Auxiliar #1

Erik Saez A.

Department of Electrical Engineering Universidad de Chile

August 13, 2025

✓ erik.saez@ug.uchile.cl

1/11

Contenidos

- 1 Motivación
- 2 Aspectos Generales del curso
- 3 Resumen de Conceptos
- 4 Pregunta 1
- 5 Pregunta 2
- 6 Pregunta 3

Ingeniería Eléctrica

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Fig.: Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile.

Motivación

- ¿Por qué vale la pena tomar este ramo?
- ¿Qué me puede aportar si no pienso dedicarme al área de Control?
- ¿Es realmente importante ir a clases?
- ¿Qué cosas interesantes voy a aprender aquí?
-

3/11

Continuidad del ramo

- Análisis de sistemas dinámicos → Fundamentos de control de sistemas.
- ¡Atrasa! pero no es crítico

Fig.: Continuidad del ramo

Evaluaciones del ramo

Tipos de Evaluación

Tipo	Descripción
Controles (2)	Control 1 y Control 2
Ejercicios (2)	Ejercicio 1 y Ejercicio 2
Proyecto	Unidades 2 y 3
Examen	Toda la materia

Cálculo de Nota Final:

- \blacksquare NF = NC \times 0.6 + NE \times 0.4
- NC: Controles (incluye Examen 50%)
- NE: Promedio Ejercicios

Recomendaciones

- Control 1: bastante materia, suele ser complejo
- Ejercicios son largos, no dejar para último momento
- Consulten dudas las veces que sea necesario

Importancia de las Hipótesis Simplificatorias

¿Por qué son importantes las hipótesis?

- Simplifican el modelo: Permiten obtener ecuaciones manejables
- Definen el alcance: Establecen bajo qué condiciones es válido el modelo
- Balance realismo-simplicidad: Mantienen las características esenciales del sistema
- Facilitan el análisis: Hacen posible aplicar herramientas matemáticas conocidas

Advertencia

- lacktriangle Hipótesis muy restrictivas ightarrow Modelo poco realista
- Hipótesis muy generales → Modelo muy complejo
- Clave: Encontrar el balance adecuado para cada problema

Erik Saez A. (UChile) Auxiliar #1 August 13, 2025

Estados Especiales de un Sistema

Estado Cero

Un estado cero $x_0 \in \Sigma$ de un sistema es tal que la salida y(t) cumple que:

$$y(t) = \overline{A}(x_0, 0) = 0. \tag{1}$$

En términos sencillos: Es una condición inicial tal que, para entrada cero, la salida es cero.

Estado Tierra

Un estado tierra $x_t \in \Sigma$ de un sistema es tal que:

$$\forall x_0 \in \Sigma, \lim_{t \to \infty} \overline{B}(x_0, 0) = x_t. \tag{2}$$

Significado: El estado tierra es tal que, para toda condición inicial y con entrada cero, el sistema converge al estado tierra.

Estado Equilibrio

Un estado equilibrio $x_e \in \Sigma$ es tal que:

$$x_e = \overline{B}(x_e, 0). \tag{3}$$

Significado: Bajo entrada cero, si el sistema está en estado equilibrio entonces se quedará por siempre en este.

Nota Importante

Estos conceptos son fundamentales para el análisis de estabilidad y diseño de controladores en sistemas dinámicos.

Linealización de Sistemas

Linealización

Sistema dinámico:

$$\dot{x} = f(x, u) \tag{1}$$

$$y = g(x, u) \tag{2}$$

Sistema linealizado en \overline{x} , \overline{u} :

$$\dot{\tilde{x}} = \frac{\partial f}{\partial x} \bigg|_{\overline{x}, \overline{u}} \tilde{x} + \frac{\partial f}{\partial u} \bigg|_{\overline{x}, \overline{u}} \tilde{u} \tag{3}$$

$$\tilde{y} = \frac{\partial g}{\partial x} \bigg|_{\nabla \overline{u}} \tilde{x} + \frac{\partial g}{\partial u} \bigg|_{\nabla \overline{u}} \tilde{u} \tag{4}$$

Variables Perturbadas

Las variables perturbadas se definen como:

$$\tilde{x} \triangleq x - \overline{x}$$
 (5)

$$\tilde{u} \triangleq u - \overline{u} \tag{6}$$

$$\tilde{y} \triangleq y - \overline{y} \tag{7}$$

donde $\tilde{x},\,\tilde{u},\,\tilde{y}$ representan las perturbaciones en torno al estado, entrada y salida de operación, respectivamente.

Pregunta #1

Enunciado Pregunta #1

Considere el sistema de la siguiente figura, donde se tiene un carro atado a un resorte con un sensor de distancia, capaz de medir la distancia del carro a la pared. Suponga que existe una fuerza de fricción viscosa con la superficie F_f de la forma $F_f = b_1 \dot{z} + b_2 (\dot{z}^2)$.

- 1 Establezca hipótesis simplificatorias para el problema.
- 2 Formule un modelo matemático del sistema que sea consistente con sus hipótesis.
- 3 Encuentre el punto de operación que asegure z = 1 m.

Pregunta #2

Enunciado Pregunta #2

Considere el siguiente péndulo apoyado en un carro móvil, el cual se desliza por una barra.

- Establezca hipótesis simplificatorias.
- 2 Formule un modelo matemático, que capture la dinámica del sistema.
- 3 Identifique entradas, salidas y estados en su modelo.
- 4 Linealice en torno a $\theta = \pi$.

Pregunta #3: Estanque Cónico

Datos del Sistema

Altura máxima: H = 8 m

■ Radio máximo: R = 3 m

■ Volumen: $V(h) = \frac{\pi r^2 h}{3}$

■ Flujo entrada: $F_1(t)$ (arbitrario)

Flujo salida: $F(t) = \alpha \sqrt{h(t)}$, $\alpha = 1$

Enunciado

Se tienen los siguientes datos y relaciones para el estanque cónico:

$$V(h) = \frac{\pi r^2 h}{3}, \quad F(t) = \alpha \sqrt{h(t)}, \quad \alpha = 1$$

Responda lo siguiente:

- 1 Encuentre un modelo dinámico no lineal que relacione h(t) y $F_1(t)$, indicando claramente las hipótesis simplificatorias.
- Linealice su modelo en torno a $h_0 = 4$ m, $F_{1,0} = 2$ m³/s, para el modelo perturbado:

$$h(t) = h_0 + \Delta h(t), \quad F_1(t) = F_{1,0} + \Delta F_1(t)$$

que relacione la salida $\Delta h(t)$ con la entrada $\Delta F_1(t)$, despreciando términos de orden superior.