Prova scritta di Calcolo Scientifico

Udine, 18 giugno 2019

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, e_{\text{max}}, e_{\text{min}})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, e_{\max}, e_{\min} in modo che $e_{\max} + e_{\min} = 10$, la precisione di macchina $u \sin 1/16$ e real min.
 - Siano dati $x=(1.\overline{0111})_2$ e $y=(10.\overline{0111})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(+)\tilde{y}\in\mathcal{F}$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Determina l'esponente intero e tale che $\tilde{z} \cdot 2^e = realmin$. Qual è il risultato di $fl(\tilde{z} \cdot 2^e)$ con e = -2? Giustifica la risposta.
- 2. Si vuole calcolare la funzione y = f(x).
 - Sia f(x) = g(h(x)), con g, h funzioni reali. Verifica che il numero di f è il prodotto del condizionamento della funzione g calcolato in h(x) e del condizionamento di h calcolato in x. Studia il condizionamento della funzione $f(x) = \sqrt{\frac{x^2 - 1}{x + 2}}$ con x che varia nel campo di esistenza di f.
 - Sia $p(x) = \sum_{k=0}^{n} x^k$, con n=3 e $x \neq 1$, x numero di macchina. Per calcolare p(x) si possono usare i seguenti

(a)
$$p(x) = (1+x)(1+x^2)$$

(b) $p(x) = \frac{x^4-1}{x-1}$

(b)
$$p(x) = \frac{x^4 - 1}{x - 1}$$

Confronta l'errore dei due algoritmi.

- Scrivi la pseudocodifica dell'algoritmo di Horner per $p(x) = \sum_{k=0}^{n} x^k$, con n intero qualsiasi. Analizza la complessità computazionale e l'errore algoritmico.
- 3. Sia $f(x) = -x^3 + 3x^2 4$.
 - Disegna il grafico di f. Determina le radici α, β , con $\alpha < \beta$.
 - Studia la convergenza del metodo di Newton ad α e β .
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -2$
 - (b) $x_0 = -0.5$
 - (c) $x_0 = 0$
 - (d) $x_0 = 1$
 - (e) $x_0 = 3$
 - (f) $x_0 = 0.5$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le

- Sia $g(x) = x \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g, e considera il metodo iterativo $x_{k+1} = g(x_k), k = 1$
- Determina m in modo che il metodo sia localmente convergente ad α con fattore asintotico di convergenza pari a $\frac{1}{4}$. La successione ottenuta con $x_0 = -0.5$ è convergente? Giustifica la risposta.
- Determina m in modo che il metodo sia localmente convergente ad α con ordine di convergenza quadratico. La successione ottenuta con $x_0 = -0.5$ è convergente? Giustifica la risposta.
- Sia m=6. Studia la convergenza locale a β del metodo. La successione ottenuta con $x_0=1$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 1 - \alpha & 2 & \alpha + 2 \\ 2 & 1 & -2 \\ \alpha + 2 & -2 & 4 \end{array} \right).$$

- ullet Calcola la fattorizzazione LU di A. Per quale scelta del parametri lpha esiste tale fattorizzazione?
- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Per quale scelta del parametri α il sistema Ax = b ha unica soluzione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = -1/2$ Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Sia $\alpha = 4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- 5. Sia $f(x) = \log_2(1+x^2)$. Dati i punti $P_0 = (-1, f(-1)), P_1 = (0, f(0)), P_2 = (1, f(1))$.
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x) p(x) e determina una limitazione di $\max_{x \in [-1,1]} |f(x) p(x)|$.
 - Determina il polinomio \tilde{p} che interpolai tre punti e che $\tilde{p}'(0) = f'(0)$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P_0, P_1, P_2 nel senso dei minimi quadrati.
- 6. \star Si vogliono stimare i parametri r, I_0 della funzione $I(t) = e^{rt} I_0, t \geq 0$ che descrive la crescita del numero degli infetti nello sviluppo di un'epidemia nella fase iniziale. Siano I_k , il numero degli infetti rilevati al tempo $t_k > 0, k =$ $1,2,\ldots,N$. Ponendo $I_0=e^\ell$, scrivi il sistema sovradeterminato da risolvere per determinare r,ℓ . (Suggerimento: scrivi $I(t) = e^{f(t)}.$