(c)
$$486.7$$
 10 3 $1 = 10^3 - 10^{-1} - 486.7$ $= 1000 - 0.1 - 486.7$ $= 999.9 - 486.7 = 513.2$

number system. In the binary system, this is equivalent to complementing From Example 1.33 it can be seen that the ones complement of a number is obtained by subtracting each digit from the largest digit in the (i.e., changing 1 to 0 and 0 to 1) each bit of the given number.

$$N = 10110.110$$
Ones complement of $N = 11111.111$
 -10110.110

which can also be obtained by complementing each bit of N.

that are represented in complement systems remain in the same form as in the sign-magnitude system. Only negative numbers are represented in the complement of a number corresponds to its negative, positive numbers representation of numbers in complement systems as well. Because the As in sign-magnitude representation, a sign bit is included in the complement form as shown by the following example.

Example 1.35

Here we assume that five bits are available for representation and that the MSB is the sign bit.

Ones comprement	0.0101	1,1010
Twos complement	1	0,0101 1,1011 0,0100 1,1100
Siza mountinde	Sign-magman	0,0101 1,0101 0,0100 1,0100
	Decimal	+ + 2 4 4 4

sign bit also participates in the arithmetic as though it were a magnitude is separated from the magnitude bits by a "," for illustration purposes only. This separation is not necessary in complement systems since the complementing procedures discussed here. In Example 1.35, the sign bit magnitude form of the corresponding positive number and adopt the To obtain the complement of a number, we can start with the signbit (as we will see later in this section).

1.5 Representation of Negative Numbers 29

Table 1.6 The Three Representation Schemes

	Sign-	Twos	Ones
Decimal	magnitude	complement	complement
+15	01111	01111	01111
+ 4	01110	01110	01110
+13	01101	01101	10110
+12	01100	01100	00110
=+	01011	11010	01011
01+	01010	01010	01010
6+	01001	10010	01001
20	00010	0010	00010
+7	00111	00111	00111
9+	00110	00110	00110
+5	10100	10100	00101
+4	00100	00100	00100
+3	11000	00011	11000
+2	00010	00010	01000
+	10000	10000	10000
0+	00000	00000	00000
0-	10000	00000	Ξ
T	10001		11110
-2	01001	11110	10111
-3	1001	1011	1100
-4	10100	11100	11011
5-	10101	11011	01011
9-	10110	11010	10011
7	10111	10011	00011
8-	11000	11000	11101
6-	10011	10111	01101
010	11010	10110	10101
1:	11011	10101	00101
-12	11100	00101	11001
-13	10111	1001	01001
- 14	11110	01001	10001
-15		10001	10000
- 16		*00001	

^{*} Twos complement uses 10000 to expand the range to (-16).

systems. Note that the sign-magnitude and ones complement systems Table 1.6 shows the range of numbers that can be represented in five bits, in the sign-magnitude, twos complement, and ones complement have two representations for 0 (+0 and -0), whereas the twos complement system has a unique representation for 0. Note also the use of the