

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K 14/435, 14/705, C12N 15/12, 15/63, 15/70, 15/74, 15/79, 15/81, A61K 38/17

(11) International Publication Number:

WO 99/37675

(43) International Publication Date:

29 July 1999 (29.07.99)

(21) International Application Number:

PCT/US99/01418

A1

(22) International Filing Date:

22 January 1999 (22.01.99)

(30) Priority Data:

60/072,151

22 January 1998 (22.01.98)

US

(71) Applicant (for all designated States except US): THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): JULIUS, David, J. [US/US]; 50 Clifford Terrace, San Francisco, CA 94117 (US). CATERINA, Michael [US/US]; Apartment 7, 110 Carlotta Circle, Mill Valley, CA 94941 (US). BRAKE, Anthony, J. [US/US]; 2115 Los Angeles Avenue, Berkeley, CA 94707 (US).
- (74) Agent: FRANCIS, Carol, L.; Bozicevic, Field & Francis LLP. Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN. MW. MX. NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR. GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NUCLEIC ACID SEQUENCES ENCODING CAPSAICIN RECEPTORS

(57) Abstract

The present invention features vanilloid receptor polypeptides and vanilloid receptor-related polypeptides, specifically the capsaicin receptor subtypes VR1 and VR2 (VRRP-1), as well as the encoding polynucleotide sequences. In related aspects the invention features expression vectors and host cells comprising such polynucleotides. In other related aspects, the invention features transgenic animals having altered capsaicin receptor expression, due to, for example, the presence of an exogenous wild-type or modified capsaicin receptor-encoding polynucleotide sequence. The present invention also relates to antibodies that bind specifically to a capsaicin receptor polypeptide, and methods for producing these polypeptides. Further, the invention provides methods for using capsaicin receptor, including methods for screening candidate agents for activity as agonists or antagonists of capsaicin receptor activity, as well as assays to determine the amount of a capsaicin receptor-activating agent in a sample. In other related aspects, the invention provides methods for the use of the capsaicin receptor for the diagnosis and treatment of human disease and painful syndromes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

4.7	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL		FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Azerbaijan	GE GE	Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GH	Chana	MG	Madagascar	ТJ	Tajikistan
BB	Barbados	GN	Guinea	. MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN	Greece	,,,,,	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	_		ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin	ΙE		MR	Mauritania	UG	Uganda
BR	Brazil	IL 	Israel	MW	Malawi	US	United States of America
BY	Belarus	IS	Iceland	MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan		Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya	NL		zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	LW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NUCLEIC ACID SEQUENCES ENCODING CAPSAICIN RECEPTOR

FIELD OF THE INVENTION

The present invention relates to nucleic acid and amino acid sequences encoding a receptor for vanilloid compound and polypeptides related to such vanilloid compound receptors, and to the use of these sequences in the diagnosis, study, and treatment of disease.

BACKGROUND OF THE INVENTION

Pain is initiated when the peripheral terminals of a particular group of sensory neurons. called nociceptors, are activated by noxious chemical, mechanical, or thermal stimuli. These neurons, whose cell bodies are located in various sensory ganglia, transmit information regarding tissue damage to pain processing centers in the spinal cord and brain (Fields Pain (McGraw-Hill, New York, 1987)). Nociceptors are characterized, in part, by their sensitivity to capsaicin, a natural product of capsicum peppers that is the active ingredient of many "hot" and spicy foods. In mammals, exposure of nociceptor terminals to capsaicin leads initially to the perception of pain and the local release of neurotransmitters. With prolonged exposure, these terminals become insensitive to capsaicin, as well as to other noxious stimuli (Szolcsanyi in Capsaicin in the Study of Pain (ed. Wood) pgs. 255-272 (Academic Press, London, 1993)). This latter phenomenon of nociceptor desensitization underlies the seemingly paradoxical use of capsaicin as an analgesic agent in the treatment of painful disorders ranging from viral and diabetic neuropathies to rheumatoid arthritis (Campbell in Capsaicin and the Study of Pain (ed. Wood) pgs. 255-272 (Academic Press, London, 1993); Szallasi et al. 1996 Pain 68:195-208). While some of this decreased sensitivity to noxious stimuli may reflect reversible changes in the nociceptor, such as depletion of inflammatory mediators, the long-term loss of responsiveness can be explained by death of the nociceptor or destruction of its peripheral terminals following capsaicin exposure (Jancso et al. 1977 Nature 270:741-743; Szolcsanyi, supra).

Responsivity to capsaicin has been used to define sensory afferent fibers that transmit signals in response to noxious stimuli (chemical, thermal, and mechanical stimuli); however, the precise mechanism of action has remained unclear. Electrophysiological (Bevan et al. 1990 Trends Pharmacol. Sci 11:330-333; Oh et al. 1996 J. Neuroscience 16:1659-1667) and biochemical (Wood et al. 1988 J. Neuroscience 8:3208-3220) studies have clearly shown that capsaicin excites nociceptors by increasing plasma membrane conductance through formation or activation of nonselective cation channels. While the hydrophobic nature of capsaicin has made it difficult to rule out the possibility that its actions are mediated by direct perturbation of membrane lipids (Feigin et al. 1995 Neuroreport 6:2134-2136), it has been generally accepted that this compounds acts at a specific receptor site on or within sensory neurons due to observations that capsaicin derivatives show structure-function relationships and evoke dose-dependent responses (Szolcsanyi et al. 1975 Drug. Res. 25:1877-1881; Szolcsanyi et al. 1976 Drug Res. 26:33-37)). The development of capsazepine, a competitive capsaicin antagonist (Bevan et al. 1992 Br. J. Pharmacol.

5

10

15

20

25

30

107:544-552) and the discovery of resiniferatoxin, an ultrapotent capsaicin analogue from *Euphorbia* plants that mimics the cellular actions of capsaicin (deVries et al. 1989 Life Sci. 44:711-715; Szallasi et al. 1989 Neuroscience 30:515-520) further suggest that the capsaicin mediates its effects through a receptor. The nanomolar potency of resiniferatoxin has facilitated its use as a high affinity radioligand to visualize saturable, capsaicin- and capsazepine-sensitive binding sites on nociceptors (Szallasi 1994 Gen. Pharmac. 25:223-243). Because a vanilloid moiety constitutes an essential structural component of capsaicin and resiniferatoxin, the proposed site of action of these compounds has been more generally referred to as the vanilloid receptor (Szallasi 1994 *supra*). The action of capsaicin, resiniferatoxin, and the antagonist capsazepine have been well characterized physiologically using primary neuronal cultures (see, *e.g.*, Szolcsanyi, "Actions of Capsaicin on Sensory Receptors," Bevan et al. "Cellular Mechanisms of the Action of Capsaicin," and James et al. "The Capsaicin Receptor," all in Capsaicin in the Study of Pain, 1993 Academic Press Limited, pgs. 1-26, 27-44, and 83-104, respectively; Bevan et al. 1990, *supra*).

The analgesic properties of capsaicin and capsaicinoids are of much interest for their uses in the treatment of pain and inflammation associated with a variety of disorders (see, e.g., Fusco et al. 1997 Drugs 53:909-914; Towheed et al. 1997 Semin. Arthritis Rheum 26:755-770; Appendino et al. 1997 Life Sci 60:681-696 (describing activities and application of resiniferatoxin); Campbell et al. "Clinical Applications of Capsaicin and Its Analogues" in Capsaicin in the Study of Pain 1993, Academic Press pgs. 255-272). Although capsaicin and capsaicin related compounds can evoke the sensation of pain, cause hyperalgesia, activate autonomic reflexes (e.g., elicit changes in blood pressure), and cause release of peptides and other putative transmitters from nerve terminals (e.g., to induce bronochoconstriction and inflammation), prolonged exposure of sensory neurons to these compounds leads to desensitization of the neurons to multiple modalities of noxious sensory stimuli without compromising normal mechanical sensitivity or motor function, and without apparent central nervous system depression. It is this final phenomena that makes capsaicins and related compounds of great interest and potential therapeutic value.

Despite the intense interest in capsaicin and related compounds and their effects upon sensory afferent, the receptor(s) through which these compounds mediate their effects have eluded isolation and molecular characterization. Thus, the development of elegant systems for screening or characterizing new capsaicin receptor-binding compounds, or for identifying endogenous, tissue-derived mediators of pain and/or inflammation, have been severely hampered. To date the only means of assessing the activity of compounds as capsaicin receptor agonists or antagonists has been to examined their effects on sensory neurons in culture or in intact animals. The present invention solves this problem.

SUMMARY

The present invention features vanilloid receptor polypeptides and vanilloid receptor-related polypeptides, specifically the capsaicin receptor and capsaicin receptor-related polypeptides, as well as nucleotide sequences encoding capsaicin receptor and capsaicin receptor-related polypeptides. In related aspects the invention features expression vectors and host cells comprising polynucleotides that encode

5

10

15

20

25

30

capsaicin receptor or capsaicin receptor-related polypeptide. In other related aspects, the invention features transgenic animals having altered capsaicin receptor expression, due to, for example, the presence of an exogenous wild-type or modified capsaicin receptor-encoding polynucleotide sequence. The present invention also relates to antibodies that bind specifically to a capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide, and methods for producing capsaicin receptor and capsaicin receptor-related polypeptides.

In one aspect the invention features a method for identifying compounds that bind a capsaicin receptor polypeptide, preferably a compound that binds a capsaicin receptor polypeptide and affects a cellular response associated with capsaicin receptor biological activity (e.g., intracellular calcium flux).

In another aspect the invention features a method for detecting a vanilloid compound in a sample, where the vanilloid compound has activity in binding a capsaicin receptor polypeptide, by contacting a sample suspected of containing a vanilloid compound with a cell (e.g., an oocyte (e.g., an amphibian oocyte) or a mammalian cell) expressing a capsaicin receptor polypeptide and detecting an alteration of a cellular response associated with capsaicin receptor activity in the capsaicin receptor-expressing host cell. Preferably, the cellular response associated with capsaicin receptor activity is an alteration of intracellular calcium levels in the capsaicin receptor-expressing host cell. The method can be used to detect vanilloid compounds in samples derived from natural products (e.g., natural product extracts) or can be used to screen candidate compounds for use as analgesics (e.g., vanilloid analogs, therapeutic antibodies, antisense oligonucleotides, capsaicin receptor-encoding nucleotides for replacement gene therapy), flavor-enhancing agents, etc.

Yet another aspect of the invention relates to use of capsaicin receptor polypeptides and specific antibodies thereto for the diagnosis and treatment of human disease and painful syndromes.

In another aspect the invention features transgenic, non-human mammals expressing a capsaicin receptor-encoding transgene, and use of such transgenic mammals for use in screening of candidate capsaicin receptor agonist and antagonist compounds.

A primary object of the invention is to provide isolated polynucleotides for use in expression of capsaicin receptor and capsaicin receptor-related polypeptides (e.g. in a recombinant host cell or in a target cell as part of organochemotherapy) and for use in, for example, identification of capsaicin receptor-binding compounds (especially those compounds that affect capsaicin receptor-mediated activity).

The invention will now be described in further detail.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1A shows the putative domains present in the capsaicin receptor amino acid sequence. Open boxes delineate ankyrin repeat domains; right-hatched boxes indicate predicted transmembrane domains; and the left-hatched box indicates a possible pore-loop region. Bullets denote predicted protein kinase A phosphorylation sites.

Fig. 1B shows the predicted membrane topology and domain structure of the capsaicin receptor. Open circles labeled "A" denote ankyrin domains; cylinders denote transmembrane domains; and the

5

10

15

20

25

30

double-lined area indicates a possible pore-loop region. "i" and "o" denote the inner and outer membrane leaflets, respectively.

Fig. 1C shows the alignment of the capsaicin receptor VR1 with related sequences. Identical residues are in cross-hatched boxes and conservative substitutions are in singly-lined boxes.

- Fig. 2 is a current trace of whole cell voltage clamp analysis of capsaicin receptor-expressing HEK293 cells.
- Fig. 3 is a plot of the voltage steps (400ms) from -100 mV to +40mV for the data presented in Figure 3.
 - Fig. 4 is a graph illustrating the current-voltage relationship of the data from Figure 4.
- Fig. 5 is a graph of the voltage generated across membranes of recombinant capsaicin receptorexpressing cells when exposed to capsaicin and tested under conditions of varying ionic compositions. a = NaCl; b= KCl; c = CsCl; d = MgCl₂; e = CaCl₂.
- Fig. 6A through Fig. 6F are graphs showing the effects of extracellular calcium upon capsaicininduced current in whole-cell voltage clamp experiments.
- Fig. 7 is graph illustrating the single channel behavior of capsaicin-induced current in capsaicin receptor-expressing HEK293 cells using outside-out (O/O) and inside-out (I/O) patches.
 - Fig. 8 is a graph showing the current-voltage relationship of the data obtained in Fig. 7.
- Fig. 9A is a graph showing the effects of capsaicin and resiniferatoxin upon current in whole-cell voltage clamp experiments in Xenopus oocytes expressing the capsaicin receptor. Bars denote duration of agonist application. Membrane currents were recorded in the whole cell voltage clamp configuration $(V_{hold} = -40 \text{mV})$.
- Fig. 9B is a graph showing the concentration-response curve for capsaicin (squares) and resiniferatoxin (open circles) in VR1-expressing oocytes. In Fig. 9B, the membrane currents were normalized in each oocyte to a response obtained with 1µM capsaicin and expressed as a percent of maximal response to capsaicin. Each pont represents mean values (± s.e.m.) from 5 independent oocytes.
- Fig. 10A is a graph showing the effects of capsazepine upon capsaicin-induced current in whole cell voltage clamp experiments. Slash marks represent wash out periods of 2 and 3 min, respectively (n = 3). cap = capsaicin; cpz = capsazepine; RR = ruthenium red. Each point represents 4 independent oocytes. Current response were normalized to that elicited by capsaicin in each oocyte (0.6 μ M, open diamond). Slash marks denote 2 and 12 minute wash out periods, respectively (n=3).
- Fig. 10B is a graph showing the capsazepine inhibition curve of capsaicin response in whole cell voltage clamp studies.
- Fig. 11 is a histogram with corresponding current traces reflecting the relative capsaicin content of several different hot peppers.
- Fig. 12 is a graph showing induction of cell death in HEK293 cells transiently transfected with capsaicin receptor-encoding cDNA. Open bars = cells exposed to carrier alone (ethanol); filled bars = cells exposed to capsaicin; pcDNA3 = control cells without capsaicin receptor-encoding DNA; VR1 (1:50) = cells transiently transfected with capsaicin receptor-s encoding cDNA diluted 1:50 with control pcDNA3; and

5

10

15

20

25

30

VR1 = cells transiently transfected with capsaicin receptor-encoding cDNA alone. Asterisks indicate a significant difference from ethanol-treated cells.

Fig. 13 is a current trace showing the effect of hydrogen ions upon capsaicin receptor activity in oocytes expressing capsaicin receptor. cap on = time of capsaicin introduction; cap off = time of capsaicin wash out. The pH of the bath solution was changed during the experiment as indicated by the horizontal bars.

Fig. 14 is a graph showing a summary of the current response obtained from nine independent capsaicin receptor-expressing occytes. The open portion of each bar indicates peak current evoked by capsaicin at pH 7.6, while the cross-hatched portion represents the additional current evoked by changing the bath solution to pH 6.3.

Fig. 15A is a current trace showing the effects of heat and capsaicin upon capsaicin receptor activity in capsaicin receptor-expressing HEK293 cells as determined by whole patch clamp analysis.

Fig. 15B is a graph showing the current-voltage relationship of the data obtained in Fig. 15A.

Fig. 16 is a graph showing activation of capsaicin receptor in capsaicin receptor-expressing *Xenopus* oocytes by noxious, but not innocuous, heat. The asterisk indicates a significant difference from control water-injected oocytes.

Fig. 17 provides representative current traces of the effects of capsaicin, heat, and heat plus ruthenium red (RR) upon capsaicin receptor-expressing *Xenopus* oocytes and control water-injected oocytes.

Fig. 18 is a schematic illustrating the relationship between rat VR1, rat VRRP-1, and the human EST sequence AA321554.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

5

10

15

20

25

30

35

"Polynucleotide" as used herein refers to an oligonucleotide, nucleotide, and fragments or portions thereof, as well as to peptide nucleic acids (PNA), fragments, portions or antisense molecules thereof, and to DNA or RNA of genomic or synthetic origin which can be single- or double-stranded, and represent the sense or antisense strand. Where "polynucleotide" is used to refer to a specific polynucleotide sequence (e.g. a capsaicin receptor-encoding polynucleotide or a capsaicin receptor-related polypeptide-encoding polynucleotide), "polynucleotide" is meant to encompass polynucleotides that encode a polypeptide that is functionally equivalent to the recited polypeptide, e.g., polynucleotides that are degenerate variants, or polynucleotides that encode biologically active variants or fragments of the recited polypeptide. Similarly, "polypeptide" as used herein refers to an oligopeptide, peptide, or protein. Where "polypeptide" is recited herein to refer to an amino acid sequence of a naturally-occurring protein molecule, "polypeptide" and like terms are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule. By "antisense polynucleotide" is mean a polynucleotide having a nucleotide sequence complementary to a given polynucleotide sequence (e.g., a polynucleotide sequence encoding a capsaicin receptor) including polynucleotide sequences associated with the

transcription or translation of the given polynucleotide sequence (e.g., a promoter of a polynucleotide encoding capsaicin receptor), where the antisense polynucleotide is capable of hybridizing to a capsaicin receptor polynucleotide sequence. Of particular interest are antisense polynucleotides capable of inhibiting transcription and/or translation of a capsaicin receptor-encoding or capsaicin receptor-related polypeptide-encoding polynucleotide either in vitro or in vivo.

"Peptide nucleic acid" as used herein refers to a molecule which comprises an oligomer to which an amino acid residue, such as lysine, and an amino group have been added. These small molecules, also designated anti-gene agents, stop transcript elongation by binding to their complementary (template) strand of nucleic acid (Nielsen et al 1993 Anticancer Drug Des 8:53-63).

10

15

5

As used herein, "capsaicin receptor" or "capsaicin receptor polypeptide" means a recombinant or nonrecombinant polypeptide having an amino acid sequence of i) a native capsaicin receptor polypeptide, ii) a biologically active fragment of a capsaicin receptor polypeptide, iii) biologically active polypeptide analogs of a capsaicin receptor polypeptide, or iv) a biologically active variant of a capsaicin receptor polypeptide. Capsaicin receptor polypeptides of the invention can be obtained from any species, particularly mammalian, including human, rodentia (e.g., murine or rat), bovine, ovine, porcine, murine, or equine, preferably rat or human, from any source whether natural, synthetic, semi-synthetic or recombinant. The term "capsaicin receptor" as used herein encompasses the vanilloid receptor subtype 1(VR1) described in detail herein, but is not meant to be limited to VR1, and particularly may be generically used to refer to the receptor subtypes VR1 and VR2.

20

25

30

35

As used herein, "capsaicin receptor-related polypeptide" or "vanilloid-like receptor (VLR) polypeptide" means a recombinant or nonrecombinant polypeptide having an amino acid sequence of i) a native capsaicin receptor-related polypeptide, ii) a biologically active fragment of a capsaicin receptorrelated polypeptide, iii) biologically active polypeptide analogs of a capsaicin receptor-related polypeptide, or iv) a biologically active variant of a capsaicin receptor-related polypeptide, herein referred to as "VRRP-1", "VLR1," or "VR2". Capsaicin receptor polypeptides of the invention can be obtained from any species, particularly a mammalian species, including human, rodentia (e.g., murine or rat), bovine, ovine, porcine, murine, or equine, preferably rat or human, from any source whether natural, synthetic, semi-synthetic or recombinant. The term "capsaicin receptor-related polypeptide" as used herein also encompasses any polypeptide having at least about 40% identity, preferably at least about 45% identity, more preferably at least about 49% identity to an amino acid sequence of a capsaicin receptor polypeptide of the same species (e.g., rat or human capsaicin receptor polypeptide). The term "capsaicin receptor-related polypeptide-encoding sequence" also encompasses a nucleotide sequence having at least about 50% identity, preferably at least about 55% identity, more preferably at least about 59% identity to a nucleotide sequence of a capsaicin receptor polypeptide of the same species. In one embodiment, the capsaicin receptor-related polypeptide interacts with capsaicin receptor. "Capsaicin receptor-related polypeptide" as used herein encompasses the vanilloid receptor-related polypeptide 1 (VRRP-1) described in detail herein, but is not meant to be limited to VRRP-1.

As used herein, "antigenic amino acid sequence" means an amino acid sequence that, either alone or in association with a carrier molecule, can elicit an antibody response in a mammal.

A "variant" of a capsaicin receptor or capsaicin receptor-related polypeptide is defined as an amino acid sequence that is altered by one or more amino acids. The variant can have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant can have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Similar minor variations can also include amino acid deletions or insertions, or both. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing biological or immunological activity can be found using computer programs well known in the art, for example, DNAStar software.

A "deletion" is defined as a change in either amino acid or nucleotide sequence in which one or more amino acid or nucleotide residues, respectively, are absent as compared to an amino acid sequence or nucleotide sequence of a naturally occurring capsaicin receptor or capsaicin receptor-related polypeptide.

An "insertion" or "addition" is that change in an amino acid or nucleotide sequence which has resulted in the addition of one or more amino acid or nucleotide residues, respectively, as compared to an amino acid sequence or nucleotide sequence of a naturally occurring capsaicin receptor or capsaicin receptor-related polypeptide.

·÷

*

A "substitution" results from the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively as compared to an amino acid sequence or nucleotide sequence of a naturally occurring capsaicin receptor or capsaicin receptor-related polypeptide.

The term "biologically active" refers to capsaicin receptor polypeptide or capsaicin receptor-related polypeptide having structural, regulatory, or biochemical functions of a naturally occurring capsaicin receptor polypeptide or capsaicin receptor-related polypeptide, respectively. Likewise, "immunologically active" defines the capability of the natural, recombinant or synthetic capsaicin receptor (or capsaicin receptor-related polypeptide), or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "derivative" as used herein refers to the chemical modification of a nucleic acid encoding a capsaicin receptor or a capsaicin receptor-related polypeptide. Illustrative of such modifications would be replacement of hydrogen by an alkyl, acyl, or amino group. A nucleic acid derivative would encode a polypeptide which retains essential biological characteristics of a natural capsaicin receptor or capsaicin receptor-related polypeptide.

As used herein the term "isolated" is meant to describe a compound of interest (e.g., either a polynucleotide or a polypeptide) that is in an environment different from that in which the compound naturally occurs. "Isolated" is meant to include compounds that are within samples that are substantially enriched for the compound of interest and/or in which the compound of interest is partially or substantially purified.

5

10

15

20

25

30

As used herein, the term "substantially purified" refers to a compound (e.g., either a polynucleotide or a polypeptide) that is removed from its natural environment and is at least 60% free, preferably 75% free, and most preferably 90% free from other components with which it is naturally associated.

"Stringency" typically occurs in a range from about Tm-5°C (5°C below the Tm of the probe)to about 20°C to 25°C below Tm. As will be understood by those of skill in the art, a stringency hybridization can be used to identify or detect identical polynucleotide sequences or to identify or detect similar or related polynucleotide sequences.

The term "hybridization" as used herein shall include "any process by which a strand of nucleic acid joins with a complementary strand through base pairing" (Coombs 1994 Dictionary of Biotechnology, Stockton Press, New York NY). Amplification as carried out in the polymerase chain reaction technologies is described in Dieffenbach et al. 1995, PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview NY.

"Sequence identity" as used herein generally refers to a sequence identity of nucleotide or amino acid sequence, where the sequence identity is generally at least about 65%, preferably at least about 75%, more preferably at least about 85%, and can be greater than at least about 90% or more as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular). For the purposes of this invention, a preferred method of calculating percent identity is the Smith-Waterman algorithm, using the following. Global DNA sequence identity must be greater than 65% as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with the following search parameters: gap open penalty, 12; and gap extension penalty, 1.

The term "transgene" is used herein to describe genetic material which has been or is about to be artificially inserted into the genome of a mammalian, particularly a mammalian cell of a living animal.

By "transgenic animal" is meant a non-human animal, usually a mammal, having a non-endogenous (*i.e.*, heterologous) nucleic acid sequence present as an extrachromosomal element in a portion of its cells or stably integrated into its germ line DNA (*i.e.*, in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.

A "knock-out" of a target gene means an alteration in the sequence of the gene that results in a decrease of function of the target gene, preferably such that target gene expression is undetectable or insignificant. For example, a knock-out of a capsaicin receptor gene means that function of the capsaicin receptor has been substantially decreased so that capsaicin receptor expression is not detectable or only present at insignificant levels. "Knock-out" transgenics of the invention can be transgenic animals having a heterozygous or homozygous knock-out of the capsaicin receptor gene or capsaicin receptor-related polypeptide encoding sequence. "Knock-outs" also include conditional knock-outs, where alteration of the target gene can occur upon, for example, exposure of the animal to a substance that promotes target gene alteration, introduction of an enzyme that promotes recombination at the target gene site (e.g., Cre in the Cre-lox system), or other method for directing the target gene alteration postnatally.

5

10

15

20

25

30

A "knock-in" of a target gene means an alteration in a host cell genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the target gene, e.g., by introduction of an additional copy of the target gene, or by operatively inserting a regulatory sequence that provides for enhanced expression of an endogenous copy of the target gene. For example, "knock-in" transgenics of the invention can be transgenic animals having a heterozygous or homozygous knock-in of the capsaicin receptor gene. "Knock-ins" also encompass conditional knock-ins.

The major genetic sequences provided herein are as follows:

SEQ ID NO	Sequence
1	Rat VR1 cDNA sequence
2	Rat VR1 amino acid sequence
3	Rat VRRP-1 (VR2) cDNA sequence
4	Rat VRRP-1 (VR2) amino acid sequence
5	Human VRRP-1 consensus sequence, region A
6	Human VRRP-1 consensus sequence, region B
7	Human VRRP-1 consensus sequence, region C
8	EST AA321554 DNA sequence
9	EST AA321554 amino acid sequence
10	mouse VR1 cDNA sequence
11	mouse VR1 cDNA
12	primer
13	primer
14	Rat VR1 amino acid sequence
15	Human T11251 amino acid sequence
16	Caliphora z80230 amino acid sequence
17	Drosophila TRP amino acid sequence
18	Bovine x99792 amino acid sequence
19	C. elegans z72508 amino acid sequence
20	Human VRRP-1 (VR2) DNA sequence
21	Human VRRP-1 (VR2) DNA sequence
22	Human VRRP-1 (VR2) DNA sequence
23	Human VRRP-1 (VR2) amino acid sequence
24	Chicken VR1 cDNA sequence
25	Chicken VR1 amino acid sequence
26	Human VR1 cDNA sequence
. 27	Human VR1 amino acid sequence
33	Human VR1 cDNA sequence
34	Human VR1 amino acid sequence
35	Human VR2 cDNA sequence

5

10

15

20

25

30

35

SE	Q ID NO	Sequence
	36	Human VR2 amino acid sequence

Overview of the Invention

The present invention is based upon the identification and isolation of a polynucleotide sequence encoding a capsaicin receptor polypeptide (e.g., the vanilloid receptor subtype 1 (VR1) polypeptide described herein) and a capsaicin receptor-related polypeptide (e.g., the vanilloid receptor-related polypeptide 1 (VRRP-1; or VR2) described herein). The corresponding genetic sequences are provided in the Seqlist, and are listed in the table provided above. Accordingly, the present invention encompasses such polynucleotides encoding capsaicin receptor and/or capsaicin receptor-related polypeptides, as well as the capsaicin receptor and capsaicin receptor-related polypeptides encoded by such polynucleotides.

A capsaicin receptor polypeptide-encoding polynucleotide was first isolated by virtue of the capsaicin receptor polypeptide-encoding sequence to facilitate expression of a functional capsaicin receptor in a cellular assay. In short, the capsaicin receptor polypeptide-encoding polynucleotide, when expressed in a mammalian or amphibian host cell, facilitated an increase in intracellular calcium concentration in the host cell upon exposure to the agonist capsaicin. This work lead to identification and isolation of a polynucleotide sequence encoding a capsaicin receptor referred to herein as a vanilloid receptor subtype 1 (VR1). The capsaicin receptor-encoding VR1 sequence was then used to isolate by PCR amplification a sequences encoding related polypeptides, resulting in isolation and identification of sequences encoding a capsaicin receptor-related polypeptide, of which VRRP-1 (VR2) is exemplary.

The invention also encompasses use of capsaicin receptor and capsaicin receptor-related polypeptide nucleic acid and amino acid sequences in the identification of capsaicin receptor-binding compounds, particularly capsaicin receptor-binding compounds having capsaicin receptor agonist or antagonist activity. The invention further encompasses the use of the polynucleotides disclosed herein to facilitate identification and isolation of polynucleotide and polypeptide sequences having homology to a capsaicin receptor and/or capsaicin receptor-related polypeptide of the invention; as well as the diagnosis, prevention and treatment of disease and/or pain syndromes associated with capsaicin receptor biological activity.

The polynucleotides of the invention can also be used as a molecular probe with which to determine the structure, location, and expression of capsaicin receptor, receptor subtypes, and capsaicin receptor-related polypeptides in mammals (including humans) and to investigate potential associations between disease states or clinical disorders (particularly those involving acute and chronic pain or inflammation) and defects or alterations in receptor structure, expression, or function.

Capsaicin Receptor and Capsaicin Receptor-Related Polypeptide Coding Sequences

In accordance with the invention, any nucleic acid sequence that encodes an amino acid sequence of a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can be used to generate recombinant molecules which express a capsaicin receptor polypeptide or capsaicin receptor-related

polypeptide, respectively. The nucleic acid compositions used in the subject invention may encode all or a part of a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide of the invention as appropriate. Fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least about ten contiguous nucleotides, usually at least about 15 nt, more usually at least about 18 nt to about 20 nt, more usually at least about 25 nt to about 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide.

The nucleic acid and deduced amino acid sequences of rat capsaicin receptor (subtype VR1) are provided as SEQ ID NOS:1 and 2. Nucleic acid and deduced amino acid sequences of a human capsaicin receptor (subtype VR1) are provided as SEQ ID NOS:33 and 34. A nucleotide sequence encoding murine capsaicin receptor subtype VR1 comprises the sequences of SEQ ID NOS:10 and 11. The chicken capsaicin receptor subtype VR1 is provided as SEQ ID NO:24 and 25.

The nucleic acid and deduced amino acid sequence of rat capsaicin receptor-related polypeptide 1 (VRRP-1; or subtype VR2) are provided as SEQ ID NO:3 and 4, respectively. A sequence encoding a human capsaicin receptor-related polypeptide (referred to as human VR2) comprises the nucleotide sequence SEQ ID NOS:35 and 36.

The present invention also encompasses variants of capsaicin receptor and capsaicin receptor-related polypeptides. A preferred variant is one having at least 80% amino acid sequence similarity, more preferably at least 90% amino acid sequence similarity, still more preferably at least 95% amino acid sequence similarity to an amino acid sequence of a capsaicin receptor, subtype VR1 or VR2.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of degenerate variants of nucleotide sequences encoding capsaicin receptor and capsaicin receptor-related polypeptides, some bearing minimal homology to the nucleotide sequences of any known and naturally occurring gene, can be produced. The invention contemplates each and every possible variation of nucleotide sequence that can be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring capsaicin receptor or capsaicin receptor-related polypeptide, and all such variations are to be considered as being specifically disclosed herein.

Although nucleotide sequences that encode capsaicin receptor polypeptides, and their variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring polypeptides under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding receptors or their derivatives possessing a substantially different codon usage. Codons can be selected to increase the rate at which expression of the polypeptide occurs in a particular prokaryotic or eukaryotic expression host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding capsaicin receptor, capsaicin receptor-related polypeptide, and their derivatives without altering the

5

10

15

20

25

30

encoded amino acid sequences include the production of RNA transcripts having more desirable properties (e.g., increased half-life) than transcripts produced from the naturally occurring sequence.

Nucleotide sequences encoding a capsaicin receptor polypeptide, capsaicin receptor-related polypeptide, and/or their derivatives can be synthesized entirely by synthetic chemistry, after which the synthetic gene can be inserted into any of the many available DNA vectors and expression systems using reagents that are well known in the art at the time of the filing of this application. Moreover, synthetic chemistry can be used to introduce mutations into a sequence encoding a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide.

Also included within the scope of the present invention are polynucleotide sequences that are capable of hybridizing to the nucleotide sequence of any of the provided nucleic acid sequences of capsaicin receptors, subtypes VR1 or VR2. Of particular interest are polynucleotide sequence capable of hybridizing under various conditions of stringency to the coding sequence for capsaicin receptor or capsaicin receptor-related polypeptide (e.g., nucleotides 81-2594 of SEQ ID NO:1, or nucleotides 14-2530 of SEQ ID NO:33), to a region of a capsaicin receptor-encoding sequence or capsaicin receptor-related polypeptide-encoding sequence that shares homology with other such sequences (e.g., a sequence encoding a contiguous stretch of amino acid residues present in SEQ ID NO:2 (e.g., amino acid residues 636 to 706 of SEQ ID NO:2), a sequence encoding a contiguous streatch of amino acid residues present in SEQ ID NO:33 (e.g., amino acid residues 636 to 706 of SEQ ID NO:33), and other sequences representing areas of homology with other capsaicin receptor-encoding sequences and/or capsaicin receptor-related polypeptides-encoding sequences, as well as sequences that uniquely identify capsaicin receptor-encoding sequences or capsaicin receptor-related polypeptide-encoding sequences of various species. Of particular interest are capsaicin receptor VR1 or VR2 polynucleotide sequences encoding a human capsaicin receptor polypeptide or human capsaicin receptor-related polypeptide. Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex or probe, as taught in Berger et al. 1987 Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA incorporated herein by reference, and can be used at a defined stringency.

Altered nucleic acid sequences encoding capsaicin receptor or capsaicin receptor-related polypeptide that can be used in accordance with the invention include deletions, insertions or substitutions of different nucleotides resulting in a polynucleotide that encodes the same or a functionally equivalent capsaicin receptor or capsaicin receptor-related polypeptide. The protein can also comprise deletions, insertions or substitutions of amino acid residues that result in a polypeptide that is functionally equivalent to capsaicin receptor or capsaicin receptor-related polypeptide. Deliberate amino acid substitutions can be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues with the proviso that biological activity of capsaicin receptor is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine phenylalanine, and tyrosine.

5

10

15

20

25

30

Alleles of capsaicin receptor, as well as alleles of capsaicin receptor-related polypeptide, are also encompassed by the present invention. As used herein, an "allele" or "allelic sequence" is an alternative form of a capsaicin receptor or capsaicin receptor-related polypeptide. Alleles result from a mutation (i.e., an alteration in the nucleic acid sequence) and generally produce altered mRNAs and/or polypeptides that may or may not have an altered structure or function relative to naturally-occurring capsaicin receptor or capsaicin receptor-related polypeptide. Any given gene may have none, one, or many allelic forms. Common mutational changes that give rise to alleles are generally ascribed to natural deletions, additions or substitutions of amino acids. Each of these types of changes may occur alone or in combination with the other changes, and may occur once or multiple times in a given sequence.

Isolating Capsaicin Receptor-Encoding and Capsaicin Receptor-Related Polypeptide-Encoding Polynucleotides from Other Species

Capsaicin receptor polypeptide-encoding polynucleotides, capsaicin receptor-related polypeptide-encoding polynucleotides, or portions thereof can be used as probes for identifying and cloning homologs of the capsaicin receptor and capsaicin receptor-related polypeptide sequences disclosed herein. Of particular interest are mammalian homologs (especially the human homology of the disclosed rat capsaicin receptor-encoding and capsaicin receptor-related polypeptide-encoding sequences), where the homologs have substantial sequence similarity to one another, *i.e.* at least 40%, usually at least 60%, more usually at least 75%, usually at least 90%, more usually at least 95% sequence similarity. Mammalian homologs of capsaicin receptor may also share a high degree of similarity to the capsaicin receptor disclosed herein in the vicinity of the predicted pore-loop and sixth transmembrane domains. At these regions the capsaicin receptor homologs may exhibit high sequence similarity, e.g., at least about 40% amino acid sequence identity, usually at least about 60% to 75% amino acid sequence identity, with at least about 40% nucleotide sequence similarity, usually at least about 60% to 90% nucleotide sequence similarity.

Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al. (1990) J Mol Biol 215:403-10. The specificity of the probe, whether it is made from a highly specific region, e.g., 10 unique nucleotides in the 5' regulatory region, or a less specific region, e.g., especially in the 3' region, and the stringency of the hybridization or amplification (maximal, high, intermediate or low) will determine whether the probe identifies only naturally occurring sequences encoding capsaicin receptor, alleles or related sequences.

Where the probes of the invention are used in the detection of related sequences, the probes preferably comprise at least 30%, more preferably at least 50% of the nucleotides from any of the capsaicin receptor polypeptide-encoding sequences or the capsaicin receptor-related polypeptide-encoding described herein. The hybridization probes of the subject invention can be derived from the provided VR1 and VR2 nucleotide sequences, or from their corresponding genomic sequences including promoters, enhancer elements and introns of the naturally occurring capsaicin receptor-encoding sequence.

5

10

15

20

25

30

Hybridization probes can be detectably labeled with a variety of reporter molecules, including radionuclides (e.g., ³²P or ³⁵S), or enzymatic labels (e.g., alkaline phosphatase coupled to the probe via avidin/biotin coupling systems), and the like.

Specific hybridization probes can also be produced by cloning the provided nucleic acid sequences into vectors for production of mRNA probes. Such vectors, which are known in the art and are commercially available, can be used to synthesize RNA probes in vitro using an appropriate RNA polymerase (e.g, T7 or SP6 RNA polymerase) and appropriate radioactively labeled nucleotides.

Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 10XSSC (0.9 M saline/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1XSSC. Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1XSSC (9 mM saline/0.9 mM sodium citrate). By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes may be any species, e.g. primate species, particularly human; rodents, such as rats and mice, canines, felines, bovines, ovines, equines, yeast, *Drosophila*, *Caenhorabditis*, etc. Of particular interest is the identification and isolation of human capsaicin receptor polypeptide-encoding polynucleotides and human capsaicin receptor-related polypeptide-encoding polynucleotides.

The capsaicin receptor and capsaicin receptor-related polypeptide nucleic acid sequences can also be used to generate hybridization probes for mapping a naturally occurring genomic sequence. The sequence can be mapped to a particular chromosome or to a specific region of the chromosome using well known techniques. These include in situ hybridization to chromosomal spreads, flow-sorted chromosomal preparations, or artificial chromosome constructions such as yeast artificial chromosomes, bacterial artificial chromosomes, bacterial P1 constructions or single chromosome cDNA libraries as reviewed in Price 1993; Blood Rev 7:127-34 and Trask 1991; Trends Genet 7:149-54. Fluorescent in situ hybridization of chromosome spreads is described in, for example, Verma et al 1988 Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Information from chromosomal mapping of sequences encoding capsaicin receptor or capsaicin receptor-related polypeptide can be correlated with additional genetic map data. Correlation between the location of a capsaicin receptor-encoding sequence, or a capsaicin receptor-related polypeptide-encoding sequence, on a physical chromosomal map and a specific disease (or predisposition to a specific disease) can help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention can be used to detect differences in gene sequences (e.g., differences in the chromosomal location due to translocation, inversion, etc. or other differences in the capsaicin receptor-encoding region due to insertional mutation(s) or deletion of capsaicin receptor- or capsaicin receptor-related polypeptide-encoding sequences) between normal, carrier, or affected individuals. Exemplary disorders that may benefit from such information include, but are not necessarily limited to, complex regional pain syndromes, reflex sympathetic dystrophies, postherpetic neuralgia, psoriasis, reactive airway diseases (e.g., asthma, chronic obstructive pulmonary disease), osteoarthritis, rheumatoid arthritis, diabetic

5

10

15

20

25

30

neuropathy, AIDS-associated neuropathies, and hereditary neuropathies (e.g, associated with capsaicin receptor dysfunction).

Extending the Capsaicin Receptor-Encoding Polynucleotide Sequence

The polynucleotide sequence encoding capsaicin receptor or capsaicin receptor-related polypeptide can be extended utilizing partial nucleotide sequence and various methods known in the art to detect upstream sequences such as promoters and regulatory elements. Gobinda et al 1993; PCR Methods Applic 2:318-22 disclose "restriction-site" polymerase chain reaction (PCR) as a direct method which uses universal primers to retrieve unknown sequence adjacent to a known locus. First, genomic DNA is amplified in the presence of primer to a linker sequence and a primer specific to the known region. The amplified sequences are subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

Inverse PCR can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al 1988 Nucleic Acids Res 16:8186). The primers can be designed using OLIGO® 4.06 Primer Analysis Software (1992; National Biosciences Inc, Plymouth MN), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68°-72° C. This method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.

Capture PCR (Lagerstrom et al 1991 PCR Methods Applic 1:111-19) is a method for PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA. Capture PCR also requires multiple restriction enzyme digestions and ligations to place an engineered double-stranded sequence into an unknown portion of the DNA molecule before PCR.

Another method that can be used to retrieve unknown sequences is that of Parker et al 1991; Nucleic Acids Res 19:3055-60. Additionally, one can use PCR, nested primers, and PromoterFinder libraries to "walk in" genomic DNA (PromoterFinder™ Clontech (Palo Alto CA). This process avoids the need to screen libraries and is useful in finding intron/exon junctions. Preferably, the libraries used to identify full length cDNAs have been size-selected to include larger cDNAs. More preferably, the cDNA libraries used to identify full-length cDNAs are those generated using random primers, in that such libraries will contain more sequences comprising regions 5' of the sequence(s) of interest. A randomly primed library can be particularly useful where oligo d(T) libraries do not yield a full-length cDNA. Genomic libraries are preferred for identification and isolation of 5' nontranslated regulatory regions of a sequence(s) of interest.

Capillary electrophoresis can be used to analyze the size of, or confirm the nucleotide sequence of, sequencing or PCR products. Systems for rapid sequencing are available from Perkin Elmer, Beckman Instruments (Fullerton CA), and other companies. Capillary sequencing can employ flowable polymers for electrophoretic separation, four different, laser-activatable fluorescent dyes (one for each nucleotide), and a charge coupled device camera for detection of the wavelengths emitted by the fluorescent dyes.

5

10

15

20

25

30

Output/light intensity is converted to electrical signal using appropriate software (e.g. Genotyper™ and Sequence Navigator™ from Perkin Elmer). The entire process from loading of the samples to computer analysis and electronic data display is computer controlled. Capillary electrophoresis is particularly suited to the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample. Capillary electrophoresis provides reproducible sequencing of up to 350 bp of M13 phage DNA in 30 min (Ruiz-Martinez et al 1993 Anal Chem 65:2851-2858).

Production of Polynucleotides Encoding Capsaicin Receptor or Capsaicin Receptor-Related Polypeptides

In accordance with the present invention, polynucleotide sequences that encode capsaicin receptor polypeptides or capsaicin receptor-related polypeptides (which capsaicin receptor polypeptides and capsaicin receptor-related polypeptides include fragments of the naturally-occurring polypeptide, fusion proteins, and functional equivalents thereof) can be used in recombinant DNA molecules that direct the expression of capsaicin receptor or capsaicin receptor-related polypeptides in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence, can be used to clone and express capsaicin receptor or capsaicin receptor-related polypeptide. As will be understood by those of skill in the art, it may be advantageous to produce capsaicin receptor-encoding nucleotide sequences and capsaicin receptor-related polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. Codons preferred by a particular prokaryotic or eukaryotic host (Murray et al 1989 Nuc Acids Res 17:477-508) can be selected, for example, to increase the rate of expression or to produce recombinant RNA transcripts having a desirable characteristic(s) (e.g., longer half-life than transcripts produced from naturally occurring sequence).

The nucleotide sequences of the present invention can be engineered in order to alter an capsaicin receptor-encoding sequence or a capsaicin receptor-related polypeptide-encoding sequence for a variety of reasons, including but not limited to, alterations that facilitate the cloning, processing and/or expression of the gene product. For example, mutations can be introduced using techniques that are well known in the art, e.g., site-directed mutagenesis to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, etc.

In another embodiment of the invention, a natural, modified, or recombinant polynucleotide encoding a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can be ligated to a heterologous sequence to encode a fusion protein. Such fusion proteins can also be engineered to contain a cleavage site located between a capsaicin receptor polypeptide-encoding sequence (or capsaicin receptor-related polypeptide-encoding sequence) and a heterologous polypeptide sequence, such that the heterologous polypeptide sequence can be cleaved and purified away from the capsaicin receptor polypeptide or capsaicin receptor-related polypeptide.

In an alternative embodiment of the invention, a nucleotide sequence encoding a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see, e.g., Caruthers et al 1980 Nuc Acids Res Symp Ser

5

10

15

20

25

30

215-23, Horn et al (1980) Nuc Acids Res Symp Ser 225-32). Alternatively, the polypeptide itself can be produced using chemical methods to synthesize an amino acid sequence of a capsaicin receptor or capsaicin receptor-related polypeptide, in whole or in part. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge et al 1995 Science 269:202-204) and automated synthesis can be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer.

The newly synthesized polypeptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton 1983 Proteins, Structures and Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic polypeptides can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra). Additionally the amino acid sequence of capsaicin receptor, capsaicin receptor-related polypeptide, or any part thereof, can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

Capsaicin Receptor and Capsaicin Receptor-Related Polypeptide Expression Systems

The invention encompasses expression of capsaicin receptor polypeptides and capsaicin receptor-related polypeptides individually or in combination (e.g., co-expression). In order to express a biologically active capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide, the nucleotide sequence encoding a capsaicin receptor polypeptide, a capsaicin receptor-related polypeptide, and/or a functional equivalent of either, is inserted into an appropriate expression vector, i.e., a vector having the necessary elements for the transcription and translation of the inserted coding sequence. Methods well known to those skilled in the art can be used to construct expression vectors comprising a desired polypeptide-encoding sequence and appropriate transcriptional or translational controls. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination or genetic recombination. Such techniques are described in Sambrook et al 1989 Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY and Ausubel et al 1989 Current Protocols in Molecular Biology, John Wiley & Sons, New York NY.

A variety of expression vector/host cell systems can be utilized to express a capsaicin receptor polypeptide- and capsaicin receptor-related polypeptide-encoding sequence. These include, but are not limited to, amphibian oocytes (e.g., Xenopus oocytes); microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transfected with viral expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with bacterial expression vectors (e.g., Ti or pBR322 plasmid); or animal (e.g., mammalian) cell systems. Preferably, the sequences of the present invention, particularly capsaicin receptor-encoding sequences, are expressed in a mammalian cell system (e.g., human embryonic kidney cells (e.g., HEK 293), an amphibian oocyte (e.g., by injecting Xenopus oocytes with complementary capsaicin receptor-encoding RNA), or other host cell that is easily propagated in culture and can be

5

10

15

20

25

30

transformed or transfected to either transiently or stably express, preferably stably express, a capsaicin receptor-encoding sequence and/or capsaicin receptor-related polypeptide-encoding sequence).

Host cells can be selected for capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide expression according to the ability of the cell to modulate the expression of the inserted sequences or to process the expressed protein in a desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation. Post-translational processing that involves cleavage of a "prepro" form of the protein may also be important for correct polypeptide folding, membrane insertion, and/or function. Host cells such as HEK 293, CHO, HeLa, MDCK, WI38, *Xenopus* oocytes, and others have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the introduced, foreign polypeptide.

The vector(s) used for expression of a capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide will vary with a variety of factors including the host cell in which the capsaicin receptor polypeptide is to be expressed, whether capsaicin receptor polypeptide- and capsaicin receptor-related polypeptide sequences are to be co-expressed either from a single construct or from separate constructs, and the intended use for the polypeptide produced. For example, when large quantities of a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide are required (e.g., for the antibody production), vectors that direct high-level expression of fusion proteins that can be readily purified may be desirable. Such vectors include, for example, bacterial expression vectors, including multifunctional <u>E. coli</u> cloning and expression vectors such as Bluescript[®] (Stratagene; which provides for production of polypeptide-ß-galactosidase hybrid proteins); and pGEX vectors (Promega, Madison WI; which provides for production of glutathione S-transferase (GST) fusion proteins. Where the host cell is yeast (e.g., <u>Saccharomyces cerevisiae</u>) a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase and PGH can be used. For reviews, see Ausubel et al (supra) and Grant et al 1987 Methods in Enzymology 153:516-544.

Where the host cell is a mammalian cells, a number of expression systems can be used. For example, the expression vector can be derived from a viral-based expression system, such as an expression system derived from an adenovirus, SV40, CMV, or RSV nucleotide sequence. Expression efficiency can be enhanced by including enhancers appropriate to the cell system in use (Scharf et al 1994 Results Probl Cell Differ 20:125-62; Bittner et al 1987 Methods in Enzymol 153:516-544) (e.g., the RSV enhancer can be used to increase expression in mammalian host cells).

The "control elements" or "regulatory sequences" of these systems, which vary in their strength and specificities, are those nontranslated regions of the vector, enhancers, promoters, and 3' untranslated regions that interact with host cellular proteins to facilitate transcription and translation of a nucleotide sequence of interest. Depending on the vector system and host utilized, any number of suitable transcriptional and translational elements, including constitutive and inducible promoters, can be used. Such control elements or regulatory sequences are selected according to the host cell in which the capsaicin receptor-encoding polynucleotide and/or capsaicin receptor-related polypeptide-encoding

5

10

15

20

25

30

polynucleotide is to be expressed. For example, in mammalian cell systems, promoters from the mammalian genes or from mammalian viruses are most appropriate. Where it is desirable to generate a cell line containing multiple copies of a capsaicin receptor polypeptide-encoding sequence or a capsaicin receptor-related polypeptide-encoding sequence, vectors derived from SV40 or EBV can be used in conjunction with other optional vector elements, *e.g.*, an appropriate selectable marker.

Specific initiation signals may also be required for efficient translation of a capsaicin receptor polypeptide- or capsaicin receptor-related polypeptide-encoding sequence, e.g., the ATG initiation codon and flanking sequences for bacterial expression. Where a native sequence, including its initiation codon and upstream sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, where only coding sequence, or a portion thereof, is inserted in an expression vector, exogenous transcriptional control signals including the ATG initiation codon must be provided. Furthermore, the initiation codon must be in the correct reading frame to ensure transcription of the entire insert. Exogenous transcriptional elements and initiation codons can be derived from various origins, and can be either natural or synthetic.

Where long-term, high-yield recombinant polypeptide production is desired, stable expression is preferred. For example, cell lines that stably express capsaicin receptor and/or capsaicin receptor-related polypeptide can be transformed using expression vectors containing viral origins of replication or endogenous expression elements and a selectable marker gene. After introduction of the vector, cells can be grown in an enriched media before they are exposed to selective media. The selectable marker, which confers resistance to the selective media, allows growth and recovery of cells that successfully express the introduced sequences. Resistant, stably transformed cells can be proliferated using tissue culture techniques appropriate to the host cell type.

Any number of selection systems can be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al 1977 Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy et al 1980 Cell 22:817-23) genes which can be employed in tkor aprt- cells, respectively. Also, antimetabolite or antibiotic resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler et al 1980 Proc Natl Acad Sci 77:3567-70); and npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin et al 1981 J Mol Biol 150:1-14). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman et al. 1988 Proc Natl Acad Sci 85:8047-51). Selectable markers also include visible markers such as anthocyanins, ß-glucuronidase and its substrate, GUS, and luciferase and its substrate, luciferin. Such visible markers are useful to both identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al 1995 Methods Mol Biol 55:121-131).

Alternatively, host cells that contain the coding sequence for and express capsaicin receptor polypeptides and/or capsaicin receptor-related polypeptides can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA

5

10

15

20

25

30

5

10

15

20

25

30

35

BNSDOCID: <WO___9937675A1 | >

hybridization and protein bioassay or immunoassay techniques for the detection and/or quantitation of the nucleic acid or protein.

The presence of polynucleotide sequences encoding a capsaicin receptor and/or capsaicin receptor-related polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or PCR amplification using probes, portions or fragments of polynucleotides encoding capsaicin receptor and/or capsaicin receptor-related polypeptide. Nucleic acid amplification-based assays involve the use of oligonucleotides or oligomers based on a sequence encoding a capsaicin receptor or capsaicin receptor-related polypeptide to detect transformants containing the desired DNA or RNA. As used herein "oligonucleotides" or "oligomers" refer to a nucleic acid sequence of at least about 10 nucleotides and as many as about 60 nucleotides, preferably about 15 to 30 nucleotides, and more preferably about 20-25 nucleotides which can be used as a probe or amplimer.

A variety of immunoassays for detecting and measuring the expression of a specific protein, using either protein-specific polyclonal or monoclonal antibodies are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS). These and other assays are described in, *e.g.*, Hampton et al 1990, Serological Methods, A Laboratory Manual, APS Press. St Paul MN and Maddox et al 1983, J Exp Med 158:1211.

A wide variety of detectable labels and conjugation techniques are known the art and can be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to sequences encoding a capsaicin receptor or capsaicin receptor-related polypeptide include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, a nucleotide sequence encoding a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can be cloned into a vector for the production of an mRNA probe. Vectors and methods for production of mRNA probes are well known in the art. Suitable reporter molecules or labels include those radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles and the like, as described in U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, each of which are incorporated herein by reference.

In a preferred embodiment, host cells expressing capsaicin receptor are screened and selected using a functional assay for capsaicin receptor activity. For example, host cells expressing functional capsaicin receptor can be screened for alterations in intracellular calcium concentrations upon exposure to a capsaicin receptor binding compound (e.g., capsaicin or resiniferatoxin). Where the capsaicin receptor binding compound is a capsaicin receptor agonist, binding of the agonist compound to the capsaicin receptor result in increased levels of intracellular calcium in the host cell expressing capsaicin receptor-encoding nucleic acid. Methods and compositions (e.g., fura-2) for monitoring intracellular calcium concentration are well known in the art.

Purification of Capsaicin Receptor Polypeptides and Capsaicin Receptor-Related Polypeptides

Methods for production of a polypeptide after identification of its encoding polynucleotide are well known in the art. Host cells transformed with a nucleotide sequence(s) encoding a capsaicin receptor

polypeptide and/or capsaicin receptor-related polypeptide-can be cultured under conditions suitable for the expression and recovery of the encoded polypeptide from cell culture. The polypeptide produced by a recombinant cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding capsaicin receptor polypeptides or capsaicin receptor-related polypeptides can be designed with signal sequences that direct secretion of the encoded polypeptide(s) through a prokaryotic or eukaryotic cell membrane.

Purification of capsaicin receptor polypeptides and capsaicin receptor-related polypeptides can be facilitated by using a recombinant construct that includes a nucleotide sequence(s) encoding one or more polypeptide domains that, when expressed in-frame with the sequence encoding the capsaicin receptor or capsaicin receptor-related polypeptide, provides a fusion protein having a purification-facilitating domain (Kroll et al 1993 DNA Cell Biol 12:441-53). A cleavable linker sequences(s) between the purification domain and the capsaicin receptor polypeptide- or capsaicin receptor-related polypeptide-encoding sequence can be included to further facilitate purification.

Capsaicin receptor polypeptides and capsaicin receptor-related polypeptides (each of which polypeptides encompass polypeptides having a portion of the native amino acid sequence) can also be produced by direct peptide synthesis using solid-phase techniques (see, e.g., Stewart et al. 1969 Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco; Merrifield 1963 J Am Chem Soc 85:2149-2154). Various fragments of capsaicin receptor or capsaicin receptor-related polypeptide can be chemically synthesized separately and combined using chemical methods to produce the full length molecule.

Methods for purifying a desired polypeptide following either artificial synthesis or recombinant production are routine and well known in the art.

Uses of Capsaicin Receptor Polypeptides, Capsaicin Receptor-Related Polypeptides, and Nucleic Acid Encoding Capsaicin Receptor Polypeptides or Capsaicin Receptor-Related Polypeptides

In addition to the uses described above, the nucleotide and polypeptide sequences disclosed herein can be used in a variety of ways, including production of antibodies, identification of capsaicin receptor-binding compounds and capsaicin receptor-related polypeptide-binding compounds that affect capsaicin receptor function (e.g., in a drug screening assay), and in the identification of other polynucleotide sequences encoding capsaicin receptor polypeptides and capsaicin receptor-related polypeptides. In addition, sequences encoding capsaicin receptor polypeptides and capsaicin receptor-related polypeptides can be used in diagnostic assays (e.g., prenatal or postnatal diagnosis). Furthermore, capsaicin receptor-encoding sequences and their encoded polypeptides can also be used in assays to assess the capsaicin content of a sample (e.g., from a natural product, e.g., a chili pepper extract) or the capsaicin-promoting effects of an agent (e.g., a candidate agent for use a flavor enhancing additive to foods).

These and other applications of the sequences of the invention are described in more detail below.

10

15

20

25

30

Screening for Capsaicin Receptor- and Capsaicin Receptor-Related Polypeptide Binding Compounds

Capsaicin receptor polypeptides and capsaicin receptor-related polypeptides, each of which encompasses biologically active or immunogenic fragments or oligopeptides thereof, can be used for screening compounds that affect capsaicin receptor activity by, for example, specifically binding capsaicin receptor and affecting its function or specifically binding capsaicin receptor-related polypeptide and affecting its interaction with capsaicin receptor, thereby affecting capsaicin receptor activity. Identification of such compounds can be accomplished using any of a variety of drug screening techniques. Of particular interest is the identification of agents that have activity in affecting capsaicin receptor function. Such agents are candidates for development of treatments for, inflammatory conditions associated at least in part with capsaicin receptor activity (e.g., psoriasis, reactive airway diseases (e.g., asthma, chronic obstructive pulmonary disease)), arthritis (e.g., osteoarthritis, rheumatoid arthritis), and for use as analgesics. Of particular interest are screening assays for agents that have a low toxicity for human cells. The polypeptide employed in such a test can be free in solution, affixed to a solid support, present on a cell surface, or located intracellularly. The screening assays of the invention are generally based upon the ability of the agent to bind to a capsaicin receptor polypeptide, bind to a capsaicin receptor-related polypeptide, and/or elicit or inhibit a capsaicin receptor-associated or capsaicin receptor-related polypeptide-associated biological activity (i.e., a functional assay or an assay using radioligand binding assays).

The term "agent" as used herein describes any molecule, e.g. protein or pharmaceutical, with the capability of altering (i.e., eliciting or inhibiting) or mimicking a desired physiological function of capsaicin receptor or capsaicin receptor-related polypeptide. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e. at zero concentration or below the level of detection.

Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including, but not limited to: peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial,

5

10

15

20

25

30

fungal, plant and animal extracts (including extracts from human tissue to identify endogenous factors affecting capsaicin receptor or capsaicin receptor-related polypeptide activity) are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

Preferably, the drug screening technique used provides for high throughput screening of compounds having suitable binding affinity to the capsaicin receptor, capsaicin receptor-related polypeptide, and/or eliciting a desired capsaicin receptor-associated or capsaicin receptor-related polypeptide-associated response. For example, large numbers of different small peptide test compounds can be synthesized on a solid substrate, such as plastic pins or some other surface (see, e.g., Geysen WO Application 84/03564, published on September 13, 1984), the peptide test compounds contacted with capsaicin receptor polypeptides (or capsaicin receptor-related polypeptides), unreacted materials washed away, and bound capsaicin receptor (or bound capsaicin receptor-related polypeptide) detected by virtue of a detectable label or detection of a biological activity associated with capsaicin receptor activity (or capsaicin receptor-related polypeptide can also be coated directly onto plates for use in such in vitro drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the polypeptide and immobilize it on a solid support.

The invention also contemplates the use of competitive drug screening assays in which capsaicin receptor-specific neutralizing antibodies or capsaicin receptor-related polypeptide-specific neutralizing antibodies compete with a test compound for binding of capsaicin receptor polypeptide or capsaicin receptor-related polypeptide. In this manner, the antibodies can be used to detect the presence of any polypeptide that shares one or more antigenic determinants with a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide.

Screening of Candidate Agents

A wide variety of assays may be used for identification of capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide binding agents, including labeled *in vitro* binding assays, immunoassays for protein binding, and the like. For example, by providing for the production of large amounts of capsaicin receptor polypeptides or capsaicin receptor-related polypeptides, one can identify ligands or substrates that bind to, modulate or mimic the action of the proteins. The purified protein may also be used for determination of three-dimensional crystal structure, which can be used for modeling intermolecular interactions.

The screening assay can be a binding assay, wherein one or more of the molecules may be joined to a label, and the label directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescers, chemiluminescers, enzymes, specific binding molecules, particles, e.g. magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin,

5

10

15

20

25

30

digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule that provides for detection, in accordance with known procedures.

A variety of other reagents may be included in the screening assays described herein. Where the assay is a binding assay, these include reagents like salts, neutral proteins, e.g. albumin, detergents, etc that are used to facilitate optimal protein-protein binding, protein-DNA binding, and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc. may be used. The mixture of components are added in any order that provides for the requisite binding. Incubations are performed at any suitable temperature, typically between 4 and 40°C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening. Typically between 0.1 and 1 hours will be sufficient.

Functional Capsaicin Receptor and Capsaicin Receptor-Related Polypeptide Screening Assays Preferably, capsaicin receptor-binding compounds are screened for agonistic or antagonist action in a functional assay that monitors a biological activity associated with capsaicin receptor function such as effects upon intracellular levels of cations in a capsaicin receptor-expressing host cell (e.g., calcium, magnesium, quanidinium, cobalt, potassium, cesium, sodium, and choline, preferably calcium), ligandactivated conductances, cell death (i.e., receptor-mediated cell death which can be monitored using, e.g., morphological assays, chemical assays, or immunological assays), depolarization of the capsaicin receptor-expressing cells (e.g., using fluorescent voltage-sensitive dyes), second messenger production (e.g., through detection of changes in cyclic GMP levels (see, e.g., Wood et al. 1989 J. Neurochem. 53:1203-1211), which can be detected by radioimmunoassay or ELISA), calcium-induced reporter gene expression (see, e.g., Ginty 1997 Neuron 18:183-186), or other readily assayable biological activity associated with capsaicin receptor activity or inhibition of capsaicin receptor activity. Preferably, the functional assay is based upon detection of a biological activity of capsaicin receptor that can be assayed using high-throughput screening of multiple samples simultaneously, e.g., a functional assay based upon detection of a change in fluorescence which in turn is associated with a change in capsaicin receptor activity. Such functional assays can be used to screen candidate agents for activity as either capsaicin receptor agonists or antagonists.

In a preferred embodiment, capsaicin receptor-expressing cells (preferably recombinant capsaicin receptor-expressing cells) are pre-loaded with fluorescently-labeled calcium (e.g., fura-2). The capsaicin receptor-expressing cells are then exposed to a candidate capsaicin receptor-binding compound and the effect of exposure to the compound monitored. Candidate compounds that have capsaicin receptor agonist activity are those that, when contacted with the capsaicin receptor-expressing cells, elicit a capsaicin receptor-mediated increase in intracellular calcium relative to control cells (e.g., capsaicin receptor-expressing cells in the absence of the candidate compound, host cells without capsaicin receptor-encoding nucleic acid, capsaicin receptor-expressing cells exposed to a known capsaicin receptor agonist). Similarly, functional capsaicin receptor assays can be used to identify candidate compounds that block activity of a known capsaicin receptor agonist (e.g., block the activity of or compete with capsaicin or

5

10

15

20

25

30

resiniferatoxin), block activity of a known capsaicin receptor antagonist (e.g., block the activity of or compete with capsazepine), and/or have activity as capsaicin receptor antagonists.

In another embodiment, the invintion includes a method for identifying compounds that bind capsaicin receptor-related polypeptide, thereby eliciting an agonistic or antagonistic effect on capsaicin receptor-associated function as detected by e.g., intracellular levels of cations in the host cell. To this end, the functional assay involves contacting host cells expressing a capsaicin receptor alone (e.g., VR1) and with host cell co-expressing a capsaicin receptor and a capsaicin receptor-related polypeptide (e.g., VR1 and VRRP-1). Compounds that affect capsaicin receptor activity by affecting function of a capsaicin receptor-related polypeptide are those that affect a capsaicin receptor-associated activity in cells that co-express capsaicin receptor and capsaicin receptor-related polypeptide, but do not significantly affect capsaicin receptor-associated activity in host cells that express capsaicin receptor alone. For example, compounds that elicit a capsaicin receptor-mediated increase in intracellular calcium in cells co-expressing capsaicin receptor and capsaicin receptor-related polypeptide, but not in cells expressing capsaicin receptor alone, are identified as compounds that elicit capsaicin receptor agonist activity via interaction with a capsaicin receptor-related polypeptide.

Pharmaceutical Compositions and Other Compositions Comprising Agents Affecting Capsaicin

Receptor Activity Identified by the Screening Assay of the Invention

Capsaicin receptor-binding compounds and capsaicin receptor-related polypeptide-binding compounds are useful in eliciting or inhibiting capsaicin receptor-mediated physiological responses, and can be particularly useful in a pharmaceutical composition for ameliorating symptoms associated with chronic pain, inflammation, and other physiological responses associated with capsaicin receptor-mediated activity.

The compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host for treatment of a condition attributable to capsaicin receptor activity. Alternatively, the identified compounds may be used to enhance, regulate, or otherwise manipulate capsaicin receptor function. The therapeutic agents may be administered in a variety of ways, topically, subcutaneously, intraperitoneally, intravascularly, orally, intrathecally, epidermally, intravesicularly (e.g., as in bladder irrigation to treat neurogenic bladder syndromes), parenterally, etc. Inhaled treatments are of particular interest for the treatment of capsaicin receptor-associated inflammation associated with such conditions as asthma.

Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt.%. The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for the selected route of administration can be used to make up compositions containing the therapeutically-active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for

5

10

15

20

25

30

varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.

In addition, compositions comprising agents affecting capsaicin receptor activity (e.g., by binding capsaicin receptor or by binding a capsaicin receptor-related polypeptide) are useful in other applications. including use in defensive sprays (e.g., "pepper sprays") or as antidotes for such sprays. The screening methods of the invention can be used in a variety of ways to this end, including, for example, identification of drugs that have capsaicin-like activity, but lack or are substantially diminished in one or more of the undesirable side effects associated with capsaicin. For example, while capsaicin is effective in spray deterrents, exposure to capsaicin can be lethal. The screening method of the invention can thus be used to identify compounds that have the desired deterrent effect, but would not likely cause death upon exposure to amounts normally used in defensive sprays. Moreover, the screening method of the invention could be used to identify compounds that differentially affect capsaicin receptors of different mammalian species, thus enabling identification and design of capsaicin receptor agonists and antagonists that substantially affect capsaicin receptors with genus- or species-specificity. Thus, for example, the method of the invention can allow for identification of capsaicin receptor agonists for canine or bear capsaicin receptors, but that do not substantially stimulate human capsaicin receptors. This could be accomplished by screening for compounds that elicit a capsaicin receptor-associated biological activity in host cells expressing a canine capsaicin receptor, but relatively little or no biological activity in host cells expressing human capsaicin receptor.

Therapeutically Effective Dosages

The determination of an effective dose is well within the capability of those skilled in the art. For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., using host cells expressing recombinant capsaicin receptor, or in animal models, usually rats, mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of an agent (e.g., a compound having activity as capsaicin receptor agonist or antagonist), polypeptide, or anti-polypeptide antibody, that provide the desired physiological effect (e.g., to ameliorate symptoms associated with capsaicin receptor-mediated inflammation or pain, or provide loss of temperature sensation).

Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and expressed as the ratio LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The actual dosage can vary within this range depending upon, for example, the dosage form employed, sensitivity of the patient, and the route of administration.

5

10

15

20

25

30

The exact dosage is chosen by the individual physician in view of the patient to be treated. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Additional factors that may be taken into account include the severity of the disease state, location of the site to be treated; age, weight and gender of the patient; diet, time and frequency of administration; drug combination(s); reaction sensitivities; and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Use of capsaicin and capsaicin analogues in clinical applications and their methods of administration (e.g., formulations, dosages, routes of administration, etc.) are well known in the art (see, e.g, Campbell et al. 1993 "Clinical Applications of Capsaicin and Its Analogues," in Capsaicin in the Study of Pain, pgs. 255-272; USPN 5,5690,910 (topical anti-inflammatory compositions comprising capsaicin); USPN 5,296,225 (topical composition comprising capsaicin for treating orofacial pain); USPN 5,290,816 (topical cream containing resiniferatoxin for desensitization of neurogenic inflammation); USPN 4,997,853 (topical composition containing capsaicin for treating superficial pain); USPN 5,403,868 (capsaicin derivatives useful as analgesic and anti-inflammatory agents); USPN 4,939,149 (administration of resiniferatoxin to cause sensory afferent C-fibre and thermo-regulatory desensitization); USPN 4,536,404 (topical treatment of post herpetic neuralgia by application of capsaicin), each of which is incorporated by reference in its entirety. Further general guidance on administration of capsaicin receptor agonist and antagonists can be found in, e.g., United States Pharmacopeia (USP), 17th Ed., pgs. 710-711; and Physician's Desk Reference 1996, Medical Economics Com., Montvale, NJ (see particularly Dolorac[™] at 1054, Zostrix[™] at 1056, and Zostrix-HP[™] topical analgesic cream at 1056, each of which contain capsaicin); and the latest edition of Remingtons' Pharmaceutical Sciences, Mack Publishing Co., Easton PA.

Use of Capsaicin Receptor-Encoding Polynucleotides in Assays for Quantitating the Capsaicin Content of a Sample or Determining the Capsaicin Activity of a Candidate Food Additive

Capsaicin receptor polypeptide-encoding polynucleotides and capsaicin receptor polypeptides can be used in an assay to determine, either qualitatively or quantitatively, to detect capsaicin or an agent having capsaicin activity, in a sample, where the sample is derived from a food product or contains a candidate agent for use as a flavoring agent (e.g., for use as a spice in food or food products). This assay takes advantage of the fact that, in addition to its analgesic effects upon afferent neurons, capsaicin is a member of the vanilloid family of compounds, which are responsible for making foods "spicy hot." For example, capsaicin is present in peppers (e.g., Thai, green poblano verde, habenero, and guero peppers). Conventional assays for determining the amount of capsaicin in a pepper extract involve tedious extraction of the compound from pepper samples and quantitation by high pressure liquid chromatography (HPLC) (see, e.g., Woodbury 1980 J. Assoc. Off. Anal. Chem. 63:556-558). The amount of capsaicin is then correlated with number of Scoville heat units, a measure of "hotness."

5

10

15

20

25

30

The assay of the invention uses an isolated capsaicin receptor polypeptide to detect the amount of capsaicin in a sample, thus avoiding the chemical extraction technique employed in the conditional assay. The capsaicin receptor polypeptide used may be either bound to a solid support, present in solution, or present on the surface of a recombinant host cell. Binding of capsaicin to the capsaicin receptor polypeptide is detected as described in the screening assays described above.

Preferably, the assay for capsaicin or a compound having capsaicin activity in a sample is performed using a functional assay described above. More preferably, the functional assay uses capsaicin receptor-expressing recombinant eukaryotic cells (preferably mammalian cells or amphibian oocytes) that are preloaded with a calcium-sensitive fluorescent dye (e.g., fura-2, indo-1, fluo-3). The presence and/or amount of capsaicin or capsaicinoid compound in the sample is then determined by measuring a capsaicin receptor-mediated cellular effect, e.g., an alteration in voltage-activated conductances across the cellular membrane or an alteration in the intracellular levels of the detectably labeled cation. For example, where the detectably labeled cation is fluorescently labeled calcium, exposure of the pre-loaded host cells to a capsaicin-containing sample results in binding of the capsaicin to the capsaicin receptor polypeptide and the capsaicin receptor-mediated increase in intracellular calcium, which can be readily detected and quantitated. For example, the level of intracellular calcium influx mediated by the test sample is compared to the intracellular calcium influx associated with a control sample (e.g., with a sample having a known amount of capsaicin). The extent of the change in current, intracellular calcium concentration, or other capsaicin receptor-mediated phenomenon is then correlated with a concentration of capsaicin, which in turn can be assigned a Scoville heat unit.

Similarly, candidate agents for use as food additives to make a food or food product "hot" can be screened for their ability to elicit a capsaicin receptor-mediated cellular response (e.g., change in voltage-activated conductances or intracellular cation concentration). The assay has the advantage that the measure of hotness can be determined objectively, e.g., based upon the responses elicited by exposure to the capsaicin receptor.

<u>Diagnostic Uses of Polynucleotides Encoding Capsaicin Receptor or Capsaicin Receptor-Related</u>

<u>Polypeptides to Detect Capsaicin Receptor-Encoding Sequences</u>

Polynucleotide sequences encoding capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can be used in the diagnosis (e.g., prenatal or post-natal diagnosis) of conditions or diseases associated with, for example, capsaicin receptor expression, with a particular capsaicin receptor polymorphism or mutation, and/or with capsaicin receptor-related polypeptide expression. For example, polynucleotide sequences encoding capsaicin receptor or capsaicin receptor-related polypeptide can be used in hybridization or PCR assays of fluids or tissues from biopsies to detect capsaicin receptor or capsaicin receptor-related polypeptide expression, respectively. Suitable qualitative or quantitative methods include Southern or northern analysis, dot blot or other membrane-based technologies; PCR technologies; dip stick, pIN, chip and ELISA technologies. All of these techniques are well known in the art and are the basis of many commercially available diagnostic kits. Once disease is established, a

5

10

15

20

25

30

therapeutic agent is administered or other intervention or precautions initiated as appropriate for the capsaicin receptor-associated disorder.

Oligonucleotides based upon capsaicin receptor or capsaicin receptor-related polypeptid sequences can be used in PCR-based techniques for assessing capsaicin receptor-polypeptide expression, detection of capsaicin receptor polymorphisms associated with disorders, and/or capsaicin receptor-related polypeptide expression. Methods for PCR amplification are described in U.S. Patent Nos. 4,683,195 and 4,965,188. Such oligomers are generally chemically synthesized, or produced enzymatically or by recombinantly. Oligomers generally comprise two nucleotide sequences, one with sense orientation (5'->3') and one with antisense (3'<-5'), employed under optimized conditions for identification of a specific gene or condition. The same two oligomers, nested sets of oligomers, or even a degenerate pool of oligomers can be employed under less stringent conditions for detection and/or quantitation of closely related DNA or RNA sequences.

Additional methods for quantitation of expression of a particular molecule according to the invention include radiolabeling (Melby et al 1993 J Immunol Methods 159:235-44) or biotinylating (Duplaa C 1993 Anal Biochem 229-36) nucleotides, coamplification of a control nucleic acid, and interpolation of experimental results according to standard curves. Quantitation of multiple samples can be made more time efficient by running the assay in an ELISA format in which the oligomer of interest is presented in various dilutions and rapid quantitation is accomplished by spectrophotometric or colorimetric detection.

Therapeutic Uses of Capsaicin Receptor Polypeptides and Capsaicin Receptor Polypeptide-Encoding Nucleic Acid

Polypeptides of, as well as nucleotide sequence encoding, capsaicin receptor polypeptides and capsaicin receptor-related polypeptides may be useful in the treatment of conditions associated with capsaicin receptor dysfunction (e.g., capsaicin receptor activity that is increased relative to capsaicin receptor activity in an unaffected patient or capsaicin receptor activity that is decreased relative to capsaicin receptor activity in an unaffected patient). In addition, expression of dominant-negative capsaicin receptor-encoding sequences may be therapeutically useful in a condition associated with elevated levels of capsaicin receptor activity. Where interaction of capsaicin receptor and a capsaicin receptor-related polypeptide is associated with a condition, interaction of these polypeptides can be disrupted by, for example, introduction of a peptide corresponding to an interaction domain of capsaicin receptor and capsaicin receptor-related polypeptide. Moreover, expression of a wild-type capsaicin receptor sequence in tumor cells may render such tumor cells more susceptible to capsaicin receptor-mediated cell death.

Expression vectors derived from retroviruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids, can be used for delivery of nucleotide sequences to the targeted organ, tissue or cell population. Preferably the targeted cell for delivery and expression of capsaicin receptor polypeptide-encoding sequences is a neuronal cell, more preferably an afferent neuron in order to enhance capsaicin receptor activity in the neuronal cell. Recombinant vectors for expression of antisense capsaicin receptor polynucleotides can be constructed according to methods well known in the art (see, for example, the techniques described in Sambrook et al (supra) and Ausubel et al (supra)).

5

10

15

20

25

30

Alternatively, expression of genes encoding capsaicin receptor can be decreased by transfecting a cell or tissue with expression vectors that express high levels of a desired capsaicin receptor-encoding fragment. Such constructs can flood cells with untranslatable sense or antisense sequences. Even in the absence of integration into the DNA, such vectors can continue to transcribe RNA molecules until all copies are disabled by endogenous nucleases. Such an approach to regulation of capsaicin receptor expression and activity can be useful in treatment of pain syndromes and/or inflammatory conditions associated with capsaicin receptor activity.

Modifications of gene expression can be obtained by designing antisense molecules, DNA, RNA or PNA, to the control regions of gene encoding capsaicin receptor (*i.e.*, the promoters, enhancers, and introns). Oligonucleotides derived from the transcription initiation site, *e.g.*, between -10 and +10 regions of the leader sequence, are preferred. The antisense molecules can also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Similarly, inhibition of expression can be achieved using "triple helix" base-pairing methodology. Triple helix pairing compromises the ability of the double helix to open sufficiently for binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA were reviewed by Gee JE et al (In: Huber et al. 1994 Molecular and Immunologic Approaches, Futura Publishing Co, Mt Kisco NY). Antisense molecules of the invention can be prepared by methods known in the art for the synthesis of RNA molecules, including techniques for chemical oligonucleotide synthesis, *e.g.*, solid phase phosphoramidite chemical synthesis. Such DNA sequences can be incorporated into a wide variety of vectors with suitable RNA polymerase promoters (e.g., T7 or SP6). Alternatively, antisense cDNA constructs useful in the constitutive or inducible synthesis of antisense RNA can be introduced into cell lines, cells, or tissues.

Particularly where RNA molecules are to be administered for antisense therapy, the RNA can be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine and wybutosine as well as acetyl-, methyl-, thio- and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine that are not as easily recognized by endogenous endonucleases.

Methods for introducing vectors into cells or tissues include those methods discussed infra and which are equally suitable for in vivo therapy.

In a preferred embodiment, capsaicin receptor polypeptide-encoding polynucleotides are introduced in vivo into a target tumor cell for which organochemotherapy is desired. This aspect of the invention takes advantage of the range of capsaicin receptor response to exposure to agonists (e.g., capsaicin, resiniferatoxin) and/or to temperature. For example, low concentrations of capsaicin receptor agonists (e.g., capsaicin receptor agonist concentrations in the nanomolar range, e.g., from about 200 nM to about 800 nM are associated with capsaicin receptor stimulation and intracellular calcium influx. Where the capsaicin receptor is expressed in a neuronal cell, capsaicin receptor stimulation by low concentrations

5

10

15

20

25

30

of capsaicin receptor agonist is followed by neuronal desensitization. However, high concentrations of capsaicin receptor agonists (e.g., capsaicin receptor agonist concentrations in the micromolar range, e.g., from about 1 μ M to about 10 μ M) mediate neuronal degeneration and cell death. By expressing capsaicin receptor polypeptides in tumor cells, the tumor cell death can be substantially selectively facilitated by local administration of high concentrations of a capsaicin receptor agonist, or by local exposure to heat stimuli, or both, where the agonist concentration and/or heat stimulus is sufficient to mediate cell death in the capsaicin receptor-expressing target tumor cell, but does not substantially affect normal capsaicin receptor-expressing cells or affects a minimal number of such normal cells.

Alternatively, the capsaicin receptor polypeptide introduced into the tumor cells can be engineered to provide more selectivity in the response to organochemotherapy (*i.e.*, to provide for activation of the capsaicin receptor expressed in the tumor cells with no or little activation of endogenous, wild-type capsaicin receptor). For example, capsaicin receptor can be modified so as to bind a specific capsaicin receptor agonist analogue, which analogue is substantially reduced in its ability to bind wildtype capsaicin receptors. Therefore, target cells (e.g., tumor cells) expressing the altered capsaicin receptor can be selectively stimulated by administration of the agonist having specificity for the altered capsaicin receptor polypeptide without substantially affecting cells expressing wildtype capsaicin receptor. Alternatively, the tumor cells can be transformed in vivo with a sequence encoding a modified capsaicin receptor, where the modified capsaicin receptor is more responsive to agonists (e.g., is more responsive to agonist, has increased affinity to agonists relative to wild-type thereby allowing activation of the modified receptors with no or little activation of the endogenous capsaicin receptor, and/or is modified so as to be more responsive to heat stimuli than wild-type capsaicin receptor). These embodiments thus allow administration of high or higher concentrations of the altered capsaicin receptor-targeted organochemotherapeutic, thereby providing for more selective organochemotherapy.

Anti-Capsaicin Receptor and Anti-Capsaicin Receptor-Related Polypeptide Antibodies

Capsaicin receptor-specific antibodies and capsaicin receptor-related polypeptide-specific antibodies are useful for identification of cells expressing either naturally-occurring or recombinant capsaicin receptor polypeptides or capsaicin receptor-related polypeptides, respectively, as well as the diagnosis of conditions and diseases associated with expression and/or function of capsaicin receptor and/or capsaicin receptor-related polypeptides. For example, anti-capsaicin receptor antibodies and anti-capsaicin receptor-related polypeptide antibodies can be used to detect increased or decreased receptor protein levels, and/or aberrant protein processing or oligomerization.

Anti-capsaicin receptor polypeptide antibodies and anti-capsaicin receptor-related polypeptide antibodies of the invention include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library. Antibodies of particular interest include, for example, antibodies that stimulate capsaicin receptor function and/or block binding of capsaicin receptor-binding compounds to capsaicin receptor. Such antibodies may be useful in, for example,

5

10

15

20

25

30

regulation of pain in pain syndromes, in screening assays for capsaicin receptor-binding agents, and in measurement of capsaicin receptor-activating compounds in a sample.

Capsaicin receptor polypeptides and capsaicin receptor-related polypeptides suitable for production of antibodies need not be biologically active; rather, the polypeptide, or oligopeptide need only be antigenic. Polypeptides used to generate capsaicin receptor-specific antibodies and capsaicin receptor-related polypeptide antibodies generally have an amino acid sequence consisting of at least five amino acids, preferably at least 10 amino acids. Preferably, antigenic capsaicin receptor polypeptides and antigenic capsaicin receptor-related polypeptides mimic an epitope of the native capsaicin receptor or native capsaicin receptor-related polypeptide, respectively. Antibodies specific for short polypeptides can be generated by linking the capsaicin receptor polypeptide or capsaicin receptor-related polypeptide to a carrier, or fusing the capsaicin receptor polypeptide or capsaicin receptor-related polypeptide to another protein (e.g., keyhole limpet hemocyanin), and using the carrier-linked chimeric molecule as an antigen. In general, anti-capsaicin receptor antibodies and capsaicin receptor-related polypeptide antibodies can be produced according to methods well known in the art. Recombinant immunoglobulins can be produced as according to U.S. Patent No. 4,816,567, incorporated herein by reference.

Various hosts, generally mammalian or amphibian hosts, can be used to produce anti-capsaicin receptor antibodies and anti-capsaicin receptor-related polypeptide antibodies (e.g., goats, rabbits, rats, mice). In general, antibodies are produced by immunizing the host (e.g., by injection) with a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide that retains immunogenic properties (which encompasses any portion of the native polypeptide, fragment or oligopeptide). Depending on the host species, various adjuvants can be used to increase the host's immunological response. Such adjuvants include but are not limited to, Freund's, mineral gels (e.g., aluminum hydroxide), and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are potentially useful human adjuvants.

Monoclonal antibodies can be prepared using any technique that provides for the production of antibody molecules by immortalized cell lines in culture. These techniques include, but are not limited to, the hybridoma technique originally described by Koehler and Milstein (1975 Nature 256:495–497), the human B-cell hybridoma technique (Kosbor et al (1983) Immunol Today 4:72; Cote et al (1983) Proc Natl Acad Sci 80:2026-2030) and the EBV-hybridoma technique (Cole et al (1985) Monoclonal Antibodies and Cancer Therapy, Alan R Liss Inc, New York NY, pp 77-96).

In addition, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison et al 1984 Proc Natl Acad Sci 81:6851-6855; Neuberger et al 1984 Nature 312:604-608; Takeda et al 1985 Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies (U.S. Patent No. 4,946,778) can be adapted to produce single chain antibodies that are capsaicin receptor-specific or capsaicin receptor-related polypeptide-specific.

5

10

15

20

25

30

Antibodies can be produced in vivo or by screening recombinant immunoglobulin libraries or panels of highly specific binding reagents as disclosed in Orlandi et al (1989, Proc Natl Acad Sci 86: 3833-3837), and Winter et al.(1991; Nature 349:293-299).

Antibody fragments having specific binding sites for a capsaicin receptor polypeptide or capsaicin receptor-related polypeptide can also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments, which can be produced by pepsin digestion of the antibody molecule, and Fab fragments, which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries can be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse et al 1989 Science 256:1275-1281).

A variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies having established antigen specificities are well known in the art. Such immunoassays typically involve, for example, the formation of complexes between a capsaicin receptor polypeptide and a specific anti-capsaicin receptor antibody, and the detection and quantitation of capsaicin receptor-antibody complex formation. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two noninterfering epitopes on a specific capsaicin receptor protein is preferred, but a competitive binding assay can also be employed. These assays are described in Maddox et.al 1983, J Exp Med 158:1211.

<u>Diagnostic Assays Using Capsaicin Receptor-Specific or Capsaicin Receptor-Related Polypeptide-Specific Antibodies</u>

Particular capsaicin receptor antibodies and capsaicin receptor-related polypeptide antibodies are useful for the diagnosis of conditions or diseases characterized by abnormal expression or function of capsaicin receptor (e.g., detection of capsaicin receptor expression in skin to detect neuropathies or in assays to monitor patients having a capsaicin receptor-associated disorder or condition and/or being treated with capsaicin receptor agonists, antagonists, or inhibitors). For example, aberrant carp function might result from over- or under-production of a capsaicin receptor-related polypeptide; thus anti-capsaicin receptor-related antibodies can be used to detect these changes qualitatively or quantitatively. Diagnostic assays for capsaicin receptor or capsaicin receptor-related polypeptide include methods using a detectably-labeled anti-capsaicin receptor antibody or anti-capsaicin receptor-related polypeptides and antibodies of the present invention can be used with or without modification. Frequently, the polypeptides and antibodies are labeled by covalent or noncovalent attachment to a reporter molecule. A wide variety of such suitable reporter molecules are known in the art. Methods for detecting and quantitating antibody binding are well known in the art.

Pharmaceutical Compositions Containing Capsaicin Receptor Polypeptides, Capsaicin Receptor-Related

Polypeptides, and/or Antibodies Thereto

The present invention also encompasses pharmaceutical compositions that can comprise capsaicin receptor polypeptides, anti-capsaicin receptor polypeptide antibodies, capsaicin receptor-related

5

10

15

20

25

5

10

15

20

25

30

35

BNSDQCID: <WO___9937675A1_I_>

polypeptides, or anti-capsaicin receptor-related polypeptides, alone or in combination with at least one other agent, such as a stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier. The pharmaceutical compositions of the invention can be administered to a patient alone or in combination with other agents, drugs or hormones, in pharmaceutical compositions where it is mixed with excipient(s), or with pharmaceutically acceptable carriers. In one embodiment of the present invention, the pharmaceutically acceptable carrier is pharmaceutically inert.

Capsaicin receptor polypeptides and/or capsaicin receptor-related polypeptides can be administered in order to mitigate the effects of, for example, an endogenous factor that acts as a capsaicin receptor agonist or antagonist or to block or regulate the effects of a capsaicin receptor agonist or antagonist administered to an individual. Anti-capsaicin receptor polypeptide antibodies and/or anti-capsaicin receptor-related polypeptide antibodies can be administered to stimulate a capsaicin receptor in a desired fashion or to block the effects of an endogenous or exogenous capsaicin receptor-binding agonist or antagonist, e.g., via competitive binding to the capsaicin receptor. Pharmaceutical formulations comprising capsaicin receptor polypeptides, capsaicin receptor-related polypeptides, anti-capsaicin receptor antibodies, and/or anti-capsaicin receptor-related polypeptide antibodies can be formulated according to methods known in the art.

Transgenic Animals Expressing Polynucleotides Encoding Capsaicin Receptor and/or Capsaicin Receptor-Related Polypeptide-

Nucleic acids encoding capsaicin receptor and/or nucleic acids encoding capsaicin receptor-related polypeptide can be used to generate genetically modified non-human animals or site specific gene modifications in cell lines. The term "transgenic" is intended to encompass genetically modified animals having, for example, a deletion or other knock-out of capsaicin receptor gene activity (and/or capsaicin receptor-related polypeptide activity), an exogenous capsaicin receptor gene (or capsaicin receptor-related polypeptide gene) that is stably transmitted in the host cells, a "knock-in" having altered capsaicin receptor (and/or capsaicin receptor-related polypeptide) gene expression, or an exogenous capsaicin receptor or capsaicin receptor-related polypeptide promoter operably linked to a reporter gene. Of particular interest are homozygous and heterozygous knock-outs and knock-ins of capsaicin receptor and/or capsaicin receptor-related polypeptide function.

Transgenic animals may be made through homologous recombination, where the endogenous capsaicin receptor locus (and/or capsaicin receptor-related polypeptide locus) is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like. Of interest are transgenic mammals, preferably a mammal from a genus selected from the group consisting of Mus (e.g., mice), Rattus (e.g., rats), Oryctologus (e.g., rabbits) and Mesocricetus (e.g., hamsters).

A "knock-out" animal is genetically manipulated to substantially reduce, or eliminate endogenous capsaicin receptor function (and/or capsaicin receptor-related polypeptide function). Different approaches may be used to achieve the "knock-out". For example, a chromosomal deletion of all or part of the native

capsaicin receptor homolog (or native capsaicin receptor-related polypeptide homolog) may be induced. Deletions of the non-coding regions, particularly the promoter region, 3' regulatory sequences, enhancers, or deletions of gene that activate expression of the capsaicin receptor gene and/or the capsaicin receptor-related polypeptide gene. A functional knock-out may also be achieved by the introduction of an anti-sense construct that blocks expression of the native gene(s) (for example, see Li and Cohen (1996) Cell 85:319-329).

Conditional knock-outs of capsaicin receptor gene function (and/or capsaicin receptor-related polypeptide gene function) are also included within the present invention. Conditional knock-outs are transgenic animals that exhibit a defect in capsaicin receptor gene function (and/or capsaicin receptor-related polypeptide gene function) upon exposure of the animal to a substance that promotes target gene alteration, introduction of an enzyme that promotes recombination at the target gene site (e.g., Cre in the Cre-loxP system), or other method for directing the target gene alteration.

For example, a transgenic animal having a conditional knock-out of capsaicin receptor gene function can be produced using the Cre-loxP recombination system (see, e.g., Kilby et al. 1993 Trends Genet 9:413-421). Cre is an enzyme that excises the DNA between two recognition sequences, termed loxP. This system can be used in a variety of ways to create conditional knock-outs of capsaicin receptor. For example, two independent transgenic mice can be produced: one transgenic for an capsaicin receptor sequence flanked by loxP sites and a second transgenic for Cre. The Cre transgene can be under the control of an inducible or developmentally regulated promoter (Gu et al. 1993 Cell 73:1155-1164; Gu et al. 1994 Science 265:103-106), or under control of a tissue-specific or cell type-specific promoter (e.g., a neuron-specific promoter). The capsaicin receptor transgenic is then crossed with the Cre transgenic to produce progeny deficient for the capsaicin receptor gene only in those cells that expressed Cre during development.

Transgenic animals may be made having an exogenous capsaicin receptor gene and/or exogenous capsaicin receptor-related polypeptide gene. The exogenous gene is usually either from a different species than the animal host, or is otherwise altered in its coding or non-coding sequence. The introduced gene may be a wild-type gene, naturally occurring polymorphism, or a genetically manipulated sequence, for example those previously described with deletions, substitutions or insertions in the coding or non-coding regions. The introduced sequence may encode an capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide. Where the introduced gene is a coding sequence, it is usually operably linked to a promoter, which may be constitutive or inducible, and other regulatory sequences required for expression in the host animal.

Specific constructs of interest include, but are not limited to, anti-sense polynucleotides encoding capsaicin receptor or capsaicin receptor-related polypeptide, or a ribozyme based on a capsaicin receptor or capsaicin receptor-related polypeptide sequence, which will block capsaicin receptor expression or capsaicin receptor-related polypeptide expression, respectively. Such anti-sense polynucleotides or ribozymes will also block expression of dominant negative mutations and over-expression of the corresponding gene. Also of interest is the expression of constructs encoding capsaicin receptor or

5

10

15

20

25

30

capsaicin receptor-related polypeptides in a host where the capsaicin receptor and/or capsaicin receptor-related polypeptide encoded by the construct is derived from a different species than the species of the host in which it is expressed (e.g., expression of human capsaicin receptor in a transgenic mouse). A detectable marker, such as *lac Z* may be introduced into the capsaicin receptor or capsaicin receptor-related polypeptide locus, where upregulation of expression of the corresponding gene will result in an easily detected change in phenotype. Constructs utilizing a promoter region of the capsaicin receptor gene or capsaicin receptor-related polypeptide gene in combination with a reporter gene are also of interest. Constructs having a sequence encoding a truncated or altered (e.g., mutated) capsaicin receptor or capsaicin receptor-related polypeptide are also of interest.

The modified cells or animals are useful in the study of function and regulation of capsaicin receptor and capsaicin receptor-related polypeptide. Such modified cells or animals are also useful in, for example, the study of the function of capsaicin receptor and capsaicin receptor-related polypeptides, as well as the study of the development of nociceptive neurons. Animals may also be used in functional studies, drug screening, etc., e.g. to determine the effect of a candidate drug on capsaicin receptor function or on symptoms associated with disease or conditions associated with capsaicin receptor function (e.g., capsaicin receptor defects or other altered capsaicin receptor activity). By providing expression of capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide in cells in which it is otherwise not normally produced (e.g., ectopic expression), one can induce changes in cell behavior.

DNA constructs for homologous recombination will comprise at least a portion of the capsaicin receptor gene (or capsaicin receptor-related polypeptide gene) with the desired genetic modification, and will include regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown et al. 1990 Methods in Enzymology 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of appropriate growth factors, such as leukemia inhibiting factor (LIF). When ES cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected.

5

10

15

20

25

30

The chim ric animals are screened for the presence of the modified gene. Chimeric animals having the modification (normally chimeric males) are mated with wildtype animals to produce heterozygotes, and the heterozygotes mated to produce homozygotes. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in in vitro culture.

Investigation of genetic function may utilize non-mammalian models, particularly using those organisms that are biologically and genetically well-characterized, such as *C. elegans*, *D. melanogaster* and *S. cerevisiae*. For example, transposon (Tc1) insertions in the nematode homolog of a capsaicin receptor gene or a promoter region of a capsaicin receptor gene may be made. The capsaicin receptor gene sequences may be used to knock-out or to complement defined genetic lesions in order to determine the physiological and biochemical pathways involved in function of neuronal cells. It is well known that human genes can complement mutations in lower eukaryotic models.

Biosensor Membranes Having Capsaicin Receptor Polypeptides

Due to the responsiveness of capsaicin receptor polypeptides to heat, capsaicin receptor polypeptides can be used in a biosensor for detection of changes in temperature. The biosensor utilizes electrochemical measurement of an ion current across a lipid membrane (or other medium) having a capsaicin receptor polypeptide incorporated therein. Upon stimulation of the capsaicin receptor polypeptide by heat, the capsaicin receptor polypeptide facilitates movement of ions (e.g., calcium) across the membrane, which is then detected as a change in current across the lipid bilayer. The temperature and/or change in temperature can be correlated with the relative increase in conductance across the bilayer due to capsaicin receptor polypeptide activation.

It is well known that amphiphilic molecules can be caused to aggregate in solution to form two or three dimensional ordered arrays such as monolayers, micelles, black lipid membranes, and vesicles or liposomes, which vesicles may have a single compartment or may be of the multilamellar type having a plurality of compartments. The membrane may contain any suitable combination of lipids, long-chain (C12-C24) organic compounds, as well as plastic materials or like polymers for physical reinforcement. Methods and compositions for manufacture of lipid bilayers incorporating a protein of interest, as well as methods and compositions for manufacture of the electrical and mechanical components of biosensors are well known in the art (see, e.g., USPN 5,328,847 (thin membrane sensor with biochemical switch); USPN 5,443,955 (receptor membranes and ionophore gating); USPN 5,234,566 (sensitivity and selectivity of ion channel biosensor membranes); USPN 5,074,977 (digital biosensors and method of using same); and USPN 5,156,810 (biosensors employing electrical, optical, and mechanical signals), each of which are hereby incorporated by reference for manufacture and use of biosensors incorporating a receptor of interest (i.e., capsaicin receptor).

Biosensors according to the present invention comprise at least one lipid membrane, where the membrane includes at least one capsaicin receptor polypeptide. Because capsaicin receptor polypeptides can function when contacted with ligand (e.g., capsaicin) or other effector that mediates capsaicin receptor

5

10

15

20

25

30

activity (e.g., heat), the orientation of capsaicin receptor in the membrane is not substantially important for the function of the biosensor.

Conventional microelectronic configurations will serve adequately to supply power for the sensor, provide a constant direct current voltage across the bilayer prior to heat detection, and measure the ion current surge following capsaicin receptor activation elicited by a change in temperature. It may be additionally desirable to incorporate into the detection electronics a provision for membrane integrity determination, based on the electrical noise accompanying a triggered current signal.

In general, heat is detected using the biosensor of the invention by detecting a change in conductance across the capsaicin receptor polypeptide-containing bilayer. For example, the capsaicin receptor polypeptide lipid bilayer is provided so that a first face of the lipid bilayer (the "heat detection face") is in contact with an buffer solution of neutral pH and containing a selected cation that is capable of transport by the capsaicin receptor (e.g., any cation such as calcium or magnesium, preferably sodium), while a second face of the capsaicin receptor polypeptide lipid bilayer is in contact with a neutral pH buffer having a concentration of the selected cation that is significantly less than the concentration of selected cation in the buffer bathing the heat detection face of the bilayer. Upon exposure of the bilayer's heat detection face to a change in temperature, heat facilitates capsaicin receptor function to provide for transport of the selected cation across the bilayer, resulting in a change in conductance across the bilayer. The change in conductance is then correlated with a change in temperature.

The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.

EXAMPLES

Example 1: Expression Cloning of Rat Capsaicin Receptor-Encoding DNA

While electrophysiological assays in *Xenopus* oocytes have been employed to obtain cDNAs encoding a variety of cell surface receptors and ion channels (Brake et al. 1995 Nature 371:519-523), this approach proved unsuccessful in identifying a capsaicin receptor clone. A mammalian cell expression cloning strategy based on the ability of capsaicin to trigger an influx of calcium ions into sensory neurons was developed. First, a rodent dorsal root ganglion plasmid cDNA library was constructed in pcDNA3 (Invitrogen) essentially as described (Brake et al., *supra*). A mixture of polyadenylated RNA from newborn (P1) rat and adult mouse dorsal root ganglia was used to generate first-strand cDNA using an oligo (dT) primer containing a Not1 restriction site. Following second strand synthesis and attachment of BstX1 adaptors, the cDNA was digested with Not1. cDNA and BstX1/Not1-linearized pcDNA3 were each purified on potassium acetate gradients, ligated together, and transformed in DH5α bacteria by electroporation. The resulting 2.4 x 10⁶ independent bacterial clones were divided into 144 pools and stored at -80°C.

HEK 293 (human embryonal kidney) cells constitutively expressing the SV40 large T antigen were maintained in Medium A (DMEM supplemented with 10% fetal bovine serum (Hyclone), penicillin, streptomycin, and L-glutamine) at 37°C, 5% CO₂. Except where indicated, transient transfections were

10

15

20

25

30

carried out with nearly-confluent cells that were replated at $3.2 \times 10^5/35$ mm tissue culture dish. After 24hrs, the medium was replaced with 1ml Medium B (DMEM supplemented with 10% dialyzed fetal calf serum, penicillin, streptomycin, and L-glutamine). After 2 hrs at 37° C, cells were transfected with 12 μ g plasmid DNA using a calcium phosphate precipitation kit (Specialty Media). The following day, cells were rinsed once with phosphate buffered saline (PBS) containing 1mM EDTA, washed from the plates, collected by centrifugation (200 x g, 5min, 22°C), resuspended in Medium B, and re-plated onto polyornithine-coated coverslips. Under these conditions, each cell acquired plasmids encoding approximately 200 different cDNAs.

Between 6 and 24 hours later, cells were loaded with fura2 (30 min at 37°C) in CIB buffer(mM: 130 NaCl, 3 KCl, 2.5 CaCl₂, 0.6 MgCl₂, 1.2 NaHCO₃, 10 Glucose, 10 Hepes, pH 7.45) containing 10 μM fura-2 acetoxymethyl ester and 0.02% pleuronic acid (Molecular Probes), then rinsed twice with CIB. Ratiometric calcium imaging was performed using a Nikon Diaphot fluorescence microscope equipped with a variable filter wheel (Sutter Instruments) and an intensified CCD camera (Hamamatsu). Dual images (at 340 nm and 380 nm excitation, 510 nm emission) were collected and pseudocolor ratiometric images monitored during the experiment (Metafluor imaging software, Universal Imaging). Cells were initially imaged in 200 ml CIB, after which 200 ml CIB containing capsaicin at twice the desired concentration was-added. Following stimuli, cells were observed for 60-120 s. For each library pool, one microscopic field (300-500 cells) was assayed in each of eight wells.

While cells transfected with most of the assayed pools or with pcDNA3 alone exhibited no capsaicin responsiveness, 1% to 5% of the cells transfected with one of the cDNA library pools exhibited a profound increase in cytoplasmic calcium concentrations upon capsaicin treatment. cDNA from this pool was further subdivided into smaller pools, and those subpools retransfected into HEK293 cells. In cell populations transfected with some of these subpools, an even larger fraction of cells responded to capsaicin, indicating that a capsaicin receptor-encoding cDNA had been enriched within the population. The process of pool subdivision and reassay was continued until a single plasmid was isolated that conferred capsaicin-responsiveness upon great than 70% of the transfected cells. The clone that conferred capsaicin-responsiveness contained a 3 kb cDNA insert.

Example 2: Sequencing and Characterization of Capsaicin Receptor-Encoding cDNA

The 3 kb cDNA insert was sequenced using an automated sequencer (ABI). Homology searches were performed against the nonredundant Genbank database and against an EST database (dbest) using blastn, blastx, and tblastx search programs. Hydrophilicity was calculated using the Hopp-Woods algorithm and a window size of ten 47. The insert was determined to be of rat origin by sequencing an independent cDNA isolated from a rat DRG library and a PCR product derived from mouse DRG cDNA. The sequence of the isolated rat capsaicin receptor-encoding polynucleotide (SEQ ID NO:1) and its corresponding amino acid sequence (SEQ ID NO:2) are shown in Figure 1. Because a vanilloid moiety constitutes an essential chemical component of capsaicin and resiniferatoxin structures, the proposed site of action of these compounds is more generally referred to as the vanilloid receptor (Szallasi 1994 Gen. Pharmac. 25:223-

10

15

20

25

30

243). Accordingly, the newly cloned cDNA was termed VR1, for vanilloid receptor subtype 1. The term "capsaicin receptor" as used her in encompasses VR1, but is not limited to VR1.

The VR1-encoding cDNA contains a 2514-nucleotide open reading frame encoding a protein of 838 amino acids with a predicted molecular mass of 95 kD (Figs. 1 and 2A). Hydrophilicity analysis suggests that VR1 is a polytopic protein containing 6 transmembrane domains (noted as "TM" and shaded boxes in Fig. 1 and predicted to be mostly β -sheet (see Fig. 1B)) with an additional short hydrophobic stretch between transmembrane regions 5 and 6 (light shaded region). The amino-terminal hydrophilic segment (432 aa) contains a relatively proline-rich region followed by 3 ankyrin repeat domains (open boxes). The carboxyl-terminus (154 aa) contains no recognizable motifs.

A homology search of protein databases revealed significant similarities between VR1 and members of the family of putative store-operated calcium channels (SOCs) whose prototypical members include the drosophila retinal proteins TRP and TRPL 32, 33 (Fig. 1C). Members of this family have been proposed to mediate the entry of extracellular calcium into cells in response to the depletion of intracellular calcium stores 34. These proteins resemble VR1 with respect to their predicted topological organization and the presence of multiple amino-terminal ankyrin repeats 33. There is also striking amino acid sequence similarity between VR1 and SOCs within and adjacent to the sixth transmembrane region, including the short hydrophobic region between transmembrane domains 5 and 6 that may contribute to the ion permeation path 33. Outside these regions, VR1 shares little sequence similarity with SOCs, suggesting that VR1 is a distant relative of this family of channel proteins. Given the high permeability of VR1 to calcium ions, we nonetheless considered the possibility that it might function as a SOC.

An expressed sequence tag (EST) database homology search revealed several human clones bearing a high degree of similarity to VR1 at both the nucleotide and predicted amino acid levels (Fig. 1C). Three of these partial cDNAs, independently isolated from different sources, encode sequences in the vicinity of the predicted VR1 pore-loop and sixth transmembrane domains. As shown in Figure 2C, the similarity of one of these clones (hVR, Genbank accession T12251) to the corresponding region of VR1 is extremely high (68% amino acid identity and 84% similarity within the region shown), suggesting that it is likely to be the human VR1 orthologue or a closely related subtype. Human EST clones corresponding to other domains of VR1 show comparable degrees of similarity (not shown) and could represent fragments of the same human transcript.

30

35

5

10

15

20

25

Example 3: VR1 Does Not Function as a Store-Operated Calcium Channel (SOC)

The amino acid sequence similarities between VR1 and SOCs suggested that the capsaicin receptor might function as an SOC. To test this, calcium-dependent inward currents were examined in VR1-expressing, intracellular calcium-depleted occytes according to methods well known in the art.

Briefly, cRNA transcripts were synthesized from Not1- linearized VR1 cDNA templates using T7 RNA polymerase 17. Defolliculated *Xenopus laevis* oocytes were injected with 0.5 - 5ng VR1 cRNA. Four to seven days after injection, two electrode voltage clamp recording was performed ($E_{hold} = -60$ mV for IC₅₀ curve and thermal stimulation experiments, and -40 mV for all other experiments) using a Geneclamp 500

amplifier (Axon Instruments) and a MacLab A/D converter (Maclab). The recording chamber was perfused at a rate of 2 ml/min with frog ringers solution containing (mM) 90 NaCl; 1.0 KCl, 2.4 NaHCO₃, 0.1 BaCl₂, 1.0 MgCl₂, and 10 HEPES, pH 7.6. at room temperature. Prior to performing the store-operated current assays, oocytes were incubated for 1-2 hrs in calcium-free, barium-free frog ringer's solution containing 1 mM EGTA and 1 μM Thapsigargin. During voltage clamp recording, these oocytes were intermittently exposed to frog ringer's solution containing 2 mM Ca2+ and no EGTA to detect calcium-dependent currents (15 second pulses at 2 minute intervals) (Petersen et al. 1995 Biochem J. 311:41-44).

In water-injected control oocytes, a clear depletion-induced current was seen, as previously described (Petersen et al., supra). In VR1-expressing oocytes, no quantitative or qualitative differences were observed in this response (not shown). Moreover, application of SKF 96365 (20 μ M), an inhibitor of depletion-stimulated calcium entry (Merritt et al. 1990 Biochem J. 271:515-522), had no effect on capsaicin-evoked currents in VR1-expressing oocytes. Thus, VR1 does not appear to be a functional SOC under these circumstances.

Example 4: Sensory Neuron-Specific Expression of Capsaicin Receptor

The distribution of VR1 transcripts in neuronal and non-neural rat tissues was assessed by both Northern blot and in situ hybridization analyses. Adult Sprague-Dawley rats were euthanized by asphyxiation in CO₂ and tissues freshly dissected. Poly A+ RNA was purified either by lysis in guanidinium isothiocyanate followed by purification on oligo-dT cellulose or with the FastTrack kit (Invitrogen). Approximately 2 µg of each sample was electrophoresed through a 0.8% agarose-formaldehyde gel, transferred to a nylon membrane (Hybond N, Amersham), and hybridized with a ³²P-labeled probe representing the entire VR 1 cDNA. Blots were washed at high stringency and autoradiographed. After probing with capsaicin receptor cDNA, the same filters were reprobed with a radiolabeled cyclophilin cDNA fragment as a control (e.g., to correct for relative RNA loading between samples).

For in situ hybridization histochemistry, adult female Sprague-Dawley rats were anesthetized and perfused with 4% paraformaldehyde in PBS. Dorsal root ganglia, trigeminal ganglia and spinal cord were dissected, frozen in liquid N_2 , embedded in OCT mounting medium, and sectioned on a cryostat. Sections (15 micron) were processed and probed at 55°C overnight with a digoxigenin-labeled cRNA generated by in vitro transcription of a 1kb fragment of the VR1 cDNA (nt 1513-2482) using the Genius kit (Boehringer Mannheim). Sections were developed with alkaline phosphatase-conjugated anti-digoxigenin Fab fragments according to the manufacturer's instructions.

Both Northern blot analysis and in situ hybridization histochemistry indicated that VR1 transcripts are expressed selectively within dorsal root and trigeminal ganglia. An mRNA species of approximately 4 kb was prominently expressed in trigeminal and dorsal root sensory ganglia, both of which have been shown to contain capsaicin-sensitive neurons. This transcript was absent from all other tissues examined, including spinal cord and brain. A much smaller RNA species (approx. 1.5 kb) was detected in the kidney, but it is unclear whether this transcript could encode a functional VR1 protein.

5

10

15

20

25

30

In situ hybridization to assess the cellular pattern of VR1 expression within sensory ganglia showed that VR1 was expressed predominately within a subset of neurons with small diameters within both dorsal root and trigeminal ganglia. This is in keeping with the observation that most capsaicin-sensitive neurons have relatively small- to medium-sized cell bodies (Holzer 1991 Pharmacol. Rev. 43:143-201; Jansco et al. 1977 Nature 270:741-743). In contrast to the predominant expression of VR1 transcripts in neurons of the dorsal root ganglion, no visible signal was observed in the adjacent spinal cord dorsal horn. While binding sites for radiolabeled resiniferatoxin have been detected int eh dorsal horn, these sites are believed to reside on presynaptic terminal that project from primary nociceptors located within adjacent dorsal root ganglia Holzer 1991, *supra*). The results here support this interpretation.

10

15

5

Example 5: Assessment of VR1 Pharmacology in Xenopus Oocytes

To compare the pharmacological properties of the cloned capsaicin receptor to those of native vanilloid sites in sensory ganglia, VR1 was expression oocyte and used in whole-cell voltage clamp analysis to quantitatively examine its electrophysiological response to a variety of vanilloid agonists (capsaicin, resiniferatoxin) and antagonists (capsazepine). VR1 was expressed in *Xenopus* oocytes as described above (Example 3), except that $CaCl_2$ (2 mM) was used in place of $BaCl_2$ when generating the capsazepine inhibition curve. The agonists capsaicin and resiniferatoxin were applied sequentially to the same *Xenopus* oocyte expressing VR1. Membrane currents were recorded in the whole cell voltage clamp configuration ($V_{hold} = -40$ mV).

20

25

30

35

The results of the capsaicin and resiniferatoxin studies are shown in Figs. 10A-10B. Bars denote duration of agonist application. At negative holding potentials, exposure to capsaicin or resiniferatoxin produced dose-dependent inward current responses in VR1 expressing oocytes, but not in water-injected control cells. As observed in sensory neurons (Winter et al. 1990 Brain Res. 520:131-140; Liu et al. 1994 Proc. Natl. Acad. Sci. USA 91:738-741), capsaicin-evoked current responses returned rapidly to baseline following agonist removal, whereas resiniferatoxin responses often failed to recover, even after a prolonged washout period. Half-maximal effective concentrations for these agonists were within an order of magnitude of those reported for native vanilloid receptors (Oh et al., *supra*; Bevan et al. 1992 Br. J. Pharmacol. 107:544-552), with resiniferatoxin being approximately 20-fold more potent than capsaicin (EC $_{50}$ = 39.1 nM and 711.9 nM, respectively). Hill coefficients derived from these analyses (1.95 and 2.08, respectively) suggest that full activation of the receptor involves the binding of more than one agonist molecule, again consistent with previously described properties of native vanilloid receptors (Oh et al., *supra*; Szallasi 1994 Gen. Pharmac. 25:223-243).

blocked by the competitive vanilloid receptor antagonist capsazepine at concentrations (IC₅₀ = 283.5 nM) that inhibit native receptors (Figs. 10A-10B). The current tracing shows that the block of capsaicin activity (cap; $0.6 \mu M$) by capsasepine (cpz; $10 \mu M$) is reversible. Another pharmacological signature of vanilloid receptors is their sensitivity to the non-competitive antagonist ruthenium red (RR; $10 \mu M$), which also blocked capsaicin-evoked responses (cap; $0.6 \mu M$) in a reversible manner (Figs. 11A). Responses to

As shown in Figs. 11A and 11B, capsaicin-evoked responses in VR1 expressing oocytes were

resiniferatoxin (50 nM) were also reversibly antagonized by capsazepine (5 μ M) or ruthenium red (10 μ M) (not shown).

Example 6: Patch Clamp Analysis Of Recombinant Capsaicin Receptors Expressed In HEK293 Embryonal Kidney Cells

The recombinant capsaicin receptor cloned in Example 1 was further characterized in studies using patch clamp analysis in capsaicin receptor-expressing HEK293 cells. HEK293 cells transfected with a control vector (pcDNA3 without a capsaicin receptor-encoding sequence). Patch-clamp recordings were carried out with transiently transfected HEK293 cells at 22°C. Standard bath solution for whole-cell recordings contained (mM) 140 NaCl, 5 KCl, 2 MgCl₂, 2 CaCl₂, 10 HEPES, 10 glucose, pH 7.4 (adjusted with NaOH). In calcium-free bath solution, CaCl₂ was removed and 5 mM EGTA was added.

For monovalent cation substitution experiments, after the whole-cell configuration was obtained in control bath solution, the bath solution was changed to (mM): 140 NaCl (or KCl or CsCl), 10 glucose, and 10 HEPES (adjusted to pH 7.4 with NaOH, KOH or CsOH, respectively) and the reversal potential measured using voltage-ramps. For divalent cation permeability experiments, the bath solution was changed to (mM) 110 MgCl₂ (or CaCl₂), 2 Mg(OH)₂ (or Ca(OH)₂), 10 glucose, 10 HEPES, pH 7.4-(adjusted with HCl).

Bath solution for outside-out patch recordings and pipette solution for inside-out patch recordings contained (mM) 140 NaCl, 10 HEPES, pH 7.4 (adjusted with NaOH). Bath solution for inside-out patch recordings and pipette solutions for outside-out patch recordings and ion substitution experiments contained: (mM) 140 NaCl, 10 HEPES, 5 EGTA, pH 7.4 (adjusted with NaOH). Pipette solution for whole-cell recordings contained (mM) 140 CsCl (or 130 CsAspartate and 10 NaCl), 5 EGTA, 10 HEPES, pH 7.4 (adjusted with CsOH). Liquid junction potentials were measured directly in separate experiments; they did not exceed 3 mV with solutions used and no correction for this offset was made.

Whole-cell recording data were sampled at 20 kHz and filtered at 5 kHz for analysis (Axopatch 200 amplifier with pCLAMP software, Axon Instruments). Single-channel recording data were sampled at 10 kHz and filtered at 1 kHz. Permeability ratios for monovalent cations to Na (P_x/P_{Na}) were calculated as follows: $P_x/P_{Na} = \exp(\Delta V_{rev}F/RT)$, where V_{rev} is the reversal potential, F is Faraday's constant, R is the universal gas constant, and T is absolute temperature. For measurements of divalent permeability, P_y/P_{Na} was calculated as follows: $P_y/P_{Na} = [Na^*]_1 \exp(\Delta V_{rev}F/RT)(1+\exp(\Delta V_{rev}F/RT))/4[Y^{2*}]_0$. Ion activity coefficients of 0.75 (sodium) and 0.25 (calcium or magnesium) were used as correction factors.

Figure 3 show the results of whole cell voltage clamp analysis of capsaicin receptor-expressing HEK293 cells at -60mV using a CsAsparate-filled pipet. These data show an inward cation-specific current which is present only during capsaicin treatment (the time period during which capsaicin was present (1μM) is indicated by the bar above the plot), and which developed with a short latency upon bath application of capsaicin. No such currents were observed on control, mock-transfected cells. Figure 4 shows the voltage steps (400ms) from -100 mV to +40mV (vertical lines in Figure 3) on an expanded time scale. The currents in the absence of capsaicin (a) were subtracted rom the currents obtained in the presence of capsaicin (b).

5

10

15

20

25

30

This analysis of the data revealed a time-independent, receptor-dependent current. In calcium-free medium, the capsaicin-evoked current was also time-independent both at a constant holding potential of -60 mV (Fig. 3) and during voltage steps from -100 to +40 mV (in 20mV increments, Fig. 4). This property enabled characterization of capsaicin-mediated currents under steady-states response conditions in subsequent experiments. Current- voltage relations derived from these data show that such responses exhibit prominent outward rectification resembling that observed in cultured dorsal root ganglion neurons (Fig. 4; Oh et al., supra). Because the bath solution used in these experiments consisted mainly of sodium chloride, whereas the patch pipet was filled with cesium aspartate, the observed reversal potential close to 0 mV ($E_{rev} = 0.5 \pm 0.9$ mV; n=13) indicates that the capsaicin-mediated response involves the opening of a cation-selective channel.

In sensory neurons, vanilloid-evoked currents are carried by a mixture of mono- and divalent cations (Bevan et al. 1990 Trends Pharmacol. Sci. 11:330-333; Oh et al., supra; Wood et al. 1988 J. Neuroscience 8:3208-3220). This phenomena was examined in VR1-expressing mammalian cells through a series of ion substitution experiments to examine the relative contributions of various cations to capsaicin-evoked currents in VR1-expressing cells. Current-voltage relations established for cells bathed in solutions of differing cationic compositions (Fig. 5; Na* (labeled a), K* (labeled b), Cs* (labeled c), Mg** (labeled d), or Ca** (labeled e) revealed that VR1 does not discriminate among monovalent cations, but exhibits a notable preference for divalent cations. Replacement of extracellular NaCl (140 mM) with equimolar KCI or CsCI did not significantly shift reversal potential (E_{rev} = -0.7 ± 1.2 mV, n= 8; -1.5 mV, n=9; -4.3 \pm 0.9 mV, n=8, respectively. P_{K}/P_{Na} = 0.94; $_{PCS}/P_{Na}$ = 0.85). Replacement of extracellular NaCl with isotonic (112 mM) MgCl₂ or CaCl₂ shifted E_{rev} to 14.4 \pm 1.3 mV (n=3) or 24.3 \pm 2.3 mV (n=7), respectively. As summarized in Fig. 5, the data thus revealed that the capsaicin receptor-expressing cell membranes had the following relative cation permeabilities for the capsaicin-activated current: Ca** > Mg** >> Na* ≈ $K^* \approx Cs^*$. The very high relative permeability of VR1 to calcium ions ($P_{Ca}/P_{Na} = 9.60$; $P_{Mg}/P_{Na} = 4.99$) exceeds that observed for most non-selective cation channels and is comparable to values reported for NMDA-type glutamate receptors ($P_{ca}/P_{Na} = 10.6$) (Mayer et al. 1987 J. Physiol. 394:501-527), which are noted for this property. With all bath solutions examined, an outwardly rectifying current-voltage relation was observed, although this feature was somewhat less prominent in MgCl2- or CaCl2-containing bath solutions.

In cultured sensory neurons, electrophysiological analyses of vanilloid-evoked responses have shown them to be kinetically complex and to desensitize with continuous vanilloid exposure (Liu et al., supra: Yeats et al. 1992 J. Physiol. 446:390P). This electrophysiological desensitization (which might underlie aspects of physiological desensitization produced by vanilloids in vivo) appears to depend, in part, upon the presence of extracellular calcium(Yeats et al., supra; Holzer 1991 Pharmacol. Rev. 43:143-201). To test the calcium dependency of VR1-expressing cells ability to respond to capsaicin, whole-cell current responses were tested in both calcium-containing standard bath solution and in calcium-free solution (Fig. 6A-F). Capsaicin (1 μ M) was applied every 5 min; CsCl was used as pipette solution. The ratios of current size at the end of the third application to the peak of the first application were 95.3 \pm 2.6% (n = 3) in

5

10

15

20

25

30

calcium-free solution, and $13.0 \pm 4.3\%$ (n=5) in calcium-containing solution (T test; p < 0.00001). Indeed, in the absence of extracellular calcium, capsaicin-evoked responses in VR1-transfected cells showed little or no desensitization during prolonged agonist application or with successive agonist challenges (4.7 \pm 2.3 % decrease between first and third applications, n=3). In contrast, responses evoked in calcium-containing bath solution consisted of at least two distinct components: one desensitizing (87 \pm 4.3 % decrease between first and third applications, n=5); and one relatively non-desensitizing. Thus, desensitization and multiphasic kinetics of vanilloid-evoked responses can be reproduced outside of a neuronal context and distinguished by their dependence on ambient calcium levels.

The behavior of the VR1 response was also examined in membrane patches excised from transfected cells. Inside-out (I/O) or outside-out (O/O) patches were excised from VR1-transfected cells and analyzed in symmetrical 140 mM NaCl at the indicated holding potentials with capsaicin (1 μM) in the bath solution. Dashed lines in the data represented in Fig. 7 indicate closed channel state. In other patches, multiple simultaneous channel openings were observed. The large and well resolved currents of unitary amplitude observed only in the presence of capsaicin (Fig. 7) indicate the existence of capsaicin-gated ion channels within these patches, whose activation does not depend upon soluble cytoplasmic components. The current voltage curve of mean single channel amplitudes (± s.e.m.; Fig. 8), which was calculated from data shown in Fig. 7, also exhibits pronounced outward rectification. The current-voltage relation at the single-channel level was essentially identical to that established in whole-cell configuration, owing to its outward rectification and reversal potential near 0 mV under similar ionic conditions. Unitary conductances of 76.7 pS at positive potentials and 35.4 pS at negative potentials were observed with sodium as the sole charge carrier. These single channel properties mirror those previously described for native vanilloid receptors(Oh et al., supra; Forbes et al. 1988 Neurosci. Lett. Suppl. 32:S3).

It has been suggested that the site of vanilloid action may not be confined to the extracellular side of the plasma membrane, reflecting the lipophilic nature of these compounds (James et al. in <u>Capsaicin in the Study of Pain</u> (ed. Wood) Pgs. 83-104 (Academic Press, London, 1993). Interestingly, capsaicin was able to produce identical responses when added to either side of a patch excised from a VR1-expressing cell (Fig. 7), consistent with the notion that vanilloids can permeate or cross the lipid bilayer to mediate their effects. A less likely, but formally consistent explanation is that vanilloid receptors have functionally equivalent capsaicin binding sites on both sides of the plasma membrane.

These data show that the cloned capsaicin receptor behaves in patch clamp analysis in a manner very similar to that reported for wildtype capsaicin receptor.

Example 7: Use of Recombinant Capsaicin Receptor to Quantitate Vanilloid Concentrations

As has been recognized for years, the relative pungencies of pepper varieties span an enormously wide range, reflecting, in part, differences in vanilloid content. To-date, methods for rating peppers with respect to their relative "hotness" have relied on subjective psychophysical assays (in which values are reported in Scoville units) (Scoville 1912 J. Am. Pharm. Assoc. 1:453–454) or on biochemical determination of capsaicin content (Woodbury 1980 J. Assoc. Off. Anal. Chem. 63:556-558). To further explore whether

10

15

20

25

30

the electrophysiological response of the cloned vanilloid receptor to pepper extracts was in proportion to ability of these peppers to evoke pain.

Several different types of hot peppers (15 g; Thai green, poblano verde, habanero, and wax) were minced and extracted overnight at room temperature with 50 ml absolute ethanol. Soluble extracts were concentrated 15-fold by vacuum desiccation, then diluted 1000-fold in frog ringer's solution for electrophysiological assay. Equivalent fractions (normalized to pepper weight) were tested for their ability to activate the recombinant capsaicin receptor expressed in *Xenopus* oocytes. Capsaicin receptor activation was assessed using a two-electrode voltage-clamp assay to quantitatively measure currents elicited by each pepper extract. Responses were normalized to the response obtained with pure capsaicin (10 µM set at 100). The data are shown in Fig. 11 (each value represents an average of four independent determinations, each from separate oocytes; 30 sec application). The relative response of the cloned receptor to the pepper samples and the capsaicin control are shown in the histogram with representative current traces shown to the right of each bar in the histogram. Extracts evoked no response in waterinjected cells.

The relative responses of capsaicin receptor to the pepper extracts correlates with the relative hotness of each pepper as determined by conventional analyses and Scoville heat unit assignments. Moreover, the differential "hotness" of these pepper variants, as determined by subjective psychophysical ratings (Berkeley et al. Peppers: A Cookbook pgs. 1-120 (Simon and Schuster, New York, 1992), correlated with their rank order potencies as activators of VR1.

20

25

30

35

15

5

10

Example 8: Capsaicin Induces Death of Cells Expressing VR1

Capsaicin is widely recognized as a neurotoxin that selectively destroys primary afferent nociceptors in vivo and in vitro (Jansco et al. 1977 Nature 270:741-743; Wood et al. 1988 J. Neuroscience 8:3208-3220). In order to determine whether this selective toxicity solely is a reflection of the specificity of receptor expression, or whether it depends upon additional properties of sensory neurons or their milieu, the ability of capsaicin to kill non-neuronal cells expressing vanilloid receptors was examined in vitro. HEK293 cells were transiently transfected with either vector alone (pcDNA3), vanilloid receptor cDNA diluted 1:50 in pcDNA3 (VR1 1:50) or vanilloid receptor cDNA alone (VR1). Fourteen hours later, culture medium was replaced with medium containing capsaicin (3 μ M, filled bars) or vehicle (ethanol 0.3%, open bars) (Fig. 12). After seven hours at 37°C, the percentage of dead cells was determined using ethidium homodimer staining. Data represent the mean \pm s.e.m. of triplicate determinations from a representative experiment. Asterisks indicate a significant difference from ethanol-treated cells (T-test, P< 0.0001). Similar results were obtained in three independent experiments.

As shown in Fig. 12, within several hours of continuous exposure to capsaicin, HEK293 cells transfected with VR1 exhibited rampant death, as determined morphologically and by the use of vital stains. In contrast, cells transfected with vector alone were not killed by this treatment. The cell death was characterized by prominent cytoplasmic swelling, coalescence of cytoplasmic contents, and eventual lysis. Thus, VR1 expression in a non-neuronal context can recapitulate the cytotoxicity observed in

vanilloid-treated sensory neurons. Staining with Hoechst dye 33342 revealed no evidence of the nuclear fragmentation often associated with apoptotic cell death 28 (not shown). Together, these observations are consistent with necrotic cell death resulting from excessive ion influx, as has been proposed for vanilloid-induced death of nociceptors (Bevan et al. 1990 Trends Pharmacol. Sci. 11:330-333), glutamate-induced excitotoxicity (Choi 1994 Prog. Brain Res. 199:47-51), and neurodegeneration caused by constitutively activating mutations of various ion channels (Hong et al. 1994 Nature 367:470-473; Hess 1996 Neuron 16:1073-1076).

Example 9: Hydrogen Ions Potentiate The Effect Of Capsaicin On VR1

A reduction in tissue pH resulting from infection, inflammation, or ischemia can produce pain in mammals. This effect has been attributed to the ability of protons to activate excitatory channels on the surface of nociceptive neurons. A subset of these responses have been reported to share properties in common with those elicited by vanilloids, including similar kinetics, ion selectivity, and antagonism by ruthenium red (Bevan et al. 1994 Trends Neurosci. 17:509-512). Moreover, subthreshold concentrations of hydrogen ions have been shown to potentiate the effects of low concentrations of capsaicin in sensory neurons (Petersen et al. 1993 Pain 54:37-42; Kress et al. 1996 Neurosci. Lett. 211:5-8). It has therefore been proposed that protons might act as endogenous activators or modulators of vanilloid receptors (Bevan et al. 1994 *supra*).

To address this possibility, the effects of hydrogen ions on the cloned vanilloid receptor were examined using the oocyte expression system. Capsaicin (0.3 μ M) was administered throughout the time period tested (spanned by the arrows in Fig. 13) (V_{hold} = -40 mV). The pH of the bath solution was changed during the experiment (as indicated by the horizontal bars in Fig. 13). VR1-expressing oocytes exhibited no responses to pH 6.3 bath solution without capsaicin; water-injected control oocytes exhibited no responses to either capsaicin or pH 6.3 bath solution (not shown). The current responses obtained from 9 independent VR1-expressing oocytes are summarized in Fig. 14. The grey portion of each bar indicates peak current evoked by capsaicin at pH 7.6, while the black portion represents the additional current evoked by changing the pH to 6.3.

Abrupt reduction in bath solution pH (from 7.6 to 5.5) was not sufficient to activate VR1 in the absence of capsaicin (fewer than 10% of VR1-expressing oocytes treated in this way exhibited a large inward current (not shown)), suggesting that hydrogen ions alone cannot efficiently activate this protein. Next, the effect of both capsaicin and pH on VR1 activation was examined. VR1-expressing oocytes were treated with a submaximal concentration of capsaicin (500 nM) at pH 7.6 (Fig. 13). Once their current responses reached a relatively stable plateau, the oocytes were exposed to a solution containing the same concentration of capsaicin at pH 6.3. Under these conditions, the inward current rapidly increased to a new plateau up to five-fold greater in magnitude than the first. Upon returning to pH 7.6, the oocyte response subsided to its initial plateau, and upon the removal of capsaicin it returned to baseline. This potentiation was seen only with sub-saturating concentrations of agonist, as reduced pH did not augment responses

5

10

15

20

25

30

to 10 μ M capsaicin (not shown). These results suggest that while hydrogen ions alone are not sufficient to activate VR1, they can markedly potentiate capsaicin-evoked responses.

Example 10: The Vanilloid Receptor Is Activated By Noxious Heat

The effects of elevated temperature on VR1 activity in calcium influx, conductance, and capsaicin and RR responsivity were examined.

a) Effect of heat upon intracellular calcium

5

10

15

20

25

30

35

The effects of heat upon VR1 activity in mediating calcium influx were examined using transfected HEK293 cells and the flourescent calcium influx screening method described above. Cells were analyzed using microscopic fluorescent calcium imaging before and immediately after the addition of heated calcium imaging buffer (300 ml CIB at 65°C was applied to cells residing in 150 ml CIB at 22°C.) Under these conditions, cells were transiently exposed to a peak temperature of ~45°C.

While cells transfected with vector alone exhibited only a mild, diffuse change in cytoplasmic free calcium, a large proportion of cells expressing VR1 exhibited a pronounced elevation of calcium levels within seconds of heat treatment. These responses subsided within a few minutes and a subsequent challenge with capsaicin produced a characteristic calcium response, suggesting that the response to heat is a specific signaling event and not a consequence of non-specific membrane perturbation or disruption to cell integrity.

b) Effect of heat upon conductance

Whole-cell patch-clamp analysis (Vhold = -60 mV) of VR1-transfected HEK293 cells was performed to examine whether specific heat-evoked membrane currents are associated with this phenomenon. The temperature of the bath medium was raised from 22°C to 48°C (heat) and then restored to 22°C, after which capsaicin (0.5 μ M) was added to the bath. Ionic conditions were identical to those described for the data in Fig. 2. Voltage-ramps (-100 to +40 mV in 500 ms) were applied before, between, and during responses.

Exposure of these cells to a rapid increase in temperature (22°C to 50°C in 25 seconds, monitored with an in-bath thermistor) produced large inward currents (791 ± 235 pA at -60 mV; n=9) that were typically similar in amplitude to that evoked by a subsequent application of capsaicin at 500 nM (Fig. 15A). Both heat- and vanilloid-evoked responses showed outward rectification, suggesting that they are mediated by the same entity (Fig. 15B). By comparison, thermally-evoked responses of control, vector-transfected cells were much smaller and exhibited no rectification (131 ± 23 nA, n=8). In addition, the heat response in VR1-transfected cells desensitized during stimulus application, whereas the small thermal response observed in control vector-transfected cells did not. These results suggest that VR1 is acting as a thermal transducer, either by itself or in conjunction with other cellular components.

c) Heat activation of VR1 in oocytes

To determine whether VR1 could mediate similar responses to heat in a different cellular environment, heat activation of VR1 was tested in the oocyte system. Oocytes injected with either VR1 cRNA or water were subjected to two-electrode voltage-clamp ($V_{hold} = -60$ mV) while the temperature of

the perfusing buffer was raised from 22.7°C to the level indicated, then held constant for 60 sec. The magnitudes of the resulting inward currents are shown in Fig. 16 as the mean \pm s.e.m. (VR1, n = 8; water, n=6 independent cells). The asterisk indicates a significant difference from water-injected oocytes (T-test, P < 0.0005).

In control, water injected oocytes, acute elevation of perfusate temperature produced a small inward current that increased linearly up to 50°C (Fig. 16). VR1 expressing oocytes exhibited similar responses at temperatures up to 40°C, but above this threshold, their responses were significantly larger than those of controls. Thus, even in this non-mammalian context, the VR1-mediated temperature response profile is remarkably consistent with that reported for thermal nociceptors (Fields, *supra*).

d) Inhibition of VR1 heat activation by ruthenium red

To further determine whether heat acts specifically through the capsaicin receptor, the ability of ruthenium red to inhibit the heat-mediated response was tested in VR1-expressing oocytes in the system described above. The current tracings shown in Fig. 17 were generated from representative VR1- or water-injected oocytes ($V_{hold} = -60 \text{ mV}$) during successive applications of the indicated stimuli.

VR1-injected oocytes exhibited the following mean inward current responses \pm s.e.m. (n=5): capsaicin (1 μ M), 1221 \pm 148 nA; heat (50 °C), 2009 \pm 134 nA; heat plus ruthenium red (10 μ M), 243 \pm 47 nA. Inhibition by ruthenium red was significant (88 \pm 2%, n=5; Paired T-test, P < 0.0001). No diminution in current response was observed when successive heat pulses were administered in the absence of ruthenium red. Water-injected oocytes showed no response to capsaicin and much smaller responses to heat (338 \pm 101 nA, n=5). Ruthenium red inhibited these responses by only 21 \pm 26% (n=5; Paired T-test, P <0.1).

These data indicate that VR1 is directly involved in this thermal response; application of ruthenium red reduced significantly (88 \pm 2%; n=5) the response of VR1-expressing oocytes to heat, while the smaller response seen in control cells was reduced by only 21 \pm 26% (n=5) (Fig. 17). Taken together, these observations strongly support the hypothesis that VR1 is activated by noxious, but not innocuous heat.

Example 11: Chromosomal Localization And Isolation Of The Mouse VR1 Gene

The chromosomal localization of the mouse VR1 gene was determined using fluorescent in situ hybridization (FISH) according to methods well known in the art. Briefly, a bacterial artificial chromosome containing a 90-100 kb insert of mouse genomic DNA encoding portions of the mouse VR1 gene was isolated by PCR analysis and Southern hybridization using rat VR1-derived probes. This insert was labeled with digoxigenin and applied to metaphase spreads of mouse chromosomes. Fluorescently tagged anti-digoxigenin antibodies were then used to visualize the position on the chromosomes to which the VR1 gene hybridized.

The VR1 gene mapped to the B3 band of mouse chromosome 11, approximately 49% of the way from the heterochromatic-euchromatic boundary to the telomere of chromosome 11. This region of the mouse chromosome is syntenic to human chromosome 17, particularly the regions 17p11-13, 17pter, and

5

10

15

20

25

30

17qter. It is therefore probable that the human VR1 gene is located within those analogous regions on the human chromosome.

The mouse VR1 gene was sequenced according to methods well known in the art. The nucleotide (SEQ ID NO:10) and amino acid (SEQ ID NO:11) sequences of mouse VR1 are provided in the Sequence Listing below. The rat and mouse VR1 amino acid sequences are more than 95% identical.

Example 12: Identification Of Capsaicin Receptor-Related Polypeptide VRRP-1

A Genbank database search using VR1 revealed a number of human and mouse EST sequences similar VR1. Alignment of these EST sequences suggested that all of them, except one (see below) encode identical or very similar genes, suggesting that they represent fragments of the human and mouse versions of the VR1 gene. Over all regions analyzed, the predicted sequences of the encoded human and mouse proteins were highly identical to one another, but only about 50% identical to the rat VR1. Because mouse VR1 protein is more similar to the rat VR1 protein than 50%, we concluded that these EST sequences must encode human and mouse versions of a related protein, which we have termed VRRP-1. VRRP-1 is an example of the capsaicin receptor-related polypeptides encompassed by the present invention.

Portions of the VRRP-1 genes from mouse brain, rat brain, and human CCRF-CEM cells were cloned using PCR primers (GAC CAG CAA GTA CCT CAC (SEQ ID NO:12) and C TCC CAT GCA GCC CAG TTT ACT TCC TCC ACC CTG AAG CAC CAG CGC TCA (SEQ ID NO:13))), which were based on the consensus of human and mouse EST sequences. A full-length rat VRRP-1 cDNA was isolated from a rat brain cDNA library using the rat PCR product as a radiolabeled probe. The rat VRRP-1 cDNA (SEQ ID NO:3; amino acid sequence SEQ ID NO:4)) is approximately 49% identical to rat VR1 at the amino acid level (SEQ ID NOS:2 (rat VR1) and 4 (rat VRRP-1)) and 59% identical at the nucleotide level (SEQ ID NOS:1 (rat VR1) and 3 (rat VRRP-1)).

VRRP-1 does not appear to be activated by capsaicin or heat. Preliminary evidence suggests VRRP-1 may interact with VR1.

Example 13: Identification Of Human Capsaicin Receptor VR1

Comparison of VR1 with VRRP-1 and other sequences in the Genbank database suggested that VR1 and VRRP-1 are much more closely related to one another than to any other cloned sequences, with one exception. A single human EST sequence (accession number AA321554; SEQ ID NO:8) obtained from human CCRF-CEM lymphoid cells encodes an amino acid sequence (SEQ ID NO:9) that is at least 71% identical and at least 80% similar to the predicted extreme carboxy terminal domain of the rat VR1 (amino acid residues 774 to 838 of SEQ ID NO:2; see Region 2 of the schematic in Fig. 18). Moreover, rat VR1 (SEQ ID NO:1) and the human EST AA321554 (SEQ ID NO:8) are 75% identical at the nucleotide level. In addition, EST AA321554 contains a stop codon in the same position as the stop codon in rat VR1. In contrast, although there is homology between a portion of EST AA321554 and the carboxy terminus of rat VRRP-1 (see Region 1 in Fig. 18), the rat VRRP-1 polypeptide is shorter than the rat VR1

10

15

20

25

30

polypeptide and the protein from wich EST AA321554 appears to be derived. Moreover, even with in Region 1, there is greater homology between rat VR1 and EST AA321554 than between either rat VR1 and rat VRRP-1 or than between rat VRRP-1 and EST AA321554. Therefore, the human EST sequence AA321554 represents the human version (ortholog) of rat VR1.

PCR primers based upon the human sequence were designed to amplify this fragment from cDNA isolated from CCRF-CEM cells or from human sensory ganglion cDNA. The resulting fragment is used as a probe to screen a human genomic DNA library to obtain a full-length human VR1 cDNA sequence from CCRF-CEM cell or human sensory ganglion cDNA. Using the resulting human VR1 genomic fragment, the chromosomal localization of the VR1 gene is confirmed by FISH. The function of the polypeptide encoded by the human VR1 gene is confirmed using the functional assays described above.

Example 14: Identification Of Human Capsaicin Receptor-Related Polypeptide VRRP-1

Rat VRRP-1 sequences were used to screen the Genbank database to identify capsaicin receptorrelated polypeptides from other organisms. The screen identified several human and mouse EST
sequences having homology to three separate regions of rat VRRP-1, which regions are termed Regions
A, B, and C. Regions A, B, and C represents portions of the VRRP-1 sequence within which the human
and mouse VRRP-1-encoding ESTs are clustered, listed from 5' to 3' respectively. Region A encompasses
from about residue 580 to about residue 850; Region B encompasses from about nucleotide residue 960
to about residue 1730; and Region C encompasses from about nucleotide residue 1820 to about residue
2505 in rat the VRRP-1 nucleotide sequence. A summary of the human and mouse EST sequences
corresponding to each of these regions is provided in the table below.

.

Table: Human and Mouse EST Sequences Corresponding to Rat VRRP-1

	Rat VRRP-1 Region A (Genbank Accession Nos.)	Rat VRRP-1 Region B (Genbank Accession Nos.)	Rat VRRP-1 Region C (Genbank Accession Nos.)
Human ESTs	H20025, AA236416, H51393, AA236417, H27879, H50364, N21167, AA461295, N26729, H21490, H49060	AA281349, W44731, N23395, W38665, AA357145, N24224	W92895, T12251, AA304033, N35179, AA281348
Mouse ESTs	W82502, W53556	AA139413	AA476107, AA015295, AA274980

These human and mouse EST sequences can be used to determine a consensus nucleotide sequence for each of Regions A, B, and C. The consensus nucleotide sequence for human VRRP-1 for Region A (SEQ ID NO:5), Region B (SEQ ID NO:6), and Region C (SEQ ID NO:7) are provided in the Sequence Listing below. The consensus sequences can be used to design PCR probes to isolate a fragment encoding the full-length VRRP-1 using methods that are well known in the art.

5

10

15

20

Example 15. Cloning and Sequencing of a Human VRRP-1

The rat VR1 nucleotide and protein sequences were used to search the genbank databases for related entities. A number of expressed sequence tag (EST) sequences were found that exhibited homology to the rat VR1. These were from human and mouse sources. These sequences were aligned with each other and with rat VR1 and found that all but one of the human sequences appeared to encode the same protein and that this protein was highly homologous to the protein encoded by the mouse sequences. The predicted sequences of these human and mouse proteins were about 50% identical to the rat VR1 protein but much more hightly related to one another.

Using the human and mouse EST sequences, PCR primers were designed that were then used on rat brain-derived cDNA to amplify a DNA fragment encoding most of this putative protein. This fragment was radiolabeled and used as a hybridization probe to isolate a full-length cDNA from a rat brain-derived cDNA library. The cDNA (rat VRRP-1) encodes a protein of 761 aa (SEQ ID NO:3) that is 49% identical to the rat VR1 protein and 74% identical to the human VRRP1 protein (SEQ ID NO:23) predicted from the available EST sequences. The rat VRRP-1 mRNA is expressed in sensory ganglia and in other tissues such as brain, spinal cord, spleen, lung, and large intestine.

The human and mouse EST sequences were used to design PCR primers that would allow amplification of the human VRRP-1 sequence from a human-derived cDNA source. Using cDNA derived from human CCRF-CEM cells, a fragment of the human VRRP-1 cDNA was amplified and sequenced, thereby confirming its identity with a subset of the reported EST sequences. Subsequently, PCR primers directed against the 5 prime and 3 prime ends of the predicted human VRRP-1 sequence were used to amplify from CCRF-CEM-derived cDNA a DNA band of approximately 2500bp, which is the correct size for the human cDNA, as predicted by the alignment of the human EST sequences with the rat VRRP-1. The human cDNA was then sequenced using standard methods well known in the art. The DNA sequence of human VRRP-1 (VR2) is provided as SEQ ID NO:35, with the deduced amino acid sequence provided as SEQ ID NO:36.

Example 16. Cloning Chicken VR1 Homologues

Degenerate oligonucleotides were designed based on the amino acid sequence of rat VR1. The oligonucleotides ODJ3885 and ODJ3887 corresponding to VR1 amino acid residues 638-644 and 676-682, respectively, were used as primers for polymerase chain reactions (PCR) with chick genomic DNA as template.

ODJ3885 (SEQ ID NO:28) - 5' TT(TC)AA(AG)TT(TC)AC(GATC)AT(ATC)GG(GATC)ATG
ODJ3887 (SEQ ID NO:29)5' CAT(GATC)A(GA) (GATC)GC(GAT)AT(GATC)A(GA)CAT(AG)TT

Products of approximately 130 bp resulted, which were isolated and ligated into the vector pT-Adv (Clontech). The inserts in several of these plasmid clones were sequenced. The products from chick genomic DNA fell into two classes: one also corresponding to a very close homologue, and another corresponding to a somewhat more divergent homologue.

40 CVR-PCR1 (SEQ ID NO:30)

5

10

15

20

25

30

CVR-PCR2 (SEQ ID NO:31)

TTCAAGTTCACTATTGGGATGGGAGACCTGGAGTTTACAGAGAACTACAGGTTCAAGTCTGTGTTTTGTCATCCTT
TTGGTTCTCTATGTCATCCTTACGTACATCCTCCTGCTCAATATGCTTATAGCCCTAATG

A 150 bp EcoRI fragment containing CVR-PCR2 was used as a hybridization probe to screen clones from a cDNA library derived from RNA isolated from chick embryonic dorsal root ganglia (DRG). Several hybridizing plasmids were identified. Two of these correspond to a probable chick orthologue of rat VR1. The insert of one of these pCVR2 was sequenced in its entirety (SEQ ID NO:24). The deduced protein sequence (SEQ ID NO:25) shows an amino acid identity to rat VR1 of 67%. Nucleotide alignment of the coding regions of rat and chick VR1 cDNAs also shows 67% identity. Electrophysiological and calcium-imaging analysis of HEK293 cells transfected with pCVR2 indicate that the encoded protein responds to protons and to high doses of the vanilloid, resiniferatoxin, but not to capsaicin and to heating protocols which activate rat VR1.

Example 17. Cloning of a Human Vanilloid Receptor

A PCR reaction using ODJ3885 and ODJ3887 with human genomic DNA as template produced a 130bp product. This band was purified and cloned into pT-Adv. The inserts of several clones were sequenced, which showed them all to encode a very close homologue or othologue of rat VR1. The nucleotide sequence (SEQ ID NO:26) is 91% identical to the corresponding region of rat VR1. The deduced protein sequence over this 45 codon segement is identical to that of rat VR1.

Using this new alignment, additional PCR primers were designed to allow amplification of larger segments of VR1-homologous sequences from human cDNA sources. Primers ODJ4018, corresponding to VR1 amino acid residues 423-429, and ODJ3767, which was derived from the sequence of human EST AA321554, were used in a PCR reaction using as template cDNA from human DRG.

ODJ4018 (SEQ ID NO:32) 5' TA(TC) TT(TC) AA(TC) TT(TC) TT(TC) GT(GATC) TA 3'
ODJ3767 (SEQ ID NO:33) 5' AAA AGG GGG ACC AGG GC 3'

The resulting products were separated by gel electrophoresis transferred to nylon membranes for hybridization with a 150bp probe derived from the previous PCR anlysis. A hybridizing fragment of about 1100 bp was thus identified. This is the size expected to be produced by the postion of these primers in the rat VR1 sequence.

The fragment is cloned for sequence analysis. The resulting sequence data is used to design primers for cloning a full length human cDNA corresponding to this sequence. This will be accomplished using the RACE PCR cloning method [Frohman, M.A. (1993) Methods Enzymol, 218:340-358.]. This may also be carried out using primers derived from the seequence of the small PCR fragment HVR-PCR1.

Example 18. Cloning and Sequencing of a Human Vanilloid Receptor (VR1)

In order to obtain sequences corresponding to the human orthologue of rat VR1, a segment of human genomic DNA was identified which contained sequences present in hVR-PCR1. This genomic DNA was isolated from a library of BAC plasmid clones containing large segments of human genomic DNA

10

15

20

25

30

35

(Shizuya, et al 1992, *Proc Nat Acad of Sci USA, 89*:8794-8797) by Genomic Systems Inc., using oligonucleotide PCR primers derived from the sequence determined for hVR-PCR1. PCR reactions using oligonucleotides ODJ4079 (GGCGACCTGGAGTTCACTGAG (SEQ ID NO:37)) and ODJ4080 (GAGCAGGAGGATGTAGGTGAG (SEQ ID NO:38)) as primers, and human genomic DNA as template resulted in the expected 92 bp product. A product of the same size was also obtained using as template cDNA from CCRF-CEM, a human cell line from which the EST sequence #24046 was obtained. This EST sequence appeared to correspond to a close homologue or orthologue of rat VR1. Using these primers to screen a human BAC library by PCR, Genomes Systems provided two BAC plasmid clones, 20614 and 20615.

These two clones were further analyzed by restriction digestion and Southern blotting, using the VR1 hybridization probes described above. Inspection of the pattern of restriction fragments using several different restriction endonucleases indicated that these two clones were probably identical. In order to confirm that these plasmids, in fact, contained VR1-related sequences, Southern blots from these digests were hybridized incubated with different VR1 hybridization probes. The blots were first hybridized to a ³²P labeled 150 bp EcoRI fragment from hVR-PCR1. A single fragment from each digest hybridized with this probe.

In the case of a PstI digest the hybridizing fragment was approximately 250 bp. The products of PstI digestion of this BAC plasmid were ligated into PstI-digested pBluescriptSK+. The resulting ligation products were used to transform cells of the *E. coli* strain DH5α. Resulting transformants were screened by hybridization with the same hVR-PCR1 probe. The insert of one of these clones, hVR1-P1 was sequenced. The results showed that it was highly similar to rat VR1 and corresponded to hVR-PCR1. Alignment of the exon portion of this insert with rVR1 cDNA is shown below.

```
ctgcagcttccagatgttcttgctctcctgtgcgatcttgttgacagtctcacccatgag
    hVR1-P1: 1
25
                2180 ctgcagcttccagatgttcttgctctcttgtgcaatcttgttgacggtctcacccatgag
    rVR1:
    hVR1-P1: 61
                qqcqatqaqcatqttqaqcaqqaqqatqtaqqtqaqaattacataqqccaqcaqcaqqat
                 n magninininini kirini kiini kiini kirini kirin
30
            2120 agcaatgagcatgttgagcagaaggatgtaggtgagaatcacataggccagtaacaggat
    rVR1:
                qatqaaqacaqccttqaaqtcataqttctcagtgaactccaggtcgcccatgccgatggt
    hVR1-P1: 121
35
                2060 gatgaagacagcettgaagtegtagtteteagtgaacteeaggtegeeeatgeegatggt
    rVR1:
                gaacttgaacagctccaggcaggtggagtacaggctgttgtaggag (SEQ ID NO:39)
    hVR1-P1: 181
                 40
            2000 gaacttgaacagctccagacatgtggaatacaggctgttgtaagag (SEQ ID NO:40)
    rVR1:
```

In order to further localize VR1-related sequences on this BAC plasmid insert, Southern blots were performed using a 1008 bp Nhel fragment from the rVR1 cDNA as a hybridization probe. This fragment includes almost the entire 5' portion of the rVR1 coding sequence. In this case each digest produced one or more fragments that hybridized strongly with this probe. In particular, HindIII digestion

45

10

15

produced two hybridizing fragments of approximately 12 kbp and 18 kbp. The 18 kbp also hybridized with the hVR-PCR1 probe, indicating that the 12 kbp fragment probably contained the 5' end of the hVR1-coding region. These fragments were subcloned into pBluescriptSK+ for further analysis. Three resulting clones were obtained. The clones hVR1-H1 and hVR1-H2 contained the 12 kbp fragment inserted in opposite orientations. The clone hVR1-H3, contained a 18 kbp insert. Sequence reactions carried out using vector-derived primers resulted in no VR1-related sequences, indicating that these end segments corresponded to either introns or 5' or 3' flanking sequences. A sequencing reaction of hVR1-H3 using the primer CCRF2, which was derived from the EST24046 sequence was also carried out. The resulting sequence data showed that hVR1-H3 contained VR1-related sequence that appeared to be identical to that present in EST24046. An alignment of these two sequences is shown below.

```
aagacctcagcgtcctctggcttcagagaccctgnaaaactgtcgcagataaacttcctc
   HVR1-H3: 1
              EST24046:168 aagacctcagcgtcctctggctttagagaccctg-aaaactgtcgcagataaacttcctc
15
               gggctgagcanactgcctatctcgagcacttgcctctcttaaaagggggaccagggcaaa
   HVR1-H3: 61
               iiininin maan mid maanuumuniiiismiiinst
   EST24046: 109 gggctgagcagactgcctatntcgagnacttgcctctcttaaaagggggaccagggcaaa
20
               gttcttccagtgtctgcctgaaact 145 (SEQ ID NO:41)
   HVR1-H3: 121
               gttcttccagtgtctgcctgaaact 25 (SEQ ID NO:42)
    EST24046: 49
25
```

In order to identify sequences at the 5' end of the human VR1 coding region present in this genomic clone, a 1500 bp BamHI fragment was subcloned from hVR1-H1 into pBluescriptSK+. The insert in one of the resulting clones, hVR1-B2 was sequenced using vector-based primers (T3 and T7). Sequence from one end of this clone revealed VR1-related sequence as shown by the nucleotide alignment or by alignment of the deduced protein sequence of this clone with that of rVR1. Inspection of these alignments shown below indicated that the translational start of the hVR1 coding region is probably at position 14 of this sequence.

```
cccactccaaaaggacacctgcccagacccctggatggagaccctaactccaggccacc
            35
         rVR1:
   HVR1-B2: 115 tccagccaagccccagctctccacggccaagagccgcacccggctctttgggaagggtga
            mai minne ar in 'ar it it maith mithaith
40
         182 tocagtcaagccccacatcttcactaccaggagtcgtacccggctttttgggaagggtga
   rVR1:
   HVR1-B2: 175 ctcggaggaggctttcccggtggattgccctcacgaggaaggtgagctggactcctgccc
            gaman e a biicina cidini i ini andu.
45
         rVR1:
   HVR1-B2: 235 gaccatcacagtcagccctgttatcaccatccagaggcc 273 (SEQ ID NO:44)
50
            302 tatcatcactgtcagctctgttctaactatccagaggcc 340 (SEQ ID NO:45)
   rVR1:
```

10

```
HVR1-B2: 14 MKKWSSTDLGAAADPLQKDTCPDPLDGDPNSRPPPAKPQLSTAKSRTRLFGKGDSEEAFP
M++ +S D + P Q+++C DP D DPN +PPP KP + T +SRTRLFGKGDSEEA P
rvR1: 1 MEQRASLDSEESESPPQENSCLDPPDRDPNCKPPPVKPHIFTTRSRTRLFGKGDSEEASP

HVR1-B2: 194 VDCPHEEGELDSCPTITVSPVITIQRPRXRP 286 (SEQ ID NO:45)
+DCP+EEG L SCP ITVS V+TIQRP P
rvR1: 61 LDCPYEEGGLASCPIITVSSVLTIQRPGDGP 91 (SEQ ID NO:46)
```

Using this sequence information, two primers were designed to allow production of a human VR1 cDNA from using RT-PCR from polyA+ RNA isolated from the CCRF-CEM cell line. The two primers ODJ4162 DI NO:47)) and ODJ4157 (AGAAATGGAGCAGCACAGACTTGG (SEQ (TCACTTCTCCCGGAAGCGGCAG (SEQ ID NO:48)) were used as primers in a PCR reaction with CCRF-CEM cDNA as template. A product of about 2500 bp resulted from this reaction. Southern blot analysis of this product using a hVR-PCR1 hybridization probe, indicated that this product was, in fact, VR1-related. The product was purified by preparative agarose gel electrophoresis and subcloned into the vector pT-Adv (Clontech). Several clones were isolated and four of these were subjected to DNA sequence analysis. The resulting DNA sequence of human VR1 is provided as SEQ ID NO:33, with the deduced amino acid sequence provided as SEQ ID NO:34.

20

25

30

35

40

10

15

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Before the present nucleotide and polypeptide sequences are described, it is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors and reagents described as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a host cell" includes a plurality of such host cells and reference to "the antibody" includes reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described.

All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the cell lines, vectors, and methodologies which are described in the publications which might be used in connection with the presently described invention. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

CLAIMS

15

30

- 1. An isolated capsaicin receptor polypeptide.
- 5 2. The capsaicin receptor polypeptide of Claim 1, wherein the polypeptide is a VR1 substype.
 - 3. The capsaicin receptor polypeptide of Claim 1, wherein the polypeptide is a VR2 subtype.
- The capsaicin receptor polypeptide of Claim 1, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2, 4, 9, 11, 23, 25, 27, 34, or 36.
 - 5. An isolated polynucleotide sequence encoding a capsaicin receptor polypeptide of claim1.
 - The polynucleotide sequence of Claim 5, wherein the sequence encodes a VR1 subtype.
 - 7. The polynucleotide sequence of Claim 5, wherein the sequence encodes a VR2 subtype.
- 8. The isolated polynucleotide sequence of Claim 5, wherein the sequence comprises a sequence selected from the group consisting of SEQ ID NO:1, 3, 5, 6, 7, 8, 10, 20, 21, 22, 24, 26, 33, or 35.
 - 9. A recombinant expression vector comprising the polynucleotide sequence of Claim 5.
- 25 10. A recombinant host cell containing the polynucleotide sequence of Claim 5.
 - 11. A method for producing the capsaicin receptor polypeptide of Claim 1, the method comprising the steps of:
 - a) culturing a recombinant host cell containing a capsaicin receptor polypeptide-encoding polynucleotide sequence under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
 - 12. An isolated antibody that specifically binds a capsaicin receptor polypeptide of claim 1.
- 35 13. A method for identifying compounds that bind a capsaicin receptor polypeptide, the method comprising the steps of:

contacting a capsaicin receptor polypeptide with a test compound; and detecting specific binding of the test compound to the capsaicin receptor polypeptide.

- 14. The method of claim 13, wherein said detecting is by detecting of an alteration of intracellular calcium concentration in the capsaicin receptor-expressing host cell.
- 15. A method for detecting a vanilloid compound in a sample, wherein the vanilloid compound based to be a satisfied to be a sample, wherein the vanilloid compound to be a satisfied to be a sat

contacting a sample suspected of containing a vanilloid compound with a eukaryotic host cell expressing a capsaicin receptor polypeptide;

detecting an alteration of a cellular response associated with capsaicin receptor activity in the capsaicin receptor-expressing host cell.

10

- 16. The method of claim 15, wherein the cellular response associated with capsaicin receptor activity is an increase in intracellular calcium concentration.
- 17. A pharmaceutical composition comprising a substantially purified capsaicin receptor polypeptide and a suitable pharmaceutical carrier.
 - 18. A non-human transgenic animal model for capsaicin receptor gene function wherein the transgenic animal is characterized by having an alteration in capsaicin receptor function relative to a normal animal of the same species.

20

25

30

19. A method of screening for biologically active agents that modulate capsaicin receptor function, the method comprising:

combining a candidate agent with any one of:

- (a) a mammalian capsaicin receptor polypeptide;
- (b) a mammalian capsaicin receptor-related polypeptide;
- (c) a cell containing a nucleic acid encoding a mammalian capsaicin receptor polypeptide;
- (d) a cell containing a nucleic acid encoding a mammalian capsaicin receptor-related polypeptide; or
- (e) a non-human transgenic animal model for function of a capsaicin receptor gene comprising one of: (i) a knockout of a capsaicin receptor gene; (ii) an exogenous and stably transmitted mammalian capsaicin receptor gene sequence; or (iii) a capsaicin receptor promoter sequence operably linked to a reporter gene; and

determining the effect of said agent on capsaicin receptor function.

801

S

 $\overline{}$

 α

٩

⋖

ــا

Z

3

Z

8

ပ

S

>

 α

ပ

S

 α

S

44

S

 α

 \succeq

>

ပ

ပ

Δ.

Z

9

Z

838

 \sim

2

SEQ

 \mathbf{x}

9

۵.

>

 \supset

S

 \prec

LL.

>

ш

₩

0

α.

 \succeq

S

エ

 $\boldsymbol{\prec}$

O

>

w

ш

O

O

 \ll

工

 α

 α

470 518 629 329 376 709 140 234 564 754 93 187 281 ۵_ C ပ 4 × ¥ α S ပ S \ll S ပ α ပ > ш. >Z ഗ Z ц. ≱ α ഗ ≪ w سا ≪: ≩ م α Z O ≥ \ll S w ⋖ \simeq ပ O ۵. ₹ Z \mathbf{x} O ⋖ \mathbf{x} ⋖ ш ပ $\boldsymbol{\prec}$ 多 ہ ب S S α_ \succeq ပ > ٩ ٩ \simeq O ~ Z ⊢ Z \propto ⋖ ۵. L > \sim K 工 > S Z ۵ ۵. لتا \simeq O > 0 \leq _ w エ \leq O S \geq \simeq ۵. K \simeq >ပ ပ S S 4 w > > $\mathbf{\times}$ L. \simeq \mathbf{z} ပ Z Z تعا Δ. \propto ш 3 ⋖ O 工 ш > نیا ليا ≊ α. 4 S ပ \propto I S O ⋖ >Z α_ Z \circ $\boldsymbol{\prec}$ ပ \circ \propto ۵_ S \circ $\mathbf{\times}$ \mathbf{x} ₹ Z œ æ Z >ட ليا 3 ပ S S ŀ➤ \propto **|** >α. ٩ S Z ш Ф > **>** O Z > ≱ 0 ۵ ليا \simeq 0 ⋖ O 工 ₹ ≪ ⋖ Z α \Box ഗ ⋖ ပ ~ ۵. > α O > \mathbf{x} \succeq ပ Z ≊ S \mathbf{K} ţい ≆ ပ Z エ O \propto S S Z ۵ S 4 0 ≪ α Z O > ــا ·>-> ۵ ٩ Z α ⋖ O ⋝ >ပ S _ ပ ш S ட ပေ \mathbf{z} ပ ≥ > α ~ سا ပ \succeq \mathbf{K} ≊ \circ \simeq $\overline{}$ \leftarrow **~** لبا ш ~ ပ α -> S ليا \prec > Z ≪ Z \mathbf{Z} >エ ഗ C ш ш ۵ S > O Z \circ \simeq \circ ⋖ 4 ≆ ≊ α ۵. \succeq <u>α</u> Z Z メ O ۵ ပ ۵. \mathbf{x} O w ш 2 ပ S S Z ပ ф. $\mathbf{\times}$ ပ ပ ഗ $\overline{}$ S حا ш ш > α S ပ ⋖ ш > ليا ш. ٩ ш Ø Δ. ـــا ~ \simeq > ⋖ ш ပ ပ لبا S S \sim $\boldsymbol{\times}$ S S 2 ں S ۵. ⋖ ⋖ \propto \mathbf{x} ⋖ \propto ≨ エ لسا ≊ S ပ S ۵., > ш > ပ ¥ ပ S ပ > \sim Ö S S \mathbf{x} 4 > メ ≥ 2 ≪ α 9 S ⋖ > ပ S 2 ≆ \succeq Z 0 O S ≢ 4 ۵. \mathbf{x} 9 \succeq > S I エ \simeq \simeq > \simeq \succeq \simeq \mathbf{x} \mathbf{Z} Z S >4

1/12

capsaicin 1 µM

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 12

SUBSTITUTE SHEET (RULE 26)

12/12

СООН Human EST AA321554 COOH Rat VR1 Rat VR2 Region 2 Region 1

SUBSTITUTE SHEET (RULE 26)

-1-

SEQUENCE LISTING

<110> Julius, David J.
 Caterina, Michael J.
 Brake, Anthony J.

<120> NUCLEIC ACID SEQUENCES ENCODING CAPSAICIN RECEPTOR AND CAPSAICIN RECEPTOR-RELATED POLYPEPTIDES AND USES THEREOF

<130> 9076/084PCT <140> Unassigned

<150> 60/072,151 <151: 1998-01-22

<141> 1999-01-22

<160> 48

<170> FastSEQ for Windows Version 3.0

<210> 1 <211> 2880

<212> DNA

<213> R. rattus

<220>

<221> CDS

<222> (81) ... (2594)

<223> VR1 capsaicin receptor

<400> 1

cagctccaag gcacttgctc catttggggt gtgcctgcac ctagctggtt gcaaattggg 60 ccacagagga tctggaaagg atg gaa caa cgg gct agc tta gac tca gag gag 113

Met Glu Gln Arg Ala Ser Leu Asp Ser Glu Glu

1 5 10

tct gag tcc cca ccc caa gag aac tcc tgc ctg gac cct cca gac aga

Ser Glu Ser Pro Pro Gln Glu Asn Ser Cys Leu Asp Pro Pro Asp Arg

15 20 25

gac cct aac tgc aag cca cct cca gtc aag ccc cac atc ttc act acc

Asp Pro Asn Cys Lys Pro Pro Pro Val Lys Pro His Ile Phe Thr Thr

30 35 40

agg agt cgt acc cgg ctt ttt ggg aag ggt gac tcg gag gag gcc tct 257

Arg Ser Arg Thr Arg Leu Phe Gly Lys Gly Asp Ser Glu Glu Ala Ser

45 50 55

ccc ctg gac tgc cct tat gag gaa ggc ggg ctg gct tcc tgc cct atc

Pro Leu Asp Cys Pro Tyr Glu Glu Gly Gly Leu Ala Ser Cys Pro Ile

60 65 70 75

atc Ile	act Thr	gtc Val	agc Ser	tct Ser 80	gtt Val	cta Leu	act Thr	atc Ile	cag Gln 85	agg Arg	cct Pro	Gly ggg	gat Asp	gga Gly 90	cct Pro	353
gcc Ala	agt Ser	gtc Val	agg Arg 95	ccg Pro	tca Ser	tçc Ser	cag Gln	gac Asp 100	tcc Ser	gtc Val	tcc Ser	gct Ala	ggt Gly 105	gag Glu	aag Lys	401
ccc Pro	ccg Pro	agg Arg 110	ctc Leu	tat Tyr	gat Asp	cgc Arg	agg Arg 115	agc Ser	atc Ile	ttc Phe	gat Asp	gct Ala 120	gtg Val	gct Ala	cag Gln	449
agt Ser	aac Asn 125	tgc Cys	cag Gln	gag Glu	ctg Leu	gag Glu 130	agc Ser	ctg Leu	ctg Leu	ccc Pro	ttc Phe 135	ctg Leu	cag Gln	agg Arg	agc Ser	497
aag Lys 140	aag Lys	cgc Arg	ctg Leu	act Thr	gac Asp 145	agc Ser	gag Glu	ttc Phe	aaa Lys	gac Asp 150	cca Pro	gag Glu	aca Thr	gga Gly	aag Lys 155	545
acc Thr	tgt Cys	ctg Leu	cta Leu	aaa Lys 160	gcc Ala	atg Met	ctc Leu	aat Asn	ctg Leu 165	cac His	aat Asn	GJA aaa	cag Gln	aat Asn 170	gac Asp	593
acc Thr	atc Ile	gct Ala	ctg Leu 175	ctc Leu	ctg Leu	gac Asp	gtt Val	gcc Ala 180	cgg Arg	aag Lys	aca Thr	gac Asp	agc Ser 185	ctg Leu	aag Lys	641
cag Gln	ttt Phe	gtc Val 190	aat Asn	gcc Ala	agc Ser	tac Tyr	aca Thr 195	gac Asp	agc Ser	tac Tyr	tac Tyr	aag Lys 200	ggc	cag Gln	aca Thr	689
gca Ala	ctg Leu 205	cac His	att Ile	gcc Ala	att Ile	gaa Glu 210	cgg Arg	cgg Arg	aac Asn	atg Met	acg Thr 215	ctg Leu	gtg Val	acc Thr	ctc Leu	737
ttg Leu 220	Val	gag Glu	aat Asn	gga Gly	gca Ala 225	gat Asp	gtc Val	cag Gln	gct Ala	gcg Ala 230	gct Ala	aac Asn	GJA 333	gac Asp	ttc Phe 235	785
ttc Phe	aag Lys	aaa Lys	acc Thr	aaa Lys 240	ggg	agg Arg	cct Pro	ggc Gly	ttc Phe 245	tac Tyr	ttt Phe	ggt Gly	gag Glu	ctg Leu 250	ccc Pro	833
ctg Leu	tcc Ser	ctg Leu	gct Ala 255	Ala	tgc Cys	acc Thr	aac Asn	cag Gln 260	ctg Leu	gcc Ala	att Ile	gtg Val	aag Lys 265	Phe	ctg Leu	881
ctg Leu	cag Gln	aac Asn 270	Ser	tgg Trp	cag Gln	cct Pro	gca Ala 275	Asp	atc	agc Ser	gcc Ala	cgg Arg 280	Asp	tca Ser	gtg Val	929

ggc	aac Asn 285	acg Thr	gtg Val	ctt Leu	cat His	gcc Ala 290	ctg Leu	gtg Val	gag Glu	gtg Val	gca Ala 295	gat Asp	aac Asn	aca Thr	gtt Val	977
gac Asp 300	aac Asn	acc Thr	aag Lys	ttc Phe	gtg Val 305	aca Thr	agc Ser	atg Met	tac Tyr	aac Asn 310	gag Glu	atc Ile	ttg Leu	atc Ile	ctg Leu 315	1025
GJÀ 333	gcc Ala	aaa Lys	ctc Leu	cac His 320	ccc Pro	acg Thr	ctg Leu	aag Lys	ctg Leu 325	gaa Glu	gag Glu	atc Ile	acc Thr	aac Asn 330	agg Arg	1073
aag Lys	gly ggg	ctc Leu	acg Thr 335	cca Pro	ctg Leu	gct Ala	ctg Leu	gct Ala 340	gct Ala	agc Ser	agt Ser	ggg Gly	aag Lys 345	atc Ile	gj aaa	1121
gtc Val	ttg Leu	gcc Ala 350	tac Tyr	att Ile	ctc Leu	cag Gln	agg Arg 355	gag Glu	atc Ile	cat His	gaa Glu	ccc Pro 360	gag Glu	tgc Cys	cga Arg	1169
cac His	cta Leu 365	tcc Ser	agg Arg	aag Lys	ttc Phe	acc Thr 370	gaa Glu	tgg Trp	gcc Ala	tat Tyr	ggg Gly 375	cca Pro	gtg Val	cac His	tcc Ser	1217
tcc Ser 380	ctt Leu	tat Tyr	gac Asp	ctg Leu	tcc Ser 385	tgc Cys	att Ile	gac Asp	acc Thr	tgt Cys 390	gaa Glu	aag Lys	aac Asn	tcg Ser	gtt Val 395	1265
											cct Pro					1313
atg Met	ctt Leu	ctc Leu	gtg Val 415	gaa Glu	ccc Pro	ttg Leu	aac Asn	cga Arg 420	ctc Leu	cta Leu	cag Gln	gác Asp	aag Lys 425	tgg Trp	gac Asp	1361
aga Arg	ttt Phe	gtc Val 430	Lys	cgc Arg	atc Ile	ttc Phe	tac Tyr 435	ttc Phe	aac Asn	ttc Phe	ttc Phe	gtc Val 440	tac Tyr	tgc Cys	ttg Leu	1409
tat Tyr	atg Met 445	atc Ile	atc Ile	ttc Phe	acc Thr	gcg Ala 450	gct Ala	gcc Ala	tac Tyr	tat Tyr	cgg Arg 455	cct Pro	gtg Val	gaa Glu	ggc Gly	1457
ttg Leu 460	Pro	ccc Pro	tat Tyr	aag Lys	ctg Leu 465	aaa Lys	aac Asn	acc Thr	gtt Val	ggg Gly 4 70	gac Asp	tat Tyr	ttc Phe	cga Arg	gtc Val 475	1505
acc Thr	gga Gly	gag Glu	atc Ile	ttg Leu 480	Ser	gtg Val	tca Ser	gga Gly	gga Gly 485	gtc Val	tac Tyr	ttc Phe	ttc Phe	ttc Phe 490	cga Arg	1553
gly ggg	att Ile	caa Gln	tat Tyr 495	Phe	ctg Leu	cag Gln	agg Arg	cga Arg 500	Pro	tcc Ser	ctc Leu	aag Lys	agt Ser 505	ttg Leu	ttt Phe	1601

gtg Val	gac Asp	agc Ser 510	tac Tyr	agt Ser	gag Glu	ata Ile	ctt Leu 515	ttc Phe	ttt Phe	gta Val	cag Gln	tcg Ser 520	ctg Leu	ttc Phe	atg Met	1649
ctg Leu	gtg Val 525	tct Ser	gtg Val	gta Val	ctg Leu	tac Tyr 530	ttc Phe	agc Ser	caa Gln	cgc Arg	aag Lys 535	gag Glu	tat Tyr	gtg Val	gct . Ala	1697
tcc Ser 540	atg Met	gtg Val	ttc Phe	tcc Ser	ctg Leu 545	gcc Ala	atg Met	ggc Gly	tgg Trp	acc Thr 550	aac Asn	atg Met	ctc Leu	tac Tyr	tat Tyr 555	1745
acc Thr	cga Arg	gga Gly	ttc Phe	cag Gln 560	cag Gln	atg Met	ggc Gly	atc Ile	tat Tyr 565	gct Ala	gtc Val	atg Met	att Ile	gag Glu 570	aag Lys	1793
atg Met	atc Ile	ctc Leu	aga Arg 575	gac Asp	ctg Leu	tgc Cys	cgg Arg	ttt Phe 580	atg Met	ttc Phe	gtc Val	tac Tyr	ctc Leu 585	gtg Val	ttc Phe	1841
ttg Leu	ttt Phe	gga Gly 590	ttt Phe	tcc Ser	aca Thr	gct Ala	gtg Val 595	gtg Val	aca Thr	ctg Leu	att Ile	gag Glu 600	gat Asp	Gly aaa	aag Lys	1889_
aat Asn	aac Asn 605	tct Ser	ctg Leu	cct Pro	atg Met	gag Glu 610	tcc Ser	aca Thr	cca Pro	cac His	aag Lys 615	tgc Cys	cgg Arg	ggg	tct Ser	1937
gcc Ala 620	tgc Cys	aag Lys	cca Pro	ggt Gly	aac Asn 625	tct Ser	tac Tyr	aac Asn	agc Ser	ctg Leu 630	Tyr	tcc Ser	aca Thr	tgt Cys	ctg Leu 635	1985
gag Glu	ctg Leu	ttc Phe	aag Lys	ttc Phe 640	acc Thr	atc Ile	ggc	atg Met	ggc Gly 645	gac Asp	ctg Leu	gag Glu	ttc Phe	act Thr 650	gag Glu	2033
aac Asn	tac Tyr	gac Asp	ttc Phe 655	aag Lys	gct Ala	gtc Val	ttc Phe	atc Ile 660	atc Ile	ctg Leu	tta Leu	ctg Leu	gcc Ala 665	tat Tyr	gtg Val	2081
att Ile	ctc Leu	acc Thr 670		atc	ctt Leu	ctg Leu	ctc Leu 675	Asn	atg Met	ctc Leu	att Ile	gct Ala 680	Leu	atg Met	ggt Gly	2129
gag Glu	acc Thr 685	Val	aac Asn	aag Lys	att : Ile	gca Ala 690	Gln	gag Glu	ago Ser	aag Lys	aac Asn 695	Ile	tgg Trp	aag Lys	ctg Leu	2177
cag Glr 700	Arg	gcc Ala	ato lle	acc Thr	ato Ile	Leu	gat Asp	aca Thr	gag Glu	aag Lys 710	Ser	ttc Phe	ctg Leu	aag Lys	tgc Cys 715	2225

atg Met	agg Arg	aag Lys	gcc Ala	ttc Phe 720	cgc Arg	tct Ser	ggc Gly	aag Lys	ctg Leu 725	ctg Leu	cag Gln	gtg Val	gjå aaa	ttc Phe 730	act Thr	2273
cct Pro	gac Asp	ggc Gly	aag Lys 735	gat Asp	gac Asp	tac Tyr	cgg Arg	tgg Trp 740	tgt Cys	ttc Phe	agg Arg	gtg Val	gac Asp 745	gag Glu	gta Val	2321
aac Asn	tgg Trp	act Thr 750	acc Thr	tgg Trp	aac Asn	acc Thr	aat Asn 755	gtg Val	ggt Gly	atc Ile	atc Ile	aac Asn 760	gag Glu	gac Asp	cca Pro	2369
ggc Gly	aac Asn 765	tgt Cys	gag Glu	ggc Gly	gtc Val	aag Lys 770	cgc Arg	acc Thr	ctg Leu	agc Ser	ttc Phe 775	tcc Ser	ctg Leu	agg Arg	tca Ser	2417
ggc Gly 780	cga Arg	gtt Val	tca Ser	ggg Gly	aga Arg 785	aac Asn	tgg Trp	aag Lys	aac Asn	ttt Phe 790	gcc Ala	ctg Leu	gtt Val	ccc Pro	ctt Leu 795	2465
ctg Leu	agg Arg	gat Asp	gca Ala	agc Ser 800	act Thr	cga Arg	gat Asp	aga Arg	cat His 805	gcc Ala	acc Thr	cag Gln	cag Gln	gaa Glu 810	gaa Glu	2513
gtt Val	caa Gln	ctg Leu	aag Lys 815	cat His	tat Tyr	acg Thr	gga Gly	tcc Ser 820	ctt Leu	aag Lys	cca Pro	gag Glu	gat Asp 825	gct Ala	gag Glu	2561
			Asp								taa	tgga	cac	tatg	caggga	2614
tca	atgo	3 99	gtct	ttgg	gt g	gtct	gctt	a gg	gaac	cagc	agg	gttg	acg	ttat	ctgggt	2674
cca	ctct	gtg	cctg	ccta	gg c	acat	tcct	a gg	actt	cggc	ggg.	cctg	ctg	tggg	aactgg	2734
gag	gtgt	gtg	ggaa	ttga	ga t	gtgt	atcc	a ac	catg.	atct	cca	aaca ttaa	ttt aca	ggct	ttcaac	2794 2854
			aaaa					c gg	Caaa		cac	ccgg	aca	caca	aaaaaa	2880
		210>														
			838 PRT													
			R.		us											
	_	400>														
Met				Ala	Ser	Leu	Asp	Ser	Glu	Glu	Ser	Glu	Ser		Pro	
1	~1			5	T	7.00	Dro	Dro	10	n.ca	N cr	Pro	. Aen	15 Cvs	Lvs	
			Ser 20					25					30			
Pro	Pro	Pro	Val	Lys	Pro	His	Ile 40	Phe		Thr	Arg	Ser	Arg	Thr	Arg	
Leu			/ Lys	Gly	Asp			Glu			Pro		Asp	Cys	Pro	
Tvr	50 Glu	Gli	ıGlv	Glv	Leu	55 Ala	Ser	Cys	Pro	Ile		Thr	Val	Ser	Ser	
65				1	70			4 -		75					80	

				85			Gly		90					95	
			100				Ala	105					110		
_		115					Ala 120					125			
	130					135	Leu				140				
145					150		Glu			155					160
Ala				165			Gly		170					175	
			180				Asp	185					190		
	•	195					Lys 200					205			
	210					215	Leu				220				
225					230		Asn			235					240
Gly				245			Gly		250					255	
_			260				Val	265					270		
		275					Arg 280					285			
His	Ala 290	Leu	Val	Glu	Val	Ala 295	Asp	Asn	Thr	Val	Asp 300	Asn	Thr	Ļys	Phe
Val 305	Thr	Ser	Met	Tyr	Asn 310	Glu	Ile	Leu	Ile	Leu 315	Gly	Ala	Lys	Leu	His 320
Pro	Thr	Leu	Lys	Leu 325	Glu	Glu	Ile	Thr	Asn 330	Arg	Lys	Gly	Leu	Thr 335	Pro
Leu	Ala	Leu	Ala 340	Ala	Ser	Ser	Gly	Lys 345		Gly	Val	Leu	Ala 350	Tyr	Ile
Leu	Gln	Arg 355	Glu		His	Glu	Pro 360		Cys	Arg	His	Leu 365		Arg	Lys
Phe	Thr 370	Glu	Trp	Ala	Tyr	Gly 3 75	Pro	Val	His	Ser	Ser 380		Tyr	Asp	Leu
Ser 385	Cys	Ile	Asp	Thr	Cys 390		Lys	Asn	Ser	Val 395		Glu	Val	Ile	Ala 400
Tyr	Ser	Ser	Ser	Glu 405		Pro	Asn	Arg	His		Met	Leu	Leu	Val 415	Glu
Pro	Leu	. Asr	Arg	Leu		Glr	Asp	Lys 425		Asp	Arg	Phe	Val 430	Lys	Arg
Ile	Phe	Tyr 435	Phe		Phe	Phe	Val		Cys	Leu	Туг	Met 445	Ile	Ile	Phe
Thr	Ala 450	Ala		туг	туг	Arg 455	pro	Val	Glu	Gly	Leu 460		Pro	Tyr	Lys
Leu 465	Lys	Asr	Thr	val	. Gly	/ Asp	туг	Phe	Arg	val 475		Gly	Glu	Ile	Let 480
Ser	· Val	L Sei	Gly	/ Gly	/ Val		Phe	Phe	Phe 490	Arg		, Ile	Gln	Tyr 495	Phe
Lev	ı Glr	n Arg	arg 500	g Pro		Let	ı Lys	s Ser	Lev		val	. Asp	Ser 510		Sei

Glu Ile Leu Phe Phe Val Gln Ser Leu Phe Met Leu Val Ser Val Val 520 Leu Tyr Phe Ser Gln Arg Lys Glu Tyr Val Ala Ser Met Val Phe Ser 540 535 Leu Ala Met Gly Trp Thr Asn Met Leu Tyr Tyr Thr Arg Gly Phe Gln 555 550 Gln Met Gly Ile Tyr Ala Val Met Ile Glu Lys Met Ile Leu Arg Asp 570 Leu Cys Arg Phe Met Phe Val Tyr Leu Val Phe Leu Phe Gly Phe Ser 585 590 580 Thr Ala Val Val Thr Leu Ile Glu Asp Gly Lys Asn Asn Ser Leu Pro 600 Met Glu Ser Thr Pro His Lys Cys Arg Gly Ser Ala Cys Lys Pro Gly 615 Asn Ser Tyr Asn Ser Leu Tyr Ser Thr Cys Leu Glu Leu Phe Lys Phe 630 635 Thr Ile Gly Met Gly Asp Leu Glu Phe Thr Glu Asn Tyr Asp Phe Lys 650 645 Ala Val Phe Ile Ile Leu Leu Leu Ala Tyr Val Ile Leu Thr Tyr Ile 665 Leu Leu Leu Asn Met Leu Ile Ala Leu Met Gly Glu Thr Val Asn Lys 680 Ile Ala Gln Glu Ser Lys Asn Ile Trp Lys Leu Gln Arg Ala Ile Thr 700 695 Ile Leu Asp Thr Glu Lys Ser Phe Leu Lys Cys Met Arg Lys Ala Phe 715 710 Arg Ser Gly Lys Leu Leu Gln Val Gly Phe Thr Pro Asp Gly Lys Asp 730 725 Asp Tyr Arg Trp Cys Phe Arg Val Asp Glu Val Asn Trp Thr Thr Trp 745 Asn Thr Asn Val Gly Ile Ile Asn Glu Asp Pro Gly Asn Cys Glu Gly 760 Val Lys Arg Thr Leu Ser Phe Ser Leu Arg Ser Gly Arg Val Ser Gly 775 Arg Asn Trp Lys Asn Phe Ala Leu Val Pro Leu Leu Arg Asp Ala Ser 795 790 Thr Arg Asp Arg His Ala Thr Gln Gln Glu Glu Val Gln Leu Lys His 810 805 Tyr Thr Gly Ser Leu Lys Pro Glu Asp Ala Glu Val Phe Lys Asp Ser 825 820 Met Val Pro Gly Glu Lys 835 <210> 3 <211> 2736

<212> DNA

<213> R. rattus

<220>

<400> 3

ggcgttaaac ctgctctgtc cactgtgtga gacgaacagg tggaggtgg acgacgcaga 60 gaaagctcgg agcggccgc ggaggttccc acagccccat tactgtcagc gttgagccgc 120 acccctccgg gccgcacttc ctctctcagt ccccgctgcc ggagagcccc gctaggctcg 180 gtgatcctag cctgcagttt gccgccgcta caccttggct tcagcctgcg gggtcccagc 240


```
caggectgee ectgeggtat gagagaggaa eettaacate tecateteta cagaggttte
                                                                       300
agctgtaagg agcatectee teteteagga tgaetteage etecageece ecagettea
                                                                       360
ggctggagac ttccgatgga gatgaagagg gcaatgctga ggtgaacaag gggaagcagg
                                                                       420
aaccgcccc catggagtca ccattccaga gggaggaccg gaattcctcc cctcagatca
                                                                       480
aagtgaacct caacttcata aagagacctc ctaaaaaacac ttctgctccc agccagcagg
                                                                       540
agccagateg gtttgacegt gaccgaetet teagtgtggt eteceggggt gteecegagg
                                                                       600
aactgactgg actgctagaa tacctgcgct ggaacagcaa gtacctcact gactctgcat
                                                                       660
acacagaagg ctccactgga aagacgtgcc tgatgaaggc tgtgctgaac cttcaggatg
                                                                       720
gggtcaatgc ctgcatcatg ccgctgctgc agattgacaa ggattccggc aatcccaagc
                                                                       780
ccctcgtcaa tgcccagtgc accgatgagt tctaccaagg ccacagtgcg ctgcacatcg
                                                                       840
ccatagagaa gaggagcctg cagtgcgtga agctgctggt agagaatgga gcggatgttc
                                                                       900
acctccgagc ctgtggccgc ttcttccaaa agcaccaagg aacttgtttc tattttggag
                                                                       960
agctacetet ttetetgget gegtgeacea ageagtggga tgtggtgaee taeeteetgg
                                                                      1020
agaacccaca ccagccggcc agcctggagg ccaccgactc cctgggcaac acagtcctgc
                                                                      1080
atgctctggt aatgattgca gataactcgc ctgagaacag tgccctggtg atccacatgt
                                                                      1140
acgacgggct tctacaaatg ggggcgcgcc tctgccccac tgtgcagctt gaggaaatct
                                                                      1200
ccaaccacca aggecteaca cecetgaaac tagecgecaa ggaaggeaaa ategagattt
                                                                      1260
teaggeacat tetgeagegg gaatteteag gacegtacea geceetttee egaaagttta
                                                                      1320
ctgagtggtg ttacggtcct gtgcgggtat cgctgtacga cctgtcctct gtggacagct
                                                                      1380
gggaaaagaa ctcggtgctg gagatcatcg cttttcattg caagagcccg aaccggcacc
                                                                      1440
gcatggtggt tttagaacca ctgaacaagc ttctgcagga gaaatgggat cggctcgtct
                                                                      1500
caagattett etteaactte geetgetaet tggtetaeat gtteatette accgtegttg
                                                                      1560
cctaccacca gccttccctg gatcagccag ccatcccctc atcaaaagcg acttttgggg
                                                                      1620
aatccatgct gctgctgggc cacattctga tcctgcttgg gggtatttac ctcttactgg
                                                                      1680
gecagetgtg gtacttttgg eggeggegee tgtttatetg gateteatte atggacaget
                                                                      1740
actttgaaat cetetttete etteaggete tgeteaeagt getgteeeag gtgetgeget
                                                                      1800
tcatggagac tgaatggtac ctacccctgc tagtgttatc cctagtgctg ggctggctga
                                                                      1860
                                                                      1920
acctqcttta ctacacacqq ggctttcagc acacaggcat ctacagtgtc atgatccaga
aggicatect tegagaeetg etcegittee tgetggieta eetggiette ettitegget
                                                                      1980
ttgctgtagc cctagtaagc ttgagcagag aggcccgaag tcccaaagcc cctgaagata
                                                                      2040
acaactccac agtgacggaa cagcccacgg tgggccagga ggaggagcca gctccatatc
                                                                      2100
ggagcattct ggatgcctcc ctagagctgt tcaagttcac cattggtatg ggggagctgg
                                                                      2160
ctttccagga acagctgcgt tttcgtgggg tggtcctgct gttgctgttg gcctacgtcc
                                                                      2220
ttctcaccta cgtcctgctg ctcaacatgc tcattgctct catgagcgaa actgtcaacc
                                                                      2280
acgttgctga caacagctgg agcatctgga agttgcagaa agccatctct gtcttggaga
                                                                      2340
tggagaatgg ttactggtgg tgccggagga agaaacatcg tgaagggagg ctgctgaaag
                                                                      2400
teggeaceag gggggatggt acceetgatg agegetggtg etteagggtg gaggaagtaa
                                                                      2460
attgggctgc ttgggagaag actcttccca ccttatctga ggatccatca gggccaggca
                                                                      2520
tcactggtaa taaaaagaac ccaacctcta aaccggggaa gaacagtgcc tcagaggaag
                                                                      2580
                                                                      2640
accatctgcc ccttcaggtc ctccagtccc cctgatggcc cagatgcagc agcaggctgg
caggatggag tagggaatct tcccagccac accagaggct actgaatttt ggtggaaata
                                                                      2700
                                                                      2736
taaatatttt ttttgcataa aaaaaaaaaa aaaaaa
```

<211> 761

<212> PRT

<213> R. rattus

<400> 4

 Met Thr Ser Ala Ser Ser Pro
 Pro
 Pro
 Ala Phe Arg Leu Glu Glu Thr Ser Asp

 1
 5
 10
 15

 Gly Asp Glu Glu Gly Asn Ala Glu Val Asn Lys Gly Lys Gln Glu Pro
 20
 25

 Pro Pro Met Glu Ser Pro Phe Gln Arg Glu Asp Arg Asn Ser Ser Pro
 30

 40
 45

	50				Leu	55					60				
65					Gln 70			•		75					80
				85	Arg				90					95	
Glu	Tyr	Leu	Arg 100	Trp	Asn	Ser	Lys	Tyr 105	Leu	Thr	Asp	Ser	Ala 110	Tyr	Thr
Glu	Gly	Ser 115	Thr	Gly	Lys	Thr	Cys 120	Leu	Met	Lys	Ala	Val 125	Leu	Asn	Leu
	130		•		Ala	135					140				
145		_			Lys 150					155					160
				165	Ser				170					175	
			180		Leu			185					190		
_		195			Phe		200					205			
	210				Leu	215					220				
225					Leu 230					235					240
				245	Gly				250					255	
			260		Glu			265					270		
		275			Gly		280					285			
	290				Gln	295					300				
305	_	_			Ile 310					315					320
				325	Leu				330					335	
			340		Leu			345					350		
		355			Glu		360					365			
	370				Val	375					380				
385					Val 390					395					400
				405	Ile				410					415	
			420		Ile			425					430		
		435			His		440					445			
	450				Trp	455					460				
11e		Phe	Met	Asp	Ser 470		Phe	Glu	Ile	Leu 475		Leu	Leu	Gln	Ala 480

```
Leu Leu Thr Val Leu Ser Gln Val Leu Arg Phe Met Glu Thr Glu Trp
                                    490
               485
Tyr Leu Pro Leu Leu Val Leu Ser Leu Val Leu Gly Trp Leu Asn Leu
            500
                                505
Leu Tyr Tyr Thr Arg Gly Phe Gln His Thr Gly Ile Tyr Ser Val Met
                            520
                                                 525
Ile Gln Lys Val Ile Leu Arg Asp Leu Leu Arg Phe Leu Leu Val Tyr
                        535
Leu Val Phe Leu Phe Gly Phe Ala Val Ala Leu Val Ser Leu Ser Arg
                    550
                                        555
Glu Ala Arg Ser Pro Lys Ala Pro Glu Asp Asn Asn Ser Thr Val Thr
                                    570
Glu Gln Pro Thr Val Gly Gln Glu Glu Pro Ala Pro Tyr Arg Ser
                                585
            580
Ile Leu Asp Ala Ser Leu Glu Leu Phe Lys Phe Thr Ile Gly Met Gly
                            600
Glu Leu Ala Phe Gln Glu Gln Leu Arg Phe Arg Gly Val Val Leu Leu
                                            620
                        615
Leu Leu Leu Ala Tyr Val Leu Leu Thr Tyr Val Leu Leu Leu Asn Met
                    630
                                        635
Leu Ile Ala Leu Met Ser Glu Thr Val Asn His Val Ala Asp Asn Ser
                                    650
Trp Ser Ile Trp Lys Leu Gln Lys Ala Ile Ser Val Leu Glu Met Glu
            660
                                665
                                                     670
Asn Gly Tyr Trp Trp Cys Arg Arg Lys Lys His Arg Glu Gly Arg Leu
                            680
Leu Lys Val Gly Thr Arg Gly Asp Gly Thr Pro Asp Glu Arg Trp Cys
                        695
                                            700
Phe Arg Val Glu Val Asn Trp Ala Ala Trp Glu Lys Thr Leu Pro
                                        715
                   710
Thr Leu Ser Glu Asp Pro Ser Gly Pro Gly Ile Thr Gly Asn Lys Lys
                                    730
Asn Pro Thr Ser Lys Pro Gly Lys Asn Ser Ala Ser Glu Glu Asp His
                                745
Leu Pro Leu Gln Val Leu Gln Ser Pro
        755
      <210> 5
      <211> 273
      <212> DNA
      <213> H. sapiens
      <400> 5
tgcggtctcc cnggggtgtc cccgaggatc tggctggact tccnagagta cctgagcaag
                                                                        60
accagcaagt acctcaccga ctcggaatac acagagggct ncnacaggta agacgtgcct
                                                                       120
gatgaagget gtgctgaace ttaaggacgg ggtcaatgee tgcattetge cactgetgea
                                                                       180
gategachgg gactetggca atceteagee eetggtaaat geeeagtgea cagatgaeta
                                                                       240
ttaccgagge cacagenete tgcacatege cat
                                                                       273
```

<210> 6 <211> 768 <212> DNA <213> H. sapiens

<400> 6

```
teggtgaget acceptetet ttggeegett geaceaagea gtgggatgtg gtaagetace
                                                                        60
tectggagaa cecacaccag ecegecagee tgeagnneae tgaeteccag ggeaacacag
                                                                       120
tectgeatge ectagtgatg ateteggaea aeteagetga gaacattgea etggtgaeca
                                                                       180
gcatgtatga tgggctcctc caagctgggg cccgncctct gccctaccgt gcnagcttga
                                                                       240
ggacateege aacetgeagg ateteacgee tetgnaannt ggeegeeaag gagggeaaga
                                                                       300
tegrrwttty maggeacate etnnsmageg ggrrktttea ggaetgnage caeetttnne
                                                                       360
ccgaaagttc accgagtggt ngctannkgg gcctgtccgg gntgtcgctg tnatgacctg
                                                                       420
gnnyttetnt ggacagetgt naggagaact cagtgetgga gatcattgee tttcattnge
                                                                       480
aarageeegn acegaeaceg aatggtegtt ttggageeee tgaacaaact getgeaggen
                                                                       540
gaaatgggat ctgctcatcc ccaagttctt cttaaacttc ctgtgtaatc tgatntacat
                                                                       600
gttcatcttc amcketgttg cetaceatea geetaceeng aagaageagg eegeeetea
                                                                       660
cctgaaagcg gaggttggaa actccatgct gctgacgggc cacatcctta tcctgctagg
                                                                       720
                                                                       768
ggggatctac ctcctcgtgg ggcaaaagtg gaaattttgg gggggaat
      <210> 7
      <211> 650
      <212> DNA
      <213> H. sapiens
      <400> 7
tgtttcctgg ccatcgagtg gtacctgccc ctgcttgtgt ctgcgctggt gctgggctgg
                                                                        60
ctgaacctgc tttactatac acgtggcttc cagcacacag gcatctacag tgtcatgatc
                                                                       120
cagaagccct ggtgagcctg agccaggatt ggcgccccga agctcctaca ggccccaatg
                                                                       180
ccacagagtc agtgcagccc atggagggac aggaggacga gggcaacggg gcccagtaca
                                                                       240
ggggtatect ggwageetee ttggagetet teaaatteae categgeatg ggegagetgg
                                                                       300
cettecaggn geagetgeac tteegeggea tnggtgetge tgetgetnet ggeetaegtn
                                                                       360
ctgctcacct acatcctgct gctcaacatg ctcatcgccc tcatngagcg agaccgtcaa
                                                                       420
cankktcgcc actgacagct ggagcatctg gaagctgcag aaagncatct nntgtcctgg
                                                                       480
agatggagaa tggctattgg tggtgcanga agaagcagcg ggcaggtgtg atgctgancg
                                                                       540
                                                                       600
ttggcactaa gccagatggc agcccsgatg agcgctggtg cttcagggtn gaggaggtga
actgggcttc atngggagca gacgctgcct acgctgtgtg aggacccgtc
                                                                       650
      <210> 8
      <211> 317
      <212> DNA
      <213> H. sapiens
      <400> 8
gagettetee etgeggteaa geagagttte aggeagaeae tggaagaaet ttgeeetggt
                                                                        60
cccctttta agagaggcaa gtctcgaata ggcagtctgc tcagcccgag gaagtttatc
                                                                       120
tgcgacagtt ttcagggtct ctaaagccag aggacgctga ggtcttcaag agtcctgccg
                                                                       180
                                                                       240
cttccgggga gaagtgagga cgtcacgcag acagcactgt caacactggg ccttaggaga
ccccgttgcc acggggggct ctgagggaac acagtgcttt ttcagcagcc ttgctggtct
                                                                       300
                                                                       317
ttgctgccca gcatgtt
      <210> 9
      <211> 65
      <212> PRT
      <213> H. sapiens
      <400> 9
Ser Phe Ser Leu Arg Ser Ser Arg Val Ser Gly Arg His Trp Lys Asn
                                     10
Phe Ala Leu Val Pro Leu Leu Arg Glu Ala Ser Xaa Arg Xaa Arg Gln
                                 25
            20
```

-12-

```
Ser Ala Gln Pro Glu Glu Val Tyr Leu Arg Gln Phe Ser Gly Ser Leu
                            40
Lys Pro Glu Asp Ala Glu Val Phe Lys Ser Pro Ala Ala Ser Gly Glu
                        55
    50
Lys
65
      <210> 10
      <211> 471
      <212> DNA
      <213> M. musculus
      <400> 10
cctgcagaag agcancangc gcctgannga cagcgagttc aaagacccag agacgggaaa
gacctgtctg ctcaaagcca tgctcaatct gcacaatggg cagaacgaca ccattgctct
                                                                        120
gctcctggac attgcccgga agacagatag cctgaagcag tttgtcaatg ccagctacac
                                                                        180
agacagetae tacaagggee agacageatt acacattgee attgaaagge ggaacatgge
                                                                        240
netggtgace etettggtgg agaatggage agatgteeag getgetgetg aeggggaett
                                                                        300
cttcnanaaa accaanggga ggcctggctt ctactttggt gagctgcccc tgtccctggc
                                                                        360
tgegtgcacc aaccagetgg ceattgtgaa attectgetg cagaacteet gggcageetg
                                                                        420
cagacateag tggcneggga ttengtggge aacaengtge tgeacneect t
                                                                        471
                                                                         ....
      <210> 11
                                                                         .
      <211> 450
      <212> DNA
      <213> M. musculus
      <400> 11
caagtgtegg ggatetgeet tgeagggeea agttaattet ttacaacage etgtatteea
                                                                         60
catgtctgga gctgttcaag ttcaccatcg gcatgggtga cctggagttc accgagaact
                                                                        120
                                                                        180
atgacticaa ggctgtcttt catcatcctg ttactggcct atgtgattct cacctacatc
ctcctgctca acatgctcat tgctctcatg ggcgagactg tcaacaagat tgcacaagag
                                                                        240
agcaagaaca totggaagot gcagogagoo atcaccatoo tggatacaga gaagagttto
                                                                        300
ctgaagtgca tgaggaaggc cttccgctcc ggcaagctgc tgcaggtggg gttcacgccg
                                                                        360
gacggcaagg atgacttccg gtggtgcttc agggtggatg aggtgaactg gactacctgg
                                                                        420
                                                                        450
aacaccaacg tgggcatcat caacgaggac
      <210> 12
      <211> 18
      <212> DNA
      <213> R. rattus
      <400> 12
                                                                         18
gaccagcaag tacctcac
      <210> 13
      <211> 49
      <212> DNA
      <213> R. rattus
      <400> 13
ctcccatgca gcccagttta cttcctccac cctgaagcac cagcgctca
                                                                         49
      <210> 14
      <211> 71
```

-13-

<212> PRT <213> R. rattus

<400> 14

Glu Leu Phe Lys Phe Thr Ile Gly Met Gly Asp Leu Glu Phe Thr Glu
1 5 10 15

Asn Tyr Asp Phe Lys Ala Val Phe Ile Ile Leu Leu Leu Ala Tyr Val

Ile Leu Thr Tyr Ile Leu Leu Leu Asn Met Leu Ile Ala Leu Met Gly 35 40 45

Glu Thr Val Asn Lys Ile Ala Gln Glu Ser Lys Asn Ile Trp Lys Leu 50 55 60

Gln Arg Ala Ile Thr Ile Leu

<210> 15

<211> 57

<212> PRT

<213> H. sapiens

<400> 15

Glu Leu Phe Lys Phe Thr Ile Gly Met Gly Glu Leu Ala Phe Gln Glu
1 5 10 15

Gln Leu His Phe Arg Gly Met Val Leu Leu Leu Leu Leu Ala Tyr Val 20 25 30

Leu Leu Thr Tyr Ile Leu Leu Leu Asn Met Leu Ile Ala Leu Met Ser 35 40 45

Glu Thr Val Asn Ser Val Ala Thr Asp
50 55

<210> 16

<211> 75

<212> PRT

<213> Caliphora

<400> 16

Ser Leu Phe Trp Ala Ser Phe Gly Leu Val Asp Leu Val Ser Phe Asp 1 5 10 15

Leu Ala Gly Ile Lys Ser Phe Thr Arg Phe Trp Ala Leu Leu Met Phe 20 25 30

Gly Ser Tyr Ser Val Ile Asn Ile Ile Val Leu Leu Asn Met Leu Ile 35 40 45

Ala Met Met Ser Asn Ser Tyr Gln Ile Ile Ser Glu Arg Ala Asp Val 50 55 60

Glu Trp Lys Phe Ala Arg Ser Gln Leu Trp Met 65 70 75

<210> 17

<211> 75

<212> PRT

<213> D. melanogaster

<400> 17

Ser Leu Phe Trp Ala Ser Phe Gly Leu Val Asp Leu Val Ser Phe Asp 1 5 10 15

55

-14-

```
Leu Ala Gly Ile Lys Ser Phe Thr Arg Phe Trp Ala Leu Leu Met Phe
Gly Ser Tyr Ser Val Ile Asn Ile Ile Val Leu Leu Asn Met Leu Ile
                       40
Ala Met Met Ser Asn Ser Tyr Gln Ile Ile Ser Glu Arg Ala Asp Val
                                    . 60
                       55
Glu Trp Lys Phe Ala Arg Ser Gln Leu Trp Met
      <210> 18
      <211> 75
      <212> PRT
      <213> B. taurus
      <400> 18
Ser Leu Phe Trp Ser Ile Phe Gly Leu Ile Asn Leu Tyr Val Thr Asn
                                   10
Val Lys Ala Gln His Glu Phe Thr Glu Phe Val Gly Ala Thr Met Phe
                               25
Gly Thr Tyr Asn Val Ile Ser Leu Val Val Leu Leu Asn Met Leu Ile
                           40
Ala Met Met Asn Asn Ser Tyr Gln Leu Ile Ala Asp His Ala Asp Ile
                       55
Glu Trp Lys Phe Ala Arg Thr Lys Leu Trp Met
                   70
      <210> 19
      <211> 61
      <212> PRT
      <213> C. elegans
      <400> 19
Arg Thr Phe Ile Met Thr Ile Gly Glu Phe Ser Val Leu Tyr Arg Glu
                                    10
Met Ser Ala Cys Asp Asn Phe Trp Met Lys Trp Ile Gly Lys Leu Ile
                                25
                                                    30
Phe Val Ile Phe Glu Thr Phe Val Ser Ile Leu Gln Phe Asn Leu Leu
                            40
Ile Ala Met Met Thr Arg Thr Tyr Glu Thr Ile Phe Leu
                        55
      <210> 20
      <211> 350
      <212> DNA
      <213> H. sapiens
      <220>
      <221> CDS
      <222> (41) ... (350)
      <223> Human VR2 cDNA
      <400> 20
gagaggteet ggetggaenn ngeageetee teeteetagg atg ace tea eee tee
                                             Met Thr Ser Pro Ser
```

agc Ser	tct Ser	cca Pro	gtt Val	Phe 10	agg Arg	ttg Leu	gag Glu	aca Thr	tta Leu 15	gat Asp	gga Gly	ggc	Gln	gaa Glu 20	gat Asp	103
ggc Gly	tct Ser	gag Glu	gcg Ala 25	gac Asp	aga Arg	gga Gly	aag Lys	ctg Leu 30	gat Asp	ttt Phe	gly aaa	agc Ser	35 35	ctg Leu	cct Pro	151
ccc Pro	atg Met	gag Glu 40	tca Ser	cag Gln	ttc Phe	cag Gln	ggc Gly 45	gag Glu	gac Asp	cgg Arg	aaa Lys	ttc Phe 50	gcc Ala	cct Pro	cag Gln	199
ata Ile	aga Arg 55	gtc Val	aac Asn	ctc Leu	aac Asn	tac Tyr 60	cga Arg	aag Lys	gga Gly	aca Thr	ggt Gly 65	gcc Ala	agt Ser	cag Gln	ccg Pro	247
gat Asp 70	cca Pro	aac Asn	cga Arg	ttt Phe	gac Asp 75	cga Arg	gat Asp	cgg Arg	ctc Leu	ttc Phe 80	aat Asn	gcg Ala	gtc Val	tcc Ser	cgg Arg 85	295
ggt Gly	gtc Val	ccc Pro	gag Glu	gat Asp 90	ctg Leu	gct Ala	gga Gly	ctt Leu	cca Pro 95	gag Glu	tac Tyr	ctg Leu	agc Ser	aag Lys 100	acc Thr	343
_	aag Lys	t														350
	<: <:	210> 211> 212> 213>	764	sapi	ens											
	<	220> 221> 222>	CDS	(764)											
tc	ggt	400> gag Glu	cta	ccc Pro	ctc : Leu :	tct Ser	ttg : Leu .	gcc g Ala i	gct Ala	tgc Cys 10	acc (aag Lys	cag Gln	tgg (Trp .		47
gtg Val	gta Val	agc Ser	tac Tyr	ctc Leu 20	Leu	gag Glu	aac Asn	cca Pro	cac His 25	cag Gln	ccc Pro	gcc Ala	agc Ser	ctg Leu 30	Gln	. 95
gcc Ala	act Thr	gac Asp	tcc Ser 35	Gln	ggc Gly	aac Asn	aca Thr	gtc Val 40	ctg Leu	cat His	gcc Ala	cta Leu	gtg Val 45	Met	atc Ile	143
tcg Ser	gac	aac Asn 50	Ser	gct Ala	gag Glu	aac Asn	att Ile 55	Ala	ctg Leu	gtg Val	acc Thr	agc Ser 60	Met	tat Tyr	gat Asp	191

GJA aaa	ctc Leu 65	ctc Leu	caa Gln	gct Ala	gly aaa	gcc Ala 70	cgc Arg	ctc Leu	tgc Cys	cct Pro	acc Thr 75	gtg Val	cag Gln	ctt Leu	gag Glu		239
gac Asp 80	atc Ile	cgc Arg	aac Asn	ctg Leu	cag Gln 85	gat Asp	ctc Leu	acg Thr	cct Pro	ctg Leu 90	aag Lys	ctg Leu	gcc Ala	gcc Ala	aag Lys 95		287
gag Glu	ggc Gly	aag Lys	atc Ile	grr Xaa 100	aty Xaa	ttc Phe	aag Lys	gca Ala	cat His 105	cct Pro	tgc Cys	aag Lys	cgg Arg	gaa Glu 110	gtt Val		335
ttc Phe	agg Arg	act Thr	gaa Glu 115	gcc Ala	acc Thr	ttt Phe	tcc Ser	ccg Pro 120	aaa Lys	gtt Val	cac His	cga Arg	gtg Val 125	gtg Val	gct Ala		383
aat Asn	gly ggg	gcc Ala 130	tgt Cys	ccg Pro	ggt Gly	tgt Cys	cgc Arg 135	tgt Cys	aat Asn	gac Asp	ctg Leu	ggc Gly 140	ttt Phe	ctg Leu	tgg Trp		431
aca Thr	gct Ala 145	gtg Val	agg Arg	aga Arg	act Thr	cag Gln 150	tgc Cys	tgg Trp	rra Xaa	tca Ser	ttg Leu 155	cct Pro	ttc Phe	att Ile	tgc Cys	•	479
aar Xaa 160	agc Ser	ccg Pro	acc Thr	gac Asp	acc Thr 165	gaa Glu	tgg Trp	tcg Ser	ttt Phe	tgg Trp 170	agc Ser	ccc Pro	tga *		aac Asn		527
tgc Cys 175	tgc Cys	agg Arg	cga Arg	aat Asn	ggg Gly 180	atc Ile	tgc Cys	tca Ser	tcc Ser	cca Pro 185	agt Ser	tct Ser	tct Ser	taa *	act Thr		575
tcc Ser 190	tgt Cys	gta Val	atc Ile	tga *	tta Leu	cat His 195	gtt Val	cat His	ctt Leu	cac His	cgc Arg 200	tgt Cys	tgc Cys	cta Leu	cca Pro		623
tca Ser 205	Ala	tac Tyr	cct Pro	gaa Glu	Glu	gca Ala	Gly	Arg	Pro	tca Ser 215	Pro	gaa Glu	agc Ser	gga Gly	ggt Gly 220		671
tgg Trp	aaa Lys	ctc Leu	cat His	gct Ala 225	gct Ala	gac Asp	GJA 333	cca Pro	cat His 230	cct Pro	tat Tyr	cct Pro	gct Ala	agg Arg 235	Gly ggg		719
gat Asp	cta Leu	cct Pro	cct Pro 240	cgt Arg	gly ggg	gca Ala	aaa Lys	gtg Val 245	gaa Glu	att Ile	ttg Leu	GJA aaa	999 Gly 250	aat Asn			764

<211> 884

<212> DNA

<213> H. sapiens

-17-

<220> <221> CDS <222> (3) ... (764) <223> Human VR2 cDNA <400> 22 tg ttt cct ggc cat cga gtg gta cct gcc cct gct tgt gtc tgc gct 47 Phe Pro Gly His Arg Val Val Pro Ala Pro Ala Cys Val Cys Ala ggt gct ggg ctg gct gaa cct gct tta cta tac acg tgg ctt cca gca 95 Gly Ala Gly Leu Ala Glu Pro Ala Leu Leu Tyr Thr Trp Leu Pro Ala 25 cac agg cat cta cag tgt cat gat cca gaa gcc ctg gtg agc ctg agc 143 His Arg His Leu Gln Cys His Asp Pro Glu Ala Leu Val Ser Leu Ser 35 cag gat tgg cgc ccc gaa gct cct aca ggc ccc aat gcc aca gag tca 191 Gln Asp Trp Arg Pro Glu Ala Pro Thr Gly Pro Asn Ala Thr Glu Ser 50 gtg cag ccc atg gag gga cag gag gac gag ggc aac ggg gcc cag tac 239 Val Gln Pro Met Glu Gly Gln Glu Asp Glu Gly Asn Gly Ala Gln Tyr 70 agg ggt atc ctg gwa gcc tcc ttg gag ctc ttc aaa ttc acc atc ggc 287 Arg Gly Ile Leu Xaa Ala Ser Leu Glu Leu Phe Lys Phe Thr Ile Gly atg ggc gag ctg gcc ttc cag gag cag ctg cac ttc cgc ggc atg gtg 335 Met Gly Glu Leu Ala Phe Gln Glu Gln Leu His Phe Arg Gly Met Val 100 ctg ctg ctg ctg gcc tac gtg ctg ctc acc tac atc ctg ctg ctc 383 Leu Leu Leu Leu Ala Tyr Val Leu Leu Thr Tyr Ile Leu Leu Leu 120 115 125 aac atg etc atc gec etc wtg age gag acc gtc aac agt gtc gec act 431 Asn Met Leu Ile Ala Leu Xaa Ser Glu Thr Val Asn Ser Val Ala Thr 130 135 gac agc tgg agc atc tgg aag ctg cag aaa gcc atc tct gtc ctg gag 479 Asp Ser Trp Ser Ile Trp Lys Leu Gln Lys Ala Ile Ser Val Leu Glu 145 150 atg gag aat ggc tat tgg tgg tgc agg aag aag cag cgg gca ggt gtg 527 Met Glu Asn Gly Tyr Trp Trp Cys Arg Lys Lys Gln Arg Ala Gly Val 160 165 170 atg ctg acc gtt ggc act aag cca gat ggc agc ccs gat gag cgc tgg 575 Met Leu Thr Val Gly Thr Lys Pro Asp Gly Ser Xaa Asp Glu Arg Trp 180

							acg Thr	ctg Leu	623
							act Thr		671
							ggt Gly		719
					cag Gln				764
								atctgc aaaaac	824 884

<211> 727

<212> PRT

<213> H. sapiens

<400> 23

Met Thr Ser Pro Ser Ser Pro Val Phe Arg Leu Glu Thr Leu Asp 10 Gly Gln Glu Asp Gly Ser Glu Ala Asp Arg Gly Lys Leu Asp Phe 25 Gly Ser Gly Leu Pro Pro Met Glu Ser Gln Phe Gln Gly Glu Asp Arg 40 Lys Phe Ala Pro Gln Ile Arg Val Asn Leu Asn Tyr Arg Lys Gly Thr 60 Gly Ala Ser Gln Pro Asp Pro Asn Arg Phe Asp Arg Asp Arg Leu Phe Asn Ala Val Ser Arg Gly Val Pro Glu Asp Leu Ala Gly Leu Pro Glu 90 Tyr Leu Ser Lys Thr Ser Lys Tyr Leu Thr Asp Ser Glu Tyr Thr Glu 105 Gly Ser Thr Gly Lys Thr Cys Leu Met Lys Ala Val Leu Asn Leu Lys 125 120 Asp Gly Val Asn Ala Cys Ile Leu Pro Leu Leu Gln Ile Asp Arg Asp 140 135 Ser Gly Asn Pro Gln Pro Leu Val Asn Ala Gln Cys Thr Asp Asp Tyr 155 150 Tyr Arg Gly His Ser Ala Leu His Ile Ala Ile Glu Lys Arg Ser Leu 170 Gln Cys Val Lys Leu Leu Val Glu Asn Gly Ala Asn Val His Ala Arg 180 185 200 Gly Glu Leu Pro Leu Ser Leu Ala Ala Cys Thr Lys Gln Trp Asp Val 220 215 Val Ser Tyr Leu Leu Glu Asn Pro His Gln Pro Ala Ser Leu Gln Ala 235 230

							-								
Thr	Asp	Ser	Gln	Gly 245	Asn	Thr	Val	Leu	His 250	Ala	Leu	Val	Met	Ile 255	Ser
Asp	Asn	Ser	Ala 260	Glu	Asn	Ile	Ala	Leu 265	Val	Thr	Ser	Met	Tyr 270	Asp	Gly
Leu	Leu	Gln 275		Gly	Ala	Arg	Leu 280	Cys	Pro	Thr	Val	Gln 285	Leu	Glu	Asp
Ile	Arg 290		Leu	Gln	Asp	Leu 295	Thr	Pro	Leu	Lys	Leu 300	Ala	Ala	Lys	Glu
Gly		Ile	Xaa	Ile		Xaa	Arg	His	Ile		Ala	Ser	Gly	Lys	
305 Ser	Glv	Leu	Lvs	Pro	310 Pro	Phe	Pro	Arg	Lys	315 Phe	Thr	Glu	Trp	Trp	320 Leu
	_			325					330					335	
Met	Gly	Pro	Val 340	Arg	Val	Xaa	Xaa	345	хаа	хаа	хаа	хаа	350	Xaa	хаа
Xaa	Xaa			Xaa	Xaa	Xaa		Xaa	Xaa	Xaa	Xaa		Xaa	Xaa	Xaa
Pro	Asp	355 Arg	His	Arq	Met	Val	360 Val	Leu	Glu	Pro	Leu	365 Asn	Lys	Leu	Leu
	370					375					380				
Gln 385	Ala	Lys	Trp	Asp	Leu 390	Leu	IIe	Pro	Lys	9ne 395	Pne	Leu	Asn	Phe	400
	Asn	Leu	Xaa		Met	Phe	Ile	Phe		Ala	Val	Ala	Tyr	His	Gln
Pro	Thr	Leu	Lvs	405 Lvs	Gln	Ala	Ala	Pro	410 His	Leu	Lys	Ala	Glu	415 Val	Gly
			420					425					430		
Asn	Ser	Met 435	Leu	Leu	Thr	GIY	440	IIe	Leu	TIE	Leu	445	GIY	Gly	iie
Tyr	Leu 450		Val	Gly	Gln	Lys 455	Trp	Lys	Phe	Trp	Xaa 460	Xaa	Xaa	Xaa	Xaa
	Xaa	Xaa	Xaa	Xaa		Xaa	Xaa	Xaa	Xaa	Phe 475	Pro	Gly	His	Arg	Val 480
465 Val	Pro	Ala	Pro	Ala	470 Cys	Val	Cys	Ala	Gly		Gly	Leu	Ala	Glu	
27.	T	7	(T)	485	Tres	Lou	Pro	בומ	490	Ara	His	Len	Gln	495 Cys	His
			500					505					510		
_		515					520					525		Glu	
Pro	Thr 530	Gly	Pro	Asn	Ala	Thr 535	Glu	Ser	Val	Gln	Pro 540	Met	Glu	Gly	Gln
Glu		Glu	Gly	Asn	Gly		Gln	Tyr	Arg		Ile	Leu	Xaa	Ala	
545 Leu	Glu	Len	Phe	īvs	550 Phe	Thr	Ile	Glv	Met	555 Gly	Glu	Leu	Ala	Phe	560 Gln
				565					570					575	
			580					585					590	Ala	
Val	Leu	Leu 595		Tyr	Ile	Leu	Leu 600	Leu	Asn	Met	Leu	11e 605		Leu	Xaa
Ser	Glu 610		Val	Asn	Ser	Val 615		Thr	Asp	Ser	Trp 620		Ile	Trp	Lys
	Gln		Ala	Ile		Val	Leu	Glu	Met			Gly	Tyr	Trp	
625 Cys		Lvs	. Lvs	Gln	630 Arg	Ala	Gly	Val	Met	635 Leu		Val	Gly	Thr	640 Lys
				645					650					655	
Pro	Asp	Gly	Ser 660		Asp	GLu	Arg	665		rne	Arg	val	670	Glu	AGT

-20-

N an	Trn	בות	Ser	Trn	Glu	Gln	Thr	Leu	Pro	Thr	Leu	Cvs	Glu	asA	Pro	
	_	675					680					685				
	690					695					700		Leu			
Pro 705	Pro	Lys	Glu	Asp	Glu 710	Asp	Gly	Ala	Ser	Glu 715	Glu	Asn	Tyr	Val	Pro 720	
Val	Gln	Leu	Leu	Gln 725	Ser	Asn									*-	r
		210>														•
		211>	2845 DNA	•												
	<2	213>	chic	cken												
		220> 221>	CDS													
	<2	222>	(12													
	<2	223>	chic	cken	VR1	CDNA	4								-	
ttc		100>		agga;	aar t.t	tact	gaga	a cto	rgact	tatt	ctq	caqaa	aga d	cagga	atattt	60
ttg	caata	att 1	tggtg	gate	gg ac	ggag	ggad	c aca	agaaa	aact	tgaa	aaggo	ctg o	ettgi	tcatc	120
atg	tct	tcc	att	ctt	gag	aag	atg	aag	aaa	ttt	ggc	agt	tct	gac	ata	168
Met 1	ser	ser	iie	.5	GIU	ьys	Mec	пуs	10	FIIC	GIY	261	Ser	15	116	
gaa	gaa	tct	gaa	gtg	aca	gat	gaa	cac	acg	gat	ggg	gaa	gac	tca	gca	216
Glu	Glu	Ser	Glu 20	Val	Thr	Asp	Glu	His 25	Thr	Asp	Gly	Glu	Asp 30	Ser	Ala	
													-			•
ctg	gaa Glu	aca Thr	gct Ala	gac	aac Asn	ctc Leu	cag Gln	ggt Glv	aca Thr	ttc Phe	agc Ser	aac Asn	aag Lys	gtg Val	cag Gln	264
шси	014	35					40	2				45	•			÷
cca	tcc	aaa	agc	aac	atc	ttt	gca	aga	cgt	gga	cgg	ttt	gtg	atg	aaa	312
Pro	Ser 50		Ser	Asn	Ile	Phe 55	Ala	Arg	Arg	Gly	Arg 60	Phe	Val	Met	GIÀ	
									a 20	taa	+++	tag	G a G	ata	ast	360
gat Asp	tgt Cvs	gac Asp	aag Lys	gac Asp	atg Met	gct	Pro	Met	Asp	Ser	Phe	Tyr	cag Gln	Met	Asp	360
65	1	-	-	•	70					75					80	
cac	ctg	atg	gca	cct	tct	gtc	atc	aaa	ttt	cat	gcc	aat	atg	gag	agg	408
His	Leu	Met	Ala	Pro 85	Ser	Val	Ile	Lys	Phe 90	His	Ala	Asn	Met	GIu 95	Arg	
										* * * * *		202	~~~		tat	156
ggg Glv	aaa Lvs	ctt Leu	cac His	aag Lvs	ctc Leu	ctg Leu	Ser	aca Thr	gac	Ser	Ile	Thr	ggc Gly	Cys	Ser	456
3	•		100	4				105	-				110			
gaa	aaa	gct	ttc	aaa	tét	tat	gac	cgc	aga	agg	atc	ttt	gat	gct	gta	504
Glu	Lys	Ala 115		Lys	Phe	Tyr	Asp 120		Arg	Arg	пте	Phe 125	Asp	Ala	vaı	

Ala	cga Arg 130	ggc Gly	agc Ser	aca Thr	aag Lys	gac Asp 135	ctg Leu	gat Asp	gat Asp	ctg Leu	ctg Leu 140	ctc Leu	tat Tyr	cta Leu	aat Asn	552
agg Arg 145	acc Thr	ttg Leu	aag Lys	cat His	ctc Leu 150	aca Thr	gat Asp	gat Asp	gaa Glu	ttc Phe 155	aaa Lys	gaa Glu	cca Pro	gaa Glu	act Thr 160	600
GJA aaa	aaa Lys	acc Thr	tgc Cys	tta Leu 165	ctg Leu	aaa Lys	gcc Ala	atg Met	ctg Leu 170	aat Asn	cta Leu	cat His	gat Asp	999 Gly 175	aaa Lys	648
												aaa Lys				696
												tat Tyr 205				744
												atg Met				792
												aga Arg				840
												tat Tyr				888
ctg Leu	ccc Pro	ctg Leu	tcc Ser 260	ctg Leu	gct Ala	gcc Ala	tgc Cys	acc Thr 265	aat Asn	cag Gln	ctc Leu	tgc Cys	att Ile 270	gtg Val	aaa Lys	936
		ctt														
	Leu											gct Ala 285				984
	atg	Leu 275 ggc	Glu aat	Asn atg	Pro gtt	Tyr	Gln 280 cat	Ala	Ala	Asp gtg	Ile gag	Ala	Ala gca	Glu gat	Asp	984 1032
Ser act	atg Met 290 aag	Leu 275 ggc Gly gat	Glu aat Asn	Asn atg Met	gtt Val	ttc	Gln 280 cat His	Ala act Thr	Ala ctg Leu	Asp gtg Val	gag Glu 300	Ala 285 att	Ala gca Ala aac	gat Asp	Asp aat Asn	
act Thr 305	atg Met 290 aag Lys	Leu 275 ggc Gly gat Asp	Glu aat Asn aat Asn	atg Met acc Thr	gtt Val aag Lys 310	ctg Leu 295 ttc Phe	Gln 280 cat His gtt Val	act Thr acg Thr	ctg Leu aag Lys	gtg Val atg Met 315	gag Glu 300 tac Tyr	Ala 285 att Ile aat	gca Ala aac Asn	gat Asp ata Ile	aat Asn ttg Leu 320	1032

						atc Ile										1224
						aag Lys 375										1272
						ctg Leu										1320
						gcc Ala										1368
gag Glu	atg Met	ctg Leu	ctg Leu 420	gta Val	gag Glu	ccc Pro	ctt Leu	aac Asn 425	agg Arg	cta Leu	ctg Leu	caa Gln	gac Asp 430	aag Lys	tgg Trp	1416
gac Asp	cga Arg	ttt Phe 435	gtc Val	aag Lys	cac His	tta Leu	ttt Phe 440	tac Tyr	ttc Phe	aac Asn	ttc Phe	ttt Phe 445	gta Val	tat Tyr	gca Ala	1464
att Ile	cat His 450	atc Ile	agc Ser	atc Ile	ctc Leu	acc Thr 455	aca Thr	gct Ala	gcc Ala	tac Tyr	tac Tyr 460	aga Arg	cct Pro	gtg Val	cag Gln	1512
aag Lys 465	ggg Gly	gac Asp	aag Lys	cct Pro	ccc Pro 470	ttc Phe	gct Ala	ttt Phe	ggt Gly	cac His 475	agc Ser	act Thr	gly ggg	gaa Glu	tat Tyr 480	1560
ttt Phe	cga Arg	gtg Val	act Thr	gga Gly 485	gag Glu	ata Ile	ctg Leu	agt Ser	gta Val 490	ttg Leu	gga Gly	gga Gly	ctg Leu	tat Tyr 495	ttt Phe	1608
						tat Tyr										1656
acg Thr	ctg Leu	ata Ile 515	gtt Val	gac Asp	agt Ser	tac Tyr	agt Ser 520	gaa Glu	gtt Val	ctt Leu	ttc Phe	ttc Phe 525	gtt Val	cac His	tct Ser	1704
						gtg Val 535										1752
tat Tyr 545	gtg Val	gct Ala	tcc Ser	atg Met	gtc Val 550	ttc Phe	tcc Ser	ttg Leu	gct Ala	ctg Leu 555	ggc Gly	tgg Trp	gct Ala	aac Asn	atg Met 560	1800

cta Leu	tac Tyr	tac Tyr	acc Thr	cgt Arg 565	ggc	ttc Phe	cag Gln	cag Gln	atg Met 57 0	ggc	att Ile	tac Tyr	tct Ser	gtc Val 575	atg Met	1848
att Ile	gca Ala	aag Lys	atg Met 580	atc Ile	cta Leu	aga Arg	gac Asp	tta Leu 585	tgt Cys	cgc Arg	ttc Phe	atg Met	ttt Phe 590	gtc Val	tat Tyr	1896
														att		1944
														cga Arg		1992
														tat Tyr		2040
														gag Glu 655		2088
				Arg										gtt Val		2136
														gca Ala		2184
Met	Gly 690	Glu	Thr	Val	Ser	Lys 695	Ile	Ala	Gln	Glu	Ser 700	Lys	Ser	atc Ile	Trp	2232
Lys 705	Leu	Gln	Arg	Pro	Ile 710	Thr	Ile	Leu	Asp	Ile 715	Glu	Asn	Ser	tac Tyr	Leu 720	2280
Asn	Cys	Leu	Arg	Arg 725	Ser	Phe	Arg	Ser	Gly 730	Lys	Arg	Val	Leu	gtg Val 735	Gly	2328
														gtt Val		2376
														aac Asn		2424
														tgt Cys		2472

aag Lys 785	cct Pro	ggt Gly	aga Arg	gtt Val	tca Ser 790	GJA aaa	aaa Lys	aat Asn	tgg Trp	aaa Lys 795	act Thr	ttg Leu	gtt Val	cca Pro	ctt Leu 800	2520
tta Leu	aga Arg	gat Asp	gga Gly	agc Ser 805	agg Arg	aga Arg	gaa Glu	gaa Glu	aca Thr 810	cca Pro	aaa Lys	cta Leu	cca Pro	gaa Glu 815	gaa Glu	2568
atc Ile	a aa Lys	tta Leu	aaa Lys 820	ccc Pro	att Ile	ttg Leu	gaa Glu	cct Pro 825	tat Tyr	tat Tyr	gag Glu	cca Pro	gag Glu 830	gat Asp	tgt Cys	2616
gag Glu	aca Thr	ttg Leu 835	aag Lys	gaa Glu	tcg Ser	ctt Leu	cca Pro 840	aag Lys	tca Ser	gtc Val	tgat	cttt	tg t	tttt	aagaa	2669
aatt	aatt	ct a	agtto	ittt	at at	tggt	tctt	aca	aagga	agga	caat	taaa	ac c	jctto	cttca	2729
taac	ages	agg g	gattt	atgg	ga aa	aaagg	gccaa	a aga	aagct	agg	aaat	gact	gt g	gtgca	aggat	2789
tcat	taag	gta t	ctto	gaata	aa ac	ctact	tgti	gtt	taaa	aaaa	aaaa	aaaa	aaa a	iaaaa	aa	2845
		210> 211>													•	-
		212>														
	<2	213>	chic	cken												•
		100>														
	Ser	Ser	Ile		Glu	Lys	Met	Lys	Lys	Phe	Gly	Ser	Ser	Asp 15	Ile	-
1 Glu	Glu	Ser	Glu	5 Val	Thr	Asp	Glu			Asp	Gly	Glu			Ala	
_		 1	20	•	Asn	Υ	~1~	25	Thr	Dhe	Sar	Nen	30 Lve	Val	Gln	
Leu	Glu	35	Ala	Asp	ASII	Leu	40	GIY	1111	FIIC	561	45	LyS	V CA 2	42	5,7
Pro	Ser 50	Lys	Ser	Asn	Ile	Phe 55	Ala	Arg	Arg	Gly	Arg 60	Phe	Val	Met	Gly	
		Asp	Lys	Asp	Met 70		Pro	Met	Asp	Ser 75	Phe	Tyr	Gln	Met	Asp 80	
65 His	Leu	Met	Ala		Ser	Val	Ile	Lys	Phe 90		Ala	Asn	Met	Glu 95	Arg	
Glv	Lvs	Leu	His	85 Lys	Leu	Leu	Ser	Thr		Ser	Ile	Thr	Gly		Ser	
			100					105					110			
Glu	Lys			Lys	Phe	Tyr	Asp 120		Arg	Arg	Ile	Phe 125		Ala	Val	
Ala	Arq	115 Gly		Thr	Lys	Asp			Asp	Leu	Leu			Leu	Asn	
	130					135					140					
		Leu	Lys	His	Leu		Asp	Asp	Glu	Phe 155		Glu	Pro	Glu	Thr 160	
145 Gly		Thr	Cys	Leu	150 Leu		Ala	Met	Leu			His	Asp	Gly		
				165					170					175		
			180		Leu			185					190			
Leu	Lys	Glu 195		Val	Asn	Ala	Glu 200		Thr	Asp	Asn	Tyr 205		Lys	Gly	
Gln	Thr			His	Ile	Ala			Arg	Arg	Asn			Leu	Val	
	210					215			•	-	220					

	Leu	Leu	Val	Gln	Asn 230	Gly	Ala	Asp	Val	His 235	Ala	Arg	Ala	Cys	Gly 240
225			_	_		.	01.	T	Dwo		Dho	Tire	Dho	C111	
				245					250				Phe	255	
Leu	Pro	Leu	Ser 260	Leu	Ala	Ala	Cys	Thr 265	Asn	Gln	Leu	Cys	Ile 270	Val	Lys
Phe	Leu	Leu 275	Glu	Asn	Pro	Tyr	Gln 280	Ala	Ala	Asp	Ile	Ala 285	Ala	Glu	Asp
Ser	Met 290		Asn	Met	Val	Leu 295	His	Thr	Leu	Val	Glu 300	Ile	Ala	Asp	Asn
Thr		Asp	Asn	Thr	Lys 310		Val	Thr	Lys	Met 315	Tyr	Asn	Asn	Ile	Leu 320
	Leu	Gly	Ala	Lys 325		Asn	Pro	Ile	Leu 330		Leu	Glu	Glu	Leu 335	
Asn	Lys	Lys		Leu	Thr	Pro	Leu	Thr		Ala	Ala	Lys	Thr 350		Lys
Ile	Gly		340 Phe		Tyr	Ile			Arg	Glu	Ile	Lys 365	Asp	Pro	Glu
Cys		355 His	Leu	Ser	Arg		360 Phe	Thr	Glu	Trp			Gly	Pro	Val
	370					375					380	_	3	_	_
385				_	390					395			Glu		400
				405					410				Asn	415	
			420					425					Asp 430		
Asp	Arg	Phe 435	Val	Lys	His	Leu	Phe 440	Tyr	Phe	Asn	Phe	Phe 445	Val	Tyr	Ala
Ile	His 450	Ile	Ser	Ile	Leu	Thr 455	Thr	Ala	Ala	Tyr	Tyr 460	Arg	Pro	Val	Gln
Lys 465	Gly	Asp	Lys	Pro	Pro 470	Phe	Ala	Phe	Gly	His 475	Ser	Thr	Gly	Glu	Tyr 480
	Arg	Val	Thr	Gly 485	Glu	Ile	Leu	Ser	Val 490	Leu	Gly	Gly	Leu	Tyr 495	
Phe	Phe	Arg	Gly 500	Ile	Gln	Tyr	Phe	Val 505	Gln	Arg	Arg	Pro	Ser 510	Leu	Lys
Thr	Leu	Ile 515	Val	Asp	Ser	Tyr	Ser 520		Val	Leu	Phe	Phe 525	Val	His	Ser
Leu	Leu			Ser	Ser	Val		Leu	Tyr	Phe	Cys	Gly	Gln	Glu	Leu
	530					535					540				
	Val	Ala	Ser	Met		Phe	Ser	Leu	Ala		Gly	Trp	Ala	Asn	Met 560
545	(T)	Т112	The	7 ~~	550	Dha	Gln	Gln	Mot	555	T۱۵	Тълг	Ser	Val	
				565					570					5 75	
			580					585					Phe 590		
Leu	Val	Phe 5 95	Leu	Leu	Gly	Phe	Ser 60 0		Ala	Val	Val	Thr 605	Leu	Ile	Glu
Asp	Asp 610		Glu	Gly	Gln	Asp 615		Asn	Ser	Ser	Glu 620		Ala	Arg	Cys
Ser	His	Thr	Lys	Arg	Gly	Arg	Thr	Ser	Tyr	Asn	Ser	Leu	Tyr	Tyr	Thr
625					630					635					640
Суѕ	Leu	Glu	Leu	Phe 645		Phe	Thr	Ile	Gly 650		Gly	Asp	Leu	Glu 655	Ph∈

```
Thr Glu Asn Tyr Arg Phe Lys Ser Val Phe Val Ile Leu Leu Val Leu
                                665
Tyr Val Ile Leu Thr Tyr Ile Leu Leu Leu Asn Met Leu Ile Ala Leu
                            680
Met Gly Glu Thr Val Ser Lys Ile Ala Gln Glu Ser Lys Ser Ile Trp
                        695
                                             700
Lys Leu Gln Arg Pro Ile Thr Ile Leu Asp Ile Glu Asn Ser Tyr Leu
                   710
                                        715
Asn Cys Leu Arg Arg Ser Phe Arg Ser Gly Lys Arg Val Leu Val Gly
                725
                                     730
Ile Thr Pro Asp Gly Gln Asp Asp Tyr Arg Trp Cys Phe Arg Val Asp
                                745
            740
Glu Val Asn Trp Ser Thr Trp Asn Thr Asn Leu Gly Ile Ile Asn Glu
                                                 765
                            760
Asp Pro Gly Cys Ser Gly Asp Leu Lys Arg Asn Pro Ser Tyr Cys Ile
                                             780
                        775
Lys Pro Gly Arg Val Ser Gly Lys Asn Trp Lys Thr Leu Val Pro Leu
                    790
                                         795
Leu Arg Asp Gly Ser Arg Arg Glu Glu Thr Pro Lys Leu Pro Glu Glu
                                    810
                805
Ile Lys Leu Lys Pro Ile Leu Glu Pro Tyr Tyr Glu Pro Glu Asp Cys
                                825
            820
Glu Thr Leu Lys Glu Ser Leu Pro Lys Ser Val
                             840
        835
      <210> 26
      <211> 135
      <212> DNA
      <213> H. sapiens
      <400> 26
ttcaagttta cgatcgggat gggcgacctg gagttcactg agaactatga cttcaaggct
                                                                        60
gtetteatea teetgetget ggeetatgta atteteacet acateeteet geteaacatg
                                                                       120
tttatcgctc tcatg
                                                                       135
      <210> 27
      <211> 32
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> consensus
      <400> 27
tttcaaagtt tcacgatcat atcgggatca tg
                                                                        32
      <210> 28
      <211> 35
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> consensus
      <400> 28
```

catgatcaga gatcgcgata tgatcagaca tagtt	35
<210> 29 <211> 135 <212> DNA <213> chicken	
<400> 29 ttcaagttca cgattgggat gggtgacctg gattttcatg aacatgccag attcagatac tttgtcatgc ttctgctgct gctttttgtg atcctcacct acatcctttt gctcaacatg cttatagccc ttata	60 120 135
<210> 30 <211> 135 <212> DNA <213> chicken	
<400> 30 ttcaagttca ctattgggat gggagacctg gagtttacag agaactacag gttcaagtct gtgtttgtca tccttttggt tctctatgtc atccttacgt acatcctcct gctcaatatg cttatagccc taatg	60 120 135
<210> 31 <211> 28 <212> DNA <213> H. sapiens	
<400> 31 tatctttcaa totttottto gtgatota	28
<210> 32 <211> 17 <212> DNA <213> H. sapiens	
<400> 32 aaaaggggga ccagggc	17
<210> 33 <211> 2544 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (14)(2530) <223> Human VR1	
<pre><400> 33 ggatccagca agg atg aag aaa tgg agc agc aca gac ttg ggg gca gct</pre>	49

-28-

			gac Asp						97
			cca Pro 35						145
			gly aaa						193.
			gaa Glu						241
			acc Thr						289
			cag Gln						337
			cgc Arg 115						385
			gag Glu						433
			aac Asn						481
			atg Met						529
			gag Glu						577
			tac Tyr 195		Tyr				625
			gag Glu						673
			gac Asp						721

ttt Phe	aag Lys	aaa Lys	acc Thr 240	aaa Lys	Gly 999	cgg Arg	cct Pro	gga Gly 245	ttc Phe	tac Tyr	ttc Phe	ggt Gly	gaa Glu 250	ctg Leu	ccc Pro	769
ctg Leu	tcc Ser	ctg Leu 255	gcc Ala	gcg Ala	tgc Cys	acc Thr	aac Asn 260	cag Gln	ctg Leu	ggc Gly	atc Ile	gtg Val 265	aag Lys	ttc Phe	ctg Leu	817
			tcc Ser													865
			gtg Val													913
			aag Lys													961
			ctg Leu 320													1009
			acg Thr													1057
			tat Tyr													1105
			agg Arg													1153
			gac Asp													1201
			atc Ile 400													1249
			gtg Val					Arg								1297
		Val	aag Lys									Val				1345

							gct Ala									1393
							aaa Lys									1441
gga Gly	gag Glu	atc Ile	ctg Leu 480	tct Ser	gtg Val	tta Leu	gga Gly	gga Gly 485	gtc Val	tac Tyr	ttc Phe	ttt Phe	ttc Phe 490	cga Arg	gly aaa	1489
att Ile	cag Gln	tat Tyr 495	ttc Phe	ctg Leu	cag Gln	agg Arg	cgg Arg 500	ccg Pro	tcg Ser	atg Met	aag Lys	acc Thr 505	ctg Leu	ttt Phe	gtg Val	1537
gac Asp	agc Ser 510	tac Tyr	agt Ser	gag Glu	atg Met	ctt Leu 515	ttc Phe	ttt Phe	ctg Leu	cag Gln	tca Ser 520	ctg Leu	ttc Phe	atg Met	ctg Leu	1585
							agc Ser									1633 ජූර
atg Met	gta Val	ttc Phe	tcc Ser	ctg Leu 545	gcc Ala	ttg Leu	ggc Gly	tgg Trp	acc Thr 550	aac Asn	atg Met	ctc Leu	tac Tyr	tac Tyr 555	acc Thr	1681
							atc Ile									1729 :
atc Ile	ctg Leu	aga Arg 575	gac Asp	ctg Leu	tgc Cys	cgt Arg	ttc Phe 580	atg Met	ttt Phe	gtc Val	tac Tyr	gtc Val 585	gtc Val	ttc Phe	ttg Leu	1777
ttc Phe	999 999	ttt Phe	tcc Ser	aca Thr	gcg Ala	gtg Val 595	gtg Val	acg Thr	ctg Leu	att	gaa Glu 600	gac Asp	gly ggg	aag Lys	aat Asn	1825
							acg Thr									1873
tgc Cys	agg Arg	ccc Pro	ccc Pro	gat Asp 625	agc Ser	tcc Ser	tac Tyr	aac Asn	agc Ser 630	ctg Leu	tac Tyr	tcc Ser	acc Thr	tgc Cys 635	ctg Leu	1921
gag Glu	ctg Leu	ttc Phe	aag Lys 640	ttc Phe	acc Thr	atc Ile	ggc	atg Met 645	ggc Gly	gac Asp	ctg Leu	gag Glu	ttc Phe 650	act Thr	gag Glu	1969
aac Asn	tat Tyr	gac Asp 655	ttc Phe	aag Lys	gct Ala	gtc Val	ttc Phe 660	atc Ile	atc Ile	ctg Leu	ctg Leu	ctg Leu 665	gcc Ala	tat Tyr	gta Val	2017

att Ile	ctc Leu 670	acc Thr	tac Tyr	atc Ile	ctc Leu	ctg Leu 675	ctc Leu	aac Asn	atg Met	ctc Leu	atc Ile 680	gcc Ala	ctc Leu	atg Met	ggt Gly	:	2065
gag Glu 685	act Thr	gtc Val	aac Asn	aag Lys	atc Ile 690	gca Ala	cag Gln	gag Glu	agc Ser	aag Lys 695	aac Asn	atc Ile	tgg Trp	aag Lys	ctg Leu 700	:	2113
cag Gln	aga Arg	gcc Ala	atc Ile	acc Thr 705	atc Ile	ctg Leu	gac Asp	acg Thr	gag Glu 710	aag Lys	agc Ser	ttc Phe	ctt Leu	aag Lys 715	tgc Cys		2161
atg Met	agg Arg	aag Lys	gcc Ala 720	ttc Phe	cgc Arg	tca Ser	ggc	aag Lys 725	ctg Leu	ctg Leu	cag Gln	gtg Val	999 Gly 730	tac Tyr	aca Thr		2209
cct Pro	gat Asp	ggc Gly 735	aag Lys	gac Asp	gac Asp	tac Tyr	cgg Arg 740	tgg Trp	tgc Cys	ttc Phe	agg Arg	gtg Val 745	gac Asp	gag Glu	gtg Val		2257
a ac Asn	tgg Trp 750	acc Thr	acc Thr	tgg Trp	aac Asn	acc Thr 755	aac Asn	gtg Val	ggc Gly	atc Ile	atc Ile 760	aac Asn	gaa Glu	gac Asp	ccg Pro		2305
ggc Gly 765	aac Asn	tgt Cys	gag Glu	ggc Gly	gtc Val 770	aag Lys	cgc Arg	acc Thr	ctg Leu	agc Ser 775	ttc Phe	tcc Ser	ctg Leu	cgg Arg	tca Ser 780		2353
agc Ser	aga Arg	gtt Val	tca Ser	ggc Gly 785	aga Arg	cac His	tgg Trp	aag Lys	aac Asn 790	ttt Phe	gcc Ala	ctg Leu	gtc Val	ccc Pro 795	ctt Leu		2401
tta Leu	aga Arg	gag Glu	gca Ala 800	agt Ser	gct Ala	cga Arg	gat Asp	agg Arg 805	cag Gln	tct Ser	gct Ala	cag Gln	ccc Pro 810	gag Glu	gaa Glu		2449
gtt Val	tat Tyr	ctg Leu 815	cga Arg	cag Gln	ttt Phe	tca Ser	ggg Gly 820	tct Ser	ctg Leu	aag Lys	cca Pro	gag Glu 825	gac Asp	gct Ala	gag Glu		2497
					gcc Ala						tga	aagc	cga i	attc			2544

<211> 839

<212> PRT

<213> Homo sapiens

<400> 34

Met Lys Lys Trp Ser Ser Thr Asp Leu Gly Ala Ala Ala Asp Pro Leu 1 5 10 15

WO 99/37675

Gln	Lys	Asp	Thr 20	Cys	Pro	Asp	Pro	Leu 25	Asp	Gly	Asp	Pro	Asn 30	Ser	Arg
Pro	Pro	Pro 35	Ala	Lys	Pro	Gln	Leu 40	Ser	Thr	Ala	Lys	Ser 45	Arg	Thr	Arg
Leu	Phe 50	Gly	Lys	Gly	Asp	Ser 55	Glu	Glu	Ala	Phe	Pro 60	Val	Asp	Cys	Pro
His 65	Glu	Glu	Gly	Glu	Leu 70	Asp	Ser	Cys	Pro	Thr 75	Ile	Thr	Val	Ser	Pro
Val	Ile	Thr	Ile	Gln 85	Arg	Pro	Gly	Asp	Gly 90	Pro	Thr	Gly	Ala	Arg 95	Leu
Leu	Ser	Gln	Asp 100	Ser	Val	Ala	Ala	Ser 105	Thr	Glu	Lys	Thr	Leu 110	Arg	Leu
Tyr	Asp	Arg 115		Ser	Ile	Phe	Glu 120	Ala	Val	Ala	Gln	Asn 125	Asn	Cys	Gln
_	130					135					Ser 140				
145	_				150					155	Lys				160
-				165					170		Thr			175	
			180					185			Lys		190		
		195					200				Thr	205			
	210					215					Leu 220				
225					230	·				235	Phe				240
_				245					250		Pro			255	
	-		260					265			Leu		270		
		275					280				Val	285			
	290					295					Ala 300				
305					310					315	Leu				320
				325					330		Lys			335	
			340					345			Gly		350		
		355					360				Arg	365			
	370		•			375					Ser 380				
385					390					395	Val				400
				405					410		Asp		•	415	
			420					425			Asp		430		
Arg	Ile	Phe 435	Tyr	Phe	Asn	Phe	Leu 440	Val	Tyr	Cys	Leu	Tyr 445	Met	Ile	Ile

Phe	Thr 450	Met	Ala	Ala	Tyr	Tyr 455	Arg	Pro	Val	Asp	Gly 460	Leu	Pro	Pro	Phe
Lys 465	Met	Glu	Lys	Thr	Gly 470	Asp	Tyr	Phe	Arg	Val 475	Thr	Gly	Glu	Ile	Leu 480
	Val	Leu	Gly	Gly 485		Tyr	Phe	Phe	Phe 490	Arg	Gly	Ile	Gln	Tyr 495	
Leu	Gln	Arg	Arg 500		Ser	Met	Lys	Thr 505		Phe	Val	Asp	Ser 510		Ser
Glu	Met	Leu 515		Phe	Leu	Gln	Ser 520		Phe	Met	Leu	Ala 525		Val	Val
Leu	Tyr 530		Ser	His	Leu	Lys 535		Tyr	Val	Ala	Ser 540		Val	Phe	Ser
Leu		Leu	Glv	Trp	Thr	Asn	Met	Leu	Tyr	Tvr	-	Arg	Glv	Phe	Gln
545				_	550				-	55 5		J	1		560
Gln	Met	Gly	Ile	Tyr 565	Ala	Val	Met	Ile	Glu 570	Lys	Met	Ile	Leu	Arg 575	Asp
Leu	Cys	Arg	Phe	Met	Phe	Val	Tyr	Val	Val	Phe	Leu	Phe	Gly	Phe	Ser
			580		_			585		_			590		
		595				Ile	600					605			
Ser	Glu 610	Ser	Thr	Ser	His	Arg	Trp	Arg	Gly	Pro		Cys	Arg	Pro	Pro
Asn		Ser	Tur	Δsn	Ser	615 Leu	TVY	Ser	Thr	Cvs	620	Glu	Len	Dhe	Lve
625	501	DCI	171	11511	630		- 7 -	-		635	шец	0	Dea	1110	640
	Thr	Ile	Gly	Met		Asp	Leu	Glu	Phe	Thr	Glu	Asn	Tyr	Asp	
				645					650					655	
			660			Leu		665					670		_
		675				Leu	680				_	685			
Lys	Ile 690	Ala	Gln	Glu	Ser	Lys 695	Asn	Ile	Trp	Lys	Leu 700	Gln	Arg	Ala	Ile
	Ile	Leu	Asp	Thr		Lys	Ser	Phe	Leu		Cys	Met	Arg	Lys	
705 Phe	Ara	Ser	Glv	Lve	710	Leu	Gln	Val	Glv	715 Từr	Thr	Pro	Δen	Glv	720
				725					730					735	
			740		_	Phe		745					750		
Trp	Asn	Thr 755	Asn	Val	Gly	Ile	Ile 760	Asn	Glu	Asp	Pro	Gly 765	Asn	Cys	Glu
Gly	Val 770	Lys	Arg	Thr	Leu	Ser 775	Phe	Ser	Leu	Arg	Ser 780	Ser	Arg	Val	Ser
Gly	Arg	His	Trp	Lys	Asn	Phe	Ala	Leu	Val	Pro	Leu	Leu	Arg	Glu	Ala
785					790		_	_		795					800
•				805		Ser			810					815	
Gln	Phe	Ser	Gly 820	Ser	Leu	Lys	Pro	Glu 825	Asp	Ala	Glu	Val	Phe 830	Lys	Ser
Pro	Ala	Ala 835	Ser	Gly	Glu	Lys							•		

<211> 2380

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (19)...(2313) <223> Human VR2 <400> 35 cagceteete etectagg atg ace tea eee tee age tet eea gtt tte agg 51.

Met Thr Ser Pro Ser Ser Ser Pro Val Phe Arg

						Met 1	Thr	Ser	Pro	Ser 5	Ser	Ser	Pro	Val	Phe 10	Arg		
•	ttg Leu	gag Glu	aca Thr	tta Leu 15	gat Asp	gga Gly	ggc Gly	caa Gln	gaa Glu 20	gat Asp	ggc Gly	tct Ser	gag Glu	gcg Ala 25	gac Asp	aga Arg		99
,	gga Gly	aag Lys	ctg Leu 30	gat Asp	ttt Phe	gly ggg	agc Ser	ggg Gly 35	ctg Leu	cct Pro	ccc Pro	atg Met	gag Glu 40	tca Ser	cag Gln	ttc Phe	:	147
	cag Gln	ggc Gly 45	gag Glu	gac Asp	cgg Arg	aaa Lys	ttc Phe 50	gcc Ala	cct Pro	cag Gln	ata Ile	aga Arg 55	gtc Val	aac Asn	ctc Leu	aac Asn	:	195
	tac Tyr 60	cga Arg	aag Lys	gga Gly	aca Thr	ggt Gly 65	gcc Ala	agt Ser	cag Gln	ccg Pro	gat Asp 70	cca Pro	aac Asn	cga Arg	ttt Phe	gac Asp 75	;	24-3
	cga Arg	gat Asp	cgg Arg	ctc Leu	ttc Phe 80	aat Asn	gcg Ala	gtc Val	tcc Ser	cgg Arg 85	ggt Gly	gtc Val	ccc Pro	gag Glu	gat Asp 90	ctg Leu		291
	gct Ala	gga Gly	ctt Leu	cca Pro 95	gag Glu	tac Tyr	ctg Leu	agc Ser	aag Lys 100	acc Thr	agc Ser	aag Lys	tac Tyr	ctc Leu 105	acc Thr	gac Asp		339
	tcg Ser	gaa Glu	tac Tyr 110	aca Thr	gag Glu	ggc Gly	tcc Ser	aca Thr 115	ggt Gly	aag Lys	acg Thr	tgc Cys	ctg Leu 120	atg Met	aag Lys	gct Ala		387
	gtg Val	ctg Leu 125	aac Asn	ctt Leu	aag Lys	gac Asp	gga Gly 130	gtc Val	aat Asn	gcc Ala	tgc Cys	att Ile 135	ctg Leu	cca Pro	ctg Leu	ctg Leu		435
	cag Gln 140	atc Ile	gac Asp	agg Arg	gac Asp	tct Ser 145	ggc Gly	aat Asn	cct Pro	cag Gln	ccc Pro 150	ctg Leu	gta Val	aat Asn	gcc Ala	Gln		483
	tgc Cys	aca Thr	gat Asp	gac Asp	tat Tyr 160	tac Tyr	cga Arg	ggc	cac His	agc Ser 165	Ala	ctg Leu	cac His	atc Ile	gcc Ala 170	att Ile		531
	gag Glu	aag Lys	agg Arg	agt Ser 175	Leu	cag Gln	tgt Cys	gtg Val	aag Lys 180	Leu	ctg Leu	gtg Val	gag Glu	aat Asn 185	Gly ggg	gcc Ala		579

aat Asn	gtg Val	cat His 190	gcc Ala	cgg Arg	gcc Ala	tgc Cys	ggc Gly 195	cgc Arg	ttc Phe	ttc Phe	cag Gln	aag Lys 200	ggc	caa Gln	gly aaa	627
act Thr	tgc Cys 205	ttt Phe	tat Tyr	ttc Phe	ggt Gly	gag Glu 210	cta Leu	ccc Pro	ctc Leu	tct Ser	ttg Leu 215	gcc Ala	gct Ala	tgc Cys	acc Thr	675
aag Lys 220	cag Gln	tgg Trp	gat Asp	gtg Val	gta Val 225	agc Ser	tac Tyr	ctc Leu	ctg Leu	gag Glu 230	aac Asn	cca Pro	cac His	cag Gln	ecc Pro 235	723
gcc Ala	agc Ser	ctg Leu	cag Gln	gcc Ala 240	act Thr	gac Asp	tcc Ser	cag Gln	ggc Gly 245	aac Asn	aca Thr	gtc Val	ctg Leu	cat His 250	gcc Ala	771
cta Leu	gtg Val	atg Met	atc Ile 255	tcg Ser	gac Asp	aac Asn	tca Ser	gct Ala 260	gag Glu	aac Asn	att Ile	gca Ala	ctg Leu 265	gtg Val	acc Thr	819
Ser	Met	Tyr 270	Asp	Gly	ctc Leu	Leu	Gln 275	Ala	Gly	Ala	Arg	Leu 280	Cys	Pro	Thr	867
Val	Gln 285	Leu	Glu	Asp	atc Ile	Arg 290	Asn	Leu	Gln	Asp	Leu 295	Thr	Pro	Leu	Lys	915
Leu 300	Ala	Ala	Lys	Glu	ggc Gly 305	Lys	Ile	Glu	Ile	Phe 310	Arg	His	Ile	Leu	Gln 315	963
Arg	Glu	Phe	Ser	Gly 320	ctg Leu	Ser	His	Leu	Ser 325	Arg	Lys	Phe	Thr	Glu 330	Trp	1011
Cys	Tyr	Gly	Pro 335	Val	cgg Arg	Val	Ser	Leu 340	Tyr	Asp	Leu	Ala	Ser 345	Val	Asp	1059
Ser	Cys	Glu 350	Glu	Asn	tca Ser	Val	Leu 355	Glu	Ile	Ile	Ala	Phe 360	His	Cys	Lys	1107
ago Ser	Pro	His	cga Arg	cac	cga Arg	atg Met 370	gtc Val	gtt Val	ttg Leu	gag Glu	ecc Pro 375	ctg Leu	aac Asn	aaa Lys	ctg Leu	1155
	365															
ctg Lev 380	cag Gln	gcg	aaa Lys	tgg Trp	gat Asp 385	ctg Leu	ctc Leu	atc Ile	ccc Pro	aag Lys 390	ttc Phe	ttc Phe	tta Leu	aac Asn	ttc Phe 395	1203

cag Gln	cct Pro	acc Thr	ctg Leu 415	aag Lys	aag Lys	cag Gln	gcc Ala	gcc Ala 420	cct Pro	cac His	ctg Leu	aaa Lys	gcg Ala 425	gag Glu	gtt Val	1	299
gga Gly	aac Asn	tcc Ser 430	atg Met	ctg Leu	ctg Leu	acg Thr	ggc Gly 435	cac His	atc Ile	ctt Leu	atc Ile	ctg Leu 440	cta Leu	gly ggg	gly aaa	1	347
atc Ile	tac Tyr 445	ctc Leu	ctc Leu	gtg Val	ggc Gly	cag Gln 450	ctg Leu	tgg Trp	tac Tyr	ttc Phe	tgg Trp 455	cgg Arg	cgc Arg	cac His	gtg Val	1	395
ttc Phe 460	atc Ile	tgg Trp	atc Ile	tcg Ser	ttc Phe 465	ata Ile	gac Asp	agc Ser	tac Tyr	ttt Phe 470	gaa Glu	atc Ile	ctc Leu	ttc Phe	ctg Leu 475	. 1	.443
ttc Phe	cag Gln	gcc Ala	ctg Leu	ctc Leu 480	aca Thr	gtg Val	gtg Val	tcc Ser	cag Gln 485	gtg Val	ctg Leu	tgt Cys	ttc Phe	ctg Leu 490	gcc Ala	1	.491
atc Ile	gag Glu	tgg Trp	tac Tyr 495	ctg Leu	ccc Pro	ctg Leu	ctt Leu	gtg Val 500	tct Ser	gcg Ala	ctg Leu	gtg Val	ctg Leu 505	ggc Gly	tgg Trp	1	.539
ctg Leu	aac Asn	ctg Leu 510	ctt Leu	tac Tyr	tat Tyr	aca Thr	cgt Arg 515	ggc Gly	ttc Phe	cag Gln	cac His	aca Thr 520	ggc Gly	atc Ile	tac Tyr	1	.587
agt Ser	gtc Val 525	atg Met	atc Ile	cag Gln	aag Lys	gtc Val 530	atc Ile	ctg Leu	cgg Arg	gac Asp	ctg Leu 535	ctg Leu	cgc Arg	ttc Phe	ctt Leu	1	635
ctg Leu 540	atc Ile	tac Tyr	tta Leu	gtc Val	ttc Phe 54 5	ctt Leu	ttc Phe	ggc Gly	ttc Phe	gct Ala 550	gta Val	gcc Ala	ctg Leu	gtg Val	agc Ser 555	1	1683
ctg Leu	agc Ser	cag Gln	gag Glu	gct Ala 560	tgg Trp	cgc Arg	ccc Pro	gaa Glu	gct Ala 565	cct Pro	aca Thr	ggc Gly	ccc Pro	aat Asn 570	gcc Ala	1	L731
aca Thr	gag Glu	tca Ser	gtg Val 575	cag Gln	ccc Pro	atg Met	gag Glu	gga Gly 580	cag Gln	gag Glu	gac Asp	gag Glu	ggc Gly 585	aac Asn	gly aaa	1	L779
gcc	cag Gln	tac Tyr 590	Arg	ggt Gly	atc Ile	ctg Leu	gaa Glu 595	gcc Ala	tcc Ser	ttg Leu	gag Glu	ctc Leu 600	ttc Phe	aaa Lys	ttc Phe	1	1827
acc Thr	atc Ile 605	Gly	atg Met	ggc Gly	gag Glu	ctg Leu 610	Ala	ttc Phe	cag Gln	gag Glu	cag Gln 615	ctg Leu	cac His	ttc Phe	cgc Arg	3	187 5

ggc Gly 620	atg Met	gtg Val	ctg Leu	ctg Leu	ctg Leu 625	ctg Leu	ctg Leu	gcc Ala	tac Tyr	gtg Val 630	ctg Leu	ctc Leu	acc Thr	tac Tyr	atc Ile 635	1	923
ctg Leu	ctg Leu	ctc Leu	aac Asn	atg Met 640	ctc Leu	atc Ile	gcc Ala	ctc Leu	atg Met 645	agc Ser	gag Glu	acc Thr	gtc Val	aac Asn 650	agt Ser	1	971
gtc Val	gcc Ala	act Thr	gac Asp 655	agc Ser	tgg Trp	agc Ser	atc Ile	tgg Trp 660	aag Lys	ctg Leu	cag Gln	aaa Lys	gcc Ala 665	atc Ile	tct Ser	2	019
gtc Val	ctg Leu	gag Glu 670	atg Met	gag Glu	aat Asn	ggc Gly	tat Tyr 675	tgg Trp	tgg Trp	tgc Cys	agg Arg	aag Lys 680	aag Lys	cag Gln	cgg Arg	2	067
gca Ala	ggt Gly 685	gtg Val	atg Met	ctg Leu	acc Thr	gtt Val 690	ggc Gly	act Thr	aag Lys	cca Pro	gat Asp 695	ggc Gly	agc Ser	ccc Pro	gat Asp	2	:115
gag Glu 700	cgc Arg	tgg Trp	tgc Cys	ttc Phe	agg Arg 705	gtg Val	gag Glu	gag Glu	gtg Val	aac Asn 710	tgg Trp	gct Ala	tca Ser	tgg Trp	gag Glu 715	2	2163
cag Gln	acg Thr	ctg Leu	cct Pro	acg Thr 720	ctg Leu	tgt Cys	gag Glu	gac Asp	ccg Pro 725	tca Ser	GJ A aaa	gca Ala	ggt Gly	gtc Val 730	cct Pro	. 2	2211
cga Arg	act Thr	ctc Leu	gag Glu 735	aac Asn	cct Pro	gtc Val	ctg Leu	gct Ala 740	tcc Ser	cct Pro	ccc Pro	aag Lys	gag Glu 745	gat Asp	gag Glu	. 2	2259
gat Asp	ggt Gly	gcc Ala 750	tct Ser	gag Glu	gaa Glu	aac Asn	tat Tyr 755	gtg Val	ccc Pro	gtc Val	cag Gln	ctc Leu 760	Leu	cag Gln	tcc Ser	2	2307
aac Asn		tgg	ccca	gat	gcag	cagg	ag g	ccag	agga	c ag	agca	gagg	atc	tttc	caa		2363
сса	cato	tgc	tggc	tct												:	2380
	<	210> 211> 212> 213>	764 PRT	•	pien	.s											
		400>					_			20		C 1	. mr		λαν		
1				5					10					15	Asp		
			20					25					30		Phe		
Gly	/ Sei	Gly 35	Leu	Pro	Pro	Met	40	Ser	Gln	. Phe	. Gln	45	/ Glu	ı Asr	Arg		

							•								
	50					55					60				
Gly 65					70					75					80
Asn				85					90					95	
Tyr			100					105					110		
Gly		115					120					125			
_	130		Asn			135					140				
145	_		Pro		150					155					160
-			His	165					170					175	
•			Lys 180			•		185					190		
	-	195	Arg				200					205			
_	210		Pro			215					220				
225			Leu		230					235					240
			Gln	245					250					255	
_			Ala 260					265					270		
		275	Ala				280					285			
	290		Leu			295					300				
305	-		Glu		310					315					320
			Leu	325					330					335	
			Leu 340					345					350		
		355					360					365			
_	370		Val			375					380				
385			Ile		390					395					400
			Ile	405					410					415	
			Ala 420					425					430		
		435					440					445			
	450		Trp			455	;				460				
Phe 465		Asp	Ser	Tyr	Phe 470		lle	. Leu	Phe	Leu 475		Gln	Ala	Leu	Leu 480

PCT/US99/01418

							-										
Thr	Val	Val	Ser	Gln 485	Val	Leu	Cys	Phe	Leu 490	Ala	Ile	Glu	Trp	Tyr 495	Leu		
Pro	Leu	Leu		Ser	Ala	Leu	Val	Leu 505		Trp	Leu	Asn	Leu 510		Tyr		
Tyr	Thr		500 Gly	Phe	Gln	His	Thr 520		Ile	туг	Ser	Val 525	Met	Ile	Gln		
Lys		515 Ile	Leu	Arg	Asp			Arg	Phe	Leu	Leu 540		Tyr	Leu	Val		
Dhe	530	Dhe	Glv	Phe	Δla	535 Val	Ala	Leu	Val	Ser		Ser	Gln	Glu	Ala		
545					550					555					560		
Trp	Arg	Pro	Glu	Ala	Pro	Thr	Gly	Pro		Ala	Thr	Glu	Ser		Gln		
				565		•	01	a 1	570	~1··	ת ה	C15	Tare	575	Gl ₁		
Pro	Met	GIu	580	GIN	GIU	Asp	Giu	585	ASII	GTA	ALA	GIII	Tyr 590	Arg	Gry		
Ile	Leu	Glu		Ser	Leu	Glu	Leu		Lys	Phe	Thr	Ile	Gly	Met	Gly		
		595					600					605					
	610					615					620		Val				
Leu	Leu	Leu	Ala	Tyr		Leu	Leu	Thr	Tyr		Leu	Leu	Leu	Asn			
625	-1 -	27-	T	Mot	630	Clu	Thr	.37±1	Aen	635 Ser	Val	Δla	Thr	Asp	640 Ser		
				645					650					655			
Trp	Ser	Ile	Trp 660	Lys	Leu	Gln	Lys	Ala 665	Ile	Ser	Val	Leu	Glu 670	Met	Glu		
Asn	Gly	Tyr		Trp	Cys	Arg	Lys	Lys	Gln	Arg	Ala	Gly	Val	Met	Leu		
		675					680	_	_		a 1	685		G	Dh a		
Thr	Val 690	Gly	Thr	Lys	Pro	Asp 695	GIA	Ser	Pro	Asp	700	Arg	Trp	Cys	Pne		
Arq	Val	Glu	Glu	Val	Asn		Ala	Ser	Trp	Glu		Thr	Leu	Pro	Thr		
705					710					715					720		
				725					730				Leu	735			
Pro	Val	Leu		Ser	Pro	Pro	Lys			Glu	Asp	Gly	Ala 750	Ser	Glu		
Glu	Δen	Tvr	740 Val	Pro	Val	Gln	Leu	745 Leu	Gln	Ser	Asn		750				
Ozu	11011	755					760										
	<	210>	37														
	<	211>	21														
			DNA														
	<	213>	Hom	o sa	pien	S											
		400>															21
ggc	gacc	tgg	agtt	cact	ga g												21
		210>															
		211>	DNA														
			Hom		pien	s											
	`			u	· · ·												
		400>															21
gag	cagg	agg	atgt	aggt	ga g												4 1
	,	2105	. 39														

<211> 226

<212> DNA	
<213> Homo sapiens	
<400> 39	
etgeagette cagatgitet tgeteteetg tgegatettg tigaeagiet eacceatgag	60
ggcgatgagc atgttgagca ggaggatgta ggtgagaatt acataggcca gcagcaggat	120
gatgaagaca gccttgaagt catagttete agtgaactee aggtegeeca tgeegatggt	180
gaacttgaac agctccaggc aggtggagta caggctgttg taggag	226
, and object in the second of	
<210> 40	
<211> 226	
<212> DNA	
<213> R. rattus	
(213) 1. 100000	
<400> 40	
gagaatgttg tcggacataa ggtgtacaga cctcgacaag ttcaagtggt agccgtaccc	60
getggacete aagtgactet tgatgetgaa gtteegacag aagtagtagg acaatgaceg	120
gatacactaa gagtggatgt aggaagacga gttgtacgag taacgagagt acccactctg	180
gatacactaa gagtggatgt aggaagacga gttgtacgag taacgagat	226
geagttgtte taaegtgtte tetegttett gtagaeette gaegte	220
<210> 41	
<211> 145	
<212> DNA	18
<213> Homo sapiens	
<400> 41	60
aagacctcag cgtcctctgg cttcagagac cctgnaaaac tgtcgcagat aaacttcctc	120
gggctgagca nactgcctat ctcgagcact tgcctctctt aaaaggggga ccagggcaaa	
gttcttccag tgtctgcctg aaact	145
<210> 42	(-m
<211> 144	
<212> DNA	'
<213> Homo sapiens	
<400> 42	
tcaaagtccg tctgtgacct tcttgaaacg ggaccagggg gaaaattctc tccgttcang	60
agetntatee gteagacgag tegggeteet teaaatagae getgteaaaa gteecagaga	120
tttcggtctc ctgcgactcc agaa	144
<210> 43	
<211> 219	
<212> DNA	
<213> Homo sapiens	
•	
<400> 43	
cccactccaa aaggacacct gcccagaccc cctggatgga gaccctaact ccaggccacc	60
tocagocaag coccagotot coacgocaa gagoogcaco cggototttg ggaagggtga	120
ctcggaggag gctttcccgg tggattgccc tcacgaggaa ggtgagctgg actcctgccc	180
gaccatcaca gtcagccttg ttatcaccat ccagaggcc	219
garrantanta goodgoodg transmissing oo	
<210> 44	
<211> 44	
<211> 219 <212> DNA	
SALAD INVA	

<213> R. rattus

tcca ctcg	cccc gtca gagg	ag c ag g	agaa :ccca cctc	cato	t to	acta gact	ccas gcc	gag tta	tcgt tgag	acc gaa	cggc	tttt	tg g	gaag	rccacc rggtga rtgccc
tatc	atca	.ct g	tcag	ctct	g tt	ctaa	ictat	. cca	gagg	icc					
	<2 <2	10> 11> 12>	91 PRT	. gar	vi en s										
	< 2	13>	HOIRC	Sap	16112	•									
	<4	00>	45												
Met	Lys	Lys	Trp	Ser	Ser	Thr	Asp	Leu	Gly	Ala	Ala	Ala	Asp	Pro	Leu
1			•	5					10					15	
Gln	Lys	Asp	Thr 20	Суѕ	Pro	Asp	Pro	Leu 25	Asp	Gly	Asp	Pro	Asn 30	Ser	Arg
Pro	Pro	Pro 35	Ala	Lys	Pro	Gln	Leu 40	Ser	Thr	Ala	Lys	Ser 45	Arg	Thr	Arg
Leu	Phe 50		Lys	Gly	Asp	Ser 55	Glu	Glu	Ala	Phe	Pro 60	Val	Asp	Cys	Pro
His		Glu	Glv	Glu	Leu		Ser	Cys	Pro	Thr	Ile	Thr	Val	Ser	Pro
65			•		70	_				75					80
	Ile	Thr	Ile	Gln 85	Arg	Pro	Arg	Xaa	Arg 90	Pro		,			
	<2	210>	46												
	< 2	211>	91												
		212>													
	<2	213>	R. 1	rattı	ıs										
		100>													
1				5					10					Pro 15	
Gln	Glu	Asn	Ser 20	Cys	Leu	Asp	Pro	Pro 25	Asp	Arg	Asp	Pro	Asn 30	Cys	Lys
Pro	Pro		Val	Lys	Pro	His		Phe	Thr	Thr	Arg		Arg	Thr	Arg
Leu	Phe	35 Glv	Lvs	Glv	Asp	Ser	40 Glu	Glu	Ala	Ser	Pro	45 Leu	Asp	Cys	Pro
	50					55					60				
	Glu	Glu	Gly	Gly		Ala	ser	Cys	Pro		Ile	Thr	Val	Ser	
65 Val	Lou	Th.∽	Tle	Gln	70 200	Dro	Glv	Asp	Glv	75 Pro					80
vai	Leu	1111	116	85	Arg	FIO	Q.L.Y	пор	90	110					
	<:	210>	47												
	<:	211>	24												
	<:	212>	DNA												
	<:	213>	Home	o sa	pien	s									
	_	400>	47												
agras		gag :		acad	ac t	taa									
aya	acy	343	cago	acay.	. · ·	-99									

24

<210> 48 <211> 23 <212> DNA 0

WO 99/37675

PCT/US99/01418

-42-

<213> Homo sapiens

<400> 48 tcacttctcc ccggaagcgg cag

23

International application No. PCT/US99/01418

			PC1/0399/014	10
IPC(6) US CL	SSIFICATION OF SUBJECT MATTER :Please See Extra Sheet. : 530/350; 435/69.1, 252.3, 254.11, 320.1, 325; 514/2 to International Patent Classification (IPC) or to both r	national classification	and IPC	
	DS SEARCHED			
	ocumentation searched (classification system followed	by classification syn	nbols)	
U.S . :	530/350; 435/69.1, 252.3, 254.11, 320.1, 325; 514/2			*
Documentat None	tion searched other than minimum documentation to the	extent that such docum	ments are included	in the fields searched
APS, Dial	ata base consulted during the international search (nation, Medline, WPI ms: Capsaicin Receptor, Vanilloid Receptor, cloning,			, search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category®	Citation of document, with indication, where app	ropriate, of the releva	int passages	Relevant to claim No.
X Y	CATERINA et al. The Capsaicin Reco Channel in the Pain Pathway. Nature. pages 816-824, especially pages 817-81	23 October 199		
X	SZALLASI et al. Characterization (Capsaicin) Receptor in the Urinary Sciences. 1993, Vol. 52, No. 20, pag 223, 224.	Bladder of the	Rat. Life	
X Furth	ner documents are listed in the continuation of Box C.	See paten	t family annex.	
A do	secial categories of cited documents: caument defining the general state of the art which is not considered be of particular relevance	date and not u the principle o	n conflict with the app or theory underlying the	
	rlier document published on or after the international filing date	considered no	el or cannot be conside	e claimed invention cannot be red to involve an inventive step
cit	red to establish the publication date of another citation or other		ment is taken alone	e claimed invention cannot be
.O. qo	secial reason (as specified)	considered to combined with	involve an inventive	step when the document is hocuments, such combination
•P• do	ocument published prior to the international filing date but later than se priority date claimed	ū	mber of the same pater	
Date of the	e actual completion of the international search L 1999	Date of mailing of the Date of MAY	1999	arch report
Commissi Box PCT Washingto	mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231		00.00 E T	فر
Facsimile	No. (703) 305-3230	Li elebiione 140. (

0

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/01418

Y WARDLE et al. Pharmacological Characterization of the Vanilloid Receptor in the Rat Isolated Vas Deferens. J. Pharm. Pharmacol. 1996, Vol. 48, pages 285-291, especially pages 285-287. US 5,021,450 A (BLUMBERG) 04 June 1991, columns 7 and 9.	laim N
	
	*
	•

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US99/01418

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report cover only those claims for which fees were paid, specifically claims Nos.: 1-11, 17, species 1 and 14
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report i restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/US99/01418

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C07K 14/435, 14/705; C12N 15/12, 15/63, 15/70, 15/74, 15/79, 15/81; A61K 38/17

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-11 and 17, drawn to Capsaicin receptor and its encoding polynucleotide.

Group II, claim 12, drawn to antibody against the capsaicin receptor.

Group III, claims 13-16, drawn to method for identifying compounds that bind a capsaicin receptor.

Group IV, claim 18, drawn to a non-human transgenic animal.

Group V, claim 19, drawn to a method of screening for biologically active agents that modulate capsaicin receptor function.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of Group I is the amino acid sequence and its encoding nucleic acid sequence. The special technical feature of Group II is the antibody that binds the receptor of Group I but does not share the same primary structure as the receptor of Group I. The special technical feature of Group III is a method of identifying a compound that bind the receptor of Group I. The special technical feature of Group IV is a transgenic animal having altered capsaicin receptor function. The special technical feature of Group V is a method of screening for biologically active agents that modulate capsaicin receptor function. The special technical feature of each Group is not the same or does not correspond to the special technical feature of any other group. The products of Groups I, II, and IV are structurally and functionally distinct, and the methods of Groups III and V require different method steps and reagents for achieving different goals. The Groups are not linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

- 1) SEQ ID NO: 1 and 2
- 2) SEQ ID NO: 3 and 4
- 3) SEQ ID NO: 5
- 4) SEQ ID NO: 6
- 5) SEQ ID NO: 7
- 6) SEQ ID NO: 8 and 9
- 7) SEQ ID NO: 10 and 11
- 8) SEQ ID NO: 20
- 9) SEQ ID NO: 21
- 10) SEQ ID NO: 22 and 23
- 11) SEQ ID NO: 24 and 25
- 12) SEQ ID NO: 26
- 13) SEQ ID NO: 27
- 14) SEQ ID NO: 33 and 34
- 15) SEQ ID NO: 35 and 36

The claims are deemed to correspond to the species listed above in the following manner:

claim 4: SEQ ID NO: 2, 4, 9, 11, 23, 25, 27, 34, and 36 claim 8: SEQ ID NO: 1, 3, 5, 6, 7, 8, 10, 20, 21, 22, 24, 26, 33, and 35

The following claims are generic: 1-19

The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: The special technical

Form PCT/ISA/210 (extra sheet)(July 1992)*

International application No. PCT/US99/01418

psaicin receptors.		
		·
		•
	•	

Form PCT/ISA/210 (extra sheet)(July 1992)*