UNSUPERVISED DATA AUGMENTATION FOR CONSISTENCY TRAINING

Puzanova Anastasia HSE November 28, 2019

Plan

- Introduction. General idea
- Consistency training
- Augmentation strategies:
 - RandAugment
 - Back-translation
 - Word replacing with TF-IDF
- Training Signal Annealing
- Experiments
- Conclusions

Introduction

- Deep learning requires a lot of labeled data to work well
- Semi-supervised learning (SSL) use unlabeled data to address this weakness
- Data augmentation is often limited to supervised learning only
- In UDA we perform data augmentation on unlabeled data to improve SSL

Notation

- solving classification problem
- *x* input
- y*- ground-truth prediction target
- $p_{\theta}(y|x)$ model, predicting y^* based on x with parameters θ
- \bullet L,U sets of labeled and unlabeled examples respectively

Augmentation

Aim: create novel and realistic-looking data without changing label

- Let $q(\hat{x}|x)$ augmentation transformation to draw \hat{x} from x
- Transformation is valid if any example $\hat{x} \sim q(\hat{x}|x)$ shares the same ground-truth label as x
- Minimize divergence metric $D(p_{\theta}(y|x), p_{\theta}(y|\hat{x}))$

UDA

Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given x.

$$\min_{\theta} \ \mathcal{J}(\theta) = \mathbb{E}_{x,y^* \in L} \left[-\log p_{\theta}(y^* \mid x) \right] + \lambda \mathbb{E}_{x \in U} \mathbb{E}_{\hat{x} \sim q(\hat{x} \mid x)} \left[\mathcal{D}_{\text{KL}} \left(p_{\tilde{\theta}}(y \mid x) \ \middle\| \ p_{\theta}(y \mid \hat{x})) \right) \right]$$

UDA

Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given x.

$$\min_{\theta} \ \mathcal{J}(\theta) = \mathbb{E}_{x,y^* \in L} \left[-\log p_{\theta}(y^* \mid x) \right] + \lambda \mathbb{E}_{x \in U} \mathbb{E}_{\hat{x} \sim q(\hat{x} \mid x)} \left[\mathcal{D}_{\text{KL}} \left(p_{\tilde{\theta}}(y \mid x) \parallel p_{\theta}(y \mid \hat{x})) \right) \right]$$

UDA

Figure 1: Training objective for UDA, where M is a model that predicts a distribution of y given x.

$$\min_{\theta} \ \mathcal{J}(\theta) = \mathbb{E}_{x,y^* \in L} \left[-\log p_{\theta}(y^* \mid x) \right] + \lambda \mathbb{E}_{x \in U} \mathbb{E}_{\hat{x} \sim q(\hat{x} \mid x)} \left[\mathcal{D}_{\text{KL}} \left(p_{\tilde{\theta}}(y \mid x) \parallel p_{\theta}(y \mid \hat{x})) \right) \right]$$

Objective

$$\min_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{x,y^* \in L} \left[-\log p_{\theta}(y^* \mid x) \right] + \lambda \mathbb{E}_{x \in U} \mathbb{E}_{\hat{x} \sim q(\hat{x} \mid x)} \left[\mathcal{D}_{KL} \left(p_{\tilde{\theta}}(y \mid x) \mid \mid p_{\theta}(y \mid \hat{x})) \right) \right]$$

- $q(\hat{x}|x)$ data augmentation transformation
- $\hat{\theta}$ fixed copy of current parameters (gradient is not propagated)
- $\lambda = 1$ at most of experiments

Advanced augmentation intuition

- Valid noise advanced augmentation generate realistic examples
- Diverse noise advanced augmentation can make larger modifications
- Targeted inductive biases

Augmentation strategies: RandAugment

- Image classification task
- Inspired by AutoAugment
- Uniformly sample from the set of augmentation transformations in PIL
- Requires no labeled data

RandAugment details

- two operations represented by transformation name, probability and magnitude [(Sharpness, 0.6, 2), (Posterize, 0.3, 9)]
- 15 possible transformation
- magnitude from 1 to 9
- probability 0.5
- tuning hyperparameters might result in higher accuracy

Augmentation strategies: RandAugment

Augmentation strategies: Back-translation

- Text classification task
- Translate example in language A to language B and translate back to A
- Can generate diverse paraphrases while preserving semantic
- Diversity is more important then quality or validity
- Tunable temperature instead of beam search

Augmentation strategies: Back-translation

Augmentation strategies: Word replacing with TF-IDF

- Back-translation has little control over which words will be retained
- May be important for topic classification tasks
- Replace words with low TF-IDF and keep words with high TF-IDF

Training Signal Annealing

- Often there is much more unlabeled data
- Model quickly overfits labeled data while underfitting unlabeled
- Utilize labeled example if model's confidence lower then threshold η_t

Training Signal Annealing

$$\alpha_t = 1 - \exp(-\frac{t}{T} \cdot 5)$$

$$\alpha_t = \frac{t}{T}$$

$$\alpha_t = \exp((\frac{t}{T} - 1) \cdot 5)$$

$$\eta_t = \alpha_t \cdot (1 - \frac{1}{K}) + \frac{1}{K}$$

T - number of training steps

t - current step

K - number of categories

Experiments:semi-supervised vs fully-supervised

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)
Crop & flip	5.36	16.17
Cutout	4.42	6.42
RandAugment	4.23	5.29

Table 1	•	Error	rates	οn	CIFAR-10.
Table		LIIO	laics	OH	CHAR-IU.

Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)
X	38.36	50.80
Switchout	37.24	43.38
Back-translation	36.71	41.35

Table 2: Error rate on Yelp-5.

Correlation of augmentation effectiveness in supervised and semi-supervised learning

Experiments: vision semi-supervised benchmarks

- UDA outperforms two baselines
- VAT differs from UDA essentially in the noise process

Experiments: text classification

Fully supervised baseline							
Datasets (# Sup examp		IMDb (25k)	Yelp-2 (560k)	Yelp-5 (650k)	Amazon-2 (3.6m)	Amazon-5 (3m)	DBpedia (560k)
Pre-BERT SOTA BERT _{LARGE}		4.32 4.51	2.16 1.89	29.98 29.32	3.32 2.63	34.81 <i>34.17</i>	0.70 0.64
Semi-supervised setting							
Initialization	UDA	IMDb (20)	Yelp-2 (20)	Yelp-5 (2.5k)	Amazon-2 (20)	Amazon-5 (2.5k)	DBpedia (140)
Random	×	43.27 25.23	40.25 8.33	50.80 41.35	45.39 16.16	55.70 44.19	41.14 7.24
BERTBASE	×	18.40 5.45	13.60 2.61	41.00 33.80	26.75 3.96	44.09 38.40	2.58 1.33
BERT _{LARGE}	×	11.72 4.78	10.55 2.50	38.90 33.54	15.54 3.93	42.30 37.80	1.68 1.09
BERT _{FINETUNE}	×	6.50 4.20	2.94 2.05	32.39 32.08	12.17 3.50	37.32 37.12	-

- UDA is complimentary to transfer learning
- Competitive results for binary classification

Experiments: TSA

- Yelp-5 has 2.5k labeled examples 6m unlabeled
- CIFAR-10 has 4k labeled examples 50k unlabeled

Which is better?

Experiments: TSA

TSA schedule	Yelp-5	CIFAR-10
X	50.81	5.67
log-schedule	49.06	5.67
linear-schedule	45.41	5.29
exp-schedule	41.35	7.81

- Yelp-5 has 2.5k labeled examples 6m unlabeled
- CIFAR-10 has 4k labeled examples 50k unlabeled

Conclusions

- Better data augmentation can lead to significantly better semi-supervised learning
- State-of-the-art supervised augmentations performs good at semi-supervised learning
- UDA can match and outperform purely supervised learning
- For text classification great results on IMDb with only 20 labeled examples
- For vision tasks nearly matches the performance of fully supervised models

Questions

- 1. Запишите функционал, оптимизируемый в consistency training, поясните формулу.
- 2. Какие 3 основных вида аугментации были рассмотрены в статье? Кратко опишите одну из них.
- 3. Назовите пороги для TSA, рассмотренные в статье. В каком случае стоит применять каждый из них?

Links

- Unsupervised data augmentation for consistency training: https://arxiv.org/pdf/1904.12848.pdf
- Interpolation consistency training for semi-supervised learning: https://arxiv.org/pdf/1903.03825.pdf
- Github: https://github.com/google-research/uda