Ovládanie teplovzdušných dúchadiel

Katalóg požiadaviek

Obsah

- 1. Úvod
 - 1.1. Účel katalógu požiadaviek
 - 1.2. Rozsah využitia systému
 - 1.3. Slovník pojmov
 - 1.4. Referencie
 - 1.5. Prehľad nasledujúcich kapitol
- 2. Všeobecný popis
 - 2.1. Perspektíva systému
 - 2.2. Funkcie systému
 - 2.3. Charakteristika používateľov
 - 2.4. Všeobecné obmedzenia
 - 2.5. Predpoklady a závislosti
- 3. Špecifické požiadavky
 - 3.1. Funkčné požiadavky

1. Úvod

1.1. Účel katalógu požiadaviek

Tento dokument vznikol v rámci predmetu Tvorba informačných systémov v školskom roku 2022/2023 a je určený pre každého, kto bude interagovať so systémom. Podrobne popisuje požiadavky zadávateľa, firmy BOGE Elastmetall Slovakia a.s., na informačný systém vyvíjaný pre túto firmu. Zároveň slúži ako dohoda medzi zadávateľom a vývojovým tímom o rozsahu a funkcionalite projektu.

1.2. Rozsah využitia systému

Cieľom je vytvorenie systému, ktorý bude uľahčovať prácu pracovníkom testovacieho laboratória firmy BOGE. Systém bude ovládať teplovzdušné dúchadlá využívané počas testovacieho procesu a zabezpečí zautomatizovanie zmien teploty počas jednotlivých fáz testovania. Systém zároveň nijakým iným spôsobom nezasahuje do testovania a nebude priamo integrovaný v používanom testovacom softvéri, ale jedná sa o samostatnú desktopovú aplikáciu.

1.3. Slovník pojmov

- TestControl meno aplikácie, ktorú používa spoločnosť BOGE na testovanie výrobkov
- xml formát súboru, s ktorým pracuje aktuálne používaný program TestControl riadiaci testovanie, a v ktorom sa nachádza uložená konfigurácia testov
- Dúchadlo LEISTER HOTWIND System, teplovzdušný ventilátor používaný spoločnosťou BOGE pre ohrev súčiastok
- Plán riadenia dúchadiel predpis pre riadenie dúchadiel vytváraný aplikáciou, ktorý rozširuje pôvodný plán testovania výrobku a je uložený v samostatnom xml súbore.

1.4. Referencie

Odkaz na GitHubový repozitár projektu - https://github.com/TIS2022-FMFI/hot-air.

Pri práci využívame manuál k tepelnému dúchadlu - https://github.com/TIS2022-FMFI/hot-air/blob/main/docs/HOTWIND SYSTEM datasheet.pdf, a takisto aj video návod - https://www.youtube.com/watch?v=5CqDe9RxYzE.

K dispozícií máme aj snímku aplikácie TestControl, ktorú firma využíva na účely testovania.

1.5. Prehľad nasledujúcich kapitol

Kapitola 2 obsahuje popis systému a jeho jednotlivých aspektov zrozumiteľnou rečou pochopiteľnou pre bežného čitateľa. Kapitola 3 detailne popisuje jednotlivé špecifické a funkčné aj doplňujúce požiadavky systému.

2. Všeobecný popis

2.1. Perspektíva systému

Systém bude zasadený na pracovisku firmy BOGE, ktoré sa venuje testovaniu rôznych komponentov a materiálov používaných v automobiloch. Tieto testy musia prebiehať pri rôznych teplotách, a preto sú testované súčiastky nahrievané pomocou teplovzdušných dúchadiel. Úlohou systému je nastavenie týchto dúchadiel zautomatizovať. Systém samotný bude pozostávať z desktopovej aplikácie, cez ktorú bude komunikovať s používateľom a mikroprocesorov ovládajúcich jednotlivé dúchadlá.

2.2. Funkcie systému

Systém umožní používateľovi na desktope v kancelárii testovacieho pracoviska načítať konfiguráciu testovacieho programu z .xml súboru a jednotlivým fázam testu podľa tohto súboru umožní nastaviť, pri akej teplote budú prebiehať. Systém bude následne po spustení ovládať jedno / viacero teplovzdušných dúchadiel, pričom garantovaný počet naraz ovládaných ventilátorov je v intervale od 0 do 10, tak, aby počas behu jednotlivých fáz zahrievali súčiastku na požadovanú teplotu. Náš systém bude pozostávať z troch aplikácií: GUI konfigurátor a monitor, centrálny riadiaci server, a riadiaci program mikrokontroléru pri každom dúchadle. GUI konfigurátor a monitor načíta rôzne testovacie fázy z .xml súboru vygenerovaného aplikáciou TestControl, umožní v grafickom rozhraní používateľovi vytvoriť plán riadenia dúchadiel, podľa ktorého sa budú nastavovať teploty k vybranému ventilátoru v každej fáze. Plán riadenia dúchadiel sa uloží do nášho .xml. Centrálny riadiaci server načíta tento .xml súbor, prečíta ho a spracované informácie, t.j. teplotu a dĺžku konkrétnej fázy, posiela po jednotlivých fázach do riadiacich programov v mikrokontroléroch, ktoré priamo riadia dúchadlá analógovým signálom. V prípade, že mikrokontrolér po skončení fázy nedostane informácie o ďalšej fáze, vypne dúchadlo. Riadiaci program bude spustený na mikrokontrolére a bude ovládať príslušné dúchadlo na základe získaných informácií z centrálneho riadiaceho servra.

2.3. Charakteristika používateľov

Používateľmi tohto systému budú zamestnanci testovacieho laboratória firmy BOGE. Systém nerozlišuje medzi viacerými typmi používateľov a všetci používatelia budú mať rovnaké právomoci. Na vstup do desktopovej aplikácie a ovládanie nie je potrebné žiadne prihlásenie.

2.4. Všeobecné obmedzenia

Pre správne fungovanie programu sú potrebné dáta, ktoré generuje TestControl program vo forme XML súboru. Prevádzku testovacieho systému ovláda počítač na pracovisku, z ktorého budú riadené teplovzdušné dúchadlá. Pre komunikáciu je potrebné pripojenie

LAN siete medzi hlavným počítačom a dúchadlami. Spustenie dúchadla na diaľku, bude možné iba za predpokladu pripojeného externého teplomera do ovládacieho systému. Vývojový tím nebude zodpovedať za žiadne škody, ktoré používanie softvéru môže spôsobiť.

2.5. Predpoklady a závislosti

Softvér bude vyvíjaný ako desktopová aplikácia na operačný systém Windows, ktorý potrebuje mať funkčnú Java s minimálnou verziou 8.3.3.3. Systém počíta s možnosťou komunikácie medzi desktopom a mikroprocesormi pomocou ethernetu, každý mikroprocesor potrebuje mať vlastnú statickú IP adresu. Systém počíta s ovládaním konkrétneho modelu teplovzdušného dúchadla LEISTER HOTWIND System, pričom dúchadlo musí byť manuálne zapnuté a nastavené do režimu externá regulácia (open loop). Teplota vzduchu v miestnosti musí byť počas prevádzky zaradenia v intervale od – 10°C do 50°C. Je potrebné aby naše exe programy boli spúšťateľné na strane zadávateľa.

3. Špecifické požiadavky

3.1. Funkčné požiadavky

Požiadavky označené symbolom * sú voliteľné a vykonajú sa v prípade dostatku prostriedkov.

- 3.1.1. Účelom softvéru je regulovať teplotu teplovzdušných dúchadiel podľa skriptu plánu riadenia dúchadiel (viď. 3.1.3), ktorý obsahuje zoznam trojíc pre každú fázu: čas, id dúchadla, požadovaná teplota v °C.
- 3.1.2. Používateľ dokáže do systému nahrať .xml súbor vygenerovaný z aplikácie TestControl, ktorý systém ďalej spracuje, čiže identifikuje zoznam fáz a ich časové intervaly trvania, ktoré sú východiskom pre ďalšiu konfiguráciu.
- 3.1.3. *Používateľ bude môcť manuálne nastaviť teplotu a dĺžku ohrievania pre všetky dúchadlá bez potreby načítania .xml súboru.
- 3.1.4. Používateľ môže ku jednotlivým fázam, ktoré sa načítajú z .xml súboru, nastaviť príslušné teploty.
- 3.1.5. Používateľ môže uložiť nastavenú konfiguráciu teplôt plán riadenia dúchadiel do .xml súboru.
- 3.1.6. Formát plánu riadenia dúchadiel je čitateľný a dobre zrozumiteľný aj pre používateľa a preto si ho môže sám upraviť alebo vytvoriť v bežnom textovom editore.
- 3.1.7. Používateľ bude môcť pri ďalšom testovaní načítať plán riadenia dúchadiel a prípadne upraviť teploty pre jednotlivé fázy, či samotné fázy.
- 3.1.8. Používateľ vie z GUI konfigurátora a monitora odštartovať riadenie dúchadiel podľa načítaného plánu riadenia dúchadiel.
- 3.1.9. Systém udržuje, počas trvania každej fázy, dúchadlo v chode nastavené na teplotu prislúchajúcu danej fáze.
- 3.1.10. Po dovŕšení cielenej teploty dúchadla sa systém bude usilovať udržiavať teplotu dúchadla v intervale ±2°C od nastavenej hodnoty.
- 3.1.11. Systém umožňuje používateľovi ovládať ľubovoľný počet dúchadiel naraz, pričom garantovaný počet súbežne ovládaných dúchadiel je v intervale od 0 do 10.

- 3.1.12. Systém vie automaticky rozpoznať zastavenie testovacej sekvencie, ktoré nastáva napr. v prípade poruchy a v rozumne krátkom čase zastaviť a vypnúť dúchadlá.
- 3.1.13. *Používateľ môže kedykoľvek tlačidlom (núdzové zastavenie) v GUI konfigurátore a monitore prerušiť proces riadenia dúchadiel podľa plánu, všetky dúchadlá prejdú do režimu chladenia.
- 3.1.14. *Používateľ môže v GUI konfigurátore a monitore sledovať aktuálne teploty všetkých riadených dúchadiel, uplynutý čas od začiatku riadenia dúchadiel podľa plánu a v ktorej fáze sa plán nachádza.
- 3.1.15. Aplikáciu sa dá spustiť paralelne viacnásobne na tom istom počítači (za podmienky vhodnej konfigurácie TCP portu v konfiguračnom súbore), pričom každá inštancia môže riadiť samostatnú sadu dúchadiel.
- 3.1.16. *Systém pravidelne (podľa nastavenia používateľa) zapíše aktuálnu teplotu detekovanú pripojeným teplomerom do súboru pre možnosť kontroly. Vygenerovaný súbor bude môcť byť importovaný do .xls, resp excel súboru.
- 3.1.17. *Aplikácia bude logovať všetky relevantné udalosti, ktoré nastanú. Pod udalosťou sa myslia aj bežné požiadavky nastavenia teploty dúchadla interpretovaním skriptu, aj akékoľvek neočakávané udalosti ručné riadenie teploty, alebo zastavenie.
- 3.1.18. Systém bude využívať externý teplomer pre meranie teploty. Teplomer nebude merať pod výduchom ale bude pár centimetrov od stredu súčiastky ako si to používateľ nastaví.