Homework 1: Analysis

Due Friday, April 8, at 11:59 PM

Asymptotic Notation

Specify whether f = O(g), or $f = \Omega(g)$ or both which would be $f = \Theta(g)$.

	f(n)	g(n)
(a)	n - 100	n - 200
(b)	$n^{rac{1}{2}}$	$n^{\frac{2}{3}}$
(c)	$100n + \log(n)$	$n + (log(n))^2$
(d)	nlog(n)	$10n \log(n)$
(e)	$\log(2n)$	log(3n)
(f)	$10 \log(n)$	log(3n)
(g)	$n^{1.01}$	n $log^2(n)$
(h)	$\frac{n^2}{log(n)}$	$n(log(n))^2$
(i)	$n^{0.1}$	$log(n)^{10}$
(j)	$log(n)^{log(n)}$	$rac{n}{log(n)}$
(k)	\sqrt{n}	$log(n)^3$
(1)	$n^{rac{1}{2}}$	$5^{log_2(n)}$
(m)	$n2^n$	3^m

Iterative Substitution

Use a recursion tree to determine a good asymptotic upper bound on the recurrence. Use the substitution method to verify your answer.

1.
$$T(n) = T(n/2) + n^2$$

2.
$$T(n) = 4T(n/2) + n$$

Master's Theorem

When appropriate, use Master's theorem to solve the recurrence relations. If Master's theorem does not apply specify why.

1.
$$T(n) = 2T(n/2) + n^4$$

2.
$$T(n) = T(7n/10) + n$$

3.
$$T(n) = 16T(n/2) + n^2$$

4.
$$T(n) = 7T(n/3) + n^2$$

```
5. T(n) = 7T(n/2) + n2
6. T(n) = 2T(n/4) + \sqrt{n}
7. T(n) = 7T(n-2) + n2
```

Building Recurrence relation

For the following question you may assume that the function merge takes O(N) time.

- 1. Build the recurrence relation for the code shown below for BadSort.
- 2. Solve the recurrence relation
- 3. Use induction to prove the recurrence relation is correct.

```
def BadSort(A):
    if len(A) < 2:
        return A
    else:
        third = len(A)/3
        l = BadSort(A[:third])
        c = BadSort(A[third:2*third])
        r = BadSort(A[2*third:])
        return merge(1,c,r)</pre>
```