DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI

RE-MINOR TEST DUE TO MEDICAL REASONS 2022-2023 SECOND SEMESTER MTL107 (NUMERICAL METHODS AND COMPUTATION)

Time: 1 hour

Max. Marks: 25

** Answer to each question should begin on a new page **

** All notations are standard. Exhibit clearly all the steps to deserve full credit. **

Assume g(x) and g'(x) are continuous for $a \le x \le b$, and assume g satisfies the property $a \le x \le b \Longrightarrow a \le g(x) \le b$. Further assume that $\lambda \equiv \text{Maximum} (|g'(x)|) < 1$ for all x in [a,b]. Then prove or disprove the following:

(i) There is a unique solution α of x = g(x) in the interval [a, b].

(ii) For any initial approximation x_0 in [a,b], the iterates x_n generated by $x_{n+1}=g(x_n)$ satisfy

$$|\alpha - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_0 - x_1|, \quad n \ge 0.$$

$$\tag{4}$$

2a. Find the Hermite interpolating polynomial that fits the data

\boldsymbol{x}	$\int (x)$	f'(x)
0.5	4	-16
1	11	12

2b. Approximate $f(x) = \sqrt[3]{x}$ by a straight line in the interval [0,1], in the least square sense with the weight function w(x) = 1. Also find the norm of the error function for the best approximation.

(4)

,3 For the method

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(\xi), \quad x_0 < \xi < x_2$$

determine the optimum value of h, using the criteria |RE| = |TE|. Using this method and the value of h obtained from the criteria |RE| = |TE|, determine an approximate value of f'(2.0) from the following tabulated values of $f(x) = \log x$

		· 10			
×	2.0	2.01	2.02	2.00	
		1		2.06	2.12
f(x)	0.69315	0.69813	0.70310	0.70074	0.75142
		100		0.72271	0.75142

given that the maximum roundoff error in function evaluation is $5 imes 10^{-6}$.

(4)

4 Compute

$$I = \int_0^1 e^{2x} \ dx$$

(3)

by Romberg integration method correct to three decimal places, using Trapezoidal rule. (4)

J. Using Gauss-Jordan method, find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

and hence solve the system $Ax=\left[egin{array}{c} 0 \\ -2 \\ 3 \end{array}\right].$

Using Euler's method, find the solution of the initil vlue problem $y'=3x+\frac{1}{2}y,\ y(0)=1$ (2)

MTL107: NUMERICAL METHODS AND COMPUTATION

Total Marks: 20

Time: One Hour

1 (5 Marks) Find PA = LU factorization of the following matrix using partial pivoting:

$$A = \left[\begin{array}{rrr} 2 & 1 & 5 \\ 3 & 3 & -3 \\ 2 & 6 & 2 \end{array} \right]$$

where P is permutation matrix, L is lower triangular matrix with diagonal entries 1 and U is upper triangular and U is upper triangular matrix.

2. (5 Marks) Prove that the following matrix is symmetric positive definite.

$$A = \left[\begin{array}{rrr} 9 & 6 & 3 \\ 6 & 8 & 6 \\ 3 & 6 & 14 \end{array} \right]$$

Then determine its Cholesky Factorization.

3. (5 Marks) Consider the linear system of equations,

$$\begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 1 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$$

Use zero vector as initial guess and calculate two iterations of Jacobi and two iterations with Gauss-Seidel Method.

4. (5 Marks) Consider a function f witch take values, (0,3), (1,-2), and (2,1). Use newton divided difference to find interpolating polynomial for the function. Furthermore, if f is smooth and $|f^{(3)}(x)| < K \, \forall x$, then estimate the maximum error.

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI MINOR TEST II 2015-2016 FIRST SEMESTER MTL 107/MAL 230 (NUMERICAL METHODS AND COMPUTATION)

Time: 1 hour

Max. Marks: 25

** Answer to each question should begin on a new page **

1a. The interpolating polynomial for the function f(x) on the set of distinct points x_0, x_1, \ldots, x_n is given as $P_n(x) = \sum_{k=0}^n l_k(x) f(x_k)$. Find an explicit expression for $\sum_{k=0}^n l_k(0) x_k^{n+1}$. (2)

1b. A function f(x) is defined on [0,1] and $|f^{(m)}(x)| \le m!$ for $m=1,2,\ldots$ Let $P_n(x)$ be the interpolating polynomial of f(x) at the points $1,q,q^2,\ldots,q^n$ where 0 < q < 1. Then prove or disprove that $\lim_{n\to\infty} P_n(0) = f(0)$.

2a. Suppose $f^* = \sum_{j=0}^{j=n} c_j^* \Phi_j$ be the least squares approximation to a given function f. Then prove or disprove $\|f - f^*\|_2^2 = \|f\|_2^2 - \|f^*\|_2^2$. (2)

Approximate $f(x) = \sqrt[3]{x}$ by a straight line in the interval [0,1], in the least square sense with the weight function w(x) = 1. Also find the norm of the error function for the best approximation.

2c. Find a polynomial of second degree which is the best approximation in maximum norm to \sqrt{x} on the point set $\{0, \frac{1}{9}, \frac{4}{9}, 1\}$.

S. For the method

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(\xi), \quad x_0 < \xi < x_2$$

determine the optimum value of h, using the criteria $\mid RE \mid = \mid TE \mid$. Using this method and the value of h obtained from the criteria $\mid RE \mid = \mid TE \mid$, determine an approximate value of f'(2.0) from the following tabulated values of $f(x) = \log x$

×	2.0	2.01	2.02	2.06	2.12
f(x)	0.69315	0.69813	0.70310	0.72271	0.75142

given that the maximum roundoff error in function evaluation is 5×10^{-6} . (4)

4a. Find the number of subintervals n and the step size h so that the error for the composite Simpson's $\frac{1}{3}$ rd rule is less than 5×10^{-9} for the approximation $\int_2^7 \frac{dx}{x}$. (3) **4b.** Compute

 $I = \int_0^1 e^{2x} dx$

by Romberg integration method correct to three decimal places, using Trapezoidal rule.