

ez una data macchina (Dé assegnati); /
	Ma Ma in JRT pork
e anche il fluido (Rek) é arregnato:	VKK1 / PJK
e smène le pardo (Le N) e arriginaro.	
NUMERO D	Ma my Ma my
GIRI RIDOM	
'impiego di questi parametri riduce notevolmente la fasc	
ul diagramma, rendendo il comportamento del fluido un	
esidua è dovuta ad ulteriori variabili (es. numero di Reyi	
ORMA DEL ROTORE E NSP	
ADIALE: MISTO: 1500~	10000
Pale lunghe 500~700 ASSIALE: 10000	~ 7,000
Pale lunghe 500 ~ 700 ASSIALE: 10000 Pale corte 700 ~ 1500	
OMPRESSORY ALTERNATIVI	PHS PHI
DHPRESSORI FICIERNATIVI	10+1
funzionamento ideale del compressore alternativo	
	9 +0;
ella realtà vi è però da considerare un volume morto	10
come per la pompa analoga), molto ridotto ma	T-ANDATA
omunque presente, contenente gas alla pressione di	3 2
nandata, dopo che la valvola di mandata è chiusa.	2 102
oiché il fluido in questo volume è a pressione elevata,	$3 = \frac{7^2}{\sqrt{2}}$
necessario espanderlo prima di poter aprire la valvola	\$
i aspirazione per l'ingresso di una nuova portata:	0 4
i prima metà della corsa sarà impiegata per l'espansione	
el fluido residuo, mentre la seconda sarà destinata all'as	1
	li carico $\lambda_V = \frac{V_1 - V_4}{V_4 - V_3}$ "RENDIMETRI
n altro fattore da considerare è costituito dalle perdite d	11 carico VI - V3 Vowhere
n corrispondenza delle valvole di aspirazione e di manda i aspirazione sarà minore rispetto a quella esterna, men	ta. la pressione
i mandata dovrà essere maggiore rispetto a quella di ma	
i manuata dovia essere maggiore rispetto a quena di ma	illuata.
rendimento volumetrico è legato alla portata - ovviamen	
i compressione manometrico. Esiste quindi un limite a q	uanto posso comprimere del fluido in un
ompressore alternativo.	1 14 (1)
	1 1 2 - 12 - (VI) - (VI)
$2 V_2 = V_3 \longrightarrow \Lambda V = 0 \qquad p_1 V_1 = p_2 V_2$	
Let $V_2 = V_3 \implies \lambda_V = 0$ DEFINIZIONE: ρ_V , "RAPP. DI COMPRESS. VOWING	731 (02/ (15/
DEFINIZIONE: pv, "RAPP. DI COMPRESS. VOLUM	ETRICO" 0 - (0)K
	13max T(PV)
er raggiungere pressioni più elevate, (; = {1m	JCA(
i dispongono più stadi in serie.	91 = 111
) B; <(P)*	È ammessa l'interrefrigerazione
	tra uno stadio e l'altro.
B=== (11m)= Bin	WAS BALLO OF MILE OF
$B_{Tot} = \left(\frac{p_m}{p_1}\right) = \beta i^m$	
racción aisonaline ai ma. Hi	
(M/2)((() K 2600 K)	
(ASSIMO RISPARMIO: Bi= TBrox Vi mor = log(Bi)(Brox) = ln(Brox)/ln(B	

```
POTENZA DI UN COMPRESSORE VOLUMETRICO
             P_{e} = \frac{m \, li}{7m} = \left( \frac{\sqrt{m} \, \rho}{60} \right) \frac{li}{7m} \quad [W] \qquad \text{Dase } li = AREA(1234) \text{ Aul } p-5
7m = \frac{P_{e}}{P_{e}} = \frac{P_{e} \, INDICATA}{P_{e} \, P_{e} \, EFFERIVA}
RAPPORTI DI COMPRESSIONE
 \beta = \frac{p_2}{p_4} Notaze che: \frac{V_4}{V_2} = \frac{(p_3)^{1/k}}{(p_4)^2} = \frac{p_4}{p_4} \longrightarrow \frac{p_4}{p_4} = \frac{p_4}{p_4} \longrightarrow \frac{p_4}{p_4} = \frac{p_4}{p_4} \longrightarrow \frac{p_4}{p_4} = 
Dolla formula inversa:
                                                                                                                Se \lambda_{V} \rightarrow 0, \beta \rightarrow \beta_{\text{nex}} = (PV)^{k} c.v.d.
                         \beta = (\rho_V - \lambda_V(\rho_V - 1))^k
LAVORO DI COMPRESSIONE
                                                                                                                            FASI 1-2 E 3-4:
       Lc = L12 + L23 + L34 + L41
                                                                                                                                                du = - &L → Lij = Ui - Uj
    FASI 2-3 E 4-1:
                                                                                                               DUNQUE:
                                                                                                                     Lc= U1-U2+p3 V3-p2 V2+U3-U4+p4 V1-p4 V4
         Lmn = pm Vm - pm Vm
                                                                                                                              Lc= H3 - H2 + H3 - H4
IDEALITENTE, con 1-2 e 3-4 ISOENTROP .:
                  dH=Vdp+TdS=Vdp -> DH=JVdp -> Lc=-JVdp-JVdp
              /Lc/ = m12 / Jdp + m34 /3 Jdp Lavorians su grandezse intensive
  Q_{12} = V_1 p_1^{1/k} \int_1^2 \frac{dp}{p_1^{1/k}} = \dots = \frac{k}{k-1} V_1 p_1^{1/k} \left( p_2^{\frac{k-1}{k}} - p_1^{\frac{k-1}{k}} \right) =
                                              = \frac{K}{k-1} \int_{1}^{1} p_{1} \left(\frac{1}{k} + \frac{k-1}{k}\right)^{4} \left(\beta^{\frac{k-1}{k}} - 1\right) = \frac{K}{k-1} \int_{1}^{1} p_{1} \left(\beta^{\frac{k-1}{k}} - 1\right)
anologamente: l34 = ... = K Ju pu (1 - B k)
    Demque Lc = m12 l12 + m34 l34 = K-1 (V1 p1 (B K-1) + V4 p4 (1-13 K))
    da cui, riccome p4 = ps:
                         Lc=(V1-V4)p1 K-(BK-1)= AV(V1-V3) PRT1 K-1 (BK-1)
                              Lo Lc = m Cp Ta (BER-1)
                               Che é propris ugual a m cp(T2-T1) = m (h2-h1)
```

160	וס					1						•		'														
V	'n		J1	λ	v	V_c	æ	f		_	do	ve		f =	F	REQ	JEN	1ZA	(H	[sh		11	\z .	<u>-</u> 1	rp	% =	₹ 60,	ቍ
		Ξ	Ps	λ,	·Vc	ie	M 66	า 2			F	>		•	0 -	. λ,	.\/.	. 10	n	0.	Ca	(T.	1	٠, ١				
) }	106) FC	50)RI		١//	2	. 13	46		210	<i>c</i> -	Q	MIC!	رد .	νι VI	Sc	00	60	10	م و	C , (Ma	1) }				
_			Lar	gan	nen	ıte	uti	ilizz	zati	i ne	ei s	iste	mi	di cl	lima	ıtizz	azio	ne V	VRF,	i co	mpi	ess	ori	scro			con	-
		<i>)</i> }	una	ро	rta	ıta	di g	gas	s da	all'e	est	erno	o ve	erso	il c	entr	o de	elle	elicl	ie, d	limi	nue	ndo	o gr	adı	ualn	spo nent	e
		//						- 1										- 1									ro, il giro.	S
	sore scher	da na).	F	RC)	+	· F	3u	ωr	ھ	. 4	:ff	ei.	enze	<u>م</u>	vol	m	σtr	iea	(rpe	ટ ાં	m	oct	: 8	2m	enti)
				+	Po	eta	zta	_	w	if	ળ	ne		-	+ {	يمانتو	mzı	ion	: و	a	Gid	w	£:					
	.Л. Н.	enz	م ا	ناه	: v	(O)	7a -	.zů	0~L			+	K	egd #	lal	tli 101	20	n (cov	TU 02.	mi me	ta M	(V	RY)			
			•					.																				
ر ر	•	A 0	n	~d	on at	^[le	***	16	ָ מ	ou.		Lee	egy	pic	em Cen	en!	0										
۱۵			-	<i></i>	ω (U	W	YYL.		<i>su</i>	Nac	CON												
TA		-												-	-	o as: mi. i						-						
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	nto (tran ana	0
ТА	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
ТА	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
ТА	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
ТА	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0
TA	18 il	30° funz	risp zion	ett am	o al ent	lla to -	spi pi	ral ù u	le fi ina	issa gil	a. P f su	er c ı Wi	lelı ikip	ucid oedi	azic a, p	ni, i er d	nter rne	net un	: è p a; co	ieno ome	o di al s	vide olito	o cl	he i nsi	ne i glic	mos o il c	tran	0