Quantitative Methods 2

Tutorial 5 Nhan La

Last week

- 1. Paired-sample test
 - Parametric: Z test or t test
 - Nonparametric: sign test or Wilcoxon signed rank test
- 2. Independent samples test
 - Parametric: Z test or t test
 - Nonparametric: Wilcoxon rank sum test

Tutorial 5

- 1. Test of variance
 - One population: χ^2 test
 - Two populations: F test
- 2. Test of proportion
 - One population: Z test
 - Two populations: Z test

One population

Two populations - Numerical

Two populations - Ordinal and Nominal

Test of variance

1. One population

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sigma^2} = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$CI = \left(\frac{(n-1)s^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)s^2}{\chi_{n-1,1-\alpha/2}^2}\right)$$

Lower bound value:

$$\frac{(n-1)s^2}{\sigma_l^2} = \chi_l^2 = \chi_{n-1,\alpha/2}^2 \Longrightarrow \sigma_l^2 = \frac{(n-1)s^2}{\chi_{n-1,\alpha/2}^2}$$

Upper bound value:

$$\frac{(n-1)s^2}{\sigma_u^2} = \chi_u^2 = \chi_{n-1,1-\alpha/2}^2 \Longrightarrow \sigma_u^2 = \frac{(n-1)s^2}{\chi_{n-1,1-\alpha/2}^2}$$

Test of variance

2. Two populations

$$\frac{(n_1-1)s_1^2}{\sigma_1^2} \sim \chi_{n_1-1}^2; \frac{(n_2-1)s_2^2}{\sigma_1^2} \sim \chi_{n_2-1}^2;$$

$$\frac{\chi_{n_1-1}^2/(n_1-1)}{\chi_{n_2-1}^2/(n_2-1)} = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}$$

$$CI = \left(\frac{s_1^2/s_2^2}{F_{n_1 - 1, n_2 - 1, \alpha/2}}, \frac{s_1^2/s_2^2}{F_{n_1 - 1, n_2 - 1, 1 - \alpha/2}}\right)$$

Test of variance

Note the reversion of notation compared with t or Z distribution

	Lower quantile	Upper quantile
χ^2	$\chi^{2}_{n-1,1-\alpha/2}$	$\chi^2_{n-1,\alpha/2}$
F	$F_{n_1-1,n_2-1,1-\alpha/2}$	$F_{n_1-1,n_2-1,\alpha/2}$
t	$t_{lpha/2,n-1}$	$t_{1-\alpha/2,n-1}$
Z	$Z_{lpha/2}$	$Z_{1-\alpha/2}$
EViews commands $(n = 10, \alpha = 0.1)$ $(n_1 = 10, n_2 = 20)$	scalar chi_l=@qchisq(0.05,9) scalar f_l=@qfdist(0.05,9,19) scalart_l=@qtdist(0.05,9) scalar z_l=@qnorm(0.05)	scalar chi_u=@qchisq(0.95,9) scalar f_u=@qfdist(0.95,9,19) scalart_u=@qtdist(0.95,9) scalar z_u=@qnorm(0.95)

The F distribution

- Non-negative, asymmetric distribution
- Paper F distribution table usually only reports the right

hand side critical values $(F_{n_1,n_2,\alpha/2})$

• To derive $F_{n_1,n_2,1-\alpha/2}$, use:

$$F_{n_1,n_2,1-\alpha/2} = \frac{1}{F_{n_2,n_1,\alpha/2}}$$

Exercise 2b

What if:

$$H_0: \sigma_1^2 = 2\sigma_2^2; H_A: \sigma_1^2 \neq 2\sigma_2^2$$

 $\Rightarrow H_0: \frac{\sigma_1^2}{2\sigma_2^2} = 1; H_A: \frac{\sigma_1^2}{2\sigma_2^2} \neq 1$

Test statistic:

$$F_{obs} = \frac{s_1^2}{2s_2^2}$$

• For convenience, e.g., when using a paper F distribution table, choose the population with the greater sample variance as the numerator

$$s_1^2 > s_2^2 \Longrightarrow \frac{s_1^2}{s_2^2} > 1 \Longrightarrow \text{ right side test}$$