Project-3 Md. Rifat Hossain

IFT6755

PART-1 and PART-3

PART 1:
2(a)
In terms of CTL formula, I found the formula is formulated in CTL. If you combined the formula with the path formulas then the formula is hold in CTL grammar.
2(f)
In terms of CTL formula, there is no relationship between State formula and Path formula (<i>AEFr</i>). So, the formula doesn't hold in CTL formulas.
2(g)
In terms of CTL formula, the formula is not in CTL. Since the formula doesn't hold in CTL grammar.
$\theta(b)$
(I) Since the initial state (-0) listed a set M of I are a subside
Since the initial state (s0) listed r, so M, s0 $\mid = \neg p \rightarrow r$ hold.
(III)
Since the initial state ($s0$) listed r and M , $s0 \models r$ while it happens in infinite path of r in state ($s0$). So, M , $s0 \models EGr$. We infer M , $s0 \not\models \neg EGr$.
(IV)
Since the state (s2) is in infinite path of state (s2 and s1). We infer M, $s2 \neq E(t \ U \ q)$.

```
(VI)
```

Since the state (s2) listed q and M, $s2 \neq g$. So, M, $s2 \neq EFq$.

(VII)

Since the initial state (s0) listed r and M, s0 = r while it happens in infinite path of r in state (s0). So, M, s0 = EGr. We infer M, s0 = EGr.

9.

The respective CTL connective operators are given below:

```
new AG \varphi: AX (AG \varphi)

new EG \varphi: EX (AG \varphi)

new AF \varphi: AX (AF \varphi)

new EG \varphi: EX (EG \varphi)

new AU: \varphi \land AX (A[\varphi 1 \ U \varphi 2])

new EU: \varphi \land EX (E[\varphi 1 \ U \varphi 2])
```

10 (b).

Firstly, assume that $s \models EF \varphi V EF \varPsi$. Then, without loss of generality, we may assume that $s \models EF \varphi$. This means that there is a future state Sn, reachable from s, such that $sn \models \varphi$ and $sn \models \varphi V \varPsi$. Thus $s \models EF (\varphi V \varPsi)$.

Secondly, assume that $s \models EF (\varphi \lor \varPsi)$. Then there is a state sm, reachable from s, such that $sm \models \varphi \lor \varPsi$. But we can conclude that $s \not= EF$, as sm is reachable from s. There for we have $s \models EF \varphi \lor EF \varPsi$.

10 (c).

While we have $s = (AF \varphi VAF \varPsi)$ implies $s = AF (\varphi V \varPsi)$, the converse is not true. Therefore, the formulas $(AF \varphi VAF \varPsi)$ and $AF (\varphi V \varPsi)$, is not equivalent.

10 (e).

This is not an equivalence formula. Consider the model from item 1c. We have $s \neq EF \neg p$ since we have an initial path segment $s \rightarrow t \rightarrow \dots$ But we don't have $s \neq AF \neg p$, for the present is part of the future in CTL.

10 (h).

Saying that a CTL formula φ is equivalent to T is just paraphrasing that φ is true at all states in all models. But this is not the case for $FG \varphi \rightarrow AG \varphi$. Consider the model of item 1c. Clearly, we have $s \neq EG p$, but we certainly don't have $s \neq AG p$.

PART 3

6.2.2

According to the truth table, binary decision tree given below:

Here, we choose the order p, q r to construct the binary decision tree.

6.3.2(a)

The truth table is given below:

X	у	z	f(x, y)
1	1	1	1
1	0	1	1
1	1	0	1
1	0	0	0
0	1	1	1

0	0	1	0
0	1	0	1
0	0	0	0

6.4.3

(a). The binary decision tree of f(x, y) def = $x \cdot y$ with respect to the order of [x, y, z] is

(b). The binary decision tree of f(x, y) def = x + y with respect to the order of [x, y, z] is

(c). The binary decision tree of f(x, y) def = $x \oplus y$ with respect to the order of [x, y, z] is

(d). The binary decision tree of f(x, y, z) def = $(x \oplus y) \cdot (x + z)$ with respect to the order of [x, y, z] is

