

دانشگاه صنعتی اصفهان دانشکده برق و کامپیوتر

دستورکار آزمایشگاه طراحی مدارهای واسط

آزمایش دوم

تهیه کننده :مهران صفایانی

پاییز ۹۵

آشنایی با پورت های ورودی / خروجی و موتورهای پله ای

اهداف:

- ullet آن اینی با پورت های ورودی وخروجی وخروجی آن ullet
 - LED کار با کلید های فشاری و lacktree
 - کار با موتور پله ای (Stepermotor)

❖مقدمه:

هدف از این آزمایش آشنایی با ورودی خروجی های دیجیتال ، بررسی رجیسترهای مربوطه و همچنین کار با این ورودی و خروجی به صورت عملی است. بر این اساس شما داده هایی را از طریق کلیدهای فشاری به درون میکروکنترلر منتقل کرده و بروی LED های موجود در بورد اطلاعاتی را نمایش می دهید همچنین با نحوه کار با موتور پله ای آشنا خواهید شد.

لابررسی رجستر های GPIO:

جهت کار با پورت های ورودی خروجی از پنج رجیستر استفاده می شود که در ادامه به بررسی و کار با این رجیسترها می پردازیم .در میکرو LPC1768 می توان از پورت p0 پین های p0 پین های p1 پین های p2 پین های p3 پین های ورودی و خروجی استفاده کرد.

رجیستر اول LPC_GPIOx -> FIODIR : این رجیستر برای تعین جهت پورت استفاده می شود به نحویکه با نوشتن مقدار یک در این رجیستر پایه مربوط به عنوان خروجی و با نوشتن مقدار صفر پایه به عنوان ورودی تعیین می شود. پورتهای میکرو LPC1768 به طور پیش فرض در جهت ورودی می باشند و تنها برای خروجی کردن پورت نیاز به مقدار دهی داریم . به جای xدر این رجیستر شماره پورت قرار می گیرد .

مثال: بیت اول رجیستر پورت را در جهت خروجی تعیین کنید.

FIODIR = 0X01 -> LPC GPIO2;

مثال : ۸ بیت اول رجیستر پورت صفر را در جهت خروجی تعیین کنید.

LPC GPIO0 -> FIODIR = OXFF;

رجیستر دوم LPC_GPIOx -> FIOSET : این رجیستر جهت یک کردن پایه خروجی به کار درود..

```
مثال : ۸ LED متصل به بیت کم ارزش پورت ۲را روشن کنید.
LPC GPIO2 -> FIODIR = 0XFF;
LPC GPIO2 -> FIOSET = 0XFF;
  رجيستر سوم LPC_GPIOx -> FIOCLR اين رجيستر جهت صفر كردن پايه خروجي به كار مي
                                                                    رود..
                            مثال : ۸ LED متصل به ۸ بیت کم ارزش پورت ۲را خاموش کنید.
LPC GPIO2 -> FIODIR = 0XFF;
LPC GPIO2 \rightarrow FIOSET = 0X00;
  برنامه ای بنویسید که LED ۸ متصل به ۸ بیت کم ارزش پورت ۲ به شکل چشمک زن خاموش و روشن شوند.
#include <lpc17xx.h>
void delay (uint32 t Time)
     uint32 t i;
      i = 0;
     while (Time--) {
           for (i = 0; i < 5000; i++);
     }
}
int main(void)
{
      LPC GPIO2 -> FIODIR = 0xff;
      LPC GPIO2->FIOCLR = 0xff; //turn off leds
      while (1)
     {
           LPC GPIO2->FIOSET = 0xFF;
           delay(500);
           LPC GPIO2->FIOCLR = 0XFF;
           delay(500);
      }
}
```

رجیستر چهارم LPC_GPIOx -> FIOPIN :از این رجیستر برای خواندن از ورودی استفاده می شود . البته با این رجیستر می توان پورت ها را مقدار دهی کرد.

برنامه ای بنویسید که در صورتیکه کلید متصل به بیت اول پورت ۲ زده شد LED متصل به بیت صفرم پورت ۲را روشن کند .نکته مهم در برنامه این است که پایه های ورودی میکرو lpc1768 به طور پیش فرض $pull\ up$ هستند و برای اینکه تنها بیت اول پورت ۲ مد نظر است باید آن را با یک AND کرد.

```
#include <lpc17xx.h>
void delay (uint32 t Time)
    uint32 t i;
    i = 0;
    while (Time-) {
         for (i = 0 ; i < 5000 ; i++);
}
int main (void)
    LPC GPIO2->FIODIR = 0x1;
    LPC GPIO2->FIOCLR = 0x1;
    while (1)
    {
         LPC GPIO2->FIOCLR = 0x1;
         while ((LPC GPIO2->FIOPIN & 1 << 1) == 0)
             LPC GPIO2->FIOPIN = 0x1;
         }
    }
}
```

 4 در ابتدا به صورت خروجی پیکره بندی شده است و فقط دسترسی به همین 4 بین فعال شده است. حال اگر پین های دیگر را بخواهیم صفر و یک نماییم بدلیل عدم دسترسی به آنها این کار انجام نخواهد شد.

```
LPC_GPIO1->FIODIR = 0x000F0000;

LPC_GPIO1->FIOMASK = 0xFFF0FFFF;

LPC_GPIO1->FIOSET = 0x548319FC;

LPC_GPIO1->FIOCLR = 0xF2D398FF;
```

نلازی موتور پله ای با GPIO:

موتور های پله ای گونه ای از مو تور ها هستند که حرکت شافت رتورآنها به صورت پله ای و تحت زاویه خاص انجام می شود . عموماً این نوع موتورها دارای ۶ سیم می باشند که دو سیم آن به صورت مشترک و ۴ سیم دیگر به سیم پیچ های استاتور موتور متصل است . اگر به صورت متوالی با رعایت فاصله زمانی پالس اعمال نماییم ، موتور در جهت راست و یا چپ طبق جدول زیر می چرخد.

خواهد شد .	عوض	موتور	چرخش	جهت	كنيم	عوض	ها را	پالس	جهت	اگر	حال
------------	-----	-------	------	-----	------	-----	-------	------	-----	-----	-----

راست گرد	شماره پله	پین A	پين *A	پین B	پين *B	چپ گرد
\	1	1	0	0	0	
	2	0	1	0	0	↑
	3	0	0	1	0	
	4	0	0	0	1	

با اتصال سیم های مشترک به قطب منفی و اتصال ۴ سیم استاتور به میکرو کنترلر میتوانیم موتور را کنترل نماییم . نکته مهم : به دلیل عدم جریان دهی کافی پورت های میکرو کنترلر ، باید بین میکروکنترلر و موتور از یک مدار واسط به عنوان تامین کننده جریان استفاده نماییم(دراینجا از درایو ULN2803 استفاده شده است .)

برنامه ای بنوسید که موتور پله در جهت خلاف جهت عقربه ساعت شروع به چرخش نماید.

```
#include <lpc17xx.h>
void delay (uint32 t Time)
    uint32 t i;
     i = 0;
    while (Time--) {
         for (i = 0 ; i < 5000 ; i++);
     }
}
int main(void)
     LPC GPIO2->FIODIR0 = 0x0F; //turn off
     while (1)
         LPC GPIO2->FIOPIN = 0 \times 01;
         delay(100);
         LPC GPIO2->FIOPIN = 0 \times 02;
         delay(100);
         LPC GPIO2->FIOPIN = 0 \times 04;
         delay(100);
         LPC GPIO2->FIOPIN = 0 \times 08;
         delay(100);
     }
}
```

برنامه دوم: برنامه ای بنوسید که موتور پله ای به اندازه ۱۵۰ درجه در جهت ساعتگرد بچرخد.

```
#include <lpc17xx.h>
unsigned k = 0;
void delay (uint32_t Time)
{
    uint32_t i;
    i = 0;
    while (Time--) {
        for (i = 0 ; i<5000 ; i++);
    }
}</pre>
```

```
int main(void)
{
    LPC_GPIO2->FIODIR0 = 0x0F;
    for(k = 0 ; k<3 ; k++)
    {
        LPC_GPIO2->FIOPIN = 0x08;
        delay(10000);
        LPC_GPIO2->FIOPIN = 0x04;
        delay(10000);
        LPC_GPIO2->FIOPIN = 0x02;
        delay(10000);
        LPC_GPIO2->FIOPIN = 0x01;
        delay(10000);
    }
}
```

دستورکار:

- ا. هشت بیت کم ارزش پورت ۲ را به ۸ LED متصل کنید سپس برنامه ای بنویسید که LED های آن یک در میان روشن شود.
 - اا. برنامه ای بنوسید که LED ها را از بیت صفر تا ۷ به ترتیب روشن شود.
- ااا. هشت بیت اول پورت صفررا به کلید وصل کنید و سپس Λ بیت دوم پورت صفر را به Λ اال. متصل کنید و برنامه ای بنویسید که متناظر با هرکلید ، LED مربوطه به آن روشن شود.
 - IV. برنامه ای بنوسید که موتور پله ای یک دور راستگرد و دو دور جهت چپگرد بچرخد.
 - ۷. برنامه ای بنوسید که موتور پله ای به اندازه ۱۸۰ درجه در جهت ساعتگرد به چرخد.