Cryptanalyse — 4TCY902U Responsable : G. Castagnos

Examen — mardi 18 décembre 2018

Durée 3h Documents non autorisés Les exercices sont indépendants

I Soit $a, b, K, M \in \mathbb{N}^*$, des entiers positifs non nuls tels que a < M et b < M. On considère le réseau \mathscr{L} de \mathbb{R}^3 de base donnée par les lignes de la matrice suivante

$$\begin{pmatrix} 1 & 0 & Ka \\ 0 & 1 & Kb \end{pmatrix}$$
.

- (a) Soit $w = (w_1, w_2, w_3)$ un vecteur de \mathcal{L} . Montrer que si w_3 est non nul alors $||w|| \ge K$.
- **(b)** Soit b_1 le premier vecteur d'une base LLL réduite. On rappelle que $||b_1|| \le \sqrt{2}||w||$ pour tout $w \in \mathcal{L}$. Montrer que $||b_1|| \le 2M$.
- (c) On suppose K > 2M. En utilisant le fait que la réduction agit sur la base du réseau par des opérations élémentaires, montrer que la base LLL réduite de \mathscr{L} est de la forme

$$\begin{pmatrix} x_1 & x_2 & 0 \\ u & v & \pm Kg \end{pmatrix}$$

où
$$g = pgcd(a, b) = \pm (ua + vb)$$
.

2 Soit $f(X) \in \mathbb{F}_2[X]$ un polynôme de degré ℓ avec $f(X) = 1 + c_1 X + \dots + c_\ell X_\ell$. On considère un automate constitué d'un registre de ℓ bits et produisant une suite de bits. On note $S^{(t)} = (S_0^{(t)}, S_1^{(t)}, \dots, S_{\ell-1}^{(t)})$ l'état du registre à l'instant $t \ge 0$. À l'instant t, on sort le bit d'indice 0 du registre, $S_0^{(t)}$, et on met à jour l'état du registre de la façon suivante (calculs dans \mathbb{F}_2):

$$S_i^{(t+1)} = S_{i+1}^{(t)} + c_{i+1} S_0^{(t)}$$
, pour $0 \le i \le \ell - 2$ et $S_{\ell-1}^{(t+1)} = c_{\ell} S_0^{(t)}$

Le polynôme f(X) est son polynôme de rétroaction. On représente l'automate par le schéma suivant :

- (a) Donner les 5 premiers bits produits par cet automate dans le cas $\ell=3$, avec le polynôme de rétroaction $1+X+X^3$ de registre initial $S^{(0)}=(S_0^{(0)},S_1^{(0)},S_2^{(0)})=(1,1,0)$.
- (b) On considère maintenant le cas général. Pour tout entier t, on désigne par S^(t)(X) le polynôme de F₂[X] de degré au plus ℓ − 1 correspondant au registre au temps t : c'est à dire S^(t)(X) = S₀^(t) + S₁^(t)X + ··· + S_{ℓ-1}^(t)X^{ℓ-1}. On note z_t le bit sorti au temps t (c'est à dire S₀^(t)). Montrer que pour tout entier t ≥ 0, X × S^(t+1)(X) = S^(t)(X) + z_t × f(X).
- (c) On note $Z^{(0)}(X) = 0$ et pour tout $t \ge 1$, $Z^{(t)}(X) := z_0 + z_1 X + \dots + z_{t-1} X^{t-1}$. Montrer que pour tout $t \ge 0$, $S^{(0)}(X) = f(X) \times Z^{(t)}(X) + X^t \times S^{(t)}(X)$.
- (d) On note Z(X) la série génératrice de la suite produite par cet automate, c'est à dire que $Z(X) = \sum_{t \geqslant 0} z_t X^t$. Déduire de la question précédente que $Z(X) = S^{(0)}(X)/f(X)$. Montrer que toute suite récurrente linéaire produite par un LFSR peut l'être par cet automate et réciproquement.
- (e) Soit z = (z_t)_{t≥0} la suite produite par cet automate avec les paramètres de la question (a). Quel LFSR permet de produire la même suite z? Avec quelle initialisation?
 Réciproquement, soit s = (s_t)_{t≥0} la suite produite par un LFSR de longueur 4, de polynôme de rétroaction 1 + X³ + X⁴, initialisé par (1, 1, 1, 1). Quel polynôme de rétroaction et quelle initialisation choisir pour que l'automate de cet exercice produite la même suite s?
- (f) Pour des implantations matérielles on préfère parfois représenter les LFSR comme introduit dans cet exercice plutôt qu'en mode classique. Pourquoi?

3 Attaque différentielle

Dans cet exercice, on note comme d'habitude par || la concaténation de deux chaînes de bits, et par

† l'addition bit à bit modulo 2 de deux chaînes de bits.

On considère un chiffrement par bloc de 64 bits employant 2 clefs de tours K_0 et K_5 de 64 bits et 4 sous clefs de 16 bits, K_1 , K_2 , K_3 et K_4 . Soit F_{K_i} avec $1 \le i \le 4$ une fonction de tour définie plus bas, prenant en entrée 32 bits et ressortant 32 bits. Soit M un bloc de 64 bits à chiffrer. On pose $X_0 = M \oplus K_0$, puis on effectue 4 tours de schéma de Feistel avec la fonction F_{K_i} : On note $X_0 = L_0 || R_0$ avec L_0 et R_0 de 32 bits, puis pour $i \in \{1, \dots 4\}$,

$$\label{eq:loss_loss} \mathsf{L}_i = \mathsf{R}_{i-1}, \qquad \mathsf{R}_i = \mathsf{L}_{i-1} \oplus \mathsf{F}_{\mathsf{K}_i}(\mathsf{R}_{i-1})$$

Le chiffré est $C = (R_4||L_4) \oplus K_5$.

La fonction de tour utilise deux boîtes S, S_0, S_1 prenant en entrée 16 bits et ressortant 8 bits définie comme suit :

$$S_i(x, y) = (x + y + i \mod 256) << 2,$$

pour $i \in \{0, 1\}$, en identifiant les entiers entre 0 et 255 et leur représentation binaire sur 8 bits (bit de poids faible à droite), et où << 2 désigne la rotation circulaire de deux bits vers la gauche.

La fonction de tour $F_K(X)$ pour X de 32 bits et K une sous clef de 16 bits est définie ainsi : on note $X = x_0 ||x_1||x_2||x_3$ avec les x_i de 8 bits, et $K = K^L ||K^R||$ avec K^L, K^R de 8 bits. On calcule :

$$u = \mathrm{S}_1(x_0 \oplus x_1 \oplus \mathrm{K}^{\mathrm{L}}, x_2 \oplus x_3 \oplus \mathrm{K}^{\mathrm{R}}),$$

et

$$v = S_0(x_2 \oplus x_3 \oplus K^R, u)$$

Enfin $F_K(X) = S_0(x_0, u)||u||v||S_1(x_3, v).$

(a) Montrer que pour tout $(x, y) \in \{0, 1\}^8 \times \{0, 1\}^8$,

$$S_0(x \oplus 1000\ 0000, y) = S_0(x, y) \oplus 0000\ 0010.$$

(b) Soit $M, M^* \in \{0, 1\}^{64}$ deux messages clairs, tel que $M \oplus M^* =$

On note $(L_2||R_2)$ (resp. $(L_2^{\star}||R_2^{\star})$) l'entrée du troisième tour lors du chiffrement de M (resp. de M^{\star}).

Que vaut la différence à l'entrée du troisième tour, c'est à dire $(L_2||R_2) \oplus (L_2^{\star}||R_2^{\star})$?

(c) Soit $O = 0 \dots 0$ la chaîne nulle de 16 bits. Soit $K = K^L || K^R$ une sous clef de 16 bits avec K^L, K^R de 8 bits. Montrer que pour tout X de 32 bits,

$$F_K(X) = F_O(X \oplus (0000\ 0000||K^L||K^R||0000\ 0000)).$$

(d) On note $K_5 = K_5^L || K_5^R$ avec K_5^L, K_5^R de 32 bits.

Déduire des deux questions précédentes une attaque utilisant 2 clairs choisis permettant de retrouver la valeur de $K_5^R \oplus (0000\ 0000)|K_4^L||K_4^R||0000\ 0000)$. Quelle est sa complexité?

4 Constructions de MAC

Dans cet exercice, on note comme d'habitude par || la concaténation de deux chaînes de bits, et par
⊕ l'addition bit à bit modulo 2 de deux chaînes de bits.

(a) Rappeler ce qu'est un MAC (Message authentication code). Quelles propriétés de sécurité apportetil? Quelles sont les différences avec une signature numérique?

Soit $\mathsf{Encrypt}_{sk}(m) = c$ un algorithme de chiffrement par bloc prenant en entrée un clair m de n bits et une clef sk de k bits et produisant un chiffré c de n bits. Le schéma CBC – MAC, dont la description suit, utilise le mode opératoire CBC pour construire un MAC.

On considère un message M constitué de ℓ blocs de n bits : $M=M_1,M_2,\dots,M_\ell$.

On pose $C_1 = \text{Encrypt}_{sk}(M_1)$, puis $C_i = \text{Encrypt}_{sk}(M_i \oplus C_{i-1})$ pour $2 \le i \le \ell$.

Le MAC de M noté CBC – MAC_{sk}(M), est la valeur C_{ℓ} .

(b) On suppose connaître deux messages M et M' de ℓ blocs et leurs MAC : CBC – MAC_{sk}(M) et CBC – MAC_{sk}(M'). Montrer comment construire un message de 2ℓ blocs M" et son MAC, CBC – MAC_{sk}(M") sans connaître sk. Comment éviter simplement cette attaque (autrement qu'en utilisant la construction qui suit)?

On considère maintenant la construction EMAC. Soit s_k et s_k' deux clefs distinctes de k bits. On

considère toujours un message M constitué de ℓ blocs de n bits.

Le MAC de M par EMAC, noté EMAC $_{sk,sk'}(M)$, est la valeur Encrypt $_{sk'}(CBC-MAC_{sk}(M))$, c'est à dire que l'on surchiffre le résultat obtenu par CBC – MAC avec une deuxième clef sk'.

- (c) On suppose dans cette question que les deux clefs sont choisies égales, c'est à dire sk = sk'. Montrer que cela revient à une construction de type CBC MAC. En déduire que comme dans la question précédente, à partir de deux messages M et M' de ℓ blocs et leurs MAC, EMAC $_{sk,sk}(M)$ et EMAC $_{sk,sk}(M')$, il est possible de construire un message plus long M" et son MAC, EMAC $_{sk,sk}(M'')$ sans connaître sk.
- (d) On revient au cas général de EMAC avec $sk \neq sk'$. On suppose connaître $2^{n/2}$ messages $M^{(i)}$ avec $1 \leq i \leq 2^{n/2}$ et leurs MAC, EMAC_{sk,sk'}($M^{(i)}$). Montrer qu'avec une bonne probabilité, il existe deux entiers distincts i et j avec $1 \leq i, j \leq 2^{n/2}$, tel que connaissant de plus EMAC_{sk,sk'}($M^{(i)}||R$) pour un R quelconque, on puisse construire EMAC_{sk,sk'}($M^{(i)}||R$), sans connaître les clefs sk et sk'.

On considère maintenant une légère variante de cette construction, notée EMAC – TDES utilisant le DES avec une clef sk de 56 bits pour la partie CBC puis pour le chiffrement final, la variante Triple-DES à deux clefs de 56 bits. Pour ces deux clefs, on prend la clef sk utilisée pour la partie CBC et une autre clef sk' avec $sk' \neq sk$. On rappelle que l'on a alors Triple – DES $_{sk,sk'}(X)$:= DES $_{sk}(DES_{sk'}^{-1}(DES_{sk}(X)))$.

Plus précisément, soit un message M constitué de ℓ blocs de 64 bits, notés $M_1, ..., M_{\ell}$. On pose $C_1 = \mathsf{DES}_{sk}(M_1)$, puis $C_i = \mathsf{DES}_{sk}(M_i \oplus C_{i-1})$ pour $2 \le i \le \ell$, et le MAC de M est

 $\mathsf{EMAC} - \mathsf{TDES}_{sk,sk'} = \mathsf{Triple} - \mathsf{DES}_{sk,sk'}(\mathsf{C}_\ell).$

(e) On suppose connaître $2^{n/2}$ messages $M^{(i)}$ avec $1 \le i \le 2^{n/2}$ et leur MAC, c'est à dire les valeurs EMAC – TDES_{sk,sk'} ($M^{(i)}$). Montrer qu'avec une bonne probabilité, il est possible de retrouver les clefs sk et sk' en 2×2^{56} opérations.