Gel-19879: Électromagnétisme

Mini-test #2

solutionnaire.

Résultat total (10 points):

Question 1 (2 points):

On considère un champ magnétique uniforme dirigé suivant \hat{i}_x dans lequel tournent deux circuits constitués de plusieurs enroulements de même surface. Dans le circuit 1, qui a un nombre de tours N_1 et une vitesse de rotation ω_1 , le courant induit a une amplitude l_1 . Dans le circuit 2 qui a une vitesse de rotation ω_2 , le courant induit a une amplitude l_2 .

Quelle est l'expression donnant le nombre de tours N₂ du circuit 2 en fonction des paramètres connus?

$$|I_{1}| \propto BA \omega_{1}N_{1} \quad (0.5)$$

$$|I_{2}| \propto BA \omega_{2}N_{2} \quad (0.5)$$
Soit C la cte de proportionnalité, en négliqueant la résistance des fil,
$$|I_{1}| = CBA \omega_{1}N_{1} \quad |I_{1}| = \frac{\omega_{1}N_{1}}{\omega_{2}N_{2}}$$

$$|I_{2}| = CBA \omega_{2}N_{2} \quad |I_{2}| = \frac{\omega_{1}N_{1}}{\omega_{2}N_{2}}$$
en prenant le vatio
$$|I_{2}| = \frac{1}{|I_{2}|} \frac{\omega_{1}N_{1}}{\omega_{2}N_{2}} \quad (1.0)$$

Question 2 (3 points):

On considère un plan infini situé dans le plan xy qui porte une densité de charge de surface uniforme $+p_s$ (C/m²). Une plaque métallique d'épaisseur d est située à une distance 2d au-dessus de se plan

Considérant qu'il s'agit d'un conducteur parfait et électriquement nuetre (c'est-à-dire que la charge totale sur le conducteur est nulle):

- a) Quelle est l'expression du champ électrique de z=0 jusqu'à z=∞?
- b) Faites le graphique du module du champ électrique en fonction de la distance par rapport au plan?
- c) Y a-t-il des densités de charges induites aux surfaces du conducteur? Si oui quelles sontelles?

c) oui.
$$eind = -cs/z \ a \ z = zd$$
 (1.0)
 $eind = es/z \ a \ z = 3d$

Question 3 (5 points)

On considère un système constitué d'une charge ponctuelle Q_0 entourée par une coquille diélectrique de permittivité $\varepsilon=2s_0$. La coquille, de rayon intérieur r=1 et de rayon extérieur r=2 porte une densité de charge volumique $\rho_v=3Q_0/14\pi$ (C/m³).

- a) Quelle est la charge totale de la coquille diélectrique?
- b) Trouvez le champ électrique partout dans l'espace (r=0 jusqu'à r=∞).

avec
$$\varepsilon = 2\varepsilon$$

$$\stackrel{\stackrel{\frown}{=}}{=} \frac{Q_0}{417 \varepsilon r^2} \left[1 - \frac{2}{7} (r^3 - 1) \right] C_r$$

$$\stackrel{\stackrel{\frown}{=}}{=} \frac{Q_0}{5677 \varepsilon_0 r^2} \left(9 - 2r^3 \right) C_r \left(1p_r^t \right)$$