A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EA

3 Bookmarks

Show all steps: ON

Problem

In each of the following, use the fundamental homomorphism theorem to prove that the two given groups are isomorphic. Then display their tables.

 \mathbb{Z}_{2} and $S_3/\{\varepsilon, \beta, \delta\}$..

Step-by-step solution

Step 1 of 4

Consider the two groups Z_2 and $S_3/\{\varepsilon, \beta, \delta\}$. Objective is to prove that these two groups are isomorphic by using the fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

 $H \cong G/K$

Comment

Step 2 of 4

Consider the function $f: S_3 \to Z_2$ given by

$$f = \begin{pmatrix} \varepsilon & \alpha & \beta & \gamma & \delta & \kappa \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

To show that this mapping f is homomorphism, one must show that

$$f(a+b) = f(a) + f(b)$$

for all choices of a and b in S_3 .

Since $f(\varepsilon) = 0$, it can be seen that

$$f(\varepsilon \quad x) = f(x)$$

$$= f(0) + f(x)$$

$$= f(x) + f(0)$$

$$= f(x \quad \varepsilon).$$

Use the same steps for the compositions of remaining elements and consider the following table:

/+	α/1	$\beta/0$	γ/1	8/0	κ/1
$\alpha/1$	$\varepsilon/0$	$\gamma/1$	$\beta/0$	κ/1	$\delta/0$
$\beta/0$	κ/1	$\delta/0$	$\alpha/1$	$\varepsilon/0$	γ/1
γ/1	8/0	κ/1	$\varepsilon/0$	$\alpha/1$	$\beta/0$
8/0	$\gamma/1$	$\varepsilon/0$	κ/1	$\beta/0$	α/1b
κ/1	$\beta/0$	$\alpha/1$	8/0	$\gamma/1$	$\varepsilon/0$

Here $\alpha/1$ represents that the image of $\alpha \in S_3$ is 1 in Z_2 , and so on.

Comment

Step 3 of 4

In each case,

$$f(a \ b) \cong f(a) + f(b)$$

Therefore, f preserves composition and is a homomorphism. Since each element of \mathbb{Z}_2 has the pre-image, so f is onto.

By the definition of f, only elements ε , β , δ of S_3 maps to identity. Therefore, the map f is homomorphism from S_3 onto Z_2 with $\ker f = \{\varepsilon, \beta, \delta\}$.

The addition table of Z_2 will be:

+	0	1
0	0	1
1	1	0

Comment

Step + Or -	Step	4	of	4
-------------	------	---	----	---

$$Z_2 \cong S_3 / \{\varepsilon, \beta, \delta\}.$$

Comment