$\frac{dx}{dz} = \left[\sin^{-1} \frac{x}{z} \right] = \left(\sin^{-1} \frac{x}{z} \right)$ $= \frac{\pi}{3} + \frac{\pi}{6}$	c) d e - 1/2 x = - \frac{1}{\infty}	Saint Ignatius' College $\frac{3}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$ Question 1 a) - $\left -x-3\right > 5$ or $x-3 < -5$ $x > 8$ or $x-3 < -5$ b) $\cos^{-1}\left(-\frac{1}{4E}\right) = \pi - \cos^{-1}\left(\frac{1}{4E}\right)$ $= \pi - \frac{\pi}{3\pi}$
Easier to use graph to solve = > = than t	$\frac{coefficient is \frac{13}{G} = 715.}{f(i,i)}$	e) $\left(\infty + \frac{13}{\pm}\right)$ $\frac{13}{5}C_{r}\left(\infty r\right)\left(\infty - 1\right)^{13-r}$ $\frac{13}{5}C_{r}\left(\infty r\right)\left(\infty r - 13\right)$ $\frac{13}{5}C_{r}\left(\infty r\right)\left(\infty r - 13\right)$ Since we are finding the coefficient of $\infty 5$, let $\frac{2r-13}{5}$

\$ \$ \$	· F = 2750 () + Fo is a solution	RHS= -k (F-F0) = -k (275e *(m=1) + F0 -F0) = -k. 275e *(m=1)	(1) LHS= dF = d (275e +Fo)	1) dF = -k (F-F0) & F-275e +F	is also true for n= 2 and dense for h=3 and so on for all n E I .	" result holds when $m = k+1$ " since the result is true for $n=1$, it	W + + O - I	100	10 Prove that 5 k+1-1 = 4N	Assume 5 = 1 = 4M, MEI Now prove that the result holds when) When $n=1$, $S^{n}-1=4$ which is diving by 4: statement the when $n-1$	BUESTIONS
to dit , - R(T-+0)		to Fo - Fo) Porty doze. You get to the form		# #	Linguitar n=3	, u=1, y	but $5 + 1$ was integer = $20m + 4 = 4(5m + 1)$	5.5k-1 +5(5k-1)	~	oldo when you do not prove that n=k+1	ricke)	Comments
		2.978048	(ii) P (at least one kailden) = 1 - P (more has slitter)	(i) P (ccc) = .723 - 0.373248 /	(c) P(no children) = .28 P(children) = .72	$k = -l_{m}(\frac{5\pi}{5\pi}) + 199 = 0.02013735^{V}$	<u>a</u> _2	27.C	:. the endurance limit is 75	(ii) F = 275 e -k(n-1) + 75 lum (275 e + 75) = 0+75 = 75	μ^{0}	(ii) F= 275 2 -k(n-1) + Fo / F=350 -kon n=1
		[2] 98%	if you add there up departely don't for	[1] 37%	be careful of the	(F)		mostly well do	5		([1]	3 SD = 27S + Fa

$\begin{bmatrix} 1_{1} & (x+1) & - 1_{1} & (x+2) \end{bmatrix}_{0}^{1}$ $\begin{bmatrix} 1_{2} & (x+1) & - 1_{2} & (x+2) \end{bmatrix}_{0}^{1}$ $\begin{bmatrix} 1_{3} & (x+1) & - 1_{2} & (x+2) \end{bmatrix}_{0}^{1}$ $\begin{bmatrix} 1_{3} & (x+1) & - 1_{2} & (x+2) \end{bmatrix}_{0}^{1}$	$= \frac{(x+i)(x+2)}{(x+i)(x+2)}$ $= \frac{(x+i)(x+2)}{(x+i)(x+2)}$ $= \frac{1}{(x+i)(x+2)}$	(1) $\frac{(2+x)(1+x)}{(1+x)} = \frac{1}{x+x} = 8H_{1}$ $\frac{2+x}{1+x} = \frac{1+x}{1+x} = 8H_{1}$ $\frac{2+x}{1+x} = \frac{(2+x)(+x)}{1+x} = \frac{1+x}{1+x} = \frac{1+x}{$	Question 4 (12 marks) $\cos x = \frac{\sqrt{3}}{2}$ $x = \frac{\pi}{6} (acode)$ $x = 20\pi \pm \frac{\pi}{6}$
egral.	most students were able to find The Integral as a log function	part (i) was generally	Most students and not know the general solution formula for costa
Midpoint of pa = overage of $x = \frac{x_0 + \sqrt{x_1^2 - 4y_0} + x_0 - \sqrt{x_1^2 - 4y_0}}{2}$ Sub into ① to find y.	(iii) Use The quadratic formula (iii) So the solve (A) $x = \frac{2x_0 \pm \sqrt{4x_0^2 - 4(4y_0)}}{2}$ $= \frac{2x_0 \pm 2\sqrt{x_0^2 - 4y_0}}{2}$ $= \frac{2x_0 \pm 2\sqrt{x_0^2 - 4y_0}}{2}$ Therefore $= \frac{2x_0 \pm \sqrt{x_0^2 - 4y_0}}{2}$ Therefore	$xx_{0} = 2\left(\frac{x^{2}}{4} + y_{0}\right)$ $xx_{0} = 2\left(\frac{x^{2}}{4} + y_{0}\right)$ $xx_{0} = \frac{x}{2} + 2y_{0}$ $2xx_{0} = x^{2} + 4y_{0}$ $x^{2} - 2x_{0}x + 4y_{0} = 0 - (A)$	$\frac{1}{10} \frac{1}{10} \frac$
•	limit Some others used The sum of roots method sum of roots roots = 2xo from therape = 2xo		Very few students could remember. This formula Not knowing The farmula made par

(ii) $f(x) = e^{-x^2}$ (ii) Many students could not differentiate e^{-x^2} (iv) when $f(x) = 0$ (iv) $f'(x) = -2x - e^{-x}$ (iv) $f''(x) = -2x - e^{-x}$ (iv) $f''(x) = -2x - e^{-x}$ (iv) $f''(x) = -2x - 2x = e^{-x}$	infl. pt ray occur when $f'(x) = 0$ find T_{LL} $y = co-ord$ ie $-2e^{-x}(1-2x^2) = 0$ (2) found $x = 0$ part is $x = -2e^{-x}(1-2x^2) = 0$ (2) found $x = 0$ part is $x = -2e^{-x}(1-2x^2) = 0$ for $x = 1$ found $x = 0$ part is $x = -2e^{-x}(1-2x^2) = 0$ for $x = -2e^{-x}(1-2x$
It is important under examination conditions to realise that parts (iii) and (iv) of this question could have been attempted independently of parts (i) and (ii) Toe MARKS	in generally well done it is not good enough to show that f(i) = f(-i)ete if for only one value of x ony walve of x ony value of x ony value of x
(i) $T (x_0, y_0)$ moves on $\frac{1}{10} = x_0 - 1$ (i) $\frac{1}{10} = x_0 - 1$ (i) $\frac{1}{10} = x_0 - 1$ (i) $\frac{1}{10} = x_0 - \frac{1}{10}$ (i) $\frac{1}{10} = x_0 - \frac{1}{10}$ (ii) $\frac{1}{10} = \frac{1}{10} = x_0 - \frac{1}{10}$ (ii) $\frac{1}{10} = \frac{1}{10} = x_0 - \frac{1}{10}$ (iii) $\frac{1}{10} = \frac{1}{10} = x_0 - \frac{1}{10}$ (iv) $\frac{1}{10} = x_0 - \frac{1}{10}$ (iii) $\frac{1}{10} = \frac{1}{10} = x_0 - \frac{1}{10}$ (iv) $\frac{1}{10} = x_0 - \frac{1}{10} = x_0 - \frac{1}{10}$ (iv) $\frac{1}{10} = x_0 - \frac{1}{10} = x_0 - \frac{1}{10}$ (iv) $\frac{1}{10} = x_0 - \frac{1}{10} = x_0 - \frac{1}{10}$ (iv) $\frac{1}{10} = x_0 - \frac{1}{10} = x_0 - \frac{1}{1$	marks

,

LHS = $(x+1)^{n} (x+1)^{n} = ((x+1)^{n} (x+1)^{n} (x+1)$	
$y = \frac{100}{\lambda^{2} + 100}$ $u_{k} u_{r} y = \frac{1}{4} \frac{1}{4} = \frac{100}{\lambda^{2} + 100} = 400$ $\int u_{k} u_{r} y = \frac{1}{4} \frac{1}{\lambda^{2} + 100} = 400$ $\int u_{k} u_{r} y = \frac{1}{4} \frac{1}{\lambda^{2} + 100} = 400$ $\int u_{k} u_{r} y = \frac{1}{4} \frac{1}{\lambda^{2} + 100} = 400$ $\int u_{k} u_{r} y = \frac{1}{4} \frac{1}{\lambda^{2} + 100} = 400$ $\int u_{k} u_{r} y = \frac{1}$	

