Identifying Poisonous Plants Using Deep Learning

Qurat Ul Ain Syeda MSIS 2626: Deep Learning Fall 2021

Agenda

Ol Defining the Problem

The motivation behind choosing this topic

03 Architectures

Simple CNN, Mini-Xception, Transfer Learning & HyperParameter-tuning with KerasTuner Data O2

Using Plant Clef Dataset & Google Images

Conclusion 04

Comparison of results & final model selection

Motivation

Background

- Poisonous plants can cause an allergic reaction in 80-90% of adults
- Poisonous plants (eg. poison ivy, poison oak, poison sumac) release an oil called urushiol which can cause:
 - Rashes, blisters, bumps are non-threatening
 - Oil can cause lung irritation if inhaled
 - Advisable to see a doctor if too close to eyes or widespread

Use Cases

- Integrate into nature-related mobile application
- Eg. hiking trails app, bird watching app, flower/plant identifier app
- Point, click, and identify functionality

Data Collection

Dataset divided into poisonous and non-poisonous plants

- Poisonous plants: Downloaded approx. 100 images for each type of plant. Total: 270 images
- Used PlantCLEF 2015 Annotated Dataset: Consists of over 1000 images submitted by the users of the mobile application Pl@ntNet. Total: 270 images

MODEL ARCHITECTURES

Simple CNN

Using multiple convolutional layers

Mini-Xception

Truncated version of Xception

Transfer Learning

Using Xception & ImageNet

Simple CNN - Workflow

Augment Images w/ ImageDataGenerator()

Use .flow_from_dirtectory() method to load images & apply image augmentation during training

Q2 Build, compile & train the model

Used multiple convolutional layers & RMSProp as an optimization algorithm.

O3 Evaluate model performance & use to predict on test set

Goal is to maximize validation accuracy

Simple CNN - Model

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	198, 198, 16)	448
max_pooling2d (MaxPooling2D)	(None,	99, 99, 16)	0
conv2d_1 (Conv2D)	(None,	97, 97, 32)	4640
max_pooling2d_1 (MaxPooling2	(None,	48, 48, 32)	0
conv2d_2 (Conv2D)	(None,	46, 46, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	23, 23, 64)	0
conv2d_3 (Conv2D)	(None,	21, 21, 64)	36928
max_pooling2d_3 (MaxPooling2	(None,	10, 10, 64)	0
conv2d_4 (Conv2D)	(None,	8, 8, 64)	36928
max_pooling2d_4 (MaxPooling2	(None,	4, 4, 64)	0
flatten_1 (Flatten)	(None,	1024)	0
dense_2 (Dense)	(None,	512)	524800
dense_3 (Dense)	(None,	1)	513

Non-trainable params: 0

Simple CNN - Training Results

Validation accuracy greater than training due to size & possible difference in noise/variance in validation dataset

Training Loss = 0.485 Validation Loss = 0.413

Training Accuracy = 77.35%
Validation Accuracy = 83.33%

Simple CNN - Predicting on Test Set

Poison Ivy

Poison Oak

Poison Sumac

Non-Poisonous Plant

Simple CNN - Hyperparameter Tuning

- * KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search
- * We used the **RandomSearch()** algorithm to find the best hyperparameter values for our model with the goal of maximizing "validation accuracy"
- The hyperparameters we tuned:
 - > # of neurons in the last hidden layer
 - ➤ Learning rate supplied to our RMSProp optimizer

```
tuner.search_space_summary()

Search space summary
Default search space size: 2
units (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step': 128, 'sampling': None}
learning_rate (Choice)
{'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True}
```


Hyperparameter Tuning Results

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 198, 198, 16)	
max_pooling2d (MaxPooling2D)	(None, 99, 99, 16)	0
conv2d_1 (Conv2D)	(None, 97, 97, 32)	4640
max_pooling2d_1 (MaxPooling 2D)	(None, 48, 48, 32)	0
conv2d_2 (Conv2D)	(None, 46, 46, 64)	18496
max_pooling2d_2 (MaxPooling 2D)	(None, 23, 23, 64)	0
conv2d_3 (Conv2D)	(None, 21, 21, 64)	36928
max_pooling2d_3 (MaxPooling 2D)	(None, 10, 10, 64)	0
conv2d_4 (Conv2D)	(None, 8, 8, 64)	36928
max_pooling2d_4 (MaxPooling 2D)	(None, 4, 4, 64)	0
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 160)	164000
dense_1 (Dense)	(None, 1)	161

Total params: 261,601 Trainable params: 261,601 Non-trainable params: 0

Trial summary Hyperparameters: units: 160

learning_rate: 0.001 Score: 0.9111110965410868

Training Loss = 0.405 Validation Loss = 0.202

Training Accuracy = 81.43% Validation Accuracy = 93.33%

Mini-Xception Model- Workflow

Load & split dataset using image_dataset_from_directory() & augment images using Keras' data augmentation layers

Performed an 80/20 split on dataset & used RandomFlip & RandomRotation layers

Q2 Build, compile & train the model

Uses pointwise convolution followed by a depthwise convolution

O3 Evaluate model performance & use to predict on test set

Goal is to maximize validation accuracy

Xception - Image Augmentation

- Since we have a limited dataset, we used data augmentation layers.
- These layers apply random augmentation transforms to a batch of images.
- They are only active during training.
- We applied the following transformations:
 - tf. keras.layers.RandomFlip(""horizontal_and_vertical")
 - tf.keras.layers.RandomRotation(0.2),

Xception - Model Summary (Partial)

	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 180, 180, 3)]		[]
sequential (Sequential)	(None, 180, 180, 3)	0	['input_1[0][0]']
rescaling (Rescaling)	(None, 180, 180, 3)	0	['sequential[0][0]']
conv2d (Conv2D)	(None, 90, 90, 32)	896	['rescaling[0][0]']
${\tt batch_normalization~(BatchNorm~alization)}$	(None, 90, 90, 32)	128	['conv2d[0][0]']
activation (Activation)	(None, 90, 90, 32)	0	['batch_normalization[0][0]']
conv2d_1 (Conv2D)	(None, 90, 90, 64)	18496	['activation[0][0]']
<pre>batch_normalization_10 (BatchN ormalization)</pre>	(None, 6, 6, 1024)	4096	['separable_conv2d_8[0][0]']
activation_10 (Activation)	(None, 6, 6, 1024)	0	['batch_normalization_10[0][0]']
<pre>global_average_pooling2d (Glob alAveragePooling2D)</pre>	(None, 1024)	0	['activation_10[0][0]']
dropout (Dropout)	(None, 1024)	0	['global_average_pooling2d[0][0]']
	(None, 1)	1025	['dropout[0][0]']

Xception Model - Training Results

Training Loss = 0.114
Validation Loss = 0.803

Training Accuracy = 95.65% Validation Accuracy = 75.23%

Mini-Xception - Predicting on Test Set

Poison Ivy

Poison Oak

Non-Poisonous Plant

Transfer Learning - Workflow

Load & split dataset using image_dataset_from_directory() & augment images using Keras' data augmentation layers

Performed an 80/20 split on dataset & used RandomFlip & RandomRotation layers

Q2 Build, compile & train the model

- a) Instantiate a base model and load pre-trained weights into it.
- b) Freeze all layers in the base model by setting trainable = False.
- c) Create a new model on top of the output of one (or several) layers from the base model.
- O3 Evaluate model performance & use to predict on test set

Goal is to maximize validation accuracy

Transfer Learning

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 180, 180, 3)]	0
sequential (Sequential)	(None, 180, 180, 3)	0
rescaling (Rescaling)	(None, 180, 180, 3)	0
xception (Functional)	(None, 6, 6, 2048)	20861486
global_average_pooling2d (lobalAveragePooling2D)	0	
dropout (Dropout)	(None, 2048)	0
dense (Dense)	(None, 1)	2049

Total params: 20,863,529 Trainable params: 2,049

Non-trainable params: 20,861,480

Transfer Learning - Training Results

Training Loss = 0.202 Validation Loss = 0.304

Training Accuracy = 92.45%
Validation Accuracy = 87.16%

Validation accuracy is slightly lower than training accuracy

Transfer Learning (Post-Tuning) - Model Summary

Output Shape	Param #
[(None, 180, 180, 3)]	0
(None, 180, 180, 3)	0
(None, 180, 180, 3)	0
(None, 6, 6, 2048)	20861480
(None, 2048)	0
(None, 2048)	0
(None, 1)	2049
	[(None, 180, 180, 3)] (None, 180, 180, 3) (None, 180, 180, 3) (None, 6, 6, 2048) (None, 2048) (None, 2048)

Transfer Learning (Post-Tuning) Training Results

Training Accuracy & Validation Accuracy improved slightly

Training Loss = 0.009 Validation Loss = 0.384

Training Accuracy = 99.77%
Validation Accuracy = 90.83%

Transfer Learning- Predicting on Test Set

Poison Ivy

Poison Oak

Poison Sumac

Non-Poisonous **Plant**

Models Comparison

	Accuracy	Validation Accuracy	Loss	Validation Loss
Simple CNN	77.35%	83.33%	0.485	0.413
Simple CNN (post-tuning)	81.43%	93.33%	0.405	0.202
Xception	95.65%	75.82%	0.114	0.803
Transfer Learning	92.45%	87.16%	0.202	0.304
Transfer Learning (post-tuning)	99.77%	90.83%	0.009	0.384

Key Takeaways

- Images can be corrupted during the download process; learnt how to identify & filter them out
- Identified various ways to apply data augmentation to enhance dataset & their impact on model performance
- Used KerasTuner() to streamline the hyperparameter tuning process
- Further enhance the model, using both images and text data to classify various species of plants.

Thanks for Listening!

Any Questions?

References

Poisonous Plants:

- https://www.cdc.gov/niosh/topics/plants/default.html
- https://www.webmd.com/allergies/ss/slideshow-poison-plants

Non-poisonous Plants Dataset

o https://www.imageclef.org/lifeclef/2015/plant

Simple CNN:

- https://vijayabhaskar96.medium.com/tutorial-image-classification-with-keras-flow-from-directory-and-generators-95f75ebe5720
- https://www.analyticsvidhya.com/blog/2020/08/image-augmentation-on-the-fly-using-ker
 as-imagedatagenerator/

• Hyperparameter Tuning using KerasTuner

o https://keras.io/keras_tuner/

Mini-Xception Model

https://keras.io/examples/vision/image_classification_from_scratch/#two-options-to-preprocess-the-data

Transfer Learning

https://keras.io/quides/transfer_learning/

