Proposta de Trabalho

Amplificador de Áudio

Especificações:

- Potência média máxima de saída igual a 10W
- Eficiência melhor que 55%
- Autofalante de 8Ω
- Ganho em malha aberta igual a 200

Análise do Circuito

Figura 1: Amplificador de potência.

Inicialmente vamos separar o circuito em 3 blocos básicos: A, estágio de entrada; B, estágio intermediário; C, estágio de saída. O estágio de saída é um *push-pull* com transistores em configuração Darlington. Se considerarmos $R_{EC} \ll R_L$ e o ganho aproximadamente igual a 1, podemos representa-lo como uma carga equivalente para o estágio B; com valor $R_{Ceq} = (\beta_{C1} + 1)(\beta_{C2} + 1)R_L$, onde β_{CI} e β_{C2} são os ganhos de corrente dos transistores. Desta forma, temos o circuito simplificado da Fig.3. Note que V_q é a tensão V_{BEq} equivalente da configuração Darlington (a soma dos V_{BEs} dos transistores). O ganho de tensão em malha aberta é dado pela multiplicação dos ganhos de cada estágio. Como o ganho de tensão do estágio de saída é aproximadamente igual a 1, temos que o ganho total e:

$$A_{OI} = A_4 A_R \tag{1}$$

Figura 2: Amplificador de potência em blocos básicos.

Inicialmente vamos analisar o estágio B. Precisamos saber o valor da tensão de pico na saída V_{0MAX} e a tensão de alimentação V_{CC} . Podemos calcular V_{0MAX} da especificação de potência máxima de saída, ou seja:

$$V_{0MAX} = \sqrt{2R_L \overline{P}_{LMAX}} \tag{2}$$

A tensão de alimentação $V_{\it CC}$ pode ser calculada da especificação de eficiência máxima, ou seja:

$$V_{CC} \le \frac{\pi V_{0MAX}}{4\eta_{MAX}} \tag{3}$$

Voltando ao estágio B, temos que a tensão AC v_x é proveniente da saída do estágio de entrada A. Esta tensão é responsável por gerar a corrente i_c e a tensão de saída v_0 . A tensão AC em cada emissor é aproximadamente igual a v_x e, desta forma, i_c pode ser dividida em duas partes iguais, uma para cada coletor, e dada por $i_c/2 = -v_x/R_{EB}$. Então, temos que:

$$v_0 = R_{Ceq} i_c = -\frac{2R_{Ceq}}{R_{ER}} v_x = -|A_B| v_x \tag{4}$$

Para estabelecer as condições de polarização adequadas para o funcionamento do circuito, vamos considerar somente a parte superior (o transistor PNP), pois devido à simetria podemos estender o resultado para a parte

inferior. Ao passo em que a tensão v_x varia, v_0 e v_{CI} variam também. Mas não podemos permitir que a tensão entre emissor e coletor seja menor que V_{ECsat} , e nem que a tensão de emissor ultrapasse V_{CC} , pois isto implicaria em uma condição de polarização impossível.

Figura 3: Modelo simplificado.

Por inspeção, verificamos que $v_{C1} = V_q + v_0$ e a tensão v_{EC} dada por:

$$v_{EC} = V_{Eq} + v_x - v_{C1} = V_{Eq} + v_x - v_0 - V_q$$
 (5)

Substituindo (4) em (5), temos que

$$v_{EC} = V_{Eq} - \frac{v_0}{|A_B|} - v_0 - V_q \tag{6}$$

A tensão entre emissor e coletor é mínima quando a tensão de saída v_0 é máxima. Substituindo este resultado em (6), e aplicando a condição $v_{EC} \ge V_{ECsat}$, temos a inequação:

$$V_{Eq} \ge V_{ECsat} + V_q + \left(1 + \frac{1}{|A_B|}\right) V_{0MAX} \tag{7}$$

Já a tensão de emissor v_E é aproximadamente $V_{Eq} + v_x$, e $v_x = -v_0/|A_B|$, ou, de forma melhor, $v_E = V_{Eq} - v_0/|A_B|$. Notamos que v_E é máxima quando v_0 é mínima, e o valor mínimo de v_0 é $-V_{0MAX}$. Forçando a condição $v_E \le V_{CC}$, temos que

$$V_{Eq} \le V_{CC} - \frac{V_{0MAX}}{|A_B|} \tag{8}$$

Da equação (4) podemos determinar o resistor R_{EB} , e das inequações (7) e (8), podemos escolher um valor para V_{Eq} dentro do intervalo.

$$R_{EB} = \frac{2R_{Ceq}}{|A_B|} \tag{9}$$

Assumindo que $I_{EqB} \approx I_{CqB}$, podemos determinar I_{CqB} por:

$$I_{CqB} = \frac{V_{CC} - V_{Eq}}{R_{EB}} = \frac{\left(V_{CC} - V_{Eq}\right)|A_B|}{2R_{Ceq}}$$
(10)

Passemos agora para o estágio de entrada A. Por inspeção, temos que $V_{Bq} = V_{Eq} - V_{EBq}$. Portanto, a diferença de potencial sobre o resistor R_C é $V_{CC} - V_{Eq} + V_{EBq}$. Neste ponto, temos a liberdade de escolher a corrente de polarização I_{CqA} dos transistores do estágio A. De posse desta corrente, temos que

$$R_{CA} = \frac{V_{CC} - V_{Eq} + V_{EBq}}{I_{CaA}} \tag{11}$$

Devido à degeneração de emissor nos amplificadores diferenciais, o ganho A_A do estágio de entrada é aproximadamente igual a $-(R_{CA} / (h_{ieB} + (\beta_B + 1)R_{EB})/2R_{EA})$, e com este valor podemos calcular o resistor R_{EA} , que é dado por:

$$R_{EA} = \frac{R_{CA} / (h_{ieB} + (\beta_B + 1)R_{EB})}{2|A_A|}$$
 (12)

Considerando $I_{EqA} \approx I_{CqA}$, a corrente através de R_{BA} é igual a $2I_{CqA}$, e a diferença de potencial sobre o mesmo é igual a $V_{CC} - V_{BEqA} - R_{EA}I_{CqA}$. Temos então que

$$R_{BA} = \frac{V_{CC} - V_{BEqA} - R_{EA}I_{CqA}}{2I_{CqA}} = \frac{V_{CC} - V_{BEqA}}{2I_{CqA}} - \frac{R_{EA}}{2}$$
(13)

Com relação ao estágio de saída, os resistores R_{EC} são usados para garantir a estabilidade térmica. Para carga de 8Ω , normalmente usa-se valores entre 0.2Ω e 0.47Ω . O resistor R_{BC} é usado para gerar uma pequena corrente de polarização em Q_{CIn} e Q_{CIp} , de forma a mantê-los numa região onde os β s estejam próximos do valor máximo. Em geral utiliza-se uma corrente de polarização na ordem de 1mA.

O multiplicador de V_{BE} pode ser dimensionado com base nas equações abaixo, lembrando que neste caso o cálculo de V_q deve ser realizado considerando pouca corrente através dos transistores de saída.

$$2V_{q} = \left(1 + \frac{P_{1}}{R_{3}}\right) V_{BEq_{B}} \tag{14}$$

$$R_{3} \ll \frac{\beta_{Q_{B}} + 1}{\left(\frac{1}{V_{BE_{Q_{B}}}} - \frac{1}{2V_{q}}\right) I_{CqB}}$$
(15)

$$R_3 \ge \frac{V_{BEq_B}}{I_{CaB}} \tag{16}$$

O ganho do amplificador realimentado é definido pela malha de realimentação, e é dado por:

$$A_V = 1 + \frac{R_2}{R_1} \tag{17}$$

O capacitor C_I é calculado de forma que a frequência de corte seja pelo menos 10 vezes menor que a frequência de corte inferior do amplificador. A resistência que C_I enxerga é R_I . O valor de C_I é dado por:

$$C_1 = \frac{10}{2\pi f_{CI} R_1} \tag{18}$$

O resistor R_4 é usado para polarizar as bases de Q_{Ap} em zero. O capacitor C_2 define a frequência de corte inferior, e é dado por:

$$C_2 = \frac{1}{2\pi f_{CI} R_4} \tag{19}$$

Exemplo de Projeto

Como exemplo de projeto, vamos dimensionar um amplificador da Figura 1 com as seguintes especificações:

- Potência média máxima de saída igual a 20W
- Eficiência melhor que 50%
- Autofalante de 8Ω
- Ganho em malha aberta igual a 200
- Ganho de tensão realimentado igual a 18
- Frequência de corte inferior igual a 20Hz

Dados:

- Para os transistores BC549 e BC559, $\beta = 200$ e $\left|V_{BE}\right| = 0.7V$.
- Para os transistores BC327 e BC337, β = 100 , $\left|V_{BE}\right|$ = 0.7V e $\left|V_{CEsat}\right|$ pprox 0.5V .
- Para os transistores TIP29 e TIP30, $\beta = 15$, $\left| V_{BE} \right| = 0.7V @I_C \le 10 mA$ e $\left| V_{BE} \right| = 1V @I_C \ge 1A$.

Ao desenrolar dos cálculos, os valores dos componentes serão aproximados para os valores comerciais mais próximos.

Das equações (2) e (3), calculamos a tensão de pico na carga e a tensão de alimentação.

$$V_{0MAX} = 18V$$

$$V_{CC} = 24V$$

Vamos adotar ganhos iguais para os estágios A e B, ou seja, $A_A = A_B = \sqrt{A_{OL}} = \sqrt{200} = 14.1$.

Segundo os dados do manual dos transistores potência, para corrente de coletor na ordem de 1A, temos $|V_{BE}| \approx 1V$. Para os outros transistores adotaremos $|V_{BE}| \approx 0.7V$. As tensões de saturação dos transistores Q_{CIn} e Q_{CIp} são $|V_{CEsat}| \approx 0.5V$.

Das inequações (7) e (8), determinamos o intervalo de escolha para V_{Eq} .

$$21.5V \le V_{Eq} \le 22.7V$$

Vamos adotar $V_{Eq}=22V$. Para R_{Ceq} temos $R_{Ceq}=(100+1)(15+1)8=13k\Omega$, e pela equação (9) obtemos o valor de R_{EB} .

$$R_{FR} = 1.8k\Omega$$

Como temos a liberdade de atribuir a corrente de polarização do estágio de entrada, adotaremos $I_{CqA} = 1mA$, e pela equação (11) obtemos o valor de R_{CA} .

$$R_{C4} = 2.2k\Omega$$

Para calcular R_{EA} , primeiro precisamos do valor de I_{CqB} que, pela equação (10), é igual a 1.1mA. Com este valor determinamos h_{ieB} pela fórmula $h_{ieB} = \beta_B V_T / I_{CqB} = 4.73 k\Omega$. Assim, pela equação (12), calculamos o valor de R_{EA} .

$$R_{EA} = 68\Omega$$

Da equação (13) obtemos o valor de R_{BA} .

$$R_{RA} = 12k\Omega$$

O multiplicador de V_{BE} é dimensionado pelas equações (14), (15) e (16). De (16) obtemos $R_3 > 636\Omega$ e de (15) obtemos $R_3 < 170k\Omega$, onde escolhemos $R_3 = 3.3k\Omega$. Finalmente de (14) obtemos $P_1 = 10k\Omega$.

$$R_3 = 3.3k\Omega$$

$$P_1 = 10k\Omega \rightarrow \text{potenciômetro de } 22k\Omega$$

Adotando o resistor $R_1 = 2.2k\Omega$ sugerido no esquema do amplificador; de (17), calculamos R_2 para estabelecer o ganho realimentado de 18.

$$R_2 = 37.4k\Omega$$

Este valor deve ser exato, pois define o ganho realimentado. Pode-se usar um resistor de precisão, uma associação de resistores ou um *trimpot*.

O resistor R_{BC} é calculado de forma a garantir uma pequena corrente de polarização em Q_{CIn} e Q_{CIp} , que adotaremos aproximadamente igual a 1mA. A diferença de potencial sobre R_{CB} é $\left|V_{BEqC_{2n}}\right| + \left|V_{BEqC_{2p}}\right| = 1.4V$. Então temos $R_{CB} = 1.4/1m = 1.4k\Omega$, que aproximaremos para o valor comercial mais próximo.

$$R_{CB} = 1.5k\Omega$$

Finalmente, os capacitores C_1 e C_2 são calculados pelas equações (18) e (19), assumindo a frequência de corte inferior igual a 20Hz.

$$C_1 = 33 \mu F$$

$$C_2 = 180nF$$

Resultados de simulação

$$\overline{P}_{L}=20W @ V_{0MAX}=18V$$

$$THD = 0.43\%$$
 @ $V_{0MAX} = 18V$

$$\eta = 58\%$$
 @ $V_{0MAX} = 18V$

Figura 4: Gráfico da tensão de saída na frequência de 1kHz e amplitude de 18V.