Obliczenia

Przyrządy pomiarowe

Amperomierz do pomiaru natężenia prądu	M-3890Dt
Woltomierz do pomiaru napięcia na kondensatorze	M-3800
Woltomierz do pomiaru napięcia na cewce	M-3800

				0
	Miern	1/2		
	Używane zakresy	Rozdzielczość	Dokładność	
4 mA		1 μΑ	$\pm (1.0\% + 5 dgts)$	
	Miern			
	Używane zakresy Rozdzielczość		Dokładność	(0 ,
	200 mV	100 uV		J*

Miernik M-3800, pomiar napięcia AC				
Używane zakresy	Rozdzielczość	Dokładność		
200 mV	100 μV			
2 V	1 mV	$\pm (1.2\% + 3 \text{ dgts})$		
20 V	10 mV			
Pomiary		61.50		
Ustawiliśmy:				
L = 152 mH	3/1/6			
C = 30 mF				
$U_0 = 2 \text{ V}$				
$f_T = \frac{1}{2\pi\sqrt{LC}} = 2357 \text{ Hz}$				
$U = \frac{U_0}{\sqrt{2}} = 1.414 \mathrm{V}$				
$\sqrt{2}$ $I_{max} = 1.174 \text{ mA}$				

$$L = 152 \text{ mH}$$

$$C = 30 \text{ mF}$$

$$U_0 = 2 \text{ V}$$

$$f_T = \frac{1}{2\pi\sqrt{LC}} = 2357 \text{ Hz}$$

$$U = \frac{U_0}{\sqrt{2}} = 1.414 \text{ V}$$

$$I_{max} = 1.174 \text{ mA}$$

$$R = \frac{U}{I} = 1205 \,\Omega$$

$$Q_T = \frac{1}{R} \sqrt{\frac{L}{C}} = 1.869$$

$$Q_T = \frac{f_T}{\Delta f_T} \Longrightarrow \Delta f_T = \frac{f_T}{Q_T} = 1261 \text{ Hz}$$

Lp.	f, Hz	I, mA	U_c , V	U_L , V	$u_b(I)$, mA	$u_h(U_c)$, V	$u_b(U_L)$, V
1	100	0.029	0.018	1.428	$u_b(I), IIA$ 0.0053	$u_h(O_c), v$ 0.00052	$u_h(O_L), V$ 0.02014
2	150	0.029	0.018	1.426	0.0053	0.00063	0.02014
3	200	0.056	0.037	1.434	0.0056	0.00075	0.02021
4	250	0.070	0.048	1.439	0.0057	0.00087	0.02027
5	300	0.084	0.059	1.445	0.0058	0.00101	0.02034
6	350	0.099	0.071	1.453	0.0060	0.00116	0.02044
7	400	0.113	0.085	1.460	0.0061	0.00132	0.02052
8	500	0.143	0.115	1.481	0.0064	0.00167	0.02077
9	600	0.175	0.150	1.508	0.0067	0.00210	0.02110
10	700	0.208	0.192	1.539	0.0071	0.00531	0.02147
11	800	0.244	0.240	1.576	0.0074	0.00588	0.02191
12	900	0.282	0.300	1.621	0.0078	0.00660	0.02245
13	1000	0.323	0.369	1.672	0.0082	0.00743	0.02306
14	1100	0.368	0.450	1.731	0.0087	0.00840	0.02377
15	1200	0.428	0.546	1.801	0.0093	0.00955	0.02461
16	1300	0.482	0.657	1.880	0.0098	0.01088	0.02556
17	1400	0.542	0.787	1.970	0.0104	0.01244	0.02664
18	1500	0.610	0.940	2.030	0.0111	0.01428	0.05436
19	1600	0.684	1.116	2.140	0.0118	0.01639	0.05568
20	1700	0.766	1.319	2.250	0.0127	0.01883	0.05700
21	1800	0.852	1.547	2.370	0.0135	0.02156	0.05844
22	1900	0.942	1.794	2.480	0.0144	0.02453	0.05976
23	2000	1.026	2.030	2.570	0.0153	0.05436	0.06084
24	2050	1.064	2.140	2.600	0.0156	0.05568	0.06120
25	2100	1.098	2.260	2.620	0.0160	0.05712	0.06144
26	2150	1.128	2.370	2.620	0.0163	0.05844	0.06144
27	2200	1.150	2.470	2.620	0.0165	0.05964	0.06144
28	2250	1.166	2.560	2.590	0.0167	0.06072	0.06108
29	2300	1.172	2.630	2.550	0.0167	0.06156	0.06060
30	2320	1.174	2.650	2.530	0.0167	0.06180	0.06036
31	2340	1.174	2.670	2.510	0.0167	0.06204	0.06012
32	2360	1.172	2.690	2.480	0.0167	0.06228	0.05976
33	2380	1.170	2.710	2.450	0.0167	0.06252	0.05940
34	2400	1.168	2.720	2.430	0.0167	0.06264	0.05916
35	2420	1.162	2.730	2.400	0.0166	0.06276	0.05880
36	2440	1.158	2.740	2.360	0.0166	0.06288	0.05832
37	2460	1.152	2.750	2.330	0.0165	0.06300	0.05796
38	2480	1.144	2.750	2.300	0.0164	0.06300	0.05760
39	2500	1.136	2.750	2.260	0.0164	0.06300	0.05712
40	2550	1.114	2.740	2.170	0.0161	0.06288	0.05604
41	2600	1.090	2.730	2.080	0.0159	0.06276	0.05496
42	2700	1.034	2.680	1.890	0.0153	0.03516	0.02568
43	2800	0.974	2.610	1.710	0.0147	0.03432	0.02352
44	2900	0.916	2.530	1.540	0.0142	0.03336	0.02332
45	3000	0.862	2.450	1.390	0.0136	0.03330	0.01968
46	3200	0.764	2.300	1.140	0.0136	0.03240	0.01668
47	3400	0.684	2.170	0.950	0.0120	0.02904	0.01000
48	3600	0.616	2.170	0.790	0.0113	0.02772	0.01440
49	3800	0.562	1.960	0.680	0.0112	0.02652	0.01246
50	4000	0.516	1.890	0.570	0.0100	0.02568	0.001110
51	4500	0.310	1.740	0.370	0.0102	0.02388	0.00768
52	5000	0.430	1.740	0.390	0.0093	0.02368	0.00768
53	5500	0.362	1.540	0.280	0.0086	0.02268	0.00258
53	6000	0.317	1.500	0.190	0.0082	0.01902	0.00258
55	6500	0.282	1.450	0.130	0.0078	0.01830	0.00186
		0.234			0.0073		0.00266
56	7000		1.410	0.165		0.01722	
57	7500	0.212	1.380	0.141	0.0071	0.01686	0.00199
58	8000	0.196	1.350	0.120	0.0070	0.01650	0.00174
59	8500	0.182	1.320	0.105	0.0068	0.01614	0.00156
60	9000	0.170	1.290	0.091	0.0067	0.01578	0.00139

Wykresy z słupkami niepewności:

Wykresy z słupkami niepewności celowo są przedstawione osobo, ponieważ słupki niepewności mogą utrudnić odczytanie I_0

Częstotliwość rezonansowa

Z wykresu odczytaliśmy częstotliwość rezonansową:

$$f_R = 2340 \text{ Hz}$$

 $u(f_R) = 10 \text{ Hz}$ – według naszej oceny za podstawie wykresu

Zapis skrócony:

$$f_R = 2340(10) \text{ Hz}$$

Test zgodności f_R z założoną na początku ćwiczenia częstotliwością teoretyczną f_T

Warunek zgodności pomiaru z wartością dokładną

$$|y - y_0| < U(y)$$

Niepewność rozszerzona

$$U(y) = k \cdot u(y)$$

$$k = 2$$

$$U(f_R) = 20 \text{ Hz}$$

Porównanie wyników

$$f_R = 2340 \pm 20 \text{ Hz}$$
 $f_T = 2357 \text{ Hz}$

$$|2340 - 2357| \text{ Hz} = 17 \text{ Hz} < 20 \text{ Hz}$$

Odczytana f_R jest zgodna z wyznaczoną teoretyczną f_T .

Dobroć badanego układu rezonansowego

$$\Delta f = |1800 - 3000| \text{ Hz} = 1200 \text{ Hz}$$

 $u(\Delta f) = 100~{
m Hz}$ – według naszej oceny za podstawie wykresu

$$Q = \frac{f_R}{\Delta f} = 1.95$$

Niepewność Q z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(Q) = \sqrt{\left(\frac{\partial Q}{\partial f_R}u(f_R)\right)^2 + \left(\frac{\partial Q}{\partial \Delta f}u(\Delta f)\right)^2}$$

Przyjmujemy, że $u(f_R) \approx 0$, ponieważ jest znacznie mniejsza od $u(\Delta f)$ i nie ma istotnego wpływu na wyznaczenie u(Q).

$$u(Q) = \sqrt{\left(\frac{\partial Q}{\partial \Delta f}u(\Delta f)\right)^2} = \sqrt{\left(-\frac{f_R}{(\Delta f)^2}u(\Delta f)\right)^2}$$

$$u(Q) = 0.1625$$

Zapis skrócony:

$$Q = 1.95(16)$$

Test zgodności $oldsymbol{Q}$ z założoną na początku ćwiczenia dobrocią teoretyczną $oldsymbol{Q}_T$

$$U(Q) = 0.325$$

Porównanie wyników

$$Q = 1.95 \pm 0.33$$
 $Q_T = 1.869$

$$|1.95 - 1.869| = 0.081 < 0.33$$

Obliczona Q jest zgodna z wyznaczoną teoretyczną Q_T .

Maksymalna wartość natężenia prądu

Z wykresu odczytaliśmy maksymalną wartość natężenia prądu:

$$I_0 = 1.174 \text{ mA}$$

$$u(I_0) = 0.002 \text{ mA-}$$
 według naszej oceny za podstawie wykresu

Zapis skrócony:

$$I_0 = 1.1740(20) \text{ mA}$$

Maksymalna wartość natężenia odczytana z wykresu jest równa wartości odczytanej na początku ćwiczenia dla częstotliwości teoretycznej f_T z dokładnością do rozdzielczości używanego amperomierza.

Przesunięcie fazowe natężenia prądu względem napięcia wymuszającego

$$\phi = \arctan\left(\frac{X_L - X_C}{R}\right)$$

$$X_L = \omega L$$

$$X_C = \frac{1}{\omega C}$$

$$\omega = 2\pi f$$

$$R = 1205 \Omega$$

$$\omega = 14703 \frac{\text{rad}}{\text{s}}$$

$$X_L = 2235 \Omega$$

$$X_C = 2267 \Omega$$

$$\phi \approx -1.539^{\circ}$$

Otrzymana wartość przesunięcia fazowego ϕ jest bliska 0° . Świadczy to o tym, że obwód znajduje się blisko stanu rezonansu. W rezonansie, napięcie i prąd są w zgodnej fazie, reaktancja kondensatora i reaktancja cewki równoważą się wzajemnie. Reaktancja zastępcza jest równa zeru, a przepływ prądu jest ograniczony tylko przez rezystancję obwodu. To prowadzi do maksymalizacji prądu przy danej wartości napięcia wymuszającego.

Zestawienie wyników końcowych

częstotliwość rezonansowa	$f_R = 2340(10) \text{ Hz}$
dobroć układu rezonansowego	Q = 1.95(16)
maksymalna wartość natężenia prądu	$I_0 = 1.1740(20) \text{ mA}$
przesunięcie fazowe natężenia prądu względem napięcia wymuszającego	$\phi \approx -1.539^{\circ}$

Wnioski

Otrzymana eksperymentalnie częstotliwość rezonansowa jest zgodna z wyznaczoną teoretycznie częstotliwością. To wskazuje na poprawne wyznaczenie parametrów obwodu oraz na skuteczność metody pomiarowej. Indukcyjność cewki i pojemność kondensatora zostały właściwie dobrane, aby umożliwić efektywną obserwację zjawiska rezonansu w obwodzie LC. Przesunięcie fazowe bliskie zeru świadczy o tym, że reaktancja indukcyjna i pojemnościowa zrównoważyły się, a przepływ prądu był ograniczony jedynie przez rezystancję elementów obwodu, gdyż każdy rzeczywisty element posiada pewną rezystancję, nawet jeśli jest ona bardzo mała.