An Introduction to Economics

Daniel Barbezat and Tyler Porter

Amherst College

September 28, 2021

Consumer Theory

- Theory of consumer behavior at the individual level
- What can the agent purchase?
- What does the agent want to purchase?
- What do their choices reveal?

Motivating Example

- You enter a supermarket looking to make several purchases for the upcoming weeks. You've been to this store many times, and have a pretty good idea of what they have in stock.
- What factors influence the bundle of goods that you leave the supermarket with?
- What do these purchases reveal about your preferences?

Budget Sets

• What can the consumer purchase?

• What determines this?

Budget Sets (2)

• Not related to the consumer's preferences

• Determined only by their prices and wealth

Budget Set

Definition

An agent's **budget set** consists of all of those bundles that the agent can purchase.

Budget Set: Example

- You go to the store to buy grapes and almonds.
- You've allocated \$15 to make these purchases.
- Grapes cost \$3 per pound
- Almonds cost \$5 per pound
- What combinations of grapes and almonds are you able to purchase with \$15?

Budget Set: Expression

- You have unit prices $p_g = 3$ for grapes and $p_a = 5$ for almonds.
- You have wealth of 15.
- Mathematically, the budget set are those combinations of grapes (x_g) and almonds (x_b) such that:

$$p_g x_g + p_a x_a \le w$$

- and with $x_g \ge 0$ and $x_a \ge 0$
- What does this look like graphically?

Budget Set: Example (2)

Figure 1: Your budget set

Example: Changing Wealth

- Suppose now that you've committed to spending \$30 on almonds and grapes.
- How does this affect your budget set?

Example: Changing Wealth (2)

Figure 2: Your new budget set (blue)

Example: Changing Prices

- Suppose that you still want to allocate \$15 to grapes and almonds.
- Suppose now that the price of almonds rises to \$10 per pound.
- How does this affect your budget set?

Example: Changing Prices (2)

Figure 3: Your new budget set (blue)

Preferences

- We saw: What choices can agents make?
- Question: What choice will an agent make from among them?
- Answer: What are their preferences?

Preferences (2)

Definition

An agent's preferences describe how they rank different bundles of goods.

- Does the agent prefer 2 pounds of grapes and 2 pounds of almonds to 3 pounds of grapes and 1 pound of almonds?
- What should your preferences satisfy?

Preferences (3)

Preferences often satisfy the following properties:

- Monotonicity: More is better
- Transitivity: If I prefer bundle A to bundle B, and bundle B to bundle C, then I should prefer bundle A to bundle C.
- Completeness: I can compare any two bundles and say which one I prefer.

Utility

 When preferences are well-behaved, we can represent them using a function!

Definition

An agent's **utility function** indicates how the agent values a bundle of goods.

• When the *utility* of bundle A is higher than the *utility* of bundle B, the agent *prefers* bundle A to bundle B.

Marginal Utility

• When we can represent a person's preferences using a utility function, we can reason about how they value an additional unit of a good.

Definition

The marginal utility is the additional benefit that the agent obtains from receiving one additional unit of a good or service.

- How much do you value an additional pound of grapes?
- Does it depend on how many grapes you already have?
- Does it depend on how many almonds you already have?

Diminishing Marginal Utility

- We typically assume that marginal utility is diminishing in a good or service.
- The more grapes that you have, the less you will value an additional pound of grapes.
- Marginal utility may decrease slowly, or very quickly.

Indifference Curves

- An agent is indifferent between two bundles if they rank them equally (they don't strictly prefer one over the other)
- With a utility function, the bundles that you're indifferent between all give you the same utility!
- What are the bundles that give you the same level of utility? Can we visualize them?

Indifference Curves: Example

Figure 4: Indifference Curves

Indifference Curves: Properties

- Monotonicity: More is better (bundles more "northeast" are better)
- Diminishing Marginal Utility: Indifference Curves are bowed inward
- There are an infinite number of them, only 3 of them are shown in the last figure.

Marginal Rate of Substitution

Figure 5: Slope at the point (8,8): The red tangent line

Marginal Rate of Substitution (2)

- At the point (8,8), what is the slope of the indifference curve?
- Question: If we get ΔX pounds grapes with ΔX very small , how many pounds of almonds ΔY must we give up to have the same utility?
- We need to use the marginal utility at this point!
- Answer:

$$MU_X \cdot \Delta X = -(MU_Y \cdot \Delta Y)$$

- Our value of getting ΔX grapes is $MU_X \cdot \Delta X$
- In order to get the same utility, we need to give up an amount of almonds ΔY so that this equation holds.

Marginal Rate of Substitution

Definition

The marginal rate of substitution (MRS) at a point (X, Y) describes the rate at which you would trade good X for good Y in order to have the same utility.

- Remember, your marginal utilities depend on the bundle!
- The marginal rate of substitution is equal to the ratio of marginal utilities of the two goods at the point (X, Y).
- $MRS = \frac{MU_X}{MU_Y}$
- Using the equation from the previous page:

$$\frac{\Delta Y}{\Delta X} = -\frac{MU_X}{MU_Y}$$

Marginal Rate of Substitution (2)

The last equation was:

$$\frac{\Delta Y}{\Delta X} = -\frac{MU_X}{MU_Y}$$

- MRS = -(slope of indifference curve)
- Notice that indifference curves have a decreasing slope as we increase X.
- The marginal rate of substitution is decreasing as we receive more of good X.
- Interpretation: With higher X, we're willing to give up more and more X for the same amount of Y.

Consumer Problem: Ingredients

- What can the agent choose? Depends on:
 - Prices
 - Wealth
- What does the agent want? Depends on:
 - Preferences and utility
- What does the agent choose?
 - Bundles on the highest indifference curve

Consumer Problem: Example

- Suppose that you've allocated \$60 to purchase ice cream and coffee.
- Ice cream costs \$4 per pint
- Coffee costs \$6 per can
- What does your budget constraint look like?

Consumer Problem: Example (2)

Consumer Problem: Solution

- Choice: Blue curve meets budget set
- Principle: Spend all of your money (Walras' Law)
- At this point: Budget set is tangent to the indifference curve
- Slope of the indifference curve is equal to the slope of the budget set at this point!
- So:

$$(MRS) := \frac{MU_x}{MU_y} = \frac{P_x}{P_y}$$

Why it Works: Bang-Per-Buck

Previous equation can be rearranged to:

$$\frac{MU_x}{P_x} = \frac{MU_y}{P_y}$$

• Marginal utility per dollar (bang-per-buck) is equal across goods!

Non-solutions

Let's suppose that:

$$\frac{MU_x}{P_x} > \frac{MU_y}{P_y}$$

- Your marginal utility per dollar of good x is higher than good y
- Then you should purchase more of good x and less of good y^{-1}
- Recall that marginal utility is decreasing, so:

$$\frac{MU_x}{P_x}\downarrow$$
 , $\frac{MU_y}{P_y}\uparrow$

¹It really helps to think about it when prices are equal

Consumer Problem: Example (3)

Figure 6: How does bang-per-buck compare at the red and blue points?

Consumer Problem: Example (4)

- At the red point: Consuming a lot of ice cream, very little coffee
 - Marginal utlity of ice cream diminishes as we have more of it
 - Bang-per-buck of ice cream is lower than that of coffee
 - Marginal rate of substitution is greater than price ratio
- At the blue point: Consuming a lot of coffee, very little ice cream
 - Opposite of the red point
 - Bang-per-buck of ice cream is higher than that of coffee
 - Marginal rate of substitution is lower than price ratio

Example: Perfect Substitutes

- Two goods are perfect substitutes when they serve the exact same role for you
- Marginal utility of each doesn't depend on your bundle!
- Utility function is u(X, Y) = aX + bY
- Utility function is linear ⇒ indifference curves are straight lines
- Leads to a very particular solution to consumer problem
- Bang-per-buck principle doesn't apply

Example: Perfect Substitutes (2)

See whiteboard!

Example: Perfect Complements

- Two goods are perfect complements if they only provide benefits when used together
- Utility function takes the form of a minimum:

$$u(X, Y) = min\{aX, bY\}$$

- If aX > bY, getting more of good X doesn't improve your utility
- What do your indifference curves look like?

Example: Perfect Complements (2)

See whiteboard!