EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

2.ª FASE

2005

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de onze.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} imes Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Area lateral de um cone:
$$\pi r g$$

 $(r - raio da base; q - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r - raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Cone:
$$\frac{1}{3} \times \text{Årea da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} = \sqrt[n]{\rho} \cos \frac{\theta + 2 k \pi}{n}$$
, $k \in \{0, ..., n-1\}$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 imes \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u'$$
, a^u , $\ln a$ $(a \in \mathbb{R}^+ \setminus \{1\})$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- · As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- 1. Considere a função f, de domínio [-5,5] e contradomínio [-5,5], representada graficamente na figura junta.

Qual dos gráficos seguintes pode ser o da função g, definida por g(x)=1+f(x+1)?

(A)

(B)

(C)

(D)

- **2.** De uma função f, continua em \mathbb{R} , sabe-se que f(3) = 8 e f(7) = 1. Qual das afirmações seguintes é necessariamente verdadeira?
 - **(A)** $1 \le f(6) \le 8$

(B) A função f não tem zeros em [3, 7]

(C) f(4) > f(5)

- **(D)** 2 pertence ao contradomínio de f
- **3.** Na figura junta está representado o círculo trigonométrico.

Considere que um ponto P parte de A(1,0) e se desloca sobre a circunferência, dando uma volta completa, em sentido contrário ao dos ponteiros do relógio.

Para cada posição do ponto P, seja x a amplitude, em radianos, do ângulo orientado cujo lado origem é a semi-recta $\dot{O}A$ e cujo lado extremidade é a semi-recta $\dot{O}P$ ($x\in[0,2\,\pi]$) .

Seja g a função que, a cada valor de x, faz corresponder a área da região sombreada (região limitada pelos segmentos de recta [OP], [PA] e [AO]).

Qual dos seguintes gráficos pode ser o da função g?

(B)

(D)

4. Na figura estão representadas partes dos gráficos de duas funções polinomiais, $g \in h$, ambas de domínio \mathbb{R} .

- Qual das expressões seguintes pode definir uma função f, de domínio \mathbb{R} , tal que $f \times g = h$?

- (A) x-1 (B) -x+1 (C) x+1 (D) -x-1
- 5. Considere duas caixas, A e B, cada uma delas contendo quatro bolas numeradas, tal como a figura abaixo ilustra.

Caixa A

Caixa B

Extraem-se, ao acaso, duas bolas da caixa A e uma bola da caixa B. Multiplicam-se os números das três bolas retiradas.

Qual é a probabilidade de o produto obtido ser um número par?

- **(A)** 0
- **(B)** 1
- (C) $\frac{2\times 1}{{}^4C_2\times {}^4C_1}$ (D) $\frac{{}^3C_2\times {}^1C_1}{{}^4C_2\times {}^4C_1}$

6. Em cada uma das opções seguintes (A, B, C e D) estão representadas quatro figuras (as figuras são círculos ou quadrados e estão pintadas de branco ou de preto).

Para cada opção, considere:

- · a experiência que consiste na escolha aleatória de uma das quatro figuras;
- os acontecimentos:

X: «a figura escolhida é um quadrado»;

Y: «a figura escolhida está pintada de preto».

Em qual das opções se tem $\ P\left(X\,|\,Y\right)=rac{1}{2}$?

(A)

(B)

(C)

(D)

- **7.** Em qual das opções seguintes estão duas raizes cúbicas de um mesmo número complexo ?
 - (A) $cis \frac{\pi}{6}$ e $cis \frac{5\pi}{6}$

(B) $cis \frac{\pi}{3}$ e $cis \frac{2\pi}{3}$

- (C) $cis \frac{\pi}{4}$ e $cis \frac{3\pi}{4}$
- **(D)** $cis \frac{\pi}{2}$ e $cis \frac{3\pi}{2}$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

1. Em \mathbb{C} , conjunto dos números complexos, considere

$$w_{_1}=1+i$$
 , $w_{_2}=\sqrt{2}\,\cosrac{\pi}{12}$ e $w_{_3}=\sqrt{3}\,\cos\left(-rac{\pi}{2}
ight)$

1.1. Sem recorrer à calculadora, determine o valor de $\dfrac{w_1 \times w_2 - 2}{w_3}$

Apresente o resultado na forma algébrica.

1.2. Represente, no plano complexo, a região definida pela condição

$$Re(z) \ge Re(w_1) \qquad \land \qquad |z - w_3| \le \sqrt{3}$$

- 2. O João tem catorze discos de música ligeira:
 - · seis são portugueses;
 - · quatro são espanhóis;
 - · três são franceses:
 - · um é italiano.
 - 2.1. O João pretende seleccionar quatro desses catorze discos.
 - **2.1.1.** Quantos conjuntos diferentes pode o João fazer, de tal modo que os quatro discos seleccionados sejam de quatro países diferentes, ou seja, um de cada país?
 - **2.1.2.** Quantos conjuntos diferentes pode o João fazer, de tal modo que os quatro discos seleccionados sejam todos do mesmo país?
 - **2.2.** Considere agora a seguinte experiência: o João selecciona, ao acaso, quatro dos catorze discos.

Seja X a variável aleatória: «número de discos italianos seleccionados».

Construa a tabela de distribuição de probabilidades da variável X. Apresente as probabilidades na forma de fracção irredutível.

3. Na figura está representada a trajectória de uma bola de futebol, depois de ter sido pontapeada por um jogador da selecção portuguesa, durante um treino de preparação para o EURO-2004.

Designou-se por a a distância, em metros, entre o ponto onde a bola foi pontapeada e o ponto onde ela caiu.

Considere a função h definida em [0,a] por

$$h(x) = 2x + 10 \ln (1 - 0.1x)$$
 (ln designa logaritmo de base e)

Admita que h(x) é a distância, em metros, da bola ao solo, no momento em que a sua projecção no solo se encontra a x metros do local onde foi pontapeada.

- 3.1. Recorrendo à calculadora, determine o valor de a, arredondado às centésimas.
 Explique como procedeu, apresentando todos os elementos recolhidos na utilização da calculadora.
- 3.2. Sem utilizar a calculadora, a não ser para efectuar eventuais cálculos numéricos, estude a função h quanto à monotonia e conclua qual foi a maior altura que a bola atingiu, relativamente ao solo, depois de pontapeada. Apresente o resultado em metros, arredondado às centésimas.
- 3.3. Sem utilizar a calculadora, mostre que a taxa de variação média da função $\,h,\,$ no intervalo $[1\,,3]\,,$ é

$$\ln\left[e^{2}\left(\frac{7}{9}\right)^{5}\right]$$

- **4.** Seja f a função, **de domínio** $[0,2\pi]$, definida por $f(x)=\sin x$
 - 4.1. Na figura junta estão representados:
 - o gráfico da função f;
 - duas rectas, r e s, tangentes ao gráfico de f, nos pontos de abcissas a e b, respectivamente.

Prove que, se $a+b=2\,\pi$, então as rectas r e s são paralelas.

- **4.2.** Sem recorrer à calculadora, estude, quanto à existência de assimptotas do seu gráfico, a função g, de domínio $]0,2\pi[\setminus\{\pi\}]$, definida por $g(x)=\frac{x}{f(x)}$
- 5. No início de 1972, havia quatrocentos lobos num determinado parque natural. As medidas de protecção a lobos fizeram com que o referido número aumentasse continuamente. Os recursos do parque permitem que o número de lobos cresça até bastante perto de um milhar, mas não permitem que este valor seja ultrapassado.

Nestas condições, apenas uma das expressões seguintes pode definir a função P que dá o número aproximado de lobos existentes no parque natural, t anos após o início de 1972.

(A)
$$\frac{1000}{1+e^{-0.5t}}$$

(B)
$$\frac{1000}{1+1.5 e^{-0.5 t}}$$

(C)
$$\frac{1200}{1+2e^{-t}}$$

(D)
$$1000 - \frac{600(t^3+1)}{e^t}$$

Qual é a expressão correcta? Numa pequena composição, com cerca de dez linhas, explique as razões que o levam a rejeitar as outras três expressões (apresente três razões diferentes, uma por cada expressão rejeitada).

Nota: poder-lhe-á ser útil recorrer às capacidades gráficas da sua calculadora. Se o fizer, deve reproduzir o(s) gráfico(s) obtido(s).

COTAÇÕES

rupo I	63
Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	3
Nota: um total negativo neste grupo vale 0 (zero) pontos.	
rupo II	137
1	12
2.1	18
3.1	14 14
4	14
5	14
OTAL	200