CS 4476 PS 5

Name GT Email GT ID

Part 1: Tiny Image Representation

and Nearest-Neighbor Classification

Part 1.3.a: Your confusion matrix, together with the accuracy for Part 1 with the standard parameter set (image_size = 16, k = 3)

<Plot here>

Part 1.3.b: Experiments: change image size and k individually using the following values, and report the accuracy (when tuning one parameter, keep the other as the standard (16 x 16, 3)):

ie. when you're tuning image size, keep k at 3, when changing k, keep image size as 16x16

image size:	k:
8 x 8:	1:
16 x 16:	3:
32 x 32:	5:
	10:
	15:

Part 1.3.c: When tuning the parameters (image size and k), what did you observe about the processing time and accuracy? What do you think led to this observation?

<Text solution here>

Part 2: Bag-of-words with SIFT

Features

Part 2.3: Reflection on Tiny Image Representation vs. Bag of Words with SIFT features:

Why do you think that the tiny image representation gives a much worse accuracy than bag of words? Additionally why do you think Bag of Words is better in this case?

<Text solution here>

Part 2.4.a: Your confusion matrix, together with the accuracy for Part 2 with the standard parameter set (vocab_size = 50, k = 3, max_iter = 10, stride(build_vocab) = 20, stride(get_bags_of_sift) = 5

Part 2.4.a: Experiments: change vocab_size and k individually using the following values, and report the accuracy (when tuning one parameter, keep the other as the standard (50, 3)):

ie. when you're tuning vocab_size, keep k at 3, when changing k, keep vocab_size as 50. (Other params max_iter = 10, stride(build_vocab) = 20, stride(get_bags_of_sift) = 5)

vocab size:	k:
50:	1:
100:	3:
200:	5:
	10:
	15:

Part 2.4.a: Paste the confusion matrix for your best result with the previous experimentation in this slide.

<Plot here>

vocab_size:

k:

max_iter: 10

stride(build_vocab): 20

stride(get_bags_of_sift): 5

Part 2.4.b: Reflection: when experimenting with the value k in kNN, what did you observe? Compare the performance difference with the k value experiment in Part 1.3, what can you tell from this?

<Text solution here>

Part 3: Extra Credit

EXTRA CREDIT

Part 3.1: Post best confusion matrix, together with the accuracy out of all the parameters you tested. Report the parameter settings used to obtain this result.

<Plot here> Parameter settings: max iter: stride(build vocab): stride(get_bags_of_sift): vocab_size: k (kNN):

EXTRA CREDIT

Part 3.2: Post confusion matrix along with the distance metric that you used for achieving a better accuracy on standard parameters. Why do you think it performs better?

<Plot here>

Distance metric and why it works better:

EXTRA CREDIT

Part 3.3: Post confusion matrix along with your explanation of your SVM model and detail any other changes your made to reach an accuracy of 65% or greater.

<Plot here>

Description of your model: