

ABES Engineering College, Ghaziabad Department of Applied Sciences & Humanities

Session: 2023-24 Semester: I Section: All

Course Code: BAS-103 Course Name: Engineering Mathematics-I

Assignment 5

Date of Assignment:

Date of submission:

S.No.	KL	CO	PI	Question	Marks
1	K3	CO5	1.2.1, 1.3.1, 2.1.3, 2.4.1	Find the directional derivative of $\frac{1}{r^2}$ in the direction \vec{r} of where $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$.	5
2	K3	CO5	1.2.1, 2.2.5, 2.1.3, 2.4.3	Show that $\overrightarrow{A} = (6xy + z^3) \hat{i} + (3x^2 - z) \hat{j} + (3xz^2 - y) \hat{k}$ irrotational. Find the velocity potential \emptyset such that $\overrightarrow{A} = \overrightarrow{\nabla} \emptyset$.	5
3	K3	CO5	1.3.1, 2.2.3, 2.4.2	Find the directional derivative of $\overrightarrow{\nabla}$. $(\overrightarrow{\nabla}\varnothing)$ at the point $(1,-2,1)$ in the direction of the normal to the surface $xy^2z=3x+z^2$, where $\varnothing=2x^3y^2z^4$.	5
4	К3	CO5	2.2.4, 2.2.5, 2.3.2, 2.4.1	Find the work done in moving a particle in the force field $\overrightarrow{F} = 3x^2 \widehat{i} + (2xz-y) \widehat{j} + z \widehat{k}$ along the curve defined by $x^2 = 4y, 3x^3 = 8z$ from to $x = 0$ $x = 2$.	5
5	К3	CO5	2.2.5, 2.3.2, 2.4.2, 2.4.3, 3.3.2,	Verify the divergence theorem for $\vec{F} = (x^3 - yz)\hat{i} - 2x^2y\hat{j} + 2\hat{k}$ taken over the cube bounded by the planes $x = 0, x = a, y = 0, y = a, z = 0, z = a$.	5
6.	K3	CO5	5.1.1, 10.1.2, 2.4.3,	Verify Green's theorem in the plane for $\int_{\mathcal{C}} \left[(xy + y^2) dx + x^2 dy \right]$, where C is closed curve of the region bounded by $y = x$ and $y = x^2$.	5
7.	К3	CO5	12.1.1, 12.1.2	Verify Green's theorem by evaluating $\int_{C} [(x^3 - xy^3) dx + (y^2 - 2xy) dy], \text{ where C is the square having the vertices at the point } (0,0),(2,0),(2,2)&(0,2)$	5
8.	К3	CO5	1.3.1, 2.2.3,	Find $\overrightarrow{\nabla} log r^n$	5

9.	K3	CO5		Find the constants b such that	5
			10.3.1, 2.4.1,	$\overrightarrow{A} = (bxy - z^3) \hat{i} + (b-2)x^2 \hat{j} + (1-b)xz^2 \hat{k}$ has its	
				curl identically equal to zero.	
10.	K3	CO5	1.2.1, 1.3.1,	Verify the Stoke's theorem for $\overrightarrow{F} = y \ \widehat{i} + z \ \widehat{j} + x \ \widehat{k}$ and	5
			2.1.3, 2.4.1	surface S is the portion of the sphere $x^2 + y^2 + z^2 = 1$	
				above the xy -plane.	

Answers:

$$1. - \frac{2}{3}$$

7.
$$\frac{2}{r^3}$$

2. $.\emptyset = 3x^2y + xz^3 - zy + c$
3. $\frac{1724}{\sqrt{21}}$
4. 16
5. $\frac{n\vec{r}}{r^2}$
6. 4
8. $\frac{n\vec{r}}{r^2}$ 9. b=-2,4

$$3.\frac{1724}{\sqrt{21}}$$

$$5.\frac{n\vec{r}}{r^2}$$

8.
$$\frac{n\bar{r}}{r^2}$$
 9. b=-2,4