Identifying Sustainable Packaging Materials for Food Groups Through Clustering of Gas Permeability

Chair Group: Food Quality & Design

MSc Student: Windy Yeh

Supervisor : Deniz Turan Kunter

Who am I?

Final-year of my master degree in Food Technology in WUR

Specialization: sustainable processing engineering

Taiwan

Combine Data Science and Food Domain

Thesis topic: Identifying Sustainable Packaging
Materials for Food Groups Through Clustering of Gas
Permeability

Windy Yeh

Background

Food packaging plays a crucial role in extending shelf life, preserving freshness, and maintaining quality cause it serves as a barrier.

- Water vapor permeability
- Oxygen permeability
- Carbon Dioxide permeability

shift towards **sustainable alternatives**

Knowledge Gap

specific packaging requirements

e.g. instant coffee / fresh fruits

inferior barrier properties of biodegradable materials

food waste

Current Research: isolated studies exploring specific materials for certain food types (e.g., chitosan-cellulose films for shredded lettuce)

Knowledge Gap: Lack a comprehensive, data-driven analysis, especially on gas permeability characteristics in different sustainable packaging materials.

Aim and Research Questions

Aim: Developing **clustering algorithms** to group sustainable packaging materials according to their **gas permeability** characteristics— oxygen, water vapor, and carbon dioxide—and then **identify which materials** are best suited to the barrier needs of different food groups.

Research Questions

- 1. Which **clustering algorithms** most accurately classify sustainable packaging materials based on their gas permeability?
- 2. Which sustainable materials are best suited for packaging different food categories?

Data Collection

Raw Data

- Text-mined dataset from study of Lentschat (2021) from 50 scientific articles
- published between 2000 to 2016

Data

		
Variable	Explanation	Values
Doc	The article fifte	Barrier and surface properties of chitosan-coated greaseproof paper
DOI	Digital Object Identifier	https://doi.org/10.1016/j.carbpol.2006.02.005
Target	generic concept represented	Permeability
	the ontology concept category, symbolic, quantitative or addimensional	QUANTITY
	a list of annotated tokens for symbolic data, two lists of annotated tokens for quantitative data	([`3400'],[`cm','^','3','mm','/','(`,'m','^',2', `atm','day',')'])
Attached_Value	the list of annotated tokens to disambiguate a measure unit when necessary for quantitative data. None for symbolic data.	
Annotator	annotator id	1

Scatterplot

Expected Features

Materials	Based Material	Туре	Secondary Material	Composition	ОР	OTR	WVP	WVTR	Pco2	co2TR	temp	RH
chitosan- coated greasep roof paper	greaseproof paper	coated	chitosan	[`CS','2.4',' %']	0.01	0.001	nan	nan	0.001	0.0001	25	95
poly (lactic acid) nanocom posites	polylactic acid	nanocompo site	montmorilloni te	[`MMT', `0.15', `%']	nan	nan	1.160 * 10 ⁻¹⁰	1.160 * 10 ⁻⁸	nan	nan	38	52
Carrot puree films	Carrot puree	individual	nan	nan	20.20	4.80	nan	nan	nan	nan	25	83

WAGENINGEN

Data Collection Raw Data Data Cleaned Dataset Feature Features **Data Modeling** Models **Visualization** Scatterplot

Clustering models:

- K-means
- **DBSCAN**
- Gaussian Mixed Matrix

