Théorie des langages : THL CM 10

Uli Fahrenberg

EPITA Rennes

S5 2023

Aperçu

Programme du cours

- Langages rationnels, automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
 - TP 1: flex
- Parsage LL
 - TP 2: LL
- Parsage LR
 - TP 3: bison
- Conclusion
 - TP 4: flex & bison

Re: parsage ascendant: the basics

```
function \operatorname{BULRP}(\alpha)

if \alpha = S then

return True

for i \leftarrow 1 to |\alpha| do

for j \leftarrow i to |\alpha| do

for A \in \mathbb{N} do

if A \rightarrow \alpha_i \dots \alpha_j then

return A \in \mathbb{N} if A \rightarrow \alpha_i \dots \alpha_j then

return True
```

Re : parsage LR(0)

$$Z \rightarrow S$$
 (0)

$$S \rightarrow S-n$$
 (1)

parser n - n:

entrée	pile	action
n - n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
<i>n</i> \$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

état	action	n	_	\$	S
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

$$S \rightarrow n$$

$$S \rightarrow S-n$$

Uli Fahrenberg

Théorie des langages : THL

Re: parsage SLR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple:
$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow n-S$ (1)

état	action	n	_	\$	S		état	n	_	\$	S
0	décaler	2			1		0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	_	- acce	pter -	_
5	réduire 1						5			r.1	

Uli Fahrenberg Théorie des langages : THL 6/ 26

7/26

Re: parsage LR(1)

• conditionner l'action par le contexte : les symboles qui peuvent suivre

Exemple:

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)
 $E \to L$ (5)

état	productions pointées élargies
0	Z o ullet S $[arepsilon]$
	$S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$]
	$L \rightarrow \bullet x [=], L \rightarrow \bullet *E [=]$
	$E \rightarrow ullet L [\$]$
	$L \to \bullet x [=], L \to \bullet *E [=]$ $E \to \bullet L [\$]$ $L \to \bullet x [\$], L \to \bullet *E [\$]$
1	$Z o S ullet \{ [arepsilon] \}$
2	$S \rightarrow L \bullet = E$ [\$], $E \rightarrow L \bullet$ [\$]

Uli Fahrenberg Théorie des langages : THL

Exemple

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
		1				d.6			
		2			d.7	r.5			
		3				r.2			
$Z \rightarrow S$ (0))	4			r.3	r.3			
$S \rightarrow L = E$ (1	,	5	d.4	d.5				d.9	d.8
,	•	6			— а	ccepte	er —		
E (2	•	7	d.12	d.13				d.11	d.10
$L \to x$ (3)	3)	8			r.4				
*E (4	1)	9			r.5				
$E \rightarrow L$ (5	5)	10				r.1			
	,	11				r.5			
		12				r.3			
		13	d.12	d.13				d.11	d.14
		14				r.4			

Uli Fahrenberg

Théorie des langages : THL

8/ 26

Parsage LALR(1) et GLR

Exemple, bis

```
productions pointées élargies
                                      état
                                                   Z \rightarrow \bullet S [\varepsilon], S \rightarrow \bullet L = E [$], S \rightarrow \bullet E [$], L \rightarrow \bullet x [=]
                                                    L \to \bullet *E = , E \to \bullet L = , L \to \bullet x = .
                                                   Z \to S \bullet \$ [\varepsilon]
                                                  S \rightarrow L \bullet = E [$], E \rightarrow L \bullet [$\sqrt{}]
                                                 S \rightarrow E \bullet [\$ \checkmark]
Z \rightarrow S
                        (0)
                                                  L \rightarrow x \bullet [= \checkmark], L \rightarrow x \bullet [\$ \checkmark]
S \rightarrow L=E (1)
                                                   L \to * \bullet E [=], L \to * \bullet E [\$], E \to \bullet L [=], L \to \bullet x [=]
                                                    L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
          | E
                        (2)
                                                   Z \to S [\varepsilon \checkmark]
 L \rightarrow x (3)
                                                   S \to L = \bullet E [$], E \to \bullet L [$], L \to \bullet x [$], L \to \bullet *E [$]
                                                   L \to *E \bullet [= \checkmark], L \to *E \bullet [$\checkmark]
                                         8
          |*E (4)
                                                    E \rightarrow L \bullet [= \checkmark], E \rightarrow L \bullet [\$ \checkmark]
E \rightarrow L (5)
                                        10
                                                   S \rightarrow L = E \bullet [\$ \checkmark]
                                                   E \rightarrow L \bullet [\$ \checkmark]
                                        11
                                        12
                                                 L \to x \bullet [\$ \checkmark]
                                                   L \rightarrow * \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet * E [$]
                                        13
                                        14
                                                  L \rightarrow *E \bullet [\$ \checkmark]
```

Exemple, bis

```
productions pointées élargies
                                        état
                                                     Z \rightarrow \bullet S [\varepsilon], S \rightarrow \bullet L = E [$], S \rightarrow \bullet E [$], L \rightarrow \bullet x [=]
                                                      L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = .
                                                    Z \to S \bullet \$ [\varepsilon]
                                                    S \rightarrow L \bullet = E [$], E \rightarrow L \bullet [$\sqrt{}]
                                                   S \rightarrow E \bullet [\$ \checkmark]
Z \rightarrow S
                         (0)
                                                    L \rightarrow x \bullet [= \checkmark], L \rightarrow x \bullet [$\checkmark]
S \rightarrow L=E (1)
                                                     L \to * \bullet E = , L \to * \bullet E = , L \to \bullet x = 
                                                      L \rightarrow \bullet *E = , E \rightarrow \bullet L = , L \rightarrow \bullet x = , L \rightarrow \bullet *E = 
          | E
                         (2)
                                                     Z \to S [\varepsilon \checkmark]
 L \rightarrow x (3)
                                                     S \rightarrow L = \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet *E [$]
                                                    L \to *E \bullet [= \checkmark], L \to *E \bullet [$\checkmark]
                                           8
          |*E (4)
                                                     E \rightarrow L \bullet [= \checkmark], E \rightarrow L \bullet [\$ \checkmark]
E \rightarrow L (5)
                                          10
                                                     S \rightarrow L = E \bullet [\$ \checkmark]
                                          11
                                                     E \rightarrow L \bullet [\$ \checkmark]
                                          12
                                                    L \rightarrow x \bullet [\$ \checkmark]
                                                     L \rightarrow * \bullet E [$], E \rightarrow \bullet L [$], L \rightarrow \bullet x [$], L \rightarrow \bullet * E [$]
                                          13
                                                    L \rightarrow *E \bullet [\$ \checkmark]
                                          14
```

Uli Fahrenberg Théorie des langages : THL 11/26

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

 les items sont identiques, mais les contextes peuvent être différents

Définition_i

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

Théorie des langages : THL

Exemple, ter

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S	(0)	1				d.6			
$S \rightarrow L = E$	(1)	2			d.7	r.5			
	` ,	3				r.2			
<i>E</i>	(2)	₁ 4			r.3	r.3			
$L \rightarrow x$	(3)	/ _* 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
extstyle E o extstyle L	(5)	/ 7	d.12	d.13				d.11	d.10
	()	, 8			r.4				
		9			r.5				
		\ (10				r.1			
		11				r.5			
		\\12				r.3			
		13	d.12	d.13				d.11	d.14
		14				r.4			

Exemple, ter

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
<i>E</i>	` ,	3				r.2			
'	(2)	4			r.3	r.3			
L o x	(3)	5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	6			— а	ccepte	er —		
E o L	(5)	7	d.12	d.13				d.11	d.10
	()	8			r.4	r.4			
		9			r.5	r.5			
		10				r.1			
			ı						

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E + E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); r.1 \Rightarrow (n + n) + n
- priorité : d.5 \Rightarrow n * (n + n); $r.1 \Rightarrow (n * n) + n$

Uli Fahrenberg

Théorie des langages : THL

Résolution de conflits

Exemple:

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E + E \qquad (1)$$

$$\mid E * E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	—
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); r.1 \Rightarrow (n + n) + n
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

Uli Fahrenberg

18/26

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

Uli Fahrenberg Théorie des langages : THL

Résumé du cours

Hiérarchie de Chomsky

type	langages	grammaires	automates
	<i>c</i>	\	<i>c</i> :
4	finis	à choix finis	finis acycliques
	∤ ∩	\downarrow	\Downarrow
3	réguliers	régulières	finis
	∤ ∩	\downarrow	\Downarrow
2	algébriques	hors-contexte	à pile
	∤ ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	∤ ∩	\downarrow	\Downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	† ∩	\downarrow	\downarrow
3	réguliers	régulières	finis
	∤ ∩	\downarrow	\downarrow
2	algébriques	hors-contexte	à pile
	† ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	∤ ∩	↓	\downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Théorie des langages : THL

Zoom sur type 3

syntaxe

aut. finis dét. complets

aut, finis déterministes

 $\downarrow \cap$

automates finis

aut. finis à trans. spontanées

expressions rationnelles

grammaires régulières

sémantique

langages reconnaissables

langages reconnaissables

langages reconnaissables

Ш

langages reconnaissables

Ш

langages rationnelles

langages réguliers

Uli Fahrenberg Théorie des langages : THL 22/ 26

23/26

Zoom sur type 2

syntaxe

grammaires hc forme Greibach

grammaires hors-contexte

grammaires hc forme Chomsky

automates à pile

automates à pile sans trans. spont.

automates à pile déterministes

sémantique

langages algébriques

langages algébriques

langages algébriques

langages algébriques

langages algébriques

langages algébriques déterministes

Uli Fahrenberg Théorie des langages : THL

Zoom sur LR

syntaxe

grammaires hors-contexte

grammaires hc non-ambiguës grammaires hc déterministes grammaires LR(k)grammaires LR(1) grammaires LALR(1) grammaires SLR(1)

sémantique

langages algébriques lang. alg. non-ambigués lang. alg. déterministes lang. alg. déterministes lang. alg. déterministes langages LALR(1) langages SLR(1) langages LR(0)

grammaires LR(0)

25/26

Zoom sur LL

syntaxe

grammaires LL(1)

sémantique grammaires hors-contexte langages algébriques lang. alg. non-ambigués grammaires hc non-ambiguës grammaires hc déterministes lang. alg. déterministes grammaires LL(k)langages LL(k)grammaires LL(2) langages LL(2)

Uli Fahrenberg Théorie des langages : THL

langages LL(1)

