立体几何(4)平行与垂直解答(1)

2023-05-21

一、平行关系证明

定义: 在同一平面内两条没有公共点的直线 平行公理: $a//b,b//c \Rightarrow a//c$ 几何方法: ${$ 线面平行性质: $a//\alpha, a \subset \beta, \alpha \cap \beta = b \Rightarrow a//b}$ 面面平行性质: $\alpha //\beta, \gamma \cap \alpha = a, \gamma \cap \beta = b \Rightarrow a //b$ 线面垂直性质: $a \perp \alpha, b \perp \alpha \Rightarrow a / / b$ 向量方法: \overrightarrow{AB} / / \overrightarrow{CD} — $\overset{AB = CD \land \text{match}}{\longrightarrow}$ AB / /CD「定义:直线与平面没有公共点 几何方法:{判定定理: a / /b,b ⊂ α,a ⊄ α ⇒ a / /α (2) 线面平行: 面面平行的性质: $\alpha //\beta, a \subset \alpha \Rightarrow a //\beta$ 向量方法: $\overrightarrow{AB} \perp \overrightarrow{n_{\alpha}}, AB \not\subset \alpha \Rightarrow AB / /\alpha$ 〔①定义:两个没有公共点的平面 几何方法: $\langle 2a / /\beta, b / /\beta, a, b \subset \alpha, a \cap b = O \Rightarrow \alpha / /\beta$ (3) 面面平行: $3l \perp \alpha, l \perp \beta \Rightarrow \alpha / / \beta$ 向量方法: $\overrightarrow{n}_{\alpha} / / \overrightarrow{n}_{\beta} \Rightarrow \alpha / / \beta$ ①定义:两直线所成的角是直角 $(a / b, a \perp l \Rightarrow b \perp l)$ 几何方法: $\left\{ 2l \perp \alpha, a \subset \alpha \Rightarrow l \perp a \right\}$ 二、垂直关系: (1) 线线垂直 ③三垂线定理: $\Xi PO \perp \alpha \mp O, A \in \alpha, a \subset \alpha. 则AO \perp a \Leftrightarrow PA \perp a$ |向量方法: $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \Leftrightarrow AB \perp CD$ ①定义: 直线与平面内的所有直线都垂直; $2l \perp a, l \perp b, a, b \subset \alpha, a \cap b = 0 \Rightarrow l \perp \alpha$ (2) 线面垂直: $\textcircled{4}a \perp \alpha, \alpha / / \beta \Rightarrow a \perp \beta$ $| \bigcirc \alpha \perp \gamma, \beta \perp \gamma, \alpha \cap \beta = l \Rightarrow l \perp \gamma$ 向量方法: $\overrightarrow{AB}/\overrightarrow{n_{\alpha}} \Rightarrow AB \perp \alpha$ (3) 面面垂直: |向量方法: $\overrightarrow{n_{\alpha}} \perp \overrightarrow{n_{\beta}} \Rightarrow \alpha \perp \beta$

(2005)(06)设 α 、 β 为两个不同的平面,l、m 为两条不同的直线,且l \subset α , m \subset β ,有如下的两个

命题: ①若 $\alpha //\beta$,则l //m;②若 $l \perp m$,则 $\alpha \perp \beta$.那么()D

A.①是真命题,②是假命题 B. ①是假命题,②是真命题

C. ①②都是真命题 D. ①②都是假命题

(2010)(6)设l,m是两条不同的直线, α 是一个平面,则下列命题正确的是()B

立体几何(4)平行与垂直解答(1)

2023-05-21

A.若 $l \perp m$, $m \subset \alpha$, 则 $l \perp \alpha$ B.若 $l \perp \alpha$, l / / m, 则 $m \perp \alpha$

D.若 $l//\alpha$, $m//\alpha$, 则l//m

(2016) (2) 已知互相垂直的平面 α , β 交于直线 l. 若直线 m, n 满足 $m / /\alpha$, $n \perp \beta$, 则(C)

- A. m / l
- B. m//nC. $n \perp l$
- D. $m \perp n$
- (2011)(4)下列命题中错误的是
- D)
- A. 如果平面 α \perp 平面 β , 那么平面 α 内一定存在直线平行于平面 β
- B. 如果平面 α 不垂直于平面 β ,那么平面 α 内一定不存在直线垂直于平面 β
- C. 如果平面 $\alpha \perp$ 平面 γ ,平面 $\beta \perp$ 平面 γ , $\alpha \cap \beta = l$,那么 $l \perp$ 平面 γ
- D. 如果平面 α \perp 平面 β , 那么平面 α 内所有直线都垂直于平面 β

(2013) (10) 在空间中,过点 A 作平面 π 的垂线,垂足为 B,记 $B = f_{\pi}(A)$.设 α, β 是两个不同的平面,

对空间任意一点 P, $Q_1=f_{\beta}[f_{\alpha}(P)],Q_2=f_{\alpha}[f_{\beta}(P)],$ 恒有 $PQ_1=PQ_2$,则(

- A. 平面 α 与平面 β 垂直
- B. 平面 α 与平面 β 所成的(锐)二面角为 45°
- C. 平面 α 与平面 β 平行
- D. 平面 α 与平面 β 所成的(锐)二面角为60°

(16江苏)如图,在直三棱柱 $ABC - A_iB_iC_i$ 中,D,E分别为AB,BC的中点,点F在侧棱 BB_i 上, 独泰制作侵权必须 且 $B_1D \perp A_1F$, $A_1C_1 \perp A_1B_1$.求证: (I) 直线DE / /平面 A_1C_1F ; (II) 平面 $B_1DE \perp$ 平面 A_1C_1F .

试题解析:证明:(1)在直三棱柱 ABC - AB,C,中, A,C, || AC,

在三角形 ABC 中,因为 D , E 分别为 AB , BC 的中点 ,

所以 DEll AC ,于是 DEll AC, ,

又因为 $DE \subset$ 平面 AC,F,AC, \subset 平面 AC,F,

所以直线 DE//平面 AC,F .

(2) 在直三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 \perp$ 平面 $A_1B_1C_1$

因为 $A_1C_1 \subset$ 平面 $A_1B_1C_1$,所以 $AA_1 \perp A_1C_1$,

又因为 $A_1C_1 \perp A_1B_1$, $AA_1 \subset$ 平面 ABB_1A_1 , $A_1B_1 \subset$ 平面 ABB_1A_1 , $A_1B_1 \cap AA_1 = A_1$,

所以 A_1C_1 上平面 ABB_1A_1 .

因为 B_1D \subset 平面 ABB_1A_1 , 所以 $A_1C_1 \perp B_1D$.

又因为 $B_1D \perp A_1F$, $A_1C_1 \subset$ 平面 A_1C_1F , $A_1F \subset$ 平面 A_1C_1F , $A_1C_1 \cap A_1F = A_1$,

所以 B_1D 上平面 A_1C_1F .

因为直线 $B_1D \subset$ 平面 B_1DE ,所以 平面 $B_1DE \perp$ 平面 A_1C_1F . 学科&网

(17江苏) 如图, 在三棱锥A-BCD中, $AB \perp AD$, $BC \perp BD$, 平面 $ABD \perp$ 平面BCD,

点E, F(E = A, D不重合)分别在AD, BD上,且 $EF \perp AD$.

求证: (I) EF // 平面ABC; (II) $AD \perp AC$.

立体几何(4)平行与垂直解答(1)

2023-05-21

【解析】(1) 在平面 ABD 内,因为 $AB\perp AD$, $EF\perp AD$,所以 $EF\parallel AB$.

又因为 $EF \subset \text{平面 } ABC$, $AB \subset \text{平面 } ABC$,所以 $EF \parallel \text{ 平面 } ABC$.

(2) 因为平面 ABD 上平面 BCD,平面 ABD \cap 平面 BCD=BD, BC \subset 平面 BCD, BC \perp BD,

所以 BC 工平面 ABD .

因为AD \subset 平面ABD,所以 $BC \perp AD$.

又 $AB \perp AD$, $BC \cap AB = B$, $AB \subset \text{平面 } ABC$, $BC \subset \text{平面 } ABC$, 所以 $AD \perp \text{平面 } ABC$,

又因为 AC 平面 ABC, 所以 AD $\bot AC$.

(18江苏) 在平行六面体 $ABCD - A_1B_1C_1D_1$ 中, $AA_1 = AB, AB_1 \perp B_1C_1$.

求证: (I) AB / / 平面 A_iB_iC ; (II) 平面 $ABB_iA_i \perp$ 平面 A_iBC .

证明: (1) 在平行六面体 ABCD-A₁B₁C₁D₁中, AB // A₁B₁.

因为 AB \neq 平面 A_1B_1C , $A_1B_1 \subset$ 平面 A_1B_1C ,

所以 AB // 平面 A_1B_1C .

(2) 在平行六面体 $ABCD-A_1B_1C_1D_1$ 中,四边形 ABB_1A_1 为平行四边形.

又因为 $AA_1=AB$, 所以四边形 ABB_1A_1 为菱形, 因此 $AB_1\perp A_1B$.

又因为 $AB_1 \perp B_1C_1$, $BC//B_1C_1$, 所以 $AB_1 \perp BC$.

又因为 $A_1B\cap BC=B$, $A_1B\subset$ 平面 A_1BC , $BC\subset$ 平面 A_1BC ,

所以 AB_1 上平面 A_1BC .

因为 $AB_1 \subset$ 平面 ABB_1A_1 ,所以平面 $ABB_1A_1 \perp$ 平面 A_1BC .

(19江苏)如图,在直三棱柱 $ABC - A_iB_iC_i$ 中,D, E分别为BC, AC的中点,AB = BC.求证:

(I) A_1B_1 //平面 DEC_1 ; (II) $BE \perp C_1E$.

【解答】证明: (1) :在直三棱柱 $ABC - A_iB_iC_i$ 中, D, E分别为 BC, AC 的中点,

- $: DE \subset \overline{\text{Pm}} DEC_1$, $A_1B_1 \subset \overline{\text{Pm}} DEC_1$,
- $\therefore A_1B_1 / \overline{\Psi}$ 面 DEC_1 .

解: (2) :在直三棱柱 $ABC - A_1B_1C_1$ 中, E = AC 的中点, AB = BC.

 $\therefore BE \perp AA_1$, $BE \perp AC$,

又 $AA_1 \cap AC = A$, $\therefore BE \perp$ 平面 ACC_1A_1 ,

 $:: C_1E \subset \overline{\Psi}$ $\overline{\Box}$ ACC_1A_1 , $:: BE \perp C_1E$.

(20 江苏) 15.在三棱柱 $ABC - A_iB_iC_i$ 中, $AB \perp AC, B_iC \perp$ 平面ABC, E, F 分别是 $AC, B_iC =$ 中点.

(1) 求证: (I) 求证: EF //平面 AB_1C_1 ; (II) 求证: 平面 $AB_1C \perp$ 平面 ABB_1 .

【详解】(1) 由于E, F分别是AC, B, C的中点,所以 $EF//AB_1$.

由于EF \angle 平面 AB_1C_1 , AB_1 \subset 平面 AB_1C_1 , 所以EF// 平面 AB_1C_1 .

(2) 由于 $B_1C \perp$ 平面ABC, $AB \subset$ 平面ABC, 所以 $B_1C \perp AB$.

由于 $AB \perp AC$, $AC \cap B_1C = C$,所以 $AB \perp$ 平面 AB_1C ,

由于AB \subset 平面 ABB_1 , 所以平面 AB_1C \perp 平面 ABB_1 .

