PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-237908

(43) Date of publication of application: 26.08.1992

(51)Int.CI.

H01B 13/00 H01B 1/22 H01B 5/14

(21)Application number: 03-018317

(71)Applicant: SUMITOMO METAL MINING CO

LTD

TOHOKU KAKO KK

(22)Date of filing:

18.01.1991

(72)Inventor: YUKINOBU MASAYA

CHIKUI YASUO

(54) FILM FORMING METHOD FOR TRANSPÄRENT CONDUCTIVE FILM

PURPOSE: To provide a transparent conductive film forming method by which both electrical characteristics and optical characteristics especially of an ITO transparent conductive film can be improved.

CONSTITUTION: A paste made in such a way that super fine particle powder of indium-tin oxide particles is dispersed in a solvent together with a resin is applied or printed onto a resin film, and is subjected to a rolling process by a steel roller, after drying.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-237908

(43)公開日 平成4年(1992)8月26日

(51) Int.Cl.*

ŞĒ

識別記号 庁内整理番号

FΙ

技術表示箇所

HO1B 13/00

5 0 3 B 7244-5G

1/22

A 7244-5G

5/14

A 7244-5G

審査請求 未請求 請求項の数3(全 5 頁)

(21)出願番号

特願平3-18317

(71)出願人 000183303

住友金属鉱山株式会社

平成3年(1991)1月18日 (22)出願日

東京都港区新橋5丁目11番3号

(71)出顧人 000221959

東北化工株式会社

宫城県仙台市太白区郡山6丁目7番1号

(72)発明者 行延 雅也

愛媛県新居浜市王子町1-7

(72)発明者 筑井 泰夫

栃木県那須郡南那須町田野倉17

(74)代理人 弁理士 篠原 秦司 (外1名)

(54) 【発明の名称】 透明導電膜の成膜方法

(57)【要約】

【目的】本発明の目的は、特にITO透明導電膜の電気 的特性及び光学特性の双方を改善し得る透明導電膜の成 膜方法を提供することである。

【構成】本発明による透明導電膜の成膜方法は、インジ ウム錫酸化物粒子の超微粒子粉を樹脂と共に溶剤中に分 散せしめて成るペーストを樹脂フィルム上に塗布又は印 **馴し、更に乾燥して後、スチールロールによって圧延処** 理を施すことにより行われる。

【請求項1】 インジウム錫酸化物粒子の超微粒子粉を 樹脂と共に溶剤中に分散せしめて成るペーストを樹脂フィルム上に塗布又は印刷し、更に乾燥して後、スチール ロールによって圧延処理を施して成る透明導電膜の成膜 方法。

【請求項2】 上記ペーストの固形成分中の上記インジウム錫酸化物粒子の体積含有率が60~80パーセントであることを特徴とする請求項1に記載の透明導電膜の成膜方法。

【請求項3】 上記スチールロールによる圧延処理における線圧力を300キログラム毎センチメートル以上に設定して行うことを特徴とする請求項1に記載の透明導 電膜の成膜方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、特にインジウム錫酸化物粒子(以下、ITOという)の透明導電膜を形成するための方法に関する。

[0002]

【従来の技術】一般に、この種の透明導電膜は液晶表示 装置等の各種表示装置における電極として広く用いられ ている。そして通常、ポリエステル等の樹脂フィルム上 に形成されるITO透明導電膜はマグネトロンスパッタ 法等のドライプロセスにより成膜される。ところが、上 記スパッタ法は真空状態下で行われるため、高価な装置 が必要になるばかりか、生産性が低い。そこで従来かか るスパッタ法の代わりに所謂、ペースト法によるこの種 成膜方法の技術が開発されている。

【0003】即ちこのペースト法はITO微粒子を樹脂及び分散剤と一緒に溶剤中に均一に分散せしめてペースト状にし、これを基板上に塗布した後乾燥せしめることにより成膜する方法である。このペースト法によれば、ITO透明導電膜を安価に形成することができる上に、製造工程における歩留りが高くなり生産性を向上することができる。

[0004]

【発明が解決しようとする課題】しかしながら、かかる 従来のペーストでは、形成された導電膜の導電原では I T O 微粒子相互の接近作用によって行われるものできるため、前記スパッタ法に比べて電気的抵抗値が大きる と共に導電膜の膜厚が厚くなっても気が (1~3 μ m を 達 度) という問題があった。 又、導電膜の表面 散 の 世 の という問題があった。 以 等 によって 光の 散 の という の ため 導電膜の 全 光線 透過 率 及び へーズ むしまう な 透明 電極として はも は や 実用 化する こ か できないという 不都合が あった。 尚 、 単 な る 帯電 防 できないという 不都合が あった。 尚 、 単 な る 帯 電 防 できないという 不都合が あった。 尚 、 単 な る 帯 電 防 できないという 不都合が あった。 尚 、 単 な る 帯 電 防 できないという 不都合が あった。 尚 、 単 な る 帯 電 防 できないという 不都 合 が あ った。 尚 、 単 な る 帯 電 防 できないという 不都 合 が あ った。 尚 、 単 な る 帯 電 防 できないという 不 が 低 い 場 合 の 用 途 は 残 さ れ て いる。

【0005】本発明はかかる実情に鑑み、導電膜の電気 的特性及び光学特性の双方を改善し得る透明導電膜の成 膜方法を提供することを目的とする。

2

[0006]

【課題を解決するための手段】本発明による透明導電膜の成膜方法は、「TOの超微粒子粉を樹脂・溶剤に分散せしめて成るペーストを樹脂フィルム上に塗布又は印刷し、更に乾燥して後、スチールロールによって圧延処理を施すことにより行われる。

10 【0007】ス、本発明方法において、上記ペーストの 固形成分中の上記 ITOの体積含有率が60~80%で ***

【0008】更に、本発明方法は、上記スチールロールによる圧延処理における線圧力を $300 \, k \, g \, f / c \, m$ 以上に設定して行われる。

[0009]

【作用】本発明によれば、先ず、透明導電膜を形成すべき ITOの超微粒子粉を用いて塗膜状にしたものをロールによって圧延することにより、ITO微粒子を緻密化 し、これにより形成された導電膜内のポイド(空隙)の発生を抑制することができる。又、かかるロールによる圧延処理により導電膜表面を平滑にし、この結果透明導電膜の電気的特性及び光学特性を改善することができる。尚、この場合、ITOの粒子径を、可視光線の波段に比べて小さく0、1μm以下にすることにより光の散乱をなくしている。

【0010】又、本発明によれば、塗布されるペースト の固形成分中のIT〇の含有率を所定比率に設定したこ とにより、かかる電気的特性及び光学特性を有効且つ大 幅に向上させることができる。即ち上記圧延処理を行う 30 際に緻密化されるITO粒子間の空隙を埋め尽くすだけ の樹脂を必要とするが、この場合、1TO粒子の量が多 すぎると樹脂がかかる空隙を完全に埋めることができ ず、従ってポイドが発生して光線透過率及びヘーズ値が 悪くなる上に所謂、ポーラスな導電膜になってしまいそ の強度が低下する。一方、ITO粒子の量が少なすぎる とかかるITO粒子よりも過剰に存在する樹脂によって ITO粒子同士の相互接近が妨げられ、この場合には導 電膜の光学的特性は良好であっても電気的特性を向上され 40 せることは出来ない。従って、ペーストの固形成分中の 樹脂とIT〇粒子との含有割合を最適にする必要がある が、このために本発明方法においてはITOの体積含有 率が60~80%に設定されている。

【0011】更に、本発明によれば、スチールロールによる圧延処理における線圧力を300kgf/cm以上に設定することにより、その上に導電膜が形成されるべき基板樹脂フィルムに機械的歪みを生じさせることなく、透明導電膜の電気的特性及び光学特性の双方を向上させることができる。

50 [0012]

.3

Ö

• 3.

【実施例】以下、本発明による透明導電膜の成膜方法の 一実施例を詳細に説明する。先ず、基板である樹脂フィ ルム上に塗布すべきペーストの構成成分である【TOの 超敵粒子粉は、錫含有量2. 8wt%で比表面積23m : /g. 平均粒径0.04μmのものを用いる。そして かかるITO超微粒子粉をアクリル樹脂を混入した溶剤 中に分散せしめ、これによりアクリル樹脂系ペーストが 形成される。この場合、ペーストの固形成分中のITO 粒子の体積含有率としては、60~80%程度であるこ とが好ましいが、ここでは55%、60%、70%及び 75%の4種類のペーストを形成した。次に、各ペース トをスクリーン印刷法によりPETフィルム(厚さ10 0 μm) 上に印刷し、70°Cで30分間赤外線により 加熱して乾燥せしめるが、いずれのペーストの場合も1 2 cm×15cm程度の広さの印刷領域を形成して行っ た。尚、上記樹脂としては、熱可塑性のアクリル樹脂や ポリエステル樹脂を用い得る。又、上記溶剤としては、 ミネラルスピリッツ、n-プチルアルコール、ミクロへ キシルアルコール、ブチルカルピノニルアセテート、ブ チルセロソルブ、酢酸エチル、メチルエチルケトン、メ チルイソブチルケトン又はシクロヘキサノン等を用い得 る。

【0013】次に、樹脂フィルム上に上記スクリーン印 剔法によって塗布されたペーストはスチールロールによ って圧延処理されるが、このロール処理においてはその 表面がハードクロムメッキされた直径150mmの2本 のスチールロールを使用し、その処理スピードが10c m/秒となるようにかかるスチールロールの回転速度を 設定した。このスチールロールによる圧延処理を行う場 合、スチールロールの線圧力は300kgf/cm以上 30 に設定して行われるが、特に500~800kgf/c mの範囲が好ましい。これは、かかる線圧力が低過ぎる と所望の圧延効果を得ることができず、一方、線圧力が 高過ぎる場合には十分な圧延効果が得られて導電膜の電 気的特性及び光学特性を向上させることができるものの 基板である樹脂フィルムがスチールロールの圧力によっ て機械的に歪められてしまうため実用上使用し得なくな る。従って実用性を確保し且つ電気的特性等が向上する ようにするためには上記のようにスチールロールの線圧 カを所定の大きさに設定して行う必要がある.

【0014】又、上記スチールロールの圧延処理に際して同時に加熱処理を行い、樹脂を硬化せしめるが、このための加熱処理温度は基板樹脂フィルムが加熱により歪みを生じない温度範囲(100°C以下)に選定される。即ち導電膜の光学特性は加熱処理温度が高い程向上する傾向があり、一方、導電膜の表面抵抗は加熱処理温度が高過ぎると大きくなって電気的特性が低下する傾向があるため、光学特性及び電気的特性の双方を向上させるためには、加熱処理温度を適正に設定する必要がある。本発明によればそのような加熱処理を行うための温 50

度範囲は特に40~60° Cであることが好ましい。表面抵抗が上記のような傾向を示すのは、加熱処理温度が高くなると基板樹脂フィルムが加熱変形を来し、上記圧延処理により観密化されるべきITO粒子同士の相互接近が阻害されるためである。

【0015】スチールロールによる圧延処理時の線圧力及び加熱処理温度は上記のように設定されるが、これらの条件を適宜選定して前記4種類のペーストを用いて種々の透明導電膜を形成した。そしてその膜厚は約 $3\mu m$ になった。

【0016】次に上述した方法により形成された透明導電膜の電気的特性及び光学特性等についての測定結果を図1万至図4を参照して説明する。尚、これらの測定を行うに際してITO粒子の比表面積は米国カウンタークローム社製のQuantasorb QS-10により、又、強膜の全光線透過率及びヘーズ値(最価)はPETフィルムと一緒にスガ試験機株式会社製の直統ヘーズコンピュータHGM-ZDPにより、更に表面抵抗は透明導電膜が形成された上記PETフィルムを50mm×50mmの寸法に切り出した後三菱油化製のローレスタMCP-T400によりそれぞれ測定した。

【0017】図1及び図2はそれぞれITO粒子の体積 含有率が55%及び70%である2種類のペーストを用 いて透明導電膜を形成した場合の測定結果を示してい る。これらの図に記載されたグラフはスチールロールに よる圧延処理時の線圧力に対する電気的特性(表面抵 抗)及び光学特性(全光線透過率及びヘーズ値)の関係 を表している。又、図 3 は、図 1 及び図 2 により表され た測定結果に基いてスチールロールによる圧延処理時の 加熱処理温度 (25°C, 50°C及び80°C) に対 する電気的特性及び光学特性の関係を表したグラフであ る。ここで、電気的特性としての表面抵抗の具体的数値 は一応の目安として5000/口以下であることが好ま しく、従って図1から明らかなようにITO粒子の体積 含有率が55%の場合はかかる表面抵抗値として良好な 結果が得られない。一方、ITO粒子の体積含有率が7 0%の場合、図2から明らかなように線圧力が300k gf/cm以上であると表面抵抗が著しく減少すると共 にる全光線透過率及びヘーズ値等の光学特性も良好な数 値を示している。以上の測定結果によれば、少なくとも ITO粒子の体積含有率が70%の場合であってスチー ルロールによる圧延処理時の線圧力を300kgf/c m以上に設定することにより透明導電膜の電気的特性及 び光学特性の双方を向上させることができることが判明 した。又、ITO粒子の体積含有率が60%であるペー ストにより形成した透明導電膜の電気的特性及び光学特 性は、上記55%及び70%の場合の測定結果の略中間 値になり、又、ITO粒子の体積含有率が75%のペー ストの場合は上記70%の場合と路同様な数値になっ た。従ってIT〇粒子の体積含有率は60~80%程度 5

であることが電気的特性及び光学特性の双方を向上させる上で特に好ましい。

【0018】尚、図4はスチールロールによる圧延処理を複数回繰り返し行った場合の表面抵抗の変化を表したグラフであるが、図から明らかなように2回目以降の圧延処理によっては有効な表面抵抗の向上を期待し得ない。又、上記アクリル樹脂系ペーストの代わりに、PET樹脂系ペーストを用いて上記と同様に透明導電膜を形成した場合にも電気的特性及び光学特性の双方を向上させることができた。

[0019]

【発明の効果】上述したように、本発明方法によればこの種導電膜の電気的特性及び光学特性の双方を有効に向上させることができ、因みに表面抵抗5000/□以下、全光線透過率70%以上、ヘーズ値10%以下の優れた特性を有する1TO透明導電膜を形成することができた。又、かかる導電膜の膜厚を薄くすることにより、

[図1]

更に全光線透過率を高くすると共にヘーズ値を低くする ことができ、これにより種々の透明導電膜に対する応用 が可能である。

【図面の簡単な説明】

【図1】本発明方法により形成したITO粒子の体積含 有率55%のITO透明導電膜のロール線圧力に対する 電気的特性及び光学特性の関係を示すグラフである。

【図2】本発明方法により形成したITO粒子の体積含 有率70%のITO透明導電膜のロール線圧力に対する 10 電気的特性及び光学特性の関係を示すグラフである。

【図3】本発明方法により形成したITO粒子の体積含有率55%及び70%のITO透明導電膜のロール処理 温度に対する電気的特性及び光学特性の関係を示すグラフである。

【図4】本発明に係るロール処理回数に対する表面抵抗 の変化例を示すグラフである。

[図3]

