

Invariant sets Invariant sets Invariant sets Let x(t) be a solution of $\dot{x}=f(x)$ $f:\mathbb{D} \to \mathbb{R}^n$ Positive limit point

A point p is a <u>positive limit point</u> of x(t) iff \exists sequence $\{t_n\}$ in \mathbb{R}_+ with $t_n \stackrel{n \to \infty}{\longrightarrow} \infty$ such that

40.49.45.45. 5 000

Lecture 5: Stability analysis for autonomous systems cont.

Invariant sets cont.

Positive limit set
The positive limit set of x(t) is:
The set of all positive limit points of x(t)Lemma 4.1
If a solution x(t) is bounded and belongs to $\mathbb D$ for $t \geq 0$, then its positive limit set L^+ is a nonempty, compact, invariant set.
Moreover, x(t) approaches L^+ as $t \to \infty$.

Invariant sets cont.

Definition (Invariant set)

A set *M* is an invariant set with respect to $\dot{x} = f(x)$ iff

$$x(0) \in M \Rightarrow x(t) \in M, \quad \forall t \in \mathbb{R}$$

Definition (Positively invariant set)

A set M is a positively invariant set with respect to $\dot{x} = f(x)$ iff

$$x(0) \in M \Rightarrow x(t) \in M, \quad \forall t \ge 0$$

0

0

0

The invariance principle: LaSalle's theorem

 $\dot{x} = f(x)$ $f: \mathbb{D} \to \mathbb{R}^n$ locally Lipschitz

Theorem 4.4 (LaSalle's theorem)

If $\exists V : \mathbb{D} \to \mathbb{R}$ such that

i) V is C^1

ii) $\exists c > 0$ such that $\Omega_c = \{x \in \mathbb{R}^n | V(x) \le c\} \subset \mathbb{D}$ is bounded

iii) $\dot{V}(x) \leq 0 \quad \forall \ x \in \Omega_c$

Let $E = \{x \in \Omega_c | \dot{V}(x) = 0\}$

Let M be the largest invariant set contained in EThen

$$x(0) \in \Omega_c \Rightarrow x(t) \xrightarrow{t \to \infty} M$$

La Salle's theorem ii)

Note: V does not have to be positive definite

- V positive definite $\Rightarrow \Omega_c$ bounded for small c
- V radially unbounded $\Rightarrow \Omega_c$ bounded for $\forall c$

Special cases:

- Cor. 4.1 $(M = \{0\})$
- Cor. 4.2 (Global version)

Lecture 3. Statistics and autonomous systems cont.

Definition (The Region of attraction)

Let $\phi(t,x_0)$ be the solution of $\dot{x}=f(x)$ that starts at initial state x_0 at time t=0. The region of attraction of the origin, denoted by R_A , is defined by

 $R_A = \{x_0 \in \mathbb{D} | \phi(t, x_0) \text{ is defined } \forall t \geq 0 \text{ and } \phi(t, x_0) \to 0 \text{ as } t \to \infty \}$

 $\forall x \in \mathbb{D}$

Is \mathbb{D} an estimate of R_A ?

Given a strict Lyapunov function

$$V$$
 is C^1

Is $\mathbb D$ a region attraction?

Example:

Pendulum with friction

$$V(x) = \frac{g}{l}(1 - \cos x_1) + \frac{1}{2}x^T P x$$

0

$$\mathbb{D} = \{x \in \mathbb{R}^2 : |x_1| < \pi\}$$

4□ > 4률 > 4혈 > 4혈 > 혈

16

Lecture 5: Stability analysis for autonomous systems cont

An estimate of the region of attraction

0

0

Starting point:

You have proved asymptotic stability of the origin by either finding a strict Lyapunov function or by using LaSalle's theorem

Estimate R_A using Ω_c

1) Choose the largest set

$$\Omega_c = \{ x \in \mathbb{R}^n : \ V(x) \le c \}$$

that is contained in \mathbb{D} (where V > 0 and $\dot{V} < 0$) or in which $\dot{V} \leq 0$ (LaSalle) and which is bounded

2) Choose the connected component in this set that contains the origin.

Then this is a subset of the region of attraction of the origin, and can hence be used as an estimate.

Example: An estimate of the region of attraction

(Do not always trust your intuition)

Example

$$\dot{z}_1 = -z_1 + z_1^2 z_2$$

$$\dot{z}_2 = -z_2$$

Equilibrium point (0,0)

Lyapunov linearization method: Locally asymptotically stable Corollary 4.3: Locally exponentially stable

> Q: Is it globally asymptotically/exponentially stable?

Intuition may suggest yes...

Example cont.

0

Example cont.

For this particular system it is possible to find an analytical solution:

$$z_1(t) = \frac{2z_1(t_0)}{z_1(t_0)z_2(t_0)e^{-t} + [2 - z_1(t_0)z_2(t_0)]e^t}$$
(1)

$$z_2(t) = z_2(t_0)e^{-t} (2)$$

If $z_1(t_0)z_2(t_0) > 2$, the denominator in Eq. (1) becomes zero at the time

$$t_{esc} = \frac{1}{2} \ln \left(\frac{z_1(t_0)z_2(t_0)}{z_1(t_0)z_2(t_0) - 2} \right)$$

The equilibrium point is clearly not globally asymptotically stable. It is locally exponentially stable and the region of attraction is given by $z_1(t_0)z_2(t_0) < 2$.

Part II

Methods for choosing Lyapunov function candidates

Methods for choosing Lyapunov function candidates

Methods for choosing Lyapunov function candidates •

Methods for choosing LFCs

- Total energy
- LFCs with quadratic terms $\frac{1}{2}x^TPx$

 - $V(x) = \frac{1}{2}(x_1^2 + x_2^2 + \dots + x_n^2)$ $V(x) = \frac{1}{2}(x_1^2 + a_2x_2^2 + \dots + a_nx_n^2)$ $V(x) = \frac{1}{2}x^T Px$
- $V(x) = \frac{1}{2} \ln(1 + x_1^2 + \dots + x_n^2)$
- The variable gradient method
- LFCs for linear time-invariant systems
- Krasovskii's method (Assignment)
- :

Variable gradient method

Variable gradient method

$$\dot{V} = \frac{dV}{dx}f(x) = g^T(x)f(x)$$
 Choose $g(x)$ such that

 $\int g(x)$ is the gradient of a scalar function $\begin{cases} V(x) = \int_0^x g^T(y) dy \text{ is positive definite} \\ \dot{V}(x) = g^T(x) f(x) \text{ is negative definite} \end{cases}$ $\sqrt{\Leftrightarrow} \frac{\partial g_i}{\partial x_i} = \frac{\partial g_j}{\partial x_i} \quad \forall i, j = 1, \dots, n$

$$V(x) = \int_0^x \sum_{i=1}^n g_i(y) dy_i = \int_0^{x_1} g_1(y_1, 0, 0, \dots, 0) dy_1 + \int_0^{x_2} g_2(x_1, y_2, 0, \dots, 0) dy_2 + \dots + \int_0^{x_n} g_n(x_1, x_2, \dots, y_n) dy_n > 0$$

Methods for choosing Lyapunov function candidates

Variable gradient method

0

0

0

Example

Pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Find a LFC for this system using the variable gradient method.

$$\begin{split} \frac{\partial g_1(x)}{\partial x_2} &= \frac{\partial g_2(x)}{\partial x_1} \\ V(x) &= \int_0^{x_1} g_1(y_1, 0) dy_1 + \int_0^{x_2} g_2(x_1, y_2) dy_2 \\ \dot{V} &= \begin{bmatrix} g_1(x) & g_2(x) \end{bmatrix} \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix} \end{split}$$

Methods for choosing Lyapunov function candidates Variable gradient method

Example

$$x_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{I}\sin x_1 - \frac{k}{m}x_2$$

Choose a structure for g(x) (Trial and error)

$$g_1(x) = a_{11}(x)x_1 + a_{12}(x)x_2$$

$$g_2(x) = a_{21}(x)x_1 + a_{22}(x)x_2$$

i.e.
$$g(x) = P(x)x$$

LTI systems

The linear time-invariant system

$$\dot{x} = Ax$$
 $(\det A \neq 0)$

has one equilibrium point x = 0

Hurwitz

A is Hurwitz iff

$$\mathsf{Re}(\lambda_i) < 0 \quad \forall \ i = 1, \dots, n$$

LFC

Which Lyapunov function candidate do we choose?

Methods for choosing Lyapunov function candidates Lyapunov functions for linear systems

Lyapunov functions for linear systems

0

0

Theorem 4.6

Given the system $\dot{x} = Ax$

Let $V(x) = x^T P x$ and choose $Q = Q^T$ positive definite.

Seek to find a solution $P = P^T$ of Lyapunov's matrix equation

$$A^T P + PA = -Q \tag{3}$$

- If (3) does not have a solution $P = P^T$, or the solution is not unique: x = 0 is not asymptotically stable
- If (3) has a unique solution $P = P^T$, but P is not positive definite: x = 0 is not asymptotically stable
- If (3) has a unique solution $P = P^T$, and P is positive definite: x = 0 is asymptotically stable

Methods for choosing Lyapunov function candidates Lyapunov functions for linear systems

Example

0

Example

Consider the system

$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = 3x_1 - x_2$$

Analyze the stability properties of x = 0 using Lyapunov's direct method

Part III

How to handle terms with indeterminate sign

4□ > 4₫ > 4 ½ > 4 ½ > ½ 9 Q(

34

How to handle terms with indeterminate sign

Handling terms with indeterminate sign

Terms with indeterminate sign
We have seen examples on how to

Cancel

- Adjust a_i in $V(x)=\frac{1}{2}(x_1^2+a_2x_2^2+\cdots+a_nx_n^2)$ such that cross-terms x_ix_j in V cancel each other
- Adjust all the parameters in P such that $V(x) = x^T P x > 0$ $(P = P^T > 0)$ and V < 0

Dominate

- Completion of squares
- Write as $-x^TQx$
- Young's inequality
- Cauchy-Schwarz inequality

(D) (B) (E) (E) (9)

Lecture 5: Stability analysis for autonomous systems cont.

35

How to handle terms with indeterminate sign Tools for dominating cross-terms

Tools for dominating cross-terms

0

0

Completion of squares

$$(x \pm y)^{2} \ge 0, \quad x, y \in \mathbb{R}$$

$$\updownarrow$$

$$x^{2} \pm 2xy + y^{2} \ge 0$$

$$\updownarrow$$

$$x^{2} + y^{2} \ge \pm 2xy$$

$$\Rightarrow xy \le |xy| \le \frac{1}{2}(x^{2} + y^{2}) \quad \Rightarrow x_{1}x_{2} \le \frac{1}{2}(x_{1}^{2} + x_{2}^{2}) = \frac{1}{2} ||x||_{2}^{2}$$

0

$$xy \le \varepsilon x^2 + \frac{1}{4\varepsilon}y^2, \quad \forall \ \varepsilon > 0$$

Proof:

$$\varepsilon(x - \frac{1}{2\varepsilon}y)^2 \ge 0$$

$$\Leftrightarrow$$

$$\varepsilon(x^2 - \frac{1}{\varepsilon}xy + \frac{1}{4\varepsilon^2}y^2) \ge 0$$

$$\Leftrightarrow$$

$$\varepsilon x^2 - xy + \frac{1}{4\varepsilon}y^2 \ge 0$$

Lecture 5: Stability analysis for autonomous systems cont

ools for dominating cross-terms

Tools for dominating cross-terms

0

0

Alternatively

Write \dot{V} as $-x^TQx$, where $Q=Q^T$ is positive definite

NB This is similar to completing the squares

38

colore of orabinity analysis for autonomous systems (

How to handle terms with indeterminate sign

Tools for dominating cross-terms

Tools for dominating cross-terms

Completion of squares

$$\dot{V} = -x_1^2 + 6x_1x_2 - 20x_2^2$$

101481471717

ecture 5: Stability analysis for autonomous systems cont.

Next lecture • Lyapunov stability analysis for nonautonomous systems • Recommended reading Khalil Sections 4.4-4.5 Section 8.3