Seria zadań nr 3 z Metod Numerycznych

Michał Bernardelli

Zadanie 1

Niech a > 0. Znaleźć stałą C > 0 taką, żeby była spełniona nierówność

$$|e_{n+1}| \le Ce_n^2,$$

gdzie $x^* = \sqrt{a}$, zaś ciąg x_k stanowią kolejne przybliżenia uzyskane w wyniku obliczeń metodą iteracyjną Newtona dla funkcji $f(x) = x^2 - a$.

Zadanie 2

Wykazać, że dla funkcji $f \in C^2$ rosnącej i wypukłej, dla której istnieje punkt x^* taki, że $f(x^*) = 0$, metoda iteracyjna Newtona zbiega do jedynego miejsca zerowego x^* funkcji f dla dowolnego punktu startowego x_0 .

Zadanie 3

Do znalezienia miejsca zerowego funkcji $f(x) = x + \ln x$ zastosowano następujące metody:

1.
$$x_{k+1} = -\ln x_k$$
,

2.
$$x_{k+1} = e^{-x_k}$$
.

Dla każdej z nich podać, dla jakich punktów startowych generowany ciąg x_k jest zbieżny do rozwiązania x^* równania f(x) = 0.

Zadanie 4

Sprawdzić zbieżność iteracji prostej dla funkcji $\phi(x) = \sin x$ w zależności od wyboru punktu startowego.

Zadania 5

Sprawdzić, czy metoda iteracyjna $x_{k+1} = \sin^2 x_k$ jest zbieżna do jedynego rozwiązania x^* równania $x = \sin^2 x$ w zależności od doboru punktu startowego $x_0 \in \mathbb{R}$. Zbadać szybkość zbieżności.

Zadanie 6

Sprawdzić, czy metoda iteracyjna $x_{k+1} = \frac{1}{2}\sqrt{x_k^2 + 10}$ jest zbieżna do jedynego rozwiązania x^* równania $x = \frac{1}{2}\sqrt{x^2 + 10}$ w zależności od doboru punktu startowego $x_0 \in \mathbb{R}$. Zbadać szybkość zbieżności.

Zadanie 7

Dla elementu $x \in X$ znaleźć najlepsze przybliżenie x^* w sensie normy $\|\cdot\|$, jeżeli $X = \{(x_1, x_2) \colon x_1, x_2 \in \mathbb{R}\}$ oraz

•
$$V = \{(x_1, 0): x_1 \in \mathbb{R}\}, \|(x_1, x_2)\| = \sqrt{x_1^2 + x_2^2},$$

•
$$V = \{(x_1, 0) : x_1 \in \mathbb{R}\}, \|(x_1, x_2)\| = \max\{|x_1|, |x_2|\},$$

•
$$V = \{(x_1, x_2): x_1 \in \mathbb{R}, x_2 < 1\}, \|(x_1, x_2)\| = \sqrt{x_1^2 + x_2^2}.$$