

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Introduction to ML Lecture 4: Linear Regression

Hamed Tabkhi

Department of Electrical and Computer Engineering, University of North Carolina Charlotte (UNCC) htabkhiv@uncc.edu

- In regression problem, the task is:
 approximate a mapping function (h) from input variables
 (x) to continuous output variables
- In this lecture, we work on linear regression models

Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on $X_1, X_2, \ldots X_p$ is linear.

eta unknown model parameters are estimated from the data

- A linear regression model follows a very particular form.
 In statistics, a regression model is linear when all terms in the model are one of the following:
 - The constant
 - A parameter multiplied by an independent variable (IV)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$$

Quiz (1)

Linear or non-linear regression model

$$\theta_1 * X^{\theta_2}$$

non-linear

$$\theta_1 * cos(X + \theta_4) + \theta_2 * cos(2 * X + \theta_4) + \theta_3$$

non-linear

$$Y = b_0 + b_1 X_1 + b_2 X_1^2$$

Non-linear

Quiz (2)

Q: Are the true regression functions always linear?

- Why should we assume that relationships between variables are linear?
 - Because linear relationships are the simplest non-trivial relationships that can be imagined (hence the easiest to work with), and.....
 - Because the "true" relationships between our variables are often at least approximately linear over the range of values that are of interest to us, and...
 - Even if they're not, we can often transform the variables in such a way as to linearize the relationships.

Let's start with an example

Predict house price

Linear regression with one variable (x)

Linear regression with one variable (x) – simple linear regression

Linear function

$$h(x) = \theta_0 + \theta_1 x$$

 θ_0 , θ_1 are parameters

- How to choose the parameters?
- Idea: choose θ₀, θ₁ so that h(x) is close to y for our training examples (x, y)

Let's formalize the problem

Goal: Obtaining a Linear Regression Model

Input: x (the size of house)

Target: y (the price of the house),

Linear model:

$$h = \theta_0 + \theta_1 x$$

Cost Function: How well or poorly a model (Hypothesis) explains the training data

Sum of the squared Euclidean distance

$$J(\theta_0, \theta_1) = \sum_i (h(x^i) - y^i)^2 \qquad (x^i, y^i) \text{ is the } i \text{th training sample}$$

$$h(x^{i}) = \theta_{0} + \theta_{1}x^{i}$$
$$i \in [1, m]$$

m: total number of training samples

Problem to solve

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

m: total number of training samples

½: mathematical convenience

Cost Function:
$$J(\theta_0, \theta_1) = \underbrace{\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2}$$

Goal:
$$\min_{\theta_0, \theta_1} Z = J(\theta_0, \theta_1)$$

Cost function

Visualizing cost function
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Simplified hypothesis h for easier visualization

Set
$$\theta_0 = 0$$

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

a quadratic polynomial

- How to find the minimum point of cost function?
 - Gradient descent
 - Used all over machine learning for minimization
- But wait

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x^{(i)} - y^{(i)})^2$$

$$\frac{dJ(\theta_1)}{d\theta_1} = 0$$

$$\theta_1$$
Convex

Analytical Method

- Start with an initial guess
- Keeping changing θ_1 a little bit to try and reduce $J(\theta_1)$

Have a cost function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

A more formal definition

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

- Q1: Why " " the gradient in parameter update?
- Q2: How to set a proper value for the learning rate α ?

- Why " " the gradient in parameter update?
- Note that a gradient is a vector, so it has both of the following characteristics:
 - a direction
 - a magnitude
- The gradient always points in the direction of steepest increase in the loss function.
- The gradient descent algorithm takes a step in the direction of the negative gradient in order to reduce loss as quickly as possible.

The learning rate α is a positive constant

• How to choose a proper learning rate α ?

7.9
$$\theta_{\text{new}} = 2 - d \cdot (2) \quad (\theta_{\text{obl}} = 2)$$
4.1 $\theta_{\text{new}} = 4 - d \cdot (-2) \quad (\theta_{\text{obl}} = 4)$
0=1.05

Gradually approach the minimum

If the learning rate is too large, gradient decent can overshoot the minimum. It may fail to converge, or even diverge.

- Fixed learning rate
 - determined by trial and error
 - E.g., try a few values 0.1, 0.01, 0.001, ..., i.e., parameter tuning via grid search
- To see if gradient descent is working, print out J(θ) each iteration
 - The value should decrease at each iteration
 - If it doesn't, adjust α

Recommended reading on learning rate

https://medium.com/@lipeng2/cyclical-learning-rates-for-training-neural-networks-4de755927d46

Learning rate annealing, initially large, decrease gradually

Cyclical Learning Rates for Training Neural Networks

Quiz

Statement

If the learning rate is too small, then gradient descent may take a very long time to converge.

If θ_0 and θ_1 are initialized at a local minimum, then one iteration will not change their values.

Even if the learning rate α is very large, every iteration of gradient descent will decrease the value of $f(\theta_0, \theta_1)$.

If θ_0 and θ_1 are initialized so that θ_0 = θ_1 , then by symmetry (because we do simultaneous updates to the two parameters), after one iteration of gradient descent, we will still have θ_0 = θ_1 .

More input variables (features)

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)		Price (\$1000)
x_1	x_2	x_3	x_4	Xn	y
2104	5	1	45	•••	460
1416	3	2	40		232
1534	3	2	30		315
852	2	1	36		178

Each row is an n-dimensional data point (sample)

Previous hypothesis or mapping function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \qquad \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

Each data point is now a (n+1)-dimensional vector

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

function:
$$J(\theta_0,\theta_1,\dots,\theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
 i-th sample Corresponding label or GT value

Repeat
$$\{$$
• Gradient descent $\longrightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$
 $\}$ (simultaneously update for every $j=0,\dots,n$)

i: index for sample *j*: index for parameter

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

m: total number of training samples

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Repeat
$$\left\{ \begin{array}{c} \sqrt{\frac{2}{305}} \Im(\mathfrak{S}) \\ \theta_j := \theta_j - \alpha \boxed{\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}} \\ \text{(simultaneously update } \theta_j \text{ for } j = 0, \dots, n) \right\}$$

i: index for samplej: index for parameter

- Stopping criterion
 - Assume convergence when $\|oldsymbol{ heta}_{new} oldsymbol{ heta}_{old}\|_2 < \overline{\epsilon}$

A small constant (threshold)

Set a maximum number of iterations

Useful resource

- Gradient and partial derivatives
 - https://www.youtube.com/watch?v=GkB4vW16QHI
- A very detailed tutorial on Gradient Descent (Step-by-Step) with examples
 - https://www.youtube.com/watch?v=sDv4f4s2SB8

