Phuc Ton Nguyen

Prediction of salary for MLB player

Guided Capstone Project Report

Introduction

San Francisco Giants wants to buy player and they are asking the evaluation of the players on the market to buy.

Exploratory Data Analysis

The cleaned and merged dataset contained 6928 observations (players) each with 38 features. I did univariate, bivariate and multivariate analyses along with visualizations. I also performed some hypothesis testing for more statistically rigorous statements. The followings are the summary of what I found through exploratory data analysis (EDA) and inferential statistics.

Hitter

Distribution of Salaries for Hitters


```
salary
                      1.000000
adj_salary_filled
                      1.000000
flag
                      0.315781
Age
                      0.433457
G
                      0.374448
AB
                      0.426127
                      0.426275
                      0.429633
Dbl
                      0.407866
HR
                      0.423042
RBI
                      0.463561
BB
                      0.447756
IBB
                      0.377933
S0
                      0.343339
SF
                      0.344241
GDP
                      0.438088
total_years_mlb
                      0.524767
Name: adj_salary_filled, dtype: float64
```

Independent Variables Vs. Dependent Variable Scatter Plots

From a hitters perspective what team pays the most?

Pitcher


```
salary
                      1.000000
adj_salary_filled
                      1.000000
flag
                      0.310272
Age
                      0.391690
W
                      0.406481
L
                      0.355426
GS
                      0.407395
ΙP
                      0.420481
Н
                      0.404449
HR
                      0.392769
R
                      0.385521
ER
                      0.385179
ВΒ
                      0.333458
50
                      0.426906
total years mlb
                      0.515814
Name: adj_salary_filled, dtype: float64
```

Independent Variables Vs. Dependant Variable Scatter Plots

From a pitchers perspective what team pays the most?

Model

 $Iused\,4\,models\,Linear\,Regression, Random\,Forest\,and\,Light\,Gradient\,Boosting\,, and\,Neural\,Network\,to\,evaluate\,the\,models\,.$

Result

	RMSE_val	RMSE_test	R_squared	Time	Scaling
LightGBM	18248353	19113579	0.6567	10min 31s	True
RandomForest	18853251	19985546	0.6247	3min 6s	False
LinearRegression	22615270	23797151	0.4679	5.98 s	True
Neural Network	26461500	27301891	0.2996	36.1 s	False

LightGBM is best followed by RandomForest followed by LinearRegression

Feature Importances

Conclusion

I have found the best MLB salary prediction models is the LightGBM models which showed high speed and best performance in RMSE. If one model should be selected I would recommend to use the LightGBM model since it is faster and it makes fewer outliers.