

```
[Input]
                  D k (number of clusters)
                  (a) Training set 2 x (1), x (2), ..., x (11) }
                      N(1) C IRM [ drop xo= 1 convention]
     t Algorithm ]
                  Randomly initialize K cluster centroids for k=1... K
                  do 4 to i=1 ... m.
                           cluster acsignment
                       for k=1.- K
                           ly == mean ( pts assigned to cluster k )
move centroid
                            e R"
                                                             K-means
   3. K-means for non-separated dusters.
                                          weight of
                            T-short cang
                                                              -
height
```

Optimization objective

K-means optimization objective

- · c = index.
- · lik : aluster centrord k CIR"
- · pi = cluster centroid of cluster to which x (+) has been assigned.

(u)...(in)

41 ... - fek

× ωη > χ μ.

[Algorithm]

Randomly initialize K cluster centroids fix, k=1... K

do 4

Kinimire J (...)

cluster acsignment

move centroid

Eholding fer ... fet]

for kel--K

lux == mean (pts assigned to cluster k)

e R"

Mm. w.r.t. pi ... pik

Random Intralization

- Rules.
 - (2) Randowly prok K trammy examples
 - (3) set by = examples
- · Kight have different chistening (local optimum) -> try different random initialization.
- Implementation.

for i=1 -- 1000 1

run k-means. get c"...cm, \u03ba...\u03ba...\u03ba.

complete cost function (distortion)

L. J (ca), ..., c(m), 1,... /4k)

ζ

Pick one with lowest cost]

Choose K

1.

Elbow method:

- Pro- defined (+-chort spec: 2... 5) 2.

procedure. project data to one less dimension. -> re-coordinate.

2 Motivation 1: pata visualization.

. Combine certain features (conclated).
$$X \rightarrow Z$$
 (500) (2)

Privapal component analysis component. · Pata preprocessing - mean normalization - feature scaling · Reduction X(i) + IR' -> Z(i) + IR [20 to 10] · Mathematica (Resovation (complicated) Algo. Reduce data from $1R^{N}$ to $1R^{N}$ Sigma. $\in \mathbb{R}^{N \times N}$ $(N \times 1) (1 \times N)$ Compute "covariance matrix" $\Sigma = \frac{1}{M} \sum_{i=1}^{N} [\chi^{(i)}] [\chi^{(i)}]^{T} = (\frac{1}{M}) \chi^{T} \chi$ a + K

(nxi) (ixn) singular value decomposition Compute "eigenvectors" of matrix I tu, s, V] = svd (Sigma) first k vectors: uul ... u(k) @ Projection. Elkuxk (kxn) (NX1) x (k×1)

Rangueten	trun from Compressed Representation		
7.50-7/7 [7.00	The section of		
	7 = UTred x . 7-6 1R	-> 2 L IR 2	
	rea	7	
7 4	Vanney = Dadus Z.		
	X approx = Ureduce . Z.		
	(n×k) (k×1)		
Choosing	k. (# of principal component)		
		M 11 161 (17)	112
- A	Average Square projection error m	t=1 X - Z approx	4
. 7	Total variation in data # 1 1/2"	.) Ås	
. 7	yprally, choose k to be win s.	t.	
	1 m X (i) - X a		
	W	< 0.0 \	(1°/.) [x]
	1 M 1 1 1 X (1) 1 2		
	"99% variance retained"		
	Algorithme.		
	1) try PCA with k=1		
		1.) (In)	
	2) Compute Uneduce, Z(1), Z(1) approx	7, z (w)	
	~ арры	approx	
	3) Check [X]		
	4) k=k+1 _> 2		
	tvis, v] = svd (sigma)		For given k, (x) can be
	Y	(511)	computed as $\left(1-\frac{\sum_{i=1}^{k}Sii}{\sum_{i=1}^{k}Sij}\right)$
	uxu dingonal, S=		T 5"
		\ 0	1-1
			7 0.99

Havite for appening 109	
Supervised learning speed UP	x (i) & IR (6000
(x (1), y (1)) (x (m), y (m))	X (1) & IK
Extract inputs:	
Unlabelled dataset 2(1), x (2)	z cm) Q IR 18000
	, PCA (defined mining only on training set)
ε · · · · · · · · · · · · · · · · · · ·	7 (m) 0 1R 18000 =
New training set	
(z (1), y (1)) (z (m), y (m))	tran. (+ exp(-07Z)
Example	
$Y \rightarrow Z \rightarrow h(z)$ (prediction)	
Application	
Compression - choose k by % variance - Visualization - k=2,3	e retanc.
What not to do prevent overfitting	
. Use 7 (1) instead of x(1), reduce 4	of Seatures from n to k.
-> fener features, less likely to over	
	information wo knowing y7

