23-10-2018_PS

- I. Aufgabe 1
- II. Aufgabe 2
- III. Aufgabe 3

Aufgabe 1

Wir rechnen aus, wieviele Tupel in einem Block sind:

Blockgroesse B=8192, Tupelgroesse t=120. $\frac{B}{t}=68$ Tupel pro Block (abgerundet).

Wir rechnen weiter aus, wieviele Bloecke die Relationen brauchen: |R| = |S| = 1.000.000 und $\frac{|R|}{68} = 14.706$

Fuer $\sigma_{A\neq7.000.000}(R)$ und $\sigma_{A\neq7.000.000}(S)$: Wir lesen einfach die ganze Relation udn schmeissen unpassende Tupel raus. Bei 0,02s fuer einen Lesezugriff erhalten wir 14.706*0.02=294s. Es hilft nichts, dass S sortiert ist.

Fuer $\sigma_{A<7.000.007}(R)$ muessen wir auch alle Bloecke lesen (und kommen wieder auf 294), das aendert sich aber bei S: Da S sortiert ist, koennen wir mit Binarysearch das Tupel 7.000.007 finden und dann alle Werte "darunter" ausgeben. Binarysearch ist logarithmisch und wir vernachlaessigen die Laufzeit davon: $\frac{2.000.007}{5.000.000} \approx 40\%$ und 14706*0.4=5882,4 und 14706*0.4=5882,4 und 14706*0.4=5882,4. Wir koennen nur ganze Bloecke lesen und runden daher auf: |5882,4|=5883.

Aufgabe 2

Unsere Slotted Page faengt an mit a, f als Pointer zum Ende des freien Platzes, q_n und p_n halten Details zu jedem Tupel fest. Die Datensatzgroesse ist d_n und wir rechnen zunaechst die Loesung fuer $|d_n| = 2^5$ aus.

Es gilt $|a| = |f| = |q_n| = |p_n| = 13$. Wir stellen eine Formel auf:

$$|a| + |f| + n(|q_n| + |p_n| + |d_n|) \le 2^{13} * 8$$

Wir setzen ein und vereinfachen:

$$13 + 13 + n(13 + 13 + 2^{5} * 8) \le 2^{13} * 8$$
$$13 + 13 + n(13 + 13) \le 2^{13} * 8$$
$$n \le \frac{2^{13} * 8 - 2 * 13}{2 * 13 + 2^{5} * 8} = 232$$

Man kann also 232 Datensaetze speichern.

Aufgabe 3

Wir haben $\frac{8192}{2} = 4096$ Datensaetze mit Adressen 0 bis 4095. Wir finden die Groesse unserer Datensaetze:

|(1, 'Alpha')| = 4 + 5 = 9 und |(2, 'Pi')| = 4 + 2 = 6 und |(3, 'Epsilon')| = 4 + 7 = 11. Ungerade Groessen werden aufgerundet, da unsere Adressen durch 2 teilbar sein muessen: Wir erhalten **10, 6 und 12 Bytes** als Tupelgroessen, die Datensaetze nehmen also 5, 3 und 6 Woerter ein.

Unsere Slotted Page besteht dann aus $a, f, q_{1\dots 3}, p_{1\dots 3}, d_{1\dots 3}$. Die Adressen, an denen wir die Datensaetze ablegen, finden wir, indem wir sukzessive fuer jeden Datensatz von unserem Free-Space-Pointer f die Anzahl eingenommener Woerter des jeweiligen Datensatzes abziehen. f und a aendern wir nach jeder Insertion entsprechend.

Am Ende sieht unsere Slotted Page so aus:

a	f	q_1	p ₁	q_2	p_2	q_3	p_3	freier Speicher	Datensatz 3	Datensatz 2	Datensatz 1
3	4018	9	4091	6	4038	12	4082		(3, 'Epsilon)	(2, 'Pi')	(1, 'Alpha')