1.BasicExps 基础功能性实验

本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验,本讲中包含有使用不同通信模式控制多旋翼进行飞行编队,灯光秀,固定翼集群控制等实验。

序号	实验名称	简介	文件地址	版本
1	通信接口的飞行实验	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\Readme.pdf	免费版
		块,使用多种通信模式,接收无人机		
		的状态信息, 然后进行对单个或多个		
		无人机的局部位置运动控制进行		
		simulink 建模发送控制指令到该模		
		块,然后进行仿真。		
2	通信接口的 FullData	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\1.RflyUdpFullOne_Mat\Readme.pdf	免费版
	模式单机实验	块,接收无人机的状态信息,然后进		
		行对单个无人机的局部位置运动控		
		制进行 simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
3	通信接口的 FullData	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\2.RflyUdpFullFour_Mat\Readme.pdf	免费版
	模式 4 机仿真实验	块,接收无人机的状态信息,然后进		
		行对 4 个无人机的局部位置运动控		
		制进行 simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
4	通信接口 FullData 模	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\3.RflyUdpFullFourGPos_Mat\Readme.pdf	免费版

	式全局坐标控制 4 机	块,接收无人机的状态信息,然后进		
	实验	行对无人机的全局位置运动控制进		
		行 Simulink 建模发送控制指令到该		
		模块,然后进行仿真。		
5	通信接口的	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\4.RflyUdpSimpleOne_Mat\Readme.pdf	免费版
	SimpleData 模式单机	块,接收无人机的状态信息,然后进		
	画圆实验	行对单个无人机的局部位置运动控		
		制进行 simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
6	通信接口的	通过平台提供的 RflyUdpFast 传输模	e1_RflyUdpSwarmExp\5.RflyUdpUltraSimpleOne_Mat\Readme.pdf	免费版
	UltraSimple 模式单机	块,接收无人机的状态信息,然后进		
	画圆实验	行对单个无人机的局部位置运动控		
		制进行 simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
7	通信接口的	通过平台提供的 RflyUdpFast 传输模	$\underline{e1_RflyUdpSwarmExp\\ \ \ \ \ } 6.RflyUdpUltraSimpleFour_Mat\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	免费版
	UltraSimple 模式四机	块,接收无人机的状态信息,然后进		
	画圆实验	行对单个无人机的局部位置运动控		
		制进行 Simulink 建模发送控制指令		
		到该模块,然后进行仿真。		
8	4 机质点集群实验	从模型精度的角度,使用高精度	e2_NoPX4SITL4Swarm\Readme.pdf	免费版
		6DOF 模型(CopterSim)+真实飞控		
		系统 (PX4) 的软/硬件在环仿真闭环		
		的方式,能够有效提高模型可信度,		
		从而减小仿真与真机实验的差距。本		
		实验基于 RflySim 平台实现 4 架质点		
		模型的四旋翼飞机起飞悬停几秒后		

		下降。		
9	集群轨迹灯光展示实		e3_LightShowSwarm\Readme.pdf	免费版
	验	(或者仿真实验)得到了一系列的多		
		无人机的轨迹数据, 有时需要在三维		
		引擎中进行预览 (回看),或者根据		
		场景调整最优估计。		
10	固定翼质点模型集群	本实验中搭建了固定翼的质点模型,	e4_FixWingGMSwarm\Readme.pdf	免费版
	实验	可通过速度偏航高度或位置指令来		
		控制固定翼进行预定轨迹飞行。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中的所有实验均为	1.BasicExps\Readme.pdf	免费版
		本讲中基础性的功能实验,用		
		户可快速上手熟悉一些简单		
		的功能性实验, 本讲中包含有		
		使用不同通信模式控制多旋		
		翼进行飞行编队,灯光秀,固		
		定翼集群控制等实验。		
2	通信接口的飞行	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\Readme.pdf	免费版
	实验	传输模块,使用多种通信模		
		式,接收无人机的状态信息,		
		然后进行对单个或多个无人		
		机的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
3	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\1.RflyUdpFullOne_Mat\Readme.pdf	免费版
	FullData 模式单机	传输模块,接收无人机的状态		
	实验	信息,然后进行对单个无人机		
		的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
4	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\2.RflyUdpFullFour_Mat\Readme.pdf	免费版

	FullData 模式 4 机	传输模块, 接收无人机的状态		
	仿真实验	信息,然后进行对4个无人机		
		的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
5	通信接口 FullData	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\3.RflyUdpFullFourGPos_Mat\Readme.pdf	免费版
	模式全局坐标控	传输模块,接收无人机的状态		
	制 4 机实验	信息,然后进行对无人机的全		
		局位置运动控制进行 Simulink		
		建模发送控制指令到该模块,		
		然后进行仿真。		
6	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\4.RflyUdpSimpleOne_Mat\Readme.pdf	免费版
	SimpleData 模式	传输模块,接收无人机的状态		
	单机画圆实验	信息,然后进行对单个无人机		
		的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
7	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\5.RflyUdpUltraSimpleOne_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状态		
	单机画圆实验	信息,然后进行对单个无人机		
		的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
8	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\6.RflyUdpUltraSimpleFour_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状态		
	四机画圆实验	信息,然后进行对单个无人机		

		的局部位置运动控制进行 Simulink 建模发送控制指令到 该模块,然后进行仿真。		
9	通信接口的 FullData模式单机 实验	通过平台提供的 RflyUdpFast 传输模块,接收无人机的状态 信息,然后进行对单个无人机	1.BasicExps\e1_RflyUdpSwarmExp\1.RflyUdpFullOne_Mat\Readme.pdf	免费版
		的局部位置运动控制进行 simulink 建模发送控制指令到 该模块,然后进行仿真。		
10	通信接口的 FullData模式4机	通过平台提供的 RflyUdpFast 传输模块,接收无人机的状态	1.BasicExps\e1_RflyUdpSwarmExp\2.RflyUdpFullFour_Mat\Readme.pdf	免费版
	仿真实验	信息,然后进行对 4 个无人机的局部位置运动控制进行simulink 建模发送控制指令到该模块,然后进行仿真。		
11	通信接口 FullData 模式全局坐标控 制 4 机实验	通过平台提供的 RflyUdpFast 传输模块,接收无人机的状态信息,然后进行对无人机的全局位置运动控制进行 Simulink 建模发送控制指令到该模块,然后进行仿真。	1.BasicExps\e1_RflyUdpSwarmExp\3.RflyUdpFullFourGPos_Mat\Readme.pdf	免费版
12	通信接口的 SimpleData模式 单机画圆实验	通过平台提供的 RflyUdpFast 传输模块,接收无人机的状态信息,然后进行对单个无人机的局部位置运动控制进行 simulink 建模发送控制指令到	1.BasicExps\e1_RflyUdpSwarmExp\4.RflyUdpSimpleOne_Mat\Readme.pdf	免费版

		该模块,然后进行仿真。		
13	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\5.RflyUdpUltraSimpleOne_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状态		
	单机画圆实验	信息,然后进行对单个无人机		
		的局部位置运动控制进行		
		simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
14	通信接口的	通过平台提供的 RflyUdpFast	1.BasicExps\e1_RflyUdpSwarmExp\6.RflyUdpUltraSimpleFour_Mat\Readme.pdf	免费版
	UltraSimple 模式	传输模块,接收无人机的状态		
	四机画圆实验	信息,然后进行对单个无人机		
		的局部位置运动控制进行		
		Simulink 建模发送控制指令到		
		该模块,然后进行仿真。		
15	4 机质点集群实验	从模型精度的角度, 使用高精	1.BasicExps\e2_NoPX4SITL4Swarm\Readme.pdf	免费版
		度 6DOF 模型 (CopterSim) +		
		真实飞控系统(PX4)的软/硬		
		件在环仿真闭环的方式,能够		
		有效提高模型可信度,从而减		
		小仿真与真机实验的差距。本		
		实验基于 RflySim 平台实现 4		
		架质点模型的四旋翼飞机起		
		飞悬停几秒后下降。		
16	集群轨迹灯光展	在进行集群编队飞行时,初步	1.BasicExps\e3_LightShowSwarm\Readme.pdf	免费版
	示实验	生成(或者仿真实验)得到了		
		一系列的多无人机的轨迹数		
		据,有时需要在三维引擎中进		

		行预览 (回看), 或者根据场景 调整最优估计。		
17	固定翼质点模型 集群实验		1.BasicExps\e4_FixWingGMSwarm\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。