

一种支持DevOps的精益量化管理平台

胡军

互联网软件技术实验室 中科院软件研究所

2018.09.13 北京

Section 1 Motivation

企业转型

企业需要持续的IT转型:

软件

企业核心竞争力的一部分,部分或全部业务依赖软件来为自己或客户提供服务

业务规模

企业的业务规 模在互联网经 济推动下迅速 扩展

软件研发

应用快速迭代、便于 多个团队协同开发、 尽量自动化、减少维 护成本、随业务发展 而变化等需求

IT的效率问题被再次放大

EXAMPLE=>沟通失真与业务响应问题

ABCDEF OK, ABCDE 需求A 业务 特性1,2,3 票求A 功能a,b,c,d 集测,压测,预发 日志给我 机器告诉我 测试环境能重现吗

业务与技术传递语言很难一致

迭代中的诸多任务,诸多角色, 诸多阶段,很难在统一平台保 持一致

上线只是开始,持续运营任重 而道远

软件开发方式的变革

传统开发模型 - 迭代演化

DevOps -持续集成、部署

企业DevOps的误区

[DevOps思维] 思维就是【互联网思维】

企业DevOps的误区(续)

DevOps一定要用微服务和容器支撑?

企业DevOps的挑战

- 高密度的持续集成和部署,要求需求、 代码、测试等软件制品之间的关系密切 关联
 - 各种工具各管一摊
 - 齿轮不能咬合、数据不能共享
- 智能的过程服务
 - 如:持续集成测试用例推荐,高价值需求推荐,缺陷快速定位和修复
 - 更快、更好地开发软件

质量管理

Mantis

sonar

qube

CBS

Code Inspection

Code review

企业DevOps的挑战(续)

企业环境与流程多样,要么一套标准,要么一套适配

主干 开发 分支 开发 分支 relaease 应用 配置 环境 配置 静态 动态

冒烟

回归

系统

MAVEN

GRADLE

ANT

物理机

虚拟机

容器

SCRUM

AGILE

CMMI

我们的理念和目标

生产是根本

能自动化的一定不要人去干

管理应该随需而变

数据的价值利用决定未来

打造国内领先的自动化、智能化、数字化的 DevOps平台,支持精益的量化管理

Section 2 Solution

- 过程管理:数据驱动的支持DevOps能力建立的软件过程和质量管理平台,
 提供全生命周期的制品跟踪、质量控制与智能数据分析。
- 工具链:基于数据总线打通各种工具之间的壁垒,通过对主流工具的微服务化、柔性集成、按需组合来实现全过程的覆盖,并建立可追溯的跟踪关系。
- 数据分析:基于软件生产和运行维护过程中产品的操作数据,利用大数据与AI技术,提供智能数据分析服务,有效支持DevOps落地和精益量化的过程管理。

总体架构

功能组成

柔性的工具集成

自定义的流程

在流程中对软件开发工具传输的数据 进行传输和交互,降低每个开发软件 开发工具之间的耦合性,定制可视化 软件开发流程。利用开源轻量级的工 作流引擎,通过二次开发工作流引擎 和构建面向服务的流程管理架构,设 计工作流定义模板,开发支持软件开 发的多工具集成的工作流管理系统

工具链门户

Tool Manager

Use your tools to communicate.

Powerful integrations that help you and your team build communication better, together.

gitlab

Free public and private repositories, issue tracking and wikis.

mantis

MantisBT makes collaboration with team members & clients easy, fast, and

Jira

The best software teams ship early and

6月9日,

QDS

Software quality data intelligent analysis

LogCat

log search and log analysis

testlink

测试用例管理

SonarQube

代码检查

流水线

持续集成&持续发布

方案特点

数据驱动的软件过程和质量管理平台,统一的账号、权限管理; 提供覆盖全生命周期的透明化、 实效化、智能化的制品跟踪和质量管理。

灵活定制、可扩展

基于数据总线打通各种工具之间的 壁垒,通过对主流(特别是开源) 工具的柔性集成、按需组合来实现 全过程的覆盖,针对不同工作流程, 选择工具进行组合。

数据驱动的智能服务

自动收集和挖掘软件生产和运行维护过程中产品的操作数据。利用智能数据分析技术,有效支持DevOps能力建设和量化的精益过程管理。

全面支持微服务架构

自身微服务化,将单体的过程管理 业务拆分成多个微服务;微服务开 发支持,基于容器实现标准化构建 和持续集成、持续交付

方案优势

工程师只需按流程要求提交工 作产品,无需分心各种冗繁的 管理要求

开放、可伸缩的架构

挖掘生产数据,自动产生直观的管理数据,实现透明的过程 监控和质量管理

智能分析为提高效率、改进质量、降低成本,提供科学的决策支持

Section 3 Analysis

量化分析与挖掘

- 基础数据的量化分析
- 数据的关联分析
- 过程数据的智能分析与挖掘

基础数据分析

- 任务及状态统计
- 任务进度追踪
- 工作制品的统计
- 缺陷统计.

• • • • • •

数据的关联分析

- 任务-制品的关联
- 测试与缺陷关联
- 缺陷与修复的关联
- 报告的自动生成

报告人:	胡军	项目组:	质量分析组;工具开发部;					
报告时间:	2017-08-11	报告状态:	正常					
任务名称:	代码质量分析与管理工	代码质量分析与管理工具/量化管理支撑平台/工具平台的开发需求分析						
≣主体任务:								
本周任务计划及完成情况:								
QMT-226 文档明细和支持类 QMT-225 设计并完善QDSI(工作数据采集接口设计与实现 完成 5.754.54年去核文字 安点							
Q11-225								
OHT-245 量化管理支撑平台								
QHT-246 包含支持类工作数	据的新数据采集流程的整合与测试 完成							
下周工作计划:								
QMT-197 量化管理工作量自								
QMT-241 MR里化数据采集与								
QMT-273 测试类工作量化方								
QHT-272 1-7月回溯数据的								
QIT-271 1-7月回溯數据比过与异常分析 QIT-270 WinGEA聯始非要采集与处理								
OPT-270 WingEARMEDINGFORS	K黒与父捏							

	- fi	任务周报-		
任务名称:	工作量统计及周报管理工具	任务编号:	0130-D-BJ-6B/7B	
报告时间:	2017-03-31	负责人:	胡军	
报告状态:	正常	投入人力:	8	
任务组:	质量分析组;			

■本周进展:

工作里统计系统改进开发工作	
1.完成上海月度工作例会反馈问题分析及方案讨论	
2.完成文档diff的调研	
3.进行Mantis中问题历史数据的采集与处理【跨周任务】	
4.进行工作量历史数据处理与关联分析【长期任务】	
周报系统功能调整	
1.完成汇报线导出功能	
2.完成周报功能完善	
3.完成周报检查小工具组周报附件检查	
4.完成组长配置及组周报附件功能改进	
5.完成网络账号全量同步增加报送人信息更新	
6.完成周报反馈信息处理	

☑问题:

智能分析与挖掘-生产率

$\forall s \in P_1 \rightarrow Sentences$ Bugzilla GitHub IdentifyHLP(s) ΫJIRA Rank by importance & confidence Select FRs Rule Set: Ro $2 \downarrow i = 1$ Label Sentences i = i+1 $T_i = \{P_1 \cup P_2 \cup \dots \cup P_{i+1}\}$ P₂ P_n Classification Results of Ti Classify T_i by R_{i-1} **Correct Incorrect** $\forall s \in T_i \rightarrow Incorrect$ r = IdentifyHLP(s)Rule Set: Ri $r \in$ R_{i-1} ? Ν $R_i = Update(R_{i-1}, r)$ $R_i = Insert(R_{i-1}, r)$ $R_i = R_{i-1}$ Ν OR i = n -1? 1 Initial phase 2 Incremental selection phase

智能分析与挖掘-需求理解

共定义了81种启发式语言学规则

Examples of heuristic linguistic patterns and 18 rules from 81 generated fuzzy rules

ID	Antecedents (Heuristic Linguistic Patterns)	Level	C	CF
1	action_"propose" = 1	LEX,	intent	81
	_ 1 1	SYN		
2	action "mean" = 1	LEX,	explanation	80
	_	SYN	•	
3	start_"please"=1	LEX	intent	79
4	start_"unfortunately", "actually" = 1	LEX	explanation	76
5	contain_"really"=1, question=1	LEX	explanation	74
6	{"hello", "thank", "regards", "look for-	LEX	trivia	65
	ward"}			
7	{"would like", "wish for", "I need" }	LEX	intent	52
8	[SYS-NAME]+{"may","need","should"}	LEX	intent	51
9	first_sentence=1, start_VB=1	LEX,SYN	intent	41
10	vaild_words = 0, positive_good=0	LEX,SEM	trivia	40
11	start_"however"=1, contain_"only"=1	LEX	drawback	39
12	start_"however"=1, negative=1	LEX,SEM	drawback	38
13	start_"for example" = 1	LEX	example	36
14	{"save" "reduce"} + {"memory" "ef-	LEX	benefit	31
	fort" = 1			
15	{"helpful", "useful", "convenient", "awe-	LEX	benefit	30
	some"}			
16	negative_good =1	SEM	drawback	27
17	positive_bad = 1	SEM	drawback	26
18	positive_good=1	SEM	benefit	20

需求理解:效果和评价

智能分析与挖掘-测试用例优化

Section 4 Application

● ISCAS-OS专项

- 打通 "任务-开发-测试(缺陷)-持续集成与发布"全流程
- 支持大规模在线的协同工作(北京、上海、青岛、哈尔滨、重庆,1000+开发人员)
- 管理扁平化,不超过三级管理架构
- 数据透明化,统一的数据视图,全局可视化。

流程梳理

● ISCAS-OS专项

Step 1:在JIRA规划任务

Step 2:在Gitlab提交工作产品

Step 3:在TestLink中规划测试

Step 4:在Mantis跟踪缺陷

Step 5:提交缺陷修复代码

研发流程

Step 6:验证测试并变更缺陷状态

查看问题 (1-1/1) [打印报告] [导出为CSV] [导出为Excel] [XML导出] [图]

量化分析

● ISCAS-OS专项

所有组计划的issue总数: 1516

数据分析与量化管理

- 任务及状态统计
- 任务进度追踪
- 工作制品的统计
- 开发-测试-缺陷关联分析

- 缺陷统计
- 测试统计
- 工作报告的自动生成
- 工作成果量化

量化分析(续)

● ISCAS-OS专项

量化数据DEMO

	2017-10-21-2017-10-27														
			•	代码统计	_		文档统计	ŀ	支持类统计						
个	A I /+#-# /Protects		平审			设计用									
增加	工时	増加	工时	被评审 (次)	分数 (0- 5)	评审他 人 (次)	个人代 码合计	待集成 代码合 计	个人文档合计	例 (创 建+修 改)	执行用 例	提出缺陷	工作耗时		
573	40	0	0	0	0	7	573	0	80	0	0	0	0		
2070	0	2070	0	1	5	0	2070	2070	92	0	0	0	0		
0	0	0	0	1	5	2	0	0	48	0	0	0	0		
221	39.5	221	50	2	5	0	221	221	34	0	0	0	0		
98	40	0	0	0	0	0	98	0	6	0	0	0	0		
722	28	722	28	1	5	0	722	722	22	0	0	0	0		
642	36	0	0	0	0	0	642	0	0	0	0	0	0		

智能分析

● ISCAS-OS项目

智能数据分析

- 缺陷定位
- 需求理解和度量
- 过程数据分析
- 生产率分析

- 持续集成测试优化
- 过程知识库
- 软件成本分析
- 用户反馈分类

	LOAF		Margin san	npling	Least conf	idence	Infor. Repre.			
	Acc.	Eff.	Acc.	Eff.	Acc.	Eff.	Acc.	Eff.		
Min	0.95	1	0.04,0.92	13,24	0.12,0.94	11,24	0.10,0.93	13,23		
Max	1.00	52	0.96,0.99	62,98	0.96,1.00	48,78	0.96,0.99	56,80		
Med.	1.00	10	0.67,0.97	33,70	0.77,0.98	26,46	0.77,0.97	30,47		
Avg.	0.99	11	0.61,0.96	33,67	0.69,0.97	28,48	0.64,0.96	30,50		

生产率分析

甘丛石林		第一组	第二组				第三组				第四组				混合组				単语言 样	样本		
基线名称	Sample Size	Mean Prod.	Weight_ Mean		· •	Mean Prod.	Weight			Mean Prod.	Weight		Sample Size	Mean Prod.	Weight		Sample Size	Mean Prod.	Weight	Stdev/ Mean	样本数	总数
IBM_2013	4	6.4(FP/PM)	1.81	9.31%	9	11.6	1	17.36%	6	9.1	1. 27	11.33%	5	11.26	1.03	36. 78%	1	11.41	1.02	*	24	25
ISBSG_2016	2	20.05 (FP/PM)	0.97	*	4	19.35	1	28. 27%	1	15. 5	1.25	*	2	25.85	0.75	*	*	*	*	*	9	
Our_V1.0	45	276.6 (Loc/PW)	1. 28	39%	108	355.40	1	45%	230	205. 50	1.73	72%	132	332. 20	1.07	54%	*	*	*	*	515	
Our_V2.0	58	251.6(Loc/PW)	1. 57	36%	141	395. 17	1	22%	268	241.99	1.63	48%	35	297.30	1.33	16%	288	570.86	0.69	30%	502	790
Our_V3.0	42	21.91 (Loc/PH)	1. 12	67%	69	24. 45	1	63%	111	14.57	1.68	89%	16	15. 81	1.55	27%	71	19.10	1.28	54%	238	309

• 说明:

- 1. 我们的三个基线,各组生产率的相对比率差异较小,但生产率大小的排序基本一致(权重越小,生产率越高)。
- 2. 基线3 中第一组的生产率的排序更高,和主观认知不一致
- 3. 和IBM的基线比较接近
- 4. 和ISBSG的基线在排序顺序上差异较大,特别在第四组基线3 有1倍的差异
- 这些数据分析看,各组的生产率差异都不是很大。对于特定的任务不能单纯用代码行衡量,可以综合考虑补丁数十代码行

・实施效果

- DevOps落地:面向OS研发的持续集成与持续发布
- 管理开销大幅度降低:实施两年来PMO团队工作量下降3-4倍
- 平均生产率提高2-3倍
- 用户满意度高:开发/测试/运维/管理人员一致好评
- 智能化、定量化的过程数据分析有效支持精益的量化管理

谢谢!

Contact: 胡军

hujun@iscas.ac.cn

Tel: 18610382967