P1 de Álgebra Linear I – 2002.1 Data: 27 de março de 2001.

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revis.
1	2.5		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
2e	0.5		
3a	0.5		
3b	1.0		
3c	1.0		
4a	0.5		
4b	0.5		
4c	0.5		
4d	0.5		
4e	0.5		
Total	10.5		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Nas questões 2, 3 e 4 da prova não haverá pontuação menor que 0.5 Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	$\times -0.2$	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			

1.a) Para todo par de vetores u e w de \mathbb{R}^3 vale o seguinte raciocínio:

$$w \times (u \times w) = -w \times (w \times u) = (-w \times w) \times u = \overline{0} \times u = \overline{0}$$

- **1.b)** Considere vetores $v,\ y$ e w de \mathbb{R}^3 tais que $y\cdot (v\times w)=1$. Então $w\cdot (v\times y)=1$.
- 1.c) Considere vetores v, ye w de \mathbb{R}^3 tais que $y \cdot (v \times w) = 0$. Então y é ortogonal a w.
- 1.d) Existem dois planos π e ρ de \mathbb{R}^3 cuja interseção consiste em um único ponto.
- 1.e) Considere vetores y,v e w de \mathbb{R}^3 tais que $y\cdot v=0$ e $w\cdot v=0$. Então $y\cdot w=0$.
- **1.f)** Considere vetores w e v de \mathbb{R}^3 . Se $w \times v = 0$ então o valor absoluto de $w \cdot v$ é |w| |v|.
 - 1.g) Considere o sistema

$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$.

Suponha que

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

Então o sistema não admite solução.

1.h) Considere vetores $y, v \in w$ de \mathbb{R}^3 . Então

$$(y+v)\cdot(w\times v)=y\cdot(w\times v).$$

1.i) Considere a reta r que contém o ponto $P=(p_1,p_2,p_3)$ e é paralela ao vetor v, e a reta s que contém ao ponto $Q=(q_1,q_2,q_3)$ e é paralela ao vetor w. Seja $\overline{PQ}=(q_1-p_1,q_2-p_2,q_3-p_3)$. Suponha que $\overline{PQ}\cdot(v\times w)=0$. Então a distância entre as retas é zero.

2) Considere a reta r definida pela interseção dos planos π e ρ ,

$$\pi: x + 2y + z = 1, \quad \rho: -x + y - z = 1.$$

- **2.a)** Determine um vetor diretor da reta r.
- **2.b**) Determine uma equação paramétrica de r.
- **2.c)** Encontre um terceiro plano τ (diferente de π e ρ) que contenha a r (isto é, $\tau \cap \pi \cap \rho$ é igual à reta r).
- **2.d)** Determine a equação cartesiana do plano α que contém a reta r e o ponto (1,2,1).
- **2.e)** Determine a equação cartesiana do plano β perpendicular a r contendo o ponto (1,2,1).
 - 3) Considere a reta r de equação cartesiana

$$x + 2y + z = 4$$
, $x - z = 0$

e a reta s de equações paramétricas $(1-2t, t, 1+2t), t \in \mathbb{R}$.

- **3.a)** Determine uma equação paramétrica de r.
- **3.b)** Determine a posição relativa das retas r e s (concorrentes, reversas, paralelas, iguais).
 - **3.c)** Calcule a distância entre $r \in s$.
 - 4) Considere o plano π : x + 2y z = 1.
- **4.a)** Determine a equação cartesiana do plano ρ paralelo a π que contém a origem.
 - **4.a)** Calcule a distância entre ρ e π .
 - **4.c**) Determine a equação cartesiana do plano τ perpendicular a π que

contém os pontos (1,0,0) e (0,0,-1).

- **4.d)** Calcule o ponto do plano ρ mais próximo do ponto (1,0,0).
- **4.e)** Ache um ponto X no plano ρ da forma (x,0,z) tal que os pontos $P=(1,0,0),\ Q=(0,0,-1)\ (P,Q$ no plano $\pi)$ determinem um triângulo retângulo cujos catetos são PQ e QX.