Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound having the following Formula:

$$\begin{array}{c|c} Ar & X & & \\ N & N & & \\ H & H & & \\ R10 & & \end{array}$$

or a salt, hydrate, or complex thereof, wherein:

1 and n are independently 0, 1, 2, 3, 4 or 5;

(1 + n) is 2, 3, 4 or 5;

X is O or S;

R10 is selected from the group consisting of hydrogen, hydroxy, C₃₋₇cycloalkyloxy, acyloxy, carboxy, carbamoyl, acyl, amino, alkylamino, arylamino, acylamino, C₁₋₅alkyl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl, alkyloxycarbonyl,

wherein the C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl or alkyloxycarbonyl is optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, dkyloxycarbonyl, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, acyloxy, C₁₋₅alkoxy, aryloxy, heteroaryloxy, nitro, amino, acylamino, alkylamino, arylamino, cyano, aryl, heteroaryl

Wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅alkyl or C₁. 5alkoxy, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonyl, arylsulfonyl, arylsulfonyl, arylsulfonyl, arylsulfonyl,

sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydroxy, and halogen;

Ar is aryl phenyl or naphthyl,

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, trihalomethoxy, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl,acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, hydrazino,

acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

or

$$\begin{array}{c} R_3 \\ \begin{matrix} \\ \end{matrix} \\ \begin{matrix} \\ \end{matrix} \\ \begin{matrix} \\ \end{matrix} \\ R_2 \\ \end{array}$$

wherein R₁ is:

$$R_4$$
 R_4
 R_4

or

$$R_8$$
 R_7

or

$$\begin{array}{c|c} R_7 & R_8 \\ \hline U & & \\ \hline T & & \\ Q & & \\ \end{array}$$

or

$$R_{6}$$

p is 0, 1 or 2;

q is 0, 1 or 2;

R₄ and R4' are independently selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl

wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR_9 ; wherein R_9 is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide,

hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{l-5} alkyl, C_{l-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arykulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₇ and R₈ are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently C; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds;

 R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl,

alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, acyloxy, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, aryloxy, arylmethyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, akyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C_{1.5} alkoxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl,

isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen, arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R_1 , R_2 , and R_3 bond together; further provided that Ar is not 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-(lower) alkoxyphenyl, pyrene, chrysene, or phenanthrene.

- 2. (Original) The compound according to claim 1, wherein Z is
- 3. (Original) The compound according to claim 2, wherein (1 + n) is 2, 3, or 4.
- 4. (Original) The compound according to claim 3, wherein (1 + n) is 2, or 3.
- 5. (Original) The compound according to claim 1, wherein X is O.
- 6. (Original) The compound according to claim 5, wherein R10 is hydrogen.
- 7. (Previously presented) The compound according to claim 6, wherein Ar is optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, trihalomethoxy, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

R₅ is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

Atty. Dkt. No. 051023-0111 Appln. Ser. No. 10/019,652

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, and carboxy;

 R_7 and R_8 are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy.

8. (Original) The compound of claim 7, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl,

substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, acyloxy, acylamino, aryl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, aryloxy, arylmethyloxy, acylamino hydroxy, and halogen,

heteroaryl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, acylamino, hydroxy, and halogen,

C_{1-5} alkoxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which are substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, acylamino, hydroxy, and halogen,

and C₃₋₇ cycloalkyl

substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is substituted with carboxy or alkyloxycarbonyl, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazdyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl,

alklysulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, and acylamino.

9. (Original) The compound of claim 8, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl,

substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, and acylamino.

10. (Original) The compound of claim 9, wherein R_2 is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl, substituted with one or more groups independently selected from the group consisting of carboxy and alkyloxycarbonyl

- 11. (Original) The compound according to claim 1, wherein Z is
- 12. (Original) The compound according to claim 11, wherein (1 + n) is 2, 3, or 4.
- 13. (Original) The compound according to claim 12, wherein (1 + n) is 2, or 3.
- 14. (Original) The compound according to claim 13, wherein X is O.
- 15. (Original) The compound according to claim 14, wherein R10 is hydrogen.
- 16. (Original) The compound according to claim 15, wherein R_3 is C_{1-8} alkyl optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, and carboxy.

17. (Previously presented) A compound according to claim 6, wherein Ar is optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

$$N$$
---- R_1

and aryloxy

or

$$\begin{array}{c|c} R_3 \\ \hline \\ N \\ \hline \\ R_2 \end{array}$$

wherein R₁ is:

$$R_4$$
or
 R_5
or
 R_7
 R_8
 R_6
 R_7
 R_8
 R_6
 R_7
 R_8
 R_6
 R_7
 R_8
 R_6
 R_7
 R_8
 R_8
 R_7
 R_8
 R_8

R₈

R₄ is selected from the group consisting of hydrogen, halogen, C_{1.5} alkyl, aryl, heteroaryl wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C_{1.5} alkyl, C_{1.5}alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR_9 ; wherein R_9 is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R_5 is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₇ and R₈ are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently C; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds;

 R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido,

arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, isotniazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl,

Atty. Dkt. No. 051023-0111 Appln. Ser. No. 10/019,652

sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R_1 , R_2 , and R_3 bond together; further provided that Ar is not 2-hydroxy-5-methoxyphenyl.

18. (Previously presented) A compound according to claim 17, wherein Ar is optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino.

19. (Original) The compound according to claim 1, wherein X is S.

- 20. (Original) The compound according to claim 19, wherein R10 is hydrogen.
- 21. (Previously presented) A compound according to claim 20, wherein Ar is optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, æyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

$$N$$
— R_1
 R_2

or

$$\begin{array}{c}
R_3 \\
 \downarrow^+ \\
N^+ \\
R_1 \\
R_2
\end{array}$$

wherein R₁ is:

$$R_4$$
or
 R_5
or
 R_8
 R_7
or

$$R_7$$
 R_8
 I
 I
 R_6

$$R_{7}$$
 R_{8}

p is 0, 1 or 2; q is 0, 1 or 2;

or

R₄ is selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide,

arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR₉; wherein R₉ is hydroxy, C₁₋₅alkyl, C₁₋₅alkoxy, amino, alkylamino or arylamino; R₅ is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C_{1-5} alkyl, C_{1-5} alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₇ and R₈ are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently C; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds;

 R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy, wherein the alkyl or alkoxy

may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonamido, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl,tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C_{1-5} alkyl or C_{1-5} alkoxy which is optionally substituted

with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R_1 , R_2 , and R_3 bond together; further provided that Ar is not 2-hydroxy-5-methoxyphenyl.

22. (Currently amended) A compound according to claim 1, wherein R10 is selected from the group consisting of hydroxy, C₃₋₇cycloalkyloxy, acyloxy, carboxy, carbamoyl, acyl, amino, alkylamino, arylamino, acylamino, C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkyloxycarbonyl, arylcarbamoyl, alkyloxycarbonyl,

wherein the C₁₋₅alkyl, aryl, C₁₋₅alkoxy, aryloxy, alkylcarbamoyl, arylcarbamoyl or alkyloxycarbonyl is optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, acyloxy, C₁₋₅alkoxy, aryloxy, heteroaryloxy, nitro, amino, acylamino, alkylamino, arylamino, cyano, aryl, heteroaryl

Wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅alkyl or C₁₋₅alkoxy, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydroxy, and halogen;

Ar is phenyl or naphthyl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, alkyloxycarbonyl, arylmethyloxycarbonyl, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

Z is:

$$N \longrightarrow R_1$$
 R_2

or

$$\begin{array}{c}
R_3 \\
 \downarrow \\
N \xrightarrow{} R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

wherein R₁ is:

$$R_4$$
or
 R_5
or
 R_7
 R_8
 R_7
 R_8
 R_6
or
 R_7
 R_8
 R_7
 R_8
 R_6
 R_7
 R_8
 R_6
 R_7
 R_8

p is 0, 1 or 2; q is 0, 1 or 2;

R₄ is selected from the group consisting of hydrogen, halogen, C₁₋₅ alkyl, aryl, heteroaryl wherein the aryl or heteroaryl is optionally substituted with one or more groups independently selected from the group of consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

and COR₉; wherein R₉ is hydroxy, C_{1-5} alkyl, C_{1-5} alkoxy, amino, alkylamino or arylamino; R₅ is aryl or heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₆ is selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino, aryl

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio,

alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, cyanoguanidino,

and aryloxy

optionally substituted with one or more groups independently selected from the group consisting of hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylthio, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino;

R₇ and R₈ are independently selected from the group consisting of hydrogen, hydroxy, halogen, trihalomethyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, cyano, nitro, amino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, acyl, acyloxy, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, hydrazino, acylamino, alkylamino, hydroxyamino, amidino, guanidino, and cyanoguanidino; Q, T, U, W and L are independently C; wherein adjacent atoms U-T, T-Q, U-W, W-L may form one or more double bonds;

 R_2 and R_3 are independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} alkenyl and C_{1-8} alkynyl

optionally substituted with one or more groups independently selected from the group consisting of carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, alkylsulfonamide, arylsulfonamide, alkylsulfonamide, arylsulfonamide, alkylthio, halogen, hydroxy, nitro, amino, acylamino, alkylamino, cyano, aryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy, wherein the alkyl or alkoxy may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido,

arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

heteroaryl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which may be optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

arylmethyloxy

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, alkyloxycarbonyl, tetrazolyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl, sulfamoyl, alkylsulfonamide, arylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

C₃₋₇ cycloalkyl

optionally substituted with one or more groups independently selected from the group consisting of C₁₋₅ alkyl or C₁₋₅ alkoxy which is optionally substituted with carboxy or alkyloxycarbonyl, cyano, nitro, amino, acylamino, alkylamino, carboxy, carbamoyl, alkylcarbamoyl, arylcarbamoyl, alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, isoxazolyl, isothiazolyl, alkylsulfonamido, arylsulfonamido, sulfonyl, alkylsulfonyl, arylsulfonyl,

sulfamoyl, alkylsulfamoyl, arylsulfamoyl, alkylsulfonamide, arylsulfonamide, alkylthio, acyl, acyloxy, hydrazino, hydroxyamino, amidino, guanidino, cyanoguanidino, hydroxy, and halogen,

and heterocycle;

provided that none of R_1 , R_2 , and R_3 bond together; further provided that Ar is not 2-hydroxy-5-methoxyphenyl.

- 23. (Original) The compound according to claim 1 selected from the group consisting of:
 - N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane;
 - N-(4-Nitrophenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane;
 - N-(4-Bromophenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-1,3-diaminopropane;
 - N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-propyl-1,3-diaminopropane;
 - Methyl 4-[[3-(4-bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;
 - Methyl 4-[[3-(4-bromophenylureido)propyl][(1R)-1-phenylethyl]amino]butylate;
 - Methyl 4-[[3-(4-bromophenylureido)propyl][2-(4-chlorophenyl)ethyl]amino] butylate;
 - Methyl 4-[[4-(4-bromophenylureido)butyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;
 - Methyl 4-[[5-(4-bromophenylureido)pentyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;
 - Methyl 4-[[3-(4-methylphenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;
 - Methyl 4-[[3-(3,4-dichlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butylate;
 - 4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino] butanoic acid;
 - 4-[[3-(4-Bromophenylureido)propyl][(1R)-1-phenylethyl]amino] butanoic acid;
 - 4-[[4-(4-Bromophenylureido)butyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
 - 4-[[5-(4-Bromophenylureido)pentyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
 - 4-[[3-(4-Methylphenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;

- 4-[[3-(3,4-Dichlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(4-Bromophenylureido)propyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- N-Phenylcarbamoyl-N'-[2-(4-chlorophenyl)ethyl]-N'-ethyl-2-hydroxy-1,3-diaminopropane;
- 4-[[3-(4-Chlorophenylthioureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(tert-butoxycarbonyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)-2-hydroxypropyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Chlorophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic;
- Methyl 4-[[3-(4-bromophenylureido)propyl](1-indanyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl](1-indanyl)amino]butanoic acid;
- Methyl 4-[[3-(4-bromophenylureido)propyl][(1R)-1-indanyl]amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1R)-1-indanyl]amino]butanoic acid;
- Methyl 4-[[3-(4-bromophenylureido)propyl][(1*R*)-1,2,3,4-tetrahydro-1-naphthyl]amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1R)-1,2,3,4-tetrahydro-1-naphthyl]amino]butanoic acid;
- Ethyl 4-[[3-(4-bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanamide;
- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-[(phenylsulfonyl)carbamoyl]propane;
- 4-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-butanol;
- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-[1-(triphenylmethyl)tetrazol-5-yl]propane;
- 3-[[3-(4-Bromophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]-1-(1*H*-tetrazol-5-yl)propane;

- Methyl 4-[[3-[4-(carboxy)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[3-(4-Bromophenylureido)propyl][(1*R*)-1-(4-methoxyphenyl)ethyl]amino]butanoic acid:
- 4-[[3-[4-(Ethoxycarbonyl)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Iodophenylureido)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-[4-(Butoxycarbonyl)phenylureido]propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- [3-(Phenylureido)propyl]bis[2-(4-chlorophenyl)ethyl]amine;
- 4-[[3-(4-Bromophenylureido)propyl][(1R)-1-(4-bromophenyl)ethyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][1-(4-fluorophenyl)ethyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][1-(4-chlorophenyl)ethyl]amino]butanoic acid;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(tert-butoxycarbonyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(isopropylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- Methyl 4-[[(3S)-3-(4-bromophenylureido)-3-(benzylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butylate;
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(isopropylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[(3S)-3-(4-Bromophenylureido)-3-(benzylcarbamoyl)propyl](1,2,3,4-tetrahydro-1-naphthyl)amino]butanoic acid;
- 4-[[3-(4-Bromophenylthioureido)propyl][(1R)-1-indanyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylthioureido)propyl][(1*R*)-1,2,3,4-tetrahydro-1-naphthyl]amino]butanoic acid;
- 4-[[3-(4-Bromophenylureido)propyl][(1S)-1-(4-bromophenyl)ethyl]amino]butanoic acid;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl]bis(4-methylbenzyl)ammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](4-chlorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](benzyl)ethylammonium iodide;

- [3-(Phenylureido)propyl][2-(3-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(4-Bromophenylureido)propyl][(1S)-1-phenylethyl][3-(carboxy)propyl]ethylammonium trifluoroacetate;
- [3-(4-Bromophenylureido)propyl][(1R)-1-phenylethyl][3-(carboxy)propyl]ethylammonium trifluoroacetate;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl][4-(methoxycarbonyl)butyl] ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl][4-(carboxy)benzyl]ethylammonium iodide;
- [5-(Phenylureido)pentyl][2-(4-chlorophenyl)ethyl]diethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](2-chlorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](2,5-difluorobenzyl)ethylammonium iodide;
- [3-(Phenylureido)propyl][2-(4-chlorophenyl)ethyl](3-fluorobenzyl)ethylammonium iodide;
- [3-(4-Cyanophenylureido)propyl][2-(3-chlorophenyl)ethyl][2-(2-methoxyehtoxy)ethyl] ethylammonium iodide; and
- [3-(4-Methoxyphenylureido)propyl][2-(3-chlorophenyl)ethyl][2-(2-methoxyehtoxy)ethyl] ethylammonium iodide.
- 24. (Previously presented) The compound according to claim 1, wherein the compound is defined below:

		Ar X R1 R10 R2						
CPD No.	Ar	x	1	n	R1	R2	R10	
1	phenyl	О	1	1	-(CH ₂) ₂ -(C)	ethyl	Н	

2	4-nitrophenyl	О	1	1	-(CH ₂) ₂ -\bigcip -C	ethyl	Н
3	4-bromophenyl	О	1	1	-(CH ₂) ₂ -_CI	ethyl	Н
5	4-nitrophenyl	О	1	2	-(CH ₂) ₂ -CI	ethyl	Н
6	4-chlorophenyl	Ο	1	1	-(CH ₂) ₂ -CI	ethyl	Н
7	phenyl	Ο	1	2	$-(CH_2)_2$ - CI	ethyl	Н
8	phenyl	Ο	1	3	-(CH ₂) ₂ -\bigcipCI	ethyl	Н
9	2-methoxy- phenyl	O	1	1	-(CH ₂) ₂ -CI	ethyl	Н
10	phenyl	O	1	1	-(CH ₂) ₂ -CI	n-propyl	Н
11	phenyl	O	1	1	-(CH ₂) ₂ -	ethyl	Н
12	phenyl	O	1	1	-(CH ₂) ₂ -CI	-СН ₂ -СО ₂ Ме	Н
13	phenyl	Ο	1	1	-(CH ₂) ₂ -CI	-CH ₂ -\(\)	Н
14	phenyl	О	1	1	-(CH ₂) ₂ -CI	n-butyl	Н
15	phenyl	0	1	1	-(CH ₂) ₂ -CI	-CH ₂ -\NO ₂	H .

16	phenyl	O 1 1	-(CH ₂) ₂ -CI	-сн ₂ -СN	Н
17	phenyl	O 1 1	-(CH ₂) ₂ -CI	-CH ₂ -(-)-a	Н
18	phenyl	0 1 1	-(CH ₂) ₂ -CI	-CH ₂ -CMe	Н
19	phenyl	0 1 1	-(CH ₂) ₂ -(CH ₂)-CI	−CH₂ − tBu	Н
20	phenyl	0 1 1	-(CH ₂) ₂ -CI	-CH ₂	Н
21	phenyl	O 1 1	-(CH ₂) ₂ -CI	-CH ₂	Н
22	phenyl	O 1 1	-(CH ₂) ₂ -(CI	-CH ₂ CO ₂ B	Н
23	phenyl	O 1 1	-(CH ₂) ₂ -CI	-CH ₂ -\(\bigcirc_N\)	Н
24	phenyl	O 1 1	-(CH ₂) ₂ -CI	-CH ₂ -\N	Н
25	phenyl	O 1 1	-(CH ₂) ₂ -\(\bigcirc\)-CI	-(CH ₂) ₂ -	Н
26	phenyl	O 1 1	-(CH ₂) ₂ -CI	-(CH ₂) ₂	Н
27	phenyl	O 1 1	$-(CH_2)_2$ -CI	methyl	Н

28	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ -	Н
29	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
30	4-bromophenyl	О	1	1	Me _{//}	-(CH ₂) ₃ CO ₂ Me	Н
31	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
32	4-bromophenyl	О	1	2		-(CH ₂) ₃ CO ₂ Me	Н
33	4-bromophenyl	О	1	3		-(CH ₂) ₃ CO ₂ Me	Н
34	4-methylphenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
35	3,4-dichloro- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
36	4-bromophenyl	O	1	1	OMe OMe OMe	-(CH ₂) ₃ CO ₂ Me	Н
37	4-bromophenyl	О	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
38	4-bromophenyl	О	1	1	-CH ₂ 0	-(CH ₂) ₃ CO ₂ Me	Н
39	4-bromophenyl	Ο	1	1	-CH ₂ \(\sum_{2} \)	-(CH ₂) ₃ CO ₂ Me	Н
40	4-bromophenyl	0	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ Me	Н

41	4-bromophenyl	О	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ CO ₂ Me	Н
42	4-bromophenyl	О	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
43	4-bromophenyl	O	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₃ CO ₂ Me	Н
44	4-bromophenyl	0	1	1	-(CH ₂) ₂	-(CH ₂) ₃ CO ₂ Me	Н
45	4-bromophenyl	О	1	1	-ai-(_)	-(CH ₂) ₃ CO ₂ Me	Н
46	4-bromophenyl	O	1	1	-(CH ₂) ₂ -H	-(CH ₂) ₃ CO ₂ Me	Н
47	4-bromophenyl	O	1	1	Me	-(CH ₂) ₃ CO ₂ Me	Н
48	4-bromophenyl	O	1	1	-CH ₂ -N	-(CH ₂) ₃ CO ₂ Me	Н
49	phenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
50	4-bromophenyl	O	1	0		-(CH ₂) ₃ CO ₂ Me	Н
51	3-chlorophenyl	О	1	1	$\langle \Sigma \rangle$	-(CH ₂) ₃ CO ₂ Me	Н
52	3-methylphenyl	0	1	1		-(CH ₂) ₃ CO ₂ Me	Н
53	4-chloro-3- (trifluoro- methyl)phenyl	0	1	1		-(CH ₂) ₃ CO ₂ Me	Н

54	2-biphenyl	0	1	1		-(CH ₂) ₃ CO ₂ Me	Н
55	2,4-dimethoxy- phenyl	О	1	1	\diamondsuit	-(CH ₂) ₃ CO ₂ Me	Н
56	phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
57	4-methoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
58	4-phenoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
59	1-naphthyl	О	1	1	\Longrightarrow	-(CH ₂) ₃ CO ₂ Me	Н
60	4-bromophenyl	О	1	1		-(CH₂)₃CO₂H	Н
61	4-bromophenyl	О	1	1	Me _{,,,} ,	-(CH ₂)₃CO ₂ H	Н
62	4-bromophenyl	О	1	2		-(CH₂)₃CO₂H	Н
63	4-bromophenyl	О	1	3		-(CH ₂) ₃ CO ₂ H	Н
64	4-methylphenyl	Ο	1	1	\Diamond	-(CH ₂) ₃ CO ₂ H	Н
65	3,4-dichloro- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
66	4-bromophenyl	0	1	1	-CH ₂ -CMe	-(CH ₂) ₃ CO ₂ H	Н

							
67	4-bromophenyl	О	1	1	-CH ₂ -	-(CH ₂) ₃ CO ₂ H	Н
68	4-bromophenyl	О	1	1	-CH ₂ 0	-(CH ₂) ₃ CO ₂ H	Н
69	4-bromophenyl	О	1	1	-CH ₂ \(\sum_{2} \)	-(CH ₂) ₃ CO ₂ H	Н
70	4-bromophenyl	O	1	1	-CH ₂	-(CH ₂) ₃ CO ₂ H	Н
71	4-bromophenyl	О	1	1	-CH ₂ -CF ₃	-(CH ₂)₃CO ₂ H	Н
72	4-bromophenyl	О	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ CO ₂ H	Н
73	4-bromophenyl	О	1	1	$-(CH_2)_2$ -OMe	-(CH ₂) ₃ CO ₂ H	Н
74	4-bromophenyl	О	1	1	-(CH ₂) ₂	-(CH ₂) ₃ CO ₂ H	Н
75	4-bromophenyl	О	1	1	-QH-()	-(CH ₂) ₃ CO ₂ H	Н
76	4-bromophenyl	О	1	1	-(CH ₂) ₂ -F	-(CH ₂) ₃ CO ₂ H	Н
77	4-bromophenyl	О	1	1	Me	-(CH ₂) ₃ CO ₂ H	Н
78	4-bromophenyl	О	1	1	-CH ₂ -_N	-(CH ₂) ₃ CO ₂ H	Н
79	4-bromophenyl	0	1	1	-(CH ₂) ₂ -\bigcipCI	-(CH ₂) ₃ CO ₂ H	Н

80	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂)₃CO ₂ H	Н
82	3-chlorophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
83	3-methylphenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
84	4-chloro-3- (trifluoro- methyl)phenyl	O	1	1		-(CH₂)₃CO₂H	Н
85	2-biphenyl	Ο	1	1		-(CH ₂) ₃ CO ₂ H	Н
86	2,4-dimethoxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
87	phenyl	O	1	1	\Longrightarrow	-(CH ₂) ₃ CO ₂ H	Н
88	4- methoxyphenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
89	4-phenoxy- phenyl	О	. 1	1		-(CH₂)₃CO₂H	Н
90	1-naphthyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
93	4-chloro-3- (trifluoro- methyl)phenyl	О	1	1		ethyl	Н
94	4-chloro-3- (trifluoro- methyl)phenyl	О	1	1	-CH ₂	-(CH ₂) ₃ SMe	Н
95	4-chloro-3- (trifluoro- methyl)phenyl	О	i	1	-(CH ₂) ₂ -	-CH ₂ CH(CH ₃) ₂	Н

96	4-chloro-3- (trifluoro- methyl)phenyl	0	1	1	-(CH ₂) ₂ -OMe	-CH ₂ CH(CH ₃) ₂	Н
97	4-chloro-3- (trifluoro- methyl)phenyl	0	1	1	-(CH ₂) ₂ -fi	-(CH ₂) ₃ CO ₂ H	Н
98	2-biphenyl	О	1	1	, \		Н
99	2-biphenyl	О	1	1	-CH ₂	-(CH ₂) ₂ CH(CH ₃) ₂	Н
100	2-biphenyl	О	1	1	-CH ₂	-(CH ₂) ₃ SMe	Н
101	2-biphenyl	О	1	1	-CH ₂	-(CH ₂) ₃ CO ₂ H	Н
102	2-biphenyl	Ο	1	1	-CH ₂		Н
103	2-biphenyl	О	1	1	OMe -CH ₂ -OMe OMe	-(CH ₂) ₃ SMe	Н
104	2-biphenyl	О	1	1	-CH-	-CH ₂ CH(CH ₃) ₂	Н
105	2-biphenyl	О	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ SMe	Н
106	2-biphenyl	О	1	1	-(CH ₂) ₂ -	-(CH ₂) ₃ CO ₂ Me	Н
107	2-biphenyl	Ο	1	1	$-(\operatorname{CH_2})_2 - \overline{\left\langle \begin{array}{c} \\ \end{array} \right\rangle}$		Н
108	2-biphenyl	0	1	1	-(CH ₂) ₂ -OMe	-CH ₂ CH(CH ₃) ₂	Н

					····		
109	2-biphenyl	O	1	1	-(CH ₂) ₂ -OMe	-CH₂ CO₂B	Н
110	2-biphenyl	О	1	1	-(CH ₂) ₂ -OMe		Н
111	2-biphenyl	О	1	1	-(CH ₂) ₂ -Me	-CH ₂ CH(CH ₃) ₂	Н
112	2-biphenyl	Ο	1	1	-(CH ₂) ₂ -Me	-CH ₂ CO ₂ B	Н
113	2-biphenyl	О	1	1	-(CH ₂) ₂ -CD	-CH ₂ CH(CH ₃) ₂	Н
114	2-biphenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -	Н
115	2-biphenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ CO₂B	Н
116	2-biphenyl	О	1	1	-(CH ₂) ₂ -CG		Н
117	2-biphenyl	O	1	1	-(CH ₃) ₂ -F	-CH ₂ CH(CH ₃) ₂	Н
118	4-bromophenyl	О	1	1	-(CH ₂) ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-CH ₂ CH(CH ₃) ₂	Н
119	4-bromophenyl	0	1	1	-(CH ₂) ₂ \(\big ^{\mathbb{N}}\)	-(CH ₂) ₂ CH(CH ₃) ₂	Н
120	4-bromophenyl	О	.1	1	-(CH ₂) ₂ \(\big ^{\mathbb{N}}\)	—(CH ₂) ₂ —	Н
121	4-bromophenyl	0	1	1	-(CH ₂) ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-(CH ₂) ₂ -0-CH ₂ -	Н

122	4-bromophenyl	О	1	1		-CH ₂ CH(CH ₃) ₂	Н
123	4-bromophenyl	О	1	1		-(CH ₂) ₂ -O-CH ₂ -	Н
124	4-bromophenyl	О	1	1		-(CH ₂) ₃ SMe	Н
125	4-bromophenyl	O	1	1		-CH ₂ CO ₂ B	Н
126	4-bromophenyl	О	1	1	-CH ₂	-CH ₂ CH(CH ₃) ₂	Н
127	4-bromophenyl	Ο	1	1	-CH ₂ -	-(CH ₂) ₂ -O-CH ₂ -	Н
128	4-bromophenyl	Ο	1	1	-CH ₂ -	✓u", NH	Н
129	4-bromophenyl	Ο	1	1	-CH ₂ -CF ₃	-CH ₂ CH(CH ₃) ₂	Н
130	4-bromophenyl	Ο	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ SMe	Н
131	4-bromophenyl	O	1	1	OMe -CH ₂ OMe OMe	-(CH ₂) ₂ CH(CH ₃) ₂	Н
132	4-bromophenyl	O	1	1	-(CH ₂) ₂ -\bigcom_\text{Me}	-(CH₂)₃CO₂H	Н
133	4-bromophenyl	Ο	1	1	-(CH ₂) ₂ -Ca	-(CH₂)₃CO₂H	Н
134	4-bromophenyl	O	1	1	-(CH ₂) ₂ -\times_CI		Н

135	3-methylphenyl	О	1	1			Н
136	3-methylphenyl	О	1	1	-CH ₂	-CH ₂ CH(CH ₃) ₂	Н
137	3-methylphenyl	О	1	1	-(CH ₂) ₂ -	ethyl	Н
138	3-methylphenyl	О	1	1	-(CH ₂) ₂ -	-CH ₂ CO ₂ B	Н
139	3-methylphenyl	О	1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₃ SMe	Н
140	3-methylphenyl	О	1	1	$-(CH_2)_2$ -OMe	-(CH ₂)₃CO ₂ H	Н
141	3-methylphenyl	Ο	1	1	-(CH ₂) ₂ -\Me	-(CH ₂) ₃ SMe	Н
142	3-methylphenyl	Ο	1	1	$-(CH_2)_2$ - CI	-(CH ₂) ₃ SMe	Н
143	3-methylphenyl	О	1	1	-(CH ₂) ₂ -\square a		Н
144	3-chlorophenyl	О	1	1	-CH ₂ 0	-(CH ₂) ₂ -	Н
145	3-chlorophenyl	О	1	1	-ch² 🎝	-(CH ₂) ₂ CH(CH ₃) ₂	Н
146	3-chlorophenyl	О	1	1	-CH ₂ S	-CH₂ CO₂B	Н
147	3-chlorophenyl	О	1	1	-(CH ₂) ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-сн ₂ -	Н

148	3-chlorophenyl	0	1	1	-(CH ₂) ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-(CH ₂) ₂ -O-CH ₂ -	Н
149	3-chlorophenyl	O	1	1		-CH ₂ CO ₂ B	Н
150	3-chlorophenyl	0	1	1			Н
151	3-chlorophenyl	0	1	1	-(CH ₂) ₂ -Me	-CH ₂ CH(CH ₃) ₂	Н
152	3-chlorophenyl	O	1	1	-(CH ₂) ₂ -Me	-(CH ₂) ₂ -0-CH ₂ -	Н
153	3-chlorophenyl	O	1	1	-(CH ₂) ₂ -Me	-CH ₂ CO ₂ B	Н
154	3-chlorophenyl	0	1	1	-(CH ₂) ₂ -\square CI	-CH ₂ -	Н
155	3-chlorophenyl	0	1	1	-(CH ₂) ₂ -CD	-CH ₂ CO ₂ B	Н
156	3-chlorophenyl	0	1	1	-(CH ₂) ₂ -CD	-(CH ₂) ₃ CO ₂ Me	Н
157	2,4-dimethoxy- phenyl	0	1	1		-(CH ₂) ₃ SMe	Н
158	2,4-dimethoxy- phenyl	0	1	1	$-(CH_2)_2$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	-(CH ₂) ₃ SMe	Н
159	4-methoxy- phenyl	0	-1	1	-(CH ₂) ₂ -OMe	-(CH ₂) ₂ -O-CH ₂ -	Н
160	3,4-dichloro- phenyl	0	1	1	-CH ₂	-(CH ₂) ₃ CO ₂ Me	Н

161	1-naphthyl	О	1	1	-CH ₂ -CF ₃	-(CH ₂) ₃ CO ₂ H	Н
162	1-naphthyl	О	1	1	-(CH ₂) ₂ -	-CH₂ CO₂B	н
163	phenyl	О	1	1	-(CH ₂) ₂ -CI	ethyl	ОН
164	4-chlorophenyl	S	1	1		-(CH ₂)₃CO ₂ H	Н
165	4-bromophenyl	O	0	2		-(CH₂)₃CO₂H	,T ₀ +
166	4-bromophenyl	0	0	2		-(CH₂)₃CO₂H	,T _o +
167	4-bromophenyl	0	1	1		-(CH ₂)₃CO ₂ H	ОН
168	4-methoxy- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
169	4-benzyloxy- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
170	4-(trifluoro- methoxy)phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
171	4-chlorophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
172	4-bromophenyl	0	1	1	\Diamond	-(CH ₂) ₃ CO ₂ Me	Н

1.72	4.1	0 1	1	\Diamond	(CIL) CO II	TT
173	4-bromophenyl	O I	1	$\langle \mathcal{O} \rangle$	-(CH ₂) ₃ CO ₂ H	Н
174	4-bromophenyl	O 1	1		-(CH ₂) ₃ CO ₂ Me	Н
175	4-bromophenyl	O 1	1		-(CH ₂) ₃ CO ₂ H	Н
176	4-bromophenyl	O 1	1	\Diamond	-(CH ₂) ₃ CO ₂ Me	Н
177	4-bromophenyl	O 1	1	\Diamond	-(CH ₂) ₃ CO ₂ H	Н
178	4-bromophenyl	O 1	1	·	-(CH ₂) ₃ CO ₂ Me	Н
179	4-bromophenyl	O 1	1	·.•	-(CH₂)₃CO₂H	Н
180	4-bromophenyl	O 1	1		-(CH ₂) ₃ CO ₂ Me	Н
181	4-bromophenyl	O 1	1		-(CH₂)₃CO₂H	Н
182	4-bromophenyl	O 1	1		-(CH ₂) ₃ CO ₂ Me	Н
183	4-bromophenyl	O 1	1		-(CH₂)₃CO₂H	Н
184	4-bromophenyl	O 1	1		-(CH ₂) ₃ CO ₂ Et	Н
185	4-chlorophenyl	O 1	1	\triangleright	-(CH ₂) ₃ CO ₂ Me	Н

186	4-bromophenyl	О	1	1		-CH ₂ CO ₂ H	Н
187	4-fluorophenyl	o	1	1		-(CH ₂) ₃ CO ₂ Me	Н
188	4-fluorophenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
189	2-bromophenyl	O	1	1		-(CH ₂) ₃ CO ₂ Me	Н
190	2-bromophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
191	4-bromophenyl	О	1	1		ethyl	Н
192	phenyl	O	1	1		ethyl	Н
193	4-bromophenyl	O	1	1		-(CH ₂) ₃ CONH ₂	Н
194	4-bromophenyl	O	1	1	\mathcal{A}	-(CH ₂) ₃ CO ₂ Me	Н
195	4-bromophenyl	О	1	1	\mathcal{T}	-(CH ₂)₃CO ₂ H	Н
196	4-bromophenyl	О	1	1		M3 N S	Н
197	4-bromophenyl	О	1	1		Wa Na San Ca	Н
198	3-bromophenyl	O	1	1	$\langle \rangle$	-(CH ₂) ₃ CO ₂ Me	Н

199	3-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
200	4-bromo-2- methylphenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
201	4-bromo-2- methylphenyl	О	1	1	\Longrightarrow	-(CH ₂)₃CO ₂ H	Н
202	4-bromophenyl	О	1	1	\triangleright	-(CH ₂) ₄ OCOCH ₃	Н
203	4-bromophenyl	О	1	1		-(CH ₂) ₄ OH	Н
204	4-bromophenyl	О	1	1		-(CH ₂) ₅ OCOCH ₃	Н
205	4-bromophenyl	О	1	1		-(CH₂)₅OH	Н
206	4-bromophenyl	О	1	1	XD	-(CH ₂) ₃ CO ₂ Me	Н
207	4-bromophenyl	Ο	1	1	XD	-(CH ₂) ₃ CO ₂ H	Н
208	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
209	4-bromophenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ H	Н
210	4-bromophenyl	О	1	1	\bigcirc	CH ₃ N S CH ₃	Н
211	4-bromophenyl	0	1	1		-(CH ₂)₅CO ₂ H	Н

212	4-bromophenyl	О	1	1	\bigcirc	∠ \ OMe	Н
213	4-bromophenyl	О	1	1		-(CH ₂) ₄ CO ₂ Me	Н
214	4-bromophenyl	О	1	1		-(CH ₂) ₄ CO ₂ H	Н
215	4-bromophenyl	О	1	1		-(CH ₂) ₃ OCOCH ₃	Н
216	4-bromophenyl	O	1	1		-(CH₂)₃OH	Н
217	4-bromophenyl	O	1	1		Ph N N N	Н
218	4-bromophenyl	O	1	1		HN N N	Н
219	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ OH	Н
220	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ CONH ₂	Н
221	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ CH=CH ₂	Н
222	4-bromophenyl	О	1	1		HN N N	Н
223	4-bromophenyl	0	1	1		-CH ₂ -_CO ₂ H	Н

224	4-bromophenyl	О	1	1		-CH ₂ CO ₂ B	Н
225	4-carboxy- phenyl	О	1	1		-(CH ₂) ₃ CO ₂ Me	Н
226	4-bromophenyl	О	1	1	Сн,	-(CH ₂) ₃ CO ₂ H	Н
227	4-bromophenyl	О	1	1	- OMe	-(CH ₂) ₃ CO ₂ H	Н
228	4-(ethoxy-carbonyl)phenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
229	4-iodophenyl	О	1	1		-(CH₂)₃CO₂H	Н
230	phenyl	O	1	1	-(CH ₂) ₂ F	ethyl	Н
231	phenyl	О	1	1	-(CH ₂) ₂ -CH ₃	ethyl	Н
232	phenyl	О	1	1	-(СҢ ₂) ₂ -	ethyl	Н
233	phenyl	О	1	1	-(CH ₂) ₂ -	ethyl	Н
234	phenyl	O	1	1		ethyl	Н
235	4-carboxy- phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
236	3-(ethoxy-carbonyl)phenyl	0	1	1		-(CH ₂)₃CO ₂ H	Н

237	4-(n-butyloxy-carbonyl)phenyl	0	1	1	\Longrightarrow	-(CH ₂) ₃ CO ₂ H	Н
238	phenyl	О	1	1	-(CH ₂) ₂ -(CH	-(CH ₂) ₂ -CI	н
239	phenyl	О	1	1	-(CH ₂) ₂ -\(\bigcirc\)-CI	-CH ₂ CH(CH ₃) ₂	Н
240	phenyl	О	1	1	-(CH ₂) ₂ -\(\bigcirc\)-CI	-CH ₂ -	н
241.	phenyl	О	1	1	-(CH ₂) ₂ -\(\bigcirc\)-CI	-(CH ₂) ₄ CO ₂ Me	Н
242	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₅ CO ₂ Et	Н
243	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ CONH ₂	Н
244	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ OCOCH ₃	Н
245	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ CO ₂ Me	Н
246	4-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
247	3-bromophenyl	S	1	1	\triangleright	-(CH ₂) ₃ CO ₂ H	Н
248	3-chlorophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
249	4-iodophenyl	S	1	1		-(CH₂)₃CO₂H	Н

250	4-methylphenyl	S	1	1		-(CH₂)₃CO₂H	Н
251	3,4-dichloro- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	H
252	4-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
253	3-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
254	3-chlorophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
255	4-iodophenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
256	3,4-dichloro- phenyl	S	1	1		-(CH ₂) ₃ CO ₂ Me	Н
257	4-fluorophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
258	4-bromophenyl	0	1	1	.,—⟨□}−Br	-(CH ₂) ₃ CO ₂ H	Н
259	4-bromophenyl	О	1	1	NO ₂	-(CH ₂) ₃ CO ₂ H	Н
260	3-cyanophenyl	O	1	1	\Longrightarrow	-(CH ₂)₃CO ₂ H	Н
261	3-methoxy- phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
262	3-acetylphenyl	0	1	1	\rightleftharpoons	-(CH₂)₃CO₂H	Н

263	3-(methylthio)- phenyl	0	1	1	\triangleright	-(CH ₂) ₃ CO ₂ H	Н
264	4-methylthio- phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
265	2-naphthyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
266	4-(trifluoro- methoxy)phenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
267	H,C-()-N	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
268	4-bromophenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
269	4-bromophenyl	О	1	1	↓ -{ □ -F	-(CH₂)₃CO₂H	Н
270	4-bromophenyl	O	1	1		-(CH ₂) ₃ CO ₂ H	Н
271	4-bromophenyl	O	1	1		-(CH ₂) ₃ CO ₂ H	Н
272	4-bromophenyl	О	1	1		-(CH ₂)₃CO ₂ H	Н
273	4-bromophenyl	О	1	1	HO,,	-(CH ₂)₃CO ₂ H	Н
274	phenyl	О	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₃ CO ₂ Me	Н
275	phenyl	0	1	1	-(CH ₂) ₂ -CI	-(CH ₂) ₂ OCH ₃	Н

276	phenyl	0	1	1	-(CH ₂) ₂ -CI	-CH(CH ₃) ₂	Н
277	4-biphenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
278	4-acetylphenyl	О	1	1		-(CH ₂) ₃ CO ₂ H	Н
280	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ -	Н
281	4-bromophenyl	О	0	2		-(CH ₂) ₃ CO ₂ Me	-Jo+
282	4-bromophenyl	О	0	2	\Longrightarrow	-(CH ₂) ₃ CO ₂ Me	J _H L
283	4-bromophenyl	Ο	Ó	2		-(CH ₂) ₃ CO ₂ Me	
284	4-bromophenyl	0	0	2		-(CH₂)₃CO₂H	\downarrow^{\downarrow}
285	4-bromophenyl	О	0	2		-(CH ₂) ₃ CO ₂ H	
286	4-bromophenyl	O	0	2		-(CH ₂)₃CO ₂ H	L _A I.
287	4-bromophenyl	Ο	0	2		-(CH ₂) ₃ CO ₂ H	

288	4-bromophenyl	S	1	1	·.	-(CH ₂)₃CO ₂ H	Н
289	4-bromophenyl	S	1	1		-(CH ₂)₃CO ₂ H	Н
290	4-bromophenyl	S	1	1		-(CH ₂) ₃ CO ₂ H	Н
291	phenyl	О	1	1	-(CH ₂) ₂ -CI	-CH ₂ (CN	Н
292	phenyl	0	1	1	-(CH ₂) ₂ -CI	−CH ₂ − OMe	Н
293	4-bromophenyl	0	1	1	∑ —Br	-(CH ₂) ₃ CO ₂ H	Н

	Ar N R1 R2											
CPD No.	Ar	X	m	R1	R2	R3	Y					
91	phenyl	Ο	3	-(CH ₂) ₂ -CI	ethyl	ethyl	I					
92	4-bromo- phenyl	0	3	-(CH ₂) ₂ -CI	ethyl	ethyl	I					
294	4-bromo- phenyl	O	3	-(CH ₂) ₂ -CI	n-butyl	ethyl	I					
295	4-bromo- phenyl	0	3	-(CH ₂) ₂ -CI	n-propyl	ethyl	I					

296	phenyl	0	3	-(CH ₂) ₂ -\(\bigcirc\)-CI	−сн₂-⟨}−сн₃	−сн₂ —Сн₃	Br
297	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -\(\bigcirc\)-CH ₃	ethyl	I
298	phenyl	O	3	-(CH ₂) ₂ -\(\bigcirc\)-CI	-CH ₂ -\(\bigcirc_{\text{\tin}\text{\tetx{\text{\texi}\text{\text{\text{\text{\te}\tint{\text{\text{\text{\text{\text{\texi}\tint{\text{\tiint{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\	ethyl	I
299	phenyl	O	3	-(CH ₂) ₂ -\(\bigcirc\)-CI	-(CH₂)₃OH	ethyl	I
300	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ CONH ₂	ethyl	I
301	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ CH=CH ₂	ethyl	I
302	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
303	phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂ -CO ₂ Me	ethyl	I
304	phenyl	O	3	-(CH ₂) ₂ -OMe	ethyl	ethyl	I
305	phenyl	O	3	-CH ₂ -	ethyl	ethyl	I
306	phenyl	O	3	-(CH ₂) ₂	ethyl	ethyl	I
307	phenyl	0	3	-(CH ₂) ₂ -CH ₃	ethyl	ethyl	I

308	phenyl	0	3	-(CH ₂) ₂ -	ethyl	ethyl	I
309	phenyl	О	3	-(CH ₂) ₂ -	ethyl	ethyl	. I
310	phenyl	О	3	-a42-(a	ethyl	ethyl	I
311	phenyl	О	3		ethyl	ethyl	I
312	4-bromo- phenyl	О	3		-(CH ₂) ₃ CO ₂ Me	ethyl	I
313	4-bromo- phenyl	О	3	$\rightarrow \bigcirc$	-(CH ₂) ₃ CO ₂ Me	ethyl	I
314	4-bromo- phenyl	Ο	3		-(CH ₂) ₃ CO ₂ Me	ethyl	I
315	4-bromo- phenyl	О	3	$\nearrow \bigcirc$	-(CH ₂) ₃ CO ₂ H	ethyl	CF ₃ COO
316	4-bromo- phenyl	О	3		-(CH ₂) ₃ CO ₂ H	ethyl	CF ₃ COO
317	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ -CI	ethyl	I
318	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ CH(CH ₃) ₂	ethyl	I
319	phenyl	О	3	-(CH ₂) ₂ -CI	-сң-	ethyl	I
320	phenyl	0	3	-(CH ₂) ₂ -CI	-(CH ₂) ₄ CO ₂ Me	ethyl	I

321	phenyl	0	3	-(CH ₂) ₂ -CI	-(CH ₂) ₅ CO ₂ Et	ethyl	I
322	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -()-CO ₂ H	ethyl	I
323	phenyl	O	5	-(CH ₂) ₂ -CI	ethyl	ethyl	I
324	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
325	3,4- dichloro- phenyl	Ο	3	-(CH ₂) ₂ -CI	-cH ₂ -	ethyl	I
326	4-cyano- phenyl	Ο	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
327	phenyl	O	3	-(CH ₂) ₂ -\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	-CH ₂ -	ethyl	I
328	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
329	phenyl	О	3	-(CH ₂) ₂ -\bigcipCI	-CH2-CI	ethyl	I
330	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
331	phenyl	Ο	3	-(CH ₂) ₂ -CI	−CH ₂ − OMe	ethyl	I
332	phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂ -CO ₂ Me	ethyl	I
333	phenyl	0	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I

334	phenyl	0	3	-(CH ₂) ₂ -CI	-O4,-(-)-O	ethyl	I
335	4-bromo- phenyl	S	3	-(CH ₂) ₂ -\bigcipCI	ethyl	ethyl	I
336	phenyl	S	3	-(CH ₂) ₂ -___\-CI	ethyl	ethyl	I
337	phenyl	О	3	-(CH ₂) ₂ -\bigcipCI	-CH ₂ -\NO ₂	ethyl	I
338	phenyl	О	3	-(CH ₂) ₂ -\bigcipCI	-CH ₂ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ethyl	I
339	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -F	ethyl	I
340	phenyl	O	3	-(CH ₂) ₂ -CI	CH ₂	ethyl	I
341	phenyl	О	3	-(CH ₂) ₂ -CI	-04,-	ethyl	I
342	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
343	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
344	phenyl	О	3	-(CH ₂) ₂ -CI	−CH ₂ −CMe	ethyl	I
345	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -{	ethyl	I
346	phenyl	0	3	-(CH ₂) ₂ -CI	-сн ₂ -	ethyl	I

347	phenyl	О	3	-(CH ₂) ₂ -\(\bigcirc\)-CI	-CH ₂ -CH ₃	ethyl	I
348	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -000	ethyl	I
349	phenyl	О	3	$-(CH_2)_2$ -CI	-arz——a	ethyl	I
350	phenyl	О	3	-(CH ₂) ₂ -CI	-04-0-0	ethyl	I
351	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -F	ethyl	I
352	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ -	ethyl	I
353	phenyl	O	3	-(CH ₂) ₂ -CI	-cH²-CH²	ethyl	I
354	phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
355	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
356	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
357	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -\rightarrow-\text{C}	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
358	3,4- dichloro- phenyl	Ο	3	$-(CH_2)_2$ \longrightarrow CA	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
359	3,4- dichloro- phenyl	0	3	-(CH ₂) ₂ -	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I

360	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
361	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-сн₂	ethyl	I
362	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -CI	-cH₂◇	ethyl	I
363	3,4- dichloro- phenyl	Ο	3	$-(CH_2)_2$ $ CI$	-cH₂◇	ethyl	I
364	3,4- dichloro- phenyl	O	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
365	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	CH ₂	ethyl	I
366	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -\sqrt{-\text{a}}-a	$-CH_2 - CH_3$	ethyl	Ι
367	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -\times a	-cH₂ CH₃	ethyl	I
368	3,4- dichloro- phenyl	О	3	$-(CH_2)_2$	-cH₂⟨ CH₃	ethyl	. I
369	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
370	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
371	3,4- dichloro- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
372	4-bromo- phenyl	0	3	-(CH ₂) ₂ -CI	-CH₂CN	ethyl	I

373	4-bromo- phenyl	O	3	-(CH ₂) ₂ -\bigcip_Q	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
374	4-bromo- phenyl	О	3	-(CH ₂) ₂	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
375	4-bromo- phenyl	О	3	-(CH ₂) ₂	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
376	4-bromo- phenyl	О	3	-(CH ₂) ₂ -\bigcip_CI	-CH ₂	ethyl	I
377	4-bromo- phenyl	О	3	$-(CH_2)_2$ - \bigcirc CI	-cH₂<	ethyl	I
378	4-bromo- phenyl	O	3	-(CH ₂) ₂ -	-CH₂⟨⟨ CH₃	ethyl	I
379	4-bromo- phenyl	О	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
380	4-bromo- phenyl	O	3	-(CH ₂) ₂ -\(\bigcap_{\text{CI}}\)-\(\text{CI}	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
381	4-bromo- phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
382	4-bromo- phenyl	О	3	—(CH ₂) ₂ —CI	-(CH ₂) ₂ F	ethyl	I
383	4-bromo- phenyl	О	3	(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
384	4-bromo- phenyl	О	3	-(CH ₂) ₂ -Ca	-(CH ₂) ₂ F	ethyl	I
385	4-bromo- phenyl	0	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I

386	4- (trifluoro- methyl)ph enyl	0	3	-(CH ₂) ₂ -\(\bigcirc\)-CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I .
387	4- (trifluoro- methyl)ph enyl	O	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
388	4- (trifluoro- methyl)ph enyl	O	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
389	4- (trifluoro- methyl)ph enyl	О	3	-(CH ₂) ₂	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
390	4- (trifluoro- methyl)ph enyl	O	3	-(CH ₂) ₂ -	-сн₂(сн ₃	ethyl	I
391	4- (trifluoro- methyl)ph enyl	O	3	-(CH ₂) ₂ -C	-(CH ₂) ₂ F	ethyl	I
392	4-cyano- phenyl	О	3	-(CH ₂) ₂ -\infty	$-(CH_2)_2O(CH_2)_2OMe$	ethyl	I
393	4-cyano- phenyl	Ò	3	-(CH ₂) ₂ -\times_CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
394	4-cyano- phenyl	О	3	-(CH ₂) ₂ -\bigcip \text{CI}	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
395	4-cyano- phenyl	O	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
396	4-cyano- phenyl	О	3	$-(CH_2)_2$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
397	4-cyano- phenyl	0	3	-(CH ₂) ₂ -\bigcip_CI	-CH ₂	ethyl	I

398	4-cyano- phenyl	O	3	-(CH ₂) ₂ -\(\) - \(\) \(\) - \(\)	-cH₂◇	ethyl	I
399	4-cyano- phenyl	Ο	3	-(CH ₂) ₂ -	-сн₂(сн ₃	ethyl	I
400	4-cyano- phenyl	О	3	-(CH ₂) ₂ -CI	-сн₂(сн ₃	ethyl	I
401	4-cyano- phenyl	Ο	3	$-(CH_2)_2$ \longrightarrow CI	-сн ₂ (Сн ₃	ethyl	I
402	4-cyano- phenyl	О	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
403	4-cyano- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
404	4-cyano- phenyl	О	3	-(CH ₂) ₂ -\square -C	-(CH ₂) ₂ F	ethyl	I
405	4-cyano- phenyl	Ο	3	-(CH ₂) ₂	-(CH ₂) ₂ F	ethyl	I
406	phenyl	О	3	-(CH ₂) ₂ -\int\int\int\int\int\int\int\int\int\int	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
407	phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
408	phenyl	Ο	3	$-(CH_2)_2$ \longrightarrow CI	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
409	phenyl	О	3	-(CH ₂) ₂ -\rightarrow-\text{a}	-CH ₂ CONH ₂	ethyl	I
410	phenyl	0	3	-(CH ₂) ₂	-CH ₂ CONH ₂	ethyl	I

411	phenyl	О	3	-(CH ₂) ₂ -	-CH ₂ CN	ethyl	I
412	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
413	phenyl	O	3	-(CH ₂) ₂ -\int CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
414	phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
415	phenyl	О	3	$-(CH_2)_2$ - \bigcirc	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
416	phenyl	О	3	-(CH ₂) ₂ -\F	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
417	phenyl	О	3	-(CH ₂) ₂ -CI	-CH₂⟨	ethyl	I
418	phenyl	О	3	-(CH ₂) ₂ -	-CH ₂	ethyl	I
419	phenyl	Q	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
420	phenyl	O	3	-(СҢ) ₂ -{_}a	-CH ₂	ethyl	· I
421	phenyl	O	3	-(CH ₂) ₂ -	-CH ₂	ethyl	I
422	phenyl	Ο	3	-(CH ₂) ₂ -CI	-сн₂- сн₃	ethyl	I
423	phenyl	О	3	-(CH ₂) ₂ -	-сн₂- сн₃	ethyl	I

424	phenyl	О	3	-(CH ₂) ₂ ——a	-сн ₂ (сн ₃	ethyl	I
425	phenyl	О	3	-(CH ₂) ₂ -\bigcip_CI	-CH₂(CH₃	ethyl	Ι
426	phenyl	О	3	-(CH ₂) ₂ -	-CH₂(CH₃	ethyl	I
427	phenyl	О	3	-(CH ₂) ₂ -___	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
428	phenyl	О	3	-(CH ₂) ₂ -\int\(\)	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
429	phenyl	О	3	-(CH ₂) ₂ -CD	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
430	phenyl	О	3	$-(CH_2)_2$ - \bigcirc CI	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
431	phenyl	О	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
432	phenyl	О	3	-(CH ₂) ₂ -\times_CI	-(CH ₂) ₂ F	ethyl	I
433	phenyl	O	3	-(CH ₂) ₂ -\sqrt{-CI}	-(CH ₂) ₂ F	ethyl	I
434	phenyl	О	3	-(CH ₂) ₂ -\int a	-(CH ₂) ₂ F	ethyl	I
435	4- methoxy- phenyl	O	3	-(CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I
436	4- methoxy- phenyl	0	3	-(CH ₂) ₂ -a	-(CH ₂) ₂ CH(CH ₃) ₂	ethyl	I

437	4- methoxy- phenyl	0	3	-(CH ₂) ₂ -\int \text{C} \text{C}	-CH ₂ CONH ₂	ethyl	I
438	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -\(\sum_{Cl}\)	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
439	4- methoxy- phenyl	O	3	-(СН ₂) ₂ -	-(CH ₂) ₂ O(CH ₂) ₂ OMe	ethyl	I
440	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂	ethyl	I
441	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -	-CH ₂	ethyl	I
442	4- methoxy- phenyl	О	3	-(СН ₂) ₂ -СП	-CH ₂	ethyl	I
443	4- methoxy- phenyl	O	3	-(CH ₂) ₂ -\bigcip_C	-CH ₂	ethyl	I
444	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -CI	-CH ₂ (CH ₃	ethyl	I
445	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -	-CH₂(CH₃	ethyl	I
446	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -\rightarrow-Cl	-сн₂- сн₃	ethyl	I
447	4- methoxy- phenyl	О	3	$-(CH_2)_2$ \longrightarrow CI	-сн ₂ (сн ₃	ethyl	I
448	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
449	4- methoxy- phenyl	O	3	-(CH ₂) ₂ -\d	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I

Atty. Dkt. No. 051023-0111 Appln. Ser. No. 10/019,652

450	4- methoxy- phenyl	О	3	-(CH ₂) ₂	-CH ₂ CH(CH ₂ CH ₃) ₂	ethyl	I
451	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -	-(CH ₂) ₂ F	ethyl	I
452	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -CI	-(CH ₂) ₂ F	ethyl	I
453	4- methoxy- phenyl	О	3	-(CH ₂) ₂ -\bigcip_CI	-(CH ₂) ₂ F	ethyl	I

- 25. (Original) A pharmaceutical composition comprising a compound according to claim 1.
- 26. 41. (Cancelled)