

Digital System Design Course

Professor: Jaime Velasco-Medina Bionanoelectronics Group

Digital System Design Course

Digital System Design Course

Finite States Machine Design

Multiplier Design

1. Binary Multiplier

algorithm

Digital System Design Course

1. Binary Multiplier

1. Binary Multiplier

ASM diagram

Digital System Design Course

Multiplication

ASM diagram

Multiplication

ASM diagram

Multiplication

Procesador UV2009

1. Cargar Datos

Registros a usar:

R0 = B (dato 1: multiplicando)

R4 = Q (dato 2: multiplicador)

R7 = Q(PL)

R6 = A (PH)

R1, R2 y R3 = Registros auxiliares

2. Determinar Qo

RC \leftarrow Shr ([RA + RB], 0) R1 \leftarrow RC RA \leftarrow R1, RB \leftarrow 0

 $RA \leftarrow R4$, $RB \leftarrow 0$

 $RC \leftarrow Shl ([RA + RB], 0)$ $R1 \leftarrow RC$

 $RA \leftarrow R4$, $RB \leftarrow R1$

RC ← R4 - R1

Entonces:

Si R4 - R1 = X, C=1 R4 - R1 = X, C=0

C=1,
$$\rightarrow$$
 Qo=0
C=0, \rightarrow Qo=1

2. Determinar Qo

RC \leftarrow Shr ([RA + RB], 0) R1 \leftarrow RC RA \leftarrow R1, RB \leftarrow 0 RC \leftarrow Shl ([RA + RB], 0) R1 \leftarrow RC RA \leftarrow R4, RB \leftarrow R1 RC \leftarrow R4 - R1

 $RA \leftarrow R4$, $RB \leftarrow 0$

Entonces:

Si R4 - R1 = 0, Z=1
R4 - R1 = 1, Z=0
$$Z=1 \rightarrow Q0=0$$
$$Z=0 \rightarrow Q0=1$$

Universidad del Valle

3. Sumar

RA
$$\leftarrow$$
 R6, RB \leftarrow R0
RC \leftarrow RA + RB
R6 \leftarrow RC

4. Rotar AQ con el carry [C]

1. Evaluar bit carry de operación: RC ← RA + RB

4

```
RA \leftarrow R6, RB \leftarrow 0

RC \leftarrow Shr ([RA + RB], 0)

R2 \leftarrow RC
```

$$RA \leftarrow R6$$
, $RB \leftarrow 0$
 $RC \leftarrow Shr ([RA + RB], 1)$
 $R2 \leftarrow RC$

4. Rotar AQ con el carry [C]

2. Evaluar bit R6[0]

RA
$$\leftarrow$$
 R6, RB \leftarrow 0
RC \leftarrow Shr ([RA + RB], 0)
R3 \leftarrow RC
RA \leftarrow R3, RB \leftarrow 0
RC \leftarrow Shl ([RA + RB], 0)
R3 \leftarrow RC
RA \leftarrow R6, RB \leftarrow R3
RC \leftarrow R6 - R3

4. Rotar AQ con el carry [C]

Si Z=0 (R6[0]=1):

3. Evaluar bit zero de operación: RC ← R6 + R3

RA
$$\leftarrow$$
 R4, RB \leftarrow 0
RC \leftarrow Shr ([RA + RB], 1)
R4 \leftarrow RC, R7 \leftarrow RC
RA \leftarrow 0, RB \leftarrow 0
Cnt \leftarrow Cnt $-$ 1

Si Z=1 (R6[0]=0):
RA
$$\leftarrow$$
 R4, RB \leftarrow 0
RC \leftarrow Shr ([RA + RB], 0)
R4 \leftarrow RC, R7 \leftarrow RC
RA \leftarrow 0, RB \leftarrow 0
Cnt \leftarrow Cnt $-$ 1

Calcular LSB. v1

Calcular LSB [R0] = $R0_0$

1.
$$R0_{n-1} = 0$$
 Raux > R0

R0	111100
Raux	111100
shr,0	011110
shl,1	111101
R0	111101
RU	-
R _{aux}	111101
	111111

$$C = 1 \rightarrow LSB = 0$$

2.
$$R0_{n-1} = 1$$
 Raux $\leq R0$

R0	110111
R _{aux}	110111
shr,0	011011
shl,1	110111
R0	110111
R _{aux}	110111
	000000

$$C = 0 \rightarrow LSB = 1$$

Calcular MSB: v1

Calcular MSB [R0] = $R0_{n-1}$

1.
$$R0_{n-1} = 0$$
 Raux > R0

R0	011011
R _{aux}	100000
R0	011011
R _{aux}	100000
	111011

$$C = 1 \rightarrow MSB = 0$$

2.
$$R0_{n-1} = 1$$
 Raux $\leq R0$

R0	110101
R _{aux}	100000
R0	110101
R _{aux}	100000
	010101

$$C = 0 \rightarrow MSB = 1$$

Calcular LSB: v2 (ALU)

Calcular LSB [R0] = $R0_0$

1.
$$R0_{n-1} = 0$$
 Raux = 1

$$Z = 0 \rightarrow LSB = 0$$

2.
$$R0_{n-1} = 1$$
 Raux = 1

$$Z = 1 \rightarrow LSB = 1$$

Calcular MSB: v2

Calcular MSB [R0] = $R0_{n-1}$

1.
$$R0_{n-1} = 0$$
 Raux = R0

$$C = 0 \rightarrow MSB = 0$$

$$R1 \leftarrow R0 + R0 \Rightarrow ShI(R0)$$

2.
$$R0_{n-1} = 1$$
 Raux $\leq R0$

$$C = 1 \rightarrow MSB = 1$$

Square Root Design: \sqrt{X}

Algoritmo: diagrama ASM1

Procesador UV2007

1. Cargar datos

Determinar los registros a usar:

R1 = Q

R2 = A

R3 y R6 = Registros auxiliares

$$R1 \leftarrow \sqrt{M[500]}$$

2. Doble desplazamiento del registro A,D

RA
$$\leftarrow$$
 R0, RB \leftarrow 0
RC \leftarrow Shr (RA, 0)
R3 \leftarrow RC
RA \leftarrow R3, RB \leftarrow 0
RC \leftarrow Shr (RA, 0)
R3 \leftarrow RC
RA \leftarrow R2, RB \leftarrow R2
RC \leftarrow ShI ([RA +RB], 0)

R2
$$\leftarrow$$
 RC
RA \leftarrow R2, RB \leftarrow R3
RC \leftarrow RA + RB
R2 \leftarrow RC
RA \leftarrow R0, RB \leftarrow R0
RC \leftarrow ShI ([RA +RB], 0)
R0 \leftarrow RC
Cnt \leftarrow Cnt – 1

Si C = 1 (
$$A \ge [Q,01]$$
)

RA
$$\leftarrow$$
 R1, RB \leftarrow R1
RC \leftarrow ShI ([RA + RB], 1)
R6 \leftarrow RC
RA \leftarrow R2, RB \leftarrow R6
RC \leftarrow RA - RB
R3 \leftarrow RC

$$\overline{\text{Si C}} = 0 \text{ (A < [Q,01])}$$

$$RA \leftarrow R2, RB \leftarrow R1$$

$$RC \leftarrow RA + RB$$

$$R2 \leftarrow RC$$

RA
$$\leftarrow$$
 R1, RB \leftarrow 0
RC \leftarrow ShI ([RA + RB], 0)
R1 \leftarrow RC

