Digital Simulation using Xcelium

Shengyu Duan and Terrence Mak

Digital Simulations Lab Instructions

For this lab you will need:

- 1. A post-layout Verilog net list of the design
 - obtained from place and route lab (wrap_qmults_final.v)

- 2. A Standard Delay Format file of the design
 - again, from place and route (wrap_qmults_func_max.sdf)

- 3. A Verilog testbench
 - the same as in synthesis lab (wrap_qmults_stim.sv)

Design Directory Management

- Inside your design directory create a sub-directory called extracted
- 2. Copy the design files into extracted

```
ams_demo
behavioural gate_level constraints synthesis place_and_route extracted
```

```
cp place_and_route/wrap_qmults_final.v extracted/wrap_qmults.v
cp place_and_route/wrap_qmults_func_max.sdf extracted/
cp behavioural/wrap_qmults_stim.sv extracted/
```

Introduction

■ The simulator we are going to use in this lab is Cadence Xcelium (xmverilog)

■ Before we run the simulation, there are some modifications you need to make ...

SDF Annotation

In order to simulate your design with correct delays, you need to annotate the .sdf file, in the testbench:

Make sure you annotate the .sdf for the right instance

Timescale

- xmverilog expects all modules to have timescales specified (whether or not any delays are used in the module).
- For the wrap_qmults.v Verilog file, we must set a default timescale using following xmverilog option:

+xmtimescale+<*timeunit>I*<*timeprecision>*

Run Simulation

Now you can simulate your design by following command:

xmverilog +naccess+r +xmtimescale+1ns/10ps -f /opt/cad/designkits/ams/v410/verilog/c35b4/verilogin.inc wrap_qmults_stim.sv wrap_qmults_final.v

The circuit under test is a multiplier. Thus the functionality can be easily verified by observing the waves.