Gate Delay & Clocks Module 4

Key Takeaways

Gate Delay

Characterizing Circuits

Timing Diagrams

Identifying Intermediate Values

Clocks

Calculating Periods and Frequencies

GATE DELAY

Longest Path

- A theoretical "upper bound" on the delay of a circuit.
- The greatest number of gates from any input to any output.

Shortest Path

- A theoretical "lower bound" on the delay of a circuit.
- The least number of gates from any input to any output.

Useful Notes

- Longest Paths and Shortest Paths are unrelated to specific input changes and unrelated to Timing Diagrams.
- You can rule out some inputs by noticing that another input will include more or less gates. (For example, the longest path will never include Input B, since a path including Input A will always be longer)

GENERAL CONCEPTS

- 1. Gates require time to "process" their inputs
- 2. Assumptions made in the context of this course:
 - All gates have identical delays
 - Wires do not have delays
- 3. Longest Path and Shortest Path are "properties" of a circuit as a whole

TIMING DIAGRAMS

Setting up the Timing Diagram

- 1. Identify all Inputs, Outputs, and Intermediate Variables
- 2. Identify the initial values of all of these variables

Identifying Synchronous Gate Delays

- 1. When a wire changes value, follow the wire to ALL gates
- 2. Any and all gates (no matter how long the wire is) you reach will introduce simultaneous gate delays

For Example: In the following circuit diagram, the delays from gates

2, 3, and 5 occur simultaneously after the input changes
from AB = 10 to AB = 11

DON'T FORGET

- Timing Diagrams describe the dynamic behavior of a circuit given a change of state. There is no single timing diagram for a circuit
- 2. We are assuming that all gates have identical delays and that wires do not have delays
- 3. Timing Diagrams are a separate concept from Longest/Shortest Paths
- 4. Logisim's wire coloring can be very helpful in identifying initial and intermediate values

CLOCKS

Describing the Clock Signal

- 1. Rising Edge
- 2. Falling Edge
- 3. Period
- 4. Takes a value of 0 or 1

1 2

Converting between Period and Frequency

- 1. Convert to base units (Hz and seconds)
- 2. Use the Period = 1 / Frequency relationship
- 3. Convert to the requested units

Pico (p)	10-12
Nano (n)	10 ⁻⁹
Micro (µ)	10 ⁻⁶
Milli (m)	10 ⁻³

Kilo (K)	10 ³
Mega (M)	10 ⁶
Giga (G)	10 ⁹
Tera (T)	10 ¹²

DON'T FORGET

- Converting to base units (Hz and seconds) first is often a fool proof method
- 2. Clocks can be used to synchronize circuits
- 3. Clocks are the solution to Gate Delay
- 4. Period = 1 / Frequency

Practice Problems Conversions

- 1. Convert the **Frequency of 200 Hz** to a **Period in nanoseconds**.
- 2. Convert the **Frequency of 490 kHz** to a **Period in picoseconds**.
- 3. Convert the **Frequency of 4.5 GHz** to a **Period in seconds**.
- 4. Convert the **Frequency of 0.1 MHz** to a **Period in microseconds**.
- 5. Convert the **Period of 500 nanoseconds** to a **Frequency in MHz**.
- 6. Convert the **Period of 4,500 microseconds** to a **Frequency in Hz**.
- 7. Convert the **Period of 24 seconds** to a **Frequency in GHz**.
- 8. Convert the **Period of 60,000 picoseconds** to a **Frequency in MHz**.

Practice Problems Timing Diagram

- 9. What is the **longest path** and **shortest path** in the following circuit?
- 10. Create a **Timing Diagram** for the following circuit's input change of **ABC = 110** to **ABC = 100**.

Practice Problems Answers

- 1. 5×10^6 **ns**
- 2. 2.04×10^6 ps
- 3. 2.22×10^{-10} **s**
- 4. 10 **μs**
- 5. 2 **MHz**
- 6. 222.22 **Hz**
- 7. 4.17×10^{-11} **GHz**
- 8. 16.67 **MHz**

Practice Problems Answers

9. Longest Path = **4 Gate Delays** Shortest Path = **2 Gate Delays**

Practice Problems Answers

10

		tial State	delay 1	delay 2	delay 3	Final State		
Α	0						0	
В	1						1	
	0						1	
С	0 -						0	
s	0					<u> </u>	0	
t	1						1 0	
u	0 —						1	
v	1						1	
w	1						1	
x	1						1	
^	0						0	
y	0						0	
z	0						0	
F	1						1	
	1						1	
G	0						0	