Projet P4

Anticipez les besoins en consommation de bâtiments

Introduction

Objectif:

- Prédiction de la consommation totale d'énergie et des émissions de CO2 des bâtiments sur Seattle
- ▶ Débattre de l'intérêt de l'ENERGYSTARScore sur ces prédiction

Sommaire

- 1. Nettoyage des données
- 2. Analyse pré-exploratoire
- 3. Feature Engineering
- 4. Modélisation
- 5. Conclusion

Nettoyage des données : Dataset

	OSEBuildingID	DataYear	BuildingType	PrimaryPropertyType	PropertyName	Address	City	State	ZipCode	TaxParcelldentificationNumber	
0	1	2016	NonResidential	Hotel	Mayflower park hotel	405 Olive way	Seattle	WA	98101.0	0659000030	
1	2	2016	NonResidential	Hotel	Paramount Hotel	724 Pine street	Seattle	WA	98101.0	0659000220	
2	3	2016	NonResidential	Hotel	5673-The Westin Seattle	1900 5th Avenue	Seattle	WA	98101.0	0659000475	
3	5	2016	NonResidential	Hotel	HOTEL MAX	620 STEWART ST	Seattle	WA	98101.0	0659000640	
4	8	2016	NonResidential	Hotel	WARWICK SEATTLE HOTEL (ID8)	401 LENORA ST	Seattle	WA	98121.0	0659000970	
3371	50222	2016	Nonresidential COS	Office	Horticulture building	1600 S Dakota St	Seattle	WA	NaN	1624049080	
3372	50223	2016	Nonresidential COS	Other	International district/Chinatown CC	719 8th Ave S	Seattle	WA	NaN	3558300000	
3373	50224	2016	Nonresidential COS	Other	Queen Anne Pool	1920 1st Ave W	Seattle	WA	NaN	1794501150	
3374	50225	2016	Nonresidential COS	Mixed Use Property	South Park Community Center	8319 8th Ave S	Seattle	WA	NaN	7883603155	
3375	50226	2016	Nonresidential COS	Mixed Use Property	Van Asselt Community Center	2820 S Myrtle St	Seattle	WA	NaN	7857002030	
3376 r	rows × 46 colum	nns									

Nettoyage des données

- 1. Elimination des outliers
- 2. Contrôle des colonnes en fonction du % de valeurs manquant
- 3. Suppression des bâtiments résidentiels
- Imputation des colonnes 'object'
- 5. Elimination des colonnes inutiles
- 6. Imputation via KNN imputer

Nettoyage des données : Supression des Outliers

- ► Suppression des lignes low et high outliers (32 lignes)
- Suppression des valeurs aberrante en utilisant la méthode du centile extrême

Nettoyage des données : Contrôle des colonnes

Nettoyage des données : Suppression des bâtiments résidentiels

On élimine les lignes pour lesquels BuildingType vaut :

- ► Multifamily MR (5-9)
- ► Multifamily HR (10+)
- ► Multifamily LR (1-4)

1693 lignes supprimé

Nettoyage des données : Imputation colonnes object

Les colonnes de type object et possèdant des valeurs manquantes

- LargestPropertyUseType
- SecondLargestPropertyUseType
- ListOfAllPropertyUseTypes

Remplacement par 'no information'

Nettoyage des données : Elimination des colonnes inutiles

L'intérêt de ce projet est de prédire la consommation d'énergie ainsi que les émission de CO2. Les variables d'intérêt sont donc :

- SiteEnergyUseWN(kBtu) (consommation totale d'énergie)
- TotalGHGEmissions (émission de C02)

On peut supprimer les variables de relevé de consommation annuelles et les variables peu pertinent (par exemple : adress)

On supprime donc 21 colonnes

On peut ensuite faire un KNNImputer

Analyse des données : Analyse Bivariés

Analyse des données : Analyse Univariés

Feature Engineering : Transformation log des variable d'intérêt

Feature Engineering : Réunifications des Property Use

- On créer des colonnes pour chaque valeur des PropertyUse (Largest et SecondLargest)
- On calcule la % de GFA pour chaque valeur :

$$\frac{Largest\ GFA}{Largest\ GFA + SecondLargest\ GFA} \times 100$$

• Exemple:

SecondLargestPrope	ertyUseTypeGFA	Largesti	PropertyUseTypeGFA	LargestPropertyUseType	SecondLarg	gestPropertyUseType
	165161.00		88434.0	Hotel		no information
			1			
	ļ	LargestPropertyUseType_Hotel	••••	See	condLargestPropertyUseType_no information	
		34,87213865			65,12786135	

Modélisation SiteEnergyUseWN(kBtu) : Mise en place des modèles

On va utiliser 6 modèles :

- Dummy Regressor (baseline : modèle simple)
- Linear Regression
- kNN Regressor
- RandomForest Regressor
- Adaboost Regressor
- MultiLayerPerceptron Regressor

Auparavant on a passé au log les variables avec une skewness élevé pour voir s'il améliore la performances des modèles

Pour évaluer les modèles on va utiliser les métrique suivante :

- Root Mean Squared Error
- Mean Absolute Error
- R2

Modélisation SiteEnergyUseWN(kBtu) : Mise en place des modèles

```
numerical feature = make column selector(dtype include=np.number)
 categorical feature = make column selector(dtype exclude=np.number)
executed in 16ms, finished 00:09:27 2022-06-19
 numeric transformer = Pipeline(steps=[('scaler', StandardScaler())])
 categorical transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle unknown='ignore'))])
executed in 16ms, finished 00:09:29 2022-06-19
 preprocessor = ColumnTransformer(transformers=[('num', numeric transformer, numerical feature),
                                                   ('cat', categorical transformer, categorical feature)])
executed in 16ms, finished 00:09:32 2022-06-19
 #baseLine
 dummy = Pipeline(steps=[('prepa',preprocessor),('dummy',DummyRegressor())])
 # Modele à tester
 linear = Pipeline(steps=[('prepa',preprocessor),('linear',linear_model.LinearRegression())])
 KNN = Pipeline(steps=[('prepa',preprocessor),('kNN',KNeighborsRegressor())])
 forest = Pipeline(steps=[('prepa',preprocessor),('forest',RandomForestRegressor(random_state=0))])
 ADA = Pipeline(steps=[('prepa',preprocessor),('ADA',AdaBoostRegressor(random_state=0,))])
 MLPr = Pipeline(steps=[('prepa',preprocessor),('MLPr',MLPRegressor(random state=0,max iter=10000))])
executed in 16ms, finished 00:09:35 2022-06-19
```

Modélisation SiteEnergyUseWN(kBtu) : Mise en place des modèles

	Variable norma	al			Variable log		
	RMSE	MAE	R2		RMSE	MAE	R2
KNN	1.323633	0.750961	0.186164	KNN	1.350427	0.736835	0.148611
forest	1.163364	0.520865	0.394769	forest	1.156751	0.517939	0.403341
adaboost	1.345124	0.691426	0.207337	adaboost	1.395702	0.784397	0.052405
Multi Layer Perceptron	1.717469	1.295822	-0.666734	Multi Layer Perceptron	2.034153	1.439052	-1.359702

Modélisation SiteEnergyUseWN(kBtu) : Recherche hyperparamètres

Paramètres optimiser pour chaque modèles

- kNN Regressor:
 - N_neigbors: 11
 - Leaf size: 2
 - P (distance): 1 (distance de Manhattan)
- RandomForest Regressor
 - N_estimators: 138
 - Min_samples_leaf: 1
 - Max_depth: 14
- Adaboost Regressor
 - N_estimators: 1
 - Loss: linear
- MultiLayerPerceptron Regressor
 - Hidden layer size: 95
 - Activation: identity

Modélisation SiteEnergyUseWN(kBtu) : Recherche hyperparamètres

N	lodèle optimis	sé			Modèles	simple	
	RMSE	MAE	R2		RMSE	MAE	R2
KNN	1.323633	0.750961	0.186164	KNN	1.350427	0.736835	0.148611
forest	1.163364	0.520865	0.394769	forest	1.156751	0.517939	0.403341
adaboost	1.345124	0.691426	0.207337	adaboost	1.395702	0.784397	0.052405
Multi Layer Perceptron	1.717469	1.295822	-0.666734	Multi Layer Perceptron	2.034153	1.439052	-1.359702

Modélisation SiteEnergyUseWN(kBtu) : Feature importance

Méthode 1 : Permutation importance

Modélisation SiteEnergyUseWN(kBtu) : Feature importance

Méthode 2 : Shap

Modélisation SiteEnergyUseWN(kBtu) : Impact de l'Energy Score

	RMSE	MAE	R2
Sans ENERGYSTARScore	0.61	0.44	0.69
	RMSE	MAE	R2

Modélisation TotalGHGEmissions

	Variable	s non log			,	Variable log	
	RMSE	MAE	R2		RMSE	MAE	R2
dummy	1.390852	1.130045	-0.441166	dummy	1.390852	1.130045	-0.441166
lr	126.295637	72.105794	-24210.560723	lr	37.459953	23.794542	-2168.015564
KNN	1.114956	0.877215	0.082778	KNN	1.037817	0.817111	0.205443
forest	0.899496	0.711367	0.403943	forest	0.899328	0.711093	0.404227
adaboost	0.979836	0.806152	0.297514	adaboost	0.983600	0.813147	0.292406
Multi Layer Perceptron	1.050659	0.814500	0.195088	Multi Layer Perceptron	0.901695	0.718799	0.402057

Recherche hyperparamètres

	Modèle nor	optimisé		Modèle optimisé			
	RMSE	MAE	R2		RMSE	MAE	R2
KNN	1.037817	0.817111	0.205443	KNN	1.029463	0.815951	0.217353
forest	0.899328	0.711093	0.404227	forest	0.884420	0.698930	0.404816
adaboost	0.983600	0.813147	0.292406	adaboost	0.987216	0.816907	0.287614
Multi Layer Perceptron	0.901695	0.718799	0.402057	Multi Layer Perceptron	0.878647	0.706649	0.409120

Impact ENERGYSTARScore sous MLP

	RMSE	MAE	R2
Sans ENERGYSTARScore	0.91	0.74	0.51
	RMSE	MAE	R2

Courbe d'apprentissage

Conclusion

Modèle pertinent:

- Random Forest pour la consommation d'énergie
 - N_estimators: 138
 - Min_samples_leaf: 1
 - Max_depth: 14
- Multi Layer Perceptron pour les émission de CO2
 - Hidden layer size: 105
 - Activation: logistic

Impact de l'ENERGYSTARScore +

- Pour la consommation d'energie :
 - R2: 0.51 avec ESS vs 0.56 sans
- Pour les emission de CO2
 - R2: 0.73 avec ESS vs 0.69 sans

Merci de votre attention