

Lecture 2: Discrete-time linear systems

Mikael Johansson

KTH - Royal Institute of Technology

KTH VITHERAN OCH KONST

Discrete-time linear systems

Discrete-time linear system

$$\begin{array}{rcl}
x_{t+1} & = & Ax_t + Bu_t \\
y_t & = & Cx_t + Du_t
\end{array} \tag{1}$$

Describes state evolution $\{x_0, x_1, \dots\}$ at discrete time instances.

Here

- $x_t \in \mathbb{R}^n$ is the state vector
- $u_t \in \mathbb{R}^m$ is the control input
- $y_t \in \mathbb{R}^p$ is the system output

while A, B, C and D are constant matrices of compatible dimensions.

Convenient to use (A, B, C, D) as short-hand notation for (1).

Outline

- Discrete-time linear system and sampling
- Stability of scalar and vector-valued systems
- Systems with inputs and outputs
- Observability and controllability
- State feedback and observers

2/31

Autonomous linear systems

An autonomous linear system has no external input, evolves according to

$$X_{t+1} = AX_t$$

Its state trajectory $\{x_t\}$ is given by

$$x_1 = Ax_0$$

$$x_2 = Ax_1 = A^2x_0$$

$$\vdots$$

$$x_t = A^tx_0$$

Its properties are determined by the matrix A (and the initial value x_0).

3/31 4/31

Example: money in the bank

$$x_{t+1} = ax_t$$

Can express state as function of initial value:

$$x_t = a^t x_0$$

converges to zero if |a| < 1, diverges of |a| > 1.

5/31

KTH VETERISCAP

Stability of linear discrete-time systems

Definition. The linear discrete-time system (1) is *asymptotically stable* if the solution $\{x_t\}$ to

$$X_{t+1} = AX_t$$

satisfies $||x_t|| \to 0$ as $t \to \infty$ for all $x_0 \in \mathbb{R}^n$.

Theorem. The discrete-time linear system (1) is asymptotically stable if and only if $|\lambda_i(A)| < 1$ for all i = 1, ..., n.

Proof. See lecture notes.

6/31

Quiz

Quiz: for which values of the parameter θ is the system

$$x_{t+1} = \begin{bmatrix} \theta & 1/2 \\ 0 & 1/4 \end{bmatrix} x_t$$

asymptotically stable?

Stability boundary for discrete-time linear systems

"All eigenvalues have to be inside the unit circle in the complex plane".

Discrete-time systems may converge in finite time

Consider the discrete-time system

$$x_{t+1} = \begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix} x_t$$

We then have that

$$x_2 = 0$$

for all x_0 . Thus, the system converges in finite time.

Finite-time convergence is impossible for continuous-time linear systems!

Note: a matrix with all eigenvalues at zero is called *nilpotent*. (feedback that renders system matrix nilpotent is called *dead-beat*)

Discrete-time descriptions of continuous-time systems

Common operation of computer-controlled system:

- Output sampled every *h* seconds (*h* is called the *sampling time*)
- Control input held constant between samples

How does the state evolve between sampling instances?

9/31

10 / 31

KTH VETRISARY OCH KORIST

Discrete-time descriptions of continuous-time systems

Recall from the basic course that

$$\dot{x}(t) = A_c x(t) + B_c u(t) \Rightarrow x(t+h) = e^{A_c h} x(t) + \int_{s=0}^{h} e^{A_c s} B_c u(s) ds$$

If u is constant during the sample interval, u(t+s)=u(t) for $s\in [0,h)$

$$x(t+h) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

with $A=e^{A_ch}$ and $B=\int_{s=0}^h e^{A_cs}B_c\,ds$. A discrete-time linear system!

An exact description of continuous-time system at sampling instances.

Good pole locations

KTH VITENBRAD

Good pole locations for continuous and discrete-time systems

11/31

Outline

- Discrete-time linear system and sampling
- Stability of scalar and vector-valued systems
- Systems with inputs and outputs
- Observability and controllability
- State feedback and observers

13 / 31

Solution to system equations

Solution ("prediction equations")

$$x_1 = Ax_0 + Bu_0$$

 $x_2 = A^2x_0 + ABu_0 + Bu_1$

$$x_N = A^N x_0 + \sum_{k=0}^{N-1} A^k B u_{N-1-k}$$

State evolution is a *linear* function of the input sequence and initial state

$$X_N = h_N + \mathcal{H}_N U_N$$

 $(\mathcal{H}_N$ also has an interesting structure: it is Toeplitz and lower triangular)

Systems with inputs and outputs

Discrete-time linear system

$$\begin{array}{rcl}
x_{t+1} &=& Ax_t + Bu_t \\
v_t &=& Cx_t + Du_t
\end{array} \tag{2}$$

with state $x_t \in \mathbb{R}^n$, input $u_t \in \mathbb{R}^m$ and output $y_t \in \mathbb{R}^p$.

Key questions:

- When can we find $\{u_0, u_1, \dots, u_{t-1}\}$ so that $x_t = x_{tgt}$?
- When can we reconstruct x_0 from $\{y_0, y_1, \dots, y_{t-1}\}$?
- How to design linear controllers and observers with desired dynamics?

14/31

Reachability

Definition. The linear system (2) is *reachable* if for any target state x_{tat} , it is possible to find $\{u_0, u_1, \dots, u_{t-1}\}$ which drives the system state from $x_0 = 0$ to $x_t = x_{tqt}$ for some finite value of t.

Theorem. The linear system (2) is reachable iff rank $(C_n) = n$ where

$$C_n = \begin{bmatrix} A^{n-1}B & A^{n-2}B & \cdots & AB & B \end{bmatrix}$$

is the controllability matrix.

15 / 31 16/31

Quiz: controllability

Discrete-time linear model of double tank

$$x_{t+1} = \begin{bmatrix} 0.7047 & 0\\ 0.2466 & 0.7047 \end{bmatrix} x_t + \begin{bmatrix} 0.7594\\ 0.1252 \end{bmatrix} u_t$$

- (a) which states are reachable from (0,0) in one time step?
- (b) which states are reachable from (0,0) in two time steps?
- (c) is there any reason to use control sequences of length ≥ 2 ?

17 / 31

Observability

Definition. The system (2) is *observable* if there is a finite t such that knowledge about $\{u_0, \dots, u_{t-1}\}$ and outputs $\{y_0, \dots, y_{t-1}\}$ is sufficient for determining the initial state x_0 .

Theorem. The linear system (2) is observable iff rank(\mathbb{O}_n) = n where

$$\mathfrak{O}_n = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

is the *observability matrix*.

(the proof is analogous to that of reachability)

Controllability

Definition. The system (2) is *controllable* if for any initial state x_0 , it is possible to find $\{u_0, u_1, \ldots, u_{t-1}\}$ so that $x_t = 0$ for some finite value of t.

Clearly, if (2) is reachable, it is also controllable; but there are discrete-time linear systems with are controllable but not reachable. One such example is

$$x_{t+1} = \begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_t$$

Although rank $(C_2) = 1$, $u_t \equiv 0$ yields $x_t = 0$ no matter which x_0 .

This distinction does not exist for continuous-time linear systems.

18/31

The Popov-Belevitch-Hautus (PBH) tests

Theorem. The discrete-time linear system

$$x_{t+1} = Ax_t, y_t = Cx_t$$

is unobservable if and only if there exists a vector $v \neq 0$ such that

$$Av = \lambda v, \qquad Cv = 0 \tag{3}$$

Theorem. The discrete-time linear system

$$x_{t+1} = Ax_t + Bu_t$$

is unreachable if and only if there exists $w \in \mathbb{R}^n$ with $w \neq 0$ such that

$$w^T A = \lambda w^T$$
, $w^T B = 0$

19/31 20/31

Coordinate transformation

Often useful to change basis of state vector *x* by similarity transformation

$$z = Tx$$

for some invertible $T \in \mathbb{R}^{n \times n}$.

Dynamics in the new coordinates:

$$z_{t+1} = Tx_{t+1} = T(Ax_t + Bu_t)$$
 = $TAT^{-1}z_t + TBu_t$
 $y_t = Cx_t + Du_t$ = $CT^{-1}z_t + Du_t$

Thus z = Tx transforms (A, B, C, D) into $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ with

$$\tilde{A} = TAT^{-1}$$
, $\tilde{B} = TB$, $\tilde{C} = CT^{-1}$, $\tilde{D} = D$

21 / 31

Kalman decomposition

Proposition. Can find similarity transform z = Tx so that

$$z_{t+1} = \begin{bmatrix} A_{ro} & \tilde{A}_{22} & 0 & 0 \\ 0 & A_{\overline{r}o} & 0 & 0 \\ \tilde{A}_{31} & \tilde{A}_{32} & A_{r\overline{o}} & \tilde{A}_{34} \\ 0 & 0 & \tilde{A}_{43} & A_{\overline{r}o} \end{bmatrix} z_t + \begin{bmatrix} B_{ro} \\ 0 \\ B_{r\overline{o}} \\ 0 \end{bmatrix} u_t$$
$$y_t = \begin{bmatrix} C_{ro} & C_{\overline{r}o} & 0 & 0 \end{bmatrix} z_t + Du_t$$

where

- $(A_{ro}, B_{ro}, C_{ro}, D)$ is reachable and observable
- $\left(\begin{bmatrix} A_{ro} & \tilde{A}_{22} \\ 0 & A_{\bar{r}o} \end{bmatrix}, \begin{bmatrix} B_{ro} \\ 0 \end{bmatrix}, \begin{bmatrix} C_{ro} & C_{\bar{r}o} \end{bmatrix}, D\right)$ is observable
- $\left(\begin{bmatrix} A_{ro} & 0 \\ \tilde{A}_{31} & A_{r\overline{o}} \end{bmatrix}, \begin{bmatrix} B_{ro} \\ B_{r\overline{o}} \end{bmatrix}, \begin{bmatrix} C_{ro} & 0 \end{bmatrix}, D\right)$ is reachable
- $(A_{\overline{ro}}, 0, 0, D)$ is neither reachable nor observable.

Kalman decomposition

Can decompose system in (un)controllable and (un)observable subsystems

 S_{ro} is reachable and observable

 $S_{r\bar{o}}$ is reachable but not observable

 $S_{\overline{r}o}$ is not reachable but observable

 $S_{\overline{ro}}$ is neither reachable nor observable

22 / 31

State feedback

The linear state feedback

$$u_t = -Lx_t$$

results in the closed-loop system

$$x_{t+1} = (A - BL)x_t$$

When can we find L which assigns arbitrary eigenvalues to A - BL?

Theorem. For the linear system (2), there exists $L \in \mathbb{R}^{m \times n}$ such that the n eigenvalues of A - BL can be assigned to arbitrary real or complex conjugate locations if and only if the system is reachable.

23/31 24/31

Observers

KTH VITERANA OCH KORET

If x_t is not measurable, we can estimate it using an observer.

Basic idea: simulate the system and adjust the state estimate if the simulated output does not agree with the actual one.

$$\hat{x}_{t+1} = A\hat{x}_t + Bu_t + K(y_t - \hat{y}_t) \\
\hat{y}_t = C\hat{x}_t + Du_t$$
prediction correction

The dynamics of the state estimation error $e_t = x_t - \hat{x}_t$

$$e_{t+1} = (A - KC)e_t \tag{4}$$

25 / 31

H

Output feedback

Combines state estimator and linear feedback from estimated states

Observer design

Theorem. For the linear system (2), there exists $K \in \mathbb{R}^{n \times p}$ so that the n eigenvalues of A - KC can be assigned to arbitrary real or complex conjugate locations if and only if the system is observable.

26 / 31

Output feedback

The closed-loop dynamics are

$$x_{t+1} = Ax_t + BL\hat{x}_t + BI_r r_t$$

$$\hat{x}_{t+1} = A\hat{x}_t + BL\hat{x}_t + KC(x_t - \hat{x}_t)$$

In terms of x_t and $e_t = x_t - \hat{x}_t$:

$$\begin{bmatrix} x_{t+1} \\ e_{t+1} \end{bmatrix} = \begin{bmatrix} A - BL & BL \\ 0 & A - KC \end{bmatrix} \begin{bmatrix} x_t \\ e_t \end{bmatrix} + \begin{bmatrix} BI_r \\ 0 \end{bmatrix} r_t$$

Notes:

- the error dynamics are not reachable from r;
- the closed-loop eigenvalues are those of A BL and A KC.

27/31 28/31

KTH VETTHISAR VET HISAR VE

Summary

- Linear systems in discrete-time
 - sampling of continuous-time dynamics
 - o eigenvalue conditions for asymptotic stability
 - o similarities and differences with continuous-time systems
- Systems with inputs and outputs
 - the prediction equations
 - o controllability and state transfer
 - o observability and state reconstruction
- Linear state feedback and observers

29 / 31

31 / 31

Appendix. Cayley-Hamilton Theorem

Theorem. Let $A \in \mathbb{R}^{n \times n}$ with characteristic polynomial

$$p(\lambda) = \det(\lambda I - A) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0.$$

Then

$$p(A) = A^{n} + \alpha_{n-1}A^{n-1} + \cdots + \alpha_{1}A + \alpha_{0}I = 0$$

"Every square real matrix satisfies its own characteristic polynomial"

Consequence:

$$A^{n} = -\alpha_{n-1}A^{n-1} - \cdots - \alpha_{1}A - \alpha_{0}I$$

 $(A^n$ is a linear combination of lower matrix powers)

KTH VETENSKAP OCH KONST

Reading instructions

Read Chapter 1 of the lecture notes.

30 / 31