

Exame de Época Normal Introdução aos Sistemas Eletromagnéticos - Parte I

22/01/2018
20 A no/10 Samastra
20 A no/10 Samastra

Elig. Diometrica	3 Ano/1 Semestre	Duração. III
Nome	N	Jº aluno

A parte I do exame é constituída por 3 questões de escolha múltipla e por 3 problemas de desenvolvimento.

Das perguntas indicadas, responda no máximo a 4 e indique nesta tabela as respostas efetivamente respondidas.

1	2	3	4.1	4.2	5

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = 0,66
- 1. Um cabo elétrico, com uma resistividade $\rho = 1,68 \times 10^{-8} \ \Omega m$ e um comprimento $l = 100 \ m$, transporta uma corrente de 5 A. Determine o raio mínimo do fio para que a potência dissipada no cabo não ultrapasse $12 \ W$.

_			
A: $r_{min} = 1,06 mm$	B: $r_{min} = 1,29 mm$	C: $r_{min} = 1,16 mm$	D: $r_{min} = 1,49 mm$

2. Dois fios retilíneos muito compridos (1 e 2), que se encontram nas retas x = -2 cm e x = 2 cm, transportam as correntes, $I_1 = 1,5$ A e I_2 tal como está representado na figura. Determine a intensidade e o sentido da corrente I_2 de modo a que o campo magnético no ponto x = 5 cm seja nulo.

A: $I_2 = 3.5 A$	B: $I_2 = 0.6 A$
C: $I_2 = -3.5 A$	D: $I_2 = -0.6 A$

- **3.** Um íman é deslocado verticalmente, aproximando-se ou afastando-se do centro de uma bobine (ponto O), tal como está representado na figura.
- O sentido da corrente induzida na bobine é o que está representado na figura, quando...
- A: O íman se desloca para cima.
- B: O íman se desloca para baixo.
- C: O íman se desloca para cima ou para baixo.
- D: O íman está parado.

Ena Diamádias

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada questão tem a cotação de 2 valores.
- **4.** Três cargas pontuais, $Q_1 = 1 \, nC$, $Q_2 = 2 \, nC$ e $Q_3 = 3 \, nC$, encontram-se, respetivamente, nas posições $\overrightarrow{r_1} = 4 \, \hat{x} \, cm$, $\overrightarrow{r_2} = 2 \, \hat{y} \, cm$ e $\overrightarrow{r_3} = 2 \, \hat{x} + 3 \, \hat{y} \, cm$. Considere que o potencial elétrico no infinito é nulo.
- **4.1** Determine o potencial elétrico criado pelas três cargas na origem do referencial (X,Y).
- **4.2** Caracterize (intensidade, direção e sentido) o campo elétrico criado pelas três cargas na origem do referencial (X,Y).
- percorrida por uma corrente de 3 A, no sentido horário. A bobine encontra-se no seio de um campo de indução magnética uniforme, com a intensidade de 0,2 T, tal como está representado na figura. Caracterize (intensidade, direção e sentido) o torque (momento) resultante sobre a espira, justificando todos os cálculos. A espira terá movimento de rotação? Se sim, diga qual é o eixo de rotação.

5. Uma bobine quadrada de 5 cm de lado e com 5000 espiras é

Soluções:

1	2	3
A	D	В

4.1
$$V_0 = 1874 V$$

4.1
$$V_O = 1874 V$$

4.2 $\overrightarrow{E_O} = -17,1 \hat{x} - 62,3 \hat{y} kV/m$

5.
$$\vec{\tau} = 7.5 \hat{x} Nm$$
.

Sim, em torno do eixo dos XX.