Problem 1. equation

Input file: equation.in
Output file: equation.out
Time limit: 1 second

Mr.Hu 觉得大家最近解同余方程解累了,就给大家来个正常点的解方程。

给你 n 个变量组成的 m 个方程组, 第 i 个形如:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$$

现在请你帮忙解一下方程。

Input

第 1 行一个整数 T,表示数据组数。

接下来 T 个方程组。

每个方程组第1行,包含两个整数 nm,表示变量数和方程数。

接下来 m 行,每行 n+1 个浮点数,表示: a_{i1} a_{i2} ... a_{in} b_i 。

Output

对每个方程组:

- 如果无解或有多组解,输出一行: "No solution or more than one solution."
- 如果有唯一解,输出一行,包含 n 个浮点数: $x_1 x_2 \dots x_n$,每个保留两位小数。

Sample

equation.in	equation.out
2	-1.00 2.00
2 3	No solution or more than one solution.
3 4 5	
5 6 7	
2 1 0	
2 3	
3 4 5	
5 6 7	
2 4 7	

Note

- 对于 30% 的数据, $1 \le n = m \le 2$;
- 对于 100% 的数据, $1 \le n \le m \le 100$, $1 \le T \le 10$, $-1000 \le a_{ij}, b_i \le 1000$, 且最多拥有两位小数。

Problem 2. tcount

Input file: tcount.in
Output file: tcount.out
Time limit: 1 second

Mr.Hu 发现了一个无向连通图,它觉得,如果选出一些边来,使得这个图变为一棵树,那么这个边集就非常棒。

现在,Mr. Hu 想让你帮忙求出有多少个非常棒的边集?

Input

第 1 行,包含 2 个整数: n m, 表示有 n 个点 m 条边。

接下来 m 行,每行 2 个整数: uv,表示一条边。

Output

输出 1 行,包含 1 个整数,表示方案数模 $10^9 + 7$ 。

Sample

tcount.in	tcount.out
3 3	3
1 2	
2 3	
1 3	

tcount.in	tcount.out
4 6	16
1 2	
1 3	
1 4	
2 3	
2 4	
3 4	

Note

- 对于 30% 的数据, $1 \le n, m \le 12$;
- 对于 100% 的数据, $1 \le n \le 100, 1 \le m \le \frac{n(n-1)}{2}$,数据保证没有重边。

Problem 3. repstr

Input file: repstr.in
Output file: repstr.out
Time limit: 1 second

Mr.Hu 最近在研究字符串。

对于一个只有'a', 'b' 组成的字符串,如果存在某个偏移量 offset,使得将字符串整个向右平移那个偏移量后,所有重叠的字符都相等,那么我们称这个偏移量是漂亮的。

现在,Mr.Hu 写下了一个长度为 n 的字符串,里面只包含ab? 三种字符,现在可以把问号一个一个地替换成ab 中的某个字符,如果某个偏移量 offset 对某种替换方案是漂亮的,我们称这个偏移量是美丽的。请问,所有美丽的偏移量有哪些?(只需要求出 $1 \le offset \le n$ 的 offset)。

Input

第1行1个整数: n, 表示字符串的长度。

第 2 行为一个字符串: s, 表示 Mr.Hu 写下的字符串。

Output

第1行1个整数,表示美丽的偏移量的数量 cnt。

第 2 行输出 cnt 个整数,按递增顺序输出每个美丽的偏移量。

Sample

repstr.in	repstr.out
5	2
a??ab	3 5
repstr.in	repstr.out

3

2 3 4

Note

?ab?

- 对于 30% 的数据, $1 \le n \le 15$;
- 对于 60% 的数据, $1 \le n \le 20000$;
- 对于 100% 的数据, $1 \le n \le 100000$.