ROB311 Quiz 2

Hanhee Lee

March 26, 2025

Contents

1		Bode Plots		
	1.1	Bode Plots		
		1.1.1 Constant Gain		
		1.1.2 Pole or Zero at $\omega = 0$		
		1.1.3 Non-Zero Pole or Zero		
		1.1.4 Complex Conjugate Poles		
	1.2	Robustness Margins		
		1.2.1 Gain Margin		
		1.2.2 Phase Margin		
2	Rol	bustness Margins		
3	Roc	ot Locus, Bode, and Nyquist		
4	Cor	ntrol Design in the Frequency Domain		
	4.1	Proportional Derivative (PD) Controller		
	4.2	Proportional Integral (PI) Controller		
	13	Proportional Integral Derivative (PID) Controller		

ROB311 Hanhee Lee

1 Bode Plots

1.1 Bode Plots

Process:

- 1.1.1 Constant Gain
- 1.1.2 Pole or Zero at $\omega = 0$
- 1.1.3 Non-Zero Pole or Zero
- 1.1.4 Complex Conjugate Poles
- 1.2 Robustness Margins

Motivation: Approximate the GM and PM from the Bode plot:

- L(s) is a strictly proper rational fn.
- L(s) has no poles in \mathbb{C}^+ (no open loop variable poles)

1.2.1 Gain Margin

Definition:

$$|L(j\omega_{gc}) = 1| \iff |L(j\omega_{gc})|_{dB} = 0$$

1.2.2 Phase Margin

Definition:

$$|L(j\omega_{gc})| = 1 \implies |L(j\omega_{gc})|_{dB} = 0$$

ROB311 Hanhee Lee

2 Robustness Margins

ROB311 Hanhee Lee

- 3 Root Locus, Bode, and Nyquist
- 4 Control Design in the Frequency Domain
- 4.1 Proportional Derivative (PD) Controller

Definition:

$$C(s) = K(T_d s + 1) \tag{1}$$

4.2 Proportional Integral (PI) Controller

Definition:

$$C(s) = K\left(1 + \frac{1}{T_I s}\right) = K \frac{T_I s + 1}{T_I s} \tag{2}$$

4.3 Proportional Integral Derivative (PID) Controller

Definition:

$$C(s) = K(T_D s + 1) \left(1 + \frac{1}{T_I s} \right) = K_p + \frac{K_I}{s} + K_D s$$
 (3)

• $K, T_I, T_D > 0$