CSE 311: Foundations of Computing

Lecture 3: Digital Circuits

Seitm naterials Seitm naterials Solutions JOHED. ON Dested.

Review: Propositional Logic

Propositions

- atomic propositions are T/F-valued variables
- combined using logical connectives (not, and, or, etc.)
- can be described by a truth table

shows the truth value of the proposition in each combination of truth values of the atomic propositions

p	q	p \ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Logical equivalence

used to simplify logical expressions

First application

Simplifying English sentences

Truth Table to show tautology

$$(p \land r) \rightarrow (r \lor p)$$

$$(p \land r) \to (r \lor p) \equiv \mathbf{T}$$

p	r	$p \wedge r$	$r \lor p$	$(p \wedge r) \rightarrow (r \vee p)$
Т	T	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т
		7	~	7

Logical Proofs of Equivalence

$$(p \land r) \rightarrow (r \lor p)$$

Use a series of equivalences like so:

$$(p \land r) \rightarrow (r \lor p) \equiv \neg (p \land r) \lor (r \lor p)$$

$$\equiv (\neg p \lor \neg r) \lor (r \lor p)$$

$$\equiv \neg p \lor (\neg r \lor (r \lor p))$$

$$\equiv \neg p \lor ((\neg r \lor r) \lor p)$$

$$\equiv \neg p \lor ((\neg r \lor r) \lor p)$$

$$\equiv \neg p \lor (p \lor (\neg r \lor r))$$

$$\equiv (\neg p \lor p) \lor (\neg r \lor r)$$

$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$

$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$

$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$

$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$

$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$

Law of Implication

De Morgan

Associative

Associative

Commutative

Associative

Commutative (twice)

Negation (twice)

Domination/Identity

Idempotent

Identity

$$- p \lor p \equiv p$$

$$- p \wedge p \equiv p$$

Commutative

$$-\ p \lor q \equiv q \lor p$$

$$- p \wedge q \equiv q \wedge p$$

Logical Proofs of Equivalence/Tautology

- Not smaller than truth tables when there are only a few propositional variables...
- ...but usually much shorter than truth table proofs when there are many propositional variables
- A big advantage will be that we can extend them to a more in-depth understanding of logic for which truth tables don't apply.

Another key application: Digital Circuits

Computing With Logic

- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

Circuits: AND, OR, NOT Gates

AND Gate

p	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0

p	q	$p \wedge q$
۲Į	Τ	Τ
Т	F	F
F	Т	F
F	F	F

OR Gate

p	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0

p	q	$p \vee q$
Т	Т	Τ
Т	F	Т
F	Т	Т
F	F	F

NOT Gate

p	OUT
1	0
0	1

p	$\neg p$
\vdash	П
F	Т

Values get sent along wires connecting gates

Values get sent along wires connecting gates

$$\neg p \land (\neg q \land (r \lor s))$$

Wires can send one value to multiple gates!

Wires can send one value to multiple gates!

$$(p \land \neg q) \lor (\neg q \land r)$$

Other Useful Gates

NAND

$$\neg(p \land q)$$

р	q	out
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$\neg (p \lor q)$$

p q	out

р	q	out
0	0	1
0	1	0
1	^	0
1	1	0
1	0 1	0

XOR

$$p \oplus q$$

<u>p</u>	q	out
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

$$p \leftrightarrow q$$

р	q	out
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Logic

Combinational Logic

- output = F(input)

Sequential Logic

- $\text{ output}_t = F(\text{output}_{t-1}, \text{ input}_t)$
 - output dependent on history
 - concept of a time step (clock, t)
- Covered in CSE 369

Boolean Logic

Combinational Logic

– output = F(input)

Boolean Algebra: another notation for logic consisting of...

JX

- a set of elements $B = \{0, 1\}$
- binary operations { + , } (OR, AND)
- and a unary operation { '} (NOT)

Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:


```
For any a, b, c in B:
1. closure:
                                  a + b is in B
                                                                            • b is in B
                                  a + b = b + a
                                                                         a \cdot h = h \cdot a
2. commutativity:
                                  a + (b + c) = (a + b) + c
3. associativity:
                                                                            • (b • c) = (a • b) • c
4. distributivity:
                                 a + (b \cdot c) = (a + b) \cdot (a + c)
                                                                          a \cdot (b + c) = (a \cdot b) + (a \cdot c)
5. identity:
                                 a + 0 = a
                                                                          a \cdot 1 = a
6. complementarity:
                                 a + a' = 1
                                                                         a \cdot a' = 0
                                 a + 1 = 1
7. null:
                                                                        • a • 0 = 0
8. idempotency:
9. involution:
```

Proving Theorems

Using truth table:

For example, de Morgan's Law:

$$(X + Y)' = X' \cdot Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

More generally
$$(a + b + c + \cdots)' = a' \cdot b' \cdot c' \cdot \cdots$$

 $(a \cdot b \cdot c \cdot \cdots)' = a' + b' + c' + \cdots$

Proving Theorems

```
2. commutativity:
                                a+b=b+a
3. associativity:
                                a + (b + c) = (a + b) + c
                                                                      a \cdot (b \cdot c) = (a \cdot b) \cdot c
4. distributivity:
                                a + (b \cdot c) = (a + b) \cdot (a + c)
                                                                      a \cdot (b + c) = (a \cdot b) + (a \cdot c)
5. identity:
                                a+0=a
6. complementarity:
                                a + a' = 1
                                                                      a • a' = 0
7. null:
                                                                      a \cdot 0 = 0
8. idempotency:
                                a+a=a
                                                                      a \cdot a = a
9. involution:
                                (a')' = a
```

Using the laws of Boolean Algebra:

prove the "Uniting theorem":

$$X \bullet Y + X \bullet Y' = X$$

Dif
$$X \cdot Y + X \cdot Y' = X \cdot (Y \cdot Y')$$

= $X \cdot Y' = X \cdot (Y \cdot Y')$

prove the "Absorption theorem": $X + X \bullet Y = X$

$$X + X \bullet Y = X$$

$$X + X \bullet Y =$$

Proving Theorems

```
2. commutativity:
                                   a+b=b+a
3. associativity:
                                   a + (b + c) = (a + b) + c
                                                                              a \cdot (b \cdot c) = (a \cdot b) \cdot c
4. distributivity:
                                   a + (b \cdot c) = (a + b) \cdot (a + c)
                                                                              a \cdot (b + c) = (a \cdot b) + (a \cdot c)
5. identity:
6. complementarity:
                                    a + a' = 1
7. null:
                                                                              \mathbf{a} \cdot \mathbf{0} = \mathbf{0}
                                    a + 1 = 1 📥
8. idempotency:
9. involution:
```

Using the laws of Boolean Algebra:

prove the "Uniting theorem":

$$X \bullet Y + X \bullet Y' = X$$

distributivity complementarity identity

$$X \bullet Y + X \bullet Y' = X \bullet (Y + Y')$$

= $X \bullet 1$
= $X -$

prove the "Absorption theorem":

$$X + X \bullet Y = X$$

identity distributivity commutativity null identity

A Combinational Logic Example

Sessions of Class:

We would like to compute the number of lectures or quiz sections remaining at the start of a given day of the week.

- Inputs: Day of the Week, Lecture/Section flag
- Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2

Input: (Monday, Section) Output: 1

Implementation in Software

```
public int classesLeftInMorning(int weekday, boolean isLecture) {
    switch (weekday) {
        case SUNDAY:
        case MONDAY:
            return isLecture ? 3 : 1;
        case TUESDAY:
        case WEDNESDAY:
            return isLecture ? 2 : 1;
        case THURSDAY:
            return isLecture ? 1 : 1;
        case FRIDAY:
            return isLecture ? 1 : 0;
        case SATURDAY:
            return isLecture ? 0 : 0;
```

Implementation with Combinational Logic

Encoding:

- How many bits for each input/output?
- Binary number for weekday
- One bit for each possible output

Defining Our Inputs!

Weekday Input:

- Binary number for weekday
- Sunday = 0, Monday = 1, ...
- We care about these in binary:

Weekday	Number	Binary
Sunday	0	(000) ₂
Monday	1	(001) ₂
Tuesday	2	(010) ₂
Wednesday	3	(011) ₂
Thursday	4	(100) ₂
Friday	5	(101) ₂
Saturday	6	(110) ₂

Converting to a Truth Table!

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

Wee	kday	isLecture	c _o	$\mathbf{c_1}$	c ₂	c ₃
SUN	000	0				_
SUN	000	1				
MON	001	0				
MON	001	1				
TUE	010	0				
TUE	010	1				
WED	011	0				
WED	011	1				
THU	100	_				
FRI	101	0				
FRI	101	1				
SAT	110	<u>-</u>				
-	111	-				

Converting to a Truth Table!

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

Wee	kday	isLecture	c _o	$\mathbf{c_1}$	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1_
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	$\mathbf{c_1}$	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

Let's begin by finding an expression for c_3 . To do this, we look at the rows where $c_3 = 1$ (true).

	$d_2d_1d_0$	L	c ₀	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c ₀	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	_	1	0	0	0

	$d_2d_1d_0$	L	c ₀	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

How do we combine them?

	$d_2d_1d_0$	L	c ₀	c ₁	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	c ₁	c ₂	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0$
SUN	000	0	0	1	0	Now, we do $\mathbf{c_2}$.
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0 0 dz:d; do.L
TUE	0 10	1	0	0	1	0 2.01.00.
WED	011	0	0	1	0	0
WED	011	1	0	0	1	$d_2d_1d_3L$
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

	$d_2d_1d_0$	L	c _o	C ₁	C ₂	C ₃	Now, we do c ₁ :
SUN	000	0	0	1	0	0	Now, we do c ₁ :
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	dz.d.do.L
SAT	110	-	1	0	0	0	-
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$

	$d_2d_1d_0$	L	c ₀	\mathbf{c}_1	c ₂	c ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	6	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0
			. ,		•	

	$d_2d_1d_0$	L	$ c_0 $	C ₁	c ₂	c ₃	Now, we do c₁:
SUN	000	0	0	1	0	0	d ₂ '•d ₁ '•d ₀ '•L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ '•d ₁ '•d ₀ •L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	d ₂ '•d ₁ •d ₀ '•L'
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	d ₂ '•d ₁ •d ₀ •L'
WED	011	1	0	0	1 0	No matter what L	
THU	100	-	0	1	0	0	d₂•d₁'•d₀' we always say it's So, we don't need
FRI	101	0	1	0	0	0	in the expression
FRI	101	1	0	1	0	0	d ₂ •d ₁ '•d ₀ •L
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃	Now, we do c₁:
SUN	000	0	0	1	0	0	d ₂ ' • d ₁ ' • d ₀ ' • L'
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	d ₂ '• d ₁ '• d ₀ • L'
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	d ₂ '• d ₁ • d ₀ '• L'
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	d ₂ ' • d ₁ • d ₀ • L'
WED	011	1	0	0	1	0	No matter what L i
THU	100	-	0	1	0	0	d ₂ •d ₁ '•d ₀ ' we always say it's it's so, we don't need
FRI	101	0	1	0	0	0	in the expression.
FRI	101	1	0	1	0	0	d ₂ •d ₁ '•d ₀ •L
SAT	110	-	1	0	0	0	$a = d' \cdot d'$
-	111	-	1	0	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$ $c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$
c ₁ =	d ₂ '•d ₁ '•d	₀ '•L'+d ₂ '•	d ₁ '• d	do•L'	+ d ₂ ' •	d ₁ • d	$d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' + d_2 \cdot d_1' \cdot d_0 \cdot L$

		$d_2d_1d_0$	L	c ₀	c ₁	c ₂	c ₃	$c_1 = d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_1' \cdot d_0 \cdot d_0' \cdot L' + d_1' \cdot d_0 \cdot d_0' \cdot L' + d_1' \cdot d_0' \cdot L' + d$
	SUN	000	0	0	1	0	0	$d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0 \cdot L$
	SUN	000	1	0	0	0	1	$c_2 = d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L$
	MON	001	0	0	1	0	0	$c_3 = d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L$
	MON	001	1	0	0	0	1	
	TUE	010	0	0	1	0	0	
	TUE	010	1	0	0	1	0	
	WED	011	0	0	1	0	0	
	WED	011	1	0	0	1	0	
•	THU	100	-	0	1	0	0	Finally, we do c _o :
	FRI	101	0	1	0	0	0	d ₂ • d ₁ ' • d ₀ • L'
	FRI	101	1	0	1	0	0	
	SAT	110	_	1	0	0	0	$d_2 \cdot d_1 \cdot d_0'$
	-	111	-	1	0	0	0	$d_2 \cdot d_1 \cdot d_0$
ı								

$$c_{0} = d_{2} \cdot d_{1}' \cdot d_{0} \cdot L' + d_{2} \cdot d_{1} \cdot d_{0}' + d_{2} \cdot d_{1} \cdot d_{0}$$

$$c_{1} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L' + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L' + d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L' + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L' + d_{2} \cdot d_{1}' \cdot d_{0}' \cdot L' + d_{2} \cdot d_{1}' \cdot d_{0}' \cdot L' + d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L' + d_{$$

Simplifying using Boolean Algebra

```
c3 = d2' • d1' • d0' • L + d2' • d1' • d0 • L

distribution
   = d2' • d1' • 1 • L
   = d2' • d1' • L
                                         AND
```