Microcontrolador 8051

CPU y Microcontrolador

- A pequeño procesador
- On-chip RAM, ROM, I/O ports...
- Ejemplo 8051, EM78 y PIC 16X

CPU	RAM	ROM
I/O Port	Timer	Serial COM Port

Microcontrolador

En un único chip

bit	CPU
8	8085 Z80 6502 6800
16	8086 8088 68000 8087 80286 Z8000
32	80386 80486 68030 68040
64	Pentium 6X86 K6 Power PC

bit	Microcontroladores
8	MCS-48 MCS-51 6811 Z8 6805 PIC AVR
16	MCS-96 80186 80188 DSP320C2x
32	80386/EX DSP320C60 ARM

Tres Tipos de Buses

El Bus de direcciones (Address BUS)

Nº de líneas	Nº de direcciones	Capacidad	Definiciones
10 líneas	210=1024	1K byte	
11 líneas	211=2048	2K byte	K=1024
16 líneas	2 ¹⁶ =65536	64K byte	
20 líneas	2 ²⁰ =1024K	1M byte	M=1024K
24 líneas	2 ²⁴ =16384K	16K byte	
30 líneas	2 ³⁰ =1024M	1G byte	G=1024M
32 líneas	2 ³² =4096M	4G byte	

Los tiempos en el microcontrolado

Ciclo de reloj: Periodo de la señal del oscilador.

Ciclo máquina: Unidad base para medir el tiempo de ejecución de las instrucciones

Ciclo de instrucción: Tiempo de ejecución de una determinada instrucción.

Ejemplo: Para el microcontrolador base 8051, el oscilador del reloj puede ser de 12 Mhz. Su ciclo de reloj será de 1/12 us.

Un ciclo máquina para el uC 8051 original es de 12 ciclos de reloj. En el ejemplo, será igual a 12 x 1/12 us =1us

Una instrucción como MOV A, #32 tiene un ciclo de instrucción de 1 ciclo máquina, luego una duración de 1 x 1us = 1 us.

8051 Diagrama de bloques

8051 Packages

PDIP Plastic Dual Inline Package

PLCC Plastic Leaded Chip Carrier

VQFP: Very Quad Flat Package

(MISO) P1.6 [32 P0.5 (AD5) 31 P0.6 (AD6) 30 P0.7 (AD7) (SCK) P1.7 [(RXD) P3.0 5 29 EAVPP (INT1) P3.3 [9 25 P2.7 (A15) (T0) P3.4 □ 10 24 P2.6 (A14) (T1) P3.5 □ 11 23 P2.5 (A13)

VQFP

PLCC

DIP: Dual Inline Package SMD: Surface Mount Device

PDIP

PLCC Plastic Leaded Chip Carrier

8051 Packages

DIP: Dual Inline Package SMD: Surface Mount Device

8051 Pines

Para acceder a Memoria de Datos Externa

- /RD (Read data)
 - Señal de lectura de Memoria de Datos Externa.
- /WR (Write data)
 - Señal de escritura de Memoria de Datos Externa

Para leer Memoria de Programa Externa

- /PSEN (Program Store Enable)
 - Señal de lectura de Memoria de Programa
 - Cuando ejecuta programa desde ROM interna, /PSEN permanece a nivel alto.

8051 Pines

Para poder demultiplexar A0-A7 y D0-D7

- ALE (Address Latch Enable)
 - ALE para demultiplexar los buses de direcciones y de datos.
 - ALE=0, AD0-AD7 envía dato.
 - ALE=1, AD0-AD7 envía dirección.
 - El flanco descendente de ALE sirve para enclavar la parte baja de la dirección (A0-A7) mediante un registro externo.

8051 Pines

- /EA (External Access)
 - Si /EA está "alto", el 8051 ejecuta el programa desde la ROM interna.
 - If /EA está "bajo", el 8051 ejecuta el programa desde la ROM externa.

Reset

- Si la entrada Reset se mantiene activa <u>durante al</u> <u>menos dos ciclos máquina</u> los registros son cargados con 0, excepto:
- Los puertos que son cargados con 1's (FFh)
- El puntero de pila (SP) que se carga con 07h
- El registro del puerto serie SBUF se carga con valor aleatorio.

Espacios de Memoria de Programa y Memoria de Datos

Fig. 3.5 Estructura de la memoria de la MCS-51

8051 Memoria RAM de Datos Interna

		Dirección de bit							
	7F		Memoria RAM de propósito genera						
	30								
Unicaciones accesimes por bus maiviala	2F	7F	7E	7D	7C	7B	7A	79	78
\$	2E	77	76	75	74	73	72	71	70
	2D	6F	6E	6D	6C	6B	6A	69	68
2	2C	67	66	65	64	63	62	61	60
3	2B	5F	5E	5D	5C	5B	5A	59	58
ğ	2A	57	56	55	54	53	52	51	50
S	29	4F	4E	4D	4C	4B	4A	49	48
ĕ	28	47	46	45	44	43	42	41	40
ź	27	3F	3E	3D	3C	3B	3A	39	38
Š	26	37	36	35	34	33	32	31	30
Ť	25	2F	2E	2D	2C	2B	2A	29	28
3	24	27	26	25	24	23	22	21	20
ğ	23	1F	1E	1D	1C	1B	1A	19	18
2	22	17	16	15	14	13	12	11	10
š	21	0F	0E	0D	0C	0B	0A	09	08
5	20	07	06	05	04	03	02	01	00
	1F 18	1F Banco 3							
	17 10				Ban	co 2			
	0F 08	Banco 1							

Dirección de bit F7 F6 F5 F4 F3 F2 F1 F0 E7 E6 E5 E4 E3 E2 E1 E0(ACC D7 D6 D5 D4 D3 D2 **PSW** BC BB BA B9 B8 IΡ В8 B7 B6 B5 B4 B3 B2 B1 B0 P3 AC AB AA A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 P2 No accesible por bits 99 SBUF 9F 9E 9D 9C 9B 9A 99 98 SCON 97 96 95 94 93 92 91 90 P1 No accesible por bits 8D TH1 8C No accesible por bits TH₀ 8B No accesible por bits TL1 8A No accesible por bits TLO 89 No accesible por bits TMOD 8E 8D 8C 8B 8A 89 88 88 TCON No accesible por bits 87 PCON 83 No accesible por bits DPH 82 No accesible por bits DPL 81 No accesible por bits 86 | 85 | 84 | 83 | 82 | 81 | 80 P0

RAM

Banco de registros por defecto

para R0..R07

07

00

Directionamiento Directo e Indirecto

Registros con funciones especiales

Direccionamiento sólo Directo

Banco de Registros (Bancos 0-3)

	7Fh 30h	RAM Propósito general
	2Fh 20h	Zona también direccionable bit a bit
RS1 RS) 1 1	1Fh 18h	R7 RB3 R0 Banco 3
1 0	17h 10h	R7 RB2 R0 Banco 2
0 1	0Fh 08h	R7 RB1 R0 Banco 1
0 0	07h 00h	R7 RB1 R0 Banco D

	7Fh	
	1	RAM
	ı	Propósito general
	30h	
	2Fh	Zona también
		direccionable bit a
	20h	bit
RS1 RS)	1Fh	R7
1 1		RB3
	18h	RO Banco 3
	17h	R7
1 0		RB2
	10h	RO Banco 2
	0Fh	R7
0 1		RB1
	08h	RO Banco L
	07h	R7 RB1
0 0		Ranco O
	00h	R0 Banco B

RAM

D7	D6	D5	D4	D3	D2	D1	D0
CY	AC	F0	RS1	RS0	OV	-	Р

Selección del Banco de Registros activo mediante los bits RS1 y RS0 del Registro de estado PSW

RS1	RS0	Banco	Direcc.	Registros
0	0	RB0	00~07H	R0~R7
0	1	RB1	08~0FH	R0~R7
1	0	RB2	10~17H	R0~R7
1	1	RB3	18~1FH	R0~R7

Registro de estado (PSW)

D7	D6	D5	D4	D3	D2	D1	D0
CY	AC	F0	RS1	RS0	OV	UD	Р

Número de bit	Mnemónico	Función			
7	CY o C	Bit de acarreo. CY se pone a 1 lógico si en las instrucciones de suma o resta se produce acarreo en el bit séptimo. CY también está afectado por las instrucciones RRC, RLC, MUL, DA, JBC y CJNE.			
6	AC	Bit de acarreo auxiliar. AC se activa si en las instrucciones de suma o resta se produce acarreo en el bit tercero.			
5	F0	Bit F0. Este bit es de propósito general y definible por el usuario.			
4:3	RS1:0	Estos dos bits permiten seleccionar el banco de registros que soportan los registros R0-R7. RS1 RS0 Banco Direcciones 0 0 0 00H - 07H 0 1 1 08H - 0FH 1 0 2 10H - 17H 1 1 3 18H - 1FH			
2	OV	Bit de rebasamiento o overflow. Este bit se pone a 1 lógico cuando se produce un error de overflow en operaciones de suma o resta. OV también se pone a 1 cuando el resultado de una multiplicación es mayor de un byte, o cuando se realiza una división por cero.			
1	UD	Bit UD. Este bit es de propósito general y definible por el usuario.			
0	P	Bit de paridad. Indica la paridad del acumulador. Se pone a 1 cuando el número de unos de A es impar, y a 0 cuando es par.			

Special Function Register Espacio SFR (80h –FFh) sólo dir. directo

SPECIAL FUNCTION REGISTERS

¡Espacio sólo direccionable mediante direccionamiento directo!

SFR (1)

Dir.	D7	D6	D5	D4	D3	D2	D1	D0	Registro	
F0h	7	6	5	4	3	2	1	0	В	
E0h	7	6	5	4	3	2	1	0	ACC	
D0h	CY	AC	F0	RS1	RS0	OV	-	Р	PSW	
CDh	15	14	13	12	11	10	9	8	TH2	
CCh	7	6	5	4	3	2	1	0	TL2	
CBh	15	14	13	12	11	10	9	8	RCAP2H	
CAh	7	6	5	4	3	2	1	0	RCAP2L	
C8h	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C_T2	CP_RL2	T2CON	
	-	-	-	PS	PT1	PX1	PT0	PX0	IP	
B0h	P37	P36	P35	P34	P33	P32	P31	P30	P3	
	EA	-	-	ES	ET1	EX1	ET0	EX0	IE	
A0h	P27	P26	P25	P24	P23	P22	P21	P20	P2	

Posiciones que terminan en 0 o en 8 son direccionables bit a bit.

SFR (2)

•••	
)
)
0000	

99h	7	6	5	4	3	2	1	0	SBUF	
98h	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	SCON	
90h	P17	P16	P15	P14	P13	P12	P11	P10	P1	
8Dh	15	14	13	12	11	10	9	8	TH1	
8Ch	15	14	13	12	11	10	9	8	TH0	
8Bh	7	6	5	4	3	2	1	0	TL1	
8Ah	7	6	5	4	3	2	1	0	TL0	
89h	GATE	C/T	M1	MO	GATE	C/T	M1	MO	TMOD	
88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	TCON	
87h	SMOD	-	-	-	GF1	GF0	PD	IDL	PCON	
83h	15	14	13	12	11	10	9	8	DPH	
82h	7	6	5	4	3	2	1	0	DPL	
81h	7	6	5	4	3	2	1	0	SP	
	P07	P06	P05	P04	P03	P02	P01	P00	P0	

Valor después de RESET

Register	Value in Binary			
*ACC	0000000			
*B	0000000			
*PSW	0000000			
SP	00000111			
DPTR	500 A CO A			
DPH	00000000			
DPL	0000000			
*P0	11111111			
*P1	11111111			
*P2	11111111			
*P3	11111111			
*IP	8051 XXX00000			
	8052 XX000000			
*IE	8051 0XX00000			
	8052 0X000000			
TMOD	00000000			
*TOON	00000000			
*+T2CON	00000000			
THO	0000000			
TLO	0000000			
TH1	0000000			
TL1	0000000			
+TH2	0000000			
+TL2	00000000			
+RCAP2H	00000000			
+RCAP2L	00000000			
*SCON	00000000			
SBUF	Indeterminate			
PCON	HMOS 0XXXXXXX			
	CHMOS 0XXX0000			

X = Undefined

Bit Addressable

^{+ = 8052} only