IN THE CLAIMS:

Please amend the claims as follows:

1. (currently amended) A method, in stereo widening or corresponding spatial signal
processing of stereo format signals to become suitable for headphone listening,
which method comprisesing: at least the steps of
forming left and right channel signal paths in order to stereophonic
processing of left and right channel input signals into left and right channel output
signals suitable for stereophonic headphone listening, and forming at least one delay
introducing a cross-talk signal path between the left and right channel signal paths,
wherein the method further comprises-the step of
forming a separate monophonic signal path in order to equalize a frequency
spectrum of a monophonic component of the left and right channel output signals by
at least extracting from the left and right channel input signals an at least
substantially monophonic signal component contained in said signals,
processing the monophonic signal component to obtain a processed
monophonic signal component, and
combining said processed monophonic signal component with at least one of
the left and the right channel output signals.
2. (original) The method according to claim 1, wherein the at least substantially
monophonic signal component is extracted from the left and right input signals
based on a momentary average value (L+R)/2 of said signals.
3. (original) The method according to claim 1, wherein the at least substantially
monophonic signal component is extracted from the left and right channel input
signals based on similarity between said signals.
4. (original) The method according to claim 1, wherein the processing of the

Docket No. 915-005.080 Serial No. 10/720,009

monophonic signal component includes processing of a frequency spectrum of said monophonic signal component.

- 5. (original) The method according to claim 4, wherein the processing of the frequency spectrum of said monophonic signal component is performed substantially within a frequency range ranging from 500 Hz to 2 kHz.
- 6. (original) The method according to claim 1, wherein the processing of the monophonic signal component includes adjustment of the gain of said monophonic signal component.
- 7. (original) The method according to claim 6, wherein the adjustment of the gain is performed in a time varying manner.
- 8. (original) The method according to claim 1, wherein the processing of the monophonic signal component includes adding a delay to said monophonic signal component.
- 9. (currently amended) A signal processing device, for stereo widening or eorresponding spatial signal processing of stereo format signals to become suitable for headphone listening, the device comprising:

 _____at least left and right channel signal paths in order to process the left and right channel input signals into left and right channel output signals suitable for stereophonic headphone listening, and at least one delay introducing a cross-talk signal path between the left and right channel signal paths, wherein the device

____a separate monophonic signal path in order to equalize a frequency spectrum of a monophonic component of the left and right channel output signals, said monophonic signal path comprising

further comprises

a signal processor at least means for extracting from the left and right channel input signals an at least substantially monophonic signal component contained in said signals, means and for processing the monophonic signal component to obtain a processed monophonic signal component, and means for combining said processed monophonic signal component with at least one of the left or the right channel output signals.

- 10. (currently amended) The device according to claim 9, wherein the means for extracting the at least substantially monophonic signal component from the left and right channel input signals are is based on determining a momentary average value (L+R)/2 of said signals.
- 11. (currently amended) The device according to claim 9, wherein the means for extracting the at least substantially monophonic signal component from the left and right channel input signals are is based on similarity between said signals.
- 12. (currently amended) The device according to claim 9, wherein the means for processing of the monophonic signal component includes means for processing of a frequency spectrum of said monophonic signal component.
- 13. (currently amended) The device according to claim 12, wherein the means for said signal processor processing the frequency spectrum of said signal component comprises a digital Infinite Impulse Response (HR) or a Finite Impulse Response (FIR) filter structure for said processing of the frequency spectrum of said monophonic signal component.
- 14. (original) The device according to claim 12, wherein the processing of the frequency spectrum of said monophonic signal component is performed substantially within a frequency range ranging from 500 Hz to 2 kHz.

- 15. (currently amended) The device according to claim 9, wherein the means for processing the monophonic signal component includes means for adjusting the gain of said monophonic signal component.
- 16. (currently amended) The device according to claim 15, wherein the means for signal processor is configured to adjusting the gain are arranged to perform the adjustment in a time varying manner.
- 17. (currently amended) The device according to claim 9, wherein the <u>signal</u> processor is configured to means for processing the monophonic signal component include means for adding a delay to said monophonic signal component.
- 18. (original) The device according to claim 9, wherein the device is a digital signal processing device.
- 19. (currently amended) A computer program stored on a computer readable medium, in stereo widening or corresponding spatial signal processing of stereo format signals to process said signals to become suitable for headphone listening, said program comprising machine executable steps arranged configured to carry out at least the steps of a method comprising:

 _______formal input signals into left and right channel output signals suitable for

channel input signals into left and right channel output signals suitable for stereophonic headphone listening, __forming at least one delay introducing a cross-talk signal path between the left and right channel signal paths, and further ____forming a separate monophonic signal path in order to equalize a frequency spectrum of a monophonic component of the left and right channel output signals by at least extracting from the left and right channel input signals an at least substantially monophonic signal component contained in said signals, and _____processing the monophonic signal component to obtain a processed monophonic signal component, and

further combining said processed monophonic signal component with at least one of the left and the right channel output signals. 20. (currently amended) A computer program according to claim 19, wherein it is arrangedconfigured to befor executedion in a digital signal processor. 21. (currently amended) A mobile appliance, with audio capabilities comprising at least signal processing means for stereo widening or corresponding spatial signal processing of stereo format signals to become suitable for headphone listening, said signal processing means comprising: at least left and right channel signal paths in order to process the left and right channel input signals into left and right channel output signals suitable for stereophonic headphone listening, and at least one delay introducing a cross-talk signal path between the left and right channel signal paths, wherein the signal processing means further comprise a separate monophonic signal path in order to equalize a frequency spectrum of a monophonic component of the left and right channel output signals, said monophonic signal path comprising at least means for extracting from the left and right channel input signals an at least substantially monophonic signal component contained in said signals, means for processing the monophonic signal component to obtain a processed monophonic signal component, and means-for combining said processed monophonic signal component with at least one of the left or the right channel output signals.

23. (new) A device, comprising:

at least left and right channel signal paths in order to process the left and right channel input signals into left and right channel output signals suitable for

22. (currently amended) A mobile appliance according to claim 21, wherein it

iscomprising a portable digital player or a digital mobile telecommunication device.

Docket No. 915-005.080 Serial No. 10/720,009

stereophonic headphone listening, and at least one delay introducing a cross-talk signal path between the left and right channel signal paths, wherein the device further comprises

a separate monophonic signal path in order to equalize a frequency spectrum of a monophonic component of the left and right channel output signals, said monophonic signal path comprising at least means for extracting from the left and right channel input signals an at least substantially monophonic signal component contained in said signals, means for processing the monophonic signal component to obtain a processed monophonic signal component, and means for combining said processed monophonic signal component with at least one of the left or the right channel output signals.

24. (new) The device according to claim 23, wherein the means for processing the monophonic signal component include means for processing of a frequency spectrum of said monophonic signal component.