Section 8.3 - Euler's Method

Use Euler's Method with the given step size Δx or Δt to approximate the solution of the initial-value problem over the stated interval. Present your answer as a table and as a graph.

7.
$$\frac{dy}{dx} = \sqrt[3]{y}, y(0) = 1, 0 \le x \le 4, \Delta x = 0.5$$

8.
$$\frac{dy}{dx} = x - y^2$$
, $y(0) = 1$, $0 \le x \le 2$, $\Delta x = 0.25$

9.
$$\frac{dy}{dt} = \cos y$$
, $y(0) = 1$, $0 \le t \le 2$, $\Delta t = 0.5$

10.
$$\frac{dy}{dt} = e^{-y}$$
, $y(0) = 0$, $0 \le t \le 1$, $\Delta t = 0.1$

- 11. Consider the initial-value problem $y' = \sin \pi t$, y(0) = 0. Use Euler's Method with five steps to approximate y(1).
- 20. Consider the initial-value problem $y' = \frac{\sqrt{y}}{2}$, y(0) = 1.
 - a. Use Euler's Method with step sizes of $\Delta x = 0.2, 0.1, 0.05$ to obtain three approximations of y(1).
 - b. Find y(1) exactly. Hint: Solve the initial-value problem.