ARMA (1,1)

- ARMA means autoregressive moving average..
- The time series $\{x_t\}$ is an ARMA (1,1) process if it is stationary and satisfies

$$X_{t} - \varphi X_{t-1} = Z_{t} + \theta Z_{t-1}, \qquad \text{for all } t,$$
 where $\{Z_{t}\} \sim WN(o,\sigma^{2}).$

· In terms of back shift or Lag operator B, we can express X_{t} above as,

$$\phi(B) \times_{t} = \Theta(B) Z_{t}$$
, where.

$$P(B) = 1 - \phi B$$
 and $\Theta(B) = 1 + \theta B$.

Stationarity, Cousality, invertibility

- · First question is to find it a stationary solution of Xz exists or not.
- 19/<1, We can show that the MA(x) process,

$$X_{t} = Z_{t} + (\rho + \theta) \sum_{j=1}^{\infty} \phi^{j-1} Z_{t-j}$$

is at the unique stationary solution. This is a causal solution since Xt can be expressed in terms of Zs, BSEt.

If 191>1, similarly it can be shown that,

$$X_{t} = -\theta \rho Z_{t} - (\theta + \varphi) \sum_{j=1}^{\infty} \varphi^{-(j+1)} Z_{t+j}$$

is the unique stationary solution. This solution is non-causal since X_{t} depends on future values. That is X_{t} is a function of E_{t} for E_{t} . There is use at the substitute of E_{t} is a function of E_{t} . · There is no stationary solution it 19/=1.

Invertibility.

- · That as x_t can be expressed as o in terms of Z_t , X_t in some cases Z_t can be expressed in terms of x_t .
- Invertibility is a concept dual to causality which means that Z_t can be expressed solely in terms of x_s , $s \le t$.
- · First we show that an ARMA(1,1) process is invertible if
- Let $\xi(z)$ denote the power series expansion of $\frac{1}{\theta(z)} = \frac{z^2}{j^{-0}}(-\theta)^j z^j$, which exists it 101/21.
- Now $Z_{t} = \mathcal{F}(B) \mathcal{P}(B) X_{t} = X_{t} (\phi + \theta) \mathcal{E}(-\theta)^{j-1} X_{t-j}$.
 Thus an ARMA(1,1) process is invertible if $|\theta| < 1$.
- Similarly if $|\theta| > 1$ We can show that $Z_t = -\sqrt{\theta} \times_{\bar{t}} + (\theta + \phi) \sum_{j=1}^{\infty} (-\theta)^{-j-1} \times_{t+j}$.
 Note that Z_t now depends on X_s with s > t. So this ARMA(I,1) process is non-invertible.

ACF

- · We assume that the ARMA(1,1) process is both causal and invertible. That is 191<1 and 101<1.
- Now $X_{t} X_{t-h} = \phi X_{t-1} X_{t-h} + Z_{t} X_{t-h} + \Theta Z_{t-1} X_{t-h}$
- Taking Expectation on both sides. $Y_{E}(h) = \emptyset Y_{Z}(h-1) + E[Z_{t}X_{t-n}] + \emptyset E[Z_{t-1}X_{t-n}].$
- For h = 0. $\mathcal{E}(0) = \phi \mathcal{E}(1) + E \left[z_t x_t \right] + \theta E \left[z_{t-1} x_t \right]$.
- $E[Z_t X_t] = E[\phi X_{t-1} Z_t] + E[Z_t^2] + \theta E[Z_{t-1} Z_t]$ = σ^2 (by causality)

$$\frac{A(F(2))}{A(F(2))} = \frac{1}{2} A(F(2)) + \frac{1}{2$$

•
$$E[Z_{t-1}X_t] = \Phi E[Z_{t-1}X_{t-1}] + E[Z_{t-1}Z_t] + \Theta E[Z_t^2]$$

$$= \Phi \sigma^2 + \Theta \sigma^2 = (\Phi + \Phi)\sigma^2.$$

· So
$$F_{\kappa}(0) = \varphi F_{\kappa}(1) + \sigma^{2} + \Theta (\varphi + \Theta) \sigma^{2}$$
.

• When
$$h = 1$$

$$Y_{z}(1) = \varphi Y_{z}(0) + E[Z_{t}X_{t-1}] + \theta E[Z_{t-1}X_{t-1}]$$

$$= \varphi Y_{z}(0) + \theta \sigma^{2}$$

$$= E[Z_{t}X_{t-1}]^{z-0} [by]$$
Counsality]

•
$$\mathcal{L}_{z}(0) = \phi(\varphi \mathcal{L}_{z}(0) + \theta \sigma^{2}) + \sigma^{2} + \theta(\varphi + \theta)\sigma^{2}$$
.

$$= \phi^{2} (20) + \theta \phi \sigma^{2} + \sigma^{2} + \theta (4 + \theta) \sigma^{2}$$

$$S_0 \ \mathcal{F}_{z}(0) = \frac{(1+2\theta\phi+\theta^2)\sigma^2}{1-\phi^2}$$

Note that
$$T_{x}(0)$$
 is not defined if $\phi^{2}=1$.

•
$$\mathcal{E}(1) = \frac{\phi(1+2\theta\phi+\theta^2)}{1-\phi^2}\sigma^2 + \theta\sigma^2 = \frac{(\phi+\phi)(1+\phi\phi)}{1-\phi^2}\sigma^2$$

• For
$$h=2$$
.

$$\mathcal{L}(\mathbf{A}) = \phi \mathcal{L}(\mathbf{I}) + E[\mathbf{Z}_t \mathbf{X}_{t-2}] + \Theta E[\mathbf{Z}_{t-1} \mathbf{X}_{t-2}].$$

$$= \phi \mathcal{L}(\mathbf{I}).$$

• For
$$h > 2$$
.

or
$$h > 2$$
.
 $\mathcal{E}_{\epsilon}(h) = \phi \mathcal{E}_{\epsilon}(h-1) + E[\mathcal{E}_{t} \times_{t-n}] + \theta E[\mathcal{E}_{t-1} \times_{t-n}]$

$$= \phi \mathcal{E}_{\epsilon}(h-1).$$

• To summurise
$$(\frac{1+2\theta + \theta^{2}}{1-\theta^{2}})^{2}$$
 if $h = 0$
 $V_{z}(h) = \begin{cases} \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h = 1 \\ \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h > 1 \end{cases}$

$$(h) = \begin{cases} \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h = 1 \\ \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h > 1 \end{cases}$$

$$(h) = \begin{cases} \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h = 0 \\ \frac{(0+\theta)(1+\theta + \theta)}{1-\theta^{2}} & \text{if } h = 0 \end{cases}$$

• Thus the ACF is given by.
$$\int_{\mathcal{Z}} (h) = \begin{cases} 1 & \text{if } h = 0 \\ \frac{(Q+\theta)(1+\theta Q)}{1+2\theta Q+\theta^2} & \text{if } h = 1 \\ Q \int_{\mathcal{Z}} (h-1) & \text{if } h > 2 \end{cases}$$

- B
- PACF et an ARMA(1,1) is complicated, It can be calculated from the general formula.
- · However since tokers on MA(1) is a special case of ARMA(1,1), the PACF function of the latter will not become zero after any finite lag.
 - From the ACF function it is also clear that it won't become zero for any finite h.
 - In general the nature of ACF and PACF plots are more complicated than for ARMA(1,1) than AR(1) or MA(1).

ARMA (P,9) process

- $\{x_t\}_{i=1}^n$ is an ARMA(P,q) process if $\{x_t\}_{i=1}^n$ is stationary and it for every $\{x_t\}_{i=1}^n$ is $\{x_t\}_{i=1}^n$ and $\{x_t\}_{i=1}^n$ is stationary and it for every $\{x_t\}_{i=1}^n$ is $\{x_t\}_{i=1}^n$ is stationary and it for every $\{x_t\}_{i=1}^n$ is stationary and $\{x_t\}_{i=1}^n$ and $\{x_t\}_{i=1}^n$ is stationary and $\{x_t\}_{i=1}^n$ and
 - In terms of backward shift operator B it can be expressed as $\phi(B) \times_{\mathcal{T}} = \phi(B) \times_{\mathcal{T}}$

where $\phi(z)$ and $\theta(z)$ are the pth and 9th degree polynomials, $\phi(z) = 1 - \phi, z - \cdots - \phi_{\beta} z^{\beta}.$ and $\theta(z) = 1 + \theta, z + \cdots + \theta_{q} z^{q}.$

A stationary solution of $\{x_t\}$ exists and is unique if and only it $\ell(z) \neq 0$ for all |Z| = 1.

· The solution may be complex.

· An ARMA (P.94) process {xx} is causal, or a causal function of ZZ23, it there exist constants {4;} such that = 14; 1<2

and $X_{t} = \sum_{j=0}^{\infty} \ell_{j} Z_{t-j}$ for all t.

Consality is equivalent to the condition $P(Z) = 1 - \phi_1 Z - \cdots - \phi_p Z^p \neq 0$ for all $1 \neq 1 \leq 1$.

An ARMA (P,q) process { x2} is invertible if there exist constants $\frac{27}{3}$ such that $\sum_{j=0}^{\infty} |T_{j}| < \alpha$ and $Z_{t} = \sum_{j=0}^{\infty} \pi_{j} X_{t-j} \quad \text{for all } t.$

Invertibility is equivalent to the condition $\theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q \neq 0 \text{ for all } 1z1 \leq 1.$

It can be shown that $T_j + Z = \theta_k T_{j-k} = -\phi_j$, j = 0, 1, where $\phi_0 := -1$, $\phi_j := 0$ $\forall j > \beta$ and $T_j := 0$ for j < 0.

· Consider the ARMA (1,1) process { Xz } satisfying the equations $X_t - 5X_{t-1} = Z_t + 4Z_{t-1}, \{Z_t\} \sim WN(0,\sigma^2).$

Here $\phi(z) = 1 - 5z$. Now $\phi(z) = 0$ has solution z = 2. There is no solution in the unit interval. So the process is statinary and causal.

The corresponding MA(0) representation of EXZZ are found as

 $\mathcal{C}_{0} = 1$, $\mathcal{C}_{1} = 4 + 5$, $\mathcal{C}_{2} = 5(4 + 5)$, $\mathcal{C}_{3} = 5^{3} - (4 + 5)$, $\mathcal{C}_{3} = 5^{3} - (4 + 5)$, $\mathcal{C}_{3} = 5^{3} - (4 + 5)$

Also $\Theta(z) = 1 + 4z$, $\Theta(z) = 0$ has a solution $z = -\frac{1}{4} = -\frac{2.5}{5}$,

Which is located outside the unit interval.

The corresponding $\{7j\}$ is given by $T_0 = 1$, $T_1 = -(.4+.5)$, $T_2 = -(.4+.5)(-.4)$, $T_j = -(.4+.5)(-.4)$, j = 1,2,...

Example 2

(12)

· ARMA (2,1) process defined by.

 $X_{t} - .75 X_{t-1} + .5625 X_{t-2} = Z_{t} + 1.25 Z_{t-1}, \quad \chi^{2}_{t} + \chi^{2}_{t} \times \chi^{2}_{t} \times \chi^{2}_{t}$

 $\Phi(z) = 1 - 75z + 5625z^2$ as has zeroes at $z = 2(1 \pm i\sqrt{3})/3$, which lie outside the unit circle. So the process is causal.

O(2) = 1+1'25 Z has a zero Z=-8 which is inside the unit interval, so this process is not invertible.