

Reducing Environmental Impact in Desalination

Dr. Boris Liberman

VP and CTO, IDE Water Technologies

Main Goals of Desalination Plant Design

- OSafe working conditions for staff
- Environmentally friendly operation
- Keeping the RO membranes clean
- OLow power consumptions
- OLow water cost

Chemicals in Conventional SWRO Plant Design

Super-saturation of Oxygen in Seawater

Used in pretreatment for safe and environmentally friendly operation

Media Filtration

O Bacteria consume nutrients and oxygen

Pressure Center Design

Low power consumptions, low water cost achieved by Pressure Center Design

Ashkelon 400,000 m³/day

Hadera 500,000m³/day

Sorek 600,000 m³/day

Conventional RO Plant Design: membranes, pump, motor, ERS

Pressure Center Design

Figure 3 Pump efficiency as a function of specific speed and capacity.

Keeping RO Membranes Clean

OPhysical methods instead of harsh chemicals

ODirect Osmosis High Salinity - **DOHS**

and

ODirect Osmosis Cleaning - DOC

Normal RO Process

$$NDP_{RO} = PGr-POr-PGp+Pop$$

 $NDP_{RO} = 65 - 45 - 1 + 0.1 = +19.1$ bar

DOHS - Direct (Forward) Osmosis High Salinity Osmotic Backwash

 NDP_{RO} = PGr-POr-PGp+Pop NDP_{RO} = 65 - 45 - 1 + 0.1 = + 19.1 bar $NDP_{DO (FO)}$ = 65 - **100** - 1 + 0.1 = - 35.9 bar

Osmotic Dehydration of Bacteria

Frequent removal of particles before a strong Van der Waals interaction is created with the surface

RO Membrane Direct Osmosis Cleaning

Pulse Flow RO Technology Implementation

On wastewater applications allows:

- OChloramine free water reuse desalination
- OUp to 95% recovery in single stage operation
- OHigh flux operation 28 LMH
- ○100% transmission of UV light
- ○20% saving in water cost

In brackish water applications allows:

Extremely high recovery operation

Conventional RO vs Pulse Flow RO

Continuous brine discharge

90% Recovery Multi stage

Brine discharge in pulses

95% Recovery Single stage

PFRO can reach significantly higher recovery than conventional RO

Membrane Elements in Pressure vessel

In conventional RO the induction time is endless

RO membrane Elements in Pressure vessel

Pulse Flow RO Higher recovery

PFRO Wastewater Demonstration Plant. Pismo Beach CA

- OUnder the supervision of Carollo Engineers Inc.
- OThe source secondary effluent, municipal wastewater
- ○86% recovery, no chloramine dosing

PFRO Brackish Water application City of Abilene TX

80% recovery over final City brine

PFRO Demonstration Plant Abilene

- OBrackish water application
- ○80% recovery over final City brine

 $CaCO_3$ $CaSO_4$ $BaSO_4$ $SrSO_4$ CaF_2 Ca_3 (Conc. Untreated 222.30 409.17 51632 404.91 5249 0.

Recovery (%). Abilene

ABILENE HARGESHEIMER WATER TREATMENT PLANT PULSE FLOW REVERSE OSMOSIS (PFRO) - FINAL REPORT - REV. 00

Specific Flux (GFD/PSI) Abilene

ABILENE HARGESHEIMER WATER TREATMENT PLANT PULSE FLOW REVERSE OSMOSIS (PFRO) - FINAL REPORT - REV. 00

Figure 11: Specific Flux vs. Time

Product Conductivity

Figure 10: Permeate Conductivity vs. Time

THANK YOU

IDE | YOUR WATER PARTNERS