Physonomicon

Brasides

March 1, 2024

Contents

1	Der	ivations for One Dimensional Motion	3
	1.1	Average velocity \bar{v} vs Instantaneous velocity v	3
		1.1.1 tl;dr	3
		1.1.2 Defining \bar{v}	3
	1.2	Average acceleration \bar{a} vs Instantaneous acceleration a	4
		1.2.1 tl;dr	4
		1.2.2 Defining average velocity \bar{a}	4
	1.3	Notation	5
	1.4	Deriving the first kinematic equation	5
		1.4.1 Position x as a function of \bar{v}	5
		1.4.2 Final Velocity v as a function of time t and acceleration $a = \bar{a} \ldots \ldots$	5
		1.4.3 Final Velocity v as a function of distance x and acceleration $a = \bar{a} \dots$	5
		1.4.4 Deriving position x as a function of velocity v, time t, and acceleration $a = \bar{a}$	6
	1.5	Kinematic Equations from Integral Calculus	7
		1.5.1 $v(t) = v_0 + at$ by Integration	7
		1.5.2 $x(t)$ by Integration	7
2	Pro	jectile Motion Derivations	8
	2.1	Defining vector quantities of motion for two dimensional vectors	8
	2.2	Rewriting kinematic equations for x and y directions where $a_x = 0 \dots \dots$	9
	2.3	Derivations of Projectile Motion Equations	9
		2.3.1 Maximum height h	9
		2.3.2 Direction of velocity θ_v	9
			10
			10
			11

1 Derivations for One Dimensional Motion

1.1 Average velocity \bar{v} vs Instantaneous velocity v

1.1.1 tl;dr

$$ar{v}=rac{x_2-x_1}{t_2-t_1}$$
 and avg velocity $x(t)=At^n$ position as function of time $ar{v}=rac{x(t_2)-x(t_1)}{t_2-t_1}$

Definition of
$$v(t)$$
: $v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \iff v(t) = \frac{dx}{dt}$

Where A is a constant and n is an integer.

1.1.2 Defining \bar{v}

Average velocity \bar{v} is defined for position x_1 at time t_1 and position x_2 at time t_2 :

$$\bar{v} = \frac{x_2 - x_1}{t_2 - t_1}$$

Because we may consider the position x to be a function of time, we may instead choose to rewrite this as:

$$\bar{v} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

Where $x(t) = At^n$

In order to go from \bar{v} to instantaneous velocity v, we swap in values that are more appropriate for calculus:

Let
$$t_1 = t$$
 and $t_2 = t + \Delta t$

Now we may consider the limit as $\Delta t \to 0$, which we shall define as instantaneous velocity v(t):

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \iff v(t) = \frac{dx}{dt} = \frac{d}{dt}x(t)$$
 (1.1)

Where the function x(t) has the form: Where A is a constant and n is an integer.

1.2 Average acceleration \bar{a} vs Instantaneous acceleration a

1.2.1 tl;dr

$$\bar{a} = \frac{v_2 - v_1}{t_2 - t_1}$$
 avg velocity
$$v(t) = \frac{dx}{dt}$$
 inst. velocity as function of time
$$\bar{a} = \frac{v(t_2) - v(t_1)}{t_2 - t_1}$$

$$Definition \ of \ a(t): \quad a(t) = \lim_{\Delta t \to 0} \frac{v(t+\Delta t) - v(t)}{\Delta t} \iff a(t) = \frac{d}{dt}v(t) = \frac{d^2x}{dt^2}$$

1.2.2 Defining average velocity \bar{a}

The definition of acceleration has a similar form to the definition of velocity above, and is written in its most simple terms as:

$$\bar{a} = \frac{v_2 - v_1}{t_2 - t_1}$$

Because we may consider instantaneous velocity as a function of time v(t), we may instead choose to write this as:

$$\bar{a} = \frac{v(t_2) - v(t_1)}{t_2 - t_1}$$

Now we define the terms differently to more clearly apply the limit to arrive at the derivative:

$$t_1 = t, \quad t_2 = t + \Delta t$$

Now we may define the instantaneous acceleration a to be the limit of the instantaneous velocity when the $\Delta t \to 0$:

$$a = \lim_{x \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} \iff a = \frac{d}{dt}v(t)$$
 (1.2)

1.3 Notation

As a simplification, we always take the initial time $t_0 = 0$ and define our equations with the supposition that acceleration is constant. Thus we write:

$$t = t_f$$

$$t = t + 0 = t - t_0 = \Delta t$$

$$\Delta t = t$$

$$\Delta x = \Delta x - x_0$$

$$\Delta v = v - v_0$$

$$\bar{a} = a = constant$$

$$(1.3)$$

1.4 Deriving the first kinematic equation

1.4.1 Position x as a function of \bar{v}

$$\bar{v} = \frac{\Delta x}{\Delta t}$$
$$\bar{v} = \frac{x - x_0}{t}$$
$$x = x_0 + \bar{v}t$$

1.4.2 Final Velocity v as a function of time t and acceleration $a = \bar{a}$

$$a = \frac{\Delta v}{\Delta t} \qquad t = \Delta t$$

$$a = \frac{v - v_0}{t}$$

$$v = v_0 + at \qquad (1.4)$$

1.4.3 Final Velocity v as a function of distance x and acceleration $a = \bar{a}$

Starting with

$$v = v_0 + at$$

Rearranging for t

$$t = \frac{v - v_0}{a}$$

By definition \bar{v}

$$\bar{v} = \frac{v_0 + v}{2}$$

Now substitute into equation for position

$$x = x_0 + \bar{v}t$$

$$x = x_0 + \frac{v_0 + v}{2} * \frac{v - v_0}{a}$$

$$x = x_0 + \frac{v^2 - v_0^2}{2a}$$

Solving for v^2

$$v^2 = v_0^2 + 2a(x - x_0)$$

Or

$$v^2 = v_0^2 + 2a\Delta x$$

1.4.4 Deriving position x as a function of velocity v, time t, and acceleration $a = \bar{a}$ We begin with position as a function of \bar{v} :

$$x = x_0 + \bar{v}t$$

We know we want v, t, and a, so we start with the equation for v and rearrange to substitute \bar{v} :

$$v = v_0 + at$$

add v_0 to both sides

$$v + v_0 = 2v_0 + at$$

$$\frac{v+v_0}{2} = v_0 + \frac{at}{2}$$

$$substitute \ \bar{v} = \frac{v + v_0}{2}$$

$$\bar{v} = v_0 + \frac{1}{2}at$$

substite

$$x = x_0 + (v_0 + \frac{1}{2}at)t$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

1.5 Kinematic Equations from Integral Calculus

1.5.1 $v(t) = v_0 + at$ by Integration

We defined the relationship between acceleration and velocity in (1.2) as:

$$a = \frac{d}{dt}v(t)$$

Switching sides, as we are more interested in v(t), and rewriting a as a function of time a(t):

$$\frac{d}{dt}v(t) = a(t)$$

$$\int \frac{d}{dt}v(t) dt = \int a(t) dt + C_1$$

$$v(t) = \int a(t) dt + C_1$$
(1.5)

For constant acceleration in (1.5):

$$v(t) = \int a dt = at + C_1$$

$$v(0) = v_0 = a(0) + C_1$$

$$v_0 = C_1$$

$$\therefore v(t) = v_0 + at$$

$$(1.6)$$

1.5.2 x(t) by Integration

We defined the function of position in (1.1) as:

$$\frac{d}{dt}x(t) = v(t)$$

$$\int \frac{d}{dt}x(t) dt = \int v(t) dt$$

$$x(t) = \int v(t) dt + C_2$$
(1.7)

Substite equation for v(t) from (1.6) in (1.7)

$$x(t) = \int v_0 + at \, dt$$

$$x(t) = v_0 t + \frac{1}{2} a t^2 + C_2$$

$$x(0) = x_0 = v_0(0) + \frac{1}{2} a(0)^2 + C_2$$

$$x_0 = C_2$$

$$\therefore x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$
(1.8)

Example on pg 136 of the textbook.

2 Projectile Motion Derivations

Motion of an object when:

$$a_x = 0$$

2.1 Defining vector quantities of motion for two dimensional vectors

Where x(t) and y(t) are defined for two dimensional position vector $\vec{r}(t)$ and similarly $v_x(t)$ and $v_y(t)$ are defined for velocity vector $\vec{v}(t)$, while \vec{a} is similar but with $a_x = 0$:

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$

$$\vec{v}(t) = v_x(t)\hat{i} + v_y(t)\hat{j}$$

$$\vec{a}(t) = 0\hat{i} + a_y(t)\hat{j}$$

2.2 Rewriting kinematic equations for x and y directions where $a_x = 0$

$$x(t) = x_0 + \bar{v}_x t$$

$$v_x(t) = v_{0,x}$$

$$x(t) = x_0 + v_{0,x} t + \frac{1}{2} a_x t^2$$

$$v_x^2(t) = v_{0,x}^2 t$$

$$y(t) = y_0 + \bar{v}_y t$$

$$v_y(t) = v_{0,y} + a_y t^2$$

$$y(t) = y_0 + v_{0,y} t + \frac{1}{2} a_y t^2$$

$$v_y^2(t) = v_{0,y}^2 + 2a_y (y - y_0)$$

2.3 Derivations of Projectile Motion Equations

2.3.1 Maximum height h

Requires knowing two of three: $y, v_{0,y}^2, g$

For $v_y = 0$, $y_0 = 0$, $a_y = -g$:

$$v_y^2 = v_{0,y}^2 + 2a_y(y - y_0)$$

$$0 = v_{0,y}^2 + 2(-g)(y - 0)$$

$$0 = v_{0,y}^2 - 2gy$$

$$\therefore y = \frac{v_{0,y}^2}{2g}$$
(2.1)

2.3.2 Direction of velocity θ_v

The direction of velocity does not need to be derived, as it relies on the triangle formed by v_x and v_y :

$$\theta = \tan^{-} 1 \left(\frac{v_y}{v_x} \right) \tag{2.2}$$

2.3.3 Time of Flight T_{tof}

For $y = y_0$, $a_y = -g$:

$$y - y_{0} = v_{0,y}t + \frac{1}{2}a_{y}t^{2}$$

$$0 = v_{0,y}t + \frac{1}{2}(-g)t^{2}$$

$$0 = v_{0,y}t - \frac{1}{2}gt^{2} \qquad v_{0,y} = \sin(\theta_{0})v_{0}$$

$$0 = \sin(\theta_{0})v_{0}t - \frac{1}{2}gt^{2}$$

$$0 = t\left(\sin(\theta_{0})v_{0} - \frac{1}{2}gt\right)$$

$$0 = \sin(\theta_{0}) - \frac{1}{2}gt$$

$$\frac{1}{2}gt = \sin(\theta_{0})$$

$$t = \frac{2\sin(\theta_{0})}{g}$$

$$T_{tof} = \frac{2\sin(\theta_{0})}{g}$$
(2.3)

2.3.4 Trajectory y as a function of x without time t

Need three of four: y, v_0, θ_0, x For a = -g

$$x = v_{0,x}t$$

Solving for t:

$$t = \frac{x}{v_{0,x}}$$
$$t = \frac{x}{\cos(\theta_0)v_0}$$

y-position:

$$y = v_{0,y}t + \frac{1}{2}at^2y = v_0\sin(\theta_0)t - \frac{1}{2}gt^2$$

Substitute t:

$$y = v_0 \sin(\theta_0) \left(\frac{x}{\cos(\theta_0)v_0}\right) - \frac{1}{2}g\left(\frac{x}{\cos(\theta_0)v_0}\right)^2$$

$$y = \tan(\theta_0)x - x^2\left(\frac{g}{2(v_0\cos\theta_0)^2}\right)$$
(2.4)

2.3.5 Range

Starting with trajectory equation (2.4) where y = 0:

$$0 = \tan(\theta_0)x - x^2 \left(\frac{g}{2(v_0 \cos \theta_0)^2}\right)$$

$$x^2 \left(\frac{g}{2(v_0 \cos \theta_0)^2}\right) = \tan(\theta_0)x$$

$$x = \tan(\theta_0) \left(\frac{2(v_0 \cos(\theta_0)^2)}{g}\right)$$

$$x = \frac{v_0^2 2 \sin(\theta_0) \cos(\theta_0)}{g}$$

$$x = R = \frac{v_0^2 \sin(2\theta_0)}{g}$$

$$(2.5)$$