Suma de productos Expresión booleana que consiste simplemente en sumar (operación OR) términos que contienen productos (operación AND).

Término producto Producto booleano de dos o más literales equivalente a una operación AND. Término suma Suma booleana de dos o más literales equivalente a la operación OR.

Variable Símbolo utilizado para representar una magnitud lógica que puede tener tanto un valor 1 como 0; generalmente se designa mediante una letra cursiva.

VHDL Lenguaje estándar de descripción hardware. IEEE Std. 1076-1993.

AUTOTEST

Las respuestas se encuentran al final del capítulo.

_					
1.	El complemento de	una variabl	e siempre	es:	
	(a) 0 (b) 1	(c) igual	a la varia	ble (d) e	l inverso de la variable
2.	La expresión boolea	na $A + \overline{B} +$	- <i>C</i> es:		
	(a) un término suma	ı	(b) un li	teral	
	(c) un término produ	icto	(d) un té	rmino complem	entado
3.	La expresión booleana $A\overline{B}C\overline{D}$ es:				
	(a) un término suma		(b) un té	rmino producto	
	(c) un literal		(d) siem	pre 1	
4.	El dominio de la expresión $A\overline{B}CD + A\overline{B} + \overline{C}D + B$ es:				
	(a) A y D	(b) Sólo	В	(c) A, B, C y L	(d) ninguno de los anteriores
5.	De acuerdo con la le	ey conmuta	tiva de la	suma,	
	(a) $AB = BA$			(b) $A = A + A$	
	(c) $A + (B + C) = (A + C)$	+B)+C		$(\mathbf{d}) A + B = B$	+A
6.	De acuerdo con la le	acuerdo con la ley asociativa de la multiplicación,			
	(a) $B = BB$	(b) A (B)	C) = (AB)	C	
	(c) $A + B = B + A$	(d) $B + B$	B(B+0)		
7.	De acuerdo con la le	ey distributi	iva,		

(a)
$$A(B + C) = AB + AC$$

(b)
$$A(BC) = ABC$$

(c)
$$A(A + 1) = A$$

(d)
$$A + AB = A$$

8. ¿Cuál de las siguientes no es una regla válida del álgebra booleana?

(a)
$$A + 1 = 1$$

(b)
$$A = \overline{A}$$

(c)
$$AA = A$$

(d)
$$A + 0 = A$$

9. ¿Cuál de las siguientes reglas establece que si una entrada de una puerta AND es siempre 1, la salida es igual a la otra entrada?

(a)
$$A + 1 = 1$$

(b)
$$A + A = A$$

(c)
$$A \cdot A = A$$

(d)
$$A \cdot 1 = A$$

10. De acuerdo con los teoremas de DeMorgan, ¿cuáles de las siguientes igualdades son correctas?

(a)
$$\overline{AB} = \overline{A} + \overline{B}$$

(b)
$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

(c)
$$A + B + C = ABC$$

(c) $\overline{A+B+C} = \overline{A}\overline{B}\overline{C}$ (d) Todas las respuestas

258 ALGEBRA DE BOOLE Y SIMPLIFICACIÓN LÓGICA

11. La expresión booleana X = AB + CD representa

(a) dos operaciones OR multiplica	das (AND). (b) Una puerta AND de 4 entradas
(c) dos operaciones AND sumadas	(OR) (d) una operación OR-exclusiva
12. Un ejemplo de una expresión sum	a de productos es
(a) $A + B(C + D)$	(b) $\overline{A}B + A\overline{C} + A\overline{B}C$
(c) $(\overline{A} + B + C)(A + \overline{B} + C)$	(d) Las respuestas (a) y (b)
13. Un ejemplo de una expresión prod	ucto de sumas es
(a) $A(B+C) + A\bar{C}$ (b) (A	$(A+B)(\overline{A}+B+\overline{C})$
(c) $\overline{A} + \overline{B} + BC$ (d) La	as respuestas (a) y (b)
14. Un ejemplo de una expresión sum	a de productos estándar es
(a) $\overline{A}B + A\overline{B}C) + AB\overline{D}$ (b)	$A\overline{B}C + A\overline{C}D$
(c) $A\overline{B} + \overline{A}B + AB$ (d)	$A\overline{B}C\overline{D} + \overline{A}B + \overline{A}$
15. Un mapa de Karnaugh de 3 variab	les tiene
(a) ocho celdas (b) tres celd	as (c) dieciséis celdas (d) cuatro celdas
16. En un mapa de Karnaugh de 4 van un	iables, un término producto de dos variables se obtiene d
(a) grupo de 2 celdas de 1s (b	grupo de 8 celdas de 1s
(c) grupo de 4 celdas de 1s (d	grupo de 4 celdas de 0s
17. En un mapa de Karnaugh, la agrup	pación de 0s produce
(a) una expresión producto de sum	as (b) una expresión suma de productos
(c) una condición "indiferente"	(d) un circuito lógico AND-OR
18. Un mapa de Karnaugh de 5 variab	les tiene
(a) dieciséis celdas (b) treinta y	dos celdas (c) sesenta y cuatro celdas
19. Un SPLD que tiene una matriz AN	ID programable y una matriz OR fija es una
(a) PROM (b) PLA (c) PAL (d) GAL
20. VHDL es un tipo de	
(a) circuito lógico programable	(b) lenguaje de descripción hardware
(c) matriz programable	(d) matemáticas lógicas
21. En VHDL, un puerto es	
(a) un tipo de entidad (b) un tipo de arquitectura
(c) una entrada o una salida (d) un tipo de variable
Las respuestas a los problemas impar	es se encuentran al final del libro.

PROBLEMAS

SECCIÓN 4.1 Operaciones y expresiones booleanas

- **1.** Utilizando la notación booleana, escribir una expresión que sea 1 siempre que una o más de sus variables (*A*, *B*, *C* y *D*) sean 1.
- **2.** Escribir una expresión que sea 1 sólo si todas sus variables (A, B, C, D y E) son 1.
- 3. Escribir una expresión que sea 1 cuando una o más variables (A, B y C) son 0.

- **4.** Evaluar las siguientes operaciones:
 - (a) 0 + 0 + 1
- **(b)** 1 + 1 + 1
- **(c)** 1 · 0 · 0

- **(d)** 1 · 1 · 1
- **(e)** 1 · 0 · 1
- **(f)** $1 \cdot 1 + 0 \cdot 1 \cdot 1$

(d) $\bar{A} + B + \bar{C}$

- 5. Hallar los valores de las variables que hacen que cada término producto sea 1 y que cada suma
 - (a) AB
- **(b)** $A\overline{B}C$
- (c) A + B(g) $A\bar{B}\bar{C}$
- (e) $\overline{A} + \overline{B} + C$ (f) $\overline{A} + B$
- **6.** Hallar los valores de *X* para todos los posibles valores de las variables.
 - (a) X = (A + B)C + B
- **(b)** $X = (\overline{A + B})C$
- (c) $X = A\overline{B}C + AB$

- (e) $X = (A+B)(\overline{A}+B)$ (f) $X = (A+BC)(\overline{B}+\overline{C})$

SECCIÓN 4.2 Leyes y reglas del álgebra booleana

- 7. Identificar la ley del álgebra de Boole en que está basada cada una de las siguientes igual-
 - (a) $A\overline{B} + CD + A\overline{C}D + B = B + A\overline{B} + A\overline{C}D + CD$
 - **(b)** $AB\overline{C}D + \overline{ABC} = D\overline{C}BA + \overline{CBA}$
 - (c) $AB(CD + E\overline{F} + GH) = ABCD + ABE\overline{F} + ABGH$
- 8. Identificar la regla o reglas del álgebra de Boole en que está basada cada una de las siguientes igualdades.
 - (a) $\overline{AB + CD} + \overline{EF} = AB + CD + \overline{EF}$
- **(b)** $A\overline{A}B + AB\overline{C} + AB\overline{B} = AB\overline{C}$
- (c) A(BC + BC) + AC = A(BC) + AC (d) $AB(C + \overline{C}) + AC = AB + AC$
- (e) $A\overline{B} + A\overline{B}C = A\overline{B}$
- (f) $ABC + \overline{AB} + \overline{ABCD} = ABC + \overline{AB} + D$

SECCIÓN 4.3 Teoremas de DeMorgan

- 9. Aplicar los teoremas de DeMorgan a cada expresión:
 - (a) $\overline{A+\overline{B}}$
- (b) $\overline{\overline{A}B}$
- (c) $\overline{A+B+C}$
- (d) \overline{ABC}

- (e) $\overline{A(B+C)}$
- (f) $\overline{AB} + \overline{CD}$
- (g) $\overline{AB + CD}$
- (h) $(A + \overline{B})(\overline{C} + D)$
- 10. Aplicar los teoremas de DeMorgan a cada expresión:
 - (a) $\overline{A\overline{B}(C+\overline{D})}$
- **(b)** $\overline{AB(CD+EF)}$
- (c) $\overline{(A+\overline{B}+C+\overline{D})}+\overline{ABC\overline{D}}$
- (d) $(\overline{A} + B + C + D)(\overline{A}\overline{B}\overline{C}D)$
- (e) $\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD})$
- 11. Aplicar los teoremas de DeMorgan a las siguientes expresiones:
 - (a) $(\overline{ABC})(\overline{EFG}) + (\overline{HIJ})(\overline{KLM})$
- **(b)** $(A + \overline{BC} + CD) + \overline{BC}$
- (c) $(\overline{A+B})(\overline{C+D})(\overline{E+F})(\overline{G+H})$

SECCIÓN 4.4 Análisis booleano de los circuitos lógicos

- 12. Escribir la expresión booleana para cada puerta lógica de la Figura 4.55.
- 13. Escribir la expresión booleana para cada uno de los circuitos lógicos de la Figura 4.56.

260 ALGEBRA DE BOOLE Y SIMPLIFICACIÓN LÓGICA

FIGURA 4.55

- 14. Dibujar el circuito lógico representado por cada una de las siguientes expresiones.
 - (a) A + B + C
- **(b)** *ABC*
- (c) AB + C
- (d) AB + CD
- 15. Dibujar el circuito lógico representado por cada una de las siguientes expresiones.
 - (a) $A\overline{B} + \overline{A}B$
- **(b)** $AB + \overline{A}\overline{B} + \overline{A}BC$
- (c) $\overline{A}B(C + \overline{D})$
- (d) $A + (B[C + D(B + \overline{C})]$
- **16.** Construir una tabla de verdad para cada una de las siguientes expresiones booleanas.
 - (a) A + B
- **(b)** *AB*
- (c) AB + BC
- **(d)** (A + B)C
- (e) $(A+B)(\overline{B}+C)$

SECCIÓN 4.5 Simplificación mediante el álgebra de Boole

- 17. Mediante las técnicas del álgebra de Boole, simplificar las siguientes expresiones lo máximo posible:
 - (a) A(A + B)
- **(b)** $A(\overline{A} + AB)$
- (c) $BC + \overline{B}C$

- (d) $A(A + \overline{A}B)$
- (e) $A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C$
- 18. Mediante las técnicas del álgebra de Boole, simplificar las siguientes expresiones:
 - (a) $(A + \overline{B})(A + C)$
- **(b)** $\overline{A}B + \overline{A}B\overline{C} + \overline{A}BCD + \overline{A}B\overline{C}\overline{D}E$
- (c) $AB + \overline{ABC} + A$
- (d) $(A + \overline{A})(AB + AB\overline{C})$
- (e) $AB + (\overline{A} + \overline{B})C + AB$
- 19. Mediante las técnicas del álgebra de Boole, simplificar las siguientes expresiones:
 - (a) $BD + B(D + E) + \bar{D}(D + F)$
- **(b)** $\overline{ABC} + \overline{(A+B+\overline{C})} + \overline{ABCD}$
 - (c) $(B + BC)(B + \bar{B}C)(B + D)$
- (d) $ABCD + AB(\overline{CD}) + (\overline{AB})CD$
- (e) $ABC[AB + \overline{C}(BC + AC)]$
- 20. Determinar cuáles de los circuitos lógicos de la Figura 4.57 son equivalentes.

FIGURA 4.57

SECCIÓN 4.6 Formas estándar de las expresiones booleanas

- 21. Convertir las siguientes expresiones en sumas de productos:
 - (a) $(A + B)(C + \overline{B})$
- - **(b)** $(A + \overline{B}C)C$ **(c)** (A + C)(AB + AC)
- 22. Convertir las siguientes expresiones en sumas de productos:
- (a) $AB + CD(A\overline{B} + CD)$ (b) $AB(\overline{B}\overline{C} + BD)$ (c) $A + B[AC + (B + \overline{C})D]$
- 23. Definir el dominio de cada suma de productos del Problema 21 y convertir la expresión a su forma estándar.
- 24. Convertir cada suma de productos del Problema 22 a su forma estándar.
- 25. Determinar el valor binario de cada término en las expresiones suma de productos del Problema 23.
- 26. Determinar el valor binario de cada término en las expresiones suma de productos del Problema 24.
- 27. Convertir cada una de las expresiones suma de productos estándar del Problema 23 a su forma producto de sumas estándar.
- 28. Convertir cada una de las expresiones suma de productos estándar del Problema 24 a su forma producto de sumas estándar.

SECCIÓN 4.7 Expresiones booleanas y tablas de verdad

- 29. Desarrollar la tabla de verdad de cada una de las siguientes expresiones suma de productos

 - (a) $A\overline{B}C + \overline{A}B\overline{C} + ABC$ (b) $\overline{XYZ} + \overline{X}\overline{Y}Z + XY\overline{Z} + X\overline{Y}Z + \overline{X}YZ$
- 30. Desarrollar la tabla de verdad de cada una de las siguientes expresiones suma de productos
 - (a) $\overline{A}B\overline{C}D + \overline{A}BC\overline{D} + A\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}$
 - **(b)** $WXYZ + WXY\overline{Z} + \overline{W}XYZ + W\overline{X}YZ + WX\overline{Y}Z$

- **31.** Desarrollar la tabla de verdad de cada una de las siguientes expresiones suma de productos estándar:
 - (a) $\overline{A}B + AB\overline{C} + \overline{A}\overline{C} + A\overline{B}C$
- **(b)** $\overline{X} + Y\overline{Z} + WZ + X\overline{Y}Z$
- **32.** Desarrollar la tabla de verdad de cada una de las siguientes expresiones producto de sumas estándar:
 - (a) $(\overline{A} + \overline{B} + \overline{C})(A + B + C)(A + \overline{B} + C)$
 - **(b)** $(\bar{A} + B + \bar{C} + D)(A + \bar{B} + C + \bar{D})(A + \bar{B} + \bar{C} + D)(\bar{A} + B + C + \bar{D})$
- 33. Desarrollar la tabla de verdad de cada una de las siguientes expresiones producto de sumas estándar:
 - (a) (A+B)(A+C)(A+B+C)
 - **(b)** $(A + \overline{B})(A + \overline{B} + \overline{C})(B + C + \overline{D})(\overline{A} + B + \overline{C} + D)$
- **34.** Para cada tabla de verdad de la Figura 4.58, obtener una expresión suma de productos estándar y un producto de sumas estándar.

FIGURA 4.58

SECCIÓN 4.8 Mapas de Karnaugh

- 35. Dibujar un mapa de Karnaugh de 3 variables y etiquetar cada celda según su valor binario.
- 36. Dibujar un mapa de Karnaugh de 4 variables y etiquetar cada celda según su valor binario.
- **37.** Escribir los términos producto estándar correspondientes a cada celda de un mapa de Karnaugh de 3 variables.

SECCIÓN 4.9 Minimización de una suma de productos mediante el mapa de Karnaugh

- **38.** Utilizar un mapa de Karnaugh para hallar la suma de productos mínima para cada una de las expresiones siguientes.
 - (a) $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}C$
- **(b)** $AC(\overline{B} + C)$

- (c) $\overline{A}(BC + B\overline{C}) + A(BC + B\overline{C})$ (d) $\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$
- 39. Utilizar un mapa de Karnaugh para simplificar las expresiones siguientes a su forma suma de productos mínima.
 - (a) $\overline{ABC} + A\overline{BC} + \overline{ABC} + AB\overline{C}$
- **(b)** $AC[\overline{B} + B(B + \overline{C})]$
- (c) $DE\overline{F} + \overline{D}E\overline{F} + \overline{D}\overline{E}\overline{F}$
- 40. Expandir las expresiones siguientes a su forma suma de productos estándar.
 - (a) $AB + A\overline{B}C + ABC$
- **(b)** A + BC
- (c) $A\overline{B}\overline{C}D + AC\overline{D} + B\overline{C}D + \overline{A}BC\overline{D}$
- (d) $A\overline{B} + A\overline{B}\overline{C}D + CD + B\overline{C}D + ABCD$
- 41. Minimizar las expresiones del Problema 40 utilizando un mapa de Karnaugh.
- 42. Utilizar un mapa de Karnaugh para reducir las expresiones siguientes a su forma suma de productos mínima.
 - (a) $A + B\overline{C} + CD$
 - **(b)** $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + ABCD + ABC\overline{D}$
 - (c) $\overline{AB}(\overline{CD} + \overline{CD}) + AB(\overline{CD} + \overline{CD}) + A\overline{B}\overline{CD}$
 - (d) $(\overline{A}\overline{B} + A\overline{B})(CD + C\overline{D})$
 - (e) $\overline{A}\overline{B} + A\overline{B} + \overline{C}\overline{D} + C\overline{D}$
- 43. Reducir la función especificada en la tabla de verdad de la Figura 4.59 a su forma suma de productos mínima mediante un mapa de Karnaugh.
- 44. Utilizar el mapa de Karnaugh para implementar la forma suma de productos mínima de la función lógica especificada en la tabla de verdad de la Figura 4.60.
- 45. Resolver el Problema 44 para una situación en que las seis últimas combinaciones binarias no están permitidas.

Entra	das	Salida	
A B	<i>C</i>	X	
0 0	0	1	
0 0	1	1	
0 1	0	0	
0 1	1	1	
1 0	0	1	
1 0	1	1	
1 1	0	0	
1 1	1	1	

FIGURA 4.59

FIGURA 4.60

SECCIÓN 4.10 Minimización de un producto de sumas mediante el mapa de Karnaugh

- **46.** Utilizar un mapa de Karnaugh para hallar la suma de productos mínima de las siguientes expresiones:
 - (a) $(A+B+C)(\overline{A}+\overline{B}+\overline{C})(A+\overline{B}+C)$
 - (b) $(X + \overline{Y})(\overline{X} + Z)(X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)$
 - (c) $A(B+\overline{C})(\overline{A}+C)(A+\overline{B}+C)(\overline{A}+B+\overline{C})$
- 47. Utilizar un mapa de Karnaugh para simplificar las siguientes expresiones a su forma producto de sumas mínima:
 - (a) $(A + \overline{B} + C + \overline{D})(\overline{A} + B + \overline{C} + D)(\overline{A} + \overline{B} + \overline{C} + \overline{D})$
 - **(b)** $(X + \overline{Y})(W + \overline{Z})(\overline{X} + \overline{Y} + \overline{Z})(W + X + Y + Z)$
- **48.** Para la función especificada en la tabla de verdad de la Figura 4.59, determinar el producto de sumas mínimo mediante el mapa de Karnaugh.
- **49.** Determinar el producto de sumas mínimo para la función de la tabla de verdad de la Figura 4.60.
- **50.** Convertir cada una de las siguientes expresiones producto de sumas mínimo a la forma de suma de productos mínima utilizando un mapa de Karnaugh.
 - (a) $(A + \overline{B})(A + \overline{C})(\overline{A} + \overline{B} + C)$
 - **(b)** $(\overline{A} + B)(\overline{A} + \overline{B} + \overline{C})(B + \overline{C} + D)(A + \overline{B} + C + \overline{D})$

SECCIÓN 4.11 Mapa de Karnaugh de cinco variables

51. Minimizar la siguiente suma de productos utilizando un mapa de Karnaugh.

$$X = \overline{A}B\overline{C}D\overline{E} + \overline{A}\overline{B}\overline{C}DE + A\overline{B}\overline{C}DE + AB\overline{C}\overline{D}\overline{E} + \overline{A}BCD\overline{E} + \overline{A}BCD\overline{E} + \overline{A}BCDE$$
$$+ \overline{A}\overline{B}\overline{C}D\overline{E} + \overline{A}\overline{B}CDE + AB\overline{C}D\overline{E} + AB\overline{C}DE$$

52. Aplicar el mapa de Karnaugh para minimizar la siguiente suma de productos.

 $A = \overline{V}WXYZ + V\overline{W}XYZ + VW\overline{X}YZ + VWX\overline{Y}Z + VWXY\overline{Z} + \overline{V}\overline{W}\overline{X}\overline{Y}Z + \overline{V}\overline{W}\overline{X}Y\overline{Z} + \overline{V}\overline{W}\overline{X}Y\overline{Z} + \overline{V}W\overline{X}\overline{Y}Z + \overline{V}$

SECCIÓN 4.12 VHDL (opcional)

53. Escribir un programa VHDL para el circuito lógico de la Figura 4.61.

FIGURA 4.61

54. Escribir un programa VHDL para la expresión

$$Y = A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}\overline{C} + \overline{A}BC$$

Aplicación a los sistemas digitales

55. Si es necesario elegir un tipo de display para trabajar bajo condiciones de baja luminosidad, ¿cuál se seleccionaría, un display de 7 segmentos de diodos LED o de cristal líquido? ¿Por qué?