Two Factor Full Factorial Design with Replications

- Model
- Computation of Effects
- Estimating Experimental Errors
- □ Allocation of Variation
- □ ANOVA Table and F-Test
- Confidence Intervals For Effects

Model

- Replications allow separating out the interactions from experimental errors.
- Model: With *r* replications

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

 y_{ijk} = Response in the kth replication with factor A at level j and factor B at level i

 $\mu = \text{mean response}$

 α_j = Effect of factor A at level j

 β_i = Effect of Factor B at level i

 γ_{ij} = Effect of interaction between factors A and B

 $e_{ijk} = \text{Experimental error}$

Model (Cont)

□ The effects are computed so that their sum is zero:

$$\sum_{j=1}^{a} \alpha_{j} = 0; \sum_{i=1}^{b} \beta_{i} = 0;$$

□ The interactions are computed so that their row as well as column sums are zero:

$$\sum_{j=1}^{a} \gamma_{1j} = \sum_{j=1}^{a} \gamma_{2j} = \dots = \sum_{j=1}^{a} \gamma_{bj} = 0$$

$$\sum_{i=1}^{b} \gamma_{i1} = \sum_{i=1}^{b} \gamma_{i2} = \dots = \sum_{i=1}^{b} \gamma_{ia} = 0$$

□ The errors in each experiment add up to zero:

$$\sum_{k=1}^{\tau} e_{ijk} = 0 \quad \forall i, j$$

Computation of Effects

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

■ Averaging the observations in each cell:

$$\bar{y}_{ij.} = \mu + \alpha_j + \beta_i + \gamma_{ij}$$

□ Similarly,

$$\bar{y}_{i..} = \mu + \beta_i$$

$$\bar{y}_{.j.} = \mu + \alpha_j$$

$$\bar{y}_{...} = \mu$$

$$\beta_i = \bar{y}_{i..} - \bar{y}_{...}$$

$$\beta_i = \bar{y}_{i..} - \bar{y}_{...}$$

$$\gamma_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{...} + \bar{y}_{...}$$

⇒ Use cell means to compute row and column effects.

Example 22.1: Code Size

	Processors				
Workloads	W	X	Y	\overline{Z}	
I	7006	12042	29061	9903	
	6593	11794	27045	9206	
	7302	13074	30057	10035	
J	3207	5123	8960	4153	
	2883	5632	8064	4257	
	3523	4608	9677	4065	
K	4707	9407	19740	7089	
	4935	8933	19345	6982	
	4465	9964	21122	6678	
\overline{L}	5107	5613	22340	5356	
	5508	5947	23102	5734	
	4743	5161	21446	4965	
W	6807	12243	28560	9803	
	6392	11995	26846	9306	
	7208	12974	30559	10233	

Example 22.1: Log Transformation

	Processors					
Workloads	W	X	Y	Z		
I	3.8455	4.0807	4.4633	3.9958		
	3.8191	4.0717	4.4321	3.9641		
	3.8634	4.1164	4.4779	4.0015		
J	3.5061	3.7095	3.9523	3.6184		
	3.4598	3.7507	3.9066	3.6291		
	3.5469	3.6635	3.9857	3.6091		
K	3.6727	3.9735	4.2953	3.8506		
	3.6933	3.9510	4.2866	3.8440		
	3.6498	3.9984	4.3247	3.8246		
${ m L}$	3.7082	3.7492	4.3491	3.7288		
	3.7410	3.7743	4.3636	3.7585		
	3.6761	3.7127	4.3313	3.6959		
${ m M}$	3.8330	4.0879	4.4558	3.9914		
	3.8056	4.0790	4.4289	3.9688		
	3.8578	4.1131	4.4851	4.0100		

Example 22.1: Computation of Effects

		Proce	essors	Row	Row	Row	
Workloads	W	X	Y	Z	Sum	Mean	Effect
I	3.8427	4.0896	4.4578	3.9871	16.3772	4.0943	0.1520
J	3.5043	3.7079	3.9482	3.6188	14.7792	3.6948	-0.2475
K	3.6720	3.9743	4.3022	3.8397	15.7882	3.9470	0.0047
${ m L}$	3.7084	3.7454	4.3480	3.7277	15.5295	3.8824	-0.0599
M	3.8321	4.0933	4.4566	3.9900	16.3720	4.0930	0.1507
Col Sum	18.5594	19.6105	21.5128	19.1635	78.8463		
Col Mean	3.7119	3.9221	4.3026	3.8327		3.9423	
Col effect	-0.2304	-0.0202	0.3603	-0.1096			

- An average workload on an average processor requires a code size of 10^{3.94} (8710 instructions).
- □ Processor W requires $10^{0.23}$ (=1.69) less code than avg processor.
- □ Processor X requires $10^{0.02}$ (=1.05) <u>less</u> than an average processor and so on.
- The ratio of code sizes of an average workload on processor W and X is $10^{0.21}$ (= 1.62).

Example 22.1: Interactions

Workloads	W	X	Y	Z
I	-0.0212	0.0155	0.0032	0.0024
J	0.0399	0.0333	-0.1069	0.0337
K	-0.0447	0.0475	-0.0051	0.0023
${ m L}$	0.0564	-0.1168	0.1054	-0.0450
M	-0.0305	0.0205	0.0033	0.0066

- □ Check: The row as well column sums of interactions are zero.
- □ Interpretation: Workload I on processor W requires 0.02 less log code size than an average workload on processor W or equivalently 0.02 less log code size than I on an average processor.

Computation of Errors

■ Estimated Response:

$$\hat{y}_{ij} = \mu + \alpha_j + \beta_i + \gamma_{ij} = \bar{y}_{ij}.$$

 \square Error in the *k*th replication:

$$e_{ijk} = y_{ijk} - \bar{y}_{ij}.$$

Example 22.2: Cell mean for (1,1) = 3.8427

Errors in the observations in this cell are:

$$3.8455 - 3.8427 = 0.0028$$

$$3.8191-3.8427 = -0.0236$$
, and

$$3.8634 - 3.8427 = 0.0208$$

Check: Sum of the three errors is zero.

Allocation of Variation

$$\sum_{ijk} y_{ijk}^2 = abr\mu^2 + br\sum_j \alpha_j^2 + ar\sum_i \beta_i^2 + r\sum_{ij} \gamma_{ij}^2 + \sum_{ijk} e_{ijk}^2$$

SSY = SSO + SSA + SSB + SSAB + SSE

$$SST = SSY - SS0 = SSA + SSB + SSAB + SSE$$

 $4.44 = 936.95 - 932.51 = 2.93 + 1.33 + 0.15 + 0.03$
 $100\% = 65.96\% + 29.9\% + 3.48\% + 0.66\%$

□ Interactions explain less than 5% of variation⇒ may be ignored.

Analysis of Variance

Degrees of freedoms:

$$SSY = SSO + SSA + SSB + SSAB + SSE$$

 $abr = 1 + (a-1) + (b-1) + (a-1)(b-1) + ab(r-1)$

$$\frac{\text{MSA}}{\text{MSE}} \sim F[a-1, ab(r-1)]$$

$$\frac{\text{MSB}}{\text{MSE}} \sim F[b-1, ab(r-1)]$$

$$\frac{\text{MSAB}}{\text{MSE}} \sim F[(a-1)(b-1), ab(r-1)]$$

ANOVA for Two Factors w Replications

Compo-	Sum of	%Variation	DF	Mean	F-	<i>F</i> -
nent	Squares			Square	Comp.	Table
\overline{y}	$SSY = \sum y_{ij}^2$		abr			
$ar{y}_{\cdots}$	$SS0 = a\overline{br}\mu^2$		1			
$y - \bar{y}_{\dots}$	SST = SSY - SS0	100	abr-1			
A	$SSA = br \Sigma \alpha_j^2$	$100 \left(\frac{\text{SSA}}{\text{SST}} \right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\mathrm{MSA}}{\mathrm{MSE}}$	$F_{[1-\alpha;a-1,ab(r-1)]}$
B	$SSB = ar \Sigma \beta_i^2$	$100\left(\frac{\tilde{S}\tilde{S}\tilde{B}}{SST}\right)$	b-1	$MSB = \frac{SSB}{b-1}$	$\frac{ ext{MSB}}{ ext{MSE}}$	$F_{[1-\alpha;b-1,ab(r-1)]}$
AB	$SSAB = r\Sigma \gamma_{ij}^2$	$100 \left(\frac{\text{SSAB}}{\text{SST}} \right)$	$(a-1) \\ (b-1)$	$ MSAB = \underline{SSAB}_{(a-1)(b-1)} $	$\frac{\text{MSA}}{\text{MSE}}$	$F_{\substack{[1-\alpha,(a-1)(b-1),\\ab(r-1)]}}$
e	SSE = SST - (SSA + SSB + SSAB)	$100 \left(\frac{\text{SSE}}{\text{SST}} \right)$	ab(r-1)	$MSE = \frac{SSE}{ab(r-1)}$		(/1

Example 22.4: Code Size Study

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
\overline{y}	936.95					
$ar{y}_{}$	932.51					
$y - \bar{y}_{\dots}$	4.44	100.00%	59			
Processors	2.93	65.96%	3	0.9765	1340.01	2.23
Workloads	1.33	29.90%	4	0.3320	455.65	2.09
Interactions	0.15	3.48%	12	0.0129	17.70	1.71
Errors	0.03	0.66%	40	0.0007		
		/MOD /OO	000	0.00		

$$s_e = \sqrt{\text{MSE}} = \sqrt{0.0008} = 0.03$$

■ All three effects are statistically significant at a significance level of 0.10.

Confidence Intervals For Effects

Parameter Estimation

	<u>arameter Estimation</u>	<u>l</u>
Parameter	Estimate	Variance
$\overline{\mu}$	$ar{y}_{}$	s_e^2/abr
$lpha_j$	$ar{y}_{i}$ - $ar{y}_{}$	$s_e^2(a-1)/abr$
eta_i	$ar{y}_{.j.}$ – $ar{y}_{}$	$s_e^2(b-1)/abr$
γ_{ij}	$ar{y}_{ij.}$ - $ar{y}_{i}$ - $ar{y}_{.j.}$ + $ar{y}_{}$	$s_e^2(a-1)(b-1)/abr$
$\sum h_j \alpha_j, \sum h_j = 0$	$\Sigma \; h_j \; ar{y}_{.j.}$	$\sum h_j^2 s_e^2/br$
$\Sigma h_i \beta_i, \Sigma h_i = 0$	$\sum h_i \ ar{y}_{i}$	$\sum h_i^2 s_e^2/ar$
s_e^2	$\sum e_{ijk}^2/\{ab(r-1)\}$	
-	0 0 1 0	1 / 4 \

Degrees of freedom for errors = ab(r-1)

Use t values at ab(r-1) degrees of freedom for confidence intervals

02010 Raj Jain www.rajjain.com

Example 22.5: Code Size Study

□ From ANOVA table: s_e =0.03. The standard deviation of processor effects:

$$s_{\alpha_j} = s_e \sqrt{\frac{a-1}{abr}} = 0.03 \sqrt{\frac{4-1}{4 \times 5 \times 3}} = 0.0060$$

□ The error degrees of freedom:

 $ab(r-1) = 40 \implies$ use Normal tables

For 90% confidence, $z_{0.95} = 1.645$

90% confidence interval for the effect of processor W is:

$$\alpha_1$$
 " t $s_{\alpha_1} = -0.2304$ " 1.645×0.0060
= -0.2304 " 0.00987
= $(-0.2406, -0.2203)$

The effect is significant.

Example 22.5: Conf. Intervals (Cont)

Para-	Mean	Std.	Confidence
meter	Effect	Dev.	Interval
${\mu}$	3.9423	0.0035	(3.9364, 3.9482)

Processors

```
W -0.2304 0.0060 (-0.2406, -0.2203)

X -0.0202 0.0060 (-0.0304, -0.0100)

Y 0.3603 0.0060 (0.3501, 0.3704)

Z -0.1096 0.0060 (-0.1198, -0.0995)
```

Workloads

```
I 0.1520 0.0070 (0.1402, 0.1637)

J -0.2475 0.0070 (-0.2592, -0.2358)

K 0.0047 0.0070 (-0.0070, 0.0165)†

L -0.0599 0.0070 (-0.0717, -0.0482)

M 0.1507 0.0070 (0.1390, 0.1624)
```

□ The intervals are very narrow. $^{\dagger \Rightarrow \text{Not significant}}$

Example 22.5: CI for Interactions

Workloads	W	X	Y	Z
I	(-0.0415, -0.0009)	(-0.0048, 0.0358)†	(-0.0171, 0.0236)†	$(-0.0179, 0.0228)\dagger$
J	(0.0196, 0.0602)	(0.0130, 0.0536)	(-0.1272, -0.0865)	(0.0133, 0.0540)
K	(-0.0650, -0.0243)	(0.0271, 0.0678)	$(-0.0254, 0.0152)\dagger$	$(-0.0180, 0.0226)\dagger$
${ m L}$	(0.0361, 0.0768)	(-0.1371, -0.0964)	(0.0850, 0.1257)	(-0.0654, -0.0247)
_M	(-0.0508, -0.0101)	(0.0002, 0.0408)	$(-0.0170, 0.0236)\dagger$	(-0.0137, 0.0270)†

 $\dagger \Rightarrow \text{Not significant}$

Example 22.5: Visual Tests

- No visible trend.
- \square Approximately linear \Rightarrow normality is valid.

Summary

Replications allow interactions to be estimated

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

$$\sum_{j=1}^{a} \alpha_j = 0; \quad \sum_{i=1}^{b} \beta_i = 0; \quad \sum_{j=1}^{a} \gamma_{ij} = 0 \ \forall i;$$

$$\sum_{i=1}^{b} \gamma_{ij} = 0 \ \forall j; \quad \sum_{k=1}^{r} e_{ijk} = 0 \ \forall i, j$$

- \square SSE has ab(r-1) degrees of freedom
- Need to conduct F-tests for MSA/MSE, MSB/MSE, MSAB/MSE

Exercise 22.1

Measured CPU times for three processors A1, A2, and A3, on five workloads B1, B2, through B5 are shown in the table. Three replications of each experiment are shown. Analyze the data and answer the following:

- > Are the processors different from each other at 90% level of confidence?
- What percent of variation is explained by the processor-workload interaction?
- > Which effects in the model are not significant at 90% confidence.

		A	
В	A1	A2	A3
B1	3200	5120	8960
	3150	5100	8900
	3250	5140	8840
B2	4700	9400	19740
	4740	9300	19790
	4660	9500	19690
В3	3200	4160	7360
	3220	4100	7300
	3180	4220	7420
B4	5100	5610	22340
	5200	5575	22440
	5000	5645	22540
В5	6800	12240	28560
	6765	12290	28360
	6835	12190	28760

Homework

□ Submit answer to Exercise 22.1. Show all numerical values.