T03: OpenMP - Two Vectors of double precision numbers addition/Multiplication
CS24M1005 - SINDHIYA R

Write OpenMP Parallel Code for Two Vector addition of Double Precision Floating Point Numbers. Give input very large at least 1 million - You can dump larger double precision values in a file and read from it and perform the vector addition.

CODE FOR INPUT GENERATION:

```
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <ctime>
using namespace std;
#define N 1000000 // At least 1 million numbers
int main() {
  ofstream fout("vectors.txt");
  srand(time(0));
  for (int i = 0; i < N; i++) {
    double num1 = (double)rand() / RAND MAX * 1000000.0;
    double num2 = (double)rand() / RAND MAX * 1000000.0;
    fout << num1 << " " << num2 << "\n";
  }
  fout.close();
  cout << "Data file generated with " << N << " pairs of numbers.\n";
  return 0;
```

1) Parallel Code Using for Vector Addition - 5 Marks

```
#include <iostream>
#include <fstream>
#include <vector>
#include <omp.h>
using namespace std;
#define N 1000000
int main() {
  vector<double> vec1(N), vec2(N), result(N);
  ifstream fin("vectors.txt");
  // Read data from file
  for (int i = 0; i < N; i++)
    fin >> vec1[i] >> vec2[i];
  fin.close();
  int thread counts[] = {1, 2, 4, 6, 8, 10, 12, 16, 20, 32, 64}; // Different thread
configurations
  int num_configs = sizeof(thread_counts) / sizeof(thread_counts[0]);
  cout << "Threads\tTime (sec)" << endl;</pre>
  for (int t = 0; t < num configs; <math>t++) {
    int num_threads = thread_counts[t];
    double start_time = omp_get_wtime();
    #pragma omp parallel for num threads(num threads)
    for (int i = 0; i < N; i++) {
      result[i] = vec1[i] + vec2[i];
```

```
double end_time = omp_get_wtime();
  cout << num_threads << "\t" << (end_time - start_time) << " sec" << endl;
}
return 0;
}</pre>
```

Output:

```
sindhiya@MSI:/mnt/c/HPC/t03$ g++ add1.cpp -o add1 -fopenmp
sindhiya@MSI:/mnt/c/HPC/t03$ ./add1
Threads Time (sec)
        0.00726798 sec
       0.00278199 sec
2
4
        0.00363957 sec
6
        0.00787628 sec
8
       0.00913791 sec
10
        0.0105499 sec
       0.00452051 sec
12
16
       0.00951925 sec
20
       0.00231995 sec
32
        0.0030359 sec
64
        0.00540781 sec
```

2) Parallel Code Using for Vector Multiplication - 5 Marks

```
#include <iostream>
#include <fstream>
#include <vector>
#include <omp.h>

using namespace std;
#define N 1000000

int main() {
    vector<double> vec1(N), vec2(N), result(N);
    ifstream fin("vectors.txt");
```

```
// Read data from file
 for (int i = 0; i < N; i++)
    fin >> vec1[i] >> vec2[i];
  fin.close();
  int thread counts[] = {1, 2, 4, 6, 8, 10, 12, 16, 20, 32, 64}; // Different thread
configurations
  int num configs = sizeof(thread counts) / sizeof(thread counts[0]);
 cout << "Threads\tTime (sec)" << endl;</pre>
  for (int t = 0; t < num configs; t++) {
    int num_threads = thread_counts[t];
    double start_time = omp_get_wtime();
    #pragma omp parallel for num_threads(num_threads)
    for (int i = 0; i < N; i++) {
      result[i] = vec1[i] * vec2[i]; // Multiplication instead of addition
    }
    double end time = omp get wtime();
    cout << num threads << "\t" << (end time - start time) << " sec" << endl;
  return 0;
```

Output:

```
sindhiya@MSI:/mnt/c/HPC/t03$ g++ mul1.cpp -o mul1 -fopenmp
sindhiya@MSI:/mnt/c/HPC/t03$ ./mul1
Threads Time (sec)
        0.00484121 sec
2
        0.00301108 sec
4
        0.0250633 sec
6
        0.0205393 sec
8
        0.0158828 sec
10
        0.0158498 sec
12
        0.0166916 sec
16
        0.0196053 sec
20
        0.00219072 sec
32
        0.00349032 sec
64
        0.00682338 sec
```

3) Report - Thread vs Time - (run the parallel code with 1, 2, 4, 6, 8, 10, 12, 16, 20, 32, 64 Processors) - 10 Marks

Threads	Time (Addition) (sec)	Time (Multiplication) (sec)
1	0.00726798	0.00484121
2	0.00278199	0.00301108
4	0.00363957	0.0250633
6	0.00787628	0.0205393
8	0.00913791	0.0158828
10	0.0105499	0.0158498
12	0.00452051	0.0166916
16	0.00951925	0.0196053
20	0.00231995	0.00219072
32	0.0030359	0.00349032
64	0.00540781	0.00682338

Report (Thread vs Time):

- 1. **Vector Addition** benefits more from parallelization compared to multiplication.
- 2. Ideal thread count for best performance is **20 threads** for both operations.
- 3. Beyond 20 threads, scaling efficiency drops due to increasing thread management overhead.
- 4. Multiplication performs worse at higher thread counts, likely due to increased data dependency or higher memory access latency.

4) Plot Speedup vs Processors - 5 Marks

Speed Up is calculated by

$$S(P) := T(1)/\dot{T}(P)$$

Where **P** denoted number of processor and T denotes Time taken by that particular thread.

Processor	Time (Addition) (sec)	Time (Multiplication) (sec)	Speedup (Addition)	Speedup (Multiplication)
1	0.00726798	0.00484121	1	1
2	0.00278199	0.00301108	2.6132	1.6079
4	0.00363957	0.0250633	1.9975	0.1932
6	0.00787628	0.0205393	0.9237	0.2357
8	0.00913791	0.0158828	0.7959	0.3048
10	0.0105499	0.0158498	0.6889	0.3055
12	0.00452051	0.0166916	1.6085	0.2901
16	0.00951925	0.0196053	0.7637	0.247
20	0.00231995	0.00219072	<mark>3.1337</mark>	<mark>2.2107</mark>
32	0.0030359	0.00349032	2.3945	1.3879
64	0.00540781	0.00682338	1.3447	0.7096

5) Estimate Parallelization fraction and Inference - 5 Marks

To estimate the parallelization fraction (f) for maximum speedup, we use Amdahl's Law:

$$T(P) = (f/P)*T(1) + (1-f)*T(1)$$

Rearrange to solve for f,

$$f = (1 - T(P)/T(1))/(1 - (1/P))$$

Metric	Vector Addition	Vector Multiplication
Max Speedup S(P)	3.1337	2.2107
Processors at Max	20	20
Speedup (N)		
Parallelization fraction f	0.717 (~72%)	0.576 (~58%)

Inference:

- 1. Addition has a higher parallelization fraction (72%) than multiplication (58%), indicating that vector addition benefits more from parallel execution.
- 2. **Multiplication has a lower speedup and parallelization fraction**, suggesting potential bottlenecks such as **memory bandwidth limitations** or **synchronization overhead**.
- 3. **Maximum speedup occurs at P=20 for both operations**, meaning that beyond this point, adding more threads does not significantly improve performance.
- 4. Speedup decreases beyond P=20, likely due to memory contention, cache thrashing, or increased thread management overhead.
- 5. For small thread counts (P=2,4), speedup is close to ideal for addition but poor for multiplication, implying that multiplication has more serial dependencies.
- Unexpected performance dips at P=4 suggest possible load imbalance issues or poor data locality affecting memory access speeds.
- 7. Addition experiences a speedup greater than 3× at P=20, surpassing theoretical expectations based on Amdahl's Law, which could be due to better workload distribution at that specific thread count.

- 8. Multiplication does not scale well beyond P=10, which might indicate higher dependency on sequential operations or floating-point computational overhead.
- 9. Speedup at P=64 is significantly lower than at P=20, confirming that excessive parallelization can lead to diminishing returns due to resource contention and thread synchronization costs.

Note: All the calculation are done in excel and it is attached for your reference