Predicting Chronic Kidney Disease based on health records

Given 24 health related attributes taken in 2-month period of 400 patients, using the information of the 158 patients with complete records to predict the outcome (i.e. whether one has chronic kidney disease) of the remaining 242 patients (with missing values in their records).

Load Modules and helper functions

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split, GridSearchCV
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report,accuracy_score
from sklearn.ensemble import RandomForestClassifier
import warnings
warnings.filterwarnings('ignore')
# from subprocess import check output
# print(check_output(["ls", "../input"]).decode("utf8"))
%matplotlib inline
def auc scorer(clf, X, y, model): # Helper function to plot the ROC curve
    if model=='RF':
        fpr, tpr, = roc curve(y, clf.predict proba(X)[:,1])
    elif model=='SVM':
        fpr, tpr, _ = roc_curve(y, clf.decision_function(X))
    roc auc = auc(fpr, tpr)
    plt.figure()
                    # Plot the ROC curve
```

```
plt.plot(fpr, tpr, label='ROC curve from '+model+' model (area = %0.3f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```

▼ Load files

```
df = pd.read_csv("C:/Users/Sinegalatha/Desktop/2nd year online class/nalaiya thiran/dataset/kidney_disease.csv")
df.head()
```

	id	age	bp	sg	al	su	rbc	рс	рсс	ba	• • •	pcv	WC	rc	htn	dm	cad	appet	pe	ane	cla
0	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent		44	7800	5.2	yes	yes	no	good	no	no	
1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent		38	6000	NaN	no	no	no	good	no	no	
2	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent		31	7500	NaN	no	yes	no	poor	no	yes	
3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent		32	6700	3.9	yes	no	no	poor	yes	yes	
4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent		35	7300	4.6	no	no	no	good	no	no	
5 rc	WC Y	26 col	umne																		

5 rows × 26 columns

```
0
      7800
      6000
1
2
      7500
      6700
3
4
      7300
       . . .
395
      6700
396
      7800
397
      6600
398
      7200
399
      6800
Name: wc, Length: 400, dtype: object
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	id	400 non-null	int64
1	age	391 non-null	float64
2	bp	388 non-null	float64
3	sg	353 non-null	float64
4	al	354 non-null	float64
5	su	351 non-null	float64
6	rbc	248 non-null	object
7	рс	335 non-null	object
8	рсс	396 non-null	object
9	ba	396 non-null	object
10	bgr	356 non-null	float64
11	bu	381 non-null	float64
12	SC	383 non-null	float64
13	sod	313 non-null	float64
14	pot	312 non-null	float64
15	hemo	348 non-null	float64
16	pcv	330 non-null	object
17	WC	295 non-null	object
18	rc	270 non-null	object

19	htn	398 non-null	object
20	dm	398 non-null	object
21	cad	398 non-null	object
22	appet	399 non-null	object
23	pe	399 non-null	object
24	ane	399 non-null	object
25	classification	400 non-null	object
dtyp	es: float64(11),	int64(1), obj	ect(14)
memo	ry usage: 81.4+	KB	

df.describe()

	id	age	bp	sg	al	su	bgr	bu	sc	sod	
count	400.000000	391.000000	388.000000	353.000000	354.000000	351.000000	356.000000	381.000000	383.000000	313.000000	312.00
mean	199.500000	51.483376	76.469072	1.017408	1.016949	0.450142	148.036517	57.425722	3.072454	137.528754	4.62
std	115.614301	17.169714	13.683637	0.005717	1.352679	1.099191	79.281714	50.503006	5.741126	10.408752	3.19
min	0.000000	2.000000	50.000000	1.005000	0.000000	0.000000	22.000000	1.500000	0.400000	4.500000	2.50
25%	99.750000	42.000000	70.000000	1.010000	0.000000	0.000000	99.000000	27.000000	0.900000	135.000000	3.80
50%	199.500000	55.000000	80.000000	1.020000	0.000000	0.000000	121.000000	42.000000	1.300000	138.000000	4.4(
75%	299.250000	64.500000	80.000000	1.020000	2.000000	0.000000	163.000000	66.000000	2.800000	142.000000	4.90
max	399.000000	90.000000	180.000000	1.025000	5.000000	5.000000	490.000000	391.000000	76.000000	163.000000	47.00
4											>

df[df.duplicated()]

id age bp sg al su rbc pc pcc ba ... pcv wc rc htn dm cad appet pe ane classification

0 rows × 26 columns

df.isna().sum()

```
id
                           0
     age
                           9
                          12
     bp
                          47
     sg
     al
                          46
                          49
     su
     rbc
                         152
                          65
     рс
                           4
     рсс
     ba
                          44
     bgr
     bu
                          19
                          17
     SC
     sod
                          87
                          88
     pot
     hemo
                          52
                          70
     pcv
     WC
                         105
     rc
                         130
                           2
     htn
                           2
     dm
     cad
                           1
     appet
                           1
     pe
     ane
     classification
     dtype: int64
df2 = df.dropna(axis=0)
```

Cleaning and preprocessing of data for training a classifier

```
# Map text to 1/0 and do some cleaning
df[['htn','dm','cad','pe','ane']] = df[['htn','dm','cad','pe','ane']].replace(to_replace={'yes':1,'no':0})
df[['rbc','pc']] = df[['rbc','pc']].replace(to_replace={'abnormal':1,'normal':0})
df[['pcc','ba']] = df[['pcc','ba']].replace(to_replace={'present':1,'notpresent':0})
```

```
df[['appet']] = df[['appet']].replace(to_replace={'good':1,'poor':0,'no':np.nan})
df['classification'] = df['classification'].replace(to_replace={'ckd':1.0,'ckd\t':1.0,'notckd':0.0,'no':0.0})
df.rename(columns={'classification':'class'},inplace=True)

# Further cleaning
df['pe'] = df['pe'].replace(to_replace='good',value=0) # Not having pedal edema is good
df['appet'] = df['appet'].replace(to_replace='no',value=0)
df['cad'] = df['cad'].replace(to_replace='\tno',value=0)
df['dm'] = df['dm'].replace(to_replace={'\tno':0,'\tyes':1,' yes':1, '':np.nan})
df.drop('id',axis=1,inplace=True)
```

df.head()

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	• • •	pcv	WC	rc	htn	dm	cad	appet	pe	ane	class
0	48.0	80.0	1.020	1.0	0.0	NaN	0.0	0.0	0.0	121.0		44	7800	5.2	1.0	1.0	0.0	1.0	0.0	0.0	1.0
1	7.0	50.0	1.020	4.0	0.0	NaN	0.0	0.0	0.0	NaN		38	6000	NaN	0.0	0.0	0.0	1.0	0.0	0.0	1.0
2	62.0	80.0	1.010	2.0	3.0	0.0	0.0	0.0	0.0	423.0		31	7500	NaN	0.0	1.0	0.0	0.0	0.0	1.0	1.0
3	48.0	70.0	1.005	4.0	0.0	0.0	1.0	1.0	0.0	117.0		32	6700	3.9	1.0	0.0	0.0	0.0	1.0	1.0	1.0
4	51.0	80.0	1.010	2.0	0.0	0.0	0.0	0.0	0.0	106.0		35	7300	4.6	0.0	0.0	0.0	1.0	0.0	0.0	1.0

5 rows × 25 columns

Check the portion of rows with NaN

- Now the data is cleaned with improper values labelled NaN. Let's see how many NaNs are there.
- Drop all the rows with NaN values, and build a model out of this dataset (i.e. df2)

```
[ ] L, 1 cell hidden
```

	Examine correlations between different features
	[] l₃ 1 cell hidden
•	Split the set for training models further into a (sub-)training set and testing set.
	[] L, 4 cells hidden
•	Choosing parameters with GridSearchCV with 10-fold cross validations.
	(Suggestion for next time: try using Bayesian model selection method)
	[] 🖟 1 cell hidden
>	Examine feature importance
	Since I pruned the forest (max_depth=2) and decrease the number of trees (n_estimators=8), not all features are used.
	[] L, 2 cells hidden
>	Next, I examine the rest of the dataset (with missing values across the rows)
	Are there correlations between occurence of missing values in a row? The plot suggests, seems no.
	[] I, 1 cell hidden

I filled in all NaN with 0 and pass it to the trained classifier. The results are as follows:

- True positive = 180
- True negative = 35
- False positive = 0
- False negative = 27
- Accuracy = 88.8%
- ROC AUC = 99.2%

```
[ ] L, 2 cells hidden
```

→ RandomForest Regressor

```
0.66, 0.29, 0.99, 0.88, 1. , 0.89, 0.98, 0.89, 0.29, 1. , 0.94,
           1. , 0.09, 0.07, 0.89, 1. , 1. , 0.07, 0.73, 1. , 0.29, 0.99,
           0.29, 0.01, 0.94, 0.8, 1., 0.29, 0.29, 0.89, 0.89, 0.8, 0.89,
          0.09, 0.62, 0.99, 0.8, 1., 0., 0., 0.8, 1., 0.69, 0.89,
           0.29, 0.81, 0.29, 0.29, 0.69, 0.99, 0.29, 0.87, 0.98, 0.09,
          0.28, 0.69, 0.89, 0.89, 0.29, 0.09, 0.8, 1., 0.22, 1., 0.29,
           0.2, 0.29, 0.89, 0.09, 0.29, 0.27, 1., 0.8, 0.09, 1., 0.05,
           0.8, 0.09, 0.8, 0.09, 0.89, 0.73, 0.29, 0.73, 0.29, 0.29, 0.27,
           0.69, 0.09, 0.29, 0.29, 0.05, 0.29, 1. , 0.88, 1. , 0.09, 0.89,
           0.29, 0.89, 1. , 0.69, 0.29, 0.69, 0.76, 0.28, 0.09, 1. , 1. ,
           1. , 0.99, 0.29, 0.71, 0.28, 0.29, 0.01, 0.09, 0.29, 0.05, 0.98,
           0.29, 0.99, 0.87, 0.82, 0.27, 0.29, 0.93, 1. , 0.99, 0.89, 0.09,
           0.29, 1. , 0.69, 0.8 , 0.8 , 0.29, 1. , 0.09, 0.89, 0.8 , 1. ,
          0.29, 0.28, 0.89, 0.29, 0.29, 0.29, 1. , 0.25, 0.82, 0.23, 0.22,
          0.09, 0.09, 0. , 0.8 , 0.09, 0.89, 0.09, 0.29, 0.09, 0.88, 0.29,
           0.04, 0.29, 0.28, 0.29, 0.99, 0.29, 0.69, 0.99, 0. , 1. , 0.29,
           0.97, 0.29, 0.98, 0.69, 0.88, 0.91, 0.95, 0.29, 0.69, 0. , 0.09,
          0.02, 0. , 0. , 0.02, 0. , 0. , 0. , 0.01, 0. , 0. ,
          0. , 0.02, 0. , 0.01, 0. , 0.02, 0. , 0.09, 0. , 0.09, 0.03,
          l pred=list(y pred)
l_test=list(y_test)
d={'prob':1 pred,'out':y test}
df i=pd.DataFrame(d)
df i.head()
```

Summary of Results

With proper tuning of parameters using cross-validation in the training set, the Random Forest Classfier achieves an accuracy of 88.8% and an ROC AUC of 99.2%. Lesson learnt: It happens that some pruning helps improve the performance of RF a lot.

[] ЦЗ cells hidden