+ The Curse of Dimensionality Dynamic Programming

Thomas Jørgensen

The Curse of Dimensionalit

Programming

Until nex

Recap: Linear interpolation

- Recap (# + 1 known nodes!):
 - Let $\hat{x} = [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_{t+1}]$ be grid points
 - Let $\hat{f} = [\hat{f}_1, \hat{f}_2, ..., \hat{f}_{\#+1}] = [\hat{f}(\hat{x}_1), \hat{f}(\hat{x}_2), ..., \hat{f}(\hat{x}_{\#+1})]$ be the *function values* at these points
 - Linear interpolation then is

$$f(x) \approx \check{f}(x; \hat{f}) = \hat{f}_n + \frac{\hat{f}_{n+1} - \hat{f}_n}{\hat{x}_{n+1} - \hat{x}_n} (x - \hat{x}_n)$$
where $\hat{x}_n \le x < \hat{x}_{n+1}$

- Requirements for good interpolants:
 - 1 Fast to set up and evaluate
 - Shape preserving (monotonicity and concavity)
 - High flexibility per grid point
 - 4 Continuously differentiable

The Curse of Dimensionality

Programming

Intil nov

Beyond linear interpolation

- Finite element methods (local)
 - Piecewise splines
 - 2 Local basis functions (e.g. B-splines)
- 2 Spectral methods (global basis functions)

The Curse of

1a. Piecewise splines

Linear interpolation can also be written as

$$\check{f}(x;\hat{f}) = \sum_{n=1}^{\#} \mathbf{1}_{x \in [\hat{x}_n; \hat{x}_{n+1})} \phi_n(x;\hat{f})
\phi_n(x;\hat{f}) = [a_n + b_n(x - \hat{x}_n)]$$

where the (a_n, b_n) 's are chosen such that

$$\phi_n(\hat{x}_n) = \hat{f}_n, \forall n \in \{1, 2, ..., \#\}
\phi_n(\hat{x}_{n+1}) = \hat{f}_{n+1}, \forall n \in \{1, 2, ..., \#\}$$

Higher order piecewise splines:

$$\phi_n(x;\hat{f}) = a_n + b_n(x - x_n) + c_n(x - x_n)^2 + \dots$$

Slide 5/32

The Curse of Dimensionalit

Programming

Until ne

1a. Piecewise cubic splines I

• Piecewise cubic splines:

$$\phi_n(x;\hat{f}) = a_n + b_n(x - x_n) + c_n(x - x_n)^2 + d_n(x - x_n)^3$$

where the (a_n, b_n, c_n, d_n) 's are chosen such that

$$\begin{array}{rcl} \phi_{n}(\hat{x}_{n}) & = & \hat{f}_{n}, \, \forall n \in \{1,2,\ldots,\#\} \\ \phi_{n}(\hat{x}_{n+1}) & = & \hat{f}_{n+1}, \, \forall n \in \{1,2,\ldots,\#\} \\ \phi'_{n}(\hat{x}_{n+1}) & = & \phi'_{n+1}(\hat{x}_{n+1}), \, \forall n \in \{1,2,\ldots,\#-1\} \\ \phi''_{n}(\hat{x}_{n+1}) & = & \phi''_{n+1}(\hat{x}_{n+1}), \, \forall n \in \{1,2,\ldots,\#-1\} \\ \phi''_{n}(\hat{x}_{1}) & = & 0 \, (\text{could be something else}) \\ \phi''_{n}(\hat{x}_{\#+1}) & = & 0 \, (\text{could be something else}) \end{array}$$

(number of equations:
$$2# + 2(# - 1) + 2 = 4#$$
)

The Curse of Dimensionality

Programming

Until nex

Illustration: Linear and cubic spline

The Curse of Dimensionality

Programming

Until nex

1a. Piecewise cubic splines II

- Pro piecewise cubic splines:
 - 1 No error at known points
 - More flexible than linear interpolation
 - 3 Twice continuously differentiable
- Con piecewise cubic splines:
 - Slower than linear interpolation
 - 2 Not shape-preserving
 - 3 Poor extrapolation
- Shape-preserving: Schumaker (1983)

The Curse of Dimensionality

Programming

Until nex

Illustration: Schumaker (1983) spline

• Discrete choice example on white-board

The Curse of Dimensionality

Programming

Until nex

1b. B-splines

• Until now piecewise interpolation:

$$\check{f}(x) = \sum_{n=1}^{\#} \mathbf{1}_{x \in [x_n; x_{n+1})} \phi_n(x; \hat{f})$$

• Alternative finite element method: Local basis functions

$$\check{f}(x) = \sum_{n=1}^{\#} \omega_n(\hat{f})\phi_n(x)$$

where we note that the basis functions, $\phi_n(x)$, are independent of \hat{f}

The Curse of Dimensionality

Programming

Until ne

1b. Linear B-spline

Choose

$$\omega_n(\hat{f}) = f_n
 \phi_n(x) = \begin{cases}
 0 & \text{if } x \notin [x_{n-1}, x_{n+1}] \\
 \frac{x - x_{n-1}}{x_n - x_{n-1}} & \text{if } n > 1 \text{ and } x \in [x_{n-1}, x_n) \\
 \frac{x_{n+1} - x}{x_{n+1} - x_n} & \text{if } n < \# + 1 \text{ and } x \in [x_n, x_{n+1})
 \end{cases}$$

2 then this is yet another way to do linear interpolation

3 More general $\phi_n(x) \rightarrow$ higher-order **B-splines**

The Curse of Dimensionality

Programming

Until nex

1b. The $\phi_n(x)$'s for a linear B-spline (10 nodes)

The Curse of Dimensionality

Programming

Until ne

2. Regression with polynomials

• Interpolant with *P global* basis functions

$$\check{f}(x) = [\phi_1(x) \phi_2(x) \cdots \phi_P(x)] \omega(\hat{f}) = \sum_{i=1}^P \omega_i(\hat{f}) \phi_i(x)$$

• $\omega(\hat{f})$ can be found by **OLS regression**:

$$X = \begin{pmatrix} \phi_{1}(\hat{x}_{1}) & \phi_{2}(\hat{x}_{1}) & \cdots & \phi_{P}(\hat{x}_{1}) \\ \phi_{1}(\hat{x}_{2}) & \phi_{2}(\hat{x}_{2}) & \cdots & \phi_{P}(\hat{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1}(\hat{x}_{\#+1}) & \phi_{2}(\hat{x}_{\#+1}) & \cdots & \phi_{P}(\hat{x}_{\#+1}) \end{pmatrix}$$

$$Y = [\hat{f}_{1} \hat{f}_{2} \dots \hat{f}_{\#+1}]'$$

$$\omega(\hat{f}) = [\omega_{1} \omega_{2} \cdots \omega_{P}]' = (X'X)^{-1}X'Y$$

- Convention: $\phi_i(x) = T_i(g(x))$
- Ordinary polynomials: $T_i(z) = z^{i-1}$ and g(x) = x

The Curse of Dimensionalit

Programming

Until nex

2. Regression with Chebyshev polynomials

- Interval $x \in [a; b]$: Use $g(x) = -1 + 2\frac{x-a}{b-a} \in [0, 1]$
- Chebyshev polynomials

$$T_i(z) = \cos(i\cos^{-1}(z))$$

Orthogonal

$$\sum_{n=1}^{\#} T_i(z_n) T_j(z_n) = 0 \text{ for } i \neq j$$

if nodes are chosen as

$$z_n = -\cos\left(\frac{2n-1}{2(\#+1)}\pi\right) \in [-1,1] \text{ for } n = 1,\dots,\#+1$$
$$x_n = g^{-1}(z_n) = a + \frac{z_n + 1}{2}(b-a)$$

(5)

• Drawback: Not shape-preserving; can be added at a cost

The Curse of Dimensionality

Programming

Until nex

Illustration: Chebyshev and regression

The Curse of Dimensionalit

Programming

Until ne

Multi-dimensional interpolation

- Linear interpolation: Simple (next slide)
- **Higher order piecewise splines:** Complicated to find the parameters and no simple shape preserving splines available
- Basis functions: Include cross products of one dimensional basis functions
 - 1 Global polynomial regression
 - 2 Local B-splines
- Frontier topics:
 - **1** Global sparse grids (not all cross products) (Judd et. al. 2014)
 - Locally adaptive sparse grids (+ hierarchy of basis functions)
 (Brumm and Scheidegger, 2014)
 - 3 Scattered data (triangulation and barycentric interpolation)

The Curse of Dimensionality

Programming

Until ne

Bi-linear interpolation

• For $f : \mathbb{R}^2 \to \mathbb{R}$ known at the grid points

$$(x_1, y_1), (x_2, y_2), \dots, (x_{\#+1}, y_{\#+1})$$

1 Locate neighboring points

$$\begin{array}{rcl}
x_n & \leq & x < x_{n+1} \\
y_m & \leq & y < x_{m+1}
\end{array}$$

2 Interpolate in *x*-dimension for **constant** *y*

$$f_{n,m} \equiv f(x_n, y_m) + \frac{f(x_{n+1}, y_m) - f(x_n, y_m)}{x_{n+1} - x_n} (x - x_n)$$

$$f_{n,m+1} \equiv f(x_n, y_{m+1}) + \frac{f(x_{n+1}, y_{m+1}) - f(x_n, y_{m+1})}{x_{n+1} - x_n} (x - x_n)$$

③ Interpolate **across** *y*

$$\check{f}(x,y) = f_{n,m} + \frac{(f_{n,m+1} - f_{n,m})}{y_{n+1} - y_n} (y - y_n)$$

- TASK: illustrate this in 2 dimensions
- Similar in higher dimensions

The Curse of Dimensionality

Programming

Until nex

The Three Curses of Dimensionality

- Multiple states: Exponential growth in total number of grid points for tensor product grids
- **2 Multiple choices:** Harder to solve the optimization problem given the states
- **3 Multiple shocks:** Exponential growth in the number of quadrature points needed to approximate the continuation value
 - \rightarrow lots of tips and tricks to alleviate the curse in practice

The Curse of Dimensionality

Programming

Intil nev

1. Think!

- Only put in stuff you need
- 2 Can you use a discrete state or choice instead of a continuous one?

The Curse of Dimensionality

Programming

Until nex

2. Use analytical structure

1 The problem might contain intra-temporal sub-problems, which can be solved fast (e.g. in closed form)

$$V_{t}(M_{t}) = \max_{C_{t}, D_{t}} u(C_{t}^{\alpha} D_{t}^{1-\alpha}) + \beta \mathbb{E}_{t} \left[V_{t+1}(M_{t+1}) \right]$$
s.t.
$$A_{t} = M_{t} - (p_{C}C_{t} - p_{D}D_{t})$$

$$M_{t+1} = RA_{t} + Y_{t+1}$$

There might be freedom of choice wrt. to state variables

$$V_{t}(A_{t-1}, Y_{t}) = \max_{C_{t}, D_{t}} u(C_{t}^{\alpha} D_{t}^{1-\alpha}) + \beta \mathbb{E}_{t} \left[V_{t+1}(A_{t}, Y_{t+1}) \right]$$
s.t.
$$A_{t} = \underbrace{RA_{t-1} + Y_{t}}_{=M_{t}} - p_{C}C_{t} - p_{D}D_{t}$$

3 The problem might be **scaleable** in a state \rightarrow the problem can be solved in ratio form with one fewer state variable

The Curse of Dimensionality

Programming

Until nex

3. Taste shocks I

1 i.i.d. taste shocks for working or not

$$\begin{split} V_t(M_t, \varepsilon_t^0, \varepsilon_t^1) &= & \max_{L_t \in \{0,1\}} \left\{ v_t(M_t | L_t) + \sigma_\varepsilon \varepsilon_t^{L_t} \right\} \\ v_t(M_t | L_t) &= & \max_{C_t} u(C_t, L_t) + \beta \mathbb{E}_t \left[V_{t+1}(\bullet_{t+1}) \right] \\ &\text{s.t.} \\ M_{t+1} &= & R(M_t - C_t) + W \cdot L_t \end{split}$$

2 Assume that ε_t^0 and ε_t^1 are **Extreme Value Type I** then

$$\mathbb{E}[V_t(M_t, \varepsilon_t^0, \varepsilon_t^1) | M_t] = \sigma_{\varepsilon} \log \left(\sum_{j \in \{0,1\}} \exp \left(\frac{v_t(M_t | L_t)}{\sigma_{\varepsilon}} \right) \right)$$

$$\equiv \mathcal{W}_t(M_t)$$

The Curse of Dimensionality

Programming

Until nex

3. Taste shocks II

• We only need to find choice-specific value functions

$$v_t(M_t|L_t) = \max_{C_t} u(C_t, L_t) + \beta \mathbb{E}_t \left[\mathcal{W}_t(M_{t+1}) \right]$$

2 The choice probabilities for the discrete choices are

$$Pr(L_t = 1|M_t) = Pr(v_t(M_t|1) - v_t(M_t|0) \ge \sigma_{\varepsilon}(\varepsilon_t^0 - \varepsilon_t^1))$$

$$= \frac{\exp(v_t(M_t|1)/\sigma_{\varepsilon})}{\sum_{j \in \{0,1\}} \exp(v_t(M_t|j)/\sigma_{\varepsilon})}$$

• Question: What happens as $\sigma_{\varepsilon} \to 0$ or $\sigma_{\varepsilon} \to \infty$?

The Curse of Dimensionality

Programming

Until nex

4. Pre-computations

• For the problem

$$V_t(M_t) = \max_{C_t} u(C_t) + \beta \mathbb{E}_t \left[V_{t+1}(M_{t+1}) \right]$$
s.t.
$$A_t = M_t - C_t$$

$$M_{t+1} = RA_t + Y_{t+1}$$

1 Construct a grid of the **post-decision state** A_t and pre-compute the **post-decision value function**

$$W_t(A_t) \equiv \mathbb{E}_t \left[V_{t+1} (RA_t + Y_{t+1}) \right]$$

2 Solve the **simpler problem**

$$V_t(M_t) = \max_{C_t} u(C_t) + \beta W_t(A_t)$$

• In **infinite horizon**: Can be a good idea to iterate on *W*_t instead of *V*_t (see Hull 2015)

The Curse of Dimensionality

Programming

Until nex

5. Grids and inverse interpolation

- Grid points should be spend wisely
 - \rightarrow most where there is most curvature
 - 1 e.g. Rust-spaced

$$i \ge 2$$
: $x_i = x_{i-1} + \frac{\overline{x} - x_{i-1}}{(n-i+1)^{\phi}}$
 $x_1 = \underline{x}$

2 or polynomially spaced

$$x_i = \underline{x} + (\overline{x} - \underline{x}) \left(\frac{i-1}{N}\right)^{\phi}$$

• Value function inherits curvature of utility function: Interpolate $u^{-1}(V_t)$, instead of V_t , and convert back. (require that the transformation $u^{-1}(\bullet)$ is monotone)

The Curse of Dimensionality

Programming

Until nex

6. Time-iterations

 We know that optimal interior choices satisfy the Euler-equation

$$u'(C_t) = \beta R \mathbb{E}_t \left[u'(C_{t+1}^{\star}(\Gamma(M_t, C_t))) \right]$$

- **Idea:** Find $C_t^*(M_t)$ by **solving the Euler-equation in** $C_t < M_t$, else $C_t = M_t$
 - This can be easier to solve than the optimization problem itself
 - We do not need the value function at all
 - More accurate why?
- Basis for the *endogenous grid point method* we will discuss in a number of lectures

The Curse of Dimensionalit

Programming

Until nex

Programming principles

- **1** Correct code beats fast/smart incorrect code
- **2 Understandable code** is alfa and omega others and your future-self need to be able to understand it
 - Names. Variables and functions should have precise names
 - Structure: Each part of the code should have its own special purpose; preferably numbered. Repeated complex calculations should be in functions.
 - Comments: Short and add new information
 - Testing: Use assert(x==1,'error msg.')
 - Replicability: Everything should be called from a single file
- **3** Code should only be **optimized** when the bottleneck has been located
 - Time: tic; fun(x) toc;
 - Profile:

```
profile on; fun(x); profile off; profile viewer;
```


More: appendix_good_programming.mlx in the MATLAB online course

The Curse of Dimensionalit

Programming

Until nex

Optimization principles

- Optimize the algorithm you use. Only calculate what you need and especially avoid repeating expensive operations. Below are some "computational costs"
 - addition, subtraction, comparison = 1
 - multiplication = 4
 - division = 10
 - exp/log= 50
 - power= 100
- 2 Tell the computer what you know in advance
 - pre-allocate memory
- Work on consecutive chucks of memory
 - correct loop order (MATLAB is "column-major": first index as the inner-most loop)
 - vectorize all you can
- **4** (Parallize) (parfor in MATLAB)

Do not optimize your code before you are sure it is working and you know where the bottleneck is

The Curse of Dimensionalit

Programming

Until nex

Beyond MATLAB

- Numerical precision (floating point arithmetic)
- Especially **loops** are slow in MATLAB
- Alternatives:
 - 1 Python: Similar speed and complexity (but free)
 - ② Fortran: Very fast, but more complex (easy parallization)
 - **3** C++: Very fast, but more complex (easy parallization)
 - Julia: Almost as fast as C++/Fortran, but still simple (still not fully developed)
- MATLAB can call e.g. C++ code using the mex interface
 → what I am doing all the time:
 - MATLAB for setup and figures
 - 2 C++ with OpenMP for parallization of the central stuff
 - 3 NLopt as an optimizer in C++

The Curse of Dimensionalit

Programming

Until next

Until next

- Ensure that you understand:
 - Linear interpolation
 - 2 Interpolation by regression
 - 3 The curse of dimensionality
 - 4 The use of taste shocks
 - **6** The method of time iteration
- Go to PadLet and ask or answer a question (https://padlet.com/tjo2/dp)
- Next time: Recap! Send me an email (tjo@econ.ku.dk) with stuff you want me to recap.
 Remaining time will be devoted to exercises.

