Reg.No

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

FOURTH SEMESTER B.Tech. DEGREE END SEMESTER EXAMINATION- May 2015

SUB: ENGINEERING MATHEMATICS IV (MAT 212) CS-ICT-CC (REVISED CREDIT SYSTEM -2011)

Time: 3 Hrs. Max.Marks: 50

Note: a) Answer any FIVE full questions. b) All questions carry equal marks (4+3+3)

- 1A. If A and B are two events in a sample space such that P(A) = 3/4 and P(B) = 3/8, show that a) $P(A \cup B) \ge 3/4$ b) $P(\overline{A} \cup \overline{B}) \ge 5/8$ c) $1/8 \le P(A \cap B) \le 3/8$
- 1B. A random variable X is uniformly distributed over the interval (-1, 1). Find the pdf of $Y = X^4$.
- 1C. Show that the sample variance S^2 is not an unbiased estimator for σ^2 .
- 2A. Box 1 contains 4 black and 5 green balls; Box 2 contains 5 black and 4 green balls. Three balls are drawn at random form Box 1 and transferred to Box 2. Then a ball is drawn from Box 2. What is the probability that it is green? If it is green then what is the probability that 2 green and 1 black balls are transferred from Box 1 to Box 2?
- 2B. Let X and Y represent the life lengths of two light bulbs manufactured by different processes. Assume that X and Y are independent random variables with the pdf's $f(x) = e^{-x}$, $x \ge 0$ and $g(y) = 2e^{-2y}$, $y \ge 0$ respectively. Find the pdf of the random variable $Z = \frac{X}{Y}$.
 - 2C. A student takes a multiple choice test consisting of three problems. The first question has 3 possible answers, second has 5 and the third question has 4 possible answers. The student chooses at random one answer as the right one from each of the three problems. Let X be the right answers. Find E(X) and V(X).
 - 3A. Suppose that the scores of an examination are normally distributed with mean 76 and standard deviation 15. The top 15% of the students receive A grade and bottom 10% receive F grade. Find (i) the minimum score to receive A grade, (ii) the minimum score not to score an F grade.
 - 3B. The joint pdf of (X, Y) is given by $f(x,y) = \begin{cases} ke^{-(2x+3y)}, & x > 0, y > 0 \\ 0, & \text{elsewhere} \end{cases}$
 - i) Determine the value of k.
 - ii) Find the marginal pdf of X and Y.
 - iii) Evaluate P(X>Y/X>2)

- 3C. If the random variable K is uniformly distributed over the interval (0,5) then what is the probability that the roots of the equation $4x^2+4xk+k+2=0$ are real?
- 4A. Let (X_1, X_2) be a random sample of size n=2 from the distribution having probability density function $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta}$ for $0 < x < \infty$ and $\theta > 0$. H_0 : $\theta = 2$ and H_1 : $\theta = 1$. If the observed values of (X_1, X_2) are such that $\frac{f(x_1, 2).f(x_2, 2)}{f(x_1, 1).f(x_2, 1)} \le \frac{1}{2}$ then find the significance level of the test and the power of the test.
- 4B. Let $X_1, X_2, ..., X_n$ denote the random sample of size n from a distribution having the pdf $f(x, \theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1, 2,; $0 \le \theta \le 1$. Find the maximum likelihood estimator for θ .
- 4C. If X,Y and Z are uncorrelated random variables with mean zero and standard deviation 5, 12 and 7 respectively. If U = X+Y and V = Y+Z then find the correlation coefficient between U and V.
- 5A. If $M_X(t) = e^{2t(1+t)}$ what is the pdf of $Y = \frac{(X-2)^2}{4}$. Hence obtain the m.g.f of Y.
- 5B. Let \bar{X} and S^2 be the mean and variance of a random sample of size 25 from a distribution which is N (3,100). Evaluate P (0 < \bar{X} < 6, 55.2 < S^2 < 145.6).
- 5C. A random sample of size 15 from a normal distribution $N(\mu, \sigma^2)$ yields \bar{X} =3.2 and S^2 = 4.24. Determine a 95% confidence interval for σ^2 .
- 6A. The Mendelian theory states that the probabilities of classifications a) round and yellow, b) wrinkled and yellow, c) round and green and d) wrinkled and green are respectively $\frac{9}{16}$, $\frac{3}{16}$, and $\frac{1}{16}$. From a sample of 160 the actual numbers observed were 86, 35, 26 and 13. Is this data consistent with the theory at 0.01 significance level?
- 6B. Find the mean and variance of Binomial distribution.
- 6C. Let Y_1 and Y_2 be two independent unbiased statistics for θ . The variance of Y_1 is twice the variance of Y_2 . Find the constants K_1 and K_2 such that K_1 Y_1 + K_2 Y_2 is an unbiased statistic for θ with the smallest possible variance for such a linear combination.

*** *** ***