МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 6304	Григорьев И.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: $W(y) = b^* \exp(-b^* y), \ y>=0, \ c \ параметром \ b=0.1 \ и \ соответственно m_{9\kappa cn} = s_{9\kappa cn} = 1/b=10. \ 3$ начения случайной величины Y с экспоненциальным законом распределения c параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]:

$$Y = -ln(t) / b$$

с. релеевским законом распределения:

 $W(y) = (y/c^2)^* \exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pen} = c^* \operatorname{sqrt}(\pi/2), s_{pen} = c^* \operatorname{sqrt}(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * $\operatorname{sqrt}(-2*\ln(t))$.

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона

использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1) Равномерный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.836	2	1.383	3	2.619
4	3.411	5	4.044	6	4.667
7	5.129	8	5.241	9	5.247
10	6.350	11	6.365	12	6.880
13	7.210	14	7.337	15	7.530
16	9.036	17	9.084	18	9.430
19	10.670	20	11.424	21	12.404
22	12.761	23	14.990	24	15.085
25	15.546	26	15.941	27	16.142
28	17.772	29	17.989	30	19.960

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.28$$

$$20.28 > 15.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.799	2.560	2.359	2.187	2.038	1.908
f-g	1.196	0.467	0.200	0.069	0.003	0.045

$$m = 35 => B = m - 1 = 34$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.007215$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	31	32	33	34
Xi	34.650	46.200	69.300	138.601

Время до полного завершения тестирования 288.751

Полное время: 571.234

b.
$$80\%$$
 (n = 24)

i	X	i	X	i	X
1	0.275	2	0.342	3	1.751
4	2.002	5	2.684	6	3.374

7	3.976	8	5.247	9	5.311
10	5.934	11	6.788	12	7.411
13	8.022	14	8.043	15	11.708
16	13.003	17	15.219	18	15.269
19	15.323	20	15.922	21	16.732
22	16.868	23	17.396	24	19.254

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.061$$

$$17.061 > 12.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	3.023	2.685	2.415	2.194
f-g	0.753	0.131	0.060	0.136

$$m = 27 \Rightarrow B = m - 1 = 26$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.011084$$

Среднее время \widehat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25	26
Xi	45.110	90.219

Время до полного завершения тестирования 135.329

Полное время: 353.183

c. 60% (n = 18)

i	X	i	X	i	X
1	0.258	2	0.493	3	2.412
4	3.129	5	3.993	6	7.464
7	8.271	8	10.843	9	11.639
10	12.044	11	12.589	12	14.250
13	14.596	14	17.292	15	17.668
16	18.204	17	19.559	18	19.681

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.552$$

$$12.552 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.792	2.417	2.131	1.905
f-g	0.704	0.131	0.033	0.093

$$m = 21 \implies B = m - 1 = 20$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.010961$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	19	20
Xi	45.615	91.230

Время до полного завершения тестирования 135.846

Полное время: 331.231

2) Экспоненциальный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.005	2	0.220	3	0.716
4	1.075	5	1.305	6	1.855
7	2.242	8	2.545	9	2.935
10	3.391	11	3.636	12	3.867
13	4.236	14	4.248	15	4.907
16	6.035	17	7.084	18	9.266
19	9.804	20	9.850	21	10.133
22	10.956	23	11.052	24	11.266
25	11.857	26	12.186	27	18.538
28	18.730	29	30.310	30	58.873

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23.522$$

$$23.522 > 15.5$$

Найдём $m \ge n+1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32
f	3.995	3.027
g	4.012	3.538
f-g	0.017	0.511

$$m = 31 \implies B = m - 1 = 30$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.014688$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

Время до полного завершения тестирования 0

Полное время: 273.123

b.
$$80\%$$
 (n = 24)

i	X	i	X	i	X
1	0.329	2	1.149	3	1.309
4	1.369	5	2.191	6	3.945
7	5.912	8	5.964	9	6.039
10	7.093	11	7.680	12	7.853
13	8.899	14	12.106	15	13.672
16	13.963	17	17.622	18	19.751
19	20.008	20	22.277	21	23.034
22	30.956	23	37.590	24	39.883

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 18.097$$

Найдём $m \ge n+1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27
f	3.776	2.816	2.354
g	3.477	3.037	2.696
f-g	0.299	0.221	0.341

$$m = 26 \Longrightarrow B = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.009777$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\widehat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25
Xi	102.281

Время до полного завершения тестирования 102.281

Полное время: 412.875

c. 60% (n = 18)

i	X	i	X	i	X
1	0.127	2	0.485	3	1.496
4	1.551	5	4.188	6	5.368
7	7.090	8	8.688	9	9.836
10	9.941	11	10.959	12	13.270
13	13.902	14	16.698	15	18.569
16	22.129	17	31.221	18	38.619

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.658$$

$$13.658 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20
f	3.495	2.548
g	3.370	2.838
f-g	0.125	0.291

$$m = 19 \Rightarrow B = m - 1 = 18$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.015737$$

Время до полного завершения тестирования 0

Полное время: 214.137

3) Релеевский закон

a.
$$100\%$$
 (n = 30)

i	X	i	X	i	X
1	1.699	2	2.521	3	2.779
4	3.086	5	3.177	6	3.623
7	3.653	8	4.282	9	5.627
10	7.045	11	7.781	12	7.897
13	8.157	14	8.507	15	8.671
16	9.402	17	10.135	18	10.369
19	10.466	20	10.601	21	10.804

22	10.986	23	11.273	24	11.840
25	12.884	26	13.398	27	14.421
28	16.963	29	18.026	30	26.723

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.134$$

$$20.134 > 15.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.761	2.528	2.332	2.164	2.018	1.891
f-g	1.234	0.499	0.227	0.092	0.017	0.027

$$m = 35 \Rightarrow B = m - 1 = 34$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}} = 0.007291$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	31	32	33	34
Xi	34.290	45.721	68.581	137.162

Время до полного завершения тестирования: 285.754

Полное время: 562.55

b. 80% (n = 24)

i	X	i	X	i	X
1	1.356	2	1.944	3	3.472
4	3.842	5	4.013	6	4.487
7	5.127	8	5.445	9	5.720
10	6.631	11	7.222	12	8.950
13	10.045	14	11.053	15	12.365
16	12.409	17	13.221	18	13.307
19	14.048	20	14.759	21	15.432
22	16.713	23	23.196	24	30.461

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.778$$

$$16.778 > 12.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.919	2.602	2.348	2.139
f-g	0.857	0.214	0.007	0.080

$$m = 27 \implies B = m - 1 = 26$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.009574$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	25	26
Xi	52.224	104.447

Время до полного завершения тестирования 155.671

Полное время: 401.889

c.
$$60\%$$
 (n = 18)

i	X	i	X	i	X
1	1.276	2	3.968	3	4.364
4	5.024	5	6.515	6	7.951
7	8.966	8	10.001	9	10.305
10	11.446	11	13.043	12	14.811
13	15.241	14	16.874	15	17.523
16	17.898	17	19.063	18	20.531

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.066$$

$$12.066 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.596	2.269	2.015	1.812	1.646
f-g	0.899	0.279	0.083	0.000	0.039

$$m = 22 \Rightarrow B = m - 1 = 21$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i} = 0.008847$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	19	20	21
Xi	37.676	56.515	113.029

Время до полного завершения тестирования 207.22

Полное время: 412.02

4) Итоговые таблицы

а. Оценки первоначального числа ошибок

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	34	26	20
Экспоненциальный	30	25	18
Релеевский	34	26	21

b. Оценки полных времен проведения тестирования

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	571.234	353.183	331.231
Экспоненциальный	273.123	412.875	214.137
Релеевский	562.55	401.889	412.02

с. Анализ

Релеевское распределение демонстрирует худшие результаты оценки полного времени проведения тестирования при 60% и 80% входных данных, но имеет почти такие же оценки первоначального числа ошибок для всех объемов данных, как и равномерное распределение. В общем экспоненциальный закон распределения демонстрирует лучшие результаты — это соответствует одному из предположений в модели Джелински-Моранды, что время до следующего отказа программы распределено экспоненциально.

Выводы

В результате выполнения лабораторной работы выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы для различных законов распределения времен обнаружения отказов и различного объема данных.