Hyperparameter tuning part II

Plan for the video

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

Tree-based models

Model	Where
GBDT	XGBoost (dmlc/xgboost) LightGBM (Mictrosoft/LighGBM) CatBoost (catboost/catboost)
RandomForest, ExtraTrees	scikit-learn
Others	RGF (baidu/fast_rgf)

LightGBM

XGBoost	LightGBM
max_depth	 max_depth/num_leaves

XGBoost	LightGBM
max_depthsubsample	 max_depth/num_leaves bagging_fraction

XGBoost	LightGBM
 max_depth subsample colsample_bytree, colsample_bylevel 	 max_depth/num_leaves bagging_fraction feature_fraction

XGBoost	LightGBM
 max_depth subsample colsample_bytree, colsample_bylevel 	max_depth/num_leavesbagging_fractionfeature_fraction
 min_child_weight, lambda, alpha 	min_data_in_leaf, lambda_l1, lambda_l2

XGBoost	LightGBM
 max_depth subsample colsample_bytree, colsample_bylevel 	max_depth/num_leavesbagging_fractionfeature_fraction
 min_child_weight, lambda, alpha eta num_round 	 min_data_in_leaf, lambda_l1, lambda_l2 learning_rate num_iterations

XGBoost	LightGBM
max_depth	max_depth/num_leaves
 subsample 	bagging_fraction
colsample_bytree,	feature_fraction
colsample_bylevel	
 min_child_weight, lambda, alpha 	min_data_in_leaf, lambda_l1, lambda_l2
• eta	learning_rate
num_round	num_iterations
Others:	Others:
• seed	• *_seed

N_estimators (the higher the better)

- N_estimators (the higher the better)
- max_depth

- N_estimators (the higher the better)
- max_depth
- max_features

- N_estimators (the higher the better)
- max_depth
- max_features
- min_samples_leaf

- N_estimators (the higher the better)
- max_depth
- max_features
- min_samples_leaf

Others:

criterion

- N_estimators (the higher the better)
- max_depth
- max_features
- min_samples_leaf

Others:

- criterion
- random_state
- n_jobs

Conclusion

- Tree-based models
 - GBDT: XGBoost, LightGBM, CatBoost
 - RandomForest/ExtraTrees
- Neural nets
 - Pytorch, Tensorflow, Keras...
- Linear models
 - SVM, logistic regression
 - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
 - libFM, libFFM

Conclusion

- Hyperparameter tuning in general
 - General pipeline
 - Manual and automatic tuning
 - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
 - Tree-based models
 - Neural networks
 - Linear models