Clustering nodes in graphs

Why graph clustering is useful?

Distance matrices are graphs

 as useful as any other clustering

 Identification of communities in social networks

 Webpage clustering for better data management of web data

Outline

- k-core decomposition of a graph
- Min s-t cut problem
- Min cut problem
- Spectral graph partitioning

k-core graph decomposition

- Assume an undirected graph G=(V,E)
- The core i of G, denoted by Gi, is a subgraph of G such that all nodes in Gi have degree at least i

The core number of a node u is c(u), if u belongs in the c(u) core but not in core c(u)
 +1

Min s-t cut

Weighted graph G(V,E)

- An s-t cut C = (S,T) of a graph G = (V, E) is a cut partition of V into S and T such that s∈S and t∈T
- Cost of a cut: $Cost(C) = \sum_{e(u,v)} \sum_{u \in S, v \in T} w(e)$

 Problem: Given G, s and t find the minimum cost st cut

Min-cut problem

- Connected, undirected graph G=(V,E)
- Assignment of weights to edges: w: E→R⁺
- Cut: Partition of V into two sets: V', V-V'. The set of edges with one end point in V and the other in V' define the cut
- The removal of the cut disconnects G
- Cost of a cut: sum of the weights of the edges that have one
 of their end point in V' and the other in V-V'

Min cut problem

 Can we solve the min-cut problem using an algorithm for s-t cut?

More on min-cut

- What does it mean that a set of nodes are well or sparsely interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
 - small min-cut implies sparse connectivity

$$- \min_{U} E(U, V \setminus U) = \sum_{i \in U} \sum_{j \in V \setminus U} A[i, j]$$

Measuring connectivity

- What does it mean that a set of nodes are well interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected

Graph expansion

• Cut ratio: $\alpha = \frac{E(U, V \setminus U)}{\min\{|U|, |V \setminus U|\}}$

Graph expansion:

$$\alpha(G) = \min_{U} \frac{E(U, V \setminus U)}{\min\{|U|, |V \setminus U|\}}$$

 We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix A

Spectral analysis

- The Laplacian matrix L = D A where
 - -A =the adjacency matrix
 - $-D = diag(d_1, d_2, ..., d_n)$
 - d_i = degree of node i

- Therefore
 - $-L(i,i) = d_i$
 - -L(i,j) = -1, if there is an edge (i,j)

Laplacian Matrix properties

- The matrix L is symmetric and positive semidefinite
 - all eigenvalues of L are positive

- The matrix L has 0 as an eigenvalue, and corresponding eigenvector $w_1 = (1,1,...,1)$
 - $-\lambda_1 = 0$ is the smallest eigenvalue

The second smallest eigenvalue

• The second smallest eigenvalue (also known as Fielder value) λ_2 satisfies

$$\lambda_2 = \min_{\|x\|=1, x \perp w_1} x^T L x$$

• The vector that minimizes λ_2 is called the Fielder vector. It minimizes

$$\lambda_2 = \min_{x \neq 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} \text{ where } \sum_i x_i = 0$$

Spectral ordering

The values of x minimize

$$\min_{x \neq 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

For weighted matrices

$$\min_{x \neq 0} \frac{\sum_{(i,j)} A[i,j] (x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

$$\sum_{i} x_i = 0$$

- The ordering according to the x_i values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral partition

- Partition the nodes according to the ordering induced by the Fielder vector
- If u = (u₁,u₂,...,u_n) is the Fielder vector, then split nodes according to a value s
 - bisection: s is the median value in u
 - ratio cut: s is the value that minimizes α
 - sign: separate positive and negative values (s=0)
 - gap: separate according to the largest gap in the values of u
- This works well (provably for special cases)

Spectral Clustering

a number of variations of the following algorithm Input: Matrix A in $R^{n\times n}$, number of clusters k

- Compute the Laplacian matrix L from A
- Compute the first k eigenvectors u₁, u₂,...., uk
- Let U in R^{nxk} be the matrix containing the vectors u_1 , u_2 ,...., u_k as columns
- For i=1,...,n let y_i in R^k be the vector of the ith row in U
- ◆ Cluster the points y_i (i=1,...,n) into k clusters using k-means: C₁, C₂,..., C_k

Output: Clusters $A_1,...,A_k$ with $A_i = \{j \mid y_j \text{ in } C_i\}$