Heteroscedasticity Analysis

Dataset Background:

This dataset contains information on the Annual Expenditure on Food by households. The goal is to predict the Annual Expenditure on Food based on the Annual Income of households.

Dataset Glimpse:

Expenditure	Income
9.46	25.83
10.56	34.31
14.81	42.5
21.71	46.75
22.79	48.29
18.19	48.77
22	49.65
18.12	51.94
23.13	54.33
19	54.87

Total Number of Rows: 40

Total Number of Columns: 2

Column Details:

• Expenditure: Annual Expenditure on Food by households (in thousands of dollars).

• Income: Annual Income of households (in thousands of dollars).

Main Dependent Variable: Expenditure (in thousands of dollars).

Using SPSS Software EViews, we have analysed the data:

Descriptive Statistics:

	EXPENDIT	INCOME
Mean	23.59450	69.80000
Median	21.85500	71.23000
Maximum	48.71000	115.4600
Minimum	9.460000	25.83000
Std. Dev.	8.176025	19.82269
Skewness	1.034804	0.218662
Kurtosis	4.129972	2.985860
Jarque-Bera	9.266858	0.319087
Probability	0.009721	0.852533
Sum	943.7800	2792.000
Sum Sq. Dev.	2607.048	15324.63
Observations	40	40

Inferences:

- The variable expenditure is right skewed, ranging between 9.46 to 48.71 thousand dollars.
- The variable income is slightly right skewed, ranging between 25.83 to 115.46 thousand dollars.
- There is no missing data.

Correlation Analysis:

	EXPENDIT	INCOME
EXPE	1.000000	0.563096
INCOME	0.563096	1.000000

Inferences:

• Variables expenditure and income have only the possibility of positive linear correlation, having correlation coefficient 0.56.

Scatter Plot:

Inference: the variables income and expenditure have only the possibility of positive linear correlation.

Regression Model:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C INCOME	7.383218 0.232253	4.008356 0.055293	1.841956 4.200378	0.0733 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.317077 0.299105 6.844922 1780.413 -132.6720 17.64318 0.000155	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quit Durbin-Wats	lent var riterion terion nn criter.	23.59450 8.176025 6.733598 6.818042 6.764130 2.370272

From the above model, we get the estimate equation:

Expenditure = 7.382 + (0.232)(Income)

Inferences:

- The model has low explanatory power, having R² value 0.32.
- The independent variable income has p-value 0.0002 and is statistically significant.
- The intercept has a p-value of 0.0733 and is statistically insignificant.
- The Std. Error of the slope is very low, having value of 0.055. Hence, the variance value will also be very low.

From the inferences made using the low value of R², low value of Std. Error of slope and statistically significant p-value of the independent variable income, we may infer the presence of heteroscedasticity. To confirm the same, we need to perform the white test.

White Test Results:

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

Muli Hypothesis. Horno.	Skedasticity			
F-statistic Obs*R-squared Scaled explained SS	10.61267 14.58151 12.33032	Prob. F(2,37 Prob. Chi-So Prob. Chi-So	quare(2)	0.0002 0.0001 0.0021
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C INCOME^2 INCOME	63.10781 0.028786 -2.433686	77.54055 0.014972 2.192411	0.813869 1.922686 -1.110050	0.4209 0.0622 0.2741
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.364538 0.330188 50.50240 94368.20 -212.0791 10.61267 0.000228	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	44.51031 61.70718 10.75396 10.88062 10.79976 2.009572

Inference:

• Since the probability value of chi-square is less than the f-critical value, we reject the null hypothesis and confirm the presence of heteroscedasticity.