

A Study on Rumour Detection on Online Social Networks

by Cheng Gibson

ROADMAP

ROADMAP

- 1. Problem Statement
- 2. Methodology
- 3. Dataset Characteristics
- 4. Hypotheses & Results
- 5. Problems Encountered
- 6. Conclusion & Future Work

1. PROBLEM STATEMENT

FAKE NEWS?

IS FAKE NEWS EVEN A PROBLEM?

- Internet as a reputable news source
- Major news streams leveraging Internet
- Internet information affects public perception
- Internet information may or may not be *legitimate*
- Authorities are taking notice of this trend

YES, FAKE NEWS IS A PROBLEM!

Top 5 Fake Election Stories by Facebook Engagement

(three months before election)

"Pope Francis Shocks World, Endorses Donald Trump for President, Releases Statement" (960,000, Ending the Fed)

"WikiLeaks CONFIRMS Hillary Sold Weapons to ISIS...
Then Drops Another BOMBSHELL! Breaking News"
(789,000, The Political Insider)

"IT'S OVER: Hillary's ISIS Email Just Leaked & It's Worse Than Anyone Could Have Imagined" (754,000, Ending the Fed)

"Just Read the Law: Hillary Is Disqualified From Holding Any Federal Office" (701,000, Ending the Fed)

"FBI Agent Suspected in Hillary Email Leaks Found Dead in Apparent Murder-Suicide" (567,000, Denver Guardian)

ENGAGEMENT REFERS TO THE TOTAL NUMBER OF SHARES, REACTIONS, AND COMMENTS FOR A PIECE OF CONTENT ON FACEBOOK SOURCE: FACEBOOK DATA VIA BUZZSUMO

IN THE NEWS MILL...

IN THE NEWS MILL...

2. METHODOLOGY

GENERAL DATA WORKFLOW

TWITTER

2nd

Largest Social Networking Site

1,300,000,000Twitter Accounts

5,000,000 Tweets per Day

INFORMATION HARVESTER

- » Automated 24/7 tweet collection
- » Network optimizations
- » Duplicate tweet reduction
- » Gzipped archives for 90% space savings

DATA PREPROCESSING

- 1. Decompress archives
- 2. Remove tweet duplicates
- 3. Label tweets with tweet types
- 4. Generate tweet relationship data
- 5. Generate tweet sentiments

FEATURE ENGINEERING: OVERVIEW

USER-BASED

PROPAGATION-BASED

OTHER-BASED

SENTIMENT ANALYSIS LIBRARIES

- » SentiWordNet Scoring
- » AFINN Scoring
- » NLTK Part-of-Speech Tagger
- NPS Corpus

pronoun verb noun adverb

We use interjections sparingly

MANUAL LABELLING: SCHEME

Label	Description	
Support (S)	Supports a rumour explicitly or implicitly (eg. using	
	rumour to augment another opinion)	
Deny (D)	Denies or disproves a rumour	
Neutral (N)	Neither supports nor rejects a rumour. Such rumours	
	may also occasionally express doubt about the rumour	
Unrelated (U)	Unrelated to the rumour	

MACHINE LEARNING TECHNIQUES

Support Vector Machine

Decision Trees

Linear Regression

Neural Networks

Random Forest Regressor

Gradient Boosted Trees

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Naïve Bayes

FULL SYSTEM INTEGRATION

Visualization with D3.js

VISUALIZATIONS

for Datasets

VISUALIZATIONS

for Experiment Results

A LIVE DEMONSTRATION! ©

< insert live demonstration here >

3. DATASET CHARACTERISTICS

DATASET TYPES

Rumour-centric Datasets						
#Sickhillary	Baghdadi dead	Death hoax				
News-centric Datasets						
Mosul Battle	US Economic Policy	Trump cabinet				

QUALITATIVE METRICS

Bubble Chart of Selected Datasets

QUANTITATIVE METRICS

Bar Chart of Quantitative Metrics of Datasets

QUANTITATIVE METRICS

Dataset	Number of Tweets	Number of Unique Tweets
#Sickhillary	85,194	26,642
Trump cabinet	80,145	27,621
US Economic Policy	587	216
Mosul battle	13,483	5,886
Baghdadi dead	192	89
Death hoax	2,934	1,035

MANUAL LABELLING EXAMPLES

Dataset	Label	Tweet Text	
Sickhillary	Support	RT @ThePatriot143: Kimmel: #SickHillary Conspiracy	
		Theories Would Be Harder to Believe If They Didn't Actually	
		Come True #ThanksObama https	
Death hoax	Deny	Hoax Exposed: Muslim Man Blamed Trump For Iraqi	
		Mother's Death » Alex Jones' Infowars: There's a war on for	
		your https://t.co/5bOrJ8daCD	
Baghdadi	Neutral	Isis commanders killed in Iraqi air strikes targeting	
dead		Baghdadi, but leader's fate remains unknown	
		https://t.co/oqlyJks1e5	
Death hoax	Unrelated	We have a new record coming. We would love for you to	
		pre-order with us at @Bandcamp . Thank you	
		https://t.co/2M9cdJ54xC	

HYPOTHESES & RESULTS

TESTING METHODOLOGY

- » 100 Iterations per Experiment
- » Statistical Analysis of Classifier Performance
- » Scoring Equation
- Highest Minimum, Highest Median, Lowest Standard Deviation

 $score(c)_i = w_{min} rank_min(c)_i + rank_median(c)_i w_{median} + rank_stddev(c)_i w_{stddev}$

HYPOTHESES

- 1. What are the general sentiment profiles of the datasets?
- 2. How well can rumours and non-rumours be separated in rumour-centric datasets?
- 3. How well can rumours and non-rumours be separated using all datasets?

i.

WHAT ARE THE GENERAL SENTIMENT PROFILES OF THE DATASETS?

- » Discovering sentiment differences within dataset
- » Comparing tweets only within dataset
- » Logistic Regression (LR) used only
- » Interpreting LR coefficients
- » Using AFINN + SWN and POS features only

- » 'trump cabinet' Good
- "sickhillary" Slightly Good
- " 'us economic policy' Slightly Good
- » 'baghdadi dead' Poor

Dataset: 'trump cabinet' (News)

Classifier Performance: Good

Collection: trump_cabinet											
Best feature vector: feature_nlp_afinn_swn											
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score		
feature_nlp_afinn_swn	LR	0.62500	0.90000	0.77975	0.77500	0.05609	0.75000	0.82500	0.35157		
feature_nlp_pos	LR	0.62500	0.87500	0.75525	0.75000	0.06065	0.72500	0.80000	0.34559		

Dataset: 'trump cabinet', Feature: AFINN + SWN

Dataset: 'trump cabinet', Feature: POS

Dataset: 'trump cabinet', LR Coefficients

Feature (Ft)	AFINN	Pos	Neg	Obj	
Weight (Wt)	-0.103	0.059	0.065	0.430	

Ft	ADJ	ADP	ADV	CONJ	DET	NOUN	NUM	PRT	PRON	VERB		х
Wt		-							-		-	1
	0.03	0.02	0.06	0.14	0.06	0.10	0.06	0.04	0.00	0.08	0.53	0.06
	2	5	1	2	3	4	6	8	3	2	1	6

Dataset: 'sickhillary' (Rumour)

Classifier Performance: Slightly Good

Collection: sickhillary Best feature vector: feature_nlp_afinn_swn										
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score	
feature_nlp_afinn_swn	LR	0.53488	0.79070	0.65953	0.65116	0.05625	0.62791	0.69767	0.29809	
feature_nlp_pos	LR	0.41860	0.86047	0.64465	0.62791	0.07486	0.60465	0.69767	0.26443	

Dataset: 'sickhillary', Feature: AFINN + SWN

Dataset: 'sickhillary', LR Coefficients

Feature (Ft)	AFINN	Pos	Neg	Obj	
Weight (Wt)	-0.026	0.060	0.054	0.258	/

Dataset: 'us economic policy' (News)

Classifier Performance: Slightly Good

Collection: sickhillary Best feature vector: feature_nlp_afinn_swn										
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score	
feature_nlp_afinn_swn	LR	0.53488	0.79070	0.65953	0.65116	0.05625	0.62791	0.69767	0.29809	
feature_nlp_pos	LR	0.41860	0.86047	0.64465	0.62791	0.07486	0.60465	0.69767	0.26443	

Dataset: 'us economic policy', Feature: AFINN + SWN

Dataset: 'us economic policy', LR Coefficients

Feature (Ft)	AFINN	Pos	Neg	Obj	
Weight (Wt)	-0.004	-0.024	-0.017	0.224	

Dataset: 'baghdadi dead' (Rumour)

Classifier Performance: Poor

Collection: baghdadi_dead Best feature vector: feature_nlp_afinn_swn										
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score	
feature_nlp_afinn_swn	LR	0.11111	0.50000	0.31889	0.33333	0.09014	0.26389	0.38889	0.11517	
feature_nlp_pos	LR	0.05556	0.50000	0.32667	0.33333	0.09663	0.27778	0.38889	0.10189	

Dataset: 'baghdadi dead', Feature: AFINN + SWN

HOW WELL CAN RUMOURS AND NON-RUMOURS BE SEPARATED IN RUMOUR-CENTRIC DATASETS?

- » Comparing tweets only within dataset
- » All machine learning models used
- » All feature vectors used

Dataset: 'sickhillary' (Rumour)

Classifier Performance: Slightly Good

Collection: sickhillary Best feature vector: feature_nlp_pos											
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score		
feature_nlp_afinn_swn	NN	0.44186	0.79070	0.62581	0.62791	0.07100	0.58140	0.67442	0.26996		
feature_nlp_pos	SVM	0.46512	0.79070	0.64419	0.65116	0.06903	0.58140	0.69767	0.28145		
feature_term_tfidf	SVM	0.46512	0.79070	0.63628	0.63953	0.06607	0.58140	0.67442	0.27835		

Dataset: 'sickhillary', Feature: Tf-idf

Dataset: 'baghdadi dead' (Rumour)

Classifier Performance: Slightly Good

Collection: baghdadi_dead Best feature vector: feature_term_tfidf											
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score		
feature_nlp_afinn_swn	RFR	0.33333	0.72222	0.53278	0.55556	0.09464	0.44444	0.61111	0.22670		
feature_nlp_pos	GRB	0.27778	0.77778	0.52556	0.55556	0.11848	0.44444	0.61111	0.21535		
feature_term_tfidf	NBBernoulli	0.50000	0.88889	0.69111	0.66667	0.09601	0.61111	0.77778	0.29628		

Dataset: 'baghdadi dead', Feature: Tf-idf

Dataset: 'death hoax' (Rumour)

Classifier Performance: Average

Collection: death_hoax Best feature vector: feature_nlp_pos										
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score	
feature_nlp_afinn_swn	NN	0.43333	0.80000	0.61500	0.63333	0.07369	0.56667	0.66667	0.26938	
feature_nlp_pos	RFR	0.46667	0.80000	0.63633	0.63333	0.07875	0.59167	0.70000	0.27810	
feature_term_tfidf	NN	0.46667	0.80000	0.62000	0.63333	0.07394	0.56667	0.66667	0.27773	

Dataset: 'death hoax', Feature: POS

- » 'sickhillary' Slightly Good
- » 'baghdadi dead' Slightly Good
- " 'death hoax' Average

HOW WELL CAN RUMOURS AND NON-RUMOURS BE SEPARATED USING ALL DATASETS?

- » Aggregating all datasets together
- » All machine learning models used
- » All feature vectors used

Classifier Performance: Good – Very Good

Collection: experiment_3 Best feature vector: feature_term_tfidf											
Feature	Best Classifier	Min	Max	Mean	Median	Std Dev	25th Percentile	75th Percentile	Overall Score		
feature_nlp_afinn_swn	RFR	0.65278	0.90278	0.77958	0.78472	0.04870	0.75000	0.81944	0.36056		
feature_nlp_pos	RFR	0.63889	0.90278	0.76681	0.76389	0.04816	0.73611	0.79167	0.35185		
feature_term_tfidf	DT	0.88889	1.00000	0.94306	0.94444	0.02732	0.92708	0.97222	0.45871		

Feature: Tf-idf

Feature: POS

Feature: AFINN + SWN

LR Coefficients

Feature (Ft)	AFINN	Pos	Neg	Obj	
Weight (Wt)	0.515	-0.137	-0.166	0.827	

Ft	ADJ	ADP	ADV	CONJ	DET	NOUN	NUM	PRT	PRON	VERB		х
Wt	-				-		-	-	-			\ -
	0.12	0.00	0.02	-	0.13	0.30	0.02	0.05	0.09	0.13	1.01	0.02
	6	1	8	0.24	1	7	8	7	0	8	8	2

- » Very Good
- » High accuracy demonstrated in all models
- » Sentiment Analysis features provided high performance levels for models
- » Sentiment Analysis Libraries shows <u>potential</u>

5. PROBLEMS ENCOUNTERED

PROBLEMS: RESEARCH DIRECTION

1. Uncertainty in knowing which next step to take

PROBLEMS: ANDROID

- Inconsistent storage implementation across
 Android versions
- 2. Tackling Android's automated task-killing
- 3. Unreliable MTP file access

PROBLEMS: MANUAL LABELLING

- Uncertainty in identifying major contexts in datasets
- 2. Labelling large amounts of data

6. CONCLUSION & FUTURE WORK

Punctuations and Objective words are indicative of rumor/tweet nature of tweet.

Sentiment Analysis libraries show promise

FUTURE WORK: INVESTIGATIVE

- » Addressing sampling bias
- » Testing against public datasets
- » Testing against other types of corpuses
- Articles, Forums
- » Using other sentiment analysis libraries
- LWIC, SentiStrength, ANEW
- » Using NLP-specific classifiers
- Conditional Random Field

FUTURE WORK: IMPLEMENTATION

- » GPU acceleration
- » Distributed databases
- » Real-time processing & analysis
- » Web UI tweet labelling

FIN

Thank you for your ears ☺ Any questions?