Análise de Regressão dos Dados

PicMoney-Massa de Teste com Lojas e Valores

O modelo mostra que **quanto maior o valor da compra, maior tende a ser o valor do cupom**. Isso aparece no coeficiente positivo de inclinação (β₁). Ou seja, existe uma **relação linear direta**: compras mais altas estão associadas a cupons de valor mais alto.

No entanto, como o $\mathbf{R}^2 = \mathbf{0.14}$, essa relação é **fraca/moderada**. Isso significa que o valor da compra explica só 14% da variação do valor do cupom. Na prática:

- Compras grandes aumentam a chance de cupons maiores,
- mas o valor do cupom **também depende muito de outros fatores** (tipo de cupom, categoria da loja, promoções).

O ajuste da regressão linear simples resulta na equação:

valor_cupom = $\beta 0+\beta 1 \cdot valor_compra$

- Intercepto (β_0): é o valor esperado do valor_cupom quando valor_compra = 0.
 - → Como na prática não existem compras de valor zero, esse coeficiente tem pouco significado prático, mas serve para ajustar a reta.
- Inclinação (β₁): mostra a variação esperada no valor_cupom para cada aumento de 1 real no valor compra.
 - \rightarrow Exemplo: se β_1 = 0,25, significa que a cada R\$ 1,00 a mais em compras, espera-se em média R\$ 0,25 a mais em valor de cupom.
 - \rightarrow Se β_1 for positivo (como vimos), a relação é **direta**: quanto maior a compra, maior tende a ser o cupom.

PicMoney-Base de Transações Cupons Capturados

O modelo de regressão linear simples ajustado foi:

repasse picmoney=β0+β1·valor_cupomrepasse

- Intercepto (β₀): representa o valor esperado do repasse quando valor_cupom = 0.
 - → Assim como no outro caso, não faz sentido prático um cupom de valor zero, mas o intercepto serve para posicionar a reta no gráfico.
- Inclinação (β₁): indica a variação média esperada do repasse a cada aumento de R\$ 1,00 no valor do cupom.
 - ightarrow Como ho_1 é **positivo**, confirma que **cupons maiores tendem a gerar repasses maiores**.
 - \rightarrow Exemplo: se β_1 fosse $\approx 0,30$, isso significa que a cada R\$ 1,00 de aumento no cupom, espera-se em média R\$ 0,30 a mais de repasse.

- Correlação (r): $\approx 0.37 \rightarrow$ existe uma relação positiva, mas moderada.
- Coeficiente de determinação (R²): \approx 0,136 (13,6%)
 - → Isso quer dizer que apenas **13,6% da variação no repasse** pode ser explicada diretamente pelo valor do cupom.
 - → Os outros **86,4% da variação** dependem de fatores que não estão no modelo (ex.: categoria do estabelecimento, tipo de cupom, regras de promoções, etc.).

