WALTER RUBIO

MAGDALENA VILLAN

MARCOS SAYONI

Objetivo

- Estimar un modelo de regresión lineal que realice predicciones para el precio por metro cuadrado.
- Usar cross-validation para validar el modelo. Deberá prestar cierta atención a la estructura espacial de los precios.
- Aplicar regularización a modelos lineales pueden hacerlo para obtener un puntaje adicional.
- Seleccionar un portafolio (de manera aleatoria) de 100 propiedades.
 Determinar cuáles de las propiedades se encuentran sobrevaluados o subvaluados y en qué magnitud.
- Teniendo en cuenta que podría comprar y vender propiedades al precio de mercado, omitamos costos de transacción, con un capital inicial igual al valor de mercado de las propiedades en su portafolio. ¿Cuál es el mejor portafolio de propiedades que podría comprar?

NORMALIZAMOS

X con Min-Max

Normalizamos los X con MinMax o Standard Scaler

```
: from sklearn.preprocessing import MinMaxScaler
   from sklearn.preprocessing import StandardScaler
   from sklearn, preprocessing import scale
   #Uso MinMax o StandardScaler
   #minmaxscaler model = StandardScaler()
   minmaxscaler model = MinMaxScaler()
   # Columnas a normalizar
   columnas= [CAMPO SUPERFICIE]
   # Si calcula superficie por ambiente y uso ROOMS
   if CALCULAR SUPERFICIE POR AMBIENTE & UTILIZAR ROOMS:
       # También normalizar rooms por m2
       columnas.append('m2 por habitacion')
   elif UTILIZAR ROOMS & (~CALCULAR SUPERFICIE POR AMBIENTE):
       columnas.append('habitaciones')
   # Aplico scaler a las columnas elegidas
   modelo df[columnas] = minmaxscaler model.fit transform(modelo df[columnas])
     /opt/conda/lib/python3.6/site-packages/ipykernel launcher.py:21: SettingWithCopyl
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     Con the county is the decomposition, bits, //conder condets confered to dec/etch?
```

DUMMIES

TIPO PROPIEDAD UBICACIÓN

Tipo de propiedad

Obtenemos las dummies de tipo propiedad

```
# Obtenemos las columnas dummies de property type
df_tipo_propiedad = pd.get_dummies(modelo_df['tipo_propiedad'], drop_first=True, prefix='tipo_propiedad')
# Agregamos las columnas dummies concatenando el dataframe original con las dummies
df_with_dummies = pd.concat([modelo_df, df_tipo_propiedad], axis=1)
# Eliminamos la columna tipo_propiedad del dataframe nuevo
df_with_dummies = df_with_dummies.drop('tipo_propiedad', axis=1)
```

Ubicación

Obtenemos las dummies de ubicacion .

```
# Obtenemos la columna dummies de ubicacion

df_ubicacion = pd.get_dummies(modelo_df['ubicacion'], drop_first=True, prefix='ubicacion')

# Agreamos las columnas dummies concatenando el nuevo dataframe con las dummies

df_with_dummies = pd.concat([df_with_dummies, df_ubicacion], axis=1)

# Eliminamos la columna place with parent names del nuevo dataframe

df_with_dummies = df_with_dummies.drop('ubicacion', axis=1)

# Guardamos el nombre de cada ubicacion en la variable ubicacion

ubicacion = df_ubicacion.columns
```

#guardo en una columna el valor de los indices para no perderlos
df_with_dummies['indices']=df_with_dummies.index

PREPARAMOS DATOS PARA ENTRENAMIENTO

Definimos Valores y Labels

Como vamos a entrenar el modelo

Creamos DF donde vamos imputando los resultados

Cross-Validation

Valores y Labels Del dataframe, separamos nuestros labels de los valores a utilizar para entrenar

```
def get_features_labels(df):
    #Separa las features de los labels de un dataframe y los devuelve en el orden FEATURES, LABELS (X, Y)
    if PRECIO:
        # Obtengo los labels (precio)
        Y = df['precio']

        # Obtengo los valores sin los labels
        X = df.drop('precio', axis=1)
    else:
        # Obtengo los labels (precio)
        Y = df['precio_usd_por_m2']

        # Obtengo los valores sin los labels
        X = df.drop('precio_usd_por_m2', axis=1)
```

Holdout Sets

De nuestros datos de entrenamiento con labels conocidos, separamos un porcentaje con el cual entrenaremos el modelo, y otro porcentaje con el cual haremos la validación. Vamos a usar un 70% para el entrenamiento y un 30% para la validación.

```
# Utilizamos el método train test_split de Scikit Learn para separar los datos
from sklearn.model_selection import train_test_split

def get_houldout_sets(X,Y, random_state, train_size):
    # obtenemos X e Y de test y entrenamiento.
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=random_state, train_size=train_size)
    return X_train, X_test, Y_train, Y_test
```

APLICAMOS DIFERENTES MODELOS

MODELO de REGRESION LINEAL

	Model	MSE	R^2	Alpha	Cant. Cols.		
0	Linear Regression	1.600986e+10	0.489016	0	720.0		

MODELO de REGRESION RIDGE

	Model	MSE	R^2	Alpha	Cant. Cols.
0	Linear Regression	1.600986e+10	0.489016	0	720.0
1	Ridge	1.427282e+10	0.560067	1	720.0

MODELO de REGRESION LASSO

	Model	MSE	R^2	Alpha	Cant. Cols.
0	Linear Regression	1.600986e+10	0.489016	0	720.0
1	Ridge	1.427282e+10	0.560067	1	720.0
2	Lasso	3.155169e+10	0.002627	315039	720.0

PORTAFOLIO de PROPIEDADES

Modelo Ridge con el mejor R2 0.56

Tomamos una muestra de 100 valores del dataframe original por un total de valor de \$22.7718.201 (precio de venta)

Vemos propiedades en las que el modelo tuvo una diferencia de +- \$ 1.000.

diferencia	tipo_propiedad	ubicacion	prediccion	precio	
-997.349	apartment	Santa Fe-Rosario	49790.139	48792.790	45638
-990.633	apartment	Capital Federal-Villa Urquiza	118490.633	117500.000	63561
-989.276	apartment	Santa Fe-Rosario	45295.376	44306.100	56418
-984.443	apartment	Santa Fe-Rosario	45290.543	44306.100	56376
-984.044	apartment	Capital Federal-Villa Luro	103199.064	102215.020	43704
-981.999	apartment	Capital Federal-Almagro	76981.999	76000.000	16095
-976.258	house	Bs.As. G.B.A. Zona Norte-Tigre	298976.258	298000.000	3801
-976.179	house	Bs.As. G.B.A. Zona Norte-Tigre	298976.179	298000.000	3800
-974.637	house	Bs.As. G.B.A. Zona Norte-San Isidro	480974.637	480000.000	4550

10.003																									
	11.310	10.570	10.496	9.919	9.803	9.492	9.364	9.269	8.844	8.831	8.801	8.316	8.283	8.185	8.184	8.151	8.145	8.106	8.023	7.954	7.910	7.887	7.809	7.766	7.710
rueito imadeio	Palermo	Núñez	Colegiales	Belgrano	Recoleta	Retiro	Coghlan	San Telmo	Villa Urquiza	Saavedra	Chacarita	Villa Crespo	Villa Ortúzar	Almagro	Parque Chas	Monserrat	Caballito	Villa Pueyrredón	San Nicolás	Agronomía	Versalles	Pque. Chacabuco	Villa Devoto	Pque. Patricios	Barracas
	2	3	4	2	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26