Parte III:

Algoritmo di Branch-and-Bound

Divide et Impera

Sia

$$z^* = \max \{c^{\mathsf{T}}x : x \in S\} \tag{1}$$

un problema di ottimizzazione combinatoria difficile da risolvere.

Domanda: E' possibile decomporre il problema (1) in una collezione di sottoproblemi tali che

- ogni nuovo sottoproblema sia facile da risolvere, e
- le informazioni ottenute risolvendo la collezione di sottoproblemi ci guidino nella ricerca della soluzione ottima del problema (1)?

Divide et Impera

Proposizione: Sia $S = S_1 \cup S_2 \cup ... \cup S_K$ una decomposizione della regione ammissibile S in K sottoinsiemi, e sia $Z^h = \max \{c^T x : x \in S_h\}$, per h = 1,...,K. Allora $Z^* = \max_h Z^h$.

Osservazione: Non abbiamo richiesto che la decomposizione sia una partizione (ovvero, che $S_i \cap S_j = \emptyset$), ma non abbiamo nemmeno escluso che possa esserlo!

Una tipica rappresentazione dell'approccio divide et impera è tramite un albero di enumerazione.

Un esempio

Se $S \subseteq \{0,1\}^3$, possiamo costruire il seguente albero di enumerazione

Le foglie dell'albero corrispondono esattamente ai punti che andremmo a esaminare se potessimo fare un'enumerazione completa.

Divide et Impera

Osservazione: Costruendo in questo modo l'albero di enumerazione stiamo semplicemente enumerando TUTTI gli insiemi ammissibili!!!!

Per la maggior parte dei problemi è impossibile effettuare una enumerazione completa.

Poiché per un problema di ottimizzazione combinatoria conosciamo i bound "primali" e i bound "duali", l'idea è quella di utilizzare tali bound per enumerare gli insiemi ammissibili in modo più efficace.

Potatura per ottimalità

Le informazioni su upper e lower bound per il valore ottimo z^* permettono di decidere quali nodi dell'albero ha senso continuare ad esaminare per trovare la soluzione ottima.

Poiché $z_{LB}^1 = z_{UB}^1 = 20$, sicuramente $z_1^1 = 20$. Pertanto, non c'è bisogno di esplorare ulteriormente il nodo S_1 che può essere *potato per ottimalità*.

Potatura per ottimalità

Ad ogni passo teniamo traccia di un lower bound globale z_{lb} .

Per il nodo S_0 , $z_{LB} = z_{LB}^0$ (alternativamente, $z_{LB} = -\infty$).

Per ciascun nodo di ogni livello dell'albero, aggiorniamo il valore di z_{LB} se in corrispondenza di quel nodo abbiamo calcolato un lower bound MIGLIORE (ossia maggiore) di quello corrente.

Potatura per bound

Poiché $z_{LB} = 21$, la soluzione ottima del problema iniziale ha valore almeno pari a 21. Dal momento che $z_{UB}^1 = 20$, sicuramente non è possibile ottenere l'ottimo esplorando il nodo S_1 . Pertanto, S_1 può essere *potato per bound*.

Potatura per inammissibilità

Poiché il sottoproblema associato al nodo S_2 è inammissibile, non è possibile ottenere l'ottimo esplorando il nodo S_2 . Pertanto S_2 può essere potato per inammissibilità.

Nessuna potatura

In questo caso non possiamo fare nessuna osservazione che permetta di potare uno dei due nodi in esame e quindi è necessario esplorare sia S_1 che S_2 .

Problema al nodo radice S_0 : Rilassamento lineare di P.

Valore dell'UB al nodo radice: $z_{IR}^0 = 59/7$.

Poiché non abbiamo una soluzione ammissibile, fissiamo $z_{1B}^0 = -\infty$

$$z_{UB}^{0} = 59/7$$
 $z_{LB}^{0} = -\infty = Z_{LB}$

Consideriamo la variabile frazionaria x_1 del vettore x_{UB}^0 e generiamo i sottoproblemi di S_0 applicando la seguente regola di branching:

$$S_{1} = S_{0} \cap \left\{ x : x_{1} \leq \lfloor \hat{x}_{1} \rfloor \right\} \qquad S_{2} = S_{0} \cap \left\{ x : x_{1} \geq \lfloor \hat{x}_{1} \rfloor \right\}$$

$$S_{1} = S_{0} \cap \left\{ x : x_{1} \leq \lfloor 20/7 \rfloor = 2 \right\}$$

$$S_{2} = S_{0} \cap \left\{ x : x_{1} \geq \lfloor 20/7 \rfloor = 3 \right\}$$

Memorizziamo S_1 e S_2 in una lista di sottoproblemi che devono essere esplorati: $L = \{S_1, S_2\}$

Scegliamo di analizzare il sottoproblema S_1 .

Risolviamo il sottoproblema al nodo S_1 .

Valore dell'UB per il sottoproblema S_1 : $z_{IIB}^1 = 15/2$.

Poiché non possiamo applicare nessun criterio di potatura, il nodo S_1 dovrà essere esplorato.

Risolviamo il sottoproblema al nodo S_2 .

Il sottoproblema al nodo S_2 è inammissibile!

Il nodo S_2 può essere chiuso per inammissibilità.

Esploriamo il nodo S_1

$$S_3 = S_1 \cap \{x : x_2 \le 0\}$$
 $S_4 = S_1 \cap \{x : x_2 \ge 1\}$

Memorizziamo S_3 e S_4 nella lista di sottoproblemi che devono essere esplorati: $L = \{S_3, S_4\}$. Scegliamo di analizzare il sottoproblema S_3 .

Risolviamo il sottoproblema al nodo S_3 .

Valore dell'UB per il sottoproblema S_3 : $Z_{IIB}^3 = 6$.

Poiché in questo momento non possiamo applicare nessun criterio di potatura, il nodo S_3 dovrà essere esplorato.

Risolviamo il sottoproblema al nodo S_{Δ} .

$$\max 4x_{1} - x_{2}$$

$$7x_{1} - 2x_{2} \le 14$$

$$x_{2} \le 3$$

$$2x_{1} - 2x_{2} \le 3$$

$$x_{1} \le 2$$

$$x_{2} \ge 1$$

$$x_{1}, x_{2} \ge 0$$

Valore dell'UB per il sottoproblema S_4 : $Z_{IIB}^4 = 7$.

Osserviamo che la soluzione trovata è intera! Possiamo aggiornare il valore del lower bound globale!

Il nodo S_4 può essere chiuso per ottimalità.

In seguito all'aggiornamento del valore del lower bound possiamo chiudere anche il nodo S_3 per bound. Infatti: $z_{UB}^3 = 6 < z_{LB}^4$.

Poiché non ci sono altri nodi da esplorare nella lista L, l'algoritmo di Branch & Bound termina con la soluzione ottima intera $x^* = (2, 1)$ di valore $z^* = 7$.

Tramite l'albero di enumerazione, enumeriamo un insieme di soluzioni "implicitamente" perché alcuni rami dell'albero vengono potati per:

- ottimalità, oppure
- bound, oppure
- inammissibilità

Nella procedura di Branch & Bound è importante

- Scegliere la strategia per il calcolo del bound duale.
- Scegliere la variabile su cui applicare la procedura di branching.
- Scegliere la strategia di esplorazione dell'albero di enumerazione.

Scelta della strategia di esplorazione dell'albero di enumerazione

VISITA DEL NODO CON MAX $Z_{_{ m IR}}$

(Vantaggio: limita il numero di nodi visitati

Svantaggio: si impiega più tempo per generare soluzioni ammissibili.)

VISITA IN PROFONDITA'

(Vantaggi: genera rapidamente una soluzione ammissibile, limita la memoria necessaria per memorizzare l'albero delle soluzioni

Svantaggio: rischio di esplorare completamente sotto-alberi con soluzioni scadenti)

Siano

- P_0 = problema di ottimizzazione iniziale associato al nodo S_0 .
- L = lista dei sottoproblemi che devono essere risolti
- P_i = formulazione del sottoproblema associato al nodo S_i .

L'algoritmo di Branch-and-Bound può essere schematizzato come segue.

Step 0. Inizializzazione: $L = S_0$; $Z_{LB} = -\infty(\text{max})$; $x^* = 0$.

Step 1. Criterio di arresto: Se $L = \emptyset$, allora STOP: x^* è la soluzione ottima.

Step 2. Selezione del nodo: Seleziona il sottoproblema P_i (nodo S_i) da esplorare dalla lista L.

Step 3. Bounding: Risolvi un rilassamento di P_i .

Step 4. Fathoming:

- Se P_i non è ammissibile, elimina P_i da L e vai allo Step 1.
- Se $z_{UB}^{i} \le z_{UB}$, elimina P_{i} da L e vai allo Step 1.
- Se x_{UB}^i è intera, elimina P_i da L. Se, inoltre, $z_{LB}^i > z_{LB}$, aggiorna z_{LB} e vai allo Step 1.
- **Step 5.** Branching: Individua una componente frazionaria di x_{UB}^{i} e genera i sottoproblemi di P_{i} da aggiungere alla lista L. count = count + 1. Vai allo Step 1.

Branch-and-Bound

Inizializzazione

$$L=S_0, z_{LB}=-\infty; x^*=0;$$

Scegli un problema P_i dalla lista

Risolvi un Rilassamento di P_i

Caso 1: Inammissibilità

Se $P_i = \emptyset$ elimina P_i per inammissibilità, vai a Test

Caso 2: Bound

 $P_i \neq \emptyset$, z^i_{UB} valore della soluzione ottima x^i_{UB} di RL_i. Se $z^i_{UB} \leq z_{LB}$ elimina P_i per bound, vai a Test

Caso 3: Ottimalità

Se $P_i \neq \emptyset$ e x^i_{UB} è una soluzione ottima intera di RI_i elimina P_i per ottimalità. Se $z^i_{LB} \geq z_{LB}$ allora $z_{LB} = z^i_{LB}$ vai a Test

Individua una componente frazionaria k di $x_i^{\cup B}$ e ramifica P_i aggiungendo i nuovi sottoproblemi ad L. vai a Test

Consideriamo il problema di knapsack

$$\max 30 x_1 + 36 x_2 + 15 x_3 + 11 x_4 + 5 x_5 + 3 x_6$$

$$9 x_1 + 12 x_2 + 6 x_3 + 5 x_4 + 3 x_5 + 2 x_6 \le 17$$

$$x \in \{0,1\}^6$$
(1)

La soluzione ottima del Knapsack continuo è $x_{UB}^0 = (1, 2/3, 0, 0, 0, 0)$ di valore 54 (z_{UB}^0)

Inizializziamo il valore del lower bound uguale al valore di una soluzione ammissibile del problema $x_{LB}^0 = (1, 0, 0, 0, 0, 0)$ di valore 30 (z_{LB}^0) .

Inizializziamo il valore del lower bound globale $z_{LB} = 30$.

Osservazione: Poiché la funzione obiettivo ha coefficienti interi, possiamo scrivere la condizione di potatura per bound (caso 2) come $\lfloor z_{IB}^i \rfloor \leq z_{IB}$.

Esercizio 1

$$z_{UB}^{0} = 54$$
 S_{0}
 $z_{LB}^{0} = 30 = Z_{LB}$
 $x_{2} = 0$
 $x_{2} = 1$

$$Z^{1}_{UB} = 49.4$$

$$z_{LB}^1 = 45 \left(S_1 \right) Z_{LB} = 45$$

$$x_4 = 0 \qquad \qquad x_4 = 1$$

$$Z^5_{UB} = 48.33$$

$$z_{LB}^5 = 45$$
 (S₅)

$$x_5 = 0 \qquad x_5 = 1$$

$$z^{7}_{UB} = 48$$
 $z^{8}_{UB} = 47.5$

$$z^{7}_{LB} = 48$$
 $z^{8}_{LB} = 35$

$$Z^{6}_{UB} = 48.5$$
 $Z^{6}_{LB} = 41$

bound.

Algoritmo di programmazione dinamica

Programmazione Dinamica

Schema di principio: Sia *P* un problema di OC. La Programmazione Dinamica (PD):

- risolve un sottoproblema di P all'ottimo.
- iterativamente "estende" la soluzione a P.

Proprietà fondamentale (optimal substructure)

Sia KP (N, b) un problema di knapsack con soluzione ottima x^* .

Consideriamo il problema di knapsack $KP(N \setminus r, b - a_r)$ che si ottiene da KP eliminando un qualsiasi oggetto r e diminuendo la capacità dello zaino della quantità a_r .

La soluzione ottima di $KP(r, b-a_r)$ si ottiene da x^* semplicemente eliminando la variabile x_r .

Consideriamo il seguente problema di knapsack:

$$\max 6 x_1 + 10 x_2 + 12 x_3$$
$$x_1 + 2x_2 + 3 x_3 \le 5$$
$$x \in \{0,1\}^3$$

La soluzione ottima è $x^{*(1)} = (0, 1, 1)$, di valore 22.

Consideriamo il problema che si ottiene eliminando l'oggetto 2 e diminuendo la capacità b del corrispondente ingombro a_2 :

max
$$6 x_1 + 12 x_3$$

 $x_1 + 3 x_3 \le 5 - 2 = 3$ (2)
 $x \in \{0,1\}^2$

La soluzione ottima è $x^{*(2)}=(0, 1)$, di valore 12.

Osservazione: La soluzione $x^{*(2)} = (0, 1)$ è una "sottosoluzione" di $x^{*(1)} = (0, 1, 1)$, ovvero si ottiene da $x^{*(1)}$ semplicemente eliminando la variabile x_2 .

Notazione

Siano r e d due interi tali che $1 \le r \le n$, $0 \le d \le b$.

Sia KP(r, d) il problema di knapsack:

$$\max \sum_{j=1}^{r} p_{j} x_{j}$$

$$\sum_{j=1}^{r} a_{j} x_{j} \leq d$$

$$X \in \{0, 1\}^{r}$$

KP (r, d) è un sottoproblema di KP, avente soluzione ottima di valore $z_r(d)$.

Programmazione dinamica

Con questo formalismo, il valore della soluzione ottima di KP vale $z_n(b)$.

Calcolo di $z_n(b)$:

- 1. Calcolo $z_r(d)$ per $r = \{1, ..., n\}$.
- 2. Per ogni r, calcolo $z_r(d)$ per $d = \{0, ..., b\}$.

Osservazione:

 $z_r(d)$ si calcola in modo ricorsivo se conosco i valori $z_{r-1}(d)$ per $d = \{0, ..., b\}$.

Formula ricorsiva

Condizione iniziale di ricorsione:

$$z_1(d) = \begin{cases} 0 & per & d < a_1 \\ p_1 & per & d \ge a_1 \end{cases}$$

Questa condizione implica:

• Se
$$Z_1(d) = 0 \Rightarrow X_1 = 0$$

• Se
$$z_1(d) = p_1 \Rightarrow x_1 = 1$$

Formula ricorsiva

Formula di ricorsione:

$$z_{r}(d) = \begin{cases} z_{r-1}(d) & \text{se } d < a_{r} \\ \max\{z_{r-1}(d), z_{r-1}(d-a_{r}) + p_{r}\} & \text{se } d \ge a_{r} \end{cases}$$

La formula implica

- Se $z_r(d) = z_{r-1}(d) \Rightarrow x_r = 0$ [l'oggetto r NON è stato scelto]
- Se $z_r(d) = z_{r-1}(d-a_r) + c_r \Rightarrow x_r = 1$ [l'oggetto r E' stato scelto]

Algoritmo e complessità

```
DP-KP(n, b, a, c)
for d = 0 to a_1 - 1
 z_1(d) = 0;
for d=a_1 to b
 z_{1}(d)=p_{1};
for m=2 to n
 for d=0 to a_m-1
 z_m(d) = z_{m-1}(d)
 for d=a_m to b
 if(z_{m-1}(d)>z_{m-1}(d-a_m)+p_m)
 then \max = z_{m-1}(d);
 else max = z_{m-1}(\hat{b} - a_m) + p_m;
 z_m(d) = \max;
return z_n(b)
```

Osservazione: La complessità dell'algoritmo è O(*nb*). Poiché dipende dall'intero *b* si dice che l'algoritmo ha complessità pseudo polinomiale.