CS370: Interpolation

Graham Cooper

January 11th, 2017

See figure 2.1

$$y = p(x)$$

We want to find a function p, such that the curve is 'nice' (where nice is piecewise polynomial or polynomial)

Given:

$$(x_1, y_1), (x_2, y_2)..., (x_n, y_n)$$
 n points $x_1 < x_2 < ... < x_n$

Find a polynomial P(x) of degree < n In general:

$$p(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1}$$
$$p(x_1) = y_1$$
$$p(x_2) = y_2$$
$$\dots$$
$$p(x_n) = y_n$$

n unknowns, n equations (linear)

Example:

$$(-1,1), (1,1), (2,5), (4,1)$$

See figure 2.2

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

$$p(-1) = c_1 - c_2 + c_3 - c_4 = 1$$

$$p(1) = c_1 + c_2 + c_3 + c_4 = 1$$

$$p(2) = c_1 + 2c_2 + 4c_3 + 8c_4 = 5$$

$$p(4) = c_1 + 4c_2 + 16c_3 + 64c_4 = 1$$

Now we are just writing out the solution...

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

$$= 1 + b_2(x - 1) + b_3(x - 1)^2 + b_4(x - 1)^3$$

$$= L_1(x) + L_2(x) + 5L_3(x) + L_4(x)$$

$$L_1(x) = \frac{(x - 1)(x - 2)(x - 4)}{-30}$$

$$L_2(x) = \frac{(x + 1)(x - 2)(x - 4)}{6}$$

$$L_3(x) = \frac{(x + 1)(x - 1)(x - 4)}{-6}$$

$$L_4(x) = \frac{(x + 1)(x - 1)(x - 2)}{30}$$

I think we are writing it out this way so that we can easily plug in the vlues and get the correct points?? Question:

- 1. Does an interpolating polynomial always exist?
- 2. If (1) is true then is the answer always unique?

$$p(x) = c_1 + c_2 x + \dots c_n x^{n-1}$$

$$p(x_1) = c_1 + c_2 x_1 + \dots c_n x_1^{n-1}$$

$$p(x_2) = c_1 + c_2 x_2 + \dots c_n x_2^{n-1}$$

$$\dots$$

$$p(x_n) = c_1 + c_2 x_n + \dots c_n x_n^{n-1}$$

$$\begin{cases} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{cases} \begin{cases} c_1 \\ c_2 \\ \dots \\ c_n \end{cases} = \begin{cases} y_1 \\ y_2 \\ \dots \\ y_n \end{cases}$$

The first matrix is the vandermonde (V) matrix.

V is invertable, $V \times \overrightarrow{c} = \overrightarrow{y}$

det
$$V \neq 0$$
 and det $V = \pi(x_i - x_j) \neq 0$ for $i < j$

Remember what a determinate is, remember what invertible is, but we will never be asked to do it.

$$p(x) = q_1(x)(x - x_1) + y_1$$

$$p(x) = q_2(x)(x - x_2) + y_2$$
...
$$p(x) = q_n(x)(x - x_n) + y_n$$

Lagrange Polynomial

$$(x_1, y_1), (x_2, y_2)...(x_n, y_n)$$
$$p(x) = y_1 L_1(x) + y_2 L_2(x) + ... + y_n L_n(x)$$

 $L_i(x_i) = 1, L_i(x_j) = 0$ for $i \neq j$ and $deg(L_i) = n - 1$ Lets construct L_1 using the above

$$L_1(x) = \frac{(x - x_2)(x - x_3)...(x - x_n)}{(x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)}$$

$$L_i(x) = \frac{(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_1)...(x_i - x_{i-1})...(x_i - x_n)}$$

$$L_i(x_i) = 1$$
 and $L_j(x_j) = 0$ where $j \neq i$