RNG-CCS model for "Niche Markets for CO₂ Removal and Sequestration from Renewable Natural Gas Production in California"

Jun Wong

UC Berkeley, Environmental Science, Policy, and Management

Jonathan Santoso

UC Berkeley, Chemical and Biomolecular Engineering

Marjorie Went

UC Berkeley, Chemical and Biomolecular Engineering

Daniel Sanchez

UC Berkeley, Environmental Science, Policy, and Management

Commit 8034c64

1 Summary

This document reflects the model in commit 8034c64. The AMPL model is in codigestion_model.mod. We detail a model whose boundary span from biomass residue collection to CO₂ sequestration and CH₄ pipeline injection. The model codigests feedstocks other than landfill gas. For parsimony, we omit unit conversions present in the actual AMPL model.

2 Model Formulation

2.1 Notation

Sets are as follows:

\overline{f}	Facilities
$l \in f$	Landfills, a subset of facilities
$c \in f$	Codigesters, a subset of facilities
t	Feedstock type
$g \in t$	Landfill gas, a subset of feedstock type
$s \in t$	Set of codigestion types, subset of feedstock type
	$s = \{\text{Wastewater, Crop, Manure, MSW}\}$
i	Sequestration sites
s	Feedstock source
(s, f)	Feedstock source and facility pairs under 50 miles
(f,i)	Facility and sequestration site pairs under 50 miles

Parameters are as follows:

Facilities

 $\begin{array}{ll} \text{pipe_vc}_f & \text{RNG pipeline fixed cost at facility } f \\ \text{pipe_vc}_f & \text{RNG pipeline variable cost at facility } f \\ \text{lmop}_l & \text{Landfill collecting variable cost at landfill } l \end{array}$

Sequestration sites

 $\begin{array}{ll} \text{injection_fc}_i & \text{CO}_2 \text{ injection fixed cost at sequestration site } i \\ \text{injection_vc}_i & \text{CO}_2 \text{ injection variable cost at sequestration site } i \end{array}$

capacity i Sequestration site storage capacity at sequestration site i

seismic_i 3-D seismic survey cost at sequestration site i

Type

 ts_t Total solids % of feedstock type t vs_t Volatile solids % of feedstock type t ton_t Conversion to ton of feedstock type tbiogas_vield_t Biogas yield of feedstock type t

 c_i intensity Carbon intensity of resultant RNG from feedstock type t

Feedstock source & type

supply $_{s,t}$ Feedstock quantity at source s of type t

Valid source \rightarrow facility pairs

 $\begin{array}{ll} \text{fs_dist}_{s,f} & \text{Road distance between feedstock at location } s \text{ and facility } f \\ \text{fs_time}_{s,f} & \text{Travel duration between feedstock at location } s \text{ and facility } f \end{array}$

per_ton $_{s,f}$ Per-ton cost from location s to facility f

Valid facility \rightarrow sequestration site pairs

 $\operatorname{rs_dist}_{f,i}$ Road distance between facility f and sequestration site i rs_time_{f,i} Travel duration between facility f and sequestration site i

Scalars are as follows:

Cost (in 2019 \$)

ad_fc_int AD fixed cost intercept

 $\begin{array}{ll} {\rm ad_fc_slope_1} & {\rm AD\ fixed\ cost\ slope\ below\ threshold} \\ {\rm ad_fc_slope_2} & {\rm AD\ fixed\ cost\ slope\ above\ threshold} \end{array}$

ad_vc_int AD variable cost intercept

ad_vc_slope₁ AD variable cost slope below threshold ad_vc_slope₂ AD variable cost slope above threshold up_fc_int Biogas upgrading fixed cost intercept

up_fc_slope₁ Biogas upgrading fixed cost slope below threshold up_fc_slope₂ Biogas upgrading fixed cost slope above threshold

up_vc_int Biogas upgrading variable cost intercept

up_vc_slope₁ Biogas upgrading variable cost slope below threshold up_vc_slope₂ Biogas upgrading variable cost slope above threshold

inj_fc_int RNG injection fixed cost intercept

inj_fc_slope₁ RNG injection fixed cost slope below threshold inj_fc_slope₂ RNG injection fixed cost slope above threshold

inj_vc_int RNG injection variable cost intercept

inj_vc_slope₁ RNG injection variable cost slope below threshold inj_vc_slope₂ RNG injection variable cost slope above threshold

comp_fc_int $_a$ CO $_2$ compression to transporting pressure fixed cost intercept

comp_vc_int_b CO_2 compression to sequestration pressure variable cost intercept

 CO_2 compression to sequestration pressure variable cost intercept

comp_vc_slope $_{b1}$ CO₂ compression to sequestration pressure variable cost slope below threshold comp_vc_slope $_{b2}$ CO₂ compression to sequestration pressure variable cost slope above threshold

cap_fc_int CO₂ capture fixed cost intercept

 $\begin{array}{ll} \text{cap_fc_slope}_1 & \text{CO}_2 \text{ capture fixed cost slope below threshold} \\ \text{cap_fc_slope}_2 & \text{CO}_2 \text{ capture fixed cost slope above threshold} \end{array}$

cap_vc_int CO₂ capture variable cost intercept

 $cap_vc_slope_1$ CO_2 capture variable cost slope below threshold $cap_vc_slope_2$ CO_2 capture variable cost slope above threshold

monitoring CO_2 storage monitoring cost fs_mi Feedstock transport cost per mile fs_hr Feedstock transport cost per hour rs_mi CO_2 transport cost per mile rs_hr CO_2 transport cost per hour

Revenues (\$/mmbtu)

lcfs LCFS credit price d5 RIN D5 credit price cellulosic_waiver Cellulosic waiver price

45q 45Q tax credit rng RNG price

Other assumptions

ch4_yield CH₄ volume percentage in biogas baseline_ci Baseline carbon intensity of RNG

irr Internal rate of return life Project lifetime

crf Capital Recovery Factor = $\frac{irr \times (1+irr)^{life}}{(1+irr)^{life}-1}$

electricity Grid electricity carbon intensity

transport Transport emissions

compression_a CO_2 compression work to transporting pressure compression_b CO_2 compression work to sequestration pressure

Decision variables are as follows:

ad_f	Binary if facility f is active
seq_i	Binary if sequestration site i is active
$q_feed_{s,f,t}$	Quantity of feeds tock from source s of type t delivered to facility f
$q_f = f e e df_f$	Total quantity of feedstock used at facility f
-	$=\sum_{s,t} q_{-f} \operatorname{eed}_{s,f,t}$
$q_f = q_n = q_n$	Total quantity of feeds tock used at facility f , excluding wastewater
	$=\sum_{s,t} q_{\text{-}} \text{feed}_{s,f,t} - q_{\text{-}} \text{feed}_{s,f,t=\text{wastewater}} \times \text{ton}_{t=\text{wastewater}}$
$q_{-}ch4_{t,f}$	Quantity of CH_4 from feedstock type t at facility f
	$=\sum_{s} \text{q_feed}_{s,f,t} \times \text{ts}_t \times \text{vs}_t \times \text{biogas_yield}_t \times \text{ch4_yield}$
q_ch4f_f	Quantity of $\widetilde{\operatorname{CH}}_4$ produced at facility f
·	$\sum_t \mathrm{q_ch4}_{t,f}$
$q captf_f$	Quantity of CO_2 captured at facility f
	$=\sum_{s,t} q_{-} \text{feed}_{s,f,t} \times \text{ts}_t \times \text{vs}_t \times \text{biogas_yield}_t \times (1 - \text{ch4_yield})$
q_co2seq_i	Quantity of CO_2 sequestered at sequestration site i
$q_co2trans_{f,i}$	Quantity of CO_2 transported from facility f to sequestration site i

2.2 Model

Objective Function. We aim to minimize net cost over the project lifetime:

$$min net cost = life \times (total cost - total revenue)$$
 (1)

where total cost is defined as:

$$\begin{split} & \operatorname{total\ cost} = \sum_{c} \Big\{ (\operatorname{ad}_{c} \times (\operatorname{\mathbf{Intc}} \times \operatorname{crf} + \operatorname{pipe_vc_c})) + \\ & \operatorname{\mathbf{ad}}_{-}^{-}\mathbf{fc} \times \operatorname{q_feedf_nowwtp}_{c} + \operatorname{\mathbf{ad}}_{-}^{-}\mathbf{vc} \times \operatorname{q_feedf}_{c} + \\ & \operatorname{\mathbf{up}}_{-}^{-}\operatorname{\mathbf{inj}} \times \operatorname{q_ch4f_c} + \operatorname{\mathbf{comp}}_{-}^{-}\operatorname{\mathbf{capt}} \times \operatorname{q_captf_c} + \\ & \operatorname{lcfs} \times \operatorname{\mathbf{compression}} \times \operatorname{electricity} \times \operatorname{q_captf_c} \Big\} + \\ & \sum_{l} \Big\{ (\operatorname{ad}_{l} \times (\operatorname{Intl}_{l} \times \operatorname{\mathbf{crf}} + \operatorname{pipe_vc_l})) + \\ & \operatorname{\mathbf{up}}_{-}^{-}\operatorname{\mathbf{inj}} \times \operatorname{\mathbf{q_ch4f_l}} + \operatorname{\mathbf{comp}}_{-}^{-}\operatorname{\mathbf{capt}} \times \operatorname{\mathbf{q_captf_l}} \Big\} + \\ & \sum_{s,f,t} \Big\{ (\operatorname{fs_dist}_{s,f} \times \operatorname{fs_mi} + \operatorname{fs_time}_{s,f} * \operatorname{fs_hr}) \times \frac{\operatorname{\mathbf{q_feed}}_{s,f,t}}{\operatorname{fs_truckload}} + \\ & \operatorname{per_ton}_{s,f} \times \operatorname{\mathbf{q_feed}}_{s,f,t} \Big\} + \\ & \sum_{f,i} \Big\{ (\operatorname{rs_time}_{f,i} \times \operatorname{rs_hr} + \operatorname{rs_dist}_{f,i} \times \operatorname{rs_mi}) \times \frac{\operatorname{\mathbf{q_co2trans}}_{f,i}}{\operatorname{co2_truckload}} + \\ & \operatorname{lcfs} \times \operatorname{transport} \times \operatorname{\mathbf{q_co2trans}}_{f,i} \times \operatorname{rs_dist}_{f,i} \Big\} + \\ & \sum_{i} \Big\{ (\operatorname{seq}_{i} \times ((\operatorname{injection_fc}_{i} + \operatorname{seismic}_{i}) \times \operatorname{crf} + \operatorname{injection_vc}_{i})) + \\ & \operatorname{\mathbf{comp}}_{-}^{-}\operatorname{\mathbf{mon}} \times \operatorname{\mathbf{q_co2seq}}_{i} + \operatorname{lcfs} \times \operatorname{compression}_{b} \times \operatorname{electricity} \times \operatorname{\mathbf{q_co2seq}}_{i} \Big\} \end{aligned}$$

and total revenue is defined as:

$$\begin{aligned} \text{total revenue} &= \sum_{c} \left\{ \text{q_ch4f}_{c} \times (\text{rng} + \text{d5}) \right\} + \sum_{l} \left\{ \text{q_ch4f}_{l} \times (\text{rng} + \text{d5} + \text{cellulosic}) \right\} + \\ &\sum_{t,f} \left\{ \text{q_ch4}_{t,f} \times [\text{lcfs} \times (\text{baseline_ci} - \text{c_intensity}_{t})] \right\} + \\ &\sum_{i} \left\{ \text{q_co2seq}_{i} \times (\text{lcfs} + 45\text{q}) \right\} \end{aligned} \tag{3}$$

We denote \overrightarrow{Intc} to be a vector of all piecewise intercepts relevant to the total costs for codigesting facilities and \overrightarrow{Intl}_l to be a vector of all piecewise intercepts relevant to the total costs for landfills:

We denote $\overrightarrow{ad_fc}$ and $\overrightarrow{ad_vc}$ to be vectors of the piecewise slopes for fixed and variable costs for anaerobic digesters, taking on different values depending on the value of $q_feed_{s,f,t}$.

$$\mathbf{ad_fc} = \begin{bmatrix} \mathbf{ad_fc_slope}_1 \\ \mathbf{ad_fc_slope}_2 \end{bmatrix} \times \mathbf{crf}$$

$$\mathbf{ad_vc} = \begin{bmatrix} \mathbf{ad_vc_slope}_1 \\ \mathbf{ad_vc_slope}_2 \end{bmatrix}$$

We denote $\overrightarrow{up_inj}$ and $\overrightarrow{comp_capt}$ to be vectors of the piecewise slopes for fixed and variable costs for upgrading and injection, and compression and CO_2 capture, respectively. Facilities take on different values within these vectors depending on the values of q_captf_f and q_ch4f_f .

$$\begin{aligned} \mathbf{up_inj} &= \begin{bmatrix} (\mathrm{up_fc_slope}_1 + \mathrm{inj_fc_slope}_1) \times \mathrm{crf} + \mathrm{up_vc_slope}_1 + \mathrm{inj_vc_slope}_1 \\ (\mathrm{up_fc_slope}_2 + \mathrm{inj_fc_slope}_2) \times \mathrm{crf} + \mathrm{up_vc_slope}_2 + \mathrm{inj_vc_slope}_2 \end{bmatrix} \\ \mathbf{comp_capt} &= \begin{bmatrix} (\mathrm{comp_fc_slope}_{a1} + \mathrm{capt_fc_slope}_1) \times \mathrm{crf} + \mathrm{comp_vc_slope}_{a1} + \mathrm{capt_vc_slope}_1 \\ (\mathrm{comp_fc_slope}_{a2} + \mathrm{capt_fc_slope}_2) \times \mathrm{crf} + \mathrm{comp_vc_slope}_{a2} + \mathrm{capt_vc_slope}_2 \end{bmatrix} \end{aligned}$$

We denote **comp_mon** to be vectors of the piecewise slopes for fixed and variable costs of monitoring and compression cost at sequestration sites. Sequestration sites take on values within these vectors depending on the value of q_co2seq_i .

$$\mathbf{comp_fc_slope}_{b1} \times \mathbf{crf} + \mathbf{comp_vc_slope}_{b1} + \mathbf{monitoring}$$
$$\mathbf{comp_fc_slope}_{b2} \times \mathbf{crf} + \mathbf{comp_vc_slope}_{b2} + \mathbf{monitoring}$$

Constraints. The objective function is subject to:

Feedstock used is zero if the facility is not activated

$$q_{feed_{s,f,t}} \le \text{supply}_{s,t} \times \text{ad}_f$$
 (4)

Feedstock used cannot exceed available supply

$$\sum_{f} \mathbf{q}_{\text{-}} \mathbf{f} \mathbf{e} \mathbf{e} \mathbf{d}_{s,f,t} = \mathbf{supply}_{s,t} \tag{5}$$

 CO_2 transported is equal to CO_2 captured

$$\sum_{i} \mathbf{q} \cdot \mathbf{co2trans}_{f,i} = \mathbf{q} \cdot \mathbf{captf}_{f} \tag{6}$$

 CO_2 sequestered is equal to CO_2 transported

$$\sum_{f} \text{q_co2trans}_{f,i} = \text{q_co2seq}_{i}$$
 (7)

 CO_2 sequestered cannot be more than available capacity

$$\mathbf{q_co2seq}_i \leq \mathbf{capacity}_i \times \mathbf{seq}_i \tag{8}$$

Minimum sequestration volume

$$q_co2seq_i \ge 25000 \times seq_i \tag{9}$$