PATENT

What Is Claimed Is:

1	1.	In a method for operating a fuel cell
2	system having	a fuel processor which supplies a hydrogen-
3	rich stream to	a stack of fuel cells, wherein said
4	hydrogen react:	s with an oxidant to supply electrical
5	power to an ext	ternal load, the improvement comprising:
6	(a)	monitoring actual voltage and actual
7		current from the fuel cell stack;
8	(b)	determining an expected magnitude of
9		voltage as a function of said actual
LO		current based on a predetermined
L1		relationship between voltage and current;
L2	(c)	calculating a variance value between said
L3		actual voltage and said expected voltage
L4		magnitudes; and
L5	(d)	generating a signal if said calculated
L6		variance value exceeds a predetermined
L7		variance value.
		·

- 2. The method of claim 1 wherein before step (d), establishing different predetermined variance values for different loads.
- 3. The method of claim 1 wherein before step (d), establishing different predetermined variance values for different fuel cell stack operating parameters.
- 4. The method of claim 3 wherein said
 different fuel cell stack operating parameters include
 pressure, temperature, supply of said hydrogen-rich
 stream and supply of said oxidant.

1	5.	The method of claim 1 wherein said
2	predetermined	relationship between voltage and current is
3	symbolized as	a polarization curve and wherein different
4	predetermined	variance values are established along the
5	curve.	

- 6. The method of claim 1 further including terminating the supply of power to the external load when said predetermined variance value is exceeded.
- 7. The method of claim 1 further comprising the step of establishing the predetermined variance value as a percentage of the expected magnitude of the voltage.
- 1 8. The method of claim 7 further comprising 2 the steps of:

3 .

4

5

6

7

8

9

10

establishing a positive variance value as a percentage of the predicted voltage wherein the sum of percentage and the predicted voltage magnitude are greater than the predicted voltage magnitude; and

establishing a negative variance value as a percentage of the predicted voltage magnitude wherein the sum of the percentage and the predicted voltage magnitude is less than the predicted voltage magnitude.

- 9. The method of claim 8 further comprising
 the step of:
 generating separate output signals based on the
 predicted voltage magnitude exceeding the positive and
 the negative variance values.
- 1 10. In a method for operating a fuel cell 2 system having a fuel processor which supplies a hydrogen-3 rich stream to a stack of fuel cells, wherein said 4 hydrogen reacts with an oxidant to supply electrical 5 power to an external load, the improvement comprising:

		29
6 (a)	establishing a predetermined relationship
7		between voltage and current for a fuel
8		cell stack;
9 (b)	monitoring actual voltage and actual
10		current from the fuel cell stack;
11 (c)	then either:
12		(1) determining an expected value of
13		voltage as a function of the actual
14		current based on the predetermined
15		relationship; or
16		(2) determining an expected value of
17		current as a function of the actual
18		voltage based on the predetermined
19		relationship;
20	(d)	calculating the variance between said
21		actual and expected values; and
22	(e)	generating a signal if the calculated
23		variance exceeds a predetermined variance
24		value.