Foundation Models for Vision: DINOv2 & SAM

Équipe BRAIn

Content

DINOv2

a model to produce universal features

SAM

a model to segment any scene

Hands on:

few-shot classification with DINOv2

SoA architectures on existing "curated" datasets

- Vision transformers
- Tokenization of images
- Addition of a "Position Embedding"
- Addition of a CLS token: synthesis of patches

Purpose of a Foundation Model for Vision

From DINOv2 introduction: "producing all-purpose visual features, i.e., features that work across image distributions and tasks **without finetuning**"

What are the challenges to build such a system?

- Self-supervised training methods exist, but either on small curated dataset
 (Imagenet-1K) or on big uncurated dataset
 - Curated data: quality, diversity, balance
 - Adaptation to specific tasks are performed through fine tuning
 - o In order to provide the best pretrained encoders, need to train with big curated data

- Revisit and combine methods to scale on data and model size
 - Stabilise training
 - Accelerate

Create a "curated dataset"

- First, collection of "curated data" (ImageNet-1k & ImageNet-22k & others)
- A collection of unfiltered "uncurated data": 1.2B images
- Goal: retrieve images that are close to curated datasets
- These are curated through Embedding / Deduplication / Retrieval
 - Deduplication from Pizzi et al.
 - Cosine similarity and clustering
- To create the LVD-142M dataset

Scaling data: how to train with so many images

- Self-supervision
 - Image-level objective (through EMA)
 - Patch-level objective

Untying head weights for both aforementioned objectives

 Adapting the resolution: high resolution during training for downstream tasks

Scaling: training efficiency

- Flash Attention
 - Efficient Tiling
- Nested tensors
 - Different crop version in the same forward pass
- Efficient Stochastic Depth
 - Take full benefit from stochastic depth
- Fully Sharded Data Distribution
 - Spreading replicas across GPUs teacher, students, optimizer moments
- Model Distillation
 - To target smaller models

model	# of params	with registers	ImageNet k-NN	ImageNet linear	download
ViT-S/14 distilled	21 M	×	79.0%	81.1%	backbone only
ViT-S/14 distilled	21 M	Z	79.1%	80.9%	backbone only
ViT-B/14 distilled	86 M	×	82.1%	84.5%	backbone only
ViT-B/14 distilled	86 M	∠	82.0%	84.6%	backbone only
ViT-L/14 distilled	300 M	×	83.5%	86.3%	backbone only
ViT-L/14 distilled	300 M	∠	83.8%	86.7%	backbone only
ViT-g/14	1,100 M	×	83.5%	86.5%	backbone only
ViT-g/14	1,100 M	Z	83.7%	87.1%	backbone only

Experiences & Results

- On ImageNet-1k classification
 - Use CLS token
 - Downstream classification with k-NN or Linear

				kNN		linear	
Method Arch.		Data	Text sup.	val	val	ReaL	V2
		Weakly	supervised				
CLIP	ViT-L/14	WIT-400M	✓	79.8	84.3	88.1	75.3
CLIP	$ViT-L/14_{336}$	WIT-400M	\checkmark	80.5	85.3	88.8	75.8
SWAG	ViT-H/14	IG3.6B	✓	82.6	85.7	88.7	77.6
OpenCLIP	ViT-H/14	LAION	✓	81.7	84.4	88.4	75.5
OpenCLIP	ViT-G/14	LAION	✓	83.2	86.2	89.4	77.2
EVA-CLIP	ViT-g/14	custom^*	✓	83.5	86.4	89.3	77.4
		Self-su	pervised				
MAE	ViT-H/14	INet-1k	×	49.4	76.6	83.3	64.8
DINO	ViT-S/8	INet-1k	×	78.6	79.2	85.5	68.2
SEERv2	RG10B	IG2B	×	-	79.8	-	-
MSN	ViT-L/7	INet-1k	×	79.2	80.7	86.0	69.7
EsViT	Swin-B/W=14	INet-1k	×	79.4	81.3	87.0	70.4
Mugs	ViT-L/16	INet-1k	×	80.2	82.1	86.9	70.8
iBOT	ViT-L/16	INet-22k	×	72.9	82.3	87.5	72.4
	ViT-S/14	LVD-142M	×	79.0	81.1	86.6	70.9
DIMO a	ViT-B/14	LVD-142M	×	82.1	84.5	88.3	75.1
DINOv2	ViT-L/14	LVD-142M	×	83.5	86.3	89.5	78.0
	ViT-g/14	LVD-142M	×	83.5	86.5	89.6	78.4

Experiences & Results

Instance Recognition

- Images in database ranked according to the cosine similarities of their features with the ones of a query
- Outperforms both SSL and weakly supervised methods

		Oxt	Oxford		Paris		Met	AmsterTime	
Feature	Arch	M	Н	M	H	GAP	GAP-	ACC	mAP
OpenCLIP	ViT-G/14	50.7	19.7	79.2	60.2	6.5	23.9	34.4	24.6
MAE DINO iBOT	ViT-H/14 ViT-B/8 ViT-L/16	11.7 40.1 39.0	2.2 13.7 12.7	19.9 65.3 70.7	4.7 35.3 47.0	7.5 17.1 25.1	23.5 37.7 54.8	30.5 43.9 58.2	4.2 24.6 26.7
DINOv2	ViT-S/14 ViT-B/14 ViT-L/14 ViT-g/14	68.8 72.9 75.1 73.6	43.2 49.5 54.0 52.3	84.6 90.3 92.7 92.1	68.5 78.6 83.5 82.6	29.4 36.7 40.0 36.8	54.3 63.5 68.9 73.6	57.7 66.1 71.6 76.5	43.5 45.6 50.0 46.7

Experiences & Results

Semantic segmentation & Depth Estimation

			E20k 2.9)		capes 5.9)	Pascal VOC (89.0)	
Method	Arch.	lin.	+ms	lin.	+ms	lin.	+ms
OpenCLIP	ViT-G/14	39.3	46.0	60.3	70.3	71.4	79.2
MAE	ViT-H/14	33.3	30.7	58.4	61.0	67.6	63.3
DINO	ViT-B/8	31.8	35.2	56.9	66.2	66.4	75.6
iBOT	ViT-L/16	44.6	47.5	64.8	74.5	82.3	84.3
	ViT-S/14	44.3	47.2	66.6	77.1	81.1	82.6
DINO 0	ViT-B/14	47.3	51.3	69.4	80.0	82.5	84.9
DINOv2	ViT-L/14	47.7	53.1	70.3	80.9	82.1	86.0
	ViT-g/14	49.0	53.0	71.3	81.0	83.0	86.2

		NYUd (0.330)			$\begin{array}{c} \text{KITTI} \\ (2.10) \end{array}$			$\begin{array}{c} \mathrm{NYUd} \rightarrow \mathrm{SUN} \; \mathrm{RGB\text{-}D} \\ (0.421) \end{array}$		
Method	Arch.	lin. 1	lin. 4	DPT	lin. 1	lin. 4	DPT	lin. 1	lin. 4	DPT
OpenCLIP	ViT-G/14	0.541	0.510	0.414	3.57	3.21	2.56	0.537	0.476	0.408
MAE DINO iBOT	ViT-H/14 ViT-B/8 ViT-L/16	0.517 0.555 0.417	0.483 0.539 0.387	0.415 0.492 0.358	3.66 3.81 3.31	3.26 3.56 3.07	2.59 2.74 2.55	0.545 0.553 0.447	0.523 0.541 0.435	0.506 0.520 0.426
DINOv2	ViT-S/14 ViT-B/14 ViT-L/14 ViT-g/14	0.449 0.399 0.384 0.344	0.417 0.362 0.333 0.298	0.356 0.317 0.293 0.279	3.10 2.90 2.78 2.62	2.86 2.59 2.50 2.35	2.34 2.23 2.14 2.11	0.477 0.448 0.429 0.402	0.431 0.400 0.396 0.362	0.409 0.377 0.360 0.338

Consistent patch mapping

- A generic task
 - Ambition: segment any object
 - Zero- or Few-shot Learning
 - Inspired from NLP
 - Inspired from Hybrid (CLIP)
- Promptable Segmentation
 - Different types
 - Point(s)
 - Boxes
 - Text (?)
 - For training
 - For downstream tasks
 - Return a valid mask for any prompt, even ambiguous
 - Motivations:
 - ability for transfer
 - prompt eng. and composition

(a) **Task**: promptable segmentation

Architecture

- Image Encoder (MAE pretrained ViT)
- Prompt encoder
 - Positional Encoding
 - + Learned Embeddings
- Lightweight mask decoder
 - Transformer decoder
 - Mask predictor

(b) Model: Segment Anything Model (SAM)

- Dataset: SA-1B
 - Assisted Manual Stage
 - Annotators with "brush" / "eraser"
 - "stuff" / "thing"
 - 4.3M masks / 120k images
 - Semi Automatic Stage
 - Display confident masks
 - Ask annotators for additional
 - 5.9M masks / 180k images
 - Fully Automatic Stage
 - 1.1B masks / 11M

(c) **Data**: data engine (top) & dataset (bottom)

• DINOV2 vs SAM in segmentation : qualitative comparison

- Zero-Shot Single Point Valid Mask Evaluation
 - loU
 - Quality rating by human annotators

- Zero-Shot Edge Detection
 - Segment 16x16 points
 - NMS; Sobel Filter; Edge NMS

method	year	ODS	OIS	AP	R50
HED [108]	2015	.788	.808	.840	.923
EDETR [79]	2022	.840	.858	.896	.930
zero-shot transfe	r methods:				
Sobel filter	1968	.539	2	2	2
Canny [13]	1986	.600	.640	.580	-
Felz-Hutt [35]	2004	.610	.640	.560	-
SAM	2023	.768	.786	.794	.928

Table 3: Zero-shot transfer to edge detection on BSDS500.

- Zero-Shot Instance Segmentation
 - Instance segmentation
 - Running a detector, applying sam on boxes

	COCO [66]				LVIS v1 [44]				
method	AP	APS	AP^{M}	AP^{L}	AP	AP^S	AP^{M}	AP^L	
ViTDet-H [62]	51.0	32.0	54.3	68.9	46.6	35.0	58.0	66.3	
zero-shot transf	er meth	ods (se	gmenta	tion mo	dule or	ıly):			
SAM	46.5	30.8	51.0	61.7	44.7	32.5	57.6	65.5	

Object Detection

Semantic Segmentation

Instance Segmentation

- Zero-Shot Text-to-Mask
 - Instance segmentation
 - Running a detector, applying sam on boxes

Hands on: few shot classification with DINOv2

Hands on: few shot classification with DINOv2

shots queries

Hands on : few shot classification with DINOv2

shots

Hands on: few shot classification with DINOv2

queries

Center and project

Center and project

