CSCI-310, Data Structures

HW 10 - Shortest Paths

Modified BFS to Encode Shortest Paths

```
bfs(vertex v) {
    Q = new Queue
    prev = empty list of vertices

    visit(v)
    Q.enqueue(v)

    while(queue is not empty) {
        u = Q.dequeue()
        for(each unvisited neighbor w of u) {
            visit(w)
            prev[w] = u // This line added to BFS
            Q.enqueue(w)
        }
    }
}
```

Recovering Shortest Paths

```
Shortest_path(vertex s, vertex t) {
    prev = list of vertices from BFS
    sp = empty list of vertices

    current = t
    while (prev[current] has a vertex) {
        add current to front of sp
        current = prev[current]
    }

    if (sp.length > 0) {
        add s to front of sp
    }

    return sp
}
```

Problem 1 (5 points)

Execute by hand the modified BFS algorithm on the graph below. Enter the values on the "prev" list using the table given.

Vertex	Prev
A	
В	
С	
D	
E	
F	
G	
Н	
I	
J	

Problem 2

Below is the label array and the adjacency matrix for a StringGraph.

Part 1 (2 points): Show the "prev" list when BFS is run starting from vertex A.

Part 2 (2 points): What is the shortest path from A to J?

Part 3 (2 points): What is the shortest path from A to M?

Part 4 (2 points): Show the "prev" list when BFS is run starting from vertex Q.

Label Array:

ĺ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q

Adjacency Matrix

Auja	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0		Х															
1	Х		Х	Х													
2		Х			X	Х											
3		Х			Х												
4			Х	Х			Х	Х									
5			X				Х										
6					Х	X				X							
7					X				Х								
8								X		X							
9							Х		Х								
10												X		X			
11											Х		Х		X		
12												X					
13											Х				X		
14	_									_		X		Х		X	
15															X		
16																	