ECS 171: Machine Learning

Summer 2023
Edwin Solares

<u>easolares@ucdavis.edu</u>

or Classification & SV/M Intro

Linear Classification & SVM Intro

Project Requirements:

Form a group of up to 6
Determine Project Goals, submit for approval
Find a Dataset (UCI ML datasets, kaggle, google datasets)
Data Exploration

- Read up on what the data means
 Preprocess Data
- Imputation
- Normalization vs standardization
- Data Encoding
- Data transformation

Project Requirements (cont...):

Preliminary Data Visualization

- PairPlot
- Correlation Matrix

Choose a model

- Supervised vs Unsupervised?
- Maybe both?
- feature engineering all the way to building prediction models, and active learning.

Evaluation and testing
Digest and dissect results
Writeup

Write up Requirements:

Github

- Create documentation via Readme
- Background
 - What is the story behind the data, previous work
- Introduction
 - What are the motivations behind the project
 - What are the objectives of the project
 - O What is the broader impact?
- Methodology
 - Explain how you preprocessed, choosing of model, implementation, how did you deal with over/under fitting?
- Data visualization and meaning. Describe the plot
 - What is the message behind each visualization

Write up Requirements:

Github

- Conclusions
- Possible future follow ups/investigations

What is Classification

Given a dataset with labels

- Can we create a function (linear, polynomial, other) to split data
- Can we use a discriminating function to predict classes of new observations
- Examples:
 - Spam classification, malware classification, species classification

What is Classification

Using a line to define a boundary

Which is a good fit?

Which is a good fit?

Adding a Margin

What is Classification

Wikipedia

Complex Data

Using an SVM on Complex Data

Support Vector Machine Defined

Machine learning algorithm for classification of data

- When used for classification finds a line with max w (margin width) between two classes
- Powerful due ability to transform data into hyperplanes for better classification
- Can be linear, polynomial or other function

Adding features for better classification

Dr. Ihler

Kernel + Plane

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Use a kernel to increase dimensionality

Here we square our values

Jupyter Notebooks Time!

Jupyter Notebooks Time!

https://colab.research.google.com