Workshop Bayesian Corpus Studies

Christoph Finkensiep Würzburg, Feb 2024

Session 1: Generative Modeling

A Small Corpus Study

In which group are the patterns more regular?

The classical approach:

- 1. find / create a corpus
- 2. "operationalize" the quantity of interest
- 3. measure, do statistics

The classical approach:

- 1. find / create a corpus
- 2. "operationalize" the quantity of interest
- 3. measure, do statistics

The classical approach:

- 1. find / create a corpus
- 2. "operationalize" the quantity of interest
- 3. measure, do statistics

???

Problems with the Standard Approach

$$reg(x) = \frac{1}{\# \text{ unique beats in } x}$$

Problems with the Standard Approach

$$reg(x) = \frac{1}{\# \text{ unique beats in } x}$$

Measure:

- adequate?
- arbitrary, ad-hoc?
- overarching theory?

Problems with the Standard Approach

$$reg(x) = \frac{1}{\# \text{ unique beats in } x}$$

Measure:

- adequate?
- arbitrary, ad-hoc?
- overarching theory?

Stats:

- which statistic?
 - arithmetic mean: $\frac{1}{N} \sum_{i} x_{i}$
 - geometric mean: $\sqrt[N]{\prod_i x_i}$
- which test?

Models

• describe a segment of the world (simplified)

- describe a segment of the world (simplified)
- relevant entities, properties and relations

- describe a segment of the world (simplified)
- relevant entities, properties and relations
- explicit assumptions

- describe a segment of the world (simplified)
- relevant entities, properties and relations
- explicit assumptions
- enable simulation and inference

- describe a segment of the world (simplified)
- relevant entities, properties and relations
- explicit assumptions
- enable simulation and inference

Entities and properties:

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Entities and properties:

Relations:

- pattern
- note
- group of patterns
 - regularity

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Relations:

- patterns consist of notes
- groups have patterns
- regularity \leftrightarrow patterns?

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Relations:

- patterns consist of notes
- groups have patterns
- regularity \leftrightarrow patterns?

Inference:

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Relations:

- patterns consist of notes
- groups have patterns
- regularity \leftrightarrow patterns?

Inference:

• patterns \rightarrow regularity

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Relations:

- patterns consist of notes
- groups have patterns
- regularity \leftrightarrow patterns?

Inference:

• patterns \rightarrow regularity

Simulation:

Entities and properties:

- pattern
- note
- group of patterns
 - regularity

Relations:

- patterns consist of notes
- groups have patterns
- regularity \leftrightarrow patterns?

Inference:

• patterns \rightarrow regularity

Simulation:

• generate new patterns

Simulation:

• run the process, change parameters

Inference:

• find plausible parameters

Simulation:

• run the process, change parameters

Inference:

• find plausible parameters

Simulation:

• run the process, change parameters

Inference:

find plausible parameters

A Simple Example

Linear Regression: x is linearly related to y

$$y \approx a \cdot x + b$$

A Simple Example

Linear Regression: x is linearly related to y

$$y \approx a \cdot x + b$$

Observations: points (x and y)

Parameters: slope a, intercept b, variance σ^2

A Simple Example

Linear Regression: x is linearly related to y

$$y \approx a \cdot x + b$$

Observations: points (x and y)

Parameters: slope a, intercept b, variance σ^2

Generative Process:

- choose parameters a, b, σ
- for each point i:
 - choose x_i
 - compute $f(x_i) = a \cdot x_i + b$
 - pick $y_i \sim \mathcal{N}(f(x_i), \sigma)$

A More Involved Example

$$\begin{matrix} I \longrightarrow I \ I \\ I \longrightarrow VI \\ \dots \end{matrix}$$

$$\begin{matrix} I \longrightarrow I \ I \\ I \longrightarrow VI \\ \dots \end{matrix}$$

Observations: chord sequences (pieces)

Observations: chord sequences (pieces)

Parameters: Rules and probabilities

 $\begin{matrix} I \longrightarrow I \ I \\ I \longrightarrow VI \\ \dots \end{matrix}$

$$\begin{matrix} I \longrightarrow I \ I \\ I \longrightarrow VI \\ \dots \end{matrix}$$

Observations: chord sequences (pieces)

Parameters: Rules and probabilities

Process:

- choose grammar rules R
- choose rule probabilities p_R
- for each piece *i*:
 - sample a derivation d_i
 - observe the resulting chord sequence

$$\begin{matrix} I \longrightarrow I \ I \\ I \longrightarrow VI \\ \dots \end{matrix}$$

Observations: chord sequences (pieces)

Parameters: Rules and probabilities

Process:

- choose grammar rules R
- choose rule probabilities p_R
- for each piece *i*:
 - sample a derivation d_i
 - observe the resulting chord sequence

Inference:

- most plausible derivation d_i for each piece
- most plausible rules and probabilities

A Generative Model of Rhythmic Regularity

Simplifying assumptions: always 4/4, we don't look inside "beats".

Generate corpus:

- for each group g:
 - choose regularity r_q :
 - for each pattern i:
 - sample pattern p_{gi} using r_g

Generate corpus:

- for each group g:
 - choose regularity r_q :
 - for each pattern i:
 - sample pattern p_{gi} using r_g

Generate corpus:

- for each group *g*:
 - choose regularity r_q :
 - for each pattern i:
 - sample pattern p_{gi} using r_g

Generate pattern (based on predecessor):

- choose b_1 randomly
- for each following beat *i*:
 - flip coin (r_g) :
 - heads: $b_i = b_{i-1}$
 - tails: choose new beat for b_i

Generate corpus:

- for each group *g*:
 - choose regularity r_q :
 - for each pattern i:
 - sample pattern p_{qi} using r_q

Generate pattern (based on position):

- choose b_1 randomly
- flip coin (r_q) :
 - heads: $b_2 = b_1$
 - tails: new beat for b_2
- flip coin (r_g) :
 - heads: repeat first half
 - tails:
 - repeat or new b_3 ...
 - repeat or new b_4 ...

Generate corpus:

- for each group g:
 - choose regularity r_q :
 - for each pattern i:
 - sample pattern p_{gi} using r_g

A more detailed model:

generate full rhythm, flip coins to repeat

Very Explicit:

- write down the entire generative process
 - this is how you think/pretend it works
 - links entities (observations, parameters)

Very Explicit:

- write down the entire generative process
 - this is how you think/pretend it works
 - links entities (observations, parameters)
- can be discussed

Very Explicit:

- write down the entire generative process
 - this is how you think/pretend it works
 - links entities (observations, parameters)
- can be discussed
- can be used to understand a phenomenon better
 - What is regularity? Why is music regular?

Very Explicit:

- write down the entire generative process
 - this is how you think/pretend it works
 - links entities (observations, parameters)
- can be discussed
- can be used to understand a phenomenon better
 - What is regularity? Why is music regular?

Simulation:

- run the generative process
- manipulate process / parameters

Very Explicit:

- write down the entire generative process
 - this is how you think/pretend it works
 - links entities (observations, parameters)
- can be discussed
- can be used to understand a phenomenon better
 - What is regularity? Why is music regular?

Simulation:

- run the generative process
- manipulate process / parameters

Inference: ???

"Random variable" X: uncertain quantity or property

"Random variable" X: uncertain quantity or property

• future event (coin flip)

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

discrete: mass function p(x)

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

discrete: mass function p(x)

$$P(X \in \{4, 6\}) = p(4) + p(6)$$

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

discrete: mass function p(x)

continuous: density function p(x)

$$P(X \in \{4, 6\}) = p(4) + p(6)$$

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

discrete: mass function p(x)

$$P(X \in \{4, 6\}) = p(4) + p(6)$$

continuous: density function p(x)

"Random variable" X: uncertain quantity or property

- future event (coin flip)
- unobservable (regularity of a corpus)

discrete: mass function p(x)

 $\sum_{x} p(x) = 1$ 0.1

2 3 4 5 6 7 8 9 10 11 12

$$P(X \in \{4,6\}) = p(4) + p(6)$$

continuous: density function p(x)

Distributions over Several Variables

Several variables: **joint** distribution

Distributions over Several Variables

Several variables: **joint** distribution

"don't care": marginal distribution

$$p(x,y)$$
 ignore z

$$p(x)$$
 ignore y and z

Distributions over Several Variables

Several variables: **joint** distribution

"don't care": marginal distribution

$$p(x, y)$$
 ignore z
 $p(x)$ ignore y and z

"observation": conditional distribution

$$p(x \mid y, z)$$
 x given y and z $p(x, z \mid y)$ x and z given y $p(y \mid x)$ y given x (ignoring z)

The Inference ButtonTM:

$$\underbrace{p(x,z)}_{\text{model}} \longrightarrow \underbrace{p(z \mid x)}_{\text{posterior}}$$
$$\underbrace{p(z) \cdot p(x \mid z)}_{\text{distribution}}$$

observed variables (x)

The Inference ButtonTM:

$$\underbrace{p(x,z)}_{\text{model}} \longrightarrow \underbrace{p(z \mid x)}_{\text{posterior}}$$
$$\underbrace{p(z) \cdot p(x \mid z)}_{\text{distribution}}$$

Variables:

- regularity r = ?
- corpus C

Variables:

- regularity r = ?
- \bullet corpus C

Model:

- choose *r*
- for each pattern:
 - beat 1 random
 - for beat 2-4:
 - flip coin (*r*):
 - heads: repeat
 - tails: don't repeat

Variables:

- regularity r = ?
- corpus C = [*rrr, *nnn, *rnr]

Model:

- choose *r*
- for each pattern:
 - beat 1 random
 - for beat 2-4:
 - flip coin (r):
 - heads: repeat
 - tails: don't repeat

Variables:

- regularity r = ?
- corpus C = [*rrr, *nnn, *rnr]

Model:

- choose $r \sim$ unknown distribution
- for each pattern:
 - beat 1 random
 - for beat 2-4:
 - flip coin (r):
 - heads: repeat
 - tails: don't repeat

Back to our Corpus Study

Variables:

- regularity r = ?
- corpus C = [*rrr, *nnn, *rnr]

- choose $r \sim$ unknown distribution
- for each pattern:
 - beat 1 random
 - for beat 2-4:
 - flip coin (r): $\sim \text{Bernoulli}(r)$
 - heads: repeat
 - tails: don't repeat

Looking at the Likelihood

The probability of the data depends on r:

$$p(C \mid r) = p([*\mathtt{rrr}, *\mathtt{nnn}, *\mathtt{rnr}] \mid r) = r^5 \cdot (1-r)^4$$

Looking at the Likelihood

The probability of the data depends on r:

$$p(C \mid r) = p([*\mathtt{rrr}, *\mathtt{nnn}, *\mathtt{rnr}] \mid r) = r^5 \cdot (1-r)^4$$

Looking at the Likelihood

The probability of the data depends on r:

$$p(C \mid r) = p([*\mathtt{rrr}, *\mathtt{nnn}, *\mathtt{rnr}] \mid r) = r^5 \cdot (1-r)^4$$

$$\arg\max_{r} p(C \mid r) = \frac{5}{9}$$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

- choose $r \sim \text{Uniform}(0, 1)$
- for each pattern i:
 - choose $\vec{c_i} \sim 3 \times \text{Bernoulli}(r)$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

- choose $r \sim \text{Uniform}(0, 1)$
- for each pattern i:
 - choose $\vec{c_i} \sim 3 \times \text{Bernoulli}(r)$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

- choose $r \sim \text{Beta}(0.5, 0.5)$
- for each pattern i:
 - choose $\vec{c_i} \sim 3 \times \text{Bernoulli}(r)$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

- choose $r \sim \text{Beta}(0.5, 0.5)$
- for each pattern i:
 - choose $\vec{c_i} \sim 3 \times \text{Bernoulli}(r)$

$$\underbrace{p(r,C)}_{p(r)\cdot p(C|r)} \longrightarrow p(r \mid C)$$

Model:

- choose $r \sim \text{Beta}(0.5, 0.5)$
- for each pattern i:
 - choose $\vec{c_i} \sim 3 \times \text{Bernoulli}(r)$

Problem:

How do we compute this?

Summary: The Three Ingredients

(series of decisions)

probabilities

conditioning

Practical Exercises

https://github.com/Amsterdam-Music-Lab/gmth23-bayes-workshop

