This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 1

BEST AVAILABLE COPY

	10	20 -	30	40	- 0	
ATGCTAGAT	A AAAGATGG	C TTTAGTTGA	A TTGAAAGTG	ייטר ר ררר אר א ששרי	50	7. A AATGTAGATA
TTATCGCGG	T TGAAGTAAA	C GTGGGGGAC	ם ברבשתיה בריים בריים בריים	.0 12	0 13	0 140 T TGGAAACCGA
TAAAGCGAC	T ATGGACGTA	C CTGCTGAAG	T TGC ACCCCT	0 19	20	0
22	0 23	0 24	0 25	A GICAAAGAA		
AAAATCTCT	G AAGGTGGTT	T GATTGTCGT	ے حصصت کی محصصت	0 26	0 270	0 280 AAAGCCGAAG
29	0 30	0 31	0 32	G AAGGCACGG		
CGGCTGCCG	CCCGGCGCA	A GAAGCCCCCT)))))	0 33 S 722	0 34(350 AATTCGGCGG
360	0 37	0 380	39	C TCCTGCTCC		
TTCTGCCGA:			J ATTCCCTCC	0 40	0 410	0 420 C TGCATTTGCC
. 430	9 44	0 450	ATTGGGTGG	GGTCCCGGC	G GTTACTCCGC	TGCATTTGCC
GCTGCCGAT	AAGGCTTGA	LE ACTOCOCATO	0 46	0 47	0 480	490
500	510	520	GICGAACGT	I ACAAAACTT	I GGGCGGCGT1	490 TGCCTGAACG
TCGGCTGTAT	CCCTTCCAA	320 3 GCCTTCTTCT	53(54(550	560
570	580	590	ACAATGUCG	CGTTATCGA	GAAGTGCGCC	560 ACTTGGCTGC
CAACGGTATC			600	610	620	630
640	650	660	CGACATCGAT	ATGCTTCGC	G CCTACAAAGA	630 CGGCGTAGTT
		י הפראררייאים יי	67(680	690	700
710	720	GGCAGGTATG	GCGAAAAGCC	GTAAAGTGG	A CGTTATCCAA	GGCGACGGGC
		/ 750 TTCCDDCTCT	740	750	760	770
780	790	TTGGAAGTGT	CGCTGACTGC	CGGCGACGCG	TACGAACAGG	CAGCCCCTAC
CGGCGAGAAA			810	820	830	840
850	860	CCTTCAAAAA 870	CIGIATCATI	GCAGCAGGCA	GCCGCGTAAC	CAAACTGCCT
TTCATTCCTG	AAGATCCGCA	יייט הארבית ביינים ביינים	880	890	900	910
920	930	CATCATCGAT	TCCAGCGGGG	CATTGGCTCT	' GAAAGAAGTA	CCGGGCAAAC
TGCTGATTAT	CGGCGGCGGC	ATTATCAGCC	950	960	970	980
990	1000	1010	100AGAIGGG	TACGGTTTAC		GTTCGCGTTT
GGATGTGGTT	GAAATGATGG	ACGGCCTGAT	1020	1030	1040	1050
1060	1070	1080	1090	GACCGCGATT		ATGGCAAAAA
CAAAACGAAT	ACCGTTTTGA	CAACATTATG	CTCD DCDCCD	1100	1110	1120
GCGTTTACGT	TACCTTTGAA	GGCGCGAACG	CCCCTAAACA	1170	1180	1190
CGCCGGCCGC	GCGCCCAACG	GCAAACTCAT	CAGCGCGGAA	1240	1250	1260
TTCATCGAAG	TGGACAAACA	AATGCGTACC	AATGTGCCGC	1310	1320	1330
AGCCGATGTT	GGCGCACAAA	GCCGTTCACG	AAGGCCACGT	1380	1390	1400
CTACTTCGAC	GCACGCGTGA	TTCCGGGCGT	TGCCTACACT	TCCCCCDDC	1460	1470
GAACTGTCCG	CCAAAGCCTC	CGGCCGCAAA	ATCACCA4AG	CCABCTTCCC	1530	1540
CGATTGCCAA	CGGTTGCGAC	AACGGCTTTA	CCAAGCTGAT	TTTTCATCC	1600	1610
CGGCGGCATT	GTCGGTCCGA	ACGGTGGCGA	TATGATCGGC	GAAGTCTGCC	1670	1680
GACGCGGCAG .	ACATCGGCAA	AACCATCCAC	CCGCACCCGA	CCTTGGGCCG	1/4U ATCCATCCCM	1/50
					ccarcogr ,	MIGGCGGCGG
AAGTGGCATT	GGGTACTTGT .	ACCGACCTGC (CTCCGCAAAA	GAAAAA		

FIG. 2

2/12

FIG. 3

5' TTCC

 M
 V
 D
 K
 R
 M
 A
 L
 V
 E
 L
 K
 V
 P
 D
 I
 G
 G
 H

 ATG
 GTA
 GAT
 AAA
 AGA
 ATG
 GCT
 TTA
 GTT
 GAA
 TTG
 AAA
 GTG
 CCC
 GAC
 ATT
 GGC
 GGA
 CAC

 61
 70
 79
 88
 97
 106
 115

 E
 N
 V
 D
 I
 I
 A
 V
 E
 V
 N
 V
 G
 D
 T
 I
 A
 V
 D

 GAA
 AAT
 GTA
 GAT
 ATT
 ATT
 ATT
 ATT
 GCG
 GTT
 GAA
 GTG
 GGC
 GAC
 ACT
 ATT
 GCT
 GTG
 GAC

D T L I T L D L E

GAT ACC CTG ATT ACT TTG GAT CTA GAA A 3'

Loss Loss Control of the control of

FIG. 4

FIG. 5

	Smallest Poisson Probability
KPY1_HUMAN PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1 51 0 KPY1_RAT PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1 51 0 KPY2_HUMAN PYRUVATE KINASE, M2 ISOZYME (EC 2.7.1.40). 51 0 KPY2_RAT PYRUVATE KINASE, M2 ISOZYME (EC 2.7.1.40). 51 0	.98 1 .98 1 .98 1
>KPY1_HUMAN PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1.40) (CYTOSO THYROID HORMONE-BINDING PROTEIN). Length = 530	OLIC
Query: 29 VNVGDTIAVDDTLITLDL 46	
V+VG I VDD LI+L++ Sbjct: 167 VEVGSKIYVDDGLISLQV 184	
>KPY1_RAT PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1.40). Length = 530	
Query: 29 VNVGDTIAVDDTLITLDL 46	
V+VG I VDD LI+L++ Sbjct: 167 VEVGSKIYVDDGLISLQV 184	·
>KPY2_HUMAN PYRUVAŢE KINASE, M2 ISOZYME (EC 2.7.1.40). Length = 530	
Query: 29 VNVGDTIAVDDTLITLDL 46	÷
V+VG I VDD LI+L++ Sbjct: 167 VEVGSKIYVDDGLISLQV 184	
>KPY2_RAT PYRUVATE KINASE, M2 ISOZYME (EC 2.7.1.40). Length = 530	
Query: 29 VNVGDTIAVDDTLITLDL 46	
V+VG I VDD LI+L++ Sbjct: 167 VEVGSKIYVDDGLISLQV 184	

FIG. 6

6/12

Smallest

Sequences producing High-scoring Segment Pairs:

Reading High Probability Frame Score P(N) N

CFMUCIN Canis familiaris (clone pCTM-A) mucin c-term... -2 62 0.30 1

HS8671 EST02755 Homo sapienscDNA clone HFBCA72 sim... -2 61 0.40 1

>CFMUCIN Canis familiaris (clone pCTM-A) mucin c-terminus RNA, 3' end. Length = 1733

Query: 8 LVELKVPDIGGHENVDIIAVEVNVGDTIAVDD 39

L E+ VPD H V+++A E+ +G++- VDD Sbjct: 1015 LREVQVPDRKLHKGVQLLAGELGIGEALQVDD 920

>HS8671 EST02755 Homo sapiens cDNA clone HFBCA72 similar to Mucin CTM-A. Length = 286

Query: 8 LVELKVPDIGGHENVDIIAVEVNVGDTIAVDD 39

L E+ VPD HE V++++ E+ VG VDD

Sbjct: 240 LREVQVPDRKLHEGVQLLSGELGVGKXFQVDD 145

The state of the s

FIG. 7

7/12

7 F13.

FIG. 8

												•						
			12			21			30			39			48			57
M	V	D	K	R	M		L	V		L								
ATG	GTA	GAT	AAA	AGA	ATG	GCT	TTA	GTT	GAA	TTG	AAA	GTG	CCC	GAC	ATT	GGC	GGA	CAC
	•		69			78			87						105			114
E	N	V	D	I	I	A	v	Ē	v	N	V	G	D	T	I	Α.	v	D
AA Z	TAA	GTA (GAT A	ATT I	ATC (GCG	GTT (GAA (GTA A	AAC (GTG (GGC (GAC :	ACT I	ATT (GCT (STG (GAC
			126			135			144			153			162			171
D	T	L	I	T	L	D	L	D	S	R	G	I	R	I	G	P	G	R
GAT	ACC	CTG	ATT	ACT	TTG	GAT	CTA	GAC	TCG	AGA	GGC	ATT	CGT	ATC	GGC	CCA		
			183			192			201			210			219			228
A	I	L	A	T	Α	G	G	G	A	R	Q	s	T	P	I	G	L	G
GCA	ATT	TTA	GCA	ACA	GCT	GGC	GGT	GGC	GCA	CGT	CAA	TCT	ACC	CCT	ATT	GGT		
			240			249			258			267			276			285
G	Α	L	Y	T	T	A	G	G	G	A	R	K	s	I	T	K	G	P
CAG	GCT	CTG	TAT	ACG	ACT	GCC	GGC	GGT	GGT	GCG	CGC	AAA	AGT	ATC				
			297			306			315			324			333			342
G	R	V	I	Y	A	T	A	G	G	G	A	R	K	R	I	Н	Т	G
GGC	CGC	GTC	ATT	TAC	GCC	ACC	GCG	GGC	GGC	GGT	GCC	CGT						
			354			363			372			381			390			399
P	G	R	A	F	Y	T	T	Α	G	G	G	A	R	K		I	T	M
CCA	GGC	CGT	GCA	TTC	TAT	ACT	ACA	GCA	GGT	GGT								
			411			420			429			438			447			456
G	P	G	R	v	Y	Y	T	T	A	G	G		A	s		R	·ı	
GGT	CCT	GGT	CGC	GTC	TAT	TAC	ACG			-	-	_				CGC	ב דר	ממי
			468			477			486	- 30	- 30	495			1	000	mr.	CAA
R	G	P	G	R	A	F	v	T		*		-20						
CGC	GGC	CCT	GGT	CGT	GCA	TTT	GTG	ACC	ATA	TGA								

The state of the s

FIG. 9

F/9 A

R

Est			MN -****	BRVA	C6	C8	IIIB -****	
1	11				`	*****	_****	
1	11						1	1
1	IXhoI						1 1	!
NcoI	XbaI						- E	BamHI
							NdeI	

" Nad mile Nigo Af State and III State To with I II I

· . . . A

Contract of	Stabilizer C		Programmer v	
	经财产基本		e a cine da me	
porA	hIL2-58	pILM-28	м9	32
	P64k-47	pM-82	М9	34
opc	hIL2-58	pILM-29	М9	25
	P64k-47	pM-80	м9	20
TAB	hIL2-22	pTAB4	LB	5
	P64k-47	pTAB9	LB	1.0

FIG. 11

11/12

1 2 3 4 5 6 7

:

	76. A. W.	1. Og	图 在苏湾。		Nac Com	. 117	1.4 . 3 . 9 ·		
RABBIT#	12166	5725	5340	2310	1	2	2	10	
TAB	20480	10240	10240	81920	20480	20480	51200	10	
	0	0	0	0	0	20480	51200	51200	
LR150	<100	<100	<100	6400	400	<100	800	<100	
JY1	200	<100	<100	12800	1600	6400	3200	<100	
RF	6400	<100	3200	800	<100	200	3200		
MN	200	<100	<100	1600	1600	3200	6400	· 800 <100	
BRVA	<100	6400	400	3200	800	400	6400		
IIIB	<100	<100	<100	<100	800	<100	800	1600 <100	
GM		182	20		000	1		1100	
R%		45.	8%		1416 75%				