

DESCRIPTION

The CNX48U, H11BX, MOC8080 and TIL113 have a gallium arsenide infrared emitter optically coupled to a silicon planar photodarlington.

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

FEATURES

- High sensitivity to low input drive current
- Meets or exceeds all JEDEC Registered Specifications
- VDE 0884 approval available as a test option -add option .300. (e.g., H11B1.300)

APPLICATIONS

- Low power logic circuits
- Telecommunications equipment
- Portable electronics
- · Solid state relays
- Interfacing coupling systems of different potentials and impedances.

Parameter	Symbol	Device	Value	Units	
TOTAL DEVICE	-	All	FF 1 450	°C	
Storage Temperature	T _{STG}	All	-55 to +150		
Operating Temperature	T _{OPR}	All	-55 to +100	°C	
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C	
Total Device Power Dissipation @ T _A = 25°C	P _D	All	250	mW	
Derate above 25°C		All	3.3	mW/°C	
EMITTER	1	All	100	A	
Continuous Forward Current	I _F	All	100	mA	
Reverse Voltage	V_{R}	All	6	V	
Forward Current - Peak (300 µs, 2% Duty Cycle)	I _F (pk)	All	3.0	Α	
LED Power Dissipation @ T _A = 25°C	P _D	All	100	mW	
Derate above 25°C		All	1.8	mW/°C	
DETECTOR	BV _{CEO}	CNX48U, TIL113	30		
		H11B1, H11B2	25	V	
Callagtas Essittas Brackdown Valtaga		H11B3	25		
Collector-Emitter Breakdown Voltage		H11B255			
		MOC8080	55		
		CNX48U, H11B1		V	
	BV _{CBO}	H11B2, H11B3	30		
Collector-Base Breakdown Voltage		TIL113			
		H11B255		V	
		MOC8080	55		
Emitter-Collector Breakdown Voltage	BV _{ECO}	All	7	V	
Detector Power Dissipation @ T _A = 25°C		All	150	mW	
Derate above 25°C	P_{D}	All	2.0	mW/°C	

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
EMITTER	(I _F = 10 mA)	. V _F	H11B1, H11B2	0.8		1.5	
			H11B255		1.2		
			MOC8080				
Input Forward Voltage			TIL113				V
Imput i orward voltage	$(I_F = 10 \text{ mA})$	V F	CNX48U		1.2	1.3	V
	$(I_F = 10 \text{ mA}, T_A = -55^{\circ}\text{C})$		MOC8080	0.9	1.3	1.7	
	$(I_F = 10 \text{ mA}, T_A = 100^{\circ}\text{C})$		INIOCOUOU	0.7	1.05	1.4	
	(I _F = 50 mA)		H11B3		1.35	1.5	
Reverse Leakage Current	(V _R = 6 V)	I _R	All		0.001	10	μA
Capacitance	$(V_F = 0 V, f = 1.0 MHz)$	С	All		50		pF
DETECTOR Collector-Emitter Breakdown Voltage	(I _C = 1 mA, I _F = 0)		CNIVAGU	30	60		V
			CNX48U				
	$(I_C = 100 \mu A, I_F = 0)$	D\/	TIL113				
	(I _C = 10 mA, I _F = 0)	BV _{CEO}	H11B1, H11B2	25	60		
			H11B3				
	$(I_C = 100 \mu A, I_F = 0)$		H11B255		70		
	$(I_C = 1 \text{ mA}, I_F = 0)$		MOC8080	55			
Collector-Base Breakdown Voltage	$(I_C = 100 \mu A, I_E = 0)$	BV _{CBO}	CNX48U, H11B1	30	100		
			H11B2, H11B3				V
			TIL113				
	(1 100 1 1 0)		H11B255	55	100		
	$(I_C = 100 \mu A, I_F = 0)$		MOC8080				
Emitter-Collector	(1 400 4 1 0)	D) /		7	40		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Breakdown Voltage	$(I_E = 100 \mu A, I_B = 0)$	BV _{ECO}	All	7	10		V
Collector-Emitter	(V 10 V Daga Or)	I _{CEO}	All		4	100	- A
Dark Current	(V _{CE} = 10 V, Base Open)				1	100	nA

Note

^{**} Typical values at T_A = 25°C

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

DC Characteristics	Test Conditions	Symbol	Device	Min	Typ**	Max	Units
	(I _F = 10 mA, V _{CE} = 5 V)		MOC8080	50 (500)			mA (%)
			H11B255	10 (100)			
	$(I_F = 10 \text{ mA}, V_{CE} = 1 \text{ V})$	I _C (CTR)	CNX48U	60 (600)			
Collector Output			TIL113	30 (300)			
Current ⁽¹⁾			H11B1	5 (500)			
	$(I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V})$		H11B2	2 (200)			
			H11B3	1 (100)			
	$(I_F = 1 \text{ mA}, V_{CE} = 1 \text{ V})$		CNX48U	5 (500)			
	$(I_F = 0.5 \text{ mA}, V_{CE} = 1 \text{ V})$			1.75 (350)			
	(I _F =1 mA, I _C = 1 mA)	V _{CE(sat)}	H11B1, H11B2			1.0	V
Saturation Voltage			H11B3, MOC8080			1.0	
	$(I_F = 5 \text{ mA}, I_C = 10 \text{ mA})$		CNX48U			1.0	
	$(I_F = 50 \text{ mA}, I_C = 50 \text{ mA})$		H11B255			1.0	
	$(I_F = 8 \text{ mA}, I_C = 2 \text{ mA})$		TIL113			1.25	
AC Characteristics Switching Times		t _{on}	H11B1		25		
	$(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V})$	CE = 10 V)	H11B2				
	$(R_L = 100 \Omega) (Fig.7)$		H11B255		18		
		7011	H11B3				
	$(I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V})$	t _{on}			3.5		
	$(R_E = 100 \Omega), (R_{BE} = 1M\Omega)$				36		
	(Fig. 8)	t _{off}			36		μs
	$(I_F = 1 \text{ mA}, V_{CC} = 5 \text{ V})$	t _{on} CNX48U			70		
	$(R_E = 1k\Omega), (R_{BE} = 10M\Omega)$	+			190		
	(Fig. 8)	t _{off}					
	$(I_F = 5 \text{ mA}, V_{CC} = 10 \text{ V})$	t _{on}	MOC8080		3.5		
	$(R_L = 100 \Omega) (Fig.7)$	t _{off}			25		
	$(I_F = 200 \text{ mA}, I_C = 50 \text{ mA})$ $(V_{CC} = 10 \text{ V}) (R_L = 100 \Omega)$	t _{on}	TII 440		0.35	5	
	$1(V_{00} = 10) \text{ V) (H}_{1} = 100 \text{ O) I}$		TIL113				

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Typ**	Max	Units
Input-Output Isolation Voltage ⁽²⁾	$(I_{I-O} \le 1 \mu A, Vrms, t = 1 min.)$		5300			Vac(rms)
Isolation Resistance ⁽²⁾	(V _{I-O} = 500 VDC)	R _{ISO}		10 ¹¹		Ω
Isolation Capacitance ⁽²⁾	$(V_{I-O} = \emptyset, f = 1 \text{ MHz})$	C _{ISO}		0.8		pf

Note

^{**} Typical values at $T_A = 25^{\circ}C$

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

Fig. 1 Output Current vs. Input Current

Fig. 2 Current Transfer Ratio vs. Ambient Temperature

Fig. 3 Collector Current vs. Collector-Emitter Voltage

Fig. 4 Dark Current vs. Ambient Temperature

Fig. 5 Turn-On Time vs. Input Current

Fig. 6 Turn-Off Time vs. Input Current

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free air temperature unless otherwise specified) (Cont.)

Test Circuit (All devices except CNX48U)

Switching Waveforms (All devices except CNX48U)

Fig. 7 Switching Time Test Circuit and Waveforms (All devices except CNX48U)

Fig. 8 Switching Time Test Circuit and Waveforms (CNX48U only)

Notes

- 1. The current transfer ${\rm ratio}(I_{C}/I_{F})$ is the ratio of the detector collector current to the LED input current with V_{CE} @ 10 V.
- 2. For this test, LED pins 1 and 2 are common and phototransistor pins 4,5 and 6 are common.

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

NOTE

All dimensions are in inches (millimeters)

CNX48U H11B1 H11B2 H11B255 H11B3 MOC8080 TIL113

ORDERING INFORMATION

Option	Order Entry Identifier	Description		
S	.S	Surface Mount Lead Bend		
SD	.SD	Surface Mount; Tape and reel		
W	.W	0.4" Lead Spacing		
300	.300	VDE 0884		
300W	.300W	VDE 0884, 0.4" Lead Spacing		
3S	.3\$	VDE 0884, Surface Mount		
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel		

NOTE

All dimensions are millimeters

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.