MAT347 Lecture Notes

Arky!! :3c

'25 Fall & '26 Winter Semester

Contents

1 Day 1: Rubik's Cube (Sept. 3, 2025)

2

§1 Day 1: Rubik's Cube (Sept. 3, 2025)

The first semester of this class will be taught by Dror Bar-Natan instead of Joe Repka. Since this was a last minute change, the Quercus, tutorials, textbook, homework policy, etc. are all unknown for now (until the rest of the week probably).

This will be today's handout. Let $G = \langle g_1, \ldots, g_{\alpha} \rangle$, i.e., the group generated by g_1, \ldots, g_{α} , be a subgroup of S_n , with n = O(100). To understand G, let us start by computing |G|. insert long digression about Rubik's cubes that can be read elsewhere.

Definition 1.1. A group is a set G along with a binary multiplication $m: G \times G \to G$ usually written as $(g_1, g_2) \mapsto g_1 \cdot g_2 = m(g_1, g_2)$ such that

- (i) m is associative, i.e., for all $g_1, g_2, g_3 \in G$, we have that $(g_1g_2)g_3 = g_1(g_2g_3)$,
- (ii) m has an identity, i.e., there exists some $e \in G$ such that $g \cdot e = e \cdot g = g$ for all $g \in G$,
- (iii) m has an inverse, i.e., for all $g \in G$, there exists some $h \in G$ such that $g \cdot h = e = h \cdot g$,

We present a few examples of groups for intuition.

- (a) $(\mathbb{Z}, m = +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, (F, +) are naturally all groups. We also have that $(2\mathbb{Z}, +)$ is a group, even though it is not a field, because it does not admit inverses.
- (b) $(\mathbb{Q} \setminus \{0\}, \times)$ has identity given by 1 and naturally admits inverses because all reciprocals are contained within $\mathbb{Q} \setminus \{0\}$ itself. We commonly write the rationals without zero as \mathbb{Q}^{\times} .
- (c) If $n \in \mathbb{Z}_{\geq 0}$, then let $S_n := \{\sigma : \underline{n} \to \underline{n} \mid \sigma \text{ is bijective}\}$, where we define $\underline{n} = \{1, \ldots, n\}$. Let the group operation on S_n be given by composition. Here, Dror goes into a big digression on how composition should be written, and he suggests the following,²

$$\sigma \cdot \mu = \mu \circ \sigma = \sigma /\!\!/ \mu.$$

Indeed, S_n is a group, where its identity element e is given by the identity function on \underline{n} . We have that $|S_n| = n!$.

As a substantive example, consider $S_2 = \{[1, 2], [2, 1]\}$, where [1, 2] represents the identity function and [2, 1] represents the function mapping 1 to 2 and 2 to 1. Then we obtain the following possible compositions,

$$[1,2][1,2] = [1,2],$$

$$[1,2][2,1] = [2,1],$$

$$[2,1][1,2] = [2,1],$$

$$[2,1][2,1] = [1,2].$$

As for S_3 , we have that S_3 contains 6 functions, comprised of all the possible permutations possible on $\{1, 2, 3\}$. One such composition is given as follows,

$$[1,3,2][2,1,3] = [2,3,1],$$
 $[2,1,3][1,3,2] = [3,1,2],$

¹ angry yapping incoming i am so used to seeing [n] when i saw that on the board i was like, watefak!!! ² also, plus one angry footnote for using $/\!\!/$ as a composition symbol

which confirms that S_3 is indeed not abelian (i.e., non-commutative).

In the opposite direction, S_1 consists of an identity function only; clearly, $|S_1| = 1! = 1$. S_0 is the set of all permutations on 0, which is clearly the empty set, meaning the "empty function" on the empty set is the only function in S_0 ; similarly, $|S_0| = 0! = 1$.

- (d) There are 24 rotational symmetries of a cube.
- (e) The orthogonal transformations $o(3) = \{A \in M_{3\times 3}(\mathbb{R}) \mid A \cdot A^{\top} = I\}$ form a group.

Theorem 1.2. The identity element of a group is unique. If G is a group and e, e' are both identity elements, then for all $g \in G$, we have that eg = ge = g and e'g = ge' = g, and e = e'.

Proof. Observe that
$$e' = e' \cdot e = e$$
.

Theorem 1.3. The inverse of an element in a group is unique. Let G be a group and $g \in G$; if h, h' satisfy gh = hg = e = gh' = h'g, then h = h'.

Proof. Observe that
$$h' = h' \cdot e = h'(gh) = (h'g)h = eh = h$$
.

From here on, the inverse of g will be denoted g^{-1} , i.e., g^{-1} is the unique inverse of g.

Theorem 1.4. If ac = bc in a group then a = b.

Proof. Given that
$$ac = bc$$
, we have $acc^{-1} = bcc^{-1}$, implying $a = b$.

Theorem 1.5. $(ab)^{-1} = a^{-1}b^{-1}$.

Proof. Observe that
$$(ab)(b^{-1}a^{-1}) = abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$$
.

Definition 1.6. A subset $H \subset G$ of a group G is called a subgroup if H is closed under multiplication, $e \in H$, and admits inverses (i.e., H is a group itself with the multiplication operation from G). We write H < G.

As an example, $(2\mathbb{Z}, +) < (\mathbb{Z}, +) < (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$. The Rubik's cube group is also a subgroup of S_{54} .