ME:4140 Modern Robotics & Automation Homework #4

Due: see ICON

Make sure to upload any supporting documents, e.g., hand work, codes, sketches, etc.

Instructions (READ THESE FIRST!)

- To complete this homework, you can use an **Adobe** pdf reader or **Google Chrome** (after completing make sure to download with changes).
- Answer all questions by typing or selecting radio buttons in this document.
- Upload your completed document and any supporting documents, code, sketches, etc., to ICON.
- Round all values to 3 decimal places.

Example #1: what is the value of Pi? Answer: 3.142

Example #2: what is 100/3? Answer: 33.333

Name:

First

Last

Student ID

1. What is the screw axis S if q = (1,3,6), s = (3,2,1) and h = 4?

(5)

2. A robot has a workspace which contains four reference frames: fixed frame $\{a\}$, end-effector frame $\{b\}$, camera frame $\{c\}$ and workpiece frame $\{d\}$ as shown in the figure below.

(20)

Determine the following:

(a) T_{ab} given that

$$T_{bc} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(b) If the twist in $\{b\}$ is $\mathcal{V}_b = (1, 2, 2, 0, 0, 0)$, what is the twist in $\{c\}$?

3. The zero-pitch screw axis shown in the image below, aligned with \hat{z}_a , passes through the point (-2,1,0) in the $\{a\}$ frame.

(15)

What is the twist V_a if we rotate about the screw axis at a speed of $\dot{\theta} = 7 \text{ rad/s}$?

4. The figure below shows a screw axis in the (\hat{y}_c, \hat{z}_c) plane, at a 45 degree angle with respect to the \hat{y}_c -axis. The \hat{x}_c -axis is aligned such that is points out of the page. The screw axis passes through the point (0, 3, 0).

(10)

Determine the following:

(a) If the pitch of the screw is h = 5 linear units per radian, what is the screw axis \mathcal{S}_c ?

(b) If the speed of rotation about the screw axis is $\dot{\theta} = 2 \text{ rad/s}$, what is the twist \mathcal{V}_c ?