定义 1.2.9. 令 \mathcal{B} 为布尔代数, $F \subseteq B$ 是滤。如果对任意的 $b \in B$,b 和 -b 有且只有一个属于 F,就称 F 是 \mathcal{B} 上的超滤。

由单点集 $\{a\}$ 生成的主滤是超滤的等价条件是 a 是原子,请尝试以下练习:

练习 1.2.10. 假设 $G = \{g\} \subseteq B$, F 是由 G 生成的滤,则以下命题等价:

- (1) g 是原子;
- (2) F 是超滤;
- (3) F 是主超滤。

在偏序集的意义上,超滤也是极大滤。

引理 1.2.11. 令 \mathcal{B} 是布尔代数, F 是 \mathcal{B} 上的滤。以下命题等价:

- (1) F 是超滤;
- (2) F 是极大滤: 不存在滤 F' 使得 $F \subseteq F'$ 。
- (3) F 是素的: 对任意 $a,b \in B$, 如果 $a+b \in F$, 则 $a \in F$ 或者 $b \in F$ 。

证明. (1) \Rightarrow (2). 反设 F 不是极大滤,F' 是 F 的真扩张。令 $b \in F' - F$ 。由于 $b \notin F$ 而 F 是超滤,所以 $-b \in F \subseteq F'$,这样 $b \cap (-b) = 0 \in F'$,矛盾。

(2)⇒(3). 首先,我们验证,如果 F 是极大滤,而 $a \notin F$,则至少存在一个 $c \in F$, $c \cdot a = 0$: 否则, $F \cup \{a\}$ 有有穷交性质,因而生成一个滤 F',它是 F 的真扩张。

现在假设 a, b 都不属于 F, 令 $c_1, c_2 \in F$ 见证这一点, 即 $c_1 \cdot a = c_2 \cdot b = 0$ 。 所以 $c_1 \cdot c_2 \cdot (a + b) = 0$ 。由于 $c_1 \cdot c_2 \in F$,所以 $a + b \notin F$ 。

(3) \Rightarrow (1). 对任意 $b \in B$,如果 $b \notin F$,因为 $b + (-b) = 1 \in F$,所以由(3), $-b \in F$ 。

与滤对偶的概念是理想。

定义 1.2.12. 令 \mathcal{B} 为布尔代数, $I \subseteq B$, 如果 I 满足以下条件:

- 1. $1 \notin I$, $I \neq \emptyset$;
- 2. 如果 $a, b \in I$,则 $a + b \in I$;
- 3. 如果 $a \in I$ 并且 $b \leq a$, $b \in I$ 。

就称 $I \in \mathcal{B}$ 上的理想。

所谓"对偶"的意思由以下练习表达。

练习 1.2.13. $F \in \mathcal{B}$ 上的滤当且仅当 $I = \{-a \mid a \in F\}$ 是 \mathcal{B} 上的理想。

练习 1.2.14. 令 F 是布尔代数 \mathcal{B} 上的滤,令 ($\{0,1\},+,\cdot,-,0,1\}$) 为两个元素的布尔代数。定义 $f: \mathcal{B} \to \{0,1\}$ 为

$$f(b) = \begin{cases} 1, & b \in F; \\ 0, & b \notin F. \end{cases}$$
 (1.4)

即,f 是 F 的特征函数。证明:F 是超滤当且仅当 f 是布尔代数 \mathcal{B} 到 $\{0,1\}$ 的同态映射。

以上练习提示了滤与同态的联系,这值得进一步探讨。

引理 **1.2.15.** 如果 $h: \mathcal{B} \to \mathcal{C}$ 是一个同态,则 $F = \{b \in B \mid f(b) = 1\}$ 是 \mathcal{B} 上的一个滤,称为 f 的 shell; $I = \{b \in B \mid f(b) = 0\}$ 是 \mathcal{B} 上的一个理想,称为 f 的 kernel

定义 1.2.16. 令 \mathcal{B} 是布尔代数, 任意 $a,b \in B$;

- (1) $\Diamond a \nabla b$ 表示以下运算: $(a + (-b)) \cdot (b + (-a))$, 称为 a, b 对称和;
- (2) 令 $a \triangle b$ 表示以下运算: $(a \cdot (-b)) + (b \cdot (-a))$, 称为 a, b 对称差。

练习 1.2.17. 令 \mathcal{B} 是布尔代数, $a,b \in B$, 证明:

- (1) $a \triangle a = 0$;
- (2) $a \triangle b = b \triangle a$;

(3)
$$a \nabla b = -(-a \triangle - b)_{\circ}$$

引理 1.2.18. 令 B 是布尔代数, $I \subseteq B$ 是理想,定义 $a \sim_I b$ 为 $a \triangle b \in I$,则 \sim_I 是一个等价关系。对称地,如果 $F \subseteq B$ 是滤,定义 $a \sim_F b$ 为 $a \nabla b \in F$, \sim_F 也是等价关系。

证明. 我们只证明传递性。假设 $a \triangle b \in I$, $b \triangle c \in I$ 。我们计算 $a \cdot (-c)$ 。

$$a \cdot (-c) = a \cdot (b + (-b)) \cdot (-c)$$
$$= a \cdot b \cdot (-c) + a \cdot (-b) \cdot (-c)$$

首先, $a \cdot b \cdot (-c) \leq b \cdot (-c) \leq b \Delta c \in I$,所以 $a \cdot b \cdot (-c) \in I$ 。其次, $a \cdot (-b) \cdot (-c) \leq a \Delta b \in I$ 。所以 $a \cdot (-c) \in I$ 。类似地论证, $(-a) \cdot b \in I$,所以 $a \Delta c \in I$ 。

引理 1.2.19. 令 \sim_I 是滤 I 确定的等价关系,如果 $a \sim_I b, c \sim_I d$,则

- (1) $-a \sim_I -b$;
- (2) $a + c \sim_I b + d$;
- (3) $a \cdot c \sim_I b \cdot d$.

证明.
$$(1) - (-a) \cdot (-b) + (-a) \cdot (-(-b)) = a \cdot (-b) + (-a) \cdot b = a \triangle b \in I$$
。
(2) 先计算 $(a+c) \cdot (-(b+d))$,

$$(a+c)\cdot(-(b+d)) = a\cdot(-b)\cdot(-d) + c\cdot(-b)\cdot(-d)$$

$$\leq a\cdot(-b) + c\cdot(-d) \in I.$$

类似地, $-(a+c)\cdot(b+d)\in I$ 。

由于滤和理想是完全对偶的,所以选择用哪一个表述接下来的结果是一个纯语言问题。我们选择滤。

练习 1.2.20. 证明: $a \sim_F b$ 当且仅当存在 $c \in F$, $c \cdot a = c \cdot b$ 。

引理 1.2.21. 令 \mathcal{B} 是布尔代数, $F \subseteq B$ 是滤,令 B/F 为等价关系 \sim_F 确定的商集,定义 [a] + [b] = [a+b], $[a] \cdot [b] = [a \cdot b]$,-[a] = [-a],0 = [0],1 = [1],则 \mathcal{B}/F 是一个布尔代数,称为 F 确定的商代数。

引理 1.2.22. 对任意布尔代数 \mathcal{B} , 函数 h(a) = [a] 是 \mathcal{B} 到 \mathcal{B}/F 的同态映射。引理 1.2.23. F 是 \mathcal{B} 上的超滤当且仅当 $\mathcal{B}/F \cong \{0,1\}$ 。

定理 1.2.24 (超滤存在定理). 布尔代数 \mathcal{B} 上的任意滤 F , 都存在 \mathcal{B} 上的超滤 U 使得 $F\subseteq U$ 。

证明. 令 $\mathcal{F} = \{U \mid U \neq \mathcal{B} \perp \text{的滤并且} F \subseteq U\}$ 。 \mathcal{F} 在关系 \subseteq 下是一个偏序集,并且它的每个链都有上界。根据佐恩引理, \mathcal{F} 有极大元 U。显然,U 是极大滤,因而是超滤,而且 $F \subseteq U$ 。

推论 1.2.25. 如果 G 有有穷交性质,则存在超滤 $U \supseteq G$ 。

练习 1.2.26. 如果 $a \neq b$,则存在超滤 U, $a \in U$ 但 $b \notin U$,或者 $b \in U$ 但是 $a \notin U$ 。

定义 1.2.27. 今后我们用 $Ult(\mathcal{B})$ 表示布尔代数 \mathcal{B} 上所有超滤的集合,以下定义的函数 $f: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 称为斯通映射:

$$f(b) = \{ U \in \text{Ult}(\mathcal{B}) \mid b \in U \}. \tag{1.5}$$

定理 1.2.28 (斯通表示定理). 对任意布尔代数 \mathcal{B} , 存在集合 X, \mathcal{B} 同构于 $\mathcal{P}(X)$ 的一个子代数。

证明. 令 $X = \text{Ult}(\mathcal{B})$, $f : \mathcal{B} \to \mathcal{P}(X)$ 为斯通映射。我们证明 f 是嵌入,这样 $f[\mathcal{B}]$ 就是 $\mathcal{P}(X)$ 的子代数,并且与 \mathcal{B} 同构。

由于 0 不属于任何滤而 1 属于任何滤,所以 $f(0) = \emptyset$, $f(1) = \mathcal{P}(X)$ 。如果 $a \cdot b \in U$,则一定有 $a \in U$ 并且 $b \in U$,反之亦然,所以 $f(a \cdot b) = f(a) \cap f(b)$ 。 另外,任意超滤 U 都是素的,所以 $a + b \in U$ 当且仅当 $a \in U$ 或者 $b \in U$,所以 $f(a + b) = f(a) \cup f(b)$ 。 这就验证了 f 是同态。

最后,假设 $a \neq b$,不妨设 $a \cdot (-b) = c \neq 0$,则 $c \cdot b = 0$ 。令 U_c 和 U_b 分别为 c 和 b 生成的超滤,则 $c \notin U_b$ 且 $b \notin U_c$ 。但是 $a \in U_c$,所以 $f(a) \neq f(b)$ 。所以 f 是一个嵌入。

1.3 完全性与紧致性

回到命题逻辑的 Lindenbaum 代数 $\mathcal{B}(T)$,以下命题表明每个命题赋值函数都对应着到 $\{0,1\}$ 这个代数上一个同态。

引理 **1.3.1.** 假设 $h: \mathcal{B}(T) \to \{0,1\}$ 是从 Lindenbaum 代数到 $\{0,1\}$ 的同态,定义 $V: P \to \{0,1\}$ 为:对任意命题符号 $p \in P$,

$$V(p) = 1$$
 当且仅当 $h([p]) = 1$,

则 V 是一个赋值, 并且对任意 α , $\bar{V}(\alpha) = h([\alpha])$ 。

再由引理1.2.23,每个超滤都对应着一个命题逻辑的赋值。

引理 1.3.2. 对任意 Lindenbaum 代数 $\mathcal{B}(T)$ 上的超滤 U,存在一个命题逻辑的 赋值 V_U 使得对任意 α , $V_U(\alpha) = 1$ 当且仅当 $[\alpha] \in U$; 反之,如果 V 是一个赋值,则 $U = \{ [\alpha] \mid \bar{V}(\alpha) = 1 \}$ 是一个超滤。

引理 **1.3.3.** 令 $\mathcal{B}(T)$ 为 Lindenbaum 代数, $F = \{ [\alpha] \mid T \vdash \alpha \}$ 是 $\mathcal{B}(T)$ 上的滤。证明. 显然 F 不为空,并且由于 T 是一致的,所以 $[0] \not\in F$ 。如果 $T \vdash \alpha$ 并且 $T \vdash \beta$,则 $T \vdash \alpha \land \beta$,所以 $[\alpha], [\beta] \in F$ 蕴含 $[\alpha] \cdot [\beta] \in F$ 。最后,如果 $T \vdash \alpha$ 并且 $\alpha \to \beta$,则 $T \vdash \beta$ 。所以 $[\alpha] \in F$ 且 $[\alpha] \leq [\beta]$ 蕴含 $[\beta] \in F$ 。

定理 1.3.4 (命题逻辑完全性定理). $\Diamond \alpha$ 为任意命题逻辑的公式, Σ 为公式集,

- (1) 如果 $\Sigma \models \alpha$,则 $\Sigma \vdash \alpha$ 。
- (2) 如果 Σ 一致,则存在赋值 V, $V \models \Sigma$ 。

证明. (1) 与 (2) 是等价的,我们证明 (2)。假设 Σ 是一致的,令 $F = \{ [\alpha] \mid \Sigma \vdash \alpha \}$ 为 $\mathcal{B}(\Sigma)$ 上的滤。根据超滤存在定理,令 $U \supseteq F$ 为超滤,则 U 确定了一个命题逻辑上的赋值 V_U ,并且满足,对任意 $[\alpha] \in U$, $\bar{V}_U(\alpha) = 1$ 。所以 $V_U \models \Sigma$ 。

在通常的逻辑教材中,紧致性定理是完全性定理的推论。但以上代数证明没有给出更多信息。另一方面,从代数的角度看,紧致性定理更为深刻。接下来我们尝试给出这个定理的不同证明。

1.3.1 紧致性定理的布尔代数证明

任给命题逻辑的语句集 Σ , 我们定义一个新的等价关系 \equiv 为:

 $\alpha \equiv \beta$ 当且仅当 $\Sigma \vdash_f \alpha \leftrightarrow \beta$,

其中 $\Sigma \vdash_f \alpha$ 表示:存在一个有穷的 $\Sigma_0 \subseteq \Sigma$, $\Sigma \vdash \alpha$ 。

引理 1.3.5. 如果 Σ 是有穷可满足的,则 $\mathcal{B}(\Sigma/\equiv)$ 是一个非平凡的布尔代数。

定理 1.3.6 (紧致性定理). 令 Σ 是命题逻辑的公式集, 如果 Σ 是有穷可满足的,则 Σ 是可满足的。

证明. 令 Σ 是有穷可满足的, $\mathcal{B}(\Sigma/\equiv)$ 是布尔代数。 $F=\{\alpha\mid \Sigma\vdash_f\alpha\}$ 是一个滤。根据超滤存在定理,令 $U\supseteq F$ 为超滤, V_U 为 U 确定的赋值,则 $V_U\models\Sigma$ 。

1.3.2 紧致性定理的超积证明

证明. 令 $I \in \Sigma$ 的所有有穷子集的集合。对每一 $i \in I$,存在一个赋值 V_i 使得 $V_i \models i$,即,对任意 $\alpha \in i$, $V_i \models \alpha$ 。

令 α 为任意公式, 定义 $X_{\alpha} = \{i \in I \mid V_i \models \alpha\}$ 。

接下来我们要定义一个超滤 U 使得对任意 $\alpha \in \Sigma$, $X_{\alpha} \in U$ 。

对任意 α ,我们定义 $Y_{\alpha} = \{i \in I \mid \alpha \in i\}$ 。令 $G = \{Y_{\alpha} \mid \alpha \in \Sigma\}$ 。G 有有穷交性质:对任意 $\alpha_1, \dots, \alpha_n$,显然 $\{\alpha_1, \dots, \alpha_n\} \in Y_{\alpha_1} \cap \dots \cap Y_{\alpha_n}$ 。所以 G 生成 $\mathcal{P}(I)$ 上的超滤 U。

如果 $\alpha \in \Sigma$, 则必有 $Y_{\alpha} \subseteq X_{\alpha}$, 所以 $X_{\alpha} \in U$ 。

显然,U 可以确定一个命题逻辑的赋值 V_U : 对任意命题符号 p, $V_U(p)=1$ 当且仅当 $X_p \in U$ 。这个赋值满足对任意 α , $\bar{V}_U(\alpha)=1$ 当且仅当 $X_\alpha \in U$ 。所以 $V_U \models \Sigma$ 。