

ASE

Performed Application Space Exploration + Scheduling. There are 4 MMMs, this results in 81 appl. variations

Iterated computation

How to represent and analyze this conveniently?

Iterative computation – Fully unrolled approach

Explicitly (fully unrolled), both in the SDFG and in the Canonical DAG

Omitted

it = 0

it = 1

it = 2

it = 32K-1

Pro: Would allow capturing parallelism across independent iterations

Cons:

- For embar. parallel computations, we don't want to have a different representation of the same operation in each iteration (this will make the Space Exploration explode)
- Too expensive: SDFG with millions of nodes, DAG with 100Ks nodes

Iterative computation – Tensor approach

Instead of considering single matrices or vectors as input, consider 4D or 3D tensors

Iterative Computation – Partial Unrolling

Represent the iterative computation in DaCe, then partially unroll it in the Canonical DAG

control)

Planning

Application and Architecture Space Explorations are two moving targets

Next big milestones:

- March: discuss the 5G case study
- End of the project: ML workloads

Actually they are both carried out in parallel (Breadth First search instead of Depth First Search)

Things to do (not in chrono order will be done, some optional right now)

Use cases: be able to represent applications through DaCe and with Canonical DAG:

- 5G use case: be more compliant with orig. appl
- ML: something more interesting than Lenet: e.g., Resnet, Encoder.

Explore Application representations: be able to "compile" the application to Canonical DAGs

- Conveniently represent iterative algorithms (see discussion of today)
- Support considered use cases

Explore Architectures: be able to "consider" different macro-architectures

- We can change the number of PEs, this will affect the scheduling of the Canonical DAG
- Changing the PEs (but still under the homogenous PE assumption)
 - Support certain type of operations? (this affect the SDFG expansions)
 - [Vectorization]

Things to do (not necessarily will be done)

Space Exploration Goals and Optimization:

- Goals: optimize/minimize performance/power/area: we need way of estimating these
 - Performance is given by the scheduling makespan
 - Area: # of PEs, but also on-chip buffer space (e.g. for deadlock prevention)
 - Power: directly proportional to the off-chip memory accesses
- [Pruning the search space]

Publication plan: all of this needs to be conveyed in a publication(s). Venue TBD

I would need your help for:

- Expressing your application in DaCe: the publishable part. Have a full, baseline, version, with my support
- PPA models