Modenumber signs from magnetic measurement

Pölöskei Péter, Dr. Pokol Gergő, Horváth László, Dr. Papp Gergely

Last modification: July 25, 2016

Experimental setup on ASDEX, magnetic probe positions 1

Figure 1: Magnetic probe (a) toroidal ballooning array and b) poloidal Mirnov array) positions on ASDEX Upgrade.

Both in toroidal- and poloidal crossections the coordinates of the probes follow counter clockwise (CCW) setting, which is marked with blue line on figure 1. Therefore the position is increasing that way (mod 2π).

2 Signal processing methodology of NTI Wavelet Tools

In continuous time-frequency transformations we suppose that the investigated physical processes, phenomena can be decomposed to a sum of Ψ harmonic waves described with the following equation:

$$\Psi(\rho, \theta^*, \phi, t) = A(\rho, \theta^*) \cdot e^{i(m\theta^* + n\phi - \omega t)} , \qquad (1)$$

where $A(\rho, \theta^*)$ is the amplitude of the wave, or radial eigenfunction. It only depends on the ρ minor radius, and the θ^* coordinate which is related with the θ poloidal direction. The phase of the wave is linear both in θ^* and ϕ , and the proportionality factors are the m poloidal and n toroidal mode numbers, which describe the spatial structure of the plasma wave.

Supposing a pure sinusoidal wave with (n,m) mode numbers phase difference between different positions can be extracted from crosstransforms as follows:

$$\Delta \varphi_{kl}^{meas}(t,\omega) = arg(Tf_k^*(t,\omega)Tf_l(t,\omega)). \tag{2}$$

To_investigate wave propagation directions, let there be two different probes with $\phi_1=0$ and $\phi_2 = \frac{\pi}{4}$ (same poloidal position), and a wave propagating in CCW direction with |n| = 1. Therefore the wavefunction at two different position:

$$\Psi_1(\rho_0, \theta_0^*, 0, t) \propto \exp[i(-\omega t)] \tag{3}$$

$$\Psi_1(\rho_0, \theta_0^*, 0, t) \propto \exp[i(-\omega t)]$$

$$\Psi_2(\rho_0, \theta_0^*, \frac{\pi}{4}, t) \propto \exp[i(-\omega t + \frac{\pi}{4})]$$
(3)

which toroidal position difference is $\Delta \phi = \frac{\pi}{4}$, and the phase difference is $-\frac{\pi}{4}$ (checked with test signals, see on figure 2).

Figure 2: Best fitting toroidal modenumbers, for artificial signal with 50 kHz constant frequency.

3 Directions of physical processes

				Modenumber sign from NTIWT				
				+		-		
				Diamagnetic direction				
					poloidal	toroidal	poloidal	toroidal
AUG	B tor.	+	I plas.	+	electron	electron	ion	ion
				-	electron	ion	ion	electron
		_		+	ion	electron	electron	ion
				-	ion	ion	electron	electron

Table 1: This table contains the main directions of the named experiments (both machine coordinate system and **TYPICAL** relevant physical quantities, marked with green) in order to determine that a modenumber calculated with NTI Wavelet Tools means what actual direction. + sign means counter clockwise (CCW), - sign means clockwise (CW).