Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 744 432 A1 (11)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 27.11.1996 Patentblatt 1996/48 (51) Int. Cl.6: C08G 77/06, C08J 3/12

(21) Anmeldenummer: 96108218.7

(22) Anmeldetag: 23.05.1996

(84) Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL

(30) Priorität: 26.05.1995 DE 19519446

(71) Anmelder: Wacker-Chemie GmbH D-81737 München (DE)

(72) Erfinder:

- · Geck, Michael, Dr. 84489 Burghausen (DE)
- · Deubzer, Bernward, Dr. 84489 Burghausen (DE)

- · Schmidt, Manfred, Prof. Dr. 55294 Bodenheim (DE)
- · Baumann, Frank, Dr. 84561 Mehring (DE)
- (74) Vertreter: Fritz, Helmut, Dr. et al Wacker-Chemie GmbH, Zentralabtellung Patente, Marken und Lizenzen, Hanns-Seldel-Platz 4 81737 München (DE)

Monodisperse lösliche Organopolyslioxanpartikel (54)

(57)Die Organopolysiloxanpartikel bestehen aus einem einzigen Molekül, sind vernetzt und weisen einen mittleren Durchmesser von 5 bis 200 nm auf. Mindestens 80 % der Partikel besitzen einen Durchmesser. der höchstens 30 % vom mittleren Durchmesser abweicht. Die Partikel sind in einem Lösungsmittel zu mindestens 5 Gew.-% löslich.

Beschreibung

5

20

45

50

55

Die Erfindung betrifft aus einem einzigen Molekül bestehende, vernetzte monodisperse lösliche Organopolysiloxanpartikel, die einen mittleren Durchmesser von 5 bis 200 nm aufweisen und deren Herstellung.

Beispielsweise in US-A-4,424,297 sind in Suspension vorliegende Organopolysiloxanpartikel beschrieben, die einen mittleren Durchmesser von 1 bis 100 nm aufweisen. Diese Partikel sind nach Isolierung als Pulver in allen Lösungsmitteln nahezu unlöslich, da die Partikel über noch an den Oberflächen vorhandene reaktive Gruppen, wie kondensationsfähige Alkoxy-, bzw. Silanolgruppen zu größeren Agglomeraten vernetzen.

Für viele Anwendungen ist eine monodisperse, also einheitliche Größe der Partikel erforderlich. In EP A-326 810 sind monodisperse Organopolysiloxanpartikel beschrieben, die einen mittleren Durchmesser von 800 bis 5000 nm aufweisen. Hergestellt werden diese Partikel, indem in wäßrige, verdünnte Ammoniak- oder Aminlösung langsam Methyltrialkoxysilan getropft wird. Das aus der kolloidalen Suspension ausgefallene Pulver wird isoliert und mit einem Silylierungsmittel behandelt. Diese Partikel sind ebenfalls in allen Lösungsmitteln nahezu unlöslich.

Es bestand die Aufgabe, aus einem einzigen Molekül bestehende vernetzte Organopolysiloxanpartikel bereitzustellen, die eine monodisperse Teilchengroßenverteilung innerhalb eines Größenbereichs von 5 bis 200 nm aufweisen und die in einem Lösungsmittel zu mindestens 5 Gew.-% löslich sind.

Die Erfindung betrifft aus einem einzigen Molekül bestehende vernetzte Organopolysiloxanpartikel, die einen mittleren Durchmesser von 5 bis 200 nm aufweisen, bei denen mindestens 80 % der Partikel einen Durchmesser besitzen, der höchstens 30 % vom mittleren Durchmesser abweicht und die in einem Lösungsmittel zu mindestens 5 Gew.-% löslich sind.

Die Organopolysiloxanpartikel weisen typischerweise mittlere Molmassen von mindestens 10⁵, insbesondere 5 x 10⁵ bis höchstens 10¹⁰, insbesondere 10⁹ auf. Die mittleren Durchmesser der Organopolysiloxanpartikel betragen vorzugsweise mindestens 10 und höchstens 150 nm. Vorzugsweise besitzen mindestens 80 % der Partikel einen Durchmesser, der höchstens 20 %, insbesondere höchstens 10 % vom mittleren Durchmesser abweicht. Bei den Organopolysiloxanpartikeln handelt es sich vorzugsweise um sphärische Mikrogele.

Die Organopolysiloxanpartikel sind intramolekular vernetzt, weisen aber keine intermolekulare Vernetzung zwischen den Organopolysiloxanpartikeln auf. Deshalb sind die Organopolysiloxanpartikel gut in Lösungsmitteln löslich.

Das Lösungsmittel, in dem sich die Organopolysiloxanpartikel zu mindestens 5 Gew.-% lösen, hängt vom Aufbau der Organopolysiloxanpartikel und insbesondere von den sich an der Oberfläche der Organopolysiloxanpartikel befindenden Gruppen ab. Für alle Organopolysiloxanpartikel gibt es ein geeignetes Lösungsmittel. Beispiele für solche Lösungsmittel sind Wasser; Alkohole, wie Methanol, Ethanol, n-Propanol, iso-Propanol; Ether, wie Dioxan, Tetrahydrofuran, Diethylether, Diethylenglycoldimethylether; chlorierte Kohlenwasserstoffe, wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethylen; Kohlenwasserstoffe, wie Pentan, n-Hexan, Cyclohexan, Hexan-Isomerengemische, Heptan, Oktan, Waschbenzin, Petrolether, Benzol, Toluol, Xylole; Ketone, wie Aceton, Methylethylketon, Methyl-isobutylketon; Dimethylformamid, Schwefelkohlenstoff und Nitrobenzol, oder Gemische dieser Lösungsmittel, sowie Monomere, wie Methylmethacrylat oder Styrol und Polymere, wie flüssige Organopolysiloxane.

Die Löslichkeit der Organopolysiloxanpartikel kann beispielsweise bei 20°C bestimmt werden. Besonders geeignet als Lösungsmittel für Organopolysiloxanpartikel mit Kohlenwasserstoffresten ist Toluol, für Organopolysiloxanpartikel mit Aminoresten ist Tetrahydrofuran und für Organopolysiloxanpartikel mit Sulfonatoresten ist Wasser. Beispielsweise sind Organopolysiloxanpartikel mit Kohlenwasserstoffresten in Toluol nahezu unbegrenzt und in flüssigem Polydimethylsiloxan mit einer Viskosität von 35 mPa • s bei 25°C bis zu 15 Gew.-% löslich. Vorzugsweise sind die Organopolysiloxanpartikel in einem Lösungsmittel, das ausgewählt wird aus Toluol, Tetrahydrofuran und Wasser, zu mindestens 10 Gew.-%, insbesondere zu mindestens 15 Gew.-% löslich.

Vorzugsweise sind die Organopolysiloxanpartikel aufgebaut aus

0,5 bis 80,0 Gew.-% Einheiten der allgemeinen Formel

 $[R_3SiO_{1/2}] \tag{1},$

0 bis 99,0 Gew.-% Einheiten der allgemeinen Formel

$$[R_2SiO_{2/2}]$$
 (2),

5

0 bis 99,5 Gew.-% Einheiten der allgemeinen Formel

10

$$[RSiO_{3/2}] \tag{3},$$

15

20

0 bis 80,0 Gew.-% Einheiten der allgemeinen Formel

$$[SiO_{4/2}] (4)$$

und

25 0 bis 20,0 Gew.-% Einheiten der allgemeinen Formel

$$[R_a Si(O_{(3-a)/2})-R^1-X-(R^1-Si(O_{(3-a)/2}))_b R_a]$$
 (5),

30

wobei

- 35 R ein Wasserstoffatom oder gleiche oder verschiedene einwertige SiC-gebundene, gegebenenfalls substituierte C₁- bis C₁₈-Kohlenwasserstoffreste,
 - R¹ gleiche oder verschiedene zweiwertige SiC-gebundene, gegebenenfalls substituierte C₁- bis C₁₈-Kohlenwasserstoffreste, welche durch
 - zweibindige, beidseitig an Kohlenstoffatome gebundene Reste aus der Gruppe -O-, -COO-, -OOC-, -CONR²-, -NR²CO- und -CO- unterbrochen sein können,

R² ein Wasserstoffatom oder einen Rest R.

- **X** einen Rest aus der Gruppe -N=N-, -O-O-, -S-S- und -C(C_6H_5)₂-C(C_6H_5)₂-,
- a die Werte 0, 1 oder 2 und,
- b die Werte 0 oder 1 bedeuten

45

40

mit der Maßgabe, daß die Summe der Einheiten der allgemeinen Formeln (3) und (4) mindestens 0,5 Gew.-% beträgt. Beispiele für unsubstituierte Reste R sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pentyl-rest, Hexylreste, wie der n-Hexylrest, Heptylreste, wie der n-Heptylrest, Octylreste, wie der n-Octylreste und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest, Nonylreste, wie der n-Nonylrest, Decylreste, wie der n-Decylreste, wie der n-Dodecylreste, Octadecylreste, wie der n-Octadecylreste, wie der Vinyl-, Allyl-, n-5-Hexenyl-, 4-Vinylcyclohexyl- und der 3-Norbornenylrest; Cycloalkylreste, wie Cyclopentyl-, Cyclohexyl-, 4-Ethylcyclohexyl-, Cycloheptylreste, Norbornylreste und Methylcyclohexylreste; Arylreste, wie der Phenyl-, Biphenylyl-, Naphthyl-, Anthryl- und Phenanthrylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste; Aralkylreste, wie der Benzylrest, der alpha- und der β-Phenylethylrest, sowie der Fluorenylrest.

Beispiele für substituierte Kohlenwasserstoffreste als Rest R sind halogenierte Kohlenwasserstoffreste, wie der Chlormethyl-, 3-Chlorpropyl-, 3-Brompropyl-, 3,3,3-Trifluorpropyl- und 5,5,5,4,4,3,3-Heptafluorpentylrest sowie der Chlorphenyl-, Dichlorphenyl- und Trifluortolylrest; Mercaptoalkylreste, wie der 2-Mercaptoethyl- und 3-Mercaptopylrest; Cyanoalkylreste, wie der 2-Cyanoethyl- und 3-Cyanopropylrest; Aminoalkylreste, wie der 3-Aminopropyl-, N-(2-

Aminoethyl)-3-aminopropyl- und N-(2-Aminoethyl)-3-amino-(2-methyl)propylrest; Aminoarylreste, wie der Aminophenylrest; quarternäre Ammoniumreste; Acryloxyalkylreste, wie der 3-Acryloxypropyl- und 3-Methacryloxypropylrest; Hydroxyalkylreste, wie der Hydroxypropylrest; Phosphonsäurereste; Phosphonatreste und Sulfonatreste, wie der 2-Diethoxyphosphonato-ethyl- oder der 3-Sulfonato-propylrest.

Bei dem Rest R handelt es sich bevorzugt um unsubstituierte und substituierte C₁- bis C₆-Alkylreste, Wasserstoff und den Phenylrest, insbesondere um den Methyl-, Phenyl-, Vinyl-, Allyl-, Methacryloxypropyl-, 3-Chlorpropyl-, 3-Mercaptopropyl-, 3-Aminopropyl- und den (2-Aminoethyl)-3-aminopropyl-Rest, Wasserstoff und quarternäre Ammoniumreste.

Beispiele für zweiwertige Kohlenwasserstoffreste R¹ sind gesättigte Alkylenreste wie der Methylen- und Ethylenrest, sowie Propylen-, Butylen-, Pentylen-, Hexylen-, Cyclohexylen- und Octadecylenreste oder ungesättigte Alkylenoder Arylenreste, wie der Hexenylenrest und Phenylenreste und insbesondere Reste der Formeln (6)

$$-(CH_2)_3N(R^3)-C(O)-(CH_2)_2-C(CN)(CH_3)-$$
 (6),

in der

15

20

25

30

35

40

45

50

R³ ein Wasserstoffatom, einen Methyl- oder Cyclohexylrest bedeutet und (7)

 $-(CH_2)_3-O-C(O)-(CH_2)_2-C(O)-$ (7).

Bevorzugte Reste X sind -N=N- und -O-O-.

Besonders bevorzugte Einheiten der allgemeinen Formel (5) fallen unter die allgemeine Formel (8)

$$[(CH_3)_aSi(O_{(3-a)/2})-(CH_2)_3-N(R^3)-C(O)-(CH_2)_2-C(CN)(CH_3)-N=]_2$$

in der a und R3 die vorstehenden Bedeutungen aufweisen.

Vorzugsweise enthalten die Organopolysiloxanpartikel

- 1 bis 80,0 Gew.-% Einheiten der allgemeinen Formel (1),
- 0 bis 98,0 Gew.-% Einheiten der allgemeinen Formel (2),
- 0 bis 99,0 Gew.-% Einheiten der allgemeinen Formel (3),
- 0 bis 50,0 Gew.-% Einheiten der allgemeinen Formel (4) und
- 0 bis 10,0 Gew.-% Einheiten der allgemeinen Formel (5)

mit der Maßgabe, daß die Summe der Einheiten der allgemeinen Formeln (3) und (4) mindestens 1 Gew.-% beträgt. Insbesondere enthalten die Organopolysiloxanpartikel

- 5 bis 70,0 Gew.-% Einheiten der allgemeinen Formel (1),
- 0 bis 94,0 Gew.-% Einheiten der allgemeinen Formel (2),
- 1 bis 95,0 Gew.-% Einheiten der allgemeinen Formel (3),
- 0 Gew.-% Einheiten der allgemeinen Formel (4) und
- 0 bis 5,0 Gew.-% Einheiten der allgemeinen Formel (5).

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von aus einem einzigen Molekül bestehenden, vernetzten Organopolysiloxanpartikeln, bei dem in einem ersten Schritt durch Zudosieren von Silanen der allgemeinen Formel (9)

$$R_{C}Si(OR^{4})_{4-C}$$
 (9),

und gegebenenfalls siliciumorganischen Verbindungen der allgemeinen Formel (10)

$$R_d(R^{4}0)_eSiO_{4-d-e/2}$$
 (10),

und gegebenenfalls siliciumorganischen Verbindungen aus Einheiten der allgemeinen Formel (11)

$$R_a Si((OR^4)_{3-a}) - R^1 - X - (R^1 - Si(OR^4)_{3-a}))_b R_a$$
 (11),

wobei

5

10

15

die Bedeutungen von R, die Werte 0, 1, 2 oder 3,

d und e jeweils unabhängig voneinander die Werte 0, 1, 2, 3 oder 4 und

R, X, a und b die vorstehenden Bedeutungen aufweisen, zu einer bewegten Mischung aus Emulgator und Wasser

eine kolloidale Suspension von Organopolysiloxanpartikeln hergestellt wird und

20 in einem zweiten Schritt die kolloidale Suspension mit siliciumorganischer Verbindung der allgemeinen Formel (12)

$$(R^5_3Si)_fY^1$$
 (12),

25

30

versetzt wird, wobei

 Y^1 für die Bedeutungen f = 1 ein Wasserstoffatom, $-OR^6$, $-ONR^6$ ₂ oder $-OOCR^6$ und für die Bedeu-

tungen f = 2 -O- oder -S- bedeutet,

R⁵ und R⁶ die Bedeutungen von R und f die Werte 1 oder 2 aufweisen,

mit der Maßgabe, daß die siliciumorganischen Verbindungen der allgemeinen Formel (12) wasserlöslich sind oder in Wasser zu einer wasserlöslichen Verbindung hydrolysieren.

Die interpartikuläre Kondensation der Organopolysiloxanpartikel wird verhindert, indem die nach dem ersten Schritt verbliebenen, kondensationsfähigen Gruppen mit ausschließlich monofunktionelle Triorganosilylgruppen enthaltenden siliciumorganischen Verbindungen abgesättigt werden.

Vorzugsweise werden bei der Hydrolyse- oder Kondensationsreaktion der siliciumorganischen Verbindungen der allgemeinen Formel (12) keine Nebenprodukte, wie Salzsäure oder Ammoniak gebildet, die die Ionenstärke des wäßrigen kolloidalen Systems wesentlich vergrößern. Besonders bevorzugt werden als siliziumorganische Verbindungen der allgemeinen Formel (12) Trimethylmethoxysilan, Trimethylethoxysilan, Hexamethyldisiloxan, Vinyldimethylmethoxysilan, Vinyldimethylethoxysilan, 1,1,3,3-Tetramethyldisiloxan und Mischungen davon eingesetzt.

Die Isolierung der Organopolysiloxanpartikel aus den kolloidalen Suspensionen nach Beendigung des zweiten Reaktionsschrittes kann nach bekannten Verfahren erfolgen, beispielsweise durch Koagulation der Latices mittels Salzzugabe oder durch Zugabe von polaren Lösungsmitteln.

Organopolysiloxanpartikel, die in der Summe mehr als ca. 15 Gew.-% an Einheiten der allgemeinen Formeln (3) und (4) enthalten, werden vorzugsweise nach Isolierung im Anschluß an den zweiten Schritt in einem dritten Reaktionsschritt in einem aprotischen Lösungsmittel mit siliciumorganischer Verbindung der allgemeinen Formel (13) und/oder (14)

$$(R^{5}_{3}Si)_{f}Y^{2}$$

$$(13),$$

$$R^{5}_{2}Si \xrightarrow{} Y^{3}$$

$$(14)$$

versetzt, wobei

5

10

20

35

40

45

50

55

Im dritten Schritt werden vorzugsweise siliciumorganische Verbindungen der allgemeinen Formel (13) eingesetzt. Besonders bevorzugt werden als siliziumorganische Verbindungen der allgemeinen Formel (13) in diesem dritten Reaktionsschritt Trimethylchlorsilan, Dimethylchlorsilan, Vinyldimethylchlorsilan, Hexamethyldisilazan, 1,3-Divinyl-1,1,3,3-tetramethyldisilazan, oder Gemische aus Disilazanen bzw. Chlorsilanen eingesetzt.

Die eingesetzten Mengen an Verbindungen der allgemeinen Formeln (9) bis (14) werden so gewählt, daß die gewünschten Organopolysiloxanpartikel erhalten werden. Die eingesetzten Mengen an Verbindungen der allgemeinen Formeln (9) bis (11) werden im ersten Reaktionsschritt nahezu quantitativ eingebaut und steuern den Vernetzungsgrad der Organopolysiloxanpartikel in wäßriger Suspension. Die im zweiten und gegebenenfalls im dritten Reaktionsschritt eingesetzten Verbindungen der allgemeinen Formeln (12) bzw. (13) und (14) werden jeweils im Überschuß eingesetzt und somit nicht vollständig in die Organopolysiloxanpartikel eingebaut. Vorzugsweise werden 0,2 bis 10, insbesondere 0,5 bis 3 Gewichtsteile Verbindungen der allgemeinen Formeln (12) im zweiten Reaktionsschritt, bzw. der Summe der Verbindungen der allgemeinen Formeln (12), (13) und (14) im zweiten und dritten Reaktionsschritt, pro Gewichtsteil an Verbindungen der allgemeinen Formeln (9) bis (11) eingesetzt.

Wenn ein dritter Reaktionsschritt durchgeführt wird, beträgt das Verhältnis der im zweiten Reaktionsschritt eingesetzten Menge der Verbindungen der allgemeinen Formeln (12) zu der im dritten Reaktionsschritt eingesetzten Menge der Verbindungen der allgemeinen Formel (13) und (14) vorzugsweise 1:10 bis 2:1, insbesondere 1:5 bis 1:1.

Bei dem Rest R⁶ handelt es sich bevorzugt um unsubstituierte C1- bis C6-Alkylreste und den Phenylrest, wobei Methyl-, Ethyl- und Propylreste besonders bevorzugt sind.

Besonders geeignete Emulgatoren sind Alkylsulfate, z.B. mit einer Kettenlänge von 8-18 C-Atomen, Aryl- und Alkylethersulfate mit 8-18 C-Atomen im hydrophoben Rest und 1-40 Ethylenoxid(EO)- bzw. Propylenoxid(PO)-Einheiten:

Sulfonate, z.B. Alkylsulfonate mit 8-18 C-Atomen, Alkylarylsulfonate mit 8-18 C-Atomen, Ester und Halbester der Sulfobernsteinsäure mit einwertigen Alkoholen oder Alkylphenolen mit 4-15 C-Atomen; ggf. können diese Alkohole oder Alkylphenole auch mit 1-40 EO-Einheiten ethoxyliert sein;

Alkali- und Ammoniumsalze von Carbonsäuren mit 8-20 C-Atomen im Alkyl-, Aryl-, Alkaryl- oder Aralkylrest;

Phosphorsäureteilester und deren Alkali- und Ammoniumsalze, z. B. Alkyl- und Alkarylphosphate mit 8-20 C-Atomen im organischen Rest, Alkylether- bzw. Alkaryletherphosphate mit 8-20 C-Atomen im Alkyl- bzw. Alkarylrest und 1-40 EO-Einheiten;

Alkylpolyglykolether mit 2-40 EO-Einheiten und Alkylresten von 4-20 C-Atomen;

Alkylarylpolyglykolether mit 2-40 EO-Einheiten und 8-20 C-Atomen in den Alkyl- und Arylresten; Ethylenoxid/Propylenoxid(EO/PO)-Blockcopolymere mit 8-40 EO- bzw. PO-Einheiten;

Fettsäurepolyglykolester mit 6-24 C-Atomen und 2-40 EO-Einheiten;

Alkylpolyglykoside, Naturstoffe und deren Derivate, wie Lecithin, Lanolin, Saponine, Cellulose; Cellulosealkylether und Carboxyalkylcellulosen, deren Alkylgruppen jeweils bis zu 4 Kohlenstoffatome besitzen;

polare Gruppen enthaltende lineare Organo(poly)siloxane mit Alkoxygruppen mit bis zu 24 C-Atomen und/oder bis zu 40 EO- und/oder PO-Gruppen;

5

10

15

Salze von primären, sekundären und tertiären Fettaminen mit 8-24 C-Atomen mit Essigsäure, Schwefelsäure, Salzsäure und Phosphorsäuren;

Quarternäre Ammoniumsalze wie Halogenide, Sulfate, Phosphate, Acetate oder Hydroxide, deren Alkylgruppen unabhängig voneinander 1-24 C-Atome besitzen; gegebenenfalls können die Alkyl- oder Alkaryl- oder Aralkylgruppen der quarternären Ammoniumverbindungen auch teilweise ethoxyliert sein (1-40 EO-Einheiten);

Alkylpyridinium-, Alkylimidazolinium- und Alkyloxazoliniumsalze, deren Alkylkette bis zu 18 C-Atome besitzt, in Form ihrer Halogenide, Sulfate, Phosphate oder Acetate.

Bevorzugt sind aliphatisch substituierte Benzolsulfonsäuren und deren Salze sowie gegebenenfalls teilethoxylierte quarternäre Ammoniumhalogenide und -hydroxide. Besonders bevorzugt sind Dodecylbenzolsulfonsäure und Benzyldimethyl-(2-[2-(p-1,1,3,3-tetramethylbutyl-phenoxy)-ethoxy]-ethyl}-ammoniumchlorid (Benzethoniumchlorid).

Die einzusetzende Menge an Emulgator beträgt von 0,5 - 50 Gew.-%, vorzugsweise von 1,0 - 30 Gew.-%, jeweils bezogen auf die insgesamt eingesetzte Menge an siliziumorganischen Ausgangsverbindungen des ersten und zweiten Reaktionsschrittes. Die siliziumorganischen Ausgangsverbindungen der allgemeinen Formeln (9) bis (11) werden während des ersten Reaktionsschrittes bevorzugt dosiert zugegeben. Vorzugsweise werden alle Ausgangskomponenten der allgemeinen Formeln (9) bis (11) vor der Dosierung während des ersten Reaktionsschritts im gewünschten Verhältnis gemischt; um eine homogene Mischung zu erhalten, werden gegebenenfalls zusätzlich 0,1 - 30 Gew.-% bezogen auf die Summe der Ausgangskomponenten der allgemeinen Formeln (9) bis (11), Alkanol der Formel R⁷OH, bei dem R⁷ ein Alkylrest mit 1 bis 5 Kohlenstoffatomen ist, als Löslichkeitsvermittler zugesetzt, wobei die Alkanole Methanol und Ethanol besonders bevorzugt sind.

Als aprotisches organisches Lösungsmittel werden im dritten Schritt vorzugsweise die vorstehend beschriebenen Ether, Kohlenwasserstoffe, Ketone und Organopolysiloxane, insbesondere Tetrahydrofuran, Cyclohexan, Methylcyclohexan oder Toluol verwendet. Die Umsetzung sowohl im ersten (Emulsionspolykondensation/-polymerisation) als auch im zweiten Reaktionsschritt wird vorzugsweise bei 5 - 95 °C, insbesondere bei 10 - 85 °C und besonders bevorzugt bei 10 - 40 °C durchgeführt. Der pH-Wert beträgt jeweils von 1 - 12, vorzugsweise von 1 - 4 oder von 7 - 11, in Abhängigkeit von der Säure/Basestabilität der Reste R, R⁴, R⁵ und R⁶ der Ausgangsverbindungen (9) bis (13).

Bei der Herstellung der kolloidalen Suspensionen während des ersten Reaktionsschrittes ist es für die Stabilität der Emulsion vorteilhaft, nach Ende der Dosierung der siliziumorganischen Ausgangsverbindungen der allgemeinen Formeln (9) bis (11) noch 1 bis 24 Stunden nachzurühren. Das bei der Hydrolyse freigesetzte Alkanol kann durch Destillation, ggf. unter reduziertem Druck, entfernt werden, was aber nicht bevorzugt ist. Der Festgehalt der nach dem ersten Schritt hergestellten kolloidalen Suspension sollte vorzugsweise maximal 25 Gew.-% betragen, da sonst ein hoher Anstieg der Viskosität die weitere Umsetzung erschwert. Bei der Umsetzung der kolloidalen Suspension mit siliziumorganischer Verbindung der allgemeinen Formel (12) im zweiten Reaktionsschritt ist es zur Erzielung einer möglichst vollständigen Reaktion ebenfalls vorteilhaft, nach Ende der Zugabe von Verbindungen der allgemeinen Formel (12) noch 1 - 48 Stunden nachzurühren.

Die Umsetzung mit siliziumorganischer Verbindung der allgemeinen Formel (13) und (14) im dritten Reaktionsschritt wird vorzugsweise bei 5 - 95 °C, insbesondere bei 10 - 85 °C und besonders bevorzugt bei 10 - 40 °C durchgeführt. Zur Erzielung einer möglichst vollständigen Reaktion ist es wiederum vorteilhaft, nach Ende der Zugabe der Verbindung der allgemeinen Formel (13) und (14) noch 1 - 24 Stunden nachzurühren.

Zur strukturellen Charakterisierung der Organopolysiloxanpartikel eignet sich besonders die statische und dynamische Lichtstreuung sind dem Fachmann bekannte, etablierte Methoden in der makromolekularen Chemie und Kolloidchemie zur Charakterisierung disperser Partikel. In der statischen Lichtstreuung mittelt man die Streuintensität bei verschiedenen Winkeln über ein genügend langes Zeitintervall und erhält Aussagen über die statischen Eigenschaften der Makromoleküle, wie dem Gewichtsmittel der Molmasse $M_{\rm w}$, dem z-Mittel des Quadrats des Trägheitsradius $R_{\rm g}^2$, und dem zweiten Virialkoeffizienten A_2 , der die intra- und intermolekularen thermodynamischen Wechselwirkungen der dispergierten Partikel mit dem Lösungsmittel beschreibt. Im Gegensatz zur statischen wird bei der dynamischen Lichtstreuung die Fluktuation der Streulichtintensität als Funktion der Zeit beobachtet. Dies führt zu Aussagen über das dynamische Verhalten der untersuchten Moleküle. Gemessen werden das z-Mittel des Diffusionskoefizienten D_z und damit über das Stokes-Einstein-Gesetz der hydrodynamische Radius $R_{\rm h}$ und der Koeffizient $k_{\rm d}$, der die Konzentrationsabhängigkeit des Diffusionskoeffizienten beschreibt.

Aus der Winkelabhängigkeit des Streulichts kann man die Teilchenform ermitteln und gegebenenfalls vorhandene Strukturierungen in Lösung aufklären. Die simultane statische und dynamische Lichtstreumessung ermöglicht es, mit einem einzigen Experiment die oben genannten Aussagen über das untersuchte System zu treffen und somit Informationen z.B. über Partikelgröße, -dispersität, und -form, sowie über Molekulargewicht und Dichte zu erhalten. Dies ist beispielsweise in M. Schmidt, Simultaneous Static and Dynamic Light Scattering: Applications to Polymer Structure Analysis, in: Dynamic Light Scattering: The Method and some Applications; Brown, W. (Hrsg.); Oxford University Press, Oxford, UK, 372-406 (1993) beschrieben.

Der Quotient aus Trägheits- und hydrodynamischem Radius, das sogenannte ρ-Verhältnis, liefert strukturelle Informationen über die Teilchenform, wie harte Kugel, Hohlkugel, Knäuel, Stäbchen oder Sternpolymer. Für die Teilchenform "harte Kugel" beträgt das theoretische ρ-Verhältnis 0,775; die bei den bevorzugten Organopolysiloxanpartikeln gemessenen Werte liegen von 0,775 bis höchstens ρ=1,0. Die bevorzugten Organopolysiloxanpartikel sind deshalb sphärisch.

Der Größenbereich der Organopolysiloxanpartikel stellt den Grenzbereich zwischen großen Molekülen, Oligomeren und Dendrimeren einerseits und kleinen Festkörpern andererseits dar, entspricht somit einer Nahtstelle zwischen Festkörper und Molekül. Zum einen sind kollektive Festkörpereigenschaften noch nicht ausgebildet, zum anderen ist molekulares Verhalten nicht mehr oder nur noch ansatzweise zu beobachten. Beispiele für partikuläre Strukturen dieser Größenordnung mit nahezu fixierter Konformation sind Mikrogele. Nach Antonietti (Angew. Chemie 100 (1988) 1813-1817) werden aus wäßrigen kolloidalen Systemen erhaltene Mikrogele mit Partikeldurchmessern im mesoskopischen Größenbereich von 5 bis 200 nm und Molmassen von 10⁶ bis 10¹¹ (g/Mol) als "Typ B"-Mikrogele bezeichnet. "Typ B"-Mikrogele sind besonders interessant z.B. als Füllstoffe oder Verträglichkeitsvermittler für (optisch transparente) Polymere oder als potentielle Ausgangsmaterialien für maßgeschneiderte Katalysatorsysteme.

Die Organopolysiloxanpartikel eignen sich vor allem als Additive zur Polymermodifizierung. Weichelastische Partikel können als Schlagzähmodifier, harte Partikel als Füllstoffe eingesetzt werden. Durch Einbau reaktiver Gruppen, wie Vinyl, Allyl oder Methacrylat lassen sich die Organopolysiloxanpartikel als Reaktiv-Füllstoffe bzw. Reaktiv-Modifier verwenden, die chemisch an die Matrix angebunden werden und die mechanischen Eigenschaften der umgebenden Polymermatrix stark beeinflussen. Ferner lassen sich in Folgereaktionen aus den Organopolysiloxanpartikeln mit olefinischen Gruppen oder Azo-Funktionen gezielt partikuläre Pfropfcopolymere aus Siloxankern und Organopolymerhülle aufbauen. Hydridofunktionelle Organopolysiloxanpartikel können durch nachfolgende Hydrosilylierungsreaktionen nahezu beliebig umgesetzt und weiter funktionalisiert werden; alternativ können sie - ebenso wie vinyl- bzw. allylfunktionelle Organopolysiloxanpartikel - als einvernetzendes, verstärkendes oder elastisches Partikel in Hydrosilylierungsreaktionen eingesetzt werden.

In den nachfolgenden Beispielen sind, falls jeweils nicht anders angegeben,

- a) alle Mengenangaben auf das Gewicht bezogen;
- b) alle Drücke 0,10 MPa (abs.);
- c) alle Temperaturen 20° C.

Beispiele:

35

45

40 Lichtstreuung:

Statische und dynamische Lichtstreuung wurden mit einer Anlage gemessen, die u. a. aus einem Stabilite™ 2060-Ils Kr-Laser von Spectra-Physics, einem Goniometer Sp-86 von ALV und einem ALV-3000 Digital Strukturator/Korrelator besteht. Der Krypton-lonenlaser arbeitete mit einer Wellenlänge von 647,1 nm.

Probenpräparation: Die Proben (Organopolysiloxanpartikel in Toluol; der jeweilige Konzentrationsbereich ist in den Beispielen angegeben) wurden dreimal durch MillexTM-FGS-Filter (0.2 μm Porengröße) von Millipore filtriert. Die Meßtemperatur bei den Lichtstreuexperimenten betrug 20°C. Die dynamischen Lichtstreumessungen wurden winkelabhängig von 50° bis 130° in 20°-Schritten durchgeführt, die Korrelationsfunktionen wurden mit dem Simplex-Algorithmus ausgewertet. Beim statischen Lichtstreuexperiment wurde die Winkelabhängigkeit des Streulichts von 30° bis 140° in 5°-Schritten gemessen.

Beispiel 1

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurden unter Rühren im Verlauf von 45 Minuten 25,0 g Methyltrimethoxysilan zudosiert. Nach weiteren 5 Stunden Rühren wurden 25 g der entstandenen Suspension unter Rühren mit 1,2 g Trimethylmethoxysilan versetzt und weitere 10 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, 3 mal mit 30 ml Methanol gewaschen und in 50 ml Toluol aufgenommen. Nach Zugabe von 1,6 g Hexamethyldisilazan und 10 Stunden Rühren wurde das Produkt mit 150 ml Methanol ausgefällt, abfiltriert und im Hochva-

kuum getrocknet. Es wurden 1,2 g eines weißen Pulvers der relativen Zusammensetzung [(CH₃)₃SiO_{1/2}]_{1,38}[CH₃SiO_{3/2}]_{1,0} erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 0,5 - 2 g/l) wurde ein hydrodynamischer Partikelradius R_h von 10,0 nm und ein Trägheitsradius R_g von <10 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von < 1,0. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 2,0x10⁶ ermittelt. Die Organopolysiloxanpartikel sind in Toluol, Pentan, Cyclohexan, Dimethylformamid, Tetrahydrofuran, Dioxan, Diethylether, Methylmethacrylat, Styrol und Poly(dimethylsiloxan) der Viskosität 35 mPa • s gut löslich.

Beispiel 2

10

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 1 Stunde eine Mischung aus 13,3 g Methyltrimethoxysilan und 11,7 g Dimethyldimethoxysilan zudosiert. Nach weiteren 10 Stunden Rühren wurden 25 g der entstandenen Suspension unter Rühren mit 1,2 g Trimethylmethoxysilan versetzt und weitere 10 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, 3 mal mit 30 ml Methanol gewaschen und in 50 ml Toluol aufgenommen. Nach Zugabe von 1,6 g Hexamethyldisilazan und 10 Stunden Rühren wurde das Produkt mit 150 ml Methanol ausgefällt, abfiltriert und im Hochvakuum getrocknet. Es wurden 2,0 g eines weißen Pulvers, das aus [(CH₃)₃SiO_{1/2}]-, [(CH₃)₂SiO_{2/2}]- und [CH₃SiO_{3/2}]-Einheiten aufgebaut ist, erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 0,05 - 2 g/l) wurde ein hydrodynamischer Partikelradius R_h von 11,7 nm und ein Trägheitsradius R_g von <10 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von < 0,85. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 2,0x10⁶ ermittelt. Die Organopolysiloxanpartikel sind in Toluol, Tetrahydrofuran, Chloroform, Cyclohexan, Pentan und Methylmethacrylat gut löslich.

Beispiel 3

25

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 1 Stunde eine Mischung aus 8,2 g Methyltrimethoxysilan und 16,8 g Dimethyldimethoxysilan zudosiert. Es wurde weiter wie in Beispiel 2 verfahren. Es wurden 1,7 g eines weißen Pulvers, das aus [(CH₃)₃SiO_{1/2}]-, [(CH₃)₂SiO_{2/2}]- und [CH₃SiO_{3/2}]-Einheiten aufgebaut ist, erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 0,05 - 2 g/l) wurde ein hydrodynamischer Partikelradius R_h von 17,3 nm und ein Trägheitsradius R_g von 13,7 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von 0,79. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 5,13x10⁶ ermittelt. Die Poly(organosiloxan)-Partikel sind in Toluol, Tetrahydrofuran, Chloroform, Cyclohexan, Pentan und Methylmethacrylat gut löslich.

5 Beispiel 4

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 1 Stunde eine Mischung aus 2,8 g Methyltrimethoxysilan und 22,2 g Dimethyldimethoxysilan zudosiert. 25 g der entstandenen Suspension wurden unter Rühren mit 1,0 g Trimethylmethoxysilan versetzt und weitere 48 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, 3 mal mit 30 ml Methanol gewaschen und in wenig Toluol aufgenommen. Das Produkt wurde mit Methanol ausgefällt, abfiltriert und im Hochvakuum getrocknet. Es wurden 1,5 g eines weißen, gummielastischen Pulvers, das aus [(CH₃)₃SiO_{1/2}]-. [(CH₃)₂SiO_{2/2}]- und [CH₃SiO_{3/2}]-Einheiten aufgebaut ist, erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 0,05 - 2 g/l) wurde ein hydrodynamischer Partikelradius R_h von 24,5 nm und ein Trägheitsradius R_g von 21,3 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von 0,87. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 5,70x10⁶ ermittelt. Die Organopolysiloxanpartikel sind in Toluol, Tetrahydrofuran, Chloroform, Cyclohexan, Pentan und Methylmethacrylat gut löslich.

Beispiel 5

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 1 Stunde eine Mischung aus 1,4 g Methyltrimethoxysilan und 23,6 g Dimethyldimethoxysilan zudosiert. Es wurde weiter wie in Beispiel 4 verfahren. Es wurden 1,8 g eines weißen, gummielastischen Pulvers, das aus [(CH₃)₃SiO_{1/2}]-, [(CH₃)₂SiO_{2/2}]- und [CH₃SiO_{3/2}]-Einheiten aufgebaut ist, erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 0,05 - 2 g/l) wurde ein hydrodynamischer Partikelradius $R_{\rm h}$ von 32,0 nm und ein Trägheitsradius $R_{\rm g}$ von 28,5 nm ermittelt. Daraus ergibt sich ein ρ -Verhältnis von 0,85. Das Molekulargewicht $M_{\rm w}$ der monodispersen, sphärischen Partikel wurde zu 6,50x10⁶ ermittelt. Die Organopolysiloxanpartikel sind in Toluol, Tetrahydrofuran, Chloroform, Cyclohexan und Pentan gut löslich.

Beispiel 6

Zu einer Vorlage aus 125 g Wasser, 2,5 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurden unter Rühren im Verlauf von 45 Minuten 22,0 g Methyltrimethoxysilan zudosiert. Nach 3 Stunden Rühren wurden unter Rühren im Verlauf von 30 Minuten 3,0 g Vinyltrimethoxysilan zugegeben und weitere 10 Stunden gerührt. 25 g der entstandenen Suspension wurden unter Rühren mit 1,34 g Vinyldimethylmethoxysilan versetzt und weitere 10 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, 3 mal mit 30 ml Methanol gewaschen und in 50 ml Toluol aufgenommen. Nach Zugabe von 1,73 g 1,3-Divinyl-1,1,3,3-Tetramethyldisilazan und 10 Stunden Rühren wurde das Produkt mit 150 ml Methanol ausgefällt, abfiltriert und im Hochvakuum getrocknet. Es wurden 2,3 g eines weißen Pulvers der relativen Zusammensetzung $[(CH_3)_2(H_2C=CH)SiO_{1/2}]_{1,20}[(H_2C=CH)SiO_{3/2}]_{0,11}[CH_3SiO_{3/2}]_{0,89}$ erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 1,0 - 2,5 g/l) wurde ein hydrodynamischer Partikelradius R_h von 11,9 nm und ein Trägheitsradius R_q von 10 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von 0,84. Das Molekulargewicht Mw der monodispersen, sphärischen Partikel wurde zu 2,0x106 ermittelt. Der Einbau der olefinischen Vinylgruppen wurde qualitativ durch IR-Spektroskopie (KBr-Preßling, v_{C=C} 1602 cm⁻¹ und durch ¹H-NMR-Spektroskopie (KBr-Preßling, v_{C=C} 1602 cm⁻¹ und durch troskopie (CDCl₃, δ (CH=CH₂) 5,1-6,5 ppm) nachgewiesen. Die Organopolysiloxampartikel sind in Toluol, Pentan, Cyclohexan, Dimethylformamid, Tetrahydrofuran, Dioxan, Diethylether, Methylmethacrylat, Styrol und Poly(dimethylsiloxan) der Viskosität 35 mPa • s gut löslich.

20 Beispiel 7

Zu einer Vorlage aus 125 g Wasser und 10 g einer Lösung aus 10 Teilen Dodecylbenzolsulfonsäure, 0.75 Teilen Natriumhydroxid und 100 Teilen Wasser wurden unter Rühren im Verlauf von 45 Minuten 15.0 g Triethoxysilan zudosiert. Nach 10 Stunden Rühren wurden 25 g der entstandenen Suspension unter Rühren mit 1,0 g 1,1,3,3-Tetramethyldisiloxan versetzt und weitere 48 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, in 40 ml Aceton aufgenommen, durch Zugabe von 200 ml Methanol erneut ausgefällt und abfiltriert. Nach Aufnahme in Tetrahydrofuran wurde unter Stickstoff mit 5 g Trimethylchlorsilan versetzt. Nach 10 Stunden Rühren wurden alle flüchtigen Bestandteile entfernt und der Rückstand in 40 ml Petrolether (Siedebereich 40-60°C) aufgenommen. Das Produkt wurde durch Zugabe von 40 ml Methanol ausgefällt, abfiltiert und im Hochvakuum getrocknet. Es wurden 2,5 g eines weißen Pulvers, das aus [(CH₃)₂HSiO_{1/2}]-, [(CH₃)₃SiO_{1/2}]- und [HSiO_{3/2}]-Einheiten aufgebaut ist, erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 1,0 - 3,0 g/l) wurde ein hydrodynamischer Partikelradius R_h von 9,5 nm und ein Trägheitsradius R_q von <10 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von < 1,0. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 1,6x10⁶ ermittelt. Der Einbau der Si-H-Funktionen wurde qualitativ durch IR-Spektroskopie (KBr-Preßling, v_{Si-H} 2238 cm⁻¹) und durch ¹H-NMR-Spektroskopie (CDCl₃, δ Si-H 4,0-5,5 ppm) nachgewiesen. Die Organopolysiloxanpartikel sind in Toluol, Pentan, Cyclohexan, Tetrahydrofuran, Dioxan, Diethylether und Poly(dimethylsiloxan) der Viskosität 35 mPa • s gut löslich.

Beispiel 8

40

Zu einer Vorlage aus 125 g Wasser, 2,5 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurden unter Rühren im Verlauf von 45 Minuten 22,0 g Methyltrimethoxysilan zudosiert. Nach 5 Stunden Rühren wurde unter Rühren im Verlauf von 30 Minuten eine Mischung aus 0,25 g [(C2H5O)3Si-(CH2)3-N(CH3)-C(O)-(CH2)2-C(CN)(CH₃)-N=]₂ ["(C₂H₅O)₃Si-Azo-Si(C₂H₅O)₃"] und 2,75 g Methyltrimethoxysilan zugegeben und weitere 10 Stunden gerührt. 25 g der entstandenen Suspension wurden unter Rühren mit 1,2 g Trimethylmethoxysilan versetzt und weitere 10 Stunden gerührt. Durch Zusatz von 50 ml Methanol wurde die Suspension gebrochen. Der ausgefallene Feststoff wurde abfiltriert, 3 mal mit 30 ml Methanol gewaschen und in 50 ml Tetrahydrofuran aufgenommen. Nach Zugabe von 1,6 g Hexamethyldisilazan und 10 Stunden Rühren wurde das Produkt mit 150 ml Methanol ausgefällt, abfiltriert und im Hochvakuum getrocknet. Es wurden 1,2 g eines weißen Pulvers der relativen Zusammensetzung [(CH₃)₃SiO_{1/2}]_{1,20}[CH₃SiO_{3/2}]_{1,0}["O_{3/2}Si-Azo-SiO_{3/2}"]_{0,002} erhalten. Mittels statischer und dynamischer Lichtstreuung (Lösungsmittel Toluol; Konzentrationsbereich der Messung: 1,0 - 2,5 g/l; Messung nach Tempern der Probe für 48 Stunden bei 75°C) wurde ein hydrodynamischer Partikelradius R_h von 9,8 nm und ein Trägheitsradius R_g von <10 nm ermittelt. Daraus ergibt sich ein ρ-Verhältnis von < 1,0. Das Molekulargewicht M_w der monodispersen, sphärischen Partikel wurde zu 0,86x10⁶ ermittelt. Der Einbau des azofunktionellen Silans wurde qualitativ und quantitativ durch DSC-Messungen nachgewiesen. Die Organopolysiloxanpartikel sind in Toluol, Pentan, Cyclohexan, Tetrahydrofuran, Dioxan und Methylmethacrylat gut löslich.

Vergleichsbeispiel 1

Analog zu Beispiel 1 wurden zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) unter Rühren im Verlauf von 45 Minuten 25,0 g Methyltrimethoxysilan zudosiert. Nach weiteren 5 Stunden Rühren wurden 25 g der entstandenen Suspension durch Zusatz von 50 ml Methanol gebrochen. Der ausgefallene Feststoff wurde abfiltriert und 3 mal mit 30 ml Methanol gewaschen. Er erwies sich als unlöslich in Toluol und konnte nicht weiter umgesetzt und charakterisiert werden.

Vergleichsbeispiel 2

10

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 60 Minuten eine Mischung aus 19,5 g Methyltrimethoxysilan und 5,5 g Trimethylmethoxysilan zudosiert. Nach weiteren 10 Stunden Rühren wurden 25 g der entstandenen Suspension durch Zusatz von 50 ml Methanol gebrochen. Der ausgefallene Feststoff wurde abfiltriert und 3 mal mit 30 ml Methanol gewaschen. Er erwies sich als unlöslich in Toluol und konnte nicht weiter umgesetzt und charakterisiert werden.

Vergleichsbeispiel 3

Zu einer Vorlage aus 125 g Wasser, 3 g Benzethoniumchlorid und 0,3 g Natriumhydroxidlösung (10 %ig in Wasser) wurde unter Rühren im Verlauf von 90 Minuten eine Mischung aus 14,0 g Methyltrimethoxysilan und 11,0 g Trimethylmethoxysilan zudosiert. Nach weiteren 15 Stunden Rühren wurden 25 g der entstandenen Suspension durch Zusatz von 50 ml Methanol gebrochen. Es wurde ein hochviskoses öl erhalten.

Patentansprüche

25

- Aus einem einzigen Molekül bestehende, vernetzte Organopolysiloxanpartikel, die einen mittleren Durchmesser von 5 bis 200 nm aufweisen, bei denen mindestens 80 % der Partikel einen Durchmesser besitzen, der höchstens 30 % vom mittleren Durchmesser abweicht und die in einem Lösungsmittel zu mindestens 5 Gew.-% löslich sind.
- Organopolysiloxanpartikel nach Anspruch 1, bei denen die mittleren Molmassen 10⁵ bis 10¹⁰ betragen.
 - 3. Organopolysiloxanpartikel nach Anspruch 1 oder 2, welche aufgebaut sind aus

0,5 bis 80,0 Gew.-% Einheiten der allgemeinen Formel

35

$$[R_3SiO_{1/2}] \tag{1},$$

40

0 bis 99,0 Gew.-% Einheiten der allgemeinen Formel

$$_{45}$$
 [R₂SiO_{2/2}]

(2),

50 0 bis 99,5 Gew.-% Einheiten der allgemeinen Formel

$$[RSiO_3/2] \tag{3},$$

0 bis 80,0 Gew.-% Einheiten der allgemeinen Formel

$$[SiO_4/2] \tag{4}$$

und

5

10

15

20

25

30

35

45

50

55

0 bis 20,0 Gew.-% Einheiten der allgemeinen Formel

 $[R_aSi(O(3-a)/2)-R^1-X-(R^1-Si(O(3-a)/2))_bR_a]$ (5),

wobei

- R Wasserstoffatome oder gleiche oder verschiedene einwertige SiC-gebundene, gegebenenfalls substituierte C₁- bis C₁₈-Kohlenwasserstoffreste,
- R¹ gleiche oder verschiedene zweiwertige SiC-gebundene, gegebenenfalls substituierte C₁- bis C₁8-Kohlenwasserstoffreste, welche durch zweibindige, beidseitig an Kohlenstoffatome gebundene Reste aus der Gruppe -O-, -COO-, -COR²-, -NR²CO- und -CO- unterbrochen sein können,
- R² ein Wasserstoffatom oder einen Rest R,
- X einen Rest aus der Gruppe -N=N-, -O-O-, -S-S- und - $C(C_6H_5)_2$ - $C(C_6H_5)_2$ -,
- a die Werte 0, 1 oder 2 und,
- die Werte 0 oder 1 bedeuten,
 mit der Maßgabe, daß die Summe der Einheiten der allgemeinen Formeln (3) und (4) mindestens 0,5 Gew. beträgt.
- 4. Verfahren zur Herstellung von aus einem einzigen Molekül bestehenden Organopolysiloxanpartikeln gemäß einem der Ansprüche 1 bis 3, bei dem in einem ersten Schritt durch Zudosieren von Silanen der allgemeinen Formel (9)

 $R_{C}Si(OR^{4})_{4-C} \tag{9},$

40 und gegebenenfalls siliciumorganischen Verbindungen der allgemeinen Formel (10)

$$R_d(R^40)_e SiO_{4-d-e/2}$$
 (10),

und gegebenenfalls siliciumorganischen Verbindungen aus Einheiten der allgemeinen Formel (11)

$$R_a Si((OR^4)_{3-a}) - R^1 - X - (R^1 - Si(OR^4)_{3-a}))_b R_a$$
 (11),

wobei

R⁴ die Bedeutungen von R, c die Werte 0, 1, 2 oder 3,

d und e jeweils unabhängig voneinander die Werte 0, 1, 2, 3 oder 4 und

R, X, a und b die vorstehenden Bedeutungen aufweisen, zu einer bewegten Mischung aus Emulgator und Wasser eine kolloidale Suspension von Organopolysiloxanpartikeln hergestellt wird und in einem zweiten Schritt die kolloidale Suspension mit siliciumorganischer Verbindung der all-

gemeinen Formel (12)

 $(R^5_3Si)_fY^1$ (12),

5

10

versetzt wird, wobei

Y¹

für die Bedeutungen f = 1 ein Wasserstoffatom, $-OR^6$, $-ONR^6$ ₂ oder $-OOCR^6$ und für die

Bedeutungen f = 2 -O- oder -S- bedeuten,

R⁵ und R⁶

die Bedeutungen von R und

•

die Werte 1 oder 2 aufweisen, mit der Maßgabe, daß die siliciumorganischen Verbindungen der allgemeinen Formel (12) wasserlöslich sind oder in Wasser zu einer wasserlöslichen Verbindung hydrolysieren.

Verfahren nach Anspruch 4, bei dem Organopolysiloxanpartikel, die in der Summe mehr als ca. 15 Gew.-% an Einheiten der allgemeinen Formeln (3) und (4) enthalten, im Anschluß an den zweiten Schritt in einem dritten Reaktionsschritt in einem aprotischen Lösungsmittel mit siliciumorganischer Verbindung der allgemeinen Formel (13) und/oder (14)

20

$$(R^{5}_{3}Si)_{f}Y^{2}$$
 (13),

25

30 versetzt werden, wobei

Y²

für die Bedeutungen f = 1 Wasserstoff-, Halogenatome, -OR 6 , -NR 6 2, -ONR 6 2 oder -OOCR 6

(14),

und

für die Bedeutungen f = 2 -O-, -N(R⁶)- oder -S- bedeutet

Υ3

die Reste -O-, -N(R⁶)- oder -S-, Werte von 1 bis 30 bedeuten und

g _

die vorstehenden Bedeutungen aufweisen.

40

35

45

50

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 96 10 8218

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
A	DATABASE WPI Derwent Publications Ltd., London, GB; AN 93-224366 XP002011996 & JP-A-05 148 364 (SHINETSU CHEM. IND. CO.LTD.), 15.Juni 1993 * Zusammenfassung *		1	C08G77/06 C08J3/12
A	DATABASE WPI Derwent Publications Ltd., London, GB; AN 94-260609 XP002011997 & JP-A-06 192 426 (SHINETSU CHEM. IND. CO. LTD.) , 12.Juli 1994 * Zusammenfassung *		1	
A	R-A-2 639 950 (TOSHIBA SILICONE) 8.Juni 990 Anspruch 1 *		1	
Α	EP-A-0 291 939 (WAC 23.November 1988 * Anspruch 1 *			RECHERCHIERTE SACHGEBIETE (Int.Cl.6) CO8G CO8J
Α .	WO-A-93 23455 (WACKER CHEMIE GMBH ;WEIDNER RICHARD (DE); MAUTNER KONRAD (DE); MUE) 25.November 1993 * Ansprüche 1-7 *		1	
A	EP-A-0 335 414 (WACKER CHEMIE GMBH) 4.0ktober 1989 * Anspruch 1 * * Seite 3, Zeile 3 - Zeile 5 *		1	
Der vo	rliegende Recherchenbericht wur	ie für alle Patentansprüche erstellt		
Recherchesort Abschluftdatum der Recherche				Prefer
DEN HAAG 29.August 1996			Dep	oijper, R
X: von Y: von and A: tec O: nic	KATEGORIE DER GENANNTEN i besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kate hnologischer Hintergrund hitschriftliche Offenbarung ischenliteratur	E: âlteres Patentd tet nach dem Anm g mit einer D: in der Anmeldt gorie L: aus andern Grü	okument, das jede eldedatum veröffe ing angeführtes D nden angeführtes	ntlicht worden ist Jokument

O PORM 1500 00.02 (P