Exercise 3, September 29, 2011

- 1. Assume that observations v(n), n = 0, 1, 2, ... are normally distributed with expectation zero and variance σ^2 . Moreover, the observations on different time instants are independent. A *sum process* is defined as the sum $M(n) = \sum_{i=0}^{n} v(i)$.
 - (a) Check that E[M(n+1)|M(n), M(n-1), ...] = M(n).
 - (b) Determine Var[M(n+1)|M(n), M(n-1), ...].
 - (c) Find E[M(n+k)|M(n), M(n-1), ...], where k is a positive integer.
 - (d) Find Var[M(n+k)|M(n), M(n-1), ...], where k is a positive integer.
- 2. Let v(n) be a noise process, i.e., for each v(n) the expected value is zero and the variance is σ^2 . In addition, values of the noise on different time instants are not correlated. We try to predict v(n) in a linear manner using earlier values. We get an estimator $\hat{v}(n) = \sum_{k=1}^{L} a_k v(n-k)$.

 Using the principle of orthogonality, calculate the coefficients a_k that minimize the MSE.
- 3. (a) Given a MA(q) model, calculate the prediction $E[x(n+k)|F_n]$ given by the model, where F_n represents all the information at time n, i.e. the observations $x(n), x(n-1), \ldots$ and noise $v(n), v(n-1), \ldots$
 - (b) Calculate also the conditional variance $Var[x(n+k)|F_n]$.
 - (c) For an AR(p) process, calculate $E[x(n+1)|F_n]$ and $Var[x(n+1)|F_n]$.

The noise is normally distributed with mean zero and variance 1.

4. You have observed the values x(0), x(1), x(2) from the real-valued sinusoidal signal

$$x(n) = A\sin(n\omega + \phi) + v(n),$$

where v(n) is the noise term. Assume that you know the frequency ω . Find the amplitude A and the phase ϕ that minimize the squared error

$$\sum_{n=0}^{2} [x(n) - A\sin(n\omega + \phi)]^2.$$

Hints:

- Write the sinusoid as the sum of two complex exponentials.
- Use the principle of orthogonality.
- The inner product for complex valued vectors is $\mathbf{x}^H \mathbf{y}$ where $\mathbf{x}^H = (\mathbf{x}^T)^*$ (\mathbf{x} is transposed, and then the complex conjugate is taken for each element).

5. (Bonus point exercise)

Convert the ARMA process

$$x(n) - \frac{1}{2}x(n-1) = v(n) - \frac{1}{3}v(n-1) + \frac{1}{4}v(n-2)$$

into a MA process. Hint: use polynomials of z^{-1} and the fact that X(z) = M(z)V(z) where $M(z) = m_0 + m_1 z^{-1} + m_2 z^{-2} + \dots$ is the MA representation of the process and find the coefficients m_i .