

6.9V Precision Voltage Reference

FEATURES

- Guaranteed 10 ppm/°C temperature coefficient
- **Guaranteed** 1.0Ω max. dynamic impedance
- Guaranteed 20µV max. wideband noise
- Wide operating current range 0.6mA to 15mA

APPLICATIONS

- Transducers
- A/D and D/A Converters
- Calibration Standards
- Instrumentation Reference

DESCRIPTION

The LM129 temperature compensated 6.9 Volt zener references provide excellent stability over time and temperature, very low dynamic impedance and a wide operating current range. The device achieves low dynamic impedance by incorporating a high gain shunt regulator around the zener. The excellent noise performance of the device is achieved by using a "buried zener" design which eliminates surface noise phenomenon associated with ordinary zeners. To serve a wide variety of applications, the LM129 is available in several temperature coefficient grades and two package styles. A 20mA positive current source application is shown below.

20mA Positive Current Source

Reverse Voltage Change

ABSOLUTE MAXIMUM RATINGS

0mA 2mA
25°C
70°C
50°C
50°C
O°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS (See Note 1)

SYMBOL					LM129		1	LM329A,B.C,D		
	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vz	Reverse Breakdown Voltage	$T_A = 25^{\circ}C$ 0.6mA $\leq I_R \leq 15mA$		6.7	6.9	7.2	6.6	6.9	7.25	٧
$\frac{\Delta V_Z}{\Delta I_R}$	Reverse Breakdown Voltage Change with Current	$T_A = 25^{\circ}C$ 0.6mA $\leq I_R \leq 15$ mA		,	9	14		9	20	m∨
ΔV _Z ΔI _R	Reverse Breakdown Voltage Change with Current	1mA ≤ I _R ≤ 15mA	•		12			12		mV
$\frac{\Delta V_Z}{\Delta \text{ Temp}}$	Temperature Coefficient	I _R = 1mA LM 129A/LM329A LM 129B/LM329B LM 129C/LM329C LM329D	• • • •		6 15 30	10 20 50		6 15 30 50	10 20 50 100	ppm/°C ppm/°C ppm/°C ppm/°C
	Change in Temperature Coefficient	1mA ≤ I _R ≤ 15mA	•		1			1		ppm/°C
r _Z	Dynamic Impedance (Note 2)	$T_A = 25^{\circ}C$, $I_R = 1mA(10Hz \le f \le 100Hz)$			0.6	1		0.8	2	Ω
rz	Dynamic Impedance (Note 2)	$1mA \le I_R \le 15mA (10Hz \le f \le 100Hz)$	•		0.8			1		Ω
en	RMS Noise	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$			7	20		7	100	μV
ΔV _Z Δ Time	Long Term Stability	$T_A = 45^{\circ}C \pm 0.1^{\circ}C$ $I_R = 1mA \pm 0.3\%$			20			20		ppm/kHr

The • denotes the specifications which apply over full operating temperature range.

Note 1: These specifications apply over the full operating temperature range unless otherwise noted. To determine the junction temperature as a function of the ambient temperature, see $\theta_{\rm JA}$ for each package.

Note 2: Dynamic impedance guaranteed by "Reverse Breakdown Voltage Change with Current".

TYPICAL APPLICATIONS

Py TO 40V Rs LM329 6.9V

Buffered Reference Using a Single Supply

Precision Clamp

TYPICAL PERFORMANCE CHARACTERISTICS

Response Time

Forward Characteristics

Noise Voltage

Low Frequency Noise Voltage

SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

H Package, 2 Lead TO-46 Metal Can

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.