

ÁRVORE 234

Camilly, Geovana, Rafaela

A árvore 2-3-4 é uma estrutura de dados balanceada onde cada nó pode ter 2, 3 ou 4 filhos e armazenar até 3 chaves.

COMPARAÇÃO

ÁRVORE BINÁRIA

- Cada nó tem dois ponteiros
- Muito alta, muito extensa
- 1 campo de informação
- 2 ponteiros

ÁRVORE 2-3-4

- Três campos de informação
- Ex: Se sua árvore for de números cada nó guarda até 3 números.
- 3 campos de informação
- 4 ponteiros

- 3 CAMPOS DE INFORMAÇÃO
 4 PONTEIROS(FILHOS)

• Menores para a esquerda e maiores para a direito

- Menores para a esquerda e maiores para a direito
 Além de menores e maiores temos o intermediário

• Cada informação, tem que ter dois ponteiros

 17
 45
 72

- Toda inserção ocorre em um nó folha (nó que não possui nenhum filho)
- Já é uma árvore balanceada por natureza

ÁRVORE = NULL

SPLIT

Remover uma chave em um nó intermediário quando o maior dos menores e o menor dos maiores está sozinho no nó folha. Remove o elemento e faz uma junção com os filhos. Caso 1

Caso 2

Remover uma chave em um nó intermediário. Buscar o maior dos menores ou o menor dos maiores e troca com a chave a ser removida. O maior ou o menor sempre estarão em uma folha.

Remoção em nó folha com apenas uma chave e raiz da árvore. Remove e libera a

memória do nó.

Caso 4

Remoção em nó folha com mais de uma chave. Remove a chave e verifica a ordenação.

Remoção em nó folha com apenas uma chave e não é raiz. Pai e irmão com apenas 1 chave. Remove o nó e faz uma junção.

Caso 5

Caso 3

Caso 6

Caso 7

Remoção em nó folha com apenas uma chave, não é raiz e irmão adjacente tem mais de 1 chave. Pai desce para o nó onde foi removido a chave e sobe uma chave do irmão adjacente.

Remoção em nó folha. Nó pai tem mais de 1 chave e os irmãos têm apenas 1 chave. Junção e rotação. Uma chave do pai desce para um dos filhos e este filho ocupa a posição do nó removido.

REMOÇÃO 43,65,81,14,74,18,32,40,57,70,50,42,47,62,79

REMOÇÃO 14,74,18,32,40,57,70,50,42,47,62,79

REMOÇÃO 14,74,18,32,40,57,70,50,42,47,62,79

CASO 5: REMOÇÃO EM NÓ FOLHA COM APENAS UMA CHAVE, NÃO É RAIZ E IRMÃO ADJACENTE TEM MAIS DE 1 CHAVE. PAI DESCE PARA O NÓ ONDE FOI REMOVIDO A CHAVE E SOBE UMA CHAVE DO IRMÃO ADJACENTE.

REMOÇÃO 14,74,18,32,40,57,70,50,42,47,62,79

REMOVIDO A CHAVE E SOBE UMA CHAVE

REMOÇÃO 74,18,32,40,57,70,50,42,47,62,79

CASO 2: REMOVER UMA CHAVE EM UM NÓ INTERMEDIÁRIO QUANDO O MAIOR DOS MENORES E O MENOR DOS MAIORES ESTÁ SOZINHO NO NÓ FOLHA. REMOVE O ELEMENTO E FAZ UMA JUNÇÃO COM OS FILHOS.

- JUNTA OS FILHOS
- UMA CHAVE DO PAI DESCE

REMOÇÃO 74,18,32,40,57,70,50,42,47,62,79

CASO 2: REMOVER UMA CHAVE EM UM NÓ INTERMEDIÁRIO QUANDO O MAIOR DOS MENORES E O MENOR DOS MAIORES ESTÁ SOZINHO NO NÓ FOLHA. REMOVE O ELEMENTO E FAZ UMA JUNÇÃO COM OS FILHOS.

- JUNTA OS FILHOS
- UMA CHAVE DO PAI DESCE

REMOÇÃO 74,18,32,40,57,70,50,42,47,62,79

CASO 2: REMOVER UMA CHAVE EM UM NÓ INTERMEDIÁRIO QUANDO O MAIOR DOS MENORES E O MENOR DOS MAIORES ESTÁ SOZINHO NO NÓ FOLHA. REMOVE O ELEMENTO E FAZ UMA JUNÇÃO COM OS FILHOS.

- JUNTA OS FILHOS
- UMA CHAVE DO PAI DESCE

REMOÇÃO 18,32,40,57,70,50,42,47,62,79

CASO 6: REMOÇÃO EM NÓ FOLHA COM APENAS UMA CHAVE E NÃO É RAIZ. PAI E IRMÃO COM APENAS 1 CHAVE. REMOVE O NÓ E FAZ UMA JUNÇÃO.

- JUNTA PAI E FILHO
- UMA CHAVE DO AVÔ DESCE

REMOÇÃO 18,32,40,57,70,50,42,47,62,79

CASO 6: REMOÇÃO EM NÓ FOLHA COM APENAS UMA CHAVE E NÃO É RAIZ. PAI E IRMÃO COM APENAS 1 CHAVE. REMOVE O NÓ E FAZ UMA JUNÇÃO.

- JUNTA PAI E FILHO
- UMA CHAVE DO AVÔ DESCE

REMOÇÃO 18,32,40,57,70,50,42,47,62,79

CASO 6: REMOÇÃO EM NÓ FOLHA COM APENAS UMA CHAVE E NÃO É RAIZ. PAI E IRMÃO COM APENAS 1 CHAVE. REMOVE O NÓ E FAZ UMA JUNÇÃO.

- JUNTA PAI E FILHO
- UMA CHAVE DO AVÔ DESCE

REMOÇÃO 32,40,57,70,50,42,47,62,79

CASO 3: REMOÇÃO EM NÓ FOLHA COM MAIS DE UMA CHAVE. REMOVE A CHAVE E VERIFICA A ORDENAÇÃO.

REMOÇÃO 32,40,57,70,50,42,47,62,79

CASO 3: REMOÇÃO EM NÓ FOLHA COM MAIS DE UMA CHAVE. REMOVE A CHAVE E VERIFICA A ORDENAÇÃO.

REMOÇÃO 50,42,47,62,79

CASO 7: REMOÇÃO EM NÓ FOLHA. NÓ PAI TEM MAIS DE 1 CHAVE E OS IRMÃOS TÊM APENAS 1 CHAVE. JUNÇÃO E ROTAÇÃO. UMA CHAVE DO PAI DESCE PARA UM DOS FILHOS E ESTE FILHO OCUPA A POSIÇÃO DO NÓ REMOVIDO.

REMOÇÃO 50,42,47,62,79

CASO 7: REMOÇÃO EM NÓ FOLHA. NÓ PAI TEM MAIS DE 1 CHAVE E OS IRMÃOS TÊM APENAS 1 CHAVE. JUNÇÃO E ROTAÇÃO. UMA CHAVE DO PAI DESCE PARA UM DOS FILHOS E ESTE FILHO OCUPA A POSIÇÃO DO NÓ REMOVIDO.

REMOÇÃO 50,42,47,62,79

CASO 7:REMOÇÃO EM NÓ FOLHA. NÓ PAI TEM MAIS DE 1 CHAVE E OS IRMÃOS TÊM APENAS 1 CHAVE. JUNÇÃO E ROTAÇÃO. UMA CHAVE DO PAI DESCE PARA UM DOS FILHOS E ESTE FILHO OCUPA A POSIÇÃO DO NÓ REMOVIDO.

REMOÇÃO 42,47,62,79

CASO 3: REMOÇÃO EM NÓ FOLHA COM MAIS DE UMA CHAVE. REMOVE A CHAVE E VERIFICA A ORDENAÇÃO.

REMOÇÃO 42,47,62,79

CASO 3: REMOÇÃO EM NÓ FOLHA COM MAIS DE UMA CHAVE. REMOVE A CHAVE E VERIFICA A ORDENAÇÃO.

BASTA REMOVER E DAR UM FREE NA MEMÓRIA

VANTAGENS

O1 Balanceamento Automático

02 Eficiência em Busca, Inserção e Remoção

O3 Compacta

04 Complexidade

DESVANTAGENS

O1 Implementação complexa

02 Não é adequada para dados pequenos

03 Sobrecarga da memória

ÁVORE 2 3 4 X ÁVORE RUBRO-NEGRO

	2,3,4	RUBRO-NEGRO
ESTRUTURA	NÓS COM 1-3 CHAVES E 2-4 FILHOS	NÓS BINÁRIOS
BALANCEAMENTO	SPLIT	ROTAÇÃO E RECOLORAÇÃO
COMPLEXIDADE	COMPLEXIDADE MAIOR	COMPLEXIDADE MENOR

```
include <stdio.h>
include <stdlib.h>
include "arvore2-3-4.h"
int main()(
   Arvore2 3 4 arv;
   arv.raiz = NULL;
   int opcao;
   do (
       printf("Digit€
       scanf ("%d", &o)
       if (opcao != 0)
            inserir (&arv,
       printf("\n\tARVORE
       imprimir (arv.ra)
       printf("\n");
    while (opcao != 0)
   imprimir (arv.raiz, 0);
   printf("Quantidade de
   do (
```

ONDE SE APLICA ÁRVORE 2, 3, 4

Bancos de Dados

Dicionários

Obrigada!