

Scaling up: Multi-GPU Parallelism for Al Models

Spiros Millas

Research Engineer CaSToRC, CyI

Motivations

Why should we train on multiple GPUs

- CPU computational performance has not increased substantially during the last decade
- > GPU performance has been exponentially increasing
- ➤ Larger and complex models are more accurate, but require much more computational power

When?

➤ Model is too large and Complex:

If your model doesn't fit into the memory of a single GPU or runs extremely slowly on just one, scaling out to multiple GPUs can help.

Dataset Scale:

Very large datasets benefit from more GPUs, as you can process more samples in parallel and speed up training convergence.

Types of Parallelism

Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Spiros Millas, CaSToRC

Data Parallelism

Data Parallelism

Combine the gradients across all workers GPU **GPU** $\rightarrow \mathcal{L}(\hat{y}, y)$ $\mathcal{L}(\hat{y}, y)$ CPU/GPU M[3] $W_{[3]}$ **M**[3] **W**[3] $\partial \mathcal{L}$ $\partial \mathcal{L}$ $= W^{[3]} - \alpha *$ $= W^{[3]} - \alpha *$ <u>∂W</u>[3] $W^{[2]}$ $W^{[2]}$ W[2] W[2] $=W^{[2]}-\alpha*\frac{\partial\mathcal{L}}{\partial W^{[2]}}$ $\partial \mathcal{L}$ $=W^{[2]}-\alpha*\frac{\partial}{\partial W^{[2]}}$ $W^{[1]}$ $W^{[1]}$ $\partial \mathcal{L}$ $=W^{[1]}-\alpha*\frac{\partial \mathcal{L}}{\partial W^{[1]}}$ $\partial \mathcal{L}$ W[1] $= W^{[1]} -$ W[1] $\alpha * \frac{1}{\partial W^{[1]}}$ The combined gradient calculated across all CPU/GPU CPU/GPU workers is used in the () optimization step to update the weights OVIDIA Worker 2 Worker 1

Spiros Millas, CaSToRC

Introduction into Data Distributed Parallel (DDP)

Distributed Data Parallel (DDP) in PyTorch implements data parallelism at the module level, running across multiple machines. Each process should has a single DDP instance, and DDP uses collective communications from the package to synchronize gradients and buffers.

Introduction into Data Distributed Parallel (DDP)

Introduction into Data Distributed Parallel (DDP)

```
if name == ' main ':
    torch.multiprocessing.spawn(worker, nprocs=args.num gpus, args=(args,))
def worker(local rank, args):
    global rank = args.node id * args.num gpus + local rank
   dist.init process group(
   backend='nccl',
   world size=WORLD SIZE,
   rank=global rank
   download = True if local rank == 0 else False
   if local rank == 0:
       train set = torchvision.datasets.FashionMNIST("./data", download=download, transform=
                                                   transforms.Compose([transforms.ToTensor()]))
       test set = torchvision.datasets.FashionMNIST("./data", download=download, train=False, transform=
                                                  transforms.Compose([transforms.ToTensor()]))
   dist.barrier()
   if local rank != 0:
       train set = torchvision.datasets.FashionMNIST("./data", download=download, transform=
                                                   transforms.Compose([transforms.ToTensor()]))
       test set = torchvision.datasets.FashionMNIST("./data", download=download, train=False, transform=
                                                  transforms.Compose([transforms.ToTensor()]))
   device = torch.device("cuda:" + str(local rank) if torch.cuda.is available() else "cpu")
  model = model.to(device)
  model = torch.nn.SyncBatchNorm.convert sync batchnorm(WideResNet(num classes)).to(device)
   model = nn.parallel.DistributedDataParallel(model, device ids=[local rank])
```



```
torch.distributed.all_reduce(v_accuracy, op=dist.ReduceOp.AVG)
torch.distributed.all_reduce(v_loss, op=dist.ReduceOp.AVG)
val accuracy.append(v accuracy)
```


Profiling Multi-GPU Applications

- ➤ Importance of profiling in Multi-GPU Training:
 - > Performance Optimization: Ensures efficient utilization of multiple GPUs
 - Bottleneck Identification: Detects communication overhead, memory constraints
 - Resource management: Helps balance workloads and minimizing idle times across GPUs

Key Profiling metrics for multi GPU

- GPU Utilization
 - Ensure GPU memory is neither overloaded or underused
 - > Per GPU utilization should be roughly equal
- > Communication / Synchronization
 - GPU to GPU communication overhead
 - > Time spent waiting for all GPUs to reach the same point in training steps
 - > Time it takes to transfer data.
- Load imbalances
 - ➤ One or more GPUs performing slower or handling more data than others, creating "stragglers" that delay the entire process.
 - Results in uneven work distribution, reduced efficiency, and suboptimal scaling performance.

Computation/Communication

Computation/Communication Overview ②

Computation/Communication

Computation/Communication Overview ②

Synchronization/Data Transfer

Synchronizing/Communication Overview ①


```
def setup slurm distributed():
    """Initialize distributed training for SLURM environment"""
    local_rank = int(os.environ["SLURM_LOCALID"])
    global_rank = int(os.environ["SLURM_PROCID"])
   world size = int(os.environ["WORLD SIZE"])
    dist.init process group(
        backend="nccl",
        init_method="env://",
        world_size=world_size,
        rank=global_rank
    torch.cuda.set device(local rank)
    return local rank, global rank, world size
```



```
class EnhancedEfficientNet(nn.Module):
    def init (self, num classes=100):
        super(). init ()
        self.efficientnet = efficientnet v2 l(pretrained=False)
        self.classifier = nn.Sequential(...
        self.efficientnet.classifier = self.classifier
        self.aux classifier = nn.Sequential(...
    def forward(self, x):
        features = self.efficientnet.features(x)
        main out = self.efficientnet.classifier(
            self.efficientnet.avgpool(features).flatten(1)
        aux_out = self.aux_classifier(features)
        return main out + 0.3 * aux out
model = EnhancedEfficientNet(num classes=args.num classes).to(device)
model = DDP(model, device ids=[local rank], output device=local rank)
```



```
def setup data(batch size, rank, world size):
   if rank == 0:
       trainset = torchvision.datasets.CIFAR100(
           root='./data',
           train=True,
           download=True,
           transform=transform
   else:
       trainset = torchvision.datasets.CIFAR100(
           root='./data',
           train=True,
           download=False,
           transform=transform
   dist.barrier()
   sampler = DistributedSampler(trainset, num_replicas=world_size, rank=rank, shuffle=True)
   trainloader = DataLoader(
       trainset,
       batch size=batch size,
       shuffle=False,
       num workers=4,
       pin memory=True,
       sampler=sampler
   return trainloader
```



```
profiler = torch.profiler.profile(
    schedule=torch.profiler.schedule(
        wait=args.wait,
        warmup=args.warmup,
        active=args.active_steps,
        repeat=1
    ),
    on_trace_ready=torch.profiler.tensorboard_trace_handler(log_dir),
    record_shapes=True,
    profile_memory=True,
    with_stack=True,
    with_modules=True
)
```