Lecture 4

Logistic Regression + Residual Analysis

Colin Rundel

1/119/2018

30

Background

Today we'll be looking at data on the presence and absence of the short-finned eel (Anguilla australis) at a number of sites in New Zealand.

These data come from

 Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D. and Hastie, T. (2008), Dispersal, disturbance and the contrasting biogeographies of New Zealand's diadromous and non-diadromous fish species. Journal of Biogeography, 35: 1481–1497.

Species Distribution

Codebook:

- presence presence (1) or absence (0) of Anguilla australis at the sampling location
- SegSumT Summer air temperature (degrees C)
- DSDist Distance to coast (km)
- DSMaxSlope Maximum downstream slope (degrees)
- USRainDays days per month with rain greater than 25 mm
- USSlope average slope in the upstream catchment (degrees)
- USNative area with indigenous forest (proportion)
- · DSDam Presence of known downstream obstructions, mostly dams
- Method fishing method (electric, net, spot, trap, or mixture)
- LocSed weighted average of proportional cover of bed sediment
 - 1. mud
 - 2. sand
 - 3. fine gravel
 - 4. coarse gravel
 - 5. cobble
 - 6 houlder
 - 7 hedrock

```
anguilla
## # A tibble: 617 x 10
##
     presence SegSumT DSDist DSMaxSlope USRainDays USSlope USNative DSDam
##
        <int>
               <dbl> <dbl>
                               <dbl>
                                         <dbl>
                                                <dbl> <dbl> <int>
##
  1
           1
               18.7 133
                               1.15
                                         1.15
                                                8.30
                                                       0.340
## 2
           0
               18.3 107
                               0.570
                                         0.847 0.400
                                                       0
                                                                  0
##
  3
                16.7 167
                               1.72
                                         0.210 0.400
                                                       0.220
## 4
           0
                15.1 11.2
                               1.72
                                         3.30 25.7
                                                       1.00
                                                                  0
##
   5
           0
                12.7 42.4
                               2.86
                                         0.430
                                              9.60
                                                       0.0900
                                                                  0
##
                18.2 94.4
                               3.43
                                         0.847 20.5
                                                                  0
                                                       0.920
## 7
           1
                18.3 91.9
                               1.72
                                         0.861 6.70
                                                       0.580
                                                                  1
## 8
           1
                17.1 6.80
                               0.520
                                         0.620 0.700
                                                       0
##
   9
           0
                13.4 190
                               3.43
                                         0.770 20.1
                                                       0.990
                13.1 224
## 10
           0
                               6.84
                                         0.290
                                              9.80
                                                       0.980
                                                                  0
## # ... with 607 more rows, and 2 more variables: Method <fct>, LocSed <dbl>
```


EDA (part 1)

EDA (part 2)

EDA (part 1)

EDA (part 3)

Simple Model

```
inv logit = function(x) 1/(1+exp(-x))
g = glm(presence~SegSumT, family=binomial, data=anguilla)
summary(g)
##
## Call:
## glm(formula = presence ~ SegSumT, family = binomial, data = anguilla)
##
  Deviance Residuals:
##
      Min
                10 Median
                                 30
                                        Max
## -1.5755 -0.6260 -0.3452 -0.1299
                                     3.0039
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -16.74184 1.65897 -10.092 <2e-16 ***
  SegSumT 0.90009 0.09413 9.562 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 621.91 on 616 degrees of freedom
##
## Residual deviance: 479.39 on 615 degrees of freedom
## ATC: 483.39
```

12

d g = anguilla %>%

```
mutate(p_hat = predict(g, anguilla, type="response"))
d_g_pred = data.frame(SegSumT = seq(11,25,by=0.1)) %>%
  modelr::add_predictions(g,"p hat") %>%
  mutate(p_hat = inv_logit(p_hat))
  0.8
presence
  0.0 -
                                                                       25
    10
                                    SegSumT
```

13

Separation

```
ggplot(d_g, aes(x=p_hat, y=presence, color=as.factor(presence))) +
  geom_jitter(height=0.1, alpha=0.5) +
  labs(color="presence")
  0.8 -
                                                                       presence
presence
  0.0 -
                       0.2
```

Residuals

```
d_g = d_g %>% mutate(resid = presence - p_hat)
ggplot(d_g, aes(x=SegSumT, y=resid)) +
    geom point(alpha=0.1)
```


Binned Residuals

```
d_g %>%
  mutate(bin = p_hat - (p_hat %% 0.05)) %>%
  group_by(bin) %>%
  summarize(resid_mean = mean(resid)) %>%
  ggplot(aes(y=resid_mean, x=bin)) +
   geom_point()
```


Pearson Residuals

$$r_i = \frac{Y_i - E(Y_i)}{Var(Y_i)} = \frac{Y_i - \hat{p}_i}{\hat{p}_i(1 - \hat{p}_i)}$$

d_g = d_g %>% mutate(pearson = (presence - p_hat) / (p_hat * (1-p_hat)))

Binned Pearson Residuals

Deviance Residuals

$$d_i = \operatorname{sign}(Y_i - \hat{p_i}) \sqrt{-2 \left(Y_i \log \hat{p}_i + (1 - Y_i) \log (1 - \hat{p}_i)\right)}$$

d_g = d_g %>%
 mutate(deviance = sign(presence - p_hat) *sqrt(-2 * (presence*log(p_hat) +

Binned Deviance Residuals

Checking Deviance

```
sum(d_g$deviance^2)
## [1] 479.3914
glm(presence~SegSumT, family=binomial, data=anguilla)
##
## Call: glm(formula = presence ~ SegSumT, family = binomial, data = anguil
##
## Coefficients:
## (Intercept) SegSumT
##
     -16.7418 0.9001
##
## Degrees of Freedom: 616 Total (i.e. Null); 615 Residual
## Null Deviance:
                  621.9
## Residual Deviance: 479.4 AIC: 483.4
```

All together

Full Model

```
f = glm(presence... family=binomial, data=anguilla)
summary(f)
##
## Call:
## glm(formula = presence ~ .. family = binomial. data = anguilla)
## Deviance Residuals:
                 10
       Min
                      Median
                                    30
                                            Max
## -2.10254 -0.53092 -0.27156 -0.08821
                                        3.12463
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -11.554287 1.872102 -6.172 6.75e-10 ***
## SegSumT
               0.765864 0.103173 7.423 1.14e-13 ***
## DSDist
                -0.002551 0.002103 -1.213 0.22523
## DSMaxSlope
               -0.062525 0.063093 -0.991 0.32169
## USRainDays
               -0.619025 0.227316 -2.723 0.00647 **
## USSlope
               -0.041399 0.024657 -1.679 0.09315 .
               -0.607045 0.475456 -1.277 0.20169
## USNative
## DSDam
               -0.922073 0.483492 -1.907 0.05651 .
## Methodmixture -0.231175 0.498189 -0.464 0.64263
            -1.229762 0.534845 -2.299 0.02149 *
## Methodnet
## Methodspo
            -1.493876 0.733468 -2.037 0.04168 *
## Methodtrap
             -2.476408 0.628486 -3.940 8.14e-05 ***
## LocSed
                -0.175944 0.098204 -1.792 0.07319 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 621.91 on 616 degrees of freedom
##
## Residual deviance: 420.18 on 604 degrees of freedom
## ATC: 446.18
##
## Number of Fisher Scoring iterations: 6
```

Separation

Residuals vs fitted

Model Performance

Confusion Tables

Predictive Performance (ROC / AUC)

Out of sample predictive performance

What about something non-parametric?

Gradient Boosting Model

```
y = anguilla$presence %>% as.integer()
x = model.matrix(presence~.-1, data=anguilla)
x_test = model.matrix(presence~.-1, data=anguilla_test)
xg = xgboost::xgboost(data=x, label=y, nthead=4, nround=25,
                      objective="binary:logistic", verbose = FALSE)
          0.0
                      0.2
                                 0.4
                                             0.6
                                                        8.0
                                                                    1.0
                               Relative importance
```

Residuals?

Separation?

Effect of nround - Training Data

Effect of nround - Test Data

ROC Curves

Aside: Species Distribution Modeling

Model Choice

We have been fitting a model that looks like the following,

$$y_i \sim \mathrm{Bern}(p_i)$$

$$\mathrm{logit}(p_i) = \mathbf{X}_i.\boldsymbol{\beta}$$

Interpretation of y_i and p_i ?

Absence of evidence ...

If we observe a species at a particular location what does that tell us?

If we don't observe a species at a particular location what does that tell us?

Revised Model

If we allow for crypsis, then

$$\begin{aligned} y_i \sim \text{Bern}(q_i\,z_i) \\ z_i \sim \text{Bern}(p_i) \\ \log \text{id}(q_i) &= \mathbf{X}_{i\cdot} \boldsymbol{\gamma} \\ \log \text{id}(p_i) &= \mathbf{X}_{i\cdot} \boldsymbol{\beta} \end{aligned}$$

Interpretation of $y_{\it i}$, $z_{\it i}$, $p_{\it i}$, and $q_{\it i}$?