3.4 Stability analysis

3.4.1 Exercises

- 1. Let X^* be the set of distinguishable points, i.e. the set of equivalence classes of distance-zero points, in a pseudometric space X. Show that X^* is the terminal object in a (relatively small) category that also includes X as an object.
- 2. Define the radius $r(X) = \min\{D_X(x, X \setminus \{x\}) \mid x \in X\}.$
 - a) Prove that $r: \mathsf{FinPMet} \to \mathbb{R}_{\geq 0}$ is continuous with respect to a suitable pseudometric on FinPMet.
 - b) Rigorously restate the assertion that $\max\{d_X(\min\max(X), x) \mid x \in X \setminus \{\min\max(X)\}\}$ varies continuously with perturbations in X. Prove that this rigorous statement is correct.
- 3. Let \mathcal{D} be the set of finite decompositions of [0,1] into intervals of non-negative length, i.e. $0 = a_0 \le a_1 \le a_2 \le \cdots \le a_n = 1$ for some $n \in \mathbb{N}$.
 - a) Prove by construction that every $D \in \mathcal{D}$ is obtained as the (nonincreasing) sequence $m_i = \max\{\min\{d(x,\ell) \mid \ell \in L_i\} \mid x \in X^* \setminus L_i\}$ of a maxmin procedure on a finite pseudometric space X seeded with ℓ_0 so that $\max\{d(x,\ell_0) \mid x \in X^* \setminus \{\ell_0\}\} = 1$. Is it enough to consider only finite metric spaces?
 - b) Define a reasonable metric or pseudometric on \mathcal{D} . Which is more appropriate?
 - c) Prove that the map $(X, \ell_0) \mapsto D$ from part (a) is stable when $|X| \leq 3$.
- 4. Let Par(n) denote the set of partitions of n, $Par = \bigsqcup_n Par(n)$, and $Par_{m \times n}$ denote the set of partitions whose Young diagrams are contained in the $m \times n$ rectangle; and let Comp(n) denote the set of compositions of n.
 - a) Prove that, for any $x \in X \in \mathsf{FinPMet}$ with $N = |X|, Q^{\pm}(x, X) \in \mathsf{Par}_{N \times N}$.
 - b) Furthermore prove that $Q^+(x, X) \in \text{Comp}(N)$.
- 5. Define a move in Comp(n) to be of one of the forms

$$(\ldots, m, 1, n-1, \ldots) \leftrightarrow (\ldots, m, n, \ldots) \leftrightarrow (\ldots, m-1, 1, n, \ldots)$$

Define the "rank-radius" $s(X) = \min\{Q^+(x, X) \mid x \in X\}.$

- a) Prove that a sufficiently small perturbation of any $x \in X \setminus f(X)$ produces at most one move difference in $Q^+(x, X)$, and that there exists such a perturbation for each such x.
- b) Suppose that X^* is in general position. Prove that then a sufficiently small perturbation of any $x \in X$ produces at most one move difference in s(X), and that there exists such a perturbation for each such x.