# A Summary on Morse Theory

Fang-Rong ZHAN(詹方榕)

April 10, 2022



CONTENTS

## Contents

| 1                        | Mo                          | Morse Function on a Manifold                   |    |  |
|--------------------------|-----------------------------|------------------------------------------------|----|--|
|                          | 1.1                         | Morse Function                                 | 1  |  |
|                          | 1.2                         | Existence of a Morse Function(WIP)             | 2  |  |
|                          | 1.3                         | Morse's Inequality                             | 2  |  |
|                          | 1.4                         | Applications                                   | 2  |  |
| 2 Topology of Path Space |                             | pology of Path Space                           | 4  |  |
|                          | 2.1                         | Path Space and Energy Functional               | 4  |  |
|                          | 2.2                         | Index Theorem                                  | 5  |  |
|                          | 2.3                         | Topology                                       | 6  |  |
|                          | 2.4                         | Loop Space and Freudenthal Suspension Theorem  | 7  |  |
| 3                        | Bott's Periodicity Theorems |                                                |    |  |
|                          | 3.1                         | The Unitary Group                              | 8  |  |
|                          | 3.2                         | The Orthogonal and Symplectic Group            | 10 |  |
| 4                        | Mo                          | $rse\ Homology(WIP)$                           | 12 |  |
| 5                        | h-C                         | $\operatorname{cobordism}(\operatorname{WIP})$ | 13 |  |
|                          | 5 1                         | Smale Cancellation                             | 13 |  |

This summary is aimed to give an introduction to Morse theory as well as some application in topology and some later development. I assume that the reader has been familiar with some basic knowledge of Riemannian geometry.

#### 1 Morse Function on a Manifold

#### 1.1 Morse Function

For a n-manifold M together with a smooth map

$$f:M\to\mathbb{R},$$

we call f is critical at x if

$$\mathrm{d}f_x = 0$$
,

and non-degenerate if Hess  $f_x$  is non-singular, i.e.

$$\det (\operatorname{Hess} f_x) \neq 0.$$

We call a function is of **Morse** if all of its critical points are non-degenerated. Of course we do not know a priori if there exists a Morse function for a given manifold. However, in next section we will see not only that there exists a Morse function for any manifold, but also that almost every function is of Morse. We define the **index** of a non-degenerated critical point x as the dimension of maximal negetively definite subspace of Hess  $f_x$ . From elementary linear algebra we know that it is also equal to the number of negative eigenvalues with multiplicity. More precisely, for a Morse function  $f: M \to \mathbb{R}$ ,

**Theorem 1.1.** Near each critical point of f, there exists a coordination  $(x^1, \dots, x^n)$  such that there holds the expression

$$f = const - (x^1)^2 - (x^p)^2 + (x^{p+1})^2 + \dots + (x^n)^2,$$

where p is the index of the critical point.

Therefore,

#### Corollary 1.2. All critical points of a Morse function are isolated.

The idea of Morse Theory is that the critical points of a Morse function can tell us the homotopy type of the manifold. To illustrate the idea rigorously, we consider the following facts. First we denote  $M^a = f^{-1}(-\infty, a]$ .

**Theorem 1.3.** If  $f^{-1}[a,b]$  is compact and contains no critical points, then there is a diffeomorphism  $M^b \approx M^a$ . Furthermore,  $M^a$  is deformation retract of  $M^b$ .

Since all critical points are isolated, we can consider the level set passing through a critical point, which give rise to attaching a new cell.

**Theorem 1.4.** Let the non-degenerated critical point be p with index  $\lambda$ , and f(p) = c. If  $f^{-1}[c-\varepsilon,c+\varepsilon]$  is compact and contains no critical points other than p for some  $\varepsilon > 0$ , then  $M^{c+\varepsilon}$  has the homotopy type of  $M^{c-\varepsilon}$  with a  $\lambda$ -cell attached.

After some preparation we could sum up the above idea as

**Theorem 1.5.** If  $M^a$  is compact for each a, then M has the homotopy type of a CW-complex, with one cell of dimension  $\lambda$  for each critical point of index  $\lambda$ .

#### 1.2 Existence of a Morse Function(WIP)

**Theorem 1.6** (Sard). If  $f: M_1 \longrightarrow M_2$  is of  $C^1$ , where  $M_1, M_2$  are differentiable manifold of the same dimension, then  $f(\operatorname{crit}(f))$  is zero-measured in  $M_2$ .

#### 1.3 Morse's Inequality

The topology of M gives some constraints on the critical points of a Morse function by some inequalities which we will study in the following. Suppose M is compact.

Let  $C_{\lambda}$  denote the number of critical points of index  $\lambda$ ,  $b_{\lambda}(X,Y)$  the  $\lambda$ -th Betti number of (X,Y),  $b_{\lambda}(M) = b_{\lambda}(M,\varnothing)$ .

**Theorem 1.7** (Weak Morse Inequality).  $b_{\lambda}(M) \leq C_{\lambda}$ , and  $\sum (-1)^{\lambda} b_{\lambda}(M) = \sum (-1)^{\lambda} C_{\lambda}$ .

**Theorem 1.8** (Strong Morse Inequality).

$$b_{\lambda}(M) - b_{\lambda-1}(M) + \dots \pm b_0(M) \le C_{\lambda} - C_{\lambda-1} + \dots \pm C_0$$

#### 1.4 Applications

**Theorem 1.9** (Reeb). A n-manifold with only 2 critical points is topologically a sphere  $\mathbb{S}^n$ .

**Theorem 1.10.**  $\mathbb{C}P^n$  has the homotopy type of  $e^0 \cup e^2 \cup \cdots \cup e^{2n}$ .

Therefore, from cellular homology we derive that  $H_i(\mathbb{C}P^n;\mathbb{Z}) = \begin{cases} \mathbb{Z}, & i = 0, 2, \dots, 2n \\ 0, & \text{otherwise} \end{cases}$ .

### 2 Topology of Path Space

#### 2.1 Path Space and Energy Functional

Suppose M is a complete Riemannian n-manifold with metric  $g = \langle -, - \rangle$ . Let  $\Omega(M; a, b)$  denote all piecewise smooth path connecting from a to b in M. It is obvious that the space is infinitly dimensional. The tangent space  $T_{\omega}\Omega(M; a, b)$  of  $\omega(M; a, b)$  at  $\omega$  consists of piecewise smooth vector fields such that W(0) = W(1) = 0.

We define the energy functional as

$$E: \Omega(M; a, b) \to \mathbb{R}: \gamma \mapsto \int_0^1 \|\dot{\gamma}(t)\|^2 dt,$$

where  $\gamma(0) = a, \gamma(1) = b$ . We claim that E is a Morse function on the infinitly dimensional space  $\Omega(M; a, b)$ . To show this we need to study its critical points and Hessian.

Let  $\bar{\alpha}(u) = \alpha(u;t)$  be 1-parameter variation of  $\gamma$  with variation vector field  $W_t = \frac{\mathrm{d}}{\mathrm{d}u}\Big|_{u=0} \bar{\alpha}_t$ , then we think of the differential at  $\gamma$  to be

$$dE_{\gamma}: T_{\gamma}\Omega(M; a, b) \to \mathbb{R}: W \mapsto \frac{d}{du}\Big|_{u=0} E(\bar{\alpha}).$$

Therefore, a critical path  $\gamma$  of E should satisfy  $dE_{\gamma}=0$ . We will not give the conditions that make the definition be well-defined, neither will show it. Instead, we define a path to be critical iff for all variation  $\alpha$  there holds  $\frac{d}{du}\Big|_{u=0} E(\bar{\alpha}) = 0$ .

Similarly, let  $\bar{\beta}(u_1, u_2) = \beta(u_1, u_2; t)$  be a 2-parameter variation with  $\beta(0, 0; t) = \gamma(t)$ ,  $\frac{\partial \beta}{\partial u_1}(0, 0; t) = W_1(t)$ ,  $\frac{\partial \beta}{\partial u_2}(0, 0; t) = W_2(t)$ . We claim that the Hessian of E at a critical path  $\gamma$  is given by

Hess 
$$E_{\gamma}(W_1, W_2) = \left. \frac{\partial^2}{\partial u_1 \partial u_2} \right|_{(0,0)} E(\bar{\beta}).$$

We will show it is exactly a well-defined quadratic form. A priori we do not know the index of such a quadratic form is meaningful because it could be infinity. However, in next subsection we will see that the index of E at a critical path is surprisingly always finite.

So if  $\Omega(M; a, b)$  is a manifold, then by the theory from the last section we can conclude that  $\Omega(M; a, b)$  has the homotopy type of a finite CW complex, with one cell of dimension  $\lambda$  for each critical point of index  $\lambda$ . However, it is not true that  $\Omega(M; a, b)$  is a manifold; however, the conclusion remains true. We can use some finite dimensional manifold to approximate  $\Omega(M; a, b)$ , which we will investigate in the following subsections.

In order to do calculation, we make some definition and evaluate two useful formula then. Let  $V_t = \dot{\omega}$  be the velocity vector of  $\omega$ ,  $A_t = \nabla_{\dot{\omega}}\dot{\omega}$  the acceleration vector,  $\Delta_t V = V_{t+} - V_{t-}$  the discontinuity in the velocity vector at t. We have

**Theorem 2.1** (First variation formula of E).

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}u} \Big|_{u=0} E(\bar{\alpha}) = -\sum_{t} \langle W_{t}, \Delta_{t} V \rangle - \int_{0}^{1} \langle W_{t}, A_{t} \rangle \, \mathrm{d}t.$$

From the formula we easily derive that

Corollary 2.2.  $\gamma$  is a critical path iff it is a geodesic.

So we only need to focus on geodesics.

**Theorem 2.3** (Second variation formula of E).

$$\frac{1}{2} \left. \frac{\partial^2}{\partial u_1 \partial u_2} \right|_{(0,0)} E(\bar{\beta}) = -\sum_t \langle W_2, \Delta_t \nabla_{\dot{\gamma}} W_1 \rangle - \int_0^1 \langle W_2, \nabla_{\dot{\omega}} \nabla_{\dot{\omega}} W_1 + R(V, W_1) V \rangle \, \mathrm{d}t.$$

Immediately,

Corollary 2.4. Hess E is a well-defined symmetric and bilinear functional of  $W_1$  and  $W_2$ .

Moreover,

**Theorem 2.5.** W belongs to the null space of  $\operatorname{Hess} E$  iff W is a Jacobi field. Hence E is degenerate iff a, b are conjugate points, with nullity equal to multiplicity of a, b as conjugate points.

Non-conjugate points always exist. In fact we have

**Lemma 2.6.**  $\exp_p v$  is conjugate to p along a geodesic iff  $\exp_p$  is critical at v.

Therefore, together with Sard's theorem, we get that for a fixed p, almost all q is not conjugate to p along any geodesic.

#### 2.2 Index Theorem

**Theorem 2.7** (Morse). The index ind Hess E is equal to number of points  $\gamma(t)(0 < t < 1)$  such that  $\gamma(t)$  is conjugate to  $\gamma(1)$  with multiplicity. Moreover, ind Hess  $E < \infty$ .

To prove it, we need the following definitions and results.

Lemma 2.8.

$$T_{\gamma}\Omega = T_{\gamma}\Omega(t_0,\cdots,t_k) \oplus T'.$$

**Lemma 2.9.** ind Hess  $E = \text{ind Hess } E|_{T_{\gamma}\Omega(t_0,\dots,t_n)}$ .

#### 2.3 Topology

First we let the distance function

$$d(\omega, \omega') = \max_{0 \le t \le 1} \rho(\omega(t), \omega'(t)) + \left[ \int_0^1 \left( \frac{\mathrm{d}s}{\mathrm{d}t} - \frac{\mathrm{d}s'}{\mathrm{d}t} \right)^2 \mathrm{d}t \right]^{1/2}$$

induces the topology on  $\Omega$ . Then E is continuous. Therefore  $\Omega^c := E^{-1}[0, c]$  is a closed subset.  $\Omega^c$  has a finite dimensional approximation. Notice

**Theorem 2.10.** Fix c > 0 such that  $\Omega^c \neq \varnothing$ . For all sufficiently fine subdivisions  $(t_0, \dots, t_k)$  of [0,1],  $B := \operatorname{Int} \Omega(t_0, \dots, t_k)^c$  can be given the structure of a smooth finite dimensional manifold in a natural way.

Such B is what we need to study  $\Omega^c$ .

**Theorem 2.11.**  $B^a$  is compact and is a deformation retract of  $\Omega^a$ . The critical points are the same. The index of the same critical point is also the same.

To sum up,

**Theorem 2.12.** If p, q are not conjugate along any geodesic of length  $\leq \sqrt{a}$ , then  $\Omega^a$  has the homotopy type of a finite CW-complex, with one cell of dimension  $\lambda$  for each geodesic in  $\Omega^a$  at which ind Hess  $E = \lambda$ .

To study  $\Omega$ , we need definie  $\Omega^*$  of all continuous path connecting from a to b with compact open topology induced by

$$d^*(\omega, \omega') = \max_t \rho(\omega(t), \omega'(t)).$$

We have that

**Theorem 2.13.**  $i: \Omega \to \Omega^*$  is a homotopy equivalence.

Also notice that  $\Omega^*$  has the homotopy type of a CW-complex, hence so does  $\Omega$ . Moreover,

**Theorem 2.14** (Fundamental theorem of Morse theory.). If a, b are not conjugate along any geodesic, then  $\Omega$  has the homotopy type of a countable CW-complex which contains one cell of dimension  $\lambda$  for each geodesic from a to b of index  $\lambda$ .

#### Loop Space and Freudenthal Suspension Theorem 2.4

By perturbation we have a homotopy equivalence  $\Omega(M; p, q) \simeq \Omega(M; p, p)$  on a complete Riemannian manifold. We call the latter space the loop space of M and denote it by  $\Omega M$ . In this subsection we mainly focus on the case of  $M = \mathbb{S}^n$ . By counting multiplicity of conjugate points on geodesics, we derive

**Theorem 2.15.**  $\Omega \mathbb{S}^n$  has the homotopy type of a CW-complex with one cell each in the dimensions  $0, n-1, 2(n-1), \cdots$ .

Let  $\Omega^{\pi^2} = \Omega^{\pi^2}(\mathbb{S}^{n+1}; p, -p)$  denote the space of minimal geodesics between two antipodal points. Since there is a 1-to-1 correspondence between minimal geodesics of  $\mathbb{S}^{n+1}$  and the points in the equator  $\mathbb{S}^n \subset \mathbb{S}^{n+1}$ , we will see  $\Omega^{\pi^2} \mathbb{S}^{n+1}$  is a good object to represent  $\mathbb{S}^n$ . Following such an idea, we consider  $p, q \in M$  with  $\rho(p, q) = \sqrt{d}$ .

**Theorem 2.16.** If  $\Omega^d$  is a manifold and if every non-minimal geodesic from p to q has index

$$\pi_i(\Omega, \Omega^d) = 0$$

for  $0 \le i < \lambda_0$ . Therefore  $for \ 0 \le i \le \lambda_0 - 2.$ 

$$\pi_i \Omega^d \cong \pi_i \Omega \cong \pi_{i+1} M$$

Directly,

Corollary 2.17 (Freudenthal suspension theorem).

$$\pi_i \mathbb{S}^n \cong \pi_{i+1} \mathbb{S}^{n+1}$$

### 3 Bott's Periodicity Theorems

#### 3.1 The Unitary Group

Let SU(2m) be a Riemannian manifold with a left and right invariant metric  $\langle -, - \rangle$ , namely

$$\langle A, B \rangle := \operatorname{Re} \operatorname{Tr}(AB^*) = \operatorname{Re} \sum A_{ij} \bar{B}_{ij}$$

for  $A, B \in \mathfrak{su}(2m)$ . We are going to consider the set of all geodesics in SU(2m) from I to -I, i.e. looking for  $A \in \mathfrak{u}(2m)$  such that  $\exp A = -I$ . Let  $TAT^{-1}$  be in diagonal form. Since  $\exp(TAT^{-1}) = T(\exp A)T^{-1} = -I$ , we can assume A is always diagonal, i.e.

$$A = \begin{bmatrix} i \, a_1 & & \\ & \ddots & \\ & & i \, a_{2m} \end{bmatrix},$$

and

$$\exp A = \begin{bmatrix} e^{i a_1} & & \\ & \ddots & \\ & & e^{i a_{2m}} \end{bmatrix}.$$

So if  $\exp A = -I$  then there holds  $a_i = k_i \pi$  where  $k_i$ 's are all odd. The length of the geodesic  $t \mapsto \exp At$ ,  $0 \le t \le 1$  is given by  $||A|| = \sqrt{\operatorname{Tr} AA^*} = \pi \sqrt{k_1^2 + \dots + k_{2m}^2}$ . Hence the minimal geodesics make  $k_i$  be  $\pm 1$ . Note that in  $\mathfrak{su}(2m)$  there holds  $\operatorname{Tr} A = 0$ , we derive that the number of  $k_i$ 's being 1 is equal to the number of being -1, which means the eigenspace  $\operatorname{Eigen}(-i\pi)$  of eigenvalue  $-i\pi$  and the eigenspace  $\operatorname{Eigen}(i\pi)$  of eigenvalue  $i\pi$  have the same dimension. Thus A is completely determined by  $\operatorname{Eigen}(i\pi)$ , which is an arbitrary m-subspace of  $\mathbb{C}^{2m}$ . To sum up,

**Theorem 3.1.** There holds a homeomorphism

$$\Omega^{\pi\sqrt{2m}} \operatorname{SU}(2m) \cong \operatorname{Gr}_m(\mathbb{C}^{2m}).$$

We will prove that

**Theorem 3.2.** Every non-minimal geodesic from I to -I in SU(2m) has index  $\geq 2m + 2$ .

Therefore,

Corollary 3.3 (Bott).

$$\pi_i \operatorname{Gr}_m(\mathbb{C}^{2m}) \cong \pi_{i+1} \operatorname{SU}(2m)$$

for i < 2m.

In order to see the relationship with unitary group, we need some preparation. From the fibration

$$U(m) \longrightarrow U(m+1) \longrightarrow \mathbb{S}^{2m+1}$$

, we have an exact sequence

$$\cdots \longrightarrow \pi_i \mathbb{S}^{2m+1} \longrightarrow \pi_{i-1} U(m) \longrightarrow \pi_{i-1} U(m+1) \longrightarrow \pi_{i-1} \mathbb{S}^{2m+1} \longrightarrow \cdots,$$

hence the inclusion map becomes an isomorphism

$$\pi_{i-1} U(m) = \pi_{i-1} U(m+1)$$

for  $i \leq 2m$ . We call it the (i-1)-st **stable homotopy group** of the unitary group, denoted by  $\pi_{i-1}$  U. The exact sequence also shows that  $\pi_{2m}$  U $(m) \to \pi_{2m}$  U $(m+1) \cong \pi_{2m}$  U is onto.

Another fibration

$$U(m) \longrightarrow U(2m) \longrightarrow U(2m)/U(m)$$

gives rise to

$$\pi_i(\mathrm{U}(2m)/\mathrm{U}(m)) = 0$$

for  $i \leq 2m$ .

Since  $\operatorname{Gr}_m(\mathbb{C}^{2m}) = \operatorname{U}(2m)/\operatorname{U}(m) \times \operatorname{U}(m)$ , there holds a fibration

$$U(m) \longrightarrow U(2m)/U(m) \longrightarrow Gr_m(\mathbb{C}^{2m}),$$

which derives

$$\pi_i \operatorname{Gr}_m(\mathbb{C}^{2m}) \cong \pi_{i-1} \operatorname{U}(m)$$

for  $i \leq 2m$ .

Finally, from the fibration

$$SU(m) \longrightarrow U(m) \longrightarrow \mathbb{S}^1$$
,

we have

$$\pi_i \operatorname{SU}(m) \cong \pi_i \operatorname{U}(m)$$

for  $i \neq 1$ .

Above all, we see that

$$\pi_{i-1} U = \pi_{i-1} U(m) \cong \pi_i \operatorname{Gr}_m(\mathbb{C}^{2m}) \cong \pi_{i+1} \operatorname{SU}(2m) \cong \pi_{i+1} U(2m) = \pi_{i+1} U$$

for  $1 \le i \le 2m$ . Therefore

$$\pi_{i-1} U \cong \pi_{i+1} U$$

for i > 0. Since  $\pi_0 U = \pi_0 U(1) \cong 0$ ,  $\pi_1 U = \pi_1 U(1) \cong \mathbb{Z}$ , we can conclude that

**Theorem 3.4** (Bott's periodicity theorem for unitary group).

$$\pi_0 U \cong \pi_2 U \cong \pi_4 U \cong \cdots \cong 0,$$

$$\pi_1 U \cong \pi_3 U \cong \pi_5 U \cong \cdots \cong \mathbb{Z}.$$

#### 3.2 The Orthogonal and Symplectic Group

**Definition 3.5.** A complex structure J on  $\mathbb{R}^n$  is a linear transformation  $J: \mathbb{R}^n \to \mathbb{R}^n$ , belonging to the orthogonal group, which satisfies the identity  $J^2 = -I$ . The space is denoted as  $\Omega_1(n)$ .

Next, we study O(n). Let n=2m.

Theorem 3.6.

$$\Omega^m(\mathcal{O}(2m); I, -I) \cong \Omega_1(2m).$$

**Theorem 3.7.** All non-minimal geodesic from I to -I in O(2m) has index  $\geq 2m-2$ .

Theorem 3.8 (Bott).

$$\pi_i \Omega_1(2m) \cong \pi_{i+1} O(2m)$$

for  $i \leq 2m - 4$ .

Then we will iterate the above procedure, studying the space of geodesics from J to -J in  $\Omega_1(n)$ ; and so on. Assume that n is divisible by some power of 2.

Let  $J_1, \dots, J_k$  be mutually anti-commute fixed complex structure on  $\mathbb{R}^n$ . Suppose there exists at least one other complex structure J which anti-commute with  $J_i$ 's. Let  $\Omega_k(n)$  denote the set of all complex structure which anti-commute with the fixed structure  $J_1, \dots, J_k$ . Then we have

$$\Omega_k(n) \subset \Omega_{k-1}(n) \subset \cdots \subset \Omega_1(n) \subset O(n) =: \Omega_0(n).$$

 $\Omega_k(n)$  is compact.

**Theorem 3.9.**  $\Omega_k(n)$ 's are all smooth, totally geodesic submanifolds of O(n).

$$\Omega^m(\Omega_l(n); J_l, -J_l) \cong \Omega_{l+1}(n)$$

for  $0 \le l < k$ .

Let  $\Omega_k = \lim_{n\to\infty} \Omega_k(n)$  and  $O = \Omega_0$ . We call the latter **infinite orthogonal group**. And the inclusions  $\Omega_{k+1}(n) \to \Omega\Omega_k(n)$  give rise to a inclusion  $\Omega_{k+1} \to \Omega\Omega_k$ . After studying the non-minimal geodesic on  $\Omega_k(n)$ , we will see that the index is  $\geq n/m_{k+1} - 1$ . Hence,

**Theorem 3.10.**  $\Omega_{k+1} \to \Omega\Omega_k$  is a homotopy equivalence. Thus we have isomorphisms

$$\pi_h O \cong \pi_{h-1} \Omega_1 \cong \cdots \cong \pi_1 \Omega_{h-1}.$$

We now give descriptions of the manifolds  $\Omega_k(n)$ . We let n = 16r.

- $\Omega_0(n)$  is the orthogonal group.
- $\Omega_1(n)$  is the set of all complex structures on  $\mathbb{R}^n$ .
- $\Omega_2(n) = \mathrm{U}(n/2)/\mathrm{Sp}(n/4)$  is the set of quaternion structures on  $\mathbb{C}^{n/2}$ .
- $\Omega_3(16r)$  is the quaternionic Grassmann manifold of  $\mathbb{H}^{4r}$ .
- $\Omega_4(16r) = \operatorname{Sp}(2r)$  is the set of all quaternionic isometries from  $V_1$  to  $V_2$ .
- $\Omega_5(16r) = \operatorname{Sp}(2r)/\operatorname{U}(2r)$  is the set of subspaces  $W \subset V_1$  such that W is closed under  $J_1$  and  $V_1$  splits as the orthogonal sum  $W \oplus J_2W$ .
- $\Omega_6(16r) = \mathrm{U}(2r)/\mathrm{O}(2r)$  is the set of all real subspaces  $X \subset W$  such that W splits as the orthogonal sum  $X \oplus J_1X$ .
- $\Omega_7(16r)$  is the real Grassmann manifold consisting of all real subspaces of  $X \cong \mathbb{R}^{2r}$ .
- $\Omega_8(16r) = O(r)$  is the set of all real isometries from  $X_1$  to  $X_2$ .

By passing to the limit as  $r \to \infty$  we get  $\Omega_8 \cong O$ . Therefore,

Theorem 3.11 (Bott).

$$\pi_i O \cong \pi_{i+8} O$$

for  $i \geq 0$ .

Since  $Sp = \Omega_4$ , we have  $O \cong \Omega^4 Sp$  as well as  $Sp \cong \Omega^4 O$ . To conclude,

| $i \mod 8$ | $\pi_i$ O      | $\pi_i \operatorname{Sp}$ |
|------------|----------------|---------------------------|
| 0          | $\mathbb{Z}_2$ | 0                         |
| 1          | $\mathbb{Z}_2$ | 0                         |
| 2          | 0              | 0                         |
| 3          | $\mathbb{Z}$   | $\mathbb{Z}$              |
| 4          | 0              | $\mathbb{Z}_2$            |
| 5          | 0              | $\mathbb{Z}_2$            |
| 6          | 0              | 0                         |
| 7          | $\mathbb{Z}$   | $\mathbb{Z}$              |

### 4 Morse Homology(WIP)

In a Riemannian manifold (M,g), we let  $V=-\nabla f$ . We define a one-parameter group of diffeomorphisms  $\Psi_s: M \to M$  for  $s \in \mathbb{R}$  and  $\frac{\mathrm{d}\Psi}{\mathrm{d}t} = V$ . If p is a critical point, We define the descending manifold (unstable manifold) and ascending manifold (stable manifold) by

$$D(p) = \{x \in M : \lim_{s \to -\infty} \Psi_s(x) = p\}$$

and

$$A(p) = \{ x \in M : \lim_{s \to \infty} \Psi_s(x) = p \},$$

respectively. If p is a non-degenerate critical point, then D(p) is an embedded open disk in M with dimension  $\dim D(p) = \operatorname{ind} p$ , since  $T_pD(p)$  is the negetive eigenspace of  $\operatorname{Hess} f(p)$ . Similarly, A(p) is an embedded open disk with dimension  $\dim A(p) = \dim M - \operatorname{ind} p$ . We call a pair (f,g) is Morse-Smale if D(p) is transverse to A(q) for each pair of critical points p,q. Like Morse function, we will such condition holds generically.

We define Morse complex as follows. Let

$$C_i^M(f,g) := \mathbb{Z}[\operatorname{crit}_i(f)].$$

The differential counts the gradient flow lines, namely,

$$\partial^M(p) := \sum_{q \in \operatorname{crit}_{i-1}(f)} \# M(p,q) \cdot q.$$

The homology of Morse complex is isomorphic to singular homology of M:

$$H_*^M(f,g) \cong H_*(M;\mathbb{Z}).$$

- 5 h-Cobordism(WIP)
- 5.1 Smale Cancellation

REFERENCES 14

## References

[M1] J. Milnor: Morse Theory.

 $[\mathrm{M2}]\,$  J. Milnor: Lectures On The h-Cobordism Theorem.