Evaluation of machine learning results

Introduction

How do we evaluate the performance of an ML model?

How good is it at predicting? How well it has learned?

Regression Mean Squared error (MSE)

We have seen some evaluation for linear regression with

- the squared error as a loss function and a measure of the performance
- the R-squared value (see previous slides on linear regression)

$$MSE = rac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 True label Predicted value

Mean Average Error (MAE)

What can go wrong with Mean Squared error?

- The error can become enormous with the square
- It can be a problem when there are outliers, or mislabelled samples

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Better solution:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

2. Classification Confusion matrix

Predicted label

1 0 In the label of the label o

• TP: True positive (positive classified positive)

TN: True negative (negative classified negative)

FP: False positive (negative classified positive)

FN: False negative (positive classified negative)

Confusion matrix

Example for more than 2 classes:

Accuracy

Summarize in one number:

Accuracy = number of correct predictions / total number of predictions

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Predicted label

	1	0
1	TP	FN
0	FP	TN

AUC and ROC curve

- Area Under the Curve
- Receiver Operating Characteristic

Give an overview of the influence of the class threshold

Area Under the Curve

Each threshold value gives a point of the curve

Receiver Operating Characteristic

PERFECT CLASSIFIER

O.8
DESTRICT

O.0
O.0
O.2
O.4
O.6
FALSE POSITIVE RATE

MartinThoma, CC0, public domain, via Wikimedia Commons

$$\begin{split} TPR &= \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR \\ FPR &= \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR \end{split}$$

AUC: a single number

Class imbalance

99% accuracy

Classify everything as negative: Accuracy = 0.99!

classify everything as negative

Measures when class distinction is important

<u>Example in medicine:</u> Healthy (negative) / non-healthy (positive) It may be better to have false positives than false negatives

Table 8.2 Evaluation Measures			
Term	Definition	Calculation	
Sensitivity Specificity Precision Recall	Ability to select what needs to be selected Ability to reject what needs to be rejected Proportion of cases found that were relevant Proportion of all relevant cases that were found	TP/(TP + FN) $TN/(TN + FP)$ $TP/(TP + FP)$ $TP/(TP + FN)$	
Accuracy	Aggregate measure of classifier performance	(TP + TN)/ (TP + TN + FP + FN)	
TP, true positive; FP, false positive; FN, false negative; TN, true negative.			

From: Data Science: Concepts and practice, Vijay Kotu, Bala Deshpande

F1-score

A score to account for imbalanced classes (with small amount of positives)

$$F_1 = \frac{2}{\text{recall}^{-1} + \text{precision}^{-1}} = 2\frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{2\text{tp}}{2\text{tp} + \text{fp} + \text{fn}}$$

Intuitively,

- precision is the ability of the classifier not to label as positive a sample that is negative,
- recall is the ability of the classifier to find all the positive samples,
- F1-score is the "harmonic" mean of them (if one of them is low, F1 is low)

Multiclasses

How to deal with more than 2 classes?

Take one class versus the rest. This gives a score per class.

If one single value is needed:

- Macro-averaged score: average the score of the different classes (from "one vs the rest" scores)
- Micro-averaged score: compute globally the number of TP, FP and FN (FP = FN in this case, as FP for a class is a FN for another class). Precision, recall, accuracy and F1 are equal!

Micro average better if class imbalance