MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

Tarea 3.

Fecha entrega: Lunes 15 de Junio, 23:59. Por u-cursos.

Instrucciones:

- 1. Extensión máxima: Entregue su tarea en a lo más 6 planas.
- 2. Formato: La tarea debe entregarse en formato pdf, con fondo de un solo color (blanco de preferencia), letra legible en manuscrito y clara. (No se aceptarán documentos tipeados o generados por computador, pero si tiene alguna manera de escribir en manuscrito directamente de manera digital lo puede hacer). Si desarrolla su tarea en papel, entréguelo escaneados o en fotos de alta calidad, via ucursos.
- 3. **Tiempo de dedicación:** El tiempo estimado de desarrollo de la tarea es de 2.5 horas de dedicación. Esto no considera el tiempo de estudio previo, el tiempo dedicado en asistir a cátedras y auxiliares, ni el tiempo para ponerse al día. Tendrá un plazo de 7 días para entregarlo. No espere hasta el último momento para escanear o fotografiar adecuadamente su tarea y cambiarla al formato solicitado (pdf). Entregue con suficiente anticipación a la hora límite.
- 4. Revisión: Se podrá descontar hasta 1 punto en la nota final por falta de formato o extensión.
- 5. Esta tarea está pensada para ser hecha en forma individual.

Ejercicios:

(a) [15 puntos] Sean $S, T \subseteq \mathbb{R}^n$. Pruebe que $\operatorname{conv}(S + T) = \operatorname{conv}(S) + \operatorname{conv}(T)$.

Solución

(\subseteq) Sea $U = S + T = \{u \in \mathbb{R}^n | u = s + t, s \in S, t \in T\}$, sea $\bar{u} \in conv(U)$, luego $\bar{u} = \sum_{i=1}^n \lambda_i u_i$, con $\lambda \geq 0$, $1^T \lambda = 1$, n finito y $u_i \in U \ \forall i \in [n]$, luego \bar{u} puede escribirse como sigue:

$$\bar{u} = \sum_{i=1}^{n} \lambda_i u_i = \sum_{i=1}^{n} \lambda_i (s_i + t_i) = \sum_{i=1}^{n} \lambda_i s_i + \sum_{i=1}^{n} \lambda_i t_i = \bar{s} + \bar{t}$$

, donde $\bar{s} \in conv(S)$ y $\bar{t} \in conv(T)$, luego $\bar{u} \in conv(S) + conv(T)$, se concluye que $conv(S + T) \subseteq conv(S) + conv(T)$.

 (\supseteq) Sea $\bar{s} = \sum_{i=1}^{n_1} \lambda_i s_i$, $\bar{t} = \sum_{j=1}^{n_2} \theta_j t_j$, con $1^T \lambda = 1, \lambda \ge 0, 1^T \theta = 1, \theta \ge 0, n_1$ y n_2 finitos, luego la suma entre una combinación convexa de elementos de S y T se puede escribir así:

$$\begin{split} \bar{s} + \bar{t} &= \sum_{i=1}^{n_1} \lambda_i s_i + \sum_{j=1}^{n_2} \theta_j t_j = \sum_{i=1}^{n_1} \lambda_i s_i \sum_{j=1}^{n_2} \theta_j + \sum_{j=1}^{n_2} \theta_j t_j \sum_{i=1}^{n_1} \lambda_i = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} s_i \lambda_i \theta_j + t_j \theta_j \lambda_i \\ &= \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} (s_i + t_j) \lambda_i \theta_j, \ \lambda_i \theta_j \geq 0, \ \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \lambda_i \theta_j = \sum_{i=1}^{n_1} \lambda_i \sum_{j=1}^{n_2} \theta_j = 1 \end{split}$$

, luego $\bar{s} + \bar{t} \in conv(S+T)$, se concluye que $conv(S) + conv(T) \subseteq conv(S+T)$.

(b) [15 puntos] Sean P, Q polítopos con vértices V(P) y V(Q) respectivamente. Demuestre que $R = \text{conv}(P \cup Q)$ es polítopo y que si V(R) son los vértices de R entonces $V(R) \subseteq V(P) \cup V(Q)$.

Solución

Sea $S = P \cup Q$, como R = conv(S) se tiene que todo $\bar{r} \in R$ se puede escribir como una combinación finita de elementos de S, formalmente, $\bar{r} = \sum_{k \in K} \alpha_k s_k$, $\alpha \ge 0$, $1^T \alpha = 1$, $s_k \in S \ \forall k \in K$, con K finito. Notar que K se puede reescribir como $K = K_1 \cup K_2$, donde K_1 es el conjunto de índices de los elementos de P que participan y K_2 de los elementos de Q, como P y Q son politopos sus elementos se pueden escribir como una combinación convexa de sus vertices, así si $k \in K_1$, entonces existe $\lambda^k \ge 0$, $1^T \lambda^k = 1$ tal que $s_k = \sum_{v \in V(P) \cup V(Q)} \lambda_v^k v$, con $\lambda_v^k = 0 \ \forall v \in V(Q)$ (lo mismo aplica para $k \in K_2$), así \bar{r} se puede escribir como sigue:

$$\bar{r} = \sum_{k \in K_1 \cup K_2} \alpha_k s_k = \sum_{k \in K_1 \cup K_2} \alpha_k \sum_{v \in V(P) \cup V(Q)} \lambda_v^k v = \sum_{v \in V(P) \cup V(Q)} v \sum_{k \in K_1 \cup K_2} \alpha_k \lambda_v^k$$

$$= \sum_{v \in V(P) \cup V(Q)} v \theta_v, \ \theta_v = \sum_{k \in K_1 \cup K_2} \alpha_k \lambda_v^k$$

Notar además que:

$$\sum_{v \in V(P) \cup V(Q)} \theta_v = \sum_{v \in V(P) \cup V(Q)} \sum_{k \in K_1 \cup K_2} \alpha_k \lambda_v^k = \sum_{k \in K_1 \cup K_2} \alpha_k \sum_{v \in V(P) \cup V(Q)} \lambda_v^k = \sum_{k \in K_1 \cup K_2} \alpha_k = 1$$

, luego \bar{r} es combinación convexa de elementos de $V(P) \cup V(R)$, esto implica que $conv(P \cup Q) \subseteq conv(V(P) \cup V(Q))$ y como $V(P) \cup V(Q) \subseteq P \cup Q$ se tiene que $conv(V(P) \cup V(Q)) \subseteq conv(P \cup Q)$, por ende $R = conv(V(P) \cup V(Q))$ y como la envoltura convexa de un conjunto finito es polítopo se concluye que R lo es.

Un elemento \bar{r} es punto extremo de R si para todo $H \subseteq R$ con H finito, se tiene que si $x \in conv(H)$, entonces x está en H. Tomando $H = V(P) \cup V(Q)$ y \bar{r} punto extremo de R, se tiene que $r \in conv(V(P) \cup V(R))$, luego $\bar{r} \in V(P) \cup V(Q)$, se concluye que $V(R) \subseteq V(P) \cup V(Q)$.

- (c) [30 puntos] Considere la variante del cutting stock problem en el cual cada cliente i desea **a lo más** b_i rollos de ancho w_i y está dispuesto a pagar g_i pesos por cada rollo de dicho ancho recibido (y no recibirá más de b_i). Además, la papelera incurre en un costo fijo de s pesos por cada tronco de ancho w_i usado, y dispone de no más de w_i rollos. La papelera desea maximizar su utilidad definida como el ingreso recibido por los rollos vendidos menos el costo de los troncos usados. Determine:
 - (c1) Modele el problema como un programa lineal entero (PE) que solo use variables x_p para cada posible patrón $p \in \mathcal{P}$ (use la misma definición de patrón usada en clases y laboratorio). **Indicación:** Defina explícitamente g_p como el ingreso que le reporta vender los rollos de cierto patrón p. Este valor es una constante para (PE).

Solución

Se define la ganancia de un patrón como el ingreso generado por las rollos cortados, es decir, $g_p = \sum_{i=1}^m g_i p_i$, luego PE se puede escribir como:

$$(\text{PE}) \max \sum_{p \in P} (g_p - s) x_p$$

$$\sum_{p \in P} x_p p_i \le b_i, \ \forall i \in [m]$$

$$\sum_{p \in P} x_p \le N$$

$$x_p \in \mathbb{N} \ \forall p \in P$$

, la primera restricción indica que cada cliente i no recibe más de b_i unidades y la segunda restricción impide cortar más de N troncos.

(c2) Para $Q \subseteq \mathcal{P}$, el master problem MP(Q) asociado y su dual DUAL-MP(Q).

Indicación: Recuerde que MP(Q) se obtiene tomando la relajación lineal de (PE) y eliminando (fijando a cero) todas las variables x_p para p fuera de Q. Su formulación MP(Q) solo debe incluir variables x_p con $p \in Q$ (no debe hacer mención al resto de los x_p).

Solución

El problema maestro es la relajación lineal de PE sobre un sunconjunto $Q \subseteq P$ de patrones, así el maestro es:

$$(\mathrm{MP}(\mathbf{Q})) \max \sum_{p \in Q} (g_p - s) x_p$$

$$\sum_{p \in Q} x_p p_i \le b_i, \ \forall i \in [m]$$

$$\sum_{p \in Q} x_p \le N$$

$$x_p \ge 0 \ \forall p \in Q$$

Sea $y \in \mathbb{R}_+^m$ y $z \in \mathbb{R}_+$ las variable duales asociadas a la primera y segunda restricción de MP(Q) respectivamente, así su dual es:

(DUAL-MP(Q)) mín
$$\sum_{i=1}^{m} y_i b_i + zN$$

$$\sum_{i=1}^{m} y_i p_i + z \ge g_p - s, \ \forall p \in Q$$

$$y_i \ge 0 \ \forall i \in [m], z \ge 0$$

(c3) Para una solución dual factible q de DUAL-MP(Q) dada, el pricing problem asociado. Escriba este pricing problem como un programa lineal entero e interprételo como un problema de mochila.

Indicación: Recuerde que el pricing problem consiste en determinar cual es el índice (columna) asociada a la restricción de DUAL-MP(\mathcal{P}) que más viola q (la menos satisfecha).

Solución

Dado (y, z) dual factibles el Pricing Problem (PP(y,z)) consiste en determinar $p \in P$ que más viola la restricción $\eta = g_p - \sum_{i=1}^m y_i p_i \le z + s$, así PP(y,z) equivale a resolver el siguiente PLE:

$$(PP(y,z)) \max \sum_{i=1}^{m} p_i(g_i - y_i)$$
$$\sum_{i=1}^{m} p_i w_i \le W$$
$$p_i \in \mathbb{N} \ \forall i \in [m]$$

, el problema anterior se puede interpretar como un problema de la mochila, donde p_i es cuantas unidades se lleva del bien i, $g_i - y_i$ es la utilidad que aporta, w_i el espacio que ocupa y W la capacidad de la mochila.