Tecnologias e Arquitecturas de Computadores

Licenciatura em Engenharia Informática - Ramos

Avaliação Parcelar

Nome completo:	
Nº Aluno:	Sala:

Deve assinalar a resposta correcta, circundando-a. Se precisar de alterar alguma resposta deve riscá-la e circundar a nova resposta. As respostas incorrectas, serão penalizadas.

Duração Total Exame: 1h:30 m

Sem consulta

23 de Maio de 2015

1. Diga qual o número máximo de bytes que consegue endereçar no 8086.

<u> </u>	, ,	3
a. 8 Bytes	b. 16 Bytes	c. 256 Bytes
d. 64 KBytes	e. 1 MegaBytes	f. Nenhuma das opções

2. Das seguintes instruções diga quais são as possíveis.

a. mov BX, [AX]	b. mov BL, DS:[AX]	c. mov AL, DS:[DX]
d. mov BX, [DL]	e. mov BL,DS:[BP]	f. mov CX,[SI]

3. Sabendo que pretende somar o valor presente na variável var1 (byte) ao valor na variável var2(byte), indique qual(is) a(s) opção(ões) possível(is).

a.	add var1, var2	b.	mov AL, var1	c.	mov AL, var1
			add BX,var2		mov BL, var2
			add BX,AL		add AL,BL
					adc AL,0
d.	mov AL, var1	e.	mov AH, 0	f.	xor DH, DH
	mov BL, var2		mov AL, var1		mov DL, var1
	xor AH, AH		add AL, var2		add DL, var2
	xor BH, BH		add AH,0		adc DH,0
	add BX, AX				

4. Sabendo que pretende multiplicar 350 por 2 indique qual(is) a(s) opção(ões) possível(is).

a. mov AX, 350	b. mov AL,350	c. mov BX, 350
mov BX,2	mul AL,2	mul BX,2
mul BX		
d. mul 350,2	e. mov AX,350	f. mov AX,350
	mul 2	mov bl,2
		mul bl

5. Sabendo que pretende dividir 751 por 2 indique qual(is) a(s) opção(ões) possível(is).

		1 1 1 7	() 1 3 () ()
a.	mov AX,751	b. mov DX,0	c. mov DX,0
	mov BL,2	mov AX,751	mov AX,751
	div BL	mov BX,2	mov CX,2
		div BX	div CL
d.	mov DX,0	e. mov AL,751	f. mov AX, 751
	mov AX, 751	mov DL,2	div 2
	div 2	div DL	

6. Tendo em consideração o programa abaixo

```
.8086
.model small
.stack 2048
dados segment
                        para
                                'data'
                        0FFFFh, 15 dup(1)
    Address1
                 dw
    Address2
                 dw
                       6, 15 dup(1)
    Address3
                 dw
                       9 dup (?)
dados
       ends
codigo segment para 'code'
main
        proc
    assume cs:codigo, ds:dados
        mov
                ax,dados
                ds,ax
        mov
        mov cx,16
        xor
             si,si
        xor
             dx,dx
ciclo:
        mov ax,dx
             dx,dx
        xor
             ax, Address1[si]
        add
        adc
             dx,0
        add
             ax, Address2[si]
        adc
             dx,0
             Address3[si], ax
        mov
        add
             si,02h
        sub
             cx,1
        loop ciclo
        mov
              ah,4Ch
        int
               21h
        main
                endp
codigo
        ends
end
        main
```

I. Identifique o tipo da variável Address1

a. Word	b. Byte
c. Vetor de words	d. Vetor de byte

II. Indique o número de elementos de Address1

a. 1	b. 65535
c. 15	d. 16

III. Qual o número de vezes que o loop ciclo é executado?

a.	16	b. O valor existente em SI
c.	8	d. 1

IV. Qual o conteúdo de AX passado para a 1º posição de Address3?

a. 0002h	b. 001Eh
c. 0005h	d. 0030h

V. Qual o conteúdo de DX no final da primeira iteração do ciclo?

a. 0000h	b. 0001h
c. O valor de AX	d. Nenhuma das opções

VI. É possível substituir "add ax, Address1[si]", por "add al, Address1[si]"?

<u> </u>	, ·
a. Sim	b. Não

VII. É possível substituir em todo o código o registo si por bx"?

a. Sim	b. Não

7. Considere o seguinte segmento de dados de um programa:

dseg	segment par	a public 'data	a'
	var1	dw	40h
	var2	db	0AAh
	var3	sword	EOh
	var4	byte	0,9,16
	var5	real4	4.0
	var6	word	2 dup (OCCh)
dseg	ends		

Supondo que o DS deste programa assume o valor OABC, indique:

I. O conteúdo em memória do endereço 0ABCh:0001h?

a. 40h	b. 00h	c. AAh

II. A representação de var4 em memória em hexadecimal?

Er	ndereço (Conteúdo		Endereço	Conteúdo
a. 00	005	00 b	ο.	0005	00
00	006	09		0006	09
00	007	16		0007	10

Formato geral: Acção:

• ADD DEST, ORIG DEST:= DEST + ORIG

Flags alteradas: SF, ZF, PF, AF, CF, OF.

• ADC DEST, ORIG DEST:= DEST + ORIG + Flag Carry

Flags alteradas: SF, ZF, PF, AF, CF, OF.

• SUB DEST, ORIG DEST:= DEST - ORIG

Flags alteradas: SF, ZF, PF, AF, CF, OF.

• (I)MUL OPER Se OPER for de 8 bits AX:= AL *OPER

Se OPER for de 16 bits DX:AX:=AX*OPER

Flags alteradas: As flags CF, OF, SF, ZF, PF e AF ficam com valores indefinidos.

• (I)DIV OPER

Se OPER for de 8 bits divide AX por OPER, ficando o quociente em AL e o resto em AH. Se OPER for de 16 bits divide DX:AX por OPER, ficando o quociente em AX e o resto em DX. Flags alteradas: CF, SF, ZF, PF, AF, OF.

LOOP label

De cada vez que a instrução LOOP é executada o conteúdo do registo CX é decrementado um valor.

• Se depois de decrementado o conteúdo do registo CX o seu valor for diferente de zero, a instrução LOOP implementa um jump para o endereço referenciado por <label>.

Não afecta as flags.