CURSO SUPERIOR EM TECNOLOGIA EM REDES DE COMPUTADORES

SISTEMAS OPERACIONAIS

Aula 03

Sistemas e Chamadas de Sistema

PROFESSOR ANTÔNIO ROGÉRIO MACHADO RAMOS Primeira avaliação - aula 05

EXECUÇÃO DOS PROCESSOS EM BATCH

- O processo é executado inteiramente, não podendo ser interrompido. Caso haja interrupção, se faz necessário a reinicialização do processo.
- O nome batch se deve ao fato dos processos serem executados em lotes, classificados por similaridade pelo operador. Os mainframes dos antigos birôs de processamento de dados utilizavam esta técnica para a execução dos processos.

MULTIPROGRAMAÇÃO

- Os processos são executados em fatias de tempo no computador.
- O processo também pode ceder o computador para outro processo quando fica bloqueado ou suspenso.
- Para os usuários dos processos, tem-se a impressão que cada um deles possui um computador exclusivo.
- A multiprogramação iniciou com o compartilhamento do processador entre os processos e os serviços que controlam os dispositivos.
- Graças a multiprogramação, os serviços do S.O. ficaram independentes da biblioteca da linguagem.

MULTIPROCESSAMENTO

- É a multiprogramação considerando que um processo muito grande pode ser dividido em vários segmentos independentes e serem executados em vários processadores de um único computador (paralelismo) ou em vários computadores interconectados (processamento distribuído).
- Pode ser empregado também na execução de vários processos independentes, onde cada um deles pode rodar em um processador.

EXECUÇÃO EM TEMPO REAL

- É quando o processo assim classificado possui throughput máximo (menor resposta possível às requisições).
- O processo responde na hora ao evento gerador da resposta.
- Processos críticos e jogos, bem como processos que exigem muito uso da CPU, são candidatos para o processamento em tempo real.

S.O. MONOUSUÁRIO

 Atende apenas um usuário de cada vez. Apesar de aceitar multiprogramação (apenas alguns sistemas por causa de restrições nas políticas de uso), esses sistemas não admitem que mais de m usuário tenham processos ou utilizem os recursos ao mesmo tempo.

S.O. MULTIUSUÁRIO

- Atende a mais de um usuário ao mesmo tempo, incluindo os seus processos, que podem ser mantidos em segundo plano, para o caso de apenas um usuário estar ativo.
- Os sistemas operacionais modernos utilizam este paradigma.
- A exceção à regra está na categoria de S.O. mobile, construídos para telefones, tablets e outros equipamentos móveis smart.

MECANISMOS DE PROTEÇÃO

- Impedem que processos utilizem recursos computacionais destinados a outros processos (memória, dispositivo, tempo de cpu).
- Também protegem as áreas dos usuários de serem invadidas por outros usuários sem a devida autorização.
- A segurança (acesso, integridade e disponibilidade) é garantida por estes mecanismos.

MECANISMOS DE ESCALONAMENTO

- Distribui o recurso de acordo com a necesidade dos processos e usuários.
- Compartilha os recursos para que cada processo possa utilizar na sua vez, sem comprometer o uso para outro processo.
- Cria fila de uso para os dispositivos mais lentos (por ex. HDD).

VISÃO DO USUÁRIO

- O S.O. é acessado pelo terminal, no modo monitor, onde os recursos estão disponíveis através da linha de comando.
- Nos sistemas modernos, uma outra modalidade é através de utilitários, geralmente no modo windows, onde o usuário tem uma ferramenta intuitiva para operar o S.O.

ACESSO DO PROCESSO DO USUÁRIO

- Os recursos são acessados via chamadas de sistema (system call), para linguagem de máquina e assembly (linguagem de baixo nível).
- Nas linguagens de alto nível, os macrocomandos são traduzidos em chamadas de sistema para que o processo tenha acesso aos recursos do S.O.

CHAMADA DE SISTEMA PARA CONTROLE DE PROCESSOS

- Controlar o ciclo de vida do processo (carga, término, suspensão, reativação)
- Definir os atributos do processo quanto ao acesso aos recursos.
- Definir as ocorrências de um evento (espera, sinalização, atributos).

CHAMADA DE SISTEMA PARA CONTROLE DE ARQUIVOS

- Criar, apagar e alterar a estrutura de um arquivo.
- Definição dos atributos de arquivos.
- Abrir, fechar, inserir, alterar dados no arquivo.
- Posicionar em um bloco do arquivo (menor porção de dados que pode ser acessada) o ponteiro de acesso.

CHAMADA DE SISTEMA PARA CONTROLE DE DISPOSITIVOS

- Requisitar ou liberar um dispositivo.
- Ler (receber dados) e gravar (enviar dados) para o dispositivo.
- Alterar o atributo do dispositivo.
- Configurar (inserir parâmetros, programar) o dispositivo.

CHAMADA DE SISTEMA PARA CONTROLE DO COMPUTADOR

- Configurar data e hora.
- Configurar a BIOS (algumas funcionalidades apenas).
- O controle de dispositivos entra nesta seção de configuração.