Documentation for Steps of MLflow

WEEK: 2 - DATA OPS, MLOPS, AIOPS ASSIGNMENT: (TITANIC DATASET)

Gaurav Pal GREAT LEARNING

Objective:

To use mlflow for logging and querying machine learning experiments. The task is to build, log, and track multiple versions of a classification model that aims to predict the passengers who survived the titanic shipwreck.

Approaches and Documentation of Steps (Using screen shot):

Installing and importing relevant libraries to solve the problem.

```
| Project | Proj
```

Loaded the given data (Titanic.csv).

```
titanic_mlflow.py × defined metayaml × defined condayaml × de
```

Exploratory Data Analysis:

Checking whether any null values present in the dataset or not. As the titanic_df['Age'], titanic_df['cabin'] & titanic_df['Embarked'] has null values and replacing Null values of titanic_df['Age'] & titanic_df['Embarked'] with median and mode values.

"Pclass_Survived_barplot.png" bar plot graph shows the analysis between titanic_df['Pclass'] and titanic_df['Survived'] column. "Embarked_Survived_barplot.png" bar plot shows the analysis between titanic_df['Embarked'] and the titanic_df['Survived']. Logged these local files as an artifact using mlflow.log artifact() tracking command.

```
# relationship between Age and Survival
g = sns.FacetGrid(titanic_df, col="Survived")
g.map_dataframe(sns.histplot, x='Age')
g.savefig("Age_Survival.png")
mlflow.log_artifact("Age_Survival.png")
```


As the Sex column & Embarked columns are Categorical columns so we converted the values with the sklearn Label encoder so that it can fit for model building.

As a part of data cleaning, we have to drop the column like PassengerId, Name, Ticket, Cabin in order to increase the overall accuracy and efficiency of the data and also split the data using sklearn sklearn train test split.

Model Building: I have used the Random Forest classifier to train the model. Please refer to the below code snippet for that and also evaluate the model performance using scores of accuracies, precision, recall and f1 score, logged the metrices to the mlflow, and also logged the model to mlflow.

OUTPUT:

<u>Mlflow tracking in the UI</u>: I have used the "**mlflow ui**" command at the terminal for tracking and analyzing the created model.

Comparing the Two models:

Run ID:	8692c9a694f0476695524c1376df	216944ba0b3c41b4904c6509288
	<u>d442</u>	<u>b8d63</u>

▼ Parameters

Show diff only

Train Shape	(712, 7)	(623, 7)
criterion	entropy	gini
max_depth	200	100
min_samples_leaf	20	10
n_estimators	200	100

▼ Metrics

Show diff only

Accuracy Score 🗠	0.821	0.802
F1 Score 🗠	0.719	0.704
Precision Score 🗠	0.872	0.778
RandomForestClassifier_score-2_X_test 🗠	0.821	0.802
RandomForestClassifier_score_X_train 🗠	0.827	0.841
Recall Score Le≛	0.612	0.643

