structured task to sequence labeling leads to mediocre performance
- # participants: classification > sequence labeling > others
- # things learned: classification < sequence labeling < others</p>
- Organization of a task is difficult?

3. Future

Basic tasks in challenging setups:

- ► Open challenges in tokenization
- ▶ Open challenges in language identification

Tokenization

The problem of finding/segmenting tokens (UD):

Input:

 $If \llcorner momma \llcorner ain't \llcorner happy, \llcorner nobody \llcorner ain't \llcorner happy.$

Tokenization:

 $If \llcorner momma \llcorner ain't \llcorner happy \llcorner, \llcorner nobody \llcorner ain't \llcorner happy \llcorner.$

Multi-word expansions:

 $If_{\sqcup}momma_{\sqcup}is_{\sqcup}not_{\sqcup}happy,_{\sqcup}nobody_{\sqcup}is_{\sqcup}not_{\sqcup}happy.$

Subword segmentation:

 $If_{\sqcup}mo_{\sqcup}\#\#mma_{\sqcup}ai_{\sqcup}\#\#n_{\sqcup}'_{\sqcup}t_{\sqcup}happy_{\sqcup},_{\sqcup}no_{\sqcup}\#\#body_{\sqcup}ai_{\sqcup}\#\#n_{\sqcup}'_{\sqcup}t_{\sqcup}happy_{\sqcup}.$

Methods

1)		Γ	r. Dı	on is	s hi	s bac	kup.	
2)		s=	= [·][.][])	} > "']:	* *\$ =	\1 \2	\3 =g	
3)		k	iiobi	liiob:	iobi	iobii	iiib	
4)	Dr		Dro	##n	is	his	backup	
4)	b	i	b	i	b	b	b	b

LM for tokenization?

- Finetuning a language model for this task might be overkill
- Multi-task learning to the rescue, just add a decoder head and sum loss
- Adapters used before (costly to train)

Settings

- ► RB: Rule Based
- ► ST: Single Task: just tokenization
- ► MT: Multi-task: UPOS, morph. tagging, lemmatization, dep. parsing
- ► ML+MT: Multi-lingual Multi-task model

In treebank results

Figure: Results of tokenizers on Latin vs non-Latin languages. RB=RuleBased, ST=SingleTask, MT=MultiTask, ML+MT=Multi-Lingual+MultiTask

Cross-treebank results

setting	F1 tok.	# treebanks
all	93.23	90
in-language	95.11	34
in-script	94.16	84
new-script	80.11	6

Table: Results on test-only treebanks

More analysis

EACL 2024 findings

Open challenges in language identification

- ► Many tools/benchmarks available
- ▶ When to use which?:

Open challenges in language identification

- Many tools/benchmarks available
- ▶ When to use which?:
 - # languages
 - input size
 - # training instances per language
 - scripts
 - language families
 - domains

Data

Dataset	langs	scripts	fams	domains
OpenLID	139	25	16	literature, news, wiki, so- cial, grammar, subtitles, spoken
UDHR	397	38	61	rights
LTI LangID	2,110	47	139	wiki, political, religious, grammar
TwitUser	59	20	13	social
MassiveSumm	77	24	13	news
UD2.12	54	11	17	medical, news, academic, wiki, legal, nonfiction, learner-essays, fiction, social, grammar-examples, reviews, religious, spoken
Total	2176/ 7850	51/ 163	145/ 298	

Models

- ► Heuristics: textcat
- ► Naive Bayes: langid.py
- ► Embeddings: FastText
- ► Neural: BiLSTM
- ► CLM: Glot500

Size

Size: takeaways

- ▶ 100 characters is enough
- # of languages is not very influential when there are enough (100) utterances
- ► Glot500 most robust
- Character n-gram overlap still impressively good

Domains

Language families

Scripts

