

Federal University of Rio de Janeiro

Chris Ciafrino, Eduardo Cardozo, Letícia Freire

adapted from KTH ACM Contest Template Library 2019

Contest (1)

template.cpp

```
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using ldouble = long double;
const double PI = 2 * acos(0.0);
// Retorna -1 se a < b, 0 se a = b e 1 se a > b.
int cmp_double (double a, double b = 0, double eps = 1e-9)
    return a + eps > b ? b + eps > a ? 0 : 1 : -1;
inline string read_string() {
    char *str;
    scanf("%ms", &str);
    string result(str);
    free(str);
    return result;
inline int read() {
   char ch;
    ret = 0;
    while((ch = getchar()) >= '0')
       ret = 10 * ret + ch - '0';
    return ret;
int main() {
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin.exceptions(cin.failbit);
    return 0;
```

Makefile

25 lines

```
CXX = \alpha + +
CXXFLAGS = -02 -std=gnu++14 -Wall -Wextra -Wno-unused-

→result -pedantic -Wshadow -Wformat=2 -Wfloat-equal -
  →Wconversion -Wlogical-op -Wshift-overflow=2 -
  ⇒Wduplicated-cond -Wcast-qual -Wcast-align
# pause: #pragma GCC diagnostic {ignored|warning} "-Wshadow"
DEBUGFLAGS = -D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC -
   \hookrightarrowfsanitize=address -fsanitize=undefined -fno-sanitize-

→recover=all -fstack-protector -D_FORTIFY_SOURCE=2

CXXFLAGS += $(DEBUGFLAGS) # flags with speed penalty
TARGET := $(notdir $(CURDIR))
EXECUTE := ./$(TARGET)
CASES := $(sort $(basename $(wildcard *.in)))
TESTS := $(sort $(basename $(wildcard *.out)))
all: $(TARGET)
 -rm -rf $(TARGET) *.res
%: %.cpp
 $(LINK.cpp) $< $(LOADLIBES) $(LDLIBS) -0 $@
run: $ (TARGET)
 time $(EXECUTE)
%.res: $(TARGET) %.in
 time $(EXECUTE) < $*.in > $*.res
test_%: %.res %.out
```

```
diff $*.res $*.out
runs: $(patsubst %, %.res, $(CASES))
test: $(patsubst %, test_%, $(TESTS))
.PHONY: all clean run test test_% runs
.PRECIOUS: %.res
```

vimrc

```
set nocp ai bs=2 hls ic is lbr ls=2 mouse=a nu ru sc scs
  \hookrightarrowsmd so=3 sw=4 ts=4
filetype plugin indent on
svn on
map gA m'ggVG"+y''
com -range=% -nargs=1 P exe "<line1>, <line2>!".<q-args> |y|
  ⇒sil u|echom @"
com -range=% Hash <line1>, <line2>P tr -d '[:space:]' |
au FileType cpp com! -buffer -range=% Hash <line1>, <line2>P
```

Mathematics (2)

2.1 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

2.2 Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where
$$r = \sqrt{a^2 + b^2}, \phi = \text{atan2}(b, a)$$
.

Geometry

2.3.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.3.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

2.3.3 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

2.4 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \quad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.5 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.6 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

2.7 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance

 $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.7.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n, p), $n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.7.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b and b elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

DSU DSURoll HashMap SegTreeIT SegTreeLazy

Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$). where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_i/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and aperiodic (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi.$

A Markov chain is an A-chain if the states can be partitioned into two sets A and G, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in A. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data Structures (3)

DSU.h

Description: Union Find

```
struct union_find {
   int n:
    vector<int> parent, rank;
    union_find(int _n): n(_n), parent(n), rank(n, 0) {
        iota(parent.begin(), parent.end(), 0);
    int find(int v) {
        if (parent[v] == v) return v;
        return parent[v] = find(parent[v]);
```

```
int unite(int a, int b) {
       a = find(a);
       b = find(b);
       if (a == b) return a;
       if (rank[a] > rank[b]) swap(a, b);
       parent[a] = b;
       if (rank[a] == rank[b]) ++rank[b];
       return b;
}; // hash-cpp-all = fdcb82273fd5c5603f5a47cefb48ea9c
```

DSURoll.h

Description: DSU with Rollbacks

```
32 lines
template<int size>
struct union_find {
 vector<int> parent(size), rank(size, 1);
  vector<pair<int,int>> instack;
  union_find() {
   iota(parent.begin(), parent.end(), 0);
  int find(int v) {
   if (v == parent[v]) return v;
   return find(parent[v]);
  void unite(int a, int b) {
   a = find(a);
   b = find(b);
   if (a == b)
     instack.emplace_back(-1,-1);
   if (rank[a] < rank[b]) swap(a, b);</pre>
    instack.emplace_back(a,b);
    rank[a] += rank[b];
   parent[b] = a;
  void rollback() {
   auto a = instack.back();
   instack.pop_back();
   int x = a.first, y = a.second;
   if (x == -1) return;
   rank[x] -= rank[v];
   parent[y] = y;
}; // hash-cpp-all = a38e611b3668253c97c748d5a8495fc2
```

HashMap.h

Description: Hash map with the same API as unordered_map, but ~3x faster. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
__gnu_pbds::gp_hash_table<ll, int> h({},{},{},{}, {1 <<
   \hookrightarrow16}); // hash-cpp-all =

→d4f7c9a985615ad5fd0981e66d468825
```

SegTreeIT.h

20 lines

Description: Iterative SegTree

```
template <typename T, int size>
struct segtree_t {
   vector<int> tree;
   segtree t(): tree(4*size, 0){
   T operation(const T &a, const T &b) { return a+b; }
   void build() {
```

25 lines

```
for (int i = 0; i < n; ++i)
       tree[i] = operation(tree[2*i], tree[2*i+1]);
   T query(int lx, int rx) {
   T x = 0, y = 0;
    for (1x += n, rx += n; 1x < rx; 1x >>= 1, rx >>= 1) {
           if (lx \& 1) x = operation(x, tree[lx++]);
           if (rx \& 1) y = operation(tree[--rx], y);
    return operation(x, y);
   void update(int idx, int delta) {
    for (tree[idx += size] = delta; idx > 1; idx >>= 1)
       tree[idx>>1] = operation(tree[(idx|1)^1], tree[idx
}; // hash-cpp-all = 19aa98bf175879dfd24aec4ca783086b
```

3

```
SegTreeLazv.h
Description: Segment Tree with lazy propagation.
                                                          63 lines
 node *1, *r;
 lint minv;
 lint sumv:
 lint lazy;
 int lx, rx;
void push(node *v){
 if(v != nullptr && v->lazy) {
    v->minv = v->lazy;
    v->sumv = v->lazy * (v->rx - v->lx + 1);
    if(v->1 != nullptr) {
      v->1->lazy += v->lazy;
      v->r->lazy += v->lazy;
    v->lazy = 0;
void update(node *v, int lx, int rx, lint val){
  push (v);
  if(rx < v->lx) return;
  if (v->rx < lx) return;
  if(lx <= v->lx && v->rx <= rx){
    v->lazy = val;
    push(v);
    return:
  update(v->1, lx, rx, val);
  update(v->r, lx, rx, val);
  v->minv = min(v->l->minv, v->r->minv);
 v \rightarrow sumv = v \rightarrow 1 \rightarrow sumv + v \rightarrow r \rightarrow sumv;
lint mquery(node *v, int lx, int rx){
 push(v);
  if(rx < v->lx) return 1e16;
  if(v->rx < lx) return 1e16;</pre>
  if(lx <= v->lx && v->rx <= rx) return v->minv;
  return min(mquery(v->1, lx, rx), mquery(v->r, lx, rx));
lint squery(node *v, int lx, int rx){
  push (v);
  if(rx < v->lx) return 0;
  if (v->rx < lx) return 0;
  if(lx <= v->lx && v->rx <= rx) return v->sumv;
  return squery (v->1, lx, rx) + squery (v->r, lx, rx);
```

```
node *build(int lx, int rx){
 node *v = new node();
 v->1x = 1x; v->rx = rx;
 v->lazy = 0;
 if(lx == rx)
   v->1 = v->r = nullptr;
  else {
   v->1 = build(lx, (lx + rx)/2);
   v->r = build((lx + rx)/2 + 1, rx);
   v->minv = min(v->l->minv, v->r->minv);
   v->sumv = v->1->sumv + v->r->sumv;
  return v;
node *segtree = build(0, n);
// hash-cpp-all = 5ced5eb2fe21556a7d8735b3169b0c3c
```

SparseTable.h

Description: RSQ with sparse table

```
template<typename T>
struct RSQ {
   vector<vector<lint>> table;
    RSQ(const vector<T> &values) {
        int n = values.size();
        table[0].resize(n);
        for (int i = 0; i < n; ++i) table [0][i] = values[i]
           \hookrightarrow];
        for (int 1 = 1; 1 < (int)table.size(); ++1) {</pre>
            table[1].resize(n - (1 << 1) + 1);
            for (int i = 0; i + (1 << 1) <= n; ++i)
                table[l][i] = table[l-1][i] + table[l-1][i]
                   \hookrightarrow+(1<<(1-1))];
    lint query(int a, int b) {
       lint 1 = b - a + 1, ret = 0;
        for (int i = (int) table.size(); i >= 0; --i) {
            if ((1 << i) <= 1) {
                ret += table[i][a];
                a += (1 << i);
                1 = b - a + 1;
        return ret;
}; // hash-cpp-all = f5bbe1c049d216a5f69fd1a2b5a7b1ec
```

FenwickTree2.h

Description: Fenwick Tree with Lazy Propagation

```
struct bit_t {
 int n;
 vector<vector<int>> tree(2);
 bit_t (int n): n(n+10) {
   tree[0].assign(n, 0);
   tree[1].assign(n, 0);
 void update(int bit, int idx, int delta) {
   for (++idx; idx <= n; idx += idx&-idx)</pre>
      tree[bit][idx] += delta;
 void update(int lx, int rx, int delta) {
   update(0, lx, delta);
```

```
update(0, rx+1, -delta);
   update(1, lx, (l-1) * delta);
   update(1, rx+1, -rx * delta);
 int query(int bit, int idx) {
   int ret = 0:
   for (++idx; idx > 0; idx -= idx&-idx)
     ret += tree[bit][idx];
   return ret;
 int query(int idx) {
   return query(0, idx) * idx - query(1, idx);
}; // hash-cpp-all = 0607a0552557a69a45c62ef3dea2909d
```

LCT.cpp

Description: Link-Cut Tree.

```
106 lines
struct T {
  bool rr;
  T *son[2], *pf, *fa;
} f1[N], \star ff = f1, \star f[N], \star null;
void downdate(T *x) {
  if (x -> rr) {
     x \rightarrow son[0] \rightarrow rr = !x \rightarrow son[0] \rightarrow rr;
     x \rightarrow son[1] \rightarrow rr = !x \rightarrow son[1] \rightarrow rr;
     swap(x \rightarrow son[0], x \rightarrow son[1]);
     x \rightarrow rr = false;
  // add stuff
void update(T *x) {
  // add stuff
void rotate(T *x, bool t) { // hash-cpp-1
 T \star y = x \rightarrow fa, \star z = y \rightarrow fa;
  if (z != null) z -> son[z -> son[1] == y] = x;
  x \rightarrow fa = z;
  y \rightarrow son[t] = x \rightarrow son[!t];
  x \rightarrow son[!t] \rightarrow fa = y;
  x \rightarrow son[!t] = y;
  y \rightarrow fa = x;
  update(y);
} // hash-cpp-1 = 28958e1067126a5892dcaa67307d2f1d
void xiao(T *x) {
  if (x \rightarrow fa != null) xiao(x \rightarrow fa), x \rightarrow pf = x \rightarrow fa \rightarrow
      \hookrightarrow pf:
  downdate(x);
void splay(T *x) { // hash-cpp-2
  xiao(x);
  T *Y, *Z;
  while (x \rightarrow fa != null) {
     y = x \rightarrow fa; z = y \rightarrow fa;
     bool t1 = (y \rightarrow son[1] == x), t2 = (z \rightarrow son[1] == y);
     if (z != null) {
       if (t1 == t2) rotate(y, t2), rotate(x, t1);
       else rotate(x, t1), rotate(x, t2);
     }else rotate(x, t1);
```

} // hash-cpp-2 = 0bc1a3b77275f92cebc947211444fdb7

```
void access(T *x) { // hash-cpp-3
  splay(x);
  x \rightarrow son[1] \rightarrow pf = x;
  x \rightarrow son[1] \rightarrow fa = null;
  x \rightarrow son[1] = null;
  update(x);
  while (x \rightarrow pf != null) {
     splay(x \rightarrow pf);
     x \rightarrow pf \rightarrow son[1] \rightarrow pf = x \rightarrow pf;
     x \rightarrow pf \rightarrow son[1] \rightarrow fa = null;
     x \rightarrow pf \rightarrow son[1] = x;
     x \rightarrow fa = x \rightarrow pf;
     splay(x);
  x \rightarrow rr = true:
} // hash-cpp-3 = db89159f01a2099d67e93163c3bfa384
bool Cut(T *x, T *y) { // hash-cpp-4
  access(x);
   access(v);
   downdate(y);
   downdate(x);
  if (y \rightarrow son[1] != x || x \rightarrow son[0] != null)
    return false;
  y \rightarrow son[1] = null;
  x \rightarrow fa = x \rightarrow pf = null;
  update(x);
  update(v);
  return true;
\frac{1}{2} // hash-cpp-4 = 42850d63565f84698378e8c2c23df1fe
bool Connected (T *x, T *y) {
  access(x);
  access(y);
  return x == y || x -> fa != null;
bool Link(T *x, T *y) {
  if (Connected(x, y))
     return false:
   access(x);
  access(y);
  x \rightarrow pf = y;
  return true;
int main() {
  read(n); read(m); read(q);
  null = new T; null \rightarrow son[0] = null \rightarrow son[1] = null \rightarrow
      \hookrightarrow fa = null -> pf = null;
   for (int i = 1; i <= n; i++) {
     f[i] = ++ff;
     f[i] \rightarrow son[0] = f[i] \rightarrow son[1] = f[i] \rightarrow fa = f[i] \rightarrow
         \hookrightarrowpf = null;
     f[i] -> rr = false;
  // init null and f[i]
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming. Time: $\mathcal{O}(\log N)$

```
bool 0;
struct Line {
```

```
mutable 11 k, m, p;
  bool operator<(const Line& o) const {</pre>
   return Q ? p < o.p : k < o.k;
};
struct LineContainer : multiset<Line> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  const 11 inf = LLONG MAX;
  ll div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
   if (y == end()) { x->p = inf; return false; }
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y))
    while ((y = x) != begin() \&\& (--x) -> p >= y -> p)
      isect(x, erase(y));
  ll query(ll x) {
   assert(!empty());
   Q = 1; auto 1 = *lower_bound({0,0,x}); Q = 0;
   return 1.k * x + 1.m;
}; // hash-cpp-all = 1a3c15147b3a3e2ea69bfa41ac9f0914
```

Numerical (4)

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See Ternary-Search.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; } double xmin = gss(-1000,1000,func); Time: \mathcal{O}(\log((b-a)/\epsilon))
```

```
double gss(double a, double b, double (*f)(double)) {
   double r = (sqrt(5)-1)/2, eps = 1e-7;
   double x1 = b - r*(b-a), x2 = a + r*(b-a);
   double f1 = f(x1), f2 = f(x2);
   while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
       b = x2; x2 = x1; f2 = f1;
       x1 = b - r*(b-a); f1 = f(x1);
   } else {
       a = x1; x1 = x2; f1 = f2;
       x2 = a + r*(b-a); f2 = f(x2);
   }
   return a;
} // hash-cpp-all = 31d45b514727a298955001a74bb9b9fa
```

Polynomial.h

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
   double val = 0;
   for(int i = sz(a); i--;) (val *= x) += a[i];
```

PolyRoots.h

Description: Finds the real roots to a polynomial.

Usage: poly_roots($\{\{2,-3,1\}\}$,-le9,le9) // solve x^2-3x+2 = 0 **Time:** $\mathcal{O}\left(n^2\log(1/\epsilon)\right)$

```
"Polynomial.h"
vector<double> poly_roots(Poly p, double xmin, double xmax)
  if (sz(p.a) == 2) \{ return \{-p.a[0]/p.a[1]\}; \}
  vector<double> ret;
  Poly der = p;
  der.diff();
  auto dr = poly_roots(der, xmin, xmax);
  dr.push back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz(dr)-1) {
    double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it, 0, 60) \{ // while (h - 1 > 1e-8) \}
        double m = (1 + h) / 2, f = p(m);
        if ((f \le 0) \hat{sign}) l = m;
        else h = m;
      ret.push_back((1 + h) / 2);
} // hash-cpp-all = 2cf1903cf3e930ecc5ea0059a9b7fce5
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0]*x^0 + \ldots + a[n-1]*x^{n-1}$. For numerical precision, pick $x[k] = c*\cos(k/(n-1)*\pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
} // hash-cpp-all = 08bf48c9301c849dfc6064b6450af6f3
```

BerlekampMassey.h

"../number-theory/ModPow.h"

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$. Usage: BerlekampMassey($\{0, 1, 1, 3, 5, 11\}$) // $\{1, 2\}$

```
vector<ll> BerlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<11> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
 rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
   rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
   rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
 trav(x, C) x = (mod - x) % mod;
 return C;
} // hash-cpp-all = 40387d9fed31766a705d6b2206790deb
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0\dots n-1]$ and $tr[0\dots n-1]$. Faster than matrix multiplication. Useful together with Berlekamp–Massey. Usage: linearRec($\{0, 1\}, \{1, 1\}, k \}$) // k'th Fibonacci number

```
Time: \mathcal{O}\left(n^2 \log k\right)
                                                           26 lines
typedef vector<11> Poly;
11 linearRec(Poly S, Poly tr, ll k) { // hash-cpp-1
 int n = sz(S);
  auto combine = [&] (Poly a, Poly b) {
    Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
      res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
      res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) %
          \rightarrowmod:
    res.resize(n + 1);
    return res;
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
```

if (k % 2) pol = combine(pol, e);

rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;

} // hash-cpp-1 = 261dd85251df2df60ee444e087e8ffc2

e = combine(e, e);

11 res = 0;

return res;

HillClimbing.h

```
Description: Poor man's optimization for unimodal functions. 16 lines

typedef array<double, 2> P;

double func(P p);

pair<double, P> hillClimb(P start) {
 pair<double, P> cur(func(start), start);
 for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
 rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
```

cur = min(cur, make_pair(func(p), p));

} // hash-cpp-all = f40e55c81952cae743714899825b9fe4

P p = cur.second;

p[0] += dx * jmp;

p[1] += dy*jmp;

Integrate.h

return cur;

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
double quad(double (*f)(double), double a, double b) {
  const int n = 1000;
  double h = (b - a) / 2 / n;
  double v = f(a) + f(b);
  rep(i,1,n*2)
    v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
} // hash-cpp-all = 65e2375b3152c23048b469eb414fe6b6
```

IntegrateAdaptive.h

Description: Fast integration using an adaptive Simpson's rule. Usage: double z, y; double h(double x) { return x*x + y*y + z*z <= 1; }

```
double g(double y) \{ :: y = y; return quad(h, -1, 1); \}
double f(double z) { ::z = z; return quad(g, -1, 1); }
double sphereVol = quad(f, -1, 1), pi = sphereVol*3/4;_{16 lines}
typedef double d;
d simpson(d (*f)(d), d a, d b) {
  dc = (a+b) / 2;
  return (f(a) + 4*f(c) + f(b)) * (b-a) / 6;
d \operatorname{rec}(d (*f)(d), d a, d b, d \operatorname{eps}, d S) {
  dc = (a+b) / 2;
  d S1 = simpson(f, a, c);
  d S2 = simpson(f, c, b), T = S1 + S2;
  if (abs (T - S) <= 15*eps || b-a < 1e-10)
    return T + (T - S) / 15;
  return rec(f, a, c, eps/2, S1) + rec(f, c, b, eps/2, S2);
d \text{ quad}(d (*f)(d), d a, d b, d eps = 1e-8) {
 return rec(f, a, b, eps, simpson(f, a, b));
} // hash-cpp-all = ad8a754372ce74e5a3d07ce46c2fe0ca
```

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
  int b = i;
```

```
rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
if (i != b) swap(a[i], a[b]), res *= -1;
res *= a[i][i];
if (res == 0) return 0;
rep(j,i+1,n) {
   double v = a[j][i] / a[i][i];
   if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
}
return res;
} // hash-cpp-all = bd5cec161e6ad4c483e662c34eae2d08
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

18 lines

```
Time: \mathcal{O}(N^3)
```

```
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
  int n = sz(a); 11 ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
     while (a[j][i] != 0) { // gcd step
        11 t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
     }
     ans = ans * a[i][i] % mod;
     if (!ans) return 0;
}
return (ans + mod) % mod;
} // hash-cpp-all = 3313dc3b38059fdf9f41220b469cfd13
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b, \ x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x=0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}\left(NM*\#pivots\right)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}\left(2^{n}\right)$ in the general case.

LPSolver(const vvd& A, const vd& b, const vd& c) :

```
m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) { //
       \hookrightarrow hash-cpp-1
      rep(i, 0, m) \ rep(j, 0, n) \ D[i][j] = A[i][j];
      rep(i, 0, m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[
         →i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
    } // hash-cpp-1 = 6ff8e92a6bb47fbd6606c75a07178914
  void pivot(int r, int s) { // hash-cpp-2
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  } // hash-cpp-2 = 9cd0a84b89fb678b2888e0defa688de2
 bool simplex(int phase) { // hash-cpp-3
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i
      if (r == -1) return false;
      pivot(r, s);
  } // hash-cpp-3 = f156440bce4f5370ea43b0efa7de25ed
  T solve(vd &x) { // hash-cpp-4
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i, 0, m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
 } // hash-cpp-4 = 396a95621f5e196bb87eb95518560dfb
};
```

math-simplex.cpp

Description: Simplex algorithm. WARNING- segfaults on empty (size 0) max cx st Ax<=b, x>=0 do 2 phases; 1st check feasibility; 2nd check boundedness and ans

```
vector<double> simplex(vector<vector<double> > A, vector< \hookrightarrowdouble> b, vector<double> c) {
  int n = (int) A.size(), m = (int) A[0].size()+1, r = n, s
  \hookrightarrow = m-1;
```

```
vector<vector<double> > D = vector<vector<double> > (n+2,

    vector<double>(m+1));
 vector<int> ix = vector<int> (n+m);
 for (int i=0; i < n+m; i++) ix[i] = i;
  for (int i=0; i<n; i++) {
   for (int j=0; j<m-1; j++)D[i][j]=-A[i][j];
   D[i][m-1] = 1;
   D[i][m] = b[i];
   if (D[r][m] > D[i][m]) r = i;
  for (int j=0; j<m-1; j++) D[n][j]=c[j];
 D[n+1][m-1] = -1; int z = 0;
 for (double d;;) {
   if (r < n) {
      swap(ix[s], ix[r+m]);
     D[r][s] = 1.0/D[r][s];
      for (int j=0; j \le m; j++) if (j!=s) D[r][j] *= -D[r][s
      for (int i=0; i<=n+1; i++) if (i!=r) {
        for (int j=0; j<=m; j++) if(j!=s) D[i][j] += D[r][j</pre>
          \hookrightarrow] * D[i][s];
       D[i][s] \star= D[r][s];
   r = -1; s = -1;
   for (int j=0; j < m; j++) if (s<0 || ix[s]>ix[j]) {
     if (D[n+1][j]>eps || D[n+1][j]>-eps && D[n][j]>eps) s
         if (s < 0) break:
   for (int i=0; i<n; i++) if(D[i][s]<-eps) {
     if (r < 0 | | (d = D[r][m]/D[r][s]-D[i][m]/D[i][s]) <
        | | d < eps && ix[r+m] > ix[i+m]) r=i;
   if (r < 0) return vector<double>(); // unbounded
 if (D[n+1][m] < -eps) return vector<double>(); //
    \hookrightarrow infeasible
 vector<double> x(m-1);
 for (int i = m; i < n+m; i ++) if (ix[i] < m-1) x[ix[i]]
    \hookrightarrow = D[i-m][m];
 printf("%.21f\n", D[n][m]);
 return x; // ans: D[n][m]
} // hash-cpp-all = 70201709abdff05eff90d9393c756b95
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.

```
Time: \mathcal{O}\left(n^2m\right)
```

typedef vector<double> vd;
const double eps = le-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);

rep(i,0,n) {
 double v, bv = 0;
 rep(r,i,n) rep(c,i,m)
 if ((v = fabs(A[r][c])) > bv)
 br = r, bc = c, bv = v;
 if (bv <= eps) {</pre>

rep(j,i,n) if (fabs(b[j]) > eps) return -1;

```
break:
   swap(A[i], A[br]);
    swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
   rep(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[i] -= fac * b[i];
      rep(k,i+1,m) A[j][k] -= fac*A[i][k];
   rank++;
  x.assign(m, 0);
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
  return rank; // (multiple solutions if rank < m)</pre>
} // hash-cpp-all = 44c9ab90319b30df6719c5b5394bc618
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from SolveLinear, make the following changes:

```
"solveLinear.h"
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
  rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
  x[col[i]] = b[i] / A[i][i];
fail:; }
// hash-cpp-all = 08e495d9d5le80al83ccd030e3bf6700
```

SolveLinearBinarv.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.

```
Time: \mathcal{O}\left(n^2m\right)
```

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
  assert(m \le sz(x));
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break;
   int bc = (int)A[br]._Find_next(i-1);
   swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
   rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
    rank++;
```

```
x = bs();
for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
}
return rank; // (multiple solutions if rank < m)
} // hash-cpp-all = fa2d7a3e3a84d8fb47610cc474e77b4e</pre>
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

Time: $\mathcal{O}\left(n^3\right)$ int matInv(vector<vector<double>>& A) { int n = sz(A); vi col(n); vector<vector<double>> tmp(n, vector<double>(n)); rep(i, 0, n) tmp[i][i] = 1, col[i] = i;rep(i,0,n) { int r = i, c = i; rep(j,i,n) rep(k,i,n)if (fabs(A[j][k]) > fabs(A[r][c])) r = j, c = k;if (fabs(A[r][c]) < 1e-12) return i; A[i].swap(A[r]); tmp[i].swap(tmp[r]); rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]); swap(col[i], col[c]); double v = A[i][i]; rep(j,i+1,n) { double f = A[j][i] / v;A[i][i] = 0;rep(k, i+1, n) A[j][k] -= f*A[i][k];rep(k,0,n) tmp[j][k] -= f*tmp[i][k];rep(j,i+1,n) A[i][j] /= v; rep(j,0,n) tmp[i][j] /= v;A[i][i] = 1;for (int i = n-1; i > 0; --i) rep(j, 0, i) { double v = A[i][i]; rep(k, 0, n) tmp[j][k] -= v*tmp[i][k];rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j]; } // hash-cpp-all = ebfff64122d6372fde3a086c95e2cfc7

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} & b_0 \\ & b_1 \\ & b_2 \\ & b_3 \\ & \vdots \\ & b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}.$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$${a_i}$$
 = tridiagonal($\{1, -1, -1, ..., -1, 1\}, \{0, c_1, c_2, ..., c_n\}, \{b_1, b_2, ..., b_n, 0\}, \{a_0, d_1, d_2, ..., d_n, a_{n+1}\}$).

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

```
Time: \mathcal{O}(N)
                                                        26 lines
typedef double T;
vector<T> tridiagonal (vector<T> diag, const vector<T>&
   const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
   if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i]</pre>
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];
      diag[i+1] = sub[i]; tr[++i] = 1;
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] -= b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
   if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
     b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i] *super[i-1];
} // hash-cpp-all = 8f9fa8b1e5e82731da914aed0632312f
```

4.1 Fourier transforms

fft.cpp

```
Description: FFT/NTT, polynomial mod/log/exp
```

```
namespace fft {
#if FFT
// FFT
using dbl = double;
struct num { // hash-cpp-1
  dbl x, y;
  num(dbl x_{=} = 0, dbl y_{=} = 0) : x(x_{), y(y_{)} { }
inline num operator+(num a, num b) { return num(a.x + b.x,
   \hookrightarrowa.y + b.y); }
inline num operator-(num a, num b) { return num(a.x - b.x,
   \hookrightarrowa.y - b.y); }
inline num operator*(num a, num b) { return num(a.x * b.x -
   \hookrightarrow a.y * b.y, a.x * b.y + a.y * b.x); }
inline num conj(num a) { return num(a.x, -a.y); }
inline num inv(num a) { dbl n = (a.x*a.x+a.y*a.y); return
   \hookrightarrownum(a.x/n,-a.y/n); }
```

303 lines

```
// hash-cpp-1 = d2cc70ff17fe23dbfe608d8bce4d827b
#else
// NTT
const int mod = 998244353, q = 3;
// For p < 2^30 there is also (5 << 25, 3), (7 << 26, 3),
// (479 << 21, 3) and (483 << 21, 5). Last two are > 10^9.
struct num { // hash-cpp-2
  num(11 v = 0) : v(int(v % mod)) { if (v<0) v+=mod; }
 explicit operator int() const { return v; }
inline num operator+(num a, num b) {return num(a.v+b.v);}
inline num operator-(num a, num b) {return num(a.v+mod-b.v);}
inline num operator*(num a, num b) {return num(111*a.v*b.v);}
inline num pow(num a, int b) {
 num r = 1;
  do\{if(b\&1) r=r*a; a=a*a;\} while(b>>=1);
 return r;
inline num inv(num a) { return pow(a, mod-2); }
// hash-cpp-2 = 62f50e0b94ea4486de6fbc07e826040a
#endif
using vn = vector<num>;
vi rev({0, 1});
vn rt(2, num(1)), fa, fb;
inline void init(int n) { // hash-cpp-3
 if (n <= sz(rt)) return;
 rev.resize(n);
 rep(i, 0, n) \ rev[i] = (rev[i>>1] | ((i&1)*n)) >> 1;
 rt.reserve(n);
 for (int k = sz(rt); k < n; k *= 2) {
   rt.resize(2*k);
#if FFT
   double a=M_PI/k; num z(cos(a), sin(a)); // FFT
#else
   num z = pow(num(g), (mod-1)/(2*k)); // NTT
   rep(i, k/2, k) rt[2*i] = rt[i], rt[2*i+1] = rt[i]*z;
\frac{1}{2} // hash-cpp-3 = 408005a3c0a4559a884205d5d7db44e9
inline void fft(vector<num> &a, int n) { // hash-cpp-4
  init(n);
  int s = __builtin_ctz(sz(rev)/n);
  rep(i,0,n) if (i < rev[i] >> s) swap(a[i], a[rev[i] >> s]);
  for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     num t = rt[j+k] * a[i+j+k];
      a[i+j+k] = a[i+j] - t;
      a[i+j] = a[i+j] + t;
} // hash-cpp-4 = 1f0820b04997ddca9b78742df352d419
// Complex/NTT
vn multiply(vn a, vn b) { // hash-cpp-5
 int s = sz(a) + sz(b) - 1;
  if (s <= 0) return {};</pre>
  int L = s > 1 ? 32 - __builtin_clz(s-1) : 0, n = 1 << L;
  a.resize(n), b.resize(n);
  fft(a, n);
  fft(b, n);
  num d = inv(num(n));
  rep(i, 0, n) \ a[i] = a[i] * b[i] * d;
  reverse(a.begin()+1, a.end());
  fft(a, n);
  a.resize(s);
```

```
return a:
\frac{1}{2} // hash-cpp-5 = 7a20264754593de4eb7963d8fc3d8a15
// Complex/NTT power-series inverse
// Doubles b as b[:n] = (2 - a[:n] * b[:n/2]) * b[:n/2]
vn inverse(const vn& a) { // hash-cpp-6
 if (a.empty()) return {};
  vn b({inv(a[0])});
 b.reserve(2*a.size());
  while (sz(b) < sz(a)) {
    int n = 2*sz(b);
    b.resize(2*n, 0);
    if (sz(fa) < 2*n) fa.resize(2*n);
    fill(fa.begin(), fa.begin()+2*n, 0);
    copy(a.begin(), a.begin()+min(n,sz(a)), fa.begin());
    fft(b, 2*n);
    fft(fa, 2*n);
    num d = inv(num(2*n));
    rep(i, 0, 2*n) b[i] = b[i] * (2 - fa[i] * b[i]) * d;
    reverse(b.begin()+1, b.end());
    fft(b, 2*n);
   b.resize(n);
 b.resize(a.size());
 return b:
} // hash-cpp-6 = 61660c4b2c75faa72062368a381f059f
// Double multiply (num = complex)
using vd = vector<double>:
vd multiply(const vd& a, const vd& b) { // hash-cpp-7
  int s = sz(a) + sz(b) - 1;
  if (s <= 0) return {};
  int L = s > 1 ? 32 - __builtin_clz(s-1) : 0, n = 1 << L;
  if (sz(fa) < n) fa.resize(n);</pre>
  if (sz(fb) < n) fb.resize(n);</pre>
  fill(fa.begin(), fa.begin() + n, 0);
  rep(i, 0, sz(a)) fa[i].x = a[i];
  rep(i, 0, sz(b)) fa[i].y = b[i];
  fft(fa, n);
  trav(x, fa) x = x * x;
  rep(i, 0, n) fb[i] = fa[(n-i)&(n-1)] - conj(fa[i]);
  fft(fb, n);
  vd r(s);
  rep(i,0,s) r[i] = fb[i].y / (4*n);
  return r;
// Integer multiply mod m (num = complex) // hash-cpp-8
vi multiply_mod(const vi& a, const vi& b, int m) {
 int s = sz(a) + sz(b) - 1;
 if (s <= 0) return {};
  int L = s > 1 ? 32 - \underline{\quad builtin_clz(s-1)} : 0, n = 1 << L;
 if (sz(fa) < n) fa.resize(n);</pre>
 if (sz(fb) < n) fb.resize(n);</pre>
  rep(i, 0, sz(a)) fa[i] = num(a[i] & ((1 << 15) -1), a[i] >>
    \hookrightarrow15);
  fill(fa.begin()+sz(a), fa.begin() + n, 0);
  rep(i, 0, sz(b)) fb[i] = num(b[i] & ((1 << 15) -1), b[i] >>
  fill(fb.beqin()+sz(b), fb.begin() + n, 0);
  fft(fa, n);
  fft(fb, n);
  double r0 = 0.5 / n; // 1/2n
 rep(i, 0, n/2+1) {
```

8

```
int j = (n-i) & (n-1);
    num g0 = (fb[i] + conj(fb[j])) * r0;
   num q1 = (fb[i] - conj(fb[j])) * r0;
    swap(g1.x, g1.y); g1.y *= -1;
    if (j != i) {
      swap(fa[j], fa[i]);
      fb[j] = fa[j] * g1;
      fa[j] = fa[j] * g0;
   fb[i] = fa[i] * conj(q1);
   fa[i] = fa[i] * conj(q0);
  fft(fa, n);
  fft(fb, n);
  vi r(s);
  rep(i, 0, s) r[i] = int((ll(fa[i].x+0.5))
        + (ll(fa[i].y+0.5) % m << 15)
        + (11(fb[i].x+0.5) % m << 15)
        + (11(fb[i].y+0.5) % m << 30)) % m);
\frac{1}{2} // hash-cpp-8 = e8c5f6755ad1e5a976d6c6ffd37b3b22
#endif
} // namespace fft
// For multiply_mod, use num = modnum, poly = vector<num>
using fft::num;
using poly = fft::vn;
using fft::multiply;
using fft::inverse;
// hash-cpp-9
poly& operator += (poly& a, const poly& b) {
  if (sz(a) < sz(b)) a.resize(b.size());</pre>
  rep(i, 0, sz(b)) a[i]=a[i]+b[i];
  return a:
poly operator+(const poly& a, const poly& b) { poly r=a; r
   \hookrightarrow+=b; return r; }
poly& operator -= (poly& a, const poly& b) {
 if (sz(a) < sz(b)) a.resize(b.size());</pre>
  rep(i, 0, sz(b)) a[i]=a[i]-b[i];
  return a;
poly operator-(const poly& a, const poly& b) { poly r=a; r
   \rightarrow-=b; return r; }
poly operator* (const poly& a, const poly& b) {
  // TODO: small-case?
  return multiply(a, b);
poly& operator*=(poly& a, const poly& b) {return a = a*b;}
// hash-cpp-9 = 61b8743c2b07beed0e7ca857081e1bd4
poly& operator *= (poly& a, const num& b) { // Optional
 trav(x, a) x = x * b;
  return a:
poly operator* (const poly& a, const num& b) { poly r=a; r*=
   ⇒b; return r; }
// Polynomial floor division; no leading 0's plz
poly operator/(poly a, poly b) { // hash-cpp-10
 if (sz(a) < sz(b)) return {};
  int s = sz(a) - sz(b) + 1;
  reverse(a.begin(), a.end());
  reverse(b.begin(), b.end());
  a.resize(s);
  b.resize(s);
  a = a * inverse(move(b));
  a.resize(s);
```

```
reverse(a.begin(), a.end());
  return a;
} // hash-cpp-10 = a6589ce8fcf1e33df3b42ee703a7fe60
poly& operator/=(poly& a, const poly& b) {return a = a/b;}
poly& operator%=(poly& a, const poly& b) { // hash-cpp-11
  if (sz(a) >= sz(b)) {
    poly c = (a / b) * b;
    a.resize(sz(b)-1);
    rep(i, 0, sz(a)) a[i] = a[i]-c[i];
 return a:
} // hash-cpp-11 = 9af255f48abbeafd8acde353357b84fd
poly operator% (const poly& a, const poly& b) { poly r=a; r
   \hookrightarrow%=b; return r; }
// Log/exp/pow
poly deriv(const poly& a) { // hash-cpp-12
 if (a.empty()) return {};
  polv b(sz(a)-1):
  rep(i,1,sz(a)) b[i-1]=a[i]*i;
  return b;
} // hash-cpp-12 = 94aa209b3e956051e6b3131bf1faafd1
poly integ(const poly& a) { // hash-cpp-13
  polv b(sz(a)+1);
  b[1]=1; // mod p
  rep(i,2,sz(b)) b[i]=b[fft::mod%i]*(-fft::mod/i); // mod p
  rep(i, 1, sz(b)) b[i] = a[i-1] * b[i]; // mod p
  //rep(i,1,sz(b)) b[i]=a[i-1]*inv(num(i)); // else
  return b:
\frac{1}{2} // hash-cpp-13 = 6f13f6a43b2716a116d347000820f0bd
poly log(const poly& a) { // a[0] == 1 // hash-cpp-14
  poly b = integ(deriv(a) *inverse(a));
  b.resize(a.size());
  return b;
} // hash-cpp-14 = ce1533264298c5382f72a2a1b0947045
poly exp(const poly& a) { // a[0] == 0 // hash-cpp-15
  polv b(1, num(1));
  if (a.empty()) return b;
  while (sz(b) < sz(a)) {
    int n = \min(sz(b) * 2, sz(a));
    b.resize(n);
    poly v = poly(a.begin(), a.begin() + n) - log(b);
    v[0] = v[0] + num(1);
    b *= v;
    b.resize(n);
  return b;
} // hash-cpp-15 = f645d091e4ae3ee3dc2aa095d4aa699a
poly pow(const poly& a, int m) { // m >= 0 // hash-cpp-16
  poly b(a.size());
  if (!m) { b[0] = 1; return b; }
  int p = 0:
  while (p \le z(a) \& \& a[p].v == 0) ++p;
  if (111*m*p >= sz(a)) return b;
  num mu = pow(a[p], m), di = inv(a[p]);
  poly c(sz(a) - m*p);
  rep(i, 0, sz(c)) c[i] = a[i+p] * di;
  c = log(c);
  trav(v,c) v = v * m;
  c = exp(c);
  rep(i, 0, sz(c)) b[i+m*p] = c[i] * mu;
  return b:
} // hash-cpp-16 = 0f4830b9de34c26d39f170069827121f
// Multipoint evaluation/interpolation
// hash-cpp-17
vector<num> eval(const poly& a, const vector<num>& x) {
 int n=sz(x);
```

```
if (!n) return {};
  vector<poly> up(2*n);
  rep(i,0,n) up[i+n] = poly(\{0-x[i], 1\});
  per(i,1,n) up[i] = up[2*i]*up[2*i+1];
  vector<poly> down(2*n);
  down[1] = a % up[1];
  rep(i,2,2*n) down[i] = down[i/2] % up[i];
  vector<num> v(n);
  rep(i, 0, n) y[i] = down[i+n][0];
 return v;
} // hash-cpp-17 = a079eba46c3110851ec6b0490b439931
// hash-cpp-18
poly interp(const vector<num>& x, const vector<num>& y) {
  int n=sz(x);
  assert(n);
  vector<poly> up(n*2);
  rep(i,0,n) up[i+n] = poly(\{0-x[i], 1\});
  per(i,1,n) up[i] = up[2*i]*up[2*i+1];
  vector<num> a = eval(deriv(up[1]), x);
  vector<polv> down(2*n);
  rep(i,0,n) down[i+n] = poly(\{y[i]*inv(a[i])\});
  per(i,1,n) down[i] = down[i*2] * up[i*2+1] + down[i*2+1]
     \hookrightarrow * up[i*2];
  return down[1];
} // hash-cpp-18 = 74f15e1e82d51e852b321a1ff75ba1fd
```

NumberTheoreticTransform.h

Description: Can be used for convolutions modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For other primes/integers, use two different primes and combine with CRT. May return negative values.

Time: $\mathcal{O}(N \log N)$

54 lines

```
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef long long 11;
typedef pair<int, int> pii;
typedef vector<int> vi;
const 11 mod = (119 << 23) + 1, root = 3; // = 998244353
// For p < 2^30 there is also e.g. (5 << 25, 3), (7 << 26,
   \hookrightarrow 3),
// (479 << 21, 3) and (483 << 21, 5). The last two are >
   \hookrightarrow 10^9.
lint modpow(lint a, lint e) {
    if(e == 0) return 1;
    if(e % 2) return (a*modpow(a,e-1)) % mod;
    lint c = modpow(a, e/2);
    return (c*c) % mod;
typedef vector<ll> vl;
void ntt(ll *x, ll *temp, ll *roots, int N, int skip) {
 if (N == 1) return;
  int n2 = N/2;
  ntt(x
          , temp, roots, n2, skip*2);
  ntt(x+skip, temp, roots, n2, skip*2);
  rep(i, 0, N) temp[i] = x[i*skip];
  rep(i,0,n2) {
    11 s = temp[2*i], t = temp[2*i+1] * roots[skip*i];
    x[skip*i] = (s + t) % mod; x[skip*(i+n2)] = (s - t) %
       \rightarrowmod;
```

```
void ntt(vl &x, bool inv = false) {
 11 e = modpow(root, (mod-1) / sz(x));
  if (inv) e = modpow(e, mod-2);
  vl roots(sz(x), 1), temp = roots;
  rep(i,1,sz(x)) roots[i] = roots[i-1] * e % mod;
  ntt(&x[0], &temp[0], &roots[0], sz(x), 1);
vl conv(vl a, vl b) {
  int s = sz(a) + sz(b) - 1; if (s \le 0) return {};
  int L = s > 1 ? 32 - \_builtin\_clz(s - 1) : 0, n = 1 << L
  if (s <= 200) { // (factor 10 optimization for |a|, |b| =
    \hookrightarrow 10)
   vl c(s);
   rep(i,0,sz(a)) rep(j,0,sz(b))
     c[i + j] = (c[i + j] + a[i] * b[j]) % mod;
   return c;
  a.resize(n); ntt(a);
  b.resize(n); ntt(b);
  v1 c(n); 11 d = modpow(n, mod-2);
  rep(i, 0, n) c[i] = a[i] * b[i] % mod * d % mod;
  ntt(c, true); c.resize(s); return c;
} // hash-cpp-all = 8ec6ad638fb79c642ea43d15e8c9e84e
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z = x \oplus y} a[x] \cdot b[y],$ where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

```
Time: \mathcal{O}(N \log N)
```

```
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j, i, i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
        inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
        pii(u + v, u - v);
  if (inv) trav(x, a) x \neq sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
  rep(i, 0, sz(a)) a[i] *= b[i];
  FST(a, 1); return a;
} // hash-cpp-all = 3de473e2c1de97e6e9ff0f13542cf3fb
```

Number theory (5)

5.1 Modular arithmetic

ModTemplate.h

61 lines

```
template <int MOD_> struct modnum {
 using 11 = long long;
 static const int MOD = MOD_;
 private:
 int v:
 public:
 modnum() : v(0) {}
 modnum(11 v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
  explicit operator int () { return v; }
```

```
friend std::ostream& operator << (std::ostream& o, const
    →modnum& m) { return o << m.v; }</pre>
  modnum operator - () const {
   modnum res;
   res.v = (v ? MOD - v : 0);
   return res;
 modnum operator ~ () const {
   modnum res:
   res.v = modinv(v, MOD);
   return res;
  modnum& operator += (const modnum& o) {
   v += o.v;
   if (v >= MOD) v -= MOD;
   return *this;
 modnum& operator -= (const modnum& o) {
   v -= o.v;
   if (v < 0) v += MOD;
   return *this;
 modnum& operator *= (const modnum& o) {
   v = int(11(v) * 11(o.v) % MOD);
   return *this;
 modnum& operator /= (const modnum& o) {
   return *this *= (\sim 0);
  friend modnum operator + (const modnum& a, const modnum&
    →b) { return modnum(a) += b; }
  friend modnum operator - (const modnum& a, const modnum&
     ⇔b) { return modnum(a) -= b; }
  friend modnum operator * (const modnum& a, const modnum&
    \hookrightarrowb) { return modnum(a) *= b; }
  friend modnum operator / (const modnum& a, const modnum&
    →b) { return modnum(a) /= b; }
  friend bool operator == (const modnum& a, const modnum& b
    \hookrightarrow) { return a.v == b.v; }
  modnum pow(ll e) const {
   assert (e >= 0);
   modnum r = 1;
   modnum a = *this;
   while (e) {
     if (e & 1) r *= a;
     a *= a, e /= 2;
   return r:
 11 get(){
}; // hash-cpp-all = 66e79f7632dccfd859c59d312712591f
```

```
modInv.h
```

14 lines int modiny(int a, int m) { assert (m > 0): if (m == 1) return 0; a %= m; if (a < 0) a += m; assert (a != 0); if (a == 1) return 1;

```
return m - modinv(m, a) * m/a;
//If mod is prime
int inv(int a) {
   return fexp(a%mod, mod-2);
} // hash-cpp-all = 7430bf056c88ad2a8fb8fa6fecdb9504
```

Modpow.h

lint modpow(lint a, lint e) { if(e == 0) return 1; if(e % 2) return (a*modpow(a,e-1)) % mod; lint c = modpow(a, e/2);return (c*c) % mod;

 $\frac{1}{2}$ // hash-cpp-all = 6a75f9ddf6343038215eb99186b8ac52

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

19 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to /2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
   ull to2 = (to * k + c) / m;
    res += to * to2;
    res -= divsum(to2, m-1 - c, m, k) + to2;
 return res;
11 modsum(ull to, 11 c, 11 k, 11 m) {
 c = ((c \% m) + m) \% m;
 k = ((k % m) + m) % m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
} // hash-cpp-all = 8d6e082e0ea6be867eaea12670d08dcc
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for large c. **Time:** $\mathcal{O}(64/bits \cdot \log b)$, where bits = 64 - k, if we want to deal with k-bit numbers.

```
typedef unsigned long long ull;
const int bits = 10;
// if all numbers are less than 2^k, set bits = 64-k
const ull po = 1 << bits;</pre>
ull mod_mul(ull a, ull b, ull &c) {
  ull x = a * (b & (po - 1)) % c;
  while ((b >>= bits) > 0) {
   a = (a << bits) % c;
    x += (a * (b & (po - 1))) % c;
 return x % c:
ull mod_pow(ull a, ull b, ull mod) {
 if (b == 0) return 1;
  ull res = mod_pow(a, b / 2, mod);
  res = mod_mul(res, res, mod);
 if (b & 1) return mod_mul(res, a, mod);
  return res;
} // hash-cpp-all = 40cd743544228d297c803154525107ab
```

14 lines

```
ModSqrt.h
```

Description: Tonelli-Shanks algorithm for modular square roots. **Time:** $\mathcal{O}(\log^2 p)$ worst case, often $\mathcal{O}(\log p)$

```
ll sqrt(ll a, ll p) {
  a \% = p; if (a < 0) a += p;
  if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1);
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p % 8 == 5
  11 s = p - 1;
  int r = 0;
  while (s % 2 == 0)
    ++r, s /= 2;
  11 n = 2; // find a non-square mod p
  while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  11 b = modpow(a, s, p);
  11 q = modpow(n, s, p);
  for (;;) {
    11 t = b;
    int m = 0;
    for (; m < r; ++m) {
     if (t == 1) break;
     t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1 << (r - m - 1), p);
    q = qs * qs % p;
    x = x * gs % p;
    b = b * g % p;
    r = m;
} // hash-cpp-all = 83e24bd39c8c93946ad3021b8ca6c3c4
```

mulOrder.h

10 lines

```
int mulOrder(int x, int y) {
    if (__gcd(x, y) != 1) return -1;
    int ret = 1, k = 1;
    while (k < y) {
        ret = (ret * x) % y;
        if (ret == 1) return k;
        ++k;
    }
    return -1;
} // hash-cpp-all = 4fffb5e15a16514ce4cb919b833dca27</pre>
```

5.2 Primality

Sieve.h

12 li

MillerRabin.h

```
MillerRabin.ii
bool MillerRabin(lint n, lint a) {
    if (n < 1) return 0;
    lint s = __builtin_ctzll(n-1);
    lint d = (n - 1) >> d, x = modpow(a, d, n);
    if (x == 1) return true;
    for (int i = 0; i < s; ++i) {
        if (x == 1) return false;
        if (x == n - 1) return true;
        x = modMul(x, x, n);
    }
    return false;
} // hash-cpp-all = 3f8092b852219f8875be45979265ee9e</pre>
```

factorize.h

```
return result;
// hash-cpp-all = 46ea351907e7fba012d0082844c7c198
rector(pair<int, int>> factorize(int value) {
    vector<pair<int, int>> result;
    for (int p = 2; p*p <= value; ++p)
    if (value % p == 0) {
        int exp = 0;
        while (value % p == 0) {
            value /= p;
            ++exp;
        }
        result.emplace_back(p, exp);
    }
    if (value != 1) {
        result.emplace_back(value, 1);
        value = 1;
    }
    return result;
} // hash-cpp-all = 46ea351907e7fba012d0082844c7c198</pre>
```

DiophantineEquation.h

```
bool DioEq(lint a, lint b, lint c, lint &x, lint &y){
    lint d = ExtendedEuclid(abs(a), abs(b));
    if (c % d) return false;
    x *= c / d;
    y *= c / d;
    if (a < 0) x = -x;
    if (b < 0) y = -y;
    return true;
} // hash-cpp-all = a9c1569755f9bc36b9d17d3c4d40c274</pre>
```

NumPF.h

```
int nPrimeFac(lint n) {
  lint idx = 0, prime_factors = primes[idx], ans = 0;
  while (prime_factors * prime_factors <= n) {
    while (n % prime_factors == 0) {
        n /= prime_factors;
        ans++;
    }
    prime_factors = primes[++idx];
}
if (n != 1) ans++;
    return ans;
} // hash-cpp-all = 4e5c87d13b378e5b10ec0e472be9a3c8</pre>
```

PollardRho.h

```
int PollardRho(int n) {
  int k = 2, d, x = 3, y = 3;
  while(++i) {
```

```
x = (modMul(x, x, n) + n - 1) % n;
d = __gcd(abs(y - x), n);
if (d!= 1 && d!= n) return d;
if (i == k) {
    y = x;
    k <<= 1;
}
// hash-cpp-all = 8264cbale1383874a3b1ccd937cf0a0f</pre>
```

5.3 Divisibility

ExtendedEuclidean.h

```
lint ExtendedEuclid(lint a, lint b, lint &x, lint &y) {
   if (a == 0) {
      x = 0, y = 1;
      return b;
   }
   else {
      lint ret = ExtendedEuclid(b%a, a, y, x);
      x -= y * (b/a);
      return ret;
   }
} // hash-cpp-all = fa03813e74fle6b9884400f9aa528e43
```

PrimeFactors.h

NumDiv.h

12 lines

5.3.1 Wilson's Theorem

Seja n > 1. Então n|(n-1)! + 1 sse n é primo.

5.3.2 Wolstenholme's Theorem

Seja p > 3 um número primo. Então o numerador do número $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p-1}$ é divisível por p^2 .

5.3.3 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

Bezout.h

EulerPhi.h

SieveEulerPhi.h

```
for(int i = 1; i <= 100000; ++i) phi[i] = i;
for(int i = 2; i <= 100000; ++i)
   if (phi[i] == i)
      for(int j = i; j <= 100000; j += i)
      phi[j] = (phi[j]/i) * (i - 1);
// hash-cpp-al1 = 568829d8cf4710b84c82800768542019</pre>
```

DiscreteLogarithm.cpp

Description: find least Teger p such that $r^p = x(modm)$ **Time:** $\mathcal{O}(sqrt(mod))$

```
T query(T x) {
    for (int i = 0; i < block; ++i) {
        if (u.count(x)) return ((i * block) % mod) + u[x];
        x = (x * cur) % mod;
    }
    return -1;
}
void init() { // gcd(m,r) = 1
        u.clear();
    T cur = 1;
        for (int i = 0; i < block; ++i) {
        if (!u.count(cur)) u[cur] = i;
        cur = (cur * root) % mod;
    }
    cur = 1/cur;
}
;// hash-cpp-all = 3dedf5d510586b4c84e1b64272560c7f</pre>
```

Legendre.h

5 lines

23 lines

```
int legendre(int n, int p) {
    int ret = 0, prod = p;
    while (prod <= n) {
        ret += n/prod;
        prod *= p;
    }
    return ret;
} // hash-cpp-all = 81613f762a8ec7c41ca9f6db5e02878a</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$. For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become ∞ .

```
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
 11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x
     \hookrightarrow ;
  for (;;) {
   ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf
       a = (ll) floor(y), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives
      // better approximation; if b = a/2, we *may* have
      // Return {P, Q} here for a more canonical
         \hookrightarrowapproximation.
      return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NQ};
    LP = P; P = NP;
    LQ = Q; Q = NQ;
} // hash-cpp-all = dd6c5e1084a26365dc6321bd935975d9
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p,q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

```
Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); //
{1,3}
Time: O(log(N))
struct Frac { 11 p, q; };

template < class F>
```

```
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N
 assert(!f(lo)); assert(f(hi));
  while (A | | B) {
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     adv += step:
      Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
        adv -= step; si = 2;
    hi.p += lo.p * adv;
    hi.q += lo.q * adv;
    dir = !dir;
    swap(lo, hi);
    A = B; B = !!adv;
 return dir ? hi : lo;
} // hash-cpp-all = 214844f17d0c347ff436141729e0c829
```

5.5 Chinese remainder theorem

pair<lint, lint> crt(lint x, lint y, lint x2, lint y2) { lint g = __gcd(y, y2), l = lcm(y, y2); if ((x2 - x) % g != 0) return make_pair(0, -1); lint k = y/g, n = y2/g; lint mult = (x2 - x)/g * inv(k % n, n) % n; return make_pair((mult * y + x) % l + l) % l, l);

} // hash-cpp-all = 6ba64c5aafff69a757d89946b8738475

chinese.h

8 lines

Description: Chinese Remainder Theorem.

chinese(a, m, b, n) returns a number x, such that $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$. For not coprime n, m, use chinese.common. Note that all numbers must be less than 2^{31} if you have Z = unsigned long long.

```
Time: \log(m+n)
```

ChineseRemainder.h

```
"euclid.h"

template<class Z> Z chinese(Z a, Z m, Z b, Z n) {
    Z x, y; euclid(m, n, x, y);
    Z ret = a * (y + m) % m * n + b * (x + n) % n * m;
    if (ret >= m * n) ret -= m * n;
    return ret;
}

template<class Z> Z chinese_common(Z a, Z m, Z b, Z n) {
    Z d = gcd(m, n);
    if (((b -= a) %= n) < 0) b += n;
    if (b % d) return -1; // No solution</pre>
```

11 lines

IntPerm BinomialC nCr PascalTriangle multinomial

return d * chinese(Z(0), m/d, b/d, n/d) + a;
} // hash-cpp-all = da3099704e14964aa045c152bb478c14

5.6 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.7 Primes

p=962592769 is such that $2^{21} \mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000$.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2\times\mathbb{Z}_{2^{a-2}}$.

5.7.1 Möbius Inversion Formula

Se
$$F(n) = \sum_{d|n} f(d)$$
, então $f(n) = \sum_{d|n} \mu(d) F(n/d)$.

5.8 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

						9	10	
$\overline{n!}$	1 2 6	24 1	20 720	0 5040	40320	362880	3628800	•
n	11	12	13	14	15	5 16	17	
$\overline{n!}$	4.0e7	4.8e	8 6.2e	9 8.7e	10 1.3e	12 2.1e	$\overline{13\ 3.6e14}$	
n	20	25	30	40	50 1	00 - 15	0 171	
$\overline{n!}$	2e18	2e25	3e32	8e47 3	6e64 9e	157 6e2	$62 > DBL_M$	IAX

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserv-

6.1.2 Cycles

Suponha que $g_S(n)$ é o número de n-permutações quais o tamanho do ciclo pertence ao conjunto S. Então

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutações de um conjunto tais que nenhum dos elementos aparecem em sua posição original.

$$D(n) = (n-1)(D(n-1)+D(n-2)) = nD(n-1)+(-1)^n = \left| \frac{n!}{e} \right|$$

6.1.4 Burnside

Seja $A \colon GX \to X$ uma ação. Defina:

- w número de órbitas em X.
- $S_x\{g \in G \mid g \cdot x = x\}$
- $F_a\{x \in X \mid g \cdot x = x\}$

Então
$$w = \frac{1}{|G|} \sum_{x \in X} |S_x| = \frac{1}{|G|} \sum_{g \in G} |F_g|.$$

6.2 Partitions and subsets

6.2.1 Partition function

Número de formas de escrever n como a soma de inteiros positivos, independente da ordem deles.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Binomials

BinomialC.h

void pre(int lim) {
 fact.resize(lim + 1);
 fact[0] = 1;
 for (int i = 1; i <= lim; ++i)
 fact[i] = (lint)i * fact[i - 1] % mod;
 inv_fact.resize(lim + 1);
 inv_fact[lim] = inv(fact[lim], mod);
 for (int i = lim - 1; i >= 0; --i)
 inv_fact[i] = (lint)(i + 1) * inv_fact[i + 1] % mod;
}
// hash-cpp-all = 310ecbca36de526b97ebf12a33623d1e

nCr.h

lint ncr(lint n, lint r) {
 if(r < 0 || n < 0) return 0;
 if(n < r) return 0;
 lint a = fact[n];
 a = (a * invfact[r]) % mod;
 a = (a * invfact[n-r]) % mod;
 return a;
} // hash-cpp-all = cb9ceb376c99395d61489099178552ad</pre>

PascalTriangle.h

c[0][0] = 1;
for (int i = 0; i < n; ++i) {
 c[i][0] = 1;
 for (int j = 1; j <= i; ++j)
 c[i][j] = c[i-1][j-1] + c[i-1][j];
} // hash-cpp-all = 71b35c5d2366d7d8a0da3f4358661d85</pre>

multinomial.h

Description: Computes $\binom{k_1 + \dots + k_n}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1! k_2! \dots k_n!}$.

11 multinomial (vi& v) {
 11 c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i])
 c = c * ++m / (j+1);
 return c;
} // hash-cpp-all = a0a3128f6afa4721166feb182b82f130

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{6}, 0, -\frac{1}{30}, 0]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} (n+1)^{m+1-k}$$

Fórmula de Euler-Maclaurin para somas infinitas:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Número de permutações em n itens com k ciclos.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

$$c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1$$

$$c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,\dots$$

6.3.3 Eulerian numbers

Número de permutações $\pi \in S_n$ na qual exatamente k elementos são maiores que os anteriores. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$
$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partições de n elementos distintos em exatamente k grupos.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Número total de partições de n elementos distintos. $B(n)=1,1,2,5,15,52,203,877,4140,21147,\ldots$ Para p primo,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# em n vertices: n^{n-2}

# em k árvores existentes de tamanho n_i:

n_1 n_2 \cdots n_k n^{k-2}

# de grau d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

- $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$ sub-diagonal monotone paths in an $n \times n$ grid.
 - strings with n pairs of parenthesis, correctly nested
 - binary trees with with n+1 leaves (0 or 2 children).
 - ordered trees with n+1 vertices.
 - ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
 - permutations of [n] with no 3-term increasing subseq.

6.3.8 Gambler's Ruin

Em um jogo no qual ganhamos cada aposta com probabilidade p e perdemos com probabilidade q1-p, paramos quando ganhamos B ou perdemos A. Então $Prob(ganhar B) = \frac{1-(p/q)^B}{1-(p/q)^{A+B}}$.

6.4 Other

nim-product.cpp

```
17 lines
using ull = uint64 t;
ull nimProd2[64][64];
ull nimProd2(int i, int j) {
  if (_nimProd2[i][j]) return _nimProd2[i][j];
  if ((i & j) == 0) return _nimProd2[i][j] = 1ull << (i|j);</pre>
  int a = (i&j) & -(i&j);
  return _nimProd2[i][j] = nimProd2(i ^ a, j) ^ nimProd2((i
     \hookrightarrow ^ a) | (a-1), (j ^ a) | (i & (a-1)));
ull nimProd(ull x, ull y) {
  ull res = 0;
  for (int i = 0; x >> i; i++)
    if ((x >> i) & 1)
      for (int j = 0; y >> j; j++)
        if ((y >> j) & 1)
          res ^= nimProd2(i, j);
} // hash-cpp-all = e0411498c7a77d77ae793efab5500851
```

schreier-sims.cpp

Description: Nim Product.

Description: Check group membership of permutation groups 52 lines

```
int a[N];
 Perm() {
    for (int i = 1; i \le n; ++i) a[i] = i;
  friend Perm operator* (const Perm &lhs, const Perm &rhs)
    for (int i = 1; i <= n; ++i) res.a[i] = lhs.a[rhs.a[i
       →]];
    return res;
  friend Perm inv(const Perm &cur) {
    static Perm res;
    for (int i = 1; i <= n; ++i) res.a[cur.a[i]] = i;
    return res;
};
class Group {
 bool flag[N];
 Perm w[N];
  std::vector<Perm> x;
public:
  void clear(int p) {
    memset(flag, 0, sizeof flag);
    for (int i = 1; i <= n; ++i) w[i] = Perm();
    flag[p] = true;
    x.clear();
  friend bool check (const Perm&, int);
  friend void insert (const Perm&, int);
  friend void updateX(const Perm&, int);
bool check(const Perm &cur, int k) {
  if (!k) return true;
  int t = cur.a[k];
  return g[k].flag[t] ? check(g[k].w[t] * cur, k - 1) :
     \hookrightarrowfalse:
void updateX(const Perm&, int);
void insert(const Perm &cur, int k) {
 if (check(cur, k)) return;
 g[k].x.push_back(cur);
```

35 lines

```
for (int i = 1; i \le n; ++i) if (q[k].flag[i]) updateX(
     \hookrightarrow cur * inv(g[k].w[i]), k);
void updateX(const Perm &cur, int k) {
  int t = cur.a[k];
  if (q[k].flaq[t]) {
    insert(g[k].w[t] * cur, k - 1);
  } else {
    q[k].w[t] = inv(cur);
    g[k].flag[t] = true;
    for (int i = 0; i < q[k].x.size(); ++i) updateX(q[k].x[
       \hookrightarrowi] * cur, k);
} // hash-cpp-all = 949a6e50dbdaea9cda09928c7eabedbc
```

Graph (7)

7.1 Fundamentals

bellmanFord.h

Description: Calculates shortest path in a graph that might have negative edge distances. Propagates negative infinity distances (sets dist = -inf), and returns true if there is some negative cycle. Unreachable nodes get dist = inf.

Time: $\mathcal{O}\left(EV\right)$

```
typedef 11 T; // or whatever
struct Edge { int src, dest; T weight; };
struct Node { T dist; int prev; };
struct Graph { vector<Node> nodes; vector<Edge> edges; };
const T inf = numeric_limits<T>::max();
bool bellmanFord2(Graph& g, int start_node) {
  trav(n, g.nodes) { n.dist = inf; n.prev = -1; }
  q.nodes[start_node].dist = 0;
  rep(i,0,sz(g.nodes)) trav(e, g.edges) {
   Node& cur = q.nodes[e.src];
   Node& dest = g.nodes[e.dest];
   if (cur.dist == inf) continue;
   T ndist = cur.dist + (cur.dist == -inf ? 0 : e.weight);
   if (ndist < dest.dist) {</pre>
     dest.prev = e.src;
      dest.dist = (i \ge sz(g.nodes)-1 ? -inf : ndist);
  bool ret = 0;
  rep(i,0,sz(g.nodes)) trav(e, g.edges) {
   if (q.nodes[e.src].dist == -inf)
      g.nodes[e.dest].dist = -inf, ret = 1;
 return ret;
} // hash-cpp-all = ece4bcc671e51d6d0a288d1018ec72fa
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge distances. Input is an distance matrix m, where $m[i][j] = \inf_{i \in I} if_i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

Time: $\mathcal{O}(N^3)$

```
12 lines
const 11 inf = 1LL << 62;
void floydWarshall(vector<vector<11>>& m) {
  int n = sz(m);
  rep(i,0,n) m[i][i] = min(m[i][i], {});
```

```
rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)
   if (m[i][k] != inf \&\& m[k][j] != inf) {
     auto newDist = max(m[i][k] + m[k][j], -inf);
     m[i][j] = min(m[i][j], newDist);
  rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf \&\& m[k][j] != inf) m[i][j] = -inf;
} // hash-cpp-all = e0d22c16da35f1ad88efd1dfc4e708ad
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices (array idx), such that there are edges only from left to right. The function returns false if there is a cycle in the graph. Time: $\mathcal{O}(|V| + |E|)$

```
template<class E, class I>
bool topo_sort(const E &edges, I &idx, int n) {
 vi indeg(n);
 rep(i,0,n)
   trav(e, edges[i])
     indeg[e]++;
  queue<int> q; // use priority queue for lexic. smallest
  rep(i,0,n) if (indeg[i] == 0) q.push(-i);
  int nr = 0;
  while (q.size() > 0) {
   int i = -q.front(); // top() for priority queue
    idx[i] = nr++;
    q.pop();
    trav(e, edges[i])
      if (--indeg[e] == 0) q.push(-e);
  return nr == n;
} // hash-cpp-all = 0582b815e8eac811627953236d6b5b32
```

Articulation.h

38 lines

```
struct articulation t {
   int n, reach, cnt, mark;
   vector<vector<int>> adj;
   vector<bool> active;
   bool has_art;
   vector<int> parent, inv_preorder;
   articulation_t(int _n) : n(_n), adj(n), inv_preorder(n,
       \hookrightarrow -1), has_art(false), parent(n), active(n, false)
       \hookrightarrow { }
   int dfs(int u) {
       reach = inv_preorder[u] = ++mark;
       cnt = 0:
       for (int i = 0; i < adj[u].size(); ++i) {
            int v = adj[u][i];
            if (inv preorder[v] == -1) {
                parent[v] = u;
                reach = min(reach, inv_preorder[v]);
                if (inv_preorder[v] <= reach) ++cnt; //</pre>
                   \hookrightarrowquantidade de art
            else if (v != parent[u]) reach = min(reach,
               if (cnt > 1 || (inv_preorder[u] != 0 && cnt > 0)) {
            active[u] = true; //qual n eh uma
               \hookrightarrow articula o
            has_art = true;
```

```
void solve() {
        for (int i = 1; i <= (int)adj.size(); ++i) {
            if (inv_preorder[i] == -1) {
                mark = 0;
                parent[i] = i;
                dfs(i);
};
// Ta dando errado com o grafo 0-4, 1-4, 2-4, 3-4. Corrigir
  \hookrightarrow assim q der.
// hash-cpp-all = f3cbeee604ce923ac70f2d791f7be8a2
```

Bridge.h

```
struct bridge_t {
   int n, reach, mark, cnt;
   vector<vector<int>> adj;
   bool has_bridge;
   vector<int> parent, inv preorder;
   bridge_t(int _n) : n(_n), adj(n), inv_preorder(n, -1),
      int dfs(int u) {
       reach = inv_preorder[u] = ++mark;
       bool found = false;
       for (int i = 0; i < (int)adj[u].size(); ++i) {
           int v = adj[u][i];
           if (inv_preorder[v] == -1) {
               parent[v] = u;
               reach = min(reach, inv preorder[v]);
               if (inv_preorder[v] == reach) {
                   printf("Bridge: %d - %d\n", u, v);
                   has_bridge = true;
           else if (!found && v == parent[u]) found = true
           else reach = min(reach, inv_preorder[v]);
   void solve() {
       for (int i = 0; i < (int)adj.size(); ++i) {</pre>
           if (inv_preorder[i] == -1) {
               mark = 0;
               parent[i] = i;
               dfs(i);
}; // hash-cpp-all = 48ccbebea0e8b4b7e975648808bdf9de
```

Diikstra.h

35 lines

```
struct edge {
    int u, v, w;
    Edge() {}
    Edge (int u, int v, int w) : u(u), v(v), w(w) {}
    bool operator< (const Edge &o) const {
        return w != o.w ? w < o.w : v < o.v;
};
int n, m, dist[MAXN];
```

Kruskal.h

struct edge{ int u, v, w;

```
edge() {}
    edg (int u, int v, int w) : u(u), v(v), w(w) {}
    bool operator < (const edge &o) const {
        return w < o.w;
};
int n, m;
vector<edge> edges;
vector<int> root;
int find(int x){
    if (x != root[x]) root[x] = find_set(root[x]);
    return root[x];
bool merge(int u, int v) {
   int ru = find(u), rv = find(v);
   if (ru == rv) return 0;
   root[ru] = rv;
   return 1;
int Kruskal(){
   int ret = 0;
    sort(edges.begin(), edges.end());
    for (int i = 1; i \le n; ++i) root [i] = i;
    for (int i = 0; i < m; ++i) {
        if (merge(edges[i].u, edges[i].v)) ret += edges[i].
    return ret:
} // hash-cpp-all = bc4880de1c0172ca5f363e0fa61d55b1
```

Prim.h

25 lines

```
struct prim_t {
   int n;
```

```
vector<vector<pair<int,int>>> adj;
   vector<bool> chosen;
   priority_queue<pair<int, int>> pq;
   prim_t(int_n) : n(n), adj(n), chosen(n, false) {}
   void process(int u) { //inicializa com process(0)
       chosen[u] = true;
       for (int j = 0; j < (int) adj[u].size(); j++) {</pre>
           pair<int, int> v = adj[u][j];
            if (!chosen[v.first]) pg.push(make_pair(-v.
               ⇒second, -v.first));
   int solve() {
       int mst_cost = 0;
       while (!pq.empty()) {
           pair<int, int> front = pq.top();
           pq.pop();
           int u = -front.second, w = -front.first;
           if (!chosen[u]) mst cost += w;
         process(u);
       return mst_cost;
}; // hash-cpp-all = ad78e1435a55f3c850c46959f8ad70d6
```

7.1.1 Landau

Existe um torneio com graus de saída $d_1 \leq d_2 \leq \ldots \leq d_n$ sse:

- $d_1 + d_2 + \ldots + d_n = \binom{n}{2}$
- $d_1 + d_2 + \ldots + d_k \ge {k \choose 2} \quad \forall 1 \le k \le n.$

Para construir, fazemos 1 apontar para $2, 3, \ldots, d_1 + 1$ e seguimos recursivamente.

7.1.2 Matroid Intersection Theorem

Sejam $M_1 = (E, I_1)$ e $M_2 = (E, I_2)$ matróides. Então $\max_{S \in I_1 \cap I_2} |S| = \min_{U \subseteq E} r_1(U) + r_2(E \setminus U).$ $S \in I_1 \cap I_2$ $I_0 = I_1 \cap I_2$ $I_0 \cap I_2 \cap I_3$ $I_0 \cap I_2 \cap I_4$ $I_0 \cap I_4 \cap I_4$ $I_0 \cap I_4$

Dado um grafo G, seja δ o maior grau de um vértice. Então G tem número cromático de aresta δ ou $\delta + 1$.

• $\chi(G) = \delta$ ou $\chi(G) = \delta + 1$. 7.1.4 Euler's Theorem

Sendo V, $A \in F$ as quantidades de vértices, arestas e faces de um grafo planar conexo, V - A + F = 2.

7.1.5 Menger's Theorem

Para vértices: Um grafo é k-conexo sse todo par de vértices é conectado por pelo menos k caminhos sem vértices intermediários em comum.

Para arestas: Um grafo é dito k -aresta-conexo se a retirada de menos de k arestas do grafo o mantém conexo. Então um grafo é k -aresta-conexo sse para todo par de vértices u e v, existem k caminhos que ligam ua v sem arestas em comum.

7.1.6 Dilworth's Thereom

Em todo conjunto parcialmente ordenado, a quantidade máxima de elementos de uma anticadeia é igual à quatidade mínima de cadeias disjuntas que cobrem o conjunto.

7.1.7 Erdös-Gallai Theorem

Existe um grafo simples com graus $d_1 > d_2 > ... > d_n$

- $d_1 + d_2 + \ldots + d_n$ é par
- $\bullet \sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k) \quad \forall 1 \le k \le n.$

Para construir, ligamos 1 com $2, 3, \ldots, d_1 + 1$ e seguimos recursivamente.

7.1.8 Hall's Marriage Theorem

Dado um grafo bipartido com classes V_1 e V_2 , para $S \subset V_1$ seja N(S) o conjunto de todos os vértices vizinhos a algum elemento de S. Um emparelhamento de V_1 em V_2 é um conjunto de arestas disjuntas cujas extremidades estão em classes diferentes. Então existe um emparelhamento completo de V_1 em V_2 sse $|N(S)| \ge |S| \ \forall \ S \subset V_1.$

Euler walk

EulerWalk.h

26 line

```
struct edges
    vector<pair<int,int>> outs;
    int nins = 0;
vector<int> euler_walk(vector<edges> &nodes, int nedges,
   \hookrightarrowint src=0) {
 int c = 0;
```

PushRelabel MinCostMaxFlow EdmondsKarp

```
for (auto &n : nodes) c += abs(n.nins - sz(n.outs));
 if (c > 2) return {};
 vector<vector<pii>::iterator> its;
  for (auto &n : nodes)
   its.push_back(n.outs.begin());
 vector<bool> eu (nedges);
 vector<int> ret, s = {src};
  while(!s.emptv()) {
   int x = s.back();
   auto &it = its[x], end = nodes[x].outs.end();
   while(it != end && eu[it->second]) ++it;
   if(it == end) { ret.push_back(x); s.pop_back(); }
   else { s.push_back(it->first); eu[it->second] = true; }
 if(ret.size() != nedges+1)
   ret.clear(); // No Eulerian cycles/paths.
  // else, non-cycle if ret.front() != ret.back()
 reverse(ret.begin(), ret.end());
 return ret;
\frac{1}{2} // hash-cpp-all = b2d4518212e4fb528f2aa26a40f03125
```

7.3 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
```

```
51 lines
typedef 11 Flow;
struct Edge {
 int dest, back;
 Flow f, c;
struct PushRelabel {
  vector<vector<Edge>> g;
  vector<Flow> ec:
  vector<Edge*> cur;
  vector<vi> hs; vi H;
  PushRelabel(int n): g(n), ec(n), cur(n), hs(2*n), H(n)
  void add_edge(int s, int t, Flow cap, Flow rcap=0) {
   if (s == t) return;
   Edge a = \{t, sz(g[t]), 0, cap\};
   Edge b = \{s, sz(g[s]), 0, rcap\};
   g[s].push_back(a);
   g[t].push_back(b);
  void add_flow(Edge& e, Flow f) {
   Edge &back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
  Flow maxflow(int s, int t) {
   int v = sz(g); H[s] = v; ec[t] = 1;
    vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
   trav(e, g[s]) add_flow(e, e.c);
    for (int hi = 0;;) {
      while (hs[hi].empty()) if (!hi--) return -ec[s];
      int u = hs[hi].back(); hs[hi].pop_back();
```

```
while (ec[u] > 0) // discharge u
   if (cur[u] == g[u].data() + sz(g[u])) {
        H[u] = 1e9;
        trav(e, g[u]) if (e.c && H[u] > H[e.dest]+1)
        H[u] = H[e.dest]+1, cur[u] = &e;
        if (++co[H[u]], !--co[hi] && hi < v)
            rep(i,0,v) if (hi < H[i] && H[i] < v)
            --co[H[i]], H[i] = v + 1;
        hi = H[u];
    } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        add_flow(*cur[u], min(ec[u], cur[u]->c));
    else ++cur[u];
}
};
// hash-cpp-all = aaa2dd3fd7d9e6d994b295a959664c9a
```

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}(E^2)$

81 line

```
#include <bits/extc++.h>
const 11 INF = numeric limits<11>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
 int N:
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
  VL dist, pi;
  vector<pii> par;
  MCMF (int N) .
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap
    seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; ll di;
    __qnu_pbds::priority_queue<pair<ll, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     ll val = di - pi[i] + cost;
      if (cap && val < dist[i]) {</pre>
        dist[i] = val;
        par[i] = {s, dir};
        if (its[i] == q.end()) its[i] = q.push({-dist[i], i}
        else q.modify(its[i], {-dist[i], i});
    };
```

```
while (!q.empty()) {
      s = q.top().second; q.pop();
      seen[s] = 1; di = dist[s] + pi[s];
      trav(i, ed[s]) if (!seen[i])
        relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      trav(i, red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
   rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
 pair<11, 11> maxflow(int s, int t) {
   11 \text{ totflow} = 0, totcost = 0;
   while (path(s), seen[t]) {
      11 fl = INF;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]
           \hookrightarrow1);
      totflow += fl;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
    rep(i, 0, N) rep(j, 0, N) totcost += cost[i][j] * flow[i][j]
   return {totflow, totcost};
  // If some costs can be negative, call this before
    \hookrightarrow maxflow:
 void setpi(int s) { // (otherwise, leave this out)
   fill(all(pi), INF); pi[s] = 0;
   int it = N, ch = 1; 11 v;
   while (ch-- && it--)
     rep(i,0,N) if (pi[i] != INF)
       trav(to, ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
            pi[to] = v, ch = 1;
   assert(it >= 0); // negative cost cycle
}; // hash-cpp-all = 6915cee27314b77b2f5e256f1a96cdc0
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template<class T> T edmondsKarp(vector<unordered_map<int, T</pre>
  ⇒>>& graph, int source, int sink) {
 assert(source != sink);
 T flow = 0;
 vi par(sz(graph)), q = par;
  for (;;) {
    fill(all(par), -1);
    par[source] = 0;
    int ptr = 1;
    q[0] = source;
    rep(i,0,ptr) {
     int x = q[i];
      trav(e, graph[x]) {
        if (par[e.first] == -1 && e.second > 0) {
          par[e.first] = x;
          q[ptr++] = e.first;
          if (e.first == sink) goto out;
```

```
return flow;
out:
   T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
    flow += inc;
    for (int y = sink; y != source; y = par[y]) {
      int p = par[y];
      if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
      graph[y][p] += inc;
} // hash-cpp-all = 979bb9ccc85090e328209bf565a2af26
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

// hash-cpp-all = d41d8cd98f00b204e9800998ecf8427e

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: \mathcal{O}\left(V^{3}\right)
                                                         31 lines
pair<int, vi> GetMinCut(vector<vi>& weights) {
  int N = sz(weights);
  vi used(N), cut, best_cut;
  int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
    vi w = weights[0], added = used;
    int prev, k = 0;
    rep(i,0,phase){
      prev = k;
      k = -1;
      rep(j,1,N)
        if (!added[j] \&\& (k == -1 || w[j] > w[k])) k = j;
      if (i == phase-1) {
        rep(j,0,N) weights[prev][j] += weights[k][j];
        rep(j,0,N) weights[j][prev] = weights[prev][j];
        used[k] = true;
        cut.push_back(k);
        if (best_weight == -1 \mid \mid w[k] < best_weight) {
          best_cut = cut;
          best_weight = w[k];
      } else {
        rep(j,0,N)
          w[j] += weights[k][j];
        added[k] = true;
  return {best_weight, best_cut};
```

} // hash-cpp-all = 03261f13665169d285596975383c72b3

7.3.1 König-Egervary Theorem

Em todo grafo bipartido G, a quantidade de arestas no emparelhamento máximo é maior ou igual à quantidade de vértices na cobertura mínima. Ou seja, para todo G, $\alpha(G) \geq \beta(G)$. Note que isso prova que $\alpha(G) = \beta(G)$ para grafos bipartidos.

7.4 Matching

hopcroftKarp.h

Description: Find a maximum matching in a bipartite graph.

Usage: vi ba(m, -1); hopcroftKarp(g, ba);

Time: $\mathcal{O}\left(\sqrt{V}E\right)$ bool dfs(int a, int layer, const vector<vi>& q, vi& btoa,

```
vi& A, vi& B) {
  if (A[a] != layer) return 0;
  A[a] = -1;
  trav(b, g[a]) if (B[b] == layer + 1) {
   B[h] = -1:
    if (btoa[b] == -1 || dfs(btoa[b], layer+2, g, btoa, A,
      return btoa[b] = a, 1;
  return 0;
int hopcroftKarp(const vector<vi>& q, vi& btoa) {
  int res = 0;
  vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), -1);
    cur.clear();
    trav(a, btoa) if(a != -1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay += 2) {
      bool islast = 0;
      next.clear();
      trav(a, cur) trav(b, g[a]) {
        if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && B[b] == -1) {
         B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
      if (next.empty()) return res;
      trav(a, next) A[a] = lay+1;
      cur.swap(next);
    rep(a, 0, sz(q)) {
      if (dfs(a, 0, g, btoa, A, B))
        ++res;
} // hash-cpp-all = ee9fe891045fe156e995ef0276b80af6
```

DFSMatching.h

45 lines

Description: This is a simple matching algorithm but should be just fine in most cases. Graph g should be a list of neighbours of the left partition. n is the size of the left partition and m is the size of the right partition. If you want to get the matched pairs, match[i] contains match for vertex i on the right side or -1 if it's not matched.

Time: $\mathcal{O}(EV)$ where E is the number of edges and V is the number of vertices. 24 lines

```
vi match;
vector<bool> seen;
bool find(int j, const vector<vi>& g) {
 if (match[j] == -1) return 1;
 seen[j] = 1; int di = match[j];
 trav(e, g[di])
    if (!seen[e] && find(e, g)) {
      match[e] = di;
      return 1;
  return 0;
int dfs_matching(const vector<vi>& g, int n, int m) {
 match.assign(m, -1);
  rep(i,0,n) {
    seen.assign(m, 0);
    trav(j,g[i])
      if (find(j, q)) {
        match[j] = i;
        break:
  return m - (int)count(all(match), -1);
} // hash-cpp-all = 178c94b6091dc009a15d348aef80dff0
```

WeightedMatching.h

Description: Min cost bipartite matching. Negate costs for max cost. Time: $\mathcal{O}(N^3)$

```
typedef vector<double> vd;
bool zero(double x) { return fabs(x) < 1e-10; }</pre>
double MinCostMatching(const vector<vd>& cost, vi& L, vi& R
   →) {
  int n = sz(cost), mated = 0;
  vd dist(n), u(n), v(n);
  vi dad(n), seen(n);
  rep(i,0,n) {
   u[i] = cost[i][0];
    rep(j,1,n) u[i] = min(u[i], cost[i][j]);
  rep(j,0,n) {
   v[j] = cost[0][j] - u[0];
    rep(i,1,n) \ v[j] = min(v[j], cost[i][j] - u[i]);
  L = R = vi(n, -1);
  rep(i,0,n) rep(j,0,n) {
   if (R[j] != -1) continue;
    if (zero(cost[i][j] - u[i] - v[j])) {
     L[i] = j;
      R[j] = i;
      mated++:
      break:
  for (; mated < n; mated++) { // until solution is</pre>
     \hookrightarrow feasible
```

```
int s = 0:
   while (L[s] != -1) s++;
   fill(all(dad), -1);
   fill(all(seen), 0);
   rep(k,0,n)
     dist[k] = cost[s][k] - u[s] - v[k];
   int j = 0;
   for (;;) {
     i = -1;
     rep(k,0,n){
       if (seen[k]) continue;
       if (j == -1 \mid \mid dist[k] < dist[j]) j = k;
     seen[j] = 1;
     int i = R[j];
     if (i == -1) break;
      rep(k,0,n) {
       if (seen[k]) continue;
       auto new_dist = dist[j] + cost[i][k] - u[i] - v[k];
       if (dist[k] > new dist) {
         dist[k] = new_dist;
         dad[k] = j;
   rep(k,0,n) {
     if (k == j || !seen[k]) continue;
     auto w = dist[k] - dist[j];
     v[k] += w, u[R[k]] -= w;
   u[s] += dist[j];
   while (dad[j] >= 0) {
     int d = dad[j];
     R[j] = R[d];
     L[R[j]] = j;
     j = d;
   R[j] = s;
   L[s] = j;
 auto value = vd(1)[0];
 rep(i,0,n) value += cost[i][L[i]];
 return value:
} // hash-cpp-all = 055ca9687f72b2dd5e2d2c6921f1c51d
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod.

Time: $\mathcal{O}(N^3)$

```
"../numerical/MatrixInverse-mod.h"
                                                        40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
  vector<vector<ll>> mat(N, vector<ll>(N)), A;
  trav(pa, ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
  int r = matInv(A = mat), M = 2*N - r, fi, fi;
  assert(r % 2 == 0);
  if (M != N) do {
   mat.resize(M, vector<11>(M));
    rep(i,0,N) {
      mat[i].resize(M);
```

```
rep(j,N,M) {
       int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
  } while (matInv(A = mat) != M);
  vi has(M, 1); vector<pii> ret;
  rep(it,0,M/2) {
   rep(i,0,M) if (has[i])
      rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
        fi = i; fj = j; goto done;
   } assert(0); done:
   if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
   rep(sw,0,2) {
     11 a = modpow(A[fi][fj], mod-2);
     rep(i,0,M) if (has[i] && A[i][fj]) {
       ll b = A[i][fj] * a % mod;
        rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod
      swap(fi,fj);
 return ret;
} // hash-cpp-all = bb8be4f4f83b4e4ccafaebf8534e4f82
```

blossom.h

Description: O(EV) general matching

```
// vertices 1 \sim n, chd[x] = 0 or y (x match y)
vector<int> q[N];
int chd[N], nex[N], fl[N], fa[N];
int gf(int x){return fa[x] == x?x:fa[x] = gf(fa[x]);}
void un(int x,int y) {x=gf(x),y=gf(y);fa[x]=y;}
int qu[N],p,q;
int lca(int u,int v){
 static int t=0,x[N];
  for(;; swap(u,v) )
    if(u){
      u=gf(u);
      if(x[u]==t)return u;
      x[u]=t;
      u = chd[u] ? nex[chd[u]] : 0;
void lk(int a,int x){
  while(a!=x){
    int b=chd[a],c=nex[b];
    if (qf(c)!=x)nex[c]=b;
    if (f1[b] == 2) f1[qu[q++]=b]=1;
    if (f1[c] == 2) f1[qu[q++]=c]=1;
    un(a,b);un(b,c);
    a=c;
void find(int rt){
  rep(i,1,n+1)nex[i]=fl[i]=0,fa[i]=i;
  p=q=0;qu[q++]=rt;fl[rt]=1;
  while(p!=q){
    int u=qu[p++];
    trav(v, g[u]) {
      if(gf(v) == gf(u) \mid | fl[v] == 2 \mid | v == chd[u]) continue;
      if (fl[v]==1) {
```

```
int x=lca(u,v);
        if(gf(u)!=x)nex[u]=v;
        if(qf(v)!=x)nex[v]=u;
        lk(u,x);
        lk(v,x);
      }else if(!chd[v]){
        nex[v]=u;
        while(v){
         u=nex[v];
          int t=chd[u];
          chd[v]=u; chd[u]=v;
          v=t;
        return;
      }else{
        nex[v]=u;
        fl[v]=2;
        fl[qu[q++]=chd[v]]=1;
int run_match() {
 memset (chd, 0, sizeof (chd));
  rep(i,1,n+1)if(!chd[i])find(i);
 int cnt = 0;
 rep(i,1,n+1) cnt += bool(chd[i]);
 return cnt/2:
} // hash-cpp-all = 54d8d95b9dc2053ea903a35ce4928a11
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is an independent set.

```
"DFSMatching.h"
vi cover(vector<vi>& g, int n, int m) {
  int res = dfs_matching(g, n, m);
  seen.assign(m, false);
  vector<bool> lfound(n, true);
  trav(it, match) if (it != -1) lfound[it] = false;
  vi a, cover;
  rep(i,0,n) if (lfound[i]) g.push_back(i);
  while (!q.emptv()) {
    int i = q.back(); q.pop_back();
    lfound[i] = 1;
    trav(e, g[i]) if (!seen[e] \&\& match[e] != -1) {
      seen[e] = true;
      q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
  rep(i,0,m) if (seen[i]) cover.push_back(n+i);
  assert(sz(cover) == res);
  return cover;
} // hash-cpp-all = 9eeda105ef373dfc9bd11d0139e4fc82
```

7.5 DFS algorithms

Tarjan.h

37 lines struct tarjan_t {

```
int n, ncnt = 0, nmark = 0, num_scc = 0;
vector<vector<int>> adj;
vector<int> preorder_of, cnt_of;
stack<int> stack_t;
vector<bool> in_stack;
```

```
vector<int> order:
    tarjan_t(int n): n(n), adj(n), preorder_of(n, -1),
       \rightarrow cnt_of(n, -1), in_stack(n, false) {}
    int dfs(int u) {
        int reach = preorder_of[u] = nmark++;
        stack_t.push(u);
        in_stack[u] = true;
        for (int i = 0; i < adj[u].size(); ++i) {</pre>
            int v = adj[u][i];
            if (preorder of [v] == -1) reach = min(reach,
            else if (in_stack[v]) reach = min(reach,

→preorder_of[v]);
        if (reach == preorder_of[u]) {
            //printf("SCC %d: ", ++num_scc); // Componente
            int v:
            do {
                v = stack_t.top(); // V rtices no
                    \hookrightarrowcomponente
                stack_t.pop();
                order.push_back(v);
                in_stack[v] = false;
                cnt_of[v] = ncnt;
            } while (v != u);
            ++ncnt;
        return reach:
    void solve() {
        nmark = num scc = ncnt = 0;
        for (int i = 0; i < (int)adj.size(); ++i)</pre>
            if (preorder_of[i] == -1) dfs(i);
}; // hash-cpp-all = 9bca583dad4301fdf515a3353ac3c87c
```

Kosaraju.h

33 lines

```
struct kosaraju_t {
    int time = 1, n;
    vector<vector<int>> adj, tree;
    vector<bool> vis:
    vector<int> color, s;
    kosaraju_t(int _n) : n(_n), adj(n), tree(n), color(n,
       \hookrightarrow-1), vis(n, false) {}
    void dfs(int u) {
        vis[u] = true;
        for (int i = 0; i < adj[u].size(); ++i) {</pre>
            if (!vis[u]) dfs(i);
        s.emplace_back(u);
    void dfs2(int u) {
        color[u] = e;
        for (int i = 0; i < tree[u].size(); ++i) {</pre>
            if (!color[i]) dfs2(i);
    void solve() {
        for (int i = 0; i \le n; ++i)
            if (!vis[i]) dfs(i);
        e = 0;
        reverse(s.begin(), s.end());
        for (int i = 0; i < s.size(); ++i) {
            if (!color[i]) {
                ++e;
```

```
dfs2(i);
}; // hash-cpp-all = df0e75af86d60473457dd7d9d20c2a89
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}(E+V)
```

```
vi num, st;
vector<vector<pii>>> ed;
int Time:
template<class F>
int dfs(int at, int par, F f) {
 int me = num[at] = ++Time, e, y, top = me;
 trav(pa, ed[at]) if (pa.second != par) {
   tie(y, e) = pa;
   if (num[v]) {
      top = min(top, num[y]);
     if (num[y] < me)</pre>
        st.push_back(e);
    } else {
      int si = sz(st);
     int up = dfs(y, e, f);
      top = min(top, up);
     if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
       st.resize(si);
     else if (up < me) st.push_back(e);</pre>
     else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps (F f) {
 num.assign(sz(ed), 0);
 rep(i, 0, sz(ed)) if (!num[i]) dfs(i, -1, f);
} // hash-cpp-all = e183ffd0266ca965525c2788c540f8f0
```

2Sat.h

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Possible optimization: on the top-most recursion level, ignore 'cands', and go through nodes in order of increasing degree, where degrees go down as nodes are removed.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
                                                                              12 lines
typedef bitset<128> B;
```

```
template<class F>
void cliques (vector \langle B \rangle \& eds, F f, B P = \langle B \rangle B = \langle B \rangle B
                                       \hookrightarrow = \{\}\}
                             if (!P.any()) { if (!X.any()) f(R); return; }
                          auto q = (P | X)._Find_first();
                          auto cands = P & ~eds[q];
                             rep(i,0,sz(eds)) if (cands[i]) {
                                                   R[i] = 1;
                                                     cliques(eds, f, P & eds[i], X & eds[i], R);
                                                     R[i] = P[i] = 0; X[i] = 1;
    } // hash-cpp-all = b0d5b15b7ebdcde7ff57f0761c050583
```

graph-clique.cpp

Description: Max clique N<64. Bit trick for speed. clique solver calculates both size and consitution of maximum clique uses bit operation to accelerate searching graph size limit is 63, the graph should be undirected can optimize to calculate on each component, and sort on vertex degrees can be used to solve maximum independent set 80 lines

```
class clique {
  public:
  static const long long ONE = 1;
  static const long long MASK = (1 << 21) - 1;
  char* bits;
  int n, size, cmax[63];
 long long mask[63], cons;
  // initiate lookup table
 clique() {
   bits = new char[1 << 21];
   bits[0] = 0;
    for (int i = 1; i < (1 << 21); ++i)
     bits[i] = bits[i >> 1] + (i & 1);
 ~clique() {
   delete bits;
  // search routine
 bool search(int step,int siz,LL mor,LL con);
  // solve maximum clique and return size
  int sizeClique(vector<vector<int> >& mat);
  // solve maximum clique and return set
 vector<int>getClg(vector<vector<int> >&mat);
// step is node id, size is current sol., more is available
   → mask, cons is constitution mask
bool clique::search(int step, int size,
                    LL more, LL cons) {
  if (step >= n) {
    // a new solution reached
    this->size = size;
    this->cons = cons;
    return true;
  long long now = ONE << step;
  if ((now & more) > 0) {
    long long next = more & mask[step];
    if (size + bits[next & MASK] +
        bits[(next >> 21) & MASK] +
        bits[next >> 42] >= this->size
     && size + cmax[step] > this->size)
      // the current node is in the clique
      if (search(step+1, size+1, next, cons|now))
        return true:
  long long next = more & ~now;
```

```
if (size + bits[next & MASK] +
     bits[(next >> 21) & MASK] +
     bits[next >> 42] > this->size) {
    // the current node is not in the clique
   if (search(step + 1, size, next, cons))
      return true;
  return false;
// solve maximum clique and return size
int clique::sizeClique(vector<vector<int> >& mat) {
  n = mat.size();
  // generate mask vectors
  for (int i = 0; i < n; ++i) {
   mask[i] = 0;
   for (int j = 0; j < n; ++j)
      if (mat[i][j] > 0) mask[i] |= ONE << j;</pre>
  size = 0;
  for (int i = n - 1; i >= 0; --i) {
   search(i + 1, 1, mask[i], ONE << i);
    cmax[i] = size;
  return size;
// calls sizeClique and restore cons
vector<int> clique::getClq(
   vector<vector<int> >& mat) {
  sizeClique(mat);
  vector<int> ret;
  for (int i = 0; i < n; ++i)
   if ((cons&(ONE<<i)) > 0) ret.push back(i);
} // hash-cpp-all = fbf6cf3d9cbb4f5d32d6245cfbe40fd0
```

cycle-counting.cpp Description: Counts 3 and 4 cycles

```
<br/>
<br/>
dits/stdc++.h>
                                                         62 lines
#define P 1000000007
#define N 110000
vector <int> go[N], lk[N];
int w[N];
int circle3(){ // hash-cpp-1
  int ans=0;
  for (int i = 1; i <= n; i++)
    w[i]=0;
  for (int x = 1; x \le n; x++) {
    for(int y:lk[x])w[y]=1;
    for(int y:lk[x])for(int z:lk[y])if(w[z]){
      ans=(ans+go[x].size()+go[y].size()+go[z].size()-6)%P;
    for (int y:lk[x])w[y]=0;
  return ans;
\frac{1}{2} // hash-cpp-1 = 719dcec935e20551fd984c12c3bfa3ba
int deg[N], pos[N], id[N];
int circle4(){ // hash-cpp-2
  for (int i = 1; i <= n; i++)
    w[i] = 0;
```

```
int ans=0;
  for (int x = 1; x \le n; x++) {
   for(int y:go[x])for(int z:lk[y])if(pos[z]>pos[x]){
      ans=(ans+w[z])%P;
      w[z]++;
    for(int y:go[x])for(int z:lk[y])w[z]=0;
 return ans:
} // hash-cpp-2 = 39b3aaf47e9fdc4dfff3fdfdf22d3a8e
inline bool cmp(const int &x,const int &y) {
 return deg[x] < deg[y];</pre>
void init() {
  scanf("%d%d", &n, &m);
  for (int i = 1; i <= n; i++)
    deg[i] = 0, go[i].clear(), lk[i].clear();;
  while (m--) {
    int a,b;
    scanf("%d%d",&a,&b);
    deg[a]++; deg[b]++;
    go[a].push_back(b);go[b].push_back(a);
  for (int i = 1; i <= n; i++)
   id[i] = i;
  sort(id+1,id+1+n,cmp);
```

7.7 Trees

TreePower.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

for (int i = 1; i <= n; i++) pos[id[i]]=i;

if(pos[y]>pos[x])lk[x].push_back(y);

for (int x = 1; $x \le n$; x++)

for(int v:qo[x])

```
vector<vi> treeJump(vi& P){
 int on = 1, d = 1;
  while (on < sz(P)) on *= 2, d++;
  vector<vi> jmp(d, P);
 rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
  return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
  rep(i,0,sz(tbl))
    if (steps&(1<<i)) nod = tbl[i][nod];</pre>
  return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
  if (depth[a] < depth[b]) swap(a, b);</pre>
  a = jmp(tbl, a, depth[a] - depth[b]);
  if (a == b) return a;
  for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
    if (c != d) a = c, b = d;
  return tbl[0][a];
} // hash-cpp-all = bfce856c17ac46dca77ea0f43aaa359a
```

LCA.cpp

39 lines

```
struct lca t {
    int logn, preorderpos;
    vector<int> invpreorder, height;
    vector<vector<int>> adj;
    int parent[MAXN][MAXLOGN+1];
    lca_t (int n) : height(n), invpreorder(n) {
        memset (parent, 0, sizeof parent);
        while ((1 << (logn + 1)) <= n) ++logn;</pre>
    void dfs(int u, int p, int h) {
        invpreorder[u] = preorderpos++;
        height[u] = h;
        parent[u][0] = p;
        for (int 1 = 1; 1 \le \log n; ++1)
            parent[u][1] = parent[parent[u][1-1]][1-1];
        for (int v : adj[u])
            if (v != p) dfs(v, u, h+1);
    int climb(int v, int dist) {
        for (int 1 = 0; 1 <= logn; ++1)
            if (dist & (1<<1)) v = parent[v][1];</pre>
        return v;
    int query(int a, int b) {
        if (height[a] < height[b]) swap(a, b);</pre>
        a = climb(a, height[a] - height[b]);
        if (a == b) return a;
        for (int 1 = logn; 1 >= 0; --1)
            if (parent[a][l] != parent[b][l]) {
                a = parent[a][1];
                b = parent[b][1];
        return parent[a][0];
    bool is_parent(int p, int v) {
        if (height[p] > height[v]) return false;
        return p == climb(v, height[v]-height[p]);
}; // hash-cpp-all = d8e4f31603fccefc171a0ed288a71eae
```

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself. **Time:** $\mathcal{O}(|S|\log|S|)$

```
"LCA.h"
                                                       20 lines
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.dist));
 vi li = subset, &T = lca.time;
  auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
  sort(all(li), cmp);
  int m = sz(li)-1;
  rep(i,0,m) {
   int a = li[i], b = li[i+1];
    li.push_back(lca.query(a, b));
  sort(all(li), cmp);
  li.erase(unique(all(li)), li.end());
  rep(i,0,sz(li)) rev[li[i]] = i;
  vpi ret = {pii(0, li[0])};
  rep(i, 0, sz(li)-1) {
   int a = li[i], b = li[i+1];
    ret.emplace_back(rev[lca.query(a, b)], b);
```

```
return ret:
} // hash-cpp-all = dabd7520dba8306be5675979add23011
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. The function of the HLD can be changed by modifying T, LOW and f. f is assumed to be associative and commutative. Usage: HLD hld(G);

```
hld.update(index, value);
tie(value, lca) = hld.query(n1, n2);
```

```
93 lines
"../data-structures/SegmentTree.h"
typedef vector<pii> vpi;
struct Node {
 int d, par, val, chain = -1, pos = -1;
struct Chain {
  int par, val;
  vector<int> nodes:
  Tree tree;
struct HLD {
  typedef int T;
  const T LOW = -(1 << 29);
  void f(T\& a, T b) \{ a = max(a, b); \}
  vector<Node> V;
  vector<Chain> C;
  HLD(vector<vpi>& g) : V(sz(g)) {
   dfs(0, -1, q, 0);
   trav(c, C) {
     c.tree = {sz(c.nodes), 0};
      for (int ni : c.nodes)
        c.tree.update(V[ni].pos, V[ni].val);
  void update(int node, T val) {
   Node& n = V[node]; n.val = val;
   if (n.chain != -1) C[n.chain].tree.update(n.pos, val);
  int pard(Node& nod) {
   if (nod.par == -1) return -1;
   return V[nod.chain == -1 ? nod.par : C[nod.chain].par].
       \hookrightarrowd:
  // guery all *edges* between n1, n2
  pair<T, int> query(int i1, int i2) {
   T ans = LOW;
    while(i1 != i2) {
     Node n1 = V[i1], n2 = V[i2];
      if (n1.chain != -1 && n1.chain == n2.chain) {
        int lo = n1.pos, hi = n2.pos;
        if (lo > hi) swap(lo, hi);
        f(ans, C[n1.chain].tree.query(lo, hi));
        i1 = i2 = C[n1.chain].nodes[hi];
      } else {
        if (pard(n1) < pard(n2))
          n1 = n2, swap(i1, i2);
        if (n1.chain == -1)
          f(ans, n1.val), i1 = n1.par;
```

```
else {
          Chain& c = C[n1.chain];
          f(ans, n1.pos ? c.tree.query(n1.pos, sz(c.nodes))
                         : c.tree.s[1]);
          i1 = c.par;
   return make_pair(ans, i1);
  // query all *nodes* between n1, n2
  pair<T, int> query2(int i1, int i2) {
   pair<T, int> ans = query(i1, i2);
   f(ans.first, V[ans.second].val);
   return ans;
  pii dfs(int at, int par, vector<vpi>& q, int d) {
   V[at].d = d; V[at].par = par;
   int sum = 1, ch, nod, sz;
   tuple<int, int, int> mx(-1,-1,-1);
   trav(e, g[at]){
     if (e.first == par) continue;
tie(sz, ch) = dfs(e.first, at, g, d+1);
      V[e.first].val = e.second;
      sum += sz:
      mx = max(mx, make_tuple(sz, e.first, ch));
   tie(sz, nod, ch) = mx;
   if (2*sz < sum) return pii(sum, -1);
   if (ch == -1) { ch = sz(C); C.emplace_back(); }
   V[nod].pos = sz(C[ch].nodes);
   V[nod].chain = ch;
   C[ch].par = at;
   C[ch].nodes.push_back(nod);
   return pii(sum, ch);
}; // hash-cpp-all = d952a915dfa34f93fbf32fe2755a651e
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

90 lines

```
struct Node { // Splay tree. Root's pp contains tree's
  \hookrightarrow parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
  Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
   if (c[0]) c[0] -> p = this;
   if (c[1]) c[1] -> p = this;
   // (+ update sum of subtree elements etc. if wanted)
  void push_flip() {
   if (!flip) return;
   flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
   if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
 void rot(int i, int b) {
   int h = i \hat{b};
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y :
```

```
if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
   if (b < 2) {
     x->c[h] = y->c[h ^ 1];
      z - c[h ^1] = b ? x : this;
   v - c[i ^1] = b ? this : x;
   fix(); x->fix(); y->fix();
   if (p) p->fix();
   swap(pp, y->pp);
 void splay() {
   for (push_flip(); p; ) {
     if (p->p) p->p->push_flip();
     p->push_flip(); push_flip();
     int c1 = up(), c2 = p->up();
      if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
 Node* first() {
   push_flip();
   return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
   assert(!connected(u, v));
   make_root(&node[u]);
   node[u].pp = &node[v];
  void cut(int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   make_root(top); x->splay();
   assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
   else {
     x - > c[0] = top - > p = 0;
      x->fix():
 bool connected(int u, int v) { // are u, v in the same
    -tree?
   Node* nu = access(&node[u])->first();
   return nu == access(&node[v])->first();
 void make root(Node* u) {
   access(u);
    u->splav();
   if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
      u->fix();
 Node* access(Node* u) {
   u->splav();
   while (Node * pp = u - pp) {
     pp->splay(); u->pp = 0;
      if (pp->c[1]) {
       pp->c[1]->p = 0; pp->c[1]->pp = pp; }
      pp -> c[1] = u; pp -> fix(); u = pp;
```

```
} return u;
}
}; // hash-cpp-all = 693483a825b93f7ad5f6ef219ba83e22
```

MatrixTree.h

Description: To count the number of spanning trees in an undirected graph G: create an $N\times N$ matrix mat, and for each edge $(a,b)\in G$, do mat[a][a]++, mat[b][b]++, mat[a][b]--, mat[b][a]--. Remove the last row and column, and take the determinant.

// hash-cpp-all = d41d8cd98f00b204e9800998ecf8427e

7.8 Other

directed-MST.cpp

Description: Finds the minimum spanning arborescence from the root. (any more notes?)

73 lines

```
#define rep(i, n) for (int i = 0; i < n; i++)
#define N 110000
#define M 110000
#define inf 2000000000
struct edg {
   int u, v;
    int cost:
} E[M], E_copy[M];
int In[N], ID[N], vis[N], pre[N];
// edges pointed from root.
int Directed_MST(int root, int NV, int NE) {
  for (int i = 0; i < NE; i++)</pre>
   E_{copy[i]} = E[i];
   int ret = 0;
   int u, v;
    while (true) {
        rep(i, NV)
                    In[i] = inf;
        rep(i, NE) {
            u = E_{copy}[i].u;
            v = E_{copy[i].v}
            if(E_copy[i].cost < In[v] && u != v) {
                In[v] = E_copy[i].cost;
                pre[v] = u;
        rep(i, NV) {
            if(i == root) continue;
            if(In[i] == inf) return -1; // no solution
        int cnt = 0;
        rep(i, NV) {
          ID[i] = -1;
          vis[i] = -1;
        In[root] = 0;
        rep(i, NV) {
            ret += In[i];
            int v = i;
            while (vis[v] != i \&\& ID[v] == -1 \&\& v != root)
               \hookrightarrow {
                vis[v] = i;
```

```
v = pre[v];
            if(v != root && ID[v] == -1) {
                for(u = pre[v]; u != v; u = pre[u]) {
                   ID[u] = cnt;
                ID[v] = cnt++;
        if(cnt == 0) break;
        rep(i, NV) {
           if (ID[i] == -1) ID[i] = cnt++;
        rep(i, NE) {
           v = E_{copy[i].v}
            E_copy[i].u = ID[E_copy[i].u];
            E_copy[i].v = ID[E_copy[i].v];
            if(E_copy[i].u != E_copy[i].v) {
                E_copy[i].cost -= In[v];
       NV = cnt;
       root = ID[root];
   return ret;
// hash-cpp-all = 8d5af0080b124fcbb50e7cbefa704eaa
```

graph-dominator-tree.cpp **Description:** Dominator Tree.

return now;

```
107 lines
#define N 110000 //max number of vertices
vector<int> succ[N], prod[N], bucket[N], dom_t[N];
int semi[N], anc[N], idom[N], best[N], fa[N], tmp_idom[N];
int dfn[N], redfn[N];
int child[N], size[N];
int timestamp;
void dfs(int now) { // hash-cpp-1
  dfn[now] = ++timestamp;
  redfn[timestamp] = now;
  anc[timestamp] = idom[timestamp] = child[timestamp] =
     \hookrightarrowsize[timestamp] = 0;
  semi[timestamp] = best[timestamp] = timestamp;
  int sz = succ[now].size();
  for (int i = 0; i < sz; ++i) {
   if(dfn[succ[now][i]] == -1) {
      dfs(succ[now][i]);
      fa[dfn[succ[now][i]]] = dfn[now];
    prod[dfn[succ[now][i]]].push_back(dfn[now]);
} // hash-cpp-1 = 6412bfd6a0d21b66ddaa51ea79cbe7bd
void compress(int now) { // hash-cpp-2
 if(anc[anc[now]] != 0) {
    compress(anc[now]);
    if (semi[best[now]] > semi[best[anc[now]]])
     best[now] = best[anc[now]];
    anc[now] = anc[anc[now]];
} // hash-cpp-2 = 1c9444eb3f768b7af8741fafbf3afb5a
inline int eval(int now) { // hash-cpp-3
 if(anc[now] == 0)
```

```
else {
    compress(now);
    return semi[best[anc[now]]] >= semi[best[now]] ? best[
       \hookrightarrownow1
      : best[anc[now]];
\frac{1}{2} // hash-cpp-3 = 4e235f39666315b46dcd3455d5f866d1
inline void link(int v, int w) { // hash-cpp-4
  while(semi[best[w]] < semi[best[child[w]]]) {</pre>
    if(size[s] + size[child[child[s]]] >= 2*size[child[s]])
      \hookrightarrow {
      anc[child[s]] = s;
      child[s] = child[child[s]];
    } else {
      size[child[s]] = size[s];
      s = anc[s] = child[s];
 best[s] = best[w];
  size[v] += size[w];
 if(size[v] < 2*size[w])</pre>
    swap(s, child[v]);
  while(s != 0) {
    anc[s] = v;
    s = child[s];
} // hash-cpp-4 = 270548fd021351ae21e97878f367b6f9
// idom[n] and other vertices that cannot be reached from n
  \hookrightarrow will be 0
void lengauer_tarjan(int n) { // n is the root's number //
  \hookrightarrow hash-cpp-5
  memset (dfn, -1, sizeof dfn);
  memset (fa, -1, sizeof fa);
  timestamp = 0;
  dfs(n);
  fa[1] = 0;
  for (int w = timestamp; w > 1; --w) {
    int sz = prod[w].size();
    for (int i = 0; i < sz; ++i) {
      int u = eval(prod[w][i]);
      if(semi[w] > semi[u])
        semi[w] = semi[u];
    bucket[semi[w]].push_back(w);
    //anc[w] = fa[w]; link operation for o(mlogm) version
                link(fa[w], w);
    if(fa[w] == 0)
     continue:
    sz = bucket[fa[w]].size();
    for (int i = 0; i < sz; ++i)
      int u = eval(bucket[fa[w]][i]);
      if(semi[u] < fa[w])</pre>
        idom[bucket[fa[w]][i]] = u;
        idom[bucket[fa[w]][i]] = fa[w];
    bucket[fa[w]].clear();
  for (int w = 2; w \le timestamp; ++w) {
    if(idom[w] != semi[w])
      idom[w] = idom[idom[w]];
  idom[1] = 0;
  for (int i = timestamp; i > 1; --i) {
    if(fa[i] == -1)
```

```
continue;
  dom_t[idom[i]].push_back(i);
}
memset(tmp_idom, 0, sizeof tmp_idom);
for (int i = 1; i <= timestamp; i++)
   tmp_idom[redfn[i]] = redfn[idom[i]];
memcpy(idom, tmp_idom, sizeof idom);
} // hash-cpp-5 = f49c4046id92222d8d39b28b0de66828</pre>
```

graph-negative-cycle.cpp Description: negative cycle

33 lines

```
double b[N][N];
double dis[N];
int vis[N], pc[N];
bool dfs(int k) {
  vis[k] += 1; pc[k] = true;
  if (vis[k] > N)
   return true;
  for (int i = 0; i < N; i++)
   if (dis[k] + b[k][i] < dis[i]) {</pre>
     dis[i] = dis[k] + b[k][i];
     if (!pc[i]) {
        if (dfs(i))
          return true;
      } else return true;
  pc[k] = false;
  return false;
bool chk(double d) {
  for (int i = 0; i < N; i ++)
   for (int j = 0; j < N; j ++) {
     b[i][j] = -a[i][j] + d;
  for (int i = 0; i < N; i++)
   vis[i] = false, dis[i] = 0, pc[i] = false;
  for (int i = 0; i < N; i++)
   if (!vis[i] && dfs(i))
      return true;
  return false;
} // hash-cpp-all = ec5cf9bc61e058959ce8649f1e707b1b
```

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.) $$^{25}\ {\rm lines}$$

```
P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this)
 T dist2() const { return x*x + y*y; }
 double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the
    \hookrightarroworigin
 P rotate(double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
}; // hash-cpp-all = f698493d48eeeaa76063407bf935b5a3
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance.

4 lines

template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
} // hash-cpp-all = f6bf6b556d9b09f42b86d28dleaa86d

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from points to e.

Usage: Point < double > a, b(2,2), p(1,1); bool on Segment = segDist(a,b,p) < 1e-10;

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists r1 is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists 2 is returned and r1 and r2 are set to the two ends of the common line. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long. Use segmentIntersectionQ to get just a true/false answer.


```
Usage: Point < double > intersection, dummy;
if (segmentIntersection(s1,e1,s2,e2,intersection,dummy) == 1)
cout << "segments intersect at " << intersection <<
"Point.h"
template<class P>
int segmentIntersection(const P& s1, const P& e1,
    const P& s2, const P& e2, P& r1, P& r2) {
  if (e1==s1) {
    if (e2==s2) {
      if (e1==e2) { r1 = e1; return 1; } //all equal
      else return 0; //different point segments
    } else return segmentIntersection(s2,e2,s1,e1,r1,r2);//
  //segment directions and separation
  P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
  auto a = v1.cross(v2), a1 = v1.cross(d), a2 = v2.cross(d)
  if (a == 0)  { //if parallel
    auto b1=s1.dot(v1), c1=e1.dot(v1),
         b2=s2.dot(v1), c2=e2.dot(v1);
    if (a1 || a2 || max(b1,min(b2,c2))>min(c1,max(b2,c2)))
      return 0;
    r1 = min(b2,c2) < b1 ? s1 : (b2 < c2 ? s2 : e2);
    r2 = max(b2,c2)>c1 ? e1 : (b2>c2 ? s2 : e2);
    return 2-(r1==r2);
  if (a < 0) { a = -a; a1 = -a1; a2 = -a2; }
  if (0<a1 || a<-a1 || 0<a2 || a<-a2)
    return 0;
  r1 = s1-v1*a2/a;
  return 1;
} // hash-cpp-all = 1181b7cc739b442c29bada6b0d73a550
```

SegmentIntersectionQ.h

Description: Like segmentIntersection, but only returns true/false. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

```
"Point.h"
template<class P>
bool segmentIntersectionQ(P s1, P e1, P s2, P e2) {
 if (e1 == s1) {
    if (e2 == s2) return e1 == e2;
    swap(s1,s2); swap(e1,e2);
  P v1 = e1-s1, v2 = e2-s2, d = s2-s1;
  auto a = v1.cross(v2), a1 = d.cross(v1), a2 = d.cross(v2)
     \hookrightarrow ;
  if (a == 0) { // parallel
    auto b1 = s1.dot(v1), c1 = e1.dot(v1),
         b2 = s2.dot(v1), c2 = e2.dot(v1);
    return !a1 && max(b1, min(b2, c2)) <= min(c1, max(b2, c2));
  if (a < 0) { a = -a; a1 = -a1; a2 = -a2; }
  return (0 <= a1 && a1 <= a && 0 <= a2 && a2 <= a);
} // hash-cpp-all = 1ff4ba22bd0aefb04bf48cca4d6a7d8c
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists r is set to this point and 1 is returned. If no intersection point exists 0 is returned and if infinitely many exists -1 is returned. If s1==e1 or s2==e2 -1 is returned. The wrong position will be returned if P is Point<int> and the intersection point does not have integer coordinates. Products of three coordinates are used \(^{\sigma}\) in intermediate steps so watch out for overflow if using int or long long.


```
Usage: point < double > intersection;
if (1 == LineIntersection(s1,e1,s2,e2,intersection))
cout << "intersection point at " << intersection <<</pre>
"Point.h"
```

```
template<class P>
int lineIntersection(const P& s1, const P& e1, const P& s2,
    const P& e2, P& r) {
  if ((e1-s1).cross(e2-s2)) { //if not parallell
    r = s2-(e2-s2)*(e1-s1).cross(s2-s1)/(e1-s1).cross(e2-s2)
       \hookrightarrow);
    return 1;
  } else
    return - ((e1-s1).cross(s2-s1) == 0 || s2==e2);
} // hash-cpp-all = aalf17f0dbde5177e697038a420bb078
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow$ left/on line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q)==1;
```

```
"Point.h"
                                                      11 lines
template<class P>
int sideOf(const P& s, const P& e, const P& p) {
  auto a = (e-s).cross(p-s);
  return (a > 0) - (a < 0);
template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps)
  auto a = (e-s).cross(p-s);
  double l = (e-s).dist()*eps;
  return (a > 1) - (a < -1);
} // hash-cpp-all = 2eb6fe62d7f3750fd3a0ec3d91329ed6
```

onSegment.h

Description: Returns true iff p lies on the line segment from s to e. Intended for use with e.g. Point<long long> where overflow is an issue. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>. "Point.h"

```
template<class P>
bool onSegment (const P& s, const P& e, const P& p) {
  P ds = p-s, de = p-e;
  return ds.cross(de) == 0 && ds.dot(de) <= 0;
} // hash-cpp-all = 0b2b1c6866c98c2d2003acec0701e693
```

linearTransformation.h

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

```
"Point.h"
typedef Point < double > P;
P linearTransformation(const P& p0, const P& p1,
```

```
Description:
```

```
const P& q0, const P& q1, const P& r) {
  P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
  return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.
     \hookrightarrowdist2();
} // hash-cpp-all = 03a3061b3ef024b4e29ea06169932b21
```

Angle.h

Usage:

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors. vector<Angle> $v = \{w[0], w[0].t360() ...\}; //$

```
sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of
positively oriented triangles with vertices at 0 and i_{
m 37\ lines}
struct Angle {
  int x, y;
  int t:
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t
     \hookrightarrow}; }
```

```
int quad() const {
    assert(x || y);
    if (v < 0) return (x >= 0) + 2;
    if (y > 0) return (x \le 0);
    return (x \le 0) * 2;
  Angle t90() const { return \{-y, x, t + (quad() == 3)\}; }
  Angle t180() const { return \{-x, -y, t + (quad() >= 2)\};
  Angle t360() const { return \{x, y, t + 1\}; }
};
bool operator<(Angle a, Angle b) {
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.quad(), a.y * (11)b.x) <</pre>
         make_tuple(b.t, b.quad(), a.x * (11)b.y);
// Given two points, this calculates the smallest angle
   \hookrightarrowbetween
// them, i.e., the angle that covers the defined line
   \hookrightarrow segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a
  int tu = b.t - a.t; a.t = b.t;
  return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a
} // hash-cpp-all = 1856c5d371c2f8f342a22615fa92cd54
```

angleCmp.h

6 lines

Description: Useful utilities for dealing with angles of rays from origin. OK for integers, only uses cross product. Doesn't support (0,0). $_{22~\mathrm{lines}}$

```
template <class P>
bool sameDir(P s, P t) {
  return s.cross(t) == 0 && s.dot(t) > 0;
```

```
// checks 180 <= s..t < 360?
template <class P>
bool isReflex(P s, P t) {
 auto c = s.cross(t);
 return c ? (c < 0) : (s.dot(t) < 0);
// operator < (s,t) for angles in [base,base+2pi)
template <class P>
bool angleCmp(P base, P s, P t) {
  int r = isReflex(base, s) - isReflex(base, t);
  return r ? (r < 0) : (0 < s.cross(t));
// is x in [s,t] taken ccw? 1/0/-1 for in/border/out
template <class P>
int angleBetween(P s, P t, P x) {
 if (sameDir(x, s) || sameDir(x, t)) return 0;
  return angleCmp(s, x, t) ? 1 : -1;
} // hash-cpp-all = 6edd25f30f9c69989bbd2115b4fdceda
```

Circles

CircleIntersection.h

Description: Computes a pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
                                                        14 lines
typedef Point < double > P;
bool circleIntersection(P a, P b, double r1, double r2,
    pair<P, P>* out) {
  P delta = b - a;
  assert (delta.x || delta.v || r1 != r2);
  if (!delta.x && !delta.y) return false;
  double r = r1 + r2, d2 = delta.dist2();
  double p = (d2 + r1*r1 - r2*r2) / (2.0 * d2);
  double h2 = r1*r1 - p*p*d2;
 if (d2 > r*r \mid \mid h2 < 0) return false;
 P mid = a + delta*p, per = delta.perp() * sqrt(h2 / d2);
  *out = {mid + per, mid - per};
  return true;
} // hash-cpp-all = 828fbb1fff1469ed43b2284c8e07a06c
```

circleTangents.h Description:

Returns a pair of the two points on the circle with radius r second. centered around c whos tangent lines intersect p. If p lies within the circle NaN-points are returned. P is intended to be Point < double >. The first point is the one to the right as seen from the p towards c.

```
Usage: typedef Point < double > P;
pair < P, P > p = circleTangents(P(100, 2), P(0, 0), 2);
"Point.h"
template<class P>
pair<P,P> circleTangents(const P &p, const P &c, double r)
  P a = p-c;
  double x = r*r/a.dist2(), y = sgrt(x-x*x);
  return make_pair(c+a*x+a.perp()*y, c+a*x-a.perp()*y);
} // hash-cpp-all = b70bc575e85c140131116e64926b4ce1
```

circumcircle.h

Description:

"Point h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
    return (B-A).dist()*(C-B).dist()*(A-C).dist()/
        abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
    P b = C-A, c = B-A;
    return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
} // hash-cpp-all = lcaa3aea364671cb961900d4811f0282
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points.

Time: expected $\mathcal{O}(n)$

```
"circumcircle.h"
                                                      28 lines
pair<double, P> mec2(vector<P>& S, P a, P b, int n) {
  double hi = INFINITY, lo = -hi;
  rep(i,0,n) {
   auto si = (b-a).cross(S[i]-a);
   if (si == 0) continue;
   P m = ccCenter(a, b, S[i]);
   auto cr = (b-a).cross(m-a);
   if (si < 0) hi = min(hi, cr);</pre>
   else lo = max(lo, cr);
  double v = (0 < 10 ? 10 : hi < 0 ? hi : 0);
  Pc = (a + b) / 2 + (b - a).perp() * v / (b - a).dist2();
  return { (a - c).dist2(), c};
pair<double, P> mec(vector<P>& S, P a, int n) {
  random_shuffle(S.begin(), S.begin() + n);
  P b = S[0], c = (a + b) / 2;
  double r = (a - c).dist2();
  rep(i,1,n) if ((S[i] - c).dist2() > r * (1 + 1e-8)) {
   tie(r,c) = (n == sz(S) ?
     mec(S, S[i], i) : mec2(S, a, S[i], i));
  return {r, c};
pair<double, P> enclosingCircle(vector<P> S) {
  assert(!S.empty()); auto r = mec(S, S[0], sz(S));
  return {sqrt(r.first), r.second};
} // hash-cpp-all = 9bf427c9626a72f805196e0b7075bda2
```

8.3 Polygons

insidePolygon.h

Description: Returns true if p lies within the polygon described by the points between iterators begin and end. If strict false is returned when p is on the edge of the polygon. Answer is calculated by counting the number of intersections between the polygon and a line going from p to infinity in the positive x-direction. The algorithm uses products in intermediate steps so watch out for overflow. If points within epsilon from an edge should be considered as on the edge replace the line "if (onSegment..." with the comment bellow it (this will cause overflow for int and long long).

```
Usage: typedef Point<int> pi;
vector<pi> v; v.push_back(pi(4,4));
v.push_back(pi(1,2)); v.push_back(pi(2,1));
bool in = insidePolygon(v.begin(), v.end(), pi(3,4), false);
Time: \mathcal{O}\left(n\right)
"Point.h", "onSegment.h", "SegmentDistance.h"
template<class It, class P>
bool insidePolygon(It begin, It end, const P& p,
    bool strict = true) {
  int n = 0; //number of isects with line from p to (inf,p.
     \hookrightarrow y)
  for (It i = begin, j = end-1; i != end; j = i++) {
    //if p is on edge of polygon
    if (onSegment(*i, *j, p)) return !strict;
    //or: if (segDist(*i, *j, p) <= epsilon) return !strict
    //increment n if segment intersects line from p
    n += (max(i->y, j->y) > p.y && min(i->y, j->y) <= p.y &&
        ((*j-*i).cross(p-*i) > 0) == (i->y <= p.y));
  return n&1; //inside if odd number of intersections
} // hash-cpp-all = 0cadec56a74f257b8d1b25f56ba7ebad
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h" 6 lines
template<class T>
T polygonArea2(vector<Point<T>>& v) {
   T a = v.back().cross(v[0]);
   rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
   return a;
} // hash-cpp-all = f123003799a972c1292eb0d8af7e37da
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
```

```
"Point.h", "lineIntersection.h"

typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i,0,sz(poly)) {
    P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    bool side = s.cross(e, cur) < 0;
    if (side != (s.cross(e, prev) < 0)) {
      res.emplace_back();
      lineIntersection(s, e, cur, prev, res.back());</pre>
```

```
}
if (side)
    res.push_back(cur);
}
return res;
} // hash-cpp-all = acf5106be46aa8f6f5d7a8d0ffdaae3c
```

ConvexHull.h

Description:

Returns a vector of indices of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.


```
trav(i, convexHull(ps)) hull.push_back(ps[i]) 

\mathbf{Time:} \ \mathcal{O}(n \log n)
```

```
"Point.h"
                                                       20 lines
typedef Point<11> P;
pair<vi, vi> ulHull(const vector<P>& S) {
 vi Q(sz(S)), U, L;
 iota(all(Q), 0);
  sort(all(0), [&S](int a, int b) { return S[a] < S[b]; });
 trav(it, 0) {
\#define ADDP(C, cmp) while (sz(C) > 1 && S[C[sz(C)-2]].
   →cross(\
  S[it], S[C.back()]) cmp 0) C.pop_back(); C.push_back(it);
   ADDP(U, \leq); ADDP(L, >=);
 return {U, L};
vi convexHull(const vector<P>& S) {
 vi u, 1; tie(u, 1) = ulHull(S);
 if (sz(S) <= 1) return u;
 if (S[u[0]] == S[u[1]]) return {0};
 1.insert(1.end(), u.rbegin()+1, u.rend()-1);
 return 1;
} // hash-cpp-all = cc37090b10272c6be42e222ac943f42c
```

PolygonDiameter.h

Description: Calculates the max squared distance of a set of points.

```
vector<pii> antipodal(const vector<P>& S, vi& U, vi& L) {
  vector<pii> ret;
  int i = 0, j = sz(L) - 1;
  while (i < sz(U) - 1 || j > 0) {
    ret.emplace_back(U[i], L[j]);
    if (j == 0 \mid | (i != sz(U) - 1 && (S[L[j]]] - S[L[j-1]])
          .cross(S[U[i+1]] - S[U[i]]) > 0)) ++i;
    else --j;
  return ret;
pii polygonDiameter(const vector<P>& S) {
  vi U, L; tie(U, L) = ulHull(S);
  pair<ll, pii> ans;
  trav(x, antipodal(S, U, L))
    ans = max(ans, {(S[x.first] - S[x.second]).dist2(), x})
  return ans.second;
} // hash-cpp-all = 5596d386362874d2ebcf13cdb142574d
```

PointInsideHull.h

Description: Determine whether a point t lies inside a given polygon (counter-clockwise order). The polygon must be such that every point on the circumference is visible from the first point in the vector. It returns 0 for points outside, 1 for points on the circumference, and 2 for points inside.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "onSegment.h"
                                                        22 lines
typedef Point<ll> P;
int insideHull2(const vector<P>& H, int L, int R, const P&
   ) (q←
  int len = R - L;
  if (len == 2) {
   int sa = sideOf(H[0], H[L], p);
   int sb = sideOf(H[L], H[L+1], p);
   int sc = sideOf(H[L+1], H[0], p);
   if (sa < 0 || sb < 0 || sc < 0) return 0;
   if (sb==0 || (sa==0 && L == 1) || (sc == 0 && R == sz(H
       \hookrightarrow ) ) )
      return 1:
   return 2;
  int mid = L + len / 2;
  if (sideOf(H[0], H[mid], p) >= 0)
    return insideHull2(H, mid, R, p);
  return insideHull2(H, L, mid+1, p);
int insideHull(const vector<P>& hull, const P& p) {
  if (sz(hull) < 3) return onSegment(hull[0], hull.back(),</pre>
  else return insideHull2(hull, 1, sz(hull), p);
} // hash-cpp-all = 1c16dba23109ced37b95769a3f1d19b7
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points. isct(a, b) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, • (i, -1) if touching the corner i, • (i, i) if along side (i, i + 1), • (i, j)if crossing sides (i, i + 1) and (j, j + 1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon.

Time: $\mathcal{O}(N + Q \log n)$

```
"Point.h"
11 sgn(11 a) { return (a > 0) - (a < 0); }</pre>
typedef Point<11> P;
struct HullIntersection {
  int N;
  vector<P> p;
  vector<pair<P, int>> a;
  HullIntersection(const vector<P>& ps) : N(sz(ps)), p(ps)
   p.insert(p.end(), all(ps));
    rep(i,1,N) if (P\{p[i].y,p[i].x\} < P\{p[b].y,p[b].x\}) b
      rep(i,0,N) {
     int f = (i + b) % N;
      a.emplace_back(p[f+1] - p[f], f);
  int qd(P p) {
   return (p.y < 0) ? (p.x >= 0) + 2
         : (p.x \le 0) * (1 + (p.y \le 0));
```

```
int bs(P dir) {
   int lo = -1, hi = N;
   while (hi - lo > 1) {
     int mid = (lo + hi) / 2;
     if (make_pair(qd(dir), dir.y * a[mid].first.x) <</pre>
       make_pair(gd(a[mid].first), dir.x * a[mid].first.y)
       hi = mid:
     else lo = mid;
   return a[hi%N].second;
 bool isign(P a, P b, int x, int y, int s) {
   return sgn(a.cross(p[x], b)) * sgn(a.cross(p[y], b)) ==
      \hookrightarrow s:
  int bs2(int lo, int hi, P a, P b) {
   int L = lo;
   if (hi < lo) hi += N;
   while (hi - lo > 1) {
     int mid = (lo + hi) / 2;
     if (isign(a, b, mid, L, -1)) hi = mid;
     else lo = mid;
   return lo;
 pii isct(P a, P b) {
   int f = bs(a - b), j = bs(b - a);
   if (isign(a, b, f, j, 1)) return {-1, -1};
   int x = bs2(f, j, a, b)%N,
       y = bs2(j, f, a, b)%N;
   if (a.cross(p[x], b) == 0 \&\&
       a.cross(p[x+1], b) == 0) return \{x, x\};
   if (a.cross(p[y], b) == 0 &&
       a.cross(p[y+1], b) == 0) return {y, y};
   if (a.cross(p[f], b) == 0) return \{f, -1\};
   if (a.cross(p[j], b) == 0) return \{j, -1\};
   return {x, y};
}; // hash-cpp-all = 79decd52fd801714ccebbaa6ab36151e
```

halfPlane.h

Description: Halfplane intersection area

```
"Point.h", "lineIntersection.h"
                                                         70 lines
#define eps 1e-8
typedef Point < double > P;
struct Line {
  // Right hand side of the ray P1 -> P2
  explicit Line (P a = P(), P b = P()) : P1(a), P2(b) {};
 P intpo(Line y) {
    assert (lineIntersection (P1, P2, y.P1, y.P2, r) == 1);
    return r;
 P dir() {
    return P2 - P1:
 bool contains (P x) {
   return (P2 - P1).cross(x - P1) < eps;
  bool out (P x) {
    return !contains(x);
```

```
};
template<class T>
bool mycmp(Point<T> a, Point<T> b) {
  // return atan2(a.y, a.x) < atan2(b.y, b.x);
 if (a.x * b.x < 0) return a.x < 0;
 if (abs(a.x) < eps) {
   if (abs(b.x) < eps) return a.y > 0 && b.y < 0;
    if (b.x < 0) return a.v > 0;
   if (b.x > 0) return true;
 if (abs(b.x) < eps) {
    if (a.x < 0) return b.y < 0;
    if (a.x > 0) return false;
 return a.cross(b) > 0;
bool cmp(Line a, Line b) {
 return mycmp(a.dir(), b.dir());
double Intersection_Area(vector <Line> b) {
 sort(b.begin(), b.end(), cmp);
 int n = b.size();
 int q = 1, h = 0, i;
 vector <Line> c(b.size() + 10);
  for (i = 0; i < n; i++) {
    while (q < h \&\& b[i].out(c[h].intpo(c[h - 1]))) h--;
    while (q < h \&\& b[i].out(c[q].intpo(c[q + 1]))) q++;
    c[++h] = b[i];
    if (q < h \&\& abs(c[h].dir().cross(c[h - 1].dir())) <
      if (b[i].out(c[h].P1)) c[h] = b[i];
  while (q < h - 1 \&\& c[q].out(c[h].intpo(c[h - 1]))) h--;
  while (q < h - 1 \&\& c[h].out(c[q].intpo(c[q + 1]))) q++;
  // Intersection is empty. This is sometimes different
     \hookrightarrow from the case when
  // the intersection area is 0.
  if (h - q <= 1) return 0;
  c[h + 1] = c[q];
  vector <P> s;
  for (i = q; i <= h; i++) s.push_back(c[i].intpo(c[i +</pre>
    \hookrightarrow1]));
  s.push_back(s[0]);
 double ans = 0;
  for (i = 0; i < (int) s.size() - 1; i++) ans += s[i].
    \hookrightarrowcross(s[i + 1]);
 return ans / 2;
} // hash-cpp-all = 43b37cc5ba9642fa72a8d359310ec432
```

8.4 Misc. Point Set Problems

closestPair.h

Description: i1, i2 are the indices to the closest pair of points in the point vector p after the call. The distance is returned.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
                                                         58 lines
template<class It>
bool it_less(const It& i, const It& j) { return *i < *j; }
template<class It>
```

kdTree DelaunayTriangulation FastDelaunay

kdTree.h

```
bool y_it_less(const It& i,const It& j) {return i->y < j->y
template<class It, class IIt> /* IIt = vector<It>::iterator
   \hookrightarrow */
double cp_sub(IIt ya, IIt yaend, IIt xa, It &i1, It &i2) {
  typedef typename iterator traits<It>::value type P;
  int n = yaend-ya, split = n/2;
  if(n <= 3) { // base case
   double a = (*xa[1]-*xa[0]).dist(), b = 1e50, c = 1e50;
   if (n=3) b= (*xa[2]-*xa[0]).dist(), c= (*xa[2]-*xa[1]).
    if(a \le b) \{ i1 = xa[1];
      if (a <= c) return i2 = xa[0], a;
      else return i2 = xa[2], c;
    } else { i1 = xa[2];
      if (b <= c) return i2 = xa[0], b;
      else return i2 = xa[1], c;
  vector<It> ly, ry, stripy;
  P splitp = *xa[split];
  double splitx = splitp.x;
  for(IIt i = ya; i != yaend; ++i) { // Divide
   if(*i != xa[split] && (**i-splitp).dist2() < 1e-12)</pre>
      return i1 = *i, i2 = xa[split], 0;// nasty special
   if (**i < splitp) ly.push_back(*i);</pre>
   else ry.push_back(*i);
  } // assert((signed)lefty.size() == split)
  It j1, j2; // Conquer
  double a = cp_sub(ly.begin(), ly.end(), xa, i1, i2);
  double b = cp_sub(ry.begin(), ry.end(), xa+split, j1, j2)
     \hookrightarrow;
  if(b < a) a = b, i1 = j1, i2 = j2;
  double a2 = a*a;
  for(IIt i = ya; i != yaend; ++i) { // Create strip (y-
    \hookrightarrowsorted)
   double x = (*i) -> x;
   if(x >= splitx-a && x <= splitx+a) stripy.push_back(*i)</pre>
  for(IIt i = stripy.begin(); i != stripy.end(); ++i) {
    const P &p1 = \star \star i;
    for(IIt j = i+1; j != stripy.end(); ++j) {
      const P &p2 = **j;
      if (p2.y-p1.y > a) break;
      double d2 = (p2-p1).dist2();
      if(d2 < a2) i1 = *i, i2 = *j, a2 = d2;
  } }
  return sqrt(a2);
template<class It> // It is random access iterators of
   \hookrightarrowpoint<T>
double closestpair(It begin, It end, It &i1, It &i2 ) {
  vector<It> xa, ya;
  assert (end-begin >= 2);
  for (It i = begin; i != end; ++i)
   xa.push_back(i), ya.push_back(i);
  sort(xa.begin(), xa.end(), it_less<It>);
  sort(ya.begin(), ya.end(), y_it_less<It>);
  return cp_sub(ya.begin(), ya.end(), xa.begin(), i1, i2);
} // hash-cpp-all = 42735b8e08701a3b73504ac0690e31df
```

```
Description: KD-tree (2d, can be extended to 3d)
                                                        63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
  T distance(const P& p) { // min squared distance to a
    \hookrightarrowpoint
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
   T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node(vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if the box is wider than high (not best
         \hookrightarrow heuristic...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (
      // best performance with many duplicates in the
         \hookrightarrow middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)}))
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p == node->pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
      best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared
     \hookrightarrow distance
```

```
// (requires an arbitrary operator< for Point)
pair<T, P> nearest(const P& p) {
   return search(root, p);
}
}; // hash-cpp-all = bac5b0409b201c3b040301344a40dc31
```

DelaunayTriangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are colinear or any four are on the same circle, behavior is undefined. **Time:** $\mathcal{O}\left(n^2\right)$

FastDelaunav.h

Description: Fast Delaunay triangulation. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issue in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

Time: $\mathcal{O}(n \log n)$

```
"Point.h"
                                                          90 lines
typedef Point<11> P;
typedef struct Quad* Q;
typedef __int128_t 111; // (can be 11 if coords are < 2e4)</pre>
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
 bool mark; O o, rot; P p;
 P F() { return r()->p; }
  Q r() { return rot->rot; }
  O prev() { return rot->o->rot; }
  Q next() { return rot->r()->o->rot; }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) *C + p.cross(b,c) *A + p.cross(c,a) *B >
     \hookrightarrow 0;
Q makeEdge(P orig, P dest) {
  Q = \text{new Quad}\{0,0,0,\text{orig}\}, q1 = \text{new Quad}\{0,0,0,\text{arb}\},
    q2 = new Quad\{0,0,0,dest\}, q3 = new Quad\{0,0,0,arb\};
  q0 -> o = q0; q2 -> o = q2; // 0-0, 2-2
  q1->0 = q3; q3->0 = q1; // 1-3, 3-1
  q0 -> rot = q1; q1 -> rot = q2;
  q2->rot = q3; q3->rot = q0;
 return q0;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
```

PolyhedronVolume Point3D 3dHull sphericalDistance

```
Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
 splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
 if (sz(s) \le 3)
   Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back())
   if (sz(s) == 2) return { a, a->r() };
   splice(a->r(), b);
   auto side = s[0].cross(s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
   return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 O A, B, ra, rb;
 int half = (sz(s) + 1) / 2;
 tie(ra, A) = rec({s.begin(), s.begin() + half});
 tie(B, rb) = rec({s.begin() + half, s.end()});
  while ((B->p.cross(H(A)) < 0 \&\& (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
 Q base = connect(B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) O e = init->dir; if (valid(e)) \
   while (circ(e->dir->F(), H(base), e->F())) {
     0 t = e \rightarrow dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e = t; \
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
   else
     base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 Q e = rec(pts).first;
 vector<Q> q = {e};
 int qi = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p
  q.push_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
 return pts;
} // hash-cpp-all = 9f490f2e6d7aa19210d75ee72a867313
```

$8.5 \quad 3D$

PolyhedronVolume.h

```
template<class V, class L>
double signed_poly_volume(const V& p, const L& trilist) {
  double v = 0;
  trav(i, trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
} // hash-cpp-all = lec4d393ab307cedc3866534eaa83a0e
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z)
     \hookrightarrow { }
 bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi,
     \hookrightarrow pi]
  double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0,
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
  P unit() const { return *this/(T)dist(); } //makes dist()
     \hookrightarrow =1
  //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
 P rotate(double angle, P axis) const {
   double s = \sin(angle), c = \cos(angle); P u = axis.unit
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
}; // hash-cpp-all = 8058aeda36daf3cba079c7bb0b43dcea
```

3dHull h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

Time: $\mathcal{O}\left(n^2\right)$

```
"Point3D.h" 49 lines
typedef Point3D<double> P3;
struct PR {
  void ins (int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
  int cnt() { return (a != -1) + (b != -1); }
```

```
int a, b;
};
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
  vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [\&] (int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
      q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
      F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
        E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f
  \hookrightarrow .c):
      C(a, b, c); C(a, c, b); C(b, c, a);
  trav(it, FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \le 0) swap(it.c, it.b);
  return FS:
}; // hash-cpp-all = bc89cf3055f5f62e7f5dec78d412986c
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis. All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
} // hash-cpp-all = 611f0797307c583c66413c2dd5b3ba28
```

Strings (9)

KMP.cpp

29 lines

```
template<typename T>
struct kmp_t {
    vector<T> word;
    vector<int> failure;
    kmp_t (const vector<T> &_word): word(_word) {
        int n = word.size();
        failure.resize(n+1, 0);
        for (int s = 2; s \le n; ++s) {
            failure[s] = failure[s-1];
            while (failure[s] > 0 && word[failure[s]] !=
               \hookrightarrowword[s-1])
                failure[s] = failure[failure[s]];
            if (word[failure[s]] == word[s-1]) failure[s
    vector<int> matches_in(const vector<T> &text) {
        vector<int> result;
        int s = 0;
        for (int i = 0; i < (int)text.size(); ++i) {</pre>
            while (s > 0 && word[s] != text[i])
                s = failure[s];
            if (word[s] == text[i]) s++;
            if (s == (int)word.size()) {
                result.push_back(i-(int)word.size()+1);
                s = failure[s];
        return result;
}; // hash-cpp-all = 4c0e01f7b2de8bb8801f3a412f41399c
```

extended-KMP.h

Description: extended KMP S[i] stores the maximum common prefix between s[i:] and t; T[i] stores the maximum common prefix between t[i:] and t for i>0;

```
int S[N], T[N];
void extKMP(const string &s, const string &t) {
    int m = t.size(), maT = 0, maS = 0;
   T[0] = 0;
    for (int i = 1; i < m; i++) {
        if (maT + T[maT] >= i)
            T[i] = min(T[i - maT], maT + T[maT] - i);
        else T[i] = 0;
        while (T[i] + i < m \&\& t[T[i]] == t[T[i] + i])
        if (i + T[i] > maT + T[maT]) maT = i;
    int n = s.size();
    for (int i = 0; i < n; i++) {
        if (maS + S[maS] >= i)
            S[i] = min(T[i - maS], maS + S[maS] - i);
        else S[i] = 0;
        while (S[i] < m \&\& i + S[i] < n \&\& t[S[i]] == s[S[i]]
           \hookrightarrow] + i])
            S[i]++;
        if (i + S[i] > maS + S[maS]) maS = i;
// hash-cpp-all = 678f728e4713de687a5065ac74ae3d66
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down). Time: $\mathcal{O}(N)$

void manacher(const string& s) { int n = sz(s); $vi p[2] = {vi(n+1), vi(n)};$ rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) { int t = r-i+!z;if (i<r) p[z][i] = min(t, p[z][l+t]);</pre> int L = i-p[z][i], R = i+p[z][i]-!z; while (L>=1 && R+1<n && s[L-1] == s[R+1]) p[z][i]++, L--, R++; if (R>r) l=L, r=R; }} // hash-cpp-all = d9436881723eb8d866ac15aa011523db

MinRotation.h

Time: $\mathcal{O}(N)$

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+min_rotation(v), v.end());

8 lines int min_rotation(string s) { int a=0, N=sz(s); s += s; rep(b,0,N) rep(i,0,N) { if $(a+i == b \mid | s[a+i] < s[b+i]) \{b += max(0, i-1);$ ⇒break: }

if $(s[a+i] > s[b+i]) \{ a = b; break; \}$ return a; } // hash-cpp-all = 358164768a20176868eba20757681e19

SA.cpp

sa[i] = -(j-i);

79 lines

```
struct SuffixArray {
 vector<int> lcp;
 vector<vector<pair<int, int>>> rmq;
  int n, h;
  vector<int> sa, invsa;
  bool cmp(int a, int b) { return invsa[a+h] < invsa[b+h];</pre>
  void ternary_sort(int a, int b) {
   if (a == b) return;
   int pivot = sa[a+rand()%(b-a)];
   int left = a, right = b;
   for (int i = a; i < b; ++i) if (cmp(sa[i], pivot)) swap
       \hookrightarrow (sa[i], sa[left++]);
    for (int i = b-1; i \ge left; --i) if (cmp(pivot, sa[i])
       \hookrightarrow) swap(sa[i], sa[--right]);
   ternary_sort(a, left);
   for (int i = left; i < right; ++i) invsa[sa[i]] = right</pre>
   if (right-left == 1) sa[left] = -1;
   ternary_sort(right, b);
  SuffixArray() {}
  SuffixArray(vector<int> v): n(v.size()), sa(n) {
   v.push_back(INT_MIN);
   invsa = v;
   iota(sa.begin(), sa.end(), 0);
   h = 0; ternary_sort(0, n);
   for (h = 1; h \le n; h *= 2)
      for (int j = 0, i = j; i != n; i = j)
  if (sa[i] < 0) {
   while (j < n \&\& sa[j] < 0) j += -sa[j];
```

```
} else {
    j = invsa[sa[i]]+1;
    ternary_sort(i, j);
    for (int i = 0; i < n; ++i) sa[invsa[i]] = i;</pre>
    lcp.resize(n);
    int res = 0;
    for (int i = 0; i < n; ++i) {
      if (invsa[i] > 0) while (v[i+res] == v[sa[invsa[i
         \hookrightarrow 1-11+res]) ++res;
      lcp[invsa[i]] = res;
      res = max(res-1, 0);
    int logn = 0; while ((1<<logn+1) <= n) ++logn;</pre>
    rmq.resize(logn+1, vector<pair<int, int>>(n));
    for (int i = 0; i < n; ++i) rmq[0][i] = make_pair(lcp[i</pre>
       \hookrightarrow], i);
    for (int 1 = 1; 1 \le \log n; ++1)
      for (int i = 0; i+(1<<1) <= n; ++i)
  rmq[1][i] = min(rmq[1-1][i], rmq[1-1][i+(1<<1-1)]);
  pair<int, int> rmq_query(int a, int b) {
    int size = b-a+1, l = __builtin_clz(1) - __builtin_clz(
       \hookrightarrowsize);
    return min(rmq[1][a], rmq[1][b-(1<<1)+1]);</pre>
  int get_lcp2(int ia, int ib) {
    return rmq_query(min(ia, ib)+1, max(ia, ib)).first;
 pair<int, int> get_range(int strpos, int size) {
    int pos = invsa[strpos];
    int start, end;
      int l = 0, r = pos;
      while (1 < r) {
  int m = (1+r)/2;
  if (get_lcp2(m, pos) < size) 1 = m+1;</pre>
  else r = m:
      start = 1:
      int 1 = pos, r = n-1;
      while (1 < r) {
  int m = (1+r+1)/2;
  if (\text{get\_lcp2}(m, \text{pos}) < \text{size}) r = m-1;
  else 1 = m;
      end = 1:
    return {start, end};
// hash-cpp-all = 42ccab6180bb2d6772dc9f45600e544b
string-sa+lcp.cpp
Description: SA + LCP
Usage: da(str, sa, strlen(str)+1, 256);
calheight(str, sa, strlen(str));
                                                          31 lines
int wa[maxn], wb[maxn], wv[maxn], ws[maxn];
int cmp(int *r,int a,int b,int l) { // hash-cpp-1
 return r[a] == r[b] &&r[a+1] == r[b+1];
void da(int *r,int *sa,int n,int m) {
 int i, j, p, *x=wa, *y=wb, *t;
```

for (i=0; i<m; i++) ws [i]=0;

string-SAM string-dc3 SuffixTree

```
for (i=0; i<n; i++) ws [x[i]=r[i]]++;
  for (i=1; i < m; i++) ws [i] += ws [i-1];
  for (i=n-1; i>=0; i--) sa[--ws[x[i]]]=i;
  for(j=1,p=1;p<n;j*=2,m=p){</pre>
    for (p=0, i=n-j; i<n; i++) y[p++]=i;</pre>
    for (i=0; i<n; i++)</pre>
      if(sa[i]>=j) y[p++]=sa[i]-j;
    for(i=0;i<n;i++) wv[i]=x[y[i]];</pre>
    for(i=0;i<m;i++) ws[i]=0;
    for (i=0; i<n; i++) ws [wv[i]]++;</pre>
    for (i=1; i<m; i++) ws[i]+=ws[i-1];
    for (i=n-1; i>=0; i--) sa[--ws[wv[i]]]=y[i];
      for (t=x, x=y, y=t, p=1, x[sa[0]]=0, i=1; i<n; i++)
        x[sa[i]] = cmp(y, sa[i-1], sa[i], j)?p-1:p++;
//height[i]: lcp(sa[i],sa[i-1])
int rank[maxn], height[maxn];
void calheight(int *r,int *sa,int n) { // hash-cpp-2
  int i, i, k=0;
  for(i=1;i<=n;i++) rank[sa[i]]=i;</pre>
  for (i=0; i<n; height[rank[i++]]=k)</pre>
    for (k?k--:0, j=sa[rank[i]-1]; r[i+k]==r[j+k]; k++);
\frac{1}{2} // hash-cpp-2 = 29b5645cc1aca9a59ff90adec1d537e5
```

string-SAM.cpp

37 lines

```
Description: Suffix Automaton (SAM)
int n,i,init,L,len,ll,q,h,ch,p,last[1700000],n1[1700000],du
   \hookrightarrow [1700000], s[1700000], fa[800001], 1[1700000], son
   \hookrightarrow [1700000] [3], par[1700000];
char S[8000001],k;
long long ans, sum[1600001];
void ins(int p,int ss,int k)
  int np=++len,q,nq;
  l[np]=l[p]+1;
  s[np]=1;
  while (p&&!son[p][k]) son[p][k]=np,p=par[p];
  if (!p) par[np]=1;
  else {
    q=son[p][k];
    if (1[p]+1==1[q]) par[np]=q;
    else (
      nq=++len;
      l[nq]=l[p]+1;
      s[nq]=0;
      memset(son[nq], son[q], sizeof son[q]);
      par[nq]=par[q];
      par[q]=nq;
      par[np]=nq;
      while (p\&\&son[p][k]==q) son[p][k]=nq,p=par[p];
  last[ss]=np;
int main()
  read(n):
  last[1]=init=len=1;
  for (i=2;i<=n;i++)
    read(fa[i]);
    for (k=getchar(); k<=32; k=getchar());</pre>
    ins(last[fa[i]],i,k-'a');
} // hash-cpp-all = 6delae4723820c6fbc161c9e51574990
```

```
string-dc3.cpp
Description: Linear-time SA+LCP+Tree
```

```
108 lines
const int N=1000010;
char s[N];
int *h:
namespace SuffixArray {
const int N=1000010;
int sa[N], rk[N], ht[N];
bool t[N<<1];
bool islms (const int i, const bool *t) { // hash-cpp-1
 return i>0&&t[i]&&!t[i - 1];
} // hash-cpp-1 = 5ca6c1c830ec37aed73de79822fb6c8e
template<class T>
inline void sort (T s, int *sa, const int len, const int sz,
   bool *t,int *b,int *cb,int *p) { // hash-cpp-2
  memset(b,0,sizeof(int)*sigma);
  memset(sa,-1, sizeof(int)*len);
  rep(i,0,len) b[(int)s[i]]++;
  cb[0]=b[0];
  rep(i,1,sigma) cb[i]=cb[i-1]+b[i];
  per(i,0,sz) sa[--cb[(int)s[p[i]]]=p[i];
  rep(i, 1, sigma) cb[i] = cb[i-1] + b[i-1];
  rep(i, 0, len) if (sa[i]>0&&!t[sa[i]-1]) sa[cb[(int)s[sa[i]-1])
     \hookrightarrow]-1]]++]=sa[i]-1;
  cb[0]=b[0];
  rep(i,1,sigma) cb[i]=cb[i-1]+b[i];
  per(i,0,len) if (sa[i]>0&&t[sa[i]-1]) sa[--cb[(int)s[sa[i
     \hookrightarrow1-1111=sa[i]-1;
} // hash-cpp-2 = 88f5a486e24125b363a4fdb671376629
template<class T>
inline void sais(T s,int *sa,const int len,bool *t,int *b,
   \hookrightarrowint *b1,
        const int sigma) { // hash-cpp-3
  int p=-1,*cb=b+sigma;
  t[len-1]=1;
  per(i, 0, len-1) t[i] = s[i] < s[i+1] | | (s[i] = s[i+1] & & t[i+1]);
  int sz=0,cnt=0;
  rep(i,1,len) if (t[i]&&!t[i-1]) b1[sz++]=i;
  sort(s,sa,len,sz,sigma,t,b,cb,b1);
  sz=0;
  rep(i, 0, len) if (islms(sa[i], t)) sa[sz++]=sa[i];
  rep(i,sz,len) sa[i]=-1;
  rep(i,0,sz) {
    int x=sa[i];
    rep(j,0,len)
      if (p=-1||s[x+j]!=s[p+j]||t[x+j]!=t[p+j]) {
        cnt++; p=x;
        break;
      } else if (j>0&&(islms(x+j,t)||islms(p+j,t))) {
        break;
    sa[sz+(x>>=1)]=cnt-1;
  for (int i=len-1, j=len-1; i>=sz; i--) if (sa[i]>=0) sa[j
     \hookrightarrow--]=sa[i];
  int *s1=sa+len-sz,*b2=b1+sz;
  if (cnt<sz) sais(s1,sa,sz,t+len,b,b1+sz,cnt);</pre>
  else rep(i,0,sz) sa[s1[i]]=i;
  rep(i,0,sz) b2[i]=b1[sa[i]];
```

```
sort(s, sa, len, sz, sigma, t, b, cb, b2);
\frac{1}{2} // hash-cpp-3 = 06c63b43c0de339e2fbc000178dc4084
template<class T>
inline void getHeight (T s,int n) { // hash-cpp-4
 rep(i,1,n+1) rk[sa[i]]=i;
 int j=0, k=0;
 for (int i=0;i<n;ht[rk[i++]]=k)</pre>
    for (k?k--:0, j=sa[rk[i]-1]; s[i+k]==s[j+k]; k++);
} // hash-cpp-4 = d171edf9c242a8cdb65bbca53aab75dd
template<class T>
inline void init(T s, const int len, const int sigma) { //
   \hookrightarrowhash-cpp-5
  sais(s,sa,len,t,rk,ht,sigma);
} // hash-cpp-5 = e90e73297525a28516de9c2d1653b256
inline void solve(char *s,int len) {
 init(s,len+1,124);
  getHeight(s,len);
} // namespace SuffixArray
int stk[N], top, a[N], l[N], r[N], sz[N], par[N];
void build() { // hash-cpp-6
 int top=0;
 h=SuffixArrav::ht+1;
  rep(i,1,n) l[i]=r[i]=par[i]=0;
  rep(i,1,n) {
    int k=top;
    while (k>0\&\&h[stk[k-1]]>h[i]) --k;
    if (k) r[stk[k-1]]=i;
    if (k<top) l[i]=stk[k];</pre>
    stk[k++]=i;
    top=k;
  int t=0, rt=stk[0];
  int *q=stk;
  q[t++]=rt;
  rep(i,0,t) {
    int u=q[i]; sz[u]=1;
    if (l[u]) q[t++]=l[u],par[l[u]]=u;
    if (r[u]) q[t++]=r[u],par[r[u]]=u;
} // hash-cpp-6 = 496cf09518bc84e0fc8000c0f7adf03d
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}(26N)$

```
50 lines
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
  int toi(char c) { return c - 'a'; }
  string a; // v = cur node, q = cur position
  int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
  void ukkadd(int i, int c) { suff:
      if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
```

Hashing AhoCorasick IntervalContainer

```
p[m++]=v; v=s[v]; q=r[v]; goto suff; }
      v=t[v][c]; q=1[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
      q=r[v]-(q-r[m]); m+=2; qoto suff;
 SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] =
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA =
    \hookrightarrow 281
 pii best:
  int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;
   int mask = 0, len = node ? olen + (r[node] - l[node]) :
   rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
   if (mask == 3)
     best = max(best, {len, r[node] - len});
   return mask;
  static pii LCS(string s, string t) {
   SuffixTree st(s + (char)('z' + 1) + t + (char)('z' + 2)
   st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
   return st.best;
}; // hash-cpp-all = aae0b8bb2efccb834b9a439b63d92f53
```

Hashing.h

Description: Various self-explanatory methods for string hashing.

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse,
// ABBA... and BAAB... of length 2^10 hash the same mod
// "typedef ull H;" instead if you think test data is
// or work mod 10^9+7 if the Birthday paradox is not a
   \hookrightarrowproblem.
struct H {
 typedef uint64 t ull;
 ull x; H(ull x=0) : x(x) {}
#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
  (A "addq %%rdx, %0\n adcq $0,%0" : "+a"(r) : B); return r
    \hookrightarrow; }
 OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x) : "rdx")
 H operator-(H o) { return *this + ~o.x; }
 ull get() const { return x + !~x; }
```

```
bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order ~ 3e9; random also
  \hookrightarrow ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash [a, b)
    return ha[b] - ha[a] * pw[b - a];
vector<H> getHashes(string& str, int length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
 rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
 return ret;
H hashString(string& s) { H h{}; trav(c,s) h=h*C+c; return
// hash-cpp-all = ca8497b9a5d82dca62bc1210bb2b3c4c
```

AhoCorasick.cpp

54 lines

```
struct AhoCorasick {
   static const int nletter = 2;
   struct node {
        vector<int> keywords;
        node *go[nletter] = {}, *failure = {}, *output =
          \hookrightarrow{}:
    } *root = new node();
   node *add(int size, int *values, int keywordid) {
       assert(size > 0);
        node *v = root;
        for (int i = 0; i < size; ++i) {
            node *&u = v->go[values[i]];
            if (!u) u = new node();
            v = u;
        v->keywords.push_back(keywordid);
        return v:
   void build() {
        queue<node*> q;
        for (int i = 0; i < nletter; ++i) {
            node *&v = root -> qo[i];
            if (v) {
                v->failure = root;
                v->output = v->keywords.size() > 0 ? v :
                   \hookrightarrownullptr;
                q.push(v);
            } else {
                v = root;
```

```
while (!q.empty()) {
            node *u = q.front(); q.pop();
            for (int i = 0; i < nletter; ++i) {</pre>
                node *v = u -> go[i];
                if (v) {
                    node *x = u -> failure;
                     while (!x->qo[i]) x = x->failure;
                     v->failure = x->go[i];
                     v->output = v->keywords.size() > 0 ? v
                        \hookrightarrow: v->failure->output;
                    q.push(v);
        }
    node *iterate(node *v, int value) {
        while (!v->go[value]) v = v->failure;
        return v->go[value];
    vector<int> matches(node *v) {
        vector<int> result:
        for (node *x = v->output; x; x = x->failure->output
            result.insert(result.end(), x->keywords.begin()
               \hookrightarrow, x->keywords.end());
        return result:
}; // hash-cpp-all = 7c14e8cb8d992d8b49b73877c26114a6
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
                                                       23 lines
set<pii>>::iterator addInterval(set<pii>& is, int L, int R)
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {
    R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->second;
 if (it->first == L) is.erase(it);
  else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
} // hash-cpp-all = edce47664ed34a95a513b699a9b796e2
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$ 19 lines template<class T> vi cover(pair<T, T> G, vector<pair<T, T>> I) { vi S(sz(I)), R; iota(all(S), 0); sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre> T cur = G.first; int at = 0: while (cur < G.second) { // (A) pair<T, int> mx = make pair(cur, -1); while (at < sz(I) && I[S[at]].first <= cur) {</pre> mx = max(mx, make_pair(I[S[at]].second, S[at])); if (mx.second == -1) return {}; cur = mx.first; R.push_back(mx.second); return R:

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

} // hash-cpp-all = 9e9d8de75aadfadfe513b17b1c746dbe

constantIntervals(0, sz(v), [&](int x){return Usage: v[x];, [&] (int lo, int hi, T val){...}); Time: $\mathcal{O}\left(k\log\frac{n}{k}\right)$

```
template<class F, class G, class T>
void rec(int from, int to, F f, G q, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
   g(i, to, p);
   i = to; p = q;
  } else {
   int mid = (from + to) >> 1;
   rec(from, mid, f, g, i, p, f(mid));
   rec(mid+1, to, f, q, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 q(i, to, q);
} // hash-cpp-all = 792e7d94c54ab04f9efdb6834b12feca
```

Misc. algorithms 10.2

TernarySearch.h

Description: Find the smallest i in [a, b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B). Usage: int ind = ternSearch(0, n-1, [&](int i){return a[i];});

```
Time: \mathcal{O}(\log(b-a))
```

```
template<class F>
```

```
int ternSearch(int a, int b, F f) {
  assert (a <= b);
 while (b - a >= 5) {
   int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) // (A)</pre>
     a = mid;
   else
      b = mid+1;
 rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
} // hash-cpp-all = 9155b4fb90d9489dfae7b2d43fe5dc7f
```

CoordCompression.h

```
vector<int> comp_coord(vector<int> &y, int N) {
    vector<int> result;
    for (int i = 0; i < N; ++i) result.emplace_back(y[i]);</pre>
    sort(result.begin(), result.end());
    result.resize(unique(result.begin(), result.end())-
       →result.begin());
    for (int i = 0; i < N; ++i)
        y[i] = lower_bound(result.begin(), result.end(), y[
           \hookrightarrowi]) - result.begin();
    return result;
} // hash-cpp-all = 809d6ae9d2b00e4d11b3e8500c82eb70
```

Karatsuba.h

Description: Faster-than-naive convolution of two sequences: c[x] = $\sum a[i]b[x-i]$. Uses the identity $(aX+b)(cX+d) = acX^2 + bd + ((a+b)^2)$ $\overline{c}(b+d) - ac - bd)X$. Doesn't handle sequences of very different length well. See also FFT, under the Numerical chapter.

```
Time: \mathcal{O}\left(N^{1.6}\right)
```

// hash-cpp-all = d41d8cd98f00b204e9800998ecf8427e

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}(N \log N)$ 17 lines

```
template<class I> vi lis(vector<I> S) {
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i, 0, sz(S)) {
   p el { S[i], i };
   //S[i]+1 for non-decreasing
   auto it = lower_bound(all(res), p { S[i], 0 });
   if (it == res.end()) res.push_back(el), it = --res.end
      \hookrightarrow ();
   *it = el;
   prev[i] = it==res.begin() ?0:(it-1)->second;
  int L = sz(res), cur = res.back().second;
 vi ans(L);
  while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
} // hash-cpp-all = 5b77eb731f7631a19d0b3d3d77e93c0d
```

LCS.h

Description: Finds the longest common subsequence. Memory: $\mathcal{O}(nm)$.

Time: $\mathcal{O}(nm)$ where n and m are the lengths of the sequences. _{14 lines}

```
template < class T > T lcs (const T &X, const T &Y) {
 int a = sz(X), b = sz(Y);
 vector<vi> dp(a+1, vi(b+1));
```

```
rep(i,1,a+1) rep(j,1,b+1)
   dp[i][j] = X[i-1] == Y[j-1] ? dp[i-1][j-1]+1 :
     \max(dp[i][j-1], dp[i-1][j]);
  int len = dp[a][b];
 T ans(len,0);
 while(a && b)
   if(X[a-1]==Y[b-1]) ans[--len] = X[--a], --b;
   else if(dp[a][b-1]>dp[a-1][b]) --b;
   else --a;
 return ans;
} // hash-cpp-all = db10213a69bbcbe3ebf91d49b7b95ffc
```

Dynamic programming 10.3

DivideAndConquerDP.h

9 lines

Description: Given $a[i] = \min_{lo(i) \leq k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L...R - 1. Time: $\mathcal{O}((N + (hi - lo)) \log N)$

```
struct DP { // Modify at will:
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 11 f(int ind, int k) { return dp[ind][k]; }
 void store(int ind, int k, ll v) { res[ind] = pii(k, v);
  void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) \gg 1;
   pair<11, int> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
     best = min(best, make pair(f(mid, k), k));
    store (mid, best.second, best.first);
   rec(L, mid, LO, best.second+1);
   rec(mid+1, R, best.second, HI);
 void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
}; // hash-cpp-all = d38d2b272d60f6d5cead54745a551b99
```

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[i][k])$ a[k][j] + f(i,j), where the (minimal) optimal k increases with both i and i, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if f(b,c) < f(a,d)and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search.

```
Time: \mathcal{O}(N^2)
```

// hash-cpp-all = d41d8cd98f00b204e9800998ecf8427e

10.4 Debugging tricks

signal(SIGSEGV, [](int) { _Exit(0);); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG violations generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).

• feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K)) if (i &
 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize for loops and optimizes floating points better (assumes associativity and turns off denormals).
- #pragma GCC target ("avx,avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s) {
   static size_t i = sizeof buf;
   assert(s < i);
   return (void*)&buf[i -= s];
}
void operator delete(void*) {}
// hash-cpp-all = 745db225903de8f3cdfa051660956100</pre>
```

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

"BumpAllocator.h" 10 lines

```
template<class T> struct ptr {
  unsigned ind;
  ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
```

```
assert(ind < sizeof buf);
}
T& operator*() const { return *(T*)(buf + ind); }
T* operator->() const { return &**this; }
T& operator[](int a) const { return (&**this)[a]; }
explicit operator bool() const { return ind; }
}; // hash-cpp-all = 2dd6c9773f202bd47422e255099f4829
```

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

```
 \textbf{Usage:} \ \texttt{vector} < \texttt{vector} < \texttt{int, small} < \texttt{int} >>> \ \texttt{ed(N);}
```

```
char buf[450 << 20] alignas(16);
size_t buf_ind = sizeof buf;

template<class T> struct small {
    typedef T value_type;
    small() {}
    template<class U> small(const U&) {}
    T* allocate(size_t n) {
        buf_ind -= n * sizeof(T);
        buf_ind &= 0 - alignof(T);
        return (T*) (buf + buf_ind);
    }
    void deallocate(T*, size_t) {}
}; // hash-cpp-all = bb66d4225al941b85228ee92b9779d4b
```

Unrolling.h

```
#define F {...; ++i;}
int i = from;
while (i&3 && i < to) F // for alignment, if needed
while (i + 4 <= to) { F F F F }
while (i < to) F
// hash-cpp-all = 69ac737ad5a50f5688d5720fb6fce39f</pre>
```

SIMD.h

Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic on several numbers at once. Can provide a constant factor improvement of about 4, orthogonal to loop unrolling. Operations follow the pattern "_mm(256)?_name_(si(128|256)|epi(8|16|32|64)|pd|ps)". Not all are described here; grep for _mm_ in /usr/lib/gcc/*/4.9/include/ for more. If AVX is unsupported, try 128-bit operations, "emmintrin.h" and #define __SSE_ and __MMX_ before including it. For aligned memory use _mm_malloc(size, 32) or int buf[N] alignas(32), but prevented to the provided of the control of the control

```
// permute2f128_si256(x,x,1) swaps 128-bit lanes
// shuffle epi32(x, 3*64+2*16+1*4+0) == x for each lane
// shuffle_epi8(x, y) takes a vector instead of an imm
// Methods that work with most data types (append e.g.
// set1, blend (i8?x:y), add, adds (sat.), mullo, sub, and/
// and not, abs, min, max, sign(1,x), cmp(gt|eq), unpack(10|
int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
 int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }
mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }
11 example filteredDotProduct(int n, short* a, short* b) {
  int i = 0; 11 r = 0;
  mi zero = _mm256_setzero_si256(), acc = zero;
  while (i + 16 \le n) {
   mi \ va = L(a[i]), \ vb = L(b[i]); \ i += 16;
    va = _mm256_and_si256(_mm256_cmpgt_epi16(vb, va), va);
    mi vp = _mm256_madd_epi16(va, vb);
    acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
      _mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)
  union {ll v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[
  for (; i < n; ++i) if (a[i] < b[i]) r += a[i] * b[i]; // <-
     \rightarrowequiv
} // hash-cpp-all = 22e525308475fcf994390db2fedfce94
```

Hashmap.h

14 lines

6 lines

Description: Faster/better hash maps, taken from CF

14 lines

14 lines

```
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
gp_hash_table<int, int> table;

struct custom_hash {
    size_t operator() (uint64_t x) const {
        x += 48;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
};
gp_hash_table<int, int, custom_hash> safe_table;
// hash-cpp-all = e62eb2668aee2263b6d72043f3652fb2
```

10.6 Other languages

Main.iava

Description: Basic template/info for Java

UFRJ

```
35
```