

IEL – protokol k projektu

Ladislav, Vašina xvasin11

14. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	6
3	Příklad 3	9
4	Příklad 4	11
5	Příklad 5	14
6	Shrnutí výsledků	17

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
В	95	115	650	730	340	330	410	830	340	220

Krok 1 - Zjednodušíme $R_3,\,R_4$ a $U_1,\,U_2$

$$R_{34} = \frac{R_3 * R_4}{R_3 + R_4} = \frac{340 * 330}{340 + 330} = 167,4627\Omega$$

$$U = U_1 + U_2 = 95 + 115 = 210V$$

Krok 2 - Provedeme transfiguraci trojúhelník-hvězda

$$R_{234} = R_2 + R_{34} = 730 + 167,4627 = 897,4627\Omega$$

$$R_a = \frac{R_1 * R_{234}}{R_1 + R_{234} + R_5} = \frac{650 * 897,4627}{650 + 897,4627 + 410} = 298,0137\Omega$$

$$R_b = \frac{R_1 * R_5}{R_1 + R_{234} + R_5} = \frac{650 * 410}{650 + 897,4627 + 410} = 136,1456\Omega$$

$$R_c = \frac{R_{234} * R_5}{R_1 + R_{234} + R_5} = \frac{897,4627 * 410}{650 + 897,4627 + 410} = 187,9779\Omega$$

Krok 3 - Dále zjednodušujeme obvod

$$R_{b7} = R_b + R_7 = 136,1456 + 340 = 476,1456\Omega$$

$$R_{c6} = R_c + R_6 = 187,9779 + 830 = 1017,9779\Omega$$

$$R_{b7c6} = \frac{R_{b7}*R_{c6}}{R_{b7}+R_{c6}} = \frac{476,1456*1017,9779}{476,1456+1017,9779} = 324,4079\Omega$$

$$R_{ekv} = R_a + R_{b7c6} + R_8 = 298,0137 + 324,4079 + 220 = 842,4216\Omega$$

Krok 4 - Dopočítáme požadované hodnoty

$$I = \frac{U}{R_{ekv}} = \frac{210}{842,4216} = 0,2493A$$

$$U_{rb7c6} = R_{b7c6} * I = 324,4079 * 0,2493 = 80,8749V$$

$$I_{rc6} = U_{rb7c6} * R_{c6} = 80,8749 * 1017,9779 = 0,0794A$$

$$U_{r6} = R_6 * I_{rc6} = 830 * 0,0794 = 65,902V$$

$$I_{r6} = U_{r6} * R_6 = 65,902/930 = 0,0794A$$

Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	
F	130	180	350	600	195	650	250	

 $\mathbf{Krok}\ \mathbf{1}$ - Překreslíme obvod bez R_3 a nahradíme napěťový zdroj zkratem

Krok 2 - Spočítáme \mathcal{R}_i

$$R_{45} = R_4 + R_5 = 195 + 650 = 845\Omega$$

$$R_{145} = \frac{R_1 * R_{45}}{R_1 + R_{45}} = \frac{845 * 180}{845 + 180} = 148,3902\Omega$$

$$R_{26} = \frac{R_2 * R_6}{R_2 + R_6} = \frac{350 * 250}{350 + 250} = 145,8333\Omega$$

$$R_i = R_{145} + R_{26} = 148,3902 + 145,8333 = 294,2235\Omega$$

Krok 3 - Spočítáme U_{r3}

$$U_{r1} = U * \frac{R_1}{R_1 + R_4 + R_5} = 130 * \frac{180}{180 + 195 + 650} = 22,8293V$$

$$U_{r2} = U * \frac{R_2}{R_2 + R_6} = 130 * \frac{350}{350 + 250} = 75,8333V$$

$$S = U_{r1} + U_{r3} - U_{r2} = 0$$

$$U_{r3} = U_{r2} - U_{r1} = 75,8333 - 22,8293 = 53,004V$$

Krok 4 - Spočítáme I_{r3}

$$I_{r3} = \frac{U_{r3}}{R_i + R_3} = \frac{53,004}{294,2235 + 600} = 0,0593A$$

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	150	0.7	0.8	49	45	61	34	34

 $\mathbf{Krok}\ \mathbf{1}$ - V obvodu si vyznačíme uzly A, B, C a vytvoříme pro ně rovnice pomocí I. Kirchhoffova zákona

$$A: I_{R1} - I_{R2} - I_{R3} = 0$$

$$B: I_1 + I_{R3} - I_{R5} = 0$$

$$C: I_{R5} - I_1 + I_2 - I_{R4} = 0$$

$$A: \frac{U - U_A}{R_1} - \frac{U_B}{R_2} - \frac{U_A - U_B}{R_3} = 0$$

$$B: I_1 + \frac{U_A - U_B}{R_3} - \frac{U_B - U_C}{R_5} = 0$$

$$C: \frac{U_B - U_C}{R_5} - I_1 + I_2 - \frac{U_C}{R_4} = 0$$

Krok 2 - Vytvoříme si matici rovnic a vyjádříme $U_A,\,U_B,\,U_C$

$$\begin{pmatrix} \frac{-1}{R_1} + \frac{-1}{R_3} + \frac{-1}{R^2} & \frac{1}{R_3} & 0\\ \frac{1}{R_3} & \frac{-1}{R_3} + \frac{-1}{R_5} & \frac{1}{R_5}\\ 0 & \frac{1}{R_5} & \frac{-1}{R_3} + \frac{-1}{R_5} \end{pmatrix} \times \begin{pmatrix} U_A\\ U_B\\ U_C \end{pmatrix} = \begin{pmatrix} -3,0612\\ -0,7\\ -0,1 \end{pmatrix}$$

$$U_A = U_{R2} = 68,6069 \text{ V}$$

$$U_B = 60,\!2811 \; {
m V}$$

$$U_C = 31,8406 \text{ V}$$

Krok 3 - Dopočítáme I_{R2}

$$I_{R2} = \frac{U_A}{R_2} = \frac{68,6069}{45} = \mathbf{1,5246A}$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
В	25	40	11	15	100	85	220	95	80

Krok 1 - Vypočítáme úhlovou rychlost ω a impedance jednotlivých kondenzátorů a cívek.

$$\omega = 2 * \pi * f = 2 * \pi * 80 =$$
502,6548 [rad/s]

$$Z_{c1}=-j*rac{1}{\omega*C_1}=$$
-9,0430j Ω

$$Z_{c2} = -j * \frac{1}{\omega * C_2} = -20,9417 \mathbf{j} \ \Omega$$

$$Z_{L1} = j * \omega * L_1 =$$
50,2648j Ω

$$Z_{L2} = j * \omega * L_2 = 42,7251$$
j Ω

Krok 2 - Sestavíme rovnice pro smyčkové proudy.

$$I_a: U_1 + Z_{L2} * (I_a - I_c) + Z_{C1} * (I_a - I_b) + R_1 * I_a = 0$$

$$I_b: Z_{C1} * (I_b - I_a) + R_2 * (I_b - I_c) + Z_{L1} * I_b = 0$$

$$I_c: Z_{L2} * (I_c - I_a) + U_2 + Z_{C2} * I_c + R_2 * (I_c - I_b) = 0$$

 $\mathbf{Krok}\ \mathbf{3}$ - Vytvoříme matici rovnic.

$$\begin{pmatrix} R_1 + Z_{L2} + Z_{C1} & -Z_{C1} & -Z_{L2} \\ -Z_{C1} & R_2 + Z_{L1} + Z_{C1} & -R_2 \\ -Z_{L2} & -R_2 & R_2 + Z_{L2} + Z_{C2} \end{pmatrix} \times \begin{pmatrix} I_a \\ I_b \\ I_c \end{pmatrix} = \begin{pmatrix} -U_1 \\ 0 \\ -U_2 \end{pmatrix}$$

Krok 4 - Pomocí Cramerova pravidla spočítáme hodnoty I_a a I_c .

$$|A| = ((R_1 + Z_{L2} + Z_{C1}) * (R_2 + Z_{L1} + Z_{C1}) * (R_2 + Z_{L2} + Z_{C2})) + ((-Z_{C1}) * (-R_2) * (-Z_{L2})) + ((-Z_{L2}) * (-Z_{C1}) * (-R_2)) - ((-Z_{L2}) * (R_2 + Z_{L1} + Z_{C1}) * (-Z_{L2})) - ((-R_2) * (-R_2) * (R_1 + Z_{L2} + Z_{C1})) - ((R_2 + Z_{L2} + Z_{C2}) * (Z_{C1}) * (Z_{C1}))$$

$$|A| = ((11+33,6821j)*(15+41,2218j)*(15+21,7834j)) + ((9,0430j)*(-15)*(-42,7251j)) + ((-42,7251j)*(9,0430j)*(-15)) - ((-42,7251j)*(15+41,2218j)*(-42,7251j)) - ((-15)*(-15)*(11+33,6821j)) - ((15+21,7834j)*(9,0430j)*(9,0430j))$$

$$|I_a| = ((-U_1) * (R_2 + Z_{L1} + Z_{C1}) * (R_2 + Z_{L2} + Z_{C2})) + ((0) * (-R_2) * (-Z_{L2})) + ((-U_2) * (-Z_{C1}) * (-R_2)) - ((-Z_{L2}) * (R_2 + Z_{L1} + Z_{C1}) * (-U_2)) - ((-R_2) * (-R_2) * (U_1)) - ((R_2 + Z_{L2} + Z_{C2}) * (-Z_{C1}) * (0))$$

$$|I_a| = ((-25)*(15+41,2218j)*(15+21,7834j) + ((0)*(-15)*(-42,7251j)) + ((-40)*(9,0430j)*(-15)) - ((-42,7251j)*(15+41,2218j)*(-40)) - ((-15)*(-15)*(25)) - ((15+21,7834j)*(9,0430j)*(0))$$

$$|A| = -24692,414337 + 57180,0223319j$$
 $|I_a| = 92896,9950402 - 43836,21j$

$$I_a = \frac{|I_a|}{|A|} =$$
 -1,2374509 - 1,0902644j A

$$|I_c| = ((R_1 + Z_{L2} + Z_{C1}) * (R_2 + Z_{L1} + Z_{C1}) * (-U2)) + ((-Z_{C1}) * (-R_2) * (-U_1)) + ((-Z_{L2}) * (-Z_{C1}) * (0)) - ((-U_1) * (R_2 + Z_{L1} + Z_{C1}) * (-Z_{L2})) - ((0) * (-R_2) * (R_1 + Z_{L2} + Z_{C1})) - ((-U_2) * (-Z_{C1}) * (-Z_{C1})) + ((-Z_{C1}) * (-Z_{C1}) * (-Z_{C1}) * (-Z_{C1})) + ((-Z_{C1}) * (-Z_{C1}) * (-Z_$$

$$|I_c| = ((11+33,6821j)*(15+41,2218j)*(-40)) + ((9,0430j)*(-15)*(-25)) + ((-42,7251j)*(9,0430j)*(0)) - ((-25)*(15+41,2218j)*(-42,7251j)) - ((0)*(-15)*(11+33,6821j)) - ((-40)*(9,0430j)*(9,0430j))$$

$$|I_c| = 89696, 5758107 - 50977, 6395j$$

$$I_c = \frac{|I_c|}{|A|} =$$
 -1,3223434 - 0,9976338
j ${\bf A}$

Krok 5 - Vypočítáme $|U_{L2}|$ a φ_{L2} .

$$I_{L2} = I_a$$
 - I_c = 0,0848925 - 0,0926306j A

$$U_{L2} = I_{L2} * Z_{L2} = 3,9576516 + 3,6270406$$
j V

$$|U_{L2}| = \sqrt{(3,9576516)^2 * (3,6270406)^2} =$$
5,368279957 V

$$\varphi = \arctan \frac{3,6270406}{3.9576516} = \mathbf{0.74183649} \text{ rad}$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
G	20	50	25	8

Krok 1 - Napíšeme si základní rovnice

1)
$$i_L = \frac{U_R}{R}$$

2) $U_R + U_L - U = 0$
3) $i'_L = \frac{U_L}{L}, i_L(0) = i_{LP}$

Krok 2 - Vyjádříme si z 1) U_R a ze 3) U_L a dosadíme do 2)

1)
$$U_R = R * i_L$$

3) $U_L = L * i'_L$
2) $R * i_L + L * i'_L = U$

Krok 3 - Očekávané řešení $i_L = \mathrm{K}(\mathbf{t}) * e^{\lambda t}$

$$\lambda = ?$$

$$R + L * \lambda = 0$$

$$\lambda = -\frac{R}{L}$$

 $\mathbf{Krok}\ \mathbf{4}$ - Dosadíme do očekávaného řešení a derivujeme i_L

$$i_L(t) = K(t) * e^{\lambda t} = K(t) * e^{-\frac{R}{L}t}$$
$$i'_L(t) = K'(t) * e^{-\frac{R}{L}t} + K(t) * (-\frac{R}{L}) * e^{-\frac{R}{L}t}$$

Krok 5 - Dosadíme do R * i_L + L * i_L^\prime

$$R * K(t) * e^{-\frac{R}{L}t} + L * (K'(t) * e^{-\frac{R}{L}t} + K(t) * (-\frac{R}{L}) * e^{-\frac{R}{L}t}) = U$$

$$R * K(t) * e^{-\frac{R}{L}t} + L * K'(t) * e^{-\frac{R}{L}t} - L * K(t) * (\frac{R}{L}) * e^{-\frac{R}{L}t} = U$$

$$R * K(t) * e^{-\frac{R}{L}t} + L * K'(t) * e^{-\frac{R}{L}t} - R * K(t) * e^{-\frac{R}{L}t} = U$$

$$L * K'(t) * e^{-\frac{R}{L}t} = U$$

$$K'(t) * e^{-\frac{R}{L}t} = U$$

$$K'(t) = \frac{U}{L} * e^{\frac{R}{L}t} / \int$$

$$K(t) = \frac{U}{\frac{L}{R}} * e^{\frac{R}{L}t} + k$$

$$K(t) = \frac{U}{R} * e^{\frac{R}{L}t} + k$$

Krok 6 - Dosadíme do $i_L = \mathrm{K}(\mathrm{t}) \, * \, e^{-\frac{R}{L}t}$

$$i_L = \left(\frac{U}{R} * e^{\frac{R}{L}t} + k\right) * e^{-\frac{R}{L}t}$$
$$i_L = \frac{U}{R} + k * e^{-\frac{R}{L}t}$$

Krok 7 - Určíme integrační konstantu z počátečních podmínek $i_L(0)=i_{LP}\;\;{
m t}=0{
m s}$

$$i_{LP} = \frac{U}{R} + k * e^{0}$$
$$k = i_{LP} - \frac{U}{R}$$

Krok 8 - Analitické řešení $i_L=\mathrm{f}(\mathrm{t})$

$$i_L = \frac{U}{R} + (i_{LP} - \frac{U}{R}) * e^{-\frac{R}{L}t}$$

Krok 9 - Zkouška - dosadíme hodnoty ze zadání $i_L(0)=i_{LP}\;\;{\bf t}=0{\bf s}$

$$i_{L} = \frac{U}{R} + (i_{LP} - \frac{U}{R}) * e^{-\frac{R}{L}t}$$

$$8 = \frac{20}{25} + (8 - \frac{20}{25}) * e^{0}$$

$$8 = \frac{20}{25} - \frac{20}{25} + 8$$

$$8 = 8$$

$$i_{L}(0) = i_{LP}$$

Shrnutí výsledků

Příklad	Skupina	Výsledky
1	В	$U_{R6} = 65,902V I_{R6} = 0,0794A$
2	F	$U_{R3} = 53,004V I_{R3} = 0,0593A$
3	В	$U_{R2} = 68,6069V I_{R2} = 1,5246A$
4	В	$ U_{L_2} = 5,368279957V \varphi_{L_2} = 0,74183649rad$
5	G	$i_L = \frac{U}{R} + (i_{LP} - \frac{U}{R}) * e^{-\frac{R}{L}t}$