Introduction to Topology

General Topology, Lecture 8

Haoming Wang

25 August 2019

This is the Lecture Note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

Continuous maps and topology space

Definition 1 (Continuous). Let (X, d_X) , (Y, d_Y) be metric spaces. $a \in S \subseteq X$, $f : S \mapsto Y$, we say map f is continuous at a if for $\forall \epsilon > 0$, $\exists \delta > 0$, for $\forall x \in B_{\delta}(a) \cap S$, s.t. $f(x) \in B_{\epsilon}(f(a))$, that is $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a))$.

We say f is a continuous map if f is continuous at every $a \in S$.

Exercise 1. Given a map $X \xrightarrow{f} Y$, $a \in X$, Show that

- 1. f is continuous at $a \Leftrightarrow \text{for } \forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists U \subseteq_{open} X$, where $a \in U$, such that $f(U) \subseteq V$.
- 2. f is a continuous map \Leftrightarrow for $\forall V \subseteq_{open} Y, f^{-1}(V) \subseteq_{open} X$.

Proof. 1. \Rightarrow : for $\forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists \epsilon > 0$, s.t. $B_{\epsilon}(f(a)) \subseteq V$, thus $\exists U = B_{\delta}(a)$. \Leftarrow : trivial.

2. \Rightarrow : Given an open set $V \subseteq_{open} Y$, for $\forall x \in f^{-1}(V)$, have $f(x) \in V$. Since V is open, $\exists r > 0$ s.t. $B_r(f(x)) \subseteq V$. Since f(x) is continuous map, $\exists \epsilon > 0$, s.t. $f(B_{\epsilon}(x)) \subseteq B_r(f(x)) \subseteq V \Rightarrow B_{\epsilon}(x) \in f^{-1}(V)$, thus $f^{-1}(V)$ is open.

 \Leftarrow : Given $x \in X$, $f(x) \in Y$, given r > 0, s.t. $B_r(f(x)) \subseteq Y$, then $f^{-1}(B_r(f(x))) \subseteq_{open} X$, and $x \in f^{-1}(B_r(f(x)))$. Thus $\exists \epsilon > 0$, s.t. $B_{\epsilon}(x) \subseteq f^{-1}(B_r(f(x)))$ and $f(B_{\epsilon}(x)) \subseteq B_r(f(x))$.

Exercise 2. Given maps $X \xrightarrow{f} Y$, $Y \xrightarrow{g} Z$, show that

- 1. If f is continuous at x_0 , g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .
- 2. If f, g are continuous maps, then $g \circ f$ is a continuous map.

Proof. 1. For any V, s.t. $g(f(x_0)) \in V \subseteq_{open} Z$, $\exists U$, s.t. $f(x_0) \in U \subseteq_{open} Y$, $\exists W$, s.t. $x_0 \in W \subseteq X$, thus $g \circ f$ is continuous at x_0 .

2. For any $V \subseteq_{open} Z$, $\exists U \subseteq_{open} Y$, $\exists W \subseteq_{open} X$, thus $g \circ f$ is continuous.

We replaced open ball with open set in Exercise 1, this is a meaningful operation, which means we could **substitute the metric with**

CONTENT:

- Continuous maps and topology space
- 2. Subspace Topology

Note 1. It can also be proved that f is cont. \Leftrightarrow for $\forall V \subseteq_{close} Y, f^{-1}(V) \subseteq_{close} X$.

Suppose $V \subseteq_{close} Y$, then $X \setminus f^{-1}(V) = f^{-1}(X \setminus V) \subseteq_{open} X$, thus $f^{-1}(V) \subseteq_{close} V$

Note 2. Prove this exercise using sets instead of metrics.

set (here is open set), which drives the concept of topology. Generally, topology is a family of sets which have the basic properties of open set, but not necessarily be open sets. Using these sets, we can no longer rely on metric d.

Definition 2 (Topology). Given a set *X*, we say a family of subsets $\mathcal{T}(\subseteq \mathcal{P}(X))$ is a topology on X if

- 1. $X,\emptyset\in\mathscr{T}$;
- 2. $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$;
- 3. $U_{\alpha} \in \mathcal{T}(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$. (A is an arbitrary index set)

Example 1. Given a set X,

- 1. $\mathcal{T} = \{\emptyset, X\}$ is called trivial topology. In this case, we define only X and \emptyset are open sets.
- 2. Given a metric space (X, d), the previous definition of open sets is $\mathscr{T}_d = \{ U \subseteq \mathcal{P}(X) | \forall x \in U, \exists r > 0, \text{ s.t. } B_r(x) \subseteq U \}.$

Given different metric d, we will obtain different topology. For example, if we use discrete metric, then for $\forall x \in X, \exists r > 0$, such as r = 0.5, s.t. $B_r(x) = \{x\} \subseteq \{x\}$, thus $\{x\}$ is an open set. For $\forall U \subseteq X, U = \bigcup \{x | x \in U\}$, thus any subset of X is an open set. In this case, $\mathcal{T} = \mathcal{P}(X)$, and we call it the discrete topology.

Definition 3 (Topology Space). A topological space (X, \mathcal{T}) consists of a set X and a topology \mathcal{T} on X.

Definition 4 (Open set). Let (X, \mathcal{T}) be a topological space, any $A \in$ \mathcal{T} is called an open set in X w.r.t. \mathcal{T} ; and $X \setminus A$ is called a closed set in X w.r.t. \mathcal{T} .

Definition 5. Let (X, \mathcal{T}) be a top. space and $A \subseteq X, x \in X$.

- 1. x is an interior point of A in X w.r.t. \mathcal{T} , if $\exists U \in \mathcal{T}$, s.t. $x \in$ $U \subseteq A$ (that is $U \cap X \setminus A = U \setminus A = \emptyset$). *U* is called an open neighborhood of x w.r.t. \mathcal{T} .
- 2. x is an exterior point of A in X w.r.t. \mathcal{T} , if $\exists U \in \mathcal{T}$, s.t. $x \in U \subseteq$ $X \setminus A$. (i.e. x is an interior of $X \setminus A$).
- 3. x is a boundary point of A in X w.r.t. \mathcal{T} , if $\forall U \in \mathcal{T}$, if $x \in U$, then $U \cap A \neq \emptyset \wedge U \setminus A \neq \emptyset$.

Definition 6. Let (X, \mathcal{T}) be a top. space and $A \subseteq X$. The set consists of all interior points of A in X w.r.t. \mathcal{T} is called interior (of A in X w.r.t. \mathcal{T}), denote as $int_x A (= A^{\circ})$; the set of all exterior points is called exterior, denoted as $ext_xA(=A^e)$; and the set of all boundary points is called boundary, denoted as $bdy_x A (= \partial A)$.

Example 2. Given a top. space $(\mathbb{R}, \mathcal{T}_d)$, where $d = |x - y|, \forall x, y \in \mathbb{R}$. Let A = [0,1). Then $A^{\circ} = (0,1)$, $A^{\varrho} = (-\infty,0) \cup (1,\infty)$, $\partial A = \{0,1\}$.

Note 3. From here on, we define the open sets as elements in a topology, instead of the previous metric-based definition.

Note 4. The definition of boundary point is the complementary of interior points union with exterior points.

Note 5. Let (X, \mathcal{T}) be a top. space $\forall A \subseteq X, X = A^{\circ} \cup A^{e} \cup \partial A$, and A° , A^{e} , ∂A are disjoin.

 A° is the exterior of $X \setminus A$, A^{e} is the interior of $X \setminus A$, and ∂A is the boundary of $X \setminus A$, which means

$$A^{\circ} = (X \backslash A)^{e}$$
$$A^{e} = (Y \backslash A)^{\circ}$$

$$A^e = (X \backslash A)^\circ$$
$$\partial A = \partial (X \backslash A).$$

Exercise 3. Show that A° , A^{ℓ} are open sets (on X w.r.t \mathcal{T} , that is $A^{\circ}, A^{e} \in \mathcal{T}$); ∂A is close set.

Proof. 1. $\forall x \in A^{\circ}, \exists U_x \in \mathscr{T}$, s.t. $x \in U_x$, thus $A^{\circ} = \bigcup_{x \in A^{\circ}} U_x \in \mathscr{T}$, thus A° is open on X w.r.t. \mathscr{T} .

2. A^{ℓ} is the interior of $X \setminus A$ by definition, thus A^{ℓ} is open.

3.
$$A^{\circ}, A^{e} \in \mathscr{T} \Rightarrow A^{\circ} \cup A^{e} \in \mathscr{T}$$
, thus $\partial A = X \setminus (A^{\circ} \cup A^{e}) \in \mathscr{T}$. \square

Exercise 4. Given a topology space (X, \mathcal{T}) , $A \subseteq X$, show that

$$A^{\circ} = \bigcup \{U | U \subseteq_{open} A\}.$$

Proof. \subseteq : for $\forall x \in A^{\circ}$, $\exists U \in \mathscr{T}$, s.t. $x \in U \subseteq A \Rightarrow x \in \bigcup \{U | U \subseteq_{open}\}$ A}; \supseteq : for $\forall x \in \bigcup \{U | U \subseteq_{open} A\}$, $\exists U_x \subseteq_{open} A$, s.t. $x \in U_x$, thus x is an interior point, and $x \in A^{\circ}$.

Definition 7 (Closure). Given a topology space (X, \mathcal{T}) , $A \subseteq X$, the

$$\overline{A} = cls_x A := \bigcap \{C | A \subseteq C \subseteq_{close} X\}$$

is called the closure of A in X w.r.t. \mathcal{T} .

Exercise 5. Given a topology space (X, \mathcal{T}) , $A \subseteq X$, show that $\overline{A} =$ $A^{\circ} \cup \partial A$.

Proof.

$$A^{\circ} \cup \partial A = X \backslash A^{e}$$

$$= X \backslash (X \backslash A)^{\circ}$$

$$= X \backslash \cup \{U | U \subseteq_{open} X \backslash A\}$$

$$= \cap \{X \backslash U | U \subseteq_{open} X \backslash A\}$$

$$= \cap \{C | A \subseteq C \subseteq_{close} X\}$$

$$= \overline{A}.$$

Exercise 6. Show that $X \setminus \overline{A} = (X \setminus A)^{\circ}$ and $X \setminus A^{\circ} = \overline{(X \setminus A)}$.

Proof. 1.

$$\overline{A} = A^{\circ} \cup \partial A$$

$$= X \backslash A^{e}$$

$$= X \backslash (X \backslash A)^{\circ}$$

$$X \backslash \overline{A} = (X \backslash A)^{\circ}.$$

2.

$$X \backslash A^{\circ} = A^{e} \cup \partial A$$
$$= (X \backslash A)^{c} \cup \partial (X \backslash A)$$
$$= \overline{(X \backslash A)}.$$

Note 6. A° is the largest open set in Xcontained in A. Thus,

$$A = A^{\circ} \Leftrightarrow A \subseteq_{open} X \Leftrightarrow \partial A \cap A = \emptyset$$

for $\partial A \cap A = \partial A \cap A^{\circ} = \emptyset$. And furthermore $(A^{\circ})^{\circ} = A^{\circ}$.

Note 7. \overline{A} is the smallest close set in Xcontaining in A. Thus,

$$A = \overline{A} \Leftrightarrow A \subseteq_{close} X \Leftrightarrow \partial A \subseteq A$$

for $\partial A \subseteq A^{\circ} \cup \partial A = \overline{A} = A$. And furthermore $\overline{A} = \overline{A}$.

Note 8.

$$U \subseteq X \setminus A$$

$$\Rightarrow \forall x \in U \Rightarrow x \in X \setminus A$$

$$\Rightarrow \forall x \notin X \setminus A \Rightarrow x \notin U$$

$$\Rightarrow \forall x \in A \Rightarrow x \in X \setminus U$$

$$\Rightarrow A \subseteq X \setminus U,$$

U is open $\Rightarrow X \setminus U$ is close, hence $C = X \backslash U \subseteq_{close} A$.

Note 9. We denote $X \setminus A$ as A^c if X is clearly given. Thus

$$(\overline{A})^c = (A^c)^\circ$$
$$(A^\circ)^c = \overline{A^c}$$

Exercise 7. If $A \subseteq B$, show that $A^{\circ} \subseteq B^{\circ}$, $\overline{A} \subseteq \overline{B}$.

Proof. 1. Given $x \in A^{\circ} = \bigcup \{U | U \subseteq_{open} A\}$, $\exists U_x \subseteq_{open} A$, s.t. $x \in$ $U_x \subseteq_{open} A \subseteq B$, thus $x \in \bigcup \{V | V \subseteq_{open} B\}$, and $x \in B^{\circ}$. 2. the same way with 1.

Exercise 8. Given a set U, (denote \overline{U} as U^- ,) show that $U \subseteq_{open} X \Rightarrow$ $U^{-} = U^{-c-c-}$.

Proof.

$$U^{-c-c-} = (U^{-})^{c-c-}$$

$$= (U^{-})^{\circ cc-}$$

$$= U^{-\circ -}$$

 $U\subseteq U^-\Rightarrow U=U^\circ\subseteq U^{-\circ}\Rightarrow U^-\subseteq U^{-\circ-}.$ Let $C=U^-\subseteq_{close}X$, thus $C^{\circ} \subseteq C \Rightarrow C^{\circ-} \subseteq C^{-} = C \Rightarrow U^{-\circ-} \subseteq U^{-}$, thus $U^{-} = U^{-\circ-} = U^{-\circ-}$ U^{-c-c-} . П

Exercise 9 (Kuratowski's 14 sets). Given a top. sp. X, $A \subseteq X$, Show that among

$$A, A^{-}, A^{-c}, A^{-c-}, A^{-c-c} \cdots$$

 $A^{c}, A^{c-}, A^{c-c}, A^{c-c-} \cdots$

there are at most 14 different subsets of A.

Proof. On the one hand,

$$A, A^{-}, \underbrace{A^{-c}}_{open}, A^{-c-}, A^{-c-c}, A^{-c-c-}, A^{-c-c-c}, \underbrace{A^{-c-c-c-}}_{=(A^{-c})^{-c-c-}}, \cdots$$

On the other hand,

$$A^{c}$$
, A^{c-} , $\underbrace{A^{c-c}}_{open}$, A^{c-c-} , A^{c-c-c} , A^{c-c-c-} , $\underbrace{A^{c-c-c-c-}}_{=(A^{c-c})^{-c-c-}}$, \cdots

thus there are at most 14 different subsets of A.

Definition 8 (Continuous Map). Let *X*, *Y* be top. spaces. A map $X \xrightarrow{f} Y$ is continuous at a point $x_0 \in X$ if \forall open neighborhood (nbd.) *V* of $f(x_0)$, ∃ open nbd. *U* of x_0 , s.t. $f(U) \subseteq V$. f is a continuous map, if *f* is continuous at every $x_0 \in X$.

Note 10. We have discussed that f is conti. \Leftrightarrow for $\forall V \subseteq_{open} Y, f^{-1}(V) \subseteq_{open} Y$ $X \Leftrightarrow \text{for } \forall V \subseteq_{close} Y, f^{-1}(V) \subseteq_{close} X.$

Exercise 10. Let X, Y be top. spaces, $X \xrightarrow{f} Y$ is a conti. map, show that $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$, and $f(\overline{A}) \subseteq \overline{f(A)}$.

Proof. 1. $B \subseteq \overline{B} \Rightarrow f^{-1}(B) \subseteq f^{-1}(\overline{B})$ where $f^{-1}(\overline{B})$ is close, thus $\overline{f^{-1}(B)} \subset \overline{f^{-1}(\overline{B})} = f^{-1}(\overline{B}).$

2. $f(A) \subseteq \overline{f(A)} \Rightarrow A \subseteq f^{-1}(\overline{f(A)})$ where $f^{-1}(\overline{f(A)})$ is close, thus $\overline{A} \subseteq \overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)}) \Rightarrow f(\overline{A}) \subseteq \overline{f(A)}.$

Note 11. $f(A) \subseteq B \Rightarrow A \subseteq f^{-1}(B)$ by the definition of pre-image.

Subspace Topology

Let *X* be a top. space and $A \subseteq X$. A top. space is a set which has been specified some subsets are open but the others are not. Not consider how to transform a subset A into a top. space in a reasonable way. And the issue is that what kind of subsets of A should be defined as open.

Consider the inclusion map $A \xrightarrow{\iota} X$ where $a \mapsto a$. Thus an intuitive motivation is we need select open sets in the top. space of A such that keep i is continuous. Because, for any point a in the codomain of i, if \exists an open set $U \in X$, such that covers a, then it covers the pre-image of a (in the top. space of X), since $i^{-1}(a) = a \in U$. So if any point $a \in X$ has an open nbd. U then it's pre-image should have an open nbd. U_A , otherwise the subspace top. would be too simple or wried to show the inheritance of the "sub".

Thus we wish create a corresponding open set U_A of U in the top. space of *A*, thus for any point in the codomain, if it has open nbd. in the top. space of *X*, then it's pre-image has open nbd. in the top. space of A, and i is continuous. Specially, if we define $\mathscr{T}_A = \mathcal{P}(A)$, that is discrete topology, then any point forms an open set, thus i is continuous. But we want to find the concisest situation that fits the demand. The concisest way to construct topology of A is selecting the pre-image of the open sets in X, that is for any $U \in \mathcal{T}_X$, $i^{-1}(U) =$ $U \cap A \in \mathscr{T}_A$.

1.
$$\emptyset \in \mathscr{T}_X \Rightarrow \emptyset \cap A = \emptyset \in \mathscr{T}_A$$
, $X \in \mathscr{T}_X$, $\Rightarrow X \cap A = A \in \mathscr{T}_A$.

2.
$$\forall U_1, U_2 \in X, U_1 \cap U_2 \in X$$
, thus $(U_1 \cap A) \cap (U_2 \cap A) = (U_1 \cap U_2) \cap A \in \mathscr{T}_A$.

3.
$$\forall U_{\alpha} \in X (\alpha \in I), \cup_{\alpha \in I} \in X$$
, thus $\cup_{\alpha \in I} (U\alpha \cap A) = A \cap (\cup_{\alpha \in I} U_{\alpha}) \in A$.

thus $\{U \cap A | \forall U \subseteq_{open} X\}$ is a topology which is the smallest topology that satisfies our demand.

Definition 9. The subspace topology on A inherited from X is $\mathcal{T}_A =$ $\{U \cap A | U \subseteq_{open} X\}.$

Example 3. Given a top. space $(\mathbb{R}^2, \mathcal{T}_d)$ where $d = d_2$, a subset A of *X* like the margin figure. we can see that the elements of \mathcal{T}_A : $A \cap V_1$, $A \cap V_2$ and $A \cap V_3$ are all open sets on (A, \mathcal{T}_A) , even thought they are not open sets on $(\mathbb{R}^2, \mathcal{T}_d)$.

Exercise 11. Given a map $X \xrightarrow{f} Y$, X, Y are top. spaces. Suppose $\exists B \subseteq Y \text{ is a subspace top. inherited from } Y. \text{ If } f(X) \subseteq B, \text{ we de-}$ note the map $X \xrightarrow{f} B$ by $f|^{B}$. Show that f is continuous $\Leftrightarrow f|^{B}$ is continuous.

Proof. \Rightarrow : f is conti. then $\forall V \subseteq_{open} Y$ has $f^{-1}(V) \subseteq_{open} X$, and $V \cap B \subseteq_{open} B$. Since:

$$f^{-1}(V \cap B) = f^{-1}(V) \cap f^{-1}(B)$$
$$= f^{-1}(V) \cap X$$
$$= f^{-1}(V) \subseteq_{open} X$$

thus $f|^B$ is conti.

$$\Leftarrow: \forall V \subseteq_{open} Y, f^{-1}(V \cap B) = f^{-1}(V) \cap f^{-1}(B) = f^{-1}(V) \cap X = f^{-1}(V) \subseteq_{open} X. \text{ Thus } f \text{ is conti.}$$