1 Simpleksi

Simpleks ali n-simpleks je n-razsežni analog trikotnika. Točka je 0-simpleks, 1-simpleks je daljica, 2-simpleks je trikotnik, 3-simpleks je tetraeder. n-simpleks definiramo kot množico svojih n+1 oglišč. $Simplicialni\ kompleks\ K$ je sestavljen iz množice oglišč V_K in množice simpleksov S_K , sestavljene iz končnih nepraznih podmnožic od V_K , pri čemer je vsak element S_k simpleks in vsaka podmnožica simpleksa je simpleks. Pišemo $\sigma \in K$ in $v \in K$, če je $\sigma \in S_K$ ter $v \in V_K$. Dimenzija K je enaka maksimumu dimenzij njegovih simpleksov, n-dimenzionalnemu simpleksialnemu kompleksu rečemo tudi n-kompleks. Omejili se bomo samo na končne komplekse, torej $n \in \mathbb{N}$.

Če je simpleks σ vsebovan v simpleksu τ , mu rečemo lice od τ , rečemo mu pravo lice, če $\tau \neq \sigma$. Simpleksu rečemo maksimalen simpleks, če ni pravo lice nobenemu drugemu simpleksu. Subkompleks $L \in K$ simplicialnega kompleksa K je Simplicialni kompleks, tak da $V_L \subseteq V_K$ in $S_L \subseteq S_K$

Naj bo $\sigma = \{v_0, v_1, \dots, v_n\}$ n-simpleks. Zaprt simpleks $\bar{\sigma}$ je množica formalnih konveksnih kombinacij $\sum_{i=0}^n \alpha_i v_i$ pri čemer je $\alpha_i \geq 0$ za vsak $0 \leq i \leq n$ in $\sum_{i=0}^n \alpha_i = 1$. Zaprt simpleks je metričen prostor z metriko

$$d(\sum_{i=0}^{n} \alpha_i v_i, \sum_{i=0}^{n} \beta_i v_i) = \sqrt{\sum_{i=0}^{n} (\alpha_i - \beta_i)^2}.$$
 (1)

Če so v_i linearno neodvisne točke v \mathbb{R}^m za nek $m \geq n$, potem je $\bar{\sigma}$ homeomorfen prostoru $\{\Sigma_{i=0}^n \alpha_i v_i, | \Sigma_{i=0}^n \alpha_i = 1 \text{ in } \alpha_i \geq 0\} \subseteq \mathbb{R}^m$, kar pomeni, da lahko vsak zaprt simpleks predstavimo kot podprostor \mathbb{R}^m z evklidsko topologijo.

Geometrijska realizacija |K| simplicialnega kompleksa K je množica formalnih konveksnih kombinacij $\sum\limits_{v\in K}\alpha_v v$, takih da je $\{v|\alpha_v>0\}$ simpleks v K in $\Sigma_{v\in K}\alpha_v=1$. Rečemo, da |K| realizira K. Za točko $x\in |K|$ označimo supp $(x)=\{v|\alpha_v>0\}$, tej množici pravimo nosilec od x. Topologijo na $\bar{\sigma}$ definiramo na naslednji način. $U\subseteq |K|$ je odprta, natanko tedaj, ko je $U\cap \bar{\sigma}$ odprta, za vsak $\sigma\in K$. Kot prej, če so $v\in K$ linearno neodvisne točke v \mathbb{R}^m za nek $m\geq |V_K|$, potem je |K| homeomorfen prostoru $\{\Sigma_{v\in K}^n\alpha_v v|\Sigma_{v\in K}^n\alpha_v=1,\,\alpha_i\geq 0 \text{ in }\{v|\alpha_v>0\}$ je simpleks v $K\}\subseteq \mathbb{R}^m$, kar spet pomeni, da lahko vsak simplicialni kompleks predstavimo kot podprostor v $\mathbb{R}^{|V_K|}$ z evklidsko topologijo. Če $L\subseteq K$, potem je $|L|\subseteq |K|$ zaprta podmnožica.

Opomba 1. Če je K n-kompleks, potem se ga da realizirati v \mathbb{R}^{2n+1} . To pomeni, da obstaja podprostor v \mathbb{R}^{2n+1} , ki je homeomorfen |K|. Vsak graf je geometrijska realizacija 1-kompleksa, zato ga lahko realiziramo v $\mathbb{R}^{2\cdot 1+1} = \mathbb{R}^3$, kar je pa znano dejstvo iz teorije grafov.

Polieder je geometrijska realizacija Simplicialnega kompleksa |K|, tri-angulacija poliedra X pa je simplicialni kompleks, katerega geometrijska realizacija je homeomorfna X.

Ker topologija na |K| sovpada z topologijo na $\bar{\sigma}$, za vsak $\sigma \in K$ in je $U \subseteq |K|$ odprta, natanko tedaj, ko je $U \cap \bar{\sigma}$ odprta, za vsak $\sigma \in K$, sledi, da je preslikava f iz |K| v nek topološki prostor X zvezna, natanko tedaj, ko je $f|_{\bar{\sigma}}: \bar{\sigma} \to X$ zvezna za vsak $\sigma \in K$. Tudi $H: |K| \times I \to X$ je zvezna, natanko tedaj, ko je zvezna $H|_{\bar{\sigma} \times I}: \bar{\sigma} \times I \to X$, za vsak $\sigma \in K$.

Simplicialna preslikava $\phi: K \to L$, med simplicialnima kompleksoma K in L, je preslikava med oglišči, $V_K \to V_L$, ki slika simplekse v simplekse. Preslikava ϕ inducira zvezno preslikavo med kompleksoma $|\phi|: |K| \to |L|$, kot $|\phi|: \sum\limits_{v \in K} \alpha_v v \mapsto \sum\limits_{v \in K} \alpha_v \phi(v)$.

Primer 1. simplicialna preslikava

 $Baricentrična\ subdivizija\ simplicialnega\ kompleksa\ K$ je simplicialni kompleksK', čigar oglišča so simpleksi $\sigma\in K$, simpleksi vK' so pa verige simpleksov vK, urejenih z inkluzijo. Torej $\sigma'\in K'$, če $\sigma'=\{\sigma_0,\sigma_1,...,\sigma_n\}$ in $\sigma_0\subsetneq\sigma_1\subsetneq...\subsetneq\sigma_n$. $Te\check{z}i\check{s}\check{c}e$ simpleksa $\sigma\in K$ je točka $b(\sigma)=\sum\limits_{v\in\sigma}\frac{v}{\#\sigma}$.

Definirajmo linearno preslikavo $S_K: |K'| \to |K|$, s predpisom $S_K(\sigma) = b(\sigma)$. Linearnost pomeni, da velja $S_K(\sum_{\sigma \in \sigma'} a_{\sigma}\sigma) = \sum_{\sigma \in \sigma'} a_{\sigma}S_K(\sigma)$.

Primer 2. Naj bo $K = \sigma = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ 3-simpleks.

Slika

Poglejmo si preslikavo $S_K: |K'| \to |K|$. Naj bo x tako kot na sliki. Potem je $K'_x:= \operatorname{supp}(x) = \{\{a\}, \{a,b\}, \{a,b,c\}\}$ in $x=\sum\limits_{\sigma \in K'_x} \alpha_{i\sigma} \sigma$. Zato

Preslikava S_K je očitno homeomorfizem.

Izrek 1. Simplicial approximation theorem. Naj bosta K in L simplicialna kompleksa in naj bo $f: |K| \to |L|$ zvezna. Potem obstaja $n \in N$ in simplicialna preslikava $g: K^n \to L$, taka da je |g| homotopna f.

1.1 Poti v simplicialnem kompleksu

Edge path dolžine n simplicialnega kompleksa K je zaporedje $(v_0, v_1, ..., v_n)$ oglišč v K, takih, da je $\{v_{i-1}, v_i\}$ simpleks v K, za vsak i (dovolimo tudi $v_{i-1} = v_i$). Edge-path je edge loop, če $a_n = a_0$. Če sta $\alpha = (v_0, v_1, ..., v_n)$ in $\beta = (u_0, v_1, ..., v_m)$, definiramo stik poti $\alpha \cdot \beta$ kot $(v_0, v_1, ..., v_n u_0, u_1, ..., v_m)$.

Definicija 1. Naj bo α edge-path. *Elementarna skrčitev* poti α je edge-path, ki ga dobimo iz α , če "naredimo en izmed naslednjih muvov"

- zamenjamo ..., $a_{i-1}, a_i, ...$ z ..., $a_i, ...$ če $a_{i-1} = a_i$
- zamenjamo ..., $a_{i-1}, a_i, a_{i+1}, ...$ z ..., $a_{i-1}, ...$ če $a_{i-1} = a_{i+1}$
- zamenjamo ..., $a_{i-1}, a_i, a_{i+1}, ...$ z ..., $a_{i-1}, a_{i+1}, ...$ če je $\{a_{i-1}, a_i, a_{i+1}\}$ simpleks v K

Rečemo, da je β elementarna razširitev α , če je α elementarna skrčitev od β . Rečemo, da sta α in β ekvivalentna, če lahko α dobimo iz β z končnim zaporednjem elementarnih skrčitev in razširitev. Ta relacija je očitno ekvialenčna relacija na edge paths.

Primer 3. primer

Naj bo K simplicialni kompleks in b oglišče v K. Z E(K,b) označimo množico ekvivalenčnih razredov edge zank z izhodiščem v b. Ekvivalenčni razred zanke α označimo z $[\alpha]$.

Trditev 1. Množica E(K,b) z množenjem, ki ga inducira stik poti, tj. za $[\alpha], [\beta] \in E(K,b)$ $[\alpha][\beta] = [\alpha\beta],$ tvori grupo.

Dokaz. Dobra definiranost množenja in asociativnost sta očitni. Identiteta je ekvivalenčni razred poti (b). Iverz od $(b, b_1, ..., b_{n-1}, b)$ je $(b, b_{n-1}, ..., b_1, b)$. \square

Izrek 2. E(K,b) je izomorfna $\pi_q(K,b)$

Dokaz. dokazzzz