TRACE FORMULA TALK

JUSTIN KATZ

1 $SL(2,\mathbb{R})$

Let $G = \mathrm{SL}(2,\mathbb{R})$ and $\Gamma \leq G$ be a compact lattice. Taking for granted that there are no issues with convergence, the trace formula reads: (Recalling that \cdot_{γ} is the centralizer of γ in \cdot , and that R^{Γ} is the right regular action of G on $L^2(\Gamma \setminus G)$ for a test function $f \in C_c^{\infty}(G)$,

$$\sum_{\pi \in \hat{G}} m_{\pi}^{\Gamma} \operatorname{tr} \pi(f) = \operatorname{tr} R^{\Gamma}(f) = \sum_{\gamma \in \{\gamma\}} \operatorname{vol}(\Gamma_{\gamma} \backslash G_{\gamma}) \int_{G_{\gamma} \backslash G} f(g^{-1} \gamma g) \, \mathrm{d}g.$$

The aim of this talk is to demonstrate how this formula manifests in the following

Theorem 1. Let $\{\lambda_j\}$ be the eigenvalues of the hyperbolic Laplacian acting on $L^2(\Gamma \backslash \mathfrak{H})$, and $g \in C_c^{\infty}(\mathbb{R})$. Then

$$\sum \hat{g}(\sqrt{\lambda_j - 1/4}) = \frac{\operatorname{vol}(\Gamma \setminus \mathfrak{H})}{2\pi} \int_0^\infty \hat{g}(r) r \tanh(r) \, dr + 1/2 \sum_{\gamma \in \{\Gamma\}} \frac{\ell(\gamma_o)}{e^{\ell(\gamma)/2} - e^{-\ell(\gamma)/2}} g(\ell(\gamma))$$

where \hat{g} is the Euclidean Fourier transform of g; where γ_o is the generator of Γ_{γ} (hence primitive geodesic in the class); and $\ell(\gamma)$ is the translation length of γ .

1.1 Structure of $SL(2, \mathbb{R})$

Put coordinates on G via the Iwasawa decomposition G = NAK:

$$A = \{a(u) = \begin{bmatrix} e^u & 0 \\ 0 & e^{-u} \end{bmatrix} : u \in \mathbb{R}\}$$

$$N = \{n(x) = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{R}\}$$

$$K = \{k(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} : \theta \in [0, 2\pi)\}.$$

Classification of conjugacy classes:

- (1) $g \in G$ is hyperbolic if
 - (a) tr q > 2
 - (b) g is conjugate to an element in A
 - (c) The action of q on $\overline{\mathfrak{H}}$ has two distinct fixed points on the boundary
- (2) $g \in G$ is elliptic if
 - (a) tr q < 2
 - (b) g is conjugate to an element in K
 - (c) The action of g on $\overline{\mathfrak{H}}$ has one fixed point in \mathfrak{H} .
- (3) $g \in G$ is parabolic if

2 JUSTIN KATZ

- (a) tr g = 2
- (b) g is conjugate to an element in N
- (c) The action of g on $\overline{\mathfrak{H}}$ has exactly one point on the boundary

Fact: a discrete subgroup Γ is cocompact iff it doesn't contain any parabolic elements.

1.2 Spectral side

To understand the RHS, we need to compute $\operatorname{tr} \pi(f)$ for those $\pi \in \hat{G}$ with $m_{\pi}^{\gamma} \neq 0$. To do this, we relate these π with special functions on $\Gamma \setminus \mathfrak{H}$. Here's the theorem:

Theorem 2. Suppose $m_{\pi}^{\Gamma} \neq 0$. Then π^K (that is, the right K invariant vectors in π) is one dimensional, say $\pi^K = \mathbb{C}\varphi$. Then, upon identifying φ with a function on $\Gamma \setminus \mathfrak{H}$, we have

$$\Delta^{\mathfrak{H}}\varphi = \lambda\varphi$$

for $\lambda \in \mathbb{R}_{>0}$ dependent only on the isomorphism class of π .

Essence of proof:

- The convolution algebra of left-and-right K invariant functions on G is commutative: use Cartan decomposition G = KAK to show first that functions on $K \setminus G/K$ are invariant under transpose, then note that transpose induces an anti-automorphism of $C_c^{\infty}(K \setminus G/K)$, which is the identity.
- Irreducible unitary reps of G appearing in $L^2(\Gamma \backslash G)$ are admissible (meaning the restriction of the rep to K is completely reducible, with irreducible constituents having finite multiplicity).
- For an irreducible admissible rep π , the subspace π^K affords a representation of $C_c^{\infty}(K\backslash G/K)$ which is irreducible. Irreducible reps of a commutative algebra are at most one dimensional.
- Under the identification of functions on $\Gamma \setminus \mathfrak{H}$ with right K invariant, left Γ invariant functions on G, the hyperbolic Laplacian agrees with the Casimir operator of G up to a constant.
 - Quick and dirty on Casimir:

The action of G on $C^{\infty}(G)$ induces an action of its Lie algebra via the formula

$$R(X)f(g) = \frac{d}{dt}|_{t=0}R(\exp(tX))f(g) = \frac{d}{dt}|_{t=0}f(g\exp(e^{tX})).$$

Thus, we can view R as a Lie algebra homomorphism \mathfrak{g} into the associative algebra of differential operators on G such that R([X,Y]) = R(X)R(Y) - R(Y)R(X). The universal object for such maps is $\mathcal{U}(\mathfrak{g})$, the universal enveloping algebra: this is an associative algebra and a map $\mathfrak{g} \to \mathcal{U}(\mathfrak{g})$ such that any Lie algebra map of \mathfrak{g} into an associative algebra (turning Lie bracket into commutant) factors through a unique associative algebra map from $\mathcal{U}(\mathfrak{g})$. This is all to say that $\mathcal{U}(\mathfrak{g})$ is the smallest place in which it is meaningful to take products of Lie algebra elements.

- The center of $\mathcal{U}(\mathfrak{g})$ is manifestly the algebra of differential operators on G which commute with the action of G. The Casimir is a distinguished element of the center, constructed as follows:
 - * We'll contrive a nonzero algebra map End $\mathfrak{g} \to \mathcal{U}(\mathfrak{g})$ and take Casimir to be the image of the identity (which is certainly in the center): First, use the canonical map End $\mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}^*$, then use a nondegenerate bilinear form on \mathfrak{g} to pin down an isomorphism $\mathfrak{g} \to \mathfrak{g}^*$ to obtain a map End $\mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$.

Then use the canonical inclusion $\mathfrak{g} \otimes \mathfrak{g}$ into the tensor algebra $\bigotimes \mathfrak{g}$, and quotient by brackets to get a map to $\mathcal{U}(\mathfrak{g})$.

– With the basis of \mathfrak{g}

$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

and using the trace form to make the identification of \mathfrak{g} with its dual, we have

$$h^* = h \quad e^* = f/2 \quad f^* = e/2.$$

so Casimir is $h^2 + 2ef + 2fe$.

- We want to compute the action of this differential operator on left K invariant functions on G. To do this, first note that e-f exponentiates into K, so will act by zero on left K invariant functions. So we'll compute $h^2 + 4e^2$.
- Exponentials are

$$\exp(th) = a(t) = \begin{bmatrix} e^t & 0\\ 0 & e^{-t} \end{bmatrix}$$
$$\exp(te) = n(t) = \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$

so compute, for right K invariant f on G, using the fact that A normalizes N via $a(-u)n(x)a(a) = n(e^ux)$ so $n(x)a(u) = a(u)a(-u)n(x)a(u) = a(u)n(e^ux)$

$$R(e)f(n(x)a(u)) = \frac{d}{dt}|_{t=0}f(n(x)a(u)n(t)) = \frac{d}{dt}|_{t=0}f(n(x+e^{ut})a(u)) = e^{ut}\frac{\partial}{\partial x}f(n(x)a(u))$$

$$R(h)f(n(x)a(u)) = \frac{d}{dt}|_{t=0}f(n(x)a(u)a(t)) = \frac{d}{dt}|_{t=0}f(n(x)a(u+t)) = \frac{\partial}{\partial u}f(n(x)a(u))$$

- Because casimir commutes with G, it provides an G-invariant automorphism of any irreducible to itself. Thus, by schur, it acts as a scalar on that irreducible. I.e. the one dimensional subspace π^K of π appearing in $L^2(\Gamma \backslash G)$ is in fact an eigenspace of casimir.
- Since laplacian and casimir agree up to scale on left K invariant functions on G, this shows that the function in π^K is in fact a laplacian eigenfunction.

So now we look at the irreps π of G such that π^K is one dimensional. These are called *spherical* representations.

1.3 Spherical representations of $SL(2, \mathbb{R})$

. Consider the subgroup

$$B = AN = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}.$$

Parametrize the multiplicative characters on B by

$$\chi_s(\begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix}) = |a|^s,$$

and induce from χ_s the representation

$$V_s = \{ \varphi : G \to \mathbb{C} : \varphi(bg) = \chi_{s+1}(b)\varphi(g) \}.$$

(the +1 is a normalization that we'll benefit from later). Since G=NAK, a function in V_s is determined by its values on K. Denote by π_s the $\varphi \in V_s$ such that $\varphi|_K \in L^2(K)$. Let G act on π_s by right translation. Then

JUSTIN KATZ

Theorem 3. When s is not an odd integer, π_s is irreducible with dim $\pi_s^K = 1$. When s is an odd integer, π_s has a unique irreducible subquotient which we'll renotate to π_s . Every irreducible spherical representation of G arises as a π_s and pairs π_s , $\pi_{s'}$ are distinct unless $s = \pm s'$.

In order for $\mathfrak{m}_{\pi_s}^K \neq 0$ we need π_s to be unitary. The pairing on $\pi_{s_1} \times \pi_{s_2}$

$$\langle \varphi_1, \varphi_2 \rangle = \int_K \varphi_1(k) \overline{\varphi_2(k)} \, \mathrm{d}k$$

is G invariant precisely when $s_1 = -\bar{s}_2$ and thus gives a G invariant inner product on π_s when $s \in i\mathbb{R}$.

When $s \in (0,1)$, the map $M(s): \varphi \mapsto \int_{-\infty}^{\infty} f(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \cdot) dx$ is an intertwining map $\pi_s \to \pi_{-s}$, which induces an inner product on π_s iff $s \in (-1,1)$.

Theorem 4. These irreducible unitary spherical reps of G are the π_s with $s \in i\mathbb{R} \cup (-1,1)$.

Since each of these π_s are irreducible, casimir acts on it by a scalar. To compute this scalar, it suffices to compute its value on a $\varphi \in \pi_s^K$ which we normalize to take the value 1 on K. Then identifying φ with a function on \mathfrak{H} , the condition

$$\varphi(bg) = \chi_{s+1}(b)\varphi(g)$$

translates to

$$\varphi(x+iy) = y^{(s+1)/2}$$

and since casimir is laplacian, the casimir eigenvalue is obtained by

$$\Delta^{5}\varphi(x+iy) = y^{2}(\frac{\partial^{2}l}{\partial x^{2}} + \frac{\partial^{2}l}{\partial y^{2}})y^{(s+1)/2} = \frac{(s+1)(s-1)}{4}y^{(s+1)/2}.$$

Casmir acts on π_s by $(s^2 - 1)/4$. From all of this, we conclude:

$$m_{\pi_s}^{\Gamma} = \dim\{\varphi: \mathfrak{H} \to \mathbb{C} | \Delta^{\mathfrak{H}} \varphi = \frac{s^2 - 1}{4} \varphi\}$$

To finish our analysis of the LHS, we'll compute the traces tr $\pi_s(f)$ for $f \in C_c^{\infty}(K \setminus G/K)$. Recalling that this algebra is commutative, it acts by a scalar on irreducibles, and its trace is that scalar. To

compute that scalar, check it on the unique function $\varphi \in \pi_s^K$ such that $\varphi(1) = 1$: compute

$$(\pi_{s}(f)\varphi)(1) = \int_{G} f(g)R(g)\varphi(1) \,\mathrm{d}g$$

$$= \int_{G} f(g)\varphi(g) \,\mathrm{d}g$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{[0.2\pi)} f(n(x)a(u)k(\theta))\varphi(n(x)a(u)k(\theta)) \,\mathrm{d}\theta \,\mathrm{d}u \,\mathrm{d}x$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(n(x)a(u))\varphi(n(x)a(u)k(\theta)) \,\mathrm{d}u \,\mathrm{d}x$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{u} & 0 \\ 0 & e^{-u} \end{bmatrix})\chi_{s+1}(\begin{bmatrix} e^{u} & 0 \\ 0 & e^{-u} \end{bmatrix}) \,\mathrm{d}u \,\mathrm{d}x$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(\begin{bmatrix} e^{u/2} & e^{u/2}x \\ 0 & e^{-u/2} \end{bmatrix})e^{\frac{u(1+s)}{2}} \,\mathrm{d}u \,\mathrm{d}x$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(\begin{bmatrix} e^{u/2} & x \\ 0 & e^{-u/2} \end{bmatrix})e^{us/2} \,\mathrm{d}u \,\mathrm{d}x$$