COUNCILE OF SCIENTIFIC & INDUSTRIAL RESEARCH

Unit – 4: ABSTRACT ALGEBRA

4. Abstract Algebra

4.1 Set:

4.1.1 Set: A well defined collection of distinct objects is called a set.

Well-defined: Either an object belongs to a set or it does not belongs to a set i.e. there should be no ambiguity what so ever regarding the membership of such collection of a set.

Example (4.1): Collection of all positive integers is a set but a collection of some positive integers is not a set, as is not clear whether a particular positive integer, say 5, is a member of this collection or not.

4.1.2. Power Set: $P(X) = \{A : A \text{ is a subset of } X\}$

$$|P(X)| = 2^k \text{ where } |X| = k$$

Null Set(
$$\emptyset$$
): $\emptyset = \{x \in 2 : x^2 + 1 = 0\}$

4.1.3. Ordered Pair: Let $x \in X$ and $y \in Y$. The ordered pair of elements x and y denoted by (x, y), is the set $\{\{x\}, \{x, y\}\}$.

Clearly,
$$(x, y) = \{\{x\}, \{x, y\}\} \neq \{\{y\}, \{x, y\}\} = (x, y), where x \neq y$$

 $(x, y) = (z, w) \Leftrightarrow x = z, y = w.$

4.2. Cartesian Product:

4.2.1. Cartesian Product: $X \times Y = \{(x, y) : x \in X, y \in Y\}$

- (i) Assume $X \times \emptyset = \emptyset = \emptyset \times X$ for any set X.
- (ii) If |X| = m, |Y| = n, then $|X \times Y| = mn$.
- (iii) $X \times Y$ is called diagonal of X and it is denoted by Δ_x .

4.3. Relations:

4.3.1. Relations: A binary relation or simply a relation ρ from a set A into a set B is a subset of $A \times B$.

Domain of: $D(\rho) = \{a \in A : \exists b \in B \text{ such that } (a,b) \in \rho \}$

Range or Image of : $R(\rho) = \{b \in B : \exists a \in A \text{ such that } (a, b) \in \rho\}$

Inverse relation (ρ^{-1}) : $(\rho^{-1}) = \{(b, a): (a, b) \in \rho\}, (\rho^{-1})^{-1} = \rho$

IATHEMATICS

- **4.3.2.**Composition: Let ρ_1 be a relation from A into B and ρ_1 be a relation from B to C then the composition of ρ_1 and ρ_2 is denoted by $\rho_2 \circ \rho_1$ is a relation from A to C.
- **4.3.3. Definition :** Let A be a set and ρ be a relation of A. Then ρ
 - i. reflexive if for all $a \in A$, $(a, a) \in \rho$
 - ii. symmetric, if for all $a, b \in A$, whenever $(a, b) \in \rho \Rightarrow (b, a) \in \rho$
- iii. transitive, if for all $a, b, c \in A$, whenever $(a, b) \in \rho$ wher $(b, c) \in \rho \Rightarrow (a, c) \in \rho$
- **4.3.4. Definition (Equivalence relation):** A relation ρ on a set A is called an equivalence of ρ in reflexive, symmetric and transitive.
- **4.3.5. Definition (Anti symmetric):** ρ is said to be anti symmetric if $\forall a, b \in A$ where $(a, b) \in \rho$ and $(b, a) \in \rho \Rightarrow a = b$.

Examples (4.2):

 $\forall x, y \in \mathbb{R}$ therefore the following reasons

		Reflexive	Symmetric	Transitive	Antisymmetric
1	y = 2x	×	×	×	
2	x < y	×	7	×	1
3	$x \neq y$	×	V	×	
4	xy > 0	×(0,0) wit	h Technolo	gy 🗸	
5	$y \neq x + 2$	V	× (3,5)	×	
6	$x \le y$	V	×	V	√
7	$xy \ge 0$	V	V	× (5,0), (0, -2)	×
8	x = y	V	V	V	√

4.3.6. Definition (Partially order set or poset): A relation ρ on a set A is said to be a partial order on A if ρ is reflexive, anti symmetric and transitive. The set A with the partial order defined on it is called a partially order set or poset and it is denoted by (A, ρ) .

Example (4.3): (\mathbb{R}, \leq) , $(P(X), \subseteq)$.

4.3.7. Definition (Linearly ordered set or chain): A poset(A, ρ) is called a linearly ordered set or chain if $\forall a, b \in A$ either $a, b \in \rho$ or $(b, a) \in \rho$ must hold.

Example (4.4): (\mathbb{R} , \leq) but not (P(X), \subseteq), since for some $a, b \in X$ {a}, {b} \in P(X) such that {a} \nsubseteq {b} and {b} \nsubseteq {a}.

Examples (4.5): Let S be a finite set and |S| = n. Then

- i. The number of reflexive relation defined on S is 2^{n^2-n}
- ii. The number of symmetric relation defined on S is $2^{\frac{n^2+n}{2}}$
- iii. The number of relation that are both reflexive and symmetric is $2^{\frac{n^2-n}{2}}$

4.4. Functions:

Definition: For two nonempty sets A and B, a relation f from A into B is called a function from A into B if

- i. D(f) = A
- ii. f is well defined (or, single valued) in the series that $\forall (a, b), (a', b') \in f, a = a' \Rightarrow b = b'$ i. e, $a = a' \Rightarrow f(a) = f(a')$.

Identity mapping: $f: A \to A, f(x) = x \ \forall \ x \in A.$

Constant mapping: $f: A \to B$, $f(x) = c \ \forall \ x \in A$, some $c \in B$.

Examples (4.6): Let A and B be two finite sets and |A| = n and |B| = m $(n \ge m)$. Then

- (i). The number of distinct functions defined from A to B is m^n .
- (ii). The number of onto functions defined from A to B is $\emptyset(n,m) \times m!$, where $\emptyset(n,m)$ is the number of partitions of a set A with n elements into m subsets $(1 \le m \le n)$, $\emptyset(n,m)$ is known as stirlling number of 2^{nd} kind and it can be calculated from the formula:

$$\emptyset(n,m) = \begin{cases} 1 & \text{if } m = 1 \text{ or } n \\ \emptyset(n-1,m-1) + m\emptyset(n-1,m) & \text{otherwise} \end{cases}$$

(iii). The number of injective function defined from A(|A| = n) to $B(|B| = m, n \le m)$ is ${}^{m}P_{n}$ and bijective is n! (if m = n) otherwise 0.

4.4.1. Definition: Let us consider a function $f: A \rightarrow B$. Then

- a) f is called injective (one-one) where $\forall a_1, a_2 \in A \text{ if } a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_{d2}).$
- b) f is called subjective if Im(f) = B.
- c) f is called bijective if f is both injective and subjective

4.4.2. (**Theorem**): Composition of functions is associative, provided the requisite composition make sense.

4.4.3. (**Theorem**): Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. Then

(i). if f and g are both injective then $g \circ f$ is also so,

- (ii). if f and g are both surjective then $g \circ f$ is also so,
- (iii). if f and g are both bijective then $g \circ f$ also so,
- (iv). if $g \circ f$ is injective then f is injective.
- (v). if $g \circ f$ is surjective then g is surjective.
- (vi). if $g \circ f$ is bijective, then f is injective and g is surjective.
- **4.4.4.** (**Theorem**): Let A be any set and $f: A \to A$ be an identity injective function. Then $f: A \to A$ is an injective $\forall n \geq 1$.
- **4.4.5.** (Theorem): For any finite set A if $f: A \rightarrow A$ is injective, then f is bijective.

If *A* is infinite this is not true. Example $f: [1,2] \to [1,2]$ by $(x) = \frac{x}{2}$. Then *f* is one – one but there in number of $x \in [1,2]$ such that 2 = f(x), *i.e. f* is not onto and hence not bijective $(f: \mathbb{R} \to \mathbb{R}, f(x) = e^x)$.

- **4.4.6.Definition :** Consider a function $f: A \rightarrow B$ then f is called
- (i). Left invertible, if $\exists g: B \to A$ such that $g \circ f = i_A$ and g is called left inverse of f.
- (ii). Right invertible if $\exists h: B \to A$ such that $f \circ h = i_B$ and then h is called right inverse of f.
- (iii). Invertible if f is both left and right invertible.

Example (4.7): $f : \mathbb{N} \to \mathbb{N}$, $f(n) = n + 1 \ \forall \ n \in \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$, g(1) = 1 and g(n) = n - 1, n > 1. Now $(g \circ f)(n) = g(f(n)) = g(n + 1) = n \Rightarrow g$ is left inverse of f.

But $f \circ g(1) = f(g(1)) = f(1) = 2 \Rightarrow g$ is not right inverse of f.

- **4.4.7.** (**Theorem**): Let $f: A \rightarrow B$ be a function. Then –
- (i). f is left invertible $\Leftrightarrow f$ is injective.
- (ii). f is right invertible $\Leftrightarrow f$ is surjective.
- (iii). f is invertible $\Leftrightarrow f$ is bijective.
- **4.5 Definition (Binary Operation) :** Let A be a nonempty set. A binary operation * on A is a function from $A \times A \rightarrow A$.

Example (4.8):(\mathbb{Z} , +), (\mathbb{N} , +), (\mathbb{R} , ·), (\mathbb{R} , +) not binary operation (\mathbb{N} , -) since $1 - 2 = -1 \not\subset \mathbb{N}$.

4.5.1. (Multiplication Table): $A = \{1, \omega, \omega^2\}, *: A \times A \rightarrow A \text{ is complex multiplication.}$

$$M \equiv \frac{\begin{array}{c|c} * & 1 & \omega & \omega^2 \\ \hline 1 & 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & \omega^2 & 1 & \omega \end{array}}{\text{Note: * is commutative (-) M is symmetry.}}$$

4.5.2. (**Theorem**): An identity of a mathematical system (A,*), if it exists unique.

Example (4.9):

- (i). (No identity): $(\mathbb{Z},*)$, where $a \times b = |a+b| \quad \forall a,b \in \mathbb{Z} \text{ and } a \times b = a$.
- (ii). Right identity but no left identity $(\mathbb{Z},*)$, $a*b=a-b \quad \forall a,b \in \mathbb{Z}$. Here 0 is such element.
- (iii). (No identity) $(\mathbb{Z},*)$, a*b=a.
- (iv). (No identity): $(\mathbb{N}, +)$.
- (v). (Not cancellation) (\mathbb{Z} ,*), with a * b = a.
- **4.5.3.** (Semi group): Let *S* be a non-empty set and $*: S \times S \to S$ be a binary operation on *S* and * is associative. Then (S,*) is called semi group.

Example $(4.10):(\mathbb{Z}, -)$.

4.5.4. (Monoid): Semi group with identity.

Example (4.11): $(\mathbb{N}, +)$ is a semi group but not monoid and $(\mathbb{N} \cup \{0\}, +)$ is monoid.

4.5.5. (Quasi group): A mathematical system (G,*) i.e, G is used under * is called a quasi group, if $\forall a, b, \in G$ each of the equations $a \times x = b$ and y - a = b has a unique solution in G.

Example (4.12):

- (i). $(\mathbb{Z}, -), a x = b$ and y a = b have solution x = a b, y = a + b.
- (ii). (Z,*), a*b = |a+b|. Not a quasi group. Since $a*b = b \Rightarrow |a+x| = b > 0$ has two solution x = -a + b and x = -a + b. Technology

Example (4.13): Let |S| = n. How many different binary operations can be defined on S?

Answer: Total number of binary operations = n^{n^2}

Number of commutative binary operations = $2^{\frac{n^2+n}{2}}$ = number of symmetric realtion.

4.6. Groups :

Definition (Group): A group is an ordered pair (G,*), where G is a non-empty set and * is a binary operation on G such that following properties hold:

- (i). $\forall a, b, c \in G, a * (b * c) = (a * b) * c (associative law).$
- (ii). $\exists e \in G \text{ such that } \forall a \in G, a * e = a = e * a \text{ (existence of identity)}.$
- (iii). for each $a \in G \exists b \in G$ such that a * b = e = b * a (existence of an inverse).
- **4.6.1.** (**Theorem**): Let (G,*) be a group. Then identity and inverse are unique.
- **4.6.2.** Abelian (Commutative): $\forall a, b \in G, a * b = b * a \quad i.e.(\mathbb{Z}, +).$
- **4.6.3.** (Non commutative) :(S_3 , 0), ($GL(2, \mathbb{R})$, ·).

Example (4.14):

- (i). $(\mathbb{Z}_n, +) = \{\overline{0}, \overline{1}, \dots, \overline{n-1}, +\}, \forall \overline{a}, b \in \mathbb{Z}_n, a+ = a+b \text{ is a commutative group and } n \in \mathbb{Z}^+.$
- (ii). V_w , ·) = $\{\bar{a} \in \mathbb{Z}_n | \{\bar{0}\} : \gcd(a,n) = 1\}$ and $\bar{a}.\bar{b} = \overline{ab}$ is also a commutative group.
- (iii). $\mathbb{Q}[\sqrt{2}] = \{a + \sqrt{2} \ b : a \ . \ b \in \mathbb{Q}\} \ Then(\mathbb{Q}[\sqrt{2}], +) \ and \ (\mathbb{Q}[\sqrt{2}]|\{\overline{0}\}, \cdot)$ are commutative groups.
- (iv). $(P(X), \Delta)$ where X be a set and P(X) is the power set of X and for all $A, B \in P(X), A\Delta B = (A \setminus B) \cup (B \setminus A)$ is a commutative group and $\Delta(A) = 2 \forall A \in P(X)$. Note: If X is infinite then $(P(X), \Delta)$ is an infinite group but order of every element is finite, namely 1 and $A^{-1} = A$.
- (v). $(S_n, 0)$ is non-commutative for n > 2 where δ_n is the collection of all bijection mapping (permutation) from X to X where |X| = x.
- (vi). $GL(2,\mathbb{R}) = (G,*)$ where $G = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \mathbb{R}, ad-bc \neq 0 \}$ and * is the matrix multiplication. Then $GL(2,\mathbb{R})$ is a $SL(2,\mathbb{R}) = \left(\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad-bc = 1 \right\},* \right)$

4.6.4. (Theorem): Let (G,*) be a group, then

- (i). $\forall a \in G, (a^{-1})^{-1} = a$
- (ii). $\forall a, b \in G, (a * b)^{-1} = b^{-1} * a^{+1}$ with Technology
- (iii). [cancellation law] $\forall a, b, c \in G \text{ if either } a * c = b * c \text{ or } c * a = c * b, then } a = b.$
- (iv). $\forall a, b \in G$, the equation a * x = b and y * a = b have unique solution in G for x and y.
- **4.6.5.** (Corollary): Let (G,*) be a group and $a \in G$. If a*a = a, then a = e and a is idempotent element and in a group e is the only idempotent element.

4.6.6.(Theorem): A semi group (S,*) is a group if only if

- (i). $\exists e \in S \text{ such that } e * a = a \forall a \in S \text{ (left identity)}$
- (ii). $\forall a \in S, \exists b \in S \text{ such that } b * a = e(left identity)$
- **4.6.7.** (**Theorem**): A semi group (S,*) in a group $\Leftrightarrow \forall a,b \in S$, the equation a*x = b and y*a = b have solutions in S for x and y.
- **4.6.8.** (Theorem): A finite semi group (S,*) is a group $\Leftrightarrow (S,*)$ satisfies the cancellation laws.
- * Finite is necessary. Example (4.15) ($\mathbb{Z}\{0\}$, ·) is a semi group and satisfies cancellation laws but inverse of an element $1 \neq a \in \mathbb{Z}\{0\}$ does not exist.

4.6.9. Definition(Order): Let (G,*) be a group and $a \in G$. If \exists a positive integer n such that $a^n = e$, then the smallest such positive integer is called the order of a.

- **4.6.10.** (Theorem): Let (G_i^*) be a group and $a \in G$ such that O(a) = n
- (i). If $a^m = e$ for some positive integer m, then n divides m.
- (ii). For any positive integer t,

$$O(a^t) = \frac{O(a)}{\gcd(t, n)} = \frac{n}{\gcd(t, n)}$$

Example (4.16): Give a counter example to justify that in a semi group with, left identity, if every element has a right inverse with respect to the left identity, it need not be a group.

Solution: Consider $\mathbb{Z} \times \mathbb{Z}$ endowed with the operation $(a, b) * (c, d) = (c, b * d) \forall (a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$. Then $\mathbb{Z} \times \mathbb{Z}$,*) is a semi group.

Now, $(0,0)*(a,b) = (a,b) \forall (a,b) \in \mathbb{Z} \times \mathbb{Z}$ where (0,0) is a left identity and $(0,-b) \in \mathbb{Z} \times \mathbb{Z}$ and $(a,b)*(0,-b) = (0,0) \Leftrightarrow (0,-b)$ is a right (0,0) – inverse of $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. But $(\mathbb{Z} \times \mathbb{Z},*)$ has no identity and hence $(\mathbb{Z} \times \mathbb{Z},*)$ is not a group.

4.6.11. If (G,*) is an even order group, then there must exist at least one non-identity element $a \in G$ such that $a^2 = e$.

4.6.12. A group G is commutative \Leftrightarrow $(a*b)^n = a^n*b^n$ for any three commutative integer n and for all $a, b \in G$.

4.6.13. Definition(Permutation): Let A be a set (non-empty). A permutation of A is a bijective mapping of A onto itself.

4.6.14. Definition: A group (G,*) is called a permutation group, on a non-empty set A if the elements of G are some permutations of A and the operation * is the composition of two mapping.

Example (4.17): S_3 , 0), S_n symmetric group and $|S_n| = n!$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad p = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \text{ Then } \alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}$$

4.6.15. (**Theorem**): If n is positive integer such that $n \ge 3$, then the symmetric group S_n is a non-commutative group.

4.6.16. Definition: Cycle of length 2 is called transposition.

4.6.17. Definition: A permutation is called even permutation is called even permutation if it can be expressed as a product of even number of transpositions.

4.6.18. (**Theorem**): If α and β be the disjoint cycles in S_n i.e. $\alpha \cap \beta = \{i_1, i_2, \dots, i_k\} \cap \{j_1, j_2, \dots, j_p\} = \phi$, then $\alpha \circ \beta = \beta \circ \alpha$.

4.6.19. (Theorem): Any non-identity permutation $\alpha \in S_n$ $(n \ge 2)$ can be expressed as a product of disjoint cycles where cycle is of $length \ge 2$.

IATHEMATICS

4.6.20. (Theorem): Any cycle of $length \ge 2$ is either a transposition or can be expressed as a product of transpositions.

Example (4.18):

$$\alpha = \begin{pmatrix} 1 & 2 & 34 & 5 & 67 & 8 \\ 8 & 5 & 63 & 7 & 42 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 8 \end{pmatrix} \begin{pmatrix} 2 & 5 & 7 \end{pmatrix} \begin{pmatrix} 3 & 6 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 8 \end{pmatrix} \begin{pmatrix} 2 & 7 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix}$$

4.6.21. (Theorem: Order and length): Let $n \ge 2$ and $\sigma \in S_n$ be a cycle. Then σ is a

$$k$$
 – cycle \Leftrightarrow order of σ is k .

4.6.22. (Theorem): Let $\sigma \in S_n$, $n \ge 2$ and $\sigma = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_k$ be a product of disjoint cycles and suppose $O(\sigma_i) = n_i$, $i = 1, 2, \ldots, k$. Then $O(\sigma) = (n_1, n_1, \ldots, n_k)$

Example (4.19):

(i).
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
, Then $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

(ii). The number of even permutations in $S_n (n \ge 2)$ is the same as that of the odd permutations.

4.7. Subgroups:

Definition: Let (G,*) be a group and H be a non-empty sub-set of G. Then H called a subgroup of (G,*), if H is closed under the binary operation * and (H,*) is a group.

Note: $\{e\}$ and G are two trivial subgroup of G.

Example(4.20): (E, +) of $(\mathbb{Z}, +)$ where $E = \{2x : x \in \mathbb{Z}\}$.

4.7.1. (**Theorem**): All subgroups of (G,*) have the same identity.

4.7.2. (**Theorem**): Let *G* be a group and *H* be a non-empty subset of *G*. Then *H* is a subgroup of $G \Leftrightarrow \forall a, b \in H, ab^{-1} \in H$.

4.7.3. (Corollary): Let G be a group and H be a non-empty finite subset of G. Then H is a subgroup $\Leftrightarrow \forall a, b \in H, ab \in H$.

4.7.4. (**Theorem**): The intersection of any collection of subgroups of a group G is a subgroup of G.

• Union of two subgroups of a group G may not be a subgroup of G.

Example (4.21): Consider $G = S_3$ and $H = \{e, (2,3)\}$ and $K = \{e, (1,2)\}$

Then H, K are two subgroup of S_3 . Now, $H \cup K = \{e, (1 2), (2 3)\}$ is not a group. Since

$$(1 \ 2) \circ (2 \ 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 \ 2 \ 3) \notin H \cup K$$

4.7.5. (**Theorem**): Let $n \ge 3$. Then A_n is generated by the set of all $\exists \ cycle$. Number of cycle length r in S_n is $\frac{n!}{r \times (n-r)!}$

4.7.6. Definition: Let H and K be two non-empty subsets of a group G. Then the product of H and K is defined to be the set

$$H_k = \{hk : h \in H, x \in K\}$$

Product of two subgroups may not be a subgroup. Let $H = \{e, (1 \ 2)\}$ $K = \{e, (1 \ 3)\}$.

Now,
$$H_k = \{e, (1 \ 2), (1 \ 3), (1 \ 3 \ 2)\}$$
 but $(1 \ 3)(1 \ 2) = (1 \ 2 \ 3) \in H_k$

4.7.7. (**Theorem**) Let H and K be two subgroup of a group G. Then the following are equivalent:

- (i). H_k is a subgroup of G.
- (ii). HK = KH
- (iii). KH is a subgroup of G

4.7.8. (Corollary): If H and K are two subgroup of a commutative group G, then HK is a subgroup of G.

4.7.9. (Centre of G): $Z(G) = \{x \in G : gx = xg \ \forall \ g \in G\}$

- (i). Z(G) is a subgroup of G.
- (ii). If G is commutative, then Z(G) = G.
 - Let H be a subgroup of G. Then for any $g \in G, K = gHg^{-1} = \{gHg^{-1} : h \in H\}$ in a subgroup of G and |H| = |K|.
 - All subgroups of the group $(\mathbb{Z}, +)$ are $T_n = \{r_n : r \in \mathbb{Z}\}, n \in \mathbb{N}_0$

Text with Technology

4.8. (Cyclic Groups):

Definition: A group G is called cyclic group if \exists an element $a \in G$ such that

 $G = \langle a \geq \{a^n : n \in \mathbb{Z}\}$. Such an element a is called a generator of G.

Example (4.22):

- (i). $G = \{1, -1, i, -i\}, G = \langle i \rangle = \langle -i \rangle$
- (ii). $(\mathbb{Z}, +) = (<1>, +)$
- (iii). $({2n : n \in \mathbb{Z}}, +) = (<2>, +)$
- (iv). $(\mathbb{Z}, +) = \{[1], +\}$
- **4.8.1.** (**Theorem**): Every cyclic group *G* is commutative.
- **4.8.2.** (Theorem): A finite group g is cyclic $\Leftrightarrow \exists a \in G \text{ such that } O(a) = |G|$

IATHEMATICS

- **4.8. 3.(Corollary):** Let $\langle a \rangle$ be a finite cyclic group. Then O(a) = |G|
- **4.8.4.** (**Theorem**): Let $G = \langle a \rangle$ be a cyclic group of order n. Then for any integer k where $1 \leq k < n$, a^k is a generator of $G \Leftrightarrow \gcd(n, k) = 1$
- **4.8.5.** (**Theorem**): Every subgroup of a cyclic group is cyclic.
- **4.8.6.** (Theorem): Let $G = \langle a \rangle$ be a cyclic group of order n
- (i). If H is a subgroup of G, then |H| divides |G|. (For any group).
- (ii). If m is a positive integer such that m divides n, the \exists a unique subgroup of G of order n. (True for also any commutative group).
- (iii). If $G = \langle a \rangle$ is an infinite cyclic group, then any subgroup $H \neq \{e\}$ of G is also infinite order.
- (iv). Let $G = \langle a \rangle$ be an infinite cyclic group. Then
 - (a) $a^r = a^t \Leftrightarrow r = t, r, t \in \mathbb{Z}$
 - (b) Ghas only two generators.

4.9. Co-sets and Lagrange's Theorem:

Definition: Let H be a subgroup of G. If $a \in G$, the subset $aH = \{ah : h \in H\}$ is called a left cosets of H in G. Similarly, $Ha = \{ha : h \in H\}$ is called a right co-set of H in G.

Note: $eH = H = He \Rightarrow H$ is a left and right co-set of itself in G

- $aH \neq Ha$ always example(4.23) $H = \{e, (1 \ 2)\}$ in S_3 . Then
 - $(2 \ 3)H = \{(2 \ 3), (1 \ 3 \ 2) \text{ and } Ha = \{(2 \ 3), (1 \ 2 \ 3)\}$
 - i.e. $(2 \ 3)H \neq H(2 \ 3)$
- **4.9.1.** (**Theorem**): Let H be a subgroup of a group G and let $a, b \in G$
- (i). $aH = H \Leftrightarrow a \in H (i *) H a = H \Leftrightarrow a \in H$
- (ii). $aH = bH \iff a^{-1}b \in H(ii *) Ha = Hb \iff ba^{-1} \in H$
- (iii). Either $aH \cap bH = \phi$ or aH = bH (iii *) Either $Ha \cap Hb = \phi$ or Ha = Hb
- \Rightarrow Left co-set or right co-sets gives a partition of G is $\{aH : a \in G \text{ forms a partition of } G.$
- **4.9.2.** (Theorem): $|aH| = |H| = |Ha| \forall a \in G \text{ and any subgorup } H \text{ of } G$.
- **4.9.3.** (**Theorem**): Let H be a subgroup of G. Then |L| = |R|, where L(represent R) denotes the set of all left (represents right) co-sets of H in G.
- **4.9.4.** Index of subgroup: Let H be a subgroup of G. Then the number of distinct left (or right) cosets of H in G, written [G, H] is called the index of a H in G.
- **4.9.5.** (Lagrange's Theorem): Let H be a subgroup of a finite group G. Then |H| divides |G|. In particular, |G| = |H|[G, H].
- **4.9.10.** (Corollary): (i) Every group of prime order is cyclic and hence commutative.
- (ii) Let |G| = n and $a \in G$. Then $\phi(a)$ divides n = |G| and $a^n = e$.