УДК 665.656.2+665.753.2

ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ СОВЕРШЕНСТВОВАНИЯ ПРОЦЕССА ГИДРОИЗОМЕРИЗАЦИИ ДИЗЕЛЬНЫХ ТОПЛИВ

ADVANCED TECHNOLOGIES FOR IMPROVING THE PROCESS OF HYDROISOMERIZATION OF DIESEL FUELS

Руденко Антонина Сергеевна

студентка направления подготовки 18.03.01 «Химическая технология», Кубанский государственный технологический университет tonya-rudenko 00@mail.ru

Литвинова Татьяна Андреевна

кандидат технических наук, доцент кафедры технологии нефти и газа, Кубанский государственный технологический университет soleado-sta@mail.ru

Аннотация. Данная статья посвящена обзору современного производства высококачественных и высокоэкологичных дизельных топлив, которое является важным направлением в нефтепереработке и нефтехимии. Особое значение приобретает вопрос производства топлив с улучшенными низкотемпературными свойствами для использования в холодных климатических зонах. Цель работы — изучение процесса гидроизомеризации дизельных фракций как перспективной технологии производства высококачественных низкозастывающих моторных топлив с высоким выходом продукта.

Ключевые слова: гидроизомеризация, дизельное топливо, бифункциональный катализатор, цеолит, перспективные технологии.

Rudenko Antonina Sergeevna

Student, Training Programs 18.03.01 Chemical Engineering, Kuban State Technological University tonya-rudenko_00@mail.ru

Litvinova Tatiana Andreevna

PhD in Technical Sciences, Associate Professor, Department of Oil and Gas Technology, Kuban State Technological University soleado-sta@mail.ru

Annotation. This article is devoted to an overview of the modern production of high-quality and highly environmentally friendly diesel fuels, which is an important area in oil refining and petrochemistry. Of particular importance is the production of fuels with improved low-temperature properties for use in cold climatic zones The aim of this work is to study the process of diesel fractions hydroisomerization as a promising technology for the production of high-quality low-solidifying motor fuels with a high product yield.

Keywords: hydroisomerization, diesel fuel, bifunctional catalyst, zeolite, promising method.

роизводство высококачественных и высокоэкологичных дизельных топлив является актуальным направлением в нефтепереработке и нефтехимии. Современные топлива должны обеспечивать надежную и экономичную работу двигателя и соответствовать экологическим и эксплуатационным требованиям.

Для улучшения эксплуатационных качеств дизельных топлив применяют различные гидрогенизационные процессы, среди которых важное место занимает гидроизомеризация.

В основе процесса лежит изомеризация длинноцепочечных н-парафинов в присутствии водорода и с использованием бифункционального катализатора [1]. Реакции протекают в большей степени по мономолекулярному механизму через следующие стадии:

- образование карбокатиона,
- перегруппировка карбокатиона
- продолжение цепи реакции.

При этом различают два типа перегруппироки карбокатиона: с изменением степени разветвления и без изменения.

В процессе используют бифункциональный катализатор, обладающий металлическими центрами, на которых протекают реакции гидрирования-дегидрирования, и кислотными, где происходит изомеризация. Катализатор может содержать неблагородные переходные металлы, такие как Ni, Mo, Co, W, или благородные металлы платиновой группы, которые обладают большей селективностью по отношению к реакциям гидроизомеризации н-парафинов. В настоящее время отдают предпочтение цеолитным катализаторам, особенно со специфичной структурой, которая получила название «one-dimensional 10-rings zeolites».

Стоит обратить внимание, что для эффективного процесса гидроизомеризации необходимы катализаторы, способные подавлять побочные реакции гидрокрекинга и олигомеризации, которые могут приводить к увеличению закоксовывания и снижению селективности процесса. Для этого используют катализаторы с сильной металлической функцией, а также повышают давления водорода.

Несмотря на то, что цеолиты с одномерной десятичленной структурой нашли широкое применение в бифункциональных катализаторах процесса гидроизомеризации дизельных фракций, они тоже обладают некоторыми недостатками. Один из них — недостаточно высокий выход продукта. Это обусловлено такими факторами, как микропористая структура цеолитов и большая концентрация кислотных центров на внешней поверхности кристаллов, которые приводят к побочным реакциям гидрокрекинга. Проводятся исследования для решения этих проблем, однако, предлагаемые варианты пока не нашли широкого промышленного применения.

В целом сущность проблемы в процессах гидроизомеризации сводится к тому, что с увеличением селективности и выхода продукта, также возрастает и себестоимость катализатора. Чаще всего это происходит из-за использования благородных металлов в состав, а также удорожания процесса регенерации катализатора. Ведутся исследования и разработки для решения данных проблем.

Так, например, авторы работы [2] уделили внимание снижению содержания дорогостоящих металлов платиновой группы в катализаторах гидроизомеризации дизельного топлива при условии получения низкой температуры фильтруемости и высокого выхода продукта. Результаты проведенных испытаний разработанного катализатора приведены в таблице 1. Разработчики отмечают, что технического результата удалось достигнуть благодаря использованию лазерного диспергирования наночастиц металлов.

Таблица 1 – Результаты испытаний разработанного катализатора

Образец катализатора	Приготовленный катализатор		Образец сравнения	
Содержание Pd, масс. %	0,03		0,6	
Температура процесса, °С	340	380	340	380
Предельная температура фильтруемости, °C	-12	-33	-17	-47
Содержание н-алканов, %	16,33	13,31	14,17	7,58
Выход ДТ	99,76	97,96	99,31	88,60

Данные, приведенные в таблице 1, позволяют утверждать, что при одинаковых температурах процесса разработанный катализатор и катализатор сравнения обеспечивают сопоставимые результаты, но при значительно меньшем содержании Pd в составе заявленного катализатора.

Авторы работы [3] отмечают, что в настоящее время ведутся разработки катализаторов и способ, направленных на использование возобновляемых ресурсов в процессы производства экологически чистых моторных топлив. Разработанный катализатор предназначен для использования на второй стадии процесса совместной переработки триглецеридов жирных кислот и дизельных фракций. Исследования показывают, что сульфидный NiMo катализатор на носителе, в качестве которого выступает композиция цеолита SAPO-11 и Al_2O_3 , обеспечивает снижение температуры помутнения продуктов гидропереработки примерно на 10 °C.

Разработка новых технологий гидроизомеризации дизельных фракций говорит о том, что этот процесс представляет особый интерес для его промышленной реализации. Согласно ИТС 30-2017 один из самых перспективных процессов — MAKFiningHDT/MIDW, который разработан ExxonMobil Research&Engineering Co. в сотрудничестве с другими компаниями. По всему миру работает около 10 установок, 5 из которых находятся на стадии проектирования. Компанией Chevron Lummus Global, Inc. разработана технология Isodewaxing, а также 4 поколения катализаторов для этого процесса. Гибкая двухступенчатая технология SYN-Flow разработана компанией Shell Global Solutions, Inc. Фирма UOP занимается совершенствованием технологии MQD Unionfining. Особенность этого процесса заключается в использовании для кжадой ступени собственного катализатора. Катализатор, используемый на второй ступени, в своем составе имеет благородный металл. Именно его применение обеспечивает высокий выход продукта и снижение температуры застывания [4].

Проведенное исследование позволяет сделать вывод о том, что процесс гидроизомеризации высших длинноцепочечных нормальных парафинов является одним из наиболее перспективных для получения дизельных топлив с требуемыми эксплуатационными характеристиками, обеспечивая при этом обеспечивает высокий выход продуктов.

В настоящее время разрабатываются новые катализаторы. а также проводятся исследования для определения оптимального технологического режима с целью совершенствования и интенсификации процесса. Одним из преимуществ современных технологий промышленной реализации следует отметить возможность интегрирования процесса с уже существующими установками гидроочистки, что позволяет достичь большей гибкости НПЗ по изменению качества продуктов в зависимости от потребностей рынка.

Литература:

- 1. Гидроизомеризация нормальных парафиновых углеводородов С16+ на бифункциональных цеолитсо-держащих катализаторах / 3.Р. Хайруллина [и др.] // Вестник Башкирского университета. 2020. Т. 25. № 3. С. 495–505.
- 2. Катализатор для гидроизомеризации дизельного топлива: Пат. 2 620 813 Рос. Федерация; 2016101448, заявл. 06.07.2016, опубл. 30.05.2017. Бюл. № 16.
- 3. Катализатор для получения низкосернистого дизельного топлива: Пат. 2 725 870 Рос. Федерация; 2019140883, заявл. 11.12.2019, опубл. 7.07.2020. Бюл. № 19.
- 4. ИТС 30-2017 Информационно-технический справочник по наилучшим технологиям. Переработка нефти, утв. приказом Росстандарта от 14.11.2017 г. № 2424.

References:

- 1. Hydroisomerization of normal paraffin hydrocarbons C16+ on bifunctional zeolite-containing catalysts / Z.R. Khayrullina [et al.] // Bulletin of Bashkir University. 2020. Vol. 25. № 3. P. 495–505.
- 2. Catalyst for hydroisomerization of diesel fuel: Pat. 2 620 813 Ros. Federation; 2016101448, application. 06.07.2016, published 30.05.2017. Bul. № 16.
- 3. Catalyst for production of low-sulfur diesel fuel: Pat. 2,725,870 Russ. Federation; 2019140883, application. 11.12.2019, published 7.07.2020. Bul. № 19.
- 4. ITS 30-2017 Information and Technical Reference Book on the Best Technologies. Oil Refining, approved by Order of Rosstandart of 14.11.2017 № 2424.