電子所 R10943170 連德宇

1. (40%)

Calculate the operation number of each layer of MobileNetV2 on ImageNet (1000 classes), including the conventional convolutional layer, depth-wise convolutional layer, point-wise convolutional layer, and fullyconnected layer.

Network architecture of MobileNetV2

Input	Operator	Output	
$h \times w \times k$ $h \times w \times tk$ $\frac{h}{s} \times \frac{w}{s} \times tk$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{c} h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \end{array}$	

Table 1: Bottleneck residual block transforming from kto k^\prime channels, with stride s, and expansion factor t.

Input	Operator	t	c	n	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 imes 24$	bottleneck	6	32	3	2
$28^2 imes 32$	bottleneck	6	64	4	2
$14^2 imes 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^{2} \times 160$	bottleneck	6	320	1	1
$7^{2} \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Sol:

根據講義 p55,

Conventional convolution layer's operation number = $[(Ci \times kw \times kh) + (Ci \times kw \times kh - 1)] \times Co \times Wo \times Ho$

$$\cong k^2 \times Ci \times Co \times (output \ size)^2$$

Bottleneck:

Expand layer's operation number = $[Ci + (Ci - 1)] \times Co \times (Wo \times Ho)^2$

$$\cong Ci^2 \times t \times (input \ size)^2$$

Depth-wise convolution layer's operation number = $[(kw \times kh) + (kw \times kh - 1)] \times Ci \times t \times Wo \times Ho$

$$\cong k^2 \times Ci \times t \times (\frac{input \, size}{s})^2$$

Point-wise convolution layer's operation number = $[Ci \times t + (Ci \times t - 1)] \times Co \times Wo \times Ho$

$$\cong Ci \times t \times Co \times (\frac{input \ size}{s})^2$$

 $\cong Ci \times t \times Co \times (\frac{input \ size}{S})^2$ the total of the Bottleneck is $\cong [Ci \times t \times (input \ size)^2] \times (Ci + (\frac{k^2}{s^2}) + (\frac{Co}{s^2}))$

Layer:

- $9*3*32*112^2 = 10838016$ 1:
- $[32 \times 1 \times (112)^2] \times \left(32 + \left(\frac{3^2}{1^2}\right) + \left(\frac{16}{1^2}\right)\right) = 22880256$
- $[16 \times 6 \times (112)^2] \times (16 + (\frac{3^2}{2^2}) + (\frac{24}{2^2})) + 56^2 \times 6 \times 24 \times (24 + 9 + 24) = 54942720$ 3:
- $[24 \times 6 \times (56)^2] \times (24 + (\frac{3^2}{2^2}) + (\frac{32}{2^2})) + 28^2 \times 6 \times 32 \times (32 + 9 + 32) \times 2 = 37443840$ 4:
- $[32 \times 6 \times (28)^2] \times (32 + (\frac{3^2}{2^2}) + (\frac{64}{2^2})) + 14^2 \times 6 \times 64 \times (64 + 9 + 64) \times 3 = 38497536$ 5:
- $[64 \times 6 \times (14)^2] \times (64 + (\frac{3^2}{1^2}) + (\frac{96}{1^2})) + 14^2 \times 6 \times 96 \times (96 + 9 + 96) \times 2 = 58103808$
- $[96 \times 6 \times (14)^2] \times (96 + {3^2 \choose 2^2} + {160 \choose 2^2}) + 7^2 \times 6 \times 160 \times (160 + 9 + 160) \times 2 = 46560192$ 7:
- $[160 \times 6 \times (7)^2] \times (160 + (\frac{3^2}{1^2}) + (\frac{320}{1^2})) = 23002560$
- $1^2 \times 320 \times 1280 \times 7^2 = 20070400$
- 10: avgpool
- $1^2 \times 1280 \times 1000 \times 1^2 = 1280000$ 11:
- fully-connected $1000 \times 1000 = 1000000$ 12:

Total = 314619328 operations

- 2. Now we compare the arithmetic intensity of the the networks.
- (a) (10%+10%+10%+10%)

Compare the arithmetic intensity of the <u>conventional convolutional</u> layer, <u>depth-wise convolutional</u> layer, <u>point-wise convolutional</u> layer, and <u>fully-connected</u> layer.

- * Please represent the answer by: C_{in} , C_{out} , W_{in} , W_{out} , H_{in} , H_{out} , k_w , k_h C_{in} denotes the input depth (or input channel); C_{out} denotes the kernel number (or output channel); $W_{in/out}$ denotes the input/output image width; $H_{in/out}$ denotes the input/output image heights. k_w and k_h denote the width/height of the kernel.
- * We supposed **all kinds of convolutional layers have the same shape**. That is, C_{in} , C_{out} , W_{in} , H_{in} , W_{out} , and H_{out} are identical. Conventional convolutional layer and depth-wise convolutional layer have the same k_w and k_h . For the fully connected layer, the input dimension is $I = C_{in} \times W_{in} \times H_{in}$, and the output dimension is $O = C_{out} \times W_{out} \times H_{out}$.
- (b) (20%)

Following (a), based on the comparison result, explain the mechanism to raise the arithmetic intensity.

Sol:

(a)

	Parameters	Operations	Arithmetic intensity
conventional convolutional layer	kw*kh* Cin*Cout	kw*kh*Hout*Wout*Cin*Cout	Hout*Wout
depth-wise convolutional layer	kw*kh* Cin	kw*kh*Hout*Wout*Cin	Hout*Wout
point-wise convolutional layer	Cin*Cout	Cout *Hout*Wout*Cin	Hout*Wout
fully-connected layer	Cin*Hin*Win*Cout*Hout*Wout	Cin*Hin*Win*Cout*Hout*Wout	1

(b)

For the purpose of increase the arithmetic intensity, we should use conventional convolutional layer, depth-wise convolutional layer and point-wise convolutional layer as more as possible rather than use the fully-connected layer.