МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА" ІНСТИТУТ ПІСЛЯДИПЛОМНОЇ ОСВІТИ КАФЕДРА СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ

ЗВІТ ДО ЛАБОРАТОРНОЇ РОБОТИ №2 з курсу "ОБДЗ" на тему:

" Створення таблиць бази даних засобами SQL"

Підготувала:

Студентка групи КН-209

Кульчицька Олена

Викладач:

Мельникова Н.І.

Лабораторна робота №2 з курсу "ОБДЗ" на тему:

"Створення таблиць бази даних засобами SQL"

Мета роботи: Побудувати даталогічну модель бази даних; визначити типи, розмірності та обмеження полів; визначити обмеження таблиць; розробити SQL запити для створення спроектованих таблиць.

Короткі теоретичні відомості.

Щоб створити нову базу даних у командному рядку клієнта MySQL (mysql.exe) слід виконати команду CREATE DATABASE, опис якої подано нижче. Тут і надалі, квадратні дужки позначають необов'язковий аргумент команди, символ "|" позначає вибір між аргументами.

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] im'a fasu

[[DEFAULT] CHARACTER SET кодування]

[[DEFAULT] COLLATE набір правил]

ім'я_бази — назва бази даних (латинські літери і цифри без пропусків); *кодування* — набір символів і кодів (koi8u, latin1, utf8, cp1250 тощо); *набір_правил* — правила порівняння рядків символів (див. результат команди show collation).

Нижче наведені деякі допоміжні команди для роботи в СУБД MySQL. Кожна команда і кожен запит в командному рядку повинні завершуватись розділяючим символом ";".

1. Перегляд існуючих баз даних:

SHOW DATABASES

2. Вибір бази даних для подальшої роботи:

USE DATABASE im's бази

3. Перегляд таблиць в базі даних:

SHOW TABLES [FOR im's 6a3u]

4. Перегляд опису таблиці в базі:

DESCRIBE ім'я таблиці

5. Виконати набір команд з зовнішнього файлу:

SOURCE назва файлу

6. Вивести результати виконання подальших команд у зовнішній файл:

\Т назва файлу

Для роботи зі схемою бази даних існують такі основні команди:

ALTER DATABASE – зміна опису бази даних; CREATE TABLE – створення нової таблиці; ALTER TABLE – зміна структури таблиці; DELETE TABLE – видалення таблиці з бази даних;

CREATE INDEX – створення нового індексу (для швидкого пошуку даних);

DROP INDEX – видалення індексу;

DROP DATABASE – видалення бази даних.

```
Розглянемо команду створення таблиці в MySQL та її основні аргументи.
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] ім'я таблиці
[(опис таблиці,...)] [додаткові параметри] ... [вибірка даних]
опис таблиці: назва поля опис поля
| [CONSTRAINT [ім'я обмеження]] PRIMARY КЕУ (назва поля,...) [тип обмеження]
| {INDEX|KEY} [ім'я_обмеження] (назва поля,...)[ тип обмеження]
[CONSTRAINT [ім'я обмеження]] UNIQUE [INDEX|KEY] [ім'я обмеження](назва поля,...)
[тип обмеження]
| {FULLTEXT|SPATIAL} [INDEX|KEY] [ім'я обмеження] (назва поля,...)
[тип обмеження]
[CONSTRAINT [ім'я обмеження]] FOREIGN KEY [ім'я обмеження] (назва поля,...)
опис зв'язку
| СНЕСК (вираз)
опис поля:
тип даних [NOT NULL | NULL] [DEFAULT значення за замовчуванням]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
опис зв'язку:
REFERENCES ім'я таблиці (назва поля, ...) [ON DELETE дія]
[ON UPDATE дія]
дія:
CASCADE
Одночасне видалення, або оновлення відповідного значення у зовнішній таблиці.
RESTRICT
Аналог NO ACTION. Дія над значенням поля ігнорується, якщо існує відповідне йому
значення у зовнішній таблиці. Опція задана за замовчуванням.
SET NULL
При дії над значенням у первинній таблиці, відповідне значення у зовнішній таблиці
замінюється на NULL.
додаткові параметри:
{ENGINE|TYPE} [=] тип таблиці
| AUTO_INCREMENT [=] значення приросту лічильника
```

| AVG ROW LENGTH [=] значення

| CHECKSUM [=] {0 | 1}

| [DEFAULT] CHARACTER SET [=] кодування

| [DEFAULT] COLLATE [=] набір_правил | COMMENT [=] 'коментар до таблиці' | DATA DIRECTORY [=] 'абсолютний шлях' | DELAY_KEY_WRITE [=] {0 | 1}

| INDEX DIRECTORY [=] 'абсолютний шлях'

| MAX_ROWS [=] значення

| MIN_ROWS [=] значення

| ROW_FORMAT {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}

вибірка_даних:

[IGNORE | REPLACE] [AS] SELECT ... (вибір даних з інших таблиць)

вираз:

Логічний вираз, що повертає TRUE або FALSE.

Опис аргументів:

ім'я таблиці

Назва таблиці. Або назва бази. назва таблиці.

тип таблиці

B MySQL крім типів таблиць MyISAM та InnoDB існують типи MEMORY, BDB, ARCHIVE тощо.

тип обмеження

Задає тип індексу для ключового поля: USING {BTREE | HASH | RTREE}.

TEMPORARY

Створення тимчасової таблиці, яка буде знищена після завершення зв'язку з сервером.

CONSTRAINT

Вказує на початок оголошення PRIMARY KEY, UNIQUE, або FOREIGN KEY обмеження.

NULL | NOT NULL

Директива, що дозволяє/забороняє null-значення для даного поля.

PRIMARY KEY

Вказує, що дане поле буде первинним ключем в таблиці.

UNIQUE

Вказує на те, що в даному полі будуть зберігатися унікальні значення.

FOREIGN KEY ... REFERENCES

Створює зовнішній ключ, зв'язаний із вказаним полем (полями).

AVG_ROW_LENGTH

Приблизне значення середньої довжини рядків зі змінною довжиною.

DATA DIRECTORY

Вказує шлях, за яким таблиця має зберігатись у файловій системі.

CHECKSUM

Якщо параметр = 1, то для рядків таблиці буде рахуватись контрольна сума. Це сповільнює оновлення таблиці, але робить легшим пошук пошкоджених таблиць.

ROW FORMAT

Вказує на спосіб зберігання рядків таблиці (залежно від типу таблиці).

FULLTEXT|SPATIAL

Тип індексу (повнотекстовий/просторовий; тільки для таблиць типу MyISAM).

Хід роботи.

Даталогічна модель вимагає визначення конкретних полів бази даних, їхніх типів, обмежень на значення, тощо. На рисунку зображено даталогічну модель проектованої бази даних.

Створимо нову базу даних, виконавши такі команди:

```
CREATE SCHEMA IF NOT EXISTS 'Confectionary' DEFAULT CHARACTER SET utf8; USE 'Confectionary';
```

```
CREATE TABLE IF NOT EXISTS 'Confectionary'. 'dish' (
 'id' INT NOT NULL AUTO INCREMENT,
 'name' VARCHAR(45) NOT NULL,
 'weight' INT NOT NULL,
 'price' DECIMAL(10,2) NOT NULL,
 'kkal' INT NOT NULL,
 PRIMARY KEY ('id'))
ENGINE = InnoDB;
CREATE TABLE IF NOT EXISTS 'Confectionary'.'customer' (
 'id' INT NOT NULL AUTO_INCREMENT,
 'first name' VARCHAR(45) NOT NULL,
 'second name' VARCHAR(45) NOT NULL,
 'telephone' VARCHAR(15) NOT NULL,
 'email' VARCHAR(45) NOT NULL,
 PRIMARY KEY ('id'))
ENGINE = InnoDB;
```

CREATE TABLE IF NOT EXISTS `Confectionary`.`staff` (
 `id` INT NOT NULL AUTO_INCREMENT,
 `first_name` VARCHAR(45) NOT NULL,
 `second_name` VARCHAR(45) NOT NULL,

```
`telephone` VARCHAR(15) NOT NULL,
 'position' VARCHAR(45) NOT NULL,
 PRIMARY KEY ('id'))
ENGINE = InnoDB;
CREATE TABLE IF NOT EXISTS 'Confectionary'.'provider' (
 'id' INT NOT NULL AUTO_INCREMENT,
 'name' VARCHAR(45) NOT NULL,
 'telephone' VARCHAR(15) NOT NULL,
 'classification' VARCHAR(45) NOT NULL,
 'email' VARCHAR(45) NOT NULL,
 PRIMARY KEY ('id'))
ENGINE = InnoDB;
CREATE TABLE IF NOT EXISTS 'Confectionary'. 'ingredient' (
 'id' INT NOT NULL AUTO_INCREMENT,
 'name' VARCHAR(45) NOT NULL,
 `price_for_unit` DECIMAL(10,2) NOT NULL,
 'quantity' INT NOT NULL,
 `provider_id` INT NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `provider_idx` (`provider_id` ASC),
 CONSTRAINT 'provider'
  FOREIGN KEY ('provider_id')
  REFERENCES 'Confectionary'.'provider' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE)
ENGINE = InnoDB;
CREATE TABLE IF NOT EXISTS 'Confectionary'.'order' (
 'id' INT NOT NULL AUTO INCREMENT,
 `staff_id` INT NOT NULL,
 'date' DATE NOT NULL,
 'time' TIME NOT NULL,
 `customer_id` INT NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `customer_idx` (`customer_id` ASC),
 INDEX `staff_idx` (`staff_id` ASC),
 CONSTRAINT `customer`
  FOREIGN KEY ('customer_id')
  REFERENCES 'Confectionary'.'customer' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE,
 CONSTRAINT `staff`
  FOREIGN KEY ('staff id')
  REFERENCES 'Confectionary'.'staff' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE)
ENGINE = InnoDB;
```

```
CREATE TABLE IF NOT EXISTS 'Confectionary'.'dish_order' (
 'id' INT NOT NULL AUTO_INCREMENT,
 `order_id` INT NOT NULL,
 'dish_id' INT NOT NULL,
 `number_of_dishes` INT NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `dish_idx` (`dish_id` ASC),
 INDEX `order_idx` (`order_id` ASC),
 CONSTRAINT 'dish'
  FOREIGN KEY ('dish_id')
  REFERENCES 'Confectionary'.'dish' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE,
 CONSTRAINT 'order'
  FOREIGN KEY ('order_id')
  REFERENCES 'Confectionary'.'order' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE)
ENGINE = InnoDB;
CREATE TABLE IF NOT EXISTS 'Confectionary'.'ingredient_dish' (
 'id' INT NOT NULL AUTO INCREMENT,
 'id_dish' INT NOT NULL,
 'ingredient_id' INT NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `ingredient_idx` (`ingredient_id` ASC),
 INDEX `dish_idx` (`id_dish` ASC),
 CONSTRAINT 'ingredientid'
  FOREIGN KEY ('ingredient id')
  REFERENCES 'Confectionary'.'ingredient' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE,
 CONSTRAINT 'dishid'
  FOREIGN KEY ('id_dish')
  REFERENCES 'Confectionary'.'dish' ('id')
  ON DELETE CASCADE
  ON UPDATE CASCADE)
ENGINE = InnoDB;
```

Висновок: на цій лабораторній роботі було завершено моделювання і засобами SQL створено базу даних, що складається з восьми таблиць.