$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

- 28. a. Given $x(n) = \{1, 1, 2, 3, 4, 0.5\}$ sketch the following signals.
 - (i) x(n-3) (ii) x(n+2) (iii) x(-n) (iv) x(2-n) (v) x(3n)
- (vi) $x\binom{n}{2}$

- b. Explain the classification of system with an example.
- 29. a. Find the trigonometric Fourier series for the periodic signal x(t) shown in below.

b. Find the Fourier transform of the following signal and sketch the magnitude and phase spectrum.

$$x(t) = e^{-at}U(t).$$

30. a. Compute the convolution for the given signals using Fourier transform.

$$x(t) = e^{-2t}U(t)$$
; $h(t) = e^{-4t}U(t)$.

(OR)

b. Find the impulse and step response of the following system.

$$H(S) = \frac{S+2}{S^2 + 5S + 4}$$

31. a. Find the Z transform of the signal $x(n) = \sin \omega_n U(n)$ and find ROC.

- b. Find IDFT of the following sequence $X(K) = \{1,0,1,0\}$.
- 32. a. A causal system is represented by the following difference equation

$$y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$$

- Find the system function H(z)
- Find the impulse response of the system.

b. Determine the convolution sum of two sequences $x(n) = \{1,4,3,2\}, h(n) = \{1,3,2,1\}$

20	-1-	de	ale	de
7	*	不	不	不

Page 1 of 4

Reg. No.									
						125			

B.Tech. DEGREE EXAMINATION, DECEMBER 2017

Third Semester

EI1006 - SIGNALS AND SYSTEMS

(For the candidates admitted during the academic year 2013 – 2014 and 2014 -2015)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

- 1. The value of $\delta(n)$ at n=0 is
 - (A) 0

(B) 1

(C) -1

- (D) ½
- 2. Fundamental period of cos2t is
 - (A) 2π

(B) 0

(C) π

(D) 2

- 3. U(t) U(t-1) =
 - (A) 1 for $0 \le t \le 1$

(B) 1 for $t \ge 0$

(C) 0 for $0 \le t \le 1$

- (D) 0 for t < 1
- 4. The scaled impulse $\delta(2n) =$
 - (A) $2\delta(n)$

 $\frac{1}{2}\delta(n)$

(C) $\delta(n+1)$

- (D) $\delta(n)$
- 5. The Fourier series of a half wave symmetric periodic signal contains
- Harmonics.

(A) Even

(B) Odd

(C) Zero

- (D) Two
- 6. The Fourier transform of a DC signal is
 - (A) 0

(B) 1

(C) π

- (D) $2\pi\delta(\Omega)$
- 7. Laplace transform of $\delta(t)$ is
 - (A) 0 (C) ∞

(B) 1

- (D) -1
- 8. For a causal signal x(t), the ROC of X(s) is
 - (A) Right half of S plane (C) Entire S plane

(B) Left half of S plane

(D) $i\Omega$ axis

Page 4 of 4

- 9. Laplace transform of $\frac{d^2\delta(t)}{2}$ is

(B) S

(C) S^2

- (D) S^3
- 10. The transfer function of zero order hold is

(C)

- 11. Z transform of U(n) is
 - (A) 1

(B)

- (D) 0
- 12. The DFT of the sequence x(n) = u(n) is
 - $1-e^{-j\omega}$

(B)

(C) $e^{j\omega}$

- (D) 1
- 13. The condition for the existence of DTFT for an aperiodic sequence is

- (D) x(n) = 1
- 14. The output of a system to a step input is t^2e^{-2t} . The system function H(S) is
 - (A)

- 15. ROC of a finite duration causal sequence is
 - (A) Entire Z plane except at Z = 0
- (B) Entire Z plane
- (C) Entire Z plane except at $Z = \infty$
- (D) Entire Z plane except $Z = 0 \& \infty$
- 16. The direct evaluation of DFT requires complex multiplications
 - (A) N(N-1)

(B) N^2

(C) N(N+1)

- (D) N(N-1)
- 17. If the output of discrete time LTI system is always identical to the input, then the impulse response h(n) is
 - (A) Unit step

(B) Unit impulse

(C) All ones

(D) Ramp

- The Z transform of a system is $H(Z) = \frac{Z}{Z 0.2}$. If the ROC is |Z| < 0.2, then the impulse response of the system is
 - (A) $(0.2)^n u(n)$

(B) $(0.2)^n u(-n-1)$

 $-(0.2)^n u(n)$

(D) $-(0.2)^n u(-n-1)$

- 19. Z transform of $\delta(n)$ is
 - (A) 0

(B) 1

(C) ∞

- (D) ½
- 20. The condition for a LTI system to be stable is

$$(A) \sum_{n=0}^{\infty} h(n) = \infty$$

(C)
$$\sum_{n=0}^{\infty} h(n) < \infty$$

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Find the fundamental period of $e^{j\left(\frac{2\pi}{3}\right)^n} + e^{j\left(\frac{3\pi}{4}\right)^n}$
- 22. Determine the energy and power for x(n) = u(n).
- 23. Explain the properties of Fourier transform.
- 24. Use Fourier transform to find the convolution of the signals $x_1(t) = e^{-at}U(t)$ and $x_2(t) = e^{-bt}U(t)$.
- 25. Find the circular convolution of two sequences given below $x_1(n) = \{1, 2, 3, 4\}; x_2(n) = \{1, -1, 2, 1\}.$
- 26. State and prove linearity and shifting property of Z transform.
- 27. Obtain the direct form II realization for the system described by the difference equation $y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n) + 2x(n-1).$