CSS321: Theory of Computation Midterm Mock Exam

curated by The Peanuts

Conditions: Open Book

Directions:

- 1. This exam has 16 pages (including this page).
- 2. You may use a calculator, but it won't help you prove languages are non-regular.
- 3. Dictionaries are not allowed. Neither is asking the Pumping Lemma for help (it's not here!).
- 4. Cheating is strictly prohibited.
- 5. Good luck! May all your states be accepting.

The solution will never be released, sorry!

Consider the following statements:

- (a) $\{a\} \in \{\{a\}, \{b\}\}\$
- (b) $\{a,b\} \subseteq \{\{a\},\{b\},a,b\}$
- (c) $2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
- (d) For any sets A and B, if $A \subseteq B$ then $2^A \subseteq 2^B$
- (e) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Which of the above statements are true?

Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)\}$ be a relation on A. Consider the following properties:

- (a) R is reflexive
- (b) R is symmetric
- (c) R is transitive
- (d) R is antisymmetric
- (e) R is a partial order

Which of the above properties hold for R?

Consider the following statements about regular languages:

(a)
$$L((a \cup b)^*a) = \{w \in \{a,b\}^* \mid w \text{ ends with } a\}$$

- (b) $L(a^*b^*) \cap L(b^*a^*) = \{a^nb^n \mid n \ge 0\}$
- (c) For any regular language $L, L^* = L^+ \cup \{\varepsilon\}$
- (d) The language $\{a^nb^m\mid n\neq m\}$ is regular
- (e) Every finite language is regular

Which of the above statements are false?

Convert the following two nondeterministic finite automata to equivalent deterministic finite automata.

Consider the following finite automaton A over the alphabet $\Sigma = \{a, b, c\}$.

a) Is A deterministic? If not, convert A into a DFA.

b) Is A minimal? If not, convert A into a minimal DFA.

c) Convert A into a regular expression.

Prove by induction that $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 3 and n > 0

Construct a DFA equivalent to the NFA $M=(\{a,b,c,d\},\{0,1\},\delta,\,a,\{b,d\})$ where δ is given below and informally describe the language it accepts.

δ	0	1
a	$\{b,d\}$	$\{b\}$
b	$\{c\}$	$\{b,c\}$
c	$\{d\}$	$\{a\}$
d	Ø	$\{a\}$

Find the regular expression for the following DFA.

Show that $(\emptyset)^* = \epsilon$ for regular expression

Let $\Sigma = \{a, b\}$ and let L_1 be the language over Σ given by the regular expression $(ab \cup ba)^*$. Design a DFA for L_1 .

Let $\Sigma = \{a, b\}$ and let $L_2 = \{w \in \Sigma^* | \text{w does not contain bbb as a substring}\}$. Design a DFA for L_2 and write a regular expression.

Consider the following statements about cardinality and functions:

- (a) Every subset of a countably infinite set is finite or countably infinite
- (b) There exists a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$
- (c) The set $2^{\mathbb{N}}$ is countably infinite
- (d) If $f:A\to B$ is one-to-one and |A|=|B|, then f is onto
- (e) The diagonalization principle can prove that some infinite sets have different cardinalities

Which statements are true?

Let $A = \{a, b, c\}$ and $R = \{(a, a), (a, b), (b, c), (c, a)\}$ be a relation on A. a) Find the smallest reflexive relation R_1 containing R.

- b) Find the smallest reflexive and transitive relation R_2 containing R.
- c) Is R_2 an equivalence relation? If not, what would you need to add to make it one?
- d) For the relation R, find:
 - 1. The row set of a: $R_a = \{x \in A \mid (a, x) \in R\} =$ ______
 - 2. The diagonal set: $D = \{x \in A \mid (x, x) \notin R\} =$ _____

Construct DFAs for the following languages over $\Sigma = \{0, 1\}$: a) $L_1 = \{w \mid |w| \mod 3 = 0\}$ (strings whose length is divisible by 3)

b) $L_2 = \{ w \mid w \text{ contains an even number of 1's} \}$

c) $L_3 = \{ w \mid w \text{ ends with } 01 \}$

Prove the following set theory identity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$