Drugi Domaći zadatak

TZS

December 18, 2023

U izradi domaćeg zadatka se možete konsultovati medjusobno i sa mnom. Svaki domaći koji predajete, medjutim, mora biti samostalno napisan.

Rok za predaju ovog domaćeg zadatka je petak 12.01.2024.

Zadatak 1

Rešiti Milneov problem tzv. metodom diskretnih ordinata. Metoda diskretnih ordinata pretpostavlja da diskretizujemo intenzitet u nekoliko pravaca, pa se onda integral po uglovima svodi na sumu. Pretpostaviti da razmatramo jedan ulazni i jedan izlazni pravac, u pravcima $\mu = -1/\sqrt{3}$ i $\mu = 1/\sqrt{3}$.

Zadatak 2

Razmatrajmo formiranje spektralne linije u Milne-Eddingtonovoj atmosferi $(S = a + b\tau_c)$, gde je linija okarakterisana jačinom linije, η , koja je jednaka odnosu izmedju neprozračnosti linije u centru i neprozračnosti u kontinuumu:

$$\chi_{\lambda}^{L} = \eta \phi_{\lambda} \chi_{c}. \tag{1}$$

Dakle:

$$\tau_{\lambda} = (1 + \eta \phi_{\lambda}) \tau_{c}. \tag{2}$$

Ovde ćemo pretpostaviti da je profil linije dat kao:

$$\phi_{\lambda} = \frac{1}{\sqrt{\pi}} e^{-(\lambda - \lambda_0)^2 / \Delta \lambda_D^2}.$$
 (3)

Pokažite da se izlazni intenzitet u liniji može napisati kao:

$$I_{\lambda} = a + \frac{b}{1 + \eta \phi_{\lambda}}.\tag{4}$$

Ekvivalentna širina linije je definisana kao:

$$EW = \int 1 - \frac{I_{\lambda}}{I_c} d\lambda. \tag{5}$$

Za veliki opseg η i dato $a,b,\lambda_0,\Delta\lambda_D$ izračunati EW i nacrtati zavisnost $EW(\eta).$

Zadatak 3

Neke linije u spektru Sunca imaju emisiju u centru (npr. Mg II h & k linije), dok neke nemaju (većina ostalih). Objasniti zašto.