```
In [301...
           from IPython.core.display import display, HTML
           display(HTML("<style>.container { width:95% !important; }</style>"))
In [291...
           # Importing The Library
In [222...
           import numpy as np
           import scipy.stats as ss
           import matplotlib.pyplot as plt
           import pandas as pd
           import random
           import math
           import seaborn as sns
 In [ ]:
           # Reading The Data File
In [245...
           data demand=pd.read csv("STORE DATA.csv")
           data_demand
Out[245...
                 Account Store
                                 ShipDate SumOfShipwght Tour Store_region
                                                                                             Store_address
                                                                                                               store_city
              0
                       5
                            28
                                  3-Jan-97
                                                    481.28
                                                           90.0
                                                                         TX 3620 EMMETT F LOWRY EXPRWAY
                                                                                                             TEXAS CITY
                       5
                            28
                                10-Jan-97
                                                    94.00
                                                           90.0
                                                                         TX 3620 EMMETT F LOWRY EXPRWAY
                                                                                                             TEXAS CITY
              2
                      5
                            28
                                17-Jan-97
                                                    543.72
                                                           90.0
                                                                         TX 3620 EMMETT F LOWRY EXPRWAY
                                                                                                             TEXAS CITY
              3
                       5
                            28
                                24-Jan-97
                                                    580.15
                                                           90.0
                                                                         TX 3620 EMMETT F LOWRY EXPRWAY
                                                                                                             TEXAS CITY
                       5
                            28
                                 7-Feb-97
                                                   789.20
                                                           90.0
                                                                         TX 3620 EMMETT F LOWRY EXPRWAY
                                                                                                             TEXAS CITY
          2333
                      50
                           588
                                 17-Jul-97
                                                    850.00 NaN
                                                                         TX
                                                                                       12871 INTERSTATE 10 SAN ANTONIO
          2334
                      50
                           588
                                 24-Jul-97
                                                 10127.40
                                                          NaN
                                                                         TX
                                                                                       12871 INTERSTATE 10 SAN ANTONIO
          2335
                      50
                           588
                                                                         TX
                                                                                       12871 INTERSTATE 10 SAN ANTONIO
                                 31-Jul-97
                                                  5564.00 NaN
          2336
                      50
                           588
                                                  1044.35 NaN
                                                                         TX
                                                                                       12871 INTERSTATE 10 SAN ANTONIO
                                 8-Aug-97
```

	Account	Store	ShipDate	SumOfShipwght	Tour	Store_region	Store_address	store_city
2337	50	588	14-Aug-97	7552.40	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO

2338 rows × 8 columns

In [224...

#CLEANING THE DATA

data_demand=data_demand.dropna()
data_demand=data_demand[data_demand.SumOfShipwght>0]
data_demand

Out[224...

**	Account	Store	ShipDate	SumOfShipwght	Tour	Store_region	Store_address	store_city
0	5	28	3-Jan-97	481.28	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
1	5	28	10-Jan-97	94.00	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
2	5	28	17-Jan-97	543.72	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
3	5	28	24-Jan-97	580.15	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
4	5	28	7-Feb-97	789.20	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
•••								
2279	50	585	16-Jul-97	10196.09	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2280	50	585	23-Jul-97	6028.69	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2281	50	585	30-Jul-97	4516.90	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2282	50	585	6-Aug-97	11671.88	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2283	50	585	13-Aug-97	1893.70	87.0	TX	2828 SOUTH HWY 6	HOUSTON

1992 rows × 8 columns

In [225...

Only consider Texas Stores

data_demand=data_demand[data_demand.Store_region=='TX']
data_demand

Out[225...

Account Store ShipDate SumOfShipwght Tour Store_region Store_address store_city

	Account	Store	ShipDate	SumOfShipwght	Tour	Store_region	Store_address	store_city
0	5	28	3-Jan-97	481.28	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
1	5	28	10-Jan-97	94.00	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
2	5	28	17-Jan-97	543.72	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
3	5	28	24-Jan-97	580.15	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
4	5	28	7-Feb-97	789.20	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
•••								
2279	50	585	16-Jul-97	10196.09	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2280	50	585	23-Jul-97	6028.69	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2281	50	585	30-Jul-97	4516.90	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2282	50	585	6-Aug-97	11671.88	87.0	TX	2828 SOUTH HWY 6	HOUSTON
2283	50	585	13-Aug-97	1893.70	87.0	TX	2828 SOUTH HWY 6	HOUSTON

1665 rows × 8 columns

```
In [226... # Finding out number of unique stores in our model
    a=data_demand.Store.unique()
    len(a)

Out[226... 51

In [227... #Plotting to visualize the demand distribution for each store order
    plt.hist(data_demand['SumOfShipwght'])
    plt.xlabel('demand')
    plt.ylabel('frequency')
```

Out[227... Text(0, 0.5, 'frequency')


```
# Visualizing demand variation of the store types to see if any distribution would be suitable plt.hist(data_demand[data_demand.Store==28]['SumOfShipwght'])
```

Out[254... (array([2., 3., 8., 12., 2., 2., 0., 1., 0., 1.]), array([-486.88 , -122.275, 242.33 , 606.935, 971.54 , 1336.145, 1700.75 , 2065.355, 2429.96 , 2794.565, 3159.17]), <BarContainer object of 10 artists>)


```
In [255... Source_data=pd.DataFrame(data_demand[["ShipDate","SumOfShipwght"]])
Source_data
```

ShipDate SumOfShipwght

	0	3-Jan-97	481.28								
	1	10-Jan-97	94.00								
	2	17-Jan-97	543.72								
	3	24-Jan-97	580.15								
	4	7-Feb-97	789.20								
	•••										
	2333	17-Jul-97	850.00								
	2334	24-Jul-97	10127.40								
	2335	31-Jul-97	5564.00								
	2336	8-Aug-97	1044.35								
	2337	14-Aug-97	7552.40								
	2338 rd	ows × 2 colu	umns								
In [257	# Finding Aggregate weekly demand										
In [232	<pre>from datetime import datetime Source_data.ShipDate=pd.to_datetime(Source_data.ShipDate)</pre>										
In [233	Source_data['weeklyship']=Source_data["ShipDate"].dt.to_period("W")										
In [234	<pre>aggregation_functions = {'SumOfShipwght': 'sum'} Source_data_weekly = Source_data.groupby(Source_data['weeklyship']).aggregate(aggregation_functions) Source_data_weekly</pre>										
Out[234			SumOfShipwght								
		weekl	yship								
•											

Out[255...

SumOfShipwght

weeklyship	
1996-12-30/1997-01-05	58578.34
1997-01-06/1997-01-12	171909.32
1997-01-13/1997-01-19	201032.87
1997-01-20/1997-01-26	167985.66
1997-01-27/1997-02-02	205277.06
1997-02-03/1997-02-09	219849.82
1997-02-10/1997-02-16	223398.20
1997-02-17/1997-02-23	274383.61
1997-02-24/1997-03-02	280742.76
1997-03-03/1997-03-09	226856.88
1997-03-10/1997-03-16	341424.71
1997-03-17/1997-03-23	291664.85
1997-03-24/1997-03-30	270953.34
1997-03-31/1997-04-06	249244.55
1997-04-07/1997-04-13	391391.20
1997-04-14/1997-04-20	264507.14
1997-04-21/1997-04-27	352017.29
1997-04-28/1997-05-04	297511.79
1997-05-05/1997-05-11	258161.34
1997-05-12/1997-05-18	255204.22
1997-05-19/1997-05-25	381020.27
1997-05-26/1997-06-01	224257.74
1997-06-02/1997-06-08	312174.34
1997-06-09/1997-06-15	281924.36

SumOfShipwght

weeklyship 1997-06-16/1997-06-22 417679.69 1997-06-23/1997-06-29 302541.15 1997-06-30/1997-07-06 164032.56 1997-07-07/1997-07-13 323059.71 1997-07-14/1997-07-20 367997.90 1997-07-21/1997-07-27 260738.60 1997-07-28/1997-08-03 289548.27 1997-08-04/1997-08-10 314603.61 1997-08-11/1997-08-17 293685.53

```
# Plotting demand of each week to check if there is any seasonal pattern. From the plot we can say that
# No seasonal Pattern was observed

In [252... plt.figsize = (20,30)
a=[i+1 for i in range(len(Source_data_weekly["SumOfShipwght"]))]
plt.scatter(a,Source_data_weekly["SumOfShipwght"])
plt.xlabel("Weeks")
plt.ylabel("Demand")
```


Parameter Estimation - For 4 suitable Distribution Candidates

50000 100000 150000 200000 250000 300000 350000 400000

2

```
# Normal Distribution
In [262...
          u,s=ss.norm.fit(Source data weekly.SumOfShipwght)
          print(f"The maximum Likelyhood estimators for Normal Distribution are: mean is \
          {round(u,3)} and std is {round(s,3)}")
          # Gamma Distribution
          x,y,z=ss.gamma.fit(Source data weekly.SumOfShipwght)
          print("The maximum Likelyhood estimators for Gamma Distribution are ",\
                 \{round(x,3), round(y,3), round(z,3)\}\)
          # Triangular Distribution
          a,b,c=ss.triang.fit(Source data weekly.SumOfShipwght)
          print("The maximum Likelyhood estimators for Triangular Distribution are ",\
                 \{round(a,3), round(b,3), round(c,3)\}\}
          # Exponrntial Distribution
          m,n =ss.expon.fit(Source data weekly.SumOfShipwght)
          print(f"The maximum Likelyhood estimators for Uniform Distribution are: mean is \
          {round(m,3)} and std is {round(n,3)}")
```

The maximum Likelyhood estimators for Normal Distribution are: mean is 270768.445 and std is 72784.715 The maximum Likelyhood estimators for Gamma Distribution are {346.534, 3987.604, -1111324.743} The maximum Likelyhood estimators for Triangular Distribution are {0.628, 397721.925, 42054.049} The maximum Likelyhood estimators for Uniform Distribution are: mean is 58578.34 and std is 212190.105

```
In [264...
           # Plotting Hypothesied Probable distributions over demand data
           fig, (ax1,ax2,ax3,ax4) = plt.subplots(4,1, figsize = (10,20))
           ax1.hist(Source data weekly.SumOfShipwght,density=True,bins=10)
           x \text{ seq} = \text{np.arange}(5000,600000,1)
           y \text{ seq} = ss.norm.pdf(x seq,u,s)
           ax1.plot(x seq, y seq)
           ax1.title.set text('Normal Dist')
           ax2.hist(Source data weekly.SumOfShipwght,density=True,bins=10)
           x1 \text{ seq} = np.arange(5000,600000,1)
           y1 \text{ seq} = ss.gamma.pdf(x1 seq,x,y,z)
           ax2.plot(x1 seq, y1 seq)
           ax2.title.set text('Gamma Dist')
           ax3.hist(Source data weekly.SumOfShipwght,density=True,bins=10)
           x2 \text{ seq} = np.arange(5000,600000,1)
          y2_seq = ss.triang.pdf(x2_seq,a,b,c)
           ax3.plot(x2 seq, y2 seq)
           ax3.title.set text('Triangular Dist')
```

```
ax4.hist(Source_data_weekly.SumOfShipwght,density=True,bins=10)
x3_seq = np.arange(5000,600000,1)
y3_seq = ss.expon.pdf(x1_seq,m,n)
ax4.plot(x3_seq, y3_seq)
ax4.title.set_text('Exponential Dist')
```


#So as 0 is almost 4 standard deviations away from mean so the probability of having -ve demand will be almost negligible

#Hence normal distribution can be used

Out[266... 3.720127856182613

Q-Q plot

```
In [269...
                             fig, (ax1,ax2,ax3,ax4) = plt.subplots(4,1, figsize = (10,20))
                             # Normal Distributions
                             normal estimate = ss.norm(u, s)
                             # Compute the theoretical q-quantiles for q = (i-.5)/n for i = 1, ..., n
                             normal quantile = normal estimate.ppf((np.arange(1,len(Source data weekly.SumOfShipwght)+1)-0.5)/len(Source data w
                             # Sort the sample data in ascending order
                             Source data weekly.SumOfShipwght = np.sort(Source data weekly.SumOfShipwght)
                             ax1.scatter(Source data weekly.SumOfShipwght, normal quantile)
                             ax1.set xlabel('Observed values')
                             ax1.set ylabel('Theoretical quantiles')
                             ax1.set title('Quantile-Quantile Plot - Normal Dist')
                             ax1.plot([50000,600000], [50000,600000], color='red')
                             print("as the scatter plot for Normal Distribution almost lies on the straight line of sloper 45 degreeThus its a good fi
                             # Gamma Distributions
                             gamma = ss.gamma(x,y,z)
                             # Compute the theoretical q-quantiles for q = (i-.5)/n for i = 1, ..., n
                             gamma quantile = gamma estimate.ppf((np.arange(1,len(Source data weekly.SumOfShipwght)+1)-0.5)/len(Source data weekly.Sum
                             # Sort the sample data in ascending order
                             Source data weekly.SumOfShipwght = np.sort(Source data weekly.SumOfShipwght)
                             ax2.scatter(Source data weekly.SumOfShipwght, gamma quantile)
                             ax2.set xlabel('Observed values')
                             ax2.set ylabel('Theoretical quantiles')
                             ax2.set title('Ouantile-Ouantile Plot - Gamma dist')
                             ax2.plot([50000,600000], [50000,600000], color='red')
                             # Triangular Distributions
                             tri estimate = ss.triang(a,b,c)
                             # Compute the theoretical q-quantiles for q = (i-.5)/n for i = 1, ..., n
                             tri_quantile = tri_estimate.ppf((np.arange(1,len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.SumOfShipwght)+1)-0.5/len(Source_data_weekly.SumOfShipwght)+1)-0.5/len(Source_data_week
                             # Sort the sample data in ascending order
                             Source data weekly.SumOfShipwght = np.sort(Source data weekly.SumOfShipwght)
                             ax3.scatter(Source data weekly.SumOfShipwght, tri quantile)
                             ax3.set xlabel('Observed values')
                             ax3.set ylabel('Theoretical quantiles')
                             ax3.set title('Quantile-Quantile Plot - Triangular dist')
                             ax3.plot([50000,600000], [50000,600000], color='red')
                             # Exponential Distributions
```

```
expon_estimate = ss.expon(m,n)
# Compute the theoretical q-quantiles for q = (i-.5)/n for i = 1, ..., n
expon_quantile = expon_estimate.ppf((np.arange(1,len(Source_data_weekly.SumOfShipwght)+1)-0.5)/len(Source_data_weekly.Sum
# Sort the sample data in ascending order
Source_data_weekly.SumOfShipwght = np.sort(Source_data_weekly.SumOfShipwght)
ax4.scatter(Source_data_weekly.SumOfShipwght, expon_quantile)
ax4.set_xlabel('Observed values')
ax4.set_ylabel('Theoretical quantiles')
ax4.set_title('Quantile-Quantile Plot - Exponential Dist')
ax4.plot([50000,600000], [50000,600000], color='red')
plt.show()
```

as the scatter plot for Normal Distribution almost lies on the straight line of sloper 45 degreeThus its a good fit


```
#Performimng K-S test to check if its normal Distribution or not

u,s= ss.norm.fit(Source_data_weekly.SumOfShipwght)

normal_estimate = ss.norm(u,s)

statistics, pvalue = ss.kstest(rvs = Source_data_weekly.SumOfShipwght, cdf = normal_estimate.cdf)

print(f"The p-value for the K-S test for normal distribution is {round(pvalue, 4)}.")
```

The p-value for the K-S test for normal distribution is 0.9663.

```
u,s,m= ss.gamma.fit(Source_data_weekly.SumOfShipwght)
gamma_estimate = ss.gamma(u,s,m)
statistics, pvalue = ss.kstest(rvs = Source_data_weekly.SumOfShipwght, cdf = gamma_estimate.cdf)
print(f"The p-value for the K-S test was for gamma distribution is {round(pvalue, 4)}.")
```

The p-value for the K-S test was for gamma distribution is 0.9206.

```
u,s= ss.expon.fit(Source_data_weekly.SumOfShipwght)
expon_estimate = ss.expon(u,s)
statistics, pvalue = ss.kstest(rvs = Source_data_weekly.SumOfShipwght, cdf = expon_estimate.cdf)
print(f"The p-value for the K-S test was for Exponrential Distribution is {round(pvalue, 4)}.")
```

The p-value for the K-S test was for Exponrential Distribution is 0.0002.

```
u,s,m= ss.triang.fit(Source_data_weekly.SumOfShipwght)
triang_estimate = ss.triang(u,s,m)
statistics, pvalue = ss.kstest(rvs = Source_data_weekly.SumOfShipwght, cdf = triang_estimate.cdf)
print(f"The p-value for the K-S test was for triangular Distribution is {round(pvalue, 4)}.")
```

The p-value for the K-S test was for triangular Distribution is 0.5249.

As p-value from K-s Test for Normal Distribution is very high therefore Demand weekly data can be approximately assumed as Normal Distribution

STORE Demand Distribution

Trying find a good distribution fit for each of the stores present in the system

```
In [271... data_demand
```

Out[271		Account	Store	ShipDate	SumOfShipwght	Tour	Store_region	Store_address	store_city
	0	5	28	3-Jan-97	481.28	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
	1	5	28	10-Jan-97	94.00	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
	2	5	28	17-Jan-97	543.72	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
	3	5	28	24-Jan-97	580.15	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY
	4	5	28	7-Feb-97	789.20	90.0	TX	3620 EMMETT F LOWRY EXPRWAY	TEXAS CITY

	Account	Store	ShipDate	SumOfShipwght	Tour	Store_region	Store_address	store_city
•••								
2333	50	588	17-Jul-97	850.00	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO
2334	50	588	24-Jul-97	10127.40	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO
2335	50	588	31-Jul-97	5564.00	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO
2336	50	588	8-Aug-97	1044.35	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO
2337	50	588	14-Aug-97	7552.40	NaN	TX	12871 INTERSTATE 10	SAN ANTONIO

2338 rows × 8 columns

Checking if Normal Distribution for all stores is good fit or not

```
norm_dict={}
# trying to check if normal distribution will be a good fir for any of the stores or not
#for i in data_demand.Tour.unique():
    for j in data_demand.Store.unique():
        #a=pd.DataFrame(data_demand.SumOfShipwght,data_demand.Store)
        d=data_demand[data_demand['Store']==j]
        a=pd.DataFrame(d.SumOfShipwght)
        u,s=ss.norm.fit(a.SumOfShipwght)
        #print(f"The MLE for Normal Distribution for store {j} is are: mean is \
        #{round(u,3)} and std is {round(s,3)}")
        norm_dict[j]=[u,s]
```

```
for i in data_demand.Store.unique():
    u,s=(norm_dict[i][0],norm_dict[i][1])
    normal_estimate = ss.norm(u,s)
    d=data_demand[data_demand['Store']==j]
    a=pd.DataFrame(d.SumOfShipwght)
    statistics, pvalue = ss.kstest(rvs = a.SumOfShipwght, cdf = normal_estimate.cdf)
    print(f"The p-value for the store {i} was {round(pvalue, 4)}.")
```

The p-value for the store 28 was 0.0. The p-value for the store 82 was 0.0232. The p-value for the store 95 was 0.0. The p-value for the store 97 was 0.0. The p-value for the store 98 was 0.0. The p-value for the store 103 was 0.0. The p-value for the store 123 was 0.0. The p-value for the store 137 was 0.0. The p-value for the store 159 was 0.0. The p-value for the store 161 was 0.0. The p-value for the store 186 was 0.0. The p-value for the store 232 was 0.0. The p-value for the store 234 was 0.0. The p-value for the store 259 was 0.0. The p-value for the store 282 was 0.0. The p-value for the store 365 was 0.0. The p-value for the store 461 was 0.0. The p-value for the store 484 was 0.0004. The p-value for the store 501 was 0.0368. The p-value for the store 1005 was 0.1291. The p-value for the store 1006 was 0.0323. The p-value for the store 1007 was 0.3825. The p-value for the store 1036 was 0.1726. The p-value for the store 1340 was 0.377. The p-value for the store 1341 was 0.0806. The p-value for the store 1344 was 0.1077. The p-value for the store 1346 was 0.0345. The p-value for the store 1348 was 0.0165. The p-value for the store 1351 was 0.0001. The p-value for the store 1373 was 0.0205. The p-value for the store 1401 was 0.1187. The p-value for the store 1409 was 0.5709. The p-value for the store 1411 was 0.0083. The p-value for the store 1421 was 0.1359. The p-value for the store 1422 was 0.1728. The p-value for the store 1561 was 0.5248. The p-value for the store 1583 was 0.0194. The p-value for the store 1584 was 0.2327. The p-value for the store 1590 was 0.0555. The p-value for the store 349 was 0.0029. The p-value for the store 351 was 0.0004. The p-value for the store 352 was 0.0. The p-value for the store 357 was 0.0006. The p-value for the store 358 was 0.0075. The p-value for the store 359 was 0.0003. The p-value for the store 360 was 0.0019. The p-value for the store 362 was 0.0. The p-value for the store 502 was 0.0041. The p-value for the store 503 was 0.0058.

```
The p-value for the store 504 was 0.027.
The p-value for the store 520 was 0.1695.
The p-value for the store 521 was 0.0478.
The p-value for the store 526 was 0.0631.
The p-value for the store 565 was 0.0789.
The p-value for the store 566 was 0.0069.
The p-value for the store 567 was 0.0841.
The p-value for the store 568 was 0.1769.
The p-value for the store 569 was 0.0031.
The p-value for the store 571 was 0.1273.
The p-value for the store 573 was 0.0259.
The p-value for the store 574 was 0.7205.
The p-value for the store 576 was 0.0352.
The p-value for the store 577 was 0.0001.
The p-value for the store 578 was 0.3423.
The p-value for the store 579 was 0.1693.
The p-value for the store 580 was 0.0962.
The p-value for the store 581 was 0.4029.
The p-value for the store 582 was 0.3647.
The p-value for the store 584 was 0.0091.
The p-value for the store 585 was 0.1919.
The p-value for the store 586 was 0.0864.
The p-value for the store 588 was 0.194.
```

In [275...

#As we can observe the p-value of the stores assuming Normal Distribution is very small, so normal distribution is not a

Checking if Gamma Distribution for all stortes is good fit or not

```
gamma_dict={}
# trying to check if normal distribution will be a good fir for any of the stores or not

for j in data_demand.Store.unique():
    #a=pd.DataFrame(data_demand.SumOfShipwght,data_demand.Store)
    d=data_demand[data_demand['Store']==j]
    a=pd.DataFrame(d.SumOfShipwght)
    u,s,m=ss.gamma.fit(a.SumOfShipwght)
    #print(f"The MLE for Normal Distribution for store {j} is are: mean is \
    #{round(u,3)} and std is {round(s,3)}")
    gamma_dict[j]=[u,s,m]
```

```
for i in data_demand.Store.unique():
    u,s,m=(gamma_dict[i][0],gamma_dict[i][1],gamma_dict[i][2])
    gamma_estimate = ss.gamma(u,s,m)
    d=data_demand[data_demand['Store']==j]
```

```
a=pd.DataFrame(d.SumOfShipwght)
statistics, pvalue = ss.kstest(rvs = a.SumOfShipwght, cdf = gamma_estimate.cdf)
print(f"The p-value for the store {i} was {round(pvalue, 4)}.")
```

```
The p-value for the store 28 was 0.0008.
The p-value for the store 82 was 0.0001.
The p-value for the store 95 was 0.0.
The p-value for the store 97 was 0.0.
The p-value for the store 98 was 0.0.
The p-value for the store 103 was 0.0001.
The p-value for the store 123 was 0.0.
The p-value for the store 137 was 0.0.
The p-value for the store 159 was 0.0.
The p-value for the store 161 was 0.0.
The p-value for the store 186 was 0.0.
The p-value for the store 232 was 0.0.
The p-value for the store 234 was 0.0.
The p-value for the store 259 was 0.0.
The p-value for the store 282 was 0.0.
The p-value for the store 365 was 0.0.
The p-value for the store 461 was 0.0001.
The p-value for the store 484 was 0.0004.
The p-value for the store 501 was 0.7467.
The p-value for the store 1005 was 0.0862.
The p-value for the store 1006 was 0.0334.
The p-value for the store 1007 was 0.2106.
The p-value for the store 1036 was 0.6809.
The p-value for the store 1340 was 0.2885.
The p-value for the store 1341 was 0.1657.
The p-value for the store 1344 was 0.1632.
The p-value for the store 1346 was 0.0387.
The p-value for the store 1348 was 0.1721.
The p-value for the store 1351 was 0.0.
The p-value for the store 1373 was 0.0156.
The p-value for the store 1401 was 0.2162.
The p-value for the store 1409 was 0.0.
The p-value for the store 1411 was 0.0031.
The p-value for the store 1421 was 0.0.
The p-value for the store 1422 was 0.2018.
The p-value for the store 1561 was 0.9726.
The p-value for the store 1583 was 0.011.
The p-value for the store 1584 was 0.0.
The p-value for the store 1590 was 0.0564.
The p-value for the store 349 was 0.0.
The p-value for the store 351 was 0.0007.
The p-value for the store 352 was 0.0001.
The p-value for the store 357 was 0.0007.
The p-value for the store 358 was 0.0504.
```

```
The p-value for the store 359 was 0.4229.
The p-value for the store 360 was 0.0071.
The p-value for the store 362 was 0.0495.
The p-value for the store 502 was 0.1684.
The p-value for the store 503 was 0.006.
The p-value for the store 504 was 0.0404.
The p-value for the store 520 was 0.9947.
The p-value for the store 521 was 0.4804.
The p-value for the store 526 was 0.0.
The p-value for the store 565 was 0.437.
The p-value for the store 566 was 0.9723.
The p-value for the store 567 was 0.6352.
The p-value for the store 568 was 0.781.
The p-value for the store 569 was 0.2281.
The p-value for the store 571 was 0.9603.
The p-value for the store 573 was 0.5683.
The p-value for the store 574 was 0.7214.
The p-value for the store 576 was 0.4963.
The p-value for the store 577 was 0.0296.
The p-value for the store 578 was 0.951.
The p-value for the store 579 was 0.3227.
The p-value for the store 580 was 0.8347.
The p-value for the store 581 was 0.8992.
The p-value for the store 582 was 0.2076.
The p-value for the store 584 was 0.7512.
The p-value for the store 585 was 0.5915.
The p-value for the store 586 was 0.5285.
The p-value for the store 588 was 0.991.
```

In [290...

#As we can observe the p-value of the stores assuming Gamma Distribution is very small, so Gamma distribution is not a go

For the store level, Tried a lot of distributions but no distrubution was coming as proper fit thats why we used emperical data only.

Performed Trace dfriven simulation and generated Linearly interpolated ECDF.