Progress Review : Detection & Localization of Rabies Neurons

Keshava Prasad Gubbi

Feb 14, 2020

The Story so far

- Developed the *classifier*: CNN as a binary classifier with two classes (background and single Neuron). Classifier Works!
- Processing images for training data: Crop tiles of size (50 * 50) based on landmarks file; stride length of 10 microns.

The Story so far

- Developed the *classifier*: CNN as a binary classifier with two classes (background and single Neuron). Classifier Works!
- Processing images for training data: Crop tiles of size (50 * 50) based on landmarks file; stride length of 10 microns.
- Included a third class in the classifier : Partial Neuron

• Train on 367 samples, validate on 41 samples; Accuracy: 98.64%, Validation Accuracy: 92.68%

Determining Radius

Brainstem - mean values of neuron radii: 22 microns

Shape	X-Plane(microns)	Y-Plane(microns)
Circular	19.96	19.96
Elliptical	19.96	22.73
Irregular	26.14	24.89

Cropping And Testing

- Crop sequentially in tiles of size (50 * 50).
- \bullet Image of size (7500 * 7500) leads to nearly 23000 tiles; 26% lost!
- Tile numbers and global coordinates of each tile is noted.

Cropping And Testing

- Crop sequentially in tiles of size (50 * 50).
- Image of size (7500 * 7500) leads to nearly 23000 tiles; 26% lost!
- Tile numbers and global coordinates of each tile is noted.
- Run classifer and sort tiles into 3 classes:
 - Class 0 : Background
 - Class 1 : Single Neuron
 - Class 2 : Partial Neuron
 - Class 3: Mutiple Neurons (to be added later!)
- Collect tiles of each class into separate list.

Cropping And Testing

- Crop sequentially in tiles of size (50 * 50).
- Image of size (7500 * 7500) leads to nearly 23000 tiles; 26% lost!
- Tile numbers and global coordinates of each tile is noted.
- Run classifer and sort tiles into 3 classes:
 - Class 0 : Background
 - Class 1 : Single Neuron
 - Class 2 : Partial Neuron
 - Class 3: Mutiple Neurons (to be added later!)
- Collect tiles of each class into separate list.
- \bullet Testing : 56 out of 60 tiles accurately classified! \checkmark
- Training and Testing data done with small quantity of data; can run with large data on cluster.
- ullet Fixed issues with script for running on cluster. \checkmark

Generating Landmarks

• For single neuron tiles: central location of tile, based on image moment (weighted average of pixel intensities): (local_x, local_y).

- Landmarks : local coordinates known; global coordinates of tiles are known. Landmarks for neuron obtained ✓.
- compare for accuracy with pre-existing landmark file (currently working on it).

Work in Progress....

- For every tile with partial neuron:
 - Further sub-divide the tile in 4 quadrants.
 - Determine the quadrant wherein partial neuron exists!
 - Based on quadrant, divide neighboring tiles into quadrants and stitch them together ⇒ obtain full neuron.
 - Generate landmarks (after resizing!) like earlier.
 - Run iteratively until all partials are transformed into full neurons.
- Run full pipeline for many images.

Conclusion

- Neuron Classifier developed and successfully detects rabies neurons.
- Cropping strategy implemented and large image can now be cropped into tiles.
- Testing successfully carried out on small number of images.
- Landmarks of neurons obtained (for single neurons).
- Next steps:
 - Working on stitching together partial neuron tiles and generating landmarks
 - Working on improving accuracy of obtaining landmarks.
 - Running full pipeline on cluster with large quantities of (training and testing) data.