

Exercice 1

Une fonction $f: I \to \mathbb{R}$ est dite localement intégrable sur I si f est intégrable sur tout segment inclus dans I.

Soit $f:[a,b] \to \mathbb{R}$ une fonction localement intégrable sur [a,b] et bornée sur [a,b]. Alors f est intégrable sur [*a*, *b*]

Exercice 2

1) Soient f et g deux fonctions intégrables, montrer que f+g est intégrable et que

$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
2) Soient f une fonction intégrable et $\lambda \in \mathbb{R}$, montrer que λf est intégrable et que

$$\int_{a}^{b} \lambda f(x) \, dx = \lambda \int_{a}^{b} f(x) \, dx$$

Exercice 3

Soit f une fonction continue positive telle que $\int_a^b f(x) dx = 0$, montrer que f(x) = 0, $\forall x \in [a, b]$.

Exercice 4

Soient f et g deux fonctions intégrables, on pose $f^+ = max(f, 0)$ et $f^- = max(-f, 0)$.

- 1) Ecrire f^+ et f^- en fonction de f.
- 2) Calculer f et |f| en foncton de f^+ et f^- .
- 3) Montrer que |f| est intégrable et que

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

- 4) a) On suppose que f et g deux fonctions positives, montrer que fg est intégrable.
- b) On suppose que f et g deux fonctions de signes quelconques, montrer que f g est intégrable.

Exercice 5

Soit la fonction f définie sur [a, b] par :

$$\begin{cases} f(x) = 0 & si \ x \in \mathbb{Q} \\ f(x) = 1 & si \ x \notin \mathbb{Q} \end{cases}$$

f est-elle intégrable ?

Exercice 6

On admet que la fonction $f: x \to \frac{1}{e^x + e^{-x}}$ est décroissante sur $[0, +\infty[$: Pour tout entier naturel n; on pose

$$I_n = \int_n^{n+1} f(x) \, dx$$

- 1) Prouver que pour entier naturel $n, f(n+1) \le l_n \le f(n)$.
- 2) En déduire que la suite (I_n) est convergente.

Exercice 7

Calculer la limite de $\int_a^{3a} \frac{\cos(x)}{x} dx$ lorsque a tend vers 0.

Exercice 8

Calculer la limite de $\int_a^{a^2} \frac{1}{\ln(x)} dx$ lorsque a tend vers 1.

Exercice 9

Soit $f: X \to Y$ une fonction bornée.

1) Montrer que f est intégrable si et seulement si $(\forall n \in \mathbb{N}^*)$, $\exists \psi_n, \phi_n \in \zeta([a, b], \mathbb{R})$ telle que :

$$\psi_n \ge f \ge \phi_n \text{ et } \int_a^b (\psi_n - \phi_n)(x) dx < \frac{1}{n}$$

- Montrer que ∫_a^b f(x)dx = lim_{n→+∞} ∫_a^b ψ_n(x)dx = lim_{n→+∞} ∫_a^b φ_n(x)dx.
 Montrer que la fonction définie sur ℝ par g(x) = x est intégrables sur tout intervalle fermé borné de ℝ puis calculer l'intégrale $\int_a^b g(x) dx$.

Exercice 10

- 1) Soit $n \in \mathbb{N}$, montrer par récurrence que : $1^3 + 2^3 + 3^3 \dots + n^3 = \frac{n^2(n+1)^2}{4}$.
- 2) En déduire que $\int_0^1 x^3 dx$.

.Exercice 11

Calculer la limite des suites de terme général suivant :

$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}.$$
 2) $u_n = \frac{1}{n} \sum_{k=1}^n \tan\left(\frac{k}{n}\right)$ 3) $u_n = \prod_{k=1}^n \left(1 + \frac{k}{n}\right)^{\frac{1}{n}}$

Exercice 12

Soient f une fonction bornée et intégrable sur [a,b] et $c \in [a,b]$. On pose $F(x) = \int_{c}^{x} f(t) dt$, pour tout $x \in [a, b].$

1) Montrer que si f admet une limite à droite en $x_0 \in [a, b]$ alors F est dérivable à droite en x_0 et

$$F'_d(x_0) = \lim_{x \to (x_0)^+} f(x).$$

2) Montrer que si f admet une limite à gauche en $x_0 \in [a, b]$ alors F est dérivable à gauche en x_0 et

$$F_g'(x_0) = \lim_{x \to (x_0)^-} f(x).$$

2

3) Que peut-on conclure si f est contrue en x_0 .