Concept of Programming (Flow Charts)

In the first stage of programming, we design our program. As beginner, it is easier to express the program by using flow-charts. Flow Charts are good way of showing a program visually. After getting experience, you don't need to use the flow charts to begin with.

Below is a flow-chart for a program that prints the largest of three numbers.

Elements in Flow Charts

Most commonly used elements in flow charts and some others are shown below.

Commonly Used Elements

Example 1: Printing Hello World

Write the algorithm, pseudocode and draw flow-chart for a program. The program prints the "Hello World!" to the screen.**

Algorithm

Print out the sting.

Pseudocode

Print "Hello World!"

Example 2: Zero – Positive – Negative Prog.

Write the algorithm, pseudocode and draw flow-chart for a program. The program determines if a given real number is "zero", "positive", or "negative" and write this information to the screen. **

Algorithm

- 1. Get the number from user.
- 2. Check if the number is +, 0 or –
- Print out the result

Pseudocode

Prompt user to enter a number
Input the number and store it in A
If A= 0 print out "ZERO" then END!
If A > 0 print "POSITIVE" then END!
Print out "NEGATIVE" then END!

Now try testing you program by using 10, 0 and -10

Example 3: Adding and Multiplying Two Numbers

Write the algorithm, pseudocode and draw flow-chart for a program. The program takes two numbers from keyboard then writes the sum and product of these numbers to the screen. **

Algorithm

- 1. Get two numbers from user
- Add the numbers
- 3. Multiply the numbers
- 4. Print out the results

Pseudocode

Prompt user to enter two numbers

Input two numbers and store them in A, B

Define C = A + B

Define D = A*B

Print C

Print D

Now try testing you program by using 3 and 5

Example 4: Comparing Two Numbers and Finding Larger

Write the algorithm, pseudocode and draw flow-chart for a program. The program takes two numbers from keyboard then writes the larger one to the scree. If the numbers are the same then the program prints, "Numbers Same" to the screen. **

Algorithm

- 1. Get two numbers from user
- Check if they are same then print out SAME
- 3. Check which one is larger
- 4. Print out the larger number

Pseudocode

Input two numbers and store them in A, B
If A=B then print "Numbers Same" END!
If A>B then print "Larger",A . END!
Print "Larger",B

Now try testing you program by using 7 and 11 15 and 6 5 and 5

Example 5: Grade Calculator – Fail/Pass Program

Write the algorithm, pseudocode and draw flow-chart for a program. The program reads the midterm and final exam results of a student then calculates the final grades as 40% of the midterm and 60% of final exam. Then writes to the screen "PASSED" if the grade is equals or greater than 50 or "FAILED" if grade is less than 50. **

Algorithm

- Get Midterm and Final Grades from user
- 2. Calculate the grade as 40% of Mid. and 60% of Fin.
- 3. If result is bigger than 50 print out "PASSED", END!
- Print out "FAILED"

Pseudocode

Input two numbers and store them in M, F
Assign/Calculate G = M*.4+F*.6

If G ≥ 50 then print "PASSED", DONE!

Print "FAILED"

Now try testing you program by using 40 and 60 20 and 50

Example 6: Quadratic Eq. Solver Program

Write the pseudocode and draw flow-chart for a program. The program reads the coefficients of a quadratic equation in the form $ax^2 + bx + c = 0$ from the keyboard then determines the solutions and print the solution/s to the screen. If there is no real solution, program should print "No Real Solution" to the screen. **

Pseudocode

Prompt user to enter the coefficients.

Input the coefficients and store in a,b,c

Assign
$$d=b^2-4ac$$

If d < 0 print "No Real Solution" END!

if d = 0 assign x = -b / 2a print "One Solution", x

Assign
$$x1 = \frac{-b - \sqrt{d}}{2a}$$
 and $x2 = \frac{-b + \sqrt{d}}{2a}$

print "Two Solution", x1,x2

Don't forget to test your program with different values.

Example 7: Even or Odd Program

Write the pseudocode and draw flow-chart for a program. The program inputs a number from keyboard then prints to screen "EVEN" or "ODD" if the number is even or odd respectively. Not: You may use % modulus / remainder operator. **

Pseudocode

Prompt user to enter a number
Input the number and store in N
Assign mod = N % 2
If mod = 0 then print "EVEN" END!
Print "ODD"

Test your program with inputs 6 and 11.

Example 8: Finding Greatest of Three Numbers

Write the algorithm and draw flow-chart for a program. The program inputs 3 numbers from the keyboard then prints the largest one to the screen. **

Algorithm

- 1. Get three numbers from user
- Compare the first two numbers and find largest one of two
- 3. Compare the largest of first two numbers with the third number then print the largest to the screen

START

PRINT

Now try testing you program by using 5,7, and 2 11,3, and 21

Example 9: Age Status Program

Write the pseudocode and draw flow-chart for a program. The program inputs the age the user then based on the age of the person, the program prints the age status of the

person to the screen. **

Pseudocode

Prompt user to enter his/her age.

Input the entered number and store it in A If $A \le 4$ print "BABY" then END!

If $A \le 10$ print "CHILD" then END!

If $A \le 18$ print "TEEN" then END!

If $A \le 50$ print "ADULT" then END!

print "OLD"

Don't forget to test your program. Try with 10, 25, and 59

Example 10: Print "Hello World!" 10 Times

Write the pseudocode and draw flow-chart for a program. The program prints "Hello World!" to screen 10 times. **

USING COUNTER WITH IF STATEMENT

Pseudocode

Assign/Set C=0 (C is counter to count number of prints)

Print "Hello World!"

Assign C = C +1 (increasing the counter)

If C < 10 go to step 2.

Example 11: Print Integers from 0 to N

Write the pseudocode and draw flow-chart for a program. The program prints out the integer numbers from 0 to a desired positive integer number. **

Psedocode

Prompt user to enter a number.

Input the entered number and store it in N

If N < 0 go to step 1.

Define/Assign Counter = 0

Print the Counter

Increase Counter by +1

If Counter \leq N go to step 5.

Test your program with -5, 0, and 7

One may also do this by using loop / repetition algorithm with step of +1.

USING COUNTER WITH IF STATEMENT

Example 11: Revision with Repetition / Loop

Write the algorithm and draw flow-chart for a program. The program prints out the integer numbers from 0 to a desired positive integer number. *

Here we use a loop / a repetition algorithm with step of +1.

Please note that Loop / Repetition here: Counter goes from 0 to N step of +1. The part inside repetition repeated N+1 times.

USING LOOP/REPETITION ALGORITHM

Example 12: Checking Understanding of Flow-Chart

Explain what does the following program with flow-chart does? By using a loop/repetition procedure redraw another flow-chart that does the same. **

USING COUNTER
WITH IF STATEMENT

*It prints the sum of the integers from 1 to 10.

* We can do this by using repetition step of +1

Example 13: Factorial Program

Write the algorithm and draw flow-chart for a program. The program calculates the factorial (n! = 1.2.3 ... n - 1.n) of a desired positive number and prints it to the

screen. **

Algorithm

- Take a number from the user
- 2. Assign fact=1
- 3. Set a repetition/loop with counter I starting from 1 to entered number
- 4. Inside the repetition, multiply fact with I values.
- 5. Print out the result

Test your program with input 5.

Example 14: Sum of Even Numbers from 0 to N

Draw flow-chart for a program. The program determines the sum of the even numbers from 0 to a desired number. **

