

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/719,631	11/21/2003	Arnis E. Peters	01-1668-E	3462
20306	7590	01/26/2009		
MCDONNELL BOEHNEN HULBERT & BERGHOFF LLP			EXAMINER	
300 S. WACKER DRIVE			AUSTIN, AARON	
32ND FLOOR				
CHICAGO, IL 60606			ART UNIT	PAPER NUMBER
			1794	
			MAIL DATE	DELIVERY MODE
			01/26/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/719,631	Applicant(s) PETERS ET AL.
	Examiner AARON S. AUSTIN	Art Unit 1794

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 17 October 2008.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 12,13,17 and 21-27 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 12,13,17 and 21-27 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on 13 March 2006 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date 6/27/08

4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____

5) Notice of Informal Patent Application

6) Other: _____

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 21 and 23-26 are rejected under 35 U.S.C. 102(b) as being anticipated by Sekido (JP55003972A).

Sekido teaches injection molding of a patterned mold wherein the product comprises an insert 1 with a first and second surface and having a cavity/injection mold feature 4 formed therein. A decorative resin 11 is applied as a backing (it overlies the back of at least portions of the insert 1) to the insert 1 with a feature 2 formed in the cavity (Fig. 8). The feature may be flush with the insert 1 (Fig. 8) or protrude above the insert 1 (Fig. 12).

Please note, the claims contain product by process language. The above arguments establish a rationale tending to show the claimed product is the same as what is taught by the prior art. “[E]ven though product-by-process claims are limited by and defined by the process, determination of patentability is based on the product itself. The patentability of a product does not depend on its method of production. If the product in the product-by-process claim is the same as or obvious from a product of the prior art, the claim is unpatentable even though the prior product was made by a

different process." *In re Thorpe*, 227 USPQ 964,966. Once the Examiner provides a rationale tending to show that the claimed product appears to be the same or similar to that of the prior art, although produced by a different process, the burden shifts to applicant to come forward with evidence establishing an unobvious difference between the claimed product and the prior art product. *In re Marosi*, 710 F.2d 798, 802, 218 USPQ 289, 292 (Fed. Cir. 1983), MPEP 2113.

Regarding claim 21, the insert is a skin formed prior to application of the decorative resin 11.

Regarding claim 23, the resin backing 11 is colored.

Claims 21 and 23-26 are rejected under 35 U.S.C. 102(b) as being anticipated by Mayumi (JP57140114A).

Mayumi teaches injection molding of an indication part wherein the product comprises an insert 10 with a first and second surface and having a through hole/injection mold feature 12 formed therein. A decorative indication-forming resin is applied as a backing to the insert 10 with a feature 15 formed in and above the cavity (Fig. 10).

Please note, the claims contain product by process language. The above arguments establish a rationale tending to show the claimed product is the same as what is taught by the prior art. "[E]ven though product-by-process claims are limited by and defined by the process, determination of patentability is based on the product itself. The patentability of a product does not depend on its method of production. If the

product in the product-by-process claim is the same as or obvious from a product of the prior art, the claim is unpatentable even though the prior product was made by a different process." *In re Thorpe*, 227 USPQ 964,966. Once the Examiner provides a rationale tending to show that the claimed product appears to be the same or similar to that of the prior art, although produced by a different process, the burden shifts to applicant to come forward with evidence establishing an unobvious difference between the claimed product and the prior art product. *In re Marosi*, 710 F.2d 798, 802, 218 USPQ 289, 292 (Fed. Cir. 1983), MPEP 2113.

Regarding claim 21, the insert is a skin formed prior to application of the decorative indication-forming resin.

Regarding claim 23, the resin backing 11 is indication-forming and must necessarily be colored, transparent, or opaque.

Claims 21 and 23-26 are rejected under 35 U.S.C. 102(b) as being anticipated by Bauer (EP1044779A1).

Bauer teaches an indication part wherein the product comprises an aluminum insert 4,5 with a first and second surface and having a recess/injection mold feature 6 formed therein. A decorative indication-forming resin 2 is injected to form a backing to the insert 4,5 with a feature formed in and above the cavity (Fig. 10).

Please note, the claims contain product by process language. The above arguments establish a rationale tending to show the claimed product is the same as what is taught by the prior art. "[E]ven though product-by-process claims are limited by

and defined by the process, determination of patentability is based on the product itself. The patentability of a product does not depend on its method of production. If the product in the product-by-process claim is the same as or obvious from a product of the prior art, the claim is unpatentable even though the prior product was made by a different process." *In re Thorpe*, 227 USPQ 964,966. Once the Examiner provides a rationale tending to show that the claimed product appears to be the same or similar to that of the prior art, although produced by a different process, the burden shifts to applicant to come forward with evidence establishing an unobvious difference between the claimed product and the prior art product. *In re Marosi*, 710 F.2d 798, 802, 218 USPQ 289, 292 (Fed. Cir. 1983), MPEP 2113.

Regarding claim 21, the insert is a metal layer formed prior to application of the decorative indication-forming resin.

Regarding claim 23, the resin backing may be transparent.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sekido (JP55003972A) in view of Bauer (EP1044779A1), Sweeny (EP 0376010 A2), and Stickling (EP0607968A1).

Sekido teaches injection molding of a patterned mold resulting in a product as outlined above.

Sekido does not teach the insert as being formed of a metal such as aluminum, the thickness of the metal sheet, the total thickness of the trim piece, or an adhesive for bonding these two layers.

Regarding the metal insert, Bauer teaches an aluminum metal insert for use in a method substantially similar to that taught by Sekido as outlined above. More particularly, the metal insert includes a hole through with injection molded resin applied to the back of the insert escapes to form a trim piece with a resin feature. Therefore, as Bauer clearly teaches inserts of aluminum metal are suitable for use in injection molding to form a decorative trim piece, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the insert of Sekido of aluminum metal. Further, it would have been obvious to one having ordinary skill in the art at the time the invention was made to form the insert of metal, since it has been held to be within the general skill of a worker in the art to select a known material on the basis of its suitability for the intended use as a matter of obvious engineering choice. *In re Leshin*, 125 USPQ 416. In particular, as automobile trim pieces typically include both metal and plastic parts, it would be obvious to one of ordinary skill in the art at the time of the claimed invention to form the trim piece of Sekido of aluminum metal.

Regarding the thickness of the metal sheet and use of an adhesive, Sweeny teaches an automotive quality, laminate article and method of production thereof (abstract). The article comprises pre-shaped metal veneers and inner substrates

formed in situ and bonded to the inner surface of the veneers (column 3, lines 1-16).

The metal may be aluminum (column 4, line 1) and may have an exemplary thickness of 0.025 inches or .015 inches (Examples 1 and 2). The substrate is formed of resins such as polyester, epoxy, phenolic, and the like and may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). Adhesion of the metal to the substrate may be improved through use of metal pretreatments or promoters (columns 4 lines 35-53).

Therefore, as Sweeny clearly teaches thicknesses of 0.025 inches or 0.015 inches are appropriate for automobile trim piece inserts and that an adhesive between a metal layer and a resin provides the advantage of improved adhesion, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to choose a thickness for the metal layer as taught by Sweeny in forming the taught trim insert and to further use an adhesive to increase adhesion between the components.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding the total thickness of the trim piece, Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. An appropriate thickness for increases stabilization of the blank part is 0.3 to 3 mm (page 6, lines 3-8). Therefore, as Stickling clearly teaches adding front and back skin layers in a thickness of 0.3 to 3 mm to a blank part provides the advantage of

increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the backing layer of Sekido with a thickness as taught by Stickling to increase stability of the insert. Thus, the combined thickness of trim piece (the insert as described above and the backing layer) overlaps the claimed range.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Claim 22 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sekido (JP55003972A) in view of Stickling (EP0607968A1).

Sekido teaches injection molding of a patterned mold resulting in a product as outlined above.

Sekido does not teach the insert as being comprised of a combination of a preformed skin and a preformed metal layer.

Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. Therefore, as Stickling clearly teaches adding front and back skin layers to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include a skin layer on the insert in addition to the backing layer to provide additional stability.

Claim 27 is rejected under 35 U.S.C. 102(b) as anticipated by or, in the alternative, under 35 U.S.C. 103(a) as obvious over Sekido (JP55003972A).

Sekido teaches injection molding of a patterned mold resulting in a product as outlined above.

Sekido does not teach the thickness of the coefficients of thermal expansion of the components.

However, the claimed physical property of similar coefficients of thermal expansion is expected to be as claimed as like materials to those claimed are used in a like manner.

In the alternative, it would be obvious to one of ordinary skill in the art to select materials whose coefficients of thermal expansion are similar as dissimilar values would result in differing reactions to temperature change leading to development of cracking, bowing, or other flaws in the components when subjected to the typical temperature changes experienced by a trim piece.

Claims 12-13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sekido (JP55003972A) in view of Bauer (EP1044779A1), Sweeny (EP 0376010 A2), and Stickling (EP0607968A1), and further in view of Luch (U.S. Patent No. 4,429,020), Tanikita et al. (U.S. Patent No. 5,833,889), and Grefenstein et al. (International Application No. PCT/EP00/05755, U.S. equivalent: Patent Application Publication No. 2006/0029809).

Sekido in view of Bauer and Sweeny teaches injection molding of a patterned metal mold resulting in a product as outlined above.

Sekido in view of Bauer does not teach the resin layer as a glass filled resin layer including glass fibers as claimed.

Sweeny teaches resins such as polyester, epoxy, phenolic, and the like may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). These resins can be easily molded and bonded to metal (column 4, lines 15-20). Sweeny does not teach the glass filled resin as being a nylon resin. Sweeny et al. teach the resin may be glass filled and may be selected from polyester, epoxy, phenolic, and the like, as noted above (column 4, line 23).

Polyamides are included as like polymers to polyesters, etc. as used in metal polymer composites for use as automobile trimmings (see the abstract of U.S. Patent No. 4,429,020 to Luch). Therefore it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the resin layer taught by Sekido in view of Bauer and Sweeny et al. of a glass filled nylon resin for ease of molding and bonding to the metal insert.

Sweeny does not teach the amount of glass fibers by weight used as the reinforcement fibers of the thermoplastic polymer.

Tanikita et al. teach a lamp reflector for automobiles (column 5, lines 24-25) including a base resin to which aluminum is applied containing 30 wt% of glass fibers (column 4, lines 49-50). The resin may be a polyamide (of which nylon is an example) (column 3, line 24). Therefore, as Tanikita et al. clearly teach a resin containing 30% by

weight of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Sekido in view of Bauer and Sweeny in an amount of 30 wt%.

Likewise, Grefenstein et al. teach a backmolded polymer molding for use in the automotive sector, such as for trim (paragraphs [0017] and [0108] of U.S. equivalent) comprising a backmolded fiber reinforced thermoplastic having a fiber content of from 5 to 30 wt%, such as glass fiber (paragraphs [0014], [0016] and [105] of U.S. equivalent). Thermoplastic polymers include polyamides of which nylon is an example. Therefore, as Grefenstein et al. clearly teach a thermoplastic resin containing 5 to 30 wt% of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Sekido in view of Bauer and Sweeny in an amount of 5 to 30 wt%.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the glass fiber content for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding claim 13, the metal insert of Sekido in view of Bauer may be formed of aluminum (see the arguments with respect to claim 17).

Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Mayumi (JP57140114A) in view of Bauer (EP1044779A1), Sweeny (EP 0376010 A2), and Stickling (EP0607968A1).

Mayumi teaches injection molding of an indication part as outlined above.

Mayumi does not teach the insert as being formed of a metal such as aluminum, the thickness of the metal sheet, the total thickness of the trim piece, or an adhesive for bonding these two layers.

Regarding the metal insert, Bauer teaches an aluminum metal insert for use in a method substantially similar to that taught by Mayumi as outlined above. More particularly, the metal insert includes a hole through with injection molded resin applied to the back of the insert escapes to form a trim piece with a resin feature. Therefore, as Bauer clearly teaches inserts of aluminum metal are suitable for use in injection molding to form a decorative trim piece, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the insert of Mayumi of aluminum metal. Further, it would have been obvious to one having ordinary skill in the art at the time the invention was made to form the insert of metal, since it has been held to be within the general skill of a worker in the art to select a known material on the basis of its suitability for the intended use as a matter of obvious engineering choice. *In re Leshin*, 125 USPQ 416. In particular, as automobile trim pieces typically include both metal and plastic parts, it would be obvious to one of ordinary skill in the art at the time of the claimed invention to form the trim piece of Mayumi of aluminum metal.

Regarding the thickness of the metal sheet and use of an adhesive, Sweeny
teaches an automotive quality, laminate article and method of production thereof
(abstract). The article comprises pre-shaped metal veneers and inner substrates
formed in situ and bonded to the inner surface of the veneers (column 3, lines 1-16).
The metal may be aluminum (column 4, line 1) and may have an exemplary thickness of
0.025 inches or .015 inches (Examples 1 and 2). The substrate is formed of resins such
as polyester, epoxy, phenolic, and the like and may include impregnated fiber materials
(column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). Adhesion
of the metal to the substrate may be improved through use of metal pretreatments or
promoters (columns 4 lines 35-53).

Therefore, as Sweeny clearly teaches thicknesses of 0.025 inches or 0.015
inches are appropriate for automobile trim piece inserts and that an adhesive between a
metal layer and a resin provides the advantage of improved adhesion, it would have
been obvious to one of ordinary skill in the art at the time of the claimed invention to
choose a thickness for the metal layer as taught by Sweeny in forming the taught trim
insert and to further use an adhesive to increase adhesion between the components.

Further, it would have been obvious to one having ordinary skill in the art at the
time of the invention to adjust the thickness for the intended application, since it has
been held that discovering an optimum value of a result effective variable involves only
routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding the total thickness of the trim piece, Stickling teaches adding stability
to a blank part by including a reinforcing layer on both the front and the back of the

blank part. An appropriate thickness for increases stabilization of the blank part is 0.3 to 3 mm (page 6, lines 3-8). Therefore, as Stickling clearly teaches adding front and back skin layers in a thickness of 0.3 to 3 mm to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the backing layer of Mayumi with a thickness as taught by Stickling to increase stability of the insert. Thus, the combined thickness of trim piece (the insert as described above and the backing layer) overlaps the claimed range.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Claim 22 is rejected under 35 U.S.C. 103(a) as being unpatentable over Mayumi (JP57140114A) in view of Stickling (EP0607968A1).

Mayumi teaches injection molding of an indication part as outlined above.

Mayumi does not teach the insert as being comprised of a combination of a preformed skin and a preformed metal layer.

Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. Therefore, as Stickling clearly teaches adding front and back skin layers to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the

claimed invention to include a skin layer on the insert in addition to the backing layer to provide additional stability.

Claim 27 is rejected under 35 U.S.C. 102(b) as anticipated by or, in the alternative, under 35 U.S.C. 103(a) as obvious over Mayumi (JP57140114A).

Mayumi teaches injection molding of an indication part as outlined above.

Mayumi does not teach the thickness of the coefficients of thermal expansion of the components.

However, the claimed physical property of similar coefficients of thermal expansion is expected to be as claimed as like materials to those claimed are used in a like manner.

In the alternative, it would be obvious to one of ordinary skill in the art to select materials whose coefficients of thermal expansion are similar as dissimilar values would result in differing reactions to temperature change leading to development of cracking, bowing, or other flaws in the components when subjected to the typical temperature changes experienced by a trim piece.

Claims 12-13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mayumi (JP57140114A), in view of Bauer (EP1044779A1), Sweeny (EP 0376010 A2), and Stickling (EP0607968A1), and further in view of Luch (U.S. Patent No. 4,429,020), Tanikita et al. (U.S. Patent No. 5,833,889), and Grefenstein et al. (International

Application No. PCT/EP00/05755, U.S. equivalent: Patent Application Publication No. 2006/0029809).

Mayumi in view of Bauer and Sweeny teaches injection molding of an indication part as outlined above.

Mayumi in view of Bauer does not teach the resin layer as a glass filled resin layer including glass fibers as claimed.

Sweeny teaches resins such as polyester, epoxy, phenolic, and the like may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). These resins can be easily molded and bonded to metal (column 4, lines 15-20). Sweeny does not teach the glass filled resin as being a nylon resin. Sweeny et al. teach the resin may be glass filled and may be selected from polyester, epoxy, phenolic, and the like, as noted above (column 4, line 23).

Polyamides are included as like polymers to polyesters, etc. as used in metal polymer composites for use as automobile trimmings (see the abstract of U.S. Patent No. 4,429,020 to Luch). Therefore it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the resin layer taught by Mayumi in view of Bauer and Sweeny et al. of a glass filled nylon resin for ease of molding and bonding to the metal insert.

Sweeny does not teach the amount of glass fibers by weight used as the reinforcement fibers of the thermoplastic polymer.

Tanikita et al. teach a lamp reflector for automobiles (column 5, lines 24-25) including a base resin to which aluminum is applied containing 30 wt% of glass fibers

(column 4, lines 49-50). The resin may be a polyamide (of which nylon is an example) (column 3, line 24). Therefore, as Tanikita et al. clearly teach a resin containing 30% by weight of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Mayumi in view of Bauer and Sweeny in an amount of 30 wt%.

Likewise, Grefenstein et al. teach a backmolded polymer molding for use in the automotive sector, such as for trim (paragraphs [0017] and [0108] of U.S. equivalent) comprising a backmolded fiber reinforced thermoplastic having a fiber content of from 5 to 30 wt%, such as glass fiber (paragraphs [0014], [0016] and [105] of U.S. equivalent). Thermoplastic polymers include polyamides of which nylon is an example. Therefore, as Grefenstein et al. clearly teach a thermoplastic resin containing 5 to 30 wt% of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Mayumi in view of Bauer and Sweeny in an amount of 5 to 30 wt%.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the glass fiber content for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding claim 13, the metal insert of Mayumi in view of Bauer may be formed of aluminum (see the arguments with respect to claim 17).

Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Bauer (EP1044779A1) in view of Sweeny (EP 0376010 A2) and Stickling (EP0607968A1).

Bauer teaches an indication part as described above.

Bauer does not teach the thickness of the metal sheet, the total thickness of the trim piece, or an adhesive for bonding these two layers.

Regarding the thickness of the metal sheet and use of an adhesive, Sweeny teaches an automotive quality, laminate article and method of production thereof (abstract). The article comprises pre-shaped metal veneers and inner substrates formed in situ and bonded to the inner surface of the veneers (column 3, lines 1-16). The metal may be aluminum (column 4, line 1) and may have an exemplary thickness of 0.025 inches or .015 inches (Examples 1 and 2). The substrate is formed of resins such as polyester, epoxy, phenolic, and the like and may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). Adhesion of the metal to the substrate may be improved through use of metal pretreatments or promoters (columns 4 lines 35-53).

Therefore, as Sweeny clearly teaches thicknesses of 0.025 inches or 0.015 inches are appropriate for automobile trim piece inserts and that an adhesive between a metal layer and a resin provides the advantage of improved adhesion, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to choose a thickness for the metal layer as taught by Sweeny in forming the taught trim insert and to further use an adhesive to increase adhesion between the components.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding the total thickness of the trim piece, Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. An appropriate thickness for increases stabilization of the blank part is 0.3 to 3 mm (page 6, lines 3-8). Therefore, as Stickling clearly teaches adding front and back skin layers in a thickness of 0.3 to 3 mm to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the backing layer of Bauer with a thickness as taught by Stickling to increase stability of the insert. Thus, the combined thickness of trim piece (the insert as described above and the backing layer) overlaps the claimed range.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Claim 22 is rejected under 35 U.S.C. 103(a) as being unpatentable over Bauer (EP1044779A1) in view of Stickling (EP0607968A1).

Bauer teaches an indication part as described above.

Bauer does not teach the insert as being comprised of a combination of a preformed skin and a preformed metal layer.

Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. Therefore, as Stickling clearly teaches adding front and back skin layers to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include a skin layer on the insert in addition to the backing layer to provide additional stability.

Claim 27 is rejected under 35 U.S.C. 102(b) as anticipated by or, in the alternative, under 35 U.S.C. 103(a) as obvious over Bauer (EP1044779A1).

Bauer teaches an indication part as described above.

Bauer does not teach the thickness of the coefficients of thermal expansion of the components.

However, the claimed physical property of similar coefficients of thermal expansion is expected to be as claimed as like materials to those claimed are used in a like manner.

In the alternative, it would be obvious to one of ordinary skill in the art to select materials whose coefficients of thermal expansion are similar as dissimilar values would result in differing reactions to temperature change leading to development of cracking, bowing, or other flaws in the components when subjected to the typical temperature changes experienced by a trim piece.

Claims 12-13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bauer (EP1044779A1) in view of Sweeny (EP 0376010 A2) and Stickling (EP0607968A1), and further in view of Luch (U.S. Patent No. 4,429,020), Tanikita et al. (U.S. Patent No. 5,833,889), and Grefenstein et al. (International Application No. PCT/EP00/05755, U.S. equivalent: Patent Application Publication No. 2006/0029809).

Bauer in view of Sweeny teaches an indication part with thicknesses as described above.

Bauer does not teach the resin layer as a glass filled resin layer including glass fibers as claimed.

Sweeny teaches resins such as polyester, epoxy, phenolic, and the like may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). These resins can be easily molded and bonded to metal (column 4, lines 15-20). Sweeny does not teach the glass filled resin as being a nylon resin. Sweeny et al. teach the resin may be glass filled and may be selected from polyester, epoxy, phenolic, and the like, as noted above (column 4, line 23).

Polyamides are included as like polymers to polyesters, etc. as used in metal polymer composites for use as automobile trimmings (see the abstract of U.S. Patent No. 4,429,020 to Luch). Therefore it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the resin layer taught by Bauer in view of Sweeny et al. of a glass filled nylon resin for ease of molding and bonding to the metal insert.

Sweeny does not teach the amount of glass fibers by weight used as the reinforcement fibers of the thermoplastic polymer.

Tanikita et al. teach a lamp reflector for automobiles (column 5, lines 24-25) including a base resin to which aluminum is applied containing 30 wt% of glass fibers (column 4, lines 49-50). The resin may be a polyamide (of which nylon is an example) (column 3, line 24). Therefore, as Tanikita et al. clearly teach a resin containing 30% by weight of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Bauer in view of Sweeny in an amount of 30 wt%.

Likewise, Grefenstein et al. teach a backmolded polymer molding for use in the automotive sector, such as for trim (paragraphs [0017] and [0108] of U.S. equivalent) comprising a backmolded fiber reinforced thermoplastic having a fiber content of from 5 to 30 wt%, such as glass fiber (paragraphs [0014], [0016] and [105] of U.S. equivalent). Thermoplastic polymers include polyamides of which nylon is an example. Therefore, as Grefenstein et al. clearly teach a thermoplastic resin containing 5 to 30 wt% of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Bauer in view of Sweeny in an amount of 5 to 30 wt%.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the glass fiber content for the intended application, since

it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Regarding claim 13, the metal insert of Bauer may be formed of aluminum.

Claims 12-13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sweeny (EP 0376010 A2) in view of Stickling (EP0607968A1), and further in view of Luch (U.S. Patent No. 4,429,020), Tanikita et al. (U.S. Patent No. 5,833,889), and Grefenstein et al. (International Application No. PCT/EP00/05755, U.S. equivalent: Patent Application Publication No. 2006/0029809).

Sweeny teaches an automotive quality, laminate article and method of production thereof (abstract). The article comprises pre-shaped metal veneers and inner substrates formed in situ and bonded to the inner surface of the veneers (column 3, lines 1-16). The metal may be aluminum (column 4, line 1) and may have an exemplary thickness of 0.025 inches or .015 inches (Examples 1 and 2). The substrate is formed of resins such as polyester, epoxy, phenolic, and the like and may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). Adhesion of the metal to the substrate may be improved through use of metal pretreatments or promoters (columns 4 lines 35-53).

Sweeny does not specifically teach the resin layer as having a thickness of no greater than 2.5 mm.

Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. An appropriate thickness for increases

stabilization of the blank part is 0.3 to 3 mm (page 6, lines 3-8). Therefore, as Stickling clearly teaches adding front and back skin layers in a thickness of 0.3 to 3 mm to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the backing layer of Sweeny with a thickness as taught by Stickling to increase stability of the insert.

Further, it would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness and glass fiber content for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Sweeny does not teach the glass filled resin as being a nylon resin.

Sweeny et al. teach the resin may be glass filled and may be selected from polyester, epoxy, phenolic, and the like, as noted above (column 4, line 23). Polyamides are included as like polymers to polyesters, etc. as used in metal polymer composites for use as automobile trimmings (see the abstract of U.S. Patent No. 4,429,020 to Luch). Therefore it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the resin layer taught by Sweeny et al. of a glass filled nylon resin.

Sweeny does not teach the amount of glass fibers by weight used as the reinforcement fibers of the thermoplastic polymer.

Tanikita et al. teach a lamp reflector for automobiles (column 5, lines 24-25) including a base resin to which aluminum is applied containing 30 wt% of glass fibers

(column 4, lines 49-50). The resin may be a polyamide (of which nylon is an example) (column 3, line 24). Therefore, as Tanikita et al. clearly teach a resin containing 30% by weight of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Sweeny in an amount of 30 wt%. Thus the claimed invention as a whole is *prima facie* obvious over the combined teachings of the prior art.

Likewise, Grefenstein et al. teach a backmolded polymer molding for use in the automotive sector, such as for trim (paragraphs [0017] and [0108] of U.S. equivalent) comprising a backmolded fiber reinforced thermoplastic having a fiber content of from 5 to 30 wt%, such as glass fiber (paragraphs [0014], [0016] and [105] of U.S. equivalent). Thermoplastic polymers include polyamides of which nylon is an example. Therefore, as Grefenstein et al. clearly teach a thermoplastic resin containing 5 to 30 wt% of glass fibers provides the advantage of structural reinforcement suitable for automobile trim, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to include the glass fiber filler of Sweeny in an amount of 5 to 30 wt%. Thus the claimed invention as a whole is *prima facie* obvious over the combined teachings of the prior art.

Regarding claim 13, a pre-shaped aluminum sheet is taught (Example 1).

Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sweeny (EP 0376010 A2) in view of Stickling (EP0607968A1).

Sweeny teaches an automotive quality, laminate article and method of production thereof (abstract). The article comprises pre-shaped metal veneers and inner substrates formed in situ and bonded to the inner surface of the veneers (column 3, lines 1-16). The metal may be aluminum (column 4, line 1) and may have an exemplary thickness of 0.025 inches or .015 inches (Examples 1 and 2). The substrate is formed of resins such as polyester, epoxy, phenolic, and the like and may include impregnated fiber materials (column 4, lines 1-27), such as glass filled fiber materials (column 9, line 12). Adhesion of the metal to the substrate may be improved through use of metal pretreatments or promoters (columns 4 lines 35-53). Sweeny teaches a hot melt process (column 10, lines 29-37) implementing an adhesive in the form of an adhesion promoter (column 9, line 43).

Sweeny does not specifically teach the thickness of the trim piece as ranging from 0.04 to 0.156 inches.

It would have been obvious to one having ordinary skill in the art at the time of the invention to adjust the thickness for the intended application, since it has been held that discovering an optimum value of a result effective variable involves only routine skill in the art. *In re Boesch*, 617 F.2d 272, 205 USPQ 215 (CCPA 1980).

Further, Stickling teaches adding stability to a blank part by including a reinforcing layer on both the front and the back of the blank part. An appropriate thickness for increases stabilization of the blank part is 0.3 to 3 mm (page 6, lines 3-8).

Therefore, as Stickling clearly teaches adding front and back skin layers in a thickness of 0.3 to 3 mm to a blank part provides the advantage of increased stability, it would have been obvious to one of ordinary skill in the art at the time of the claimed invention to form the backing layer of Sweeny with a thickness as taught by Stickling to increase stability of the insert. Thus, the combined thickness of trim piece (the insert as described above and the backing layer) overlaps the claimed range.

Response to Arguments

Applicant's arguments, see the Remarks and amendments, filed 10/17/08, with respect to the objection to and rejections under 35 USC 112 of claim 14 and the rejections over prior art have been fully considered and are persuasive in light of the present amendments. The objection and rejections have been withdrawn.

Applicant's arguments with respect to the rejections over prior art have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to AARON S. AUSTIN whose telephone number is (571)272-8935. The examiner can normally be reached on Monday-Friday: 7:30 AM to 4:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jennifer McNeil can be reached on (571) 272-1540. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

/John J. Zimmerman/
Primary Examiner, Art Unit 1794

/Aaron S Austin/
Examiner, Art Unit 1794