

# Algorithms and Data Structures 2 CS 1501



Fall 2022

## **Sherif Khattab**

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

# Announcements

- Upcoming Deadlines
  - Homework 7: this Friday @ 11:59 pm
  - Lab 6: next Monday 10/31 @ 11:59 pm
  - Assignment 2: Friday 11/4 @ 11:59 pm
  - Lab 7: Monday 11/7 @ 11:59 pm
- Live Support Session for Assignment 2
  - This Friday 7-8 pm (https://pitt.zoom.us/my/khattab)
- Weekly Live QA Session on Piazza
  - Friday 4:30-5:30 pm

# Previous lecture

- ADT Graph
  - definitions
  - representations
    - two-arrays
    - adjacency matrix
    - adjacency lists
  - traversals
    - BFS
      - shortest paths based on number of edges
      - connected components

# This Lecture

- ADT Graph
  - traversals
    - DFS
      - finding articulation points of a graph
  - representation
    - Graph compression

# Problem of previous lecture

- Input: A file containing LinkedIn (LI) accounts and their connections
  - Account1: Connection1, Connection2, ...
  - Account2: Connection1, Connection2, ...
  - •
- Output: Answer the following questions:
  - Given two LI accounts, how "far" are they from each other?
    - e.g., 1<sup>st</sup> connection?, 2<sup>nd</sup> connection?, etc.
  - Are the accounts in the file all connected?
    - If not, how many *connected components* are there?
  - For each connected component, are there certain accounts that if removed, the remaining accounts become partitioned?

#### **DFS** – Depth First Search

- Already seen and used this throughout the term
  - O For Huffman encoding...
    - as we build the codebook out of the Huffman Trie
- Can be easily implemented recursively
  - O For each vertex, visit *first* unseen neighbor
  - Backtrack at deadends (i.e., vertices with no unseen neighbors)
    - Try *next* unseen neighbor after backtracking
  - An arbitrary order of neighbors is assumed

#### **DFS Pseudo-code**

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

# **DFS** example



#### When to visit a vertex

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 visit v //before visiting its children in the spanning tree
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

#### When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
    parent[w] = v
    DFS(w)
visit v //after visiting its children in the spanning tree
```

#### When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
   parent[w] = v
    DFS(w)
   visit v //after processing each child
```

## **Runtime Analysis of BFS**

- Each vertex is added to the queue exactly once and removed exactly once
  - O *v* add/remove operations
    - O(v) time for vertex processing
- Edges are checked when adding the list of neighbors to the queue
- Each edge is checked at most twice, one per edge endpoint
  - O *O(e)* time for edge processing
- Total time: vertex processing time + edge processing time
  - $\bigcirc$  O(v + e)

## **Runtime Analysis for DFS**

- For Adjacency Matrix representation, BFS checks each possible edge!
  - $O(v^2)$  time for edge processing with Adjacency Matrix
- Total time:  $O(v^2 + v) = O(v^2)$

## **Runtime Analysis of DFS**

- Each vertex is seen then visited exactly once
  - $\bigcirc$  O(v) time for vertex processing
- Edges are checked when finding the list of neighbors
- Each edge is checked at most twice, one per edge endpoint
  - O *O(e)* time for edge processing
- Total time: vertex processing time + edge processing time
  - $\bigcirc$  O(v + e)

## **Runtime Analysis of BFS and DFS**

- At a high level, DFS and BFS have the same runtime
  - O Each vertex must be seen and then visited, but the order will differ between these two approaches
- The representation of the graph affect the runtimes of of these traversal algorithms?
  - $\bigcirc$  O(v + e) with Adjacency Lists
  - $\bigcirc$   $O(v^2)$  with Adjacency Matrix
  - O Note that for a dense graph,  $v + e = O(v^2)$

## **Biconnected graphs**

- A biconnected graph has at least 2 distinct paths between all vertex pairs
  - a distinct path shares no common edges or vertices with another path except for the start and end vertices
- A graph is biconnected graph iff it has zero articulation points
  - O Vertices, that, if removed, will separate the graph

# Biconnected Graph





## Finding articulation points of a graph

- The spanning tree built by a DFS traversal contains one path between each pair of vertices
- If another path exists it must use edges not in the spanning tree
  - we call these back edges
- Consider a vertex v that cannot reach any previous vertices (in the DFS traversal order) except through its parent
  - $\bigcirc$  The parent of v is an articulation point
  - if parent[v] is removed, the graph becomes disconnected because v cannot reach at least one vertex
  - O Such vertex will exhibit this behavior in *any* DFS traversal of the graph

## Finding articulation points of a graph

- Consider building up the DFS spanning tree
  - Have it be directed
  - Create "back edges" when considering a vertex that has already been visited in constructing the spanning tree
  - O Label each vertex v with with two numbers:
    - num(v) = pre-order traversal order
    - low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge

## low(v)

- low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
  - O Min of:
    - num(v) (the vertex is reachable from itself)
    - Lowest num(w) of all back edges (v, w)
    - Lowest low(w) of all children of v (the lowest-numbered vertex reachable from through a child)
- The "at most one back edge" is to ensure distinct paths
- num(v) is computed as we move down the tree
- low(v) is computed as we climb back up the tree
- Recursive DFS is convenient to compute both
  - O why?

# Finding articulation points example



## **Using DFS to find articulation points**

```
int num = 0;
DFS(vertex v) {
    num[v] = num++
    low[v] = num[v] //initially
    seen[v] = true //mark v as seen
    for each neighbor w
       if(w unseen){
         DFS(w)
          low[v] = min(low[v], low[w])
       } else { //back edge
         low[v] = min(low[v], num[w])
```

#### So where are the articulation points?

- If any (non-root) vertex v has some child w such that low(w) ≥ num(v), v is an articulation point
- What if we start at an articulation point?
  - The starting vertex becomes the root of the spanning tree
  - If the root of the spanning tree has more than one child, the root is an articulation point

- Real-life graphs are huge
  - 100's if not 1000's of GBs
  - Facebook graph, Google graph, maps, ...
- Let's see one (partial) idea for reducing the size of large graphs

- Step 1: Construct a Compressed Sparse Row (CSR) representation of the graph
- CSR
  - O Edges array concatenates *sorted* neighbor lists of all vertices
  - O Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of vertex v



- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:



- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of



- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of



- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:



- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:





0 5 **10** 13

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of

vertex v 13 **Edges** 3

| 0 | 2 | 5 | 7 | 10 | 13 |
|---|---|---|---|----|----|
|   |   |   |   |    |    |

- Can we compute the degree of a vertex using the offsets array?
  - O Running time?
- What is the required space of this representation?
  - $\bigcirc$  Theta(m + n)
  - O Assume 4 bytes per vertex and per edge
  - $\bigcirc$  Total size: 4\*v + 8\*e bytes



**Edges** 

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| 1 | 4 | 0 | 2 | 4 | 1 | 3 | 2 | 4 | 5 | 0  | 1  | 3  | 3  |

| 0 | 2 | 5 | 7 | 10 | 13 |
|---|---|---|---|----|----|
|   |   |   |   |    |    |

#### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



| 0 2 5 7 10 13 |
|---------------|
|---------------|

#### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

| 0   | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|-----|-----|---|---|---|---|---|---|---|---|----|----|----|----|
| 1   | 4   | 0 | 2 | 4 | 1 | 3 | 2 | 4 | 5 | 0  | 1  | 3  | 3  |
| 1-0 | 4-1 |   |   |   |   |   |   |   |   |    |    |    |    |

| 0 | 2 | 5 | 7 | 10 | 13 |
|---|---|---|---|----|----|
|   |   |   |   |    |    |

#### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

|   |   |   |   | 4 |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 4 | 0 | 2 | 4 | 1 | 3 | 2 | 4 | 5 | 0 | 1 | 3 | 3 |
| 1 | 3 |   |   |   |   |   |   |   |   |   |   |   |   |

| 0 2 5 7 10 13 | 0 | 2 | 5 | 7 | 10 | 13 |
|---------------|---|---|---|---|----|----|
|---------------|---|---|---|---|----|----|

#### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

| _ |   |    | _ | 4 | _ |   |   |   |   |   |   |   |   |  |
|---|---|----|---|---|---|---|---|---|---|---|---|---|---|--|
| 1 | 4 | 0  | 2 | 4 | 1 | 3 | 2 | 4 | 5 | 0 | 1 | 3 | 3 |  |
| 1 | 3 | -1 | 2 | 2 |   |   |   |   |   |   |   |   |   |  |

| 0 2 5 7 10 13 | 0 | 2 | 5 | 7 | 10 | 13 |
|---------------|---|---|---|---|----|----|
|---------------|---|---|---|---|----|----|

## • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

|   | - | _  |   | - | 5  |   | - |   |   |   |   |   |   |  |
|---|---|----|---|---|----|---|---|---|---|---|---|---|---|--|
| 1 | 4 | 0  | 2 | 4 | 1  | 3 | 2 | 4 | 5 | 0 | 1 | 3 | 3 |  |
|   |   |    |   |   |    |   |   |   |   |   |   |   |   |  |
| 1 | 3 | -1 | 2 | 2 | -1 | 2 |   |   |   |   |   |   |   |  |

|--|

### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

| 1 | - | 0  | - | _ | - |  | <br> | <br> |
|---|---|----|---|---|---|--|------|------|
|   |   | -1 |   |   |   |  |      |      |

| 0 2 5 7 10 13 | 0 | 2 | 5 | 7 | 10 | 13 |
|---------------|---|---|---|---|----|----|
|---------------|---|---|---|---|----|----|

### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

|   |   | 2  |   |   |    |   |    |   |   |    |   |   |   |
|---|---|----|---|---|----|---|----|---|---|----|---|---|---|
| 1 | 4 | 0  | 2 | 4 | 1  | 3 | 2  | 4 | 5 | 0  | 1 | 3 | 3 |
|   |   |    |   |   |    |   |    |   |   |    |   |   |   |
| 1 | 3 | _1 | 2 | 2 | _1 | 2 | -1 | 2 | 1 | _1 | 1 | 2 |   |
| • | 9 | _  | _ | _ |    | _ | _  | _ | • |    | • | _ |   |

| 0 | 2 | 5 | 7 | 10 | 13 |
|---|---|---|---|----|----|
|---|---|---|---|----|----|

#### • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- Store the differences between each two consecutive numbers
  - $(v_1 v), (v_2 v_1), (v_3 v_2), ...$



**Edges** 

| 1 | 4 |    | 2 | 4 | 1  | 3 | 2  | 4 | 5 | 0  | 1 | 3 | 3  |
|---|---|----|---|---|----|---|----|---|---|----|---|---|----|
| 1 | 3 | -1 | 2 | 2 | -1 | 2 | -1 | 2 | 1 | -4 | 1 | 2 | -2 |

| 0 2 5 7 10 13 |
|---------------|
|---------------|

## • Step 2: Difference coding

- $\bigcirc$  For each vertex  $v_1$ , with a neighbor list  $v_1$ ,  $v_2$ ,  $v_3$ , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$



**Edges** 

|   |   | 2  |   |   |    |   |    |   |   |    |   |   |    |
|---|---|----|---|---|----|---|----|---|---|----|---|---|----|
| 1 | 3 | -1 | 2 | 2 | -1 | 2 | -1 | 2 | 1 | -4 | 1 | 2 | -2 |

| 0 2 5 7 10 13 | 0 | 2 | 5 | 7 | 10 | 13 |
|---------------|---|---|---|---|----|----|
|---------------|---|---|---|---|----|----|

• Step 3: Use Gamma code to compress the differences



| 0 | 2 | 5 | 7 | 10 | 13 |  |
|---|---|---|---|----|----|--|
|   |   |   |   |    |    |  |

## **Gamma Code**

- Gamma Code is used to compress data in which small values are much more frequent than large values
- To encode an integer *x*,
  - $\bigcirc$  find T, the largest power of 2 < x
  - Encode T as (log T) zeros followed by 1
  - O Append the remaining (log T) binary digits of x
- Example: To encode 17: 10001
  - O T = 16 = 24
  - O Gamma code: 0000 1 0001
- $2 \text{ floor}(\log x) + 1$ 
  - O much smaller than 32 bits if x is small

- Goal: make the differences between vertex labels in each neighbor list small
  - O So that their Gamma codes are much less than 32 bits
- For Web Graphs
  - Each vertex is a web page
  - Sort the pages based on their reverse URL (e.g., <u>www.cs.pitt.edu</u>)
  - Most links are local (within the same domain)
    - neighbors will be close to each other in the sorted list
    - Goal achieved
- Other graphs can be relabeled to achieve that goal
  - O https://www.cs.cmu.edu/~guyb/papers/BBK03.pdf

# Neighborhood connectivity Problem

- We want to keep a set of neighborhoods connected with the minimum cost possible
- Input: A set of neighborhoods and a file with the following format:
  - neighborhood i, neighborhood j, cost of connecting the two neighborhoods
  - •
- Output: A set of neighborhood pairs to be connected and a total cost such that
  - We can go from any neighborhood to any other (connected)
  - The total cost should be minimum (i.e., as small as it can be) (minimal cost)

# Think Data Structures First!

- How can we structure the input in computer memory?
- Can we use Graphs?
- What about the costs? How can we model that?

## We said spatial layouts of graphs were irrelevant

- We define graphs as sets of vertices and edges
- However, we'll certainly want to be able to reason about bandwidth, distance, capacity, etc. of the real world things our graph represents
  - O Whether a link is 1 gigabit or 10 megabit will drastically affect our analysis of traffic flowing through a network
  - O Having a road between two cities that is a 1 lane country road is very different from having a 4 lane highway
  - O If two airports are 2000 miles apart, the number of flights going in and out between them will be drastically different from airports 200 miles apart

## We can represent such information with edge weights

- How do we store edge weights?
  - O Adjacency matrix?
  - O Adjacency list?
  - O Do we need a whole new graph representation?
- How do weights affect finding spanning trees/shortest paths?
  - The weighted variants of these problems are called finding the minimum spanning tree and the weighted shortest path

# Minimum spanning trees (MST)

- Graphs can potentially have multiple spanning trees
- MST is the spanning tree that has the minimum sum of the weights of its edges

# **Prim's algorithm**

- Initialize T to contain the starting vertex
  - T will eventually become the MST
- While there are vertices not in T:
  - O Find minimum edge-weight edge that connects a vertex in T to a vertex not yet in T
  - O Add the edge with its vertex to T

# **Prim's algorithm**



## **Runtime of Prim's**

- At each step, check all possible edges
- For a complete graph:
  - O First iteration:
    - v 1 possible edges
  - O Next iteration:
    - 2(v 2) possibilities
      - Each vertex in T shared v-1 edges with other vertices, but the edges they shared with each other already in T
  - O Next:
    - $\blacksquare$  3(v 3) possibilities
  - O ...
- Runtime:
  - $\bigcirc$   $\Sigma_{i=1 \text{ to } v}$  (i \* (v i)) =  $\Theta$ (largest term \* number of terms)
  - $\bigcirc$  number of terms = v
  - O largest term is  $v^2/4$  (when i=v/2)
  - $\bigcirc$  Evaluates to  $\Theta(v^3)$

# Do we need to look through all remaining edges?

- No! We only need to consider the best edge possible for each vertex!
  - The best edge of each vertex can be updated as we add each vertex to T

# An enhanced implementation of Prim's Algorithm

- Add start vertex to T
- Search through the neighbors of the added vertex to adjust the parent and best edge arrays as needed
- Search through the best edge array to find the next addition to T
- Repeat until all vertices added to T

# **Prim's algorithm**



## OK, so what's our runtime?

- For every vertex we add to T, we'll need to check all of its neighbors to update their best edges as needed
  - O Let's assume we use an **adjacency matrix**:
    - Takes  $\Theta(v)$  to check the neighbors of a given vertex
    - Time to update parent/best edge arrays?
      - Θ(1)
    - Time to pick next vertex?
      - Θ(v)
    - Total:  $v*2 \Theta(v) = \Theta(v^2)$

## OK, so what's our runtime?

- For every vertex we add to T, we'll need to check all of its neighbors to update their best edges as needed
  - O Let's assume we use **adjacency lists** 
    - $\blacksquare$  Takes  $\Theta(d)$  to check the neighbors of a given vertex
    - Time to update parent/best edge arrays?
      - Θ(1)
    - Time to pick next vertex?
      - Θ(v)
    - Total:  $v*\Theta(v + d) = \Theta(v^2)$

# Prim's MST Algorithm

- seen, parent, and BestEdge are arrays of size v
- Initialize seen to false, parent to -1, and BestEdge to infinity
- BestEdge[start] = 0
- for i = 0 to v-1
  - Find a vertex w with seen[w] = false and BestEdge[w] is the minimum over all unseen vertices
  - seen[w] = 1
  - for each neighbor x of w
    - if(BestEdge[x] > edge weight of edge (w, x)
      - BestEdge[x] = edge weight of (w, x)
      - parent[x] = w
- The parent array represents the found MST

# What about a faster way to pick the best edge?

- Sounds like a job for a priority queue!
  - $\bigcirc$  Priority queues can remove the min value stored in them in  $\bigcirc$  (lg n)
    - Also Θ(lg n) to add to the priority queue
- What does our algorithm look like now?
  - Visit a vertex
  - Add edges coming out of it to a PQ
  - O While there are unvisited vertices, pop from the PQ for the next vertex to visit and repeat

# Prim's with a priority queue



## PQ:

- 1: (0, 2)
- 2: (5, 3)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (2, 1)
- 6: (0, 1)
- 6: (2, 4)
- 6: (5, 4)

# Runtime using a priority queue

- Have to insert all e edges into the priority queue
  - O In the worst case, we'll also have to remove all e edges
- So we have:

$$\bigcirc$$
 e \*  $\Theta(\lg e)$  + e \*  $\Theta(\lg e)$ 

$$\bigcirc = \Theta(2 * e \lg e)$$

$$\bigcirc = \Theta(e \lg e)$$

• This algorithm is known as *lazy Prim's* 

# Do we really need to maintain e items in the PQ?

- I suppose we could not be so lazy
- Just like with the best edge array implementation, we only need the best edge for each vertex
  - O PQ will need to be indexable to update the best edge
- This is the idea of eager Prim's
  - O Runtime is  $\Theta(e \mid g \mid v)$

# **Eager Prim's Runtime**

virsetions: vlag v e updates: e log v venovals: vlog v (e+v) log v-A (elog v e>(v-1)

# **Comparison of Prim's implementations**

Parent/Best Edge array Prim's

 $\bigcirc$  Runtime:  $\Theta(v^2)$ 

 $\bigcirc$  Space:  $\Theta(v)$ 

Lazy Prim's

O Runtime: Θ(e lg e)

 $\bigcirc$  Space:  $\Theta(e)$ 

O Requires a PQ

Eager Prim's

O Runtime: Θ(e lg v)

 $\bigcirc$  Space:  $\Theta(v)$ 

O Requires an indexable PQ



# **Another MST algorithm**

- Kruskal's MST:
  - O Insert all edges into a PQ
  - O Grab the min edge from the PQ that does not create a cycle in the MST
  - O Remove it from the PQ and add it to the MST

# Kruskal's example



## PQ:

- 1: (0, 2)
- 2: (3, 5)
- 3: (1, 4)
- 4: (2, 5)
- 5: (2, 3)
- 5: (0, 3)
- 5: (1, 2)
- 6: (0, 1)
- 6: (2, 4)
- 6: (4, 5)

## Kruskal's runtime

- Instead of building up the MST starting from a single vertex, we build it up using edges all over the graph
- How do we efficiently implement cycle detection?

## Kruskal's Runtime

tera tiers Cycle A(N+e) detection DF5/BFS p(v+e)-(+(e2)