Punteggio ottenuto 1,00 su 1.00

P

Contrassegna domanda Se

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

Allora:

$$\odot$$
 a. $K_2(A) = 4$.

$$\bigcirc$$
 b. $K_2(A)=2$.

$$\bigcirc$$
 c. $K_2(A) = \frac{1}{2}$.

Visualizza una pagina alla volta

Fine revisione

La risposta corretta è: $K_2(A)=4$.

La risposta corretta è: $K_2(A)=4$.

Domanda 2

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

Un problema definito dalla matrice A è ben condizionato se:

- \odot a. K(A) è piccolo.
- \bigcirc b. K(A) è grande.
- \bigcirc c. K(A) è negativo.

La risposta corretta è: K(A) è piccolo.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Se il vettore $v=(10^6,0)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_2$ l'errore relativo tra v e \tilde{v} è:

- \bigcirc a. $4 \cdot 10^{-6}$.
- O b. Nessuna delle precedenti.
- ⊚ c. $\sqrt{17} \cdot 10^{-6}$.

La risposta corretta è: $\sqrt{17} \cdot 10^{-6}$.

Risposta errata

Punteggio ottenuto 0,00 su 1,00

P

Contrassegna domanda

Il mal condizionamento di un sistema lineare è dovuto a:

- o a. Nessuna delle precedenti.
- O b. Errore algoritmico.
- O c. Errore inerente.

La risposta corretta è: Errore inerente.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i, f(x_i))$, con $i=0,\ldots,n$. Vale:

- \odot a. Se $n o \infty$ non posso dire niente dell'errore di interpolazione $\Pi(x) f(x)$.
- \bigcirc b. Se $n o \infty$ dell'errore di interpolazione $\Pi(x) f(x) o \infty$.
- \bigcirc c. Se $n o \infty$ dell'errore $\Pi(x) f(x) o 0$.

La risposta corretta è: Se $n \to \infty$ non posso dire niente dell'errore di interpolazione $\Pi(x) - f(x)$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Le funzioni di Lagrange $\psi_k(x)$ per costruire il polinomio di interpolazione di n+1 punti sono:

- \odot a. Polinomi di grado n.
- O b. Nessuna delle precedenti.
- \bigcirc c. Polinomi di grado n+1.

La risposta corretta è: Polinomi di grado n.

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

Sia $f:\mathbb{R}^n o\mathbb{R}$ derivabile:

- a. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.
- O b. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di minimo.
- \bigcirc c. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di massimo.

La risposta corretta è: $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile. Vale:

- \bigcirc a. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo locale.
- \bigcirc b. Se $\nabla f(x^*)=0$ allora x^* è un punto di massimo o minimo locale.
- \odot c. Se $abla f(x^*) = 0$ allora x^* è un punto stazionario. \checkmark

La risposta corretta è: Se $abla f(x^*) = 0 \,$ allora x^* è un punto stazionario.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

Se A è una matrice $n \times n$ simmetrica e definita positiva, allora:

- \bigcirc a. Gli autovalori di A sono tutti non negativi.
- \bigcirc b. A è singolare.
- \odot c. Gli autovalori di A sono tutti positivi.

La risposta corretta è: Gli autovalori di A sono tutti positivi.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Se

$$U = \left[egin{array}{cccc} 2 & 2 & -1 \ 2 & 0 & 2 \ -1 & 2 & 3 \end{array}
ight]$$

Allora:

- $\ \odot$ a. $\ U$ è simmetrica ma non definita positiva.
- \bigcirc b. U è ortogonale.
- \bigcirc c. U è simmetrica e definita positiva.

La risposta corretta è: U è simmetrica ma non definita positiva.

Risposta errata

Punteggio ottenuto 0,00 su 1,00

P

Contrassegna domanda

Data la matrice:

$$A = egin{bmatrix} 1 & 3 & 2 \ -4 & 0 & 3 \ 0 & 1 & -3 \end{bmatrix}$$

La norma di Frobenius di A:

$$\bigcirc$$
 a. $||A||_F = 8$.

$$\bigcirc \ {\rm b.} \ ||A||_F=7.$$

c. Nessuna delle precedenti.

×

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Se A è una matrice quadrata $n \times n$, allora:

$$\bigcirc$$
 a. $||A||_2 = \sqrt{\max_{\lambda \in A} \lambda}$

$$\odot$$
 b. $||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$

O c. Nessuna delle precedenti.

La risposta corretta è:
$$||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda}$$

Risposta errata

Punteggio ottenuto 0,00 su 1,00

P

Contrassegna domanda er lo Standard IEEE, la rappresentazione in doppia precisione è:

- a. Nessuna delle precedenti.
- \bigcirc b. $\mathcal{F}(2,64,-1024,1023)$.
- \bigcirc c. $\mathcal{F}(2,53,-1024,1023)$.

La risposta corretta è: $\mathcal{F}(2,53,-1024,1023)$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

- O a. 17 numeri.
- b. 33 numeri.
- O c. Nessuna delle precedenti.

La risposta corretta è: 33 numeri.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Sia $f:\mathbb{R}^2 o \mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(1,1)^T$ e $\alpha=\frac{1}{2}$, allora:

$$\bullet$$
 a. $x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$.

$$\bigcirc$$
 b. $x^{(1)} = (\frac{1}{2} - \frac{e}{2}, \frac{1}{2} - \frac{e}{2})^T$.

$$\bigcirc$$
 c. $x^{(1)} = (1 + \frac{e}{2}, 1 + \frac{e}{2})^T$.

La risposta corretta è:
$$x^{(1)} = (1 - \frac{e}{2}, 1 - \frac{e}{2})^T$$
 .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda è sempre una direzione di discesa:

$$\bigcirc$$
 a. $abla f(x_k)^2 \ (
eq 0)$

$$\odot$$
 b. $-
abla f(x_k) \ (
eq 0)$

$$\bigcirc$$
 c. $abla f(x_k) \ (
eq 0)$

La risposta corretta è: $-\nabla f(x_k) \ (
eq 0)$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ con m>n, ha una e una sola soluzione se:

$$\odot$$
 a. $rg(A) = n$.

$$\bigcirc$$
 b. $rg(A)=m$.

La risposta corretta è: rg(A)=n .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda Il problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m\times n$ e (m>n), si puo' risolvere utilizzando le equazioni normali quando:

$$\bigcirc$$
 a. $rg(A) = m$.

$$\bigcirc$$
 b. $rg(A) = 0$.

$$\odot$$
 c. $rg(A) = n$.

La risposta corretta è: rg(A) = n.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

Sia A $n \times n$, il raggio spettrale è:

- \bigcirc a. è il massimo autovalore di A.
- \odot b. è il massimo autovalore in modulo di A.
- \bigcirc c. è il massimo autovalore in modulo di A^T .

La risposta corretta è: è il massimo autovalore in modulo di A.

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

P

Contrassegna domanda Sia A $n \times n$ non singolare, con PA = LR la fattorizzazione di Gauss con pivoting, allora la soluzione del sistema Ax = b si ottiene risolvendo:

a. Nessuna delle precedenti.

$$\bigcirc$$
 b. $\begin{cases} Ly = b \\ Rx = y \end{cases}$

$$\bigcirc$$
 c. $\begin{cases} Lx = P^{-1}b \\ Rb = y \end{cases}$

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

P

Contrassegna domanda Sia

$$A = egin{bmatrix} 1 & -rac{1}{2} & -rac{1}{3} \ rac{1}{2} & 2 & rac{1}{3} \ 0 & 1 & 3 \end{bmatrix} b = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

- a. Il metodo di Gauss-Seidel e il metodi di Jacobi convergono.
- b. Il metodo di Gauss-Seidel e il metodi di Jacobi non convergono.
- c. Il metodo di Jacobi è convergente quello di Gauss-Seidel no.

La risposta corretta è: Il metodo di Gauss-Seidel e il metodi di Jacobi convergono.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

Siano $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_n$ i valori singolari di A allora :

- O a. Nessuna delle precedenti.
- \bigcirc b. $K_2(A)=rac{\sigma_n}{\sigma_1}$
- \odot c. $K_2(A)=rac{\sigma_1}{\sigma_n}$

La risposta corretta è: $K_2(A) = rac{\sigma_1}{\sigma_n}$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P

Contrassegna domanda

I valori singolari sono tutti:

- a. Strettamente positivi (> 0).
- \odot b. Non negativi (\geq 0).
- c. Positivi o negativi, mai nulli (≠0).

La risposta corretta è: Non negativi (≥ 0).