概率论第二周作业

涂嘉乐 PB23151786

2025年3月8日

习题 1.2

T1

证明 先分析 $\mathbb{P}(A_{ij})$, 因为 $\Omega_1 = \{HH, HT, TH, TT\}, A_{ij} = \{HH, TT\}$, 所以

$$\mathbb{P}(A_{ij}) = \frac{|A_{ij}|}{|\Omega_1|} = \frac{1}{2}$$

Case 1. 当 i,j,i',j' 中有三个不同的数时, $\Omega_2 = \{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT\}$, $A_{ij}\cap A_{i'j'} = \{HHH,TTT\}$,所以

$$\mathbb{P}(A_{ij} \cap A_{i'j'}) = \frac{|A_{ij} \cap A_{i'j'}|}{|\Omega_2|} = \frac{1}{4}$$

Case 2. 当 i,j,i',j' 中有四个不同的数时, $|\Omega_3|=16,A_{ij}\cap A_{i'j'}=\{HHHH,HHTT,TTHH,TTTT\}$,所以

$$\mathbb{P}(A_{ij} \cap A_{i'j'}) = \frac{|A_{ij} \cap A_{i'j'}|}{|\Omega_3|} = \frac{1}{4}$$

所以无论如何都有 $\mathbb{P}(A_{ij})\mathbb{P}(A_{i'j'}) = \mathbb{P}(A_{ij} \cap A_{i'j'})$,故它们两两独立,又因为

$$\prod_{1 \le i \le j \le n} \mathbb{P}(A_{ij}) = \left(\frac{1}{2}\right)^{\binom{n}{2}}$$

二者显然不等, 故它们不相互独立

T2

 \mathbf{R} 设事件 A 为学生会做,事件 B 为学生答对,则

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)\mathbb{P}(B|A)}{\mathbb{P}(A)\mathbb{P}(B|A) + \mathbb{P}(A^c)\mathbb{P}(B|A^c)} = \frac{0.5 \times 0.9}{0.5 \times 0.9 + 0.5 \times 0.25} = \frac{18}{23}$$

T4

证明 不妨设 $|A|=m, |B|=n, |A\cap B|=l,$ 因为 A,B 独立, 所以

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Rightarrow \frac{l}{p} = \frac{m}{p} \cdot \frac{n}{p} \Rightarrow lp = mn$$

所以 $p \mid nm$,由 p 是素数知, $p \mid m$ 或 $p \mid n$,不妨设 $p \mid m$,因为 $m, n \in \{0, 1, \cdots, p\}$,所以 m = 0 或 p,这就说明 $A = \emptyset$ 或 $A = \Omega$,故 A, B 中至少其一为 \emptyset 或 Ω

T5

 \mathbf{m} (1). 设事件 A_r 为选取了第 r 个坛子,设 B_i 为第 i 个球为蓝球,则

$$\mathbb{P}(B_2|A_r) = \mathbb{P}(B_1B_2|A_r) + \mathbb{P}(B_1^cB_2|A_r) = \frac{n-r}{n-1} \cdot \frac{n-r-1}{n-2} + \frac{r-1}{n-1} \cdot \frac{n-r}{n-2} = \frac{n-r}{n-1}$$

所以

$$\mathbb{P}(B_2) = \sum_{r=1}^{n} \mathbb{P}(A_r) \mathbb{P}(B_2 | A_r) = \sum_{r=1}^{n} \frac{1}{n} \frac{n-r}{n-1} = \frac{1}{2}$$

(2). 因为

$$\mathbb{P}(B_1 B_2 | A_r) = \frac{n-r}{n-1} \frac{n-r-1}{n-2}$$

这对 r=n,n-1 也成立,因为当 r=n,n-1 时,不可能抽到两个蓝色球,故概率为零,且通过上式计算的概率也为零,所以

$$\mathbb{P}(B_1 B_2) = \sum_{r=1}^n \mathbb{P}(A_r) \mathbb{P}(B_1 B_1 | A_r) = \sum_{r=1}^n \frac{1}{n} \cdot \frac{(n-r)(n-r-1)}{(n-1)(n-2)}$$

$$= \frac{1}{n(n-1)(n-2)} \sum_{r=1}^n (n-r)(n-r-1)$$

$$= \frac{1}{n(n-1)(n-2)} \cdot \left(\frac{(n-1)n(2n-1)}{6} - \frac{n(n-1)}{2}\right)$$

$$= \frac{2}{3}$$

习题 1.3

T1

解 设 X,Y 为事件 "甲在三局两胜中最后胜出"、"甲在五局三胜中最后胜出",设 A_i 为甲在第 i 场战胜乙,则 $\{A_i\}$ 是相互独立的,由甲胜率高于乙知,可设 $p=\mathbb{P}(A_i)\in \left(\frac{1}{2},1\right]$

Case 1. 三局两胜:

$$\mathbb{P}(X) = \mathbb{P}(A_1 A_2) + \mathbb{P}(A_1^c A_2 A_3) + \mathbb{P}(A_1 A_2^c A_3)$$
$$= p^2 + 2(1 - p)p^2$$

Case 2. 五局三胜:考虑总比赛场数,若为 3,则只能是甲连赢三局;若为 4,则乙在前三局中赢了一次,共三种情况;若为 5,则乙在前四局中赢了两次,共 $\binom{4}{2}=6$ 种情况,因此

$$\mathbb{P}(Y) = p^3 + 3(1-p)p^3 + 6(1-p)^2p^3$$

所以

$$\mathbb{P}(Y) - \mathbb{P}(X) = 3p^2(2p^3 - 5p^2 + 4p - 1)$$

设 $f(p) = 2p^3 - 5p^2 + 4p - 1$,则 f(0.5) = 0,f'(p) = 2(3p - 2)(p - 1),所以当 f'(p) 在 $\left(\frac{1}{2}, \frac{2}{3}\right)$ 上单调递增,在 $\left(\frac{2}{3}, 1\right)$ 上单调递减,且 f(1) = 0,这就说明 f(p) > 0, $p \in \left(\frac{1}{2}\right)$,故 $\mathbb{P}(Y) > \mathbb{P}(X)$, $p \in \left(\frac{1}{2}, 1\right)$,即五局三胜对水平高的一方(甲)更有利

T2

证明 设 X 为事件 "存在某个状态时游戏结束",所以 X^c 为事件 "游戏永远不结束",对 $\forall m \in \mathbb{N}$,我们考虑前 mN 次游戏,将它平均分为 m 个 N 次游戏,设事件 A_i 表示 "第 i 个 N 次游戏中全是 H 朝上",则

$$\mathbb{P}(A_i) = \left(\frac{1}{2}\right)^N$$

若 A_i 发生,则游戏一定会结束,所以 $A_i \subseteq X \Rightarrow X^c \subseteq A_i^c, \forall 1 \leq i \leq m$,这就说明 $X^c \subseteq \bigcap_{i=1}^m A_i^c$,所以

$$\mathbb{P}(X^c) \le \mathbb{P}\left(\bigcap_{i=1}^m A_i^c\right) = \prod_{i=1}^m (1 - \mathbb{P}(A_i)) = \left[1 - \left(\frac{1}{2}\right)^N\right]^m$$

因为 m 为任意正整数,所以令 $m \to \infty$,则 $\mathbb{P}(X^c) = 0$,故 $\mathbb{P}(X) = 1$,即存在某个状态时游戏结束的概率为 1

T3

解 设 ζ , δ 都只掷了 n 次硬币, 设事件 A 为"前 n 次掷硬币过程中, ζ 的正面数大于 δ ", 事件 B 为"前 n 次掷硬币过程中, δ 的正面数大于 ζ ", 事件 C 为"前 n 次掷硬币过程中, ζ 的正面数等于 δ ", 由对称性知, 可设 $\mathbb{P}(A) = \mathbb{P}(B) = p$, 则 $\mathbb{P}(C) = 1 - 2p$; 设事件 X 为" ζ 再掷一次后, ζ 的正面数大于 δ ", 则

$$\mathbb{P}(X) = \mathbb{P}(A) + \mathbb{P}(H)\mathbb{P}(B) = p + \frac{1}{2}(1 - 2p) = \frac{1}{2}$$

T4

证明 首先 $p_0 = 1$ 是平凡的, 当 $n \ge 1$ 时, 设 H 为事件"掷出正面朝上", A_n 为掷 n 次后正面朝上的次数为偶数,则 $\mathbb{P}(A_n) = p_n$,且有

$$\begin{split} p_n &= \mathbb{P}(A_n) = \mathbb{P}(A_{n-1} \cap H^c) + \mathbb{P}(A_{n-1}^c \cap H) \\ &= \mathbb{P}(A_{n-1})\mathbb{P}(H^c|A_{n-1}) + \mathbb{P}(A_{n-1}^c)\mathbb{P}(H|A_{n-1}^c) \\ &= (1-p) \cdot p_{n-1} + p(1-p_{n-1}) \end{split}$$

所以

$$p_n - \frac{1}{2} = (1 - 2p) \left(p_{n-1} - \frac{1}{2} \right)$$

且 $p_0 - \frac{1}{2} = \frac{1}{2}$, 故

$$p_n = \frac{1}{2} + \frac{1}{2}(1 - 2p)^n$$

习题 1.4

T1

证明 (1). 只需证明 $\lambda F(x) + (1-\lambda)G(x)$, F(x)G(x) 满足定理 1.4.3 中的三条性质

1. 单调不减: 因为 $0 \le \lambda \le 1$ 时, $\lambda, 1 - \lambda \ge 0$, 所以 $\forall x < y$, 有

$$\lambda F(x) \le \lambda F(y), (1 - \lambda)G(x) \le (1 - \lambda)G(y) \Rightarrow \lambda F(x) + (1 - \lambda)G(x) \le \lambda F(y) + (1 - \lambda)G(y)$$

故 $\lambda F + (1 - \lambda)G$ 单调不减

由 F,G 恒非负知: 若 F(y)>0, G(y)>0, 则 $F(y)G(y)\geq F(x)G(x)$; 若 F(y), G(y) 中至少有一者为零,不妨设为 F(y), 则 $0\leq F(x)\leq F(y)=0$,故 F(x)=0,因此 F(x)G(x)=F(y)G(y)=0,因此无论如何 F(x)G(x) 也都单点不减

2. 由于 $x \to \pm \infty$ 时, F(x), G(x) 的极限都存在, 所以

$$\lim_{x \to -\infty} \lambda F(x) + (1 - \lambda)G(x) = \lambda \lim_{x \to -\infty} F(x) + (1 - \lambda) \lim_{x \to -\infty} G(x) = 0 + 0 = 0$$

$$\lim_{x \to +\infty} \lambda F(x) + (1 - \lambda)G(x) = \lambda \lim_{x \to +\infty} F(x) + (1 - \lambda) \lim_{x \to +\infty} G(x) = \lambda + (1 - \lambda) = 1$$

$$\lim_{x \to -\infty} F(x)G(x) = \lim_{x \to -\infty} F(x) \lim_{x \to -\infty} G(x) = 0, \quad \lim_{x \to +\infty} F(x)G(x) = \lim_{x \to +\infty} F(x) \lim_{x \to +\infty} G(x) = 1$$

- 3. 右连续: 由 F,G 都右连续, 则 $\lambda F + (1 \lambda G), FG$ 也右连续
- (2). 我们证明一个更强的命题: 若 F(x) 是分布函数,则当 g 连续、在 [0,1] 上单调不减、g(0)=0,g(1)=1 时, g(F(x)) 也是一个分布函数
 - 1. 单调不减: 设 x < y, 则 $0 \le F(x) \le F(y) \le 1$, 故 $g(F(x)) \le g(F(y))$

2.

$$\lim_{x\to -\infty}g(F(x))\xrightarrow{F(x)=t}\lim_{t\to 0^+}g(t)=0,\quad \lim_{x\to +\infty}g(F(x))\xrightarrow{F(x)=t}\lim_{t\to 1^-}g(t)=1$$

3. 右连续: 由 g 连续知, $\forall \varepsilon > 0, \exists \delta > 0, \text{s.t.} \ \forall t \in (F(x_0) - \delta, F(x_0) + \delta)$ 时, $|g(F(t)) - g(F(x_0))| < \varepsilon$,由 F 右连续知,对这个 $\delta > 0, \exists \delta' > 0$,当 $x_0 < x < x_0 + \delta'$ 时,有 $|F(x) - F(x_0)| < \delta$,由此可知,g(F(x)) 在 x_0 处右连续,由 x_0 的任意性知,g(F(x)) 右连续

回到本题, 取
$$g_1(x) = 1 - (1-x)^n$$
, $g_2(x) = (x-1)e + e^{1-x}$ 即可