AMATH 353

Homework #8

Show your work to earn credit! Due on Wednesday, May 24, 2023

1. (Knobel, 13.1)

Show that the principle of superposition does not apply to solutions of the boundary value problem

$$u_{tt} \; = \; c^2 \, u_{xx} \, , \; \; 0 < x < L \, , \quad t > 0 \, , \label{eq:utt}$$

$$u(0,t) = 1$$
, $u(L,t) = 0$.

2. (Knobel, 13.3)

Find the solutions of

$$u_{tt} = u_{xx}, 0 \le x \le 1, t > 0,$$

$$u(0,t) = 0, u(1,t) = 0$$

that satisfy the following initial conditions:

- (a) $u(x,0) = 10 \sin \pi x + 3 \sin 4\pi x$, $u_t(x,0) = 0$,
- (b) $u(x, 0) = \sin 2\pi x$, $u_t(x, 0) = -3\sin 2\pi x$.

3. (from Knobel, 14.2)

Find the Fourier sine expansion for the function

$$f(x) = x(1-x),$$

on the interval [0, 1]. Be sure to show your work for full credit.

4. (Knobel, 14.6)

Consider the displacement of a vibrating string with fixed ends given by

$$u_{tt} = u_{xx}, \ 0 < x < 1, \ t > 0,$$

$$u(0,t) = 0, u(1,t) = 0.$$

Use the Fourier sine series found in exercise 3 (above) to write down the solution of the vibrating string with the following initial conditions

(a)
$$u(x,0) = x(1-x), u_t(x,0) = 0,$$

(b)
$$u(x,0) = 0$$
, $u_t(x,0) = x(1-x)$.