Thursday, February 3, 2022 9:00 AM

Exercise: Is $f(t, n) = t n^2$ locally Lipschitz continuous, uniformly in $t \in \mathbb{R}^n \to \mathbb{R}$

② In addition, if $\|\frac{\partial f(x)}{\partial x}\| \leq M$ then f is Lipschitz (ontinuous on)

3 If t: C -> RM, C \in RM is locally Lipschitz Continuous on C

and if C is compact then f is Lipschitz continuous on C

Dofinition: A set k is compact if every open cover of k has a finite

Subcover.

That is if $\{U_1,U_2,\dots\}$ are open and $K\subseteq\bigcup_{i=1}^{N}U_i$ then we can select finitely many open sets out of the collection $\{U_i\}_{i=1}^{N}U_i$ S and $\{U_i\}_{i=1}^{N}U_i$ $\{U_i\}_{i=1}^{N}U_i$ and for all $\{U_i\}_{i=1}^{N}U_i$ $\{U_i\}_{i=1}^{N}U_i$ $\{U_i\}_{i=1}^{N}U_i$ $\{U_i\}_{i=1}^{N}U_i$

In Rn, we have

Theorem. (.Heine-Borel, 1835) A set KGRN is compact it and only it is closed and bounded.

C is closed if C' is open, C is bounded if I M < or such that the e C, II = II = M

Exercise: Show that $\hat{\mathcal{H}} = \mathcal{H}^2$ can have solutions that do not exist over an interval of Infinite longth

Asymptotic stability: Trajectories tend to an expt. as to

Theorem: (Existence of global Solutions) The system $\mathring{\mathcal{R}} = f(t,\mathcal{H})$ has solutions starting from $\mathring{\mathcal{R}} \in \mathbb{R}^n$ over any given interval I (can be of infinite length) if either:

① The function $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ is (globally) Lipschitz Continuous in x, over \mathbb{R}^n , uniformly in $t \in I$, and piecewise cts in t for all $x \in \mathbb{R}^n$

OR

(2) The function $f: I \times D \to \mathbb{R}^n$ is locally Lipschitz cts in a over D, uniformly in t and piecewise cts in t over I for all $g \in D$ and

it is known that for some compact set KCD with 2° EK and for every closed interval JCI where a golution tto $\mathcal{O}(t, to, 2^{\circ})$ exists, we have $\mathcal{O}(t, to, 2^{\circ})$ EK for all tto

t to P(+, to, 200) is pre-compact

Given (to, xo), A 8
so that solutions to infly, n)
exit on [to, to+8]

Fact: If $f: I \times IR^n \to R^n$ is locally Lipschitz continuous, uniformly in tover R^n and piecewise continuous in the for all of f: F(t) of f: F(t) either

O exists over I or

2) goes to so in finite time

Stability of equilibrium points.

Autonomous systems: $\mathring{\mathcal{H}} = f(\mathcal{H})$

Assume 2l=0 is an equilibrium point (f(0)=0), (fe. f(x))=0)

If $x^* \neq 0$ is the 11 of interest then we can let $3=2l-2l^*$ and $g(3)=f(3+2l^*)$ to get the model 3=3(3) with g(0)=0

If 3=3(3) has a Stable ex. pt. at 3=0," $\mathring{y}=f(x)$ has a Stable ex. pt. at $\chi=\chi^*$.

Definitions: WLOG let x=0 be an ex. at of x=120 where f is locally lipschitz continuous over some oren and connected set $D\subseteq\mathbb{R}^n$ that contains x=0. The eq. t is

(1) (Mocalize) stable (or Lyapunou stable) if $t \in \mathbb{R}$ 0, $\exists \delta > 0$ such that $\chi^{0} \in \mathbb{R}(0, \delta) = 0$ (a) the solution $t \mapsto \mathcal{P}(t, \chi^{0})$ exists for all $t \geq 0$ and (b) $\forall t \geq 0$, $\mathcal{P}(t, \chi^{0}) \in \mathbb{R}(0, \epsilon)$

- 2) Unstable if not stable
- (3) (locally) asymptotically stable if it is (locally) stable and $\pm 8>0$ such that $x^{\circ} \in B(0,8) \Rightarrow$ (a) the solution $\pm +> \beta(t,x^{\circ}) \in x$ for all $\pm > 0$ (b) $\lim_{t\to\infty} \| \beta(t,x^{\circ}) \| = 0$

Example: $\mathring{r} = \Upsilon(-\Upsilon), \mathring{o} = \sin^2(\frac{\sigma}{2})$ $\Upsilon = \sqrt{\chi^2 + \tilde{\chi}^2} \quad O = \alpha \tan^2(\frac{\gamma}{2}, \chi)$

eq.pt. at (0,1) is attractive but not stable also not assumptofically stable.

Def: Let x=0 be an eq. x+1 of x=f(x). A set x=1 is called a domain of attraction of attraction of the ex. x+1 if for all x=1

- (a) + +> \$\phi(t, \alpha^0) \exists for all t
- (b) lim 11 0(t,20)11 = 0 0

Definition: an ex.P1. is coulled flobally asymptotically stable if it is stable and its domain of attraction is Rn

If $f(x) = Ax(\hat{x} = Ax)$ re $(x_i(A)) < 0$ for all i then $\alpha = 0$ is a case expanding fact, $x(i) = 2(i)e^{At}$

Erercise: real about Lapunov stability of linear systems (thm 3.1 Ex 3-1)

Definition: an ex-Pt- n=0 is called exponentially stable if there exist constants C, k, $\lambda > 0$ such that

1120112C => for all t>0, 110(t,20)11 & x 112011 e-xt.

2006 B(0, C) (1, p(t, xo))

11 B(E, xo) KILDE NE

£

globally exponentially stable if for all $x^0 \in \mathbb{R}^n$ and all t > 0, $|| \mathcal{B}(t, x^0)|| \leq || x^0 || e^{\lambda t}$

ž (flx)