Statistik – z- und t-Test für eine Stichprobe

Je nach Arbeitshypothesen macht es Sinn, dass nur eine Seite bzw. dass beide Seiten der Testverteilung untersucht werden

Wir unterscheiden deshalb

- Einseitiger Test: Es gibt entweder eine obere <u>oder</u> eine untere Grenze, gegen die getestet wird
- Zweiseitiger Test: Es gibt eine obere <u>und</u> eine untere Grenze, gegen die getestet wird

- Einseitiger Test: Die Irrtumswahrscheinlichkeit α bezieht sich vollständig auf die eine vorhandene Grenze
- Zweiseitiger Test: Die Irrtumswahrscheinlichkeit α bezieht sich auf zwei Grenzen und wird deshalb geteilt ($\alpha/2$)

- Die rote Fläche α repräsentiert das Risiko einen Fehler 1.Art zu machen (Alternativhypothese annehmen obwohl Nullhypothese richtig ist)
- Die blaue Fläche β repräsentiert das Risiko einen Fehler 2.Art zu machen (Alternativhypothese ablehnen obwohl sie richtig ist)
- Je näher zwei Populationen beieinander liegen, desto höher ist die Gefahr, eine Änderung nicht zu erkennen

- p-Wert beantwortet die Frage, welche Hypothese gewählt bzw. abgelehnt wird
- Verbunden mit der Irrtumswahrscheinlichkeit (α), d.h. der Wahrscheinlichkeit einen Fehler 1.Art zu machen (Alternativhypothese wählen obwohl Nullhypothese richtig ist)
- p ≥ α Verbleib bei der Nullhypothese und Verwerfen der Alternativhypothese
- p < α Verwerfen der Nullhypothese und Wechsel zur Alternativhypothese

- Formuliere Nullhypothese H_0 und Alternativhypothese H_1
- Lege das Signifikanzniveau α fest
- Bestimme den Annahme- und Ablehnungsbereich der Nullhypothese
- Ziehe eine Stichprobe
- Wähle den erforderlichen Test, führe ihn durch und interpretiere die Ergebnisse: Liegt das Ergebnis der Stichprobe innerhalb des Annahmebereichs, verbleibt man bei H₀, anderenfalls wechselt man zu H₁

- Auf Basis einer Stichprobe wird eine Unterschiedshypothese hinsichtlich des Erwartungswertes untersucht
- Überprüfung, ob die Daten einer Stichprobe einen Vorgabewert erfüllen
- z.B. kann geprüft werden, ob das arithmetische Mittel eines Merkmals aus einer Stichprobe zu einer bestimmten Grundgesamtheit gehört, deren Mittelwert bekannt ist

Voraussetzungen für den z-Test:

- Das untersuchte Merkmal muss mindestens intervallskaliert sein
- Es sollte eine Normalverteilung vorliegen, bei n > 30 kann aber auf diese Forderung verzichtet werden (Grenzwertsatz)
- Die Standardabweichung der Grundgesamtheit σ ist bekannt

Beispiel

Ein Unternehmen produziert Bolzen und möchte nach Änderungen an der Produktionsanlage untersuchen, ob größere Bolzen produziert werden. Eine Stichprobe mit 50 Bolzen ergibt einen Bolzendurchmesser von $\bar{x}=5,5~mm$. Aus Erfahrung kennt man den Durchmesser $\mu=5,4~mm$, $\sigma=0,5~mm$. Das Signifikanzniveau liegt bei 5%.

Alternativhypothese: Es hat sich eine Vergrößerung des

Durchmessers ergeben

Nullhypothese: Es hat sich keine Vergrößerung des

Durchmessers ergeben

Beispiel

Alternativhypothese H_1

 H_1 : $\overline{x} > \mu$ Der Stichprobenmittelwert \overline{x} ist größer als der Mittelwert μ der Grundgesamtheit

Nullhypothese *H*_o

 H_0 : $\overline{x} \leq \mu$ Der Stichprobenmittelwert \overline{x} ist kleiner oder gleich dem Mittelwert μ der Grundgesamtheit

 H_0, H_1 Null- bzw. Alternativhypothese \bar{x} Mittelwert der Stichprobe μ Mittelwert der Grundgesamtheit

Mögliche Hypothesenformulierungen für den z-Test

(Test mit einer standardnormalverteilten Teststatistik / Prüfgröße)

Hypothese	Null- hypothese H_0	Alternativ- hypothese H_1		
Ungerichtet	$\bar{x} = \mu$	$\bar{x} \neq \mu$		
Gerichtet	$\bar{x} \leq \mu$	$\bar{x} > \mu$		
Gerichtet	$\bar{x} \ge \mu$	$\bar{x} < \mu$		

- Berechnung einer Prüfgröße (Teststatistik), die geeignet ist Abweichungen von der Grundgesamtheit zu erkennen
- Diese Prüfgröße ist abhängig von der Art des gewählten Tests
- Für den z-Test handelt es sich um die Prüfgröße z
- Die z-Verteilung haben wir schon kennengelernt
- Überführung der Stichprobenverteilung in eine Standardnormalverteilung

$$z = \frac{\overline{x} - \mu}{s} = \frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}} = \sqrt{n} * \left(\frac{\overline{x} - \mu}{\sigma}\right)$$

(z Teststatistik, \bar{x} Mittelwert der Stichprobe, μ Mittelwert der Grundgesamtheit, s Standardabweichung der Stichprobe, σ Standardabweichung der Grundgesamtheit, n Stichprobengröße)

Jetzt ist es möglich, eine Prüfgröße zu bestimmen, die nur von der Stichprobengröße n und den Parametern μ und σ der Grundgesamtheit abhängt

Für das Beispiel: $\mathbf{z}_{empirisch} = \sqrt{50} * \left(\frac{5,5-5,4}{0,5}\right) = \mathbf{1},\mathbf{414}$

*z*_{empirisch} Aus Daten von Stichprobe und Grundgesamtheit bestimmter z-Wert

Der kritische Wert $z_{kritisch}$ ist abhängig von unserem Signifikanzniveau α , dass wir zu Beginn der Untersuchung festgelegt haben

Für das Beispiel ergibt sich damit ein $z_{kritisch} = 1,64$ (Wir können die z-Tabelle nutzen; α wird einseitig ausgewertet)

Der Vergleich mit dem berechneten Wert führt zu:

$$z = 1,414 < z_{kritisch} = 1,64$$

Wir haben nicht genug Beleg, dass sich der Durchmesser vergrößert hat; wir bleiben bei der Nullhypothese

Die Auswertung des Signifikanztests kann durch den Vergleich der z-Werte erfolgen

Alternativ dazu lässt sich ein p-Wert bestimmen

Im Beispiel ergab sich z = 1,414

Suchen wir diesen Wert in der z-Tabelle, erhalten wir

$$p \approx 0,079 = 7,9\%$$

Auswertung in Abhängigkeit vom p-Wert:

- $p < \alpha$: Wir verwerfen wir die Nullhypothese H_0 und wechseln zur Alternativhypothese H_1
- $p \ge \alpha$: Wir verbleiben bei der Nullhypothese H_0

Im Beispiel verbleiben wir bei der Nullhypothese

Beispiel: In der Datei *Beispiel_z.xslx* finden Sie eine Stichprobe, die aus einer normalverteilten Grundgesamtheit stammen soll.

Von der Grundgesamtheit kennen Sie den Mittelwert und die Standardabweichung.

$$\mu = 8$$
 $\sigma = 1,5$

Signifikanzniveau $\alpha = 5\%$

Prüfen Sie, ob Ihre Stichprobe aus der Grundgesamtheit stammt

Beispiel:

Parameter der Stichprobe: $\bar{x} = 8,1056$

Hypothesen:

 H_0 : $\overline{x} = \mu$ Die Mittelwerte sind gleich

 H_1 : $\bar{x} \neq \mu$ Die Mittelwerte sind nicht gleich

Beispiel:

$$z = \sqrt{n} * \left(\frac{\overline{x} - \mu}{\sigma}\right) = \sqrt{30} * \left(\frac{8,1056 - 8}{1,5}\right) = 0,3854$$

$$z_{kritisch} = \pm 1,96$$
 (zweiseitiger Test, $z_{1-\frac{\alpha}{2}}$)

$$-1,96 < z = 0,3854 < +1,96$$

 $p = 0,6999 > \alpha = 0,05$

Wir verbleiben in der Nullhypothese, die Mittelwerte sind gleich. Wir gehen davon aus, dass die Stichprobe aus der Grundgesamtheit entnommen wurde.

Beispiel, R (Basic Statistics, RcmdrPlugin.TeachStat)

Hypothesis Testing for the mean with known variance = 2.25

Variable: Stichprobe
Distribution: N(0,1)

Test statistics value: 0.3854708

p-value: 0.69989

Alternative hypothesis: Population mean is not equal to 8

Sample estimate: mean of Dataset\$Stichprobe 8.105566

 $p > \alpha$ Wir verbleiben bei der Nullhypothese, die Mittelwerte sind gleich. Wir gehen davon aus, dass die Stichprobe aus der Grundgesamtheit entnommen wurde.

Auswertung des z-Tests für eine Stichprobe				
	zweiseitig	einseitig	einseitig	
Alternativhypothese H_1	$\bar{x} \neq \mu_0$	$\bar{x} > \mu_0$	$\bar{x} < \mu_0$	
Nullhypothese H_0	$\bar{x} = \mu_0$	$\bar{x} \le \mu_0$	$\bar{x} \ge \mu_0$	
Teststatistik z_{emp}		$\sqrt{n} * \left(\frac{\bar{x} - \mu_0}{\sigma}\right)$		
Kritischer z-Wert z_{krit} .	$-z_{1-\frac{\alpha}{2}};+z_{1-\frac{\alpha}{2}}$	$z_{1-\alpha}$	$-z_{1-\alpha}$	
H_1 gilt, wenn:	$\left z_{emp.}\right > z_{1-\frac{\alpha}{2}}$	$z_{emp.} > z_{krit.}$	$z_{emp.} < z_{krit.}$	

- Der t-Test für eine Stichprobe ist vergleichbar in Form und Ablauf mit dem z-Test
- Die wesentlichen Unterschiede zwischen den beiden Tests sind die Voraussetzungen und die genutzte Teststatistik

 Die Testverteilungen für z- und t-Test sind sehr ähnlich, der t-Test berücksichtigt aber die Stichprobengröße über die Freiheitsgrade (df=n-1)

- Die t-Verteilung ist in den Randbereichen breiter aufgestellt
- Für große df-Werte geht die t-Verteilung in die Standardnormalverteilung über

Voraussetzungen für den t-Test:

- Das untersuchte Merkmal muss mindestens intervallskaliert sein
- Es sollte eine Normalverteilung vorliegen, bei n ≥ 30 kann aber auf diese Forderung verzichtet werden (Grenzwertsatz)
- Die Standardabweichung der Grundgesamtheit σ muss nicht bekannt sein

Beispiel (etwas geändert)

Ein Unternehmen produziert Bolzen und möchte nach Änderungen an der Produktionsanlage untersuchen, ob kleinere Bolzen produziert werden. Eine Stichprobe mit 50 Bolzen ergibt einen Bolzendurchmesser von $\bar{x}=5,1~mm,s=0,7~mm$. Aus Erfahrung kennt man den Durchmesser $\mu=5,4~mm$. Das Signifikanzniveau liegt bei 5%.

Alternativhypothese: Es hat sich eine Verkleinerung des

Durchmessers ergeben

Nullhypothese: Es hat sich keine Verkleinerung des

Durchmessers ergeben

Beispiel

Exakte Formulierung der Hypothesen:

 H_1 : $\overline{x} < \mu$ Es hat sich eine Verkleinerung ergeben

 H_0 : $\overline{x} \ge \mu$ Es hat sich keine Verkleinerung ergeben

Mögliche Hypothesenformulierungen für den t-Test

Alternativ- hypothese	H_0	H_1
Ungerichtet	$\bar{x} = \mu$	$\bar{x} \neq \mu$
Gerichtet	$\bar{x} \leq \mu$	$\bar{x} > \mu$
Gerichtet	$\bar{x} \geq \mu$	$\bar{x} < \mu$

- Berechnung einer Prüfgröße (Teststatistik), die geeignet ist Abweichungen von der Grundgesamtheit zu erkennen
- Diese Prüfgröße ist abhängig von der Art des gewählten Tests
- Für den t-Test handelt es sich um die Prüfgröße t
- Die t-Verteilung (Student-Verteilung) ist gut tabelliert
- Überführung der Stichprobenverteilung in eine t-Verteilung

	Stuc	dent's	che t-	Vertei	luna f	ür eir	seitig	e Tes	ts
\vdash	α	0,400	0,300	0,200	0,100	0,050	0,025	0.010	0,005
	1-α	0,600	0.700	0,800	0,900	0,950	0.975	0.990	0,995
	1	0,325	0,727	1,376	3,078	6,314	12,706	31,821	63,657
	2	0,328	0,617	1,061	1,886	2,920	4,303	6,965	9,925
	3	0,277	0,584	0,978	1,638	2,353	3,182	4,541	5,841
	4	0,271	0,569	0,941	1,533	2,132	2,776	3,747	4,604
	5	0,267	0,559	0,920	1,476	2,015	2,571	3,365	4,032
	6	0,265	0,553	0.906	1,440	1,943	2,447	3,143	3,707
	7	0,263	0.549	0,896	1,415	1,895	2,365	2,998	3,499
	8	0,262	0.546	0,889	1,397	1,860	2,306	2,896	3,355
	9	0,261	0,543	0,883	1,383	1,833	2,262	2,821	3,250
	10	0,260	0,542	0,879	1,372	1,812	2,228	2,764	3,169
	11	0,260	0,540	0,876	1,363	1,796	2,201	2,718	3,106
_	12	0,259	0,539	0,873	1,356	1,782	2,179	2,681	3,055
(n-1)	13	0,259	0,538	0,870	1,350	1,771	2,160	2,650	3,012
	14	0,258	0,537	0,868	1,345	1,761	2,145	2,624	2,977
Freiheitsgrade	15	0,258	0,536	0,866	1,341	1,753	2,131	2,602	2,947
sgl	16	0,258	0,535	0,865	1,337	1,746	2,120	2,583	2,921
Jeit	17	0,257	0,534	0,863	1,333	1,740	2,110	2,567	2,898
rei	18	0,257	0,534	0,862	1,330	1,734	2,101	2,552	2,878
	19	0,257	0,533	0,861	1,328	1,729	2,093	2,539	2,861
der	20	0,257	0,533	0,860	1,325	1,725	2,086	2,528	2,845
Anzahl	21	0,257	0,532	0,859	1,323	1,721	2,080	2,518	2,831
nzś	22	0,256	0,532	0,858	1,321	1,717	2,074	2,508	2,819
⋖	23	0,256	0,532	0,858	1,319	1,714	2,069	2,500	2,807
	24	0,256	0,531	0,857	1,318	1,711	2,064	2,492	2,797
	25	0,256	0,531	0,856	1,316	1,708	2,060	2,485	2,787
	26	0,256	0,531	0,856	1,315	1,706	2,056	2,479	2,779
	27	0,256	0,531	0,855	1,314	1,703	2,052	2,473	2,771
	28	0,256	0,530	0,855	1,313	1,701	2,048	2,467	2,763
	29	0,256	0,530	0,854	1,311	1,699	2,045	2,462	2,756
	30	0,256	0,530	0,854	1,310	1,697	2,042	2,457	2,750
	40	0,255	0,529	0,851	1,303	1,684	2,021	2,423	2,704
	60	0,254	0,527	0,848	1,296	1,671	2,000	2,390	2,660
	120	0,254	0,526	0,845	1,289	1,658	1,980	2,358	2,617
	unendlich	0,253	0,524	0,842	1,282	1,645	1,960	2,326	2,576

Anzahl der Freiheitsgrade: n-1

Teststatistik
$$\mathbf{t} = \sqrt{n} \frac{x - \mu}{s}$$

Jetzt ist es möglich, eine Prüfgröße zu bestimmen, die nur von der Stichprobengröße n und den Parametern \bar{x} und s der Stichprobe abhängt

Für das Beispiel:
$$t = \sqrt{50} * \left(\frac{5,1-5,4}{0,7}\right) = -3,030$$

Der kritische Wert $t_{kritisch}$ ist abhängig von unserem Signifikanzniveau α , dass wir zu Beginn der Untersuchung festgelegt haben, und der Anzahl der Freiheitsgrade (n-1)

Für das Beispiel ergibt sich damit ein $t_{kritisch} = -1,677$ (Wir können die t-Tabelle nutzen; α wird einseitig ausgewertet)

Der Vergleich mit dem berechneten Wert führt zu:

$$t = -3,030 < t_{kritisch} = -1,677$$

Wir verwerfen die Nullhypothese und wechseln zur Alternativhypothese: Der Durchmesser ist kleiner

Die Auswertung des Signifikanztests kann durch den Vergleich der t-Werte erfolgen

Alternativ dazu lässt sich mittels Excel ein p-Wert bestimmen über die Funktion:

p-Wert: =T.VERT.RE(t; df)

In unserem Beispiel ergibt die Auswertung:

p = 0.0019 = 0.19%

Auswertung in Abhängigkeit vom p-Wert:

- $p < \alpha$: Wir verwerfen wir die Nullhypothese H_0 und wechseln zur Alternativhypothese H_1
- $p \ge \alpha$: Wir verbleiben bei der Nullhypothese H_0

Im Beispiel wechseln wir zur Alternativhypothese, der Durchmesser ist kleiner geworden

Beispiel: In der Datei *Beispiel_z.xslx* finden Sie eine Stichprobe, die aus einer normalverteilten Grundgesamtheit stammen soll.

Von der Grundgesamtheit kennen Sie den Mittelwert

$$\mu = 8$$

Signifikanzniveau $\alpha = 5\%$

Prüfen Sie, ob Ihre Stichprobe aus der Grundgesamtheit stammt

Beispiel:

Parameter der Stichprobe: $\bar{x} = 8,1056$ s = 1,2701

Hypothesen:

 H_0 : $\overline{x} = \mu$ Die Mittelwerte sind gleich

 H_1 : $\bar{x} \neq \mu$ Die Mittelwerte sind nicht gleich

Beispiel:

$$t = \sqrt{n} * \frac{\overline{x} - \mu}{s} = \sqrt{30} * \frac{8,1056 - 8}{1,2701} = 0,4552$$

$$t_{kritisch} = \pm 2$$
, 0452 (zweiseitiger Test, $t_{1-\frac{\alpha}{2}}$, $df = n-1=29$)

$$-2,0452 < t = 0,4552 < +2,0452$$

 $p = 0,6523 > \alpha = 0,05$

Wir verbleiben bei der Nullhypothese, die Mittelwerte sind gleich. Wir gehen davon aus, dass die Stichprobe aus der Grundgesamtheit entnommen wurde.

Beispiel, R:

One Sample t-test

```
data: Stichprobe t = 0.45524, df = 29, p-value = 0.6523 alternative hypothesis: true mean is not equal to 8 95 percent confidence interval: 7.631295 \ 8.579836 sample estimates: mean of x \ 8.105566
```

 $p > \alpha$ Wir verbleiben bei der Nullhypothese, die Mittelwerte sind gleich. Wir gehen davon aus, dass die Stichprobe aus der Grundgesamtheit entnommen wurde.

Der t-Test

Auswertung des t-Tests für eine Stichprobe				
	zweiseitig	einseitig	einseitig	
Alternativhypothese H_1	$\bar{x} \neq \mu_0$	$\bar{x} > \mu_0$	$\bar{x} < \mu_0$	
Nullhypothese H_0	$\bar{x} = \mu_0$	$\bar{x} \le \mu_0$	$\bar{x} \ge \mu_0$	
Teststatistik t_{emp}		$\sqrt{n} * \left(\frac{\bar{x} - \mu_0}{s}\right)$		
Kritischer t-Wert $t_{krit.}$	$-t_{1-\frac{\alpha}{2}};+t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$	
H_1 gilt, wenn:	$\left t_{emp.}\right > t_{1-\frac{\alpha}{2}}$	$t_{emp.} > t_{krit.}$	$t_{emp.} < t_{krit.}$	