Benchmark Model

```
In [35]:
```

```
#importing libraries

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime as dt
import warnings
warnings.filterwarnings("ignore")
```

```
In [36]:
```

```
#Reafing data
data = pd.read_csv('nyc_taxi_trip_duration.csv')
# converting strings to datetime features
data['pickup_datetime'] = pd.to_datetime(data.pickup_datetime)
data['dropoff_datetime'] = pd.to_datetime(data.dropoff_datetime)
#Making two new columns
data['day_of_week'] = data['pickup_datetime'].dt.weekday
data['hour_of_day'] = data['pickup_datetime'].dt.hour
#Removing outliers
data=data[data["trip_duration"]<2000]</pre>
data = data.loc[(data.pickup_latitude > 40.6) & (data.pickup_latitude < 40.9)]</pre>
data = data.loc[(data.dropoff_latitude>40.6) & (data.dropoff_latitude < 40.9)]</pre>
data = data.loc[(data.dropoff_longitude > -74.05) & (data.dropoff_longitude < -73.7)]</pre>
data = data.loc[(data.pickup_longitude > -74.05) & (data.pickup_longitude < -73.7)]</pre>
data.drop(["id","pickup_datetime","dropoff_datetime","pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude",
data.head()
4
```

Out[36]:

	vendor_id	passenger_count	trip_duration	day_of_week	hour_of_day
0	2	1	400	0	16
1	1	2	1100	4	23
2	2	2	1635	6	17
3	2	6	1141	1	9
4	1	1	848	2	6

In [14]:

data.shape

Out[14]:

(685677, 5)

In [163]:

data.head()

Out[163]:

	vendor_id	passenger_count	trip_duration	day_of_week	hour_of_day
0	2	1	400	0	16
1	1	2	1100	4	23
2	2	2	1635	6	17
3	2	6	1141	1	9
4	1	1	848	2	6

```
In [164]:
```

```
np.sum(pd.isnull(data))
```

Out[164]:

vendor_id 0
passenger_count 0
trip_duration 0
day_of_week 0
hour_of_day 0
dtype: int64

In [15]:

data.head()

Out[15]:

	vendor_id	passenger_count	trip_duration	day_of_week	hour_of_day
0	2	1	400	0	16
1	1	2	1100	4	23
2	2	2	1635	6	17
3	2	6	1141	1	9
4	1	1	848	2	6

In [37]:

```
from sklearn.utils import shuffle

# Shuffling the Dataset
data = shuffle(data, random_state = 42)

#creating 4 divisions
div = int(data.shape[0]/4)

# 3 parts to train set and 1 part to test set
train = data.loc[:3*div+1,:]
test = data.loc[3*div+1:]
```

In [167]:

train.head()

Out[167]:

	vendor_id	passenger_count	trip_duration	day_of_week	hour_of_day
71517	2	1	1199	2	8
139536	2	2	1152	3	18
4526	2	5	423	1	20
625848	2	2	758	1	18
410258	2	2	515	5	3

In [38]:

```
test['simple_mean'] = train['trip_duration'].mean()
train['simple_mean'] = train['trip_duration'].mean()
```

In [39]:

```
from sklearn.metrics import mean_absolute_error as MAE
simple_mean_error = MAE(test['trip_duration'] , test['simple_mean'])
simple_mean_error2 = MAE(train['trip_duration'] , train['simple_mean'])
simple_mean_error
```

Out[39]:

351.75273416135633

In [40]:

```
simple_mean_error2
```

Out[40]:

351.26564067758295

```
In [46]:
```

```
#Mean trip_duration with respect to vendor_id
passenger_count_type = pd.pivot_table(train, values='trip_duration', index = ['vendor_id'], aggfunc=np.mean)
passenger_count_type
```

Out[46]:

trip_duration

vendor_id

- **1** 718.647054
- 2 723.436769

In [23]:

```
# initializing new column to zero
test['vendor_type_mean'] = 0

# For every unique entry
for i in train['vendor_id'].unique():
    # Assign the mean value corresponding to unique entry
    test['vendor_type_mean'][test['vendor_id'] == int(i)] = train['trip_duration'][train['vendor_id'] == int(i)].mean()
test['vendor_type_mean']
```

Out[23]:

```
514258
          723,436769
728708
          718.647054
186490
          723.436769
97215
          723.436769
          718.647054
183307
275683
          723.436769
389094
          723.436769
140385
          723,436769
713848
          718.647054
129793
          718.647054
Name: vendor_type_mean, Length: 68380, dtype: float64
```

In [24]:

```
vendor_type_error = MAE(test['trip_duration'] , test['vendor_type_mean'] )
vendor_type_error
```

Out[24]:

351.74532034817554

In [25]:

```
#Mean trip_duration with respect to passenger_count
passenger_count_type = pd.pivot_table(train, values='trip_duration', index = ['passenger_count'], aggfunc=np.mean)
passenger_count_type
```

Out[25]:

trip_duration

passenger_count

- **0** 213.576923
- **1** 715.643458
- **2** 739.278536
- **3** 739.656598
- 4 745.854947
- **5** 724.996737
- 6 721.017223
- 9 560.000000

In [175]:

```
# initializing new column to zero
test['passenger_count_type_mean'] = 0
# For every unique entry
for i in train['passenger_count'].unique():
    # Assign the mean value corresponding to unique entry
    test['passenger_count_type_mean'][test['passenger_count'] == int(i)] = train['trip_duration'][train['passenger_count'] == int(i)
passenger_count_type_error = MAE(test['trip_duration'] , test['passenger_count_type_mean'] )
passenger_count_type_error
```

Out[175]:

351.6379135240336

In [26]:

```
#Mean trip_duration with respect to day_of_week
day_of_week_type = pd.pivot_table(train, values='trip_duration', index = ['day_of_week'], aggfunc=np.mean)
day_of_week_type
```

Out[26]:

trip_duration

day_of_week

- **0** 695.401126
 - 1 734.629776
 - **2** 747.448019
 - **3** 749.358113
 - 4 739.553838
 - **5** 702.639391
 - 6 674.321097

In [27]:

```
# initializing new column to zero
test['day_of_week_type_mean'] = 0
# For every unique entry
for i in train['day_of_week'].unique():
    # Assign the mean value corresponding to unique entry
    test['day_of_week_type_mean'][test['day_of_week'] == int(i)] = train['trip_duration'][train['day_of_week'] == int(i)].mean()
day_of_week_type_error = MAE(test['trip_duration'] , test['day_of_week_type_mean'] )
day_of_week_type_error
```

Out[27]:

350.7151856225268

In [43]:

```
#Mean trip_duration with respect to hour_of_day
hour_of_day_type = pd.pivot_table(train, values='trip_duration', index = ['hour_of_day'], aggfunc=np.mean)
hour_of_day_type
```

Out[43]:

trip_duration

hour_of_day

- 721.184614
 - 693.080736
 - 2 668.994869
 - 3 674.059729
 - 692.889246 4
 - 5 647.553284

6

- 563.043401
- 7 640.550479
- 721.685790 8 9 736.213329
- 10 738.193306
- 11 755.721452
- 12 755.070818
- 13 755.468455
- 14 758.750505
- 15 745.719218
- 16 725.472184
- 17 732.917201
- 18 735.694209
- 19 710.497657
- 701.490276 20
- 712.296099 21
- 22 736.784072
- 23 737.016873

In [44]:

```
# initializing new column to zero
test['hour_of_day_type_mean'] = 0
# For every unique entry
for i in train['hour_of_day'].unique():
  # Assign the mean value corresponding to unique entry
 test['hour_of_day_type_mean'][test['hour_of_day'] == int(i)] = train['trip_duration'][train['hour_of_day'] == int(i)].mean()
hour_of_day_type_error = MAE(test['trip_duration'] , test['hour_of_day_type_mean'] )
hour_of_day_type_error
```

Out[44]:

349.949874273212

In [30]:

```
#Mean trip_duration with respect to hour_of_day
hour_of_day_type = pd.pivot_table(train, values='trip_duration', index = ['hour_of_day'], aggfunc=np.mean)
hour_of_day_type
```

Out[30]:

trip_duration

hour_of_day

- **0** 721.184614
- 1 693.080736
- **2** 668.994869
- **3** 674.059729
- 4 692.889246
- **5** 647.553284
- 6 563,043401
- **7** 640.550479
- **8** 721.685790
- 9 736.213329
- **10** 738.193306
- **11** 755.721452
- **12** 755.070818
- **13** 755.468455
- **14** 758.750505
- **15** 745.719218
- **16** 725.472184
- **17** 732.917201
- **18** 735.694209
- **19** 710.497657
- **20** 701.490276
- **21** 712.296099
- 22 736.784072
- 23 737.016873

In [45]:

```
# initializing new column to zero

test['hour_of_day_type_mean'] = 0
# For every unique entry

for i in train['hour_of_day'].unique():
    # Assign the mean value corresponding to unique entry

    test['hour_of_day_type_mean'][test['hour_of_day'] == int(i)] = train['trip_duration'][train['hour_of_day'] == int(i)].mean()
hour_of_day_type_error = MAE(test['trip_duration'] , test['hour_of_day_type_mean'] )
hour_of_day_type_error
```

Out[45]:

349.949874273212

In []: