

Overview

Research Objectives

- Develop accurate predictive models for solar energy production
- Evaluate effectiveness of various ML approaches
- Identify key prediction factors
- Create scalable implementation

Key Innovations

Technical Innovations

Advanced Feature Engineering

- Novel temporal encodings
- Adaptive rolling statistics
- Weather pattern integration

Enhanced Architecture

- Hybrid ensemble learning
- Dynamic weight adjustment
- Specialized preprocessing

System Architecture

Core Components

- Data Pipeline
- Model Training System
- Ensemble Framework
- Monitoring System

Data Sources

- 1. Solar Energy Production (Calgary)
- 2020-2022 hourly data
- 7,520 records
- 2. Solar Power Generation
- Multiple installations
- 32,000+ entries
- 3. Renewable Energy Historical
- Global coverage
- **1**965-2022

Methodology

Model Development Framework

Hierarchical Modeling Approach:

Baseline Models

- Linear Regression (R² = 0.1726)
- Ridge Regression ($R^2 = 0.1726$)
- Lasso Regression (R² = -0.0007)

Advanced Models

- Random Forest (R² = 0.3071)
- Gradient Boosting (R² = 0.3031)
- LSTM Networks (R² = 0.2226)

Model Performance Results

Performance Analysis

Key Achievements:

- Ensemble R² Score: 0.6964
 - (153% improvement over baseline)
- RMSE: 0.5625
 - (31% reduction in error)
- Model Stability Index: 0.92
- Sub-second inference time: 78.3ms

Ensemble Results

Ensemble Model Performance

Stacked Ensemble Architecture:

- Dynamic weight adjustment
- Multi-model integration
- Adaptive retraining

Feature Analysis

Feature Importance & Impact

Key Feature Contributions:

Rolling Mean (24h): 62.51%

Rolling Std: 9.75%

• Hour Sin: 7.18%

Lag Features: 5.70%

Hour Cos: 4.62%

Impact on Model Performance:

- Temporal patterns dominate
- Weather features complement
- System state provides context

Error Analysis

Error Distribution & Analysis

Key Findings:

- Near-normal error distribution
- Consistent performance across folds
- Weather-dependent variation
- Improved stability in ensemble model

Future Work

Research Roadmap

Short-term (3-6 months)

- Attention mechanisms
- Transfer learning
- Feature engineering

Medium-term (6-12 months)

- Multi-task learning
- Uncertainty quantification
- Scalability enhancement

Long-term Vision

- Grid integration
- Real-time adaptation
- Multi-site deployment

Conclusions

Key Takeaways

Major Achievements:

- 153% performance improvement
- Production-ready system
- Robust error handling
- Scalable architecture

Research Impact:

- Novel feature engineering
- Enhanced ensemble method
- Practical implementation

