

BUNDESREPUBLIK **DEUTSCHLAND**

DE 100 64 577 A 1

(f) Int. Cl.7: H 05 K 5/00 H 04 B 10/02

DEUTSCHES PATENT- UND MARKENAMT

- ② Aktenzeichen: 100 64 577.1 22) Anmeldetag: 18. 12. 2000
- (4) Offenlegungstag: 11. 7. 2002

(12) Erfinder:

Auracher, Franz, 82065 Baierbrunn, DE; Ebberg, Alfred, 25746 Heide, DE; Ebel, Norbert, 12307 Berlin, DE

(58) Entgegenhaltungen: DE 197 18 950 A1

(7) Anmelder: Infineon Technologies AG, 81669 München, DE

(74) Vertreter: Maikowski & Ninnemann, Pat.-Anw., 10707 Berlin

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Anordnung zum Betrieb eines optischen Sende-und Empfangsmodul bei hohen Datenraten bis zu 10 Gbit/s
- Die Erfindung betrifft eine Anordnung zum Betrieb eines optischen Sende- oder Empfangsmoduls bei hohen Dat nraten bis zu 10 Gbit/s, mit einem TO-Gehäuse mit elektrischen Anschlüssen, einem optischen Sende- oder Empfangsmodul, das in dem TO-Gehäuse angeordnet ist und einer Schaltungsplatine zur elektrischen Kontaktierung der elektrischen Anschlüsse des TO-Gehäuses. Erfindungsgemäß weist die Schaltungsplatine (6) HF-Leitungen (81, 82) auf und sind die elektrischen Anschlüsse (41, 42) in einer Anordnung parallel zur Platinenebene mit d n HF-Leitungen (81, 82) verbunden. Bevorzugt ist des weiteren vorgesehen, eine HF-Anpassungsschaftung auf der Platine auszubilden und SMD-Bauelemente direkt und ohne weitere Lötpads auf planare HF-Leitungen der HF-Platine aufzusetzen. Die genannten Maßnahmen dienen einer Verbesserung der HF-Eigenschaften eines TO-Moduls.

Beschreibung

[0001] Bezeichnung der Erfindung: Anordnung zum Betrieb eines optischen Sende- oder Empfangsmodul bei hohen Datenraten bis zu 10 Gbit/s.

[0002] Die Erfindung betrifft eine Anordnung zum Betrieb eines ptischen Sende- oder Empfangsmodul bei hohen Datenraten bis zu 10 Gbit/s nach dem Oberbegriff des Anspruchs 1.

[0003] Es ist bekannt, optische Sende- oder Empfangsmodule in sogenannten TO-(Transistor-Outline) Gehäusen bei Datenraten bis zu 622 Mbit/s einzusetzen. TO-Gehäuse sind im Stand der Technik bekannte Standardgehäuse für optische Sende- oder Empfangsmodule, deren Form dem Gehäuse eines (klassischen) Transistors ähnelt, die jedoch an 15 der Oberseite ein Glasfenster zum Lichtein- und -austritt aufweisen. Als Koax-Lasermodule werden Module bezeichnet, die ein TO-Lasermodul enthalten und bei denen eine Glasfaser an das TO-Lasermodul angekoppelt ist.

[0004] Ein derartiges, etwa aus der WO 99/57594 bekanntes TO-Gehäuse ist in Fig. 3 schematisch dargestellt. Das TO-Gehäuse 1 enthält ein Sende- oder Empfangsmodul 2. Das Sendemodul 2 ist vorzugsweise auf einem aus Silizium bestehenden Träger 3 angeordnet. Die wesentlichen Bestandteile des Sendemoduls 2, das auch als Laser-Submount 25 bezeichnet wird, sind ein Laserchip 21, Umlenkprismen 22, 23 zu beiden Seiten des Laserchips 21, eine Koppellinse 24 und eine Monitordiode 25.

[0005] Das TO-Gehäuse 1 weist eine Bodenplatte mit vier elektrischen Durchführungen auf, von denen nur zwei dargestellt sind. Das HF-Signal (Datensignal) wird über einen isolierten, beispielsweise eingeglasten Pin 42 in das Gehäuseinnere geführt und dort über Bonddrähte oder Bändchen elektrisch mit dem Laserchips 21 verbunden. Über einen weiteren Durchführungs-Pin 41 wird das Lasermodul mit Vorstrom versorgt oder, wenn der Vorstrom mit dem HF-Signal über den Pin 41 bereitgestellt wird, auf Masse gelegt. Die nicht dargestellten Pins dienen der Steuerung der Monitordiode 25.

[0006] Über das Fenster des TO-Gehäuses 1 erfolgt eine 40 Ankopplung an einen Lichtwellenleiter, der Licht des Laserchips 21 einkoppelt oder, sofern die Anordnung bei prinzipiell gleichem Aufbau als Empfangsmodul ausgebildet ist, Licht zur Detektion durch den Empfangschip auskoppelt.

[0007] Der Vorteil der Verwendung von TO-Gehäusen 45 liegt in niedrigen Gehäusekosten und etablierten Fertigungseinrichtungen, die hohe Stückzahlen bei niedrigen Fertigungskosten ermöglichen. Bei Einsatz hoher Datenraten ergibt sich jedoch das Problem, dass TO-Gehäuse schlechte HF-Eigenschaften aufweisen, die bedingt sind durch vergleichsweise lange Bonddrähte im TO-Gehäuse, die Durchführungskapazität der eingeglasten Gehäusedurchführungen und die im allgemeinen undefinierten HF-Eigenschaften der Verbindung der TO-Anschlussbeinchen mit einer Ansteuerplatine.

[0008] Aufgrund der schlechten HF-Eigenschaften bei Verwendung von TO-Gehäusen werden bisher für hohe Datenraten Sende- oder Empfangsmodule in sogenannten Butterflygehäusen eingesetzt. Solche Butterflygehäuse sind jedoch wesentlich teurer als TO-Gehäuse.

[0009] Der vorlieg nden Erfindung liegt die Aufgabe zugrunde, eine Anordnung zum Betrieb eines ptischen Sende- oder Empfangsmoduls zur Verfügung zu stellen, die bei Verwendung der k stengünstigen TO-Aufbauweise auch bei hohen Datenraten bis zu 10 Gbit/s einsetzbar ist.

[0010] Diese Aufgabe wird erfindungsgemäß durch eine Anordnung mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte und vorteilhafte Ausgestaltungen der Erfindung

sind in den Unteransprüchen angegeben.

[0011] Danach ist erfindungsgemäß vorgesehen, dass die Anordnung ein TO-Gehäuse mit einem optischen Sendeoder Empfangsmodul sowie eine Schaltungsplatine zur elektrischen Kontaktierung der elektrischen Anschlüsse des TO-Gehäuses aufweist, wobei die Schaltungsplatine HF-Leitungen aufweist und die elektrischen Anschlüsse in einer Anordnung parallel zur Platinenebene direkt mit den HF-Leitungen verbunden sind. Die die HF-Leitungen sind dabei bevorzugt als planare Leitungen mit definiertem Wellenwiderstand, insbesondere als Mikrostripleitungen ausgebildet, auf die die elektrischen Anschlüsse in paralleler Lage unmittelbar aufgelötet werden.

[0012] Durch den Anschluß der Anschlußbeinchen des TO-Gehäuses in paralleler Anordnung direkt auf die HF-Leitungen wird eine gute Feldanpassung zwischen HF-Leitung und den TO-Durchführungen erzielt, so daß die HF-Eigenschaften der Anordnung verbessert sind.

[0013] Die Verwendung von HF-Leitungen mit definiertem Wellenwiderstand ermöglicht, den Wellenwiderstand der HF-Leitungen optimal an die Impedanz des Sende- oder Empfangsmoduls anzupassen. Hierzu erfolgt insbesondere eine Anpassung an die frequenzabhängige Impedanz des Sende- oder Empfangselements des Moduls und seines Submounts im TO-Gehäuse, an die Bondverbindungen zu den Anschluß-Pins des Sende- oder Empfangsmoduls und an den Wellenwiderstand der Durchführungen der elektrischen Anschlüßse bzw. Pins des TO-Gehäuses.

[0014] Die HF-Leitungen der Platine sind bevorzugt als Mikrostripleitungen (Streifenleiter) oder koplanare Leitungen ausgebildet. Jedoch sind auch andere planare HF-Leitungen einsetzbar.

[0015] Sofern das Sendemodul einen direkt modulierten Laser aufweist, beträgt der Wellenwiderstand der HF-Leitungen bevorzugt 30-50 Ohm. Sofern das Sendemodul einen Elektroabsorptionsmodulator (EAM) aufweist, der ein an sich konstantes Lasersignal entsprechend einem hochfrequenten Datensignal HF-moduliert, beträgt der Wellenwiderstand der HF-Leitungen bevorzugt 50-80 Ohm.

[0016] In einem weiteren Aspekt der Erfindung ist vorgesehen, dass die HF-Schaltungsplatine eine Anpassungsschaltung zur Anpassung der Impedanz zwischen dem Sende- oder Empfangsmodul und einer auf der Platine angeordneten Treiber- oder Verstärkerschaltung aufweist. Dies gewährleistet eine besonders wirkungsvolle und störungsfreie Anpassung des üblicherweise niederohmigen Halbleiterlasers (typischerweise 3 bis 5 Ohm) an die Impedanz einer Treiberschaltung (üblicherweise 25 oder 50 Ohm), wodurch die Hochfrequenz-Eigenschaften des Lasermoduls deutlich verbessert werden.

[0017] Sofern das Empfangsmodul eine Fotodiode als Empfangschip aufweist, ist dieser üblicherweise ein Vorverstärker zugeordnet. Die Anpassungsschaltung sorgt in diesem Fall für eine Anpassung zwischen dem Vorverstärker und der auf der HF-Platine befindlichen HF-Leitung oder Datenleitung.

[0018] Dabei ist für den Fall, daß das Sendemodul einen Halbleiterlaser aufweist und dieser mit Signalen einer auf der HF-Platine angeordneten Treiberschaltung beaufschlagt wird, bevorzugt vorgesehen, daß die Anpassungsschaltung für eine differentielle (symmetrische) Ansteuerung des Sendemoduls durch die Treiberschaltung ausgelegt ist. Ebenso ist eine Ausführung eines Empfangsmoduls mit differentieller (symmetrischen) Ausgängen des Vorverstärkers mögslich.

[0019] Alternativ ist die Anpassungsschaltung für eine single-ended Ansteuerung des Sendemoduls ausgelegt. Die symmetrische Ansteuerung hat jedoch gegenüber der singl

ended Ansteuerung den Vorteil, dass wegen der Nutzung beider Treiberausgänge ein h"herer Signalhub zur Modulation des Halbleiterlasers zur Verfügung steht.

[0020] Die Anpassungsschaltung weist bev rzugt mindestens einen Widerstand auf, der den Halbleiterlaser an die 5 Impedanz der Treiberschaltung anpaßt.

[0021] In einer bevorzugten Weiterbildung der Erfindung ist auf die HF-Schaltungsplatine eine Vorspannungsschaltung zur Erzeugung einer Vorspannung für das Sende- oder Empfangsmodul integriert. Die Vorspannungsschaltung 10 weist dabei bevorzugt eine breitbandige HF-Drossel auf. Diese dient einer HF-Abblockung des Vorstrom-Anschlusses des Halbleiterlaser. Bei der Drossel handelt es sich beispielsweise um eine Spule mit einem Ferritkern.

[0022] Die Vorspannungsschaltung und die Anpassungs- 15 schaltung sind bevorzugt in eine Schaltung integriert. Diese Schaltung weist in einer bevorzugten Ausführungsform auf:

- mindestens einen ersten Widerstand,
- eine mit einer Spannungsquelle verbundene HF- 20 Drossel, die den Halbleiterlaser über den ersten Widerstand mit einer Vorspannung beaufschlagt und
- einen weiteren Widerstand, dessen einer Anschluß an Masse und dessen anderer Anschluß mit dem ersten Widerstand verbunden ist.

[0023] Bevorzugt ist dabei zusätzlich ein zweiter, mit dem ersten Widerstand in Reihe geschalteter Widerstand vorgesehen, wobei der weitere Widerstand mit seinem einen Anschluß zwischen den Verbindungspunkt der beiden in Reihe 30 geschalteten Widerstände gelegt ist.

[0024] Bevorzugt ist die Drossel über eine relativ kleine Kapazität zusätzlich gegen Masse geschaltet. Hierdurch wird das HF-Signal besser von der Vorspannungs-(Bias-)Versorgung abgeblockt. Die Kapazität ist dabei an der "kal- 35 ten Seite" der Drossel angeordnet.

[0025] In einem bevorzugten Aspekt der Erfindung dienen, sofern die Leitungen der Anpassungs- und/oder der Vorspannungsschaltung als planare HF-Leitungen ausgebildet und die in der Schaltung verwendeten Bauelemente in 40 SMD (Surface Mounted Device)-Technik ausgeführt sind, also unmittelbar auf die Leiterplatte aufsetzbar sind, die planaren HF-Bahnen als Lötpads für die SMD-Bauelemente. Hierdurch wird vermieden, die Bauelemente über sonst erforderliche Löt-Pads auf der Platine zu befestigen. Durch die Löt-Pads bzw. die von ihnen ausgebildete Fläche würde der Wellenwiderstand der Leiterbahnen verändert. Insbesondere würde durch die Löt-Pads eine zu große zusätzliche Kapazität gebildet, die der Verwirklichung der gewünschten Bandbreite von 10 Gbit/s entgegenstehen würde.

[0026] Bevorzugt werden dabei Mikrostripleitungen als planare Leitungen verwendet und dienen die Mikrostrip-Leitungen als Lötfläche für die SMD-Bauelemente.

[0027] In einer bevorzugten Weiterbildung der Erfindung ist die HF-Schaltungsplatine eine zweilagige Platine, wobei 55 in Anschluss des TO-Gehäuses mit HF-Leitungen auf der Oberseite der Platine und ein zweiter Anschluss des TO-Gehäuses mit einer Massefläche auf der Unterseite der Platine verbunden ist. Sofern das TO-Gehäuse mehr als zwei elektrische Anschlüsse aufweist, beispielsweise bei zusätzlicher Verwendung iner Monit rdiode, ist die Schaltungsplatine bevorzugt ein mehrlagige, insbesondere vierlagige Platine, wobei die Anschlüss der Pins für die Monit rdiode bevorzugt auf der Unterseite der Mehrlagenplatin liegen und sind.

[0028] Mit Vorteil ist das TO-Gehäuse unmittelbar am Platinenrand angeordnet. Dementsprechend werden die elektrischen Anschlüsse des TO-Gehäuses sogleich mit den

HF-Leitungen der Schaltungplatine kontaktiert und es entstehen somit keine nennenswerten Reflexi nsstell n für das HF-Signal.

[0029] Zur Verbesserung der HF-Eigenschaften des TO-Gehäuses ist bervorzugt vorgesehen, dass im TO-Gehäuse die Bonddrähte m"glichst kurz gehalten werden, um die Gesamtinduktivität gering zu halten. Um kleine Induktivitäten zu realisieren, sind gegebenenfalls parallele Bondverbindungen bzw. Mehrfachbondungen vorgesehen.

[0030] Für den Fall, dass das optische Sende- oder Empfangsmodul mit einem Empfängerbaustein versehen ist, besteht eine weitere bevorzugte Maßnahme zur Verbesserung der HF-Eigenschaften des TO-Moduls darin, die Impedanz der Gehäusedurchführung des TO-Gehäuses an den Wert der Impedanz des Ausgangs des Empfängerbausteins anzu-

[0031] Des weiteren ist bevorzugt vorgesehen, am Ausgang des TO-Gehäuses ein kurzes Stück einer Streifenleitung mit hohem Wellenwiderstand einzufügen. Hierdurch wird eine Anhebung des Frequenzganges des TO-Gehäuses erreicht.

[0032] Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrere Ausführungsbeispiele näher erläutert. Es zeigen:

[0033] Fig. 1a ein Ausführungsbeispiel einer auf einer HF-Platine ausgebildeten Anpassungsschaltung für ein TO-Lasermodul mit single-ended Ansteuerung;

[0034] Fig. 1b ein erstes Ausführungsbeispiel einer Anpassungsschaltung für ein TO-Lasermodul mit differentieller Ansteuerung;

[0035] Fig. 1c ein zweites Ausführungsbeispiel einer Anpassungsschaltung für ein TO-Lasermodul mit symmetrischer Ansteuerung;

[0036] Fig. 1d ein drittes Ausführungsbeispiel einer Anpassungsschaltung für ein TO-Lasermodul mit symmetrischer Ansteuerung;

[0037] Fig. 2a eine erfindungsgemäße Anordnung mit einer Schaltungsplatine, einer auf der Schaltungsplatine realisierten Anpassungsschaltung für ein Lasermodul mit singleended Ansteuerung und einem TO-Lasermodul;

[0038] Fig. 2b eine erfindungsgemäße Anordnung mit einer HF-Schaltungsplatine, einer auf der Schaltungsplatine realisierten Ansteuerschaltung für ein TO-Lasermodul mit symmetrischer Ansteuerung und einem TO-Lasermodul und [0039] Fig. 3 eine schematische Darstellung eines TO-Moduls gemäß dem Stand der Techik.

[0040] Die Erfindung wird zunächst an dem Ausführungsbeispiel der Fig. 2a erläutert. In einem TO-Gehäuse 1 ist. wie eingangs anhand der Fig. 3 erläutert, in an sich bekannter Weise ein Sende- oder Empfangsmodul angeordnet. Das TO-Gehäuse 1 mit dem Sende- oder Empfangsmodul wird im folgenden auch als TO-Modul bezeichnet. Weiter wird das Sende- oder Empfangsmodul, sofern es eine Sendevorrichtung aufweist, als Sendemodul, und sofern es eine Empfangsvorrichtung aufweist, als Empfangsmodul bezeichnet. [0041] Das TO-Gehäuse 1 weist als elektrische Zuleitungen zwei Beinchen bzw. Pins 41, 42 für die Ansteuerung des Sende- oder Empfangsmoduls auf. Der Pin 41 ist mit dem Boden des TO-Gehäuses verbunden (Massepin des TO-Gehäuses), während der Pin 42 im Boden des TO-Gehäuses eingeglast und somit vom Gehäuse 1 isoliert ist.

[0042] In Fig. 2a sind lediglich zwei Zuleitungen darg stellt. Üblicherweis weist ein Sendemodul zusätzlich eine durch die Mass -Ebene von den HF-Leitungen entkoppelt 65 Monitordiode zur Überwachung der Sendeleistung auf. Für eine solchen Fall sind weitere Zuleitungen 43, 44 vorgesehen, wie in Fig. 2a unten schematisch dargestellt.

[0043] Die HF-Platine 6 weist auf ihrer Oberseite 61 eine

5

Anpassungsschaltung 7 für eine single-ended Ansteuerung des Sendemoduls auf. Diese Schaltung wird später anhand der Fig. 1a noch näher erläutert werden.

[0044] Die Oberfläche 61 der HF-Platine 6 weist des weiteren eine Mikrostripleitung 82 als Kontaktpad für den Pin 42 und eine Massefläche 81 als Kontaktpad für den Pin 41 auf. Die Leitung 81 ist über an sich bekannte Durchk ntaktierungen 9 (sogenannte "Dukos" oder "Vias") mit einer auf der Unterseite 62 der Platine 2 ausgebildeten Massefläche elektrisch verbunden.

[0045] Die Verbindungen zwischen den einzelnen Bauelementen der Anpassungsschaltung 5 sowie die Zuleitungen hierzu sind ebenfalls als planare HF-Leitungen, insbesondere als Mikrostripleitungen ausgeführt.

[0046] Das TO-Gehäuse 1 wird derart an dem Paltinenrand befestigt, dass die Pins 41, 42 in paralleler, horizontaler
An rdnung an die Mikrostripleuten 81, 82 gelötet werden
und im befestigten Zustand parallel zu diesen angeordnet
sind. Dabei wird der Spalt zwischen dem TO-Gehäuse 1 und
dem Platinenrand möglichst klein gehalten, um zu verhin20
dern, dass Reflexionsstellen für das HF-Signal entstehen.

[0047] Der Wellenwiderstand der HF-Leitungen auf der HF-Platine 2 ist optimal an die frequenzabhängige Impedanz des Sendebauelementes und seines Submounts im TO-Gehäuse 1 sowie die eingeglasten Durchführungen der Pins 25 11, 12 durch den Gehäuseboden angepasst. Der Wellenwiderstand der Durchführungen wird mit der ansich bekannten Formel für eine Koaxialleitung berechnet und durch entsprechende Dimensionierung des Verhältnisses Pindurchmesser/Lochdurchmesser optimiert.

[0048] Für ein TO-Sendemodul 1 mit einem direkt modulierten Laser weist die Mikrostripleitung 82 bevorzugt einen Wert zwischen 30 und 50 Ohm auf. Sofern das TO-Sendemodul mit einem Elektroabsorptionsmodulator (EAM) betrieben wird, weist die Mikorstripleitung 82 bevorzugt einen 35 Wert von 50 Ohm bis 80 Ohm auf.

[0049] Bei Verwendung eines Lasermoduls, das zusätzlich eine Monitordiode zur Regelung der optischen Leistung und entsprechend weitere Pins 43, 44 aufweist, wird statt einer Einlagenplatine gemäß Fig. 2a vorteilhafterweise eine vierlagige Mehrlagenplatine eingesetzt, wobei die oberste Lage die Leiterbahn der HF-Leitungen und die zweite Lage die Massefläche für die HF-Leitungen enthält. Die Anschlüsse der Pins 43, 44 für die Monitordiode können dann auf der Unterseite der Mehrlagenplatine (unterste Lage) liegen, so 45 dass sie durch die Masseebene von den HF-Leitungen entkoppelt sind.

[0050] In Fig. 2b ist bei grundsätzlich gleichem Aufbau ein Anpassungsschaltung 7' für eine symmetrische Ansteuerung des TO-Moduls dargestellt. Die Schaltung wird 50 weiter unten anhand der Fig. 1b bis 1d näher erläutert werden.

[0051] Zwei Beinchen/Pins 42, 45 des TO-Gehäuses 1 werden in paralleler Anordnung auf zwei Mikrostreifenleitungen 82, 83 unmittelbar aufgelötet, wobei die Beinchen 55 42, 45 im wesentlichen über ihre gesamte Länge mit den Mikrostreifenleitungen 82, 83 elektrisch verbunden sind. Hierdurch werden die Hochfrequenzeigenschaften der Ankopplung wesentlich verbessert.

[0052] Es wird darauf hingewiesen, dass die Anpassungsschaltung 7, 7' in Fig. 2a, 2b und auch den nachfolgenden Fig. 1a-1d lediglich schematisch dargestellt ist. Die Schaltung ist jeweils in der für Mikrowellenschaltungen üblichen Weis auszuführen. Insbesondere werden die Verbindungen der Bauel mente mit angepassten Leitungen, insbesondere 65 über Mikrostripleitungen ausgeführt. Masseverbindungen sind durch Durchkontaktierungen zur Massefläche realisiert. Die verwendeten Bauelemente sind HF-tauglich und werden

6

[0053] Dabei ist vorgesehen, die Bauelemente der Schaltungen als SMD (Surfac Mounted Device)-Bauelemente auszuführen und derart auf der Platinen berfläche 62 zu befestigen, daß die Mikrostripleitungen selbst als Löt-Pads

mit einer entsprechend angepassten Baugröße eingesetzt.

festigen, daß die Mikrostripleitungen selbst als Löt-Pads dienen. Hierdruch wird der Wellenwiderstand der Leiterbahnen auf der Platine nicht durch s nst erforderliche Löt-Pads für die SMD-Montage verändert.

[0054] Fig. 1a zeigt eine Anpassungsschaltung 7 für ein TO-Gehäuse mit einer Laserdiode. Die Anpassungsschaltung weist in dem dargestellten Ausführungsbeispiel drei Widerstände R1, R2, R3 und eine HF-Drossel L auf. Die Widerstände R1 und R2 sind in Reihe geschaltet und zwischen eine Treiberschaltung (nicht dargestellt), die ein hochfrequentes Datensignal D zur Steuerung der Laserdiode erzeugt, und eine Leuchtdiode LD geschaltet. Zwischen der Treiberschaltung und dem Widerstand R1 befindet sich im dargestellten Ausführungsbeispiel ein Ablockkondensator

C2, der lediglich hochfrequente Signale passieren läßt.

[0055] Der Widerstand R3 ist quer zu den Widerständen R1, R2 geschaltet und ein seinem einen Ende mit Masse verbunden. Er befindet sich gleichzeitig parallel zu einer HF-Drossel L, die mit einer Spannungsquelle verbunden ist und einen Vorstrom Ibias bzw. eine Vorspannung über den Wiederstand R2 an die Laserdiode abgibt. Die HF-Drossel L ist dabei bevorzugt mit einem Ferritkern, insbesondere einem taperförmigen Ferritkern oder einer Wicklung mit taperförmig variabler Steigung der Wicklung auf dem Ferritkern versehen. Zur besseren Abkopplung des HF-Signals von der Biasversorgung ist die "kalte Seite" der Drossel, also die Seite, an der kein HF-Signal anliegt, in einer alternativen Ausgestaltung zusätzlich mit einer kleinen Kapazität C1 gegen Masse geschaltet, wie in Fig. 1a angedeutet.

[0056] Auch kann zur Verbesserung der HF-Eigenschaften vorgesehen sein, die HF-Drossel L zusätzlich mit einem Widerstand entsprechend dem Widerstand R4 in Fig. 1d in Serie zu schalten.

[0057] Die Widerstände R1, R2, R3 und die Drossel L sind bevorzugt als SMD-Bauelemente ausgeführt und werden unmittelbar auf Mikrostripleiterbahnen aufgesetzt, die die Bauelemente verbinden. Die Leitenbahnen werden somit selbst als Löt-Pads genutzt, wodurch die Verwendung zusätzlicher Lötpads auf der Platine überflüssig wird.

[0058] Bei Verwendung einer Keramikplatine als Platine ist vorgesehen, die Widerstände R1, R2, R4 als Schichtwiderstände zu integrieren.

[0059] In der Fig. 1b ist bei grundsätzlich gleichem Aufbau eine Anpassungsschaltung 7' für ein Lasermodul mit differentieller (symmetrischer) Ansteuerung dargestellt. Bei einer symmetrischen Ansteuerung wird die Laserdiode LD von beiden Ausgängen eines Treibers mit einem Datensignal D, D* beaufschlagt. Dabei ist das Datensignal D* gegenüber dem Datensignal D invertiert.

[0060] Die Anpassungsschaltung 7' bildet zwei Schaltungszweige für die Datensignale D und D* mit Bauelementen R1, R2, R3, L und R1*, R2*, R3*, L* aus. Die beiden Schaltungszweige entsprechen dabei jeweils der Schaltung der Fig. 1a, so daß auf die diesbezüglichen Ausführungen verwiesen wird. Die Widerstände R1, R1* etc. und Induktivitäten L, L* sind jeweils identisch.

[0061] Die in Fig. 2b verwendete symmetrische Ansteuerung hat gegenüber einer single-ended Ansteuerung gemäß Fig. 2a erhebliche Vorteile. Da beide Treiberausgänge genutzt werden, steht ein höherer Signalhup zur Modulation des Lasers zur Verfügung. Dadurch kann entweder die Extinktion des modulierten Lasersignal erhöht oder durch entsprechende Wahl der Widerstände R1-R3 die Anpassung verbessert werden.

35

45

50

8

[0062] Eine Treiberschaltung hat im allgemeinen eine stark frequenzabhängige Ausgangsimpedanz, s dass eine gute Anpassung an die Last schwierig ist. Die symmetrische Ansteuerung kompensiert teilsweise diese Fehlanpassung. Außerdem wird di wirksame Induktivität der B nddrähte gegenüber einer single-ended Ansteuerung verkleinert. Wenn beispielsweise die B ndinduktivitäten von Pin 42 zur Laserdiode und von der Laserdiode zu Pin 41 in den beiden Ausführungen der Fig. 2a, 2b gleich groß wären, dann wäre die für die Treiberendstufe wirksame Bondinduktivität bei 10 der symmetrischen Ansteuerung gegenüber der single-ended Ansteuerung halbiert.

[0063] In Fig. 1c ist eine Variante der Anpassungsschaltung bei symmetrischer Ansteuerung des Lasermoduls dargestellt, bei der der Widerstand R3 die beiden Schaltungs15 arme für das Datensignal D und das Datensignal D* verbindet und dabei den doppelten Widerstandswert aufweist.

[0064] In Fig. 1d ist der Widerstand R3 nicht direkt, sondern über einen kleinen Kondensator C3, C3*, der beispielsweise einen Wert von 220 pF aufweist, auf Masse gelegt. 20 Dadurch wird der Gleichstrombedarf der Schaltung reduziert.

[0065] Bevorzugte Werte für R1, R2 und R3 in den Fig. 1a bis 1d sind bei einer single-ended Ansteuerung des Lasermoduls und bei einer Anpassung an einen Ausgangswider- 25 stand eines Treibers von 50 Ohm:

R1 = 0 Ohm-47 Ohm

R2 = 8 Ohm - 20 Ohm

 $R3 = 50 \text{ Ohm} - \infty$.

[0066] Bevorzugte Werte für R1, R2 und R3 (bzw. für 30 R1*, R2*, R3*) sind bei einer symmetrischen Ansteuerung des Lasermoduls und bei einer Anpassung an einen Ausgangswiderstand eines Treibers von 50 Ohm:

R1 = 0 Ohm-25 Ohm

R2 = 4 Ohm - 10 Ohm

 $R3 = 50 \text{ Ohm} - \infty$.

[0067] Niedrige Werte von R1 und R2 bzw. hohe Werte von R3 verringern die Signaldämpfung der Anpassungsschaltung. Sie ergeben aber im allgemeinen eine schlechtere Anpassung.

[0068] Sofern an Stelle eines direkt modulierten Laserchips ein Laser mit einem integrierten Elektroabsorptionsmodulator eingesetzt wird, dann bestehen bei einer singleended Ansteuerung folgende bevorzugte Werte für die Anpassungswiderstände:

R1 = 10 Ohm - 30 Ohm

R2 = 6 Ohm - 12 Ohm

R3 = 50 Ohm - 400 Ohm.

[0069] Bei einer symmetrischen Ansteuerung sind folgend Werte bevorzugt:

R1 = 5 Ohm - 12 Ohm

R2 = 3 Ohm-6 Ohm

R3 = 25 Ohm - 200 Ohm.

[0070] Der Innenaufbau des TO-Moduls der Fig. 2a, 2b ist mit hoher Reproduzierbarkeit auszuführen, damit die HF-55 Eigenschaften des Sende- oder Empfangsmoduls reproduzierbar sind. Insbesondere Lage und Länge der Bonddrähte innerhalb des TO-Moduls müssen genau festgelegt sein. Die B ndverbindungen im TO-Gehäuse sind dabei so kurz wie möglich zu halten, um di HF-Eigenschaften zu verbessern. Gegebenenfalls sind mehrere Bonds parallel zu setzen (Mehrfachbondung n) oder ist mit Bändchen zu bonden. Hierdurch wird di Gesamtinduktivität möglichst gering gehalten. Bei einem Sende- oder Empfangsmodul mit Empfängerchip sind auf diesem die notwendigen Pads für das 65 Bonden bzw. Mehrfachbonden vorzusehen.

[0071] S fern das TO-Gehäuse ein Empfangsmodul enthält, ist des weiteren die Impedanz der TO-Gehäusedurch-

führung an den Wert des Ausgang des entsprechenden Empfängerbauteils anzupassen. Dessen Impedanz liegt üblicherweise bei 50 Ohm.

[0072] In einer nicht dargestellten Erfindungsvariante wird an dem Ausgang des TO-Gehäuses 1 ein kurzes Stück einer Streifenleitung mit hohem Wellenwiderstand eingefügt. Wie Simulati n ergeben haben, führt dies zu einer Anhebung des Frequenzganges des TO-Gehäuses bei hohen Frequenzen.

[0073] Insbesondere die Kombination der obenbeschriebenen Maßnahmen führt zu einem flachen Frequenzgang des TO-Gehäuses bis zu einer Frequenz von ca. 7 bis 10 GHz. Damit ist ein derartiges Design auch noch für Datenraten von 12,5 Gbit/s einsetzbar.

[0074] Es wird darauf hingewiesen, dass die vorstehend beschriebenen Merkmale zur Verbesserung der HF-Eigenschaften der Anordnung mit TO-Gehäuse und HF-Schaltungsplatine nicht notwendigerweise gleichzeitig ausgebildet sein müssen. Jedes dieser Merkmale kann für sich und ohne die weiteren dargestellten Merkmale realisiert werden. Insbesondere stellen das Vorsehen einer HF-Anpassungsschaltung, der in horizontaler Ebene erfolgende Anschluß der Pins des TO-Gehäuses an planare HF-Leitet der HF-Platine sowie das Befestigen von in SMD-Bausweise ausgeführten Bauelementen direkt und ohne weitere Lötpads auf planare HF-Leitungen der HF-Platine Gesichtspunkte der Erfindung dar, die auch für sich genommen und nicht in Kombination mit weiteren Maßnahmen realisiert werden können.

Patentansprüche

1. Anordnung zum Betrieb eines optischen Sendeoder Empfangsmoduls bei hohen Datenraten bis zu 10 Gbit/s, mit

einem TO-Gehäuse mit elektrischen Anschlüssen, einem optischen Sende- oder Empfangsmodul, das in dem TO-Gehäuse angeordnet ist und

einer Schaltungsplatine zur elektrischen Kontaktierung der elektrischen Anschlüsse des TO-Gehäuses,

dadurch gekennzeichnet,

daß die Schaltungsplatine (6) HF-Leitungen (82, 83) aufweist und die elektrischen Anschlüsse (41-45) in einer Anordnung parallel zur Platinenebene mit den HF-Leitungen verbunden sind.

- 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die HF-Leitungen als planare Leitungen mit definiertem Wellenwiderstand, insbesondere als Mikrostripleitungen (82, 83) ausgebildet sind, auf die die elektrischen Anschlüsse (41-45) in paralleler Lage unmittelbar aufgelötet werden.
- 3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wellenwiderstand der HF-Leitungen (82, 83) an die Impedanz des Sende- oder Empfangsmoduls angepaßt ist.
- 4. Anordnung nach mindestens einem der Ansprüche 1 bis 3, bei der das Sendemodul einen direkt modulierten Halbleiterlaser aufweist, dadurch gekennzeichnet, daß der Wellenwiderstand der HF-Leitungen (82, 83) 30 bis 50 Ohm beträgt.
- 5. Anordnung nach mindestens einem der Ansprüche 1 bis 3, bei der das Sendem dul einen Elektroabsorbtionsmodulat r aufweist, dadurch gekennzeichnet, daß der Wellenwiderstand der HF-Leitungen (82, 83) 50 bis 80 Ohm beträgt.
- Anordnung nach mindestens einem der v rangehenden Ansprüche, dadurch gekennzeichnet, daß in die HF-Schaltungsplatine ein Anpassungsschaltung (7,

- 7') zur Anpassung der Impedanz zwischen dem Sendeoder Empfangsmodul (LD) und einer auf der Platine (6) angeordn ten Treiber- oder Verstärkerschaltung integriert ist.
- 7. Anordnung nach Anspruch 6, bei der das Sendemodul einen Halbleiterlaser aufweist und dieser mit Signalen einer auf der HF-Platine angeordneten Treiberschaltung beaufschlagt wird, dadurch gekennzeichnet, daß die Anpassungsschaltung (7') für eine symmetrische Ansteuerung des Sende- oder Empfangsmoduls 10 (LD) durch die Treiberschaltung ausgelegt ist.
- 8. Anordnung nach Anspruch 6, bei der das Sendesmodul einen Halbleiterlaser aufweist und dieser mit Signalen einer auf der HF-Platine angeordneten Treiberschaltung beaufschlagt wird, dadurch gekennzeichnet, 15 daß die Anpassungsschaltung (7) für eine single-ended Ansteuerung des Sende- oder Empfangsmoduls (LD) durch die Treiberschaltung ausgelegt ist.
- 9. Anordnung nach mindestens einem der Ansprüche 8 bis 10, bei der das Sendemodul einen Halbleiterlaser 20 aufweist und dieser mit Signalen einer auf der HF-Platine angeordneten Treiberschaltung beaufschlagt wird, dadurch gekennzeichnet, daß die Anpassungsschaltung (7, 7) mindestens einen Widerstand (R1, R2, R3) aufweist, der den Halbleiterlaser (LD) an die Impedanz 25 der Treiberschaltung anpaßt.
- 10. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß auf die HF-Schaltungsplatine (6) eine Vorspannungsschaltung zur Erzeugung einer Vorspannung für das Sendeoder Empfangsmodul (LD) integriert ist.
- 11. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß die Vorspannungsschaltung eine breitbandige HF-Drossel (L) umfaßt.
- 12. Anordnung nach Anspruch 6 und 10, dadurch geskennzeichnet, daß die Vorspannungsschaltung und die
 Anpassungsschaltung in eine Schaltung (7, 7') integriert sind.
- 13. Anordnung nach Anspruch 12, bei der der Sendemodul einen Halbleiterlaser aufweist und dieser mit Signalen einer auf der HF-Platine angeordneten Treiberschaltung beaufschlagt wird, dadurch gekennzeichnet, daß die Schaltung aufweist:

mindestens einen ersten Widerstand (R2),

- eine mit einer Spannungsquelle verbundene HF-Drossel (L), die den Halbleiterlaser (LD) über den ersten Widerstand (R2) mit einer Vorspannung beaufschlagt und
- einen weiteren Widerstand (R3), dessen einer Anschluß an Masse und dessen anderer Anschluß mit dem 50 ersten Widerstand (R2) verbunden ist.
- 14. Anordnung nach Anspruch 13, dadurch gekennzeichnet, daß die Drossel (L) über eine relativ kleine Kapazität (C1) zusätzlich gegen Masse geschältet ist.
 15. Anordnung nach mindestens einem der Ansprüche 55 6 bis 14, dadurch gekennzeichnet, daß
- die Leitungen der Anpassungs- und/oder der Vorspannungsschaltung als planare HF-Leitungen ausgebildet sind,
- die in der Schaltung verwendeten Bauelemente (R1, 60 R2, R3, L) in SMD-Technik ausgeführt sind und dabei die planaren HF-Bahnen als Lötpads für die SMD-Bauelemente (R1, R2, R3, L) dienen.
- 16. Anordnung nach Anspruch 15, dadurch gekennzeichnet, daß Mikrostripleitungen der Schaltung als 65 Lötpads für die SMD-Bauelement dienen.
- Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die

- HF-Schaltungsplatine (6) zweilagig ist, wobei ein erster Anschluß (42) des TO-Gehäuses (1) mit HF-Leitungen auf der Oberseite (61) der Platin (6) und ein zweiter Anschluß (41) des TO-Gehäuses (1) mit einer Massefläche auf der Unterseite (62) der Platine (6) verbunden ist.
- 18. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die HF-Schaltungsplatine eine Mehrlagenplatine ist.
- 19. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das TO-Gehäuse (1) unmittelbar am Platinenrand angeordnet ist.
- 20. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß im TO-Gehäuse (1) kurze Bondverbindungen vorgesehen sind.
- 21. Anordnung nach mindestens einem der vorangehenden Ansprüche, wobei das Empfangsmodul einen Empfängerbaustein aufweist, dadurch gekennzeichnet, daß die Impedanz der Gehäusedurchführung des TO-Gehäuses (1) an den Wert der Impedanz des Ausgangs des Empfängerbausteins angepaßt ist.
- 22. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß am Ausgang des TO-Gehäuses (1) ein kurzes Stück einer Streifenleitung mit hohem Wellenwiderstand eingefügt

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

Fig. 2a

Fig. 2b

Fig. 3

