CSCI 3202: Intro to **Artificial Intelligence** Lecture 8: A* Search and Heuristics

Rhonda Hoenigman Department of Computer Science

Source

Review: Uniform_cost Search (UCS)

- > Expand out in contours, where least cost dictates which nodes we explore.
- > Eventually, we will find a path to the goal but the search is not directed

Uniform_cost Search (UCS)

Frontier Ch: - 283 Ch:=285 Ruf = 256 Col= 313 Pi+= 303 Ch: = 283 Col = 313 P.+=303 P.7 = 303 Col = 313

Uniform_cost Search (UCS)

Phi = 468 Bal = 550

- Can get stuck if there are sequences of no-cost actions. Optimality requires positive edge weights
- Worst-case in time and space complexity: $O(b^{1+\lfloor C^*/\epsilon\rfloor}) \qquad b = b \text{ ranching}$
 - C* is cost of optimal solution
 - ϵ is minimal action cost
- Potential inefficiency: Explores in every "direction"

Dijkstra's Shortest Path Algorithm

 \clubsuit Uniform Cost Search is a variant of Dijkstra's shortest path algorithm. η_3 new θ

order that notes added to explored 0, 1,7, 6,5,2,8, 3,4 Example: Use Dijkstra's algorithm to find the shortest path from 0 to all other nodes (Shortest Path Tree)

0-1=4.0-7=8 0-7=8, 0-1-2-12 0-1-2=12,0-7-8=15 0-7-6-9 0-1-2-12,0-7-8-15 0-7-6-5= 11 0-7-6-5-4=21 0-7-6-5-3=25

Search Algorithms

0,1,7,6,5,2

• Search algorithms we've seen are fundamentally the same except for their frontier strategies.

Uninformed Search: e.g. Uniform Cost Search

- the good: UCS is complete and optimal → if a solution exists, it will find it with the least cost path
- the bad: explores in every direction

Informed Search: include information about where the goal is

what do we need to have? A heuristic.

heuristic: A function that estimates how close a state is to a goal. The basel on Length Enoulege

Greedy best_first search

First expand the path that's closest to the goal.

To determine what's closest to the goal, we need to define a heuristic function.

Example: For the traveling in the

northeast problem, let's estimate the distance to the goal as the straight-line distance between city and the goal city.

Step costs: miles between cities along major highways

Greedy best_first search

Example: Use the greedy best-first search to find a route from Chicago to Providence.

Heuristic: h(n) = straight-line distance to Providence

Greedy best_first search

Possible Issue: Won't necessarily find the optimal path. Can get stuck in local optimum.

Uniform-cost search:

$$f(n) = g(n)$$
 (cost to get to n)

Greedy:

$$f(n) = h(n)$$
 (estimated cost to get from n to goal)

A*:

$$f(n) = g(n) + h(n)$$
 (estimated total cost of cheapest solution through n)

Example: Compare Uniform Cost, Greedy Search, and A* on the graph below.

$$f(n) = g(n) + h(n)$$

Example: When should A* search terminate?

Is A* optimal? h=6 S=6=5 5=A=1+6=7

Consistent: for every node n and successor n' of n, generated by some action a, the estimated cost of reaching the goal from n is no greater than the step cost from n to n', plus the estimated cost of reaching the goal from n'

- That is: $h(n) \le c(n, a, n') + h(n')$
- General triangle inequality between n, n', and the goal

A heuristic h is **admissible** (optimistic) if $0 \le h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to the nearest goal.

Search only works when:

- domain is fully observable
- domain must be known
- domain must be deterministic
- domain must be static

implementation: use a **node**

- state indicates state at end of path
- action action taken to get here
- cost total cost
- parent pointer to another node

A* Search:

- Find the cheapest path from A to G
- h(n) values are given in purple
- Step costs are given in green

Example: Use A* search to find a route from Chicago to Providence.

Any consistent heuristic is also admissible (but not the other way around).

Example: Prove the above statement by induction.

Next Time

Optimality and Variants of A*