Discrete Mathematics

Dinesh Naik Manjunath K Vanahalli

Department of Information Technology, National Institute of Technology Karnataka, India

August 21, 2020

- An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value.
- Methods that produce propositions with the same truth value as a given compound proposition are used extensively in the construction of mathematical arguments.

- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology.
- A compound proposition that is always false is called a contradiction.
- A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.
- Tautologies and contradictions are often important in mathematical reasoning.

- A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology.
- A compound proposition that is always false is called a contradiction.
- A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.
- Tautologies and contradictions are often important in mathematical reasoning.

- Tautologies and contradictions are often important in mathematical reasoning.
- Examples of tautologies and contradictions using just one propositional variable.
- Consider the truth tables of $p \vee \neg p$ and $p \wedge \neg p$,
- p $\vee \neg p$ is always true, it is a tautology. p $\wedge \neg p$ is always false, it is a contradiction

TABLE 1 Examples of a Tautology and a Contradiction.							
p	$\neg p$	$p \vee \neg p$	$p \land \neg p$				
Т	F	Т	F				
F	T	T	F				

- Compound propositions that have the same truth values in all possible cases are called logically Demo equivalent.
- \bullet The compound propositions p and q are called logically equivalent if p \leftrightarrow q is a tautology. The notation p \equiv q denotes that p and q are logically equivalent
- The symbol \equiv is not a logical connective, and p \equiv q is not a compound proposition but rather is the statement that p \leftrightarrow q is a tautology
- \bullet Symbol \Leftrightarrow is sometimes used instead of \equiv to denote logical equivalence.

TABLE 2 De Morgan's Laws.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

 \bullet Show that $\neg(p \ \lor \ q)$ and $\neg p \ \land \ \neg q$ are logically equivalent

TABLE 3 Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.							
p	\boldsymbol{q}	$p \lor q$	$\neg (p \lor q)$	¬p	$\neg q$	$\neg p \land \neg q$	
T	T	T	F	F	F	F	
T	F	T	F	F	T	F	
F	T	T	F	T	F	F	
F	F	F	T	T	T	T	

• Show that $p \to q$ and $\neg p \lor q$ are logically equivalent. (This is known as the conditional disjunction equivalence.)

TABLE 4 Truth Tables for $\neg p \lor q$ and $p \to q$.								
p	\boldsymbol{q}	$\neg p$	$\neg p \lor q$	$p \rightarrow q$				
Т	T	F	T	T				
T	F	F	F	F				
F	T	T	T	Т				
F	F	T	T	T				

