

# Day - 1 Basic Concepts

January 8, 2018

Copyright © 2017 IQVIA. All rights reserved.

# What Will I Learn?

+ Fundamental of statistics with supporting case studies

+ How to run basic statistical analysis in R





#### What is Statistics?

Statistics is a branch of mathematics dealing with the collection, **analysis**, interpretation, presentation, and organization of data



To analyze the relationship between variables / Vector

## Types of variable

Variables can be broadly classified into two types

- 1). Categorical: Qualitative Variable. It can be further categorized as nominal, dichotomous and ordinal
  - Nominal Variable Have two or more categories, but no intrinsic order (e.g.) Race, Gender



- Ordinal Variable - Like nominal variable, but with intrinsic order (e.g.) Performance, Blood group

2). **Continuous**: Quantitative Variable (e.g.) Age, Income, years of experience etc.



#### Cause effect relationship

To understand cause – affect relationship let us start with an example

#### **Example**:

Assume that we are having a supermarket and we are offering 15% discount on the price of products (for particular month). What do we think is going to happen?

<u>Cause</u>: Reduction in price which – <u>Independent variable</u>

**Effect**: Increase in sales – **Dependent Variable** 



#### **Univariate analysis**

Univariate analysis is the simplest way of analyzing data and it looks at one variable at a time



Measures of central tendency: (e.g.) sum, mean, median, mode, standard deviation

**Measures of dispersion :** (e.g.) variance, standard deviation range

## **Calculation - Measure of central tendency**

Data Series: 17, 4, 2, 35, 36, 36, 4, 18, 2, 4, 2, 38

Sum = 
$$17 + 4 + 2 + 35 + 36 + 36 + 4 + 18 + 2 + 4 + 2 + 38 = 198$$

Mean = 
$$(17 + 4 + 2 + 35 + 36 + 4 + 18 + 2 + 4 + 2 + 38)/11 = 16.5$$

Median = 38, 36, 36, 35, 18, 17, 4, 4, 4, 2, 2, 
$$2 = (17+4)/2 = 10.5$$

Mode = 2, 4

Max = 38

Min = 2

# **Calculation – Measures of dispersion**

| S.No | Data Series | Χ - μ | $(x - \mu)^2$ |
|------|-------------|-------|---------------|
| 1    | 38          | 21.5  | 462.25        |
| 2    | 36          | 19.5  | 380.25        |
| 3    | 36          | 19.5  | 380.25        |
| 4    | 35          | 18.5  | 342.25        |
| 5    | 18          | 1.5   | 2.25          |
| 6    | 17          | 0.5   | 0.25          |
| 7    | 4           | -12.5 | 156.25        |
| 8    | 4           | -12.5 | 156.25        |
| 9    | 4           | -12.5 | 156.25        |
| 10   | 2           | -14.5 | 210.25        |
| 11   | 2           | -14.5 | 210.25        |
| 12   | 2           | -14.5 | 210.25        |
|      |             | Sum   | 2,667.00      |

Variance = 
$$\sigma^2 = \sum (x-\mu)^2/N$$
  
Standard Deviation =  $\sigma = \sqrt{\sigma^2}$   
 $\mathbf{x}$ = observation  
 $\mathbf{\mu}$ = population mean  
 $\mathbf{N}$ = number of observations in the population

Variance = ( 2,667.00 / 12) = 222.25

Standard deviation = 
$$\sqrt{222.25}$$
 = 14.91

We are trying to invest in the equity market. Shown below are the annual return summary for stocks A, B and C over period of 10 years.

| Year | Stock A - Return | Stock B - Return | Stock C - Return |
|------|------------------|------------------|------------------|
| 2007 | 55.0%            | 30.5%            | 35.0%            |
| 2008 | 18.3%            | 15.0%            | 18.3%            |
| 2009 | 2.1%             | 15.1%            | 2.1%             |
| 2010 | 47.0%            | 15.0%            | 47.0%            |
| 2011 | 34.4%            | 37.6%            | 34.4%            |
| 2012 | 23.9%            | 23.1%            | 25.0%            |
| 2013 | 3.2%             | 33.4%            | 3.2%             |
| 2014 | 34.0%            | 28.6%            | 32.0%            |
| 2015 | 1.3%             | 21.0%            | 23.0%            |
| 2016 | 27.5%            | 26.5%            | 27.5%            |

| Mean               | 24.7% | 24.6% | 24.8% |
|--------------------|-------|-------|-------|
| Standard Deviation | 18.8% | 8.1%  | 14.0% |



Day - 1 || Basic Concepts

We are trying to invest in the equity market. Shown below are the annual return summary for stocks A, B and C over period of 10 years.

| Year               | Stock A - Return | Stock B - Return | Stock C - Return |
|--------------------|------------------|------------------|------------------|
| 2007               | 55.0%            | 30.5%            | 35.0%            |
| 2008               | 18.3%            | 15.0%            | 18.3%            |
| 2009               | 2.1%             | 15.1%            | 2.1%             |
| 2010               | 47.0%            | 15.0%            | 47.0%            |
| 2011               | 34.4%            | 37.6%            | 34.4%            |
| 2012               | 23.9%            | 23.1%            | 25.0%            |
| 2013               | 3.2%             | 33.4%            | 3.2%             |
| 2014               | 34.0%            | 28.6%            | 32.0%            |
| 2015               | 1.3%             | 21.0%            | 23.0%            |
| 2016               | 27.5%            | 26.5%            | 27.5%            |
|                    |                  |                  |                  |
| Mean               | 24.7%            | 24.6%            | 24.8%            |
| Standard Deviation | 18.8%            | 8.1%             | 14.0%            |





We are trying to invest in the equity market. Shown below are the annual return summary for stocks A, B and C over period of 10 years.

| Year               | Stock A - Return | Stock B - Return | Stock C - Return |
|--------------------|------------------|------------------|------------------|
| 2007               | 55.0%            | 30.5%            | 35.0%            |
| 2008               | 18.3%            | 15.0%            | 18.3%            |
| 2009               | 2.1%             | 15.1%            | 2.1%             |
| 2010               | 47.0%            | 15.0%            | 47.0%            |
| 2011               | 34.4%            | 37.6%            | 34.4%            |
| 2012               | 23.9%            | 23.1%            | 25.0%            |
| 2013               | 3.2%             | 33.4%            | 3.2%             |
| 2014               | 34.0%            | 28.6%            | 32.0%            |
| 2015               | 1.3%             | 21.0%            | 23.0%            |
| 2016               | 27.5%            | 26.5%            | 27.5%            |
|                    |                  |                  |                  |
| Mean               | 24.7%            | 24.6%            | 24.8%            |
| Standard Deviation | 18.8%            | 8.1%             | 14.0%            |

# Stock B is my Choice. Yours?



# **Bivariate analysis**

Bivariate analysis is one of the simplest forms of quantitative analysis. It involves the analysis of two variables (often denoted as X, Y) for the purpose of determining the empirical relationship between them

| Variable X  | Variable Y  | Technique (graphs)   |
|-------------|-------------|----------------------|
| Continuous  | Continuous  | Scatter plot         |
| Categorical | Categorical | Multiple bar diagram |
| Categorical | Continuous  | Box - Plot           |
| Continuous  | Categorical | Box - Plot           |



## **Scatterplot**



Scenario 1: The relationship between the variable X any Y is linear and positive

Scenario 2: There is no relation ship between the variable X and Y

**Scenario 1**: The relationship between the variable X any Y is linear and negative

#### Multiple bar diagram







**Scenario 1**: There is a relationship between two categories (Y-1 outperforms Y-2)

Scenario 2: No relation ship between two categories

**Scenario 1**: There is a relationship between two categories (Y-2 outperforms Y-1)

#### **Box - Plot**







**Scenario 1**: X - 2 category is outperforming X - 1 category

**Scenario 2**: No significant difference

**Scenario 1**: X - 1 category is outperforming X - 2 category

Using direct marketing dataset from a direct marketer, we have to identify and tell the factors that are influencing some customers to spend more than other customers

We have access to

- Age
- Gender
- Own hose / rental house
- Marital Status
- Salary
- How far the customer live away from the store that sells similar kind of products
- No of children they have
- Volume purchased
- Amount Spent

Dataset: Copyright © by Jigsaw academy

#### Is salary influencing customers to spent more?

- Salary Continuous Variable
- Amount Spent Continuous Variable



#### Inference:

- We could see that, as salary increases amount spent is also increasing.
- Which reveals that there is a positive between between two variables Salary and amount spent

# Is there any association between age and amount spent?

- Age Categorical Variable
- Amount Spent Continuous Variable



#### Inference:

- We could see that, middle and old age customers are spending more
- Which reveals that there is a strong relationship between age and amount spent

# Is there any association between marital status and own hose / rental house?

- Marital Status Categorical Variable
- Own house / rental house Categorical Variable

**Step 1 : Cross table / contingency table** 



**Step 2 : Multiple bar diagram** 



#### Inference:

- Most of the married customers are owning house when compared to single
- Therefore there is a strong association between marital status and own house / rental house

## Populations vs samples



#### How to select a sample?

#### Simple random sampling:



#### **Stratified random sampling:**



In analytics most of the time we use sample to make inference about the population





#### **Practical Session**

Datasets : Copyright © by Jigsaw academy

Please do not redistribute the datasets and the deck

