

Enhanced CycleGAN Dehazing Network

Zahra Anvari and Vassilis Athitsos

VLM Research Lab
Computer Science and Engineering Department
University of Texas at Arlington, Texas
USA

Single Image Dehazing Problem

- Haze degrades visibility and image quality
 - Degrades the performance of computer vision tasks, e.g., object detection
- Goal: Reconstruct haze-free image of a hazy image

Hazy

Haze-free/Ground truth

Motivation

Object detection on the hazy image(left) and its enhanced/dehazed counterpart(right)

Unpaired Image Dehazing

- No hazy-clean pairs are available
- No ground truth is available
- The training is done using unpaired supervision

Motivation

- It is almost impossible to simultaneously capture corrupted and ground truth images of the same visual scene (e.g., hazy and haze-free image pairs)
- Synthesizing corrupted images are usually not photo-realistic enough, leading to various artifacts when the trained model is applied to real-world hazy images

Dehazing Methods

- We can categorize them into two categories:
 - Prior based
 - Mainly based on the parameter estimation of atmospheric scattering model
 - The physical scattering model consists of the transmission map and the atmospheric light:
 - $\bullet \quad I(x) = J(x)t(x) + A(1 t(x))$
 - I(x) is the hazy image, J(x) is the haze-free image, t(x) is the medium transmission map, and A is the global atmospheric light on each x pixel coordinates
 - The solution of the haze-free image depends on the **estimation of the** atmospheric light and the transmission map

Dehazing Methods

- We can categorize them into two categories:
 - Prior based
 - Learning based/data-driven: Utilizes the deep convolutional neural networks or generative adversarial networks to estimate the transmission map indirectly
 - Takes advantage of the power of data
 - Paired vs unpaired supervision: Paired single image dehazing methods need the haze-free/ground truth of each hazy image for training, unpaired dehazing methods do not require the haze-free pair of the hazy images
 - o combination methods:
 - Take advantage of deep CNNs/GANs and uses priors jointly

Our Approach

- We reduce the unpaired image dehazing to an image-to-image translation problem
- We improve CycleGAN in different aspects for dehazing purpose.
 - We employ a global-local discriminator structure to deal with spatially varying non-homogeneous haze.
 - **We define self-regularized color loss** and utilize it along with perceptual loss to generate more realistic and visually pleasing images.
 - We use an encoder-decoder architecture with residual blocks in the generator with skip connections so that the network better preserves the details
- We call this network ECDN (Enhanced CycleGAN Dehazing Network)

Loss Functions

- Adversarial loss:
 - For matching the distribution of generated images to the data distribution in the target domain
- Cycle consistency loss:
 - to prevent the learned mappings GA and GB from contradicting each other
- Cyclic perceptual loss:
 - to help the generators generate more visually pleasing images.
- We introduced self-regularized color loss:
 - to avoid color shifting and artifacts in generated haze-free images and also guide the generator to generate images with vibrant colors.

Self-regularized Color Loss

(b) with color loss

(c) w/o color loss

(d) with color loss

Comparison with CycleGAN Methods

PSNR: 12.14, SSIM: PSNR: 13.43, SSIM: PSNR: 16.10, SSIM: PSNR: 19.11, SSIM:

(a) Hazy image

(b) CycleGAN

(c) Cycle-Dehaze

(d) Ours

(e) Ground truth

Ablation Study

Setting	↑ PSNR	↑SSIM	↓ CIEDE2000
CycleGAN	13.3879	0.5223	17.6113
ECDN w/o color loss	14.5402	0.7407	15.6401
ECDN w/o perceptual loss	14.6582	0.7312	15.6348
EDCN w/o residual blocks	14.1092	0.6923	16.4344
EDCN w/o local discriminator	14.0681	0.7111	19.9466
ECDN	16.0531	0.8244	14.9436

Ablation study over NYU-Depth dataset. The larger values of PSNR, SSIM and the smaller value of CIEDE2000 indicate the better dehazing and perceptual quality

Quantitative Results

Method	↑PSNR	↑SSIM	↓CIEDE2000
DCP (He et al., 2010)	10.9803	0.6458	18.9781
CycleGAN (Cai et al., 2016)	13.3879	0.5223	17.6113
Cycle-Dehaze (Engin et al., 2018)	15.41	0.66	19.04432
DDN (Yang et al., 2018)	15.5456	0.7726	11.8414
DehazeNet (Cai et al., 2016)	12.8426	0.7175	15.8782
MSCNN (Ren et al., 2016)	12.2669	0.7000	17.4497
Ours	16.0531	0.8244	14.9436

Average PSNR, SSIM, and CIECDE2000 results on NYU dataset.

Quantitative Results

Method	↑PSNR	↑SSIM
DCP (He et al., 2010)	12.0234	0.6902
CycleGAN (Cai et al., 2016)	11.3037	0.3367
Cycle-Dehaze (Engin et al., 2018)	15.6016	0.8532
DDN (Yang et al., 2018)	14.9539	0.7741
DehazeNet (Cai et al., 2016)	13.5959	0.7502
MSCNN (Ren et al., 2016)	13.5501	0.7365
Ours	15.8747	0.8601

Average PSNR and SSIM results on Middlebury dataset.

Qualitative Results

Conclusions

We proposed a novel dehazing network, called ECDN

 Through ablation study, we showed the effectiveness of local-global discriminators as well as self-regularized color loss and perceptual loss

 Through extensive analysis, we showed that ECDN outperforms previous work

Thank You for Listening!

zahra.anvari@mavs.uta.edu