Signals and Systems Analysis Chapter 1:- Introduction

OUTLINE

- Classifications of Signals
- Classifications of Systems
- Useful Signal Operations
- Elementary Signals

CLASSIFICATIONS OF SIGNALS

- Classification of signals: signals can be classified as
 - Continuous-time signal v.s. discrete-time signal
 - Analog signal v.s. digital signal
 - Even signal v.s. odd signal
 - Periodic signal v.s. Aperiodic signal
 - Power signal v.s. Energy signal
 - Deterministic and Random signals
 - **–**

CLASSIFICATION: CONTINUOUS-TIME V.S. DISCRETE-TIME

- Continuous-time (CT) signal
 - o a signal is defined over continuous time
 - E.g. sinusoidal signal $s(t) = \sin(4t)$
 - E.g. voice signal
 - E.g. Rectangular pulse function

$$p(t) = \begin{cases} A, & 0 \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

CLASSIFICATION: CONTINUOUS-TIME V.S. DISCRETE-TIME

- Discrete-time signal
 - o A signal that is defined at discrete values of time

E.g. the monthly average precipitation

$$T_s = 1 \text{ month}$$

 $k = 1, 2, ..., 12$

CLASSIFICATION: ANALOG V.S. DIGITAL

Analog:

 A signal whose amplitude can take on any value in a continuous range

Digital:

 A signal whose amplitude can take on only a finite number of values continuous-time, Analog

Continuous-time, Digital

Discrete-time, Digital

Discrete-time, Analog (samples of analog signal)

CLASSIFICATION: EVEN V.S. ODD

Even v.s. odd

- o x(t) is an even signal if: x(t) = x(-t)
 - E.g. $x(t) = \cos(2t)$
- o x(t) is an odd signal if: x(-t) = -x(t)
 - E.g. $x(t) = \sin(2t)$
- o Some signals are neither even, nor odd
- E.g. $x(t) = e^t$ $x(t) = \cos(2t), t > 0$ • Any signal can be decomposed as the sum of an even signal and an odd signal

$$y(t) = y_e(t) + y_o(t)$$
even odd
$$y_e(t) = 0.5[y(t) + y(-t)]$$

$$y_o(t) = 0.5[y(t) - y(-t)]$$

CLASSIFICATION: PERIODIC V.S. APERIODIC

- Periodic signal v.s. aperiodic signal
 - A signal is periodic if
 - There is a positive real value T such that f(t) = f(t + nT)
 - It is defined for all possible values of t, $-\infty \le t \le \infty$ (why?)

- Period T_0 : the smallest positive integer T_0 that satisfies $f(t) = f(t + nT_0)$

$$T_1 = 2T_0$$

 $f(t + T_1) = f(t + 2T_0) = f(t)$

CLASSIFICATION: ENERGY V.S. POWER

• Energy of signal x(t) over $t \in [-\infty, +\infty]$

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

A signal with finite energy is called an energy signal.

Average power of signal x(t)

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

A signal with finite and non-zero power is called a power signal.

Example: sin(t), cos(t)

- A signal with finite energy has zero power
- A signal with finite power has infinite energy
- A signal can be an energy sign or a power signal, or neither NENP(Ramp signal), but not both.

OUTLINE

- Classifications of Signals
- Classifications of Systems
- Useful Signal Operations
- Elementary Signals

CLASSIFICATIONS OF Systems

Classifications

- o Linear v.s. non-linear
- Time-invariant v.s. time-varying
- Dynamic v.s. static (memory v.s. memoryless)
- o Causal v.s. non-causal
- Stable v.s. non-stable (Reading Assignment)

CLASSIFICATIONS: LINEAR AND NON-LINEAR

Linear system

- Let $y_1(t)$ be the response of a system to an input $x_1(t)$
- Let $y_2(t)$ be the response of a system to an input $x_2(t)$
- The system is linear if the superposition principle is satisfied:
 - 1. the response to $x_1(t) + x_2(t)$ is $y_1(t) + y_2(t)$
 - 2. the response to $\alpha x_1(t)$ is $\alpha y_1(t)$

Non-linear system

 If the superposition principle is not satisfied, then the system is a non-linear system

CLASSIFICATIONS: TIME-VARYING V.S. TIME-INVARIANT

Time-invariant

 A system is time-invariant if a time shift in the input signal causes an identical time shift in the output signal

Examples

$$- y(t) = \cos(x(t))$$

CLASSIFICATIONS: MEMORY V.S. MEMORYLESS

Memoryless system (Instantaneous)

- the present value of the output depends only on the present value of the input
 - \circ Example: input x(t): the current passing through a resistor output y(t): the voltage across the resistor

$$y(t) = Rx(t)$$

• The output value at time t depends only on the input value at time t.

System with memory

- the present value of the output depends on not only the present value of input, but also previous input values.
 - Example: capacitor, current: x(t), output voltage: y(t)

$$y(t) = \frac{1}{C} \int_0^t x(\tau) d\tau$$

o the output value at t depends on all input values before t

CLASSIFICATIONS: CAUSAL V.S. NON-CAUSAL

- Causal system (Physical/non-anticipated)
 - The output depends on only input from the past and present
 - Example 4

$$y(t) = x(t-3) + x(t)$$

Non-causal system

- A system is non-causal if the output depends on the input from the future (prediction).
- Example 5: y(t) = x(t-2) + x(t+2)
 - All practical systems are causal.

OUTLINE

- Signals and Systems
- Classifications of Signals
- Classifications of Systems
- Useful Signal Operations
- Elementary Signals

OPERATIONS: TIME SHIFTING

- Time Shifting operation: shifting a signal with respect to time
 - x(t-T): represents x(t) shifted by T seconds
 - If **T** is positive, the shift is to the right (delay)
 - If *T* is negative, the shift is to the left (Advance)

OPERATIONS: TIME REVERSAL/REFLECTION

- **Time Reversal:** a signal's time is multiplied by -1
- In this case, the signal produces its mirror image about Y-axis.
- Mathematically, this can be written as x(-t)

OPERATIONS: TIME-SCALING

• Time-scaling: compression or expansion of a signal in time x(at)

In time scaling the time t is multiplied by a constant which is not equal to zero

- |a| > 1, Time compression
- |a| < 1, Time expansion

OPERATIONS: TIME-SCALING

Combined operation x(at+b)Method 1:

- 1. Time scale the signal by a: x(at)
- 2. Time shift the scaled signal by b/a: x(a(t+b/a))=x(at+b)

Method 2:

- 1. Time shift the signal by b: x(t + b)
- 2. Time scale the shifted signal by a: x(at +b)
 - The operations are always performed w.r.t. the time variable *t*

OUTLINE

- Signals and Systems
- Classifications of Signals
- Classifications of Systems
- Useful Signal Operations
- Elementary Signals

ELEMENTARY SIGNALS

- are also called singularity functions/switching functions
- They are functions that are either discontinuous or have discontinuous derivatives. (that is when the function jumps from one value to another without taking on any intermediate value)
- They are very useful in representing switching operations.
- The three most widely used singularity functions are: unit step, unit impulse and, unit ramp functions

• Unit step function

$$\mathbf{u}_0(\mathbf{t}) = \begin{cases} 0 & \mathbf{t} < 0 \\ 1 & \mathbf{t} > 0 \end{cases}$$

$$\begin{array}{c|c}
1 & u_0(t) \\
\hline
0 & t \\
\end{array}$$

$$u_0(t-t_0) \ = \begin{cases} 0 & t < t_0 \\ 1 & t > t_0 \end{cases}$$

$$\mathbf{u}_{0}(\mathbf{t} + \mathbf{t}_{0}) = \begin{cases} 0 & \mathbf{t} < -\mathbf{t}_{0} \\ 1 & \mathbf{t} > -\mathbf{t}_{0} \end{cases}$$

Other forms of the unit step function

• Unit step functions can be used to represent other time—varying functions such as the rectangular pulse shown below

Example: Express the square pulse a s a sum of the unit step function

Solution:

Example: Express the waveform as a sum of unit step functions

Solution: First find the equations of the linear segments

$$\begin{split} \mathbf{v}(t) &= (2t+1)[\mathbf{u}_0(t) - \mathbf{u}_0(t-1)] + 3[\mathbf{u}_0(t-1) - \mathbf{u}_0(t-2)] \\ &+ (-t+3)[\mathbf{u}_0(t-2) - \mathbf{u}_0(t-3)] \end{split}$$

Simplify:

$$v(t) = (2t+1)u_0(t)-2(t-1)u_0(t-1)-tu_0(t-2)+(t-3)u_0(t-3)$$

ELEMENTARY SIGNALS: RAMP FUNCTION

The Ramp function $u_1(t) = r(t)$

$$u_1(t) = \int_{-\infty}^t u_0(\tau) d\tau$$

We can evaluate the integral by considering the area under the unit step function

$$u_0(t)$$
 from 0 to ∞

Area =
$$1 \times \tau = \tau = t$$

Therefore the ramp function is defined as

$$u_1(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

Since is the integral of $u_0(t)$ is $u_1(t)$, then $u_0(t)$ must be the derivative of $u_1(t)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{u}_1(t) = \mathbf{u}_0(t)$$

ELEMENTARY SIGNALS: RAMP FUNCTION

Higher-order functions of t can be generated by repeated integration of the unit step function.

$$u_2(t) = \begin{cases} 0 & t < 0 \\ t^2 & t \ge 0 \end{cases} \quad \text{or} \quad u_2(t) = 2 \int_{-\infty}^t u_1(\tau) d\tau$$

$$u_3(t) = \begin{cases} 0 & t < 0 \\ t^3 & t \ge 0 \end{cases} \quad \text{or} \quad u_3(t) = 3 \int_{-\infty}^t u_2(\tau) d\tau$$

$$u_{n}(t) = \begin{cases} 0 & t < 0 \\ t^{n} & t \ge 0 \end{cases} \quad \text{or} \quad u_{n}(t) = n \int_{-\infty}^{t} u_{n-1}(\tau) d\tau$$

• There are frequent occasions in which we are interested in the derivative of

the unit step function $u_0(t)$

$$v_{L}(t) = L \frac{di_{L}}{dt}$$

$$i_{L}(t) = i_{S} u_{0}(t)$$

$$v_{L}(t) = Li_{S} \frac{d}{dt} u_{0}(t)$$

- The derivative of the unit step has a non-zero value only at t=0.
- The derivative of the unit step function is defined in the this section

Unit impulse function (delta function)

• The *unit impulse* or *delta function*, denoted as $\delta(t)$, is the derivative of the unit step $u_0(t)$.

$$\int_{-\infty}^{t} \delta(t)dt = u(t)$$

$$\delta(t) = \frac{du(t)}{dt}$$

Unit impulse function

$$\delta(0) = \infty$$

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{t} \delta(t)dt = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

Properties of the delta function

• The *sampling property* of the delta function states that

$$f(t)\delta(t-a) = f(a)\delta(t-a)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

The *sifting property* of the delta function states that

$$\int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)$$

Higher order delta functions

• An *nth-order delta function* is defined as the nth derivative of the unit step function

$$\delta^{n}(t) = \frac{d^{n}}{dt}[u_{0}(t)]$$

• The derivation of the sampling property of the delta function can be extended to show that

$$f(t)\delta'(t-a) = f(a)\delta'(t-a) - f'(a)\delta(t-a)$$

$$\int_{-\infty}^{\infty} f(t)\delta^{n}(t-\alpha)dt = (-1)^{n} \frac{d^{n}}{dt^{n}} [f(t)] \bigg|_{t=\alpha}$$

Example: Evaluate the following expressions:

a.
$$3t^4\delta(t-1)$$

a.
$$3t^4\delta(t-1)$$
 b. $\int_{-\infty}^{\infty} t\delta(t-2)dt$ c. $t^2\delta'(t-3)$

c.
$$t^2\delta'(t-3)$$

Solutions:

The sampling property states that a)

$$f(t) = 3t^4$$

$$a = 1$$

$$3t^4\delta(t-1) = \{3t^4\big|_{t=1}\}\delta(t-1) = 3\delta(t)$$

$$f(t)\delta(t-a) = f(a)\delta(t-a)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

 $\int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)$

b) The sifting property states that

$$\int_{-\infty}^{\infty} t \delta(t-2) dt = f(2) = t|_{t=2} = 2$$

c) From
$$f(t)\delta'(t-a) = f(a)\delta'(t-a) - f'(a)\delta(t-a)$$

 $t^2\delta'(t-3) = t^2\Big|_{t=3}\delta'(t-3) - \frac{d}{dt}t^2\Big|_{t=3}\delta(t-3) = 9\delta'(t-3) - 6\delta(t-3)$

SUMMARY

Signals and Classifications

- Continuous-time v.s. discrete-time
- Analog v.s. digital
- Odd v.s. even
- Periodic v.s. aperiodic
- Power v.s. energy

Systems and Classifications

- Continuous-time signal v.s. discrete-time signal
- Analog signal v.s. digital signal
- Even signal v.s. odd signal
- Periodic signal v.s. Aperiodic signal
- Power signal v.s. Energy signal

• Useful Signal Operations

- Time shifting
- reflection
- Time scaling

• Elementary Signals

Unit step, unit impulse, ramp