Tutoring of Mathematical Analysis I TEST SIMULATION - 4

- 1. Let $A, B \subset \mathbb{R}$. If $A \subset B$, then
 - (a) $\inf A > \inf B$
 - (b) $\inf A \leq \inf B$
 - (c) $\inf A < \inf B$
 - (d) $\inf A = \inf B$
 - (e) $\inf A \ge \inf B$
- 2. The function $f(x) = \cos x + e^x$
 - (a) is even
 - (b) has infinite zeros
 - (c) is injective on \mathbb{R}
 - (d) is monotonic on \mathbb{R}
 - (e) is periodic
- 3. A polynomial with real coefficients has the numbers 0 and 2+i as roots, then
 - (a) has degree 2
 - (b) has degree greater or equal to 3
 - (c) has degree strictly less than 3
 - (d) has degree 4
 - (e) has even degree
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x \to 2} f(x) = 1$. Then
 - (a) f(2) = 1
 - (b) $\forall \delta > 0$, if $|x 2| < \delta$ then f(x) > 0
 - (c) $\exists \delta > 0$ such that if $|x 2| < \delta$ then $|f(x) 1| < \delta$
 - (d) $\forall \delta > 0$, if $0 < |x 2| < \delta$ then 1 < f(x) < 2
 - (e) $\exists \delta > 0$ such that if $0 < |x 2| < \delta$ then f(x) > 0
- 5. $\lim_{x \to 0} \frac{9^x 1}{\sqrt[4]{1 + 8x} 1} =$
 - (a) 3
 - (b) 2
 - (c) log 3
 - (d) log 2
 - (e) 9/8
- 6. The limit $\lim_{x\to+\infty} (3x+2)\sin^2 x$
 - (a) equals $+\infty$
 - (b) equals 3
 - (c) does not exist
 - (d) equals 2
 - (e) equals 0

- 7. If the functions $f, g : \mathbb{R} \to \mathbb{R}$ have respectively the straight lines y = x + 1, y = 2x as asymptotes as $x \to \infty$, then
 - (a) $\lim_{x \to +\infty} (f(x) g(x)) = -1$
 - (b) $\lim_{x \to +\infty} \left(f\left(x\right) g\left(x\right) \right) = -\infty$
 - (c) $\lim_{x \to +\infty} \frac{f(x) g(x)}{x} = 0$
 - (d) $\lim_{x \to +\infty} \frac{f(x) g(x)}{x} = +\infty$
 - (e) $\lim_{x \to +\infty} \left(f\left(x\right) + g\left(x\right) \right) = -\infty$
- 8. Let $a_n = \frac{3n + (-1)^n}{n + (-2)^n}$. Then
 - (a) $\lim_{n \to +\infty} a_n = 0$
 - (b) a_n does not admit limit as $n \to +\infty$
 - (c) $\lim_{n \to +\infty} a_n = 3$
 - (d) $\lim_{n \to +\infty} a_n = +\infty$
 - (e) a_n is monotonic
- 9. Let $f(x) = 2^{x \sin x}$. Then
 - (a) $f'(x) = 2^{x \sin x} (\sin x + x \cos x)$
 - (b) $f'(x) = 2^{x \sin x}$
 - (c) $f'(x) = 2^{x \sin x} x \cos x$
 - (d) $f'(x) = 2^{x \sin x} (\sin x + x \cos x) \log 2$
 - (e) $f'(x) = 2^{x \sin x} \log 2$
- 10. If $f(x_0) = 0$ and x_0 is a corner point for f, then $g(x) = (x x_0) f(x)$
 - (a) is differentiable in x_0
 - (b) has a cusp in x_0
 - (c) has a corner point in x_0
 - (d) is not differentiable in x_0
 - (e) is discontinuous in x_0
- 11. Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable and invertible function. If f(2)=1 and f'(2)=3 then
 - (a) $(f^{-1})'(2) = 3$
 - (b) $(f^{-1})'(3) = 1$
 - (c) $(f^{-1})'(1) = 1/3$
 - (d) $(f^{-1})'(1) = 1/2$
 - (e) $(f^{-1})'(3) = 2$
- 12. Let $f:[0,4]\to\mathbb{R}$ be defined as $f(x)=\sqrt{x}$ if $x\neq 1$, and $f(x)=\alpha$ if x=1, with $\alpha\in\mathbb{R}$. Then f takes all the values between 0 and 2 if and only if
 - (a) $\alpha = 0$
 - (b) $\alpha = 1$
 - (c) $\alpha = 2$
 - (d) $0 \le \alpha \le 4$
 - (e) $0 \le \alpha \le 2$

- 13. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and decreasing in $(-\infty, 0)$ and in $(0, +\infty)$. Then
 - (a) $f(\mathbb{R})$ is not an interval
 - (b) $f(\mathbb{R}) = \mathbb{R}$
 - (c) f is decreasing on \mathbb{R}
 - (d) $\sup_{\mathbb{R}} f = +\infty$
 - (e) f is bounded on \mathbb{R}
- 14. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(-1) = 0 and f(6) = 3. Then, in the interval (-1,6), the derivative f'(x)
 - (a) takes value 7/3 in at least one point
 - (b) vanishes in at least one point
 - (c) takes value 7/3 in infinite points
 - (d) takes value 3/7 in at least one point
 - (e) is never zero
- 15. For $x \to 0$, it holds
 - (a) $\frac{1}{x^4 + x^2} \sim \frac{1}{x^4}$
 - (b) $\frac{1}{x^4} + \frac{1}{x^2} \sim \frac{1}{x^2}$
 - (c) $\frac{1}{x^4} \frac{1}{x^2} \sim -\frac{1}{x^2}$ (d) $x^4 + x^2 \sim x^2$

 - (e) $\frac{1}{x^4 x^2} \sim \frac{1}{x^4}$
- 16. The limit $\lim_{x\to 0} \frac{e^{\sqrt[3]{8x}} 2\sqrt[3]{x} 1}{\sin\sqrt[3]{x}}$ equals
 - (a) 1
 - (b) $+\infty$
 - (c) 0
 - (d) -1
 - (e) e
- 17. The Mac Laurin expansion of order 3 of the function $f(x) = \frac{2x}{1+x} \frac{1}{x-1}$ is
 - (a) $f(x) = 1 3x x^2 + 3x^3 + o(x^3)$
 - (b) $f(x) = 1 + 3x x^2 3x^3 + o(x^3)$
 - (c) $f(x) = 1 + 3x x^2 + 3x^3 + o(x^3)$
 - (d) $f(x) = 1 3x x^2 3x^3 + o(x^3)$
 - (e) $f(x) = 1 + 3x + x^2 + 3x^3 + o(x^3)$
- 18. Let F(x) be the primitive of $f(x) = \frac{e^{\sqrt{x+2}}}{\sqrt{x+2}}$ that vanishes in x = -1. Then
 - (a) $F(x) = 2\sqrt{x+2}e^{\sqrt{x+2}} 2e^{-x+2}$
 - (b) $F(x) = \sqrt{x+2}e^{\sqrt{x+2}} e^{-x}$
 - (c) $F(x) = e^{\sqrt{x+2}} e^{-x}$
 - (d) $F(x) = 2e^{\sqrt{x+2}} 2e^{-x}$

- (e) $F(x) = 2e^{\sqrt{x+2}}$
- 19. The improper integral $\int_0^{+\infty} \frac{\sqrt{x}}{x+x^2} dx$ is
 - (a) convergent
 - (b) positively divergent
 - (c) negatively divergent
 - (d) indeterminate
 - (e) 0
- 20. The differential equation $x'' 5x' + 6x = e^{2t}$ has a particular solution $x_p(t)$ of the following form
 - (a) $x_p(t) = Cte^{3t}$ with $C \in \mathbb{R}$
 - (b) $x_p(t) = Ct^2e^{3t}$ with $C \in \mathbb{R}$
 - (c) $x_p(t) = Cte^{2t}$ with $C \in \mathbb{R}$
 - (d) $x_p(t) = Ct^2e^{2t}$ with $C \in \mathbb{R}$
 - (e) $x_p(t) = C$ with $C \in \mathbb{R}$

$\underline{\mathbf{A}}\underline{\mathbf{N}}\underline{\mathbf{S}}\underline{\mathbf{W}}\underline{\mathbf{E}}\underline{\mathbf{R}}\underline{\mathbf{S}}$

Ite	em n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Aı	nswer	e	b	b	е	c	c	b	a	d	a	c	b	c	d	d	c	с	d	a	c