Linear Algebra homework 3.4

中文翻译参考:

1 证明 \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 线性独立, 而 \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 线性不独立;

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{v}_4 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

求解 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + c_4\mathbf{v}_4 = \mathbf{0}$ 或 $A\mathbf{x} = \mathbf{0}$ 。 向量 \mathbf{v} 构成矩阵 A 的四个列。

2 (推荐) 从下面向量中找出最大的可能线性独立的向量的个数:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$

$$\mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \quad \mathbf{v}_5 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \quad \mathbf{v}_6 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

3 证明如果 a = 0 或 d = 0 或 f = 0 (三种情况), 矩阵 U 的列线性不独立:

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}.$$

4 如果第 3 题中的 a,d,f 都是非零的,证明方程

Ux = 0 的唯一解是 x = 0,且上三角矩阵 U 的 列线性独立。

- 7 如果 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 是线性独立的向量,证明向量 $\mathbf{v}_1 = \mathbf{w}_2 \mathbf{w}_3, \mathbf{v}_2 = \mathbf{w}_1 \mathbf{w}_3, \mathbf{v}_3 = \mathbf{w}_1 \mathbf{w}_2$ 线性不独立。找出一个 \mathbf{v} 的线性组合 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}(c_1, c_2, c_3 \text{ 不全为零})$ 。求矩阵 A,使得 $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \end{bmatrix} A$,试问 A 奇异吗? 8 如果 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 是线性独立的向量,证明向量
- 8 如果 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 是线性独立的向量,证明向量 $\mathbf{v}_1 = \mathbf{w}_2 + \mathbf{w}_3, \ \mathbf{v}_2 = \mathbf{w}_1 + \mathbf{w}_3, \ \mathbf{v}_3 = \mathbf{w}_1 + \mathbf{w}_2$ 也线性独立。(将 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$ 写成 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 的线性组合的形式,求解方程,证明 方程的解为 $\mathbf{c} = \mathbf{0}$)。
- 10 在 \mathbb{R}^4 空间的平面 x + 2y 3z t = 0 上找到两个线性独立的向量,然后找出三个线性独立的向量,问:为什么不能找出四个线性独立的向量?这个平面是哪个矩阵的零空间?
- 11 描述由下列向量张成 (span) 的 \mathbb{R}^3 的子空间 (是一条直线,一个平面,或者整个 \mathbb{R}^3)。
 - (a) 两个向量: (1,1,-2) 和 (-1,-1,1);
 - (b) 三个向量: (0,1,1), (1,1,0) 和 (0,0,0);
 - (c) \mathbb{R}^3 具有整数分量的所有向量 (分量是整数);
 - (d) ℝ³ 具有正的分量的所有向量 (分量为正数)。
- 12 当 ____ 有解时,向量 b 在由 A 的列张成的子空间中 (填一个方程组,如 Ax = b)。当 ____ 有解,向量 c 在矩阵 A 的行空间中。判断对错:若零向量在行空间中,则行线性不独立。
- 13 求下面四个空间的维数。哪两个空间是一样的?
 - (a) A 的列空间;
 - (b) U 的列空间;
 - (c) A 的行空间;
 - (d) U 的行空间。

- 15 如果向量 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 线性独立,则由它们张成的空间的维数是 ____。这些向量构成了该空间的一组 ____。如果这些向量是一个 $m \times n$ 矩阵的列,那么 m____n(比大小)。如果 m = n,那么矩阵是 ____(可逆?奇异?)。
- 16 求下列 ℝ⁴ 的子空间的一组基。
 - (a) 所有分量相等的向量; (分量相等指向量的 4 个分量相等)
 - (b) 所有分量的和为 0 的向量;
 - (c) 所有垂直于 (1,1,0,0),(1,0,1,1) 的向量;
 - (d) 单位矩阵 $I(4 \times 4)$ 的列空间和零空间。

17 矩阵
$$U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
,求 U 的列空间的三组不

同的基, 求 U 的行空间的两组不同的基。

- 19 矩阵 A 的列是 n 个属于 \mathbb{R}^m 的向量,如果这 n 个向量线性独立,那么 A 的秩是多少?如果这些向量张成 \mathbb{R}^m ,A 的秩是多少?如果它们是 \mathbb{R}^m 的基,A 的秩是多少?往前看:秩 r 是 _____ 列的个数。
- 20 求 \mathbb{R}^3 空间平面 x 2y + 3z = 0 的一组基。然后 求该平面与 xOy 的平面的交线的一组基。然后 求所有垂直于该平面的向量构成的子空间的一组基。
- 23 矩阵 U 等于矩阵 A 的第三行减去第一行得到的 矩阵:

求两个矩阵的列空间的基,求两个矩阵的行空间 的基,求两个矩阵的零空间的基。哪些空间在消 元法过程中保持不变。

24 判断对错 (若正确证明,若错误举反例):

- (a) 如果矩阵的列线性不独立,则矩阵的行也线性不独立:
- (b) 一个 2×2 矩阵的列空间和行空间是相同的;
- (c) 一个 2 × 2 矩阵的列空间和行空间的维数是相同的:
- (d) 矩阵的列是其列空间的一组基。
- 25 当 c 和 d 等于多少时,下面的矩阵的秩等于 2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \not\exists B B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}.$$

- 26 求下面 3×3 矩阵的子空间的一组基和维数:
 - (a) 所有的对角矩阵;
 - (b) 所有的对称矩阵 $(A^{\top} = A)$;
 - (c) 所有的反对称矩阵 $(A^{\top} = -A)$ 。
- 29 由下列矩阵张成的 3×3矩阵的子空间是什么?
 - (a) 可逆矩阵;
 - (b) 秩为1的矩阵;
 - (c) 单位矩阵。
- 30 2×3 矩阵的零空间包括 (2,1,1),求此类矩阵构成的空间的一组基。
- 36 求由向量 (a,b,c,d)(其中 a+c+d=0) 构成的空间 **S** 的一组基; 求由向量 (a,b,c,d)(其中 a+b=0,c=2d) 构成的空间 **T** 的一组基。问:空间 **S** 和 **T** 的交集 **S** \cap **T** 的维数是多少?
- 37 如果对于平移矩阵 (shift matrix)S,有 AS = SA, 证明 A 一定有下面的特殊形式:

如果
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

那么
$$A = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$$
.

那么由该类矩阵 A 构成的矩阵空间的维数为

39 假设 A 是秩为 4 的 5×4 矩阵。当 5×5 矩阵 $\begin{bmatrix} A & b \end{bmatrix}$ 可逆时,证明方程组 Ax = b 无解。证明 当 $\begin{bmatrix} A & b \end{bmatrix}$ 奇异时,方程组 Ax = b 有解。

Problem Set 3.4

Questions 1-10 are about linear independence and linear dependence.

1 Show that v_1, v_2, v_3 are independent but v_1, v_2, v_3, v_4 are dependent:

$$v_1 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} \quad v_2 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \quad v_3 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} \quad v_4 = egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}.$$

Solve $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = \mathbf{0}$ or $Ax = \mathbf{0}$. The v's go in the columns of A.

2 (Recommended) Find the largest possible number of independent vectors among

$$m{v}_1 = egin{bmatrix} 1 \ -1 \ 0 \ 0 \end{bmatrix} m{v}_2 = egin{bmatrix} 1 \ 0 \ -1 \ 0 \end{bmatrix} m{v}_3 = egin{bmatrix} 1 \ 0 \ 0 \ -1 \end{bmatrix} m{v}_4 = egin{bmatrix} 0 \ 1 \ -1 \ 0 \end{bmatrix} m{v}_5 = egin{bmatrix} 0 \ 1 \ 0 \ -1 \end{bmatrix} m{v}_6 = egin{bmatrix} 0 \ 0 \ 1 \ -1 \end{bmatrix}$$

3 Prove that if a = 0 or d = 0 or f = 0 (3 cases), the columns of U are dependent:

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}.$$

- 4 If a, d, f in Question 3 are all nonzero, show that the only solution to Ux = 0 is x = 0. Then the upper triangular U has independent columns.
- **5** Decide the dependence or independence of
 - (a) the vectors (1, 3, 2) and (2, 1, 3) and (3, 2, 1)
 - (b) the vectors (1, -3, 2) and (2, 1, -3) and (-3, 2, 1).
- Choose three independent columns of U. Then make two other choices. Do the same for A.

$$U = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 4 & 6 & 8 & 2 \end{bmatrix}.$$

- If w_1, w_2, w_3 are independent vectors, show that the differences $v_1 = w_2 w_3$ and $v_2 = w_1 w_3$ and $v_3 = w_1 w_2$ are *dependent*. Find a combination of the v's that gives zero. Which matrix A in $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} A$ is singular?
- 8 If w_1, w_2, w_3 are independent vectors, show that the sums $v_1 = w_2 + w_3$ and $v_2 = w_1 + w_3$ and $v_3 = w_1 + w_2$ are *independent*. (Write $c_1v_1 + c_2v_2 + c_3v_3 = 0$ in terms of the w's. Find and solve equations for the c's, to show they are zero.)

Suppose v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3 . 9 (a) These four vectors are dependent because _____. (b) The two vectors v_1 and v_2 will be dependent if _____. (c) The vectors v_1 and (0,0,0) are dependent because ____. Find two independent vectors on the plane x+2y-3z-t=0 in \mathbb{R}^4 . Then find three 10 independent vectors. Why not four? This plane is the nullspace of what matrix? Questions 11-14 are about the space spanned by a set of vectors. Take all linear combinations of the vectors. Describe the subspace of \mathbb{R}^3 (is it a line or plane or \mathbb{R}^3 ?) spanned by 11 (a) the two vectors (1, 1, -1) and (-1, -1, 1)(b) the three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0)(c) all vectors in \mathbb{R}^3 with whole number components (d) all vectors with positive components. 12 The vector \boldsymbol{b} is in the subspace spanned by the columns of A when ____ has a solution. The vector c is in the row space of A when has a solution. True or false: If the zero vector is in the row space, the rows are dependent. Find the dimensions of these 4 spaces. Which two of the spaces are the same? (a) col-13 umn space of A, (b) column space of U, (c) row space of A, (d) row space of U: $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$ 14 v + w and v - w are combinations of v and w. Write v and w as combinations of v + w and v - w. The two pairs of vectors ____ the same space. When are they a basis for the same space? Questions 15-25 are about the requirements for a basis. If v_1, \ldots, v_n are linearly independent, the space they span has dimension _ These vectors are a $\underline{\hspace{1cm}}$ for that space. If the vectors are the columns of an m by n matrix, then m is _____ than n. If m = n, that matrix is ____. Find a basis for each of these subspaces of \mathbb{R}^4 : 16 (a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(d) The column space and the nullspace of I (4 by 4).

(c) All vectors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1).

- Find three different bases for the column space of $U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$. Then find two different bases for the row space of U.
- 18 Suppose v_1, v_2, \ldots, v_6 are six vectors in \mathbb{R}^4 .
 - (a) Those vectors (do)(do not)(might not) span \mathbb{R}^4 .
 - (b) Those vectors (are)(are not)(might be) linearly independent.
 - (c) Any four of those vectors (are)(are not)(might be) a basis for \mathbb{R}^4 .
- The columns of A are n vectors from \mathbb{R}^m . If they are linearly independent, what is the rank of A? If they span \mathbb{R}^m , what is the rank? If they are a basis for \mathbb{R}^m , what then? Looking ahead: The rank r counts the number of _____ columns.
- Find a basis for the plane x-2y+3z=0 in \mathbb{R}^3 . Then find a basis for the intersection of that plane with the xy plane. Then find a basis for all vectors perpendicular to the plane.
- Suppose the columns of a 5 by 5 matrix A are a basis for \mathbb{R}^5 .
 - (a) The equation Ax = 0 has only the solution x = 0 because _____.
 - (b) If b is in \mathbb{R}^5 then Ax = b is solvable because the basis vectors _____ \mathbb{R}^5 .

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for \mathbb{R}^5 .

- Suppose S is a 5-dimensional subspace of \mathbb{R}^6 . True or false (example if false):
 - (a) Every basis for S can be extended to a basis for R^6 by adding one more vector.
 - (b) Every basis for \mathbb{R}^6 can be reduced to a basis for \mathbb{S} by removing one vector.
- 23 U comes from A by subtracting row 1 from row 3:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Find bases for the two column spaces. Find bases for the two row spaces. Find bases for the two nullspaces. Which spaces stay fixed in elimination?

- **24** True or false (give a good reason):
 - (a) If the columns of a matrix are dependent, so are the rows.
 - (b) The column space of a 2 by 2 matrix is the same as its row space.
 - (c) The column space of a 2 by 2 matrix has the same dimension as its row space.
 - (d) The columns of a matrix are a basis for the column space.

25 For which numbers c and d do these matrices have rank 2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}.$$

Questions 26-30 are about spaces where the "vectors" are matrices.

- 26 Find a basis (and the dimension) for each of these subspaces of 3 by 3 matrices:
 - (a) All diagonal matrices.
 - (b) All symmetric matrices $(A^{T} = A)$.
 - (c) All skew-symmetric matrices $(A^{T} = -A)$.
- 27 Construct six linearly independent 3 by 3 echelon matrices U_1, \ldots, U_6 .
- Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a basis for the subspace whose rows also add to zero.
- 29 What subspace of 3 by 3 matrices is spanned (take all combinations) by
 - (a) the invertible matrices?
 - (b) the rank one matrices?
 - (c) the identity matrix?
- Find a basis for the space of 2 by 3 matrices whose nullspace contains (2, 1, 1).

Questions 31-35 are about spaces where the "vectors" are functions.

- 31 (a) Find all functions that satisfy $\frac{dy}{dx} = 0$.
 - (b) Choose a particular function that satisfies $\frac{dy}{dx} = 3$.
 - (c) Find all functions that satisfy $\frac{dy}{dx} = 3$.
- The cosine space \mathbf{F}_3 contains all combinations $y(x) = A \cos x + B \cos 2x + C \cos 3x$. Find a basis for the subspace with y(0) = 0.
- **33** Find a basis for the space of functions that satisfy

(a)
$$\frac{dy}{dx} - 2y = 0$$

(b)
$$\frac{dy}{dx} - \frac{y}{x} = 0.$$

- Suppose $y_1(x), y_2(x), y_3(x)$ are three different functions of x. The vector space they span could have dimension 1, 2, or 3. Give an example of y_1, y_2, y_3 to show each possibility.
- Find a basis for the space of polynomials p(x) of degree ≤ 3 . Find a basis for the subspace with p(1) = 0.
- Find a basis for the space **S** of vectors (a, b, c, d) with a + c + d = 0 and also for the space **T** with a + b = 0 and c = 2d. What is the dimension of the intersection **S** \cap **T**?

37 If AS = SA for the *shift matrix* S, show that A must have this special form:

$$\text{If } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ then } A = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}.$$

"The subspace of matrices that commute with the shift S has dimension _____."

- **38** Which of the following are bases for \mathbb{R}^3 ?
 - (a) (1, 20) and (0, 1, -1)
 - (b) (1,1,-1), (2,3,4), (4,1,-1), (0,1,-1)
 - (c) (1,2,2), (-1,2,1), (0,8,0)
 - (d) (1,2,2), (-1,2,1), (0,8,6)
- Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the 5 by 5 matrix $\begin{bmatrix} A & b \end{bmatrix}$ is invertible. Show that Ax = b is solvable when $\begin{bmatrix} A & b \end{bmatrix}$ is singular.
- **40** (a) Find a basis for all solutions to $d^4y/dx^4 = y(x)$.
 - (b) Find a particular solution to $d^4y/dx^4 = y(x) + 1$. Find the complete solution.

Challenge Problems

- Write the 3 by 3 identity matrix as a combination of the other five permutation matrices! Then show that those five matrices are linearly independent. (Assume a combination gives $c_1P_1 + \cdots + c_5P_5 = \text{zero matrix}$, and check entries to prove that c_1 to c_5 must all be zero.) The five permutations are a basis for the subspace of 3 by 3 matrices with row and column sums all equal.
- Choose $x = (x_1, x_2, x_3, x_4)$ in \mathbb{R}^4 . It has 24 rearrangements like (x_2, x_1, x_3, x_4) and (x_4, x_3, x_1, x_2) . Those 24 vectors, including x itself, span a subspace S. Find specific vectors x so that the dimension of S is: (a) zero, (b) one, (c) three, (d) four.
- Intersections and sums have $\dim(\mathbf{V}) + \dim(\mathbf{W}) = \dim(\mathbf{V} \cap \mathbf{W}) + \dim(\mathbf{V} + \mathbf{W})$. Start with a basis u_1, \ldots, u_r for the intersection $\mathbf{V} \cap \mathbf{W}$. Extend with v_1, \ldots, v_s to a basis for \mathbf{V} , and separately with w_1, \ldots, w_t to a basis for \mathbf{W} . Prove that the u's, v's and w's together are *independent*. The dimensions have (r+s) + (r+t) = (r) + (r+s+t) as desired.
- Mike Artin suggested a neat higher-level proof of that dimension formula in Problem 43. From all inputs v in V and w in W, the "sum transformation" produces v+w. Those outputs fill the space V+W. The nullspace contains all pairs v=u, w=-u for vectors u in $V\cap W$. (Then v+w=u-u=0.) So $\dim(V+W)+\dim(V\cap W)$ equals $\dim(V)+\dim(W)$ (input dimension from V and W) by the Counting Theorem.

dimension of outputs + dimension of nullspace = dimension of inputs.

Problem For an m by n matrix of rank r, what are those 3 dimensions? Outputs = column space. This question will be answered in Section 3.5, can you do it now?