### FISL 2008



Michael Hanselmann Google Ganeti team

#### Overview



- Introduction
- Traditional clusters vs. Ganeti
- Design goals
- Cluster setup
- Instance failover example
- Usage in Google
- Open Source and Roadmap

#### What is virtualization?



- Abstraction of computer resources
  - CPUs, memory, storage, network
- Advantages
  - Consolidation, increase hardware utilization
  - Transparent for user
  - Flexibility
- Disadvantages
  - Depending on application: performance losses
- Different types
  - Paravirtualization
  - Full virtualization
- Hypervisor

### What is Ganeti and why should you use it?



- Software to manage clusters of virtual servers
  - Automation allows you to scale easily
  - Makes it simple to manage 10s of nodes and 100s of instances
- Combines virtualization and data replication
  - All integrated in a unified interface
  - Virtual systems are portable between nodes
- Hypervisor backends
  - Abstraction layer
  - Currently based on Xen, but others are possible

#### Terms



- Node
  - Physical machine
  - Xen Dom0
- Instance
  - Virtual machine
  - Xen DomU
- DRBD
  - Distributed Replicated Block Device, http://www.drbd.org/
  - Used for data replication
- LVM (Logical Volume Manager)
  - Used to manage instances' volumes

## Traditional high-availability cluster





### Ganeti cluster





### Overview



- Introduction
- Traditional clusters vs. Ganeti
- Design goals
- Cluster setup
- Instance failover example
- Usage in Google
- Open Source and Roadmap

### Design goals and principles



#### Goals

- Increase availability
- Reduce hardware cost
- Increase flexibility
- Transparency

#### Principles

- Not dependent on specific hardware (e.g. SAN)
- Scales linearly with the number of systems
- One node takes the master role
  - Failover is possible

### Redundancy, Replication and Failover



- Redundancy
  - Disks
  - Memory
  - → Primary & secondary node for each instance
- Replication
  - Real time data replication for disks (primary → secondary)
  - DRBD8
- Failover
  - Instance failover
  - Secondary failover (disk replica replacement)

### Overview



- Introduction
- Traditional clusters vs. Ganeti
- Design goals
- Cluster setup
- Instance failover example
- Usage in Google
- Open Source and Roadmap

#### Ganeti commands



- Administration is done on the master node
- All commands have man pages and support interactive help
- gnt-cluster: Cluster commands
- gnt-node: Add, remove, list cluster nodes
- gnt-instance:
  - Add, remove instance
  - Failover instance, change secondary
  - Stop, start instance, change parameters
- gnt-os: Instance OS definitions
- gnt-backup: Instance export and import

#### Cluster creation



node1# gnt-cluster init mycluster
node1# gnt-node add node2
node1# gnt-node add node3



### Listing nodes



node1# gnt-node list --human-readable
Node DTotal DFree MTotal MNode MFree Pinst Sinst
node1.example.com 928.8G 432.3G 4.0G 512M 13.5G 2 1
node2.example.com 928.8G 430.9G 4.0G 512M 14.8G 3 1
node3.example.com 928.8G 434.1G 4.0G 512M 14.7G 1 4

#### Cluster creation



node1# gnt-instance add --node node1:node2 \
> --disk-template drbd --os-type etch mail1



### Listing instances



```
node1# gnt-instance list --human-readable
Instance
                     0S
                            Primary node
                                              Status
                                                     Memory
mail1.example.com
                     etch
                            node1.example.com running
                                                        512M
                                                        512M
www1.example.com
                            node3.example.com running
                     etch
john.example.com
                            node2.example.com running
                                                       1024M
                     suse
build-foo.example.com centos node2.example.com running
                                                       2048M
node1# gnt-instance list -o name, vcpus, os --no-headers --separator=:
mail1.example.com:2:etch
www1.example.com:1:etch
john.example.com:1:suse
build-foo.example.com:2:centos
```

### Node failure



• Power loss, hardware failure, etc.



## Primary node failover



node1# gnt-instance failover --ignore-consistency mail1



### Secondary node failover



node1# gnt-instance replace-disks --on-secondary \
> --new-secondary=node1 mail1



## After failover



• "node3" can be replaced



#### Overview



- Introduction
- Traditional clusters vs. Ganeti
- Design goals
- Cluster setup
- Instance failover example
- Usage in Google
- Open Source and Roadmap

### Ganeti usage in Google





- 20-node Ganeti cluster
- 64-bit node OS
- 80 virtual instances
- Used for internal systems
- Not used for google.com
- Not targeted for resource intensive systems
  - Yes: DNS, DHCP, NTP, etc.
  - No: Fileserver

## **Open Source**



- Code location: http://code.google.com/p/ganeti/
- License: GPL v2
- August 2007
  - Ganeti 1.2 Beta 1 and Open Source
- February 2008
  - Ganeti 1.2.3
- Late 2008
  - Ganeti 1.3

### Roadmap



- Job queue
- Granular locking
- Remote cluster API
- File-based storage
- Live failover
- Multiple coexisting hypervisors

# Questions & Answers