Universidad Autónoma de México

FACULTAD DE CIENCIAS

Participación de isomorfismo

Estructuras Discretas

4228

Ibrahim Munive Ramírez

Proposición. Sean G y H dos gráficas, demostrar que:

- 1. G es isomorfa a G.
- 2. Si G es isomorfa a H, entonces H es isomorfa a G.
- 3. Si G es isomorfa a H y H es isomorfa a I, entonces G es isomorfa a I.

Demostración (1):

Sea $\psi: V_G \to V_G$ una función biyectiva tal que $\forall u, v \in V_G$ se cumple que u es adyacente a v si y sólo si $\psi(u)$ es adyacente a $\psi(v)$. Entonces ψ es un isomorfismo de G en G.

Demostración (2):

Como G es isomorga a H, entonces existe una función biyectiva $\psi: V_G \to V_H$ tal que $\forall u, v \in V_G$ se cumple que u es adyacente a v si y sólo si $\psi(u)$ es adyacente a $\psi(v)$. Sea $\psi^{-1}: V_H \to V_G$ la función inversa de ψ . Entonces $\forall u, v \in V_H$ se cumple que u es adyacente a v si y sólo si $\psi^{-1}(u)$ es adyacente a $\psi^{-1}(v)$. Por lo tanto, ψ^{-1} es un isomorfismo de H en G.

Demostración (3):

Como G es isomorfa a H y H es isomorfa a I, entonces existen funciones biyectivas $\psi: V_G \to V_H$ y $\phi: V_H \to V_I$ tales que $\forall u, v \in V_G$ se cumple que u es adyacente a v si y sólo si $\psi(u)$ es adyacente a $\psi(v)$ y $\forall u, v \in V_H$ se cumple que u es adyacente a v si y sólo si $\phi(u)$ es adyacente a $\phi(v)$. Sea $\phi \circ \psi: V_G \to V_I$ la función compuesta de ϕ y ψ . Entonces $\forall u, v \in V_G$ se cumple que u es adyacente a v si y sólo si $(\phi \circ \psi)(u)$ es adyacente a $(\phi \circ \psi)(v)$. Por lo tanto, $\phi \circ \psi$ es un isomorfismo de G en I.