第3章 习题答案

3.3 ADC 量化位数可根据其分辨率确定。设某 ADC 的满幅值 FS=10V,系统要求分辨率 M=2mV。试确定其位数。

解:

$$n \ge \log_2(\frac{FS}{M} + 1) = \log_2(\frac{10000}{2} + 1) = 12.3$$

选 $n = 13$ 。

3.5 4 位逐次比较型 ADC 中,设 V_{ref} =10V, V_{i} =8.26V,试画出在时钟脉冲下 V_{o} 的波形,并写出转换结果。

解:

经过 4 次比较后,结果为 $(D_3D_2D_1D_0)$ =1101。

• 2 • 习题答案

3.6 在题图 3.6 所示 3 位并行 ADC 中, V_{ref} =7V,试问电路的最小量化单位是多少? 当 V_i =2.4V 时,输出数字量 $D_2D_1D_0$ 为多少? 误差多大? **解**:

3 位并行 ADC 输入输出关系对照表如下表所示:

· /).)/. /-	~ +^ >	44 .1. 14	ブーリロフナ
3 位并行。	AI)(:「鮪i<	知出大	会知照表

模拟输入	比较器输状态					数字输出 D ₂ D ₁ D ₀				
	C ₀₁ C ₀₂ C ₀₃ C ₀₄ C ₀₅ C ₀₆ C ₀₇									
0≤v ₁ <v<sub>REF/15</v<sub>	0	0	0	0	0	0	0	0	0	0
$V_{REF}/15 \leq v_{I} < 3V_{REF}/15$	0	0	0	0	0	0	1	0	0	1
$3V_{REF}/15 \leq v_1 < 5V_{REF}/15$	0	0	0	0	0	1	1	0	1	0
5V _{REF} /15≤v _I <7V _{REF} /15	0	0	0	0	1	1	1	0	1	1
7V_{REF}/15≤v_I<9V_{REF}/15	0	0	0	1	1	1	1	1	0	0
$9V_{REF}/15 \le v_1 < 11V_{REF}/15$	0	0	1	1	1	1	1	1	0	1
$11V_{REF}/15 \le v_I < 13V_{REF}/15$	0	1	1	1	1	1	1	1	1	0
13V _{REF} /15≤v _I <v<sub>REF</v<sub>	1	1	1	1	1	1	1	1	1	1

根据上表,电路的最小量化单位 $\Delta = \frac{2}{15}V_{\text{ref}} = \frac{14}{15}V$ 。

当 V_i =2.4V 时, V_i = 2.4V = $\frac{2.4\text{V}\times15}{14\text{V}}\cdot\frac{2}{15}V_{\text{ref}}\approx\frac{5.14}{15}V_{\text{ref}}$, 查上表可知,, $D_2D_1D_0$ =011=(3)_D,此时量化误差为

$$\varepsilon = |3 \times \Delta - 2.4| = |3 \times \frac{14}{15} - 2.4| = 0.4 \text{V}$$

3.13 解释图 3.4.10 所示的 3bit 全平行 ADC Simulink 模型及其文档说明,通过仿真说明比较器失调误差对转换结果的影响。

解:

参考本书电子版资料提供的 3 位全平行 ADC 仿真模型及其说明,在此基础上进行仿真研究。