FYS2160 Oblig 3

Daniel Heinesen, daniehei

6. november 2017

1 Project 3

We have Helmholtz free energy for the van der Waals gas:

$$F_{wdW} = -NkT \left[\ln \left(\frac{n_Q(V - Nb)}{N} \right) + 1 \right] - \frac{aN^2}{V}$$
 (1)

with $n_Q(T) = (2\pi mkT/h^2)^{3/2}$

1.1 a)

We can find the pressure from this by the thermodynamic identity

$$P(N, V, T) = -\left(\frac{\partial F}{\partial V}\right)_{T, N} \tag{2}$$

If we calculate the pressure for (1) we find

$$P(N, V, T) = -\left(-NkT \frac{N}{n_Q(V - Nb)} \cdot \frac{n_Q}{N} + \frac{aN^2}{V^2}\right) = \frac{NkT}{V - Nb} - \frac{aN^2}{V^2}$$
(3)

1.2 b)

We now introduce

$$P_c = \frac{a}{27b^2}, \qquad V_c = 3Nb, \qquad kT_c = \frac{8a}{27b}$$
 (4)

and

$$\hat{P} = P/P_c, \qquad \hat{V} = V/V_c \qquad \hat{T} = T/T_c \tag{5}$$

with the density

$$\hat{\rho} = 1/\hat{V} = \rho/\rho_c, \qquad \rho_c = \frac{1}{3b} \tag{6}$$

We can thus write the pressure of the van der Waals gas (3) dimensionless:

$$P = \hat{P}P_c = \frac{Nk\hat{T}T_c}{\hat{V}V_c - Nb} - \frac{aN^2}{\hat{V}^2V_c^2}$$

$$\hat{P}\frac{a}{27b^2} = \frac{Nk\hat{T}\frac{8a}{27bk}}{\hat{V}^3Nb - Nb} - \frac{aN^2}{\hat{V}^29N^2b^2}$$

$$\hat{P} = \frac{27b^2}{a} \left(\frac{a}{27b^2} \frac{8\hat{T}}{3\hat{V} - 1} - \frac{a}{27b^2} \frac{3}{\hat{V}^2}\right) = \frac{8\hat{T}}{3\hat{V} - 1} - \frac{3}{\hat{V}^2}$$
(7)

1.3 c)

If we plot the pressure (7) we get

Figur 1: We see that around $\hat{V}=1$ we pressure as a function of \hat{V} is non-injective, this means that we are unable to find an inverse $\hat{V}(\hat{P})$.

1.4 d)

We saw in (6) that we can write the density as $\hat{\rho} = 1/\hat{V}$. Using this in (7) we get

$$\hat{P} = \frac{8\hat{T}}{3/\hat{\rho} - 1} - \frac{3}{1/\hat{\rho}^2} = \frac{8\hat{\rho}\hat{T}}{3 - \hat{\rho}} - 3\hat{\rho}^2 \tag{8}$$

1.5 e)

We can so plot the pressure against density:

Figur 2: The pressure of the van der Waals gas as a function of $\hat{\rho}$

1.6 f)

As seen in fig. 2, for $\hat{T} \geq 1$ does pressure become an injective function of the density. This means that we can find an inverse $\hat{\rho}(\hat{V})$. This will be unique. This means that for $\hat{T} < 1$ there will be no

such unique function.

(Dette virker bare rart, sjekk dette før du leverer!!!!!)

$1.7 \quad \mathbf{g}$

We want to see where the isothermal compressibility is negative:

$$\kappa = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right) < 0 \tag{9}$$

We see that this happens when $\partial \rho/\partial P < 0$, which is the same as saying that $\partial P/\partial \rho < 0$. We can see from figure 2 that this happens for every temperature except $\hat{T} = 1$ around $0.5 \le \hat{\rho} \le 1.55$ (more or less). We can also compute this numerically

Figur 3: The isothermal compressibility as function of $\hat{\rho}$.

We can see that our approximation of the range of $\hat{\rho}$ was pretty good for $\hat{T}=0.8$, and as the temperature raises this interval becomes narrower, until for $\hat{T}=1$ κ is positive for all $r\hat{h}o$.

1.8 h)

We are going to look at the PV isotherms of N_2 . To do this use (7) and (1.2) to find

$$P = P_c \left[\frac{8\hat{T}/T_c}{3\hat{V}/V_c - 1} - \frac{3V_c^2}{\hat{V}^2} \right]$$
 (10)

Where

$$P_c = 33.6 \text{ atm}, \qquad V_c = 0.089 \text{ l/mol}, \qquad T_c = 126 \text{ K}$$
 (11)

If we plot this for T = 77, 100, 110, 115, 120, 125 K we get

Figur 4: The PV isotherms for N_2 .

1.9 i)

1.10 j)

2 Project 4

2.1 a)

We start with expanding dS and dV

$$ds = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV \tag{12}$$

$$dV = \left(\frac{\partial V}{\partial T}\right)_P dT + \left(\frac{\partial V}{\partial P}\right)_T dP \tag{13}$$

If we insert the expression for dV into that of dS, we get

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} \left[\left(\frac{\partial V}{\partial T}\right)_{P} dT + \left(\frac{\partial V}{\partial P}\right)_{T} dP\right]$$

$$\tag{14}$$

If we sort the expression we get:

$$dS = \left[\left(\frac{\partial S}{\partial T} \right)_V + \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \right] dT + \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial P} \right)_T dP \tag{15}$$

We are looking at the heating with constant pressure, so dP = 0 and

$$dS = \left[\left(\frac{\partial S}{\partial T} \right)_V + \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \right] dT \Leftrightarrow \left(\frac{\partial S}{\partial T} \right)_P = \left(\frac{\partial S}{\partial T} \right)_V + \left(\frac{\partial S}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \tag{16}$$

We can no use the identities for the heat capacities:

$$C_V = T \left(\frac{\partial S}{\partial T}\right)_V, \qquad C_P = T \left(\frac{\partial S}{\partial T}\right)_P$$
 (17)

and

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \tag{18}$$

Which gives us the relation

$$\frac{C_V}{T} = \frac{C_P}{T} + V\alpha \left(\frac{\partial S}{\partial V}\right)_T \tag{19}$$

We now need an expression for the last partial differentiation. We start with a constant volume dV = 0, which gives from (13)

$$0 = \left(\frac{\partial V}{\partial T}\right)_P dT + \left(\frac{\partial V}{\partial P}\right)_T dP \tag{20}$$

$$\Rightarrow \left(\frac{\partial P}{\partial T}\right)_{V} = -\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}} \tag{21}$$

we now use that

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \tag{22}$$

and get that

$$\Rightarrow \left(\frac{\partial P}{\partial T}\right)_V = \frac{\alpha}{\beta_T} \tag{23}$$

Inserting this into (19) we get the relation for the heat capacities:

$$C_V = C_P + VT \frac{\alpha^2}{\beta_T} \tag{24}$$

2.2 b)

From eq. (17) we get that

$$\frac{C_P}{C_V} = \frac{\left(\frac{\partial S}{\partial T}\right)_P}{\left(\frac{\partial S}{\partial T}\right)_V} \tag{25}$$

We now need to look at these expressions. We start with $\left(\frac{\partial S}{\partial T}\right)_P$. We know from this that dP=0. Since the expression involves S and T we are going to look at dP(S,T)=0

$$dP = 0 = \left(\frac{\partial P}{\partial T}\right)_S dT + \left(\frac{\partial P}{\partial S}\right)_T dS \tag{26}$$

From this we get

$$\left(\frac{\partial S}{\partial T}\right)_{P} = -\frac{\left(\frac{\partial P}{\partial T}\right)_{S}}{\left(\frac{\partial P}{\partial S}\right)_{T}} \tag{27}$$

We use the same logic with $\left(\frac{\partial S}{\partial T}\right)_V$:

$$dV(S,T) = 0 = \left(\frac{\partial V}{\partial T}\right)_S dT + \left(\frac{\partial V}{\partial S}\right)_T dS \tag{28}$$

$$\Rightarrow \left(\frac{\partial S}{\partial T}\right)_{V} = -\frac{\left(\frac{\partial V}{\partial T}\right)_{S}}{\left(\frac{\partial V}{\partial S}\right)_{T}} \tag{29}$$

We can now insert this into (25)

$$\frac{C_P}{C_V} = \frac{\left(\frac{\partial P}{\partial T}\right)_S}{\left(\frac{\partial V}{\partial T}\right)_S} \frac{\left(\frac{\partial V}{\partial S}\right)_T}{\left(\frac{\partial P}{\partial S}\right)_T} = \left(\frac{\partial P}{\partial V}\right)_S \left(\frac{\partial V}{\partial P}\right)_T \tag{30}$$

We can then use that

$$\beta_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S, \qquad \beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$
 (31)

And we then get

$$\frac{C_P}{C_V} = \left(\frac{\partial P}{\partial V}\right)_S \left(\frac{\partial V}{\partial P}\right)_T = \frac{\beta_T}{\beta_S} \tag{32}$$

2.3 c)

We start with the first law for pressure-volume work

$$dU = dQ - dW = dQ - PdV (33)$$

We then, as the exercise hinted, expand dH. We do this for H(T, P)

$$dH = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP \tag{34}$$

But in this system dP = 0, so this reduces to

$$dH = \left(\frac{\partial H}{\partial T}\right)_P dT \tag{35}$$

We also know that for this pressure-volume system the change enthalpy is given as

$$dH = dU + PdV (36)$$

Inserting this for dU in (33) we get

$$dQ = \left(\frac{\partial H}{\partial T}\right)_P dT \tag{37}$$

and since we have constant pressure, we get

$$\left(\frac{\partial Q}{\partial T}\right)_{P} = C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} \tag{38}$$