Magnesium diboride (MgB₂)

- Conventional superconductor with special features
 - double gap model
 - highest Tc among BCS superconductors (39K)

MgB₂ thin films

- Two samples (#2, #3) out of three have undergone neutron scattering:
 - destroys anisotropy
 - makes film properties similar to a singlegap BCS superconductor

BCS model predictions

 Single gap, plus a phenomenological parameter (Dynes' Γ)

BCS model predictions

$$\nu_{(\Gamma, \Delta)}(E) \equiv \frac{N(E)}{N(0)} = \left| \Re \left(\frac{E - i\Gamma}{\sqrt{(E - i\Gamma)^2 - \Delta^2}} \right) \right|$$

$$f(u) = \frac{1}{\exp(u) + 1}, \text{ con } u = \frac{E}{k_B T}$$

$$\left(\frac{dI}{dV}\right)_{(\Gamma,\Delta)}(V) = \frac{1}{k_B T} \int \nu_{(\Gamma,\Delta)}(E) \left(-\frac{df}{du} \left(\frac{E - eV}{k_B T}\right)\right) dE$$

Double gap

- DoS (hence, dl/dV) as a linear combination of two single-gap Densities of States
 - "normalized" coefficients $\alpha_{\pi} + \alpha_{\sigma} = 1$
 - w/ constraint $0.66 < \alpha_{\pi} < 1$

$$\left(\frac{dN}{dV}\right)_{(\Gamma_{\pi}, \Delta_{\pi}, \Gamma_{\sigma}, \Delta_{\sigma}, \alpha_{\pi|\sigma})}^{MgB_{2}}(V) = \alpha_{\pi} \left(\frac{dI}{dV}\right)_{(\Gamma_{\pi}, \Delta_{\pi})}(V) + \alpha_{\sigma} \left(\frac{dI}{dV}\right)_{(\Gamma_{\sigma}, \Delta_{\sigma})}(V)$$

Computational difficulties

- The conductivity curve depends non linearly on Γ and Δ through a numerical integral (no analytical solution)
- Double-gap model leads to five independent parameters: Γ_{π} , Δ_{π} , Γ_{σ} , Δ_{σ} , and one coefficient e.g. α_{π}

Finding the best fit (method 1)

Simplex

- most powerful method, with limitations
- doesn't need derivatives
- χ² is "yet another function" to find a minimum for
- can't estimate statistical errors

Finding the best fit (method 2)

- gsl_multifit_*()
 - not a generic minimization procedure
 - less robust than Simplex on "irregular" functions but...
 - ____can estimate statistical covariances
 and sigmas!
 - min $\chi^2(\Gamma_{\pi}, \Delta_{\pi}, \Gamma_{\sigma}, \Delta_{\sigma}, \alpha_{\pi})$ Levenberg-Marquardt

Best of both worlds?

- Simplex method to find a good minimum
- Starting from the last result, gsl_multifit_fdfsolver_iterate() to (slightly) improve the fit, but most importantly compute statistical errors

https://www.youtube.com/watch?v=LLLq7-0Divlhttps://bitbucket.org/gderosa/didvsuperc/src

Results

Sample #1; single gap

```
- \Gamma = 0.2639 \pm 0.0023
- \Delta = 2.2327 \pm 0.0023
- \chi^2/DoF = 17.669
```


A better fit with a double gap

Sample #1; double gap

```
 \begin{array}{lll} - & \Gamma & = 0.1866 \pm 0.0019 \\ - & \Delta_{\pi} & = 1.7895 \pm 0.0050 \\ - & \Delta_{\sigma} & = 3.2348 \pm 0.0073 \\ - & \alpha_{\pi} & = 0.6660 \pm 0.0027 \\ - & \chi^2/\text{DoF} = 3.4737 \end{array}
```


The single gap model fits better with "disordered" (neutron-scattered) films

Samples #2 and #3, single-gap first (Γ, Δ) , then double-gap $(\Gamma_{\pi}, \Delta_{\pi}, \Gamma_{\sigma}, \Delta_{\sigma}, \alpha_{\pi})$

Results

	MgB2_01	MgB2_02	MgB2_03
Γ	0.2639 ± 0.0023	1.0753 ± 0.0037	1.4726 ± 0.0054
Δ	2.2327 ± 0.0023	2.5983 ± 0.0035	2.2969 ± 0.0053
$\tilde{\chi^2}$	17.669	5.0787	4.8334
Γ	0.1866 ± 0.0019	0.901 ± 0.013	0.590 ± 0.017
Δ_{π}	1.7895 ± 0.0050	2.018 ± 0.022	0.8620 ± 0.0094
Δ_{σ}	3.2348 ± 0.0073	3.433 ± 0.032	3.406 ± 0.019
α_{π}	0.6660 ± 0.0027	0.6661 ± 0.0064	0.6687 ± 0.0054
$\tilde{\chi^2}$	3.4737	4.4335	4.3942
Γ_{π}	0.2013 ± 0.0055	0.946 ± 0.012	1.297 ± 0.021
Γ_{σ}	0.086 ± 0.028	0.350 ± 0.075	0.452 ± 0.081
Δ_{π}	1.7591 ± 0.0063	2.025 ± 0.024	1.643 ± 0.031
Δ_{σ}	3.178 ± 0.011	3.664 ± 0.039	3.650 ± 0.042
α_{π}	0.666 ± 0.011	0.794 ± 0.019	0.813 ± 0.017
$\tilde{\chi}^2$	3.2813	4.1305	3.5091