Université de Bretagne-Sud

STA 2209 : Statistique Bayésienne

Problème 4 : Processus de Poisson non homogène

Pour décrire la succession d'un type d'événements donné dans le temps, on peut utiliser la théorie des processus stochastiques.

Ainsi, la suite d'entiers $\{N(t)\}$, nombre d'événements se produisant entre [0, t[est un processus de Poisson non homogène d'intensité : $\lambda(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1}$ si, pour tout intervalle A de \mathbb{R}^+ .

$$P(N(A) = k) = \frac{\left(\int_A \lambda(s)ds\right)^k}{k!} \exp\left\{-\int_A \lambda(s)ds\right\}.$$

Soit T_i la date du $i^{\text{ème}}$ événement. La loi de T_1 est une loi de Weibull de paramètres (α, β) dont la densité est :

$$\frac{\beta}{\alpha^{\beta}} t^{\beta - 1} \exp\left\{-\left(\frac{t}{\alpha}\right)^{\beta}\right\}, \quad \beta, \alpha > 0$$

On considère un n-échantillon de dates d'événements.

1. Montrer que la loi conditionnelle de T_i sachant $T_{i-1}=t_{i-1},\cdots,T_1=t_1$ est une loi de Weibull tronquée de la forme :

$$\frac{\beta}{\alpha^{\beta}} t^{\beta - 1} \exp \left\{ -\left(\frac{t}{\alpha}\right)^{\beta} + \left(\frac{t_{i-1}}{\alpha}\right)^{\beta} \right\}, \quad t \in [t_{i-1}, +\infty[.$$

(Indication : On calculera $P(T_i > t | T_{i-1} = t_{i-1})$ à partir de la loi de N(.))

- 2. Ecrire la vraisemblance et donner les estimateurs du maximum de vraisemblance de (α, β) .
- 3. On veut maintenant proposer des estimateurs de Bayes. En utilisant la règle de Jeffreys, calculer une loi non informative.
- 4. On considère la loi jointe a priori sur (β, α) de la forme $\pi(\beta, \alpha) \propto (\beta \alpha)^{-1}$.
 - (a) Calculer la loi marginale a posteriori de β .
 - (b) Montrer que le mode de cette distribution β_m est un estimateur sans biais de β .
 - (c) Sous l'hypothèse d'un coût quadratique, donner un estimateur de Bayes de β .
- 5. On considère maintenant une loi a priori uniforme sur $[\beta_1, \beta_2]$ et une loi non informative $\pi(\alpha) \propto 1/\alpha \ (\alpha > 0)$ pour α .

Calculer le mode et l'espérance mathématique a posteriori de β et α .

6. On se donne une loi a priori conditionnelle sur α sachant β de la forme

$$\pi(\alpha|\beta;(a,b)) = \frac{\beta b^a T^{\beta a}}{\Gamma(a)\alpha^{\beta a+1}} \exp\left\{-b\left(\frac{T}{\alpha}\right)^{\beta}\right\}, \quad a,b>0, \ T>0.$$

Sous l'hypothèse d'un coût quadratique, proposer des estimateurs de Bayes de α et β .

M. Guida, R. Calabria, G. Pulcini, "Bayes Inference for a Non-Homogeneous Poisson Process with Power Intensity Law", IEEE Transactions on reliability, Vol. 38, 5, 1989.