LEBESGUE INTEGRAL THEORY

Measure Theory, Integration, and Hilbert spaces

Jaeho Shin

Contents

1	Measure Theory		
	1.1	Preliminaries	3
	1.2	The Exterior Measure	7
	1.3	Measurable Sets and the Lebesgue Measure	11
	1.4	Measurable Functions	15
2	Integration Theory 10		
	2.1	The Lebesgue Integral: Basic Properties and Convergence Theorems	16
	2.2	The Space L^1 of Integrable Functions	16
	2.3	Fubini's theorem	16
	2.4	A Fourier Inversion Formula	16
3	Differentiation and Integration		
	3.1	Differentiation of the Integral	17
	3.2	Good Kernels and Approximations to the Identity	17
	3.3	Differentiability of Functions	17
	3.4	Rectifiable Curves and the Isoperimetric Inequality	17
4	Hilbert Spaces: An Introduction		18
	4.1	The Hilbert Space L^2	18
	4.2	Hilbert Space	18
	4.3	Fourier Series and Fatou's Theorem	18
	4.4	Closed Subpaces and Orthogonal Projections	18
	4.5	Linear Transformations	18
	4.6	Compact Operators	18
5	Solı	ution for exercises	19
Bibliography			20

Measure Theory

The goal of this course, especially in this chapter, is to provide a notion of "size" for subsets of \mathbb{R}^d by constructing an appropriate function

$$m: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^{\geq 0} \cup \{\infty\}$$

satisfying the following properties:

- $(1) \ m(\emptyset) = 0$
- (2) m([b,a]) = b a
- (3) If $E = \bigsqcup_{n=1}^{\infty} E_n$, then $m(E) = \sum_{n=1}^{\infty} m(E_n)$.
- (4) m(E+h) = m(E) for all $h \in \mathbb{R}$

The third and fourth properties are called **countable additivity** and **translation invariance**, respectively. By regarding m as a function that measures the size of sets, it seems very natural that m should satisfy the above properties. However, this is just our intuition! As a math student, the natural follow-up question is as follows:

Does m exist? If it does, is m unique?

In fact, such a function m does not exist. Then, what can we do next? One way to resolve this problem is to restrict the domain of m. By removing certain pathological sets, we can define a function m which satisfies some nice properties. This domain will be called "measurable sets" and the function m will be called the "Lebesgue measure".

1.1 Preliminaries

Recall that the collection $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of subsets in \mathbb{R}^d is said to be "disjoint" if $E_{\alpha}\cap E_{\beta}=\emptyset$ whenver $\alpha\neq\beta$. We define the slightly weaker concept "almost disjoint" as follows:

Definition 1.1.1

Let $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be a collection subsets in \mathbb{R}^d . Then $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is said to be **almost disjoint** if $\{\operatorname{Int}(E_{\alpha})\}_{{\alpha}\in\mathcal{A}}$ is disjoint.

Note that a closed **rectangle** R in \mathbb{R}^d is given by

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d],$$

where $a_j \leq b_j$ for all $1 \leq j \leq d$. The **volume** of the rectangle R is denoted by |R|, and is defined to be

$$|R| = (b_1 - a_1)(b_2 - a_2) \cdots (b_d - a_d).$$

Moreover, a **cube** is a rectangle satisfying $b_1 - a_1 = b_2 - a_2 = \cdots = b_d - a_d$.

Lemma 1.1.1

If a rectangle R can be written as a union of finitely many almost disjoint rectangles R_1, \ldots, R_N , then

$$|R| = \sum_{k=1}^{N} |R_k|.$$

Proof. Consider the grid formed by extending the sides of all rectangles R_1, \ldots, R_N . This gives finitely many samller rectangles $\tilde{R}_1, \ldots, \tilde{R}_M$ (they are also almost disjoint), and there exists a partition J_1, \ldots, J_N of integers between 1 and M such that

$$R = \bigcup_{j=1}^{M} \tilde{R}_j$$
 and $R_k = \bigcup_{j \in J_k} \tilde{R}_j$ for $1 \le k \le M$.

For the rectangle R, it is clear that $|R| = \sum_{j=1}^{M} |\tilde{R}_j|$. By the same reason, we also have $|R_k| = \sum_{j \in J_k} |\tilde{R}_j|$. Therefore, one can obtain

$$|R| = \sum_{j=1}^{M} |\tilde{R}_j| = \sum_{k=1}^{N} \sum_{j \in J_k} |\tilde{R}_j| = \sum_{k=1}^{N} |R_k|.$$

Lemma 1.1.2

If R, R_1, \ldots, R_N are rectangles satisfying $R \subseteq \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

Proof. As we did in Lemma 1.1.1, we can find smaller rectangles $\tilde{R}_1, \ldots, \tilde{R}_M$. Note that there exist $J_0 \subseteq \{1, \ldots, M\}$ such that $R = \bigcup_{j \in J_0} \tilde{R}_j$. Let $R' := \bigcup_{j=1}^M \tilde{R}_j$. Again, we can find a partition J_1, \ldots, J_N of $\{1, \ldots, M\}$ such that

$$R_k = \bigcup_{j \in J_k} \tilde{R}_j$$
 for all $1 \le k \le N$.

Note that J_0, J_1, \ldots, J_N need not be disjoint.

Since $R \subseteq \bigcup_{k=1}^N R_k$, we have $J_0 \subseteq \bigcup_{k=1}^N J_k$. Therefore, we can obtain

$$|R| = \sum_{j \in J_0} |\tilde{R}_j| \le \sum_{k=1}^N \sum_{j \in J_k} |\tilde{R}_j| = \sum_{k=1}^N |R_k|.$$

This completes the proof.

Theorem 1.1.3

Every open set $U \subseteq \mathbb{R}$ can be written uniquely as a countable union of disjoint open intervals.

Proof. For each $x \in U$, there exists an open interval, which contains x, contained in U. If $a_x = \inf\{a < x : (a, x) \subseteq U\}$ and $b_x = \sup\{b > x : (x, b) \subseteq U\}$, then

$$x \in I_x := (a_x, b_x) \subseteq U$$
.

Hence, we get $U = \bigcup_{x \in U} I_x$. Moreover, note that I_x is the largest open interval, which contains x, contained in U.

Suppose that two intervals I_x and I_y intersect. Then we have

$$x \in I_x \cup I_y \subseteq U;$$

by the maximality of I_x , we conclude that $(I_x \cup I_y) \subseteq I_x$. By the same argument, since $(I_x \cup I_y) \subseteq I_y$, we finally have $I_x = I_y$. Therefore, any two distinct intervals in $\mathcal{C} := \{I_x\}_{x \in U}$ is disjoint.

We claim that \mathcal{C} is countable, i.e., it has countably many disjoint open intervals. Since each I_x contains a rational number, any two distinct intervals must contain distinct rationals. Hence, the collection \mathcal{C} must be countable.

For \mathbb{R}^d with $d \geq 2$, the direct analogue of Theorem 1.1.3 does not holds in general. However, we have a following alternative result:

Theorem 1.1.4

For any $d \geq 1$, every open set $U \subseteq \mathbb{R}^d$ can be written as a countable union of almost disjoint closed cubes.

Proof. Consider the grid generated by \mathbb{Z}^d . If a unit cube C in the grid is entirely contained in U, then we collect such C in a collection C. If C intersects both U and U^c , then tentatively accept it; if C entirely contained in U^c , then we reject it.

As a second step, we divide the tentatively accepted cubes into 2^d cubes of side length 1/2 and repeat the same procedure to collect the cubes entirely contained in U. This will be repeated indefinitely, and the resulting collection \mathcal{C} of accepted cubes is countable and the elements are almost disjoint.

It is clear that, for any $x \in U$, there exists $N \in \mathbb{Z}^+$ such that some cube of side length 2^{-N} contains x and is contained in U. Either this cube is in \mathcal{C} or it is contained in some cube in \mathcal{C} . Therefore, we have $U = \bigcup_{C \in \mathcal{C}} C$ which completes the proof.

We now define a special set in \mathbb{R} which is called the "Cantor set". Let $C_0 = [0, 1]$ and let C_1 be the set obtained from C_0 by removing the middle third open interval of it. Thus we have

$$C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right].$$

On top of that, we define C_2 as the set obtained from C_1 by removing the middle third of each of its intervals. Hence

$$C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

Repeating this procedure indefinitely, we can obtain a sequence $\{C_n\}_{n=0}^{\infty}$ of subsets in \mathbb{R} . We now define the Cantor set as following:

Definition 1.1.2

The Cantor set C is defined to be

$$\mathcal{C} \coloneqq \bigcap_{n=0}^{\infty} C_n.$$

The Cantor set plays a significant role in various fields, particularly in analysis. We will later consider some examples involving this set.

1.2 The Exterior Measure

This is an intermediate step towards constructing a measure that we will use throughout this course. We first define the "exterior measure" as follows.

Definition 1.2.1

For any set $E \subseteq \mathbb{R}^d$, the **exterior measure** $m_*(E)$ of E is defied to be

$$m_*(E) = \inf \sum_{j=1}^{\infty} |Q_j|$$

where the infimum is taken over all countable coverings $\{Q_j\}_{j=1}^{\infty}$ of E by closed cubes. (Note that they are not required to be disjoint.)

The above definition of $m_*(E)$ is well-defined because every $E \subseteq \mathbb{R}^d$ has at least one trivial covering $\{Q_j\}_{j=1}^{\infty}$ defined by

$$Q_j = [-j, j]^d$$
 for all $j \in \mathbb{Z}^+$,

and the completeness axiom of \mathbb{R} implies that the infimum should exists.

The one direct observation is as following: If $R = [a_1, b_1] \times \cdots \times [a_d, b_d] \subseteq \mathbb{R}^d$, then

$$m_*(R) = \prod_{i=1}^d (b_i - a_i) = \text{Vol}(R).$$

where Vol(R) means the volume of R.

There are some facts and nice properties of exterior measure as follows.

Proposition 1.2.1

For every $E \subseteq \mathbb{R}^d$, $0 \le m_*(E) \le \infty$.

Proof. trivial.

Proposition 1.2.2

If E is a singleton (one point set), then $m_*(E) = 0$.

Proposition 1.2.3

The exterior measure of \mathbb{R}^d is infinte, i.e., $m_*(\mathbb{R}^d) = \infty$.

Proof. Note that any covering $\{Q_j\}_{j=1}^{\infty}$ of \mathbb{R}^d also covers any closed cube Q in \mathbb{R}^d so that

$$|Q| = m_*(Q) \le \sum_{j=1}^{\infty} |Q_j|.$$

Then, by taking an infimum, we have $|Q| \leq m_*(\mathbb{R}^d)$. Since Q is chosen arbitrarily, we conclude that $m_*(\mathbb{R}^d) = \infty$.

Theorem 1.2.4 (Monotonicity)

If $E_1 \subseteq E_2$, then $m_*(E_1) \le m_*(E_2)$.

Proof. As we did in the proof of Proposition 1.2.3, note that any covering $\{Q_j\}_{j=1}^{\infty}$ of E_2 also covers E_1 so that

$$m_*(E_1) \le \sum_{j=1}^{\infty} |Q_j|.$$

Since $m_*(E_1)$ is constant, by taking infimum, we get $m_*(E_1) \leq m_*(E_2)$.

Corollary 1.2.5

If $E \subseteq \mathbb{R}^d$ is bounded, then $m_*(E) < \infty$.

Proof. Since E is bounded, there exists N > 0 such that

$$E \subseteq [-N, N]^d$$
.

By the monotonicity (Theorem 1.2.4), we conclude that

$$m_*(E) \le m_*([-N, N]^d) = (2N)^d < \infty.$$

Theorem 1.2.6 (Countable subadditivity)

If $E = \bigcup_{j=1}^{\infty} E_j$, where the sets E_j are not necessarily disjoint, then

$$m_*(E) \le \sum_{j=1}^{\infty} m_*(E_j).$$

Proof. For any $\epsilon > 0$, let $\{Q_{k,j}\}_{k=1}^{\infty}$ be a covering of E_j , for each $j \in \mathbb{Z}^+$, such that

$$\sum_{k=1}^{\infty} |Q_{k,j}| < m_*(E_j) + \frac{\epsilon}{2^j}.$$

Since we have $E \subseteq \bigcup_{j,k} Q_{k,j}$, thus

$$m_*(E) \le \sum_{j,k} |Q_{k,j}| < \sum_{j=1}^{\infty} m_*(E_j) + \epsilon.$$

This implies that $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$, as desired.

Theorem 1.2.7

For any $E \subseteq \mathbb{R}^d$, $m_*(E) = \inf m_*(\mathcal{O})$ where the infimum is taken over all open sets containing E.

Proof. By the monotonicity, it is clear that $m_*(E) \leq \inf m_*(\mathcal{O})$. We now claim that the opposite inclusion is also true. For any $\epsilon > 0$, there exists a covering $\{Q_j\}_{j=1}^{\infty}$ of E by closed cubes such that

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \epsilon.$$

Let Q_i^0 denote a open cube containing Q_i such that

$$|Q_j^0| \le |Q_j| + \frac{\epsilon}{2^j}$$
 for all $j \in \mathbb{Z}^+$.

Let $\mathcal{O} := \bigcup_{j=1}^{\infty} Q_j^0$, then it is an open set containing E. Then, by countable subadditivity (Theorem 1.2.6), we have

$$m_*(\mathcal{O}) \le \sum_{j=1}^{\infty} m_*(Q_j^0) = \sum_{j=1}^{\infty} |Q_j^0|$$
$$= \sum_{j=1}^{\infty} \left(|Q_j| + \frac{\epsilon}{2^j} \right)$$
$$\le m_*(E) + 2\epsilon.$$

This proves that $\inf m_*(\mathcal{O}) \leq m_*(E)$; hence, they are the same.

Theorem 1.2.8

Let $E = E_1 \cup E_2$ where E_1 and E_2 are disjoint with $dist(E_1, E_2) > 0$. Then

$$m_*(E) = m_*(E_1) + m_*(E_2).$$

Proof. Let $\delta > 0$ be a constant such that $0 < \delta < \operatorname{dist}(E_1, E_2)$. For any $\epsilon > 0$, there exists a covering $\{Q_j\}_{j=1}^{\infty}$ of E by closed cubes such that

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \epsilon.$$

By dividing every cube Q_j into smaller pieces whose diameter is strictly less than δ , we can find another covering $\{\tilde{Q}_j\}_{j=1}^{\infty}$ of E such that $\operatorname{diam}(\tilde{Q}_j) < \delta$. Since $\operatorname{dist}(E_1, E_2) > \delta$, each \tilde{Q}_j intersect at most one of E_1 and E_2 .

Let J_1 and J_2 be the collection of indices j for which \tilde{Q}_j intersect E_1 and E_2 , respectively. Then, it is clear that $\emptyset \neq J_1 \cap J_2 \subseteq \mathbb{Z}^+$. Therefore,

$$m_*(E_1) + m_*(E_2) \le \sum_{j \in J_1} |\tilde{Q}_j| + \sum_{j \in J_2} |\tilde{Q}_j| \le \sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \epsilon.$$

Theorem 1.2.9

Let E be the countable union of almost disjoint closed cubes $\{Q_j\}_{j=1}^{\infty}$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|.$$

Proof. By the monotonicity, $m_*(E) \leq \sum_{j=1}^{\infty} |Q_j|$ is trivial. Note that, for each j, there exists an open cube \tilde{Q}_j such that $\overline{\tilde{Q}}_j \subseteq \operatorname{Int}(Q_j)$ such that

$$|Q_j| \le |\tilde{Q}_j| + \frac{\epsilon}{2^j}.$$

Fix some $N \in \mathbb{Z}^+$, then $\tilde{Q}_1, \ldots, \tilde{Q}_N$ are all disjoint with a positive distance to each other. Then, by Theorem 1.2.8, we have

$$m_*\left(\bigcup_{j=1}^N \tilde{Q}_j\right) = \sum_{j=1}^N |\tilde{Q}_j| \ge \sum_{j=1}^N \left(|Q_j| - \frac{\epsilon}{2^j}\right).$$

Since E contains $\bigcup_{j=1}^{N} \tilde{Q}_j$, the monotonicity gives that

$$m_*(E) \ge m_*\left(\bigcup_{j=1}^N \tilde{Q}_j\right) \ge \sum_{j=1}^N |Q_j| - \epsilon.$$

Since N is chosen arbitrarily, as $N \to \infty$, we obtain

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \epsilon.$$

Therefore, we conclude that $\sum_{j=1}^{\infty} |Q_j| \leq m_*(E)$ and this completes the proof.

1.3 Measurable Sets and the Lebesgue Measure

Definition 1.3.1

A subset $E \subseteq \mathbb{R}^d$ is said to be **measurable** if for any $\epsilon > 0$, there exists an open set \mathcal{O} containing E such that

$$m_*(\mathcal{O} - E) < \epsilon$$
.

Recall that the exterior measure was defined for all subsets of \mathbb{R}^d in Section 1.2. Now, we define the **Lebesgue measure**, denoted by m, as the restriction of m_* to the collection of all measurable sets.

The above definition clearly implies the following properties:

Proposition 1.3.1

- (1) Every open set $E \subseteq \mathbb{R}^d$ is measurable.
- (2) If $m_*(E) = 0$, then E is measurable.
- (3) A countable union of measurable sets is measurable.
- (4) Every closed set is measurable.
- (5) The complement of a measurable set is measurable.
- (6) A countable intersection of measurable sets is measurable.

Proof. (1) Taking $\mathcal{O} = E$ completes the proof.

(2) By Theorem 1.2.7, since $m_*(E) = 0$, for any $\epsilon > 0$, there exists an open set \mathcal{O} containing E such that $m_*(\mathcal{O}) < \epsilon$. Since we have $\mathcal{O} - E \subseteq \mathcal{O}$, by the monotonicity,

$$m_*(\mathcal{O} - E) \le m_*(\mathcal{O}) < \epsilon.$$

Therefore, E is measurable.

(3) Let $E = \bigcup_{j=1}^{\infty} E_j$ where each E_j is measurable. For any $\epsilon > 0$, there exists an open set \mathcal{O}_i containing E_j such that

$$m_*(\mathcal{O}_j - E_j) < \frac{\epsilon}{2^j}$$

for all $j \in \mathbb{Z}^+$. Let $\mathcal{O} := \bigcup_{j=1}^{\infty} \mathcal{O}_j$, then \mathcal{O} is an open set containing E. Moreover, since

$$\mathcal{O} - E \subseteq \bigcup_{j=1}^{\infty} (\mathcal{O}_j - E_j),$$

we have

$$m_*(\mathcal{O} - E) \le \sum_{j=1}^{\infty} m_*(\mathcal{O}_j - E_j) < \sum_{j=1}^{\infty} \frac{\epsilon}{2^j} = \epsilon.$$

Therefore, E is also measurable.

(4) We first claim that any compact set $F \subseteq \mathbb{R}^d$ is measurable. Let \mathcal{O} be an open set containing F such that $m_*(\mathcal{O} - F) < \epsilon$ so that

$$m_*(\mathcal{O}) = m_*(F \cup (\mathcal{O} - F)) \le m_*(F) + \epsilon.$$

Since $\mathcal{O} - F$ is open in \mathbb{R}^d , by Theorem 1.1.4, it can be written as a countable union of almost disjoint closed cubes, that is,

$$\mathcal{O} - F = \bigcup_{j=1}^{\infty} Q_j$$

where $\{Q_j\}_{j=1}^{\infty}$ is a collection of almost disjoint closed cubes. For a fixed $N \in \mathbb{Z}^+$, let $K := \bigcup_{j=1}^N Q_j$ so that K is compact and $K \cap F = \emptyset$. Therefore, by Lemma 1.3.2, we have $\operatorname{dist}(F,K) > 0$. Hence, the Theorem 1.2.8 implies that

$$m_*(\mathcal{O}) \ge m_*(F \cup K) = m_*(F) + m_*(K) = m_*(F) + \sum_{j=1}^N m_*(Q_j).$$

Since we have $m_*(\mathcal{O}) \leq m_*(F) + \epsilon$, the above inequality implies that

$$\sum_{j=1}^{N} m_*(Q_j) \le \epsilon.$$

Since N is chosen arbitrarily, we have $\sum_{j=1}^{\infty} m_*(Q_j) \leq \epsilon$; therefore,

$$m_*(\mathcal{O} - F) = \sum_{j=1}^{\infty} m_*(Q_j) \le \epsilon$$

by Theorem 1.2.9. This proves that F is measurable.

For the general case that the closed set F is not compact, note that

$$F = \bigcup_{k=1}^{\infty} \left[F \cap [-k, k]^d \right]$$

where $F \cap [-k, k]^d$ is compact for all $k \in \mathbb{Z}^+$. Since F is a countable union of measurable sets, by part (3), it is also measurable.

(5) Note that, for any $n \in \mathbb{Z}^+$, there exists an open set \mathcal{O}_n containing E such that

$$m_*(\mathcal{O}_n - E) \le \frac{1}{n}.$$

Let $S := \bigcup_{n=1}^{\infty} \mathcal{O}_n^c$, then we have $S \subseteq E^c$. Since each \mathcal{O}_n^c is closed, so is S and this implies that S is measurable by part (4). Note that $E^c - S \subseteq \mathcal{O}_n - E$ holds for all n, thus

$$m_*(E^c - S) \le m_*(\mathcal{O}_n - E) \le \frac{1}{n}.$$

As $n \to \infty$, we obtain $m_*(E^c - S) = 0$, that is, $E^c - S$ is measurable by part (2). Therefore, we conclude that E^c is also measurable since it is the union of two measurable sets $E^c - S$ and S.

(6) Recall that
$$\bigcap_{i=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} E_j^c\right)^c$$
 and apply the part (3) and (5).

Lemma 1.3.2

If $F \subseteq \mathbb{R}^d$ is closed, $K \subseteq \mathbb{R}^d$ is compact, and $F \cap K = \emptyset$, then $\operatorname{dist}(F, K) > 0$.

Proof. Pick any $x \in K$. Since $x \in F$ and F is closed, there exists $\delta_x > 0$ such that $B_d(x, \delta_x) \subseteq F^c$ so that $\operatorname{dist}(x, F) \ge \delta_x$. Let

$$C = \{B_d(x, \delta_x/2) \mid x \in K\}$$

then \mathcal{C} is an open covering of K. Since K is compact, we can find some finite subcover of \mathcal{C} , that is, there exists $x_1, \ldots, x_N \in K$ such that $\{B_d(x_i, \delta_{x_i}/2)\}_{i=1}^N$ covers K. Let

$$\delta \coloneqq \min \left\{ \frac{\delta_{x_i}}{2} \mid 1 \le i \le N \right\}.$$

Then, for any $x \in K$, there exists $i \in \{1, ..., N\}$ such that $x \in B_d(x_i, \delta_{x_i}/2)$; hence, for any $y \in F$, we can obtain

$$d(y,x) \ge d(y,x_i) - d(x_i,x) \ge 2\delta - \delta = \delta > 0.$$

Therefore, we conclude that

$$d(F,K) = \inf_{\substack{x \in K \\ y \in F}} d(y,x) \ge \delta > 0.$$

Theorem 1.3.3

If $\{E_j\}_{j=1}^{\infty}$ are disjoint measurable sets, then their union is measurable and

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j).$$

Proof. Note that the union is measurable by Proposition 1.3.1 and

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) \le \sum_{j=1}^{\infty} m(E_j)$$

by countable subadditivity. We now claim that the opposite inclusion also holds.

We first prove the claim for the case when each E_j is bounded so that $m_*(E_j) < \infty$. Since each E_j is measurable, so is E_j^c . Hence, for any $\epsilon > 0$, there exists an open set \mathcal{O}_j containing E_j^c such that

$$m_*(\mathcal{O}_j - E_j^c) < \frac{\epsilon}{2^j}.$$

Since \mathcal{O}_j^c is a closed set contained in E_j with $m_*(E_j - \mathcal{O}_j^c) < \epsilon/2^j$, Thus

$$m_*(E_j) \le m_*(\mathcal{O}_j^c) + m_*(E_j - \mathcal{O}_j^c) \le m_*(\mathcal{O}_j^c) + \frac{\epsilon}{2^j}.$$

1.4 Measurable Functions

Integration Theory

- 2.1 The Lebesgue Integral: Basic Properties and Convergence Theorems
- 2.2 The Space L^1 of Integrable Functions
- 2.3 Fubini's theorem
- 2.4 A Fourier Inversion Formula

Differentiation and Integration

- 3.1 Differentiation of the Integral
- 3.2 Good Kernels and Approximations to the Identity
- 3.3 Differentiability of Functions
- 3.4 Rectifiable Curves and the Isoperimetric Inequality

Hilbert Spaces: An Introduction

- 4.1 The Hilbert Space L^2
- 4.2 Hilbert Space
- 4.3 Fourier Series and Fatou's Theorem
- 4.4 Closed Subpaces and Orthogonal Projections
- 4.5 Linear Transformations
- 4.6 Compact Operators

Solution for exercises

MAS441: Lebesgue Intergral Theory Homework Problems

Solutions for the selected exercises (To be updated)

Jaeho Shin

Department of Mathematical Sciences, KAIST

Bibliography

- [1] Elias M. Stein and Rami Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis III, Princeton University Press, 2005.
- [2] James R. Munkres, *Topology*, 2nd ed., Pearson, 2000.