

第7章 参数估计

概率论与数理统计课程组

CHAPTER 7

参数估计

- § 7.1 点估计
- § 7.2 区间估计
- § 7.3 单侧置信区间
- § 7.4 估计量的评选标准

第 7 章: 参数估计 Page 2

CHAPTER 7

参数估计

- § 7.1 点估计
- § 7.2 区间估计
- § 7.3 单侧置信区间
- § 7.4 估计量的评选标准

第 7 章: 参数估计 Page 3

7.1 点估计

问题的提出

参数估计是统计推断的基本问题之一,实际工作 中碰到的总体,其分布类型往往是知道的,只是 不知道其中的某些参数

因此,要求估计该参数的值,或是以一定的可 靠性估计该参数在某个范围内或者不低于某数。 参数估计问题就是要求通过样本估计总体分布 所包含未知参数的值

矩估计法

点估计

设总体X的分布函数 $F(x; \theta_1, \theta_2, \ldots, \theta_k)$ 形式已 知, $\theta_1, \theta_2, \ldots, \theta_k$ 是未知参数, X_1, X_2, \ldots, X_n 是来自总体X的一个样本, x_1, x_2, \ldots, x_n 是相应 的一个样本值。

点估计问题就是要构造一个适当的统计量

$$\hat{\theta}_i = \hat{\theta}_i(X_1, X_2, ..., X_n)$$
 $i = 1, 2, ...$

用它的观察值作为未知参数 θ_i 的近似值

$$\hat{\theta}_i = \hat{\theta}_i(X_1, X_2, ..., X_n)$$
 称为 θ_i 的点估计量

本质是一个随机变量

$$\hat{\theta}_i = \hat{\theta}_i(x_1, x_2, ..., x_n)$$
 称为 θ_i 的点估计值

矩估计法

设X是连续型随机变量,其概率密度为 $f(x; \theta_1, \theta_2, ..., \theta_k)$

或X为离散型随机变量,其分布律为

$$P(X=x)=p(x; \theta_1, \theta_2, ..., \theta_k)$$

其中 θ_1 , θ_2 , ..., θ_k 为待估参数, X_1 , X_2 , ..., X_n 是来自总体X的样本,假设总体X的前k阶矩

$$\mu_l = E(X^l) = \int_{-\infty}^{\infty} x^l f(x; \theta_1, \theta_2, \dots, \theta_k) dx$$
 X连续型

$$\mu_l = E(X^l) = \sum_{x \in R_X} x^l p(x; \theta_1, \theta_2, \dots, \theta_k)$$
 X离散型

存在,一般它们是 $\theta_1, \theta_2, ..., \theta_k$ 的函数

基于样本矩
$$A_l = \frac{1}{n} \sum_{i=1}^n X_i^l$$

依概率收敛于相应的总体矩_{µ_l} 样本矩的连续函数依概率收敛于相应的总体矩 的连续函数

定义

由Khinchine大数定律,若总体X的期望E(X)有限,则样本均值 \overline{X} 收敛于E(X)

因此,可以用样本矩作为相应的总体矩的估计量, 而以样本矩的连续函数作为相应总体矩连续函数 的估计量

该方法称为矩估计法

❖ 样本矩的连续函数收敛于总体矩的连续函数

统计量
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
, $k = 1, 2, \dots$

样本值
$$a_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$
, $k = 1, 2, \dots$

设总体X的k阶矩存在,记为 $E(X^k)$ — $\stackrel{\mathrm{id} R}{\longrightarrow} \mu_k$

当
$$n \rightarrow \infty$$
时, $A_k \xrightarrow{P} \mu_k$, $k = 1, 2, ...$

因为 X_1, X_2, \ldots, X_n 互相独立且与X同分布,故 $X_1^k, X_2^k, \ldots, X_n^k$ 独立且与 X^k 同分布

$$E(X_1^k) = E(X_2^k) = \dots = E(X_n^k) = \mu_k$$

由Khinchine大数定律 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k, k = 1, 2, ...$

由依概率收敛的性质 $g(A_1,A_2,...,A_k) \xrightarrow{P} g(\mu_1,\mu_2,...,\mu_k)$ g是连续函数

具体流程

$$\mathbf{\mathcal{U}} \begin{cases}
\mu_1 = \mu_1(\theta_1, \theta_2, \dots, \theta_k) \\
\mu_2 = \mu_2(\theta_1, \theta_2, \dots, \theta_k) \\
\vdots \\
\mu_k = \mu_k(\theta_1, \theta_2, \dots, \theta_k)
\end{cases}
\Rightarrow
\begin{cases}
\theta_1 = \theta_1(\mu_1, \mu_2, \dots, \mu_k) \\
\theta_2 = \theta_2(\mu_1, \mu_2, \dots, \mu_k) \\
\vdots \\
\theta_k = \theta_k(\mu_1, \mu_2, \dots, \mu_k)
\end{cases}$$

其中 $\mu_l = E(X^l)$

这是一个包含k个参数 $\theta_1, \theta_2, ..., \theta_k$ 的联立方程组,可以从中解出 $\theta_1, \theta_2, ..., \theta_k$

以样本矩 A_l 分别代替上式中总体矩 μ_l , l=1,2,...,k

$$\overline{m} A_l = \frac{1}{n} \sum_{i=1}^n X_i^l$$

流程概要

2、3顺序可互换

 $\hat{\theta}_i = \theta_i(A_1, A_2, \dots, A_k), i = 1, 2, \dots, k$

分别作为 θ_i , i = 1, 2, ..., k的估计量 这种估计量称为参数 θ_i 的矩估计量,其 样本值称为参数 θ_i 的矩估计值

•写出总体矩的k个 方程,是k个未知 参数的表达式

•解方程组,将 每个未知参数 用总体矩表示 •用样本l 阶 矩代替总体 l 阶矩

设在总体X 的均值 μ 和方差 σ^2 均未知, $(X_1, X_2, ..., X_n)$ 是取自X的一个样本,试求 μ 和 σ^2 的矩估计。

解 先求总体矩 Step 1 求总体矩,有几个 参数待估就写几个 $\mu_1 = E(X) = \mu$

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \mu^2 + \sigma^2$$

再求样本矩 Step 3 求样本矩,用来 替代总体矩

解方程组,采用规范的统计量写法

设总体概率密度为

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1} & 0 \le x \le 1 \\ 0 & \text{ id} \end{cases}$$

 $\theta > 0$ 是未知参数, $(X_1, X_2, ..., X_n)$ 是取自X的一个样本,试求 θ 的矩估计。

 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} \sqrt{\theta} x^{\sqrt{\theta}} dx$ $= \frac{\sqrt{\theta}}{\sqrt{2} + 1}$ Step 1

$$\Leftrightarrow E(X) = \overline{X} \quad \text{Step 3}$$

$$\Rightarrow \frac{\sqrt{\theta}}{\sqrt{\theta} + 1} = \overline{X} \Rightarrow \hat{\theta} = \left(\frac{\overline{X}}{1 - \overline{X}}\right)^2 \text{ Step 2}$$

最大似然估计法

引例

考察下例,假设在一个罐中放着许多白球和黑球,并假定已经知道两种球的数目之比是1:3,但不知道哪种颜色球多。如果用放回抽样方法从罐中任取n个球,其中黑球的个数为x的概率为

$$P(x;p) = C_n^x p^x (1-p)^{n-x}$$

由假设知,
$$p = \frac{1}{4}$$
或 $p = \frac{3}{4}$

若取 n=3,如何通过x来估计p值

先计算抽样的可能结果x 在这两种p 值之下的概率,列出分布律

第7章:参数估计

<u>x</u>	0	1	2	3
P(x, 3/4)	1/64	9/64	27/64	27/64
P(x, 1/4)		27/64	9/64	1/64

从上表可知

$$x = 0$$
, $P(0,1/4) = 27/64 > P(0,3/4) = 1/64$
 $\hat{p} = 1/4$ 更合理; $x=1$ 类似; $x = 2$, $P(2,1/4) = 9/64 < P(2,3/4) = 27/64$

$$\hat{p} = 3/4$$
 更合理; $x=3$ 类似;

因此
$$\hat{p}(x) = \begin{cases} 1/4 & x = 0, 1 \\ 3/4 & x = 2, 3 \end{cases}$$

对每个x,取 $\hat{p}(x)$ 使得 $P[x; \hat{p}(x)] \ge P(x; p')$ p'是不同于p的另一个值

最大似然估计的原理

抽样中, 样本 $X_1, X_2, ..., X_n$ 取值为 $x_1, x_2, ..., x_n$ x_n 这一事件发生的可能性应该是较大的(因为 结果已然出现),即参数的取值应使得事件 ${X_1 = x_1, X_2 = x_2, ..., X_n = x_n}$ 的概率最大

具体流程

若X为离散型随机变量,其分布律为P(X=x)= $p(x;\theta)$, 或若X是连续型随机变量,其概率密 度为 $f(x;\theta)$

 $\theta = (\theta_1, \theta_2, ..., \theta_k)$ 是待估参数, $\theta \in \Theta$, Θ 为 参数空间,也就是 θ 的取值范围

设 $(x_1, x_2, ..., x_n)$ 是样本 $(X_1, X_2, ..., X_n)$ 的样本值

(i) 做似然函数

似然函数通常简写为 $L(\theta)$

若X为离散型随机变量,则 $(X_1, X_2, ..., X_n)$ 的 联合分布律为

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^n p(x_i; \theta)$$

似然函数为 $L(x_1, x_2, ..., x_n; \theta) = \prod p(x_i; \theta)$

若X为连续型随机变量,则 $(X_1, X_2, ..., X_n)$ 的 联合概率密度为

$$f(x_1,x_2,...,x_n) = \prod_{i=1}^n f(x_i;\theta)$$

似然函数为
$$L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

(ii) 使似然函数取最大值

求使 $L(x_1, x_2, ..., x_n; \theta)$ 达到最大,即 $L(x_1, x_2, ..., x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, ..., x_n; \theta)$

 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为 θ 的最大似然估计量 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 称为 θ 的最大似然估计值

注意: 求 $L(\theta)$ 的最大值通常转为求 $\ln L(x_1, x_2, ..., x_n; \theta)$ 的最大值,称对数似然函数

一般是从方程
$$\frac{d}{d\theta}L(\theta) = 0$$
 或是 $\frac{d}{d\theta}\ln L(\theta) = 0$ 解得 $\hat{\theta}$

1

•写出似然函数 (联合概率密度

或联合分布律)

•求似然函数或对数似然函数取最大值的条件

•写出以统计量 表示未知参数 的结果

流程概要

例 设总体概率密度为
$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta-1}} & 0 \le x \le 1 \\ 0 & \text{其他} \end{cases}$$

 $\theta > 0$ 是未知参数, $(X_1, X_2, ..., X_n)$ 是取自X的一个样本,试求 θ 的最大似然估计。

解 似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \sqrt{\theta} x_i^{\sqrt{\theta}-1} = \theta^{n/2} \left(\prod_{i=1}^{n} x_i\right)^{\sqrt{\theta}-1}$$
 Step 1 写出似然函数,即联合概率 密度或联合分布律

$$\ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \sum_{i=1}^{n} \ln x_i$$

Step 2 求使似然函数最大值的条件

最大似然估计量为 $\hat{\theta} = \frac{n^2}{\left(\sum_{i=1}^{n} \ln X_i\right)^2}$ Step 3 以规范的统计量写法表示

例 设总体X概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} e^{-(x-\mu)/\theta} & x \ge \mu \\ 0 & \text{其他} \end{cases}$

其中 $\theta > 0$, $\theta < \mu$ 是未知参数, (X_1, X_2, \dots, X_n) 是取自X 的样本,求 $\theta < \mu$ 的矩估计与最大似然估计。

) (i) 矩估计

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{\mu}^{+\infty} x \frac{1}{\theta} e^{-(x-\mu)/\theta} dx = \mu + \theta$$

$$E(X^{2}) = \int_{\mu}^{+\infty} x^{2} \frac{1}{\theta} e^{-(x-\mu)/\theta} dx = \mu^{2} + 2\theta \int_{\mu}^{+\infty} \frac{x}{\theta} e^{-(x-\mu)/\theta} dx = \mu^{2} + 2\mu\theta + 2\theta^{2}$$

$$D(X) = E(X^2) - \left[E(X)\right]^2 = \theta^2$$

令
$$E(X) = \overline{X}$$
 $D(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 样本二阶中心矩 B_2

$$\Rightarrow \hat{\theta} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2} \qquad \hat{\mu} = \overline{X} - \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

例 设总体X概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} e^{-(x-\mu)/\theta} & x \ge \mu \\ 0 & \text{其他} \end{cases}$

其中 $\theta > 0$, $\theta \setminus \mu$ 是未知参数, $(X_1, X_2, ..., X_n)$ 是取自X 的样本,求 $\theta \setminus \mu$ 的矩估计与最大似然估计。

解)(ii)最大似然估计

$$L(\theta, \mu) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-(x_i - \mu)/\theta} = \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} (x_i - \mu)} \qquad x_i \ge \mu$$

此时不能通过求偏导数获得µ的最大似然估计量

因为 $x_i \ge \mu$,故 μ 的取值范围最大不超过 $x = \min\{x_1, x_2, \cdots, x_n\}$

而 $L(\theta,\mu) = \frac{1}{\Omega^n} e^{-\frac{1}{\theta} \sum_{i=1}^n X_i + \frac{n\mu}{\theta}}$ 是 μ 的增函数, μ 取最大值时L达到最大,故 $\hat{\mu} = X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$

又
$$\ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} (X_i - \hat{\mu})$$
 令 $\frac{d}{d\theta} \ln L(\theta) = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{n} \left[X_i - X_{(1)} \right] = 0$ 故 $\hat{\theta} = \overline{X} - X_{(1)}$

设总体X 服从 $(0,\theta)$ 上的均匀分布, $\theta > 0$ 未知, $x_1,x_2,...,x_n$ 是取自X的一个样本,试求 θ 的最大似然估计和矩估计。

(i) 最大似然估计 X 概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta} & 0 \le x \le \theta \\ 0 & \text{其他} \end{cases}$

似然函数为
$$L(\theta) = \begin{cases} \frac{1}{\theta^n} & 0 \le x_1, x_2, \dots, x_n \le \theta \\ 0 & \text{其他} \end{cases}$$
 由于 $\frac{d}{d\theta} \ln(\theta) = -\frac{n}{\theta} \ne 0$ 不能用微分法求 $\hat{\theta}$

只能从定义上去求 $\hat{\theta}$ 因为 $0 \le x_i \le \theta$ 故 θ 的最小取值为 $x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$

又
$$\ln L(\theta) = \frac{1}{\theta^n}$$
 对 θ

又 $\ln L(\theta) = \frac{1}{\theta^n}$ 对 $\theta > x_{(n)}$ 的 θ 是减函数 θ 越小,L 越大,故 $\hat{\theta} = x_{(n)}$ 时,L 最大

故 θ 的最大似然估计值是 $\hat{\theta} = x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$

(ii) 矩估计 由
$$E(X) = \int_0^\theta \frac{1}{\theta} x dx = \frac{\theta}{2} = \overline{X}$$
 $\Rightarrow \hat{\theta} = 2\overline{X} = 2\frac{x_1 + x_2 + \dots + x_n}{n}$

本题给出条件是样本值,因此答案用样本估计值(估计量的观测值),一般是用样本的估计量表示

例

设总体X分布律为 $\frac{x_k}{p_k}$ $\frac{1}{\theta}$ $\frac{2}{\theta/2}$ $\frac{3}{1-3\theta/2}$

 θ 是未知参数, 现得到X 的一组样本观测值(2, 3, 2, 1, 3), 试求 θ 的矩估计和最大似然估计。

解

(i) 矩估计

$$E(X) = \sum_{k=1}^{3} x_k p_k = \theta + 2 \times \theta / 2 + 3 \times (1 - 3\theta / 2) = 3 - 5\theta / 2$$

$$\overline{X} = 2.2 \qquad \Leftrightarrow E(X) = \overline{X} \qquad \Rightarrow \hat{\theta} = 0.32$$

(ii) 最大似然估计

$$L(\theta) = (\theta/2)(1 - 3\theta/2)(\theta/2)\theta(1 - 3\theta/2) = \frac{1}{16}\theta^{3}(2 - 3\theta)^{2}$$

$$\ln L(\theta) = -\ln 16 + 3\ln \theta + 2\ln(2 - 3\theta) \qquad \frac{d}{d\theta} \ln L(\theta) = \frac{3}{\theta} - \frac{6}{2 - 3\theta} = 0 \qquad \Rightarrow \hat{\theta} = 0.4$$

上述例题矩估计和最大似然估计的结果

分布	矩估计	最大似然估计
例 2&4	$\hat{\theta} = \left(\frac{\overline{X}}{1 - \overline{X}}\right)^2$	$\hat{\theta} = \frac{n^2}{\left(\sum_{i=1}^n \ln X_i\right)^2}$
例 5	$\hat{\mu} = \overline{X} - \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$ $\hat{\theta} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$	$\hat{\mu} = X_{(1)} = \min \left\{ X_1, X_2, \dots, X_n \right\}$ $\hat{\theta} = \overline{X} - X_{(1)}$
例 6	$\hat{ heta}=2\overline{X}$	$\hat{\theta} = X_{(n)} = \max\{X_1, X_2, \cdots, X_n\}$

- 本节回顾
 - 口 矩估计法
- •写出总体矩的k个 方程,是k个未知 参数的表达式
- ·解方程组,将 每个未知参数

用总体矩表示

•用样本/阶 矩代替总体 / 阶矩

口 最大似然估计法

1

- •写出似然函数 (联合概率密度 或联合分布律)
- •求似然函数或对数似然函数取最大值的条件
- ·写出以统计量 表示未知参数 的结果