从 KDDCUP2012 看微博好友推荐

Chunwei Yan

superjom@sz.pku.edu.cn

June 3, 2013

背景

- ► KDDCUP2012
- ▶ 腾讯微博
- ▶ 1st-0.4265 undergrads@ 数据和知识管理实验室 @ 上海交大
- ▶ 2st-0.41874 盛大研究院

Outline

- ▶ 训练数据格式
- ▶ 超越矩阵分解模型
- ▶ 其他方法
- ▶ 实验分析

KDDCUP 2012 Track1

▶ 目标: 用户好友推荐, MAP@3

KDDCUP 2012 Track1

- ▶ 目标: 用户好友推荐, MAP@3
- datasets:
 - 1. 训练集:(UserId)(ItemId)(Result)(Unix-timestamp)
 - 2. 其他信息:
 - Profile: (UserId)(Year-of-birth)(Gender)(Number-of-tweet)(Tag-Ids)
 - item: (ItemId)(Item-Category)(Item-Keyword)
 - user-action: (UserId)(Action-Destination-UserId)(Number-ofat-action)(Number-of-retweet)(Number-of-comment)

矩阵分解模型 (SVD/SVD++)

$$\hat{r}_{ui} = \left(\sum_{c \in C(u)} \alpha_c^{(u)} \mathbf{p}_c\right)^T \left(\sum_{c \in C(i)} \beta_c^{(i)} \mathbf{q}_c\right) + \sum_{c \in C(u,i)} \gamma_c^{(u,i)} g_c \qquad (1)$$

矩阵分解模型 (SVD/SVD++)

$$\hat{r}_{ui} = \left(\sum_{c \in C(u)} \alpha_c^{(u)} \mathbf{p}_c\right)^T \left(\sum_{c \in C(i)} \beta_c^{(i)} \mathbf{q}_c\right) + \sum_{c \in C(u,i)} \gamma_c^{(u,i)} g_c \qquad (1)$$

- ▶ $\theta = \{\mathbf{p}, \mathbf{q}, \mathbf{g}\}$. 模型参数, 随机梯度下降
- α_c^(u) 用户特征 (user features), tags, keywords, 社交网络
- $\triangleright \beta_c^{(i)}$ item features, 分类, 网络
- $ightharpoonup \gamma_c^{(u,i)}$ 公共特征, user, item 间的交互

Additive Forest

$$\hat{r}_{ui} = \sum_{s=1}^{S} f_{s,root(i,s)}(x_u)$$
 (2)

- ▶ x,, 用户 u 的特性
- ▶ f_{s,root(i,s)} 用回归树定义的函数
- ▶ 采用梯度提升法学习

Additive Forest

Additive Forest 实例

	矩阵分解	Additive Forest
稀疏矩阵处理	非常好	一般
不同信息整合	线性组合	非线性组合
对连续值的处理	人为划分	自动产生划分

	矩阵分解	Additive Forest
稀疏矩阵处理	非常好	一般
不同信息整合	线性组合	非线性组合
对连续值的处理	人为划分	自动产生划分

- ▶ 两种模型都各有各自的特点
- ▶ 结合他们的特点对提高精度至关重要

矩阵分解模型

$$\hat{r}_{ui} = p_u^T q_i + W_{i, \underset{ag(u)}{ag(u)}}$$
 (3)

- ► ag(u) 年龄划分索引
- ▶ 需要实现人为划分

age bias parameters

矩阵分解模型

$$\hat{r}_{ui} = p_u^T q_i + W_{i, ag(u)}$$
 (3)

- ► ag(u) 年龄划分索引
- ▶ 需要实现人为划分

age bias parameters

Additive Forest

社交网络

$$\hat{r}_{ui} = \left(\frac{1}{\sqrt{|F(u)|}} \sum_{j \in F(u)} \mathbf{p}_j\right)^T \mathbf{q}_i + b_i \tag{4}$$

社交网络

$$\hat{r}_{ui} = \left(\frac{1}{\sqrt{|F(u)|}} \sum_{j \in F(u)} \mathbf{p}_j\right)^T \mathbf{q}_i + b_i \tag{4}$$

- ▶ *F(u)* user *u* follow 的好友
- ▶ 模拟其好友对其影响

关键词和 Tag

- ▶ 分类信息对用户的预测有影响
- ▶ 影响无法无法计量

关键词和 Tag

- ▶ 分类信息对用户的预测有影响
- ▶ 影响无法无法计量
- ▶ 作为潜在因素 (SVD++)

$$\mathbf{p}'_{u} = \mathbf{p}_{u} + \frac{1}{||\mathbf{w}_{u}||_{2}} \sum_{j \in \mathcal{K}(u)} \mathbf{w}_{u,j} \mathbf{y}_{j}$$
 (5)

- ▶ K(u) 用户 u 的 keywords or tags
- ▶ w_{u,i} 特征的权重

用户序列模式 (User Sequential Patterns)

▶ 推测用户点击趋势

用户序列模式 (User Sequential Patterns)

▶ 推测用户点击趋势

$$\hat{r}'_{ui}(t) = \hat{r}_{ui} + f(\triangle t), f(\triangle t) = \sum_{s=1}^{S} f_s(\triangle t)$$
 (6)

实验结果

ID	model	public	private	Δ_{public}	$\Delta_{\it private}$
1	item bias	34.6%	34.0%		
2	$1 + user\ follow/action$	36.7%	35.8%	2.1%	1.8%
3	2 + user age/gender	38.0%	37.2%	1.3%	1.4%
4	3 + user tag/keyword	38.5%	37.6%	0.5%	0.4%
5	4 + item taxonomy	38.7%	37.8%	0.2%	0.2%
6	5 + time-aware model	39.0%	37.9%	0.3%	0.1%
7	6 + age/gender(forest)	39.1%	38.0%	0.1%	0.1%
8	7 + sequential patterns	44.2%	42.7%	5.1%	4.7%

Table: MAP@3 of different methods

引用

[Tianqi Chen, Linpeng Tan, Qln Liu and so on,2012]

ACM

Combining Factorization Model and Additive Forest for Collaborative Followee Recommendation, 2004

[Yehuda Koren, 2008]

Factorization Meets the Neighborhood: a Multifaceted Collborative Filtering Model, 2008

Thank You, Questions?