

MATH1131 Mathematics 1A – Algebra

Lecture 19: Matrix Transpose and Inverses

 $Lecturer: \ Sean \ Gardiner - sean.gardiner@unsw.edu.au$

Based on slides by Jonathan Kress

Definition

For any $m \times n$ matrix A, its transpose A^T is the $n \times m$ matrix whose rows are the columns of A. That is,

$$[A^T]_{ij} = [A]_{ji}$$

Definition

For any $m \times n$ matrix A, its transpose A^T is the $n \times m$ matrix whose rows are the columns of A. That is,

$$[A^T]_{ij} = [A]_{ji}$$

For example,

if
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 7 & 8 \end{pmatrix}$$
 then
$$A^T = \begin{pmatrix} 3 & 4 \\ 1 & 7 \\ 2 & 8 \end{pmatrix}$$

Definition

For any $m \times n$ matrix A, its transpose A^T is the $n \times m$ matrix whose rows are the columns of A. That is,

$$[A^T]_{ij} = [A]_{ji}$$

For example,

if
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 7 & 8 \end{pmatrix}$$

then

$$A^T = \begin{pmatrix} 3 & 4 \\ 1 & 7 \\ 2 & 8 \end{pmatrix}$$

Definition

For any $m \times n$ matrix A, its transpose A^T is the $n \times m$ matrix whose rows are the columns of A. That is,

$$[A^T]_{ij} = [A]_{ji}$$

For example,

if
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 7 & 8 \end{pmatrix}$$

then

$$A^T = \begin{pmatrix} 3 & 4 \\ 1 & 7 \\ 2 & 8 \end{pmatrix}$$

Definition

For any $m \times n$ matrix A, its transpose A^T is the $n \times m$ matrix whose rows are the columns of A. That is,

$$[A^T]_{ij} = [A]_{ji}$$

For example,

if
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 7 & 8 \end{pmatrix}$$

then

$$A^T = \begin{pmatrix} 3 & 4 \\ 1 & 7 \\ 2 & 8 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

then

$$B^T = \begin{pmatrix} 3 & 6 & 9 \end{pmatrix}$$

Properties of transposes

For all matrices $A, B \in M_{mn}$ and $C \in M_{nq}$, and scalars λ, μ ,

- $\bullet \ (A^T)^T = A.$
- $(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$.
- $(AC)^T = C^T A^T$.

Properties of transposes

For all matrices $A, B \in M_{mn}$ and $C \in M_{nq}$, and scalars λ, μ ,

- $\bullet \ (A^T)^T = A.$
- $(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$.
- $\bullet \ (AC)^T = C^T A^T.$

Proof

For $1 \le i \le m$ and $1 \le j \le n$,

$$[(A^T)^T]_{ij} = [A^T]_{ji} = [A]_{ij}.$$

Hence $(A^T)^T = A$.

Properties of transposes

For all matrices $A, B \in M_{mn}$ and $C \in M_{nq}$, and scalars λ, μ ,

- $(A^T)^T = A$.
- $(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$.
- $(AC)^T = C^T A^T$.

Proof

Both $(\lambda A + \mu B)^T$ and $\lambda A^T + \mu B^T$ are $n \times m$ matrices, and for all $1 \le i \le n$ and $1 \le j \le m$,

$$[(\lambda A + \mu B)^T]_{ij} = [(\lambda A + \mu B)]_{ji} = \lambda [A]_{ji} + \mu [B]_{ji} = \lambda [A^T]_{ij} + \mu [B^T]_{ij} = [\lambda A^T + \mu B^T]_{ij}.$$

Hence
$$(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$$
.

Properties of transposes

For all matrices $A, B \in M_{mn}$ and $C \in M_{nq}$, and scalars λ, μ ,

- $(A^T)^T = A$.
- $(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$.
- $\bullet \ (AC)^T = C^T A^T.$

Proof

Both $(AC)^T$ and C^TA^T are $q \times m$ matrices, and for $1 \leq i \leq q$ and $1 \leq j \leq m$,

$$[C^T A^T]_{ij} = \sum_{k=1}^n [C^T]_{in} [A^T]_{nj} = \sum_{k=1}^n [C]_{ni} [A]_{jn} = [AC]_{ji} = [(AC)^T]_{ji}$$

This means $C^T A^T = (AC)^T$.

Definition

An $n \times n$ matrix A is said to be symmetric if $A = A^T$.

For example,

$$B = \begin{pmatrix} 1 & 6 & 8 \\ 6 & 5 & 7 \\ 8 & 7 & 2 \end{pmatrix}$$

Definition

An $n \times n$ matrix A is said to be symmetric if $A = A^T$.

For example,

$$B = \begin{pmatrix} 1 & 6 & 8 \\ 6 & 5 & 7 \\ 8 & 7 & 2 \end{pmatrix}$$

Definition

An $n \times n$ matrix A is said to be symmetric if $A = A^T$.

For example,

$$B = \begin{pmatrix} 1 & 6 & 8 \\ 6 & 5 & 7 \\ 8 & 7 & 2 \end{pmatrix}$$

Definition

An $n \times n$ matrix A is said to be symmetric if $A = A^T$.

For example,

$$B = \begin{pmatrix} 1 & 6 & 8 \\ 6 & 5 & 7 \\ 8 & 7 & 2 \end{pmatrix}$$

Theorem

For any matrix A, the matrix $C = A^T A$ is symmetric.

Theorem

For any matrix A, the matrix $C = A^T A$ is symmetric.

Proof

If A is an $m \times n$ matrix, then $C = A^T A$ is an $n \times n$ matrix and

$$C^T = (A^T A)^T$$

Theorem

For any matrix A, the matrix $C = A^T A$ is symmetric.

Proof

If A is an $m \times n$ matrix, then $C = A^T A$ is an $n \times n$ matrix and

$$C^T = (A^T A)^T = A^T (A^T)^T$$

Theorem

For any matrix A, the matrix $C = A^T A$ is symmetric.

Proof

If A is an $m \times n$ matrix, then $C = A^T A$ is an $n \times n$ matrix and

$$C^T = (A^T A)^T = A^T (A^T)^T = A^T A = C.$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$
.

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$
.

For example, if
$$\mathbf{u}=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$$
 and $\mathbf{v}=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}$, then
$$\begin{pmatrix}u_1\\\end{pmatrix} \quad \begin{pmatrix}v_1\\\end{pmatrix}$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}.$$
 For example, if
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad \text{then}$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$= u_1 \times v_1 + u_2 \times v_2 + u_3 \times v_3$$

For example, if
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, then
$$\begin{aligned} \mathbf{u} \cdot \mathbf{v} &= \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \\ &= u_1 \times v_1 + u_2 \times v_2 + u_3 \times v_3 \\ &= \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix} \end{aligned}$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$
.

For example, if
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, then
$$\begin{aligned} \mathbf{u} \cdot \mathbf{v} &= \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \\ &= u_1 \times v_1 + u_2 \times v_2 + u_3 \times v_3 \\ &= \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \\ &= \mathbf{u}^T \mathbf{v} \end{aligned}$$

When dealing with scalars, we state that the multiplicative inverse of a scalar $a \in \mathbb{R}$ is written a^{-1} , and has the property that $aa^{-1} = a^{-1}a = 1$.

When dealing with scalars, we state that the multiplicative inverse of a scalar $a \in \mathbb{R}$ is written a^{-1} , and has the property that $aa^{-1} = a^{-1}a = 1$.

We also state that 0 has no multiplicative inverse, because there is no scalar that can multiply by zero to make 1.

When dealing with scalars, we state that the multiplicative inverse of a scalar $a \in \mathbb{R}$ is written a^{-1} , and has the property that $aa^{-1} = a^{-1}a = 1$.

We also state that 0 has no multiplicative inverse, because there is no scalar that can multiply by zero to make 1.

We can define the inverse of a matrix A similarly. Since the identity matrix behaves like the scalar identity 1, we can expect that the inverse A^{-1} has the property that $AA^{-1} = A^{-1}A = I$.

When dealing with scalars, we state that the multiplicative inverse of a scalar $a \in \mathbb{R}$ is written a^{-1} , and has the property that $aa^{-1} = a^{-1}a = 1$.

We also state that 0 has no multiplicative inverse, because there is no scalar that can multiply by zero to make 1.

We can define the inverse of a matrix A similarly. Since the identity matrix behaves like the scalar identity 1, we can expect that the inverse A^{-1} has the property that $AA^{-1} = A^{-1}A = I$.

Finding A^{-1} or even determining when it exists is more difficult than for scalars.

Definition

For a matrix A,

• B is a left inverse of A if BA = I.

Definition

For a matrix A,

- B is a left inverse of A if BA = I.
- B is a right inverse of A if AB = I.

Definition

For a matrix A,

- B is a left inverse of A if BA = I.
- B is a right inverse of A if AB = I.
- B is an inverse of A if B is both a left and right inverse of A, that is, if BA = AB = I.

Definition

For a matrix A,

- B is a left inverse of A if BA = I.
- B is a right inverse of A if AB = I.
- B is an inverse of A if B is both a left and right inverse of A, that is, if BA = AB = I.

If A has an inverse, then A is said to be invertible or non-singular.

Definition

For a matrix A,

- B is a left inverse of A if BA = I.
- B is a right inverse of A if AB = I.
- B is an inverse of A if B is both a left and right inverse of A, that is, if BA = AB = I.

If A has an inverse, then A is said to be invertible or non-singular. If A does not have an inverse, we say that it is not invertible or singular.

If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, then $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a right inverse of A :

If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, then $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a right inverse of A :

$$AB = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, then $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a right inverse of A :

$$AB = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Note that A has other right inverses, such as $\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}$.

If
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, then $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a right inverse of A :

$$AB = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Note that A has other right inverses, such as $\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}$.

However, A has no left inverse, and thus no inverse. So A is not invertible.

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has the inverse $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, since:

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has the inverse $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, since:

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,$$

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has the inverse $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, since:

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,$$

and

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

The matrix
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has the inverse $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, since:

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,$$

and

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Thus, A is invertible.

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix}1&2\\3&8\end{pmatrix}X=\begin{pmatrix}5&7&-1\\19&21&-5\end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$.

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix}1&2\\3&8\end{pmatrix}X=\begin{pmatrix}5&7&-1\\19&21&-5\end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$. So $B = A^{-1}$.

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$. So $B = A^{-1}$.

$$A^{-1}$$
 $\begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix} = A^{-1}\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$. So $B = A^{-1}$.

$$A^{-1} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix} = A^{-1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = A^{-1}AX$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$. So $B = A^{-1}$.

$$A^{-1} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix} = A^{-1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = A^{-1}AX = IX$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

First note
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, and similarly $BA = I$. So $B = A^{-1}$.

$$A^{-1}\begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix} = A^{-1}\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = A^{-1}AX = IX = X.$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix}1&2\\3&8\end{pmatrix}X=\begin{pmatrix}5&7&-1\\19&21&-5\end{pmatrix}.$$

That is,

$$X = A^{-1} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} X = \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}.$$

That is,

$$X = A^{-1} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}$$

Example

Given
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$, find AB and BA .

Hence solve the matrix equation

$$\begin{pmatrix}1&2\\3&8\end{pmatrix}X=\begin{pmatrix}5&7&-1\\19&21&-5\end{pmatrix}.$$

That is,

$$X = A^{-1} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 5 & 7 & -1 \\ 19 & 21 & -5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 7 & 1 \\ 2 & 0 & -1 \end{pmatrix}.$$

Theorem

- 1) The inverse of an invertible matrix is unique. The inverse of A is denoted by A^{-1} .
- 2) All invertible matrices are square. (However, not all square matrices are invertible.)
- 3) When A is a square matrix, if AX = I or XA = I then $X = A^{-1}$.

(Note that a matrix is called square if the number of its rows is equal to the number of its columns, that is, if it is an $n \times n$ matrix.)

Theorem

- 1) The inverse of an invertible matrix is unique. The inverse of A is denoted by A^{-1} .
- All invertible matrices are square. (However, not all square matrices are invertible.)
- 3) When A is a square matrix, if AX = I or XA = I then $X = A^{-1}$.

(Note that a matrix is called square if the number of its rows is equal to the number of its columns, that is, if it is an $n \times n$ matrix.)

Proof of (1)

Suppose A is a matrix with inverses X and Y. Then

$$X = XI = X(AY) = (XA)Y = IY = Y.$$

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if n < m.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if n < m.

Similarly, if \mathbf{y} is a solution of the system $A^{-1}\mathbf{y} = \mathbf{0}$, then

$$y = Iy = (AA^{-1})y = A(A^{-1}y) = A0 = 0.$$

Hence the system $A^{-1}\mathbf{y} = \mathbf{0}$ has a unique solution. But this is possible only if $m \le n$.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if n < m.

Similarly, if \mathbf{y} is a solution of the system $A^{-1}\mathbf{y} = \mathbf{0}$, then

$$y = Iy = (AA^{-1})y = A(A^{-1}y) = A0 = 0.$$

Hence the system $A^{-1}\mathbf{y} = \mathbf{0}$ has a unique solution. But this is possible only if $m \le n$.

Therefore m = n, which means A is a square matrix.

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if $n \leq m$.

Similarly, if \mathbf{y} is a solution of the system $A^{-1}\mathbf{y} = \mathbf{0}$, then

$$y = Iy = (AA^{-1})y = A(A^{-1}y) = A0 = 0.$$

Hence the system $A^{-1}\mathbf{y} = \mathbf{0}$ has a unique solution. But this is possible only if $m \le n$.

Therefore m = n, which means A is a square matrix.

To see that not every square matrix is invertible, take, for example,

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if $n \leq m$.

Similarly, if \mathbf{y} is a solution of the system $A^{-1}\mathbf{y} = \mathbf{0}$, then

$$y = Iy = (AA^{-1})y = A(A^{-1}y) = A0 = 0.$$

Hence the system $A^{-1}\mathbf{y} = \mathbf{0}$ has a unique solution. But this is possible only if $m \le n$.

Therefore m = n, which means A is a square matrix.

To see that not every square matrix is invertible, take, for example,

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Proof of (2) - not examinable

Suppose A is an invertible $m \times n$ matrix. Then its inverse A^{-1} is an $n \times m$ matrix.

Consider the system $A\mathbf{x} = \mathbf{0}$. If \mathbf{x} is a solution, then

$$\mathbf{x} = I\mathbf{x} = (A^{-1}A)\mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution. This is possible only if $n \leq m$.

Similarly, if \mathbf{y} is a solution of the system $A^{-1}\mathbf{y} = \mathbf{0}$, then

$$y = Iy = (AA^{-1})y = A(A^{-1}y) = A0 = 0.$$

Hence the system $A^{-1}\mathbf{y} = \mathbf{0}$ has a unique solution. But this is possible only if $m \le n$.

Therefore m = n, which means A is a square matrix.

To see that not every square matrix is invertible, take, for example,

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 or $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$ or ...

Proof of (3) - not examinable

Suppose A is a square matrix and X is a left inverse of A, that is, X is a matrix such that XA = I.

Since A and I are square matrices, it follows that X is also square, and they all have the same size, say $n \times n$.

Suppose \mathbf{x} is a solution of the system $A\mathbf{x} = \mathbf{0}$. Then

$$\mathbf{x} = I\mathbf{x} = (XA)\mathbf{x} = X(A\mathbf{x}) = X\mathbf{0} = \mathbf{0},$$

that is, the system $A\mathbf{x} = \mathbf{0}$ has a unique solution, $\mathbf{x} = \mathbf{0}$.

Consider the augmented matrix $(A|\mathbf{0})$ of the system $A\mathbf{x} = \mathbf{0}$. Since the system has a unique solution, the reduced row echelon form must be $(I|\mathbf{0})$. But then for any $\mathbf{b} \in \mathbb{R}^n$, the reduced row echelon form of the system $A\mathbf{x} = \mathbf{b}$ must be $(I|\mathbf{c})$ for some $\mathbf{c} \in \mathbb{R}^n$. This means the system $A\mathbf{x} = \mathbf{b}$ has a unique solution, $\mathbf{x} = \mathbf{c}$.

:

Proof of (3) continued - not examinable

Suppose **y** is a solution of the system X **y** = **0**, and let **x** be the unique solution of the system A **x** = **y**. Then

$$\mathbf{0} = X\mathbf{y} = X(A\mathbf{x}) = (XA)\mathbf{x}) = I\mathbf{x} = \mathbf{x}.$$

So $\mathbf{x} = \mathbf{0}$ and therefore $\mathbf{y} = A\mathbf{x} = A\mathbf{0} = \mathbf{0}$. Hence the system $X\mathbf{y} = \mathbf{0}$ has a unique solution, $\mathbf{y} = \mathbf{0}$.

Now let \mathbf{b}_i , $1 \le i \le n$, be the columns of the matrix AX - I. Since

$$X(AX - I) = X(AX) - XI = (XA)X - X = IX - X = X - X = 0,$$

we have $X\mathbf{b}_i = \mathbf{0}$ for $1 \le i \le n$. But this means $\mathbf{b}_i = \mathbf{0}$ for $1 \le i \le n$.

Hence AX - I = 0 and therefore

$$AX = I$$
.

So X is also a right inverse of A and hence the inverse of A.

:

Proof of (3) continued - not examinable

Finally, if A is a square matrix and X a right inverse of A, that is, AX = I, then A is a left inverse of X. The argument above yields that A is a right inverse of A, that is, XA = I. But this means X is a left inverse of A and therefore the inverse of A.

Theorem

Let A, B be invertible matrices. Then

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Theorem

Let A, B be invertible matrices. Then

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof

Since A satisfies

$$AA^{-1} = I$$
 and $A^{-1}A = I$,

A is the inverse of A^{-1} . Hence A^{-1} is invertible and $(A^{-1})^{-1} = A$.

Theorem

Let A, B be invertible matrices. Then

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof

Check:

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

and

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

So $B^{-1}A^{-1}$ is the inverse of AB.

Hence AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem

Let A, B be invertible matrices. Then

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof

Check:

$$(A^{-1})^T A^T = (AA^{-1})^T = I^T = I,$$

and

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I.$$

So $(A^{-1})^T$ is the inverse of A^T .

Hence A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Example

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$
.

Example

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$
.

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$

Example

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$
.

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T} = B^{2}(B^{-1}A^{-1})A(B^{T})^{-1}(B^{T}A^{T})$$

Example

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$
.

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T} = B^{2}(B^{-1}A^{-1})A(B^{T})^{-1}(B^{T}A^{T})$$

= $B(BB^{-1})(A^{-1}A)((B^{T})^{-1}B^{T})A^{T}$

Example

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T}$$
.

$$B^{2}(AB)^{-1}A(B^{-1})^{T}(AB)^{T} = B^{2}(B^{-1}A^{-1})A(B^{T})^{-1}(B^{T}A^{T})$$

= $B(BB^{-1})(A^{-1}A)((B^{T})^{-1}B^{T})A^{T}$
= BA^{T} .

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I = 28A + 45I.$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I = 28A + 45I.$$

Assuming A is invertible, we can also multiply both sides of the given equation through by A^{-1} :

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I = 28A + 45I.$$

Assuming A is invertible, we can also multiply both sides of the given equation through by A^{-1} :

$$A^2A^{-1} = 2AA^{-1} + 5IA^{-1}$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I = 28A + 45I.$$

Assuming A is invertible, we can also multiply both sides of the given equation through by A^{-1} :

$$A^2A^{-1} = 2AA^{-1} + 5IA^{-1} \implies A = 2I + 5A^{-1}$$

Example

Given that $A^2 = 2A + 5I$, express A^4 and A^{-1} as linear combinations of A and I.

Squaring both sides gives:

$$A^4 = (2A + 5I)^2 = 4A^2 + 10AI + 10IA + 25I^2 = 4A^2 + 20A + 25I$$

Substituting the given value for A^2 then yields

$$A^4 = 4(2A + 5I) + 20A + 25I = 28A + 45I.$$

Assuming A is invertible, we can also multiply both sides of the given equation through by A^{-1} :

$$A^2A^{-1} = 2AA^{-1} + 5IA^{-1} \implies A = 2I + 5A^{-1}$$

So rearranging, we find that

$$A^{-1} = \frac{1}{5}A - \frac{2}{5}I.$$