Министерство образования Республики Беларусь Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Факультет информационных технологий и упр	равления
Кафедра интеллектуальных информационных то	ехнологий
O "	MD2 HC
Отчёт по лабораторной работе №3 по курсу «Л	WP3вИС»
на тему ": релаксационные нейронные сети "	
Выполнили студент гр. 821702:	Макаревич Д. А.
Проверил:	Ивашенко В. П.

Тема: релаксационные нейронные сети

Цель: ознакомиться, проанализировать и получить навыки реализации модели релаксационной нейронной сети для задачи распознавания образов

Вариант задания: 3

Дано: Реализовать синхронную модель сети Хопфилда с дискретным временем и непрерывным состоянием.

В лабораторной работе использовалась функция активации гиперболического тангенса ($e^x - e^{-x}$)/($e^x + e^{-x}$).

Обозначения:

W – веса между входным и скрытым слоем.

Х – матрица обучения

Обучение происходило методом проекций по формуле

$$W = X * X^{+};$$

Где + обозначает псевдоинверсию. Если обучающие векторы линейно независимы, то последнее выражение можно упростить

$$W = X^*(X^t * X)^{-1} * X^t;$$

Нахождение обратной матрицы происходит с помощью элементарных преобразований.

Пример работы:

Количество образов в матрице обучение равно 5. Размер образов 10*10.

```
Образ номер1
******
****@****
****@****
****@****
******
******
Образ номер2
******
****@**@**
****@**@**
****@**@**
****@**@**
****@**@**
******
******
```

Рисунок 1

Образ номер3 ****** ****@@@@@* ****@**** ****@**** ****@**** ****@**** ****@**** ****** ******* ****** Образ номер4 @@@@@***** @***@***** @***@**** @***@**** @****** @******** @***** ***** ****** ******

Рисунок 2

Рисунок 3

```
Фигура с шумом
******
****@****
****@****
****@*@***
****@****
@***@****
****@****
******
*@******
******@***
Зашумленный образ равен образу 1
Фигура с шумом
****
****@**@**
****@**@**
****@**@**
****@**@**
******@**
****@@@@**
******
**@*****
******
Зашумленный образ равен образу 2
```

Рисунок 4

```
Фигура с шумом
******
****@@@*@*
****@****
****@****
*****
****@****
****@****
******
******
*****
Зашумленный образ равен образу 3
Фигура с шумом
@@**@****
@***@****
@***@****
@***@****
@*******
@*******
@******
*****
*****
*****
Зашумленный образ равен образу 4
Фигура с шумом
@@@@@@@**
@@@*@****
****@****
@@@*@****
****@*@@**
aaa*a****
**@@@@@@@@
@@@@@@@@@@@
@@@@@****
*****
Модель не смогла определить образ
```

Выводы

Вывод: В ходе лабораторной работы была реализована синхронная модель сети Хопфилда с дискретным временем и непрерывным состоянием. В качестве функции активации использовалась функция гиперболического тангенса. С помощью модели были получены результаты распознавания изображений.