A truthful Multi Item-Type Double-Auction Mechanism

Erel Segal-Halevi
with
Avinatan Hassidim
Yonatan Aumann

Intro: one item-type, one unit Value

Buyers:

Sellers:

Intro: one item-type, one unit Value

k=5 efficient deals Buyers: Sellers:

4

Multi Item Double Auction

Erel Segal-Halevi et al

Intro: one item-type, one unit Value

Buyers:

Gain from trade:

Sellers:

✓ Maximum gain

- ✓ Maximum gain
- ✓ Handles traders with many itemtypes if they are Gross-Substitutes (= no complementarities)

- ✓ Maximum gain
- √ Handles traders with many itemtypes if they are Gross-Substitutes (= no complementarities)
- X Not truthful

Some related work

Bayesian prior:

- Single-sided auction: Myerson [1981], Blumrosen and Holenstein [2008], Segal [2003], Chawla et al. [2007-2010], Yan [2011].
- Double auction: Xu et al. [2010], Loertscher et al. [2014], Blumrosen and Dobzinski [2014], Colini-Baldeschi et al. [2016].

Prior-independent:

- Single-sided auction: Cole and Roughgarden [2014], Dhangwatnotai et al. [2015], Huang et al. [2015], Morgenstern and Roughgarden [2015], Devanur et al. 2011], Hsu et al. [2016].
- Double auction: Baliga and Vohra [2003] single-parametric agents.

Prior-free:

- Single-sided auction: Goldberg et al. [2001-2006], Devanur et al. [2015], Balcan et al. [2007-2008]
- Double auction: McAfee [1992] \rightarrow

(simplified)

(simplified)

✓ Truthful

(simplified)

- ✓ Truthful
- ✓ Gain: (1 1/k) of maximum

(simplified)

- ✓ Truthful
- ✓ Gain: (1 1/k) of maximum
- X Only single itemtype, single-unit

(simplified)

- ✓ Truthful
- ✓ Gain: (1 1/k) of maximum
- X Only single itemtype, single-unit

Extensions:

Babaioff et al. [2004-2006], Gonen et al. [2007], Duetting et al. [2014] -Single-parametric agents. Blumrosen & Dobzinsky [2014] -Single item-type, Gain ~ 1/48.

Prior-Free Double-Auctions

	Tru	Gain	Agents
Equilibrium	No	1	Multi-parametric (Gross-substitute)
McAfee family	Yes	1-o(1)	Single-parametric / Single-item-type
Our goal	Yes	1-o(1)	Multi-parametric, multi-item-type

Prior-Free Double-Auctions

	Tru	Gain	Agents
Our goal	Yes	1-o(1)	Multi-item-type

Our current assumptions:

- 1. Buyers at most g item-types, **gross-substitute**. Sellers 1 item-type, **decreasing marginal gain**.
- 2. Large market for each item-type x, $k_x \rightarrow \infty$;

at most *m* units per seller;

3. Bounded variability -

$$k_{max}/k_{min} \leq c$$

4. Generic valuations - no ties.

MIDA: Multi Item Double-Auction

a. Random halving.

b. Equilibrium calculation.

c. Posted pricing.

d. Random serial dictatorship.

MIDA step a: Random Halving

MIDA step a: Random Halving

MIDA step b: Equilibrium Calculation

Gross-substitute traders → price-equilibrium exists.

MIDA step c: Posted Pricing

In case of over-demand/supply - randomize.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

- Order buyers randomly;
- Order sellers randomly;
- First buyer buys from first sellers and goes home.
- Seller goes home when marginal gain < 0.

Theorem: If each seller sells one item-type and has decreasing-marginal-gains, then MIDA is truthful.

MIDA: Estimating the gain-from-trade

46

Erel Segal-Halevi et al

47

Erel Segal-Halevi et al

Four ways to lose gain (left market)

For every item-type x, define:

- B_{x^*} buyers who want x in p^{OPT}
- B_{x} buyers who want x in p^{OPT} but not in p^{R}
- B_{x+} buyers who want x in p^R but not in p^{OPT}
- S_{x^*} sellers who offer x in p^{OPT}
- S_{x} sellers who offer x in p^{OPT} but not in p^{R}
- S_{x+} sellers who offer x in p^R but not in p^{OPT}

We lose $|B_{x-}| + |S_{x+}|$ random sellers and $|S_{x-}| + |S_{x+}|$ random buyers. So:

$$E[Loss_x] \le (|B_{x-}| + |B_{x+}| + |S_{x-}| + |S_{x+}|) / |B_{x*}|$$

Bounding the loss

$$E[Loss_x] \le (|B_{x-}| + |B_{x+}| + |S_{x-}| + |S_{x+}|) / k_x$$

Price-equilibrium equations: for every x:

Global population:
$$|B_{x^*}| = |S_{x^*}| = k_x$$

Right market $(^R = the subset sampled to Right)$:

$$|B_{x^*}^R| + |B_{x^+}^R| - |B_{x^-}^R| = |S_{x^*}^R| + |S_{x^+}^R| - |S_{x^-}^R|$$

Bounding the loss

$$E[Loss_x] \le (|B_{x-}| + |B_{x+}| + |S_{x-}| + |S_{x+}|) / k_x$$

Price-equilibrium equations: for every x:

Global population:
$$|B_{x^*}| = |S_{x^*}| = k_x$$

Right market $(^R = the subset sampled to Right)$:

$$|B_{x^*}^R| + |B_{x^+}^R| - |B_{x^-}^R| = |S_{x^*}^R| + |S_{x^+}^R| - |S_{x^-}^R|$$

Concentration bounds: w.h.p:

$$|B_{x^*}| - |B_{x^*}|/2| < err_x$$

 $|S_{x^*}| - |S_{x^*}|/2| < err_x$

$$err_x = m\sqrt{k_x \ln k_x}$$

Bounding the loss

$$E[Loss_x] \le (|B_{x-}| + |B_{x+}| + |S_{x-}| + |S_{x+}|) / k_x$$

Price-equilibrium + Concentration bounds:

With high probability:

$$||B_{x-}^{R}| - |B_{x+}^{R}|| < 2 err_x$$

$$||S_{x-}^{R}| - |S_{x+}^{R}|| < 2 err_x$$

Bounding the loss

$$E[Loss_x] \le (|B_{x-}| + |B_{x+}| + |S_{x-}| + |S_{x+}|) / k_x$$

Price-equilibrium + Concentration bounds:

With high probability:

$$||B_{x-}^{R}| - |B_{x+}^{R}|| < 2 err_x$$

 $||S_{x-}^{R}| - |S_{x+}^{R}|| < 2 err_x$

Let's focus on the buyers.

- We have bounds on: $||B_{x-}^{R}| |B_{x+}^{R}||$
- We need bounds on: $|B_{x-}|$, $|B_{x+}|$

• We have bounds: $||B_{x-}^{R}| - |B_{x+}^{R}|| < 2 err_x$

$$||B_{1-}^{R}| - |B_{1+}^{R}|| < 2 \ err_1$$
 $||B_{2-}^{R}|| - |B_{2+}^{R}|| < 2 \ err_2$
... $||B_{g-}^{R}|| - |B_{g+}^{R}|| < 2 \ err_g$

• We derive bounds on: $|B_{x-}^{R}|$, $|B_{x+}^{R}|$

- We have bounds: $||B_{x-}^{R}| |B_{x+}^{R}|| < 2 err_x$
- We derive bounds on: $|B_{x-}^{R}|$, $|B_{x+}^{R}|$

 p^R item 1

- We have bounds: $||B_{x-}^{R}| |B_{x+}^{R}|| < 2 err_x$
- We derive bounds on: $|B_{x-}^{R}|$, $|B_{x+}^{R}|$

Theorem: The demand of gross-substitute agents moves only downwards (Segal-Halevi et al, 2016).

- We have bounds: $||B_{x-}^{R}| |B_{x+}^{R}|| < 2 err_x$
- We derive bounds on: $|B_{x-}^{R}|$, $|B_{x+}^{R}|$

Theorem: The demand of gross-substitute agents moves only downwards (Segal-Halevi et al, 2016).

- We have bounds: $||B_{x-}^{R}| |B_{x+}^{R}|| < 2 err_x$
- We derive bounds on: $|B_{x-}^{R}|$, $|B_{x+}^{R}|$

For every item x that became cheaper: $B_{x-}^R \subseteq \cup_{y < x} B_{y+}^R$

•
$$||B_{1-}^{R}| - |B_{1+}^{R}|| < 2 \text{ err}_{max}$$

 $||B_{2-}^{R}|| - |B_{2+}^{R}|| < 2 \text{ err}_{max}$
... $||B_{g-}^{R}|| - |B_{g+}^{R}|| < 2 \text{ err}_{max}$
• $|B_{1-}^{R}|| = 0$ $\rightarrow |B_{1+}^{R}|| < 2 \text{ err}_{max}$
 $|B_{2-}^{R}|| < 2 \text{ err}_{max}$ $\rightarrow |B_{2+}^{R}|| < 4 \text{ err}_{max}$
... $|B_{g-}^{R}|| < 2^g \text{ err}_{max}$, $|B_{g+}^{R}|| < 2^g \text{ err}_{max}$

- We have a bound: $|B_{x-}^{R}|$, $|B_{x+}^{R}| < 2^g err_{max}$
- We **need** a bound on: $|B_{x-}|$, $|B_{x+}|$
- When T is a **deterministic set** (like B_{x^*}) determined **before** randomization –

w.h.p:
$$||T^R| - |T|/2| < \sqrt{|T| \ln |T|}$$

 \boldsymbol{B}_{x-} and \boldsymbol{B}_{x+} are random sets - depend on price

- determined after randomization!

Our solution: bound the **UI dimension** of B_{x-} , B_{x+}

UI Dimension of Random Sets UI Dimension – property of a random-set.

If UIDim
$$(T) \le d$$
 then (Segal-Halevi et al, 2017): w.h.p: $||T^R| - |T|/2| < d \cdot \sqrt{|T| \ln |T|}$

- 1. Containment-Order Rule: If the support of T is ordered by containment, then $UIDim(T) \le 1$.
- 2. Union Rule:

$$UIDim(T_1 \cup T_2) \le UIDim(T_1) + UIDim(T_2)$$

3. Intersection Rule: If $|T_1| < t$ then:

$$UIDim(T_1 \cap T_2) \leq \log(t)*(UIDim(T_1) + UIDim(T_2))$$

- We have a bound: $|B_{x-}^{R}|$, $|B_{x+}^{R}| < 2^g err_{max}$
- We derive a bound on: $|B_{x-}|$, $|B_{x+}|$

Lemma: For every item-type *x*:

$$B_{x-} = B_{x*} \cap \bigcap_{X \ni x} \left(\bigcup_{Y \not\ni x} \mathbb{B}_{X \prec Y} \right) \implies \text{UIDim}(B_{x-}) \le 2^{2g} \ln k_{\text{max}}$$

Similarly: UIDim $(B_{x+}) \le 2^{2g} \ln k_{\max}$

Corollary: When $k_{max} >> 2^{3g}$, w.h.p:

$$|B_{x-}|, |B_{x+}| < 3 * (2^g err_{max})$$

- We have a bound: $|B_{x-}|$, $|B_{x+}| < 3*2^g *err_{max}$
- Similarly: $|S_{x-}|, |S_{x+}| < 3*2^g *err_{max}$
 - Lost deals in item x: $< 12*(2^g err_{max})$
 - Lost gain in item x < $12*(2^g err_{max})/k_x$
 - Lost gain overall $< 12*(2^g err_{max})/k_{min}$
 - Lost gain overall $< Const * o(k_{max}) / k_{min}$

Theorem: Under large-market assumptions, gain-from-trade of MIDA approaches maximum.

Prior-Free Double-Auctions

	Tru	Gain	Agents
Equilibrium	No	1	Multi-parametric (Gross-substitute)
McAfee family	Yes	1-o(1)	Single-parametric / Single-item-type
MIDA	Yes	1-o(1)	Multi-parametric (Sellers: 1 type, Buyers: g types, Gross-substitute).

Acknowledments

- Game theory seminar in BIU
- Ron Peretz
- Simcha Haber
- Tom van der Zanden
- Assaf Romm
- Economic theory seminar in HUJI
- Econ.&Comp. seminar in HUJI
- Algorithms seminar in TAU

Thank you!