Lineaarialgebra ja matriisilaskenta, syksy 2020

Harjoitus 1

1. Yhtälöryhmän supistettu porrasmuoto:

$$\begin{cases} 2x_2 & = -1\\ 3x_1 & = -1\\ 2x_1 & -2x_2 & +2x_3 & = 3 \end{cases}$$

Kerrotaan ensimmäinen rivi kertoimella $\frac{1}{2}$ ja toinen rivi kertoimella $\frac{1}{3}.$ Saadaan:

$$\begin{cases} x_2 & = -\frac{1}{2} \\ x_1 & = -\frac{1}{3} \\ 2x_1 & -2x_2 & +2x_3 & = 3 \end{cases}$$

Vähennetään toinen rivi kaksi kertaa kolmannesta rivistä. Lisätään sitten ensimmäinen rivi kaksi kertaa kolmanteen riviin. Saadaan:

$$\begin{cases} x_2 & = -\frac{1}{2} \\ x_1 & = -\frac{1}{3} \\ +2x_3 & = \frac{8}{3} \end{cases}$$

Kerrotaan kolmas rivi kertoimella $\frac{1}{2}$. Saadaan:

$$\begin{cases} x_2 & = -\frac{1}{2} \\ x_1 & = -\frac{1}{3} \\ x_3 & = \frac{4}{3} \end{cases}$$

Vaihdetaan rivien 1 ja 2 paikkaa. Saadaan supistettu porrasmuoto:

$$\begin{cases} x_1 & = -\frac{1}{3} \\ x_2 & = -\frac{1}{2} \\ x_3 & = \frac{4}{3} \end{cases}$$

Yhtälöryhmän kaikki muuttujat ovat sidottuja.

2. Muutetaan yhtälöryhmä ensin supistettuun porrasmuotoon:

$$\begin{cases} 4x_2 & -2x_3 = -2\\ 3x_1 & = -3\\ 2x_1 & -2x_2 & +x_3 = -1 \end{cases}$$

Kerrotaan rivi2vakiolla $\frac{1}{3}$ ja vaihdetaan rivien 1 ja 2 paikkaa. Saadaan:

$$\begin{cases} x_1 & = -1 \\ 4x_2 & -2x_3 & = -2 \\ 2x_1 & -2x_2 & +x_3 & = -1 \end{cases}$$

Kerrotaan rivi 2 vakiolla $\frac{1}{4}$. Saadaan:

$$\begin{cases} x_1 & = -1 \\ x_2 & -\frac{1}{2}x_3 & = -\frac{1}{2} \\ 2x_1 & -2x_2 & +x_3 & = -1 \end{cases}$$

Vähennetään rivistä 3 kaksi kertaa rivi 1. Saadaan:

$$\begin{cases} x_1 & = -1 \\ x_2 & -\frac{1}{2}x_3 & = -\frac{1}{2} \\ -2x_2 & +x_3 & = 1 \end{cases}$$

Lisätään riviin 3 kaksi kertaa rivi 2. Saadaan supistettu porrasmuoto:

$$\begin{cases} x_1 & = -1 \\ x_2 & -\frac{1}{2}x_3 & = -\frac{1}{2} \\ 0 & = 0 \end{cases}$$

Havaitaan, että $x_1=-1$ ja muuttuja x_2 riippuu muuttujasta x_3 . Merkitään $x_3=t, t\in\mathbb{R}$. Nyt $x_1=-1, x_2=\frac{1}{2}t-\frac{1}{2}$ ja $x_3=t$. Yhtälöryhmän ratkaisujoukko R on siis

$$R = \left\{ \left(-1, -\frac{1}{2}, 0\right) + t\left(0, \frac{1}{2}, 1\right) \in \mathbb{R} : t \in \mathbb{R} \right\}.$$

Luentomateriaalin huomautuksen 1.1.3 mukaan joukko $L \subset \mathbb{R}^3$ on suora, jos $L = \{c + tv : t \in \mathbb{R}\}$, missä v on nollasta poikkeava vektori. Yhtälöryhmän ratkaisujoukko on tätä muotoa, joten se on avaruuden \mathbb{R}^3 suora.

3. Muunnetaan yhtälöryhmä ensin supistettuun porrasmuotoon:

$$\begin{cases} x_1 & -x_2 & +x_3 & -x_4 & = & 5 \\ 2x_2 & & -x_4 & = & -1 \\ 3x_1 & & & -x_4 & = & -1 \\ 2x_1 & -2x_2 & +2x_3 & -2x_4 & = & 10 \end{cases}$$

Kerrotaan rivi 4 kertoimella $-\frac{1}{2}$ ja lisätään siihen rivi 1. Saadaan:

$$\begin{cases} x_1 & -x_2 & +x_3 & -x_4 & = & 5 \\ & 2x_2 & & -x_4 & = & -1 \\ 3x_1 & & & -x_4 & = & -1 \\ & & 0 & = & 0 \end{cases}$$

Yhtälöryhmän viimeinen rivi on aina tosi, joten se voidaan jättää pois tarkastelusta. Kerrotaan rivi 2 kertoimella $\frac{1}{2}$. Lisätään rivi 2 riviin 1. Saadaan:

$$\begin{cases} x_1 & +x_3 & -\frac{3}{2}x_4 & = & \frac{9}{2} \\ & x_2 & -\frac{1}{2}x_4 & = & -\frac{1}{2} \\ 3x_1 & & -x_4 & = & -1 \end{cases}$$

Kerrotaan rivi 3 kertoimella $-\frac{1}{3}$. Lisätään rivi 3 riviin 1. Saadaan:

$$\begin{cases} x_3 & -\frac{7}{6}x_4 & = & \frac{29}{6} \\ x_2 & -\frac{1}{2}x_4 & = & -\frac{1}{2} \\ -x_1 & & +\frac{1}{3}x_4 & = & \frac{1}{3} \end{cases}$$

Kerrotaan rivi3kertoimella -1. Vaihdetaan rivien1ja 3paikkaa. Saadaan supistettu porrasmuoto:

$$\begin{cases} x_1 & -\frac{1}{3}x_4 = -\frac{1}{3} \\ x_2 & -\frac{1}{2}x_4 = -\frac{1}{2} \\ x_3 & -\frac{7}{6}x_4 = \frac{29}{6} \end{cases}$$

Nähdään, että muuttuja x_1,x_2 ja x_3 ovat sidottuja ja muuttuja x_4 on vapaa. Merkitään $x_4=t,t\in\mathbb{R}.$ Nyt $x_1=\frac{1}{3}t-\frac{1}{3},x_2=\frac{1}{2}t-\frac{1}{2}$ ja $x_3=\frac{7}{6}t+\frac{29}{6}.$ Yhtälöryhmän ratkaisujoukko R on siis

$$R = \left\{ \left(-\frac{1}{3}, -\frac{1}{2}, \frac{29}{6}, 0 \right) + t \left(\frac{1}{3}, \frac{1}{2}, \frac{7}{6}, 1 \right) \in \mathbb{R}^3 : t \in \mathbb{R} \right\}.$$

4. Tarkastellaan yhtälöparia

$$P = \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2. \end{cases}$$

Sovelletaan yhtälöpariin rivioperaatiota, jossa ensimmäinen rivi kerrotaan vakiolla λ ja lisätään toiseen riviin. Saadaan yhtälöryhmä

$$P' = \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ (\lambda a_{11} + a_{21})x_1 + \dots + (\lambda a_{1n} + a_{2n})x_n = \lambda b_1 + b_2. \end{cases}$$

Halutaan siis osoittaa, että yhtälöryhmien P ja P' ratkaisujoukot ovat samat. Lähdetään muokkaamaan yhtälöryhmää P. Kerrotaan ensin ryhmän ensimmäinen rivi vakiolla λ . Saadaan yhtälöryhmä

$$P_1 = \begin{cases} \lambda a_{11} x_1 + \dots + \lambda a_{1n} x_n = \lambda b_1 \\ a_{21} x_1 + \dots + a_{2n} x_n = b_2. \end{cases}$$

Luentomuistiinpanojen lemman 1.3.1 nojalla yhtälöryhmän P_1 ratkaisujoukko on sama kuin P:n ratkaisujoukko. Lisätään sen jälkeen rivi 1 riviin 2. Saadaan yhtälöryhmä

$$P_2 = \begin{cases} \lambda a_{11} x_1 + \dots + \lambda a_{1n} x_n = \lambda b_1 \\ (\lambda a_{11} + a_{21}) x_1 + \dots + (\lambda a_{1n} + a_{2n}) x_n = \lambda b_1 + b_2. \end{cases}$$

Lemman 1.3.2 nojalla yhtälöryhmän P_2 ratkaisujoukko on sama kuin P_1 :n ratkaisujoukko ja siten sama kuin P:n ratkaisujoukko. Kerrotaan lopuksi vielä rivi 1 vakiolla $1/\lambda$. Saadaan yhtälöryhmä

$$P_3 = \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1\\ (\lambda a_{11} + a_{21})x_1 + \dots + (\lambda a_{1n} + a_{2n})x_n = \lambda b_1 + b_2. \end{cases}$$

Edelleen lemman 1.3.1 nojalla yhtälöryhmän P_3 ratkaisujoukko säilyy samana. Havaitaan, että $P_3 = P'$. Näin ollen väite on todistettu.

5. Tarkastellaan leikkausta $P \cap P'$ vastaavaa yhtälöparia

$$\begin{cases} a_1x_1 + a_2x_2 + a_3x_3 &= b \\ a'_1x_1 + a'_2x_2 + a'_3x_3 &= b' \end{cases}$$

Yhtälöparin ratkaisujoukko on piste täsmälleen siinä tapauksessa, että kaikki sen muuttujat ovat sidottuja. Muuttuja puolestaan on sidottu, jos sen kerroin on johtava kerroin supistetussa porrasmuodossa olevassa yhtälöparissa.

Gaussin-Jordanin lauseen nojalla kaikilla yhtälöryhmillä on olemassa supistettu porrasmuoto. Olkoon

$$\begin{cases} b_1x_1 + b_2x_2 + b_3x_3 = c \\ b'_1x_1 + b'_2x_2 + b'_3x_3 = c' \end{cases}$$

alkuperäisen yhtälöparin supistettu porrasmuoto. Johtavat kertoimet voivat nyt olla b_1 ja b_2' tai b_1 ja b_3' . Molemmissa tapauksissa joko x_2 tai x_3 jää vapaaksi muuttujaksi. Tällöin leikkausjoukko $P \cap P'$ on suora.

Jos toisella rivillä ei ole lainkaan johtavaa kerrointa, se on nollarivi. Jos nyt $c' \neq 0$, toisen rivin yhtälö on aina epätosi, eikä mikään piste toteuta molempia yhtälöitä. Tällöin leikkausjoukko $P \cap P'$ on tyhjä, eli tasot ovat yhdensuuntaisia, mutta $P \neq P'$. Jos taas c' = 0, muuttujat x_2 ja x_3 ovat vapaita, jolloin leikkausjoukko $P \cap P'$ on taso ja P = P'.

Muita vaihtoehtoja ei ole, joten leikkausjoukko $P \cap P'$ ei voi olla piste.

- 6. Laskutoimitus (2,4,6) + 8 R:llä:
 - a) Vastaus on vektori (10, 12, 14).
 - b) Laskutoimitus vastaa avaruuden \mathbb{R}^3 vektorien (2,4,6) ja (8,8,8) yhteenlaskua.