3BIT

з лабораторної роботи №3 з дисципліни «Аналіз даних»

Склад команди: Піковець Артем КМ-22

1 Вступ

Підвищений артеріальний тиск є одним із головних факторів ризику серцево-судинних захворювань. Це дослідження спрямоване на дослідження наступного питання:

- Як вісцеральний жир впливає на систолічний тиск людини?
- Гіпотеза: збільшення маси вісцерального жиру призводить до підвищення систолічного тиску.

2 Результати

2.1 Базова модель, моделі з контрольними змінними

Будемо досліджувати вплив збільшення вісцерального жиру на певний відсоток на систолічний тиск.

• Маємо натсупну базову модель:

$$y = \beta_0 + \beta_1 \ln(visceral \ fat)$$

Збільшення вісцерального жиру на $\alpha\%$ повязано зі збільшенням систолічного тиску на $\frac{\alpha}{100}\beta$ mmHg, де β - коефіцієнт при масі вісцерального жиру, α - достатньо малий відсоток.

• Маса вісцерального жиру зростає з віком, при цьому вік має вплив на систолічний тиск. Тому варто контролювати вік:

$$y = \beta_0 + \beta_1 \ln(visceral_fat) + \beta_2 age$$

• Маса вісцерального жиру відрізняється за статтю та расою, при цьому стать та раса можуть мати вплив на систолічний тиск. Тому варто їх контролювати¹:

$$y = \beta_0 + \beta_1 \ln(visceral_fat) + \beta_2 age + \beta_3 gender + \beta_4 race$$

• Маса вісцерального жиру корелює з розміром людини (нежирова маса, висота людини), при цьому розмір людини може мати вплив на систолічний тиск. Тому варто його контролювати²:

$$y = \beta_0 + \beta_1 \ln(visceral_fat) + \beta_2 age + \beta_3 gender + \beta_4 race + \beta_5 \ln(lean_mass) + \beta_6 height$$

• Маса вісцерального жиру корелює з масою інших видів жиру, маси яких також можуть мати вплив на систолічний тиск. Тому варто їх контролювати:

$$y = \beta_0 + \beta_1 \ln(visceral_fat) + \beta_2 age + \beta_3 gender + \beta_4 race + \beta_5 \ln(lean_mass) + \beta_6 height + \beta_7 \ln(subcutaneous fat) + \beta_8 \ln(gynoid fat)$$

 $^{^{1}}$ Для зручності не будемо відображати кодування категорійних змінних в окремі категорії

²Змінні які репрезентують маси будемо логаритмувати

	Dependent variable: systolic				
	(1)	(2)	(3)	(4)	(5)
log(visceral_fat_g)	9.950*** (0.148)	5.092*** (0.176)	4.943*** (0.181)	1.970*** (0.210)	2.018*** (0.250)
age		0.349*** (0.009)	0.361*** (0.009)	0.328*** (0.010)	0.320*** (0.010)
genderMale			3.752*** (0.195)	2.116*** (0.199)	1.907*** (0.306)
raceNon-Hispanic Asian			-0.318 (0.340)	0.371 (0.338)	$0.401 \\ (0.337)$
raceNon-Hispanic Black			5.156*** (0.318)	3.514*** (0.317)	3.714*** (0.321)
raceNon-Hispanic White			-0.029 (0.274)	-0.356 (0.270)	-0.143 (0.274)
raceOther Hispanic			0.410 (0.366)	0.276 (0.357)	0.433 (0.359)
raceOther Race			1.665*** (0.443)	1.056** (0.425)	1.172*** (0.426)
$\log({\rm lean_mass_g})$				14.704*** (0.717)	15.215*** (0.793)
${\rm height_cm}$				-0.158*** (0.016)	-0.133*** (0.017)
log(subcutaneous_fat_g)					2.196*** (0.364)
$\log(\mathrm{gynoid_fat_g})$					-3.633^{***} (0.586)
Constant	57.187*** (0.825)	74.871*** (0.858)	72.222*** (0.922)	-39.378^{***} (4.751)	-34.664^{***} (4.981)
Observations Adjusted R ²	16,788 0.221	16,788 0.299	16,788 0.335	16,788 0.362	16,788 0.363

Note:

У кожній з наведених моделей коефіцієнт при вісцеральному жиру статистично значущий та більше 0, але з додаванням контрольних змінних спостерігається його зменшення. Коефіцієнти при контрольних змінних також виявились статистично значущими. Значення \mathbb{R}^2 невелике.

2.2 Моделі з факторами взаємодії

• Вплив вісцерального жиру може бути різний при різних розмірах тіла, зокрема для людей з меншим зростом збільшення вісцерального жиру може більше впливати на тиск, ніж для людей з такою ж вагою але більшим зростом. Тому варто включити відповідні фактори взаємодії:

```
\begin{split} y &= \beta_0 + (\beta_1 + \beta_9 \ln(lean\_mass) + \beta_{10} height) \cdot \ln(visceral\_fat) \\ &+ \beta_2 age + \beta_3 gender + \beta_4 race \\ &+ \beta_5 \ln(lean\_mass) + \beta_6 height + \beta_7 \ln(subcutaneous\_fat) + \beta_8 \ln(gynoid\_fat) \end{split}
```

• Вплив вісцерального жиру може змінюватися з віком. Тому варто включити відповідний фактор взаємодії:

```
y = \beta_0 + (\beta_1 + \beta_9 \ln(lean\_mass) + \beta_{10}height + \beta_{11}age) \cdot \ln(visceral\_fat) + \beta_2 age + \beta_3 gender + \beta_4 race + \beta_5 \ln(lean\_mass) + \beta_6 height + \beta_7 \ln(subcutaneous\_fat) + \beta_8 \ln(gynoid\_fat)
```

• Вплив вісцерального жиру може бути різним для чоловіків та жінок. Тому варто включити відповідний фактор взаємодії, при цьому додавши фактори взаємодії статі з контрольними змінними що корелюють з вісцеральним жиром та також можуть мати різний вплив на тиск в залежності від статі:

```
\begin{split} y &= \beta_0 + (\beta_1 + \beta_9 \ln(lean\_mass) + \beta_{10}height + \beta_{11}age + \beta_{12}gender) \cdot \ln(visceral\_fat) \\ &+ \beta_2 age + \beta_3 gender + \beta_4 race \\ &+ \beta_5 \ln(lean\_mass) + \beta_6 height + \beta_7 \ln(subcutaneous\_fat) + \beta_8 \ln(gynoid\_fat) \\ &+ (\beta_{14}age + \beta_{15} \ln(lean\_mass) + \beta_{16}height + \beta_{17} \ln(subcutaneous\_fat) \\ &+ \beta_{18} \ln(gynoid\_fat)) \cdot gender \end{split}
```

• Вплив віку на тиск відрізняється за расою, особливо між темношкірими та іншими. Додамо відповідний фактор взаємодії:

```
\begin{split} y &= \beta_0 + (\beta_1 + \beta_9 \ln(lean\_mass) + \beta_{10}height + \beta_{11}age + \beta_{12}gender) \cdot \ln(visceral\_fat) \\ &+ \beta_2 age + \beta_3 gender + \beta_4 race \\ &+ \beta_5 \ln(lean\_mass) + \beta_6 height + \beta_7 \ln(subcutaneous\_fat) + \beta_8 \ln(gynoid\_fat) \\ &+ (\beta_{14}age + \beta_{15} \ln(lean\_mass) + \beta_{16}height + \beta_{17} \ln(subcutaneous\_fat) \\ &+ \beta_{18} \ln(gynoid\_fat)) \cdot gender \\ &+ \beta_{19}age \cdot is\_black \end{split}
```

	(1)	(2)	(3)	(4)
log(visceral_fat_g)	2.018***	-16.553***	-7.956	4.917
	(0.250)	(5.105)	(5.889)	(6.184)
age	0.320***	0.321***	0.081	-0.056
	(0.010)	(0.010)	(0.093)	(0.094)
genderMale	1.907***	2.298***	2.409***	-44.190***
	(0.306)	(0.316)	(0.318)	(10.404)
raceNon-Hispanic Asian	0.401	0.485	0.525	0.793**
	(0.337)	(0.338)	(0.338)	(0.337)
raceNon-Hispanic Black	3.714***	3.882***	3.821***	-0.618
	(0.321)	(0.322)	(0.323)	(0.472)
raceNon-Hispanic White	-0.143	-0.027	-0.034	0.243
	(0.274)	(0.276)	(0.276)	(0.275)
raceOther Hispanic	0.433	0.504	0.486	0.637*
	(0.359)	(0.359)	(0.359)	(0.357)
raceOther Race	1.172***	1.285***	1.271***	1.314***
	(0.426)	(0.427)	(0.427)	(0.425)
log(lean_mass_g)	15.215***	-4.395	1.553	10.835**
	(0.793)	(4.444)	(4.844)	(5.127)
height_cm	-0.133***	0.452***	0.415***	0.260**
	(0.017)	(0.124)	(0.124)	(0.127)
log(subcutaneous_fat_g)	2.196***	2.504***	2.526***	1.589*
	(0.364)	(0.389)	(0.389)	(0.902)
log(gynoid_fat_g)	-3.633***	-3.819***	-3.597***	-4.612***
	(0.586)	(0.616)	(0.625)	(0.964)
log(visceral_fat_g):log(lean_mass_g)		3.271***	2.243***	0.699
		(0.761)	(0.837)	(0.865)
log(visceral_fat_g):height_cm		-0.100***	-0.094***	-0.075***
		(0.022)	(0.022)	

$\log({\rm visceral_fat_g}) : {\rm age}$			0.041*** (0.015)	0.068^{***} (0.016)
$\log({\rm visceral_fat_g}){:}{\rm genderMale}$				1.654** (0.716)
age:genderMale				-0.179^{***} (0.021)
$genderMale:log(lean_mass_g)$				2.183 (1.612)
${\tt genderMale:height_cm}$				0.053 (0.036)
$gender Male: log(subcutaneous_fat_g)$				0.416 (1.115)
$genderMale:log(gynoid_fat_g)$				0.787 (1.422)
age:is_black				0.167*** (0.018)
Constant	-34.664^{***} (4.981)	77.937*** (29.396)	$26.137 \\ (33.987)$	-29.933 (36.039)
Observations Adjusted R ²	16,788 0.363	$16,788 \\ 0.364$	$16,788 \\ 0.364$	$16,788 \\ 0.374$
	0.505			
Note:		*]	p<0.1; **p<0.0	05; ***p<0.01

Тепер складніше сказати чи коефіцієнт при вісцеральному жиру більше 0, бо він залежить від значень інших змінних, дане питання буде розглянуто у фінальній моделі. Значення R^2 трохи підвищилось.

2.3 Моделі з поліномами

Розглядались наступні моделі з поліномами від змінної віку:

$$y = \dots + (\beta_1 age + \beta_2 age^2 + \dots)$$

$$+ (\beta_{v1} age + \beta_{v2} age^2 + \dots) \cdot \ln(visceral_fat)$$

$$+ (\beta_{g1} age + \beta_{g2} age^2 + \dots) \cdot gender$$

$$+ (\beta_{r1} age + \beta_{r2} age^2 + \dots) \cdot race + \dots$$

Було обрано модель де коефіцієнти при ступенях віку були статистично значущі та не спостерігалося значного підвищення \mathbb{R}^2 при додаванні вищих ступенів.

	$\underline{\hspace{1cm}} Dependent\ variable:$		
		systolic	
	(1)	(2)	(3)
$g(visceral_fat_g)$	4.917 (6.184)	0.464 (6.488)	-1.193 (6.512)
e	-0.056 (0.094)	-1.134*** (0.408)	2.634** (1.277)
ge^2		0.007 (0.008)	-0.135^{***} (0.046)
age^3)		0.0003*** (0.0001)	0.002*** (0.001)
ge^4)			-0.00001 (0.00001)
derMale	-44.190*** (10.404)	-20.486^* (10.764)	-17.668 (10.799)
eNon-Hispanic Asian	0.793** (0.337)	0.966*** (0.334)	0.950*** (0.334)
eNon-Hispanic Black	-0.618 (0.472)	-3.089^{***} (0.933)	-1.395 (3.859)
eNon-Hispanic White	0.243 (0.275)	0.310 (0.274)	0.337 (0.275)
eOther Hispanic	$0.637^* \ (0.357)$	0.660^* (0.354)	0.656^* (0.354)
eOther Race	1.314*** (0.425)	1.356*** (0.424)	1.387*** (0.425)
(lean_mass_g)	10.835** (5.127)	10.656** (5.229)	8.728* (5.291)
${ m ght_cm}$	0.260** (0.127)	0.298** (0.129)	0.187 (0.134)
$g(subcutaneous_fat_g)$	1.589* (0.902)	0.831 (0.900)	1.051 (0.904)
$g(gynoid_fat_g)$	-4.612^{***} (0.964)	-3.983^{***} (0.967)	

$\log(visceral_fat_g):\log(lean_mass_g)$	0.699 (0.865)	1.043 (0.890)	1.342 (0.901)
$\log({\rm visceral_fat_g}){:}{\rm height_cm}$	-0.075^{***} (0.022)	-0.080^{***} (0.023)	-0.062^{***} (0.024)
$\log({\rm visceral_fat_g}) : {\rm age}$	0.068*** (0.016)	0.279*** (0.075)	-0.239 (0.243)
$\log({\rm visceral_fat_g}){:}I({\rm age}\hat{\ }2)$		-0.004^{***} (0.001)	0.013 (0.008)
$\log(\text{visceral_fat_g})\text{:}I(\text{age}^3)$			-0.0002^{**} (0.0001)
$\log({\rm visceral_fat_g}){:}{\rm genderMale}$	1.654** (0.716)	2.051*** (0.721)	1.740** (0.729)
age:genderMale	-0.179^{***} (0.021)	0.928*** (0.283)	0.088 (0.724)
$I(age^2):genderMale$		-0.028^{***} (0.009)	0.021 (0.039)
$I(age \hat{\;} 3) : genderMale$		0.0002** (0.0001)	-0.001 (0.001)
$I(age^{}4):genderMale$			0.00001 (0.00001)
$genderMale:log(lean_mass_g)$	2.183 (1.612)	-0.773 (1.655)	-0.606 (1.674)
${\tt genderMale:height_cm}$	$0.053 \\ (0.036)$	$0.015 \\ (0.037)$	0.023 (0.037)
${\tt genderMale:log(subcutaneous_fat_g)}$	0.416 (1.115)	1.063 (1.113)	0.890 (1.114)
${\tt genderMale:log(gynoid_fat_g)}$	0.787 (1.422)	0.227 (1.423)	0.461 (1.426)
age:is_black	0.167*** (0.018)	0.391*** (0.080)	0.304 (0.698)
$I(age^2):is_black$		-0.004^{***} (0.001)	-0.011 (0.041)

Adjusted R ²	0.374	0.381	0.382
Observations	16,788	16,788	16,788
Constant	(36.039)	(37.451)	(37.657)
Constant	-29.933	-23.137	-14.096
I(age^4):is_black			-0.00000 (0.00001)
I(age^3):is_black			0.0004 (0.001)

Note: *p<0.1; **p<0.05; ***p<0.01

Обрана модель - модель (2).

2.4 Фінальна модель

Кореляції між регресорами

Спостерігаються кореляції близькі до 1. Але такі кореляції спостерігаються тільки між ступенями однієї змінної, або між змінною та фактором взаємодії з цією змінною, або ж при наступній ситуації:

Наврядчи це призведе до проблем обчислень OLS-оцінки, тому було вирішено відповідні змінні не прибирати.

Коефіцієнт при вісцеральному жиру та його інтерпретація

Маємо наступну оцінку фінальної моделі:

$$y = (0.464 + 1.043 \cdot \ln(lean_mass) - 0.080 \cdot height + 0.279 \cdot age - 0.0041 \cdot age^2 + 2.051 \cdot genderMale) \cdot \ln(visceral_fat) + \dots$$

$\overline{\log(\text{visceral_fat_g})}$	0.464 (6.488)
$\log({\rm visceral_fat_g}) : \log({\rm lean_mass_g})$	1.043 (0.890)
$\log({\rm visceral_fat_g}){:}{\rm height_cm}$	-0.080^{***} (0.023)
log(visceral_fat_g):age	$0.279^{***} $ (0.075)
$\log({\rm visceral_fat_g}){:}I({\rm age}\hat{\ }2)$	-0.004*** (0.001)
$\log({\rm visceral_fat_g}){:}{\rm genderMale}$	2.051***

Наведемо розподіл коефіцієнта при логаритму маси вісцерального жиру для данної вибірки людей.

Майже для всіх людей з вибірки даний коефіцієнт є позитивним. Тобто при збільшенні маси вісцерального жиру підвищується систолічний тиск.

	$\operatorname{median}(\beta_{\ln(visceral)})$	$_{fat)})$
Female		2.45
Male		4.04

Але підвищення систолічного тиску досить мале:

- Для жінок збільшення маси вісцерального жиру на 10% підвищує систолічний тиск на $0.245~\mathrm{mmHg}$.
- Для чоловіків збільшення маси вісцерального жиру на 10% підвищує систолічний тиск на $0.404~\mathrm{mmHg}$.

Залежність коефіцієнту при вісцеральному жиру від інших змінних:

- Коефіцієнт при нежировій масі не є статистично значущим. Мабуть вплив вісцерального жиру на систолічний тиск не залежить від маси людини.
- Коефіцієнт при зросту людини є статистично значущим та від'ємним. Тобто при збільшенні вісцерального жиру підвищення систолічного тиску є більшим для людей меншого зросту.
- Протестувавши гіпотезу H_0 : $\beta_{age}=\beta_{age^2}=0$ отримаємо мале р-значення: p=0.00074. Тобто вплив вісцерального жиру на систолічний тиск залежить від віку людини, при чому нелінійним чином:

• Коефіцієнт при статі є статистично значущим. Контролюючи нежирову масу, зріст та вік, для чоловіка коефіцієнт при вісцеральному жиру буде на 2.051 більше ніж для жінки.

3 Висновки

- Згідно побудованій регресійній моделі виявлено що збільшення маси вісцерального жиру призводить до незначного підвищення систолічного тиску.
- Вплив маси вісцерального жиру залежав від інших змінних, таких як вік та стать людини.
- Значення $R^2_{adj.} = 0.381$ виявилось малим, можуть бути невраховані важливі змінні які корелюють з масою вісцерального жиру. Серед них можуть бути дієта людини, куріння, вживання алкоголю, фізична активність, рівень стресу.

4 Використані джерела

[1] Лекції 6, 7, 8, 9 з дисципліни "Аналіз даних"