ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{DD}=12$ V, $R_g=500$ Ω , $R_1=4,3$ M Ω , $R_2=2,2$ M Ω , $R_D=2$ k Ω , $R_{S2}=200$ Ω , $R_T=4,7$ k Ω . Parametri n-kanalnog MOSFET-a su: K=2 mA/V 2 , $U_{GS0}=1,5$ V i $\lambda=0,0045$ V $^{-1}$.

- a) Odrediti vrijednost otpornika R_{S1} takvu da napon U_{GSQ} iznosi 3 V. Izračunati I_{DQ} , U_{DSQ} te strminu i dinamički otpor u statičkoj radnoj točki. Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja. (3 boda)
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu te izvesti izraze i izračunati naponska pojačanja $A_V = u_{iz}/u_{ul}$ i $A_{Vg} = u_{iz}/u_g$. (5 bodova)

ZADATAK 2. Silicijski *pnp* tranzistor ima homogene koncentracije primjesa u emiteru i bazi iznosa $1 \cdot 10^{18}$ cm⁻³ i $2 \cdot 10^{16}$ cm⁻³. Pokretljivosti manjinskih nosilaca u emiteru i u bazi su $300 \text{ cm}^2/\text{Vs}$ i $250 \text{ cm}^2/\text{Vs}$. Efektivna širina baze je 0,5 μm, a emitera 1,5 μm. Širine baze i emitera su puno manje, a širina kolektora puno veća od difuzijskih duljina manjinskih nosilaca. Vrijeme života manjinskih nosilaca u bazi je 0,1 μs. Površina tranzistora je 1 mm². Naponi na *pn*-spojevima su $U_{BE} = -0.5 \text{ V}$ i $U_{CB} = -3 \text{ V}$. Pretpostaviti T = 300 K i $I_{CBO} = 0 \text{ A}$.

- a) Skicirati raspodjelu manjinskih nosilaca u tranzistoru (označiti ravnotežne i rubne koncentracije manjinskih nosilaca u emiteru, bazi i kolektoru) i označiti sve komponente struja. (2 boda)
- b) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora. (5 bodova)
- c) Izračunati faktor injekcije, te faktore pojačanja α i β . (1 bod)

ZADATAK 3. Za pojačalo na slici zadani su sljedeći podaci: $R_1 = 10 \text{ k}\Omega$, $R_2 = 4.7 \text{ k}\Omega$, $R_E = 2.2 \text{ k}\Omega$, $R_C = 2.2 \text{ k}\Omega$, $R_T = 2.2 \text{ k}\Omega$, $R_S = 50 \text{ }\Omega$, $R_S = 12 \text{ V}$. Parametri npn tranzistora su $\beta \approx hfe = 200$, $R_S = 12 \text{ V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $R_T = 25 \text{ mV}$.

- b) Skicirati statički i dinamički radni pravac, označiti karakteristične točke i odrediti maksimalni hod izlaznog napona u_{iz} . (3 boda)
- c) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu te izvesti izraze i izračunati naponsko pojačanje $A_V = u_{iz}/u_{ul}$ i strujno pojačanje $A_I = i_{iz}/i_{ul}$ te ulazni otpor R_{ul} . (3 boda)

ZADATAK 4. Shema sklopa s idealnim, simetrično napajanim operacijskim pojačalima je prikazana na slici.

- a) Izračunati ovisnost izlaznog napona u_{IZ} o ulaznim naponima u_{UL1} i u_{UL2} . (4 boda)
- b) Izračunati u_{UL2} za zadane $R_1 = 1.8 \text{ k}\Omega$, $R_2 = 3.6 \text{ k}\Omega$, $R_3 = 5.4 \text{ k}\Omega$, $R_4 = 7.2 \text{ k}\Omega$, $U_{IZ} = 1 \text{ V}$ te $U_{ULI} = 0.25 \text{ V}$. (2 boda)

PITANJA

1. Ako se u pojačalu na slici odspoji kondenzator C_S , za iznos naponskog pojačanja $|A_V|=|u_{iz}/u_{ul}|$ i struju u statičkoj radnoj točki I_{DQ} vrijedi: (2 boda)

- a) $|A_V|$ se smanjuje, I_{DQ} se smanjuje,
- b) $|A_V|$ se smanjuje, I_{DQ} ostaje nepromijenjena,
- c) $|A_V|$ se povećava, I_{DO} se povećava,
- d) $|A_V|$ se ne mijenja, I_{DQ} se smanjuje,
- e) $|A_V|$ se ne mijenja, I_{DQ} ostaje nepromijenjena.

2. Koju logičku funkciju ostvaruje CMOS sklop na slici? (2 boda)

a)
$$Y = \overline{(A+BD)(C+E)}$$

b)
$$Y = A(B+D) + CE$$

c) niti jedan od odgovora

d)
$$Y = \overline{A(B+D) + CE}$$

e)
$$Y = (A + BD)(C + E)$$

3. Dva bipolarna tranzistora imaju sve tehnološke karakteristike iste, osim širine emitera. Prvi tranzistor ima široki emiter, a drugi tranzistor ima uski emiter. U kakvom su odnosu faktori efikasnosti emitera i bazni transportni faktori kada tranzistori rade u normalnom aktivnom području i priključeni su na iste napone? (**2 boda**)

a)
$$\gamma_1 > \gamma_2, \beta_1 * = \beta_2 *$$

b)
$$\gamma_1 < \gamma_2, \beta_1 * < \beta_2 *$$

c)
$$\gamma_1 > \gamma_2, \beta_1 * < \beta_2 *$$

d)
$$\gamma_1 < \gamma_2, \beta_1 * = \beta_2 *$$

e)
$$\gamma_1 < \gamma_2, \beta_1 * > \beta_2 *$$

4. Za pojačalo na slici tranzistor ima faktor izmjeničnog strujnog pojačanja h_{fe} =100. Za iznos strujnog pojačanja $|A_I|$ = $|i_{iz}/i_{ul}|$ te ulazni otpor pojačala R_{ul} vrijedi: **(2 boda)**

- a) $|A_I| < 1$, R_{ul} je veliki,
- b) $|A_I|$ je istog reda veličine kao h_{fe} , R_{ul} je mali,
- c) $|A_I| < 1$, R_{ul} je mali,
- d) $|A_I|$ je istog reda veličine kao h_{fe} , R_{ul} je veliki,
- e) $|A_I|$ je istog reda veličine kao h_{fe} , R_{ul} može biti veliki ili mali ovisno o naponskom djelilu $R_1 \sim R_2$.

5. U pojačalu na slici napon $u_g = 8\sin \omega t$ mV. Koliki su zajednički i diferencijski napon pojačala? (2 boda)

- a) $u_z = 8 \sin \omega t \text{ mV i } |u_d| = 4 \sin \omega t \text{ mV}$
- b) $u_z = 4 \sin \omega t \text{ mV i } |u_d| = 8 \sin \omega t \text{ mV}$
- c) $u_z = 8\sin \omega t \text{ mV i } |u_d| = 8\sin \omega t \text{ mV}$
- d) $u_z = 16 \sin \omega t \text{ mV i } |u_d| = 8 \sin \omega t \text{ mV}$
- e) $u_z = 4 \sin \omega t \text{ mV i } |u_d| = 4 \sin \omega t \text{ mV}$

6. Koji uvjet mora zadovoljavati β tranzistora T1 da bi osigurao njegov rad u zasićenju. Zadano je $U_{CC} = 5$ V, $U_{CEzas} = 0,2$ V, $U_{BEzas} = 0,8$ V, R_B može imati vrijednosti od 60 kΩ do 80 kΩ, R_C može imati vrijednosti od 1 kΩ do 1,2 kΩ, $u_{UL} = 0$ V u stanju logičke 0, a $u_{UL} = U_{CC}$ u stanju logičke 1. **(2 boda)**

- a) $\beta > 57,14$
- b) $\beta > 91,42$
- c) $\beta > 76,19$
- d) $\beta > 68,57$
- e) $\beta < 57,14$

7. Koliki je iznos izlaznog napona U_{iz} ? Operacijsko je idealno, a vrijedi $U_D = 0.7 \text{ V}$. (2 boda)

- a) +0,2 V
- b) -0,2 V
- c) +2,1 V
- d) -2,1 V
- e) +1 V

