NAME:

- 1. Two players, you and Doyle Brunson (former world champion), play a Texas Hold'em poker game. Each player is dealt two cards (from a well shuffled deck). If your two cards are $(A \clubsuit, K \clubsuit)$. What are the following probabilities for Dovle's hand?
 - a) Pr[two aces]
 - b) Pr[an ace and a king]
 - c) Pr[a pair of tens]
 - d) Pr[any pair]
 - e) Pr an ace or a king and another card (not an ace or king)

a)
$$\frac{\binom{9}{2}}{\binom{50}{2}} = \frac{3.2}{80.49} = \frac{3}{25.49}$$

6)
$$P(AK) = \frac{\binom{3}{1}\binom{3}{1}}{\binom{50}{2}} = \frac{3\times3\times2}{50\times49} = \frac{9}{25\times49}$$

c)
$$P(10,10) = \frac{4}{2} = \frac{6 \times 2}{50 \times 49} = \frac{6}{25 \times 49}$$

c)
$$P(10,10) = \frac{4}{2} = \frac{6 \times 2}{50 \times 49} = \frac{6}{25 \times 49}$$

 $\frac{(50)}{2}$ Aces Kings all others
d) $P(\text{any pair}) = \frac{3}{2} + \frac{3}{2} + \frac{4}{2} + \frac{4}{11} \times \frac{4}{2} = \frac{3+3+11 \times 6}{50} = \frac{72 \times 2}{50 \times 49}$

e)
$$P(Aork, other) = \frac{\binom{6}{1}\binom{44}{1}}{\binom{50}{2}} = \frac{6\times44\times2}{50\times49}$$

- 2. Consider a simple hypothesis testing problem: Under hypothesis H_0 , $X \sim U(0,1)$ and under hypothesis H_1 , $X \sim U(0.5, 2.5)$.
 - a) Plot both densities on the same graph, labeling each hypothesis.
 - b) In a simple test comparing X to a threshold s, what value of s results in a false positive probability equal to 0.2?
 - c) For the same value of s as above, what is the false negative probability?

a) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

6) P(FP)

P(FP)= P(X)5)Ho) = 1-5 =0.2

=> S= 0,8

G) P(FN) = P(XKS/H1) = S-\frac{1}{2} = 0.8-0.5 \frac{1}{2} = 0.8-0.5

P(FN) S

3. Two random variables, X and Y, have density $f_{XY}(x,y) = ky$ in the shaded region below.

- a) What is k?
- b) What is $f_X(x)$?
- c) What is $f_{Y|X}(y|x)$?

$$y = 1 - x^2$$

$$\xrightarrow{-1}$$

a)
$$1 = \int_{-\infty}^{\infty} \int_$$

c)
$$f_{Y|X}(Y|X) = f(X|Y) = \frac{KY}{f_{X}(X)} = \frac{KY}{f_{X}(X)} = \frac{2Y}{(1-X^{2})^{2}} = \frac{2Y}{(1-X^{2})^{2}}$$

- 4. Let X and Y be IID exponential random variables with density $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ and $f_X(x) = 0$ for x < 0 (and same for Y). Let S = X + Y.
- a) What is the density of S, i.e., $f_S(s)$?
- b) What is the conditional density of X given S=s, i.e., $f_{X|S}(x|S=s)$?

P(X=x/S=8) = P(X=x 1) X+Y=S) = P(K=x) P(Y=5-x) Yerx rev(s-x) (2x) xx Simpler argument can be solved 6) f (x(s)= for with Jacobian.

Ce. Given S=5 X is Uniform between O and S.

5

Let $X \sim N(-1,4)$, use the table on the right to find,

- a) $\Pr[X \leq 0]$.
- b) $\Pr[-1 \le X \le 1]$.
- c) $\Pr[X \ge 1]$.
- d) $\Pr[2X + 1 \le 3]$.

a)
$$P[X < \delta] = P[\frac{X+1}{2} \le \frac{6+1}{2}]$$

= $P(\xi) = 0.6915$

-				. ,		\ /		. ()
(0.00	0.5000	1.00	0.8413	2.00	0.9772	3.00	0.9987
(0.05	0.5199	1.05	0.8531	2.05	0.9798	3.05	0.9989
(0.10	0.5398	1.10	0.8643	2.10	0.9821	3.10	0.9990
(0.15	0.5596	1.15	0.8749	2.15	0.9842	3.15	0.9992
(0.20	0.5793	1.20	0.8849	2.20	0.9861	3.20	0.9993
(0.25	0.5987	1.25	0.8944	2.25	0.9878	3.25	0.9994
(0.30	0.6179	1.30	0.9032	2.30	0.9893	3.30	0.9995
(0.35	0.6368	1.35	0.9115	2.35	0.9906	3.35	0.9996
(0.40	0.6554	1.40	0.9192	2.40	0.9918	3.40	0.9997
(0.45	0.6736	1.45	0.9265	2.45	0.9929	3.45	0.9997
(0.50	0.6915	1.50	0.9332	2.50	0.9938	3.50	0.9998
. (0.55	0.7088	1.55	0.9394	2.55	0.9946	3.55	0.9998
(0.60	0.7257	1.60	0.9452	2.60	0.9953	3.60	0.9998
(0.65	0.7422	1.65	0.9505	2.65	0.9960	3.65	0.9999
(0.70	0.7580	1.70	0.9554	2.70	0.9965	3.70	0.9999
) (0.75	0.7734	1.75	0.9599	2.75	0.9970	3.75	0.9999
(0.80	0.7881	1.80	0.9641	2.80	0.9974	3.80	0.9999
(0.85	0.8023	1.85	0.9678	2.85	0.9978	3.85	0.9999
1 (0.90	0.8159	1.90	0.9713	2.90	0.9981	3.90	1.0000
(0.95	0.8289	1.95	0.9744	2.95	0.9984	3.95	1.0000

 $\Phi(z) \mid z$

 $\Phi(z)$ | z

 $\Phi(z)$

6)
$$P[-15 \times 51] = P[-1+15 \times 51] = P[0] - P[0]$$

 $= 6.8413 - 0.8 = [0.3413]$

c)
$$P[x \ge 1] = P[x + 1 \ge 1 + 1] = 1 - \overline{P}(1)$$

= $1 - 0.8413 = 0.1587$

cl)
$$P[ZX+1 \le 3] = P[X \le \frac{3-1}{2}] = P[X \le 1]$$

= $P[X+1 \le 1 \le 1 \le 1] = D(1) = [0.8413]$

6. For 16 QAM (same assumptions as usual: all 16 points are equally likely to be transmitted, the noises N_X and N_Y are IID $N(0, \sigma^2)$), derive the probability of error.

Nx and Ny are IID N(0,0°), derive the probability of error.

3 regions:

$$P(O \cap NC) = P(N_{X} > -\Delta \cap N_{Y} > -\Delta)$$

$$= P(N_{X} < \Delta \cap N_{Y} > -\Delta)$$

$$=$$

 $P(enor) = 1 - P(orrect) = 4 (1 - 2(2))^{2} + 2 (1 - 2(2))(22(2) - 1)$ + $4 (1 - (22(2) - 1)^{2}) = 3 + 3 + 3 + 3 + 3 = 3$

- 7. (Extra credit: credit only for correct work) Let X(t) be a WSS random process with autocorrelation function $R(\tau)$ and power spectral density $S(\omega)$.
 - a) (5 points) If $R(\tau) = e^{-\alpha|\tau|}$ (for $\alpha > 0$ and all τ), what is $S(\omega)$?
 - b) (5 points) If $S(\omega) = 1$ for $\omega_1 \le |\omega| \le \omega_2$, what is $R(\tau)$?

$$S(\omega) \uparrow \qquad \qquad \downarrow \\ -\omega_2 \quad -\omega_1 \qquad \qquad \omega_1 \qquad \omega_2 \quad \omega$$

$$= d - j w + \alpha + j \omega = \begin{bmatrix} 2 & 2 & 2 \\ \alpha^2 + \omega^2 & \alpha \end{bmatrix}$$

$$=\frac{1}{2\pi}\int_{0}^{\omega_{1}}e^{j\omega\tau}d\omega+\frac{1}{2\pi}\int_{0}^{\omega_{2}}e^{j\omega\tau}d\tau=\frac{1}{2\pi}\int_{0}^{\omega_{1}}e^{j\omega\tau}d\tau+\frac{1}{2\pi}e^{j\omega\tau}d\tau$$

$$= \frac{1}{2\pi} \int_{37}^{2\pi} \left[e^{-j\omega_{1}\gamma} - j\omega_{2}\gamma + 0 + 0 - 0 \right]$$

and Boy Carlotte and the seeming the military with the first that the same and the seeming of the security of Herry the security of the securi

ga a sadani <mark>i indus</mark> palangan palangan sa na sa sa sa sa

52