6. BOCHNER'S THEOREM.

LET G, m, Γ BE AS IN THE PRECEDING SECTION.

For
$$\mu \in \mathbb{N}(G)$$
 define $\hat{\mu} : \Gamma \longrightarrow \mathbf{C}$ by
$$\hat{\mu}(\gamma) := \sqrt{\gamma} \, \mathrm{d} \mu \qquad (\gamma \in \Gamma).$$

Note that $(fm)^-=\hat{f}$ for $f \in L^1(G)$. The function $\hat{\mu}$ is called the Fourier-Stieltjes transform of μ .

6.1. THEOREM. The Fourier-Stieltjes Transformation is a norm-decreasing homomorphism of M(G) into $C_u(\Gamma)$. ($C_u(\Gamma)$ is the Banach algebra of all uniformly continuous bounded functions $\Gamma \to C$.)

Proof. From our Fubini Theorem 1.17 it follows that $(\mu * \nu)^{\circ} = \hat{\mu}^{\circ} \hat{\nu} \text{ for all } \mu, \nu \in M(G). \text{ Each } \mu \mapsto \hat{\mu}(\chi) \text{ is a homomorphism } M(G) \longrightarrow \mathbb{C}, \text{ hence is a contraction (Theorem 2.4). Thus, } \hat{\mu} \text{ is bounded and } \|\hat{\mu}\|_{\mathbb{L}} \leq \|\mu\|. \text{ It remains to prove } \hat{\mu} \in C_{\mathbf{u}}(\Gamma).$ Here we may assume $\mu \geq 0$. Let $\epsilon > 0$. By the regularity of the measure μ there exists a compact $K \subset G$ with $\mu(G \setminus K) < \epsilon$. As we know, $N(K : \epsilon)$ is a neighborhood of $1 \in \Gamma$. If now $\beta, \chi \in \Gamma$ and $\chi \in \beta N(K : \epsilon)$, then $|\mu(\chi) - \mu(\beta)| \leq \int_{K} |\bar{\chi} - \bar{\beta}| d\mu + \int_{K} |\bar{\chi} - \bar{\beta}| d\mu \leq \int_{K} |\chi - \bar{\beta}| d\mu + \int_{K} |\bar{\chi} - \bar{\beta}| d\mu \leq \int_{K} |\chi - \bar{\beta}| d\mu + \int_{K} |\bar{\chi} - \bar{\beta}| d\mu \leq \int_{K} |\chi - \bar{\beta}| d\mu + \int_{K} |\bar{\chi} - \bar{\beta}| d\mu \leq \int_{K} |\chi - \bar{\beta}| d\mu + 2\mu(G \setminus K) \leq \epsilon \|\mu\| + 2\epsilon.$

The set of all Fourier-Stieltjes transforms of elements of M(G) we call B(Γ). It is a subalgebra of C_u(Γ) and contains A(Γ).

6.2. LEMMA. If $j \in B(\Gamma)$ then $\overline{j} \in B(\Gamma)$, $j_{\chi} \in B(\Gamma)$ for every $\chi \in \Gamma$, and for each $x_0 \in G$ the function $\chi \mapsto j(\chi)\chi(x_0)$ is an element of $B(\Gamma)$.

The proof of this lemma is quite analogous to the proof of Theorem 5.6.

Every element μ of M(Γ) has a Fourier-Stieltjes transform $\hat{\Gamma} \in C_{\mathbf{u}}(\hat{\Gamma})$. We have already found a natural continuous homomorphism $\boldsymbol{\omega}$ of G into $\hat{\Gamma}$. (See Exercise 5.A.) Then for every $\mu \in M(\Gamma)$, $\hat{\mu} \circ \boldsymbol{\omega}$ is an element of $C_{\mathbf{u}}(G)$. We denote this element by $\check{\mu}$:

$$\mu(x) = \sqrt{\chi(x)} d\mu(x) \qquad (\mu \in M(\Gamma); x \in G).$$

From our Fubini Theorem 1.17 one derives

6.3. LEMMA. If $\mu \in M(G)$ and $\nu \in M(\Gamma)$, then $\hat{\mu} d\nu = \int d\mu$.

In particular, if v=0, then $\int \hat{f} dv = 0$ for all $f \in L^1(G)$. In other words, if v=0, then $\int j dv = 0$ for all $j \in A(\Gamma)$. But $A(\Gamma)$ is a dense subset of $C_{\infty}(\Gamma)$ (Theorem 5.5). Hence,

6.4. UNIQUENESS THOEREM. If $\mu \in M(\Gamma)$ and if $\dot{\mu} = 0$, then $\mu = 0$.

Let H be any abelian group. A function φ : H \longrightarrow C is said to be positive definite if for all p ϵ N, all c₁,...,c_p ϵ C and all x₁,...,x_p ϵ H we have

$$\sum_{n=m=1}^{p} c_n \overline{c_m} \varphi(x_n x_m^{-1}) \geq 0.$$

An example: every group homomorphism $\varphi \colon H \to T$ is positive definite. In fact, for such φ and for arbitrary $c_1, \ldots, c_p \in C$, $c_1, \ldots, c_p \in C$, $c_1, \ldots, c_p \in C$, $c_n = c_n = c_n$

Another example: If $\mu \in M(G)$ is positive, then $\hat{\mu}$ is positive definite on Γ . Proof. If $c_1, \ldots, c_p \in \Gamma$ and $\chi_1, \ldots, \chi_p \in \Gamma$,

then
$$\sum_{n,m} c_n \overline{c_m} \hat{\mu}(\gamma_n \gamma_m^{-1}) = \sum_{n,m} \int c_n \overline{c_m} \overline{\gamma_n} \gamma_m d\mu = \int \sum_{n,m} c_n \gamma_n |^2 d\mu \ge 0$$
.

- 6.5. LEMMA. Let H be an abelian group; let φ : H \rightarrow C be positive definite. Then (1 denoting the identity element of H), (a) $\varphi(1) = \|\varphi\|_{\infty}$. In particular, $\varphi(1) \geq 0$ and φ is bounded.
- (b) $\varphi(x^{-1}) = \overline{\varphi(x)} \text{ for all } x \in H.$
- (c) If $x,y \in H$, then $|\varphi(x)-\varphi(y)|^2 \le 2\varphi(1)\operatorname{Re}(\varphi(1)-\varphi(xy^{-1}))$.

Proof. Choosing p=1, $c_1=1$, $x_1=1$ we find $\varphi(1)\geq 0$. For all $x \in G$ and $c \in C$, $(1+|c|^2)\varphi(1)+\overline{c}\varphi(x^{-1})+c\varphi(x)\geq 0.$

(This formula is obtained by taking p=2, $x_1=1$, $x_2=x$, $c_1=1$, $c_2=c$.) The substitutions c=1 and c=i show that both $\varphi(x^{-1})+\varphi(x)$ and $i(\varphi(x)-\varphi(x^{-1}))$ are real numbers. Then $\varphi(x^{-1})=\overline{\varphi(x)}$ $(x\in H)$. Taking $c\in T$ so that $c\varphi(x)=-i\varphi(x)i$ we find $2\varphi(1)-2i\varphi(x)i\geq 0$, so $|\varphi(x)|\leq \varphi(1)$, and we have proved (a) and (b).

For (c), let x,y \in H, $\varphi(x) \neq \varphi(y)$. Choose p=3, x₁=1, x₂=x, x₃=y, c₁=1, c₂= $\lambda \frac{|\varphi(x)-\varphi(y)|}{\varphi(x)-\varphi(y)}$ where $\lambda \in \mathbb{R}$, and c₃=-c₂. Applying (b) one obtains $(1+2\lambda^2) \varphi(1)+2\lambda |\varphi(x)-\varphi(y)|-2\lambda^2 \operatorname{Re} \varphi(xy^{-1}) \geq 0$. For given x and y this inequality is valid for all $\lambda \in \mathbb{R}$. Then the discriminant of the quadratic form $\lambda \mapsto \lambda^2 \left[2\varphi(1)-2\operatorname{Re} \varphi(xy^{-1})\right] + \lambda \cdot 2|\varphi(x)-\varphi(y)|+\varphi(1)$ is ≤ 0 , so that $|\varphi(x)-\varphi(y)|^2 \leq 2\varphi(1) \left[\varphi(1)-\operatorname{Re} \varphi(xy^{-1})\right]$.

From (c) we have

6.6. COROLLARY. If $\varphi \colon G \longrightarrow C$ is positive definite and continuous at 1, then $\varphi \in C_{\mathbf{u}}(G)$.

For the construction of an important example of a positive definite function on G we use a convolution $L^2(G) \times L^2(G) \to C_\infty(G)$. We begin with a bit of pedantry. For $f \in L^2(G)$ define $\tilde{f}: G \to C$ by $\tilde{f}(x) := f(x^{-1})$ $(x \in G)$. It follows from Theorem 3.18 that $\tilde{f} \in L^2(G)$ and $\|\tilde{f}\|_2 = \|f\|_2$. If $f_1, f_2 \in L^2(G)$ are a.e. equal, then $\tilde{f}_1 = \tilde{f}_2$ a.e. (again Theorem 3.18). Thus, $f \mapsto \tilde{f}$ defines a (conjugate linear, surjective and isometric) map of $L^2(G)$ into $L^2(G)$, and without ambiguity we can use the symbol \tilde{f} not only for $f \in L^2(G)$ but also for $f \in L^2(G)$. Let (1) be the inner product in $L^2(G)$. For $f,g \in L^2(G)$ set

 $(f*g)(x) := (f_{x-1} lg) \quad (x \in G).$

Then for all f,g,x

$$(f*g)(x) = \int f_{x-1}(y)\overline{g(y)}dx =$$

= $\int f(xy)g(y^{-1})dy = \int f(y)g(y^{-1}x)dy$,

and for our new convolution we get the same formula we had for the convolution in $L^1(G)$. We also see that $|(f*g)(x)| \le ||f_{x^{-1}}||_2 ||\tilde{g}||_2 = ||f||_2 ||g||_2$, so $||f*g||_{\infty} \le ||f||_2 ||g||_2$. Further, by Theorem 3.13 f*g is continuous.

Let $f,g \in L^2(G)$, $\epsilon > 0$. By Lemma 1.8 there exist $f_1,g_1 \in C_{00}(G)$ with $\|f-f_1\|_2 \le \epsilon$, $\|g-g_1\|_2 \le \epsilon$. Then $\|f*g-f_1*g_1\|_{\infty} \le \|f*(g-g_1)\|_{\infty} + \|(f-f_1)*g_1\|_{\infty} \le \|f\|_2 \|g-g_1\|_2 + \|f-f_1\|_2 \|g_1\|_2 \le \|f\|_2 \epsilon + \epsilon (\|g\|_2 + \epsilon)$. It follows that for every $\delta > 0$ we can find $f_1,g_1 \in C_{00}(G)$ such that $|f*g| \le \delta$ outside the support of f_1*g_1 . This support being compact (Exercise 4.B) we obtain $f*g \in C_{\infty}(G)$.

6.7. LEMMA. For f,g \in L²(G) there exists a function f*g defined by $(f*g)(x) := \int f(y)g(y^{-1}x)dy \qquad (x \in G).$ Then $f*g \in C_{\infty}(G)$ and $\|f*g\|_{\infty} \leq \|f\|_{2} \|g\|_{2}.$

Returning to our positive definite functions we have

6.8. THEOREM. For every $f \in L^2(G)$, $f * \tilde{f}$ is positive definite.

Proof. For
$$c_1, \dots, c_p \in \mathbb{C}$$
 and $x_1, \dots, x_p \in \mathbb{G}$,
$$\sum_{n,m} c_n \overline{c_m} (f * \widetilde{f}) (x_n x_m^{-1}) = \sum_{n,m} c_n \overline{c_m} (f_{x_m x_n^{-1}} | f) =$$

$$= \sum_{n,m} c_n \overline{c_m} (f_{x_n^{-1}} | f_{x_m^{-1}}) = \| \sum_n c_n f_{x_n^{-1}} \|^2 \ge 0.$$

(note that $(f_{x-1}|g) = (f|g_x)$ for all $f,g \in L^2(G)$, $x \in G$.)

- 6.9. BOCHNER'S THEOREM. (a) If $\mu \in M(\Gamma)$ is positive, then μ is a continuous positive definite function on G, and $\|\mu\|_{\infty} = \|\mu\|$.
 - (b) Conversely, for every continuous positive definite

function φ on G there exists a unique $\mu \in M(\Gamma)$ such that $\mu = \varphi$. This μ is positive, and $\|\mu\| = \|\varphi\|_{\infty}$.

Proof. (a) For $\mu \in M(\Gamma)$ we have already seen that μ is continuous (beginning of page 6.2); if μ is also positive, then an easy computation shows that $\check{\mu}$ is positive definite. the second example on page 6.2.)

(b) Let φ be continuous, positive definite on G. By the Uniqueness Theorem 6.4 there is at most one $\mu \in \mathbb{M}(\Gamma)$ with $\check{\mu} = \varphi$: it only remains to prove existence and positivity.

For $f,g \in L^1(G)$ set

$$[f,g] := \int (f * \widetilde{g}) \varphi = \iint f(x) \overline{g(y^{-1}x)} \varphi(y) dxdy =$$

$$= \iint f(x) \overline{g(yx)} \varphi(y^{-1}) dxdy =$$

$$= \iint f(x) \overline{g(y)} \varphi(xy^{-1}) dxdy.$$

(We use the Fubini Theorem and Theorem 3.18.) Notice that (f,g e L¹(G)). $|[f,g]| \leq \varphi(1)||f|||g||$ (*)

We first prove [,] to be a semi-inner product, i.e.

- (a) $f \longrightarrow [f,g]$ is linear for every g;
- (b) $\overline{[f,g]} = [g,f]$ for all f,g;
- (c) $[f,f] \geq 0$ for every f. Formulas (a) and (b) are clearly true. For (c), by (*) it suffices to consider $f \in C_{00}(G)$. Let $f \in C_{00}(G)$; let $\delta > 0$.

According to Corollary 6.6 there is a neighborhood W of 1 such that

 $|\varphi(x)-\varphi(y)|\leq \delta \quad \text{if} \quad x\in yW.$ The continuity of the map $(x,y)\longmapsto xy^{-1}$ guarantees the existence of a neighborhood U of 1 for which $UU^{-1} \subset W$. Let K := supp f. As K is compact there exist $a_1, ..., a_p \in K$ and disjoint Borel subsets E_1, \dots, E_p of K such that $K=E_1 \cup \dots \cup E_p$ and $E_n \subset a_n U$ (n=1,...,p). If $x \in E_n$ and $y \in E_m$, then $xy^{-1} \in E_n$ $\in a_n a_m^{-1} UU^{-1} \subset a_n a_m^{-1} W$, so $|\varphi(xy^{-1} - \varphi(a_n a_m^{-1}))| \leq \delta$. Hence, for all n and m,

$$\lim_{E_{n} \to E_{m}} f(x) \overline{f(y)} \varphi(xy^{-1}) dxdy - \int_{E_{n} \to E_{m}} f(x) \overline{f(y)} \varphi(a_{n} a_{m}^{-1}) dxdy$$

$$\leq \int_{E_{n} \to E_{m}} |f(x)| |f(y)| \delta dxdy,$$

i.e.
$$|\int_{E_n}^{\int_{E_m}^{\int_{E_m}} f(x)\overline{f(y)}} \varphi(xy^{-1}) dxdy - (\int_{E_n}^{\int_{E_m}^{\int_{E_m}^{\int_{E_m}}} f(x)\overline{f(y)}} \varphi(a_n a_m^{-1})|$$

$$\leq \delta(\int_{E_n}^{\int_{E_m}^{\int_{E$$

Summation over all n,m yields (set $c_n := \int_{E_n} f$)

(**)
$$| [f,f] - \sum_{n,m} c_n \overline{c_m} \varphi(a_n a_m^{-1}) | \leq \delta ||f||^2.$$

Here $\sum c_n \overline{c_m} \varphi(a_n a_m^{-1}) \ge 0$. For all δ we can find a_1, \dots, a_p and c_1, \dots, c_p that satisfy (**). This is possible only if $[f,f] \ge 0$.

We have now proved (a), (b) and (c). From these formulas one derives in the usual way Schwarz's Inequality: $|[f,g]|^2 \leq [f,f][g,g] \qquad (f,g \in L^1(G)).$

In particular, $|\int (f*\tilde{g}) \varphi|^2 \leq \varphi(1) ||g||^2 (f*\tilde{f}) \varphi \qquad (f,g \in L^1(G)).$

We know from Theorem 4.2 that $L^1(G)$ has an approximate identity $(e_{\lambda})_{\lambda \in \Lambda}$ with $\|e_{\lambda}\|=1$ for each λ . For every $f \in L^1(G)$, $\lim_{\lambda \to \infty} f * e_{\lambda} = f$ in $L^1(G)$. φ being bounded we get

 $(***) \quad ||f\varphi||^2 = \lim_{\lambda} ||f(f*e_{\lambda})\varphi||^2 \leq \sup_{\lambda} |\varphi(1)||\tilde{e}_{\lambda}||^2 ||f*\tilde{f}|| \varphi =$ $= |\varphi(1)||f*\tilde{f}|| \varphi \qquad (f \in L^1(G)).$

Take $f \in L^{1}(G)$. Define $h_1, h_2, \dots \in L^{1}(G)$ by

$$h_1 := f * \widetilde{f},$$
 $h_{n+1} := h_n * \widetilde{h}_n$
 $(n \in \mathbb{N}).$

For all $g_1, g_2 \in L^1(G)$, $(g_1*g_2)^{\sim} = \widetilde{g}_2*\widetilde{g}_1$; consequently,

$$h_{n+1} = h_n * h_n$$

By repeatedly applying (***) we arrive at $|\int f\varphi|^2 \leq \varphi(1) \int h_1 \varphi \leq \varphi(1)^{1+\frac{1}{2}} \left(\int h_2 \varphi\right)^{\frac{1}{2}} \leq \cdots$

$$\leq \varphi(1)^{1+\frac{1}{2}+\frac{1}{4}+\dots+(\frac{1}{2})^{n-1}}\cdot(\int h_n \varphi)^{(\frac{1}{2})^{n-1}}$$

$$\leq \varphi(1)^{1+\frac{1}{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}} \cdot (\|\varphi\|_{\infty}\|h_{n}\|)^{\left(\frac{1}{2}\right)^{n-1}}$$

$$= \varphi(1)^{2}\|h_{n}\|^{\left(\frac{1}{2}\right)^{n-1}}$$

By the Spectral Radius Formula 2.7,

 $\lim \|h_n\|^{\frac{1}{2}^{n-1}} = \|\hat{h}_1\|_{\infty} = \|(f * \hat{f})^n\|_{\infty} = \|\hat{f} \hat{f}\|_{\infty} = \|\hat{f} \hat{f}\|_{\infty} = \|\hat{f} \|_{\infty}^2.$

We have proved

 $|\int f \mathcal{G}| \leq \mathcal{G}(1) \|\hat{f}\|_{\infty} \qquad (f \in L^{1}(G)).$

Now we are almost done. Apparently, if $\hat{f}=0$, the $\int f \varphi=0$, and we can define a map $T\colon A(\Gamma) \longrightarrow \mathbb{C}$ by

 $T(\hat{f}) := \int f \varphi \qquad (f \in L^1(G)).$

Clearly, T is linear, and, by what we have just proved, $|T(j)| \leq \mathcal{G}(1) ||j|| \quad \text{for all } j \in A(\mathcal{T}). \quad \text{As we know, } A(\mathcal{T}) \text{ is a dense subspace of } C_{\text{po}}(\mathcal{T}) \text{ (Theorem 5.5)}. \quad \text{Therefore, T has a unique extension } \mu \in \mathbb{M}(\mathcal{T}), \text{ and } \|\mu\| \leq \mathcal{G}(1). \quad \text{For all } f \in L^1(G), \\ \int f \mathcal{G} = \int f d\mu = \int \mathcal{M} f \text{ (see Lemma 6.3)}. \quad \text{Hence, as both } \mathcal{G} \text{ and } \mathcal{M} \text{ are continuous, they must be equal. We have } \|\mu\| \leq \mathcal{G}(1) = \mathcal{M}(1) = \mu(\mathcal{T}) \quad \text{and, by Exercise 1.C, } \mu \geq 0.$

By B(G) we denote $\{ \not \mu \colon \mu \in \mathbb{N}(\mathcal{T}) \}$. By the above theorem, B(G) is the linear span of the set of all continuous positive definite functions on G. B(G) is a subset of $C_{\mathbf{u}}(G)$.

For $f \in L^1(G)$, $\varphi \in C(G)$ and $x \in G$, it is easy to see that $\int f(y) \varphi(y^{-1}x) dy$ exists: we denote it by $f * \varphi(x)$. (Note that $f * \varphi$ is everywhere defined.)

- 6.10. LEMMA. (a) If $f \in L^1(G)$ and $g \in B(G)$, then $f \star g \in B(G)$. (b) $L^1(G) \cap B(G)$ is a dense subset of $L^1(G)$.
- Proof. (a) By the Fubini Theorem, for $f \in L^1(G)$ and $\mu \in M(\Gamma)$ we have $f \star \mu = (\hat{f} \cdot \mu)^{\vee} \in B(G)$.
- (b) If $u \in C_{00}(G)$, then $u*\widetilde{u} \in L^1(G) \wedge B(G)$. (See Theorem 6.8.) It follows from Exercise 4.B and Lemma 4.3 that $L^1(G)$ has a right approximate identity $(e_{\lambda})_{\lambda \in \Lambda}$ that lies in $L^1(G) \wedge B(G)$. For every $f \in L^1(G)$ we now have $f = \lim f*e_{\lambda}$ while (by (a)) $f*e_{\lambda} \in L^1(G) \wedge B(G)$.

For every compact $K \subset \Gamma$ there exists a positive definite $f \in C_{00}(G)$ such that $\hat{f} > 0$ and $\hat{f} > \chi_K$. (By compactness it suffices to consider the case $K = \{\chi\}$ ($\chi \in \Gamma$). As $A(\Gamma)$ separates the points of Γ and $C_{00}(G)$ is dense in $L^1(G)$, for $\chi \in \Gamma$

we find $u \in C_{00}(G)$ for which $|\hat{u}(\chi)| \ge 1$. Then $f := u * \tilde{u}$ is a positive definite element of $C_{00}(G)$, and $\hat{f}(\chi) = \hat{u}(\chi) \hat{u}(\chi) = |\hat{u}(\chi)|^2 \ge 1$.)

6.11. INVERSION THEOREM. There exists a (unique) Haar measure m_{Γ} on Γ with the following property. If $f \in B(G)$ is integrable then $\hat{f} \in L^{1}(\Gamma)$ and

$$f(x) = \int \hat{f}(y) \gamma(x) dm_{\Gamma}(y)$$
 (x \in G).

i.e.

$$f(x) = \hat{f}'(x^{-1}) \qquad (x \in G).$$

Proof. If $\varphi \colon G \longrightarrow \mathbb{C}$ is positive definite, then so is $x \longmapsto \varphi(x^{-1})$. Therefore, if $f \in B(G)$, then $x \longmapsto f(x^{-1})$ is an element of B(G) and there exists a $p_f \in M(G)$ such that $p_f = f'$. By Lemma 6.3,

(a)
$$\int \hat{h} d\mu_f = \int h(x) f(x^{-1}) dx$$
 (h \(L^1(G); f \(B(G) \)).

Further, if φ is positive definite on G and if $\chi \in \Gamma$, then $\chi \varphi$ is positive definite. Hence, if $f \in B(G)$ and $\chi \in \Gamma$, then $\chi f \in B(G)$, and for all $h \in L^1(G)$,

$$\int \hat{h} d\mu_{f} = \int h \vec{\chi} f' dm = \int (h \vec{\chi})^{\hat{h}} d\mu_{f} = \int (\hat{h})_{\chi} d\mu_{f}.$$

As A(Γ) is dense in $C_{\infty}(\Gamma)$ we may infer

If $f,g \in L^1(G) \cap B(G)$, then (by the proof of Lemma 6.10 (a)), $(\hat{f}\mu_g)^{\vee} = f^{\vee}*\dot{\mu}_g = f^{\vee}*g^{\vee}$ and $(\hat{g}\mu_f)^{\vee} = g^{\vee}*f^{\vee}$. But G is commutative, so that $f^{\vee}*g^{\vee} = g^{\vee}*f^{\vee}$. Applying Theorem 6.4 we find

(c)
$$\hat{f}_{rg} = \hat{g}_{rf}$$
 (f,g $\epsilon L^{1}(G) \wedge B(G)$).

If $k,h \in C_{00}(\Gamma)$ and $k \neq 0$ on supph, by (h/k) we denote the unique $f \in C_{00}(\Gamma)$ for which kf = h and f = 0 on $\{f \in \Gamma : k(f) = 0\}$ For $h \in C_{00}(\Gamma)$ and $f \in C_{00}(G)$ we write h < f if f is positive definite and $f \geq 1$ on supph: by the remark after Lemma 6.10, for every h such an f exists.

We want to define a function T on $C_{00}(\Gamma)$ by

(d)
$$T(h) := \int (h/\hat{f}) d\mu_{f} \qquad (h < f)$$

and then prove T to be a Haar integral on Γ .

First we have to prove that the right hand member of (d) does not depend on the choice of f. Suppose $h \in C_{00}(\Gamma)$ and let $h \prec f$, $h \prec g$. Then by (c),

If $h_1, h_2 \in C_{00}(\Gamma)$, there exists a positive definite $f \in C_{00}(G)$ such that $\hat{f} \geq 1$ on (supp h_1) (supp h_2). Then $h_1 \prec f$, $h_2 \prec f$, $h_1 + h_2 \prec f$ and $((h_1 + h_2)/\hat{f}) = (h_1/\hat{f}) + (h_2/\hat{f})$. It follows that $T(h_1 + h_2) = T(h_1) + T(h_2)$, so that T is linear.

If $h \in C_{00}^+(G)$ and $h \prec f$, then $(h/\hat{f}) \geq 0$. As $\mu_{\hat{f}} \geq 0$ we have T(h) > 0: T is positive.

Finally we prove T to be <u>invariant</u>. Let $h \in C_{00}(\Gamma)$, $\gamma \in \Gamma$. Choose a positive definite $f \in C_{00}(G)$ such that $\hat{f} \geq 1$ on supp h. Then (as we have seen) γf is positive definite and $(\gamma f)^{\hat{f}} = (\hat{f})_{\gamma} \geq 1$ on supp h_{γ} . Hence,

$$\begin{split} T(h_{i}) &= \int (h_{i}/(\hat{f})_{i}) d\mu_{i} f = \int (h/\hat{f})_{i} d\mu_{i} f = (by (b)) \\ &= \int (h/\hat{f}) d\mu_{f} = T(h). \end{split}$$

We see that T is a Haar interal. Let $\mathbf{m}_{\Gamma}^{}$ denote the corresponding Haar measure. We have

(e) $\int \varphi \, d\mu_f = \int \varphi \hat{f} dm_\Gamma$ ($\varphi \in C_{00}(\Gamma)$; $f \in L^1(G) \wedge B(G)$). To prove this formula, choose g so that $\varphi \prec g$; applying (c) one obtains

From (e) we infer that $\mu_{\mathbf{f}} = \mathbf{\hat{f}m_r}$. Therefore, $\mathbf{\hat{f}}$ is $\mathbf{m_r}$ -integrable and

$$f(x) = \int \chi(x) d\mu_f(\chi) = \int \hat{f}(x) \chi(x) dm_f(\chi)$$
 (x \epsilon G).

In the following examples we let ${\rm m}_G$ denote the Haar measure on G and ${\rm m}_\Gamma$ the corresponding Haar measure on Γ .

Example. G is compact. Choose m_G so that $m_G(G)=1$. Every $\chi_0 \in \Gamma$ is positive definite and integrable, so that by the Inversion Theorem, for all x we must have $\chi_0(x) = \int_0^x (\chi) \chi(x) dm_{\Gamma}(\chi) = \int_0^x \{\chi_0\} (\chi) \chi(x) dm_{\Gamma}(\chi) = \chi_0(x) m_{\Gamma}(\chi_0)$. Consequently, m_{Γ} is the counting measure. (Remember that Γ is discrete!)

Example. G is discrete. For m_G we choose the counting measure. We prove that then m_{Γ} (Γ)=1. In fact, $\xi_{\{1\}}$ is a continuous positive definite function on G and an element of L¹(G). Its Fourier transform is the constant function 1 on Γ . Hence, $1=\xi_{\{1\}}(1)=\{\xi_{\{1\}}(\gamma)\gamma(1)dm_{\Gamma}(\gamma)=m_{\Gamma}(\Gamma)$.

Example. $G = \mathbb{R}$. We have already found a homeomorphic isomorphism $\mathbb{R} \longrightarrow \hat{\mathbb{R}}$. We shall identify \mathbb{R} with $\hat{\mathbb{R}}$ without, however, mixing up $m_{\hat{\mathbb{R}}}$ and $m_{\hat{\mathbb{R}}}$. Both of these measures are multiples of the Lebesgue measure m: there exist a,b>0 such that $m_{\hat{\mathbb{R}}}=am$, $m_{\hat{\mathbb{R}}}=bm$. If a function f is Lebesgue-integrable, then $\int_{\mathbb{R}} f = a \int_{-\infty}^{\infty} f(x) dx$, $\int_{\hat{\mathbb{R}}} f = b \int_{-\infty}^{\infty} f(x) dx$. If g is a positive integrable function on $\hat{\mathbb{R}}$ then $g': \mathbb{R} \longrightarrow C$ is positive definite. Assume $g' \in L^1(\mathbb{R})$. Then $g' \in L^1(\hat{\mathbb{R}})$ and g'(x) = g''(-x) $(x \in \mathbb{R})$. By the Uniqueness Theorem 6.4 it follows that g(y) = g''(-y) $(y \in \hat{\mathbb{R}})$. In particular, $g(0) = \int g'$.

We apply the above to the function $g: y \mapsto e^{-|y|}$. By a simple computation, $\check{g}(x) = \frac{2b}{1+x^2} \ (x \in \mathbb{R})$, so $\check{g} \in L^1(\mathbb{R})$. Then $1 = g(0) = \int\limits_{\mathbb{R}} \check{g} = 2ab \int\limits_{-\infty}^{\infty} \frac{dx}{1+x^2} = 2ab\pi$. We conclude that for am and bm to be Haar measures m_R and $m_{\hat{R}}$, respectively, it is necessary (and sufficient) that $ab = \frac{1}{2\pi}$.

6.A. EXERCISE. Use these computations to prove that $\int_{-\infty}^{\infty} \frac{e^{ixy}}{1+x^2} dx = \pi e^{-|y|} \quad (y \in \mathbb{R}).$

6.B. EXERCISE. For $\mu \in M(G)$ let $g\mu$ be its Gelfand transform $M(N(G)) \longrightarrow C$.

Every $\chi \in \Gamma$ induces \underline{a} $j(\chi) \in \mathfrak{M}(M(G))$ by $j(\chi)(\mu) = \widehat{\mu}(\chi) \qquad (\mu \in M(G)).$

j is a homeomorphism of Γ onto a subset of $\mathfrak{M}(M(G))$, and $\hat{\mathcal{F}} = \mathcal{F}_{\Gamma} \circ j$.

Hint. Consider convergence of nets in Γ and in j(Γ).