

09492261

Connecting via Winsock to STN

Welcome to STN International! Enter: QIX

LOGINID:SSSPTIA1649CXX

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?:2

* * * * * * * * * Welcome to STN International * * * * *

NEWS 1	Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 Dec 17	The CA Lexicon available in the CAPLUS and CA files
NEWS 3 Feb 06	Engineering Information Encompass files have new names
NEWS 4 Feb 16	TOXLINE no longer being updated
NEWS 5 Apr 23	Search Derwent WPINDEX by chemical structure
NEWS 6 Apr 23	PRE-1967 REFERENCES NOW SEARCHABLE IN CAPLUS AND CA
NEWS 7 May 07	DSANE Reload
NEWS 8 Jun 07	Published patent applications (AI) are now in USPATFULL
NEWS 9 JUL 07	New SDI alert frequency now available in Derwent's DNPI and IFCI
NEWS EXPRESS	August 18 CURRENT WINDOWS VERSION IS V6.0, CURRENT MACINTOSH VERSION IS V6.0 (ENG) AND V6.0 (FR) AND CURRENT DISCOVER FILE IS DATED 07 AUGUST 2001
NEWS HOURS	STN Operating Hours File Help Desk Availability
NEWS INTER	General Internet Information
NEWS LOGIN	Welcome Banner and News Items
NEWS PHONE	Direct Dial and Telecommunication Network Access to STN
NEWS WWW	CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * STN Columbus * * * * *

FILE 'HOME' ENTERED AT 14:52:34 ON 16 AUG 2001

=> file medline biosis embase caplus uspatfull

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.21	0.21

FILE 'MEDLINE' ENTERED AT 14:53:16 ON 16 AUG 2001

FILE 'BIOSIS' ENTERED AT 14:53:16 ON 16 AUG 2001
COPYRIGHT (C) 2001 BIOSIS(R)

FILE 'EMBASE' ENTERED AT 14:53:16 ON 16 AUG 2001

COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY. ALL RIGHTS RESERVED.

FILE 'CAPLUS' ENTERED AT 14:53:16 ON 16 AUG 2001.
USE IS SUBJECT TO THE TERMS OF YOUR SITE LICENSE AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY ACS

FILE 'USPBATFULL' ENTERED AT 14:53:16 ON 16 AUG 2001
CA INDEXING COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY ACS

= s KCNQ4 (s) potassium (s) channel (s) nucleo?

LI 8 KCNQ4 (S) POTASSIUM (S) CHANNEL (S) NUCLEO?

=: dup rem LI

PROCESSING COMPLETED FOR LI

LI 6 DUP REM LI 16 DUPLICATES REMOVED

=: d 1. total lkid w/dp

LI ANSWER 1 OF 5 MEDLINE DUPLICATE 1
ACCESSION NUMBER: 2001247527 MEDLINE
DOCUMENT NUMBER: 21167787 PubMed ID: 11136720
TITLE: An ERG channel inhibitor from the scorpion *Buthus eupeus*.
AUTHOR: Karolkova Y V; Kozlov S A; Lipkin A V; Pluzhnikov E A;
Hadley J K; Filippov A K; Brown D A; Angelis K; Strøbaek J;
Jespersen T; Olesen S P; Jensen B S; Grishin E V
CORPORATE SOURCE: Shemyakin and Ovchinnikov Institute of Bioorganic
Chemistry, Russian Academy of Sciences, Ul.
Miklukho-Maklaya, 16/10, 117997, GSP-7, Moscow, Russia..
july@iboch.ru
SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (2001 Mar 30) 276 (13
9368-76.
Journal code: HIV; 2985121R. ISSN: 0021-9258.
PUB. COUNTRY: United States
LANGUAGE: English
FILE SEGMENT: Priority Journals
OTHER SOURCE: GENBANK-AF076413
ENTRY MONTH: 03/01/01
ENTRY DATE: Entered STN: 20010810
Last Updated in STN: 2001.51
Entered Medline: 20010810

AB . . . (1996) FEBS Lett. 384, 277-280). Here we report the cloning,
expression, and selectivity of BeKm-1. A full-length cDNA of 365
nucleotides encoding the precursor of BeKm-1 was isolated using
the rapid amplification of cDNA ends polymerase chain reaction technique
from mRNA. . . amino acid residues. The mature toxin consists of 36
amino acid residues. BeKm-1 belongs to the family of scorpion venom
potassium channel blockers and represents a new subgroup
of these toxins. The recombinant BeKm-1 was produced as a Protein A
fusion

product. . . partly inhibited the native M-like current in NG108-15 at
100 nm. The effect of the recombinant BeKm-1 on different K(+)
channels was also studied. BeKm-1 inhibited hERG1 **channels**
with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1,
rSK2,
hIK, hBK, KCNQ1 KCNE1, KCNQ2/KCNQ3, **KCNQ4 channels**,
and minimal effect on rEIK1. Thus, BeKm-1 was shown to be a K(+)-
specific
blocker of hERG1 **potassium channels**.

LI ANSWER 2 OF 5 CAPLUS COPYRIGHT 2001 ACS
ACCESSION NUMBER: 2000:742115 CAPLUS

DOCUMENT NUMBER:
TITLE: Cloning of a novel potassium channel protein KCNQ gene and its therapeutic uses
INVENTOR(S): Petrukhin, Konstantin; Pashkov, I. Yu.; Lai, Wei;
Metzker, Michael L.
PATENT ASSIGNEE(S): Merck & Co., Inc., USA
SOURCE: PCT Int. Appl., 65 pp.
COUNTRY: UNKNOWN
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 20000061606	A1	20001019	WO 2000-US9867	20001019
W: CA, JP, US				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MR, NL, PT, SE				
PRIORITY APPLN. INFO.:			US 1999-129274	P 19991414
REFERENCE COUNT:	2			
REFERENCE(S):	(1) Kanazawa; NeuroReport 2000, VII(9), P2063 CAPLUS (2) Wang; Science 1998, V282, P1890 CAPLUS			
IT Primers (nucleic acid)				
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses DNA, for screening KCNQ4 gene mutation; cloning of novel potassium channel protein KCNQ5 gene and its therapeutic uses)				

L2 ANSWER 3 OF 1 CAPLUS CIPHERING 1.1 A/S
ACCESSION NUMBER: 1133145918 CAPLUS
DOCUMENT NUMBER: 1133145918
TITLE: Protein and DNA sequences of a novel potassium channel
INVENTOR(S): Jentsch, Thomas J.
PATENT ASSIGNEE(S): Neurosearch A/S, Den.
SOURCE: PCT Int. Appl., 65 pp.
COUNTRY: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000044786	A1	20000803	WO 2000-0K24	20000319
W: AE, AL, AM, AR, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CY, DE, DK, DM, EE, ES, FI, GB, GE, GH, GM, HK, HR, IC, IM, IS, IL, IN, IQ, IR, MD, MG, MR, MW, MX, ND, NZ, PL, PT, RU, SE, SI, SE, SG, SV, TR, TW, UK, UK, VL, VI, XK, FR, IT, IL, MA, NG, NL, NN, PT, RU, SE, SG, SV, TR, TW, UK, XK, BY, KG, MD, RU, TZ, TM				
RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, XK, AI, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MR, NL, PT, SE, SF, BJ, CI, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
PRIORITY APPLN. INFO.:			DK 1999-76	A 19990126
			DK 1999-693	A 19990519
REFERENCE COUNT:	7			
REFERENCE(S):	(1) Biervert, C; Science 1998, V279, P403 CAPLUS (2) Hong-Sheng, W; Science 1998, V282, P1890 (3) Kubisch, C; Cell 1999, V96(3), P437 CAPLUS (6) Univ Utah Res Found; WO 9723598 A 1997 CAPLUS (7) Univ Utah Res Found; WO 9921875 A 1999 CAPLUS ALL CITATIONS AVAILABLE IN THE RE FORMAT			

IT Primers (nucleic acid)

Fl: AB: Analytical reagent use ; ANST: Analytical study ; CDD: Uses for screening **KCNQ4** gene mutation; protein and DNA sequences of novel **potassium channel protein KCNQ4** and uses thereof in drug screening

IT: Probes nucleic acid

RL: ARG (Analytical reagent use ; ANST (Analytical study ; CDD: Uses for screening **KCNQ4** gene mutation; protein and DNA sequences of novel **potassium channel protein KCNQ4** and uses thereof in drug screening

IT: 22313P-55-2 286368-09-0

RI: BOC (Biological occurrence); PRO (Properties); THU (Therapeutic use); BIOL (Biological study); OCCUR (Occurrence); USES (Uses nucleotide sequence; protein and DNA sequences of novel **potassium channel protein KCNQ4** and uses thereof in drug screening)

IT: 286367-66-9, 37: PN: WO0044736 PAGE: 26 unclaimed DNA - abstract no., 171; PN: WO0044736 PAGE: 26 unclaimed DNA 186367-66-1, 41: PN: WO0044736 PAGE: 16 unclaimed DNA 186367-66-1, 41: PN: WO0044736 unclaimed DNA abstract no., 171; 41: PN: WO0044736 PAGE: 26 unclaimed DNA

FL: PRO (Properties) unclaimed nucleotide sequence; protein and DNA sequences of a novel **potassium channel protein KCNQ4** and the uses thereof in drug screening)

LC ANSWER 4 OF 5 MEDLINE DUPLICATE 2

ACCESSION NUMBER: 2000226104 MEDLINE

DOCUMENT NUMBER: 20226104 PubMed ID: 10760300

TITLE: KCNQ4, a K⁺ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway.

COMMENT: Comment in: Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3786-9

AUTHOR: Kharkovets T; Harzelin J P; Safieddine S; Schweizer M; El-Amraoui A; Petit C; Jentsch T J

CORPORATE SOURCE: Zentrum für Molekulare Neurobiologie Hamburg, University, Hamburg, Hamburg, Germany.

SOURCE: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 97(8) Apr 11 2000 p 3786-9. Journal code: PV3; 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200005

ENTRY DATE: Entered STN: 20000525
Last Updated on STN: 20000525
Entered Medline: 20000517

AB Mutations in the **potassium channel gene KCNQ4** underlie DFNA2, an autosomal dominant form of progressive hearing loss in humans. In the mouse cochlea, the transcript has been found exclusively in the outer hair cells. By using specific antibodies, we now show that **KCNQ4** is situated at the basal membrane of these sensory cells. In the vestibular organs, **KCNQ4** is restricted to the type I hair cells and the afferent calyx-like nerve endings ensheathing these sensory cells. Several lines of evidence suggest that **KCNQ4** contributes to the I(K,n) and g(K,L) currents that have been described in the outer and type I hair cells, respectively, and that are already open at resting potentials. **KCNQ4** is also expressed in neurons of many, if not all, nuclei of the central auditory pathway, and is absent from most other brain regions. It is present, e.g., in the cochlear nuclei, the nuclei of the lateral lemniscus, and the

inner cell nucleus. This is the first ion channel shown to be specifically expressed in a sensory pathway. Moreover, the expression pattern of KCNQ4 in the mouse auditory system raises the possibility of a central component in the IPNAI deafness.

L2 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2001 AY
ACCESSION NUMBER: 1999122514 TAPLUS
DOCUMENT NUMBER: 131124614
TITLE: KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness
AUTHOR(S): Kubison, Christian; Schreiber, Stephan; Willemin, Thomas; Lutjeharms, Björn; El-Amraoui, Huda; Petit, Sandrine; Petit, Christine; Jenkins, James J.
COPORATE SOURCE: Zentrum für Molekulare Neurobiologie Hamburg
SOURCE: Universitat Hamburg, Hamburg, D-20146, Germany
Cell (Cambridge, Mass.) (1999), 96(3), 437-446
CODEN: CELLEB5; ISSN: 0092-8674
PUBLISHER: Cell Press
DOCUMENT TYPE: Journal
LANGUAGE: English
REFERENCE COUNT: 43
REFERENCE(S):
(1) Barhanin, J; Nature 1996, V384, P76 CAPLUS
(2) Biervert, C; Science 1998, V279, P403 CAPLUS
(3) Charlier, C; Nat Genet 1998, V18, P53 CAPLUS
(4) Chouabe, C; EMBO J 1997, V16, P5472 CAPLUS
(6) Denoyelle, F; Nature 1998, V393, P319 CAPLUS
ALL CITATIONS AVAILABLE IN THE REFORMAT
IT 223239-55-2 223239-56-3 223239-57-4 223239-58-5 223239-59-6
223239-60-9 223239-61-0 223239-62-1 223239-63-2 223239-64-3
223239-65-4 223239-66-5 223239-67-6 223239-68-7 223239-69-8
RL: PRP Properties)
(nucleotide sequence; cDNA and genomic sequences of human
KCNQ4, potassium channel expressed in
sensory outer hair cells, that is mutated in dominant deafness)

=> log y

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	13.05	13.26

STN INTERNATIONAL LOGOFF AT 14:54:29 ON 16 AUG 2001

09492361 results

SEQ ID NO 1

RESULT 1
ANJ032994
Locus A4032994 2335 bp DNA
DEFINITION Sequence 1 from Patent WO0044786.
ACCESSION A4032994
VERSION A4032994.1 GI:10279897
KEYWORDS
SOURCE Human.
ORGANISM Homo sapiens
EBKaryota; Metazoa; Chordata; Bilateria; Eukaryota; Mammalia; Eutheria; Primates; Catarrhini; Hominoidea; Hominidae; H. sapiens;
REFERENCE Jentsch, T.J.
AUTHORS
TITLE Novel potassium channels and genes encoding these potassium channels
JOURNAL Patent: WO 0044786-A 1 03-AUG-2000;
NEUROSEARCH AS (DK)
FEATURES Location/Qualifiers
source 1..2335
/organism="Homo sapiens"
/db_xref="taxon:9606"
CDS 23..2170
/note="KCNQ4"
/codon_start=1
/protein_id="CAC09957.1"
/db_xref="GI:10279898"
/translation="MAEAPPRLGLGPPPGDAPRAELVALTAVQSEQGEAGGGSPPP
LSLLGSPLPPGAPLPGPGSGSGS3AC3QFSSAAHKPYRRLCNWVYVYLERPRGWAFTVY
VFIFLVLFSCLVLSVLSTIQEHQELANECLLILEFVMMIVVPSLEYIVPFWMSAQTCTPY
RFWQGRFRFARKPFCCVILFIVFVASVIAAATQGNIFATASALPMPFL111PMVFM
HRRGTWKLLGSVUVYAHSHELITAWYIGFLVAFASFLVYLAFPIANSIFSSATISLWW
TTITLTTGTYGCPPTPHTWLGRWLAQGFALESLTFFALFAKILSHIPALWVLELHPVFR
FEKRRMPAAALIQAQAWRLSISIDMSRAITATATWTTTGTLDPEPFRIAALPENHITPAENH
PLRPLEVRRAVPPDGAPIERYPPVATCDEPGS3TSFCPGSESSPMGIVLPPIRMJSSQPPFIC
FSKQQLAPPTMPTSSEQVSEATSPIRVQHWSFNCRTRFRAJSIPLPKPTSAELAAS
EEVAEEKSYQCLTEVDDIMPAAVHTVIRSIIRLKLFLVAKRKFKETETIRPYDVKPCVIEQYS
A3HLDMLGRIKSLSQTRVQQIV3GPQGDFKAREFGDFGDPDAEVWDEISMMGPTVTPVEP
QVQDSIEHHKDLQLLGFYSECLRSTSASLGAVQVPLFDPDITSDYHSPVDHELISVSAQ
TLSISRSVSTNMD"
EASE COUNT 396 a 812 c 719 g 408 t
ORIGIN

RESULT 2
AF105202

LOCUS AF162811 **DEFINITION** *Homo sapiens voltage-gated potassium channel KCNQ4 gene*. **VERSION** AF162811.1 **KEYWORDS** . **SOURCE** human. **ORGANISM** *Homo sapiens* **REFERENCE** 1 (bases 1 to 2335) **AUTHORS** Kubisch,C., Schroeder,B.C., Friedrich,T., Luetjohann,B., El-Amraoui,A., Marlin,S., Petit,C. and Jentsch,T.J. **TITLE** KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness **JOURNAL** Cell 96 (3), 437-446 (1999) **MEDLINE** 99148276 **REFERENCE** 2 (bases 1 to 2335) **AUTHORS** Kubisch,C., Schroeder,B.C., Friedrich,T., Luetjohann,B. and Jentsch,T.J. **TITLE** Direct Submission **JOURNAL** Submitted (10-NOV-1998) Zentrum fuer Molekulare Neurophysiologie Hamburg (ZMNH), University of Hamburg, Martinistraesse 52, Hamburg 20146, Germany **FEATURES** **source** location/Qualifiers .. .2335 !organism="Homo sapiens" !db_xref="taxon:9606" **gene** 1. .2335 !gene="KCNQ4" 83. .2170 !gene="KCNQ4" /codon_start=1 /product="voltage-gated potassium channel KCNQ4" /protein_id="AAD14680.1" /db_xref="GI:4262523" /translation="MAEAPPRLGLGPPPGDAPPAELVALTAVQSEQGEAGGGSPRLGLLGPLPPGAPLPGPGSGSGSACGQRSSAAHFRYRFLQNWNVNLERPRGWAFVYHVFIFLLVFSCLVSLVLSLTIQEHQELANECLLILEFVMIVVFGLEYIVRVWSAGCCCRYPGWQGRFFPFARKPFCVIDFIVFVASAVIAAGTQGNIFATSLRSMRFLQIIFMVRMDRRGGTWKLGSVSYAHSKELITAWYIGFLVLIFASFVLYLAEKFDANSIFSSYADSLWWGTITLTIGYGDKTPHTWLGFVLAAGFALLGISFFPALPAGILGSGFAIKVQEQRHQKHFEKRRMPAANLIQAAWFPLYSTDMRSAYLTATWYYDSILPSFRELALIFHEVWQRARNGGLFFLEVRPAPVPGDAEFSPYFPVATCRRPGSTSFCPGESSRMGIKDRIRMGSSQRPPTGFSKQQLAPPTMPTSPSCSECVGEATSPKVKQWSFNDPCTRFASFLPLFFPPTSAELAPSVEVAEEKSYQCELTVDICMPAVFTVIRSIFILEFLVAFRFFETLRRPHVTPVIEVAGHLDMLGRIKSLQTRVDQIVGRGPQDFPAREPGDKGPSLAEVWTEISMMDRWTFUEFQVQSIEHHFLLLLGFYSPLPSGTSASLGAVQVPLFDPGTCITSDPDRHFVTHHJFVPAATLSISRSVSTNM" **BASE COUNT** 396 a 812 c 719 g 416 t **ORIGIN**

Query Match 100.0%; Scrc 2335; DB 88; Length 2335;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 2335; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

RESULT :
AAAA47618
ID AAA47618 standard; cDNA; 2335 BP.
XX
AC AAA47618;
XX
FT 18-MAR-1999 first entry
XX
DE KCNQ4 Potassium channel gene.
XX
KW KCNQ4; potassium channel; cardiac arrhythmia; neonatal epilepsy;
KW deafness; probes; treatment; therapy; transgenic animal; antibody;
KW agonist; antagonist; tinnitus; hearing loss; neonatal deafness;
KW presbyacusis; affective disorder; Alzheimer's disease; anxiety;
KW ataxia; cognitive deficits; compulsive behavior; dementia;
KW depression; Huntington's disease; mania; memory impairment;
KW motor disorders; neurodegenerative disease; Parkinson's disease;
KW Pick's disease; psychosis; schizophrenia; spinal cord damage;
KW stroke; tremor; ds.
XX
LS Homo sapiens.
XX
FH Key Location/Qualifiers
FT CDS 83..2170
FT /*tag= a
FT /product= KCNQ4 Potassium channel polypeptide
XX
FN WC200044786-A1.
XX
FD 03-AUG-2000.
DR
PP 18-JAN-2000; 2000WC-000024.
XX
PP 26-JAN-1999; 99DK-0000076.
PP 19-MAY-1999; 99DK-0000693.
XX
FA (NEUR-) NEUROSEARCH AS.
XX
PI Jentsch TJ;
XX
LP WPI; 2000-548813/50.
DP P-PSDB; AAB01476.
XX
PT Nucleic acids encoding the novel KCNQ4 potassium channel subunit,
PT useful e.g. for treating tinnitus, deafness, Alzheimer's and
PT Parkinson's diseases
XX
PS Claim 1; Page 43-48; 65pp; English.
XX
CC Mutations in 3 known genes of the KCNQ branch of the potassium
CC channel gene family underlie inherited cardiac arrhythmia's, neonatal
CC epilepsy and in some cases associated with deafness. KCNQ4 has been
CC mapped to the DFNA2 locus for autosomal dominant hearing loss, and
CC a dominant negative KCNQ4 mutation that causes deafness in a DFNA1
CC pedigree has been identified. KCNQ4 is the first potassium channel
CC gene underlying non-syndromic deafness. KCNQ4 forms heteromeric
CC channels with other KCNQ channel subunits, especially KCNQ3.
CC Nucleotides encoding the KCNQ4 protein and the protein itself may be
CC used in the prevention, treatment and diagnosis of diseases
CC associated with inappropriate KCNQ4 expression. The nucleotides may
CC also be used as DNA probes in diagnostic assays (e.g. polymerase
CC chain reactions (PCR)) to detect and quantitate the presence of
CC similar nucleic acid sequences in samples and to identify mutations
CC within them, and hence which patients may be in need of restorative
CC therapy. They may also be used to study the expression and function
CC of KCNQ4 polypeptides and their role in metabolism, for example
CC through the production of transgenic animals. The KCNQ4 polypeptides

may be used as antigens in the production of adult sera and to identify modulators agonists and antagonists of KCNQ4 expression and activity. The anti-KCNQ4 antibodies and KCNQ4 antagonists may also be used to down regulate KCNQ4 expression and activity. They may be used in this way to treat tinnitus, loss of hearing especially progressive hearing loss, neonatal deafness and presbyacusis (deafness of the elderly) and disease or adverse conditions of the central nervous system (CNS) such as affective disorder, Alzheimer's disease, anxiety, ataxia, CNS damage caused by trauma, stroke or neurodegenerative illness, cognitive deficits, compulsive behavior, dementia, depression, Huntington's disease, mania, memory impairment, memory disorders and dysfunctions, motion disorders, motor disorders, neurodegenerative diseases, Parkinson's disease, Parkinson-like motor disorders, phobias, Pick's disease, psychosis, schizophrenia, spinal cord damage, stroke and/or tremor. Conversely, antisense nucleic acid molecules may be administered to down regulate KCNQ4 expression by binding with the cells own KCNQ4 genes and preventing their expression.

115

SQ Sequence 2335 BP; 396 A; 812 C; 719 G; 409 T; 1 other;

SEQ ID NO 2

RESULT 1
AAB01476
ID AAB01476 standard; Protein; 695 AA.
XX
AC AAB01476;
XX
DT 08-NOV-2000 (first entry)
XX
DE KCNQ4 Potassium channel protein.
XX
FW KCNQ4; potassium channel; cardiac arrhythmia; neonatal epilepsy;
FW deafness; probes; treatment; therapy; transgenic animal; antibody;
FW agonist; antagonist; tinnitus; hearing loss; neonatal deafness;
FW presbyacusis; affective disorder; Alzheimer's disease; anxiety;
FW ataxia; cognitive deficits; compulsive behavior; dementia;
FW depression; Huntington's disease; mania; memory impairment;
FW motor disorders; neurodegenerative disease; Parkinson's disease;
FW Pick's disease; psychosis; schizophrenia; spinal cord damage;
FW stroke; tremor.
XX
GS Homo sapiens.
XX
FN W010044786-A1.
XX
PD 03-AUG-2000.

DN
PF 1-17-1998 10:00 AM W-PPI, US
AM
PR 16-JAN-1998; PPI-1000076.
PR 19-MAY-1998; PPI-1000693.
XX
PA NEUR+ NEUROSEARCH AS.
XX
FI Jentsch TJ;
DE
CR WPI; 1000-548613/50.
CR N-PSDB; AAA47618.
XX
PT Nucleic acids encoding the novel KCNQ4 potassium channel subunit,
ST useful e.g. for treating tinnitus, deafness, Alzheimer's and
PT Parkinson's diseases
AM
PS Claim 8; Page 48-51; 65pp; English.
XX
CC Mutations in 3 known genes of the KCNQ branch of the potassium
CC channel gene family underlie inherited cardiac arrhythmia's, neonatal
CC epilepsy and in some cases associated with deafness. KCNQ4 has been
CC mapped to the DFNA2 locus for autosomal dominant hearing loss, and
CC a dominant negative KCNQ4 mutation that causes deafness in a 1FHA
CC pedigree has been identified. KCNQ4 is the first potassium channel
CC gene underlying non-syndromic deafness. KCNQ4 is also believed
CC to interact with other KCNQ channel subunits, especially KCNQ3.
CC Nucleotides encoding the KCNQ4 protein and the protein itself may be
CC used in the prevention, treatment and diagnosis of diseases
CC associated with inappropriate KCNQ4 expression. The nucleotides may
CC also be used as DNA probes in diagnostic assays (e.g. polymerase
CC chain reactions (PCR)) to detect and quantitate the presence of
CC similar nucleic acid sequences in samples and to identify mutations
CC within them, and hence which patients may be in need of restorative
CC therapy. They may also be used to study the expression and function
CC of KCNQ4 polypeptides and their role in metabolism, for example
CC through the production of transgenic animals. The KCNQ4 polypeptides
CC may be used as antigens in the production of antibodies and to
CC identify modulators (agonists and antagonists) of KCNQ4 expression
CC and activity. The anti-KCNQ4 antibodies and KCNQ4 antagonists may
CC also be used to down regulate KCNQ4 expression and activity. They may
CC be used in this way to treat tinnitus, loss of hearing (especially
CC progressive hearing loss, neonatal deafness and presbyacusis
CC (deafness of the elderly)) and disease or adverse conditions of the
CC central nervous system (CNS) such as affective disorder, Alzheimer's
CC disease, anxiety, ataxia, CNS damage caused by trauma, stroke or
CC neurodegenerative illness, cognitive deficits, cognitive impairment,
CC dementia, depression, Huntington's disease, mania, memory impairment,
CC memory disorders and dysfunctions, motion disorders, motor disorders,
CC neurodegenerative diseases, Parkinson's disease, Parkinson-like motor
CC disorders, phobias, Pick's disease, psychosis, schizophrenia, spinal
CC cord damage, stroke and/or tremor. Conversely, antisense nucleic acid
CC molecules may be administered to down regulate KCNQ4 expression by
CC binding with the cells own KCNQ4 genes and preventing their
CC expression.
XX
SQ Sequence 695 AA;

Query Match 100.0%; Score 3608; DB 21; Length 695;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 695; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 MAEAPPRPLGLGPPPGDAFRAELVALTAVQSEQGEAGGGSPRLGLGSPLPPGAFLPG 60
Do 1 maeapprplglgpppgdapraelvaltavqseqgeagggsprrlglgsplppgaplg 60

Qy 61 PGSGSGSACGQRSSAAHKRYRRLQNWVYNVLERPRGWAFVYHVFIFLLVFSCLVLSVLST 120
Do 61 pgsgsgsacgqrssaahkryrqlqnwvynvlerprgwafvyhvfifllvfscvlsvlst 120

Qy 131 IQEHQELANECLLILEFVMIWVFGLEYIVRWSAGCCCPYRGWQGPFRPARFPFCVIDFI 181
 Db 131 iqehqelanecllilefvmiwvfgleyivrwsagcccpuyrgwqgrfrfarfpfcvidfi 181
 Qy 181 VFWASVAVIAAGTQGNIFATSALRSMRFLQILRMVRMORRGGTWKLGSVVYAHSHELIT 181
 Db 181 vfwasvaviaagtqgnifatsalrsmrflqilrmvrmdrrggtwklgsvvyahshelit 181
 Qy 181 AWYIGFLVLIFASFLVYLAEKDANSDFSSYADSLWWGTTITLTIGVCSPTPHTWLSPWLA 181
 Db 181 awyigflvlifaslflvylaekdansdfssyadslwwgttitltigvcsptphtwlspwla 181
 Qy 361 ASFALIGSISFFALPAGILGSASFALPVGQKHEPQHMFEMYBEMIAAHNLLAAMPDITCOKMFA 361
 Db 361 asfalligisffalpagilgsfafalkwqeprqnfexirmpaxmlqaswvplqsfwq 361
 Qy 361 YLTATWYYDSILPSFRELALLFEHWQRABNGGLRPLEVRRAPWDGAPSFTYPPVWATCHF 421
 Db 361 yltatwyydsilpsfreallfehvqrarnglrplevrrapwdgapsftypvvatchf 421
 Qy 421 PGSTSFCPGESSRMGIKDRIRMGSSQRRTGPSKQQLAPPTMPTSPSSEQVGEATSPTKVQ 480
 Db 421 pgstsfcpgessrmgikdrirmgssqrrtgpskqqlapptmptspseqvgeatsptkvq 480
 Qy 481 KWSWFNDRTFRASLPLKPRTSaedapseevaeeksyqceltvddimpavktvirsiril 540
 Db 481 kwswfndtrfraslrlkprtsaedapseevaeeksyqceltvddimpavktvirsiril 540
 Qy 541 KFLVAFRKFKETLRYDVKDVIEWQYSAGHLDMLGRIKSLQTRVDQIVGRGPGDRKAREKG 600
 Db 541 kflvakrkketlrydvkdviewqysaghldmlgrikslqtrvdqivgrgpgdrkarekg 600
 Qy 601 DKGPSDAEVVDEISMGRVVKVEKQVQSIEHFIDLLLGFYSRCLRSSTSASLGAVQWPLF 660
 Db 601 akgpscaevvdeismmigrvvkvekqvqsiehhkldllgfysrclrsptsaslgavqwpf 660
 Qy 661 DPDISTYHS PVDHEDISVSAQTLSISREVSTWMD 695
 Db 661 dpdisdyhs pvdhedisvsaqtlisisrevstwmd 695

RESULT 1
 PCT-US00-09587-4
 ; Sequence 4, Application PC/TUS0009587
 ; GENERAL INFORMATION:
 ; APPLICANT: Merck & Co., Inc.
 ; TITLE OF INVENTION: Novel Human Voltage-Gated Potassium
 ; TITLE OF INVENTION: Channel
 ; FILE REFERENCE: 20430 PCT
 ; CURRENT APPLICATION NUMBER: PCT/US00/09587
 ; CURRENT FILING DATE: 2000-04-10
 ; PRICE APPLICATION NUMBER: 60/129,274
 ; PFIGP FILING DATE: 1999-04-14
 ; NUMBER OF SEQ ID NOS: 43
 ; SCFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 4
 ; LENGTH: 695
 ; TYPE: PRT
 ; ORGANISM: Homo Sapiens
 PCT-US00-09587-4

Query Match 100.0%; Score 3608; DB 1; Length 695;
 Best Local Similarity 100.0%; Pred. No. 2.4e-295;
 Matches 695; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 1 MAEAPPFRGLGPPPGDAPFAELVALTAVQSEQGEAGGGSPRLGLGSPLPPGAPLPG 60
 Db 1 MAEAPPFRGLGPPPGDAPFAELVALTAVQSEQGEAGGGSPRLGLGSPLPPGAPLPG 60

Qy 11 PGSQGSGSACIIPSSAAHFKYPPRLQWWVIVVLEPPSWAPWVHIDIFLWPSVWVWVWV
 Db 61 PGSQGSGSACIIPSSAAHFKYPPRLQWWVIVVLEPPSWAPWVHIDIFLWPSVWVWVWV
 Qy 121 IGEHQELANECLLILEFVMIVVFGLEYINRVWSAGCCCRYPGWQSPFRFAPPFFCVIDFI 181
 Db 121 IGEHQELANECLLILEFVMIVVFGLEYINRVWSAGCCCRYPGWQSPFRFARKEFFCVIDFI 181
 Qy 181 WFWASAVIAAGTQGNIFATSALRSMRFLQILRMVPMDRPGSTWLLGSVVAHSKELIT 240
 Db 181 WFWASAVIAAGTQGNIFATSALRSMRFLQILRMVPMDRPGSTWLLGSVVAHSKELIT 240
 Qy 241 AWYIGFLVLIFASFVLYLAEKDANSDFSSYADSLWWGTITLTTIGYDKTPHTWLGRVLA 300
 Db 241 AWYIGFLVLIFASFVLYLAEKDANSDFSSYADSLWWGTITLTTIGYDKTPHTWLGRVLA 300
 Qy 301 AGFALLGISFFALPAGILGSGFALKVQECHRQKHFEKRRMFAANLIQAAWRLYSTDMSRA 360
 Db 301 AGFALLGISFFALPAGILGSGFALKVQECHRQKHFEKRRMFAANLIQAAWRLYSTDMSRA 360
 Qy 361 YLTATWYYYYTSIIPSFRRELALLFEHVQPARNSGLPPLEMPAPVPPDGAESPFIPPTAT 420
 Db 361 YLTATWYYYYTSIIPSFRRELALLFEHVQPARNSGLPPLEMPAPVPPDGAESPFIPPTAT 420
 Qy 421 PGSTSFCPGESSRMGIKDRIRMGSSQPRTPSKQQLAPPTMPTSPSSEQVGEATSPCKWQ 480
 Db 421 PGSTSFCPGESSRMGIKDRIRMGSSQPRTPSKQQLAPPTMPTSPSSEQVGEATSPCKWQ 480
 Qy 481 FWSWFNDRTPFRASLRLKPRRTSAEDAPSEEVAEEFSYQCELTVDIMPAVKTVIPSIRIL 540
 Db 481 FWSWFNDRTPFRASLRLKPRRTSAEDAPSEEVAEEFSYQCELTVDIMPAVKTVIPSIRIL 540
 Qy 541 KFLVAKFKFETLRPYDVKDVIIEQYSAGHLDMLGFIKSLQTFVDQIVGRGPDRKAREKG 600
 Db 541 KFLVAKFKFETLRPYDVKDVIIEQYSAGHLDMLGFIKSLQTFVDQIVGRGPDRKAREKG 600
 Qy 601 EKGPSDAEVVDEISMGMGVVFVEFQVQSIEHFLDLGGFYSPCLPSGTSASLGAVQVPLF 660
 Db 601 EKGPSDAEVVDEISMGMGVVFVEFQVQSIEHFLDLGGFYSPCLPSGTSASLGAVQVPLF 660
 Qy 661 DPDITSDYHSPVHDHEDISVSAQTLSISRSVSTNMD 695
 Db 661 DPDITSDYHSPVHDHEDISVSAQTLSISRSVSTNMD 695

RESULT 2
 PCT-US00-09587A-4
 ; Sequence 4, Application PCTUS0009587A
 ; GENERAL INFORMATION:
 ; APPLICANT: Merck & Co., Inc.
 ; TITLE OF INVENTION: Novel Human Voltage-Gated Potassium
 ; TITLE OF INVENTION: Channel
 ; FILE REFERENCE: 20430 PCT
 ; CURRENT APPLICATION NUMBER: PCT/US00/09587A
 ; CURRENT FILING DATE: 2000-06-23
 ; PRIOR APPLICATION NUMBER: 60/129,274
 ; PRIOR FILING DATE: 1999-04-14
 ; NUMBER OF SEQ ID NOS: 43
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO: 4
 ; LENGTH: 695
 ; TYPE: PPT
 ; ORGANISM: Homo Sapiens
 PCT-US00-09587A-4

Query Match 100.0%; Score 3608; DB 1; Length 695;
 Best Local Similarity 100.0%; Pred. No. 2.4e-295;
 Matches 695; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 MAEAPPRPLGLGPPPGDAPPAELVALTAVQSEQGEAGGGGSPPLGLLGSPLPPGAPLPG 60
Db 1 MAEAPPRPLGLGPPPGDAPPAELVALTAVQSEQGEAGGGGSPPLGLLGSPLPPGAPLPG 60
Qy 61 PGSGSGSACGQRSSAAHKRYRRLQNWVNVLERPRGWAFVYHVFIFLLVFSCLVLSVLST 110
Db 61 PGSGSGSACGQRSSAAHKRYRRLQNWVNVLERPRGWAFVYHVFIFLLVFSCLVLSVLST 110
Qy 121 IQEHQELANECLLILEFUMIVTFGLEWIPWWSAGCDIPYFGWGRPFPAFPPPTIPI 121
Db 121 IQEHQELANECLLILEFUMIVTFGLEWIPWWSAGCDIPYFGWGRPFPAFPPPTIPI 121
Qy 131 VFAVASVAVIAAAGTQGNIFATSALRSMPFLQILRMVRMRPGTWFLIGSWVVAHCPFLIT 131
Db 131 VFAVASVAVIAAAGTQGNIFATSALRSMPFLQILRMVRMRPGTWFLIGSWVVAHCPFLIT 131
Qy 241 AWYIGFLVLIFASFLVYLAEKDANSDFSSYADSLWWSTITLTIGYGEFTPHTWLGPVLA 301
Db 241 AWYIGFLVLIFASFLVYLAEKDANSDFSSYADSLWWSTITLTIGYGEFTPHTWLGPVLA 301
Qy 301 AGFALLGISFFALPAGILGSGFALKVQEQRHQKHFEMRRMPAANLIQAAWFLYSTDMSRA 360
Db 301 AGFALLGISFFALPAGILGSGFALKVQEQRHQKHFEMRRMPAANLIQAAWFLYSTDMSRA 360
Qy 361 YLTATWYYDSILPSFRELALLFEHVQRARNGGLRPLEVRRAPVDPGAPSRYPPVATCHR 420
Db 361 YLTATWYYDSILPSFRELALLFEHVQRARNGGLRPLEVRRAPVDPGAPSRYPPVATCHR 420
Qy 421 PGSTSFCPGESSRMGIFDRIRMGSSQRTGPSKQQLAPPTMPTSPSSEQVGEATSPTKVQ 480
Db 421 PGSTSFCPGESSRMGIFDRIRMGSSQRTGPSKQQLAPPTMPTSPSSEQVGEATSPTKVQ 480
Qy 481 KSWSFNDTRFRASLRIKPRTSAEDAPSEEVAEKSYQCELTVDIMPAVFTWIPSIRIL 540
Db 481 KSWSFNDTRFRASLRIKPRTSAEDAPSEEVAEKSYQCELTVDIMPAVFTWIPSIRIL 540
Qy 541 KFLVAHKRFKETLRFPYDVKDVIHQYSAGHLDMLGRIKSLQTRUDQINGPGPSDPWAEFG 600
Db 541 KFLVAHKRFKETLRFPYDVKDVIHQYSAGHLDMLGRIKSLQTRUDQINGPGPSDPWAEFG 600
Qy 601 DKGPSDAEVVDEISMGRVVVKVEKQVQSIIEHKL DLLL3FYSRCRLSGTSASLGAVQVPLF 660
Db 601 DKGPSDAEVVDEISMGRVVVKVEKQVQSIIEHKL DLLL3FYSRCRLSGTSASLGAVQVPLF 660
Qy 661 DPDITSDYHSPVDHEDISVSAQTLSISRSVSTNMD 695
Db 661 DPDITSDYHSPVDHEDISVSAQTLSISRSVSTNMD 695

09492361 results

SEQ ID NO 1

RESULT :
AX 1.1.1
L 111
DEFINITION Sequence 1 from Patent WO044786-A1.
ACCESSION AM1031994
VERSION AM1031994.1 GI:10079897
KEYWORDS
SOURCE human.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 bases 1 to 2335:
AUTHORS Jentsch,T.J.
TITLE Novel potassium channels and genes encoding these potassium
channels
JOURNAL Patent: WO 0044786-A 1 03-AUG-2000;
NEUROSEARCH AS (DK)
FEATURES Location/Qualifiers
source 1..2335
:organism="Homo sapiens"
.db_xref="taxon:9606"
CDS #3..2170
ncte="KCNQ4"
ccdon_start=1
protein_id="CAC09957.1"
db_xref="GI:10079897"
translation="MAFAAPPPFLGLIPPFQIAPPAPLVAIAAATPAA...PFPF
LGILGGSPLPPGAAPLPGRGSGQIAGAAGQPSIAAAGPFPVPPFLQKNTTATIIFPFPWTFAPF
WFIFLFLVFSCLVLSVLSTIQEHRBLANECLLILEFAMINWIPGAIATIPWKAJLJIPF
PGWQGRFRFARKPFCVIDFIVFVASVAVIAAGTQGNIFATSALPSMPFLCLIRMTIPMD
PRGGTWKLGSVSVYAHSHELITAWYIGFLVLFIFASFLVLYLAEMCANSFCSSYTAISIWW
GTITLTTIGYGDKTPTWLGRVIAAGFALLGSISFFPALPAGILGSGGFALFWVQEQHFQKH
FEFRRMPAANLIQQAARWLYSTDMRSLAYLTATWYYDSILPSFPELALLFEHVQRAPNG
GLFPFLLEVRRAPVDPGAPSRYPPVATCRPGSTSFCPGESSRMGIKDRIRMGSQQRTG
PSKQLQAPPTMPTSPSSEQVGEATSPTKVQKWSFNDRTRFRASLRLKPRTSAEDAPS
EEVAEKEKSYQCELTVDIMPAVKTVIRSIIRILKFLVAKRKFKETLRPY

SEQ ID NO: 1 Hybridization

RESULT 9
AAT85964
ID AAT85964 standard; cDNA; 1182 BP.
XX
AC AAT85964;
XX
DT 09-JAN-1996 first entry
XX
DE Human K+ channel gene coding sequence.
XX
KW Human; neuroblastoma; K+ channel; glioma; probe; diagnosis; detection; tumour; ds.
XX
CS Homo sapiens.
XX
EM JP09191882-A.
XX
PT 09-JUL-1997.
XX
PP 16-JAN-1996; 96JP-0004726.
XX
PP 16-JAN-1996; 96JP-0004726.
XX
PA NISSA + JAPAN TOBACCO INC.
XX
DF WPI; 1997-429182/40.
DR P-PSDB; AAW14282.
XX
PT DNA encoding new human K+ channel protein - useful for detecting
PT glioma(s) and tumours
XX
PS Claim 3; Page 10-12; 14pp; Japanese.
XX
CC This is the nucleotide sequence encoding a novel human K+ channel
CC protein which is expressed on human glioma cells. The gene was isolated
CC from a 3' directed cDNA library prepared from human neuroblastoma cell
CC line CHP134. The screen isolated a clone designated GS008740 whose
CC insert contained the coding sequence (presented here) and the 5' and 3'
CC sequences of the gene (AAT85965-6 respectively). Expression of the gene
CC was detected in neuroblastoma cell lines. Oligonucleotides derived from
CC the sequence of the K+ channel gene can be used as probes for diagnosis
CC of human gliomas, and in the detection of new tumours.
XX
SQ Sequence 1182 BP; 204 A; 372 C; 374 G; 145 T; 1 other.

Query Match 23.1%; Score 539; DB 18; Length 1181;
Best Local Similarity 73.7%; Pred. No. 3.7e-85;
Matches 686; Conservative 0; Mismatches 245; Indels 0; Gaps 0;

RESULT 3
AF033348
LOCUS AF033348 3232 bp mRNA PRI 21-JAN-1998
DEFINITION Homo sapiens potassium channel (KCNQ2) mRNA, complete cds.
ACCESSION AF033348
VERSION AF033348.1 GI:2801451
KEYWORDS .
SOURCE human.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; H. sapiens
REFERENCE 1 bases 1 to 3232.
AUTHORS Singh,N.A., Charlier,C., Stauffer,D., DuPont,B.R., Leach,R.J., Melis,R., Ronen,G.M., Bjerre,I., Quattlebaum,T., Murphy,J.W., McHarg,M.L., Gagnon,D., Rosales,T.O., Peiffer,A., Anderson,V.E. and Leppert,M.
TITLE A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns
JOURNAL Nature Genet. 18 (1), 25-29 (1998).
MEDLINE 98085864
REFERENCE 2 (bases 1 to 3232)
AUTHORS Singh,N.A., Charlier,C., Stauffer,D., DuPont,B.R., Leach,R.J., Melis,R., Ronen,R.M., Bjerre,I., Quattlebaum,T., Murphy,J.W., McHarg,M.L., Gagnon,D., Rosales,T.O., Peiffer,A., Anderson,V.E. and

JOURNAL Submitted "UCSC-UCB" Human Genetics, University of California, 100
 IBM Room 3100, Salt Lake City, UT 84113, USA
 FEATURES source location/Qualifiers
 source 1..3232
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="3"
 /map="20q13.3"
 gene 1..3232
 /gene="FNC12"
 CDS 123..3246
 /gene="FNC12"
 /note="FvEEN1"
 /codon_start=1
 /product="potassium channel"
 /protein_id="AAEB931311"
 /db_xref="GI:2801452"
 /translation="MVQFSRNGSIVPGFISGEWFLVFGIGLPRAPITIPIVAILIA
 SEAPFPGSILSPPRACCAADPFPNPAFVPLVQDIPVLPVPPRQAPVLLA
 VFSQDLSVTFSTKPEVEVSSEALVYILEINTVTVQVSLVTPVAAVTTTAT
 LFFAPFPPFPIVIDIMVLLASIAVTAAGGSIKVVETVAVLPVLPFLVPPMHDVPPV
 PEGSSVVAHIFPELVIAWIIIPFLILALAFVTLAEPVHNKHLVIAALEKVI
 TIGYDDKYFDTWNGLLAAATFTLIGVSFFALPAGICLGSCTALAFVQLEINHPQKHFPEFFH
 PAAGLIQSAWFFXATNLISRTDLSHTWQCVYERTVTPPMYSSCQTYGASPLIFTPLTLE
 LLRNLSKSKSGLAFFFEPPEPSPSKGSPCRGPGCOPGRASSQFTVSLFPLPVSSPRGV
 AAKRGHSPQAQTVRFSFESADQSLEDPSKVPKWSFGDRSRAQAFRIYGAASFPQNSE
 EASLFGEDEVIKSCFCFEVTEDLTPGLKWSIPAVCUMRFIVSPKPFVYESLPPVQX
 VIEQYSAGHLMLSPIKSLQSRVDQIVGRGPATDKDRTKGFAAEALPEDCPMSMGRLG
 FVEKJWLSMEFKFLDFLVNIYMQRMGIPPTETEAYFGAKEPEPAPPPYHSPEDSPEHVDP
 HGCIVKIVPSSSSTGQKNEFAPPAPVQCPSTSWQPQSHPRQGHGTSPVGDHGSIV
 RIPPFPAHERSLSIAYGGSNRASMELRQEDTPGCRPPEGNLRDSDTSISIPSVDEEL
 ERSFSGFSISQSKENLDEALNSCYAAVAPCAKVRPYIAEGESDTSOLCTPCGFPPRSA
 TGEGFPGDVGWAEEFK"

Sequence Comparison A

RESULT 3
AF033348
LOCUS AF033348 3232 bp mRNA PRI 21-JAN-1998
DEFINITION Homo sapiens potassium channel KCNQ2 mRNA, complete cds.
ACCESSION AF033348
VERSION AF033348.1 GI:2801451
KEYWORDS.
SOURCE human.
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 3232)
AUTHORS Singh,N.A., Charlier,C., Stauffer,D., DuPont,B.R., Leach,R.J.,
Melis,R., Ronen,R.M., Bjerre,I., Quattlebaum,T., Murphy,J.W.,
McHarg,M.L., Gagnon,D., Rcsales,T.C., Peiffer,A., Anderson,V.E. and
Leppert,M.
TITLE A novel potassium channel gene, KCNQ2, is mutated in an inherited
epilepsy of newborns
JOURNAL Nature Genet. 18 (1), 25-29 1998
MEILINE 98085864
REFERENCE 2 (bases 1 to 3232)
AUTHORS Singh,N.A., Charlier,C., Stauffer,D., DuPont,B.R., Leach,R.J.,
Melis,R., Ronen,R.M., Bjerre,I., Quattlebaum,T., Murphy,J.W.,
McHarg,M.L., Gagnon,D., Rcsales,T.C., Peiffer,A., Anderson,V.E. and
Leppert,M.
TITLE Direct Submission
JOURNAL Submitted (06-NOV-1997) Human Genetics, University of Utah, 2030E
15N Room 2100, Salt Lake City, UT 84112, USA
FEATURES
source Location/Qualifiers
1..3232
'organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="20"
/map="20q13.3"
gene 1..3232
'gene="KCNQ2"
CDS 128..2746
'gene="KCNQ2"
note="Five exon"
codit_start=.
.product="potassium channel"
.protein_id="AAB97315_1"
.db_xref="GI:2801452"
/translation="MVQKSRNGGVYPGPGGEKKLKVGFGVGLDPGAPDSTPDGALLAG
SEAPFFGSILSFPAGGAGAKPPKRNAFYRKQLQNFLYNNLERPPGWAFIYHAYWFL
FVSCLVLSVFSTIKEYEKSSEGALYILEIVTIVVFGVEYFVR1WAAGCCCRYRGWGR
LKFACKPFVCVIDMVLIASIAVLAAGSQGNVFATSLRSRLELQILPMIRMDRRSGTW
FLLGSVVYAHSPFLVTAWYIGFLCLILASFVLYLAEGENDHFDTYADALWWGLITLT
TIGYGDKYPQTWNGRLLAATFTLIGVSFFPALPAGILGSGFALKVQEQQHQKHFEKFRN
PAAGLIQSAWRFXATNLSRTDLHSTWQYYERTVTVPMYSSQTQTYGASPLIPPLNQLE
LLRNKSFSGIAFFKDPPPEPSKGSPCRGPLCGCCPGRSSQKVSLKIRVFSSFFGV
AAKKGKSFQAQTVFSPSPSADQSLEDSFSVPKWSFGDRSRAFQAFFIKGAASRQNSE
EASLPGEIVDEKSCPCEFVTEEDLTPGLFVSIARVCVMRFVSKRKKFESLRPYDVMD
VIEQYSAGHLDMLSPIKSLQSFVDQIVVGFPAITDKRTKGPAEAELPEDPSMMGRLG
FVEKQVLSMEKKLDFLVNIYMQRMGIPPTETEAYFGAKEPEPAIHYHSPEDSREHVDR
HGCIVKIVRSSSTGQNFNSAPPAPPVQCPSTSWQPQSHPRQGHGTSPVGDHGSLV
FIPPPPAHERSLSAYGGGNRASMEFLRQEDTPGCRPEGNLRDSLTSISIPSVDHEEL
ERSFSGFSISQSKENLDALNSCYAAVPCAKVRPYIAEGESDTSDELCTPCGPPPRSA
TGEGPFGEVWAGPRK"
BASE COUNT 576 a 1054 c 1061 g 533 t 8 others
ORIGIN

Query Match 30.1%; Score 711.6; DB #9; Length 3232;
Best Local Similarity 61.0%; Pred. NL 3.8e-9;
Matches 1273; Conservative 1; Mismatches 735; Indexes 103; Spans 1;

