NAME

MX-calibrate - MX-calibrate

SYNOPSIS

MX-calibrate *file1.edf file2.edf* ...

DESCRIPTION

Calibrate automatically a set of frames taken at various sampledetector distance.

OPTIONS

--version

show program's version number and exit

-h, --help

show this help message and exit

-v, --verbose

switch to debug/verbose mode

−S FILE, **−−spacing**=*FILE*

file containing d-spacing of the reference sample (MANDATORY)

-w WAVELENGTH, --wavelength=WAVELENGTH

wavelength of the X-Ray beam in Angstrom

-e ENERGY, --energy=ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)

-P POLARIZATION_FACTOR, --polarization=POLARIZATION_FACTOR

polarization factor, from -1 (vertical) to +1 (horizontal), default is 0, synchrotrons are around 0.95

-b BACKGROUND, --background=BACKGROUND

Automatic background subtraction if no value are provided

-d DARK, --dark=DARK

list of dark images to average and subtract

-f FLAT, --flat=FLAT

list of flat images to average and divide

-s SPLINE, --spline=SPLINE

spline file describing the detector distortion

-**p** PIXEL, --**pixel**=*PIXEL*

size of the pixel in micron

-D DETECTOR_NAME, --detector=DETECTOR_NAME

Detector name (instead of pixel size+spline)

-m MASK, --mask=MASK

file containing the mask (for image reconstruction)

--filter=FILTER

select the filter, either mean(default), max or median

--saturation=SATURATION

consider all pixel>max*(1-saturation) as saturated and reconstruct them

-r MAX_RINGS, --ring=MAX_RINGS

maximum number of rings to extract

--weighted

weight fit by intensity

-l DISTANCE, --distance=DISTANCE

sample-detector distance in millimeter

--no-tilt

refine the detector tilt

--poni1=PONI1

poni1 coordinate in meter

--poni2=*PONI*2

poni2 coordinate in meter

--rot1=*ROT1*

rot1 in radians

--rot2=*ROT2*

rot2 in radians

--rot3=*ROT3*

rot3 in radians

--fix-dist

fix the distance parameter

--free-dist

free the distance parameter

--fix-poni1

fix the poni1 parameter

--free-poni1

free the poni1 parameter

--fix-poni2

fix the poni2 parameter

--free-poni2

free the poni2 parameter

--fix-rot1

fix the rot1 parameter

--free-rot1

free the rot1 parameter

--fix-rot2

fix the rot2 parameter

--free-rot2

free the rot2 parameter

--fix-rot3

fix the rot3 parameter

--free-rot3

free the rot3 parameter

$-\!-\!fix\!-\!wavelength$

fix the wavelength parameter

--free-wavelength

free the wavelength parameter

--no-gui

force the program to run without a Graphical interface

--gui force the program to run with a Graphical interface

--no-interactive

force the program to run and exit without prompting for refinements

--interactive

force the program to prompt for refinements

This tool has been developed for ESRF MX-beamlines where an acceptable calibration is usually present is the header of the image. PyFAI reads it and does a "recalib" on each of them before exporting a linear regression of all parameters versus this distance.