K(2,0) $K(\mathbb{Z}, \delta) = \mathbb{Z}$ H* = Z,0,0,... K(Z, I) k(Z,1) = 6' $H^* = \mathbb{Z}[x]/_{x^2}, |x|=1$ K(Z,2) H²(K(Z,2), Z) = ZT; bose $d_2 \sigma = \tau$, $d_1(\sigma, \tau) = \tau_2 \dots d_1(\sigma, \tau_{i-1}) = \tau_i$ $d_2(G-\zeta_1) = d_2G-\zeta_1 - Gd_2\zeta_1$ In general we would have $\tau_i = \tau_i^i$ $H^{*}(K(\mathbb{Z}_{2}),n) \cong \mathbb{Z}[x], |x|=2$ which would have followed straight away by noticing that K(Z,2) of CP K(Z,3) K(2,2) ->* Already this is getting crary. $h^2 = h^1 = 0$ H3 = ZG d3 t2 = 2 t d3 t = 2 t6 $d_3\tau = 6$ $d_3 z^n = d_3 z \cdot z^{n-1} + z \cdot d_3 z^{n-1}$ = 5. cn+ t.d3cn-1 = n s. zⁿ⁻¹ by induction

Rational coefficients: The same relations as before will hold, but now there imply isomorphisms So we have $H(K(\mathbb{Z},3);\mathbb{Q}) \cong \mathbb{Q}[\mathbb{A}]/\mathbb{A}^2$ $\mathbb{A}=3$ 2 3 4 5 6 7 8 9 10 N 12 The pathern is now clear: $H^*(K(\mathbb{Z},2n);\mathbb{Q})\cong\mathbb{Q}[x]$, |x|=2nH* (K (2,2n+1); Q) = Q[x]/2, |x|=2n+1 Can we use the same technique for arbitrary K(G, n)'s? K(Z/2,1) = 1Rp∞ $K(\mathbb{Z}_{2},2)$ K(Z/2,1) → * K(71,2) QZ = 6 d273 = 6.22+ C67+ 226 = 236 what about 72? d201= d261+ 6. d27=02 doc's ? Note: There is no ton to page So cannot do deipnix $d_3 T^{\frac{1}{2}} = d_3 T^2 \cdot \tau^2 + \tau^2 d_3 \tau^2 = 0$

$$K(\mathbb{Q},1)$$
 $\mathbb{Q} \to \mathbb{R}$
 $K(\mathbb{Q},1)$
 $\mathbb{Q} \to \mathbb{R}$
 $K(\mathbb{Q},1)$
 $\mathbb{Q} \to \mathbb{R}$
 $K(\mathbb{Q},1)$
 $\mathbb{Q} \to \mathbb{R}$
 $\mathbb{Q} \to \mathbb{R}$
 $\mathbb{Q} \to \mathbb{Q}$
 $\mathbb{Q} \to \mathbb$

Except in 0 we have
$$Q'_5$$
, $H^*(\ ; \mathbb{R}) \cong \mathbb{Q}[x]$ $[x] = 2$.

$$K(\mathbb{Q},3)$$
 The same seasoning as in $K(\mathbb{Z},n)$ will work

So that we will get: $H^*(K(\mathcal{Q},2n);\mathcal{Q})\cong \mathcal{Q}[x], |x|=2n$

$$H^*(K(Q,2n+1); Q) \cong Q[x]/x^2, |x|=2n.$$

H*(K(22,n); 2/2) is generated by the Steenroof Iguares.