ข้อ 2. สมมติในระบบมีเอกสาร 10 เอกสารดังนี้ (bird, cat, dog, tiger คือ **Keyword ซึ่งไม่** มีความสัมพันธ์กัน)

- D1: {bird,cat,bird,cat,dog,dog,bird}
 D2: {cat,tiger,cat,dog}
 D3: {dog,bird,bird}
 D4: {cat,tiger}
 D5: {tiger,tiger,dog,tiger,cat}
 D6: {bird,cat,bird,cat,tiger,tiger,bird}
 D7: {bird,tiger,cat,dog}
 D8: {dog,cat,bird}
 D9: {cat,dog,tiger}
- D10: {tiger,tiger,tiger}
 เด็กหญิงดาวิกาส่งคำเรียกค้น "แมว สุนัข เสือ แมว" เข้าไปในระบบ จงตอบคำถาม
- 2.1 เพื่อคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ เด็กหญิงดาวิกา**สามารถเลือกใช้โมเดลใดได้บ้าง เพราะอะไร** (ตอบอย่างน้อย 2 โมเดล จากโมเดลที่ให้มาเท่านั้น)
- A) BM25 Model B) Fuzzy Model C) Extend Boolean Model
- D) Vector Model E) Probabilistic Model F) Generalized Vector Model
- 2.2 จากข้อ 2.1 ให้นักศึกษาแสดงวิธีคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ ตามโมเดลที่เด็กหญิง ดาวิกาเลือกอย่างน้อย 1 โมเดล (50 คะแนน)

ข้อ 2. สมมติในระบบมีเอกสาร 10 เอกสารดังนี้ (bird, cat, dog, tiger คือ Keyword ซึ่งไม่

มีความสัมพันธ์กัน)

- D1: {bird, cat, bird, cat, dog, dog, bird}
- D2: {cat,tiger,cat,dog}
- {dog,bird,bird} D3:
- D4: {cat, tiger}
- D5: {tiger, tiger, dog, tiger, cat}
- D6: {bird, cat, bird, cat, tiger, tiger, bird}
- D7: {bird, tiger, cat, dog}
- D8: {dog,cat,bird}
- D9: {cat, dog, tiger}
- D10: {tiger, tiger, tiger}
- เด็กหญิงดาวิกาส่งคำเรียกค้น "แมว สุนัข เสือ แมว" เข้าไปในระบบ จงตอบคำถาม
- 2.1 เพื่อคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ เด็กหญิงดาวิกา**สามารถเลือกใช้โมเดลใดได้บ้าง เพราะอะไร** (ตอบอย่างน้อย 2 โมเดล จากโมเดลที่ให้มาเท่านั้น)
- A) BM25 Model B) Fuzzy Model C) Extend Boolean Model
- D) Vector Model E) Probabilistic Model F) Generalized Vector Model
- 2.2 จากข้อ 2.1 ให้นักศึกษาแสดงวิธีคำนวณหา Ranking ของเอกสารทุกเอกสารในระบบ ตามโมเดลที่เด็กหญิง ดาวิกาเลือกอย่างน้อย 1 โมเดล (50 คะแนน)

Answer

2.1 เลือกใช้ BM25 Model และ Vector Model เนื่องจากลักษณะของ Query เป็น keyword แยกกัน ไม่มี Expression และโจทย์กำหนดให้ Keyword ไม่สัมพันธ์กัน

```
เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้
D1: {bird,cat,bird,cat,dog,dog,bird}
D2: {cat,tiger,cat,dog}
D3: {dog,bird,bird}
D4: {cat,tiger}
D5: {tiger,tiger,dog,tiger,cat}
D6: {bird,cat,bird,cat,tiger,tiger,bird}
D7: {bird,tiger,cat,dog}
D8: {dog,cat,bird}
D9: {cat,dog,tiger}
D10: {tiger,tiger,tiger,tiger}
```

	Bird	Cat	Dog	Tiger	Max
Doc1	3	2	2	0	3
Doc2	0	2	1	1	2
Doc3	2	0	1	0	2
Doc4	0	1	0	1	1
Doc5	0	1	1	3	3
Doc6	3	2	0	2	3
Doc7	1	1	1	1	1
Doc8	1	1	1	0	1
Doc9	0	1	1	1	1
Doc10	0	0	0	3	3
n	5	8	7	7	

Only Doc1

$$tf_{bird} = \frac{3}{3} = 1.000$$

$$tf_{cat} = \frac{2}{3} = 0.667$$

$$tf_{dog} = \frac{2}{3} = 0.667$$

$$tf_{tiger} = \frac{0}{3} = 0.000$$

	Bird	Cat	Dog	Tiger	Max
Doc1	3	2	2	0	3
Doc2	0	2	1	1	2
Doc3	2	0	1	0	2
Doc4	0	1	0	1	1
Doc5	0	1	1	3	3
Doc6	3	2	0	2	3
Doc7	1	1	1	1	1
Doc8	1	1	1	0	1
Doc9	0	1	1	1	1
Doc10	0	0	0	3	3
n	5	8	7	7	

$$idf_{bird} = \log(\frac{10}{5}) = 0.301$$

 $idf_{cat} = \log(\frac{10}{8}) = 0.097$
 $idf_{dog} = \log(\frac{10}{7}) = 0.155$
 $idf_{tiger} = \log(\frac{10}{7}) = 0.155$

$$w_{bird} = 1.000 * 0.301 = 0.301$$

 $w_{cat} = 0.667 * 0.097 = 0.065$
 $w_{dog} = 0.667 * 0.155 = 0.103$
 $w_{tiger} = 0.000 * 0.155 = 0.000$

น้ำหนักของแต่ละ Keyword ในแต่ละเอกสาร

	Bird	Cat	Dog	Tiger
Doc1	0.301	0.065	0.103	0.000
Doc2	0.000	0.097	0.077	0.077
Doc3	0.301	0.000	0.077	0.000
Doc4	0.000	0.097	0.000	0.155
Doc5	0.000	0.032	0.052	0.155
Doc6	0.301	0.065	0.000	0.103
Doc7	0.301	0.097	0.155	0.155
Doc8	0.301	0.097	0.155	0.000
Doc9	0.000	0.097	0.155	0.155
Doc10	0.000	0.000	0.000	0.155

Query = แมว สุนัข เสือ แมว

$$W_{i,q} = \left(0.5 + \frac{0.5 * freq_{i,q}}{Max(freq_{I,q})}\right) * \log(\frac{N}{n_i})$$

$$W_{bird, q} = \left(0.5 + \frac{0.5 * 0}{2}\right) * 0.301 = 0.151$$

$$W_{cat_{,}q} = \left(0.5 + \frac{0.5 * 2}{2}\right) * 0.097 = 0.097$$

$$W_{dog_{,}q} = \left(0.5 + \frac{0.5 * 1}{2}\right) * 0.155 = 0.117$$

$$W_{dog_{,}q} = \left(0.5 + \frac{0.5 * 1}{2}\right) * 0.155 = 0.117$$

	Bird	Cat	Dog	Tiger
Doc1	0.301	0.065	0.103	0.000
Doc2	0.000	0.097	0.077	0.077
Doc3	0.301	0.000	0.077	0.000
Doc4	0.000	0.097	0.000	0.155
Doc5	0.000	0.032	0.052	0.155
Doc6	0.301	0.065	0.000	0.103
Doc7	0.301	0.097	0.155	0.155
Doc8	0.301	0.097	0.155	0.000
Doc9	0.000	0.097	0.155	0.155
Doc10	0.000	0.000	0.000	0.155

$$idf_{bird} = \log(\frac{10}{5}) = 0.301$$

 $idf_{cat} = \log(\frac{10}{8}) = 0.097$
 $idf_{dog} = \log(\frac{10}{7}) = 0.155$
 $idf_{tiger} = \log(\frac{10}{7}) = 0.155$

$$sim(d_{j},q) = \frac{\sum_{j=1}^{t} w_{q_{j}} w_{d_{ij}}}{\sqrt{\sum_{j=1}^{t} (w_{q_{j}})^{2} \sum_{j=1}^{t} (w_{d_{ij}})^{2}}}$$

	Bird	Cat	Dog	Tiger
Doc1	0.301	0.065	0.103	0.000
Doc2	0.000	0.097	0.077	0.077
Doc3	0.301	0.000	0.077	0.000
Doc4	0.000	0.097	0.000	0.155
Doc5	0.000	0.032	0.052	0.155
Doc6	0.301	0.065	0.000	0.103
Doc7	0.301	0.097	0.155	0.155
Doc8	0.301	0.097	0.155	0.000
Doc9	0.000	0.097	0.155	0.155
Doc10	0.000	0.000	0.000	0.155
q	0.151	0.097	0.117	0.117

$$sim(d_1, q) = \frac{0.301 * 0.151 + 0.065 * 0.097 + 0.103 * 0.117 + 0.0 * 0.117}{\sqrt{(0.1512 + 0.0972 + 0.1172 + 0.1172)(0.3012 + 0.0652 + 0.1032 + 0)}}$$
$$= 0.806$$

Query = แมว สุหัข เสือ แมว

	Sim	
Doc1	0.806	
Doc2	0.771	
Doc3	0.719	
Doc4	0.617	Rank →
Doc5	0.671	
Doc6	0.806	
Doc7	0.970	
Doc8	0.850	
Doc9	0.780	
Doc10	0.478	

	Sim
Doc7	0.970
Doc8	0.850
Doc1	0.806
Doc6	0.806
Doc9	0.780
Doc2	0.771
Doc3	0.719
Doc5	0.671
Doc4	0.617
Doc10	0.478

	Bird	Cat	Dog	Tiger
Doc1	0.301	0.065	0.103	0.000
Doc2	0.000	0.097	0.077	0.077
Doc3	0.301	0.000	0.077	0.000
Doc4	0.000	0.097	0.000	0.155
Doc5	0.000	0.032	0.052	0.155
Doc6	0.301	0.065	0.000	0.103
Doc7	0.301	0.097	0.155	0.155
Doc8	0.301	0.097	0.155	0.000
Doc9	0.000	0.097	0.155	0.155
Doc10	0.000	0.000	0.000	0.155
q	0.151	0.097	0.117	0.117

Rank → D7,D8,D6,D1,D9,D2,D3,D5,D4,D10

Query = แมว สุหัข เสือ แมว

$$sim\ (d_j,q) = \sum_{i \in q} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)} \cdot \frac{(k_1+1)f_i}{k_1 \Big((1-b)+b \cdot \frac{dl}{avdl}\Big)+f_i} \cdot \frac{(k_2+1)qf_i}{k_2+qf_i}$$
 d_j - เอกสารที่ j
$$R -$$
 จำนวนเอกสารที่ตรงประเด็น
$$N -$$
 จำนวนเอกสารทั้งหมด
$$r_i -$$
 จำนวนเอกสารทั้งหมดที่มี keyword i
$$n_i -$$
 จำนวนเอกสารทั้งหมดที่มี keyword i
$$f_i -$$
 ความถี่ของ keyword i ในเอกสาร j
$$dl -$$
 จำนวนคำของเอกสาร j
$$avdl -$$
 จำนวนคำของหุกเอกสาร
$$qf_i -$$
 ความถี่ของ keyword i ใน query
$$b -$$
 ค่าคงที่โดยตาม TREC จะใช้ค่า $0.75\ (0.5 < b < 0.8)$
$$k_1 -$$
 ค่าคงที่โดยตาม TREC จะใช้ค่า $1.25\ (1.2 < k_1 < 2)$

 \mathbf{k}_2 - ค่าคงที่โดยปกติจะอยู่ในช่วง 0 - 1000

เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้

D1: {bird, cat, bird, cat, dog, dog, bird}

D2: {cat, tiger, cat, dog} D3: {dog,bird,bird}

D4: {cat, tiger}

D5: {tiger, tiger, dog, tiger, cat}

D6: {bird, cat, bird, cat, tiger, tiger, bird}

D7: {bird, tiger, cat, dog}

D8: {dog,cat,bird}

D9: {cat, dog, tiger}

D10: {tiger, tiger, tiger}

$$\cdot \frac{(k_1+1)f_i}{k_1\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i}\cdot \frac{(k_2+1)qf}{k_2+qf_i}$$

Query = แมว สุหัข เสือ แมว

	Bird	Cat	Dog	Tiger	Length
Doc1	3	2	2	0	7
Doc2	0	2	1	1	4
Doc3	2	0	1	0	3
Doc4	0	1	0	1	2
Doc5	0	1	1	3	5
Doc6	3	2	0	2	7
Doc7	1	1	1	1	4
Doc8	1	1	1	0	3
Doc9	0	1	1	1	3
Doc10	0	0	0	3	3

เอกสาร 10 เอกสารมีการแจกแจง Keyword ดังนี้

D1: {bird, cat, bird, cat, dog, dog, bird}

D2: {cat,tiger,cat,dog}

D3: {dog,bird,bird}

D4: {cat, tiger}

D5: {tiger,tiger,dog,tiger,cat}

D6: {bird, cat, bird, cat, tiger, tiger, bird}

D7: {bird, tiger, cat, dog}

D8: {dog,cat,bird}
D9: {cat,dog,tiger}

D10: {tiger, tiger, tiger}

$$Avdl = \frac{41}{10} = 4.1$$

$$N=10$$
 $R=0$ $n_{Bird}=5$ $r_{Bird}=0$ $n_{Cat}=8$ $r_{Cat}=0$ $n_{Dog}=7$ $r_{Dog}=0$ $n_{Tiger}=7$ $r_{Tiger}=0$ เนื่องจากไม่มีการกำหนดให้ เอกสารใดตรงประเด็น

Query = แมว สุหัข เสือ แมว

$$idf_i = log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)}$$

$$idf_i = log \frac{N - n_i + 0.5}{(n_i + 0.5)}$$

$$idf_{bird} = log \frac{10 - 5 + 0.5}{(5 + 0.5)} = 0.0$$

$$idf_{cat} = log \frac{10 - 8 + 0.5}{(8 + 0.5)} = -0.531$$

$$idf_{dog} = log \frac{10 - 7 + 0.5}{(7 + 0.5)} = -0.331$$

$$idf_{tiger} = log \frac{10 - 7 + 0.5}{(7 + 0.5)} = -0.331$$

	Bird	Cat	Dog	Tiger
Doc1	3	2	2	0
Doc2	0	2	1	1
Doc3	2	0	1	0
Doc4	0	1	0	1
Doc5	0	1	1	3
Doc6	3	2	0	2
Doc7	1	1	1	1
Doc8	1	1	1	0
Doc9	0	1	1	1
Doc10	0	0	0	3

$$N = 10$$
 $R = 0$ $r_{Bird} = 5$ $r_{Cat} = 0$ $r_{Cat} = 0$ $r_{Dog} = 7$ $r_{Dog} = 0$ $r_{Tiger} = 7$ $r_{Tiger} = 0$

Avdl = 4.1

Query = แมว สุนัข เสือ แมว

d_j - เอกสารที่ j	
-----------------------	--

R - จำนวนเอกสารที่ตรงประเด็น

N - จำนวนเอกสารทั้งหมด

 r_i - จำนวนเอกสารที่ตรงประเด็นที่มี $keyword\ i$

n_i - จำนวนเอกสารทั้งหมดที่มี keyword i

 f_i - ความถี่ของ $keyword\ i$ ในเอกสาร j

dl - จำนวนคำของเอกสาร j

avdl - จำนวนคำเฉลี่ยของทุกเอกสาร

qf_i - ความถี่ของ keyword i ใน query

b - ค่าคงที่โดยตาม TREC จะใช้ค่า 0.75 (0.5 < b < 0.8)

 ${
m k}_1$ - ค่าคงที่โดยตาม TREC จะใช้ค่า $1.25~(1.2 < k_1 < 2)$

=-1.597

 k_2 - ค่าคงที่โดยปกติจะอยู่ในช่วง 0 - 1000

	idf
Bird	0.000
Cat	-0.531
Dog	-0.331
Tiger	-0.331

 $(r_1 + 0.5)/(R - r_2 + 0.5)$

sim (d a) -	$\frac{1}{1}$ log $\frac{(r_i + 0.5)/(K - r_i)}{(r_i + 0.5)}$	<i>i</i> 1 0.3)	$(n_1 + 1)j_i$	$(\kappa_2 + 1)q_{ji}$
$sim (u_j, q) =$	$\sum_{i \in q} \log \frac{(r_i + 0.5)/(N - r_i)}{(n_i - r_i + 0.5)/(N - n_i)}$	$-R+r_i+0.5)$	$\overline{k_1\bigg((1-b)+b\cdot\frac{dl}{avdl}\bigg)+f_i}$	$k_2 + qf_i$
$sim (d_1, q) = 0.0 *$	$\frac{(2.25)3}{1.25\left((1-0.75)+0.75*\frac{7}{4.1}\right)+3}$	$*\frac{201*0}{200+0}+(-0.53)$	$\frac{(2.25)2}{1.25\left((1-0.75)+0.75*\frac{7}{4}\right)}$	$\left(\frac{7}{1}\right) + 2 \times \frac{201 \times 2}{200 + 2}$
+(-0.331)	$*\frac{(2.25)2}{1.25\left((1-0.75)+0.75*\frac{7}{4.1}\right)+2}$	$*\frac{201*1}{200+1} + (-0.33)$	$\frac{(2.25)0}{1.25\left((1-0.75)+0.75*\frac{1}{4}\right)}$	$\left(\frac{7}{1}\right) + 0 * \frac{201 * 1}{200 + 1}$

Doc1

Doc2

Doc3

Doc4

Doc5

Doc6

Doc7

Doc8

Doc9

Doc10

 $(k_1+1)f_i$

 $(k_0 + 1)af$

Query = แมว สุหัข เสือ แมว

	Sim			Sim
Doc1	-1.597		doc3	-0.256
Doc2	-1.728		doc10	-0.455
Doc3	-0.256		doc4	-1.073
Doc4	-1.073	Rank →	doc8	-1.073
Doc5	-1.527		doc7	-1.328
Doc6	-1.597		doc9	-1.328
Doc7	-1.328		doc5	-1.527
Doc8	-1.073		doc1	-1.597
Doc9	-1.328		doc6	-1.597
Doc10	-0.455		doc2	-1.728

	Bird	Cat	Dog	Tiger
Doc1	3	2	2	0
Doc2	0	2	1	1
Doc3	2	0	1	0
Doc4	0	1	0	1
Doc5	0	1	1	3
Doc6	3	2	0	2
Doc7	1	1	1	1
Doc8	1	1	1	0
Doc9	0	1	1	1
Doc10	0	0	0	3
q	0	2	1	1

สรุป

Query = แมว สุนัข เสือ แมว

Vector	Sim	BM25	Sim
Doc7	0.970	doc3	-0.25
Doc8	0.850	doc10	-0.45
Doc1	0.806	doc4	-1.07
Doc6	0.806	doc8	-1.07
Doc9	0.780	doc7	-1.32
Doc2	0.771	doc9	-1.32
Doc3	0.719	doc5	-1.52
Doc5	0.671	doc1	-1.59
Doc4	0.617	doc6	-1.59
Doc10	0.478	doc2	-1.72

	Bird	Cat	Dog	Tiger
Doc1	3	2	2	0
Doc2	0	2	1	1
Doc3	2	0	1	0
Doc4	0	1	0	1
Doc5	0	1	1	3
Doc6	3	2	0	2
Doc7	1	1	1	1
Doc8	1	1	1	0
Doc9	0	1	1	1
Doc10	0	0	0	3
q	0	2	1	1

สรุป Vector model มีความตรงประเด็นที่ใกล้เคียงกว่าความจริง BM25 Model เนื่องจาก BM25 มีการกำหนดเอกสารตัวอย่างที่น้อยเกินไป และไม่มีการกำหนดว่าเอกสาร ใดบ้างที่ตรงประเด็น