

Cao, Jiali A0232321Y Huang, Hai-Hsin A0231906J Tsao, Kai-Ting A0231947Y Mingxuan Yang A0231854E

Agenda

- Background
- Problem Statement
- Methodology
 - OLS Linear Regression
 - Sentimental Analysis Using TextBlob
 - Predict Movie Sentiments Using Classification models
- Business Application
- Conclusion and Further Navigation
- Reference

Background

Motivation

Traditionally, theaters would predict a high box office for a movie with famous producers, popular cast and high budget

With the spread of SNS, people tend to search for comments on the Internet before buying a ticket.

People's comments become more and more important to affect the revenue of a movie.

Methodology

Linear Regression

to evaluate the effects of Internet rating on movie revenue

Sentimental Analysis Using TextBlob

to explore the polarity and subjectivity of movie review contents

Predict Movie Sentiments Using Classification models

Compare Logistic Regression, SVM, Naive Bayes and K-nearest Neighbors Classifier

Methodology

Linear Regression

to evaluate the effects of Internet rating on movie revenue

Sentimental Analysis Using TextBlob

to explore the polarity and subjectivity of movie review contents

Predict Movie Sentiments Using Classification models

Compare Logistic Regression, SVM, Naive Bayes and K-nearest Neighbors Classifier

Linear Regression

Data Source	TMDB and GroupLens
Time Span	2000-2017
Data Size	2561
Dependent variable	revenue
Independent variable	vote_average
Control variables	budget, genre, year, runtime and country

• R Squared: 0.501

• Coef: 0.4747

• P Value: 0

• vote_average has a significant positive correlation with movies' revenue. The result matches our hypothesis

Methodology

Linear Regression

to evaluate the effects of Internet rating on movie revenue

Sentimental Analysis Using TextBlob

to explore the polarity and subjectivity of movie review contents

Predict Movie Sentiments Using Classification models

Compare Logistic Regression, SVM, Naive Bayes and K-nearest Neighbors Classifier

Datasets

Data source: Rotten tomatoes review

Time span: 2011 - 2020 (10 years range)

Data size: 59,498 rows , 8 columns

Movie ID	critic_name	top_critic	publisher_name	review_type	review_score	review_date
m/0814255	Greg Maki	FALSE	Star-Democrat (Easton, MD)	Rotten	D+	2011/11/5
m/100001312	Dennis	TRUE	Dennis Movie Reviews	Fresh	В	2011/5/12

review_content

The premise of Percy Jackson & the Olympians: The Lightning Thief holds great potential. Potential the film never realizes.

Lumet keeps things tense, sweaty, suspenseful and entertaining despite the contrived story line.

Feature Engineering

Encode review_rank to review_score

review_rank	review_score
A	12
B+	11
В	10
B -	9
	•••
F	1

Encode review_type to sentiment

review_type sentiment

Fresh — 1

Rotten — 0

Fresh: review score >= 9 Rotten: review score <9

Polarity and Subjectivity

We used a package called TextBlob to analyze the polarity and subjectivity of each review content.

Polarity

-1 Negative

0 Neutral

+1 Positive

Subjectivity

0 Objective

+1 Subjective

EDA and Preliminary Results

Polarity score distribution within each review score

More data points with a positive polarity score in higher review scores and less data points with positive polarity scores in lower review scores.

EDA and Preliminary Results

Positive correlation between the polarity score and review score

We computed the average polarity score in each review score range. Interestingly, the higher the review score, the higher the polarity score.

EDA and Preliminary Results

Model:		OLS	Adj. R-s	squared:	0	.711	
Dependent Variable:		score		AIC:	205112.6	6471	
Date:	2021-1	1-17 18:48		BIC:	205148.6	3219	
No. Observations:		59498	Log-Lik	kelihood:	-1.02556	e+05	
Df Model:		3	F-	statistic:	4.8696	e+04	
Df Residuals:		59494	Prob (F-s	statistic):		0.00	
R-squared:		0.711		Scale:	1.8	3394	
	Coef.	Std.Err.	t	P> t	[0.025	0.97	'5]
Intercept	5.1997	0.0100	521.0694	0.0000	5.1801	5.21	92
polarity	0.6180	0.0209	29.5853	0.0000	0.5771	0.65	89
sentiment	4.3658	0.0121	361.6722	0.0000	4.3421	4.38	95
top_critic_dummy	0.0038	0.0137	0.2780	0.7810	-0.0231	0.03	07
Omnibus: 74	9.086	Durbin-Wa	atson:	1.617			
Prob(Omnibus):	0.000 J	arque-Bera	a (JB): 74	0.345			
Skew: -	0.252	Pro	b(JB):	0.000			
Kurtosis:	2.789	Conditio	n No.:	5			

The polarity score has a significant effect on the review score

The polarity score has a positive coefficient and a 0.0000 p-value, meaning that the polarity score has a significant effect on the review score, and they are positively correlated.

EDA and Preliminary Results

Relationship between polarity and subjectivity

More polar comments tend to be more subjective.

• EDA and Preliminary Results

Relationship between average review score for each movie and average polarity score for each movie

Comments that are too subjective (subjectivity score > 0.8) and movies that have only one comment are filtered out. There is a slightly positive correlation.

Linear Regression

to evaluate the effects of Internet rating on movie revenue

Sentimental Analysis Using TextBlob

to explore the polarity and subjectivity of movie review contents

Predict Movie Sentiments Using Classification models

Compare Logistic Regression, SVM, Naive Bayes and K-nearest Neighbors Classifier

Introduction

Predict Movie Sentiments
With Review Contents
Using Classification models

Using classification models, including Logistic Regression, SVM, Naive Bayes and K-nearest Neighbors Classifier to train the same dataset (Rotten tomatoes review)

Review Contents

Movie Sentiments

The count vectorizer & the tf-idf vectorizer

How can we input review contents as independent variables?

COUNT VECTORIZER

The count vectorizer considers the frequencies of words in a sentence.

TF-IDF VECTORIZER

The tf-idf vectorizer considers both the frequencies a word appears in a sentence and the number of sentences the word appears in.

Logistic Regression

SVM

Multinomial Naive Bayes

K-nearest Neighbors Classifier

- Accuracy rate comparisons

Accuracy	Count vectorizer for bag of words (BOW)		Tfidf vectorizer		
	Test accuracy rate	Training accuracy rate	Test accuracy rate	Training accuracy rate	
Logistic Regression	0.6479	0.9322	0.6458	0.6576	
SVM	0.6458	0.8618	0.6458	0.6577	
Naïve Bayes (Multinomial NB)	0.6568	0.9338	0.6473	0.9338	
K-nearest neighbors classifier	0.6461	0.6577	0.6458	0.6577	

- Accuracy rate comparisons

Accuracy	Count vectorizer for bag of words (BOW)		Tfidf vectorizer		
	Test accuracy rate	Training accuracy rate	Test accuracy rate	Training accuracy rate	
Logistic Regression	0.6479	0.9322	0.6458	0.6576	
SVM	0.6458	0.8618	0.6458	0.6577	
Naïve Bayes (Multinomial NB)	0.6568	0.9338	0.6473	0.9338	
K-nearest neighbors classifier	0.6461	0.6577	0.6458	0.6577	

- Accuracy rate comparisons

Accuracy	Count vectorizer for bag of words (BOW)		Tfidf vectorizer		
	Test accuracy rate	Training accuracy rate	Test accuracy rate	Training accuracy rate	
Logistic Regression	0.6479	0.9322	0.6458	0.6576	
SVM	0.6458	0.8618	0.6458	0.6577	
Naïve Bayes (Multinomial NB)	0.6568	0.9338	0.6473	0.9338	
K-nearest neighbors classifier	0.6461	0.6577	0.6458	0.6577	

- Unbalanced data

64.58 %

Sentiment =1 (FRESH)

Sentiment = 0 (ROTTEN)

Confusion Matrix

Confusion Matrix Multinomial NB

Word Cloud

Positive review words

Negative review words

Conclusion and Further Navigation

"Too subjective" And "Too polarized"? Does tokenized words really mean what the commentor wants to imply?

Are sentiments simply "positive" or "negative"?

Cao, Jiali A0232321Y Huang, Hai-Hsin A0231906J Tsao, Kai-Ting A0231947Y Mingxuan Yang A0231854E