Advances in Quantitative MRI: Acquisition, Estimation, and Application

Gopal Nataraj

Dissertation Defense March 23, 2018

Dept. of Electrical Engineering and Computer Science University of Michigan

Example: flow imaging

¹figure borrowed from [Hope et al., 2013]

Example: diffusion imaging

²figure borrowed from www.diffusion-imaging.com

Example: myelin water imaging

³figure adapted from [Nataraj et al., 2017a]

Goal: rapidly and accurately localize biomarkers from MR data

Goal: rapidly and accurately localize biomarkers from MR data

• biomarker measurable tissue property (e.g., flow rate) that indicates a biological process (e.g., blockage) characteristic to specific disorders (e.g., stroke)

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate) that indicates a biological process (e.g., blockage) characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Challenge: rapidly vs. accurately often competing goals

- more accurate models typically depend on more markers
- precisely estimating more markers usually requires longer scans and more computation

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4]
How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,
how can we rapidly quantify these biomarkers?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,

how can we rapidly quantify these biomarkers?

Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5 Given accurate models and informative data,
- how can we rapidly quantify these biomarkers?Application [Ch. 6]

Using these tools, can we design a state-of-the-art biomarker?

Signal Model

After reconstruction, single voxel y_d in dth image modeled as

$$y_d = s_d(\mathbf{x}; \boldsymbol{\nu}, \mathbf{p}_d) + \epsilon_d \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{p}_d \in \mathbb{R}^A$
- $s_d: \mathbb{R}^{L+K+A} \mapsto \mathbb{C}$
- $\epsilon_d \in \mathbb{C}$

unknown parameters

"known" parameters

acquisition parameters

dth signal model

noise $\sim \mathbb{C}\mathcal{N}ig(0,\sigma_d^2ig)$

Signal Model

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

•
$$\nu \in \mathbb{R}^K$$

- $\bullet \ P := [p_1, \dots, p_D]$
- $\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$
- ullet $\epsilon \sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

unknown parameters

"known" parameters

acquisition parameter matrix

vector signal model

noise, with $\mathbf{\Sigma} := \mathsf{diag}ig(\sigma_1^2, \dots, \sigma_D^2ig)$

7

Signal Model

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$
 unknown parameters
• $\boldsymbol{\nu} \in \mathbb{R}^K$ "known" parameters
• $\mathbf{P} := [\mathbf{p}_1, \dots, \mathbf{p}_D]$ acquisition parameter matrix
• $\mathbf{s} : \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$ vector signal model
• $\boldsymbol{\epsilon} \sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \boldsymbol{\Sigma})$ noise, with $\boldsymbol{\Sigma} := \mathrm{diag}(\sigma_1^2, \dots, \sigma_D^2)$

Task: design P to enable precise unbiased estimation of x

Towards an Objective Function

When \mathbf{s} is analytic in \mathbf{x} (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \Sigma^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \Sigma^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Idea: choose \mathbf{P} such that imprecision matrix \mathbf{F}^{-1} "small"

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \text{tr}\Big(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\Big), \tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\}$$
(5)

where $\mathbb{X}^t \subseteq \mathbb{R}^L$ and $\mathbb{N}^t \subseteq \mathbb{R}^K$ are "tight" ranges of interest and \mathbb{P} is defined by acquisition/timing constraints

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

• min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

• Bayesian scan design

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \nu, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \nu, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

• Bayesian scan design

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]
- For each scan profile feasible under total time constraint:
 - 1. Let \mathbf{s} model corresponding single-component signal
 - $\mathbf{x} \leftarrow [m_0, T_1, T_2]^\mathsf{T}$, where m_0 is a scale factor
 - ullet u \leftarrow flip angle variation
 - ullet P \leftarrow nominal flip angles, repetition times
 - 2. Optimize **P** subject to flip angle, sequence timing constraints
 - $\mathbf{W} \leftarrow \mathsf{diag}(0, 0.1, 1)$ emphasizes T_1, T_2 est roughly equally
 - ullet \mathbb{X}^t chosen to focus on WM/GM at 3T field strength
 - ullet \mathbb{N}^{t} chosen to allow 10% flip angle variation

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Main finding: 2 DESS sequences can yield T_1 , T_2 WM/GM estimates that are at least as precise as T_1 , T_2 estimates from SPGR/DESS scan profiles, under this competitive time constraint.

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- Four inversion recovery (IR) scans for T_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- ullet Four inversion recovery (IR) scans for \mathcal{T}_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Bloch-Siegert (BS) acquisition for separate flip angle calibration

- Acquired 2 BS-shifted 3D SPGR scans in 1m40s total
- ullet Used for T_1, T_2 est from both candidate and reference profiles

Phantom Accuracy Results

Figure 1: Colorbar ranges in ms.

Phantom Accuracy Results

Compared against NIST NMR measurements [Keenan et al., 2016]

Phantom Precision Results

- Repeated each profile 10 times
- ullet Estimated $\mathcal{T}_1,\,\mathcal{T}_2$ std dev of typical voxel across repetitions

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
$V7 \ \widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
$ abla \widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}^{2}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Similar trends across profiles of empirical vs. theoretical std dev!

Contributions

- MR scan design method for precise parameter estimation
- \bullet Fast SPGR/DESS scan profile for ${\it T}_1, {\it T}_2$ estimation in brain

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.

Figure 2: Colorbar ranges in ms.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1, T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

How to address in vivo model mismatch?

- More accurate in vivo signal models
- More scalable parameter estimation

Overview

Advances in Quantitative MRI:

• Acquisition [Ch. 4]
How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
- Application [Ch. 6]

how can we rapidly quantify these biomarkers?

Using these tools, can we design a state-of-the-art biomarker?

Signal Model

Given: at every voxel, measurement vector $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$y = s(x, \nu) + \epsilon \tag{7}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{s}: \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$
- $oldsymbol{\epsilon} \in \mathbb{C}^D$

unknown parameters

"known" parameters

vector signal model

noise $\sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \mathbf{\Sigma})$

Signal Model

Given: at every voxel, measurement vector $\mathbf{y} \in \mathbb{C}^D$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}, \boldsymbol{\nu}) + \boldsymbol{\epsilon} \tag{7}$$

• $\mathbf{x} \in \mathbb{R}^L$ unknown parameters

• $u \in \mathbb{R}^K$ "known" parameters

• $\mathbf{s} : \mathbb{R}^{L+K} \mapsto \mathbb{C}^D$ vector signal model

 $oldsymbol{\epsilon} \in \mathbb{C}^D$ noise $\sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

Task: design fast voxel-by-voxel estimator $\hat{\mathbf{x}}(\mathbf{y}, \nu)$

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \mathbf{\nu})$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- \bullet signal \boldsymbol{s} might be difficult to write in closed form

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal **s** often nonlinear in **x**: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal s might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters

Task: design fast voxel-by-voxel estimator $\widehat{\mathbf{x}}(\mathbf{y}, \nu)$

Challenges:

- signal s often nonlinear in x: non-convex inverse problems
- signal **s** might be difficult to write in closed form

Conventional Approaches:

- gradient-based local optimization
 - initialization-dependent solution
 - requires signal gradients
- stochastic methods (e.g., simulated annealing)
 - unclear convergence analysis [Bertsimas and Tsitsiklis, 1993]
 - several unintuitive tuning parameters
- dictionary-based grid search

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	$\sim 100^2$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	${\sim}100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Motivation

Grid search computational costs

	L	\sim number dictionary atoms
1-compartment relaxivity	3	${\sim}100^2$
flow velocity	4	${\sim}100^3$
diffusivity tensor	7	$\sim\!100^6$
2-3 compartment relaxivity	6-10	$\sim \! 100^5 - 100^9$

Can we scale computation with ${\it L}$ more gracefully?

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}

- sample $(\mathbf{x}_1, \nu_1, \epsilon_1), \dots, (\mathbf{x}_N, \nu_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l},\widehat{b}_{l}\right) \in \left\{ \underset{\substack{h_{l} \\ b_{l} \in \mathbb{R}}}{\min} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} \right\}$$

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_l(\cdot) := \widehat{h}_l(\cdot) + \widehat{b}_l$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_n := [\text{Re}(\mathbf{y}_n)^\mathsf{T}, \text{Im}(\mathbf{y}_n)^\mathsf{T}, \boldsymbol{\nu}_n^\mathsf{T}]^\mathsf{T} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$(\widehat{h}_l, \widehat{b}_l) \in \left\{ \arg \min_{\substack{h_l \\ b_l \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_l(\mathbf{q}_n) + b_l - x_{l,n})^2 \right\}$$
 ill-posed!

Idea: learn a nonlinear estimator from simulated training data

- sample $(\mathbf{x}_1, \mathbf{\nu}_1, \epsilon_1), \dots, (\mathbf{x}_N, \mathbf{\nu}_N, \epsilon_N)$ from prior distributions
- simulate image data vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ via signal model \mathbf{s}
- design nonlinear functions $\widehat{x}_{l}(\cdot) := \widehat{h}_{l}(\cdot) + \widehat{b}_{l}$ for $l \in \{1, \dots, L\}$ that map each $\mathbf{q}_{n} := [\operatorname{Re}(\mathbf{y}_{n})^{\mathsf{T}}, \operatorname{Im}(\mathbf{y}_{n})^{\mathsf{T}}, \boldsymbol{\nu}_{n}^{\mathsf{T}}]^{\mathsf{T}} \in \mathcal{Q}$ to $x_{l,n} \in \mathbb{R}$

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$
(8)

Solution: Param Estimation via Regression with Kernels (PERK) [Nataraj et al., 2018]

- ullet restrict optimization to a certain rich function space ${\mathbb H}$
- optimal $\widehat{h}_l \in \mathbb{H}$ takes form $\widehat{h}_l = \sum_{n=1}^N \widehat{a}_{l,n} k(\cdot, \mathbf{q}_n)$ [Schölkopf et al., 2001]

PERK in a 1-D Toy Problem

Task: estimate T_2 , given samples $(T_{21}, \epsilon_1, y_1), \dots, (T_{2N}, \epsilon_N, y_N)$ simulated via model $y = \exp(-T_E/T_2) + \epsilon$ with fixed T_E

Compare: $\widehat{\mathcal{T}}_2^{\mathrm{PERK}}$ with method-of-moments (MOM) estimator

$$\widehat{T}_2^{\mathrm{MOM}}(\cdot) := -T_{\mathrm{E}}/\log|\cdot|$$

(PERK more useful when good MOM estimator unavailable)

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_{l} := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$

training pt regressands

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

$$\bullet \ \mathbf{x}_I := \begin{bmatrix} x_{I,1}, \dots, x_{I,N} \end{bmatrix}^\mathsf{T} \qquad \text{training pt regressands}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$$
 Gram matrix

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\mathsf{T}$ de-meaning operator

Non-iterative closed-form solution, for $l \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

$$\bullet \ \mathbf{x}_I := \begin{bmatrix} x_{I,1}, \dots, x_{I,N} \end{bmatrix}^\mathsf{T} \qquad \text{training pt re}$$

$$\bullet \ \mathbf{K} := \begin{bmatrix} k(\mathbf{q}_1, \mathbf{q}_1) & \cdots & k(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{q}_N, \mathbf{q}_1) & \cdots & k(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix} \qquad \text{Gram matrix}$$

$$\bullet \ \mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N \mathbf{I}_N^\mathsf{T} \qquad \text{de-meaning of }$$

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

training pt regressands

de-meaning operator nonlin kernel embedding

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{\mathbf{x}}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M}(\mathsf{KM} + N\rho_{l} \mathbf{I}_{N})^{-1} \left(\mathbf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^\mathsf{T}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\mathsf{T}$ de-meaning operator

Can we scale computation with L more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

• Perhaps, since (9) separable in $I \in \{1, ..., L\}$ by construction

nonlin kernel embedding

Non-iterative closed-form solution, for $I \in \{1, ..., L\}$:

$$\widehat{x}_{l}(\cdot) = \mathbf{x}_{l}^{\mathsf{T}} \left(\frac{1}{N} \mathbf{1}_{N} + \mathsf{M} (\mathsf{K} \mathsf{M} + N \rho_{l} \mathsf{I}_{N})^{-1} \left(\mathsf{k}(\cdot) - \frac{1}{N} \mathsf{K} \mathbf{1}_{N} \right) \right)$$
(9)

•
$$\mathbf{x}_l := [x_{l,1}, \dots, x_{l,N}]^{\mathsf{T}}$$
 training pt regressands
• $\mathbf{K} := \begin{bmatrix} \mathbf{k}(\mathbf{q}_1, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_1, \mathbf{q}_N) \\ \vdots & \ddots & \vdots \\ \mathbf{k}(\mathbf{q}_N, \mathbf{q}_1) & \cdots & \mathbf{k}(\mathbf{q}_N, \mathbf{q}_N) \end{bmatrix}$ Gram matrix
• $\mathbf{M} := \mathbf{I}_N - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ de-meaning operator

Can we scale computation with *L* more gracefully?

• $\mathbf{k}(\cdot) := [\mathbf{k}(\cdot, \mathbf{q}_1), \dots, \mathbf{k}(\cdot, \mathbf{q}_N)]^{\mathsf{T}}$

- Perhaps, since (9) separable in $I \in \{1, ..., L\}$ by construction
- However, explicitly computing **K** may be undesirable...

nonlin kernel embedding

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$ $\mathbf{K} \approx \tilde{\mathbf{Z}}^T \tilde{\mathbf{Z}}. \tag{10}$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (10)

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathbf{1}_{N} + \frac{1}{N} \mathbf{x}_{l}^{\mathsf{T}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} \left(\frac{1}{N} \widetilde{\mathsf{Z}} \mathsf{M} \widetilde{\mathsf{Z}}^{\mathsf{T}} + \rho_{l} \mathsf{I}_{Z} \right)^{-1} \left(\widetilde{\mathsf{z}}(\cdot) - \frac{1}{N} \widetilde{\mathsf{Z}} \mathbf{1}_{N} \right)$$

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\ldots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.\tag{10}$$

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\tilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(11)

which is regularized Z-dimensional affine regression!

Suppose there exists "approximate feature mapping" $\tilde{\mathbf{z}}: \mathcal{Q} \mapsto \mathbb{R}^Z$ such that $\tilde{\mathbf{Z}}:=[\tilde{\mathbf{z}}(\mathbf{q}_1),\dots,\tilde{\mathbf{z}}(\mathbf{q}_N)]$ has for $\dim(\mathcal{Q}) \ll Z \ll N$

$$\mathbf{K} \approx \tilde{\mathbf{Z}}^{\mathsf{T}}\tilde{\mathbf{Z}}.$$
 (10)

Plugging (10) into PERK solution (9) and rearranging gives

$$\widehat{x}_{l}(\cdot) \approx \widehat{m}_{x_{l}} + \widehat{\mathbf{c}}_{x_{l}\tilde{\mathbf{z}}}^{\mathsf{T}} \left(\widehat{\mathbf{C}}_{\tilde{\mathbf{z}}\tilde{\mathbf{z}}} + \rho_{l} \mathbf{I}_{Z} \right)^{-1} (\widetilde{\mathbf{z}}(\cdot) - \widehat{\mathbf{m}}_{\tilde{\mathbf{z}}})$$
(11)

which is regularized Z-dimensional affine regression!

Does such a $\tilde{\mathbf{z}}$ exist and work well in practice?

- Yes, e.g. for Gaussian $k(\mathbf{q}, \mathbf{q}') \leftarrow \exp\left(-\frac{1}{2}\|\mathbf{\Lambda}^{-1}(\mathbf{q} \mathbf{q}')\|_2^2\right)$ [Rahimi and Recht, 2007]
- In such cases, can reduce from $\sim N^2$ to $\sim NZ$ computations

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

- ullet PERK trained using $N \leftarrow 10^5$ samples from prior dist ${
 m p_{x,
 u}}$
- ullet To enable precise estimation, support of $p_{x,
 u}$ carefully chosen to coincide with min-max acquisition design support

Experimental Setup

Demonstrated PERK for T_1 , T_2 est from optim (2SP,1DE) scan

- PERK trained using $N \leftarrow 10^5$ samples from prior dist $p_{x,\nu}$
- To enable precise estimation, support of $p_{x,\nu}$ carefully chosen to coincide with min-max acquisition design support

Compared PERK to two well-suited ML estimators:

- dictionary-based grid search estimator via variable projection method (VPM) [Golub and Pereyra, 2003]
- local optim estimator via preconditioned variant (PGPM)
 of classical gradient projection method [Rosen, 1960]

Within support of $p_{x,\nu}$,

PERK and ML estimates agree excellently.

In vivo Results

In vivo Results

Summary

Contributions

• PERK: fast, dictionary-free estimator for QMRI

Summary

Contributions

- PERK: fast, dictionary-free estimator for QMRI
- demonstrated PERK for T_1 , T_2 estimation
 - Phantom (and omitted simulation) results show that PERK and ML estimators yield comparable accuracy/precision
 - In vivo PERK and ML estimates are comparable in WM/GM
 - PERK is consistently at least 140x faster

Summary

Contributions

- PERK: fast, dictionary-free estimator for QMRI
- demonstrated PERK for T_1 , T_2 estimation
 - Phantom (and omitted simulation) results show that PERK and ML estimators yield comparable accuracy/precision
 - In vivo PERK and ML estimates are comparable in WM/GM
 - PERK is consistently at least 140x faster

Can we exploit PERK's speed in a more compelling problem?

Overview

Advances in Quantitative MRI:

- Acquisition [Ch. 4]
 How can we assemble fast, informative collections of scans to enable precise biomarker quantification?
- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Background⁴

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

⁴figure borrowed from www.mayoclinic.org

Background⁴

Myelin water fraction (MWF):

MR signal fraction

 arising from water trapped
 within myelin bilayers
 relative to total signal

 [Mackay et al., 1994]

Normal nerve Exposed fiber Damaged myelin

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED

⁴figure borrowed from www.mayoclinic.org

Background⁴

Myelin water fraction (MWF):

MR signal fraction
 arising from water trapped
 within myelin bilayers
 relative to total signal
 [Mackay et al., 1994]

Correlates well
 with intact myelin content
 [Webb et al., 2003]

⁴figure borrowed from www.mayoclinic.org

Previous MW imaging acquisitions

Multi-echo spin-echo (MESE)

[Mackay et al., 1994]

- Considered a gold-standard
- ullet Speed-limited by long repetition times (\sim 1-2s)

Previous MW imaging acquisitions

Multi-echo spin-echo (MESE) [Mackay et al., 1994

- Considered a gold-standard
- Speed-limited by long repetition times (\sim 1-2s)

Combinations of fast steady-state scans using variable flip angles ("mcDESPOT") [Deoni et al., 2008]

- ullet Whole-brain, high-resolution MW imaging in $\sim 30 \mathrm{m}$
- Disagree with MESE MWF estimates [Zhang et al., 2015]
 likely due to insufficient precision [Lankford and Does, 2013]

Previous MW imaging acquisitions

Multi-echo spin-echo (MESE)

[Mackay et al., 1994]

- Considered a gold-standard
- Speed-limited by long repetition times (\sim 1-2s)

Combinations of fast steady-state scans using variable flip angles ("mcDESPOT") [Deoni et al., 2008]

- ullet Whole-brain, high-resolution MW imaging in \sim 30m
- Disagree with MESE MWF estimates [Zhang et al., 2015]
 likely due to insufficient precision [Lankford and Does, 2013]

Goal: fast, accurate MW content quantification in WM

A voxel-scale MW content model

A voxel-scale MW content model

simple two-compartment model

A voxel-scale MW content model

simple two-compartment model

Take fast-relaxing fraction $f_{\rm F}$ as a simple measure of MW content

Two-compartment SPGR model [Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation

Two-compartment SPGR model [Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment SPGR model [Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

[Nataraj et al., 2017a]

 additional approximations required unless we assume time-independent diff in compartmental off-resonance freq

Two-compartment SPGR model [Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

[Nataraj et al., 2017a]

- additional approximations required unless we assume time-independent diff in compartmental off-resonance freq
- including exchange, closed-form solutions still elusive

Two-compartment SPGR model [Spencer and Fishbein, 2000]

- included first-order physical exchange
- neglected relaxation, precession, exchange during excitation
- ullet absorbing off-resonance effects into m_0 implies neglecting exchange between excitation and readout

Two-compartment DESS model

[Nataraj et al., 2017a]

- additional approximations required unless we assume time-independent diff in compartmental off-resonance freq
- including exchange, closed-form solutions still elusive

For simplicity, we use short echo times and neglect exchange.

$$\begin{split} \breve{\boldsymbol{P}} &\in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \, \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) &:= \mathsf{E}_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\mathsf{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{12}$$

$$\begin{split} \breve{\boldsymbol{P}} \in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) := E_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\text{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{12}$$

- $\mathbf{x} [f_{\text{F}}, T_{1,\text{F}}, T_{2,\text{F}}, T_{1,\text{S}}, T_{2,\text{S}}, m_0]^{\mathsf{T}}$
- ullet u transmit field spatial variation $s^{
 m t}$
- P SPGR/DESS nominal flip angles, repetition times

$$\mathbf{\breve{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \mathbf{\breve{\Psi}}(\mathbf{P}) \right\}, \text{ where}$$

$$\mathbf{\breve{\Psi}}(\mathbf{P}) := \mathsf{E}_{\mathbf{x}, \boldsymbol{\nu}} \left(\mathsf{tr} \left(\mathbf{W} \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \mathbf{W}^{\mathsf{T}} \right) \right) \tag{12}$$

•
$$\mathbf{x} \qquad [f_{\text{F}}, T_{1,\text{F}}, T_{2,\text{F}}, T_{1,\text{S}}, T_{2,\text{S}}, m_0]^{\mathsf{T}}$$

- ullet u transmit field spatial variation $s^{
 m t}$
- P SPGR/DESS nominal flip angles, repetition times

• W diag
$$\left(\left[\left(\mathsf{E}_{\mathsf{x},\nu}(f_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$$

$$\begin{split} \breve{\boldsymbol{P}} &\in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) &:= \mathsf{E}_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\mathsf{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{12}$$

- $\mathbf{x} \qquad [f_{\mathrm{F}}, T_{1,\mathrm{F}}, T_{2,\mathrm{F}}, T_{1,\mathrm{S}}, T_{2,\mathrm{S}}, m_0]^{\mathsf{T}}$
- ullet u transmit field spatial variation $s^{
 m t}$
- P SPGR/DESS nominal flip angles, repetition times
- ullet W diag $\left(\left[\left(\mathsf{E}_{\mathsf{x},
 u}(\mathit{f}_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$
- \bullet $\mathsf{E}_{\mathsf{x}, \nu}(\cdot)$ approximated via empirical averages of samples drawn from separable prior

$$\begin{split} \breve{\boldsymbol{P}} &\in \left\{ \text{arg } \min_{\boldsymbol{P} \in \mathbb{P}} \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) \right\}, \text{ where} \\ \bar{\boldsymbol{\Psi}}(\boldsymbol{P}) &:= \mathsf{E}_{\boldsymbol{x}, \boldsymbol{\nu}} \Big(\mathsf{tr} \Big(\boldsymbol{W} \boldsymbol{F}^{-1}(\boldsymbol{x}; \boldsymbol{\nu}, \boldsymbol{P}) \boldsymbol{W}^{\mathsf{T}} \Big) \Big) \end{split} \tag{12}$$

- $\mathbf{x} = [f_{\text{F}}, T_{1,\text{F}}, T_{2,\text{F}}, T_{1,\text{S}}, T_{2,\text{S}}, m_0]^{\mathsf{T}}$
- ullet u transmit field spatial variation $s^{
 m t}$
- P SPGR/DESS nominal flip angles, repetition times
- W diag $\left(\left[\left(\mathsf{E}_{\mathsf{x},\nu}(f_{\mathrm{F}})\right)^{-1},\mathbf{0}_{5}^{\mathsf{T}}\right]^{\mathsf{T}}\right)$
- \bullet $\mathsf{E}_{\mathsf{x}, \nu}(\cdot)$ approximated via empirical averages of samples drawn from separable prior
- ullet nom flip angle, total scan time constraints

Optimized SPGR/DESS Acquisition

	Optimized flip angles (deg)	Optimized rep. times (ms)
SPGR	-	_
DESS	33.0, 18.3, 15.1	17.5, 30.2, 60.3

Table 2: Optimized⁵ Scan Parameters, **P**

Predicted f_F relative standard deviation in WM

 Optimized SPGR/DESS:
$$\sqrt{\bar{\Psi}\Big(\breve{\mathbf{P}}\Big)} = 0.425$$

• mcDESPOT: at least 1 [Lankford and Does, 2013]

⁵acquisition design reported by Mingjie Gao, UM

Applied PERK for f_{F} estimation from optimized DESS acquisition

Applied PERK for f_{F} estimation from optimized DESS acquisition

- ullet PERK trained using ${\it N} \leftarrow 10^6$ samples from prior dist ${\it p}_{{\it x},
 u}$
- ullet To enable precise estimation, $p_{x,
 u}$ chosen similar to Bayesian scan design sampling dist, but with finite support

Applied PERK for $f_{ m F}$ estimation from optimized DESS acquisition

- PERK trained using $N \leftarrow 10^6$ samples from prior dist $p_{x,\nu}$
- ullet To enable precise estimation, $p_{x,\nu}$ chosen similar to Bayesian scan design sampling dist, but with finite support

Compared DESS PERK $f_{\rm F}$ estimates to:

 DESS ML $f_{\rm F}$ estimates (via VPM and unrealistically narrow grid search around truth)

Applied PERK for $f_{
m F}$ estimation from optimized DESS acquisition

- PERK trained using $N \leftarrow 10^6$ samples from prior dist $p_{x,\nu}$
- ullet To enable precise estimation, $p_{x,\nu}$ chosen similar to Bayesian scan design sampling dist, but with finite support

Compared DESS PERK $f_{\rm F}$ estimates to:

- ullet DESS ML $f_{
 m F}$ estimates (via VPM and unrealistically narrow grid search around truth)
- ullet MESE nonnegative least-squares (NNLS) MWF $f_{
 m M}$ estimates [Mackay et al., 1994]

Two-Compartment Simulation without Model Mismatch

Simulated data to arise from **two** water compartments each with different nominal T_2 values but **same nominal** T_1 **value**

- DESS $f_{\rm F}$ estimates use known $s^{\rm t}$
- MESE $f_{\rm M}$ estimates use known $s^{\rm t}$, bulk T_1

Two-Compartment Simulation without Model Mismatch

Simulated data to arise from **two** water compartments each with different nominal T_2 values but **same nominal** T_1 **value**

- ullet DESS $f_{
 m F}$ estimates use known $s^{
 m t}$
- MESE $f_{
 m M}$ estimates use known $s^{
 m t}$, bulk T_1

Since no model mismatch, $f_{
m F}$ and $f_{
m M}$ estimates are comparable

Two-Compartment Simulation Result

Two-Compartment Simulation Result

estimation time: $\sim 5 h$ 33.8s train 1.0s test

Two-Compartment Simulation Result

Three-Compartment Simulation with Model Mismatch

Next simulated data to arise from **three** water compartments each with different nominal T_2 and T_1 values

- ullet DESS $f_{
 m F}$ estimators now incur bias due to two-compartment model assumption
- MESE f_M estimators now incur bias due to bulk- T_1 model assumption (significant for $T_{\rm R}\sim 1$ s)

Three-Compartment Simulation with Model Mismatch

Next simulated data to arise from **three** water compartments each with different nominal T_2 and T_1 values

- ullet DESS $f_{
 m F}$ estimators now incur bias due to two-compartment model assumption
- MESE $f_{
 m M}$ estimators now incur bias due to bulk- $T_{
 m 1}$ model assumption (significant for $T_{
 m R}\sim 1$ s)

Due to model mismatch, $f_{\rm F}$ and $f_{\rm M}$ estimates need not be comparable.

Three-Compartment Simulation Result

estimation time:

 \sim 5h 34.2s train 1.1s test

Three-Compartment Simulation Result

WM RMSE: 0.0618 0.0406 0.0559 0.0254

In vivo Experiment

In a single long study of a healthy volunteer:

- Precision-optimized DESS acquisition
- 32-echo MESE acquisition

- ullet BS acquisition for separate $s^{
 m t}$ estimation
- \bullet Variable-flip SPGR acquisition for separate bulk ${\it T}_1$ estimation

In vivo Experiment

In a single long study of a healthy volunteer:

- Precision-optimized DESS acquisition
- 32-echo MESE acquisition
 - Used shaped refocusing pulses to suppress out-of-slab signal due to imperfect refocusing
 - Used shorter $T_{\rm R} \leftarrow$ 600ms to limit scan time (compensated for incomplete recovery w/ separate bulk- T_1 est)
 - Repeated acquisition twice to increase SNR through averaging
- ullet BS acquisition for separate $s^{
 m t}$ estimation
- ullet Variable-flip SPGR acquisition for separate bulk T_1 estimation

In vivo Experiment

In a single long study of a healthy volunteer:

- Precision-optimized DESS acquisition
- 32-echo MESE acquisition
 - Used shaped refocusing pulses to suppress out-of-slab signal due to imperfect refocusing
 - Used shorter $T_{\rm R} \leftarrow$ 600ms to limit scan time (compensated for incomplete recovery w/ separate bulk- T_1 est)
 - Repeated acquisition twice to increase SNR through averaging
- ullet BS acquisition for separate $s^{
 m t}$ estimation
- ullet Variable-flip SPGR acquisition for separate bulk T_1 estimation

Compared DESS PERK $f_{\rm F}$ estimates to:

- MESE NNLS f_M estimates
- MESE RNNLS f_M estimates

In vivo Results

In vivo Results

time:

40m6s

Contribution

• Fast SS MRI acquisition for precise MW imaging

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - Idealized simulations demonstrate that PERK and ML $f_{\rm F}$ estimates are comparable but PERK is more than 500× faster.

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - Idealized simulations demonstrate that PERK and ML $f_{\rm F}$ estimates are comparable but PERK is more than 500× faster.
 - More realistic simulations demonstrate that both MESE f_M and DESS f_F estimates are sensitive to model mismatch.

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - Idealized simulations demonstrate that PERK and ML $f_{\rm F}$ estimates are comparable but PERK is more than 500× faster.
 - More realistic simulations demonstrate that both MESE $f_{\rm M}$ and DESS $f_{\rm F}$ estimates are sensitive to model mismatch.
 - In vivo experiments are the first to demonstrate lateral WM MW content estimates from a SS acquisition that are similar to conventional MESE MWF estimates.

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - Idealized simulations demonstrate that PERK and ML $f_{\rm F}$ estimates are comparable but PERK is more than 500× faster.
 - More realistic simulations demonstrate that both MESE f_M and DESS f_E estimates are sensitive to model mismatch.
 - In vivo experiments are the first to demonstrate lateral WM MW content estimates from a SS acquisition that are similar to conventional MESE MWF estimates.

Future Work

- Investigate DESS $f_{\rm F}$ accuracy in ex vivo studies
- Correlate with other myelin biomarkers

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - ullet Idealized simulations demonstrate that PERK and ML $f_{
 m F}$ estimates are comparable but PERK is more than 500× faster
 - More realistic simulations demonstrate that both MESE f_M and DESS f_F estimates are sensitive to model mismatch.
 - In vivo experiments are the first to demonstrate lateral WM MW content estimates from a SS acquisition that are similar to conventional MESE MWF estimates.

Future Work

- Investigate DESS $f_{\rm F}$ accuracy in ex vivo studies
- Correlate with other myelin biomarkers
- Exploit off-resonance for MW imaging

Contribution

- Fast SS MRI acquisition for precise MW imaging
 - Idealized simulations demonstrate that PERK and ML $f_{\rm F}$ estimates are comparable but PERK is more than 500× faster
 - More realistic simulations demonstrate that both MESE f_N and DESS f_E estimates are sensitive to model mismatch.
 - In vivo experiments are the first to demonstrate lateral WM MW content estimates from a SS acquisition that are similar to conventional MESE MWF estimates.

Future Work

- ullet Investigate DESS $f_{
 m F}$ accuracy in $ex\ vivo$ studies
- Correlate with other myelin biomarkers
- Exploit off-resonance for MW imaging
- Combine PERK with image reconstruction

Overview

Advances in Quantitative MRI:

•	Acquisition Design via Min-Max Optimization	[Ch. 4]
•	Estimation via Regression with Kernels	[Ch. 5]
•	Application to Myelin Water Imaging	[Ch. 6]

Overview

Advances in Quantitative MRI:

 Estimation using Likelihood Models 	[Ch. 3]
• Acquisition Design via Min-Max Optimization	[Ch. 4]
• Estimation via Regression with Kernels	[Ch. 5]
Application to Myelin Water Imaging	[Ch. 6]
Multiple-Dataset Complex Coil Combination	[Appx. A]
SS-Informed RF Pulse Design	[Appx. B]

advisors

Jeff and Jon

advisors
 Jeff and Jon

• committee Clay, Doug, and Scott

advisors Jeff and Jon

committee
 Clay, Doug, and Scott

• collaborators Mingjie, Steven

advisors

Jeff and Jon

committee

Clay, Doug, and Scott

collaborators

Mingjie, Steven

• funding

NIH P01 CA87634

UM "M-Cubed" seed grant

• advisors Jeff and Jon

committee
 Clay, Doug, and Scott

• collaborators Mingjie, Steven

• funding NIH P01 CA87634

UM "M-Cubed" seed grant
UM pre-doctoral fellowship

friends "lab of Jeff" (LOJ)

fMRI lab

so many others, old and new...

• advisors Jeff and Jon

committee
 Clay, Doug, and Scott

• collaborators Mingjie, Steven

• funding NIH P01 CA87634

UM "M-Cubed" seed grant

UM pre-doctoral fellowship

friends "lab of Jeff" (LOJ)

fMRI lab

so many others, old and new...

roommates Adam and Trey

advisors
 Jeff and Jon

committee
 Clay, Doug, and Scott

• collaborators Mingjie, Steven

• funding NIH P01 CA87634

UM "M-Cubed" seed grant

UM pre-doctoral fellowship

• friends "lab of Jeff" (LOJ)

fMRI lab

so many others, old and new...

roommates
 Adam and Trey

family three generations here today!

advisorsJeff and Jon

committee
 Clay, Doug, and Scott

• collaborators Mingjie, Steven

• funding NIH P01 CA87634

UM "M-Cubed" seed grant

UM pre-doctoral fellowship

friends "lab of Jeff" (LOJ)

fMRI lab

so many others, old and new...

roommates Adam and Trey

family three generations here today!

wife-to-be
 Manisha

References i

Cramér, H. (1946).

Mathematical methods of statistics.

Princeton Univ. Press, Princeton.

Aronszajn, N. (1950).

Theory of reproducing kernels.

Trans. Amer. Math. Soc., 68(3):337-404.

Bertsimas, D. and Tsitsiklis, J. (1993). Simulated annealing.

Statistical Science, 8(1):10-15.

Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., and Jones, D. K. (2008). Gleaning multicomponent T1 and T2 information from steady-state imaging data.

Mag. Res. Med., 60(6):1372-87.

Golub, G. and Pereyra, V. (2003).

Separable nonlinear least squares: the variable projection method and its applications. Inverse Prob., 19(2):R1–26.

Hope, M. D., Wrenn, S. J., and Dyverfeldt, P. (2013).

Clinical applications of aortic 4d flow imaging.

Curr. Cardiovasc. Imag. Rep., 6(2):128-39.

References ii

Keenan, K. E., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Reddick, W. E., Cecil, K. M., Zheng, J., Hu, P., and Jackson, E. F. (2016).

Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom. In *Proc. Intl. Soc. Mag. Res. Med.*, page 3290.

Lankford, C. L. and Does, M. D. (2013).

On the inherent precision of mcDESPOT.

Mackay, A., Whittall, K., Adler, J., Li, D., Paty, D., and Graeb, D. (1994). In vivo visualization of myelin water in brain by magnetic resonance. Mag. Res. Med., 31(6):673–7.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017a).

Myelin water fraction estimation from optimized steady-state sequences using kernel ridge regression.

In Proc. Intl. Soc. Mag. Res. Med., page 5076.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017b).

Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences. *IEEE Trans. Med. Imag.*, 36(2):467–77.

Nataraj, G., Nielsen, J.-F., Scott, C., and Fessler, J. A. (2018).

Dictionary-free MRI PERK: Parameter estimation via regression with kernels.

IEEE Trans. Med. Imag.

To appear.

References iii

Rahimi, A. and Recht, B. (2007).

Random features for large-scale kernel machines. In NIPS.

Redpath, T. W. and Jones, R. A. (1988).

FADE-A new fast imaging sequence.

Mag. Res. Med., 6(2):224-34.

Rosen, J. B. (1960).

The gradient projection method for nonlinear programming, Part I: Linear constraints. SIAM J. Appl. Math., 8(1):181–217.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In Proc. Computational Learning Theory (COLT), pages 416–426. LNCS 2111.

Spencer, R. G. and Fishbein, K. W. (2000).

Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy.

J. Mag. Res., 142(1):120-35.

Webb, S., Munro, C. A., Midha, R., and Stanisz, G. J. (2003).

Is multicomponent T2 a good measure of myelin content in peripheral nerve?

Mag. Res. Med., 49(4):628-45.

References iv

Whittall, K. P. and MacKay, A. L. (1989).

Quantitative interpretation of NMR relaxation data.

J. Mag. Res., 84(1):134-52.

Zhang, J., Kolind, S. H., Laule, C., and MacKay, A. L. (2015).

Comparison of myelin water fraction from multiecho T2 decay curve and steady-state methods.

Mag. Res. Med., 73(1):223-32.

Zur, Y., Wood, M. L., and Neuringer, L. J. (1991).

Spoiling of transverse magnetization in steady-state sequences.

Mag. Res. Med., 21(2):251-63.

Numerical Simulation: Acquisition Design

- Simulated many WM-like, GM-like voxel realizations
- ullet Studied sample statistics of $\mathcal{T}_1,\,\mathcal{T}_2$ ML estimates $\widehat{\mathcal{T}}_1^{\mathrm{ML}},\,\widehat{\mathcal{T}}_2^{\mathrm{ML}}$

Profile	(2,1)	(1, 1)	(0,2)	Truth
WM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	830 ± 17	830 ± 15	830 ± 14	832
GM $\widehat{\mathcal{T}}_1^{ ext{ML}}$	$1330 \pm 30.$	1330 ± 24	1330 ± 24	1331
WM $\widehat{T}_2^{ ext{ML}}$	$80. \pm 1.0$	$80. \pm 2.1$	79.6 ± 0.94	79.6
GM $\widehat{T}_2^{ ext{ML}}$	$110. \pm 1.4$	$110.\pm3.0$	$110.\pm1.6$	110

Table 3: $\widehat{T}_1^{\rm ML},\,\widehat{T}_2^{\rm ML}$ sample means \pm sample standard deviations

A Function Space over which Optimization is Tractable

Hilbert space: complete inner product function space

Reproducing kernel Hilbert space (RKHS)

Hilbert space $\mathbb H$ over input space $\mathcal Q$ with reproducing property

$$\langle h, \mathbf{k}(\cdot, \mathbf{q}) \rangle_{\mathbb{H}} = h(\mathbf{q}), \qquad \forall h \in \mathbb{H}, \mathbf{q} \in \mathcal{Q}$$

for some $k: \mathcal{Q}^2 \mapsto \mathbb{R}$ called a reproducing kernel (RK)

Relevant facts

- Bijection between RKHS \mathbb{H} and RK k [Aronszajn, 1950]
- Function $k(\cdot, \mathbf{q}) \in \mathbb{H}$ called a *feature mapping*

Function Optimization over a RKHS

Choose: RK $k : \mathcal{Q}^2 \mapsto \mathbb{R}$ that induces choice of RKHS \mathbb{H}

Solve: for each desired latent parameter $l \in \{1, \dots, L\}$,

$$\left(\widehat{h}_{l}, \widehat{b}_{l}\right) \in \left\{ \arg \min_{\substack{h_{l} \in \mathbb{H} \\ b_{l} \in \mathbb{R}}} \frac{1}{N} \sum_{n=1}^{N} (h_{l}(\mathbf{q}_{n}) + b_{l} - x_{l,n})^{2} + \rho_{l} \|h_{l}\|_{\mathbb{H}}^{2} \right\}$$

$$(13)$$

• Optimal \widehat{h}_l over $\mathbb H$ takes form

[Schölkopf et al., 2001]

$$\widehat{h}_{l}(\cdot) \equiv \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n})$$
 (14)

• Plug (14) into (13); solve now instead for $(\widehat{a}_I, \widehat{b}_I)$; construct:

$$\widehat{x}_{l}(\cdot) = \sum_{n=1}^{N} \widehat{a}_{l,n} \mathbf{k}(\cdot, \mathbf{q}_{n}) + \widehat{b}_{l}$$
(15)

Numerical Simulation: PERK Estimation

	Truth	VPM	PGPM	PERK
WM T_1	832	832.1 ± 17.2 (17.2)	832.1 ± 16.2 (16.2)	833.0 ± 16.5 (16.5)
GM T_1	1331	$1331.5 \pm 31.1 (31.1)$	$1331.2 \pm 29.7 (29.7)$	$1332.1 \pm 30.4 (30.4)$
WM T_2	79.6	79.61 ± 0.988 (0.988)	79.60 ± 0.952 (0.952)	79.46 ± 0.978 (0.989)
GM T_2	110.	$110.02 \pm 1.40 \ (1.40)$	$110.02 \pm 1.35 \ (1.35)$	$109.91 \pm 1.35 (1.35)$

Table 4: Sample means \pm sample standard deviations (RMSEs) of VPM, PGPM, and PERK m_0 , T_1 , T_2 estimates, computed in simulation over 7810 WM-like and 9162 GM-like voxels.

Mismatch in Scan Design vs. Sampling Dist Support

Widening supp($p_{x,\nu}$) degrades performance w/in scan design range. Thus, scan design and param est should be considered in tandem.