

École Marocaine des Sciences de l'Ingénieur

Filière: Ingénierie Informatique et Réseaux

Les Bases de Données Avancées PL/SQL

Prof. Zakaria KHATAR

> Plan du cours

- 1- Base de données et SGBD relationnels
- 2- Initiation au SGBD Oracle
- 3- Langage SQL
 - 2-1 Langage de Définition des données (LDD)
 - 2-2 Langage Interrogation des Données (LID)
 - 2-3 Langage de Manipulation des Données (LMD)
- 4- Langage PL/SQL

BASE DE DONNÉES Qu'est-ce que c'est?

Définition : Une base de données est une collection de données stockées de manière structurée dans des fichiers, et accessibles à la demande pour plusieurs utilisateurs et des besoins divers.

Exemple d'utilisation:

- Les Banques
- Les universités
- Les hôpitaux
- Les systèmes de réservation (hôtels, aéroports, gares...)
- ...etc.

Définition : Un système de gestion de bases de données (**SGBD**) en anglais Database Management System (**DBMS**), est un logiciel qui permet la représentation informatique des données, qui nous permet de **créer**, de **modifier** et d'**exploiter** des bases de données. Ce système constitue donc notre interface pour accéder aux données.

Les types de SGBD :

1- SGBD Relationnels (SGBDR)

Exemples : Oracle, MySQL, SQL Server, PostgreSQL.

Caractéristiques: Utilise des tables pour stocker les données, Relation entre les tables via des clés primaires et étrangères.

Les types de SGBD :

2- SGBD Non-relationnels (NoSQL)

Exemples: MongoDB, Cassandra, Redis, CouchDB.

Types:

- Document-store (ex. MongoDB): Stocke les données sous forme de documents.
- Column-store (ex. Cassandra): Optimisé pour les opérations sur des colonnes.
- Graph databases (ex. Neo4j): Optimisé pour stocker des données sous forme de graphes.
- ...etc,

Les types de SGBD :

3- SGBD Orienté objet

Exemples: ObjectDB, Versant Object Database.

Caractéristiques : Stocke les données sous forme d'objets, Utilise des principes de la programmation orientée objet.

Exemples de SGBD Relationnels courants existants dans le marché :

Voici le classement mondial des SGBD

Les Caractéristiques principales du SGBD Oracle :

- Fiabilité et robustesse: Oracle est reconnu pour sa robustesse et sa capacité à gérer de vastes bases de données.
- Scalabilité: Possibilité de croissance sans perte de performance.
- **Sécurité avancée:** Fonctionnalités de sécurité pour protéger les données et assurer la confidentialité.
- Performance: Optimisation des requêtes, partitionnement et autres fonctionnalités pour améliorer les performances.

Il y a trois types d'utilisateur d'un SGBD :

- **L'administrateur (DBA) :** il gère les accès et les droits des utilisateurs et est responsable du contrôle et de la configuration du système.
- * L'utilisateur final : il utilise une application cliente du SGBD.
- **Le programmeur :** il programme une application qui sera cliente du SGBD.

Définition: le terme de *modèle de données relationnel* désigne une manière de **structurer** les données sous la forme de **Tables** que l'on appelle **relation**. Une base de données relationnelle est donc constituée d'un **ensemble de données structurées sous forme de tables (relations)**.

- Le modèle relationnel a été inventé par M. Codd à IBM-San Jose en 1970.
- Les SGBD basés sur le modèle relationnel sont appelés « SGBDR ».
- Le modèle permet à la fois de créer la BD et de l'interroger.

Les Avantages du modèle relationnel :

- Flexibilité: Possibilité de structurer et de restructurer les données de manière spontanée.
- ❖ Indépendance des données : La structure physique des données est séparée de leur utilisation.
- * Intégrité: Mécanismes d'intégrité robustes pour garantir la qualité des données.
- **Langages de requête puissants :** SQL permet d'extraire, de modifier et de manipuler des données.

Terminologie:

Lorsqu'on parle d'une base de données relationnelle, on appelle :

Table — Relation

Colonne — Attribut

Ligne — Enregistrement / Tuple

BD — toutes les lignes de toutes les tables

Enregistrements ou Tuples

/\	TT	rı			rc
A	LL		U	u	LJ
			-	_	

Nom	Prénom	Numéro de Tél

Dans la base de données relationnelle:

- l'ordre des lignes (Enregistrements/tuples) n'est pas significatif;
- l'ordre de colonnes (attributs) n'est pas significatif;
- pas de duplication de lignes.

Notions:

❖ Valeur NULL : Est une valeur qui **n'est pas renseignée**, et donc **vide**. Cette valeur n'est pas zéro, **c'est une absence de valeur**.

Exemple:

CNE	Nom	Prénom	Adresse	Filière
2022150	Raji	NULL	Casablanca	Informatique
2022151	Amrani	Chaimaa	NULL	Comptabilité
2022152	Badrane	Mounir	El Jadida	Marketing

❖ Clé primaire : constituée d'un ou de plusieurs attributs, nous permet d'identifier de manière unique chaque ligne d'une table.

Par exemple: la Colonne **CNE** permet d'identifier de **manière** unique chacun des deux étudiants qui ont le même nom et prénom (Raji Anas), on ne peut pas trouver deux étudiants qui ont le même CNE, donc la colonne CNE est une **Clé Primaire**.

	CNE	Nom	Prénom	Adresse	Filière
	2022150	Raji	Anas	Casablanca	Informatique
	2022451	Raji	Anas	Casablanca	Informatique
\	2022152	Badrane	Mounir	El Jadida	Marketing

❖ Clé étrangère : Elle permet de mettre en relation les différentes tables de la BDD. C'est aussi une contrainte qui assure l'intégrité référentielle de celle-ci. Il est donc important de bien comprendre le fonctionnement de la clé étrangère pour exploiter correctement des données.

Clé étrangère

ld commande	Produit	Prix	Id client

Clé primaire

La clé étrangère de la table « Commande » est une clé primaire de la table « Livraison »

Application:

Repérer les clés primaires et étrangères pour chaque table.

Etudiant

numéro_carte_etudiant	Nom	Prénom	Date_naissance	Section
01234567	Ben Salah	Ahmed	12/08/1988	Informatique
01234568	Ben Mahmoud	Sami	02/09/1990	Math
01234569	Marzougui	Rami	23/01/1988	Informatique

Matière

code_matière	nom_matière	coefficient
12508	Base de données	1.5
12518	Algorithme	3

Note

numéro_carte_etudiant	code_matière	note_examen	
01234567	12508	15.5	
01234567	12518	5.5	
01234568	12518	10.5	
01234569	12518	8.75	

Schéma relationnel d'une base de données :

La table se représente de la manière suivante :

Exemple:

CLIENT

numClient nom prénom adresse

CLIENT(<u>numClient</u>, nom, prenom, adresse) numClient : clé primaire de la table CLIENT

numClient	Nom	Prenom	adresse	
1	Dupont	Pierre	5 rue de Paris 93000 Saint-Denis	
2	Durand	Raymond	68 rue Alphonse Daudet 77540 Noisy le grand	
3	3 Dupuis Elisa		1, boulevard Louis Blériot 94800 Villejuif	
4	Dubois	Raymonde	15bis, rue de la Gaité 75014 Paris	

Schéma relationnel : Clé étrangère

•Clé primaire : numClient

- ❖ Degré de la table : Correspond aux nombres de colonnes (attributs) de la table.
- **Cardinalité de la table :** Elle représente le nombre de lignes (enregistrements ou tuples) de la table.

Application:

- 1- Repérer les clés primaires et étrangères
- 2- Donnez le schéma relationnel du modèle logiques de données suivant.
- 3- Donnez les tables du modèle logiques de données suivant.

Conducteur		Voiture		Garage
CIN		Marque		Ville
Nom		Modèle		Num_garage
Prénom		Num_immatriculation		Capacité
Adresse		Num_garage		•
Num_immatriculation			I	

4- Donnez le degré et la cardinalité de la table suivante.

Code_emp	Nom	Prénom	Adresse	Salaire
2022150	Raji	Anas	Casablanca	8 000 dh
2022451	Amrani	Chaimaa	Casablanca	10 500 dh
2022152	Badrane	Mounir	El Jadida	7 000 dh