Bits and Bytes, Integers, Floating Point

1, bits and bytes

- Representing information as bits
 - ① each bit is 0 or 1.
 - ② By encoding / interpreting sets of bits in various ways
 - Computer determine what to do.
 - Manipulate number, string, sets.....
 - ③类似于工作原理?

在计算机读取 010101010 的时候会有电压的变化,通过电压的变化来发信号。

- ④Binary, Decimal, Hexadecimal(二进制,十进制,十六进制
 - Byte = 8 bits
 - Binary 0000 0000 to 1111 1111
 - Decimal 0 to 255
 - Hexadecimal 0x00 to 0xff

Example: 15213: 0011 1011 0110 1101

3 B 6 D

⑤ Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

(在 32 位操作系统中只有 double 数据类型是 8 个 byte, 因为他必须是 Int 的两倍)

Bit-level manipulations

- ① Algebraic representation of logic
 - encode "true" as 1 and "false" as 0.
 - A&B = 1 when both A=1 and B=1 (只要有 0 就是 0
 - A B = 1 when either A=1 or B=1 (有 1 就是 1
 - ~A = 1 when A=0 (1 变成 0, 0 变成 1
 - A^B = 1 when either A=1 or B=1, but not both (都是 0 或者都是 1 的情况下为 0

(看 PPT 上的例子,一般十六进制的符号运算都是先转换成二进制然后计算

- ②Logic Operations: &&, ||,!
 - View 0 as "false".
 - Anything nonzero as "true".

- Always return 0 or 1.
- Early termination (

Example: |0x00| | |0| | |0000 ---> 1|0x41| | |1| | |0001 ---> 0

- ③shift Operations (移位运算
 - Left shift: x << y 将 x 向左移 y 位,舍弃溢出位,在右边补 0 (左移位不分逻辑和算数,只在右边补 0,舍弃溢出位
 - Right shift: x >> y
 Logic Right shift (逻辑右移)

将 x 向右移 y 位,舍弃溢出位,在左边补 0

(和左移相似

Arithmetic Right shift (算数右移

如果最左位是1,则在左边补1;

如果最左边是0,则在左边补0;

Integers

- ① unsigned and signed
 - Unsigned

$$B2U(X)$$
 = $\overset{w-1}{\overset{i=0}{\circ}} x_i \times 2^i$ (无符号数二进制计算公式,十六进制同理

Signed

$$B2T(X) = -x_{w-1} \times 2^{w-1} + \overset{w-2}{\underset{i=0}{\circ}} x_i \times 2^i$$
 (有符号数

第一位是符号位,是1就是负数,0就是正数如果要取x的相反数,运算为:~x+1

Unsigned if have "U" as suffix

0U, 4294967259U

example:

16 位数值

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

不同位的不同值

	W₪				
?	82	16₪	322	64₽	
UMax⊡	255	65,535	4,294,967,295	18,446,744,073,709,551,615[
TMax®	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin2	-128	-32,768	-2,147,483,648[-9,223,372,036,854,775,808[

|TMin| = TMax + 1 UMax = 2 * TMax + 1

②Conversion and casting

③ Expanding and truncating

• Sign Extension

将w位的二进制数变为w+b位的,并保持原值不变。

方法: 在前面扩展出 k 位的相同数字。(用上一节的 example 即可证)比如下面一段程序:

E3 E3

实际原理: (int 为 4 个 byte 4*8 = 32bits

	decimal	binary
Х	15213	0011 1011 0110 1101
ix	15213	0000 0000 0000 0000 0011 1011 0110 1101
У	15213	1100 0100 1001 0011
iy	15213	1111 1111 1111 1111 1100 0100 1001 0011

Truncation

将w+b位的二进制有符号数或者无符号数变成w位的。

方法: 直接删去前面 b 位的数。(老实说感觉很不靠谱

- 4 Addition, negation, multiplication, shifting
 - Unsigned Addition

Example:

1110 + 1101 = **1**1011 ----→ 1011 (舍弃一位,先算二进制在转化成 **16** 和 **10** 进制

- Two's Complement Addition
 规则和上面差不多? 舍多位
- Unsigned Multiplication

也是正常算, 然后舍弃前面多的位数

• Power-of-2 Multiply with Shift

Example:
$$u << 3 == u * 8$$

 $(u << 5) - (u << 3) == u * 24$

- $\bullet \qquad \chi + ^{\sim}\chi = -1$
- 在 ppt 的倒数第二页有很好的习题就不贴出来了
- 2, float

IEEE Floating Point

OFloating point representation

Example:

 $15213_{10} = (-1)^{0} \times 1.1101101101101_{2} \times 2^{13}$

Function: $(-1)^s$ M 2^E

S是确定这个数是正数还是负数。

M 区间在 1.0-2.0,表示小数部分(m 的小数点后面部分是 frac,少的补 0)

E表示幂次(小数点移位 (exp - Bias

如图为组成

- 32bits + A = 8 B = 23 Bias = 127
- 64bits + A = 11 B = 52 Bias = 1023

e 的计算是 E = Exp(Decimal) - Bias(Decimal)

frac 为 m 小数点之后的部分,如果位数不够用 0 补齐。

• Example:

float F = 15213.0;

- 当 exp 全为 0 时, e = 1 Bias, m 为 0. xxxx
- Rounding, addition, multiplication
 - Rounding

Towards zero 向 0 取整

Round down 向负无穷取整(向下取整

Round up 向正无穷取整(向上取整

Nearest Even 如果小数部分大于等于 0.5, 向偶数部分取整

Example: 1.40 ——》 1.0, 1.6——》 2.0, 2.50 ——》 2.0

• Float point multiplication

Function: $(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$

S: $s1 \times s2$ m: $m1 \times m2$ e: e1 + e2

Example: 4 bit mantissa:

$$1.010*2^{2} \times 1.110 \times 2^{3} = 10.0011 \times 2^{5} = 1.00011 \times 2^{6} = 1.001 \times 2^{6}$$

• Float point addition

Example:
$$1.010*2^2 + 1.110*2^3 = (0.1010 + 1.1100)*2^3$$

= $10.0110 * 2^3 = 1.00110 * 2^4 = 1.010 * 2^4$