CE355: DESIGN & ANALYSIS OF ALGORITHMS

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	4	2	-	6	5
Marks	100	50	-	150	

Pre-requisite courses:

- Data Structure and Algorithms
- Programming language

Outline of the Course:

Sr.	Title of the unit	Minimum number		
No.		of hours		
1.	Algorithm Analysis	10		
2.	Greedy Algorithm	08		
3.	Dynamic Programming	10		
4.	Divide and Conquer Algorithm	07		
5.	Exploring Graphs	10		
6.	String Matching and Introduction to NP-Completeness	08		
7.	Approximation Algorithms	07		
	Total hours (Theory):	60		
	Total hours (Lab):	30		
	Total hours:	90		

Detailed Syllabus:

1.	Introduction	10 Hours	17%
	Fundamentals of algorithms, Performance Analysis, Primitive		
	Operations, Time Complexity and Space Complexity, The		
	efficiency of algorithm, average and worst case analysis,		
	elementary operation, Asymptotic Notation, Analysing control		
	statement, Analysing Algorithm using Barometer, Solving		

	recurrence Equation, Sorting Algorithm: Selection, Insertion,		
	Bubble Sort		
2.	Greedy Algorithm	08 Hours	13%
	Greedy: Characteristics, greedy functions, Problem solving:		
	Making change problem, The Knapsack Problem, Dijkstra's		
	Shortest paths; Job Scheduling Problem, Disjoint sets,		
	Minimum Spanning trees (Kruskal's algorithm, Prim's		
	algorithm, Huffman coding		
3.	Dynamic Programming	10 Hours	17%
	Dynamic Programming: The Principle of Optimality, Problem		
	Solving: Calculating the Binomial Coefficient, Making Change		
	Problem, Assembly Line-Scheduling Knapsack Problem,		
	Shortest Path Matrix Chain Multiplication, Longest Common		
	Subsequence, All Pairs Shortest Path (Floyd-Warshall),		
	Travelling Salesman Problem, Bellman Ford Algorithm.		
4.	Divide and Conquer Algorithm	07 Hours	12%
	Multiplying large Integers Problem, Binary Search Sorting		
	(Merge Sort, Quick Sort), Matrix Multiplication, Exponential		
5.	Exploring Graphs	10 Hours	17%
	An Introduction, Undirected Graph, Directed Graph, Breath		
	First Search, Depth First Search, Graph coloring problem,		
	Applications of BFS & DFS, Backtracking -The Knapsack		
	Problem; The Eight Queens problem, Branch and Bound –The		
	Assignment Problem, The Knapsack Problem		
6.	String Matching and Introduction to NP-Completeness	08 Hours	13%
	The naïve string-matching algorithm, The Rabin-Karp algorithm, KMP Algorithm for Pattern Searching, Boyer–Moore string-search algorithm,		
	The class P and NP Problem, Polynomial reduction, NP-Completeness Problem, NP-Hard problems		
7.	Approximation Algorithms	07 Hours	11%
	Vertex Cover Problem, Travelling Salesman Problem, Set		

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Analyse the asymptotic performance of algorithms.
CO2	Derive time and space complexity of different sorting algorithms and compare
	them to choose application specific efficient algorithm.
CO3	Understand and analyse the problem to apply design technique from divide and
	conquer, dynamic programming, backtracking, branch and bound techniques and
	understand how the choice of algorithm design methods impact the performance
	of programs.
CO4	Understand and apply various graph algorithms for finding shorted path and
	minimum spanning tree.
CO5	Synthesize efficient algorithms in common engineering design situations.
CO6	Understand the notations of P, NP, NP-Complete and NP-Hard.

Sr. No	Course Outcomes (Cos)	Employability/			
		Entrepreneurship/			
		Skill development			
1.	Analyse the asymptotic performance of	Skill Development			
	algorithms.				
2.	Derive time and space complexity of different	Skill Development			
2.	* *	Skili Developilielit			
	sorting algorithms and compare them to choose				
	application specific efficient algorithm.				
3.	Understand and analyse the problem to apply	Skill Development			
	design technique from divide and conquer,				
	dynamic programming, backtracking, branch				
	and bound techniques and understand how the				
	choice of algorithm design methods impact the				
	performance of programs.				

4.	Understand and apply various graph algorithms	Skill Development
	for finding shorted path and minimum spanning	
	tree.	
5.	Synthesize efficient algorithms in common	Employability
	engineering design situations.	
6.	Understand the notations of P, NP, NP-Complete	Skill Development
	and NP-Hard.	

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	2	-	-	-	-	-	-	2	2	-
CO4	2	3	3	1	-	-	-	-	-	-	-	-	2	-
CO5	1	-	1	-	-	-	-	-	-	-	-	2	1	1
CO6	3	1	-	-	-	-	-	-	-	-	-	-	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

Recommended Study Material:

***** Text books:

 Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest and Clifford Stein, MIT Press

***** Reference books:

- Fundamental of Algorithms by Gills Brassard, Paul Bratley, Pentice Hall of India.
- 2. Fundamental of Computer Algorithms by Ellis Horowitz, Sartazsahni and

sanguthevar Rajasekarm, Computer Sci.P.

3. Design & Analysis of Algorithms by P H Dave & H B Dave, Pearson Education.

***** Web materials:

1. http://highered.mcgraw-hill.com/sites/0073523402/

Software:

1. Code::Blocks / Online C Editor