Учебник по Эконометрике Лекция 1: Векторные Пространства

Джон Стачурски

Лекции: Акшай Шенкер Перевел: Алексей Кедо

8 октября 2020 г.

Обзор

Линейная алгебра является основой математики и, в частности, эконометрики:

- проведение базовых вычислений с данными
- решение линейных уравнений используя данные
- продвинутые операции, такие как квадратичная минимизация

В центре внимания данной главы:

- 1. векторные пространства: линейные операции, нормы, линейные подпространства, линейная независимость, базисы и т.д.
- 2. теорема ортогональной проекции

Символ \mathbb{R}^N показывает набор любых векторов длины N, или N векторов

N-вектор \mathbf{x} – это список из N действительных чисел:

$$\mathbf{x} = (x_1, \dots, x_N)$$
 ,где $x_n \in \mathbb{R}$ для любого n

Также мы можем записать x вертикально, вот так:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

 $\mathsf{Puc.}$: Три вектора в \mathbb{R}^2

$$\mathbf{1} := \left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right)$$

Вектор из нулей будет обозначен 0

$$\mathbf{0} := \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array}\right)$$

Две базовые алгебраические операции:

- 1. Сложение векторов
- 2. Умножение на скаляр
- 1. Сумма $\mathbf{x} \in \mathbb{R}^N$ и $\mathbf{y} \in \mathbb{R}^N$ обозначается

$$\mathbf{x} + \mathbf{y} :=: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \end{pmatrix} := \begin{pmatrix} 3 \\ 6 \\ 9 \\ 12 \end{pmatrix}$$

Пример 2:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} := \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Рис.: Сложение векторов

$$\alpha \mathbf{x} = \alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} := \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{pmatrix}$$

$$0.5 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} := \begin{pmatrix} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{pmatrix}$$

Пример 2:

$$-1 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} := \begin{pmatrix} -1 \\ -2 \\ -3 \\ -4 \end{pmatrix}$$

Рис.: Уножение на скаляр

$$\mathbf{x} - \mathbf{y} := \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_N - y_N \end{pmatrix}$$

Определение можно дать в терминах сложения и умножения на скаляр

$$\mathbf{x} - \mathbf{y} := \mathbf{x} + (-1)\mathbf{y}$$

Рис.: Разница векторов

Скалярное произведение двух векторов ${\bf x}$ и ${\bf y}$ в ${\mathbb R}^N$ обозначается $\langle {\bf x}, {\bf y} \rangle$, и является суммой произведения их элементов:

$$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=1}^{N} x_n y_n$$

Для любых $lpha,eta\in\mathbb{R}$ и любых $\mathbf{x},\mathbf{y}\in\mathbb{R}^N$, верны следующие утверждения:

- 1. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$,
- 2. $\langle \alpha \mathbf{x}, \beta \mathbf{y} \rangle = \alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle$, и
- 3. $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$.

Свойства можно легко проверить с помощью определений умножения на скаляр и скалярного произведения.

Для 2., например, возьмите любые $\alpha, \beta \in \mathbb{R}$ и любые $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$:

$$\langle \alpha \mathbf{x}, \beta \mathbf{y} \rangle = \sum_{n=1}^{N} \alpha x_n \beta y_n = \alpha \beta \sum_{n=1}^{N} x_n y_n = \alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle$$

Норма (Эвклида) $\mathbf{x} \in \mathbb{R}^N$ обозначается

$$\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

Интерпретация:

- ullet $\|x\|$ показывает "длину" вектора x
- ullet $\|x-y\|$ показывает расстояние между векторами x и y

- 1. $\|\mathbf{x}\| \geq 0$ и $\|\mathbf{x}\| = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$
- 2. $\|\alpha \mathbf{x}\| = \|\alpha\| \|\mathbf{x}\|$
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 4. $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ (неравенство Коши Буняковского)

Свойство 4. рассматривается в ЕТ упражнении ??

Покажем доказательство свойства 3. с помощью свойств скалярного произведения (факт ??)

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$
$$= \langle \mathbf{x}, \mathbf{x} \rangle + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
$$\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 |\langle \mathbf{x}, \mathbf{y} \rangle| + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$||x + y||^2 \le (||x|| + ||y||)^2$$

Убираем квадраты и получаем неравенство треугольника

$$\mathbf{y} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K$$

где $\alpha_1, \ldots, \alpha_K$ скаляры

Пример.

$$0.5 \begin{pmatrix} 6.0 \\ 2.0 \\ 8.0 \end{pmatrix} + 3.0 \begin{pmatrix} 0 \\ 1.0 \\ -1.0 \end{pmatrix} = \begin{pmatrix} 3.0 \\ 4.0 \\ 1.0 \end{pmatrix}$$

Рис.: Линейные комбинации x_1, x_2

Пусть $X\subset\mathbb{R}^N$ некое непустое множество

Множество всех возможных линейных комбинаций X называют линейной оболочкой X, обозначается $\mathrm{span}(X)$

Для конечного $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ линейную оболочку можно записать так

$$\mathrm{span}(X) := \left\{ ext{ все } \sum_{k=1}^K lpha_k \mathbf{x}_k ext{, где } (lpha_1, \dots, lpha_K) \in \mathbb{R}^K
ight\}$$

Пример. Четыре вектора, обозначенные y на предыдущем рисунке, лежат в линейной оболочке $X = \{x_1, x_2\}$

Может ли *любой* вектор в \mathbb{R}^2 быть создан линейной комбинацией $\mathbf{x}_1, \mathbf{x}_2$?

Ответ да. Мы докажем это в §??

Линейная оболочка X состоит из всех векторов вида

$$lpha {f 1} = \left(egin{array}{c} lpha \ lpha \end{array}
ight)$$
 , где $lpha \in \mathbb{R}$

Представляет собой прямую на плоскости, которая проходит через

- вектор **1** (при $\alpha = 1$)
- начало координат **0** (при $\alpha = 0$)

Рис.: Линейная оболочка ${f 1}:=(1,1)$ в ${\Bbb R}^2$

Доказательство. Пусть $lpha_1,\dots,lpha_N$ коэффициенты, такие что $\sum_{k=1}^N lpha_k \mathbf{e}_k = \mathbf{0}$

Эквивалентно,

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} = \sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

В частности, $\alpha_k = 0$ для всех k

По определению, линейная оболочка — все возможные вектора в виде

$$\mathbf{y}=lpha\left(egin{array}{c} 3 \ 4 \ 2 \end{array}
ight)+eta\left(egin{array}{c} 3 \ -4 \ 0.4 \end{array}
ight)$$
 , где $lpha,eta\in\mathbb{R}$

Это плоскость, проходящая через

- вектор \mathbf{x}_1
- вектор x₂
- начало координат 0

Рис.: Линейная оболочка x_1, x_2

$$\mathbf{e}_1 := \left(egin{array}{c} 1 \ 0 \ dots \ 0 \end{array}
ight), \quad \mathbf{e}_2 := \left(egin{array}{c} 0 \ 1 \ dots \ 0 \end{array}
ight), \, \cdots, \, \mathbf{e}_N := \left(egin{array}{c} 0 \ 0 \ dots \ 1 \end{array}
ight)$$

 \mathbf{e}_n состоит из нулей, кроме n-ого элемента равного 1

Вектора $\mathbf{e}_1,\dots,\mathbf{e}_N$ назвают каноническими базисными векторами of \mathbb{R}^N

Рис.: Базисные векторы в \mathbb{R}^2

Пример. (прод.)

Линейная оболочка $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$ эквивалентна всему \mathbb{R}^N

Доказательство для N=2:

Пусть $\mathbf{y} \in \mathbb{R}^2$, тогда

$$\mathbf{y} := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y_2 \end{pmatrix}$$
$$= y_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$$

Таким образом, $\mathbf{v} \in \mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\}$

Так как ${f y}$ произвольный, мы показали, что ${
m span}\{{f e}_1,{f e}_2\}={\mathbb R}^2$

Пример. Рассмотрим множество

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

Графически, P= плоскость в \mathbb{R}^3 с координатой высоты =0

Пример. (прод.)

Если $\mathbf{e}_1 = (1,0,0)$ и $\mathbf{e}_2 = (0,1,0)$, тогда $\mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\} = P$

Чтобы подтвердить утверждение, возьмем $\mathbf{x} = (x_1, x_2, 0)$, любой элемент P. Можно записать \mathbf{x} в следующем виде

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

Другими словами, $P \subset \mathrm{span}\{\mathbf{e}_1, \mathbf{e}_2\}$

И наоборот, у нас имеется $span\{e_1, e_2\} \subset P$ (почему?)

Рис.: span $\{e_1, e_2\} = P$

Доказательство. Возьмем любой непустой $X\subset Y\subset \mathbb{R}^N$ Пусть $\mathbf{z}\in \mathrm{span}(X)$, тогда имеется

$$\mathbf{z} = \sum_{k=1}^K lpha_k \mathbf{x}_k$$
 для некоторых $\mathbf{x}_1, \dots, \mathbf{x}_K \in X, \ lpha_1, \dots, lpha_K \in \mathbb{R}$

$$\mathbf{z} = \sum_{k=1}^K lpha_k \mathbf{x}_k$$
 для некоторых $\mathbf{x}_1, \dots, \mathbf{x}_K \in Y, \ lpha_1, \dots, lpha_K \in \mathbb{R}$

Значит, $\mathbf{z} \in \mathrm{span}(Y)$

Важные вопросы:

- Когда матрица обратима?
- Когда аргументы регрессии страдают от коллинеарности?
- Когда система линейных уравнений имеет решение?

Все эти вопросы тесно связаны с линейной независимостью

$$\sum_{k=1}^{K} \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \cdots = \alpha_K = \mathbf{0}$$

Пусть α_1 и α_2 скаляры, такие что

$$\alpha_1 \left(\begin{array}{c} 1.2 \\ 1.1 \end{array} \right) + \alpha_2 \left(\begin{array}{c} -2.2 \\ 1.4 \end{array} \right) = \mathbf{0}$$

Это является линейной системой из двух уравнений α_1 и α_2

Единственное решение $\alpha_1=\alpha_2=0$

 $\{\mathbf{x}_1,\mathbf{x}_2\}$ линейно независимы

Рис.: Единственное решение $\alpha_1=\alpha_2=0$

Проверим это. Пусть $lpha_1,\dots,lpha_N$ коэффициенты, такие что $\sum_{k=1}^N lpha_k \mathbf{e}_k = \mathbf{0}$, тогда

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} = \sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

To есть $\alpha_k = 0$ для всех k

Таким образом, $\{\mathbf e_1,\ldots,\mathbf e_N\}$ линейно независимы

Теорема. (??) Пусть $X:=\{\mathbf{x}_1,\ldots,\mathbf{x}_K\}\subset\mathbb{R}^N$. Для K>1, следующие утверждения эквивалентны:

- $1. \, X$ линейно независим
- 2. X_0 подходящее подмножество $X \implies \operatorname{span} X_0$ подходящее подмножество $\operatorname{span} X$
- 3. Ни один из векторов X не может быть записан как линейная комбинация оставшихся

Доказательство есть в упражнениях. См. ЕТ упр. ?? и решение

Рассмотрим случай с N=2

Мы знаем, что $\mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\}=\mathbb{R}^2$

• Если убрать любой элемент из $span\{e_1,e_2\}$, линейная оболочка превратится в прямую.

Векторы не являются линейно независимыми, так как $\mathbf{x}_2 = -2\mathbf{x}_1$

- Если убрать любой из векторов, линейная оболочка не изменится — останется горизонтальной прямой
- имеется $\mathbf{x}_2 = -2\mathbf{x}_1$, значит любой вектор может быть записан как линейная комбинация оставшегося

- 1. любое подмножество X линейно независимо,
- 2. *X* не содержит **0**, и
- 3. $X \cup \{\mathbf{x}\}$ линейно независимы для всех $\mathbf{x} \in \mathbb{R}^N$, таких что $\mathbf{x} \notin \operatorname{span} X$.

Доказательство показано в упражнении (упр. ?? в ЕТ)

Линейная независимость и единственность

Линейная независимость - ключевое условие для того, чтобы решение системы линейных уравнений существовало *и* было единственным

Теорема. (??) Пусть $X := \{x_1, \dots, x_K\}$ некоторое множество векторов в \mathbb{R}^N . Следующие утверждения эквивалентны:

- 1. Х линейно независим
- 2. Для каждого $\mathbf{y} \in \mathbb{R}^N$ существует не более одного множества скаляров $\alpha_1, \dots, \alpha_K$, такого что

$$\mathbf{y} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K \tag{1}$$

Пусть X линейно независим, возьмем любой ${f y}$

Предположим противоположное — (1) выполняется для нескольких наборов скаляров, получается

$$\exists \ \alpha_1, \dots, \alpha_K \ \mathsf{u} \ \beta_1, \dots, \beta_K \ \mathrm{s.t.} \ \mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k = \sum_{k=1}^K \beta_k \mathbf{x}_k$$

$$\therefore \sum_{k=1}^K (\alpha_k - \beta_k) \mathbf{x}_k = \mathbf{0}$$

∴
$$\alpha_k = \beta_k$$
 для всех k

Если 2. выполняется, то существует не более одного набора скаляров, такого что

$$\mathbf{0} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k$$

Так как при $\alpha_1=\cdots=\alpha_k=0$ это равенство выполняется, больше не существует скаляров, при которых $\mathbf{0}=\sum_{k=1}^K \alpha_k \mathbf{x}_k$

Значит, Х линейно независим по определению

Непустое подмножество S множества \mathbb{R}^N называется линейным подпространством (или просто подпространством) множества \mathbb{R}^N , если

$$\mathbf{x}, \mathbf{y} \in S \text{ in } \alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in S$$

Другими словами, $S \subset \mathbb{R}^N$ 'заперт' с векторным сложением и умножением на скаляр

Пример. Если X — некое непустое подмножество \mathbb{R}^N , тогда $\operatorname{span} X$ — линейное подпространство \mathbb{R}^N

Пример. Возьмем любой вектор $\mathbf{a}\in\mathbb{R}^N$, множество $A:=\{\mathbf{x}\in\mathbb{R}^N:\langle\mathbf{a},\mathbf{x}\rangle=0\}$ является линейным подпространством \mathbb{R}^N

Чтобы показать это, пусть $\mathbf{x},\mathbf{y}\in A$, $\alpha,\beta\in\mathbb{R}$ и $\mathbf{z}:=\alpha\mathbf{x}+\beta\mathbf{y}\in A$

Получается

$$\langle \mathbf{a}, \mathbf{z} \rangle = \langle \mathbf{a}, \alpha \mathbf{x} + \beta \mathbf{y} \rangle = \alpha \langle \mathbf{a}, \mathbf{x} \rangle + \beta \langle \mathbf{a}, \mathbf{y} \rangle = 0 + 0 = 0$$

Значит, $\mathbf{z} \in A$

- **1**. **0** ∈ *S*
- 2. $X \subset S \implies \operatorname{span} X \subset S$, и
- 3. span S = S

Теорема. (??) Пусть S — линейное подпространство \mathbb{R}^N . Если S охватывает K векторов, тогда любое линейно независимое подмножество S имеет не более K векторов

По теореме ??, три вектора на рисунке ниже линейно независимы

Теорема. (??) Пусть $X := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ — некие N векторов в \mathbb{R}^N . Следующие утверждения эквивалентны:

- 1. span $X = \mathbb{R}^N$
- $2. \, X$ линейно независим

Для доказательства смотрите ?? в ЕТ

Множество B называется базисом S, если

- 1. B охватывает S и
- 2. В линейно независимо

Из Теоремы $\ref{eq:constraint}$, любые N линейно независимых векторов в \mathbb{R}^N формируют базис в \mathbb{R}^N

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$$

Мы показали, что $\mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\}=P$ для

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Более того, $\{e_1, e_2\}$ линейно независимы (почему?)

Значит, $\{{\bf e}_1,{\bf e}_2\}$ являются базисом для P

- $1. \, \, S$ имеет по меньшей мере один базис и
- 2. каждый базис S имеет одинаковое количество элементов.

Если S — линейное подпространство \mathbb{R}^N , то обычное число, определенное в Теореме $\ref{eq:substantial}$? называется размерностью S, и обозначается $\dim S$

$$\mathbf{e}_1 := \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \quad \mathbf{e}_2 := \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)$$

базис имеет два элемента

Пример. Прямая $\{\alpha \mathbf{x} \in \mathbb{R}^N : \alpha \in \mathbb{R}\}$, проходящая через начало координат, имеет размерность 1

Возьмем множество из K векторов, насколько большой будет его линейная оболочка с точки зрения размерности?

Теорема.
$$(\ref{eq:constraints})$$
 Если $X:=\{\mathbf{x}_1,\ldots,\mathbf{x}_K\}\subset\mathbb{R}^N$, то

- 1. $\dim \operatorname{span} X \leq K$ и
- 2. $\dim \operatorname{span} X = K$ тогда и только тогда, когда X линейно независим

Для доказательства смотрите упражнение ?? в ЕТ

- 1. Пусть S и S' являются линейными подпространствами \mathbb{R}^N размерности K. Если $S\subset S'$, то S=S'
- 2. Если S линейное подпространство \mathbb{R}^N размерности M и M < N, то $S \neq \mathbb{R}^N$

Функция $T\colon \mathbb{R}^K o \mathbb{R}^N$ называется линейной, если

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T \mathbf{x} + \beta T \mathbf{y} \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^K, \ \forall \alpha, \beta \in \mathbb{R}$$

Примечание:

- Линейные функции обычно записываются с большой буквы
- Обычно, когда это удобно, аргументы в скобках опускаются

Чтобы увидеть это, возьмем любые α, β, x, y в \mathbb{R} , тогда

$$T(\alpha x + \beta y) = 2(\alpha x + \beta y) = \alpha 2x + \beta 2y = \alpha Tx + \beta Ty$$

Пример. Функция $f: \mathbb{R} \to \mathbb{R}$, определяемая как $f(x) = x^2$, нелинейна

Чтобы увидеть это, возьмем $\alpha = \beta = x = y = 1$, получается

$$f(\alpha x + \beta y) = f(2) = 4$$

Tem he mehee, $\alpha f(x) + \beta f(y) = 1 + 1 = 2$

Пример. Функция $f\colon \mathbb{R} o \mathbb{R}$, определяемая f(x)=1+2x, нелинейна

Возьмем $\alpha=\beta=x=y=1$. Имеется

$$f(\alpha x + \beta y) = f(2) = 5$$

Тем не менее, $\alpha f(x) + \beta f(y) = 3 + 3 = 6$

Такой вид функции называется афинной функцией

$$T[\sum_{k=1}^{K} \alpha_k \mathbf{x}_k] = \sum_{k=1}^{K} \alpha_k T \mathbf{x}_k$$

будет действительным пока K=2

Индукция расширяет это до произвольных K

$$\operatorname{rng}(T) = \operatorname{span}(V)$$
 , где $V := \{T\mathbf{e}_1, \dots, T\mathbf{e}_K\}$

где \mathbf{e}_k является k-ым базисным вектором в \mathbb{R}^K

Доказательство. Любой $\mathbf{x} \in \mathbb{R}^K$ может быть выражен как $\sum_{k=1}^K \alpha_k \mathbf{e}_k$. Значит, $\operatorname{rng}(T)$ является множеством всех точек следующей формы

$$T\mathbf{x} = T\left[\sum_{k=1}^{K} \alpha_k \mathbf{e}_k\right] = \sum_{k=1}^{K} \alpha_k T\mathbf{e}_k$$

так как $\alpha_1, \ldots, \alpha_K$ меняется для всех комбинаций. Это совпадает с определением $\mathrm{span}(V)$

$$\ker(T) := \{ \mathbf{x} \in \mathbb{R}^K : T\mathbf{x} = \mathbf{0} \}$$

 $oldsymbol{\Phi}$ акт. $(\ref{eq:total_state})$ Если $T\colon \mathbb{R}^K o \mathbb{R}^N$ линейное отображение, то

rng
$$T = \operatorname{span} V$$
, где $V := \{T\mathbf{e}_1, \dots, T\mathbf{e}_K\}$

Доказательства простые (выполните в качестве упражнения)

Много научных и практических задач являются задачами 'обратными'

- мы наблюдаем результаты, но не их причины
- как можно работать в обратном порядке, от результатов к причинам?

Примеры

- какие предпочтения потребителей привели к наблюдаемому рыночному поведению?
- какие ожидания привели к данному сдвигу обменных курсов?

- имеет ли эта задача решение?
- является ли оно едиственным?

Ответы зависят от того, является ли F сюръекцией, инъекцией и т.д.

Лучший вариант — биекция

Но возникают и другие ситуации

Теорема. (??) Если T — линейная функция из \mathbb{R}^N в \mathbb{R}^N , то все следующие утверждения эквивалентны:

- 1. T является биекцией.
- $2. \ T$ является сюръекцией.
- 3. T является инъекцией.
- 4. $\ker T = \{0\}.$
- 5. $V := \{ T \mathbf{e}_1, \dots, T \mathbf{e}_N \}$ линейно независимо.
- 6. $V := \{ T \mathbf{e}_1, \dots, T \mathbf{e}_N \}$ формирует базис \mathbb{R}^N .

Смотрите упражнение ?? в ЕТ для доказательства

Если любое из этих условий выполняется, то T называют несингулярной. В ином случае T назвают сингулярной

Рис.: Случай с N=1, несингулярная и сингулярная функции

Факт. (??) Если $T\colon \mathbb{R}^N \to \mathbb{R}^N$ несингулярна, то и T^{-1} несингулярна.

Для доказательства, смотрите упр. ??

Помните, что результаты выше применимы к отображениям из \mathbb{R}^N в \mathbb{R}^N

Все меняется, когда мы смотрим на линейные отображения при различных размерностях

Общие правили для линейных отображений:

- отображения из меньших в большие размерности не могут быть сюръекцией
- отображения из больших в меньшие размерности не могут быть инъекцией

Ни один из случаев не может быть биекцией

Теорема. (??) Для линейного отображения T из $\mathbb{R}^K \to \mathbb{R}^N$, следующие утверждения верны:

- 1. Если K < N, то T не сюръекция.
- 2. Если K > N, то T не инъекция.

Доказательство. (часть 1)

Пусть K < N и отображение $T \colon \mathbb{R}^K \to \mathbb{R}^N$ линейное

Пусть
$$V:=\{T\mathbf{e}_1,\ldots,T\mathbf{e}_K\}$$
, имеется

$$\dim(\operatorname{rng}(T)) = \dim(\operatorname{span}(V)) \le K < N$$

$$\therefore$$
 rng $(T) \neq \mathbb{R}^N$

Значит, T не сюръекция

Предположим обратное, что T является инъекцией

Пусть $\alpha_1, \ldots, \alpha_K$ набор векторов, такой что

$$\alpha_1 T \mathbf{e}_1 + \dots + \alpha_K T \mathbf{e}_K = \mathbf{0}$$

$$\therefore T(\alpha_1 \mathbf{e}_1 + \dots + \alpha_K \mathbf{e}_K) = \mathbf{0} \qquad (\text{по линейности})$$

$$\alpha_1 \mathbf{e}_1 + \cdots + \alpha_K \mathbf{e}_K = \mathbf{0}$$
 (τακ κακ $\ker(T) = {\mathbf{0}}$)

$$\alpha_1 = \cdots = \alpha_K = 0$$
 (по независимости $\{\mathbf{e}_1, \dots \mathbf{e}_K\}$)

Мы показали, что $\{T\mathbf{e}_1,\ldots,T\mathbf{e}_K\}$ линейно независимы

Но тогда \mathbb{R}^N содержит линейно независимое множество с K > N векторами — противоречие

Пример. Функция издержек $c(k,\ell)=rk+w\ell$ не может быть инъекцией

Ключевой концепцией курса является ортогональность – не только векторов, но и случайных величин

Пусть ${\bf x}$ и ${\bf z}$ векторы в ${\mathbb R}^N$

Если $\langle \mathbf{x},\mathbf{z}
angle = 0$, то мы называем \mathbf{x} и \mathbf{z} ортогональными

Записывается $\mathbf{x} \perp \mathbf{z}$

В \mathbb{R}^2 ортогональный значит перпендикулярный

Рис.: $\mathbf{x} \perp \mathbf{z}$

Говорят, что \mathbf{x} ортогонален S, если $\mathbf{x} \perp \mathbf{z}$ для всех $\mathbf{z} \in S$ Записывается $\mathbf{x} \perp S$

Рис.: $\mathbf{x} \perp S$

Если $\{\mathbf{z}_1,\ldots,\mathbf{z}_K\}$ является ортогональным множеством, то

$$\|\mathbf{z}_1 + \dots + \mathbf{z}_K\|^2 = \|\mathbf{z}_1\|^2 + \dots + \|\mathbf{z}_K\|^2$$

Докажите в качестве упражнения

 $oldsymbol{\Phi}$ акт. $(\ref{eq:constraint})$ Если $O\subset\mathbb{R}^N$ является ортогональным множеством и $oldsymbol{0}\notin O$, то O линейно независимо

Ортонормальное множество, охватывающее линейное подпространство S в \mathbb{R}^N называют ортонормальным базисом S

ullet примером ортонормального базиса для всего в \mathbb{R}^N является канонический базис $\{oldsymbol{e}_1,\dots,oldsymbol{e}_N\}$

Факт. (??) Если $\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$ является ортонормальным множеством и $\mathbf{x} \in \mathrm{span}\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$, то

$$\mathbf{x} = \sum_{k=1}^{K} \langle \mathbf{x}, \mathbf{u}_k \rangle \, \mathbf{u}_k$$

$$S^{\perp} := \{ \mathbf{x} \in \mathbb{R}^N : \mathbf{x} \perp S \}$$

Факт. (??) Для любого непустого $S \subset \mathbb{R}^N$, пространство S^\perp является линейным подпространством \mathbb{R}^N

Доказательство. Если $\mathbf{x},\mathbf{y}\in S^\perp$ и $\alpha,\beta\in\mathbb{R}$, то $\alpha\mathbf{x}+\beta\mathbf{y}\in S^\perp$, так как для любых $\mathbf{z}\in S$

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle = \alpha \times 0 + \beta \times 0 = 0$$

Факт. $(\ref{eq:substitute})$ Для $S\subset\mathbb{R}^N$, выполняется $S\cap S^\perp=\{\mathbf{0}\}$

Рис.: Ортогональное дополнение S в \mathbb{R}^2

Теорема ортогональной проекции

Задача:

При данном $\mathbf{y} \in \mathbb{R}^N$ и подпространстве S, найти ближайший элемент S к \mathbf{y}

Формально: Решаем

$$\hat{\mathbf{y}} := \underset{\mathbf{z} \in S}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{z}\| \tag{2}$$

Существование, единственность решения не очевидны

Теорема ортогональной проекции: $\hat{\mathbf{y}}$ всегда существует, причем в единственном числе

Также дает полезную характеристику

Пусть $\mathbf{y} \in \mathbb{R}^N$ и S является непустым линейным подпространством в \mathbb{R}^N .

Следующие утверждения верны:

- 1. Задача оптимизации (2) имеет ровно одно решение
- 2. $\hat{\mathbf{y}} \in \mathbb{R}^N$ является решением (2) тогда и только тогда, когда $\hat{\mathbf{y}} \in S$ и $\mathbf{y} \hat{\mathbf{y}} \perp S$

Единственное решение $\hat{\mathbf{y}}$ называется ортогональной проекцией \mathbf{y} на S

Рис.: Ортогональная проекция

Доказательство. (достаточности 2.)

Пусть $\mathbf{y} \in \mathbb{R}^N$ и S является линейным подпространством в \mathbb{R}^N

Пусть $\hat{\mathbf{y}}$ — вектор в S, удовлетворяющий условию $\mathbf{y} - \hat{\mathbf{y}} \perp S$

Пусть \mathbf{z} — некая точка в S. Получается

$$\|\mathbf{y} - \mathbf{z}\|^2 = \|(\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{z})\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{z}\|^2$$

Второе равенство следует из $\mathbf{y} - \hat{\mathbf{y}} \perp S$ и Теоремы Пифагора

Так как ${f z}$ был произвольной точкой в S, получается $\|{f y}-{f z}\| \geq \|{f y}-{f \hat y}\|$ для всех ${f z}\in S$

Пример. Пусть $\mathbf{y} \in \mathbb{R}^N$ и $\mathbf{1} \in \mathbb{R}^N$ является вектором из единиц

Пусть S является множеством постоянных векторов в \mathbb{R}^N-S является линейной оболочкой $\{\mathbf{1}\}$

Ортогональная проекция ${f y}$ на S — это $\hat{{f y}}:=\bar{y}{f 1}$, где $\bar{y}:=rac{1}{N}\sum_{n=1}^N y_n$

Ясно, что $\hat{\mathbf{y}} \in S$

Чтобы показать, что ${f y}-{f \hat y}$ ортогонален к S, нужно проверить $\langle {f y}-{f \hat y},{f 1}\rangle=0$ (смотрите упр. \ref{y} на странице \ref{y}). Это верно, так как

$$\langle \mathbf{y} - \hat{\mathbf{y}}, \mathbf{1} \rangle = \langle \mathbf{y}, \mathbf{1} \rangle - \langle \hat{\mathbf{y}}, \mathbf{1} \rangle = \sum_{n=1}^{N} y_n - \bar{y} \langle \mathbf{1}, \mathbf{1} \rangle = 0$$

Если зафиксировать подпространство S, мы получим функциональную связь

 $\mathbf{y} \mapsto$ его ортогональная проекция $\hat{\mathbf{y}} \in S$

Это четко определенная функция из \mathbb{R}^N в \mathbb{R}^N

Функция обычно обозначается как Р

ullet P(y) или Py представляет \hat{y}

 ${f P}$ называется ортогональным проекционным отображением на S, записывается как

$$\mathbf{P} = \operatorname{proj} S$$

Рис.: Ортогональная проекция под Р

Теорема. (??) [Теорема ортогональной проекции II]

Пусть S является неким линейным подпространством \mathbb{R}^N . и P = proj S. Следующие утверждения верны:

P — линейная функция

Более того, для любого $\mathbf{v} \in \mathbb{R}^N$, соблюдается

- 2. $\mathbf{P}\mathbf{v} \in S$,
- 3. $\mathbf{v} \mathbf{P}\mathbf{v} \perp S$,
- 4. $\|\mathbf{v}\|^2 = \|\mathbf{P}\mathbf{v}\|^2 + \|\mathbf{v} \mathbf{P}\mathbf{v}\|^2$,
- 5. $\|\mathbf{P}\mathbf{y}\| \leq \|\mathbf{y}\|$,
- 6. Py = y тогда и только тогда, когда $y \in S$, и
- 7. **Pv** = **0** тогда и только тогда, когда $\mathbf{v} \in S^{\perp}$.

Для доказательства смотрите страницу ?? и упражнение ?? оде 92/104

Ниже приводится основополагающий результат

Факт. (??) Если $\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$ является ортонормальным базисом для S, то для каждого $\mathbf{y} \in \mathbb{R}^N$,

$$\mathbf{P}\mathbf{y} = \sum_{k=1}^{K} \langle \mathbf{y}, \mathbf{u}_k \rangle \, \mathbf{u}_k \tag{3}$$

Доказательство. Для начала, правая сторона (3) находится в S, так как это линейная комбинация векторов, охватывающих S

Далее, мы знаем, что $\mathbf{y} - \mathbf{P}\mathbf{y} \perp S$ тогда и только тогда, когда $\mathbf{y} - \mathbf{P}\mathbf{y} \perp \mathbf{u}_j$ для каждого \mathbf{u}_j из множества базисных векторов (упражнение упр. $\ref{eq:constraint}$)

Дл любого $\mathbf{y} - \mathbf{P}\mathbf{y} \perp \mathbf{u}_{j}$, выполняется слудующее

$$\langle \mathbf{y} - \mathbf{P} \mathbf{y}, \mathbf{u}_j \rangle = \langle \mathbf{y}, \mathbf{u}_j \rangle - \sum_{k=1}^K \langle \mathbf{y}, \mathbf{u}_k \rangle \langle \mathbf{u}_k, \mathbf{u}_j \rangle$$

$$= \langle \mathbf{y}, \mathbf{u}_j \rangle - \langle \mathbf{y}, \mathbf{u}_j \rangle = 0$$

Это подтверждает, что $\mathbf{y} - \mathbf{P}\mathbf{y} \perp S$

Факт. (??) Пусть S_i является линейным подпространством \mathbb{R}^N для i=1,2 и $\mathbf{P}_i=\operatorname{proj} S_i$. Если $S_1\subset S_2$, то

$$\mathbf{P}_1\mathbf{P}_2\mathbf{y} = \mathbf{P}_2\mathbf{P}_1\mathbf{y} = \mathbf{P}_1\mathbf{y}$$
 для всех $\mathbf{y} \in \mathbb{R}^N$

Остаточная проекция

Спроецируем \mathbf{y} на S, где S является линейным подпространством \mathbb{R}^N

- ullet Ближайшая точка к ${f y}$ на S- это $\hat{{f y}}:={f P}{f y}$, здесь ${f P}={
 m proj}\,S$
- Если \mathbf{y} не находится в S, ошибка $\mathbf{y} \mathbf{P}\mathbf{y}$ существует

Введем оператор \mathbf{M} , который берет $\mathbf{y} \in \mathbb{R}^N$ и возвращает остаток

$$\mathbf{M} := \mathbf{I} - \mathbf{P} \tag{4}$$

где ${f I}$ является тождественным отображением ${\Bbb R}^N$

Для любых \mathbf{y} выполняется $\mathbf{M}\mathbf{y} = \mathbf{I}\mathbf{y} - \mathbf{P}\mathbf{y} = \mathbf{y} - \mathbf{P}\mathbf{y}$

В регрессионном анализе ${\bf M}$ проявляется как матрица, называемая 'аннигилятором'

Мы говорим о \mathbf{M} как об остаточной проекции

Пример. Вспомним, что проекция $\mathbf{y} \in \mathbb{R}^N$ на $\mathrm{span}\{\mathbf{1}\}$ — это $ar{y}\mathbf{1}$ Остаточная проекция $\mathbf{M}_c\mathbf{y}:=\mathbf{y}-ar{y}\mathbf{1}$

 вектор ошибок, полученный, когда элементы вектора предсказываются его выборочным средним Факт. (??) Пусть S является подпространством \mathbb{R}^N , $\mathbf{P} = \operatorname{proj} S$, и \mathbf{M} является остаточной проекцией, определенной в (4). Верны следующие утверждения:

- 1. $\mathbf{M} = \operatorname{proj} S^{\perp}$
- 2. $\mathbf{y} = \mathbf{P}\mathbf{y} + \mathbf{M}\mathbf{y}$ для любых $\mathbf{y} \in \mathbb{R}^N$
- 3. $\mathbf{P}\mathbf{y} \perp \mathbf{M}\mathbf{y}$ для любых $\mathbf{y} \in \mathbb{R}^N$
- 4. $\mathbf{M}\mathbf{y} = \mathbf{0}$ тогда и только тогда, когда $\mathbf{y} \in S$
- 5. $\mathbf{P} \circ \mathbf{M} = \mathbf{M} \circ \mathbf{P} = \mathbf{0}$

Рис.: Остаточная проекция

Если S_1 и S_2 — два подпространства \mathbb{R}^N и $S_1\subset S_2$, то $S_2^\perp\subset S_1^\perp$ Результат факта $\ref{eq:sphere}$? обратный для \mathbf{M}

Факт. (??) Пусть S_1 и S_2 — два подпространства \mathbb{R}^N и $\mathbf{y}\in\mathbb{R}^N$. Пусть \mathbf{M}_1 и \mathbf{M}_2 являются проекциями на S_1^\perp и S_2^\perp соответственно. Если $S_1\subset S_2$, то

$$\mathbf{M}_1\mathbf{M}_2\mathbf{y} = \mathbf{M}_2\mathbf{M}_1\mathbf{y} = \mathbf{M}_2\mathbf{y}$$

Ортогонализация Грама-Шмидта

Вспомним, что любое ортогональное множество \mathbb{R}^N не содержащее $\mathbf{0}$ линейно независимо – факт $\ref{eq:condition}$?

Вот (важное) частично обратное этому утверждению

Теорема. (??) Для каждого линейно независимого множества $\{\mathbf{b}_1,\dots,\mathbf{b}_K\}\subset\mathbb{R}^N$, существует ортонормальное множество $\{\mathbf{u}_1,\dots,\mathbf{u}_K\}$, такое что

$$\operatorname{span}\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}=\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$$
 для $k=1,\ldots,K$

Формальные доказательства решаются как упражнения ?? to ?? Доказательство дает важный алгоритм построения ортонормированного множества $\{\mathbf{u}_1, \dots, \mathbf{u}_K\}$

Первый шаг — построить ортогональные множества $\{{f v}_1,\dots,{f v}_k\}$ с линейной оболочкой, идентичной $\{{f b}_1,\dots,{f b}_k\}$ для каджого k

Построение $\{\mathbf v_1,\dots,\mathbf v_K\}$ использует ортогонализацию Грама-Шмидта:

Для каждого $k=1,\ldots,K$, пусть

- 1. $B_k := \text{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k\},\$
- 2. $\mathbf{P}_k := \operatorname{proj} B_k \text{ u } \mathbf{M}_k := \operatorname{proj} B_k^{\perp}$,
- 3. $\mathbf{v}_k := \mathbf{M}_{k-1} \mathbf{b}_k$, где \mathbf{M}_0 является тождественным отображением, и
- 4. $V_k := \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}.$

В шаге 3. мы сопоставляем каждый последующий элемент \mathbf{b}_k в подпространство, ортогональное подпространству, созданному с помощью $\mathbf{b}_1,\ldots,\mathbf{b}_{k-1}$

В завершение, определим \mathbf{u}_k с помощью $\mathbf{u}_k := \mathbf{v}_k / \|\mathbf{v}_k\|$

Множество векторов $\{{\bf u}_1,\dots,{\bf u}_k\}$ является ортонормальным с линейной оболочкой, равной V_k