Homework: Polynomial function features & graphing

Name:

Use pencil for graphs. Label points as ordered pairs.

1. The function $f(x) = x^3 - 3x^2 - 2x + 2$ is shown on the graph.

- (a) Write down the y-intercept.
- (b) Show that f(0) is the y-intercept by substituting x = 0 into the function f(x).
- (c) Write down the x-intercepts.
- (d) Show that -1 is an x-intercept because x = -1 is a solution to f(x) = 0.
- (e) What is the end behavior?
 - i. As $x \to +\infty$ does $y \to +\infty$ or $-\infty$?
 - ii. As $x \to -\infty$ does $y \to +\infty$ or $-\infty$?
- (f) Label the local maximum and local minimum as ordered pairs (approximate the values).
- (g) Slope: on the x-axis below, label the portion of the domain where f is increasing with pluses ("+") and decreasing with negative signs ("-"). Mark the externa (maximum and minimum) with zeros since f(x) is horizontal at those points.
- (h) Write down the intervals the function is increasing and decreasing.

$$-5$$
 -4 -3 -2 -1 0 1 2 3 4 5

Homework: Polynomial function features & graphing

Name:

2. Plot the function $g(x) = -x^3 - 5x^2 - 3x + 4$ on the graph.

- (a) Write down the y-intercept.
- (b) Show that f(0) is the y-intercept by substituting x = 0 into the function f(x).
- (c) Write down the x-intercepts.
- (d) Show that -4 is an x-intercept because x = -4 is a solution to f(x) = 0.
- (e) What is the sign of the leading coefficient? What is the end behavior?

i. As
$$x \to +\infty$$
 does $y \to +\infty$ or $-\infty$?

ii. As
$$x \to -\infty$$
 does $y \to +\infty$ or $-\infty$?

- (f) Label the local maximum and local minimum as ordered pairs (approximate the values).
- (g) Slope: on the x-axis below, label the domain as increasing, decreasing, or horizontal (with "+", "-", & "0"), and state the respective intervals.

Homework: Polynomial function features & graphing

Name:

- 3. Given the function $h(x) = -x^3 2x^2 + 5x + 6$.
 - (a) Write down the y-intercept. Mark it on the plot.
 - (b) Show that -1 is an x-intercept because x = -1 is a solution to f(x) = 0. Mark (-1,0) on the graph as an x-intercept.
 - (c) The other x-intercepts are -3 and +2. Mark them on the plot.

- (d) What is the sign of the leading coefficient, positive or negative? Hence, what is the function's end behavior?
 - i. As $x \to +\infty$ does $y \to +\infty$ or $-\infty$?
 - ii. As $x \to -\infty$ does $y \to \infty$ or $-\infty$?
- (e) Using the intercepts and end behavior, sketch the curve.
- (f) Graph the function on a calculator. Is the shape of your sketch approximately correct?

Name:

Simplify

4.
$$(x+5)(3x-2)$$

5.
$$(x-1)(x+2)(x-3)$$

6.
$$x^3 \times x^{-2}y^2$$

7.
$$x^3 \div x^5 y$$

8.
$$\sqrt[3]{x^6y^3z^6}$$

The formula for simple interest is $P(t) = P_0(1 + rt)$.

9. What is the value of \$200 in principal at a rate of 5% per annum after one-half year?

10. What is the value of \$220 in principal at a rate of 5.5% per annum after nine months?