Architecture of Wireless Networks for IoT

Rafik Zitouni
ECE Paris
rafik.zitouni@ece.fr

Organisation

Evaluation

- > Labs and Quiz → 50%
 - > Quiz → 25%
 - > Lab → 25%
- ➤ Project → 50%
 - > PoC →40%
 - > Presentation → 10%

Organization and objectives

- Overview of available Wireless Local and Personnel Area Networks (WLAN, WPAN)
 - Wifi, Bluetooth, NB-IoT, SigFox, LoRa, 6LowPAN.etc
- Contiki Os and Zolertia ReMote (tools)
 - IEEE 802.15.4 communications (Broadcast and Unicast)
 - IPv6- 6LowPAN
 - Wireless Sensor Networks (WSN)
- Applications and Quality of Service (QoS)
- Two main objectives
 - Have a good command and advantages of each solution
 - > To be able to develop IoT applications

Introduction

Evolution of number of devices by user Five to ten wearable by user

Compound Annual Growth Rate

Network World.com

Annual Growth Rate by wireless networks

THE INTERNET OF THINGS

Connected devices (billions)

https://www.forbes.com

Introduction

Internet of Things (IoT) is a global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies. [ITU]

Introduction

IoT Layered Architecture and applications

Architecture IoT-Machine to Machine

IOT requirements

Critical IoT

- Releability
- Availability
- Low Latency
- → 5G and LTE-M

Massive IoT

- **Device Cost**
- **Battery Life time**
- Scalability
- **Diversity**
- → ZigBee, NFC, RFID

www.ericsson.com

Classification of Wireless Networks

Réseaux Locaux sans Fil (Wireless Local Area Networks) WLAN

- IEEE 802.11 standard for MAC and Physical layer of Network
 - Point to point communications via an Access Point (AP)
- The objectives of the network AP
 - Access to network ressources (e.g. Access to Ethernet Network)
 - **Distribution** (backhaul or Bridge between Wireless and Wired network)

Architecture of WiFi networks

Architecture

Le même model OSI des réseaux filaires

6 Présentation
5 Session
4 Transport
3 Réseau
2 Liaison
Physique

STA

Fat AP

DNS DHCP
server server

Campus
egress
gateway

STA

Fat AP

NMS

STA

(a) Infrastructure

(b) Ad Hoc

Independent BSS (Basic Service Set)

Application

- 802.11x, amendements
 - 802.11b, data rate up to 11 Mbps (2,4 GHz ISM band)
 - 802.11a, data rate up to 54 Mbps (5 GHz ISM band)
 - 802.11g, data rate up to 54 Mbps (2,4 GHz ISM band)
 - 802.11n, data rate up to 600 Mbps with MIMO (dual bands 2,4 and 5 GHz ISM)
 - 802.11ac, data rate up to 6,7 Gbps (dual bands 2,4 GHz and 5 GHz)
 - 802.11ah for IoT, data rate up to 78 Mbps (915 MHz band in USA)
 - 802.11p for V2X, data rate up to 27 Mbps (5,8 GHz ISM band)

Install on your SmartPhone the Wifi Analyzer APPlication. Now you can see the occupancy of Wifi channels in the 2,4 GHz frequency band

Wifi drawbacks:

- Energy consumption
- Point to point communication via an Access Point

WiFi for V2X – IEEE 802.11p

Co-existence de plusieurs technologies LTE-V & 5G

- Request sent to the base station (eNodeB)
- eNodeB allocates the ressources for vehicles
- Communication through messages diffusion
- Carrier Sense and Multiple Access of vehicles to the resources
- 5G
- Interconnexion of Everything

WiFi for V2X – IEEE 802.11p

Channel utilization

- OFDM scheme
 - BPSK, QPSK, 16QAM, 64 QAM
- 52 subcarriers
- Channel capacity 5MHz, 10MHz and 20MHz

Bluetooth

- Known as **IEEE 802.15.1** base on Ericson research
- Low power consumption (15ma for transmit, 1uA for sleep)
 - Coin cell battery for energy supply

- Exchange small packets (opposed to streaming)
- Connect → Transmit → Disconnect → Sleep
- GFSK Modulation
- Only up to 1 Mbps, 2 and 3 Mbps
- 2,4 GHz, ISM band, 40 channels
 - 3 Advertising channels
 - 37 Data channels
- Adaptive Frequency Hopping
- 24 bits for CRC
- Output power → 10 mW (10 dBm)

Bluetooth (Master/Slave actions)

Across platform, Bluetooth is not easy to remember

Once a device has been slaved, (paired)
Only the master can set it free. **Users tend to forget which device it was paired with.**

20

The three Bluetooth output power classes up to Bluetooth 2.0

Power Class	Transmission Power Level (mW)	Advertised Range (m)
1	100	100
2	2.5	10
3	1	1

Physical Channels

2.4 GHz ISM band

Bluetooth (Master/Slave actions)

State Machine

The operation of the Link Layer can be described in terms of a state machine with the following five states:

Master

- Can have multiple slaves
- Determines when slaves listen
- Determines frequency hopping algorithm
- Sends connection determination at connection request, but can update parameters after connection
- If received packet from slave, no need to respond

Slave

- Only one master
- If received packed from master, must respond

Term	Introduced	Means
BR	1.1 (2002)	Basic Rate(1Mb/s)
EDR	2.0 (2004)	Enhanced Data Rate (2-3Mb/s)
HS	3.0 (2010)	High Speed (Alternate MAC/PHY)
LE	4.0 (2010)	Low energy (1 Mb/s ultra Low power)
Bluetooth Smart	4.0	LE only radio
Bluetooth Smart Ready	4.0	BR/EDR and LE dual radio

Nordic semiconductor

RFCOMM: Radio Frequency Communication is a reliable stream-based protocol as TCP. It emulates **RS-232.**

L2CAP: Logical Link Control And Adaption Protocol.

Packet based protocol with varying levels of reliability.

672 bytes< Packet size < 65,535 bytes **SCO:** (Synchropous Connection Oriented) Post offert

SCO: (Synchronous Connection Oriented) Best effort packet based protocol used to transmit voice **64 kb/s**

HCI Host Controler Interface

It defines how a computer interacts and communicates with a local Bluetooth controler

SPP: Serial Port Profile. It replaces the existing RS-232 with payload capacity equal to 128 bytes.

SMP : Security manager Protocol. It is role is to establish pairing, authentication and encryption between devices.

ATT: Attribute protocol. It defines the procedures and formats of services and their characteristics.

GATT: Generic Attribute Profile manages different types of profile. **BLE it manages** the devices connections to one central device.

GAP Generic Access Profile. It is what makes your device visible to the outside world, and determines how two devices can (or can't) interact with each other.

LPWAN: Low Power Wide Area Network → **proprietary LPWAN**

- Ultra Low Power
- Ultra Long Range

SigFox operates as a global network covers a given area as cellular network

- 1100 base station in France
- Chips compatible with SigFox protocols
- Simple to install (no pairing compared to BLE)
- Cost effectiveness
- GPS tracker is functional with SigFox devices

How to communicate

- 1) Detect Something to send (the hard step)
- 2) Power on the communication module
- 3) Send
- 4) Message is picked up by the network
- 5) Data is received on your server

Proprieties:

- Send an AT command (couple of code) Up to 12 bytes
- Receive an HTTP request on a application server
- Unlicensed frequency band (868 MHz)
- Maximise energy efficiency (Tx in two seconds, 25mW: 14dBm)
- In theory, base stations cover **up to 200 km.** In reality, it depends on topography (in a city like Paris, coverage not exceed **5 km**)

Proprieties:

- 7 messages/ hour with 100 bits/s
- No ACK messages
- Example of payload
 - GPS coordinates (lat x lng): 6 bytes
 - Temperature : 2 bytes
 - State reporting: 1 byte
- Messages are signed with a key unique to the device
- Messages are scrambled or encrypted
- No keys exchanged over the network

How to prototype?

Arduino, Rasberry PI, Atmel etc

Easy to start but not industrial.

Security

Sources SigFox

Ultra Narrow Band - UNB

- Europe 868 MHz
- USA 902 Mhz

Radio coverage

NarrowBand IoT (NB-IoT)

Low Power Wide Area Network (<u>LPWAN</u>) radio technology standard using cellular telecommunications bands.

NarrowBand IoT (NB-IoT)

	LTE Cat.1	LTE Cat.0	LTE Cat.M	EC-GSM	NB-LTE*	NB-CIoT
Spectrum	LTE In-Band, Greenfield			GSM In- Band, Greenfield	Greenfield	Greenfield
Release Date/Commercialization	2009	2014	2015/2016	2016/2017	2016/2017	2016/2017
3GPP Release	Rel-8	Rel-12	Rel-13	Rel-13	Rel-13/14	Rel-13/14
Peak Data Rate	DL: 10Mbps	DL: 1Mbps	DL: 1Mbps	DL: 74kbps	DL: 128kbps?	DL: 32kbps
	UL: 5Mbps	UL: 1Mbps	UL: 1Mbps	UL: 74kbps	UL: 64kbps?	UL: 48/14.7kbps
System Bandwidth	20MHz	20MHz	1.4MHz	200kHz	200kHz	200kHz
LPWA Network	No	No	No	Yes	Yes	
Link Budget Target	140dB	140dB	155dB	164dB	164dB	164dB
Network Upgrade	No Need	SW Upgrade	To be determined	Yes (HW/SW?)	Yes (HW/SW?)	New Network Clean Slate overlaid with GSM network

LTE Architecture

LPWAN - NB-IoT

Source Huawei

Long Range IoT – LoRa

LPWAN: Low Power Wide Area Network → **proprietary LPWAN**

Network architecture

Long Range IoT – LoRa

Proprieties:

- Up to **290 kbps**
- 868 MHz in Europe
- 902 MHz In USA
- Output power is up to **20 dBm** for Tx
- Modulation Frequency Shift Keying (FSK) with Chirp Spread Spectrum (CSS)
- LoRa Physical layer inherits its proprieties from RADAR technology and IEEE802.15.4a
- Spread Factor concept is introduced to find the tradeoff between output power and data rate

37

Long Range IoT – LoRa

Spread factor concept

Long Range IoT – LoRa

LoRa Chirp Spreading

Long Range IoT — LoRa

LoRa device classes

CLASS NAME	INTENDED USAGE
(« all »)	Battery powered sensors, or actuators with no latency constraint Most energy efficient communication class. Must be supported by all devices
(« beacon »)	Battery powered actuators Energy efficient communication class for latency controlled downlink. Based on slotted communication synchronized with a network beacon.
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.

Application Customer API Security 32- / 64- / 128-bit encryption Network Star / Mesh / Cluster-Tree MAC PHY

868MHz / 915MHz / 2.4GHz

Stack

App

Silicon

"the software" Network, Security & **Application layers** Brand management

IEEE 802.15.4

"the hardware" Physical & Media Access **Control layers**

Proprieties

- Older and better established than Bluetooth
- Key advantage: mesh networking capabilities
- IEEE 802.15.4 stack is heavier than BLE
- Higher energy consumption than BLE
- Lower rates than BLE: 250 kb/s (2.4GHz), 40 kb/s (915MHz), 20 Kb/s (868 MHz)
- Longer range than Bluetooth (up to 300m)
- Key applications: smart grids, monitoring and surveillance, healthcare, M2M
- PHY supports operation in multiple ISM frequencies (over 26 channels)
- OQPSK, BPSK, DQPSK modulations

Frequency bands and channels

Sources IEEE 802.15.4 standard

Deux topologies : Etoile et Mesh

Full Function Device (FFD)

Reduced Function Device (RFD)

Communications Flow

Point to point

Wireless Communications

Wireless communications solutions

Hardware Architecture of Wireless Sensor Networks

46

Hardware Architecture of Wireless Sensor Networks

Platform offered by Zolertia

Zolertia RE-Mote hardware

Software configuration

- Vmware Player
- > Virtual Box
 - > VM Ubuntu
- Linux Native
 - Ubuntu 14.04, 16.04
 - > Debian, etc