Các ngôn ngữ dữ liệu đối với mô hình quan hệ Ngôn ngữ Đại số quan hệ

Nguyễn Thị Oanh oanhnt@soict.hust.edu.vn

Bộ môn Hệ thống thông tin (http://is.hust.edu.vn/) Viện CNTT&TT Trường Đại học Bách Khoa Hà Nội

Nội dung

- Đặt vấn đề
 - Giới thiệu một số ngôn ngữ và phân loại
 - So sánh và đánh giá
- Ngôn ngữ dữ liệu mức thấp:
 - Đại số quan hệ
 - Tính toán vị từ
- Một số ngôn ngữ dữ liệu mức cao
 - QBE (<u>Query <u>By</u> <u>Example</u>)
 </u>
 - SQL (<u>S</u>tructured <u>Q</u>uery <u>L</u>anguage)
- Kết luận

Đặt vấn đề

- Mục đích của ngôn ngữ dữ liệu
- Tại sao có nhiều ngôn ngôn ngữ dữ liệu?
- Ngôn ngữ cấp thấp vs. Ngôn ngữ cấp cao?

Ví dụ

- Tìm tên của các sinh viên nào sống ở Bundoora
 - Tìm các bộ của bảng
 Student có Suburb =
 Bundoora
 - Đưa ra các giá trị của thuộc tính Name của các bộ này

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Ví dụ (2)

- Tìm các sinh viên đăng ký khoá học có mã số 113
 - Tìm các giá trị SID trong bảng Enrol có trường course tương ứng là 113
 - Đưa các bộ của bảng Student có ld trong các giá trị tìm thấy ở trên

Student

ld	Name	Suburb
1108	Robert Kew	
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Enrol

SID	Course
3936	101
1108	113
8507	101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

Phân loại ngôn ngữ truy vấn

- Ngôn ngữ cấp thấp
 - Đại số quan hệ
 - 1 câu hỏi = 1 tập các phép toán trên các quan hệ
 - Được biểu diễn bởi một biểu thức đại số (quan hệ)
 - Tính toán vị từ
 - 1 câu hỏi = 1 mô tả của các bộ mong muốn
 - Được đặc tả bởi một vị từ mà các bộ phải thoả mãn
 - Phân biệt 2 lớp:
 - ngôn ngữ tính toán vị từ biến bộ
 - ngôn ngữ tính toán vị từ biến miền
- Ngôn ngữ cấp cao
 - QBE
 - SQL

Ngôn ngữ đại số quan hệ

Tổng quan

- Gồm các phép toán tương ứng với các thao tác trên các quan hệ
- Mỗi phép toán
 - Đầu vào: một hay nhiều quan hệ
 - Đầu ra: một quan hệ
- Biểu thức đại số quan hệ = chuỗi các phép toán
- Kết quả thực hiện một biểu thức đại số là một quan hệ
- Được cài đặt trong phần lớn các hệ CSDL hiện nay

Phân loại các phép toán

- Phép toán quan hệ
 - Phép chiếu (projection)
 - Phép chọn (selection)
 - Phép kết nối (join)
 - Phép chia (division)
- Phép toán tập hợp
 - Phép hợp (union)
 - Phép giao (*intersection*)
 - Phép trừ (difference)
 - Phép tích đề-các (cartesian product)

Phép chiếu

- Đ/n: Lựa chọn một số thuộc tính từ một quan hệ
- \circ Cú pháp: $\prod_{A1,A2,...}(R)$

Ví dụ: đưa ra danh sách tên của tất cả các sinh viên

Student

ld	Name	Suburb
1108	Robert Kew	
3936	Glen Bundooi	
8507	Norman	Bundoora
8452	Mary	Balwyn

Kết quả

Name
Robert
Glen
Norman
Mary

Phép chọn

 Đ/n: Lựa chọn các bộ trong một quan hệ thoả mãn điều kiện cho trước

R1	
R2	
R3	
R4	

R2
R3

Ví dụ: đưa ra danh sách những sinh viên sống ở Bundoora

 $\sigma_{suburb="Bundoora"}(Student)$

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen Bundoo	
8507	Norman Bundoo	
8452	Mary Balwyn	

ld	Name	Suburb
3936	Glen	Bundoora
8507	Norman	Bundoora

Vi dụ - chọn và chiếu

o đưa ra tên của các sinh viên sống ở Bundoora

$$\prod_{name} (\sigma_{suburb="Bundoora"}(Student))$$

Student

ld	Name	Suburb	Kết quả
1108	Robert	Kew	Name
3936	Glen	Bundoora	Glen
8507	Norman	Bundoora	Norman
8452	Mary	Balwyn	

Phép kết nối

- Đ/n: ghép các bộ từ 2 quan hệ thoả mãn điều kiện kết nối R_1 $\triangleright \triangleleft_{< join_condition>} R_2$
- Oú pháp:

а	r	r	X
b	r	r	X

❖ Ví dụ: đưa ra danh sách các sinh viên và khoá học Student ⊳⊲_{Id=SID} Enrol

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen Bundoo	
8507	Norman Bundoo	
8452	Mary Balwyn	

Enrol

SID	Course
3936	101
1108	113
8507	101

Kết quả

SID	ld	Name	Suburb	Course
1108	1108	Robert	Kew	113
3936	3936	Glen	Bundoora	101
8507	8507	Norman	Bundoora	101

Ví dụ - chọn, chiếu và kết nối

đưa ra tên của các sinh viên sống ở Bundoora
 và mã khoá học mà sinh viên đó đăng ký

$$\prod_{Name,Course} (\sigma_{Suburb="Bundoora"}(Student > \triangleleft_{Id=SID} Enrol))$$

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Enrol

SID	Course
3936	101
1108	113
8507	101

Kết quả

Name	Course	
Glen	101	
Norman	101	

Phép kết nối tự nhiên

- Đ/n: là phép kết nối với điều kiện bằng trên các thuộc tính trùng tên
- Ví dụ:

Takes

SID	SNO
1108	21
1108	23
8507	23
8507	29

SID	Course	
3936	101	
1108	113	
8507	101	

SID	SNO	Course
1108	21	113
1108	23	113
8507	23	101
8507	29	101

Phép kết nối ngoài

Phép kết nối ngoài trái

Phép kết nối ngoài phải

Ví dụ về phép kết nối ngoài

 Đưa ra danh sách mã số các sinh viên và mã khoá học mà sinh viên đó đăng ký nếu có

Student

ID	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Enrol

SID	Course	
3936	101	
1108	113	
8507	101	

Kết quả

ID	Name	Suburb	Course
1108	Robert	Kew	113
3936	Glen	Bundoora	101
8507	Norman	Bundoora	101
8452	Mary	Balwyn	null

Phép tích đề-các

- Đ/n: là kết nối giữa từng bộ của quan hệ thứ nhất và mỗi bộ của quan hệ thứ hai
- \circ Cú pháp: $R_1 \times R_2$

Ví dụ phép tích đề-các

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Sport

SportID	Sport
05	Swimming
09	Dancing

SportID

09

Sport

Dancing

Student_Sport

Name

Mary

Id

8452

Balwyn

Suburb

Phép chia

 Đ/n: cho R₁ và R₂ lần lượt là các quan hệ n và m ngôi. Kết quả của phép chia R₁ cho R₂ là một quan hệ (n-m) ngôi

 \circ Cú pháp: $R_1:R_2$

a	X
а	у
а	z
b	Х
С	у

Ví dụ:

Subject

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Phép hợp

- Đ/n: gồm các bộ thuộc ít nhất một trong hai quan hệ đầu vào
 - 2 quan hệ khả hợp được xác định trên cùng miền giá trị

 \circ Cú pháp: $R_1 \cup R_2$

R1

Ví dụ:

R2

Kết quả

Subject

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Subject2

Name	Course
DataMining	MCS
Writing	BCS

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS
DataMining	MCS
Writing	BCS

Phép giao

- Đ/n: gồm các bộ thuộc cả hai quan hệ đầu vào
- o Cú pháp: R_1 ∩ R_2

Subject

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Subject2

Name	Course
DataMining	MCS
Database	MCS
Systems	BCS
Writing	BCS

Kết quả

Name	Course
Systems	BCS
Database	MCS

Phép trừ

- Đ/n: gồm các bộ thuộc quan hệ thứ nhất nhưng không thuộc quan hệ thứ hai
 - 2 quan hệ phải là khả hợp
- \circ Cú pháp: $R_1 \setminus R_2$

R1

\

R2

R⁴R2

Ví dụ: Subject

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Subject2

Name	Course
DataMining	MCS
Database	MCS
Systems	BCS
Writing	BCS

Kết quả

Name	Course		
Database	BCS		
Algebra	MCS		

24

Ví dụ

Phép giao và phép trừ

$$r \cap s = g$$
 (A B C)
 a_1 b_1 c_1
 a_1 b_2 c_2

$$r-s=t$$
 (A B C)
 a_1 b_1 c_2
 a_2 b_2 c_2
 a_3 b_2 c_2

Ví dụ (...)

o Phép chiếu

$$\prod_{X} (\mathbf{r}) = \{ t[X] \mid t \in \mathbf{r} \}$$

$$X = \{ A, B \} ; Y = \{ C \}$$

Ví dụ (...)

O Phép chọn:

$$\sigma_F(r) = \{ \ t \ | \ t \in r \ \land F(t) = \text{ding } \}$$

$$r \ (A \ B \ C)$$

$$a_1 \ b_1 \ c_1$$

$$a_1 \ b_1 \ c_2$$

$$a_1 \ b_2 \ c_2$$

$$a_2 \ b_2 \ c_2$$

$$a_3 \ b_2 \ c_2$$

$$\sigma_{A=a1}(r) = r_1$$
 (A B C) $\sigma_{A=a1 \ \triangle C=c2}(r) = r_2$ (A B C) $a_1 \ b_1 \ c_2$ $a_1 \ b_2 \ c_2$ $a_1 \ b_4 \ c_5$

Bài tập

- Biểu diễn câu hỏi truy vấn bằng ngôn ngữ đại số quan hệ
- Tính kết quả của biểu thức

Bài tập 1

 Cho CSDL gồm 3 quan hệ sau: S(Các hãng cung ứng), P (các mặt hàng), SP(các sự cung ứng)

S (S#	SNAME	STATUS	S CĪTY	j.	SP (S#	P#	QTY)
- (-·· S1		20	Londo		S1	Ρ1	300
- · S2		10	Paris		S1	P2	200
 S3		30	Paris		S1	Р3	400
	2.00.0		, 6,110		S2	Ρ1	300
					S2	Ρ2	400
P (P#	PNAME	COLOR	WEIGHT	CITY)	S3	P2	200
P1	Nut	red	12	Londor)		
P2	Bolt	green	17	Paris			
P3	Screw	blue	17	Rom			
P4	Screw	red	14	Londor	1		29

Bài tập 1 – Yêu cầu

- Biểu diễn câu hỏi truy vấn bằng ngôn ngữ đại số quan hệ
 - Đưa ra danh sách các mặt hàng màu đỏ
 - Cho biết S# của các hãng cung ứng mặt hàng 'P1' hoặc 'P2'
 - Liệt kê S# của các hãng cung ứng cả hai mặt hàng 'P1'
 và 'P2'
 - Đưa ra S# của các hãng cung ứng ít nhất một mặt hàng màu đỏ
 - Đưa ra S# của các hãng cung ứng tất cả các mặt hàng.
- Tính kết quả của các câu truy vấn

Bài tập 1 – đáp án

Đưa ra danh sách các mặt hàng màu đỏ:

$$\sigma_{\text{COLOR} = \text{'red'}}(P)$$

Cho biết S# của các hãng cung ứng mặt hàng 'P1' hoặc 'P2':

$$\prod_{S\#} (\sigma_{P\# = 'P1'} \vee_{P\# = 'P2'}(SP))$$

Liệt kê S# của các hãng cung ứng cả hai mặt hàng 'P1' và 'P2':

$$\prod_{S\#}(\sigma_{P\#=P'P'}(SP)) \cap \prod_{S\#}(\sigma_{P\#=P'P'}(SP))$$

Đưa ra S# của các hãng cung ứng ít nhất một mặt hàng màu đỏ

$$\prod_{S\#}(SP * \sigma_{COLOR = red}(P))$$

Đưa ra S# của các hãng cung ứng tất cả các mặt hàng:

$$\prod_{S\#,P\#}(SP) \div \prod_{P\#}(P)$$

