CT561: Systems Modelling & Simulation

4. Additional Flows and Higher Order Stock Systems

Prof. Jim Duggan,
School of Engineering & Informatics
National University of Ireland Galway.
https://github.com/JimDuggan/SDMR

NUI Galw OÉ Gaillin

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

1

Summary to date

- Stocks and Flows
- Feedback
- Integration: Graphical and Numerical Euler's equation (spreadsheet and Vensim)
- One stock examples
 - Customer growth
 - Bank Balance
 - World Population

NUI Galway OÉ Gaillimh Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

ว

(3) Formulating flows: adjustment to a goal

- Managers often seek to adjust the state of the system until it equals a goal or desired state.
- The simplest form of this negative feedback is
 - $-R_1 = Discrepancy/AT = (S^* S)/AT$

NUI Galway OÉ Gaillimh

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

2

Observations on Goal Adjustment

- "Desired minus actual over adjustment time" is the classic linear negative feedback system. (Sterman 2000).
- Examples:
 - Change in Price = (Competitor Price Price)/Price Adjustment Time
 - Heat Loss from Building = (Outside Temperature Inside Temperature)/Temperature Adjustment
 Time
 - Net Hiring Rate = (Desired Labour Labour)/Hiring Delay

NUI Galway OÉ Gaillimh

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

Challenge 4.1

- For each of the following, build a one-stock model and show the impact three different adjustment times have on the stock variable.
 - Net Hiring Rate = (Desired Labour Labour)/Hiring Delay
 - Change in Price = (Competitor Price Price)/Price Adjustment Time
 - Heat Loss from Building = (Outside Temperature Inside Temperature)/Temperature Adjustment

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

(4) Flow = Resource * Productivity

- The flows affecting a stock frequently depend on resources other than the stock itself
- The rate is determined by a resource and the productivity of that resource
- Can be applied to an inflow or outflow
- Rate = Resource * Productivity
- Production = Labour Force * Average Productivity

Amount Produced = INTEG(Production, 0) Units: Units

Average Productivity = 10 *Units: Units/(People*Day)*

Number of Employees = 100Units: People

Production = Average Productivity * Number of Employees Units: Units/Day

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

Challenge 4.2

- Build a resource/productivity flow equation for *Vaccines Dispensed*
- Variables include *Health Care Worker* and *Health Care Worker Productivity*
- Extend the model to include Vaccines as a resource that gets depleted every time a vaccine is dispensed. Ensure that vaccines cannot be dispensed unless there is a vaccine in stock.

NUI Galway OÉ Gaillimh Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

Flow = Resource * Productivity

- Rate = Resource * Productivity
- · Can be applied to an outflow
- Example:
 - Insurance Claims Backlog
 - Claims Arriving
 - Claims Completed
 - Number of Staff
 - Productivity (claims/person/day)

Claims Backlog = INTEG(Claims Arriving - Claims Processed, 25)

Claims Processed = Average Productivity * Number of Staff

Number of Staff = 25

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

9

Need to ensure stock stays positive

• Rules:

- If there is no claims backlog, then the claims processed should be zero
- If the claims backlog is less than the claims processing capacity, then only the backlog should be processed
- If the claims backlog is greater than the claims processing capacity, then only the claims processing capacity should be processed.

Claims Backlog	Number of Staff	Average Productivity	Capacity	Claims Processed
0	25	2	50	0
49	25	2	50	49
2000	25	2	50	50

NUI Galway OÉ Gaillimh

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

13

IF-ELSE RULE - MIN Function

Claims Backlog	Number of Staff	Average Productivity	Capacity	Claims Processed
0	25	2	50	0
49	25	2	50	49
2000	25	2	50	50

Claims Processed = MIN(Claims Backlog, Number Staff * Average Productivity)

NUI Galwa OÉ Gailliml

Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

15

Challenge 4.3

- Extend the Vaccine Model to include
 - Those Yet to be vaccinated
 - Those Vaccinated
 - Those with non-effective vaccines (assume efficacy of 73%)
- Make the vaccination flow subject to two constraints
 - Vaccine availability
 - Health Care workers
 - HCW Productivity
- Identify all possible outcomes (similar to earlier table)

NUI Galway OÉ Gaillimh Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

16

Higher Order Systems (Multiple Stocks)

- We can extend our models to build models with more than one stock (interacting stocks).
- · Basic formulations include
 - Fractional increase
 - Fractional decrease
 - Adjustment to a goal
 - Resources/Productivity

NUI Ga OÉ Gaill Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21

17

Challenge 4.4 2-Stock Model of University

- Create a 2-stock University Model
- Students are recruited and graduate using fractional increase & decrease (0.25/year)
- Start with 10000 students
- Staff (initial value 500) are recruited using a goal adjustment structure
- Assume the desired student/staff ratio is 20:1
- Sketch the stock and flow structure, with equations
- · Identify the feedback in the model
- Speculate on how the stocks will react to the following separate scenarios:
 - The desired student staff ratio drops to 15
 - There is a new influx of 1000 students per year from 2025
- How might the stock of staff influence the stock of students?

NUI Galway OÉ Gaillimh Lecture 4 – Additional Flows and Higher Order Stock Models

CT 561 2020/21