TEORÍA DE GRÁFICAS

2020-2 (28 febrero 2020)

EXAMEN PARCIAL 01

INSTRUCCIONES:

- Justificar y argumentar todos los resultados que se realicen.
- Se cuentan con 60 minutos para resolver dos de los primeros tres ejercicios.
- Los ejercicios restantes se deben entregar resueltos el día 02 de marzo de 2020 a las 9:00 horas en el salón P-118.
- 1. Sean G y H gráficas tal que $G\cong H$. Demostrar que si φ es un isomorfismo entre G y H entonces para cualquier $x\in V(G)$ se tiene que $d_G(x)=d_H(\varphi(x))$.
- 2. Describir, por medio de una gráfica, a un grupo de cinco amigos en los que cualesquiera dos de ellos tienen exactamente un amigo en común. ¿Es posible hacer lo mismo con un grupo de cuatro amigos?
- 3. Demostrar que si G es disconexa entonces \overline{G} es conexa.
- 4. Demostrar que en cualquier gráfica G, si $\binom{|V(G)|-1}{2} < |A(G)|$ entonces G es conexa.
 - Encontrar, para cada $n \in \mathbb{N} \setminus \{0,1\}$, una gráfica disconexa G de orden n tal que $\binom{|V(G)|-1}{2} = |A(G)|$.
- 5. Demostrar que, para cualquier $n \in \mathbb{N} \setminus \{0\}$, $Q_n \cong B_n$.

TEORÍA DE GRÁFICAS

2020-2 (28 febrero 2020)

EXAMEN PARCIAL 01

INSTRUCCIONES:

- Justificar y argumentar todos los resultados que se realicen.
- Se cuentan con 60 minutos para resolver dos de los primeros tres ejercicios.
- Los ejercicios restantes se deben entregar resueltos el día 02 de marzo de 2020 a las 9:00 horas en el salón P-118.
- 1. Sean G y H gráficas tal que $G\cong H$. Demostrar que si φ es un isomorfismo entre G y H entonces para cualquier $x\in V(G)$ se tiene que $d_G(x)=d_H(\varphi(x))$.
- 2. Describir, por medio de una gráfica, a un grupo de cinco amigos en los que cualesquiera dos de ellos tienen exactamente un amigo en común. ¿Es posible hacer lo mismo con un grupo de cuatro amigos?
- 3. Demostrar que si G es disconexa entonces \overline{G} es conexa.
- 4. lacktriangle Demostrar que en cualquier gráfica G, si $\binom{|V(G)|-1}{2} < |A(G)|$ entonces G es conexa.
 - lacksquare Encontrar, para cada $n\in\mathbb{N}\setminus\{0,1\}$, una gráfica disconexa G de orden n tal que $\binom{|V(G)|-1}{2}=|A(G)|$.
- 5. Demostrar que, para cualquier $n \in \mathbb{N} \setminus \{0\}$, $Q_n \cong B_n$.