2022학년도 2학기 교수계획표

교과목명	논리회로설계	뎨 및실험	교과목번호	CB260	00778	분반		001	
개설학과	정보컴퓨터	공학부	개설학년	2ই	·년	학점-이론-실↔	2.0 -	0.0 - 4.0	
강의시간 및 강의실	화 18:00-22:00 201-6308-1								
담당교수	양세양		연구실 (상담가능장소) 제6공		관 6514	상담시간	이메일로 시	이메일로 사전 연락 요망	
			연락처			이메일			
수업방식	· 대면 · 실험 · 실습 · 실기, 플립러닝								
평가방법	기말고사: 20% 과제물: 20% 실 험: 60% * 장애학생의 경우 시험기간의 연장이 가능하며, 대필이나 컴퓨터를 활용하여 시험에 응시할 수 있습니다.								
선수과목 및 지식	논리설계								
교수목표	1. Study on design and analysis of digital system 2. Study on design method of logic circuit using design tools 3. Study on verification method of logic circuit using simulation								
강의개요	This course covers digital circuit design using schematic editor, simulation and debugging using simulator, and implementation of digital circuit by commercial chips and FPGA * 장애학생의 경우 장애학습지원센터와 강의 및 과제에 대한 사전 협의가 가능합니다.								
교과목과 핵심역량과의 관계									
부산대학교	글로벌문화역 량	소통역량	융복합역량	응용역량	봉사역량	인성역량	기초지식역량	고등사고역량	
8대 핵심역량		0	0	0			O		
교과목에 따른 핵심역랑									
학과 핵심역량						교육방법			
02	자료를 이해하고 분석할 수 있는 능력 및 실험을 계획 하고 수행할 수 있는 능력				획 발표 및	발표 및 실험			
03	현실적 제한조건 및 요구조건을 반영하여 시스템 및 공 정을 설계하고, 프로젝트를 계획하여 수행할 수 있는 능 력					발표 및 실험			
04	공학문제를 분석하여 이를 공식화하고, 요구사항을 이해 하여 모델링할 수 있는 능력					발표 및 실험			
05	공학 및 정보기술 관련 실무에 필요한 기술, 방법, 도구 들을 사용할 수 있는 능력					발표 및 실험			
06	복합 학제적 팀의 한 구성원의 역할을 해낼 수 있는 능 발					발표 및 실험			

주별 강의계획							
주차	강의 및 실험 실기 내용	과제 및 기타 참고사항					
제1주	[표절, 시험 부정행위 예방교육 및 실험·실습 안전교육 실시] [Experiment] - Course Introduction	[Design] - Term project introduction					
제2주	[Experiment] - NAND gate design using Flowrian (Ch 1. 1-1.2) - FPGA Board Implementation (LED, Input butto n) - Demonstration of FPGA Term project	[Design] - Document Proposal for Term projec t - Design and Implementation - Demonstratio n					
제3주	[Experiment] - BCD to Gray coder converter design (C h 1.6) - FPGA Board Implementation (7-Segment, Switc h) - Demonstration of FPGA Term project	[Design] - Document Proposal for Term projec t - Design and Implementation - Demonstratio n					
제4주	[Experiment] - FPGA Board Implementation (Traffic lig ht control using Input button) - Demonstration of FPGA Term project	[Design] - Design and Implementation - Demo nstration					
제5주	- Term Project Presentation	- Term Project Proposal					
제6주	[Experiment] - 4-to-1 Mux and Demux design (Ch 1.4-1.5) - I/O control using external board with hardware c hip (ex: MUX and DEMUX chip control)	[Design] - Design and Implementation					
제7주	[Experiment] - Binary Full Adder Design (Ch 1.3) - 2 b it Adder and 4 bit Lookahead Adder Design (ch 1.9-1.1 0)	[Design] - Design and Implementation					
제8주	[Experiment] - ALU Design (Ch 1.11) - Design of D La tch and Flip-flop (Ch 2.1-2.2)	[Design] - Design and Implementation					
제9주	[Experiment] - Design of JK Flip-Flop (Ch 2.3) - FPGA Board Implementation (Keypad Control)	[Design] - Design and Implementation					
제10주	[Experiment] - Design of Level to Pulse converter (Ch 2.8) - FPGA Board Implementation (Dot Matrix Control)	[Design] - Implementation and Intermediate Ch eck					
제11주	[Experiment] - Design of 4bit Register and Binary counter (Ch 2.4-2.5) - FPGA Board Implementation (Counter & Motor Control)	[Design] - Implementation and Intermediate Ch eck					
제12주	[Experiment] - Design of BCD asynchronous counter (C h 2.6) - Design of 3bit Up/Down counter (Ch 2.7)	[Design] - Verification and debugging					
제13주	[Experiment] - Design of Sequential filter(Ch 2.9)	[Design] - Verification and debugging					
제14주	Wrap-up						
제15주 (지정보강주)	Term project 1	- Term Project verification and debugging					
제16주	Term project 2 & evaluation						