DISCONTINUOUS PETROV-GALERKIN (DPG) METHOD WITH OPTIMAL TEST FUNCTIONS Progress Report

Three DPG Punchlines

Leszek Demkowicz ICES, The University of Texas at Austin

World Congress on Computational Mechanics Barcelona, July 20 - July 25, 2014

Collaboration:

```
Portland State: J. Gopalakrishnan
       ICES: T. Bui-Thanh, O. Ghattas, B. Moser, T. Ellis, J. Zitelli
    Argonne: N. Roberts
     Boeing: D. Young
   Basque U: D. Pardo
C.U. of Hong-Kong: W. Qiu
     KAUST: V. Calo
 Livermoore: J. Bramwell
 Los Alamos: M. Shaskov
        Rice: J. Chan
      Sandia: P.N. Bochev, K.J. Peterson, D. Ridzal and Ch. M. Siefert
  C.U. Chile: I. Muga, N. Heuer
 U. Helsinki: A. Niemi
  U. Nevada: J. Li
```

U. Tel-Aviv I. Harari

Three DPG Punchlines

- 1: DPG Method is a Ritz method. It supports adaptivity with no preasymptotic behavior.
- 2: You can control the norm in which you want to converge.
- 3: DPG is easy to code.

Punchline 1

DPG Method is a Ritz method. It supports adaptivity with no preasymptotic behavior.

Primal DPG Method for Maxwell equations.

Assume

$$J_S^{\mathsf{imp}} = n \times H^{imp}$$

and look for the unknown surface current on the skeleton also in the same form.

$$\left\{ \begin{array}{l} E \in H(\mathsf{curl},\Omega), \, n \times E = n \times E^{\mathsf{imp}} \, \, \mathsf{on} \, \, \Gamma_1 \\ \\ \hat{h} \in \mathsf{tr}_{\Gamma_h} H(\mathsf{curl},\Omega), \, n \times \hat{h} = n \times (-i\omega H^{imp}) \, \, \mathsf{on} \, \, \Gamma_2 \\ \\ (\frac{1}{\mu} \boldsymbol{\nabla} \times E, \boldsymbol{\nabla}_h \times F) + ((-\omega^2 \epsilon + i\omega \sigma) E, F) + \langle n \times \hat{h}, F \rangle_{\Gamma_h} = -i\omega (J^{\mathsf{imp}}, F) \\ \\ \forall F \in H(\mathsf{curl},\Omega_h) \, . \end{array} \right.$$

FE discretization for curl-curl problem

Hexahedral meshes

H(curl) element for electric field E:

$$(\mathcal{P}^{p-1}\otimes\mathcal{P}^p\otimes\mathcal{P}^p)\times(\mathcal{P}^p\otimes\mathcal{P}^{p-1}\otimes\mathcal{P}^p)\times(\mathcal{P}^p\otimes\mathcal{P}^p\otimes\mathcal{P}^{p-1})$$

and trace of the same element for flux (surface current) $\hat{h}.$

Same element for the enriched space but with order $p + \Delta p$.

In reported experiments: $p=2,\,\Delta p=2.$

A 3D Maxwell example

Take a cube $(0,2)^3$

Fichera corner

Divide it into eight smaller cubes and remove one:

Fichera corner microwave

Attach a waveguide:

Cut the waveguide and use the lowest propagating mode for BC along the cut.

Initial mesh and real part of E_1

Mesh and real part of E_1 after two refinements

Mesh and real part of E_1 after four refinements

Mesh and real part of E_1 after six refinements

Mesh and real part of E_1 after eight refinements

From Ph.D. Dissertation of Jesse Chan: Compressible Navier-Stokes Equations: Carter's flat plate problem *

 ${\rm M}_{\infty}=3, {\rm Re}_L=1000, {\rm Pr}=0.72, \gamma=1.4, \theta_{\infty}=390^o [{\rm R}]$

Barceloma, Jul 20 - Jul 25, 2014 DPG Method 15 / 37

^{*}L.D., J.T. Oden, W. Rachowicz, "A New Finite Element Method for Solving Compressible Navier-Stokes Equations Based on an Operator Splitting Method and h.p. Adaptivity.", Comput. Methods Appl. Mech. Engrg., 84, 275-326, 1990.

Initial Mesh (p=2):

Mesh 1:

Mesh 2:

Mesh 3:

Mesh 4:

Mesh 5:

Mesh 7:

Mesh 8:

Mesh 9:

Mesh 10:

Heat flux along the plate

Punchline 2

You can control the norm in which you want to converge.

The simplest singular perturbation problem: reaction-dominated diffusion †

[†]L.D. and I. Harari, "Primal DPG Method for Reaction dominated Diffusion", in preparation.

The simplest singular perturbation problem: Reaction-dominated diffusion

$$\left\{ \begin{array}{rcl} u &= 0 & \text{ on } \Gamma \\ -\epsilon^2 \Delta u + c(x) u &= f & \text{ in } \Omega \end{array} \right.$$

where $0 < c_0 \le c(x) \le c_1$.

Standard variational formulation:

$$\left\{ \begin{array}{l} u \in H^1(\Omega) \\ \\ \epsilon^2(\boldsymbol{\nabla} u, \boldsymbol{\nabla} v) + (cu, v) = (f, v) \quad v \in H^1(\Omega) \end{array} \right.$$

Standard Galerkin method delivers the best approximation error in the energy norm:

$$||u||_{\epsilon^k}^2 := \epsilon^k ||\nabla u||^2 + ||c^{1/2}u||^2, \quad k = 2$$

Convergence in "balanced" norm

Fact: Under favorable regularity conditions, the solution is *uniformly* bounded in data f in a "balanced" norm ‡ :

$$||u||_{\epsilon}^{2} := \epsilon ||\nabla u||^{2} + ||c^{1/2}u||^{2}$$

i.e.

$$||u||_{\epsilon} \lesssim ||f||_{\text{appropriate}}$$

Question: Can we select the test norm in such a way that the DPG method will be *robust* in the balanced norm?

$$||u - u_h||_{\epsilon} + ||\hat{t} - \hat{t}_h||_{?} \lesssim \inf_{w_h} ||u - w_h||_{\epsilon} + \inf_{\hat{r}_h} ||\hat{t} - \hat{r}_h||_{?}$$

Barceloma, Jul 20 - Jul 25, 2014 DPG Method

[†]R. Lin and M. Stynes, "A balanced finite element method for singularly perturbed reaction-diffusion problems", SIAM J. Numer. Anal., 50(5): 2729–2743, 2012.

A bit of history: Optimal test functions of Barret and Morton §

For each $w \in U_h$, determine the corresponding v_w that solves the auxiliary variational problem:

$$\left\{ \begin{array}{l} v_w \in H^1_0(\Omega) \\ \underbrace{\epsilon^2(\nabla \delta u, \nabla v_w) + (c\,\delta u, v_w)}_{\text{the bilinear form we have}} = \underbrace{\epsilon(\nabla \delta u, w) + (c\,\delta u, w)}_{\text{the bilinear form we want}} \quad \forall \delta u \in H^1_0(\Omega) \\ \end{array} \right.$$

With the optimal test functions, the Galerkin orthogonality for the original form changes into Galerkin orthogonality in the desired, "balanced" norm:

$$\epsilon^2(\nabla(u-u_h), \nabla v_w) + (c(u-u_h), v_w) = 0 \implies \epsilon(\nabla(u-u_h), \nabla v_u) + (c(u-u_h), w) = 0$$

Consequently, the PG solution delivers the best approximation error in the desired norm.

J.W. Barret and K. W. Morton, "Approximate Symmetrization and Petrov-Galerkin Methods for Diffusion-Convection Problems", Comp. Meth. Appl. Mech and Engng., 46, 97 (1984).

L. D. and J. T. Oden, "An Adaptive Characteristic Petrov-Galerkin Finite Element Method for Convection-Dominated Linear and Nonlinear Parabolic Problems in One Space Variable", Journal of Computational Physics, 68(1): 188–273, 1986.

Constructing optimal test norm ¶

Theorem

Let v_u be the Barret-Morton optimal test function corresponding to u. Let $||v_u||_V$ be a test norm such that

$$||v_u||_V \lesssim ||u||_{\epsilon}$$

Then

$$\|u-u_h\|_{\epsilon}\lesssim \|u-u_h\|_E=\inf_{w_h\in U_h}\|u-w_h\|_E\leq \mathit{BAE}$$
 estimate

Proof:

$$||u||_{\epsilon}^{2} = \epsilon(\nabla u, \nabla u) + (cu, u) = \epsilon^{2}(\nabla u, \nabla v_{u}) + (cu, v_{u})$$

$$= b((u, \hat{t}), v_{u}) \leq \frac{b((u, \hat{t}), v_{u})}{||v_{u}||_{V}} ||v_{u}||_{V}$$

$$\leq \sup_{v} \frac{b((u, \hat{t}), v_{u})}{||v||_{V}} ||v_{u}||_{V} = ||(u, \hat{t})||_{E} ||v_{u}||_{V}$$

$$\leq ||(u, \hat{t})||_{E} ||u||_{\epsilon}$$

Barceloma, Jul 20 - Jul 25, 2014 DPG Method 23 / 37

[¶] I. D. M. Heuer. "Robust DPG Method for Convection-Dominated Diffusion Problems," SIAM J. Num. Anal, 51: 2514–2537, 2013.

Constructing optimal test norm

The point: Construction of the optimal test norm is reduced to the stability (robustness) analysis for the Barret-Morton test functions.

Lemma

Let

$$||v||_V^2 := \epsilon^3 ||\nabla v||^3 + ||c^{1/2}v||^2$$

Then

$$||v_u|| \lesssim ||u||_{\epsilon}$$

In order to avoid boundary layers in the optimal test functions (that we cannot resolve using simple enriched space) we scale the reaction term with a mesh-dependent factor:

$$||v||_{V,mod}^2 := \epsilon^3 ||\nabla v||^3 + \min\{1, \frac{\epsilon^3}{h^2}\} ||c^{1/2}v||^2$$

Manufactured solution of Lin and Stynes, $\epsilon = 10^{-1}$

The functions exhibits strong boundary layers invisible in this scale.

Range: (-0.6,0.6)

Manufactured solution of Lin and Stynes, $\epsilon=10^{-1}$

Zoom on the north boundary layer.

Optimal mesh for $\epsilon = 10^{-1}$

Optimal $h\text{-}\mathrm{adaptive}$ mesh and numerical solution for $\epsilon=10^{-1}$

Lin/Stynes example, $\epsilon = 1$

Residual and "balanced" error of u for h-adaptive solution, p=2

Lin/Stynes example, $\epsilon = 10^0, 10^{-1}$

Residual and "balanced" error of u for h-adaptive solution, p=2

Lin/Stynes example, $\epsilon = 10^0, 10^{-1}, 10^{-2}$.

Residual and "balanced" error of u for h-adaptive solution, p=2

Lin/Stynes example, $\epsilon = 10^0, 10^{-1}, 10^{-2}, 10^{-3}$.

Residual and "balanced" error of u for h-adaptive solution, p=2

Lin/Stynes example, $\epsilon = 10^0, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$.

Residual and "balanced" error of u for h-adaptive solution, p=2

Other tricks we can play: zooming on the solution

Question: Can we select the test norm in such a way that the DPG method would deliver high accuracy in a preselected subdomain, e.g. $(0,\frac{1}{2})^2\subset (0,1)^2$? **Answer:** Yes!

Optimal mesh and the corresponding pointwise error (range (-0.001 - 0.001).

Punchline 3

DPG is easy to code.

Other Applications

► Wave propagation problems (sonars, full wave form inversion in geomechanics, cloaking)

Other Applications

- ► Wave propagation problems (sonars, full wave form inversion in geomechanics, cloaking)
- Elasticity, shells (volumetric, shear, membrane locking)

Other Applications

- ► Wave propagation problems (sonars, full wave form inversion in geomechanics, cloaking)
- ► Elasticity, shells (volumetric, shear, membrane locking)
- Metamaterials

Thank You!

Acknowledgments

Past and Current Support:

Boeing Company
Department of Energy (National Nuclear Security Administration)
[DE-FC52-08NA28615]
KAUST (collaborative research grant)
Air Force[#FA9550-09-1-0608]