

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA EN SISTEMAS COMPUTACIONALES ADMINISTRACIÓN DE REDES DE COMPUTADORAS PRACTICA DIRECCIONAMIENTO ESTÁTICO ENTRE 3 ROUTERS Y 3 SWITCHS

MAESTRO: MARTÍN VERDUZCO RODRÍGUEZ FECHA: 29/05/2021 ESTUDIANTE: CAMPERO GRANADOS LUIS DANIEL GRUPO: 5602

Instrucciones: Siga los pasos indicados a continuación, conforme los vaya ejecutando realice **capturas de pantalla** que comprueben la actividad realizada. Para comprobar que es su trabajo, agregue en la pantalla de packet tracer una **nota de texto con su nombre**. En las capturas de pantalla que realice deberá verse su nombre.

INTRODUCCIÓN

El enrutamiento estático proporciona un método que otorga control absoluto sobre las rutas por las que se transmiten los datos en una red de computadoras. Para adquirir este control, en lugar de configurar protocolos de enrutamiento dinámico para que creen las tablas de enrutamiento, se crean manualmente. Se utilizan extensamente en redes pequeñas para establecer la conectividad con proveedores de servicios. Es posible que se crea que el enrutamiento estático es sólo un método antiguo de enrutamiento y que el enrutamiento dinámico es el único método usado en la actualidad. Esto no es así, además, se destaca que escribir una ruta estática en un router no es más que especificar una ruta y un destino en la tabla de enrutamiento, y que los protocolos de enrutamiento hacen lo mismo, sólo que de manera automática.

DESARROLLO

1. Para el desarrollo de esta práctica requerirá hacer uso del software Packet Tracer, con el cuál se aprenderá a realizar la configuración básica del router. Un enrutador o encaminador (en inglés: router) es un dispositivo hardware o software de interconexión de redes de computadoras que opera en la capa tres (nivel de red) del modelo OSI. Este dispositivo interconecta segmentos de red o redes enteras. Hace pasar paquetes de datos entre redes tomando como base la información de la capa de red.

El enrutador toma decisiones lógicas con respecto a la mejor ruta para el envío de datos a través de una red interconectada y luego dirige los paquetes hacia el segmento y el puerto de salida adecuados. Sus decisiones se basan en diversos parámetros. Una de las más importantes es decidir la dirección de la red hacia la que va destinado el paquete (En el caso del protocolo IP esta sería la dirección IP). Otras decisiones son la carga de tráfico de red en las distintas interfaces de red del enrutador y establecer la velocidad de cada uno de ellos, dependiendo del protocolo que se utilice.

Los protocolos de enrutamiento son aquellos protocolos que utilizan los enrutadores o encaminadores para comunicarse entre sí y compartir información que les permita tomar la decisión de cual es la ruta más adecuada en cada momento para enviar un paquete. Los protocolos más usados son RIP (v1 y v2), OSPF (v1, v2 y v3), y BGP (v4), que se encargan de gestionar las rutas de una forma dinámica. Aunque no es estrictamente necesario que un enrutador haga uso de estos protocolos, pudiéndosele indicar de forma estática las rutas (caminos a seguir) para las distintas subredes que estén conectadas al dispositivo. Comúnmente los enrutadores se implementan también como puertas de acceso a Internet (por ejemplo un router ADSL), usándose normalmente en casas y oficinas pequeñas.

2. Ejecute el programa Packet Tracer, el cuál se observa en la figura1. Recuerde que puede variar el entorno dependiendo de su versión del programa.

Figura 1. Entorno de Packet tracer

- 3. Como puede ver en la figura 1, en la esquina inferior izquierda se encuentran los dispositivos generales para formar la red: routers, switches, Hubs, cables, dispositivos de usuario final etc. Al colocar el cursor sobre los iconos, en el cuadro central aparece el nombre del dispositivo que representan.
- 4. De un clic en el icono que representa los dispositivos de usuario final (End Devices), en la ventana de a lado aparecerán específicamente los tipos de dispositivos de usuario final que hay: PC, Servidor, impresora y un telefono ip, de igual forma al colocar el cursor sobre ellos en la parte de abajo aparece lo que representan.

5. Para hacer uso de los dispositivos mostrados, por ejemplo, que desee colocar una PC en el área de construcción de la red, haga click sobre "end-devices" y mostrará los distintos dispositivos terminales que son emulados. De ese recuadro seleccione PC-PT dando un clic sobre el mismo, al hacerlo observará que para indicar que está seleccionado se cambia la imagen del icono de mostrar una computadora a que aparezca un circulo rojo con una línea, como se ve en la figura 2.

Figura 2. Selección de los dispositivos en Packet tracer

6. Una vez realizado lo anterior haga click en el espacio central en blanco de packet tracer para colocar su computadora. Otra opción es hacer click sostenido sobre la figura que aparece en la parte inferior y mantener el click sostenido hasta colocar el puntero del mouse sobre el espacio donde desee colocar el dispositivo. Repita esta actividad hasta tener 6 computadoras como se muestra en la figura 3.

Figura 3. Agregado de dispositivos terminales

7. De manera parecida al paso anterior, agrega 3 switchs tipo 2950-24 (seleccione el icono de switch para desplegar el listado de dispositivos correspondiente) y 3 routers tipo 1841 (seleccione el icono de router para mostrar los dispositivos disponibles), una vez realizado se puede ver la distribución que se muestra en la figura 4.

8. Teniendo lo anterior es necesario enlazar los dispositivos, para ello seleccione el icono del cableado, este icono tiene forma de un "rayo" al hacerlo aparecerán distintos tipos de cables. Para enlazar las computadoras al switch seleccione el cable paralelo, es el cable representado con una línea negra. Para hacer el enlace seleccione el cable a continuación haga click sobre la computadora que desea conectar, le desplegará un menú de entradas para el cable, seleccione fastethernet y a continuación haga click sobre el switch con el que desea hacer la conectividad y seleccione alguna de las entradas fastethernet disponibles. Realiza esta actividad para todas las computadoras de forma que se verá algo similar a lo mostrado en la figura 5.

9.

Logical Physical x: 591, y: 647 Realtime 💍 S Toggle PDU List Window Figura 5. Cableado de computadoras Cisco Packet Tracer \times Edit Options Tools Extensions **⊕ ®** Logical [Root] New Cluster Move Object Set Tiled Background Viewport Campero Granados Luis Daniel Time: 08:02:38 Realtime Power Cycle Devices Fast Forward Time Last Status Scenario 0 Connections Delete Toggle PDU List Window Copper Straight-Through

10. Ahora es necesario enlazar los switchs hacia los routers, pero antes va ser necesario ver que tarjetas contiene físicamente y para configurarlo de acuerdo a nuestras necesidades, da un solo clic sobre uno de los routers y aparecerá una ventana como la que se muestra en la figura 6.

Figura 6. Ventana de configuración física del router

11. En la misma deberás realizar lo siguiente, asegúrate de seleccionar la pestaña Physical (por defecto selecciona ésta), esta representa la vista física del router, ahí se muestra que inicialmente solo tiene tres puertos disponibles ethernet, consola y auxiliar (puedes presionar el botón "Zoom In" para ver mejor), sin embargo posee ranuras para colocar módulos y tener otros puertos disponibles. A la izquierda están los módulos que le podemos colocar, al dar clic sobre ellos, abajo aparece su descripción y como son físicamente. De clic sobre el módulo WIC-2T, como ve en la descripción, es un módulo que contiene dos puertos seriales, vamos a colocarlo en el router para tener interfaces seriales para conectarlo con el otro router, primero debe apagar el router dando clic en el botón de apagado/encendido (el led verde debe apagarse) y luego arrastre el módulo a una ranura del router (ver figura 7). Una vez realizado lo anterior vuelve a encender el router y cierra la ventana. Realiza esta acción con cada uno de los routers que requiere enlazar.

Figura 7. Apagado del router y colocación del módulo en el espacio libre

12. Una vez completada la configuración física de los routers podrá cablear los switchs hacia los routers, para ello será necesario seleccionar el cable paralelo (cable representado con una línea negra) y seleccionar el router que desea conectar, al hacerlo aparecerá un menú de puertos disponibles, elija el puerto fastethernet0/0, y del extremo del switch uno que esté disponible, aunque te menciono que se acostumbra utilizar el primer puerto para conectar el router con el switch. Repite esta acción con los otros routers para que se vea una topología similar a la mostrada en la figura 8.

Figura 8. Conexión de los switchs hacia los routers

13. Ahora será necesario conectar los routers, seleccione el cable serial DCE (cable rojo con una imagen de reloj), conéctelo primero al router que va a ser el DCE, en este caso será el Router0, realice su conección con el Router1 a través de los puertos seriales 0/0/0 de cada router. A continuación realice el enlace entre el router2 y el router1, conecte primero el router2 con un cable DCE a través del puerto serial 0/0/1 y de ahí enlace al serial 0/0/1 del router1. La red debe quedar como se muestra en la figura 9.

Figura 9. Topología final

14. Ahora es el momento de realizar cálculos para iniciar el direccionamiento lógico. Con tal finalidad realice los cálculos que se muestran a continuación, toma de referencia lo realizado en la práctica de direccionamiento IPv4 y de subneteo

Dirección IP de	100.100.10.10	150.100.10.10	200.100.10.10	192.0.0.1	192.0.1.1
referencia					
Cantidad de hosts	Sin subneteo	Sin subneteo	Sin subneteo	Sin subneteo	Sin subneteo
Clase	А	В	С	С	С
Dirección red	100.0.0.0	150.100.0.0	200.100.10.0	192.0.0.0	192.0.1.0
1er dirección utilizable	100.0.0.1	150.100.0.1	200.100.10.1	192.0.0.1	192.0.1.1
Última dirección utilizable	100.255.255.254	150.100.255.254	200.100.10.254	192.0.0.254	192.0.1.254
Dirección de difusión	100.255.255.255	150.100.255.255	200.100.10.255	192.0.0.255	192.0.1.255
Máscara de red	255.0.0.0	255.255.0.0	255.255.255.0	255.255.255.0	255.255.255.0

15. Una vez concluidos los cálculos, haremos uso de la información obtenida. Para eso vacié la información obtenida en la siguiente tabla de acuerdo a como se indica:

Equipo	Dirección IP	Máscara de red	Dirección de Gateway
PC0	2a dirección utilizable para la	Máscara para la dirección	1er dirección utilizable para la
	dirección 100.100.10.10:	100.100.10.10	dirección 100.100.10.10
	100.0.0.2	255.0.0.0	100.0.0.1
PC1	Última dirección utilizable	Máscara para la dirección	1er dirección utilizable para la
	para dirección 100.100.10.10	100.100.10.10	dirección 100.100.10.10
	100.255.255.254	255.0.0.0	100.0.0.1
PC2	2a dirección utilizable para la	Máscara para la dirección	1er dirección utilizable para la
	dirección 150.100.10.10	150.100.10.10	dirección 150.100.10.10
	150.100.0.2	255.255.0.0	150.100.0.1
PC3	Última dirección utilizable	Máscara para la dirección	1er dirección utilizable para la
	para dirección 150.100.10.10	150.100.10.10	dirección 150.100.10.10
	150.100.255.254	255.255.0.0	150.100.0.1
PC4	2a dirección utilizable para la	Máscara para la dirección	1er dirección utilizable para la
	dirección 200.100.10.10	200.100.10.10	dirección 200.100.10.10
	200.100.10.2	255.255.255.0	200.100.10.1
PC5	Última dirección utilizable	Máscara para la dirección	1er dirección utilizable para la
	para dirección 200.100.10.10	200.100.10.10	dirección 200.100.10.10
	200.100.10.254	255.255.255.0	200.100.10.1

16. Tan pronto completes la tabla anterior, es momento de pasar esa información al simulador, para eso es necesario hacer clic sobre la computadora que deseas asignar la dirección, se mostrará una ventana donde deberás seleccionar la **lengüeta desktop** y a continuación el icono "**IP Configuration**". Como se ve en la figura 10. En el mismo escriba la dirección IPv4 (IPv4 Address) que corresponde para la computadora, su máscara de red (Subnet Mask) así como la dirección de gateway (Default Gateway). Al terminar cierre la ventana. Repita esta actividad con cada una de las computadoras

Figura 10. Configuración del direccionamiento en las computadoras

17. Ahora se configurarán los routers, para ello da clic sobre el router0 y seleccione la **lengüeta Config**, mostrándose una ventana como se ve en la figura 11.

18. A la izquierda de la ventana, aparecen varias opciones por configurar, seleccione fastethernet0/0, ¿por qué este puerto?, bueno, recuerda que pasos atrás realizaste el enlace del cable ethernet que proviene del switch hacia este puerto, por eso este puerto se debe configurar como si se tratase de un equipo más que se enlaza a esta red. Aquí es donde vamos a asignar la primera dirección utilizable de la red de clase A que estamos empleando y corresponde a la dirección de gateway que asignamos a las computadoras, así como su máscara de red. También es necesario activar este puerto, marcando el recuadro On del Port Status. Como se ve en la figura 12.

Figura 12. Configuración del fastethernet del router Router() Physical Config Logical New Cluster GLOBAL Campero Granados Luis Daniel FastEthernet0/0 Settinas Algorithm Settings Port Status ✓ On Bandwidth ✓ Auto 10 Mbps 100 Mbps RIP **SWITCHING** Duplex ✓ Auto VLAN Database Full Duplex INTERFACE MAC Address 0060.70DA.4601 FastEthernet0/1 100.0.0.1 Serial0/0/0 255.0.0.0 Subnet Mask Serial0/0/1 Tx Ring Limit 10 **Equivalent IOS Commands** %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state t Rea Power Cycle Devices Fast Forward Time Power Cycle Devices (Alt+S) | Scenario 0 Router(config-if)#

19. De acuerdo a los cálculos realizados, complete la información de la siguiente tabla para facilitar la configuración de los routers de manera similar a como lo hizo en el punto anterior.

Equipo	Dirección IP fastethernet 0/0	Máscara de red
Router0	Aquí escribe la 1er dirección	Aquí escribe la Máscara para la dirección
	utilizable para la dirección	100.100.10.10
	100.100.10.10	
	100.0.0.1	255.0.0.0
Router1	Aquí escribe la 1er dirección	Aquí escribe la Máscara para la dirección
	utilizable para dirección	150.100.10.10
	150.100.10.10	
	150.100.0.1	255.255.0.0
Router2	Aquí escribe la 1er dirección	Aquí escribe la Máscara para la dirección
	utilizable para la dirección	200.100.10.10
	200.100.10.10	
	200.100.10.1	255.255.255.0

Tan pronto configure la información anterior en los routers, observará que los puntos coloridos en las conexiones entre los routers hacia los switches, cambian de tener un color rojo a uno verde, esto demuestra que han sido configuradas adecuadamente las conexiones. Esto lo puede ver en la figura 13.

Figura 13. Configuración del router hacia el switch

20. Ahora solo falta enlazar los routers entre ellos, para eso será necesario configurar su enlace entre los puertos seriales, donde también deberemos asignar direcciones IP que correspondan a la misma red, para tal fin aquí se utilizarán los cálculos aplicados para el subneteo a 2 hosts que realizó antes. Realicemos primero el enlace entre los routers 0 y 1. Recuerde que para estos 2 routers el enlace por cable fue a través de los seriales 0/0/0, mientras que para los routers 1 y 2el enlace fue a través de los seriales 0/0/1. Complete la información de las siguientes tablas para que sepa que direcciones IP y máscaras asignará:

Enlace entre Router 0 y 1:

Equipo	Dirección IP serial 0/0/0	Máscara de red
Router0	Aquí escribe 1er dirección utilizable	Aquí escribe la Máscara para la dirección
	para la dirección 192.0.0.1	192.0.0.1
	192.0.0.1	255.255.255.0

Router1	Aquí escribe 2a dirección utilizable	Aquí escribe la Máscara para la dirección
	para dirección 192.0.0.1	192.0.0.1
	192.0.0.2	255.255.255.0

Enlace entre Router 1 y 2

Equipo	Dirección IP serial 0/0/1	Máscara de red
Router1	Aquí escribe la 1er dirección	Aquí escribe la Máscara para la dirección
	utilizable para la dirección 192.0.1.1	192.0.1.1
	192.0.1.1	255.255.255.0
Router2	Aquí escribe la 2a dirección	Aquí escribe la Máscara para la dirección
	utilizable para dirección 192.0.1.1	192.0.1.1
	192.0.1.2	255.255.255.0

21. Ahora configura los puertos seriales de los routers, para ello da clic sobre el router0 y seleccione la **lengüeta Config**, una vez dentro selecciona el puerto serial 0/0/0 e inserta la información que tienes en las tablas anteriores para su configuración, además de activar la casilla **port status ON**, como se ve en la figura 14. Repite esta acción con cada puerto serial requerido así como con cada router.

Figura 14. Configuración del puerto serial del router

Al concluir esta actividad, todos los puntos de color rojo en cada enlace deberán estar en color verde, como se observa en la figura 15.

Figura 15. Configuración lógica terminada, puntos de color verde en cada enlace

22. Para concluir solo falta definir las rutas de direccionamiento, para ello hace falta crear la tabla de enrutamiento. Con tal finalidad deberá completar la información de la siguiente tabla. Para la dirección de red y máscara de red te puedes basar en lo contestado en puntos anteriores. Para la dirección IP de salida del router lo recomendable es que observes la figura 16, ubica el Router 0, observa el enlace que tiene hacia otro router (dirección de red 192.0.0.0), como es la única conexión, es la salida obligatoria para cualquiera de las direcciones de red indicadas en la siguiente tabla, entonces la dirección IP que escribirías sería 192.0.0.2 (no escribes 192.0.0.1, porque esa dirección pertenece al router que estamos tomando de referencia, que para este caso es el Router O), debido a que es la dirección del router conectado al Router 0 más cercana a la dirección de red con la cual deseamos definir el enlace.

Router	Dirección de red (Network)	Máscara de red (Mask)	Dirección IP de salida del router (Next hop)
Router0	Escribe aquí la dirección de red para la dirección 150.100.10.10	Escribe aquí la máscara de red para la dirección 150.100.10.10	cercana a la dirección de red de éste renglón.
	150.100.0.0	255.255.0.0	192.0.0.2
Router0	Escribe aquí la dirección de red para la dirección 200.100.10.10	Escribe aquí la máscara de red para la dirección 200.100.10.10	conectado al Router O, más cercana a la dirección de red de éste renglón.
	200.100.10.0	255.255.255.0	192.0.0.2

Router0	Escribe aquí la dirección de	Escribe aquí la máscara de	Escribe la dirección del router
	red para la dirección	red para la dirección	conectado al Router 0, más
	192.0.1.1	192.0.1.1	cercana a la dirección de red de
			éste renglón.
	192.0.1.0	255.255.255.0	192.0.0.2

Figura 16. Plano de direccionamiento

- 23. De la misma forma que completaste los datos para la tabla anterior, completa la información para el router 1. Para hacerlo primero debes ubicar que redes están dadas de alta en el router para el cual realizarás el direccionamiento, para el router1 observa la figura 16, identifica cuáles redes están en contacto con éste router, observa:
 - Para la red 192.0.0.0 tiene conexión por su puerto serial con dirección 192.0.0.2,
 - Para la red 192.0.1.0 tiene conexión por su puerto serial con dirección 192.0.1.1,
 - Para la red 150.100.0.0 tiene conexión por su puerto fastethernet con dirección 150.100.0.1.

De estas redes ya tiene conocimiento de su existencia y no requieren que se adicionen en su tabla de direccionamiento, pero quedan 2 redes más: 100.0.0.0 y 200.100.10.0. Debemos indicarle como llegar a ellas.

Router	Dirección de red	Máscara de red	Dirección IP de salida del router
	(Network)	(Mask)	(Next hop)
Router1	100.0.0.0	Escribe aquí la máscara de	Escribe la dirección del router
		red para la red 100.0.0.0	conectado al Router 1, más
			cercana a la dirección de red de
			éste renglón.
		255.0.0.0	192.0.0.1
Router1	200.100.10.0	Escribe aquí la máscara de	Escribe la dirección del router
		red para la red 200.100.10.0	conectado al Router 1, más
			cercana a la dirección de red de
			éste renglón.
		255.255.255.0	192.0.1.2

24. Ahora sigue el mismo procedimiento que aplicaste en el punto anterior, pero ahora realízalo en el router2. Recuerda para hacerlo primero debes ubicar que redes están dadas de alta en el router para el cual realizarás el direccionamiento, para el router2 observa la figura 16, identifica cuáles redes están en contacto con éste router y a partir de ahí comienza completar la información de la siguiente tabla:

Router	Dirección de red	Máscara de red	Dirección IP de salida del router
	(Network)	(Mask)	(Next hop)
Router2	100.0.0.0	Escribe aquí la máscara de	Escribe la dirección del router
		red para la red 100.0.0.0	conectado al Router 2, más
			cercana a la dirección de red de
		255.0.0.0	éste renglón.
			192.0.1.1
Router2	150.100.0.0	Escribe aquí la máscara de	Escribe la dirección del router
		red para la red 200.100.10.0	conectado al Router 2, más
			cercana a la dirección de red de
		255.255.0.0	éste renglón.
			192.0.1.1
Router2	192.0.0.0	Escribe aquí la máscara de	Escribe la dirección del router
		red para la red 192.0.0.0	conectado al Router 2, más
			cercana a la dirección de red de
		255.255.255.0	éste renglón.
			192.0.1.1

25. Teniendo la información completa de las tablas de enrutamiento, ahora solo resta configurar tal información en cada router, con ello en mente es necesario que entres en el router0 y selecciones la lengüeta CLI y selecciones Static dentro de las opciones que aparecen en la columna de la izquierda para Routing. En los cuadros de texto que te aparecen en el centro de la ventana deberás ingresar los datos que obtuviste en la tabla para el Router0, una vez hayas ingresado la información correspondiente para cada Dirección de red (network) presiona el botón add para que sea agregado este direccionamiento, repite esta acción tantas veces como direcciones de red deban ser direccionadas en cada router. Ver figura 17. Repite esta actividad con cada uno de los routers.

Figura 17. Direccionamiento por router.

26. Una vez realizado lo anterior se habrá concluido, ahora solo resta hacer pruebas de conectividad entre los equipos de la red. Envié un ping desde una de las computadoras de cada red hacia una computadora de otra red para comprobar la conexión. Recuerde para hacer ping deberá hacer clic sobre una computadora, seleccionar la lengüeta de desktop y a continuación Command prompt, aparecerá una terminal desde la cual podrá aplicar el comando ping seguido de la dirección IP de otra computadora. Como se ve en la figura

Figura 17. Envío de ping para comprobar conectividad

27. ¡Felicidades! Has concluido esta actividad, y ahora conoces como configurar el router por direccionamiento estático.