Adopted Levels:not observed

 $Q(\beta^{-})=24430 \ calc$; $S(n)=-2370 \ calc$; $S(p)=29480 \ calc$ 2019Mo01 S(2n) = -470 (2019MoO1, FRDM).

2019Ah07: 9Be(48Ca,X) using a 345-MeV/nucleon 450-pnA 48Ca beam provided by the cascade operation of the RIBF accelerator complex at RIKEN and impinging on a 20-mm-thick beryllium target. Projectile fragments were separated and identified using ΔE -tof-B ρ by the large-acceptance two-stage separator BigRIPS. Tof was measured using two thin plastic scintillators placed at the intermediate and final foci of the second stage of BigRIPS. B ρ was measured from position measurement at the intermediate focus using the plastic scintillator. ΔE was measured using a stack of six silicon detectors installed at the final focus. Optimum settings of B ρ were tuned to transmit ³³F for 14 hours and ³⁶Ne+³⁹Na for 7.8 hours. The Be target was irradiated with 1.4×10^{17} and 7.8×10¹⁶ ⁴⁸Ca ions, respectively. Measured Z vs A/Z particle-identification plot. No ³⁵Ne events were observed in either setting. Under 33 F setting, the expected 35 Ne yields obtained from LISE++ are 177 53 using the production σ =37.8 fb from EPAX 2.15 systematics and 69 17 using the production σ =14.8 fb 36 from Q_g systematics.

2022Ah02: Same experimental setup as 2019Ah07 with 540-pnA 48 Ca beam. Optimum settings of B ρ were tuned to transmit 39 Na for 46.1 hours and ³⁶Ne for 25.3 hours. Measured Z vs A/Z particle-identification plot. No ³⁵Ne events were observed in either

2020Mi15: VS-IMSRG ab initio calculations of ground-state energies and S(2n).

³⁵Ne Levels

E(level) Comments

0?

%n=?; %2n=?

Evaluators estimate the probability of not observing ³⁵Ne events by chance is 2.6×10⁻²³ using the lowest expected yield of 52 events (2019Ah07) and Poisson probability distributions. ³⁵Ne is determined to be unbound at a confidence level of $1-2.6\times10^{-23}$. The heaviest bound neon isotope is 34 Ne.

 J^{π} : 5/2 calculated projection of the odd-neutron angular momentum along the symmetry axis and parity of the wave function (2019Mo01).

T_{1/2}: 2.7 ms calculated with respect to Gamow-Teller QRPA transitions and phenomenological first-forbidden contributions (2019Mo01).