

Módulo | Big Data I - Processamento

Caderno de Aula

Professor André Perez

Tópicos

- 1. Introdução;
- 2. Apache Spark;
- 3. Data Wrangling com Spark.

Aulas

1. Introdução

1.1. Big data

Big data é um termo que geralmente representa um conjunto de dados muito grande, complexo e de difícil processamento. Apesar do apelo comercial, o termo pouco contribui para a definição de um problema com o volume de dados pois:

- tamanho é relativo, um problema de processamento em um computador pode não ser para outro que contenha mais recursos (RAM, CPU, etc.);
- tamanho não é o único desafio moderno no processamento de dados: a variedade do tipo dos dados e a velocidade com que são produzidos somam-se a essa complexidade;
- etc.

1.2. 3vs: Volume, variedade e velocidade

A criação da *internet* (1990s) e a sua democratização através da adoção em massa de computadores pessoais (2000s), *smartphones* (2010s) e dispositivos da *internet* das coisas (2010s), trouxe diversos novos desafios para o ecossistema de dados em três frentes: **volume**, **variedade** e **velocidade**.

 Volume: os recursos de um sistema computacional não são suficientes para processar um determinado volume de dados em uma determinada janela de de tempo / tamanho dos dados representa frações da memória do computador (décimos, etc.). Via de regra, arquivos com mais de 100 MB de tamanho são problemáticos para serem processados em computadores tradicionais.

Exemplo: um arquivo de texto (txt) de *log* de acesso de usuários a um *website* facilmente atinge 100 MB de tamanho em poucos dias. Com esse arquivo é possível responder perguntas de negócio como: Qual é o período do dia/semana/mês/ano com mais acessos? Qual o tempo médio da etapa de *login*? Qual a taxa de erro de acesso por dia/semana/mês?

 Variedade: as fontes de dados modernas armazenam e disponibilizam dados em diversos formatos. Somaram-se aos tradicionais bancos de dados relacionais (SQL) diferentes formatos de arquivos de arquivos (csv, json, txt, html, pdf, jpeg, png, etc.), bases de dados não relacionais (NoSQL ou dados semi/não estruturados), APIs (json), etc.

Exemplo: os sites dos tribunais de justiça dos estados publicam diariamente o andamento dos processos judiciais que tramitam na segunda instância em arquivos do tipo pdf . Como fazer para extrair e armazenar estes arquivos diariamente? Como extrair o número e o *status* do processo do documento?

 Velocidade: processamento de dados em lote (batch) já não atende mais as necessidades do negócio. Dispositivos permanecem conectados as redes de computadores (internet, internet móvel, etc.) o tempo todo, logo, continuamente produzindo dados.

Exemplo: um e-commerce registra os clicks de um usuário enquanto este navega pelo seu website. Com este dados e com o histórico do usuário, seria possível disponibilizar um cupom de desconto para que o usuário não deixe o website sem finalizar uma compra? Qual o melhor momento para enviar o cupom?

1.2. Computação distribuída e paralela

A estratégia para lidar com o aumento da demanda por recursos para processamento de dados sempre foi a de melhoria do *hardware* de **um mesmo computador**: mais memória, mais velocidade de processamento, etc. Contudo, após os anos 2000s, a demanda cresceu em um ritmo muito mais acelerado se comparado a capacidade de melhoria de *hardware*. E dessa necessidade nasceu uma nova arquitetura de computadores e um novo paradigma de computação: *clusters* de computadores (**múltiplos computadores**) e computação distribuída e paralela, respectivamente.

Arquitetura

Um *cluster* é um conjunto de computadores (mesmas configurações, idealmente mesmo *hardware*, etc.) conectados em uma rede privada. Um gerenciador de *cluster* (*cluster manager*) é uma aplicação que orquestra as atividades de armazenamento e processamento de dados distribuído e paralelo, abstraindo a complexidade para usuários e aplicações. Os gerenciadores de *cluster* mais utilizados são o Apache Hadoop e o Kubernetes.

Computadores de um cluster são conhecidos como nós.

Armazenamento

Dados são armazenados em arquivos (csv , txt , parquet , etc.) e são "quebrados" em blocos (128 MB geralmente), distribuídos e replicados (três vezes geralmente) nos nós. O gerenciador de *cluster* mantém um mapa da distribuição dos blocos.

Processamento

Existem algumas maneiras de se processador dados distribuídos. Uma das maneiras mais eficiente é enviar a operação de processamento (agregações como soma, por exemplo) para o nó em que o dado está armazenado, realizar o processamento localizado e coletar apenas os resultados.

Nota: Operações de junção (joins) constumam ser caras (em termos de tempo de processamento e consumo de memória) pois blocos inteiros de dados devem trafegar pela rede de um nó para o outro.

2. Apache Spark

Spark é um motor de processamento de dados para engenharia, análise e ciência de dados otimizado para *clusters* de computadores. Permite que operações comuns no processamento de dados como seleção de colunas, filtros e *joins* sejam feitas de utilizando o paradigma de computação distribuída e paralela através de APIs de alto nível disponível em diversas linguagens.

O Spark divide as operações em **transformações** (filter, select, withColumn, etc.) e **ações** (read.csv, write.csv, etc.). Operações de **transformação** são encadeadas até que uma operação de **ação** seja executada, fazendo com que todas as operações sejam executadas de uma vez. Essa característica é conhecida como *lazy* evaluation.

Nota: Em geral, a instalação (item 2.1) e configuração (item 2.2) de um *cluster* Spark é feito por especialistas, como uma pessoa engenheira de dados. É comum uma pessoa analista/cientista de dados começar a interagir com um *cluster* Spark a partir do item 2.3.

Nota: O AWS EMR (*elastic map reduce*) fornece *clusters* com gerenciador Apache Hadoop e com o Apache Spark instalado. Preço computado sobre a hora dos nós, máquinas virtuais do AWS EC2.

2.1. Instalação

Spark é uma aplicação desenvolvida na linguagem de programação Scala, que funciona em uma máquina virtual Java (JVM). Por isso, é necessário fazer o download da aplicação e instalar o Java em todas as máquinas (nós) do cluster.

• Download do Spark, versão 3.0.0.

Download e instalação do Java, versão 8.

```
% capture
!apt-get remove openjdk*
!apt-get update --fix-missing
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
```

Mesmo sendo uma aplicação Scala, o Spark disponibiliza APIs de integração em diversas linguagens de programação. O pacote Python PySpark é a API para Python. Com ele, é possível interagir com o Spark como se fosse uma aplicação Python nativa. A API é similar ao pacote Pandas e sua documentação pode ser encontrada neste link.

Nota: a versão do PySpark deve ser a mesma que a versão da aplicação Spark.

```
In [ ]: !pip install -q pyspark==3.0.0
```

2.2. Configuração

Na etapa de configuração, é necessário configurar as máquinas (nós) do *cluster* para que tanto a aplicação do Spark quanto a instalação do Java possam ser encontrados pelo PySpark e, consequentemente, pelo Python. Para isso, basta preencher as variáveis de ambiente JAVA_HOME e SPARK_HOME com o seus respectivos caminhos de instalação.

```
import os

os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-3.0.0-bin-hadoop2.7"
```

Por fim, para conectar o PySpark (e o Python) ao Spark e ao Java, pode-se utilizar o pacote Python FindSpark.

```
In [ ]:
!pip install -q findspark==1.4.2
```

O método init() injeta as variáveis de ambiente JAVA_HOME e SPARK_HOME no ambiente de execução Python, permitindo assim a correta conexão entre o pacote PySpark com aplicação Spark.

```
import findspark
findspark.init()
```

2.3. Conexão

Com o *cluster* devidamente configurado, vamos criar uma aplicação Spark. O objeto SparkSession do pacote PySpark (e seu atributo builder) auxiliam na criação da aplicação:

- master : endereço (local ou remoto) do cluster;
- appName : nome da aplicação;
- get0rCreate: método que de fato cria os recursos e instância a aplicação.

```
In [ ]:
    from pyspark.sql import SparkSession

    spark = SparkSession.\
        builder.\
        master("local[*]").\
        appName("pyspark-notebook").\
        getOrCreate()
```

Com o objeto SparkSession devidamente instanciado, podemos começar a interagir com os dados utilizando os recursos do *cluster* através de uma estrutura de dados que já conhecemos: DataFrames :

3. Data Wrangling

Vamos utilizar a API Python do Spark, o pacote PySpark, para limpar os dados da aula 2.

Nota: Atente-se sempre a natureza distribuída das operações.

3.1. Exploração

```
In []: data.count()

In []: data.columns
```

```
In [ ]: len(data.columns)
```

3.2. Limpeza

O método select seleciona colunas do DataFrame . Já o método withColumnRenamed renomeia colunas.

```
In []:
    data = data.select([
        "Description",
        "Population (GB+NI)",
        "Unemployment rate"
])

In []:
    data = data.\
        withColumnRenamed(
        "Description", 'year'
).\
        withColumnRenamed(
        "Population (GB+NI)", "population"
).\
        withColumnRenamed(
        "Unemployment rate", "unemployment_rate"
)
```

```
In [ ]: data.show(n=10)
```

O método filter seleciona linhas do DataFrame baseado no conteúdo de uma coluna.

```
In [ ]: data_description = data.filter(data['year'] == 'Units')
In [ ]: data_description.show(n=10)
```

3.3. Junção

```
In [ ]: (data.count(), len(data.columns))
In [ ]: (data_description.count(), len(data_description.columns))
```

O método join faz a junção distribuída de dois DataFrames . Já o método broadcast "marca" um DataFrame como "pequeno" e força o Spark a trafega-lo pela rede.

```
In [ ]: from pyspark.sql.functions import broadcast
```

```
In [ ]:
         data = data.join(
              other=broadcast(data_description),
              on=['year'],
              how='left_anti'
          )
In [ ]:
         data.show(n=10)
        O método dropna remove todas as linhas que apresentarem ao menos um valor nulo.
In [ ]:
         data = data.dropna()
In [ ]:
         data.show(n=10)
        O método withColumn ajuda a criar novas colunas.
In [ ]:
         data = data.withColumn(
              'century',
              1 + (data['year']/100).cast('int')
In [ ]:
         data.\
              select(['century', 'year']).\
              groupBy('century').\
              agg({'year': 'count'}).show()\
        O método collect é uma ação que coleta os resultados dos nós e retorna para o
        Python.
In [ ]:
         timing = data.\
              select(['century', 'year']).\
              groupBy('century').\
              agg({'year': 'count'}).\
              collect()
In [ ]:
         timing
In [ ]:
         timing[0].asDict()
```

3.4. Escrita

O método write.csv persiste o DataFrame em formato csv. Já o método repartition controla o número de partições da escrita.