In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
data=pd.read_csv(r"C:\Users\Prathyusha\Downloads\loan1.csv")
data
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 448.0+ bytes

```
In [4]:
```

```
data['Marital Status'].value_counts()
```

Out[4]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [5]:

```
data['Annual Income'].value_counts()
```

Out[5]:

Name: count, dtype: int64

In [6]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
data=data.replace(convert)
data
```

Out[6]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In [7]:

```
convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
data=data.replace(convert)
data
```

Out[7]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

In [8]:

```
convert={"Defaulted Borrower":{"Yes":1,"No":0}}
data=data.replace(convert)
data
```

Out[8]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	0
1	0	2	100	0
2	0	1	70	0
3	1	2	120	0
4	0	3	95	1
5	0	2	60	0
6	1	3	220	0
7	0	1	85	1
8	0	2	75	0
9	0	1	90	1

```
In [9]:
```

```
x=["Home Owner","Marital Status","Annual Income"]
y=["Yes","No"]
all_inputs=data[x]
all_clasess=data["Defaulted Borrower"]
```

In [10]:

```
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_clasess,test_size=0.25)
```

In [11]:

```
clf=DecisionTreeClassifier(random_state=0)
```

In [12]:

```
clf.fit(x_train,y_train)
```

Out[12]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [13]:

```
score=clf.score(x_test,y_test)
print(score)
```

0.3333333333333333

#another dataset on decisiontree