Table of Contents

L	List of Symbols12					
L	ist of Abbreviations	reviations15				
1	Introduction	17				
	1.1 Historical Notes	17				
	1.2 Overview of the Work	20				
	1.3 Contributions of the Author	21				
	1.4 Related Publications	22				
2	Digital Waveguide Modeling	25				
	2.1 Waveguide Modeling of Strings					
	2.1.1 Wave Equation and the Traveling Wave Solution	25				
	2.1.2 Incorporating Losses and Dispersion	26				
	2.1.3 Karplus–Strong Algorithm and Its Extensions	27				
	2.1.4 Calibration of the Waveguide String Model	29				
	2.1.5 Excitation Signal of the Waveguide String Model	32				
	2.1.6 Discussion	33				
	2.2 Waveguide Modeling of Cylindrical Tubes					
	2.2.1 The One-Dimensional Wave Equation					
	2.2.2 A Model Composed of Coupled Uniform Tube Sections					
	2.2.3 KL Scattering Junction for Volume Velocity Waves					
	2.2.4 KL Scattering Junction for Pressure Waves					
	2.2.5 Boundary Conditions of a Cylindrical Tube					
	2.2.6 General Properties of the Cylindrical Tube Model					
	2.2.7 Sparse Tube Model					
	2.2.8 Extensions to the Basic KL Model					
	2.3 Junction of Three Acoustic Tubes					
	2.3.1 Three-Port Scattering Junction for Volume Velocity					
	2.3.2 Three-Port Scattering Junction for Sound Pressure					
	2.3.3 Side Branch in a Uniform Tube					
	2.4 Waveguide Modeling of Conical Tubes					
	2.4.1 Traveling Wave Solution for Spherical Waves					
	2.4.2 Junction of Conical Tube Sections					
	2.4.3 Reflection Function with Taper Discontinuity Only					
	2.4.4 Closed and Open End of a Truncated Conical Tube					
	2.4.5 Discrete-Time Reflection and Transmission Filters					
	2.4.6 Stability of the Reflection Filter					
	2.4.7 Modeling the Ends of a Conical Tube					
	2.4.8 Conclusions and Discussion					
	2.5 Waveguide Models for Wind Instruments					
	2.5.1 Need for Finger-Hole Models					
	2.5.2 Modeling of a Single Woodwind Finger Hole					
	2.5.3 Discrete-Time Scattering Junction					
	2.6 Relation to Other Methods	62.				

	2.6.1	Comparison of Waveguide Filters and Wave Digital Filters	63
	2.6.2	Reverberation and Simulation of Room Acoustics	63
	2.7 Conc	lusions	64
3	Fractiona	al Delay Filters	65
	3.1 Ideal	Fractional Delay	65
	3.1.1	Continuous-Time System for Arbitrary Delay	65
		Discrete-Time System for Arbitrary Delay	
		Fractional Delay and Shannon Reconstruction	
		Characteristics of the Ideal Fractional Delay Element	
		Conclusion and Discussion	
	_	gn Methods for Fractional Delay FIR Filters	
		Least Squared Integral Error Design	
		LS Design with Reduced Bandwidth	
		Windowing the Ideal Impulse Response	
	3.2.4	General Least Squares FIR Approximation of a Complex Frequence	-
		Response	
		Minimax Design of FIR FD Filters	
		Other Methods for the Design of FIR FD Filters	
		mally Flat FD FIR Filter: Lagrange Interpolation	
		Derivation of the Maximally Flat Fractional Delay FIR Filter	
		Classical Approach	
		Symmetry of the Lagrange Interpolation Coefficients	
		Computation of Coefficients for a Lagrange Interpolator	
		Windowing Approach to Lagrange Interpolation	
		Approximation Errors of Lagrange Interpolation	
		Farrow Structure of Lagrange Interpolation	
		Related Polynomial Interpolation Techniques	
		Conclusion and Discussion	
		gn Methods for Fractional Delay Allpass Filters	
		Properties of the Discrete-Time Allpass Filter	
		Design of Fractional Delay Allpass Filters	
		Maximally Flat Group Delay Design of FD Allpass Filters	
		Choice of Optimal Range for <i>D</i> in the Thiran Interpolator	
		Discussion	
		-Varying Fractional Delay Filters	
		Consequences of Changing Filter Coefficients	
		Implementation of a Variable Delay Using FIR Filters	
		Transients in Time-Varying Recursive FD Filters	
		Transient Elimination Methods for Time-Varying Recursive Filters	
		A Novel and Efficient Method for Elimination of Transients	
		Examples with a Time-Varying Thiran Allpass Filterlusions	125 126
	- D.O. C.ONC	liisions	I Z.D

Table of Contents

4	Fra	ctiona	ıl Delay Waveguide Filters	. 128	
	4.1	Deint	erpolation	.128	
		4.1.1	Introduction to Deinterpolation	.128	
		4.1.2	Deinterpolation Versus Interpolation	.130	
		4.1.3	Implementing Deinterpolation Using an FIR Filter	.131	
		4.1.4	Adding a Signal to a Fractional Point of a Delay Line Using an FIR		
			Deinterpolator	.133	
		4.1.5	Discussion	.134	
	4.2	Fracti	onal Delay Waveguide Systems	.135	
		4.2.1	Variable-Length Digital Waveguide	.135	
		4.2.2	Connecting Waveguides at Arbitrary Points	.136	
	4.3	Interp	oolated Waveguide Tube Model	.137	
		4.3.1	Interpolated Scattering Junction	.138	
		4.3.2	Implementing the FD Scattering Junction Using FIR Filters	.140	
		4.3.3	Transfer Functions of FIR Interpolators and Deinterpolators	.142	
			Choice of FIR FD Filter Design		
		4.3.5	Reflection and Transmission Functions	.145	
		4.3.6	Analysis of Errors Due to FD Approximation	.148	
		4.3.7	Simulation of a Two-Tube System Using FIR FD Filters	.150	
			Conclusion		
	4.4		oolated Finger-Hole Model		
		4.4.1	FIR-Type Fractional-Delay Finger-Hole Model	.154	
			Approximation Error Due to FD Filters		
		4.4.3	Implementation Issues	.157	
	4.5		onal Delay Operations with Allpass Filters		
		4.5.1	Implementing a Variable Delay Line Using an Allpass Filter	.158	
			Implementing Interpolation and Deinterpolation with Allpass Filters.		
	4.6	-	oolated Waveguide Model: Allpass Filter Approach		
			Derivation of the Allpass Fractional Delay Junction		
			Approximation Errors due to an Allpass Fractional Delay Junction		
			Simulation of a Two-Tube Model with Allpass Filters		
			Alternative Allpass Filter Structure		
			ss Fractional Delay Finger-Hole Model		
	4.8	Concl	lusions	.168	
_	Conclusions and Further Research				
3			nary and Conclusions		
			estions for Future Work		
	3.2	Sugge	estions for future work	.170	
R	efere	ences		. 172	
\mathbf{A}	ppen	ıdix A.	Bandlimited Squared Integral Error of FIR FD Filters	. 184	
A -	nn o	dir D	Effective Length of the Infinite Impulse Decreases	106	
A]	ppen	iuix B.	Effective Length of the Infinite Impulse Response	. 190	
In	dex	•••••		. 193	