ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ И СЛУЧАЙНЫХ ПРОЦЕССОВ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА) специалиста

Оценивание плотности размеров наночастиц на основе вейвлетов

	Выполнил студент			
	603 группы			
Купј	ряков Василий Юрьевич			
-				
	(подпись студента)			
	TT			
	Научный руководитель:			
	с.н.с., к.фм.н.			
Шкляев Александр Викторович				
=				
	(подпись научного руководителя)			

Москва 2022

Введение 1

В работе мы изучим задачу, которая возникает при исследовании коллоидных примесей в жидкости.

Примеси в исследуемой жидкости — это движущиеся частицы с размерами порядка 10^{-8} м. Для исследования таких примесей используется анализ траекторий наночастиц.

Жидкость просвечивают лазером, когда луч попадает на чатицу, она рассеивает свет. К микроскопу присоединена камера, которая фиксирует рассеянный свет.

Получается последовательность изображений. Для каждой частицы эта последовательность является последовательностью проекций частиц на площадь камеры. Мы можем построить векторы перемещений частиц в проекции на плоскость камеры по этим снимкам. Для отдельной частицы такие перемещения образуют броуновское движение с нулевым сносом и дисперсией $\sigma^2 = c/d$, где c — некоторая константа, а d — размер частицы.

Проблема в том, что размер частицы не связан напрямую с размером ее изображения. Наша задача — оценить распределение истинных размеров частиц по размерам на снимках.

Будем изучать равносильную задачу: оценить распределение σ^2 . Рассмотрим n случайно выбранных частиц E_1, \ldots, E_n . Обозначим дисперсии для их движения как $\sigma_1^2,\ldots,\sigma_n^2$. Для i-й частицы у нас есть два k(i)-мерных вектора перемещений: $A_i^1,\ldots,A_i^{k(i)}$ по оси x и $A_i^{k(i)+1},\ldots,A_i^{2k(i)}$ по оси y. Мы будем рассматривать только частный случай, когда все k(i) равны k, а σ_i^2 непрерывна. A_i^1,\ldots,A_i^{2k} условно независимы при условии σ_i^2 и имеют условное распределение $\mathcal{N}\left(0,\sigma_i^2\right)$. Дальше вместо выборки A_i^1,\ldots,A_i^{2k} будем рассматривать доста-

точную статистику $Z_i = \sum_{i=1}^{2k} \left(A_i^j\right)^2$. Заметим далее, что $Z_i = \sigma_i^2 Y_i$, где $Y_i \sim \chi_{2k}^2$.

При этом, Y_i независимы и не зависят от дисперсии σ_i^2 .

Обозначим $X_i = \sigma_i^2$. Тогда задачу можно сформулировать так: X_1, \dots, X_n — независимые одинаково распределенные непрерывные случайные величины с неизвестным распределением и положительным носителем; Y_1, \dots, Y_n — независимые от них н.о.р. с.в. с распределением χ^2_{2k} ; $Z_1,\ldots,Z_n=X_1Y_1,\ldots,X_nY_n$ наблюдаемые случайные величины; а сама задача — по наблюдениям $Z_1,...,Z_n$ оценить распределение X_1 .

2 Предварительные сведения

Мы будем рассматривать дискретное вейвлет-преобразование. Сформулируем основные определения и свойства.

Определение. Материнский вейвлет — это функция $\psi(t)$, которая отвечает

следующему свойству:

$$\int_{0}^{\infty} \frac{\left|\hat{\psi}(\xi)\right|^{2}}{|\xi|} d\xi = \int_{-\infty}^{0} \frac{\left|\hat{\psi}(\xi)\right|^{2}}{|\xi|} d\xi < \infty,$$

где $\psi(\xi)$ – образ фурье $\psi(\xi)$.

Из этого свойства следует, что

$$\int_{-\infty}^{\infty} \psi(t)dt = 0.$$

Из материнского вейвлета $\psi(t)$ строится система вейвлетов

$$\psi_{m,n}(t) = \frac{1}{\sqrt{a^m}} \psi\left(\frac{t}{a^m} - nb\right).$$

В дальнейшем мы будем испольвать вейвлеты с a=2 и b=1. Таким образом, мы будем использовать систему:

$$\psi_{m,n}(t) = \frac{1}{\sqrt{2m}} \psi\left(\frac{t}{2^m} - n\right).$$

Часто система вейвлетов не является ортогональной, но образует фрейм.

Определение. Семейство ϕ_k является фреймом в $L_2(\mathbb{R})$, если существуют постоянные A и B такие, что

$$\forall f \in L_2(\mathbb{R}) \quad A||f||^2 \leqslant \sum_k |(f, \phi_k)|^2 \leqslant B||f||^2$$

Лемма. Если семейство ϕ_k образует фрейм, то

$$f = \frac{2}{A+B} \sum_{k} (f, \phi_k) \phi_k + Rf,$$

где

$$||R|| \leqslant \frac{B - A}{B + A}$$

Мы будем использовать два вейвлета: Mexican hat и вейвлет Мейера. Приведем их материнские функции.

Определение. Материнская функция вейвлета Mexican hat:

$$\psi(t) = \frac{2}{\sqrt{3}} \pi^{-1/4} \left(1 - t^2 \right) e^{-t^2/2}.$$

Определение. Материнская функция вейвлета Мейера:

$$\psi(t) = \psi_1(t) + \psi_2(t),$$

где

$$\psi_1(t) = \frac{\frac{4}{3\pi} \left(t - \frac{1}{2}\right) \cos\left(\frac{2\pi}{3} \left(t - \frac{1}{2}\right)\right) - \frac{1}{\pi} \sin\left(\frac{4\pi}{3} \left(t - \frac{1}{2}\right)\right)}{\left(t - \frac{1}{2}\right) - \frac{16}{9} \left(t - \frac{1}{2}\right)^3},$$

$$\psi_2(t) = \frac{\frac{8}{3\pi} \left(t - \frac{1}{2}\right) \cos\left(\frac{8\pi}{3} \left(t - \frac{1}{2}\right)\right) + \frac{1}{\pi} \sin\left(\frac{4\pi}{3} \left(t - \frac{1}{2}\right)\right)}{\left(t - \frac{1}{2}\right) - \frac{64}{9} \left(t - \frac{1}{2}\right)^3}.$$

Вейвлет Mexican hat образует фрейм с границами A = 3,223, B = 3,596, вейвлет Мейера является ортогональным, т. е. образует базис $L_2(\mathbb{R})$.

Также нам потребуются преобразование Лапласа и формула Меллина обратного преобразования Лапласа.

Определение. Преобразование лапласа функции f(t) – это функция $L_t[f](s)$, которая задается формулой

$$L_t[f](s) = \int_{0}^{\infty} f(t)e^{-st}dt.$$

Лемма (Формула Меллина). Пусть $F(s) = L_s[f](t)$ – преобразование Лапласа функции f(t). Тогда

$$f(t) = \frac{1}{2\pi i} \int_{0}^{\alpha + i\infty} e^{ts} ds,$$

где α такое, что контур лежит правее всех особенностей F(s) и F(s) ограничена на этом контуре.

3 Преобразование задачи для использования вейвлетов

Повторим задачу. Есть независимые одинаково распределенные непрерывные (н. о. р) положительные случайные величины (с. в.) X_1, \ldots, X_N с неизвестным распредлением. Есть н. о. р. с. в. Y_1, \ldots, Y_N с распределением $\chi^2(2k)$. Мы наблюдаем случайные величины Z_1, \ldots, Z_N , которые задаются как $Z_i = X_i Y_i$. Нужно оценить распределение X_1 .

Будем строить функции $g_{m,n}$ такие, что Е $g_{m,n}(Z) = \mathrm{E}\,\psi_{m,n}(X)$. Заметим, что достаточно выполнения:

$$\forall x \in \operatorname{Im} X \quad \operatorname{E} g_{m,n}(xY) = \psi_{m,n}(x).$$

Таким образом, нам нужно найти функции $g_{m,n}$ такие, что

$$\int_{0}^{\infty} g_{m,n}(xy) f_{Y}(y) dy = \psi_{m,n}(x).$$

Тогда

$$f_X(x) \approx \sum_{m,n} \mathcal{E} \psi_{m,n}(X) \psi_{m,n}(x) = \sum_{m,n} \mathcal{E} g_{m,n}(Z) \psi_{m,n}(x),$$

причем в случае с ортогональным вейвлетом здесь будет равенство.

Получаем оценку:

$$f_X(x) \approx \sum_{m,n} \sum_i \frac{g_{m,n}(z_i)}{N} \psi_{m,n}(x)$$

4 Аналитическое вычисление $g_{m,n}(t)$ для Mexican hat вейвлета

4.1 Вспомогательные леммы

В дальнейшем для вычислений нам понадобится несколько технических фактов. Сформулируем и докажем их в этом разделе.

Лемма 1 (О связи мат. ожидания χ^2_{2k} и преобразования Лапласа). Пусть $Y \sim \chi^2_{2k}$ с плотностью $f_Y(y), \ a>0$. Тогда

$$E g(aY) = \left(\frac{1}{2a}\right)^k \frac{1}{\Gamma(k)} L_z \left[g(z)z^{k-1}\right] \left(\frac{1}{2a}\right).$$

Доказательство. Раскроем математическое ожидание:

$$\operatorname{E} g(aY) = \int_{0}^{\infty} g(ay) f_{Y}(y) dy.$$

Подставим функцию плотности:

$$E g(aY) = \int_{0}^{\infty} g(ay) \frac{1}{\Gamma(k)} \frac{1}{2^{k}} y^{k-1} e^{-y/2} dy.$$

Подставим z = ay:

$$Eg(aY) = \int_{0}^{\infty} g(z) \frac{1}{\Gamma(k)} \frac{1}{2^{k}} \left(\frac{z}{a}\right)^{k-1} e^{-z/(2a)} \frac{dz}{a} = \left(\frac{1}{2a}\right)^{k} \frac{1}{\Gamma(k)} \int_{0}^{\infty} g(z) z^{k-1} \exp\left(-z\frac{1}{2a}\right) dz.$$

Заменим интеграл преобразованием Лапласа:

$$Eg(aY) = \left(\frac{1}{2a}\right)^k \frac{1}{\Gamma(k)} L_z \left[g(z)z^{k-1}\right] \left(\frac{1}{2a}\right).$$

Лемма 2 (Замена переменной в обратном преобразовании Лапласа). *Пусть существует* $L_u^{-1}[f(cu)](t), c > 0$. *Тогда*

$$L_u^{-1}[f(cu)](t) = L_s^{-1}\left[\frac{1}{c}f(s)\right]\left(\frac{t}{c}\right).$$

Доказательство. Воспользуемся формулой Меллина:

$$L_{u}^{-1}\left[f\left(cu\right)\right]\left(t\right) = \int_{\alpha-i\infty}^{\alpha+i\infty} e^{ut} f(cu) du = \frac{1}{c} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{(cu)(t/c)} f(cu) d\left(cu\right).$$

Произведем замену s = cu

$$L_u^{-1}\left[f\left(cu\right)\right](t) = \frac{1}{c} \int_{c\alpha-i\infty}^{c\alpha+i\infty} e^{s(t/c)} f(s) ds.$$

Заменим интеграл на обратное преобразование Лапласа

$$L_u^{-1}[f(cu)](t) = L_s^{-1}\left[\frac{1}{c}f(s)\right]\left(\frac{t}{c}\right)$$

Лемма 3 (Правильная часть произведения голоморфной функции и функции с нулевой положительной частью). Пусть f(z), g(z) — аналитические функции, коэффициента ряда Лорана для g(z) при положительных степенях нулевые, $\{a_n\}_{n=-\infty}^{\infty}$ — коэффициенты разложения в ряд Лорана функции f(z); $\{b_n\}_{n=-\infty}^{0}$ — коэффициенты разложения в ряд Лорана функции g(z).

Тогда в правильной части разложения в ряд Лорана произведения f(z)g(z) участвуют только коэффициенты правильной части функции f(z). При этом сам ряд имеет вид:

Доказательство. Разложим f(z)g(z) в ряд Лорана:

$$f(z)g(z) = \left(\sum_{n=-\infty}^{\infty} a_n z^n\right) \left(\sum_{m=-\infty}^{0} b_m z^m\right) = \sum_{k=-\infty}^{\infty} z^k \sum_{m=-\infty}^{0} a_{k-m} b_m.$$

Нас интересуют только правильная часть, поэтому рассматриваем коэффициенты при $k \ge 0$. При этом из ряда Лорана функции f(z) используются коэффициенты k-m. Принимая во внимание, что $k \ge 0$ и $m \le 0$, получаем, что $k-m \ge 0$. А значит, используется только правильная часть функции f(z).

Лемма 4 (Правильная часть ряда Лорана для $f(s) = e^{as}e^{-1/(2s^2)}$). Правильная часть ряда Лорана для функции

$$f(z) = e^{az}e^{-1/(2z^2)}$$

равна

$$\sum_{k=0}^{\infty} z^k \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}.$$

Доказательство. Заменим экспоненты рядами:

$$e^{az}e^{-1/(2z^2)} = \left(\sum_{n=0}^{\infty} \frac{(az)^n}{n!}\right) \left(\sum_{m=0}^{\infty} \frac{(-1/(2z^2))^m}{m!}\right).$$

Обе функции аналитичны в $\mathbb{C} \setminus \{0\}$, поэтому их ряды сходятся абсолютно. Находим ряд Лорана для f(z), перемножая по Коши эти два ряда:

$$e^{az}e^{-1/(2z^2)} = \sum_{k=-\infty}^{\infty} z^k \sum_{n-2m=k} \chi(n \ge 0) \chi(m \ge 0) \frac{a^n/(-2)^m}{n! \, m!}.$$

Тогда правильная часть:

$$\sum_{k=0}^{\infty} z^k \sum_{n-2m=k} \chi(n \ge 0) \chi(m \ge 0) \frac{a^n/(-2)^m}{n! \, m!} = \sum_{k=0}^{\infty} z^k \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}.$$

Лемма 5 (Правильная часть ряда Лорана для $f(z)=e^{az}e^{-1/(2s^2)}e^{n/s}$). Пусть $k\geq 0;\; nycmb$

$$f(z) = e^{az}e^{-1/(2z^2)}e^{b/z}.$$

Тогда к-й член ряда Лорана для f равен

$$\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^{2m+k+l}/(-2)^m}{(2m+k+l)! \, m!} \frac{n^l}{l!}.$$

Доказательство. Определим

$$g(z) = e^{az}e^{-1/(2z^2)}$$

 $h(z) = e^{b/z}$.

Обе функции аналитичны в $\mathbb{C}\setminus\{0\}$. Поэтому их ряды сходятся абсолютно и мы можем умножить ряды по Коши, чтобы получить ряд Лорана для f.

У функции $e^{n/z}$ положительная часть нулевая. Поэтому, согласно лемме 3 о правильной части произведения голоморфной функции и функции с нулевой положительной частью, нам достаточно знать только правильную часть разложения функции g, которую мы нашли в предыдущей лемме 4.

Пусть $\{\alpha_n\}_{n=-\infty}^{\infty}$ — коэффициенты разложения g(z) в ряд Лорана, $\{\beta_n\}_{n=-\infty}^{0}$ — коэффициенты разложения h(z), а $\{\gamma_n\}_{n=-\infty}^{\infty}$ — коэффициенты разложения f.

Приведем формулу k-го члена их произведения, где $k \ge 0$:

$$\gamma_k = \sum_{l=-\infty}^{0} \alpha_{k-l} \beta_l = \sum_{l=0}^{\infty} \alpha_{k+l} \beta_{-l}.$$

Формулу для α_k возьмем из леммы 4:

$$\alpha_k = \sum_{m=0}^{\infty} \frac{a^{2m+k}/(-2)^m}{(2m+k)! \, m!}.$$

И выпишем формулу для β_{-k} :

$$\beta_{-k} = \frac{n^k}{k!}.$$

Подставим α_k и β_{-k} в формулу для γ_k :

$$\gamma_k = \sum_{l=0}^{\infty} \alpha_{k+l} \beta_{-l} = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^{2m+k+l}/(-2)^m}{(2m+k+l)! \, m!} \frac{n^l}{l!}.$$

Лемма Жордана позволяет использовать основную теорему о вычетах для интеграла по контуру $(-\infty,\infty)$. Обратное преобразование Лапласа можно найти, используя интеграл Меллина. Этот интеграл использует контур $(\alpha-i\infty,\alpha+i\infty)$. Если мы модифицируем лемму Жордана, чтобы она использовала контур в виде левой полуокружности с центром в α , то сможем использовать основную теорему о вычетах для вычисления обратного преобразования Лапласа.

Лемма 6 (Модифицированная лемма Жордана). Пусть α , t, $R_0 > 0$, функция F(s) непрерывна в области

$$G = \{s \mid \operatorname{Re} s \le \alpha\} \cap \{s \mid |s - \alpha| \ge R_0 > 0\}$$

Обозначим C_R — полуокружность $|z-\alpha|=R$ в области G. И пусть выполняется:

$$\lim_{R \to \infty} \sup_{s \in C_R} |F(s)| = 0.$$

Tог ∂a

$$\lim_{R \to \infty} \int_{C_R} e^{ts} F(s) ds = 0.$$

Доказательство. Для наглядности схематично изобразим контур интегрирования и область G:

Рис. 1: контур и область

По условию,

$$\forall \varepsilon > 0 \ \exists R \ \forall s \in C_R \ |F(s)| = |F(\alpha + Re^{i\varphi})| < \varepsilon,$$

тогда

$$\left| \int_{C_R} e^{ts} F(s) ds \right| \le \int_{C_R} \left| e^{ts} F(s) \right| |ds| \le \varepsilon \int_{C_R} \left| e^{ts} \right| |ds|.$$

На полуокружности C_R мы можем представить экспоненту e^{ts} в виде:

$$|e^{ts}| = |e^{t(\alpha + R\cos\varphi + Ri\sin\varphi)}| = e^{t(\alpha + R\cos\varphi)}.$$

Подставим это в интеграл:

$$\varepsilon \int_{C_R} \left| e^{st} \right| \left| ds \right| = \varepsilon \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} e^{\alpha t + Rt \cos \varphi} \left| d \left(Re^{i\varphi} \right) \right|$$

И упростим его:

$$\varepsilon \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} e^{\alpha t + Rt \cos \varphi} \left| d \left(Re^{i\varphi} \right) \right| = \varepsilon \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left| e^{\alpha t + Rt \cos \varphi} Rie^{i\varphi} \right| d\varphi = R\varepsilon e^{\alpha t} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} e^{Rt \cos \varphi} d\varphi$$

$$= R\varepsilon e^{\alpha t} \int_{0}^{\pi} e^{Rt \cos(\varphi + \frac{\pi}{2})} d\varphi = R\varepsilon e^{\alpha t} \int_{0}^{\pi} e^{-Rt \sin \varphi} d\varphi = 2R\varepsilon e^{\alpha t} \int_{0}^{\frac{\pi}{2}} e^{-Rt \sin \varphi} d\varphi.$$

На отрезке $[0,\frac{\pi}{2}]$ выполняется: $\sin \varphi \geq \frac{2}{\pi} \varphi$. А значит,

$$2R\varepsilon e^{\alpha t} \int_{0}^{\frac{\pi}{2}} e^{-Rt\sin\varphi} d\varphi \le 2R\varepsilon e^{\alpha t} \int_{0}^{\frac{\pi}{2}} e^{-Rt\frac{2}{\pi}\varphi} d\varphi = .$$

Этот интеграл уже легко вычисляется:

$$2R\varepsilon e^{\alpha t} \int_{0}^{\frac{\pi}{2}} e^{-Rt\frac{2}{\pi}\varphi} d\varphi = 2R\varepsilon e^{\alpha t} \left(\frac{1}{-\frac{2Rt}{\pi}} e^{-\frac{2Rt\varphi}{\pi}} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi\varepsilon}{t} e^{\alpha t} \left(1 - e^{-Rt} \right).$$

Получившаяся функции стремится к нулю при $R \to \infty$. Отсюда интеграл по дуге стремится к 0.

4.2 Сведение задачи к вычислению обратного преобразования Лапласа

Рассмотрим только случай $X_i > \delta > 0$.

Мы будем использовать вейвлет «Mexican hat», потому что он прост и непрерывен. Его формула:

$$\psi(t) = \frac{2}{\sqrt{3}\pi^{1/4}}(1-t^2)e^{-t^2/2}.$$

Определим элементы фрейма:

$$\psi_{m,n}(t) = \frac{1}{\sqrt{2^m}} \psi\left(\frac{t}{2^m} - n\right) = \frac{1}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(1 - \left(\frac{t}{2^m} - n\right)^2\right) e^{-\left(\frac{t}{2^m} - n\right)^2/2}.$$

Напишем плотность Y_i :

$$f_Y(y) = \frac{1}{2^k} \frac{1}{\Gamma(k)} y^{k-1} e^{-y/2}.$$

Раскроем $E g_{m,n}(xY)$:

$$E g_{m,n}(xY) = \int_{0}^{\infty} g_{m,n}(xy) f_Y(y) dy = \int_{0}^{\infty} g_{m,n}(xy) \frac{1}{2^k} \frac{1}{\Gamma(k)} y^{k-1} e^{-y/2} dy.$$

Произведем замену z = xy:

$$E g_{m,n}(xY) = \frac{1}{2^k} \frac{1}{\Gamma(k)} \int_0^\infty g_{m,n}(z) \frac{z^{k-1}}{x^{k-1}} e^{-z/(2x)} \frac{dz}{x}$$
$$= \left(\frac{1}{2x}\right)^k \frac{1}{\Gamma(k)} \int_0^\infty g_{m,n}(z) z^{k-1} \exp\left(-z\frac{1}{2x}\right) dz.$$

Заменим интеграл преобразованием Лапласа:

$$E g_{m,n}(xY) = \left(\frac{1}{2x}\right)^k \frac{1}{\Gamma(k)} L_z \left[g_{m,n}(z)z^{k-1}\right] \left(\frac{1}{2x}\right).$$

Получаем функциональное уравнение:

$$\left(\frac{1}{2x}\right)^k \frac{1}{\Gamma(k)} L_z \left[g_{m,n}(z) z^{k-1} \right] \left(\frac{1}{2x}\right) = \psi_{m,n}(x) = \left(\frac{1}{\sqrt{2}}\right)^m \psi \left(\frac{x}{2^m} - n\right)$$

Сделаем замену $u = \frac{1}{2x}$:

$$u^{k} \frac{1}{\Gamma(k)} L_{z} \left[g_{m,n}(z) z^{k-1} \right] (u) = \left(\frac{1}{\sqrt{2}} \right)^{m} \psi_{m,n} \left(\frac{1}{2^{m+1} u} - n \right).$$

Перенесем множители в правую часть:

$$L_z\left[g_{m,n}(z)z^{k-1}\right](u) = \frac{\Gamma(k)}{u^k} \left(\frac{1}{\sqrt{2}}\right)^m \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n\right).$$

Произведем обратное преобразование Лапласа:

$$g_{m,n}(z)z^{k-1} = L_u^{-1} \left[\frac{\Gamma(k)}{u^k} \left(\frac{1}{\sqrt{2}} \right)^m \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (z).$$

Выразим $g_{m,n}(z)$:

$$g_{m,n}(z) = \frac{1}{z^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (z). \tag{1}$$

Итак, нам нужно вычислить:

$$L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1} u} - n \right) \right] (t).$$

Подставим вместо ψ формулу нашего вейвлета:

$$L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \left(1 - \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \exp \left(-\frac{1}{2} \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \right] (t).$$

Введем обозначение:

$$r_{m,n}(u) = \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2}\left(\frac{1}{2^{m+1}u} - n\right)\right).$$

И сразу воспользуемся им:

$$L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) = L_u^{-1} \left[\left(1 - \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) r_{m,n}(u) \right] (t).$$

Распишем множитель перед экспонентой:

$$1 - \left(\frac{1}{2^{m+1}u} - n\right)^2 = 1 - \left(\frac{1}{2^{2(m+1)}u^2} - 2\frac{1}{2^{m+1}u}n + n^2\right) =$$

$$= \left(1 - n^2\right) + \frac{1}{u}\left(\frac{n}{2^m}\right) - \frac{1}{u^2}\left(\frac{1}{4^{m+1}}\right).$$

Таким образом,

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) =$$

$$= \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) -$$

$$- \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t). \quad (2)$$

Отсюда видно, что достаточно найти $L_u^{-1}[\frac{1}{u^k}r_{m,n}(u)](t)$ для каждого k.

4.3 Нахождение $L_u^{-1}[\frac{1}{u^k}r_{m,n}(u)](t)$

Выше мы ввели

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t).$$

Подставим обратно $r_{m,n}(u)$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2} \left(\frac{1}{2^{m+1}u} - n \right)^2 \right) \right] (t).$$

Раскроем квадрат под экспонентой:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) =$$

$$= L_u^{-1} \left[\frac{1}{u^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{1}{2} \left(\left(n^2 \right) - \frac{1}{u} \left(\frac{n}{2^m} \right) + \frac{1}{u^2} \left(\frac{1}{4^{m+1}} \right) \right) \right) \right] (t).$$

Сгруппируем $2^{m+1}u$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) =$$

$$= L_u^{-1} \left[\frac{2^{k(m+1)}}{(2^{m+1}u)^k} \frac{2}{\sqrt{3}\pi^{1/4}} \exp\left(-\frac{n^2}{2} + \frac{n}{2^{m+1}u} - \frac{1}{2(2^{m+1}u)^2}\right) \right] (t).$$

Вынесем множители, не зависящие от u, за L_u^{-1} :

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) =$$

$$= e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_u^{-1} \left[\frac{1}{(2^{m+1}u)^k} \exp\left(\frac{n}{2^{m+1}u} - \frac{1}{2(2^{m+1}u)^2}\right) \right] (t).$$

Используя лемму 2 о замене переменной в обратном преобразовании Лапласа, делаем замену $s=2^{m+1}u$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right).$$

4.4 Вычисление обратного преобразование Лапласа

В предыдущем разделе мы выразили:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) = e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right). \tag{3}$$

Чтобы вычислить правую часть, найдем теперь

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau). \tag{4}$$

Воспользуемся формулой Меллина обратного преобразования Лапласа. У данной функции особенность только в нуле, поэтому можно взять любое число $\alpha > 0$:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds.$$

Берем контур $C=C_1+C_2$, где C_1 — искомый, а C_2 — дуга окружности (слева от C_1 с центром в $(\alpha,0)$).

Оценим $F(s):=(1/s^k)e^{-1/(2s^2)}e^{n/s}$ на C_r , где $r>4\alpha$. Для этого оценим каждый из множителей. Сначала 1/s:

$$\left| \frac{1}{s} \right| = \left| \frac{1}{\alpha + re^{i\phi}} \right| = \frac{1}{\sqrt{\left(\alpha + r\cos\phi\right)^2 + \left(r\sin\phi\right)^2}} = \frac{1}{r\sqrt{\left(\frac{\alpha}{r} + \cos\phi\right)^2 + \sin^2\phi}} \le \frac{1}{r\sqrt{1 + \frac{2\alpha\cos\phi}{r}}} \le \frac{1}{r\sqrt{1 + \frac{\cos\phi}{2}}} \le \frac{\sqrt{2}}{r}.$$

Теперь оценим $e^{-1/(2s^2)}$ на том же контуре. Известно, что $|e^z|=e^{|z|}$

$$\left| \exp\left(-\frac{1}{2s^2}\right) \right| \le \exp\left(\left|-\frac{1}{2s^2}\right|\right) = \exp\left(\frac{1}{r^2}\right).$$

Рис. 2: Наглядное изображение контура.

Аналогично оцениваем $e^{n/s}$:

$$\left| \exp\left(\frac{n}{s}\right) \right| \le \exp\left(\left|\frac{n}{s}\right|\right) = \exp\left(\frac{|n|\sqrt{2}}{r}\right).$$

Объединяем оценки и получаем:

$$\left| \frac{1}{s^k} \exp\left(-\frac{1}{2s^2} \right) \exp\left(\frac{n}{s} \right) \right| \le \left(\frac{\sqrt{2}}{r} \right)^k \exp\left(\frac{1}{r^2} \right) \exp\left(\frac{|n|\sqrt{2}}{r} \right) \xrightarrow[r \to \infty]{} 0.$$

А значит, по лемме Жордана $\int\limits_{C_r} e^{s\tau} F(s) ds$ стремится к нулю. Поэтому можем использовать основную теорему о вычетах:

$$\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds = \frac{1}{2\pi i} 2\pi i \operatorname{Res}_{0} \left(e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds \right).$$

У нас возникает два случая: n=0 и $n\neq 0$

4.4.1 Случай n = 0

Воспользуемся леммой 4 о правильной части функции $e^{s\tau}e^{-1/(2s^2)}$. Нам нужен k-1-й член ряда Лорана. Получаем:

$$\frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/(2s^2)} e^{n/s} ds = \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1}/(-2)^j}{(2j+k-1)! \, j!}.$$

Таким образом, мы вычислили выражение 4 для n = 0:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1}/(-2)^j}{(2j+k-1)! \, j!}.$$

Подставим этот ряд в выражение 3, заменяя τ на $t/2^{m+1}$:

$$L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right] (t) =$$

$$= e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right) =$$

$$e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+k-1}/(-2)^j}{(2j+k-1)! j!}.$$

Наконец, подставим получившееся выражение в формулу 2:

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) =$$

$$= \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) +$$

$$+ \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t) =$$

$$= \left(1 - n^{2} \right) e^{-\frac{n^{2}}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1} / (-2)^{j}}{(2j+k-1)! j!} +$$

$$+ \left(\frac{n}{2^{m}} \right) e^{-\frac{n^{2}}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k} / (-2)^{j}}{(2j+k)! j!} -$$

$$- \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^{2}}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1} / (-2)^{j}}{(2j+k+1)! j!}. \quad (5)$$

Теперь получим выражение для g(t), подставляя только что полученную формулу в выражение 1:

$$\begin{split} g_{m,n}(t) &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right](t) = \\ &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(1 - n^2 \right) e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1} / (-2)^j}{(2j+k-1)! \, j!} + \\ &\quad + \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{n}{2^m} \right) e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k} / (-2)^j}{(2j+k)! \, j!} - \\ &\quad - \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^2}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1} / (-2)^j}{(2j+k+1)! \, j!}. \end{split}$$

Теперь упростим выражение. Вынесем из суммы, степень, не зависящую от переменной суммирования и сделаем замену n=0 (так как рассматриваем

именно этот случай):

$$g_{m,0}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k-1)! j!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k+1)! j!} \right).$$

4.4.2 Случай $n \neq 0$

Воспользуемся леммой 5 о правильной части функции $e^{s\tau}e^{-1/(2s^2)}e^{n/s}$. Нам нужен k-1-й член ряда Лорана. Получаем:

$$\frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} e^{s\tau} \frac{1}{s^k} e^{-1/2s^2} e^{n/s} ds = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1+i}/(-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!}.$$

Таким образом, мы вычислили выражение 4 для $n \neq 0$:

$$L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s}\right) \exp\left(-\frac{1}{2s^2}\right) \right] (\tau) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\tau^{2j+k-1+i}/(-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!}.$$

Подставим это выражение в выражение 3, заменяя τ на $t/2^{m+1}$:

$$\begin{split} L_u^{-1} \left[\frac{1}{u^k} r_{m,n}(u) \right](t) &= \\ &= e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} L_s^{-1} \left[\frac{1}{s^k} \exp\left(\frac{n}{s} - \frac{1}{2s^2}\right) \right] \left(\frac{t}{2^{m+1}}\right) = \\ &= e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+k-1+i} / (-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!}. \end{split}$$

Наконец, подставим это в формулу 2:

$$L_{u}^{-1} \left[\frac{1}{u^{k}} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right] (t) =$$

$$= \left(1 - n^{2} \right) L_{u}^{-1} \left[\frac{1}{u^{k}} r_{m,n}(u) \right] (t) + \left(\frac{n}{2^{m}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+1}} r_{m,n}(u) \right] (t) +$$

$$+ \left(\frac{1}{4^{m+1}} \right) L_{u}^{-1} \left[\frac{1}{u^{k+2}} r_{m,n}(u) \right] (t) =$$

$$= \left(1 - n^{2} \right) e^{-\frac{n^{2}}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1+i} / (-2)^{j}}{(2j+k-1+i)! j!} \frac{n^{i}}{i!} +$$

$$+ \left(\frac{n}{2^{m}} \right) e^{-\frac{n^{2}}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+i} / (-2)^{j}}{(2j+k+i)! j!} \frac{n^{i}}{i!} -$$

$$- \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^{2}}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1+i} / (-2)^{j}}{(2j+k+1+i)! j!} \frac{n^{i}}{i!}. \quad (6)$$

Теперь получим выражение для $g_{m,n}(t)$, подставляя только что полученную формулу в выражение 1

$$\begin{split} g_{m,n}(t) &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} L_u^{-1} \left[\frac{1}{u^k} \psi_{m,n} \left(\frac{1}{2^{m+1}u} - n \right) \right](t) = \\ &= \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(1 - n^2 \right) e^{-\frac{n^2}{2}} 2^{(k-1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k-1+i} / (-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!} + \\ &\quad + \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{n}{2^m} \right) e^{-\frac{n^2}{2}} 2^{k(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+i} / (-2)^j}{(2j+k+i)! \, j!} \frac{n^i}{i!} - \\ &\quad - \frac{1}{t^{k-1}} \frac{\Gamma(k)}{\sqrt{2^m}} \left(\frac{1}{4^{m+1}} \right) e^{-\frac{n^2}{2}} 2^{(k+1)(m+1)} \frac{2}{\sqrt{3}\pi^{1/4}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}} \right)^{2j+k+1+i} / (-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!}. \end{split}$$

Упростим:

$$g_{m,n}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} e^{-\frac{n^2}{2}} \frac{2}{\sqrt{3}\pi^{1/4}} \left((1-n^2) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i}/(-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!} + \left(\frac{nt}{2^m}\right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i}/(-2)^j}{(2j+k+i)! \, j!} \frac{n^i}{i!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i}/(-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!} \right).$$

4.5 Результат

Выпишем обе полученные формулы вместе:

$$g_{m,0}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} \frac{2}{\sqrt{3}\pi^{1/4}} \left(\sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k-1)! j!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j}/(-2)^j}{(2j+k+1)! j!} \right).$$

$$g_{m,n}(t) = \frac{\Gamma(k)}{\sqrt{2^m}} e^{-\frac{n^2}{2}} \frac{2}{\sqrt{3}\pi^{1/4}} \left((1 - n^2) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i} / (-2)^j}{(2j+k-1+i)! \, j!} \frac{n^i}{i!} + \left(\frac{nt}{2^m}\right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i} / (-2)^j}{(2j+k+i)! \, j!} \frac{n^i}{i!} - \left(\frac{t^2}{4^{m+1}}\right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{\left(\frac{t}{2^{m+1}}\right)^{2j+i} / (-2)^j}{(2j+k+1+i)! \, j!} \frac{n^i}{i!} \right).$$

К сожалению, такой способ не привел к успеху из-за непригодности для численных методов.

5 Уравнение Фредгольма

Выпишем еще раз интегральное уравнение 3:

$$\psi_{m,n}(x) = \int_{0}^{\infty} g(xy) f_Y(y) dy.$$

Введем замену z = xy:

$$\psi_{m,n}(x) = \int_{0}^{\infty} g(xy) f_Y\left(\frac{xy}{x}\right) d\frac{xy}{x} = \int_{0}^{\infty} g(z) \frac{1}{x} f_Y\left(\frac{z}{x}\right) dz.$$

Таким образом, мы получили интегральное уравнение Фредгольма первого рода:

$$\psi_{m,n}(x) = \int_{0}^{\infty} K(x,z)g(z)dz,$$

где

$$K(x,z) = \frac{1}{x} f_Y\left(\frac{z}{x}\right).$$

5.1 Дискретизация

Будем использовать равномерную сетку $\left[\frac{1}{n_x},\dots,\frac{l_xn_x}{n_x}\right]$ для $x,\left[\frac{1}{n_z},\dots,\frac{l_zn_z}{n_z}\right]$ для z. Для вычисления интеграла используем метод прямоугольников. Дискретизируем функции $K(x,z),\,g_{m,n}(z),\,\psi_{m,n}(x)$:

$$K[x,z] = \begin{cases} K\left(\frac{k_x n_x}{n_x}, \frac{k_z n_z}{n_z}\right), \text{ если } z \in \left[\frac{k_z n_z}{n_z}, \frac{(k_z+1)n_z}{n_z}\right), \\ 0, \text{ иначе.} \end{cases}$$

$$g_{m,n}[z] = \begin{cases} g\left(\frac{k_z n_z}{n_z}\right), \text{ если } z \in \left[\frac{k_z n_z}{n_z}, \frac{(k_z+1)n_z}{n_z}\right), \\ 0, \text{ иначе.} \end{cases}$$

$$\psi_{m,n}[x] = \begin{cases} \psi_{m,n}\left(\frac{k_x n_x}{n_x}\right), \text{ если } x \in \left[\frac{k_x n_x}{n_x}, \frac{(k_x+1)n_x}{n_x}\right), \\ 0, \text{ иначе.} \end{cases}$$

Таким образом,

$$\int\limits_{0}^{\infty}K[x,z]g[z]dz=\frac{1}{n_{z}}\sum_{j=1}^{l_{z}n_{z}}K\left[x,\frac{j}{n_{z}}\right]g_{m,n}\left[\frac{j}{n_{z}}\right].$$

Заменяя $\psi_{m,n}(x)$ на дискретизированную версию, получаем систему уравнений:

$$\begin{cases} \psi_{m,n} \left[\frac{1}{n_x} \right] = \frac{1}{n_z} \sum_{j=1}^{l_z n_z} K \left[\frac{1}{n_x}, \frac{j}{n_z} \right] g_{m,n} \left[\frac{j}{n_z} \right], \\ \dots \\ \psi_{m,n} \left[\frac{l_x n_x}{n_x} \right] = \frac{1}{n_z} \sum_{j=1}^{l_z n_z} K \left[\frac{l_x n_x}{n_x}, \frac{j}{n_z} \right] g_{m,n} \left[\frac{j}{n_z} \right]. \end{cases}$$

Построим матрицу K и векторы $g, \psi_{m,n}$:

$$(\boldsymbol{K})_{i,j} = K \left[\frac{i}{n_x}, \frac{j}{n_z} \right],$$

$$(\boldsymbol{g}_{m,n})_j = g_{m,n} \left[\frac{j}{n_z} \right],$$

$$(\boldsymbol{\psi}_{m,n})_i = \psi \left[\frac{i}{n_x} \right].$$

Запишем систему уравнений в матричном виде:

$$\psi_{m,n} = \frac{1}{n_z} K g_{m,n}.$$

5.2 МНК-оптимизация с l_2 -регуляризацией

Определение. Пусть K — матрица, f — вектор. Рассмотрим уравнение:

$$f = Kg$$

где g неизветно.

Пусть $\alpha>0$ — некоторое число, называемое параметром регуляризации. Тогда МНК-оптимизация с l_2 —регуляризацией есть

$$oldsymbol{g}_* = rg \min_{q} \left(\| oldsymbol{K} oldsymbol{g} - oldsymbol{f} \|^2 + lpha^2 \| oldsymbol{g} \|^2
ight).$$

Построим матрицу $ilde{m{K}}$, увеличив матрицу $m{K}$, чтобы добавить регуляризацию:

$$\tilde{\boldsymbol{K}} = \begin{pmatrix} \boldsymbol{K} \\ \alpha \boldsymbol{E} \end{pmatrix}.$$

И соответствующий $ilde{f}$:

$$ilde{f} = egin{pmatrix} f \ 0 \end{pmatrix}$$
 .

И будем использовать МНК-оптимизацию. Получаем:

$$oldsymbol{g}_{m,n}^* = rg \min_{oldsymbol{g}} \| ilde{oldsymbol{K}} oldsymbol{g} - oldsymbol{f} \|.$$

Покажем, что это эквивалентно определению МНК-оптимизации с l_2 -регуляризацией. В силу неотрицательности нормы и монотонности функции x^2 , выполняется:

$$oldsymbol{g}_{m,n}^* = rg\min_{oldsymbol{g}} \| ilde{oldsymbol{K}} oldsymbol{g} - ilde{oldsymbol{f}}\| = rg\min_{oldsymbol{g}} \| ilde{oldsymbol{K}} oldsymbol{g} - ilde{oldsymbol{f}}\|^2$$

Заметим, что в данном случае квадрат нормы есть сумма квадратов строк векторов. Поэтому выполняется:

$$\boldsymbol{g}_{m,n}^* = \operatorname*{arg\,min}_{\boldsymbol{g}} \left(\|\boldsymbol{K}\boldsymbol{g} - \boldsymbol{f}\|^2 + \|\alpha \boldsymbol{E}\boldsymbol{g} - \boldsymbol{0}\|^2 \right) = \operatorname*{arg\,min}_{\boldsymbol{g}} \left(\|\boldsymbol{K}\boldsymbol{g} - \boldsymbol{f}\|^2 + \alpha^2 \|\boldsymbol{g}\|^2 \right)$$

5.3 Градиентный спуск

Вместо процедур для решения МНК-задачи мы можем использовать метод градиентного спуска. Будем использовать матричное представление

$$\boldsymbol{\psi}_{m,n} = \frac{1}{n_z} \boldsymbol{K} \boldsymbol{g}_{m,n}.$$

Тогда можно ввести функцию потери $L(\pmb{\psi}_{m,n}, \hat{\pmb{\psi}}_{m,n})$, где $\hat{\pmb{\psi}}_{m,n} = \pmb{K}\hat{\pmb{g}}_{m,n}$, а $\hat{\pmb{g}}_{m,n}$ — оценка для $\pmb{g}_{m,n}$.

В частности, будем рассматривать следующие функции потерь:

- l_1 -потеря: $L(x, y) = ||x y||_1$;
- l_2 -потеря: $L(\boldsymbol{x}, \boldsymbol{y}) = ||x y||_2$;
- функция потери Хьюбера:

$$L(x,y) = \begin{cases} \frac{1}{2}(x-y)^2, \text{ при } |x-y| \leqslant 1\\ |x-y| - \frac{1}{2}, \text{ при } |x-y| > 1 \end{cases}.$$

$$L(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{k} \sum_{i=1}^{k} L(x_i, y_i)$$

Для каждой из них будем использовать l_1 - или l_2 -регуляризацию. Для l_1 - регуляризации:

$$\tilde{L}(\psi_{m,n}, \hat{\psi}_{m,n}) = L(\psi_{m,n}, \hat{\psi}_{m,n}) + \alpha \|g_{m,n} - \hat{g}_{m,n}\|_{1}.$$

Для l_2 -регуляризации:

$$\tilde{L}(\psi_{m,n}, \hat{\psi}_{m,n}) = L(\psi_{m,n}, \hat{\psi}_{m,n}) + \alpha^2 ||g_{m,n} - \hat{g}_{m,n}||_2^2$$

Алгоритм оптимизации методом градиентного спуска с параметром β стандартен:

1. Берем произвольный начальный вектор $\boldsymbol{g}_{m,n}^0$.

- 2. Вычисляем $\psi_{m,n}^0 = K g_{m,n}^0$.
- 3. Вычисляем $L^0 = \tilde{L}(m{\psi}_{m,n}, m{\psi}_{m,n}^0)$
- 4. Считая компоненты g_1^0, \ldots, g_k^0 вектора $\boldsymbol{g}_{m,n}^0$ переменными, а $L^0 = L^0(a_1^0, \ldots, a_k^0)$ функцией от компонент вектора $\boldsymbol{g}_{m,n}^0$, вычисляем частные производные b_i :

$$b_i^0 = \frac{\partial L^0(a_1^0, \dots, a_k^0)}{\partial a_i}.$$

- 5. Берем $\mathbf{g}_{m,n}^1 = (a_1^0 \beta b_0^0, \dots, a_k^0 \beta b_k^0).$
- 6. Повторяем шаги 1-5, пока либо L не станет меньше некоторого заранее заданного числа, либо количество повторений превысит некоторое заранее заданное число

5.4 Итеративные методы

В статье [1] рассматриваются итеративные методы решения задачи Фредгольма первого рода: аддитивный и мультипликативный.

В приложении к задаче аддитивный метод использует следующие итерации:

$$g_{m,n;k}(z) = g_{m,n;k-1}(z) + \int_{0}^{\infty} K(x,z)(\psi_{m,n}(x) - \psi_{m,n;k-1}(x))dx,$$

где

$$\psi_{m,n;k}(x) = \int_{0}^{\infty} K(x,z)g_{m,n;k}(z)dz.$$

Для мультипликативного метода используются следующие итерации:

$$g_{m,n;k}(z) = \frac{g_{m,n;k-1}(z)}{\int_0^\infty K(x,z)dx} \int_0^\infty \frac{K(x,z)\psi_{m,n;k-1}(x)}{\psi_{m,n;k}(x)} dx,$$

$$\psi_{m,n;k}(x) = \int_{0}^{\infty} K(x,z)g_{m,n;k}(z)dz.$$

Этот метод работает только для неотрицательных $\psi_{m,n}(x)$ и $g_{m,n}(z)$. В случае, когда эти функции могут принимать отрицательные значения, мы фиксируем число t такое, что $\psi_{m,n}(x)+t\geq 0$ и $g_{m,n}(z)+t\geq 0$, и решаем следующее эквивалентное уравнение:

$$\tilde{\psi}_{m,n}(x) = \int_{0}^{\infty} K(x,z)\tilde{g}_{m,n}(z)dz,$$

где

$$\tilde{g}_{m,n}(z) = g_{m,n}(z) + t,$$

$$\tilde{\psi}_{m,n}(x) = \psi_{m,n}(x) + t \int_{0}^{\infty} K(x,z)dz.$$

6 Поправка для оценок

Оценка, полученная нашим методом не всегда является функцией распределения. Поэтому будем использовать поправку, предложенную в статье [2] В ней рассматриваются два случая. Пусть \hat{f}_X — оценка функции плотности f_X .

В случае, когда выполняется:

$$\int_{0}^{\infty} \max(\hat{f}_X(x), 0) dx > 1,$$

исправленная оценка $\tilde{f}_X(x)$ определяется как:

$$\tilde{f}_X(x) = \max(0, \hat{f}_X(x) - \xi),$$

где ξ выбирается так, чтобы выполнялось

$$\int_{0}^{\infty} \tilde{f}_X(x) dx = 1.$$

В случае, когда выполняется:

$$\int_{0}^{\infty} \max(\hat{f}_X(x), 0) dx > 1,$$

исправленная оценка $\tilde{f}_X(x)$ определяется следующим образом. Фиксируем параметр M>0 и положим

$$ilde{f}_X(x) = ilde{f}_X(x; M) = egin{cases} \max(0, \hat{f}_X(x)) + \eta_M, \text{ для } |x| \leqslant M, \\ \max(0, \hat{f}_X(x)), \text{ для } |x| > M, \end{cases}$$

где

$$\eta_M = \frac{1}{2M} \left(1 - \int \max(0, \hat{f}_X(x)) dx \right).$$

7 Эксперименты

Для аналитического способа.

in and in the leavest of the cook.				
Функция	Способ вычисления	Машинная точность	Значение	
		(размер мантиссы),		
$g_{0,0}(1)$	численно, интеграл,	100 десятичных знаков	0.864	
	контур $[1 - 100i, 1 + 100i]$			
	численно, ряд	256 двоичных знаков	0.864	
$g_{0,0}(10)$	численно, интеграл	100 десятичных знаков	0.591	
	контур $[1 - 100i, 1 + 100i]$			
	численно, ряд	256 двоичных знаков	0.591	
$g_{0,0}(100)$	численно, интеграл	100 десятичных знаков	-2×10^{19}	
	контур $[1-10i, 1+10i]$			
	численно, ряд	256 двоичных знаков	-0.440	

Для численного вычисления интеграла. Мы использовали шаг 0,1 и $\alpha=0,1$. И использовали $m=\{-5,\dots,5\},\ n=\{-5,\dots,5\}.$

Рис. 3: $X \sim \mathcal{N}(0, 1)$

Рис. 4: $X \sim \exp(1)$

Рис. 5: $X \sim \chi_5^2$

Рис. 6: Сравнение функций ошибок для метода градиентного спуска

Рис. 7: Сравнение методов градиентного спуска, итеративного и МНКоценки

Рис. 8: МНК-оценка для смеси нормальных распределений

Рис. 9: Оценка методом градиентного спуска для смеси нормальных распределений

Рис. 10: Оценка итеративным методом для смеси нормальных распределений

8 Обобщение на случай разных длин траекторий

Мы строили функции вида:

$$E g_{m,n}(XY) = E \psi_{m,n}(X) = c_{m,n}$$

и находили оценку плотности как

$$f_X(x) = c_{m,n} \psi_{m,n}(x).$$

Теперь рассмотрим случай, когда длины траекторий могут различаться. Для каждой длины k построим функции $g_{m,n,k}$, как описано выше, и построим оценку $f_{X,k}(x)$

Пусть для длины траектории k у нас есть s_k наблюдений. И всего S наблюдений Тогда оценкой $f_X(x)$ будет:

$$\sum_{k=1}^{K} \frac{s_k f_{X,k}(x)}{S}.$$

Докажем это. Разложим f_X в ряд по вейвлету:

$$f_X(x) = \sum_{m,n} c_{m,n} \psi_{m,n}(x).$$

Раскроем вейвлет-коэффициенты:

$$f_X(x) = \sum_{m,n} \operatorname{E} \psi_{m,n}(X) \psi_{m,n}(x) = \sum_{m,n} \operatorname{E} g_{m,n}(XY) \psi_{m,n}(x).$$

Представим математическое ожидание в виде математического ожидания условного математического ожидания при условии длины траектории:

$$f_X(x) = \sum_{m,n} E_k \left(E\left(g_{m,n}(XY) \mid k\right) \right) \psi_{m,n}(x).$$

По линейности математического ожидания, можем внести сумму внутрь:

$$f_X(x) = \mathcal{E}_k \left(\sum_{m,n} \mathcal{E}(g_{m,n}(XY)|k) \psi_{m,n}(x) \right).$$

Вычислим вейвлет-коэффициенты:

$$f_X(x) = \mathcal{E}_k \left(\sum_{m,n} c_{m,n,k} \psi_{m,n}(x) \right).$$

Заменим вейвлет-разложение на оригинальную функцию:

$$f_X(x) = \mathcal{E}_k f_{X,k}(x).$$

Получаем оценку:

$$f_X(x) = \sum_{k=1}^K \frac{s_k f_{X,k}(x)}{S}.$$

9 Вывод

Лучшие результаты показывает МНК-оценка.

Оценка методом градиентного спуска более шумная, но позволяет использовать существенно более точный шаг дискретизации, так как возможно пожертвовать произодительностью и не вычислять матрицу K заранее, что существенно снижает требования к количеству видеопамяти.

Итеративная оценка показывает неудовлетворительные результаты и сходится крайне медленно: разница между 1000 итераций и 10000 итераций несущественна.

Поправка для оценок плотностей несильно улучшает оценку.

Список литературы

- [1] Minwoo Chae, Ryan Martin и Stephen G. Walker. "On an algorithm for solving Fredholm integrals of the first kind". B: *Statistics and Computing* 29.4 (июль 2019), c. 645—654. ISSN: 1573-1375. DOI: 10.1007/s11222-018-9829-z. URL: https://doi.org/10.1007/s11222-018-9829-z.
- [2] Ingrid K. Glad, Nils Lid Hjort u Nikolai G. Ushakov. "Correction of Density Estimators That Are Not Densities". B: Scandinavian Journal of Statistics 30.2 (2003), c. 415—427. ISSN: 03036898, 14679469. URL: http://www.jstor.org/stable/4616772.