4. Endomorphismes d'un espace euclidien - Formes quadratiques.

Exercice 1. Soit E un espace euclidien. Montrer que toute projection orthogonale est un endomorphisme symétrique. En déduire que toute symétrie orthogonale est un endomorphisme symétrique.

Exercice 2. Soit E un espace euclidien. Montrer que toute symétrie orthogonale est une isométrie de E.

Exercice 3. Soit E un espace euclidien et soit f un endomorphisme symétrique de E. Soient λ et μ deux valeurs propres distinctes de f. Soit u un vecteur propre associé à λ et soit v un vecteur propre associé à μ . Prouver que u et v sont orthogonaux.

Exercice 4. Dans \mathbb{R}^4 muni du produit scalaire usuel, soit f l'endomorphisme dont la matrice dans la base canonique est

$$A = \frac{1}{2} \left(\begin{array}{cccc} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{array} \right),$$

- 1. Montrer que f est une isométrie.
- 2. Soit H l'hyperplan de \mathbb{R}^4 d'équation : x+y+2z+3t=0. Montrer que f(H) est un hyperplan de \mathbb{R}^4 .
- 3. Trouver une équation de f(H).

Exercice 5. Soit q la forme quadratique de \mathbb{R}^3 définie par :

$$q(u) = x^2 + 2y^2 + 4xy - 2yz$$
; $u = (x, y, z)$.

- 1. Écrire la matrice de q dans la base canonique de \mathbb{R}^3 .
- 2. Soit φ la forme bilinéaire symétrique associée à q.
- 3. Donner l'expression de $\varphi(u,v)$ où $v=(x_1,y_1,z_1)$.
- 4. Utiliser l'algorithme des carrés de Gauss pour trouver une base de \mathbb{R}^3 dans laquelle la matrice de q est diagonale. On explicitera les nouvelles coordonnées (x', y', z') en fonction de (x, y, z) et on écrira la matrice de q dans la nouvelle base.

Exercice 6. $E = \mathbb{R}^3$ et $q(u) = 2x^2 - 2y^2 - 6z^2 + 2xy - 4xz + 7yz$.

Exercice 7. $E = \mathbb{R}^3$ et $q(u) = x^2 + y^2 + z^2 - 2(xy + xz + yz)$.

Exercice 8. $E = \mathbb{R}^4$ et q(x, y, z, t) = xy + yz + zt + tx.

Exercice 9. $E = \mathbb{R}^3$ et $q(u) = x^2 + 3y^2 + 3z^2 - 8xy - 8xz - 6yz$.