Τριγωνομετρικοί αριθμοί

• Ημίτονο =
$$\frac{Aπέναντι Κάθετη}{Υποτείνουσα}$$
 , ημ $\omega = \frac{AΓ}{BΓ}$

$$ullet$$
 Συνημίτονο $=rac{\Pi
ho \sigma \kappa \epsilon$ ίμενη Κάθετη $}{Y \pi \sigma \tau \epsilon$ ίνουσα , συν $\omega =rac{AB}{B\Gamma}$

• Εφαπτομένη =
$$\frac{A\pi$$
έναντι Κάθετη}{Προσκείμενη Κάθετη} , εφ $\omega = \frac{A\Gamma}{AB}$

• Συνεφαπτομένη =
$$\frac{\Pi$$
ροσκείμενη Κάθετη Λ , σφ Ω = $\frac{AB}{A\Gamma}$

$$\eta\mu\omega = \frac{AM}{OM} = \frac{y}{\rho}$$

Συνημίτονο

Συνημίτονο της γωνίας ω ονομάζεται ο λόγος της τετμημένης του σημείου προς την απόσταση του από την αρχή των αξόνων.

$$συνω = \frac{BM}{OM} = \frac{x}{a}$$

Εφαπτομέν

Εφαπτομένη της γωνίας ω ονομάζεται ο λόγος της τεταγμένης του σημείου προς την τετμημένη του.

εφ
$$ω = \frac{AM}{BM} = \frac{y}{x}$$
 , $x \neq 0$

Συνεφαπτομένη

Συνεφαπτομένη της γωνίας ω ονομάζεται ο λόγος της τετμημένης του σημείου προς την τεταγμένη του.

$$σφω = \frac{BM}{AM} = \frac{x}{y} . y \neq 0$$

Τριγωνομετρικός κύκλος

Τριγωνομετρικοί αριθμοί βασικών γωνιών

ΒΑΣΙΚΕΣ ΓΩΝΙΕΣ										
Θέση	Σημείο άξονα	1° Τεταρτημόριο			Σημείο άξονα					
Μοίρες	0°	30°	45°	60°	90°	180°	270°	360°		
Ακτίνια	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π		
Σχήμα	\bigoplus	\bigoplus	\bigoplus		\bigoplus	\bigoplus	\bigoplus	\bigoplus		
ημω	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0		
συνω	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1		
εφω	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Δεν ορίζεται	0	Δεν ορίζεται	0		
σφω	Δεν ορίζεται	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	Δεν ορίζεται	0	Δεν ορίζεται		

Τριγωνομετρικές ταυτότητες

1.
$$\eta \mu^2 \omega + \sigma v v^2 \omega = 1$$

3.
$$\sigma \phi \omega = \frac{\sigma v \omega}{\eta u \omega}$$

$$5. \ \operatorname{ouv}^2 \omega = \frac{1}{1 + \varepsilon \varphi^2}$$

2. εφ
$$\omega = \frac{\eta \mu \omega}{\sigma \upsilon \nu \omega}$$

4. εφ
$$\omega \cdot \sigma$$
φ $\omega = 1$

6.
$$\eta \mu^2 \omega = \frac{\epsilon \varphi^2 \omega}{1 + \epsilon \varphi^2 \omega}$$

Αναγωγή στο 1ο τεταρτημόριο

Σχέση γωνίας φ με την ω	Συμβολισμός $\varphi =$	ημφ	συνφ	εφφ	σφφ
Αντίθετη	$-\omega$	-ημω	συνω	–εφω	-σφω
Παραπληρωματική	$180^{\circ} - \omega$	ημω	-συνω	–εφω	-σφω
Με διαφορά 180°	$180^{\circ} + \omega$	-ημω	-συνω	εφω	σφω
Συμπληρωματική	90° – ω	συνω	ημω	σφω	εφω
Με διαφορά 90°	90° + ω	συνω	-ημω	-σφω	–εφω
Με άθροισμα 270°	$270^{\circ} - \omega$	$-\sigma$ υν ω	-ημω	σφω	εφω
Με διαφορά 270°	$270^{\circ} + \omega$	$-\sigma$ υν ω	ημω	-σφω	–εφω
Με άθροισμα 360°	$360^{\circ} - \omega$	-ημω	συνω	–εφω	-σφω
Με διαφορά κ · 360°	$\kappa \cdot 360^{\circ} + \omega$	ημω	συνω	εφω	σφω

Τριγωνομετρικές συναρτήσεις

Για την απλή τριγωνομετρική συνάρτηση $f(x) = \eta \mu x$ του ημιτόνου ισχύουν τα εξής :

- α. Η συνάρτηση f έχει πεδίο ορισμού το σύνολο των πραγματικών αριθμών $\mathbb R$.
- β. Το σύνολο τιμών της f είναι το κλειστό διάστημα [-1,1].
- γ. Αποτελεί περιοδική συνάρτηση με περίοδο $T=2\pi$.
- δ. Μελετώντας τη συνάρτηση στο διάστημα $[0,2\pi]$ πλάτους μιας περιόδου έχουμε ότι είναι γνησίως αύξουσα στα διαστήματα $\left[0,\frac{\pi}{2}\right],\left[\frac{3\pi}{2},2\pi\right]$ ενώ είναι γνησίως φθίνουσα στο διάστημα $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$.
- ε. Παρουσιάζει μέγιστο στη θέση $x = \frac{\pi}{2}$ την τιμή 1 και ελάχιστη τιμή -1 στη θέση $x = \frac{3\pi}{2}$.

- στ. Ω ς περιοδική συνάρτηση, οι τιμές, η μονοτονία τα ακρότατα και κάθε άλλο χαρακτηριστικό επαναλαμβάνονται σε κάθε διάστημα πλάτους μιας περιόδου 2π . Τα διαστήματα αυτά θα είναι της μορφής $[2\kappa\pi, 2\,(\kappa+1)\,\pi]$ με $\kappa\in\mathbb{Z}$.
- ζ. Γενικά η f είναι γνησίως αύξουσα στα διαστήματα $\left[2\kappa\pi, 2\kappa\pi + \frac{\pi}{2}\right]$ και $\left[2\kappa\pi + \frac{3\pi}{2}, 2(\kappa+1)\pi\right]$ ενώ είναι γνησίως φθίνουσα στα διαστήματα $\left[2\kappa\pi + \frac{\pi}{2}, 2\kappa\pi + \frac{3\pi}{2}\right]$ με $\kappa \in \mathbb{Z}$.
- η. Παρουσιάζει μέγιστο στις θέσεις $x=2\kappa\pi+\frac{\pi}{2}$ την τιμή 1 και ελάχιστο στις θέσεις $x=2\kappa\pi+\frac{3\pi}{2}$ την τιμή -1.
- θ. Η γραφική της παράσταση τέμνει τον οριζόντιο άξονα x'x στα σημεία με τετμημένες $x=\kappa\pi$ με $\kappa\in\mathbb{Z}$.

H συνάρτηση f(x) = συν x

Για την απλή τριγωνομετρική συνάρτηση f(x) = συν x του συνημιτόνου ισχύουν τα εξής :

α. Η συνάρτηση f έχει πεδίο ορισμού το σύνολο των πραγματικών αριθμών $\mathbb R$.

- β. Το σύνολο τιμών της f είναι το κλειστό διάστημα [-1, 1].
- γ. Αποτελεί περιοδική συνάρτηση με περίοδο $T=2\pi$.
- δ. Αν μελετήσουμε τη συνάρτηση στο διάστημα $[0, 2\pi]$ πλάτους μιας περιόδου βλέπουμε οτι είναι γνησίως αύξουσα στο διάστημα $[\pi, 2\pi]$ ενώ είναι γνησίως φθίνουσα στο διάστημα $[0, \pi]$.
- ε. Παρουσιάζει μέγιστο στις θέση x=0 και $x=2\pi$ την τιμή 1 και ελάχιστη τιμή -1 στη θέση $x=\pi$.

- στ. Ω ς περιοδική συνάρτηση, οι ιδιότητες και τα χαρακτηριστικά επαναλαμβάνονται σε κάθε διάστημα πλάτους μιας περιόδου 2π . Τα διαστήματα αυτά θα είναι της μορφής $[2\kappa\pi, 2(\kappa+1)\pi]$ με $\kappa\in\mathbb{Z}$.
- ζ. Η f είναι γνησίως αύξουσα στα διαστήματα $[2\kappa\pi+\pi,2(\kappa+1)\pi]$ ενώ είναι γνησίως φθίνουσα στα διαστήματα $[2\kappa\pi,2\kappa\pi+\pi]$ με $\kappa\in\mathbb{Z}$.
- η. Παρουσιάζει μέγιστο στις θέσεις $x=2\kappa\pi$ και $x=2(\kappa+1)\pi$ την τιμή 1 και ελάχιστο στις θέσεις $x=2\kappa\pi+\pi$ την τιμή -1.
- θ. Η γραφική της παράσταση τέμνει τον οριζόντιο άξονα x'x στα σημεία με τετμημένες $x=\kappa\pi+\frac{\pi}{2}$ με $\kappa\in\mathbb{Z}$.