

Maik Thanh Nguyen

TITLE
CONFERENCE, DATE

Content

- Syntax and semantics
 - Kripke frames
 - Topological space
 - Neighbourhood frames
- Multimodal logic and product of frames/spaces and logics
 - Multimodal logic and product of frames
 - Horizontal and Vertical topology/functions
 - Product of logics and the logic T
- · Main result and ideas

Basic modal language, Kripke frames and models

• Basic modal langauge extends classical propositional logic. Formally:

Definition

Let Prop be a set of variable. Then a formula ϕ is defined as follows:

$$\phi ::= p \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \Box \phi$$

where \square is a modal operator and $p \in \mathsf{Prop}$

Basic modal language, Kripke frames and models

• Basic modal langauge extends classical propositional logic. Formally:

Definition

Let Prop be a set of variable. Then a formula ϕ is defined as follows:

$$\phi ::= p \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \Box \phi$$

where \square is a modal operator and $p \in Prop$

Definition

A frame F = (W, R) is a pair where

- *W* is a non-empty set of worlds
- $R \subseteq W \times W$ is a binary relation

A model is a pair M = (F, R) where V is a valuation and is of the form $V : Prop \rightarrow 2^W$

Example

• Let $\phi = \Box p$ and M = (W, R, V) with $W = \{w_1, w_2, w_3, w_4, w_5\}$, $V(p) = \{w_3, w_4, w_5\}$ and R =

Kripke semantics

Definition

Let M = (F, V) be a model and $w \in W$ a state in M. A formula being true at w is inductively defined as:

$$M, w \Vdash p$$
 iff $w \in V(p)$

$$M, w \Vdash \bot$$
 never

$$M, w \Vdash \neg \phi$$
 iff not $M, w \Vdash \phi$

$$M, w \Vdash \phi \lor \psi$$
 iff $M, w \Vdash \phi \lor M, w \Vdash \psi$

$$M, w \Vdash \Box \phi$$
 iff $\forall v \in W : wRv \to M, v \Vdash \phi$

$$M, w \Vdash \Diamond \phi$$
 iff $\exists v \in W : wRv \land M, v \Vdash \phi$

 Topological space deals with open sets, it can describes which points are "nearby"

 Topological space deals with open sets, it can describes which points are "nearby"

Definition

A topological space is a pair (X, τ) , where τ (called topology) is a collection of subsets of X (open sets) such that:

 Topological space deals with open sets, it can describes which points are "nearby"

Definition

A topological space is a pair (X, τ) , where τ (called topology) is a collection of subsets of X (open sets) such that:

- ∅ and X are open
- the union of arbitrary collection of open sets is open
- the intersection of finite collection of open sets is open

 Topological space deals with open sets, it can describes which points are "nearby"

Definition

A topological space is a pair (X, τ) , where τ (called topology) is a collection of subsets of X (open sets) such that:

- \emptyset and X are open
- the union of arbitrary collection of open sets is open
- the intersection of finite collection of open sets is open

A topological model is a structure $M=(X,\tau,v)$ where (X,τ) is a topological space and v a valuation of the form $v: Prop \to 2^X$

Example

• Let (X, τ) be a topological space with $X = \{1, 2, 3\}$, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, W\}$ and $V(p) = \{1, 2\}$. Furthermore, let $\phi = \Box p$.

Example

• Let (X, τ) be a topological space with $X = \{1, 2, 3\}$, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, W\}$ and $V(p) = \{1, 2\}$. Furthermore, let $\phi = \Box p$.

 $M, 1 \Vdash \phi$ $M, 3 \nvDash \phi$

Topological semantics

Let $M = (X, \tau, v)$ be a topological model and $x \in X$ a point in M. A formula being true at x is inductively defined as:

$$M, x \models p$$
 iff $x \in v(p)$

$$M, x \vDash \bot$$
 never

$$M, x \vDash \neg \phi$$
 iff $M, x \nvDash \phi$

$$M, x \vDash \phi \lor \psi$$
 iff $M, x \vDash \phi$ or $M, x \vDash \psi$

$$M, x \models \Box \phi$$
 iff $\exists U \in \tau$ such that $x \in U$ and $\forall u \in U, M, u \models \phi$

$$M, x \vDash \lozenge \phi$$
 iff $\forall U \in \tau : \text{if } x \in U \to \exists u \in U, \ M, u \vDash \phi$

Neighbourhood frames

- generalize Kripke semantics
- captures non-normal modal logics

Neighbourhood frames

- generalize Kripke semantics
- captures non-normal modal logics

Definition

A neighbourhood frame is a pair (X, τ) where τ is a function $\tau : X \to 2^{2^X}$. A neighbourhood model is a structure $M = (X, \tau, v)$, where v is a valuation of the form $v : Prop \to 2^X$

Example

Assume $\phi = \Box p$. Let $W = \{1, 2, 3\}$, $V(p) = \{1, 2\}$ and

$$\tau(x) = \begin{cases} 1 \to \{\{1\}, \{3\}, W\} \\ 2 \to \{\{2\}, \{1, 2\}, W\} \\ 3 \to \{\{3\}, \{1, 3\}\} \end{cases}$$

True at all points

Neighbourhood semantics

Let $M = (X, \tau, v)$ be a neighbourhood model and $x \in X$ a point in M. A formula being true at x is inductively defined as:

$$\begin{array}{lll} \textit{M}, \textit{x} \Vdash \textit{p} & \text{iff } \textit{x} \in \textit{V}(\textit{p}) \\ \textit{M}, \textit{x} \Vdash \bot & \text{never} \\ \textit{M}, \textit{x} \Vdash \neg \phi & \text{iff } \textit{M}, \textit{x} \nvDash \phi \\ \textit{M}, \textit{x} \Vdash \phi \lor \psi & \text{iff } \textit{M}, \textit{x} \vDash \phi \lor \textit{M}, \textit{x} \vDash \psi \\ \textit{M}, \textit{x} \Vdash \Box \phi & \text{iff } \exists \textit{V} \in \tau(\textit{x}) \forall \textit{y} \in \textit{V} : \textit{M}, \textit{y} \vDash \phi \end{array}$$

Modal logic and the logic T

Definition

A modal logic is a set of modal formulas containing all propositional tautologies, closed under Substitution $(\frac{\phi(p_i)}{\phi(\psi)})$, Modus Ponens $(\frac{\phi,\phi\to\psi}{\psi})$.

Modal logic and the logic T

Definition

A modal logic is a set of modal formulas containing all propositional tautologies, closed under Substitution ($\frac{\phi(p_i)}{\phi(\psi)}$), Modus Ponens ($\frac{\phi,\phi\to\psi}{\psi}$).

A modal logic is normal, if it contains $\Box(p \to q) \to (\Box p \to \Box q)$ (K) and is closed under Generalization $(\frac{\phi}{\Box \phi})$

Definition

$$T = K + \Box p \rightarrow p$$

Multimodal logic and product of frames

- Mutlimodal logic allows us to reason about knowledge, time etc. simultaneously
- for example we can combine temporal and epistemic logic to reason about "when does the agent knows something"

Multimodal logic and product of frames

- Mutlimodal logic allows us to reason about knowledge, time etc. simultaneously
- for example we can combine temporal and epistemic logic to reason about "when does the agent knows something"
- horizontal and vertical relation allows us to reason in one dimension

Multimodal logic and product of frames

- Mutlimodal logic allows us to reason about knowledge, time etc. simultaneously
- for example we can combine temporal and epistemic logic to reason about "when does the agent knows something"
- horizontal and vertical relation allows us to reason in one dimension

Definition

Let $F = (W, R_1)$ and $G = (V, R_2)$. We define the Kripke product on $W \times V$ as :

$$(w,v)R'_1(w',v')$$
 iff wR_1w' and $v=v'$ (horizontal)
 $(w,v)R'_2(w',v')$ iff $w=w'$ and vR_2v' (vertical)

Example and Fusion of logics

Example and Fusion of logics

Definition

Let L_1 and L_2 be modal logics with one modality \square . The fusion is defined as:

$$L_1 \otimes L_2 = K_2 + L_{1(\square \to \square_1)} L_{2(\square \to \square_2)}$$

Horizontal and Vertical topology

• in topological space, horizontal and vertical can be also defined

Horizontal and Vertical topology

• in topological space, horizontal and vertical can be also defined Let $\mathcal{X}=(X,\chi)$ and $\mathcal{Y}=(Y,v)$ be topological spaces and $N\subseteq X\times Y$

Horizontally open: N is horizontally open iff

$$\forall (x,y) \in \mathbb{N} \ \exists U \in \chi \ \text{such that} \ x \in U \ \text{and} \ U \times \{y\} \subseteq \mathbb{N}.$$

Vertically open: N is vertically open iff

$$\forall (x,y) \in N \; \exists V \in v \text{ such that } y \in V \text{ and } \{x\} \times V \subseteq N.$$

• au_1 (horizontal topology) is the set of all horizontally open sets and au_2 (vertical topology) the set of all vertically open sets.

Illustration, standard product

horizontally

Illustration, standard product

- we can also reason in both directions at once with the standard topology
- we denote the standard toplogy as au where

$$\tau = \{ N \subseteq X \times Y \mid \exists U \in \chi \exists V \in v : N = U \times V \}$$

horizontal, vertical and standard functions

Let \mathcal{X} = (X, τ_1) and \mathcal{Y} = (Y, τ_2) be two n-frames. We define the full product as

$$\mathcal{X} \times_n^+ \mathcal{Y} = (X \times Y, \tau_1', \tau_2', \tau) \text{ where}$$

$$\tau_1'(x, y) = \{ U \subseteq X \times Y \mid \exists V \in \tau_1(x) : V \times \{y\} \subseteq U \}$$

$$\tau_2'(x, y) = \{ U \subseteq X \times Y \mid \exists V \in \tau_2(y) : \{x\} \times V \subseteq U \}$$

$$\tau(x, y) = \{ U \subseteq X \times Y \mid \exists W \in \tau_1(x) \exists V \in \tau_2(y) : W \times V \subseteq U \}$$

Product of logics and the logic T

Let L_1 and L_2 be two unimodal logic. We define the full n-product of them as:

$$L_1 \times_n^+ L_2 = Log(\{\mathcal{X} \times_n^+ \mathcal{Y} \mid \mathcal{X} \Vdash L_1 \text{ and } \mathcal{Y} \Vdash L_2\})$$

Product of logics and the logic T

Let L_1 and L_2 be two unimodal logic. We define the full n-product of them as:

$$L_1 \times_n^+ L_2 = Log(\{\mathcal{X} \times_n^+ \mathcal{Y} \mid \mathcal{X} \Vdash L_1 \text{ and } \mathcal{Y} \Vdash L_2\})$$

- this thesis deals with the logic T
- $T = K + \Box p \rightarrow p$

Main Research Question

Does the following equality holds?

$$T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p = T \times_n^+ T$$

where $T \otimes T \otimes T = K_3 + T_{\square} + T_{(\square \to \square_1)} + T_{(\square \to \square_2)}$ is the logic with three modalities and $\square p \to \square_1 p \wedge \square_2 p$ the interaction axiom

Main Research Question

Does the following equality holds?

$$T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p = T \times_n^+ T$$

where $T \otimes T \otimes T = K_3 + T_{\square} + T_{(\square \to \square_1)} + T_{(\square \to \square_2)}$ is the logic with three modalities and $\square p \to \square_1 p \wedge \square_2 p$ the interaction axiom

- main motivation comes from epistemic logic
- we will only sketch the right to left inclusion
- proof is splitted into two parts (ideas are from [1], [2])

Sketch of the main ideas

• Pick $C = \{F \mid F \Vdash T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p\}$

Sketch of the main ideas

- Pick $C = \{F \mid F \Vdash T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p\}$
- Show $Log(\mathcal{C}) = T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p$ via Sahlqvist Theorem
- · We show finite model property of the logic with Filtration Theorem

Sketch of the main ideas

- Pick $C = \{F \mid F \Vdash T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p\}$
- Show $Log(\mathcal{C}) = T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p$ via Sahlqvist Theorem
- · We show finite model property of the logic with Filtration Theorem
- Construct an infinite branching and infinite depth tree with three reflexive relations ($T_{\omega,\omega,\omega[m]}$)

Sketch of the main ideas

- Pick $C = \{F \mid F \Vdash T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p\}$
- Show $Log(\mathcal{C}) = T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p$ via Sahlqvist Theorem
- · We show finite model property of the logic with Filtration Theorem
- Construct an infinite branching and infinite depth tree with three reflexive relations ($T_{\omega,\omega,\omega[m]}$)
- Show $Log(T_{\omega,\omega,\omega[rn]}) = T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p$
- By FMP pick a finite frame $F \in \mathcal{C}$ and construct a bounded morphism from $T_{\omega,\omega,\omega[m]}$ to F

Sketch continue

$$Log(T_{\omega,\omega,\omega[rn]}) = T \otimes T \otimes T + \Box p \rightarrow \Box_1 p \wedge \Box_2 p$$

• we introduce a simpler version of $T_{\omega,\omega,\omega[{\it rn}]}$ which is $T_{\omega[{\it rn}]}$

Sketch continue

$$Log(T_{\omega,\omega,\omega[rn]}) = T \otimes T \otimes T + \Box p \to \Box_1 p \wedge \Box_2 p$$

- we introduce a simpler version of $T_{\omega,\omega,\omega[\mathit{rn}]}$ which is $T_{\omega[\mathit{rn}]}$
- construct a neighbourhood version of $T_{\omega[rn]}$ called $N_{\omega}(T_{\omega[rn]})$
- we can show $T = Log(N_{\omega}(T_{\omega[rn]}))$

Sketch continue

$$Log(T_{\omega,\omega,\omega[rn]}) = T \otimes T \otimes T + \Box p \to \Box_1 p \wedge \Box_2 p$$

- we introduce a simpler version of $T_{\omega,\omega,\omega[rn]}$ which is $T_{\omega[rn]}$
- construct a neighbourhood version of $T_{\omega[rn]}$ called $N_{\omega}(T_{\omega[rn]})$
- we can show $T = Log(N_{\omega}(T_{\omega[rn]}))$
- construct a bounded morphism

$$N_{\omega}(T_{\omega[rn]}) \times_{n}^{+} N_{\omega}(T_{\omega[rn]}) \to T_{\omega,\omega,\omega[rn]}$$

with some further steps we can conclude

$$T \times_n^+ T \subseteq T \otimes T \otimes T + \Box p \to \Box_1 p \wedge \Box_2 p$$

$T_{\omega,\omega,\omega[rn]}$ and a more detailed sketch

Let $F = (W, R_1, R_2, ...)$ and $F' = (W', R'_1, R'_2, ...)$ be two frames. A bounded morphism $f : W \to W'$ can be illustrated as:

$T_{\omega,\omega,\omega[rn]}$ and a more detailed sketch

Let $F = (W, R_1, R_2, ...)$ and $F' = (W', R'_1, R'_2, ...)$ be two frames. A bounded morphism $f : W \to W'$ can be illustrated as:

$\mathcal{T}_{\omega,\omega,\omega[\mathit{rn}]}$ and a more detailed sketch

$\mathcal{T}_{\omega,\omega,\omega[\mathit{rn}]}$ and a more detailed sketch

$\mathcal{T}_{\omega,\omega,\omega[\mathit{rn}]}$ and a more detailed sketch

Future works

- Many ways to continue the research
- Discover how it works for logic K
- Combine different logics for example $D \times_n^+ K$, $T \times_n^+ K$, ...
- For logic Λ with $T \subseteq \Lambda \subseteq S4$, does the following hold:

$$\Lambda \otimes \Lambda \otimes \Lambda + \Box p \to \Box_1 p \wedge \Box_2 p = \Lambda \times_n^+ \Lambda$$

Conclusion

References

[1] Johan van Benthem, Guram Bezhanishvili, Balder ten Cate, and Darko Sarenac.

Multimodal logics of products of topologies. *Studia Logica*, 84:369–392, 2006.

[2] Andrei Kudinov. Modal logic of some products of neighbourhood frames. In *Advances in Modal Logic, Volume 9*, pages 286–294, London, 2012. College Publications.

