Forecasting Air Quality of Boston

Hande Gulbagci Dede

Mentor: Ajith Patnaik

Air Pollution

 Contamination of the environment by any physical, chemical, or biological agent changes the atmosphere's natural characteristics.

 The Air Quality Index, the concentration of pollutants in the air in a specific place, is accepted as an indicator of air pollution.

Problem

Air pollution can cause both short-term and long-term effects.

Importance of Air Pollution Forecasting

To reduce the damage caused by air pollution to human health.

- By forecasting air quality, authorities
 - can take precautions and
 - issue early warnings

• **Aim:** Forecasting the air quality of Boston, the capital and largest city in Massachusetts in the USA, for 2023.

Data Information

Daily average air quality of Boston Station Source: Quality Historical Data Platform **Air Quality Data** Parameters: PM25, O3, NO2, SO2, and CO. The weather can significantly impact air quality Weather 2 Source: visialcrossing.com 33 attributes (temperature, humidity, wind, etc.) Source: US Energy Information Administration **Energy Consumption** 3 The natural gas delivered to consumers and total gasoline all sales in Massachusetts Each month's total airport flight number (domestic and Flight Number and Population 4 international) Source: Boston Logan International Airport Source: Office of Highway Policy **Federal Highway** Estimated travel on all roads and streets in Massachusetts and 5 **Administration's Reports** the amount of gallons taxed

Data Information

Air pollution indicator: PM_{25}

- Tiny particles of solid or liquid suspended in a gas.
- 2.5 refers to the diameter of particles which is 2.5 microns or less.
- Since being smaller they can transferred to longer distances.

Data period: From 2014 January to 2021 December

A total of 33 attributes

Changes in $PM_{2.5}$ between 2014 and 2021

Change in PM2.5 between 2014-2021

Monthly Average of PM_{2.5}

Seasonal Plot of PM_{2.5}

Modeling Overview

I tested **univariate** time series models:

- Naive, Seasonal Naive, Simple Average as simple methods
- Simple Exponential Smoothing, Holt-Winters,
- ARMA, ARIMA, SARIMA,
- FbProphet,
- PyCaret
- LSTM.

Cross-validation and hypermeter tuning

Modeling Overview

Feature Selection for exogenous variables

- Random Forest Regression,
- Stepwise Regression Backwards elimination approach.

Multivariate time series models:

- ARIMAX,
- SARIMAX,
- FbProphet,
- PyCaret

Forecasting

Forecasting $PM_{2.5}$ values in 3 months of 2022 with SARIMA Model

Future Improvements

 Using observed data of January, February, and March of 2022 for assessing performance of champion and challenger models.

- Univariate performed better than multivariate models. Some exogenous features were not statistically significant.
 - Examine different features such as wildfires and vehicle/human mobility

Predicting air quality for smaller areas

Gathering data from stations much closer to each other.

Hande Gulbagci Dede e-mail: handeguldede@gmail.com Github: https://github.com/hangulde