Math 110.1

ABSTRACT ALGEBRA I: Unit III

Course Notes by: Jeremiah Daniel Regalario II-BS Mathematics
University of the Philippines - Diliman
Dr. Lilibeth Valdez

Rings

Definition:

A $\underline{ring} \langle R, +, \cdot \rangle$ is a set together with two binary operations + (called addition) and \cdot (called multiplication) such that the following axioms are satisfied:

- 1. $\langle R, + \rangle$ is an <u>abelian group</u>.
- 2. Multiplication is *associative*, that is, for all $a, b, c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. For all $a, b, c \in \mathbb{R}$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$ (*left and right distributive laws holds.*)

Examples:

- 1. \mathbb{Z} is closed under the usual addition + and multiplication \cdot .
 - 1. $\langle \mathbb{Z}, + \rangle$ is an abelian group.
 - 2. : \cdot is associative.
 - 3. : Left and right distributive laws holds

Thus, $\langle \mathbb{Z}, +, \cdot \rangle$ is a ring.

2. $\langle \mathbb{Q},+,\cdot \rangle$, $\langle \mathbb{R},+,\cdot \rangle$ and $\langle \mathbb{C},+,\cdot \rangle$ are rings.

Remarks:

- 1. If the operations + and \cdot are clear from context we denote the ring $\langle R, +, \cdot \rangle$ simply by R.
- 2. The identity of the group $\langle R, + \rangle$ is denoted 0 and is called the <u>zero element</u> of R.
- 3. The inverse of a in the group $\langle \mathbb{R}, + \rangle$ is denoted -a.
- 4. We write a b for a + (-b).
- 5. To simplify notations, we write ab for $a \cdot b$.
- 6. In the absence of parentheses, multiplication is assumed to be performed before addition, that is, ab+c=(ab)+c

Commutative Rings, Rings with Unity, and Units

Definition:

Let R be a ring.

- 1. If multiplication in R is commutative, then R is called a *commutative ring*.
- 2. An element 1_R such that $\forall r \in R, 1_R r = r = r 1_R$ is called a *multiplicative identity* or a *unity*.
- 3. If R has a multiplicative identity, then R is called a <u>ring with unity</u>.
- 4. Suppose R is a ring with unity $1_R \neq 0$. An element $u \in R$ is a \underline{unit} if u has a multiplicative inverse, that is $\exists u^{-1} \in \mathbb{R}$ such that $uu^{-1} = 1_R = u^{-1}u$.

Remarks:

- 1. Some rings are <u>not commutative</u> and some have <u>no unity</u>.
- 2. If R has unity, then this unity is unique.
- 3. If R has unity 1_R , then 1_R is a unit in R.
- 4. If R has unity, <u>not all</u> elements in the ring are units.

Examples:

- 1. $\langle \mathbb{Z}, +, \cdot \rangle$ is a commutative ring with unity 1. The units of $\mathbb{Z}: 1, -1$.
- 2. $\langle \mathbb{Q}, +, \cdot \rangle$, $\langle \mathbb{R}, +, \cdot \rangle$ and $\langle \mathbb{C}, +, \cdot \rangle$ are commutative rings with unity 1.

Every nonzero element in these rings is a unit.

- 3. $\langle \mathbb{Z}_n, +_n, \cdot_n \rangle$ is a commutative ring with unity 1. The set of units of \mathbb{Z}_n is denoted U(n). Exercise: Determine the elements of U(4) and U(5).

 - $U(4) = \{a \in \mathbb{Z}_4 \mid \exists k \in \mathbb{Z} \text{ s.t. } a \cdot_4 k = 1\} = \{1, 3\}$ $U(5) = \{a \in \mathbb{Z}_5 \mid \exists k \in \mathbb{Z} \text{ s.t. } a \cdot_5 k = 1\} = \{1, 2, 3, 4\}$
- 4. $\langle 2\mathbb{Z}, +, \cdot \rangle$ is a commutative ring with no unity.
- 5. Let $M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d, \in \mathbb{R} \right\}$. Define + and \cdot on $M_2(\mathbb{R})$ as:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Then $M_2(\mathbb{R})$ is a noncommutative ring with unity:

- + is associative and commutative (Exercise)
- · is associative but not commutative (Exercise)
- left and right distributive laws hold (Exercise)
- zero element: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; additive inverse: $\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$; unity: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Theorem 2.13

Definition:

Let R be a ring with additive identity 0. Let $a, b, c \in R$.

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. a(-b) = (-a)b = -(ab).
- 3. (-a)(-b) = ab
- 4. a(b-c) = ab ac and (a-b)c = ac bc.

Proof:

- (1.) $a \cdot 0 + a \cdot 0 = a(0+0) = a \cdot 0$. By left cancellation, $a \cdot 0 = 0$. The proof for $0 \cdot 0 = 0$. a=0 follows analogously.
- (2.) $ab + a(-b) = a(b-b) = a \cdot 0 = 0$. Since the additive inverse of ab is unique, -(ab) = a(-b). The proof that (-a)b = -(ab) proceeds analogously.

3

(3.)
$$(-a)(-b) = -[a(-b)] = -[-(ab)] = ab$$

Remarks:

- 1. If R is a nonzero ring with unity then $1 \neq 0$. (Why?)
- 2. If R is a ring with unity and $a \in R$ then (-1)a = -a. In particular (-1)(-1) = 1.
- 3. Let R be a ring and $a,b,c\in R$. If $a\neq 0$ and ab=ac, then b and c are not necessarily equal. $(a\neq 0 \land ab=ac\Longrightarrow b=c)$
 - e.g. in \mathbb{Z}_4 , $2 \cdot_4 1 = 2 = 2 \cdot_4 3$ but $1 \neq 3$.
- 4. In a ring R, ab = 0 does not necessarily mean that either a = 0 or b = 0.
 - e.g. in \mathbb{Z}_6 , $2 \cdot_6 3 = 0$

Group of Units of R (Theorem 2.14)

Definition:

Let R be a ring with unity. The units of R form a group under multiplication.

Remark:

The group of units of a ring with unity R is denoted U(R).

Proof:

• Closure under multiplication: Let $a,b\in U(R)$. (WTS: $ab\in U(R)$). Since $a,b\in U(R)$, $\exists a^{-1},b^{-1}\in R$ such that $aa^{-1}=bb^{-1}=1$. Note that $b^{-1}a^{-1}\in R$ and

$$(b^{-1}a^{-1})(ab) = b^{-1}[(a^{-1})(ab)]$$

$$= b^{-1}[(a^{-1}a)b]$$

$$= b^{-1}[1 \cdot b]$$

$$= b^{-1}b = 1$$

Thus $(ab)^{-1} = b^{-1}a^{-1}$ and so $ab \in U(R)$.

- Associativity of multiplication: Follows from \mathcal{R}_2 .
- Identity element under multiplication: unity $1 \in U(R)$ has the property that

$$\forall a \in U(R) \subseteq R, a \cdot 1 = 1 \cdot a = a.$$

- Inverse under multiplication: Let $a \in U(R)$. Then $\exists a^{-1} \in R$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$. From this, we see that $a^{-1} \in U(R)$.
- $: \langle U(R), \cdot \rangle$ is a group.

Examples:

- 1. $U(\mathbb{Z}) = \{1, -1\} \cong \mathbb{Z}_2$
- 2. $U(\mathbb{Q}) = \mathbb{Q}^*, U(\mathbb{R}) = \mathbb{R}^*, U(\mathbb{C}) = \mathbb{C}^*$
- 3. $U(\mathbb{Z}_n) = U(n)$ = set of all elements of \mathbb{Z}_n that are relatively prime to n
- 4. $U(M_2(\mathbb{R})) = GL(2, \mathbb{R})$

Fields and Division Rings

Definition:

Let R be a ring with unity $1 \neq 0$. If every nonzero element of R is a unit then R is called a <u>division ring</u>.

If R is a commutative division ring, then R is called a *field*.

Remarks:

Let R be a ring with unity $1 \neq 0$.

- 1. If R is a field, we write $\frac{a}{b}$ for $ab^{-1} = b^{-1}a$. In particular, we write $b^{-1} = \frac{1}{b}$.
- 2. A division ring can be thought of as an algebraic structure that is closed under addition, subtraction, multiplication and division by nonzero elements.
- 3. R is a division ring if and only if $R^* := R \setminus \{0\}$ is a group.
- 4. R is a field if and only if $R^* := R \setminus \{0\}$ is an abelian group.

Examples:

- 1. \mathbb{Z} is not a division ring, and hence not a field.
- 2. \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.
- 3. \mathbb{Z}_4 is not a division ring. $: 0 \neq 2 \in \mathbb{Z}_4$ is not a unit.
- 4. \mathbb{Z}_5 is a field.

In \mathbb{Z}_5 :

•
$$\frac{3}{4} = 3 \cdot_5 4^{-1} = 3 \cdot_5 4 = 2$$

•
$$2\frac{1}{3} = 2 + \frac{1}{3} = 2 + \frac{1}{3} = 2 + \frac{1}{5} = 2$$

Subrings and Subfields

Subring

Definition:

A subset S of a ring R which is also a ring itself under the same operations as in R is called a <u>subring</u> of R.

Theorem 2.15

Let R be a ring and S a nonempty subset of R. Then S is a subring of R if and only if for all $a,b\in S, a-b\in S$ and $ab\in S$.

Proof:

 (\Longrightarrow) Since S is a ring, then (S,+) is an abelian group hence $a-b\in S$.

Also, $ab \in S$ since \cdot is a binary operation on S.

 $(\Longleftrightarrow) \text{ Suppose } a-b\in S \text{ and } ab\in S \text{ for all } a,b\in S. \ \mathcal{R}_1: a-b\in S \text{ for all } a,b\in S. \ \mathcal{R}_1$

 $S \Longrightarrow \langle S, + \rangle$ is a subgroup of $\langle R, + \rangle$. Thus, $\langle S, + \rangle$ is an abelian group.

 \mathcal{R}_2 : and \mathcal{R}_3 : follows since operations in S and R are the same.

Remarks:

Let R be a ring and S a subring of R.

- 1. If R is commutative, then S is also commutative.
- 2. S may be without unity even if R has unity.

Subfields

Definition:

A subset S of a field F which is also a field itself under the same operations as in F is called a *subfield* of F.

Theorem 2.16

Let F be a field and S a nonempty subset of F. Then S is a subfield of F if and only if the following hold:

- 1. $S \neq \{0\}$
- 2. for all $a, b \in S$, $a b \in S$ and $ab \in S$
- 3. for all $0 \neq a \in S$, $a^{-1} \in S$ (i.e. every nonzero element is a unit.)

Proof:

Exercise!

Examples:

1. If R is a ring then $\{0\}$ (trivial subring) and R (improper subring) are subrings of R.

2. \mathbb{Q} is a subfield of \mathbb{R} .

3. For any $n \in \mathbb{Z}$, $n\mathbb{Z}$ is a subring of \mathbb{Z} . (Why?) Note that if $n \neq 1, -1$, then $n\mathbb{Z}$ has no unity.

4. Let
$$D_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$
. Let $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \in D_2(\mathbb{R})$,
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} - \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} a - c & 0 \\ 0 & b - d \end{bmatrix} \in D_2(\mathbb{R})$$

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix} \in D_2(\mathbb{R})$$

 $D_2(\mathbb{R})$ is a subring of $M_2(\mathbb{R})$.

Zero Divisors

Definition:

Let R be a commutative ring. A nonzero element $a \in R$ is called a <u>zero divisor</u> (or a divisor of zero) if there is a non-zero element $b \in R$ such that ab = 0.

Example:

- 1. zero divisors of \mathbb{Z}_{12} : 2, 3, 4, 6, 7, 8, 9, 10
- 2. \mathbb{Z} has no zero divisors.

Theorem 2.17:

The zero divisors of \mathbb{Z}_n are its non-zero elements that are not relatively prime to n.

Proof. Let $0 \neq a \in \mathbb{Z}_n$.

 (\Longrightarrow) Suppose a is a zero divisor of \mathbb{Z}_n . Then, $\exists (0 \neq b \in \mathbb{Z}_n)$ s.t. $ab = 0 \Longrightarrow n \mid ab$. Suppose (on the contrary) that a is relatively prime to n, then $n \mid b \Longrightarrow b = 0$. $\mathbb{1}$ $\mathcal{1}$ $\mathcal{2}$ $\mathcal{2}$ $\mathcal{3}$ $\mathcal{3}$ $\mathcal{4}$ $\mathcal{3}$ $\mathcal{4}$ $\mathcal{4}$ $\mathcal{5}$ $\mathcal{4}$ $\mathcal{5}$ $\mathcal{4}$ $\mathcal{5}$ $\mathcal{5}$ $\mathcal{5}$ $\mathcal{6}$ $\$

 (\Longleftarrow) Suppose $d=\gcd(a,n)>1.$ Let $a=dk_1$ and $n=dk_2$ for some $k_1,k_2\in\mathbb{Z}.$ Note that $0\neq k_2\in\mathbb{Z}_n.$ Then

$$ak_2 = dk_1k_2 = dk_2k_1 = nk_1 = 0. \\$$

 $\therefore a$ is a zero divisor.

Integral Domain

Definition:

A commutative ring with unity $1 \neq 0$ is said to be an <u>integral domain</u> if it has no zero divisors.

Remark:

In an integral domain D, if ab = 0, then either a = 0 or b = 0.

Example:

Division rings that are integral domains.

- 1. ℤ ✓
- 2. $\mathbb{Q}, \mathbb{C}, \mathbb{R} \checkmark$
- 3. $\mathbb{Z}_p \checkmark$, where *p* is prime.
- 4. $\mathbb{Z} \times \mathbb{Z}$ has zero divisors (0, a) and (b, 0) for some $0 \neq a, b \in \mathbb{Z}$.
- 5. $M_{2}(\mathbb{R})$ not a commutative ring
- 6. $2\mathbb{Z}$ has no unity

Theorem 2.18:

Let R be a commutative ring with unity $1 \neq 0$. Then, the cancellation law for multiplication holds in R if and only if R is an integral domain.

Proof.

 (\Longrightarrow) Suppose that $\forall a,b,c\in R$ with $a\neq 0$, $ab=ac\Longrightarrow b=c$.

Let $a \in R$ with $a \neq 0$. Suppose that $ab = 0 = a \cdot 0$ for some $b \in R$. Then, b = 0. Hence, a is a non-zero divisor of R.

- $\therefore R$ is an integral domain.
- (\Leftarrow) Suppose that R is an integral domain. Let $a,b,c\in R$ with $a\neq 0$ and ab=ac.

$$ab = ac \Longrightarrow ab - ac = 0$$
$$\Longrightarrow a(b - c) = 0$$
$$\Longrightarrow b - c = 0$$
$$\Longrightarrow b = c$$

- $.. \ \forall a,b,c \in R \ \text{with} \ a \neq 0$, $ab = ac \Longrightarrow b = c.$
- \therefore Cancellation law for multiplication holds if and only if R is an integral domain.

Remarks:

Let R be an integral domain. Let $a, b \in R$ with $a \neq 0$.

- 1. Then ax + b has at most one solution.
- 2. If a is a unit in R, then ax = b has exactly one solution, given by $x = \frac{b}{a} = a^{-1}b$.

8

Theorem 2.19:

Every field is an integral domain.

Proof.

Let F be a field. Then, F is commutative with unity $1 \neq 0$.

Let $a \in F$ s.t. $a \neq 0$.

Suppose ab = 0 for some $b \in F$.

$$\Rightarrow \frac{1}{a}(ab) = \frac{1}{a} \cdot 0$$

$$\Rightarrow \left(\frac{1}{a} \cdot a\right)b = 0$$

$$\Rightarrow 1 \cdot b = 0$$

$$\Rightarrow b = 0$$

- \div a is not a zero divisor.
- $\therefore F$ is an integral domain.

Theorem 2.20:

Every finite integral domain is a field.

Proof.

Let D be a finite integral domain. Then, D is commutative with unity $1 \neq 0$.

Let $0 \neq a \in D$. (WTS: a is a unit.)

Consider the function f defined as:

$$f: D \to D$$
$$x \mapsto ax$$

Suppose f(x)=f(y) for some $x,y\in D$. Then, $ax=ay\Longrightarrow x=y$. (via C. L.)

So, f is one-to-one $\Longrightarrow f$ is onto.

Since $1 \in D \Longrightarrow \exists b \in D \text{ s.t. } f(b) = 1.$

$$\implies ab = 1$$

 $\implies a \text{ is a unit}$

9

 \therefore D is a field.

Example:

Let p be prime. Then \mathbb{Z}_p is an integral domain $\Longrightarrow \mathbb{Z}_p$ is a field.

Recall: R is a ring, $a \in R, n \in \mathbb{N}$.

•
$$n \cdot a = \underbrace{a + a + \dots + a}_{n}$$

•
$$(-n)a = \underbrace{-a - a - \cdots - a}_{n}$$

•
$$0 \cdot a = 0$$

Example:

1. In $M_2(\mathbb{R})$,

$$3 \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}.$$

$$\text{2. In } \mathbb{Z}_6 \text{: } \underbrace{2}_{\in \mathbb{Z}} \cdot \underbrace{3}_{\in \mathbb{Z}_6} = 3 +_6 3 = 0.$$

Remark:

If R is a ring and $a, b \in R, m, n \in \mathbb{Z}$, then

- 1. $(m+n) \cdot a = m \cdot a + n \cdot a$
- 2. m(a + b) = ma + mb
- 3. (mn)a = m(na)
- 4. m(ab) = (ma)b = a(mb)
- 5. (ma)(nb) = (mn)(ab)

Characteristic of a Ring

Definition:

The characteristic of a ring R is the least positive integer n such that $\forall a \in R, n \cdot a = 0$. If no such integer exists, R is said to be of characteristic 0.

Example:

- 1. $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}. \operatorname{char}(\mathbb{Z}_6) = 6.$
- 2. $\operatorname{char}(\mathbb{Z}) = 0$.
- 3. \mathbb{R} , \mathbb{Q} , \mathbb{C} are of characteristic 0.

Theorem 2.21:

Let R be a ring with unity 1.

- 1. If 1 has infinite order, then char(R) = 0.
- 2. If 1 has order n, then char(R) = n.

Proof. (Exercise)

Example:

- 1. $\operatorname{char}(\mathbb{Z}_n) = n$
- 2. $char(M_2(\mathbb{R})) = 0$

Theorem 2.22:

The characteristic of an integral domain is 0 or prime.

Proof. (Exercise)

Ideals and Factor Rings (Part I)

Ideals

Definition:

A subring *I* of a ring *R* is called an <u>ideal of *R*</u> if $\forall r \in R, \forall a \in I, ra \in I$ and $ar \in I$.

Example:

1. Let R be a ring. Then, $\{0\}$ (<u>trivial ideal</u>) and R (<u>improper ideal</u>) are ideals of R.

Ideal I s.t. $I \neq R$ is a <u>proper ideal</u> of R.

- 2. $n\mathbb{Z} \subseteq \mathbb{Z} (n \in \mathbb{Z}^+) n\mathbb{Z}$ is an ideal of \mathbb{Z} .
 - $(\because) \text{ Let } r \in \mathbb{Z}, x \in n\mathbb{Z} \Longrightarrow x = nk \text{ for some } k \in \mathbb{Z}. \ xr = rx = r(nk) = (rn)k = (nr)k \in n\mathbb{Z}.$
 - $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Ideal Subring Test (Theorem 2.23):

Let R be a ring and $\emptyset \neq I \subseteq R$. Then, I is an ideal if and only if the following hold:

- 1. $\forall a, b \in I, a b \in I$,
- 2. $\forall r \in R, a \in I, ra \in I \text{ and } ar \in I.$

Principal Ideal

Let R be a commutative ring with unity. Fix $a \in R$. Consider $\{ar \mid r \in R\} =: \langle a \rangle = I$

- $a \cdot 1 = a \in I$ so $I \neq \emptyset$.
- Let $x,y\in I\Longrightarrow x=ar_1,y=ar_2$ for some $r_1,r_2\in R.$

$$x-y=ar_1-ar_2=\underbrace{a\underbrace{(r_1-r_2)}}_{\in R}\in I.$$

• Let $r \in R, x \in I \Longrightarrow x = ar_1$ for some $r_1 \in R$.

$$xr = rx = r(ar_1) = (ra)r_1 = (ar)r_1 = a(rr_1) \in I.$$

 \therefore *I* is an ideal of *R*.

I is called the *principal ideal generated by* a, denoted (a) or $\langle a \rangle$.

Example:

1. \mathbb{Z} . Let $n \in \mathbb{Z}$. The principal ideal of \mathbb{Z} generated by n

$$\langle n \rangle = \{ n \cdot k \mid k \in \mathbb{Z} \} = n\mathbb{Z}$$

Factor Rings

Concept:

Consider S, subring of R. $\langle S, + \rangle$ is a(n) (abelian) subgroup of the abelian group $\langle R, + \rangle$. So, $S \subseteq R$.

 $R/S = \{r + S \mid r \in R\}$ is an abelian group under addition of left cosets.

(*) Define multiplication of left cosets as follows:

$$(r_1 + S)(r_2 + S) = (r_1 r_2) + S$$

Note: It is not well-defined on some cases.

Lemma 2.24:

Let R be a ring and I an ideal of R. Then, multiplication of left cosets of I is a well-defined operation on the set $R/I = \{a + I \mid a \in R\}$.

<u>Proof.</u> Suppose a + I = c + I and b + I = d + I for some $a, b, c, d \in R$.

$$(\text{WTS: } (a+I)(b+I) = (c+I)(d+I) \Longrightarrow ab+I = cd+I \Longrightarrow -ab+cd \in I)$$

$$\begin{aligned} a+I &= c+I \Longleftrightarrow -a+c \in I \\ &\iff -a+c = x, \exists x \in I \end{aligned}$$

$$\implies c = a + x$$

$$\begin{aligned} b+I &= d+I \Longleftrightarrow -b+d \in I \\ &\iff -b+d = y, \exists y \in I \end{aligned}$$

 $\implies d = b + y$

Now.

$$\begin{split} cd &= (a+x)(b+y) \\ &= a(b+y) + x(b+y) \\ &= ab + ay + xb + xy \\ \Longrightarrow -ab + cd &= \underbrace{a \ y}_{R \ I} + \underbrace{x \ b}_{I \ R} + \underbrace{x \ y}_{I \ I} \in I \end{split}$$

 \therefore multiplication of left cosets is well-defined.

Theorem 2.25:

Let I be an ideal of a ring R. Then, R/I is a ring under addition and multiplication of left cosets

Proof. Note that addition and multiplication of left cosets are binary operators in R/I \mathcal{R}_1 : R/I is an abelian group under addition of left cosets.

$$\begin{split} \mathcal{R}_2 \text{: Let } a + I, b + I, c + I \in R/I. \\ (a + I)[(b + I)(c + I)] &= (a + I)(bc + I) \\ &= a(bc) + I \\ &= (ab)c + I \\ &= (ab + I)(c + I) = [(a + I)(b + I)](c + I) \end{split}$$

$$\mathcal{R}_3 \text{: Let } a + I, b + I, c + I \in R/I. \\ (a + I)[(b + I) + (c + I)] &= (a + I)[(b + c) + I] \\ &= a(b + c) + I \\ &= (ab + ac) + I \\ &= (ab + I) + (ab + I) \end{split}$$

$$\begin{split} [(a+I)+(b+I)](c+I)] &= [(a+b)+I](c+I) \\ &= (a+b)c+I \\ &= (ac+bc)+I \\ &= (ac+I)+(bc+I) \end{split}$$

∴ R/I is a ring under addition and multiplication of left cosets. \blacksquare

Remark:

R/I is called the factor ring or <u>quotient ring</u> of R <u>modulo</u> I.

Remarks:

- 1. If R is commutative, then R/I is commutative.
- 2. If R has unity 1, then R/I has unity 1 + I.

Examples:

•
$$\mathbb{Z}/3\mathbb{Z} = \{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}\$$

+	$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$3\mathbb{Z}$	$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$1+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$	$3\mathbb{Z}$
$2+3\mathbb{Z}$	$2+3\mathbb{Z}$	$3\mathbb{Z}$	$1+3\mathbb{Z}$

	$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$3\mathbb{Z}$	$3\mathbb{Z}$	$3\mathbb{Z}$	$3\mathbb{Z}$
$1+3\mathbb{Z}$	$3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$2+3\mathbb{Z}$	$3\mathbb{Z}$	$2+3\mathbb{Z}$	$1+3\mathbb{Z}$

 $\mathbb{Z}/3\mathbb{Z}$ is commutative and has unity $1+3\mathbb{Z}$. $(1+3\mathbb{Z})^{-1}=1+3\mathbb{Z}, (2+3\mathbb{Z})^{-1}=2+3\mathbb{Z}$

 $\therefore \mathbb{Z}/3\mathbb{Z}$ is a field.

• Consider $8\mathbb{Z}\subseteq 2\mathbb{Z}.\ 8\mathbb{Z}$ is an ideal of $2\mathbb{Z}.$ (Theorem 2.23)

(a)
$$2\mathbb{Z}/8\mathbb{Z} = \{8\mathbb{Z}, 2 + 8\mathbb{Z}, 4 + 8\mathbb{Z}, 6 + 8\mathbb{Z}\}$$

(b)

+	8Z	$2+8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$
8Z	8Z	$2+8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$
$2+8\mathbb{Z}$	$2+8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$	8Z
$4+8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$	8Z	$2+8\mathbb{Z}$
$6+8\mathbb{Z}$	$6+8\mathbb{Z}$	8Z	$2+8\mathbb{Z}$	$4+8\mathbb{Z}$

	8Z	$2+8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$
8Z	$8\mathbb{Z}$	8Z	8Z	8Z
$2+8\mathbb{Z}$	8Z	$4+8\mathbb{Z}$	8Z	$4+8\mathbb{Z}$
$4+8\mathbb{Z}$	$8\mathbb{Z}$	8Z	8Z	8Z
$6+8\mathbb{Z}$	8Z	$4+8\mathbb{Z}$	8Z	$4+8\mathbb{Z}$

(c) $2\mathbb{Z}/8\mathbb{Z}$ is not an integral domain.

Ring Homomorphism

Definition:

A ring homomorphism from a ring R to a ring R' is a mapping ϕ from R to R' that preserves both ring operations, that is,

$$\forall a, b \in R, \phi(a+b) = \phi(a) + \phi(b) \text{ and } \phi(ab) = \phi(a)\phi(b).$$

Remarks:

Let $\phi:R\to R'$ be a ring homomorphism.

- 1. If ϕ is one-to-one, we call ϕ a <u>ring monomorphism</u>.
- 2. If ϕ is onto, we call ϕ a <u>ring epimorphism</u>.
- 3. If ϕ is a bijection, then ϕ is called a <u>ring isomorphism</u>.
- 4. If ϕ is bijective and R' = R, then ϕ is called a <u>ring automorphism</u>.

Definition:

Two rings R and R' are said to be <u>isomorphic</u>, written $R \cong R'$, if there exists an isomorphism from R to R'.

Remarks:

If $\phi:R\to R'$ is a ring homomorphism, then $\phi:\langle R,+\rangle\to\langle R',+'\rangle$ is a group homomorphism. In particular,

- 1. If 0 and 0' are the zero elements of R and R', then $\phi(0) = 0'$.
- 2. If $a \in R$, then $\phi(-a) = -\phi(a)$.
- 3. If $a \in R$ and $n \in \mathbb{Z}$, then $\phi(na) = n\phi(a)$.

<u>Properties of Ring Homomorphisms (Theorem 2.26):</u>

- 1. If $a \in R$ and $n \in \mathbb{N}$, then $\phi(an) = [\phi(a)]n$.
- 2. If S is a subring of R, then $\phi(S) = \{\phi(a) | a \in S\}$ is a subring of R'.
- 3. If R is commutative, then $\phi(R)$ is commutative.
- 4. If I is an ideal of R, then $\phi(I)$ is an ideal of the ring $\phi(R)$ (but not necessarily of R').
- 5. If S' is a subring of R', then $\phi^{-1}(S') = \{a \in R \mid \phi(a) \in S'\}$ is a subring of R.
- 6. Let R be a ring with unity 1_R .
 - 1. Then $\phi(R)$ is a ring with unity $\phi(1_R)$.
 - 2. If a is a unit in R, then $\phi(a)$ is a unit in the ring $\phi(R)$ with $[\phi(a)]^{-1} = \phi(a^{-1})$.

Proof. (Exercise!)

5. Suppose S' is a subring of R'. Show: $\phi^{-1}(S')$ is a subring of R.

Note that $\langle S', + \rangle$ is a subgroup of $\langle R', + \rangle$. Since ϕ is a group homomorphism, $\langle \phi - 1(S'), + \rangle$ is a subgroup of $\langle R, + \rangle$.

It remains to be shown that $\phi^{-1}(S')$ is closed under multiplication.

Let
$$x,y\in\phi^{-1}(S')$$
. WTS: $xy\in\phi^{-1}(S')$, i.e. $\phi(xy)\in\phi^{-1}(S')$.

Now,
$$x,y \in \phi^{-1}(S') \Rightarrow \phi(x), \phi(y) \in S' \Rightarrow \phi(xy) = \varphi(x)\varphi(y) \in S'$$

Since S' is a subring of R'. Thus $xy \in \phi^{-1}(S')$. $\therefore \phi^{-1}(S')$ is a subring of R.

Examples:

1. Consider the map $\phi: \mathbb{Z} \to 2\mathbb{Z}$ given by $\phi(k) = 2k$.

Let $a, b \in \mathbb{Z}$. Then

- $\phi(a+b) = 2(a+b) = 2a + 2b = \phi(a) + \phi(b)$
- $\phi(ab) = 2ab$ but $\phi(a)\phi(b) = (2a)(2b) = 4ab$

Thus ϕ is not ring homomorphism.

- 2. Consider the map $\phi: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ given by $\phi(x) = (x,0)$. Then ϕ is a ring homomorphism. (Why?)
 - $\phi(\mathbb{Z}) = \{(x,0) | x \in \mathbb{Z}\}$ is a commutative ring with unity (unity in $\phi(\mathbb{Z})$ is $\phi(1) = (1,0)$). The units of $\phi(\mathbb{Z})$ are $\phi(1) = (1,0)$ and $\phi(-1) = (-1,0)$.

Kernel of a Homomorphism

Definition:

Let R, R' be rings with 0', the zero element in R'. Let $\phi: R \to R'$ be a ring homomorphism. The kernel of ϕ is the set

$$\ker \phi := \{ a \in R \mid \phi(a) = 0' \} = \phi^{-1}(\{0'\})$$

Remarks:

- 1. ϕ is one-to-one if and only if ker $\phi = \{0\}$.
- 2. ϕ is a ring isomorphism if and only if ϕ is onto and ker $\phi = \{0\}$.
- 3. If $a \in R$ and $\phi(a) = a'$ then

$$\phi^{-1}(a')=\{r\in R\mid \phi(r)=a'\}=a+\ker\phi$$

The Kernel is an Ideal (Theorem 2.27):

Let $\phi: R \to R'$ be a ring homomorphism. Then $\ker \phi$ is an ideal of R.

<u>Proof.</u> Let 0' be the zero element of R'. Since $\{0'\}$ is a subring of R', then $\phi^{-1}(\{0'\}) = \ker \phi$ is a subring of R (by Theorem 2.26).

Let $a \in \ker \phi$ and $r \in R$. (WTS: ar and ra are in $\ker \phi$)

$$\phi(ar) = \phi(a)\phi(r) = 0' \cdot \phi(r) = 0'$$

Since $\phi(ar) = 0'$, then $ar \in \ker \phi$.

Using a similar argument, we can show that $ra \in \ker \phi$.

 \therefore ker ϕ is an ideal of R.

First Isomorphism Theorem for Rings (Theorem 2.28):

Let $\phi: R \to R'$ be a ring homomorphism. Then

$$\mu: R/\ker \phi \to \phi(R)$$

given by $\mu(a+\ker\phi)=\phi(a)$ is a ring isomorphism. In particular, $R/\ker\phi\cong\phi(R)$ (as rings).

<u>Proof.</u> It follows from the First Isomorphism Theorem for Groups that μ is a group isomorphism. (WTS: μ preserves multiplication.)

Let $a + \ker \phi, b + \ker \phi \in R / \ker \phi$. Then,

$$\mu[(a + \ker \phi)(b + \ker \phi)] = \mu(ab + \ker \phi)$$
$$= \phi(ab) = \phi(a)\phi(b)$$
$$= \mu(a + \ker \phi)\mu(b + \ker \phi)$$

 $\therefore \mu$ is a ring isomorphism.

Remark:

The isomorphism μ is called the <u>natural</u> or <u>canonical isomorphism</u> from $R/\ker\phi$ to $\phi(R)$.

Examples:

1. Let $\phi: \mathbb{Z} \to \mathbb{Z}_n$ be the mapping such that $\phi(m) =$ the remainder when m is divided by n. Then ϕ is a ring epimorphism. (Verify this!)

$$\ker \phi = n\mathbb{Z}$$

By the FITR,

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\ker\phi \cong \phi(\mathbb{Z}) = \mathbb{Z}_n$$

Thus,

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$$
 as rings.

2. Consider the ring homomorphism $\phi : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where $\phi(x) = (x, 0)$.

$$\ker \phi = \{0\}$$

By the FITR,

$$\mathbb{Z}/\{0\} = \mathbb{Z}/\ker\phi \cong \phi(\mathbb{Z}) = \{(x,0)|\ x \in \mathbb{Z}\}\$$

Noting that $\mathbb{Z}/\{0\} \cong \mathbb{Z}$, we get

$$\mathbb{Z} \cong \{(x,0) | x \in \mathbb{Z}\}$$

Canonical Isomorphism from R to R/I (Theorem 2.29):

Let I be an ideal of a ring R. Then $\gamma:R\to R/I$ given by $\gamma(a)=a+I$ is a ring homomorphism with $\ker\gamma=I.$

<u>Proof.</u> It follows from Theorem 2.12 that γ is a group homomorphism with $\ker \gamma = I$. (WTS: γ preserves multiplication.)

Let
$$a,b \in R$$
. Then $\gamma(ab) = ab + I = (a+I)(b+I) = \gamma(a)\gamma(b)$.

 \div γ is a ring homomorphism.

Ideals and Factor Rings (Part II)

Concept:

Given: R, a commutative ring with unity.

I, ideal of $R \Longrightarrow R/I$ is a commutative ring with unity

- Question 1: If R is a field, what are the possible factor rings R/I?
- *Question 2*: When is the factor ring R/I a field?
- *Question 3*: When is the factor ring R/I an integral domain?

<u>Ideals of a Field (Theorem 2.30):</u>

Let R be a ring with unity 1 and let I be an ideal of R. If I contains a unit of R then I = R.

<u>Proof.</u> Suppose $u \in I$ is a unit of R. Then $\exists u^{-1} \in R$ such that $1 = u^{-1}u \in I$ since I is an ideal of R. Thus $1 \in I$.

Clearly $I \subseteq R$. (NTS: $R \subseteq I$). Let $r \in R$. Now, $r = r \cdot 1 \in I$ since I is an ideal of R. Thus $R \subseteq I$ and so I = R.

Corollary 2.31:

A field has no proper nontrivial ideals. That is, the only ideals of a field F are $\{0\}$ or F itself.

<u>Proof.</u> Let F be a field and I an ideal of F. Note that either I is trivial (that is $I = \{0\}$) or I is nontrivial. Suppose $I \neq \{0\}$. Let $0 \neq a \in I \subseteq F$. Thus a is a unit of F. Hence I = F.

Remark:

Let F be a field and I an ideal of F. Then either $I = \{0\}$ or I = F. Then the factor rings F/I are

- $F/\{0\} \cong F$
- $F/F \cong \{0\}$

Maximal Ideals

Definition:

A proper ideal M of a ring R is said to be $\underline{maximal}$ if whenever J is an ideal of R such that $M \subseteq J \subseteq R$, either J = M or J = R.

Examples:

 $3\mathbb{Z}$ and $4\mathbb{Z}$ are ideals of \mathbb{Z} .

- Note that $4\mathbb{Z} \subset 2\mathbb{Z} \subset \mathbb{Z}$. Thus $4\mathbb{Z}$ is not a maximal ideal of \mathbb{Z} .
- Suppose $n\mathbb{Z}$ is an ideal of \mathbb{Z} such that $3\mathbb{Z} \subseteq n\mathbb{Z} \subseteq \mathbb{Z}$. Since $3 \in 3\mathbb{Z} \subseteq n\mathbb{Z}$, then $n \mid 3$. Hence n = 3 or n = 1. So $n\mathbb{Z} = 3\mathbb{Z}$ or $n\mathbb{Z} = \mathbb{Z}$. Thus $3\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .

Remarks:

Let R be a ring.

- 1. The only ideal that properly contains a maximal ideal of R is R.
- 2. A maximal ideal of R may not be unique. That is, R may have more than one maximal ideal. (e.g. $2\mathbb{Z}$ and $5\mathbb{Z}$ are both maximal ideals of \mathbb{Z})

Examples:

The ideals of \mathbb{Z}_{12} :

- \mathbb{Z}_{12}
- $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$
- $\langle 3 \rangle = \{0, 3, 6, 9\}$
- $\langle 4 \rangle = \{0, 4, 8\}$
- $\langle 6 \rangle = \{0, 6\}$
- {0}

Is $\langle 4 \rangle$ a maximal ideal of \mathbb{Z}_{12} ?

Is $\langle 4 \rangle$ a maximal ideal of $\langle 2 \rangle$?

What are the maximal ideals of \mathbb{Z}_{12} ?

Factor Rings from Maximal Ideals are Fields (Theorem 2.32):

Let R be a commutative ring with unity and let I be an ideal of R. Then

R/I is a field \iff I is a maximal ideal of R.

<u>Proof.</u> (\Longrightarrow) Suppose R/I is a field. Let J be an ideal of R such that $I \subseteq J \subseteq R$. (NTS: Either J = I or J = R).

Suppose $J \neq I$. Then $\exists b \in J/I \Longrightarrow I \neq b+I \in R/I \Longrightarrow b+I$ is a unit in $R/I \Longrightarrow \exists (a+I) \in R/I$ such that $(b+I)(a+I) = 1+I \Longrightarrow -ba+1 \in I \subset J$.

Thus $1 = ba + (-ba + 1) \in J \Longrightarrow J = R$.

 \therefore *I* is a maximal ideal of *R*.

 (\Leftarrow) Suppose I is a maximal ideal of R. Since R is commutative with unity, then so is R/I. Note also that $I \neq R$ since I is maximal and so $1 \notin I$. Thus $1 + I \neq I$.

(NTS: Every nonzero element of R/I is a unit.)

Let a + I be a nonzero element in R/I (i.e. $a \in R$ but $a \notin I$).

Form $J := \{ra + b \mid r \in R, b \in I\}$. Claim: J is an ideal of R. If $x \in I$ then $x = 0 \cdot a + x \in J \Rightarrow I \subseteq J \subseteq R \Rightarrow J = I \lor J = R$. However, $a \notin I$ but $a = 1 \cdot a + 0 \in J \Longrightarrow J \neq I$. Thus J = R.

Now, $1 \in R = J \Longrightarrow 1 = ra + b$ for some $r \in R, b \in I$

$$\Rightarrow -ra + 1 = b \in I$$

$$\Rightarrow ra + I = 1 + I$$

$$\Rightarrow (r+I)(a+I) = (a+I)(r+I) = 1 + I$$

$$\Rightarrow a + I \text{ is a unit.}$$

 $\therefore R/I$ is a field.

Proof of claim that *J* is an ideal of R:

Claim: $J = \{ra + b \mid r \in R, b \in I\}$ is an ideal of R.

<u>Proof.</u>

- J is nonempty: $0 = 0 \cdot a + 0 \in J \Longrightarrow J \neq \emptyset$
- If $x, y \in J$, show that $x y \in J$. (Exercise!)
- If $s \in R$ and $x \in J$, show that $sx \in J$ and $xs \in J$.

$$\because x \in J \Longrightarrow x = ra + b \text{ for some } r \in R, b \in I. \text{ So } sx = s(ra + b) = (sr)a + sb \in J.$$

Note that R is commutative so $xs = sx \in J$.

Appplication of Theorem 2.32:

Consider the ideals $3\mathbb{Z}$ and $4\mathbb{Z}$ of \mathbb{Z} .

- $\mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}_3$ is a field, thus $3\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .
- $\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}_4$ is not a field, thus $4\mathbb{Z}$ is not a maximal ideal of \mathbb{Z} .

Remark:

 $n\mathbb{Z}$ is a maximal ideal of \mathbb{Z} if and only if n is prime.

Converse of Corollary 2.31 holds (Corollary 2.33):

A commutative ring with unity is a field if and only if it has no proper nontrivial ideals.

Proof.

- (\Longrightarrow) Follows from Corollary 2.31.
- (\Longleftarrow) Suppose a commutative ring R with unity has no proper nontrivial ideals. Then
- $\{0\}$ is a maximal ideal. Thus $R \cong R/\{0\}$ is a field.

Prime Ideals

Definition:

A proper ideal P of a commutative ring R is said to be <u>prime</u> if whenever $a, b \in R$ such that $ab \in P$ then either $a \in P$ or $b \in P$.

Examples:

1. Consider $6\mathbb{Z}$. Note that $2 \cdot 3 \in 6\mathbb{Z}$ but neither 2 nor 3 are in $6\mathbb{Z}$. Thus $6\mathbb{Z}$ is not a prime ideal of \mathbb{Z} .

- 2. Consider the trivial ideal $\{0\} \in \mathbb{Z}_{12}$. Is $\{0\}$ a prime ideal of \mathbb{Z}_{12} ?
- 3. $\{0\}$ is a prime ideal of an integral domain D.
- \therefore Let $a, b \in D$ such that $ab \in \{0\} \Longrightarrow ab = 0 \Longrightarrow a = 0$ or $b = 0 \Longrightarrow a \in \{0\}$ or $b \in \{0\}$.

Factor Rings from Prime Ideals (Theorem 2.34):

Let R be a commutative ring with unity and let I be an ideal of R. Then

R/I is an integral domain \iff I is a prime ideal of R.

Proof.

 (\Longrightarrow) Suppose R/I is an integral domain. Let $a,b\in R$ such that $ab\in I$. Then $ab+I=I\Longrightarrow (a+I)(b+I)=I$. Since R/I is an integral domain, either a+I=I or b+I=I, which means that either $a\in I$ or $b\in I$.

(\Leftarrow) Suppose I is a prime ideal of R. Since Then R is a commutative ring with unity 1, then so is R/I. Note also that $I \neq R$ since I is prime and so $1 \notin I$. Thus $1 + I \neq I$. (NTS: R/I has no zero divisors.)

Let $a+I, b+I \in R/I$ such that (a+I)(b+I)=I. Then, $ab+I=I \Longrightarrow ab \in I$. Since I is prime, then either $a \in I$ or $b \in I \Longrightarrow a+I=I$ or b+I=I

 $\therefore R/I$ is an integral domain.

Applications of Theorem 2.34:

1. $\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}_4$ is not an integral domain. Thus $4\mathbb{Z}$ is not a prime ideal of \mathbb{Z} . Indeed $2 \cdot 2 \in 4\mathbb{Z}$ but $2 \notin 4\mathbb{Z}$.

Remark: $n\mathbb{Z}$ is a prime ideal of \mathbb{Z} if and only if n is prime.

2. Let $I = \{(x,0) | x \in \mathbb{Z}\} \subseteq \mathbb{Z} \times \mathbb{Z}$. Then I is an ideal of $\mathbb{Z} \times \mathbb{Z}$. (Exercise!)

Suppose $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}$ such that $(a,b)(c,d)=(ac,bd)\in I$. Then $bd=0\Longrightarrow b=0$ or $d=0\Longrightarrow (a,b)\in I$ or $(c,d)\in I$. Hence I is prime. Thus $(\mathbb{Z}\times\mathbb{Z})/I$ is an integral domain.

(Exercise:) Use FITR (First Isomorphism Theorem for Rings) to show that $(\mathbb{Z} \times \mathbb{Z})/I \cong \mathbb{Z}$.

Maximal Ideals are Prime Ideals (Corollary 2.35):

Every maximal ideal of a commutative ring R with unity is a prime ideal of R.

<u>Proof.</u> Let I be a maximal ideal of R. By Theorem 2.32, R/I is a field. Hence R/I is an integral domain. Thus I is a prime ideal of R.

Remarks:

1. The converse of Corollary 2.35 does not hold. That is, a prime ideal of a commutative ring R with unity may not be a maximal ideal of R.

e.g., $I=\{(x,0)|\ x\in\mathbb{Z}\}$ is a prime ideal of $\mathbb{Z}\times\mathbb{Z}$ which is not a maximal ideal of $\mathbb{Z}\times\mathbb{Z}$. (Why?)

2. Corollary 2.35 does not hold if R has no unity.

e.g. $2\mathbb{Z}$ has no unity and $4\mathbb{Z}$ is a maximal ideal of $2\mathbb{Z}$ but $4\mathbb{Z}$ is not a prime ideal of $2\mathbb{Z}$. (Why?)

Field of Quotients of Integral Domains and Prime Fields

R with unity contains a homomorphic image of \mathbb{Z} (Lemma 2.36):

Let R be a ring with unity 1. The mapping $\phi:\mathbb{Z}\to R$ given by $\phi(m)=m\cdot 1$ is a ring homomorphism.

Proof. Let $m, n \in \mathbb{Z}$. Then

$$\phi(m+n) = (m+n) \cdot 1 = m \cdot 1 + n \cdot 1 = \phi(m) + \phi(n)$$

$$\phi(mn) = (mn) \cdot 1 = (mn) \cdot 1 \cdot 1 = (m \cdot 1)(n \cdot 1) = \phi(m)\phi(n)$$

Remark:

Note that $\phi(\mathbb{Z})$ is a subring of R.

The Characteristic of Rings with Unity

char R = smallest positive integer n such that $n \cdot a = 0$ for all $a \in R$.

If no such positive integer exists, then char R = 0.

Recall: R, a ring with unity 1

- char $R = n \iff |1| = n$ in the group $\langle R, + \rangle$
- char $R = 0 \iff 1$ has infinite order in the group $\langle R, + \rangle$

Structure of R based on its Characteristic (Theorem 2.37)

Let R be a ring with unity.

- 1. char $R = n > 1 \Longrightarrow R$ contains a subring isomorphic to \mathbb{Z}_n
- 2. char $R = 0 \Longrightarrow R$ contains a subring isomorphic to \mathbb{Z}

Proof. Consider the ring homomorphism $\phi: \mathbb{Z} \to R$ given by $\phi(m) = m \cdot 1$.

By the FITR, $\mathbb{Z}/\ker\phi\cong\phi(\mathbb{Z})$.

Note that $\ker \phi = \{ m \in Z \mid \phi(m) = 0 \} = \{ m \in Z \mid m \cdot 1 = 0 \}.$

• Suppose char R = n > 1. So |1| = n. That is, $n \cdot 1 = 0$ and

$$m \cdot 1 = 0 \iff n \mid m \iff m \in n\mathbb{Z}.$$

Thus ker $\phi = n\mathbb{Z}$. Hence by FITR,

$$\phi(\mathbb{Z}) \cong \mathbb{Z}/\ker \phi = \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$$
.

• Suppose char R=0. Then 1 has infinite order. Thus $m\cdot 1=0 \Longleftrightarrow m=0$. Thus $\ker \phi=\{0\}$. Hence by FITR,

$$\phi(\mathbb{Z}) \cong \mathbb{Z}/\ker \phi = \mathbb{Z}/\{0\} \cong \mathbb{Z}.$$

Examples:

Consider the ring $R=M_2(\mathbb{R})$ with unity $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Note that the order of $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is infinite. (Why?)

Hence char $M_2(\mathbb{R}) = 0$.

Thus $M_2(\mathbb{R})$ has a subring isomorphic to \mathbb{Z} by Theorem 2.37. This subring is $\phi(\mathbb{Z})$ where $\phi: \mathbb{Z} \to M_2(\mathbb{R})$ is given by

$$\phi(m) = m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}$$

Thus

$$\phi(\mathbb{Z}) = \{\phi(m)|\ m \in \mathbb{Z}\} = \left\{ \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \,\middle|\, m \in \mathbb{Z} \right\} \cong \mathbb{Z}$$

Field of Quotients of an Integral Domain

Consider the integral domain \mathbb{Z} .

Note that \mathbb{Z} is not a field. But \mathbb{Z} is a subring of the field \mathbb{Q} .

• *Question*: Given any integral domain *D*, is there a field *F* that contains *D*? If so, what is the smallest field that will contain *D*?

<u>Construction of \mathbb{Q} from \mathbb{Z} :</u>

$$\mathbb{Z}" \subset "\{(a,b)|\ a,b \in \mathbb{Z}, b \neq 0\} \longrightarrow \mathbb{Q} = \left\{\frac{a}{b} \middle| a,b \in \mathbb{Z}, b \neq 0\right\}$$

$$(a,b) + (c,d) = (ad + bc,bd) \longrightarrow \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$(a,b)(c,d) = (ac,bd) \longrightarrow \left(\frac{a}{b}\right)\left(\frac{c}{d}\right) = \frac{ac}{bd}$$

$$(1,2), (2,4), (3,6) \cdots \longrightarrow \frac{1}{a}$$

$$(a,b) \sim (c,d) \iff ad = bc \longrightarrow \frac{a}{b} = \frac{c}{d} \iff ad = bc$$

Theorem 2.38:

Let D be an integral domain. Then there exists a field that contains a subring which is isomorphic to D.

<u>Proof.</u> Consider $S = \{(a,b)|\ a,b \in D, b \neq 0)\} \subset D \times D$.

Define the relation on S by $(a, b) \sim (c, d) \iff ad = bc$.

Claim 1: \sim is an equivalence relation on S. (Exercise!) Denote the equivalence class of (a,b) by [a,b].

Note that $[a, b] = [c, d] \iff ad = bc$

Let
$$F := \{ [a, b] \mid (a, b) \in S \}$$

Define the following operations on F:

addition :
$$[a,b] + [c,d] = [ad + bc,bd]$$

multiplication :
$$[a, b] \cdot [c, d] = [ac, bd]$$

<u>Claim 2</u>: The defined operations are well-defined binary operations on F. (Exercise!)

Claim 3:

- a. If $0 \neq b \in D$ then [0, b] = [0, 1].
- b. If $0 \neq k \in D$ and $[a, b] \in F$ then [ka, kb] = [a, b].
- c. If $0 \neq a \in D$ then [a, a] = [1, 1]

(Exercise!)

We now show that F is a field.

F is a ring:

 \mathcal{R}_1 : $\langle F, + \rangle$ is an abelian group.

• + is commutative: Let $[a, b], [c, d] \in F$.

$$[a, b] + [c, d] = [ad + bc, bd] = [cb + da, db] = [c, d] + [a, b]$$

- + is associative: (Exercise!)
- additive identity: Consider $[0,1] \in F$. For any $[a,b] \in F$,

$$[0,1] + [a,b] = [a,b] + [0,1] = [a \cdot 1 + b \cdot 0, b \cdot 1] = [a,b]$$

• additive inverse: Let $[a, b] \in F$. Its additive inverse is [-a, b] since

$$[a, b] + [-a, b] = [-a, b] + [a, b] = [-ab + ab, b^2] = [0, b^2] = [0, 1]$$

 \mathcal{R}_2 : Multiplication is associative. (Exercise!)

 \mathcal{R}_3 : Left and Right Distributive Laws: (Exercise!) (Hint: You may need to use Claim 3(b).)

F is commutative: Given $[a, b], [c, d] \in F$,

$$[a,b][c,d]=[ac,bd]=[ca,db]=[c,d][a,b] \\$$

F has unity: unity in F is [1, 1] since $[a, b][1, 1] = [1, 1][a, b] = [a, b] \forall [a, b] \in F$. Clearly, $[1, 1] \neq [0, 1]$. $(\because 1 \cdot 16 = 1 \cdot 0.)$

F is a division ring: Let $[a, b] \in F$ such that $[a, b] \neq [0, 1]$. Then $a \cdot 1 \neq b \cdot 0 \Longrightarrow a \neq 0 \Longrightarrow [b, a] \in F$. Note that [a, b][b, a] = [ab, ba] = [ab, ab] = [1, 1]. Thus $[a, b]^{-1} = [b, a]$.

 \therefore F is a field under the operations addition and multiplication as defined.

Lastly, we show that F contains a subring which is isomorphic to D.

Consider
$$\phi: D \to F$$
 given by $\phi(a) = [a, 1]$. Let $a, b \in D$. Then $\phi(a) + \phi(b) = [a, 1] + [b, 1] = [a + b, 1] = \phi(a + b)$ and $\phi(a)\phi(b) = [a, 1][b, 1] = [ab, 1] = \phi(ab)$

Thus, ϕ is a ring homomorphism.

Note that $\ker \phi = \{a \in D \mid \phi(a) = [0,1]\} = \{a \in D \mid [a,1] = [0,1]\}$. But $[a,1] = [0,1] \iff a \cdot 1 = 1 \cdot 0 \iff a = 0$. Thus $\ker \phi = \{0\}$. So by the FITR,

$$\phi(D) \cong D/\ker \phi = D/\{0\} \cong D$$

D is isomorphic to $\phi(D) = \{[a,1] \mid a \in D\}$ which is a subring of F.

Remarks:

- 1. The field F in Theorem 2.38 is called the field of quotients of D.
- 2. We say that the integral domain D is embedded in its field of quotients F and we write $D \hookrightarrow F$.

Example:

1. \mathbb{Q} is the field of quotients of \mathbb{Z} .

Theorem 2.39:

Let D be an integral domain and F its field of quotients. Suppose K is a field that contains D. Then K contains a subfield L such that $D \subseteq L \subseteq K$ and L is isomorphic to F.

Remark:

The field of quotients F of D is the smallest field that contains D and is unique (up to isomorphism).

<u>Proof.</u> Let $[a,b] \in F$. Then $a,b \in D$ and $b \neq 0$. Thus $a,b \in K$ and b is a unit in K.

Define $\phi: F \to K$ given by $\phi([a,b]) = ab^{-1}$. Then ϕ is a well-defined monomorphism. (Exercise!)

Set $L = \phi(F)$. By FITR,

$$L = \phi(F) \cong F / \ker \phi = F / \{0\} \cong F$$

Thus L is a subfield of K which is isomorphic to F. For every $a \in D$, $a = a \cdot 1 = a \cdot 1 - 1 = \phi([a,1])$. Thus $D \subseteq L \subseteq K$.

Prime Subfield of a Field

Recall: The characteristic of an integral domain is either 0 or prime *p*.

Theorem 2.40:

Let F be a field.

- 1. F is of prime characteristic $p \Longrightarrow F$ contains a subfield isomorphic to \mathbb{Z}_p
- 2. F is of characteristic $0 \Longrightarrow F$ contains a subfield isomorphic to \mathbb{Q} .

Proof.

- 1. Since char F=p, F contains a subring S isomorphic to \mathbb{Z}_p . Since p is prime, \mathbb{Z}_p is a field. Thus S is a subfield of F isomorphic to \mathbb{Z}_p .
- 2. If char F is 0, then F contains a subring S isomorphic to \mathbb{Z} . So S is an integral domain contained in the field F. By Theorem 2.39, F contains a subfield L which is isomorphic to the field of quotients F_S of S.

Since $S \cong \mathbb{Z}$, $F_S \cong \mathbb{Q}$. Thus $L \cong \mathbb{Q}$.

Definition:

The subfield of a field F that is isomorphic to either \mathbb{Z}_p or \mathbb{Q} is called a prime subfield of F.

Remark:

A prime subfield of F is the smallest subfield of F. Equivalently, every subfield of F must contain the prime subfield of F.

Examples:

- 1. Identify the prime subfield of the field $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
- 2. Suppose F is a field with 81 elements. The prime subfield of F is isomorphic to which field?

Solution:

- 1. The unity in $\mathbb{Q}\left(\sqrt{2}\right)$ is 1. Since order of 1 is infinite \Longrightarrow char $Q\left(\sqrt{2}\right)=0$. Thus the prime subfield of $\mathbb{Q}\left(\sqrt{2}\right)$ is \mathbb{Q} .
- 2. Note: order of $\langle F, + \rangle$ is 81.

order of
$$1=\operatorname{char}\, F=p$$
 for some prime $p\Longrightarrow p$ divides $81=3^4\Longrightarrow p=3$

Thus the prime subfield of F is isomorphic to \mathbb{Z}_3 .