

DISCRETE MATHEMATICS IN COMPUTER SCIENCE

HSIEN-CHIH CHANG FEBRUARY 16, 2022

ADMINISTRIVIA

- Midterm 2
 - Feb 21 (Mon) 6—9PM
 - Carpenter 013 Herb West Lecture Hall
- -Conflict Midterm 2
 - Feb 22 (Tue) 6—9PM
- SAS/Conflict Conflict/COVID
 - Come talk to me

- Closed-book written exam
- Scope: Module G on graphs
- One-page two-sided cheatsheet
 - Must be hand-written

PROOF BY COUNTING

Constructs sets and compare their sizes.

-Sum principle:

$$| P_1 \sqcup P_2 \sqcup ... \sqcup P_k | = | P_1 | + | P_2 | + ... + | P_k |$$

Product principle:

HOW MANY 9-BIT BINARY STRINGS ARE THERE WHOSE FIRST TWO BITS ARE THE SAME?

EXAMPLE: SEQUENCES

HOW MANY PERMUTATIONS OF {1, 2, ..., 9} ARE THERE?

EXAMPLE: PERMUTATIONS

COMBINATORIAL EQUIVALENCE

IF THERE IS A BIJECTION

BETWEEN SET A AND B, THEN

|A| = |B|

HOW MANY SUBSETS OF ODD SIZES DOES A SIZE-n SET HAVE?

COMBINATORIAL EQUIVALENCE

HOW MANY SUBSETS OF ODD SIZES DOES A SIZE-n SET HAVE?

HOW MANY BINARY STRINGS OF LENGTH-N ARE THERE THAT HAVE ODD NUMBER OF 1s?

COMBINATORIAL EQUIVALENCE

DIVISION PRINCIPLE

- If there is a k-to-1 mapping from S to P,
 - |S|/k = |P|

HOW MANY WAYS TO ARRANGE 5 RED BALLS, 4 BLUE BALLS, AND 3 GREEN BALLS IN A SEQUENCE?

EXAMPLE: BALLS

BINOMIAI COUTTICIEMT

BINOMIAL COEFFICIENT

 $\binom{n}{k} := \#$ ways to choose size-k subset from $\{1, ..., n\}$

HOW MANY WAYS TO CHOOSE SIZE-k SUBSET FROM {1, ..., n}?

EXAMPLE: SUBSETS

HOW MANY 9-BIT BINARY STRINGS ARE THERE WITH AT LEAST 2 ONES?

EXAMPLE: STRINGS

HOW MANY WAYS TO PUT 7 UNLABELED BALLS INTO 5 DISTINCT BOXES?

EXAMPLE: BALLS AND BOXES

FOUR-FOLD FORMULA

-To put k things into n distinct and ordered boxes:

	Labeled	Not Labeled	
Repetition	$\mathbf{n}^{\mathbf{k}}$	$\binom{n+k-1}{k}$	
No Repetition	n! (n-k)!	$\binom{n}{k}$	

TIPS: DON'T OVER-/UNDER-COUNT!

NEXT TIME.
COUNTING SMARTLY.

