Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

В.Г. ПАК

ДИСКРЕТНАЯ МАТЕМАТИКА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ©

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

ЛЕКЦИЯ №4

БИНОМ НЬЮТОНА И ПОЛИНОМИАЛЬНАЯ ФОРМУЛА. ФОРМУЛА ВКЛЮЧЕНИЙ И ИСКЛЮЧЕНИЙ

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018©

- §2. Бином Ньютона и полиномиальная формула
 - 2.1. Бином Ньютона
 - 2.2. Полиномиальная формула
- §3. Формула включений и исключений и её применение
 - 3.1. Формула включений и исключений
 - 3.2. Число элементов объединения множеств
 - 3.3. Беспорядочные перестановки
 - 3.4. Преобразования без неподвижных элементов
 - 3.5. Сюръективные отображения множеств
 - 3.6. Функция Эйлера

§2. Бином Ньютона и полиномиальная формула

2.1. Бином Ньютона

Биномом Ньютона называется формула

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + C_{n}^{3}a^{n-3}b^{3} + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + b^{n} = \sum_{k=0}^{n} C_{n}^{k}a^{n-k}b^{k}.$$

Другая форма бинома Ньютона:

$$(1+t)^n = 1 + nt + \frac{n(n-1)}{2}t^2 + \dots + C_n^k t^k + \dots + t^n = \sum_{k=0}^n C_n^k t^k.$$

Коэффициенты бинома числа \mathcal{C}_n^k называются биномиальными коэффициентами.

2.1. Бином Ньютона

Свойство симметрии бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^k b^{n-k}.$$

Свойства биномиальных коэффициентов:

1)
$$\sum_{k=0}^{n} C_{n}^{k} = C_{n}^{0} + C_{n}^{1} + \dots + C_{n}^{n} = 2^{n};$$
2)
$$\sum_{k=0}^{n} (-1)^{k} C_{n}^{k} = C_{n}^{0} - C_{n}^{1} + \dots + (-1)^{n} C_{n}^{n} = 0;$$
3)
$$C_{n}^{0} + C_{n}^{2} + C_{n}^{4} + \dots = C_{n}^{1} + C_{n}^{3} + C_{n}^{5} + \dots = C_{n-1}^{0} + C_{n-1}^{1} + C_{n-1}^{1} + \dots + C_{n-1}^{n-1}.$$

2.2. Полиномиальная формула

2.2. Полиномиальная формула

Обобщением бинома Ньютона является полиномиальная формула:

$$(a_1 + a_2 + \dots + a_m)^n = \sum_{\substack{0 \le k_1, \dots, k_m \le n \\ k_1 + \dots + k_m = n}} P(k_1, \dots, k_m) a_1^{k_1} a_2^{k_2} \cdots a_m^{k_m},$$

где $P(k_1, ..., k_m)$ - полиномиальные коэффициенты.

При m=2 полиномиальная формула превращается в бином Ньютона.

Суммирование ведётся по всем разбиениям числа n на mнеотрицательных слагаемых с учётом их порядка, т.е. по всем кортежам $\langle k_1, ..., k_m \rangle$. Ясно, что для кортежей, получающихся друг из друга перестановкой координат, полиномиальные коэффициенты равны, поэтому достаточно вычислить коэффициенты для разбиений $k_1 \ge k_2 \ge \cdots \ge k_m$.

3.1. Формула включений и исключений

§3. Формула включений и исключений и её применение

3.1. Формула включений и исключений

Пусть имеются N разных предметов и n совместных свойств p_1 , p_2, \dots, p_n , которыми могут обладать или не обладать эти предметы. Обозначим $\alpha(p_{i_1}, ..., p_{i_s})$ количество предметов, обладающих свойствами $p_{i_1}, ..., p_{i_s}$ ($1 \le i_1, ..., i_s \le n$). Остальными свойствами эти предметы могут обладать или не обладать; $\alpha(p_1, ..., p_s, \overline{p}_{s+1}, ..., \overline{p}_n)$ количество предметов со свойствами p_1 , ..., p_s , не обладающих остальными свойствами $p_{s+1}, \dots, p_n (1 \le s \le n-1)$. При s=0 $\alpha(\overline{p}_1,...,\overline{p}_n)$ - количество предметов, не обладающих ни одним из свойств, при $s=n \; \alpha(p_1,...,p_n)$ - количество предметов, обладающих всеми свойствами.

Тогда $\alpha(\overline{p}_1,...,\overline{p}_n)$ вычисляется по формуле включений и исключений:

3.1. Формула включений и исключений

$$\alpha(\overline{p}_{1},...,\overline{p}_{n}) = N - \sum_{i=1}^{n} \alpha(p_{i}) + \sum_{\substack{i,j=1 \\ i < j}}^{n} \alpha(p_{i},p_{j}) - \sum_{\substack{i,j,k=1 \\ i < j < k}}^{n} \alpha(p_{i},p_{j},p_{k}) + \cdots + (-1)^{k} \sum_{\substack{i_{1},...,i_{k}=1 \\ i_{1} < i_{2} < \cdots < i_{k}}}^{n} \alpha(p_{i_{1}},...,p_{i_{k}}) + \cdots + (-1)^{n} \alpha(p_{1},...,p_{n}).$$

Далее рассмотрим примеры применения формулы для решения комбинаторных задач.

3.2. Число элементов объединения множеств

Пусть имеются конечные множества $A_1, A_2, ..., A_n$, известны их мощности и мощности всевозможных их пересечений.

Тогда мощность объединения множеств $A_1, A_2, ..., A_n$ вычисляется по формуле

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{\substack{i,j=1 \ i < j}}^n |A_i \cap A_j| + \sum_{\substack{i,j,k=1 \ i < j < k}}^n |A_i \cap A_j \cap A_k| -$$

$$-\cdots + (-1)^{k-1} \sum_{\substack{i_1, \dots, i_k = 1 \\ i_1 < i_2 < \dots < i_k}}^n \left| A_{i_1} \cap \dots \cap A_{i_k} \right| + \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$

Частные случаи для двух и трёх множеств:

$$|A \cup B| = |A| + |B| - |A \cap B|;$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

3.2. Число элементов объединения множеств

3.3. Беспорядочные перестановки

3.3. Беспорядочные перестановки

Имеется некоторая перестановка n разных предметов. Назовём $\$ беспорядочной перестановкой (беспорядком) такую их перестановку, в которой ни один предмет не находится на своём прежнем месте.

Число D_n беспорядочных перестановок n различных предметов находится по формуле

$$D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right) = n! \sum_{i=0}^n \frac{(-1)^i}{i!}.$$

Число $D_n(r)$ перестановок n предметов, при которых *ровно* r остаются на своих прежних местах, равно

$$D_n(r) = C_n^r D_{n-r} = \frac{n!}{r!} \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-r}}{(n-r)!} \right) = \frac{n!}{r!} \sum_{i=0}^{n-r} \frac{(-1)^i}{i!}.$$

Пример.

Двое играют в такую игру. У каждого по перетасованной колоде карт. Игроки по очереди достают по одной карте из своей колоды. Если очередные вынутые игроками карты совпадут, выигрывает первый, если колода закончится без совпадений, выигрывает второй. У какого игрока выше шансы выиграть?

3.3. Беспорядочные перестановки

Вероятность несовпадения ни одной карты (n — число карт):

$$\frac{D_n}{n!} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} = \sum_{i=0}^n \frac{(-1)^i}{i!}.$$

При $n \to \infty$:

$$\frac{D_n}{n!} = \sum_{i=0}^n \frac{(-1)^i}{i!} \to e^{-1} \approx 0,367879.$$

Поэтому вероятность несовпадения ни одной карты близка к 0,37.

3.4. Преобразования без неподвижных элементов

3.4. Преобразования без неподвижных элементов

Пусть имеется (n)-множество A. Преобразованием множества A назовём произвольную функцию $f: A \to A$, множество всех преобразований A обозначается A^A .

Неподвижной треобразования $f \in A^A$ называется такой элемент $a \in A$, что f(a) = a.

Число U_n преобразований (n)-множества, не имеющих неподвижных точек, равно

$$U_n = n^n - C_n^1 n^{n-1} + C_n^2 n^{n-2} - \dots + (-1)^k C_n^k n^{n-k} + \dots + (-1)^n \cdot 1 =$$

$$= \sum_{k=0}^n (-1)^k C_n^k n^{n-k} = (n-1)^n.$$

Если ограничиться только биективными преобразованиями, т.е. подстановками (n)-множества A, то ответ получен в предыдущем пункте.

3.5. Сюръективные отображения множеств

Пусть имеются конечные множества A и B, |A| = m, |B| = n. Сюръективным отображением A на B, или просто функцией A на B, называется сюръекция из A на B.

Число S(m,n) сюръективных отображений (m)множества на (n)-множество находится по формуле

$$+(-1)^{n-1} \cdot n \cdot 1 = \sum_{k=0}^{n} (-1)^k C_n^k (n-k)^m.$$

3.6. Функция Эйлера

С помощью формулы включений и исключений можно получить формулу функции Эйлера:

$$\varphi(n) = n \left(1 - \sum_{i=1}^{k} \frac{1}{q_i} + \sum_{\substack{i,j=1\\i < j}}^{k} \frac{1}{q_i q_j} - \dots + (-1)^k \frac{1}{q_1 q_2 \dots q_k} \right) =$$

$$= n \left(1 - \frac{1}{q_1} \right) \left(1 - \frac{1}{q_2} \right) \dots \left(1 - \frac{1}{q_k} \right),$$

где $q_1,\,q_2,\dots,\,q_k$ - простые делители n.

Из этой формулы следует мультипликативность функции Эйлера: если m и n взаимно просты, то

$$\varphi(mn) = \varphi(m)\varphi(n).$$