ÜBUNG ZU MAS3 (SEvz)

Wahrscheinlichkeitsrechnung und Statistik

(Michael Petz)

3. Semester Fachhochschul-Studiengang Software Engineering, Hagenberg, WS 2018/19

Erwartungswert und Varianz.

A19

Zu drei Zufallsvariablen X, Y und Z sind folgende Wahrscheinlichkeitsfunktionen gegeben:

X	1	2	3	4	5
P(X=x)	0,2	0,4	0,2	0,1	0,1

y	3	4	5	6	7
P(Y=y)	0,2	0,4	0,2	0,1	0,1

Z	3	5	7	9	11
P(Z=z)	0,2	0,4	0,2	0,1	0,1

Man berechne zu allen drei Verteilungen

- \bullet die Erwartungswerte E(X), E(Y) und E(Z),
- ♦ die Varianzen Var(X), Var(Y) und Var(Z).

Lassen sich die Zufallsvariablen Y und Z durch je eine lineare Transformation von X beschreiben? Wenn ja: wie lautet/lauten diese?

A20

Finden Sie die unbekannten Parameter einer Zufallsvariablen (bekannter Verteilung) mit dem Erwartungswert E(X) = 50 und der Varianz Var(X) = 40 (falls möglich), wenn die ZV

- ♦ hypergeometrisch verteilt ist (Parameter n=300, aber M und N unbekannt)
- ♦ binomialverteilt ist (Parameter n und p unbekannt)
- \bullet poissonverteilt ist (Parameter λ unbekannt).

Falls es die Verteilung mit diesem Erwartungswert und dieser Varianz nicht gibt, begründen Sie warum!

A21

Eine Zufallsvariable X hat folgende Wahrscheinlichkeitsfunktion mit $a \in R^+$ und $p \in [0;0,5]$:

X	a	2a	3a
P(X=x)	р	1-2p	р

Bestimmen Sie den Erwartungswert E(X) und die Varianz V(X).

Setzen Sie die erhaltenen Ergebnisse in die Ungleichung von Tschebyscheff ein und prüfen Sie deren Gültigkeit für Epsilon = a (siehe Satz 8.12 im Skriptum).

Beachten Sie: 3 Beispiele = 3 Files zum Hochladen mit je max 2 Punkten Bewertung.