Измерение массы нейтрального каона на КМД-3 на коллайдере ВЭПП-2000

Даниил Иванов 19.6.23 Научный руководитель: Евгений Петрович Солодов

План презентации

- 1. Мотивация
- 2. Методы измерения массы нейтрального каона
- 3. Моделирование. Оптимизация отборов. Отработка методики
- 4. Поправки. Оценка систематических неопределенностей
- 5. Изучение стабильности энергии пучков.
- 6. Предварительные результаты
- 7. Заключение

Мотивация

Предыдущие результаты измерения массы K^0

Value (MeV)	Events	Document ID	Experiment		
497.742±0.085	780	Barkov	CMD		
497.661±0.033	3713	Barkov	CMD		
497.625±0.001±0.031	655k	Lai	NA48		
497.583±0.005±0.020	35k	Ambrosino	KLOE		
497.607±0.007±0.015	261k	Tomoradze	CLEO-c*		
497.611±0.013	PDG Fit (Error includes scale factor of 1.2)				
497.634±0.024	49k	Зайцев	CMD-2		
497.615±0.010	NewFit (scale factor = 1.22)				

Наблюдается небольшое рассогласование в измерениях. S=1.22. С детектором КМД-3 можно провести новое измерение с лучшей или сравнимой точностью.

^{* –} использованы данные CLEO-с, но работа не за авторством коллаборации CLEO.

Изучение возможности нового измерения

В сезоне PHI/OMEGA 2018 с детектором КМД-3 вблизи пика ϕ -мезоного резонанса был набран интеграл светимости равный 10.3 пб⁻¹, что соответствует 10^6 отобранных пар $K_S K_L$ из распадов ϕ -мезона.

E _{beam} , MeV	505	508	508.5	509	509.5	510	510.5	511	511.5	514
∫Ldt, nb ⁻¹	454.9	549.0	1395.1	979.5	2621.6	2041.3	1053.5	780.3	561.3	520.9

$$\sum$$
 \int Ldt $\approx 10.3 \text{ pb}^{-1}$

По сравнению с прошлым анализом, проведённым в стенах ИЯФ (КМД-2), улучшилось:

- в ~3 раза угловое разрешение,
- Появилась система непрерывного контроля энергии,
- ~ 30 раз больше статистики (~ 10 пб⁻¹ против 355 нб⁻¹)

Было проведено моделирование и реконструкция процесса $e^+e^- \to KSKL$ для всех экспериментальных энергий со сравнимым числом событий.

Метод предельного угла

Импульс нейтрального каона, определяется по импульсам и углам распадных пионов. Можно определить импульс по предельному углу разлета — это позволяет убрать систематические погрешности в измерении импульсов пионов.

$$M_K = \sqrt{E_K^2 - \vec{p}_K^2}, \; E_K = E_{beam}$$
 $M_{K_S^0} = E_{K_S^0} \sqrt{1 - \beta_m^2 cos(rac{\psi_c}{2})}, \; \beta_m^2 = 1 - rac{M_\pi^2}{E_{K_S^0}^2}.$ e^+ $e^ e^-$ Распределение угла разлёта (E = 509 MeV)

Метод полной реконструкции

Предложен А.С. Зайцевым в его дипломной работе.

$$M_{K^0_S} = E_{K^0_S} \sqrt{1 - rac{1}{\eta^2} (1 + \sqrt{1 - \eta^2} cos(\psi)) (1 - \sqrt{1 - \eta^2 eta_m^2})}$$

$$\eta^2=rac{1-Y^2}{1+Y^2}, Y=rac{|\overrightarrow{p_{\pi^+}}|}{|\overrightarrow{p_{\pi^-}}|}$$
. В отличи позволяе

 $\eta^2=rac{1-Y^2}{1+Y^2}, Y=rac{|\overrightarrow{p_{\pi^+}}|}{|\overrightarrow{p_{--}}|}$. В отличии от метода предельного угла данный метод позволяет использовать всю статистику.

Метод полной реконструкции обладает малой чувствительностью к систематическим погрешностям абсолютных величин импульсов пионов, так как они входят в виде отношения.

Критерии отбора событий (1)

Отбор "хороших" треков:

- 1. Координата вдоль пучка: |z| < 12 см,
- 2. Качество реконструкции трека по r- ϕ и по z: $\chi^2_{r-\phi} < 15$, $\chi^2_z < 10$
- 3. Количество сработанных проволочек: $10 < n_{hit} < 30$
- 4. Полярный угол трека $| heta frac{\pi}{2}| < 0.7$

Критерии отбора событий (2)

Если в событии нашлось два "хороших" трека, то к этим трекам применялись следующие отборы, которые определяли пионы из распада ${\rm K_S}$

- 1. Неколлинеарность треков, $||\phi_1 \phi_2| \pi| > 0.15 \ || \ \Delta \theta = | \ (\theta_1 + \theta_2) \pi| > 0.25$
- 2. Противоположные заряды,
- 3. Поперечный отлёт каона: kstlen < 1.7 см,
- 4. Косинус угла между радиус-вектором, соединяющим место встречи пучков с вершиной распада K_S в r- ϕ плоскости: $\cos(\alpha) > 0.85$
- 5. Средние потери двух треков на ионизацию в DC: $dE_{avg}/dx < 5000$
- 6. $M_{\text{miss}} > 350 \text{ MeV/c}^2$,
- 7. Наличие кластер с E > 40 MeV и направлением относительно ${
 m K_s} \; |\Delta \phi \pi| < 1, |\Delta heta| < 1.$

Критерии отбора событий (3)

Моделирование $E_{beam} = 509 \text{ MeV}$

Эксперимент
$$E_{beam}$$
= 509 MeV

$$\epsilon_{MC}\cong 14\%$$

Всего отобрано 1001541 пар каонов.

Методика определения массы

Строится profile M vs lnY, для полосы по оси Y от 490 до 505. Получившийся график фиттируется константой в пределах, в которых фазовый объём не влияет на профайл. Ниже приведены графики для MC $E_{\rm beam}$ = 509 MeV.

M vs lnY (события из синей области идут в профайл).

Profile (чёрное - реконструированное, синее - генераторные данные).

Учет излучения начальными частицами (ISR)

Чтобы учесть отличие истинной энергии каона от энергии пучка, связанное с ISR, в качестве энергии каона бралось среднее по спектру каона с учётом ISR (построен по генераторным данным о фотонах).

Учет разброса энергии в пучке (он измеряется лазерной системой; его величина ~250-270 кэВ) приводит к небольшому 10-20 кэВ сдвигу радпоправки к массе.

Спектр энергии каонов из MC ($E_{beam} = 514$ MeV, чёрное – до отборов, синее – после отборов).

Зависимость радпоправки от энергии (чёрное – без размазки по энергии, синее – с размазкой).

Поправка на угловое разрешение

$$\Delta_{NC} M = -M(\langle \psi
angle) + rac{1}{\sqrt{2\pi\sigma_{\psi}^2}} \int d\psi M(\psi) exp[\, -rac{(\,\psi-\langle \psi
angle)\,^2}{2\sigma_{\psi}^2}\,] \, pprox rac{\sigma_{\psi}^2}{2} rac{\partial^2 \psi}{\partial \psi^2} M_{K^0_S} + {\cal O}(\sigma_{\psi}^3) \, .$$

 σ_{ψ} – разрешение по пространственному углу между пионами.

Так как по краям распределение заметно расширяется, решено использовать переменное разрешение $\sigma_{\psi} = \sigma_{\psi} \, (lnY)$

Угол ψ vs lnY

Профайл одного слайса по lnY (точки – данные, красная гистограмма – MC, чёрное— гистограмма – MC с энергетической размазкой)

Зависимость поправки на разрешение к массе от lnY (чёрные – данные, красные – МС, синее – МС с энергетической размазкой)

Проверка методики по моделированию

Чёрное – МС (линия – фит, точки – результаты), Синяя линия – заложенное в МС (использовался генератор МСGPJ). Вторая ошибка в ответе – оценка систематических

неточностей.

$$M_{K_S^0}^{(FullRec)}=497.611\pm0.002+0.012~rac{MeV}{c^2};~rac{\chi^2}{ndf}=rac{8.1}{8}$$
 Заложено в генераторе: $M_{K_S^0}^{(MC)}=497.614rac{MeV}{c^2}$

Для проверки использовалось полное моделирование с учётом разрешений детектора и условий набора данных, соответствующих тем, что были в эксперименте.

Чёрные точки - МС с разбросом по энергии, синие маркеры – МС без разброса по энергии, красная пунктирная линия – заложенная в МС масса.

Коррекция ошибок реконструкции треков в ДК

Наблюдается систематическое отклонение импульсов и углов реконструированных треков из-за низкого разрешения внутренних слоёв. Для треков, летящих из пучка, можно проводить фитирование с общей вершиной в месте встречи, что существенно уменьшает неточность реконструкции трека.

В качестве оценки поправки использовалось ϕ_1 - ϕ_2 и p_1 - p_2 для коллинеарных событий с импульсами, соответствующими средним импульсам пионов из распада K_S .

Контроль дрейфа энергии пучков по заряженным каонам

В качестве дополнительного контроля при измерении энергии лазерной системой вблизи пика ϕ -мезона можно использовать среднее значение импульса K^+K^- пары в процессе (см. презентацию "Контроль энергии по заряженным каонам на пике ϕ -мезона" для семинара КМД-3)

$$e^+e^- o \phi o K^+K^ E_{K^{\pm}} = \sqrt{p_{K^{\pm}}^2 + M_{K^{\pm}}^2}; M_{K^{\pm}} = 493.677 \frac{MeV}{c^2}$$
 PDG

Для каждого захода энергия каонов определялась при помощи фита распределения величины $E_{K^{\pm}} = \sqrt{P^2 + M_{K^{\pm}}^2}$. Проводилось кусочное фитирование зависимости энергии каонов от номера захода. Далее фиксировались все параметры кроме константы и этой функцией фитировали зависимость emeas от номера захода.

Полученную функцию используем для вычисления энергии.

Неточность контроля: $\sigma_E = 9.2 \; keV$

Влияние поправок на дрейф энергии пучков

Зависимость рассчитанной массы K_s в зависимости от экспериментальной точки (чёрное – с контролем энергии, синее – без контроля энергии).

Предварительный результат

Источник	Сдвиг, кэ B/c^2	Ошибка, кэ B/c^2
ISR	$-(62 \div 1453)$	$2 \div 12$
Поправка на нелинейность	$9 \div 38$	$1 \div 7$
Влияние условий отбора	_	6
Контроль дрейфа энергии	_	9
Измерение энергии	_	30

Зависимость рассчитанной массы $K_{\rm S}$ от экспериментальной точки

$$M_{K_S^0} = 497.555 \pm 0.005 \pm 0.008 \pm 0.009 \pm 0.030 \text{ M} \cdot \text{B}/c^2$$

Ошибки: 1) статистическая (применён S = 1.37), 2) систематическая, связанная с отборами, ISR, поправками на разрешение, 3) систематическая ошибка контроля энергии, 4) систематическая ошибка измерения энергии лазерной системой. Последние две ошибки коррелированные.

Чего добились?

- 1. Отработана методика измерения массы
- 2. Проведен расчет основных поправок
- 3. По заряженным каонам учтен дрейф энергии в процессе набора статистики
- 4. Проведена оценка основных систематических погрешностей
- 5. Получено предварительная величина массы нейтрального каона
- 6. Показано, что погрешности детектора составляют ~10 кэВ
- 7. Требуется улучшение систематической неопределенности в измерении энергии пучков.
- 8. Анализ продолжается.