2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

friend

Language: sl-SVN

Prijatelj

Gradimo socialno omrežje z n ljudmi, oštevilčenimi $0, \dots, n-1$. Nekateri pari ljudi v omrežju bodo prijatelji. Če oseba x postane prijatelj osebe y, potem je tudi y prijatelj osebe x.

Ljudi dodajamo v omrežje v n korakih, prav tako oštevilčenih od 0 do n-1. V koraku i dodamo osebo i. V koraku 0 dodamo v omrežje osebo 0 kot prvo in edino osebo. V vsakem od naslednjih n-1 korakov ima ena oseba, ki je že v omrežju, status *gostitelja*. V koraku i (0 < i < n) dotični gostitelj doda osebo i v omrežje z eno izmed sledečih operacij:

- *IAmYourFriend*: oseba *i* se spoprijatelji samo z gostiteljem.
- *MyFriendsAreYourFriends*: oseba *i* se spoprijatelji z *vsemi* osebami, ki so trenutno že prijatelji gostitelja. Ta operacija ne spoprijatelji osebe *i* z gostiteljem.
- WeAreYourFriends: oseba i se spoprijatelji tako z gostiteljem, kot tudi z vsemi osebami, ki so trenutno že prijatelji gostitelja.

Ko se gradnja omrežja zaključi, želimo iz njega izbrati *vzorec* oseb za anketiranje. Ker načeloma velja, da imajo prijatelji podobne interese, vzorec ne sme vsebovati nobenega para oseb, ki sta prijatelja. Vsaka oseba ima določeno mero *zaupanja*, ki je izražena s pozitivnim celim številom. Naša naloga je, da poiščemo vzorec z največjim možnim skupnim zaupanjem.

Primer

korak	gostitelj	ope racija	dodana prijateljstva
1	0	IAmYourFriend	(1, 0)
2	0	MyFriendsAreYourFriends	(2, 1)
3	1	WeAreYourFriends	(3, 1), (3, 0), (3, 2)
4	2	MyFriendsAreYourFriends	(4, 1), (4, 3)
5	0	IAmYourFriend	(5,0)

Na začetku omrežje vsebuje zgolj osebo 0. Gostitelj koraka 1 (oseba 0) povabi v omrežje osebo 1 z operacijo IAmYourFriend, torej ti dve osebi postaneta prijatelja. Gostitelj koraka 2 (ponovno oseba 0) povabi osebo 2 z MyFriendsAreYourFriends, kar spoprijatelji osebi 1 in 2, saj je oseba 1 edini prijatelj osebe 0. Gostitelj koraka 3 (oseba 1) doda osebo 3 z WeAreYourFriends, kar spoprijatelji osebo 3 z osebo 1 (gostiteljem) ter osebama 0 in 2 (prijatelja gostitelja). Koraka 4 in 5 sta prikazana v zgornji tabeli, končno omrežje pa na spodnji sliki. Številke v krogih označujejo osebe, povezave med krogci pa njihova prijateljstva. Poleg vsakega krogca je zapisana številka, ki podaja zaupanje dotične osebe. Vzorec, ki vsebuje osebi 3 in 5, ima skupno zaupanje enako 20 + 15 = 35, kar je tudi največje možno zaupanje tega omrežja.

Naloga

Pri podanem zaporedju korakov gradnje omrežja, v končnem omrežju poišči vzorec z največjim možnim zaupanjem.

Implementirajte funkcijo findSample.

- findSample(n, confidence, host, protocol)
 - n: število ljudi.
 - confidence: tabela dolžine n; confidence [i] podaja zaupanje osebe i.
 - host: tabela dolžine n; host[i] podaja gostitelja koraka i.
 - protocol: tabela dolžine n; protocol[i] podaja oznako operacije uporabljene v koraku i (0 < i < n): 0 za operacijo IAmYourFriend, 1 za operacijo MyFriendsAreYourFriends in 2 za operacijo WeAreYourFriends.
 - Ker v koraku 0 gostitelja ni, sta host[0] in protocol[0] nedefinirana, vaš program pa do teh dveh vrednosti ne sme dostopati.
 - Funkcija naj vrne največjo možno vrednost zaupanja v končnem omrežju.

Podnaloge

Nekatere podnaloge uporabljajo zgolj podmnožico operacij, kot je prikazano v spodnji tabeli.

podnaloga	št. točk	n	zaupanje	uporabljene operacije
1	11	$2 \le n \le 10$	$1 \leq \text{zaupanje} \leq 1,000,000$	Vse tri operacije
2	8	$2 \leq n \leq 1,000$	$1 \leq ext{zaupanje} \leq 1,000,000$	Samo MyFriendsAreYourFriends
3	8	$2 \leq n \leq 1,000$	$1 \leq \text{zaupanje} \leq 1,000,000$	Samo WeAreYourFriends
4	19	$2 \leq n \leq 1,000$	$1 \leq \text{zaupanje} \leq 1,000,000$	Samo IAmYourFriend
5	23	$2 \leq n \leq 1,000$	Vse osebe imajo zaupanje	Samo MyFriendsAreYourFriends in IAmYourFriend
6	31	$2 \leq n \leq 100,000$	$1 \le \text{confidence} \le 10,000$	Vse tri operacije

Podrobnosti implementacije

Oddati morate natanko eno datoteko poimenovano friend.c, friend.cpp ali friend.pas. V tej datoteki implementirajte funkcijo, ki je opisana zgoraj, imeti pa mora natako tak podpis kot je podan spodaj. V jeziku C/C++ morate obvezno vključiti tudi header datoteko friend.h.

Programski jezik C/C++

```
int findSample(int n, int confidence[], int host[], int protocol[]);
```

Programski jezik Pascal

```
function findSample(n: longint, confidence: array of longint, host: array
of longint; protocol: array of longint): longint;
```

Vzorčni ocenjevalnik

Vzorčni ocenjevalnik bere vhod v sledečem formatu:

- vrstica 1: n
- vrstica 2: confidence[0], ..., confidence[n-1]
- vrstica 3: host[1], protocol[1], host[2], protocol[2], ..., host[n-1], protocol[n-1]

Vzorčni ocenjevalnik bo izpisal vrednost, ki jo vrne funkcija findSample.