سیگنالها و سیستمها

فصل پنجم

تبديل فوريه زمان گسسته

تبديل فوريه

سری فوریه ابزاری قدرتمند برای تجزیه و تحلیل سیگنالهای متناوب است ولی در مورد سیگنالهای نامتناوب کاربردی ندارد و لذا بحث تبدیل فوریه پیش میآید.

ایده اصلی برای تعریف تبدیل فوریه گسسته بهمنظور تحلیل فرکانسی سیگنال ها و سیستمهای زمان گسسته از آنجا گرفته شده است که یک سیگنال نامتناوب را میتوان به صورت سیگنال متناوب با دوره تناوب بینهایت در نظر گرفت و از تعاریف و مفاهیم سری فوریه گسسته کمک گرفت تا به تبدیل فوریه گسسته دست یابیم.

تبديل فوريه زمان گسسته

روابط تبدیل فوریه و عکس تبدیل فوریه

روشی برای بیان سیگنال
$$x[n]$$
 از $x[n]$ از $x[n]$ از $x[n]$ از $x[n]$ از $x[n]$ جوزہ زمان به حوزہ فرکانس $x[n]$ جوزہ زمان به حوزہ فرکانس

روشی برای بیان سیگنال بیان سیگنال
$$x[n]=rac{1}{2\pi}\int_{2\pi}X(e^{j\omega})e^{j\omega n}d\omega \;\Rightarrow\;$$
از حوزه فر کانس به حوزه زمان

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \Rightarrow X(e^{j\omega}) = \mathcal{F}\{x[n]\} \quad x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}$$

نکته: تبدیل فوریه زمان گسسته را طیف سیگنال زمانگسسته می نامند و همانند سیگنال زمان پیوسته یک تابع پیوسته از فرکانس (ω) است.

تبديل فوريه زمان گسسته

موارد تفاوت با تبديل فوريه زمان پيوسته

است. $\sqrt{}$ تبدیل فوریه زمان گسسته متناوب با دوره تناوب $\sqrt{}$

$$X(e^{j(\omega+2k\pi)}) = X(e^{j\omega})$$

 2π بازه انتگرالگیری در تبدیل فوریه زمان گسسته معکوس، محدود است. (روی بازهای بهطول انتگرالگیری انجام میشود).

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

تبديل فوريه زمان گسسته

موارد تفاوت با تبدیل فوریه زمان پیوسته

خطیف سیگنال زمانگسسته با تغییرات آهسته (سیگنالهای فرکانس پایین یا همان پایینگذر) نزدیک $\sqrt{2k\pi}$ غیر صفر است. به عبارت دیگر برای سیگنالهای فرکانس پایین اندازه طیف نزدیک $2k\pi$ بیشتر از اندازه طیف در اطراف $(2k+1)\pi$ است.

تبديل فوريه زمان گسسته

موارد تفاوت با تبديل فوريه زمان پيوسته

ریگر سیگنال زمانگسسته با تغییرات سریع نزدیک \mathbb{Z} بزرگتر از است. به عبارت دیگر برای سیگنالهای فرکانس بالا (بالاگذر) اندازه طیف نزدیک $(2k+1)\pi$ بزرگتر از اندازه طیف در اطراف $2k\pi$ است.

همگرایی تبدیل فوریه زمان گسسته

شرایط کافی برای همگرایی (مشابه حالت پیوسته)

x[n] شرط جمع پذیری مطلق سیگنال

$$\sum_{n=-\infty}^{+\infty} |x[n]| < \infty$$

x[n] شرط محدودیت انرژی سیگنال

$$\sum_{n=-\infty}^{+\infty}|x[n]|^2<\infty$$

** باید توجه داشت که تبدیل فوریه زمان گسسته معکوس، مشکل همگرایی ندارد.

تبديل فوريه زمان گسسته

مثال: تبدیل فوریه سیگنال زیر را بهدست آورید:

$$x[n] = a^n u[n], \qquad |a| < 1$$

تبدیل فوریه
$$X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}\ \Rightarrow\ X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}a^nu[n]e^{-j\omega n}$$
 زمان گسسته

$$=\sum_{n=0}^{\infty}(ae^{-j\omega})^n=\frac{1}{1-ae^{-j\omega}}$$

تبدیل فوریه زمان گسسته

(0 ejw)-n

010

مثال: تبدیل فوریه سیگنال زیر را بهدست آورید:

$$x[n] = a^{|n|}, \qquad |a| < 1$$

تبدیل فوریه
$$X\!\left(e^{j\omega}
ight) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$
 زمان گسسته

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$
 زمان گسسته $X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} a^{|n|}e^{-j\omega n} = \sum_{n=0}^{\infty} a^n e^{-j\omega n} + \sum_{n=-\infty}^{-1=1} a^{-n} e^{-j\omega n}$ $\Rightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n + \sum_{n=-\infty}^{\infty} (ae^{j\omega})^m.$

$$\Rightarrow X(e^{j\omega}) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n + \sum_{m=1}^{\infty} (ae^{j\omega})^m.$$

$$\Rightarrow X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{j\omega}}{1 - ae^{j\omega}} = \frac{1 - a^2}{1 - 2a\cos\omega + a^2}$$

$$2k\pi > (2k+1)\pi$$

تبدیل فوریه زمان گسسته

مثال: تبدیل فوریه سیگنال زیر را بهدست آورید:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

$$\Rightarrow X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n}.$$

$$\Rightarrow X(e^{j\omega}) = \frac{\sin\omega\left(N_1 + \frac{1}{2}\right)}{\sin(\omega/2)}$$

تبدیل فوریه زمان گسسته

مثال: تبدیل فوریه سیگنال زیر را بهدست آورید:

$$x[n] = \delta[n]$$

$$x[n]\delta[n-n_0]=x[n_0]\delta[n-n_0]$$
 تبدیل فوریه $X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n} \Rightarrow X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}\delta[n]e^{-j\omega n}=1$ زمان گسسته

تبدیل فوریه
$$\hat{x}[n]=rac{1}{2\pi}\int_{2\pi}\overset{\Lambda}{\widehat{X(e^{j\omega})}}e^{j\omega n}d\omega \ \Rightarrow \hat{x}[n]=rac{1}{2\pi}\int_{-W}^{W}e^{j\omega n}d\omega = rac{\sin Wn}{\pi n}$$
معکوس

تبديل فوريه زمان گسسته

با به دست آورید:
$$X\!\left(e^{j\omega}
ight)=\delta(\omega)$$
 , $-\pi<\omega\leq\pi$ را به دست آورید:

تبدیل فوریه
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \delta(\omega) e^{j\omega n} d\omega$$
 معکوس
$$= \frac{1}{2\pi} \int_{2\pi} \delta(\omega) e^{j(0)n} d\omega = \frac{1}{2\pi}$$

تبديل فوريه زمان گسسته براي سيگنالهاي متناوب

دقت کنید که سیگنالهای متناوب شرط کافی برای همگرایی را ندارند ولی تبدیل فوریه دارند ابتدا فرض می کنیم که تبدیل فوریه سیگنال x[n] برابر است با:

$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} 2\pi\delta(\omega - \omega_0 - 2\pi l)e^{j\omega n}$$

$$\int \Rightarrow x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi\delta(\omega - \omega_0 - 2\pi l)e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{2\pi} 2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)e^{j(\omega_0 + 2\pi l)n} d\omega$$

$$= c_{l=-\infty} \int_{2\pi} 2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)e^{j(\omega_0 + 2\pi l)n} d\omega$$

$$= e^{j(\omega_0 + 2\pi l)n} \int_{2\pi} 2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l) d\omega = e^{j\omega_0 n} e^{j2\pi ln} = e^{j\omega_0 n}$$

تبديل فوريه زمان گسسته براي سيگنالهاي متناوب

$$e^{j\omega_0 n} \stackrel{\mathcal{F}}{\longleftrightarrow} \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$

$$x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)t} \longleftrightarrow x_k$$

$$x[n] = \sum_{k=-\infty}^{+\infty} a_k e^{jk\left(\frac{2\pi}{N}\right)t} \longleftrightarrow X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta\left(\omega - \frac{2k\pi}{N}\right)$$

تبديل فوريه گسسته براي سيگنالهاي متناوب

$$x[n] = \cos \omega_0 n$$
 $x[n] = \cos \omega_0 n$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $\omega_0 = \frac{2\pi}{5}$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $\omega_0 = \frac{2\pi}{5}$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $\omega_0 = \frac{2\pi}{5}$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $\omega_0 = \frac{2\pi}{5}$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{1}{2}e^{j\omega_0 n} + \frac{1}{2}e^{-j\omega_0 n},$ $x[n] = \cos \omega_0 n = \frac{2\pi}{5}$ x

$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} \pi \, \delta\left(\omega - \frac{2\pi}{5} - 2\pi l\right) + \sum_{l=-\infty}^{+\infty} \pi \, \delta\left(\omega + \frac{2\pi}{5} - 2\pi l\right)$$

تبديل فوريه گسسته براي سيگنالهاي متناوب

مثال: تبدیل فوریه سیگنال زیر را بهدست آورید:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}. \Rightarrow a_k = \frac{1}{N}.$$

$$\Rightarrow X(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$$

خواص تبدیل فوریه زمان گسسته

خاصت تناوب:

$$x[n] \overset{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}). \ \, \bigsqcup \ \, X(e^{j(\omega+2\pi)}) \, = \, X(e^{j\omega}).$$

خاصیت خطی بودن:

$$x_{1}[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X_{1}(e^{j\omega})$$

$$x_{2}[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X_{2}(e^{j\omega}), \qquad \Box \qquad ax_{1}[n] + bx_{2}[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} aX_{1}(e^{j\omega}) + bX_{2}(e^{j\omega}).$$

خاصت شیفت زمانی و فرکانسی:

خواص تبدیل فوریه زمان گسسته

خاصیت مزدوج و تقارن مزدوج:

$$x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}), \quad \square \qquad x^*[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X^*(e^{-j\omega}).$$

if x[n] is real $\implies X(e^{j\omega})$ is conjugate symmetric. $\implies X(e^{j\omega}) = X^*(e^{-j\omega})$ [x[n]real].

خواص تبدیل فوریه زمان گسسته

خاصیت تفاضل گیریگیری و جمع انبارهای:

$$x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}), \stackrel{}{\longrightarrow} x[n] - x[n-1] \stackrel{\mathfrak{F}}{\longleftrightarrow} (1 - e^{-j\omega})X(e^{j\omega}).$$

$$x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}), \quad \underset{m=-\infty}{\longrightarrow} \sum_{m=-\infty}^{n} x[m] \stackrel{\mathfrak{F}}{\longleftrightarrow} \frac{1}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k).$$

خواص تبدیل فوریه زمان گسسته

مثال: با استفاده از خواص، تبدیل فوریه سیگنال زیر را بهدست آورید:

$$x[n] = u[n]$$

$$g[n] = \delta[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} G(e^{j\omega}) = 1.$$

$$x[n] = \sum_{m=-\infty}^{n} g[m]. \qquad X(e^{j\omega}) = \frac{1}{(1 - e^{-j\omega})} G(e^{j\omega}) + \pi G(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

$$= \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k).$$

خواص تبديل فوريه زمان گسسته

قرینگی زمانی:

$$x[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{j\omega}). \quad \Longrightarrow \quad x[-n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{-j\omega}).$$

خواص تبدیل فوریه زمان گسسته

مقیاسدهی زمانی و فرکانسی:

$$x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j\omega), \quad \Longrightarrow x_{(k)}[n] \stackrel{\mathfrak{F}}{\longleftrightarrow} X(e^{jk\omega}).$$

$$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k \\ 0, & \text{if } n \text{ is not a multiple of } k. \end{cases}$$

خواص تبديل فوريه زمان گسسته

مشتقگیری فرکانسی:

$$x[n] \stackrel{\mathfrak{T}}{\longleftrightarrow} X(e^{j\omega}). \qquad nx[n] \stackrel{\mathfrak{T}}{\longleftrightarrow} j\frac{dX(e^{j\omega})}{d\omega}.$$

خواص تبديل فوريه زمان گسسته

تساوي پارسوال:

$$x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j\omega), \quad \Longrightarrow \sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

خواص تبديل فوريه زمان گسسته

خاصيت كانولوشن:

$$\begin{array}{c}
x[n] \\
 \hline
 & h[n]
\end{array}$$

$$x[n] = e^{j\omega n} \longrightarrow y(t) = H(e^{-j\omega})e^{j\omega n} \qquad H(e^{-j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

$$H(e^{-j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

$$y[n] = x[n] * h[n], \stackrel{\mathfrak{F}}{\longleftrightarrow} Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}),$$

خواص تبديل فوريه زمان گسسته

$$x[n]y[n] \longleftrightarrow \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$$

Section	Property	Aperiodic Signal	Fourier Transform
5.3.2 5.3.3 5.3.3 5.3.4 5.3.6 5.3.7 5.4 5.5 5.3.5 5.3.5	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion Convolution Multiplication Differencing in Time Accumulation	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n} x[n]$ $x^*[n]$ $x[-n]$ $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = 0 \\ 0, & \text{if } n \neq 0 \end{cases}$ $x[n] * y[n]$ $x[n]y[n]$ $x[n] - x[n - 1]$ $\sum_{k=-\infty}^{n} x[k]$	$X(e^{j\omega}) \text{ periodic with } Y(e^{j\omega}) \text{ periodic with } Y(e^{j\omega}) \text{ period } 2\pi$ $aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega n_0}X(e^{j\omega})$ $X(e^{j(\omega-\omega_0)})$ $X^*(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{j\omega})$ $X(e^{j\omega})$ $\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$ $(1 - e^{-j\omega})X(e^{j\omega})$ $\frac{1}{1 - e^{-j\omega}}X(e^{j\omega})$ $+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$

		، زمان گسسته	خواص تبديل فوريه
5.3.8	Differentiation in Frequency	nx[n]	$jrac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$egin{array}{l} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ rac{\Im e\{X(e^{j\omega})\}}{ X(e^{j\omega}) } &= -\Im m\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \ rac{\Im e\{X(e^{j\omega})\}}{ X(e^{j\omega}) } &= -rac{\Im e\{X(e^{-j\omega})\}}{ X(e^{-j\omega}) } \end{array}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_e[n] = \mathcal{E}v\{x[n]\}$ [x[n] real] $x_e[n] = \mathcal{O}d\{x[n]\}$ [x[n] real]	$\Re e\{X(e^{j\omega})\}$ $j\Im m\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	elation for Aperiodic Signals	J (/)
	$\sum_{n=-\infty}^{+\infty} x[n] $	$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)		
$\sum_{k=(N)} a_k e^{jk(2n/N)n}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\left(\omega-\frac{2\pi k}{N}\right)$	a_k		
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		
$\cos \omega_0 n$		(b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic		

		FS.
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_

	F	FS
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_{(j)}}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

	F	<u></u> = 5
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

		خاصیت دوگانی (Duality)		
	Continuous time		Di	iscrete time
	Time domain	Frequency domain	Time domain	Frequency domain
	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)}$
Fourier Series	continuous time periodic in time	discrete frequency aperiodic in frequency	$\frac{\text{discrete time periodic in time}}{x[n] =}$	discrete frequency periodic in frequency
Fourier	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} _{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
Transform	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

دل گر چه درین بادیه بسیار شتافت

یک موی ندانست و بسی موی شکافت

گرچه ز دلم هزار خورشید بتافت

آخر به کمال ذرهای راه نیافت

ابوسعيد ابوالخير