6.4 Composition and Invertibility of Linear Transformations

If $T_1:\mathbb{R}^n\to\mathbb{R}^k$ and $T_2:\mathbb{R}^k\to\mathbb{R}^m$ are linear transformations in which the codomain of T_1 is the same as the domain of T_2 , then for each x in \mathbb{R}^n we can first compute $T_1(x)$ to produce a vector in \mathbb{R}^k , and then we can compute $T_2(T_1(x))$ to produce a vector in \mathbb{R}^m . Thus first applying T_1 and then applying T_2 to the output of T_1 produces a transformation from \mathbb{R}^n to \mathbb{R}^m . This transformation, called the composition of T_2 with T_1 , is denoted by $T_2\circ T_1$ (read, " T_2 circle T_1 ")

$$(T_2 \circ T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

Compositions of linear transformations

Theorem

If $T_1: \mathbb{R}^n \to \mathbb{R}^k$ and $T_2: \mathbb{R}^k \to \mathbb{R}^m$ are both linear transformations, then $(T_2 \circ T_1): \mathbb{R}^n \to \mathbb{R}^m$ is also a linear transformation.

Compositions of linear transformations

Theorem

If A is a $k \times n$ matrix and B is an $m \times k$ matrix, then $m \times n$ matrix BA is the standard matrix for the composition of the linear transformation corresponding to B with the linear transformation corresponding to A.

$$T_B \circ T_A = T_{BA}$$

Compositions of three or more linear transformations

Specifically, if $T_1: \mathbb{R}^n \to \mathbb{R}^k$, $T_2: \mathbb{R}^k \to \mathbb{R}^l$, $T_3: \mathbb{R}^l \to \mathbb{R}^m$ then we define the composition $(T_3 \circ T_2 \circ T_1)(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^m$ by

$$(T_3 \circ T_2 \circ T_1)(\mathbf{x}) = T_3(T_2(T_1(\mathbf{x})))$$

$$[T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$$

$$T_C \circ T_B \circ T_A = T_{CBA}$$

Inverse of linear transformation

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a one to one linear transformation, then each vector \mathbf{w} in the range of T is the image of a unique vector \mathbf{x} in the domain of T; we call \mathbf{x} the preimage of \mathbf{w} . The uniqueness of the preimage allows us to create a new function that maps \mathbf{w} into \mathbf{x} ; we call this function the inverse of T and denote it by T^{-1} . Thus,

$$T^{-1}(\mathbf{w}) = \mathbf{x}$$
 if and only if $T(\mathbf{x}) = \mathbf{w}$

Theorem

If T is a one to one linear transformation, then so is T^{-1} .

Invertible of linear operator

Theorem

If T is a one to one linear operator on \mathbb{R}^n , then the standard matrix for T is invertible and its inverse is the standard matrix for T^{-1} .