COMP 9602: Convex Optimization

Decomposition Methods

Dr. C Wu

Department of Computer Science The University of Hong Kong

Roadmap

Theory	convex set
	convex function
	standard forms of optimization problems, quasi-convex optimization
	linear program, integer linear program
	quadratic program
	geometric program
	semidefinite program
	vector optimization
	duality
Algorithm	unconstrained optimization
	equality constrained optimization
	interior-point method
	subgradient methods
	localization methods
	decomposition methods
	and more

Decomposition methods

- ☐ Break a problem into smaller ones and solve each of the smaller ones separably, either in parallel or sequentially
- Problems
 - Separable problems
 - problems with complicating variables
 - problems with complicating constraints
- Decomposition methods
 - primal decomposition
 - dual decomposition

Separable problems

minimize
$$f_1(x_1) + f_2(x_2)$$

subject to $x_1 \in \mathcal{C}_1, \quad x_2 \in \mathcal{C}_2$

ullet we can solve for x_1 and x_2 separately (in parallel)

Problems with complicating variables

consider unconstrained problem,

minimize
$$f(x) = f_1(x_1, y) + f_2(x_2, y)$$

$$x = (x_1, x_2, y)$$

• y is the **complicating variable** or **coupling variable**; when it is fixed the problem is separable in x_1 and x_2

Primal decomposition method

fix y and define

```
subproblem 1: \min_{x_1} f_1(x_1, y) subproblem 2: \min_{x_2} f_2(x_2, y)
```

with optimal values $\phi_1(y)$ and $\phi_2(y)$

master problem

minimize_y
$$\phi_1(y) + \phi_2(y)$$

- can solve master problem using
 - bisection (if y is scalar)
 - gradient or Newton method (if ϕ_i differentiable)
 - subgradient, cutting-plane, or ellipsoid method
- each iteration of master problem requires solving the two subproblems

Primal decomposition method (cont'd)

Algorithm sketch

```
Given y^{(0)}, k=0; Repeat solve two subproblems to derive x_1, x_2 update y^{(k)} to y^{(k+1)} based on the algorithm to solve the master problem
```

Primal decomposition method (cont'd)

Example (solve master problem using the subgradient method)

```
Given y^{(0)}, k=0; Repeat find x_1 that minimizes f_1(x_1,y), g_1\in\partial\phi_1(y) find x_2 that minimizes f_2(x_2,y), g_2\in\partial\phi_2(y) update y^{(k+1)}=y^{(k)}-\alpha_k(g_1+g_2)
```

Problems with complicating constraints

minimize
$$f_1(x_1)+f_2(x_2)$$
 subject to $x_1\in\mathcal{C}_1, \quad x_2\in\mathcal{C}_2$ $h_1(x_1)+h_2(x_2)\preceq 0$

- f_i , h_i , C_i convex
- $h_1(x_1) + h_2(x_2) \leq 0$ is a set of p complicating or coupling constraints, involving both x_1 and x_2
- can interpret coupling constraints as limits on resources shared between two subproblems

Dual decomposition method

form (separable) partial Lagrangian

$$L(x_1, x_2, \lambda) = f_1(x_1) + f_2(x_2) + \lambda^T (h_1(x_1) + h_2(x_2))$$

= $(f_1(x_1) + \lambda^T h_1(x_1)) + (f_2(x_2) + \lambda^T h_2(x_2))$

Lagrange dual

$$g(\lambda) = \underset{x_1 \in C_1, x_2 \in C_2}{\text{minimize}} (f_1(x_1) + \lambda^T h_1(x_1)) + (f_2(x_2) + \lambda^T h_2(x_2))$$

dual problem

maximize
$$g(\lambda)$$

s.t. $\lambda \succeq 0$

Dual decomposition method (cont'd)

fix dual variable λ and define

subproblem 1: minimize
$$f_1(x_1) + \lambda^T h_1(x_1)$$
 subject to $x_1 \in \mathcal{C}_1$

subproblem 2:
$$\begin{array}{c} \text{minimize} \quad f_2(x_2) + \lambda^T h_2(x_2) \\ \text{subject to} \quad x_2 \in \mathcal{C}_2 \end{array}$$

with optimal values
$$g_1(\lambda)$$
, $g_2(\lambda)$ $(g(\lambda) = g_1(\lambda) + g_2(\lambda))$

- $-h_i(\bar{x}_i) \in \partial(-g_i)(\lambda)$, where \bar{x}_i is any solution to subproblem i
- $\bullet (h_1(\bar{x}_1) + h_2(\bar{x}_2)) \in \partial(-g)(\lambda)$

Dual decomposition method (cont'd)

Lagrangian relaxation and subgradient method

repeat

- 1. Solve the subproblems.
 - Solve subproblem 1, finding an optimal \bar{x}_1 .
 - Solve subproblem 2, finding an optimal \bar{x}_2 .
- 2. Update dual variables (prices).

$$\lambda := (\lambda + \alpha_k(h_1(\bar{x}_1) + h_2(\bar{x}_2)))_+.$$

- ullet α_k is an appropriate step size
- iterates need not be feasible
- can again construct feasible primal variables using projection

Same idea as projected subgradient method on dual problem (pp. 24, 13_Subgradient_C9602_Fall2018.pdf)

Problem setup

- ullet n flows, with fixed routes, in a network with m links
- variable $f_j \ge 0$ denotes the rate of flow j
- flow utility is $U_j: \mathbf{R} \to \mathbf{R}$, strictly concave, increasing
- ullet traffic t_i on link i is sum of flows passing through it
- ullet t=Rf, where R is the routing matrix

$$R_{ij} = \begin{cases} 1 & \text{flow } j \text{ passes over link } i \\ 0 & \text{otherwise} \end{cases}$$

• link capacity constraint: $t \leq c$

Rate control problem:

maximize
$$U(f) = \sum_{j=1}^{n} U_{j}(f_{j})$$
 subject to $Rf \preceq c$

- convex problem
- dual decomposition gives decentralized method

Dual decomposition rate control algorithm:

given initial link price vector $\lambda \succ 0$ (e.g., $\lambda = 1$). repeat

- 1. Sum link prices along each route. Calculate $\Lambda_j = r_j^T \lambda$.
- 2. Optimize flows (separately) using flow prices. $f_j := \operatorname{argmax} (U_j(f_j) \Lambda_j f_j).$
- 3. Calculate link capacity margins.

$$s := c - Rf$$
.

4. Update link prices.

$$\lambda := (\lambda - \alpha_k s)_+.$$

- decentralized:
 - links only need to know the flows that pass through them
 - flows only need to know prices on links they pass through

Generating feasible flow rates:

- iterates can be (and often are) infeasible, i.e., $Rf \not \leq c$ (but we do have $Rf \leq c$ in the limit)
- ullet define $\eta_i=t_i/c_i=(Rf)_i/c_i$
 - $-\eta_i < 1$ means link i is under capacity
 - $-\eta_i > 1$ means link i is over capacity
- ullet define $f^{
 m feas}$ as

$$f_j^{\mathrm{feas}} = \frac{f_j}{\max\{\eta_i \mid \mathsf{flow}\; j \; \mathsf{passes} \; \mathsf{over} \; \mathsf{link} \; i\}}$$

Convergence

- n=10 flows, m=12 links; 3 or 4 links per flow
- link capacities chosen randomly, uniform on [0.1, 1]
- $U_j(f_j) = \log f_j$
- ullet optimal flow as a function of price: $ar{f}_j = \operatorname{argmax}(U_j(f_j) \Lambda_j f_j) = 1/\Lambda_j$
- initial prices: $\lambda = 1$ constant stepsize $\alpha_k = 3$

Reference

Decomposition methods: decomposition_notes.pdf (reference 8 on Moodle) Chapter 7.6, Dimitri P. Bertsekas, Nonlinear Programming (3rd edition), Athena Scientific, 2016

Acknowledgement

Some materials are extracted from the slides created by Prof. Stephen Boyd for his course EE364b in Stanford University