

Course Overview

You are here...

Term	CDF	GCD	GCDAI	PGPDSAI
Term 1	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python
Term 2	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques
Term 3	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling
		Minor Project	Minor Project	Minor Project
Term 4		Machine Learning Foundation	Machine Learning Foundation	Machine Learning Foundation
Term 5		Machine Learning Intermediate	Machine Learning Intermediate	Machine Learning Intermediate
Term 6		Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)
		Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)
		Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)
		Capstone Project	Capstone Project	Capstone Project
Term 7		Bonus: Industrial ML (ML – 4 & 5)	Basics of AI, TensorFlow, and Keras	Basics of AI, TensorFlow, and Keras
Term 8			Deep Learning Foundation	Deep Learning Foundation
Term 9			NPL – I/CV – I	CV – I
Term 10			NLP – II/CV – II	NLP – I
			Capstone Project	Capstone Project
Term 11				CV – II
Term 12				NLP – II
				NLP – III + CV – III
				AutoVision & AutoNLP
				Building AI product

Term Context

• Decision Tree

- Random Forest
- Principal Component Analysis
- Naïve Bayes Classifier

Terminology Related to Trees

Decision Tree

X+Xz+····+Xnny

- It is a type of Supervised Learning algorithm which works for both Categorical as well as Continuous data.
- A Decision Tree is a graphical representation of all the possible solutions based on certain conditions.
- These solutions can be seen as IF-THEN rules.

(Decision Tree)

Decision Tree Example 1

• Buys-Computer Classification: Based on certain factors whether a person will buy computer or not.

Decision Tree Example 2

• Play Golf Classification: Whether a person will play or not based on environmental factors.

CART Algorithm Terminology Related to Trees Gini Index **Decision Tree Decision Tree Algorithms** Steps to estimate Gini Index CART – Regression Example **Attribute Selection Measures ID3** Algorithm **Issues with Decision Trees Tree Pruning Entropy & Information Gain Decision Tree Applications** Steps to Estimate Entropy & Information Gain

Decision Tree Algorithms

- ID3 Also known as Iterative Dichotomiser 3.
- CART Also known as Classification and Regression Trees.

Attribute Selection Measures

You can use –

- Information Gain
- Gini Index

ID3 Algorithm

• ID3 uses Information Gain and Entropy as it attribution selection measure.

CART Algorithm Terminology Related to Trees Gini Index **Decision Tree Decision Tree Algorithms** Steps to estimate Gini Index CART – Regression Example **Attribute Selection Measures ID3** Algorithm **Issues with Decision Trees Tree Pruning Entropy & Information Gain Decision Tree Applications** Steps to Estimate Entropy & Information Gain

Entropy & Information Gain

- Entropy is the measure of randomness or impurity in the data set.
- Entropy uses the concept of homogeneity.

Things to Remember:

- If samples are completely homogeneous, then the entropy of that attribute will be zero.
- If samples are equally divided, then entropy will be one.
- So out of the heterogeneous options we need to select the ones having maximum homogeneity.

Purity vs Impurity in Data

Impurity = 0

Homogeneous Data

Steps to estimate Entropy & Information Gain

$$E = \sum_{i=1}^{n} p_i \cdot \log_2 p_i$$

• Calculate the expected information needed to classify a tuple in data set (D) is given by –

Entropy(D) =
$$-\sum_{i=1}^{m} p_i \log_2(p_i)$$
 = $-$ | Pq. log. | Pq. l

• We will check how many tuples are yes and no in target variable in the below data set.

	XI	X ₂	X ₃	X+	5
	А	В	С	D	E
1	age	income	student	credit_rating	buys_computer
2	youth	high	no	fair	no
3	youth	high	no	excellent	no
4	middle-aged	high	no	fair	yes
5	senior	medium	no	fair	yes
6	senior	low	yes	fair	yes
7	senior	low	yes	excellent	no
8	middle-aged	low	yes	excellent	yes
9	youth	medium	no	fair	no
10	youth	low	yes	fair	yes
11	senior	medium	yes	fair	yes
12	youth	medium	yes	excellent	yes
13	middle-aged	medium	no	excellent	yes
14	middle-aged	high	yes	fair	yes
15	senior	medium	no	excellent	no

$$= -\frac{9}{14} \cdot \frac{109}{14} \cdot \frac{9}{14} - \frac{5}{14} \cdot \frac{109}{14} \cdot \frac{5}{14}$$

Entropy(D) = - $p(yes) \times Log_2(p(yes)) - p(no) \times Log_2(p(no))$

Entropy(D) =
$$-9/14 \times Log_2(9/14) - 5/14 \times Log_2(5/14)$$

$$Entropy(D) = 0.94$$

Steps to estimate Entropy & Information Gain Cont.

How much more information would we still need (after the partitioning) to arrive at an exact classification?

This amount is measured by Total

4 A.M. 2 3 5

$$Entropy_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Entropy(D_{j})$$

$$= -\left[\frac{1}{2} \cdot \log_{2} \frac{P_{1} + P_{2}}{2} \cdot \log_{2} \frac{P_{1}}{2} \right]$$

We will check how many tuples are yes and no in target variable along with that particular predictor variable.

					9
	A	В	С	D	E
1	age	income	student	credit_rating	buys_computer
2	youth	high	no	fair	no
3	youth	high	no	excellent	no
4	 middle-aged 	high	no	fair	yes
5	senior	medium	no	fair	yes
6	senior	low	yes	fair	yes
7	senior	low	yes	excellent	no
8	middle-aged	low	yes	excellent	yes
9	• youth	medium	no	fair	no
10	youth	low	yes	fair	yes
11	senior	medium	yes	fair	yes
12	youth	medium	yes	excellent	yes
13	 middle-aged 	medium	no	excellent	yes
14	◆ middle-aged	high	yes	fair	yes
15	senior	medium	no	excellent	no

$$= -\frac{2}{5} \cdot \frac{19}{25} \cdot \frac{1}{5} \cdot \frac{9}{5} \cdot \frac{3}{5} \cdot \frac{19}{25} = \frac{3}{5} \cdot \frac{19}{25}$$

$$Entropy_{age}(D) = \frac{|D_{youth}|}{|D|} \times Entropy(D_{youth}) + \frac{|D_{middle-aged}| \times Entropy(D_{middle-aged}) + |D_{senior}| \times Entropy(D_{senior})}{|D|}$$

$$Entropy_{age}(D) = \frac{5}{14} \times [-2/5 \log_2(2/5) - 3/5 \log_2(3/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{5}{14} \times [-3/5 \log_2(3/5) - 2/5 \log_2(2/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{5}{14} \times [-3/5 \log_2(3/5) - 2/5 \log_2(2/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{5}{14} \times [-3/5 \log_2(3/5) - 2/5 \log_2(2/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{5}{14} \times [-3/5 \log_2(3/5) - 2/5 \log_2(2/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{5}{14} \times [-3/5 \log_2(3/5) - 2/5 \log_2(3/5)] + \frac{4}{14} \times [-4/4 \log_2(4/4)] + \frac{4}{14} \times [-4/4 \log_2($$

$$Entropy_{age}(D) = 0.629$$

Steps to estimate Entropy & Information Gain Cont.

Final step is to calculate Information Gain –

Information $Gain(A) = Entropy(D) - Entropy_A(D)$

Information Gain(age) = 0.940 - 0.629 = 0.248

Example on Buys_Computer Data set

		X	χ_3	X	
	Α	В	С	D	E
1	age	income	student	credit_rating	buys_computer
2	youth	high	no	fair	no
3	youth	high	no	excellent	no
4	middle-aged	high	no	fair	yes
5	senior	medium	no	fair	yes
6	senior	low	yes	fair	yes
7	senior	low	yes	excellent	no
8	middle-aged	low	yes	excellent	yes
9	youth	medium	no	fair	no
10	youth	low	yes	fair	yes
11	senior	medium	yes	fair	yes
12	youth	medium	yes	excellent	yes
13	middle-aged	medium	no	excellent	yes
14	middle-aged	high	yes	fair	yes
15	senior	medium	no	excellent	no

Predictors are: age, income, student, credit_rating. Target variable is buys_computer.

Calculation Work

Tabular View

• The age attribute is giving maximum information gain. So the root node will be age.

\square	Α	В	С
1		Entropy	Information Gain
2	Data	0.94	0
3	age (wit)	0.629	= 0.248 (Mgk)
4	income	0.908	= 0.032
5	student	0.786	_ 0.154
6	credit_rating	0.89	0.05

- But how should I choose next attribute?
 - Repeat the step we've done so far on the subset of data.

Next View of Representation

Tabular view on subset data

Solution for youth data

12		Entropy	Information Gain
13	Data 岁	0.97	0
14	income 🗶	0.399	c 0.571
15	student 🗶 🚬	0	= 0.97 (M4x)
16	credit_rating 🔀	0.948	= 0.022

Solution for senior data

21		Entropy	Information Gain
22	Data 9	0.968 2	0
23	income 🗙	0.95	2 0.018
24	student 🗶 2	0.95	2 0.018
25	credit_rating 📞	0	= 0.968 (Max)

• **Note**: Entropy for middle-aged data is zero.

Decision Tree Complete View

Thanks for watching