Criptografia

Prof. Dr. Gerson Pastre de Oliveira

Criptografia

- Criptografia é o processo de transformar dados legíveis em um formato cifrado, tornando-os inacessíveis para qualquer pessoa que não possua a chave necessária para decifrá-los;
- Esse processo assegura a confidencialidade, integridade e, em alguns casos, a autenticidade das informações.

Tipos de criptografia

- Criptografia simétrica: usa uma única chave para cifrar e decifrar os dados;
- Mais rápida e eficiente em termos de processamento;
- A chave deve ser compartilhada entre as partes envolvidas, o que pode ser um risco de segurança;
- Exemplos: AES (Advanced Encryption
 Standard), DES (Data Encryption Standard).

Criptografia simétrica – DES (Data Encryption Standard)

DES foi adotado como um padrão de criptografia pelo governo dos Estados Unidos em 1977;

Originalmente desenvolvido pela IBM, foi selecionado pelo *National Institute* of *Standards and Technology* (NIST) para proteger informações federais.

Fundamentos DES

- Tamanho da Chave: 56 bits;
- **Bloco:** cifra de bloco que opera em blocos de 64 bits;
- Estrutura: utiliza uma estrutura de rede Feistel, que divide o bloco de dados em duas metades e aplica uma série de operações repetitivas chamadas de rodadas (16 rodadas no total).

Características DES

- Segurança: Inicialmente considerado seguro, o DES tornou-se vulnerável a ataques de força bruta à medida que o poder computacional aumentou;
- Hoje, a chave de 56 bits é considerada insuficiente para proteger dados contra ataques modernos;
- Velocidade: relativamente rápido, mas a segurança limitada tornou-o obsoleto;

Características DES

Segurança: Inicialmente considerado seguro, o DES tornou-se vulnerável a ataques de força bruta à medida que o poder computacional aumentou;

Hoje, a chave de 56 bits é considerada insuficiente para proteger dados contra ataques modernos;

Velocidade: relativamente rápido, mas a segurança limitada tornou-o obsoleto;

Uso: substituído por algoritmos mais seguros, mas ainda pode ser encontrado em sistemas legados;

3DES (Triple DES): uma versão mais segura do DES, na qual o processo de cifragem é repetido três vezes com duas ou três chaves diferentes – isso aumenta a segurança, mas também diminui a eficiência.

Criptografia simétrica – AES (Advanced Encryption Standard)

AES foi adotado como o sucessor do DES pelo NIST em 2001;

Foi desenvolvido pelos criptógrafos belgas Joan Daemen e Vincent Rijmen e também é conhecido como o algoritmo Rijndael.

Fundamentos AES

- Tamanho da Chave: 28, 192, ou 256 bits;
- Bloco: cifra de bloco que opera em blocos de 128 bits;
- Estrutura: utiliza uma rede de substituiçãopermutação (SPN), que envolve uma série de operações de substituição e permutação organizadas em várias rodadas — o número de rodadas depende do tamanho da chave (10 rodadas para 128 bits, 12 para 192 bits e 14 para 256 bits).

Características AES

Segurança: considerado altamente seguro e resistente a ataques de força bruta: o tamanho da chave permite proteção robusta contra ataques, sendo adequado para uso em aplicações de segurança de dados de alto nível;

Velocidade: altamente eficiente tanto em software quanto em hardware: AES é mais rápido que 3DES e outros algoritmos mais antigos, tornando-o ideal para criptografar grandes volumes de dados;

Uso: amplamente adotado em diversas aplicações, incluindo criptografia de discos, comunicações seguras e como o algoritmo de cifragem padrão para muitos protocolos de segurança (como SSL/TLS);

Técnicas clássicas de encriptação

Cifras simétricas

Prof. Dr. Gerson Pastre de Oliveira

Criptografia simétrica

- Também chamada de encriptação convencional ou encriptação de chave única, era o único tipo em uso antes do desenvolvimento da encriptação por chave pública na década de 1970;
- Ainda é o tipo mais usado;
- Algoritmos simétricos, como o AES (Advanced Encryption Standard) e o 3DES (Triple Data Encryption Standard), são particularmente eficientes em termos de velocidade e desempenho, tornando-os ideais para criptografia de dados em grande escala, como em comunicações de rede e armazenamento de dados

Criptografia simétrica

Embora algoritmos de criptografia assimétrica, como RSA e ECC, sejam frequentemente utilizados para propósitos específicos, como estabelecimento de chaves e assinaturas digitais, a criptografia simétrica ainda desempenha um papel crucial em muitos aspectos da segurança da informação;

Em muitos casos, uma combinação de criptografia simétrica e assimétrica é empregada para fornecer maior segurança em diferentes cenários e contextos de uso.

Um esquema de encriptação simétrica possui cinco itens:

- <u>Texto claro</u>: essa e a mensagem ou dados originais, inteligíveis,
 que servem como entrada do algoritmo de encriptação.
- Algoritmo de encriptação: realiza diversas substituições e transformações no texto claro.
- Chave secreta: também e uma entrada para o algoritmo de encriptação. A chave e um valor independente do texto claro e do algoritmo. O algoritmo produzira uma saída diferente, dependendo da chave usada no momento. As substituições e transformações exatas realizadas pelo algoritmo dependem da chave.

Um esquema de encriptação simétrica possui cinco itens:

- <u>Texto cifrado</u>: essa é a mensagem embaralhada, produzida como saída do algoritmo de encriptação. Ela depende do texto claro e da chave secreta. Para determinada mensagem, duas chaves diferentes produzirão dois textos cifrados distintos. O texto cifrado é um conjunto de dados aparentemente aleatório e, nesse formato, ininteligível.
- Algoritmo de decriptação: esse é basicamente o algoritmo de encriptação executado de modo inverso. Ele apanha o texto cifrado e a chave secreta e produz o texto claro original.

Requisitos para uso seguro de criptografia simétrica

- Precisamos de um algoritmo de encriptação forte. No mínimo, gostaríamos que o algoritmo fosse tal que um oponente que conheça o algoritmo e tenha acesso a um ou mais textos cifrados seja incapaz de decifrar o texto cifrado ou descobrir a chave. Esse requisito normalmente é indicado de maneira mais forte: o oponente deverá ser incapaz de decriptar o texto cifrado ou descobrir a chave, mesmo que possua diversos textos cifrados com seus respectivos textos claros.
- 2. Emissor e receptor precisam ter obtido cópias da chave secreta de uma forma segura e mantê-la protegida. Se alguém conseguir descobrir a chave e o algoritmo, toda a comunicação usando essa chave poderá ser lida.

Figura 2.1 Modelo simplificado da encriptação simétrica.

Criptografia simétrica

Podemos manter apenas a chave secreta (o algoritmo pode ser conhecido)

Um oponente, tendo acesso à saída cifrada, mas sem acesso ao texto claro e à chave, pode tentar recuperá-los, considerando que conheça o algoritmo

O oponente pode tentar recuperar apenas a mensagem atual (sob ataque) ou mensagens futuras

Figura 2.2 Modelo de criptossistema simétrico.

Criptografia

Os sistemas criptográficos são caracterizados ao longo de três dimensões independentes:

1. O tipo das operações usadas para transformar texto claro em texto cifrado: todos os algoritmos de encriptação são baseados em dois princípios gerais: substituição, em que cada elemento no texto claro (bit, letra, grupo de bits ou letras) é mapeado em outro elemento, e transposição, em que os elementos no texto claro são rearranjados. O requisito fundamental é que nenhuma informação seja perdida (ou seja, que todas as operações sejam reversíveis). A maioria dos sistemas envolve vários estágios de substituições e transposições (sendo chamados de *sistemas de produto*);

Criptografia

Os sistemas criptográficos são caracterizados ao longo de três dimensões independentes:

- 2. O número de chaves usadas: se tanto o emissor quanto o receptor utilizarem a mesma chave, o sistema é considerado de encriptação simétrica, de chave única, de chave secreta ou convencional. Se emissor e receptor usarem chaves diferentes, o sistema é considerado de encriptação assimétrica, de duas chaves ou de chave pública;
- **3. O modo em que o texto claro é processado:** uma *cifra de bloco* processa a entrada de um bloco de elementos de cada vez, produzindo um de saída para cada de entrada; uma *cifra em fluxo* processa os elementos da entrada continuamente, proporcionando a saída de um elemento de cada vez;

- Em geral, o objetivo de atacar um sistema de encriptação e recuperar a chave em uso, em vez de simplesmente recuperar o texto claro a partir de um único texto cifrado;
- Existem duas técnicas gerais para o ataque a um esquema de encriptação convencional:
- 1. Criptoanálise: os ataques informação utilizam-se da natureza do algoritmo, e talvez de mais algum conhecimento das características comuns ao texto claro, ou ainda de algumas amostras de pares de texto claro-texto cifrado. Esse tipo de ataque explora as características do algoritmo para tentar deduzir um texto claro especifico ou a chave utilizada;
- 2. Ataque por força bruta: o atacante testa todas as chaves possíveis em um trecho do texto cifrado, até obter uma tradução inteligível para o texto claro. Na média, metade de todas as chaves possíveis precisam ser experimentadas para então se obter sucesso (ou não);

Quadro 2.1 Tipos de ataque sobre mensagens encriptadas.

TIPO DE ATAQUE	CONHECIDO AO CRIPTOANALISTA
Apenas texto cifrado	Algoritmo de encriptaçãoTexto cifrado
Texto claro conhecido	 Algoritmo de encriptação Texto cifrado Um ou mais pares de texto claro-texto cifrado produzidos pela chave secreta
Texto claro escolhido	 Algoritmo de encriptação Texto cifrado Mensagem de texto claro escolhida pelo criptoanalista, com seu respectivo texto cifrado gerado com a chave secreta
Texto cifrado escolhido	 Algoritmo de encriptação Texto cifrado Texto cifrado escolhido pelo criptoanalista, com seu respectivo texto claro decriptado produzido pela chave secreta
Texto escolhido	 Algoritmo de encriptação Texto cifrado Mensagem de texto claro escolhida pelo criptoanalista, com seu respectivo texto cifrado produzido pela chave secreta Texto cifrado escolhido pelo criptoanalista, com seu respectivo texto claro decriptado produzido pela chave secreta

- Somente algoritmos relativamente fracos não conseguem resistir a um ataque de texto cifrado;
- Em geral, um algoritmo de encriptação é projetado para aguentar a um ataque de texto claro conhecido;
- Um esquema de encriptação é incondicionalmente seguro se o texto cifrado gerado por ele não tiver informação suficiente para determinar exclusivamente o texto claro correspondente, não importa quanto texto cifrado esteja a disposição – ou seja, é indiferente quanto tempo um oponente tem, ele não tem como decriptar o texto cifrado, simplesmente porque a informação exigida não está lá;

Com a exceção de um esquema conhecido como *one-time pad*, não existe algoritmo de encriptação que seja incondicionalmente seguro – portanto, tudo o que os usuários de um algoritmo de encriptação podem se esforçar para obter é um algoritmo que atenda a um ou a ambos os critérios a seguir:

1) O custo para quebrar a cifra ultrapassa o valor da informação encriptada;

2) O tempo exigido para quebrar a cifra supera o tempo de vida útil da informação.

- Um ataque por força bruta envolve a tentativa de cada chave possível até que seja obtida uma tradução inteligível de texto cifrado para texto claro;
- Em média, metade de todas as chaves possíveis precisa ser experimentada para se obter sucesso – ou seja, se houver X chaves diferentes, um intruso descobriria a verdadeira após X/2 tentativas, em média;
- É importante observar que há mais coisas em um ataque por força bruta do que simplesmente testar todas as chaves possíveis – por exemplo, a menos que seja fornecido um texto claro conhecido, o analista deverá ser capaz de reconhecê-lo como tal;

- Se a mensagem for simplesmente texto claro em inglês, então o resultado aparece facilmente, embora a tarefa de reconhecer o inglês tenha que ser automatizada – se a mensagem de texto foi compactada antes da encriptação, então o reconhecimento é mais difícil;
- Se a mensagem for de algum tipo mais geral de dado, como um arquivo numérico, e este tiver sido compactado, o problema se torna ainda mais difícil de automatizar – assim, para suplementar o método por forca bruta, é preciso haver algum grau de conhecimento sobre o texto claro esperado, além de algum meio de distinguir automaticamente o texto claro de dados aleatórios.

Técnicas de Substituição

Cifra de César;

Cifras monoalfabéticas;

Cifra *playfair;*

Cifra de Hill;

Cifras polialfabéticas;

One-time-pad.