Examen de Comunicacions Analògiques i Digitals EET, 16/04/2018, 15:00

I. INDICACIONS

- 1) NO pot utilitzar cap aparell electrònic, ni en la seva funcionalitat horària.
- 2) Està permès únicament l'ús de rellotge analògic. Si no en disposa d'un, pregunti l'hora al professor.
- 3) No es pot abandonar l'aula amb l'enunciat. Enunciat i Resolució es publicaran a Atenea després de l'examen.
- 4) No es pot abandonar l'aula durant la realització de l'examen.
- 5) TEMPS DISPONIBLE: 2 h. 40 min.

II. PREGUNTES

1) Tenim dues variables aleatòris independents X i Y amb la mateixa funció de densitat de probabilitat $f_X(x) = f_Y(x) = \alpha e^{-\beta|x|}$ (exponencial bilateral)..

Es demana:

- a) Calculi la potència P_Z de la variable Z = XY en funció de la potència P_X de la variable X.
- b) Calculi la potència P_X de la variable X, deixant el resultat en funció d' α i β . Utilitzi que la integral indefinida $\int x^2 e^x dx \text{ és de la forma } \int x^2 e^x dx = (ax^2 + bx + c)e^x + d. \text{ Determini també el valor de les constants } a, b \text{ i } c.$
- 2) Un senyal aleatori X(t) (modulació AM) ve definit per l'expressió:

$$X(t) = (A + \mu b(t))\cos(2\pi f_0 t + \Phi) \tag{1}$$

on A, μ, f_0 són constants, Φ és una variable aleatòria distribuïda uniformement en $[0, 2\pi)$ i b(t) és un senyal aleatori estacionari de mitja zero, densitat espectral de potència $S_b(f) = \frac{P_b}{2B_b} \Pi\left(\frac{f}{2B_b}\right)$ i estadísticament independent de Φ .

Es demana

- a) Calculi la funció d'autocorrelació $R_X(t+\tau,t)$ del senyal X(t) en funció de l'autocorrelació del senyal b(t) i de la resta de paràmetres.
- b) Calculi la funció d'autocorrelació promig $\overline{R}_X(\tau)$ del senyal X(t) i la seva potència P_X .
- c) Calculi l'espectre de densitat de potència $S_X(f)$ de X(t). Dibuixi l'espectre i indiqui en el dibuix totes les freqüències i nivells significatius. Pel dibuix tingui en compte que $f_0 > B_b$.
- 3) A l'entrada d'un receptor tenim el següent senyal,

$$Y(t) = \sqrt{\frac{G_T}{L_c}} \cdot X(t - t_d) + w(t)$$
 (2)

on X(t) és un senyal de densitat espectral de potència $S_X(f) = S_{\max} \cdot \frac{|f|}{B_x} \cdot \Pi\left(\frac{f}{2B_x}\right)$ i w(t) és un senyal de soroll de densitat espectral de potència $S_w(f) = \frac{1}{2}N_0$. Els paràmetres G_T i L_c són, respectivament, el guany de potència del transmissor i l'atenuació de potència del canal. El paràmetre t_d és el retard del canal.

Es demana:

- a) Dibuixi l'esquema del receptor que ens permet recuperar el senyal X(t) (degradat per soroll). Indiqui i dibuixi les respostes freqüencials de tots els filtres de l'esquema del receptor.
- b) Calculi la relació senyal a soroll SNR amb la que es recupera el senyal X(t).
- c) Si X(t) fos un senyal pas banda, amb $X(t) = A(t)\cos(2\pi f_c t)$ i A(t) un senyal banda base amb espectre de densitat de potència $S_A(f) = \frac{P_A}{B_A} \Lambda\left(\frac{f}{B_A}\right)$, dibuixi el receptor que permet recuperar una versió sorollosa del senyal banda base A(t). Indiqui i dibuixi les respostes freqüencials de tots els filtres de l'esquema del receptor pas banda.