2014-2015 学年第二学期数学类高等代数期末考试

- 1. 利用正交变换化 $5x_1^2 + 5x_2^2 + 3x_3^2 2x_1x_2 6x_1x_3 + 6x_2x_3 = 1$ 为标准型
- 2. 设 V 为 n 维欧式空间,对 $\alpha \in V, |\alpha| \neq 0, W = \{\beta | (\alpha, \beta) = 0\},$
- (1). 证 W 是 V 的子空间
- (2). 求 W 的维数与 W^{\perp} 的一组基
- 3. 求以下矩阵的若当标准型

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ -5 & 21 & -17\\ 6 & 26 & -21 \end{array}\right)$$

- 4. 设 V 为 n 维欧式空间,V 中线性变换 σ 有 $\sigma^2=\varepsilon$,证明: σ 在一组基下可表示 为 $diag(-1,\cdots,-1,1,\cdots,1)$
- 5. 设 A 为一个 n 阶方阵,且已知 λ 是 A 的一个 k 重特征值,证明 $r(\lambda E A) \ge n k, r(\lambda E A)^k = n k$
- 6. 对于欧式空间 V 有向量 $\alpha_1, \dots, \alpha_m$ 和 β_1, \dots, β_m ,且 $(\alpha_i, \alpha_j) = (\beta_i, \beta_j), (i, j = 1, \dots, m)$. 证: $V_1 = L(\alpha_1, \dots, \alpha_m)$ 与 $V_2 = L(\beta_1, \dots, \beta_m)$ 同构
- 7. 设 A 为一个 n 阶方阵,若 $|\lambda E A| = (\lambda \lambda_1)^{r_1} \cdots (\lambda \lambda_s)^{r_s}$,令 $g(\lambda) = \frac{f(\lambda)}{(f(\lambda), f'(\lambda))}$,证明: g(A) = 0 与 A 可对角化互为充要条件。