# Homework #2

#### MEMS 0071 - Introduction to Fluid Mechanics

Assigned: September  $7^{\rm th}$ , 2019 Due: September  $13^{\rm th}$ , 2019

## Problem #1

Consider the following differential manometer. The fluid represented by the white is air, that by blue is water. Given  $h_1$ =96 [mm],  $h_2$ =74 [mm], determine the pressure difference  $\Delta P$ = $P_A$ - $P_B$  in [kPa].



### Problem #2

Consider the following differential manometer. The fluid represented by the white is air, that by blue is water and that by green is oil, with a specific gravity SG=0.83. Given  $h_1$ =130 [mm],  $h_2$ =36 [mm] and  $h_3$ =18 [mm], determine the pressure difference  $\Delta P$ = $P_A$ - $P_B$  in [kPa].



## Problem #3

Given the manometer below, find the pressure difference  $\Delta P=P_A-P_B$ . The heights are  $h_1=h_6=86$  [mm],  $h_2=h_3=h_4=h_5=35$  [mm]. The fluid properties are  $\rho_{\rm H_2O}=998$  [kg/m³],  $SG_{\rm Hg}=13.6$ ,  $\rho_{\rm air}=1.225$  [kg/m³],  $\gamma_{\rm glycerine}=11,067$  [N/m³] and  $\rho_{\rm oil}=900$  [kg/m³].



### Problem #4

Given the manometer below, find the pressure difference  $\Delta P = P_A - P_B$ . The density of the fluids used within the manometer, as well as the heights of each fluid level, are given below:

- $\rho_{H_2O}$ =1,000 [kg/m<sup>3</sup>]
- $SG_{Hg} = 13.6$
- $\rho_{air} = 1.225 \text{ [kg/m}^3]$
- $\gamma_{glyc} = 11,067 \text{ [N/m}^3]$

- $h_1 = h_{10} = 86 \text{ [mm]}$
- $h_2 = h_9 = 35 \text{ [mm]}$
- $h_3 = h_8 = 35 \text{ [mm]}$
- $h_4 = h_7 = 51 \text{ [mm]}$
- $h_5 = h_6 = 47 \text{ [mm]}$



#### Problem #5

Given the expression for the resultant force acting on y' of a a submerged plate as:

$$y'F_R = P_o y_c A + \rho g \sin(\theta) (I_{\hat{x}\hat{x}} + y_c^2 A)$$

prove that y' is equal to the following:

$$y' = y_c + \frac{\rho g \sin(\theta) I_{\hat{x}\hat{x}}}{F_R}$$

# Problem #6

Given the expression for the resultant force acting on y' of a submerged plate as:

$$y'F_R = P_o y_c A + \rho g \sin(\theta) (I_{\hat{x}\hat{x}} + y_c^2 A)$$

prove that y', when ambient pressure is neglected, is equal to the following:

$$y' = y_c + \frac{I_{\hat{x}\hat{x}}}{Ay_c}$$