ND系统证明思维

xyfJASON

```
推理规则
解题思路
例题
例一(2019深圳)
例二(2019深圳)
例三(2017本部)
例四(2017本部)
例五(2016本部)
例六(2016本部)
例七(2015本部)
```

例八 (2015本部)

思维过程是证明序列的逆序,即「要证……只需证……」。拿到一道题,只要把思维过程理顺了,证明时倒着写就行了。有时候倒着想卡在某一步了,可以再正向推一下,两面夹击解决问题。

相比 PC 系统, ND 系统的推理规则比较符合人的思维,可能相对好做一点。

推理规则

$$r_1: \qquad \frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B} \qquad \qquad (+)$$

$$r_2: \qquad rac{\Gamma; A \vdash B, \, \Gamma; \neg A \vdash B}{\Gamma \vdash B} \qquad \qquad (-)$$

$$r_3: \qquad rac{\Gamma dash A}{\Gamma dash A ee B}, \, rac{\Gamma dash B}{\Gamma dash A ee B} \qquad \qquad (ee +)$$

$$r_4: \qquad rac{\Gamma; A dash C, \, \Gamma; B dash C, \, \Gamma dash A ee B}{\Gamma dash C} \qquad (ee -)$$

$$r_5: \qquad rac{\Gamma dash A, \Gamma dash B}{\Gamma dash A \wedge B} \qquad \qquad (\wedge +)$$

$$r_6: \qquad rac{\Gamma dash A \wedge B}{\Gamma dash A}, \, rac{\Gamma dash A \wedge B}{\Gamma dash B} \qquad \qquad (\wedge -)$$

$$r_7: \qquad rac{\Gamma; A \vdash B}{\Gamma \vdash A
ightarrow B} \qquad (
ightarrow +)$$

$$r_8: \qquad rac{\Gammadash A, \Gammadash A o B}{\Gammadash B} \qquad \qquad (o -)$$

$$r_9: \qquad rac{\Gamma; A dash B, \Gamma; A dash
eg B}{\Gamma dash
eg A} \qquad \qquad (
eg +)$$

$$r_{10}: \frac{\Gamma \vdash A, \Gamma \vdash \neg A}{\Gamma \vdash B}$$
 $(\neg -)$

¬¬和 ↔ 略去不表。

解题思路

【逆推的终点】一般是 (\in) 或 $(\to -)$ 或 $(\neg -)$

【反证法】源自 $(\neg +)$ 。要证 $\Gamma \vdash \neg A$,只需把 $\neg A$ 取反放到 \vdash 前面去,然后找矛盾,即只需证 $\Gamma; A \vdash B$ 并且 $\Gamma; A \vdash \neg B$;同理,要证 $\Gamma \vdash A$,只需证 $\Gamma; \neg A \vdash B$ 并且 $\Gamma; \neg A \vdash \neg B$ 。

【分类讨论1】源自 (\lor –)。当 \lor 出现在 \vdash 前时,就把 \lor 的两边拆开放进条件里分别推导(即分类讨论),然后用 (\lor –) 规则。

【分类讨论2】源自(-),目的是添上对立的条件之后能推出相同的结论。典型用法有两个:

- 1. 证明 $\Gamma \vdash A \lor B$ 时,我们这样分类讨论: 「当 C 成立时 A 成立,当 C 不成立时 B 成立,所以不管怎么说, $A \lor B$ 都成立」。具体地说,我们只需要证明 $\Gamma; C \vdash A$ 以及 $\Gamma; \neg C \vdash B$,然后使用 (-) 规则即可得到 $\Gamma \vdash A \lor B$.
- 2. 证明 $A \to B \vdash B$ 时,我们这样分类讨论: 「当 A 成立时 B 成立,当 A 不成立时我们可以从 $\neg A$ 推出 B,那么不管怎么说 B 都成立」。具体地说,我们只需要证明 $A \to B, A \vdash B$ 以及 $A \to B, \neg A \vdash B$,然后使用 (\neg) 规则即可得到 $A \to B \vdash B$.

 $\mathbb{I} \to \mathbb{I}$ 前移 $\mathbb{I} \to \mathbb{I}$ 出现在 \vdash 之后时,必然使用 (\to +) 规则,即:「要证 $\Gamma \vdash A \to B$,只需证 $\Gamma ; A \vdash B \mid$ 。

【→ 后放】当 → 出现在 \vdash 之前时,纵观所有 ND 中的推理规则,并没有处理 → 在 \vdash 前的情况,因而我们只能一直把它保留在 \vdash 前面。一种处理方法是前文的分类讨论,另一种处理方法是:

- 2. 使用 (ϵ) 规则让 \rightarrow 在 \vdash 后面出现;
- 3. 想办法用上 $(\rightarrow -)$ 规则。

【拆开 △】 而当 △ 出现在 \vdash 之前时,和 → 的情况一样,我们只能一直把它保留在 \vdash 前面。要让它发挥作用,也采用类似的方法:

- 2. 使用 (∈) 规则让 ∧ 在 ⊢ 后面出现;
- 3. 使用 (∧-) 规则。

事实上容易发现,条件中含有 $A \land B$ 和条件中含有 A, B 并没有本质区别,完全可以无视 \land 。

【逐个击破】当 \vdash 后面要演绎的内容是两个公式相 \land 时,就用 (\land +) 规则把题目一分为二分别证明。

【丢条件】如果一个条件没用,就用 (+) 规则把它直接丢掉。

例题

例一 (2019深圳)

求证: $\vdash_{ND} (A \lor B) \land (\neg B \lor C) \rightarrow A \lor C$

思维过程:

$$F(AvB) \wedge (\neg BvC) \rightarrow AvC$$

(AvB) $\wedge (\neg BvC) \vdash AvC$

(AvB) $\wedge (\neg BvC) \vdash AvC$

(AvB) $\wedge (\neg BvC)$, $B \vdash C$
(AvB) $\wedge (\neg BvC)$, $\neg B \vdash A$

(AvB) $\wedge (\neg BvC)$, $\neg B$, $B \vdash C$ \vee (AvB) $\wedge (\neg BvC)$, $\neg B$, $A \vdash A \lor$ (AvB) $\wedge (\neg BvC)$, $\neg B$, $B \vdash A \lor$ (AvB) $\wedge (\neg BvC)$, $\neg B$, $B \vdash A \lor$ (AvB) $\wedge (\neg BvC)$, $\neg B$, $B \vdash A \lor$

例二 (2019深圳)

求证: $\vdash_{ND} (\neg A \to B) \to A \lor B$

例三 (2017本部)

求证: $\vdash_{ND} ((A \rightarrow B) \rightarrow C) \rightarrow (B \rightarrow C)$

思维过程:

例四 (2017本部)

求证: $\vdash_{ND} (B \to \neg C) \to (\neg A \to (B \to \neg (\neg A \to C)))$

思维过程:

例五 (2016本部)

求证: $\vdash_{ND} ((\neg A \to B) \to \neg A) \to \neg A$

例六 (2016本部)

求证: $\vdash_{ND} (A \lor B) \land (A \lor C) \rightarrow A \lor (B \land C)$

$$F(AVB)\Lambda(AVC) \rightarrow AV(B\Lambda C)$$
 $\Lambda \rightarrow \vec{n}$
 $AVB)\Lambda(AVC) + AV(B\Lambda C)$
 $AVB)\Lambda(AVC) + AVB$
 $AVB)\Lambda(AVC) + AVB$

例七 (2015本部)

求证: $\vdash_{ND} (\neg A \lor B) \land (\neg B \lor C) \rightarrow (\neg A \lor C)$

和 2019 深圳的题目本质一样,此处不赘述。

例八 (2015本部)

求证: $\vdash_{ND} (\neg A \rightarrow \neg (A \rightarrow \neg B)) \rightarrow A$