Прізвище: Брегін

Ім'я: Максим **Група:** КН-406

Bapiaнт: 4 GitHub:

Кафедра: САПР

Дисципліна: Теорія прийняття рішень

Перевірив: Кривий Р.З.

3BIT

до лабораторної роботи №1

на тему: "Прийняття рішень в умовах невизначенності і ризику (на прикладі рішення про дії підприємства для комерційно вигідної стратегії розвитку)"

Мета:

Одержання практичних навичок використання методів прийняття рішень в умовах невизначенності і ризику.

Теоретичні відомості:

Критерій прийняття рішень - це функція, що виражає переваги особи, що приймає рішення, і що визначає правило, за яким вибирається прийнятний або оптимальний варіант рішення. Всяке рішень в умовах неповної інформації приймається в з урахуванням кількісних характеристик ситуації, в якій приймаються рішення. Критерії можна використовувати по черзі, причому після обчислення їх значень серед декількох варіантів доводиться довільним чином виділяти деяке остаточне рішення. Що дозволяє, по-перше, краще проникнути в усі внутрішні зв'язки проблеми ухвалення рішень і, по-друге, ослабити вплив суб'єктивного фактору.

1. Критерій Вальда

Критерій Вальда є критерієм крайнього песимізму, оскільки статистик вважає, що "природа" діє проти нього найгіршим чином. Це критерій гарантованого результату. Нехай гру задано матрицею виграшів гравця А. Тоді на думку статистика - гравця А, дії гравця "природа", якій діє проти нього найгіршим чином, відображуються в реалізації гравцем "природа" таких своїх стані Π_j , при яких величина виграшу гравця А (статистика) приймає найменше значення minaij. Виходячи з цього статистик обирає таку чисту стратегію A_i , при якій найменший виграш min a_{ij} буде максимальним, тобто забезпечувати максимін.

2. Максимальний критерій

Він визначає альтернативу, максимізує максимальний результат для кожного стану можливої дійсності. Це критерій крайнього оптимізму. Найкращим визнається рішення, при якому досягається максимальний виграш.

Запис виду max_i означає пошук максимуму перебором стовпців, а запис виду - пошук максимуму перебором рядків в матриці виплат. Слід зауважити, що обставини, що вимагають застосування такого критерію, в загальному нерідкі, і користуються ним не тільки безоглядні оптимісти, але і гравці, змушені керуватися принципом "або пан, або пропав".

3. Критерій Лапласа

Цей критерій спирається на «принцип недостатнього підстави» Лапласа, згідно з яким всі стану «природи» S_i , i=1, п покладаються рівноімовірними. Відповідно до цього принципу кожномустаном S_i , ставиться ймовірність q_i визначається за формулою: $q_i = \frac{1}{n}$

При цьому вихідною може розглядатися задача прийняття рішення в умовах ризику, коли вибирається дію R_j , що дає найбільший очікуваний виграш. Для прийняття рішення для кожної дії R_j обчислюють середнє арифметичне значення виграшу:

$$M_{j}(R) = \frac{1}{n} \sum_{i=1}^{n} V_{ij}$$

Серед $M_j(R)$ вибирають максимальне значення, яке буде відповідати оптимальної стратегії R_i .

4. Критерій Гурвіца

Критерій Гурвіца є критерієм песимізму - оптимізму. За оптимальну приймається та стратегія, для якої виконується співвідношення: $max(s_i)$ де $s_i = y min(a_{ij}) + (1-y) max(a_{ij})$

При у = 1 отримаємо критерій Вальді, при у = 0 отримаємо - оптимістичний критерій (максимакс). Критерій Гурвіца враховує можливість як найгіршого, так і найкращого для людини поведінки природи. Як вибирається у? Чим гірше наслідки помилкових рішень, тим більше бажання застрахуватися від помилок, тим у ближче до 1.

5. Критерій Байеса-Лапласа

Критерій Байеса-Лапласа — критерій, який спирається на принцип, що якщо розподіл ймовірностей подій невідомо, то будемо вважати їх однаковими. Далі використовується досить оптимістичне припущення щодо рівності цих ймовірностей. І вибирається стратегія, яка забезпечує максимальне значення величини виграшу.

Індивідуальне завдання

Компанія має три альтернативних варіанти своєї стратегії розвитку. Оцінка його прибутку в залежності від стану зовнішнього середовища наведено в таблиці.

А) Прийняти рішення в умовах невизначеності.

Необхідно знайти оптимальні стратегії при песимістичній оцінці (по критерію Вальда), оцінці Лапласа, по критерію Гурвіца. Значення коефіцієнта оптимізму вибрати самостійно. Результати вибору рішення відобразити в таблиці. Зробити висновки по застосуванню критеріїв

Б) Прийняти рішення в умовах ризику

Нехай отримані експертні оцінки ймовірностей стану зовнішнього середовища $p_1 = 0.55, p_2 = 0.3, p_3 = 0.15$. Оцінити альтернативні рішення по критерію Байеса-Лапласа. Результати обчислень цінностей альтернативних рішень занести в туж таблицю. Вибрати найкраще рішення. Порівняти результати вибору з отриманими раніше результатами вибору рішення в умовах невизначеності.

Порядок вирішення завдання:

- 1) Провести розрахунок для кожному критерію.
- 2) Вибрати найбільш ефективний варіант рішення.

- 3) Описати порядок виконання роботи і заповнити таблицю
- 4) Реалізувати програмне забезпечення, яке б розв'язувало дану задачу. Мова програмування неважлива. Обов'язково: дані мають зчитуватись з файлу і виводитись у табличній формі.

Варіант завдання

Варіант	Матриця цінностей			
	100	70	60	
4	80	90	70	
	60	70	80	

Результати розв'язку

Критерій Вальда:

	Π_1	Π_2	Π_3	min(a _{ij})
A_1	100	70	60	60
A_2	80	90	70	70
A_3	60	70	80	60

 $\max(60; 70; 60) = 70$. Висновок: обираємо стратегію N = 2.

Максимальний критерій:

	Π_1	Π_2	Π_3	max(a _{ij})
\mathbf{A}_1	100	70	60	100
A_2	80	90	70	90
A_3	60	70	80	80

 $\max(100; 90; 80) = 100$. Висновок: обираємо стратегію N = 1.

Критерій Лапласа:

	Π_1	Π_2	Π_3	$\sum (a_{ij})$
\mathbf{A}_1	100	70	60	76.67
A_2	80	90	70	80
A_3	60	70	80	70

 $\max(76.67; 80; 70) = 80$. Висновок: обираємо стратегію N = 2.

Критерій Гурвіца:

Формула оптимально стратегії: $max(s_i)$ де $s_i = y \min(a_{ii}) + (1-y) \max(a_{ii})$ тут y = 0.5

	Π_1	Π_2	Π_3	min(a _{ij})	max(a _{ij})	$y \min (a_{ij}) + (1-y) \max (a_{ij})$
A_1	100	70	60	60	100	80
A_2	80	90	70	70	90	80
A_3	60	70	80	60	80	70

 $\max(80; 80; 70) = 80$. Висновок: обираємо стратегію N = 1 або 2.

Критерій Байеса-Лапласа:

За критерієм Байєса за оптимальну приймається та стратегія A_i , при якій максимізується середній виграш а або мінімізується середній ризик r. Розраховуємо значення $\sum (a_{ij}*p_i)$:

		Π_1	Π_2	Π_3	$\sum (a_{ij}*p_i)$
	\mathbf{A}_1	100	70	60	83.5
I	\mathbf{A}_2	80	90	70	82

A_3	60	70	80	66.5
p _i	0.5	0.35	0.15	

 $\max(83.5; 82; 66.5) = 83.5$. Висновок: обираємо стратегію N = 1.

Таблиця з результатами

Можливі	Можлив	ві стани зовн середовища		Критерії				
альтернативні рішення	Конкуренція на тому ж рівні	Конкуренція трішки посилилися	Конкуренція різко посилилася	Вальда	Максимальний	Гурвіца	Лапласа	Байеса-Л апласа
Продовжити роботу в звичному режимі	100	70	60	60	100	80	76.67	83.5
Активувати рекламну діяльність	80	90	70	70	90	80	80	82
Активувати рекламу і знизити ціну	60	70	80	60	80	70	70	66.5

Програма на python:

```
import numpy as np
def WALD_meth(mat):
   MIN = mat.min(axis=1)
    return MIN
def MAXIMUM meth(mat):
    MAX = mat.max(axis=1)
    return MAX
def LAPLACE_meth(mat):
    res = np.sum(mat, axis=1)
    res = np.divide(res, 3)
    return np.round(res, 2)
def HURWITZ_meth(mat):
   v = 0.5
   MAX = MAXIMUM meth(mat)
   MIN = WALD meth(mat)
   MIN = np.multiply(MIN, y)
   MAX = np.multiply(MAX, 1 - y)
    res = np.add(MIN, MAX)
    return res
def BAYECE_LAPLACE_meth(mat):
    p = np.array([0.5, 0.35, 0.15])
    res = np.multiply(mat, p)
    res = res.sum(axis=1)
    return res
data = np.loadtxt("1.txt", dtype=int)
value_WALD = WALD_meth(data)
value MAXIMUM = MAXIMUM meth(data)
value_LAPLACE = LAPLACE_meth(data)
value_HURWITZ = HURWITZ_meth(data)
```

```
value BAYECE LAPLACE = BAYECE LAPLACE meth(data)
                            Max | Laplace|\tHurwitz| Bayece-Laplace\t")
    print(" Matrix |\tWald|
    print("-----
                              -----")
    for i in range(len(value_WALD)):
        print(*data[i], sep='\t', end =" "),
        print("| %3.2f |\t %3d | \t%3.2f |\t %3.2f |\t %3.2f"
             %(value_WALD[i], value_MAXIMUM[i],value_LAPLACE[i],
               value HURWITZ[i], value BAYECE LAPLACE[i]))
    print("-----
    print(" Max:\t | %3.2f |\t %3d | %3.2f | %3.2f" )
                      %(max(value WALD), max(value MAXIMUM),
                                                           max(value LAPLACE),
max(value HURWITZ),
      max(value BAYECE LAPLACE))))
```

Результати виконання програми:

Matrix	Wald	Max Laplace Hurwitz Bayece-Laplace
100 70 60 80 90 70 60 70 80	60.00 70.00 60.00	100 76.67 80.00 83.50 90 80.00 80.00 82.00 80 70.00 70.00 66.50
Max:	70.00	100 80.00 83.50

Висновок

На даній лабораторній роботі я ознайомився із оптимальними стратегіями при песимістичній оцінці за методами Вальда, Максимуму, Лапласа, Гурвіца та Байєса-Лапласа. В результаті рішення статистичної гри за різними критеріями вирізнялися дві стратегії перша і друга, в деяких випадках навіть підходили дві стратегії. Але частіше за інших рекомендувалася стратегія під номером 1 – Продовжити роботу в звичному режимі.