Prof. Dr. Frank Noé Dr. Christoph Wehmeyer

Tutoren:

Katharina Colditz; Anna Dittus; Felix Mann; Christopher Pütz

3. Übung zur Vorlesung Computerorientierte Mathematik I

Abgabe: Freitag, 14.11.2014, 16:00 Uhr, Tutorenfächer Arnimallee 3

http://www.mi.fu-berlin.de/w/CompMolBio/ComaI

Aufgabe 1 (Gleitkommadarstellung, 3T):

a) Geben Sie für folgende Zahlen $x \in \mathbb{R}$ ihre Darstellung \tilde{x} in der angegebenen Gleitkommamenge $\mathbb{G}(q, l)$:

$$x = 1342.02$$
 , $\mathbb{G}(10,5)$
$$x = \frac{1}{3}$$
 , $\mathbb{G}(2,4)$

b) Geben Sie $x, y, z \in \mathbb{G}(10,3)$ an, für die das Distributivgesetz verletzt ist.

Aufgabe 2 (Maschinengenauigkeit, 6T):

a) Sei $q \in \mathbb{N}$ gerade. Beweisen Sie:

$$eps(q, l) = min\{x \in \mathbb{G}(q, l), x > 0 : rd(1 + x) > 1\}.$$

b) Die Bedeutung der Maschinengenauigkeit liegt nicht darin, dass wir keine kleineren Zahlen als $\exp(q,l)$ darstellen können, sondern dass wir Rechenoperationen, die auf zu kleinen Zahlen ausgeführt werden, nicht unbedingt trauen können. Betrachten sie die Darstellung $\mathbb{G}(10,4)$ und geben Sie zwei darstellbare reelle Zahlen $x_1,x_2<\exp(10,4)$ an, sodass die Auswertung der Funktion $f(x)=\sqrt{x}+10^{-2}$ für x_1 korrekt ist und für x_2 nicht.

Aufgabe 3 (Sichtbare Auswirkungen, 7P):

a) Wir betrachten die Funktion $f: f(x) = \cos(x) - 1$. Plotten Sie die Funktion f für $x \in [10^{-8}, 10^{-3}]$ mit einer hohen Auflösung. Wandeln Sie nun den Eingabevektor x in Single Precision um und plotten Sie die Auswertung der Funktion f in dieselbe Graphik. Was passiert?

Hinweis: Nützliche Matlab-Funktionen für diese Übung sind **single**, **plot** und **hold all**.

b) Ein vielfach verwendete Methode zur Bestimmung von Nullstellen einer gegebenen Funktion f ist das **Newton-Verfahren**, welches Sie noch in der Analysis kennenlernen werden. Ausgehend von einem Startwert x_0 wendet man iterativ die folgende Vorschrift zur Bestimmung des nächsten Wertes x_{k+1} aus dem aktuellen Wert x_k an:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Wenn man den Startwert x_0 gut gewählt hat, kann man hoffen, dass die Folge der x_k gegen eine echte Nullstelle der Funktion f konvergiert. Schreiben Sie eine Funktion, die das Newton-Verfahren für die Funktion f aus Aufgabe a) ausführt. Die Funktion soll den Startwert x_0 und die Anzahl auszuführender Schritte k_{max} übergegeben bekommen, und am Ende einen Vektor mit allen Werten x_k zurückgegeben. Testen Sie die Funktion mit $x_0 = 10^{-6}$, $k_{max} = 100$ und plotten Sie die Folge der Iterierten. Was passiert und warum?