Digitaltechnik

2. Binärarithmetik

Prof. Dr. Eckhard Kruse

DHBW Mannheim

Schriftliches Rechnen

Übung

2.1 Schriftliches Rechnen

Aus der Schule sollten Sie die Verfahren zur schriftlichen Durchführung der Grundrechenarten kennen. Erinnern Sie sich an diese Verfahren und führen Sie sie mit beliebig von Ihnen gewählten Werten durch:

- a) Addition zweier ganzer Dezimalzahlen
- b) Subtraktion zweier ganzer Dezimalzahlen
- c) Multiplikation zweier ganzer Dezimalzahlen
- d) Division zwei ganzer Dezimalzahlen (mit Berechnung der Nachkommastellen oder des Restes)

Schriftliches Rechnen

Addition

Subtraktion

Multiplikation

Division

Schriftliches Rechnen - binär

Übung

2.2 Schriftliches Rechnen - binär

Die Ihnen bekannten Verfahren lassen sich auch auf Binärzahlen anwenden. Die Addition zweier Ziffern wäre z.B. 1+0=1, 1+1=10 (d.h. hier gibt es einen Übertrag). Versuchen Sie die schriftlichen Verfahren für folgende Fälle anzuwenden:

- a) Addition zweier Binärzahlen
- b) Multiplikation zweier Binärzahlen
- c) Subtraktion zweier Binärzahlen (eine kleinere von einer größeren)
- d) optional: Division zweier Binärzahlen
- e) Vergleichen Sie mit dem schriftlichen Rechnen im Dezimalsystem: Was ist anders/einfacher/schwieriger?

Binäre Addition

Verfahren der binären Addition:

- Abarbeitung Ziffer für Ziffer, von rechts nach links. Übertrag zu Beginn=0.
- Addiere jeweils die n-ten Ziffern der beiden Zahlen und den aktuellen Übertrag:
 - 0+0+0=0, $1+0+0=1 \rightarrow$ neuer Übertrag = 0
 - 1+1+0=10, 1+1+1=11 → neuer Übertrag =1

1101110 + 1001011 bertrag 1 111 Ergebnis 10111001

Stimmt's?

→ Probe
in dezimal!

Binäre Subtraktion

Verfahren der binären Subtraktion:

- Abarbeitung Ziffer für Ziffer, von rechts nach links. Übertrag zu Beginn=0.
- Subtrahiere jeweils die n-ten Ziffern der beiden Zahlen und den aktuellen Übertrag:
 - 0-0-0=0, 1-0-0=1, 1-1-0=0 \rightarrow neuer Übertrag = 0
 - 0-1-0=1, 0-1-1=0, 1-1-1=1 und neuer Übertrag =-1

Stimmt's?

→ Probe
in dezimal!

Binäre Addition und Subtraktion

Übung

2.3 Binäre Addition und Subtraktion

Üben Sie die binäre Addition und Subtraktion.

- a) 11010110 + 101101
- b) 1010111 + 111101000
- c) 11010101 10101111
- d) 10001011 1110100
- e) 1000000 111111

Binäre Multiplikation

Verfahren der binären Multiplikation:

- Arbeite den 2. Faktor Ziffer für Ziffer ab:
 Wenn Ziffer=1: Schreibe den ersten Faktor (rechtsbündig) unter die Ziffer.
 - Addiere die aufgeschriebenen Werte.

Stimmt's?

→ Probe
in dezimal!

Binäre Division

Verfahren der binären Division:

Arbeite den Dividend von links nach rechts ab

- Ist der Divisor größer als der Wert der ausgewählten Ziffern des Dividenden → notiere 0 im Ergebnis und nimm eine weitere Ziffer hinzu.
- Andernfalls: Notiere 1 im Ergebnis, subtrahiere den Divisor von der ausgewählten Ziffernfolge

```
101001 : 11 = 1101 Rest 10

11

100

11

00101

11

010
```

Stimmt's?

→ Probe
in dezimal!

Binäre Multiplikation und Division

Übung

2.4 Binäre Multiplikation und Division

Üben Sie die binäre Multiplikation und Division.

- a) 10110 * 1011
- b) 110101 / 101
- c) Üben Sie mit weiteren, selbst gewählten Zahlen.

Negative Binärzahlen

Dezimalsystem:

 Minuszeichen als zusätzliches Symbol zu den Ziffern 0-9 wird der Zahl vorangestellt.

Binäres System im Rechner:

Stelle Minus mit Nullen und Einsen dar.

Idee 1:

Stelle Vorzeichenbit voran

$$00010110 = 22$$

$$10010110 = -22$$

Idee 2:

Kehre alle Ziffern um:

$$|00010110| = 22$$

$$11101001 = -22$$

Gut? Zufrieden?

"Einerkomplement"

Überlauf und Unterlauf

Übung

2.5 Überlauf und Unterlauf

Im Computer ist die Anzahl der digitalen Stellen/Ziffern pro Zahl begrenzt, typischerweise auf 8, 16, 32 oder 64 Stellen.

- a) Was passiert bei der Addition, wenn die Summe größer als die maximal darstellbare Zahl wird? Probieren Sie es aus!
- b) Was passiert bei der Subtraktion, wenn eine größere Zahl von einer kleineren abgezogen wird? Probieren Sie es aus, z.B. mit Begrenzung auf 8 Stellen. Vergleichen Sie das Ergebnis mit der Einerkomplementdarstellung der entsprechenden (negativen) Zahl.
- c) Was passiert, wenn Sie das in b) berechnete Ergebnis zu der größeren Zahl addieren?
- d) Diskutieren Sie die Bedeutung der Ergebnisse.

Einerkomplement

Eigenschaften des Einerkomplements:

- Ziffernweise Vertauschung von Nullen und Einsen
- Voraussetzung: feste Stellenzahl n
- z. B. $x = 0010 \rightarrow x' = 1101$
- Es gilt: $x + x' = 1111 = 2^m 1$
- Das vorderste Bit zeigt das Vorzeichen
- Die Null wird doppelt dargestellt (+0 und -0)
- Korrektur um 1 bei Addition und Subtraktion

0000	1111	-0
0001	1110	-1
0010	1101	-2
0011	1100	-3
0100	1011	-4
0101	1010	-5
0110	1001	-6
0111	1000	-7
	0001 0010 0011 0100 0101 0110	0001 1110 0010 1101 0011 1100 0100 1011 0101 1010 0110 1001

Negative Binärzahlen

Gesucht: Geeignete Darstellung von negativen Binärzahlen:

- Darstellung nur mit 0 und 1 (kein zusätzliches Minus-Zeichen).
- Keine Redundanz: (z.B. nicht -0 und +0)
- Einfaches Rechnen (Addition einer negativen Zahl funktioniert mit dem bereits bekanntem Additionsverfahren.)

Zweierkomplement:

Berechnung des Zweierkomplements einer Binärzahl:

- Vertausche die Ziffernwerte: 0 → 1 und 1 → 0
 (= Einerkomplement)
- Addiere 1 zum Ergebnis

0	0000		
1	0001	1111	-1
2	0010	1110	-2
3	0011	1101	-3
4	0100	1100	-4
5	0101	1011	-5
6	0110	1010	-6
7	0111	1001	-7
		1000	-8

Zweierkomplement Zahlenkreis

Das Prinzip des Zweierkomplements lässt sich mit einem Zahlenkreis veranschaulichen.

Zweierkomplement

Übung

2.6 Zweierkomplement

Experimentieren Sie mit dem Zweierkomplement

- a) Geben Sie die 8-stellige Zweierkomplement-Darstellung an für -1, -10, -16, -128.
- b) Wenden Sie auf die Ergebnisse aus a) erneut die 2er-Komplement-Umwandlung an.
- c) Subtrahieren Sie binär, indem Sie Zweierkomplemente addieren (wandeln Sie die Dezimalzahlen zunächst ins Binärsystem): 100-1, 10-16, 10-20
- d) Diskutieren Sie die Bedeutung der Ergebnisse.

Zweierkomplement

Eigenschaften des Zweierkomplements:

- Das linke Bit signalisiert das Vorzeichen.
- Der Wertebereich ist asymmetrisch, z.B. -128 bis +127 bei 8 Bit, es gibt keine Redundanz (eindeutige Darstellung der Null).
- Das 2er-Komplement des 2er-Komplements ist wieder die ursprüngliche Zahl.
- Negative Zahlen lassen sich mit dem bekannten Additionsverfahren addieren.
- Subtraktion lässt sich durch Addition des 2er-Komplements berechnen.
- Erweiterung des 2er-Komplements auf eine größere Stellenanzahl: Füge links Einsen hinzu (oder allgemein für + und -: Kopiere das linke Bit)
- Neue Art des Überlaufs: Zahlen laufen aus dem positiven in den negativen Bereich und umgekehrt (ggf. Bereichsüberprüfung!)
- Auch das Multiplikationsverfahren lässt sich direkt auf das 2er-Komplement anwenden.

Zweierkomplement-Eigenschaften

Übung

2.7 Zweierkomplement-Eigenschaften

Untersuchen Sie die zuvor genannten Eigenschaften des Zweierkomplements (Multiplikation, Überlaufverhalten etc.) an selbst ausgewählten Beispielen.

- Das linke Bit signalisiert das Vorzeichen.
- Der Wertebereich ist asymmetrisch, z.B. -128 bis +127 bei 8 Bit, es gibt keine Redundanz (eindeutige Darstellung der Null).
- Das 2er-Komplement des 2er-Komplements ist wieder die ursprüngliche Zahl.
- Negative Zahlen lassen sich mit dem bekannten Additionsverfahren addieren.
- Subtraktion lässt sich durch Addition des 2er-Komplements berechnen.
- Erweiterung des 2er-Komplements auf eine größere Stellenanzahl: Füge links Einsen hinzu (oder allgemein für + und -: Kopiere das linke Bit)
- Neue Art des Überlaufs: Zahlen laufen aus dem positiven in den negativen Bereich und umgekehrt (ggf. Bereichsüberprüfung!)
- Auch das Multiplikationsverfahren lässt sich direkt auf das 2er-Komplement anwenden.

Nachkommastellen?

Wie könnten man Zahlen mit Nachkommastellen (rationale Zahlen / Brüche) binär darstellen?

Nachkommastellen

Wie können Zahlen mit Nachkommastellen binär dargestellt werden?

Festkommadarstellung

- Feste Stellenzahl m wie für ganze Zahlen
- Aufgeteilt in m' Stellen vor und m" Stellen nach dem Komma (m'+ m" = m), z.B. xxxxxxxx = xxxxx,xxx
- Rechenverfahren können übernommen werden, nur kleine Anpassungen notwendig, z. B. Stellenkorrektur bei der Multiplikation
- Fester Bereich: ggf. Rundung bei kleinen Werten / Überlauf bei großen Werten.

kleine Zahl:
$$0,0000002387$$

= $2,387 * 10^{-7}$

Idee: Wähle eine geeignete 10er-Potenz und verschiebe das Komma zu den relevanten Ziffern → Gleitkomma/Fließkomma- (floating point) Darstellung!

Gleitkommadarstellung

Die **Gleitkommadarstellung** stellt eine rationale Zahl x (näherungsweise) durch Angabe einer Mantisse m, einer Basis b und eines Exponenten e so dar, dass gilt: $x = m * b^e$

Indem der Exponent entsprechend gewählt wird, kann die Mantisse auf einen festen Zahlenbereich, z.B. $1 \le m < b$ normalisiert werden (bzw. bei $x=0 \rightarrow m=0$).

z.B. Standard IEEE 754 ("binary32", "binary64" → Basis b=2)

"einfache Genauigkeit" "doppelte Genauigkeit"

Gesamtgröße	32 Bit	64 Bit
Vorzeichen	1 Bit	1 Bit
Exponent	8 Bit	11 Bit
Mantisse	23 Bit	52 Bit

Schätzen Sie die Wertebereiche / Genauigkeiten ab!

"Gleitkomma" auf der Hardware

Zeichencodierung

Codierung von Symbolen mit Bitfolgen

- Symbole: Buchstaben, Ziffern, Sonderzeichen
- Meist mitcodiert: Steuerzeichen (z.B. Leerschritt, neue Zeile, Tabulator usw.)
- Verwendet zur Speicherung und Übertragung von Daten, vor allem von Texten
- ASCII-Codierung: verbreiteter Standard in PCs, von ISO genormt
- Ursprünglich 7 Bit-Code, d.h. 128 Zeichen, Erweiterung auf 8 Bit für erweiterte Sonderzeichen, länderspezifisch

ASCII-Codierung

ASCII = American Standard for Information Interchange

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
	00 0000					05 0000 0101						11 0000 1011	12 0000				
	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI	-
0		-			7	\boxtimes	/	A		>		W	*	<	\otimes	0	8
	16 0000		18 0001	19 0001	20 0001	21 0001	22 0001	23 0001	24 0001	25 0001	26 0001	27 0001	28 0001	29 0001	30 0001	31 0001	1
- 6	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US	
1	日	0	O	0	0	7	Л		X	+	5	Θ	巴	-		Ш	9
	32 0010 0000	33 0010	34 0010	35 0010	36 0010 0100	37 0010 0101	38 0010	39 0010 0111	40 0010	41 0010	42 0010	43 0010	44 0010	45 0010 1101	46 0010	47 0010	
2	SP	1	11	#	\$	%	&	,	()	*	+	,	10 T		/	A
	48 0011	49 0011	50 0011	51 0011	52 0011 0100	53 0011	54 0011 0110	55 0011 0111	56 0011	57 0011	58 0011 1010	59 0011 1011	60 0011	61 0011	62 0011	63 0011	-
3	0	1	2	3	4	5	6	7	8	9		;	<	=	>	?	В
	64 0100 0000	65 0100 0001	66 0100 0010	67 0100	68 0100	69 0100	70 0100	71 0100	72 0100	73 0100	74 0100	75 0100 1011	76 0100 1100	77 0100	78 0100	79 0100	
4	@	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	O	С
	80 0101	81 0101	82 0101	83 0101	84 0101	85 0101 0101	86 0101	87 0101 0111	88 0101	89 0101	90 0101	91 0101	92 0101	93 0101	94 0101	95 0101	
5	P	Q	R	S	T	U	V	W	X	Y	Z	[1]	^	_	D
	96 0110	97 0110	98 0110	99 0110	100 0110	101 0110	102 0110	103 0110	104 0110	105 0110	106 0110	107 9110	108 0110	109 0110	110 0110	111 0110	
6	`	d	b	C	d	е	f	g	h	İ	j	k	1	m	n	0	E
	112 0111	113 0111	114 0111	115 8111	116 0111	117 0111	118 0111	119 0111	120 0111	121 0111	122 0111	123 0111	124 0111	125 0111	126	127	
7	p	q	r	S	t	u	٧	W	X	у	Z	{	1	}	~	DEL	F

http://www.ecowin.org/ascii.htm

Weitere Zeichencodierungen

Unicode

- ISO-Standardisiert 1993
- Berücksichtigt Zeichenanforderungen vieler Sprachen (z.B. Schreibrichtungen, Sonderzeichen, techn. Symbole, Buchstaben-, Silben- und Ideogrammsprachen)
- Untergliederung in Ebenen mit jeweils 65536
 Zeichen (16 Bit)
- Besonders gebräuchlich UTF-8 (8-bit Unicode Transformation Format): Pro Zeichen gibt es Byteketten variabler Länge

- Lateinische Schriften und Symbole
 Lautschriften
 Andere europäische Schriften
- Nahost- und Südwestasiatische Schriften
- Afrikanische Schriften
- Südasiatische Schriften
- Südostasiatische Schriften
- Ostasiatische Schriften
- CJK-Ideogramme
- Kanadische Silben
- Symbole
- Diakritika
- UTF-16-Surrogates und privater Nutzungsbereich
- Verschiedene Zeichen
- Nicht belegte Codebereiche

