

DEPARTAMENTO DE ESTATÍSTICA

15 julho 2023

Lista 9 - Análise de Agrupamentos

Prof. Dr. George von Borries Análise Multivariada 1

Aluno: Bruno Gondim Toledo | Matrícula: 15/0167636

76. Johnson e Wichern - Exercício 12.3.

77. Johnson e Wichern - Exercício 12.5.

a), b) e c):

Analisando os dendogramas, percebemos que tanto as abordagens simples, média e completa, agregaram os valores da exata mesma maneira.

78. Johnson e Wichern - Exercício 12.6.

Analisando os dendogramas, percebemos que tanto as abordagens simples, média e completa, agregaram os valores da exata mesma maneira.

79. Johnson e Wichern - Exercício 12.7.

Analisando os dendogramas, percebemos que tanto as abordagens simples e completa agregaram os valores (1,2) e (4,5) no mesmo grupo, mas diferiram quanto a agregação do valor (3); no caso da agregação simples, o valor (3) foi caracterizado como um grupo robustamente separado dos dois demais grupos, enquanto na agregação completa, o *cluster* do valor (3) foi colocado como mais próximo do *cluster* dos valores (1,2), e esses mais distantes do *cluster* dos valores (4,5).

- 80. Johnson e Wichern Exercício 12.11.
- 81. Johnson e Wichern Exercício 12.12.
- 82. Johnson e Wichern Exercício 12.13.

83.

a)

Pela análise do gráfico, aparetam haver entre 3 a 5 grupos: sendo 3 grupos sólidos agrupados, e 2 *outliers* dispersos que provavelmente otimizariam formando um grupo para cada, ou ainda podem ser talvez agregados a algum dos 3 grupos mais robustos, porém aumentando assim sua dispersão.

b)

Irei apresentar os valores na forma corrida para caber melhor no documento, mas é bom observar que a forma "natural" destes valores são matrizes triangulares inferiores. Favor verificar o código para exibi-los estruturados.

Distâncias euclidianas:

1.4142136, 1, 1.4142136, 2, 7.8102497, 11, 12.0415946, 12.0415946, 13.0384048, 13.0384048, 14, 6.3245553, 7.8102497, 8.4852814, 9.2195445, 8.6023253, 9.2195445, 9.8994949, 9.4339811, 10, 10.6301458, 1, 2, 1.4142136, 6.4031242, 10.0498756, 11, 11.1803399, 12, 12.1655251, 13.0384048, 5.8309519, 8.0622577, 8.6023253, 9.2195445, 8.9442719, 9.4339811, 10, 9.8488578, 10.2956301, 10.8166538, 1, 1, 7.0710678, 10, 11.045361, 11.045361, 12.0415946, 12.0415946, 13, 5.3851648, 7.2111026, 7.8102497, 8.4852814, 8.0622577, 8.6023253, 9.2195445, 8.9442719, 9.4339811, 10, 1.4142136, 7.8102497, 10.0498756, 11.1803399, 11, 12.1655251, 12, 13.0384048, 5.0990195, 6.4031242, 7.0710678, 7.8102497, 7.2111026, 7.8102497, 8.4852814, 8.0622577, 8.6023253, 9.2195445, 6.4031242, 9, 10.0498756, 10.0498756, 11.045361, 11.045361, 12, 4.472136, 6.7082039, 7.2111026, 7.8102497, 7.6157731, 8.0622577, 8.6023253, 8.5440037, 8.9442719,

 $9.4339811, \ 7.0710678, \ 7.2111026, \ 8.4852814, \ 8.0622577, \ 9.2195445, \ 9.4339811, \ 7, \ 11.045361, \ 11, \ 11.045361, \ 12.0415946, \ 12, \ 12.0415946, \ 13.0384048, \ 13, \ 13.0384048, \ 1.4142136, \ 1.4142136, \ 2.236068, \ 2.236068, \ 2.236068, \ 3, \ 5.3851648, \ 8.4852814, \ 7.8102497, \ 7.2111026, \ 9.2195445, \ 8.6023253, \ 8.0622577, \ 10, \ 9.4339811, \ 8.9442719, \ 2, \ 1, \ 2.236068, \ 2.236068, \ 6.7082039, \ 9.8994949, \ 9.2195445, \ 8.6023253, \ 10.6301458, \ 10, \ 9.4339811, \ 11.4017543, \ 10.8166538, \ 10.2956301, \ 2.236068, \ 1, \ 2.236068, \ 6.0827625, \ 8.6023253, \ 7.8102497, \ 7.0710678, \ 9.2195445, \ 8.4852814, \ 7.8102497, \ 9.8994949, \ 9.2195445, \ 8.6023253, \ 2, \ 1.4142136, \ 7.6157731, \ 10.6301458, \ 9.8994949, \ 9.2195445, \ 8.2462113, \ 10.8166538, \ 10, \ 9.2195445, \ 11.4017543, \ 10.6301458, \ 9.8994949, \ 9.2195445, \ 8.2462113, \ 10.8166538, \ 10, \ 9.2195445, \ 11.4017543, \ 10.6301458, \ 9.8994949, \ 12.0415946, \ 11.3137085, \ 10.6301458, \ 4.1231056, \ 4, \ 4.1231056, \ 5.0990195, \ 5.50990195, \ 6.0827625, \ 6, \ 6.0827625, \ 1, \ 2, \ 1, \ 1.4142136, \ 2.236068, \ 2, \ 2.236068, \ 2.236068, \ 1.4142136, \ 1,$

Distâncias 'Manhattan':

2, 1, 2, 2, 11, 11, 13, 13, 14, 14, 14, 8, 11, 12, 13, 12, 13, 14, 13, 14, 15, 1, 2, 2, 9, 11, 11, 13, 12, 14, 14, 8, 11, 12, 13, 12, 13, 14, 13, 14, 15, 1, 1, 10, 10, 12, 12, 13, 13, 13, 7, 10, 11, 12, 11, 12, 13, 12, 13, 14, 2, 11, 11, 13, 11, 14, 12, 14, 6, 9, 10, 11, 10, 11, 12, 11, 12, 13, 9, 9, 11, 11, 12, 12, 12, 6, 9, 10, 11, 10, 11, 12, 11, 12, 13, 10, 10, 10, 12, 11, 13, 13, 7, 12, 11, 12, 13, 12, 13, 14, 13, 14, 2, 2, 3, 3, 3, 7, 12, 11, 10, 13, 12, 11, 14, 13, 12, 2, 1, 3, 3, 9, 14, 13, 12, 15, 14, 13, 16, 15, 14, 3, 1, 3, 7, 12, 11, 10, 13, 12, 11, 14, 13, 12, 2, 2, 10, 15, 14, 13, 16, 15, 14, 17, 16, 15, 2, 8, 13, 12, 11, 14, 13, 12, 15, 14, 13, 10, 15, 14, 13, 16, 15, 14, 17, 16, 15, 5, 4, 5, 6, 5, 6, 7, 6, 7, 1, 2, 1, 2, 3, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 3, 2, 1, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 1, 2, 1

Distâncias de Mahalanobis:

 $0.1089331,\ 0.0554805,\ 0.1355485,\ 0.2219218,\ 3.2670729,\ 6.7131345,\ 7.8962527,\ 8.2156376,\ 9.2699563,$ $9.6159566,\ 10.8741683,\ 2.4240299,\ 4.1896137,\ 4.8797448,\ 5.6808369,\ 5.1240362,\ 5.8274751,\ 6.6418749,$ 6.1919795, 6.9087261, 7.7364335, 0.0667603, 0.2670413, 0.1355485, 2.1890222, 5.7478824, 6.7131345,7.2729452, 7.9891849, 8.575611, 9.6159566, 2.1874696, 4.5315583, 5.1240362, 5.8274751, 5.5861938, $6.1919795,\ 6.9087261,\ 6.7743499,\ 7.3934433,\ 8.1234976,\ 0.0667603,\ 0.0554805,\ 2.7233265,\ 5.548045,$ $6.6335101,\ 6.9262795,\ 7.8962527,\ 8.2156376,\ 9.3761961,\ 1.7871295,\ 3.6104434,\ 4.1896137,\ 4.8797448,$ $4.5315583,\ 5.1240362,\ 5.8274751,\ 5.5861938,\ 6.1919795,\ 6.9087261,\ 0.1089331,\ 3.3911514,\ 5.4817283,$ 6.6874063, 6.7131345, 7.9368412, 7.9891849, 9.2699563, 1.5203101, 2.8228491, 3.3887117, 4.0655352, $3.6104434,\ 4.1896137,\ 4.8797448,\ 4.5315583,\ 5.1240362,\ 5.8274751,\ 2.290541,\ 4.4939165,\ 5.4817283,$ 5.7478824, 6.6335101, 6.9262795, 7.9891849, 1.2611901, 3.142234, 3.6104434, 4.1896137, 4.0500412,4.5315583, 5.1240362, 5.091369, 5.5861938, 6.1919795, 3.3887117, 3.3848461, 4.8797448, 4.1593228,5.6808369, 5.7520648, 3.2712554, 7.9870936, 8.0779979, 8.2798631, 9.5092731, 9.6134851, 9.828658,11.1649733, 11.282493, 11.5109736, 0.1089331, 0.1355485, 0.2620667, 0.3152975, 0.4993241, 1.5209755, $3.9215902,\ 3.3911514,\ 2.9716736,\ 4.709628,\ 4.192497,\ 3.7863269,\ 5.6311865,\ 5.1273632,\ 4.7345007,$ $0.2670413,\ 0.0554805,\ 0.3491371,\ 0.3152975,\ 2.3586004,\ 5.3377199,\ 4.709628,\ 4.192497,\ 6.2459707,$ 5.6311865, 5.1273632, 7.2877421, 6.6862656, 6.19575, 0.2959063, 0.0554805, 0.2620667, 1.9842103, $3.9217803,\ 3.2670729,\ 2.7233265,\ 4.5629898,\ 3.9215902,\ 3.3911514,\ 5.3377199,\ 4.709628,\ 4.192497,$ $0.2670413,\ 0.1355485,\ 3.0399231,\ 6.0767728,\ 5.3377199,\ 4.709628,\ 6.9717158,\ 6.2459707,\ 5.6311865,$ 8.0001795, 7.2877421, 6.6862656, 0.1089331, 2.6921485, 4.6874485, 3.9217803, 3.2670729, 5.3153503, $4.5629898,\ 3.9215902,\ 6.0767728,\ 5.3377199,\ 4.709628,\ 3.6048668,\ 6.1786718,\ 5.3153503,\ 4.5629898,$ $6.9267865,\ 6.0767728,\ 5.3377199,\ 7.8084219,\ 6.9717158,\ 6.2459707,\ 1.0704147,\ 1.068165,\ 1.1768763,$ $1.6579498,\ 1.6690078,\ 1.7910268,\ 2.3790055,\ 2.4033713,\ 2.538698,\ 0.0554805,\ 0.2219218,\ 0.0667603,$ 0.1355485, 0.3152975, 0.2670413, 0.3491371, 0.5421939, 0.0554805, 0.1089331, 0.0667603, 0.1355485, $0.2959063,\ 0.2670413,\ 0.3491371,\ 0.2620667,\ 0.1089331,\ 0.0667603,\ 0.4357322,\ 0.2959063,\ 0.2670413,$ $0.0554805,\ 0.2219218,\ 0.0667603,\ 0.1355485,\ 0.3152975,\ 0.0554805,\ 0.1089331,\ 0.0667603,\ 0.1355485,$ 0.2620667, 0.1089331, 0.0667603, 0.0554805, 0.2219218, 0.0554805

Apesar dos valores serem bem diferentes, isso se dá mais pelo método de cálculo de distância de cada uma das técnicas. A distância Euclidiana trabalha basicamente com a "distância bruta" entre um ponto e outro, literalmente medindo a distância linear. A distância Manhattan trabalha com distância absoluta entre as coordenadas dos pontos. A distância de Mahalanobis busca centralizar os dados, calculando as distâncias levando em consideração a correlação entre as dimensões.

Portanto, apesar de improvável, é possível que mesmo com valores observados absolutamente distoantes, agrupar as variáveis segundo as três distâncias trabalhadas e em todos os casos, retornar os exatos mesmos clusters pros dados.

c)

Irei apresentar corridamente três painéis, cada um composto por dois dendogramas (agregação simples e média), referentes respectivamente aos valores de distância Euclidiana, Manhattan e de Mahalanobis.

Single Linkage **Average Linkage** 9 9 9 2 ∞ ဖ 4 Height Height ဖ က 3 4 o− ao y<u>aoo √4</u>000 D_manhattan D_manhattan hclust (*, "single") hclust (*, "average") Single Linkage **Average Linkage** 9 2.0 2 1.5 1.0 Height 3 Ŋ o. 0.0 D_Mahalanobis D_Mahalanobis

Em todos os dendogramas, foi confirmada a suspeita levantada no item (a); em que haviam 3 grupos aglomerativos bem definidos, e mais 2 grupos formados cada um por apenas um *outlier*. Cada dendograma teve seu formato específico, mas todos foram eficientes em agrupar os dados pelos seus similares.

hclust (*, "average")

hclust (*, "single")

d)

Primeiro, devemos identificar o número ideal de clusters, já que o k-means necessita que o usuário entre manualmente com o número de clusters que o algoritmo deve separar. Já foi visto anteriormente que o número é 3 ou 5, dependendo da abordagem que queira se fazer quanto aos outliers. Porém, irei também seguir a praxe deste algorítmo, que é plotar um gráfico que ajuda a determinar o número ideal de clusters.

Pelo método de elbow, o número ideal são 3 clusters...

Portanto, executando o k-means para 3 clusters, iremos obter o seguinte resultado:

##		${\tt cluster}$	x	У
##	1	1	1.3728584	0.7004490
##	2	2	-0.1489924	-1.0973700
##	3	3	-0.9851742	0.8105195

Aqui, notamos que o k-means foi relativamente eficiente em classificar os dois outliers em um dos clusters, sem muita perda de generalização.

Porém, se quisermos forçar a mão e testar a aglomeração k-means com 5 grupos, este será o resultado:

##		${\tt cluster}$	ponto	x	У	cluster
##	1	1	6.0	7.0	14.0	3.00
##	2	2	19.5	7.0	1.5	2.00
##	3	3	3.0	2.0	9.0	3.00
##	4	4	9.5	13.5	9.0	1.00
##	5	5	14.5	7.0	4.0	2.25

Em que notamos que o k-means não foi nada eficiente em identificar os outliers cada um como sendo um grupo robustamente separado dos outros três.

84.

a)

Apesar d'eu particularmente não gostar desse tipo de gráfico, por talvez trazer um ar de ridículo a um trabalho potencialmente sério, é inegável seu valor num exemplo como esse, em que conseguimos identificar de forma simples e didática a diferença entre os dois grupos de notas disponíveis, de forma muito mais visual que vetores numéricos ou gráficos potencialmente de interpretação complexa para o público leigo.

b)

Aqui, irei testar diferentes formas de agrupamento, para avaliar quais métodos performam melhor para este conjunto de dados.

k-means:

Aglomerativo:

Cluster Dendrogram

Para um conjunto relativamente grande como esse, é praticamente impossível pela figura verificar onde

está cada valor. Entretanto, ao verificar os dois grupos principais formados pelo dendograma e verificando os valores que foram agregados à eles, notamos que este foi extremamente eficiente em dividir as notas genuínas das falsificadas, com pouquíssimas observações sendo classificadas incorretamente.

Algorítmos não hierárquicos:

CLARA:

Notamos que CLARA agrupou apenas 3 valores errados, apontando 3 notas genuínas como falsificadas. Além disso, não apontou nenhuma falsificada como genuína.

PAM:

Notamos que PAM também agrupou apenas 3 valores errados, também apontando 3 notas genuínas como falsificadas. Também não apontou nenhuma falsificada como genuína. O resultado foi idêntico ao retornado por PAM neste caso.

AGNES:

Banner of agnes(x = X, mof agnes(x = X, metric = "manhatta"

Banner of agnes(x = daisyagnes(x = daisy(X), diss = TRUE, m

Aqui, testamos tanto AGNES utilizando as distâncias de Manhattan com aglomeração simples no primeiro caso, e usando distâncias euclidianas com aglomeração completa no segundo caso. Em nenhum dos dois AGNES performou tão bem quanto CLARA e PAM para este conjunto de dados.

c)

Para o método mclust, está indicando que o ideal seriam 3 agrupamentos, com o modelo VVE. Como sabemos que são apenas 2 grupos, temos que este método provavelmente não irá funcionar bem.

Seguindo a sugestão da BIC, iremos ajustar com o modelo $\it VVE$ de 3 grupos

Percebemos que este foi o modelo que mais errou dos testados até agora. Apenas por fins didáticos, testarei o modelo mais 'complexo' VVV, forçando o número de clusters como igual à dois.

Percebemos que aqui, foi dissolvido o grupo 3 que possivelmente continham informações mais de "fronteira" entre os dois grupos mais sólidos, e estas foram diluídas entre os 2 grupos robustos existentes, com um dos grupos "ganhando" 3 itens, enquanto o outro ficando com o restante das 13 observações. Apesar do erro bruto não parecer tão grande, é um pouco decepcionante para um algoritmo tão robusto e pesado um resultado como este. Isso nos leva a suspeitar que as distribuições diferem bastante de uma normal multivariada, apesar deste não ser exatamente um pressuposto rígido deste modelo.

d)

rand_kmear	nsrand_clara	rand_pam	APER_mclustVVAFBER_	_mclustVVr	W2d_mclustVVE	and_mclustVVV2
0.8456292	0.9406018	0.9406018	0.895	0.92	-0.0049758	-0.004616

Aqui notamos que, de todos os algorítmos aqui testados, os que perfomaram melhor foram os (esquecidos e discriminados) CLARA e PAM.