

Walk-man Dims and Inertia

Francesca Negrello
ADVR Dept.28/11/2014

Legs Link section

JOINT RANGES

LINK	DEG	RAD
hip roll		
ab	-50	-0.87222
ad	40	0.697778
hip yaw		
Sup.	-90	-1.57
Pron.	50	0.872222
hip pitch		
Ext.	-120	-2.09333
Flex.	60	1.046667
knee pitch		
Ext.	0	0
Flex.	140	2.442222
ankle pitch		
Ext.	-80	-1.39556
Flex.	40	0.697778
ankle roll		
ab	-45	-0.785
ad	45	0.785

Pelvis Note: the origin is in the middle of the pelvis

VOLUME = 1.6985800e+06 MM^3 SURFACE AREA = 1.0613625e+06 MM^2 AVERAGE DENSITY = 3.7726163e-06 KILOGRAM / MM^3 MASS = 6.4080904e+00 KILOGRAM

CENTER OF GRAVITY with respect to URDF_ORIGIN_FRAME coordinate frame: X Y Z -3.2862932e+01 -5.0930727e-01 -1.2899617e+00 MM

INERTIA with respect to URDF ORIGIN FRAME coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 3.8838403e+04 1.8322173e+02 4.1810469e+02 lyx lyy lyz 1.8322173e+02 3.1981597e+04 -1.7580654e+01 lzx lzy lzz 4.1810469e+02 -1.7580654e+01 5.4977508e+04

INERTIA TENSOR:

lxx lxy lxz 3.8826078e+04 2.9047605e+02 6.8975598e+02 lyx lyy lyz 2.9047605e+02 2.5050374e+04 -1.3370623e+01 lzx lzy lzz 6.8975598e+02 -1.3370623e+01 4.8055286e+04

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2)
11 12 13 2.5044218e+04 3.8780966e+04 4.8106554e+04

ROTATION MATRIX from URDF_ORIGIN_FRAME orientation to PRINCIPAL AXES:

-0.02113 -0.99702 0.07413 0.99978 -0.02116 0.00036 0.00121 0.07412 0.99725

ROTATION ANGLES from URDF_ORIGIN_FRAME orientation to PRINCIPAL AXES (degrees):

angles about x y z 0.000 4.251 91.214

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 6.2515746e+01 7.7793803e+01 8.6643863e+01 MM

X:105.9 mm Y:-60/+60 mm Z: 0 mm

HIP ROLL LINK (RX)

VOLUME = 1.0946176e+06 MM^3 SURFACE AREA = 6.2449456e+05 MM^2 AVERAGE DENSITY = 3.4677130e-09 TONNE / MM^3 MASS = 3.7958197e-03 TONNE

CENTER OF GRAVITY with respect to JOINT_URDF_AXIS coordinate frame: X Y Z -1.0348188e+02 -1.0919813e+02 -6.4924056e+01 MM

INERTIA with respect to JOINT URDF AXIS coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 7.6901138e+01-4.1042402e+01-2.3111296e+01 lyx lyy lyz -4.1042402e+01 8.0167166e+01-2.9241106e+01 lzx lzy lzz -2.3111296e+01-2.9241106e+01 1.0686341e+02

INERTIA at CENTER OF GRAVITY with respect to JOINT_URDF_AXIS coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 1.5639017e+01 1.8504661e+00 2.3907793e+00 lyx lyy lyz 1.8504661e+00 2.3519749e+01 -2.3303162e+00 lzx lzy lzz 2.3907793e+00 -2.3303162e+00 2.0953643e+01

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)
I1 I2 I3 1.4009617e+01 2.1187212e+01 2.4915580e+01

ROTATION MATRIX from JOINT_URDF_AXIS orientation to PRINCIPAL AXES:

0.87992 0.47253 -0.04955 -0.26744 0.40641 -0.87368 -0.39270 0.78202 0.48398

ROTATION ANGLES from JOINT_URDF_AXIS orientation to PRINCIPAL AXES (degrees): angles about x y z 61.016 -2.840 -28.236

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 6.0751966e+01 7.4710926e+01 8.1018223e+01 MM

HIP YAW JOINT FRAME LOCATION RESPECT TO THE ROLL JOINT AXIS

X:-88.9 mm

Y:-121.032mm

Z: -217.872 mm

JOINT RANGE:

-50deg abduction/ -0.872 rad +40deg adduction/ 0.698 rad

HIP YAW LINK (RX)

VOLUME = 8.2179047e+05 MM^3 SURFACE AREA = 5.4269426e+05 MM^2 AVERAGE DENSITY = 3.9428625e-06 KILOGRAM / MM^3 MASS = 3.2402068e+00 KILOGRAM

CENTER OF GRAVITY with respect to URDF_JOINT_AXIS coordinate frame: X Y Z -5.2929709e+00 -2.2561833e+01 5.6701669e+00 MM

INERTIA with respect to URDF_JOINT_AXIS coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 1.1855656e+04 -2.7835780e+02 3.5015913e+02 lyx lyy lyz -2.7835780e+02 6.9096514e+03 4.9796466e+02 lzx lzy lzz 3.5015913e+02 4.9796466e+02 1.2225289e+04

INERTIA at CENTER OF GRAVITY with respect to URDF_JOINT_AXIS coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 1.0102097e+04 1.0858487e+02 2.5291395e+02 lyx lyy lyz 1.0858487e+02 6.7147000e+03 8.3447072e+01 lzx lzy lzz 2.5291395e+02 8.3447072e+01 1.0485130e+04

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2)
11 12 13 6.7097129e+03 9.9774679e+03 1.0614747e+04

ROTATION MATRIX from URDF_JOINT_AXIS orientation to PRINCIPAL AXES:

-0.03049-0.893720.447590.99933-0.018280.03158-0.020050.448250.89368

ROTATION ANGLES from URDF_JOINT_AXIS orientation to PRINCIPAL AXES (degrees):

angles about x y z -2.024 26.589 91.954

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 4.5505679e+01 5.5491160e+01 5.7235892e+01 MM

HIP PITCH JOINT FRAME LOCATION RESPECT TO THE YAW JOINT AXIS

X:0 mm Y:0mm Z: 0mm

JOINT RANGE: -90deg / -1.57rad

+50deg / 0.872rad

HIP PITCH LINK (RX)

VOLUME = 1.5735748e+06 MM^3 SURFACE AREA = 1.0039812e+06 MM^2 AVERAGE DENSITY = 3.2378974e-06 KILOGRAM / MM^3 MASS = 5.0950736e+00 KILOGRAM

CENTER OF GRAVITY with respect to URDF_PITCH_JOINT coordinate frame:

X Y Z 3.7746286e+01 -2.8539939e+01 -1.9310133e+02 MM

INERTIA with respect to URDF_PITCH_JOINT coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 2.4574367e+05 7.7141514e+03 3.9590247e+04 lyx lyy lyz 7.7141514e+03 2.4159425e+05-3.2180155e+04 lzx lzy lzz 3.9590247e+04-3.2180155e+04 3.4783904e+04

INERTIA at CENTER OF GRAVITY with respect to URDF_PITCH_JOINT coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 5.1607858e+04 2.2253472e+03 2.4529790e+03 lyx lyy lyz 2.2253472e+03 4.4349153e+04 -4.1006942e+03 lzx lzy lzz 2.4529790e+03 -4.1006942e+03 2.3374453e+04

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2)
11 12 13 2.2327869e+04 4.4708982e+04 5.2294613e+04

ROTATION MATRIX from URDF_PITCH_JOINT orientation to PRINCIPAL AXES:

 -0.09639
 -0.23201
 -0.96793

 0.19162
 0.94994
 -0.24678

 0.97672
 -0.20926
 -0.04711

ROTATION ANGLES from URDF_PITCH_JOINT orientation to PRINCIPAL AXES (degrees):

angles about x y z 100.807 -75.449 112.561

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 6.6198539e+01 9.3674668e+01 1.0131022e+02 MM KNEE PITCH JOINT FRAME
LOCATION RESPECT TO THE HIP
PITCH JOINT AXIS

X:0 mm Y:0mm Z: -356mm

JOINT RANGE:

-120deg / -2.093rad +60deg / 1.046rad

KNEE PITCH LINK (RX)

VOLUME = 1.6336398e+06 MM^3 SURFACE AREA = 8.4278252e+05 MM^2 AVERAGE DENSITY = 3.4552450e-06 KILOGRAM / MM^3 MASS = 5.6495309e+00 KILOGRAM

CENTER OF GRAVITY with respect to CALF_URDF coordinate frame: X Y Z -5.0828668e+00 3.7732093e+00 -7.2605017e+01 MM

INERTIA with respect to CALF_URDF coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

1.3521729e+05-4.7364144e+02-4.1055231e+02 1.3521729e+05-4.7364144e+02-4.1055231e+02 1.2778519e+05-1.8293069e+03 1.28293069e+03 1.28293069 1.2829

INERTIA at CENTER OF GRAVITY with respect to CALF_URDF coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 1.0535542e+05 -5.8199221e+02 1.6743598e+03 lyx lyy lyz -5.8199221e+02 9.7857796e+04 -3.3770181e+03 lzx lzy lzz 1.6743598e+03 -3.3770181e+03 2.0854086e+04

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2)
11 12 13 2.0674223e+04 9.7948028e+04 1.0544505e+05

ROTATION MATRIX from CALF_URDF orientation to PRINCIPAL AXES:

 -0.01945
 0.08762
 -0.99596

 0.04356
 0.99528
 0.08671

 0.99886
 -0.04169
 -0.02318

ROTATION ANGLES from CALF_URDF orientation to PRINCIPAL AXES (degrees):

angles about x y z-104.964 -84.850 -102.516

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 6.0493457e+01 1.3167146e+02 1.3661768e+02 MM

ANKLE PITCH JOINT FRAME LOCATION RESPECT TO THE KNEE PITCH JOINT AXIS

X:0mm Y:0mm Z: 400mm

JOINT RANGE:

0deg / 0 rad +140deg / 2.442rad

ANKLE PITCH LINK (RX)

VOLUME = 7.9991704e+05 MM^3 SURFACE AREA = 5.1081364e+05 MM^2 AVERAGE DENSITY = 4.1059456e-06 KILOGRAM / MM^3 MASS = 3.2844159e+00 KILOGRAM

CENTER OF GRAVITY with respect to ANKLE_PITCH_URDF coordinate frame: X Y Z -2.2024173e+01 2.5677238e+00 9.4588455e-01 MM

INERTIA with respect to ANKLE_PITCH_URDF coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 7.5796613e+03 8.6062318e+02 1.2675491e+02 lyx lyy lyz 8.6062318e+02 1.2837254e+04-1.5349790e+02 lzx lzy lzz 1.2675491e+02-1.5349790e+02 1.5006672e+04

INERTIA at CENTER OF GRAVITY with respect to ANKLE_PITCH_URDF coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR:

lxx lxy lxz 7.5550679e+03 6.7488292e+02 5.8332889e+01 lyx lyy lyz 6.7488292e+02 1.1241163e+04 -1.4552081e+02 lzx lzy lzz 5.8332889e+01 -1.4552081e+02 1.3391865e+04

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2)
11 12 13 7.4342371e+03 1.1352163e+04 1.3401695e+04

ROTATION MATRIX from ANKLE PITCH URDF orientation to PRINCIPAL AXES:

 0.98446
 0.17559
 0.00228

 -0.17505
 0.98231
 -0.06649

 -0.01392
 0.06506
 0.99778

ROTATION ANGLES from ANKLE_PITCH_URDF orientation to PRINCIPAL AXES (degrees): angles about x y z 3.813 0.131 -10.113

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 4.7576132e+01 5.8790918e+01 6.3877925e+01 MM

ANKLE ROLL JOINT FRAME LOCATION RESPECT TO THE YAW JOINT AXIS

To check with lewis,
Below there is the placement
I suggest

X:0mm Y:0mm Z: 0mm

JOINT RANGE:

-80deg / -1.395 rad +40deg / 0.697rad

ANKLE ROLL LINK (RX)

OTHER DATA FROM Lewis

JOINT RANGE:

-45deg / -0.785 rad +45deg / 0.785rad

Actuators section

Big actuator: Shaft before gear box

VOLUME = 2.0455367e+04 MM^3 SURFACE AREA = 2.1304325e+04 MM^2 AVERAGE DENSITY = 3.1174016e-09 TONNE / MM^3 MASS = 6.3767593e-05 TONNE

CENTER OF GRAVITY with respect to _ROTOR_ASSEMBLY coordinate frame: X Y Z 0.0000000e+00 -5.8448818e-02 3.2146704e+00 MM

INERTIA with respect to _ROTOR_ASSEMBLY coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 3.8595581e-02 0.0000000e+00 0.0000000e+00 lyx lyy lyz 0.0000000e+00 3.8675520e-02 3.3875902e-05 lzx lzy lzz 0.0000000e+00 3.3875902e-05 2.1059873e-02

INERTIA at CENTER OF GRAVITY with respect to _ROTOR_ASSEMBLY coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 3.7936382e-02 0.0000000e+00 0.0000000e+00 lyx lyy lyz 0.0000000e+00 3.8016539e-02 2.1894374e-05 lzx lzy lzz 0.0000000e+00 2.1894374e-05 2.1059656e-02

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)
11 12 13 2.1059627e-02 3.7936382e-02 3.8016567e-02

ROTATION MATRIX from _ROTOR_ASSEMBLY orientation to PRINCIPAL AXES:

 0.00000
 1.00000
 -0.00011

 -0.00129
 0.00011
 1.00000

 1.00000
 0.00000
 0.00129

ROTATION ANGLES from _ROTOR_ASSEMBLY orientation to PRINCIPAL AXES (degrees): angles about x y z -89.926 0.000 -90.000

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 1.8172946e+01 2.4390906e+01 2.4416670e+01 MM

Inertia of the motor rotor:

5.43 x10-5 kg m² from the datasheet

Inertia of the harmonic drive:

0,263 x 10 -4 kg m² from the datasheet

Reduction ratio: 80.

Big actuator: Shaft after gear box

VOLUME = 8.3525405e+04 MM^3 SURFACE AREA = 9.0330408e+04 MM^2 AVERAGE DENSITY = 4.0560145e-09 TONNE / MM^3 MASS = 3.3878025e-04 TONNE

CENTER OF GRAVITY with respect to _WM0028A0 coordinate frame: X Y Z 1.8150407e-04 -1.8434214e-04 1.7579705e+01 MM

INERTIA with respect to _WM0028A0 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 1.1302565e+00 7.2527702e-06 1.7490136e-06 lyx lyy lyz 7.2527702e-06 1.1299437e+00 -1.7573702e-06 lzx lzy lzz 1.7490136e-06 -1.7573702e-06 1.7595213e-01

INERTIA at CENTER OF GRAVITY with respect to _WM0028A0 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 1.0255578e+00 7.2527589e-06 2.8299896e-06 Iyx Iyy Iyz 7.2527589e-06 1.0252450e+00 -2.8552488e-06 Izx Izy Izz 2.8299896e-06 -2.8552488e-06 1.7595213e-01

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)
11 12 13 1.7595213e-01 1.0252448e+00 1.0255580e+00

ROTATION MATRIX from _WM0028A0 orientation to PRINCIPAL AXES:

 0.00000
 -0.02317
 -0.99973

 0.00000
 0.99973
 -0.02317

 1.00000
 0.00000
 0.00000

ROTATION ANGLES from _WM0028A0 orientation to PRINCIPAL AXES (degrees): angles about x y z 90.008 -88.673 90.008

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 2.2789679e+01 5.5011660e+01 5.5020061e+01 MM

Big actuator: Shaft after gear box with test rig parts

VOLUME = 4.0397776e+05 MM^3 SURFACE AREA = 1.5604711e+05 MM^2 AVERAGE DENSITY = 5.5858351e-09 TONNE / MM^3 MASS = 2.2565532e-03 TONNE

CENTER OF GRAVITY with respect to _WM0028A0 coordinate frame: X Y Z 4.8974444e+01 1.1826665e+02 -6.3984696e+01 MM

INERTIA with respect to _WM0028A0 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 7.2036101e+01 -2.4397073e+01 8.9323242e+00 lyx lyy lyz -2.4397073e+01 2.3241235e+01 2.1568499e+01 lzx lzy lzz 8.9323242e+00 2.1568499e+01 6.9434852e+01

INERTIA at CENTER OF GRAVITY with respect to _WM0028A0 coordinate frame: (TONNE * MM^2)

INERTIA TENSOR:

lxx lxy lxz 3.1235271e+01 -1.1327020e+01 1.8611555e+00 lyx lyy lyz -1.1327020e+01 8.5904790e+00 4.4925850e+00 lzx lzy lzz 1.8611555e+00 4.4925850e+00 3.2460110e+01

PRINCIPAL MOMENTS OF INERTIA: (TONNE * MM^2)
11 12 13 3.0921155e+00 3.3265314e+01 3.5928431e+01

ROTATION MATRIX from _WM0028A0 orientation to PRINCIPAL AXES:

0.37763 0.06262 0.92384 0.91143 0.15088 -0.38279 -0.16336 0.98657 -0.00009

ROTATION ANGLES from _WM0028A0 orientation to PRINCIPAL AXES (degrees): angles about x y z 90.014 67.493 -9.415

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 3.7017328e+01 1.2141519e+02 1.2618169e+02 MM

