Lineare Algebra 2 — Lösung zu Übungsblatt 5

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 04.06.2020 um 9:15 Uhr

18. Aufgabe: (1+2+2+2+2 Punkte, Das Minimalpolynom) Seien K ein Körper, $n \in \mathbb{N}$ und $A \in M_{n,n}(K)$. Sei

$$I_A := \{ f \in K[t] \mid f(A) = 0 \}.$$

Hierbei ist $f(A) = a_0 E_n + a_1 A + \cdots + a_m A^m \in M_{n,n}(K)$ mit der Einheitsmatrix $E_n \in M_{n,n}(K)$ für $f = a_0 + a_1 t + \cdots + a_m t^m \in K[t]$.

- (a) Man zeige, dass $I_A \subseteq K[t]$ ein Ideal ist und dass $\chi_A^{\text{char}} \in I_A$. **Hinweis:** Man erinnere sich an den Satz von Cayley-Hamilton.
- (b) Man zeige, dass es ein eindeutiges normiertes Polynom $\chi_A^{\min} \in K[t] \setminus \{0\}$ gibt mit $I_A = (\chi_A^{\min})$.
- (c) Sei $\lambda \in K$. Man zeige, dass dann gilt: $\chi_A^{\min}(\lambda) = 0 \Leftrightarrow \chi_A^{\operatorname{char}}(\lambda) = 0$.
- (d) Man zeige: Ist $B \in M_{n,n}(K)$ mit $B \approx A$, so gelten $I_B = I_A$ und $\chi_R^{\min} = \chi_A^{\min}$
- (e) Man gebe ein Beispiel einer Matrix $A \in M_{2,2}(\mathbb{R})$ mit $\chi_A^{\min} \neq \chi_A^{\text{char}}$.

Definition: Das Polynom χ_A^{\min} heißt das *Minimalpolynom* von A.

Lösung:

- (a) Zunächst gilt offensichtlich $0 \in I_A$. Seien nun $f,g \in I_A$, dann ist f(A) = g(A) = 0 und somit (f+g)(A) = f(A) + g(A) = 0 + 0 = 0, also $f+g \in I_A$. Ist außerdem $f \in I_A$, $\lambda \in K[t]$, dann gilt $(\lambda f)(A) = \lambda(A)f(A) = \lambda(A) \cdot 0 = 0$, also $\lambda f \in I_A$. Also ist I_A ein Ideal.
 - Nach dem Satz von Cayley-Hamilton (siehe LA1, 4.71) gilt außerdem $\chi_A^{\text{char}}(A) = 0$ und damit $\chi_A^{\text{char}} \in I_A$.
- (b) Zunächst ist $I_A \neq (0)$, da $0 \neq \chi_A^{\text{char}} \in I_A$ ist. Außerdem ist K[t] ein Hauptidealring (vergleiche etwa Aufgabe 14), und somit gibt es ein $f \in K[t]$ mit $I_A = (f)$. Wegen $I_A \neq 0$ ist $f \neq 0$. Sei $a \in K$ der Leitkoeffizient von f, dann ist also $a \neq 0$ und wir definieren

$$\chi_A^{\min} = a^{-1} f \in K[t] .$$

Per Konstruktion ist χ_A^{\min} normiert und wegen $a \in K \setminus \{0\} = K^{\times} = K[t]^{\times}$ ist nach Bemerkung 2.3

$$I_A = (f) = (a^{-1}f) = (\chi_A^{\min}).$$

Gäbe es ein weiteres normiertes Polynom $g \in K[t]$ mit $I_A = (g)$, dann wäre g assoziiert zu χ_A^{\min} , also $g = c\chi_A^{\min}$ für ein $c \in K^{\times}$. Da beide Polynome normiert sind, muss aber c = 1 sein, also $g = \chi_A^{\min}$, das Minimalpolynom ist also eindeutig.

(c) Sei $\chi_A^{\min}(\lambda) = 0$. Wegen $\chi_A^{\operatorname{char}} \in I_A = (\chi_A^{\min})$ gilt $\chi_A^{\min} \mid \chi_A^{\operatorname{char}}$ und somit auch $\chi_A^{\operatorname{char}}(\lambda) = 0$.

Sei nun umgekehrt $\chi_A^{\operatorname{char}}(\lambda)=0$. Dann ist λ ein Eigenwert von A, das heißt es gibt ein $v\in K^n\setminus\{0\}$ mit $Av=\lambda v$. Es folgt $A^kv=\lambda^k v$ für alle $k\in\mathbb{N}_0$ und somit

$$\chi_A^{\min}(A) v = \chi_A^{\min}(\lambda) v$$

und per Definition des Minimalpolynoms

$$0 = \chi_A^{\min}(\lambda) v$$

Wegen $v \neq 0$ muss somit bereits $\chi_A^{\min}(\lambda) = 0$ sein.

(d) Sei $A \approx B$. Dann existiert ein $S \in GL_n(K)$ mit $B = SAS^{-1}$. Für $k \in \mathbb{N}_0$ gilt

$$B^k = (SAS^{-1})^k = (SA\underbrace{S^{-1})(SAS^{-1})\dots(SAS^{-1})}_{=E_n} = SA^kS^{-1}$$

und für jedes $f \in K[t]$ gilt daher

$$f(B) = f(SAS^{-1}) = Sf(A)S^{-1}$$
.

Ist nun f(A) = 0, so folgt f(B) = 0. Da wir analog $A = S^{-1}BS$ schreiben können, gilt diese Folgerung auch andersrum, also

$$f(A) = 0 \Leftrightarrow f(B) = 0 ,$$

beziehungsweise

$$I_A = I_B$$
.

Aus der Eindeutigkeit des Minimalpolynoms folgt dann auch

$$\chi_A^{\min} = \chi_B^{\min}$$
.

(e) Setze $A = E_2$, dann ist $\chi_A^{\text{char}} = (t-1)^2$. Wegen $A - E_2 = 0$ ist das Polynom t-1 bereits ein Vielfaches des Minimalpolynoms. χ_A^{min} ist nicht 1, sonst wäre $E_2 = 0$, also muss es Grad 1 haben und ist somit gleich t-1. Also ist

$$\chi_A^{\min} \neq \chi_A^{\text{char}}$$
.

- 19. Aufgabe: (3+3 Punkte, Das Minimalpolynom und Invariantenteiler) Sei K ein Körper. Man zeige:
 - (a) Sei $g \in K[t]$ nichtkonstant und normiert mit Begleitmatrix B_g . Dann gilt: $\chi_{B_g}^{\min} = g$. Hinweis: Man zeige zunächst, dass $\deg(\chi_{B_g}^{\min}) \ge \deg(g)$.
 - (b) Seien $n \in \mathbb{N}$ und $A \in M_{n,n}(K)$ mit Invariantenteilern $c_1(A), \ldots, c_n(A)$ (mit $c_1(A) \mid \ldots \mid c_n(A)$). Dann gilt: $\chi_A^{\min} = c_n(A)$.

Lösung:

(a) Zeige zunächst, dass $\deg(\chi_{B_g}^{\min}) \ge \deg(g) = n$. Zu Beginn betrachte den Fall, dass das Minimalpolynom konstant ist, $\chi_{B_g}^{\min} = a_0 \in K$. Dann ist $\chi_{B_g}^{\min}(B_g) = a_0 \cdot E_n$. Dies ist nur Null für $a_0 = 0$, was aber nicht möglich ist, da $\chi_{B_g}^{\text{char}} = g$ (nach 5.2) nicht in dem Ideal ($\chi_{B_g}^{\min}$) = (0) liegt, was der definierenden Eigenschaft des Minimalpolynoms widerspricht.

Sei nun $g=g_0+\cdots+g_{n-1}t^{n-1}+t^n$. Beweise die Aussage durch einen Widerspruch: Sei $\deg(\chi_{B_g}^{\min})<\deg(g)$. Dann existieren $a_0,\ldots,a_{n-1}\in K$ mit $\chi_{B_g}^{\min}=\sum_{i=0}^{n-1}a_it^i$. Nach definierender Eigenschaft ist dann $\chi_{B_g}^{\min}(B_g)=0\in M_{n,n}(K)$, ebenso $\chi_{B_g}^{\min}(B_g)\cdot v=0\in M_{n,1}(K)$ für alle $v\in M_{n,1}(K)$. Wähle als $v=e_1$, mit einer 1 an der ersten Stelle und sonst nur Nullen, und stelle fest, dass gilt

$$(B_g)^i \cdot e_1 = e_{i+1} \quad \forall i = 0, \dots, n-1,$$

wobei e_i nur Nullen enthält, bis auf eine 1 an der i-ten Stelle. Für i=0 gilt dies trivialerweise, da $B_g^0=E_n$. Schreibt man die Matrizen aus, wird diese Gleichung sofort klar

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -g_0 \\ 1 & 0 & \dots & 0 & -g_1 \\ 0 & 1 & \dots & 0 & -g_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -g_{n-1} \end{pmatrix}^i \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 & -g_0 \\ 1 & 0 & \dots & 0 & -g_1 \\ 0 & 1 & \dots & 0 & -g_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -g_{n-1} \end{pmatrix}^{i-1} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \dots = e_{i+1}.$$

Alternativ, schreibe $B_g = (e_2, \dots, e_n, -\sum_{i=0}^{n-1} g_i e_{i+1})$, was direkt die Gleichung zeigt. Damit ergibt sich für das ausgewertete Minimalpolynom

$$\chi_{B_g}^{\min}(B_g) \cdot e_1 = \left(\sum_{i=0}^{n-1} a_i B_g^i\right) \cdot e_1 = \sum_{i=0}^{n-1} a_i \left(B_g^i \cdot e_1\right) = \sum_{i=0}^{n-1} a_i e_{i+1} = \begin{pmatrix} a_0 \\ \vdots \\ a_{n-1} \end{pmatrix}.$$

Da nach dem ersten Teil das Minimalpolynom nicht Null sein kann, folgt dass $\chi_{B_g}^{\min}(B_g) \cdot e_1 \neq 0$, ein Widerspruch.

Somit gilt $\deg(\chi_{B_g}^{\min}) \geq \deg(g) = n$. Da aber nach Bemerkung 5.2 das charakteristische Polynom der Begleitmatrix von g wieder g selbst ist und nach Aufgabe 18 (a) damit $g \in (\chi_{B_g}^{\min})$, folgt $\deg(\chi_{B_g}^{\min}) \leq \deg(g) = n$.

Letztlich existiert ein $0 \neq f \in K[t]$ mit $\chi_{B_g}^{\min} \cdot f = g$, da g in dem von dem Minimalpolynom erzeugten Ideal liegt. Da aber $\chi_{B_g}^{\min}$ und g gleichen Grad haben, folgt $f \in K^{\times}$, also $\chi_{B_g}^{\min} = g$. Schließlich sind beide Polynome normiert, was die Aussage $\chi_{B_s}^{\min} = g$ zeigt.

(b) Seien $g_1, ..., g_r$ die nicht-konstanten Invariantenteiler von A, insbesondere $g_r = c_n(A)$. Dann ist A ähnlich zu seiner Frobenius-Normalform nach Satz 5.4

$$A \approx \begin{pmatrix} B_{g_1} & & \\ & \ddots & \\ & & B_{g_r} \end{pmatrix}.$$

Eine Potenz einer solchen Block-diagonalen Matrix ist die Matrix mit der Potenz der Blöcke auf der Diagonalen. Also gilt für Polynome $f \in K[t]$

$$f\begin{pmatrix} B_{g_1} & & \\ & \ddots & \\ & & B_{g_r} \end{pmatrix} = \begin{pmatrix} f(B_{g_1}) & & \\ & \ddots & \\ & & f(B_{g_r}) \end{pmatrix}.$$

Da nach Aufgabe 18 (d) ähnliche Matrizen gleiche Minimalpolynome haben, muss nur noch gezeigt werden, dass $g_r(B_{g_i})=0$ für alle $i=1,\ldots,r$. Denn nach Teil (a) ist das Minimalpolynom von B_{g_r} einfach $g_r=c_n$, also muss das Minimalpolynom von B_{g_1,\ldots,g_r} ein polynomielles Vielfaches von g_r sein, da nur solche Polynome B_{g_r} annullieren.

Nach Teil (a) gilt $g_i(B_{g_i}) = 0$. Da die g_i insbesondere Invariantenteiler sind, teilen sie sich sukzessive. Dadurch existiert für alle g_i ein $f_i \in K[t]$, so dass $g_i \cdot f_i = g_r = c_n$. Damit folgt dann

$$g_r(B_{g_i}) = (f_i \cdot g_i)(B_{g_i}) = f_i(B_{g_i}) \cdot g_i(B_{g_i}) = 0 \quad \forall i = 1, ..., r$$

wobei verwendet wurde, dass das Einsetzen von B_{g_i} mit der Produktbildung der Polynome kommutiert. Alternativ folgt über die Existenz der f_i , dass $g_r \in (g_i) = I_{B_{g_i}}$. Damit ist mit der Definition des Ideals in Aufgabe 18 sofort klar, dass $g_r(B_{g_i}) = 0$ gelten muss.

20. Aufgabe: (2+2+2 *Punkte, Normalformen*) Sei $n \in \mathbb{N}$ und sei $A \in M_{n,n}(\mathbb{Q})$ eine Matrix mit folgenden Invariantenteilern:

$$c_1(A) = \dots = c_5(A) = 1$$
, $c_6(A) = t + 1$, $c_7(A) = t^2 + t$, $c_8(A) = t^5 + 3t^4 + 3t^3 + t^2$.

- (a) Man bestimme n, χ_A^{char} und χ_A^{min} .
- (b) Man bestimme die Determinantenteiler und die Frobenius-Normalform von A.
- (c) Man bestimme die Weierstrassteiler und die Weierstrass-Normalform von A.

Lösung:

(a) Nach Bemerkung 4.3 (a) ist n auch die Anzahl der Invariantenteiler, also n=8. Weiterhin gilt nach Aufgabe 19 (b), dass $\chi_A^{\min}=c_8(A)=t^2(t^3+3t^2+3t+1)$. Da $c_6(A)$ auch $c_8(A)$ teilt, kann man eine Polynomdivision durchführen, um c_8 in Linearfaktoren zu zerlegen. Es gilt: $\chi_A^{\min}=c_8(A)=t^2(t+1)^3$. Außerdem ist das charakteristische Polynom das Produkt der Invariantenteiler nach Folgerung 4.4

$$\chi_A^{\text{char}} = \prod_{i=1}^8 c_i(A) = c_6(A) \cdot c_7(A) \cdot c_8(A) = t^3(t+1)^5$$
.

(b) Die Determinantenteiler lassen sich direkt mit Folgerung 4.4 bestimmen als

$$d_i(A) = \prod_{j=1}^i c_j(A) .$$

Also folgt, dass $d_1(A) = \cdots = d_5(A) = 1$, $d_6(A) = c_6(A) = t + 1$, $d_7(A) = c_7(A) \cdot d_6(A) = t(t+1)^2$ und $d_8(A) = \chi_A^{\text{char}} = t^3(t+1)^5$.

Für die Frobenius-Normalform, nehme die nicht-konstanten Invariantenteiler und benenne neu nach Satz 5.4

$$g_1 = c_6(A) = t + 1$$
, $g_2 = c_7(A) = t^2 + t$, $g_3 = c_8(A) = t^5 + 3t^4 + 3t^3 + t^2$.

Die einzelnen Begleitmatrizen sind dadurch direkt bestimmbar

$$B_{g_1} = -1, \quad B_{g_2} = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \quad B_{g_3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & -3 \end{pmatrix}.$$

Die Frobenius-Normalform ist dann gegeben über Satz 5.4 durch

$$A \approx B_{g_1,g_2,g_r} = \begin{pmatrix} B_{g_1} & & & & \\ & B_{g_2} & & \\ & & B_{g_3} \end{pmatrix} = \begin{pmatrix} -1 & & & & & \\ & 0 & 0 & & & \\ & 1 & -1 & & & \\ & & & 0 & 0 & 0 & 0 & 0 \\ & & & 1 & 0 & 0 & 0 & 0 \\ & & & 1 & 0 & 0 & 0 & 0 \\ & & & 0 & 1 & 0 & 0 & -1 \\ & & & & 0 & 0 & 1 & 0 & -3 \\ & & & & 0 & 0 & 0 & 1 & -3 \end{pmatrix}.$$

(c) Die Weierstrassteiler entstehen nach Satz 5.8 aus den Invariantenteilern als Zerlegung in teilerfremde Polynome, die Potenzen irreduzibler Polynome sind. Es gilt nun zuerst,

diese Weierstrassteiler $h_{i,j}$ zu bestimmen, wobei i den ursprünglichen Invariantenteiler beschreibt, und j die verschiedenen teilerfremden Polynome durchnummeriert.

Da $c_6(A)$ bereits irreduzibel ist gilt $h_{1,1} = t + 1$. Weiterhin lässt sich $c_7(A)$ in t und t + 1 zerlegen, also $h_{2,1} = t$ und $h_{2,2} = t + 1$. Diese sind offensichtlich teilerfremd und Potenzen irreduzibler Polynome. Zuletzt lässt sich $c_8(A)$ als Produkt von t^2 und $(t + 1)^3$ schreiben, wobei diese wieder teilerfremd und Potenzen von irreduziblen Polynomen sind $(h_{3,1} = t^2, h_{3,2} = (t + 1)^3 = t^3 + 3t^2 + 3t + 1)$.

Nach Satz 5.8 ist die Weierstrass-Normalform dann gegeben durch die Begleitmatrizen dieser Polynome über

$$A \approx B_{h_{1,1},h_{2,1},h_{2,2},h_{3,1},h_{3,2}} = \begin{pmatrix} h_{1,1} & & & & \\ & h_{2,1} & & & \\ & & h_{2,2} & & \\ & & & h_{3,1} & \\ & & & & h_{3,2} \end{pmatrix} = \begin{pmatrix} -1 & & & & & \\ & 0 & & & & \\ & & -1 & & & \\ & & & 1 & 0 & \\ & & & & 1 & 0 & \\ & & & & 0 & 0 & -1 \\ & & & & & 0 & 0 & -1 \\ & & & & & 1 & 0 & -3 \\ & & & & & 0 & 1 & -3 \end{pmatrix}.$$

21. Aufgabe: (3 Punkte, Die Weierstrass-Normalform) Man gebe ein Beipiel einer natürlichen Zahl $n \in \mathbb{N}$ und einer Matrix $A \in M_{n,n}(\mathbb{Q})$, sodass gilt: Die Weierstrass-Normalform von A aufgefasst als Element von $M_{n,n}(\mathbb{Q})$ stimmt nicht mit der Weierstrass-Normalform von A aufgefasst als Element von $M_{n,n}(\mathbb{R})$ überein.

Lösung: Herleitung: Wir suchen ein Polynom, das über $\mathbb Q$ anders zerfällt als über $\mathbb R$. Ein einfaches Beispiel hierfür wäre

$$f=t^2-2.$$

Über $\mathbb Q$ ist dieses Polynom irreduzibel, denn es hat keine Nullstellen, und da es Grad 2 hat, hätte jeder nichttriviale Teiler Grad 1, es gäbe also eine Nullstelle. Über $\mathbb R$ hingegen zerfällt f in

$$f = (t + \sqrt{2})(t - \sqrt{2})$$
.

Wir suchen nun möglichst eine 2×2 -Matrix über $\mathbb Q$, deren Invariantenteiler genau 1 und f sind. Ein Beispiel hierfür wäre

$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}.$$

Man sieht sofort, dass $\chi_A^{\text{char}} = t^2 - 2 = f$ ist. Sowohl über $\mathbb Q$ als auch über $\mathbb R$ folgt nun

$$P_A = \begin{pmatrix} t & -1 \\ -2 & t \end{pmatrix} \sim \begin{pmatrix} -1 & t \\ t & -2 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 \\ t & t^2 - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & f \end{pmatrix} \; .$$

Der einzige nichtkonstante Invariantenteiler ist also $c_2(A) = f$.

Über $\mathbb Q$ ist f irreduzibel und die Weierstraß-Normalform von A also gegeben durch

$$A \approx \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$
.

Über \mathbb{R} ist $f = (t + \sqrt{2})(t - \sqrt{2})$ und die Weierstraß-Normalform ist

$$A \approx \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix}.$$

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.