

Définition:

Torseur de cohésion:

$$\begin{aligned}
\{T_{coh}\} = \{E_2 \rightarrow E_1\} = \begin{cases}
\frac{\vec{R}}{M_G} \\
= \begin{cases}
0 & 0 \\
Ty & 0 \\
0 & Mfz
\end{aligned} \}_{(G,\vec{x},\vec{y},\vec{z})}
\end{aligned}$$

Relation entre l'effort tranchant et le moment fléchissant :

$$\frac{dMfz}{dx} = -Ty$$

Etude de la contrainte normale:

$$\varepsilon = -Y_M \frac{d\alpha}{dx}$$

$$\sigma_M = -E.Y_M \frac{d\alpha}{dx}$$

Relation entre contrainte normale et moment fléchissant :

$$\left\{ S_g / S_d - \right\} = \left\{ \begin{array}{ccc} \sigma_M . dS & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}_{\Re} = \left\{ \begin{array}{ccc} \sigma_M . dS & 0 \\ 0 & 0 \\ 0 & -Y . \sigma_M . dS \end{array} \right\}_{\Re} \qquad Y_{(M)}$$

$$Mfz = -\int_{S} Y.\sigma M.dS$$

$$Mfz = -\frac{\sigma}{Y_M} \int_{S} Y^2.dS$$

$$\sigma_{M} = -\frac{Mfz.Y_{M}}{\int_{S} Y^{2}.dS}$$

Moments quadratiques:

VALEURS DE MOMENTS QUADRATIQUES PARTICULIERS						
SECTIONS PRÉSENTANT UNE SYMÉTRIE CENTRALE						
Sections	УД	УД	УД	УД	УД	y v
(8)	▼ 0 ₽	→ O G	▼ 0 <u>i</u> c	₹ (0)	←	₹ (G) /a
Caractéristiques	z G	z G v	z b'G	z = G	z D	z G A
	<u>hb³</u> 12	<u>a 4</u> 12	$hb^3 - h'b'^3$	π d 4 64	$\frac{\pi}{64}(D^4-d^4)$	0,784 a b ³
	12	12	12	64	64	
102	<u>bh³</u> 12	<u>a ⁴</u> 12	$\frac{bh^3-b'h'^3}{12}$	$\frac{\pi d^4}{64}$	$\frac{\pi}{64}(D^4-d^4)$	0,784 <i>a</i> ³ <i>b</i>
**************************************	$\frac{bh}{12}(b^2+h^2)$	<u>a 4</u> 6	I Gy + I Gz	<u>πd⁴</u> 32	$\frac{\pi}{32}(D^4-d^4)$	$\frac{\pi}{4}ab(a^2+b^2)$
Module de Rexien *	<u>h b²</u>	<u>a ³</u> 3	b h³ - b'h'³	πd^3	π (D^4-d^4)	2
μer	6	3	6 <i>b</i>	<u>πd³</u> 16	$\frac{\pi}{16 D}(D^4-d^4)$	0,784 <i>a b</i> ²
Module de flexion *	<u>b h²</u>	<u>a³</u> 3	bh3-b'h'3	$\frac{\pi d^3}{16}$	$\frac{\pi}{16 D} (D^4 - d^4)$	0,784 <i>ba</i> ²
// ex	6	3	6 <i>h</i>	16	16 <i>D</i> `	-,

Contrainte normale maximale:

Condition de résistance à la contrainte normale:

$$\sigma_0 < R_{pe} = \frac{R_e}{s}$$

Concentration de contrainte :

<u>Chargement</u>:

Contrainte:

$$\sigma_{\text{maxi}} = K_{\text{ts}} \sigma_0$$

avec

$$\mathbf{\sigma}_{\scriptscriptstyle{0}} = rac{\mathbf{IVI}_{\mathsf{fz}}}{\mathbf{I}_{\mathsf{Gz}}}$$

Ру

<u>Détermination du Kt</u>:

Lecture d'abaques

Déformation:

tangente \Rightarrow y' = angle entre tan à la déformation et l'axe x déformation \Rightarrow y = écart entre Lm et axe x

flèche
$$\Rightarrow$$
 $f = y_{maxi}$

Exemple de résolution :

Constr. Méca.

I. Pouget - cours TS ATI

Transparent 9/

Chargements basiques:

