El problema de los múltiples períodos

Carlos Castro

UTFSM

Marzo 2021

Origen del problema de los múltiples períodos

- En los modelos básicos de transporte, mezcla, etc., se asume la planificación en un sólo período de tiempo.
- Al considerar un sólo período de planificación, el exceso de producción se pierde, la no satisfacción de demandas genera soluciones imposibles, etc.
- La posibilidad de considerar mútiples períodos permite hacerse cargo de estas situaciones.
- Es fácil imaginar que cualquier problema de transporte, mezcla, etc., puede ser llevado a un escenario de múltilpes períodos.
- El enfoque de múltiples períodos permite acercar los modelos a lo que ocurre en la realidad.

El problema de los múltiples períodos

- Particionan el horizonte de planificación (tiempo) en diversos períodos.
- La situación representada en cada período puede ser un problema de transporte, mezcla, etc.
- Los períodos son relacionados mediante:
 - Variables de enlace o de inventario representando lo que se traspasa de un período a otro.
 - Restricciones de balance para cada objeto y período, generalmente, expresadas como:

```
inventario final = inventario inicial + ingresos - egresos
```

 El objetivo es determinar la solución óptima para todo el horizonte de planificación.

Ejemplo

Una empresa que se dedica a la venta de kayaks está planificando su programa de ventas y adquisiciones para las próximas cuatro estaciones (verano, otoño, invierno y primavera).

El precio estimado al cual la empresa podría vender los kayaks en cada estación, el costo unitario estimado, la estimación del costo unitario de almacenamiento durante cada estación y la demanda esperada son presentados en la siguiente tabla:

Estación	Precio de venta	Costo	Almacenamiento	Demanda
Verano	600.000	400.000	10000	100
Otoño	500.000	300.000	12000	50
Invierno	450.000	350.000	15000	20
Primavera	700.00	500.000	8000	120

No se considera limitaciones de almacenamiento.

Formule un modelo de programación lineal que permita determinar el programa de compras y ventas para las cuatro estaciones.

Enfoque

- Se definen variables de decisión x_i representando la cantidad a vender en la estación i, y_i representando la cantidad a comprar en la estación i y z_i representando la cantidad a almacenar en la estación i.
- Restricciones: se establece una restricción para cada materia prima:
 - Balance: la cantidad a almacenar al final de un período es igual a la cantidad almacenada al comenzar el período más lo comprado menos lo vendido en el período.
 - Inventario inicial: inicialmente la empresa no tiene kayaks almacenados.
 - Demanda: en cada estación no se puede vender más de lo demandado.
- Objetivo: maximizar las utilidades totales

Modelo

Variables:

- x_i: cantidad de kayaks a vender en la estación i;
 ∀i = 1,..., 4 (verano, otoño, invierno y primavera).
- y_i: cantidad de kayaks a comprar en la estación i;
 ∀i = 1,..., 4 (verano, otoño, invierno y primavera).
- z_i : cantidad de kayaks a almacenar en la estación i; $\forall i = 1, ..., 4$ (verano, otoño, invierno y primavera).

Función objetivo:

Max
$$z = (600000 \times x_1 + 500000 \times x_2 + 450000 \times x_3 + 700000 \times x_4) - (400000 \times y_1 + 300000 \times y_2 + 350000 \times y_3 + 500000 \times y_4) - (10000 \times z_1 + 12000 \times z_2 + 15000 \times z_3 + 8000 \times z_4)$$

Modelo

- Restricciones:
 - Balance:

$$z_1 = 0 + y_1 - x_1$$

$$z_2 = z_1 + y_2 - x_2$$

$$z_3 = z_2 + y_3 - x_3$$

$$z_4 = z_3 + y_4 - x_4$$

Demada:

$$x_1 \le 100$$

 $x_2 \le 50$
 $x_3 \le 20$
 $x_4 \le 120$

Valores posibles para las variables:

$$x_i, y_i, z_i > 0; \forall i = 1, ..., 4$$

Modelo

El caso general

• Se considera *n* períodos con los siguientes parámetros:

- pv_i : precio de venta asociado al producto en el período i; $\forall i = 1, ..., n$.
- pc_i : precio de compra asociado al producto en el período i; $\forall i = 1, \dots, n$.
- *ca_i*: costo de almacenamiento asociado al producto en el período i; $\forall i = 1, ..., n$.
 - d_i : demanda por el producto en el período i; $\forall i = 1, ..., n$.

Modelo general

$$\textit{Max} \ \ z = \sum_{i=1}^{n} \textit{pv}_{i} \times \textit{x}_{i} - \sum_{i=1}^{n} \textit{pc}_{i} \times \textit{y}_{i} - \sum_{i=1}^{n} \textit{ca}_{i} \times \textit{z}_{i}$$

Sujeto a:

$$z_{i} = z_{i-1} + y_{i} - x_{i}; \quad \forall i = 1, \dots, n$$

$$x_{i} \leq d_{i}; \quad \forall i = 1, \dots, n$$

$$x_{i}, y_{i}, z_{i} \geq 0; \quad \forall i = 1, \dots, n$$

El problema de los múltiples períodos

Carlos Castro

UTFSM

Marzo 2021