```
In [34]: import pandas as pd
          import numpy as np
In [35]: data=pd.read csv("/home/placement/Desktop/divyasri/Advertising.csv")
In [36]: data.describe()
Out[36]:
                 Unnamed: 0
                                   TV
                                           radio newspaper
                                                                sales
           count
                  200.000000 200.000000 200.000000
                                                 200.000000
                                                           200.000000
                  100.500000 147.042500
                                        23.264000
                                                  30.554000
                                                            14.022500
           mean
                   57.879185
                             85.854236
                                        14.846809
                                                  21.778621
                                                             5.217457
             std
                                                   0.300000
                              0.700000
                                         0.000000
             min
                    1.000000
                                                             1.600000
             25%
                   50.750000
                             74.375000
                                         9.975000
                                                  12.750000
                                                            10.375000
                                                  25.750000
             50%
                  100.500000 149.750000
                                        22.900000
                                                            12.900000
             75%
                  150.250000 218.825000
                                        36.525000
                                                  45.100000
                                                            17.400000
                  200.000000 296.400000
                                        49.600000 114.000000
                                                            27.000000
In [37]:
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 200 entries, 0 to 199
          Data columns (total 5 columns):
                Column
                              Non-Null Count
                                                Dtype
                              200 non-null
                                                int64
                Unnamed: 0
                              200 non-null
                                                float64
            1
                TV
                radio
                              200 non-null
                                                float64
            2
                              200 non-null
                                                float64
                newspaper
                sales
                              200 non-null
                                                float64
          dtypes: float64(4), int64(1)
          memory usage: 7.9 KB
```

localhost:8888/notebooks/LOSSO.ipynb

```
In [38]: data.head()
```

Out[38]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [39]: list(data)
```

```
Out[39]: ['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales']
```

```
In [40]: datal=data.drop(['Unnamed: 0'],axis=1)
```

localhost:8888/notebooks/LOSSO.ipynb

In [41]: data1

Out[41]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [42]: y=data1['sales']
x=data1.drop(['sales'],axis=1)
```

In [43]: x

Out[43]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [44]: y
Out[44]: 0
                22.1
                10.4
         2
                 9.3
                18.5
                12.9
                . . .
         195
                 7.6
         196
                 9.7
         197
                12.8
         198
                25.5
         199
                13.4
         Name: sales, Length: 200, dtype: float64
```

localhost:8888/notebooks/LOSSO.ipynb

4/9

```
In [45]: from sklearn.model_selection import train_test_split #spliting of training and testing
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [46]: x_train.head(5)
```

Out[46]:

	TV	radio	newspaper
42	293.6	27.7	1.8
189	18.7	12.1	23.4
90	134.3	4.9	9.3
136	25.6	39.0	9.3
51	100.4	9.6	3.6

In [47]: x_test.head(5)

Out[47]:

		TV	radio	newspaper
9	95	163.3	31.6	52.9
1	. 5	195.4	47.7	52.9
3	30	292.9	28.3	43.2
15	8	11.7	36.9	45.2
12	28	220.3	49.0	3.2

In [48]: y_train.head(5)

Out[48]: 42 20.7 189 6.7 90 11.2 136 9.5 51 10.7

Name: sales, dtype: float64

```
In [49]: y test.head(5)
Out[49]: 95
                16.9
         15
                22.4
                21.4
         30
                7.3
         158
         128
                24.7
         Name: sales, dtype: float64
In [50]: import warnings
         warnings.filterwarnings("ignore")
In [51]: from sklearn.linear model import Lasso
         from sklearn.model selection import GridSearchCV
         lasso=Lasso()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         lasso regressor=GridSearchCV(lasso,parameters)
         lasso_regressor.fit(x_train, y_train)
Out[51]:
          ▶ GridSearchCV
          ▶ estimator: Lasso
                ▶ Lasso
In [52]: lasso_regressor.best_params_
Out[52]: {'alpha': 1}
In [53]: lasso=Lasso(alpha=1)
         lasso.fit(x train,y train)
         y pred lasso=lasso.predict(x test) #predicted value
In [54]: from sklearn.metrics import r2_score
         r2 score(y test,y pred lasso)
Out [54]: 0.8589079527148957
```

localhost:8888/notebooks/LOSSO.ipynb

```
In [55]: from sklearn.metrics import mean_squared_error #rmse value
Lasso_Error

Out[55]: 3.641439660278575

In [59]: Results=pd.DataFrame(columns=['Actual','Predicted'])
Results['Actual']=y_test
Results['Predicted']=y_pred_lasso
Results=Results.reset_index()
Results['ID']=Results.index #replaces id with index number
Results.head(10)
```

Out[59]:

	index	Actual	Predicted	ID
0	95	16.9	16.523920	0
1	15	22.4	21.058219	1
2	30	21.4	21.624966	2
3	158	7.3	10.745724	3
4	128	24.7	22.188269	4
5	115	12.6	13.243102	5
6	69	22.3	21.161155	6
7	170	8.4	7.454875	7
8	174	11.5	13.541765	8
9	45	14.9	15.197360	9

```
In [60]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50)) #red is actual
sns.lineplot(x='ID',y='Predicted',data=Results.head(50)) #blue is predicted
```


In []: