

1 Speech Recognition and Signal Analysis by Exact Fast
2 Search of Subsequences with Maximal Confidence
Measure

3

4 SPECIFICATION

5 1 TITLE OF THE INVENTION

6 Speech Recognition and Signal Analysis by Exact Fast Search of Subsequences with Maximal
7 Confidence Measure

8 2 REFERENCE TO APPENDIX SUBMITTED ON CD

9 Not Applicable

10 3 CROSS-REFERENCE TO RELATED APPLICATION

11 This patent application has as parent application the patent application C99-00214/25.02.1999
12 registered with the State Office for Inventions and Trademarks (OSIM) in Bucharest, Ro-
13 mania. The present application is the US national stage of the international application
14 PCT/IB00/00189 registered with the International Patent Office in Geneva.

15 4 BACKGROUND OF THE INVENTION

16 4.1 FIELD OF THE INVENTION

17 The invention relates to a common component of:

- 18 • Speech Recognition, more particularly to the fields of Keyword Spotting and decoding,
- 19 • Segments Alignment for DNA and proteins,
- 20 • Recognition of Objects in Images,

21 4.2 DESCRIPTION OF THE RELATED ART

22 This invention addresses the problem of *keyword spotting (KWS)* in unconstrained speech
23 without explicit modeling of non-keyword segments (typically done by using filler HMM
24 models or an ergodic HMM composed of context dependent or independent phone models
25 without lexical constraints). Several methods (sometimes referred to as “sliding model meth-
26 ods”) tackling this type of problem have already been proposed in the past. E.g., they use
27 Dynamic Time Warping (DTW) or Viterbi matching allowing relaxation of the (begin and
28 endpoint) constraints. These are known to require the use of an “appropriate” normaliza-
29 tion of the matching scores since segments of different lengths have then to be compared.
30 However, given this normalization and the relaxation of begin/endpoints, straightforward
31 Dynamic Programming (DP) is no longer optimal (or, in other words, the DP optimality
32 principle is no longer valid) and has to be adapted, involving more memory and CPU. In-
33 deed, at any possible ending time e , the match score of the best warp and start time b of
34 the reference has to be computed (for all possible start times b associated with unpruned

35 paths). Finally, this adapted DP quickly becomes even more complex (or intractable) for
36 more advanced scoring criteria (such as the confidence measures mentioned below).

37 Work in the field of confidence level, and in the framework of hybrid HMM/ANN systems
38 has shown that the use of accumulated local posterior probabilities (as obtained at the
39 output of a multilayer perceptron) normalized by the length of the word segment (or, better,
40 involving a double normalization over the number of phones and the number of acoustic
41 frames in each phone) was yielding good confidence measures and good scores for the re-
42 estimation of N -best hypotheses. However, so far the evaluation of such confidence measures
43 involved the estimation and rescoring of N -best hypotheses.

44 KWS methods without filler models have in common the selection of a subsequence of
45 the utterance to match the interesting keyword models. Let $X = \{x_1, x_2, \dots, x_n, \dots, x_N\}$
46 denote the sequence of acoustic vectors in which we want to detect a keyword, and let M
47 be the HMM model of a keyword M and consisting of L states $\mathcal{Q} = \{q_1, q_2, \dots, q_\ell, \dots, q_L\}$.
48 Assuming that M is matched to a subsequence $X_b^e = \{x_b, \dots, x_e\}$ ($1 \leq b \leq e \leq N$) of X ,
49 and that we have an implicit (not modeled) *garbage/filler state* q_G preceding and following
50 M , one can define (approximate) the log posterior of a model M given a subsequence X_b^e as
51 the average posterior probability along the optimal path, i.e.:

$$\begin{aligned} 52 \quad -\log P(M|X_b^e) &\simeq \frac{1}{e-b+1} \min_{\forall Q \in M} -\log P(Q|X_b^e) \\ 53 \quad &\simeq \frac{1}{e-b+1} \min_{\forall Q \in M} \{-\log P(q^b|q_G) \\ 54 \quad &\quad - \sum_{n=b}^{e-1} [\log P(q^n|x_n) + \log P(q^{n+1}|q^n)] \\ 55 \quad &\quad - \log P(q^e|x_e) - \log P(q_G|q^e)\} \end{aligned} \tag{1}$$

56 where $Q = \{q^b, q^{b+1}, \dots, q^e\}$ represents one of the possible paths of length $(e-b+1)$ in M , and

57 q^n the HMM state visited at time n along Q , with $q^n \in Q$. In this expression, q_G represents
 58 the “garbage” (filler) state which is simply used here as the non-emitting initial and final
 59 state of M . Transition probabilities $P(q^b|q_G)$ and $P(q_G|q^e)$ can be interpreted as the keyword
 60 entrance and exit penalties, but can be simply set to 1. Local posteriors $P(q_\ell|x_n)$ can be
 61 estimated using any of the known techniques: multi-gaussians, code-books, or as output
 62 values of a multilayer perceptron (MLP) used in hybrid HMM/ANN systems. For a specific
 63 sub-sequence X_b^e , expression (1) can easily be estimated by dynamic programming since the
 64 sub-sequence and the associated normalizing factor $(e - b + 1)$ are given. However, in the
 65 case of keyword spotting, this expression should be estimated for all possible begin/endpoint
 66 pairs $\{b, e\}$ (as well as for all possible word models), and we define the matching score of X
 67 on M as:

$$68 \quad S(M|X) = -\log P(M|X_b^{e^*}) \quad (2)$$

69 where the optimal begin/endpoints $\{b^*, e^*\}$, and the associated optimal path Q^* , are the
 70 ones yielding the lowest average local posterior:

$$71 \quad \langle Q^*, b^*, e^* \rangle = \operatorname{argmin}_{\{Q, b, e\}} \frac{-1}{e - b + 1} \log P(Q|X_b^e) \quad (3)$$

72 Of course, in the case of several keywords, all possible models will have to be evaluated.
 73 A double averaging involving the number of frames per phone and the number of phones
 74 usually yields slightly better performance when used to rescore N-best candidates:

$$75 \quad \langle Q^*, b^*, e^* \rangle = \quad (4)$$

$$76 \quad \operatorname{argmin}_{\{Q, b, e\}} \frac{-1}{J} \sum_{j=1}^J \left(\frac{1}{e_j - b_j + 1} \sum_{n=b_j}^{e_j} \log P(q_j^n|x_n) \right) \text{nonumber} \quad (5)$$

77 where J represents the number of phones in the hypothesized keyword model and q_j^n the

78 hypothesized phone q_j for input frame x_n . However, given the time normalization and
 79 the relaxation of begin/endpoints, straightforward DP is no longer optimal and has to be
 80 adapted, usually involving more memory and CPU.

81 Filler-based KWS need a simpler decoding step. Although various solutions have been
 82 proposed towards the direct optimization of (2), most of the keyword spotting approaches
 83 today prefer to preserve the optimality and simplicity of Viterbi DP by modeling the complete
 84 input and explicitly or implicitly modeling non-keyword segments by using so called filler or
 85 garbage models as additional reference models. In this case, we assume that non-keyword
 86 segments are modeled by extraneous garbage models/states q_G (and grammatical constraints
 87 ruling the possible keyword/non-keyword sequences).

88 Let us consider only the case of detecting one keyword per utterance at a time. In this
 89 case, the keyword spotting problem amounts at matching the whole sequence X of length
 90 N onto an extended HMM model \overline{M} consisting of the states $\{q_G, q_1, \dots, q_L, q_G\}$, in which
 91 a path (of length N) is denoted $\overline{Q} = \{\overbrace{q_G, \dots, q_G}^{b-1}, q^b, q^{b+1}, \dots, q^e, \overbrace{q_G, \dots, q_G}^{N-e}\}$ with $(b-1)$ garbage
 92 states q_G preceding q^b and $(N-e)$ states q_G following q^e , and respectively emitting the vector
 93 sequences X_1^{b-1} and X_{e+1}^N associated with the non-keyword segments.

94 Given some estimation of $P(q_G|x_n)$ (e.g., using probability density functions trained on
 95 non keyword utterances), the optimal path \overline{Q}^* (and, consequently b^* and e^*) is then given
 96 by:

$$\begin{aligned}
 97 \quad \overline{Q}^* &= \underset{\forall \overline{Q} \in \overline{M}}{\operatorname{argmin}} -\log P(\overline{Q}|X) \\
 98 \quad &= \underset{\forall \overline{Q} \in \overline{M}}{\operatorname{argmin}} \{-\log P(Q|X_b^e)} \\
 99 \quad &\quad - \sum_{n=1}^{b-1} \log P(q_G|x_n) - \sum_{n=e+1}^N \log P(q_G|x_n)\} \tag{6}
 \end{aligned}$$

100 which can be solved by straightforward DP (since all paths have the same length). The main
101 problem of filler-based keyword spotting approaches is then to find ways to best estimate
102 $P(q_G|x_n)$ in order to minimize the error introduced by the approximations. Sometimes this
103 value was defined as the average of the N best local scores while, in other approaches, this
104 value is generated from explicit filler HMMs. However, these approaches will usually not
105 lead to the “optimal” solution given by (2).

106 5 BRIEF SUMMARY OF THE INVENTION

107 The invention belongs to the technical domain of decoding, classification, alignment and
108 matching of data.

109 The invention introduces a new method performing tasks in keyword spotting in utter-
110 ances, detection of subsequences in chains of organic matter (DNA and proteins) and recog-
111 nition of objects in images. The proposed methods search in an optimized way the matching
112 that maximizes, over all the possible matchings, certain confidence measures based on nor-
113 malized posteriors. Three such confidence measures are used, two existed in previous work
114 in Speech Recognition, and the third one is a new one.

115 Application fields for this invention are: man-machine interfaces (using speech recogni-
116 tion; ex: control systems, banking, flight services, etc), coordination systems (for industrial
117 robots and automata) and development systems for pharmaceutic products.

118 6 BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE
119 DRAWINGS

120 Not Applicable

121 7 DETAILED DESCRIPTION OF THE INVENTION

122 In the following, we show that it is possible to define an iterative process, referred to
123 as *Iterating Viterbi Decoding (IVD)* with good/fast convergence properties, estimating the
124 value of $P(q_G|x_n)$ such that straightforward DP (6) yields exactly the same segmentation
125 (and recognition results) than (3). While the same result could be achieved through a
126 modified DP in which all possible combinations (all possible begin/endpoints) would be
127 taken into account, the method proposed below is much more efficient (in terms of both
128 CPU and memory requirements).

129 Compared to previously devised “sliding model” methods the first method proposed here
130 is based on:

- 131 1. A matching score defined as the average observation probability (posterior) along the
132 most likely state sequence. It is indeed believed that local posteriors are more appro-
133 priate to the task.
- 134 2. The iteration of a Viterbi decoding algorithm, which does not require scoring for all
135 begin/endpoints or N-best rescoring, and which can be proved to (quickly) converge to
136 the “optimal” (from the point of view of the chosen scoring functions) solution without

137 requiring any specific filler models, using straightforward Viterbi alignments (similar
138 to regular filler-based KWS, but for some versions at the cost of a few iterations).

139 The IVD method is based on a similar criterion as the filler based approaches (6), but
140 rather than looking for explicit (and empirical) estimates of $P(q_G|x_n)$ we aim at mathe-
141 matically estimating its value (which will be different and adapted to each utterance) such
142 that solving (6) is equivalent to solving (3). Thus, we perform an iterative estimation of
143 $P(q_G|x_n)$, such that the segmentation resulting of (6) is the same than what would be ob-
144 tained from (3). Defining $\varepsilon_t = -\log P(q_G|x_n)$ at iteration t , the proposed method can be
145 summarized as follows:

146 1. Start the first iteration, $t = 0$, from an initial value $\varepsilon_0 = \Pi$ (it is actually proven that
147 the iterative process presented here will always converge to the same solution, in more
148 or less cycles with the worst case upper bound of N iterations, independently of this
149 initialization, e.g., with Π equal with a cheap estimation of the score of a “match”).

150 In one of the developed versions, ε_0 is initialized to $-\log$ of the maximum of the local
151 probabilities $P(q_k|x_n)$ for each frame x_n .

152 An alternative choice is to initialize ε_0 to a pre-defined threshold score, T , that expres-
153 sion (1) should reach to declare a keyword “matching” (see step 4 below). In this last
154 case, if $\varepsilon_1 > \varepsilon_0$ at the first iteration, then we can (as proven) directly infer that the
155 match will be rejected, otherwise it will be accepted.

156 2. Given the estimate ε_t of $P(q_G|x_n)$ at current iteration t , find the optimal path $\langle \overline{Q}_t, b_t, e_t \rangle$
157 according to (6) and matching the complete input.

158 3. Estimate the value of ε_{t+1} to be used in the next iteration as the average of the local
159 posteriors along the optimal path Q_t (matching the $X_{b_t}^{e_t}$ resulting of (6) on the keyword
160 model) i.e.:

161
$$\varepsilon_{t+1} = -\frac{1}{(e_t - b_t + 1)} \log P(Q_t | X_{b_t}^{e_t}) \quad (7)$$

162 4. Increment t and return to (2) iterating until convergence is detected. If we are not
163 interested in the optimal segmentation, this process could also be stopped as soon as it
164 reaches a ε_{t+1} lower than a (pre-defined) minimum threshold, T , below which we can
165 declare that a keyword has been detected.

166 Correctness and convergence proof of this process and generalization to other criteria, are
167 available: each IVD iteration (from the second iteration) will decrease the value of ε_t , and the
168 final path yields the same solution than (3). The above method has a very good experimental
169 convergence speed (3-5 iterations in our tests). For one version of IVD (when ε_0 is initialized
170 using the acceptance threshold, T), the detection is decided after one single step.

171 A version with the same effort but suboptimal results is proposed in the following para-
172 graph. Let $T(\bar{M}, X)$ be a matrix holding the HMM emission probabilities for an utterance
173 X whose time-frames define the columns, and where the states of the hypothesized word
174 W define the rows. When using the standard DP, one computes for each element of the
175 matrix $T(\bar{M}, X)$ at frame k of X and state s of \bar{M} three values: S_{ks} , L_{ks} and C_{ks} , where
176 S_{ks} corresponds to the sum of the entries on the optimal path that leads to the entry, L_{ks}
177 holds the length of the optimal path computed so far, and C_{ks} is the estimation of the cost
178 on the optimal expanded path. By a path leading to an entry $T(k, s)$ we mean a sequence
179 of entries in the table T , such that there is exactly an entry for each time frame $t \leq k$. At

180 each entry $T(k, s)$, DP selects a locally optimal path noted P_{ks} . At each step k , we consider
 181 all pairs of entries of table $T(\bar{M}, X)$ of type $T(k, s)$, $T(k - 1, t)$. We update for each such
 182 pair, the current cost C_{ks} (initially ∞), by comparing it with the alternative given by:

$$S_{ks} = S_{(k-1)t} - \log p(s|x_k)p(s|t)$$

183

$$L_{ks} = L_{(k-1)t} + 1, \forall t > 0, t \leq L$$

184

$$C_{ks} = \frac{S_{ks}}{L_{ks}} \quad (8)$$

186 wanting to have at step k the path P_{ks} from the paths $P_{(k-1)t}$ that minimizes C_{NL} . With
 187 DP, one will choose the P_{ks} with minimal C_{ks} .

188 This version can yield suboptimal results since the optimality principle is not respected
 189 by the expression 8. The optimality principle of Dynamic Programming requires that the
 190 path to the frame $k - 1$ that minimizes C_{NL} , also minimizes C_{ks} for an entry at frame k of
 191 table $T(\bar{M}, X)$.

192 Another technique that is suboptimal in time and/or quality is obtained from the previous
 193 one adopting a beam-search approach and a set of safe prunings. The Dynamic Programming
 194 can be viewed as a set of safe prunings that are applied at each entry of the DP table and
 195 has the property that only one alternative is maintained. Dynamic Programming cannot be
 196 used, since the principle of optimality is not respected. The following types of safe pruning
 197 that can be done are introduced by the present invention. Within the current invention we
 198 found a set of safe prunings as follows: we have proved that if at a frame a we have two paths
 199 P'_a and P''_a with $S''_a < S'_a$ and $L'_a < L''_a$, then at no frame $c \geq a$ will a path P''_c be forsaken for
 200 a path P'_c if $P'_a \subset P'_c$, $P''_a \subset P''_c$ and $P'_c \setminus P'_a \equiv P''_c \setminus P''_a$. We will note the order relation as $P''_a \prec P'_a$.

201 We have further shown that a path P' may be safely discarded only when we know a lower
202 cost one, P'' .

203
$$P' \prec P'' \Rightarrow C'_k < C''_k \quad (9)$$

204 Thus, the method described in following method computes $S(M, X)$ and Q^* from equa-
205 tion (3). By ordering the set of paths, according to Equation 9, we only need to check the
206 step (1.1) of the following method up to the eventual insertion place. The last paths are
207 candidates for pruning in step (1.2). In order for the pruning to be acceptable, we will prune
208 only paths that were too long on the last state. An additional counter for each path is
209 needed for storing the state length. This counter is reset when an entry from another row
210 is added and is incremented at each advance with a frame. The following steps detail this
211 method for a model W and an utterance X :

212 a) Initialize all elements of a matrix, $\text{SetOfPaths}(1..N, 1..K)$, to \emptyset

213 b) For all frames from 1 to N , for all states from 1 to K , for all candidates p_i in
214 $\text{SetOfPaths}(\text{frame-1}, 1..K)$:

215 – For all p_j in $\text{SetOfPaths}[\text{frame}, \text{state}]$, if $p_i \prec p_j$ then delete p_j (1.1), and if $p_j \prec p_i$
216 then continue step b) (1.2)

217 – Insert p_i in $\text{SetOfPaths}[\text{frame}, \text{state}]$

218 c) Select $\text{SetOfPaths}[\text{frame}, K]$ as the best of the candidates

219 The next method builds on the previous technique and is a fast procedure for maximizing
220 a more complex confidence measure that yields better results in practice. The corresponding

221 confidence measure is defined as:

$$222 \quad \frac{1}{NVP} \sum_{h_i \in VP} \frac{\sum_{pst \in h_i} - \log(pst)}{length(h_i)} \quad (10)$$

223 where NVP stands for the *number of visited phonemes* and VP stands for the *set of visited*
224 *phonemes*. An average is computed over all posteriors pst of the emission probabilities for the
225 time frames matched to the visited phoneme h_i . The function $length(h_i)$ gives the number of
226 time frames matched against h_i . This method uses a breath first Beam Search algorithm. It
227 exploits a set of reduction rules and certain normalizations. For the state q_G , in this method,
228 the logarithm of the emission posterior is equal with zero. For each frame e and for each
229 state s , the set of paths/probabilities of having the frame e in the state s is computed as
230 the first \mathcal{N} maxima (\mathcal{N} can be finite) of the confidence measure for all paths in HMM \overline{M} of
231 length e and ending in the state s . The paths that according to the reduction rules will loose
232 the final race when compared with another already known path, will be deleted as well. Let
233 us note a_1, p_1, l_1 , respectively a_2, p_2 and l_2 the confidence measure for the previously visited
234 phonemes, the posterior in the current phoneme and the length in the current phoneme for
235 the path Q_1 , respectively the path Q_2 . The rules that can be used for the reduction of the
236 search space by discarding a path Q_1 for a path Q_2 are in this case any of the next ones:

237 1. $l_2 \geq l_1, A > 0, B \leq 0$ and $L_c^2 A + L_c B + C \geq 0$

238 2. $l_2 \geq l_1, A \geq 0, B \geq 0$ and $C \geq 0$

239 3. $l_2 \geq l_1, A \leq 0, C \geq 0$ and $L^2 A + LB + C \geq 0$

240 4. $l_2 \geq l_1, A = 0, B < 0$ and $LB + C \geq 0$

241 where $A = a_1 - a_2$, $B = (a_1 - a_2)(l_1 + l_2) + p_1 - p_2$, $C = (a_1 - a_2)l_1l_2 + p_1l_2 - p_2l_1$, $L =$
242 $L_{max} - \max\{l_1, l_2\}$, $L_c = -B/2A \geq 0$ and L_{max} is the maximum acceptable length for a
243 phoneme. By discarding paths only if one of the above rules is satisfied, the optimum defined
244 by the confidence measure with double normalization can be guaranteed, if no phone may be
245 avoided by the HMM M . Any HMM may be decomposed in HMMs with this quality. The
246 4-th rule is included in the 3-rd and its test is useless if the last one was already checked.
247 The first test, $l_2 \geq l_1$ tells us if Q_2 has chances to eliminate Q_1 , otherwise we will check
248 if Q_1 eliminates Q_2 . These tests were inferred from the conditions of maintaining the final
249 maximal confidence measure while reduction takes place. In order to use the method of
250 double normalization without decomposing HMMs that skip some phonemes, the previous
251 rules are modified taking into account the number of visited phonemes for any path F_1
252 respectively F_2 and the number of phonemes that may follow the current state. A simplified
253 test can be:

254 • $l_2 \geq l_1$, $A \geq 0$, $p_1 \geq p_2$ respectively $F_2 \geq F_1$ for the HMMs that skips phonemes.

255 This test is weaker than the 2nd reduction rule. For example a path is eliminated by a second
256 path if the first one has an inferior confidence measure (higher in value) for the the previous
257 phonemes, a shorter length and the minus of the logarithm of the cumulated posterior in
258 the current phoneme also inferior (higher in value) to that of the second one. An additional
259 confidence measure based on the maximal length, L_{max} , and on the maximum of the minus
260 of the logarithm of the cumulated and normalized posterior in phoneme, P_{max} , can be used
261 in order to limit the number of stored paths.

262 • $p > L_{max}P_{max}$ in any state

- 263 • $\frac{p}{l} > P_{max}$ at the output from a phoneme
- 264 where p and l are the values in the current phoneme for the minus of the logarithm of
 265 cumulated posterior and for the length of the path that is discarded. These tests allow for
 266 the elimination of the paths that are too long without being outstanding, respectively of
 267 the paths with phonemes having unacceptable scores, otherwise compensated by very good
 268 scores in other phonemes. If N is chosen equal with one, the aforementioned rules are no
 269 longer needed, but always we propagate the path with the maximal current estimation of
 270 the confidence measure. The obtained results are very good, even if the defined optimum is
 271 guaranteed for this method only when N is bigger than the length of the sequence allowed
 272 by L_{max} or of the tested sequence. The same approach is valid for the simple normalization,
 273 where the HMM for the searched word will be grouped into a single phoneme.
- 274 The present invention can exploit a newly designed a confidence measure, version named
 275 "Real Fitting", that represents differently the exigencies of the recognition. Since the
 276 phonemes and the absent states can be modeled by the used HMMs, we find it interest-
 277 ing to request the fitting of each phoneme in the model with a section of the sequence.
 278 Therefore, we measure the confidence level of a subsequence as being equal with the max-
 279 imum over all phonemes of the minus of the logarithm of the cumulated posterior of the
 280 phone, normalized with its length:
- $$281 \quad \max_{phonem \in Visited\ Phonems} \frac{\sum_{phonem} - \log(posterior)}{phonem\ length} \quad (11)$$
- 282 The rule that may be used in this framework for the reduction of the number of visited paths
 283 is:
- 284 • Q_2 is discarded in favor of another path Q_1 if the confidence measure of the Real

285 Fitting for the previous phonemes is inferior (higher in value) for Q_2 compared with
286 Q_1 , and if $p_1 \leq p_2$ and $l_2 \leq l_1$.

287 where p_1, l_1 , respectively p_2, l_2 represent the minus of the logarithm of the cumulated poste-
288 rior respectively the number of frames in the current phoneme for the path Q_1 respectively
289 Q_2 . Similarly to the previous method, the set of visited paths can be pruned by discarding
290 those where:

291 • $p > L_{max} P_{max}$ in any state

292 • $\frac{p}{l} > P_{max}$ at the output from a phoneme

293 where p and l are the values in the current phoneme for the minus of the logarithm of the
294 cumulated posterior and for the length of the path that is discarded. We recall that the
295 meaning of the constants are the maximal length L_{max} , respectively the accepted maxima
296 of the minus of the logarithm of the cumulated and normalized posterior in phoneme, P_{max} .

297 This invention thus proposes a new method for keyword spotting, based on recent ad-
298 vances in confidence measures, using local posterior probabilities, but without requiring the
299 explicit use of filler models. A new method, referred to as *Iterating Viterbi Decoding (IVD)*,
300 to solve the above optimization problem with a simple DP process (not requiring to store
301 pointers and scores for all possible ending and start times). Other three new beam-search
302 algorithms corresponding to three different confidence measures are also proposed.

303 To summarize, the object of the invention consists of:

304 • Method of recognition of a subsequence using a direct maximization of confidence
305 measures.

306 • The method of IVD for directly maximizing the confidence measures based on simple
307 normalization.

308 • The use of the confidence measure and method of recognition named ‘Real Fitting’,
309 based on individual fitting for each phoneme.

310 • Methods of recognition using simple and double normalization by:

311 • combining these measures with additional confidence measures mentioned here, respec-
312 tively the maximal length and real matching limitation.

313 • The use of the aforementioned methods in keyword recognition.

314 • The use of the aforementioned methods in subsequence recognition of organic matter.

315 • The use of the aforementioned methods in recognition of objects in images.

316 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

317 Execution: The method can be performed using a personal computer or can be imple-
318 mented in specialized hardware.

319 1. A representation under the form of an HMM is obtained for the subsequences that are
320 looked for (word, protein profile, section of an image of the object).

321 2. A tool will be obtained (eventually trained Ex: for speech recognition) for the esti-
322 mation of the posteriors. For example multi-Gaussians, neuronal networks, clusters,
323 database with Generalized Profiles and mutation matrices (PAM, BLOSSUM, etc.).

324 3. One of the proposed algorithms should be implemented. They yield close performance
325 but the method of Real Fitting coupled with a well checked dictionary should perform
326 best.

327 For the first algorithm (IVD)

328 (a) The classic algorithm of Viterbi is implemented with the modification that, for
329 each pair $P = \langle sample, state \rangle$ one propagates the time-frame of transition be-
330 tween the state q_G and the states of the HMM M for the path that arrives at P.
331 These are inherited from the path that wins the entrance in the pair P, excepting
332 for the moment when their decision is taken, namely when they receive the index
333 of the corresponding sample.

334 (b) $w = -\log P(M|X_b^e)$ is computed by subtracting from the cumulated posterior
335 that is returned by the Viterbi algorithm for the path $Q_{b_t}^{e_t}$, the value $(N - (e_t -$
336 $b_t + 1)) * \varepsilon_t$ corresponding to the contribution of the states q_G and dividing the
337 result through $e_t - b_t + 1$. $e_t - b_t + 1$ from the previous formula can be factored
338 outside the fraction.

339 (c) The initialization of ε is made with an expected mean value. One can use the w
340 that is computed when the state q_G is associated with an emission posterior equal
341 to the average of the best K emission probabilities of the current sample as done
342 in the well-known “garbage on-line model”. In this case, K is trained using the
343 corresponding technique.

344 The next ‘Beam search’ algorithms, are implemented according to the description in

345 the corresponding sections. For each pair $P = \langle sample, state \rangle$ one computes for each
346 corresponding path the sum and length in the last phoneme, as well as the sum over
347 the normalized cumulated posteriors of the previous phonemes (and their number).

348 Also, the entrance and exit samples into the HMM M are computed and propagated
349 like in the previous method, in order to ensure the localization of the subsequence.

350 4. If one searched entity (keyword, sequence, object) can have several HMM models, all
351 of them are taken into consideration as competitors. This is the case of the words
352 with several pronunciations (or of the objects that have different structures in different
353 states, for the recognition in images).

354 After the computation of the confidence measure for each model of the subsequences,
355 one eliminates those with a confidence measure in disagreement with a 'threshold' that
356 is trained for the configuration and the goal of the given application. For example, for
357 speech recognition with neuronal networks and minus of the logarithm of the posteriors,
358 the 'threshold' is chosen in the wanted point of the ROC curve obtained in tests.

359 5. The remained alternatives are extracted in the order of their confidence measure and
360 with the elimination of the conflicting alternatives until exhaustion. Each time when
361 an alternative is eliminated, the searched entity with the corresponding HMM is re-
362 estimated for the remaining sections in the sequence in which the search is performed.
363 If the new confidence measure passes the test of the 'threshold', then it will be inserted
364 in the position corresponding to its score in the queue of alternatives.

365 6. The successful alternatives can undergo tests of superior levels like for example a

366 question of confirmation for speech recognition, opinion of one operator, etc.

367 7. For objects recognition in images:

368 Posteriors are obtained by computing a distance between the color of the model and
369 that of element in the section of the image. If the context requires, the image will be
370 preprocessed to ensure a certain normalization (Ex: changeable conditions of light will
371 make necessary a transformation based on the histogram).

372 The phonemes of the speech recognition correspond to parts of the object. The struc-
373 ture (existence of transitions and their probabilities) can be modified, function of the
374 characteristics detected along the current path. For example, after detecting regions
375 of the object with certain lengths, one can estimate the expected length of the remain-
376 ing regions. Thus, the number of the expected samples for the future states can be
377 established and the HMM attached to the object will be configured accordingly.

378 A direction is scanned for the detection of the best fitting and afterwards, other direc-
379 tions will be scanned for discovering new fittings, as well as for testing the previous
380 ones. The final test will be certified by classical methods such as cross-correlation or
381 by the analysis of the contours in the hypothesized position.

382 To mention some examples for the application of the proposed method:

383 • The recognition of keywords begins to be used in answering automates of banking
384 system as well as telephone and automates for control, sales or information. The
385 method offers a possibility to recognize keywords in spontaneous speech with multiple
386 speakers.

- 387 • The recognition of DNA sequences is important for the study of the human Genome.
- 388 One of the biggest problem of the involved techniques consists in the high quantity of
- 389 data that have to be processed.
- 390 • The recognition of objects in images is used, among others, in cartography and in the
- 391 coordination of industrial robots. The method allows a quick estimation of the position
- 392 of the objects in scenes and can be validated with extra tests, using classical methods
- 393 of cross-correlation.