Meta-analysis of Mendelian randomization studies

Tom Palmer, John Thompson and Martin Tobin

Department of Health Sciences, University of Leicester

12 April 2007

Outline

Introduction to MR

Case control study information

Example

Meta-analysis models & results

Summary

Introduction

- Mendelian randomization is an active area of research in genetic-epidemiology.
- ▶ Aim: To extend existing meta-analysis models

- ▶ Dates back to [Katan, 1986]
- ▶ Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- Bi-allelic polymorphism receive one allele from each parent
- Mendel's 2nd law: genes segregate independently
- ▶ Therefore individuals randomized to a genotype at conception
- ► Randomization by genotype is independent of confounding factors

Introduction

- Mendelian randomization is an active area of research in genetic-epidemiology.
- ▶ Aim: To extend existing meta-analysis models

- Dates back to [Katan, 1986]
- ▶ Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]

- ► Therefore individuals randomized to a genotype at conception

Introduction

- Mendelian randomization is an active area of research in genetic-epidemiology.
- ▶ Aim: To extend existing meta-analysis models

- Dates back to [Katan, 1986]
- ▶ Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- ▶ Bi-allelic polymorphism receive one allele from each parent
- ▶ Mendel's 2nd law: genes segregate independently
- ► Therefore individuals randomized to a genotype at conception

- Mendelian randomization is an active area of research in genetic-epidemiology.
- ▶ Aim: To extend existing meta-analysis models

- Dates back to [Katan, 1986]
- ▶ Recent interest due to the increasing use of genetic data in epidemiology [Katan, 2004]
- ▶ Bi-allelic polymorphism receive one allele from each parent
- ▶ Mendel's 2nd law: genes segregate independently
- Therefore individuals randomized to a genotype at conception
- Randomization by genotype is independent of confounding factors

- Estimate phenotype-disease effect
- Confounding
- Reverse causation
- ▶ [Davey Smith et al., 2005]; phenotype C-Reactive Protein, disease - hypertension, genetic polymorphism - in the human CRP gene
- ► Economics, IVs also applied to:
 - - causal inference literature [Didelez and Sheehan, 2005]

- Estimate phenotype-disease effect
- Confounding
- Reverse causation
- ▶ [Davey Smith et al., 2005]; phenotype C-Reactive Protein, disease - hypertension, genetic polymorphism - in the human CRP gene
- ▶ Statistically the genotype used as an instrumental variable
- Economics, IVs also applied to:
 - clinical trials [Angrist et al., 1996].
 - causal inference literature [Didelez and Sheehan, 2005]

- ▶ Use gene-disease & gene-phenotype effect estimates to estimate the phenotype-disease relationship
- Standard IV technique if they were all linear TSLS
- > gene-disease log odds-ratio: θ , difference in mean phenotypes: δ , phenotype-disease log odds-ratio: η
- Ratio of coefficients approach [Thomas and Conti, 2004], for a k-unit change in the mean phenotype difference,

$$\eta_{[k]} \approx \frac{\kappa \epsilon}{\delta}$$

Introduction to MR

Information from a case-control study

- A biallellic polymorphism (g,G)
 g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- ▶ Observed cases and controls y_{dj} , d = 0.1; control/case
- cell probabilities p_{dj}

	Genotype				
		Gg	GG		
Controls	y ₀₁ , p ₀₁	y ₀₂ , p ₀₂	y ₀₃ , p ₀₃		
Cases	y_{11}, p_{11}	y_{12}, p_{12}	y_{13}, p_{13}		
Mean phenotype levels			μ_3		

► Mean phenotype levels from controls

Information from a case-control study

- A biallellic polymorphism (g,G)
 g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- ▶ Observed cases and controls y_{dj} , d = 0.1; control/case
- cell probabilities p_{dj}

	Genotype			
	gg		GG	
Controls	y ₀₁ , p ₀₁	y_{02}, p_{02}	y ₀₃ , p ₀₃	
Cases	y_{11}, p_{11}	y_{12}, p_{12}	<i>y</i> ₁₃ , <i>p</i> ₁₃	
Mean phenotype levels	μ_1	μ_2	μ_3	

► Mean phenotype levels from controls

- ► A biallellic polymorphism (g,G) g: common allele G: risk allele
- ▶ 3 genotypes: gg, Gg, GG; j = 1, 2, 3
- ▶ Observed cases and controls y_{dj} , d = 0.1; control/case
- cell probabilities p_{dj}

	Genotype			
	gg		GG	
Controls	y ₀₁ , p ₀₁	y_{02}, p_{02}	y ₀₃ , p ₀₃	
Cases	y_{11}, p_{11}	y_{12}, p_{12}	<i>y</i> ₁₃ , <i>p</i> ₁₃	
Mean phenotype levels	μ_1	μ_2	μ_3	

▶ Mean phenotype levels from controls

- Mann (2001): Bone mineral denisty (BMD) & risk of osteoporotic fracture
- COL1A1 gene: codes for collagen
- Average BMD lower for GG versus gg
- Risk of fracture increased for GG versus gg

Meta-analysis results in a four column forest plot

Approach

- Existing meta-analysis models estimate η based on either the Gg versus gg genotype comparison or the GG versus gg comparison, [Thompson et al., 2005].
- ▶ Gg vs gg: Bigger sample size; smaller difference in disease risk
- ▶ GG vs gg: Smaller sample size; bigger difference in disease risk
- ightharpoonup Proposed approach: Estimate η across both genotype comparisons

Modelling assumptions

- phenotype-disease relationship common across studies
- phenotype-disease relationship common across genotype comparisons

- Existing meta-analysis models estimate η based on either the Gg versus gg genotype comparison or the GG versus gg comparison, [Thompson et al., 2005].
- ▶ Gg vs gg: Bigger sample size; smaller difference in disease risk
- ▶ GG vs gg: Smaller sample size; bigger difference in disease risk
- ightharpoonup Proposed approach: Estimate η across both genotype comparisons

Modelling assumptions

- phenotype-disease relationship common across studies
- phenotype-disease relationship common across genotype comparisons

- ► Genotype comparison 2:(Gg,gg), 3:(GG,gg) for study i (θ_{2i} , θ_{3i}): gene-disease log odds-ratios (δ_{2i} , δ_{3i}): difference in mean phenotypes
- ▶ Inference at the population level
- Marginal distribution: combine within and between study distributions

Multivariate meta-analysis models

- Genotype comparison 2:(Gg,gg), 3:(GG,gg) for study i $(\theta_{2i}, \theta_{3i})$: gene-disease log odds-ratios $(\delta_{2i}, \delta_{3i})$: difference in mean phenotypes
- Inference at the population level
- Marginal distribution: combine within and between study distributions

Meta-analysis models & results

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \left(\underline{\psi} = \begin{bmatrix} \eta \delta_2 \\ \delta_2 \\ \eta \delta_3 \\ \delta_3 \end{bmatrix}, \mathbf{V}_i + \mathbf{B} \right).$$

$$\mathbf{V}_{i} = \begin{bmatrix} v(\theta_{2i}) & 0 & v(\theta_{2i}, \theta_{3i}) & 0\\ 0 & v(\delta_{2i}) & 0 & v(\delta_{2i}, \delta_{3i})\\ v(\theta_{3i}, \theta_{2i}) & 0 & v(\theta_{3i}) & 0\\ 0 & v(\delta_{3i}, \delta_{2i}) & 0 & v(\delta_{3i}) & 0 \end{bmatrix}.$$

$$\mathbf{B} = \begin{bmatrix} \eta^{2}\tau_{2}^{2} & \eta\tau_{2}^{2} & \eta^{2}\tau_{2}\tau_{3}\rho & \eta\tau_{2}\tau_{3}\rho\\ \eta\tau_{2}^{2} & \tau_{2}^{2} & \eta\tau_{2}\tau_{3}\rho & \tau_{2}\tau_{3}\rho\\ \eta^{2}\tau_{2}\tau_{3}\rho & \eta\tau_{2}\tau_{3}\rho & \eta^{2}\tau_{3}^{2} & \eta\tau_{3}^{2}\\ \eta\tau_{2}\tau_{3}\rho & \tau_{2}\tau_{3}\rho & \eta\tau_{2}^{2} & \tau_{2}^{2} \end{bmatrix}.$$

 au_2^2 between-study variance of the δ_{2i} 's au_3^2 between-study variance of the δ_{3i} 's

ho between-study correlation between the δ_{2i} 's and the δ_{3i} 's

Maximum likelihood estimation

Log-likelihood of the multivariate Normal distribution,

$$\log L \propto \sum_{i=1}^{n} -\frac{1}{2} \log(\det(\mathbf{V}_{i} + \mathbf{\Sigma})) - \frac{1}{2} (\underline{x_{i}} - \underline{\psi})^{T} (\mathbf{V}_{i} + \mathbf{\Sigma})^{-1} (\underline{x_{i}} - \underline{\psi})$$

- Maximisation using the Newton-Raphson algorithm
- Argument for using REML form of the likelihood for marginal models

Maximum likelihood estimation

Log-likelihood of the multivariate Normal distribution,

$$\log L \propto \sum_{i=1}^{n} -\frac{1}{2} \log(\det(\mathbf{V}_{i} + \mathbf{\Sigma})) - \frac{1}{2} (\underline{x_{i}} - \underline{\psi})^{T} (\mathbf{V}_{i} + \mathbf{\Sigma})^{-1} (\underline{x_{i}} - \underline{\psi})$$

- Maximisation using the Newton-Raphson algorithm
- Argument for using REML form of the likelihood for marginal models

Method of estimation	$OR_{pd,0.05}$	95% C	.l./Cr.l.
Gg vs gg	0.57	0.42	0.77
GG vs gg	0.40	0.28	0.57
Combined	0.50	0.39	0.62

- Gg vs gg expecting narrower CI but wider
- ▶ GG vs gg bigger difference in disease risk OR_{pd} further from 1
- combined model weighted average of the separate estimates,
 with a narrower CI due to increased number of studies
- ► All results qualitatively the same
- ▶ 0.05 unit increase in BMD, implies typical patient at 40% risk of Osteoporotic fracture

Assessment of a common phenotype-disease odds-ratio

- ▶ MR assumptions fit straight line through the origin
- $ightharpoonup \eta$ gradient of the line

$$\lambda = \frac{\theta_2}{\theta_3} = \frac{\delta_2}{\delta_3}$$

▶ Interpretation of λ

λ	Genetic model
0	Recessive
0.5	Co-dominant
1	Dominant
> 1	Over-dominant, heteresis

▶ Meta-analysis models to estimate λ , [Minelli et al., 2005].

$$\begin{bmatrix} \theta_{2i} \\ \delta_{2i} \\ \theta_{3i} \\ \delta_{3i} \end{bmatrix} \sim \mathsf{MVN} \begin{pmatrix} \begin{bmatrix} \eta \lambda \delta \\ \lambda \delta \\ \eta \delta \\ \delta \end{bmatrix}, \mathbf{V}_i + \mathbf{\Sigma} \end{pmatrix},$$
$$\begin{bmatrix} n^2 \lambda^2 \tau^2 & n \lambda^2 \tau^2 & n^2 \lambda \tau^2 & n \lambda \tau^2 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} \eta^2 \lambda^2 \tau^2 & \eta \lambda^2 \tau^2 & \eta^2 \lambda \tau^2 & \eta \lambda \tau^2 \\ \eta \lambda^2 \tau^2 & \lambda^2 \tau^2 & \lambda \eta \tau^2 & \lambda \tau^2 \\ \eta^2 \lambda \tau^2 & \lambda \eta \tau^2 & \eta^2 \tau^2 & \eta \tau^2 \\ \eta \lambda \tau^2 & \lambda \tau^2 & \eta \tau^2 & \tau^2 \end{bmatrix}$$

 $ightharpoonup au^2$ the between-study variance of the difference in mean phenotypes of the GG versus gg comparison

Product Normal Formulation [Spiegelhalter, 1998]

4 outcomes - univariate Normal distributions

$$\theta_{2i} \sim N(\eta \lambda \delta_i, v(\theta_{1i})), \qquad \delta_{2i} \sim N(\lambda \delta_i, v(\delta_{1i}))$$

$$\theta_{3i} \sim N(\eta \delta_i, v(\theta_{2i})), \qquad \delta_{3i} \sim N(\delta_i, v(\delta_{2i}))$$

- The correct covariances are induced in the model due to the relationships between the means and the sequential parameter updating under Gibbs sampling
- Prior distributions vague

$$\delta_i \sim \mathsf{N}(0, 1 \times 10^6), \quad \eta \sim \mathsf{N}(0, 1 \times 10^6), \quad \lambda \sim \mathsf{Beta}(0.5, 0.5)$$

- Product Normal Formulation [Spiegelhalter, 1998]
- 4 outcomes univariate Normal distributions

$$\begin{array}{ll} \theta_{2i} \sim \mathsf{N}(\eta \lambda \delta_i, \mathsf{v}(\theta_{1i})), & \delta_{2i} \sim \mathsf{N}(\lambda \delta_i, \mathsf{v}(\delta_{1i})) \\ \theta_{3i} \sim \mathsf{N}(\eta \delta_i, \mathsf{v}(\theta_{2i})), & \delta_{3i} \sim \mathsf{N}(\delta_i, \mathsf{v}(\delta_{2i})) \end{array}$$

- The correct covariances are induced in the model due to the relationships between the means and the sequential parameter updating under Gibbs sampling
- Prior distributions vague

$$\delta_i \sim N(0, 1 \times 10^6), \quad \eta \sim N(0, 1 \times 10^6), \quad \lambda \sim \text{Beta}(0.5, 0.5)$$

Method of estimation	$OR_{pd,0.05}$	95% C	.l./Cr.l.	λ	95% C	C.I./Cr.I.
ML	0.42	0.28	0.61	0.33	0.19	0.47
Bayesian	0.46	0.32	0.61	0.30	0.17	0.45

Genetic model between recessive and co-dominant

Summary

- Mendelian randomization depends on random allocation of an individual's genotype
- Genotype used as an instrumental variable
- Meta-analysis model joint analysis of two genotype comparisons
- Meta-analysis model incorporating the genetic model-free approach

Identification of causal effects using instrumental variables.

Journal of the American Statistical Association, 91(434):444-455.

Davey Smith, G., D.A.Lawlor, Harbord, R., Timpson, N., Rumley, A., Lowe, G., Day, I., and Ebrahim, S. (2005).

Association of C-Reactive Protein with Blood Pressure and Hypertension: Life Course Confounding and Mendelian Randomization Tests of Causality.

Arteriosclerosis, Thrombosis and Vascular Biology, 25:1051-1056.

Didelez, V. and Sheehan, N. (2005).

Mendelian randomisation and instrumental variables: What can and what can't be done. University of Leicester, Department of Health Sciences Technical Report, 05-02.

Katan, M. (1986).

Apolipoprotein e isoforms, serum cholesterol, and cancer. *Lancet*, 327:507–508.

Katan, M. (2004).

Commentary: Mendelian randomization, 18 years on. International Journal of Epidemiology, 33(1):10–11.

Minelli, C., Thompson, J., Abrams, K., Thakkinstian, A., and Attia, J. (2005).

The choice of a genetic model in the meta-analysis of molecular association studies. *International Journal of Epidemiology*, 34:1319–1328.

Spiegelhalter, D. (1998).

Bayesian graphical modelling: a case-study in monitoring health outcomes. *Applied Statistics*, 47(1):115–133.

Thomas, D. and Conti, D. (2004).

Commentary: The concept of 'mendelian randomization'.

International Journal of Epidemiology, 33:21–25.

Thompson, J., Minelli, C., Abrams, K., Tobin, M., and Riley, R. (2005).

Meta-analysis of genetic studies using Mendelian randomization - a multivariate approach. Statistics in Medicine, 24:2241–2254.

