fabl: Fast Beta Linkage

Brian Kundinger

Overview

- ▶ Many record linkage methods are derived from Fellegi and Sunter's "A Theory for Record Linkage" (1969)
- ► Transform the F fields of information among the n_A records in File A and the n_B records in File B into a $n_A n_B \times F$ matrix of comparison vectors Γ .
- ▶ Comparisons for each field f are binned to integers $\{1, \ldots, L_f\}$, with 1 being the highest level of agreement
 - Common to use {1,2} to reflect exact agreement or disagreement, and {1,2,3} to allow for partial agreement

Comparison Vector Example

Comparison Vector Example

Modelling Comparison Vectors

- Comparison vectors are modelled though *reliability* parameters $\mathbf{m} = (\mathbf{m}^1, \dots, \mathbf{m}^F)$ and *discernment* parameters $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^F)$
- $ightharpoonup m^{fl} = P(\gamma^f = I | \text{Match}) \text{ and } u^{fl} = P(\gamma^f = I | \text{Nonmatch})$
- $ightharpoonup m_{ij} = P(\gamma_{ij}|\mathsf{Match}) = \prod_{f=1}^F \prod_{l=1}^{L_f} m^{fl} \times I(\gamma_{ij}^f = I)$
- u_{ij} defined similarly
- $ightharpoonup w_{ij} = \frac{m_{ij}}{u_{ii}}$, the Fellegi-Sunter weight

Modelling Linkage Structure

▶ To indicate matching status, we adopt the *linkage structure* parameter $\mathbf{Z} = (Z_1, \dots, Z_{n_B})$ defined as

$$Z_j = \begin{cases} i, & \text{if records } i \in A \text{ and } j \in B \text{ refer to the same entity;} \\ n_A + 1, & \text{if record } j \in B \text{ does not have a match in file } A; \end{cases}$$

▶ More efficient than a $n_A \times n_B$ matrix

Modelling Linkage Structure

- ▶ Fellegi-Sunter (1969) made *independent* classification decisions for all $n_A n_B$ record pairs.
- Sadinle (2017) made *dependent* matching decisions for the n_B records in B, strictly enforcing one-to-one matching
- With Fast Beta Linkage (fabl, pronounced "fable") We make independent matching decisions for the n_B records in B, which sometimes violates one-to-one, but allows for much faster computation

Model Specification

For fields $f \in \{1, ..., F\}$ and levels $I \in \{1, ..., L_f\}$ we adopt the following likelihood and prior distributions.

$$P(\Gamma | \mathbf{Z}, \mathbf{m}, \mathbf{u}, \lambda) = \prod_{j=1}^{n_B} \prod_{i=1}^{n_A} \mathbf{m}_{ij}^{\mathbf{1}_{z_j = i}} \mathbf{u}_{ij}^{\mathbf{1}_{z_j \neq i}}$$
 $\mathbf{m}^{\mathbf{f}} \sim \operatorname{Dirichlet}(\alpha^{f1}, \dots, \alpha^{fL_f})$
 $\mathbf{u}^{\mathbf{f}} \sim \operatorname{Dirichlet}(\beta^{f1}, \dots, \beta^{fL_f})$
 $Z_j | \lambda = \begin{cases} \frac{1}{n_A} \lambda & z_j \leq n_A; \\ 1 - \lambda & z_j = n_A + 1 \end{cases}$
 $\lambda \sim \operatorname{Beta}(\alpha_\lambda, \beta_\lambda)$

Gibbs Sampling

- m, u, and λ are standard multinomial-dirichlet and beta-binomial updates
- ▶ We sample Z_j independently from all other $Z_{j'}$, but dependent on the **Z** vector from the previous iteration. The full conditional is

$$P\left(Z_{j}^{(s+1)}=i|\mathbf{m},\mathbf{u},\mathbf{Z}^{(s)}\right)\propto\begin{cases}w_{ij} & i\leq n_{A};\\n_{A}\frac{n_{B}-D+\beta_{\lambda}}{D+\alpha_{\lambda}} & i=n_{A}+1\end{cases}$$

Efficient Computation

- ▶ Let $\mathcal{H} = \{h_1, \dots, h_P\}$ be the set of unique agreement patterns in the data. Note that $P \leq \prod_{f=1}^F L_f$.
- When the (i,j) pair exhibits the p^{th} agreement pattern, we say $(i,j) \in h_p$
- ▶ Wherever possible, utilize $P << n_A$ to speed up computation

Efficient Computation

- ▶ Rather than compute w_{ij} for all $n_A n_B$ record pairs, we can compute w_p for each agreement pattern.
- ▶ $H_p = \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} \mathbf{1}_{(i,j) \in h_p}$, the total instances of agreement pattern p throughout the data. Use this to speed up posterior updates for \mathbf{m} and \mathbf{u} .
- For each j, calculate $H_{p_j} = \sum_{i=1}^{n_A} \mathbf{1}_{(i,j) \in h_p}$ the instances of agreement pattern p among the comparison vectors between record $j \in B$ and each of the n_A records in A. Use this to speed up sampling of \mathbf{Z}

Breaking Up the Z Sampler

- \triangleright Sampling n_A objects with varying probabilities difficult
- ► Sampling *P* objects with varying probabilities is easy
- Sampling H_{p_j} (can be very large) objects with *uniform* probabilities is also easy
- For a record $j \in B$, each record $i \in A$ with a given agreement pattern has the same probability of matching. That is, the unique patterns form *equivalence classes*, and within a class, each record is equally likely.

Breaking Up the Z Sampler

More concretely, define $h(Z_j)$ to be the agreement pattern between j and its potential match, and say $h(Z_j) = h_{P+1}$ when $Z_j = n_A + 1$. We sample the agreement pattern through:

$$h\left(Z_{j}^{(s+1)}\right)|\mathbf{m},\mathbf{u},\mathbf{Z}^{(s)}\propto\begin{cases} w_{p}\times H_{p_{j}} & p\leq P; \\ n_{A}rac{n_{B}-D+eta_{\lambda}}{D+lpha_{\lambda}} & p=P+1 \end{cases}$$

► Then, we sample the record for the match uniformly among candidate records

Speed Gains

