

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ГРАФОВ

Лекция 2. Моделирование графов

Пирова А.Ю. Кафедра МОСТ

Содержание

- □ Прикладные области
- □ Свойства сетей
- □ Коллекции графов прикладных областей
- □ Зачем моделировать графы?
- □ Классификация генераторов
- □ Некоторые модели графов:
 - Модель Эрдеша Реньи
 - Модель Барабаши Альберт
 - Модель R-MAT
 - Модель графов Кронекера
- □ Генераторы графов
- □ Заключение

Прикладные области

- □ Где возникают графы большого порядка?
 - Транспортные сети
 - Коммуникационные сети
 - Веб-графы, сети цитирований
 - Социальные сети, сети сообществ
 - Энергетические системы
 - Биологические системы (взаимодействие между белками, метаболические, нейронные сети, пищевые цепочки)
 - Бизнес-процессы, кибербезопасность
 - Проектирование микросхем...

Коллекции графов

- □ Suite Sparse Matrix Collection (бывшая The University of Florida Sparse Matrix Collection) https://sparse.tamu.edu/
 Матрицы из различных прикладных областей, включая 2D и 3D дискретизации различных процессов, задачи оптимизации, сети дорог.
- □ Stanford Large Network Dataset Collection
 https://snap.stanford.edu/data/ (включено в Suite Sparse)
 Графы социальных сетей, веб-графы, сети дорог
- □ The Koblenz Network Collection http://konect.cc/ Сети из разных областей: социальные, веб, физические, сети коммуникаций и др. (*даны свойства графов)
- □ Обзор коллекций сетей Марка Ньюмена http://www-personal.umich.edu/~mejn/netdata/

Коллекции графов

- ☐ Graph Challenge MIT Data Sets

 https://graphchallenge.mit.edu/data-sets

 https://graphchallenge.mit.edu/data-sets
 - Коммуникационные и транспортные сети, веб графы, графы Кронекера
- □ Коллекции данных конкурсов DIMACS Implementation Challenges
 - Сети дорог http://users.diag.uniroma1.it/challenge9/download.shtml
 - Коллекция графов для разделения, включена в Suite Sparse https://www.cc.gatech.edu/dimacs10/downloads.shtml
- □ Network Repository http://networkrepository.com/networks.php Сети из различных областей: биологические, транспортные, коммуникационные и др.

МОДЕЛИРОВАНИЕ ГРАФОВ

Необходимость моделирования графов

- □ Зачем моделировать графы?
 - Создание графов для тестирования алгоритмов. Цель получить набор графов с заданными свойствами, но отличающимися друг от друга в некотором смысле; либо получить набор графов с заданными свойствами различных размеров.
 Реальные графы могут существовать в единичном экземпляре.
 - Выборка графа (graph sampling). Цель создать граф для моделирования, воспроизводящий свойства реального, если реальный граф слишком большой (например, граф социальной сети).
 - Экстраполяция графа. Цель построение графа большего размера, чем реальный, для предсказания эволюции графа в будущем или проверки его свойств на больших размерах.

Необходимость моделирования графов

- □ Зачем моделировать графы?
 - Сжатие графа. Цель создать граф схожей структуры,
 удовлетворяющий ограничениям по памяти вычислительной системы, либо с целью визуализации.
 - Анонимизация графа. Цель создать граф, сохраняющий важные свойства оригинала, но достаточно от него отличающийся, чтобы обеспечить конфиденциальность данных. Реальный граф может содержать приватную информацию о здоровье, персональных данных, контактах человека.

Необходимость моделирования графов

- Модельный граф должен воспроизводить свойства и структуру исходного графа
- □ Цикл моделирования:

Классификация генераторов

- □ Нет единой общепринятой классификации моделей и генераторов сетей
- □ Классификация генераторов Чакрабати и Фалустос:

Модель Эрдеша-Реньи

- □ Первая модель случайного графа, предложена в 1959 г.
- \square Обозначается G(n,M) или G(n,p)
- □ Модель G(n,p). Пусть множество вершин графа $V_n = \{1,2,...,n\}$. Полный граф K_n содержит $M = C_n^2$ ребер. В случайном графе $G(V_n,E)$ любые две вершины i и j соединяются ребром $e \in E$ с вероятностью $p \in [0,1]$ не зависимо от остальных $C_n^2 1$ пар вершин (схема Бернулли).
- \square Модель G(n, M). Граф выбирается равновероятно и случайно из всех графов, имеющих n вершин и M ребер.
- □ Графы хорошо теоретически изучены.

Модель Эрдеша-Реньи

□ Некоторые свойства:

- Если $p = \frac{1}{2}$, то все графы с n вершинами равновероятны.
- Пусть $p = \frac{c \ln n}{n}$. Если c > 1, то почти всегда случайный граф связен. Если c < 1, то почти всегда случайный граф не связный.
- Пусть $p = \frac{c}{n}$. Тогда при любом c < 1 существует такая константа β $\beta = \beta(c)$, что почти наверное каждая компонента случайного графа имеет не более $\beta \ln n$ вершин. При любом c > 1 существует такая константа $\gamma = \gamma(c) \in (0,1)$, что почти наверное среди компонент случайного графа есть одна (гигантская), число вершин которой не меньше γn .

Модель Эрдеша-Реньи. Создание выборки

- □ Для генерации необходимо создание выборки из множества всех ребер по схеме Бернулли (sampling).
- □ Геометрический подход:
 - Для каждого ребра вероятность того, что он будет следующим на k-й итерации равна $\frac{(1-p)^{k-1}}{p}$. Процесс выбора ребер можно рассмотреть как выбор интервалов-«пропусков» между ними.
 - Интервалы между выбираемыми элементами имеют геометрическое распределение с параметром 1/p.

Penschuck M. et al. Recent Advances in Scalable Network Generation //arXiv preprint arXiv:2003.00736. – 2020.

Модель Эрдеша-Реньи. Создание выборки

□ Геометрический подход:

– Каждой итерации k ставим в соответствие интервал $I_k \subseteq [0,1)$ длины $(1-p)^{k-1}p$. Тогда промежуток между выбираемыми элементами вычисляется, как наименьшее k, для которого интервал I_k заканчивается после случайно выбранного $r \in [0,1)$.

Модель Эрдеша-Реньи. Алгоритм

□ Алгоритм (Батаджели, Брандес). Вычислительная сложность O(n+m) для графа с n вершинами и m ребрами

ALG. 1: $\mathcal{G}(n,p)$

Input: number of vertices n, edge probability 0

Output: $G = (\{0, ..., n-1\}, E) \in \mathcal{G}(n, p)$

$$E \leftarrow \emptyset$$

 $v \leftarrow 1; \quad w \leftarrow -1$
while $v < n$ do

draw $r \in [0, 1)$ uniformly at random

$$w \leftarrow w + 1 + \left| \frac{\log(1-r)}{\log(1-p)} \right|$$

while $w \ge v$ and v < n do

if v < n then $E \leftarrow E \cup \{v, w\}$

Выборка ребра из верхнего треугольника матрицы.

Модель Эрдеша-Реньи. Примеры

$$n = 15, p = 0.2$$

$$n = 15, p = 0.3$$

$$n = 25$$
, $p = 0.2$

Случайный геометрический граф

□ Случайный геометрический граф (Random geometric graph, RGG) – ненаправленный граф, полученный случайным размещением N вершин на некотором метрическом пространстве (чаще всего, на d-мерном кубе $[0,1)^d$). Ребро $e=(v_1,v_2)$ добавляется в граф, если расстояние между v_1 и v_2 менее $r\in(0,1)$. Чаще всего используется Евклидово расстояние.

Случайный геометрический граф. Примеры

$$n = 15, r = 0.4$$

$$n = 32768, m = 320480$$

Свойства сетей

- □ Особые свойства у графов сетей (Internet, веб, граф цитат, распределение сообществ и др).
- □ Степени вершин распределены согласно степенной функции
 - Для графа с числом вершин N_d и степенью вершин d справедливо $N_d \propto d^{-\gamma}, \, \gamma \geq 1.$
 - Такие графы называют *безмасштабными* (scale-free)
- □ Малый диаметр (феномен «малого мира»).
 - Эффективный диаметр минимальное число ребер (связей), которыми соединено большинство пар вершин.
 - В 1999 г. эффективный диаметр Web был равен 5–7.
- □ Степенной закон уплотнения (densification power law). Число ребер m растет пропорционально степени от числа вершин: $m(t) \sim n(t)^{\alpha}$, $1 < \alpha < 2$.

Свойства сетей

- □ Достижимость вершин (hop-plot):
 - Для заданной длины пути h вычисляется, какая доля всех пар вершин графа находится на расстоянии не более, чем h друг от друга.
- □ Высокий коэффициент кластеризации
- □ Сокращение диаметра (shrinking diameter). При росте числа узлов эффективный диаметр сети сокращается или стабилизируется
- □ Сети со временем становятся плотнее, то есть число ребер растет быстрее, чем число вершин

Предпочтительное присоединение. Модель Барабаши–Альберт

- □ Принцип предпочтительного присоединения: Пусть дан стартовый граф из n_0 вершин. В процессе генерации новые вершины v_i , $i = n_0 + 1, ..., n$ присоединяются к d существующим, выбранным по определенному признаку. Как правило, признак степень вершины.
- □ Принцип используется в модели Барабаши–Альберт и ее модификациях, модели копирования и др.
- \square Барабаши–Альберт: $P(\text{ребра к вершине } v) = \frac{d(v)}{\sum_i d(v_i)}$ $d(v_i)$ степень вершины
- \square Дороговцев и др.: $P(\text{ребра } \kappa \text{ вершине } v) = \frac{A + d(v)}{\sum_i (A + d(v_i))}, \ A \ge 0$

Предпочтительное присоединение. Модель Барабаши–Альберт

□ Свойства модели:

- Распределение степеней вершин соответствует степенному закону не зависимо от числа ребер $P \approx k^{-3}$.
- Для функции Дороговцева $P \approx k^{-\gamma}$, $\gamma = 2 + \frac{A}{\Delta m}$, ∈ $[2, \infty)$, где Δm это количество новых ребер, добавляемых на каждом шаге.
- Отражает свойство «малого мира»: при больших N диаметр графа растет как $O(\log N)$ для d=1 и $O(\frac{\log N}{\log\log N})$ для $d\geq 2$.
- Модель не воспроизводит сообщества
- Полученный граф ненаправленный и состоит из одной компоненты

Модель Барабаши–Альберт. Алгоритм

- □ Алгоритм (Батаджели, Брандес). Вычислительная сложность O(n+m) для графа с n вершинами и m ребрами
- □ Используется вспомогательный массив M размера 2*d*n, где d число одновременно создаваемых ребер (параметр). M[2i] и M[2i+1] хранят концы ребра e_i . Число появлений вершины v в массиве M является ее степенью. $M[k] \leq \lceil k/2 \rceil$
- □ Создание нового ребра: для новой вершины v смежную вершину будем выбирать по случайному индексу из массива M. Генерируем $r \in \{0, ..., 2dv + i\}$ для i-го соседа. Тогда новое ребро (v, M[r])

Penschuck M. et al. Recent Advances in Scalable Network Generation //arXiv preprint arXiv:2003.00736. – 2020.

Модель Барабаши–Альберт. Алгоритм

ALG. 5: preferential attachment

Input: number of vertices n minimum degree $d \ge 1$

Output: scale-free multigraph

$$G = (\{0, \dots, n-1\}, E)$$

M: array of length 2nd

for
$$v = 0, ..., n - 1$$
 do

for
$$i = 0, \dots, d-1$$
 do
$$M[2(vd+i)] \leftarrow v$$
 draw $r \in \{0, \dots, 2(vd+i)\}$ uniformly at random
$$M[2(vd+i)+1] \leftarrow M[r]$$

$$E \leftarrow \emptyset$$
 for $i = 0, \dots, nd - 1$ do
$$\mid E \leftarrow E \cup \{M[2i], M[2i + 1]\}$$

Выбор ребра. Возможны петли и повторы ребер.

□ Как избежать повторяющихся ребер?

Модель Барабаши–Альберт. Пример

https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model

Модель R-MAT

- □ Модель Recursive Matrix (R-MAT) позволяет сгенерировать граф со степенным распределением степеней вершин.
- □ Идея: рекурсивно разделить матрицу смежности на 4 равные части, распределяя ребра между этими частями с неравной вероятностью a, b, c, d (a + b + c + d = 1).
- □ При определении места очередного ребра каждая часть матрицы выбирается с заданной вероятностью. Выбранная область также разделяется на 4 части. Процедура выполняется рекурсивно до тех пор, пока не будет получена часть размером
 □ При определении месте будет ребро.

Модель R-MAT

- □ Число вершин 2^n , n cmenehb графа. Если хотим смоделировать граф с N вершинами, то $n = \lceil \log_2 N \rceil$.
- □ При генерации ребра могут дублироваться. В итоговой матрице смежности повторные значения не учитываются.
- □ Полученный граф будет направленным (матрица смежности несимметрична). Как правило, $a \ge b$, $a \ge c$, $a \ge d$
- □ Ненаправленный граф: установить b = c, после генерации ребер отбросить значения над верхней диагональю матрицы и скопировать в нее значения из нижнего треугольника матрицы.

Графы Кронекера

- □ Цель: построить графы, которые отражают свойство реальных сетей с увеличением размера становятся плотнее при постоянном или сокращающемся диаметре.
- □ Идея: рекурсивно строить последовательность самоподобных графов, используя произведение Кронекера матриц.
- □ Пусть граф-инициатор G_1 содержит N_1 вершину и E_1 ребро. Тогда построим последовательность графов $G_2, G_3, ...,$ таких, что k-й граф содержит $N_k = N_1^k$ вершин и $E_k = E_1^k$ ребер.

Графы Кронекера

□ Произведение Кронекера двух матриц A размера $n \times m$ и B размера $n' \times m'$ – матрица C размером $(n * n') \times (m * m')$:

$$C = A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{1m}B \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{pmatrix}$$

- □ Произведение Кронекера двух графов G и H (Вейчел, 1962) = произведение Кронекера их матриц смежности A(G) и A(H)
- □ Ребро $(X_{ij}, X_{kl}) \in G \otimes H$ тогда и только тогда, когда $(X_i, X_k) \in G$ и $(X_i, X_l) \in H$.
- □ Последовательность графов порождается многократным выполнением произведения Кронекера над исходным графом:

$$G_k = G_1 \otimes G_1 \dots \otimes G_1 = G_{k-1} \otimes G_1$$

$$k \text{ pas}$$

Графы Кронекера. Пример

Central node is X 2,2

(a) Graph K_1

1	1	0
1	1	1
0	1	1

(d) Adjacency matrix of K_1

(b) Intermediate stage

(c) Graph $K_2 = K_1 \otimes K_1$

K_1	K_1	0
K	K_1	K_1
0	K ₁	K ₁

(e) Adjacency matrix of $K_2 = K_1 \otimes K_1$

Leskovec J. et al. Kronecker graphs: An approach to modeling networks // Journal of Machine Learning Research. – 2010. – T. 11. – №. Feb. – C. 985-1042.

Графы Кронекера. Пример

(a) K_3 adjacency matrix (27 × 27)

(b) K_4 adjacency matrix (81 × 81)

Leskovec J. et al. Kronecker graphs: An approach to modeling networks // Journal of Machine Learning Research. – 2010. – T. 11. – №. Feb. – C. 985-1042.

Графы Кронекера. Свойства

- □ Полиномиальное распределение степеней, собственных значений графа и компонент каждого собственного вектора.
- □ Если граф-инициатор имеет N_1 вершин и E_1 ребер, то последовательность графов Кронекера следует уплотнению степенного распределения с экспонентой $a = \log(E_1)/\log(N_1)$.
- \square Если граф-инициатор имеет диаметр d и у каждой вершины есть петля, то граф G_k имеет диаметр d не зависимо от k. Для любого q q-эффективный диаметр G_k сходится к d при росте k.
- □ Если графы G и H оба связные, но двудольные, то G⊗H несвязный, и каждая его компонента двудольная.

Графы Кронекера. Свойства

□ Недостаток модели: «ступенчатый» вид характеристик графа -

(a) Kronecker initiator K_1

(b) Degree distribution of K_6 $(6^{th}$ Kronecker power of K_1)

(c) Network value of K_6 $(6^{th}$ Kronecker power of K_1)

□ Модификация модели – внесение вероятности появления ребер

Leskovec J. et al. Kronecker graphs: An approach to modeling networks // Journal of Machine Learning Research. – 2010. – T. 11. – №. Feb. – C. 985-1042.

Стохастические графы Кронекера

Пусть P_1 - матрица вероятностей размера $N_1 \times N_1$. Значение $\theta_{ij} \in P_1$ обозначает вероятность того, что ребро (i,j) включено в граф G_1 . Для k-го произведения графа Кронекера каждое ребро $(u,v) \in G_k$ включается в граф с вероятностью $P_1^{[k]}$.

Стохастические графы Кронекера

- □ Стохастические графы Кронекера это обобщение других моделей:
 - Эрдеша-Рэньи с инициатором 1 x 1. $P_1 = [\theta_{11}] = p$
 - RMAT с инициатором 2 х 2. В отличие от RMAT, в графе Кронекера $\sum \theta_{ij}$ кодирует также общее число графов.

Генераторы графов

Table 2 List of publicly available implementations sorted by name of the toolkit. Abbrv.:

<u>BA</u>: Barabási-Albert, <u>ER</u>: Erdős-Rényi, <u>ES</u>: Edge-Switching, <u>FDSM</u>: Fixed-Degree-Sequence-Model, <u>RDT</u>: Random Delaunay Triangulation, <u>RGG</u>: Random Geometric Graph, <u>RHG</u>: Random Hyperbolic Graph, <u>SBM</u>: Stochastic Block Model, <u>WS</u>: Watts-Strogatz, <u>MMod</u>: Machine Model, <u>SEQ</u>: Sequential, <u>SHM</u>: Shared-Memory, <u>DM</u>: Distributed Memory, <u>Py</u>: Python

Toolkit	Url & Models	Language	MMod
	Implementations of Multiple Models		
GraphTool	$\verb https://graph-tool.skewed.de \cdot ES, RDT, SBM $	C++	SHM
GTGraph	$\label{eq:http://www.cse.psu.edu/-kxm85/software/GTgraph} & ER, \\ R\text{-}MAT & \\ \end{array}$	С	SEQ
IGraph	https://igraph.org/ \cdot BA, ER, ES, SBM, WS	C++, Py, R	SEQ
KaGen	$\label{eq:https://github.com/sebalamm/KaGen} \ \cdot \ BA, \ ER, \ RDT, \\ RGG, RHG$	C++	SHM, DM
NetworkX	$\label{eq:https://networkx.github.io/} $$ BA, Caveman, ER, Holme-Kim, LFR, RGG, SBM, WS$	Python	SEQ
NetworKit	https://networkit.github.io/ \cdot BA, CL, Clustered Random Graphs, ER, FDSM, PubWeb, RHG, R-MAT	C++, Py	SHM
Snap	https://snap.stanford.edu/snap \cdot BA , CM , Forest Fire, Multiplicative Attribute Graphs, Node Copy, R-MAT	C++	SHM
	Implementations of a Single Model		
Darwini	https://issues.apache.org/jira/browse/GIRAPH-1043 · Darwini	Java	DM
FEASTPACK	$\verb https://www.sandia.gov/-tgkolda/feastpack/ \cdot BTER $	MATLAB	SEQ
Graph500	$\verb https://graph500.org/ \cdot R-MAT $	C	DM
HyperGen	$https://github.com/manpen/hypergen \cdot RHG$	C++	SM
LFR	https://sites.google.com/site/andrealancichinetti/files ·	C++	SEQ
MUSKETEER	https://github.com/sashagutfraind/musketeer · planar version: https://github.com/isafro/Planar-MUSKETEER	Python	SEQ
R-MAT	https://github.com/lorenzhs/rmat · R-MAT	C++	SHM

Penschuck M. et al. Recent Advances in Scalable Network Generation //arXiv preprint arXiv:2003.00736. – 2020.

Генераторы графов

- □ RMAT графы https://github.com/lorenzhs/rmat
- □ Графы Кронекера https://github.com/graph500/graph500
- □ SSCA-2, Erdös-Rényi, R-MAT https://github.com/Bader-Research/GTgraph
- □ R-MAT https://github.com/farkhor/PaRMAT
- □ https://github.com/KarlsruheGraphGeneration/KaGen

Литература по случайным графам

- □ Математическое описание моделей:
 - 1. Колчин В.Ф. Случайные графы. М.: Физматлит, 2004. 256 с.
 - 2. Райгородский А. Модели случайных графов. М.: МЦНМО, 2017.
 - 3. Видеолекции А. Райгородского для Школы Анализа Данных Yandex, на Coursera https://ru.coursera.org/learn/sluchajnye-graphy.
- □ Алгоритмическое описание моделей и свойств сетей:
 - Newman M. Networks. Oxford university press, 2018.
 - 2. Chakrabarti D., Faloutsos C. Graph mining: laws, tools, and case studies //Synthesis Lectures on Data Mining and Knowledge Discovery. 2012. T. 7. №. 1. C. 1-207.

Заключение

- □ Данные, представленные в виде графа, используются во многих прикладных областях. Доступны коллекции реальных графов большого порядка
- □ Модель графа используется, если реальных данных недостаточно или вычисления на реальном графе затратно по времени. Также модельные графы используются для тестирования алгоритмов.
- □ Графы больших сетей имеют некоторые специальные свойства (степени вершин распределены согласно степенной функции, малый диаметр, справедлив степенной закон уплотнения и др.). Для них построены специальные модели

Заключение

- □ Первая модель случайного графа модель Эрдеша–Рэньи. В ней для графа с n вершинами появление каждого из всех возможных C_n² ребер равновероятно
- □ Ряд моделей реализует принцип предпочтительного соединения: наращивание графа вокруг некоторого ядра, учитывая степени вершин. Например, модель Барабаши – Альберт.
- □ При реализации модели важно корректно генерировать выборку из множества ребер
- □ В бенчмарках часто используются графы RMAT и графы Кронекера. Они моделируют графы со степенным распределением вершин (например, графы Интернета и социальных сетей)

Литература

- Erdős P., Rényi A. On the evolution of random graphs // Publ. Math. Inst. Hung. Acad. Sci. – 1960. – T. 5. – №. 1. – C. 17-60.
- 2. Barabasi L.-A., Albert R. Emergence of scaling in random networks // Science. 1999. V. 286. P. 509-512.
- 3. Chakrabarti D., Zhan Y., Faloutsos C. R-MAT: A recursive model for graph mining //Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004. C. 442-446.
- 4. Leskovec J. et al. Kronecker graphs: An approach to modeling networks //Journal of Machine Learning Research. – 2010. – T. 11. – №. Feb. – C. 985-1042.
- 5. Penschuck M. et al. Recent Advances in Scalable Network Generation //arXiv preprint arXiv:2003.00736. 2020.
- 6. Batagelj V., Brandes U. Efficient generation of large random networks //Physical Review E. 2005. T. 71. №. 3. C. 036113.
- 7. Райгородский А. М. Модели случайных графов и их применения //Труды Московского физико-технического института. 2010. Т. 2. №. 4.

Контакты

Нижегородский государственный университет http://www.unn.ru

Институт информационных технологий, математики и механики http://www.itmm.unn.ru

Пирова А.Ю. anna.pirova@itmm.unn.ru

