Feuille 1 : espaces vectoriels, applications linéaires, matrices

1 Le programme

Pour la semaine 37, préparer les exercices 1, 2, 3 et 4 (au moins).

Pour la semaine 38, préparer les exercices 5, 9, 12 et 13.

Pour la semaine 39, préparer l'exercice 15 et on passera à la feuille 2 à venir.

2 Les exercices

Exercice 1. On note $\mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel de toutes les fonctions de \mathbb{R} dans \mathbb{R} .

- a) Soit $\mathcal{C}(\mathbb{R}, \mathbb{R})$ l'espace des fonctions continues de \mathbb{R} dans \mathbb{R} . Montrer qu'il s'agit d'un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- b) Montrer que l'ensemble des fonctions $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ qui sont dérivables et telles que

$$\forall x \in \mathbb{R}, f'(x) + xf(x) = 0$$

est un sous-espace vectoriel de $\mathcal{C}(\mathbb{R}, \mathbb{R})$.

c) Est-ce que l'ensemble des fonctions $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ telles que

$$\forall x \in \mathbb{R}, \ 0 \le f(x) \le 1$$

est un sous-espace vectoriel de $\mathcal{C}(\mathbb{R},\mathbb{R})$?

Exercice 2. Déterminer si la famille \mathcal{B} est libre ou génératrice pour chacun des K-espaces vectoriels suivants.

a)
$$K = \mathbb{R}$$
, $E = \mathbb{R}^2$, $\mathcal{B} = (v_1, v_2)$ avec $v_1 = (3, 5)$ et $v_2 = (7, -3)$.

b)
$$K = \mathbb{R}$$
, $E = \mathbb{R}^3$, $\mathcal{B} = (v_1, v_2, v_3)$ avec $v_1 = (1, 2, 3)$, $v_2 = (4, 5, 6)$, $v_3 = (2, 1, 7)$.

c)
$$K = \mathbb{R}, E = \mathbb{R}^4, \mathcal{B} = (v_1, v_2, v_3, v_4)$$
 avec

$$v_1 = (1, 2, 3, 4), v_2 = (2, 3, 4, 5), v_3 = (3, 4, 5, 6), v_4 = (4, 5, 6, 7).$$

d) $K = \mathbb{R}, E = \mathbb{R}^4, \mathcal{B} = (v_1, v_2, v_3)$ avec

$$v_1 = (1, 2, 3, 4), v_2 = (2, 3, 4, 5), v_4 = (4, 5, 6, 7).$$

Exercice 3. Dans chacun des cas suivants, déterminer les coordonnées du vecteur v dans la base \mathcal{B} du \mathbb{R} -espace vectoriel E (on ne demande pas de vérifier que \mathcal{B} est une base).

- a) $E = \mathbb{R}^2$, $\mathcal{B} = ((1,2), (5,3))$, v = (1,-1).
- b) $E = \mathbb{R}_3[X], \mathcal{B} = (1, X, X^2, X^3), v = (1+X)^3$.
- c) $E = \mathbb{R}_2[X], \mathcal{B} = (1, X+1, (X+1)^2), v = X^2.$
- d) $E = \text{Vect}(1, \cos, \sin, \cos_2, \sin_2) \subset \mathcal{F}(\mathbb{R}, \mathbb{R})$ où \cos_2 et \sin_2 désignent les fonctions $x \mapsto \cos(2x)$ et $x \mapsto \sin(2x)$, $\mathcal{B} = (1, \cos, \sin, \cos_2, \sin_2)$, $v = \cos^2$.

Exercice 4. Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 + 3x_2 - x_3 + x_4 = 0\}.$$

Déterminer une base de F ainsi que sa dimension.

Exercice 5. Soit $r \in \mathbb{R}$. Pour quelles valeurs de r les vecteurs (r, 1, 1), (1, r, 1) et (1, 1, r) forment-ils une base de \mathbb{R}^3 ?

Exercice 6. Soit $n \ge 0$ un entier. Montrer que $(X^k(1-X)^{n-k})_{0 \le k \le n}$ est une famille libre de K[X].

Exercice 7. Soit E un K-espace vectoriel. Soient E_1 , E_2 et E_3 trois sous-espaces vectoriels de E.

a) Montrer que

$$E_1 \cap (E_2 + (E_1 \cap E_3)) = (E_1 \cap E_2) + (E_1 \cap E_3).$$

b) On suppose que $E_2 \subset E_3$ et que $E_1 \cap E_2 = E_1 \cap E_3$ et $E_1 + E_2 = E_1 + E_3$. Montrer alors que $E_2 = E_3$.

Exercice 8. Dans \mathbb{R}^3 , on considère les sous-espaces suivants

$$E = \text{Vect}(u_1, u_2, u_3), \ F = \text{Vect}(u_4, u_5)$$
 où $u_1 = (1, 2, 3), \ u_2 = (1, 0, -1), \ u_3 = (3, 2, 1), \ u_4 = (1, 1, 1), \ u_5 = (1, 2, 2).$

- a) Déterminer les dimensions de E et de F. En donner des bases.
- b) Déterminer les sous-espaces vectoriels E + F et $E \cap F$, en donner des bases.

Exercice 9. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par

$$f(x_1, x_2, x_3) = (x_1 + x_2, x_2 - x_3, x_1 + x_3).$$

- a) Montrer que f est une application linéaire.
- b) Déterminer une base du noyau de f ainsi qu'une base de l'image de f.

Exercice 10.

- a) Soient E et F deux espaces vectoriels de dimension finie, de même dimension d. Soit $f: E \to F$ une application linéaire telle que dim f(E) < d. L'application f est-elle injective, surjective, bijective ? Que dire si dim f(E) = d ?
- b) Soit E un K-espace vectoriel et soit f une application linéaire non nulle de E dans K. Calculer le rang de f ainsi que la dimension de son noyau.

Exercice 11. Soient E et F deux espaces vectoriels de même dimension finie et soit $f: E \to F$ une application linéaire bijective. Montrer que la réciproque $f^{-1}: F \to E$ est une application linéaire.

Exercice 12.

- a) Déterminer, avec le moins de calculs possible, le rang de la matrice réelle $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{pmatrix}$.
- b) Déterminer une base du noyau de A.

Exercice 13. Dans chacun des cas suivants, montrer que \mathcal{B} est une base de E, écrire la matrice de passage P de la base canonique à la base \mathcal{B} et donner les coordonnées du vecteur u dans la base \mathcal{B} .

a)
$$E = \mathbb{R}^2$$
, $\mathcal{B} = (u_1, u_2)$, $u_1 = (4, 1)$, $u_2 = (3, 1)$, $u = (1, 1)$.

b)
$$E = \mathbb{R}^3$$
, $\mathcal{B} = (u_1, u_2, u_3)$, $u_1 = (5, 2, 1)$, $u_2 = (4, 2, 1)$, $u_3 = (1, 1, 1)$, $u = (1, -1, 1)$.

Exercice 14. Dans chacun des cas suivants, on considère une matrice $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer ker A et, si ker $A = \{0\}$, déterminer A^{-1} .

a)
$$n = 2$$
, $A = \begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix}$, puis $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

b)
$$n = 3$$
, $A = \begin{pmatrix} [r]1 & 1 & 1 \\ -2 & -1 & -2 \\ 2 & 3 & -1 \end{pmatrix}$, puis $A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 1 & -2 \\ 2 & 3 & -5 \end{pmatrix}$.

Exercice 15.

a) Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x_1, x_2) = (x_1 + x_2, 2x_2, 3x_1 - 2x_2).$$

Décrire le noyau et l'image de f. Quelles sont leurs dimensions ?

b) Même exercice pour $g: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$g(x_1, x_2, x_3) = (x_1 - 3x_2, 2x_2 + x_3).$$

- c) Donner les matrices de f, g, $g \circ f$ et $f \circ g$ relativement aux bases canoniques \mathcal{B}_2 et \mathcal{B}_3 de \mathbb{R}^2 et \mathbb{R}^3 .
- d) On considère les bases $\mathcal{B}_2'=((1,2),(1,-1))$ et $\mathcal{B}_3'=((1,1,0),(-1,0,1),(1,1,2)).$
- e) Écrire les matrices de passages de \mathcal{B}_2 à \mathcal{B}_2' puis de \mathcal{B}_3 à \mathcal{B}_3' .
- f) Donner les matrices des applications linéaire $f, g, g \circ f, f \circ g$ relativement aux bases \mathcal{B}'_2 et \mathcal{B}'_3 .

Exercice 16.

- a) Déterminer le rang de la matrice réelle $A=\begin{pmatrix}1&-3&1&0\\3&0&-2&1\\9&0&-6&3\\18&9&-17&7\end{pmatrix}$ ainsi qu'une base de son noyau.
- b) Donner une base de l'image de A.
- c) Montrer que Im A est un sous-espace de \mathbb{R}^4 stable par u_A . Déterminer la restriction de u_A à Im A et en déduire que ker $A \cap \operatorname{Im} A = 0$.
- d) Donner une matrice $P \in GL_4(\mathbb{R})$ telle que

$$P^{-1}AP = \begin{pmatrix} I_2 & 0_2 \\ 0_2 & 0_2 \end{pmatrix}.$$

Exercice 17. Soit $\mathbb{R}_n[X]$ l'espace des polynômes à coefficients réels et de degré inférieur ou égal à n. On note u l'application de $\mathbb{R}_n[X]$ dans lui-même définie par u(P(X)) = P(X+1).

- a) Montrer que u est une application linéaire et déterminer sa matrice dans la base $(1, X, \dots, X^n)$.
- b) En déduire que la matrice

$$\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & \binom{2}{1} & \cdots & \binom{n-1}{1} & \binom{n}{1} \\
0 & 0 & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & 1 & \binom{n-1}{n-2} & \binom{n}{n-2} \\
0 & 0 & 0 & \ddots & 1 & \binom{n}{n-1} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

est inversible et déterminer son inverse.