(A-6-2b) MATH 239, Winter 2021) Let G be connect a graph such that for every distinct vertices $x, y, z \in V(G)$, at least one of the edges xy, yz, xz is present. Then there is a path in G that contains all vertices of G.

Solution: Assume G is a connected graph and for every three vertices $a,b,c\in V(G)$, at least one of $ab,bc,ac\in E(G)$. Assume that $W=(v_1,\ldots,v_k)$ is the path of maximal length for some $k\leq n$, where n=|V(G)|. We prove that k=n. If W denotes the longest path, then $\deg(v_1)=\deg(v_k)=1$. Let $w\in V(G)\setminus V(W)$, then $wv_1,wv_k\not\in E(G)$ however this would imply that the triple $v_1,v_k,w\in V(G)$ form no edge with each other, a violation of a property we assumed G to have. Hence $v_kw\in E(G)$, and $W=(v_1,\ldots,v_k,w)$ is the longest path. We can continue with induction for the rest of $w\in V(G)\setminus V(W)$ to show that the longest path is $W'=(v_1,\ldots,v_n)$.