Real-Time Piano Accompaniment Model Trained on and Evaluated According to Human Ensemble Characteristics

Kit Armstrong, Tzu-Ching Hung, Ji-Xuan Huang & Yi-Wen Liu

Acoustics and Hearing Group, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

("Western classical music")

Composer – Performer – Listener

("Western classical music")

Composer – Performer – Listener

Create an Al performer

Score reading:

sheet music → a machine-friendly representation

Transcription:

musical performance → a machine-friendly representation Score following:

musical performance + score → score-aligned performance Interpretation:

NTHU Dept. of EE

Acoustics and Hearing Group

score + score-aligned performance → MIDI or similar

Sound synthesis:

interpretation → sound

Prevalence:

- Music-notation programs
 like Finale, Sibelius, MuseScore, etc.
- Useful tool for composers
- Not suitable for performance

Prevalence:

- Music-notation programs
 like Finale, Sibelius, MuseScore, etc.
- Useful tool for composers
- Not suitable for performance

Levels of advancement:

- Basic, in essence MusicXML to MIDI
- Algorithmic expressiveness
- Ongoing attempts with machine learning

Challenges:

Deformation for natural performance

Challenges:

- Deformation for natural performance
- Understanding score indications

Challenges:

- Deformation for natural performance
- Understanding score indications
- Synchronization in an ensemble

Scope:

- Digital piano
- 1 person ("input") + AI "accompaniment"
- Precisely defined score

Goal:

- Human-like time synchronization

Scope:

- Digital piano
- 1 person ("input") + AI "accompaniment"
- Precisely defined score

Goal:

- Human-like time synchronization

Collaboration more than synchronization

Intuition:

"I'm early" → Slow down "I'm late" → Speed up

$$\frac{d\theta_i(t)}{dt} = \sum_{j \neq i} k_{ij} \sin\left(\theta_j(t) - \theta_i(t)\right) + \Omega_i(t)$$
 NTHU Dept.

Predictive nature:

- extrapolate ω_3 position to predict next outputs
- each new input rewrites all future predictions
- additional learned parameter: "reaction time"

Capturing human behavior

Capturing human behavior

Capturing human behavior

Choose parameters such that the model performs most similarly

Additional elements

- MIDI Velocity matching (running average)
- Basic error handling

"Turing test"

Can people tell the difference between Human (H) and Al (A)?

Environment: Create identical setup for H and A

- 1.
 W. A. Mozart: "Twinkle, Twinkle, Little Star"
 K. 265, Theme
- 2.
 W. A. Mozart: "Twinkle, Twinkle, Little Star"
 K. 265, Variation II
- 3.
 J. S. Bach/C. Gounod:
 "Ave Maria, Méditation sur le Prélude de Bach"

"Turing test"

Can people tell the difference between Human (H) and AI (A)?

Results (subjective):
12 participants, 80 trials
Total: 59% correct guesses

"Turing test"

Can people tell the difference between Human (H) and Al (A)?

How different are really H and A?

Objective Discriminants

- Desynchronization

- Jerk

- Velocity curves

Objective Discriminants Desynchronization

Human

Piece	Number of trials	μ_{Δ}	σ_{Δ}
1	13	0.0872	0.0385
2	13	0.0506	0.0921
3	11	0.0478	0.0684

Automatic

Piece	Number of trials	, —	σ_{Δ}
1	14	0.0656	0.0533
2	14	0.0420	0.0344
3	11	0.0254	0.0219

Objective Discriminants $Jerk = \sum (position''')^2$

Human

Piece	Trials	μ_J	σ_J
1 H	17	3.074×10^2	4.069×10^{2}
2 H	11	1.205×10^5	0.947×10^{5}
3 H	17	0.699×10^2	1.546×10^2

Automatic

Piece	Trials	$\mid \qquad \mu_J \mid$	$\mid \hspace{0.4cm} \sigma_{J} \hspace{0.4cm} \mid$
1 A	19	0.719×10^3	1.405×10^3
2 A	22	2.817×10^5	2.556×10^5
3 A	24	0.716×10^2	1.355×10^2

Objective Discriminants Velocity correlation

Problem: Output delay

Getting the OS to reliably send a MIDI message at a pre-determined future time

- Misrepresents the model
- Bumpy effect
- Cascading slow-down
- Worse when the output has many notes

Limitations:

- Only rhythm is taken into account

Limitations:

- Only rhythm is taken into account
- Each note carries the same weight or salience

Limitations:

- Only rhythm is taken into account
- Each note carries the same weight or salience

General limitations:

- No intrinsic musicality
- Primitive score reading

Conclusion

- This model tries to imitate certain intuitive aspects of ensemble performance.
- Although it is so far very simple and has limited scope, playing with it is surprisingly satisfying, especially compared to "perfect accompaniment".
- Through objective analysis, we endeavored to understand external participants' responses.
- Recordings of human collaborative music-making can help further train machine "musicality".

