Система команд микроконтроллеров С16х, XC16х и ST10х

ООО "КАСКОД-ЭЛЕКТРО"
2005
Санкт-Петербург

Обозначения

Данная система команд является общей для микроконтроллеров серий SAx-C161x-xx, SAx-C164xx-xx, SAx-8xC166-x, SAx-C167xx-xx и SAx-XC167xx фирмы Infineon и для микроконтроллеров серий ST10x167, ST10x168 и ST10x269 фирмы STMicroelectronics. В микроконтроллерах серий SAx-XC167xx и ST10x269 имеется целочисленный DSP-сопроцессор, для которого к общей системе команд добавлены дополнительные инструкции.

Условные обозначения			
Rw _i	2-байтовый регистр общего назначения (РОН) (R0, R1, R2, R3)		
Rw, Rw _n , Rw _m	2-байтовый РОН (R0, R1,, R15)		
Rb, Rb _n , Rb _m	байтовый РОН (RL0, RH0,, RL7, RH7)		
reg	регистр специального назначения (SFR) или РОН (если инструкция работает с типом данных ВҮТЕ и один из операндов - SFR, то доступ при адресации "reg" возможен только к младшему байту)		
mem	прямая адресация в памяти слова или байта		
[]	косвенная адресация в памяти слова или байта (любой 2-байтовый РОН может использоваться как косвенный указатель адреса, кроме арифметических, логических и инструкций сравнения, в которых разрешены только R0R3)		
bitaddr	указатель бита в битадресуемом пространстве памяти		
bitoff	указатель SFR в битадресуемом пространстве памяти		
#data _x	непосредственные данные (число значащих младших разрядов, которые используются в инструкции, представлены соответствующим добавлением "x")		
#mask ₈	непосредственная 8-битовая маска, используемая для изменения нескольких разрядов		
count	временная переменная, используемая в качестве счетчика		
tmp	временная переменная для промежуточных вычислений		
Обозначение круглыми скобками			
ор	непосредственные данные		
(op)	содержимое ор		
(op _n)	содержимое разряда n операнда ор		
((op))	значение, взятое по адресу, равному содержимому ор (т.е. содержимое ор является указателем требуемого значения)		

Email: <u>support@kaskod.ru</u> <u>http://www.kaskod.ru</u> тел.: (812) 466-5784, тел.: (812) 476-0795, факс.: (812) 466-5401 196625, Санкт-Петербург, Павловск, Фильтровское шоссе, 3

Инструкции умножения и деления			
MDL, MDH	регистры источников и/или приемников для инструкций умножения и деления		
MD	4-байтовый регистр, состоящий из регистров MDL и MDH и обращение может производиться только через MDL и MDH		

Расширенные инструкции

Инструкции EXTxx изменяют стандартную схему адресации регистров (reg) для SFR/ESFR и страничную адресацию, использующую регистры DPPx.

#pag ₁₀	непосредственный 10-битовый номер страницы памяти
#seg ₈	непосредственный 8-битовый номер сегмента памяти
#irang ₂	2-битовое число (03), определяющее количество инструкций на которые распространяются условия изменения стандартной схемы адресации. Количество инструкций равно значению #irang ₂ , увеличенному на 1

Режимы адресации инструкций перехода			
caddr	непосредственный 16-битовый внутрисегментный адрес перехода		
seg ₈	непосредственный 8-битовый номер сегмента для перехода		
rel	знаковое 8-битовое смещение по отношению к указателю инструкций IP		
#trap ₇	непосредственный 7-битовый номер вектора прерывания		

Коды условий перехода (сс)			
	Условие	Номер	Описание
cc_UC	1 = 1	0h	безусловный переход
cc_Z	Z = 1	2h	если результат равен нулю
cc_NZ	Z = 0	3h	если результат не равен нулю
cc_V	V = 1	4h	если произошло переполнение
			во время выполнения
			инструкции
cc_NV	V = 0	5h	если не произошло
			переполнения во время
			выполнения инструкции
cc N	N = 1	6h	если результат отрицательный

cc_NN	N = 0	7h	если результат неотрицательный
cc_C	C = 1	8h	если произошел перенос во время выполнения инструкции
cc_NC	C = 0	9h	если не произошел перенос во время выполнения инструкции
cc_EQ	Z = 1	2h	если сравниваемые операнды эквивалентны
cc_NE	Z = 0	3h	если сравниваемые операнды не эквивалентны
cc_ULT	C = 1	8h	меньше (без знака)
cc_ULE	$(Z \vee C) = 1$	Fh	меньше или равно (без знака)
cc_UGE	C = 0	9h	больше или равно (без знака)
cc_UGT	$(Z \vee C) = 0$	Eh	больше (без знака)
cc_SLT	(N ⊕ V) = 1	Ch	меньше (со знаком)
cc_SLE	$(Z \vee (N \oplus V)) = 1$	Bh	меньше или равно (со знаком)
cc_SGE	$(N \oplus V) = 0$	Dh	больше или равно (со знаком)
cc_SGT	$(Z \lor (N \oplus V)) = 0$	Ah	больше (со знаком)
cc_NET	$(Z \vee E) = 0$	1h	если сравниваемые операнды не эквивалентны и один из операндов не равен наименьшему отрицательному числу

Мнемоническое обозначение операций		
(op1) ← (op2)	(ор2) копируется в (ор1)	
(op1) + (op2)	(ор2) прибавляется к (ор1)	
(op1) - (op2)	(ор2) вычитается из (ор1)	
(op1) * (op2)	(ор2) умножается на (ор1)	
(op1) / (op2)	(ор1) делится на (ор2)	
(op1) ∧ (op2)	выполняется операция побитового логического И над операндами	
(op1) v (op2)	выполняется операция побитового логического ИЛИ над операндами	
(op1) ⊕ (op2)	выполняется операция побитового исключающего ИЛИ над операндами	

Email: <u>support@kaskod.ru</u> <u>http://www.kaskod.ru</u> тел.: (812) 466-5784, тел.: (812) 476-0795, факс.: (812) 466-5401 196625, Санкт-Петербург, Павловск, Фильтровское шоссе, 3

(op1) ⇔ (op2)	(ор2) сравнивается (ор1)
(op1) mod (op2) вычисляется остаток от деления (op1) на (op2)	
¬ (op1)	побитовая инверсия (ор1)

Флаги состояния		
*	стандартная установка значения флага, соответствующая функции флага и выполняемой инструкции	
S	установка значения флага по правилам, отличающимся от стандартных	
-	выполнение инструкции не влияет на флаг	
0	значение флага всегда обнуляется при выполнении инструкции	
NOR	флаг содержит инверсию результата выполнения операции логического ИЛИ над содержимым двух битовых операндов инструкции	
AND	флаг содержит результат выполнения операции логического И над содержимым двух битовых операндов инструкции	
OR	флаг содержит результат выполнения операции логического ИЛИ над содержимым двух битовых операндов инструкции	
XOR	флаг содержит результат выполнения операции исключающего ИЛИ над содержимым двух битовых операндов инструкции	
В	флаг содержит значение битового операнда до выполнения инструкции	
B#	флаг содержит инверсию значения битового операнда до выполнения инструкции	

Условные обозначения в мнемониках инструкций			
:	каждый из четырех символов после ":" представляет собой один бит		
:ii	2-битовый адрес РОН (Rw _; : R0, R1, R2, R3)		
:##	2-битовая непосредственная константа ($\#irang_2$)		
:.###	3-битовая непосредственная константа (#data ₃)		
С	4-битовый номер условия перехода сс		
n	4-битовый номер РОН (Rw _n или Rb _n)		
m	4-битовый номер РОН (Rw _m или Rb _m)		
q	4-битовый номер разряда 2-байтового операнда QQ		
z	4-битовый номер разряда 2-байтового операнда ZZ		

#	4-битовая непосредственная константа (#data₄)		
t:ttt0	7-битовый непосредственный номер вектора прерывания		
SS	8-битовый номер сегмента (0255 для всех контроллеров, кроме С166; 2-битовый номер для С166, равный 03)		
QQ	8-битовый адрес регистра РОН или SFR (bitoff) для адресации бита		
ZZ	8-битовый адрес регистра РОН или SFR (bitoff) для адресации бита		
rr	8-битовое смещение для относительных переходов (rel)		
RR	8-битовый адрес регистра РОН или SFR		
##	8-битовая непосредственная константа (#data ₈)		
## xx	8-битовая непосредственная константа, представленная двумя байтами, из которых содержимое байта хх не имеет значения		
@@	8-битовая непосредственная константа (#mask _я)		
PP 0:00PP	10-битовый номер страницы		
MM MM	16-битовый непосредственный внутрисегментный адрес (caddr) - младший и старший байт соответственно		
## ##	16-битовая непосредственная константа (#data ₁₆) - младший и старший байт соответственно		

Типы данных			
Тип данных	Разрядность	Аналог на языке С/С++	
BIT	1 бит	bool	
BYTE	8 бит	signed char или unsigned char в зависимости от инструкции	
WORD	16 бит	signed int или unsigned int в зависимости от инструкции	
DOUBLEWORD	32 бита	signed long или unsigned long в зависимости от инструкции	

Наименьшее отрицательное число для типа данных WORD равно минус 32768 (0х8000). Наименьшее отрицательное число для типа данных BYTE равно минус 128 (0х80).

Стек увеличивается в сторону младших адресов, поэтому при увеличении стека содержимое указателя стека SP уменьшается на 2 (т.к. стек работает только с данными типа WORD).

ADD Целочисленное сложение

Синтаксис ADD op1, op2

Действие $(op1) \leftarrow (op1) + (op2)$

Тип данных WORD

Описание Выполняется сложение содержимого двух операндов,

представленных в дополнительном коде – источника ор2 и

приемника ор1. Сумма сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Устанавливается, если произошло арифметическое переполнение, т. е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел перенос из старшего разряда для указанного типа данных.
 В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
ADD	Rw _n , Rw _m	00 nm	2
ADD	Rw, [Rw,]	08 n:10ii	2
ADD	RW_n , $[RW_i +]$	08 n:11ii	2
ADD	Rw, #data,	08 n:0###	2
ADD	reg, #data ₁₆	06 RR ## ##	4
ADD	reg, mem	02 RR MM MM	4
ADD	mem, reg	04 RR MM MM	4

ADDB Целочисленное сложение

Синтаксис ADDB op1, op2

Действие $(op1) \leftarrow (op1) + (op2)$

Тип данных ВҮТЕ

Описание Выполняется сложение содержимого двух операндов,

представленных в дополнительном коде – источника ор2 и

приемника ор1. Сумма сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло арифметическое переполнение, т. е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел перенос из старшего разряда для указанного типа данных.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
ADDB	Rb _n , Rb _m	01 nm	2
ADDB	Rb, [Rw,]	09 n:10ii	2
ADDB	Rb, [Rw,+]	09 n:11ii	2
ADDB	Rb, #data ₃	09 n:0###	2
ADDB	reg, #data ₈	07 RR ## xx	4
ADDB	reg, mem	03 RR MM MM	4
ADDB	mem, reg	05 RR MM MM	4

ADDC Целочисленное сложение с переносом

Синтаксис ADDC op1, op2

Действие $(op1) \leftarrow (op1) + (op2) + (C)$

Тип данных WORD

Описание Выполняется сложение содержимого трех операндов –

источника op2, приемника op1 и бита переноса C, где операнды op1 и op2 – числа в дополнительном коде. Сумма сохраняется в op1. Эта инструкция может использоваться для вычислений с повышенной точностью.

повышенной точнос

Флаги состояния

- E Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю и флаг Z был установлен до выполнения инструкции.В противном случае сбрасывается.
- V Устанавливается, если произошло арифметическое переполнение, т. е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел перенос из старшего разряда. В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
ADDC	Rw _n , Rw _m	10 nm	2
ADDC	Rw _n , [Rw _i]	18 n:10ii	2
ADDC	RW_n , $[RW_i +]$	18 n:11ii	2
ADDC	Rw _n , #data ₃	18 n:0###	2
ADDC	reg, #data ₁₆	16 RR ## ##	4
ADDC	reg, mem	12 RR MM MM	4
ADDC	mem, reg	14 RR MM MM	4

ADDCB Целочисленное сложение с переносом

Синтаксис ADDCB op1, op2

Действие $(op1) \leftarrow (op1) + (op2) + (C)$

Тип данных ВҮТЕ

Описание Выполняется сложение содержимого трех операндов –

источника op2, приемника op1 и бита переноса C, где операнды op1 и op2 – числа в дополнительном коде. Сумма сохраняется в op1. Эта инструкция может использоваться для вычислений с

повышенной точностью.

Флаги состояния

- Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю и флаг Z был установлен до выполнения инструкции.В противном случае сбрасывается.
- V Устанавливается, если произошло арифметическое переполнение, т. е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- C Устанавливается, если произошел перенос из старшего разряда. В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер
ADDCB	Rb _n , Rb _m	11 nm	2
ADDCB	Rb, [Rw,]	19 n:10ii	2
ADDCB	Rb, [Rw,+]	19 n:11ii	2
ADDCB	Rb _n , #data ₃	19 n:0###	2
ADDCB	reg, #data ₈	17 RR ## xx	4
ADDCB	reg, mem	13 RR MM MM	4
ADDCB	mem, reg	15 RR MM MM	4

AND Логическое И

Синтаксис AND op1, op2

Действие $(op1) \leftarrow (op1) \land (op2)$

Тип данных WORD

Описание Выполняется побитовая операция логического И над

содержимым операндов источника ор2 и приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
AND	RW_{m} , RW_{m}	60 nm	2
AND	Rw, [Rw,]	68 n:10ii	2
AND	RW_n , $[RW_i +]$	68 n:11ii	2
AND	Rw, #data,	68 n:0###	2
AND	reg, #data ₁₆	66 RR ## ##	4
AND	reg, mem	62 RR MM MM	4
AND	mem, reg	64 RR MM MM	4

ANDB Логическое И

Синтаксис ANDB op1, op2

Действие $(op1) \leftarrow (op1) \land (op2)$

Тип данных ВҮТЕ

Описание Выполняется побитовая операция логического И над

содержимым операндов источника ор2 и приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
ANDB	Rb _n , Rb _m	61 nm	2
ANDB	Rb, [RW;]	69 n:10ii	2
ANDB	Rb_n , $[Rw_i +]$	69 n:11ii	2
ANDB	Rb _n , #data ₃	69 n:0###	2
ANDB	reg, #data ₈	67 RR ## xx	4
ANDB	reg, mem	63 RR MM MM	4
ANDB	mem, reg	65 RR MM MM	4

ASHR Арифметический сдвиг в сторону младших адресов

Синтаксис ASHR op1, op2

Действие

(count)
$$\leftarrow$$
 (op1)
(V) \leftarrow 0, (C) \leftarrow 0
DO WHILE ((count) \neq 0)
(V) \leftarrow (C) \vee (V), (C) \leftarrow (op1_o)
(op1_n) \leftarrow (op1_{n+1}) [n = 0...14]
(count) \leftarrow (count) - 1
END WHILE

Тип данных WORD

Описание

Арифметически сдвигается содержимое приемника ор1 на количество разрядов, определяемое источником ор2. Сдвиг производится в сторону младших разрядов. Для сохранения знака операнда ор1 старшие разряды результата заполняются нулями, если первоначально старший разряд был 0, или единицами, если старший разряд был 1. Флаг переполнения V используется как флаг округления. Младший значащий разряд сдвигается во флаг переноса С. Допустимые значения сдвига – от 0 до 15 включительно. Если ор2 является регистром общего назначения, то используются только 4 младших бита.

Флаги состояния

- Е Всегда сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- Устанавливается, если в любом цикле сдвига происходит переполнение (теряется 1 из флага С).
 Сбрасывается, если значение содержимого ор2 равно 0.
- С Принимает значение бита, сдвигаемого из младшего разряда ор1. Сбрасывается, если значение содержимого ор2 равно 0.
- N Устанавливается, если установлен старший разряд результата. В противном случае сбрасывается.

Мнемоника			Формат	Размер
ASHR	Rw_n ,	Rw_m	AC nm	2
ASHR	Rw,	#data,	BC #n	2

АТОМІС Временное запрещение обработки запросов на прерывание

Синтаксис

ATOMIC op1

Действие

```
(count) ← op1 [1 ≤ op1 ≤ 4]

IRQ_processing = Disable // запрещение обработки // запросов на // прерывание

DO WHILE ((count) ≠ 0 AND Class_B_IRQ ≠ TRUE)
... // выполнение инструкции (count) ← (count) - 1

END WHILE (count) = 0

IRQ_processing = Enable // разрешение обработки // запросов на // прерывание
```

Описание

Запрещается стандартная обработка запросов на прерывания от периферии и запросов класса A, а также обработка запросов от периферии контроллером PEC на время выполнения указанного количества инструкций. Действие ATOMIC распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие ATOMIC, определяется операндом ор1 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнения указанного количества инструкций пришел запрос класса B, действие ATOMIC прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают ATOMIC.

Флаги состояния

Ε	Z	V	С	Ν
_	-	-	-	_

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

Не изменяется.

Формат инструкции

Ν

Мнемоника	Формат	Размер
ATOMIC #irang	D1:00##-0	2

BAND Битовое логическое И

Синтаксис BAND op1, op2

Действие $(op1) \leftarrow (op1) \land (op2)$

Тип данных ВІТ

Описание Выполняется операция логического И над содержимым

источника ор2 и содержимым приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

Е Всегда сбрасывается.

Z Результат выполнения операции ИЛИ-НЕ над содержимым операндов.

V Результат выполнения операции ИЛИ над содержимым операндов.

С Результат выполнения операции И над содержимым операндов.

Результат выполнения операции исключающее ИЛИ над содержимым операндов.

Мнемоника	Формат	Размер
BAND bitaddr $_{z,z}$, bitad	ddr _{Q.q} 6A QQ ZZ qz	4

BCLR Очистка бита

Синтаксис BCLR op1

Действие $(op1) \leftarrow 0$

Тип данных ВІТ

Описание Обнуляется значение битового операнда ор 1. Эта

инструкция обычно используется для управления системой и

периферийными устройствами.

Флаги состояния

Е Всегда сбрасывается.

Z Содержит инверсное значение предыдущего состояния

указанного бита.

V Всегда сбрасывается.

С Всегда сбрасывается.

N Содержит предыдущее значение указанного бита.

Мнемоника		Формат	Размер
BCLR	$\operatorname{bitaddr}_{\scriptscriptstyle{\mathcal{Q},\mathrm{q}}}$	qE QQ	2

ВСМР Сравнение битов

Синтаксис ВСМР ор1, ор2

Действие (op1) ⇔ (op2)

Тип данных ВІТ

Описание Выполняется сравнение содержимого операнда ор1 с

содержимым операнда ор2. Результат не сохраняется.

Изменяются только флаги состояния.

Флаги состояния

Е Всегда сбрасывается.

Z Результат выполнения операции ИЛИ-НЕ над содержимым операндов.

V Результат выполнения операции ИЛИ над содержимым операндов.

С Результат выполнения операции И над содержимым операндов.

Результат выполнения операции исключающего ИЛИ над содержимым операндов.

Мнемоника	Формат	Размер
${\tt BCMP\ bitaddr}_{\tt z.z},\ {\tt bitaddr}_{\tt Q.q}$	2A QQ ZZ qz	4

BFLDH Битовое поле старшего байта

Синтаксис BFLDH op1, op2, op3

Действие $(tmp) \leftarrow (op1)$

(high byte(tmp))
$$\leftarrow$$
 ((high byte(tmp) $\land \neg op2$) $\lor op3$) (op1) \leftarrow (tmp)

Тип данных WORD

Описание Производится побитная замена старшего байта содержимого

приемника ор1 значениями источника ор3. Маской замены являются значения битов операнда ор2. Если значение бита равно 1, то производится замена в соответствующем бите приемника.

Те биты, которые необходимо оставить без изменения, должны иметь значение 0 в соответствующих разрядах ор2 и ор3. Иначе, если бит в ор3 равен 1, то установится соответствующий бит в ор1.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если старший и младший байты результата равны нулю. В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд старшего байта результата. В противном случае сбрасывается.

Мнемоника			Формат	Размер
BFLDH bitoff _o ,	#mask ₈ ,	#data _s	1A QQ ## @@	4

BFLDL Битовое поле младшего байта

Синтаксис BFLDL op1, op2, op3

Действие $(tmp) \leftarrow (op1)$

(low byte(tmp)
$$\leftarrow$$
 ((low byte(tmp) $\land \neg op2$) $\lor op3$) (op1) \leftarrow (tmp)

Тип данных WORD

Описание Производится побитная замена младшего байта содержимого

приемника ор1 значениями источника ор3. Маской замены являются значения битов операнда ор2. Если значение бита равно 1, то производится замена в соответствующем бите приемника.

Те биты, которые необходимо оставить без изменения, должны иметь значение 0 в соответствующих разрядах ор2 и ор3. Иначе, если бит в ор3 равен 1, то установится соответствующий бит в ор1.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если старший и младший байты результата ор1 равны нулю. В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд старшего байта результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер
BFLDL bitoff,	#mask, #data,	0A QQ @@ ##	4

ВМОV Битовая пересылка

Синтаксис BMOV op1, op2

Действие $(op1) \leftarrow (op2)$

Тип данных ВІТ

Описание Содержимое источника ор2 пересылается в приемник ор1.

Флаги устанавливаются соответственно биту источника.

Флаги состояния

Е Всегда сбрасывается.

Z Содержит инверсное значение предыдущего состояния источника.

V Всегда сбрасывается.

С Всегда сбрасывается.

N Содержит предыдущее состояние источника.

Мнемоника		Формат	Размер	
BMOV	bitaddr _{z,z} ,	bitaddr _{o.g}	4A QQ ZZ qz	4

ВМОVN Битовая пересылка с инверсией

Синтаксис BMOVN op1, op2

Действие $(op1) \leftarrow \neg (op2)$

Тип данных ВІТ

Описание Инвертированное значение источника ор 2 пересылается в

приемник ор 1. Флаги устанавливаются соответственно биту

источника.

Флаги состояния

Е Не изменяется.

Z Содержит инверсное значение предыдущего состояния

источника.

V Не изменяется.

С Не изменяется.

N Содержит предыдущее состояние источника.

Мнемоника		Формат	Размер
BMOVN bitaddr $_{z.z}$,	bitaddr _{o.g}	3A QQ ZZ qz	4

BOR Битовое ИЛИ

Синтаксис BOR op1, op2

Действие $(op1) \leftarrow (op1) \lor (op2)$

Тип данных ВІТ

Описание Выполняется операция логического ИЛИ над содержимым

источника ор2 и приемника ор1. Результат записывается в ор1.

Флаги состояния

Е Всегда сбрасывается.

 Результат выполнения операции ИЛИ-НЕ над содержимым операндов.

Результат выполнения операции ИЛИ над содержимым операндов.

С Результат выполнения операции И над содержимым операндов.

Результат выполнения операции исключающего ИЛИ над содержимым операндов.

Мнем	юника		Формат	Размер
BOR	$bitaddr_{z.z}$,	$\operatorname{bitaddr}_{\operatorname{Q.q}}$	5A QQ ZZ qz	4

BSET Установка бита

Синтаксис BSET op1

Действие $(op1) \leftarrow 1$

Тип данных ВІТ

Описание Содержимое операнда ор 1 устанавливается в 1. Эта

инструкция обычно используется для управления системой и

периферийными устройствами.

Флаги состояния

Е Всегда сбрасывается.

Z Содержит инверсное значение предыдущего состояния

указанного бита.

V Всегда сбрасывается.

С Всегда сбрасывается.

N Содержит предыдущее состояние указанного бита.

Мнемо	ника	Формат	Размер
BSET	$\operatorname{bitaddr}_{\scriptscriptstyle \mathcal{Q},\mathrm{q}}$	qF QQ	2

BXOR Битовое исключающее ИЛИ

Синтаксис BXOR op1, op2

Действие (op1) \leftarrow (op1) \oplus (op2)

Тип данных ВІТ

Описание Выполняется операция исключающего ИЛИ над содержимым

источника ор2 и приемника ор1. Результат сохраняется в ор1.

Флаги состояния

Е Всегда сбрасывается.

 Результат выполнения операции ИЛИ-НЕ над содержимым операндов.

Результат выполнения операции ИЛИ над содержимым операндов.

С Результат выполнения операции И над содержимым операндов.

Результат выполнения операции исключающего ИЛИ над содержимым операндов.

Мнемс	ника		Формат	Размер
BXOR	$bitaddr_{z.z}$,	$\operatorname{bitaddr}_{\scriptscriptstyle{\mathbb{Q}.\mathfrak{q}}}$	7A QQ ZZ qz	4

Абсолютный вызов подпрограммы CALLA

CALLA op1, op2 Синтаксис

Действие

IF (op1) THEN
$$(SP) \leftarrow (SP) - 2$$

$$((SP)) \leftarrow (IP)$$

$$(IP) \leftarrow (op2)$$
FIGE

ELSE

... // выполнение следующей инструкции END IF

Описание

Если выполняется условие, указанное в ор1 (см. коды условий перехода), то осуществляется переход внутри сегмента по адресу, указанному в op2. Значение указателя стека SP уменьшается на 2 и содержимое указателя инструкций IP помещается на вершину системного стека. Поскольку ІР всегда указывает на инструкцию, следующую за переходом, то значение, сохраненное в стеке, представляет собой адрес возврата для вызываемой подпрограммы. Если условие не выполняется, никаких действий не производится и следующая инструкция выполняется как обычно.

Флаги состояния

Ε	Z	V	С	Ν
_	-	-	-	

Ε Не изменяется.

7 Не изменяется.

Не изменяется.

C Не изменяется.

Ν Не изменяется.

Мнемоника		Формат	Размер
CALLA	cc, caddr	CA c0 MM MM	4

CALLI Косвенный вызов подпрограммы

CALLI op1, op2 Синтаксис

Действие

IF (op1) THEN
$$(SP) \leftarrow (SP) - 2$$

$$((SP)) \leftarrow (IP)$$

$$(IP) \leftarrow (op2)$$
ELSE

... // выполнение следующей инструкции

END IF

Описание

Если выполняется условие, указанное в ор1 (см. коды условий перехода), то осуществляется переход внутри сегмента по адресу, равному содержимому ор2. Значение указателя стека SP уменьшается на 2 и содержимое указателя инструкций IP помещается на вершину системного стека. Поскольку IP всегда указывает на инструкцию, следующую за переходом, то значение, сохраненное в стеке, представляет собой адрес возврата для вызываемой подпрограммы. Если условие не выполняется, никаких действий не производится и следующая инструкция выполняется как обычно.

Флаги состояния

Ε	Z	V	С	N
	-	-	-	_

Ε Не изменяется.

7 Не изменяется.

Не изменяется.

C Не изменяется.

Ν Не изменяется.

Мнемоника		Формат	Размер
CALLI	cc, [Rw_]	AB cn	2

CALLR Относительный вызов подпрограммы

Синтаксис CALLR op1

Действие (SP)
$$\leftarrow$$
 (SP) - 2

$$((SP)) \leftarrow (IP)$$

 $(IP) \leftarrow (IP) + op1 * 2$

Описание Осуществляется безусловный переход внутри сегмента по

адресу, определяемому суммой указателя инструкций IP и удвоенного смещения ор 1. Смещение воспринимается как число в дополнительном коде. Значение указателя стека SP уменьшается на 2 и содержимое указателя инструкций IP помещается на вершину системного стека. Поскольку IP всегда указывает на инструкцию, следующую за переходом, то значение, сохраненное в стеке, представляет собой адрес возврата для вызываемой подпрограммы. Значение IP, используемое для вычисления адреса перехода, является адресом инструкции, следующей за CALLR.

Флаги состояния

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника	Формат	Размер
CALLB xol	BB rr	2

CALLS Межсегментный вызов подпрограммы

Синтаксис CALLS op1, op2

Действие (SP) \leftarrow (SP) - 2

$$((SP)) \leftarrow (CSP)$$

 $(SP) \leftarrow (SP) - 2$
 $((SP)) \leftarrow (IP)$
 $(CSP) \leftarrow op1$
 $(IP) \leftarrow op2$

Описание Осуществляется безусловный переход по полному 24-битовому

адресу. Номер сегмента определяется операндом ор1, а внутрисегментное смещение – операндом ор2. Содержимое указателя команд IP и указателя сегмента CSP помещаются на вершину системного стека. Значение указателя стека SP перед каждым занесением на стек уменьшается на 2. Поскольку IP всегда указывает на инструкцию, следующую переходом, значение, сохраненное в стеке, представляет собой адрес возврата для вызываемой подпрограммы.

Флаги состояния

E	Z	V	С	N
	_	_	_	

- Е Не изменяется.
- Z Не изменяется.
- V Не изменяется.
- С Не изменяется.
- N Не изменяется.

Мнемоника			Формат	Размер
CALLS	sea.	caddr	DA SS MM MM	4

СМР Целочисленное сравнение

Синтаксис СМР op1, op2

Действие (op1) ⇔ (op2)

Тип данных WORD

Описание Сравнивается содержимое операнда ор 1 с содержимым

операнда ор2 посредством выполнения вычитания в двоичном дополнительном коде ор2 из ор1. Флаги устанавливаются по правилам вычитания. Операнды остаются неизменными.

Флаги состояния

- Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу.
 - В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
CMP	Rw _n , Rw _m	40 nm	2
CMP	Rw, [Rw,]	48 n:10ii	2
CMP	RW_n , $[RW_i +]$	48 n:11ii	2
CMP	Rw,, #data,	48 n:0###	2
CMP	reg, #data ₁₆	46 RR ## ##	4
CMP	reg, mem	42 RR MM MM	4

СМРВ Целочисленное сравнение

Синтаксис СМРВ ор1, ор2

Действие (op1) ⇔ (op2)

Тип данных ВҮТЕ

Описание Сравнивается содержимое операнда ор1 и операнда

ор2 посредством выполнения вычитания в двоичном

дополнительном коде op2 из op1. Флаги устанавливаются по правилам вычитания. Операнды остаются неизменными.

Флаги состояния

Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу.

В противном случае сбрасывается.

- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
CMPB	Rb _n , Rb _m	41 nm	2
CMPB	Rb _n , [Rw _i]	49 n:10ii	2
CMPB	Rb_n , $[Rw_i +]$	49 n:11ii	2
CMPB	Rb, #data,	49 n:0###	2
CMPB	reg, #data ₁₆	47 RR ## xx	4
CMPB	reg, mem	43 RR MM MM	4

СМРD1 Целочисленное сравнение с уменьшением на единицу

Синтаксис CMPD1 op1, op2

Действие $(op1) \Leftrightarrow (op2)$

(op1) ← (op1) - 1

Тип данных WORD

Описание Содержимое приемника ор1 сравнивается с содержимым

источника ор2 посредством выполнения вычитания в двоичном дополнительном коде ор2 из ор1. В качестве операнда ор1 могут выступать только регистры РОН. После сравнения содержимое приемника ор1 уменьшается на 1. Используя флаги и инструкции ветвления можно реализовывать любые циклы. Эта инструкция используется для уменьшения времени

выполнения циклов.

Флаги состояния

Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу.

В противном случае сбрасывается.

- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий бит результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
CMPD1	Rw _n , #data ₄	A0 #n	2
CMPD1	Rw _n , #data ₁₆	A6 Fn ## ##	4
CMPD1	Rw _n , mem	A2 Fn MM MM	4

СМРD2 Целочисленное сравнение с уменьшением на 2

Синтаксис СМРD2 op1, op2

Действие $(op1) \Leftrightarrow (op2)$

 $(op1) \leftarrow (op1) - 2$

Тип данных WORD

Описание Содежимое приемника ор1 сравнивается с содержимым

источника ор2 посредством выполнения вычитания в двоичном дополнительном коде ор2 из ор1. В качестве операнда ор1 могут выступать только регистры РОН. После сравнения содержимое приемника ор1 уменьшается на 2. Используя флаги и инструкции ветвления можно реализовывать любые циклы. Эта инструкция используется для уменьшения времени

выполнения циклов.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ика		Формат	Размер
CMPD2	Rw _n ,	#data ₄	B0 #n	2
CMPD2	RW_n ,	#data ₁₆	B6 Fn ## ##	4
CMPD2	Rw_n ,	mem	B2 Fn MM MM	4

СМРІ1 Целочисленное сравнение с увеличением на единицу

Синтаксис CMPI1 op1, op2

Действие $(op1) \Leftrightarrow (op2)$

(op1) ← (op1) + 1

выполнения циклов.

Тип данных WORD

Описание Содежимое приемника ор1 сравнивается с содержимым

источника ор2 посредством выполнения вычитания в двоичном дополнительном коде ор2 из ор1. В качестве операнда ор1 могут выступать только регистры РОН. После сравнения содержимое приемника ор1 увеличивается на 1. Используя флаги и инструкции ветвления можно реализовывать любые

циклы. Эта инструкция используется для уменьшения времени

Флаги состояния

E Z V C N * * * S *

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
CMPI1	Rw _n , #data ₄	80 #n	2
CMPI1	Rw _n , #data ₁₆	86 Fn ## ##	4
CMPI1	Rw _n , mem	82 Fn MM MM	4

СМРІ2 Целочисленное сравнение с увеличением на 2

Синтаксис CMPI2 op1, op2

Действие (op1) ⇔ (op2)

циклы.

 $(op1) \leftarrow (op1) + 2$

Тип данных WORD

Описание Содежимое приемника ор 1 сравнивается с содержимым

источника op2 посредством выполнения вычитания в двоичном дополнительном коде op2 из op1. В качестве операнда op1 могут выступать только регистры POH. После всравнения содержимое приемника op1 увеличивается на 2. Используя флаги и инструкции ветвления можно реализовывать любые

Эта инструкция используется для уменьшения времени выполнения циклов.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
CMPI2	Rw _n , #data ₄	90 #n	2
CMPI2	Rw _n , #data ₁₆	96 Fn ## ##	4
CMPI2	Rw _n , mem	92 Fn MM MM	4

CPL Поразрядная инверсия

Синтаксис CPL op1

Действие $(op1) \leftarrow \neg (op1)$

Тип данных WORD

Описание Вычисляется поразрядная инверсия содержимого операнда

ор 1. Результат сохраняется в ор 1.

Флаги состояния

- Е Устанавливается, если содержимое ор1 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
CPL	Rw _n	91 n0	2

CPLB Поразрядная инверсия

Синтаксис CPLB op1

Действие $(op1) \leftarrow \neg (op1)$

Тип данных ВҮТЕ

Описание Вычисляется поразрядная инверсия содержимого операнда

ор 1. Результат сохраняется в ор 1.

Флаги состояния

- Е Устанавливается, если содержимое ор1 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
CPLB	Rb _n	B1 n0	2

DISWDT Запрещение работы сторожевого таймера

Синтаксис DISWDT

Действие Запрещение работы сторожевого таймера

Описание Запрещается работа сторожевого таймера (WDT). WDT

начинает работать после сброса. После сброса эту инструкцию следует выполнить до выполнения инструкции перезапуска сторожевого таймера (SRVWDT) или инструкции конца инициализации (EINIT). После выполнения одной из этих

инструкций, DISWDT перестает действовать.

Чтобы избежать случайного выполнения эта инструкция

является защищенной.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 DISWDT
 A5 5A A5 A5
 4

DIV Деление со знаком (16 разрядов / 16 разрядов)

Синтаксис DIV op1

Действие $(MDL) \leftarrow (MDL) / (op1)$

 $(MDH) \leftarrow (MDL) \mod (op1)$

Тип данных WORD

Описание Выполняется деление содержимого 16-разрядного приемника

MDL (младшее слово 32-разрядного регистра MD) на содержимое 16-разрядного источника ор1. Оба операнда рассматриваются как числа в дополнительном коде. Частное сохраняется в MDL, остаток сохраняется в MDH (старшем слове

регистра MD).

Инструкция DIV выполняется 20 машинных циклов. DIV является прерываемой инструкцией. Если во время выполнения DIV произошло прерывание, то устанавливается бит MULIP в регистре PSW и деление откладывается до выхода из обработчика прерывания.

Флаги состояния

E	Z	V	С	N
0	*	S	0	*

- Е Всегда сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных или если содержимое делителя ор1 было равно 0.

В противном случае сбрасывается.

- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемог	ника	Формат	Размер
DIV	Rw_	4B nn	2

DIVL Деление со знаком (32 разряда / 16 разрядов)

Cuntakcuc DIVL op1

Действие (MDL) \leftarrow (MD) / (op1)

 $(MDH) \leftarrow (MD) \mod (op1)$

Тип данных WORD, DOUBLE WORD

Описание Выполняется деление содержимого 32-разрядного приемника MD на содержание 16-разрядного источника ор1. Оба операнда

мо на содержание то-разрядного источника ор т. Ооа операнда рассматриваются как числа в дополнительном коде. Частное со знаком сохраняется в MDL (младшем слове регистра MD), остаток сохраняется в MDH (старшем слове регистра MD). Инструкция DIVL выполняется 20 машинных циклов. DIVL является прерываемой инструкцией. Если во время выполнения DIVL произошло прерывание, то устанавливается бит MULIP в регистре PSW и деление откладывается до выхода из

обработчика прерывания.

Флаги состояния

Ε	Z	V	С	Ν
0	*	S	0	*

- Е Всегда сбрасывается.
- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных или если содержимое делителя ор1 было равно 0.
 В противном случае сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
DIVL	Rw_	6B nn	2

DIVLU Беззнаковое деление

(32 разряда / 16 разрядов)

Синтаксис DIVLU op1

Действие $(MDL) \leftarrow (MD) / (op1)$

(MDH) \leftarrow (MD) mod (op1)

Тип данных WORD, DOUBLE WORD

Описание Выполняется беззнаковое деление содержимого 32-разрядного

приемника MD на содержимое 16-разрядного источника ор1. Частное сохраняется в MDL (младшем слове регистра MD), остаток сохраняется в MDH (старшем слове регистра MD). Инструкция DIVLU выполняется 20 машинных циклов. DIVLU является прерываемой инструкцией. Если во время выполнения DIVLU произошло прерывание, то устанавливается бит MULIP в регистре PSW и деление откладывается до выхода из

обработчика прерывания.

Флаги состояния

E	Z	V	С	N
0	*	S	0	*

- Е Всегда сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных или если содержимое делителя ор1 было равно 0.

В противном случае сбрасывается.

- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
DIVLU	Rw _n	7B nn	2

DIVU Беззнаковое деление (16 разрядов / 16 разрядов)

Синтаксис DIVU op1

Действие $(MDL) \leftarrow (MDL) / (op1)$

 $(MDH) \leftarrow (MDL) \mod (op1)$

Тип данных WORD

Описание Выполняется беззнаковое деление содержимого 16-разрядного

приемника (младшее слово регистра MD) на содержимое 16- разрядного источника ор1. Частное сохраняется в MDL (младшем слове регистра MD), остаток сохраняется в MDH

(старшем слове регистра MD).

Инструкция DIVU выполняется 20 машинных циклов. DIVU является прерываемой инструкцией. Если во время выполнения DIVU произошло прерывание, то устанавливается бит MULIP в регистре PSW и деление откладывается до выхода из

обработчика прерывания.

Флаги состояния

Ε	Z	V	С	Ν
0	*	S	0	*

- Е Всегда сбрасывается.
- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных или если содержимое делителя ор1 было равно 0.
 В противном случае сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер
DIVU	Rw_	5B nn	2

EINIT Конец инициализации

Синтаксис EINIT

Действие Конец инициализации.

Описание После сброса на вывод микроконтроллера RSTOUT# выдается

уровень лог.0, который сохраняется до выполнения EINIT, после чего выдается уровень лог.1. Это позволяет программе посылать внешним цепям микроконтроллера сигнал об успешной инициализации. После выполнения EINIT, инструкция

запрещения сторожевого таймера DISWDT игнорируется.

Инструкция EINIT используется для завершения

инициализационной части программы. Чтобы избежать

случайного выполнения эта инструкция является защищенной.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

C Не изменяется.N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 EINIT
 B5 4A B5 B5
 4

EXTR Переадресация регистров

Синтаксис EXTR op1

Действие

```
(count) \leftarrow op1 [1 < op1 < 4]
IRQ_processing = Disable // запрещение обработки
                             // запросов на
                             // прерывание
SFR_range = Extended // перенаправление 8битовой
                     // адресации в область ESFR
DO WHILE ((count) ≠ 0 AND Class B IRO ≠ TRUE)
 ... // выполнение следующей инструкции
 (count) \leftarrow (count) - 1
END WHILE
(count) = 0
SFR_range = Standard // отмена перенаправления
IRO processing = Enable
                             // разрешение обработки
                             // запросов на
                             // прерывание
```

Описание

При использовании адресации "reg", "bitoff", "bitaddr" производится обращение к расширенной области регистров специального назначения. На время выполнения указанного количества инструкций запрещается стандартная обработка запросов на прерывание от периферии и запросов класса А, а также обработка запросов от периферии контроллером РЕС. Действие ЕХТЯ распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие ЕХТЯ определяется ор1 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнениия указанного количества инструкций пришел запрос класса В, действие ЕХТЯ прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают инструкцию EXTR.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемо	ника	Формат	Размер
EXTR	#irang,	D1 :10##-0	4

ЕХТР Страничная переадресация

Синтаксис EXTP op1, op2

Действие

```
(count) ← op2 [ 1 ≤ op1 ≤ 4 ]

IRQ_processing = Disable // запрещение обработки // запросов на // прерывание

Data_Page = (op1)

DO WHILE ((count) ≠ 0 AND Class_B_IRQ ≠ TRUE)

... // выполнение следующей инструкции (count) ← (count) - 1

END WHILE (count) = 0

Data_Page = (DPPx)

IRQ_processing = Enable // разрешение обработки // запросов на // прерывание
```

Описание

Заменяется стандартная схема адресации для режимов косвенной ([...]) и 16-битовой непосредственной адресаций (mem). При адресации 10-битовый номер страницы (разряды адреса A23...A14) определяется не содержимым соответствующего регистра DPPx, а значением ор1. 14-битовое внутристраничное смещение (разряды адреса A13...A0) определяется младшими разрядами адреса, указанного в инструкциях.

На время выполнения указанного количества инструкций запрещается стандартная обработка запросов на прерывание от периферии и запросов класса A, а также обработка запросов от периферии контроллером РЕС. Действие ЕХТР распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие ЕХТР определяется ор2 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнения указанного количества инструкций пришел запрос класса B, действие ЕХТР прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают инструкцию EXTP.

Флаги состояния

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемон	ика	Формат	Размер
EXTP	Rw _m , #irang ₂	DC :01##-m	2
EXTP	#pag ₁₀ , #irang ₂	D7 :01##-0 PP 0:00P	P 4

EXTPR Страничная переадресация и переадресация регистров

Синтаксис Е

EXTPR op1, op2

Действие

```
(count) \leftarrow op2 [1 < op2 < 4]
IRQ_processing = Disable // запрещение обработки
                             // запросов на
                             // прерывание
Data_Page = (op1)
SFR_range = Extended // перенаправление 8битовой
                     // адресации в область ESFR
DO WHILE ((count) ≠ 0 AND Class_B_IRQ ≠ TRUE)
 ... // выполнение следующей инструкции
 (count) \leftarrow (count) - 1
END WHILE
(count) = 0
Data Page = (DPPx)
SFR_range = Standard // отмена перенаправления
IRQ_processing = Enable
                             // разрешение обработки
                             // запросов на
                             // прерывание
```

Описание

При использовании адресации "reg", "bitoff", "bitaddr" производится обращение к расширенной области регистров специального назначения. Кроме того, заменяется стандартная схема адресации для режимов косвенной ([...]) и 16-битовой непосредственной адресаций (mem). При адресации 10-битовый номер страницы (разряды адреса А23...А14) определяется не содержимым соответствующего регистра DPPx, а значением op1. 14-битовое внутристраничное смещение (разряды адреса А13...А0) определяется младшими разрядами адреса, указанного в инструкциях. На время выполнения указанного количества инструкций запрещается стандартная обработка запросов на прерывание от периферии и запросов класса А, а также обработка запросов от периферии контроллером PEC. Действие EXTPR распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие EXTPR определяется ор2 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнени я указанного количества инструкций пришел запрос класса В, действие EXTPR прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают EXTPR.

Флаги состояния

E Не изменяется.Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемон	ика	Формат	Размер
EXTPR	Rw_m , #irang ₂	DC :11##-m	2
EXTPR	#pag,, #irang,	D7 :11##-0 PP 0:00F	PP 4

EXTS Сегментная переадресация

Синтаксис EXTS op1

Действие

```
(count) \leftarrow op1 [1 < op1 < 4]
IRQ_processing = Disable
                             // запрещение обработки
                              // запросов на
                              // прерывание
Data_Segment = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_IRQ ≠ TRUE)
 ... // выполнение следующей инструкции
 (count) \leftarrow (count) - 1
END WHILE
(count) = 0
Data\_Page = (DPPx)
IRQ_processing = Enable
                              // разрешение обработки
                              // запросов на
                              // прерывание
```

Описание

Заменяет стандартную схему адресации для режимов косвенной ([...]) и 16-битовой непосредственной адресаций (mem). При адресации 8-битовый номер сегмента (разряды адреса А23...А16) определяется значением ор1. 16-битовое внутрисегментное смещение (разряды адреса A15...A0) определяется адресом, указанным в инструкциях. На время выполнения указанного количества инструкций запрещается стандартная обработка запросов на прерывание от периферии и запросов класса А, а также обработка запросов от периферии контроллером PEC. Действие EXTS распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие EXTS определяется ор2 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнения указанного количества инструкций пришел запрос класса B, действие EXTS прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают инструкцию EXTS.

Флаги состояния

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемон	іика	Формат	Размер
EXTS	Rw_, #irang	DC :00##-m	2
EXTS	#seg, #irang,	D7 :00##-0 SS 00	4

EXTSR Сегментная переадресация и переадресация регистров

Синтаксис

EXTSR op1, opt2

Действие

```
(count) \leftarrow op2 [1 < op2 < 4]
IRQ_processing = Disable // запрещение обработки
                            // запросов на
                             // прерывание
Data_Segment = (op1)
SFR_range = Extended // перенаправление 8битовой
                     // адресации в область ESFR
DO WHILE ((count) ≠ 0 AND Class_B_IRQ ≠ TRUE))
 ... // выполнение следующей инструкции
 (count) (count) - 1
END WHILE
(count) = 0
Data Page = (DPPx)
SFR_range = Standard // отмена перенаправления
IRQ_processing = Enable
                            // разрешение обработки
                             // запросов на
                             // прерывание
```

Описание

При использовании адресации "reg", "bitoff", "bitaddr" производится обращение к расширенной области регистров специального назначения. Кроме того, заменяется стандартная схема адресации для режимов косвенной ([...]) и 16-битовой непосредственной адресаций (mem). При адресации 8-битовый номер сегмента (разряды адреса A23...A16) определяется значением ор1. 16-битовое внутрисегментное смещение (разряды адреса A15...A0) определяется адресом, указанным в инструкциях.

На время выполнения указанного количества инструкций запрещается стандартная обработка запросов на прерывание от периферии и запросов класса A, а также обработка запросов от периферии контроллером PEC. Действие EXTSR распространяется уже на следующую инструкцию, поэтому не требуется дополнительных инструкций NOP. Количество инструкций, на которые распространяется действие EXT-SR определяется ор2 и принимает значение от 1 до 4 вне зависимости от количества требуемых циклов шины. Если во время выполнения указанного количества инструкций пришел запрос класса B, действие EXTSR прекращается и осуществляется обработка запроса в соответствии со стандартной процедурой.

Замечание

Устройства SAX-8XC166-X не поддерживают инструкцию EXTSR.

Флаги состояния

E Не изменяется.Z Не изменяется.V Не изменяется.C Не изменяется.

N Не изменяется.

Мнемон	ика	Формат	Размер
EXTSR	Rw_m , #irang ₂	DC :10##-m	2
EXTSR	#seg., #irang,	D7 :10##-0 SS 00	4

IDLE Режим ожидания

Синтаксис IDLE

Действие Переход в режим ожидания.

Описание Осуществляет переход в режим ожидания. В этом режиме ЦПУ

останавливается, в то время как периферийные устройства продолжают работу. Выход из режима осуществляется по прерыванию от внутрикристальных периферийных устройств или по внешнему прерыванию. Чтобы избежать случайного выполнения эта инструкция реализована в виде защищенной.

Флаги состояния

Е	Z	V	С	Ν

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника	Формат	Размер
IDLE	87 78 87 87	4

JB Относительный переход, если бит установлен

Синтаксис ЈВ ор1, ор2

Действие IF (op1) = 1 THEN

(IP)
$$\leftarrow$$
 (IP) + op2 * 2

ELSE

... // выполнение следующей инструкции

END IF

Тип данных ВІТ

Описание Если содержимое ор1 равно 1, то осуществляется переход

внутри сегмента по адресу, определяемому суммой

содержимого указателя инструкций IP и удвоенного смещения ор2. Смещение воспринимается как число в дополнительном коде. Для вычисления адреса перехода используется значение IP, равное адресу инструкции, следующей за JB. Если указанный бит равен 0, то выполняется инструкция, следующая за JB.

Флаги состояния

F Не изменяется.

7 Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника		Формат		Размер	
JB	$bitaddr_{\varrho,q}$,	rel	8A QQ rr	d0	4

JBC Относительный переход с очисткой бита, если бит установлен

JBC op1, op2 Синтаксис

Действие IF (op1) = 1 THEN

$$(op1) = 0$$

 $(IP) \leftarrow (IP) + op2 * 2$

ELSE

BIT

... // выполнение следующей инструкции

END IF

Тип данных Описание

Если содержимое ор1 равно 1, то ор1 обнуляется и осуществляется переход внутри сегмента по адресу, определяемому суммой содержимого указателя инструкций IP и удвоенного смещения op2. Смещение воспринимается

как число в дополнительном коде. Для вычисления адреса перехода используется значение ІР, равное адресу инструкции, следующей за JBC. Если указанный бит равен 0, выполняется

инструкция, следующая за ЈВС.

Флаги состояния

Е	Z	٧	С	N
0	B#	0	0	В

- Ε Всегда сбрасывается.
- 7 Содержит инверсное значение предыдущего состояния указанного бита.
- V Всегда сбрасывается.
- C Всегда сбрасывается.
- Ν Содержит предыдущее состояние указанного бита.

Мнемон	іика		Форма	ıΤ	Размер
JBC	bitaddr _{o.g} ,	rel	AA QQ	rr q0	4

JMPA Абсолютный условный переход

Синтаксис ЈМРА ор1, ор2

Действие IF (op1) = 1 THEN

(IP) \leftarrow op2

ELSE

... // выполнение следующей инструкции

END IF

Описание Если выполняется условие, указанное в ор1, осуществляется

переход внутри сегмента по адресу, указанному в ор2. Если условие не выполняется, никаких действий не производится и

выполняется инструкция, следующая за ЈМРА.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 JMPA
 cc, caddr
 EA c0 MM MM
 4

Косвенный условный переход **JMPI**

JMPI op1, op2 Синтаксис

Действие IF (op1) = 1 THEN

 $(IP) \leftarrow (op2)$

ELSE

... // выполнение следующей инструкции

END IF

Описание Если выполняется условие, указанное в ор1, осуществляется

переход внутри сегмента по адресу, равному содержимому ор2. Если условие не выполняется, никаких действий не производится и выполняется инструкция, следующая за JMPI.

Флаги состояния

F Не изменяется.

Ζ Не изменяется.

Не изменяется.

C Не изменяется.

Не изменяется.

Формат инструкции

Мнемоника Формат Размер 2

JMPI cc, [Rw.] 9C cn

JMPR Относительный условный переход

Синтаксис JMPR op1, op2

Действие IF (op1) = 1 THEN

ELSE

... // выполнение следующей инструкции

END IF

Описание Если выполняется условие, указанное в ор1, то осуществляется

переход внутри сегмента по адресу, определяемому суммой указателя инструкций IP и удвоенного смещения, указанного в ор2. Смещение воспринимается как число в дополнительном коде. Для вычисления адреса перехода используется значение IP, равное адресу инструкции, следующей за JMPR. Если условие не выполняется, никаких действий не производится и выполняется инструкция, следующая за JMPR.

Флаги состояния

<u>E Z V C N</u>

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника		Формат	Размер
JMPR	cc, rel	cD rr	2

Абсолютный межсегментный переход **JMPS**

JMPS op1, op2 Синтаксис

Действие $(CSP) \leftarrow op1$

(IP) ← op2

Описание Осуществляется безусловный переход по полному 24-битовому

адресу. Номер сегмента определяется операндом ор 1, а

внутрисегментное смещение - операндом ор2.

Флаги состояния

<u>E Z V C N</u>

F Не изменяется.

7 Не изменяется.

V Не изменяется.

C Не изменяется.

Ν Не изменяется.

Формат инструкции

Мнемоника Формат Размер 4

JMPS seg, caddr FA SS MM MM

JNB Относительный переход, если бит сброшен

Синтаксис JNB op1, op2

Действие IF (op1) = 1 THEN

$$(IP) \leftarrow (IP) + op2 * 2$$

ELSE

... // выполнение следующей инструкции

END IF

Тип данных ВІТ

Описание Если содержимое ор 1 равно 0, то осуществляется переход

внутри сегмента по адресу, определяемому суммой

содержимого указателя инструкций IP и удвоенного смещения ор2. Смещение воспринимается как число в дополнительном коде. Для вычисления адреса перехода используется значение IP, равное адресу инструкции, следующей за JNB. Если

указанный бит равен 1, выполняется инструкция, следующая за

JNB.

Флаги состояния

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника		Формат	Размер	
JNB	bitaddr _{o.g} ,	rel	9A QQ rr q0	4

JNBS Относительный переход с установкой бита, если бит сброшен

Синтаксис JNBS op1, op2

Действие

IF
$$(op1) = 0$$
 THEN $(op1) = 1$ $(IP) \leftarrow (IP) + op2 * 2$

ELSE

 \dots // выполнение следующей инструкции END IF

Тип данных ВІТ

Описание

Если содержимое ор1 равно 0, то осуществляется переход внутри сегмента по адресу, определяемому суммой содержимого указателя инструкций IP и удвоенного смещения ор2. Смещение воспринимается как число в дополнительном коде. Бит, указанный в ор1, перед переходом устанавливается в 1. Для вычисления адреса перехода используется значение IP, равное адресу инструкции, следующей за JNBS. Если указанный бит равен 1, выполняется инструкция, следующая за JNBS.

Флаги состояния

- Е Всегда сбрасывается.
- Z Содержит инверсное значение предыдущего состояния указанного бита.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Содержит предыдущее состояние указанного бита.

Мнемоника		Формат	Размер	
JNBS	bitaddr _{o.g} ,	rel	BA QQ rr q0	4

МОУ Пересылка данных

Синтаксис MOV op1, op2

Действие $(op1) \leftarrow (op2)$

Тип данных WORD

Описание Содержимое источника ор2 пересылается в приемник ор1.

Пересылаемые данные анализируются и выставляются флаги

состояния.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если содержимое ор2 равно нулю.В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд содержимого op2. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
MOV	Rw _n , Rw _m	F0 nm	2
MOV	Rw,, #data,	E0 #n	2
MOV	reg, #data ₁₆	E6 RR ## ##	4
MOV	RW_n , $[RW_m]$	A8 nm	2
MOV	RW_n , $[RW_m^+]$	98 nm	2
MOV	$[RW_m]$, RW_n	B8 nm	2
MOV	$[-Rw_m]$, Rw_n	88 nm	2
MOV	$[RW_m]$, $[RW_m]$	C8 nm	2
MOV	$[RW_n^+]$, $[RW_m]$	D8 nm	2
MOV	$[RW_{n}]$, $[RW_{m}^{+}]$	E8 nm	2
MOV	Rw_n , $[Rw_m + \#data_{16}]$	D4 nm ## ##	4
MOV	$[Rw_m + \#data_{16}]$, Rw_n	C4 nm ## ##	4
MOV	$[Rw_n]$, mem	84 On MM MM	4
MOV	mem, [Rw _n]	94 On MM MM	4
MOV	reg, mem	F2 RR MM MM	4
MOV	mem, reg	F6 RR MM MM	4

MOVB Пересылка данных

Синтаксис МОVB op1, op2

Действие $(op1) \leftarrow (op2)$

Тип данных ВҮТЕ

Описание Пересылается содержимое источника ор2 в приемник ор1.

Пересылаемые данные анализируются и выставляются флаги

состояния.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если содержимое ор2 равно нулю.В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд содержимого op2. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
MOVB	Rb _n , Rb _m	F1 nm	2
MOVB	Rb _n , #data ₄	E1 #n	2
MOVB	reg, #data ₈	E7 RR ## xx	4
MOVB	Rb _n , [Rw _m]	A9 nm	2
MOVB	Rb_{n} , $[Rw_{m}+]$	99 nm	2
MOVB	[Rw _m], Rb _n	B9 nm	2
MOVB	$[-Rw_m]$, Rb_n	89 nm	2
MOVB	$[RW_n]$, $[RW_m]$	C9 nm	2
MOVB	$[RW_n +]$, $[RW_m]$	D9 nm	2
MOVB	$[RW_n]$, $[RW_m^+]$	E9 nm	2
MOVB	Rb _n , [Rw _m +#data ₁₆]	F4 nm ## ##	4
MOVB	[Rwm+#data ₁₆], Rbm	E4 nm ## ##	4
MOVB	[Rw _n], mem	A4 On MM MM	4
MOVB	mem, [Rw _n]	B4 On MM MM	4
MOVB	reg, mem	F3 RR MM MM	4
MOVB	mem, reg	F7 RR MM MM	4

MOVBS Пересылка байта с расширением знака

Синтаксис MOVBS op1, op2

Действие (low byte op1) ← (op2)

IF $(op2_7) = 1$ THEN

(high byte (op1)) \leftarrow FFh

ELSE

(high byte (op1)) \leftarrow 00h

END IF

Тип данных WORD, BYTE

Описание Пересылается байт содержимого источника ор2 в младший

байт приемника ор1. Пересылаемые данные анализируются и выставляются флаги состояния. Старший байт приемника ор1 заполняется знаковым (старшим) битом источника ор2.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если содержимое ор2 равно нулю. В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд содержимого ор2. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
MOVBS	Rw, Rb,	D0 mn	2
MOVBS	reg, mem	D2 RR MM MM	4
MOVBS	mem, reg	D5 RR MM MM	4

MOVBSZ Пересылка байта с очисткой старшего байта

Синтаксис MOVBSZ op1, op2

Действие (low byte (op1)) \leftarrow (op2)

(high byte (op1)) \leftarrow 00h

Тип данных WORD, BYTE

Описание Пересылается байт содержимого источника ор2 в младший

байт приемника ор 1. Пересылаемые данные анализируются и выставляются флаги состояния. Старший байт приемника ор 1

заполняется нулями.

Флаги состояния

Е Всегда сбрасывается.

Z Устанавливается, если содержимое источника ор2 равно нулю. В противном случае сбрасывается.

V Не изменяется.

С Не изменяется.

N Всегда сбрасывается.

Мнемоника		ормат	Размер	
MOVBZ Rw, Rl	o _m C0	mn	2	
MOVBZ reg, m	em C2	RR MM MM	4	
MOVBZ mem, r	eg C5	RR MM MM	4	

MUL Умножение со знаком

Синтаксис MUL op1, op2

Действие (MD) \leftarrow (op1) * (op2)

Тип данных WORD

Описание Выполняется умножение содержимого двух 16-разрядных

операндов op1 и op2. Оба операнда рассматриваются как числа в дополнительном коде. Результат (32 разряда) сохраняется в

регистре MD.

Инструкция MUL выполняется 10 машинных циклов. MUL является прерываемой инструкцией. Если во время выполнения MUL произошло прерывание, то устанавливается бит MULIP в регистре PSW и умножение откладывается до выхода из

обработчика прерывания.

Флаги состояния

Ε	Z	V	С	Ν
0	*	S	0	0

- Е Всегда сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если результат не может быть представлен 16-разрядным числом. В противном случае сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника			Формат	Размер
MUL	Rw_n ,	Rw_m	OB nm	2

MULU Беззнаковое умножение

Синтаксис MULU op1, op2

Действие (MD) \leftarrow (op1) * (op2)

Тип данных WORD

Описание Выполняется беззнаковое умножение содержимого двух

16-разрядных операндов ор1 и ор2. Результат (32 разряда)

сохраняется в регистре MD.

Инструкция MULU выполняется 10 машинных циклов. MULU является прерываемой инструкцией. Если во время выполнения MULU произошло прерывание, то устанавливается бит MULIP в регистре PSW и умножение откладывается до выхода из

обработчика прерывания.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Устанавливается, если результат не может быть представлен 16-разрядным числом. В противном случае сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника			Формат	Размер
MULU	RW_n ,	Rw_{m}	1B nm	2

NEG Инверсия знака

Синтаксис NEG op1

Действие $(op1) \leftarrow 0 - (op1)$

Тип данных WORD

Описание Выполняется изменение знака операнда ор1. Результат

сохраняется в ор1.

Флаги состояния

- E Устанавливается, если содержимое op1 равно наименьшему oтрицательному числу. В противном случае сбрасывается.
- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий бит результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер	
NEG	Rw _n	81 n0	2	

NEGB Инверсия знака

Синтаксис NEGB op1

Действие (op1) \leftarrow 0 - (op1)

Тип данных ВҮТЕ

Описание Выполняется изменение знака операнда ор1. Результат

сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор1 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен в указанном типе данных. В противном случае сбрасывается.
- С Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер	
NEGB	Rb _n	A1 n0	2	

NOP Нет операции

Синтаксис NOP

Действие Пустая команда.

Описание Эта инструкция не вызывает никаких действий и не влияет на

флаги.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 NOP
 CC 00
 2

OR Логическое ИЛИ

Синтаксис OR op1, op2

Действие $(op1) \leftarrow (op1) \lor (op2)$

Тип данных WORD

Описание Выполняется побитовая операция логического ИЛИ над

содержимым операндов источника ор2 и приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника		ика	Формат	Размер	
	OR	Rw _n , Rw _m	70 nm	2	
	OR	Rw, [Rw,]	78 n:10ii	2	
	OR	Rw, [Rw, +]	78 n:11ii	2	
	OR	Rw, #data,	78 n:0###	2	
	OR	reg, #data ₁₆	76 RR ## ##	4	
	OR	reg, mem	72 RR MM MM	4	
	OR	mem, reg	74 RR MM MM	4	

ORB Логическое ИЛИ

Синтаксис ORB op1, op2

Действие $(op1) \leftarrow (op1) \lor (op2)$

Тип данных ВҮТЕ

Описание Выполняется побитовая операция логического ИЛИ над

содержимым операндов источника ор2 и приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

- E Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер	
ORB	Rb _n , Rb _m	71 nm	2	
ORB	Rb _n , [Rw _i]	79 n:10ii	2	
ORB	Rb _n , [Rw _i +]	79 n:11ii	2	
ORB	Rb, #data ₃	79 n:0###	2	
ORB	reg, #data _s	77 RR ## xx	4	
ORB	reg, mem	73 RR MM MM	4	
ORB	mem, reg	75 RR MM MM	4	

PCALL Абсолютный вызов подпрограмм с сохранением слова на стеке

Синтаксис PCALL op1, op2

Действие $(tmp) \leftarrow (op1)$

$$(SP) \leftarrow (SP) - 2$$

 $((SP)) \leftarrow (tmp)$
 $(SP) \leftarrow (SP) - 2$
 $((SP)) \leftarrow (IP)$
 $(IP) \leftarrow op2$

Тип данных WORD

Описание На вершину системного стека помещается содержимое

операнда ор1 и содержимое указателя инструкций IP и осуществляется переход по адресу, определяемому операндом ор 2. Значение указателя стека SP перед каждым занесением на стек уменьшается на 2. Поскольку IP всегда указывает на инструкцию, следующую за PCALL, значение, сохраненное в стеке, представляет собой адрес возврата для вызываемой подпрограммы.

Флаги состояния

- Устанавливается, если содержимое операнда op1 равно наименьшему отрицательному числу.
 В противном случае сбрасывается.
- Z Устанавливается, если содержимое операнда ор1 равно нулю. В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд содержимого op1. В противном случае сбрасывается.

Мнемоника		Формат	Размер	
PCALL	reg, caddr	E2 RR MM MM	4	

РОР Извлечь слово из системного стека

Синтаксис РОР ор1

Действие $(tmp) \leftarrow ((SP))$

$$(SP) \leftarrow (SP) + 2$$

 $(op1) \leftarrow (tmp)$

Тип данных WORD

Описание С вершины системного стека извлекается значение и

помещается в приемник в ор1. Затем указатель стека SP

увеличивается на 2.

Флаги состояния

- Устанавливается, если извлекаемое значение равно наименьшему отрицательному числу.В противном случае сбрасывается.
- Z Устанавливается, если значение извлекаемого слова равно нулю. В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд извлекаемого значениея. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
POP	reg	FC RR	2

PRIOR Счетчик нормализации

Синтаксис PRIOR op1, op2

Действие $(tmp) \leftarrow (op2)$

$$(count) \leftarrow 0$$

DO WHILE ((tmp
$$_{15}$$
) \neq 1 AND (count) \neq 15 AND (op2) \neq 0)

$$(tmp_n) \leftarrow (tmp_{n-1})$$

$$(count) \leftarrow (count) + 1$$

END WHILE

$$(op1) \leftarrow (count)$$

Тип данных WORD

Описание Вычисляется значение счетчика ор1, показывающее количество

битовых сдвигов в сторону старших разрядов, требуемых для нормализации содержимого операнда ор2, (чтобы его старший значащий бит после сдвига был равен 1). Если содержимое ор2 равно нулю, то содержимое ор1 обнуляется и устанавливается флаг Z, в противном случае флаг Z сбрасывается. Эта

инструкция может использоваться для реализации вычислений с плавающей точкой.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если содержимое op2 равно нулю. В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Всегда сбрасывается.

Мнемоника			Формат	Размер
PRIOR	Rw_n ,	$Rw_{_{m}}$	2B nm	2

PUSH Поместить слово на стек

Синтаксис PUSH op1

Действие $(tmp) \leftarrow (op1)$

$$(SP) \leftarrow (SP) - 2$$

 $((SP)) \leftarrow (tmp)$

Тип данных WORD

Описание Помещает содержимое ор 1 на вершину системного стека после

уменьшения указателя стека SP на 2.

Флаги состояния

- Е Устанавливается, если помещаемое значение равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если помещаемое слово равно нулю.В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- N Устанавливается, если установлен старший значащий разряд помещаемого значения. В противном случае сбрасывается.

Мнемоника	Формат	Размер
PUSH reg	EC RR	2

PWRDN Режим пониженного потребления

Синтаксис PWRDN

Действие Микроконтроллер входит в режим пониженного потребления.

Описание Осуществляется переход всей внутренней периферии и

ЦПУ в режим пониженного энергопотребления до прихода сигнала внешнего сброса микроконтроллера. Для защиты от неправильного выполнения эта инструкция является

защищенной.

Выполнение команды PWRDN разрешено, когда к контакту немаскируемого запроса на прерывание NMI# приложено напряжение уровня лог.0, в противном случае команда не

выполняется.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 PWRDN
 97 68 97 97
 4

RET Возврат из подпрограммы

Синтаксис RET

Действие (IP) \leftarrow ((SP))

(SP) ← (SP) + 2

Описание Осуществляется возврат из подпрограммы. С вершины

системного стека извлекается значение и помещается в указатель инструкций IP для адресации следующей исполняемой инструкции. После извлечения указатель стека увеличивается на 2. Возврат из подпрограммы, вызванной с помощью CALLI, CALLR или CALLA, осуществляется на

инструкцию, следующую за вызовом.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 RET
 CB 00
 2

RETI Возврат из подпрограммы обработки прерывания

Синтаксис

RETI

Действие

```
(IP) \leftarrow ((SP))

(SP) \leftarrow (SP) + 2

IF (SYSCON.SGDTDIS = 0) THEN

(CSP) \leftarrow ((SP))

(SP) \leftarrow (SP) + 2

END IF

(PSW) \leftarrow ((SP))

(SP) \leftarrow (SP) + 2
```

Описание

Осуществляется возврат из подпрограммы обработки прерывания. С вершины системного стека извлекаются слова и помещаются в IP, CSP и PSW. После каждого извлечения указатель стека SP увеличивается на 2. Выполнение продолжается с инструкции, следующей за той, во время выполнения которой пришел запрос на прерывание (см. главу "Прерывания" документации на микроконтроллер). Предыдущее состояние ЦПУ восстанавливается после извлечения PSW. Значение CSP извлекается только, если разрешена сегментация (бит SGTDIS в регистре SYSCON равен нулю).

Флаги состояния

Ε	Z	V	С	N
S	S	S	S	S

- E Восстанавливается при извлечении PSW из стека.
- Z Восстанавливается при извлечении PSW из стека.
- V Восстанавливается при извлечении PSW из стека.
- С Восстанавливается при извлечении PSW из стека.
- N Восстанавливается при извлечении PSW из стека.

Мнемоника	Формат	Размер
RETT	FB 88	2

RETP Возврат из подпрограммы и извлечение слова

Синтаксис RETP op1

Действие (1

 $(IP) \leftarrow ((SP))$ $(SP) \leftarrow (SP) + 2$ $(tmp) \leftarrow ((SP))$ $(SP) \leftarrow (SP) + 2$ $(op1) \leftarrow (tmp)$

Тип данных WORD

Описание

Осуществляется возврат из подпрограммы. С вершины системного стека извлекается слово и помещается в указатель инструкций IP для адресации следующей исполняемой инструкции. После извлечения указатель стека увеличивается на 2. Затем с измененной вершины системного стека извлекается значение и записывается в приемник ор1, указатель стека еще раз увеличивается на 2. Возврат из подпрограммы, вызванной с помощью PCALL, осуществляется на инструкцию, следующую за вызовом.

Флаги состояния

E Z V C N

- Устанавливается, если извлекаемое в ор1 значение равно наименьшему отрицательному числу.
 В противном случае сбрасывается.
- Z Устанавливается, если значение извлекаемого слова равно нулю. В противном случае сбрасывается.
- V Не изменяется.
- С Не изменяется.
- Устанавливается, если установлен старший значащий разряд извлекаемого в ор1 значения.

В противном случае сбрасывается.

Мнемоника		Формат	Размер
RETP	reg	EB RR	2

RETS Межсегментный возврат из подпрограммы

Синтаксис RETS

Действие (IP) \leftarrow ((SP))

$$(SP) \leftarrow (SP) + 2$$

 $(CSP) \leftarrow ((SP))$
 $(SP) \leftarrow (SP) + 2$

Описание Осуществляется межсегментный возврат из подпрограммы.

С вершины системного стека извлекаются два значения и помещаются в указатель инструкций IP и указатель номера сегмента CSP для адресации следующей исполняемой инструкции. После каждого извлечения указатель стека увеличивается на 2. Возврат из подпрограммы, вызванной с помощью CALLS, осуществляется на инструкцию, следующую за вызовом.

Флаги состояния

Ε	Z	V	С	Ν
	_		_	

- Е Не изменяется.
- Z Не изменяется.
- V Не изменяется.
- С Не изменяется.
- N Не изменяется.

Мнемоника	Формат	Размер
RETS	DB 00	2

ROL Циклический сдвиг в сторону старших разрядов

Синтаксис

ROL op1, op2

Действие

(count)
$$\leftarrow$$
 (op2)
(C) \leftarrow 0
DO WHILE ((count) \neq 0)
(C) \leftarrow (op1₁₅)
(op1_n) \leftarrow (op1_{n-1}) [n = 1...15]
(op1₀) \leftarrow (C)
(count) \leftarrow (count) - 1
END WHILE

Тип данных

WORD

Описание

Осуществляется циклический сдвиг содержимого ор 1 в сторону старших разрядов на количество позиций, определяемое операндом ор 2. Разряд 15 циклически сдвигается в разряд 0 и во флаг переноса С. Допустимые значения количества сдвигов — от 0 до 15 включительно. Если количество сдвигов определяется содержимым РОН, то используется только четыре младших разряда.

Флаги состояния

- Е Всегда сбрасывается.
- Устанавливается если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- Устанавливается в значение последнего выдвинутого из ор1 старшего значащего разряда.
 Сбрасывается при нулевом количестве позиций.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемоника			Формат	Размер
ROL	Rw_n ,	Rw_m	OC nm	2
ROL	Rw,	#data,	1C #n	2

ROR Циклический сдвиг в сторону младших разрядов

Синтаксис RO

ROR op1, op2

Действие

END WHILE

Тип данных Описание

Осуществляется циклический сдвиг содержимого ор 1 в сторону младших разрядов на количество позиций, определяемое операндом ор 2. Разряд 0 циклически сдвигается в разряд 15 и во флаг переноса С. Допустимые значения количества сдвигов – от 0 до 15 включительно. Если количество сдвигов определяется содержимым РОН, то используется только четыре младших разряда.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается, если результат равен нулю.

В противном случае сбрасывается.

- V Устанавливается, если на любом этапе сдвига значение 1 выдвигается из флага переноса C.
 - Сбрасывается при нулевом количестве позиций.

 Устанавливается в значение последнего выдвинутого из ор1
 - старшего значащего бита.
 - Сбрасывается при нулевом количестве позиций.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Формат инструкции

C

Мнемоника			Формат	Размер
ROR	Rw_n ,	Rw _m	2C nm	2
ROR	Rw,	#data₄	3C #n	2

SCXT Переключение контекста

Синтаксис SCXT op1, op2

Действие $(tmp1) \leftarrow (op1)$

 $(tmp2) \leftarrow (op2)$ $(SP) \leftarrow (SP) - 2$ $((SP)) \leftarrow (tmp1)$ $(op1) \leftarrow (tmp2)$

Описание Осуществляется сохранение на вершине стека содержимого

регистра и загрузка регистра новым значением. После сохранения, перед загрузкой, указатель стека уменьшается на 2. Эта инструкция используется в основном для смены банка

РОН и сохранения МDС обработчиком прерывания.

Флаги состояния

E Z V C N

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Мнемоника		Формат	Размер	
SCXT	reg, #data ₁₆	C6 RR ## ##	4	
SCXT	reg, mem	D6 RR MM MM	4	

SHL Сдвиг в сторону старших адресов

Синтаксис SHL op1, op2

Действие

(count)
$$\leftarrow$$
 (op2)
(C) \leftarrow 0
DO WHILE ((count) \neq 0)
(C) \leftarrow (op1₁₅)
(op1_n) \leftarrow (op1_{n-1}) [n = 1...15]
(op1₀) \leftarrow 0
(count) \leftarrow (count) - 1
END WHILE

Тип данных WORD

Описание

Осуществляется сдвиг содержимого op1 в сторону старших разрядов на количество позиций, определяемое операндом op2. Младшие разряды op1 заполняются нулями. Старший значащий разряд выдвигается во флаг переноса С. Допустимые значения количества сдвигов – от 0 до 15 включительно. Если количество сдвигов определяется содержимым РОН, то используется только четыре младших разряда.

Флаги состояния

- Е Всегда сбрасывается.
- Z Устанавливается если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- Устанавливается в значение последнего выдвинутого из ор1 старшего значащего разряда.
 Сбрасывается при нулевом количестве позиций.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

SHL
$$RW_n$$
, RW_m 4C nm 2
SHL RW_n , #data, 5C #n 2

SHR Сдвиг в сторону младших адресов

Синтаксис SHR op1, op2

Действие

(count)
$$\leftarrow$$
 (op2)
(C) \leftarrow 0, (V) \leftarrow 0
DO WHILE ((count) \neq 0)
(V) \leftarrow (C) \vee (V)
(C) \leftarrow (op1₀), (op1_n) \leftarrow (op1_{n+1}) [n = 0...14]
(op1₁₅) \leftarrow 0
(count) \leftarrow (count) - 1
END WHILE

Тип данных WO

w WORD

Описание

Осуществляется сдвиг содержимого ор1 в сторону младших разрядов на количество позиций, определяемое операндом ор2. Старшие разряды ор1 заполняются нулями. Поскольку выдвигаемые биты представляют остаток, флаг переполнения V используется как флаг округления. Этот флаг совместно с флагом переноса C помогает пользователю определить, были ли потерянные биты остатка больше, меньше или равны половине младшего значащего бита. Допустимые значения количества сдвигов – от 0 до 15 включительно. Если количество сдвигов определяется содержимым РОН, то используется только четыре младших разряда.

Флаги состояния

Ε	Z	V	С	Ν
0	*	S	S	*

- Е Всегда сбрасывается.
- Устанавливается если результат равен 0.В противном случае сбрасывается.
- V Устанавливается если в любом цикле операции сдвига из флага переноса выдвигается 1.
 - Сбрасывается при нулевом количестве сдвигов.
- Устанавливается в значение последнего выдвинутого из ор1 старшего значащего бита.
 Сбрасывается при нулевом количестве сдвигов.
- N Устанавливается, если установлен старший значащий бит результата. В противном случае сбрасывается.

Мнемоника		Формат	Размер	
SHR	Rw_n ,	Rw _m	6C nm	2
SHR	Rw _n ,	#data ₄	7C #n	2

SRST Программный сброс

Синтаксис SRST

Действие Программный сброс.

Описание Выполняется программный сброс микроконтроллера.

Программный сброс аналогичен внешнему аппаратному сбросу. Во избежание случайного выполнения эта инструкция является

защищенной.

Флаги состояния

E	Z	V	С	N
0	0	0	0	0

Всегда сбрасывается.
 Всегда сбрасывается.
 Всегда сбрасывается.
 Всегда сбрасывается.
 Всегда сбрасывается.
 Всегда сбрасывается.

Мнемоника	Формат	Размер
SRST	B7 48 B7 B7	4

SRVWDT Перезапуск сторожевого таймера

Синтаксис SRVWDT

Действие Перезапуск сторожевого таймера.

Описание Перезагружается старший байт счетчика сторожевого таймера

значением из регистра WDTCON и очищается младший байт. После выполнения данной инструкции невозможно запретить работу сторожевого таймера до следующего сброса микроконтроллера. Во избежание случайного выполнения эта

инструкция является защищенной.

Флаги состояния

<u>E Z V C N</u>

Е Не изменяется.

Z Не изменяется.

V Не изменяется.

С Не изменяется.

N Не изменяется.

Формат инструкции

 Мнемоника
 Формат
 Размер

 SRVWDT
 A7 58 A7 A7
 4

SUB Целочисленное вычитание

Синтаксис SUB op1, op2

Действие $(op1) \leftarrow (op1) - (op2)$

Тип данных WORD

Описание Выполняется двоичное вычитание в дополнительном коде

содержимого источника ор2 из содержимого приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

E Устанавливается, если содержимое op2 равно наименьшему oтрицательному числу.

В противном случае сбрасывается.

- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- С Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
SUB	Rw _n , Rw _m	20 nm	2
SUB	Rw, [Rw,]	28 n:10ii	2
SUB	RW_n , $[RW_i +]$	28 n:11ii	2
SUB	Rw, #data,	28 n:0###	2
SUB	reg, #data ₁₆	26 RR ## ##	4
SUB	reg, mem	22 RR MM MM	4
SUB	mem, reg	24 RR MM MM	4

SUBB Целочисленное вычитание

Синтаксис SUBB op1, op2

Действие $(op1) \leftarrow (op1) - (op2)$

Тип данных ВҮТЕ

Описание Выполняется двоичное вычитание в дополнительном коде

содержимого источника ор2 из содержимого приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

E Устанавливается, если содержимое op2 равно наименьшему oтрицательному числу.

В противном случае сбрасывается.

- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемон	ника	Формат	Размер
SUBB	Rb _n , Rb _m	21 nm	2
SUBB	Rb _n , [Rw _i]	29 n:10ii	2
SUBB	Rb, [Rw,+]	29 n:11ii	2
SUBB	Rb, #data ₃	29 n:0###	2
SUBB	reg, #data ₈	27 RR ## xx	4
SUBB	reg, mem	23 RR MM MM	4
SUBB	mem, reg	25 RR MM MM	4

SUBC Целочисленное вычитание с переносом

Синтаксис SUBC op1, op2

Действие $(op1) \leftarrow (op1) - (op2) - (C)$

Тип данных WORD

Описание Выполняется вычитание содержимого источника ор2 и

бита переноса С из содержимого приемника ор 1. Результат

сохраняется в ор1. Эта инструкция используется для реализации вычислений с повышенной точностью.

Флаги состояния

- Е Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю и перед выполнением команды был установлен флаг Z.
 В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий бит результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
SUBC	Rw _n , Rw _m	30 nm	2
SUBC	Rw, [Rw,]	38 n:10ii	2
SUBC	RW_n , $[RW_i +]$	38 n:11ii	2
SUBC	Rw,, #data,	38 n:0###	2
SUBC	reg, #data ₁₆	36 RR ## ##	4
SUBC	reg, mem	32 RR MM MM	4
SUBC	mem, reg	34 RR MM MM	4

SUBCB Целочисленное вычитание с переносом

Синтаксис SUBCB op1, op2

Действие $(op1) \leftarrow (op1) - (op2) - (C)$

Тип данных ВҮТЕ

Описание Выполняется вычитание содержимого источника ор2 и

бита переноса С из содержимого приемника ор1. Результат

сохраняется в ор1. Эта инструкция используется для реализации вычислений с повышенной точностью.

Флаги состояния

- Е Устанавливается, если значение ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю и перед выполнением команды был установлен флаг Z.
 В противном случае сбрасывается.
- V Устанавливается, если произошло переполнение, т.е. результат не может быть представлен указанным типом данных. В противном случае сбрасывается.
- Устанавливается, если произошел заем.В противном случае сбрасывается.
- N Устанавливается, если установлен старший значащий бит результата. В противном случае сбрасывается.

Мнемон	ика	Формат	Размер
SUBCB	Rb _n , Rb _m	31 nm	2
SUBCB	Rb _n , [Rw _i]	39 n:10ii	2
SUBCB	Rb _n , [Rw _i +]	39 n:11ii	2
SUBCB	Rb _n , #data ₃	39 n:0###	2
SUBCB	reg, #data ₈	37 RR ## xx	4
SUBCB	reg, mem	33 RR MM MM	4
SUBCB	mem, reg	35 RR MM MM	4

TRAP Программное прерывание

Синтаксис TRAP op1

Действие

```
(SP) \leftarrow (SP) - 2

((SP)) \leftarrow (PSW)

IF (SYSCON.SGTDIS = 0) THEN

(SP) \leftarrow (SP) - 2

((SP)) \leftarrow (CSP)

(CSP) \leftarrow 0

END IF

(SP) \leftarrow (SP) - 2

((SP)) \leftarrow (IP)

(IP) \leftarrow op1 * 4
```

Описание

Производится обработка программного прерывания: на вершине системного стека сохраняется содержимое регистров PSW, CSP и IP и производится переход по адресу вектора прерывания, определяемому операндом ор1. Перед каждым сохранением значение указателя стека SP уменьшается на 2. Содержимое CSP сохраняется, если разрешена сегментация (бит SGTDIS в регистре SYSCON равен нулю). Переход на обработчик по адресу вектора прерывания осуществляется аппаратно после прихода запроса или программно с помощью инструкции TRAP. Обработчику не передается никакой дополнительной информации о том, какой тип перехода произошел. Сохранение PSW, CSP и IP производится аналогично аппаратному переходу. В отличие от аппаратного прерывания, уровень приоритета ЦПУ не изменяется. Для возврата из обработчика следует использовать инструкцию RETI.

Флаги состояния

Ε	Z	V	С	Ν

- Е Не изменяется.
- Z Не изменяется.
- V Не изменяется.
- С Не изменяется.
- N Не изменяется.

Мнемоника		Формат	Размер
TRAP	#trap,	9B t:ttt0	2

XOR Исключающее ИЛИ

Синтаксис XOR op1, op2

Действие $(op1) \leftarrow (op1) \oplus (op2)$

Тип данных WORD

Описание Выполняется операция побитового исключающего ИЛИ над

содержимым операнда ор2 и содержимым приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

- E Устанавливается, если содержимое ор2 равно наименьшему отрицательному числу. В противном случае сбрасывается.
- Устанавливается, если результат равен нулю.В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемс	оника	Формат	Размер
XOR	Rw _m , Rw _m	50 nm	2
XOR	Rw _n , [Rw _i]	58 n:10ii	2
XOR	RW_n , $[RW_i +]$	58 n:11ii	2
XOR	Rw_n , $\#data_3$	58 n:0###	2
XOR	reg, #data ₁₆	56 RR ## ##	4
XOR	reg, mem	52 RR MM MM	4
XOR	mem, reg	54 RR MM MM	4

XORB Исключающее ИЛИ

Синтаксис XORB op1, op2

Действие $(op1) \leftarrow (op1) \oplus (op2)$

Тип данных ВҮТЕ

Описание Выполняется операция побитового исключающего ИЛИ над

содержимым операнда ор2 и содержимым приемника ор1.

Результат сохраняется в ор1.

Флаги состояния

E Устанавливается, если содержимое op2 равно наименьшему oтрицательному числу.

В противном случае сбрасывается.

- Z Устанавливается, если результат равен нулю. В противном случае сбрасывается.
- V Всегда сбрасывается.
- С Всегда сбрасывается.
- N Устанавливается, если установлен старший значащий разряд результата. В противном случае сбрасывается.

Мнемо	ника	Формат	Размер
XORB	Rb _n , Rb _m	51 nm	2
XORB	Rb, [Rw,]	59 n:10ii	2
XORB	Rb, [Rw,+]	59 n:11ii	2
XORB	Rb, #data,	59 n:0###	2
XORB	reg, #data ₈	57 RR ## xx	4
XORB	reg, mem	53 RR MM MM	4
XORB	mem, rea	55 RR MM MM	4

Содержание

Обозначен	RNH	
ADD	Целочисленное сложение	6
ADDB	Целочисленное сложение	
ADDC	Целочисленное сложение с переносом	8
ADDCB	Целочисленное сложение с переносом	
AND	Логическое И	10
ANDB	Логическое И	
ASHR	Арифметический сдвиг в сторону младших адресов	
ATOMIC	Временное запрещение обработки запросов на прерывание.	
BAND	Битовое логическое И	
BCLR	Очистка бита	
BCMP	Сравнение битов	
BFLDH	Битовое поле старшего байта	
BFLDL	Битовое поле младшего байта	
BMOV	Битовая пересылка	
BMOVN	Битовая пересылка с инверсией	20
BOR	Битовое ИЛИ	
BSET	Установка бита	
BXOR	Битовое исключающее ИЛИ	
CALLA	Абсолютный вызов подпрограммы	
CALLI	Косвенный вызов подпрограммы	25
CALLR	Относительный вызов подпрограммы	
CALLS	Межсегментный вызов подпрограммы	
CMP	Целочисленное сравнение	
CMPB	Целочисленное сравнение	
CMPD1	Целочисленное сравнение с уменьшением на единицу	
CMPD2	Целочисленное сравнение с уменьшением на 2	
CMPI1	Целочисленное сравнение с увеличением на единицу	
CMPI2	Целочисленное сравнение с увеличением на 2	
CPL	Поразрядная инверсия	
CPLB	Поразрядная инверсия	
DISWDT	Запрещение работысторожевого таймера	
DIV	Деление со знаком(16 разрядов / 16 разрядов)	
DIVL	Деление со знаком(32 разряда / 16 разрядов)	
DIVLU	Беззнаковое деление(32 разряда / 16 разрядов)	
DIVU	Беззнаковое деление(16 разрядов / 16 разрядов)	
EINIT	Конец инициализации	
EXTR	Переадресация регистров	
EXTP	Страничная переадресация	
EXTPR	Страничная переадресация и переадресация регистров	
EXTS	Сегментная переадресация	48
EXTSR	Сегментная переадресация и переадресация регистров	
IDLE	Режим ожидания	
JB	Относительный переход, если бит установлен	53

JBC	Относительный переход с очисткой бита, если бит установлен	54
JMPA	Абсолютный условный переход	55
JMPI	Косвенный условный переход	56
JMPR	Относительный условный переход	57
JMPS	Абсолютный межсегментный переход	58
JNB	Относительный переход, если бит сброшен	
JNBS	Относительный переход с установкой бита, если бит сброшен	
MOV	Пересылка данных	61
MOVB	Пересылка данных	
MOVBS	Пересылка байта с расширением знака	63
MOVBSZ	Пересылка байтас очисткой старшего байта	64
MUL	Умножение со знаком	65
MULU	Беззнаковое умножение	66
NEG	Инверсия знака	67
NEGB	Инверсия знака	68
NOP	Нет операции	69
OR	Логическое ИЛИ	70
ORB	Логическое ИЛИ	71
PCALL	Абсолютный вызов подпрограмм с сохранением слова на стеке	72
POP	Извлечь слово из системного стека	73
PRIOR	Счетчик нормализации	74
PUSH	Поместить слово на стек	75
PWRDN	Режим пониженного потребления	76
RET	Возврат из подпрограммы	77
RETI	Возврат из подпрограммыобработки прерывания	78
RETP	Возврат из подпрограммыи извлечение слова	79
RETS	Межсегментный возвратиз подпрограммы	80
ROL	Циклический сдвиг в сторону старших разрядов	81
ROR	Циклический сдвигв сторону младших разрядов	
SCXT	Переключение контекста	83
SHL	Сдвиг в сторону старших адресов	84
SHR	Сдвиг в сторону младших адресов	85
SRST	Программный сброс	86
SRVWDT	Перезапуск сторожевого таймера	87
SUB	Целочисленное вычитание	88
SUBB	Целочисленное вычитание	89
SUBC	Целочисленное вычитание с переносом	90
SUBCB	Целочисленное вычитание с переносом	91
TRAP	Программное прерывание	
XOR	Исключающее ИЛИ	
XORB	Исключающее ИЛИ	94

Для заметок