UNLP. Facu	ılt	ad de Informa	átic	a.
Algoritmos	у	Estructuras	de	Datos

Nombre y apelli	do:	
Nro. Alumno:	*** *** *** *** *** *** *** *** *** **	

29/08/2008

Para aprobar es necesario tener al menos 3 ejercicios bien resueltos.

Ejercicio 1

Dado el siguiente método:

```
int simple (int i)
{
    if (i == m)
        return m
    else
        if (i >= m + 1 )
            return 1
        else
            return 2*Simple (i+1) - Simple (i+2);
}
```

- a.- Plantear la función de tiempo de ejecución (no desarrollarla) y explicar brevemente el orden del algoritmo.
- b.- Escribir un método que devuelva siempre el mismo resultado que el método anterior, pero tardando un tiempo de ejecución constante. Se supone que m es una variable de clase (global).

Ejercicio 2

Dada la siguiente Max-heap:

50	30	40	20	5	4	39	6	1.	3
1	2	3	4	5	6	7	8	9	10

- a) Indicar el rango de valores que podrían estar en la posición 4 de manera que se siga cumpliendo la propiedad de ser una maxheap.
- b) Mostrar los pasos para eliminar el elemento que ocupa la posición 5
- c) ¿Puede un vector no vacío ser al mismo tiempo una maxheap y una minheap? Justificar la respuesta.

Ejercicio 3

- a) Implementar un algoritmo para determinar si un grafo no dirigido es un árbol. ¿Cuáles son las condiciones que debe cumplir?
- b) ¿Cuál es la complejidad de la solución? Justificar la respuesta.

Ejercicio 4

- a) Dada la siguiente secuencia de números: 7, 4, 6, 15, 20, 9, 3, 12, 14 insertarios en un árbol AVL (inicialmente vacío), en un orden tal que no sea necesario realizar ninguna rotación.
- b) ¿Es siempre posible encontrar ese orden? Justificar la respuesta.