Zadanie 2

Patryk Lisik

8 Lutego 2024

Treść

Binarny kod blokowy składa się ze słów kodowych zapisanych w postaci systematycznej w tab. 1.

С
000000
011100
101010
110110
110001
101101
011011
000111

Tabela 1: Tablica kodu blokowego

- (a) Jakie jest tempo kodu R?
- (b) Zapisz macierz generującą ${\bf G}$ i kontroli parzystości ${\bf H}$ w postaci systematycznej.
- (c) Jaka jest minimalna odległość Hamminga d_{min} tego kodu?
- (d) Jaka jest zdolność do poprawiania błędów t, a jaka zdolność do wykrywania błędów l dla tego kodu?
- (e) Oblicz syndrom sdla odebranego sygnału ${\bf r}=(101011)$

Rozwiązanie

Bity parzystości	Bity wiadomości
000	000
011	100
101	010
110	110
110	001
101	101
011	011
000	111

Tabela 2: Tablica kodu blokowego

a) Jakie jest tempo kodu R

$$R = \frac{k}{n} = \frac{3}{6} = \frac{1}{2}$$

b) Zapisz macierz generującą G i kontroli parzystości H w postaci systematycznej

$$\mathbf{G} = (P \quad I_k) = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{H} = (I_{n-k} \quad P^T) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

c) Jaka jest minimalna odległość Hamminga d_{min} tego kodu?

Jak pokazano w tabeli 3 minimalny dystans Hamminga to 3.

	000000	011100	101010	110110	110001	101101	011011	000111
000000	-							
011100	3	-						
101010	3	4	-					
110110	4	3	3	-				
110001	3	4	4	3	-			
101101	4	3	3	4	3	-		
011011	4	3	3	4	3	4	-	
000111	3	4	4	3	4	3	3	-

Tabela 3: Dystanse Hamminga pomiędzy słowami kodu

d) Jaka jest zdolność do poprawiania błędów t, a jaka zdolność do wykrywania błędów l dla tego kodu?

Zdolność do poprawiania błędów

$$t = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor = 1$$

Zdolność do wykrywania błędów

$$l = d_{min} - 1 = 2$$

Oblicz syndrom sdla odebranego sygnału $\mathbf{r}=(101011)$ i znajdź pozycję błędu

$$s = Hr^T$$

$$s = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Macierz syndromu jest 6 kolumną macierzy parzystości co oznacza że błąd jest na 6 pozycji odebranej wiadomości.