

AGENDA

HugeCTR Introduction

Embedding on GPU

Pipeline on GPU

HUGECTR INTRODUCTION

WHAT IS HUGECTR

HugeCTR is a high efficiency GPU framework designed for Click-Through-Rate (CTR) estimating training.

Key Features in 2.0:

- GPU Hashtable and dynamic insertion
- Multi-node training and enabling very large embedding
- Mixed precision training

HOW HUGECTR HELP

- 1. Prototype: Showing performance and possibility on GPUs. (v1.0)
- 2. Reference Design: Developers and NV can work together to modify HugeCTR according to the specific requirements (v2.0 current stage)
- 3. Framework: Developers can train their model easily on HugeCTR (v3.0)

NETWORK SUPPORTED

Embedding + MLP

Multi slot embedding: Sum / Mean

Layers: Concat / Fully Connected / Relu / BatchNorm / elu

Optimizer: Adam/ Momentum SGD/ Nesterov

Loss: CrossEngtropy/ BinaryCrossEntropy

^{*} Supporting multiple labels and each label will have a unique weight

NETWORK SUPPORTED

Sparse Model

PERFORMANCE

Good Scalability

NCCL 2.0

Three stages pipeline:

- reading from file
- host to device data transaction (inter / intra nodes)
- GPU training

*MLP Layers: 12 / MLP Output: 1024 / Embedding Vector: 64 / Table Number: 1

PERFORMANCE

TensorFlow

44x Speedup to CPU TF and same loss curve

Embedding Vector: 64/ Layers: 4 / MLP Output: 200 / Table Number: 1

PERFORMANCE

Pytorch DLRM

HugeCTR	slot_num	embedding_vec	num_layers	output of MLP
	64	64	4	512

GPUs	Batchsize	HugeCTR Time (s per 200iters)	DLRM (200iters)	Speedup
1	40960	13.5	17.7	131%
2	40960	10.3	19.4	188%
4	40960	6.3	17.3	275%
8	40960	4.3	33.8	786%
1	4096	1.6	4.5	281%
2	4096	1.34	6.5	485%
4	4096	0.9	8.4	933%
8	4096	0.75	13.7	1827%

Embedding Vector: 64 / Layers: 4 / MLP Output: 512 / Table number: 64

RESOURCES

源码:

https://github.com/NVIDIA/HugeCTR

公众号文章:

https://mp.weixin.qq.com/s/Oieuhvt2vzFEfKklTHiuOg

REPOSITORY

FILE SYSTEM

/Hu	geCTR	source
	include	headers
	src	source
cm	ake/Modules	cmake modules
doc	CS	documents like user guide and doxygen files
san	nples	Good samples for starters
too	ls/criteo_script	tools, only data set format convertor now
ute	st	unit tests for developers

EMBEDDING ON GPU

SYSTEM

APPROXIMATE CSR

Input data (keys):

Sample 0: 35,38,33,94

Sample 1: 27,32,64,1,42,33,5

Sample 2: 52,33,56,3

Sample 3: 36,78,43,1,33

CSR:

Row: 0,4,11,15,20

Value:

35,38,33,94,27,32,64,1,42,33,5,5

2,33,56,3,36,78,43,1,33

EMBEDDING

HASHTABLE

GPU Hashtable + Value Matrix (RAW buffer)

1) A hash table of <Key, value-index> pair:

Developed based on cudf in rapids: https://github.com/rapidsai/cudf

The value-index corresponding to the row number of value matrix

Key and value_index have the same type(TypeHashKey): unsigned int or long long

2) Hash table value matrix(just like the embedding table in HugeCTR 1.0): shape = [vocabulary_size, embedding_vec_size]

HASHTABLE

GPU Hashtable Value Matrix Value_index-Key-1 Value-0 1(5) Value-1 Key-2 Value_index-Value-2 2(2) Value-3 Key-3 Value_index-Vocab_size Value-4 3(0) Value-5 ••• ••• Value-n Emb_vec_size Key-n Value_index-n

HASHTABLE

get_insert()

Fusing get() and insert():

- 1. Get in hashtable
- 2. If not found, insert this key and initialized value

How to do:

- Value matrix is initialized with random small numbers.
- 2. A counter to count the #used rows in this value matrix
- 3. Once a key is missing, insert <key, counter> into hashtable and counter++

MULTI-TABLE

HugeCTR supports multi-table (feature field/slot) embedding.

Each of the tables will be distributed across all the GPUs (nodes) to avoid load imbalance.

Tables are physically located in single hashtable, and only treated differently in {0} if no value in

concat

reduction.

this feature

The most important issue in backward:

How to find the inversed index of the keys in sample

Sample 0: 35,38,33,94

Sample 1: 27,32,64,1,42,33,5

Sample 2: 52,33,56,3

Sample 3: 36,78,43,1,33

1: sample 1 / sample 3

3: sample 2

33: sample 0 / sample 1 / sample 3


```
Each CUDA thread maps to one element (value[tid]) in sorted value.
    Each CUDA looks one element in front of it, if different{
      offset=atomicAdd(counter,1);
      uniq_values[offset]= value[tid]; offset_in_sample_IDs[offset]=tid;
     v c = 0;
      do{v_c++}while(value[tid]==value[tid+v_c]);
      value count[offset]=v c;
                                                                                             Unique
                                                                                             Values
Sorted
                                                                                             Offset in
Value
                                                                                             sample IDs
                                                                                             Value Count
```


PIPELINE ON GPU

THREE STAGE PIPELINE

CPU / GPU / H2D can overlap each other on any GPU platform.

CPU	Reading File	Reading File	Reading File	
PCI-E		Copy to GPU	Copy to GPU	Copy to GPU
GPU			Train	Train

THREE STAGE PIPELINE

HEAP

Two groups, four routines

Write CSR + label into the Heap, then checkin:

-free_chunk_checkout(ptr: T*) //Blocked function

-chunk_write_and_checkin(ref: const T&)

Read CSR + label from the queue, then free:

-data_chunk_checkout(ptr: T*) //Blocked function

-chunk_free_and_checkin(ref: const T&)

HEAP

uint lower_bits uint higher_bits

higher_bits	lower_bits	available for read y1	available for write y2
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

y1 = lower_bit&higher_bit

y2 = lower_bit&!higher_bit

Note: R/W to lower_bit and higher_bit should be atomic

CONTRIBUTORS

Fan Yu Hashtable

Xiaoying Jia Mixed Precision

Yong Wang Algorithm Advisor

Minseok Lee Multi-Node

Ryan Jeng Competitive Study

David Wu Embedding

Joey Wang Project Management

2019年12月16日-19日 苏州,中国

沟通

与来自 NVIDIA 和其他业界领先 组织的技术专家互动。

学习

通过百余场讲座、动手实验和研 究海报获取宝贵见解和实践培训

发现

了解 GPU 技术如何为深度学习 等重要领域带来重大突破,描绘 最新 AI 世界观。

创新

共同探索改变世界的颠覆性创新, 定义未来。

立即注册,扫码立享 75 折邀请优惠购票 或使用我的优惠邀请码: NVZEHUANW 前往 www.nvidia.cn/gtc/ 完成报名

RYAN JENG NVIDIA 高級工程師

扫码注册,经典课程+全新主题, AI实践经验升级

CUDA PYTHON

探讨如何使用 Numba(即时,专用类型的 Python 函数编译器)在 NVIDIA 大规模并行运算的 GPU 上加速 Python 应用程序。

您将学习如何:

- 使用 Numba 从NumPy ufuncs 编译 CUDA 内核
- 使用 Numba 创建和启动自定义 CUDA 内核
- · 应用关键的GPU内存管理技术

完成本课程后,您将能够使用Numba编译并启动 CUDA 内核,以加速 NVIDIA GPU上的 Python 应用程序。

NVIDIA.