

Ensembles of Diverse Cluster-based Discriminative Dependency Parsers

Marzieh Razavi

Simon Fraser University 16 August 2012

Structured Linear Model

Structured Linear Model

$$PARSE(\mathbf{s}) = \arg \max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \mathbf{w} \cdot \mathbf{f}(\mathbf{s}, t)$$
 (1)

Structured Linear Model

$$PARSE(\mathbf{s}) = \arg \max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \mathbf{w} \cdot \mathbf{f}(\mathbf{s}, t)$$
 (1)

Arc-factored Models

Structured Linear Model

$$PARSE(\mathbf{s}) = \arg \max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \mathbf{w} \cdot \mathbf{f}(\mathbf{s}, t)$$
 (1)

Arc-factored Models

$$PARSE(\mathbf{s}) = \arg \max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \sum_{r \in \mathbf{t}} \mathbf{w} \cdot \mathbf{f}(\mathbf{s}, r)$$
 (2)

1

First-order & Second-order Factorization:

► Individual parts (h, m)

First-order & Second-order Factorization:

► grandchild parts (h, m, c)

First-order & Second-order Factorization:

▶ sibling parts (h, m, si)

- ▶ Flexible feature vector representation
 - Lexical information (e.g. improves, trend)
 - ► POS tags (e.g. VBZ, NN)

- ▶ Flexible feature vector representation
 - Lexical information (e.g. improves, trend)
 - ► POS tags (e.g. VBZ, NN)
- Problem : Sparsity of lexicalized statistics

- ► Flexible feature vector representation
 - ► Lexical information (e.g. improves, trend)
 - ► POS tags (e.g. VBZ, NN)
- ► Problem : Sparsity of lexicalized statistics

Cluster-based Discriminative Dependency Parsing

- ► (Koo, Carreras, and Collins, 2008):
 - A simple semi-supervised method
 - ▶ Use unlabeled data to extract word clusters
 - ▶ (Brown et al., 1992) clustering algorithm
 - Incorporate word clusters as features

Cluster-based Discriminative Dependency Parsing

- ► (Koo, Carreras, and Collins, 2008):
 - A simple semi-supervised method
 - ▶ Use unlabeled data to extract word clusters
 - ▶ (Brown et al., 1992) clustering algorithm
 - Incorporate word clusters as features

Cluster-based Discriminative Dependency Parsing

- ► (Koo, Carreras, and Collins, 2008):
 - A simple semi-supervised method
 - ▶ Use unlabeled data to extract word clusters
 - ▶ (Brown et al., 1992) clustering algorithm
 - Incorporate word clusters as features

 Can inform the parser about unknown words in test data that are clustered with known words

Contribution

- Extend the framework of (Koo, Carreras, and Collins, 2008): use multiple diverse clustering methods
- Ensemble model: exact inference on the shared hypothesis space of base models
- ► **Improving** unlabeled dependency accuracy from 90.82% to 92.46% on Sec. 23 of PTB
- Significant improvements in domain adaptation to the Switchboard and Brown corpora

Brown Algorithm:

- ► Bottom-up Algorithm
- Repeatedly merges the two clusters that maximize the likelihood of the input according to class-based bigram language model:

▶ By tracing the merges we can obtain a binary tree

Brown Algorithm:

- Word clusters can be obtained by selecting the nodes at certain depths from the root
 - ► Determines the granularity of the clustering

Brown Algorithm:

- Word clusters can be obtained by selecting the nodes at certain depths from the root
 - ► Determines the granularity of the clustering

Brown Algorithm:

- Word clusters can be obtained by selecting the nodes at certain depths from the root
 - ► Determines the granularity of the clustering

HMM State Splitting

- The clusters can be viewed as hidden states in HMM
- ▶ Brown Algorithm : **Hard** clustering of words
- Maximize the likelihood function using EM: Soft clustering of words
- Hierarchical Split-Merge Technique:

HMM State Splitting

- The clusters can be viewed as hidden states in HMM
- ▶ Brown Algorithm : **Hard** clustering of words
- Maximize the likelihood function using EM: Soft clustering of words
- ► Hierarchical Split-Merge Technique:

HMM State Splitting

- The clusters can be viewed as hidden states in HMM
- ▶ Brown Algorithm : **Hard** clustering of words
- Maximize the likelihood function using EM: Soft clustering of words
- Hierarchical Split-Merge Technique:

Split

HMM State Splitting

- The clusters can be viewed as hidden states in HMM
- ▶ Brown Algorithm : **Hard** clustering of words
- Maximize the likelihood function using EM: Soft clustering of words
- ► Hierarchical Split-Merge Technique:

Split

HMM State Splitting

- The clusters can be viewed as hidden states in HMM
- ▶ Brown Algorithm : **Hard** clustering of words
- Maximize the likelihood function using EM: Soft clustering of words
- ► Hierarchical Split-Merge Technique:

- Context specific clustering of HMM vs. hard clustering of Brown:
- Brown Clustering :

1010 milk pick up juice drink ...

► HMM Clustering:

State splitting in PCFGs

► Berkeley Parser : Employs split-merge training of PCFGs (Petrov et al., 2006)

State splitting in PCFGs

 Berkeley Parser: Employs split-merge training of PCFGs (Petrov et al., 2006)

- ► Syn-Low: Split POS tag from Berkeley parser
 - e.g., improves : VBZ-1

State splitting in PCFGs

 Berkeley Parser: Employs split-merge training of PCFGs (Petrov et al., 2006)

- Syn-High: Split non-terminals from Berkeley parser
 - e.g., improves : S-14

Diversity Among Clustering Annotations

different HMM Clustering with various randomization seeds:

idea stuff problem story mess list stuff stuff impression stuff limitation limitation problem chore mess stuff pool triangle mentality argument HMM1 HMM2 HMM3 HMM4 HMM5

- Diversity of the words clustered with stuff in each model
- ▶ Intuition: Ensemble of HMMs can lead to a better model
 - different clusterings can be informative to the parser

Diversity Among Clustering Annotations

▶ different HMM Clustering with various randomization seeds:

- Diversity of the words clustered with stuff in each model
- ▶ Intuition: Ensemble of HMMs can lead to a better model
 - different clusterings can be informative to the parser

Linear combination of base models:

$$\textit{PARSE}(\mathbf{s}) = \arg\max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \sum_{k} \underbrace{\alpha_{k}}_{\text{model weight}} \underbrace{\sum_{r \in \mathbf{t}} \underbrace{\mathbf{w}_{k} \cdot \mathbf{f}_{k}(\mathbf{s}, r)}_{k \text{th base model}}}$$

Linear combination of base models:

$$\textit{PARSE}(\mathbf{s}) = \arg\max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \sum_{k} \underbrace{\alpha_{k}}_{\text{model weight}} \underbrace{\sum_{r \in \mathbf{t}} \underbrace{\mathbf{w}_{k} \cdot \mathbf{f}_{k}(\mathbf{s}, r)}}_{\textit{sc}_{k}(s, r)}$$

Linear combination of base models:

$$\textit{PARSE}(\mathbf{s}) = \arg\max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \sum_{k} \underbrace{\alpha_{k}}_{\text{model weight}} \underbrace{\sum_{r \in \mathbf{t}} \underbrace{\mathbf{w}_{k} \cdot \mathbf{f}_{k}(\mathbf{s}, r)}}_{\textit{sc}_{k}(\mathbf{s}, r)}$$

Linear combination of base models:

$$\textit{PARSE}(\mathbf{s}) = \arg\max_{\mathbf{t} \in \mathcal{T}(\mathbf{s})} \sum_{k} \underbrace{\alpha_{k}}_{\text{model weight}} \underbrace{\sum_{r \in \mathbf{t}} \underbrace{\mathbf{w}_{k} \cdot \mathbf{f}_{k}(\mathbf{s}, r)}}_{\textit{sc}_{k}(s, r)}$$

$$M_K$$
: $sc_K(s,r) = w_K.f_K(s,r)$

Related Works on ensemble learning:

- ► Combine **different** dependency parsing systems
- Combining base parsers at parsing time using voting (Sagae and Lavie, 2006)
- Integrate base parsers at training time using stacking (Nivre and McDonald, 2008)

Related Works on ensemble learning:

- ► Combine **different** dependency parsing systems
- Combining base parsers at parsing time using voting (Sagae and Lavie, 2006)
- Integrate base parsers at training time using stacking (Nivre and McDonald, 2008)

Alternative Approach

- Concatenate feature sets of the base parsing models
- ► Train one **joint model** in a discriminative parsing approach

Related Works on ensemble learning:

- ► Combine **different** dependency parsing systems
- Combining base parsers at parsing time using voting (Sagae and Lavie, 2006)
- Integrate base parsers at training time using stacking (Nivre and McDonald, 2008)

Alternative Approach

- Concatenate feature sets of the base parsing models
- ► Train one **joint model** in a discriminative parsing approach

Our Approach:

- Combine various graph-based models
- ▶ Online combination of clustering-based models

Experiments

In-domain Experimental Set-up

- ► MSTParser framework (McDonald, Crammer, and Pereira, 2005)
 - ► Inference : (Eisner, 1996)
 - Extend the feature set to incorporate cluster based features from (Koo, Carreras, and Collins, 2008)
 - ▶ Implementation of the ensemble and joint model
- Data : English Penn Treebank
 - ► Training set : Section 2-21
 - ▶ Dev set : section 22
 - ► Test set : Section 0, 1, 23, 24
 - ▶ POS tags : MXPOST (Ratnaparkhi, 1996)
 - Training data created by "leave one section out" method
- Clusters
 - ▶ Brown Clustering: Liang's implementation ¹ on BLLIP Corpus
 - ▶ HMM Clustering: On-House implementation on BLLIP corpus
 - Syntactic Clustering: Berkeley Parser ²

 $^{^{1}}$ cs.stanford.edu/ \sim pliang/software/brown-cluster-1.2.zip

²code.google.com/p/berkeleyparser

1st Order Results: Consistent Improvement in Accuracy

- ► The ensemble outperforms the baseline and the individual models in all cases
- ► The ensemble outperforms the joint model in almost all cases

1st Order Results: Consistent Improvement in Accuracy

- ► The ensemble outperforms the baseline and the individual models in all cases
- ► The ensemble outperforms the joint model in almost all cases

1st Order Results: Consistent Improvement in Accuracy

- ► The ensemble outperforms the baseline and the individual models in all cases
- ► The ensemble outperforms the joint model in almost all cases

2nd Order Results: Consistent Improvement in Accuracy

- Incrementally adding number of models
 - Further improvement in accuracy

Out-of-domain Experiments

Set-up:

- ▶ Brown Corpora : Press reviews
- SwitchBoard Corpora : Phone conversations
 - ► Larger domain divergence to WSJ

Out-of-domain Experiments

Set-up:

- Brown Corpora : Press reviews
- SwitchBoard Corpora : Phone conversations
 - Larger domain divergence to WSJ

Experiments:

▶ the ensemble performance improvement for the SwitchBoard is more than that for the Brown corpus

Figure: F-score for each dependency length for in-domain setting.

► Ensemble combines each model's expertise and does best at each dependency length

Figure: F-score for each dependency length for in-domain setting.

 Ensemble combines each model's expertise and does best at each dependency length

Figure: F-score for each dependency length for in-domain setting.

 Ensemble combines each model's expertise and does best at each dependency length

Figure : Error rate of the head attachment for different types of modifier categories for in-domain setting.

► The ensemble always does best in every grammatical category

Figure : Error rate of the head attachment for different types of modifier categories for in-domain setting.

▶ The ensemble always does best in every grammatical category

Figure : Error rate of the head attachment for different types of modifier categories for in-domain setting.

▶ The ensemble always does best in every grammatical category

Learning the models weights

► **Motivation** : benefit from each model's strength on a specific dependency type

Learning the models weights

► **Motivation**: benefit from each model's strength on a specific dependency type

Set-up

 Modified-MIRA: update the weights based on a specific dependency type

dev set : Section 0

▶ test set : Section 22, 23

Learning the models weights

Motivation : benefit from each model's strength on a specific dependency type

► Set-up

 Modified-MIRA: update the weights based on a specific dependency type

dev set : Section 0test set : Section 22, 23

Experimental Results:

Verb and Pronoun : Effective in improving the accuracy (5.6% error reduction)

sec	uniform	Verb
22	91.31	91.33
	40.55	40.96

sec	uniform	Pronoun
23	91.12	91.14
	38.73	38.77

 Learning the model weights can lead to improvements in some cases, but it does not have an important contribution to the overall accuracy

Conclusion and Future directions

Conclusion:

- Ensemble of different parsing models:
 - ► More Powerful model : improving unlabeled accuracy from 90.82% to 92.46% on Sec. 23 of PTB
 - ► Strength in Domain Adaptation Scenario : from 75.23% to 77.23% on SwitchBoard data
- ► Simple uniform ensemble model performs essentially as well as other more complex models

Conclusion and Future directions

Conclusion:

- Ensemble of different parsing models:
 - ► More Powerful model : improving unlabeled accuracy from 90.82% to 92.46% on Sec. 23 of PTB
 - Strength in Domain Adaptation Scenario: from 75.23% to 77.23% on SwitchBoard data
- Simple uniform ensemble model performs essentially as well as other more complex models

Future directions:

- Experimenting Ensemble on other languages
 - word clusters are shown to be useful for a diverse set of languages (Täckström, McDonald, and Uszkoreit, 2012)
- Using other word representations
 - distributed word representations (Turian, Ratinov, and Bengio, 2010)

Questions?

Bibliography I

Brown, P. F., P. V. deSouza, R. L. Mercer, T. J. Watson, V. J. Della Pietra, and J. C. Lai. 1992. Class-based n-gram models of natural language. *Computational Linguistics*, 18(4).

Eisner, J. 1996. Three new probabilistic models for dependency parsing: an exploration. In *COLING*.

Koo, T., X. Carreras, and M. Collins. 2008. Simple semi-supervised dependency parsing. In *Proc. of ACL/HLT*.

McDonald, R., K. Crammer, and F. Pereira. 2005. Online large-margin training of dependency parsers. In *Proc. of ACL*.

Nivre, J. and R. McDonald. 2008. Integrating graph-based and transition-based dependency parsers. In *Proc. of ACL*.

Petrov, S., L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact, and interpretable tree annotation. In *Proc. COLING-ACL*.

Bibliography II

Ratnaparkhi, A. 1996. A maximum entropy model for part-of-speech tagging. In *Proc. of EMNLP*.

Sagae, K. and A. Lavie. 2006. Parser combination by reparsing. In *Proc. of NAACL-HLT*.

Täckström, Oscar, Ryan T. McDonald, and Jakob Uszkoreit. 2012. Cross-lingual word clusters for direct transfer of linguistic structure. In *HLT-NAACL*, pages 477–487.

Turian, J., L. Ratinov, and Y. Bengio. 2010. Word representations: a simple and general method for semi-supervised learning. In *Proc.* of ACL.