Graph Classification via Reference Distribution Learning: Theory and Practice

Zixiao Wang Jicong Fan

School of Data Science, The Chinese University of Hong Kong, Shenzhen, China

Motivation: Current global pooling methods suffer from information loss.

- Most of the global pooling methods are naive, often employing methods such as simple summation or averaging. These pooling methods collect only the first-order (statistics) information, leading to a loss of structural or semantic information.
- More sophisticated pooling operations retain more meaningful information, but still carry the inherent risk of information loss.

Model and Optimization

- GRDL is composed of two parts.
 - f_G is a backbone GNN to transform each graph G_i with adjacency matrix $A_i \in \mathbb{R}^{n_i \times n_i}$ and node feature $X_i \in \mathbb{R}^{n_i \times d_0}$ to a node embedding matrix $H_i \in \mathbb{R}^{n_i \times d}$, which encodes the graph's information

$$H_i = f_G(G_i) = f_G(A_i, X_i),$$

• A reference layer f_D computes the similarity between each graph embedding H_i and reference distributions $\{D_1, \ldots, D_K\}$

$$f_D(H_i) = [s_{i1}, s_{i2}, \dots, s_{iK}] = [\xi(H_i, D_1), \xi(H_i, D_2), \dots, \xi(H_i, D_K)]^{\top} \in \mathbb{R}^K$$

where $\xi(\cdot, \cdot)$ is a similarity measure between two distributions, and is chosen to be the negative squared maximum mean discrepancy (MMD) in our experiment:

$$\xi(H,D) = \frac{2}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} k(h_i, d_j) - \frac{1}{n^2} \sum_{i=1}^{n} \sum_{i'=1}^{n} k(h_i, h_{i'}) - \frac{1}{m^2} \sum_{j=1}^{m} \sum_{j'=1}^{m} k(d_j, d_{j'}),$$

 $k(\cdot,\cdot)$ is chosen to be the Gaussian kernel $k(x,x')=\exp\left(-\theta\|x-x'\|_2^2\right)$.

• The graph is assigned the label of the reference that exhibits the highest similarity

$$y_{\text{pred},i} = \arg \max_{k} s_{ik}$$

• Optimization problem of GRDL:

$$\min_{f_G, f_D} -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log \frac{\exp(s_{ik})}{\sum_{j=1}^{K} \exp(s_{ij})} + \lambda \sum_{k} \sum_{k' \neq k} \xi(D_k, D_{k'})$$

Experiments on Graph Dataset & Visualizations

Метнор	Dataset								- Average
	MUTAG	PROTEINS	NCI1	IMDB-B	IMDB-M	PTC-MR	BZR	COLLAB	
PATCHY-SAN	92.6±4.2	75.1 ± 3.3	76.9±2.3	62.9±3.9	45.9 ± 2.5	60.0 ± 4.8	85.6±3.7	73.1±2.7	71.5
GIN	89.4 ± 5.6	$76.2 {\pm} 2.8$	82.2 ± 0.8	64.3 ± 3.1	50.9 ± 1.7	64.6 ± 7.0	82.6 ± 3.5	79.3 ± 1.7	73.6
DropGIN	90.4 ± 7.0	76.9 ± 4.3	81.9 ± 2.5	66.3 ± 4.5	51.6 ± 3.2	66.3 ± 8.6	77.8 ± 2.6	80.1 ± 2.8	73.9
DIFFPOOL	89.4 ± 4.6	$76.2 {\pm} 1.4$	80.9 ± 0.7	61.1 ± 3.0	45.8 ± 1.4	60.0 ± 5.2	79.8 ± 3.6	80.8 ± 1.6	71.8
SEP	89.4 ± 6.1	$76.4 {\pm} 0.4$	78.4 ± 0.6	74.1 ± 0.6	51.5 ± 0.7	68.5 ± 5.2	86.9 ± 0.8	81.3 ± 0.2	75.8
GMT	89.9 ± 4.2	75.1 ± 0.6	79.9 ± 0.4	73.5 ± 0.8	50.7 ± 0.8	70.2 ±6.2	85.6 ± 0.8	80.7 ± 0.5	75.7
MinCutPool	90.6 ± 4.6	74.7 ± 0.5	74.3 ± 0.9	72.7 ± 0.8	51.0 ± 0.7	68.3 ± 4.4	87.2 ± 1.0	80.9 ± 0.3	75.0
ASAP	87.4 ± 5.7	73.9 ± 0.6	71.5 ± 0.4	72.8 ± 0.5	50.8 ± 0.8	64.6 ± 6.8	85.3 ± 1.3	78.6 ± 0.5	73.1
WitTopoPool	89.4 ± 5.4	80.0 ± 3.2	79.9 ± 1.3	72.6 ± 1.8	52.9 ± 0.8	64.6 ± 6.8	87.8 ± 2.4	80.1 ± 1.6	75.9
OT-GNN	91.6±4.6	76.6 ± 4.0	82.9±2.1	67.5±3.5	52.1±3.0	68.0±7.5	85.9±3.3	80.7±2.9	75.7
WEGL	91.0 ± 3.4	73.7 ± 1.9	75.5 ± 1.4	66.4 ± 2.1	50.3 ± 1.0	66.2 ± 6.9	84.4 ± 4.6	79.6 ± 0.5	73.4
FGW - ADJ	82.6±7.2	$72.4 {\pm} 4.7$	74.4±2.1	70.8±3.6	48.9±3.9	55.3±8.0	86.9±1.0	80.6 ± 1.5	71.5
FGW - SP	84.4 ± 7.3	74.3 ± 3.3	72.8 ± 1.5	65.0 ± 4.7	47.8 ± 3.8	55.5 ± 7.0	86.9 ± 1.0	77.8 ± 2.4	70.6
WL	87.4 ± 5.4	$74.4 {\pm} 2.6$	85.6±1.2	67.5 ± 4.0	48.4 ± 4.2	56.0 ± 3.9	81.3 ± 0.6	78.5 ± 1.7	72.4
WWL	86.3 ± 7.9	$73.1 {\pm} 1.4$	$85.7 \!\pm\! 0.8$	71.6 ± 3.8	52.6 ± 3.0	52.6 ± 6.8	87.6 ± 0.6	81.4 ± 2.1	73.9
SAT	92.6±4.3	77.7 ± 3.2	82.5±0.8	70.0±1.3	47.3±3.2	68.3±4.9	91.7±2.1	80.6±0.6	76.1
Graphormer	89.6±6.2	76.3 ± 2.7	78.6 ± 2.1	70.3 ± 0.9	48.9 ± 2.0	71.4±5.2	85.3 ± 2.3	80.3 ± 1.3	75.1
GRDL	92.1±5.9	82.6±1.2	80.4±0.8	74.8±2.0	52.9±1.8	68.3±5.4	92.0±1.1	79.8±0.9	77.9
GRDL-W	90.8 ± 4.6	82.1 ± 0.9	80.9 ± 0.8	72.2 ± 3.1	53.1 ± 0.9	68.5 ± 3.2	90.6 ± 1.5	80.4 ± 1.1	77.3
GRDL-S	90.6 ± 5.7	$\textbf{81.1} {\pm} \textbf{1.4}$	81.2 ± 1.5	72.4 ± 3.3	52.5 ± 1.1	64.2 ± 3.2	91.6±1.3	78.6 ± 1.3	76.5

Table: Classification accuracy (%). Bold text indicates the top 3 mean accuracy.

Theoretical Results

Generalization bound and its implications (see our paper).