МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Кафедра теории вероятностей и математической статистики

Крагель Алины Олеговны

Моделирование базовой случайной величины

Отчет по лабораторной работе №1 («Имитационное и статистическое моделирование») Студентки 4 курса 9 группы

Преподаватель

Гайдук Антон Николаевич

1 Теоретическая часть

1.1 Моделирование БСВ

1.1.1 Линейный конгруэнтный метод

Согласно этому методу, псевдослучайная последовательность реализаций $\alpha_1,...,\alpha_n$ БСВ α определяется по рекуррентным формулам:

$$x_{t+1} = (ax_t + c) \operatorname{mod} M,$$

где x_1 , x_2 , ..., x_n — выходная последовательность генератора длины n, x_0 — начальное значение, $a \neq 0$ — множитель, c — приращение, M — модуль.

Период датчика T≤ M-1.

1.1.2 Метод Маклорена-Марсальи

Метод основан на комбинировании двух простейших программных датчиков БСВ (например, линейных конгруэнтных).

Пусть $\{\beta_t\}, \{c_t\}$ — псевдослучайные последовательности, порождаемые независимо работающими датчиками; $\{\alpha_t\}$ — результирующая псевдослучайная последовательность реализаций БСВ; $V = \{V(0), V(1), ..., V(K-1)\}$ — вспомогательная таблица K чисел.

Процесс вычисления $\{\alpha_i\}$ включает следующие этапы:

• первоначальное заполнение таблицы V:

$$V(i) = b_i, i = \overline{0, K-1};$$

• случайный выбор из таблицы:

$$\alpha_t = V(s), s = [c_t \cdot K];$$

• обновление табличных значений:

$$V(s) = b_{t+K}, t = 0,1,2,...$$

Данный метод позволяет ослабить зависимость между членами псевдослучайной последовательности $\{\alpha_i\}$ и получить сколь угодно большие значения её периода T при условии, что периоды T_1 , T_2 исходных датчиков являются взаимно простыми числами.

1.2 Проверка точности моделирования

1.2.1 Тест «совпадения моментов»

Пусть в результате n-кратного обращения к датчику БСВ получена выборка значений $A = \{a_1,...,a_n\}$. Известно, что БСВ имеет среднее значение $\mu = 1/2$ и дисперсию $\sigma^2 = 1/12$. Обозначим случайные отклонения выборочных оценок от истинных характеристик μ, σ^2 как:

$$\xi_1 = m - 1/2, \ \xi_2 = s^2 - 1/12$$
 (1.1)

где

$$m = \frac{1}{n} \sum_{i=1}^{n} a_i , \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (a_i - m)^2$$
 (1.2)

Тест «совпадения моментов» – это программа для ЭВМ, реализующая статистические критерии проверки по выборке А гипотез:

$$H_0: \mu = 1/2, \ H_1: \mu \neq 1/2, \ c_1(n) = \sqrt{12n}$$
 (1.3)

$$H_0: \sigma^2 = 1/12, \ H_1: \sigma^2 \neq 1/12, \ c_2(n) = \frac{n-1}{n}(0.0056n^{-1} + 0.0028n^{-2} - 0.0083n^{-3})^{-\frac{1}{2}}$$
 (1.4)

Тогда решающее правило имеет вид:

принимается
$$\begin{cases} H_0, c_i(n) \cdot |\xi_i| < \Lambda \\ H_1, \text{иначе}, \end{cases}$$
 (1.5)

где $c_i(n)$ – нормировочные множители; Δ – порог критерия.

Если H_0 верна, а n>>1 (практически $n\geq 20$), то в силу ЦПТ: $c_i(n)\xi_i\sim N_1(0,1)$ (распределено приближённо по стандартному нормальному закону). С учётом этого из ограничения на вероятность ошибки первого рода:

$$P\{H_0 \mid H_1\} = P\{c_i(n) \mid \xi_i \ge 0 \mid H_0\} = \varepsilon(0 < \varepsilon < 1), \tag{1.6}$$

находится выражение для порога критериев:

$$\Delta = \Phi^{-1}(1 - \frac{\varepsilon}{2}),\tag{1.7}$$

где $\Phi^{-1}(\cdot)$ – квантиль стандартного нормального закона, ε – заданный уровень значимости.

В лабораторной работе реализована эквивалентная форма решающих правил, связывающей задаваемый пользователем уровень значимости ε и вычисляемые по выборке А критические вероятности $P_i(P$ -значения):

принимается
$$\begin{cases} H_0, \varepsilon < P_i, \\ H_1, \varepsilon \ge P_i, \end{cases}, P_i = 2(1 - \Phi(c_i(n) \mid \xi_i \mid)), i = \overline{1,2}.$$
 (1.8)

1.2.2 Тест «ковариация»

Ковариационной функцией случайной последовательности $\alpha_1,...,\alpha_n$ называется функция целочисленной переменной $\xi \in \{0,1,...,n-1\}$:

$$R(j) = E\{(\alpha_1 - E\{\alpha_1\})(\alpha_{1+j} - E\{\alpha_{1+j}\})\} = E\{\alpha_1 \cdot \alpha_{1+j}\} - E\{\alpha_1\} \cdot E\{\alpha_{1+j}\}. \tag{1.9}$$

Если $\alpha_1,...,\alpha_n$ — независимые, одинаково распределённые по закону R(0,1) случайные величины, то α_1 и α_{1+j} независимы для любого $j \ge 1$ и следовательно:

$$R(j) = \begin{cases} 1/12, j = 0, \\ 0, j \ge 0. \end{cases}$$
 (1.10)

Пусть $\widehat{R}(j)$ — оценка R(j) по выборке $A = \{a_1,...,a_n\}$, полученной в результате n - кратного обращения к исследуемому датчику:

$$\widehat{R}(j) = \frac{1}{n-j-1} \sum_{i=1}^{n-j} a_1 \cdot a_{1+j} - \frac{n}{n-1} m^2, j = 0,1,...,t,$$
(1.11)

где 1 < t < < n, m — выборочное среднее. Заметим, что $\widehat{R}(j) = s^2(s$ - выборочная дисперсия).

Тест «ковариация» позволяет проверить свойство (1.10) (гипотезу H_0) для последовательности $a_1,...,a_n$ и описывается следующим решающим правилом:

принимается
$$\begin{cases} H_0, |\widehat{R}(j) - R(j)| < \frac{c_j \Lambda}{12\sqrt{n-1}}, \\ H_1, \text{иначе}, \end{cases}$$
 (1.12)

где: $c_0 = \sqrt{2}, \ c_j = 1$ для $j \ge 1; \ \Delta$ — порог, определённый для заданного уровня значимости ε по формуле:

$$\Delta = \Phi^{-1}(1 - \frac{\varepsilon}{2}). \tag{1.13}$$

В лабораторной работе использована эквивалентная форма правила (1.12):

принимается
$$\begin{cases} H_0, \varepsilon < P_j, j = 0,1,...,t; \\ H_1, uhave, \end{cases}$$
, $P_j = 2 \left(1 - \Phi \left(\frac{12\sqrt{n-1} \mid \widehat{R}(j-R(j)) \mid}{c_j} \right) \right)$. (1.14)

1.2.3 Критерий хи-квадрат Пирсона

Отрезок области определения делится на k подотрезков. Оценивается вероятность попадания случайной величины ξ в i-ый подотрезок.

$$\chi^2 = \sum_{i=1}^{n} \frac{(n_i - np_i)^2}{np_i}$$

Решающее правило в таком случае имеет вид:

Если $\chi^2 < \Delta$, иначе нет.

Порог: $\Delta = G^{-1}(1 - \epsilon)$.

2 Результаты экспериментов

Были протестированы генераторы со следующими параметрами:

Генератор	M		a		c		x_0
LCG1	173		174		1		19
LCG2	2^16	5 + 1	75		74		2^8
LCG3	2^24		114067148	85	12 820 16		2^12
Генератор		Генератор	индексов	Генерато	р чисел из [0,1]	К (д	лина массива)
		массива					
MMG		LCG3		LCG2		100	

Диаграммы Рассеяния:

n = 10**3

n = 10**4

			LCG1				LCG2
n	statisctics	Н0	delta	n	statisctics	H0	delta
10000	0.8662328350	True	2.0537489106	10000	0.0052867761	True	2.0537489106
1000000	9.1222241399	False	2.0537489106	1000000	0.0565678168	True	2.0537489106
			LCG3				MMG
n	statisctics	H0	daléa	_	-4-4!4!	110	-1-14-
	Statisches	пυ	delta	n	statisctics	H0	delta
10000	0.5460323306		2.0537489106	10000	0.5421298289		2.0537489106

Тест совпадения дисперсии:

			LCG1				LCG2
n	statisctics	Н0	delta	n	statisctics	H0	delta
10000	0.6813695389	True	2.0537489106	10000	0.8541180526	True	2.0537489106
1000000	6.3835249833	False	2.0537489106	1000000	0.1285730335	True	2.0537489106

			LCG3				MMG
n	statisctics	H0	delta	n	statisctics	H0	delta
10000	1.0607437950	True	2.0537489106	10000	1.0479769075	True	2.0537489106
1000000	0.3920247075	True	2.0537489106	1000000	0.3953965408	True	2.0537489106

Тест ковариации:

			LCG1
n	statisctics	Н0	delta
10000	0.0004955161	True	0.0017115430
10000	0.0058041129	False	0.0017115430
10000	0.0006485474	True	0.0017115430
10000	0.0035265478	False	0.0017115430
10000	0.0051874976	False	0.0017115430
10000	0.0008709359	True	0.0017115430
10000	0.0029349382	False	0.0017115430
10000	0.0058339431	False	0.0017115430
10000	0.0034026941	False	0.0017115430
10000	0.0002261473	True	0.0017115430
10000	0.0009633987	True	0.0017115430

			LCG2
n	statisctics	Н0	delta
10000	0.0006391498	True	0.0017115430
10000	0.0004194628	True	0.0017115430
10000	0.0012637250	True	0.0017115430
10000	0.0010027519	True	0.0017115430
10000	0.0005488355	True	0.0017115430
10000	0.0004213781	True	0.0017115430
10000	0.0014735687	True	0.0017115430
10000	0.0005614197	True	0.0017115430
10000	0.0008299360	True	0.0017115430
10000	0.0006716200	True	0.0017115430
10000	0.0003434349	True	0.0017115430

1000000	0.0004775832	False	0.0001711458
1000000	0.0058221848	False	0.0001711458
1000000	0.0006993118	False	0.0001711458
1000000	0.0033776923	False	0.0001711458
1000000	0.0052080072	False	0.0001711458
1000000	0.0008879011	False	0.0001711458
1000000	0.0029082128	False	0.0001711458
1000000	0.0057585583	False	0.0001711458
1000000	0.0034494679	False	0.0001711458
1000000	0.0001581881	True	0.0001711458
1000000	0.0009159659	False	0.0001711458

1000000	0.0000094410	True	0.0001711458
1000000	0.0011229607	False	0.0001711458
1000000	0.0000090876	True	0.0001711458
1000000	0.0000577772	True	0.0001711458
1000000	0.0000079648	True	0.0001711458
1000000	0.0000121878	True	0.0001711458
1000000	0.0000021495	True	0.0001711458
1000000	0.0000026890	True	0.0001711458
1000000	0.0001061020	True	0.0001711458
1000000	0.0000186389	True	0.0001711458
1000000	0.0000075887	True	0.0001711458

			LCG3				MMG
n	statisctics	Н0	delta	n	statisctics	Н0	delta
10000	0.0008105887	True	0.0017115430	10000	0.0007842601	True	0.0017115430
10000	0.0011531670	True	0.0017115430	10000	0.0011866787	True	0.0017115430
10000	0.0003208894	True	0.0017115430	10000	0.0004669399	True	0.0017115430
10000	0.0013836864	True	0.0017115430	10000	0.0003924748	True	0.0017115430
10000	0.0013231275	True	0.0017115430	10000	0.0007038931	True	0.0017115430
10000	0.0004617828	True	0.0017115430	10000	0.0001023611	True	0.0017115430
10000	0.0014823682	True	0.0017115430	10000	0.0000476028	True	0.0017115430
10000	0.0002865718	True	0.0017115430	10000	0.0016709064	True	0.0017115430
10000	0.0010787771	True	0.0017115430	10000	0.0005529986	True	0.0017115430
10000	0.0006504388	True	0.0017115430	10000	0.0013676104	True	0.0017115430
10000	0.0000218253	True	0.0017115430	10000	0.0007678240	True	0.0017115430
1000000	0.0000291010	True	0.0001711458	1000000	0.0000295446	True	0.0001711458
1000000	0.0000112728	True	0.0001711458	1000000	0.0001473268	True	0.0001711458
1000000	0.0001640035	True	0.0001711458	1000000	0.0000161234	True	0.0001711458
1000000	0.0000811204	True	0.0001711458	1000000	0.0000353629	True	0.0001711458
1000000	0.0000906590	True	0.0001711458	1000000	0.0000740380	True	0.0001711458
1000000	0.0001377813	True	0.0001711458	1000000	0.0000301641	True	0.0001711458
1000000	0.0000022549	True	0.0001711458	1000000	0.0000937448	True	0.0001711458
1000000	0.0001114532	True	0.0001711458	1000000	0.0000303856	True	0.0001711458
1000000	0.0000594110	True	0.0001711458	1000000	0.0000486160	True	0.0001711458
1000000	0.0000247621	True	0.0001711458	1000000	0.0000382837	True	0.0001711458
1000000	0.0000347756	True	0.0001711458	1000000	0.0001447649	True	0.0001711458

Критерий хи-квадрат Пирсона:

			LCG1				LCG2
n	statisctics	s H0	delta	n	statisctics	H0	delta
10000	50244.0000000000) False	1078.6132184786	10000	861.8000000000	True	1078.6132184786
1000000	5024096.3999999976	6 False	1078.6132184786	1000000	68.8660000000	True	1078.6132184786
			LCG3				MMG
n	statisctics	Н0	LCG3 delta	n	statisctics	Н0	MMG delta
n 10000	statisctics				statisctics	H0	

3 Вывод

По результатам проведенных экспериментов можно сделать вывод, что линейный конгруэнтный генератор с максимальным периодом и построенный на основе двух линейных конгруэнтных генераторов генератор Макларена-Марсальи являются наиболее устойчивыми к статистическим тестам. При этом тест ковариаций оказался более чувствительным, а, следовательно, более строгим тестом, далее – критерий хи-квадрат.