Complexity Analysis of Graph Convolutional Networks and in Attention based GNN

Presenter: Derrick Blakely

June 7, 2019

University of Virginia

https://qdata.github.io/deep2Read/

Definitions

- Graph G = (V, E, A)
- N = |V| nodes, $N \times N$ adjacency matrix A
- Average degree of d
- $X \in \mathbb{R}^{N \times F}$: embeddings of all $v \in V$
- Each embedding $x \in \mathbb{R}^F$
- D: the degree matrix of G
- \hat{A} : A with all self-loops included
- \hat{D} : D with all self-loops included

1

Graph Convolutional Networks (GCN) [3]

Normalized adjacency matrix with self-loops:

$$A' = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} \tag{1}$$

Output of Ith GCN layer:

$$X^{l+1} = \sigma(A'X^lW^l) \tag{2}$$

Alternatively:

$$Z' = X'W' \tag{3}$$

$$X^{l+1} = \sigma(A'Z^l) \tag{4}$$

(For simplicity, assume every layer is a mapping $f: \mathbb{R}^{N \times F} \to \mathbb{R}^{N \times F}$)

Implementation and Semantics

- 1. $Z^{\prime}=X^{\prime}W^{\prime}$: input feature transformation. Dense matrix multiplication
- 2. A'Z': GAS/message passing
- 3. $\sigma(\cdot)$: nonlinearity

GAS/Message Passing

Everyone [5][2][4][1] computes $A^{\prime}Z^{\prime}$ roughly as follows:

- 1. Create messages: normalize each $z_i \in Z^I$
- 2. Scatter: compute $A'Z^I$ with a sparse multiplication
- 3. Update (optional): additional update to each embedding (e.g., additive bias)

Time and Space Complexity

- $Z^1 = X^I W^I$: dense $(N \times F) \times (F \times F)$ multiplication $\to O(NF^2)$ time, $O(NF + F^2)$ space
- A'Z': sparse $(N \times N) \times (N \times F)$ multiplication \rightarrow O(NdF) = O(|E|F) time, O(NF) space
- $\sigma(A'Z')$: O(NF) time for ReLU, O(NF) space

1 Layer:

Time: $O(NF^2 + |E|F + NF) = O(NF^2 + |E|F)$

Space: $O(NF + F^2)$

L Layers:

Time: $O(LNF^2 + L|E|F)$

Space: $O(LNF + LF^2)$

Backward Pass

We seek to compute:

$$\frac{\partial \mathcal{L}}{\partial W^{1}} = \Big(\frac{\partial \mathcal{L}}{\partial \hat{Y}}\Big) \Big(\frac{\partial \hat{Y}}{\partial Z^{L}}\Big) \Big(\frac{\partial Z^{L}}{\partial X^{L}}\Big) ... \Big(\frac{\partial Z^{I}}{\partial X^{I}}\Big) \Big(\frac{\partial X^{I}}{\partial Z^{I-1}}\Big) ... \Big(\frac{\partial X^{2}}{\partial Z^{1}}\Big) \Big(\frac{\partial Z^{1}}{\partial W^{1}}\Big) \quad (5$$

$$\frac{\partial \mathcal{L}}{\partial \mathsf{X}^1} = \left(\frac{\partial \mathcal{L}}{\partial \hat{\mathsf{Y}}}\right) \left(\frac{\partial \hat{\mathsf{Y}}}{\partial \mathsf{Z}^L}\right) \left(\frac{\partial \mathsf{Z}^L}{\partial \mathsf{X}^L}\right) \dots \left(\frac{\partial \mathsf{Z}^I}{\partial \mathsf{X}^I}\right) \left(\frac{\partial \mathsf{X}^I}{\partial \mathsf{Z}^{I-1}}\right) \dots \left(\frac{\partial \mathsf{X}^2}{\partial \mathsf{Z}^1}\right) \left(\frac{\partial \mathsf{Z}^1}{\partial \mathsf{X}^1}\right) \tag{6}$$

Which can be done efficiently when formulated as:

$$\frac{\partial \mathcal{L}}{\partial W^{l-1}} = \left(X^{l-1} \right)^{\top} \left(A^{\prime} \right)^{\top} \left(\frac{\partial \mathcal{L}}{\partial X^{l}} \right) \tag{7}$$

$$\frac{\partial \mathcal{L}}{\partial \mathsf{X}^{l-1}} = \left(\mathsf{A}^{\prime}\right)^{\top} \left(\frac{\partial \mathcal{L}}{\partial \mathsf{X}^{l}}\right) \left(\mathsf{W}^{l-1}\right)^{\top} \tag{8}$$

References i

Deep graph library (dgl), 2019.

Accessed: 2019-06-06.

M. Fey and J. E. Lenssen.

Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

T. N. Kipf and M. Welling.

Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai. **Towards efficient large-scale graph neural network computing.** arXiv preprint arXiv:1810.08403, 2018.

References ii

🔋 S. Xu, H. Zhang, G. Neubig, W. Dai, J. K. Kim, Z. Deng, Q. Ho, G. Yang, and E. P. Xing.

Cavs: An efficient runtime system for dynamic neural networks.

In 2018 { USENIX} Annual Technical Conference ({ USENIX} { ATC}) 18), pages 937-950, 2018.