MATH 567: Lecture 24 (04/08/2025)

Today: * p-center and p-median problems

p-center and p-median problems

IDEA: Locale at most p facilities, assign every customer to one facility

minimize >

> total distance of all ? p-median customers to their facility & warehouses

> maximum distance of any 7 p-center
one customer to their facility I hive stations

Consider this instance: (numbers on edges are dij)

Objective function values

2-center 2-median

100

100

10

IP formulation

 $X_j = \begin{cases} 1 & \text{if faility located at } j, j \in \mathbb{N} = \begin{cases} 1/2, \dots, n \end{cases} \end{cases}$

 $y_{ij} = \begin{cases} 1 & \text{if customer } i \text{ is assigned to facility } j, i, j \in \mathbb{N} \\ 0, & \text{otherwise}. \end{cases}$

Constraints

Syj=1
$$\forall i$$
 (customer i also gred to one facility)

 $X_j \leq p$ (at most p facilities installed)

 $X_j \leq x_j \quad \forall i, j$ (customer i can be assigned to j only if facility located there)

or disaggregated constraints

 $X_j \quad \forall i \in \{0,1\}$
 $X_j \quad \forall i \in \{0,1\}$

Objective functions

To also minimize # poles $(\leq \beta)$ among optimal solutions to β -center/p-median, we can set

min
$$z + \epsilon = \sum_{j=1}^{n} x_j$$
 where $0 < \epsilon < \min_{i,j} \frac{dij}{dij} / n$

Applications p-median: ware housing - minimize the total distance from warehouses to all retailers.

p-center: firestations -> minimize the largest distance of any customers from their assigned fire station.

Claim	94 is	enough to	pat	0≤ y; ≤1, i.e.,	y ESO, IZ	is not needed.
	•	۵	•	3 0	Uy . I	

Proof Suppose $y_{11} + y_{12} + \cdots + y_{1k} = 1$ and $y_{1j} = 0$ for j > k, where $0 < y_{1i} < 1$ for $i = 1, \dots, k$. So, customer 1 is partially assigned to facilities $1, \dots, k$.

 $\frac{d_{1i} \times_{1}}{\times_{2}}$

Then we can make $y_{i,i*}=1$ where $d_{i,i*}=min \leq d_{i,i}$, and set $y_{i,i}=0$ for $i \neq i^*$.

Hence, there always exists an optimal solution with y. E 50,17.

X; s still need to be set as binary variables.

We will look at hewistics for the p-center and p-median problems. The MIP formulations are often too big to handle, even for moderately sized problems.

Binary Search Heuristic for p-center

Let
$$z_{\ell} = 0$$
, $z_{u} = M$

(lower, upper bounds on Z, the objective function)

while (|Zu-Ze| > E) to scale secondary objective function (two pages ago)!

$$z = \frac{z_{i} + z_{i}}{z};$$

$$C_{i} = \frac{2}{3} | d_{i} \leq z^{3}$$

Solve a <u>set covering problem (SCP)</u> with Ci's; use greedy/modified greedy

if optimal value (SCP) >>

set $Z_{\ell} = Z_{j}$ ignores lower half of $[Z_{\ell}, Z_{\ell}]_{j}$ as we need to increase the allowed distances

set 2u = 2; ignore upper half of [2e, 2u]; end

we are able to satisfy requirements with $\leq p$ facilities, so we could by to tighten the distances now.

Greedy heuristic for the p-median problem

If p=1, we can locate the one facility optimally. Let $z_j = \sum_{i=1}^n d_{ij}$, pick j with minimal z_j .

(P-1) -> p: Assuming the first (p-1) facilities stay,

We locate the pth facility optimally.

Let X_{p-1} be the set of (p-1) facilities already located.

We compute

 $z_j = \sum_i dist(i, X_{p_1}Uz_jz_j)$ where

 $dist(i, X_{p_1}U \neq j_1^2) = \min_{k \in X_{p_1}U \neq j_1^2} \{d_{ik}\}, \text{ and }$

Select j with the smallest zj, set $X_p = X_{p_1} \cup \{j\}$.

In other words, we are choosing the pth facility greedily.

We could do a clean-up type run through the selected facilities after each facility is picked, or after, say, every 10th facility is picked.

Absolute p-center problem

Here, we can bocate facilities on the edges of the graph, in addition to locating on its nodes.

Note: The original version is called the vertex p-center problem.

Objective function values(z):

þ]	nertex	absolute
1	2	2
2	2	1

How do we solve the absolute p-center problem? It appears that there could be infinitely many new candidate facility locations!

Even though there might be infinitely many possibilities for the absolute p-center problem, we can show the following result.

We can select finitely many points, N, on the edges and then

Absolute p-center problem on $G_1 = (V,E) \equiv$ vertex p-center on $G_1' = (VUN,E')$, where

E' consists of original edges in E split into two or more edges when vertices from N are added.

d.

Def A facility α is a **boal center** for nodes i and j if $d(i,\alpha) = d(j,\alpha) \in d(k,\alpha) + k \neq i,j$, A, B, where α is located on \overline{AB} , and i,j,k are assigned to α . The shortest paths from α to i and j must go alternatively through A and B, as shown below.

<u>Claim</u> There exists an optimal solution to the absolute p-center problem where every facility is a local center for some i and j.