

3.5 CODIFICACIÓN DE SEÑALES DE SONIDO.

Por Alberto Prieto Espinosa

Profesor Emérito del Departamento de Arquitectura y Tecnología de los Computadores de la UGR

Codificación de las muestras

- Una vez obtenidos los valores binarios de las muestras hay que codificarlos de acuerdo con un determinado formato.
- Con frecuencia, después de la codificación, o simultáneamente a ella, se realiza un proceso de compresión de la información.
- Una vez que se produce la información digital acústica, ésta:
 - O bien se graba en forma de archivo
 - O bien se transmite por una red de datos
- En el momento de reproducir audio digitalizado, hay que hacer el proceso inverso:
 - Decomprimir y decodificar la señal
 - Reproducirla a través de un altavoz u otro medio, al mismo ritmo en que se generó.
- Hay circuitos o programas que se denominan CODEC que realizan ambas funciones:
 - CODifica/dEcodifiCA
 - COmprime/DEComprime

19

La mayoría de los formatos de codificación están basados en PCM (*Pulse Code Modulation*):

• En el intervalo entre la muestra n y la n+1 (tiempo T_s) se genera un tren de impulsos que corresponde al valor binario de la muestra n.

f_s: frecuencia de muestreo n_s: nº de bits por muestra c: nº de canales

Caudal o tasa de bits (bit rate): $R_{bps} = f_s \frac{muestras}{segundo} \cdot n_s \frac{bits}{muestra} \cdot c$

20

Tipos de CODEC usuales:

- **PCM** (Pulse Code Modification):
 - se transmiten o graba un tren de pulsos correspondientes a las amplitudes de cada muestra (o a sus logaritmos).
- **DPCM** (Differential Pulse Code Modulation):
 - Se almacena la diferencia con la muestra anterior (4 bits)
- **ADPCM** (Adaptive Differential Pulse Modulation):
 - Se predice el nuevo valor, y se almacena el error entre el valor predicho y el real (las diferencias necesitan menos bits)
- μ-law, similar a ADPCM
- MPEG Audio Capa-III: para formatos MP2, MP3 y AAC
 - varia el número de bits y la frecuencia en función del rango de frecuencias: se tienen en cuenta las características del oído humano
- **Particulares:**
 - Microsoft (Windows Media Audio), de Real Networks, de Apple,

Ejemplos de calidades de audio

Aplicación	Frecuencia muestreo f _s (KHz)	Nº bits/muestra	Nº de canales	Tasa de bits T _b (Kbps)	Capacidad en 1 minuto
Telefonía	8	8	1	60 Kbps	480 KB
Radio AM	11	8	1	88 Kbps	644 KB
Radio FM	22,05	8	2	705.6 Kbps	5,17 MB
CD	44,1	16	2	1,38 Mbps	10,34 MB
Sonido DVD y en TDT	48	16	2	1,42 Mbps	11,25 MB

Características del ejemplo utilizado (3ª Sinf. de Brahms)

$$R_{bps} = f_s \frac{muestras}{segundo} \cdot n_s \frac{bits}{muestra} \cdot c$$

00:02:53,949 39.912.4 MB 44.100 Hz | 16 bit Stereo

