PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/18904 (11) International Publication Number: **A2** C12N 15/00 (43) International Publication Date: 6 April 2000 (06.04.00) PCT/US99/22817 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, (21) International Application Number: BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, 30 September 1999 (30.09.99) (22) International Filing Date: KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, (30) Priority Data: UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, 09/164,220 30 September 1998 (30.09.98) US MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, 2 October 1998 (02.10.98) US 09/164,169 CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, (63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications GN, GW, ML, MR, NE, SN, TD, TG). 09/164,220 (CON) US Filed on 30 September 1998 (30.09.98) 09/164,169 (CON) Published US Filed on 2 October 1998 (02.10.98) With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority. (71) Applicant (for all designated States except US): MILLEN-NIUM BIOTHERAPEUTICS, INC. [US/US]; 620 Memorial Drive, Cambridge, MA 02139 (US). (72) Inventor; and (75) Inventor/Applicant (for US only): BARNES, Thomas, M. [AU/US]; 22 Hanson Street #2, Boston, MA 02118 (US).

(54) Title: SECRETED PROTEINS AND NUCLEIC ACIDS ENCODING THEM

(74) Agent: MEIKLEJOHN, Anita, L.; Fish & Richardson, P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

1	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
1	AM	Armenia ·	FI	Finland	LT	Lithuania	SK	Slovakia	
1	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
1	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
1	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
1	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
	ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
1	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
1	CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam	
1	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
1	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe	
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
	CM	Cameroon		Republic of Korea	PL	Poland			
	CN	China	KR	Republic of Korea	PT	Portugal			
1	CU	Cuba	KZ	Kazakstan	RO	Romania			
1	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
	DE	Germany	LI	Liechtenstein	SD	Sudan			
	DK	Denmark	LK	Sri Lanka	SE	Sweden			
1	EE	Estonia	LR	Liberia	SG	Singapore			

SECRETED PROTEINS AND NUCLEIC ACIDS ENCODING THEM

Related Application Information

This application is a continuation-in-part of application serial number 09/164,169, filed October 2, 1998, which is a continuation-in-part of application serial number 09/164,220, filed September 30, 1998.

Background of the Invention

Many secreted proteins, for example, cytokines and cytokine receptors, play a vital role in the regulation of cell growth, cell differentiation, and a variety of specific cellular responses. A number of medically useful proteins, including erythropoietin, granulocytemacrophage colony stimulating factor, human growth hormone, and various interleukins, are secreted proteins. Thus, an important goal in the design and development of new therapies is the identification and characterization of secreted and transmembrane proteins and the genes which encode them.

Many secreted proteins are receptors which bind a ligand and transduce an intracellular signal, leading to a variety of cellular responses. The identification and characterization of such a receptor enables one to identify both the ligands which bind to the receptor and the intracellular molecules and signal transduction pathways associated with the receptor, permitting one to identify or design modulators of receptor activity, e.g., receptor agonists or antagonists and modulators of signal transduction.

Summary of the Invention

The present invention is based, at least in part, on the discovery of cDNA molecules encoding TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO
186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215, all
of which are predicted to be either wholly secreted or
transmembrane proteins. These proteins, fragments,
derivatives, and variants thereof are collectively
referred to as "polypeptides of the invention" or
"proteins of the invention." Nucleic acid molecules
encoding polypeptides of the invention are collectively
referred to as "nucleic acids of the invention."

10 The nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes. Accordingly, in one aspect, the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or 15 a biologically active portion thereof. The present invention also provides nucleic acid molecules which are suitable as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.

The invention features nucleic acid molecules which are at least 45% (or 55%, 65%, 75%, 85%, 95%, or 98%) identical to the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43 and _____ or the nucleotide sequence of the cDNA of a clone deposited with ATCC as any of Accession Numbers 98899, 98900 and 98901 (the "cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001"), or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 300 (325, 350, 375, 400, 30 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1200) nucleotides of the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43 and ____ or the nucleotide sequence of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 45% (or 55%, 65%, 75%, 85%, 95%, or 98%) identical to the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or the amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof.

In preferred embodiments, the nucleic acid molecules

10 have the nucleotide sequence of any of SEQ ID NOs:1-22,

34-43 and __ - __ or the nucleotide sequence of the cDNA

of a clone deposited as any of ATCC 98899, 98900, and

989001.

Also within the invention are nucleic acid molecules

which encode a fragment of a polypeptide having the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and _____ the fragment including at least 15 (25, 30, 50, 100, 150, 300, or 400) contiguous amino acids of any of SEQ ID Nos:23-33, 54-63, and ____ or the polypeptide encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001.

The invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, wherein the nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having a nucleic acid sequence

30 encoding any of SEQ ID NOs:22-33, 54-63, and _____, or a complement thereof.

Also within the invention are: isolated polypeptides or proteins having an amino acid sequence that is at least about 65%, preferably 75%, 85%, 95%, or 98% identical to

- 4 -

the amino acid sequence of any of SEQ ID NOs: 22-33, 54-63, and _____.

Also within the invention are: isolated polypeptides or proteins which are encoded by a nucleic acid molecule

5 having a nucleotide sequence that is at least about 65%, preferably 75%, 85%, or 95% identical the nucleic acid sequence encoding any of SEQ ID Nos:22-33, 54-63, and _____ and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide

10 sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the sequence of any of SEQ ID NOs:1-22, 34-43, and _____, and a complement thereof or the non-coding strand of the cDNA of a clone deposited as any of ATCC 98899, 98900, and

15 989001.

Also within the invention are polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of any of SEQ ID NOs:22-33, 54-63, and __ - __ or an amino acid sequence encoded by the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule having the sequence of any of SEQ ID NOs:1-22, 34-43, and __ - or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and _____, of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 300 (325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1290) nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the

- 5 -

nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and

of the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof. In preferred embodiments, the isolated nucleic acid molecules encode a cytoplasmic, transmembrane, or extracellular domain of a polypeptide of the invention. In another embodiment, the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.

Another aspect of the invention provides vectors, e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention. In another embodiment the invention provides host cells containing such a vector. The invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention containing a recombinant expression vector encoding a polypeptide of the invention such that the polypeptide of the invention is produced.

Another aspect of this invention features isolated or 20 recombinant proteins and polypeptides of the invention. Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally-occurring human polypeptide. An activity, a 25 biological activity, and a functional activity of a polypeptide of the invention refers to an activity exerted by a protein or polypeptide of the invention on a responsive cell as determined in vivo, or in vitro, according to standard techniques. Such activities can be 30 a direct activity, such as an association with or an enzymatic activity on a second protein or an indirect activity, such as a cellular signaling activity mediated by interaction of the protein with a second protein. Thus, such activities include, e.g., (1) the ability to 35 form protein-protein interactions with proteins in the

PCT/US99/22817 WO 00/18904

- 6 -

signaling pathway of the naturally-occurring polypeptide; (2) the ability to bind a ligand of the naturally-occurring polypeptide; (3) the ability to bind to an intracellular target of the naturally-occurring 5 polypeptide. Other activities include: (1) the ability to modulate cellular proliferation; (2) the ability to modulate cellular differentiation; and (3) the ability to modulate cell death.

In one embodiment, a polypeptide of the invention has 10 an amino acid sequence sufficiently identical to an identified domain of a polypeptide of the invention. As used herein, the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent 15 (e.q., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity. For example, amino acid or 20 nucleotide sequences which contain a common structural domain having about 65% identity, preferably 75% identity, more preferably 85%, 95%, or 98% identity are defined herein as sufficiently identical.

In one embodiment, the isolated polypeptide of the 25 invention lacks both a transmembrane and a cytoplasmic domain. In another embodiment, the polypeptide lacks both a transmembrane domain and a cytoplasmic domain and is soluble under physiological conditions.

The polypeptides of the present invention, or 30 biologically active portions thereof, can be operably linked to a heterologous amino acid sequence to form fusion proteins. The invention further features antibodies that specifically bind a polypeptide of the invention such as monoclonal or polyclonal antibodies.

35 In addition, the polypeptides of the invention or

- 7 -

biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.

In another aspect, the present invention provides

5 methods for detecting the presence of the activity or
expression of a polypeptide of the invention in a
biological sample by contacting the biological sample
with an agent capable of detecting an indicator of
activity such that the presence of activity is detected

10 in the biological sample.

In another aspect, the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or stimulates) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated. In one embodiment, the agent is an antibody that specifically binds to a polypeptide of the invention.

In another embodiment, the agent modulates expression
of a polypeptide of the invention by modulating
transcription, splicing, or translation of an mRNA
encoding a polypeptide of the invention. In yet another
embodiment, the agent is a nucleic acid molecule having a
nucleotide sequence that is antisense to the coding
strand of an mRNA encoding a polypeptide of the
invention.

The present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant 30 expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject. In one embodiment, the modulator is a protein of the invention. In another embodiment, the

- 8 -

modulator is a nucleic acid of the invention. In other embodiments, the modulator is a peptide, peptidomimetic, or other small molecule.

The present invention also provides diagnostic assays

5 for identifying the presence or absence of a genetic
lesion or mutation characterized by at least one of: (i)
aberrant modification or mutation of a gene encoding a
polypeptide of the invention, (ii) mis-regulation of a
gene encoding a polypeptide of the invention, and (iii)

10 aberrant post-translational modification of a polypeptide
of the invention wherein a wild-type form of the gene
encodes a polypeptide having the activity of the
polypeptide of the invention.

In another aspect, the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention. In general, such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.

The invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

Brief Description of the Drawings

Figure 1 depicts the cDNA sequence (SEQ ID NO:1) and predicted amino acid sequence (SEQ ID NO:23) of human TANGO 180.

Figure 2 depicts the cDNA sequence (SEQ ID NO:34) and predicted amino acid sequence (SEQ ID NO:54) of murine TANGO 180.

Figure 3 depicts the cDNA sequence (SEQ ID NO:2) and 5 predicted amino acid sequence (SEQ ID NO:24) of human TANGO 181.

Figure 4 depicts the partial cDNA sequence (SEQ ID NO:35; partial) and predicted amino acid sequence (SEQ ID NO:55; partial) of murine TANGO 181.

10 Figure 5 depicts the cDNA sequence (SEQ ID NO:3) and predicted amino acid sequence (SEQ ID NO:25) of human TANGO 182.

Figure 6 depicts the partial cDNA sequence (SEQ ID NO:36; partial) and predicted amino acid sequence (SEQ ID NO:56; partial) of murine TANGO 182.

Figure 7 depicts the cDNA sequence (SEQ ID NO:4) and predicted amino acid sequence (SEQ ID NO:26) of human TANGO 183.

Figure 8 depicts the cDNA sequence (SEQ ID NO:37) and 20 predicted amino acid sequence (SEQ ID NO:57) of murine TANGO 183.

Figure 9 depicts the cDNA sequence (SEQ ID NO:5) and predicted amino acid sequence (SEQ ID NO:27) of human TANGO 184.

25 Figure 10 depicts the cDNA sequence (SEQ ID NO:38) and predicted amino acid sequence (SEQ ID NO:58) of murine TANGO 184.

Figure 11 depicts the cDNA sequence (SEQ ID NO:6) and predicted amino acid sequence (SEQ ID NO:28) of human 30 TANGO 185.

Figure 12 depicts the cDNA sequence (SEQ ID NO:39) and predicted amino acid sequence (SEQ ID NO:59) of murine TANGO 185.

Figure 13 depicts the cDNA sequence (SEQ ID NO:7) and predicted amino acid sequence (SEQ ID NO:29) of human TANGO 186.

Figure 14 depicts the cDNA sequence (SEQ ID NO:40) and 5 predicted amino acid sequence (SEQ ID NO:60) of murine TANGO 186.

Figure 15 depicts the cDNA sequence (SEQ ID NO:8) and predicted amino acid sequence (SEQ ID NO:30) of human TANGO 188.

Figure 16 depicts the cDNA sequence (SEQ ID NO:41) and 10 predicted amino acid sequence (SEQ ID NO:61) of murine TANGO 188.

Figure 17 depicts the cDNA sequence (SEQ ID NO:9) and predicted amino acid sequence (SEQ ID NO:31) of human 15 TANGO 189.

Figure 18 depicts the cDNA sequence (SEQ ID NO:42) and predicted amino acid sequence (SEQ ID NO:62) of murine TANGO 189.

Figure 19 depicts the cDNA sequence (SEQ ID NO:10) and 20 predicted amino acid sequence (SEQ ID NO:32) of human TANGO 215.

Figure 20 depicts the cDNA sequence (SEQ ID NO:11) and predicted amino sequence of human TANGO 187-1/3 (SEQ ID NO:22).

Figure 21 depicts the cDNA sequence (SEQ ID NO:43; 25 partial) and predicted amino acid sequence of murine TANGO 187 (SEQ ID NO:63; partial).

Figure 22 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:23) and murine (SEQ ID 30 NO:54) TANGO 180.

Figure 23 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:24) and murine (SEQ ID NO:55; partial) TANGO 181.

Figure 24 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:25) and murine (SEQ ID NO:5; partial) TANGO 182.

Figure 25 depicts an alignment of the predicted amino 5 acid sequences of human (SEQ ID NO:26) and murine (SEQ ID NO:57) TANGO 183.

Figure 26 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:27) and murine (SEQ ID NO:58) TANGO 184.

10 Figure 27 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:28) and murine (SEQ ID NO:59) TANGO 185.

Figure 28 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:29) and murine (SEQ ID NO:60) TANGO 186.

Figure 29 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:30) and murine (SEQ ID NO:61) TANGO 188.

Figure 30 depicts an alignment of the predicted amino 20 acid sequences of human (SEQ ID NO:31) and murine (SEQ ID NO:62) TANGO 189.

Figure 31 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:33) and murine (SEQ ID NO:63; partial) TANGO 187.

25 Figure 32 depicts an alignment of the cDNA sequences of human (SEQ ID NO:1) and murine (SEQ ID NO:34) TANGO 180.

Figure 33 depicts an alignment of the cDNA sequences of human (SEQ ID NO:2) and murine (SEQ ID NO:35; partial) TANGO 181.

Figure 34 depicts an alignment of the cDNA sequences of human (SEQ ID NO:3) and murine (SEQ ID NO:36; partial)

TANGO 182.

Figure 35 depicts an alignment of the cDNA sequences of human (SEQ ID NO:4) and murine (SEQ ID NO:37) TANGO 183.

Figure 36 depicts an alignment of the cDNA sequences of human (SEQ ID NO:5) and murine (SEQ ID NO:38) TANGO 184.

Figure 37 depicts an alignment of the cDNA sequences of human (SEQ ID NO:6) and murine (SEQ ID NO:39) TANGO 185.

Figure 38 depicts an alignment of the cDNA sequences of human (SEQ ID NO:7) and murine (SEQ ID NO:40) TANGO 186.

Figure 39 depicts an alignment of the cDNA sequences of human (SEQ ID NO:8) and murine (SEQ ID NO:41) TANGO 188.

Figure 40 depicts an alignment of the cDNA sequences of 10 human (SEQ ID NO:9) and murine (SEQ ID NO:42) TANGO 189.

Figure 41 depicts an alignment of the cDNA sequences of human (SEQ ID NO:11) and murine (SEQ ID NO:43; partial) TANGO 187.

Figure 42 depicts an alignment of the amino acid
15 sequences of human TANGO 181 (SEQ ID NO:24), murine TANGO
181 (SEQ ID NO:55; partial), human TANGO 182 (SEQ ID
NO:25), and murine TANGO 182 (SEQ ID NO:56; partial).

Figure 43 depicts an alignment of the amino acid sequences of human TANGO 184 (SEQ ID NO:27) and human 20 TANGO 183 (SEQ ID NO:26).

Figure 44 depicts an alignment of the amino acid sequences of murine TANGO 184 (SEQ ID NO:58) and murine TANGO 183 (SEQ ID NO:57).

Figure 45 depicts and alignment of the amino acid
25 sequences of human TANGO 180 (SEQ ID NO:23), murine TANGO
180 (SEQ ID NO:54), agkistrodon PLA2 (SQ ID NO:109),
acanthahis PLA2 (SEQ ID NO:110), and bovine PLA2 (SEQ ID
NO:111).

Figure 46 depicts the cDNA sequence (SEQ ID NO:__) and 30 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1.

Figure 47 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-2/3.

Figure 48 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2/3.

Figure 49 depicts the cDNA sequence (SEQ ID NO:__) and 5 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2.

Figure 50 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-2.

Figure 51 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-3.

Figure 52 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 15 187.

Figure 53 depicts a complete cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of murine TANGO 181.

Figure 54 depicts a complete cDNA sequence (SEQ ID 20 NO:__) and predicted amino acid sequence (SEQ ID NO:__) of murine TANGO 182.

Figure 55 depicts a complete cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of murine TANGO 187.

25 Figure 56 depicts a complete cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of murine TANGO 215.

Detailed Description of the Invention

The present invention is based on the discovery of cDNA molecules encoding TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189, TANGO 215, and TANGO 187, all of which are predicted to be either wholly secreted or transmembrane proteins.

- 14 -

TANGO 180

The human TANGO 180 cDNA of SEQ ID NO:1 has a 567 nucleotide open reading frame (SEQ ID NO:12) encoding a 189 amino acid protein (SEQ ID NO:23). The cDNA and 5 protein sequences of human TANGO 180 are shown in Figure 1.

Human TANGO 180 is predicted to be a wholly secreted protein having a 22 amino acid signal sequence (amino acids 1 - 22 of SEQ ID NO:23; SEQ ID NO:64) followed by a 10 167 amino acid mature protein (amino acids 23 - 189 of SEQ ID NO:23; SEQ ID NO:76). TANGO 180 is predicted to have a molecular weight of 21.0 kDa prior to cleavage of its signal peptide and a molecular weight of 18.5 kDa subsequent to cleavage of its signal peptide.

- The murine TANGO 180 of SEQ ID NO:34 has a 576 nucleotide open reading frame (SEQ ID NO:44) encoding a 192 amino acid protein (SEQ ID NO:54). The cDNA and protein sequences of murine TANGO 180 are shown in Figure 2.
- Figure 22 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:23) and murine (SEQ ID NO:54) TANGO 180 (88.7% identity). Figure 32 depicts an alignment of the cDNA sequences of human (SEQ ID NO:1) and murine (SEQ ID NO:34) TANGO 180 (55% identity).
- Northern analysis of human TANGO 180 mRNA expression revealed the presence of two major transcripts (1.3 and 5.25 kb) and three minor transcripts (0.95, 1.8, and 4.15 kb). This analysis also revealed that all five transcripts are expressed at a low level in placenta,
- 30 lung, and liver; that the 1.3 and the 5.25 kb transcripts are expressed at a moderate level in brain and kidney; that the 5.25 kb transcript is expressed at a moderate level in heart, skeletal muscle, and pancreas; and that the 1.3 kb transcript is expressed at a high level in
- 35 heart, skeletal muscle, and pancreas.

- 15 -

In situ expression analysis of TANGO 180 in adult
murine tissue revealed no significant expression in
bladder, pancreas, heart, thymus, kidney, brain, colon,
placenta, eye, liver, spleen, lung, skeletal
muscle/diaphram, or small intestine. In situ expression
analysis of murine embryonic tissue revealed expression

- analysis of murine embryonic tissue revealed expression in the liver at E13.5 through E16.5. Liver expression was also observed, although at a lower level, at E17.5 and P1.5.
- TANGO 180 maps to human chromosome location 4q25.

 TANGO 180 is predicted to have a phospholipase A2
 histidine active site domain at amino acids 106-113 of
 SEQ ID NO:23 and a phospholipase A2 aspartic acid active
 site-like domain at amino acids 124-131 of SEQ ID NO:23.
- An apparent genomic sequence of TANGO 180 appears at GenBank Accession Number AC004067.

Human TANGO 180 bears some similarity to a number of C. elegans proteins.

TANGO 180 bears some similarity to a number of known phospholipase A2 (PLA2) proteins (Lambeau et al. (1994) J. Biol. Chem. 269:1575-78; Lambeau et al. (1995) J. Biol. Chem. 270:5534-40). TANGO 180 may play a role similar to that of a phospholipase A2. Figure 45 depicts and alignment of the amino acid sequences of human TANGO 180 (SEQ ID NO:23), murine TANGO 180 (SEQ ID NO:54), agkistrodon PLA2 (SQ ID NO:109), acanthahis PLA2 (SEQ ID NO:110), and bovine PLA2 (SEQ ID NO:111). There are thought to be at least two important regions within many PLA2's: CCXXHCCX (hisitidine at active site) and LIVMACLIVMFYWPCSTCDXXXXXC (aspratic acid active site). Various phospholipase A2 proteins are thought to be

Various phospholipase A2 proteins are thought to be involved in inflammation. Moreover, it appears that the expression and synthesis of at least some phospholipase A2 proteins are induced by pro-inflammatory modulators such as interleukin-1, interleukin-6, and tumor necrosis

- 16 -

factor. Thus, TANGO 180 may be involved in inflammation,
e.g., arthritis, endotoxic shock, peritonitis, psoriasis,
acute pancreatitis, and respiratory distress syndrome.
Accordingly, TANGO 180 nucleic acid molecules and
5 polypeptides as well as anti-TANGO 180 antibodies and
modulators of TANGO 180 expression or activity may be
useful in the treatment of such disorders. Moreover,
PLA2's have been implicates in digestion, airway
contraction, smooth muslce contraction, fertilization,
10 and cell proliferation. Thus, TANGO 180 nucleic acid
molecules and polypeptides as well as anti-TANGO 180
antibodies and modulators of TANGO 180 expression or
activity may be useful in the treatment of disorders of
digestion, airway contraction, smooth muslce contraction,
15 fertilization, and cell proliferation.

TANGO 181

The human TANGO 181 cDNA of SEQ ID NO:2 has a 1017 nucleotide open reading frame (SEQ ID NO:12) encoding a 339 amino acid protein (SEQ ID NO:23). The cDNA and 20 protein sequences of human TANGO 181 are shown in Figure 3.

Human TANGO 181 is predicted to be a secreted protein having a 22 amino acid signal sequence (amino acids 1 - 22 of SEQ ID NO:24; SEQ ID NO:65) followed by a 317 amino acid mature protein (amino acids 23 - 339 of SEQ ID NO:24; SEQ ID NO:77). TANGO 181 is predicted to have a molecular weight of 37.8 kDa prior to cleavage of its signal peptide and a molecular weight of 35.2 subsequent to cleavage of its signal peptide.

The murine TANGO 181 partial cDNA of SEQ ID NO:35 has a 747 nucleotide open reading frame (SEQ ID NO:45) encoding a 249 amino acid protein (SEQ ID NO:55). The partial cDNA and protein sequences of murine TANGO 181 are shown in Figure 4.

- 17 -

Figure 23 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:24) and murine (SEQ ID NO:55; partial) TANGO 181 (72.1% identity). Figure 33 depicts an alignment of the cDNA sequences of human (SEQ ID NO:2) and murine (SEQ ID NO:35; partial) TANGO 181 (65.4% identity). The pair of cysteines at amino acids 76 and 129 might be important for disulfide bond formation. The single cysteine at amino acid 262 might enable TANGO 181 to form homodimers (or heterodimers with TANGO 182).

The cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of a full-length murine TANGO 181 clone are shown in Figure 53.

Northern analysis of human TANGO 181 mRNA expression 15 revealed the presence of two transcripts (4.3 and 4.5 kb) expressed at a low level in heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas, with the level of expression in the pancreas being higher than in the other tissues.

Murine in situ expression analysis revealed that TANGO
181 is weakly expressed in adult brain (choroid plexus
and olfactory bulb). This analysis also revealed TANGO
180 expression in the liver and kidney (medulla). High
level TANGO 180 expression was observed in testis. This
25 analysis detected little or no expression of TANGO 181 in
adult liver, ovary, heart, lung, spleen, fat, muscle,
skin, stomach, duodenum, colon, pancreas, thymus,
pituitary, and eye. In situ expression analysis of
embryos revealed that TANGO 181 is ubiquitously expressed
30 at stages E12.5, E13.5, and E14.5.

TANGO 181 maps to human chromosome location 8p12. WI-5768 and AFMB057WG5 are markers which flank TANGO 181.

Nearby loci include WRN (Werner Syndrome) and SPG5A
(Spastic Paraplegia 5A), and nearby known genes include
35 FGFR1 (fibroblast growth factor receptor), STAR

(Steroidogenic acute regulatory protein), ANK1 (abkyrin 1), CALB1 (calbindin 1), CHRNB3 (cholinergic receptor, nicotinic). The human chromosomal location corresponds to a position on mouse chromosome 8 near fgfri (fibroblast growth factor receptor), cyrn (cyritesin 1), tissue plasminogen activator, and ank (ankyrin 1).

Within the 3' untranslated region of the human TANGO
181 cDNA described above is a 260 base pair sequence
(Genbank Accession Number Z36802) previously identified
10 as part of a gene that appears to be preferentially
expressed in pancreatic cancer and chronic pancreatitis
(Gress et al. (1996) Oncogene 13:1819-30). Thus, TANGO
181 nucleic acids and polypeptides may be useful for the
diagnosis and/or treatment of chronic pancreatitis and
15 pancreatic cancer (as well as other cancers). In
addition, modulators of TANGO 181 expression or activity
may be useful in the treatment of such disorders.

TANGO 181 and TANGO 182 are highly homologous to teh C. elegans protein C42C1.9

20 TANGO 182

The human TANGO 182 cDNA of SEQ ID NO:3 has a 1044 nucleotide open reading frame (SEQ ID NO:14) encoding a 348 amino acid protein (SEQ ID NO:25). The cDNA and protein sequences of human TANGO 182 are shown in Figure 5.

Human TANGO 182 is predicted to be a secreted protein having a 23 amino acid signal sequence (amino acids 1 - 23 of SEQ ID NO:25; SEQ ID NO:66) followed by a 325 amino acid mature protein (amino acids 24 - 348 of SEQ ID 30 NO:25; SEQ ID NO:78). TANGO 182 is predicted to have a molecular weight of 39.2 kDa prior to cleavage of its signal peptide and a molecular weight of 36.1 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 182 partial cDNA of SEQ ID NO:36 has an 825 nucleotide open reading frame (SEQ ID NO:46) encoding a 275 amino acid protein (SEQ ID NO:56). The partial cDNA and protein sequences of murine TANGO 182

5 are shown in Figure 6. Figure 24 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:25) and murine (SEQ ID NO:56; partial) TANGO 182

(75.1% identity). Figure 34 depicts an alignment of the cDNA sequences of human (SEQ ID NO:3) and murine (SEQ ID NO:36; partial) TANGO 182 (67.6% identity). The pair of cysteines at amino acids 78 and 130 might be important for disulfide bond formation. The single cysteine at amino acid 312 might enable TANGO 182 to form homodimers (or heterodimers with TANGO 181).

The cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of a full-length murine TANGO 182 clone are shown in Figure 54.

TANGO 182 maps to human chromosomal location 10q24 between markers D10S566 and D10S540. In mice, TANGO 182 20 maps to chromosome 10 bwtween D10S198 and D10S192 (129.8 to 131.2 cM).

Northern analysis of human TANGO 182 mRNA expression revealed the presence of a 2.8 kb transcript that is expressed at a high level placenta and a somewhat lower level in liver, kidney, and pancreas. This transcript is expressed at a low level in heart, brain, lung, and skeletal muscle.

Murine in situ expression analysis revealed that TANGO 182 is expressed at a high level in testis in adult mice.

30 Little or no expression was detected in adult brain, liver, kidney, ovary, heart, lung, spleen, fat, muscle, skin, stomach, duodenum, colon, pancreas, thymus, pituitary, or eye by in situ analysis. In situ

- 20 -

expression analysis of embryos revealed ubiquitous, low level expression at stages E12.5, E13.5, and E14.5.

Both human and mouse TANGO 182 are quite similar to human and murine TANGO 181 at the amino acid level 5 (Figure 42). Thus, TANGO 182, like TANGO 181, may be useful for the diagnosis and/or treatment of pancreatic cancer and chronic pancreatitis as well as other cancers. In addition, TANGO 182 bears some similarity to a C. elegans protein C42C1.9 (Genbank Accession Number 10 AF043695) that is encoded by a gene that is present in the same operon as a gene encoding a mitochondrial carrier protein. Since genes within the same operon are often co-regulated and encode proteins involved in the same physiological state, TANGO 182 may play a role in 15 metabolism. Thus, TANGO 182 nucleic acids and polypeptides as well as antibodies directed against TANGO 182 may be useful in the diagnosis and treatment of metabolic disorders. In addition, modulators of TANGO 182 expression or activity may be useful in the treatment

20 of such disorders.

TANGO 183

The human TANGO 183 cDNA of SEQ ID NO:4 has a 549 nucleotide open reading frame (SEQ ID NO:15) encoding a 183 amino acid protein (SEQ ID NO:26). The cDNA and 25 protein sequences of human TANGO 183 are shown in Figure 7

Human TANGO 183 is predicted to be a transmembrane protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:26; SEQ ID NO:67) followed by a 30 163 amino acid mature protein (amino acids 21 - 183 of SEQ ID NO:26; SEQ ID NO:79) having a 69 amino acid extracellular domain (amino acids 21 - 89 of SEQ ID NO:26; SEQ ID NO:88), a 23 amino acid transmembrane domain (amino acids 90 - 112 of SEQ ID NO:26; SEQ ID

- 21 -

NO:94), and a 71 amino acid cytoplasmic domain (amino acids 113 - 183 of SEQ ID NO 26; SEQ ID NO: 102). There are 8 conserved cysteines in the extracellular domain. TANGO 183 has a high porportion of charged amino acids in the predicted extracellular (18%, not including histidines) and cytoplasmic (32%) domains. Human TANGO 183 is predicted to have a molecular weight of 20.6 kDa prior to cleavage of its signal peptide and a molecular weight of 18.1 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 183 cDNA of SEQ ID NO:37 has a 549 nucleotide open reading frame (SEQ ID NO:47) encoding a 183 amino acid protein (SEQ ID NO:57). The cDNA and protein sequences of murine TANGO 183 are shown in Figure 15 8.

Figure 25 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:26) and murine (SEQ ID NO:57) TANGO 183 (97.3% identity). Figure 35 depicts an alignment of the cDNA sequences of human (SEQ ID NO:4) and murine (SEQ ID NO:37) TANGO 183 (71.7% identity). The conserved cysteine residues are particularly important and are preferably retained in functional variants.

Northern analysis of human TANGO 183 mRNA expression 25 revealed the presence of a 1.6 kb transcript that is expressed at a high level in brain, kidney, pancreas, and heart; at a moderate level in liver and skeletal muscle, and at a low level in placenta and lung.

The nucleic acid sequence of TANGO 183 is related to a 30 sequence tagged site at chromosomal location 11p15.4, and TANGO may map to this site.

The predicted cytoplasmic domain of TANGO 183 has a relatively high number of charged residues (32%). This suggests that TANGO 183 may non-covalently, e.g., 35 electrostatically, associate with an intracellular

molecule such as a cytoskeletal component. Accordingly, TANGO 183 may itself be involved in maintaining the structural integrity of cells in which it is expressed. If so, aberrant TANGO 183 protein or aberrantly regulated 5 TANGO 183 could be involved in alterations in cellular morphology, e.g., alterations associated with metastasis. Accordingly, TANGO 183 nucleic acid molecules and polypeptides as well as anti-TANGO 183 antibodies and modulators of TANGO 183 expression or activity may be useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g., cancer, or cell migration, e.g., tumor metastasis.

TANGO 183 and TANGO 184 are related and may play similar functional roles. Figure 43 depicts an alignment of the amino acid sequences of human TANGO 184 (SEQ ID NO:27) and human TANGO 183 (SEQ ID NO:26). Figure 44 depicts an alignment of the amino acid sequences of murine TANGO 184 (SEQ ID NO:58) and murine TANGO 183 (SEQ ID NO:57).

TANGO 183 is related to C. elegans R12C12.6 (GenBank Accession NO. U23510).

TANGO 184

The human TANGO 184 cDNA of SEQ ID NO:5 has a 594 nucleotide open reading frame (SEQ ID NO:16) encoding a 25 198 amino acid protein (SEQ ID NO:27). The cDNA and protein sequences of human TANGO 184 are shown in Figure 9.

Human TANGO 184 is predicted to be a transmembrane protein having a 28 amino acid signal sequence (amino 30 acids 1 - 28 of SEQ ID NO:27; SEQ ID NO:68) followed by a 170 amino acid mature protein (amino acids 29 - 198 of SEQ ID NO:27; SEQ ID NO:80) having a 74 amino acid extracellular domain (amino acids 29 - 102 of SEQ ID NO: 27; SEQ ID NO:89), a 23 amino acid transmembrane domain

- 23 -

(amino acids 103 - 125 of SEQ ID NO:27; SEQ ID NO:95),
and a 73 amino acid cytoplasmic domain (amino acids 126 198 of SEQ ID NO 27; SEQ ID NO:103). TANGO 184 has a
high porportion of charged amino acids in the predicted

5 extracellular (31%) and cytoplasmic (29%) domains.
Notably, the transmembrane regions include charged
residues. Human TANGO 184 is predicted to have a
molecular weight of 22.5 kDa prior to cleavage of its
signal peptide and a molecular weight of 18.9 kDa
10 subsequent to cleavage of its signal peptide.

The murine TANGO 184 cDNA of SEQ ID NO:38 has a 357 nucleotide open reading frame (SEQ ID NO:48) encoding a 199 amino acid protein (SEQ ID NO:58). The cDNA and protein sequences of murine TANGO 184 are shown in Figure 15 10.

Figure 26 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:27) and murine (SEQ ID NO:58) TANGO 184 (94.5% identity). Figure 36 depicts an alignment of the cDNA sequences of human (SEQ ID NO:5) and murine (SEQ ID NO:38) TANGO 184 (63.8% identity).

Northern analysis of human TANGO 184 mRNA expression revealed the presence of a 2 kb transcript that is expressed at a high level in heart brain, placenta, skeletal muscle, kidney, and pancreas; and at a low level in lung and liver. There are two alternative polyA sites: nucleotide 1000 and nucleotide 2000.

In situ analysis of TANGO 184 expression in adult mice revel expression in the brain (moderate, ubiquitous expression), spinal cord (weak expression in the region of the grey matter) submandibular gland (strong, ubiquitous expression), stomach (weak expression in the muscle region), Kidney (weak, ubiquitous expression in the cortex and medulla, stronger expression in papilla), adrenal gland (weak ubiquitous expression), thymus (weak expression in cortex), lymph node (moderate ubiquitous

expression) spleen (weak expression in follicles), skeletal muscle/smooth muscle (diaphragm), testis (strong expression in the area surrounding the seminiferous tubules), ovaries (weak expression) placenta (moderate, 5 ubiquitous expression). This analysis did not reveal significant expression in white fat, brown fat, heart, lung, liver, pancreas, colon, small intestine, and bladder. In embryonic tissue, this analysis revealed expression at E13.5 (weak to moderate ubiquitous 10 expression with higher expression in the brain and liver), E14.5 (weak to moderate ubiquitous expression with higher expression in the brain and liver), E15.5 (moderate ubiquitous expression with higer expression in the brain), E16.5 (weak to moderate ubiquitous expression 15 with higher expression in the brain, spinal cord, brown fat, submandibular gland, lung, stomach, and intestines), E18.5 (weak to moderate ubiquitous expression with higher expression in the brain, spinal cord, brown fat, submandibular gland, lung, stomach, and intestines), and 20 P1.5 (weak ubiquitous expression with higer expression in brain, submandibular gland, olfactory epithelium, and stomach).

The predicted cytoplasmic domain of TANGO 184 has a relatively high number of charged residues (29%). This suggests that TANGO 184 may non-covalently, e.g., electrostatically, associate with an intracellular molecule such as a cytoskeletal component. Accordingly, TANGO 184 may itself be involved in maintaining the structural integrity of cells in which it is expressed.

30 If so, aberrant TANGO 184 protein or aberrantly regulated TANGO 184 could be involved in alterations in cellular morphology, e.g., alterations associated with metastasis. Accordingly, TANGO 184 nucleic acid molecules and polypeptides as well as anti-TANGO 184 antibodies and modulators of TANGO 184 expression or activity may be

useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g., cancer, or cell migration, e.g., tumor metastasis.

TANGO 185

The human TANGO 185 cDNA of SEQ ID NO:6 has a 579 nucleotide open reading frame (SEQ ID NO:17) encoding a 193 amino acid protein (SEQ ID NO:28). The cDNA and protein sequences of human TANGO 185 are shown in Figure 11

11. Human TANGO 185 is predicted to be a transmembrane 10 protein having a 24 amino acid signal sequence (amino acids 1 - 24 of SEQ ID NO:28; SEQ ID NO:69) followed by a 169 amino acid mature protein (amino acids 25 - 193 of SEQ ID NO:28; SEQ ID NO:81) having two extracellular 15 domains, one having 51 amino acids (amino acids 25 - 75 of SEQ ID NO:28; SEQ ID NO:90), and a second having 19 amino acids (amino acids 132 - 150 of SEQ ID NO:28; SEQ ID NO:91); three transmembrane domains, one having 27 amino acids (amino acids 76 - 102 of SEQ ID NO:28; SEQ ID 20 NO:96), a second having 22 amino acids (amino acids 110-131 of SEQ ID NO:28; SEQ ID NO:97), the third having 24 amino acids (amino acids 151 - 174 of SEQ ID NO:28; SEQ ID NO:98); and two cytoplasmic domains, one having 7 amino acids (amino acids 103 - 109 of SEQ ID NO:28; SEQ 25 ID NO:104), and a second having 19 amino acids (amino

25 ID NO:104), and a second having 19 amino acids (amino acids 175 - 193 of SEQ ID NO:28; SEQ ID NO:105). The predicted 22 amino acid transmembrane domain and the predicted 24 amino acid domain, along with the predicted 7 amino acid cytoplasmic domain may form one hydrophobic domain that passes through the membrane twice. TANGO 185 is predicted to have a molecular weight of 21.4 kDa prior

is predicted to have a molecular weight of 21.4 kDa prior to cleavage of its signal peptide and a molecular weight of 18.8 kDa subsequent to cleavage of its signal peptide. Notably, the transmembrane regions have charged residues.

- 26 -

The murine TANGO 185 cDNA of SEQ ID NO:39 has a 579 nucleotide open reading frame (SEQ ID NO:49) encoding a 193 amino acid protein (SEQ ID NO:59). The cDNA and protein sequences of murine TANGO 185 are shown in Figure 12.

Figure 27 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:28) and murine (SEQ ID NO:59) TANGO 185 (90.7% identity). Figure 37 depicts an alignment of the cDNA sequences of human (SEQ ID NO:6) and murine (SEQ ID NO:39) TANGO 185 (71.1% identity).

Human TANGO 185 maps to chromosome 6.

Northern analysis of human TANGO 185 mRNA expression revealed the presence of 2.2 kb major transcript and a 4.2 kb minor transcript. This analysis also revealed 15 that the 2.3 kb transcript is expressed at a high level in heart, placenta, and pancreas; at a moderate level in lung, liver, and kidney; and at a very low level, if at all, in brain and skeletal muscle. The 4.2 kb transcript is expressed at a low level in placenta.

In situ analysis of TANGO 185 expression in adult mice revealed expression in the brain (choroid plexus), submamandibular gland (ubiquitous expression), white fat (weak expression, possible mammary gland expression), stomach (mucosal epithelium), kidney (medulla-cortex transition and medullary rays), colon (weak expression in

the epithelium), small intestine (villi), thymus (low level expression), bladder (mucosal epithelium), and placenta (ubiquitous expression in decidua region). This analysis did not reveal significant expression in adult eye and harderian gland, brown fat, heart, lung, liver, spleen, pancreas, skeletal muscle, testes, and ovaries.

In situ analysis of TANGO 185 embryonic expression in
mice revealed expression at E13.5 (high level expression
the skin and submaxillary gland and low level ubiquitous
styression in the liver); E14.5 (high level expression in

- 27 -

the choroid plexus of the lateral and fourth ventricles, skin, epithelium of the oral cavity, follicles of vibrissa, submaxillary gland, stomach, and heart; expression in lung (especially the developing large airways) and liver (ubiquitous expression)). At E15.5 the observed expression pattern is nearly identical to that at E14.5 except that there is expression in the region outlining the intestinal tract and lung expression is ubiguitous with higher expression in the region outlining the large airways.

At E16.5 high level expression is observed in skin choroid plexus, the lining of the oral and nasal cavity, esophagus, bladder, stomach, intestine, large vessels of the heart, large airways of the lung, and the region outlining the vertebrae. Lower ubiquitous expression is present in the heart, lung and thymus. A somewhat higher, multifocal expression is present in the thymus.

At E18.5 the expression pattern is identical to that observed at E16.5 except that expression is also observed 20 in developing hair follicles.

At P1.5 the expression pattern is identical to that observed at E16.5 except that there is no long significant expression in the region outlining the vertebrae.

The expression pattern of TANGO 185 during eubryonic development suggests that TANGO 185 expression is strongly associated with squamous and mucosal epithelial cells.

The expression pattern of TANGO 185 suggests that it is involved in cell development and/or cell differentiation. Accordingly, TANGO 185 nucleic acid molecules and polypeptides as well as anti-TANGO 185 antibodies and modulators of TANGO 185 expression or activity may be useful in the treatment of disorders associated with aberrant cell development or cell differentiation, e.g.,

- 28 -

cancer. There is evidence that TANGO 185 is expressed in prostate cells. Thus, TANGO 185 nucleic acid molecules and polypeptides as well as anti-TANGO 185 antibodies and modulators of TANGO 185 expression or activity may be useful in the treatment of prostate cancer.

TANGO 186

The human TANGO 186 cDNA of SEQ ID NO:7 has a 1149 nucleotide open reading frame (SEQ ID NO:18) encoding a 383 amino acid protein (SEQ ID NO:29). The cDNA and 10 protein sequences of human TANGO 186 are shown in Figure 13.

Human TANGO 186 is predicted to be a secreted protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:29; SEQ ID NO:70) followed by a 363 amino acid mature protein (amino acids 21 - 383 of SEQ ID NO:29; SEQ ID NO:82). There are eight cysteines in mature TANGO 186. Some or all of these might be involved in disulfide bond formation. Human TANGO 186 is predicted to have a molecular weight of 43.0 kDa prior to cleavage of its signal peptide and a molecular weight of 40.3 kDa subsequent to cleavage of its signal peptide.

The murine TANGO 186 cDNA of SEQ ID NO:40 has a 1146 nucleotide open reading frame (SEQ ID NO:50) encoding a 382 amino acid protein (SEQ ID NO:60). The cDNA and 25 protein sequences of murine TANGO 186 are shown in Figure 14. Conserved cysteine residues are particularly important and are preferably retained in functional variants

Figure 28 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:29) and murine (SEQ ID NO:60) TANGO 186 (90.9% identity). Figure 38 depicts an alignment of the cDNA sequences of human (SEQ ID NO:7) and murine (SEQ ID NO:40) TANGO 186 (41.6% identity). The human and murine TANGO 186 proteins are highly

- 29 -

similar except within three portions: the signal sequence, a hinge region at amino acids 108-123, and a hinge region at amino acids 198-216. Within these three portions the proteins are only about 50% identical.

5 Outside of these three portions the proteins are about 97.3% identical.

TANGO 186 maps to human chromosome 11q14.

Northern analysis of human TANGO 186 mRNA expression revealed the presence of a 1.8 kb transcript and a 4 kb 10 transcript. Both transcripts are expressed at a low level in heart, lung, liver, skeletal muscle, kidney, and pancreas and at a very low level in brain.

In situ analysis of TANGO 186 in adult mice revealed
that TANGO 186 is expressed in brain (olfactory bulb),

- 15 spleen (low level ubiquitous signal), small intestine (very strong signal in villi and submucosa), colon (ubiquitous signal), kidney (cortical and medullary region), lung (bronchial epithelium), eye (iris and cornea), placenta (strong signal in the outer membrane).
- 20 This analysis did not detect expression in adult pancreas, heart, skeletal muscle, diaphragm, esophagus, liver, and thymus.

In situ expression analysis of murine embryonic sagittal sections revealed expression at stage E13.5 in epithelium of the lower and upper lip, cartilage primordium of basisphenoid bone, cartilage condensation of sacral vertebral body (centrum), small intestine, and heart. At stage E14.5, in addition to the expression observed at stage E13.5, expression was also observed in:

- 30 eye (or cartilage around eye), Meckel's cartilage, and cartilage of the limb digits. At stage E15.5 expression was observed in vibrissae of the snout, kidney (embryonic glomeruli), cartilage of the limb digits, cartilage of the vertebral column, heart, eye, and small intestine.
- 35 At stage E16.5 the observed expression pattern was

- 30 -

similar to that observed at E15.5, but there was a notable reduction in signal from cartilage, epithelium of upper and lower lip, and heart. Also at stage E16.5 low level signal was observed in the lung, and a strong 5 signal was still observed in the small intestine. At stage E17.5 expression of TANGO 186 was observed to be more ubiquitous. However, expression in cartilage was observed to decrease with the exception of ossification within cartilage primordium of body of mandible. 10 stage E17.5 strong expression continued to be observed in the small intestine. The expression pattern at stage P1.5 was observed to be very similar to that observed at stage E17.5 with expression being nearly ubiquitous with the notable exceptions of the brain and spinal cord in 15 which little or no expression was observed. At stage P1.5 the highest expression observed was in the in the small intestine, lung, and kidney.

Overall, the in situ expression analysis of adult and embryonic tissue revealed that expression is first 20 observed in the developing cartilage, small intestine, and heart with the cartilage expression being most striking in the developing vertebral column and jaw area. Strong expression in the cartilage of the vertebral column and developing digits was observed through stage 25 E16.5. Subsequently, cartilage expression was observed to decrease with some exceptions in the jaw area. Other embryonic tissue in which the observed expression was notable include the kidney, specifically the embryonic glomeruli, and the lung. These tissues continue to have 30 strong expression in the adult with expression in the kidney also being observed in the medullary region and lung expression becoming restricted to the bronchial epithelium. Expression of TANGO 186 becomes more ubiquitous through P1.5 with the most noticeable

- 31 -

exception being the brain and spinal cord. In the adult, however, signal is observed in the olfactory bulb.

In a murine LPS disease model, increasaed TANGO 186 expression was observed in the brain 2 and 8 hours after LPS treatment. Decrease TANGO 186 expression was observed at these same time points in the kidney. TANGO 186 expression was also observed in the gastric mucosa.

As discussed above, murine in situ expression analysis demonstrates that TANGO 186 is expressed in cartilage 10 throughout the embryo, suggesting that TANGO 186 is a regulatory molecule that plays a role in a bone formation (e.g., condensation of cartilage). Accordingly, TANGO 186 nucleic acid molecules and polypeptides as well as anti-TANGO 186 antibodies and modulators of TANGO 186 15 expression or activity may be useful in the diagnosis and treatment of bone and cartilage disorders (e.g., osteogenesis imperfecta and broken bones, cartilage degradation, and bone degradation). Moreover, many bone morphogenic proteins and TGF- β family members are 20 regulated by extracellular proteins, e.g., noggin and chordin. Thus, TANGO 186, which is expressed in the heart, may play a role in heart development, and TANGO 186 nucleic acid molecules and polypeptides as well as anti-TANGO 186 antibodies and modulators of TANGO 186 25 expression or activity may be useful in the diagnosis and treatment of developmental disorders of the heart, e.g., valve malformation.

There is some sequence similarity between TANGO 186 and a Bacillus serine protease. Thus, TANGO 186 may have 30 serine protease activity.

TANGO 188

The human TANGO 188 cDNA of SEQ ID NO:8 has a 792 nucleotide open reading frame (SEQ ID NO:19) encoding a 264 amino acid protein (SEQ ID NO:30). The cDNA and

- 32 -

protein sequences of human TANGO 188 are shown in Figure 15.

Human TANGO 188 is predicted to be a secreted protein having a 23 amino acid signal sequence (amino acids 1 - 5 23 of SEQ ID NO:30; SEQ ID NO:71) followed by a 241 amino acid mature protein (amino acids 24 - 264 of SEQ ID NO:30; SEQ ID NO:83). Human TANGO 188 is predicted to have a molecular weight of 29.5 kDa, prior to cleavage of its signal peptide.

- The murine TANGO 188 cDNA of SEQ ID NO:41 has an 807 nucleotide open reading frame (SEQ ID NO:51) encoding a 269 amino acid protein (SEQ ID NO:61). The cDNA and protein sequences of murine TANGO 188 are shown in Figure 16.
- Figure 29 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:30) and murine (SEQ ID NO:61) TANGO 188 (80.5% identity). Figure 39 depicts an alignment of the cDNA sequences of human (SEQ ID NO:8) and murine (SEQ ID NO:41) TANGO 188 (71.8% identity).
- TANGO 188 maps to human chromosome 16p13.3.

Northern analysis of human TANGO 188 mRNA expression revealed the presence of 2.0 kB transcript that is expressed at a low level in heart and pancreas and at a very low level, if at all, in brain, placenta, lung,

25 liver, skeletal muscle, and kidney.

In situ analysis of TANGO 188 expression in adult mice did not detect significant expression in in the bladder, placenta, pancreas, eye, heart, liver, thymus, spleen, kidney, lung, brain, skeletal muscle/diaphragm, colon, or small intestine. In situ analysis of TANGO 188 expression in embryos revealed no significant expression at 13.5, E14.5, E15.5, E16.5, E17.5, or P1.5. However, in the case of both adult mice and embryos, expression of TANGO 188 may have been obscured by a high background signal.

TANGO 188 is transcribed in an anti-sense relationship to NY-CO-7 (Scanlon et al. (1998) Int. J. Cancer 76:652-58). Accordingly, TANGO 188 may have utility as a marker for colon cancer, and TANGO 188 nucleic acid molecules and polypeptides as well as anti-TANGO 188 antibodies and modulators of TANGO 188 expression or activity may be useful in the diagnosis and treatment of colon cancer or other types of cancer.

The gene encoding the *C. elegans* homologue of NY-CO-7

10 is present in the same operon as a gene encoding a mitochondrial import protein. Since genes within the same operon are often co-regulated and encode proteins involved in the same physiological state, TANGO 188 may be a mitochondrial import protein or may be involved in

15 some other mitochondrial function. Thus, TANGO 188 nucleic acids and polypeptides as well as antibodies directed against TANGO 188 and modulators of TANGO 188 expression or activity may be useful in the diagnosis and treatment of disorders associated with defects in

20 mitochondrial function.

TANGO 188 appears to be the homologue of a *C. elegans* protein that is present in the same operon as a gene encoding a protein that bears some similarity to SnF8p, a yeast zinc finger protein that is likely a transcription factor involved in expression of genes encoding certain proteins involved in respiration and metabolism. Since genes within the same operon are often co-regulated and encode proteins involved in the same physiological state, TANGO 188 may play a role in respiration or metabolism.

Thus, TANGO 188 nucleic acids and polypeptides as well as antibodies directed against TANGO 188 and modulators of TANGO 188 expression or activity may be useful in the diagnosis and treatment of disorders associated with defects in cell respiration or metabolism.

- 34 -

TANGO 189

The human TANGO 189 cDNA of SEQ ID NO:9 has a 759 nucleotide open reading frame (SEQ ID NO:20) encoding a 253 amino acid protein (SEQ ID NO:31). The cDNA and 5 protein sequences of human TANGO 189 are shown in Figure 17.

The human TANGO 189 cDNA described above (SEQ ID NO:9; Figure 17) represents one splice variant of TANGO 189 (splice variant 1A). There exists a second splice 10 variant of human TANGO 189 (splice variant 1B). The cDNA sequence of this splice variant is the same the cDNA sequence of human TANGO 189 described above, except that nucleotides 674-1087 are missing. This splice variant cDNA encodes a 184 amino acid protein having a predicted 15 molecular weight of 21.1 kDa prior to cleavage of the predicted signal sequence. Both splice variant 1A and splice variant 1B appear to arise from a 2.1 kB transcript which is 2055 nucleotides long, not including the polyA sequence. This transcript encodes a 253 amino 20 acid protein having a predicted molecular weight of 28.6 kDa, not including the predicted signal sequence.

The 2.1 kb TANGO 189 transcript encodes a human TANGO 189 protein that is predicted to be a transmembrane protein having a 24 or 25 amino acid signal sequence

25 (amino acids 1- 24 or 1-25 of SEQ ID NO:31; SEQ ID NO:72 and SEQ ID NO:73) followed by a 227 or 226 amino acid mature protein (amino acids 25 - 251 or 26 - 251 of SEQ ID NO:31; SEQ ID NO:84 and SEQ ID NO:85) having a first extracellular domain of 114 or 115 amino acids (amino acids 25 - 138 or 26 - 138 of SEQ ID NO:31; SEQ ID NO:92 and SEQ ID NO:93), followed by a first transmembrane domain (amino acids 139 - 164 of SEQ ID NO:31; SEQ ID NO:99), a first cytoplasmic domain (amino acids 165 - 177 of SEQ ID NO:31; SEQ ID NO:106), a second transmembrane domain (amino acids 178 - 195 of SEQ ID NO:31; SEQ ID

- 35 -

NO:100), a second extracellular domain (amino acids 196 - 211 of SEQ ID NO:31; SEQ ID NO:108), a third transmembrane domain (amino acids 212 - 237 of SEQ ID NO:31; SEQ ID NO:101), and a second cytoplasmic domain (amino acids 238 - 253 of SEQ ID NO:31; SEQ ID NO:107). The protein encoded by this 2.1 kb TANGO 189 transcript is predicted to have a molecular weight of 21.8 kDa prior to cleavage of its signal peptide and a molecular weight of 25.2 kDa subsequent to cleavage of its signal peptide.

10 The predicted domain structure of the protein encoded splice variant 1A is identical to that of the protein encoded by the 2.1 kb transcript up to amino acid 181. The predicted domain structure of the protein encoded

15 encoded by the 2.1 kb transcript up to amino acid 180.

The murine TANGO 189 cDNA of SEQ ID NO:42 has a 759 nucleotide open reading frame (SEQ ID NO:52) encoding a 253 amino acid protein (SEQ ID NO:62). The cDNA and protein sequences of murine TANGO 189 are shown in Figure 20 18.

splice variant 1B is identical to that of the protein

Figure 30 depicts an alignment of the predicted amino acids sequences of human (SEQ ID NO:31; splice variant 1A) and murine (SEQ ID NO:62) TANGO 189 (91.7% idenity). Figure 40 depicts an alignment of the cDNA sequences of human (SEQ ID NO:9; splice variant 1A) and murine (SEQ ID NO:42) TANGO 189 (51.8% identity).

Northern analysis of human TANGO 189 mRNA expression revealed the presence of one major transcript (2.1 kb) and four minor transcripts (3.4 kb, 4.2 kb, 6 kb, and 7 kb). The 2.1 kB transcript is expressed at a high level in brain, spinal cord, and testis; expressed at a low level in heart, placenta, skeletal muscle, kidney, pancreas, lung, thyroid, lymph node, trachea, adrenal, bone marrow, spleen, ovary, and prostate; and expressed at a very low level in liver, stomach, thymus, small

intestine, colon, peripheral blood lymphocytes. The 3.4. kb, 4.2 kb, 6 kb, and 7 kb transcripts are expressed at a moderate level in brain and spinal cord; and are not expressed in testis. The 4.6 and 7 kb transcripts are expressed at a moderate level in peripheral blood lymphocytes.

Murine in situ expression analysis revealed that TANGO 189 is expressed strongly and almost ubiquitously expressed in the mouse embryo. Tissues with the highest 10 expreession during embryogenesis are the brain, spinal chord, and small intestine. Expression decreases in most if not all tissues by postnatal day 1.5 but tissues of highest expression remain the brain, spinal chord, and small intestine. This pattern continues into the adult 15 mouse with expression in most tissues decreasing even more, some to background levels. Of the adult tissue tested, the brain, spleen, small intestine, and retina, have the highest signal. High level expression is observed in the following adult tissues: placenta 20 (ubiquitous), small intestine (except villi), eye (retina), brain (ubiquitous). Lower expression is observed in: bladder (stronger signal in the transitional epithelium), kidney, thymus, liver, placenta, spleen, and colon. Expression was not observed in: heart, skeletal 25 muscle, diaphragm, lung, and pancreas. Embryonic expresion was observed at stages E13.5 through E17.5 (high ubiquitous signal, brain, spinal chord, small intestine have the strongest signal) and P1.5 (ubiquitous signal decreased in intensity, brain, spinal chord, small 30 intestine, and kidney have the strongest signal).

TANGO 189 is useful as a tissue-specific marker. The expression of TANGO 189 may be altered in a variety of disease states (e.g., cancer). Thus, TANGO 189 nucleic acid molecules and polypeptides as well as anti-TANGO 189

- 37 -

antibodies and modulators of TANGO 189 disorders cell proliferation and differentiation.

TANGO 215

20

The human TANGO 215 cDNA of SEQ ID NO:10 has a 2160 nucleotide open reading frame (SEQ ID NO:21) encoding a 720 amino acid protein (SEQ ID NO:32). The cDNA and protein sequences of human TANGO 215 are shown in Figure 19.

The cDNA sequence (SEQ ID NO:__) and predicted amino 10 acid sequence (SEQ ID NO:__) of a full-length murine TANGO 181 clone are shown in Figure 56.

Human TANGO 215 is predicted to be a wholly secreted protein having a 21 amino acid signal sequence (amino acids 1 - 21 of SEQ ID NO:32; SEQ ID NO:74) followed by a 699 amino acid mature protein (amino acids 22 - 720 of SEQ ID NO:32; SEQ ID NO:86). TANGO 215 is predicted to have a molecular weight of 80.3 kDa prior to cleavage of its signal peptide and a molecular weight of 77.6 kDa subsequent to cleavage of its signal peptide.

TANGO 215 is related to C1r/C1s (C1q) and MASP1/MASP2 (mannose-binding lectin-associated serine protease) proteases, all of which are involved in the alternative pathway pathway of immune response.

TANGO 215 may be a theronine protease. There is a

25 threonine in the sequence TGG at amino acid 664-666 of
human and murine TANGO 215. This sequence is within a
region having similarity to the active site of certain
proteases. Human TANGO 215 is predicted to have CUB
domain (amino acids 128 - 236 of SEQ ID NO:32), an EGF

30 domain (amino acids 239 - 271 of SEQ ID NO:32), a small
consensus repeat (SCR) domain (amino acids 280 - 342 of
SEQ ID NO:32), a partial SCR domain (amino acids 408 -

- 38 -

442 of SEQ ID NO:32), and a serine protease domain (amino acids 461 - 720 of SEQ ID NO:32).

Northern analysis of human TANGO 215 mRNA expression revealed the presence of a 2.7 kb transcript in heart, 5 brain, and placenta.

In situ analysis of TANGO 215 expression in adult mice revealed expression in the brain (cortex and caudate putamen), kidney (cortex, most likely within the glomeruli), bladder (ubiquitous expression), liver (possibly within vessels), and placenta (outer membrane region). This analysis did not detect expression in the lung, small intestine, pancreas, thymus, eye, heart, or muscle/diaphragm.

In situ analysis of TANGO 215 in embryos revealed

15 expression at E13.5 in developing limbs and vertebrae.

At E14.5 the observed expression pattern was similar to that at E13.5 except that expression was observed in the muscle surrounding abdomen, the skin, and the jaw. At E15.5 expression was observed in the developing kidney

20 and bladder and outer layer of the tongue. At later ages, E16.5 through P1.5, expression is observed in the smooth muscle layer of the small intestine, the portal regions of the liver, and the large airways of the lungs. Expression in the brain is absent until E18.5 when

25 expression is apparent in the caudate putamen. Expression remains strong at P1.5 in the vertebrae, tail, and sternum and possibly the muscle between developing bones.

The region of human TANGO 215 from amino acid 280 to

30 the end is predicted to be the human homologue of *Limilus*Factor C (27% identity). Thus, this region of TANGO 215
is predicted to include an effector domain (serine
protease domain) and, perhaps, an LPS sensing domain.
Thus, TANGO 215 may sense and respond to LPS with the

35 response to the presence of LPS being activation of

- 39 -

serine protease activity. Accordingly, TANGO 215 nucleic acids and polypeptides as well as antibodies directed against TANGO 215 and modulators of TANGO 215 expression or activity may be useful in the diagnosis and treatment sepsis.

CUB domains are extracellular domains of about 110 amino acids. CUB domains are found in functionally diverse, mostly developmentally regulated proteins. Most contain four cysteines that are involved in two disulfide 10 bonds (C1-C2 and C3-C4). SCR domains are also known as complement control protein (CCP) modules. EGF domains are commonly involved in receptor-ligand interactions. CUB, EGF, and SCR domains are commonly involved in protein-protein interaction. Because these domains are 15 present in TANGO 215, it is predicted to interact with one or more other proteins. The presence of these domains in TANGO 215 suggests that TANGO 215 is involved in development, perhaps bone and cartilage morphogenesis. TANGO 215 nucleic acid molecules and polypeptides as well 20 as anti-TANGO 215 antibodies and modulators of TANGO 215 expression or activity may be useful in the treatment of developmental disorders.

TANGO 187

The human TANGO 187-1/3 cDNA of SEQ ID NO:11 has a 1032 nucleotide open reading frame (SEQ ID NO:22) encoding a 343 amino acid protein (SEQ ID NO:33). The cDNA and 5 protein sequences of human TANGO 187-1/3 are shown in Figure 20.

Human TANGO 187-1/3 is predicted to be a wholly secreted protein having a 20 amino acid signal sequence (amino acids 1 - 20 of SEQ ID NO:33; SEQ ID NO:75)

10 followed by a 323 amino acid mature protein (amino acids 21 - 343 of SEQ ID NO:33; SEQ ID NO:87). Human TANGO 187-1/3 is predicted to have a molecular weight of 37.5 kDa prior to cleavage of its signal peptide and a molecular weight of 35.9 kDa subsequent to cleavage of 15 its signal peptide.

The TANGO 187-1/3 cDNA described upon actually represents one of 8 different TANGO 187 splice variants. Each variant contains none, one, two or three of three variant regions. These regions are referred to as region 1, region 2, and region 3, and each of the various forms of TANGO 187 is referred to by including a reference to the variant regions present. Thus, the form of TANGO 187 described above is TANGO 187-1/3 because it includes regions 1 and 3.

25 Figure 46 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1.

Figure 47 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 30 187-2/3.

Figure 48 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2/3.

Figure 49 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-1/2.

Figure 50 depicts the cDNA sequence (SEQ ID NO:__) and 5 predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-2.

Figure 51 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187-3.

Figure 52 depicts the cDNA sequence (SEQ ID NO:__) and predicted amino acid sequence (SEQ ID NO:__) of TANGO 187. This form does not include any of the three variant regions.

The murine TANGO 187 cDNA of SEQ ID NO:43 is only a partial sequence. This cDNA has an open reading frame extending from nucleotide 73 to the end of the available sequence (SEQ ID NO:53) encoding a 152 amino acid protein (SEQ ID NO:63). The partial cDNA and protein sequences of murine TANGO 187 are shown in Figure 21.

Figure 31 depicts an alignment of the predicted amino acid sequences of human (SEQ ID NO:33) and murine (SEQ ID NO:63; partial) TANGO 187 (50.4% identity). Figure 41 depicts an alignment of the cDNA sequences of human (SEQ ID NO:11) and murine (SEQ ID NO:43; partial) TANGO 187 (66.0% identity).

Northern analysis of human TANGO 187 mRNA expression revealed the presence of 1.3 and 2.4 kb transcripts that are approximately equally expressed at a low level in heart, brain, lung, liver, and smooth muscle and at a moderate level in kidney and placenta.

In situ analysis of TANGO 187 expression in adult mice revealed that TANGO 187 is expressed in brain (weak, ubiquitous signal), eye and harderian gland (weak signal in the retina), submandibular gland (weak, ubiquitous signal), stomach (weak, ubiquitous signal), kidney (weak,

- 42 -

ubiquitous signal), adrenal gland (low level, ubiquitous expression), colon (low level, ubiquitous expression), small intestine (low level, ubiquitous expression), thymus (moderate level, ubiquitous expression in the cortical region with lower expression in the medulla), lymph node (ubiquitous expression), spleen (low level ubiquitous expression with lower expression in the follicles, bladder (moderate expression in the mucosal epithelium), testes (moderate, ubiquitous expression signal that defines the seminiferous vesicles). In this analysis, TANGO 187 expression was not detectable in the spinal cord, brown fat, heart, lung, liver, pancreas, skeletal muscle, and ovaries.

In situ analysis of TANGO 187 expression in embryos at 15 E13.5 revealed ubiquitous expression with the strongest expression in the brain and spinal cord. A punctate expression pattern was observed in the lungs suggestive of higher expression in the developing large airways. At E14.5 the expression pattern was similar to that observed 20 at E13.5 except that expression was observed in the developing olfactory system and the eye at a level similar to that observed in the brain and spinal cord. Expression is also present at E14.5 in the epithelium of the tongue, the dermis of the snout, the kidneys and the 25 stomach. At E15.5 low level ubiquitous expression was observed with the highest expression in the brain, spinal cord, eye, and olfactory system. Slightly lower expression was observed in the lung (ubiquitous expression) and kidney (cortical region) than in the 30 aforementioned neuronal tissues. At E16.5 the observed expression pattern is identical to that seen at E15.5 except TANGO 187 expression is observed in the thymus and the mucosal portion of the stomach. At E18.5 TANGO 187 continues to be highest in neuronal tissue with lower 35 expression in the hind brain and spinal cord than in the

- 43 -

forebrain with the neopallial cortex having the highest signal. At E16.5 expression is observed in the thymus and small intestine. At P1.5 the observed expression pattern is nearly identical to that at E18.5 except that expression in the the lung and stomach has decreased. At P1.5 expression is highest in the brain, eye, olfactory epithelium and kidney.

Tango 187 contain a region moderately similar to an armadillo/beta-catenin repeat. Such repeats are thought to be involved in protein-protein interactions.

PCT/US99/22817

- 44 -

TABLE 1: Summary of Human TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215 Sequence Information.

5	Gene	CDNA	ORF	Protein	Fig.	Accession
	TANGO 180	SEQ ID NO:1	SEQ ID NO:12	SEQ ID NO:23	Fig. 1	ATCC 98900
	TANGO 181	SEQ ID NO:2	SEQ ID NO:13	SEQ ID NO:24	Fig. 3	ATCC 98900
	TANGO 182	SEQ ID NO:3	SEQ ID NO:14	SEQ ID NO:25	Fig. 5	ATCC 98900
	TANGO 183	SEQ ID NO:4	SEQ ID NO:15	SEQ ID NO:26	Fig. 7	ATCC 98900
10	TANGO 184	SEQ ID NO:5	SEQ ID NO:16	SEQ ID NO:27	Fig. 9	ATCC 98900
	TANGO 185	SEQ ID NO:6	SEQ ID NO:17	SEQ ID NO:28	Fig. 11	ATCC 98901
	TANGO 186	SEQ ID NO:7	SEQ ID NO:18	SEQ ID NO:29	Fig. 13	ATCC 98901
	TANGO 188	SEQ ID NO:8	SEQ ID NO:19	SEQ ID NO:30	Fig. 15	ATCC 98901
	TANGO 189	SEQ ID NO:9	SEQ ID NO:20	SEQ ID NO:31	Fig. 17	ATCC 98901
15	TANGO 215	SEQ ID NO:10	SEQ ID NO:21	SEQ ID NO:32	Fig. 19	ATCC 98899
	TANGO 187- 1/3	SEQ ID NO:11	SEQ ID NO:22	SEQ ID NO:33	Fig. 20	ATCC 98901
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 46	ATCC
20	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 47	ATCC
	2/3					
	TANGO 187- 1/2/3	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 48	ATCC
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 49	ATCC
25	1/2	_	-	_	J	
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 50	ATCC
	2					
	TANGO 187-	SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	Fig. 51	ATCC

- 45 -

Summary of Domains of Human TANGO 180, TANGO TABLE 2: 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 187, TANGO 188, TANGO 189, and TANGO 215.

5	Protein	Signal	Mature	Extracellula	Transmembran	Cytoplasmic
		Sequence	Protein	r Domain	e Domain	Domain
	TANGO 180	aa 1-22 SEQ ID NO:64	aa 23-189 SEQ ID NO:76	-	-	-
	TANGO 181	aa 1-22 SEQ ID NO:65	aa 23-339 SEQ ID NO:77	-	-	-
	TANGO 182	aa 1-23 SEQ ID NO:66	aa 24-348 SEQ ID NO:78	-	-	-
	TANGO 183	aa 1-20 SEQ ID NO:67	aa 21-183 SEQ ID NO:79	aa 21-89 SEQ ID NO:88	aa 90-112 SEQ ID NO:94	aa 113-183 SEQ ID NO:102
10	TANGO 184	aa 1-28 SEQ ID NO:68	aa 29-198 SEQ ID NO:80	aa 29-102 SEQ ID NO:89	aa 103-125 SEQ ID NO:95	aa 126-198 SEQ ID NO:103
	TANGO 185	aa 1-24 SEQ ID NO:69	aa 25-193 SEQ ID NO:81	aa 25-75 SEQ ID NO:90 and aa 131-150 SEQ ID NO:91	aa 76-102 SEQ ID NO:96 and aa 110-131 SEQ ID NO:97 and aa 151-174 SEQ ID NO:98	aa 103-109 SEQ ID NO:104 and aa 175-193 SEQ ID NO:105
	TANGO 186	aa 1-20 SEQ ID NO:70	aa 21-383 SEQ ID NO:82	-	-	-
	TANGO 188	aa 1-23 SEQ ID NO:71	aa 24-264 SEQ ID NO:83	-	-	-

1

aa 1-24	aa 25-251	aa 25-138	aa 139-164	aa 165-177
SEQ ID	SEQ ID	SEQ ID NO:92	SEQ ID NO:99	SEQ ID
NO:72	NO:84	or	and	NO:106
or .	or	aa 26-138	aa 178-195	and
aa 1-25	aa 26-251	SEQ ID NO:93	SEQ ID	aa 238-253
SEQ ID	SEQ ID	and	NO:100	SEQ ID
NO:73	NO:85	aa 196-211	and	NO:107
		SEQ ID	aa 212-237	
		NO:108	SEQ ID	
			NO:101	
aa 1-21	aa 22-720	-	-	-
SEQ ID	SEQ ID			
NO:74	NO:86			
aa 1-20	aa 21-343	-	-	~
SEQ ID	SEQ ID			
NO:75	NO:87			
	SEQ ID NO:72 or aa 1-25 SEQ ID NO:73 aa 1-21 SEQ ID NO:74 aa 1-20 SEQ ID	SEQ ID SEQ ID NO:72 NO:84 or or aa 1-25 aa 26-251 SEQ ID SEQ ID NO:73 NO:85 aa 1-21 aa 22-720 SEQ ID SEQ ID NO:74 NO:86 aa 1-20 aa 21-343 SEQ ID SEQ ID	SEQ ID SEQ ID NO:92 NO:72 NO:84 or or or aa 26-138 aa 1-25 aa 26-251 SEQ ID NO:93 SEQ ID SEQ ID and NO:73 NO:85 aa 196-211 SEQ ID NO:108 aa 1-21 aa 22-720 - SEQ ID NO:86 aa 1-20 aa 21-343 - SEQ ID SEQ ID	SEQ ID SEQ ID SEQ ID NO:92 SEQ ID NO:99 NO:72 NO:84 or and or aa 26-138 aa 178-195 aa 1-25 aa 26-251 SEQ ID NO:93 SEQ ID SEQ ID SEQ ID NO:100 and NO:100 NO:73 NO:85 aa 196-211 and seQ ID SEQ ID NO:108 SEQ ID NO:101 NO:101 NO:101 And And <t< td=""></t<>

PCT/US99/22817

- 47 -

WO 00/18904

TABLE 3: Summary of Murine TANGO 180, TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189, and TANGO 187 Sequence Information

_							
5	Gene	CDNA	ORF	Protein	Figure	AA align. with human	NA align. with human
	TANGO 180	SEQ ID NO:34	SEQ ID NO:44	SEQ ID NO:54	Fig. 2	Fig. 22	Fig. 32
10	TANGO 181 (partia 1)	SEQ ID NO:35	SEQ ID NO:45	SEQ ID NO:55	Fig. 4	Fig. 23	Fig. 33
15	TANGO 182 (partia 1)	SEQ ID NO:36	SEQ ID NO:46	SEQ ID NO:56	Fig. 6	Fig. 24	Fig. 34
	TANGO 183	SEQ ID NO:37	SEQ ID NO:47	SEQ ID NO:57	Fig. 8	Fig. 25	Fig. 35
	TANGO 184	SEQ ID NO:38	SEQ ID NO:48	SEQ ID NO:58	Fig. 10	Fig. 26	Fig. 36
20	TANGO 185	SEQ ID NO:39	SEQ ID NO:49	SEQ ID NO:59	Fig. 12	Fig. 27	Fig. 37
	TANGO 186	SEQ ID NO:40	SEQ ID NO:50	SEQ ID NO:60	Fig. 14	Fig. 28	Fig. 38
25	TANGO 188	SEQ ID NO:41	SEQ ID NO:51	SEQ ID NO:61	Fig. 16	Fig. 29	Fig. 39
	TANGO 189	SEQ ID NO:42	SEQ ID NO:52	SEQ ID NO:62	Fig. 18	Fig. 30	Fig. 40
30	TANGO 187 (partia 1)	SEQ ID NO:43	SEQ ID NO:53	SEQ ID NO:63	Fig. 21	Fig. 31	Fig. 41

- 48 -

	TANGO 181	SEQ ID	SEQ ID NO:	SEQ ID NO:	Fig. 53	
	TANGO 182	SEQ ID	SEQ ID	SEQ ID NO:	Fig. 54	·
5	TANGO 187	SEQ ID	SEQ ID NO:	SEQ ID NO:	Fig. 55	
	TANGO 215	SEQ ID	SEQ ID	SEQ ID	Fig. 56	

Various aspects of the invention are described in 10 further detail in the following subsections

I. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein encoding sequences) which naturally flank the nucleic

acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., 15 a nucleic acid molecule having the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43, and - or the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001, or a complement thereof, can be isolated using standard molecular biology techniques and the sequence 20 information provided herein. Using all or a portion of the nucleic acid sequences of any of SEQ ID NOs:1-22, 34-43, and __ - __ or the cDNA of a clone deposited as any of ATCC 98899, 98900, and 989001 as a hybridization probe, nucleic acid molecules of the invention can be 25 isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore,

oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

- In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NOs:1-22, 34-43, and ____ or the cDNA of a clone deposited as ATCC 98899, 98900, and 10 989001, or a portion thereof. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given
- Moreover, a nucleic acid molecule of the invention can 15 comprise only a portion of a nucleic acid sequence encoding a full length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active

nucleotide sequence thereby forming a stable duplex.

- 20 portion of a polypeptide of the invention. The nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologues in other cell types, e.g., from other tissues, as well as homologues
- 25 from other mammals. The probe/primer typically comprises substantially purified oligonucleotide. oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25,
- 30 more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 or 400 consecutive nucleotides of the sense or anti-sense sequence of any of SEQ ID NOs:1-22, 34-43, and __ - _ or the cDNA of a clone deposited as ATCC 98899, 98900, and 989001 or of a naturally occurring
- 35 mutant of any of SEQ NOs:1-22, 34-43, and ___ __ or

- 51 **-**

the cDNA of a clone deposited as ATCC 98899, 98900, and 989001.

Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein 15 has been mutated or deleted.

A nucleic acid fragment encoding a "biologically active portion" of a polypeptide of the invention can be prepared by isolating a portion of any of SEQ ID NOs:1-22, 34-43, and ____ - ___ or the nucleotide sequence of the cDNA of a clone deposited as ATCC 98899, 98900, and 989001 which encodes a polypeptide having a biological activity, expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the polypeptide.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of SEQ ID NOs:1-22, 34-43, and __ - __ or the cDNA of a clone of ATCC 98899, 98900, and 989001 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence shown in any of SEQ ID NOs:1-22, 34-43, and __ - _ or the cDNA of a clone deposited as ATCC 98899, 98900, and 989001.

In addition to the nucleotide sequences shown in SEQ ID 35 NOs:1-22, 34-43, and ___ - __ and present in cDNA's of

- 52 -

the clones deposited of ATCC 98899, 98900, and 989001, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence may exist within a population (e.g., the 5 human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. As used herein, the phrase "allelic variant" refers to a 10 nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention. Such natural 15 allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to 20 identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within 25 the scope of the invention.

Moreover, nucleic acid molecules encoding proteins of the invention from other species (homologues), which have a nucleotide sequence which differs from that of the human protein described herein are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of a cDNA of the invention can be isolated based on their identity to the human nucleic acid molecule disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization

techniques under stringent hybridization conditions. For example, a cDNA encoding a soluble form of a membranebound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or 5 part of the membrane-bound form. Likewise, a cDNA encoding a membrane-bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.

Accordingly, in another embodiment, an isolated nucleic 10 acid molecule of the invention is at least 300 (325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1290) nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding 15 sequence, of any of SEQ ID NOs:1-22, 34-43, and ____ - ___ the cDNA of a clone deposited as ATCC 98899, 98900, and 989001, or a complement thereof.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for 20 hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols 25 in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 30 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of any of SEQ ID NOs:1-22, 34-43, and ____ - ___, the cDNA of ATCC 98899, 98900, and 989001, or the complement thereof, corresponds to a 35 naturally-occurring nucleic acid molecule. As used

- 54 -

herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the invention sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid 10 sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues. "non-essential" amino acid residue is a residue that can 15 be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologues of various species 20 may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologues of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for 25 alteration. Conserved cysteine residues are particularly important and are preferably retained in functional variants

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NOs:23-33, 54-63, and ___ - ___ yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a

protein that includes an amino acid sequence that is at least about 45% identical, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of any of SEQ ID Nos:23-3, 54-63, and _____.

- An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NOs:1-22, 34-43, and ___ the cDNA of a clone deposited of ATCC 98899, 98900,
- 10 and 989001 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative
- amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino
- 20 acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g.,
- 25 glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains
- 30 (e.g., tyrosine, phenylalanine, tryptophan, histidine).

 Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that
- 35 retain activity. Following mutagenesis, the encoded

- 56 -

protein can be expressed recombinantly and the activity of the protein can be determined.

In a preferred embodiment, a mutant polypeptide that is a variant of a polypeptide of the invention can be

5 assayed for: (1) the ability to form protein:protein interactions with proteins in a signalling pathway of the polypeptide of the invention; (2) the ability to bind a ligand of the polypeptide of the invention; or (3) the ability to bind to an intracellular target protein of the polypeptide of the invention. In yet another preferred embodiment, the mutant polypeptide can be assayed for the ability to modulate cellular proliferation or cellular differentiation.

The present invention encompasses antisense nucleic 15 acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can 20 hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to all 25 or part of a noncoding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The noncoding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino 30 acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.

- 57 -For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological 5 stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothicate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to 10 generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5carboxymethylaminomethyl-2-thiouridine, 5-15 carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2methyladenine, 2-methylguanine, 3-methylcytosine, 5methylcytosine, N6-adenine, 7-methylguanine, 5-20 methylaminomethyluracil, 5-methoxyaminomethyl-2thiouracil, beta-D-mannosylqueosine, 5'methoxycarboxymethyluracil, 5-methoxyuracil, 2methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-25 thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-

thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the 30 antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of

35 interest, described further in the following subsection).

- 58 -

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide 5 of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which 10 binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid 15 molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by 20 linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the 25 antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the invention can be an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a

- 59 -

2'-o-methylribonucleotide (Inoue et al. (1987) *Nucleic* Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) *FEBS Lett*. 215:327-330).

The invention also encompasses ribozymes. Ribozymes

5 are catalytic RNA molecules with ribonuclease activity
which are capable of cleaving a single-stranded nucleic
acid, such as an mRNA, to which they have a complementary
region. Thus, ribozymes (e.g., hammerhead ribozymes
(described in Haselhoff and Gerlach (1988) Nature

- 10 334:585-591)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide
- 15 sequence of a cDNA disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071;
- 20 and Cech et al. U.S. Patent No. 5,116,742.

 Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 25 261:1411-1418.

The invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y.

- 60 -

Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.

In preferred embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar 5 moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal 10 Chemistry 4(1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are 15 retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. 20 (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et

In another embodiment, PNAs can be modified, e.g., to 35 enhance their stability or cellular uptake, by attaching

al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675).

- 61 -

lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using

- linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res.
- 15 24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite
- 20 can be used as a link between the PNA and the 5' end of DNA (Mag et al. (1989) Nucleic Acids Res. 17:5973-88).

 PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res.
- 25 24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad.

35 Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or

- 62 -

the blood-brain barrier (see, e.g., PCT Publication No. W0 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

10 II. Isolated Proteins and Antibodies

One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a

15 polypeptide of the invention. In one embodiment, the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides of the invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.

An "isolated" or "purified" protein or biologically
25 active portion thereof is substantially free of cellular
material or other contaminating proteins from the cell or
tissue source from which the protein is derived, or
substantially free of chemical precursors or other
chemicals when chemically synthesized. The language
30 "substantially free of cellular material" includes
preparations of protein in which the protein is separated
from cellular components of the cells from which it is
isolated or recombinantly produced. Thus, protein that
is substantially free of cellular material includes

preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein"). When the protein or biologically active portion thereof is 5 recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably 10 substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry 15 weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the 20 amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID Nos:23-33, 54-63, and - which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, 25 biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, 30 other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

- 64 -

Preferred polypeptides have the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and _____. Other useful proteins are substantially identical (e.g., at least about 45%, preferably 55%, 65%, 75%, 85%, 95%, or 99%) to any of SEQ ID Nos:22-33, 54-63, and _____ and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

To determine the percent identity of two amino acid 10 sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second 15 amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acidresidue or nucleotide as the corresponding position in 20 the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., 25 overlapping positions) x 100). Preferably, the two sequences are the same length.

The determination of percent homology between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J.

Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. 5 protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in 10 Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. Id. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of 15 the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. 20 Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 25 can be used.

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the

33 a 2 bac

invention). Within the fusion protein, the term "operably linked" is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other. 5 heterologous polypeptide can be fused to the N-terminus or C-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the Cterminus of GST sequences. Such fusion proteins can 10 facilitate the purification of a recombinant polypeptide of the invention.

In another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. For example, the native signal sequence of a polypeptide of 15 the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., 20 John Wiley & Sons, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). In yet another example, useful prokaryotic heterologous signal 25 sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a 30 polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an

35 interaction between a ligand (soluble or membrane-bound)

- 67 -

and a protein on the surface of a cell (receptor), to thereby suppress signal transduction in vivo. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention. Inhibition of ligand/receptor interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g. promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

15 Chimeric and fusion protein of the invention can be produced by standard recombinant DNA techniques. another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene 20 fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, 25 many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide 30 of the invention.

A signal sequence of a polypeptide of the invention (SEQ ID NOs:64-75) can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which

- 68 -

are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass 5 through the secretory pathway. Thus, the invention pertains to the described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products). In one embodiment, a 10 nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the 15 protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal 20 sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

In another embodiment, the signal sequences of the present invention can be used to identify regulatory

25 sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, it is expected that the nucleic acids which flank the signal sequence on its amino-terminal side will be regulatory sequences which affect transcription.

30 Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.

The present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be 5 generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of 10 the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a 15 variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein. Variants of a protein of the invention which function 20 as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity. In one 25 embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic 30 oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is

expressible as individual polypeptides, or alternatively,

as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the

- 70 -

polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).

In addition, libraries of fragments of the coding sequence of a polypeptide of the invention can be used to 10 generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under 15 conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes 20 by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates

isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the invention (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).

An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. The antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30) amino acid residues of the amino acid sequence shown in any of SEQ ID Nos:23-33, 54-64, and ____ and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.

Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions, rather than

25 hydrophobic regions, e.g., transmembrane domains. The hydrophilicity of a protein sequence can be easily determined using readily available programs.

An immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal). An appropriate immunogenic preparation can contain, for example, recombinantly expressed chemically synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.

- 72 -

Accordingly, another aspect of the invention pertains to antibodies directed against a polypeptide of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active 5 portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention. A molecule which specifically binds to a given polypeptide of the invention is a molecule which binds 10 the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab'), fragments which can be 15 generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only 20 one species of an antigen binding site capable of immunoreacting with a particular epitope.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques,

- 73 -

such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al.

- 5 (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al. (eds.) John Wiley & Sons, Inc., New York, NY).
- 10 Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

Alternative to preparing monoclonal antibody-secreting
15 hybridomas, a monoclonal antibody directed against a
polypeptide of the invention can be identified and
isolated by screening a recombinant combinatorial
immunoglobulin library (e.g., an antibody phage display
library) with the polypeptide of interest. Kits for

- 20 generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP™ Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents
- 25 particularly amenable for use in generating and screening
 antibody display library can be found in, for example,
 U.S. Patent No. 5,223,409; PCT Publication No. WO
 92/18619; PCT Publication No. WO 91/17271; PCT
 Publication No. WO 92/20791; PCT Publication No. WO
- 30 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science

- 74 -

246:1275-1281; Griffiths et al. (1993) *EMBO J*. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both 5 human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in 10 PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 15 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and 20 Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol.

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin 30 heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The

25 141:4053-4060.

- 75 -

human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible 5 to produce therapeutically useful IgG, IgA and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and 10 human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be 15 engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as 20 "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a murine antibody, is used to guide the selection of a completely human antibody recognizing the same epitope.

An antibody directed against a polypeptide of the
invention (e.g., monoclonal antibody) can be used to
isolate the polypeptide by standard techniques, such as
affinity chromatography or immunoprecipitation.

Moreover, such an antibody can be used to detect the
protein (e.g., in a cellular lysate or cell supernatant)
in order to evaluate the abundance and pattern of
expression of the polypeptide. The antibodies can also
be used diagnostically to monitor protein levels in
tissue as part of a clinical testing procedure, e.g., to,
for example, determine the efficacy of a given treatment
regimen. Detection can be facilitated by coupling the

- 76 -

antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. 5 Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials 10 include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, 15 and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.

III. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid 20 encoding a polypeptide of the invention (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double 25 stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced 30 (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are

- 77 -

replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors 15 include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide 20 sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term 25 "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, 30 San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory 35 sequences). It will be appreciated by those skilled in

- 78 -

the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing 20 constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve 25 three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a 30 proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition 35 sequences, include Factor Xa, thrombin and enterokinase.

- 79 -

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione Stransferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene

- 10 Expression Technology: Methods in Enzymology 185,
 Academic Press, San Diego, California (1990) 60-89).
 Target gene expression from the pTrc vector relies on
 host RNA polymerase transcription from a hybrid trp-lac
 fusion promoter. Target gene expression from the pET 11d
- 15 vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the
- 20 transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, *Gene Expression*

- 25 Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those
- 30 preferentially utilized in *E. coli* (Wada et al. (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the expression vector is a yeast 35 expression vector. Examples of vectors for expression in

- 80 -

yeast S. cerivisae include pYepSec1 (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol.

10 Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.

In another embodiment, the recombinant mammalian
25 expression vector is capable of directing expression of
the nucleic acid preferentially in a particular cell type
(e.g., tissue-specific regulatory elements are used to
express the nucleic acid). Tissue-specific regulatory
elements are known in the art. Non-limiting examples of
30 suitable tissue-specific promoters include the albumin
promoter (liver-specific; Pinkert et al. (1987) Genes
Dev. 1:268-277), lymphoid-specific promoters (Calame and
Eaton (1988) Adv. Immunol. 43:235-275), in particular
promoters of T cell receptors (Winoto and Baltimore
35 (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et

- 81 -

al. (1983) Cell 33:729-740; Queen and Baltimore (1983)
Cell 33:741-748), neuron-specific promoters (e.g., the
neurofilament promoter; Byrne and Ruddle (1989) Proc.
Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific
5 promoters (Edlund et al. (1985) Science 230:912-916), and
mammary gland-specific promoters (e.g., milk whey
promoter; U.S. Patent No. 4,873,316 and European
Application Publication No. 264,166). Developmentallyregulated promoters are also encompassed, for example the
10 murine hox promoters (Kessel and Gruss (1990) Science
249:374-379) and the α-fetoprotein promoter (Campes and
Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned 15 into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a 20 polypeptide of the invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or 25 enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense 30 nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al.

35 (Reviews - Trends in Genetics, Vol. 1(1) 1986).

- 82 -

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein.

5 It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic (e.g., *E. coli*) or eukaryotic (e.g., an insect cell, a yeast cell or a mammalian cell) cell.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs,

- 83 -

such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, 5 while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide of 10 the invention using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the 15 polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one 20 embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequences encoding a polypeptide of the invention have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences 25 encoding a polypeptide of the invention have been introduced into their genome or homologous recombinant animals in which endogenous encoding a polypeptide of the invention sequences have been altered. Such animals are useful for studying the function and/or activity of the 30 polypeptide and for identifying and/or evaluating modulators of polypeptide activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes 35 a transgene. Other examples of transgenic animals

- 84 -

include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by 15 introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the 20 oocyte to develop in a pseudopregnant female foster animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissuespecific regulatory sequence(s) can be operably linked to 25 the transgene to direct expression of the polypeptide of the invention to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for 30 example, in U.S. Patent NOS. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic 35 founder animal can be identified based upon the presence

- 85 -

of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.

5 Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.

To create an homologous recombinant animal, a vector is prepared which contains at least a portion of a gene 10 encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous gene is 15 functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes 20 functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein). In the homologous recombination vector, the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to 25 allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell. The additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi (1987) Cell 51:503 for a description of homologous recombination vectors). vector is introduced into an embryonic stem cell line 35 (e.g., by electroporation) and cells in which the

- 86 ~

introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form 5 aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the 10 embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing 15 homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication NOS. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.

In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. (1992) Proc. Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic

animals, e.g., by mating two transgenic animals, one

- 87 -

containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods

5 described in Wilmut et al. (1997) Nature 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.

IV. Pharmaceutical Compositions

The nucleic acid molecules, polypeptides, and antibodies (also referred to herein as "active 10 compounds") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language 15 "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and 20 agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated 25 into the compositions.

The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a 30 pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additionl active agents. Thus, the invention further includes methods for preparing a

- 88 -

pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more additional active compounds.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, 10 subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for 15 injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as 20 ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral 25 preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL^M (BASF; Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition

- 89 -

must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of 5 microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper 10 fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial 15 and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the 20 composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by

25 incorporating the active compound (e.g., a polypeptide or
antibody) in the required amount in an appropriate
solvent with one or a combination of ingredients
enumerated above, as required, followed by filtered
sterilization. Generally, dispersions are prepared by

30 incorporating the active compound into a sterile vehicle
which contains a basic dispersion medium and the required
other ingredients from those enumerated above. In the
case of sterile powders for the preparation of sterile
injectable solutions, the preferred methods of

35 preparation are vacuum drying and freeze-drying which

- 90 -

yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or 5 an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can 10 also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the 15 composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating 20 agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange 25 flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include,

- 91 -

for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled 15 release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods 20 for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal 25 antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active

- 92 -

compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

For antibodies, the preferred dosage is 0.1 mg/kg to 10 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate.

Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible.

Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.

25 Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g.

- 93 -

include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening 10 assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic). For 15 example, polypeptides of the invention can to used to (i) modulate cellular proliferation; (ii) modulate cellular differentiation; and (iii) modulate cell survival. isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant 20 expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention. In addition, the polypeptides of the invention can be used to screen drugs 25 or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased 30 or aberrant activity compared to the wild type protein. In addition, the antibodies of the invention can be used to detect and isolate a protein of the invention and modulate activity of a protein of the invention.

- 94 -

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

A. Screening Assays

5 The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or 15 modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the 20 art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity 25 chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in:

DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909;

Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422;

Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et

- 95 -

al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop et al. (1994) J. Med. Chem. 37:1233.

Libraries of compounds may be presented in solution (e.g., Houghten (1992) Bio/Techniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent NOS. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici (1991) J. Mol. Biol.

15 222:301-310).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a 20 test compound and the ability of the test compound to bind to the polypeptide determined. The cell, for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, 25 by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 30 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test compounds can be enzymatically labeled with, for example, horseradish peroxidase,

35 alkaline phosphatase, or luciferase, and the enzymatic

- 96 -

label detected by determination of conversion of an appropriate substrate to product. In a preferred embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide protein to bind to or interact with a target molecule.

Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by one of the methods described above for determining direct binding. As used herein, a "target molecule" is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected

- 97 -

protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A target molecule can be a 5 polypeptide of the invention or some other polypeptide or protein. For example, a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a 10 polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of 15 a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the 20 target (e.g., intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention 25 operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the present
invention is a cell-free assay comprising contacting a
polypeptide of the invention or biologically active
portion thereof with a test compound and determining the
ability of the test compound to bind to the polypeptide
or biologically active portion thereof. Binding of the
test compound to the polypeptide can be determined either

- 98 -

directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the 5 polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-free assay comprising contacting a polypeptide of the invention or 15 biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate 20 the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound 25 to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate 30 substrate can be determined as previously described.

In yet another embodiment, the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, 35 contacting the assay mixture with a test compound, and

- 99 -

determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.

The cell-free assays of the present invention are amenable to use of both a soluble form or the membranebound form of a polypeptide of the invention. 10 case of cell-free assays comprising the membrane-bound form of the polypeptide, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents 15 such as n-octylglucoside, n-dodecylglucoside, ndodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-Nmethylglucamide, Triton X-100, Triton X-114, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3cholamidopropyl)dimethylamminio]-1-propane sulfonate 20 (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,Ndimethyl-3-ammonio-1-propane sulfonate.

In more than one embodiment of the above assay methods of the present invention, it may be desirable to

25 immobilize either the polypeptide of the invention or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that

- 100 **-**

allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase fusion proteins or glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma

- 5 Chemical; St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex
- 10 formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above.
- 15 Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.

Other techniques for immobilizing proteins on matrices

20 can also be used in the screening assays of the
invention. For example, either the polypeptide of the
invention or its target molecule can be immobilized
utilizing conjugation of biotin and streptavidin.
Biotinylated polypeptide of the invention or target

25 molecules can be prepared from biotin-NHS (N-hydroxy-

- succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively,
- antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptidede of the invention
- 35 trapped in the wells by antibody conjugation. Methods

- 101 -

for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.

In another embodiment, modulators of expression of a polypeptide of the invention are identified in a method 10 in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined. The level of expression of the selected mRNA or protein 15 in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on 20 this comparison. For example, when expression of the selected mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or 25 protein expression. Alternatively, when expression of the selected mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or 30 protein expression. The level of the selected mRNA or protein expression in the cells can be determined by methods described herein.

In yet another aspect of the invention, a polypeptide of the inventions can be used as "bait proteins" in a 35 two-hybrid assay or three hybrid assay (see, e.g., U.S.

- 102 -

Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300), to identify other proteins, which bind to or interact with the polypeptide of the invention and modulate activity of the polypeptide of the invention. Such binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.

This invention further pertains to novel agents identified by the above-described screening assays and 15 uses thereof for treatments as described herein.

B. Detection Assays

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents.

20 For example, these sequences can be used to: (i) map their respective genes on a chromosome and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

1. Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the corresponding genes on a chromosome. The mapping of the

- 103 -

sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, genes can be mapped to chromosomes by

5 preparing PCR primers (preferably 15-25 bp in length)
from the sequence of a gene of the invention. Computer
analysis of the sequence of a gene of the invention can
be used to rapidly select primers that do not span more
than one exon in the genomic DNA, thus complicating the

10 amplification process. These primers can then be used
for PCR screening of somatic cell hybrids containing
individual human chromosomes. Only those hybrids
containing the human gene corresponding to the gene
sequences will yield an amplified fragment. For a review

15 of this technique, see D'Eustachio et al. ((1983) Science
220:919-924).

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be 20 assigned per day using a single thermal cycler. Using the nucleic acid sequences of the invention to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to 25 map a gene to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries. 30 Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma et al., (Human Chromosomes: A Manual of Basic Techniques

35 (Pergamon Press, New York, 1988)).

- 104 -

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes.

5 Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) Nature 325:783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with a gene of the invention can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

- 105 -

2. Tissue Typing

The nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).

Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals,

25 prepared in this manner, can provide unique individual
 identifications, as each individual will have a unique
 set of such DNA sequences due to allelic differences.
 The sequences of the present invention can be used to
 obtain such identification sequences from individuals and

30 from tissue. The nucleic acid sequences of the invention
 uniquely represent portions of the human genome. Allelic
 variation occurs to some degree in the coding regions of
 these sequences, and to a greater degree in the noncoding
 regions. It is estimated that allelic variation between

35 individual humans occurs with a frequency of about once

- 106 -

per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. For example, the noncoding sequences of SEQ ID NO:1 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

If a panel of reagents from the nucleic acid sequences
15 described herein is used to generate a unique
identification database for an individual, those same
reagents can later be used to identify tissue from that
individual. Using the unique identification database,
positive identification of the individual, living or
20 dead, can be made from extremely small tissue samples.

3. Use of Partial Gene Sequences in Forensic Biology
DNA-based identification techniques can also be used in
forensic biology. Forensic biology is a scientific field
employing genetic typing of biological evidence found at
25 a crime scene as a means for positively identifying, for
example, a perpetrator of a crime. To make such an
identification, PCR technology can be used to amplify DNA
sequences taken from very small biological samples such
as tissues, e.g., hair or skin, or body fluids, e.g.,
30 blood, saliva, or semen found at a crime scene. The
amplified sequence can then be compared to a standard,
thereby allowing identification of the origin of the
biological sample.

- 107 -

The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic 5 identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns 10 formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. 15 Examples of polynucleotide reagents include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from noncoding regions having a length of at least 20 or 30 bases.

The nucleic acid sequences described herein can further 20 be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a 25 tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.

C. <u>Predictive Medicine</u>

The present invention also pertains to the field of predictive medicine in which diagnostic assays,

30 prognostic assays, pharmacogenomics, and monitoring clinical trails are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates

- 108 -

to diagnostic assays for determining expression of a polypeptide or nucleic acid of the invention and/or activity of a polypeptide of the invention, in the context of a biological sample (e.g., blood, serum, 5 cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant expression or activity of a polypeptide of the invention. The invention also provides for prognostic (or 10 predictive) assays for determining whether an individual is at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, mutations in a gene of the invention can be assayed in a biological sample. Such 15 assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with aberrant expression or activity of a polypeptide of the invention.

Another aspect of the invention provides methods for expression of a nucleic acid or polypeptide of the invention or activity of a polypeptide of the invention in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").

Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent).

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds) on the expression or activity of a polypeptide of the invention in clinical trials.

- 109 -

These and other agents are described in further detail in the following sections.

1. <u>Diagnostic Assays</u>

An exemplary method for detecting the presence or 5 absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of 10 the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to 15 mRNA or genomic DNA encoding a polypeptide of the invention. The nucleic acid probe can be, for example, a full-length cDNA, such as the nucleic acid of SEQ ID NOs:1-22, 34-43, and ___ - __ or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 20 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention. Other suitable probes for use in the diagnostic assays of the invention are described herein.

A preferred agent for detecting A polypeptide of the invention is an antibody capable of binding to A polypeptide of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as

- 110 -

indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody 5 and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present 10 within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ 15 hybridizations. In vitro techniques for detection of A polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern 20 hybridizations. Furthermore, in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and 25 location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control

- 111 -

subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.

The invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (a test sample). kits can be used to determine if a subject is suffering 15 from or is at increased risk of developing a disorder associated with aberrant expression of a polypeptide of the invention (e.g., an immunological disorder). For example, the kit can comprise a labeled compound or agent capable of detecting the polypeptide or mRNA encoding the 20 polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include 25 instruction for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.

For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.

- 112 -

For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention or 5 (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention.

The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide.

20 2. Prognostic Assays

The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder. Thus, the present invention provides a method in which a test sample is obtained from a subject and a

- 113 -

polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention is detected, wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder sassociated with aberrant expression or activity of the polypeptide. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can 10 be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or 15 disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type which decrease activity of 20 the polypeptide). Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant expression or activity of a polypeptide of the invention in which a test sample is 25 obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant expression or activity 30 of the polypeptide).

The methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized aberrant

35 expression or activity of a polypeptide of the invention.

- 114 -

In preferred embodiments, the methods include detecting. in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of 5 a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention. For example, such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more 10 nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rearrangement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an aberrant modification 15 of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of a the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate 20 post-translational modification of the protein encoded by the gene. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a gene.

In certain embodiments, detection of the lesion

25 involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and

30 Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a gene (see, e.g., Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g.,

- 115 -

genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and

5 amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to

10 use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990)

15 Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the

20 detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,498,531) can be used to score for the presence of

- 116 -

specific mutations by development or loss of a ribozyme cleavage site.

In other embodiments, genetic mutations can be identified by hybridizing a sample and control nucleic 5 acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759). example, genetic mutations can be identified in two-10 dimensional arrays containing light-generated DNA probes as described in Cronin et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear 15 arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all 20 variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

In yet another embodiment, any of a variety of

sequencing reactions known in the art can be used to
directly sequence the selected gene and detect mutations
by comparing the sequence of the sample nucleic acids
with the corresponding wild-type (control) sequence.
Examples of sequencing reactions include those based on

techniques developed by Maxim and Gilbert ((1977) Proc.
Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc.
Natl. Acad. Sci. USA 74:5463). It is also contemplated
that any of a variety of automated sequencing procedures
can be utilized when performing the diagnostic assays

((1995) Bio/Techniques 19:448), including sequencing by

- 117 -

mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).

- Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the technique of "mismatch
- 10 cleavage" entails providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded
- 15 regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with S1 nuclease to digest mismatched regions.
- 20 In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions.

 After digestion of the mismatched regions, the resulting material is then separated by size on denaturing
- 25 polyacrylamide gels to determine the site of mutation.
 See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci.
 USA 85:4397; Saleeba et al. (1992) Methods Enzymol.
 217:286-295. In a preferred embodiment, the control DNA
 or RNA can be labeled for detection.
- In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells. For example, the mutY enzyme of

- 118 -

E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).

According to an exemplary embodiment, a probe based on a selected sequence, e.g., a wild-type sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be

10 See, e.g., U.S. Patent No. 5,459,039.

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in

detected from electrophoresis protocols or the like.

- 15 electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144; Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control
- 20 nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA
- 25 fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex
- 30 analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a .

35 gradient of denaturant is assayed using denaturing

- 119 -

gradient gel electrophoresis (DGGE) (Myers et al. (1985)

Nature 313:495). When DGGE is used as the method of
analysis, DNA will be modified to insure that it does not
completely denature, for example by adding a 'GC clamp of
approximately 40 bp of high-melting GC-rich DNA by PCR.

In a further embodiment, a temperature gradient is used
in place of a denaturing gradient to identify differences
in the mobility of control and sample DNA (Rosenbaum and
Reissner (1987) Biophys. Chem. 265:12753).

10 Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the 15 known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology
which depends on selective PCR amplification may be used
in conjunction with the instant invention.
Oligonucleotides used as primers for specific
amplification may carry the mutation of interest in the
center of the molecule (so that amplification depends on
differential hybridization) (Gibbs et al. (1989) Nucleic
Acids Res. 17:2437-2448) or at the extreme 3' end of one
primer where, under appropriate conditions, mismatch can
prevent or reduce polymerase extension (Prossner (1993)
Tibtech 11:238). In addition, it may be desirable to
introduce a novel restriction site in the region of the

- 120 -

mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention.

Furthermore, any cell type or tissue, preferably
20 peripheral blood leukocytes, in which the polypeptide of
the invention is expressed may be utilized in the
prognostic assays described herein.

3. Pharmacogenomics

Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant activity of the polypeptide. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics

- 121 -

can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens.

10 Accordingly, the activity of a polypeptide of the invention, expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic
15 treatment of the individual.

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-20 266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic conditions transmitted as single factors altering the way 25 the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical 30 complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the 35 intensity and duration of drug action. The discovery of

- 122 -

genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or 5 show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different 10 among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience 15 exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite 20 morphine. The other extreme are the so called ultrarapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of a polypeptide of the invention, expression of a nucleic acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions

- 123 -

or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a modulator of activity or expression of the polypeptide, such as a modulator identified by one of the exemplary 5 screening assays described herein.

Monitoring of Effects During Clinical Trials 4. Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of a polypeptide of the invention (e.g., the ability to modulate aberrant 10 cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels or protein 15 activity, can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity. Alternatively, the effectiveness of an agent, as determined by a screening assay, to decrease gene expression, protein levels or protein activity, can 20 be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity. In such clinical trials, expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been 25 implicated in for example, a cellular proliferation disorder, can be used as a marker of the immune responsiveness of a particular cell.

For example, and not by way of limitation, genes, including those of the invention, that are modulated in 30 cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates activity or expression of a polypeptide of the invention (e.g., as identified in a screening assay described herein) can be identified. Thus, to study the effect of agents on cellular

- 124 -

proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder.

5 The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels

10 of activity of a gene of the invention or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during,

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic 20 acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of 25 the invention in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the postadministration samples; (v) comparing the level of the 30 polypeptide or nucleic acid of the invention in the preadministration sample with the level of the polypeptide or nucleic acid of the invention in the postadministration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.

35 For example, increased administration of the agent may be

- 125 -

desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.

C. <u>Methods of Treatment</u>

The present invention provides for both prophylactic

10 and therapeutic methods of treating a subject at risk of

(or susceptible to) a disorder or having a disorder

associated with aberrant expression or activity of a

polypeptide of the invention.

1. <u>Prophylactic Methods</u>

- In one aspect, the invention provides a method for 15 preventing in a subject, a disease or condition associated with an aberrant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least 20 one activity of the polypeptide. Subjects at risk for a disease which is caused or contributed to by aberrant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. 25 Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of aberrancy, for example, an agonist or
- 30 antagonist agent can be used for treating the subject.

 The appropriate agent can be determined based on screening assays described herein.

- 126 -

2. Therapeutic Methods

Another aspect of the invention pertains to methods of modulating expression or activity of a polypeptide of the invention for therapeutic purposes. The modulatory 5 method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide. An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the 10 polypeptide, a peptide, a peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more of the biological activities of the polypeptide. Examples of such stimulatory agents include the active polypeptide of the invention and a nucleic acid molecule 15 encoding the polypeptide of the invention that has been introduced into the cell. In another embodiment, the agent inhibits one or more of the biological activities of the polypeptide of the invention. Examples of such inhibitory agents include antisense nucleic acid 20 molecules and antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an 25 individual afflicted with a disease or disorder characterized by aberrant expression or activity a polypeptide of the invention. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or 30 combination of agents that modulates (e.g., upregulates or downregulates) expression or activity. In another embodiment, the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or 35 aberrant expression or activity of the polypeptide.

- 127 -

Stimulation of activity is desirable in situations in which activity or expression is abnormally low downregulated and/or in which increased activity is likely to have a beneficial effect. Conversely, inhibition of activity is desirable in situations in which activity or expression is abnormally high or upregulated and/or in which decreased activity is likely to have a beneficial effect.

This invention is further illustrated by the following 10 examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.

EXAMPLES

- TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189 and TANGO 187, were identified in a human prostate epithelial cell library. TANGO 215 was identified in a human prostate stromal cell library.
- TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185, TANGO 186, TANGO 188, TANGO 189, TANGO 215, and TANGO 187 were identified by first analyzing clones present in the two libraries to identify EST sequences which potentially encode a signal peptide having at least
- 25 15 amino acids. Selected clones which include an EST sequence that appeared to encode a signal peptide having at least 15 amino acids were used to assemble additional EST sequences to form potential full-length gene sequences. The assembled full-length gene sequences were
- 30 then used to identify actual full-length clones in the two libraries.

Deposit of Clones

Clones containing cDNA molecules encoding TANGO 180, TANGO 181, TANGO 182, TANGO 183, TANGO 184, TANGO 185.

- 128 -

TANGO 186, TANGO 188, TANGO 189, TANGO 215 and TANGO 187 were deposited with the American Type Culture Collection (Manassas, VA) as composite deposits.

Clones encoding TANGO 180, TANGO 181, TANGO 182 and 5 TANGO 183, and TANGO 184 were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98901, from which each clone comprising a particular cDNA clone is obtainable. This deposit is a mixture of five strains, each carrying one 10 recombinant plasmid harboring a particular cDNA clone. To distinguish the strains and isolate a strain harboring a particular cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with $100\mu g/ml$ 15 ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction enzymes Sal I and Not I and resolve the resultant products on a 0.8%

20 agarose gel using standard DNA electrophoresis conditions. The digest will liberate fragments as follows:

TANGO 180 (EpT180) 1.2 kb and 2.7 kb

TANGO 181 (EpT181) 4.5 kb and 2.7 kb

25 TANGO 182 (EpT182) two 2.7 kb fragments

TANGO 183 (EpT183) 1.6 kb and 2.7 kb

TANGO 184 (EpT184) 4.5 kb

The identity of the strains can be inferred from the fragments liberated.

Clones encoding TANGO 185, TANGO 186, TANGO 187, TANGO 188 and TANGO 189 (splice variant 1) were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98900, from which each stain comprising a particular cDNA clone is

35 obtainable. The deposit is a mixture of five strains,

- 129 -

each carrying one recombinant plasmid harboring a particular cDNA clone. To distinguish the strains and isolate a strain harboring a particular cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with 100µg/ml ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction enzymes Sal I and Not I and resolve the resultant products on a 0.8% agarose gel using standard DNA electrophoresis conditions. The digest will liberate one vector fragment of 2.7 kb common to all strains, and one insert-specific fragment as follows:

15	TANGO	185	(EpT185)	2.1	kb
	TANGO	186	(EpT186)	3.7	kb
	TANGO	187	(EpT187)	2.6	kb
	TANGO	188	(EpT188)	2.0	kb
	TANGO	189	(EpT189sv1)	1.3	kb

20 The identity of the strains can be inferred from the fragments liberated.

A clone encoding TANGO 215 and four other clones were deposited on September 25, 1998 with the American Type Culture Collection under accession number ATCC 98899,

- 25 from which the srrain comprising the TANGO 215 cDNA clone is obtainable. To distinguish the strains and isolate a strain harboring the TANGO 215 cDNA clone, one can first streak out an aliquot of the mixture to single colonies on nutrient medium (e.g., LB plates) supplemented with
- 30 $100\mu g/ml$ ampicillin, grow single colonies, and then extract the plasmid DNA using a standard minipreparation procedure. Next, one can digest a sample of the DNA minipreparation with a combination of the restriction enzymes Sal I and Not I and resolve the resultant

- 130 -

products on a 0.8% agarose gel using standard DNA electrophoresis conditions.

The digest will liberate one vector fragment of 2.7 kb common to all strains, and one insert-specific fragment 5 as follows:

TANGO 215 (EpT215) 2.8 kb

The identity of the strain harboring the TANGO 215 cDNA clone can be inferred from the fragments liberated.

Equivalents

The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

فند أسم الانتخاص بالإندام

What is claimed is:

15

An isolated nucleic acid molecule selected from the group consisting of: a nucleic acid molecule comprising a nucleotide sequence which is at least 55% identical to the 5 nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and ___ - ___, the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, or a complement thereof; a nucleic acid molecule comprising a fragment of 10 at least 300 nucleotides of the nucleotide sequence of any of SEQ ID NOs:1-22, 34-43, and ____, the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, or a complement thereof; a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ___ - __ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 20 98899, 98900, and 98901; a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs:23-33, 54-63, and ____ - ___ wherein the fragment comprises at least 15 contiguous amino acids of 25 any of SEQ ID NOs:23-33, 54-63, and ___ - __ or the polypeptide encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901; and a nucleic acid molecule which encodes a naturally 30 occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs:23-33, 54-63,

and __ - __ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the

- 132 -

nucleic acid molecule hybridizes to a nucleic acid molecule comprising any of SEQ ID Nos:1-22, 34-43, and ____ or a complement thereof under stringent conditions.

- 5 2. The isolated nucleic acid molecule of claim 1, which is selected from the group consisting of:
 - a) a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NO:1-22 and 34-43, the cDNA insert of a plasmid deposited with the ATCC as any of
- 10 Accession Numbers 98899, 98900, and 98901, or a complement thereof; and
- b) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901.
 - 3. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences.
- 20 4. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
 - 5. A host cell which contains the nucleic acid molecule of claim 1.
- 25 6. The host cell of claim 5 which is a mammalian host cell.
 - 7. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.

- 133 -

8.	An	isolated	polypeptide	selected	from	the	group
consist	ing	of:					

- a) a fragment of a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and __ -__, wherein the fragment comprises at least 15 contiguous amino acids of any of SEQ ID Nos:23-33 and 54-63, and __ - __;
- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of
 10 SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a
 15 nucleic acid molecule comprising any of SEQ ID Nos:1-22, 34-43, and ____ or a complement thereof under stringent conditions; and
- c) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at
 20 least 55% identical to a nucleic acid comprising the nucleotide sequence of any of SEQ ID Nos:1-22, 34-43, and ____ or a complement thereof.
- The isolated polypeptide of claim 8 comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63,
 and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901.
 - 10. The polypeptide of claim 8 further comprising heterologous amino acid sequences.
- 30 11. An antibody which selectively binds to a polypeptide of claim 8.

- 134 -

12. A method for producing a polypeptide selected from the group consisting of:

- a) a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ - ___ or an 5 amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901;
- b) a polypeptide comprising a fragment of the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ______ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the fragment comprises at least 15 contiguous amino acids of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901; and
- c) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID Nos:23-33, 54-63, and ____ or an amino acid sequence encoded by the cDNA insert of a plasmid deposited with the ATCC as any of Accession Numbers 98899, 98900, and 98901, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID Nos:1-22, 54-63, and ____ or a complement thereof under stringent conditions;

comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is 30 expressed.

13. A method for detecting the presence of a polypeptide of claim 8 in a sample, comprising:

- a) contacting the sample with a compound which selectively binds to a polypeptide of claim 8; and
- b) determining whether the compound binds to the polypeptide in the sample.
- 5 14. The method of claim 13, wherein the compound which binds to the polypeptide is an antibody.
 - 15. A kit comprising a compound which selectively binds to a polypeptide of claim 8 and instructions for use.
- 10 16. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of:
- a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes to the nucleic acid
 15 molecule; and
 - b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample.
- 17. The method of claim 16, wherein the sample comprises mRNA molecules and is contacted with a nucleic 20 acid probe.
 - 18. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of claim 1 and instructions for use.
- 19. A method for identifying a compound which binds to 25 a polypeptide of claim 8 comprising the steps of:
 - a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with a test compound; and
 - b) determining whether the polypeptide binds to the test compound.

- 136 -

- 20. The method of claim 19, wherein the binding of the test compound to the polypeptide is detected by a method selected from the group consisting of:
- a) detection of binding by direct detecting of the5 binding of the test compound to the polypeptide binding;and
 - b) detection of binding using a competition binding assay.
- 21. A method for modulating the activity of a

 10 polypeptide of claim 8 comprising contacting a

 polypeptide or a cell expressing a polypeptide of claim 8

 with a compound which binds to the polypeptide in a

 sufficient concentration to modulate the activity of the
 polypeptide.
- 15 22. A method for identifying a compound which modulates the activity of a polypeptide of claim 8, comprising:
 - a) contacting a polypeptide of claim 8 with a test compound; and
- 20 b) determining the effect of the test compound on the activity of the polypeptide to thereby identify a compound which modulates the activity of the polypeptide.

GT	CGAC	CCAC	GCGT	CCGC	GTGG.	ATAT	GGAG	CTGG	TGC	rgcc.	AAGT(CCGG	GGCC	CGCG	CCGC	TGCC	TAGC	GCGT	CCTG	G 79
																М	A		L	
GGA	ACTC:	rgtg	GGGA(CGCG	cccc	CGCC	GCGC	CTCC	GGG	ACCCC	STAGA	AGCC	CGGC	CTG	CGCG	I ATO	GC	CTO	CT	2 19
s	R	P	А	L	т	L	L	L	L	L	М	А	А	v	v	R	c	0	Ε	2
TCG	CGC	ccc	GCC	CTC	acc	CTC	CTG	CTC	CTC	CTC	ATC	GCC	: GC1	GT7	GTC					
0	A	0	т	т	D	W	R	A	т	L	к	т	r	R	N	G	,,			
_		-	_	_	_							_	_		AAC	-	V GTT	H CAT	K AAG	4 27
																	•			
I	ם פאר	T	Y	L	N	A	A	L	ם C3C	L	L	G	G		. D GAC	G	L	C	Q	6
AIA	GAC	ACG	140	CIG	AAC	GCC	GCC	110	GAC	CIC	CIG	GGA	GGC	GAG	GAC	GGI	CIC	TGC	CAG	33
Y	к	С	s	D	G	s	ĸ	P	F	Б	R	Y	G	Y	ĸ	p	s	P	P	. 84
TAT	AAA	TGC	AGT	GAC	GGA	TCT	AAG	CCT	TTC	CCA	CGT	TAT	GGT	TAT	AAA	CCC	TCC	CCA	CCG	394
N	G	С	G	s	P	L	F	G	v	н	L	N	I	G	r	P	s	L.	Т	104
AAT	GGA	TGT	GGC	TCT	CCA	CTG	TTT	GGT	GTT	CAT		AAC	ATT	-	ATC	_	_	_		454
	_	_		_		_	_	_		_	_	_	_		_					
k aag	C TGT	C TGC	N AAC	Q CAA	H CAC	D GAC	R AGG	C TGC	Y TAT	E GAG	T	C TGT	GGC	X	S AGC	X AAG	N Taa	D GAC	C TCT	124 514
																		Onc	131	744
۵	Ε	E	F	Q	Y	С	L	s	к	I	С	R	D	v	Q	к	T	L	G	144
GAT (GAA (GAA	TTC	CAG	TAT	rgc (CTC :	rcc /	AAG .	ATC	TGC	CGA	GAT	GTA	CAG .	AAA	ACA	CTA	GGA	574
· L	T	Q	н	v	Q	А	С	Ε	т	т	v	Ε	L	L	F	D	s	v	I	164
CTA A	ACT (CAG (CAT (GTT (CAG (CA 1	CT C	GAA A	ACA A	ACA (STG (GAG (CTC :	rtg '	TTT (GAC A	AGT (GTT 2	ATA	634
н	L	G	С	к	p	Y	L	D	s	_				_	R	_	н		_	
CAT T	_	_	-		-	-	_			Q DAA (R IGA C	A SCC C	A CA 1	C CC F		C CCT (Y CAT C	E Baa	184 694
																				034
_	К	T	D	L	•															190
GAA A	AA A	.CT G	AT C	TT T	'AA															712
AGGAG	ATGC	CGAC	AGCT	AGTG	ACAG.	ATGA	AGAT	GGAA	GAAC	ATAC	CTTT	GACA	aata	ACTA	ATGT	TTTT	ACAA	CATA	AA	791
ACTGT	CTTA	IIII	TGTG.	AAAG	GATT.	ATTT	rgaga	ACCT	глаа	АТАА	TTTA	TATC	TTGA	TGTT	AAAA	CCTC	aaag	CAAA	AA	870
AAGTGA	AGGG/	AGATA	AGTG	AGGG	GAGG	CAC	CTTC	TCT	CTC	AGGT.	ATCT	TCCC	CAGC	ATTG	CTCC	CTTA	CTTA	STAT	C	949
CAAATO	TCT	CAC	CAATA	ATCA:	AAA A	CAAGI	CCTT	GTTI	AGCC	GAG	WTT:	rtgaj	AAAG;	\GGA;	ATATA	ATAAG	TCA:	ATTT	rc	1028
ACAACC	ACAT	TTAC	CAAA	WAAA	AGAGA	TCAA	ATAT	,YVV	TTCA	TCAT	TAATO	STCTO	TTC	исла	TATO	TTA	TTGC	JAAAJ	T :	107
GGGGAA	ATTA	TCAC	TTAC	:AAGT	TTTA:	GTTT	лста	TGAA	ATTI	TAA	TACA	CATT	TATO	CCTA	IGAAA	AAAA	AAAA	AAAA	A I	186
лааааа	AGGG	cccc	CGC																1	203

GTCGACCCACGCGTCCGGGGCCGGGGTCCTGAGCCGGAGCCGGAGCGCGCCGCCGCCGAGCCCGCCGCCG													
M V T P R P A P A R G P A L L L L L GCAG ATG GTG ACT CCG CGG CCC GCG CCC GCG CCC GCG CTC CTC													
L L A T A R G Q E Q D Q T T D W R A T L 38 CTG CTG GCC ACT GCG CGC GGG CAG GAA CAG GAC CAG ACC ACC													
K T I R N G I H K I D T Y L N A A L D L 58 AAG ACC ATC CGC AAC GGC ATC CAC AAG ATA GAC ACG TAC CTC AAC GCC GCG CTG GAC CTG 257													
L G G E D G L C Q Y K C S D G S K P V P 78 CTG GGC GGG GAG GAC GGG CTC TGC CAG TAC AAG TGC AGC GAC GGA TCG AAG CCT GTT CCA 317													
R Y G Y K P S P P N G C G S P L F G V H 98 CGC TAT GGA TAT AAA CCA TCT CCA CCA AAT GGC TGT GGC TCT CCA CTG TTT GGC GTT CAT 377													
L N I G I P S L T K C C N Q H D R C Y E 118 CTG AAC ATA GGT ATC CCT TCC CTG ACC AAG TGC TGC AAC CAG CAC GAC AGA TGC TAT GAG 437													
T C G K S K N D C D E E F Q Y C L S K I 138 ACC TGC GGG AAA AGC AAG AAC GAC TGT GAC GAG GAG TTC CAG TAC TGC CTC TCC AAG ATC 497													
C R D V Q K T L G L S Q N V Q A C E T T 158 TGC AGA GAC GTG CAG AAG ACG CTC GGA CTA TCT CAG AAC GTC CAG GCA TGT GAG ACA ACG 557													
V E L L F D S V I H L G C K P Y L D S Q 178 GTG GAG CTC CTC TTT GAC AGC GTC ATC CAT TTA GGC TGC AAG CCA TAC CTG GAC AGC CAG 617													
R A A C W C R Y E E K T D L * 193 CGG GCT GCA TGC TGT CGT TAT GAA GAA AAA ACA GAT CTA TAA 662													
AGACCCTGACTGCTGGAGAGCAGGCGAGAATGGAGGATCATCCTTGCCAAAGATCGGATGCTTTAACAGCCTAATGTTG 741													
CCTTAGTTTTGTGTCGATGGGTCATTTTGAGACCTTTCTATACTGTGTCTTTTTTTAGAACCTCAAAGTGAAAACGGTG 820													
GGGGGCCAGGCAGAAACAGAGGGAGAGCATGCTTGGGATGGGGAGCGAGC													
CTCGCTGTCTTGGTGGCTCCCCCAAACTGGGAAGAAAGCTTAAGCTCGTGTGACTTGGTGTTCATAGTTGTACTTAAC 978 AATAAAAATGAAAGCAAATGTAAAATTCATTGTAAGGACTTTTCAGCATTATTTTTTTT													
CCTTAGAACTATTATTTTTGAAATTTCAGATGTACATTTATACCTGGAAAAACTATTAATTCTCCATTTTTATTAT 1136													
ACATAATGTGTTGTTTCTCTGAAGCCCACTAAGATAGGTATAAATATGTTACTCAAAACTACACGGTTTCCAAATGTGC 1215													
ATCTCTTGTACAGTTGGAATCACGGTTGGTACTTCTCTGGAGAGACGCCCCAGGACATCTGAGTGTTGGGATGTGCACA 1294													
JAATTCAGAAGCCCAGCTTCCTGACCAAACCGCTTAGAGTGAATGTCCTTCCT													
GACGGGTTTAACGGGCCAAGCCGAGCTCTGAATCAGTGCGCTATCTGCTGAGGTTGTGGTTACTCCCTCATCCCCG 1452													
TTTTCCATCTTCTATCCTGGAGTAGTGTTAAAAGTCTGACATTTTCTAATGGAGGTCTTAATAAAAGCTATTTACTTCT 1531													
TGGTAAAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCG 1570													

1135

CCC TTG GAG ACG GCC ACT ANG GAG AAT TGA

WO 00/18904

ACCACCGTCCGCCCACGCGTCGGGTCGCGTGCTGAGGGGTGTGACGGTTTTCTTGCTCGTGGGCTCGGACGAGTACGG 79 MAQLGAVVAV 10 AGCGCCTGCAGGGACAGCCTGGATAAAGGCTCACTG ATG GCT CAG TTG GGA GCA GTT GTG GCT GTG 145 ASSFFCASLFSAVHK 30 GCT TCC AGT TTC TTT TGT GCA TCT CTC TTC TCA GCT GTG CAC AAG ATA GAA GAG GGA CAT I G V Y Y R G G A L L T S T S G P G F H . 50 ATT GGG GTA TAT TAC AGA GGC GGT GCC CTG CTG ACT TCG ACC AGC GGC CCT GGT TTC CAT 265 L M L P F I T S Y K S V Q T T L Q T D E 70 CTC ATG CTC CCT TTC ATC ACA TCA TAT AAG TCT GTG CAG ACC ACA CTC CAG ACA GAT GAG 325 P C G T S G G V M I Y F D R I E 90 GTG AAG AAT GTA CCT TGT GGG ACT AGT GGT GGT GTG ATG ATC TAC TTT GAC AGA ATT GAA 385 V V N F L V P N A V Y D I V K N Y 110 GTG GTG AAC TTC CTG GTC CCG AAC GCA GTG TAT GAT ATA GTG AAG AAC TAT ACT GCT GAC 445 Y D K A L I F N K I H H E L N Q F C S V 130 TAT GAC AAG GCC CTC ATC TTC AAC AAG ATC CAC CAC GAA CTG AAC CAG TTC TGC AGT GTG HTLOEV YIELFDO I D E N 150 CAC ACG CTT CAA GAG GTC TAC ATT GAG CTG TTT GAT CAG ATT GAT GAA AAT CTC AAA CTG 565 A L Q Q D L T S M A P G L V I Q A V R V 170 GCT TTG CAA CAG GAC CTG ACC TCC ATG GCC CCT GGG CTG GTC ATT CAA GCT GTG CGG GTA 625 190 T K P N I P E Α I R RNYELMES ACA AAG CCC AAC ATA CCA GAG GCA ATC CGC AGA AAC TAC GAG TTG ATG GAA AGT GAG AAG T K L L I A A Q K Q K V V E K E A E T E 210 ACA AAG CTT CTC ATT GCC GCC CAG AAA CAG AAG GTG GTG GAA AAG GAA GCA GAG ACA GAG 745 RKKALIEAEKVAQVAEITYG 230 CGG AAG AAG GCG CTC ATT GAG GCA GAA AAA GTG GCC CAG GTG GCT GAG ATC ACC TAC GGG 805 KKISEI 250 E T Ε Ε K CAG AAG GTG ATG GAG AAG GAG ACT GAG AAG AAG ATT TCA GAA ATT GAA GAT GCT GCA TTT 865 LAREKAKADAECYTAMKIAE 270 CTG GCC CGG GAG AAG GCA AAG GCA GAT GCT GAG TGC TAC ACT GCT ATG AAA ATA GCC GAA 290 NKLKLT PEYLOLMKYK GCC AAT AAG CTG AAG CTA ACC CCT GAA TAT CTG CAG CTG ATG AAG TAC AAG GCC ATT GCT 985 N S K I F G K D I P N M F M D S 310 TCC AAC AGC AAG ATT TAC TTT GGC AAA GAC ATT CCT AAC ATG TTC ATG GAC TCT GCG GGC 1045 S V S K Q F E G L A D K L S F G L E D E AGT GTG AGC AAG CAG TTT GAG GGG CTA GCT GAC AAG CTA AGC TTT GGC TTA GAA GAT GAA 1105 340 PLETATKEN

	AAAAAACTTGATATGACTGCAAATGATACTTAAGCAGATCTTTATTTTTTAAGAATGAAT	CC	1214
	GACTACCTTCTCTGACTGTCTTCCAGTTACTGTGGTGAAAAAGAAGAAATGAACTTAAATCCACTCCCTTTCTAGGG	AA	1293
•	AGGAGGGTGGGGACTGATGATGGGGGGTTTTATTTCAGGTAAGCAGTTTATATGACTTCCAATAAGATTTGTAAATC	AT.	. 1372
	GGGCTTGACCTTTGACCTCTAGACACTAATTTTATCCTTTGAGGCTGGCT	3G	1451
	GAGAAATGTAGAGTGTTACCTCCAACTCATTTGATTTCCCTTACTTGGGAAAATGCAGTCCAGTGTTCTCACCTCTG	C	1530
	TCCAAGGTAGGAGATGTCTGTGGGTGAGGCTCAGCAACTGAGCAAATATGTGCCTGTGAGTTTGCCAGTAGAGCTGTG	A	1609
	AGAAACAGCTGCAGAGAACATTTGACCTTCCTGGCATTCTTGTCTGCATGTGTGAGTTATTTTAGAGGTGTGCTTT	C	1688
	TTGAGCCCTCATAAGGAAGTACTGGTGCTAGGTTTTGCAAGATTTTGTATACACTTTGCTCCTTGCCCTAGGGCTCAC	A	1767
	GTGGTGGTTTCTGACTACATTTCTAGAGTCAGAGCTTGATCACCACAACTCAATTATTTCGGCATCTTTTCACCTATG	С	1846
	TGTGATTTGTTTTTTTTTTTTTCTTCAAAAATTCTGTTCATTGGTTCCACTCAGCATCAAGAAGACAGGGACAAACA	A	1925
	$\tt CTCAAGTGTCTTAACAGCTGCTGGAGTGGGATCCTTGTTATCTCTTAGCCACTGCAGGACCTGCCTG$	3	2004
	${\tt TGCACCTCGAGATGAAGTGTCTTTCTATTATTGTAGAGATTCTGTAGTGAAGAGGTCTGACACCATGTGTGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG$	A :	2083
	${\tt GGAACGATCAGAGAGATGTCCTGGTCTTAATGCCTGTGGTTGTGTGTG$; ;	2162
	${\tt ACTCTATTCACTAAGTAGCCTGTGTTTTTAAATCCAGGGCTGCAGGCAG$: 2	241
	${\tt CAGAGACAGCTGTGGAGCAAATCAGAGTTCATGCCCAAGTCCCCAGGTTGGAATGGCTGTGCCAAAATCCATTCAAAATCCATTCAAAATCCATTCAAAAAA$. 2	320
	$\tt GGGTTTTCTTTTCATTACTAGGTCAGAACATTTTGAGTCACCTTGGGAGATTCAGGATGGGGAGGAGCAAATTTGAACATTTGAGCAGATTTGAGACATTTGAGACATTTGAGACATTTTGAGATGGGAGGAGGAGAGAGA$	2	399
	AAAGGTTTTTCTTATATCCTGAGATTGAGGGGGTAGGGGGTGTCCAACCTGTATAGCCCATGGGTTGTCTAGAATTAA	2	478
	GTGGAGGGCAGCTATCTGGAGTTAACTTGCAAGCATATTGGTGCCCTCCATGACCACCTCTGGCTTAGGACTTGGCCCT	2	557
	GTTATGAGCTGACCCCCACCCCCCACCCCCCCCCCCCCC	2	636
	TGAATGGTCCTTTCTGGCAGCAATCCCTGCCTTCTTTTTGGGCCCATGCCCAGACTTCTGGTTTAAGGAATGGTCCCAG	27	715
i	AGCTTGGGCCAGCTTGCTCAGAAGTTTTGGGAGCATTGAGCCTGCCT	27	794
ļ	*AGTTGCCCTTCTCTGTTCWGACTCCTGGGACTTCTGGTCCTGGGCACACTTTTTGCAGGCAACAAAATGTGCCTGGGA	28	173
c	CTGATGGATTTTAATGTGCTCCAGAGTCCTTTCAGAAGGTGGTCATTTCCCTTGGCCGGGCGCGGTGGCTCACACCTGT	29	52
А	NATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGTTAGGAGTTCGAGACCACCCTGGCCAACATGCGAA	30	31
A	CCCCATCTCTACGAAAAATAGAAATATTAGCCGGGCATGGTGTCAGGCACCTGTAATCCCAGCTACTTGGGAGGCTGA	31	10
G	GCAGGAGAATTGCTTGAACTCGGGAGGCAGAGGTTGCAGTGAGCCAAGATCATGCCATCCCACTCTAGCTTGGGCAAT	31	89
A	GAGCAAGGCTCCGTCTCAAGAAAAGAAGGTCATTTCCCAAGACTAGCATAGGGAGTATCCATTTAAAATACATTCATC	326	68
T	TCCTCCCATTTCCGTGCTATTAATCACTTGTTAGAGCAACATGACAATGCCCAGCATCCCACTTCCCGAAAAATGTCTA	334	17
	TCCTTCTACTCTGAGCTCTTGTTGCCTAGACCTCAGAAAACACCAATTCACCACAGTAGAACCGGGAGCAGGGATAGC	342	
	71	100	

5/112

CCCATGAGCACAGAAGAGCCTCAGTAGAGTCAAGTCCTGCTGCAGCTGCCCCAAGTTTCTATCATTTCCTCTTT	3584
${\tt AAACAAAAAATATGTTATCCTACACATTAGTGTCAATCCAATGGTTGTCTCTTATCTGCTAAATAGCAAAATCATGAAA}$	3663
${\tt ATCAGCTGTTTTATTTGCATAGGCAACTAACCTGTCTGTGTAACTTTTTTTT$	3742
${\tt TCTTAAAACATTTGAATTCTAAACATGTAAAATGTGACAGCCTGCAATTTTGTAGACAGTGAAGTAATGGCTGCTATTT}$	3821
${\tt ATAAACAGTTACTTATTTGATAGATGTTCCATTTATCAAAATAAGTAACTGTTTATAAAATTCAGTTTTTGTAGGGTT}$	3900
TTCCAAGGAAAAATCACCTTGGTTGAATGTTTCTCACTCA	3979
TAATCACTTTTTAAAATATAAGGACCGAATGCAAGGAAACCAAAGTTTATTAATAATTTTTATATAACTAAAATAAAAT	4058
AGATGTGGAGGGATCTGTGATCATAAAAAAGGGAGGGTTACTGAAAGAATTTTAGCAATATATTGATTCAGGAAAAAGG	4137
AGCTGTTTTATAAATGATCATTCACTGTTCCTATGGTTCTATGTATCTTTCAAACCGATACCTTTACTATTTAAAGAGC	4216
GTAAATAGTGAAAGTAAGATGGTCATACTTACTGACTTTATCTATTTAAGTTTGATGGAGATAAACTATATCTTGGCTA	4295
STGGCTACTGTGTGTGAATGTAACCAGTACTTCTTTAAGCTCTATTCAGTAGGGTTCCAGCCACTGCTTTTTTGTTG	4374
TTCTAGCCACTGTTTTTTTTTTTTTTCTTGTTTCCTTATAAAACAGGTAATAACCAAAAAAAA	4451

WO 00/18904

G	TCG	ACC	AL	درن	1000	المالية المالية	1000	GIC	الالال	الالال	JACI	GAIG	GCG	1	4140	MAG	CGAC	166		JUA	AGGA	MGT.	AGGGT	.G /9
C	TGAG	GGC	TG	TGG	CGGT	TTC:	TACG	GTI	CCA	CGG	GGGT	rcgg	CTG	TGT	racg	GAG	CGCC	TGG	AGG	GAC	AGCC	TGG	ATACA	.G 158
C.	יי אידייני	CTC																						1 21
G	1102		. A.	10 0	,,,	CAG	110	50				,,,,	000	0.				AQ1	•••			01 (21
																								3
T	CT C	TC	TTC	TC	A G	CT G	TG (CAC	AA	3 AT	'A GA	uA G	AG C	JGA	CA:	r At	T G	GA G	TA	TAT	TA	C AG	A GG	r 27
c	;	A	L	L		Г	S	Т	s	G	P		3	F	Н	L		1	L	P	F	I	T	.57
GC	T G	CC (CTG	CI	G A	C T	CC A	CC	AG	GG	c cc	G GC	T T	TC	CAT	CT	C A	G C	TC	CCG	TT	CAT	C ACA	337
s	;	Y	к	s	,	, ()	T	т	L	Q	7	•	D	Е	v	ĸ	: 1	V.	v	P	С	G	77
-							-				-													397
7		2	G	G	t.	, ,	1	T	v	ਜ	n	p		т	E	v	v	N	J	F	r.	v	P	97
																							CCA	-
	_				_				.,		••	_				.,	_						_	
																							F TTC	117 517
										-										-			Y	137. 577
AAU	. AA	G A	10	CAI	CA	I GA	6 (AAC	CAU	110	. IG	. AL	٠.	GII	CAI	AC.	ı Çı		.AG	GAA	GIC	TAT	5//
-						_					N							-		-				157
ATO	: GA	G C	TG	TTT	GA?	CA.	A AI	T (GAT	GAA	AAC	CTC	: AA	ď,	TTG	GCT	TTC	CA	G C	AG	GAC	CTG	ACT	637
s	М	,	4	P	G	L	ν		I	Q	А	v	R		v	T	к	p		N	I	р	E	177
TCC	ATO	G	C	CCT	GGC	CTO	GT	T P	ATC	CAA	GCT	GTG	CG	A (CTG	ACA	AAC	CC	C A	AT .	ATA	CCT	GAG	697
3	т	_	,	D	N.	v	5		t.	м	Ε	e			v	т	v	t.	,	۲.	7	Δ	a	197
	-																						GCC	757
										_	_		_									_	_	
CAG.		-									A CCA												E GAG	217
CAG	7440			u.o	0.0	010	U/U	` ^	nu .	JAG	JCA	UAA	701		AU .	700	740	And					ono	01.
						-					I		•											237
GCA	GΛA	AA	A C	TG	GCA	CAG	GTT	G	CA	SAA	ATC	ACC	TAT	G	GG (CAA	AAG	GTG	AT	C C	AG A	AAG	GAG	877
т	ε	к																						
AÇA	GAG	AAG	3.																					

51 /2 h

M N M T Q A R V GTCGACCCACGCGTCCGGCGGCTGGGCTTCTTCTCAGAGGAACGAGA ATG AAT ATG ACT CAA GCC CGG GTT	7:
L V A A V V G L V A V L L Y A S I H K I CTG GTG GCT GCA GTG GGG TTG GTG GCT GTC CTG CTC TAC GCC TCC ATC CAC AAG ATT	28 131
E E G H L A V Y Y R G G A L L T S P S G GAG GAG GGC CAT CTG GCT GTG TAC TAC AGG GGA GGT GTT TTA CTA ACT AGC CCC AGT GGA	48 191
P G Y H I M L P F I T T F R S V Q T T L	68
CCA GGC TAT CAT ATC ATG TTG CCT TTC ATT ACT ACG TTC AGA TCT GTG CAG ACA ACA CTA Q T D E V K N V P C G T S G G V M I Y I	251 88
CAA ACT GAT GAA GTT AAA AAT GTG CCT TGT GGA ACA AGT GGT GGG GTC ATG ATC TAT ATT D R I E V V N M L A P Y A V F D I V R N	311
GAC CGA ATA GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAT ATC GTG AGG AAC	371
Y T A D Y D K T L I F N K I H H E L N Q TAT ACT GCA GAT TAT GAC AAG ACC TTA ATC TTC AAT AAA ATC CAC CAT GAG CTG AAC CAG	128 431
F C S A H T L Q E V Y I E L F D Q I D E TTC TGC AGT GCC CAC ACA CTT CAG GAA GTT TAC ATT GAA TTG TTT GAT CAA ATA GAT GAA	148 491
N L K Q A L Q K D L N L M A P G L T I Q AAC CTG AAG CAA GCT CTG CAG AAA GAC TTA AAC CTC ATG GCC CCA GGT CTC ACT ATA CAG	168 551
	188 611
	208 671
A E T E R K A V I E A E K I A Q V A K 2	228
	731
ATT CGG TTT CAG CAG AAA GTG ATG GAA AAA GAA ACT GAA AAG CGC ATT TCT GAA ATC GAA 7	791
	68 51
	88 11
	08 71
D S S C A L K Y S D I R T G R E S S L P 32 GAC TCC TCA TGT GCT TTG AAA TAT TCA GAT ATT AGG ACT GGA AGA GAA AGC TCA CTC CCC 102	
S K E A L E P S G E N V I Q N K E S T G 34 TOT AND GAU GOT CTT GAA CCC TCT GGA GAG AAC UTC ATC CAA AAC AAA GAU AGC ACA GGT 109	
• 34 TGA 109	

8/1.12

TGCAAGAGGTGGAAATGTTCTCCATATCAAGATGTGGCCCAAGGGGTTAAGTGGGAACAATCATTAT	ACGGACTCTTC	A 117
GATTTACAGAGAACTTACACTTCATCTGTTCCACCTCTCCTGCGATAGTCCTGGGTGCTCCACTGAT	TGGAGGATAGA	.G 125
CCAGCTGTCTGACACACAAATGGTCTTTTCAGCCACAGTCTTATCAAGTATCCTATATGTATTCCTTT	rctaaactgct.	A 133
CTCATGAATGAGGAAAGTCTGATGCTAAGATACTGCCTGC	AGCATCACTGC	C 141
GCAGGCCATGCTTGACTAAGGTACCTGGTTTTAGCCACAGCCACCTCCTTGTATGTTACCTTTCAGCT	CTGGCCAAGAC	G · 148
${\tt TGGGACAGGGTTTTAACCACAAATAGGAGCAGCATGCAATTCCTAGTGACTTGCTGCACAGTATTGTA}$	TCATAATTACA	1568
GGAAGTTTTTATTTTTAAAACTGGATCTGGGGTATATTCATTTGCCCCATCACCTCTGTCTAAAGGCC	CAAGTCCTAGG	1647
GCTGCCATGGTCACAAGCACACTGATGCTCCTTAAGATTGTTTATCTGGAGCCCACATAGTGTGGAAC	AAAAAGTCACC	1726
TAGAAAGCATCCTTGGTCATCATTGTCTCCTTCCCACCTGGCCCAGAGATGCTTAAATCCAAGTTGTT	ICTCCAGCTGT	1805
CACCTCCCCCAGGAGATCAGGATTCCACTGACGTCCTGGGCAGCCAGTGAATTTAATTTTCCATGAGAA	łacaacagagt	1884
TAACCTGTGGCATTAGGAGACCTACTTCATGTGGACCCTTTTTTTCCTTCAGTTTAACTTTTCTGGAGC	AGTGTGCTGC	1963
GTAGTTCGGCCTGAGTTTGTGCAGCTTGTTAAGACAACTCTTGTGTACACTATGTTGAAGCTCAACAAA	AAAGTCATGG	2042
GACCACTTCTAGAAATCTTTCAGCTGTCAGGCCTGTCAGTCTCATGACAGTTTGTTGGTTG	ACTTTATTTG	2121
GGAAAGGAAAGCCCAGATTTGAATGGGTCTTTCCCCTGGGCCTTATCCTATAGAGGCATTTGTAATATG	GAGAAAATAA	2200
TTTTTCATTTTTGCTCATTTAATTCTATAAATTCTCTTTATAAATGAATTTTGTGTTCTTTAGTTCTCCT	ITAAAAGAAC	2279
TTTTGAATTATAAAAATAAAATCTTTACCTGTCGAATTGTTGCTGCAGATGATTGTTGTGGAAAATCTGC	SATCATTGAC	2358
$\tt CTCTGTGCTTTCATTCCTAGAGATGTTTTATAGTTACATGAGCAAAAGCTGTTGCCCCAAAGTGATGATGGCCCCAAAGTGATGATGATGATGATGATGATGATGATGATGATGA$	CTGGAGGCG	2437
GGGCTGAGGAACAGGGAAATGCCGCTGTGAAGTCTTAAAGCACTTCTGCTTAAACTCCATGTGTGAGGAG	TGTGCCTCC	2516
CTGTGCCCTCTCAGCTCTGAGGCTGGCCGTCTTTCGGGGTGTTCCTTTTGGCAAATATACACTGTAATCT	TGAGTCTAA	2595
ATTTATATGTTGAAATGCTACCTTTTTTAAAATAAGAAACTAAATAAA	AAAAAAAA	2674
Αλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ		2704

GTCGACCCACGCGTCCGTAAAAATGTGCCTTGTGGAACAAGTGGTGGAGTC	M I Y I D R I 72 ATG ATC TAT ATT GAC CGA ATA 72
E V V N M L A P Y A V F D GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAC	I V R N Y T A 27 ATT GTG AGG AAC TAT ACT GCA 132
DYDKTLIFNKIHH	
GAC TAC GAC AAG ACT TTA ATC TTC AAT AAA ATC CAC CAT	E L N Q F C S 47 GAG CTG AAC CAG TTT TGC AGT 192
AHTLQEVYIELFD	Q I D E N L K '67
GCC CAC ACA CTT CAA GAA GTT TAC ATA GAA TTG TTT GAT	CAA ATA GAT GAA AAC CTG AAG 252
Q A L Q K D L N T M A P G	L T I Q A V R 87
CAG GCC CTG CAA AAA GAT TTA AAC ACC ATG GCC CCA GGT	CTC ACT ATC CAG GCT GTG CGT 312
V T K P K I P E A I R R N	F E L M E A E 107
GTT ACA AAA CCC AAA ATC CCA GAA GCC ATA AGA AGA AAT 1	TTT GAA TTA ATG GAG GCA GAG 372
	V E K E A E T 127
AAG ACA AAA CTT CTC ATA GCT GCA CAG AAA CAA AAG GTG G	GIG GAG AAA GAA GCT GAG ACG 432
E R K R A V I E A E K I A GAG AGG AAA AGG GCT GTT ATA GAA GCA GAG AAG ATT GCA C	Q V A K I R F 147
	AA GTA GCA AAA ATT CGA TTT 492
Q Q K V M E K E T E K R I CAA CAG AAA GTG ATG GAG AAA CGC ATT T	S E I E D A A 167 CT GAG ATT GAA GAT GCT GCG 552
F L A R E K A K A D A E Y Y TTC CTG GCC CGA GAG AAG GCA AAA GCA GAT GCC GAG TAT TA	
T S N K H K L T P E Y L E I ACC TCA AAC AAG CAC AAA CTG ACC CCA GAG TAT CTG GAG CT	
ASNSKIYFGSNIPS	S M F V D S S 227
GCC TCA AAC AGT AAG ATC TAC TTT GGC AGC AAC ATC CCC AG	
CALKYSDGRTGRED	SLPPEE 247
TGT GCT CTG AAA TAC TCT GAT GGT AGG ACT GGG AGA GAA GA	
AREPSGESPIQNKE	
GCC CGT GAG CCC TCT GGA GAG AGC CCC ATC CAA AAC AAG GAC	G AAC GCA GGT TGA 846
TGCAAGAGGTGGAAATGTTCTCCCATATCAAGATGCGACCCAAGGGGCTAAGTGC	GGAACAGTGGTTATGTGGACTCGTA 925
AGATTCACAGAGAATGTGTGCTCTGTTGTGATTCTCTTGTCATAGTCCTGGTTTG	CCACCTCACTACACCATACACCA AGA
GCTGTCTGGCACTCAAACGGTCTCTGCAGCCACAGTTTTATCAAGTATCCTGTAT	GTGTTCCTTTGTAAACCGGTACTC 1083
ATGAATGAGGGAAAGTCTGATGCTAAGATACTGCCTGCACTGGAATGTCAAACAC	TATATAACAAGCTGTGGTTTTTAA 1162
AAGCTATTGAATAATGTTTACATTGGTCCCTGAGGACATGTGTGCTCAGACATTC	AAGAGCTAGGAGGCCAGAGAGAAG 1241
ACCTTCAGAAAACGGTAAGTTAAAGAAGACAAGTGTCATCAGACACTTGGGACCCC	
GGCATTCCTCCATGTGATTGACAGCCAGACCTCTGGGTTCCCAGGAAATTATCTTC	CCAGTTGAATGACCATTTACTTGA 1199

TACAAATTGTACCTTTCTGTTTTTCTAGTCAGGTTGGTCGCCTGCAGGGACGGTACTTTGCCACCCGACCAGAGGTTC 1478 CTCGAAGATATTCCCAATCACTAGTTTATTGCGTTAGGAGACTCAGAGATATAGAAAGCAGCTGAAATTTAAGGGAGAT 1557 AAAGCCTGCACTGCACCAAAGCTACGGGTCCCTGTGTTTCCTCTATTCAGTGATGTCATCAACCTCACTGTCCCAGCCC 1636 ATGTGTGACTAAAGTGCCCGGTTTTAGCCACAGACAACTGCTTAGATGTCACCTCTTGGCTGACCAAAGCTGCGACAGG 1715 GCTTTAACCAGACATAGGAGCAGTGTGCAATTCCTGATTCACTGCACAGTATTATGTCATAATTGCAGGAATTATTTTT 1794 GTCACTAACACACTGATTCTCCTTAAAGTAATTCTCGAAGTGTGGAACAAAGTGACCGAGACAGCATCCTCAGTCATCT 1952 GTGACTTCCTGGGCAGCCATTGAATTCATTTTCCATGAGAAGATGACAGAGTTAGCCTGTGGCTATAGGAGATCATGTC 2110 ATCCAGACCTTTTTGCCCATCACATTAACTTTCCTGGAATATTGTGCTGCACAGGTAGACCTGAATCTGCCCAGCTTGT 2189 TGACAGCTCTTGTGTATACTGTGTTGAAGCCAGACAGAAAAGTAATGGGGCCACTTCTGAAACCTCTCAGCTGTTGATC 2268 TCACAGCAGCTAAAGGGTTGTGCCAAACATTTTATTAAGAAAGTAAAGCCCAGATTTGAATGGGGGTTTTCCCTAGGCC 2347 TTATAGTATAGAGGCATTTGTAATATGGAGAAAATAATTTTTCTCATTT AATTATAGAAAATTACCTTCAAACAGATTTT 2426 GTGTTCTTTGGCCCTTCAAATACTGGTGTTACATTGTTGCTGCAGATAAATGATGATGTCGTGGGATATCTGGATCAC 2505 TGAGCTCTGTGCTTTCATTCCTAGAGATGTTTCTCATTCCCATTTAGTGAAATGCTGTTGCCCCAAAGTGATGGTTGTG 2584 AGCTCCTTATGGAGTGAGCTTCCCTGTGCCCACTCAGTGAACTAAGTCTGACCATCCTTCAGGGACGTTCCTTTTGGTA 2742 2851 TATCAAAAAAAAAAAAAAAAAAGGGCGGCCG

GTCGACCCACGCGTCCGGCGGGACAACTGGGTCTTTTGCGGCTGCAGCGGGCTTGTAGGTGTCCGGCTTTGCTGGCCC													
M K L L S L V A V V G C L L V AGCAAGCCTGATAAGC ATG AAG CTC TTA TCT TTG GTG GCT GTG GTC GGG TGT TTG CTG GTG													
AGCAAGCCTGATAAGC ATG AAG CTC TTA TCT TTG GTG GCT GTG GTC GGG TGT TTG CTG GTG													
P P A E A N K S S E D I R C K C I C P P CCC CCA GCT GAA GCC AAC AAG AGT TCT GAA GAT ATC CGG TGC AAA TGC ATC TGT CCA CCT 20													
Y R N I S G H I Y N Q N V S Q K D C N C S TAT AGA AAC ATC AGT GGG CAC ATT TAC AAC CAG AAT GTA TCC CAG AAG GAC TGC AAC TGC 26	55												
L H V V E P M P V P G H D V E A Y C L L 7 CTG CAC GTG GTG GAG CCC ATG CCA GTG CCT GGC CAT GAC GTG GAG GCC TAC TGC CTG CTG 32													
C E C R Y E E R S T T T I K V I I V I Y 9 TGC GAG TGC AGG TAC GAG GAG CGC AGC ACC ACC ACC ATC AAG GTC ATT GTC ATC TAC 38	_												
L S V V G A L L L Y M A F L M L V D P L 11 CTG TCC GTG GTG GGC CTG TTG CTC TAC ATG GCC TTC CTG ATG CTG GTG GAC CCT CTG 44													
I R K P D A Y T E Q L H N E E E N E D A 13 ATC CGA AAG CCG GAT GCA TAC ACT GAG CAA CTG CAC AAT GAG GAG GAG AAT GAG GAT GCT 50													
R S M A A A A S L G G P R A N T V L E 155 CGC TCT ATG GCA GCA GCT GCT GCA TCC CTC GGG GGA CCC CGA GCA AAC ACA GTC CTG GAG 560													
R V E G A Q Q R W K L Q V Q E Q R K T V 175 CGT GTG GAA GGT GCC CAG CAG CGG TGG AAG CTG CAG GTG CAG GAG CAG CGG AAG ACA GTC 620													
F D R H K M L S * 184 TTC GAT CGG CAC AAG ATG CTC AGC TAG . 647													
ATGGGCTGGTGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGGCTACTTCT 726													
CCCTTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTTCTCCCTAACTTTAGAAATGTTGTAC 805													
TTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCTGATCTCCGTTGTCTTCTTGGGTCTTTGGGGTTGAAGGGAGGG													
GGAAGGCAGGCCAGAAGGGAATGGAGACATTCGAGGCGGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTC 963													
TTGCCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCAGGAACTCAGTGTCT 1042													
GGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTGGTTCTTTATCACCACCTCCCTC													
CGCCTCAGCCCCAGCCCCAGCTCCAGCCCTGAGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCACTGGGTCT 1200													
CAGGGTGCACTGGAAGCTGGTGTTCGCTGTCCCCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACTCT 1279													
CTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCCTCTCCCCAGTGTCCACAGTCACTGAGCCAGAC 1358													
GTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAACACCACAGCCCCTGTACTTGGGTTGCCTCTTGTCCC 1437													
GAACTTCGTTGTACCAGTGCATGGAGAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATC 1516													
TTANATTGTTTTATTTCTCAAAAAAAAAAAAAAAAAAAAA													

GTCGACCCACGCGTCCGGCCTGCTGATCAGTGGCGGCTGCGGCTGAGCTTGCAGGCATCTAGTCTTGCTGGCTCAGCAA												
M K L L C L V A V V G C L L V P P 1 GCCCGATAAGC ATG AAG CTG CTG TGT TTG GTG GCT GTG GTG GGG TGC TTG CTG GTG CCC CCA 14	17											
A Q A N K S S E D I R C K C I C P P Y R $_3$ GCT CAA GCC AAC AGG AGC TCT GAA GAT ATC CGG TGC AAA TGC ATC TGT CCG CCT TAC AGA $_2$ 0	7 1											
N I S G H I Y N Q N V S Q K D C N C L H 5 AAC ATC AGC GGG CAC ATT TAC AAC CAG AAT GTG TCT CAG AAG GAC TGC AAC TGC CTG CAT 26												
V V E P M P V P G H D V E A Y C L L C E 7 GTG GTG GAG GCC ATG CCA GTG CCAC GAT GTG GAA GCC TAC TGC CTG CTC TGC GAG 321												
C R Y E E R S T T T I K V I I V I Y L S 97 TGT AGG TAC GAG GAG CGT AGC ACC ACA ACC ATC AAG GTC ATT ATT GTC ATC TAC CTG TCT 381												
V V G A L L L Y M A F L M L V D P L I R 117 GTG GTG GGG GCC CTC TTA CTC TAC ATG GCC TTC CTG ATG CTG GTG GAC CCG CTC ATC CGG 441												
K P D A Y T E Q L H N E E E N E D A R T 137 AAG CCA GAT GCC TAT ACT GAG CAG CTG CAC AAT GAA GAG GAG AAT GAG GAT GCT CGC ACC 501												
M A T A A A S I G G P R A N T V L E R V 157 ATG GCA ACA GCC GCT GCG TCC ATT GGA GGA CCC CGG GCA AAC ACT GTC CTG GAG CGG GTG 561												
E G A Q Q R W K L Q V Q E Q R K T V F D 177 GAA GGC GCT CAG CAG CGG AAG CCG CAG CAG CAG CAG CAG												
R H K M L S * 184 CGA CAC AAG ATG CTC AGT TAG 642												
ATGGTTGCCATGATTGCATCAGAGACCTGGGCCATGGCTACCAGCTTCTGGGGCTCACTGCAGTCTTCCCTGGGTCTTC 721												
CCTTCAAATGCCCATGGCGTTTATCCTTCTCCCTCTCTAGAAATGTACTCGACTGTTATAACGAGGGAGTGTGATTGGG 800												
TCTCTGTAGGTCTCTGGGGGGTAGAGGGGAGGGAGGGAAGGGAAGGGAACAGAGACATTTGAGGTGGCCACATGAT 879												
TGGGTGGAATTCATCCCTCCTGTCTTCACCATTCCTCCCAGCTCCACATCTTAAGGATGCTTACGGGAGACGAAGCTGT 958												
GTCATCAAGAGCTCAGTGGGTGCGAGGAAAGTATGATCCAGCGCTCAGCCTTCGCTCTAGGATGCTGTGGTCCCCATTC 1037												
CCAGTTCCTTCAGTGCCAGTACTTTAACTTGGCCTACCCCAGTCTCAGGAACTGTTGTGGTGCCCCTGAGCCCACAGTC 1116												
ATETCCAGAGTCCACCTGGAAGCCTGTTCCCCTCTCCTCGGCTCCTGGTCCACCAGTGCATGGCAGTGCCCATGCATG												
CGGCATATTCAGCAGCTGTCACCTTACTCCCATCCCAGGAGGCCGTAAGGCCTCCCACCTCTCCCCTGTGACTGCAGCT 1274												
GCTGAGCCATAAAGTTGGACCATATGACACAAGGCCAATGGGGACCGGAGTACCATGGCTCCTGTCCTTGGATGGTCTC 1353												
TTGTCCCTGAATTTCATTGTATCATGCATGGAGAGAAAAAAAA												

GAATTCGGCACGAGGGGATCCCCAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGAGCCTGAGCCTGAGCCCGAG 79
M A T L W G 6 CCGGGAGCCGGTCGCGGGCTCCGGGCTGTGGGACCGCTGGGCCCCCAGCG ATG GCG ACC CTG TGG GGA 149
G L L R L G S L L S L S C L A L S V L L 26 GGC CTT CTT CGG CTT GGC TCC TTG CTC AGC CTG TCG TGC CTG GCG CTT TCC GTG CTG C
L A Q L S D A A K N F E D V R C K C I C 46 CTG GCG CAG CTG TCA GAC GCC GCC AAG AAT TTC GAG GAT GTC AGA TGT AAA TGT ATC TGC 269
P. P Y K E N S G H I Y N K N I S Q K D C 66 CCT CCC TAT AAA GAA AAT TCT GGG CAT ATT TAT AAT AAG AAC ATA TCT CAG AAA GAT TGT 329
D C L H V V E P M P V R G P D V E A Y C 86 GAT TGC CTT CAT GTC GTG GAG CCC ATG CCT GTG CGG GGG CCT GAT GTA GAA GCA TAC TGT 389
L R C E C K Y E E R S S V T I K V T I I 106 CTA CGC TGT GAA TGC AAA TAT GAA GAA AGA AGC TCT GTC ACA ATC AAG GTT ACC ATT ATA 449
I Y L S I L G L L L Y M V Y L T L V E 126 ATT TAT CTC TCC ATT TTG GGC CTT CTA CTT CTG TAC ATG GTA TAT CTT ACT CTG GTT GAG 509
P I L K R R L F G H A Q L I Q S D D I 146 CCC ATA CTG AAG AGG CGC CTC TTT GGA CAT GCA CAG TTG ATA CAG AGT GAT GAT ATT 569
G D H Q P F A N A H D V L A R S R S R A 166 GGG GAT CAC CAG CCT TTT GCA AAT GCA CAC GAT GTG CTA GCC CGC TCC CGC AGT CGA GCC 629
N V L N K V E Y A Q Q R W K L Q V Q E Q 186 AAC GTG CTG AAC AAG GTA GAA TAT GCA CAG CAG CGC TGG AAG CTT CAA GTC CAA GAG CAG 689
R K S V F D R H V V L S * 199 CGA AAG TCT GTC TTT GAC CGG CAT GTT GTC CTC AGC TAA 728
TTGGGAATTGAATTCAAGGTGACTAGAAAGAAACAGGCAGACAACTGGAAAGAACTGACTG
TTTAATACCTTGTTGATTTCACCAACTGTTGCTGGAAGATTCAAAACTGGGAAGCAAAAACTTGCTTG
TGTTAACGTAATAATAGAGACATTTTTAAAAGCACACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTGTGACTTT 965
TACTAATAAAAATAAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACAAGCACTCTCTTTTTCACCACATAG 1044
TTTTAACTTGACTTTCAAGATAATTTTCAGGGTTTTTGTTGTTGTTGTTTTTTTT
AGGGATGCCTGGGAAGTGGTTAACAACTTTTTTCAAGTCACTTTACTAAACAAAC
ATTTTCGAGTTTCATTTATATTTTGCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTGACTTTTGCACTGA 1281
CTGTGTTATCTGGGTATCTGCTGTGTCTGCACTTCATGGTAAACGGGATCTAAAATGCCTGGTGGCTTTTCACAAAAAG 1360
CAGATTTTCTTCATGTACTGTGATGTCTGATGCAATGCA
CTAMACATAGTCTTGGTGTGTGTGTCTTACTCATCTTCTAGTACCTTTAAGGACAAATCCTAAGGACTTGGACACTTG 1518
CANTANGANTTTTATTTTANAANAANAANAANAAACTGCGGCCGC 1569

	5
GTCGACCCACGCGTCCGGGGCTCGGGGGCTCGCAGGAGCGGCTGGCT	3
C G N L L R L G S G L S M S C L A L S V 25 TGC GGA AAC CTG CTG CGG CTG GGC TCG GGG CTC AGC ATG TCC TGC CTG GCG CTG TCG GTG 133	
L L A Q L T G A A K N F E D V R C K C 45 CTG CTG CTC GCG CAG CTG ACA GGC GCC GCC AAG AAT TTT GAA GAT GTG AGA TGT AAA TGC 193	
I C P P Y K E N P G H I Y N K N I S Q K 65 ATC TGC CCT CCC TAT AAA GAG AAT CCT GGG CAC ATT TAT AAT AAG AAT ATA TCT CAG AAA 253	
D C D C L H V V E P M P V R G P D V E A 85 GAT TGT GAT TGC CTT CAT GTC GTG GAG CCC ATG CCT GTA CGG GGA CCT GAT GTA GAA GCA 313	
Y C L R C E C K Y E E R S S V T I K V T 105 TAC TGT CTA CGC TGT GAA TGC AAA TAC GAA GAG AGA AGC TCT GTC ACA ATC AAG GTT ACC 373	
I I I Y L S I L G L L L Y M V Y L T L 125	
ATT ATA ATT TAT CTC TCT ATT TTG GGC CTT CTG CTT CTG TAC ATG GTA TAT CTT ACC TTA 433 V E P I L K R R L F G H S Q L L Q S D D 145	
GTT GAG CCC ATC CTG AAG AGG CGC CTC TTT GGA CAC TCC CAG CTG TTG CAG AGC GAT GAT 493 D V G D H Q P F A N A H D V L A R S R S 165	
GAC GTT GGG GAT CAC CAG CCT TTT GCA AAT GCC CAT GAT GTG CTG GCC CGC TCT CGC AGC 553	
R A N V L N K V E Y A Q Q R W K L Q V Q 185 CGA GCC AAT GTT CTA AAC AAG GTG GAG TAC GCT CAG CAG CGC TGG AAG CTC CAG GTC CAG 613	
E Q R K S V ·F D R H V V L S * 200 GAG CAG CGA AAG TCT GTC TTC GAC CGA CAC GTT GTC CTC AGC TAA 658	
CTGGGAACTGGAATCAGGTGACTAGGAAGAACACGCAGACAACTGGGAAGAATTGTCTGGGTGTCCGTGCGTTTTAATG 737	
CCATGTTTGTTTTTACAAATCCTTGCTGGATGGAGGAAGACTCCAAACTGGAAGCAAACCCCATGCTTGGTATTTTCCT 816	
GTTAATATTAATAGAGACATTTTTACAGCACACAGTTCCAAGTCAACCAGTAAGTCTTTTCCTACTTGTGACTTTTA 895	
CTAATAAAATTAAGCTGCCTGTGAGTTATCTTGAAGCCCCGTGCCTGGAACAAGCTCTCTTTTCTTGCCACACAGTTC 974	
TAACTTGGTGTTCAAGATAACTTCCAGGTGTGTTTTTGCTTCTCTTTTTTGTGGTGGGAGAAGGAAG	
GGGAGTGCTTGAGTAGCTTCTCAAGTGTCTTTTCCAGACAGA	
AATGTCCCAGTGTAGCTGGCTTGTCAGCGTGCTGGCCTCCCCACTTGACTTTTGCACTGACTACATTACCTAAGATTCT 1211	
GGTTAGCCTGTGGCTGCATTTCATGACCAGTTGGATCTGAAATGCCTGGGGGGCTCCTCACAAAATGAAGATTTGTTTCA 1290	
TGCACTGTGATGTCTGACGCAACATGTTCTAGAACAGACTGGCCATCTGCTAGTTTACACTGATACCTAAACACAGTCT 1369	
CAGTGTGTGTGTGTCTTCTTCTTCTTAGTAGCTCTAAGGACTTGAACATTTAGAATAAAGACATTTTCTCTTAAG 1448	
CCCAAGCCTCCCTGGATGATTGACGTACAAATACTGATCAGCCTTTTCTGTCTTGCTGAGAGGCAGTTCTTTGAACTGA 1527	
TGTGGGCAGCTTTUANCAAGGACTAGAGTTCAGATTGCCTCTCTCTGAGAAGTCTAACAGTTATTCGATAACAGCTTT 1606	

1681

GTCGACCCACGCGTCCGCTCTCAGTCACCGGAATCTAGGTGGGGCCGCCCGGAGCGGCGTCCTCGGGAGCCGCCTCCCC												
GCGGCCTCTTCGCTTTTGTGGCGGCGCCCCGCGCTCGCAGGCCACTCTCTGCTGTCGCCCGTCCCGCGCGCTCCTCCGAC												
MIRCGLACE	9											
CCGCTCCGCTCCGCTCCGCCCCGCCCCCCCCCCCCCCC	27											
	29 87											
	49 47											
K C S Q E G G G S G S Y E E G C Q S L M 6 AAA TGC TCC CAA GAG GGC GGC AGC GGG TCC TAC GAG GAG GGC TGT CAG AGC CTC ATG 40	59 07											
E Y A W G R A A A A M L F C G F I I L V 8 GAG TAC GCG TGG GGT AGA GCA GCG GCT GCC ATG CTC TTC TGT GGC TTC ATC ATC CTG GTG 46	9											
I C F I L S F F A L C G P Q M L V F L R 10 ATC TGT TTC ATC CTC TTC TTC GCC CTC TGT GGA CCC CAG ATG CTT GTC TTC CTG AGA 52												
V I G G L L A L A A V F Q I I S L V I Y 12 GTG ATT GGA GGT CTC CTT GCC TTG GCT GCT GTG TTC CAG ATC ATC TCC CTG GTA ATT TAC 58												
P V K Y T Q T F T L H A N P A V T Y I Y 149 CCC GTG AAG TAC ACC CAG ACC TTC ACC CTT CAT GCC AAG CCT GCT GTC ACT TAC ATC TAT 647	-											
N W A Y G F G W A A T I I L I G C A F F 169 AAC TGG GCC TAC GGC TTT GGG TGG GCA GCC ACG ATT ATC CTG ATT GGC TGT GCC TTC TTC 707												
F C C L P N Y E D D L L G N A K P R Y F 189 TTC TGC TGC CTC CCC AAC TAC GAA GAT GAC CTT CTG GGC AAT GCC AAG CCC AGG TAC TTC 767												
Y T S A • 194 TAC ACA TCT GCC TAA 782												
CTTGGGAATGAATGTGGGAGAAAATCGCTGCTGCTGAGATGGACTCCAGAAGAAGAAACTGTTTCTCCAGGCGACTTTG 861												
AACCCATTTTTTGGCAGTGTTCATATTATTAAACTAGTCAAAAATGCTAAAATATTTTGGGAGAAAATATTTTTTAAGT 940												
AGTGTTATAGTTTCATGTTTATCTTTTATTATGTTTTGTGAAGTTGTGTCTTTTCACTAATTACCTATACTATGCCAAT 1019												
ATTTCCTTATATCTATCCATAACATTTATACTACATTTGTAAGAGAATATGCACGTGAAACTTAACACTTTATAAGGTA 1098												
AAAATGAGGTTTCCAAGATTTAATAATCTGATCAAGTTCTTGTTATTTCCAAATAGAATGGACTCGGTCTGTTAAGGGC 1177												
TAAGGAGAAGAGGAAGATAAGGTTAAAAGTTGTTAATGACCAAACATTCTAAAAGAAATGCAAAAAAAA												
CAAGCCTTCGAACTATTTAAGGAAAGCAAAATCATTTCCTAAATGCATATCATTTGTGAGAATTTCTCATTAATATCCT 1335												
GAATCATTCATTTTAGCTAAGGCTTCATGTTGACTCGATATGTCATCTAGGAAAGTACTATTTCATGGTTCAAACCTGT 1414												
TGCCATAGTTGGTAAGGCTTTCCTTTAAGTGTGAAATATTTAGATGAAATTTTCTCTTTTAAAGTTCTTTATAGGGTTA 1493												
GGGTGTGGGAAAATGCTATATTAATAAATCTGTAGTGTTTTGTGTTTATATGTTCAGAACCAGAGTAGACTGGATTGAA 1572												
AGA/TGGACTGGGTCTAA/TTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGTAAAGCA/TAGGAGGGTCATTCTTGT 1651												

GTCGACCCACGCGTCCGGCGCTCTGAGTCACCGGAATCAAGGTGTGGCTGGAGCGCCGCCCCCCCC	AGCCCGGG 79
GGCCGCGTCTTCGGGGGAGCCGCCTCTTCCTTTAGTCGCGGTGTCAGCGCTCGCAGGACCACTCTTGGCCGC	TGCTCCT 158
MLRCGLAC	
GCCCGGCGTTCCTCCGCTCCGCCCCCCCCCCCCCACCGAC ATG CTG CGC TGC GGC CTG GCC TG	C GAG 226
R C R W I L P L L L S A I A F D I CGC TGC AGG TGG ATC CTG CCC CTG CTG CTG CTC AGC GCC ATC GCC TTC GAC ATC	I A 29 ATC GCG 286
L A G R G W L Q S S N H I Q T S S L CTG GCC GGC CGC CGG CTG CAG TCT AGC AAC CAC ATC CAG ACA TCG TCG CTT 1	W W 49 IGG TGG 346
R C F D E G G G S G S Y D D G C Q S AGG TGT TTC GAC GAG GGC GGC AGC GGC TCC TAC GAC GAT GGC TGC CAG AGC ${\sf C}$	L M 69 CTC ATG 406
E Y A W G R A A A T L F C G F I I GAG TAC GCA TGG GGA CGA GCT GCA GCC ACG CTT TTC TGT GGC TTT ATC ATC C	L C 89
I C F I L S F F A L C G P Q M L V F ATC TGC TTC ATT CTC TCG TTC TTC GCC CTG TGT GGA CCC CAG ATG CTT GTT TTC CT	L R 109 TG AGA 526
V I G G L L A L A A I F Q I I S L V I GTC ATT GGA GGC CTC CTC GCA CTG GCT GCC ATA TTC CAG ATC ATC TCC CTG GTA AT	I Y 129 IC TAC 586
P V K Y T Q T F R L H D N P A V N Y I CCC GTG AAG TAC ACA CAG ACC TTC AGG CTT CAC GAT AAC CCT GCT GTT AAT TAC AT	
N W A Y G F G W A A T I I L I G C S F AAC TGG GCC TAT GGC TTC GGA TGG GCG GCC ACC ATC ATC TTG ATT GGT TGT TCC TT	
F C C L P N Y E D D L L G A A K P R Y TTC TGC TGC CTC CCC AAC TAC GAG GAT GAC CTT TTG GGG GCC GCC AAG CCC AGG TAC	
Y P P A * TAT CCC CCA GCC TAA	194 781
TGTGGGAGGAAGACCCTGAGAAAAAGCCTGCTGCAAGATGGATCTGAGGAGGAAACTGTTCTCCAAGGCACAAGGA	AACCT 860
ACGTTTGGGCAATGTTCATATGATCAGAAATGCTAGAATAAATGCTAAAGAAAATTCTTCATAATTAGTGTTAAG	STTTC 939
ATGTATGTCGTGTGGAGTTAAAAAGACTTGAATTCTGTTTGCTAAGTATATGCTAATTTTTCCTTATGTCAATTC	TATA 1018
CCATTTAAGCTTCATTTGTTAAAGAATATGCCTGTGAAACTTGATAAGGTAGAAATGTAGCAGCCTCTCATTTAA	TAAT 1097
CTGATGGGGCTTCTGTTTTTCCACATAGAATGGGTTGTTTCTGCTAAGGGCTACAGAGGAGGAAAGTCACTGGCAA	AAAC 1176
TTCCGTGACCAAATATCCTGAAATTAGTATTTTTTTAAAAAGACCTTATTTTGAGTTTTCAGTTACATAAAAAAGC	CAGA 1255
AGCAGATTGGTTTCCTAAGTGAGCATCGTTTGTGAGAATTTTTTAGTCAGTGTTTTTGAACAATTATTGTTTTTCTAA	4GCT 1334
TCGTGTTGACTTTCTCTGATGCGTAGAAAAGTGTTCTAACGTAGCCAAGGTTAAGCCGCTGTCACTACTGAAATGC	TAA 1413
${\tt GAATTTTCCTCTTTTCCCGTAGTGTAGAGGGGTAGGGTTGGGAAGAGCCGTGTTAGCACATCTGTAGTATTCTG}$	TGT 1492
GTATGCTTAGAACCAGCGTAGACCGGATGGGAGGATGGACTAGGCCTAATCCCTCCC	GTC 1571

AGGTAGGAAGGCACAGGAGGGTCACCACTGTCACAGCAGTGCCATGCAGACATCCTAGGAGAAGACATGGCAGTGTTTC	1650
$\tt TTCTCAGTGCTTCTTCCCTTAACTGAGCTCTGCTCACAGACAG$	1729
${\tt TAATTAAAACCTGGTCTTCCTTGGTAAGCAGACTTAAAATATCTGTATAGTACATGCAAGTGGAAAATTTGGGAATGCG}$	1808
TGTCTCTGAATACATACCGGAAGGGCTACTATTACCTTTTCCTTACCATTTATACTTACCTAATGGAAACGAGCTTGTT	1887
TTAACTATCAGAACACTATTTTGTAAGGTGCTGCAAAGACAGTTGAAGTTTTCATTACCAACTTCCCCAATAAACCAGG	1966
TGTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2030

GTCGACCCACGCGTCCGGCCGCGCTCTCTCCCGGCGCCCACACCTGTCTGAGCGGCGCAGCGAGCCGCGGCCCGGGC												
M A G I P G L L F L L F GGGCTGCTCGGCGGAACAGTGCTCGGC ATG GCA GGG ATT CCA GGG CTC CTC TTC CTT CTC TTC												
construction and the sea and the sea and the circuit file all	144											
F L L C A V G Q V S P Y S A P W K P T W TTT CTG CTC TGT GCT GTT GGG CAA GTG AGC CCT TAC AGT GCC CCC TGG AAA CCC ACT TGG	32 204											
PAYRLPVVLPQSTLNLAKPD	52											
CCT GCA TAC CGC CTC CCT GTC GTC TTG CCC CAG TCT ACC CTC AAT TTA GCC AAG CCA GAC	.264											
F G A E A K L E V S S S C G P Q C H K G	72											
TTT GGA GCC GAA GCC AAA TTA GAA GTA TCT TCT TCA TGT GGA CCC CAG TGT CAT AAG GGA	324											
T P L P T Y E E A K Q Y L S Y E T L Y A	92											
ACT CCA CTG CCC ACT TAC GAA GAG GCC AAG CAA TAT CTG TCT TAT GAA ACG CTC TAT GCC	384											
N G S R T E T Q V G I Y I L S S S G D G	112											
AAT GGC AGC CGC ACA GAG ACG CAG GTG GGC ATC TAC ATC CTC AGC AGT AGT GGA GAT GGG	444											
A Q H R D S G S S G K S R R K R Q I Y G	132											
GCC CAA CAC CGA GAC TCA GGG TCT TCA GGA AAG TCT CGA AGG AAG CGG CAG ATT TAT GGC	504											
Y D S R F S I F G K D F L L N Y P F S T	152											
TAT GAC AGC AGG TTC AGC ATT TTT GGG AAG GAC TTC CTG CTC AAC TAC CCT TTC TCA ACA	564											
S V K L S T G C T G T L V A E K H V L T	172											
TCA GTG AAG TTA TCC ACG GGC TGC ACC GGC ACC CTG GTG GCA GAG AAG CAT GTC CTC ACA	624											
A A H C I H D G K T Y V K G T O K L R V												
A A H C I H D G K T Y V K G T Q K L R V GCT GCC CAC TGC ATA CAC GAT GGA AAA ACC TAT GTG AAA GGA ACC CAG AAG CTT CGA GTG	192 684											
G F L K P K F K D G G R G A N D S T S A GGC TTC CTA AAG CCC AAG TTT AAA GAT GGT GGT CGA GGG GCC AAC GAC TCC ACT TCA GCC	212 744											
and the contract one the first one out out out one one the first tex dec	/44											
M P E Q M K F Q W I R V K R T H V P K G	232											
ATG CCC GAG CAG ATG AAA TTT CAG TGG ATC CGG GTG AAA CGC ACC CAT GTG CCC AAG GGT	804											
WIKGNANDIGMDYDYALLEL	252											
TGG ATC AAG GGC AAT GCC AAT GAC ATC GGC ATG GAT TAT GAT TAT GCC CTC CTG GAA CTC	864											
K K P H K R K F M K I G V S P P A K Q L	272											
AAA AAG CCC CAC AAG AGA AAA TTT ATG AAG ATT GGG GTG AGC CCT CCT GCT AAG CAG CTG	924											
PGGRIHFSGYDNDRPGNLVY	292											
	984											
CCC MMC MCM C1C CMC 111 C1C C1C 11C C1C C	312 044											
CC) CCC CCC 1CC CCC man and mus con to the total to the total tota	332											
	104											
	152											
GAG CGA AAA ATT ATT GGC ATT TTT TCA GGG CAC CAG TGG GTG GAC ATG AAT GGT TCC CCA 11	.64											

	Q CAG	D GAT	F TTC	N AAC	V GTG	A GCT	V GTC	R AGA	I ATC	T AÇT	P	L CTC	K AAA	Y TAT	A GCC	Q CAG	I ATT	C TGC	Y TAT	w TGG	372 1224
	I ATT	K AAA	G GGA	N AAC	Y TAC	L CTG	D GAT	C TGT	R AGG	E GAG	G GGG	• TGA									384 1260
	CACA	GTG1	TCCC	TCCT	'GGCA	GCAA	TTA	GGGT	CTTC	ATGT	TCTI	TATT	TAGG	AGAG	GCCA	AATT	GTTT	TTTG	TCAT	TGG	1339
	CGTG	CACA	CGTG	TGTG	TGTG	TGTG	TGTG	TGTA	AGGT	GTCT	ТАТА	ATCT	TTTA	CCTA	TTTC	TTAC	AATT	GCAA	GATG	ACT	1418
	GGCT	TTAC	TATT	TGAA.	AACT	GGTT	TGTG	TATC	ATAT	CATA	TATC	ATTT.	AAGC.	AGTT	rgaa(GCA:	TACT	TTTG	CATAC	SAA	1497
	ATAA	AAAA	AATA(CTGA'	TTTG	GGGC.	aatg.	AGGA	TAT	TTGA	CAAT	TAAG:	rtaa [,]	rctto	CACGI	TTTT	rgca/	ACT:	rtga:	TT	1576
	TTAT	rtca'	rctg/	AACT:	rgtt:	rcaa.	AGAT	CTAT:	ATTA	ATA:	rttg(GCATA	CAA	GAGA1	ATGA	ATTO	TTAT	TATGI	GTGC	:AT	1655
	GTGT	STTT	CTT	CTGAC	GATTO	CATC	TGGT	rgg T	GGT	TTT	FTGT	CTTTI	TAA1	TCAC	TGCC	TGAT	CTTI	AATO	CTTC	CA	1734
	TAAGO	CAGI	GTTC	CCAI	TTAG	GAAC	TTTC	ACAC	CATI	TGTT	AGGC	CAGAA	TATI	TTGG	ATTT	GGAG	GCAT	TTGC	ATGG	TA	1813
	GTCTI	TGAA	CAGT	'AAAA	TGAT	GTGT	TGAC	TATA	.CTGA	TACA	CATA	TTAA	ACTA	TACC	TTAT.	agta	AACC	AGTA	TCCC	AA	1892
	GCTGC	TTTT	AGTT	CCAA	AAAT	AGTT	TCTT	TTCC	AAAG	GTTG	TTGC	TCTA	CTTT	GTAG	gaag'	rctt"	TGCA	TATG	GCCC	rc	1971
	CCAAC	TTTA	aagt	CATA	CCAG.	agtg	GCCA	agag	TGTT	TATC	CCAA	CCCT	TCCA	TTTA	ACAGO	GATT	CAC:	rcac:	ATTTO	T.	2050
	GGAAC	TAGC	TATT	TTTC	NGAA (GACA	ATAA'	CAG	GCT	raat'	TAGA	ACAG	CTG'	TATTI	CCTC	CCAC	CAA	CAGI	TGT	G :	2129
	CCACA	CTAA	AAAC/	AATCA	ATAGO	CATT	TAC	CCT	GAT	CATAC	CAC	ATCTO	CATG	TTTA	TCAT	TTGG	ATGO	AGTA	ATTI	'A 2	208
	AAATGA	LATT?	LAATI	CCAG	agaa	CAAT	GGA	GCAT	TGC	TGGC	CAGAT	rgtca	CAAC	AGAA	TAAC	CACT	TGTT	TGGA	GCCT	G 2	287
	GCACAC	TCCI	CCAG	CCTG	ATCA	АААА	TTAT	TCTC	CATA	GTTT	TCAC	TGTG	CTTT	CTGG	GAGC	TATG	TACT	TCTT	CAAT	т 2	366
	TGGAAA	CTTT	тстс	TCTC	ATTT	ATAG	TGAA	AATA	CTTG	gaag	TTAC	TTTA	AGAA	AACC.	AGTG	TGGC	CITT	TTCC	CTCT	A 2	445
	GCTTTA	AAAG	GGCC	GCTT	TTGC	TGGA	ATGC	TCTA	GGTT	atag	ATAA	ACAA	TTAG	GTAT	ATAC	CAA	AAĄT(GAAA	ATTG	3 2	524
	AAGAAT	GCAA	AATG	GATC	AGAA:	CAT	CCT	rcca.	ATA	AGGC	CTTT.	ACAC	atgt	TTTAT	rcaa'i	TATGA	ATTA	rcaaj	ATCAC	2	603
	AGCATA:	TACA	SAAA	AGACT	rtgg;	CTT	\TTG	ratg:	TTT	TTAT	TAT(GGCT	CTCG	CCTA	AGCA	CTTC	TTTC	TAA	TGTA	. 20	582
	TCGGAGA	ww	ATC	LAAT O	GACT	CACA	GCAC	CTCT	TTG	TGT	CTT	CAC	CCAC	GTAA	ACCT	GCAT	TGTA	GCAA	TTTC	27	761
	raaggat	ATTO	AGAT	GGAG	CACT	GTCA	CTTA	GACA	TTC	CTGC	GGG	\TTTT	CTGC	TTGT	CTTT	CTTG	AGCT	TITI	GGAA	. 28	140
(GATAAT	TCTG	ATAA	.GGCA	CTCA	AGAA	ACGT	ACAA	CCAC	AGTO	CTTI	CTTC	AAAT	CATA	TGAG	aaat.	ACTA	TGCA	TAGC	29	19
;	AGGAGA	TGCA	GAGC	CGCC	AGGA	ааат	тстс	AGTT	CCAG	CACA	ATTT	TCTT	TGGA	ATCT	AACA	GGAA	TCTA	GCCT	GAGG	29	98
A	AGAAGG	GAJG'	TCTC	CATT	rcta:	rgtc	rcct.	ATTT	GGG	GTTT	TGTT	TGTT	TTTC	CTTT	AGCT	rccto	JAAA	AAA)	STTC	30	77
A	CTGAAC	ACCA	AGACO	CAGA	ATGG/	\TTT	rttt	ww	WAT.	AGAT	GTTC	CTTT	rgtg.	AAGCA	CCTI	GATT	CCTI	CATT	TTTG	31	56
A	rrrrr	CAA	\GTT#	NGACA	ATGO	CAC	AAC1	CAV	latg:	WAT (CAAT	GTTT/	GTT	CACAA	GTAC	ATGT	'AATT	TACT	'AAA	32	35
G,	A TGATA	CACC	CATA	TGCT	'ATAT	ACAC	CTTA	ACTO	ACAC	AACT	CTA	AAA GA	LAAA7	TATA	aaat	AATT	CAAC	ATGT	CCA	331	.4
T	TTTTTA	GTGA	TAAT	AAAA	GAW	GCAT	GGTA	TTAA	АСТА	TCAT	`AGA	AGTAC	ACAC	AAAA:	ACAA	AAAA	JGAC	TCAT	GGC	339	3

ATTATTAATATAATTAGTGCTTTACATGTTAGTTATACATATTAGAAGCATATTTGCCTAGTAAGGCTAGTAGAACC	3472
ACATTTCCCAAAGTGTGCTCCTTAAACACTCATGCCTTATGATTTTCTACCAAAAGTAAAAAGGGTTGTATTAAGTCAG	3551
AGGAAGATGCCTCTCCATTTTCCCTCTCTTTATCAGAGGTTCACATGCCTGTCTGCACATTAAAAGCTCTGGGAAGACC	3630
TGTTGTAAAGGGACAAGTTGAGGTTGTAAAATCTGCATTTAAATAAA	3709
ggccg	3714

GTCGACCCACGCGTCCGCGGACGCGTGGGCACTCGGCCACTCTGCGGAGCAGGCATGGGAGCCGCGCGCG													
M A CGCCCACACCTGTCTGAGCGGCGCACGGCCGCGGGCCCCGGGGGGCTGCTCCACGCGGTAGCACTCAGC ATG GCT 1	5												
G I P G L F I L V L L C V F M Q V S P GGA ATC CCG GGG CTC TTC ATC CTT CTT GTC CTG CTC TGT GTG TTC ATG CAG GTG AGT CCC 2													
Y T V P W K P T W P A Y R L P V V L P Q ATAC ACC GTT CCG TGG AAA CCC ACA TGG CCG GCT TAT CGC CTC CCT GTA GTC TTG CCT CAG 27													
S T L N L A K A D F D A K A K L E V S S 6 TCT ACC CTC AAC TTA GCT AAG GCA GAC TTC GAC GCC AAA GCG AAA TTG GAG GTG TCC TCC 33													
S C G P Q C H K G T P L P T Y E E A K Q 8 TCA TGT GGA CCT CAG TGT CAC AAG GGA ACA CCA CTG CCC ACC TAC GAA GAG GCC AAG CAG 39													
Y L S Y E T L Y A N G S R T E T R V G I 10 TAC CTT TCC TAT GAA ACC CTT TAT GCC AAT GGC AGC CGC ACA GAG ACT CGG GTG GGC ATC 45.	2												
Y I L S N G E G R A R G R D S E A T G R 12: TAC ATC CTC AGC AAT GGT GAA GGC AGG GCA CGA GGC AGA GAC TCG GAG GCC ACA GGG AGA 51:	2												
S R R K R Q I Y G Y D G R F S I F G K D 142 TCT CGC AGG AAG AGG CAG ATT TAT GGC TAC GAT GGC AGG TTT AGC ATT TTT GGG AAG GAC 573	2												
F L L N Y P F S T S V K L S T G C T G T 162 TTC CTG CTC AAT TAT CCT TTC TCA ACA TCG GTG AAG TTG TCT ACT GGC TCC ACT GGC ACC 633	!												
L V A E K H V L T A A H C I H D G K T Y 182													
V K G T Q K L R V G F L K P K Y K D G A 202													
GTG AAA GGG ACA CAG AAA CTC CGA GTG GGC TTC CTG AAG CCC AAG TAT AAA GAT GGT GCC 753 E G D N S S S S A M P D K M K F Q W I R 222													
GAA GGG GAC AAC AGC TCG AGC TCA GCC ATG CCA GAC AAG ATG AAG TTT CAG TGG ATC CGC 813 V K R T H V P K G W I K G N A N D I G M 242													
GTG AAA CGC ACC CAT GTG CCC AAG GGG TGG ATC AAG GGC AAT GCC AAT GAC ATC GGC ATG 873													
D Y D Y A L L E L K K P H K R Q F M K I 262 GAT TAT GAC TAC GCC CTG CTG GAA CTC AAG AAA CCC CAC AAA AGA CAG TTC ATG AAG ATT 933													
G V S P P A K Q L P G G R I H F S G Y D 282 GGT GTG AGT CCT CCA GCG AAG CAG CTC CCA GGG GGC AGG ATC CAC TTC TCT GGT TAT GAC 993													
N D R P G N L V Y R F C D V K D E T Y D 302 AT GAC CGG CCC GGC AAT TTG GTG TAC CGC TTC TGT GAT GTC AAA GAT GAG ACC TAC GAC 1053													
L L Y Q' Q C D A Q P G A S G S G V Y V R 322 TT CTC TAC CAG CAG TGT GAC GCC CAG CCC GGG GCC AGT GGT TCA GGG GTC TAT GTG AGG 1113													
M W K R P Q Q K W E R K I I G I F S G H 342 FG TGG AAG AGA CCA CAG CAG AAA TGG GAA AGA AAA ATT ATC GGC ATC TTT TCA GGG CAC 1173													
) W V D M N G S P Q D F N V A V R I T P 362 NG TGG GTG GAC ATG AAT GGC TCT CCA CAG GAT TTC AAC GTG GCA GTT AGA ATC ACG CCT 1233													
1233													

CTT.	K AAA	Y	A	CAG.	I ATT	C	Y	W TGG	I ATT	K AAA	G GGA	N	Y	L	D GAT	C	R	E GAG	G	382 1293
CII	^~~	IAI	GCC	CAG	711	100	171			,,,,,	COA			CIA	UAI	100	AGG	GAG	GGG	1493
*																				383
TGA																				1296
CATG	CGTC	TTCT	TGCC	AGCA	CCAA	TGGT	CTTT	TTGC	ACTO	ATTO	TAGO	AGAC	GCTA	GCTT	TTTA	TCAT	TGAC	TCTT	GTG	1375
GTGT	GAGT	CACA	TAGT	ATCT	TTTA	CCTA	GTAT	TCTT	CAAA	TGGC	AAAA	ATTA	TTGG	CTAT	ATTA	TTTT	АААА	CTGT	TGT	1454
GTGC	GTTA	TAGC	ATTT.	AAGC.	AGTC	TGAA	AGCA	TACT	TTTG	CATA	GAGA	CITT	AAAG	TATT	CGGG	TAAT.	AGGG	CCTA	TTT	1533
GACA	AGGA	AGTT	AAAC'	TTTC	AGTT"	rttg	GAGA	ATTC	TAAT	TTTT	GTCT	GATC	CAAA	CTTG	CTTC	AGAG	GTTT	TATA	CAA	1612
ATACO	TGAC	CACAC	CAGG	GAAT/	ATGA	ATTCI	TATO	TTT(STAT	ATGT	ATATO	GTTT"	CTT	CTGAC	SAGTO	CATA	CATTO	JATA'	rtt	1691
TTGTA	LATG1	GTGC	TTAT	TATO	CTTC	CAGA	TAAT	GAT	\GCA;	AAGTO	CTTC	\ATA(GCA.	ATTTA	TAAT	GTT	TGG	\TTC	LAA	1770
CATTT	ACGT	'AGTA	GTCC	TTGA	AGAC	AACA	ataa	TTT	TTGC	CTAT	TATTO	ATAC	CCAT	ATAA	GACT	GTAI	CTTA	CAGI	:GC	1849
ACAGA	ልଫଫሮ	ירר <i>א</i> ר	сстс	ייייי	" የልርተ	тттс	AAAA	TAAA	ACTT	ידרכר	ጉጉርፕ	מבבבי	دمدد		2222		ACCC	cccc	cc	1928
						0										e e e e	A000			1,740
ACAGA	ATTC	CCAC	GCTG	CTTT	TAGT	TTTG	AAAA	TAAA	ACTT	TCCC	TTGT	AAAA	аааа	AAAA	AAAA	AAAA	AGGG	CGGC	CG	1928

GT	CGAC	CCAC	CGCGT	CCGC	GCTC	M ATG	A GCG	P CCG	A GCG	S TCG	R CGG	L TTG	L CTC	A GCG	L CTC	W TGG	A GCG	L CTG	A GCG	14 64
A GC			•		_	_	G G GGC	A G GCC	E GAC	G GGG	D GAC		G GGC	W TGC	R CGC	P CCC	G GG	-	P CCG	34 124
G GG(A G GC			_	_		R G CGC	C TGC	T : ACG	V GTC	E GAC	R CG1	R CGG	A GCC	D GAC	L CTC	T C ACC	Y TAC	A GCG	54 184
E GAC	F TT	V C GT	Q G CA	_			F TTC	V GTC	R AGG	P CCC	v GTC	I ATC	L CTG	Q CAG	. G GGA	L	T ACC	D GAC	n Aac	74 244
S TCG	R AGO	F TTC	R C CGC	A G GC	L CTC	C TGC	S TCC	R CGC	D GAC	R AGG	L TTG	L CTG	A GCT	S TCG	F TTT	G GGG	D GAC	R AGA	V GTG	94 304
V GTC	R CGC	L CTC	S AGC	T C ACC		N AAC	T ACC	Y TAC	S TCC	Y TAC	H CAC	K AAA	V GTG	D GAC	L TTG	P CCC	F TTC	Q CAG	E GAG	114 364
Y TAT	V GTG	E GAG	Q CAG	L CTG	L CTG	H CAC	P CCC	Q CAG	D GAC	P CCC	T ACC	S TCC	L CTG	G GGC	N AAT	D GAC	T ACC	L CTG	Y TAC	134 424
F TTC	F TTC	G GGG	D GAC	N AAC	N AAC	F TTC	T ACC	E GAG	W TGG	A GCC	S TCT	L CTC	F TTT	R CGG	H CAC	Y TAC	S TCC	P CCA	P CCC	154 484
P CCA	F TTT	G GGC	L CTG	L CTG	G GGA	T ACC	A GCT	p CCA	A GCT	Y TAC	S AGC	F TTT	G GGA	I ATC	A GCA	G GGA	A GCT	G GGC	S TCG	174 544
G	V GTG	P	F TTC	H CAC	W	H CAT	G GGA :	P CCC +	G GGG	Y TAC	S TCA	E GAA	V GTG	I ATC	Y TAC (G GGT	R CGT	K AAG	R CGC	194 604
W	F	L	Y TAC	P	P	E	к	т	P	E	F	н	P	N	к	τ	т	L	A	214 664
W TCG (L	R	D	τ	Y	p ·	A	L	p	p	s	A	R	₽	L	E	С	T		234 724
R CGG C	A	G	E	v	L	Y	F	Р	D	R	w	W	н	A	т	L	N	L	ם	254 784
T	s	v	F	I	s	т	F	Ľ	G	•		.00	.ni	ici n		.10 7	uic ((:	265
ACC A											CCTC	GTGC	TCAC	GGAT	TTTA	TTAC	ACAG	ATAG		196
GCGGC	AATC	GCC1	rcago	:CCAC	CCCA	CCCT	CACC	TGCT	TTTC	CAGC	CCAC	AAAG	GGGG.	ACGA	TCAC	GCC	CAGC	AAAA	GC 9	75
GATGC	TGAG	AUCO	:CAVA	CAGT	CCAG	AGTC	CAAC	AGCA(GAAC'	TTGG	GGGA	AGCG	GTCG	GGGT	GCC	AGGA	ACAT.	AAAC'	TA 10	54
TGTAT	AGGG	GCCG	GCCC	CTTC	TGCC	CAGG	CTC	CCT	GAC	CAGG.	ACGC	CAGG	raggo	GCAGO	GAAG	CTC	AGTA	STCC	rc 11	33
CACCC	AGCC.	ATTC	TCAG	agat	GAAT	GCGT	CAATA	VACC1	CCTT	CAT	AGCC	AAGT:	rgggg	CATGA	GCTC	TTC	TGG	GTCAC	G 12	12
GGGCTG	CCGG	STCA	CGGG	STCA	AAA TO	GACCO	CACAC	GCTC	CAGT	GAC	AGA	AGGGG	AGAC	GGCA	GTCA	TGGC	GCC	CAGGA	C 12	91
CATGCC	ACT	3000	CTGC	rccc	CCAG	CGCA	GCC	TCAC	CTGC	AGGT	rgcto	CTCC	ATGT	CCTT	cccc	TCGT	AGGT	GATO	C 13	70
(23)200,23		77377	3/23/20	70177		משת מידי מי	COTO	5336	CTCA	TOTI	cccs	Caca	CCTA		cccs	TOTO	~~~	****	c	

M A A A G R R G L L L F V GTCGACCCACGCGTCCGGTTC ATG GCG GCG GCT GGG CGG CGC GGT CTG CTT TTG CTC TTT GTA LWMMVTVILPASGEGGWK 34 CTA TGG ATG ATG GTG ACT GTG ATT CTG CCT GCC TCT GGC GAA GGG GGA TGG AAA CAG AAT 123 G L G I A A A V M E E E R C T V E R R A GGG CTG GGA ATT GCA GCA GCA GTA ATG GAG GAG GAG CGT TGC ACA GTG GAG CGT CGG GCA 183 H I T Y S E F М Q Н Α CAC ATC ACG TAC TCC GAA TTC ATG CAG CAC TAT GCC TTC CTC AAG CCC GTC ATC TTG CAA 243 G L T D N S K F R A L C S R E N L GGA CTC ACG GAC AAC TCG AAG TTC CGG GCC CTG TGT TCC CGG GAA AAC CTG CTA GCC TCG 303 v R LSTANTYSYQKVD TTC GGG GAC AAC ATT GTT CGC TTG AGT ACA GCC AAC ACC TAC TCC TAC CAG AAA GTG GAC 363 L P F Q E Y V E Q L L Q P Q D P A S L G CTG CCC TTC CAG GAA TAT GTG GAA CAG CTG CTG CAG CCC CAG GAT CCT GCA TCC CTA GGC 423 G D N N F T E W A S L F 154 AAT GAC ACC CTG TAC TTT TTT GGA GAC AAC AAC TTC ACT GAG TGG GCA TCC CTC TTC CAG 483 LLGT TPAYSFG I 174 PPFR CAC TAC TCT CCG CCA CCA TTC CGT CTC CTG GGA ACC ACC CCT GCT TAC AGC TTT GGA ATT 543 A G A G S G V P F H W H G P G F S E V I GCA GGA GCT GGA TCT GGG GTA CCC TTC CAC TGG CAT GGG CCT GGT TTC TCA GAG GTT ATC 603 Y G R K R W F L Y P P E K T P E F H P N 214 TAT GGT CGG AAG CGC TGG TTC CTC TAC CCT GAG AAG ACA CCT GAG TTC CAC CCT AAC 663 AAG ACC ACA TTG GCC TGG CTG CTG GAA ATA TAC CCA TCT CTA GCC CTG TCA GCA CGG CCT 723 254 L E C T I Q A G E V L Y F P D R W W H A CTA GAA TGT ACC ATC CAG GCT GGT GAA GTA CTG TAT TTT CCT GAT CGG TGG TGG CAT GCC 783 T L N L D T S V F I S T F L G 270 ACA CTC AAT CTG GAC ACC AGT GTC TTC ATT TCT ACC TTC CTT GGC TAG 831 CCAGACAGGCAACTGGCAAGCCCACTGCACCAGCACATGCCAATGTAGTGCTCACAGACTTTATTACAGGACAGTGGCA 910 TATGCTGAGAAGGGGAGCAGTTCAGAACCCATCAGCAGGGCCGATGGGGGCAGGCCCAGGGACACAAACTATACAGGGA 1068 TTCTCAGAGATGAAAGCGTCAATGACTTCCTTCATGGCCAAGTTGGGGATGAGCTGTTCCTGGGTCAAAGGGCTCCGGG 1226 TCACAGGGTCAAAGTGGCCCACACGCTGCAACAGAGTCAAGAGTGTTCAATGGCCTGAGTATACCGATCCGGGTACCAA 1305 GGCTCTCCATGGCCCGGTCTCCATGGGCCCTCCTTACCTGCAGGTGCTCCTCAATGTCCTTGCGGTCATAGGTGATACC 1384 ACTGGGTGTAATGCAGGGTTCCCGCATCAGCTCAAGCTAATCTTGCCACACAAGTAGTCAGGGATATCTCGCTTCTAT 1463

A second of the second

CA	CGCG	TCCG	GCTG	GCGG.	AGCA	GGAGG	GATGO	GCG/	AGCAG	GTCT	GAAT	GCCAG						-	a Ct	7
т	А	F	v	I	А	С	v	L	s	L	r	s	т	I	Y	М	A	А	s	2
AC.	A GC	A TT	r GT	A ATT	r GC1	TGT	GTO	CTI	AGC	CTC	ATT	TCC	ACC	: ATC	TAC	ATO	GGC	A GC	TCC	13
I AT	G GGC	T ACA	D A GAC	F TTC	w TGG	Y TAT	E GAA	Y TAT	R CGA	S AGT	P CCA	V GTT	Q CAA	E GAA	N AAT	S TCC	S AG1	D GAT	L TTG	4 19
N TAA	K AA	S A AGO	I ATC	W TGG	D GAT	E GAA	F TTC	I ATT	S AGT	D GAT	E GAG	A GCA	D GAT	E . GAA	K AAG	T ACT	Y TAT	N AAT	D GAT	250
A GCA	L CTI	F TTT	R CGA	Y TAC	n aat	G GGC	T ACA	V GTG	G GGA	L TTG	W TGG	R AGA	R CGG	C TGT	I	T ACC	I ATA	P CCC	K Aaa	86 310
N AAC	M	H CAT	W TGG	Y TAT	S AGC	P CCA	P CCA	e gaa	R AGG	T ACA	E GAG	S TCA	F TTT	D GAT	V GTG	V GTC	T ACA	K AAA	C TGT	106 370
V GTG	S AGT	F TTC	T ACA	L CTA	T ACT	E GAG	Q CAG	F TTC	M ATG	E GAG	K AAA	F TTT	V GTT	D GAT	D CCC	g gga	N AAC	H CAC	N AAT	126 430
S AGC	G GGG	I ATT	D GAT	L CTC	L CTT	R AGG	T ACC	Y TAT	L CTT	W TGG	R CGT	C TGC	Q CAG	F TTC	L CTT	L TTA	P CCT	F TTT	V GTG	146 490
s agt	L TTA	G GGT	L TTG	M ATG	C TGC	F TTT	G GGG (A GCT	L TTG	I ATC	G GGA	L CTT	C TGT	A GCT	C TGC	I ATT	C TGC	R CGA	S AGC	166 550
L TTA	Y TAT	p CCC	T ACC	I ATT	A GCC /	T ACG (G GGC 7	I ATT (L CTC	H CAT	L CTC	L CTT	A GCA (G GGA	N AAT '	Y TAC	S TCA	D GAT	S TCT	186 610
W TGG	L CTC	H CAT	E GAA	* TAA																191 625
TTTT	AATG	ATCT'	TCTA	CATTA	ATCCI	TGAT	AATI	'ACTO	CATT	rctc	VATA/	ATCT	LATT	\TTT(CATCO	CAT	GACT	CTGAG	GGA	704
TAGC	TTCC.	AAGC	CTT	глалт	rggcc	TTAC	AAAC	TCAT	TCCC	CAAGT	TCT	TACT	TCAC	GCA	ACTO	ACCT	TTTT	AGTT	TTT	783
CCAG	rggg	CATO	CCTA	TGGT	AGTT	TAAA	AACA	TGGC	CTTA	LAAAI	CCTI	CGAT	CAAT	CTTC	CATT	GAGA	TTC	CATO	CC	862
CTTG/	LATC T	raggo	TGGC	TTGT	GATG	GTTT	TGAC	CAAT	AGAG	TGTG	CCTC	AAAT	GACA	стст	TCTC	ATGA	GGTC	CTAA	AG	941
ATCAT	GTG1	CCTT	'AAAC	CAGT	TCTC	TTGC	AACA	CTCA	GTCT	TAGA	ACAT	TCCC	TCTC	CAAA	CCCA	GATA	CCAT	CCTC	TG 1	020
AAGTO	CAGO	CCAC	ATGG	AGGT	GTCC"	rgtg	raga [,]	rcct	CCAG	CTGA	AATC	CCAA	GCTA	AGCT	CCCA	ACTG	ACAG	CCAA	CA 1	099
TCATT	TCCA	GCCA	TGTG	TGGG	NGCC	ATCCT	CCV.	rctc	CACC	CTTA	ACAA	CCCT	TCAG	AGGA	CTTC	AGCC.	ACAG	CTAT	TA 1:	178
тстта	СТАС	ATCC	TTGT	GAGA	CTCTA	\ATA	vvcv.	CCA	ACTAC	CTG	AGCC	CAATO	CAAC	TAT	GGAAG	CTGA	TAGA	алта	AA 1:	257
ATCAN	TTC:T	مدملانات	المناسد	cccc	тааа							a a							1.7	na

M D AATTCGGMWCMKKKGVVGGVVGCCGGTGGAGTGAGAGGATGGGCGAGCAGTCTGAATGCCAGA ATG GAT A																									
1	7	A	т	P	١.	F	v	I	А	. (3	v	L	s	I	,	I	s	т	٠ ،	ľ	Y	М	A	24
T	rr G	CT	ACT	GC	G I	TT	GTG	AT"	r GC	T TO	ST (GTG	CT	r AG	T CI	G A	TT	TC	C AC	C A	rc '	TAC	ATO	GC	3 139
			I											R CG								N AAT	S	S A AGT	
-		S CG	N Aat	AA.		I TC (A GCC	W TGG	E GA			F TC	CTC	G GG1			AG	A GCG	D GA	_		K VAG	T ACI	Y TAC	64 255
N	-	D	v	L	-	F	R	Y						G				R	R			r	T	I	84
AA	C G	AT (GTT	CT	G T	rc (CGA	TAC	AAC	: GG	C A	GC	TTG	GGG	CT	G TC	G.	AGA	CGC	G TG	C A	TC	ACC	ATA	315
	i Aa c				; (2) 1		w :GG	Y TAT	A GCC		A C		E GAA	R AGG				S TCA	F TTT	D GA		V TG	v GTT	T ACC	104 375
K			M					L CTA			(; c	-	F TTC		E GAC				V GTG	D		P CC ·	G GGC	N AAC	124 435
~~			110																						
H CAC			S IGC	_	I TA									L CTG				-	-	F TTC		_	L TTA	CCC	144 495
-	V GT		s .GC	L TTG	G GG		L TG 1	M ATG		F TTT				L TTG		GGG		L TC	C TGT	A GCC	τc	_	I	C TGC	164 555
R CGC	_			Y TAT			r CC (L CTC						L CTC		L CTC		L	A GCA	g GGT	CT		C	T ACA	184 615
	GG GGC					. TC								E GAA				H AT (K AAA	V GT		E AG	L CTG	204 675
P CCC		_	-	V STA	S TCT	GG		E AA 1	F TTT					F TTC					-	V GTC	S		A CT (-	224 735
L TTA	Q CAG			M .TG	A GCG			A CT (W GG (H CAC		r CC A	N VAC	R CGG	K AA		E AG 1	Y TAC	244 795
T ACC				K AG (Y TA			V TG (TGA														254 825
AGGG	ACG	CTG	CCT	GCT'	TAA?	rga:	ΓTΑ	TAT	TTT	CAT	ACA	TT	rttt	T											871

F16.18

HUMAN TANGO 215

Input file tag215; Output File tag215.pat Sequence length 2747

M E L G C W T Q L G TCCCCAGTAGACGCTCCGGCACCAGCCGCGCAAGG ATG GAG CTG GGT TGC TGG ACG CAG TTG GGG														10 66								
			L									L	P	R			Y	T			N	
CTC	ACT	TTI	CTT	CAG	CTC	CTI	CTC	AT	C TC	G T	CC 1											
e gaa		C TGC	PCCT	g gga	A GCA	E GAG	W TGC	N AA1			1 rg t	C GT	R CGG	E GAG	C TG	C TC		E AA	Y TAT	gA.	-	
	E GAG	C TGC	V GTC	C TGC	P CCC	G GGA	K AAG		E GA		r C G			Y TAT		I TA C		P CT	C TGC	TG	R C AG	-
n aat		E GAG	N AAT	E GAG	C TGT	D GAC		C TGC			C C		P CCA	g ggt		T AC		I TC	F TTT	E GA/	N A AA	90 306
C TGC			C TGC	R CGA	n aat	G GGC	S TCA	W TGG	G GGC			r CC 1	L ITG	D GAT	D GAC	F TT		Y AT (V GTG	K AAC	G GGC	110 366
F TTC	Y TAC		A GCA	E GAG	C TGC	R CGA	A GCA	G GGC	W TGC			GA (G GGA	D GAC	C TGC	M AT			C IGT	G GGC	Q CAG	130 426
V GTT	L CTG	R CGA	A GCC	P CCA	K AAG	g GGT	Q CAG	I ATT	L TTG				s .GC	Y TAT	P CCC	L CTA	N A AA		A GCT	H CAC	C TGT	150 486
E GAA	W TGG	T ACC	I ATT (H CAT (A GCT	K AAA	P CCT			V GT			Q AA	L CTA	R AGA	F TTT	V GT		M ATG	l TTG	s agc	170 546
L CTG (E GAG 1	F ITT (D GAC 1	Y FAC /	M ATG '			Y TAT		Y TAT				V GTT	R CGT	D GAT	G GG		D AC	n aac	R CGC	190 606
D GAT (Q CAG A		I NTC A	K NAG (V GTC '				E GA			P CCA (P CCT			⊸ .	S AGC	I ATA	210 666
G GGA T						L TC 1								K AG A	N AAT	F TTT	D GAC		G GT 1	F TTC	H CAT	230 726
A GCC A	I TT T			e ag a				c GC 1						C GT I		H CAT	D GAC		GC A	T .CG	C TGC	250 786
v STC C						S CT T						I TI			G GC 1	Y TAT	T ACT	GC		Q 'AG	R CGC	270 846
C I		N I			e Aa G				c cc	S TCA	D GAC	P CC		-	G GC (P CG	I ATC	N AA		G GG 1	Y TAC	290 906
Q 1																						310 966
V S	TT	C TT	י דס	. Y КТ ТА	C A	C TO	C T	T G	TT (CTT	agt	CG	י גא	T G	AG A	AA .	AGA	AC.	TTO	ב בי כ	AG	330 1026
n o aa da	T GG	E A GA	: w .G TG	S G TC	A GO	; K G AA	C (NG C	P CC A	I	C TGC	I ATA	k A AA	A GC	A CC T	C GC (R CGA	E GA	A CC	: :A A	K AG	350 1086
I S																S CA A			T AC			370 1146

AAFSKQKLQSAPTK 390 TTA CAC CAG CTA TAC TCA GCG GCC TTC AGC AAG CAG AAA CTG CAG AGT GCC CCT ACC AAG 1206 K P A L P F G D L P M G Y Q H L H 410 AAG CCA GCC CTT CCC TTT GGA GAT CTG CCC ATG GGA TAC CAA CAT CTG CAT ACC CAG CTC 1266 I S P F Y R R L G S S R R T C L 430 CAG TAT GAG TGC ATC TCA CCC TTC TAC CGC CGC CTG GGC AGC AGC AGG AGA TGT CTG 1326 С I P RTGKWSGRAP S AGG ACT GGG AAG TGG AGT GGG CGG GCA CCA TCC TGC ATC CCT ATC TGC GGG AAA ATT GAG 1386 TAPKTQGLRWPW .470 OAA AAC ATC ACT GCT CCA AAG ACC CAA GGG TTG CGC TGG CCG TGG CAG GCC ATC TAC AGG 1446 R T S G V H D G S L H K G 490 AGG ACC AGC GGG GTG CAT GAC GGC AGC CTA CAC AAG GGA GCG TGG TTC CTA GTC TGC AGC 1506 G A L V N E R T V V V A A H C V T D L 510 GGT GCC CTG GTG AAT GAG CGC ACT GTG GTG GTG GCT GCC CAC TGT GTT ACT GAC CTG GGG 1566 K V T M I K T A D LKVVL 530 AAG GTC ACC ATG ATC AAG ACA GCA GAC CTG AAA GTT GTT TTG GGG AAA TTC TAC CGG GAT 1626 D D R D E K T I Q S L Q I S 550 GAT GAC CGG GAT GAG AAG ACC ATC CAG AGC CTA CAG ATT TCT GCT ATC ATT CTG CAT CCC 1686 570 PILLDAD'I AILKLLDKA AAC TAT GAC CCC ATC CTG CTT GAT GCT GAC ATC GCC ATC CTG AAG CTC CTA GAC AAG GCC 1746 R I S T R V Q P I C L A A S R D L S T S 590 CGT ATC AGC ACC CGA GTC CAG CCC ATC TGC CTC GCT GCC AGT CGG GAT CTC AGC ACT TCC 1806 610 FQESHITVAG N TTC CAG GAG TCC CAC ATC ACT GTG GCT GGC TGG AAT GTC CTG GCA GAC GTG AGG AGC CCT 1866 D T L R S G V V S V V 630 GGC TTC AAG AAC GAC ACA CTG CGC TCT GGG GTG GTC AGT GTG GTG GAC TCG CTG TGT 1926 EDHGIPVSVTDNM GAG GAG CAT GAG GAC CAT GGC ATC CCA GTG AGT GTC ACT GAT AAC ATG TTC TGT GCC 1986 SDICTAETGGIAA T A P AGC TGG GAA CCC ACT GCC CCT TCT GAT ATC TGC ACT GCA GAG ACA GGA GGC ATC GCG GCT 2046 V S F P G R A S P E P R W H L M G L V S 690 GTG TCC TTC CCG GGA CGA GCA TCT CCT GAG CCA CGC TGG CAT CTG ATG GGA CTG GTC AGC 2106 W S Y D K T C S H R L S T TGG AGC TAT GAT AAA ACA TGC AGC CAC AGG CTC TCC ACT GCC TTC ACC AAG GTG CTG CCT 2166 -721 IERNMK * TTT AAA GAC TGG ATT GAA AGA AAT ATG AAA TGA 2199 GAAGTGTGATTTGGCCTGTGAACTTGGCTGTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGA 2357 CCTCCATTGCTGGTAGGCTGATGCCVCGTCCACTACTAGGACAGCCAATTGGAAGATGCCAGGGCTTGCAAGAAGTAAG 2436

TTTCTTCAAAGAAGACCATATACAAAACCTCTCCACTCCACTGACCTGGTCGTCCTCCCCAACTTTCAGTTATACGAAT	2515
GCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGG	2594
GACAGCCCAGGGCAGCAGAGCTGGGATGTGGTGCATGCCTTTGTGTACATGGCCACAGTACAGTCTGGTCCTTTTCCTT	2673
CCCCATCTCTTGTACACATTTTAATAAAATAAGGGTTGGCTTCTGAACTACAAAAAAAA	2747

GTCGACCCACGCGTCCGGCGGCTAGGCCCGCGTGCGCTGGAGACCTCCGCGCTGGCCCCCGCGAGCCTCC	IGCCCTGGC 7	9											
M G G P R G A G W V A A													
CCGGCGCTGCGGCTCTGCCGCGGCGGCAGC ATG GGT GGC CCC CGG GGC GGC TGG GTG	GCG GCG	145											
G L L L G A G A C Y C I Y R L T R G GGC CTG CTG CTC GGC GGC GGC GCC TGC TAC TGC ATT TAC AGG CTG ACC CGG GGT	R R CGG CGG	32 205											
R G D R E L G I R S S K S A G A L E CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT TCG AAG TCC GCA GGT GCC CTG GAA	E G GAA GGG	52 265											
T S E G Q L C G R S A R P Q T G G T ACG TCA GAG GGT CAG TTG TGC GGG CGC TCG GCC CGG CCT CAG ACG GGA GGT ACC	W E TGG GAG	72 325											
S Q W S K T S Q P E D L T D G S Y D TCA CAG TGG TCC AAG ACC TCG CAG CCT GAA GAC TTA ACT GAT GGT TCA TAT GAT	D V GAT GTT	92 385											
L N A E Q L Q K L L Y L L E S T E D CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT		112 445											
I I E R A L I T L G N N A A F S V N ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC		132 505											
I I R E L G G I P I V A N K I N H S ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC		152 565											
S I K E K A L N A L N N L S V N V E AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA .		172 525											
I K I K I Y I S Q V C E D V F S G P ATC AAG ATA AAG ATA TAC ATC AGT CAA GTA TGT GAG GAT GTC TTC TCT GGT CCT (192 585											
S A V Q L A G L T L L T N M T V T N TCT GCT GTG CAG CTG GCA CTG ACA TTG TTG ACA AAC ATG ACT GTT ACC AAT G		212 745											
Q H M L H S Y I T D L F Q V L L T G CAG CAC ATG CTT CAC AGT TAC ATT ACA GAC CTG TTC CAG GTG TTA CTT ACT GGA A		32											
N T K V Q V L K L L N L S E N P A AAC ACG AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG TCT GAA AAT CCA GCC A		52 6 5											
E G L L R A Q V D S S F L S L Y D S GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TCC CTT TAT GAC AGC C		72 25											
A K E I L L R V L T L F Q N I K N C GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC C		92 95											
I E G H L A V Q P T F T E G S L F F I ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CT	L L 31												
H G E E C A Q K I R A L V D H H D A E CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GA	E V 33	12											
K E K V V T I I P K I * ANG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA	34 114	4											

TTGUTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1220

CTGCTAAATTTAAACAGTAAATATCACATTTTGTCATTAACACAGCTATAACTTGCCGTGGTTCTCAGATTTATTT	G 1299
${\tt ACTATTTTGATGCCAAGTGAATATAAGAGCTTGTACTGAAACCATTTATTT$	r 1378
$\tt GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTTTTTTTT$	r 1457
${\tt ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAATG$	1536
${\tt ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGAATCTATCACTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGT$	1615
$\tt TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGTTTTAGGAGAGAGA$	1694
TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1773
CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA	1852
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	1931
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2010
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2089
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2168
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGAATGAAAAATGCTTATGTATTGACAGAACACTT	2247
TAGAATGATACCCAAACTCCTGGAGTGGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2326
ATATGAGCCCAAATTGTATAATCTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2403

ŢC	CGGT	CCAN	GAAA	AAGC	TGCT	TGCA	CTAG	GGGC	ATCC	cgcc	rgcc	TGGT	GAAA	GGAA	CCGC	AGCA	CACA	GGGT	GGGAG	79
GG	CTTC	CGAT	TTTA	GCAG	GGCG	GCŢŢ	CCGG	AAGG(CGGA	CTC	CAAC	CCCA'	rttc	CTTT	CTCT	GGC'	IGGT	TCTG	GCCCA	158
																	3 /			
GC'	rgca	CCTG	CGTG	TGGC	CCTG	GCTC	CTCGC	CTC	CTG	CAGCT	rccg	AGGC	AGCAC	GC AT	rg go	ST GO	GC GC	CG CC	GG .	22
D	v	G	W	v	Α	А	G	L	v	L	G	Α	G	A	С	Y	С	I	Y	2
GAC	GTO	GGG	C TG	GTO	G GC	A GC	GGG	CTC	GTC	CTC	GGC	: GCC	GGC	GCC	TGC	TAC	TGI	ATO	TAC	289
R	L	т	R	G	P	R	R	G	v	Α	T	М	R	P	s	R	s	A	E	45
CGG	CTC	AC1	CGC	GG;	A CCC	CGG	CGA	GGC	GTC	GCG	ACC	ATG	CGC	CCI	TCG	CGA	TCC	GCA	GAA	349
D	Ť.	т	. D	G	s	Y	D	Q	I	Ĺ	N	A	E	Q	L	к	к	L	L	65
GAC	CTA	ACC	GAT	· GGC	TCC	TAT	GAC	GAT	ATC	TTA	AAT	GCA	GAG	CAG	CTT	AAG	AAA	CTT	CTG	409
v	t.	L	Е	s	т	D	D	p	v	I	Т	Ε	к	 A	L	v	T	L	G.	85
TAT	CTG	CTG	GAG	TCA	ACC	GAC	GAT	CCT	GTC	ATT	ACT	GAA	AAG	GCC	TTG	GTC	ACC	TTG	GGA	469
NT	N.	Δ	Δ	F	s	т	N	0	А	ī	I	R	E	L	G	G	I	P	I	105
AAT	AAT	GCA	GCC	TTC	TCC	ACT	AAC	CAG	GCC	ATT	ATT	CGT	GAG	TTG	GGT	GGT	ATC	CCA	ATT	529
.,	_	17	v	7	3.7	c	۲.	N	0	q	7	ĸ	E	к	Д	ţ,	N	А	L	125
TT	GGA	AAC	AAA	ATC	AAC	TCC	CTG	AAC	CAA	AGT	ATT	AAA	GAG	AAA	GCT	TTA	AAT	GCA	CTG	589
		_	_			v	_	.,	_	~	v		v		v	w	В	^	17	145
N	N AAC	CTG	AGT	GTG	AAT	GTT	GAA	AAT	CAA	ACT	AAG	ATA	AAG	ATA	TAC	GTC	CCT	CAA	GTC	
																				152
			V GTC																	670

		10	20	30	40	50
MAMUH	MALLSRP.	ALTLLL	LLMAAVVRC(ARWCTTOAGE	TLKTIRNGV	KIDTYLNAALDLL
MURINE	::: M-VTPRP	: . APARGPALLL	::. :: : LLLLATARGO			KIDTYLNAALDLL
		10	20	30	40 .	50
	60	70	80	90	100	110
	GGEDGLCC	YKCSDGSKP	FPRYGYKPSP	PNGCGSPLFGV	/HLNIGIPSL	TKCCNQHDRCYET
	GGEDGLCO	::::::: YKCSDGSKPV				TKCCNOHDRCYET
	60	70	80	90	100	110
	120	130	140	150	160	170
	CGKSKNDC	DEEFQYCLSK	ICRDVQKTL	GLTQHVQACET	TVELLFDSV	IHLGCKPYLDSQR
	CGKSKNDC		• • • • • • • • •			::::::::::::::::::::::::::::::::::::::
1	20	130	140	150	160	170
	180	190				
:	AACRCHYEE	EKTDL				
	AACWCRYEE					
18		90				

	10	20	30	40	50	60	
HURINE	MAQLGAVVAVASSF	FCASLFSAV	/HKIEEGHIGVY	YRGGALLTS	TSGPGFHLML	PFITSYK	
	:::::::::::::::	: : : : : : : :		::::::::	:::::::::::	:::::	
HUMAN	MAQLGAVVAVASSF	CASLFSAV	/HKIEEGHIGVY	YRGGALLTS'	TSGPGFHLMLF		
'	10	20	30	40	50	60	
	70	80	90	100	110	120	
	SVOTTLQTDEVKNVF				/KNYTADYDKA	LIFNKI	
	:::::::::::::::	:::::::	::::::::::	::::::::::	:::::::::::::::::::::::::::::::::::::::	:::::	
	SVOTTLQTDEVKNVP	CGTSGGVM	IYFDRIEVVNF	LVPNAVYDIV	/KNYTADYDKA	LIFNKI	
	70	80	90	100	110	120	
	130	140	150	160	170	130	
	HHELNQFCSVHTLQE						
	HHELNQFCSVHTLQE'	VYIELFDQ:	IDENLKLALQQC	OLTSMAPGLV	'IQAVRVTKPN	IPEAIR	
	130	140	150	160	170	180	
	190	200	210	220	230	240	
RNYELMESEKTKLLIAAQKQKVVEKEAETERKKALIEAEKVAQVAEITYGQKVMEKETEK							
				::::::::	:::::::::::	:::::	
,	RNYELMESEKTKLLIA	AOKOKVVE	KEAETERKKAL	TEAEKVAOV.	AEITYGOKVME	KETEK	
	190	200	210	220	230	240	

HUMAN	MNMTC	10 ARVLVAAV	20 GLVAVLLYAS	30 SIHKIEEGHLA	40 VYYRGGALLI	50 SPSGPGYHI	60 MLPFITT
HOPINI							
MURINE							
		70	80	90	100	110	120
	FRSVQ	TTLQTDEVK	NVPCGTSGGV	MIYIDRIEVV	NMLAPYAVFD	IVRNYTADYI	OKTLIFN
		-	• • •	::::::::::		:::::::::::::	:::::
		K	NVPCGTSGGV 10	MIYIDRIEVVI 20	NMLAPYAVFD 30	IVRNYTADYE 40	KTLIFN
			10	20	20	40	
		130	140	150	160	170	130
	KIHHEI	NQFCSAHTI	LQEVYIELFD	QIDENLKQAL	OKDLNLMAPGI	LTIQAVRVTK	PKIPEA
				: : : : : : : : : :			
				QIDENLKQALQ			PKIPEA
	50	60	70 _.	80	90	100	
		190	200	210	220	230	240
	IRRNFE	LMEAEKTKL	LIAXQKQKVV	/ekeaeterkk	AVIEAEKIAÇ	VAKIRFQQK	VMEKET
				::::::::			
				EKEAETERKR			MEKET
	110	120	130	140	150	160	
		250	260	270	280	290	300
	EKRISE:	CEDAAFLAR	EKAKADAEYY	AAHKYATSNKI	HKLTPEYLEL	KKYQAIASNS	KIYFG
	::::::		::::::::::	::::::::	:::::::::	::::::::::	:::::
				AAHKYATSNKI			KIYFG
	170	180	190	200	210	220	
		310	320	330	340		
	SNIPNME			SLPSKEALEPS	GENVIQNKES	STG-	
	SNIPSMF	VDSSCALKY	SDGRTGREDS	SLPPEEAREPS	GESPIQNKEN	IAGN	
	230	240	250	260	270		

MURINE MKLLCLVAVVGCLLVPPAQANKSSEDIRCKCICPPYRNISGHIYNONVSOKDCNCLHVVE HUMAN MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVE PMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPD PMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPD ${\tt AYTEQLHNEEENEDARTMATAAASIGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHK}$ ${\tt AYTEQLHNEE} ENE {\tt DARSMAAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHK}$

MLS

:::

MLS

		10	20	30	40	50		
HUMAN	MATI	LW-GGLLRLG	SLLSLSCLALS	SVLLLAQLSDA	AAKNFEDVRC	KCICPPYKEN	SGHIYNK	
MURINE	11.11 1.11111 1.1.1111							
		10	20	30	40	50	60	
	60	70	80	90	100	110		
	NISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLY							
	NISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYM							
		70	80	90	100	110	120	
	120	130	140	150	160	170		
VYLTLVEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYA							YAQQRW	
	VYLTLVEPILKRRLFGHSQLLQSDDDVGDHQPFANAHDVLARSRSRANVLNKVEYAQQRW							
		130	140	150	160	170	180	
	180	190						
	KLQVQ	EQRKSVFDRH						
	:::::	:::::::::::::::::::::::::::::::::::::::	::::					
	KLQVQEQRKSVFDRHVVLS							
	190							

HUMAN MIRCGLACERCRWILPLLLLSAIAFDIIALAGRGWLQSSDHGQTSSLWWKCSQEGGGSGS MURINE MLRCGLACERCRWILPLLLLSAIAFDIIALAGRGWLQSSNHIQTSSLWWRCFDEGGGSGS YEEGCQSLMEYAWGRAAAAMLFCGFIILVICFILSFFALCGPQMLVFLRVIGGLLALAAV YDDGCQSLMEYAWGRAAAATLFCGFIILCICFILSFFALCGPQMLVFLRVIGGLLALAAI FQIISLVIYPVKYTQTFTLHANPAVTYIYNWAYGFGWAATIILIGCAFFFCCLPNYEDDL FQIISLVIYPVKYTQTFRLHDNPAVNYIYNWAYGFGWAATIILIGCSFFFCCLPNYEDDL LGNAKPRYFYTSAN LGAAKPRYFYPPAN

MURINE HUMAN	::::	::: :.:. :		30 YTVPWKPTWPA ::::::::	:::::::	: : : : : : : : :	.: :::;
		10	20	30	40	50	60
	60	70	80	90 LSYETLYANG	100	110	ecener.
				:::::::::			
				LSYETLYANG			
		70	80	90	100	110	120
а.	120	130	140	150 LLNYPFSTSV:	160	170	LICTUDG
				LLNYPESTSV			
				LLNYPFSTSVI			
		130	140	150	160	170	180
	180	190	200	210 GDNSSSSAMPD	220	230	KCNAND
		-		. : . : . : : : : .			
				ANDSTSAMPE			
		190	200	210	220	230	240
	240	250	260	270 SPPAKQLPGG	280	290	COUKDE
				::::::::::			
				SPPAKQLPGG			CDVKDE
		250	260	270	280	290	300
	300 TVDLLV	310	320 320	330 KRPQQKWERKI	340	350 VDMNGSPODE	NVAVR
				: : . : : : : : : : :			
	TYDLLY	QQCDAQPGAS	GSGVYVRMŅI	KRQQQKWERKI	IGIFSGHQW		
		310	320	330	340	350	360
	360	370 AOICYWIKGN	380				
		CICINIKON					
		QICYWIKGN					
		370	380				•

		10	20	30	4	.0 50
10 KMUH	MAPASR	LLALWAL	AAVALPGSG.	AEGDGGWRPG	GPGAVAE	EERCTVERRADLT
	::.:.:	::: .	: ::::	:::::	: : :: :	::::::::::::::
MURINE	MAAAGRRGL.	LLLFVLWMM	VTVILPAS	GEGGWKQN	GLGIAAAVME	EERCTVERRAHIT
	1)	20	30	40	50
	60	70	80	90) 10	0 110
	YAEFVQQYAE	VRPVILQGI	LTDNSRFRAL	CSRDRLLASE	GDRVVRLST.	ANTYSYHKVDLPF
	:::::::::	::::::	:::::::	:::. :::::	:: .::::	:::::::::::::::::::::::::::::::::::::::
	YSEFMQHYAR	LKPVILQGE	.TDNSKFRAL	CSRENLLASE	GDNIVRLST	ANTYSYQKVDLPF
	60	70	80	90	100	110
	,					
	120	130	140	150	160	170
	QEYVEQLLHP	QDPTSLGND	TLYFFGDNN	ftewaslfrh	YSPPPFGLLC	TAPAYSFGIAGA
	:::::::::	:::::::	:::::::	:::::::::		: . : : : : : : : : :
		-				TTPAYSFGIAGA
	120	130	140	150	160	170
	130	190	200	210	220	
	GSGVPFHWHG	PGYSEVIYG	RKRWFLYPPE	EKTPEFHPNK	TTLAWLRDTY	PALPPSARPLEC
	:::::::::::::::::::::::::::::::::::::::			:::::::::::	:::::::	:.:. ::::::
						PSLALSARPLEC
	190	.90	200	210	220	230
	240	250	260			
	TIRAGEVLYFP	DRWWHATLN	LDTSVFIST	FLG		
	::.::::::::					
	TIQAGEVLYFP			FLG		
	240 2	50	260			

HUMAN MDNRFATAFVIACVLSLISTIYMAASIGTDFWYEYRSPVQENSSDLNKSIWDEFISDEAD MURING MDNRFATAFVIACVLSLISTIYMAASIGTDFWYEYRSPIQENSSDSNKIAWEDFLGDEAD EKTYNDALFRYNGTVGLWRRCITIPKNMHWYSPPERTESFDVVTKCVSFTLTEQFMEKFV EKTYNDVLFRYNGSLGLWRRCITIPKNTHWYAPPERTESFDVVTKCMSFTLNEQFMEKYV DPGNHNSGIDLLRTYLWRCQFLLPFVSLGLMCFGALIGLCACICRSLYPTIATGILHLLA DPGNHNSGIDLLRTYLWRCQFLLPFVSLGLMCFGALIGLCACICRSLYPTLATGILHLLA GLCTLGSVSCYVAGIELLHQKLELPDNVSGEFGWSFCLACVSAPLQFMASALFIWAAHTN GLCTLGSVSCYVAGIELLHQKVELPKDVSGEFGWSFCLACVSAPLQFMAAALFIWAAHTN RKEYTLMKAYRVA RKEYTLMKAYRVA

		10	20	30	40	50	
MURINE	MGGARI	DVGWVAAGL	.VLGAGACYCI	YRLTRGPRRO	GVATMRPSI	RSAEDLTDGS	YDDILNA
	:::::	: : : : : : :	.:::::::	::::::		. : : : : : : : :	
HUMAN	MGGPRO				DRELGIRSS		
		10	20	30	40	50	60
	60	70	80	90	100	110	
	EOLKKI	LYLLESTD	DPVITEKALV	TLGNNAAFST	NQAIIRELGO	SIPIVGNKIN	SLNQSIK
	::::::	:::::::	:::::::::	:::::::::	:::::::::	::::::	:::::
	EQLQKL	LYLLESTE	DPVIIERALI	TLGNNAAFSV	NQAIIRELGG	IPIVANKIN:	HSNQSIK
		70	80	90	100	110	120
		120	1.10	150			
	120	130	140	150			
			ENQTKIKIYVI				
		<i>.</i>	NOTUTUTUTU		PLNSAVQLAG	ייי די די מייי אוריי די די די	MUDUOUM
	ENALNA.	130	140	150	160	170	180
		130	140	130	100	170	100
	LHSYITE	DLFQVVLTG	NGNTKVQXLK	LLLNLAENPA	MTEGLLRAQV	/DSSFLFLYD	XHVAXE
		190	200	210	220	230	240
		_					
	,	:					
	XLLOYLR	FSE					
		250					

humutntalign ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) > mut180 1570 aa vs. > hut180 1203 aa scoring matrix: paml20.mat, gap penalties: -12/-4 55.0% identity; Global alignment score: 2219 GTCGACCCACGCGTCCG---GGCCGGGGTCCTGA----GCCGGAGCCGGAGCGCGCCC GTCGACCCACGCGTCGCGTGGATATGGAGCTGGCTGCCCAAGTCCGGGGCCCGCGCC GCTGCCCAGC----CC------CGC-------CGCGCCG-GCCCCGCAGAT-GGTGACT C------CGCGGCCCGC---GCCC-GCCCGGG-GCCCGCGCTC---CTCCTCCT CGTAGAGCCCGGCGCTGCGCGCATGGCCCTGCTCTCGCGCCCCGCGCTCACCCTCCTGCT CCTCCTCATGGCCGCTGTTGTCAGGTGCCAGGGCCCAGACCACCGACTGGAGAGC CACCCTCAAGACCATCCGCAACGCCATCCACAAGATAGACACGTACCTCAACGCCGCGCT CACCCTGAAGACCATCCGGAACGCCGTTCATAAGATAGACACGTACCTGAACGCCGCCTT GGACCTGCTGGGCGGGGGGGCGGGGCTCTGCCAGTACAAGTGCAGCGACGGATCGAAGCC GGACCTCCTGGGAGGCGAGGACGGTCTCTGCCAGTATAAATGCAGTGACGGATCTAAGCC TGTTCCACGCTATGGATATAAACCATCTCCACCAAATGGCTGTGGCTCTCCACTGTTTGG TTTCCCACGTTATGGTTATAAACCCTCCCCACCGAATGGATGTGGCTCTCCACTGTTTGG CGTTCATCTGAACATAGGTATCCCTTCCCTGACCAAGTGCTGCAACCAGCACGACAGATG CTATGAGACCTGCGGGAAAAGCAAGAACGACTGTGACGAGGAGTTCCAGTACTGCCTCTC -ITATGAGACCTGTGGCAAAAGCAAGAATGACTGTGATGAAGAATTCCAGTATTGCCTCTC

FIG. 32 (10F3)

	-10	530	630	540	550
500 CAAGA	510 TCTGCAGAGA	520 CGTGCAGAAG	530 ACGCTCGGAC		CGTCCAGGCATGTGA
:::::	::::: ::::				:: :::::::::::::::::::::::::::::::::::
550	560	570	580	590	600
560	570	580	590	600	610 CAAGCCATACCTGGA
					TAAACCATATCTGGA
610	620	_. 630	640	650	660
620	630	640	650	660	
					CTATAAAGACC
		:::::::: TGCAGGTGTC			::::::::::::::::::::::::::::::::::::::
670	680	690	700	710	720

670	680 SCTGGAGAGC	690 AGGCGAGAATO	700 GAGGATCAT	710 CCTT-GCCA	720 AAGATCGGATGCTT
					:: : : : : : : : : : : : : : : : : : : :
CCGACAC	GCTAGTGA - C				AATAACTAATGTTT
730	740	750	760	770	
730	740	750	760	770	780
TAACAGO	CTAATGTTGC	CTTAGTTTTG	TGTCGATGGG	TCATTTTGAG	SACCTTTCTATACT
780	790	800	TGAAAGGA 810	820	ACCTTAAAATA 830
730	,,,,	000	0.10	020	
	800	810	820	830	840
					a a. a. a. aaaa
		CTCAAAGTGA	AAACGGTGGG	GGCCAGGCA	GAAACAGAGGGAG
.:	::.:	CTCAAAGTGA	AAACGGTGGGG ::::	GGGCCAGGCA	GAAACAGAGGGAG .::::::::::: AAAAAAGTGAGGG
.:	::.:	CTCAAAGTGA :: :::::: CTTGATGTTAJ	AAACGGTGGGG ::::	GGGCCAGGCA	.::: ::.:.:
.: AT 840 850	::.: TTATAT 850	CTCAAAGTGA :: .:.:: : CTTGATGTTAJ 870	AAACGGTGGGG :::: AAACCT 860 880	GGGCCAGGCA : ::::: CAAAGCA 870 890	.::: :::::::::::::::::::::::::::::::::
840 850 AGCATGCT	ETTATAT 850 860 TTGGGATGGG	CTCAAAGTGA :: .:.:: : CTTGATGTTAJ 870 GAGCGAGCAGC	AAACGGTGGGG :::: AAACCT 860 880 ACATCCAAGA	GGGCCAGGCA : :.::: CAAAGCA 870 890 GCATGCCTTC	AAAAAAGTGAGGG 900 CCTGAGACTCGCT
840 850 AGCATGCT	::::: TTATAT 850 860 TTGGGATGGG	CTCAAAGTGA :: .:.:: : CTTGATGTTAA 870 GAGCGAGCAGC	AAACGGTGGGG :::: AAACCT 860 880 :ACATCCAAGA	6GGCCAGGCA : :.::: CAAAGCA 870 890 GCATGCCTTC	AAAAAAGTGAGGG 900 CCTGAGACTCGCT
840 850 AGCATGCT	::::: TTATAT 850 860 TTGGGATGGGG	CTCAAAGTGA :: .:.:: : CTTGATGTTAJ 870 GAGCGAGCAGC	AAACGGTGGGG :::: AAACCT 860 880 BACATCCAAGA :	6GGCCAGGCA : :.::: CAAAGCA 870 890 GCATGCCTTC	AAAAAAGTGAGGG 900 CCTGAGACTCGCT
850 AGCATGCT ::: AGATAG	::::: TTATAT 850 860 TTGGGATGGGG :::::	CTCAAAGTGA: :: .:.::: CTTGATGTTAI 870 GAGCGAGCAGC ::::::: GGGAGGGCA	AAACGGTGGGG : : : : AAACCT 860 880 :ACATCCAAGA : -C	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCCTTCGCCTTCGCCTTCGCCTTCGGCCTTCGGCCTTCGGCCTTCGGCCTTCGGCCTTCGGCCTTCGGCCTTCGCGCCTTCGCGCCTTCGCCCTTCGCCCTTCGCCCTTCGCCCTTCGCCCTTCCTTCTTTCTTCTTTCTTCTTCTTCTTCTTCTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTT	900 CCTGAGACTCGCT
.: AT 840 850 AGCATGCT :: .: AGATAG 880	######################################	CTCAAAGTGA: :: .:.::: CTTGATGTTAJ 870 GAGCGAGCAGC :: :::: GGGAGGGCA 190	AAACGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCATGCCTTCGCTTCGGCTTCGGCTTCGGCTTCGGCTGCGGCG	900 CCTGAGACTCGCT
.: AT 840 850 AGCATGCT ::: AGATAG 880 910 GTCTTGGT	### STORES TO ST	CTCAAAGTGA: :: .:.::: CTTGATGTTAJ 870 GAGCGAGCAGC :: :::: GGGAGGGCA 190	AAACGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCATGCCTTCGGCTTCGGGGGGGG	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT
840 850 AGCATGCT ::: AGATAG 880 910 GTCTTGGT	### STORES TO ST	CTCAAAGTGA: :: .:.::: CTTGATGTTAJ 870 GAGCGAGCAGC :: :::: GGGAGGGCA 190	AAACGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCATGCCTTCGCTTCGGCTTCGGCTGCAGGCCTCGGCTGCAGGCCTCGGCAGGCCTCGGCAGGCA	900 CCTGAGACTCGCT
840 850 AGCATGCT ::: AGATAG 880 910 GTCTTGGT	### STORES TO ST	CTCAAAGTGA: :: .:.::: CTTGATGTTAI 870 GAGCGAGCAGC :: ::::: GGGAGGGCA 190 930 AACTGGGAAG	AAACGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCATGCCTTCGCTTCGGCTTCGGCTGCAGGCCTCGGCTGCAGGCCTCGGCAGGCCTCGGCAGGCA	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT
840 850 AGCATGCT :: .:: AGATAG 880 910 GTCTTGGT :: :::. -TCA-GGT	920 GGCTCCCCA 320	CTCAAAGTGA: :: .:.::: CTTGATGTTAA 870 GAGCGAGCAGC :: :::: GGGAGGGCA 190 930 AACTGGGAAG	AAACGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCATGCCTTCGGCTTCGGCTGTGAGGCTCGTGTGAGGCTCGTGAGGCTCGTGAGGCTCGTGAGGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGGCTCGTGAGAGCTCGTGAGAGCTCGTGAGAGCTCGTGAGAG	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT :::::::::::::::::::::::::::::::::
## 10 ## 10	### ##################################	CTCAAAGTGA: :: .:.::: CTTGATGTTAA 870 GAGCGAGCAGC :: :::: GGGAGGGCA 190 930 AACTGGGAAG.	######################################	GGGCCAGGCA : :.:::CAAAGCA 870 890 GCATGCCTTC :.::::::: GCTTGTCTTC 900 950 GCTCGTGTGA :::: GCTCC	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT ::.:::::::::::::::::::::::::::::::::
## 10 ## 10	### STORM ST	CTCAAAGTGAL STO BAGCGAGCAGC SISSING SGGAGGGCA SO SO SO SO SO SO SO SO SO	AAACGGTGGGG :::: AAACCT 860 880 SACATCCAAGA : -C 940 AAAAGCTTAAA :::::: 930 1000 AAATGTAAAAAT	GGGCCAGGCA : :.:::CAAAGCA 870 890 GCATGCCTTC :::::::::: GCTTGTCTTC 900 950 GCTCGTGTGA :::: GCTCC	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT ::. CTTACTT 940 1020 GGACTTTTCAGC :::
## 10 ## 10	### STORM ST	CTCAAAGTGAL STO BAGCGAGCAGC SISSING SGGAGGGCA SO SO SO SO SO SO SO SO SO	AAACGGTGGGG :::: AAACCT 860 880 SACATCCAAGA : -C 940 AAAAGCTTAAA :::::: 930 1000 AAATGTAAAAAT	GGGCCAGGCA : :.:::CAAAGCA 870 890 GCATGCCTTC :::::::::: GCTTGTCTTC 900 950 GCTCGTGTGA :::: GCTCC	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT ::: CTTACTT 940 1020 GGACTTTTCAGC
## 10 ## 10	### STORM ST	CTCAAAGTGAL :: .:::: CTTGATGTTAJ 870 BAGCGAGCAGC :: :::: CGGAGGGCA 90 930 AACTGGGAAG. 990 PAAATGAAAGC; ::	AAACGGTGGGG :::: AAACGT 860 880 SACATCCAAGA : -C 940 AAAAGCTTAA ::::: 930 1000 AAATGTAAAAT :::::	GGGCCAGGCA : : .:::CAAAGCA 870 890 GCATGCCTTC 900 950 GCTCGTGTGA ::: : : GCTCC	900 ECTGAGACTCGCT 960 CCTTGGTGTTCAT :: :: CCTTACTT 940 1020 GGACTTTTCAGC :::
## 10 ## 10	### ##################################	CTCAAAGTGA :: .:.:: CTTGATGTTAJ 870 BAGCGAGCAGC :: :::: CGGAGGGCA 190 930 AACTGGGAAGC 990 AAATGAAAGC :: CA	AAACGGTGGGG :::: AAACCT 860 880 :ACATCCAAGA :	GGGCCAGGCA : : .:::CAAAGCA 870 890 GCATGCCTTC 900 950 GCTCGTGTGA ::: : : GCTCC 1010 FTCATTGTAAC	900 ECTGAGACTCGCT 960 CCTTGGTGTTCAT :: :: CCTTACTT 940 1020 GGACTTTTCAGC :::
## 10 ## 10	### ##################################	CTCAAAGTGA :: .::::: CTTGATGTTAJ 870 GAGCGAGCAGC :: ::::: CGGAGGGCA 190 930 AACTGGGAAGC 990 AAATGAAAGC ::	AAACGGTGGGG :::: AAACCT 860 880 :ACATCCAAGA :	GGGCCAGGCA : : .:::CAAAGCA 870 890 GCATGCCTTC 900 950 GCTCGTGTGAA ::: : ::: : ::: : ::: : ::: : ::: : ::: :	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT ::. CCTTACTT 940 1020 CGGACTTTTCAGC :::CTT
850 AGCATGCT :: .:: AGATAG 880 910 GTCTTGGT :: .:: -TCA-GGT 910 970 AGTTGTAC' ::: ::: AGTA-TGC- 950 1030 ATTATTTA	### ##################################	CTCAAAGTGA :: .:.::: CTTGATGTTAJ 870 BAGCGAGCAGC :: ::::: CGGAGGGCA 190 930 AACTGGGAAGC 990 AAATGAAAGC ::::::: 1050 CCAGGCCAATC	AAACGGTGGGG :::: AAACGT 860 880 :ACATCCAAGA : -C 940 AAAAGCTTAAA :::::: 930 LOOO AAATGTAAAAT :::::: AATGT 1060 TTCCCTTAGA	GGGCCAGGCA : : .:::CAAAGCA 870 890 GCATGCCTTC 900 950 GCTCGTGTGA ::: : : GCTCC 1010 FTCATTGTAAC 1070 ACTATTATTT :::: : :	900 CCTGAGACTCGCT 960 CCTTGGTGTTCAT ::. CCTTACTT 940 1020 CGGACTTTTCAGC :::CTT

FIG 32 (20F3)

1090	1100	1110	1120	1130	1140
TCAGA	TGTACATTTAT	ACCTGGAAA	AACTATTAATT	CTCCATTTTT	ATTATACATAATGT
: . : :		::::.	: ::		
- CGGA	-GAATTTTGAA	aagaggaat	'ATATAA	CTCAATTTT-	
990	1000	1010	1	.020	
1150	1160	1170	1180	1190	1200
GTTGT	TTCTCTGAAGC	CCACTAAGA	TAGGTATAAAT.	ATGTTACTCA	\AACTACACGGTTT
		:::			::: :::. ::.
		CAC			AACCACATTTA
1030				1040	
				.0.	
	1220				
CCAAA	IGTGCATCTCTT				TGGAGAGACGCCC
:::::					
		AAAAG	AGATCAAATAI	TTAAAAT	
1050	1060				•
	1280		1300		
		GGGATGTGC			rcctgtctcacaa
	:::. :.::			::::	
	ATCATAATGT - ·				rtatct
1070			1080	1090	
1330			1360		1380
ACCGCT"		CCTTCCTC	CCTGCTGTGA		GACGGGTTTAAC
	::				
	TATTTG-				GGGGAAATTATC
1100			111	LO	
	1400		1420		
GGGCCAA	GCCGAGCTCTG.	AATCAGTGC			GGTTACTCCCTC
:			:::.	:: .: :	
			-CTTACA		GTTTACT
1120				1130	1140
			1.400		1500
	1460		1480	1490	1500
ATCCCCG	TTTTCCATCTTC				TTTTCTAATGGA
		A	GAAAT-111A	AATAC - ACAT	111
1150	1160				
10.0	1533		1510	1550	1560
	1520	1530			1560
GOTCTTA	NTAAAAGCTATT				
	:.::	::::			::::::::::
	ATGC			WWWWW	AAAAAAAGGGC
1170	1180	119	U		
1570					
JGCCG -					
:::::					
SGCCGC					
1200					

FIG 33 (10F4)

CTGATO	GAAGTGAAGAA 380	CGTACCATGT 390	GGAACCAGTO 400	GGTGGTGTGA1 410	TGATCTACTTTGACA 420
390	400	410	420	430	440
					'AGTGAAGAACTATA
				TGTATGATAT	AGTGAAGAACTATA
430	440	450	460	470	480
450 CTGCTG	460 ACTATGACAAG	470 GCCCTCATC	480 TTCAACAAGA	490 TCCACCACGA	500 ACTGAACCAGTTCT
					.:: ::::::::::
		GCCCTCATC:	FTCAACAAGA 520	FCCATCATGAC	GCTTAACCAGTTCT 540
490	500	510	320	330	240
510	520	530	540	550	560
GCAGTG'	TGCACACGCTT	CAAGAGGTCI	ACATTGAGC	rgtttgatcac	GATTGATGAAAATC
::::::					:::::::::::::::::::::::::::::::::::::::
					ATTGATGAAAACC
550	560	570	580	590	600
570	580	590	600	610	620
TCAAACT	rggctttgcaac	CAGGACCTGA	CCTCCATGGC	CCCTGGGCTG	GTCATTCAAGCTG
•					GTTATCCAAGCTG
610	620	630	640	650	660
630	640	650	660	670	680
TCCGGGT	AACAAAGCCCA	ACATACCAC:	ACCCA A MCCC	CACAAACTAC	CACTTCATCCAAA
	.uichundecen	ACATACCAGA	AGGCAA I CCG	CVOVVVCTVC	JAGI IGA IGGAAA
::::::	. : : : : : : : : :	: ::::::	:::::::::	:::::::::::::::::::::::::::::::::::::::	::: ::::::::
:::::: TGCGAGT	.:::::::: GACAAAGCCCA	: ::::::: ATATACCTG	GGCAATCCG	::::::::: CAGGAACTATO	GAGCTGATGGAAA
::::::	. : : : : : : : : :	: ::::::	:::::::::	:::::::::::::::::::::::::::::::::::::::	::: ::::::::
:::::: TGCGAGT	.:::::::: GACAAAGCCCA	: ::::::: ATATACCTG	GGCAATCCG	::::::::: CAGGAACTATO	GAGCTGATGGAAA
:::::: TGCGAGT0 670	.:::::::: GACAAAGCCCA 680 700	: :::::: ATATACCTGA 690 710	1::::::: AGGCAATCCG 700 720	:::.:::: CAGGAACTATO 710 730	GAGCTGATGGAAA 720
:::::: TGCGAGT 670 690 GTGAGAA	.::::::: GACAAAGCCCA 680 700 GACAAAGCTTC	: ::::::: ATATACCTG; 690 710 CCATTGCCGC	11111111111 AGGCAATCCG 700 720 CCCAGAAACAC	::::::: CAGGAACTATO 710 730 GAAGGTGGTGG	::: ::::::::::::::::::::::::::::::::::
TGCGAGTC 670 690 GTGAGAAC : ::::::	GACAAAGCCCA 680 700 GACAAAGCTTC	: :::::: ATATACCTG; 690 710 FCATTGCCGC ::::::::::	720 CCAGAAACAC 1111111111111111111111111111	CAGGAACTATO 710 730 GAAGGTGGTGG GAAGGTGGTGG	GAGCTGATGGAAA 720 740 GAAAAGGAAGCAG
:::::: TGCGAGT(670 690 GTGAGAAC	.:::::::: GACAAAGCCCA 680 700 GACAAAGCTTC	: :::::: ATATACCTG; 690 710 TCATTGCCGC :::::::::::	720 CCAGAAACAG	CAGGAACTATO 710 730 GAAGGTGGTGG	GAGCTGATGGAAA 720 740 GAAAAGGAAGCAG
TGCGAGTO 670 690 GTGAGAAC : :::::: GCGAGAAC 730	GACAAAGCCCA 680 700 GACAAAGCTTCC GACGAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAGCTTCCCAAAAAGCTTCCCAAAAAGCTTCCCAAAAAGCTTCCCAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAGCTTCCCAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAGCTTCCCAAAAAAAA	: :::::: ATATACCTG; 690 710 FCATTGCCGC ::::::::::	720 CCAGAAACAC 1111111111111111111111111111	CAGGAACTATO 710 730 GAAGGTGGTGG GAAGGTGGTGG	GAGCTGATGGAAA 720 740 GAAAAGGAAGCAG
TGCGAGTO 670 690 GTGAGAAC ::::::: GCGAGAAC 730	.::::::::: GACAAAGCCCA 680 700 GACAAAGCTTCT 5ACGAAGCTTCT 740	: ::::::: ATATACCTGA 690 710 FCATTGCCGC :::::::::: FCATTGCAGC 750	720 720 720 720 CCAGAAACAC 111111111 CCAGAAGCAC 760	CAGGAACTATO 710 730 GAAGGTGGTGG CONTROL CONTROL AAGGTGGTGG 770 790	740 FAAAAGGAAGCAG AAAAGGAAGCAG AAAAAGGAAGCAG AAAAAGGAAGCAG
TGCGAGTO 670 690 GTGAGAAC CCGAGAAC 730 750 AGACAGAG	.::::::::: GACAAAGCCCA 680 700 GACAAAGCTTCT 5ACGAAGCTTCT 740	: :::::: ATATACCTGA 690 710 FCATTGCCGC :::::::::: FCATTGCAGC 750 770 FGCTCATTGA	720 720 720 720 720 720 720 720 730 780 780 780	THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO	740 740 SAAAAGGAAGCAG ***************************
TGCGAGTO 670 690 GTGAGAAC CCGGAGAAC 730 750 AGACAGAG	GACAAAGCCCA 680 700 GACAAAGCTTCT TA40 760 GCGGAAGAAGCCCC	: ::::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::::: FCATTGCAGC 750 770 FGCTCATTGA	720 720 CCAGAAACAC ::::::::::::::::::::::::::::	730 730 GAAGGTGGTGG 770 790 GTGGCCCAGG	740 740 SAAAAGGAAGCAG ***************************
TGCGAGTO 670 690 GTGAGAAC CCGGAGAAC 730 750 AGACAGAG	GACAAAGCCCA 680 700 GACAAAGCTTCT GACGAAGCTTCT 740 760 GCGGAAGAAGCC GCGAAGAAGCC	: ::::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::::: FCATTGCAGC 750 770 FGCTCATTGA	720 720 CCAGAAACAC ::::::::::::::::::::::::::::	730 730 GAAGGTGGTGG 770 790 GTGGCCCAGG	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCC ::::::::::::::::::::::::::	: :::::: ATATACCTGA 690 710 CATTGCCGC ::::::::: CATTGCAGC 750 770 CGCTCATTGA :::::::: CCTCATTGAG	720 720 CCAGAAACAC ::::::::::::::::::::::::::::	730 730 GAAGGTGGTGG 770 790 GTGGCCCAGG	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC ::::::: GCGAGAAC 730 750 AGACAGAG ::::::: AAACAGAG 790	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCC CCGGAAGAAGCC AGGAAGAAGCC	: :::::: ATATACCTGA 690 710 CATTGCCGC ::::::::: CATTGCAGC 750 770 CGCTCATTGA :::::::: CCTCATTGAG	720 720 CCAGAAACAC ::::::::::::::::::::::::::::	730 730 GAAGGTGGTGG 770 790 GTGGCCCAGG 1:::::::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC T30 750 AGACAGAC AAACAGAC 790 910 CCTACGGGG	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCCCC AGGAAGAAGCCC 800 820 CAGAAAGCTGATC	: :::::: ATATACCTGA 690 710 TCATTGCCGC ::::::::: TCATTGCAGC 750 770 TGCTCATTGA :::::::: CCTCATTGAG 810 930 GGAGAAGGAG	720 720 720 720 720 720 720 720 730 760 780 780 GGCAGAAAAA 1::::::::: 780 GGCAGAAAAA	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG :::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG 780 800 TGGCTGAGATCA :::::::::::::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC CCTACGGGGCCCCCCCCCCCCCCCCCCCCC	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCC SISSISSISSISSISSISSISSISSISSISSISSISSIS	: :::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::: FCATTGCAGC 750 770 FGCTCATTGA :::::::: CCTCATTGA 810 830 GGAGAAGGAA	720 CCAGAAACAC 760 780 GGCAGAAAAA 1:::::::::::::::::::::::::::::::	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG :::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG 780 800 TGGCTGAGATCA :::::::::::::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC CCTACGGGGCCCCCCCCCCCCCCCCCCCCC	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCC 800 820 CAGAAAGCTGATCT CAAAAGGTGATCT	: :::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::: FCATTGCAGC 750 770 FGCTCATTGA :::::::: CCTCATTGA 810 830 GGAGAAGGAA	720 CCAGAAACAC 760 780 GGCAGAAAAA 1:::::::::::::::::::::::::::::::	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG :::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG 780 800 TGGCTGAGATCA :::::::::::::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC T30 750 AGACAGAG AGACAGAG AAACAGAG T90 810 CCTACGGGG CCTATGGGG	GACAAAGCCCA 680 700 GACAAAGCTTCT 3ACGAAGCTTCT 740 760 GCGGAAGAAGCC 3AGGAAGAAGCC 3AGGAAGAAGCC 800 820 CAGAAGCTGATCT CAAAAGCTGATCT CAAAAAGGTGATCT 860	: :::::: ATATACCTGA 690 710 CATTGCCGC ::::::::: CATTGCAGC 750 770 CGCTCATTGAC 810 830 GGAGAAGGAC GGAGAAGGAC 870	720 CCAGAAACAC 760 780 GGCAGAAAAA 1111111111111111111111111111	TO THE PROPERTY OF THE PROPERT	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC T30 750 AGACAGAG AGACAGAG T30 750 AGACAGAG T30 810 CCTACGGGG TCCTATGGGG	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCCC 800 820 CAGAAGGTGATCT CAAAAGGTGATCT CAAAAAGGTGATCT CAAAAAAAAAA	: :::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::: FCATTGCAGC 750 770 FGCTCATTGAG :::::::: FCCTCATTGAG 810 830 FGGAGAAGGAG FGGAGAAGGAG FGGAGAAGGAG 870	720 720 CCAGAAACAC 760 780 GGCAGAAAAA 1:::::::::::::::::::::::::::::::	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG 1:::::::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG 1111111111111111111111111
TGCGAGTO 690 GTGAGAAC TSO AGACAGAG AAACAGAG 790 910 CCTACGGGG :::::::: CCTATGGGG 870 R70 CTGCATTT	GACAAAGCCCA 680 700 GACAAAGCTTCT 1:::::::::: GACGAAGCTTCT 740 760 GCGGAAGAAGCC 1:::::::::::::::::::::::::::::::::::	: :::::: ATATACCTGA 690 710 TCATTGCCGC ::::::::: TCATTGCAGC 750 770 TGCTCATTGA ECTCATTGA 810 830 GGAGAAGGA C::::::::: GGAGAAGGA 870 890 AGAAGGCAAA	720 CCAGAAACAC 760 780 GGCAGAAAAA 1:::::::::: GGCAGAAAAAA 2::::::::::::::::::::::::::::::	CAGGAACTATO 710 730 CAAGGTGGTGG 770 790 GTGGCCCAGG CCCCAGG CCCAGG CCCCAGG CCCCACAG CCCCCACACC CCCCCCCC	740 740 SAAAAGGAAGCAG 780 800 TGGCTGAGATCA :::::::::::::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC T30 750 AGACAGAG AGACAGAG TITTAGGGG TTTTAGGGG	GACAAAGCCCA 680 700 GACAAAGCTTCT 740 760 GCGGAAGAAGCCCA 800 820 CAGAAGGTGATC CAAAAGGTGATC B60 880 880 880 880 880 CCTGGCCCGGG	: :::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::: FCATTGCAGC 750 770 FGCTCATTGAG :::::::: CCTCATTGAG 810 830 GGAGAAGGAG GGAGAAGGAG 870 890 AGAAGGCAAA	720 CCAGAAACAC 760 780 GGCAGAAAAA 820 840 GACTGAGAAAAA 820 840 GACTGAGAAAAA 820 900 GGCAGATGCAGAACAC	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG ::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::
TGCGAGTO 670 690 GTGAGAAC T30 750 AGACAGAG AGACAGAG TITTAGGGG TTTTAGGGG	GACAAAGCCCA 680 700 GACAAAGCTTCT 1:::::::::: GACGAAGCTTCT 740 760 GCGGAAGAAGCC 1:::::::::::::::::::::::::::::::::::	: :::::: ATATACCTGA 690 710 FCATTGCCGC ::::::::: FCATTGCAGC 750 770 FGCTCATTGAG :::::::: CCTCATTGAG 810 830 GGAGAAGGAG GGAGAAGGAG 870 890 AGAAGGCAAA	720 CCAGAAACAC 760 780 GGCAGAAAAA 820 840 GACTGAGAAAAA 820 840 GACTGAGAAAAA 820 900 GGCAGATGCAGAACAC	CAGGAACTATO 710 730 GAAGGTGGTGG 770 790 GTGGCCCAGG ::::::::::::::::::::::::::::::	740 740 GAAAAGGAAGCAG :::::::::::::::::::::::::

WO 00/18904 PCT/US99/22817

930 AAATAGCO		950 AGCTGAAGCT!			980 TGATGAAGTACA
.::: GAGAAGG2 970	:.:: :: AGGAGGCA 980	:: :: GCCATTTCT; 990	LACTCG	:.:::. :: TTTCTATAGA 1000	.:: AGCCCTGGGTAG 1010
	GCTTCCAACA		TTTGGCAAA	GACA-TTCCT.	1040 AACATGTTCATG :.:.:.
ATGCCTCA	GCACGGTG	CTTTTCATGC	TTTGATTGA	CACTCAACCT	CGGGAGGAAA 1070
GACTCTGC	. : ::::	GCAAGCAGTT:	TGAGGGGCT	AGCTGACAAGO : . :: . :	TAAGCTTTGGC
CCCTCTGC. 1080			rgGTGCT/ 1100		TATGGAC 1120
TTAGAAGAT	1120 GAAC-CCTTG	GAGA-CGGCC	ACTAAC		AAAAACTTGAT
	CCGTCTCCAGG				TATAGCTAGCC 0 1180
ATGACTGCA ::::: ACTGCT	1170 AATGATACT-7 ::::::: GGTGTTTATG7 1190 1	TAAGCAGATCT :::::::::::::::::::::::::::::::::::	TTATTTTT .:::: ATAAATTC	AAGATGAATCA :: :: :: AATTTCCCTCT	AGAATGTTCCT
1220 CCCTCCCCG	1230 ACTACCTTCTC	1240 TGACTGTCTT	1250 CCAGTTACTO	1260 Stggtgaaaa	1270 AGAAGAAATGA
CGCTACGC-	-CTGTGC-C	AGGCAAAC(12)	CCTGTGCCT	AGAACATAC	CCTGGACGTC
	1290 ACTCCCTTTC	TAGGGAAAGGA	NGGGTGGGGA	CTGATGATGG	GGGGTTTTAT
ACAGCTACTC	. : : :::: TGTACATTTC' 1300		TCATTCC-T		ACGGCTTAGA
TTCAGGTAAG	1350 CAGTTTATATO ::	ACTTCCAATA	AGATTTGTA		TTGACCTTTG
TGGAGAAA	CAAGAGTCTAA		GTCCCAGTT'		ragac - ttcg
ACCTCTAGACA	L410 ACTAATTTAT	CCTTTGA-GG	CTGGCTTAAT	OTADODATO	CTGTCAT-T
ATCAATATI	::. : :: CCTTCTAA-AT 1410	CCTCTGACAA			
aaggagagga	1470 GAAATGTAGAG	CTGTTACCTCC	AACTCATT	GATTTCCCTT	ACTTGGGAA

	TTCCTG	TGTGC	ATTG	CTGGGA	CAAAT	GCCTC-		CATTAG	1AAA	rtcaaaga	AA
	1460		147	0	1480			1490		1500	
		520						1550	1560		
	AATGCA	GTCCA	GTGT	CTCAC	CTCTG-	-CCTC	CAAGO	GTAGGAG	ATGTCTGT	GGGTGAG	GC
	:	.:: :	::	v::.	::	::::	::::	:	::: : :	· · : : ·	:
	GTCATA	ATCGA(GAAT-	-CTCTTT	rggtgg	TCCTC	TAAGO	CGGGT-	-TGTTTTT	CAATGTT	GΤ
	1510		1520		1530		1540		1550	1560	
						•					
15	70	1580		1590		1600		1610	1620		
	TYWKCAA	CTGAC	CAAA	TATGTG	CCTGT	GAGTT	TGCCA	GTAGAG	CTGTGAAG.	AAACAGCI	ľG
	: :	:::	:	: :::	. :	:.:	:	::.:.	: : :::	::: : :	
	TG-TCTT	-GGAC	CTTG	GAGGTG	TTAFA	CAATG'	r	TTAAAA'	TTTTTAGG:	LATTTA <i>L</i>	'A
	1	570		1580	1	590		160	0 10	510	
163	0	1640		1650		1660		1670	1680)	
	CAGAGAA	-CATT	TGAC	CTTCCT	GGCATT	rcttg1	CTGC	ATGTGTC	GTGAGTTAT	TTTAGAG	G
	::.:::	: . : :	: . :	:	:	. : : :	:	:::	: : .	: . : :	:
	CAAAGAA	ACTTT	TAAAT	CAAAGT	ATATTO	SAATGT	'-GCC	ATGAAA	AAAAAAA	AAAAAAG	G
	1620	16	30	164	10	16	50	166	0 1	670	
ノ							•				
16	90	1700		1710		1720		1730	1740		
,	TGTGCTTT	CTTG	AGCCC	TCATA	GGAAG	TACTG	GTGCI	AGGTTT	TGCAAGAT	TTKGTATA	A.
	::										
(CCGCCCG										
	1680										

FIG 34 (10F6)

AAATTTTG	AGTTAATGGA	GGCTGAGAAGAC.	AAAACTCCTTA	TAGCTGCACA	GAAACAAAA
600	610	620	630	640	650
40			430	440	450
	-	rgagacggagag ::::::::::::::::::::::::::::			
		GAGACAGAGAG			
660	670	680	690	700	710
466	3 470	480	490	500	510
		CGATTTCAACAG	_		
		::.::::::: CGGTTTCAGCAG			
720	730	740	750		770
520	530	540	550	560	570
		GCTGCGTTCCTG			
		::::::::::::::::::::::::::::::::::::::			
780	790	800			330
580	590	600	610	620	630
GTATTACGC'	TGCACACAAAT	'ACGCCACCTCA?	\ACAAGCACAA?	ACTGACCCCAC	SAGTATCT
		TITLE			
840	850	860			90
640	650	660	670	680	690
		CCATTGCCTCAA			
		::::::: :::: CCATTGCTTCTA			
900	910				50
700	710	720	730	740	750
CCCCAGCATG	TTTGTGGACTC	CTCCTGTGCTC	rgaaatactct(GATGGTAGGA	CTGGGAG
		::::::::::::::::::::::::::::::::::::::			
960	970		990 100		
760	770	780	790	800	910
		GGAGGCCCGTGA			
		:::::::::::::::::::::::::::::::::::::::			:::::
		GGAGGCTCTTGA 1040 10			
1020	1030	1040 10	100		
820	830	840	850	860	870
		IAAGAGGTGGAA :::::::::::::			
		CAAGAGGTGGAA			
1030	1090	11 001	10 11	20 11.	10
880	820	900	910	920	930
		CTTATGTGGAC1			
		ATTATACGGACT			
1140			.70 118		

		950		970		
	-CTGTTGTGAT					
TCA?	::::: CTGTTCCACC					
	200 12					1250
990	1000	1010	1020	1030	. 10/	١٨
	GTCTGGCACT					
::::	:::::::	:::: :::::	: ::::::	::: :::::	:::::::	.::::::
	GTCTGACACAC 60 127				AAGTATCCT 300	ATATGTAT 1310
14	12.	120	0 12	JU 1	300	1210
1050		1070				-
	TTGTAAACCGG :::::::::					
	 TTCTAAACTGC					
133	20 133	0 134	0 13	350 1	.360	1370
1110	1120	1130	1140	1150	1160	1
	TGTCAAACAC					
	1180					
	TCCCTGAGGAC 	ATGTGTGCT	AGACATTCA	AGAGCTAGG.	AGGCCAGAG	AGAAGAC
	: : : : : FCCCTG					
1230	1240	1250	1260	1270	1200	
	GAAAACGGTAA					GGCTCT
	:. :	::: ::::	:: :::::	::		::,
	CATTGG	GTTGATG 1390				TCA
	1380	1330	140	0		
	1300					
	AGTCTAGTCCC		CATGTGATT			TTCCCA
:: CTG	:: CC				.::. 3CCA	
	1410			CAG	Jech	
						•
1350		1370	1380	1390	1400	
COAMA	TATCTTCCAGT	TGAATGACCA		racaaarrgi :::::::		2.f.,f.,f.,f.,f.
			1420	1430		
1.11.5	1420	1420	1.1.10	1150	1153	
	GGTTGGTGGC					CTCG4
	::::		::.:	::: ::	:: :	:::
	3G'I'T		Jate		CAC	CTC
	1440			1450		
1470	1430	1420	1500	1510	1520	
	CCAATCACTA					CCTGA
		::.:				

	C146			. 	
	1540 AGGGAGATAAA				1580 IGTGTTTCCTCTA
					GTTACCT
1590	1600	1610	1620	1630	
			CAGCCCATGTO		TGCCCGGTTTTAC
	1660 CAACTGCTTAC			AAAGCTGGG	1700 ACAGGGCTTTAAC
				TGGG	ACAGGGTTTTAAC 1500
CAGACAT		GCAATTCCTG	AT-TCACT	GCACAGTATI	ATGTCATAATTG
	AGGAGCAGCAT	GCAATTCCTA		GCACAGTATT	GTATCATAATTA
	1780 PATTTTTTGTTT				1920 ACCCCAACACTT
					CCCCATCACCT
1570	1580	1590	1600	1610	1620
	1840 AGGCCAAGGTT				1980 ATTCTCCTTAAA
	AGGCCCAAGTC		CATGGTCACA		TERRITARIA TOTAL TERRITARIA TERRI
1890			1910		1930
. : : :			::::::::	::: ::: :	GCATCCTCAGT ::::::: GCATCCTTGGT .1740
1940			1960	1970	1980
::::::	CTCCTTCCCT- ::::::::: CTCCTTCCCAC 1760	: .	::::: :::	: ::::::	:: :::::::
L990 TOGOCTOCO	2000 CTAGGAGATC	2010 AGAAAGA	2020 CTTGTGACTTO	2030 CCTGGGCAGC	2040 CATTGAATTC
:::::::	T FEFFE	::.: ::	: : : : : :	::::::::::	:: ::::::
1313	1920	[83	0 1840	195	O

FIG 34 (40F6)

WO 00/18904 PCT/US99/22817

			• –			
			2070	2080	2090	2100
	TTCCATGAGAA					
	::::::::::::					
	TTCCATGAGAA					ATGTGG
1960	1870	1880	1890	1900	1910	
	2110	2120	2130	2140	2150	
ACC-1	TTTTTGCCCATG					COMOSS
	::::: :::::					
	TTTTTTCCTTC					
1920	1930	1940	1950	1960	1970	ctono
2221						
2150	2170	2180	2190	2200	2210	
TCTGC	CCAGCTTGTT-	-GACAGCTCT	TGTGTATAC	TGTGTTGAAG	CAGACAGA	LAAGTA
	::::::::					
TTTGT	GCAGCTTGTTA	AGACAACTCT	TGTGTACAC	TATGTTGAAGO	TCAACAAA	LAAGTC
1930	1990	2000	2010	2020	2030	
2220	2230	2240		2250	2260	
ATGGG	GCCACTTCT-G	AAACCTCTCA(GCTGT	TGATCT	'CACAGCAGC	TAAAG
					:::::	
	ACCACTTCTAGA					TTGTT
2040	2050	2060	2070	2080	2090	
2270	2200	2200	2200	2210	2220	
2270	2280	2290	2300	2310	2320	
	GCCAAACA-TT					
	:::::::::: GCCAAACACTT					-
2100	2110	2120	2130	2140	2150	
2100	2110	2120	2130	2190	2130	
2330	2340	2350	2360	2370		
	TATAGTATAGA				· · · · · · · · · · · · · · · · · · ·	TCAT
	::: :::::					::::
	TATCCTATAGAG					
2160	2170	2180	2190	2200	2210	
2390	2390	2400	2410	2420	243	0
TTAATT	TAGAAATTACC	TTCAAACA	GATTTTGT	GTTCTTTGG	C-CCTTCAA	A-TA
::::::	:: ::::: :	:: :.: :	.:::::::	^	: :::: ::	: .:
TTAATTO	TATAAATTCTC	TTTATAAATG	AATTTTGTO	STTCTTTAGTT	CTCCTTAAA	AGAA
2220	2230	2240	2250	2260	2270	
244	-	24		2460	2470	
	TACATTGTTG-					
:: :::	::		::: ::	: : :	:::::::	•::
CTTTTGA	አ ፐፕ <mark>ልአ</mark> ልልፕፖ				GATGATTGT	TGT
2230	2290	2300	2310	2320	2330	
2480	2490	2500	2510	2520	2530	
GGGATATO	TGGATCACTGA	GCTCTGTGCT	TTTCATTCC'	TAGAGATGTTT	CTCATTCCC.	ATT.
::.:.::		:::::::::	::::::	:::::::::::::::::::::::::::::::::::::::	. : : - :	::
CCAAAATC	TGGATCATTGA	CCTCTGTGC1	TTCATTCC	TAGAGATGTTT	TATAGTTAC.	ATG
2340	2350 2	360 2	370	2380	2390	
2540	2550	2560	2570	2580	2590	
	TGCTGTTGCCC				CTCATAGGCC	:00
:: .:::	:::::::::	::::::::::	: :::	:::	: :::	

-AGCAAAA-	GCTGTTGCCC	CAAAGTGATC	GCCCTGGAGG-	CGG-	GGC
2400	2410	2420	2430		2440
				•	
2600			2630		2650
GGTGAGGAG	CAGGGAAGCG	CCATTGTGAA	AGATTAAAGA?		
	:::::::::::::::::::::::::::::::::::::::			:::::: .	
			GTCTTAAA		
24	50 24	60 24	70	2480	2490
26			80 269		*
			ACTCAGTGAAC		
			.::::: CCTCAGCTC		
ATGTGTGAGG	2510	2520	2530	2540	2550
2500	2510	2320	2330	2340	2330
2710 273	20 273	0 274	10 275	0 2760	
			LATCTTTAAGT(TGTGAAAGT
GGT-GTTCCT	TTTGGCAAAT	ATACACTGTA	ATCTT-GAGT	TAAATTTATA	TGTTGAAAT
2560	2570	2580	2590	2600	2610
2770					2820
TAACTTTT	TTTAAA	AACCTAAATA	AAATTATTTTC	CTATCAAAAA	AAAAAAAA
:: :::::			::::::::		::::::::
*			AAATTATTTA		
2620	2630	2640	2650	2660	2670
2270					
2830	_				
AAAGGGCGGC					
::: AAAAAAAAAAA	V 		1 1 2		
2680	2690	2700	1111		
4000	2030	. 2700			

		10		0	30		0	50	
HUMAN			CGTCCGGC						
			:::::::			::. : :			
MUISINE	GTCGA		CGTCCGGC		GCTGA-			GCTGAG	
		10		20		30	40		50
						_			
	60	70		30	90		00	110	
			CTGGCC						
	: .::		::::::					.: :::	
			GCTGGCTC		CCCGAT				
	60)	70	80		90	100		L10
	120	130	14	0	150	16	.0	170	
	120		TTGCTGGT	_			-		11 mcccc
			:::::::						
			TTGCTGGT						
	120			140	GC I CAA	150	160		
	120		130	140		130	100	T	70
	180	190	20	n	210	22	^	230	
			ZU "GTCCACC	_			-		3.3 mcm3
			::::::						
			GTCCGCC						
	180	IGCAICI	190	200		210	220		30
	180		190	200		210	220	۷.	30
	240	250	260	ì	270	280)	290	
•			GCAACTGO						TATGAC
			::::::::						
			GCAACTGC						
	240		250	260		270	280	29	
	240		2,70	200	•		200		•
. 1	00	310	320		330	340		350	
,	-		CCTGCTG						CCATC
			::::::						
			CCTGCTC						
	300		10	320		30	340	35	
	300	-	110	0.00	,	30	340	, ,	·
1	60	370	380		390	400	A	10	
			CATCTAC				_		
			::::::::						
	360		CATCTACC			30	400		
	360	ر	70	380	3	90	400	410	,
.13	20	430	440	.9	150	460	4	70	
4.							•	. •	CIIM
	CTGATGCT								
	:::::::								
	CTGATGCT								
	420	4.3	5 U	440	45	Ü	460	470	
				_					
48		190	500	_	10	520	5 :	-	
•	GAGGAGGAG	JAATGAG	GATGCTC	KTCTAT	GGCAGC	AGCTGCT	CATECET	,0000000	ACCC

FlG 35 (10=3)

WO 00/18904 PCT/US99/22817

61/112

	GAAGAGGAGA		rcgcaccatgo	GCAACAGCCG		: ::.::::: TTGGAGGACCC
	480	490	500	510	520	530
		0 560 CAGTCCTGGAO		58 GTGCCCAGC	-	-
	CGGCAAACA	CTGTCCTGGAG	CGGGTGGAAG	GCGCTCAGC.	AGCGGTGGAA	GCTGCAGGTG
	540	550	560	570	580	590
) 620 GGAAGACAGTC		640 ACAAGATGC		-
		GGAAGACGGTC 610				
					·	
660		680 GGCCCAACA	690			-
		.: :::				::. :
G.		AGACCTGG-GC			G	GCTC
	660	670	680	690		
720	730	740	750	760	770	
TA	CTTCTCCCT	rcccrcggtrc	CAGTCTTCCC	TTTAAAAGC	CTGTGGCATT	TTTCCTCCT
		::::: ::				
-A 70		CCCT-GG	720	TTCAAATGC0 730	CATGGCGTT 740	TATCCT
, 0	, ,	.0	720	730	740	
780	790	800	810	820	830	
		TAGAAATGTT				
	TCCCTCTC	:::::::: TAGAAATGT 60			:::: :::::::::::::::::::::::::::::::::	
2.12	252	2.62				
840	850 "GATCTCCCT"	860 IGTCTTCTTGC	870 :crcrrrccc		890 GCCCCAACCC	ACCCCACA
	::	::::			:::: :.::	
TCT	GTA	GCTCT	CTGGGGGG	TAGAGGGGA	GGGG-AGGGA	AGGC-AGA
	81	10	820	830	84	0
900	910	920	930	940	950	
		ATTCGAGGCG				CTGGCTCC
:::	::: .:::::	::: :::: :	::::::	::::::		::: :: :
		ATTTGAGGTG				
85	0	0 870	0 88	0 89	90	00
960	970	980	990	1000	1010	
ACTO	CTTGCCGCCT	recage tetes	\GTCTTGGGA/	ATGTTGTTAC	CCTTGGAAGA	TAMGCT
			.::::::::::::::::::::::::::::::::::::::			.:::::
AC-C		-CCAGCTCCAC 920	930 930	940	95	
, ,	• •	7.00	,,,,	7.10	93	•
1020	1030	1040	1050	1060	1070	
		TCAGTGTCTG				
		::::::::::::::::::::::::::::::::::::::				
960						

FIG 35 (2053)

WO 00/18904 PCT/US99/22817

1080	1090	1100	1110	1120	1130
					GCCTCAGCCCCAGCCC
	:::::::::::::::::::::::::::::::::::::::				.: : : .: .:::
AGGA'	TGCTGTGGTCC	CCATTC-CC			CTTTAACTT-GGCC-
1020	. 1030	104	0 1	050 10	1070
1140	1150	1160	1170	1180	1190
1140					TGAGCCCACTGG-GT
	:::::::::		::.::		:::::::::::::
					TGAGCCCACAGTCAT
	1080	1090		1100	1110
1200	1210	1220	1230	1240	1250
					TTCTCGCACTGGGGC
					: :: ::: ::
					rggtc-caccagtgc
1120	1130	1140	1150	1160	1170
1260	1270		1280	1290	1300
ATGG-	AGTGCCCATGC	ATAC'	TCTGCTGC	CGGTCCCCT	-CACC-TGCACTTGA
					:::: : :: ::
					CTCCCATCCCAGGA
1180	1190	1200	1210	1220	1230
1310	1320	1330	1340	1350	1360
GGGGTC	TGGGCAGTCC	CTCCTCTCCC	CAGTGTCCAC	CAGTCACTGAG	CCAGACGGTCGGTT
::	::: ::::		:::::::::::::::::::::::::::::::::::::::		::::
GGCCGT	AAGGCC-TCCC				CCATAAAGTT
1240	1250	1260	1270	1280	1290
1370	1380	1390	1400	1410	1420
					CTGTACTTGGGTTG
					:
GGACCA'	TATGACACAAG	GCCAAT-GG	GGACCGGAGT	ACCATGGCTC	TGTCCTTGGATGG
	1300 1	310	1320	1330	1340
1430	1440	1450	1460	1470	1480
					TGTCCTCTTGTCT
:::::	:::::::::::::::::::::::::::::::::::::::	::::::: :	:: :::::::		
TCTCTTC	TCCCTGAATT	CATTGTATO	A-TGCATGG	AGAGAAAAAA	ААААААААААА
1350	1360	.370	1380	1390	1400
				4.7.2	
1490	1500	1510	1520	1530	1540
					CTCAAAAAAAAAA
					AAAAAAAAAA
1410	1420	1430	1440	1450	1460
		2.50			
1550			15	60	
AAAAAAA			GG	GCGGCCG	
::::::::	::		::	: :::	
::::::	\mathcal{M}	^AAAAAAAAA 1490			

FIG 36 (10+4)

						:::::::::::::::::::::::::::::::::::::::
	00	410	ACATGGTA	TATCTTACC 430	TTAGTTGAG 440	CCCATCCTGAAGAG 0 450
540	550	1	560	570	580	590
GCGCC	TCTTTGGA	CATGCAC	AGTTGATA	CAGAGTGAT	SATGATATTO	GGGATCACCAGCC
	:::::::					:::::::::::::::::::::::::::::::::::::::
GCGCC	TCTTTGGA					GGGATCACCAGCC
4	60	470	480	490	500	510
600 TTTTG(610		520 FGCTAGCCO	630	640 GTCGAGCCA	650 ACGTGCTGAACAA
						: :: :::::::
						ATGTTCTAAACAA
52		530	540	550	560	570
660	670	6	80	690	700	710
GGTAGA	ATATGCAC	AGCAGCG	CTGGAAGC	TTCAAGTCC	AAGAGCAGCG	AAAGTCTGTCTT
:::::	.:: ::::	::::::	:::::::	: ::.::::		::::::::::::
						AAAGTCTGTCTT
58	0	590	600	610	620	630
720	730		40	750	760	770
TGACCG	CATGTTG:	CCTCAG	CTAATTGG	Saattgaatt	CAAGGTGAC	TAGAAAGAAACA
:::::	:: :::::	::::::		:: ::.::	:: ::::::	:::::::::::::::::::::::::::::::::::::::
CGACCGA	CACGTTGT	CCTCAGO	TAACTGGG	AACTGGAAT	CA-GGTGAC	TAGGAAGAA-CA
640	•	50	660	670	680	690
780	790	80	0	810	820	830
GGCAGAC	AACTGGAA	AGAACTG				TACCTTGTTGA
			. : : : : : :			:::::::::
						TGCCATGTTTG
	00	710	720		730	740
•		710	720		/30	740
840		850	860	97		80
	CCAA				•	AAC-TTGCTTG

						CCCCATGCTTG
750	760	77	0	780	790	800
890	900	910	92	-		940
ATTTTTT	TTCTTGTT	AACGTAA	TAATAGAG	ACATTTTA	NAAGCACACA	GCTCAAAGTC
. : . : : : :				:::::::		
GTATTTT-	CCTGTT	ΑΛΤΑΤΑΤ	TAATAGAG	ACATTTTTAC	EA-GCACACA	GTTCCAAGTC
810	82		830	840	850	860
950	960	970	986	99	0 10	00
AGCCAATAA	GTCTTTT	CTATT	CTGACTTT	TACTAATAAA		GCCTGTAAAT
						::::::::::
						CCTGTGAGT
970	88		890	900		
.,,,,	90) ()	890	900	910	920
310 .	000				_	
	020	1030	1040			1060
				CTCTTTTTC		
				:::::::::::::::::::::::::::::::::::::::		
				CTCTTTCTTC		
930		40	950	960	970	990

F16 36 (20F4)

	GGAAATGTC	TGC-TTTAT	GAAACT-ATGO	CACATATTGA	
GTGTTCAA	::: :: GATAACTTCCAGG	TGTGTTTTT	GCTTCTCTTTC	TTGTGGTGGC	AGAGAGAAG
99	0 1000	1010	1020	1030	1040
1120	1130 -CAAATGAGGG-T	macama a	1140	1150	
.::	:::::::::::::::::::::::::::::::::::		:.::		
1050		1070	1080	1090	1100
1160	1170 ACGCCTAGCCCA		1190 TTAGTCCCATT		^~_~CCC
	.:::				
	GACCCTCTACTTC				
1110			1140	1150	1160
1210		1220			1240
AG	TGACAT	TTGCT-TGA-	-GGCTTATACA	CTGG	TG
.:			.:.: :.		
	CCCACTTGACTT				TTAGCCTG
1170	1180	1190	1200	1210	1220
1250	12	260	1270		
TGGTTGCCTG	GCTTGCAG	-GAAATGA	CCAAG	CTCACA	
	::::				
	TCATGACCAGTTG				ATGAAGA
1230			1260		1280
128	0	1290	1300	1310	1320
CAT	GCTGGC	TGAAGCGT-A	AAGMR-KACAA	CTGAGGTACT	CTTTTGA
:::	:: ::::	::: :: :		:.:: .:	: . : : :
TTTGTTTCAT	GCACTGTGATGTC'	TGACGCAACA	ATGTTCTAGAA	CAGACTGGC-	CATCTGC
1290	1300	1310	1320	1330	1340
1330		1350		1360	
AGGATGAAGGT	GGTGGATTCTC	CAGCC-CTGG	GGGTC	TTCCTCA-C	
	: . : . : . : : : :				
TAGTTTACACT	GATACCTAAACAC	AGTCTCAGT	GTGTGTGGTC1	TCCTCATCTT	CTTCTA
1350	1360	1370	1380	1390	1400
13	70			1380	
	GACC		ст		
	::: :			: :::	
	GACTTGAACATTT	AGAATAAAGA			
1410	1420		1440	1.150	1460
1390	1400	1410	1420	1430)
rttctagtt	-TGCATTTCCTGC	TGCACACAT	TTAAGGCATA	ACAC	CACAT
	:::::::::::::::::::::::::::::::::::::::				
	GTACAAATACTGA				
			1500		
1440	1450	1460	147	'() i.a	30
	2490 24962				

		: ::														
1520	Gaactga 1	7G7G0 530	iGCA(154			550			156			1570		.GAG	AAG
	1490		150	0		1510			152	20		15	30		15	40
TC	TCTGGT				rtcc	CTTT	CT-	TTA	CAC	CATC	CTC	TCC	CATA	AGC	ACC	CAT
• •	: TAACAGI															
1580	15	590		1600)	1	510		1	620)	:	1630			
	1550)	15	60		1570)									
GT	CTTTGAA	TATG.	AATGʻ	TATT	TGTA	AAA:	LAA.	\AA	4		-					
	. :	:: .	::.		:	:::	:::	::.								
AA	AATAATT	TACA.	AAAC	CAA	AAAA	AAAA	AAA	\AG(GCG	GCC	G					
1640	16	50		1660		16	70		1	680						

	10	2				50
HUMAN	GTCGACCCACGCG					
MURINE	GTCGACCCACGCG					:::::: .GCGCCGC'
	10	20	30 .	40	50	60
	60 GAGCGGCGTCCT-	70 CGGGAGCC	80 CCCTCCCG-		90 TCTTCCCTT	100
	: :: ::.	:::::::			::::: :::	
	CCCCCGCCGCCAG					
	70	80	90	100	110	
	110	120	130	140	150	160
	GCGCCCGCGCTCGC	AGG-CCACT	CTCTGCTGTC	GC-CCGTCCC	CGCGCTCCT	
	: : : :::::::	::: :::::	:: :: :	:: :: ::::		:::
	GTGTCAGCGCTCGC	AGGACCACT	CTTGGCCGCTC	CTCCTGCCC	-GCGTTCCT	'CCG
12	130	140	150	160	170	
	170	180	190	200	210	220
•	GCTCCGCTCCGCTC	CGCTCGGCCC	CGCGCCGCCC	GTCAACATGA	TCCGCTGCG	GCCTGGC
		:::		: . : . : : : :		
	-CTCCGCGCC	CGC	CGCCACC-	GACGACATGC'	TGCGCTGCG	CCTGGC
	180		190	200	210	
	230	240	250	260	270	280
	TGCGAGCGCTGCCG				-	
	::::::::::::::::::::::::::::::::::::::					
220		240	250	260	270	CUACAT
		240	250	200	270	
	290	300	310	320	330	340
С	ATCGCGCTGGCCGG	CCCCCCCTCC	STTGCAGTCTA	GCGACCACGG	CCAGACGTC	CTCGCT
:	:::::::::::::::::::::::::::::::::::::::	: : : : : : : : :		::.::::.	::::::::	:::::
	ATCGCGCTGGCCGG	CCCCGCCTGC	CTGCAGTCTA	GCAACCACAT	CCAGACATC	GTCGCT
280	290	300	310	320	330	
	350	360	370	380	3.90	400
.G	TGGTGGAAATGCTCC	CAAGAGGGC	GGCGGCAGCG	GGTCCTACGA	JGAGGGCTG1	CAGAG
:	:::::::::::::::::::::::::::::::::::::::		:::::::::	: :::::::	:: :::::	::::
TT	CGTGGAGGTGTTTC	GACGAGGGC	GGCGGCAGCG	GCTCCTACGAC	GATGGCTGC	:CAGAG
340	350	360	370	380 .	. 390	
	410	420	430	440	450	460
	TCATGGAGTACGCG					
	:::::::::::::::::::::::::::::::::::::::					
	TCATGGAGTACGCA'					ATCAT
400	410	420	430	440	450	
			FIG	37 (10	v=4)	

	470	480	490	500	Si	
	CTGGTGATCTG					
•	::: ::::: TGTGCATCTG	::::: :::: 				
460	470	480	490	500	510	
c	530 TGAGAGTGAT	540 rggaggteteet	550	560 TGCTGTGTTC	570 CAGATCATCT	580 CCCTGGT
cc	TGAGAGTCATT	GGAGGCCTCCT	CGCACTGGC	TGCCATATTC	CAGATCATCT	CCCTGGT
520	530	540	550	560	570 .	
	590	. 600	610	620	630	640
	TTTACCCCGTG					
	: :::::::: TCTACCCCGTG					
580	590	600	610	620	630	*****
	650	660	670	680	690	700
	CTATAACTGG					
	CTATAACTGG					
640	650	660	670	680	690	
	710	720	730	740	750	760
	CTTCTTCTGCT					
	::::::::::					
700	CTTCTTCTGCT 710	720	730	740	750	ICCCAG
	770	780	790	800	810	820
GTA	TTCTACACAT	. • •				-
::::	::::::			: ::::::	: : ::::::	:. ::
GTAC	TTCTATCCCC	AGCCTAATGTO	GGAGGAAGA	GCCTGAGAAA	AGC-CTGCTG	CA-AG
760	770	780	790	800	810	
	830	840	850	860	870	880
ATGG	ACTCCAGAAGA	AGAAACTGTTT	CTCCAGGCG	ACTTTGAACC	CATITITICG	CAGTG
::::		. : : : : : : : :		:: :::::		
	ATCTGAGGA		•			
820	830	840	850	860	870	
	890	900	910	920	930	
TTCA1	rattattaaac	ragtcaaaaat(CTAAAATAA	TTT-GGGAGA	AAATATTTT	TAAG
::::	:::::	::.:::	: : : : . : : : :	.::::	::::. :: .	:::
	TATGAT					TAAT
88	10	890	900	910	920	
940	950	960	970	980	990	
	TTATAGTTTCA	TGTTTATCTTT	TATTATGTT	TTGTGAAGTT	STGTCTTTTC	ACTA
:::::	::: ::::::	:::::::::::::::::::::::::::::::::::::::	.::::	: : : :	::	.::.
TAGTG	TTA-AGTTTCA	TGTATGTCGT-	-GTGGAGTT			CIC
930	940	950	96	60 9°	70	
1000	1010	1020	1030	1040	1050	
	TATACTATGC					TTG
.::.:	.: . :::::	::::::::	::::::	: ::: ::::	::::::	:::
	TAAGTATATGC					TTC
980	990	1000	1010	1020	1030	
1060	1070	1080	1090	1100	1110	
			FIG	37 (20	· 4)	

1130				CTTTATAAGGT		
TTAATAATCTGATCAAGTTCTTGTTATTTCCAAATAGAATGGATCGGTCTGTTAAGGGC	TTAAAG	ATATGCCTGTC	AAACTTGA	TAAGGT	AGAAATGTAG	GCCTCTCAT
THANTARATCHATGGGGCTTCTGTT-TTTCCACATAGGARTGGTTGTTCTCTAAGGGC 1090 1100 1110 1120 1130 1140 1180 1190 1200 1210 1220 1230 inputs TAAGGAGAAGAGAGATAAGGTTAAAAGTTGTTAATGACCAAACATTCTAAAAGAA	1120	1130				
1180 190 1200 1210 1220 1230 10puts TAAGGAGAAGAGATAAAGGTTAAAAGTTTAATGACCAAACATTCTAAAAGAA	::::::	::::::	: :::: ::	:::: ::::::	::. : ::	
Inputs TAAGGAGAAGGATAAGGTTAAAAGTTGTTAATGACCAAACATTCTAAAAGAA	1090					
TACAGAGGAG-GAAAGTCACTGGCAAAACTTCCGTGACCAAAATTCCTGAAATTAGTA 1150 1160 1170 1180 1190 1200 1240 1250 1260 1270 1280 1290 ATGCAAAAAAAAAGTTTATTTCAAGCCTTGGAACTATTTAAGG-AAAAGCAAAATCA :	innuts TAAGGAG	AAGAGGAAGAT.	AAGGTTAAAA	GTTGTTAATGAC	CAAACATTCT	AAAAGAA
1240 1250 1260 1270 1280 1290	TACAGAG	GAG-GAAAGTC	ACTGGCAAAA	CT TCCGTGAC	CAAATATCCT	GAAATTAGTA
ATGCAAAAAAAAAAGTTTATTTCAAGCCTTCGAACTATTTAAGGAAAGCAAAATCA			1170	1180	1190	
1300	ATGCAAA	AAAAAAGTTTAT	TTTCAAGCC1	TCGAACTAT	rtaaggaa	AGCAAAATCA
1300 1310 1320 1330 1340	TITITI	LAAAAGACCTT	TTTTGAGTTT	TCAGTTACATA	LAAAAGCAGA	AGCAGATTGG
TITICCTAAGTGAGCATCGTTTGTGAGAATTTTTAGTCAGTGTTTTTGAACAATTATTGTTT 1270 1280 1290 1300 1310 1320 1350 1360 1370 1380 1390 1400 AGCTAAGGCTTCATGTGACTCGATATGTCATCTAGAGAAGTACTATTCATGGTTCAAA	13	00 131	.0 132	0 1330	1340	
TTTCCTAAGTGAGCATCGTTTGTGAGAATTTTTAGTCAGTGTTTTGAACAATTATTGTTT 1270 1280 1290 1300 1310 1320 1350 1360 1370 1380 1390 1400 AGCTAAGGCTTCATGTGACTCGATATGTCATCTAGGAAAAGTACTATTTCATGGTTCAAA	TTTCCTAA	ATGCATATCAT	TTGTGAGAAT	TTCTCATTAATA	TCCTGAATC	TTCAT-TTT
AGCTAAGGCTTCATGTTGACTCGATATGTCATCTAGGAAAGTACTATTTCATGGTTCAAA	TTTCCTAA	GTGAGCATCGT	TTGTGAGAAT	TTTTAGTCAGTG	TTTTGAACA	TTATTGTTT
AGCTAAGGCTTCATGTTGACTCGATATGTCATCTAGGAAAGTACTATTTCATGGTTCAAA	1350 1	360 13	70 13:	80 1390	1400	
TTCTAAG-CTTCGTGTTGACTTTCTCTGATGCGTAGAAAAGT	AGCTAAGG	CTTCATGTTGA	CTCGATATGT	CATCTAGGAAAG	TACTATTTCA	
1330 1340 1350 1360 1370 1410 1420 1430 1440 1450 1460 CCTGTTGCCATAGTTGGTAAGGCTTTCCTTTAAGTGGAAATATTTAGATGAAAATTTCT ::::::::::::::::::::::::::::::	. :::::		:: ::. 	. ::::::: TCCCTACAAAG	: T	
CCTGTTGCCATAGTTGGTAAGGCTTTCCTTTAAGTGTGAAATATTTAGATGAAATTTTCT : :::::::::::::::::::::::::::::::	1330	1340	1350	1360		1370
CGTAGCCAAGGTTAA-GCCGCTGTCACTACTGAAATGCTAAGAATTTTCCT 1380 1390 1400 1410 1420 1470 1480 1490 1500 1510 1520 CTTTTAAAGTTCTTTATAGGGTTAGGGTGGGAAAATGCTATATTAATAAATCTGTAGT :::::::::::::::::::::::::::::::::	1410 1-	143 ATAGTTGGTAA	0 144 AGGCTTTCCTT			
CTTTTAAAGTTCTTTATAGGGTTAGGGTGTGGGAAAATGCTATATTAATAAATCTGTAGT ::::::::::::::::::::::::::::::::	CGTAGCO	AAGGTTAA-GC	CGCTGTCACT	ACTGAAA	rgctaa G	AATTTTCCT
CTTTTCCCGTAGTGTAGAGGGGTAGGGTGTGGGAAGAAGCCGTGTTAGCACATCTGTAGT 1430 1440 1450 1460 1470 1480 1530 1540 1550 1560 1570 1580 GTTTTGTGTTTATATGTTCAGAACCAGAGTAGACTGGATTGAAAGATGGACTGGGTCTAA						
1430 1440 1450 1460 1470 1480 1530 1540 1550 1560 1570 1580 GTTTTGTGTTTATATGTTCAGAACCAGAGTAGACTGGATTGAAAGATGGACTGGGTCTAA .:::::::::::::::::::::::::::::::::::	::::: :	1. 1 11 111	: :::::::	:::::::::	::::: : :	::::::
GTTTTGTGTTTATATGTTCAGAACCAGAGTAGACTGGATTGAAAGATGGACTGGGTCTAA .::::::::::::::::::::::::::::::::::						
ATTCTGTGTGTATGCTTAGAACCAGCGTAGACCGGATGGAGGGATGGACTAGGCCTAA 1490 1500 1510 1520 1530 1540 1590 1600 1610 1620 1630 1640 TTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGAAAGCATTAGGAGGGTCATTCTT : : : : : : : : : : : : : : : : : : :	1530 15	40 155	0 156	0 1570		CCCTCTAA
ATTCTGTG TGTATGCTTAGAACCAGCGTAGACCGGATGGGAGGATGGACTAGGCCTAA 1490 1500 1510 1520 1530 1540 1590 1600 1610 1620 1630 1640 TTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGAAAGCATTAGGAGGGTCATTCTT : : : : : : : : : : : : : : : : : : :	GTTTGTGT	TIATATGITCA	:::::::	:::: :::: ::	::::::::	.:: ::::
1590 1600 1610 1620 1630 1640 TTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGTAAAGCATTAGGAGGGTCATCTT : :: ::::::::::::::::::::::::::::::	ATTCTGTG-	-TGTATGCTTAG	CAACCAGCGT	AGACCGGATGGG	AGGATGGACT	AGGCCTAA
TTTATCATGACTGATAGATCTGGTTAAGTTGTGTAGTAAAGCATTAGGAGGGTCATTCTT : :: :::::::::::::::::::::::::::::	1490	1500	1510	1520	1530	1540
TCCCTCCCAACTGGTGGATGTGAAGAGGTCACGTAGGAAGGCAC-AGGAGGGTCACCACT 1550	1590 160 TTTATCATG	00 1610 ACTGATAGATCT) 1620 CGTTAAGTTO) 1630 STGTAGTAAAGC		TCATTCTT
1550 1560 1570 1580 1590 1600 1650 1660 1670 1680 1690 1700 GTCACAAAAGTGCCACTAAAACAGCCTCAGGAGAATAAATGACTTGCTTTTCTAAA	: :: ·:	:::.::::::::::::::::::::::::::::::::::	:::.	. :::: :::::	: ::::::: AC-AGGAGGG	::: TCACCACT
GTCACAAAJTGCCACTAAAACAGCCTCAGGAGAATAAATGACTTGCTTTTCTAAA						
fiftifications of the first fitting and the contract of the co	1650 166	0 1670	1680	1690	17	
_						
FIG 37 (30,4)					_	

GI	CACAGC		CAGACATCC	r-aggagaag. 1630		TTTCTTCTCAGTG ∰
	10.		1020	1030	1040	20
_	710	1720			 ·	1760
TC	TCAGGT-	TTATCTGG	GCTCTATCAT	TATAGACAGG	TTCTGATAGT	TTGCAACTGTAAG
	::.	:::.::	:::::. :.	: ::::::		
CT	TCTTCCC	TTAACTGA	GCTCTG-CTC	ACAGACAG-C	TA-GAATAGAT	TTTAACTGTAA-
1660	16	70	1680	1690	1700	1710
	1770	1780	1790	1800	1810	1820
CAC	BAAACCT	ACATATAGʻ	TTAAAATCCT	GGTCTTTCTT	GGTAAACAGAT	TTTAAATGTCTG
:::	:::::	: ::.::.			:::::::	::.::::::
CAC	AAACCT.	AAATGTAA:	ITAAAA-CCT	GTCTTCCTT	GGTAAGCAGAC	TTAAAATATCTG
17	20	1730	1740	1750	1760	1770
1	830	1840	1850	1860	1870	1880
ATA	TAAAAC	ATGCCACAG	GAGAATTCGC	GGATTTGAG	TTTCTCTGAAT	AGCATATATATG
::	::::		::			
						-CATACCGGAA
	1780	1790	1800	181		
			2000			
11	390	1900	1910	1920	1930	1940
ATGG	TATCGGA	TAGGTCAT			ACTTACATAAT	GAAAACCAATT
		:: ::			:::::: ::::	
					ACTTACCTAAT	
0000	1840		1850	1860	1870	1880
	1010		1030	1000	1070	2000
19	50	1960	1970	1980	1990	2000
CATT	TTAAAT				AAAAGCTAATT	
4					::::	
					AAGAC-AGTTO	
	890	1900	1910	1920	1930	1940
1	650	1900	1310	1920	1930	1340
20:		2020	2030	2040	2050	
			::::::::::			
TAC-C					ааааааасааа	
	1950	1960	1970	1980	1990	2000
			2060			
		AAAAAC	GGCGGCCGC			
		::::::	:::::::			
AAAAA	AAAAAAA	AAAAAAAG	GCCGGCCGC			
	2010	2020	2030			

		10					
HUMN		CCACGCGTCC					
MULLNE		:::::::: CCACGCGTCC		GGGCACTCGG	CACTCTGCGG	GAGCAGGCATO	GG.
		10	20	30	40	50	6
	20 GCCGCG	30 CGCTCTCTCC	40 CGGCGCCCAC	50 ACCTGTCTGAG	60 GCGGCGCAGCG	70 AGCCGCGGCC	CGC
		::: ::::					
	GCCGCGC	GCGTCCTCCG 70	80 80	90	100	110	CCC
	80	90	100	110	120	130	
		GCTCGGCGCG :::::					
	GCGGGCT	GCTCCACGCG 130	GTAGCACT 140	CAGCATGGCT 150	GGAATCCCGG(160	GGCTCTTCATO 170	CT
	140	150	160	170	180	190	
	TCTCTTC	TTTCTGCTCT			CCTTACAGTGC		
		CTGCTCTC					
	180	190	200	210	220	230	
	::::::	210 CCTGCATACCG : ::::::: CGGCTTATCG 250	:::::::	:::::::::::::::::::::::::::::::::::::::	:::::::::::	::: :::::	::
	: :::::	270 TTGGAGCCGA : : : : : : : : TCGACGCCAA 310	::: :::::	::.::::::::::::::::::::::::::::::::::::	: :: :::: ::::	:::::::::	:
	320	330	340	350	360	370	
		TCCACTGCCC					
(ACCACTGCCC 370					
	BBO CTATGCCAA	390 TUGCAGCCGC	400 ACAGAGACGC	410 AGGTGGGCAT	420 CTACATCCTC	430 AGCAGTAGTGO	3
τ		::::::::::::::::::::::::::::::::::::::					
		450		470			

FIG 38 (10F7)

		, _ ,	112		
	::: ::::				
AGGCAG			AGGCCACAGGG	AGATCTCGC/	AGGAAGAGGCAGAT
48	0 490	500	510	520	530
500	510	520	530	540	550
TTATGG	CTATGACAGCA	GGTTCAGCAT	TTTTGGGAAG	GACTTCCTGC	TCAACTACCCTTT
					:::: :: :::::
					TCAATTATCCTTT
540	550	560	570	580	590
					•
560	570	580	590	600	610
CTCAACA	TCAGTGAAGTT	TATCCACGGG	CTGCACCGGCA	ACCCTGGTGG	CAGAGAAGCATGT
	::.:::::::				
					CAGAGAAGCACGT
600		620	630	640	
000	010	020	630	040	650
620	630	640	650	660	670
CCTCACA	GCTGCCCACTG	CATACACGAT	'GGAAAAACCT.	ATGTGAAAGO	AACCCAGAAGCT
::::::	:::::::::::::::::::::::::::::::::::::::		::.::::::		.:: :::::::
CCTCACT	GCTGCCCACTG	CATACACGAT	GGGAAAACCT	ATGTGAAAGG	GACACAGAAACT
660	670	680	690	700	710
	0.0	000	050	,00	710
600		700			
680	690	700	710	720	730
TCGAGTGC	GCTTCCTAAAC	GCCCAAGTTT.	AAAGATGGTGC	GTCGAGGGGC	CAACGACTCCAC
::::::	::::::::::	::::::::	::::::::	.::::	::::::: :
CCGAGTGG	GCTTCCTGAAC	CCCAAGTATA	AAAGATGGTGC	CGAAGGGGA	CAACAGCTCGAG
720	730	740	750	760	770
	, 30	, 40	730	,00	770
- 44					
740	750	760	770	780	790
TTCAGCCA	TGCCCGAGCAG	ATGAAATTTC	AGTGGATCCG	GGTGAAACGC	CACCCATGTGCC
::::::	:::: :: ::	:::::::::::::::::::::::::::::::::::::::	:::::::::	:::::::::	::::::::::
CTCAGCCA'	TGCCAGACAAG.	ATGAAGTTTC	AGTGGATCCG	CGTGAAACGC	ACCCATGTGCC
780	790	800	810	820	830
700	,,,,	800	910	820	920
000	212				:_:
800	810	820	830	840	850
CAAGGGTTC	GATCAAGGGC <i>I</i>	\ATGCCAATG	ACATCGGCATO	GGATTATGAT	TATGCCCTCCT
:::::: ::	:::::::::::		: : : : : : : : : : :	:::::::	
	GATCAAGGGCA				
840	850	860	870	880	
040	0.70	800	870	880	890
860		880	890	900	910
GGAACTCAA	AAAGCCCCACA	AGAGAAAATT	TATGAAGATT	GGGGTGAGC	CTCCTGCTAA
	. : : . : : : : : :				
CCAACTCAA	GAAACCCCACA	A	CATCAACATT		CTCC) CCC)
900	910	920	930	940	950
920	930	240	950	960	970
GCAGCTGCCA	GGGGGCAGAA'	רידי א כידידי כידי כי	TOOTTATOAC	AATCACCCAC	CACCAACEE
GCAGCTCCCA	GGGGGCAGGAT	CCACTTCTC'	TGGTTATGACA	AATGACCGGC	CCGGCAATTT
960	970	980	990	1000	1010
980	990 10	00 10	010 10	120 14	110
		• • • • • • • • • • • • • • • • • • • •			030
GGTGTATCGC	TTCTGTGACGT				
:::::: :::	:::::::::::::::::::::::::::::::::::::::	::::::	:::::	: :::::::::	::::::::::
GGTGTACCGC	recegerator				
1020	1030	1040	1050	1060	
	£17.717	FA40	LV 10	1000	1070

FIG 38 (20=7)

		1000	1070	1000	1000
1040			1070 GGGTCTATGT		1090 AAGAGACAGCAGCA
					:::::::::::::::::::::::::::::::::::::::
CGCCCAG					AAGAGACCACAGCA
1080	1090) 110	0 111	0 112	0 1130
1100	1110	1120	1170	1140	1150
					GTGGACATGAATGG
					:::::::::::::::::::::::::::::::::::::::
GAAATGGG					GTGGACATGAATGG
1140	1150	1160	1170	1180	1190
1160		1100	1190	1200	1210
					TATGCCCAGATTTG
					:::::::::::::::::::::::::::::::::::::::
CTCTCCAC	AGGATTTCA	ACGTGGCAGT	TAGAATCACC	CCTCTTAAAT	ATGCCCAGATTTG
1200	1210	1220	1230	1240	1250
1220	1220	1240	1250	1260	1270
					GTGTTCCCTCCTG
					: :: : :: ::
					GCGTCTTCTTG
1260	1270	1280	1290	130	0 1310
		1 2 2 2	1210	1220	1330
				1320	TTTTTTGTCATT
					: :::::::::
					CTTTTTATCATT
132	0 1	330 1	.340 1	1350	1360
1340	1250	1160	1370	1380	1300
					CTTTTACCTA
	.: ::::		::.::		:::::::::
		GTG	TGAGTCA	CATAGTAT	CTTTTACCTAGT
137	70	13	90	1390	1400
					1.50
1400				1440	1450 TGTGTATCATAT
				::::::::	
					IGTGCGT
1410	1420	1430	1440	1450	1460
			1490		1510
				PAGAAATAAA :::::::::	AAAATACTGAT
					 WAGTA
	70 1			.500	1510
1520	1530	1540	1550	1560	1570
					CAAACTT-TGA
					:::::::::
		TGACAAGGA 1540	AGTTAAACTT 1550	TCAGTTTTTG 1560	GAGAATTCTAA 1570
1520	1530	1340	1330	1300	13/0
1580	1590	1600	1610	1620	1639
				AATATTTGGC.	TACAAGAGAT

WO 00/18904 PCT/US99/22817

				::::::::::::::::::::::::::::::::::::::		
11.				1610		1630
	1640	1650	1660	1670	1680	1690
ATG				TTTCTTCTGAG		
				:::::::: PTTCTTCTGAG		
ATG	1640			1670	AGICAI	
thribath.				1730 TTAATGCTTC		
						IGIICCCAI
				ATTATGCTTC	ZA	
1680	1690	1700)	1710		
	1760	1770	1780	1790	1800	1310
TTAC	GAACTTTC	SACAGCATTTG	TTAGGCAGA.	ATATTTTGGAI		TTGCATGG
				: GATA	.:::: ATGATAGCA-	
				1720	1730	
	1020	1020	1040	1050	1060	1070
TAGT				1850 ATACTGATAC		
				1910		
TATAC	TAAACCAC	TATCCCAAGC	TGCTTTTAG	TTCCAAAAAT	\GTTTCTTTTC	CAAAGGT
	1940	1950	1960	1970	1980	1990
				rggccctccca		
			::: ::			
		AAGT0	TTCAATA 1740	GGC		
			1740			
				2030		
GAGTGC	CCAAGAG1	rgttratcca	ACCCTTCCA	TTTAACAGGAT	TTTCACTCACA	ATTTCTG
1	050	2070	2000	2090	2100	2110
				JOYO JCTTAATTAGA		
				· · · · · · · · · · · · · · · ·		
2	120	2130	2140	2150	2160	2170
				'CATAGCATTT		

2180	2190	2200	2210	2220	2230
	TGTTTTATCAT				
				TGTTTTGGAT 1760	rc
			1730	1700	
	2250				
	ATTGCCTGGCA	GATGTCACAA	CAGAATAACC	ACTTGTTTGGA	GCCTGGCA
::::	: : : ATT				
1770					
	2310				
AGTCCTCCAC	SCCTGATCAAAA			AGTGTGCTTTC	TGGGAGCTA
			:.:::: :: :::::::::::::::::::::::::::::		
			1780	,	
2360	2370	2380	2390	2400	2410
TGTACTTCTT	CAATTTGGAAA	CTTTTCTCTC	TCATTTATAG	TGAAAATACTI	rggaagtta
					: . : :
				CTT 179	
2420	2430	2440	2450	2460	2470
	ACCAGTGTGGCC				
:::					
CAATAA					
1800					
2480	2490	2500	2510	2520	2530
ATGCTCTAGGT	TATAGATAAAC.	A ATTAGGTA1	raatagcaaaa	ATGAAAATTG	GAAGAATG
			'ATTGGCTATA 1810	TTGATA 1820	
			1010	1020	
2540	2550	2560	2570	2580	2590
CAAAATGGATCA	AGAATCATGCCT	тссалтааа	GGCCTTTACA	CATGTTTTATC	AATATGA
2600	2610	2620	2630	2640	2650
TTATCAAATCAC					
2660	2670	2590	2500	2700	2710
CTCTCGGCCTAAC					
				. C. L G. LOGAC I	
	2730				
CGTGTTTGC TG T	GCTTGCACCCC	AGGTAAACC'	TGCATTGTAGG	CAATTTGTAAG	CATATT

		::::			::::
*********		-CCCA			.TAAG 30
2780	2790	2800	2810	2820	2976
			TGGGGGATTT:		
	::::: .:::				
	1840	4			
2840	2850	2860	2870	2880	2890
TTTTTGGAAG	GATAATTCTGA	TAAGGCACT	CAAGAAACGTA		
				:::: CAGT	
				1	850
			2930		
AAATCATATGA	GAAATACTAT	GCATAGCAAC	GAGATGCAGAC	GCCGCCAGGA	
					:::: CAGA
			2990		
GTTCCAGCACA	ATTTTCTTTG	GAATCTAACA	GGAATCTAGCC ::	TGAGGAAGAA	AGGGAGGTC
ATTCCCAC-			GC-		
1860					
3020	3030	3040	3050	3060	3070
TCCATTTCTATC	TCTGGTATTT	GGGGGTTTTC		CTTTAGCTTG ::::	GTGAAAAA
			TGC		
			1	1870	
3080	. 3090	31'00	3110	3120	3130
AAGTTCACTGAA	CACCAAGACC	AGAATGGATT	'TTTTTAAAAAA	ATAGATGTT	CCTTTTGT
3140	3150	3160	3170	3180	3190
GAAGCACCTTGA'I			GCAAAGTTAGA	CAATGGCACA	AAGTCAA
	::::: TAGTTT				
3200	3210	3220	3230	3240	3250
ATGAAATCAATG					
٠					
3260	1770	1280	3290	3.100	3310
GCTATATACAGCT					
				АААТАААА °	• • • • • •

FIG 38 (6 of 7)

				3350		3370
CCAT	CTTTTT	AGTGATAATAA	AAGAAAGCA1	rggtattaaac	TATCATAGA	AGTAGACAGA
			•			
	3380	3390	3400	3410	3420	3430
AAAA	GAAAAAA	GGACTCATGG	LATTATTAAT	ATAATTAGTG	CTTTACATGT	GTTAGTTAT
	3440	3450	3460	3470	3480	3490
ACATA	TTAGAAC	CATATTTGCC	TAGTAAGGCT	PAGTAGAACCA	CATTTCCCA	AAGTGTGCT
·					:::::: TTTCCC	
					1890	
	3500	3510	3520	3530	3540	3550
CCTTA	AACACTC.	ATGCCTTATG	ATTTTCTACC	AAAAGTAAAA		
					.:::: TTGTAA	
					1900	
				3590		
AGGAAG	ATGCCTC	TCCATTTCC	CTCTCTTTA	rcagaggttca	CATGCCTGT	CTGCACAT
1	620	3630	3640	3650	3660	3.670
TAAAAG	CTCTGGG.	AAGACCTGTT	STAAAGGGAC	AAGTTGAGGT	JOOU IGTAAAATCT	GCATTTA
		3690				
LATAAAC	ATCTTTC	ATCACAAAAA				
		:::::	:			
			0 192			

		10	20	30	40	
HUMAN						TTGCTC-
MURINE				TGGCGGCGGC		: : : : : TCTGCTTTTGCTCT
,	GICGA	10	20	30	40	50
	50		-		90	0 100 CGGAGGGCGACGGCG
						\GGGGGATGGAAACA
	50	70	80	90	100	110
	11				40 150	. =
						CACGGTGGAGCGTC
	GAATG	GCT-GGGAA	TTGCAGCAC	CAGTAATGGA	GGAGGAGCGTTG	::::::::: CACAGTGGAGCGTC
	120	130	140	150	160	170
	170				210	220 CAGGCCCGTCATCC
						CAGGCCCGTCATCC
						CAAGCCCGTCATCT
	180	190	200	210	220	230
	230	240) 2:	50 26	0 270	280
	s TGCAGG	GACTCACGGA	CAACTCGA	GGTTCCGGGCC	CTGTGCTCCCGC	GACAGGTTGCTGG
					:::::::::::::::::::::::::::::::::::::::	
	240	250	260	270	280	GAAAACCTGCTAG 290
	290	300		.0 32		340
						TCCTACCACAAAG
						TCCTACCAGAAAG
	300	310	320	330	340	350
	350	360	3 7	0 380	390	400
			-			ACCCCACCTCCC
						: :: .: ::::
	TGGACCT	CCCTTCCAC	Gaatatgt	GGAACAGCTGC	TGCAGCCCCAGO	ATCCTGCATCCC
	360	370	380	390	400	410
	410	420	430	4.10	450	460
						GGGCCTCTCTCT
					::::::: ::::	
	TAGGCAAT	GACACCCTG	TACTTTTTT		ACTTCACTGAGT	GGGCATCCCTCT
	120	430	440	450	460	470
	470	480	490	500	510	520
					GAACCGCTCCAG	

FIG 39 (10F4)

					GCTTACAGCTTTG
480	490	500	510	520	530
530		550	560	570	580
					GGGTACTCAGAAG
					GGTTTCTCAGAGG 590
590	600	610	620	630	640
TGATCTA		CGCTGGTTCC	TTACCCACC1	GAGAAGACGO	CAGAGTTCCACC
TTATCTA	TGGTCGGAAG	CGCTGGTTCCT	CTACCCTCCT	'GAGAAGACAC	CTGAGTTCCACC
600	610	620	630	640	650
: :::::	:::::: :::	:::::::::::::::::::::::::::::::::::::::	::: : ::::	::: : ::.	700 CACCGTCTGCAC : : :::::: CCCTGTCAGCAC 710
710	720	730	740	750	760
					ACCGCTGGTGGC
					TCGGTGGTGGC
:::: ::.	::::: :: :: CTCAATCTGGA	::::::::::::::::::::::::::::::::::::::	::::: :: : TTCATTTCTA	CCTTCCTTGG	· · · · · · · · · · · · · · · · · · ·
830	840	850	860	870	890
AGCTGGCAG	GGACTGCCGGT		GCACGTCCCA(:::::::		CACGGATTTTA
AGGCAACTC	GCAAGCC (CACTGCACCAC 860	GCACATGCCA2 870	TGTAGTGCTC 880	
040	930	700	870	880	890
::::: .::	900 TAGTGGCGCA ::::::::: CAGTGGCAGCA 910	: . :	: :::::::	:::::::	: : :::::
950		960	970	980	990
:: .::::::	GACAAGGGAG	::: :: : GCTCATGGTC	::::::::: CAGCAAGGGG1	::::::::::::::::::::::::::::::::::::::	AGGGGAGCAG
1000	1010	1020	1030	1040	105ა
: ::::. ::	AACAGCAGAAC : . : : : : : : ATCAGCAGGGC	:. :::	:::::	:::::::	: ::::::
1019 102				1050	1050

			AGGGCTCCCC'	rggaccaggac	GCCAGGTAGGGC
. : : ACAG	:: : ::::: GGACTGGAGC 1070	::: : ::: TTCCGTCTCC 1080	::. : ::: AGATC-CTCC 1090	::::::: rgggccagggt 1100	GCCAGGCAGGAC
	CTCAGTAGTCC		CATTCTCAGA	GATGAATGCG	1170 TCAATAACCTCC
	CTCAATAGTCC			.GATGAAAGCG	TCAATGACTTCC 1170
	CAAGTTGGGG	ATGAGCTGTT			1230 GTCACGGGGTCA
					GTCACAGGGTCA 1230
AAATGACC			AGAAGGG-CAG		:30 .TGGGGCCCA : ::.
AAGTGGCC	CACACGCTGCA 1250				ATACCGATCCG 1290
		GCCCTG-CTC	CCCCAGCCGC		1340 TGCAGGTGCTC
			CATGGGCC-C 1330	TCCTTACC' 1340	TGCAGGTGCTC 1350
	CTTGCGGTCG	TAGGTGATGC		1390 GATGCACGGCT	CCCGCATCAG
				AATGCAGGGTT 1400	
	CATCTTGCCAC	CACAGGTAGT	CGGGGATGTCT	1450 CCCCTTCTCTC	
		ACAAGTAGT		CGCTTCTATA 1460	
	AGGCTGAAAA			1510 TGCCAGCCATC	
				TACCAGC-AGG	and the second s
			CATCCACCTG	1560 AGAAAAAGCT	
				::::::::::::::::::::::::::::::::::::::	
LSRI CCCCCCATGTAC	L590 ETTGTCCTGTC		1610 TGCTGTGCTT	1620 CGGGGA	1630 -GACACCC

FIG 39 (3 of 4)

	CATGTATTTATO	CCTGCAGAG	TTGAGTGCCA	TGTGTGGGC	.: :.:: AACTCCTGTCTCCA
	1600	1610	1620	1630	1640
	•	1640			1660 .
AC	-CTCCC				CCAACACA
	:.: :		:: .:.:: :		::::::
					GCCAACAGATCCAC
1650	1660	1670	1080	1690	1700
	1670	1680	1690	1700	1710
AG	GCGGGGATGCT	CCCAC	GCCACGTGC	ACACACACA-	-GACCCACATGTGG
					:::::::::::::::::::::::::::::::::::::::
					TGACCCACATGTGG
1710	1720	1730	1740	1750	1760
			_		0 1770 CCCGGACGTGGCTG
					::::::
					CCGGATGTGGCCA
1770	1780	1790	1800	1810	1820
179	30 1790	1900	1910	1920	1830
					GGGGGTTGACCAG
					: . : : : : : : : : : : :
TCATCT	TCATGACCCTC	GTGGTTCCGC1	GACACTCCTC	CAGTTCCCT	GAGGGTTAACCAG
1830	1840	1850	1860	1870	1880
184	0 1850	1860	1.0	170 1	990
					AATCTCAGAGC
	:: .:.::::				
AAGCTA	GTTGGTGATGG	CCTGACCAGG	AAATCACAGA	GCCCGCCCC.	A-TCTCAGGCCTC
1890	1900	1910	1920	1930	1940
1000	1000				
1890					1910 CACATTT-C
	::::::::::::::::::::::::::::::::::::::				
			רכיייר בייר בייר בייר בייר בייר בייר ביי		ACTTGTGCTGGT
1950	1960	1970	1980		2000
1,50	1300	1370	1300	1330	2000
	1920		1930)	1940
	CTGCTTG-		CCAGTAAAGC	CTTCG	ATAAAC
	:::::::		::. : . ::		
GACTCAG'	TGTCTGCTGGG	GAGGGACCCA	CCTCTCTCGC	TCAGCAGCA	ATGAGCCTGGTG
2010	2020	2030	2040	2050	2060
	1950	1960	1970		
	$\omega_{\rm VYYYYYYYY}$				
	ATGCAAAAAA 2080				

MURINE	AATTCGG	10 SMWCMKKK	20 GVVGGVVG	30 CCGGTGGAG	4. TGAGAGGA		0 60 GTCTGAATGCO
HULMIN	. :::	. :	:. : ::	::::::	: : : : :		::::::::: GTCTGAATGCC
		10	2	20	30	40	50
	AGAATGG	70 :ATAACCG	80 TTTTGCTAC	90 TGCGTTTG	100 TGATTGCTI) 120 STCTGATTTCC
	:::::::	::::::	: : : : : : : :	. : : . : : : :	: . : : : : : :	:::::::::	:: :::::: CCTCATTTCC
	60	70		0	90	100	110
		130 ACATGGCO	140 GCCTCCAT	150 AGGCACGGA	160 CTTCTGGT		180 AAGTCCCATT
	::::::	:::::::	:::::::	. : : : : : . : :	::::::	::::::::	
	120	130	140		50	160	170
		L90 ATTCAAGT	200 GACTCGAAT	210 TAAAATCGC	220 CTGGGAAG	230 ATTTCCTCGG	240 IGACGAGGCG
	:::::::	::: :::	:: : ::::	:::: :.	:::::::	::: : .: ATTCATTAG	::: :::::.
	180	190	200		10	220	230
		50 GACTTACA	260 AACGATGTT	270 CTGTTCCG	280 ATACAACGO	290 CAGCTTGGGG	300 CTGTGGAGA
	::::::::	::::::		:: :: ::: CTTTTTCGA	:::::::::: \TACAATGG		:::::::
		10 CACCATAC	320 CCAAAAAC	330 ACTCACTGO	340 TATGCGCC	350 ACCGGAAAGG	360 ACAGAGTCA
					TATAGCCC	:::::::: ACCAGAAAGG 340	
	37	-	380 AATGCATGA	390	400 CTAAACGAC	410 SCAGTTCATGO	420 GAGAAGTAT
	:::::::	:: :: :	:::: :::	::::::	:::: ::: CTAACTGAC	CAGTTCATGO	:::::::
,	43 GTGGACCCC	-	440 CAATAGCG	450 GCATCGACO	460 TGCTTCGC	470 ACCTACCTGT	480 GGCGCTGC
	:: :: :::	:: :::::	:::::::	: :: ::	:: ::: :	ACCTATCTTT	:::: :::
·	420	430	440	450			70
C	490 CAGTTCCTTT		500 CGTCAGCT	510 rgggettga	520 TGTGCTTT	530 GGGGCGTTGA	540 TTGGCCTC

FIG 40 (10F3)

::::: CAGTT 480	::::::: CCTTTTACCT 490	:: :: :: TTTGTGAGT 500	:::::: TTAGGTTTGA 510	TGTGCTTTC	GGGCTTTG <i>i</i>	:: :: :: ATCGGACT 530
	550		570			
	CTGTATCTGC					
	::::::: TTGCATTTGC					
TGTGC	TTGCATTTGC 550	CGAAGCTTAT 560	570			90
340	330	500	370	30		, ,
GCAGG1	610 CTGTGCACA		630 TCCGTGAGT			650 CATTGA-
	:.:.::					
GCAGGA 600	AATTACTCA(610	GATTCTTGGC 620				
				660		670
	ACTC		TT	ACATC	AGA	\agtag
	::::			.::::		: : :
TTGATA 660	ATTACTCATT 670	TCTCAATAA? 680	CTTTTAATT 690			
				680	690	
AG	ст			CAAGGA	TGTATCTGG	
	::	:::			: : : . : :	
TCCAAGO 720	730	GGCCTTACAA 740				
		700				
	-AGAATTT	GG	ATGGT			C
		::				:
ACCTTTT 780	AGTTTTTCC/ 790	AGTGGGCCAT 800	GCCTATGGTA 810	RGTTTAAAA 820		
710						
CTTC	TGC-				·CTGGC	
::::	:::				:::::	
	CAATCTTGCA	TTGAGATTCC 860	870	DDATDTAAD 088	890	
940	850	860	870	8.00		
		720		730		
		CTG	CGTC	TC GG	СТ	C
		:::	: ::	:: :	: :	:
TTTGACCA	ATAGAGTGT 910	GCCTGAAATG 920	ACACTCTTC' 930	TCATGAGGT 940	CCTAAAGAT 950	CATGTG
,,,,						
COTTO	740				_	
	CAGTTC					
	CCAGTTCTCT	TTGGAACACT	CAGTCTTAGA	ACATTCCC	CTCCAAAC	CAGAT
960	970	980	990	1000	1010	
	75	n	·	-	760	
	ATGGC		· ^ · r			
		::::::	::		:: :: :::	
ACCATGCT	UTGAAGTCCA			GTGTAGATO		
1929	1030	1040			1070	

	•	770		780	790
					AAAGAGTAC
,				:::.::	
					TGTGGGAGCCATCCT
1080	1090	1100	1110	1120	1130
					ATC
					TTATCTTACTACAT
1140	1150	1160	1170	1180	1190
83	20	83	0		840
GTGT	GGCATGA	AGGG	AGGCTG	C	CTGCT
					::. ::
					CTATGGAACTGATA
1200	1210	1220	1230	1240	1250
	850	8	160	870	
				TTTTTT	
	:::::::				
					<i>\</i> AAAAAAAAAAAG
1260	1270	1280	1290	1300	1310
GGCGGCCGC					
1320					

FIG 40 (3 of 3)

HUMAU	GTCGAC	10 CCACGCGTC		30 GGCCCGCGT	40	50	CTGCCCCC
MURINE		:: :::	: ::	.^: v: :	::.::.::	.: ::: :	:: :::
			10	20	30	40)
	60 . CGCGAGO			90 GCTGCGGC1		110 GCGGCAGCA	
	: .::	.:: :	.: :.:	: : :	:: :::	. ::::	::: :::
	50	60		. 80			100
			GGGTGGCGG	150 CGGG-CCTG	CTGCTCGG	CGCGGGCGC	
			CCAACCC	:. ::: CATTTCCT- 130			
		CAGGCTGAG	CCGGGGTCG	210 GGCGGCGGGG ::::	GCGACCGCG	AGCTCGGGA	
	TGCACCTG			TCGGCT	-C-CCTGC-		
	.: ::	: :::.::.	GCCCTGGAA : :::.	0 2 GAAGGGACG	TCAGAGC	GTCAGTTG	:: ::::
	ATGGGTGGG	ZGCGCGGGA 230	CGTGGGC 2	TGGGTGGCA 40		GTCCTGGG 260	CGCCGGCG 270
	: : :: :	: . :	CT-CAGACO	3 GGGAGGTAC	CTGGGAGTC	ACAGTG-GT	CCAAG-A
	C-CTGCTAC 280			rcgggg-aco		GCGTCGCĠA 320	CCATGCG 330
	CCTCGCA		AGACTTAAC		CATATGATG		ATGCTGA

FIG 41 (10F2)

T182.hum.pe T182.mus.pe T181.hum.pe T181.mus.pe	MMTQARLLVAAVVGLVAILLYSIHKIEEGHLAVY/RGGALLTSPSGPGYHIMLPFITTFRSVQT MAQLGAVVAVASSFFCASLFSAVHKIEEGHIGVYYRGGALLTSTSGPGFHIMLPFITTSYKSVOT
T132.hum.pep T182.mus.pep T181.hum.pep T181.mus.pep	TLQTDEVKNVPCGTSGGVMIYIDRIEVVNMLAPYAVFDIVRNYTADYDKTT.TFNKTHHET NOFCSA
T132.hum.pep T132.mus.pep T131.hum.pep T131.mus.pep	HTLQEV/IELFDQIDENLKQALQKDLNLMAPGLTIQAVRVTKPKIPEAIRRNFELMEAEKTKLLIA HTLQEV/IELFDQIDENLKQALQKDLNTMAPGLTIQAVRVTKPKIPEAIRRNFELMEAEKTKLLIA HTLQEV/IELFDQIDENLKLALQQDLTSMAPGLVIQAVRVTKPNIPEAIRRNYELMESEKTKLLIA HTLQEV/IELFDQIDENLKLALQQDLTSMAPGLVIQAVRVTKPNIPEAIRRNYELMESEKTKLLIA
T182.hum.pep T182.mus.pep T191.hum.pep T181.mus.pep	KÇKQKVVEKEAETERKKAVIEAEKIAQVAKIRFÇQKVMEKETEKRISEIEDAAFLAREKAKADAEY AQKQKVVEKEAETERKRAVIEAEKIAQVAKIRFQQKVMEKETEKRISEIEDAAFLAREKAKADAEY AQKQKVVEKEAETERKKALIEAEKVAQVAEITYGQKVMEKETEKKISEIEDAAFLAREKAKADAEC AQKQKVVEKEAETERKKALIEAEKVAQVAEITYGQKVMEKETEK
T192.mus.pep T181.hum.pep \text{ Y	YAAHKYATSNKHKLTPEYLELKKYQAIASNSKIYFGSNIPNMFVDSSCALKYSDIRTGRESSLPSK YAAHKYATSNKHKLTPEYLELKKYQAIASNSKIYFGSNIPSMFVDSSCALKYSDGRTGREDSLPPE YTAMKIAEANKLKLTPEYLQLMKYKAIASNSKIYFGKDIPNMFMDSAGSVSKQFEGLADK KAQKQADSNKILLTKEYLELQKIRAIASNNKIYYGDSIPQAFVMGTTQQTV
T192.mus.pep E	ALEPSGENVIQMKESTG AREPSGESPIQMKENAG SFGLE-DEPLETATKEN

inputs MATLWGGLLRLGSLLSLSCLALSVLLLAQLSDAAKNFEDVRCKCICPPYKENSGHIYNKN MK-----LLSLVAVV--GCL-----LVPPAEANKSSEDIRCKCICPPYRNISGHIYNQN inputs ISQKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYMV VSQKDCNCLHVVEPMPVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMA inputs YLTLVEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQQRWK FLMLVDP-LIRKPDAYTEQLHNEEENEDARSMAAAAASLGGPRA-NTVLERVEGAQQRWK inputs LQVQEQRKSVFDRHVVLSN LQVQEQRKTVFDRHKMLSN

	10		20	30	40	50	60
inputs	MASLWCGNLI	LRLGSGLSMS	CLALSV	LLLAQLTGAA	KNFEDVRCKC	ICPPYKENPO	HIYNE
-				: :.			
	MKLI	CLVAVVC	CL	LVPPAQAN	KSSEDIRCKC	ICPPYRNISC	HIYNC
		10		20	30	40	
	70	8	0	90	100	110	120
inputs	NISQKDCDCL	HVVEPMPVR	GPDVEAY	CLRCECKYE	ERSSVTIKVT	CILYLSILGL	LLLYM
•		:::::::	: :::::	:: ::::::		: . : : : : :	:::::
	50	60	70	80	90	100	
	130	. 14	0	150	160	170	180
inputs	VYLTLVEPIL	KRRLFGHSQ	LLQSDDD	VGDHQPFANA	HDVLARSRSE	ANVLNKVEY	AQQRW
•	AFLMLVDP-L						
	110	120	130	.140	150	160	
	190	200)				
nputs	KLQVQEQRKSV	FDRHVVLSN	Ī				
	::::::::::	:::: :::					
	KLQVQEQRKTV	FDRHKMLSN	1				
	170	100					

PL/ igkistrodon PLA, acanthophis PLAZ:cow P180.hum P180.mus	PLA2 agkistrodon PLA2 acanthophis PLA2 cow	PLA2.agkistrodon PLA2.acanthophis PLA2,cow T180 hum T180]mus
170 180 190 200 210 CDKAAAICFRUNLKTYKKRYMAYPDILCSSKSEKC CDAAAAKCFAKAPYNKNNIGI	90 100 110 120 130 140 150 160 YCGSGGRGKPKDATDRCCFVHDCCYEK-VTGCDPKWDDYTYSWRIGTIVCGGDD-PCKKEVCE YCGLGGSGTPVDDLDRCCQTHDNCYGEAEK-KQ-CGPKMTSYSWRCANDVPVCNDSKSACKGFVCD YKPSPPNGCGSPLFGVHLNIGIPSLTKCCNQHDRCYET	HLLQFRKJIK

91/112

Input file T187human1; Output File T187human1.pat Sequence length 2490

CCACGCGTCCGGCCAGGGGGGGGGGGGGGGAGGGTTGCTTCACGCCCCGGGGGAAGAGAGGGGAAGCTCGGCTCTGGG 79
TTGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC 158
CTCGCCTGGGAGAGCCGCCGGGACGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237
CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316
AGACCTCCGCGCTGGCCCCGCGAGCCTCCTGCCCTGGCCCGGCGCTGCGGCTCTGCCGCGGCG
G P R G A G W V A A G L L L G A G A C Y 22 GGC CCC CGG GGC GCG GGC TGG GCG GCG GCC TGC TAC 451
C I Y R L T R G R R R G D R E L G I R S 42 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG CGC GAC CTC GGG ATA CGC TCT 511
S K S A G A L E E G T S E G Q L C G R S 62 TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 571
A R P Q T G G T W E S Q W S K T S \times P E 82 GCC CGG CCT CAG ACN CCT GAA 631
D L T D G S Y D D V L N A E Q L Q K L L 102 GAC TTA ACT GAT GGT TCA TAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691
Y L L E S T E D P V I I E R A L I T L G 122 TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT 751
N N A A F S V N Q A I I R E L G G I P I 142 AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT 811
V A N K I N H S N Q S I K E K A L N A L 162 GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA 871
N N L S V N V E N Q I K I K V Q V L K L 182 AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG 931
L L N L S E N P A M T E G L L R A Q V D 202 CIT TTG AAT ITG NCT GAA AAT CCA GCC ATG ACA GAA GGA CIT CTC CGT GCC CAA GTG GAT 991
S S F L S L Y D S H V A K E I L L R V L 222 ICA ICA TIC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CGA GTA CTT 1051
T L F Q N 1 K N C L K I E G H L A V Q P 242 ACG CTA TIT CAG AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT ITA GCT GTG CAG CCT 1111
T F T E G S L F F L L H G E E C A Q K I 262 ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA 1171
R A L V D H H D A E V K E K V V T ! ! P 282 AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC 1231
K I * 285 AAA ATC TGA 1240
FIGGTCATATFFFTCCAAAGAGTAAFGCAGTCTGGATATAAATGTAFFFTCTGTCTTCCTTATAAGGGGGATTCTCCCAG 1319
CTGCTAAATTTAAACAGTAAATATCACATTTTGTCATTAACACAGGTATAACTTGCCGTGGTTCTCAGATTTATTT
ACTATTITGATGCCAAGTGAATATAAGAGCTTGTACTGAAACCATTTATTT
GITATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1556
ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1635
AICCTAAGCICIIGAGGCCATICACCIGCCAACCIGACCATACTGCTITCAAAACTCTTTTCTCATCACTACAATCTAT

FIG 46 (10=2)

TTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1793
RCATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1872
CTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA	1951
TTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	2030
CTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGGA	2109
AGEGECATTGEACTECAGECTGGGCAACAAGAGCAAAACTETGTETCAAAAAAAAAA	2188
TGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2267
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	2346
AGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2425
ATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2490

93/112 Cotaninput file T187human23; Output File T187human23.pat Sequence Length 2595

TTGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCGCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC 158 CTCGCCTGGGAGAGCCGCCGGGACGCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGGGTGCGCTGG 316 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG AAA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC 691 ACT GGC ATC ACA TTC GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA 751 K ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT 811 GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG ATA TAC ATC AGT CAA GTA TGT GAG GAT GTC 871 TTC TCT GGT CCT CTG AAC TCT GCT GTG CAG CTG GCT GGA CTG ACA TTG TTG ACA AAC ATG 931 ACT GIT ACC AAT GAC CAC CAG CAC ATG CIT CAC AGT TAC ATT ACA GAC CTG TTC CAG GTG 991 TGNGNTKVQVL KTA CTT ACT GGA AAT GGA AAC ACG AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC 1111 CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT 1171 E G ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT 1291 320 CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA ITGGTCATATITTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1424 GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1661 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1740 ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1819

TGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1898
CATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1977
GTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA	2056
TTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	2135
CTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2214
AGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2293
GCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG 2	2372
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTTGAATGAAAAATGCTTATGTATTGACAGAACACTT 2	2451
GAATGATACCCAAACTCCTGGAGTGGGAATGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT 2	2530
ATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	595

Input file T187human123; Output File T187human123.pat Sequence length 2700 CCACGCGTCCGGCCAGGGGGGGGGGGGAGGAATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGGAAGCTCGGCTCTGGG 79 CTCGCCTGGGAGAAGCCGCCGGGACGCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 2 391 22 451 42 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG CGC GAC CGC GAG CTC GGG ATA CGC TCT TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 82 GCC CGG CCT CAG ACN GGA GGT ACC TGG GAG TCA CAG TGG TCC AAG ACC TCG CAN CCT GAA 631 102 GAG TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691 122 TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT 751 AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC ACT GGC ATC ACA TTC 811 162 GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC 182 CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT 931 202 CAA ATC AAG ATA AAG ATA TAC ATC AGT CAA GTA TGT GAG GAT GTC TTC TCT GGT CCT CTG 991 AAC TOT GOT GTG CAG GTG GCT GGA CTG ACA TTG TTG ACA AAC ATG ACT GTT ACC AAT GAC 1051 CAC CAG CAC ATG CTT CAC AGT TAC ATT ACA GAC CTG TTC CAG GTG KTA CTT ACT GGA AAT 1111 Q GGA AAC ACG AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC ATG 1171 V 0 ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC 1231 302 GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC CTC 1291 a AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG 1351 TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG 1411 355 GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA ITGGTCATATTITTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1529

FIG. 48 (10=2)

ACTATITIGATGCCAAGIGAATATAAGAGCTIGTACIGAAACCATTTATTTCTTTCTATTTTGCTATTTGCAAATGCTT 1687

GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCA	GTT 1766
ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGCA	GAA 1845
${\tt ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGTAGAATCTGATCAGAATCTGATCAGTAGAATCTGATCAGAATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGATCAGAATCTGAATCAGAATCAGAATCAGAATCTGAATCAGAAATCAGAATCAGAAAATCAGAAAAATCAGAAAATCAGAAAAATCAGAAAAATCAGAAAAAAAA$	TAT 1924
$\tt TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGATTCCTAGGACTCACCCACTCCATTCAATGAGAGAATGATTCAATGAGAGAATGATAATGATAATGAGAGAATGATAATGATAATGAGAGAATGATAATGATAATGAGAGAATGATAATA$	rGT 2003
${\tt TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA$	IGA 2082
CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGG	GA 2161
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTG	AT 2240
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTG	AG 2319
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	AA 2398
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTG	rg 2477
FGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	7 2556
TAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTT	T 2635
ATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2700

Input file I187human12; Output File I187human12.pat Sequence length 2523 CCACGCGTCCGGCCAGGGGCGGGAGGGAATGGTTGCTTCACGCCCGGGGGAAGAGAGGGGAAGCTCGGCTCTGGG 79 TTGCGGGCCCGGGGTCTCCGCGTGGGGGGGCCCCCCCGGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC 158 CTCCCTGGGAGAGCCGCCGGGACGCGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 391 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GGT GCC CTG GAA GAA GGG ACG TCA GAG GGT CAN TTG TGC GGG CGC TCG 571 R P Q T G G T W E GCC CGG CCT CAG ACN GGA GGT ACC TGG GAG TCA CAG TGG TCC AAG ACC TCG CAN CCT GAA 631 GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA CTT CAG AAA CTC CTT 691 D TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT TTG ATT ACT TTG GGT 751 AAC AAT GCA GCC TTT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC ACT GGC ATC ACA TTC 811 GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC 871 CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT 931 CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC 991 AQVOSS ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC 1051 CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC 1111 CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC 1171 CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA 1231 296 GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA FIGGTCATATTITCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGGATTCTCCCAG 1352 GITATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1589 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1668

ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1747

TITGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1826
TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA	1905
CCGTGCTGGGCGGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA	1984
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	2063
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2142
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2221
GTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2300
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGTG	2379
TAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2458
ATATGAGCCCAAATTGTATAATCTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2523

Input file T187human2; Output File Thuman2.pat Sequence length 2418 CCACGCGTCCGGCCAGGGGGGGGGGGGGAGGGAATGGTTGCTTCACGCCCCGGGGGAAGACGGGGAAGCTCGGCTCTGGG 79 TTGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC 158 CTCGCCTGGGAGAAGCCGCCGGGACGCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 AGACCTCCGCGCTGGCCCCGCGAGCCTCCTGCCCTGGCCCGGCGCTGCGGCTCTGCCGCGGGGGCAGC ATG GGT 391 G D TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG CGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG AAA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 L I T L G N N A A F S V N Q I P M K L V 102 TTG ATT ACT TTG GGT AAC AAT GCA GCC TYT TCA GTT AAC CAA ATC CCT ATG AAG TTG GTC 691 ACT GGC ATC ACA TTC GCT ATT ATT CGT GAA TTG GGT GGT ATT CCA ATT GTT GCA AAC AAA 751 ATC AAC CAT TOO AAC CAG AGT ATT AAA GAG AAA GOT TTA AAT GCA CTA AAT AAC CTG AGT 811 GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG CAA GTT TTG AAA CTG CTT TTG AAT TTG 871 SENPANTEGLERAQVOSS NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT GCC CAA GTG GAT TCA TCA TTC CTT 931 TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT CTT CGA GTA CTT ACG CTA TTT CAG 991 AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA GCT GTG CAG CCT ACT TTC ACT GAA 1051 GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT GCC CAG AAA ATA AGA GCT TTA GTT 1111 261 A E GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA ACA ATA ATA CCC AAA ATC TGA 1168 TTGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1247 GITATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1484 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1563 ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1642 ITTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT 1721 CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA 1879

GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT 1958

WO 00/18904

100/112

PCT/US99/22817

GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2037
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2116
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2195
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGTG	2274
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2353
AATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2418

Input file T187human3; Output File T187human3.pat Sequence length 2562

CCACGCGTCCGGCCAGGGGCGGGGGGGGGGAATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGAAGCTCGGCTCTGGG 79 TTGCGGGCCCCGGCGTCTCCGCGTGGGGGCGCACCGTCCGACCCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCCC 158 CTCGCCTGGGAGAAGCCGCCGGGACGCCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 AGACCTCCGCGCTGGCCCCGCGAGCCTCCTGCCCTGGCCGGCGCTGCGGCTCTGCCGGCGGCAGC ATG GGT 391 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG AAA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG 691 GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG ATA 811 TAC ATC AGT CAA GTA TGT GAG GAT GTC TTC TCT GGT CCT CTG AAC TCT GCT GTG CAG CTG 871 GCT GGA CTG ACA TTG TTG ACA AAC ATG ACT GTT ACC AAT GAC CAC CAG CAC ATG CTT CAC 931 TGNGN Q V L D AGT TAC ATT ACA GAC CTG TTC CAG GTG KTA CTT ACT GGA AAT GGA AAC ACG AAG GTG CAA 991 GTT TTG AAA CTG CTT TTG AAT TTG NCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC CGT 1051 SLYD GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT CTT 1111 a N K С CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT TTA 1171 GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA TGT 1231 302 GCC CAG AAA ATA AGA GCT TTA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT GTA 1291 309 ACA ATA ATA CCC AAA ATC TGA 1312 FIGGTCATATITITICCAAAGAGTAATGCAGTCIGGATATAAAIGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1391 GTTATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGTT 1628 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1707

F10,51 (1.=2)

ATCCTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAAGTCTTTTCTCATCAGTAGAATCTAT	1786
TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT	1865
${\tt TACATATAAAATAGTGTGATCAATCACAATGTCCATCTTTAGACAGTTGGTTAAATAAA$	1944
$\tt CCGTGCTGGGCGGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA$	2023
GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT	2102
GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTGAG	2181
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2260
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2339
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	2418
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2497
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2562

Input file T187human; Output File T187human.pat Sequence length 2385 CCACGCGTCCGGCCAGGGGGGGGGGGGGGGGGAGGGATGGTTGCTTCACGCCCCGGGGGAAGACGGGGAAGCTCGGCTCTGGG 79 TTGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCGCCCCTCCCGGTGTGCAGCGCCCCGCACCGCCCCGC 158 CTCGCCTGGGAGAAGCCGCCGGGACGCCGGGCTGGAGTGGGCGGTTATAGGCTTTGAGCTAGGCCGTTTCCGGGAGG 237 CGGAGCTCAGACCCCATTTCCTTTCTCCACATCCAGGTCAGGTGGCGTTTGCTGTGGCGGCTAGGCCCGCGTGCGCTGG 316 TGC ATT TAC AGG CTG ACC CGG GGT CGG CGG CGG GGC GAC CGC GAG CTC GGG ATA CGC TCT 511 G S D 0 TCG AAG TCC GCA GAA GAC TTA ACT GAT GGT TCA TAT GAT GAT GTT CTA AAT GCT GAA CAA 571 CTT CAG AAA CTC CTT TAC CTG CTG GAG TCA ACG GAG GAT CCT GTA ATT ATT GAA AGA GCT 631 TTG ATT ACT TTG GGT AAC AAT GCA GCC TTT TCA GTT AAC CAA GCT ATT ATT CGT GAA TTG 691 GGT GGT ATT CCA ATT GTT GCA AAC AAA ATC AAC CAT TCC AAC CAG AGT ATT AAA GAG AAA 751 GCT TTA AAT GCA CTA AAT AAC CTG AGT GTG AAT GTT GAA AAT CAA ATC AAG ATA AAG GTG 811 CAA GTT TTG AAA CTG CTT TTG AAT TTG HCT GAA AAT CCA GCC ATG ACA GAA GGA CTT CTC 871 CGT GCC CAA GTG GAT TCA TCA TTC CTT TYC CTT TAT GAC AGC CAC GTA GCA AAG GAG ATT 931 CTT CTT CGA GTA CTT ACG CTA TTT CAG AAT ATA AAG AAC TGC CTC AAA ATA GAA GGC CAT 991 TTA GCT GTG CAG CCT ACT TTC ACT GAA GGT TCA TTG TTT TTC CTG TTA CAT GGA GAA GAA 1051 TGT GCC CAG AAA ATA AGA GCT ITA GTT GAT CAC CAT GAT GCA GAG GTG AAG GAA AAG GTT 1111 250 GTA ACA ATA ATA CCC AAA ATC TGA 1135 TTGGTCATATTTTTCCAAAGAGTAATGCAGTCTGGATATAAATGTATTTTCTGTCTTCCTTATAAGGGGATTCTCCCAG 1214 CIGCTAAAITTAAACAGTAAATATCACAITTTGTCAITAACACAGCTATAACTTGCCGTGGTTCTCAGATTTAITTTGG 1293 GITATCTTCCCTACATGAAGTGGCAGTAACCTTTTTCACATTTAAGCTACCCTTCTACCTTTTGAAGTGATTTGCAGIT 1451 ACTCATCTGAGACAGCATCAGTATTTGACTAAATCATTGTTTCACAACTGAATAGTCTTGTTCTTTTAGTAGCAATGAA 1530 AFECTAAGCTCTTGAGGCCATTCACCTGCCAACCTGACCATACTGCTTTCAAAAGTCTTTTCTCATCAGTAGAATCTAT 1609 TTTGGTCACTTCTAGTCAATGAAAAATGTAAACTTTTAGGAGAGAATGTTTCCTAGGACTCACCCACTCCATTCAATGT 1688 CCGTGCTGGGCGCGGTGGCTCTTGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGATCGGGA 1846

GTTTGAGACCAAGCCTGACCAATATGGAGAAACCCTGTCTCTACTAAGAATACAAAATTAGCTGGGCATGGTGGTGCAT 1925

GCCTGTAATCCCAGCTACTTGGGAGGCCGAGGCAGGAGAATTGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGGTAG	2004
ATAGCGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAA	2083
TGTGCTTAAGTGGAAAGATATCTATGAAATATGGTGGTTTTTTAAAACACAAAAATTATAGAATATGGGATCCCGTGTG	2162
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	2241
CTAGAATGATACCCAAACTCCTGGAGTGGGAGTGGGGAATGCCTTCTACGTACACACTGTTCTACTGTTTGAATTTTTT	2320
NATATGAGCCCAAATTGTATAATCTTTTTTTAATAAAGGGGAGAAAAATCAAAAAAAA	2385

105/112
Input file T181AtmX181a; Output File T181AtmX181a.pat Sequence length 3919

GGGGTGTGGCGGTTTCTACGGTTGCACGGGGGTTCGGCTGTGTACGGAGCGCCTGGAGGGACAGCCTGGATACAGGTTC 79	
M A Q L G A V V A V A S S F F C A S 1 ACTG ATG GCT CAG TTG GGA GCT GTT GTG GCC GTG GCT TCC AGT TTC TTT TGT GCA TCT 13	
L F S A V H K I E E G H I G V Y Y R G G 3 CTC TTC TCA GCT GTG CAC AAG ATA GAA GAG GGA CAT ATT GGA GTA TAT TAC AGA GGT GGT 19	
A L L T S T S G P G F H L M L P F I T S 50 GCC CTG CTG ACC TCC ACC AGT GGC CCG GGT TTC CAT CTC ATG CTC CCG TTC ATC ACA TCC 250	
Y K S V Q T T L Q T D E V K N V P C G T 75 TAT AAG TCT GTA CAG ACC ACT CTC CAA ACT GAT GAA GTG AAG AAC GTA CCA TGT GGA ACC 317	-
S G G V M I Y F D R I E V V N F L V P N 98 AGT GGT GGT GTG ATG ATC TAC TTT GAC AGA ATT GAA GTG GTG AAC TYC CTG GTC CCA AAT 377	
A V Y D I V K N Y T A D Y D K A L I F N 118 GCA GTG TAT GAT ATA GTG AAG AAC TAT ACT GCA GAC TAT GAC AAG GCC CTC ATC TTC AAC 437	
K I H H E L N Q F C S V H T L Q E V Y I 138 AAG ATC CAT CAT GAG CTT AAC CAG TTC TGC AGC GTT CAT ACT CTT CAG GAA GTC TAT ATC 497	
E L F D Q I D E N L K L A L Q Q D L T S 158 GAG CTG TTT GAT CAA ATT GAT GAA AAC CTC AAG TTG GCT TTG CAG CAG GAC CTG ACT TCC 557	
M A P G L V I Q A V R V T K P N I P E A 178 ATG GCC CCT GGG CTG GTT ATC CAA GCT GTG CGA GTG ACA AAG CCC AAT ATA CCT GAG GCA 617	
I R R N Y E L M E S E K T K L L I A A Q 198 ATC CGC AGG AAC TAT GAG CTG ATG GAA AGC GAG AAG ACG AAG CTT CTC ATT GCA GCC CAG 677	
K Q K V V E K E A E T E R K K A L I E A 218 AAG CAG AAG GTG GTG GAA AAG GAA ACA GAG AAG AAG GCC CTC ATT GAG GCA 737	
E K V A Q V A E I T Y . G Q K V M E K E T 238 GAA AAA GTG GCA CAG GTT GCA GAA ATC ACC TAT GGG CAA AAG GTG ATG GAG AAG GAG ACA 797	
E K K I S E I E D A A F L A R E K A K A 258 GAG AAG AAG ATC TCA GAA ATI GAA GAT GCT GCG TTC CTG GCC CGG GAG AAG GCG AAG GCC 857	
D A E C Y T A L K I A E A N K L K L T P 278 GAC GCT GAG TGC TAC ACA GCG CTG AAG ATC GCA GAA GCA AAT AAG CTC AAG CTG ACT CCA 917	
E Y L Q L M K Y K A I A S N S K I Y F G 298 GAA TAC CTG CAG CTG ATG AAG TAC AAG GCC ATT GCT TCC AAC AGG AAG ATT TAC TTC GGC 977	
K D I P N M F M D S A G G L G K Q F E G 318 AAA GAC ATC CCC AAC ATG TTT ATG GAT TCC GCA GGG GGG CTG GGC AAG CAG TTT GAG GGG 1037	
L S D D K L G F G L E D E P L E A P T K 338 CTG AGC GAC GAC AGG CTG GGC TTT GGC CTA GAA GAT GAG CCC CTC GAG GCA CCC ACA AAG 1097	
E N * 341 GAG AAC TGA 1106	
GGAAACACTGTCTGCAAGCTCTGCTCGGGCAGCTTAGAGAGAG	
TECTTTECACACTACCTTECTTGACTETTTACTGTGGTTAAAAAGGAAGAAATGGACACAAACTTACCCCCTTCTGG 1264	
GAAGGGAGAGCAGATGGAGAGTTGTTTTTTGGGTTTATTTTTAATTCAGGTAAGTTAAGTTGTATGACTTCTGAGAAGGT 1343	
GTATGCACCGTAGATTTGACCTCTGACCTGCAGACACCAACATTGTCACTTTGAAGCTGGTTTAAGTGGAGCTACTGTC 1422	
AGTATGAAGAGGGAGAGTGTGCCTGCCTCCTCGTGCTTGAATTCCTTCAGGGAAAAGTGTACTCCACAGTTCTCTCCC 1501	
TTGCCTCTAGTGTAGGCAGTGTCTGCGTGTGGGGCTCGTGACAGAAGGCCGTCTGCTGCGGAACATGAGCTGCAGAGAG 1580	
CGTTGGCCGGCTGGGCTTTTTGACTGAGTGGATTACTTGAGAGTTAAGCTGTCTTGAGCCCTTTTTAGGAAGAACTTGG 1659	
TGCTAGGTTTTGCAAGGTTTTCTACACACTGTACTCTGCTCTAGTGTTTGTT	

Flor. 53 (10=2)

GTCACACCACACACTCCTTTTCCGTACTTTGACCTGATCTGTGATTTCATTTCTTCTTGAATAATCTATTCATGAGTT	rg 181
CACTCAGCGTTAAGATGGGAACAAACAAGTGCTGTTAGCTGATGACGTAGCTCCTTATACCCCTTAGCACTGTGGTGC	T 189
GTGTGGCTAATTATGCGTATGCTTTTGAGACCAAACATCTTTATCATTATGGAGATTCTTCATTGAAGAGCCCTTAAC	A 197
CTGTGGAGAAGGGCCCAGCCAGATGACACCCAAGTAGTAGTGCCTGTGGCCTGTGCTGGGGGCTTTGTCTGACACTGAT	G 2054
AAGAGAGCAGCCACTTGAGAGTCGGCTCCAGTGAGTCACCCTAGGAAACTGAGAATGCGAAGAATAGATATGAG	A 2133
GAAAGGGATTTCTTATCCTGAAATTGCACTGGGGGTGGGGCTCTACCATGGCCTGTGAGTGCACACAGAATGCCTCTG	7 2212
GGAGGGCAGCTCTGCAGGTAATCTGCAGACATGGCAGTACCCTGTGCAACCATGACTGGCTCTAGCTTAGGACTTGGCG	2291
TTGTTAGCTGGTCCCCTACCTCATCCTCCCCCCACACAAGCACCTACTGTTCTCTCTTAGGTGACTACTATAAATGGT	r 2370
ATTITCTGGCATCAATTCCCACCTCAGTTTTGGTTTTGTAAGTCGGGCCAGTTTGCTCCTAAGTGGCACCAGACTTGTC	2449
AGGTATTTGGGAAGCATTCAGCCGACCCAAAAAGAGGCAGGGTTCACTGTGCTTACTTCAGATGTTCCCTTCTCTGTCC	2528
TGACTCCTCAGGCCACTGACCCTGGCCACACTGTACAAACTACAAAATGTTCCTGAAAAGGACATTTTAATGTGCTCAA	2607
AAGCTCTTGCAAAAGTGGGTTTTTTTTCCCCAAGACCAACTCATCTTCTTCTCATTTGTTGCTGCTAACCACTTGTTGA	2686
GAGCAACGTGCTATACCCAGCATCCTCTCTTGTACGTGCACCTGAGAAAACACTACTTCAGTGGAGTCGGTGCAGGAGG	2765
GAGGGTACCCCGCCATCCAGCCCCCCCCAGCCCGAGAGGCTCTGTAACTAGCATTCTGAGAGCTCATCCCTCCATTAC	2844
AAAGAGCCACAGTAAAGTCCTGCTGCAGCTGCTCCTTCCCTGCCCCTTTAATGTCACTTCTTTAACAGAACAGAAATGT	2923
CCCCATGTCATAGCATAAATTCAGTAGCTATTGGTATCTGTCCCAGCAGTAAAATCATGGAACTCAGATGTCTTTTTAG	3002
CATGGGATGCCTAGCCCATCTGTCTTTATGACCTTGTTTTTTGTAATACTATAAAATCTGACTTAGGCATTTGAATTCT	3081
AAACATGTAAAATGTGATAAGCCTGCAGTTTTGTAGGCAGTGAATTCATAGCTGCTATTTTTAAGTAGAACTTCTATCA	3160
AAATACGTTAACCGTTTGTAAAATTCAGTTTTTGTAGGACTTTCCCAAGGCCCAGCCACCTTGGTAGAATGCTTCTCAC	3239
TCACTAAATGTTGCAGAAGCAATTTATATTCCATATAGGTTTTTAATCACTTTTCAATATATGGTTAGAATGTTTGTAA	3318
GGAAGCCTAAGTTTAATAATTTTTATATAACTAAAAATAGGTGTGGAGGACTCAGTGTGGGTACTGAGGAGGAATGAAG	3397
TGCTCTGAAAAGGGAGGTGTATAAACGGCCTGTGGGGCCGTGTGTCTTGTGAAAGTGAGATAGCCGTGCTTACTGACCT	3476
GGGCTGTCGTCAGCTGGCCGTCGGTAAACTACCTGGACAATAGCCCCCTCTGTCTG	3555
	3634
TATCTCTACTTCTGTGTAAACTGGTGATTGAATAGTTAAAGCAATTTTTTCAGTGTGCCCCAAGGGCATTAATGAGCCT	3713
TTATAACTGAGAAATGATTCTTGTTATAGTAATTATTCCATAAATGATACCACTAGATAAATTACCTTGGGTTAATAGC	3792
TCCAGGATTTGTTTCAGACAACAAAAAAAGGTCTCAATGTGAATATACTTACATTTTGGATTTAATTTCAGTCTTGCTA	3871
	TO10

107/112 Input file T182mouse; Output File T182mouse.pat Sequence length 3087

GGAACCCCGCGTCCGGNGATGCGTCACTGACCGGAGGAACAAGG ATG AAT ATG ACT CAA GCC CGG CTT 68	
IVAAVVGLVAILLYASIHKI 28	
CTG GTG GCT GCA GTG GTG GGG TTG GTG GCG ATC CTC CTG TAC GCC TCC ATC CAC AAG ATC 128	
E E G H L A V Y Y R G G A L L T S P S G 48 GAA GAG GGA CAC TTG GCC GTG TAC TAC AGG GGA GCT TTG CTA ACG AGC CCC AGT GGA 188	
P G Y H I M L P F I T T F R S V Q T T L 68 CCA GGC TAT CAT ATC ATG TTG CCT TTC ATT ACA ACA TTC AGA TCT GTG CAG ACA ACA CTA 248	
Q T D E V K N V P C G T S G G V M I Y I 88 CAA ACG GAT GAA GTT AAA AAT GTG CCT TGT GGA ACA AGT GGT GGA GTC ATG ATC TAT ATT 308	
D R I E V V N M L A P Y A V F D I V R N 108 GAC CGA ATA GAA GTG GTT AAT ATG TTG GCT CCT TAT GCA GTG TTT GAC ATT GTG AGG AAC 368	
Y T A D Y D K T L I F N K I H H E L N Q 128 TAT ACT GCA GAC TAC GAC AAG ACT ITA ATC ITC AAT AAA ATC CAC CAT GAG CTG AAC CAG 428	
F C S A H T L Q E V Y I E L F D Q I D E 148 TTT TGC AGT GCC CAC ACA CTT CAA GAA GTT TAC ATA GAA TTG TTT GAT CAA ATA GAT GAA 488	
N L K Q A L Q K D L N T M A P G L T I Q 168 AAC CTG AAG CAG GCC CTG CAA AAA GAT TTA AAC ACC ATG GCC CCA GGT CTC ACT ATC CAG 548	
A V R V T K P K I P E A I R R N F E L M 188 GCT GTG CGT GTT ACA AAA CCC AAA ATC CCA GAA GCC ATA AGA AGA AAT TIT GAA TTA ATG 608	
E A E K T K L L I A A Q K Q K V V E K E 208 GAG GCA GAG AAG ACA AAA CTT CTC ATA GCT GCA CAG AAA CAA AAG GTG GTG GAG AAA GAA 668	
A E T E R K R A V I E A E K I A Q V A K 228 GCT GAG ACG GAG AAG AGG GCT GTT ATA GAA GCA GAG AAG ATT GCA CAA GTA GCA AAA 728	
I R F Q Q K V M E K E T E K R I S E I E 248 ATT CGA TTT CAA CAG AAA GTG ATG GAG AAA GAA ACT GAA AAA CGC ATT TCT GAG ATT GAA 788	
D A A F L A R E K A K A D A E Y Y A A H 268 GAT GCT GCG TTC CTG GCC CGA GAG AAG GCA AAA GCA GAT GCC GAG TAT TAC GCT GCA CAC 848	
K Y A T S N K H K L T P E Y L E L K K Y 288 AAA TAC GCC ACC TCA AAC AAG CAC AAA CTG ACC CCA GAG TAT CTG GAG CTC AAG AAA TAC 908	
Q A I A S N S K I Y F G S N I P S M F V 308 CAG GCC ATT GCC TCA AAC AGT AAG ATC TAC TTT GGC AGC AAC ATC CCC AGC ATG TTT GTG 968	
D S S C A L K Y S D G R T G R E D S L P 328 GAC TCC TCC TGT GGT GGT AAA TAC TCT GAT GGT AGG ACT GGG AGA GAA GAC TCC CTT CCC 1028	
PEEAREPS GESPIQNKENA G 348 CCA GAG GAG GCC CGT GAG CCC TCT GGA GAG AGC CCC ATC CAA AAC AAG GAG AAC GCA GGT 1088	
* 349 TGA 1091	
TGCAAGAGGTGGAAATGTTCTCCCATATCAAGATGCGACCCAAGGGGGCTAAGTGGGAACAGTGGTTATGTGGACTCGTA 1170	
AGATTCACAGAGAATGTGTGCTCTGTTGTGATTCTCTTGTCATAGTCCTGGTTTGCCAGCTGACTACAGGATAGACCCA 1249	
GCTGTCTGGCACTCAAACGGTCTCTGCAGCCACAGTTTTATCAAGTATCCTGTATGTGTTCCTTTGTAAACCGGTACTC 1328	
ATGAATGAGGGAAAGTCTGATGCTAAGATACTGCCTGCACTGGAATGTCAAACACTATATAACAAGCTGTGGTTTTTAA 1407	
AAGCTAYTGAATAATGTTTACATTGGTCCCTGAGGACATGTGTGCTCAGACATTCAAGAGCTAGGAGGCCAGAGAGAAG 1486	
ACCTTCAGAAAACGGTAAGTTAAAGAAGACAAGTGTCATCAGACACTTGGGACCCGGGCTCTCTTTAAAGTCTAGTCCC 1565	
GGCATTECTCCATGTGATTGACAGCCAGACCTCTGGGTTCCCAGGAAATTATCTTCCAGTTGAATGACCATTTACTTGA 1644	
FACAAATIGTACCTTTCTGTTTTTCTAGTCAGGTTGGTGGCCTGCAGGGACGCGTACTTTGCCACCCGACCAGAGGTTC 1723	

CTCGAAGATATTCCCAATCACTAGTTTATTGCGTTAGGAGACTCAGAGATATAGAAAGCAGCTGAAATTTAAGGGAGA	T 1802
AAAGCCTGCACCGAAAGCTACGGGTCCCTGTGTTTCCTCTATTCAGTGATGTCATCAACCTCACCTGTCCCAGCCC	C 1881
ATGTGTGACTAAAGTGCCCGGTTTTAGCCACAGACAACTGCTTAGATGTCACCTCTTGGCTGACCAAAGCTGGGACAGGCTGGGACAGGCTGGGACAAGGTGGGACAGGGACAAGGTGGGACAAGGTGGGACAAGGTGGGACAGGGACAAGGTGGGACAAAGGTGGGACAAGGTGGGACAAGGTGGGACAAGGTGGGACAAGGTGGGACAAGGTGGGACAAGGTGAGAGAGA	G 1960
GCTTTAACCAGACATAGGAGCAGTGTGCAATTCCTGATTCACTGCACAGTATTATGTCATAATTGCAGGAATTATTTTT	2039
IGITITTAAAACIGGATTIGGGGCACATTCATTCACCCCAACACTTCTATCTAAAGGCCAAGGTTCTAGGGCTGCTATC	2118
$\tt GTCACTAACACTGATTCTCCTTAAAGTAATTCTCGAAGTGTGGAACAAAGTGACCGAGACAGCATCCTCAGTCATCTCTCTC$	2197
TIGTCTCCTTCCCTGGGATGCAGATACCGAAGTTGCTTTTCCAACTTTCGCCTCCGCTAGGAGATCAGAAAGAA	2276
GTGACTTCCTGGGCAGCCATTGAATTCATTTTCCATGAGAAGATGACAGAGTTAGCCTGTGGCTATAGGAGATCATGTC	2355
ATCCAGACCTTTTTGCCCATCACATTAACTTTCCTGGAATATTGTGCTGCACAGGTAGACCTGAATCTGCCCAGCTTGT	2434
TGACAGCTCTTGTGTATACTGTGTTGAAGCCAGACAGAAAAGTAATGGGGCCACTTCTGAAACCTCTCAGCTGTTGATC	2513
TCACAGCAGCTAAAGGGTTGTGCCAAACATTTTATTAAGAAAGTAAAGCCCAGATTTGAATGGGGGTTTTCCCTAGGCC	2592
TTATAGTATAGAGGCATTTGTAATATGGAGAAAATAATTTTTCTCATTTAATTATAGAAATTACCTTCAAACAGATTTT	2671
GTGTTCTTTGGCCCTTCAAATACTGGTGTTACATTGTTGCTGCAGATAAATGATGATTGTTCGTGGGATATCTGGATCAC	2750
GAGCTCTGTGCTTTCATTCCTAGAGATGTTTCTCATTCCCATTTAGTGAAATGCTGTTGCCCCAAAGTGATGGTTGTG	2829
GATTTCTTACCGGTCATAGGCCCCGGTGAGGAGCAGGGAAGCGCCATTGTGAAAGATTAAAGAAAG	2908
GCTCCTTATGGAGTGAGCTTCCCTGTGCCCACTCAGTGAACTAAGTCTGACCATCCTTCAGGGACGTTCCTTTTGGTA	2987
ATATACACTGTAATCTITAAGTCTAAATTTATATGTGAAAGTTAACTTTTTTTAAAAACCTAAATAAA	3066
ATCAAAAAAAAAAAAAAA	3087

Input file T187Aymue064g11; Output File T187Aymue064g11.pat Sequence length 2883

GTCCAGGAAAAAGCTGCTTGCACTAGGGGCATCCCGCCTGCTGGTGAAAGGAACCGCAGCACACGGGTGGGAGGGCT 79 TCCGATTTTAGCAGGCCGCCTTCCGGAAGGCGGAGCTCCAACCCCATTTCCTTTCTCTGGGCTGGTTCTGGCCCAGCTG 158 CACCTGCGTGTGGCCCTGGCTCCTCGGCTCCCTGCAGCTCCGAGGCAGCAGC ATG GGT GGC GCG GAC 228 G 26 GTG GGC TGG GTG GCA GGG CTG GTC CTG GGC GCC GGC GCC TGC TAC TGT ATC TAC CGG 288 CTG ACT CGG GGA CCG CGG CGA GGC GGT CGC CGA CTG CGC CCT TCG CGA TCC GCA GAA GAC CTA ACC GAT GGC TCC TAT GAC GAT ATC TTA AAT GCA GAG CAT CTT AAG AAA CTT CTG TAT 408 86 CTG CTG GAG TCA ACC GAC GAT CCT GTC ATT ACT GAA AAG GCC TTG GTC ACC TTG GGA AAT 468 106 AAT GCA GCC TTC TCC ACT AAC CAG GCC ATT ATT CGT GAG TTG GGT GGT ATC CCA ATT GTT 528 Ω K E 126 GGA AAC AAA ATC AAC TCC CTG AAC CAA AGT ATT AAA GAG AAA GCT TTA AAT GCA CTG AAT 588 AAC CTG AGT GTG AAT GTT GAA AAT CAA ACT AAG ATA AAG ATA TAC GTC CCT CAA GTC TGT 648 GAG GAC GTC TTT GCT GAC CCC CTG AAC TCT GCG GTG CAG CTG GCC GGA CTG AGG CTG CTG 708 a ACA AAC ATG ACG GTC ACC AAC GAC TAT CAG CAC CTG CTC AGC GGC TCC GTC GCT GGC CTG 768 G 206 TTC CAC CTG CTG CTG CTG GGA AAC GGA AGC ACC AAG GTC CAG GTT TTG AAG CTG CTT TTG 828 226 AAT TTG TCT GAG AAT TCA GCC ATG ACA GAA GGA CTA CTG AGT GTC CAA GTA AGT AGA TTA 888 239 CCT ACC CGG TTC ATT AGT GCA CAC ATA CAG AGA TTT TGA 927 CAAATAGATCTGCAAAGGTATGCCCAAAAACATTCACAGGAATTATTTCTGAAGATGAGTATTAAGCATATTTTGTTTT 1006 TTAAAACTTCTCTGTGGCACCAGCAGCACTTTCCATCTCTGGCCACTTTGCAGTATTTTTCTGTCACTGCATTTTAAAGT TIGITITITITIGGCATGTGTACCTCAGCATTIGCTGAAACAACTGTACTGAGTGAGTCCCCTGTGTGGGCCTCGGTCCT 1164 GAGCATTCAGCCAGCACCAGCAAGTTCTTAGTGTTCCCATGGAACTTAGGAGCAACCATGTAACAAATTAGCAAGA 1243 CTGTTGAAAACATGTAACAAACCATTGAAACAGTCCCTGTGCTCTGAAGAAGGCCAGGCGGTGTGAGCCGTCTGCAGAA 1322 ATCGAGCCATCTGCTCCGTCCTGTTACCAGAACTGTGTGTAAGAGCTAATGCTGATTGAACTAATGTTGTTCTTACAAAA 1401 ACTGGATAGATCCTAAAGGGGTTGGTTTCCCAAATGGCTACACTCTGGAGTTCCAAAGAAATCTTAGTTTTTCCCCTAA 1480 CAAAACGTCATTTTCACTTGTAACATGGAATAAAAATGAAACATGTCCCTTACGCTTGCCTGGAGTCAGACTTTTACAG 1559 IGITAACTAAIGGAIGCIGTITIAAAAIAGGACAGTGACGCIGTTICCTCIITCAGGTGGAIICTTCAITCCIITCCCI 1638 TTATGACGGCCAAGTAGCAAATGAGATTCTTCTTCGGGCTCTTACACTGTTTCAGAATATAAACAACTGCCTCAAAGTG 1717 GAAGGCCGGTTAGCTAATCAGATTCCTTTTGCTAAAGGGTCATTGTTTTTTCTGTTATACGGAGAAGAATGTGCCCAGA 1796 AAATGAGAGCTTTAGCCTGTCATCATGATGTGGGATGTGAAAGAGAAAGCTTTAGCAATAAAGCCGAAATTCTGATCGGT 1875 TTGGAGTAGTTCAGATTTGGGGGTTTGGGGATTGAGTAGAGTCTGGAACCTTCCGAGGATGTGGATCATTTACGGGGCAA 2112

ACGTTTGGTTATGATCGTGGACAGACTGGCCATGCTCTTCAGGACTATTTGAAGGATTCTAGTGCTAGTGAATGAA	r 2191
${\tt GAGGGGCTGTACTGAAGATACTTGCTGAGGTATTTAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCCTGACAATGGTTTCCTGACAATGGTTTCCTGACAATGGTTTCCTGACACGAACTGAGTGGCCTGTCTCTGTACAATGGTTTCTGACAATGGTTTCTGACAATGGTTTCTGACAATGGTTTTCTTGACAATGGTTTTCTTGACAATGGTTTTCTTGACAATGGTTTTCTTGACAATGGTTTTCTTGACAATGGTTTTTTTT$	2270
$\tt CTAACTCCTGGGAGCATTTGCAGTTGCTCATGAGACAGCGTTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTTGAAGTCTGTTACTGCCACAGCAAGGGTAAGTGCTGAGTTGAAGTTGAAGTTGTTACTGCCACAGCAAGGGTAAGTGTAAGTGCTGAAGTTGAAGTTGTAAGTGCTGAAGTTGAAGTGTGAAGTGTAAGTGCTGAAGTGTAAGTGCTGAAGTTGAAGTGCTGAAGTGTAAGTGCAAGGAAGTGTAAGTGCAAGGAAGTGTAAGTGAAGTGTAAGTGAAGTGTAAGTGAAGTGAAGTGAAGTGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTGAAGTAAGTGAAGAA$	2349
${\tt ACCTTGTGCCTCAAACCAGTGAATACTGCAAGCTCGAGTCCACCAACCCTGCCATGCTGCTTGCAAGTCTGAGCTCGAGCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCCAAGCCTGCAAGCCTGCAAGCCTGAGCTCGAGCTGCAGCTGCAGCTGCAGCTGCAGCTCGAGCTCGAGCTCGAGCTCGAGCTCGAGCTCGAGCTCGAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGAGCTCGAGCTCGAGCTCGAGCTCGAGCTCGAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGCAGCTGAGAGCTGAGAGCAGAGCTGAGAGCAGAGCTGAGAGCAGAGCTGAGAGAGA$	2428
ATCGTGAGACACTGCCTGCAGCATTTCTGATCAGTAGGACTGTACTCCCATTTACATGGAAAGCGTTTTCTTACTGCTT	2507
ACCCCCTTGTGTAAGATACTGCAGAGCACTCCAAGCTTCCACCCAC	2586
TAAGTCCAGATGGATACATGGAGAAACATACCCATGAGATGGCTGCTTTGAAAGCATGCTGGGAAGCAATGTATTAGGG	2665
TCCCGTGTCTTTTTTTCTCTCAGTAATGATAAATACACTTATACATGGACAGAACATTTCTAGAACGATTCAGAAAAC	2744
TTCTGGGACTGGGACTAGGGTACATAGATTTCTTTGTGTTCCTGTTTCTACCGTTTGGATTTGTACTGAGCATAAATTG	2823
TATAATTTTTTAATAAAAAGGAAAAATGCAAGGTGTACATAAAAAAAA	2883

Input file T215AtmX215; Output File T215AtmX215.pat Sequence Length 2744

M E L D R W A Q L G L V CTCGGTACCGACACGGGAAACG ATG GAG CTA GAC AGA TGG GCG CAG TTG GGG CTG GTG THE CTG CAG CTC CTT CTC ATC TCA TCG TTG CCA AGA GAG TAC ACG GTC ATT AAT GAA GCC 52 TGT CCC GGA GCT GAG TGG AAC ATC ATG TGT AGA GAA TGT TGT GAA TAT GAT CAG ATT GAA TGC CTC TGC CCA GGA AAG AAG GAA GTG GTG GGT TAC ACC ATC CCA TGC TGC AGG AAT GAG 92 GAT AAT GAA TGT GAC TCC TGT CTA ATT CAC CCA GGT TGT ACC ATC TTT GAA AAC TGC AAG 304 AGC TGC CGC AAT GGC TCC TGG GGC GGA ACT CTG GAT GAC TTC TAC GTG AAG GGA TTC TAC 364 132 TGC GCA GAG TGC AGG GCA GGC TGG TAC GGA GGA GAC TGC ATG CGA TGT GGC CAG GTT CTT 152 CGA GCC TCA AAG GGT CAG ATC TTG TTG GAG AGC TAT CCC TTA AAC GCT CAC TGT GAA TGG ACT ATT CAT GCC AGA CCT GGG TTT ATC ATC CAG TTG AGG TTT GGT ATG CTG AGC CTA GAG 192 TIT GAC TAC ATG TGC CAA TAT GAC TAT GTG GAG GTC CGC GAT GGG GAT AAT AGT GAC AGC 212 CCT ATC ATC AAG CGT TTC TGT GGC AAC GAG AGG CCA GCT CCC ATC AGG AGC ACT GGC TCT 664 TCA CTC CAT GTC CTT TTC CAT TCT GAT GGC TCC AAG AAC TTC GAT GGC TTC CAC GCT GTC TIT GAG GAG ATC ACA GCG TGC TCC TCA TCC CCT TGT TTC CAT GAT GGC ACA TGC CTC CTT GAC ACC ACT GGG TCT TTC AAG TGT GCC TGC CTG GCT GGC TAC ACT GGG CAG CGC TGT GAA S D AAT CTA CTT GAA GAA AGA AAC TGC TCA GAC CTT GGG GGG CCA GTC AAT GGG TAC AAG AAA ATC ACA GAA GGT CCT GGA CTT CTC AAT GAG CGC CAT GTA AAA ATT GGC ACG GTT GTG TCT ITC TIT TGT AAC GGC TCA TAC GTT CTG AGT GGC AAT GAG AAA CGA ACT TGC CAG CAG AAT GGA GAG TGG TCA GGA AAG CAA CCT GTC TGC ATG AAA GCC TGC CGG GAA CCG AAG ATC TCA GAC CTG GTG AGA AGG AGA GTC CTT TCG ATG CAG GTT CAG TCA AGG GAG ACA CCA TTA CAT 1144 CAG CTT TAT TCC ACG GCT TTC AGC AAG CAG AAA TTG CAG GAT GCC TCT ACC AAA AAG CCA 412 GCC CTT CCA FTT GGA GAC CTG CCC CCT GGA TAC CAA CAT CTG CAC ACC CAA GTC CAG TAT 1264 432 GAG TGC ATC TCG CCC TTC TAC CGC CGC CTG GGA AGC AGG AGG AGA ACA TGC CTG AGA ACT 1324 GGG AAG TGG AGT GGG CGG CCC CCG TCC TGT ATC CCA ATC TGT GGA AAA ATC GAG AGC ACT 1384 CCT TCT CCA AAG ACC CAA GGC ACC CGC TGG CCA TGG CAG GCA GCC ATC TAC CGG AGG ACC 1444

S AG	G GD 1	V T GT	A CA	I D	T GG	T GG	L T CT	G CA	K C AA	G A GG1	A F GC/	N A TG	F G TT	L 5 TTC	V GTC	C TG	S AG			
L CT	V GTI	N G AA	E T GA	A CG	G AC	V T GT	v G GT	V T GT		A GCC	H CAC	C TG1	V r GT(E GAG	L	Q 200	K G AA		
7	,	r	ĸ		A	۵	L	K C AAC	v	v	L	G	K	F	Y	R	D	D	D	532
R	D	F	ĸ	s	1	a	N	L T TTA	R	v	s	A	1	1	L	Н	P	N	Y	552
	GA I			G AG									L	L	D	K	. UU.	R	1	572
D GAC	CCT	I ATC	CTO	CT	D GAC	ACT	D GAC	I ATC	GCT	GTT	CTG	K AAG					GCT			
S AGT	T ACC	R CGT	V GTC	Q CA/	P CCC	I OTA	C TGC	L CTG	A GCT	T ACC	T ACT	R CGG	D GAC	L CTC	S AGC	T ACC	S TCT	F	CAG	592 1804
E GAA	S TCC	H CAC	I ATC	T ACT	V GTG	A GCT	GGC	W TGG	N AAC	I ATC	L CTG	A GCA	D GAT	V GTG	R AGG	S AGC	P CCT	GGC	F TTT	612 1864
K AAG	N AAT	D GAT	T ACC	L TTA	H CAT	Y TAT	G GGA	M ATG	V GTC	R AGA	V GTG	V GTA	D GAC	P CCA	M ATG	L CTT	C TGT	E GAG	E Gaa	632 1924
Q CAG	H CAT	E GAA	D GAC	H CAT	G GGC	I	P CCA	V GTT	S AGT	V GTC	T ACT	D GAC	N AAC	M ATG	F TTC	C TGT	A GCC	S AGC	K AAA	652 1984
D GAT	P CCC	S AGT	T ACC	P CCT	S TCT	D GAC	I ATC	C TGC	T ACT	A GCA	E GAG	T ACA	G GGG	G GGC	I ATC	A GCT	A GCT	L TTG	S TCC	672 2044
F TTC	P CCA	G GGC	R CGA	A GCA	S TCC	P CCC	E GAG	P CCA	R CGC	W TGG	H CAT	L TTG	V GTG	G GGG I	L CTG (V GTC .	S AGC	W TGG	S AGC	692 2104
Y TAT	D GAC	K AAG	T ACA	C TGT	S AGC	N AAT	G GGC		S TCC .	T ACA (A GCC	F TTC	T ACA	K AAG (V STG 1	L ITG (P CCG	F TTC	K AAA	712 2164
D GAC 1	W rgg .	I TTA	E GAG	R AGA	N AAC	M ATG	K AAA	# TGA												721 2191
ACCAC	CCA	CAAG	GCCA	CTGA	GAAG	CCTT	TTCC	TAGC	ATCC	STCTO	TAC	ATAT	STTG	TATAC	AACA	ATG	2000	CCTG	AAG	2270
TGTAA	1111	rgcc	CACC.	ATCT	TGGC	TACT	GAAA	GGCTC	CTGC	TTTC	AGGC	ACT	TATC	CAAT	AGAG	GGT	AAC	\GAG	TTT	2349
ACTTO	ATCA	LGGG	AACTI	GTCT	CCCT	GACT	GCTT	GGGAA	TCAT	CTAA	AAGA	TGCC	AGGI	CTTG	CAAC	AACT	'GGA1	TTC	TTC	2428
AAAGA	AGAC	CAT	GTGA	CTAG	AAGG/	IGAA	CCTC	TTGCT	CCTG	CTCC	ACTO	AGAG	TGAT	GTGA	CTGT	CAAT	CAGI	TTG	GT	2507
TGAGA	AGGT	TGAT	TTG	GGA	GCC1	GGG	TGCA	CCTG	GCTT	CTGT	CAAA	GTTC	CAAA	GAAC	AAAC	AACT	TAGA	CTAC	CC	2586
CAGGG	CAAA	GGAG	GATTO	GGTC	TGGC	ACC	TGTG	TAAA	TTGT	CACA	AGAT	TGTC	TGAT	CCTT	TCCC	TTTC	CAAT	CTTC	TG	2665
ACAC	ATTT	CAAT	AAAA	CAAC	GTCT	GCTC	CCTC	ACCT	ACCA.	AACA	AAAA.	AAAA	AAAA	AAAA	AAAA	AAA	AAAA	AAAA	AA	2744
ACACA	ATTI	CAAT	AAAA	CAAG	GTCT	GCTC	CCTG	ACCT	ACCA	AACA	AAAA	AAAA.	AAAA	AAAA	AAAA	LAAA	AAAA	AAAA	AA	2744

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.