

Sistemas de Equações Não Lineares

UNIVERSIDADE DO ALGARVE

FACULDADE DE CIÊNCIAS E TECNOLOGIA

Curso:

Licenciatura em Engenharia Informática

Unidade Curricular:

Análise Numérica I

Docente:

Hermenegildo Borges de Oliveira

Realizado por:

Daniel Maryna (64611) Miguel Silva (80072) Francisco Nunes (80061) Brandon Mejia (79261)

CONTEÚDO

INTRODUÇÃO	3
FUNDAMENTAÇÃO TEÓRICA	4
Representação de Sistemas Não Lineares	4
Método de Newton para Sistemas Não Lineares	4
Critérios de Paragem	5
Vantagens e Limitações	5
Comparação com Outros Métodos	5
IMPLEMENTAÇÃO DOS PROGRAMAS	6
Preparação das Equações e Variáveis	6
Criação da Matriz Jacobiana	7
Conversão para Funções Numéricas	7
Avaliação da Função e da Matriz	8
Resolução pelo Método de Newton	9
FLUXO DE EXECUÇÃO	10
resultados	11
CONCLUSÃO	12
DECEDÊNICIAS	12

INTRODUÇÃO

A resolução de sistemas de equações não lineares é uma área fundamental em Análise Numérica, com aplicações que se estendem desde a engenharia até as ciências aplicadas. Este tipo de sistema, frequentemente representado na forma F(x) = 0, onde F(x) = 0, on

Neste trabalho, implementa-se um programa em Python que utiliza o Método de Newton para resolver sistemas de equações não lineares, oferecendo ao utilizador a possibilidade de especificar parâmetros como tolerância e número máximo de iterações. A abordagem adotada prioriza a precisão e a eficiência computacional, considerando critérios de paragem rigorosos baseados na norma infinito.

O objetivo deste relatório é detalhar o desenvolvimento do programa e demonstrar a sua aplicabilidade através de exemplos práticos. Para tal, serão abordados conceitos teóricos relevantes, a implementação algorítmica, o fluxo de execução do programa, e uma análise dos resultados obtidos. Este estudo pretende não apenas consolidar o conhecimento teórico, mas também explorar a aplicação prática de técnicas numéricas em problemas reais.

FUNDAMENTAÇÃO TEÓRICA

A resolução de sistemas de equações não lineares envolve encontrar vetores $x \in \mathbb{R}^n$ que satisfaçam F(x) = 0, onde $F: \mathbb{R}^n \to \mathbb{R}^n$ é uma função vetorial composta por n equações não lineares. Esses sistemas surgem em várias áreas, como engenharia, física e economia, onde os métodos analíticos tradicionais não são viáveis devido à complexidade das equações.

Representação de Sistemas Não Lineares

Um sistema de n equações não lineares pode ser representado na forma vetorial:

$$F(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_3(x_1, \dots, x_n) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

onde cada $f_i(x_1,...,x_n)$ é uma função real de várias variáveis reais.

Para resolver esses sistemas, é necessário recorrer a métodos numéricos iterativos, sendo o **Método de Newton** uma das abordagens mais eficazes.

Método de Newton para Sistemas Não Lineares

O Método de Newton é uma extensão do método utilizado para funções de uma variável, aplicado a sistemas de equações. Ele utiliza a matriz Jacobiana J(x), composta pelas derivadas parciais das funções $f_i(x)$, para aproximar as soluções. A cada iteração k, resolve-se:

$$J(x^k)\Delta x^k = -F(x^k)$$

e atualiza-se a solução aproximada:

$$x^{k+1} = x^k + \Delta x^k$$

Convergência

A convergência do Método de Newton depende das seguintes condições:

- 1. A matriz Jacobiana J(x) deve ser invertível em um ponto próximo à solução;
- 2. O valor inicial x^0 deve estar suficientemente próximo da solução verdadeira;
- 3. As funções $f_i(x)$ devem ser suficientemente suaves (diferenciáveis).

Se essas condições forem satisfeitas, o método apresenta uma taxa de convergência quadrática, ou seja, o erro diminui exponencialmente a cada iteração.

Critérios de Paragem

Os critérios mais comuns para interromper o processo iterativo incluem:

- A norma do vetor Δx^k (correção) ser menor que uma tolerância ε ;
- O número máximo de iterações ser atingido;
- A norma $||F(x^k)||$ ser menor que um limite pré-definido.

Vantagens e Limitações

As principais vantagens do Método de Newton incluem:

- Convergência rápida quando próximo da solução;
- Boa performance em sistemas bem condicionados.

No entanto, ele apresenta limitações, como:

- Dependência de uma boa estimativa inicial;
- Necessidade de calcular e inverter a matriz Jacobiana, o que pode ser computacionalmente "caro".

Comparação com Outros Métodos

Existem diversos métodos numéricos para resolver sistemas de equações não lineares, cada um com características específicas de desempenho e aplicabilidade. Entre os mais comuns, destacam-se o **Método da Bisseção**, o **Método da Secante** e o **Método de Newton**. Abaixo, uma breve comparação:

Método	Vantagens	Desvantagens	Aplicabilidade
Bisseção	 Garantia de convergência se o intervalo inicial contiver uma solução. Simplicidade de implementação. 	 Restrito a funções de uma variável. Convergência linear (lenta). Requer mudança de sinal no intervalo inicial. 	Adequado para problemas simples, onde robustez é mais importante que velocidade.
Secante	 Não exige cálculo de derivada. Convergência linear (mais rápida que Bisseção). 	 Requer duas aproximações iniciais. Instável se as aproximações iniciais não forem adequadas. 	Útil para funções de uma variável, especialmente quando derivadas são difíceis de calcular.
Newton	 Convergência quadrática (extremamente rápido perto da solução). Aplicável a sistemas não lineares. 	 Requer cálculo e inversão da matriz Jacobiana (custo computacional elevado). Depende de boa aproximação inicial. 	Indicado para sistemas complexos e situações que demandam alta precisão e eficiência, desde que haja boa aproximação inicial.

IMPLEMENTAÇÃO DOS PROGRAMAS

O programa utiliza a biblioteca Python sympy para manipulações simbólicas e numpy para cálculos numéricos. Ele implementa o Método de Newton para resolver sistemas de equações não lineares. Consequentemente, descreve-se como essas funções funcionam e se interligam para alcançar esse objetivo.

Preparação das Equações e Variáveis

```
def read input():
 vars = sp.symbols(' '.join([f'x{i}' for i in range(1, n + 1)]),
real=True)
    local_dict = {
                  "sin": sp.sin, "cos": sp.cos, "exp": sp.exp, "pi": sp.pi,
"tan": sp.tan, "sqrt": sp.sqrt, "log": sp.log,
                 "abs": sp.Abs, "ln": sp.ln, "e": sp.exp,"^" : "**" ,
"sen": sp.sin , "\pi": sp.pi, "e": sp.exp(1)
    for i, var in enumerate(vars, start=1):
        local_dict[f"x{i}"] = var
    print(f"Digite {n} equações, uma por linha, em função de x1, x2, ...,
x{n}:")
    for i in range(n):
        eq str = input(f"Equação {i + 1}: ")
        eq_sym = sp.sympify(eq_str, locals=local_dict)
        F.append(eq_sym)
    x0_str = input(f"Digite a aproximação inicial (vetor de {n} valores)
separados por espaço: ")
    x0 = np.array([float(val) for val in x0_str.split()])
    tol = float(input("Digite a tolerância absoluta (norma infinito), ex:
0.0001: "))
    max_iter = int(input("Digite o número máximo de iterações: "))
    print("-----
   return vars, F, x0, tol, max_iter
```

Código 1 - Implementação da função read_input.

read_input(): É a função inicial que recolhe as equações do sistema, as variáveis simbólicas e os parâmetros necessários para o cálculo (aproximação inicial, tolerância, número máximo de iterações). A saída desta função fornece todos os dados necessários para configurar o problema.

Criação da Matriz Jacobiana

```
def get_matriz_jacobiana(vars, F):

    n = len(F)
    J = sp.zeros(n, n)
    for i, f in enumerate(F):
        for j, var in enumerate(vars):
            J[i, j] = sp.diff(f, var)
    return J
```

Código 2 - Implementação da função get_matriz_jacobiana.

get_matriz_jacobiana(vars, F): Com as equações simbólicas recebidas de read_input(), esta função constrói a matriz Jacobiana J(x), que é essencial para o Método de Newton. A matriz Jacobiana contém as derivadas parciais de cada equação em relação a cada variável.

Conversão para Funções Numéricas

```
def cria_funcoes_numericas(vars, F, J):
    F_funcs = [sp.lambdify(vars, f, "numpy") for f in F]
    n = len(F)
    J_funcs = [[sp.lambdify(vars, J[i, j], "numpy") for j
in range(n)] for i in range(n)]
    return F_funcs, J_funcs
```

Código 3 - Implementação da função cria_funcoes_numericas.

cria_funcoes_numericas(vars, F, J): Esta função converte tanto as equações F(x) quanto a matriz Jacobiana J(x) de uma forma simbólica para funções numéricas. Essas funções otimizadas são utilizadas para avaliar rapidamente os valores das equações e da Jacobiana em pontos específicos durante as iterações.

Avaliação da Função e da Matriz

Código 4 - Implementação das funções F_eval e J_eval.

F_eval(F_funcs, x) e J_eval(J_funcs, x): Durante o processo iterativo, essas funções calculam numericamente os valores de F(x) e J(x) no ponto atual x. Isso é necessário para resolver o sistema linear associado ao Método de Newton em cada iteração.

Resolução pelo Método de Newton

```
def metodo_de_Newton(F_funcs, J_funcs, x0, tol, max_iter):
   x = np.array(x0, dtype=float)
   x_results = []
   for k_iteracoes in range(1, max_iter + 1):
        Fx = F_eval(F_funcs, x
       Jx = J_eval(J_funcs, x
       x_results.append(x)
        try:
            y = np.linalg.solve(Jx, -Fx)
        except np.linalg.LinAlgError:
            print("A matriz Jacobiana é singular. Não foi possível avançar.")
            return x, k_iteracoes, False
        print(f"Iteração {k_iteracoes}:")
        print("x =", x)
        x_new = x + y
        if np.linalg.norm(y, ord=np.inf) < tol:</pre>
            return x_results, x_new, k_iteracoes, True
        x = x new
    return x_results, x, max_iter, False
```

Código 5 - Implementação da função metodo_de_Newton.

metodo_de_Newton(F_funcs, J_funcs, x0, tol, max_iter):

- o Esta é a função principal que executa o Método de Newton.
- o Recebe as funções numéricas F(x) e J(x) criadas anteriormente, juntamente com o vetor inicial x_0 , tolerância e número máximo de iterações.
- o Em cada iteração, calcula F(x) e J(x), resolve o sistema linear $J(x)\Delta x = -F(x)$, e atualiza o valor de x com $x^{k+1} = x^k + \Delta x$.
- \circ Verifica se a solução convergiu com base na norma infinito de Δx .

FLUXO DE EXECUÇÃO

Inicio do Programa:

- O programa começa por pedir algumas informações ao utilizador para entender o problema que se quer resolver. Isso inclui:
 - o Quantas equações e incógnitas existem.
 - Quais são as equações do sistema.
 - o Qual é a estimativa inicial para a solução.
 - o Quanta precisão se deseja (a tolerância) e o limite de tentativas (iterações).

Preparação das Ferramentas:

 Após receber as informações, o programa organiza tudo: traduz as equações matemáticas para que o computador consiga trabalhar com elas e calcula o que será necessário para resolver o sistema.

Resolução do Problema:

- O programa usa as informações e tenta encontrar a solução do sistema de equações. Este processo envolve:
 - o Testar a aproximação inicial fornecida.
 - Fazer cálculos para ajustar e aproximar a solução.
 - Repetir o processo até chegar a uma resposta suficientemente precisa ou atingir o limite de tentativas.

Resultados:

- Se o programa encontrar a solução dentro do nível de precisão desejado, ele apresenta o resultado, mostrando os valores aproximados que resolvem o sistema de equações.
- Caso contrário, avisa que não conseguiu encontrar uma solução com as condições fornecidas e mostra a melhor aproximação que conseguiu.

Nova Tentativa:

 Depois de apresentar os resultados, o programa dá a opção de resolver outro sistema ou ajustar os parâmetros e tentar novamente.

RESULTADOS

```
Digite o número de equações/variáveis: 2
Digite 2 equações, uma por linha, em função de x1, x2, ..., x2:
Equação 1: (x1)*2*(x2)*2*-4
Equação 2: x1-x2-1
Digite a aproximação inicial (vetor de 2 valores) separados por espaço: 1 1
Digite a orieráncia absoluta (norma infinito), ex: 0.0001: 0.001

Variáveis: (x1, x2)
Equações:
x1*x2 * x2*x2 - 4
x1 - x2 - 1

Iteração 1:
x = [1 . 1.]
Iteração 2:
x = [2 . 1.]
Iteração 3:
x = [1.83333333 0.8333333]
Iteração 4:
x = [1.82291667 0.82291667]
Convergiu em 4 iterações.
Solução aproximada → [1.82287566 0.82287566]
```

Ilustração 1 - Execução do programa (Teste 1)

O programa recebeu um sistema de equações não lineares, usou o método de Newton para aproximar a solução e convergiu para um resultado após 4 iterações.

```
Digite o número de equações/variáveis: 2
Digite 2 equações, uma por linha, em função de x1, x2, ..., x2:
Equação 1: x1*x2 - 0.25
Digite a aproximação inicial (vetor de 2 valores) separados por espaço: 0.7 0.4
Digite a orporximação inicial (vetor de 2 valores) separados por espaço: 0.7 0.4
Digite a tolerância absoluta (norma infinito), ex: 0.0001: 0.001
Variáveis: (x1, x2)
Equações:
x1*x2 + x2*x2 - 1
x1*x2 - 0.25

Iteração 1:
x = [0.7 0.4]
Iteração 2:
x = [1.10757576 0.12424242]
Iteração 3:
x = [0.98533457 0.25931455]
Convergiu em 4 iterações.
Solução aproximada ---> [0.96592619 0.25881869]
```

Ilustração 2 - Execução do programa (Teste 2)

Com a aproximação inicial $(x_1, x_2) = (0.7, 0.4)$, tolerância 0.001 e limite de 10 iterações, o método convergiu em 4 iterações para a solução aproximada:

```
(x_1, x_2) = (0.96592619, 0.25881869)
```

A solução foi verificada, satisfazendo ambas as equações dentro da tolerância especificada.

```
Digite o número de equações/variáveis: 3
Digite 3 equações, uma por linha, em função de x1, x2, ..., x3:
Equação 1: x1 + x2 - x3 - 0.5
Equação 2: x1 + x2 - x3 - 0.5
Equação 3: x1 + x2 - x3 - 0.5
Equação 3: x1 + x2 - x3 - 0.5
Equação 3: x1 + x2 - x3 - 0.5
Equação 3: necessaria de servicia de se
```

Ilustração 3 - Execução do programa (Teste 3)

Foi resolvido um sistema de equações não lineares com 3 variáveis usando o método de Newton. No entanto, durante as iterações, a matriz Jacobiana se tornou singular, impedindo o avanço do algoritmo. Isso ocorre quando a matriz não tem inversa, geralmente devido a dependências entre as equações ou um ponto inicial mal condicionado. Como resultado, o método não conseguiu encontrar a solução para o sistema a partir do ponto inicial fornecido.

```
Digite o número de equações/variáveis: 2
Digite 2 equações, uma por linha, em função de x1, x2, ..., x2:
Equação 1: x1=x2 - 2
Equação 2: x2=x2 - 3
Digite a aproximação inicial (vetor de 2 valores) separados por espaço: 1.5 1.5
Digite a tolerância absoluta (norma infinito), ex: 0.0001: 0.001
Digite o número máximo de iterações: 10

Variáveis: (x1, x2)
Equações:
x1=x2 - 2
x2=x2 - 3

Iteração 1:
x = [1.5 1.5]
Iteração 3:
x = [1.41421569 1.73214286]
Convergiu em 3 iterações.
Solução aproximada ---> [1.41421356 1.73205081]
```

Ilustração 4 - Execução do programa (Teste 4)

Neste exemplo, o sistema de equações é resolvido com sucesso usando o método de Newton. O método convergiu rapidamente em 3 iterações a partir das aproximações iniciais (1.5, 1.5), com uma tolerância de 0.001. A solução aproximada encontrada foi $x_1 \approx 1.41421356$ e $x_2 \approx 1.73205001$, que são as raízes quadradas de 2 e 3, respetivamente.

CONCLUSÃO

O presente trabalho demonstrou a implementação e aplicação do **Método de Newton** para resolver sistemas de equações não lineares, um dos métodos mais eficientes quando as condições de convergência são satisfeitas. A abordagem programática desenvolvida provou ser uma **solução robusta e flexível**, capaz de lidar com diferentes configurações de sistemas e parâmetros.

Ao longo do processo, explorou-se não apenas a fundamentação teórica necessária, mas também os desafios práticos associados à resolução numérica, como o cálculo da matriz Jacobiana e a importância de uma boa estimativa inicial para garantir a convergência. Os resultados obtidos validaram a eficiência do método e sua aplicabilidade em problemas complexos.

Por fim, o programa desenvolvido destaca-se por ser **modular**, **intuitivo e escalável**, permitindo futuras adaptações para diferentes tipos de sistemas ou métodos numéricos. Este trabalho não apenas consolidou o **conhecimento teórico**, mas também reforçou a **capacidade de traduzir conceitos matemáticos em soluções computacionais eficazes**.

REFERÊNCIAS

Capítulo 7: Sistemas de Equações Não Lineares. Análise Numérica, Ano Letivo 2024/2025. HBO. Documento utilizado para suporte teórico e exemplificação dos métodos numéricos aplicados.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9ª Edição). Boston, MA: Brooks/Cole, Cengage Learning. Utilizado como referência para os fundamentos teóricos e métodos numéricos.

Documentação oficial das bibliotecas Python:

- o **NumPy**: Biblioteca para computação numérica. Disponível em: https://numpy.org/
- SymPy: Biblioteca para manipulação simbólica em Python. Disponível em: https://www.sympy.org/