

200

<u>AA</u>	C+1 ranking	N-1 ranking	
K	2.20	0.64	
С	2.00	1.00	· }
N	2.00	0.00	
G	1.80	1.33	1
T	1.50	0.00	1
A	1.33	1.21	1
F	1.33	1.00	
S	1.33	0.00	2011
W	1.20	0.00	> 204
Q	1.20	0.00	(
R	1.17	1.57	1
M	1.00	0.00	1
Y	1.00	0.75	. \
I	0.86	0.50	
L	0.75	2.20	
V	0.00	1.19	
D	0.00	0.00	į
H	0.00	0.00	1
E	0.00	0.00	/
P	0.00	0.00	

Motif Specification

XXXX(FY)XX(LIMV) (SEQ ID NOS:7-14)
XXXX(FY)XXX(LIMV) (SEQ ID NOS:15-22)
XXXXNXXX(LIMV) (SEQ ID NOS:27-30)
XXXXNXXXX(LIMV) (SEQ ID NOS:341-344)
X(LM)XXXXXXV (SEQ ID NOS:31-32)
X(LM)XXXXXXV (SEQ ID NOS:33-34)
X(LMVT)XXXXXXXV (SEQ ID NOS:345-356)
X(LMVT)XXXXXXX(KRY)(SEQ ID NOS:357-368)
XPXXXXXX(LIMVF) (SEQ ID NOS:59-63)
XPXXXXXXX(LIMVF) (SEQ ID NOS:64-68)

Junctional Analyzer run on Saturday, February 26, 2000 09:06:23 pm.

The following non-zero AA weights will be used.

<u>AA</u>	N-1 ranking	C+1 ranking	
A	1.21	1.33	
A C	1.00	2.00	1
F	1.00	1.33	- 1
G	1.33	1.80	/
1	0.50	0.86	- 1
K	0.64	2.20	į
L	2.20	0.75	(, .
M	0.00	1.00	> 204
N	0.00	2.00	- (
Q	0.00	1.20	1
R	1.57	1.17	}
S	0.00	1.33	ŀ
T	0.00	1.50	ł
V	1.19	0.00	1
W	0.00	1.20	/
Υ	0.75	1.00	/

The following 10 motif specifications will be used to search for junctionals.

Cour	nt Motif Specification
1	XXXX(FY)XX(LIMV) (SEQ ID NOS:7-14)
2	XXXX(FY)XXX(LIMV) (SEQ ID NOS:15-22)
3	XXXXXXXX(LIMV) (SEQ ID NOS:27-30)
4	XXXXXXXXX(LIMV) (SEQ ID NOS:341-344)
5	X(LM)XXXXXXV (SEQ ID NOS:31-32)
6	X(LM)XXXXXXV (SEQ ID NOS:33-34) 206
. 7	X(LMVT)XXXXXX(KRY) (SEQ ID NOS:345-356)
8	X(LMVT)XXXXXXX(KRY)(SEQ ID NOS:357-368)
9	XPXXXXXX(LIMVF) (SEQ ID NOS:59-63)
10	XPXXXXXX/I IMVF)(SEO ID NOS:64-68)

Code	Peptide		Length	-
Ā	VLAEAMSQV	(SEQ ID NO:70)	9	$\hat{}$
В	ILKEPVHGV	(SEQ ID NO:71)	9	- 1
С	TLNFPISPI	(SEQ ID NO:72)	9	/
D	SLLNATDIAV	(SEQ ID NO:73)	10	- 1
Ε	QMAVFIHNFK	(SEQ ID NO:74)	10	1
F	VTVYYGVPVW	(SEQ ID NO:75)	11	> 202
G	FPVRPQVPL	(SEQ ID NO:76)	9	- 1
Н	YPLASLRSLF	(SEQ ID NO:77)	10	1
1	VIYQYMDDLY	(SEQ ID NO:78)	10	1
J	IYQEPFKNL	(SEQ ID NO:79)	9	}
K	IWGCSGKLI	(SEQ ID NO:80)	9	

MaxInsertions = 4 (208)

FIGURE 13A

EP-HIV-1090 (SEQ ID NO:81)

MGMQVQIQSLFLLLLWVPGSRGKLVGKLNWAGAAILKEPVHGVNAACPKVSFEPIKIPIHYCAPA KAKFVAAWTLKAAAKAFPVRPQVPLGAAKLTPLCVTLGAAAVLAEAMSQVKVYLAWVPAHKG AAAAIFQSSMTKKTTLFCASDAKNIPYNPQSQGVVKHPVHAGPIANVTVYYGVPVWKKAAAQMA VFIHNFKNAAAYPLASLRSLFNLTFGWCFKLNRILQQLLFINAKIQNFRVYYRKAAVTIKIGGQLKK VPLQLPPLKAMTNNPPIPV

HIV-CPT (SEQ ID NO:83)

MGMQVQIQSLFLLLLWVPGSRGIPIHYCAPAKAAKIQNFRVYYRKAAVTIKIGGQLKKAKFVAAW TLKAAAKVPLQLPPLKAIFQSSMTKKLTPLCVTLGAQMAVFIHNFKGAKVYLAWVPAHKNAIPYN PQSQGVVKAILKEPVHGVGAAALTFGWCFKLNAVLAEAMSQVNRILQQLLFINAAACPKVSFEPI KVTVYYGVPVWKKAAHPVHAGPIANAAAYPLASLRSLFNAAATTLFCASDAKNKLVGKLNWAN AAAFPVRPQVPLNMTNNPPIPV

HIV-FT (SEQ ID NO:85)

MQVQIQSLFLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLF IMAVFIHNFKIPYNPQSQGVVTTLFCASDAKILKEPVHGVQMAVFIHNFKGAAVFIHNFKRCPKVSF EPIKIQNFRVYYRLTFGWCFKLQVPLRPMTYKMTNNPPIPVTVYYGVPVWKVLAEAMSQVIPIHY CAPAKLTPLCVTL

HIV-TC (SEQ ID NO:87)

MGMQVQIQSLFLLLLWVPGSRGYWQATWIPEWKAIFQSSMTKKVYLAWVPAHKNAACPKVSFE PIKHPVHAGPIANLTFGWCFKLNKMIGGIGGFIKFRDYVDRFYKAAARILQQLLFINTTLFCASDAK NQMVHQAISPRGAKLVGKLNWAGAAAIYETYGDTWKAAQVPLRPMTYKGAAAVTVLDVGDAY NAAARYLKDQQLLNTLNFPISPINMTNNPPIPVNAPYNTPVFAIKAAAVPLQLPPLKAAIPYNPQSQ GVVKALLQLTVWGIGAAILKEPVHGVNAAAFPISPIETVKVWKEATTTLFKAAAVTIKIGGQLKKI YQEPFKNLKAAAVLAEAMSQVNLVGPTPVNIGAAAEVNIVTDSQYKAAAIPIHYCAPAKAVIYQY MDDLYKAAAQMAVFIHNFKNAATYQIYQEPFKPYNEWTLELKAKIQNFRVYYRKAFPVRPQVPL GAAAIWGCSGKLIKVMIVWQVDRNAAKAACWWAGIKAKFVAAWTLKAAAKLTPLCVTLNAAM ASDFNLPPVKSLLNATDIAVNVTVYYGVPVWKKAAAAIIRILQQLKRAMASDFNLNAAAYPLASL RSLF

ATGGGGATGCAGGTCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCTAGA GGATACTGGCAAGCTACTTGGATTCCAGAATGGAAAGCTATCTTTCAATCCTCAATGACGAAG AAGGTATACCTGGCATGGGTCCCAGCACACAAGAACGCCGCTTGCCCAAAGGTGTCCTTTGAA CCCATTAAACACCCAGTGCACGCAGGGCCAATAGCGAATTTGACATTCGGGTGGTGCTTCAAA CTAAACAAAATGATCGGCGGCATTGGAGGCTTTATCAAGTTTAGAGATTACGTGGACCGATTC TATAAAGCCGCTGCCCGTATACTCCAGCAGCTACTATTCATCAACACCACTCTCTTCTGCGCTT CAGACGCTAAGAACCAAATGGTACACCAAGCCATAAGCCCTAGAGGAGCCAAGCTCGTAGGG AAATTAAATTGGGCGGGTGCAGCAGCAATCTACGAGACTTACGGCGATACCTGGAAAGCAGC CCAGGTTCCGTTACGCCCAATGACCTATAAAGGCGCAGCAGCAGTAACAGTTCTAGATGTAGG AGACGCTTACAACGCTGCCGCAAGATACCTAAAAGATCAGCAGTTACTCAACACACTAAATTT CCCAATTAGCCCGATAAACATGACAAATAACCCACCAATTCCCGTCAATGCTCCCTACAACAC TCCAGTATTCGCAATCAAAGCCGCTGCTGTCCCCCTGCAGCTCCCTCTGAAAGCTGCGAT ACCTTACAACCCACAGAGCCAAGGTGTTGTCAAAGCACTGCTTCAGCTAACAGTTTGGGGAAT TGGTGCTGCAATTCTAAAAGAGCCAGTTCATGGGGTTAACGCCGCCGCCTTCCCAATCAGTCC TATTGAGACTGTGAAAGTATGGAAAGAAGCCACACACACTTTTTAAGGCAGCCGCAGTTA CAATTAAAATAGGGGGCCAACTTAAGAAAATATACCAGGAACCTTTCAAGAATCTCAAAGCC GCTGCAGTGCTCGCCGAGGCTATGTCACAGGTGAATTTGGTCGGACCAACACCCGTAAACATC GGAGCCGCAGCCGAAGTGAACATAGTCACCGACTCACAGTACAAAGCCGCTGCAATACCCAT ACATTATTGTGCTCCCGCAAAGGCCGTGATCTATCAATATATGGACGACCTGTATAAGGCCGC CGCGCAGATGGCAGTCTTTATCCACAACTTTAAAAAACGCAGCTACTTATCAGATCTACCAGGA ACCATTCAAACCGTACAATGAGTGGACCTTGGAACTAAAGGCCAAAATTCAGAACTTCAGGG TATATTATAGAAAAGCATTTCCAGTGAGGCCCCAGGTGCCTCTGGGTGCCGCAGCAATATGGG GATGTTCTGGAAAACTGATCAAGGTGATGATTGTATGGCAAGTGGACAGAAATGCAGCTAAG GCAGCCTGTTGGTGGGCAGGTATAAAAGCAAAGTTCGTGGCAGCATGGACGCTTAAAGCAGC CGCAAAACTCACTCCTCTCTGCGTGACACTTAATGCAGCCATGGCCTCTGATTTCAACCTTCCC CCTGTAAAATCCCTGCTTAATGCGACAGATATCGCAGTCAACGTAACAGTATATTATGGCGTG CCAGTCTGGAAAAAAGCCGCCGCGGCCATAATTCGGATACTGCAGCAGCTGAAAAGAGCTAT GGCGAGTGACTTCAACCTGAATGCGGCCGCCTACCCCTTGGCATCGTTAAGGTCACTATTTTG A (SEO ID NO:88)

HCV.1 (SEQ ID NO:89)

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVDLMGYIPLVYLVAYQATVILAGYGAGVRLIVFP DLGVHMWNFISGIYLLPRRGPRLYLVTRHADVVLVGGVLAALLFLLLADAFLLLADARVWMNRL IAFACTCGSSDLYLSAFSLHSYGVAGALVAFKLPGCSFSIFKTSERSQPRLIFCHSKKKFWAKHMW NFIPFYGKAIRMYVGGVEHRQLFTFSPRRRLGVRATRKVGIYLLPNRAKFVAAWTLKAAA*

HCV.2 (SEQ ID NO:91)

MGMQVQIQSLFLLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAALLFLLLADALIFCHSKKKQLF TFSPRRYLVTRHADVYLLPRRGPRLCTCGSSDLYHMWNFISGIFWAKHMWNFAKFVAAWTLKAA AILAGYGAGVYLVAYQATVGVAGALVAFKIPFYGKAIRMYVGGVEHRVLVGGVLAAFLLLADA RVLPGCSFSIFAKFVAAWTLKAAAKTSERSQPRRLGVRATRKRLIVFPDLGVWMNRLIAFALSAFS LHSYLLFNILGGWVVGIYLLPNR*

HCV.3s1 (SEQ ID NO:93)

MGMQVQIQSLFLLLLWVPGSRGYLVAYQATVAKFVAAWTLKAAALLFLLLADALIFCHSKKKYL VTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNF*

GAATTCGCCGCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGATACCTCGTCGCCTACCAGGCCACTGTGGCTAAATTCGTGGCAGCCTGGACACTGAAAGCTGCAGCTCTGCTCTTCCTGCTCCTGGCCGATGCACTCATCTTCTGCCATTCCAAGAAAAAGTATCTGGTCACCAGACATGCTGACGTGCTGGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTTTGGGCCCAAGCACATGTGGAATTTCTGAAAGCTT (SEQ ID NO:94)

HCV.3s2 (SEQ ID NO:95)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYIL AGYGAGVWMNRLIAFAIPFYGKAIVAGALVAFKVGIYLLPNR*

HCV.3s2(-3) (SEQ ID NO:97)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYIL AGYGAGVWMNRLIAFA*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGATCCAGAGGAGTCCTGGTGGGCGGCGTCCTGGCCGCTGCTAAGTTTGTCGCTGCT TGGACACTGAAGGCAGCCGCTTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTGCCTTCAGC CTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGCGTGTGGATGAATCGGCTGATCGCCTTT GCCTGAGGATCC (SEQ ID NO:98)

HCV.3s3 (SEQ ID NO:99)

 $MGMQVQIQSLFLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAARLGVRATRKLLFNILGGWV\\RMYVGGVEHRRLIVFPDLGVGVAGALVAFKLPGCSFSIFKTSERSQPRQLFTFSPRRYLLPRRGPRL$

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGATCCAGAGGAGACCTGATGGGCTACATCCCTCTCGTGGCCAAGTTTGTGGCAGCT TGGACCCTGAAGGCCGCTGCCAGACTGGGAGTGCGCGCTACACGGAAACTCCTGTTTAACATC CTGGGAGGGTGGGTGCGGATGTACGTCGGAGGCGTCGAGCACAGAAGGCTCATTGTCTTTCC AGATCTCGGCGTGGGCGTCGCAGGCGCACTCGTGGCCTTCAAACTGCCAGGGTGCAGCTTCAG CATTTTCAAGACCTCCGAACGCTCCCAACCCAGACAGCTGTTCACTTTCTCTCCTCGGAGGTAT CTGCTGCCCAGACGCGGACCCAGGCTGTGAAAGCTT (SEQ ID NO:100)

HCV.PC3 (SEQ ID NO:101)

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVKAKFVAAWTLKAAALADGGCSGGAYRLIVFPD LGVKFWAKHMWNFIGVAGALVAFKKOLFTFSPRR*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGATCCAGAGGACTGCTCTTCAACATCCTGGGCGATGGGTGAAGGCCAAGTTCGTG GCTGCCTGGACCCTGAAGGCTGCCGCTCTGGCCGACGGGGGATGCAGCGGGGGGGCTTACAG GCTCATTGTCTTTCCCGATCTCGGAGTCAAATTTTGGGCAAAGCACATGTGGAATTTCATCGG GGTGGCCGGAGCCCTGGTCGCTTTTAAAAAGCAGCTCTTCACCTTCTCCCCAAGACGGTGAGG TACC (SEQ ID NO:102)

HCV.PC4 (SEQ ID NO:103)

MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAKFVAAWTLKAAAKTSERSQPRNLPGCSFSIFN DLMGYIPLVKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEHR*

HCV.2431(1P) (SEQ ID NO:105)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRL IAFAGAAARLGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCG FADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWN FIGVAGALVAFKKQLFTFSPRRNGYLVAYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLG FGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFKAAAAKFVAAWTLKAAA

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGCTCCAGAGGAGTCCTGGTGGGCGGCGTCCTGGCAGCCGCTTTCCTGCTCCTGGCA GACGCCAGGGTGCTGTCTGCCTTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGC GTGTGGATGAATCGCCTGATCGCCTTTGCCGGCGCTGCCGCAAGGCTGGGCGTGAGAGCCACC TTTCAGCATCTTTAATGACCTCATGGGGTACATTCCACTGGTGAAGTATCTGCTCCCCAGACGG GGAGTCGAACACAGAAAACTGCTCTTCAACATCCTGGGCGGATGGGTGAAGGCTGCCGCTCT GGCCGACGGGGATGCAGCGGGGGGGGTTACAGGCTCATTGTCTTTCCCGATCTCGGAGTCAA ATTTTGGGCAAAGCACATGTGGAATTTCATCGGGGTGGCCGGAGCCCTGGTCGCTTTTAAAAA GCAGCTCTTCACCTTCTCCCCAAGACGGAACGGATACCTCGTCGCCTACCAGGCCACTGTGGC TGCAGCTCTGCTCTTCCTGCCCGATGCACTCATCTTCTGCCATTCCAAGAAAAAGTAT CTGGTCACCAGACATGCTGACGTGCTGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGC AGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTTTGGGCCAAGCACATGTGG AATTITAAGGCCGCAGCAGCTAAATTCGTGGCAGCCTGGACACTGAAAGCAGCTGCATGAGG ATCC (SEQ ID NO:106)

HCV.4312(1P) (SEQ ID NO:107)

MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVK YLLPRRGPRLNTLCGFADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFP DLGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRRNGYLVAYQATVAAALLFLLLADALIFCHS KKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFKKAAAVLVGGVLAA AFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFANAAAKFVAAWTLKAAA*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGCTCCAGAGGAAGGCTGGGCGTGAGAGCCACCCGGAAGAAGGCTGCCGCTAAAAC AAGCGAGCGCTCCCAGGCCCAGGAACCTGCCTGGATGCTCTTTCAGCATCTTTAATGACCTCAT GGGGTACATTCCACTGGTGAAGTATCTGCTCCCAGACGGGGCCCTCGCCTGAACACTCTCTG TGGATTTGCTGATCTGGTGGGTACAGGATGTATGTCGGCGGAGTCGAACACAGAAAACTGCT CTTCAACATCCTGGGCGGATGGGTGAAGGCTGCCGCTCTGGCCGACGGGGGATGCAGCGGCG GAGCTTACAGGCTCATTGTCTTTCCCGATCTCGGAGTCAAATTTTGGGCAAAGCACATGTGGA ATTTCATCGGGGTGGCCGGAGCCCTGGTCGCTTTTAAAAAGCAGCTCTTCACCTTCTCCCCAA GACGGAACGGATACCTCGTCGCCTACCAGGCCACTGTGGCTGCAGCTCTGCTCTTCCTGCTCC TGGCCGATGCACTCATCTTCTGCCATTCCAAGAAAAGTATCTGGTCACCAGACATGCTGACG TGCTGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGT GGAACTTTATTTCTGGAATCTTTTGGGCCAAGCACATGTGGAATTTTAAGAAAGCCGCTGCAG TCCTGGTGGCGGCGTCCTGGCAGCCGCTTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTG CCTTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGCGTGTGGATGAATCGGCTGA TCGCCTTTGCCAATGCTGCAGCTAAATTCGTGGCAGCCTGGACACTGAAAGCAGCTGCATGAG GATCC (SEQ ID NO:108)

AOSI.K (SEQ ID NO:109)

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVKFLLSLGIH LYMDDVVLGVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGA GGACACACCCTGTGGAAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTG AAGGCTGCCGCTTTCCTGCCTAGCGATTTCTTTCCTAGCGTGAAGTTCCTGCTGTCCCTGGGAA TCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCCAGGTACGTGGCTAGGCTGT TCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGGCAGG CCTTCACCTTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCCTTTGTGTGA (SEQ ID NO:110)

<u>HBV.1</u> (SEQ ID NO:111)

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVFLLSLGIHL YMDDVVLGVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFVIPIPSSWAFTP ARVTGGVFKVGNFTGLYLPSDFFPSVTLWKAGILYKNVSIPWTHKLVVDFSQFSRSAICSVVRRAL MPLYACI

HBV.2 (SEQ ID NO:113)

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIH LYMDDVVLGVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIP SSWAFKTPARVTGGVFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQ FSRNSAICSVVRRALMPLYACI

PfCTL.1 (SEQ ID NO:115)

MQVQIQSLFLLLLWVPGSRGILSVSSFLFVNAAAQTNFKSLLRNLPSENERGYKAAALLACAGLAY KKAAAAKFVAAWTLKAAAKAFMKAVCVEVNAAASFLFVEALFNATPYAGEPAPFKAAAKYKLA TSVLKAGVSENIFLKNAAAYFILVNLLIKAGLLGVVSTV

PfCTL.2 (SEQ ID NO:117)

MQVQIQSLFLLLLWVPGSRGFVEALFQEYNAAAKYLVIVFLINALACAGLAYKKFYFILVNLLKA ALFFIIFNKNAAAKFVAAWTLKAAAKFILVNLLIFHNFQDEENIGIYKLPYGRTNLKAAAVLLGGV GLVLNFLIFFDLFLVKAVLAGLLGVV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGA
GGATTCGTGGAGGCCCTGTTTCAGGAATACAACGCCGCTGCAAAGTATCTCGTCATCGTGTTC
CTGATCAATGCTCTGGCATGCGCCGGCCTCGCTTACAAAAAGTTTTACTTCATTCTGGTCAACC
TGCTCAAGGCCGCTCTGTTCTTTATCATTTTCAATAAAAACGCCGCAGCTAAGTTTGTGGCCGC
ATGGACCCTGAAGGCCGCTGCAAAATTCATCCTCGTGAATCTGCTCATTTTTCACAACTTCCAA
GACGAGGAAAATATCGGAATTTATAAGCTGCCCTACGGGAGGACAAACCTGAAAGCCGCTGC
AGTCCTGCTCGGCGGAGTGGGGCTGGTGCTCAATTTTCTGATCTTCTTTGATCTGTTCCTGGTG
AAGGCCGTCCTGGCCGGCCTGCTCGGAGTCGTGTGA
(SEQ ID NO:118)

PfCTL.3 (SEQ ID NO:119)

MQVQIQSLFLLLLWVPGSRGVFLIFFDLFLNAAAPSDGKCNLYKAAAVTCGNGIQVRKLFHIFDGD NEIKAHVLSHNSYEKNYYGKQENWYSLKKILSVFFLANAAAKFIKSLFHIFKAAALYISFYFIKAKF VAAWTLKAAAKAAAYYIPHQSSLKAAAGLIMVLSFL

PfCTL/HTL(N) (SEQ ID NO:121)

MQVQIQSLFLLLLWVPGSRGSSVFNVVNSSIGLIMVLSFLGPGPGLYISFYFILVNLLIFHINGKIIKN SEGPGPGPDSIQDSLKESRKLSGPGPGVLAGLLGVVSTVLLGGVGLVLGPGPGLPSENERGYYIPHQ SSLGPGPGQTNFKSLLRNLGVSENIFLKGPGPGFQDEENIGIYGPGPGKYLVIVFLIFFDLFLVGPGP GKFIKSLFHIFDGDNEIGPGPGKSKYKLATSVLAGLLGPGPGLPYGKTNLGPGPGRHNWVNHAVPL AMKLIGPGPGMRKLAILSVSSFLFVEALFQEYGPGPGVTCGNGIQVRGPGPGMNYYGKQENWYSL KKGPGPGPSDGKCNLYADSAWENVKNVIGPFMKAVCVEVGPGPGKILSVFFLALFFIIFNKGPGPG HVLSHNSYEKGPGPGKYKIAGGIAGGLALLACAGLAYKFVVPGAATPYAGEPAPF

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGA GGAAGTAGTGTTCAATGTTGTGAACTCATCAATTGGTCTGATCATGGTGCTGAGCTTTCTCG GGCCAGGGCCAGGATTATATATTTCTTTCTACTTCATCCTTGTCAACCTGTTAATATTCCACAT TAACGGCAAAATAATAAAGAACAGTGAAGGCCCTGGGCCTGGGCCTGACTCCAGGATT CTCTAAAAGAATCGAGGAAGCTCTCCGGACCAGGCCCTGGTGTACTCGCCGGGTTGCTGGGA GTAGTTAGCACAGTGCTGTTAGGAGGCGTCGGCCTCGTCTTAGGACCTGGACCAGGTCTGCCG TCCGAAAACGAAGGGTACTACATACCTCACCAGGGCACCTCGGCCCAGGCCCCGGACA AACCAATTTCAAATCCCTCTTGCGAAATCTAGGAGTGAGCGAGAACATATTTCTTAAAGGACC CGGTCCCGGCTTTCAGGACGAGGAGAATATAGGTATTTACGGTCCAGGACCTGGAAAATACCT AGTGATCGTATTCCTAATTTTTTTTGACCTATTTCTGGTGGGCCCAGGTCCCGGAAAGTTCATT AAATCACTCTTCCACATTTTTGACGGAGATAACGAGATAGGACCCGGTCCCGGGAAATCAAA GTACAAACTAGCCACTTCAGTGCTGGCCGGCCTTCTAGGGCCGGGCCCAGGGCTCCCCTATGG AAAGACAAATCTTGGCCCCGGTCCAGGACGGCACAACTGGGTGAATCATGCGGTTCCATTGG CCATGAAACTAATCGGGCCCGGTCCAGGCATGCGCAAACTTGCAATTCTAAGCGTAAGTTCAT TTCTGTTCGTAGAGGCACTGTTTCAAGAATATGGCCCAGGACCTGGCGTCACATGTGGGAATG GGATCCAGGTGAGAGGACCGGGACCTGGTATGAACTATTACGGTAAACAGGAAAATTGGTAC TCCCTGAAAAAGGGTCCAGGCCCCGGCCCCTCAGATGGTAAGTGCAACCTGTATGCTGACTCA GCATGGGAGAACGTAAAAAATGTAATAGGCCCATTCATGAAGGCAGTTTGTCGAAGTCGG ACCAGGCCCAGGAAAAATACTTTCTGTCTTCTTCTTCTTCTTCTTCATCATCATCTTCAACAAG GGACCAGGGCCAGGTCACGTGTTATCCCATAACTCTTATGAAAAAGGGCCAGGACCTGGGAA ATACAAAATCGCAGGAGGGATCGCCGGCGGGCTAGCGCTCCTTGCCTGCGCAGGCTTGGCTTA CAAATTCGTTGTACCAGGAGCTGCAACACCCTATGCAGGAGAACCTGCCCCATTTTGAAGATC TGC (SEQ ID NO:122)

Pf33 (SEQ ID NO:123)

MGMQVQIQSLFLLLLWVPGSRGFMKAVCVEVNVTCGNGIQVRKGLIMVLSFLNAALFHIFDGDN EIKAALLACAGLAYKKSFLFVEALFNAAPSDGKCNLYKAAQTNFKSLLRNLPSENERGYKAAGVS ENIFLKNAAAYFILVNLLIKAAAILSVSSFLFVNTPYAGEPAPFKAAAKYKLATSVLKAAVFLIFFDL FLNYYIPHQSSLKAAGLLGNVSTVGAVLLGGVGLVLNLACAGLAYKKAKFIKSLFHIFKAAFYFIL VNLLKAFLIFFDLFLVKALFFIIFNKNYYGKQENWYSLKFVEALFQEYNAAAKFVAAWTLKAAAK ILSVFFLANAVLAGLLGNVNFQDEENIGIYKAAALYISFYFIKAFILVNLLIFHNAALPYGRTNLKAA HVLSHNSYEKNAAAKYLVIVFLI

GCCGCCACCATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCC GGATCCAGAGGATTTATGAAAGCTGTCTGTGTAGAGGTGAATGTAACATGCGGTAACGGAAT TCAGGTGAGAAAGGGACTCATCATGGTACTCAGCTTTCTGAACGCAGCCCTGTTCCACATCTT TGACGGAGACAATGAAATCAAAGCCGCATTGCTCGCCTGTGCCGGACTAGCCTATAAAAAGA GTTTCCTTTTCGTTGAAGCACTATTTAACGCAGCACCCAGTGACGGTAAATGCAACCTATATA AAGCAGCTCAGACTAATTTCAAAAGCCTGTTAAGAAATCTGCCCTCAGAGAATGAAAGGGGT TACAAAGCCGCCGCGTGTCCGAGAATATTTTCCTGAAGAACGCCGCTGCTTATTTTATACTC GTGAATCTACTCATAAAGGCAGCCGCAATCCTTTCAGTGTCCAGCTTTCTGTTTATTAACACAC CATATGCGGGCGAGCCGGCTCCTTTCAAGGCTGCAGCAAAATACAAGCTTGCCACATCAGTAT TGAAAGCAGCTGTTTTTTGATATTCTTTGATCTTTTTTAAACTACATACCTCATCAGTCT AGTCTTAAAGCAGCCGGGCTACTGGGGAACGTCTCTACTGTGGGGGCCGTCTTACTTGGAGGA GTTGGCCTCGTGTTGAACCTCGCGTGCGCAGGTCTGGCCTACAAAAAAGCGAAATTCATCAAG TCTCTGTTCCACATTTTTAAAGCCGCATTCTATTTCATACTAGTGAACCTTCTCAAAGCTTTCCT GATCTTCTTCGATCTATTCCTCGTAAAAGCGCTATTCTTCATTATCTTTAACAAAAATTATTAC GGCAAGCAAGAAATTGGTACTCACTCAAGTTTGTAGAAGCTCTGTTCCAGGAATACAACGCC GCTGCTAAATTCGTTGCAGCTTGGACCCTGAAAGCAGCTGCAAAGATCCTATCGGTCTTCTTTC TCGCTAATGCCGTATTAGCAGGACTTCTAGGCAACGTGAACTTTCAAGACGAAGAGAATATAG GCATCTACAAAGCCGCAGCACTGTACATTTCATTCTACTTCATCAAGGCCTTCATACTGGTCAA CCTTCTGATATTTCATAATGCAGCACTGCCATATGGGAGAACCAACTTGAAAGCGGCCCACGT GTTGAGCCACACTCCTACGAGAAGAACGCCGCCGCGAAATATCTCGTCATTGTCTTCCTGAT TTGA (SEQ ID NO:124)

TB.1 (SEQ ID NO:125)

MQVQIQSLFLLLLWVPGSRGRMSRVTTFTVKALVLLMLPVVNLMIGTAAAVVKALVLLMLPVGA GLMTAVYLVGAAAMALLRLPVKRMFAANLGVNSLYFGGICVGRLPLVLPAVNAAAAKFVAAWT LKAAAKAAARLMIGTAAAGFVVALIPLVNAMTYAAPLFVGAAAAMALLRLPLV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGAAGG
ATGAGCAGAGTGACCACATTCACTGTCAAGGCCCTGGTGCTCCTGATGCTCCCGTCGTGAAC
CTGATGATCGGCACCGCTGCAGCCGTCGTGAAAGCTCTCGTCCTGCTCATGCTCCTGTGGGA
GCAGGGCTGATGACAGCCGTGTACCTGGTCGGCGCTGCAGCCATGGCCCTCCTGCGGCTGCCA
GTGAAGCGCATGTTTGCTGCAAATCTGGGAGTCAACTCCCTCTATTTCGGGGGCATTTGCGTG
GGAAGGCTGCCCCTCGTGCTGCTGCTGTGAATGCAGCCGCTGCCAAATTTGTCGCCGCTTGG
ACTCTGAAGGCAGCCGCTAAGGCCGCTGCAAGACTGATGATCGGGACCGCCGCTGCCGGCTT
CGTGGTCGCCCTGATTCCCCTGGTGAACGCCATGACATACGCAGCTCCTCTGTTTGTGGGAGC
CGCTGCAGCCATGGCTCTCCTGCGGCTGCCACTGGTGTGA (SEQ ID NO:126)

BCL A2 #90 (SEQ ID NO:127)

MQVQIQSLFLLLLWVPGSRGIMIGHLVGVNRLLQETELVNAKVAEIVHFLNAKVFGSLAFVNAYL SGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTRVNAAA ATVGIMIGVNAKLCPVQLWV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGAATT
ATGATCGGCCATCTGGTGGGCGTCAACAGACTGCTGCAGGAAACCGAGCTGGTGAATGCCAA
GGTGGCCGAAATTGTGCACTTTCTCAACGCAAAGGTGTTTGGTTCCCTGGCTTTTGTCAATGCC
TATCTGAGCGGCGCTAACCTCAACGTCGGAGCCGCCTACCTCCAGCTGGTCTTCGGCATCGAG
GTCAACGCTGCTGCAAAATTCGTGGCAGCTTGGACCCTCAAGGCTGCAGCAAAGGCTGCCGCC
GTCGTGCTCGGAGTGGTTCGGGATCAACTCTATGCCACCTCCCGGGACTAGGGTCAATGCT
GCCGCCGCAACAGTGGGAATCATGATTGGGGTGAATGCCAAACTGTGCCCAGTGCAACTGTG
GGTGTGA (SEQ ID NO:128)

BCL A2 #88 (SEQ ID NO:129)

MQVQIQSLFLLLLWVPGSRGVVLGVVFGINAAAAKFVAAWTLKAAAKVAEIVHFLNAYLSGANL NVGAAYLQLVFGIEVNIMIGHLVGVNRLLQETELVNAKVFGSLAFVNAKLCPVQLWVNAAAATV GIMIGVNSMPPPGTRV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGAGTC
GTGCTGGGAGTCGTCTTCGGCATTAATGCCGCCGCTGCAAAGTTCGTGGCTGCCTGGACCCTG
AAGGCCGCAGCTAAAGTGGCAGAGATCGTGCACTTTCTGAACGCCTACCTGAGCGGAGCAAA
TCTGAACGTCGGCGCTGCCTATCTGCAGCTCGTTTTGGAATTGAAGTGAACATCATGATTGG
ACATCTGGTGGGCGTGAACAGGCTGCTCCAGGAAACTGAGCTGGTCAACGCTAAAGTGTTCG
GGTCTCTCGCCTTTGTGAACGCTAAGCTCTGCCCCGTCCAACTCTGGGTCAATGCCGCAGCCG
CTACAGTGGGGATCATGATCGGCGTGAACTCCATGCCTCACCAGGGACCAGAGTGTGA
(SEO ID NO:130)

BCL A2 #63 (SEQ ID NO:131)

MQVQIQSLFLLLLWVPGSRGKLCPVQLWVNAAAATVGIMIGVNIMIGHLVGVNRLLQETELVNA KVAEIVHFLNAKVFGSLAFVNAYLSGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAA AVVLGVVFGINSMPPPGTRV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGAAAGCTCTGCCCCGTGCAACTGTGGGTCAACGCCGCCGCGCAACCGTCGGCATTATGATCGGGGTGAACATCATGATCGGACACCTGGTCGGCGTGAACAGGCTGCTGCAGGAGACAGAACTGGTCAATGCCAAGGTGGCTGAAATTGTCCATTTCCTGAATGCCAAAGTGTTCGGCTCTCTCGCTTTCGTGAACGCTTATCTGAGCGGAGCTAACCTCAACGTGGGGGCCGCATACCTCCAGCTCGTCTTTGGGATTGAGGTGAATGCCGCAGCTAAATTTGTCGCTGCCTGGACCCTGAAGGCAGCAAGGCTGCCGCAGTGGTGTTTGGAATCAATTCCATGCCTCCACCAGGCACTAGAGTGTGAGGATCC (SEQ ID NO:132)

Prostate 1 (SEQ ID NO:133)

LTFFWLDRSVKAAAVLVHPQWVLTVKAAALLQERGVAYIKAALLLSIALSVNPLVCNGVLQGVK AAIMYSAHDTTVKAAAFLTPKKLQCVNAMMNDQLMFLNAGLPSIPVHPVKAAALGTTCYVGAAI LLWQPIPVNFLRPRSLQCVKAFLTLSVTWIGVNALLYSLVHNLGAATLMSAMTNL

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGATTG
ACATTTTTTTGGCTGGATAGATCGGTTAAGGCTGCAGCCGTGCTTGTTCATCCCCAGTGGGTCT
TGACCGTAAAGGCTGCCGCGCTGCTACAAGAAAGAGGGGTCGCATACATCAAAGCTGCTCTC
CTCTTGAGTATTGCGCTAAGTGTAAACCCGCTAGTTTGTAATGGGGTGTTACAAGGTGTGAAA
GCGGCGATTATGTACAGTGCCCACGACACTACCGTAAAAGCAGCCGCTTTCCTGACCCCAAAA
AAACTCCAATGCGTGAACGCAATGATGAATGATCAGCTGATGTTTTTAAACGCTGGCTTACCT
TCTATACCGGTTCATCCAGTCAAGGCCGCGGCATTGGGTACGACGTGTTATGTTGGAGCAGCG
ATACTTCTTTGGCAGCCCATACCAGTAAATTTTTTAAGACCTAGATCCTTACAATGCGTCAAAG
CATTCCTTACACTCTCAGTAACTTGGATCGGAGTCAATGCTCTGCTATATAGCCTCGTACACAA
CTTGGGCGCGGCCACACTTATGAGTGCAATGACGAATTTAGCTAAGTTCGTGGCGGCCTGGAC
TCTAAAGGCCGCAGCA (SEQ ID NO:134)

HIV-1043 (SEQ ID NO:135)

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYR KILRQRKIDRLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQQM VHQAISPRTLNGPGPGIKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMA VFIHNFKRGPGPGSPAIFQSSMTKILEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPP GPGPGAETFYVDGAANRETKGPGPGGAVVIQDNSDIKVVPGPGPGFRKYTAFTIPSINNE

ATGGAGAGGTGTACCTGGCCTGGGTTCCAGCCCACAAAGGCATCGGGGGAGGCCCGGACC TGGGCAGAACAGATCACCAAGATCCAGAACTTCCGGGTATACTACCGGGGACCTGGTCCAG GTTGGGAGTTTGTGAACACACCACCTTAGTAAAGCTCTGGTACCAGGGCCCCGGTCCCGGAT ACCGTAAAATCCTGAGGCAAAGAAGATAGATCGCCTCATTGATGGCCCGGGCCCAGGCCAG CACCTTCTGCAGCTTACAGTGTGGGGAATTAAACAGCTGCAGGGGCCCGGGGCCCCGGGGGGGA AATTTATAAAAGGTGGATCATTCTGGGTCTGAACAAGATCGTCCGCATGTATGGCCCTGGACC CGGACAGGGCAGATGGTCCACCAAGCAATCAGCCCTCGAACCTTGAATGGACCGGGCCCAG GAATCAAGCAATTCATTAACATGTGGCAAGAAGTTGGTAAGGCTATGTACGGTCCCGGCCCTG GATGGCAGGGATAAAACAGGAGTTTGGAATCCCTTACAATCCCCAGGGTCCTGGGCCAGGT AAAACGGCAGTGCAGATGGCCGTGTTCATTCATAATTTTAAGCGGGGCCCTGGACCTGGCAGC CCAGCTATATTTCAAAGTTCGATGACCAAAATCTTGGAGCCCGGCCCAGGGCCGGGCGAAGT GAACATTGTCACAGATTCTCAGTATGCCCTCGGCATCATAGGGCCCGGACCAGGGCATTCCAA TTGGCGCGCCATGGCGTCTGACTTTAATCTACCTCCTGGGCCAGGCCCTGGCGCGGAAACTTT CTATGTGGACGCGCTGCAAACAGGGAGACTAAGGGACCCGGACCCGGCGCGCTGTAGTCA TTCAGGACAACTCAGACATCAAGGTGGTTCCCGGTCCAGGCCCCGGGTTCAGAAAGTATACCG CCTTCACTATTCCGTCCATCAACAATGAGTGA (SEQ ID NO:136)

HIV-1043 PADRE (SEQ ID NO:137)

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYR KILRQRKIDRLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGM VHQAISPRTLNGPGPGIKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMA VFIHNFKRGPGPGSPAIFQSSMTKILEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPP GPGPGAETFYVDGAANRETKGPGPGGAVVIQDNSDIKVVPGPGPGFRKYTAFTIPSINNEGPGPGA KFVAAWTLKAAA

ATGGAGAAGGTGTACCTGGCCTGGGTTCCAGCCCACAAAGGCATCGGGGGAGGGCCCGGACC TGGGCAGAACAGATCACCAAGATCCAGAACTTCCGGGTATACTACCGGGGACCTGGTCCAG GTTGGGAGTTTGTGAACACACCACCCTTAGTAAAGCTCTGGTACCAGGGCCCCGGTCCCGGAT ACCGTAAAATCCTGAGGCAAAGAAAGATAGATCGCCTCATTGATGGCCCGGGCCCAGGCCAG AATTTATAAAAGGTGGATCATTCTGGGTCTGAACAAGATCGTCCGCATGTATGGCCCTGGACC CGGACAGGGCAGATGGTCCACCAAGCAATCAGCCCTCGAACCTTGAATGGACCGGGCCCAG GAATCAAGCAATTCATTAACATGTGGCAAGAAGTTGGTAAGGCTATGTACGGTCCCGGCCCTG GATGGCAGGGATAAAACAGGAGTTTGGAATCCCTTACAATCCCCAGGGTCCTGGGCCAGGT AAAACGCAGTGCAGATGGCCGTGTTCATTCATAATTTTAAGCGGGGCCCTGGACCTGGCAGC CCAGCTATATTTCAAAGTTCGATGACCAAAATCTTGGAGCCCGGCCCAGGGCCGGGCGAAGT GAACATTGTCACAGATTCTCAGTATGCCCTCGGCATCATAGGGCCCGGACCAGGGCATTCCAA TTGGCGCCCATGGCGTCTGACTTTAATCTACCTCCTGGGCCAGGCCCTGGCGCGGAAACTTT CTATGTGGACGCGCTGCAAACAGGGAGCTAAGGGACCCGGACCCGGCGCGCTGTAGTCA TTCAGGACAACTCAGACATCAAGGTGGTTCCCGGTCCAGGCCCCGGGTTCAGAAAGTATACCG CCTTCACTATTCCGTCCATCAACAATGAGGGCCCCGGCCCAGGTGCCAAGTTCGTGGCTGCCT GGACCCTGAAGGCTGCCGCTTGA (SEQ ID NO:138)

HIV 75mer (SEQ ID NO:139)

EKVYLAWVPAHKGIGGPGPGQGQMVHQAISPRTLNGPGPGSPAIFQSSMTKILEPGPGPGFRKYTA FTIPSINNE

GAGAAGGTGTACCTGGCCTGGGTGCCTGCCCACAAGGGAATCGGAGGACCTGGCCCTGGACA GGGACAGATGGTGCACCAGGCCATCAGCCCTAGGACCCTGAACGGACCTGGACCTGGAAGCC CTGCCATCTTCCAGAGCAGCATGACCAAGATCCTGGAGCCCGGACCTGGACCTGGATTCAGGA AGTACACCGCCTTCACCATCCCCAGCATCAACAACGAGTGA (SEQ ID NO:140)

PfHTL (SEQ ID NO:141)

MQVQIQSLFLLLLWVPGSRGRHNWVNHAVPLAMKLIGPGPGKCNLYADSAWENVKNGPGPGKS KYKLATSVLAGLLGPGPGQTNFKSLLRNLGVSEGPGPGSSVFNVVNSSIGLIMGPGPGVKNVIGPF MKAVCVEGPGPGMNYYGKQENWYSLKKGPGPGGLAYKFVVPGAATPYGPGPGPDSIQDSLKESR KLNGPGPGLLIFHINGKIIKNSEGPGPGAGLLGNVSTVLLGGVGPGPGKYKIAGGIAGGLALLGPGP GMRKLAILSVSSFLFV

Protein	Sequence(SEQ ID NOS:143-3	40) Restriction
HIV gag 386	VLAEAMSQV	HLA-A2
HIV gag 271	MTNNPPIPV	HLA-A2
HIV pol 774	MASDFNLPPV	HLA-A2
HIV pol 448	KLVGKLNWA	HLA-A2
HIV pol 163	LVGPTPVNI	HLA-A2
HIV pol 498	ILKEPVHGV	HLA-A2
HIV pol 879	KAACWWAGI	HLA-A2
HIV pol 132	KMIGGIGGFI	HLA-A2
HIV pol 772	RAMASDFNL	HLA-A2
HIV pol 183	TLNFPISPI	HLA-A2
HIV env 134	KLTPLCVTL	HLA-A2
HIV env 651	LLQLTVWGI	HLA-A2
HIV env 163	SLLNATDIAV	HLA-A2
HIV nef 221	LTFGWCFKL	HLA-A2
HIV vpr 59	AIIRILQQL	HLA-A2
HIV vpr 62	RILQQLLFI	HLA-A2
HIV pol 929	QMAVFIHNFK	HLA-A3
HIV pol 722	KVYLAWVPAHK	HLA-A3
HIV pol 971	KIQNFRVYYR	HLA-A3
HIV pol 347	AIFQSSMTK	HLA-A3
HIV pol 98	VTIKIGGQLK	HLA-A3
HIV env 61	TTLFCASDAK	HLA-A3
HIV env 47	VTVYYGVPVWK	HLA-A3
HIV nef 100	QVPLRPMTYK	HLA-A3
HIV vif 7	VMIVWQVDR	HLA-A3
HIV gag 162	QMVHQAISPR	HLA-A3
HIV gag 545	YPLASLRSLF	HLA-B7
HIV gag 237	HPVHAGPIA	HLA-B7
HIV pol 186	FPISPIETV	HLA-B7
HIV pol 893	IPYNPQSQGVV	HLA-B7
HIV env 259	IPIHYCAPA	HLA-B7
HIV env 250	CPKVSFEPI	HLA-B7
HIV nef 94	FPVRPQVPL	HLA-B7
HIV rev 75	VPLQLPPL	HLA-B7
HIV pol 684	EVNIVTDSQY	HLA-A1
HIV gag 317	FRDYVDRFY	HLA-A1
HIV pol 368	VIYQYMDDLY	HLA-A1
HIV pol 295	VTVLDVGDAY	HLA-A1
HIV pol 533	IYQEPFKNL	HLA-A24
HIV pol 244	PYNTPVFAI	HLA-A24
HIV pol 530	TYQIYQEPF	HLA-A24
HIV pol 597	YWQATWIPEW	HLA-A24
HIV env 681	IWGCSGKLI	HLA-A24
HIV env 671	RYLKDQQLL	HLA-A24

Protein	Sequence	Restriction
HIV env 55	VWKEATTTLF	HLA-A24
HIV vpr 46	IYETYGDTW	HLA-A24
HIV vpr 14	PYNEWTLEL	HLA-A24
HIV gag 298	KRWIILGLNKIVRMY	HLA-DR
HIV pol 596	WEFVNTPPLVKLWYQ	HLA-DR
HIV pol 956	QKQITKIQNFRVYYR	HLA-DR
HIV pol 712	KVYLAWVPAHKGIGG	HLA-DR
HIV gag 294	GEIYKRWIILGLNKI	HLA-DR
HIV pol 711	EKVYLAWVPAHKGIG	HLA-DR
HIV env 729	QHLLQLTVWGIKQLQ	HLA-DR
HIV gag 171	QGQMVHQAISPRTLN	HLA-DR
HIV pol 335	SPAIFQSSMTKILEP	HLA-DR
HIV env 566	IKQFINMWQEVGKAMY	HLA-DR
HIV pol 303	FRKYTAFTIPSINNE	HLA-DR
HIV pol 758	HSNWRAMASDFNLPP	HLA-DR
HIV pol 915	KTAVQMAVFIHNFKR	HLA-DR
HIV vpu 31	YRKILRQRKIDRLID	HLA-DR3
HIV pol 874	WAGIKQEFGIPYNPQ	HLA-DR3
HIV pol 674	EVNIVTDSQYALGII	HLA-DR3
HIV pol 619	AETFYVDGAANRETK	HLA-DR3
HIV pol 989	GAVVIQDNSDIKVVP	HLA-DR3
HCV NS4 1812	LLFNILGGWV	HLA-A2
HCV NS1/E2 728	FLLLADARV	HLA-A2
HCV NS4 1590	YLVAYQATV	HLA-A2
HCV NS5 2611	RLIVFPDLGV	HLA-A2
HCV CORE 132	DLMGYIPLV	HLA-A2
HCV NS4 1920	WMNRLIAFA	HLA-A2
HCV NS4 1666	VLVGGVLAA	HLA-A2
HCV NS4 1769	HMWNFISGI	HLA-A2
HCV NS4-1851	ILAGYGAGV	HLA-A2
HCV CORE 35	YLLPRRGPRL	HLA-A2
HCV NS1/E2 726	LLFLLLADA	HLA-A2
HCV LORF 1131	YLVTRHADV	HLA-A2
HCV CORE 51	KTSERSQPR	HLA-A3
HCV CORE 43	RLGVRATRK	HLA-A3
HCV ENV1 290	QLFTFSPRR	HLA-A3
HCV NS1/E2 632	RMYVGGVEHR	HLA-A3
HCV NS3 1396	LIFCHSKKK	HLA-A3
HCV NS4 1863	GVAGALVAFK	HLA-A3
HCV NS4 1864	VAGALVAFK	HLA-A3
HCV NS3 1262	LGFGAYMSK	HLA-A3
HCV Core 169	LPGCSFSIF	HLA-B7
HCV NS5 2922	LSAFSLHSY	HLA-A1
HCV NS3 1128	CTCGSSDLY	HLA-A1
HCV NS5 2180	LTDPSHITA	HLA-A1

Protein	Sequence	Restriction
HCV Core 126	LTCGFADLMGY	HLA-A1
HCV NS3 1305	LADGGCSGGAY	HLA-A1
HCV NS4 1765	FWAKHMWNF	HLA-A24
HCV NS5 2875	RMILMTHFF	HLA-A24
HCV NS5 2639	VMGSSYGF	HLA-A24
HCV NS4 1765	FWAKHMWNFI	HLA-A24
P. falciparum SSP2-230	FMKAVCVEV	HLA-A2
P. falciparum EXP1-83	GLLGVVSTV	HLA-A2
P. falciparum CSP-7	ILSVSSFLFV	HLA-A2
P. falciparum LSA1-94	QTNFKSLLR	HLA-A3
P. falciparum LSA1-105	GVSENIFLK	HLA-A3
P. falciparum SSP2-522	LLACAGLAYK	HLA-A3
P. falciparum SSP2-539	TPYAGEPAPF	HLA-B7
P. falciparum LSA1-1663	LPSENERGY	HLA-A1
P. falciparum EXP1-73	KYKLATSVL	HLA-A24
P. falciparum CSP-12	SFLFVEALF	HLA-A24
P. falciparum LSA1-10	YFILVNLLI	HLA-A24
P. falciparum SSP2-14	FLIFFDLFLV	HLA-A2
P. falciparum EXP1-80	VLAGLLGVV	HLA-A2
P. falciparum EXP1-91	VLLGGVGLVL	HLA-A2
P. falciparum SSP2-523	LACAGLAYK	HLA-A3
P. falciparum EXP1-10	ALFFIIFNK	HLA-A3
P. falciparum LSA1-11	FILVNLLIFH	HLA-A3
P. falciparum SSP2-126	LPYGRTNL	HLA-B7
P. falciparum CSP-15	FVEALFQEY	HLA-A1
P. falciparum LSA1-1794	FQDEENIGIY	HLA-A1
P. falciparum LSA1-9	FYFILVNLL	HLA-A24
P. falciparum SSP2-8	KYLVIVFLI	HLA-A24
P. falciparum CSP-394	GLIMVLSFL	HLA-A2
P. falciparum EXP1-2	KILSVFFLA	HLA-A2
P. falciparum CSP-344	VTCGNGIQVR	HLA-A3
P. falciparum LSA1-59	HVLSHNSYEK	HLA-A3
P. falciparum SSP2-207	PSDGKCNLY	HLA-A1
P. falciparum LSA1-1671	YYIPHQSSL	HLA-A24
P. falciparum LSA1-1876	KFIKSLFHIF	HLA-A24
P. falciparum SSP2-13	VFLIFFDLFL	HLA-A24
P. falciparum LSA1-1881	LFHIFDGDNEI	HLA-A24
P. falciparum CSP-55	YYGKQENWYSL	HLA-A24
P. falciparum LSA1-5	LYISFYFI	HLA-A24
P. falciparum CSP-2	MRKLAILSVSSFLFV	HLA-DR
P. falciparum CSP-53	MNYYGKQENWYSLKK	HLA-DR
P. falciparum CSP-375	SSVFNVVNSSIGLIM	HLA-DR
P. falciparum SSP2-61	RHNWVNHAVPLAMKLI	HLA-DR
P. falciparum SSP2-165	PDSIQDSLKESRKLN	HLA-DR3
P. falciparum SSP2-211	KCNLYADSAWENVKN	HLA-DR3

Protein	Sequence	Restriction
P. falciparum SSP2-223	VKNVIGPFMKAVCVE	HLA-DR
P. falciparum SSP2-509	KYKIAGGIAGGLALL	HLA-DR
P. falciparum SSP2-527	GLAYKFVVPGAATPY	HLA-DR
P. falciparum EXP1-71	KSKYKLATSVLAGLL	HLA-DR
P. falciparum EXP1-82	AGLLGNVSTVLLGGV	HLA-DR
P. falciparum LSA1-16	LLIFHINGKIIKNSE	HLA-DR
P. falciparum LSA1-94	QTNFKSLLRNLGVSE	HLA-DR
HBV core 18	FLPSDFFPSV	HLA-A2
HBV env 183	FLLTRILTI	HLA-A2
HBV env 335	WLSLLVPFV	HLA-A2
HBV pol 455	GLSRYVARL	HLA-A2
HBV pol 538	YMDDVVLGV	HLA-A2/A1
HBV pol 773	ILRGTSFVYV	HLA-A2
HBV pol 562	FLLSLGIHL	HLA-A2
HBV pol 642	ALMPLYACI	HLA-A2
HBV env 338	GLSPTVWLSV	HLA-A2
HBV core 141	STLPETTVVRR	HLA-A3
HBV pol 149	HTLWKAGILYK	HLA-A3/A1
HBV pol 150	TLWKAGILYK	HLA-A3
HBV pol 388	LVVDFSQFSR	HLA-A3
HBV pol 47	NVSIPWTHK	HLA-A3
HBV pol 531	SAICSVVRR	HLA-A3
HBV pol 629	KVGNFTGLY	HLA-A3/A1
HBV pol 665	QAFTFSPTYK	HLA-A3
HBV core 19	LPSDFFPSV	HLA-B7
HBV env 313	IPIPSSWAF	HLA-B7
HBV pol 354	TPARVTGGVF	HLA-B7
TB	RMSRVTTFTV	HLA-A2
TB	ALVLLMLPVV	HLA-A2
TB	LMIGTAAAVV	HLA-A2
TB	ALVLLMLPV	HLA-A2
TB	GLMTAVYLV	HLA-A2
TB	MALLRLPV	HLA-A2
TB	RMFAANLGV	HLA-A2
TB	SLYFGGICV	HLA-A2
TB	RLPLVLPAV	HLA-A2
TB	RLMIGTAAA	HLA-A2
TB	FVVALIPLV	HLA-A2
TB	MTYAAPLFV	HLA-A2
ТВ	AMALLRLPLV	HLA-A2
p53 139	KLCPVQLWV	HLA-A2
CEA 687	ATVGIMIGV	HLA-A2
CEA 691	IMIGHLVGV	HLA-A2
Her2/neu 689	RLLQETELV	HLA-A2
MAGE3 112	KVAEIVHFL	HLA-A2

Protein	Sequence	Restriction
Her2/neu 369	KVFGSLAFV	HLA-A2
CEA 605	YLSGANLNV	HLA-A2
MAGE2 157	YLQLVFGIEV	HLA-A2
Her2/neu 665	VVLGVVFGI	HLA-A2
p53 149	SMPPPGTRV	HLA-A2
PAP.21.T2	LTFFWLDRSV	HLA-A2
PAP.112	TLMSAMTNL	HLA-A2
PAP.284	IMYSAHDTTV	HLA-A2
PSM.288.V10	GLPSIPVHPV	HLA-A2
PSM.441	LLQERGVAYI	HLA-A2
PSM.469L2	LLYSLVHNL	HLA-A2
PSM.663	MMNDQLMFL	HLA-A2
PSA.3.V11	FLTLSVTWIGV	HLA-A2
PSA.143.V8	ALGTTCYV	HLA-A2
PSA.161	FLTPKKLQCV	HLA-A2
HuK2.4.L2	LLLSIALSV	HLA-A2
HuK2.53.V11	VLVHPQWVLTV	HLA-A2
HuK2.165	FLRPRSLQCV	HLA-A2
HuK2.216.V11	PLVCNGVLQGV	HLA-A2