

Winning Space Race with Data Science

PANACEA TEVERAH
02 JULY 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Summary of methodologies

- Data Collection
- Data Wrangling
- EDA with SQL and data visualization
- Building interactive dashboard with Plotly
- Building interactive map with Folium
- Predictive Analysis

Summary of all results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Introduction

Project background and context

• We predicted if the first stage of the SpaceX Falcon 9 rocket will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Problems that need answers

- What influences if the rocket will land successfully?
- · What conditions does SpaceX need to have to ensure the best rocket success landing rate

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping from Wikipedia
- Perform data wrangling (that is transforming data for machine learning)
 - One hot encoding data fields for machine learning and dropping irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL;
 - Plotting: Scatter graphs, Bar graphs to show relationship between variables to show patterns of data
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, DT models were built and evaluated for the best classifier

Data Collection

- The following data sets were collected:
 - SpaceX launch data was gathered from the SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome
- The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
- Falcon 9 launch data was also found by web/scrapping using BeautifulSoup.

Data Collection - SpaceX API

1.Getting a response from API response.status code 2.converting a response to a .JSON file # Use json_normalize method to convert the json result into a dataframe data = pd.json normalize(response.json()) 3. Apply custom files to clean data # Call getLaunchSit getLaunchSite(data) getPayloadData(data) launch_dict - ('FlightNumber': list(data['flight_number']),
'Date' ! list(data['date']),
'BoosterVersion':BoosterVersion,
'PayloadMass':PayloadMass': PayloadMass': P 4. Assign list to a dictionary then data frame Legs':Legs, LandingPad':LandingPad, Block':Block, ReusedCount':ReusedCou Serial':Serial, Longitude': Longitude, Latitude': Latitude} # Create a data from Launch_dict data2 = pd.DataFrame.from_dict(launch_dict) 5. Filter dataframe and export to a flat file (.csv file) # Hint data['BoosterVersion']!='Falcon 1' data_falcon9 = data2[data2['BoosterVersion']!='Falcon 1'] data falcon9.to csv('dataset part 1.csv', index=False)

 https://github.com/Panacea020/Data-Science-Capstone-project-SpaceX/blob/main/REST%20API%20data%20collection.ipynb

Data Collection – Web Scraping from Wikipedia

```
1. Getting Response from HTML
                                                                  |static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922
                                                                   response = requests.get(static url)
                                                                   # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
2.Creating BeautifulSoup object
                                                                  soup = BeautifulSoup(response.text, 'html')
                                                                      # Assign the result to a list called `html tables`
                                                                      html tables = soup.find all('table')
3. Finding tables
                                                      # Apply find all() function with `th` element on first launch table
                                                       # Iterate each th element and apply the provided extract column from header() to get a column nam
                                                       tc - first_launch_table.find_all('th'
4. Getting column names
                                           launch dict = dict.fromkeys(column names)
                                            launch_dict['flight Not' - []
launch_dict['launch dite'] - []
launch_dict['Payload'] - []
launch_dict['Payload'] - []
launch_dict['orbit'] - []
launch_dict['Customer'] - []
launch_dict['Launch_dictcmer'] - []
launch_dict['Launch_dictcmer'] - []
                                                                                                                                                      st table row
rows in the first table heading is as n
if rows.th:
    frost table heading is as n
if rows.th.string:
    flight_number-rows.th.string.strip()
flag-flight_number.isdigit()
5.Creation of Dictional
                                                                                                                                                           .
flag-False
                                                               launch dict
                                                                df=pd.DataFrame(launch_dict)
6. Appending data to keys
                                                                                                                                                           date = datatimelist[0].strip(',')
#print(date)
                                                                          df.to csv('spacex web scraped tpf.csv', index=False)
                                                                                                                                                           launch_dict['Date'].append(date)
7.Converting dictionary to Dataframe https://github.com/Panacea020/Data-Science-Capstone-project-
                                                            SpaceX/blob/main/Web%20scrap%20data%20-%20Wikipedia.iovnb
```

Data Wrangling - EDA

 https://github.com/Panacea020/Data-Science-Capstone-project-SpaceX/blob/main/REST%20API%20da ta%20collection.ipynb

EDA with Data Visualization

 https://github.com/Panacea020/Data-Science-Capstone-project-SpaceX/blob/main/EDA%20with%20Data%20Visualization%20spaceX.ipynb

EDA with SQL

- SQL queries performed include
 - Displaying the names of the unique launch site in the space mission
 - Displaying top 5 records where launch sites begin with the string 'KSC'
 - Displaying the total payload mass carried by booster version F9 V1.1
 - Listing the date where the successful landing outcome in drone ship was achieved.
 - Listing the name of Boosters which had success in ground and have payload mass greater than 4000 but less than 6000
 - · Listing a total number of successful and failure mission outcomes
 - Listing of booster versions which have carried the maximum payload mass
 - Listing the record which will display the month names, successful landings outcomes in ground pad, booster versions, launch site for the months in 2018
 - Ranking the count of successful landing outcomes between the date 2010-06-04 and 2017-03-20 in descending order.
- https://github.com/Panacea020/Data-Science-Capstone-project-SpaceX/blob/main/IBM-EDA%20with%20SQL.ipynb%20at%20main%20%C2%B7%20chuksoo_IBM-Data-Science-Capstone-SpaceX.html

Interactive Map with Folium

- Markers were added with aim to finding a optimal location to building a launch site.
- https://github.com/PanaceaO2O/Data-Science-Capstone-project-SpaceX/blob/main/INTERACTIVE%2OFOLIUM%2OMAP.ipynb

Predictive Analysis (Classification)


```
algorithms = {'KNN':knn_cv.best_score_,'Tree':tree_cv.best_score_,'LogisticRegression':logreg_cv.best_score_}

bestalgorithm = max(algorithms, key=algorithms.get)

print('Best Algorithm is',bestalgorithm,'with a score of',algorithms[bestalgorithm])

if bestalgorithm == 'Tree':
    print('Best Params is :',tree_cv.best_params_)

if bestalgorithm == 'KNN':
    print('Best Params is :',knn_cv.best_params_)

if bestalgorithm == 'LogisticRegression':
    print('Best Params is :',logreg_cv.best_params_)

Best Algorithm is Tree with a score of 0.8892857142857145

Best Params is : {'criterion': 'gini', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 10, 'splitter': 'best'}
```

- The SVM ,KNN and logistics regression produced the highest accuracy at 88.9%. SVM performs best in terms of area under curve at 0.95
- https://github.com/Panacea020/Data-Science-Capstone-project-SpaceX/blob/main/Predictive%20Analysis%20ML.ipynb

Results

- The SVM, KNN, and logistic Regression are the best in terms of prediction accuracy for this SpaceX dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rate for Space X launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the successful Launches from the sites.
- Orbit GEO, HEO, SSO ,ES L1 have the best Success rate

Flight Number vs. Launch Site

- Flight Number vs. Launch Site
- Show the screenshot of the scatter plot with explanations
- CCAFS 40 has a significantly higher launches than other sited

Payload vs. Launch Site

- Payload vs. Launch Site
- The majority of Pay loads with lower mass have been launched from CCAFS SLC40

Success Rate vs. Orbit Type

- Show the screenshot of the scatter plot with explanations
- The orbit Types of ES-L1, GEO, HEO, SSO are among the highest success rate

Flight Number vs. Orbit Type

Flight number vs. Orbit type

A trend can be observed of shifting to VLEO launches in recent years

Payload vs. Orbit Type

- payload vs. orbit type
- There is a strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000 8000

Launch Success Yearly Trend

• The launch success rate has increased significantly since 2013 and has established since 2019, potentially due to advance in technology and the lessons learnt over the past years.

All Launch Site Names

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

Launch Site Names Begin with 'CCA'

%sql select* from SPACETBL where LAUNCH_SITE like CCA% LIMIT 5

Total Payload Mass

 %sql select sum(PAYLOAD_MASS_KG_) from SPACETBL where CUSTOMER = 'NASA(CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(AVG_MASS_KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

 %sql select min(DATE) from SPACEXTBL where Landing Outcome = 'Success(ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 %sql select OOSTER_VERSION from SPACEXTBL where Landing Outcome = 'Success (drone ship)' and PAYLOAD_MASS_KG_>4000 and Payload_MASS_KG_<6000

Total Number of Successful and Failure Mission Outcomes

 %sql select count(MISSION_OUTCOME) from SPACEXTL where MISSION_OUTCOME = 'Failure(in flight)'

100

Boosters Carried Maximum Payload

%sql select BOOSTER_VERSION from SPACEXTBL where
 PAYLOAD_MASS_KG_ = (select max(PAYLOAD_MASS_KG_) from SPACEXTBL

```
P9 85 81048.4
F9 85 81049.4
F9 85 81051.3
F9 85 81056.4
F9 85 81051.4
F9 85 81069.5
F9 85 81060.2
F9 85 81051.6
F9 85 81051.6
F9 85 81060.3
F9 85 81049.7
```

2015 Launch Records

 %sql select 'from SPACEXTBL where Landing _Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql select 'from SPACEXTBL where Landing _Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success (dione ship)	Success	Theicom	STO	3100	Thalcom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00	2016-03- 27
Success (drone ship)	Success	SKY Perfect JSAT Group	ono	4096	ICSAT-14	CCAFS LC- 40	F9 FT 91022	05/21/00	2016-05- 06
Success (drone ship)	Success	NASA (CRS)	LEO (155)	3136	SpaceX CR5-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	2016-04- 08
Success (ground part)	Success	Orbicomer	UIO .	2034	OG2 Mission 2 11 Orbcomm-OG2 sassifies	CCAPS LC- 40	F9 FT 91019	012900	2015-12- 22

ALL LAUNCH SITES MARKED ON THE MAP

Explain the important elements and findings on the screenshot

Success/failed launches for each site on the map

Distance between launch site and its proximities

Total Success Launches by all sites

KSC LC-39 success rate

• KSC LC-39 Achieved a 76.9% success rate while getting a 23.1% failure rate.

Payload vs Launch Outcome

 We can see the success rate for low weighted payload is higher than the heavy weighted payloads

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN AND logistics regression models are the best in terms of prediction accuracy for this data set
- Low weighted payloads perfom better than heavier payloads
- KSC LC 39A had the most successful launches from all the sites
- Orbit GEO ,HEO, SSO, ES L1 has the best success Rate.
- The success rates for spaceX launches is directly proportional to time in years they will eventually perfect the launch.

•

Appendix

Include any relevant assets like Python code snippets, SQL queries, charts,
 Notebook outputs, or data sets that you may have created during this project

