Introduction to NeuroML & Open Source Brain

Supported by wellcometrust

Padraig Gleeson University College London

How can we improve the model building and sharing process?

Reproducibility

Accessibility

Portability

Transparency

NeuroML

Standardised XML language for computational neuroscience

Version 1.x allowed specification of:

- Detailed neuronal morphologies
- Ion channels
- Synapses
- 3D network structure

30+ simulators/applications/databases/libraries support NeuroML

NEURON

GENESIS

MOOSE

PSICS

NeuroSpaces

PyNN

neuroConstruct

OpenWorm

LFPy

CATMAID

Neuronvisio

Moogli

NeuronLand

Whole Brain Catalog

NeurAnim

NeuroMorpho

Channelpedia

@ BlueBrainProject

TREES toolbox

NeuGen

CX3D

Brette & Gerstner Adaptive Exponential Integrate & Fire neuron model

$$C\frac{dV}{dt} = -g_{L}(V - E_{L}) + g_{L}\Delta_{T} \exp\left(\frac{V - V_{T}}{\Delta_{T}}\right) - g_{e}(t)(V - E_{e}) - g_{i}(t)(V - E_{i}) - w$$

$$\tau_{w}\frac{dw}{dt} = a(V - E_{L}) - w$$
At spike time $(V > 20 \text{ mV})$: $V \to EL$

$$w \to w + b$$


```
-20
<adExIaFCell id="adEx1" C="281 pF" gL="30 nS"
                  reset="-70.6 mV" VT="-50.4 mV"
 EL="-70.6 mV"
                                                      Membrane potential (mV)
                                                          -40
 thresh="-20 mV" delT="2 mV"
                                    tauw="144 ms"
 a="4 nS"
                  b="0.0805 nA"
                                   refract="5 ms"/>
                                                          -60
                                                          <sub>-80</sub> l
                                                          -20
<adExlaFCell id="adEx2" C="281 pF" gL="30 nS"
 EL="-65 mV"
                  reset="-47.2 mV" VT="-50.4 mV"
                                                          -40
 thresh="-20 mV" delT="2 mV"
                                    tauw="40 ms"
                  b="0.08 nA"
 a="4 nS"
                                    refract="0 ms"/>
                                                          -60
                                                          -80
```

NeuroML version 2.0

Home Documents Tools Models Community Development

Get NeuroML

Specifications & examples

	XML SCHEMA	DOCUMENTATION	EXAMPLES	PUBLICATION
LEMS	LEMS_v0.7.1.xsd	LEMS element definitions	LEMS examples	Cannon et al. 2014
NeuroML v2beta3 (Why convert to NeuroML2?)	NeuroML_v2beta3.xsd	NeuroML 2 Core ComponentTypes (Source in LEMS)	NeuroML 2 examples (NML2 models on Open Source Brain)	Cannon et al. 2014
NeuroML v1.8.1	NeuroML v1.8.1 Schemas	<u>Specifications</u>	NeuroML v1.x examples (NML1 models on Open Source Brain)	Gleeson et al. 2010

Implementations & APIs in Java and Python

	JAVA	PYTHON
Read, validate & execute LEMS XML files	<u>jLEMS</u>	<u>PyLEMS</u> (<u>Vella et al. 2014</u>)
Read & write NeuroML 2 files	Java API for NeuroML 2	<u>libNeuroML</u> (<u>Vella et al. 2014</u>)
Everything	iNeuroML Parse & execute LEMS; validate NeuroML v1/v2; convert LEMS to graphical format, NEURON, Brian, etc.; convert SBML to LEMS	pyNeuroML A Python module that wraps jNeuroML and allows (so far only some of) its functionality to be accessed from Python scripts.

jnml pynml

jnml MyCell.nml -svg
pynml MyCell.nml -svg

jnml -sbml-import Model.sbml 50 0.01

Original SBML model

Time: 20.000ms

The Open Source Brain repository

The Open Source Brain Repository

Wellcome Trust funded project

Open source model development repository for computational neuroscience

Structured database of well tested **spiking** neuron & network models in standardised formats

Allow anyone to comment on, extend, reuse models & run them across multiple simulators: a collaboration platform

Uses tools & best practices from Open Source software development

OSB development scenario

Izhikevich Spiking Neuron Model

🥎 OPEN SOURCE BRAIN

Description

Implementation of model from http://izhikevich.org/publications/whichmod.htm in NeuroML and PyNN.

For more details see the Wiki.

Status

The Izhikevich model is supported by NeuroML v2.0 and PyNN 0.8. This project will demonstrate all of the main firing behaviours of this cell model.

Comparison to original model behavior

TO OPEN SOURCE BRAIN

Model	Label	NeuroML 2	pyNN.neuron	pyNN.nest
Tonic spiking	Α	(a)	(a)	(a)
Phasic spiking	В	(a)	(a)	(a)
Tonic bursting	С	(b)	(b)	(b)
Phasic bursting	D	(a)	(a)	(a)
Mixed mode	E	(a)	(a)	(a)
Spike freq. adapt.	F	(a)	(a)	(a)
Class 1 excitable	G	(a, e)	(d, e)	(e)
Class 2 excitable	Н	(c)	(d)	(g)
Spike latency	1	(b)	(b)	(b)
Subthresh. osc.	J	(a)	(a)	(a)
Resonator	K	(a)	(a)	(a)
Integrator	L	(a, e)	(e)	(e)
Rebound spike	М	(a)	(a)	(a)
Rebound burst	N	(a)	(a)	(a)
Threshold variability	0	(a)	(a)	(a)
Bistability	Р	(b)	(b)	(b)
Depolarizing after-potential	Q	(b)	(b)	(b)
Accomodation	R	(a, f)	(d)	(f)
Inhibition-induced spiking	S	(b)	(b)	(b)
Inhibition-induced bursting	Т	(b)	(b)	(b)

!	OPEN SOURCE BRAIN	ŀ	About	Explore Open Source	Brain	My account	Sign out	Administration	padraig
	Inhibition-induced spiking	S	(b)		(b)			(b)	
	Inhibition-induced bursting	Т	(b)		(b)			(b)	

- (a) Same behaviour
- (b) Similar behaviour when slightly modifying parameters. See the table below.
- (c) Similar but not identical behaviour (different number of spikes in the stimulus time frame)
- (d) Not yet implemented. Need ramp injected current. See https://github.com/NeuralEnsemble/PyNN/issues/257
- (e) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType generalizedIzhikevichCell was created.
- (f) Requires an alternative model implementation since the model parameterization is different in the original Matlab code. In NeuroML new ComponentType accomodationIzhikevichCell was created.
- (g) Could not reproduce model behavior

Parameter changes to adequate model behaviour

Model	Label	Parameter	Original value	New value
Spike latency	1	Amplitude of pulse current	7.04	6.71
Bistability	Р	Initial time of 2nd pulse	216	208
Depolarizing after-potential	Q	b	0.2	0.18
Inhibition-induced spiking	S	Inhibition ending	250	220
Inhibition-induced bursting	Т	d	-2.0	-0.7

Alternative implementations

An alternative implementation of the Izhikevich model was created using Moose. The code can be found here. There is a GUI in which the user chooses the model parameterization an visualizes the simulation results (see the figure below).

Layer 5b Pyramidal cell Hay et al. 2011

Description

Layer 5b Pyramidal cell constrained by experimental data on perisomatic firing properties as well as dendritic activity during backpropagation of the action potential.

From: Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic

Layer 5b Pyramidal cell Hay et al. 2011

Sign Up

Brian

?

8

8

8

8

8

Sign Up

OSB Model

build passing

Validation

OPEN SOURCE BRAIN	
OPEN SOURCE BRAIN	l

ODEN COLIDCE DO AIN	
OPEN SOURCE BRAIN	

Curation

**

**

**

**

*

*

*

*

**

* *

*

*

NeuroML

v1.x

THAT A

CHA D

tritit

(tritite)

8

8

8

?

?

8

(think)

PSICS

8

Strikt

8

8

NEST

?

?

8

GENESIS MOOSE

OPEN SOURCE BRAIN		Q	Q						Q Explore				Explore O	SB	Sig

PyNN

?

8

Stricks

8

8

NEURON

State

?

8

Tritit

Stitute

2

State

8

8

State

Stata

8

NeuroML

v2.x

CHA!

Tritit

CHA

8

8

State

thit

S OPEN	SOURCE BRAIN

I5bpyrcellhayetal2011

pospischiletal2008

muscle model

ca1pyramidalcell

nengoneuroml

neuromorpho

celegans

neuroelectrosciunit

cerebellarnucleusneuron

pinskyrinzelmodel

granulecellvscs

grancelllayer

granulecell

destexhe jcns 2009

grancellsolinasetal10

grancellrothmanif

izhikevichmodel

morrislecarmodel

mainenetalpyramidalcell

OSB

OSB

OSB

OSB

OSB

OPEN SOURCE BRAIN	

How can we improve the model building and sharing process?

Reproducibility

Accessibility

Portability

Transparency

Acknowledgements

Silver Lab @ UCL

Angus Silver

Eugenio Piasini

Boris Marin

Adrian Quintana

Matteo Farinella

Yates Buckley

Matteo Cantarelli

Main Collaborators

Robert Cannon

Sharon Crook

Mike Vella

Early Adopters

Sergio Solinas

Egidio D'Angelo

Volker Steuber

Dieter Jaeger

Andrew Davison

Stephen Larson

Avrama Blackwell

Nicolas Le Novere

Members of the NeuroML community

OpenWorm project

Funding source:

Supported by

wellcome trust

