Probabilistic Methods Fall 2024

Contents

- Probabilistic Methods Naive Bayes Classifier
 - Discrete and Continuous Cases
- How to handle non-numeric data? Mix of types?
- How to handle missing data?
- Bias vs Variance

Naive Bayes Classifier

- It works by estimating probabilities
- The prediction variable is y, and the features X_1, X_2, \dots, X_3
- NBC learns a Naive bayesian model
- Features in the dataset are IID, independent and identically distributed.

The decision rule

Consider a binary classifier, with classes A, B (values of label, y)

If
$$Pr(y=A | X_1=v_1, X_2=v_2,..._1, X_n=v_n) > Pr(y=B | X_1=v_1, X_2=v_2,..., X_n=v_n)$$

Predict $y = A$

Else

Predict y = B

Pr(PlayGolf=yes | Outlook=Overcas Temp=Mild, Humidity=Normal, Windy = True) = ?

Pr(PlayGolf=no | Outlook=Overcast Temp=Mild, Humidity=Normal, Windy = True) = ?

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	Falce	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	False	Yes	
Sunny	Mild	High	Falce	Yes	
Sunny	Cool	Normal	Falce	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	
Rainy	Mild	High	False	No	
Rainy	Cool	Normal	False	Yes	
Sunny	Mild	Normal	Falce	Yes	
Rainy	Mild	Normal	True	Yes	
Overoast	Mild	High	True	Yes	
Overoast	Hot	Normal	Falce	Yes	
Sunny	Mild	High	True	No	

Pr(PlayGolf=yes | Outlook=Overca st, Temp=Mild, Humidity=Normal, Windy = True) = ?

= Pr(Outlook=Overcast,
Temp=Mild, Humidity=Normal,
Windy = True | PlayGolf=yes) *
Pr(PlayGolf=yes) /
Pr(Outlook=Overcast,
Temp=Mild, Humidity=Normal,
Windy = True)

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	Falce	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	False	Yes	
Sunny	Mild	High	Falce	Yes	
Sunny	Cool	Normal	False	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	
Rainy	Mild	High	Falce	No	
Rainy	Cool	Normal	False	Yes	
Sunny	Mild	Normal	Falce	Yes	
Rainy	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overoast	Hot	Normal	Falce	Yes	
Sunny	Mild	High	True	No	

Pr(Outlook=Overcast,
Temp=Mild, Humidity=Normal,
Windy = True | PlayGolf=yes)

Pr(PlayGolf=yes)

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True)

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	False	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	False	Yes	
Sunny	Mild	High	False	Yes	
Sunny	Cool	Normal	Falce	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	
Rainy	Mild	High	Falce	No	
Rainy	Cool	Normal	False	Yes	
Sunny	Mild	Normal	Falce	Yes	
Rainy	Mild	Normal	True	Yes	
Overoast	Mild	High	True	Yes	
Overoast	Hot	Normal	Falce	Yes	
Sunny	Mild	High	True	No	

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True | PlayGolf=yes) =

Pr(Outlook=Overcast, | PlayGolf=yes) *

Pr(Temp=Mild | PlayGolf=yes) *

Pr(Humidity=NormalPlayGolf=yes) *

Pr(Windy = True | PlayGolf=yes)

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	Falce	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Milid	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	False	Yes

True

No

Mild

Sunny

High

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True | PlayGolf=yes) = (4/9) * (4/9) * (6/9)*(3/9)

Pr(Outlook=Overcast, | PlayGolf=yes)

= 4/9

Pr(Temp=Mild | PlayGolf=yes)

= 4/9

Pr(**Humidity=Normal**PlayGolf=yes)

= 6/9

Pr(Windy = True | PlayGolf=yes)

= 3/9

Target

Predictors

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	Falce	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Mild	High	Falce	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	Falce	Yes
Sunny	Mild	High	True	No

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True | PlayGolf=yes) = (4/9) * (4/9) * (6/9)*(3/9)

Pr(PlayGold=yes) = 9/14

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True) = ?

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	Falce	Yes
Sunny	Cool	Normal	Falce	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Mild	High	Falce	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	Falce	Yes
Sunny	Mild	High	True	No

Pr(PlayGolf=no|Outlook=Overca st, Temp=Mild, Humidity=Normal, Windy = True) = ?

= Pr(Outlook=Overcast,
Temp=Mild, Humidity=Normal,
Windy = True | PlayGolf=no) *
Pr(PlayGold=no) /
Pr(Outlook=Overcast,
Temp=Mild, Humidity=Normal,
Windy = True)

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	Falce	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Milid	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overoast	Hot	Normal	Falce	Yes
Sunny	Mild	High	True	No

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True | PlayGolf=no) = (0/5) * (2/5) * (1/5)*(3/5)

Pr(**Outlook=Overcast**, | PlayGolf=no)

= 0/5

Pr(**Temp=Mild** | PlayGolf=no)

= 2/5

Pr(**Humidity=Normal** | PlayGolf=no)

= 1/5

Pr(Windy = True | PlayGolf=no)

= 3/5

Target

Outlook	Temp	Humidity	Windy	Play Golf	
Rainy	Hot	High	False	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	False	Yes	
Sunny	Mild	High	False	Yes	
Sunny	Cool	Normal	Falce	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	
Rainy	Mild	High	Falce	No	
Rainy	Cool	Normal	False	Yes	
Sunny	Mild	Normal	Falce	Yes	
Rainy	Mild	Normal	True	Yes	
Overoast	Mild	High	True	Yes	
Overoast	Hot	Normal	Falce	Yes	
Sunny	Mild	High	True	No	

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True | PlayGolf=no) = (0/5) * (2/5) * (1/5)*(3/5)

Pr(PlayGold=yes) = 5/14

Pr(Outlook=Overcast, Temp=Mild, Humidity=Normal, Windy = True) = ?

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overoast	Hot	High	False	Yes
Sunny	Mild	High	Falce	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overoast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	Falce	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Pros and Cons

- Easy to implement
- Training faster, no gradient descent needed
- Does not overfit
- Less memory and CPU requirement
- Easy to retrain with new data
- Handles both numeric and categorical data
- Handles missing data automatically

- Ensembling, bagging, boosting does not work, no variance to reduce
- Zero frequency problem for categorical data
- IID assumption often not practical
- Numerical underflow
- Skewed data causes problems in prior calculation

Another Example - Text Classification

- Spam Filter
- Bag of words

Supervised Learning Problem

- Bag of words model
- Features are frequency of the words
- Maintains a dictionary of words == vocabulary

SPAM

OFFER IS SECRET SECRET SPORTS LINK CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

- Vocabulary = 12
- P (SPAM) = ?
- P("SECRET" | SPAM) = ?
- P("SECRET" | HAM) = ?
- P("SPORTS" | SPAM) = ?
- P("SPORTS" | HAM) = ?

SPAM

OFFER IS SECRET
SECRET SPORTS LINK
CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

SPAM

OFFER IS SECRET
SECRET SPORTS LINK
CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

Message = "SPORTS"

If Pr (SPAM | Message = "SPORTS") > Pr (HAM | Message = "SPORTS")

Message = SPAM

Else

Message = **HAM**

Pr (SPAM | SPORTS) = Pr (SPORTS|SPAM) * Pr (SPAM) / Pr (SPORTS)
Pr (HAM | SPORTS) = Pr (SPORTS|HAM) * Pr (HAM) / Pr (SPORTS)

SPAM

OFFER IS SECRET
SECRET SPORTS LINK
CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

Message = "SECRET IS SECRET"

Pr (SPAM | MESSAGE) = Pr (MESSAGE|SPAM) * Pr (SPAM) / Pr (MESSAGE)
Pr (HAM | MESSAGE) = Pr (MESSAGE|HAM) * Pr (HAM) / Pr (MESSAGE)
Pr (MESSAGE) = Pr (MESSAGE|SPAM) * Pr (SPAM) + Pr (MESSAGE|HAM) * Pr (HAM)

SPAM

OFFER IS SECRET
SECRET SPORTS LINK
CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

Message = "TODAY IS SECRET"

Pr (SPAM | MESSAGE) = Pr (MESSAGE|SPAM) * Pr (SPAM) / Pr (MESSAGE)
Pr (HAM | MESSAGE) = Pr (MESSAGE|HAM) * Pr (HAM) / Pr (MESSAGE)
Pr (MESSAGE) = Pr (MESSAGE|SPAM) * Pr (SPAM) + Pr (MESSAGE|HAM) * Pr (HAM)

Laplacian Smoothing

- Pr (X) = Count (x) / Total Count
- In Laplacian Smoothing,
 - o Pr (X) = (Count (X) + k) / (Total Count + K * |x|)
- P (SPAM) = ?
- P ("TODAY" | SPAM) = ?
- P ("IS" | SPAM) = ?
- P ("SECRET" | SPAM) = ?
- P ("TODAY" | HAM) = ?
- P ("IS" | HAM) = ?
- P ("SECRET" | HAM) = ?

SPAM

OFFER IS SECRET
SECRET SPORTS LINK
CLICK SECRET LINK

HAM

WENT PLAY SPORTS
PLAY SPORTS TODAY
SECRET SPORTS EVENT
SPORTS IS TODAY
SPORTS COSTS MONEY

Message = "TODAY IS SECRET"

Advanced Email Filters

- Known spamming IP
- Have you emailed the person before?
- Other people received the same message?
- Email header consistent?
- ALL CAPS?
- URLs are pointing correctly?
- Are addressed by your correct name?

Digit Recognition

- Features = Pixels
- Class Labels = 0,1,...,9
- Lets use sklearn

Gaussian Naive Bayes

- How to handle numeric data?
- We assume that these values are sampled from a gaussian distribution

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{\left(x_i - \mu_y\right)^2}{2\sigma_y^2}\right)$$

$$P(Income = 120 \mid Evade = No) = \frac{1}{\sqrt{2 \times \pi \times 2975}} \exp\left(-\frac{(120 - 110)^2}{2 \times 2975}\right)$$

$$P(Income = 120 \mid Evade = Yes) = \frac{1}{\sqrt{2 \times \pi \times 25}} \exp\left(-\frac{(120 - 90)^2}{2 \times 25}\right)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Voting Republican Voting Democratic Non-Respondent Total

13

16

21

50

- Bias are the simplifying assumptions made by a model to make the target function easier to learn.
- Suppose you want to find the number of votes that Joe Biden will get in different states
 - The real value is y
 - \circ Your prediction is $\hat{f}(x)$
 - The bias is the difference
- Variance is the expectation of the squared deviation of a random variable from its mean
 - Estimate of the target function will change if different training data was used.

$$bias = E[\hat{f}(x)] - f(x)$$

$$var(x) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Low Bias

Depends on Training Data, Not much assumption on the model, KNN, SVM, Decision Tree

High Bias

Assumptions on the model, underfitting, not adequate data, linear and logistic regression

Low Variance

Changing the dataset makes small changes on the model

High Variance

Depends on training data, captures noise, overfits

overfitting

underfitting

Good balance

$$Err(x) = Bias^2 + Variance + Irreducible Error$$