■ Resolva a congruência $743x \equiv 25 \pmod{9991}$.

□ R:

			q
9991	1	0	
743	0	1	13
332	1	-13	2
79	-2	27	4
16	9	-121	4
15	-38	511	1
1	47	-632	15
0	-743	9991	#DIV/0!
	743 332 79 16 15	743 0 332 1 79 -2 16 9 15 -38	743 0 1 332 1 -13 79 -2 27 16 9 -121 15 -38 511 1 47 -632

- □ Euclides: 1=47(9991)-632(743)
- $x \equiv (9359)(25) \equiv 4182 \pmod{9991}$

□ Resolva a congruência $7033x \equiv 1323 \pmod{11639}$.

 D	1	1 • 1	1
\mathbf{R} .	Eucl	11/	$ \Delta_{C} $
17.	Liuci	ЦU	ios.

- \Box 1=-3318(11639)+5491(7033)
- \Box x = (5491)(1323)
- $\equiv 1857 \pmod{11639}$

		a	b	q
a	11639	1	0	
b	7033	0	1	1
r1	4606	1	-1	1
r2	2427	-1	2	1
r3	2179	2	-3	1
r4	248	-3	5	8
r5	195	26	-43	1
r6	53	-29	48	3
r7	36	113	-187	1
r8	17	-142	235	2
r9	2	397	-657	8
r10	1	-3318	5491	2
r 11	0	7033	-11639	#DIV/0!

O número de identificação fiscal em Portugal é constituído por 9 dígitos NIF= $(a_1, a_2, ..., a_9)$, sendo que o último é calculado de modo a que NIF.w (mod 11) = 0, em que w=(9,8,7,6,5,4,3,2,1), isto é $9a_1 + 8a_2 + 7a_3 + \cdots + 2a_8 + a_9 \equiv 0 \pmod{11}$

- \square No caso de $a_0=10$ escreve-se 0.
- □ Verifique se o seguinte NIF está correto: 511413190.

NIF	5	1	1	4	1	3	1	9	0	
Pesos	9	8	7	6	5	4	3	2	1	
									10	1

- \square R: está correto mas $a_9=10$.
- Qual o dígito de verificação do NIF 16174816C?
- □ R: C=3. C=11-MOD(SUMPRODUCT(B3:I3;B4:I4);11)

- □ O número de identificação bancária (NIB) em Portugal é constituído por 21 dígitos com o seguinte formato BBBBAAAACCCCCCCCCCCVV.
 - BBBB banco
 - AAAA agência
 - CCCCCCCCCC conta
 - VV dígitos de verificação.
- □ Um NIB é válido se for congruente com 1 módulo 97.
- □ a) Dado o banco 0018, agência 0249, conta 00200011528, determine os dígitos de verificação.

NIB

- □ R:
- $a_{20}a_{19}...a_2a_1a_0 \equiv a_{20}a_{19}...a_2*100 + a_1a_0 \pmod{97} \equiv a_{20}a_{19}...a_2 + a_1a_0 \pmod{97}$
- $\Box \equiv a_{20}a_{19}...a_2 \pmod{97}*100 \pmod{97} + a_1a_0 \equiv$
- $\equiv a_{20}a_{19}...a_2 \pmod{97} *3 + a_1a_0 \equiv 1 \pmod{97}$
- $a_1 a_0 \equiv -a_{20} a_{19} \dots a_2 \pmod{97} + 3 + 1 \pmod{97}$
- $a_1 a_0 = 98 a_{20} a_{19} ... a_2 \pmod{97} *3 \pmod{97}$
- \Box $a_1 a_0 = 98 18024900200011528 \pmod{97}*3 \pmod{97}$
- $a_1 a_0 = 98 68*3 \pmod{97} = 98 204 \pmod{97} = 98 10 = 88$

☐ Um grupo de 10 piratas encontra um saco de moedas de ouro. Um deles é encarregado de dividir igualmente as moedas por todos os piratas. Ao terminar verifica que ficou uma moeda no saco. Incapaz de cumprir a tarefa rigorosamente, deixa ficar todas as moedas no saco e abandona o grupo. Intrigado, o chefe dos piratas manda então dois homens proceder à divisão completa das moedas pelos homens restantes. Desta vez, sobram duas moedas. Os dois piratas abandonam tudo e desaparecem ainda mais depressa que o anterior. O chefe dos piratas vai então ele próprio dividir as moedas pelos piratas restantes e no final verifica que o saco ficou vazio! Quantas moedas tinha o saco, assumindo a solução menor possível?

Teorema chinês dos restos

- □ R:
- $\mathbf{Q} \quad \mathbf{x} \equiv 1 \pmod{10}$
- \square $x \equiv 2 \pmod{9}$
- $\mathbf{x} \equiv 0 \pmod{7}$
- □ Começando com as duas primeiras congruências e usando o algoritmo de Euclides
- 1 = 1(10)-1(9)
- $y \equiv 2(10)-1(9) \equiv 11 \pmod{90}$
- \Box 1= -1(90)+13(7)
- $x \equiv 0(-1)(90)+11(13)(7) \equiv 1001 \equiv 371 \pmod{630}$
- □ O número de moedas é 371.

□ Três crianças de uma família decidem medir o perímetro do seu jardim usando unicamente os seus pés e uma régua de 10 cm. Sabendo que as crianças têm pés de comprimento de 23, 25 e 27 cm, e que a cada uma delas ficou a faltar respectivamente 5, 9 e 8 cm no final da medição, calcule o menor perímetro do jardim. Justifique a sua resposta.

Teorema chinês dos restos

- □ R:
- \square $x \equiv 5 \pmod{23}$
- \square $x \equiv 9 \pmod{25}$
- $\mathbf{x} \equiv 8 \pmod{27}$
- \square Do algoritmo de Euclides, 1 = 12(23)-11(25)
- $y \equiv 9(12)(23)+5(-11)(25) \equiv 574 \pmod{575}$
- □ Do algoritmo de Euclides, 1 = -10(575) + 213(27)
- $x \equiv 8(-10)(575)+574(213)(27) \equiv 325507410 \equiv 10260 \pmod{15525}$
- O menor perímetro do jardim é de 102,60 metros

Obtenha todas as soluções no espaço modular que satisfazem o seguinte sistema de congruências módulo 28:

$$3x + 5y \equiv 14 \pmod{28}$$
$$5x + 9y \equiv 6$$

□ R: Vamos resolver por adição ordenada. Para isso, multiplica-se a primeira congruência por 5 e a segunda por 3. Isto é possível porque 5 e 3 são primos com 28.

Adição ordenada

Subtraindo a primeira congruência da segunda

- □ Aqui já não é possível dividir a primeira congruência por 2
 porque 2 e 28 não são primos entre si: d = mdc(2,28) = 2
- Mas podemos dividir a congruência, incluindo o módulo, pelo máximo divisor comum d e resolver o problema de solução única $y \equiv 2 \pmod{14}$.
- □ Esta congruência tem a solução $y \equiv 2 \pmod{14}$
- □ A congruência $2y \equiv 4 \pmod{28}$ tem assim as soluções $y \equiv 2 + k \frac{m}{d}$ (k = 0...d 1), isto é, $y \equiv 2$ ou $y \equiv 2 + 14 \equiv 16$

Adição ordenada

$$\begin{cases} y \equiv 2 \\ 3x + 5(2) \equiv 14 \end{cases} \text{ ou } \begin{cases} y \equiv 16 \\ 3x + 5(16) \equiv 14 \end{cases} \pmod{28}$$

$$\begin{cases} y \equiv 2 \\ 3x \equiv 4 \end{cases} \pmod{28} \text{ ou } \begin{cases} y \equiv 16 \\ 3x \equiv 18 \end{cases} \pmod{28}$$

Inverso

□ Para resolver a equação em x pode-se calcular o inverso de 3, que existe porque 3 e 28 são primos entre si. Com o algoritmo de Euclides mdc(3,28)=1=1(28)-9(3). Reduzindo o -9 ao espaço modular, obtém-se que 3⁻¹ (mod 28)=19

$$\begin{cases} y \equiv 2 \\ x \equiv 4(19) \equiv 20 \end{cases} \text{ ou } \begin{cases} y \equiv 16 \\ x \equiv 18(19) \equiv 6 \end{cases}$$

☐ Há duas soluções, (20,2) e (6,16).

Funções-13

Resolução gráfica

- □ Obtenha todas as soluções no espaço modular que satisfazem o seguinte sistema de congruências módulo 103:
- \bigcirc 75x+9y \equiv 37

- $38x+54y \equiv 16$
- \square 23x \equiv 101
- **□** 38x+54y = 16

Continuação

- \Box Euclides: 1= -2(103)+9(23)
- $x \equiv 9(101) \equiv 85$
- $38(85)+54y \equiv 16$
- \Box $x \equiv 85$
- $37+54y \equiv 16$
- \Box $x \equiv 85$
- \square Euclides: 1=-11(103) + 21(54)
- $\mathbf{u} \quad \mathbf{x} \equiv 85$
- $y \equiv 21(82) \equiv 74$