Name: Anshika Roll No: 102003183 Subgroup: 3COE8

Probability and Statistics (UCS410)

Experiment 5

(Continuous Probability Distributions)

- 1. Consider that X is the time (in minutes) that a person has to wait in order to take a flight. If each flight takes off each hour $X \sim U(0, 60)$. Find the probability that
 - (a) waiting time is more than 45 minutes, and

```
> punif(45, 0, 60, lower.tail=FALSE)
[1] 0.25
```

(b) waiting time lies between 20 and 30 minutes.

```
> punif(30, 0, 60)-punif(20, 0, 60)
[1] 0.1666667
```

- 2. The time (in hours) required to repair a machine is an exponential distributed random variable with parameter $\lambda = 1/2$.
 - (a) Find the value of density function at x = 3.

```
> dexp(3, rate=0.5)
[1] 0.1115651
```

- (b) Plot the graph of exponential probability distribution for $0 \le x \le 5$.
 - > curve(dexp(x, rate=0.5), from=0, to=5)

(c) Find the probability that a repair time takes at most 3 hours.

- (d) Plot the graph of cumulative exponential probabilities for $0 \le x \le 5$.
 - > curve(pexp(x, rate=0.5), from=0, to=5)

Name: Anshika Roll No: 102003183 Subgroup: 3COE8

(e) Simulate 1000 exponential distributed random numbers with $\lambda = \frac{1}{2}$ and plot the simulated data.

```
> x<-rexp(1000, rate=0.5)
> plot(density(x))
```

density.default(x = x)

N = 1000 Bandwidth = 0.3579

- 3. The lifetime of certain equipment is described by a random variable X that follows Gamma distribution with parameters $\alpha = 2$ and $\beta = 1/3$.
 - (a) Find the probability that the lifetime of equipment is (i) 3 units of time, and
 dgamma(3, shape=2, scale=1/3)
 [1] 0.003332065
 - (ii)at least 1 unit of time.
 - > pgamma(1, shape=2, scale=1/3, lower.tail=FALSE) [1] 0.1991483
 - (b) What is the value of c, if $P(X \le c) \ge 0.70$? (**Hint:** try quantile function qgamma()) > qgamma(0.7, shape=2, scale=1/3) [1] 0.8130722