(20) Œuvre d'art en or massif

Deux artistes, Colétin et Rosario, veulent fabriquer deux œuvres d'art en or massif de même volume, suivant les schémas ci-dessous.

L'unité de longueur est le centimètre.

- L'œuvre d'art n° 1 est constituée de deux pavés droits :
 - un pavé droit supérieur mesurant x cm de long,
 3 cm de large et 2 cm de haut;
 - un pavé droit inférieur de 7 cm de long, de x cm de large et x cm de haut.
 - Montrer que la mesure V_1 du volume de l'œuvre d'art n° 1 s'exprime en fonction de x sous la forme : $V_2(x) = 7x^2 + 6x$.

2. L'œuvre d'art n° 2 est constituée :

FF = 3 et FG = 2 :

- d'une pyramide tronquée à base rectangulaire identique au soilde ABCDEFGH représenté à gauche c'-dessous. Les faces EFGH et ABCD sont parallèles. La droite (SO) est la hauteur de la pyramide ; elle perce le rectangle EFGH en O'. On donne : SO = 16; SO² = 8; AB = 6; BC = 4;
- d'un pavé droit de dimensions 2, 3, et x comme indiqué à droite ci-dessous.

Montrer que la mesure V_2 du volume de l'œuvre d'art n° 2 s'exprime en fonction de x sous la forme : $V_-(x) = 6x + 112$.

Aide

- On rappelle que le volume d'une pyramide est donné par la formule :
- V=1/3 (aire de la base \times hauteur de la pyramide).

3. Dans un repère orthogonal du plan :

- sur l'axe des abscisses, un centimètre représente une longueur de 1 cm;
- sur l'axe des ordonnées, un millimètre représente un volume de 1 cm³.
- a. Représenter graphiquement, dans ce repère, les fonctions V_1 et V_2 pour des valeurs de x comprises entre 0 et 10.
- **b.** Déterminer graphiquement une valeur approchée de x au dixième près pour laquelle $V_{\gamma}(x) = V_{2}(x)$.
- c. Résoudre algébriquement l'équation $V_1(x) = V_2(x)$.
- d. Calculer le volume correspondant à la valeur x trouvée précédemment et l'exprimer en $\rm cm^3$.

Exercice 120 page 77

Deux artistes, Colétin et Rosario, veulent fabriquer deux œuvres d'art en or massif de même volume, suivant les schémas ci-dessous.

L'unité de longueur est le centimètre.

- L'œuvre d'art n°1 est constituée de deux pavés droits :
 - un pavé droit supérieur mesurant \boldsymbol{x} cm de long, 3 cm de large et 2 cm de haut ;
 - un pavé droit inférieur de 7 cm de long, \boldsymbol{x} cm de large et \boldsymbol{x} cm de haut.

Montrer que la mesure V_1 du volume de l'œuvre d'art n°1 s'exprime en fonction de x sous la forme : $V_1(x) = 7x^2 + 6x$.

2. L'œuvre d'art n°2 est constituée :

 d'une pyramide tronquée à base rectangulaire identique au solide ABCDEFGH représenté à gauche ci-dessous. Les faces EFGH et ABCD sont parallèles. La droite (SO) est la hauteur de la pyramide; elle perce le rectangle EFGH en O'.

On donne :
$$SO = 16$$
; $SO' = 8$; $AB = 6$; $BC = 4$; $EF = 3$ et $FG = 2$;

- d'un pavé droit de dimensions 2, 3 et x comme indiqué à droite ci-dessous.

Montrer que la mesure V_2 du volume de l'œuvre d'art n°2 s'exprime en fonction de x sous la forme : $V_2(x) = 6x + 112$.

Aide

On rappelle que le volume d'une pyramide est donné par la formule : V = 1/3 (aire de la base × hauteur de la pyramide).

- 3. Dans un repère orthogonal du plan :
 - sur l'axe des abscisses, un centimètre représente une longueur de $1\ \mbox{cm}$;
 - sur l'axe des ordonnées, un millimètre représente un volume de $1\ \mbox{cm}^3.$
 - a. Représenter graphiquement, dans ce repère, les fonctions V_1 et V_2 pour des valeurs de x comprises entre 0 et 10.
 - b. Déterminer graphiquement une valeur approchée de x au dixième près pour laquelle $V_1(x) = V_2(x)$.
 - c. Résoudre algébriquement l'équation $V_1(x) = V_2(x)$.
 - d. Calculer le volume correspondant à la valeur x trouvée précédemment, et l'exprimer en cm³.