# **RAG-Sequence:** Top-*k* Approximation & Thorough Decoding

Wook-Shin Han

POSTECH

May 14, 2025

#### Contents

**1** RAG-Sequence: Top-*k* Approximation

Thorough Decoding

(ロ) (間) (ほ) (ほ) ほ り(()

May 14, 2025

#### 1. Overview

In the Retrieval-Augmented Generation (**RAG-Sequence**) model, the generation of a target sequence  $y = (y_1, \dots, y_N)$  conditioned on input x involves marginalizing over a latent variable z, which denotes the retrieved document.

Exact marginal likelihood:

$$p(y \mid x) = \sum_{z \in \mathcal{D}} p_{\eta}(z \mid x) \cdot p_{\theta}(y \mid x, z).$$

However, summing over all documents in  $\mathcal{D}$  is intractable if  $\mathcal{D}$  is huge (e.g., all of Wikipedia).

Wook-Shin Han (POSTECH)

### 2. Top-k Approximation

**Key Idea:** Restrict the sum to the top-k most relevant documents according to  $p_{\eta}(z \mid x)$ . Then,

$$p(y \mid x) \approx \sum_{z \in \text{top-}k(p_{\eta}(\cdot \mid x))} p_{\eta}(z \mid x) \cdot p_{\theta}(y \mid x, z).$$

#### Justification:

- Often, most probability mass of  $p_{\eta}(z \mid x)$  lies in a small subset of documents.
- The retriever is fine-tuned to focus on these top-k.
- Empirically, it works well while remaining computationally feasible.

Wook-Shin Han (POSTECH)

## 3. Gradient Derivation (Approx. Marginal)

The training loss is the negative log-likelihood of the approximated marginal probability:

$$\mathcal{L}(x,y) = -\log \sum_{z \in \mathcal{Z}} \Big[ p_{\eta}(z \mid x) \cdot p_{\theta}(y \mid x,z) \Big], \quad \mathcal{Z} = \mathsf{top-}k \big( p_{\eta}(\cdot \mid x) \big).$$

Let

$$A(z) := p_{\eta}(z \mid x) \cdot p_{\theta}(y \mid x, z).$$

Then

$$\mathcal{L}(x,y) = -\log \sum_{z \in \mathcal{Z}} A(z).$$

# Gradient Derivation (continued)

Using

$$\nabla \log \left( \sum_{z} A(z) \right) = \frac{1}{\sum_{z} A(z)} \sum_{z} \nabla A(z),$$

we get:

$$abla \mathcal{L}(x,y) = -rac{1}{p(y\mid x)} \sum_{z\in\mathcal{Z}} 
abla \Big( p_{\eta}(z\mid x) \cdot p_{\theta}(y\mid x,z) \Big).$$

By the product rule:

$$abla A(z) = 
abla \Big( p_{\eta}(z \mid x) \, p_{ heta}(y \mid x, z) \Big) = 
abla p_{\eta}(z \mid x) \, \cdot \, p_{ heta}(y \mid x, z) + p_{\eta}(z \mid x) \, \cdot \, 
abla p_{ heta}(y \mid x, z).$$

Thus,

$$abla \mathcal{L}(x,y) = -rac{1}{p(y\mid x)} \sum_{z\in\mathcal{Z}} \Bigl[ 
abla p_{\eta}(z\mid x) \cdot p_{ heta}(y\mid x,z) + p_{\eta}(z\mid x) \cdot 
abla p_{ heta}(y\mid x,z) \Bigr].$$



Wook-Shin Han (POSTECH)

### 4. Remarks on Top-k

- Top-k approximation makes RAG feasible for large corpora, yet effective in practice.
- The better the retriever performance, the closer the sum over top-k is to the true marginal.
- We can train both retriever  $(p_n)$  and generator  $(p_\theta)$  end-to-end.

Wook-Shin Han (POSTECH) RAG-Sequence: Combined May 14, 2025

### Pipeline Overview

- Retrieval
   Encode question x, score documents, soft-max top-K.
- Beam search (per document)
  Expand beams token-by-token with decoder conditioned on single doc zi.
- Marginalisation Multiply each sequence score by its document prior and sum over docs.
- **Selection** Pick answer  $y^* = \arg \max_{y} p(y \mid \mathbf{x})$ .

(produces  $p_{\eta}(z_k \mid \mathbf{x})$ )
(produces  $p_{\theta}(y \mid \mathbf{x}, z_i)$ )

(produces  $p(y \mid x)$ )

### Stage 3: Marginalisation and Selection

$$p(y \mid \mathbf{x}) = \sum_{k=1}^{K} p_{\eta}(z_k \mid \mathbf{x}) p_{\theta}(y \mid \mathbf{x}, z_k)$$

- Multiply the cached document prior by the sequence probability from each beam.
- Sum the weighted scores across all retrieved documents.
- Choose  $y^* = \arg \max_y p(y \mid \mathbf{x})$ .

Wook-Shin Han (POSTECH) RAG-Sequence: Combined May 14, 2025

## All computations at a glance

| Stage             | Key operations                                             | Quantity produced                    |
|-------------------|------------------------------------------------------------|--------------------------------------|
| Retrieval         | Encode $x$ ; ANN search; soft-max top- $K$ scores          | $\rho_{\eta}(z_k \mid \mathbf{x})$   |
| Beam (per $z_i$ ) | Token-level softmax; beam pruning; accumulate $p_{\theta}$ | $p_{\theta}(y \mid \mathbf{x}, z_i)$ |
| Marginalisation   | Weighted sum of priors and sequence probs                  | $p(y \mid x)$                        |
| Selection         | Arg-max over candidates                                    | Final answer y*                      |

10 / 14

## 7. Worked Example (1/2): Retrieval & Beam Search

**Question x**: "What is the capital of France?" Top-K = 3 documents retrieved.

 $\mathsf{Stage} \ \mathbf{1} - \mathsf{Retrieval} \Longrightarrow p_{\eta}(\mathsf{z}_k \mid \mathsf{x})$ 

| Document                        | $s_k$ | $p_{\eta}(z_k \mid \mathbf{x})$ |
|---------------------------------|-------|---------------------------------|
| $z_1$ : "Paris is the capital " | 14.0  | 0.73                            |
| $z_2$ : "Lyon is a major city " | 10.0  | 0.15                            |
| $z_3$ : "France, officially "   | 9.0   | 0.12                            |

Stage 2 – Beam Search per doc  $\Longrightarrow p_{\theta}(y \mid \mathbf{x}, z_i)$ 

From 
$$z_1$$
 
$$\begin{cases} y_{1,1} = \text{"Paris"}, & p_\theta = 0.607 \\ y_{1,2} = \text{"The city Paris"}, & p_\theta = 0.301 \end{cases}$$
 From  $z_2$   $y_{2,1} = \text{"Lyon"}, p_\theta = 0.670$  (second beam pruned owing to low probability)
From  $z_3$   $y_{3,1} = \text{"Paris"}, p_\theta = 0.407$  (only one high-scoring beam survives)

Each  $p_{\theta}$  is the (unnormalised) sequence probability obtained by multiplying token probabilities along the beam.

## 8. Worked Example (2/2): Marginalisation & Selection

#### Stagenbsp;3 – Marginalise across documents

$$p(y \mid \mathbf{x}) = \sum_{k=1}^{3} p_{\eta}(z_k \mid \mathbf{x}) p_{\theta}(y \mid \mathbf{x}, z_k)$$

| Candidate y                | $p(y \mid x)$                                         | Comment                 |
|----------------------------|-------------------------------------------------------|-------------------------|
| "Paris" (from $z_1, z_3$ ) | $0.73 \times 0.607 + 0.12 \times 0.407 \approx 0.492$ | high prior and good fit |
| "The city Paris"           | $0.73\times0.301\approx0.220$                         | lower decoder score     |
| "Lyon"                     | $0.15\times0.670\approx0.101$                         | low prior $+$ wrong doc |

#### Stagenbsp;4 - Select best answer

$$y^* = \arg \max_{y} p(y \mid \mathbf{x}) =$$
 "Paris"

Even though "Paris" appears in two documents, the marginalisation step weights each occurrence by its document prior, yielding the correct answer with the highest overall probability.

ロト 4回 ト 4 重 ト 4 重 ト . 重 . めなべ

#### 8. Observations

- Complexity (rough): Potentially  $O(k^2 \times \text{beam\_size})$  forward passes.
- **Pros:** More accurate because it computes a *true* marginal (across top-k docs).
- Fast Decoding: A simpler method that avoids re-scoring sequences that never appear in each doc's beam.
- **Trade-off:** Thorough decoding can be slower but often yields better results; fast decoding is more scalable.

# 9. Why $O(k^2 \times \text{beam\_size})$ ?

#### Step 1: Beam Search per Document

- We have k documents.
- Each beam search produces beam\_size candidate sequences.
- Total candidate sequences  $= k \times \text{beam\_size}$ .

#### Step 2: Re-evaluation (Marginalization)

• Each candidate  $y_{i,j}$  must be re-scored under all k documents:

$$p(y_{i,j} \mid x) = \sum_{m=1}^{k} p_{\eta}(z_m \mid x) p_{\theta}(y_{i,j} \mid x, z_m).$$

• Hence,  $(k \times \text{beam\_size}) \times k$  forward passes  $= k^2 \times \text{beam\_size}$ .

#### **Overall Cost:**

$$O(\underbrace{k \times (\text{beam search cost})}_{\text{Step 1}} + \underbrace{k^2 \times \text{beam\_size}}_{\text{Step 2}}).$$

In practice, the  $k^2 \times \text{beam\_size}$  re-scoring dominates.