Vlnová optika

Difrakce a interference světla, disperze, optická mřížka. Polarizace světla, Brewsterův úhel, dvojlom.

Vlnová optika

Zabývá se světlem z hlediska jeho vlnových vlastností

Popis šíření světla pomocí vlnoploch, fázových poměrů při interferenci atd.

- Interference
- Ohyb (difrakce)
- Disperze
- Polarizace

Světlo

Elektromagnetické vlnění - příčné

Vlnění

- Fázová rychlost c, vlnový vektor $k=\omega/c$
- Amplituda y_0
- Polarizace

$$y = y_0 \sin(\omega t - kx)$$

Vlnová délka, fázová rychlost

Fázová rychlost

$$c = \frac{1}{\sqrt{\varepsilon_r \mu_r \varepsilon_0 \mu_0}} = \frac{c_0}{\sqrt{\varepsilon_r \mu_r}} \le c_0 = 300.000 km s^{-1}$$

Permitivita vakua $\varepsilon_0 = 8.854 \cdot 10^{-12} \, Fm^{-1}$

Permeabilita vakua $\mu_0 = 4\pi \cdot 10^{-7} \, Hm^{-1}$

Vlnová délka
$$\lambda = \frac{c}{f}$$
 frekvence f

Vlnové délky světla

Červené 720-627nm

Oranžové 627-589nm

Žluté 589-566nm

Zelené 566-495nm

Modré 495-436nm

Fialové 436-380nm

Vlnoplocha, paprsek

Vlnoplocha se šíří fázovou rychlostí *c* Paprsek – kolmice k vlnoploše, směr *k*

Huyghensův princip

Každé místo vlnoplochy se stává zdrojem dalšího vlnění. Výsledná vlnoplocha je obálkou těchto elementárních vlnoploch.

Ohyb vlnění na otvoru

Vlnění se šíří i do míst geometrického stínu

Ohybový obrazec na štěrbině

Štěrbina

Kruhový otvor

kruhová překážka

Ohybový obrazec na překážce

Hrana

Vlákno

Interference

Koherence světla

Podmínkou interference je stálý (časově neproměnný) fázový rozdíl mezi interferujícími vlnami

Koherentní vlny = mají stálý fázový rozdíl

Světlo většiny zdrojů světla není koherentní, koherentní jsou pouze vlnoplochy vyzařované z blízkých bodů zdroje = koherentní délka

Laserové záření je koherentní a navíc téměř monochromatické, tj. laser má velkou koherentní délku!

Geometrická a optická dráha

Fáze vlny se mění:

- Různou délkou proběhnuté dráhy (paprsky probíhají po různě dlouhé dráze), geometrická dráha = L
- Různou rychlostí probíhání po dráze (paprsky běží v různých prostředích), optická dráha = $N \cdot L$

N je index lomu prostředí

Youngův pokus

Young (1801) důkaz vlnové povahy světla

Youngův pokus

Dráhový rozdíl mezi interferujícími paprsky

přiblížení $r_1 \approx r_2$, h >> d

 $\Delta L = d \sin \theta$
interferenční maxima

$$\Delta L = m\lambda$$

Interference na tenké vrstvě

Změna fáze při odrazu na rozhraní dvou prostředí

- Analogie odrazu mechanických vln na vlnové řadě s pevným nebo volným koncem
- Odraz paprsku od opticky hustšího prostředí (větší index lomu) znamená změnu fáze o π rad, dráhově pak o $\lambda/2$
- Při odrazu od opticky řidšího prostředí ke změně fáze nedochází!

Newtonovy kroužky

Interference prošlé či odražené vlny

Michelsonův interferometr

Použití k měření délek srovnatelných s vlnovou délkou světla

Ohyb na štěrbině, mřížce

Maxima

$$d \sin \alpha = k\lambda$$

$$k = 0, \pm 1, \pm 2, \dots$$

Interference světla na mřížce

Optická mřížka=sada pravidelných štěrbin

Odraz a lom vlnění

Zákon odrazu
$$\alpha' = \alpha$$

Snellův zákon lomu

$$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2}$$

Index lomu

• Absolutní

$$N = \frac{c_0}{c}$$

• Relativní

$$n = \frac{c_1}{c_2}$$

Disperze

Světlo různých vlnových délek se láme pod různým úhlem, index lomu závisí na vlnové délce

Příklad – voda

 $\lambda = 405 \text{nm}$

 $\lambda = 546$ nm

 $\lambda = 768$ nm

n=1.342742 modré

n=1.334466 žluté

n=1.32889 červené

Disperze

Projevy disperze

• Duha

bílé světlo

• Spektroskopie

Spektroskopie

Rozklad světla při lomu na optickém hranolu

Využívá disperze k prostorovému oddělení jednotlivých vlnových délek

Optický hranol, spektroskopie

Měření minimální deviace vstupujícího a vystupujícího paprsku

lámavý úhel φ deviace ψ

Index lomu hranolu

$$n = \frac{\sin\frac{1}{2}(\psi + \varphi)}{\sin\frac{1}{2}\varphi}$$

Úplný odraz

Úplný (totální) odraz

Pro index lomu $n_1 > n_2$ nastává pro úhly $\alpha > \alpha_m$ pouze odraz

odraz

Mezní úhel α_m závisí na λ Použití pro optická vlákna

Polarizace vlnění

Polarizace světla

• Lineárně polarizované

• Kruhově polarizované

• Elipticky polarizované

Polarizace

- Polarizační filtry
- Polarizace odrazem lineární polarizace kolmo k rovině dopadu, zcela polarizované Brewsterův úhel α

- Polarizace lomem
- dvojlom

Polarizace odrazem

Brewsterův úhel

$$\tan(\theta_{\scriptscriptstyle B}) = n$$

David Brewster (1812)

složka kolmá k rovině stránky
složka rovnoběžná s rovinou stránky

Dvojlom

Krystaly nižší symetrie Průchod světla jiným směrem než podél optické osy Islandský vápenec CaCO₃ Chilský ledek NaNO₃

Dvojlom

Anizotropie rychlosti šíření světla

Polarizace lomem - Nikol

Optický hranol z islandského vápence

Polarizační filtr

Směr polarizace

Složka intenzity elektrického pole rovnoběžná se směrem polarizace prochází polarizační destičkou, složka k ní kolmá je pohlcena.

Průchod nepolarizovaného světla filtrem

Intenzita prošlá filtrem

$$I = \frac{1}{2}I_0$$

Průchod polarizovaného světla polarizačním filtrem

Záleží na vzájemné orientaci směrů polarizace filtru a vstupujícího světla

Intenzita el. Pole

$$E_y = E \cos \theta$$

Intenzita prošlého světla

$$I = I_0 \cos^2 \theta$$

Literatura

V prezentaci byly použity obrázky z knihy:

- HALLIDAY, D., RESNICK, R., WALKER,
 - J.: Fyzika (část 4 Elektromagnetické vlny
 - Optika Relativita), Vutium, Brno 2000
- J.Fuka, J.Havelka: Optika a atomová fyzika: I. optika, SNTL Praha 1961