What is claimed is:

1	1. A method for copy protection of digital information, the digital information including
2	a digital sample and format information, comprising the steps of:
3	identifying a portion of the format information to be encoded;
4	generating encoded format information from the identified portion of the format
5	information; and
6	generating encoded digital information, including the digital sample and the encoded
7	format information.
1	2. The method of claim 1, further comprising the step of requiring a predetermined key
2	to decode the encoded format information.
1	3. The method of claim 2, wherein the digital sample and format information are
2	configured to be used with a digital player, and wherein information output from the digital
3	player will have a degraded quality unless the encoded format information is decoded with the
4	predetermined key.
1	4. The method of claim 3, wherein the information output from the digital player
2	represents a still image, audio or video.

1	5. The method of claim 3, wherein the information output represents text data to be
2	authenticated.
1	6. A method for protecting a digital signal, the digital signal including digital samples in
2	a file format having an inherent granularity, comprising the step of:
3 -	creating a predetermined key comprised of a transfer function-based mask set to
4	manipulate data at the inherent granularity of the file format of the underlying digitized samples.
1	7. The method of claim 6, wherein the digital signal represents a continuous analog
2	waveform.
1	8. The method of claim 6, wherein the predetermined key comprises a plurality of mask
2	sets.
1	9. The method of claim 6, wherein the digital signal is a message to be authenticated.
1	10. The method of claim 6, wherein the mask set is ciphered by a key pair comprising a
2	public key and a private key.

1	11. The method of claim 6, further comprising the step of:
2	using a digital watermarking technique to encode information that identifies ownership,
3	use, or other information about the digital signal, into the digital signal.
1	12. The method of claim 6, wherein the digital signal represents a still image, audio or
2	video.
1	13. The method of claim 6, further comprising the steps of:
2	selecting the mask set, including one or more masks having random or pseudo-random
3	series of bits; and
4	validating the mask set at the start of the transfer function-based mask set.
	•
1	14. The method of claim 13, wherein said step of validating comprises the step of:
2	comparing a hash value computed at the start of the transfer function-based mask set with
3	a determined transfer function of the hash value.
1	15. The method of claim 6, further comprising the steps of:
2	selecting the mask set, including one or more masks having random or pseudo-random
3	series of bits; and
4	authenticating the mask set by comparing a hash value computed at the start of the
5	transfer function-based mask set with a determined transfer function of the hash value.

ı	16. The method of claim 13, wherein said step of validating comprises the step of:
2	comparing a digital signature at the start of the transfer function-based mask set with a
3	determined transfer function of the digital signature.
1	17. The method of claim 6, further comprising the steps of:
2	selecting the mask set, including one or more masks having random or pseudo-random
3	series of bits; and
4	authenticating the mask set by comparing a digital signature at the start of the transfer
5	function-based mask set with a determined transfer function of the digital signature.
1	18. The method of claim 13, further comprising the step of:
2	using a digital watermarking technique to embed information that identifies ownership,
3	use, or other information about the digital signal, into the digital signal; and
4	wherein said step of validating is dependent on validation of the embedded information
1	19. The method of claim 6, further comprising the step of:
2	computing a secure one way hash function of carrier signal data in the digital signal,
3	wherein the hash function is insensitive to changes introduced into the carrier signal for the

purpose of carrying the transfer function-based mask set.

1	20. A method for protecting a digital signal, the digital signal including digital samples
2	in a file format having an inherent granularity, comprising the steps of:
3	creating a predetermined key comprised of a transfer function-based mask set that can
4	manipulate data at the inherent granularity of the file format of the underlying digitized samples;
5	authenticating the predetermined key containing the correct transfer function-based mask
6	set during playback of the data; and
7	metering the playback of the data to monitor content.
1	21. The method of claim 20, wherein the predetermined key is authenticated to
2	authenticate message information
1	22. A method to prepare for the scrambling of a sample stream of data, comprising the
2	steps of:
3	generating a plurality of mask sets to be used for encoding, including a random primary
4	mask, a random convolution mask and a random start of message delimiter;
5	obtaining a transfer function to be implemented;
6	generating a message bit stream to be encoded;
7	loading the message bit stream, a stega-cipher map truth table, the primary mask, the
8	convolution mask and the start of message delimiter into memory;

9	initializing the state of a primary mask index, a convolution mask index, and a message
10	bit index; and
11	setting a message size equal to the total number of bits in the message bit stream.
1	23. A method to prepare for the encoding of stega-cipher information into a sample
2	stream of data, comprising the steps of:
3	generating a mask set to be used for encoding, the set including a random primary mask,
4	a random convolution mask, and a random start of message delimiter;
5	obtaining a message to be encoded;
6	compressing and encrypting the message if desired;
7	generating a message bit stream to be encoded;
8	loading the message bit stream, a stega-cipher map truth table, the primary mask, the
9	convolution mask and the start of message delimiter into memory;
10	initializing the state of a primary mask index, a convolution mask index, and a message
11	bit index; and
12	setting the message size equal to the total number of bits in the message bit stream.
1	24. The method of claim 23 wherein the sample stream of data has a plurality of
2	windows, further comprising the steps of:
3	calculating over which windows in the sample stream the message will be encoded:

4	computing a secure one way hash function of the information in the calculated windows,
5	the hash function generating hash values insensitive to changes in the samples induced by a
6	stega-cipher; and
7	encoding the computed hash values in an encoded stream of data.
1	25. The method of claim 13, wherein said step of selecting comprises the steps of:
2	collecting a series of random bits derived from keyboard latency intervals in random
3	typing;
4	processing the initial series of random bits through an MD5 algorithm;
5	using the results of the MD5 processing to seed a triple-DES encryption loop;
6	cycling through the triple-DES encryption loop, extracting the least significant bit of each
7	result after each cycle; and
8	concatenating the triple-DES output bits into the random series of bits.
1	26. A method for copy protection of digital information, the digital information
2	including a digital sample and format information, comprising the steps of:
3	identifying a portion of the digital sample to be encoded;
4	generating an encoded digital sample from the identified portion of the digital sample;
5	and
6	generating encoded digital information, including the encoded digital sample and the
7	format information.

27. The method of claim 26, further comprising the step of requiring a predetermined key to decode the encoded digital sample.

- 28. The method of claim 27, wherein the digital sample and format information are configured to be used with a digital player, and wherein information output from the digital player will have a degraded quality unless the encoded digital sample is decoded with the predetermined key.
- 29. The method of claim 27, wherein information output will have non authentic message data unless the encode digital sample is decoded with the predetermined key.