LING575 Summarization

2024.01

#D2 Process a docSet

Overview

- Process XML -> Retrieve corresponding articles from DocSets
- Process Articles: Segment paragraph into sentences, tokenize sentences
- Summarization System Plan Overview

extract.py

- Use XML.etree.ElementTree library to parse XML
- Extract topic ids and corresponding doc id from DocSetA
 - topic.docSetA.id
- Transform doc id into path
 - Case by case according to doc id format and year, but overall it is extracting dir_name, year and file_name, and generate the local path accordingly
 - e.g.
 - APW19990914.0234 -> /corpora/LDC/LDC02T31/apw/1999/19990914_APW_ENG
 - APW_ENG_20050609.0625 -> /corpora/LDC/LDC08T25/data/apw_eng/apw_eng_200506.xml

Demo Video - 1

process.py

- Use XML.etree.ElementTree library to parse XML
- If the file is not a standard XML (e.g. /corpora/LDC/LDC02T31/apw/1999/19990914_APW_ENG), then modify the file by adding <DOCSTREAM> tag
 - Find doc id by looking for DOCNO keyword
- If the file is standard XML, find the doc by looking for id keyword.
- Get headline and dateline from HEADLINE and DATELINE keyword.
- Get individual sentence by doc.TEXT.findall("P")
- Use nltk.word_tokenize to tokenize the sentences

Demo Video - 2

Methods we are considering for summarization

- TF-IDF
 - Create a Document-Term Matrix using TF-IDF
 - Score the sentences using TF-IDF score for each term
- LLR
 - Create a Document-Term Matrix using LLR
 - Score the sentences using LLR score for each term
- LSI & LDA topic modelling
 - Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA)
 - Used to extract topics from a collection of documents, and the topics can be used as feature
 - Can use key terms or phrases associated with dominant topics as content

Methods we are considering for summarization

Method	Pros	Cons
TF-IDF	 Simple and Intuitive Efficient for Extractive Summarization 	 Rely heavily on word overlap Don't handle synonyms Sparse representation Sentence redundancy Lack of Context Understanding
LLR	 More nuanced analysis for context Handles Synonyms and Specific Contexts 	 Data sensitivity Not Suitable for Abstractive Summarization involving rephrasing and paraphrasing.
LSI/LDA topic modeling	 Semantic Understanding Documents can be represented as a mixture of topics 	 Require additional techniques to apply those extracted features Dimensionality Reduction, potentially loss of information Sensitivity to Hyperparameters