Solution to Quiz 1

2024.09.26

1. Let $C \subset M_n(F)$ be the scalar matrices over F. Prove that C is the center of $GL_n(F)$, denoted by $Z(GL_n(F))$.

证明. Step 1: $\forall A \in C, A \in Z(GL_n(F))$ which means that $C \subseteq Z(GL_n(F))$. This is because scalar matrices commute with all matrices.

Step 2: $\forall A = (a_{ij}) \in Z(GL_n(F))$, A commutes with $B = \text{diag}\{a_1, a_2, \dots, a_n\}$ where $a_i \in F$, $a_i \neq 0$ for all i and $a_i \neq a_j$ for all $i \neq j$. That forces $a_{ij} = 0$ for all $i \neq j$. Further more, A also commutes with all cyclic permutation matrices. So A is a scalar matrix. That shows $Z(GL_n(F)) \subseteq C$ and hence $Z(GL_n(F)) = C$ (as a set).

Step 3: C is subgroup of $GL_n(F)$ and C is a normal subgroup of $GL_n(F)$, this is beacause C is closed under matrix multiplication and C is invariant under conjugation (since elements of C are scalar matrices, commute with all matrices). So C is a normal subgroup of $GL_n(F)$. Therefore, C is the center of $GL_n(F)$.

2. Let G be a finite group, $H, K \leq G$. Prove: $|HK| = \frac{|H||K|}{|H \cap K|}$. (Hint: HK may not be a group).

证明. Note that $HK = \bigcup_{k \in K} Hk$ and $|H||K| = \sum_{k \in K} |Hk|$. If $Hk_1 = Hk_2$, then $k_1k_2^{-1} \in H$. For a fixed $k_0 \in K$, define $S_{k_0} = \{k \in K : kk_0^{-1} \in H\}$. Since $|S_{k_0}| = |H \cap K|$, then $|HK| = \frac{|H||K|}{|H \cap K|}$.

3. Let N, H be two different maximal normal subgroup of G, then $N \cap H$ is a maximal normal subgroup of H (also N).

证明. Note that $N \cap H$ is a normal subgroup of G. Since N, H are maximal normal subgroups, then G/N and G/H are simple. Since NH = HN, then NH is a normal subgroup of G and so G = NH. Note that $G/N = NH/N \cong N/H \cap N$ and $G/H = NH/H \cong N/N \cap H$ are simple, then $N \cap H$ is a maximal normal subgroup of H and H.

4. Let G be a finite group, $\varphi \in \text{Aut}(G)$, Let

$$I = \{ g \in G | \varphi(g) = g^{-1} \}$$

- (1). Suppose $|I| > \frac{3}{4}|G|$, prove G is abelian.
- (2). Suppose $|I| = \frac{3}{4}|G|$, prove: $\exists H \leqslant G \text{ s.t. } H \text{ is abelian and } [G:H] = 2.$

证明. (1). If $\forall x, y \in I$, xy = yx, then I is a subgroup of G. Since $|I| > \frac{3}{4}|G|$, then |I| = |G|, then I = G and G is abelian.

If $\exists x, y \in I \text{ s.t. } xy \neq yx$, then $xy \notin I$. Since $C_G(x) \leqslant G$, $|C_G(x)| \leqslant \frac{1}{2}|G|$. Let $S = \{g \in G | gx \neq xg\}$, then $|S| \geqslant \frac{1}{2}|G| > \frac{1}{4}|G|$, and $|xS| = |S| > \frac{1}{4}|G|$, contradict to $|I| > \frac{3}{4}|G|$.

- (2). By (1), now G is non-abelian. And $\exists x,y \in I$ s.t. $xy \neq yx$, we have $|C_G(x)| \leqslant \frac{1}{2}|G|$. If $|C_G(x) \cap I| < \frac{1}{2}|G|$ then $|S \cap I| \geqslant \frac{1}{2}|G| > \frac{1}{4}|G|$ which contradict to $|I| = \frac{3}{4}|G|$. So $|C_G(x) \cap I| \geqslant \frac{1}{2}|G|$, but $|C_G(x)| \leqslant \frac{1}{2}|G|$ and $|C_G(x) \cap I| \leqslant |C_G(x)|$. It forces $|C_G(x) \cap I| = |C_G(x)| \Rightarrow C_G(x) \cap I = C_G(x)$ and $[G:C_G(x)] = 2$. And since $C_G(x) \subset I$ we have $\forall a,b \in C_G(x)$, ab = ba. Thus $C_G(x)$ is actually the H we want.
 - 5. Prove Aut $(Z_2 \oplus Z_2) \simeq S_3$.

证明. Note that $\varphi(0) = 0$, then φ is a permutation on $\Omega = \{(1,0), (0,1), (1,1)\}$. Verify Sym(Ω) are all automorphism.

(Alternating proof: remark that $Z_2 \oplus Z_2 \cong \mathbb{F}_2^2$, then $\operatorname{Aut}(Z_2 \oplus Z_2) = \operatorname{GL}(2,2) \cong S_3$.)

6. Let $H, K \subseteq G, G/H, G/K$ are all soluble groups. Prove: $G/H \cap K$ is also a soluble group.

证明. Since $G/H \cong (G/H \cap K)/(H/H \cap K)$ and $H/H \cap K \cong HK/K \leqslant G/K$ are solvable groups, then $G/H \cap K$ is also a solvable group.