SISTEMA TESTE IEEE DE 57 BARRAS

Esse sistema possui um total de 17 transformadores e 63 linhas interligando todas as 57 barras, das quais 7 delas são barras de geração. Os dados para análise de curto-circuito foram adaptados de (CHRISTIE, 1993) e são mostrados no Adendo A.

Adendo A - Dados da Rede Teste IEEE de 57 barras

Os dados para estudo de curto-circuito são mostrados para o sistema teste IEEE de 57 barras. Os dados são divididos em dados das barras, das linhas, dos transformadores e dos geradores. Todos os valores por unidade (p.u.) estão referenciados nos valores base de 100 MVA e na tensão nominal em cada ponto do sistema.

A-1 Dados de Barra

Tabela 1: Dados das barras da rede teste IEEE de 57 barras.

#	Tipo	Bshunt (pu)	Vbase (kV)						
1	2	0,000	0,0						
2	1	0,000	0,0						
3	1	0,000	0,0						
4	0	0,000	0,0						
5	0	0,000	0,0						
6	1	0,000	0,0						
7	0	0,000	0,0						
8	1	0,000	0,0						
9	1	0,000	0,0						
10	0	0,000	0,0						
11	0	0,000	0,0						
	continua								

	continuação							
#	Tipo	Bshunt (pu)	Vbase (kV)					
12	1	0,000	0,0					
13	0	0,000	0,0					
14	0	0,000	0,0					
15	0	0,000	0,0					
16	0	0,000	0,0					
17	0	0,000	0,0					
18	0	0,100	0,0					
19	0	0,000	0,0					
20	0	0,000	0,0					
21	0	0,000	0,0					
22	0	0,000	0,0					
23	0	0,000	0,0					
24	0	0,000	0,0					
25	0	0,059	0,0					
26	0	0,000	0,0					
27	0	0,000	0,0					
28	0	0,000	0,0					
29	0	0,000	0,0					
30	0	0,000	0,0					
31	0	0,000	0,0					
32	0	0,000	0,0					
33	0	0,000	0,0					
34	0	0,000	0,0					
35	0	0,000	0,0					
36	0	0,000	0,0					
37	0	0,000	0,0					
38	0	0,000	0,0					
39	0	0,000	0,0					
40	0	0,000	0,0					
41	0	0,000	0,0					
42	0	0,000	0,0					
43	0	0,000	0,0					
44	0	0,000	0,0					
45	0	0,000	0,0					
46	0	0,000	0,0					
47	0	0,000	0,0					
48	0	0,000	0,0					
49	0	0,000	0,0					
50	0	0,000	0,0					
51	0	0,000	0,0					

continua

continuação						
#	Tipo	Bshunt (pu)	Vbase (kV)			
52	0	0,000	0,0			
53	0	0,063	0,0			
54	0	0,000	0,0			
55	0	0,000	0,0			
56	0	0,000	0,0			
57	0	0,000	0,0			
		Fim da Tabela				

Fonte: Do autor.

Descrição dos dados:

- #: número da barra;
- Tipo: tipo da barra, onde:
 - o 2: barra de oscilação ($V\theta$);
 - o 1: barra de tensão controlada (PV);
 - o 0: barra de carga (PQ).
- Bshunt: valor da susceptância shunt total em derivação na barra em p.u.;
- Vbase: valor da tensão base na barra em kV.

Observação:

 Os valores das tensões base 0 kV indicam que esses dados não foram encontrados ou não estavam disponíveis na base de dados utilizada.

A-2 Dados das Linhas

Tabela 2: Dados das linhas da rede teste IEEE de 57 barras.

De	Para	R1(pu)	X1(pu) Bshl (pu) R0 (pu)		X0 (pu)		
1	2	0,0083	0,0280	0,1290	0,02905	0,09800	
2	3	0,0298	0,0850	0,0818	0,10430	0,29750	
3	4	0,0112	0,0366	0,0380	0,03920	0,12810	
4	5	0,0625	0,1320	0,0258	0,21875	0,46200	
4	6	0,0430	0,1480	0,0348	0,15050	0,51800	
6	7	0,0200	0,1020	0,0276	0,07000	0,35700	
6	8	0,0339	0,1730	0,0470	0,11865	0,60550	
8	9	0,0099	0,0505	0,0548	0,03465	0,17675	
9	10	0,0369	0,1679	0,0440	0,12915	0,58765	
9	11	0,0258	0,0848	0,0218	0,09030	0,29680	
9	12	0,0648	0,2950	0,0772	0,22680	1,03250	
9	13	0,0481	0,1580	0,0406	0,16835	0,55300	
13	14	0,0132	0,0434	0,0110	0,04620	0,15190	
13	15	0,0269	0,0869	0,0230	0,09415	0,30415	
1	15	0,0178	0,0910	0,0988	0,06230	0,31850	
1	16	0,0454	0,2060	0,0546	0,15890	0,72100	
1	17	0,0238	0,1080	0,0286	0,08330	0,37800	
3	15	0,0162	0,0530	0,0544	0,05670	0,18550	
4	18	0,0000	0,5550	0,0000	0,00000	0,55500	
4	18	0,0000	0,4300	0,0000	0,00000	0,43000	
5	6	0,0302	0,0641	0,0124	0,10570	0,22435	
7	8	0,0139	0,0712	0,0194	0,04865	0,24920	
10	12	0,0277	0,1262	0,0328	0,09695	0,44170	
11	13	0,0223	0,0732	0,0188	0,07805	0,25620	
12	13	0,0178	0,0580	0,0604	0,06230	0,20300	
12	16	0,0180	0,0813	0,0216	0,06300	0,28455	
12	17	0,0397	0,1790	0,0476	0,13895	0,62650	
14	15	0,0171	0,0547	0,0148	0,05985	0,19145	
18	19	0,4610	0,6850	0,0000	1,61350	2,39750	
19	20	0,2830	0,4340	0,0000	0,99050	1,51900	
21	20	0,0000	0,7767	0,0000	0,00000	0,77670	
21	22	0,0736	0,1170	0,0000	0,25760	0,40950	
22	23	0,0099	0,0152	0,0000	0,03465	0,05320	
23	24	0,1660	0,2560	0,0084	0,58100	0,89600	
24	25	0,0000	1,1820	0,0000	0,00000	1,18200	

continua

continuação									
De	Para	R1(pu)	X1(pu)	Bshl (pu)	R0 (pu)	X0 (pu)			
24	25	0,0000	1,2300	0,0000	0,00000	1,23000			
24	26	0,0000	0,0473	0,0000	0,00000	0,04730			
26	27	0,1650	0,2540	0,0000	0,57750	0,88900			
27	28	0,0618	0,0954	0,0000	0,21630	0,33390			
28	29	0,0418	0,0587	0,0000	0,14630	0,20545			
7	29	0,0000	0,0648	0,000	0,00000	0,06480			
25	30	0,1350	0,2020	0,0000	0,47250	0,70700			
30	31	0,3260	0,4970	0,0000	1,14100	1,73950			
31	32	0,5070	0,7550	0,0000	1,77450	2,64250			
32	33	0,0392	0,0360	0,0000	0,13720	0,12600			
34	32	0,0000	0,9530	0,0000	0,00000	0,95300			
34	35	0,0520	0,0780	0,0032	0,18200	0,27300			
35	36	0,0430	0,0537	0,0016	0,15050	0,18795			
36	37	0,0290	0,0366	0,0000	0,10150	0,12810			
37	38	0,0651	0,1009	0,0020	0,22785	0,35315			
37	39	0,0239	0,0379	0,0000	0,08365	0,13265			
36	40	0,0300	0,0466	0,0000	0,10500	0,16310			
22	38	0,0192	0,0295	0,0000	0,06720	0,10325			
11	41	0,0000	0,7490	0,0000	0,00000	0,74900			
41	42	0,2070	0,3520	0,0000	0,72450	1,23200			
41	43	0,0000	0,4120	0,0000	0,00000	1,44200			
38	44	0,0289	0,0585	0,0020	0,10115	0,20475			
15	45	0,0000	0,1042	0,0000	0,00000	0,10420			
14	46	0,0000	0,0735	0,0000	0,00000	0,07350			
46	47	0,0230	0,0680	0,0032	0,08050	0,23800			
47	48	0,0182	0,0233	0,0000	0,06370	0,08155			
48	49	0,0834	0,1290	0,0048	0,29190	0,45150			
49	50	0,0801	0,1280	0,0000	0,28035	0,44800			
50	51	0,1386	0,2200	0,0000	0,48510	0,77000			
10	51	0,0000	0,0712	0,0000	0,00000	0,07120			
13	49	0,0000	0,1910	0,0000	0,00000	0,19100			
29	52	0,1442	0,1870	0,0000	0,50470	0,65450			
52	53	0,0762	0,0984	0,0000	0,26670	0,34440			
53	54	0,1878	0,2320	0,0000	0,65730	0,81200			
54	55	0,1732	0,2265	0,0000	0,60620	0,79275			
11	43	0,0000	0,1530	0,0000	0,00000	0,15300			
44	45	0,0624	0,1242	0,0040	0,21840	0,43470			
40	56	0,0000	1,1950	0,0000	0,00000	1,19500			
56	41	0,5530	0,5490	0,0000	1,93550	1,92150			
56	42	0,2125	0,3540	0,0000	0,74375	1,23900			

continua

continuação								
De	Para	R1(pu)	X1(pu)	Bshl (pu)	R0 (pu)	X0 (pu)		
39	57	0,0000	1,3550	0,0000	0,00000	1,35500		
57	56	0,1740	0,2600	0,0000	0,60900	0,91000		
38	49	0,1150	0,1770	0,0030	0,40250	0,61950		
38	48	0,0312	0,0482	0,0000	0,10920	0,16870		
9	55	0,0000	0,1205	0,0000	0,00000	0,12050		
		,	0,1205	,	<i>'</i>			

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde se inicia o trecho;
- Para: número da barra onde termina o trecho;
- R1: valor da resistência de sequência positiva da linha em p.u.;
- X1: valor da reatância indutiva de sequência positiva da linha em p.u.;
- Bshl: valor da susceptância shunt da linha em p.u.;
- R0: valor da resistência de sequência zero da linha em p.u.;
- X0: valor da reatância indutiva de sequência zero da linha em p.u..

Observação:

As linhas foram consideradas todas do tipo aérea, portanto $Z0 = Z1 \times 3.5$ (STEVENSON, 1986, p. 315).

A-3 Dados dos Geradores

Tabela 3: Dados dos geradores da rede teste IEEE de 57 barras.

#	Conexão	R1 (pu)	X1 (pu)	R2 (pu)	X2 (pu)	R0 (pu)	X0 (pu)	Xn (pu)
1	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
2	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
3	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
6	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
8	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
9	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000
12	2	0,0000	0,2000	0,0000	0,2000	0,0000	0,2000	0,0000

Fonte: Do autor.

Descrição dos dados:

- #: número da barra onde o gerador está conectado;
- Conexão: tipo do fechamento da conexão das 3 fases, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- R1: valor da resistência equivalente de sequência positiva do gerador em p.u.;
- X1: valor da reatância equivalente de sequência positiva em p.u. (reatância subtransitória);
- R2: valor da resistência equivalente de sequência negativa do gerador em p.u.;
- X2: valor da reatância equivalente de sequência negativa do gerador em p.u.;
- R0: valor da resistência equivalente de sequência zero do gerador em p.u.;
- X0: valor da reatância equivalente de sequência zero do gerador em p.u.;
- Xn: valor da reatância entre o neutro do gerador e a terra em p.u..

Observação:

• Os dados dos geradores foram baseados em (STEVENSON, 1986, p. 450).

A-4 Dados dos Transformadores

Tabela 4: Dados dos transformadores da rede teste IEEE de 57 barras.

De	Para	Conexão De	Conexão Para	Rt (pu)	Xt (pu)	Rm (pu)	Xm (pu)	Rn (pu)	Xn (pu)
4	18	2	2	0,0000	0,5550	0,0000	0,0000	0,0000	0,0000
4	18	2	2	0,0000	0,4300	0,0000	0,0000	0,0000	0,0000
21	20	2	2	0,0000	0,7767	0,0000	0,0000	0,0000	0,0000
24	25	2	2	0,0000	1,1820	0,0000	0,0000	0,0000	0,0000
24	25	2	2	0,0000	1,2300	0,0000	0,0000	0,0000	0,0000
24	26	2	2	0,0000	0,0473	0,0000	0,0000	0,0000	0,0000
7	29	2	2	0,0000	0,0648	0,0000	0,0000	0,0000	0,0000
34	32	2	2	0,0000	0,9530	0,0000	0,0000	0,0000	0,0000
11	41	2	2	0,0000	0,7490	0,0000	0,0000	0,0000	0,0000
15	45	2	2	0,0000	0,1042	0,0000	0,0000	0,0000	0,0000
14	46	2	2	0,0000	0,0735	0,0000	0,0000	0,0000	0,0000
10	51	2	2	0,0000	0,0712	0,0000	0,0000	0,0000	0,0000
13	49	2	2	0,0000	0,1910	0,0000	0,0000	0,0000	0,0000
11	43	2	2	0,0000	0,1530	0,0000	0,0000	0,0000	0,0000
40	56	2	2	0,0000	1,1950	0,0000	0,0000	0,0000	0,0000
39	57	2	2	0,0000	1,3550	0,0000	0,0000	0,0000	0,0000
9	55	2	2	0,0000	0,1205	0,0000	0,0000	0,0000	0,0000

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde está conectado um lado do transformador;
- Para: número da barra onde está conectado a outra terminação do transformador;
- Conexão De: tipo do fechamento entre as 3 fases no lado De, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- Conexão Para: tipo do fechamento entre as 3 fases no lado Para, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;

- o 3: conexão do tipo triângulo.
- Rt: valor da resistência equivalente do transformador em p.u.;
- Xt: valor da reatância equivalente do transformador em p.u.;
- Rm: valor da resistência entre o neutro do transformador e a terra no lado De em p.u.;
- Xm: valor da reatância entre o neutro do transformador e a terra no lado De em p.u.;
- Rn: valor da resistência entre o neutro do transformador e a terra no lado Para em p.u.;
- Xn: valor da reatância entre o neutro do transformador e a terra no lado Para em p.u..

REFERÊNCIAS¹

CHRISTIE, R. **Power Systems Test Case Archive**. Aug. 1993. Disponível em: http://www.ee.washington.edu/research/pstca/>. Acesso em: 20 janeiro 2017.

STEVENSON, W. D. **Elementos de análise de sistemas de potência.** 2. ed. São Paulo, SP: MCGraw-Hill, 1986. 458 p.

¹ Baseadas na norma NBR 6023, de 2002, da Associação Brasileira de Normas Técnicas (ABNT).