

JINJA JOINT EXAMINATION BOARD

MOCK EXAMINATIONS 2022

MATHEMATICS 456-2

MARKING GUIDE

NO.	WORKING	MARKS	COMMENT
1.	$10^3 \times \sqrt{45}$		
	$10^2 \times \sqrt{180}$		
	103 0 5	N41	Comment that
	$=\frac{10^2 \times \sqrt{36 \times 5}}{10^2 \times \sqrt{36 \times 5}}$	M1	For getting the rational and
	$3\sqrt{5}$	MI	irrational
	$=10^{3-2} \times \frac{1}{6\sqrt{5}}$	14.1	numbers.
	101. 1		For simplifying
	$= \frac{10^{3} \times \sqrt{9} \times 5}{10^{2} \times \sqrt{36} \times 5}$ $= 10^{3-2} \times \frac{3\sqrt{5}}{6\sqrt{5}}$ $= 10^{1} \times \frac{1}{2}$		
	$=5.0\times10^{-1}\times10^{1}$		
	$=5.0 \times 10^{0}$	MIAI	
2.	$y_2 - y_1$	-	
	$Gradient = \frac{y_2 - y_1}{x_2 - x_1}$		
	-3-5	M1	Right
	$={-2-3}$	1411	substitution of
	$=\frac{-8}{}$		the coordinates
	-5		in the formula of
	$= \frac{-3-5}{-2-3} \\ = \frac{-8}{-5} \\ = \frac{8}{5}$	Al	gradient.
	5 d + 3		
	Gradient = $\frac{d+3}{13+2}$ $\frac{8}{5} = \frac{d+3}{15}$		For the gradient.
	8 d+3		
	$\frac{1}{5} = \frac{1}{15}$	MI	
	$8 \times 15 = 5(d+3)$	IVII	
	120 = 5d + 15		
	$\frac{105}{5} = \frac{5d}{5}$		
		Al	
	21 = d		
	non1=40 (p)=35	B1	For correct
			method and
	1/ E-32 / C / E-34/1/		value of the
		Di	unknown.
		B1	
	4	Bl	
	40 + 38 - y + 4 = 50	DI	
	82 - y = 50		
	-y = -32		
	y = 32		
	(a) Both subjects = 32 students		
	(b) At most one subject $= 8 + 6 + 4$		
	= 18 students		
	Angle sum = $(n-2)180^{\circ}$		
	$= (4-2)180^{0}$	MI	

	$=360^{\circ}$	MI	
	$= 360^{\circ}$ $60^{\circ} + 180^{\circ} - 2t + 360^{\circ} - 3t + 180^{\circ} - t = 360^{\circ}$		
	$780^{\circ} - 6t = 360^{\circ}$	MI	
	$\frac{-6t}{-6} = \frac{-420^{\circ}}{-6}$		
	-6 -6 $t = 70^{\circ}$	Al	
5.	$5\log_{10} y + \log_{10} 5 = 1 + 2\log_{10} 4$		
	$\log_{10} y^5 + \log_{10} 5 = \log_{10} 10 + \log_{10} 4^2$	MI	
	$\log_{10}(5y^5) = \log_{10}(10 \times 16)$	MI	
	$5y^5$ 160		
	$\frac{5y^5}{\frac{5}{5}} = \frac{160}{5}$ $y^5 = 32$	MI	
		1111	
	$\sqrt[5]{y^5} = \sqrt[5]{32}$	Al	
	y = 2		
	$f(u) = 2u + 2 \cdot g(u) = Fu - 2$		
5.	f(x) = 2x + 3, g(x) = 5x - 2 gf(x) = g(x)		
	gf(x) = g(x) gf(x) = 5(2x + 3) - 2	MI	
	= 10x + 15 - 2		
	= 10x + 13	MI	
	10x + 13 = 5x - 2		
	10x - 5x = -2 - 13	MI	
	$\frac{5x}{5} = \frac{-15}{5}$		
	$5 \qquad 5 \\ x = -3$	A1	
	DDT	Λ1	
	$S.I = \frac{FRI}{100}$		
	$360,000 = \frac{P \times 4 \times 6}{1000}$	Ml	
	100		
	$\frac{36,000,000}{24} = \frac{24P}{24}$	MIMI	
	24 24 $1,500,000 = P$		
	Principal = shs 1,500,000	Al	
	$V = \pi r^2 h$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	$=\pi \times 5^2 \times 4$	BI	For correct
	$= 100\pi m^3$		capacity
	$V = \pi \times 7.5^2 \times 4$		
	$V = 225\pi m^2$	B1	
	$Ratio = \frac{100\pi}{225\pi}$	BI	For correct
	= 4:9	DI	capacity
	\therefore The ratio capacity of the first tank to the second = 4:9	B1	For expressing a
.	$9x^2 - (x-3)^2$		a ratio
	$a^2 = 9x^2$, $b^2 = (x-3)^2$	M1	
	a = 3x, b = x - 3	MI	
	$a^2 - b^2 = (a + b)(a - b)$		
	$9x^2 - (x-3)^2 = (3x+x-3)(3x-(x-3))$	MI	
	=(4x-3)(2x+3)	A1	
0.	Distance = $5.4km$ $T = 36 minutes$		
	$36min = \left(\frac{36}{60}\right)hrs$		
	= 0.6hrs		
	a) Average speed= $\frac{5.4}{0.6}$	MI	
	$=9kmhr^{-1}$	Al	

	b) $5.4km = (5.4 \times 1000)m$		
	= 5400m		
	Average speed = $\frac{5400}{36}$	MI	
	36 = 150m/minute	Al	
	SECTION:B		
11a)	$12^{2/3} \times 6^{2/3} \times 8^{1/3} \times 3^{2/3}$		
	$= (3 \times 4)^{2/3} \times (2 \times 3)^{2/3} \times (2 \times 4)^{1/3} \times 3^{2/3}$	MI	For expressing as
	$= 3^{2/3} \times 2^{4/3} \times 2^{2/3} \times 3^{2/3} \times 2^{1/3} \times 2^{2/3} \times 3^{2/3}$	141	a product of its
	$= 3^{2}/3 \times 3^{2}/3 \times 3^{2}/3 \times 3^{2}/3 \times 2^{4}/3 \times 2^{2}/3 \times 2^{1}/3 \times 2^{2}/3$ $= 3^{2}/3 \times 3^{2}/3 \times 3^{2}/3 \times 2^{4}/3 \times 2^{2}/3 \times 2^{1}/3 \times 2^{2}/3$	M1 M1	factors Simplifying
	$= 3^{1/3} \times 3^{1/3} \times 3^{1/3} \times 2^{1/3} \times 2^{1/3} \times 2^{1/3} \times 2^{1/3}$ $= 3^{6/3} \times 2^{9/3}$	MI	Collecting like
	$= 3^{73} \times 2^{73}$ $= 3^2 \times 2^3$		terms and
	$= 9 \times 8$	Ml	applying the
	= 72	A1	laws of indices.
111.7/2			
11b)(i)	H $\propto \frac{V}{}$	0	
	$H \propto \frac{V}{R^2}$ o		
	$H = \frac{KV}{R^2}$		
	$10 = \frac{K \times 540}{7^2}$	MI	
	$10 - \frac{1}{7^2}$	MI	
	490 = 540K		
	490		
	$\frac{490}{540} = K$		
	[Minus : Minus : Minu	Al	
	$\therefore K = \frac{49}{54}$	ΛΙ	
11b(ii)	$H = \frac{\frac{49}{54} \times 308}{3.5^2}$		
	$H = \frac{\overline{54} \times 308}{5}$	M1	
	$H = \frac{1}{3.5^2}$		
	$=\frac{279.481}{}$	MI	
	12.25		
	= 22.815 cm (3d.p) or 22.82 cm(2d.p) or 22.8 cm(1d.p)	Al	If a student has
			written any of
			the 3 solutions, award the answe
			mark.
12(i).	A(£) = 4.2	BIBIBI	-3marks for
	n(0)=20 n(1)=24		correct
	1 4 (4) U-U)		information in
			the venn diagram - 2marks for any
	12-12 7		five correct
			information put
	n(a)=28		in the venn
	Let $n(P \cap C \cap B) = y$		diagram.
-	$n(P)_{only} = 20 - (4 + 12 - y + y)$		-1 mark for any correct
	= 20 - 16		information put
	= 4	BI	in the venn
	$n(C)_{only} = 24 - (4 + y + 7)$		diagram.
	= 24 - 11 - y	DI	
	=13-y	ВІ	

	20 (47)	BI	
	$n(B)_{only} = 28 - (12 - y + y + 7)$		100 March 196
	= 28 - 19	MI	
	= 9	1411	
	20 + 13 - y + 7 + 9 = 42		
	49 - y = 42		
	-y = -7	ΛI	Answer mark to
	y = 7		be given to only
12(ii)	: 7 students study all subjects.		those who have
	12 - y = 12 - 7 = 5 students	BI	drawn a
12(iii)	$\therefore n(P \cap B \cap C^{I}) = 5 \text{ students}$		conclusion
	$n(chemistry)_{only} = 13 - y$		
	= 13 - 7	Bl	
	= 6 students		
12(iv)	At least 2 subjects = $4 + 9 + 7 + 6$	MI	
	= 26 students	Al	
	- 20 students		
13a)	Market price is shs 780,000		
	Discout is 5%		
(i)		MI	
	Cash price = $780,000 - \frac{5}{100} \times 780,000$		
	= 780,000 - 39,000	Al	
	= shs741,000		
(ii)	Hire purchase = Deposit + monthly installments		
()	$= 100,000 + 50,800 \times 8$	MI	
	= 100,000 + 30,000 × 8 = 100,000 + 914,400	1411	
	그 아이들이 아이들이 아이들이 아이들의 아이들이 아이들이 아이들이 아이들이	Al	
	= shs1,014,400	MI	
	Extra amount = 1,014,400 - 741,000	Al	
13b	= shs 273,400	Λ1	
130	Depreciation rates		
	1^{st} year = $(100 - 10)\% = 90\%$	B1	
	$2^{nd} \& 3^{rd} years = (100 - 20)\% = 80\%$	DI	
	Amount = $650,000 \times \frac{90}{100} \times \left(\frac{80}{100}\right)^2$	MI	
	$Amount = 650,000 \times \frac{100}{100} \times \frac{100}{100}$	MI	
	$=650,000 \times 0.9 \times (0.8)^2$		
	= shs 374,400	Al	
	- 3113 37 1,100		
C)	Men Days Height(Length)		
	150 80 2400		
	180 ? 3600		
	Since men increased, the number of days taken would reduce i.e.		
			1
	150	BI	If a student has
	180°		clearly indicated
	Since the height of the trench has increased then the number of		how he/she has
	days also increase i.e $\frac{3600}{2400}$		come up with the
	150 3600		solution, then the
	Number of days = $80 \times \frac{130}{180} \times \frac{300}{2400}$	MI	marks must be
	100	Al	awarded
4.	$f(x) = \frac{6x - 30}{2x^2 - 50}, g(x) = \frac{21}{x^2 + 3x - 10}$ $f(4) = \frac{6 \times 4 - 30}{2 \times 4^2 - 50}$		
	$f(x) = \frac{1}{2x^2 - 50}, g(x) = \frac{1}{x^2 + 3x - 10}$		
i)	$6\times4-30$		
.)	$f(4) = \frac{1}{2 \times 4^2 - 50}$	-	
	$2 \times 4^{2} - 50$ $24 - 30$	MI	
	$=\frac{2}{2}$		
	$= \frac{2 \times 16 - 50}{-6}$		
	=		
	$=\frac{1}{18}$	Al	
	3		

/35%	$\frac{6x - 30}{2x^2 - 50} + \frac{21}{x^2 + 3x - 10}$ $= \frac{6(x - 5)}{2(x^2 - 25)} + \frac{21}{x^2 + 3x - 10}$	1	
(ii)	$2x^2 - 50 x^2 + 3x - 10$		
	$=\frac{6(x-5)}{x}$		
	$2(x^2-25)^{\top}x^2+3x-10$	Ml	
	$= \frac{3(x-5)}{(x+5)(x-5)} + \frac{21}{(x+5)(x-2)}$ $= \frac{3}{21} + \frac{21}{(x+5)(x-2)}$		
	(x+5)(x-5) + (x+5)(x-2)	M1	
	3 21		
	x+5 $(x+5)(x-2)$		
	$=\frac{3(x-2)+21}{(x+5)(x-2)}$		
	$-\frac{(x+5)(x-2)}{(x+5)(x-2)}$	MI	
	3x - 6 + 21		
	$=\frac{3x-6+21}{(x+5)(x-2)}$		
	3x + 15		
	$=\frac{3x+15}{(x+5)(x-2)}$		
	3(x+5) 3	MI	Simplifying
	$=\frac{1}{(x+5)(x-2)}=\frac{1}{x-2}$		ompiny mg
	$= \frac{3(x+5)}{(x+5)(x-2)} = \frac{3}{x-2}$ $\therefore f(x) + g(x) = \frac{3}{x-2}$		
	$f(x) + g(x) = \frac{1}{x-2}$	A1	
	f(x) not defined		
1.	$2x^2 - 50 = 0$		
b)	$\frac{2x^2}{\frac{2}{2}} = \frac{50}{\frac{2}{2}}$ $x^2 = 25$	MI	
(i)	$\frac{1}{2} = \frac{1}{2}$		
	$\sqrt{x^2} = \sqrt{25}$		
	$x = \pm 5$	4.1	5
	$f(x)$ is not defined when $x = \pm 5$	Al	For both
	g(x) not defined		solutions.
	$x^2 + 3x - 10 = 0$		
(ii)	sum = 3 product = -10		
	using $(5,-2)$		
	$x^2 + 5x - 2x - 10 = 0$		
	x(x+5) - 2(x+5) = 0	MI	For factorizing
	(x-2)(x+5) = 0		1 of factorizing
	x = 2 or $x = -5$		
	$\therefore g(x)$ is not defined when $x = 2$ or $x = -5$	AlAl	For both
			solutions
15.	<u>.</u>		
	79 +		
	B Gam pacen		
(2)			
(i)	$CF = \sqrt{120^2 + 60^2}$	M1	
	= 134.16 cm	A1	
	$AC = \sqrt{75^2 + 60^2}$	B1	
	= 96.05 cm		
	$CE = \sqrt{120^2 + 96.05^2}$	NO	
1	= 153.71 cm	MI	
(ii)	그렇게 되었다면 하다 나는 사람들이 되었다.	Al	
(ii)			
		BI	
		DI	

			and the second second
	K NO A SA		
		MI	
	2		
		Al	
	8 = 134.16m		
(iii)	$tan\theta = \frac{75}{12416}$		
	134.16	B1	0
	$\theta = 29_0 21^0$		
	0		
	75	MIMI	
	B 60 C		
		Al	
	$tan\theta = \frac{60}{75}$		
	$\theta = \tan^{-1}\left(\frac{60}{75}\right)$		
	$\theta = 38.66^{0}$		
6a)	2y + 3x - 4 = 0		
	$2y + 3x - 4 = 0$ $y = \frac{-3}{2}x + 2$		
	$y = \frac{2}{2}x + 2$		
	$m = \frac{-3}{2}$	B1	For correct
	using (4,1)		gradient
i)	y = mx + c		
	$1 = \frac{-3}{2} \times 4 + c$	MI	
	1 + 6 = c		
	c = 7		
	$\therefore y = \frac{-3}{2}x + 7$	Al	
::)	2 1		
ii)	$m \times m_1 = -1$		
	$m \times m_1 = -1$ $\frac{-3}{2}m_1 = -1$ $m_1 = \frac{2}{3}$	Bl	For correct
	$m_1 \equiv \frac{2}{-}$		gradient
	using (6,2)		
	v = mx + c	MI	F
	$y = mx + c$ $2 = \frac{2}{3} \times 6 + c$	IVII	For correct substitution and
	$\frac{2-3}{3} \times 0 + c$		simplifying
	$ 2 - 4 = c \\ -2 = c $		
	2	a Al	
	$\therefore y = \frac{2}{3}x - 2$	B AI	0
)	3r + v = 11		
i)	$+\begin{vmatrix} 3x + y = 11 \\ x - y = 1 \end{vmatrix}$		
	4x = 12	В1	For the solution
	x = 3	Di	of x
	from x - y = 1 $3 - y = 1$		
	3 - y = 1 $-y = -2$	DI	Family
	y = 2	B1	For the solution of y
	\therefore point $R(3,2)$	B1	1

(ii)	(3.2) and (1.0)		
(11)	(3,2) and (1,8) $mid\ point = \left(\frac{3+1}{2}, \frac{2+8}{2}\right)$		For the point R indicated.
	=(2,5)	Bl	
	$Gradient(m) = \frac{8-2}{1-3}$		For the mid- point
	$=\frac{\frac{6}{-2}}{\frac{-2}{-3}}$		
	$m \times m_1 = -1$ $-3m_1 = -1$	ВІ	
	$m_1 = \frac{1}{3}$		For the gradient
	v = mx + c		
	$5 = \frac{1}{3} \times 2 + c$		
	$5 = \frac{1}{3} \times 2 + c$ $5 - \frac{2}{3} = c$ $\frac{15 - 2}{3} = c$ $\frac{13}{3} = c$ $1 = 13$		
	$\frac{15-2}{3}=c$		
	$\frac{13}{3} = c$	В1	
	$\therefore y = \frac{1}{3}x + \frac{13}{3}$		For the correct equation
17(a)	7 /		
	$\overrightarrow{ZB} = \overrightarrow{ZW} + \overrightarrow{WX} + \overrightarrow{XB}$		
(i)	$= -d + c + \frac{1}{3}d$		
	-3d + 3c + d	Ml	Without the tilde symbol or arrows
	$=\frac{\frac{3}{2} + \frac{3}{2}}{3}$		to indicate that
	$=\frac{1}{3}(3c-2d)$	Al	these are vectors, award M0 and
(ii)	$\overrightarrow{WB} = \overrightarrow{WX} + \overrightarrow{XB}$ $= \underbrace{c}_{\sim} + \frac{1}{3} \underbrace{d}_{\sim}$		A0
	$=\frac{c+3a}{3a}$	BI	
	$= \frac{1}{3}(3c + d)$ $\overrightarrow{ZA} = \overrightarrow{ZW} + \overrightarrow{WA}$	0	
(iii)		MI	
	$= -d + \frac{1}{2}c$ $= \frac{1}{2}(-2d + c)$	Al	
(b)	$\frac{1}{ZO} = n(\overline{ZW} + \overline{WA})$		
	$ \overline{ZQ} = n(\overline{ZW} + \overline{WA}) $ $ = n(-d + \frac{1}{2}c) $ $ = -nd + \frac{1}{2}nc $	Bl	
	= -nd + -nc		
	$\overrightarrow{ZQ} = \overrightarrow{ZA} + \overrightarrow{WQ}$		
	$\overrightarrow{ZQ} = \overrightarrow{ZA} + \overrightarrow{WQ}$ $= -d + m(c + \frac{1}{3}d)$		

	4		
	$=-d+\frac{1}{3}d+mc$	ВІ	
	$=\left(-1+\frac{1}{3}m\right)\overset{d}{\sim}+m\overset{c}{\sim}$		
	comparing vectors		
	$-nd = (\frac{1}{3}m - 1)\underline{d}$		
	~		
	$-n = \frac{1}{3}m - 1$	MI	
	$\frac{1}{3}m + n = 1 \dots \dots$		
	$\frac{1}{2}nc = mc$		
	$\frac{1}{2}n = m \dots \dots$		
	solving eqn * and ** simultaneously		
	$\frac{1}{3} \times \frac{1}{2}n + n = 1$ $\frac{1}{6}n + n = 1$		
	$\frac{1}{6}n + n = 1$		
	$\frac{n+6n}{6}=1$		
	7n = 6		
and an internal party	$n = \frac{6}{7}$		
-	$m = \frac{1}{2}n$		
-	$=\frac{1}{-}\frac{2}{\times}\frac{6}{-}$		
	$=\frac{1}{2} \times \frac{6}{7}$ $=\frac{3}{7}$	-	
-	7		
	$\therefore n = \frac{6}{7}, m = \frac{3}{7}$	AIAI	
	$\overrightarrow{ZA} = \frac{1}{2}(c - 2d)$		
	$\overrightarrow{ZQ} = \frac{6}{7} (\frac{1}{2} c - d)$		
	$\overrightarrow{ZQ} = \frac{3}{7}(c - 2d)$		
	$ \frac{\overrightarrow{ZQ}}{7} : \overrightarrow{ZA} $ $ \frac{3}{7} \left(\underbrace{c - 2d}_{2} \right) : \frac{1}{2} \left(\underbrace{c - 2d}_{2} \right) $		
	$7\left(\frac{c}{a}-\frac{2a}{a}\right):\frac{1}{2}\left(\frac{c}{a}-\frac{2a}{a}\right)$	В1	
	$14 \times \frac{3}{7} : \frac{1}{2} \times 14$ 6:7		
	$\vec{z} \cdot \vec{Z} \vec{Q} : \vec{Z} \vec{A} = 6:7$		
		ВІ	
_			