Gráfalgoritmusok

Gaskó Noémi

2023. március 31.

Tartalomjegyzék

- Kritikus utak (Critical path problem)
 - Elsõ modell
 - Második modell

Egy feladat

Egy feladat

Hófehérkének egy szobát építenek a törpök.

Milyen feladatok vannak és mennyi ideig tartanak?

- alapot önteni 7 nap A
- ajtókeret elkészítése és elhelyezése 2 nap B
- kanalizálás 15 nap C
- szolgáltatások és kiegészítők 8 nap D
- falak építése 10 nap E
- vakolás 2 nap -F
- tető építése 5 nap G
- ablakok és ajtók 8 nap H
- csatornák 2 nap l
- kifesteni 3 nap J

Milyen sorrendben kell végrehajtani a feladatokat?

- D az E után kell következzen
- E az A és B után kell következzen
- F a D és G után kell következzen
- G az E után kell következzen
- H a G után kell következzen
- I a C és F után kell következzen
- J az I után kell következzen

Gaskó Noémi Gráfalgoritmusok 2023. március 31.

A feladatunk:

Mennyi ideig tart a munka?

Mennyi ideig tart a munka? (2)

Mennyi ideig tart a munka? (2)

Egy szimuláció: Egy példa

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 9

Hogy néz ki a feladat gráfmodellje?

a tevékenységeket élekkel jelöljük, a csúcsok pedig az események

Hogy néz ki a feladat gráfmodellje?

- a tevékenységeket élekkel jelöljük, a csúcsok pedig az események
- a csúcsok felelnek meg a tevékenységeknek, az élek a tevékenységek közötti kapcsolatot jelölik

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 10

Kritikus utak - első modell

Tevékenységi gráf

A G=(V,E,W) összefüggő, irányított, kört nem tartalmazó gráfot tevékenységi gráfnak nevezzük, ha: az élek tevékenységeket jelölnek, az élekhez rendelt súlyok a tevékenységek végrehajtásához szükséges időt jelölik.

létezik egy kezdőcsúcs, amelybe egyetlen él sem fut létezik egy végcsúcs, azaz egyetlen él sem fut ki belőle

Szintekre bontás

```
SzintekreBontás(G)
for i = 1 to n do
   l(i) := 1
for i = 1 to n do
    call Next(G, l, i)
return(l)
  ahol
Next(G, l, i)
for j = 1 to n do
       if (v_i, v_j) \in E and (l(j) \le l(i)) then
         l(j) := l(i) + 1
          if j < i then call Next(G, l, j)
   return l
```

Szintekre bontás - példa

Az algoritmus

$$\mathsf{CPM\'el}(G)$$
 $t_1 := 0$ for $j = 2, 3, \dots n$ do

$$t_j = max_{v_i \in N^{be}(v_j)}(t_i + d_{ij})$$

$$t_n^* := t_n$$
 for $i = n-1, n-2 \dots 1$ do

$$t_i^* = min_{v_j \in N^{ki}(v_i)}(t_j^* - d_{ij})$$

return t, t^*

 t_i - a legkorábbi időpont, t_i^* - a legkésőbbi időpont, amikor a tevékenység elkezdődhet d(i,j) - v_i és v_j közötti tevékenység időtartama

Időtartalékok

• teljes időtartalék: $R_t(v_i,v_j)=t_j^*-t_i-d_{ij}$ - ennyi idővel lehet később kezdeni anélkül, hogy befolyásolja az egész feladat elvégzésének időtartamát.

《니카 《DP》 《콘카 《콘카 · 콘 · 》)(N.O.)

Gaskó Noémi Gráfalgoritmusok 2023. március 31.

Időtartalékok

- teljes időtartalék: $R_t(v_i,v_j)=t_j^*-t_i-d_{ij}$ ennyi idővel lehet később kezdeni anélkül, hogy befolyásolja az egész feladat elvégzésének időtartamát.
- szabad időtartalék: $R_f(v_i, v_j) = t_j t_i d_{ij}$ ennyi idővel lehet később kezdeni anélkül, hogy ez befolyásolja a t_i időpontot.

Időtartalékok

- teljes időtartalék: $R_t(v_i,v_j)=t_j^*-t_i-d_{ij}$ ennyi idővel lehet később kezdeni anélkül, hogy befolyásolja az egész feladat elvégzésének időtartamát
- szabad időtartalék: $R_f(v_i,v_j)=t_j-t_i-d_{ij}$ ennyi idővel lehet később kezdeni anélkül, hogy ez befolyásolja a t_j időpontot.
- biztos időtartalék: $R_s(v_i,v_j)=max(t_j-t_i^*-d_{ij},0)$ a (v_i,v_j) tevékenységet ennyi idővel lehet később befejezni anélkül, hogy ez befolyásolja az egész feladat elvégzésének időtartamát.

Kritikus út

Kritikus út

Azok a tevékenységek, amelyek esetén mindhárom időtartalék 0, a **kritikus úton** vannak, és **kritikus tevékenységnek** nevezzük őket.

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 16 / 27

Feladat

tevékenység	előző tevékenységek	időtartam
A	-	1
В	-	2
C	-	3
D	A	2
E	A	3
F	A	4
G	B, F	5
Н	C, G	2
I	C, G	3
J	B, F, D	4
K	B, F	1
L	B, F	1
M	E, H, J, K, L	2
N	H, I, L	3
O	H, L	2

Feladat (2)

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 18/

Feladat (3)

csúcs	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

ó Noémi Gráfalgoritmusok 2023. március 31. 19 / 27

Feladat (4)

tevékenység	időtartam	teljes idő-	szabad idő-	biztos ídő-
		tartalék: R_t	tartalék: R_f	tartalék: R_s
A	1	0	0	0
В	2	3	3	3
C	3	7	7	7
D	2	7	2	2
E	3	10	8	8
F	4	0	0	0
G	5	0	0	0
Н	2	1	0	0
I	3	0	0	0
J	4	5	3	0
K	1	8	6	6
L	1	7	6	6
M	2	2	2	0
N	3	0	0	0
O	2	2	2	1

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 20/2

Második modell

csúcsok: tevékenységek

élek: ezek egymásutánisága

kezdő és végcsúcs: egy-egy fiktiv tevékenységnek felel meg.

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 21/2

$t_m(v_i)$	v_i	$t_m^*(v_i)$
$t_M(v_i)$	d_i	$t_M^*(v_i)$

- ullet d_i a v_i tevékenység időtartama
- ullet $t_m(v_i)$ legkorábbi időpont, amikor a v_i tevékenység megkezdődhet
- ullet $t_m^*(v_i)$ legkorábbi időpont, amikor a v_i tevékenység befejeződhet
- ullet $t_M(v_i)$ legkésőbbi időpont, amikor a v_i tevékenység megkezdődhet
- ullet $t_M^*(v_i)$ legkésőbbi időpont, amikor a v_i tevékenység befejeződhet

CPM él algoritmus

```
\mathsf{CPMcsúcs}(D)
t_m(v_1) = 0
t_m^*(v_1) = d_1
for i = 2, 3, ..., n do
     t_m(v_i) = max_{v_i \in N^{be}(v_i)} t_m^*(v_i)
     t_m^*(v_i) = t_m(v_i) + d_i
t_{M}^{*}(v_{n}) = t_{m}^{*}(v_{n})
t_M(v_n) = t_M^*(v_n) - d_n
for i = n - 1, n - 2, \dots, 1 do
    t_M^*(v_i) = \min_{v_i \in N^{ki}(v_i)} t_M(v_i)
     t_M(v_i) = t_M^*(v_i) - d_i
return t_m, t_m^*, t_M, t_M^*
```

Egy tevékenység kritikus, ha $t_m(v) = t_M(v)$ (és $t_m^*(v) = t_M^*(v)$).

Gaskó Noémi Gráfal goritmusok 2023. március 31. 23 / 27

Feladat

tevékenység	előző teveékenységek	időtartam
A	_	2
В	-	3
C	В	5
D	A	3
E	A	3
F	C, D, E	3
G	C	2

Feladat (2)

◆ロ > ◆部 > ◆恵 > ◆恵 > ・恵 ・ 少へ○

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 25/2

Alkalmazások

Projekt management:

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 26/2

Program Evaluation and Review Technique

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 27 / 27

- Program Evaluation and Review Technique
- először: az Egyesült Államok haditengerészeténél 1957-ben rakétaprogram irányítására alkalmazták, segítségével 5 év helyett 3,5 év alatt hajtották végre a programot

Gaskó Noémi Gráfalgoritmusok 2023. március 31. 27 / 27

- Program Evaluation and Review Technique
- először: az Egyesült Államok haditengerészeténél 1957-ben rakétaprogram irányítására alkalmazták, segítségével 5 év helyett 3,5 év alatt hajtották végre a programot
- eseménybeállítottságú eljárás

- Program Evaluation and Review Technique
- először: az Egyesült Államok haditengerészeténél 1957-ben rakétaprogram irányítására alkalmazták, segítségével 5 év helyett 3,5 év alatt hajtották végre a programot
- eseménybeállítottságú eljárás
- háromféle időt használ: optimista, pesszimista, legvalószínûbb