

Workshop proposal: Data management, visualization and analysis for entomological surveillance, research, and action

COURSE OBJECTIVE: Empower participants to fully engage with their data by learning the steps of the data lifecycle: data collection, storage, processing, visualization, analysis, and communication. By the end of the course, participants will feel comfortable using the R statistical environment to carry out basic research and epidemiological/entomological surveillance related tasks such as data cleaning, merging, mapping, and basic statistical hypothesis testing.

PREREQUISITES: Students need a laptop computer, basic proficiency in English, and a desire to learn.

METHODS: The course will be participatory, and require student activity and engagement. Using demographic, meteorological, spatial, and epidemiological data, each participant will progressively build a "capstone" project: either a semi-formal report/write-up, or a dashboard.

NUMBER OF INSTRUCTORS AND COURSE LENGTH:

- 1 or 2 two teachers
- 1 or 2 weeks

Whether the course has 1 or 2 teachers and lasts 1 or 2 weeks is a function of (a) funding, (b) number of participants. What follows is a "basic package" (ie, a 1 week course, or the first week of the 2 week course), and an "advanced package" (ie, the second week of the 2 week course). The course content is independent of the number of instructors: if the number of participants is large, however, a 2nd instructor is recommended so as to provide additional hands-on help to students who fall behind, etc.

Course Outline

Week 1: basic package

The one week "basic package" can be a stand-alone course, or the first half of the "advanced package" (2 week course).

- Day 1
 - Introduction to R and RStudio
 - Basic calculations and object oriented programming
 - Best practices for workspace and file management
 - Introduction to libraries/packages.
 - o Creating and managing a basic survey for data collection using a manually created spreadsheet
 - Day 2
 - Reading in data (flat files), online files, and Excel files
 - Connecting to a database and reading/writing data

- R syntax, data structures, and variable types
 - Exploratory analysis through visualization: introduction to ggplot
- Day 3
 - Interactive visualization: ggplotly, googleVis, and rcharts
 - Maps and GIS: sp, rgdal, leaflet, and maptools
 - o Introduction to "reproducible research": rmarkdown and knitr
 - Dashboard basics in rmarkdown
- Day 4
 - Dashboards and applications in surveillance
 - Widgets, pop-ups, and user experience
 - Automating analysis "pipelines"
 - o Principles of documentation
- Day 5
 - Basic hypothesis testing through statistics: chisq.test, ks.test, t.test, lm, and glm
 - o Bibliographic management in rmarkdown using bibtex
 - o LaTeX, Rmarkdown, html, word, and other formats for data communication
 - o How to help yourself resources for further learning
 - Capstone projects

Week 2: advanced package only

The two week "advanced" package starts with the one week "basic package" (above) before digging deeper into matters of interactivity, collaboration, versioning, advanced data "munging" (cleaning, re-shaping), and deploying knowledge products (dashboards and reports) to the web.

- Day 1
 - Deep-dive into dplyr: the verbs of data processing
 - Simulating excel operations in R: pivot tables, transformations, summations
 - Day 2
 - Advanced data visualization: color palettes, variable-aspect mapping, and facetting
 - o Deeper-dive into interactive visualizations: leaflet, rCharts, highcharter, networkD3
 - Day 3
 - The shiny web framework: bringing data visualization to life
 - Day 4
 - "Literate programming" and "reproducible research": applying the principles to academia and public health
 - Collaboration using Git and version control
 - Day 5
 - Writing functions and documentation.
 - o Building an R package
 - o Deploying projects, reports, and apps to the web