FCC Test Report

Application Purpose: Original grant

Applicant Name: : INFINIX MOBILITY LIMITED

FCC ID : 2AIZN-X556

Equipment Type : Mobile phone

Model Name : X556

Report Number : FCC16083919A-7

Standard(S) : FCC Part 15 Subpart E

Date Of Receipt : August 19, 2016

Date Of Issue : September 29, 2016

Test By :

(Daisy Qin)

Reviewed By

(Sol Qin)

Authorized by :

(Michal Ling)

Prepared by

QTC Certification & Testing Co., Ltd.

2nd Floor,B1 Building,Fengyeyuan Industrial Plant,,Liuxian

2st.Road,Xin'an Street,Bao'an District,,Shenzhen,

518000China.

Page 2 of 92

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	September 29, 2016	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	5
2. TEST DESCRIPTION	8
2.1 MEASUREMENT UNCERTAINTY	8
2.2 DESCRIPTION OF TEST MODES	9
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	10
2.4 CONFIGURATION OF SYSTEM UNDER TEST	11
2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	11
3. SUMMARY OF TEST RESULTS	12
4. MEASUREMENT INSTRUMENTS	13
5. EMC EMISSION TEST	14
5.1 CONDUCTED EMISSION MEASUREMENT	14
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
5.1.2 TEST PROCEDURE 5.1.3 DEVIATION FROM TEST STANDARD	15 15
5.1.4 TEST SETUP	15
5.1.5 EUT OPERATING CONDITIONS	15
5.1.6 TEST RESULTS	16
5.2 RADIATED EMISSION MEASUREMENT	18
5.2.1 RADIATED EMISSION LIMITS	18
5.2.2 TEST PROCEDURE	18
5.2.3 DEVIATION FROM TEST STANDARD	19
5.2.4 TEST SETUP 5.2.5 EUT OPERATING CONDITIONS	20 21
5.2.5.1 RESULTS (BELOW 30 MHZ)	22
5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	23
5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)	25
6. ANTENNA APPLICATION	34
7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS	35
7. 1 Test Equipment	35
7. 2 Test Procedure	35 36
7. 3 Test Setup 7. 4 Configuration of the EUT	36 36
7. 5 EUT Operating Condition	36
7. 6 Limit	37
7. 7 Test Result	38
8. BAND EDGE EMISSIONS	82
8. 1 Test Equipment	82
8. 2 Test Procedure	82

	Page 4 of 92
Table of Contents	Page
8. 3 Test Setup	82
8. 4 Configuration of the EUT	82
8. 5 EUT Operating Condition	82
8. 6 Limit	83
8. 7 Test Result	
8. / Test Result	84

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

NERAL DESCRIP	11011 01 201
Test Model	X556
Applicant	INFINIX MOBILITY LIMITED
Address	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
Manufacturer	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address	1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan Road,Yantian District,Shenzhen,Guangdong,China
Equipment Type	Mobile phone
Brand Name	Infinix
Hardware version:	V1.3
Software version:	X556-H372A1-M-160720V16
Extreme Temp. Tolerance	-10℃ to +65℃
Battery information:	Li-ion Battery : BL-39AX Voltage: 3.85V Capacity: 3950mAh/4000mAh (min/typ) Limited Charge Voltage: 4.4V
Adapter Information:	Adapter: A88-502000 Input: 100-240V 50/60Hz 350mA Output: 5V-2A
Operating Frequency	see the below table
Channels	see the below table
Channel Spacing	see the below table
Modulation Type	see the below table
Antenna Type:	PIFA Antenna
Antenna gain:	-4dBi
Data of receipt	August 19, 2016
Date of test	August 19, 2016 to September 27, 2016
Deviation	None
Condition of Test Sample	Normal

EUT Specification:

Name - Description				
Items	Description			
Modulation	IEEE 802.11a: OFDM			
	IEEE 802.11n: see the below table			
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Data Rate (Mbps)	IEEE 802.11a: OFDM 6,9,12,18,24,36,4	IEEE 802.11a: OFDM 6,9,12,18,24,36,48, and 54 Mbps		
	IEEE 802.11n: MCS 0-15 up to 150 Mb	ps		
Frequency Range	Band 1: 5150 MHz ~ 5250 MHz			
	Band 2: 5250 MHz ~ 5350 MHz	Band 2: 5250 MHz ~ 5350 MHz		
	Band 4: 5725 MHz ~ 5850 MHz			
Channel Number	13 for 20MHz bandwidth; 6 for 40MHz	bandwidth		
Communication Mode	⊠IP Based (Load Based)	☐Frame Based		
TPC Function	☐With TPC	⊠Without TPC		
Weather Band	☐With 5600~5650MHz	⊠Without 5600~5650MHz		
Beamforming Function	☐With beamforming	⊠Without beamforming		
Operating Mode	Outdoor access point	☐Indoor access point		
	☐Fixed point-to-point access points	☑Mobile and portable client devices		
	□Master	☐Slave with radar detection		
	Slave without radar detection			

Antenna	One (TX)	
Band width Mode	20 MHz	40 MHz
IEEE 802.11a	V	X
IEEE 802.11n	V	V

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1	MCS 0-15
802.11n (HT40)	1	MCS 0-15

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.
Note 2: Modulation modes consist of below configuration:
HT20/HT40: IEEE 802.11n

We hereby certify that:
All measurement facilities used to collect the measurement data are located at QTC Certification &
Testing Co., Ltd.
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2014 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart E. ALL the testing was referenced KDB NO. 789033. The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40

For Conducted Emission	
Final Test Mode	Description
Mode 1	802.11a

For Radiated Emission		
Final Test Mode	Description	
Mode 1	802.11a	
Mode 2	802.11n20	
Mode 3	802.11n40	

Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test Software		N/A								
Test program						*#3646	633#*			
Mode					Tes	t Freque		z)		
802.11a	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	NCB: 2 5825 MHz	UMHZ			
802.11n MCS0 VHT20	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz				
Mode	NCB: 40MHz									
802.11n MCS0 VHT40	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz				

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Mobile phone)

I/O Port of EUT							
I/O Port Type	Q'TY	Cable	Tested with				
USB port	1	1m USB cable, unshielded	1				
Power	1	1m	1				

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	CQ-24JX	/	/
2	Earphone	/	N/A	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 Subpart E							
Standard Test Item Judgment Rem							
2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies				
15.407(e)	6dB Spectrum Bandwidth	PASS	Complies				
15.407(a)	Maximum Conducted Output Power	PASS	Complies				
15.407(a)	Power Spectral Density	PASS	Complies				
15.407(b)	Unwanted Emissions	PASS	Complies				
15.207	AC Conducted Emission	PASS	Complies				
15.407(g)	Frequency Stability	PASS	Complies				
15.407(c)	Automatically Discontinue Transmission	PASS	Complies				
15.203 & 15.407(a)	Antenna Requirement	PASS	Complies				
15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies				

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	CALIBRATION DATE	CALIBRATI ON DUE.
EMI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2016	08/18/2017
Coaxial cable	Megalon	LMR400	N/A	08/12/2016	08/11/2017
GPIB cable	Megalon	GPIB	N/A	08/12/2016	08/11/2017
Spectrum Analyzer	R&S	FSU	100114	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2015	10/12/2016
Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2015	10/12/2016
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2016	09/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2016	09/12/2017
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2016	08/22/2017
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2016	04/24/2017
System-Controller	CCS	N/A	N/A	N.C.R	N.C.R
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	-	08/21/2016	08/20/2017
Loop Antenna	EMCO	6502	00042960	08/22/2016	08/21/2017
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2016	08/18/2017
Power meter	Anritsu	ML2487A	6K00003613	08/23/2016	08/22/2017
Power sensor	Anritsu	MX248XD		08/19/2016	08/18/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

EDECLIENCY (MH-)	Class A (dBuV)		Class B	Ctondord	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	August 22, 2016	Test Mode	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1580	38.72	10.44	49.16	65.56	-16.40	QP
2		0.2644	20.76	10.43	31.19	51.29	-20.10	AVG
3		0.6780	32.05	10.38	42.43	56.00	-13.57	QP
4	*	0.6780	29.37	10.38	39.75	46.00	-6.25	AVG
5		1.3220	25.89	10.32	36.21	46.00	-9.79	AVG
6		1.3300	33.11	10.32	43.43	56.00	-12.57	QP
7		1.9580	24.51	10.29	34.80	46.00	-11.20	AVG
8		2.8820	31.85	10.27	42.12	56.00	-13.88	QP
9		3.5540	21.74	10.26	32.00	46.00	-14.00	AVG
10		4.3020	31.25	10.24	41.49	56.00	-14.51	QP
11		18.1100	23.31	10.13	33.44	50.00	-16.56	AVG
12		21.3140	34.10	10.11	44.21	60.00	-15.79	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	August 22, 2016	Test Mode	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector
1		0.1620	30.77	10.44	41.21	65.36	-24.15	QP
2		0.1980	21.66	10.43	32.09	53.69	-21.60	AVG
3		0.2660	19.16	10.43	29.59	51.24	-21.65	AVG
4		0.2779	29.01	10.43	39.44	60.88	-21.44	QP
5	*	0.6900	25.47	10.38	35.85	46.00	-10.15	AVG
6		0.6980	31.14	10.38	41.52	56.00	-14.48	QP
7		2.9180	31.06	10.27	41.33	56.00	-14.67	QP
8		2.9180	19.78	10.27	30.05	46.00	-15.95	AVG
9		4.4460	33.91	10.24	44.15	56.00	-11.85	QP
10		5.7740	23.07	10.22	33.29	50.00	-16.71	AVG
11		7.2620	33.22	10.21	43.43	60.00	-16.57	QP
12		13.1540	22.35	10.16	32.51	50.00	-17.49	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBu\	//m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted	4 Mile /4 Mile for Dook 4 Mile /401 le for Averson			
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported **5.2.3 DEVIATION FROM TEST STANDARD** No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 RESULTS (BELOW 30 MHZ)

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization	
Test Mode	Mode 1	Test Date	August 22, 2016

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Horizontal
Test Mode	Mode 1	Test Date	August 22, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.3462	23.94	-2.30	21.64	40.00	-18.36	QP
2		102.3597	28.04	-5.66	22.38	43.50	-21.12	QP
3	*	203.5226	34.58	-4.95	29.63	43.50	-13.87	QP
4		297.2241	31.71	-5.76	25.95	46.00	-20.05	QP
5		501.1788	20.69	-1.00	19.69	46.00	-26.31	QP
6		672.8444	23.51	1.98	25.49	46.00	-20.51	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

																				•	age 24 of 5
	EUT	•			Mob	ile	pho	ne				Mo	del Na	me			X	556			
	Tem	perat	ure		20 ℃				Relative Humidity			48%									
	Pres	sure			101	0 hl	Pa					Polarization : Vertical									
		Mode	Э		Mod	le 1						Tes	st Date				Αι	ugus	t 22,	2016	3
80.	O dB	luV/m										_									
300	M.	~_~	*\	M _V	The state of the s	and the second	W	tap-wh	Mary Mary	hway Jah	A. Marie	when	WW. growth Market		, 4	Mondia	_{Mar} ive h	who	· Bal	mit1:	W
-20 3	0.000	40	Ę	50	60		80				(MHz)				300	41	00	500	600	700	1000.000
	No.	Mk		Fr	eq.			ev	ing el		orrec actor		Mea m	ent		Li	mit		Ov	er	
				M	Ηz		(dBu'	V		dB		dBu	V/m	ı	dB	uV/ı	m	dB		Detector
	1	*	43	3.96	358		3	3.7	9	-(3.23		27.	56		40	.00	-	12.	44	QP
	2		83	3.52	220		2	9.2	3	-7	7.90		21.	33		40	.00	•	18.	67	QP
	3		155	5.90	99		2	8.1	0	-4	4.24		23.	86		43	.50	-	19.	64	QP
	4		261	1.97	753		2	9.5	7	-(3.38		23.	19		46	.00	-	22.	81	QP
	5		321	1.06	305		2	7.2	2	-4	4.53		22.	69		46	.00	-	23.	31	QP
	6		580).70	24		2	6.7	'3	(0.73		27.	46		46	.00	-	18.	54	QP

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)

EUT	Mobile phone	Model Name	X556
Temperature	[20] (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBu\	V/m)		
	H/V	PK	AV	PK	PK ÁV		AV
10360	V	58.83	39.11	74	54	-15.17	-14.89
15540	V	59.29	39.53	74	54	-14.71	-14.47
10360	Н	59.62	39.28	74	54	-14.38	-14.72
15540	Н	59.25	40.25	74	54	-14.75	-13.75

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5240MHz

Freq. (MHz)	Ant.Pol.	Emission I	Level(dBuV	Lir 3m(dB	nit suV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
10480	V	60.95	39.16	74	54	-13.05	-14.84	
15720	V	58.97	40.52	74	54	-15.03	-13.48	
10480	Н	58.03	39.31	74	54	-15.97	-14.69	
15720	Н	59.95	40.95	74	54	-14.05	-13.05	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5260MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Lir	Limit		Over(dB)	
(MHz)					3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
10520	V	59.95	40.68	74	54	-14.05	-13.32	
15780	V	59.08	39.66	74	54	-14.92	-14.34	
10520	Н	59.05	40.19	74	54	-14.95	-13.81	
15780	Н	58.04	39.04	74	54	-15.96	-14.96	

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5320MHz

Freq.	Ant. Pol.	Emission		Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(dBuV)					
	H/V	PK	AV	PK	AV	PK	AV
10640	V	58.34	39.65	74	54	-15.66	-14.35
15960	V	59.28	40.64	74	54	-14.72	-13.36
10640	Н	59.26	40.22	74	54	-14.74	-13.78
15960	Н	59.26	40.26	74	54	-14.74	-13.74

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Lir	Limit		er(dB)
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11490	V	58.07	39.74	74	54	-15.93	-14.26
17235	V	58.30	39.79	74	54	-15.70	-14.21
11490	Н	59.20	40.58	74	54	-14.80	-13.42
17235	Н	59.26	40.26	74	54	-14.74	-13.74

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	August 22, 2016	Frequency	5825MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)		
(MHz)					3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
11650	V	59.10	39.02	74	54	-14.90	-14.98	
17475	V	58.54	39.77	74	54	-15.46	-14.23	
11650	Н	59.50	39.27	74	54	-14.50	-14.73	
17475	Н	59.34	40.34	74	54	-14.66	-13.66	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5180MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10360	V	58.25	41.75	74	54	-15.75	-12.25
15540	V	58.52	39.33	74	54	-15.48	-14.67
10360	Н	58.85	39.75	74	54	-15.15	-14.25
15540	Н	59.27	40.27	74	54	-14.73	-13.73

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5240MHz

Freq.	Ant.Pol.	Emission I	_evel(dBuV	Lir	nit	Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10480	V	59.77	41.11	74	54	-14.23	-12.89
15720	V	59.89	40.28	74	54	-14.11	-13.72
10480	Н	59.22	40.53	74	54	-14.78	-13.47
15720	Н	59.98	40.98	74	54	-14.02	-13.02

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5260MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Lir	Limit		Over(dB)	
(MHz)			·		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
10520	V	60.13	40.86	74	54	-13.87	-13.14	
15780	V	58.50	39.52	74	54	-15.50	-14.48	
10520	Н	58.23	39.60	74	54	-15.77	-14.40	
15780	Н	58.12	39.12	74	54	-15.88	-14.88	

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5320MHz

Freq.	Ant. Pol.	Emission		Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(Level(dBuV)		BuV)		
	H/V	PK	AV	PK	AV	PK	AV
10640	V	58.25	41.75	74	54	-15.75	-12.25
10640	V	58.52	39.33	74	54	-15.48	-14.67
15960	Н	58.85	39.75	74	54	-15.15	-14.25
15960	Н	59.27	40.27	74	54	-14.73	-13.73

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5745MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Lir	Limit		er(dB)
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
11490	V	60.69	41.37	74	54	-13.31	-12.63
17235	V	58.98	40.01	74	54	-15.02	-13.99
11490	Н	58.52	40.41	74	54	-15.48	-13.59
17235	Н	59.66	40.66	74	54	-14.34	-13.34

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	August 22, 2016	Frequency	5825MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)			Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
11650	V	60.56	41.90	74	54	-13.44	-12.10	
17475	V	58.78	39.62	74	54	-15.22	-14.38	
11650	Н	59.85	39.39	74	54	-14.15	-14.61	
17475	Н	59.18	40.18	74	54	-14.82	-13.82	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5190MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
10380	V	58.79	39.79	74	54	-15.21	-14.21
15570	V	58.31	39.00	74	54	-15.69	-15.00
10380	Н	59.49	40.26	74	54	-14.51	-13.74
15570	Н	59.59	40.59	74	54	-14.41	-13.41

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5230MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)			,		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10460	V	60.93	40.89	74	54	-13.07	-13.11
15690	V	58.29	39.19	74	54	-15.71	-14.81
10460	Н	59.43	40.57	74	54	-14.57	-13.43
15690	Н	58.69	39.69	74	54	-15.31	-14.31

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5270MHz

Freq.	Ant.Pol.	Emission	Level(dBuV	Lir	nit	Ove	r(dB)
(MHz)				3m(dB	BuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
10540	V	58.71	39.83	74	54	-15.29	-14.17
15810	V	58.63	39.90	74	54	-15.37	-14.10
10540	Н	59.10	40.66	74	54	-14.90	-13.34
15810	Н	59.80	40.80	74	54	-14.20	-13.20

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5310MHz

Freq.	Ant. Pol.	Emis	ssion	Limit 3m(dl	BuV/m)	Over(dB)
(MHz)		Level(dBuV)				
	H/V	PK	AV	PK	AV	PK	AV
10620	V	60.86	39.55	74	54	-13.14	-14.45
15930	V	59.20	39.69	74	54	-14.80	-14.31
10620	H	58.52	40.31	74	54	-15.48	-13.69
15930	Н	58.22	39.22	74	54	-15.78	-14.78

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5755MHz

Freq.	Ant.Pol.	Emission	Level(dBuV	Lir	nit	Ove	er(dB)
(MHz)				3m(dB	suV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11510	V	58.56	41.88	74	54	-15.44	-12.12
17265	V	59.79	40.92	74	54	-14.21	-13.08
11510	Н	58.97	40.02	74	54	-15.03	-13.98
17265	Н	58.92	39.92	74	54	-15.08	-14.08

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X556
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	August 22, 2016	Frequency	5795MHz

Freq.	Ant.Pol.	Emission I	_evel(dBuV)	Lir	nit	Ove	r(dB)
(MHz)				3m(dB	BuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
11590	V	58.70	41.47	74	54	-15.30	-12.53
17385	V	59.01	39.51	74	54	-14.99	-14.49
11590	Н	59.35	39.64	74	54	-14.65	-14.36
17385	Н	59.48	40.48	74	54	-14.52	-13.52

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

6. ANTENNA APPLICATION

6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407.

FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.
6.2 Result The EUT's antenna integrated on PCB, The antenna's gain is -4dBi and meets the requirement.

7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS 7. 1 Test Equipment

Please refer to Section 4 this report.

7. 2 Test Procedure

Test Method:	a)The transmitter was radiated to the	spectrum analyzer in peak hold mode.				
	b)Measure the maximum width of the emission that is 26 dB down from the peak of the					
	emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat					
	measurement as needed until the RBW/EBW ratio is approximately 1%.					
T4 E: C						
	tting – 26dB Bandwidth:	Test Equipment Setting – 99%% Bandwidth:				
a)Attenuation: Auto		a)Span: 1.5 times to 5.0 times the OBW				
	> 26dB Bandwidth	b)RBW: 1 % to 5 % of the OBW				
	ately 1% of the emission bandwidth	c)VBW: 3 x RBW				
d)VBW: $VBW > R$	BW	d)Detector: Peak				
e)Detector: Peak f)Trace: Max Hold		e)Trace: Max Hold				
,	to.					
g)Sweep Time: Aut 6 dB Bandwidth:						
Test Method:		anastrum analyzar in nask hald made				
rest Method.		spectrum analyzer in peak hold mode. with KDB789033 D02 v01 for Compliance Testing of				
		structure (U-NII) Devices - section (C) Emission				
	Bandwidth.	structure (0-Mil) Devices - Section (C) Emission				
		med in accordance with KDB662911 D01 v02r01				
	Emissions	med in accordance with NDB002911 DOT V02101				
		Outputs in the Same Band				
	Testing of Transmitters with Multiple (
Test Fauinment Se	Testing of Transmitters with Multiple (d) Measured the spectrum width with p					
Test Equipment Set	Testing of Transmitters with Multiple (d)Measured the spectrum width with ptting:	power higher than 6dB below carrier.				
a)Attenuation: Auto	Testing of Transmitters with Multiple (d)Measured the spectrum width with pating:	oower higher than 6dB below carrier. e)Detector: Peak				
a)Attenuation: Auto b)Span Frequency:	Testing of Transmitters with Multiple (d)Measured the spectrum width with pating:	e)Detector: Peak f)Trace: Max Hold				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz	Testing of Transmitters with Multiple (d)Measured the spectrum width with parting: > 6dB Bandwidth	oower higher than 6dB below carrier. e)Detector: Peak				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth	e)Detector: Peak f)Trace: Max Hold				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW ucted Output Power Measurement:	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW ucted Output Power Measurement: a)The transmitter output (antenna por	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter.				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW ucted Output Power Measurement: a)The transmitter output (antenna porb)Test was performed in accordance with the second	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW ucted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance of Unlicensed National Information Infras	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW acted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance unlicensed National Information Infrasconducted output power =>3. Measurement:	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-G				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW Icted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance unlicensed National Information Infrasconducted output power =>3. Measure (Measurement using a gated RF aversum to the spectrum of the spec	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-Gage power meter).				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with parting: > 6dB Bandwidth BW Icted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance Unlicensed National Information Infras conducted output power =>3. Measure (Measurement using a gated RF averac)Multiple antenna systems was performed.	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-G				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW Icted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance Unlicensed National Information Infras conducted output power =>3. Measure (Measurement using a gated RF averac)Multiple antenna systems was performed Emissions	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-Gage power meter). wrmed in accordance with KDB662911 D01 v02r01				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW Icted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance unlicensed National Information Infras conducted output power =>3. Measure (Measurement using a gated RF averac)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-Gage power meter). wrmed in accordance with KDB662911 D01 v02r01 Dutputs in the Same Band.				
a)Attenuation: Auto b)Span Frequency: c)RBW: 100kHz d)VBW: 3 x R Maximum Condu	Testing of Transmitters with Multiple (d)Measured the spectrum width with putting: > 6dB Bandwidth BW Icted Output Power Measurement: a)The transmitter output (antenna por b)Test was performed in accordance unlicensed National Information Infras conducted output power =>3. Measure (Measurement using a gated RF averac)Multiple antenna systems was performed Emissions Testing of Transmitters with Multiple (d)	e)Detector: Peak f)Trace: Max Hold g)Sweep Time: Auto t) was connected to the power meter. with KDB789033 D02 v01 for Compliance Testing of structure (U-NII) Devices - section (E) Maximum ement using a Power Meter (PM) =>b) Method PM-Gage power meter). wrmed in accordance with KDB662911 D01 v02r01 Dutputs in the Same Band. ted output power with multiple antenna systems, add				

Power Spectral Density:

Test Method:

a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).

c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power

Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.

d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for

the first frequency bin of the summed spectrum. The summed spectrum value for each of the other

frequency bins is computed in the same way.

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should 30 dBm.

Page 36 of 92

Test Equipment Setting:

a)Attenuation: Auto
b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of the signal c)RBW: 1000 kHz d)VBW: 3000 kHz

e)Detector: RMS f)Trace: AVERAGE g)Sweep Time: Auto h)Trace Average: 100 times

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Frequency Stability Measurement:

Test Method:

a)The transmitter output (antenna port) was connected to the spectrum analyzer.

b)EUT have transmitted absence of modulation signal and fixed channelize.

c)Set the spectrum analyzer span to view the entire absence of modulation emissions

bandwidth.

d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.

e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc \times 106

ppm and

the limit is less than ±20ppm (IEEE 802.11nspecification).

f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of

the

nominal value

g)Extreme temperature is 0°C~40°C

Test Equipment Setting:

a)Attenuation: Auto

b)Span Frequency: Entire absence of modulation emissions bandwidth

c)RBW: 10 kHz d)VBW: 10 kHz e)Sweep Time: Auto

7. 3 Test Setup

7. 4 Configuration of the EUT

Same as section 2.4 of this report

7. 5 EUT Operating Condition

Same as section 2.2 of this report.

7. 6 Limit	
26dB Bandwidth and 99% Occupied Bandwidth:	
Limit: No restriction limits. 6 dB Bandwidth:	
	minimum 6dB bandwidth shall be at least 500 kHz.
Test Equipment Setting:	THIRITIAN GOD BANGWIGHT SHAIL BE At least 500 KHz.
a)Attenuation: Auto	e)Detector: Peak
b)Span Frequency: > 6dB Bandwidth	f)Trace: Max Hold
c)RBW: 100kHz	g)Sweep Time: Auto
d)VBW: ≥ 3 x RBW	
Maximum Conducted Output Power Measurement:	
	5.25 GHz
Limit of Outdoor access point:	Limit of Indoor access point:
The maximum conducted output power over the	The maximum conducted output power over the
frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 1 W
(30dBm) provided the maximum antenna gain does not	
exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum	exceed 6 dBi. If transmitting antennas of directional
conducted output power and the maximum power	gain greater than 6 dBi are used, both the maximum
spectral density shall be reduced by the amount in dB	conducted output power and the maximum power
that the directional gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in
The maximum e.i.r.p. at any elevation angle above 30	dB
degrees as measured from the horizon must not exceed	d that the directional gain of the antenna exceeds 6
125 mW (21 dBm).	dBi.
Limit of Fixed point-to-point access points:	
The maximum conducted output power over the	The maximum conducted output power over the
frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 250
(30dBm). Fixed point-to-point U-NII devices may emplo	
antennas with directional gain up to 23 dBi without any	
corresponding reduction in the maximum conducted output power or maximum power spectral density. For	not exceed 6 dBi. If transmitting antennas of directional
fixed point-to-point transmitters that employ a directional	
antenna gain greater than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power
maximum conducted output power and maximum	spectral density shall be reduced by the amount in
power spectral density is required for each 1 dB of	dB
antenna gain in excess of 23 dBi.	that the directional gain of the antenna exceeds 6
•	dBi.
□5.25-5.35 GHz &	
	ncy bands of operation shall not exceed the lesser of 250
mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB	
antennas of directional gain greater than 6 dBi are used	
maximum power spectral density shall be reduced by the exceeds 6 dBi.	ne amount in dB that the directional gain of the antenna
	~5.85 GHz
	ncy band of operation shall not exceed 1 W (30dBm). If
transmitting antennas of directional gain greater than 6	
	e reduced by the amount in dB that the directional gain of
the antenna exceeds 6 dBi. However, fixed point-to-poi	
transmitting antennas with	
directional gain greater than 6 dBi without any correspondence	onding reduction in transmitter conducted power.
Power Spectral Density	
	5.25 GHz
Limit of Outdoor access point: 17 dBm/MHz	☐Limit of Indoor access point: 17 dBm/MHz
☐Limit of Fixed point-to-point access points: 17	□Limit of Mobile and portable client devices: 11
dBm/MHz	dBm/MHz
□5.25-5.35 GHz	11 dBm/MHz
□5.470-5.725 GHz	11 dBm/MHz
∑5.725~5.85 GHz	30 dBm/500kHz
Frequency Stability Measurement:	in the head of secretary 1 1 10 100 100
	nin the band of operation under all conditions of normal
operation as specified in the user's	
(IEEE	lerance shall be ± 20 ppm maximum for the 5 GHz band
802.11n specification).	
502.1 III oposinoation).	

7. 7 Test Result

A. 26dB Bandwidth and 99% Occupied Bandwidth

Product	: EUT-Sample	Test Mode	: See section 2.2
Test Item	: 26dB Bandwidth and 99% Occupied Bandwidth	Temperature	: 25 ℃
Test Voltage	: DC 5V	Humidity	: 56%RH
Test Result	: PASS		

26dB Bandwidth

IEEE 802.11a

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	17.236		PASS
High	5240	17.121		PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	17.222		PASS
High	5320	17.093		PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	16.703		PASS
High	5825	16.799		PASS

IEEE 802.11n 5G 20MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	18.408		PASS
High	5240	18.198	-	PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	18.324		PASS
High	5320	18.074	-	PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	17.815		PASS
High	5825	17.849		PASS

IEEE 802.11n 5G 40MHz

Band1

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	36.966		PASS
High	5230	36.495		PASS

Band2

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5270	36.715		PASS
High	5310	36.649	-	PASS

Band4

Channel	Frequency (MHz)	26dBBandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.106		PASS
High	5795	36.056		PASS

Report No.: FCC16083919A-7

9% Occupied E EE 802.11a and1	Bandwidth			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	27.46		PASS
High	5240	23.20		PASS
and2			•	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	26.70		PASS
High	5320	24.09		PASS
ınd4			·	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	16.35		PASS
High	5825	16.30		PASS
EE 802.11n 5G 20N nd1				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5180	26.62		PASS
High	5240	29.62		PASS
nd2			·	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5260	28.14		PASS
High	5320	24.94		PASS
nd4				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5745	17.71		PASS
High	5825	17.60		PASS
EE 802.11n 5G 40N nd1	ЛНz			
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5190	50.35		PASS
High	5230	46.37		PASS
nd2				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5270	47.43		PASS
High	5310	47.32		PASS
nd4				
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	FCC Limit (kHz)	Result
Low	5755	36.03		PASS
	5795			PASS

Report No.: FCC16083919A-7

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 20MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band1

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band2

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

IEEE 802.11n 5G 40MHz Band4

26dB Bandwidth and 99% Occupied Bandwidth (CH Low)

B. 6 dB Bandwidth

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: 6 dB BW	Temperature	: 25 ℃
Test Voltage	: DC 5V	Humidity	: 56%RH
Test Result	: PASS		

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5180	16.44	> 0.5MHz
High	5240	16.44	> 0.5MHz

Page 50 of 92

IEEE 802.11a

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5260	16.44	> 0.5MHz
High	5320	16.44	> 0.5MHz

Page 51 of 92

IEEE 802.11a

ı _, u	1				
Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
Low	5745	16.44	> 0.5MHz		
High	5825	16.44	> 0.5MHz		

Page 52 of 92

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
Low	5180	17.80	> 0.5MHz		
High	5240	17.80	> 0.5MHz		

Page 53 of 92

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
Low	5260	17.80	> 0.5MHz		
High	5320	17.80	> 0.5MHz		

Page 54 of 92

IEEE 802.11n 20MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
Low	5745	17.80	> 0.5MHz	
High	5825	17.80	> 0.5MHz	

Page 55 of 92

IEEE802.11n 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit		
Low	5190	36.40	> 0.5MHz		
High	5230	36.52	> 0.5MHz		

Page 56 of 92

IEEE 802.11n 40MHz

11 - TOINI IL				
Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit	
Low	5270	36.40	> 0.5MHz	
High	5310	36.40	> 0.5MHz	

Page 57 of 92

IEEE 802.11n 40MHz

Channel	Measured Frequency (MHz)	6 dB Bandwidth (MHz)	Limit
Low	5755	36.56	> 0.5MHz
High	5795	36.56	> 0.5MHz

Page 58 of 92

C. Peak Powe	y			
J. I Car I OWE	•			
Product	: EUT-Sample		Test Mode	: See Section 2.
Test Item	: Peak Power	: Peak Power		: 25 °C
Test Voltage	: DC 5V		Humidity	: 56%RH
Test Result	: PASS			
EEE 802.11a Ban	d1			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5180	15.61	0.25/24.00	PASS
High	5240	14.92	0.23/24.00	PASS
EEE 802.11a Ban		1		1
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5260	15.13	0.25/24.00	PASS
High	5320	15.32	0.23/24.00	PASS
EEE 802.11a Ban				
Channel	Frequency	Output Power	FCC Limit	Result
Oname	(MHz)	(dBm)	(W/dBm)	11000
Low	5745	15.23	1.00/30.00	PASS
High	5825	15.65	1100,00100	PASS
EEE 802.11n 5G 2		T _		-
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5180	13.50	0.25/24.00	PASS
High	5240	13.05	0.23/24.00	PASS
EEE 802.11n 5G 2				_
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5260	13.34	0.25/24.00	PASS
High	5320	13.83	0.25/24.00	PASS
EEE 802.11n 5G 2	20MHz Band4			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5745	12.85	1.00/30.00	PASS
High	5825	13.69	1.00/30.00	PASS
EEE 802.11n 5G 4	10MHz Band1			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5190	12.06	0.25/24.00	PASS
High	5230	11.87	0.23/24.00	PASS
EEE 802.11n 5G 4	0MHz Band2			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low	5270	11.59	,	PASS
High	5310	11.88	0.25/24.00	PASS
EEE 802.11n 5G 4	10MHz Band4			
Channel	Frequency (MHz)	Output Power (dBm)	FCC Limit (W/dBm)	Result
Low		12.20	, , ,	DACC

12.38 12.48

1.00/30.00

PASS PASS

Report No.: FCC16083919A-7

Low

High

5755

5795

Page 60 of 92

Date: 13.SEP.2016 15:12:14

Date: 13.SEP.2016 15:13:41

Page 61 of 92

Date: 13.SEP.2016 15:14:24

Date: 13.SEP.2016 15:18:15

Page 62 of 92

Date: 13.SEP.2016 15:19:16

Date: 13.SEP.2016 15:22:11

Page 63 of 92

Date: 13.SEP.2016 15:24:56

Date: 13.SEP.2016 15:26:35

Page 64 of 92

Date: 13.SEP.2016 15:26:54

Date: 13.SEP.2016 15:28:21

Page 65 of 92

Date: 13.SEP.2016 15:29:29

Date: 13.SEP.2016 15:31:23

Page 66 of 92

Date: 13.SEP.2016 15:36:18

Date: 13.SEP.2016 15:36:58

Page 67 of 92

Date: 13.SEP.2016 15:37:23

Date: 13.SEP.2016 15:37:53

Page 68 of 92

Date: 13.SEP.2016 15:39:05

Date: 13.SEP.2016 15:39:42

D. Peak Power Spectral Density

Product	: EUT-Sample	Test Mode	: See Section 2.2
Test Item	: Peak Power Spectral Density	Temperature	: 25 ℃
Test Voltage	: DC 5V	Humidity	: 56%RH
Test Result	PASS		

IEEE 802.11a

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	3.657	11dBm/MHz	PASS
High	5240	2.715	I IUDIII/IVIDZ	PASS
I ligit	J240	2.7 10		FAGG

Band2

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5260	2.720	11dBm/MHz	PASS
High	5320	5.140	I IUDIII/IVITZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	1.164	30dBm/500 kHz	PASS
High	5825	0.965	(26.99dBm/MHz)	PASS

IEEE 802.11n 5G 20MHz

Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5180	2.976	11dBm/MHz	PASS
High	5240	2.049	I IUDIII/IVIDZ	PASS

Band2

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result	
Low	5260	2.310	11dBm/MHz	PASS	
High	5320	2.175	I IUDIII/IVITZ	PASS	

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5745	1.104	30dBm/500 kHz	PASS
High	5825	0.996	(26.99dBm/MHz)	PASS

IEEE 802.11n 5G 40MHz Band1

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5190	0.508	11dBm/MHz	PASS
High	5230	-0.938	TTUDITI/IVITZ	PASS

Band2

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5270	-0.808	11dBm/MHz	PASS
High	5310	-2.798	I IUDIII/IVIDZ	PASS

Band4

Channel	Frequency (MHz)	PPSD (dBm)	FCC Limit (kHz)	Result
Low	5755	-1.709	30dBm/500 kHz	PASS
High	5795	-0.866	(26.99dBm/MHz)	PASS

Note: For 5.725~5.85GHz (Band4): Power Density (dBm/500kHz)= Power Density (dBm/MHz)- 10log(500kHz/RBW) (dB)

PPSD (CH Low)

PPSD (CH High)

PPSD (CH Low)

PPSD (CH High)

PPSD (CH Low)

PPSD (CH High)

IEEE 802.11n 5G 20MHz Band1

PPSD (CH Low)

IEEE 802.11n 5G 20MHz Band2

PPSD (CH Low)

IEEE 802.11n 5G 20MHz Band4

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band1

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band2

PPSD (CH Low)

IEEE 802.11n 5G 40MHz Band4

PPSD (CH Low)

E. Frequency Stability

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11a
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage vs. Frequency Stability

Voltage		N	leasurement F	requency (MHz	<u>z</u>)	
(V)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
126.50	5179.9488	5239.9206	5259.9366	5319.9224	5744.9168	5824.9134
110.00	5179.9488	5239.9206	5259.9366	5319.9224	5744.9168	5824.9134
93.50	5179.9488	5239.9206	5259.9364	5319.9224	5744.9168	5824.9134
Max. Deviation (MHz)	0.0512	0.0794	0.0636	0.0776	0.0832	0.0866
Max. Deviation (ppm)	9.88	15.15	12.09	14.59	14.48	14.87

Temperature vs. Frequency Stability

	omportation of the control of the co					
Temperature	Measurement Frequency (MHz)					
(℃)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
0	5179.9494	5239.9202	5259.9366	5319.9224	5744.9156	5824.9132
10	5179.9494	5239.9202	5259.9366	5319.9224	5744.9156	5824.9132
20	5179.9494	5239.9202	5259.9364	5319.9226	5744.9156	5824.9132
30	5179.9494	5239.9202	5259.9364	5319.9224	5744.9156	5824.9132
40	5179.9494	5239.9202	5259.9362	5319.9226	5744.9156	5824.9132
Max. Deviation (MHz)	0.0506	0.0792	0.0638	0.0776	0.0844	0.0868
Max. Deviation (ppm)	9.77	15.11	12.13	14.59	15.42	14.90

Page 80 of 92

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11n 20MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
(V)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
126.50	5179.9522	5239.9224	5259.9312	5319.9320	5744.9214	5824.9256
110.00	5179.9522	5239.9218	5259.9316	5319.9318	5744.9212	5824.9254
93.50	5179.9520	5239.9222	5259.9312	5319.9322	5744.9212	5824.9256
Max. Deviation (MHz)	0.0480	0.0782	0.0688	0.0682	0.0788	0.0746
Max. Deviation (ppm)	9.26	14.92	13.08	12.82	13.72	12.81

Temperature vs. Frequency Stability

i omporataro voi i roduonoy otability						
Temperature	Measurement Frequency (MHz)					
(℃)	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5745 MHz	5825 MHz
0	5179.9522	5239.9224	5259.9312	5319.9320	5744.9214	5824.9256
10	5179.9522	5239.9218	5259.9316	5319.9318	5744.9212	5824.9254
20	5179.9520	5239.9222	5259.9312	5319.9320	5744.9212	5824.9256
30	5179.9522	5239.9222	5259.9312	5319.9320	5744.9214	5824.9252
40	5179.9518	5239.9218	5259.9310	5319.9318	5744.9214	5824.9254
Max. Deviation (MHz)	0.0482	0.0782	0.0690	0.0682	0.0788	0.0748
Max. Deviation (ppm)	9.31	14.92	13.12	12.82	13.72	12.84

Page 81 of 92

Product:	Mobile phone	Test Mode:	Mode: IEEE 802.11n 40MHz
Test Item:	Frequency Stability	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)					
(V)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
126.50	5189.9348	5229.9214	5269.116	5309.222	5744.9162	5794.9124
110.00	5189.9348	5229.9214	5269.118	5309.224	5744.9162	5794.9124
93.50	5189.9348	5229.9214	5269.116	5309.224	5744.9162	5794.9124
Max. Deviation (MHz)	0.0652	0.0786	0.0884	0.0778	0.0838	0.0876
Max. Deviation (ppm)	12.56	15.03	16.77	14.65	14.56	15.12

Temperature	Measurement Frequency (MHz)					
(℃)	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5755 MHz	5795 MHz
0	5189.9344	5229.9210	5269.116	5309.222	5754.9162	5794.9128
10	5189.9344	5229.9210	5269.118	5309.224	5754.9162	5794.9128
20	5189.9344	5229.9210	5269.116	5309.224	5754.9162	5794.9128
30	5189.9344	5229.9210	5269.120	5309.222	5754.9162	5794.9128
40	5189.9344	5229.9210	5269.116	5309.220	5754.9162	5794.9128
Max. Deviation (MHz)	0.0656	0.0790	0.0884	0.780	0.0838	0.0872
Max. Deviation (ppm)	12.64	15.11	16.77	14.69	14.56	15.05

8. BAND EDGE EMISSIONS

8. 1 Test Equipment

Please refer to Section 4 this report.

8. 2 Test Procedure

Band Edge Emissions Measurement:

Test Method:

- a.) The EUT was tested according to ANSI C63.10.
- b)The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10.
- c)The frequency spectrum from $\underline{9}$ kHz to 40 GHz was investigated. All readings from $\underline{9}$ kHz to $\underline{150}$ kHz are quasi-peak values with a resolution bandwidth of $\underline{200}$ Hz. All readings from $\underline{150}$ kHz to $\underline{30}$ MHz are quasi-peak values with a resolution bandwidth of $\underline{9}$ KHz. All readings from $\underline{30}$ MHz to $\underline{1}$ GHz are quasi-peak values with a resolution bandwidth of $\underline{120}$ KHz. All readings are above $\underline{1}$ GHz, peak values with a resolution bandwidth of $\underline{1}$ MHz. Measurements were made at 3 meters.
- d)The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. The Receiving antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency. Emissions below 30MHz were measured with a loop antenna while emission above 30MHz were measured using a broadband E-field antenna.
- e) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.

f)Each emission was to be maximized by changing the polarization of receiving antenna both

horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in

Section 8 and 13 of ANSI C63.10.

Band Edge Emissions Measurement:

Test Equipment Setting:

a)Attenuation: Auto b)Span Frequency: 100 MHz

c)RBW/VBW (Emission in restricted band):

1MHz / 3MHz for Peak, 1MHz / 1/T for Average d)RBW/VBW(Emission in non-restricted band)
1MHz / 3MHz for peak

8. 3 Test Setup

Same as section 2.2 of this report

8. 4 Configuration of the EUT

Same as section 2.2 of this report

8. 5 EUT Operating Condition

Same as section 2.2 of this report.

8. 6 Limit

Spurious Radiated Emission & Band Edge Emissions Measurement:

I imit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In any 100 KHz bandwidth outside the operating frequency band, the radio frequency power that is produced by modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 KHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in section 15.209(a), which lesser attenuation.

All other emissions inside restricted bands specified in section 15.205(a) shall not exceed the general radiated emission limits specified in section 15.209(a)

Note:

Applies to harmonics/spurious emissions that fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

47 CFR § 15.237(c): The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

8. 7 Test Result

Band Edge and Fundamental Emissions

Product:	Mobile Phone	Test Mode:	IEEE 802.11a/n 5G
Test Item:	Band Edge and Fundamental Emissions	Temperature:	25 ℃
Test Voltage:	DC 5V	Humidity:	56%RH
Test Result:	PASS		

IEEE 802.11a

Channel Low (5180MHz)

Channel High (5320MHz)

Page 85 of 92

Page 86 of 92

Page 87 of 92

Channel Low (5180MHz)

IEEE 802.11n 20MHz

Channel High (5320MHz)

Page 88 of 92

Page 89 of 92

Page 90 of 92

Channel Low (5190MHz)

IEEE 802.11n 40MHz

Channel High (5310MHz)

Page 91 of 92

Page 92 of 92

