CS 189/289A Introduction to Machine Learning Fall 2022 Jennifer Listgarten, Jitendra Malik

DIS4

1 Backpropagation Practice

- (a) Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, ..., x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. What is its computation graph? Sketch out a diagram of what the computation graph would look like. How would you compute $\frac{d}{dw} f(g_1(w), g_2(w), ..., g_n(w))$?
- (b) Let $w_1, w_2, ..., w_n \in \mathbb{R}^d$, and we refer to these weights together as $W \in \mathbb{R}^{n \times d}$. We also have $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Consider the function

$$f(W, x, y) = \left(y - \sum_{i=1}^{n} \phi(w_i^{\mathsf{T}} x + b_i)\right)^2.$$

Write out the function computation graph (also sometimes referred to as a pictorial representation of the network). This is a directed graph of decomposed function computations, with the output of the function at one end, and the input to the function, x at the other end, where b are the bias terms corresponding to each weight vector, i.e. $b = [b_1, \dots, b_n]$.

- (c) Suppose $\phi(x)$ (from the previous part) is the sigmoid function, $\sigma(x)$. Compute the partial derivatives $\frac{\partial f}{\partial w_i}$ and $\frac{\partial f}{\partial b_i}$. Use the computational graph you drew in the previous part to guide you.
- (d) Write down a single gradient descent update for $w_i^{(t+1)}$ and $b_i^{(t+1)}$, assuming step size η . You answer should be in terms of $w_i^{(t)}$, $b_i^{(t)}$, x, and y.
- (e) Define the cost function

$$\ell(x) = \frac{1}{2} ||W^{(2)} \Phi(W^{(1)} x + b) - y||_2^2, \tag{1}$$

where $W^{(1)} \in \mathbb{R}^{d \times d}$, $W^{(2)} \in \mathbb{R}^{d \times d}$, and $\Phi : \mathbb{R}^d \to \mathbb{R}^d$ is some nonlinear transformation. Compute the partial derivatives $\frac{\partial \ell}{\partial x}, \frac{\partial \ell}{\partial W^{(1)}}, \frac{\partial \ell}{\partial W^{(2)}}$, and $\frac{\partial \ell}{\partial b}$.

(f) Suppose Φ is the identity map. Write down a single gradient descent update for $W_{t+1}^{(1)}$ and $W_{t+1}^{(2)}$ assuming step size η . Your answer should be in terms of $W_t^{(1)}$, $W_t^{(2)}$, b_t and x, y.