Solutions des exercices du chapitre 3

Question #1

Montrez l'état de la structure de données qui encode le domaine $dom(X) = \{1, 2, 3, 4, 5\}$ à l'aide d'une liste chaînée. Montrez son état après le retrait successif des valeurs 3, 2 et 4.

Question # 2

Donnez l'algorithme qui retire une valeur v de la structure de données qui encode un domaine à l'aide d'une liste chaînée. Vous pouvez supposer que la liste chaînée possède deux noeuds sentinelles à ses deux extrémités représentant les valeurs $-\infty$ et ∞ qui ne sont jamais supprimées.

Algorithm 1: RetireValeur(v)

```
T[v].drapeau \leftarrow faux;

n \leftarrow T[v].noeud;

n.suivant.pr\'ec\'edent \leftarrow n.pr\'ec\'edent;

n.pr\'ec\'edent.suivant \leftarrow n.suivant;
```

Question # 3

Donnez l'algorithme qui réinsère une valeur v à la structure de données qui encode un domaine à l'aide d'une liste chaînée. Vous pouvez supposer que la liste chaînée possède deux noeuds sentinelles à ses deux extrémités représentant les valeurs $-\infty$ et ∞ qui ne sont jamais supprimés.

Algorithm 2: Réinsère Valeur(v)

```
T[v].drapeau \leftarrow vrai;

n \leftarrow T[v].noeud;

n.suivant.pr\'ec\'edent \leftarrow n;

n.pr\'ec\'edent.suivant \leftarrow n;
```

Question #4

Considérez la structure de données pour les domaines énumérés avec retours arrière rapides. Cette structure de données possède deux tableaux A[1..d] et B[1..d] ainsi qu'une variable cardinalité et maintient les invariants B[A[v]] = v et $A[v] \le cardinalité \iff v \in dom(X)$.

Supposons que le domaine de X est $\{1,2,3,4,5,6\}$ et que la structure de données est initialisée avec A[v] = B[v] = v pour v = 1..6 et cardinalité = 6. Montrez l'état de la structure de données après le retrait successif des valeurs 3, 2, 4 et 1.

État initial

A	1	2	3	4	5	6	$cardinalit\acute{e} = 6$
В	1	2	3	4	5	6	

Après le retrait de 3

A	1	2	6	4	5	3	$cardinalit\acute{e} = 5$
В	1	2	6	4	5	3	

Après le retrait de 2

A	1	5	6	4	2	3	$cardinalit\acute{e} = 4$
В	1	5	6	4	2	3	$\begin{bmatrix} caramanne & 4 \end{bmatrix}$

Après le retrait de 4

A	1	5	6	4	2	3	$cardinalit\acute{e} = 3$
В	1	5	6	4	2	3	$\begin{bmatrix} caramanie = 5 \end{bmatrix}$

Après le retrait de 1

A	3	5	6	4	2	1	$cardinalit\acute{e} = 2$
В	6	5	1	4	2	3	Caratrate = 2

Ouestion #5

Donnez le pseudo-code qui retire une valeur v de la structure de données encodant un domaine énuméré avec retours arrière rapides.

Algorithm 3: RetireValeur(v)

 $B[A[v]] \leftarrow B[cardinalit\acute{e}];$

 $A[B[cardinalit\acute{e}]] \leftarrow A[v];$

 $B[cardinalit\acute{e}] \leftarrow v;$

 $A[v] \leftarrow cardinalit\acute{e};$

 $cardinalit\acute{e} \leftarrow cardinalit\acute{e} - 1;$

Question #6

Donnez le pseudo-code qui réinsère les k dernières valeurs supprimées dans la structure de données encodant un domaine énuméré avec retours arrière rapides

Algorithm 4: RéinsèreValeurs(k)

 $cardinalité \leftarrow cardinalite + k;$