# Chapter 5: Using transcriptomics to investigate evolution and toxicology in *Gambierdiscus*. <sup>1</sup>

Key words: Gambierdiscus, ciguatoxin, pan-transcriptome

## 1 Abstract

Species of the genus Gambierdiscus produce Ciguatoxins (CTXs), the causative agent of ciguatera fish poisoning, a potentially debilitating seafood borne illness. Species of Gambierdiscus possess very large genomes, 32 - 35 Gbp, and, as with other dinoflagellates, possess unique genomic characteristics, such as highly repetitive and complex genome architecture. The exact toxins produced by species of Gambierdiscus remain largely unclear. It has been verified using LC-MS/MS on multiple strains that the species Gambierdiscus polynesiensis produces analogs of CTXs. Other species appear to produce maitotoxins, gambierol, and other uncharacterised toxins. An understanding of the evolution of Gambierdiscus and their toxins requires information regarding their genetics. Transcriptomic sequencing is a feasible alternative to genome sequencing. In this study, we generated de novo RNA-seq libraries for Gambierdiscus polynesiensis, Gambierdiscus carpenteri, Gambierdiscus holmesii and Gambierdiscus lapillus, compared these to a previously sequenced Gambierdiscus australes, to discover a set of core genes shared by all species. We present a Gambierdiscus core transcriptome, which might be used to investigate candidate genes related to toxin production.

#### To do:

- re-structure as per Tim's comments
- incl Sammy's comments

## 2 Introduction

The challenge of protist de novo sequencing projects lies in assessing the adequacy and completeness of sequencing as well as library processing and assembly methods employed, without a well annotated reference. This issue is particularly prevalent in dinoflagellates, whose expansive and complex genetics tend to be a barrier to genomic sequencing. As an alternative to wrangling with dinoflagellate genomes, transcriptomes are used as to explore their genetics. This is due to the apparent presence of uncharacterized genetic mechanism(s) which seem to leave protein synthesis regulation to the post-transcriptional stage, thus with the effect that mRNA gives an approximation of genomic content. An indication of these regulatory mechanisms comes from a number of direct previous observations. Harke et al. (2017) cultured Provocentrum minimum and Alexandrium monilatum under stress conditions by severely limiting nitrogen as well as phosphorous availability. The cultures showed significant biochemical changes (e.g. growth rate, particulate organic carbon and particulate carbohydrates content) between the control and stress conditions at time of harvest, yet change in transcriptome expression was minimal, between 0.1 to 1 % depending on stressor and species used [11]. While the difference in biochemical changes was not captured by mRNA profiling of the cultures, the study did not include a protein expression observation to verify a difference in expression despite a static pool of mRNA availability [11]. As these organisms are relatively difficult to culture and extract RNA, until the MMEPTSP the number of marine eukaryotic transcriptomes was sparse. When searching for Gambierdiscus on NCBI's SRA database 5 relevant projects were found in addition to the MMETSP results (searched on November 10, 2018). These sequencing projects covered two strains of G. polynesiensis, as well as for G. australes and G. excentricus. The fifth project focused on the bacterial associations of G. caribaeus and G. carolinianus. Broadening the search to the order gonyaulacales yielded a further 19 projects, including another on bacterial associates as well as 3 projects on Azadinium and Crypthecodinium, which are arguably not part of the gonyaulacales (see **chapter 4**). Searching for members of the phylum dinoflagellates calls a further 84 projects. Despite their ecological relevance for nutrient cycling, DMSP production, coral symbiosis and neurotoxin production (for a review see [27]), the paucity of sequencing data, even with the MMETSP dataset, is evident. This is further confounded to a large proportion of dinoflagellate transcriptomes

sharing no known similarity to other described proteins or domains compared to known databases. When compared to NCBI's nr database, the proportion of contigs with no known match was 60 % for Azadinium spinosum [25], over 50 % for G. australes & G. belizeanus [18], 57.9 % for G. excentricus [17], 63 % for G. polynesiensis [17, 28], and 55 - 57 % for Karenia brevis [35].

The concept of a reference genome, or transcriptome, allows for direct comparison of genome/transcriptome sequencing to a standard. However sequencing further genomes in bacteria reveled a large transitory subset of genetic content, with the conclusion that a single strain based reference would be inadequate for capturing a large proportion of the species' genetic diversity [38, 39]. An alternative approach to a reference genome was proposed - that of a core-genome common to all strains, and a pan-genome which is transitory. An extrapolation of this study by Tettelin et al. (2005), which showed that 1.5 % of the genome was novel between 8 strains of Streptococcus predicted based on mathematical models that for every new strain sequenced 22 novel genes are predicted to be discovered [24]. Since then the core- and pan-genome, or transcriptome, concept has been adopted for eukaryotes also, with the realization that the transient genomic content holds true when multiple strains of a species are sequenced (e.g. [14, 23, 29, 30, 32, 36]). Further to exploring the shared and transient genetic components within a genus, pan and core analyses have been conducted for higher taxonomic levels, commonly within genus though also at much higher levels, such as the gene frequency of Eubacteria within the super kingdom inter-species pan and core analysis have also been conducted [12, 14, 19, 21, 39].

Five transcriptomes of Gambierdiscus were compared in this study with the aim of providing a pan-transcriptomic baseline Gambierdiscus de novo transcriptome sequencing, which can be expanded and refined in future studies. The taxa originated from two locations in Australia (Merimbula, NSW, and Heron Island, QLD) and Rarotonga in the Cook Islands (Table 1). All of the five species have been implicated in MTX production via bioassays, while G. carpenteri did not register for CTX-like activity in a bioassay [22]). The toxin profiles registered all species apart from G. carpenteri as an MTX producer, while only G. polynesiensis had a confirmed CTX production profile (Table 1) This study revealed a set of core-transcripts shared by all taxa as well as a subset of species specific, unique portion of the transcriptome. The results in this study

could provide an avenue of investigation of querying the expression differences between toxic and non-toxic species of Gambierdiscus.

Table 1: Gambierdiscus species transcriptomes used in this study along with their toxicity, toxin profile, accession numbers and source. Where possible, information is strain specific & otherwise denoted with \*

| Species       | G. australes        | G. carpen-   | G. lapillus          | G. polyne-    | G. holmesii   |
|---------------|---------------------|--------------|----------------------|---------------|---------------|
|               |                     | teri         |                      | siensis       |               |
| Strain        | CAWD149             | UTSMER9A     | HG4                  | CG15          | HG5           |
| Transcripton  | <b>e</b> MMETSP     | chapter 4    | chapter 4            | chapter 4     | chapter 4     |
| source        |                     |              |                      |               |               |
| Accession     | MMETSP076           | 6 SRR6821720 | SRR6821722           | SRR6821723    | SRR6821721    |
| ID            |                     |              |                      |               |               |
| Isolation lo- | Rarotonga,          | Merimbula,   | Heron                | Rarotonga,    | Heron         |
| cation        | cation Cook Islands |              | Island, Cook Islands |               | Island,       |
|               | (2007)              | (2014)       | Australia            | (2014)        | Australia     |
|               |                     |              | (2014)               |               | (2014)        |
| Toxin pro-    | CTX -ve;            | CTX -ve;     | CTX -ve;             | CTX +ve;      | CTX -ve;      |
| file (LC-     | MTX +ve             | MTX -ve      | MTX +ve              | MTX +ve       | MTX +ve       |
| MS/MS)        |                     |              |                      |               |               |
| Toxicity via  | CTX +ve;            | CTX -ve;     | $CTX + ve^*;$        | $CTX + ve^*;$ | $CTX + ve^*;$ |
| bioassay      | MTX N/A             | MTX +ve      | MTX +ve*             | MTX +ve*      | MTX +ve*      |
| References    | [16, 26, 33]        | [22]         | [20, 22]             | this study,   | [20, 22]      |
|               |                     |              |                      | [4]           |               |

## 3 Methods

Scripts used for this project are available on Github under hydrahamster/pan-tran. Venn diagrams were created with InteractiVenn [13].

## 3.1 Transcriptome acquisition

Species of *Gambierdiscus* used in this chapter are summarized in Table 1. Toxicity and toxin profile reports are specific to the strains used as inter-species variation in toxin production was recently reported [22, 34], unless noted otherwise. The *G. polynesiensis* toxin profile was elucidated by Tim Harwood at the Cawthron institute with the same methodology as for *G. lapillus* in **Capter 2**. RNA-seq libraries were assembled as per the transcriptome assembly subsection in the methods of **chapter 4**, without diginorm.

## 3.2 Spliced leader search

The spliced leader sequences reported by Zhang et al. (2007) were used to build a hmmer library [41]. The transcriptome assemblies were searched with the dinoSL hmmer library to investigate for spliced leader presence. All clusters were searched for membership of one or more contigs with a dinoSL.

## 3.3 Homolog clustering

Cd-hit was used to cluster highly similar transcripts to reduce redundancy with the flags -T 10 -M 5000 -G 0 -c 1.00 -aS 1.00 -aL 0.005 as shown by Cerveau and Jackson (2016) [3, 8]. Transdecoder was use to predict coding regions on the clustered nucleotide sequences [10]. Protein clusters were annotated with Interproscan v5.27 with local lookup server [31]. Protein clusters were processed to include the species of origin instead of the TRINITY tag and concatenated for input to get\_homologues [40]. The -t 0 flag was used for get\_homologues to acquire all possible clusters even with only one species representative, and -G for the OMCL algorithm. The resulting core-, softcore- and unique-clusters were matched with their interpro annotations and GO terms were queried with GOSUM

against the basic Gene Ontology (GO) database [1, 5, 15]. GOSUM was run at levels 1 and 2 of GOs with the go-basic GO reference.

## 3.4 Ketosynthase domain search

The transcriptome assemblies were queried for the ketosynthase (KS) active domain of the polyketide synthase (PKS) enzyme using hmmer [6] with libraries developed for this project. The contigs which were identified to contain an active domain were then searched for within the clusters to identify how the active domains clustered; and the assemblies were searched to compare KS abundance between species. The KS domains found were aligned with MUSCLE with a maximum of 8 iterations [7]. Maximum likelihood (ML) inference was run with the KS alignments using RaxML [37] with the -PROTGAMMAILGF flags on the University of Technology Sydneys High-performance computing cluster (HPCC)

# 4 Results

## 4.1 Overview of the transcriptomes

The progression of clustering and annotation results per transcriptome can be found in Table 2. A total of 287,546 clusters were found across all five species (Fig. 1).



Figure 1: Venn diagram of species distribution across clusters.

Table 2: Progression of clusters found in each *Gambierdiscus* transcriptome during

processing.

| processing.    | I       | I             | T           | 1          |           |
|----------------|---------|---------------|-------------|------------|-----------|
| Species        | G. aus- | G. carpenteri | G. lapillus | G. polyne- | G. holme- |
|                | trales  |               |             | siensis    | sii       |
| Contigs        | 102,863 | 263,829       | 148,972     | 270,315    | 191,224   |
| Spliced leader | 304     | 683           | 232         | 1,570      | 1,524     |
| contigs        |         |               |             |            |           |
| Nucleotide     | 102,861 | 263,743       | 148,966     | 270,265    | 191,205   |
| clusters (cd-  |         |               |             |            |           |
| hit)           |         |               |             |            |           |
| Predicted      | 63,299  | 180,568       | 111,862     | 176,290    | 132,688   |
| coding regions |         |               |             |            |           |
| (Transde-      |         |               |             |            |           |
| coder)         |         |               |             |            |           |
| Contigs anno-  | 131,970 | 334,737       | 225,324     | 225,324    | 254,844   |
| tated (Inter-  |         |               |             |            |           |
| pro Scan)      |         |               |             |            |           |
| Core-          | 13,750  | 13,750        | 13,750      | 13,750     | 13,750    |
| transcriptome  |         |               |             |            |           |
| clusters       |         |               |             |            |           |
| Softcore-      | 2,372   | 16,058        | 16,297      | 16,557     | 16,636    |
| transcriptome  |         |               |             |            |           |
| clusters       |         |               |             |            |           |
| Unique clus-   | 35,356  | 61,494        | 32,341      | 60,769     | 41,350    |
| ters           |         |               |             |            |           |

#### 4.1.1 Core transcritome

A set of core genes common to all five species of Gambierdiscus were found. This set consisted of 13,750 amino acid clusters (Table 2) of which 45 % were annotated with GO terms (Suppl. table 5 & 6). The highest number of contigs in any core cluster was 180 cluster of unknown function with 23, 45, 32, 31 and 49 from G. australes, G. carpenteri G. lapillus, G. polynesiensis and G. holmesii respectively. Twelve of the core clusters contained 100 or more contigs, of which 3 were unannotated. The predicted protein coding regions for the other nine clusters, in descending order of contig numbers: an enzyme with catalytic activity involved in metabolic process; a calcium binding transmembrane transport channel; a protein involved in calcium binding; a protein binding enzyme; a domain for unspecified protein binding; an enzyme with O-glucosyl hydrolase activity involved in carbohydrate metabolic process; membrane bound ion transporter with cation channel activity & ionotropic glutamate receptor activity; a transmembrane transporter with voltage-gated calcium channel activity; and calcium ion binding transmembrane ion transporter. A total of 3,943 core clusters contained 10 or more contigs, so 71.32 % of the total core clusters consisted of less than 10 contigs. The majority of clusters fell within metabolic processes, cellular processes and catalytic activity with %, % and % of annotated clusters respectively.

#### 4.1.2 Softcore transcriptome

A softcore with 4 out of the five Gambierdiscus species examined was identified. The softcore consisted of an additional 16,980 clusters (Table 2) of which 48 % were annotated (Suppl. table 5 & 6). The most prolific cluster in the softcore contained 163 contigs with unknown function, where G. carpenteri G. lapillus, G. polynesiensis and G. holmesii contained 50, 42, 41 & 30 contigs respectively. A further 5 clusters contained more than 100 contigs, four of which had GO annotations. Of the six clusters with over 100 contigs, none had representatives contigs from G. australes. G. australes was absent from 86 % of the softcore clusters. In descending order of contigs, they matched to: a protein involved in selective protein binding; a protein involved in actin binding; a protein involved in calcium binding; and a protein with cysteine-type peptidase activity. Of the softcore, 14,035 clusters contained 10 or more contigs.

#### 4.1.3 Unique part of the transcriptome

Clusters with single species representatives, or the pan-transcriptome to the five *Gambierdiscus* species examined, numbered 231,310 clusters. Of the unique clusters, only 15.23 % of clusters were annotated. Single species clusters from *G. australes*, *G. carpenteri G. lapillus*, *G. polynesiensis* and *G. holmesii* numbered 35,356, 62,494, 32,341, 60,796 & 41,350 clusters respectively (Table 2). The highest number of contigs in a unique cluster were 37, found in two clusters from *G. carpenteri*. One of these was annotated for RNA and metal ion binding activity. Of the unique clusters, 83.1 % contained only one contig and 97.8 % of clusters have 5 contigs or less.

#### 4.1.4 Comparison of gene ontology annotations.

The GOs were split up into the three functional groups defined by the consortium: 1) Molecular processes (Figs. 4, 7, 10 & 13) defined as biochemical or a macromolecule directly interacting with other molecules; 2) Cellular components (Figs. 2, 6, 9 & 12) defined by the location within the cell where a molecular process takes place; and 3) Biological process (Figs. 3, 5, 8 & 11) which is defined as a molecular machinery participating in the execution of the cell's genetic programming, e.g. cell division. GO basic is structured in a hierarchical manner, with parent and child terms where child terms are more specific than parent terms. For a general overview of functions present in each transcriptome, level 1 GO terms were elucidated (Figs. 3, 2 4, 8, 9 & 10). A more in depth query of the functions present in each transcriptome was conducted with a GO search of the child terms at level 2 (Figs. 5, 6, 7, 11, 12 & 13).

Level 1 GO annotations between Gambierdiscus species. The GO annotations found at level 1 between the species of Gambierdiscus were similar, with the exception of G. australes in several instances. For GOs assigned part of catalytic activity in molecular processes (Fig. 10) as well as both the metabolic and cellular processes in the biological processes (Fig. 8), G. australes was underrepresented. Within the molecular processes (Fig. 10), the most common annotation was for catalytic activity, followed by binding then transporter activities. Molecular carrier activity was only registered for G. australes and G. carpenteri with 1 annotation each. For GO annotations within the cellular processes (Fig. 9), the most common match was to cell parts followed by protein



Figure 2: Summary of cellular GO annotations between *Gambierdiscus* species at GO-SUM level 1 from Suppl. table 3.

containing complexes then organelle parts. Only *G. carpenteri* and *G. polynesiensis* had one annotation each for cell junction activity. The highest number of GOs within biological processes matched to cellular processes (Fig. 8), closely followed by metabolic processes then biological regulation and localization. The lease represented biological GO annotation was related to growth with only one annotation for *G. holmesii* and *G. polynesiensis*.



Figure 3: Summary of biological processes GO annotations between *Gambierdiscus* species at GOSUM level 1 from Suppl. table 3.



Figure 4: Summary of molecular GO annotations between Gambierdiscus species at GOSUM level 1 from Suppl. table 3.

Level 2 GO annotations between *Gambierdiscus* species. At level 2 of GO annotations, difference between species becomes more apparent. While inter-species variations across the molecular, cellular and biological processes (Figs. 11, 12 & 13) are apparent, consistently G. australes is underrepresented or absent across all three processes. Conversely, G. australes was the only species with a small number of GO annotations to nucleocytoplasmic carrier activity as well as general transcription initiation factor activity within the molecular processes, and anatomical structure morphogenisis as well as movement within environment as part of symbiotic interaction in the biological processes. G. holmesii had a much higher representation of GO terms matching sperm-egg recognition. The most common molecular process (Fig. 13) mapped to transferase activities, followed by hydrolase activity and oxidoreductase activity. For cellular 12) the highest number of GOs was matched to intracellular parts. processes (Fig. then intracellular organelle parts and membrane protein complexes. Organic substance metabolic processes, cellular metabolic processes and primary metabolic processes had the most GO annotation matches, in that order, for the biological processes group (Fig. 11).



Figure 5: Summary of biological processes GO annotations between *Gambierdiscus* species at GOSUM level 2 from Suppl. table 4.



Figure 6: Summary of cellular GO annotations between *Gambierdiscus* species at GO-SUM level 2 from Suppl. table 4.



Figure 7: Summary of molecular GO annotations between *Gambierdiscus* species at GOSUM level 2 from Suppl. table 4.

Level 1 GO annotations for pan-transcriptomes. Similarity between the core-, softcore- and unique-clusters was consistent across the biological, cellular and molecular processes groups. Predominantly the unique clusters had a higher representation in each process with the exception for annotations matching to extracellular region parts and synpase parts within cellular processes (Fig. 9) as well as developmental processes within the biological processes (Fig. 8). GO annotations most commonly matched to catalytic activity then binding and transporter activities in the molecular processes (Fig. 10). Within the cellular processes, annotations predominantly matched to cellular parts, followed by protein-containing complexes and organelle parts (Fig. 8). For biological processes, the prevalent GO annotations matched to cellular processes, metabolic processes and localization (Fig. 8).



Figure 8: Summary of biological processes GO annotations between core, softcore and unique clusters at GOSUM level 1.



Figure 9: Summary of cellular GO annotations between core, softcore and unique clusters at GOSUM level 1.



Figure 10: Summary of molecular GO annotations between core, softcore and unique clusters at GOSUM level 1.

Level 2 GO annotations for pan-transcriptomes. While differences between the biological, cellular and molecular processes were more distinctive at level 2, with the most common pattern among all three groupings of the core and unique clusters closely matching the number of GO terms with one or the other dominant, and the softcore clusters as less prevalent (Figs. 11, 12 & 13). Only the unique clusters had annotations matching to DNA binding transcription factor activity, metallochaperone activity and water binding in the molecular processes while the most common GO annotations for the pan-transcriptome matched to transferase, hydrolase and oxidoreductase activities in descending order (Fig. 13). Within the cellular processes, most annotations matched to intracellular parts, followed by intracellular organelle parts then membrane protein complexes (Fig. 12). Annotations solely from unique clusters were from cell-cell junction complexes, a viral membrane, contractile fibre parts, bacterial-type flagellum and an external encapsulating structure part. The biological processes annotations most commonly matched to organic substance metabolic processes, cellular metabolic processes and primary metabolic processes in descending order (Fig. 11). Unique clusters were the only representatives for system processes, immune response, cell adhesion, cell death, sperm-egg recognition, cell motility and a protein activation cascade.



Figure 11: Summary of biological processes GO annotations between core, softcore and unique clusters at GOSUM level 2.



Figure 12: Summary of cellular GO annotations between core, softcore and unique clusters at GOSUM level 2.



Figure 13: Summary of molecular GO annotations between core, softcore and unique clusters at GOSUM level 2.

### 4.2 Keto synthase active domain search

A total of 850 contigs were identified with KS domains which assembled into 314 clusters (Fig. 14). Nine clusters contained more than 10 contigs, with the highest number of 130 contigs from all species. 9 clusters contained 10 contigs or more, of which only two did not contain all the taxa examined. 57 of the 314 clusters contained contigs from multiple species, so 81.8 % of KS clusters were species specific while 78.7 % contained only a single contig (Fig. 14). The non-ciguatoxic G. carpenteri was absent from 73.6 % of the clusters. Of the clusters without G. carpenteri, none contained all four other species. However one cluster contained G. lapillus, G. polynesiensis and G. holmesii with equally represented transcript numbers. Four contigs contained G. polynesiensis and G. holmesii only, one of which had a higher contig representation of G. polynesiensis than G. holmesii. G. polynesiensis was the only representative species in 71 clusters, of which three clusters contained 2 contigs and one cluster contained 3 contigs. G. holmesii was representative as the only species in 23 clusters, one of which contained 3 contigs while the other clusters contained single contigs. G. australes, G. carpenteri and G. lapillus were the solo representatives of 81, 39 & 35 KS clusters respectively.



Figure 14: Venn diagram of species in KS clusters.

## 5 Discussion

Comparing five Gambierdiscus species revealed a core, softcore and unique fraction between the transcriptomes. Further, differences between species with different toxin production characteristics were observed. The number of predicted peptides found in this study is high compared to a pan-transcriptome study of four prymnesiophyte algae [19]. The predicted peptides in the Koid et al. (2014) study ranged from around 25,000 to 56,000 peptides, where this study found a range from about 63,000 to 270,000 predicted peptides (Table 2). The lowest number of peptides was predicted in G. australes, similar to the findings in the prymnesiophyte algae study and both originating from the MMETSP sequenced with 50bp read length. G. holmesii and G. lapillus predicted peptides numbered 132,688 and 111,862 respectively, sequenced with 75bp read length. The highest number of predicted peptides were found in G. carpenteri and G. polynesiensis at 180,568 and 176,290 respectively, sequenced with 150bp read length. Hence the differences in predicted peptide numbers could be linked to sequencing depth based on the read lengths used, which is supported by the comparable predicted peptide recovery from G. australes and the prymnesiophyte algae from the MMETSP.

The abundance of dinoSL was quite low (Table 2) compared to the abundance observed by Zhang et al. (2009) in Amphidinium carterae. Similar to this study, low abundance of spliced leaders has been observed in other dinoflagellates [2, 9]. The function of the spliced leader, and hence whether this variation in observation between high and low abundance is species specific or due to assembly method employed, is yet unknown. Interestingly, G. holmesii and G. polynesiensis had the most contigs with dinoSLs. These were sequenced with different read lengths and collected from different geographic locations, but are phylogenetically in the same Gambierdiscus sub-clade.

## 5.1 Core, softcore and unique genes

The number of contigs and predicted peptides from this study was markedly less for G. australes, from the MMETSP dataset, in comparison to the transcriptome assemblies generated in **Chapter 4**. To accommodate for the low number of contigs from G. australes, the softcore spanned 4 of the 5 taxa. Noticeably, G. australes was absent from 86 % of the softcore dataset which indicates that a large proportion of the softcore

is likely part of the Gambierdiscus pan-transcriptome core which was not captured in the G. australes sequencing. This is an example where the relevance of a reference pantranscriptome for sequencing efforts becomes evident.

There was no distinct difference between the species GO annotations, with the exception of *G. australes* which is likely due to lower overall contig recovery from the MMETSP sequencing data which translated to shallower sequencing depth. This is as expected, as the species operate under similar nutritional modes and within similar temperature ranges, apart from *G. carpenteri* which was isolated from the temperate Merimbula region rather than the tropical or sub-tropical conditions from which *G. australes*, *G. holmesii*, *G. carpenteri* and *G. polynesiensis* hail.

However no observable difference was observed in the biological, cellular and molecular GO annotation groups at levels 1 and 2 between the core, softcore and unique clusters either. This is somewhat less expected as as it would be reasonable to predict a functional difference for transiently expressed genes unique to each species. Possible reasons could be that this observation only captures predicted peptides with GO annotations which were only 15.23 % of the 231,310 unique clusters. This indicates that no functional match for over 196,000 of the unique clusters could be found and no indication what their function might be could be extrapolated.

## 5.2 Ketosynthase domain detection.

Between all five species, 850 contigs with KS domains were identified. These resolved into 314 clusters, of which 17 were shared among all species. The majority (81.8%) resolved as unique clusters per species, ranging from 24 clusters for *G. holmesii* to 82 clusters for *G. australes*. The toxin profile for *G. polynesiensis* and the toxicity assay conducted by Larsson et al. (2018) for *G. holmesii* indicate that these two species are the most ciguatoxic of the taxa included in this study. While *G. lapillus* displayed lower levels of ciguatoxicity in bioassays, the strain included here (HG4) was the least toxic of the *G. lapillus* strains tested in **Chapter 2**. Four KS clusters included *G. holmesii* and *G. polynesiensis* only, one of which contained 4 contigs from *G. polynesiensis* and 1 from *G. holmesii*. A further 22 and 75 clusters only contained *G. holmesii* and *G. polynesiensis* contigs respectively. These clusters could be of interest for further investigation into KS domains involved in CTX synthesis.

## 5.3 Areas for possible improvement in this study.

This chapter represents a novel approach to analyzing *Gambierdiscus* transcriptomes and possible avenues for investigation for ciguatoxin production pathways. However there are several aspects that can be improved upon with future studies.

Contaminants in dataset. The RNA-seq libraries were constructed from whole RNA seq runs with non-axenic cultures, hence it is likely that bacterial RNA is a subset of the analysis. It is unlikely that the same contamination persists in the core and softcore clusters, i.e. across all four to five species collected from Australia, the Cook Islands and over a 10 year time span. However the unique clusters could well be contaminated with non-eukaryotic contigs, which is indicated by some of the unique clusters only annotations mapping to a bacterial flagellum and a viral capsid. Hence it would be pertinent to utilize a eukaryote specific RNA-seq strategy for future studies, or devise a method to separate bacterial from eukaryotic contigs post sequencing.

Coverage of taxa. As with bacterial pan-transcriptomics, eukaryotic studies reveal a correlation between the number of species and strains included for refining the core transcriptome and expanding the unique fraction of the transcriptome [14, 19, 38]. For Gambierdiscus, the importance of including several strains of a species becomes apparent with the discovery of a non-ciguatoxic G. polynesiensis strain [34]. Variability in morphology and toxicity has also been observed in G. lapillus [20]. While this study sought to cover taxa from the three main Gambierdiscus clades, an increase in species and strain coverage is highly likely to impact the resolution of the core and unique portions especially as the sequencing coverage of the G. australes transcriptome is less in depth than the other four species (Table 2). Hence due to limited species and the singular strain per species coverage, this represents an exploratory study for establishing a pan-transcriptome for Gambierdiscus which should be improved upon.

**PKS** active domain search. PKS complexes consist of a number of active domains that synthesize and manipulate the polyketide backbone. The KS domain is but one of several essential domains for a functional polyketide. The search for active domains should be extended to include other domains for comparison in the search for the cigua-

toxin production pathways.

## Conclusion

Protists represent a large section of the tree of life and are involved in vital geochemical cycling, symbiotic and toxic relationships in their environment. Yet due to the convoluted nature of their genetic content, querying the genetic content of these organisms is fraught with obstacles. This study presents a pan-transcriptome for the genus Gambierdiscus, some species of which are involved in CTX production. This approach opens up an alternative avenue of investigation for the differences and similarities of toxic Gambierdiscus species in general, and specifically in regard to the toxin production pathway(s). While providing a starting point, it is recommended that this dataset is expanded to encompass both more Gambierdiscus species and strains to crystallize the genus' pan-transcriptome in more detail.

# Supplementary

- need to add australes

Table 3: GO terms and number of contigs per species at GO ontology level 1.

| GO aces-   | GO terms             | G. carpen-     | G. lapillus | G. polyne- | G. holme- |
|------------|----------------------|----------------|-------------|------------|-----------|
| sion       |                      | l teri         |             | siensis    | sii       |
|            | Bi                   | ological proce | sses        |            |           |
| GO:0002376 | immune system pro-   | 3              | 3           | 3          | 3         |
|            | cess                 |                |             |            |           |
| GO:0008152 | metabolic process    | 388            | 384         | 396        | 396       |
| GO:0009987 | cellular process     | 451            | 440         | 457        | 462       |
| GO:0022414 | reproductive process | 3              | 2           | 1          | 3         |
| GO:0022610 | biological adhesion  | 3              | 2           | 2          | 2         |
| GO:0023052 | signaling            | 1              | 1           | 1          | 1         |

| GO:0032501 | multicellular organis-    | 3             | 2     | 3   | 2   |
|------------|---------------------------|---------------|-------|-----|-----|
|            | mal process               |               |       |     |     |
| GO:0032502 | developmental process     | 1             | 1     | 3   | 2   |
| GO:0040007 | growth                    | 0             | 0     | 1   | 1   |
| GO:0040011 | locomotion                | 4             | 4     | 3   | 2   |
| GO:0048511 | rhythmic process          | 0             | 1     | 1   | 1   |
| GO:0050896 | response to stimulus      | 30            | 27    | 27  | 27  |
| GO:0051179 | localization              | 90            | 84    | 88  | 88  |
| GO:0051704 | multi-organism pro-       | 5             | 4     | 4   | 5   |
|            | cess                      |               |       |     |     |
| GO:0065007 | biological regulation     | 94            | 85    | 91  | 89  |
| GO:0071840 | cellular component or-    | 70            | 63    | 67  | 68  |
|            | ganization/biogenesis     |               |       |     |     |
| GO:0098754 | GO:0098754 detoxification |               | 1     | 1   | 1   |
|            | Ce                        | llular compon | ients |     |     |
| GO:0016020 | membrane                  | 9             | 9     | 9   | 10  |
| GO:0030054 | cell junction             | 1             | 0     | 0   | 1   |
| GO:0031974 | membrane-enclosed         | 3             | 3     | 3   | 3   |
|            | lumen                     |               |       |     |     |
| GO:0032991 | protein-containing        | 146           | 141   | 145 | 144 |
|            | complex                   |               |       |     |     |
| GO:0043226 | organelle                 | 22            | 22    | 22  | 21  |
| GO:0044421 | extracellular region      | 4             | 4     | 4   | 4   |
|            | part                      |               |       |     |     |
| GO:0044422 | organelle part            | 94            | 88    | 89  | 88  |
| GO:0044423 | virion part               | 1             | 0     | 1   | 1   |
| GO:0044425 | membrane part             | 50            | 49    | 50  | 47  |
| GO:0044456 | synapse part              | 1             | 0     | 1   | 1   |
| GO:0044464 | cell part                 | 182           | 174   | 178 | 177 |
| GO:0099080 | supramolecular com-       | 1             | 1     | 1   | 2   |
|            | plex                      |               |       |     |     |

| Molecular function |                         |     |     |     |     |  |
|--------------------|-------------------------|-----|-----|-----|-----|--|
| GO:0003824         | catalytic activity      | 601 | 592 | 603 | 604 |  |
| GO:0005198         | structural molecule     | 6   | 4   | 5   | 5   |  |
|                    | activity                |     |     |     |     |  |
| GO:0005215         | transporter activity    | 67  | 63  | 63  | 66  |  |
| GO:0005488         | binding                 | 125 | 121 | 117 | 120 |  |
| GO:0016209         | antioxidant activity    | 5   | 5   | 5   | 5   |  |
| GO:0038024         | cargo receptor activity | 1   | 1   | 1   | 1   |  |
| GO:0060089         | molecular transducer    | 8   | 8   | 8   | 10  |  |
|                    | activity                |     |     |     |     |  |
| GO:0098772         | molecular function      | 23  | 23  | 21  | 22  |  |
|                    | regulator               |     |     |     |     |  |
| GO:0140104         | molecular carrier ac-   | 1   | 0   | 0   | 0   |  |
|                    | tivity                  |     |     |     |     |  |
| GO:0140110         | transcription regula-   | 6   | 4   | 7   | 4   |  |
|                    | tor activity            |     |     |     |     |  |

Table 4: GO terms and number of contigs per species at GO ontology level 2, child terms of Table 3.

| GO aces-   | GO terms              | G. carpen-     | G. lapillus | G. polyne- | G. holme- |
|------------|-----------------------|----------------|-------------|------------|-----------|
| sion       |                       | l teri         |             | siensis    | sii       |
|            | Bi                    | ological proce | sses        |            |           |
| GO:0000075 | cell cycle checkpoint | 2              | 3           | 3          | 3         |
| GO:0002252 | immune effector pro-  | 2              | 2           | 2          | 2         |
|            | cess                  |                |             |            |           |
| GO:0003008 | system process        | 2              | 1           | 2          | 1         |
| GO:0006457 | protein folding       | 2              | 2           | 2          | 2         |
| GO:0006807 | nitrogen compound     | 279            | 268         | 278        | 281       |
|            | metabolic process     |                |             |            |           |

| GO:0006928 | movement of cell or    | 7   | 7   | 7   | 6   |
|------------|------------------------|-----|-----|-----|-----|
|            | subcellular compo-     |     |     |     |     |
|            | nent                   |     |     |     |     |
| GO:0006950 | response to stress     | 20  | 18  | 18  | 18  |
| GO:0006955 | immune response        | 1   | 1   | 1   | 1   |
| GO:0007017 | microtubule-based      | 10  | 9   | 7   | 9   |
|            | process                |     |     |     |     |
| GO:0007049 | cell cycle             | 1   | 1   | 1   | 1   |
| GO:0007059 | chromosome segrega-    | 2   | 2   | 0   | 2   |
|            | tion                   |     |     |     |     |
| GO:0007154 | cell communication     | 3   | 3   | 4   | 3   |
| GO:0007155 | cell adhesion          | 2   | 1   | 1   | 1   |
| GO:0007163 | establishment or       | 1   | 0   | 1   | 1   |
|            | maintenance of cell    |     |     |     |     |
|            | polarity               |     |     |     |     |
| GO:0007165 | signal transduction    | 10  | 10  | 10  | 12  |
| GO:0008037 | cell recognition       | 1   | 0   | 0   | 1   |
| GO:0008219 | cell death             | 0   | 1   | 1   | 1   |
| GO:0009056 | catabolic process      | 50  | 54  | 51  | 54  |
| GO:0009058 | biosynthetic process   | 124 | 119 | 131 | 123 |
| GO:0009605 | response to external   | 6   | 6   | 6   | 6   |
|            | stimulus               |     |     |     |     |
| GO:0009607 | response to biotic     | 2   | 2   | 1   | 2   |
|            | stimulus               |     |     |     |     |
| GO:0009628 | response to abiotic    | 4   | 4   | 4   | 4   |
|            | stimulus               |     |     |     |     |
| GO:0009719 | response to endoge-    | 1   | 0   | 0   | 0   |
|            | nous stimulus          |     |     |     |     |
| GO:0016043 | cellular component or- | 66  | 60  | 63  | 64  |
|            | ganization             |     |     |     |     |
| GO:0019725 | cellular homeostasis   | 3   | 2   | 3   | 2   |

| GO:0019748 | secondary metabolic     | 3   | 4   | 4   | 4   |
|------------|-------------------------|-----|-----|-----|-----|
|            | process                 |     |     |     |     |
| GO:0022402 | cell cycle process      | 9   | 12  | 7   | 11  |
| GO:0022406 | membrane docking        | 1   | 1   | 1   | 1   |
| GO:0030029 | actin filament-based    | 1   | 0   | 1   | 2   |
|            | process                 |     |     |     |     |
| GO:0031503 | protein-containing      | 3   | 3   | 3   | 3   |
|            | complex localization    |     |     |     |     |
| GO:0032259 | methylation             | 12  | 12  | 11  | 11  |
| GO:0033036 | macromolecule local-    | 15  | 15  | 0   | 14  |
|            | ization                 |     |     |     |     |
| GO:0035036 | sperm-egg recognition   | 1   | 0   | 16  | 1   |
| GO:0042221 | response to chemical    | 5   | 4   | 4   | 4   |
| GO:0042330 | taxis                   | 1   | 1   | 0   | 0   |
| GO:0042440 | pigment metabolic       | 7   | 8   | 8   | 8   |
|            | process                 |     |     |     |     |
| GO:0044085 | cellular component      | 4   | 3   | 4   | 4   |
|            | biogenesis              |     |     |     |     |
| GO:0044237 | cellular metabolic pro- | 344 | 338 | 353 | 354 |
|            | cess                    |     |     |     |     |
| GO:0044238 | primary metabolic       | 295 | 284 | 295 | 294 |
|            | process                 |     |     |     |     |
| GO:0044281 | small molecule          | 139 | 141 | 144 | 150 |
|            | metabolic process       |     |     |     |     |
| GO:0044419 | interspecies inter-     | 3   | 2   | 3   | 3   |
|            | action between          |     |     |     |     |
|            | organisms               |     |     |     |     |
| GO:0048856 | anatomical structure    | 1   | 1   | 2   | 2   |
|            | development             |     |     |     |     |
| GO:0048869 | cellular developmental  | 0   | 0   | 1   |     |
|            | process                 |     |     |     |     |

| GO:0048870 | cell motility           | 2   | 2   | 2   | 1   |
|------------|-------------------------|-----|-----|-----|-----|
| GO:0050789 | regulation of biologi-  | 78  | 72  | 76  | 75  |
|            | cal process             |     |     |     |     |
| GO:0051234 | establishment of local- | 86  | 79  | 84  | 84  |
|            | ization                 |     |     |     |     |
| GO:0051235 | maintenance of loca-    | 2   | 2   | 2   | 2   |
|            | tion                    |     |     |     |     |
| GO:0051606 | detection of stimulus   | 2   | 2   | 2   | 2   |
| GO:0051641 | cellular localization   | 20  | 20  | 22  | 20  |
| GO:0051716 | cellular response to    | 13  | 13  | 14  | 13  |
|            | stimulus                |     |     |     |     |
| GO:0055114 | oxidation-reduction     | 10  | 13  | 12  | 9   |
|            | process                 |     |     |     |     |
| GO:0061919 | process utilizing au-   | 2   | 2   | 3   | 2   |
|            | tophagic mechanism      |     |     |     |     |
| GO:0065008 | regulation of biologi-  | 19  | 16  | 19  | 17  |
|            | cal quality             |     |     |     |     |
| GO:0065009 | regulation of molecu-   | 12  | 12  | 11  | 11  |
|            | lar function            |     |     |     |     |
| GO:0070085 | glycosylation           | 3   | 3   | 3   | 3   |
| GO:0070988 | demethylation           | 3   | 3   | 3   | 3   |
| GO:0071554 | cell wall organization  | 1   | 1   | 1   | 1   |
|            | or biogenesis           |     |     |     |     |
| GO:0071704 | organic substance       | 355 | 349 | 361 | 362 |
|            | metabolic process       |     |     |     |     |
| GO:0072376 | protein activation cas- | 1   | 1   | 1   | 1   |
|            | cade                    |     |     |     |     |
| GO:0140029 | exocytic process        | 1   | 1   | 1   | 1   |
| GO:1903046 | meiotic cell cycle pro- | 2   | 2   | 1   | 2   |
|            | cess                    |     |     |     |     |
| GO:1990748 | cellular detoxification | 1   | 1   | 1   | 1   |

|            | Cellular components     |     |     |     |     |  |
|------------|-------------------------|-----|-----|-----|-----|--|
| GO:0005911 | cell-cell junction      | 1   | 0   | 0   | 1   |  |
| GO:0005929 | cilium                  | 2   | 2   | 2   | 2   |  |
| GO:0008287 | protein ser-            | 2   | 2   | 2   | 2   |  |
|            | ine/threonine phos-     |     |     |     |     |  |
|            | phatase complex         |     |     |     |     |  |
| GO:0019867 | outer membrane          | 1   | 1   | 1   | 2   |  |
| GO:0030312 | external encapsulat-    | 0   | 0   | 0   | 1   |  |
|            | ing structure           |     |     |     |     |  |
| GO:0031012 | extracellular matrix    | 1   | 1   | 1   | 1   |  |
| GO:0031090 | organelle membrane      | 5   | 5   | 5   | 5   |  |
| GO:0031224 | intrinsic component of  | 7   | 7   | 8   | 7   |  |
|            | membrane                |     |     |     |     |  |
| GO:0031975 | envelope                | 1   | 1   | 1   | 1   |  |
| GO:0032993 | protein-DNA complex     | 2   | 3   | 3   | 2   |  |
| GO:0033061 | DNA recombinase me-     | 1   | 0   | 1   | 1   |  |
|            | diator complex          |     |     |     |     |  |
| GO:0034518 | RNA cap binding         | 0   | 1   | 0   | 1   |  |
|            | complex                 |     |     |     |     |  |
| GO:0036338 | viral membrane          | 0   | 0   | 1   | 1   |  |
| GO:0042597 | periplasmic space       | 1   | 1   | 1   | 1   |  |
| GO:0042995 | cell projection         | 4   | 4   | 3   | 3   |  |
| GO:0043227 | membrane-bounded        | 11  | 10  | 12  | 11  |  |
|            | organelle               |     |     |     |     |  |
| GO:0043228 | non-membrane-           | 8   | 9   | 7   | 7   |  |
|            | bounded organelle       |     |     |     |     |  |
| GO:0043229 | intracellular organelle | 18  | 18  | 19  | 18  |  |
| GO:0043233 | organelle lumen         | 3   | 3   | 3   | 3   |  |
| GO:0043235 | receptor complex        | 1   | 1   | 1   | 1   |  |
| GO:0044424 | intracellular part      | 156 | 153 | 159 | 155 |  |
| GO:0044441 | ciliary part            | 5   | 4   | 4   | 5   |  |

| GO:0044446 | intracellular organelle | 88 | 85 | 87 | 85 |
|------------|-------------------------|----|----|----|----|
|            | part                    |    |    |    |    |
| GO:0044449 | contractile fiber part  | 0  | 0  | 1  | 1  |
| GO:0044455 | mitochondrial mem-      | 4  | 4  | 2  | 2  |
|            | brane part              |    |    |    |    |
| GO:0044459 | plasma membrane         | 9  | 9  | 10 | 8  |
|            | part                    |    |    |    |    |
| GO:0044461 | bacterial-type flagel-  | 3  | 1  | 0  | 0  |
|            | lum part                |    |    |    |    |
| GO:0044462 | external encapsulat-    | 0  | 0  | 0  | 1  |
|            | ing structure part      |    |    |    |    |
| GO:0044463 | cell projection part    | 8  | 5  | 4  | 5  |
| GO:0044815 | DNA packaging com-      | 2  | 2  | 2  | 2  |
|            | plex                    |    |    |    |    |
| GO:0070069 | cytochrome complex      | 2  | 2  | 2  | 2  |
| GO:0097458 | neuron part             | 1  | 0  | 1  | 1  |
| GO:0098796 | membrane protein        | 42 | 41 | 41 | 39 |
|            | complex                 |    |    |    |    |
| GO:0098805 | whole membrane          | 2  | 2  | 2  | 2  |
| GO:0099023 | tethering complex       | 3  | 3  | 3  | 3  |
| GO:0099081 | supramolecular poly-    | 1  | 1  | 1  | 2  |
|            | mer                     |    |    |    |    |
| GO:0120114 | Sm-like protein family  | 5  | 5  | 5  | 5  |
|            | complex                 |    |    |    |    |
| GO:1902494 | catalytic complex       | 38 | 36 | 41 | 37 |
| GO:1990204 | oxidoreductase com-     | 6  | 5  | 6  | 5  |
|            | plex                    |    |    |    |    |
| GO:1990351 | transporter complex     | 6  | 5  | 7  | 5  |
| GO:1990391 | DNA repair complex      | 1  | 1  | 1  | 1  |
| GO:1990904 | ribonucleoprotein       | 17 | 17 | 17 | 17 |
|            | complex                 |    |    |    |    |

|            | Molecular function    |     |     |     |     |  |  |
|------------|-----------------------|-----|-----|-----|-----|--|--|
| GO:0001871 | pattern binding       | 3   | 3   | 3   | 3   |  |  |
| GO:0003700 | DNA-binding tran-     | 2   | 0   | 1   | 0   |  |  |
|            | scription factor      |     |     |     |     |  |  |
|            | activity              |     |     |     |     |  |  |
| GO:0003712 | transcription coregu- | 1   | 2   | 3   | 2   |  |  |
|            | lator activity        |     |     |     |     |  |  |
| GO:0004133 | glycogen debranching  | 2   | 2   | 2   | 2   |  |  |
|            | enzyme activity       |     |     |     |     |  |  |
| GO:0005319 | lipid transporter ac- | 2   | 2   | 2   | 2   |  |  |
|            | tivity                |     |     |     |     |  |  |
| GO:0005326 | neurotransmitter      | 1   | 1   | 1   | 1   |  |  |
|            | transporter activity  |     |     |     |     |  |  |
| GO:0005515 | protein binding       | 33  | 32  | 32  | 35  |  |  |
| GO:0008144 | drug binding          | 7   | 9   | 8   | 7   |  |  |
| GO:0008289 | lipid binding         | 3   | 2   | 2   | 2   |  |  |
| GO:0008565 | protein transporter   | 1   | 1   | 1   | 1   |  |  |
|            | activity              |     |     |     |     |  |  |
| GO:0009975 | cyclase activity      | 1   | 2   | 2   | 2   |  |  |
| GO:0016491 | oxidoreductase activ- | 104 | 104 | 104 | 104 |  |  |
|            | ity                   |     |     |     |     |  |  |
| GO:0016530 | metallochaperone ac-  | 1   | 0   | 0   | 0   |  |  |
|            | tivity                |     |     |     |     |  |  |
| GO:0016740 | transferase activity  | 194 | 187 | 192 | 190 |  |  |
| GO:0016787 | hydrolase activity    | 178 | 174 | 172 | 175 |  |  |
| GO:0016829 | lyase activity        | 46  | 48  | 55  | 51  |  |  |
| GO:0016853 | isomerase activity    | 27  | 28  | 32  | 31  |  |  |
| GO:0016874 | ligase activity       | 47  | 47  | 42  | 48  |  |  |
| GO:0022857 | transmembrane trans-  | 62  | 58  | 58  | 61  |  |  |
|            | porter activity       |     |     |     |     |  |  |

| GO:0030234 | enzyme regulator activity               | 20 | 19 | 17 | 18 |
|------------|-----------------------------------------|----|----|----|----|
| GO:0030246 | carbohydrate binding                    | 4  | 4  | 4  | 5  |
| GO:0030545 | receptor regulator activity             | 0  | 1  | 1  | 1  |
| GO:0032451 | demethylase activity                    | 1  | 1  | 1  | 1  |
| GO:0033218 | amide binding                           | 5  | 5  | 5  | 5  |
| GO:0036094 | small molecule binding                  | 24 | 24 | 22 | 23 |
| GO:0038023 | signaling receptor activity             | 7  | 7  | 7  | 9  |
| GO:0043167 | ion binding                             | 35 | 34 | 33 | 33 |
| GO:0044877 | protein-containing complex binding      | 4  | 4  | 3  | 4  |
| GO:0048037 | cofactor binding                        | 19 | 19 | 18 | 18 |
| GO:0050824 | water binding                           | 1  | 1  | 1  | 1  |
| GO:0051540 | metal cluster binding                   | 3  | 3  | 3  | 3  |
| GO:0060090 | molecular adaptor activity              | 1  | 1  | 1  | 1  |
| GO:0061783 | peptidoglycan muralytic activity        | 1  | 1  | 1  | 1  |
| GO:0072341 | modified amino acid binding             | 2  | 2  | 2  | 2  |
| GO:0097159 | organic cyclic compound binding         | 46 | 45 | 42 | 40 |
| GO:0097367 | carbohydrate derivative binding         | 10 | 9  | 8  | 8  |
| GO:0140096 | catalytic activity, acting on a protein | 68 | 62 | 62 | 61 |
| GO:0140097 | catalytic activity, acting on DNA       | 25 | 21 | 25 | 24 |

| GO:0140098 | catalytic activity, act- | 55 | 56 | 54 | 57 |
|------------|--------------------------|----|----|----|----|
|            | ing on RNA               |    |    |    |    |
| GO:1901363 | heterocyclic com-        | 46 | 45 | 42 | 40 |
|            | pound binding            |    |    |    |    |
| GO:1901567 | fatty acid derivative    | 1  | 1  | 1  | 1  |
|            | binding                  |    |    |    |    |
| GO:1901681 | sulfur compound          | 3  | 3  | 3  | 3  |
|            | binding                  |    |    |    |    |

Table 5: GO terms and number of contigs found in core, softcore and pan-transcriptome of *Gambierdiscus* at GO ontology level 1.

| GO aces-   | GO terms               | Core        | Softcore | Pan |
|------------|------------------------|-------------|----------|-----|
| sion       |                        |             |          |     |
|            | Biologica              | l processes |          |     |
| GO:0002376 | immune system pro-     | 2           | 2        | 3   |
|            | cess                   |             |          |     |
| GO:0008152 | metabolic process      | 324         | 309      | 323 |
| GO:0009987 | cellular process       | 360         | 354      | 378 |
| GO:0022414 | reproductive process   | 0           | 2        | 3   |
| GO:0022610 | biological adhesion    | 1           | 1        | 3   |
| GO:0023052 | signaling              | 1           | 1        | 1   |
| GO:0032501 | multicellular organis- | 1           | 1        | 3   |
|            | mal process            |             |          |     |
| GO:0032502 | developmental process  | 4           | 1        | 1   |
| GO:0040011 | locomotion             | 1           | 1        | 3   |
| GO:0048511 | rhythmic process       | 0           | 1        | 1   |
| GO:0050896 | response to stimulus   | 19          | 22       | 25  |
| GO:0051179 | localization           | 65          | 75       | 78  |

| GO:0051704 | multi-organism pro-    | 3          | 4   | 3   |
|------------|------------------------|------------|-----|-----|
|            | cess                   |            |     |     |
| GO:0065007 | biological regulation  | 64         | 56  | 78  |
| GO:0071840 | cellular component or- | 53         | 54  | 56  |
|            | ganization or biogene- |            |     |     |
|            | sis                    |            |     |     |
| GO:0098754 | detoxification         | 1          | 1   | 1   |
|            | Cellular c             | omponents  |     |     |
| GO:0016020 | membrane               | 7          | 9   | 10  |
| GO:0030054 | cell junction          | 0          | 0   | 1   |
| GO:0031974 | membrane-enclosed      | 3          | 2   | 3   |
|            | lumen                  |            |     |     |
| GO:0032991 | protein-containing     | 109        | 93  | 119 |
|            | complex                |            |     |     |
| GO:0043226 | organelle              | 15         | 18  | 19  |
| GO:0044421 | extracellular region   | 4          | 3   | 3   |
|            | part                   |            |     |     |
| GO:0044422 | organelle part         | 62         | 64  | 79  |
| GO:0044423 | virion part            | 0          | 0   | 1   |
| GO:0044425 | membrane part          | 41         | 31  | 38  |
| GO:0044456 | synapse part           | 1          | 0   | 0   |
| GO:0044464 | cell part              | 132        | 122 | 151 |
| GO:0099080 | supramolecular com-    | 1          | 1   | 2   |
|            | plex                   |            |     |     |
|            | Molecula               | r function |     |     |
| GO:0003824 | catalytic activity     | 472        | 449 | 476 |
| GO:0005198 | structural molecule    | 4          | 4   | 5   |
|            | activity               |            |     |     |
| GO:0005215 | transporter activity   | 49         | 54  | 58  |
| GO:0005488 | binding                | 100        | 107 | 113 |
| GO:0016209 | antioxidant activity   | 4          | 4   | 5   |

| GO:0038024 | cargo receptor activity | 1  | 1  | 1  |
|------------|-------------------------|----|----|----|
| GO:0060089 | molecular transducer    | 5  | 5  | 10 |
|            | activity                |    |    |    |
| GO:0098772 | molecular function      | 18 | 14 | 19 |
|            | regulator               |    |    |    |
| GO:0140104 | molecular carrier ac-   | 0  | 0  | 1  |
|            | tivity                  |    |    |    |
| GO:0140110 | transcription regula-   | 2  | 5  | 7  |
|            | tor activity            |    |    |    |

Table 6: GO terms and number of contigs found in core, softcore and pan-transcriptome of *Gambierdiscus* at GO ontology level 2, childer to Table 5.

| GO aces-   | GO terms              | Core        | Softcore | Pan |
|------------|-----------------------|-------------|----------|-----|
| sion       |                       |             |          |     |
|            | Biologica             | l processes |          |     |
| GO:0000075 | cell cycle checkpoint | 1           | 2        | 2   |
| GO:0002252 | immune effector pro-  | 1           | 1        | 2   |
|            | cess                  |             |          |     |
| GO:0003008 | system process        | 0           | 0        | 2   |
| GO:0006457 | protein folding       | 2           | 0        | 1   |
| GO:0006807 | nitrogen compound     | 227         | 215      | 228 |
|            | metabolic process     |             |          |     |
| GO:0006928 | movement of cell or   | 4           | 5        | 6   |
|            | subcellular compo-    |             |          |     |
|            | nent                  |             |          |     |
| GO:0006950 | response to stress    | 14          | 14       | 16  |
| GO:0006955 | immune response       | 0           | 0        | 1   |
| GO:0007017 | microtubule-based     | 4           | 9        | 8   |
|            | process               |             |          |     |

| GO:0007049 | cell cycle                      | 1   | 1   | 1  |
|------------|---------------------------------|-----|-----|----|
| GO:0007059 | chromosome segrega-             | 0   | 2   | 2  |
|            | tion                            |     |     |    |
| GO:0007154 | cell communication              | 3   | 2   | 3  |
| GO:0007155 | cell adhesion                   | 0   | 0   | 2  |
| GO:0007163 | establishment or                | 0   | 1   | 1  |
|            | maintenance of cell             |     |     |    |
|            | polarity                        |     |     |    |
| GO:0007165 | signal transduction             | 8   | 9   | 9  |
| GO:0008037 | cell death                      | 0   | 1   | 1  |
| GO:0008219 | cell death                      | 0   | 0   | 1  |
| GO:0009056 | catabolic process               | 41  | 35  | 43 |
| GO:0009058 | biosynthetic process            | 109 | 101 | 93 |
| GO:0009605 | response to external            | 4   | 4   | 5  |
|            | stimulus                        |     |     |    |
| GO:0009607 | response to biotic              | 1   | 2   | 1  |
|            | stimulus                        |     |     |    |
| GO:0009628 | response to abiotic             | 2   | 2   | 3  |
|            | stimulus                        |     |     |    |
| GO:0009719 | response to endoge-             | 0   | 1   | 0  |
|            | nous stimulus                   |     |     |    |
| GO:0016043 | cellular component or-          | 51  | 51  | 54 |
|            | ganization                      |     |     |    |
| GO:0019725 | cellular homeostasis            | 3   | 1   | 2  |
| GO:0019748 | secondary metabolic             | 2   | 3   | 4  |
|            | process                         |     |     |    |
| GO:0022402 | cell cycle process              | 2   | 10  | 10 |
| GO:0022406 | membrane docking                | 1   | 1   | 1  |
| GO:0030029 | GO:0030029 actin filament-based |     | 1   | 1  |
|            | process                         |     |     |    |

| GO:0031503 | protein-containing      | 2   | 2   | 2   |
|------------|-------------------------|-----|-----|-----|
|            | complex localization    |     |     |     |
| GO:0032259 | methylation             | 10  | 8   | 10  |
| GO:0033036 | macromolecule local-    | 12  | 12  | 14  |
|            | ization                 |     |     |     |
| GO:0035036 | sperm-egg recognition   | 0   | 0   | 1   |
| GO:0042221 | response to chemical    | 3   | 5   | 4   |
| GO:0042440 | pigment metabolic       | 5   | 7   | 3   |
|            | process                 |     |     |     |
| GO:0044085 | cellular component      | 2   | 3   | 2   |
|            | biogenesis              |     |     |     |
| GO:0044237 | cellular metabolic pro- | 282 | 268 | 288 |
|            | cess                    |     |     |     |
| GO:0044238 | primary metabolic       | 246 | 230 | 233 |
|            | process                 |     |     |     |
| GO:0044281 | small molecule          | 130 | 107 | 104 |
|            | metabolic process       |     |     |     |
| GO:0044419 | interspecies inter-     | 2   | 2   | 2   |
|            | action between          |     |     |     |
|            | organisms               |     |     |     |
| GO:0048856 | anatomical structure    | 3   | 1   | 1   |
|            | development             |     |     |     |
| GO:0048869 | cellular developmental  | 1   | 1   | 0   |
|            | process                 |     |     |     |
| GO:0048870 | cell motility           | 0   | 0   | 2   |
| GO:0050789 | regulation of biologi-  | 52  | 47  | 66  |
|            | cal process             |     |     |     |
| GO:0051234 | establishment of local- | 62  | 71  | 73  |
|            | ization                 |     |     |     |
| GO:0051235 | maintenance of loca-    | 1   | 2   | 2   |
|            | tion                    |     |     |     |

| GO:0051606 | detection of stimulus   | 1          | 0   | 2   |
|------------|-------------------------|------------|-----|-----|
| GO:0051641 | cellular localization   | 15         | 16  | 16  |
| GO:0051716 | cellular response to    | 10         | 9   | 13  |
|            | stimulus                |            |     |     |
| GO:0055114 | oxidation-reduction     | 8          | 11  | 13  |
|            | process                 |            |     |     |
| GO:0061919 | process utilizing au-   | 1          | 2   | 2   |
|            | tophagic mechanism      |            |     |     |
| GO:0065008 | regulation of biologi-  | 15         | 14  | 16  |
|            | cal quality             |            |     |     |
| GO:0065009 | regulation of molecu-   | 5          | 6   | 8   |
|            | lar function            |            |     |     |
| GO:0070085 | glycosylation           | 3          | 3   | 3   |
| GO:0070988 | demethylation           | 2          | 2   | 2   |
| GO:0071554 | cell wall organization  | 0          | 1   | 1   |
|            | or biogenesis           |            |     |     |
| GO:0071704 | organic substance       | 294        | 278 | 288 |
|            | metabolic process       |            |     |     |
| GO:0072376 | protein activation cas- | 0          | 0   | 1   |
|            | cade                    |            |     |     |
| GO:0140029 | exocytic process        | 1          | 1   | 1   |
| GO:1903046 | meiotic cell cycle pro- | 0          | 2   | 2   |
|            | cess                    |            |     |     |
| GO:1990748 | cellular detoxification | 1          | 1   | 1   |
|            | Cellular o              | components |     |     |
| GO:0005911 | cell-cell junction      | 0          | 0   | 1   |
| GO:0005929 | cilium                  | 1          | 0   | 2   |
| GO:0008287 | protein ser-            | 1          | 1   | 1   |
|            | ine/threonine phos-     |            |     |     |
|            | phatase complex         |            |     |     |
| GO:0019867 | outer membrane          | 1          | 1   | 2   |
|            | •                       |            | •   |     |

| GO:0031090 | extracellular matrix               | 1   | 0   | 0   |
|------------|------------------------------------|-----|-----|-----|
| GO:0031090 | organelle membrane                 | 4   | 5   | 0   |
| GO:0031224 | intrinsic component of membrane    | 5   | 4   | 5   |
| GO:0031975 | envelope                           | 1   | 0   | 0   |
| GO:0032993 | protein-DNA complex                | 1   | 2   | 3   |
| GO:0033061 | DNA recombinase mediator complex   | 0   | 1   | 1   |
| GO:0034518 | RNA cap binding complex            | 1   | 0   | 1   |
| GO:0036338 | viral membrane                     | 0   | 0   | 1   |
| GO:0042597 | periplasmic space                  | 1   | 0   | 1   |
| GO:0042995 | cell projection                    | 1   | 1   | 3   |
| GO:0043227 | membrane-bounded organelle         | 9   | 9   | 9   |
| GO:0043228 | non-membrane-<br>bounded organelle | 5   | 8   | 8   |
| GO:0043229 | intracellular organelle            | 14  | 17  | 16  |
| GO:0043233 | organelle lumen                    | 3   | 2   | 3   |
| GO:0043235 | receptor complex                   | 1   | 1   | 1   |
| GO:0044424 | intracellular part                 | 119 | 112 | 128 |
| GO:0044441 | ciliary part                       | 3   | 1   | 4   |
| GO:0044446 | intracellular organelle part       | 61  | 64  | 74  |
| GO:0044449 | contractile fiber part             | 0   | 0   | 1   |
| GO:0044455 | mitochondrial mem-<br>brane part   | 4   | 2   | 3   |
| GO:0044459 | plasma membrane<br>part            | 8   | 5   | 8   |
| GO:0044461 | bacterial-type flagel-<br>lum part | 0   | 0   | 2   |

| GO:0044462 | external encapsulat-   | 0          | 0  | 1  |
|------------|------------------------|------------|----|----|
|            | ing structure part     |            |    |    |
| GO:0044463 | cell projection part   | 3          | 1  | 6  |
| GO:0044815 | DNA packaging com-     | 2          | 2  | 2  |
|            | plex                   |            |    |    |
| GO:0070069 | cytochrome complex     | 2          | 2  | 2  |
| GO:0097458 | neuron part            | 1          | 0  | 0  |
| GO:0098796 | membrane protein       | 35         | 25 | 32 |
|            | complex                |            |    |    |
| GO:0098805 | whole membrane         | 1          | 2  | 2  |
| GO:0099023 | tethering complex      | 2          | 2  | 2  |
| GO:0099081 | supramolecular poly-   | 1          | 1  | 2  |
|            | mer                    |            |    |    |
| GO:0120114 | Sm-like protein family | 5          | 2  | 4  |
|            | complex                |            |    |    |
| GO:1902494 | catalytic complex      | 29         | 26 | 30 |
| GO:1990204 | oxidoreductase com-    | 6          | 3  | 4  |
|            | plex                   |            |    |    |
| GO:1990351 | transporter complex    | 4          | 3  | 6  |
| GO:1990391 | DNA repair complex     | 1          | 1  | 1  |
| GO:1990904 | ribonucleoprotein      | 14         | 9  | 16 |
|            | complex                |            |    |    |
|            | Molecula               | r function |    |    |
| GO:0001871 | pattern binding        | 3          | 3  | 3  |
| GO:0003700 | DNA-binding tran-      | 0          | 0  | 2  |
|            | scription factor       |            |    |    |
|            | activity               |            |    |    |
| GO:0003712 | transcription coregu-  | 1          | 2  | 3  |
|            | lator activity         |            |    |    |
| GO:0004133 | glycogen debranching   | 2          | 0  | 2  |
|            | enzyme activity        |            |    |    |

| GO:0005319 | lipid transporter activity               | 2   | 2   | 2   |
|------------|------------------------------------------|-----|-----|-----|
| GO:0005326 | neurotransmitter<br>transporter activity | 0   | 1   | 1   |
| GO:0005515 | protein binding                          | 24  | 25  | 31  |
| GO:0008144 | drug binding                             | 6   | 6   | 7   |
| GO:0008289 | lipid binding                            | 1   | 3   | 2   |
| GO:0008565 | protein transporter activity             | 1   | 0   | 1   |
| GO:0009975 | cyclase activity                         | 1   | 2   | 0   |
| GO:0016491 | oxidoreductase activity                  | 92  | 72  | 90  |
| GO:0016530 | metallochaperone activity                | 0   | 0   | 1   |
| GO:0016740 | transferase activity                     | 148 | 142 | 144 |
| GO:0016787 | hydrolase activity                       | 125 | 143 | 144 |
| GO:0016829 | lyase activity                           | 38  | 36  | 35  |
| GO:0016853 | isomerase activity                       | 23  | 19  | 23  |
| GO:0016874 | ligase activity                          | 40  | 32  | 33  |
| GO:0022857 | transmembrane transporter activity       | 45  | 49  | 54  |
| GO:0030234 | enzyme regulator activity                | 14  | 11  | 15  |
| GO:0030246 | carbohydrate binding                     | 4   | 5   | 4   |
| GO:0030545 | receptor regulator activity              | 1   | 1   | 1   |
| GO:0032451 | demethylase activity                     | 1   | 1   | 1   |
| GO:0033218 | amide binding                            | 4   | 4   | 5   |
| GO:0036094 |                                          |     | 21  | 22  |

| GO:0038023 | signaling receptor activity             | 4  | 5  | 10 |
|------------|-----------------------------------------|----|----|----|
| GO:0043167 | ion binding                             | 29 | 30 | 32 |
| GO:0044877 | protein-containing complex binding      | 4  | 2  | 3  |
| GO:0048037 | cofactor binding                        | 18 | 19 | 17 |
| GO:0050824 | water binding                           | 0  | 0  | 1  |
| GO:0051540 | metal cluster binding                   | 3  | 3  | 3  |
| GO:0060090 | molecular adaptor activity              | 1  | 1  | 1  |
| GO:0061783 | peptidoglycan mura-<br>lytic activity   | 0  | 1  | 1  |
| GO:0072341 | modified amino acid binding             | 1  | 2  | 2  |
| GO:0097159 | organic cyclic compound binding         | 36 | 42 | 39 |
| GO:0097367 | carbohydrate derivative binding         | 8  | 8  | 8  |
| GO:0140096 | catalytic activity, acting on a protein | 54 | 50 | 55 |
| GO:0140097 | catalytic activity, acting on DNA       | 11 | 21 | 22 |
| GO:0140098 | catalytic activity, acting on RNA       | 37 | 48 | 47 |
| GO:1901363 | heterocyclic compound binding           | 36 | 42 | 39 |
| GO:1901567 | fatty acid derivative binding           | 1  | 1  | 1  |
| GO:1901681 |                                         |    | 3  | 3  |

Table 7: KS domains found per cluster and total number of contigs present.

| Cluster | G. aus- | G. carpenteri | G. lapillus | G. polyne- | G. holme- | Total   |
|---------|---------|---------------|-------------|------------|-----------|---------|
| ID      | trales  |               |             | siensis    | sii       | contigs |
| 988     | 6       | 40            | 29          | 24         | 31        | 130     |
| 8866    | 3       | 24            | 14          | 24         | 16        | 81      |
| 3681    | 7       | 14            | 16          | 9          | 12        | 58      |
| 1921    | 3       | 10            | 6           | 4          | 6         | 29      |
| 46550   | 3       | 4             | 1           | 8          | 5         | 21      |
| 215601  | 0       | 4             | 1           | 8          | 5         | 18      |
| 360     | 1       | 4             | 3           | 3          | 4         | 15      |
| 15645   | 4       | 2             | 0           | 4          | 1         | 11      |
| 132980  | 0       | 1             | 4           | 3          | 2         | 10      |
| 45086   | 1       | 3             | 1           | 1          | 3         | 9       |
| 78009   | 0       | 2             | 2           | 3          | 2         | 9       |
| 38915   | 2       | 2             | 2           | 1          | 2         | 9       |
| 109763  | 0       | 2             | 0           | 5          | 1         | 8       |
| 37859   | 2       | 2             | 1           | 2          | 1         | 8       |
| 24847   | 1       | 1             | 1           | 3          | 2         | 8       |
| 162333  | 0       | 2             | 2           | 2          | 1         | 7       |
| 52333   | 1       | 2             | 1           | 1          | 1         | 6       |
| 136782  | 0       | 1             | 2           | 1          | 2         | 6       |
| 301971  | 0       | 0             | 2           | 2          | 2         | 6       |
| 152898  | 0       | 3             | 1           | 1          | 0         | 5       |
| 117472  | 0       | 2             | 1           | 1          | 1         | 5       |
| 196360  | 0       | 2             | 1           | 1          | 1         | 5       |
| 145445  | 0       | 1             | 1           | 2          | 1         | 5       |
| 131919  | 0       | 1             | 0           | 1          | 3         | 5       |
| 59207   | 1       | 1             | 1           | 1          | 1         | 5       |
| 31669   | 1       | 1             | 1           | 1          | 1         | 5       |
| 55678   | 1       | 1             | 1           | 1          | 1         | 5       |

| 40462        | 1                             | 1                     | 1 | 1 | 1 | 5 |
|--------------|-------------------------------|-----------------------|---|---|---|---|
| 46899        | 1                             | 1                     | 1 | 1 | 1 | 5 |
| 37886        | 1                             | 1                     | 1 | 1 | 1 | 5 |
| 475329       | 0                             | 0                     | 0 | 4 | 1 | 5 |
| 162320_UTS   | MER9A3_Ga                     | m <b>b</b> ierdiscus- | 0 | 1 | 0 | 4 |
| carpenteri_I | N15967_c2_g1                  | _i2.p1.faa            |   |   |   |   |
| 21082_MMF    | T\$P0766_Gai                  | n <b>b</b> ierdiscus- | 0 | 2 | 1 | 4 |
| australes_DI | V32692_c0_g1_                 | i1.p1.faa             |   |   |   |   |
| 195242_UTS   | MER9A3_Ga                     | mbierdiscus-          | 1 | 1 | 1 | 4 |
| carpenteri_I | N17326_c2_g5                  | _i1.p1.faa            |   |   |   |   |
| 83891_UTSI   | MER9A3_Gan                    | ıb <b>i</b> erdiscus- | 1 | 1 | 1 | 4 |
| carpenteri_I | N13035_c1_g4                  | Li1.p1.faa            |   |   |   |   |
| 99486_UTSI   | MER9A3_Gan                    | ıb <b>l</b> erdiscus- | 1 | 1 | 1 | 4 |
| carpenteri_I | N13588_c0_g3                  | _i1.p1.faa            |   |   |   |   |
| 328911_HG4   | $oldsymbol{_{-}G}$ ambierdisc | u <b>©</b> -          | 1 | 3 | 0 | 4 |
| lapillus_DN  | 11464_c0_g1_i1                | .p1.faa               |   |   |   |   |
| 643864_HG5   | ${f G}$ ambierdisc            | u <b>©</b> -          | 0 | 0 | 4 | 4 |
| silvae_DN47  | 931_c1_g3_i1.p                | 2.faa                 |   |   |   |   |
| 186957_UTS   | MER9A3_Ga                     | mbierdiscus-          | 1 | 1 | 0 | 3 |
| carpenteri_I | N16979_c3_g3                  | Li1.p1.faa            |   |   |   |   |
| 193820_UTS   | MER9A3_Ga                     | mbierdiscus-          | 1 | 1 | 0 | 3 |
| carpenteri_I | N17268_c1_g8                  | _i4.p1.faa            |   |   |   |   |
| 147284_UTS   | MER9A3_Ga                     | mbierdiscus-          | 1 | 1 | 0 | 3 |
| carpenteri_I | N15408_c1_g3                  | Li2.p1.faa            |   |   |   |   |
| 116539_UTS   | MER9A3_Ga                     | mbierdiscus-          | 2 | 0 | 0 | 3 |
| carpenteri_I | N14227_c2_g1                  | _i4.p1.faa            |   |   |   |   |
| 242595_UTS   | MER9A3_Ga                     | mbierdiscus-          | 2 | 0 | 0 | 3 |
| carpenteri_I | N9176_c0_g1                   | i3.p1.faa             |   |   |   |   |
| 524928_CG1   | 50Gambierdis                  | c100s-                | 0 | 3 | 0 | 3 |
| polynesiensi | s_DN43543_c1                  | _g1_i1.p1.faa         |   |   |   |   |
|              |                               |                       |   |   |   |   |

| 1040_MMETSIP0766_Gamb@erdiscus-       | 0 | 0 | 2 | 3 |
|---------------------------------------|---|---|---|---|
| australes_DN11947_c0_g1_i1.p1.faa     |   |   |   |   |
| 38402_MMET\$P0766_Gambierdiscus-      | 1 | 0 | 0 | 3 |
| australes_DN41494_c1_g1_i3.p1.faa     |   |   |   |   |
| 154624_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 2 |
| carpenteri_DN15679_c0_g6_i1.p1.faa    |   |   |   |   |
| 63665_UTSMER9A3_Gamb2erdiscus-        | 0 | 0 | 0 | 2 |
| carpenteri_DN10182_c0_g1_i2.p1.faa    |   |   |   |   |
| 205876_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 2 |
| carpenteri_DN17803_c0_g4_i1.p1.faa    |   |   |   |   |
| 224239_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 2 |
| carpenteri_DN18618_c3_g6_i1.p1.faa    |   |   |   |   |
| 196786_UTSMER9A3_Gambierdiscus-       | 0 | 1 | 0 | 2 |
| carpenteri_DN17387_c2_g2_i1.p1.faa    |   |   |   |   |
| 131133_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 1 | 2 |
| carpenteri_DN14782_c2_g4_i3.p1.faa    |   |   |   |   |
| 19133_MMETSP0766_Gambierdiscus-       | 0 | 0 | 0 | 2 |
| australes_DN30780_c0_g2_i1.p1.faa     |   |   |   |   |
| 37007_MMETSP0766_Gambierdiscus-       | 0 | 0 | 0 | 2 |
| australes_DN41205_c1_g7_i1.p1.faa     |   |   |   |   |
| 424979_CG150Gambierdisc0s-            | 0 | 2 | 0 | 2 |
| polynesiensis_DN34166_c0_g9_i1.p1.faa |   |   |   |   |
| 358554_CG150Gambierdisc0s-            | 0 | 2 | 0 | 2 |
| polynesiensis_DN15070_c0_g1_i1.p2.faa |   |   |   |   |
| 408901_CG150Gambierdisc0s-            | 0 | 2 | 0 | 2 |
| polynesiensis_DN32288_c2_g1_i1.p1.faa |   |   |   |   |
| 479997_CG150Gambierdiscus-            | 0 | 1 | 1 | 2 |
| polynesiensis_DN39607_c0_g2_i1.p1.faa |   |   |   |   |
| 485470_CG150Gambierdisc <b>0</b> s-   | 0 | 1 | 1 | 2 |
| polynesiensis_DN40097_c0_g1_i2.p1.faa |   |   |   |   |

| 258909_HG4_Gambierdiscus                | 0 | 1 | 1 | 2 |
|-----------------------------------------|---|---|---|---|
| lapillus_DN22432_c0_g1_i2.p1.faa        |   |   |   |   |
| 263811_HG4_Cambierdiscus                | 1 | 0 | 1 | 2 |
| lapillus_DN25138_c0_g1_i1.p1.faa        |   |   |   |   |
| 319034_HG4_Cambierdiscus                | 1 | 0 | 1 | 2 |
| lapillus_DN40675_c3_g1_i2.p1.faa        |   |   |   |   |
| 319505_HG4_Gambierdiscus                | 1 | 0 | 1 | 2 |
| lapillus_DN40711_c1_g8_i1_p1.faa        |   |   |   |   |
| 1041_MMETSP0766_Gamb@rdiscus-           | 0 | 0 | 1 | 2 |
| australes_DN11947_c0_g2_i1.p1.faa       |   |   |   |   |
| 27066_MMETSP0766_Gambierdiscus-         | 0 | 0 | 1 | 2 |
| australes_DN36729_c0_g1_i1.p2.faa       |   |   |   |   |
| 274389_HG4_Cambierdiscus                | 2 | 0 | 0 | 2 |
| lapillus_DN30113_c0_g1_i2.p1.faa        |   |   |   |   |
| 46553_MMET28P0766_Gambierdiscus-        | 0 | 0 | 0 | 2 |
| $australes\_DN42196\_c9\_g4\_i1.p1.faa$ |   |   |   |   |
| 148669_UTSMER9A3_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN15462_c1_g7_i1.p1.faa      |   |   |   |   |
| 234513_UTSMER9A3_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN23482_c0_g1_i1.p1.faa      |   |   |   |   |
| 63664_UTSMER9A3_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| carpenteri_DN10182_c0_g1_i1.p1.faa      |   |   |   |   |
| 72166_UTSMER9A3_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| carpenteri_DN1258_c0_g1_i1.p1.faa       |   |   |   |   |
| 210660_UTSMER9A3_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN18011_c6_g4_i1.p1.faa      |   |   |   |   |
| 88291_UTSMER9A3_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| carpenteri_DN13188_c2_g8_i2.p2.faa      |   |   |   |   |
| 235070_UTSMER9A3_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN25711_c0_g1_i1.p2.faa      |   |   |   |   |
|                                         |   |   |   |   |

| 236919_UTSM0EF                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
|-------------------------------|-----------|----------------------|---|---|---|---|
| carpenteri_DN332              | 286_c0_g  | Li1.p1.faa           |   |   |   |   |
| 234708_UTSM0ER                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN240              | 051_c0_g  | Li1.p1.faa           |   |   |   |   |
| 75892_UTSMERS                 | A3_Gan    | b <b>i</b> erdiscus- | 0 | 0 | 0 | 1 |
| carpenteri_DN127              | 749_c1_g2 | 2_i3.p1.faa          |   |   |   |   |
| 207498_UTSM0EF                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN178              | 871_c4_g  | _i1.p1.faa           |   |   |   |   |
| 234298_UTSM0EF                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN228              | 896_c0_g  | l_i1.p1.faa          |   |   |   |   |
| 84448_UTSMER9                 | A3_Gan    | b <b>i</b> erdiscus- | 0 | 0 | 0 | 1 |
| carpenteri_DN130              | )53_c3_g  | 3_i4.p1.faa          |   |   |   |   |
| 104611_UTSMOER                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN137              | 776_c4_g  | _i1.p1.faa           |   |   |   |   |
| 242597_UTSM0EF                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN917              | 76_c0_g2  | i2.p2.faa            |   |   |   |   |
| 233698_UTSMER                 | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN200              | )9_c0_g1  | i1.p1.faa            |   |   |   |   |
| 115505_UTSMER                 |           |                      | 0 | 0 | 0 | 1 |
| carpenteri_DN141              |           |                      |   |   |   |   |
| 238946_UTSMOEF                | R9A3_Ga   | mbierdiscus-         | 0 | 0 | 0 | 1 |
| carpenteri_DN488              | 87_c0_g1  | i1.p1.faa            |   |   |   |   |
| 208524_UTSM0EF                |           |                      | 0 | 0 | 0 | 1 |
| carpenteri_DN179              |           |                      |   |   |   |   |
| 131131_UTS <mark>MO</mark> EF |           |                      | 0 | 0 | 0 | 1 |
| carpenteri_DN147              |           |                      |   |   |   |   |
| 215621_UTSM0ER                |           |                      | 0 | 0 | 0 | 1 |
| carpenteri_DN182              |           |                      |   |   |   |   |
| 225926_UTSMER                 |           |                      | 0 | 0 | 0 | 1 |
| carpenteri_DN187              | 701_c1_g  | 3_i2.p1.faa          |   |   |   |   |

| 239297_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
|---------------------------------------|---|---|---|---|
| carpenteri_DN5390_c0_g1_i1.p1.faa     |   |   |   |   |
| 233616_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN19857_c0_g1_i1.p1.faa    |   |   |   |   |
| 208525_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN17914_c1_g3_i5.p2.faa    |   |   |   |   |
| 236171_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN30145_c0_g1_i1.p1.faa    |   |   |   |   |
| 241217_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN7872_c0_g1_i1.p1.faa     |   |   |   |   |
| 212813_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN18098_c3_g3_i2.p1.faa    |   |   |   |   |
| 147705_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN15422_c1_g3_i1.p1.faa    |   |   |   |   |
| 242594_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN9176_c0_g1_i2.p1.faa     |   |   |   |   |
| 86631_UTSMER9A3_Gambierdiscus-        | 0 | 0 | 0 | 1 |
| carpenteri_DN13131_c1_g1_i1.p1.faa    |   |   |   |   |
| 238247_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN38343_c0_g1_i1.p1.faa    |   |   |   |   |
| 212812_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN18098_c3_g3_i1.p1.faa    |   |   |   |   |
| 211703_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN18052_c3_g5_i11.p1.faa   |   |   |   |   |
| 239230_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN5288_c0_g1_i1.p1.faa     |   |   |   |   |
| 103957_UTSMER9A3_Gambierdiscus-       | 0 | 0 | 0 | 1 |
| carpenteri_DN13754_c3_g2_i4.p1.faa    |   |   |   |   |
| 462243_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN37930_c0_g1_i2.p1.faa |   |   |   |   |

| 355979_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
|---------------------------------------|---|---|---|---|
| polynesiensis_DN10471_c0_g1_i1.p1.faa |   |   |   |   |
| 524904_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43540_c1_g1_i2.p1.faa |   |   |   |   |
| 471036_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN38733_c0_g1_i1.p1.faa |   |   |   |   |
| 527904_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43803_c0_g1_i1.p1.faa |   |   |   |   |
| 494332_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40908_c1_g1_i1.p1.faa |   |   |   |   |
| 475327_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN39159_c1_g1_i1.p1.faa |   |   |   |   |
| 446377_CG150Gambierdisc <b>0</b> s-   | 0 | 1 | 0 | 1 |
| polynesiensis_DN36357_c3_g7_i1.p1.faa |   |   |   |   |
| 415511_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN33112_c0_g1_i3.p1.faa |   |   |   |   |
| 524930_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43543_c1_g1_i4.p1.faa |   |   |   |   |
| 500254_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN41444_c1_g3_i1.p1.faa |   |   |   |   |
| 408903_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN32288_c3_g1_i1.p1.faa |   |   |   |   |
| 211708_UTSMER9A3_Gambierdiscus-       | 0 | 1 | 0 | 1 |
| carpenteri_DN18052_c3_g5_i7.p1.faa    |   |   |   |   |
| 524905_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43540_c1_g1_i3.p1.faa |   |   |   |   |
| 528784_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN47453_c0_g1_i1.p3.faa |   |   |   |   |
| 528223_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN44935_c0_g1_i1.p2.faa |   |   |   |   |

| 362866_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
|---------------------------------------|---|---|---|---|
| polynesiensis_DN18821_c0_g1_i1.p1.faa |   |   |   |   |
| 408898_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN32288_c1_g1_i1.p1.faa |   |   |   |   |
| 473656_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN39000_c2_g2_i1.p1.faa |   |   |   |   |
| 505619_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN41913_c1_g3_i1.p2.faa |   |   |   |   |
| 357110_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN13123_c0_g1_i2.p2.faa |   |   |   |   |
| 529123_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN48937_c0_g1_i1.p1.faa |   |   |   |   |
| 419597_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN33575_c2_g1_i1.p1.faa |   |   |   |   |
| 486622_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40207_c2_g2_i2.p1.faa |   |   |   |   |
| 518712_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43045_c0_g2_i6.p1.faa |   |   |   |   |
| 505617_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN41913_c1_g2_i1.p1.faa |   |   |   |   |
| 419857_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN33604_c1_g1_i1.p1.faa |   |   |   |   |
| $319033\_HG4\_$ Cambierdiscus         | 0 | 1 | 0 | 1 |
| lapillus_DN40675_c3_g1_i1.p1.faa      |   |   |   |   |
| 505612_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN41913_c0_g1_i1.p1.faa |   |   |   |   |
| 505621_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN41913_c1_g5_i1.p2.faa |   |   |   |   |
| 368243_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN21805_c0_g1_i1.p1.faa |   |   |   |   |

| 531066_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
|---------------------------------------|---|---|---|---|
| polynesiensis_DN7198_c0_g1_i1.p1.faa  |   |   |   |   |
| 411779_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN32643_c5_g2_i3.p2.faa |   |   |   |   |
| 529709_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN51840_c0_g1_i1.p1.faa |   |   |   |   |
| 424815_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN34144_c0_g1_i6.p1.faa |   |   |   |   |
| 388829_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN29147_c0_g1_i1.p1.faa |   |   |   |   |
| 528991_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN4849_c0_g1_i1.p2.faa  |   |   |   |   |
| 529886_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN52795_c0_g1_i1.p1.faa |   |   |   |   |
| 517572_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN42942_c0_g1_i1.p1.faa |   |   |   |   |
| 162319_UTSMER9A3_Gambierdiscus-       | 0 | 1 | 0 | 1 |
| carpenteri_DN15967_c2_g1_i1.p1.faa    |   |   |   |   |
| 486374_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40177_c0_g2_i3.p1.faa |   |   |   |   |
| 424977_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN34166_c0_g6_i1.p2.faa |   |   |   |   |
| 480000_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN39607_c0_g2_i4.p1.faa |   |   |   |   |
| 524933_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN43543_c1_g1_i7.p1.faa |   |   |   |   |
| 529340_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN50363_c0_g1_i1.p1.faa |   |   |   |   |
| 382787_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN27509_c0_g1_i1.p1.faa |   |   |   |   |

| 455767_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
|----------------------------------------|---|---|---|---|
| polynesiensis_DN37290_c0_g4_i1.p1.faa  |   |   |   |   |
| 454667_CG150Gambierdiscos-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN37192_c1_g3_i1.p1.faa  |   |   |   |   |
| 505616_CG150Gambierdiscos-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN41913_c1_g1_i3.p1.faa  |   |   |   |   |
| 408904_CG150Gambierdiscos-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN32288_c3_g2_i1.p1.faa  |   |   |   |   |
| 519735_CG150Gambierdiscus-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN43127_c3_g5_i1.p1.faa  |   |   |   |   |
| 524932_CG150Gambierdiscus-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN43543_c1_g1_i6.p1.faa  |   |   |   |   |
| 419608_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN33575_c2_g2_i1.p1.faa  |   |   |   |   |
| 489214_CG150Gambierdiscus-             | 0 | 1 | 0 | 1 |
| polynesiensis_DN40447_c0_g1_i2.p1.faa  |   |   |   |   |
| 407098_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN32057_c0_g1_i2.p1.faa  |   |   |   |   |
| 486620_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40207_c2_g1_i2.p2.faa  |   |   |   |   |
| 529847_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN52688_c0_g1_i1.p1.faa  |   |   |   |   |
| 355910_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN1036_c0_g1_i1.p2.faa   |   |   |   |   |
| 419599_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN33575_c2_g1_i11.p1.faa |   |   |   |   |
| 368244_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN21805_c0_g2_i1.p1.faa  |   |   |   |   |
| 528301_CG150Gambierdisct0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN45312_c0_g1_i1.p1.faa  |   |   |   |   |

| 431157_CG150Gambierdisc@s-            | 0 | 1 | 0 | 1 |
|---------------------------------------|---|---|---|---|
| polynesiensis_DN34812_c2_g1_i1.p1.faa |   |   |   |   |
| 429838_CG150Gambierdisc@s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN3467_c0_g1_i1.p1.faa  |   |   |   |   |
| 485799_CG150Gambierdisc@s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40132_c0_g3_i1.p1.faa |   |   |   |   |
| 449384_CG150Gambierdisc@s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN36673_c0_g1_i3.p1.faa |   |   |   |   |
| 530384_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN55090_c0_g1_i1.p1.faa |   |   |   |   |
| 357109_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN13123_c0_g1_i1.p2.faa |   |   |   |   |
| 466543_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN38313_c1_g3_i1.p1.faa |   |   |   |   |
| 367731_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN21547_c0_g1_i1.p1.faa |   |   |   |   |
| 438506_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN35575_c0_g1_i7.p1.faa |   |   |   |   |
| 491823_CG150Gambierdisc0s-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN40690_c4_g5_i2.p1.faa |   |   |   |   |
| 530249_CG150Gambierdiscus-            | 0 | 1 | 0 | 1 |
| polynesiensis_DN54681_c0_g1_i1.p1.faa |   |   |   |   |
| 661643_HG5_Gambierdiscus              | 0 | 0 | 1 | 1 |
| silvae_DN57114_c0_g1_i1.p1.faa        |   |   |   |   |
| 601478_HG5_Gambierdiscus              | 0 | 0 | 1 | 1 |
| silvae_DN43780_c7_g8_i1.p1.faa        |   |   |   |   |
| 567939_HG5_Gambierdiscus              | 0 | 0 | 1 | 1 |
| silvae_DN35530_c0_g3_i1.p1.faa        |   |   |   |   |
| 593688_HG5_Gambierdiscus              | 0 | 0 | 1 | 1 |
| silvae_DN42661_c0_g1_i1.p1.faa        |   |   |   |   |

| 540524_HG5_@ambierdiscu                       | 0 | 0 | 1 | 1 |
|-----------------------------------------------|---|---|---|---|
| silvae_DN20879_c0_g2_i1.p1.faa                |   |   |   |   |
| 649671_HG5_Cambierdiscu                       | 0 | 0 | 1 | 1 |
| silvae_DN48408_c0_g1_i4.p1.faa                |   |   |   |   |
| 620146_HG5_Cambierdiscu                       | 0 | 0 | 1 | 1 |
| silvae_DN45801_c1_g1_i1.p2.faa                |   |   |   |   |
| $589550\_HG5\_$ Cambierdiscu                  | 0 | 0 | 1 | 1 |
| silvae_DN41996_c3_g12_i1.p1.faa               |   |   |   |   |
| 643868_HG5_ <b>G</b> ambierdiscu <b>©</b>     | 0 | 0 | 1 | 1 |
| silvae_DN47931_c1_g3_i5.p1.faa                |   |   |   |   |
| 657026_HG5_Cambierdiscu                       | 0 | 0 | 1 | 1 |
| silvae_DN48988_c0_g3_i1.p1.faa                |   |   |   |   |
| $589562\_HG5\_$ Cambierdiscu                  | 0 | 0 | 1 | 1 |
| silvae_DN41996_c3_g5_i1.p2.faa                |   |   |   |   |
| $608846\_HG5\_$ Cambierdiscu                  | 0 | 0 | 1 | 1 |
| silvae_DN44648_c2_g1_i1.p1.faa                |   |   |   |   |
| $593690\_HG5\_$ Cambierdiscu                  | 0 | 0 | 1 | 1 |
| silvae_DN42661_c0_g2_i3.p1.faa                |   |   |   |   |
| $550256\_HG5\_G$ ambierdiscu $\mathfrak{g}$ - | 0 | 0 | 1 | 1 |
| silvae_DN27602_c0_g2_i1.p1.faa                |   |   |   |   |
| $608853\_HG5\_$ <b>G</b> ambier discus        | 0 | 0 | 1 | 1 |
| silvae_DN44648_c2_g6_i1.p1.faa                |   |   |   |   |
| 559711_HG5_Gambierdiscus                      | 0 | 0 | 1 | 1 |
| silvae_DN32102_c0_g1_i2.p1.faa                |   |   |   |   |
| 575231_HG5_Gambierdiscus                      | 0 | 0 | 1 | 1 |
| silvae_DN38322_c1_g2_i1.p1.faa                |   |   |   |   |
| 591087_HG5_Gambierdiscus                      | 0 | 0 | 1 | 1 |
| silvae_DN42232_c1_g4_i1.p2.faa                |   |   |   |   |
| $657027\_HG5\_G$ ambierdiscu $\mathfrak{g}$   | 0 | 0 | 1 | 1 |
| silvae_DN48988_c0_g3_i2.p1.faa                |   |   |   |   |

| 540525_HG5_@ambierdiscu           | 0 | 0 | 1 | 1 |
|-----------------------------------|---|---|---|---|
| silvae_DN20879_c0_g3_i1.p1.faa    |   |   |   |   |
| 601479_HG5_Cambierdiscu           | 0 | 0 | 1 | 1 |
| silvae_DN43780_c7_g9_i1.p1.faa    |   |   |   |   |
| 589619_HG5_Cambierdiscu           | 0 | 0 | 1 | 1 |
| silvae_DN42009_c0_g1_i3.p1.faa    |   |   |   |   |
| 596728_HG5_Cambierdiscu           | 0 | 0 | 1 | 1 |
| silvae_DN43120_c1_g4_i4.p1.faa    |   |   |   |   |
| 254977_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN19871_c0_g1_i1.p1.faa  |   |   |   |   |
| 244474_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN10661_c0_g1_i1.p1.faa  |   |   |   |   |
| 354441_HG4_Cambierdiscu           | 1 | 0 | 0 | 1 |
| lapillus_DN7536_c0_g1_i1.p2.faa   |   |   |   |   |
| 277633_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN31491_c0_g2_i1p1.faa   |   |   |   |   |
| 312699_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN40082_c0_g1_i1p1.faa   |   |   |   |   |
| $319501\_HG4\_$ Cambierdiscu      | 1 | 0 | 0 | 1 |
| lapillus_DN40711_c1_g5_i1p1.faa   |   |   |   |   |
| 244476_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN10661_c0_g2_i1.p1.faa  |   |   |   |   |
| $355588\_HG4\_$ CambierdiscuO     | 1 | 0 | 0 | 1 |
| lapillus_DN9793_c0_g1_i1.p1.faa   |   |   |   |   |
| 351360_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN46619_c0_g1_i1p2.faa   |   |   |   |   |
| $319490\_HG4\_$ Cambierdiscu      | 1 | 0 | 0 | 1 |
| lapillus_DN40711_c1_g10_i1.p1.faa |   |   |   |   |
| 249529_HG4_Cambierdiscus          | 1 | 0 | 0 | 1 |
| lapillus_DN15767_c0_g4_i1p1.faa   |   |   |   |   |
|                                   |   |   |   |   |

| 350445_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
|----------------------------------|---|---|---|---|
| lapillus_DN4403_c0_g2_i1.p1.faa  |   |   |   |   |
| 249527_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN15767_c0_g2_i1.p1.faa |   |   |   |   |
| 247959_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN14263_c0_g2_i1.p1.faa |   |   |   |   |
| 354628_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN8017_c0_g2_i1.p1.faa  |   |   |   |   |
| 327310_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN41349_c0_g1_i2.p1.faa |   |   |   |   |
| 245201_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN11411_c0_g1_i1_p1.faa |   |   |   |   |
| 328839_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN41459_c1_g5_i1_p1.faa |   |   |   |   |
| 332373_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN41718_c2_g1_i1_p1.faa |   |   |   |   |
| 310068_HG4_Gambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN39797_c2_g1_i1_p1.faa |   |   |   |   |
| $355491\_HG4\_$ Cambierdiscu9-   | 1 | 0 | 0 | 1 |
| lapillus_DN9601_c0_g2_i1.p1.faa  |   |   |   |   |
| 264742_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN25642_c0_g1_i1_p1.faa |   |   |   |   |
| 310329_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN39821_c0_g4_i1_p1.faa |   |   |   |   |
| 351275_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN46352_c0_g1_i1_p1.faa |   |   |   |   |
| 298246_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN38038_c1_g5_i1_p1.faa |   |   |   |   |
| 312700_HG4_Cambierdiscus         | 1 | 0 | 0 | 1 |
| lapillus_DN40082_c0_g2_i1_p1.faa |   |   |   |   |

| 245202_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
|-----------------------------------|--------|---|---|---|--|
| lapillus_DN11411_c0_g1_i2.p1.faa  |        |   |   |   |  |
| 270811_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN28598_c0_g3_i1p1.faa   |        |   |   |   |  |
| 311957_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN40004_c3_g1_i2.p1.faa  |        |   |   |   |  |
| 270397_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN2840_c0_g1_i2.p1.faa   |        |   |   |   |  |
| 351199_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN46156_c0_g1_i1p1.faa   |        |   |   |   |  |
| 308197_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN39584_c0_g1_i1_p1.faa  |        |   |   |   |  |
| 354586_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN792_c0_g1_i1.p1.faa    |        |   |   |   |  |
| $350059\_HG4\_$ Cambierdiscu9     | 1      | 0 | 0 | 1 |  |
| lapillus_DN43172_c0_g1_i1.p1.faa  |        |   |   |   |  |
| 264744_HG4_Cambierdiscus          | 1      | 0 | 0 | 1 |  |
| lapillus_DN25642_c0_g2_i1p1.faa   |        |   |   |   |  |
| 27277_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN36847_c0_g3_i1.p1.faa | ı      |   |   |   |  |
| 38401_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN41494_c1_g1_i2.p1.faa | ı      |   |   |   |  |
| 14801_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN27057_c0_g3_i1.p1.faa | ı      |   |   |   |  |
| 38397_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN41494_c0_g2_i1.p1.faa | ı      |   |   |   |  |
| 19134_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN30780_c0_g3_i1.p1.faa | ı      |   |   |   |  |
| 33030_MMETSP0766_Gambierdise      | cus- 0 | 0 | 0 | 1 |  |
| australes_DN39895_c0_g4_i1.p1.faa | ı      |   |   |   |  |

| 35041_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
|------------------------------------------|---|---|---|---|
| australes_DN40638_c0_g8_i1.p2.faa        |   |   |   |   |
| 40251_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| $australes\_DN41766\_c4\_g24\_i2.p1.faa$ |   |   |   |   |
| 18687_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN30415_c0_g4_i1.p1.faa        |   |   |   |   |
| 18486_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| $australes\_DN30257\_c0\_g2\_i1.p1.faa$  |   |   |   |   |
| 61098_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN6084_c0_g1_i1.p1.faa         |   |   |   |   |
| 36998_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN41205_c1_g1_i1.p1.faa        |   |   |   |   |
| 13967_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN26272_c0_g1_i1.p1.faa        |   |   |   |   |
| 19163_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN30800_c0_g7_i1.p2.faa        |   |   |   |   |
| 35033_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN40638_c0_g1_i1.p1.faa        |   |   |   |   |
| 18548_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN30296_c0_g2_i1.p1.faa        |   |   |   |   |
| 36992_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN41205_c0_g1_i1.p1.faa        |   |   |   |   |
| 36641_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN41111_c0_g2_i2.p1.faa        |   |   |   |   |
| 37002_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| australes_DN41205_c1_g4_i1.p1.faa        |   |   |   |   |
| 28106_MMETSP0766_Gambierdiscus-          | 0 | 0 | 0 | 1 |
| $australes\_DN37278\_c0\_g2\_i1.p1.faa$  |   |   |   |   |
| 72_MMETSP0766_Gambier@liscus-            | 0 | 0 | 0 | 1 |
| australes_DN10092_c0_g1_i1.p2.faa        |   |   |   |   |
|                                          |   |   |   |   |

| 15646_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
|-----------------------------------------|---|---|---|---|
| australes_DN27800_c0_g3_i1.p1.faa       |   |   |   |   |
| 27067_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN36729_c0_g2_i1.p1.faa       |   |   |   |   |
| 24849_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN35413_c0_g3_i1.p1.faa       |   |   |   |   |
| 35035_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN40638_c0_g3_i1.p1.faa       |   |   |   |   |
| 35352_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN40756_c0_g1_i1.p1.faa       |   |   |   |   |
| 13100_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| $australes\_DN25567\_c0\_g3\_i1.p2.faa$ |   |   |   |   |
| 38396_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN41494_c0_g1_i1.p1.faa       |   |   |   |   |
| 27068_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN36729_c0_g3_i1.p1.faa       |   |   |   |   |
| 35359_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN40756_c1_g4_i1.p1.faa       |   |   |   |   |
| 30964_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN38922_c0_g1_i1.p1.faa       |   |   |   |   |
| 30406_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN38631_c0_g4_i1.p1.faa       |   |   |   |   |
| 36994_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN41205_c0_g3_i1.p1.faa       |   |   |   |   |
| 13103_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN25567_c0_g6_i1.p1.faa       |   |   |   |   |
| 18485_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN30257_c0_g1_i1.p1.faa       |   |   |   |   |
| 23610_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN34624_c0_g3_i1.p2.faa       |   |   |   |   |

| 18487_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
|------------------------------------|---|---|---|---|
| australes_DN30257_c0_g2_i2.p1.faa  |   |   |   |   |
| 46548_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN42196_c9_g10_i1.p2.faa |   |   |   |   |
| 15765_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN27921_c0_g3_i1.p2.faa  |   |   |   |   |
| 30418_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN38640_c0_g5_i1.p2.faa  |   |   |   |   |
| 17953_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN29796_c0_g1_i1.p1.faa  |   |   |   |   |
| 37006_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN41205_c1_g6_i1.p2.faa  |   |   |   |   |
| 13101_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN25567_c0_g4_i1.p1.faa  |   |   |   |   |
| 46559_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN42196_c9_g6_i3.p1.faa  |   |   |   |   |
| 17396_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN2924_c0_g1_i1.p1.faa   |   |   |   |   |
| 18547_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN30296_c0_g1_i1.p1.faa  |   |   |   |   |
| 7245_MMETSIP0766_Gamb@rdiscus-     | 0 | 0 | 0 | 1 |
| australes_DN20901_c0_g2_i1.p1.faa  |   |   |   |   |
| 17216_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN29099_c0_g2_i1.p1.faa  |   |   |   |   |
| 30404_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN38631_c0_g1_i1.p1.faa  |   |   |   |   |
| 40250_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN41766_c4_g23_i1.p2.faa |   |   |   |   |
| 41420_MMETSP0766_Gambierdiscus-    | 0 | 0 | 0 | 1 |
| australes_DN41862_c2_g4_i1.p1.faa  |   |   |   |   |

| 26875_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
|-----------------------------------|---|---|---|---|
| australes_DN36626_c0_g1_i1.p1.faa |   |   |   |   |
| 28107_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN37278_c0_g4_i1.p1.faa |   |   |   |   |
| 14799_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN27057_c0_g1_i1.p1.faa |   |   |   |   |
| 37863_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN41388_c0_g2_i1.p1.faa |   |   |   |   |
| 38400_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN41494_c1_g1_i1.p1.faa |   |   |   |   |
| 23609_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN34624_c0_g2_i1.p2.faa |   |   |   |   |
| 10084_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN23190_c0_g1_i1.p1.faa |   |   |   |   |
| 17955_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN29796_c0_g3_i1.p1.faa |   |   |   |   |
| 13099_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN25567_c0_g2_i1.p2.faa |   |   |   |   |
| 37003_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN41205_c1_g4_i2.p1.faa |   |   |   |   |
| 42718_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN41959_c8_g1_i1.p1.faa |   |   |   |   |
| 52639_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN45380_c0_g1_i1.p1.faa |   |   |   |   |
| 38398_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN41494_c0_g3_i1.p2.faa |   |   |   |   |
| 28109_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN37278_c0_g6_i1.p1.faa |   |   |   |   |
| 24850_MMETSP0766_Gambierdiscus-   | 0 | 0 | 0 | 1 |
| australes_DN35413_c0_g4_i1.p1.faa |   |   |   |   |

| 35358_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
|-----------------------------------------|---|---|---|---|
| australes_DN40756_c1_g1_i1.p1.faa       |   |   |   |   |
| 15764_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN27921_c0_g2_i1.p1.faa       |   |   |   |   |
| 28108_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN37278_c0_g5_i1.p1.faa       |   |   |   |   |
| 18688_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN30415_c0_g5_i1.p1.faa       |   |   |   |   |
| 35357_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| $australes\_DN40756\_c0\_g5\_i1.p1.faa$ |   |   |   |   |
| 35353_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN40756_c0_g1_i3.p1.faa       |   |   |   |   |
| 37009_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN41205_c1_g9_i1.p1.faa       |   |   |   |   |
| 15763_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN27921_c0_g1_i1.p1.faa       |   |   |   |   |
| 41417_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN41862_c2_g2_i1.p1.faa       |   |   |   |   |
| 28600_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN37530_c0_g2_i1.p1.faa       |   |   |   |   |
| 7400_MMETSIP0766_Gamboerdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN21004_c0_g1_i1.p1.faa       |   |   |   |   |
| 35356_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN40756_c0_g4_i1.p1.faa       |   |   |   |   |
| 30416_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN38640_c0_g3_i1.p1.faa       |   |   |   |   |
| 18686_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN30415_c0_g2_i1.p1.faa       |   |   |   |   |
| 16842_MMETSP0766_Gambierdiscus-         | 0 | 0 | 0 | 1 |
| australes_DN28731_c0_g3_i1.p2.faa       |   |   |   |   |

## 6 References

- [1] ASHBURNER, M., BALL, C. A., BLAKE, J. A., BOTSTEIN, D., BUTLER, H., CHERRY, J. M., DAVIS, A. P., DOLINSKI, K., DWIGHT, S. S., EPPIG, J. T., ET AL. Gene Ontology: tool for the unification of biology. *Nature genetics* 25, 1 (2000), 25.
- [2] Bachvaroff, T. R., and Place, A. R. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate *Amphidinium* carterae. PLoS One 3, 8 (2008), e2929.
- [3] Cerveau, N., and Jackson, D. J. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. *BMC bioinformatics* 17, 1 (2016), 525.
- [4] Chinain, M., Darius, H. T., Ung, A., Cruchet, P., Wang, Z., Ponton, D., Laurent, D., and Pauillac, S. Growth and toxin production in the ciguatera-causing dinoflagellate *Gambierdiscus polynesiensis* (Dinophyceae) in culture. *Toxicon* 56, 5 (2010), 739–750.
- [5] Consortium, G. O. Expansion of the Gene Ontology knowledgebase and resources. *Nucleic acids research* 45, D1 (2016), D331–D338.
- [6] Eddy, S., and Wheeler, T. HMMER: biosequence analysis using profile hidden Markov models, 2015. hmmer.org/.
- [7] EDGAR, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* 32, 5 (2004), 1792–1797.
- [8] Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28, 23 (2012), 3150– 3152.
- [9] Guo, R., and Ki, J.-S. Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum. Algae 26, 3 (2011), 229–235.

- [10] HAAS, B., AND PAPANICOLAOU, A. TransDecoder (find coding regions within transcripts), 2016.
- [11] HARKE, M. J., JUHL, A. R., HALEY, S. T., ALEXANDER, H., AND DYHRMAN, S. T. Conserved transcriptional responses to nutrient stress in bloom-forming algae. Frontiers in microbiology 8 (2017), 1279.
- [12] HE, F., AND MASLOV, S. Pan-and core-network analysis of co-expression genes in a model plant. *Scientific reports* 6 (2016), 38956.
- [13] Heberle, H., Meirelles, G., da Silva, F., Telles, G., and Minghim, R. Interactivenn: a web-based tool for the analysis of sets through venn diagrams. BMC bioinformatics 16 (2015), 169.
- [14] JIN, M., LIU, H., HE, C., FU, J., XIAO, Y., WANG, Y., XIE, W., WANG, G., AND YAN, J. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific reports 6 (2016), 18936.
- [15] Kahlke, T. GOSUM: Gene Ontology Summarizer version 0.1, 2018. http://doi.org/10.5281/zenodo.1344306.
- [16] KEELING, P. J., BURKI, F., WILCOX, H. M., ALLAM, B., ALLEN, E. E., AMARAL-ZETTLER, L. A., ARMBRUST, E. V., ARCHIBALD, J. M., BHARTI, A. K., BELL, C. J., ET AL. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. *PloS one* (2014).
- [17] KOHLI, G. S., CAMPBELL, K., JOHN, U., SMITH, K. F., FRAGA, S., RHODES, L. L., AND MURRAY, S. A. Role of modular polyketide synthases in the production of polyether ladder compounds in ciguatoxin-producing *Gambierdiscus poly*nesiensis and G. excentricus (Dinophyceae). Journal of Eukaryotic Microbiology (2017).
- [18] KOHLI, G. S., JOHN, U., FIGUEROA, R. I., RHODES, L. L., HARWOOD, D. T., GROTH, M., BOLCH, C. J., AND MURRAY, S. A. Polyketide synthesis genes associated with toxin production in two species of gambierdiscus (dinophyceae). BMC genomics 16, 1 (2015), 410.

- [19] Koid, A. E., Liu, Z., Terrado, R., Jones, A. C., Caron, D. A., and Heidelberg, K. B. Comparative transcriptome analysis of four prymnesiophyte algae. *PLoS One* 9, 6 (2014), e97801.
- [20] Kretzschmar, A. L., Verma, A., Harwood, T., Hoppenrath, M., and Murray, S. Characterization of gambierdiscus lapillus sp. nov.(gonyaulacales, dinophyceae): A new toxic dinoflagellate from the great barrier reef (australia). *Journal of phycology* 53, 2 (2017), 283–297.
- [21] Lapierre, P., and Gogarten, J. P. Estimating the size of the bacterial pangenome. *Trends in genetics* 25, 3 (2009), 107–110.
- [22] LARSSON, M. E., LACZKA, O. F., HARWOOD, D. T., LEWIS, R. J., HI-MAYA, S., MURRAY, S. A., AND DOBLIN, M. A. Toxicology of *Gambierdiscus* spp.(Dinophyceae) from tropical and temperate Australian waters. *Marine drugs* 16, 1 (2018), 7.
- [23] LI, Y.-H., ZHOU, G., MA, J., JIANG, W., JIN, L.-G., ZHANG, Z., GUO, Y., ZHANG, J., SUI, Y., ZHENG, L., ET AL. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. *Nature Biotechnology* 32, 10 (2014), 1045.
- [24] MEDINI, D., DONATI, C., TETTELIN, H., MASIGNANI, V., AND RAPPUOLI, R. The microbial pan-genome. Current opinion in genetics & development 15, 6 (2005), 589–594.
- [25] MEYER, J. M., RÖDELSPERGER, C., EICHHOLZ, K., TILLMANN, U., CEMBELLA, A., McGaughran, A., and John, U. Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate *Azadinium spinosum*, with emphasis on polykeitde synthase genes. *BMC genomics* 16, 1 (2015), 27.
- [26] Munday, R., Murray, S., Rhodes, L. L., Larsson, M. E., and Harwood, D. T. Ciguatoxins and maitotoxins in extracts of sixteen gambierdiscus isolates and one fukuyoa isolate from the south pacific and their toxicity to mice by intraperitoneal and oral administration. *Marine drugs* 15, 7 (2017), 208.

- [27] Murray, S. A., Suggett, D. J., Doblin, M. A., Kohli, G. S., Seymour, J. R., Fabris, M., and Ralph, P. J. Unravelling the functional genetics of dinoflagellates: a review of approaches and opportunities. *Perspect. Phycol* 3, 1 (2016), 37–52.
- [28] PAWLOWIEZ, R., MOREY, J., DARIUS, H., CHINAIN, M., AND VAN DOLAH, F. Transcriptome sequencing reveals single domain Type I-like polyketide synthases in the toxic dinoflagellate *Gambierdiscus polynesiensis*. *Harmful Algae 36* (2014), 29–37.
- [29] PLISSONNEAU, C., HARTMANN, F. E., AND CROLL, D. Pangenome analyses of the wheat pathogen *Zymoseptoria tritici* reveal the structural basis of a highly plastic eukaryotic genome. *BMC biology* 16, 1 (2018), 5.
- [30] Posnien, N., Zeng, V., Schwager, E. E., Pechmann, M., Hilbrant, M., Keefe, J. D., Damen, W. G., Prpic, N.-M., McGregor, A. P., and Extavour, C. G. A comprehensive reference transcriptome resource for the common house spider *Parasteatoda tepidariorum*. *PLoS One* 9, 8 (2014), e104885.
- [31] QUEVILLON, E., SILVENTOINEN, V., PILLAI, S., HARTE, N., MULDER, N., APWEILER, R., AND LOPEZ, R. InterProScan: protein domains identifier. *Nucleic acids research 33*, suppl\_2 (2005), W116–W120.
- [32] READ, B. A., KEGEL, J., KLUTE, M. J., KUO, A., LEFEBVRE, S. C., MAUMUS, F., MAYER, C., MILLER, J., MONIER, A., SALAMOV, A., ET AL. Pan genome of the phytoplankton *Emiliania* underpins its global distribution. *Nature* 499, 7457 (2013), 209.
- [33] RHODES, L. L., SMITH, K. F., MUNDAY, R., SELWOOD, A. I., MCNABB, P. S., HOLLAND, P. T., AND BOTTEIN, M.-Y. Toxic dinoflagellates (Dinophyceae) from Rarotonga, Cook Islands. *Toxicon* 56, 5 (2010), 751–758.
- [34] Rhodes, L. L., Smith, K. F., Murray, S., Harwood, D. T., Trnski, T., and Munday, R. The epiphytic genus *Gambierdiscus* (Dinophyceae) in the Kermadec Islands and Zealandia regions of the southwestern Pacific and the associated risk of ciguatera fish poisoning. *Marine drugs* 15, 7 (2017), 219.

- [35] RYAN, D. E., PEPPER, A. E., AND CAMPBELL, L. De novo assembly and characterization of the transcriptome of the toxic dinoflagellate *Karenia brevis*. *BMC genomics* 15, 1 (2014), 888.
- [36] Song, G., Dickins, B. J., Demeter, J., Engel, S., Dunn, B., and Cherry, J. M. AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae. PLoS One 10, 3 (2015), e0120671.
- [37] STAMATAKIS, A. RAXML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. *Bioinformatics* 30, 9 (2014), 1312–1313.
- [38] TETTELIN, H., MASIGNANI, V., CIESLEWICZ, M. J., DONATI, C., MEDINI, D., WARD, N. L., ANGIUOLI, S. V., CRABTREE, J., JONES, A. L., DURKIN, A. S., ET AL. Genome analysis of multiple pathogenic isolates of *Streptococcus agalactiae*: implications for the microbial pan-genome. *Proceedings of the National Academy* of Sciences 102, 39 (2005), 13950–13955.
- [39] Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. Ten years of pan-genome analyses. *Current opinion in microbiology* 23 (2015), 148–154.
- [40] VINUESA, P., AND CONTRERAS-MOREIRA, B. Robust identification of orthologues and paralogues for microbial pan-genomics using GET\_HOMOLOGUES: a case study of pIncA/C plasmids. In *Bacterial Pangenomics*. Springer, 2015, pp. 203–232.
- [41] ZHANG, H., HOU, Y., MIRANDA, L., CAMPBELL, D. A., STURM, N. R., GAASTERLAND, T., AND LIN, S. Spliced leader RNA trans-splicing in dinoflagellates. Proceedings of the National Academy of Sciences 104, 11 (2007), 4618–4623.