Отчет о выполнении лабораторной работы 1.2.3 Определение моментов инерции твердых тел с помощью трифилярного подвеса.

Варламов Антоний, группа Б02-928 19 ноября 2023 г. **Цель работы:** Измерение момента инерции тела и сравнение результатов с расчетами по теоретическим формулам. Проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

В работе используются: Трифилярный подвес (Рис. ??), секундомер, счетчик числа колебаний, набор тел, момент инерции которых необходимо измерить.

1 Теоретические данные.

Перед началом работы кратко изложим теоретический материал, связанный с данной темой:

$$I = \int r^2 dm$$

$$\frac{I\ddot{\phi}^2}{2} + mg(z_0 - z) = E$$

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^2 = L^2 - R^2 - r^2 + 2Rr\cos\phi \approx$$

$$z_0^2 - 2Rr(1 - \cos\phi) \approx z_0^2 - Rr\phi^2$$

$$z = \sqrt{z_0^2 - Rr\phi^2} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Рис. 1: Трифилярный подвес

Трифилярный подвес (Рис. ??) состоит из укрепленной на некоторой высоте неподвижной платформе Р и подвешенной к ней

на трех симмметрично расположенных нитях AA', BB', CC' вращающейся платформы P'.

Подставляя данное уравнение в уравнение Закона Сохранения Энергии и дважды дифференцируя по времени, после сокращений, получаем:

$$I\ddot{\phi}^2 + mg\frac{Rr}{z_0}\phi = 0\tag{1}$$

Решая уравнение (??) относительно ϕ , получаем:

$$\phi = \phi_0 \sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right) \tag{2}$$

Из (??) следует, что

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{3}$$

$$I = kmT, \qquad k = \frac{gRr}{4\pi^2 z_0} \tag{4}$$

2 Выоплнение работы.

2.1 Проверка установки.

Перед началом выполнения лабораторной работы, выполним проверку установки. Для этого, возбудим крутильные колебания нижней платформы и определим время затухания. Установку будем считать исправной, если время затухания

$$\tau \gg T$$

Для удобства наблюдения, определим, за кагое время амплитуда колебаний платформы (угол α - угол отклонения от начального положения) уменьшиться в 2 раза.

Для значения $\alpha \approx 45^\circ$ имеем: Время затухания: $\tau \approx 180$ секунд, $T \approx 1,5$ секунды. Соотношение выполняется, установка пригодна для проведения измерений. Кроме того, определим, при каком значении угла отклонения амплитуда практически независит от периода. Путем измерений начальное отклонение было выбрано $\alpha' \approx 30^\circ$

2.2 Определение параметров установки.

Работа выполнялась на установке №4, ее параметры занесены в таблицу ??

m плат-мы, г	R, мм	r, mm	L, см
934,7	114,6	30,5	216,2

Таблица 1: Параметры установки.

2.3 Определение момента инерции установки.

Для определения момента инерции установки возбудим крутильные колебания ненагруженной платформы. Измерим период колебаний ненагруженной платформы. Для этого измерим время N полных колебаний установки. По результатам измерений определим $T_0 = \frac{N}{t}$.

Результаты измерений: $N=50, t_N=219.276$ секунд $T_0=4,386$ с

2.4 Определение момента инерции заданных тел. Проверка аддитивности момента инерции.

Определив период колебаний свободной платформы, можно перейти к определению периодов колебаний подвеса с грузами, установленными на платформе. Результаты измерений заносим в таблицу ??.

Для подтверждения аддитивности момента инерции необходимо показать, что выболняются соотношение:

$$I_{ring+disc} = I_{ring} + I_{disc} - I_0$$

Для подтверждения данного соотношения вычислим соответсвующие моменты инерции, используя формулу (??). Результаты занесем в таблицу (??)

Подставляя эти данные в формулу

$$I_{ring+disc} = I_{ring} + I_{disc} - I_0,$$

получаем, что данное соотношение выполняется в пределах погрешности. Значит, доказано исходное предположение, момент инерции тела – аддитивная величина.

Тело	Количество	Время ко-	Период ко-	Масса гру-
	колебаний	лебаний, с	лебаний, с	за, г
платформа	50	219,276	4,386	934,7
платформа,	50	212,796	4,256	1672,4
кольцо				
платформа,	50	198,863	3,977	1520,3
диск				
платформа,	50	196,368	3, 927	2258
кольцо,				
диск				

Таблица 2: Периоды колебаний для различных тел на трифилярном подвесе.

Тело	Момент инерции, $kg * m^2, *10^{-3}$
Платформа	7,23
Платформа + диск	9,67
Платформа + кольцо	12,18
Платформа + диск + кольцо	14,00

Таблица 3: Моменты инерции различных тел.

2.5 Определение зависимости момента инерции системы тел от их взаимного расположения.

Перрейдем к определению зависимости Момента инерции системы двух тел от их взаимного расположения. Для этого, располагая грузы как показано на рис. $\ref{eq:constraint}$, получим зависимость периода от расстояния. Затем, используя формулу $\ref{eq:constraint}$, определим зависимость $I(h^2)$

Рис. 2: Схема расположения грузов на платформе трифилярного подвеса.

Полученные результаты измерений занесем в таблицы ??,?? соответсвенно. Основывыаясь на результатах таблицы ??, построим график зависимости $I(h^2)$. (Рис. ??)

№ изм.	Т, с	h, cm	№ изм.	Т, с	h, cm
1	3,122	0	8	3,399	3,5
2	3,127	0,5	9	3,472	4,0
3	3,146	1,0	10	3,568	4,5
4	3,167	1,5	11	3,662	5,0
5	3,207	2,0	12	3,753	5,5
6	3,255	2,5	13	3,886	6,0
7	3,325	3,0	14	4,002	6,5

Таблица 4: Зависимость Периода колебаний от расстояния между дисками.

№ изм.	I, $kgm^2 * 10^{-3}$	h, cm	№ изм.	I, $kgm^2 * 10^{-3}$	h, cm
1	1,678	0	8	1,827	3,5
2	1,681	0,5	9	1,866	4,0
3	1,691	1,0	10	1,918	4,5
4	1,702	1,5	11	1,968	5,0
5	1,724	2,0	12	2,017	5,5
6	1,750	2,5	13	2,089	6,0
7	1,787	3,0	14	2,151	6,5

Таблица 5: Зависимость Момента инерции от расстояния между дисками.

Рис. 3: График зависимости $I(h^2)$

2.6 Определение момента инерции диска, его массы.

Для определения момента инерции диска воспользуемся полученными в таблице ?? значениями. Нас интересует значение момента инерции при h=0. При таких условиях, $I=1,678\times 10^{-3}~kgm^2$

Определим, чему равна масса диска, используя формулу ??: m=1,348г.

Сравнивая результат с истинным значением, можно сказать, что отклонение полученного значения от истинного составляет 0.82%.

2.7 Определение момента инерции тел, с использованием теоретических формул.

Определим, совпадают ли полученные значение моментов инерции с теоретическими. Для этого, используем следующие формулы:

$$I_{disc} = \frac{1}{2} m R^2$$

$$I_{ring} = mR^2$$

Подставив в данные формулы значения m и R, получаем:

$$I_{discteor} = 2,51*10^{-3} \quad kgm^2$$

$$I_{ringteor} = 5,02 * 10^{-3} kgm^2$$

Данные результаты говорят о том, что измеренные таким образом моенты инерции практически не отличаются от теоретических данных.

2.8 Определение погрешностей измерений.

Необходимо определенть погрешности измеряемых величин, чтобы сказать, какой точности позволяет добиться метод. Определим погрешность измерения $k:\sigma_k$

$$\sigma_k = k\sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2}$$

$$\sigma_k = 0, 01, \qquad k \approx 0, 40$$

Определим относительную погрешность для измерения периода:

$$\epsilon_I = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + 4\left(\frac{\sigma_T}{T}\right)^2} \ \epsilon_I = 0,089$$

Данный результат показывает, что с помощью данного метода можно определить момент инерции тела с точностью равной 8,9%, при условии, что $\epsilon_T \approx 0,005$

3 Вывод.

- 1. Величина момента инерции, определенная с помощью трифилярного подвеса с довольно большой точностью совпадает с теоретическими предсказаниями. Большая точность обеспечивается малой погрешностью измерения времени, а также выбором условий, при которых крутильные колебания подвеса можно считать слабозатухающими.
- 2. Была достигнута относительная точность определения момента инерции $\epsilon_I=0,089$. Основной вклад в погрешность измерения момента инерции внесла погрешность косвенного измерения z_0 . Данную погрешность можно уменьшить, если более точно определить параметры установки.
- 3. Была полученая зависимость $I(h^2)$. Данная зависимость довольно хорошо аппроксимируется линейной зависимость, что подтверждает теоретические данные.
- 4. Была подтверждена аддитивность момента инерции.