

INKJET RECORDING APPARATUS AND MANUFACTURING METHOD FOR FUNCTIONAL LIQUID APPLIED SUBSTRATE

Patent number: JP2002196127

Publication date: 2002-07-10

Inventor: OKADA NOBUKO; TAKANO YUTAKA; KIGUCHI HIROSHI

Applicant: SEIKO EPSON CORP

Classification:

- international: G02B5/20; B41J2/01; B41J2/045; B41J2/055

- european:

Application number: JP20010318215 20011016

Priority number(s):

Also published as:

EP1238708 (A1)

WO0232582 (A1)

US2002054197 (A)

Abstract of JP2002196127

PROBLEM TO BE SOLVED: To provide an inkjet recording apparatus which can equalize the discharge amount of a functional liquid between nozzles, using simple operations and structures, and to provide a manufacturing method for a functional liquid applied substrate.

SOLUTION: An inkjet recording apparatus (100) is provided with a plurality of nozzles (111) for discharging the functional liquid. The plurality of nozzles are divided into a plurality of groups which are fewer than the number of nozzles, and the discharge amount of the functional liquid discharged from the nozzles is controlled in each group. The grouping of the nozzles is performed, by dividing location on an inkjet head (1a) on which the nozzles are arranged into a plurality of areas, and allowing the nozzles belonging to each area to belong to one group.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-196127

(P2002-196127A)

(43)公開日 平成14年7月10日(2002.7.10)

(51) Int.Cl.⁷
G02B 5/20
B41J 2/01
2/045
2/055

識別記号

101

F I

G02B 5/20

B41J 3/04

101 2C056

101 Z 2C057

103 A 2H048

マークコード (参考)

審査請求 未請求 請求項の数12 O L (全10頁)

(21)出願番号 特願2001-318215(P2001-318215)
(22)出願日 平成13年10月16日(2001.10.16)
(31)優先権主張番号 特願2000-316954(P2000-316954)
(32)優先日 平成12年10月17日(2000.10.17)
(33)優先権主張国 日本 (JP)

(71)出願人 000002369
セイコーエプソン株式会社
東京都新宿区西新宿2丁目4番1号
(72)発明者 岡田 信子
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
(72)発明者 高野 豊
長野県諏訪市大和3丁目3番5号 セイコ
ーエプソン株式会社内
(74)代理人 100079108
弁理士 稲葉 良幸 (外2名)

最終頁に続く

(54)【発明の名称】インクジェット式記録装置および機能性液体付与基板の製造方法

(57)【要約】

【課題】簡単な手順及び構成で機能性液体の吐出量をノズル間で均一化することができるインクジェット式記録装置および機能性液体付与基板の製造方法を提供する。

【解決手段】インクジェット式記録装置(100)は、機能性液体を吐出するための複数のノズル(111)を備え、前記複数のノズルは、ノズルの数より少ない複数のグループに分けられ、前記ノズルから吐出される機能性液体の吐出量が各グループごとに制御されることとした。ノズルのグループ分けは、ノズルが配置されるインクジェットヘッド(1a)上の位置を複数のエリアに分け、各エリアに属するノズルを1つのグループに属するものとした。

【特許請求の範囲】

【請求項1】 機能性液体を吐出するための複数のノズルを備え、前記複数のノズルは、ノズルの数より少ない複数のグループに分けられ、前記ノズルから吐出される機能性液体の吐出量が各グループごとに制御されることを特徴とするインクジェット式記録装置。

【請求項2】 請求項1において、

前記機能性液体はインクであり、カラーフィルタを製造可能であることを特徴とするインクジェット式記録装置。

【請求項3】 請求項1において、

前記機能性液体はEL発光体溶液であり、EL素子基板を製造可能であることを特徴とするインクジェット式記録装置。

【請求項4】 請求項1において、

前記機能性液体は導電粒子分散溶液であり、導電配線パターンを備えた基板を製造可能であることを特徴とするインクジェット式記録装置。

【請求項5】 請求項1乃至請求項4の何れか一項において、

前記複数のノズルが配置されるインクジェットヘッド上の位置を複数のエリアに分け、各エリアに属するノズルを1つのグループに属するものとしたことを特徴とするインクジェット式記録装置。

【請求項6】 請求項1乃至請求項5の何れか一項において、

前記複数のノズルが配置されるインクジェットヘッドは、前記各ノズルごとに設けられたキャビティと、各キャビティに通じており各ノズルに共通のリザーバと、前記リザーバに機能性液体を供給する供給口とを備えており、

前記複数のグループは、前記複数のノズルのうち前記供給口の近くに位置するノズルからなる第1のグループと、前記複数のノズルのうち前記供給口から遠くに位置するノズルからなる第2のグループとを少なくとも備えることを特徴とするインクジェット式記録装置。

【請求項7】 機能性液体を吐出可能な複数のノズルを備えたインクジェット式記録装置により機能性液体付与基板を製造する方法であって、前記複数のノズルを、ノズルの数より少ない複数のグループに分け、前記ノズルからの機能性液体の吐出を制御する信号の波形を各グループごとに調整し、基板上に形成された各画素に前記機能性液体を吐出することを特徴とする機能性液体付与基板の製造方法。

【請求項8】 請求項7において、

前記複数のノズルが配置されるインクジェットヘッド上の位置を複数のエリアに分け、各エリアに属するノズルを1つのグループに属するものとしたことを特徴とする機能性液体付与基板の製造方法。

【請求項9】 請求項7又は請求項8の何れか一項にお

いて、

前記複数のノズルが配置されるインクジェットヘッドは、前記各ノズルごとに設けられたキャビティと、各キャビティに通じており各ノズルに共通のリザーバと、前記リザーバに機能性液体を供給する供給口とを備えており、

前記複数のグループは、前記複数のノズルのうち前記供給口の近くに位置するノズルからなる第1のグループと、前記複数のノズルのうち前記供給口から遠くに位置するノズルからなる第2のグループとを少なくとも備えることを特徴とする機能性液体付与基板の製造方法。

【請求項10】 請求項7乃至請求項9の何れか一項に記載の方法により製造された機能性液体付与基板を備えたことを特徴とするデバイスの製造方法。

【請求項11】 請求項10に記載の方法により製造された電気光学装置を用いることを特徴とする電子機器の製造方法。

【請求項12】 請求項7乃至請求項9の何れか一項に記載の方法により製造された機能性液体付与基板を備えたことを特徴とするデバイス。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、インクやEL（エレクトロルミネセンス）発光体溶液などの機能性液体を均一に吐出することのできるインクジェット式記録装置、並びに、表示装置に用いられるカラーフィルタやEL素子基板などの機能性液体付与基板の製造方法及びこれら機能性液体付与基板を備えた電気光学装置などのデバイスや電子機器の製造方法に関する。

【0002】

【従来の技術】 表示装置用の機能性液体付与基板を製造する方法として、基板上にパンクで仕切られて形成された各画素に、インクジェット方式により機能性液体を導入することが知られている。この機能性液体付与基板は、各画素に対する機能性液体の吐出量をできるだけ均一にし、画素間のムラを最小限にする必要がある。

【0003】 特開平11-58074号公報には、ノズル間のインク吐出量のバラツキを補正するため、各ノズルごとにあらかじめ測定して作成されたバラツキ補正データをもとに、駆動電圧を制御することが記載されている。

【0004】

【発明が解決しようとする課題】 しかしながら、上記特開平11-58074号公報では、ノズルごとに補正データを作成しなければならないため、そのための作業に手間がかかっていた。また、駆動電圧の制御手段をノズルごとに別々に備える必要があるため、回路構成が複雑にならざるを得なかった。

【0005】 その一方、吐出量のバラツキを完全に0にする必要がない場合には、上記のように複雑な手間及び

構成を備える必要はない。例えば64階調のEL素子基板では±1.5%以下、32階調のEL素子基板では±3%以下、16階調のEL素子基板では±6%以下、更に、カラーフィルタでは±5%以下の膜厚ムラが目標とされており、機能性液体付与基板の塗布膜厚のバラツキは、ある程度の許容範囲を持っている。

【0006】本発明は、簡単な手順及び構成で機能性液体の吐出量をノズル間で均一化することができるインクジェット式記録装置および機能性液体付与基板の製造方法を提供することを目的とする。

【0007】

【課題を解決するための手段】上記課題を解決するため、本発明のインクジェット式記録装置は、機能性液体を吐出するための複数のノズルを備え、前記複数のノズルは、ノズルの数より少ない複数のグループに分けられ、前記ノズルから吐出される機能性液体の吐出量が各グループごとに制御されることを特徴とする。このように、ノズルごとではなくグループごとに調整可能としたので、補正値の選定作業や回路構成を簡略化しつつ、ノズル間で吐出量の均一性を確保することができる。

【0008】上記インクジェット式記録装置において、前記機能性液体はインクであり、カラーフィルタを製造可能であってもよい。また、上記インクジェット式記録装置において、前記機能性液体はEL発光体溶液であり、EL素子基板を製造可能であってもよい。前記機能性液体は導電粒子分散溶液であり、導電配線パターンを備えた基板を製造可能であってもよい。

【0009】上記インクジェット式記録装置において、前記複数のノズルが配置されるインクジェットヘッド上の位置を複数のエリアに分け、各エリアに属するノズルを1つのグループに属するものとすることが望ましい。位置が近接するノズルが、互いに近似する吐出特性を示すことを利用し、同一エリアに属するノズルについては同一の波形を適用することにより、効果的にノズル間の吐出量均一化を図ることができる。

【0010】また、上記インクジェット式記録装置において、前記複数のノズルが配置されるインクジェットヘッドは、前記各ノズルごとに設けられたキャビティと、各キャビティに通じており各ノズルに共通のリザーバと、前記リザーバに機能性液体を供給する供給口とを備えており；前記複数のグループは、前記複数のノズルのうち前記供給口の近くに位置するノズルからなる第1のグループと、前記複数のノズルのうち前記供給口から遠くに位置するノズルからなる第2のグループとを少なくとも備えることが望ましい。インクの吐出量が供給口からノズルまでの距離に影響される性質を利用し、供給口からの距離に応じてノズルのグループ分けを行ない、効果的にノズル間の吐出均一化を図ることができる。

【0011】また、本発明の機能性液体付与基板の製造方法は、機能性液体を吐出可能な複数のノズルを備えた

インクジェット式記録装置の前記複数のノズルを、ノズルの数より少ない複数のグループに分け、前記ノズルからの機能性液体の吐出を制御する信号の波形を各グループごとに調整し、基板上に形成された各画素に前記機能性液体を吐出することを特徴とする。

【0012】上記製造方法において、前記複数のノズルが配置されるインクジェットヘッド上の位置を複数のエリアに分け、各エリアに属するノズルを1つのグループに属するものとすることが望ましい。

10 【0013】また、上記製造方法において、前記複数のノズルが配置されるインクジェットヘッドは、前記各ノズルごとに設けられたキャビティと、各キャビティに通じており各ノズルに共通のリザーバと、前記リザーバに機能性液体を供給する供給口とを備えており；前記複数のグループは、前記複数のノズルのうち前記供給口の近くに位置するノズルからなる第1のグループと、前記複数のノズルのうち前記供給口から遠くに位置するノズルからなる第2のグループとを少なくとも備えることが望ましい。

20 【0014】また、本発明のデバイスの製造方法は、上記製造方法により製造された機能性液体付与基板を備えたことを特徴とする。

【0015】また、本発明のデバイスは、上記製造方法により製造された機能性液体付与基板を備えたことを特徴とする。

【0016】また、本発明の電子機器の製造方法は、上記製造方法により製造された電気光学装置などのデバイスを用いることを特徴とする。

【0017】

30 【発明の実施の形態】以下、本発明の実施の形態として、機能性液体の一例であるインクを基板上に付与してカラーフィルタを製造する装置及び方法を例にとって説明する。

【0018】(1. 製造装置の構成) 図1は、本発明の1実施形態によるインクジェット式記録装置の概略斜視図である。図に示すように、インクジェット式記録装置100は、インクジェットヘッド群1、X方向駆動軸4、Y方向ガイド軸5、制御装置6、載置台7、クリーニング機構部8、基台9を備えている。

40 【0019】インクジェットヘッド群1は、図示しないインクタンクから供給された機能性液体であるインクをそのノズル(吐出口)から各画素に吐出するインクジェットヘッド1aを備えている。

【0020】載置台7は、この製造装置によって製造すべきカラーフィルタ用基板101を載置させるもので、この基板を基準位置に固定する機構を備える。

【0021】X方向駆動軸4には、X方向駆動モータ2が接続されている。X方向駆動モータ2は、ステッピングモータ等であり、制御装置6からX軸方向の駆動信号が供給されると、X方向駆動軸4を回転させる。X方向

駆動軸 4 が回転させられると、インクジェットヘッド群 1 が X 軸方向に移動する。

【0022】Y 方向ガイド軸 5 は、基台 9 に対して動かないよう固定されている。載置台 7 は、Y 方向駆動モータ 3 を備えている。Y 方向駆動モータ 3 は、ステッピングモータ等であり、制御装置 6 から Y 軸方向の駆動信号が供給されると、載置台 7 を Y 軸方向に移動させる。

【0023】すなわち、X 軸方向の駆動と Y 軸方向の駆動とを行うことで、インクジェットヘッド群 1 をカラーフィルタ用基板 101 上のいずれの場所にも自在に移動させることができる。カラーフィルタ用基板 101 に対するインクジェットヘッド 1 の相対速度も、各軸方向の駆動機構の制御で定まる。

【0024】制御装置 6 は、インクジェットヘッド群 1 にインク滴の吐出制御用の信号を供給する駆動信号制御装置 31（後述）を備える。また、X 方向駆動モータ 2 および Y 方向駆動モータ 3 に、インクジェットヘッド群 1a と載置台 7 との位置関係を制御する信号を供給するヘッド位置制御装置 32（後述）を備える。

【0025】クリーニング機構部 8 は、インクジェットヘッド群 1 をクリーニングする機構を備えている。クリーニング機構部 8 には、図示しない Y 方向の駆動モータが備えられる。この Y 方向の駆動モータの駆動により、クリーニング機構 8 は、Y 方向ガイド軸 5 に沿って移動する。クリーニング機構 8 の移動も、制御装置 6 によって制御される。

【0026】(2. インクジェットヘッドの構成) 図 2 は、インクジェットヘッド群 1 を構成する個々のインクジェットヘッド 1a の構造の説明図である。インクジェットヘッド 1a は、図に示すように、ノズル板 110、圧力室基板 120 および振動板 130 を備えて構成されている。このヘッドは、オンデマンド形のピエゾジェット式ヘッドを構成している。

【0027】圧力室基板 120 は、キャビティ（圧力室）121、側壁（隔壁）122、リザーバ 123 および導入路 124 を備えている。キャビティ 121 は、シリコン等の基板をエッチングすることにより形成された、インクなどを吐出するために貯蔵する空間となっている。側壁 122 はキャビティ 121 間を仕切るよう形成されている。リザーバ 123 は、インクを各キャビティ 121 に充たすための流路となっている。導入路 124 は、リザーバ 123 から各キャビティ 121 にインクを導入可能に形成されている。なおキャビティ 121 などの形状はインクジェット方式によって種々に変形可能である。例えば平面的な形状のカイザー (Kyser) 形であっても円筒形のゾルタン (Zoltan) 形でもよい。

【0028】ノズル板 110 は、圧力室基板 120 に設けられたキャビティ 121 の各々に対応する位置にノズル 111 が配置されるよう、圧力室基板 120 の一方の面に貼り合わせられている。ノズル 111 の数は図示の

ものに限定されず、例えば 1 列 32 ノズルとすることも可能である。ノズル板 110 を貼り合わせた圧力室基板 120 は、さらに筐体 125 に納められて、インクジェットヘッド 1a を構成している。

【0029】振動板 130 は圧力室基板 120 の他方の面に貼り合わせられている。振動板 130 の各キャビティ 121 の位置に対応する部分にはそれぞれ圧電体素子（図示しない）が設けられている。また、振動板 130 のリザーバ 123 の位置に対応する部分には、供給口（図示せず）が設けられて、図示しないインクタンクに貯蔵されているインクを圧力室基板 120 内部に供給可能になっている。

【0030】複数のノズル 111 は、ノズル 111 の数より少ない複数のグループに分けられている。より詳しくは、複数のノズル 111 が配置されるインクジェットヘッド 1a 上の位置は複数のエリアに分けられ、この複数のエリアのうちの各エリアに属するノズルが、1 つのグループに属するものとなっている。さらに詳しくは、これらのグループは、供給口の近くに位置するノズル群からなるものと、供給口から遠くに位置するノズル群からなるものとを備えている。同一グループに属するノズルについては同一波形の制御信号によってインクが吐出されるようになっており、この制御信号は、各グループ毎に調整することができる。

【0031】(3. 制御系の構成) 図 3 は、上記インクジェット式記録装置 100 の制御系の構成を示すブロック図である。インクジェット式記録装置 100 の制御系は、パーソナルコンピュータなどの電子計算機からなる駆動信号制御装置 31 とヘッド位置制御装置 32 とを備えている。

【0032】駆動信号制御装置 31 はインクジェットヘッド 1a を駆動するための複数種類の波形を出力する。また、駆動信号制御装置 31 は、カラーフィルタの各画素に R、G、B のうち何れのインクを吐出するかを示すビットマップデータを出力する。

【0033】駆動信号制御装置 31 はアナログアンプ 33 とタイミング制御回路 34 に接続されている。アナログアンプ 33 は上記複数種類の波形を増幅する回路である。タイミング制御回路 34 はクロックパルス回路を内蔵し、上記ビットマップデータに従ってインクの吐出タイミングを制御する回路である。

【0034】アナログアンプ 33 とタイミング制御回路 34 は、ともに中継回路 35 に接続され、中継回路 35 は駆動波形選択回路 36 に接続される。中継回路 35 は、タイミング制御回路 34 から出力されたタイミング信号に従って、アナログアンプ 33 から出力された信号を駆動波形選択回路 36 に伝達する。

【0035】駆動波形選択回路 36 は、上記複数種類の波形のうち、インクジェットヘッド 1a からのインク吐出を制御する波形を選択し、インクジェットヘッド 1a

に送信する回路である。インクジェットヘッド 1a に備えられている複数のノズルは、ノズルの数より少ない数のグループに分けられ、各グループにつき 1 つの波形が選択される。各グループについて上記複数種類の波形のうちどの波形を選択するかは、予め測定されたインクジェットヘッド 1a の各ノズルからのインク吐出量のデータに基いて、駆動波形選択回路 36 に対して設定される。

【0036】図 4 は、上記インクジェットヘッドにおける各ノズルのインク吐出量の分布の一例を示す図である。横軸はインクジェットヘッド 1a に備えられた複数のノズルの配列に従って付されたノズル番号であり、縦軸は各ノズルからインクを吐出するために同一の駆動波形を用いた場合に、各ノズルから吐出されるインク 1 滴あたりの吐出量 (ng) である。

【0037】このインクジェットヘッドには、各ノズルに共通のリザーバにインクを供給する 1 つの供給口が設けられており、その供給口はノズル No. 8 ~ 15 の付近に位置している。図に示されるように、供給口の付近ではインク吐出量が少なく、供給口から遠い両端付近では、インク吐出量が多くなる傾向にある。

【0038】従って、インクジェットヘッドの両端付近に位置し、供給口から遠いノズルについては吐出量を抑える波形を選択し、中央付近に位置し、供給口に近いノズルについては吐出量を多くするような波形を選択すればよい。このように、ノズルの位置によって吐出量が増減する傾向を利用し、各ノズルが設けられている位置を複数のエリアに分け、互いに近似する吐出傾向を持つと考えられるエリアごとに波形を決定することとすれば、個々のノズルについて補正量を導出しなくとも、十分に吐出量のバラツキを抑えることができ、装置的にも簡単な構成で実現することができる。

【0039】ヘッド位置制御装置 32 は、インクジェットヘッド 1a と載置台 7 (およびこれに載置されたカラーフィルタ用基板) との位置関係を制御する回路であり、駆動信号制御装置 31 と協動して、インクジェットヘッド 1a から吐出されるインクがカラーフィルタ用基板上の所定の場所に到達するように制御する。ヘッド位置制御装置 32 は、X-Y 制御回路 37 に接続されており、この X-Y 制御回路 37 に対してヘッド位置に関する情報を送信する。

【0040】X-Y 制御回路 37 は、X 方向駆動モータ 2 と Y 方向駆動モータ 3 に接続され、これら X 方向駆動モータ 2 および Y 方向駆動モータ 3 に対して、ヘッド位置制御装置 32 からの信号に基いて、X 軸方向のインクジェットヘッド 1a の位置および Y 軸方向の載置台 7 の位置を制御する信号を送信する。

【0041】(4. 機能性液体付与基板の構成) 図 5 は、上記実施形態に係る製造装置及び製造方法により製造される機能性液体付与基板であるカラーフィルタの部

分拡大図である。図 5 (a) は平面図であり、図 5 (b) は図 5 (a) の B-B' 線断面図である。断面図各部のハッチングは一部省略している。

【0042】図 5 (a) に示されるように、カラーフィルタ 200 は、マトリクス状に並んだ画素 13 を備え、画素と画素の境目は、仕切り 14 によって区切られている。画素 13 の 1 つ 1 つには、赤 (R)、緑 (G)、青 (B) のいずれかのインクが導入されている。この例では赤、緑、青の配置をいわゆるデルタ配列としたが、ス 10 トライプ配列、モザイク配列など、その他の配置でも構わない。

【0043】図 5 (b) に示されるように、カラーフィルタ 200 は、透光性の基板 12 と、遮光性の仕切り 14 とを備えている。仕切り 14 が形成されていない (除去された) 部分は、上記画素 13 を構成する。この画素 13 に導入された各色のインクは着色層 20 を構成する。仕切り 14 及び着色層 20 の上面には、オーバーコート層 21 及び電極層 22 が形成されている。

【0044】(5. 機能性液体付与基板の製造方法) 図 20 26 は、上記カラーフィルタの製造工程断面図である。断面図各部のハッチングは一部省略している。この図に基き、カラーフィルタの製造方法の一例を具体的に説明する。

【0045】(5-1. パンク形成及び表面処理工序)
膜厚 0.7 mm、たて 38 cm、横 30 cm の無アルカリガラスからなる透明基板 12 の表面を、熱濃硫酸に過酸化水素水を 1 重量 % 添加した洗浄液で洗浄し、純水でリーンした後、エア乾燥を行って清浄表面を得る。この表面に、スパッタ法によりクロム膜を平均 0.2 μm の 30 膜厚で形成し、金属層 16' を得る (図 6 : S1)。

【0046】この基板をホットプレート上で、80°C で 5 分間乾燥させた後、金属層 16' の表面に、スピンドルによりフォトレジスト層 (図示せず) を形成する。この基板表面に、所要のマトリクスパターン形状を描画したマスクフィルムを密着させ、紫外線で露光をおこなう。次に、これを、水酸化カリウムを 8 重量 % の割合で含むアルカリ現像液に浸漬して、未露光の部分のフォトレジストを除去し、レジスト層をパターニングする。続いて、露出した金属層を、塩酸を主成分とするエッチング液でエッチング除去する。このようにして所定のマトリクスパターンを有する遮光層 (ブラックマトリクス) 16 を得ることができる (図 6 : S2)。遮光層 16 の膜厚は、およそ 0.2 μm である。また、遮光層 16 の幅は、およそ 22 μm である。

【0047】この基板上に、さらにネガ型の透明アクリル系の感光性樹脂組成物 17' をやはりスピンドルコート法で塗布する (図 6 : S3)。これを 100°C で 20 分間プレベークした後、所定のマトリクスパターン形状を描画したマスクフィルムを用いて紫外線露光を行なう。未露光部分の樹脂を、やはりアルカリ性の現像液で現像

し、純水でリーンした後スピンドル乾燥する。最終乾燥までのアフターベークを200°Cで30分間行い、樹脂部を十分硬化させることにより、バンク層17が形成され、遮光層16及びバンク層17からなる仕切り14が形成される(図6:S4)。このバンク層17の膜厚は、平均で2.7μmである。また、バンク層17の幅は、およそ14μmである。

【0048】得られた遮光層16およびバンク層17で区画された着色層形成領域(特にガラス基板12の露出面)のインク濡れ性を改善するため、ドライエッチング、すなわち大気圧プラズマ処理を行なう。具体的には、ヘリウムに酸素を20%加えた混合ガスに高電圧を印加し、プラズマ雰囲気を大気圧内でエッティングスポットに形成し、基板を、このエッティングスポット下を通過させてエッティングする。

【0049】(5-2. 機能性液体の導入工程)次に、仕切り14で区切られて形成された画素13内に、機能性液体であるインクをインクジェット方式により導入する(図6:S5)。インクジェット式記録ヘッドには、ピエゾ圧電効果を応用した精密ヘッドを使用し、微小インク滴を着色層形成領域毎に10滴、選択的に飛ばす。駆動周波数は14.4kHz、すなわち、各インク滴の吐出間隔は69.5μ秒に設定する。ヘッドとターゲットとの距離は、0.3mmに設定する。ヘッドよりターゲットである着色層形成領域への飛翔速度、飛行曲がり、サテライトと称される分裂迷走滴の発生防止のためには、インクの物性はもとよりヘッドのピエゾ素子を駆動する波形(電圧を含む)が重要である。インクジェットヘッドを駆動する波形は、上述のように駆動信号制御装置31、アナログアンプ33、中継回路35、駆動波系選択回路36を経てインクジェットヘッドに伝達される。

【0050】図7は、上記駆動波形選択回路36に入力される複数種類の信号波形の例を示す波形グラフである。横軸は時間(μ秒)、縦軸は印加電圧の最小値との差(V)である。ここに示された4種類の波形はいずれもブル・ッシュ・ブル型といわれており、第1段階の電圧を降下させる段階(ブル)ではメニスカス内にインクを引き込み、第2段階の電圧を上昇させる段階(ッシュ)でインクを吐出し、第3段階の再び電圧を降下させる段階(ブル)ではメニスカスの振動を急激に減衰させる。ここでは、図に示されるように印加電圧の最大値と最小値との差(Vh)がそれぞれ19V、19.5V、20V、20.5Vとなるように4種類の波形を生成する。Vhを低くするとインク吐出量は小さくなり、Vhを高くするとインク吐出量は大きくなる。こうして、インクの吐出量を電圧の高低により制御する。

【0051】駆動波形選択回路36は、上記4種類の波形のうち、インクジェットヘッド1aからのインク吐出を制御する波形を選択し、インクジェットヘッド1aに

送信する。特に、インクジェットヘッド1aに備えられている32個のノズルは、7個、7個、6個、6個、6個の計5グループに分けられ、各グループにつきそれぞれ1つの波形を選択する。

【0052】図8は、本実施形態のインクジェットヘッド1aにおける各ノズルからの1滴あたりインク吐出量について、補正前および補正後のデータを示したグラフである。横軸は、各ノズルの配列に従って仮に付されたノズル番号、縦軸は、各ノズルからの1滴あたりの吐出量(n g)である。補正前のデータは、実線の折れ線で示し、補正後のデータは、点線の折れ線で示した。なお、インク1滴あたりの吐出量は、ノズルから吐出されたインク滴のスピードをもとに算出した。

【0053】補正前では、すべてのノズルにつき、上記4種類の波形のうちVh=20Vの駆動波形を用いた。その結果、各ノズルからのインク吐出量は、最大で約19.5ng(ノズルNo. 32)、最小で約17.6ng(ノズルNo. 16)であった。インク量バラツキは、±6.0%であった。

【0054】このインク量バラツキを補正するため、ノズルNo. 8~No. 14のグループからのインク吐出制御信号のVhを20.5Vとし、ノズルNo. 21~No. 26のグループからのインク吐出制御信号のVhを19.5Vとし、ノズルNo. 27~No. 32のグループからのインク吐出制御信号のVhを19Vとし、その他のノズルについてはそのまま20Vとした。その結果、各ノズルからのインク吐出量は、最大で約18.6ng(ノズルNo. 24)、最小で約17.6ng(ノズルNo. 16)となった。インク量バラツキは、±2.9%に改善された。

【0055】また、ノズルから吐出されたインク滴の飛行速度のバラツキは、補正前は±10%であったが、補正後は±5%であった。このようにインク滴の飛行速度が均一化したことにより、載置台の移動速度を高速化してもインク滴の着弾位置ずれが生じにくくなつたため、製造速度を高めることが可能となつた。

【0056】上記のようにして選択された波形により、インク滴を赤、緑、青の3色を同時に塗布して所定の配色パターンにインクを塗布する。インクとしては、例えばポリウレタン樹脂オリゴマーに無機顔料を分散させた後、低沸点溶剤としてシクロヘキサンノンおよび酢酸ブチルを、高沸点溶剤としてブチルカルビトールアセテートを加え、さらに非イオン系界面活性剤0.01重量%を分散剤として添加し、粘度6~8センチポアズとしたものを用いる。

【0057】(5-3. 乾燥・硬化工程)次に、塗布したインクを乾燥させる。まず、自然雰囲気中で3時間放置してインク層19のセッティングを行つた後、80°Cのホットプレート上で40分間加熱し、最後にオープン中で200°Cで30分間加熱してインク層19の硬化処

理を行って、着色層20が得られる(図6:S6)。

【0058】上記基板に、透明アクリル樹脂塗料をスピニコートして平滑面を有するオーバーコート層21を形成する。さらに、この上面にITO(Indium Tin Oxide)からなる電極層22を所要パターンで形成して、カラーフィルタ200とする(図6:S7)。

【0059】(6. 表示装置の構成)図9は、本発明の1実施形態の製造方法により製造される電気光学装置であるカラー液晶表示装置の断面図である。断面図各部のハッチングは一部省略している。このカラー液晶表示装置300は、上記の方法により製造されたカラーフィルタ200を用いているので、機能性液体の吐出量が画素間で均一化され、乾燥及び硬化後の機能性液体の膜厚が画素間で均一となり、画質の良好な画像を表示することができる。

【0060】このカラー液晶表示装置300は、カラーフィルタ200と対向基板338とを組み合わせ、両者の間に液晶組成物337を封入することにより構成されている。液晶表示装置300の一方の基板338の内側の面には、TFT(薄膜トランジスタ)素子(図示せず)と画素電極332とがマトリクス状に形成されている。また、もう一方の基板として、画素電極332に対向する位置に赤、緑、青の着色層20が配列するようカラーフィルタ200が設置されている。

【0061】基板338とカラーフィルタ200の対向するそれぞれの面には、配向膜326、336が形成されている。これらの配向膜326、336はラビング処理されており、液晶分子を一定方向に配列させることができる。また、基板338およびカラーフィルタ200の外側の面には、偏光板329、339がそれぞれ接着されている。また、バックライトとしては蛍光燈(図示せず)と散乱板の組合せが一般的に用いられており、液晶組成物337をバックライト光の透過率を変化させる光シャッターとして機能させることにより表示を行う。

【0062】なお、電気光学装置は、本発明では上記のカラー液晶表示装置に限定されず、例えば薄型のブラウン管、あるいは液晶シャッター等を用いた小型テレビ、EL表示装置、プラズマディスプレイ、CRTディスプレイ、FED(Field Emission Display)パネル等の種々の電気光学手段を用いた電気光学装置を採用することができる。

【0063】(7. 電子機器の構成)図10は、本発明の1実施形態の製造方法により製造される電子機器であるノート型パソコンコンピュータの斜視図である。このパソコンコンピュータ500は、上記のカラー液晶表示装置300を表示部として用いているので、機能性液体の吐出量が画素間で均一化され、乾燥及び硬化後の機能性液体の膜厚が画素間で均一となり、画質の良好な画像を表示することができる。

【0064】図に示すように、液晶表示装置300は筐体510に収納され、この筐体510に形成された開口部511から液晶表示装置300の表示領域が露出するよう構成されている。また、パソコンコンピュータ500は、入力部としてのキーボード530を備えている。

【0065】このパソコンコンピュータ500は、液晶表示装置300の他に、図示しないが、表示情報出力源、表示情報処理回路、クロック発生回路などの様々な回路や、それらの回路に電力を供給する電源回路などからなる表示信号生成部を含んで構成される。液晶表示装置300には、例えば入力部530から入力された情報等に基き表示信号生成部によって生成された表示信号が供給されることによって表示画像が形成される。

【0066】本実施形態に係る電気光学装置が組み込まれる電子機器としては、パソコンコンピュータに限らず、携帯型電話機、電子手帳、ペーパーライフ、POS端末、ICカード、ミニディスクプレーヤ、液晶プロジェクタ、およびエンジニアリング・ワークステーション(EWS)、ワードプロセッサ、テレビ、ビューファインダ型またはモニタ直視型のビデオテープレコーダ、電子卓上計算機、カーナビゲーション装置、タッチパネルを備えた装置、時計、ゲーム機器など様々な電子機器が挙げられる。

【0067】(8. 他の実施例)また、本発明の製造装置及び方法により製造される機能性液体付与基板は上記カラーフィルタに限らず、EL素子基板であってもよい。この場合、機能性液体としてはEL発光体溶液を用いる。

【0068】また、本発明の製造装置及び方法により製造される機能性液体付与基板は、導電配線パターンが形成された基板であってもよい。この場合、機能性液体としては、例えば、Au(金)、Ag(銀)、Cu(銅)、Pt(プラチナ)、Pd(パラジウム)などの導電性を有する物質を粉体にしたもの、粉体を結合させるためのバインダー、粉体を均一に分散させるための分散剤等を、溶剤に溶かした導電粒子分散溶液を用いる。

【0069】そして、基板上に所望の導電配線パターンを形成するように、本発明のインクジェットヘッドを用いて、導電粒子分散溶液を塗布する。その後その機能性液体を乾燥、固化させて導電配線パターンを形成する。

【0070】また、機能性液体付与基板としては、半導体素子が形成された基板や半導体素子から構成されるメモリが形成された基板であってもよい。この場合、機能性液体として、無機半導体材料、有機半導体材料、導電性高分子、強誘電体材料等を含む溶液を用いる。

【0071】また、機能性液体付与基板としては、遺伝子分析の試料として用いる基板であってもよい。この場合、機能性液体としては、タンパク質あるいはデオキシリボ核酸(DNA)を含む溶液を用いる。

【0072】また、機能性液体付与基板としては、ディスプレイの電子銃を構成する基板をはじめとした電子デバイスを構成する基板であっても良い。この場合、機能性液体としてはカーボンナノチューブを含む溶液を用いる。

【0073】また、機能性液体付与基板としては、燃料電池の触媒あるいは無電界めつきに用いる触媒あるいはフィールドエミッショニディスプレイ(FED)を構成する基板であっても良い。この場合、機能性液体としては、貴金属及び貴金属塩もしくはその酸化物を含む溶液を用いる。

【発明の効果】本発明によれば、簡単な手順及び構成で機能性液体の吐出量をノズル間で均一化することができるインクジェット式記録装置および機能性液体付与基板の製造方法を提供することができる。

【図面の簡単な説明】

【図1】 本発明の1実施形態によるインクジェット式記録装置の概略斜視図である。

【図2】 インクジェットヘッド群1を構成する個々のインクジェットヘッド1aの構造の説明図である。

【図3】 上記インクジェット式記録装置の制御系の構成を示すブロック図である。

【図4】 上記インクジェットヘッドにおける各ノズルのインク吐出量の分布の一例を示す図である。

【図5】 上記実施形態に係る製造装置及び製造方法に

より製造される機能性液体付与基板であるカラーフィルタの部分拡大図である。

【図6】 上記カラーフィルタの製造工程断面図である。

【図7】 駆動波形選択回路36に入力される複数種類の信号波形の例を示す波形グラフである。

【図8】 本実施形態のインクジェットヘッド1aにおける各ノズルからの1滴あたりインク吐出量について、補正前および補正後のデータを示したグラフである。

【図9】 本発明の1実施形態の製造方法により製造される電気光学装置であるカラー液晶表示装置の断面図である。

【図10】 本発明の1実施形態の製造方法により製造される電子機器であるノート型パーソナルコンピュータの斜視図である。

【符号の説明】

100 インクジェット式記録装置

1a インクジェットヘッド

111 ノズル

20 121 キャビティ

123 リザーバ

200 カラーフィルタ(機能性液体付与基板)

300 カラー液晶表示装置(電気光学装置)

500 パーソナルコンピュータ(電子機器)

【図1】

【図2】

【図9】

【図 3】

【図 4】

【図 5】

【図 6】

【図 10】

【図7】

【図8】

フロントページの続き

(72)発明者 木口 浩史

長野県諏訪市大和3丁目3番5号 セイコ
一エプソン株式会社内

F ターム(参考) 2C056 EA24 FB01

2C057 AF93 AM19 BA03 BA14

2H048 BA02 BA11 BA57 BA64 BB02
BB41 BB42 BB46