Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Mogicians

3 **Basic Counting**

A function $[m] \to [n]$ is monotone if $f(1) \le f(2) \le \cdots \le f(m)$. It is strictly monotone if $f(1) < f(2) < \cdots < f(m)$.

Exercise 3.1. Find and justify a closed formula for the number of strictly monotone functions from [m] to [n].

Answer The answer is $\binom{n}{m}$.

We can select m different elements in set [n], then sort them in strict increments. Then we get a sequence a_n of n elements, $\forall 1 \leq i < n, a_i < a_{i+1}$. Define $f(i) = a_i$, and we can see f(i) is a strict monotone function. Therefore, there are $\binom{n}{m}$ different a_n , so there are $\binom{n}{m}$ different functions.

Exercise 3.2. Find and justify a closed formula for the number of monotone functions from [m] to [n].

Answer The answer is $\binom{n+m-1}{n-1}$. Firstly, we select k different values to construct the value domain A. There are $\binom{n}{k}$ ways.

Secondly, we sort them in strict increments, then we get a sequence, and $\forall 1 \leq i < k, \, a_i < a_{i+1}.$

Thirdly, we divide [n] into k consecutive parts, the ith part we define it as

 X_i . $\forall x \in X_i$, $f(x) = a_i$. We can see that f(x) is a monotone function. Take a look at the following picture.

Figure 1: Dividing n elements into k parts

We need to divide the points into k consecutive parts that contain at least one point. It's like put k-1 clapboards in the n-1 gaps between two points. So there are $\binom{m-1}{k-1}$ different ways.

Therefore, for $0 < k \le m$, there are $\binom{n}{k} \times \binom{m-1}{k-1}$ functions. In sum, there are

 $\sum_{k=1}^{m} \binom{n}{k} \times \binom{m-1}{k-1} \text{ different functions.}$ We know $\sum_{k=1}^{m} \binom{n}{k} \times \binom{m-1}{k-1} = \sum_{k=1}^{m} \binom{n}{n-k} \times \binom{m-1}{k-1}. \text{ For } \sum_{k=1}^{m} \binom{n}{n-k} \times \binom{m-1}{k-1},$ we have an interpretation: we choose n-k people among n people, and choose k-1 people among another m-1 people. This is actually to choose n-1 people among n+m-1 people.

So we see $\sum_{k=0}^{m} {n \choose n-k} \times {m-1 \choose k-1} = {n+m-1 \choose n-1}$, which is the answer to the question.

Exercise 3.3. Prove that $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$ for every $n \geq 0$ by finding a combinatorial interpretation.

Answer Suppose that we choose n items from 2n items. There are $\binom{2n}{n}$ situations. Another interpretation of choosing is that we first divide 2n items equally into two n elements item set. Then we choose k items from the first set and n-k items from the second one. There are $\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}$ situations. Since $\binom{n}{k} = \binom{n}{n-k}$, $\sum_{k=0}^{n} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$.

Exercise 3.4. [From the textbook] Find a closed formula for $\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k}$ and prove it combinatorially, i.e., by giving an interpretation.

Answer The equation: $\sum_{k=m}^{n} {k \choose m} {n \choose k}$ stand for all of the situation that we first choose k from n and then choose m from k.

We can list another situation: we first choose m from n, then the remain n-m menbers have two cases: be chosen to k or not. So the total status's number is 2^{n-m} . So there are $\binom{n}{m}2^{n-m}$ and we can achieve that: $\sum_{k=m}^n \binom{k}{m} \binom{n}{k} = \binom{n}{m}2^{n-m}$

$$\sum_{k=m}^{n} {k \choose m} {n \choose k} = {n \choose m} 2^{n-m}$$

Exercise 3.5. Let B_n be the number of partitions of the set [n] (this is the same as the number of equivalence relations on [n]). This is called the Bell number, thus we denote it B_n . Prove that the following recursive formula for B_n is correct:

$$B_0 = 1$$

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k .$$

Proof. Choose n-k elements in [n] to be in a same subset with n+1, then the remaining k elements have B_k partitions. So sum up these partition numbers of different choices of k, we get the formula:

$$B_{n+1} = \sum_{k=0}^{n} {n \choose n-k} B_k = \sum_{k=0}^{n} {n \choose k} B_k$$

Exercise 3.6. Let P_n be the number of ways to write the natural number n as a sum $a_1 + a_2 + \cdots + a_k$ such that $1 \le a_1 \le a_2 \le \cdots \le a_k$. For example, 3 can be written as 3, 2+1, and 1+1+1, so $P_3=3$. Find a recursive formula for P_n .

Answer Let f(n,m) be the number of ways to write the natural number n as a sum $a_1 + a_2 + \cdots + a_k$ such that $1 \le a_1 \le a_2 \le \cdots \le a_k \le m$. So $P_n = f(n,n)$.

For f(n,m), it is obviously that $1 \leq a_k \leq m, n$. So f(n,1) = 1, and f(n,m) = f(n,n) if m > n. If 1 < m < n, the split of n depends on whether $a_k = m$. If $a_k = m$, the number of plans equals to f(n-m,m), which means $a_1 + a_2 + \cdots + a_{k-1} = n - m$ such that $a_{k-1} \leq m$. If $a_k \neq m$, the number of plans equals to f(n,m-1), which means $a_1 + a_2 + \cdots + a_k = n$ such that $a_k \leq m$.

In summary,
$$P_n = f(n, n)$$
.
$$f(n, m) = \begin{cases} 1 & m = 1 \\ f(n, n) & m > n \\ f(n - m, m) + f(n, m - 1) & 1 < m < n \\ 1 + f(n, m - 1) & n > 1, m = n \end{cases}$$

4 Questions

4.1

Since we do Exercise 3.6 by finding out a recurrence relation, we want to know whether it has an one-dimensional recursion relation. Furthermore, can it be solved by giving a general formula?