Null Hypothesis, Ho=The Probability of male and female birth are equal Ho: Prob. of male birth, P= = = 9

We know that Binomial Distribution

P(X=x)= ncx Px qn-x; x=0,1,7,-, n het x = no. of male birth = 0,1,2,3,4

P(X=x)= 4cx (=) x(=) 4-x; x=0,1,2,3,4

P(X=x)= 4cx (=)4 1 x=0,1,2,3,4

### Expected frequencies

 $E(x=x) = N_x P(x=x) \downarrow 4$   $E(x=x) = 800 \times 4c_{x} \times (\frac{1}{2})^4 : x = 0,1,7,3,4$ 

E(X=0) = 50x4c0 = 50x1=50 F(X=1) = 50x4c1 = 50x4=200 E(X=2) = 50 X 4C2 = 50 X 4X3 = 300

Chi-square (x2) Test goodness of fit for Binomial

E(x=3)= 50x4c3 = 50x4x3x2 = 200 E(X=4)=50x464=50X1=50

| (       | alcul | ation or                | f x2<br>(fo-fe)               | (fo-fe)?                  | (fo-fe) t                                                                             |
|---------|-------|-------------------------|-------------------------------|---------------------------|---------------------------------------------------------------------------------------|
| 0 1 2 3 | 10    | 500<br>300<br>200<br>50 | -18<br>-22<br>-10<br>36<br>14 | 324<br>484<br>100<br>1296 | 324/50 = 6.48<br>484/200 = 2.42<br>100/300 = 0.33<br>1236/200 = 6.48<br>196/50 = 3.92 |
| 4       | 2fo=  | 2fe = 800               |                               |                           | 2 (fo-fe) = 19.63                                                                     |

 $x^2 = \xi \left[ \frac{(f_0 - f_e)^2}{f_e} \right] = 19.63$ feeqid. f., v= n-1 = 5-1=4 Calculated X2.05, 4 = 19.63

tabulated x0.05, 4 = 9.488

cal x2 > tab x2 19.63 7 9.488 Horget

| A set of 5 coins is tossed 3200 times and the number of ting each time is noted. The results are given below: | heads | appea- |
|---------------------------------------------------------------------------------------------------------------|-------|--------|
| The results are given below.                                                                                  |       |        |

| No. of Heads     | 0         | 1       | 2         | 3         | 4   | 5  |  |
|------------------|-----------|---------|-----------|-----------|-----|----|--|
| Frequency        | 80        | 570     | 1100      | 900       | 500 | 50 |  |
| Test the hypothe | esis that | the coi | ins are i | inbiased. |     |    |  |

Null Hypothesis, Ho = The coins are unbiased Prob of head in Single toss, P= } We know that Binomial Distribution P(X=x)= ncx Px qn-x; x=0,1,2,-,n Let x = no. of male birth = 0, 1, 7, 3, 4, 5 P(X=x)= 5cx (+) x(+) x=0,1,2,3,4,5 P(X=x)= 5cx (=) 5 : x=0,12,3,45 Expected frequencies  $E(x=x) = N_x P(x=x) \downarrow$   $E(x=x) = 3200_x 4c_{xx}(\frac{1}{2})^5 : x=0,1,2,3,4,5$ E(X=x)=100 x 4cx ; x=0,1,3,4,5 E(X=0) = F(X=1)= E(X=2)=

Chi-square (x2) Test [goodness of fit for Binomial Distribution]

| ı | C | alcula | tion of | X <sup>2</sup> | (fo-fe)? | (fo-fe) |
|---|---|--------|---------|----------------|----------|---------|
| - | × | 150    | fe      | (to-te)        | (to-te)  | te      |
|   | 0 | 80     |         |                | 1        |         |
| 2 | 1 | 570    |         |                |          |         |
|   | 5 | 1100   |         |                |          |         |
| I | 3 | 900    |         |                |          | 1       |
| ١ | 4 | 500    |         |                |          |         |
| ١ | 5 | 50     |         |                | 1        |         |

$$x^{2} = \xi \left[ \frac{(f_{0} - f_{e})^{2}}{f_{e}} \right] = 1$$
 $f_{e} = f_{e}$ 
 $f_$ 

Tabulated x2.05, 5 = 11.07

Example 16. In the accounting department of a bank 100 accounts are selected at random and examined for errors. The following results have beer obtained.

No. of Errors: 0 1 2 3 4 5 6
No. of Accounts: 36 40 19 2 0 2 1

Does this information verify that the errors are distributed according to Poisson probability law?

# Chi-square (x2) Test goodness of fit for Poisson

Null Hypothesis, Ho = The error are distributed according to Poisson Probability Law.

We know that Poisson Distribution

$$P(X=x) = \frac{e^{-m}m^x}{x!}; x=0,1,2,...$$

$$P(X=x) = \frac{e^{-m} m^{x}}{x!}; x=0,1,2,...$$

$$P(X=x) = \frac{e^{-1} x!}{x!}; x=0,1,2,3,4,5,6$$

Expected frequencies

$$E(x=x) = N_x P(x=x)$$

$$E(X=x) = 100 \times e^{-1} 1^{x}; x=0,1.7,3,450$$

$$E(X=x) = 36.787 \times \frac{1^{x}}{x!}, x = 0,1,7,3,4,5,6$$

$$\xi(X=0) = 36.787 \times \frac{10}{0!} = 36.787$$

$$E(X=2) = 36.787 \times \frac{1}{2!} = 19.39$$

mean, 
$$\bar{x} = m = \frac{\xi f x}{\xi f} = \frac{100}{100} = 1$$

tabulated X0.05.

|   | Co  | ilculat | ion of |       | 100 -1  | 100  | - 181 | (Fo- Fe) 1/F |
|---|-----|---------|--------|-------|---------|------|-------|--------------|
|   | X   | 1 fo    | 1 fx   | 1 te  | (to-te) | 140- | 15)   |              |
| ı | 0   | 36      | 0      | 37    | -1      |      |       |              |
|   | 1   | 40      | 40     | 37    | 1       |      |       |              |
|   | 2   | 19      | 3.8    | 18    | -       |      |       |              |
|   | 73  | 2       | 6      | 6     |         |      |       |              |
|   |     | 0       | 0      | 1.53  |         |      |       |              |
|   |     | 2       | 10     | 0.3   |         |      |       |              |
|   | 5   | 1       | 6      | 0.051 |         |      |       |              |
|   |     | 5f=     | 2FX    |       |         |      |       |              |
|   |     | 1000    | = 100  | 6-fe) | 27      |      |       |              |
|   |     | X =     | 8 5    | 0-10/ | =       |      |       |              |
|   | no. | of e    | -      | te    |         |      |       |              |
|   | 462 | Pd.f.   | V= n   | -     |         |      |       | and a        |
|   |     |         |        |       | _       |      |       |              |
|   | 6   | alcula  | ited 1 | 0.05, | -       |      |       |              |

Chi-square (x2) Test Null Hypothesis, Ho = The error are distributed according to Poisson Probability Law. We know that Poisson Distribution  $P(X=x) = \frac{e^{-m} m^x}{x!}; x=0,1,2,...$   $P(X=x) = \frac{e^{-1} 1^x}{x!}; x=0,1,2,3,4,5,6$ Expected frequencies  $E(x=x) = N_x P(x=x)$ E(X=x) = 100x e-1 1x; x=0,1,7,3,456  $E(X=x) = 36.787 \times \frac{1^{x}}{x!}; x=0,1,2,3,4,5,6$  $\xi(X=0) = 36.787 \times \frac{10}{01} = 36.787 = 37$   $\xi(X=1) = 36.787 \times \frac{1}{11} = 36.787 = 37$   $\xi(X=1) = 36.787 \times \frac{1}{11} = 36.787 = 37$ 

| goodness of fit for Poisson Distribe                                                                                                                                                                                                                           | ution]                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| $(C \times = 3) = 36.787 \times \frac{1^2}{3!} = \frac{36.767}{6} = 6.13 =$                                                                                                                                                                                    | - 6                              |
| $E(X=4)=36.787 \times \frac{14}{4!}=\frac{36.787}{24}=1.53$                                                                                                                                                                                                    |                                  |
| $\begin{array}{c} (X=5) = 36.787 \times 15 \\ (X=6) = 36.787 \times 16 \\ (X=6) = 36.787 \times 16 \\ (A Culation of X^{2}) \end{array} = \begin{array}{c} 36.787 \\ 7.20 \\ 7.20 \\ \hline \end{array} = \begin{array}{c} 0.05 \\ 7.20 \\ \hline \end{array}$ | 1                                |
| X 1 f   fx   fe   (to-te) (to-te)                                                                                                                                                                                                                              | -                                |
| 0 36 0 37 3 9 9 3                                                                                                                                                                                                                                              | 37=0.027<br>37=0.243<br>18=0.055 |
| 3 2 6 6 6 7 8 9 9/8                                                                                                                                                                                                                                            | =1.125                           |
| 5 2 10 0.3 5                                                                                                                                                                                                                                                   | o-fe) v                          |
| $\chi^2 - \langle f_0 - f_e \rangle^2 = 1.45$                                                                                                                                                                                                                  | fe<br>1.45                       |
| frequition = n-2=7-2=5-3= ? (al x2)                                                                                                                                                                                                                            | (4ab)x<br>(5.991                 |
| Calculated $x_{0.05, 2}^2 = 1.45$                                                                                                                                                                                                                              | cupt                             |

I tabulated 10.05,

A sample analysis of examination results of 500 students was made. it was found that 220 students had failed, 170 had secures a third class, 90 were placed in second class, and 20 got a first class. Are these figures commensurate with the general examination results which is the ratio of 4:3:2:1 for the various categories respectively. (For 3 d.f. the value of  $\chi_{0.05}^2 = 7.815$ ).

## Chi-square (x2) Test [goodness of fit

Q.I Null Hypothesis, Ho = Data support the theory.

$$\frac{F}{4} = \frac{\Pi}{3} = \frac{\Pi}{2} = \frac{I}{1} = \frac{F + \Pi + \Pi + I}{4 + 3 + 2 + 1} = \frac{500}{10}$$

under Null Hypothesis, expected frequencies are given by

$$E(I)=E(I+0)=\frac{3\times500}{10}=150$$

$$E(II) = E(90) = \frac{2 \times 500}{10} = \frac{100}{10}$$

$$E(I) = E(20) = \frac{1 \times 500}{10} = 50$$

| fo       | fel        | Fo-fe | (fo-fe) | (foe) / fe        |
|----------|------------|-------|---------|-------------------|
| 450      | 200        | 30    | 400     | 400/200 = 2       |
| 170      | 150        | - 20  | 400     | 400/150 = 2.64    |
| 90       | 100        | -10   | 100     | 900/50 = 18       |
| 20       | 50         | -30   | 900     |                   |
| Z-fo=500 | 2 fe = 500 |       |         | { (fo-fe) = 23.66 |

$$\chi^2 = Z \left[ \frac{(f_0 - f_e)^2}{f_e} \right] = 23.66 \left[ \frac{ca!}{\chi^2} - \frac{tab}{\chi^2} \right]$$

d.f.,  $v = n - 1 = 4 - 1 = 3$ 

Calculated  $\chi^2_{0.05, 3} = 23.66$ 

Ho reject

## Chi-Square test [ one tailed & two tailed test for Single Variance]

Chi-Square test is a non-parametric test.

a population

we Assume population is Normally distributed

Parame toictest

test statistic

$$x^2 = \frac{(n-1)s^2}{s^2}$$

n = Sample size

5 = Sample variance 5 = population variance.

Ho: 57 = 50 H1: 52 > 52 ( Right tail or Upper tail) For testing variability of or HI: 52 < 50 ( Left tail or Lower tail)

or H1: or \$ = 00 (two tailed) Los = x



1/1-a, n-1) Critical value

Area in right fail = I - Avea in left fail



chi-square test is a non-parametric test.

For testing Variability of a population

We Assume population is Normally distributed.

Parametrictest

test statistic

x² = (n-1) s²

n = Sample Size

s² = Sample Variance

o² = Population Variance.



BeingGouranco

**EXAMPLE 31.** It is assumed that the monthly realization of VAT in a state is normally distributed with a variance of Rs. 150 crores. A sample of 20 months was taken and the variance turned out to be Rs. 170 crores. Test at 5% level of significance whether the variance is significantly different than Rs. 150 crores?

# Chi-Square test [one tailed & two tailed test for Single Variance]

Q.1

Here, n=20

Level of significance, x=0.05

S? = 170

Ho: 52 = 150

H1: 52 \$ 150 [ two failed test]

test statistic

$$\chi^2 = \frac{(n-1) s^2}{5^2}$$

$$\chi^2 = \frac{(20-1)_{\times}(70)}{150} = 21.533$$

$$d.f. = n-1 = 20-1 = 19$$

$$Cal. x_{0.05}^{2}, 19 = 21.533$$

$$\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$$
,  $1 - \frac{\alpha}{2} = 1 - 0.025 = 0.975$ 

do not reject Ho



example 30. A factory owner agrees to purchase the product of a brand, if the items do not have variance more than 5 mm<sup>2</sup> in their length. To make sure, the owner selects a sample of 9 items from the lot. The length of each item is measured. Their values in mm are as follows:

185, 183, 187, 183, 182, 185, 183, 182, 186.

Test whether the factory owner should purchase the product. Use 5% level of significance.

Chi-Square test [one tailed & two tailed test for Single Variance]

$$X = \frac{2X}{n} = \frac{1656}{9} = 184$$

$$\chi^{2} = \frac{(n-1)s^{2}}{6-2} = \frac{26}{5} = 5.2$$

$$Los_{1}(x) = 0.05$$

$$d.f. = n-1 = 9-1 = 8$$

Calculated X = 5.7 Ho

