# **COMP20007 Design of Algorithms**

Dynamic Programming: Part 1

Daniel Beck

Lecture 12

Semester 1, 2023

### Fibonacci Numbers

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

$$F(n) = F(n-1) + F(n-2), \quad n > 1,$$

$$F(0) = 1, \quad F(1) = 1.$$
function Fibonacci(n)

return Fibonacci(n-1) + Fibonacci(n-2)

if n == 0 or n == 1 then return 1

2

### Fibonacci Numbers

```
function Fibonacci(n)

if n == 0 or n == 1 then return 1

return Fibonacci(n - 1) + Fibonacci(n - 2)
```

### **Storing Intermediate Solutions**

• Allocate an array of size *n* to store previous solutions.

```
function FIBONACCIDP(n)
F[0] \leftarrow 1
F[1] \leftarrow 1
for i = 2 to n do
F[i] = F[i-1] + F[i-2]
return F[n]
```

• From exponential to linear complexity.

# **Dynamic Programming**

- The solution to a problem can be broken into solutions to subproblems (recurrence relations).
- Solutions to subproblems can overlap (calls to F for all values smaller than n).
  - Allocates extra memory to store solutions to subproblems.

#### Given *n* items with

- weights:  $w_1, w_2, \ldots, w_n$
- values:  $v_1, v_2, ..., v_n$
- knapsack of capacity W

find the most valuable selection of items that will fit in the knapsack.

We assume that all entities involved are positive integers.

- weights:  $w_1, w_2, \ldots, w_n$
- values:  $v_1, v_2, ..., v_n$
- knapsack of capacity W

#### Brute-force solution:

- Try all possible subsets of items, return the most valuable that fits in the knapsack.
- $\Theta(2^n)$

#### A Greedy algorithm:

- Assume items have an arbitrary order:  $(w_1, v_1), (w_2, v_2), \dots, (w_n, v_n)$
- Add items one-by-one, in order. When an item does not fit, skip it.
- Not optimal.

- The Greedy algorithm is reminiscent of Fibonacci: the solution for a set of i items depends on the solutions of a set of i-1 items (a subproblem). What is missing?
- The knapsack capacity also leads to subproblems and a corresponding Greedy algorithm: the solution for a knapsack of capacity j depends on the solution for capacity j-1.
  - Spoiler: also not optimal.
- The combination of both "classes" of subproblems is what leads to a correct algorithm.

- Define F(i,j) as the optimal solution for a subset of items 1..i and capacity j.
- Case 1: if item i is not in the optimal solution, then F(i,j) = F(i-1,j)
  - This applies either if item i is "not valuable enough" or because it does not fit in the in the knapsack  $(j < w_i)$ .
- Case 2: if item *i* is in the optimal solution, then we need to take into account its weight.
  - The subproblem is the optimal solution for a knapsack of capacity  $j w_i$ .
  - $F(i,j) = F(i-1,j-w_i)$

Express the solution recursively:

$$F(i,j) = 0 \text{ if } i = 0 \text{ or } j = 0$$

Otherwise:

$$F(i,j) = \begin{cases} max(F(i-1,j), F(i-1,j-w_i) + v_i) & \text{if } j \ge w_i \\ F(i-1,j) & \text{if } j < w_i \end{cases}$$

- In Fibonacci, we had an array to store solutions.
- Here, we need a matrix of n+1 rows and W+1 columns.

## Example

$$F(i,j) = 0 \text{ if } i = 0 \text{ or } j = 0$$

$$F(i,j) = \begin{cases} \max(F(i-1,j), F(i-1,j-w_i) + v_i) & \text{if } j \ge w_i \\ F(i-1,j) & \text{if } j < w_i \end{cases}$$

| item | weight | value |
|------|--------|-------|
| 1    | 2      | \$12  |
| 2    | 1      | \$10  |
| 3    | 3      | \$20  |
| 4    | 2      | \$15  |
|      |        |       |

| i/j | 0 | 1 | 2 | 3 | 4 | 5 |
|-----|---|---|---|---|---|---|
| 0   |   |   |   |   |   |   |
| 1   |   |   |   |   |   |   |
| 2   |   |   |   |   |   |   |
| 3   |   |   |   |   |   |   |
| 4   |   |   |   |   |   |   |

```
function KNAPSACK(v[1..n], w[1..n], W)
    for i \leftarrow 0 to n do F[i, 0] \leftarrow 0
    for j \leftarrow 1 to W do F[0, j] \leftarrow 0
    for i \leftarrow 1 to n do
        for i \leftarrow 1 to W do
             if i < w_i then
                 F[i, j] \leftarrow F[i-1, j]
             else
                 F[i, j] \leftarrow max(F[i-1, j], F[i-1, j-w_i] + v_i)
    return BACKTRACE(F, n, W)
```

The algorithm has time (and space) complexity  $\Theta(nW)$ .

## Solving Knapsack with Memory Functions

- To some extent the bottom-up (table-filling) solution is overkill: It finds the solution to every conceivable sub-instance.
- Most entries cannot actually contribute to a solution.
- In this situation, a top-down approach using a memory function is preferable (this technique is also known as memoing).
- The memory function can be stored as a dictionary.

# Solving Knapsack with Memory Functions

```
function KNAP(i,j)
   if i = 0 or j = 0 then
       return 0
   if (i, j) is in MEMO then
       return Memo[(i,j)]
   if i < w_i then
       k \leftarrow \text{KNAP}(i-1,j)
   else
       k \leftarrow \max(\text{KNAP}(i-1, j), \text{KNAP}(i-1, j-w_i) + v_i)
   \text{Memo}[(i, i)] \leftarrow k
    return k
function KNAPSACK(v[1..n], w[1..n], W)
   allocate(MEMO)
                                                       ▷ A global dictionary
   KNAP(n, W)
                                                    \triangleright v, w are global as well
    return Backtrace(Memo, n, W)
```

### Summary

- Dynamic Programming recipe:
  - Split into subproblems.
  - Solutions overlap.
- A DP solution for Knapsack results in a pseudopolynomial time algorithm.
  - Uses two "variables" to split the problem.
  - Can use memory functions to speed it up.

**Next lecture:** Dynamic Programming applied to graph algorithms.

# **COMP20007 Design of Algorithms**

Dynamic Programming Part 2: Warshall and Floyd algorithms

Daniel Beck

Lecture 13

Semester 1, 2023

### **Transitive Closure**

Goal: find all node pairs that have a path between them.



### Transitive Closure using DP

**Goal:** find all node pairs that have a path between them.

- The solution to a problem can be broken into solutions to subproblems.
  - If there's a path between two nodes i and j which are not directly connected, that path has to go through at least another node k. Therefore, we only need to find if the pairs (i,k) and (k,j) have paths.



### Transitive Closure using DP

**Goal:** find all node pairs that have a path between them.

- Solutions to subproblems can overlap.
  - If the pairs  $(i,j_1)$  and  $(i,j_2)$  have paths that go through k, then finding if the pair (i,k) has a path is part of the solutions for both problems.



- In Knapsack, we assume the items have an arbitrary order.
- In Warshall, we assume the nodes have an arbitrary order (from 1 to n).
- For every pair of nodes (i, j), the full problem is: "is there
  a path between i and j?"
- This can be interpreted as "is there a path between i and j that goes through any subset of nodes from 1 to n?"
- Leading to the subproblem: "is there a path between i and j that goes through any subset of nodes from 1 to k?"

- Assume A as the adjacency matrix. Assume R<sup>k</sup> as matrix that sets 1 when two nodes are connected through a subset of 1..k nodes, and 0 otherwise.
- When k = 0, we have the empty subset and  $R^0 = A$ .
- The goal is to get  $R^n$ . We can then get the following recurrence:

$$R_{ij}^{0} = A_{ij}$$
  
 $R_{ij}^{k} = R_{ij}^{k-1} \text{ or } (R_{ik}^{k-1} \text{ and } R_{kj}^{k-1})$ 

$$R_{ij}^{0} = A_{ij}$$
  
 $R_{ij}^{k} = R_{ij}^{k-1} \text{ or } (R_{ik}^{k-1} \text{ and } R_{kj}^{k-1})$ 



```
function Warshall (A[1..n, 1..n])

R^0 \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^k[i,j] \leftarrow R^{k-1}[i,j] or (R^{k-1}[i,k]) and R^{k-1}[k,j])

return R^n
```

- We can allow the input A to be used for the output, saving memory and simplifying the algorithm.
- Namely, if  $R^{k-1}[i, k]$  (that is, A[i, k]) is 0 then the assignment is doing nothing. And if it is 1, and if A[k, j] is also 1, then A[i, j] gets set to 1.

```
function Warshall 2(A[1..n, 1..n])

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

if A[i,k] then

if A[k,j] then

A[i,j] \leftarrow 1
```

return A

• Now we notice that A[i, k] does not depend on j, so testing it can be moved outside the innermost loop.

```
function Warshall (A[1..n, 1..n])

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

if A[i, k] then

for j \leftarrow 1 to n do

if A[k, j] then

A[i, j] \leftarrow 1
```

return A

• Can use bitstring operations.

### Analysis of Warshall's Algorithm

- Straightforward analysis:  $\Theta(n^3)$  in all cases.
- DFS/BFS from each node is also  $\Theta(n^3)$  (if using adjacency matrices)...
- In practice, parallelisation makes Warshall more efficient.

## Floyd's Algorithm: All-Pairs Shortest-Paths

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights.
- Similar to Warshall's, but uses a weight matrix W instead of adjacency matrix A (with  $\infty$  values for missing edges, and 0 for diagonal cells).

## Floyd's Algorithm

The recurrence follows Warshall's closely:

$$D_{ij}^{0} = W_{ij}$$

$$D_{ij}^{k} = min(D_{ij}^{k-1}, D_{ik}^{k-1} + D_{kj}^{k-1})$$

```
function \operatorname{FLOYD}(W[1..n, 1..n])
D \leftarrow W
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
D[i,j] \leftarrow \min(D[i,j], D[i,k] + D[k,j])
return D
```

# Floyd's Algorithm



| W | Α        | В        | C        | D        |
|---|----------|----------|----------|----------|
| Α | 0        | $\infty$ | 3        | $\infty$ |
| В | 2        | 0        | $\infty$ | $\infty$ |
| C | $\infty$ | 7        | 0        | 1        |
| D | 6        | $\infty$ | $\infty$ | 0        |

| D | Α | В  | C | D |
|---|---|----|---|---|
| Α | 0 | 10 | 3 | 4 |
| В | 2 | 0  | 5 | 6 |
| C | 7 | 7  | 0 | 1 |
| D | 6 | 16 | 9 | 0 |

### Floyd's Algorithm - Why does it work?

- In Warshall, for every pair, each iteration may connect the nodes by including a new intermediate node (if the pair is not already connected).
- In Floyd, the same applies. But if the nodes are already connected, we might need to update the total distance.
   Two possibilities:
  - The shortest path does not have node k: this is just the same distance as the previous iteration
  - The shortest path has node k: the new distance is the
    distance of the shortest path between i and k plus the
    distance of the shortest path between k and j. Both
    D<sub>ik</sub><sup>k-1</sup> and D<sub>kj</sub><sup>k-1</sup> are already computed in the previous
    iteration.

# Floyd's Algorithm

### Obtaining the paths

 The algorithm can be adapted to obtain the full paths (store and update predecessor nodes in a second matrix).

### Negative weights

- Negative weights are not necessarily a problem, but negative cycles are.
- These trigger arbitrarily low values for the paths involved.
- Floyd's algorithm can be adapted to detect negative cycles (by looking if diagonal values become negative).

## Summary

- Dynamic programming is a design technique that trades memory for speed.
  - Breaks a problem into subproblems.
  - Store overlapping solutions in memory.
- Warshall's algorithm: transitive closure of a graph.
- Floyd's algorithm: all-pairs shortest paths.

Remember: no lecture next Tuesday (ANZAC day)

Next lecture: Sorting