





## **Objectives**

#### **PURPOSE OF PROJECT**

- Use necessary tools and course frameworks to analyze dataset of real estate in Ames, Iowa
- Provide first-time home owners basic knowledge about the domestic housing market
- Build a decent regression model with a low MSE
- Accurately predict the closing price using our model so that a potential buyer knows the true value of a property



# Dataset & Analytical Approach

## **Data Preparation**

- Train.csv data into:
  - o 80% Train dataset
  - 20% Validation dataset
- Test.csv data
- Dimensions: 1460 \* 81
- Type: Numeric & Categorical
- Source: Kaggle competition







Checked missing values

(a) Check Missing Values





#### (b) Fill the missing values

- 1) PoolQC
- 2) Miscfeature
- 3) Alley
- 4) Fence
- 5) FireplaceQu





#### (c) Dummy variables

All factors were transformed to dummy variables:

- MSZoning, Street, BldgType, HouseStyle, Neighborhood,
- Heating, HeatingQC, CentralAir, Electrical, Alley, PavedDrive, PoolQC, Fence,
   MiscFeature, Utilities, LotConfig, LandSlope, FireplaceQu
- Utilities, LotConfig, LandSlope, Neighborhood, Condition1, Condition2, RoofStyle,
  RoofMatl, Exterior1st, Exterior2nd, ExterQual, ExterCond, Foundation, BsmtQual,
  BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, Heating, HeatingQC,
  CentralAir, Electrical, KitchenQual, Functional, FireplaceQu, GarageType, GarageYrBlt,
  GarageFinish, GarageQual, GarageCond



#### (d) Log Transformation

Skewness threshold (0.75) to maintain the lowest MSE, if the skewness > threshold, use log transformation.

log(SalePrice)

log(GrLivArea)

log(LotArea)





#### (e) Correlations

Review to check potential multicollinearity issue



-0.75

- 0.50

- 0.25

0.00

--0.25

## Linear Regression Model - Variable Selection

| Step 1                                   | Step 2                        | Step 3                               | Step 4                              |  |
|------------------------------------------|-------------------------------|--------------------------------------|-------------------------------------|--|
| Used common sense to select economically | Used linear regression models | Decided the final model based on the | Created visualization for analytics |  |
| significant variables                    | to regress price              | statistical significance             |                                     |  |

## **Linear Regression Model - Variables Filtration**



## **Coefficient Interpretation**

- Neighborhood is essential according to common sense
- BUT *Neighborhood* is highly correlated with other predictors
- We choose a similar predictor
   MSZoning instead

Linear Regression Model Coefficients



## **Coefficient Interpretation**

- Floating Village (FV) has the highest median price
- House price of **Residential High (RH)** zone are more stable
- House price of *Residential Low (RL)* zone are more expensive



## **Negative Coefficient**

 We chose Excellent quality as the base of this dummy variable.

 The number of kitchens show a negative relationship with price.

But why?

#### Linear Regression Model Coefficients



## **Coefficient Interpretation**

The more kitchens in a house, the lower the house price

- Additional kitchens are for leasing, but they are not allowed in Iowa
- In rural areas, the restriction is not that strict
- Most houses with multiple kitchens are located in the rural areas
- Houses are cheaper in rural areas of Iowa



#### **Model Fit**

 From the dashboard graphs, the data seems to be driven by outliers, but overall, our model performs well.

 The R square of our final model is 0.9021. When we applied a generalized linear model to our validation data, the Mean Squared Error is only 0.135.









#### Home sales volume varies greatly by neighborhood

Neighborhood vs. Sale Price

- Neighborhoods with the greatest number of house sales: North Ames, College Creek, Old Town
- The average sales price by neighborhood has range from \$98,576 to \$335,295

Average Iowa House Prices by Neighborhood



AVG(Sale Price)

\$335,295

\$98,576

#### Home sales volume has obvious seasonality

- The volume of house sales peak during the summer
- Why?
  - Easy to remodel
  - Check for house defect, such as leakage





#### Home price varies significantly by types of buildings











Average Sale Price by Year by Neighborhood



#### Single-family house prices are highly correlated with economy



#### Average house renovation occurs sooner over time

#### - Why?

- Old days, quality was better so properties preserved longer
- Nowadays, reselling happens more often so renovate to increase value



## **Business Insights #5 (cond't)**

#### Townhouses owners do not renovate as single-family home owners

#### - Why?

- More townhouses than single-family houses are for rentals, so owners tend not to renovate
- Single-family house are normally purchased by families, with children, they renovate to make houses better





# Thanks for listening!

GROUP3: COFFEY, RUFENG, SIYU, SIHAN

