Applications of Differential Geometry to Physics

Part III Lent 2019 Lectures by Maciej Dunajski

Report typos to: uco21@cam.ac.uk
More notes at: uco21.user.srcf.net

January 29, 2020

Contents

	0.1 Kepler / Newton Orbits	2
1	Manifolds	4
2	Vector Fields	8
	2.1 Integral curves	9
3	Lie Groups	14
	3.1 Geometry on Lie Groups	16

0.1 Kepler / Newton Orbits

$$\ddot{\mathbf{r}} = -\frac{GMv}{r^3}\mathbf{r} \quad \leftrightarrow \quad \text{conic sections} \tag{1}$$

General conic section is

$$ax^{2} + by^{2} + cxy + dx + ey + f = 0$$
 (2)

This is nowadays more generally studied in what we now call *algebraic geometry* rather than differential geometry.

Apolonius of Penge (?) asked 'what is the unique conic thorugh five points, no three of which are co-linear?'

The space of conics is $\mathbb{R}^6 - \{0\} / n = \mathbb{RP}^5$ (projective 5-space).

$$[a, b, c, d, e, f] \sim [\gamma a, \gamma b, \gamma c, \gamma d, \gamma c, \gamma f], \gamma \in \mathbb{R}^*$$
(3)

This is an application of geometry, rather than an application of differential geometry.

Remark: Apolonius proved this geometrically.

In this course however, we will look at the following.

1) Hamiltonian mechanics (mid 19th). This is an elegant way of reformulating Newton's mechanics, turning second order differential equations into first order differential equations with the use of a function H(p,q). The system of ODEs is

$$\dot{q} = \frac{\partial H}{\partial p} \qquad \dot{q} = -\frac{\partial H}{\partial q}$$
 (4)

This led to the development of symplectic geometry (1960s). The connection is that the phase-space to which p and q belong has a 2-form $dp \wedge dq$. Using the Hamiltonian function, one can find a vector field

$$X_{H} = \frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p} \tag{5}$$

and looks for a one-parameter group of transformations, called symplectomorphisms, generated by this vector field. Under these symplectomorphisms, the 2-form is unchanged meaning that the area illustrated in F2 is preserved. Details of this are going to come within the course.

2) General Relativity (1915) ← Riemannian Geometry (1850)

Figure 1

3) Gauge theory (Maxwell, Yang Mills) \leftrightarrow Connection on Principal Bundle (U(1) (Maxwell), SU(2), SU(3))

$$A_{+} = A_{-} + dg \qquad g = \psi_{+} - \psi_{-} \qquad \omega = \begin{cases} A_{+} + d\psi_{+} \\ A_{-} + d\psi_{-} \end{cases}$$
 (6)

Figure 2

This course: cover 1, 2, 3 in some detail. Unifying feature: Lie groups.

- Prove some theorems, *lots of* examples (often instead of proofs)
- Want to be able to do calculations; compute characteristic classes etc.

We will assume that you took either Part III General Relativity, or Part III Differential Geometry, or some equivalent course.

1 Manifolds

Definition 1 (manifold): An n -dimensional *smooth manifold* is a set M and a collection² of open sets U_{α} , labelled by $\alpha=1,2,3,...$, called *charts* such that

- U_{α} cover M
- \exists 1-1 maps $\phi_{\alpha}: U_{\alpha} \to V_{\alpha} \in \mathbb{R}^n$ such that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

$$\tag{1.1}$$

is a smooth map from \mathbb{R}^n to \mathbb{R}^n .

Figure 1.1: Manifold

As such, manifolds are topological spaces with additional structure, allowing us to do calculus.

Example $(M = \mathbb{R}^n)$: There is the *trivial manifold*, which can be covered by only one open set. There are other possibilities. In fact, there are infinitely many smooth structures on \mathbb{R}^4 (Proof by Donaldson in 1984 in his PhD. He used Gauge theory).

 $^{^2}$ In all examples that we will look at, there will be finitely α .

Example (sphere $S^n = \{ \mathbf{r} \in \mathbb{R}^{n+1}, |\mathbf{r}| = 1 \}$): Have two open sets

$$U = S^{n}/\{0, 0, 0, \dots, 0, 1\} \qquad \widetilde{U} = S^{n}/\{0, 0, 0, \dots, 0, -1\}$$
(1.2)

We then define charts, where $\mathbb{R}^n = (x_1, ..., x_n)$:

Figure 1.2

$$\phi(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right)$$
on \widetilde{U} , $\widetilde{\phi}(r_1, \dots, r_{n+1}) = \left(\frac{r_1}{1 - r_{n+1}}, \dots, \frac{r_n}{1 - r_{n+1}}\right) = (\widetilde{x}_1, \dots, \widetilde{x}_n).$ (1.3)

On $U \cap \widetilde{U}$,

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$
(1.4)

$$\frac{r_k}{1+r_{n+1}} = \frac{1-r_{n+1}}{1+r_{n+1}} \frac{r_k}{1-r_{n+1}}, \qquad k = 1, \dots, n$$

$$\frac{1-r_{n+1}}{1+r_{n+1}} = \frac{(1-r_{n+1})^2}{r_1^2+r_2^2+\dots+r_n^2} = \frac{1}{x_1^2+x_2^2+\dots+x_n^2}$$
(1.4)

So on $\phi(U \cap \widetilde{U})$,

$$(\widetilde{x}_1, \dots, \widetilde{x}_n) = \left(\frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right)$$
 (1.6)

are smooth maps from $\mathbb{R}^n \to \mathbb{R}^n$

Example: A Cartesian product of manifolds is a manifold, for example we have the *n*-torus $T^n = T^n$ $S^1 \times S^1 \times \cdots \times S^1$.

Definition 2 (surface): Let $f_1, \ldots, f_k : \mathbb{R}^N \to \mathbb{R}$ be smooth functions. A surface $f_1 = 0, \ldots, f_k = 0$ is a manifold of dimension $\dim n = N - k$ if the rank of the matrix $\frac{\partial f_{\alpha}}{\partial x^i}$, $\alpha = 1, \ldots, k$ and $i = 1, \ldots, N$ is maximal and equal to k at all points of \mathbb{R}^N ..

Example: The *n*-sphere S^n is a surface in \mathbb{R}^{n+1} with $f_1 = 1 - |\mathbf{r}|^2$.

Theorem 1 (Whitney): Every smooth manifold of dimension n is an embedded surface in \mathbb{R}^N , where $N \leq 2n$.

If you enjoy using geometrical intuition and looking at surfaces, this theorem ensures that you can always do that and not loose generality.

Definition 3 (real projective space): The *n*-dimensional *real projective space* is defined as the quotient

$$\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim, \tag{1.7}$$

where we quotient out the equivalence classes $[X_1, \dots, X_n + 1] \sim [cX_1, \dots, cX_{n+1}]$ for all $c \in \mathbb{R}^*$. The $[X_1, \dots, X_{n+1}]$ are called *homogeneous coordinates*.

In other words, this is the space of all lines through the origin in \mathbb{R}^{n+1} .

Claim 1: \mathbb{RP}^n is a smooth manifold of dimension n with (n + 1) open sets.

Proof. Let us define our open sets with respect to the homogeneous coordinates. We define the set U_{α} : $[X] \in \mathbb{RP}^n$ such that $X_{\alpha} \neq 0$ $\alpha = 1, ..., n+1$. We can now find local coordinates on ϕ_{α} : $U_{\alpha} \to V_{\alpha} \in \mathbb{R}^n$

$$x_1 = \frac{X_1}{X_{\alpha}}$$
 ... $x_{\alpha-1} = \frac{X_{\alpha-1}}{X_{\alpha}}$ $x_{\alpha+1} = \frac{X_{\alpha+1}}{X_{\alpha}}$... $x_n = \frac{X_n}{X_{\alpha}}$. (1.8)

Exercise 1.1: Prove smoothness of $\phi_{\beta} \circ \phi_{\alpha}^{-1}$.

Now it turns out that this manifold is equivalent to $\mathbb{RP}^n = S^n/\mathbb{Z}^2$. From quantum mechanics, we know that this means in particular $\mathbb{RP}^3 = SO(3)$. This is illustrated in 1.3.

Figure 1.3: Real projective space \mathbb{RP}^n is isomorphic to S^n/\mathbb{Z}^n , identifying antipodal points.

2 Vector Fields

Let M, \widetilde{M} be smooth manifolds of dimension n, \tilde{n} .

Definition 4 (smooth map): A map $f: M \to \widetilde{M}$ is *smooth* if $\widetilde{\phi}_{\beta} \circ f \circ \phi_{\alpha}^{-1}$ is a smooth map from \mathbb{R}^n to $\widetilde{\mathbb{R}}^n$ for all α, β . We call $f: M \to \mathbb{R}$ a *function*, whereas we call $f: \mathbb{R} \to M$ a *curve*.

Let $\gamma: \mathbb{R} \to M$ be a curve. For some $U \in M$, $U \simeq \mathbb{R}^n$, we can define local coordinates $(x^1, ..., x^n)$

Figure 2.1

.

Definition 5 (tangent vector): A tangent vector V to γ at p is

$$V|_{p} = \frac{\mathrm{d}\psi}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0} \in T_{p}M,\tag{2.1}$$

where T_pM is the *tangent space* to M at p.

Definition 6 (tangent bundle): We define the *tangent bundle* as $TM := \bigcup_{p \in M} T_p M$.

Definition 7 (vector field): A *vector field* assigns a tangent vector to all $p \in M$.

Let $f: M \to \mathbb{R}$. The rate of change of f along γ is

$$\frac{\mathrm{d}}{\mathrm{d}\epsilon} f(x^a(\epsilon))|_{\epsilon=0} = \sum_a \dot{x}^a \frac{\partial f}{\partial x^a}$$
 (2.2)

$$=\sum_{a}V^{a}\left.\frac{\partial f}{\partial x^{a}}\right|_{\varepsilon=0},\tag{2.3}$$

whee $V^a := \dot{x}^a|_{\epsilon=0,\dots,x_n}$.

Vector fields are first order differential operators

$$V = \sum_{a} V^{a}(\mathbf{x}) \frac{\partial}{\partial x^{a}}.$$
 (2.4)

The derivatives $\left\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right\}\Big|_p$ form a basis of T_pM .

2.1 Integral curves

Definition 8 (integral curve): An integral curve (a flow) of a vector field is defined by

$$\dot{\gamma}(\epsilon) = V|_{\gamma(\epsilon)},\tag{2.5}$$

where the dot denotes differentiation with respect to ϵ .

On *n* first order ODEs: $\dot{x}^a = V^a(x)$.

There exists a unique solution given initial data $X^a(0)$. Given a solution $X^a(\varepsilon)$, we can expand it in a Taylor series as

$$X^{a}(\epsilon) = X^{a}(0) + V^{a} \cdot \epsilon + O(\epsilon^{2}). \tag{2.6}$$

Up to first order in ϵ , the vector field determines the flow. We call V a generator of its flow.

The following example illustrates how you get from a vector field to its flow.

Example $(M = \mathbb{R}^2, x^a = (x, y))$: Consider the vector field $V = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$. The system of ODEs we solve is $\dot{x} = x$ and $\dot{y} = 1$. This gives us the integral curve $(x(\varepsilon), y(\varepsilon)) = (x(0)e^{\varepsilon}, y(0) + \varepsilon)$. From this we can see that $x(\varepsilon) \cdot \exp(-y(\varepsilon))$ is constant along γ . Using this we can draw the unparametrised integral curve in Fig. 2.2.

This example motivates the following definition.

Definition 9 (invariant): An *invariant* of a vector field V is a function f constant along the flow of V.

$$f(x^{a}(0)) = f(x^{a}(\epsilon)) \quad \forall \epsilon.$$
 (2.7)

Equivalently, V(f) = 0.

Let us now consider an example that goes the other way: from flow to vector field.

Figure 2.2

Example: Consider the 1 -parameter group of rotations of a plane.

$$(x(\epsilon), y(\epsilon)) = (x_0 \cos \epsilon - y_0 \sin \epsilon, x_0 \sin \epsilon + y_0 \cos \epsilon). \tag{2.8}$$

The associated vector field is

$$V = \left. \left(\frac{\partial y(\varepsilon)}{\partial \varepsilon} \frac{\partial}{\partial y} + \frac{\partial x(\varepsilon)}{\partial \varepsilon} \frac{\partial}{\partial x} \right) \right|_{\varepsilon = 0} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial y}. \tag{2.9}$$

Now you can add vector fields, but there is also another operation.

Definition 10 (Lie bracket): A *Lie bracket* [V, W] of two vector fields V, W is a vector field defined by

$$[V, W](f) = V(W(f)) - W(V(f)) \quad \forall f.$$
 (2.10)

This is indeed another vector field since the commutator of two first order operators is another first order operator.

Example: Let $V=x\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$ and $W=\frac{\partial}{\partial x}$. We then have [V,W]=-W.

This is not always the case but sometimes the Lie bracket reproduces some of the vector fields. There is an interesting algebraic structure to this.

Definition 11 (Lie algebra): A *Lie algebra* is a vector space \mathfrak{g} with an anti-symmetric, bilinear operation $[\ ,\]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called a *Lie bracket*, which satisfies the *Jacobi identity*

$$[V, [U, W]] + [W, [V, U]] + [U, [W, V]] = 0 \qquad \forall U, V, W \in \mathfrak{g}. \tag{2.11}$$

We will spend some time discussing this abstractly, but then focus on the Lie algebras of vector fields in the main part of this course.

Any two vector spaces of a given dimension are isomorphic; there is nothing special other than the dimension distinguishing vector spaces. For Lie algebras this is not so.

Example: Even in dimension 2, which is the lowest non-trivial dimension, there are two Lie algebras (up to isomorphism)

a)
$$[V, W] = -W$$
, b) $[V, W] = 0$. (2.12)

If the vector space underlying \mathfrak{g} is finite-dimensional, and V_{α} , $\alpha = 1, ..., \dim \mathfrak{g}$ is a basis of \mathfrak{g} , we can define the Lie algebra by specifying the brackets

$$[V_{\alpha}, V_{\beta}] = \sum_{\gamma} f_{\alpha\beta}^{\gamma} V_{\gamma}, \tag{2.13}$$

where $f_{\alpha\beta}^{\quad \ \gamma}$ are the *structure constants*.

Example ($\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R})$): The vector space is given by $n \times n$ real matrices, and the Lie bracket is the matrix commutator. The dimension of this Lie algebra is dim $\mathfrak{g} = n^2$.

Example (Vector fields): The set of all vector fields on a manifold M form an infinite-dimensional Lie algebra.

Example: Consider diff(\mathbb{R}) or diff(S^1), vector fields on a line or on a circle respectively.

$$\operatorname{diff}(\mathbb{R}), \quad x \in \mathbb{R}, \quad V_{\alpha} = -x^{\alpha+1} \frac{\partial}{\partial x}$$
 (2.14)

$$\operatorname{diff}(S^1), \quad \theta \in S^1, \quad V_{\alpha} = ie^{i\alpha\theta} \frac{\partial}{\partial \theta}$$
 (2.15)

$$[V_{\alpha}, V_{\beta}] = (\alpha - \beta)V_{\alpha + \beta}. \tag{2.16}$$

Example (Virasoro algebra): The *Virasoro algebra* Vir = diff(S^1) $\oplus \mathbb{R}$ is the central extension¹ of diff(S^1), with *central charge* $c = \mathbb{R}$.

$$\begin{cases} [V_{\alpha}, c] = 0\\ [V_{\alpha}, V_{\beta}]_{\text{vir}} = (\alpha - \beta)V_{\alpha+\beta} + \frac{c}{12}(\alpha^3 - \alpha)\delta_{\alpha+\beta,0} \end{cases}$$
 (2.17)

Remark:

$$[f(\theta)\frac{\partial}{\partial \theta}, g(\theta)\frac{\partial}{\partial \theta}] = \underbrace{(fg' - gf')}_{\text{Wronskian}} \frac{\partial}{\partial \theta}$$
 (2.18)

'After Witten'.

$$[f\frac{\partial}{\partial\theta}, g\frac{\partial}{\partial\theta}]_{\text{vir}} = [f\frac{\partial}{\partial\theta}, g\frac{\partial}{\partial\theta}] + \frac{ic}{48\pi} \int_{0}^{2\pi} (f'''g - g'''f) \,d\theta$$
 (2.19)

Theorem 2 (Ado): Every finite-dimensional Lie algebra is isomorphic to some matrix Lie algebra, a subalgebra of $\mathfrak{gl}(n,\mathbb{R})$.

¹We will meet the concept of central extension and central charge in this term's String Theory course.

Remark: *n* is not necessarily the dimension of the Lie algebra.

3 Lie Groups

Definition 12 (Lie group): A *Lie group* is a smooth manifold G, which is also a group, such that the group operations

multiplication
$$G \times G \to G$$
, $(g_1, g_2) \to g_1 \cdot g_2$ (3.1)

inverse
$$G \to G$$
 $g \to g^{-1}$ (3.2)

are smooth maps between manifolds.

Example $(G = GL(n, \mathbb{R}) \in \mathbb{R}^{n^2})$: The general linear group $GL(n, \mathbb{R})$ is defined as the set of invertible matrices $\{g \in G \mid \det g \neq 0\}$. The dimension is $\dim(G) = n^2$.

Example $(G = O(n, \mathbb{R}))$: This is the group of orthogonal matrices, defined by $\frac{1}{2}n(n+1)$ conditions $g^Tg = \mathbb{1}$. The dimension is then dim $O(n, \mathbb{R}) = n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$. We also have to check that these conditions define a manifold in the sense that the associated Jacobian has maximal rank.

Definition 13 (group action): A *group action* on a manifold M is a map $G \times M \to M$ mapping $(g, p) \to g(p)$ such that

$$e(p) = p,$$
 $g_1(g_2(p)) = (g_1 \cdot g_2)(p)$ (3.3)

for all $p \in M$ and al g_1, g_2 on G.

Definition 14 (transformation group): If we have a group action, we refer to G as a group of *transformations*.

Example: Take $M = \mathbb{R}^2$ and G = E(2), the three-dimensional Euclidean group.

$$g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$$
(3.4)

Take $G_E \in G$ to be a one-parameter subgroup of G. There are three such subgroups

$$G_{\theta} : \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} \cos \theta \cdot x - \sin \theta \cdot y \\ \sin \theta \cdot x + \cos \theta \cdot y \end{pmatrix}$$
(3.5)

$$G_a: \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} x+a \\ y \end{pmatrix} \tag{3.6}$$

$$G_b: \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} x \\ y+b \end{pmatrix}. \tag{3.7}$$

Each of these one-parameter subgroups generates a flow. We can think of this flow as being gener-

Figure 3.1

ated by a vector field $V|_p = \frac{d}{dE}g_E(p)\Big|_{E=0}$.

$$V_{\theta} = d\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} \tag{3.8}$$

$$V_{a} = \left(\frac{\mathrm{d}\tilde{x}}{\mathrm{d}a}\frac{\partial}{\partial\tilde{x}} + \frac{\mathrm{d}\tilde{y}}{\mathrm{d}a}\frac{\partial}{\partial\tilde{y}}\right)\Big|_{a=0} = \frac{\partial}{\partial x}$$
(3.9)

$$V_b = \frac{\partial}{\partial y}. ag{3.10}$$

We define a 3-dimensional Lie algebra of E(2) as

$$[V_a, V_{\theta}] = V_b \qquad [V_b, V_{\theta}] = -V_a \qquad [V_a, V_b] = 0,$$
 (3.11)

represented by vector fields on M.

3.1 Geometry on Lie Groups

Definition 15 (tangent map): Let $f: M \to \widetilde{M}$ be a smooth map between manifolds. We define the *tangent map* or *push forward* to be

$$f_*: T_p(M) \to T_{f(p)}(\widetilde{M})$$

$$V \longmapsto f_*(V) = \frac{\mathrm{d}}{\mathrm{d}E} f(\gamma(E)) \Big|_{E=0}.$$
(3.12)

This extends to the tangent bundle T(M). If x^{α} are coordinates of $\mathcal{M}\supset M$, $(y^{\alpha'})$ coordinates on $\widetilde{\mathcal{M}}\subset M$, then

$$V = V^{\alpha} \frac{\partial}{\partial x^{a}} \qquad f_{*}(V) = V^{\alpha} \frac{\partial f^{i}}{\partial x^{a}} \frac{\partial}{\partial y^{i}}.$$
 (3.13)

Definition 16 (Lie derivative): Let V, W be vector fields. Let V generate a flow $V = \dot{\gamma}$. The *Lie derivative* is

$$\mathcal{L}_V W|_p = \lim_{\epsilon \to 0} \frac{W(p) - \gamma(\epsilon)_* W(p)}{\epsilon} \tag{3.14}$$

(3.15)

We can extend this definition over the whole manifold.

Exercise 3.1: Show that $L_V W = [V, W]$.

Definition 17: On functions $f: M \to \mathbb{R}$, we define the Lie derivative as $\mathcal{L}_V(f) = V(f)$.

On differential forms, we can use the Leibniz rule to show that

$$\mathcal{L}_{V}\Omega = d(\iota_{V}\Omega) + \iota_{V}(d\Omega). \tag{3.16}$$

Definition 18: We define the cotangent space $T_p^*M = \operatorname{Span}\{dx^1, \dots, dx^n\}$ as the space of one-forms. The cotangent bundle is then

$$\bigcup_{p \in M} T_p^* M = T^* M. \tag{3.17}$$

Using the wedge product, which is anti-commutative on one-forms $dx^i \wedge dx^j = -dx^j \wedge dx^i$, we can define an r -form

$$\Omega = \frac{1}{r!} \Omega_{ij\dots k} dx^i \wedge dx^j \wedge \dots \wedge dx^k. \tag{3.18}$$

Definition 19 (contraction): We write a contraction as

$$\frac{\partial}{\partial x^{i}}(HOOK)dx^{j} = \iota_{\frac{\partial}{\partial x^{i}}}dx^{j} = \delta_{i}^{j}.$$
(3.19)

For a general vector field V and one-form Ω , we have

$$\iota_{V}\Omega = V^{i}\frac{\partial}{\partial x^{i}}(HOOK)\Omega_{j}dx^{j} = V^{j}\Omega_{j}\delta^{j}_{i} = V^{i}\Omega_{i}. \tag{3.20}$$

No metric is needed.

Definition 20: A *Lie algebra* \mathfrak{g} of a Lie group G is the tangent space T_eG to G at the identity. The Lie bracket on \mathfrak{g} is the commutator of vector fields on G.

Definition 21 (Left translations): For all $g \in G$, we define the *left translations*

$$L_g: G \to G$$
 (3.21)

$$g \mapsto g \cdot h.$$
 (3.22)

Definition 22 (left invariant vector fields): Using the left translation maps, we define their push forward $(L_g)_*$: $\mathfrak{g} \equiv T_e G \to T_g G$, which maps $v \in g$ to vector fields $(L_g)_*(V)$ on G. This defines *left invariant vector fields*.

$$[(L_g)_*V, (L_g)_*W] = (L_g)_*[V, W]_{\mathfrak{g}}.$$
(3.23)

Remark: It is important to understand the notation!

These form a basis of \mathfrak{g} , meaning that $\dim(G)$ is the number of global, non-vanishing vector fields on G.

Claim 2: Lie groups are parallelisable manifolds.

Claim 3: The converse is not true.

Proof. S^1 , S^3 , S^7 are the only parallelisable spheres.

The first two are indeed manifolds: $S^1 = U(1)$, $S^3 = SU(2) = \left\{ \begin{pmatrix} a & b \\ -b^* & a \end{pmatrix} \middle| |a|^2 + |b|^2 = 1 \right\}$, but S^7 is not a Lie group.

This has introduced the field of *k*-theory.

Claim 4: Let L_{α} , $\alpha = 1, ..., \dim \mathfrak{g}$ be a basis of left invariant vector fields with structure constants

$$[L_{\alpha}, L_{\beta}] = \sum_{\gamma} f_{\alpha\beta}^{\ \gamma} L_{\gamma}. \tag{3.24}$$

Let σ^{α} be a dual basis of left-invariant one-forms

$$L_{\alpha}(hook)\sigma^{\beta} = \delta_{\alpha}^{\beta}.$$
 (3.25)

Then

$$d\sigma^{\alpha} + \frac{1}{2} f^{\alpha}_{\beta\gamma} \sigma^{\beta} \wedge \sigma^{\gamma} = 0. \tag{3.26}$$

Proof (Sheet 1). Use the identity

$$d\Omega(V, W) = V(\Omega(W)) - W(\Omega(V)) - \Omega([V, W]). \tag{3.27}$$

Watch out for signs and factors in the upcoming derivations! Things can easily go wrong.

Definition 23 (Maurer–Cartan): Assume that G is a matrix Lie group. The *Maurer–Cartan 1-form* on G is

$$\rho := g^{-1}dg. \tag{3.28}$$

Claim 5: This one-form

Chapter 3. Lie Groups

- · is left invariant.
- takes values in the Lie algebra.

Proof. • $(g_0g)^{-1}d(g_0g) = g^{-1}dg, g_0 = ??$

• Take C a smooth curve $g(s) \subset G$.

$$g^{-1}(s)g(s+\epsilon) = \underbrace{\epsilon}_{\mathbb{1}} + \epsilon \underbrace{g^{-1}\frac{\mathrm{d}g}{\mathrm{d}\epsilon}}_{\in T_eG \simeq \mathfrak{g}}|_{\epsilon=0} + O(\epsilon^2). \tag{3.29}$$

So $g^{-1}dg = \sum_{\alpha} \sigma^{\alpha} \otimes T_{\alpha}$, where T_{α} are matrices with $[T_{\alpha}, T_{\beta}] = \sum_{\gamma} f_{\alpha\beta}^{\ \ \gamma} T_{\gamma}$.

Claim 6: It obeys the Maurer-Cartan equation:

 $d\rho + \rho \wedge \rho = 0. \tag{3.30}$

Proof. Consider first the exterior derivative term

$$d\rho = \sum_{\alpha} d\sigma^{\alpha} \cdot T_{\alpha} = -\frac{1}{2} f^{\alpha}_{\ \beta\gamma} \sigma^{\beta} \wedge \sigma^{\gamma} \cdot T_{\alpha}. \tag{3.31}$$

The wedge product term is

$$\rho \wedge \rho = \sigma^{\alpha} T_{\alpha} \wedge \sigma^{\beta} T_{\beta} = \frac{1}{2} \sigma^{\alpha} \wedge \sigma^{\beta} [T_{\alpha}, T_{\beta}] = \frac{1}{2} \sigma^{\alpha} \wedge \sigma^{\beta} f_{\alpha\beta}^{\ \ \gamma} T_{\gamma}. \tag{3.32}$$

Example (Heisenberg group): The Heisenberg group (sometimes just called Nil) is the group of upper triangular matrices

$$g = \begin{pmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{pmatrix} = 1 + xT_1 + yT_2 + zT_3, \tag{3.33}$$

with

$$T_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad T_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad T_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{3.34}$$

The commutation relations are

$$[T_1, T_2] = T_3$$
 $[T_1, T_3] = 0 = [T_2, T_3].$ (3.35)

We can interpret T_1 as position, T_2 as momentum and T_3 as the identity $i\hbar$.