计算方法

插值法

1. 给定 y = f(x) 的三个值,求二次拉格朗日插值 $L_2(x)$ 及其余项 $R_2(x)$.

x_i	0	1	2
y_i	3	5	4

2. 给定 y = f(x) 的一组值,求拉格朗日插值多项式及其余项,和牛顿插值多项式

x_i	0	1	2
y_i	1	2	7

3. 给定 y = f(x) 的一组值,求牛顿插值多项式及余项.

x_i	-1	0	1	3
y_i	1	-1	-1	29

4. 设 $x_j(j = 0, 1, \dots, n)$ 为互异节点, 证明:

•
$$\sum_{j=0}^{n} x_j^k l_j(x) \equiv x^k, \quad k = 0, 1, \dots, n;$$

•
$$\sum_{j=0}^{n} (x_j - x)^k l_j(x) \equiv 0, \quad k = 1, \dots, n;$$

5. 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$, 证明

$$f[x, x_0, x_1, \cdots, x_m] = \begin{cases} n - m - 1 次多项式, & m < n - 1, \\ a_n, & m = n - 1, \\ 0, & m > n - 1. \end{cases}$$