Vettori

01-stRutture di dati

Ottavia M. Epifania, Ph.D

Lezione di Dottorato @Università Cattolica del Sacro Cuore (MI)

8-9 Giugno 2023

Table of contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Vengono creati **c**oncatenando diverse variabili insieme

Si usa la funzione c()

Vettori

000000000000000

Tutte le variaili all'interno della funzione c() vanno separate da una virgola

Diversi tipi di variabili \rightarrow diversi tipi di vettori:

- int: vettori numerici (numeri interi)
- num: vettori numerici (numeri continui)
- logi: vettori logici
- chr: vettori character
- factor: vettori factor con diversi livelli

int: numeri interi: -3, -2, -1, 0, 1, 2, 3

mesi = c(5, 6, 8, 10, 12, 16)

peso = seq(3, 11, by = 1.5)

[1] 3.0 4.5 6.0 7.5 9.0 10.5

```
[1] 5 6 8 10 12 16 num: tutti i valori numerici tra -\infty e +\infty: 1.0840991, 0.8431089, 0.494389, -0.7730161, 2.9038161, 0.9088839
```

logi

Vettori

Valori logici possono essere veri TRUE (T) o falsi FALSE (F):

v logi = c(TRUE, TRUE, FALSE, FALSE, TRUE)

Г1] TRUE TRUE FALSE FALSE TRUE

Si usano per testare delle condizioni:

mesi > 12

[1] FALSE FALSE FALSE FALSE TRUE

0000000000000000

Vettori

```
chr: characters: a, b, c, D, E, F
v chr = c(letters[1:3], LETTERS[4:6])
[1] "a" "b" "c" "D" "E" "F"
factor: Usa numeri o caratteri per identificare i livelli della variabile:
ses = factor(rep(c("low", "medium", "high"), each = 2))
[1] low low medium medium high high
Levels: high low medium
Si può cambaire l'ordine dei livelli:
ses1 = factor(ses, levels = c("medium", "high", "low"))
[1] low low medium medium high
                                   high
Levels: medium high low
```

Vettori

Creare i vettori

Concatenare le variabili con c(): vec = c(1, 2, 3, 4, 5)

Utilizzando le sequenze:

-5:5 # vector of 11 numbers from -5 to 5

[1] -5 -4 -3 -2 -1 0 1 2 3 4 5

seq(-2.5, 2.5, by = 0.5) # sequence in steps of 0.5

[1] -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Ripetendo gli elementi:

rep(1:3, 4)

[1] 1 2 3 1 2 3 1 2 3 1 2 3

[1] "item1" "item2" "item3" "item4"

Creare i vettori II

Vettori

0000000000000000

```
rep(c("condA", "condB"), each = 3)
[1] "condA" "condA" "condA" "condB" "condB" "condB"
rep(c("on", "off"), c(3, 2))
[1] "on" "on" "off" "off"
paste0("item", 1:4)
```

Non mischiate i vettori! a meno che non lo vogliate davvero

```
\begin{array}{l} \verb|int+num+num|\\ \verb|int/num+logi+| \rightarrow \verb|int/num|\\ \verb|int/num+| factor+| \rightarrow \verb|int/num|\\ \verb|int/num+| chr+| \rightarrow chr\\ \verb|chr+| logi+| \rightarrow chr \end{array}
```

I vettori possono essere sommati/divisi/moltiplicati tra di loro o anche per un numero singolo

```
a = c(1:8) # vettore di lunghezza 8 a
```

[1] 1 2 3 4 5 6 7 8

```
b = c(4:1) # vettore di lunghezza 4
b
```

[1] 4 3 2 1

Vettori

a - b # il vettore b è "riciclato" sul vettore a

```
[1] -3 -1 1 3 1 3 5 7
```

Se i vettori non hanno la stessa lunghezza (o uno non è un multiplo dell'altro) ottenete un warning

Applicando una funzione a un vettore \rightarrow viene applicata a **tutti** gli elementi del vettore

```
sgrt(a)
```

Vettori

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.82842

La stessa operazione si può applicare a ogni singolo elemento del vettore

```
(a - mean(a))^2 # squared deviation
```

[1] 12.25 6.25 2.25 0.25 0.25 2.25 6.25 12.25

Your turn!

Vettori

- Create un vettore di tipo character:
 - condizione A ripetuto 3 volte
 - condizioneB ripetuto 2 volte
 - condizioneC ripetuto 5 volte
- Trasformate il vettore in factor.
- Cambiate i livelli del vettore: condizioneB, condizioneA, condizioneC
- Create un vettore (my_vector) che vada da -3 a 3 a step di 0.2

Vettori

Come si va a "raggiungere" un particolare elemento all'interno del vettore? nomi = c("Pasquale", "Egidio", "Debora", "Luca", "Andrea")

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

Array

Indicizzare i vettori

Vettori

Come si va a "raggiungere" un particolare elemento all'interno del vettore?

nomi = c("Pasquale", "Egidio", "Debora", "Luca", "Andrea")

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

nome_vettore[indice]

Array

Indicizzare i vettori II

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

Pasquale	Egidio	Debora	Luca	Andrea
1	2	3	4	5

 ${\tt nomi[1]} \to$

Pasquale	Egidio	Debora	Luca	Andrea
1	2	2	1	Б

 $nomi[1] \rightarrow Pasquale$

 $\mathtt{nomi[3]} \to$

nomi[seq(2, 5, by = 2)] \rightarrow

Pasquale	Egidio	Debora	Luca	Andrea	
1	2	3	4	5	
${\tt nomi[1]} \to {\sf Pasquale}$					
${\tt nomi[3]} \to {\sf Debora}$					

Pasquale	Egidio	Debora	Luca	Andrea		
1	2	3	4	5		
${\tt nomi[1]} \to {\sf Pasquale}$						
${\tt nomi[3]} \to {\sf Debora}$						
nomi[seq(2, 5, by = 2)] \rightarrow Egidio, Luca						

peso[2] # secondo elemento del vettore peso

Indicizzare i vettori: Esempi

Vettori

00000000000000000

[1] 3 6 9

```
peso Deso
```

[1] 3.0 4.5 6.0 7.5 9.0 10.5

```
[1] 4.5
(peso[6] = 15.2) # sostituisce il sesto elemento del v. peso
[1] 15.2
peso[seq(1, 6, by = 2)] # elementi 1, 3, 5
```

peso[2:6] # dal 2 al 6 elemento di peso

[1] 4.5 6.0 7.5 9.0 15.2

```
peso[-2]  # vettore peso senza il secondo elemento
```

Indicizzare i vettori usando la logica

peso

[1] 3.0 4.5 6.0 7.5 9.0 15.2

Indicizzare i vettori usando la logica

peso

[1] 3.0 4.5 6.0 7.5 9.0 15.2

Quali sono i valori maggiori di 7?

peso > 7

[1] FALSE FALSE FALSE TRUE TRUE TRUE

Indicizzare i vettori usando la logica

```
peso
```

Vettori

00000000000000000

```
[1] 3.0 4.5 6.0 7.5 9.0 15.2
```

Quali sono i valori maggiori di 7?

```
peso > 7
```

```
[1] FALSE FALSE FALSE TRUE TRUE TRUE
```

Usiamo questa informazione per filtrare il nostro vettore:

```
peso[peso > 7] # valori in peso maggiori di 7
```

```
[1] 7.5 9.0 15.2
```

```
peso[peso >= 4.5 & peso < 8] # valori tra 4.5 e 8
```

```
[1] 4.5 6.0 7.5
```

Your turn!

000000000000000

Vettori

- Prendete il vettore numerico che avete creato prima:
 - Estraete il terzo elemento
 - Estraete tutti gli elementi dispari del vettore e assegnateli a my_vector1
 - Estraete tutti gli elementi di my_vector1 ≤ 0

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Vettori

Quel che basta per vincere una seconda dimensione

```
matrix(data, nrow, ncol, byrow = TRUE)
```

Crea una matrice 3×4 e la assegna all'oggetto A:

```
A = matrix(1:12, nrow=3, ncol = 4, byrow = FALSE)

A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12
```

WARNING: i dati all'interno della matrice devono essere tutti dello stesso tipo

Etichette

Vettori

```
rownames(A) = c(paste("riga", 1:nrow(A), sep = "_"))
colnames(A) = c(paste("colonna", 1:ncol(A), sep = "_"))
Α
```

	colonna_1	colonna_2	colonna_3	colonna_4
riga_1	1	4	7	10
riga_2	2	5	8	11
riga_3	3	6	9	12

Array

Trasposta della matrice:

```
Α
```

Vettori

```
colonna_1 colonna_2 colonna_3 colonna_4
                                               10
riga_1
riga_2
                           5
                                               11
                           6
riga 3
                                               12
```

t(A)

```
riga_1 riga_2 riga_3
colonna_1
colonna_2 4
colonna_3
colonna 4
             10
                    11
                           12
```

Creare le matrici (ancora)

Le matrici si possono anche creare concatenando vettori colonna:

```
cbind(a1 = 1:4, a2 = 5:8, a3 = 9:12)

a1 a2 a3

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12
```

o vettori riga:

```
rbind(a1 = 1:4, a2 = 5:8, a3 = 9:12)
```

```
[,1] [,2] [,3] [,4]
a1 1 2 3 4
a2 5 6 7 8
a3 9 10 11 12
```

Indicizzare le matrici

Vettori

Abbiamo due dimensioni:

my_matrix[righe, colonne]

Α

```
colonna_1 colonna_2 colonna_3 colonna_4
riga_1 1 4 7 10
riga_2 2 5 8 11
riga_3 3 6 9 12
```

```
A[1, ] 
ightarrow
```

A[2,]
$$ightarrow$$

A[2, 3]
$$\rightarrow$$

Α

Vettori

```
colonna_1 colonna_2 colonna_3 colonna_4
riga_1 1 4 7 10
riga_2 2 5 8 11
riga_3 3 6 9 12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] ightarrow

A[2, 3] \rightarrow

Α

Vettori

```
colonna_1 colonna_2 colonna_3 colonna_4
riga_1 1 4 7 10
riga_2 2 5 8 11
riga_3 3 6 9 12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] \rightarrow 2, 5, 8, 11

A[2, 3] \rightarrow

Α

Vettori

```
colonna_1 colonna_2 colonna_3 colonna_4
riga_1 1 4 7 10
riga_2 2 5 8 11
riga_3 3 6 9 12
```

A[1,] \rightarrow 1, 4, 7, 10

A[2,] \rightarrow 2, 5, 8, 11

A[2, 3] \rightarrow 8

Your turn!

- Create una matrice 3×3 con la tabellina del 3 (fino al 24, valori per riga)
- Assegnate i nomi alle colonne e alle righe
- Assegnate la trasposta della matrice all'oggetto my t
- Estraete da my_t:
 - la prima riga
 - la seconda colonna
 - la terza cella della terza riga ([3, 3])

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Una matrice che ci ha creduto davvero

Davvero troppo

```
array(data, c(nrow, ncol, ntab))
```

Avendo 3 argomenti oltre i dati nrow, ncol, ntab, la loro indicizzazione prevede l'utilizzo di due virgole per accedere ai singoli argomenti: nome_array[righe, colonne, tab]

Liste

Un array

Vettori

, , 1

, , 2

, , 3

```
my_array = array(1:20, c(2, 5, 3)) # 2 x 5 x 3 array
my_array
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
    1
         3 5
                     9
[2,] 2
         4
             6 8 10
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
   11 13 15
                  17
                    19
[2,] 12
         14
            16
                  18
                      20
```

```
[,1] [,2] [,3] [,4] [,5]
[1,]
             3
                   5
                              9
[2,]
             4
                             10
```

Array 000 Liste

Indicizzare l'array

my_array[1, ,]

Vettori

my_array[, 2,]

my_array[, , 3]

Indicizzare l'array

Vettori

```
my_array[1, , ]

[,1] [,2] [,3]
[1,] 1 11 1
[2,] 3 13 3
[3,] 5 15 5
[4,] 7 17 7
[5,] 9 19 9

my_array[, 2, ]
```

```
my_array[, , 3]
```

Indicizzare l'array

Vettori

```
my_array[1, , ]
    [,1] [,2] [,3]
[1,]
      1 11
[2,] 3 13
[3,] 5 15
   7 17
[4,]
[5,]
      9 19
my_array[, 2, ]
    [,1] [,2] [,3]
[1,] 3 13
[2,] 4 14
my_array[, , 3]
```

Indicizzare l'array

my_array[1, ,]

[2,] 4

```
[,1] [,2] [,3]
[1,] 1 11 1
[2,] 3 13 3
[3,] 5 15 5
[4,] 7 17 7
[5,] 9 19 9

my_array[, 2,]

[,1] [,2] [,3]
[1,] 3 13 3
```

14

my_array[, , 3]
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- **5** Data frames

Un array con più senso

Sono dei contenitori per diversi tipi di oggetti (e.g., vettori, data frames, altre liste, matrici, array ecc.)

Ai loro elementi possono essere assegnati dei nomi:

```
my_list = list(w = peso, m = mesi, s = ses1, a = A)
names(my list)
```

```
[1] "w" "m" "s" "a"
```

```
• -
```

str(my list)

List of 4

```
$ w: num [1:6] 3 4.5 6 7.5 9 15.2
```

```
$ m: num [1:6] 5 6 8 10 12 16
```

```
....$ : chr [1:3] "riga_1" "riga_2" "riga_3"
```

....\$: chr [1:4] "colonna_1" "colonna_2" "colonna_3" "colonna_4

^{\$} s: Factor w/ 3 levels "medium", "high",..: 3 3 1 1 2 2
\$ a: int [1:3, 1:4] 1 2 3 4 5 6 7 8 9 10 ...

Indicizzare le liste

Vettori

Gli elementi della lista possono essere indicizzati con \$ (se la lista ha dei nomi):

```
my list$m # vettore dei mesi
[1] 5 6 8 10 12 16
```

oppure con [[]]:

Posizione dell'elemento: Nome dell'elemento

```
my_list[["m"]]
                              my_list[[2]]
[1] 5 6 8 10 12 16
```

5 6 8 10 12 16

Your turn!

- Create una lista che contenga:
 - La matrice originale con la tabellina del 3
 - La trasposta della matrice
 - Tutti gli elementi ≥ 0 di my_vector1
- Date un nome ad ogni elemento all'interno della lista

Table of Contents

- 1 Vettori
- 2 Matrici
- 3 Array
- 4 Liste
- 5 Data frames

Una lista più ordinata

I data frames sono delle liste di vettori di uguale lunghezza

I diversi vettori possono contenere informazioni di diverse natura

I data frame più comuni sono i data frame in versione wide (i.e., $soggetti \times variabili) \rightarrow nrow(data) = numero di soggetti:$

```
id = paste0("sbj", 1:6)
babies = data.frame(id, mesi, peso)
```

babies

Vettori

```
id mesi peso
1 sbj1
        5 3.0
2 sbj2 6 4.5
3 sbj3 8 6.0
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 15.2
```

Vale tutto quello visto per le matrici:

Prima riga del data frame babies babies [1.]

Prima colonna del data frame babies babies[, 1]

In più:

Vettori

```
babies$mesi # colonna mesi di babies
```

babies\$mesi[2] # secondo elemento del vettore colonna

```
babies[, "id"] # column id
```

babies[2,] # second row of babies (obs on baby 2)

Vettori

```
Logic applies:
```

```
babies[babies$peso > 7, ] # filtra per tutte le righe con

id mesi peso
4 sbj4 10 7.5
5 sbj5 12 9.0
6 sbj6 16 15.2
```

```
#peso > 7
```

babies[babies\$id %in% c("sbj1", "sbj6"),] # restituisce le o

```
id mesi peso
1 sbj1 5 3.0
6 sbj6 16 15.2
```

di questi due soggetti

Working with data frames II

```
dim(babies) # data frame con 6 righe e 3 colonne
```

```
[1] 6 3
```

```
names(babies) # = colnames(babies)
```

```
[1] "id" "mesi" "peso"
```

```
head(babies) # fa vedere le prime sei righe del data frame
```

```
id mesi peso
```

```
1 sbj1 5 3.0
2 sbj2 6 4.5
```

View(babies) # open data viewer

Your turn!

- Create un data frame con 10 osservazioni e le seguenti colonne:
 - id: character, id dei soggetti
 - ses: factor, livello socio economico dei soggetti con 3 livelli, low, medium, high (3 low, 5 medium, 2 high)
 - income: numeric
- Filtrate il data set:
 - Soggetti con high ses
 - Soggetti con income > 2000