Newton's Law of Gravitation Gravitational Potential Energy Motion of Satellites in Circular Orbits Motion of Planets in Solar System. Kepler's Laws

Chapter 17 – Gravitation

UM-SJTU Joint Institute Physics I (Summer 2021) Mateusz Krzyzosiak

Agenda

- Newton's Law of Gravitation
 - Statement
 - Superposition Principle
 - Weight
- 2 Gravitational Potential Energy
 - Choice of Gauge
 - Example. Escape Speed
 - Example. Potential Energy Due to Uniform Spherical Shell
- Motion of Satellites in Circular Orbits
- 4 Motion of Planets in Solar System. Kepler's Laws

uperposition Principle Veight

Newton's Law of Gravitation

Introduction

Features of the gravitational interaction

- → source: any mass (matter)
- → one of the four fundamental interactions
- → relative strength: much weaker than the other three interactions (example: two electrons)
- ightarrow long-range; important for the evolution of the Universe
- \rightarrow always attractive

Newton's Law of Gravitation

Force of gravitational attraction between two particles (particle = mass concentrated at a single point of space)

$$\underbrace{\bar{F}_{12}}_{\text{on "1" due to "2"}} = -G \frac{m_1 m_2}{r_{12}^2} \frac{\bar{r}_{12}}{|\bar{r}_{12}|}$$

$$G = 6.67250(85) \cdot 10^{-11} \left[N \cdot \frac{m^2}{kg^2} \right]$$
Gravitational constant

Note. $\bar{F}_{12} = -\bar{F}_{21}$

Gravitational Field

The gravitational interaction defines a vector field in space

$$\bar{E}_G = \frac{\bar{F}_G}{m} = -G \frac{M \bar{r}}{r^2 r}$$

Fact (will be justified soon)

For a spherically symmetric distribution of mass in a region Ω , the gravitational field outside of Ω is as if the whole mass was concentrated at the center of Ω .

Weight

The weight of a body is the total gravitational force exerted on a body by all other objects in the Universe.

In practice,

At the Earth's surface, $F = G \frac{M_{\text{Earth}} m}{R^2} = mg$, where R is the radius of the Earth.

Note. By measuring g, it is possible to estimate the mass of the Earth as $M_{\rm Earth}=gR^2/G\approx 5.98\times 10^{24}$ kg. Hence, the average density of the Earth's mass $\rho_{\rm av}=M_{\rm Earth}/\frac{4}{3}\pi R^3\approx 5.5\times 10^3$ kg/m³

Variation of the weight with altitude (close to the Earth)

weight
$$=G\frac{Mm}{(R+h)^2} = G\frac{Mm}{R^2(1+\frac{h}{R})^2} = G\frac{M}{R^2}m\left(1+\frac{h}{R}\right)^{-2}$$

$$= G\frac{M}{R^2}m\left(1-2\frac{h}{R}+3\left(\frac{h}{R}\right)^2-...\right) \quad [and, if \ h \ll R]$$

$$\approx G\frac{M}{R^2}m = mg \quad (close the Earth's surface)$$

Choice of Gauge Example. Escape Speed Example. Potential Energy Due to Uniform Spherical Shell

Gravitational Potential Energy

Gravitational Potential Energy

A force \bar{F} is called *central*, if $\bar{F} = f(r)\bar{r}$. Example: the gravitational force due to a point mass placed at the origin $\bar{F} = -G\frac{Mm}{r^2}\frac{\bar{r}}{|r|} = f(r)\bar{r}$, with $f(r) = -G\frac{Mm}{r^3}$.

Fact. Central forces are conservative \implies their work does not depend on the path.

Choose the path:
$$1 \rightarrow arc \ of \ a \ circle \rightarrow 1' \rightarrow radius \rightarrow 2'$$

$$W_{1\to 2} = \int\limits_{1\to 2} \bar{F} \circ d\bar{r} = \int\limits_{1\to 1'} \bar{F} \circ d\bar{r} + \int\limits_{1\to 1'} \bar{F} \circ d\bar{r} = -\int\limits_{r_1}^{r_2} |\bar{F}| \cdot |d\bar{r}| = \int\limits_{0}^{r_2} |\bar{F}| \cdot |d\bar{r}| = \int$$

$$= -\int_{r_1}^{r_2} G \frac{Mm}{r^2} dr = G \frac{Mm}{r} \bigg|_{r_1}^{r_2} = G \frac{Mm}{r_2} - G \frac{Mm}{r_1}$$

On the other hand, for potential forces, $W_{1\rightarrow 2}=U_1-U_2$. Hence, the gravitational potential energy

$$U(r) = -G\frac{Mm}{r} + C$$

the additive constant C can be chosen arbitrarily (no physical meaning) as only ΔU is measurable/physical.

Note.
$$\bar{F} = -\text{grad } U = -\nabla U$$
.

$$U(\infty) = 0 \implies C = 0 \text{ and } U(r) = -G \frac{Mm}{r}$$

$$U(R) = 0 \implies -G \frac{Mm}{R} + C = 0 \implies C = G \frac{Mm}{R} \text{ and }$$

 $U(r) = GMm\left(\frac{1}{R} - \frac{1}{r}\right)$

Let r = R + h (with $h \ll R$), then

 $U(r) = GMm\left(\frac{1}{R} - \frac{1}{R+h}\right) = G\frac{Mm}{R}\left(1 - \frac{1}{1+\frac{h}{R}}\right)$

 $pprox G \frac{Mm}{R} \left(1 - 1 + \frac{h}{R} \right) = G \frac{Mm}{R^2} h = mgh$

 $=G\frac{Mm}{R}\left(1-1+\frac{h}{R}-\left(\frac{h}{R}\right)^2+\ldots\right) \quad [for \ h\ll R]$

Example. Escape Speed

Escape speed — the minimum speed a particle should have to be able to move away from a planet to ∞

Conservation of energy

$$K_1 + U_1 = K_2 + U_2$$

Hence, e.g. for the Earth,

$$\frac{1}{2}mv_{esc}^2 - G\frac{M_{\mathsf{Earth}}m}{R} = 0 \implies v_{esc} = \sqrt{\frac{2GM_{\mathsf{Earth}}}{R}} \approx 11.2 km/s$$

Example. Potential Energy Due to a Uniform Spherical Shell

Area of the infinitesimal ring
$$dA=2\pi R\sin\varphi R\,d\varphi$$

2πRsinφ

Mass on the ring $dM = \frac{M}{4\pi R^2} dA = \frac{1}{2} M \sin \varphi d\varphi$. Contribution of the ring to the potential energy (choose gauge with $U(\infty) = 0$)

$$dU = -G\frac{m \, dM}{s} = -G\frac{mM}{2s} \sin \varphi \, d\varphi$$

Now, express everything in terms of s; then integrate w.r.t. s from r - R ("north pole") to r + R ("south pole")

$$s^2 = (r - R\cos\varphi)^2 + (R\sin\varphi)^2 = r^2 - 2rR\cos\varphi + R^2$$

$$2s ds = 2rR \sin \varphi d\varphi \implies \sin \varphi d\varphi = \frac{s}{Rr} ds$$

Hence.

$$dU = -G\frac{Mm}{2s}\frac{s}{Rr}\,ds = -G\frac{Mm}{2Rr}\,ds$$

and,

$$U(r) = \int_{r-R}^{\infty} (-G\frac{Mm}{2Rr}) ds = -G\frac{Mm}{2Rr}[r + R - r + R]$$
$$= -G\frac{Mm}{r} \implies U(r) = -G\frac{Mm}{r}$$

The corresponding force

$$ar{F} = -\mathrm{grad}\ U = -G \frac{Mm}{r^2} \frac{ar{r}}{r}$$

Discussion of the result

(*) For a solid ball with a spherically symmetric distribution of mass, divide it into shells and use the above fact

(*) If *m* is inside the sphere

Gravitational force on mass m inside the sphere is zero!

(*) Consequently

Newton's Law of Gravitation Gravitational Potential Energy **Motion of Satellites in Circular Orbits** Motion of Planets in Solar System. Kepler's Laws

Motion of Satellites in Circular Orbits

Gravitational force plays the role of the centripetal force

$$\bar{F}_{grav} = m\bar{a}_{centripetal}$$

Magnitude

$$G\frac{Mm}{r^2} = \frac{mv^2}{r}$$
 (or $m\omega^2 r$)

Satellite's linear speed in a circular orbit $v = \sqrt{\frac{GM}{r}}$

Note. This value (if r=R, i.e. for low orbits) is exactly $\sqrt{2}$ times smaller than $v_{\rm esc}$.

Period of motion in a circular orbit

$$\boxed{T} = \frac{2\pi r}{v} = 2\pi \frac{r^{3/2}}{\sqrt{GM}} \sim r^{3/2}.$$

Given the orbit's radius r, the speed is determined. Note that further orbits mean slower speeds $(v \sim 1/\sqrt{r})$ and longer periods.

Examples

(a) geostationary satellite ($T_{geost} = 24h$)

$$r_{geost} \simeq$$
 35786 km

$$v_{geost} \simeq 3.1 \; ext{km/s}$$

(b) ISS
$$(r = 6800 \text{ km})$$

$$v = 7.7 \text{ km/s}$$

 $T = 93 \text{ min}$

(c) moon
$$(r \simeq 380000 \text{ km})$$

$$v=1~{
m km/s}$$

 $T\simeq$ 28 days

Newton's Law of Gravitation Gravitational Potential Energy Motion of Satellites in Circular Orbits Motion of Planets in Solar System. Kepler's Laws

Motion of Planets in Solar System. Kepler's Laws

Motion in a Central Field

Recall: a force \bar{F} is called **central** if $\bar{F}(\bar{r}) = f(r)\bar{r}$. Hence, for a central force

$$\bar{r} \times \bar{F} = \bar{r} \times f(r)\bar{r} = 0.$$

On the other hand,

$$\bar{r} \times \bar{F} = \bar{\tau} = \frac{d\bar{L}}{dt}.$$

Eventually, for motion in the field of a central force,

$$\boxed{\frac{d\bar{L}}{dt}=0}.$$

Conclusion

For motion in the field of a central force, $\bar{L}=$ const (both magnitude and direction are constant).

Note. Constant direction of $\bar{L} \implies$ motion in a plane.

Aerial Velocity

For planer motion, the aerial velocity may be defined

The surface area swept by \bar{r} over the time dt is $dA = \left|\frac{1}{2}\bar{r} \times d\bar{r}\right|$ and the rate of change of that area

$$\frac{dA}{dt} = \frac{1}{2} \left| \bar{r} \times \frac{d\bar{r}}{dt} \right| = \frac{1}{2} \left| \bar{r} \times \bar{v} \right|.$$

Aerial velocity vector (direction — right-hand rule)

$$oxed{ar{\sigma} = rac{1}{2}(ar{r} imes ar{v})}$$
 (direction same as $dar{arphi}$)

Recall:
$$\bar{L} = \bar{r} \times \bar{p} = \underline{\bar{r}} \times m\bar{v}$$
. Hence $\bar{L} = const \Leftrightarrow \bar{\sigma} = const$.

Consequently, for motion in a central force field $\bar{\sigma}={\rm const.}$

Kepler's Laws of Planetary Motion

- Each planet moves in an elliptical orbit with the Sun at one of the focal points.
- The line from the Sun to a given planet sweeps out equal areas in equal times.
- The period of motion of a planet is proportional to the 3/2-power of the major axis length of its orbit

$$T = \frac{2\pi a^{3/2}}{\sqrt{GM_{Sun}}}.$$

Note. Precisely, motion of both the Sun and the planet is about their center of mass (in practice, the center of mass is very close to the center of the Sun).