Overview

Footman

这篇文章是基础范畴论的概览. 我们首先从 category 的定义讲起:

Definition 1 (Category). 一个 范畴 (category) 8 是指的以下几个组件:

- 对象 objects X,Y,Z, 把他们的全体记做 $Ob(\mathscr{C})$. 在不引起混淆的情况下, 我们把 $X \in \mathscr{C}$.
- 态射 morphisms f,g,h, 并把他们的全体记做 $Mor(\mathcal{C})$. 类似的, 我们也把 f 是 \mathcal{C} 的态射, 记做 $f \in \mathcal{C}$.
- 映射 id: $Ob(\mathscr{C}) \to Mor(\mathscr{C})$, $dom, cod: Mor(\mathscr{C}) \to Ob(\mathscr{C})$.

我们记 $f: X \to Y$ 若有 $f \in \mathcal{C}$, dom(f) = X, cod(f) = Y, $id_X := id(X)$. 并称 $f: X \to Y$ 是一个从 $X \to Y$ 的态射. 并且这些态射应满足以下几条公理:

- $id_X: X \to X$, 我们称这一态射为 X 的 单位态射 identity morphism
- 对于任意态射 $f: X \to Y, g: Y \to Z$, 对应着一个 $h: X \to Z$, 我们把它记做 $g \circ f$, 称为 g, f 的复合 composition
- 对于任意态射 $f: X \to Y, h: W \to X, 有 f \circ id_X = f, id_X \circ g = g$
- 并且对于任意的态射 $h: W \to X, f: X \to Y, g: Y \to Z$ 有 $g \circ (f \circ h) = (g \circ f) \circ h$.

Example 2. 所有集合全体构成一个范畴Set, 其中对象是集合, 态射是映射, 单位态射就是单位映射. 容易验证这样的定义上述公理.

Definition 3 (Functor). 对于两个范畴 \mathscr{C} , \mathscr{D} , 我们称一组映射 F_0 : Ob(\mathscr{C}) \to Ob(\mathscr{D}), F_1 : Mor(\mathscr{C}) \to Mor(\mathscr{D}) 是从 \mathscr{C} 到 \mathscr{D} 的函子 Functor, 若它们满足

- 对任意的态射 $f: X \to Y$ 有 $F_1(f): F_0(X) \to F_0(Y)$.
- $F_1(g \circ f) = F_1(g) \circ F_1(f)$.
- $F_1(\mathrm{id}_X) = \mathrm{id}_{F_0(X)}$.

在不引起混淆的情况下, 我们记 $F(X) := F_0(X), F(f) := F_1(f)$ 并记这一组映射为 $F: \mathcal{C} \to \mathcal{D}$.

Example 4 (Category of categories). 对于任意范畴 \mathcal{C} , 我们有函子 $\mathrm{id}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$, 满足 $\mathrm{id}_{\mathcal{C}_0}(X) = X$, $\mathrm{id}_{\mathcal{C}_1}(f) = f$. 并且对于任意函子 $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$, 我们可以定义函子的复合 $G \circ F: \mathcal{C} \to \mathcal{D}$, 其中 $(G \circ F)_0(X) := G_0(F_0(X))$, $(G \circ F)_1(f) := G_1(F_1(f))$.

可以验证所有的范畴构成一个范畴, 我们称这个范畴为 category of categories, 并记做 Cat.

Example 5 (Dual Category), 对于任一范畴 8、我们称范畴 8°中 是 8 的dual category, 若 8°中 满足:

- 对象 $X \in \mathcal{C}^{op} \iff X \in \mathcal{C}$.
- 态射 $f: X \to Y \in \mathcal{C}^{op} \iff f: Y \to X \in \mathcal{C}$.

此时 $(-)^{op}$: Cat \rightarrow Cat 是一函子.

Example 6 (Hom-Set/Hom-Functor). 给定局部小 (locally small) 范畴 \mathcal{C} , 即, 对于每对对象 $X,Y \in \mathcal{C}$, 所有从 X 到 Y 的态射恰组成一个集合, 记为 $\mathcal{C}(X,Y)$, 并称为 \mathcal{C} 中的Hom-set.

给定 $f: X \to Y$, 我们可以定义映射 $f^*: \mathcal{C}(W,X) \to \mathcal{C}(W,Y)$, $(g: W \to X) \mapsto (f \circ g: W \to Y)$, 和 $f_*: \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$, $(h: Y \to Z) \mapsto (h \circ f: X \to Z)$

若定义 $\mathcal{C}(W,f) := f^*: \mathcal{C}(W,X) \to \mathcal{C}(W,Y), \mathcal{C}(f,Z) := f_*: \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$ 则容易验证对任意的对象 $X \in \mathcal{C}$ 有:

$$\mathscr{C}(X,-)\colon\mathscr{C}\to\operatorname{Set}\ \mathscr{C}(-,X)\colon\mathscr{C}^{\operatorname{op}}\to\operatorname{Set}$$

是两个函子.

Example 7 (Comma Category). 对于任意两个函子 $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{C} \to \mathcal{D}$, 我们可以定义comma category $F \downarrow G$. 其中的对象是 \mathcal{D} 中形如 $f: FX \to GY$ 的态射全体, 而对于任意两个对象 $f: FX \to GY$, $f': FX' \to GY'$ 它们之间的态射被定义为 $(g,h): f \to f'$ 其中 $g: X \to X' \in \mathcal{C}$, $h: Y \to Y'$ 满足

$$F(X) \xrightarrow{f} G(Y)$$

$$F(g) \downarrow \qquad \qquad \downarrow G(h)$$

$$F(X') \xrightarrow{f'} G(Y')$$

交换.

特别的, 若 $F = \mathrm{id}_{\mathscr{C}}(\mathrm{resp.}\ G = \mathrm{id}_{\mathscr{C}})$, 则记 $\mathscr{C} \downarrow G := F \downarrow G(\mathrm{resp.}\ F \downarrow \mathscr{E} := F \downarrow G)$. 并且若对于任意的 $X \in \mathscr{C}$ 存在 $d \in \mathscr{D}$ 有 F(X) = d, $F_1(X) = \mathrm{id}_d$ (resp. 对于任意的 $Y \in \mathscr{E}$, 存在 $d \in \mathscr{D}$ 有 G(X) = d, $G(f) = \mathrm{id}_d$), 则记 $d/\mathscr{D} := F \downarrow D$ (resp. 记 $\mathscr{D}/d := \mathscr{D} \downarrow G$). 其中 d/\mathscr{D} 被称为 \mathscr{D} 的 slice category under d, \mathscr{D}/d 被称为 \mathscr{D} 的 slice category over d.

Definition 8 (Natural Transformation). 对于两个函子 $F,G: \mathcal{C} \to \mathcal{D}$, 我们称映射 $\tau: \mathrm{Ob}(\mathcal{C}) \to \mathrm{Mor}(\mathcal{D})$ 是从 F 到 G 的自然变换 natural transformation, 若对于任意的态射 $f: X \to Y \in \mathcal{C}$, 有如下的图表交换:

$$F(X) \xrightarrow{\tau_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\tau_Y} G(Y)$$

其中 $\tau_X := \tau(X)$. 并记 $\tau: F \to G$.

Example 9 (Functor Category). 固定两范畴 \mathcal{C} , \mathcal{D} , 若 $F: \mathcal{C} \to \mathcal{D}$, 则我们可以定义自然变换 $\mathrm{id}_F: F \to F$ 有, 对于任意的 $X \in \mathcal{C}$, 有 $\mathrm{id}_F(X) := \mathrm{id}_{F(X)}$. 若 $\tau: F \to G, v: G \to H$, 我们可以定义新的自然变换 $v \circ \tau$ 为 $(v \circ \tau)_X := v_X \circ \tau_X$.

可以验证从 \mathcal{C} 到 \mathcal{D} 的函子全体构成一个范畴, 我们称这个范畴为函子范畴 functor category, 并记做 Fun(\mathcal{C} , \mathcal{D}) 或者 $\mathcal{D}^{\mathcal{C}}$, 并把 F 到 G 的自然变换全体, 记做 Nat(F, G).

Definition-Example 10 (Diagram/Diagonal Functor/Cone). 我们称函子 $F: \mathcal{J} \to \mathcal{D}$ 的像, 是 \mathcal{D} 中形如 \mathcal{J} 的图 表 diagram. 对于任意的小范畴 small category $\mathcal{J}(\mathbb{P}) \in Set$), 我们能定义如下函子:

$$\Delta_{\mathcal{J}}\colon \mathcal{D}\to \mathcal{D}^{\mathcal{J}},$$

$$D\mapsto (\Delta_{\mathcal{J}}(D)\colon \mathcal{J}\to\mathcal{D}, J\in\mathcal{J}\mapsto D, f\in\mathcal{J}\mapsto \mathrm{id}_D),$$

并且记 Cone $(d, F) := \text{Nat}(\Delta_{\mathscr{G}}(d), F)$.

Definition 11 (Adjoint Functor/Adjunction). 若 $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{D}$ 满足: 存在一族双射

$$\tau_{X,Y} \colon \mathcal{D}(FX,Y) \simeq \mathcal{C}(X,GY)$$

对于给定的 $X,Y,\tau_{X,-},\tau_{-,Y}$, 是自然变换, 则称 F 是 G 的 left adjoint, G 是 F 的 right adjoint, 并记作 F \dashv G. 定义 η : Ob(\mathscr{C}) \to Mor(\mathscr{C}), X \mapsto $\tau_{X,FX}(\mathrm{id}_{FX})$, ε : Ob(\mathscr{D}) \to Mor(\mathscr{D}), Y \mapsto $\tau_{GY,Y}^{-1}(\mathrm{id}_{GY})$. 容易验证 η : id \mathscr{C} \to GF, ε : FG \to id \mathscr{D} 是自然变换. 我们称 η 是unit, ε 是counit. 之后我们会看到 η (resp. ε) 恰给出了一个 algebraic theory 的 unit(resp. counit).

Definition 12 (limit). 我们称对象 D 是图表 F: \mathcal{J} → \mathcal{D} 的极限 limit, 若对任意的 $D' \in \mathcal{D}$ 有双射:

$$Cone(D', F) \simeq \mathcal{D}(D', D)$$

我们称 D 是图表 $F: \mathcal{J} \to \mathcal{D}$ 的余极限 colimit, 若 D 是图表 \mathcal{J}^{op} 的极限.

接下来我们介绍一些基础范畴论相关的定理:

Theorem 13 (RAPL). 右伴随保持极限 right adjoint preserve limit, 即对于 $F \dashv G: \mathcal{C} \to \mathcal{D}$, G 保持极限: 若 D 是图表 $H: \mathcal{J} \to \mathcal{D}$ 的极限, 则 GD 是图表 $GH: \mathcal{J} \to \mathcal{C}$ 的极限.

Theorem 14 (Freyd's Adjoint Functor Theorem). 对于给定的 small category \mathcal{D} , functor $G: \mathcal{D} \to \mathcal{C}$ 存在 left adjoint 当且仅当

- · G保持极限.
- (Solution Set Condition) 对于每个 $x \in \mathcal{D}$, 存在 $\{f_i : x \to Gy_i\}$, $I \in Set$ 使得对任一形如 $h: x \to Gy$ 的态射都存在 $i \in I, t: y_i \to y$ 满足 $h = Gt \circ f_i$.

Theorem 15 (Completeness Criterion). 对任意范畴 8,以下几个条件等价

- · 8 对任意 (resp. 有限) 图表有极限存在,
- · 8 存在任意 (resp. 有限)fibre product, 以及 terminal object.
- · 8 存在任意 (resp. 有限)product, 以及 equalizer.

$$\kappa: \underset{j}{\lim} \underset{p}{\lim} F(p,j) \to \underset{p}{\lim} \underset{j}{\lim} F(p,j)$$

是 isomorphism.

Theorem 17 (Density). Every presheaf is a colimit of representable presheaf. 事实上, 对每个 $P: \mathscr{C}^{\mathrm{op}} \to \operatorname{Set}$ 有

$$P = \operatorname{Colim}\left(\gamma \downarrow P \xrightarrow{Q} \mathscr{C} \xrightarrow{\gamma} \operatorname{Set}^{\mathscr{C}^{\operatorname{op}}}\right)$$

Theorem 18 (Beck's Monadicity Theorem). $\diamondsuit \langle F \dashv G, \eta, \varepsilon \rangle$: $\mathscr{C} \to \mathscr{D}$, 并且 $\langle T, \eta, \mu \rangle$ 是 \mathscr{C} 上 monad, \mathscr{C}^T 是 category of T-algebras 且

$$\langle F^T, G^T, \eta^T, \varepsilon^T \rangle \colon \mathcal{C} \to \mathcal{C}^T$$

是T诱导出的 adjunction, 以下几个条件等价:

- The camparison functor $K: \mathscr{D} \to \mathscr{C}^T$ is an isomorphism. (i.e. G is monadic)
- $G: \mathcal{D} \to \mathcal{C}$ creates coequalizers for those parallel pairs f,g in \mathcal{D} for which Gf,Gg has an absolute coequalizer in \mathcal{C} .
- $G: \mathscr{D} \to \mathscr{C}$ creates coequalizers for those parallel pairs f,g in \mathscr{D} for which Gf,Gg has an split coequalizer in \mathscr{C}

这一定理在未来能有效的帮助我们证明任意 topos 都是 cocomplete 的.

Definition 19 (Kan Extension). 令 $F: \mathcal{C} \to \mathcal{E}, K: \mathcal{C} \to \mathcal{D}$, 我们称 $\mathrm{Lan}_K F \not\in F$ 沿 K 的 left Kan extension (resp. $\mathrm{Ran}_K F \not\in F$ 沿 K 的 right Kan extension) 若对任意的 $G: \mathcal{D} \to \mathcal{E}$ 有如下的同构存在:

$$\operatorname{Nat}(\operatorname{Lan}_K F,G)\cong\operatorname{Nat}(F,GK)\quad\operatorname{Nat}(G,\operatorname{Ran}_K F)\cong\operatorname{Nat}(GK,F)$$

Theorem 20 (Formal criteria for the existence of an adjoint). 函子 $G: \mathcal{D} \to \mathcal{C}$ 有 left adjoint 当且仅当 the right Kan extension $\operatorname{Ran}_G 1_{\mathscr{Q}}: \mathcal{C} \to \mathscr{D}$ 存在并且有 $\operatorname{GRan}_G 1_{\mathscr{Q}} \simeq \operatorname{Ran}_G G$.

Theorem 21 (The Formula). 若 F 的 codomain is cocomplete(complete), 我们有:

$$\operatorname{Lan}_{K}F(d) \cong \int^{c \in \mathscr{C}} \mathscr{D}(Kc, d) \cdot Fc \quad \operatorname{Ran}_{K}F(d) \cong \int_{c \in \mathscr{C}} Fc^{\mathscr{D}(d, Kc)}$$
 (22)

式中 $\mathcal{D}(Kc,d) \cdot Fc$ 是 \mathcal{E} 中 copower, 且 $Fc^{\mathcal{D}(d,Kc)}$ 是 \mathcal{E} 中 power.

Example 23 (Geometric Realization). $\diamondsuit \Delta \not\equiv$ simplex category, $n \mapsto |\Delta^n|$ gives a functor from the simplex category to the category of topoligical spaces Top.

由于 Top 是 cocomplete 的, 于是我们可以定义 | - |: Set $^{\Delta^{op}} \to \text{Top}$, 这一 functor 被称为 simplicial set 的 Geometric realization functor.

事实上, 我们还可以有更广义的 geometric realization. $\stackrel{.}{Z}$ $\stackrel{.}{M}$ $\stackrel{.}{U}$ simplicial enriched, tensored, and cocomplete category, 则对 $\stackrel{.}{M}$ 上的 simplicial obejet $\stackrel{.}{X}$: $\stackrel{.}{\Delta}$ $\stackrel{.}{Q}$ $\stackrel{.}{\to}$ $\stackrel{.}{M}$, 我们有 $\stackrel{.}{X}$ $\stackrel{.}{O}$ $\stackrel{.}{\to}$ $\stackrel{.}{W}$, 我们有 $\stackrel{.}{X}$ $\stackrel{.}{\to}$ $\stackrel{.$

$$|X_{\bullet}| := \int^{n \in \Delta} \Delta^n \otimes X_n.$$

这给出了functor $|-|: M^{\Delta^{op}} \to M$.

Definition 24 (Cartesian Closed Category). A category ${\mathscr V}$ is cartesian closed iff

- \mathcal{V} has finite product and obviously have terminal object $1 \in \mathcal{V}$,
- for all $A \in \mathcal{V}$, the functor $A \times -: \mathcal{V} \to \mathcal{V}$ has a right adjoint $(-)^A : \mathcal{V} \to \mathcal{V}$.

Definition 25 (Enriched Category). A *V*-enriched category *C* consists of:

- a class of objects Ob(C)
- for each pair of objects $x, y \in C$ there is an object of arrows $C(x, y) \in \mathcal{V}$
- for each $x \in C$, there is an identity map $\mathrm{id}_x \colon 1 \to C(x,x) \in \mathcal{V}$, and for each $x,y,z \in C$, there is an composition map $\circ \colon C(y,z) \times C(x,y) \to C(x,z) \in \mathcal{V}$ satisfying the associativity and unit conditions below:

$$C(y,z) \times C(x,y) \times C(w,x) \xrightarrow{\circ \times \mathrm{id}} C(x,z) \times C(w,x) \qquad C(x,y) \xrightarrow{\circ \times \mathrm{id}} C(x,y) \times C(y,y)$$

$$\downarrow_{\mathrm{id} \times \circ} \qquad \qquad \downarrow_{\mathrm{id} \times \circ} \qquad \qquad \downarrow_{\mathrm{i$$

Definition 26 (Enriched Functor). 若 C,D 是 V-enriched category, 则V-enriched functor F 是指的以下几个组件

- 一个映射把对象x ∈ C 映成Fx ∈ D
- 对每个x,y,有V中态射 $F_{x,y}$: $C(x,y) \to D(Fx,Fy)$ 满足
 - i) $F_{x,z} \cdot \circ = \circ \cdot F_{y,z} \times F_{x,y}$
 - ii) F_r , $x \cdot id_r = id_{Fr}$

Definition-Example 27 (2-category/(strictly) *n*-category). 我们称 C 是一个2-category, 若 C 是 Cat-enriched category. 记所有的 2-category 全体为 2-Cat. 则,

我们称 C 是一个(strictly) n-category, 若 C 是 (n-1)-Cat-enriched category.

Definition 28 (Enriched Natural Transformation). A \mathcal{V} -enriched natural transformation $\tau\colon F\to G$ between \mathcal{V} -enriched functor $F,G\colon C\to D$ is given by:

- an arrow $\tau_x : 1 \to D(Fx, Gx)$ for each $x \in C$
- for each pair of objects $x,y \in C$, the follow square commutes in \mathcal{V}

$$C(x,y) \xrightarrow{\tau \times F} D(Fy,Gy) \times D(Fx,Fy)$$

$$G \times \tau \downarrow \qquad \qquad \downarrow \circ$$

$$D(Gx,Gy) \times D(Fx,Gx) \xrightarrow{\circ} D(Fx,Gy)$$

Definition 29 (Obeject of natural transformation). The object in ${\mathscr V}$

$$\mathscr{V}^{C}(F,G) := \operatorname{coeq} \left(\prod_{z \in C} D(Fz,Gz) \Rightarrow \prod_{x,y \in C} D(Fx,Gy)^{C(x,y)} \right)$$

is called \mathcal{V} -obejet of natural transformation between functor F and G.

最后是我比较喜欢的一个定理

Theorem 30 (Enriched Yoneda Lemma). For any small \mathscr{V} -category $A, a \in A$, and \mathscr{V} -functor $F \colon \to \mathscr{V}$, the cannonical map defines an isomorphism in $\mathscr{V} \colon$

$$Fa \stackrel{\cong}{\to} \mathscr{V}^A(A(a,-),F),$$

that is \mathcal{V} -natural in both a and F.

以上便是基础范畴论的主要内容, 仅抛砖引玉.