Студент: Егор Елисеев

Группа: М4141

Дата: 31 марта 2021 г.

1. (a) $\{\omega \in \{a,b\}^* | |\omega|_a \ge |\omega|_b\}$

Пусть L - регулярный, тогда выполняется лемма о накачке. Возьмем n из леммы и рассмотрим следующее слово: $\omega = b^n a^{2n}$. Тогда

$$x = b^l, \ 0 \le l < n,$$

$$y = b^m, \ 0 < m \le n,$$

$$z = b^{n-m-l}a^{2n}.$$

Рассмотрим xy^kz при $k>\frac{2n-l}{m}, k=\lceil\frac{2n-l}{m}\rceil+1$, тогда $xy^kz=b^lb^{(\frac{2n-l}{m}+1)\cdot m}b^{n-m-l}a^{2n}=b^{3n-l}a^{2n}$. Так как l< n, то букв b больше в слове, чем букв

(b) $\{\omega \in \{a, b\}^* | |\omega|_a \neq |\omega|_b\}$

Пусть L - регулярный, тогда выполняется лемма о накачке. Возьмем n из леммы и рассмотрим следующее слово: $\omega = a^n b^{2n}$. Тогда

$$x = a^l, \ 0 \le l < n,$$

$$y = a^m, 0 < m \le n,$$

 $z = a^{n-m-l}b^{2n}.$

$$z = a^{n-m-l}b^{2n}$$

Рассмотрим xy^kz при $k=\frac{n+m}{m}$, тогда $xy^kz=a^la^{\frac{n+m}{m}\cdot m}a^{n-m-l}b^{2n}=b^{2n}a^{2n}$. Получим, что количество букв а и b совпадает.

(c) $\{\alpha \ a \ \beta | \alpha, \beta \in \{a, b\}^*, |\alpha|_b > |\beta|_a\}$

Пусть L - регулярный, тогда выполняется лемма о накачке. Возьмем n из леммы и рассмотрим следующее слово: $\omega = b^{n+1}ab^na^n$. Тогда

$$x = b^l, \ 0 \le l < n,$$

$$y = b^m$$
, $0 < m \le n$,

$$z = b^{n-m-l}ab^n \overline{a^n}.$$

Рассмотрим xy^kz при k=0, тогда

 $xy^kz=xz=b^lb^{n-m-l}ab^na^n=b^{n-m}ab^na^n$, при любом значении m получим, что $|\alpha|_b\leq |\beta|_a$.

(d) $\{\omega a^m | 1 \le |\omega|_b \le m\}$

Пусть L - регулярный, тогда выполняется лемма о накачке. Возьмем n из леммы и рассмотрим следующее слово: $\omega = b^{n+1}a^{n+1}$. Тогда

$$x = b^l$$
, $0 \le l < n$,

$$y = b^p$$
, $0 , $z = b^{n+1-p-l}a^{n+1}$.$

$$z = h^{n+1-p-l}a^{n+1}$$

Рассмотрим xy^kz при k=2, тогда

 $xy^kz=b^lb^{2p}b^{n+1-l-p}a^{n+1}=b^{n+1+p}a^{n+1}$, при любом значении р получим, что $|\omega|_b>m$.

2. (a)