

AMENDED CLAIM SET:

1. (currently amended) An aromatic polyamic acid comprising composed only of a structural unit represented by the following general formula (1)

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms.

2. (currently amended) An aromatic polyamic acid according to claim 1, comprising: the structural unit represented by the general formula (1) composed only of a structural unit represented by the following general formula (1)

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms; and

a structural unit represented by the following general formula (2):

where Ar_3 represents a tetravalent organic group having one or more aromatic rings and Ar_4 represents a divalent organic group having one or more aromatic rings, the structural unit represented by the general formula (2) being never identical to the structural unit represented by the general formula (1),

wherein;

an abundance of the structural unit represented by the general formula (1) is in a range of from 10 to 90 mol%; and

an abundance of the structural unit represented by the general formula (2) is in a range of from 0 to 90 mol%.

3. (currently amended) An aromatic polyimide comprising composed only of a structural unit represented by the following general formula (3):

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms.

4. (currently amended) An aromatic polyimide according to claim 3, comprising the structural unit represented by the general formula (3) composed only of
a structural unit represented by the following general formula (3):

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms; and

a structural unit represented by the following general formula (4):

where Ar_3 represents a tetravalent organic group having one or more aromatic rings and Ar_4 represents a divalent organic group having one or more aromatic rings, the structural unit represented by the general formula (4) being never identical to the structural unit represented by the general formula (3),

wherein:

an abundance of the structural unit represented by the general formula (3) is in a range of from 10 to 90 mol%; and

an abundance of the structural unit represented by the general formula (4) is in a range of from 0 to 90 mol%.

5. (previously presented) An aromatic polyimide according to claim 3 or 4, wherein at least part of each of Ar_1 in the general formula (3) or Ar_3 in the general formula (4) comprises at least one kind of an aromatic tetracarboxylic acid residue selected from the group consisting of pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic

dianhydride, 3,3",4,4"-p-terphenyltetracarboxylic dianhydride, 4,4'-oxydipthalic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and bis(2,3-dicarboxyphenyl)sulfonic dianhydride.

6. (original) An aromatic polyimide according to claim 3 or 4, which has an elastic modulus at 23°C of 2 to 10 GPa, a coefficient of moisture absorption of 1.0 wt% or less, a coefficient of humidity expansion at 0 to 50%RH of 10 ppm/%RH or less, and a coefficient of thermal expansion of 25 ppm/°C or less.

7. (previously presented) A method of producing the aromatic polyimide according to claim 3 or 4, comprising imidating an aromatic polyamic acid comprising a structural unit represented by the following general formula (1)

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms.

8. (previously presented) A method of producing the aromatic polyimide according to claim 3 or 4, comprising imidating an aromatic polyamic acid comprising:

a structural unit represented by the general formula (1)

where Ar_1 represents a tetravalent organic group having one or more aromatic rings and R represents a hydrocarbon group having 3 to 6 carbon atoms; and

a structural unit represented by the following general formula (2):

where Ar_3 represents a tetravalent organic group having one or more aromatic rings and Ar_4 represents a divalent organic group having one or more aromatic rings, the structural unit represented by the general formula (2) being never identical to the structural unit represented by the general formula (1),

wherein:

an abundance of the structural unit represented by the general formula (1) is in a range of from 10 to 90 mol%; and

an abundance of the structural unit represented by the general formula (2) is in a range of from 0 to 90 mol%.