

Specifica Tecnica

swell fish 14@gmail.com

In formazioni

Redattori	[Davide Porporati, Elena Marchioro, Francesco Naletto]
Revisori	[Jude Vensil Braceros]
Responsabili	[Andrea Veronese]
Uso	[Esterno]

Descrizione

 $\label{eq:File} \mbox{File contenente la specifica tecnica necessaria per la realizzazione del progetto.}$

Versione	Data	Redattore	Verificatore	Descrizione
1.0.1	18/09/2023	Davide Por-	Francesco	Aggiornati i
		porati, Elena	Naletto	diagrammi
		Marchioro		delle classi
				e aggiunte
				sezioni man-
				canti
1.0.0	09/09/2023	Davide Por-	Francesco	Aggiornati i
		porati, Elena	Naletto	diagrammi
		Marchioro		delle classi
0.0.3	09/09/2023	Davide Por-	Claudio Gia-	Aggiornati i
		porati, Elena	retta	design pattern
		Marchioro		e revisionato
				il documento
0.0.2	04/09/2023	Davide Por-	Francesco	Aggiornati i
		porati, Elena	Naletto	design pat-
		Marchioro		tern e caricato
				diagramma
				delle classi
0.0.1	01/09/2023	Davide Por-	Francesco	Modificata
		porati, Elena	Naletto	tabella req-
		Marchioro		uisiti e in-
				formazioni
				principali
0.0.0	09/08/2023	Elena Mar-	Davide Por-	Creata strut-
		chioro	porati	tura di base
				del docu-
				mento

Contents

1	Intr	coduzione	4
	1.1	Scopo del documento	4
	1.2	Scopo del prodotto	4
	1.3	Riferimenti	4
		1.3.1 Riferimenti normativi	4
		1.3.2 Riferimenti informativi	4
2	Tec	nologie Utilizzate	5
	2.1	Front-end	5
	2.2	Back-end	5
	2.3	Database	5
	2.4	Interfacciamento Lampioni/Sensori	5
3	Arc	chitettura del prodotto	6
	3.1	Diagramma delle classi	6
		3.1.1 Back-End	6
		3.1.2 Front-End	7
	3.2	Design Pattern	9
		3.2.1 Back-end	9
		3.2.2 Front-end	9
	3.3		1
	3.4	-	l 1
	3.5		12
4	Rec	quisiti soddisfatti 1	.3
	4.1	Tabella requisiti soddisfatti	13
	4.2		16
	4.3		16
			17
			17
			17

1 Introduzione

1.1 Scopo del documento

Nel seguente documento vengono illustrate e motivate le scelte architetturali decise. Vengono riportati i diagrammi delle classi per l'architettura e le funzionalità principali, il diagramma ER della base di dati e infine una sezione dalla quale si può verificare lo stato di avanzamento del prodotto grazie a una tabella che illustra i requisiti soddisfatti.

1.2 Scopo del prodotto

L'obiettivo di SWEllfish e dell'azienda ImolaInformatica S.p.A. è lo sviluppo di un sistema per l'ottimizzazione dell'illuminazione, attraverso la realizzazione di una WebApp che permetta a degli utenti registrati di gestire l'impianto di illuminazione di un'area in modo manuale e automatico. Nel documento viene riportata l'architettura del sistema per i vari servizi e i design pattern utilizzati.

1.3 Riferimenti

1.3.1 Riferimenti normativi

- Norme di progetto
- Capitolato d'appalto C2 Lumos Minima

1.3.2 Riferimenti informativi

- Analisi dei requisiti
- Slide P2 del corso di ingegneria del software Diagrammi delle classi
- Slide P4 del corso di ingegneria del software Progettazione: il pattern Model-View-Controller e derivati

2 Tecnologie Utilizzate

2.1 Front-end

Per realizzare il frontend, ovvero la GUI del sistema, le seguenti tecnologie sono state impiegate:

- React: libreria JavaScript per creare GUI
- Typescript: linguaggio basato su JavaScript, offre migliore scalabilità rispetto a JS
- Bulma: framework CSS, reponsible e modulare, basato su Flexbox.

2.2 Back-end

- Node.JS: runtime di tipo JavaScript
- Express: framework per Node.JS
- Axios: client HTTP per Node.JS di tipo "promise-based"
- Sequelize: ORM tool per MariaDB, utilizzato per modellare i dati ed effettuare associazioni
- Cron: modulo di node, funge da scheduler e viene impiegato per creare task ad esecuzione automatica

2.3 Database

Il database implementato è di tipo relazionale, ed è stato implementato utilizzando MariaDB e HeidiSQL.

2.4 Interfacciamento Lampioni/Sensori

Per realizzare l'interfacciamento con i sensori e i lampioni a sistema le seguenti tecnologie sono state impiegate:

- Python
- API-rest

3 Architettura del prodotto

3.1 Diagramma delle classi

3.1.1 Back-End

3.1.2 Front-End

3.2 Design Pattern

3.2.1 Back-end

Per il backend è stato utilizzato il seguente pattern:

Router Controller Service Pattern: Il design pattern dell'API Router-Controller-Service è un modello di architettura del software comunemente utilizzato nelle applicazioni web per strutturare e organizzare il codice responsabile della gestione delle richieste e delle risposte HTTP. Questo pattern aiuta a mantenere la separazione delle responsabilità e migliora la modularità e la manutenibilità dell'applicazione.

Il pattern è composto dai seguenti componenti:

- Router: componente che si occupa di effettuare il routing verso il controller adatto
- Controller: componente che elabora la rischiesta ricevuta dal Router.
 Si appoggia alla classe Service per eseguire le operazioni.
- Service: componente che esegue la logica dell'applicazione.

Ecco come funziona il pattern in pratica:

- Un client invia una richiesta HTTP alla tua applicazione;
- Il componente Router riceve la richiesta e determina quale Controller deve gestirla in base all'URL e al metodo HTTP;
- Il Controller selezionato elabora la richiesta. Se necessario, chiama i metodi del livello di Servizio per eseguire la logica aziendale e le operazioni sui dati.
- Il Controller costruisce una risposta HTTP, che viene inviata al client.

3.2.2 Front-end

Per il frontend si sono utilizzati i pattern:

- Observer Pattern:
 - Scopo: definire una dipendenza fra oggetti, riflettendo la modifica di un oggetto sui dipendenti.

- Motivazione: mantenere la consistenza fra oggetti e definire come implementare la relazione di dipendenza.
- Dependency Injection: le dipendenze sono tracciate e passate agli oggetti tramite costruttore. Questo pattern è stato impiegato perchè facilita il tracciamento delle dipendenze e agevola la fase di testing, rendendo più semplice il mocking.
- Model View ViewModel (MVVM): è un modello di architettura del software che facilita la separazione dello sviluppo dell'interfaccia grafica, ovvero la GUI, sia tramite un linguaggio di markup o un codice GUI, dallo sviluppo del business logic o logica back-end in modo tale che la vista non dipenda da alcuna piattaforma di modello specifica. I componenti del modello MVVM:
 - Model: nel nostro caso è rappresentato dai file Store.
 - View: viene definita tramite un template HTML accessibile nella cartella "Public". Per ogni view la parte root del template viene sostituita con la vista corrispondente
 - ViewModel: viene rappresentato dalle classi TypeScript utilizzate per gestire gli eventi della vista e aggiornare il modello di conseguenza. Ne è un esempio la classe "AreeViewModel", che gestisce la visualizzazione della lista delle aree presenti a sistema.

Il pattern implementato dal gruppo si appoggia ad una classe Service, che si occupa di fungere da classe di appoggio per richiamare le operazioni del backend.

• IoC(Inversion of Control)

Pattern che si concentra sulla gestione delle dipendenze e sul controllo dell'istanziazione degli oggetti. Questo pattern inverte il controllo tradizionalmente detenuto dalla componente chiamante, mettendo il controllo nelle mani di un framework o di un contenitore di gestione delle dipendenze. L'uso di questo pattern favorisce il disaccoppiamento e semplifica i test poiché le dipendenze sono dichiarate e possono essere facilmente sostituite con versioni mock durante i test.

3.3 Interfacciamento con lampioni e sensori

Per simulare i lampioni presenti in un dato momento nel Database, è stato modificato lo script fornito da Imola Informatica per simulare i lampioni. Lo script modificato, realizzato in python, utilizza l'export in formato JSON della relativa tabella dei lampioni presente nel DB per simulare in maniera automatica tutti i lampioni a sistema. Per realizzare ciò, è stato aggiunto un argparser allo script, e il suo utilizzo ha permesso di simulare N istanze dei lampioni, con porte diverse in base all' ID del singolo apparecchio luminoso.

Un approccio molto simile è stato applicato per simulare i sensori presenti nel DB.

In questo modo, dopo aver fatto partire i due simulatori è possibile visualizzare:

- tutti i lampioni, raggiungibili dalla porta 4000 + l'id del singolo lampione. Dato ad esempio il lampione con ID 1, esso è raggiungibile alla porta 4001.
- tutti i sensori, raggiungibili con lo stesso meccanismo dei lampioni, ma sulle porte 5000.

Avendo tutte le istanze necessarie, il sistema permette di effettuare tutte le operazioni previste dal capitolato, come l'accensione e lo spegnimento dei lampioni di un'area in modalità manuale o automatica, e per avere un effettivo riscontro sullo stato di queste operazioni, accedendo ad un qualsiasi indirizzo di un lampione è possibile visulizzarne lo stato aggiornato. Tale stato è riportato anche dall'interfaccia grafica. I sensori vengono invece comandati tramite l'utilizzo di un'API tester ed eseguendo un'operazione di tipo POST è possibile modificarne lo stato, comandando ad esempio un rilevamento di un utente stradale.

3.4 Persistenza dei dati

Per realizzare la persistenza dei dati, è stato utilizzato un DB relazionale, fornito da HeidiSQL. L'immagine seguente riporta lo schema Entity-Relationship della base di dati, dopo la ristrutturazione.

Per poter usare efficacemente i dati salvati nel DB, il backend dell'applicazione utilzza un'apposita classe model, che tramite l'uso di Sequelize permette di creare degli oggetti di tipo lampione, area e sensore.

3.5 Autenticazione

Il sistema di autenticazione permette di accedere al sistema e alle Routes protette, accessibili solamente dall'amministratore. L'autenticazione avviene tramite il check delle credenziali salvate nel database per ogni amministratore. Dopo aver appurato che i dati inseriti siano corretti, viene generato un token di tipo JWT, a durata predeterminata. Alla scadenza del tempo prefissato tale token viene rinnovato, altrimenti se si effettua il logout, questo viene cancellato e all'accesso successivo è necessario fornire nuovamente le credenziali per l'accesso.

4 Requisiti soddisfatti

4.1 Tabella requisiti soddisfatti

Requisito	Descrizione	Classificazione	Stato
RF1	L'utente deve poter fare il lo-	Obbligatorio	Soddisfatto
	gin al sistema		
RF2	L'utente visualizza lo stato	Obbligatorio	Soddisfatto
	del sistema		
RF3	L'utente deve poter au-	Obbligatorio	Soddisfatto
	mentare la luminosità di		
	un'area		
RF4	Il sistema deve visualizzare	Obbligatorio	Soddisfatto
	un messaggio d'errore se non		
	si è potuto aumentare la lu- minosità		
RF5	L'utente deve poter vedere	Obbligatorio	Soddisfatto
	l'elenco delle aree illuminate	Obbligatorio	Soddistatto
RF6	L'utente deve poter vedere	Obbligatorio	Soddisfatto
	l'elenco delle aree	0.0.00.00	
RF7	L'utente deve poter se-	Obbligatorio	Soddisfatto
	lezionare le aree su cui		
	operare		
RF8	L'utente deve poter	Obbligatorio	Soddisfatto
	diminuire la luminosità		
	di un'area		
RF10	L'utente deve poter accedere	Obbligatorio	Soddisfatto
DE11	alla dashboard	01.1.1	0.11.6
RF11	Il sistema deve visualizzare	Obbligatorio	Soddisfatto
	un messaggio d'errore nel		
	caso l'operazione di dimin-		
	uzione della luminosità non fosse andata a buon fine		
RF12		Obbligatoria	Soddisfatto
11Γ12	L'utente deve poter diminuire la luminosità	Obbligatorio	Soddisiatto
	diffillulle la luffillostia		

Requisito	Descrizione	Classificazione	Stato
RF13	L'utente deve poter inserire una nuova area illuminata	Obbligatorio	Soddisfatto
RF14	L'utente deve poter rimuo- vere un area illuminata	Obbligatorio	Soddisfatto
RF15	L'utente deve poter accedere alla lista delle aree gestite	Obbligatorio	Soddisfatto
RF16	L'utente deve poter mod- ificare le informazioni di un'area illuminata	Obbligatorio	Soddisfatto
RF17	Il sistema mostra un messag- gio di notifica una volta effet- tuata la modifica ad un area illuminata	Obbligatorio	Soddisfatto
RF18	L'utente deve poter inserire un nuovo sensore in una area illuminata	Obbligatorio	Soddisfatto
RF19	L'utente deve poter accedere all'area illuminata	Obbligatorio	Soddisfatto
RF20	L'utente deve poter rimuo- vere un sensore da un'area il- luminata	Obbligatorio	Soddisfatto
RF21	L'utente deve poter fare il logout dal sistema	Obbligatorio	Soddisfatto
RF22	L'utente deve poter inserire un impianto nell'elenco dei guasti	Obbligatorio	Soddisfatto
RF23	L'utente deve poter rimuo- vere un impianto dall'elenco dei guasti	Obbligatorio	Soddisfatto
RF24	L'utente deve poter visualiz- zare i dettagli di un'area	Obbligatorio	Soddisfatto
RF25	L'utente deve poter se- lezionare un lampione	Obbligatorio	Soddisfatto
RF26	L'utente deve poter visualiz- zare i dettagli di un lampione	Obbligatorio	Soddisfatto
RF27	L'utente deve poter in- serire un nuovo lampione all'interno di un'area illumi- nata 14	Obbligatorio	Soddisfatto
RF28	L'utente deve poter rimuo- vere un lampione all'interno di un'area illuminata	Obbligatorio	Soddisfatto

Requisito	Descrizione	Classificazione	Stato
RF29	L'utente deve poter visualiz-	Obbligatorio	Soddisfatto
	zare l'elenco delle aree illu-		
	minate con dei malfunziona-		
	menti		
RF30	L'amministratore deve	Obbligatorio	Soddisfatto
	poter aprire una nuova		
	segnalazione di un guasto		
	tramite un ticket		
RF31	L'amministratore deve poter	Obbligatorio	Soddisfatto
	chiudere il ticket dopo aver		
	fatto la dovuta manutenzione		
RF32	Il manutentore deve poter vi-	Desiderabile	Soddisfatto
	sualizzare i dettagli aggiun-		
	tivi di un guasto forniti dal		
	ticket		
RF33	L'utente non amministratore	Desiderabile	Non Soddisfatto
	riceve le credenziali da am-		
	ministratore da un superam-		
	ministratore		
RF34	L'utente consulta il manuale	Desiderabile	Soddisfatto
	Lumos Minima		
RF35	Le nuove aree illuminate ap-	Desiderabile	Soddisfatto
	pena inserite hanno un setup		
	standard		

Numero di requisiti obbligatori soddisfatti: 30/30 Numero di requisiti desiderabili soddisfatti: 3/4

4.2 Qualità

Requisito	Descrizione	Classificazione	Stato
RQ1	La webapp deve essere	Obbligatorio	Soddisfatto
	sviluppata seguendo le re-		
	gole descritte nel documento		
	Norme di progetto		
RQ2	Devono essere sviluppati dei	Obbligatorio	Soddisfatto
	test con una copertura min-		
	ima dell'80% e correlati di re-		
D.O.O.	port		
RQ3	Deve essere prodotto un doc-	Obbligatorio	Soddisfatto
	umento sulle scelte imple-		
DO 4	mentative e progettuali	01.1.1	27
RQ4	Deve essere prodotto un doc-	Obbligatorio	Non sod-
	umento sui problemi aperti		disfatto
	e sulle eventuali soluzioni da		
DOE.	esplorare	Facoltativo	Non sod-
RQ5	Fornire un'analisi rispetto al carico massimo supportato	racontanto	disfatto
	in numero di dispositivi e		distatto
	di quale sarebbe il servizio		
	cloud più adatto per suppor-		
	tarlo analizzando prezzo, sta-		
	bilità del servizio ed assis-		
	tenza.		

Numero di requisiti qualitativi obbligatori soddisfatti: 3/4. Numero di requisiti qualitativi facoltativi soddisfatti: 0/1.

Il RQ4 non è stato completato poichè non sono state rilevate particolari criticità, come confermato da Imola Informatica.

4.3 Dati copertura test

La piattaforma utilizzata per il testing è Jest, ed è stata utilizzata sia per i test di unità che per i test di integrazione, concordando con il committente una pecentuale minima di copertura dell'80%.

Tali dati sono riproducibili eseguendo il comando "npm test" sia su frontend che su backend. I valori forniti sono le percentuali medie riscontrate, visibili nella prima riga delle percentuali del report fornito da jest.

4.3.1 Percentuali test

Dopo aver completato un'accurata fase di testing, i risultati sono i seguenti:

4.3.2 Test Unità

• Statement Coverage: 87%

• Branch Coverage: 81%

• Function Coverage: 95%

• Line Coverage: 87%

4.3.3 Test Integrazione

• Statement Coverage: 99%

• Branch Coverage: 94%

• Function Coverage: 92%

• Line Coverage: 99%