Random Walk & Physics

Final Project of Probability 06/15/2017

B03202017 物理三 李漪莛

B03202047 物理三 王昱翔

Introduction

- 希望找出幾個特定的 random walk 模型,對應到 實際的物理系統。
 - Brownian motion 布朗效應
 - Precipitation 沈澱現象
 - Mean collision frequency 碰撞頻率
- 若 model 有對應到實際系統,則機率分佈要相同。

Random Walk

- 數學統計模型,由一連串的軌跡組成,其中每一次都是隨機的,如:醉漢走路。
- Random walk 的位移分佈是 normal distrib.。

Model

	Model 1	
邊界	沒有	
維度	1D	
粒子數	1	
方向	P(+1) = P(-1) = 1/2	
模擬	布朗運動	

• 每個時間點只能走一步

因為布朗運動 是空間對稱的

Brownian Motion

- 花粉粒子在水中受水分子碰撞,形成不規則運動。
- 實際上,布朗運動就是對稱的 random walk 在「連續」形式的對應。

	Random Walk (Model 1)	Brownian Motion
相同點	每一個時間點,粒子隨機行動往各方向的機率都均匀	
方向、步伐大小	• dx = +1 or -1 → 離散	可朝任何一個角度移動每次的步伐大小不固定→連續

Equation of Brownian Motion

愛因斯坦利用理想氣體方程式、滲透壓、質量連續性方程式等等(計算過程和機率無關)推導出布朗運動滿足:

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} \qquad (eq1)$$

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} e^{\frac{-x^2}{4Dt}} \quad (eq2)$$

- 分佈同樣是 normal distrib.。
- P(x, t) = Prob(粒子從 x = 0 出發,經過時間 t 在位置 x)
- 問題: D 在物理中和粒子半徑、溫度等物理參數有關,但 在 random walk 中沒有這些特性,要怎麼求 D?

Define D

- In model $1 : P(dx = +1) = P(dx = -1) = \frac{1}{2}$, dt = 1
- P(t+1時物體在x) = 加總[P(物體可能的位置) x P(可能的位子移動到<math>x)] =

$$f(x,t+1) = \sum_{dx} f(x-dx,t)P(dx)$$
 and $f(x,t) \equiv f$,

$$f + \frac{\partial f}{\partial t} = f \sum_{i} P(dx)^{1} - \frac{\partial f}{\partial x} \sum_{i} (dx)P(dx) + \frac{\partial^{2} f}{2\partial x^{2}} \sum_{i} (dx)^{2} P(dx)$$

$$\left| \frac{\partial f}{\partial t} \right| = 0 + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \times \left[(1)^2 \times \frac{1}{2} + (-1)^2 \times \frac{1}{2} \right] = \left| \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \right|$$

• 透過和(eq1)比較可得: D = 1/2

Define D

• 代入 D = ½ , eq2
$$\Rightarrow$$
 $P(x,t) = \frac{1}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}}$ $\sigma^2 = t = E(x^2) - E(x)^2 = \langle x^2 \rangle - 0$

- Model 1 的機率分佈就是平均 = 0、變異數 = t 的 normal distrib.。
- 計算出的方程式和模擬結果相符,但因為離散、 連續的特性不同,需要再做一些調整。(P9~12)

Random walk & Normal Distrib. Simulation: Disc & Cont

- 設 t = 10 ,可知 : $P(x,t=10) = {10 \choose 5+x} {1 \choose 2}^{10}$
- 隨機漫步因為離散的特性,當t是偶數時,只能 停在x屬於偶數的點
- → 需多考慮相鄰的點 (如下頁)

Random walk & Normal Distrib. Simulation: Disc & Cont

• 改成模擬 t = 9, 10, 11 時機率的 weighted sum, 則可擬和連續的 normal distrib.:

$$P_{cont}(x,t=10) \approx \frac{1}{2} P_{disc}(x,10) + \frac{1}{4} [P_{disc}(x,9) + P_{disc}(x,11)]$$

• 藍: Model 1 模擬結果

紅:將x代入eq2(理論值)

Random walk & Normal Distrib. Theoretical Approximation

• 想用除了 MGF 的方法驗證時間 t 的 random walk(Bernoulli)等效於 normal distrib.(下式):

$$\left(\frac{t}{\frac{t}{2}+x}\right) \left(\frac{1}{2}\right)^t = \frac{1}{\sqrt{2\pi t}} e^{\frac{-x^2}{2t}}, -\frac{t}{2} \le x \le \frac{t}{2}$$

• 需利用 Stirling's approximation:

$$k! \approx k^{k+1/2} e^{-k} \sqrt{2\pi}$$

- 此式適用在 k 很大的時候,但實際上 k = 2 時就有不錯近似效果。
- $-2! = 2 \rightarrow 1.92$
- $-5! = 120 \rightarrow 118$
- $-10! = 3.63M \rightarrow 3.59M$

Random walk & Normal Distirb. Theoretical Approximation

$$P(x,t) = {t \choose \frac{t}{2} + x} \left(\frac{1}{2}\right)^t = \frac{t!}{\left(\frac{t}{2} + x\right)! \left(\frac{t}{2} - x\right)!} \left(\frac{1}{2}\right)^t$$

• 目前我們只證得出 x = 0 (可使上頁右式 exp(0) = 1):

$$P(x = 0, t) = \frac{t!}{\frac{t}{2}! \frac{t}{2}!} \left(\frac{1}{2}\right)^{t} = \frac{t^{t + \frac{1}{2}} e^{-t} \sqrt{2\pi}}{\left[\frac{t}{2}\right]^{t} e^{-\frac{t}{2}} \sqrt{2\pi}\right]^{2}} \times \left(\frac{1}{2}\right)^{t}$$

$$= \frac{t^t \times \sqrt{t}}{(\frac{t}{2})^t \times 2^t \times \frac{t}{2} \times \sqrt{2\pi}} = \frac{2}{\sqrt{2\pi t}} \neq \frac{e^0}{\sqrt{2\pi \times t}}$$

同樣考慮離散、連續性質,則上式不等號的左邊多乘上光, 則左右兩式相等。

Random walk & Brownian motion Differential Approach

可從另一個角度看出兩者等價性:

• From eq1:
$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$

• 考慮隨機漫步的特性:

$$P(x,t+1) = \frac{P(x+1,t)}{2} + \frac{P(x-1,t)}{2}$$

$$P(x,t+1) - P(x,t) = \frac{1}{2} [P(x+1,t) - 2P(x,t) + P(x-1,t)]$$

- 連續後就是 eq1, 且同樣 D = ½
- From Ref [2]

Model

	Model 1	Model 2
邊界	沒有	有
維度	1D	1D
粒子數	1	1
方向	P(+1) = P(-1) = 1/2	P(+1) != P(-1)
模擬	布朗運動	沈澱現象

若從邊界往外走(站在牆邊往牆撞),則當作不動,留在 原地。

Precipitation 沈澱現象 Brownian Motion with Gravity

- 粒子受重力影響,向下機率較大,經長時間後底部密度較高。
- 重力只有一個方向 > 只需考慮一維。

 Model 2 假設左邊機率大, P(-1) > P(+1), 好像有力把粒子 往左推,類似沈澱現象。

Precipitation 沈澱現象 Brownian Motion with Gravity

• 沈澱現象的方程式可簡化為:

$$P(x) \propto e^{cgx}$$

- c: 跟物理係數有關的常數(粒子體積、溫度...)

- g: 重力

- x: 沿重力方向的座標

- 如果我們假設 model 2 跟沈澱現象有關,則 model 2 的機率分佈必須要符合上式的形式。
- 那對應到的指數項的係數(cg)要是多少?

$$P(x) \propto e^{cgx}$$

猜測 1: cg = - P(-1)

- 只有在 P(-1) = 2/3 符合
- 在其他情况擬和效果差

紅:Random walk 模擬結果

藍:猜測1曲線

$$P(x) \propto e^{cgx}$$

- 考慮在 P(+1) = P(-1) = 1/2 時, cg 應該要是 0
 - 因為當 P(+1) = P(-1)、有邊界、長時間的隨機漫步,其機率分佈是完全均勻,跟 x 無關(page 25)

猜測 2:g = P(-1)-P(+1), c = -2

- 在 P(+1), P(-1) 差異不大時擬和效果佳
- 如 P(+1) = 1/3, 1/4, 2/5

紅:model 2 模擬結果

藍:根據沈澱現象方程式

猜測的機率函數

- Model 2 左右機率差異越大,猜測 2 的擬和越差。
 - 如上圖 P(-1) P(+1) = 0.98
- 目前 model 2 在機率差較小時,才符合實際沈澱現象。
- 由於左右機率差異放在猜測 2 的 exp 指數項,推測也許函數跟 exp 無關,只是當指數項小時 exp(x) 可近似成 1+x 才會恰巧看起來一樣。

Precipitation - Markov Matrix

沈澱和 model 2 都是長時間穩定後的現象。

Model 2(不含沈澱) 可用 Markov 矩陣運算

Pi = P(x = i). Assume size = 4, P(+1) = 2/3, then:

$$\Rightarrow \begin{bmatrix} P0 \\ P1 \\ P2 \\ P3 \end{bmatrix} = \begin{bmatrix} 2/3 & 2/3 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 1/3 & 0 & 2/3 \\ 0 & 0 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} P0 \\ P1 \\ P2 \\ P3 \end{bmatrix}$$

$$\begin{cases}
P0 = 2 \cdot P1 \\
P1 = 2 \cdot P2 \\
P2 = 2 \cdot P3 \\
P0 + P1 + P2 + P3 = 0
\end{cases}$$

$$P(x) \propto \left[\frac{P(+1)}{P(-1)}\right]^{x}$$

紅: Model 2 模擬

綠:Matrix 算法

藍:猜測 2

綠線幾乎和紅線重合

Model

	Model 1	Model 2	Model 3
邊界	沒有	有	有
維度	1D	1D	2D (正方形)
粒子數	1	1	2 ~ n
方向	P(+1) = P(-1) = 1/2	P(+1) != P(-1)	向上下左右的 機率都是 1/4
模擬	布朗運動	沈澱現象	碰撞頻率

Random Walk in 2D

- Simulate random walk in 2D, at t = 10.
- 同樣符合 2D normal distrib.

Random walk for a long time in a limited space

- 常態分佈被邊界折回去 → 不管尺寸多大,邊界機率不會特別高或低。
- 圖上座標間隔很小,看起來不平滑,實際上每個位置的機率接 近 uniform。

Mean Collision Frequency 碰撞頻率 Random walk of 2 people

- 理想氣體分子的碰撞頻率和分子相對速率成正比
 - 別的粒子會不會動,對於某顆特定粒子(會動)的碰撞頻率會有影響。
- 那隨機漫步的碰撞頻率受什麼因素影響?

• 設定 model 3 中有兩人 A 和 B:

$$N \equiv \frac{A \cdot B \, \text{\& B} \, \text{\& B} \, \text{\& B} \, \text{\& B} \, \text{\& B}}{\text{\& Looper} \, \text{\& Looper} \, \text{\& Looper} \, \text{\& Looper} \, \text{\& Looper}}{\text{\& Looper} \, \text{\& Looper} \,$$

Result of N

B_move & B_fixed 指在 B 會不會動時平均走幾步會相遇 跑 20 萬次,取到小數點後五位,

表格只放到整數位的數據

		邊界	起始位置	B move	B fixed	N
1		Size = 5 x 5	A = (1, 1), B = (0, 0)	35	30	1.153
2	B 從	$ x = y \ll 2$	A = (2, 2), B = (0, 0)	42	36	1.181
3	正中心 出發	Size = 15 x 15	A = (4, 3), B = (0, 0)	563	441	1.279
4	□ 3⁄	x = y <= 7	A = (7, 7), B = (0, 0)	550	482	1.141
5		Size = 5 x 5	A = (1, 1), B = (-2, -2)	49	102	0.444
6	B 從	x = y <= 2	A = (2, 2), B = (-2, -2)	51	107	0.478
7	邊界 出發	Size = 15 x 15	A = (4, 3), B = (-7, -7)	606	1551	0.391
8	Ш 35	$ x = y \ll 7$	A = (7, 7), B = (-7, -7)	624	1586	0.393
9	A, B 初始距	Size = 10 x 10 0 <= x = y <= 9	A = (2, 2), B = (7, 7)	235	289	0.813
10	離相同 = 5,5	Size = 20 x 20 0 <= x = y <= 19	A = (7, 7), B = (12, 12)	974	971	1.003

Random walk for n people

- 假定有 1 A + n B , A 和 {B} 都是隨機初始化位置,討論所有 {B} 有動跟沒動的差別。
- 各跑 800 次,每次 10000 步

size	Number of {B}	B move 碰撞次數	B fixed 碰撞次數	N
15 x 15	3	132.7025	130.3525	1.018
	4	176.7775	176.9175	0.999
	5	221.6650	223.0325	0.994
	10	443.5950	444.4150	0.998

- N 都很接近 1,表示碰撞頻率和粒子相對速率無關
- 平均差不多,但 B move 的標準差都會比較小!

Collision frequency of different density

- 驗證隨機漫步的碰撞頻率和粒子密度(幾乎)成正比
- 跑800次10000的平均碰撞次數(取到整數位)
 - 指A和{B}相撞次數,不考慮{B}彼此相撞

尺寸/面積	B的個數	密度	平均碰撞次數
	1	0.0044	45
15 x 15	3	0.0133	135
225	5	0.0222	222
	10	0.0444	444
	1	0.0123	125
9 x 9 81	2	0.0247	249
	3	0.0370	370
	10	0.1234	1240

Discussion of Model 3

- 經過思考和模擬可得知隨機漫步的碰撞頻率只和粒子密度成正比。
- 若隨機漫步的起始位置完全隨機,則不論其他粒子有沒有動,某顆粒子(會動)的碰撞頻率都相同。
- 隨機漫步和氣體分子運動的結果不同。

	隨機漫步	理想氣體分子運動
相似點	有一大堆粒子	子、可探討平均碰撞頻率
方向、速度	每一時間點都隨機	再下一次碰撞前, 方向和速度都是固定的
平均碰撞頻率	只和粒子密度有關	和粒子相對速率成正比

Model (Review)

	Model 1	Model 2	Model 3
邊界	沒有	有	有
維度	1D	1D	2D(正方形)
粒子數	1	1	2 ~ n
方向	P(+1) = P(-1) = 1/2	P(+1) != P(-1)	向上下左右的機率都是 1/4
模擬	布朗運動	沈澱現象	碰撞頻率

Conclusion

(What we have learned)

- Model 1 可看作是布朗運動在離散的對應
 - 布朗運動的方程式(物理學家在這方面研究甚多)可提供隨機漫步、normal distrib 的其他理論想法(another approach)。
 - 兩者在對應時,要對連續或離散不同造成的影響做修正。
- Model 2 在 P(+1), P(-1) 差異不大時,機率分佈可由沈澱現象方程式(猜測 2) 擬和。
 - Model 2 還需要修正,才能完整模擬出沈澱現象。
 - Markov matrix 可計算出 case 2 長時間後(穩定)的粒子機率分佈。
- 影響 model 3 和氣體分子的碰撞頻率的因素不同。
- 雖然這次的題目跟物理相關,但這份投影片 80%的內容是經過模擬、數學計算和查資料等方法新學到(得知)的。

Other (future) works

隨機漫步的模型有許多變因可以調整(如下表),可找出哪些排列組合較符合、可解釋現實生活的現象。

空間	1D/2D正方形邊界/2D球型邊界/ 球面/立方體/球體 (球型和球體較符合自然界的邊界)
個數	1 ~ n
機率	各方向機率是否均勻
邊界	若有邊界,可設定不同的邊界機制

Reference

[1] https://en.wikipedia.org/wiki/Brownian_motion[2] https://www.mpp.mpg.de/~caldwell/ss05/Lecture7.pdf