CMSC 491/691: Interactive Fiction and Text Generation Fall 2024

Die Roll Action Generating Operational Network (DRAGON)

Shawn Bray, Josh Li, Reece Robertson

DRAGON generates action effect descriptions in response to player input. Model output is evaluated using a quantum cost function.

INTRO

• DRAGON is a large language model that generates action result descriptions given an action description and a die roll

Training Data (D&D Beyond) Chat History (Memory) User Description of Action Dice Roll (1-20) Large Language Model Description of Action Result Quantum Evaluation Function Evaluated Output DRAGON Model Diagram

METHODS

- 1. Selected a LLAMA-2 model fine-tuned on D&D text data
- 2. Prompted the model with an action description and a die result
- 3. Evaluated the model output using the following metrics:
 - 1. BLEU = $BP \times \exp(\sum_{n=1}^{N} \omega_n \log p_n)$
 - 2. ROGUE = $\sum_{n=1}^{N} r_n$
 - 3. λambeq score (see right)

Trial	BLEU	ROUGE	LAMBEQ
#1Target (success) Hypothesis(success)	0.937	1.0	0.986
#2 Target (success) Hypothesis(failure)	0.875	0.830	0.913
#3 Target (failure) Hypothesis(success)	0.453	0.224	0.201
Score results during inference.			

RESULTS

- DRAGON successfully generates actions descriptions in response to the player prompts
- It does not always return a description of the success of the action
- The λambeq similarity score is a working but overoptimistic evaluation metric

DISCUSSION

We developed a dynamic generating game framework that incorporates quantum computing for inference optimization. Using the λ ambeq toolkit, we implemented cost control mechanisms based on quantum-native constructs. Experimental results demonstrate that our proposed framework achieves near-optimal performance acceleration compared to commonly used classical methods.

AAMBEQ SCORE

- λambeq is a python package for quantum natural language processing
- We use λambeq to encode a natural language circuit into a DisCoCat representation

- We then use λambeq to generate a quantum program from the DisCoCat diagram
- The quantum program encodes the sentence in a latent representation space

- We encode the model output and an expected output into a representation space and compute the distance between the two points in the space
- This successfully creates an evaluation metric; however, it tends to give much greater scores then BLEU and ROGUE in most cases

