

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00008

PROGRAMA DE ESTUDIOS

OMBRE DE LA ASIGNATURA		
Modelación Estadística		
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	292102	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el estudiante conozca, desarrolle y aplique las herramientas básicas del proceso de modelación estadística que permitan plantear, modelar y resolver problemas físicos, biológicos, económicos y de la industria, entre otros.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Población y muestra.
- 1.2. Independencia.
- 1.3. Distribuciones muestrales.
- 1.4. Muestreo aleatorio simple.
- 1.5. Distribuciones multivariantes: Distribución normal multivariada y distribución Chi-cuadrada no central.
- 1.6. Análisis de la varianza.
- 1.7. Pruebas de Hipótesis sobre la media, varianzas y proporciones.
- 1.8. Pruebas de bondad de ajuste.

3. Modelos lineales generalizados.

- 3.1. La familia exponencial.
- 3.2. Regresión Logística.
- 3.3. Regresión Poisson.
- 3.4. Inferencia sobre parámetros.
- 3.5. Devianza.
- 3.6. Aplicaciones.

4. Simulación con cadenas de Markov Monte Carlo

- 4.1. Cadenas de Markov con espacio de estados continuo.
- 4.2. Condición de Balance detallado.
- 4.3. Algoritmo de Metrópolis Hastings.
- 4.4. Algoritmo de Metrópolis Hastings en bloques.
- 4.5. Aplicaciones.

5. Modelos Estacionarios de Segundo Orden.

- 5.1. Modelos autorregresivos y de medias móviles ARMA(p,q).
- 5.2. Función de autocovarianzas de los modelo ARMA(p,q).
- 5.3. Estimación por mínimos cuadrados en modelo ARMA(p,q).
- 5.4. Función de verosimilitud de los modelos ARMA(p,q).
- 5.5. El mejor predictor lineal e insesgado.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y retroproyectores. Asimismo, se utilizará el programa de cómputo R y R studio en los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Tres exámenes parciales y un examen ordinario. Un proyecto semestral sobre un problema aplicado. Tareas y participaciones.

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Doctorado en Modelación Matemática

00009

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA

Libros Básicos

- 1. Introduction to the Theory of Statistic; Box, G. Jenkins, G. & Mood, A. & Graybill, F., McGraw-Hill. 1974.
- 2. Handbook of Markov Chain Monte Carlo; Brooks, S. & Gelman, A. & Jones, G. & Meng, X. Chapman &
- 3. Time Series Analysis; Box, G. Jenkins, G. & Reisenl, G, Prentice. 2008

Libros de Consulta

- 1. Generalized Linear Models With Examples in R; Dunn, P. & Smyth, G, Springer, 2018.
- 2. Applied Multivariate Statistical Analysis; Johnson, R. A, Pearson. 2023.
- 3. Elementos de muestreo; Dunn, Scheaffer, R & Mendenhall, W & Ott, L, Thomson, 2007.

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Matemáticas o Matemáticas Aplicadas

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS

DE POSGRADO DE POSGRADO **AUTORIZÓ**

DR. RAFAEL MARTÍNEZ MARTÍNEZ VICE-RECTOR ACADÉMICO CE-RECTORIA

ACADÉMICA