2 לוגיקה τ תרגול

תזכורת: בתרגול הקודם הגדרנו את הקבוצה האינדוקטיבית הבאה:

- $X = \{s, t\}^*$ העולם: •
- $.B = \{\epsilon, st, ts\}$ הבסיס:
- :כאשר, ${
 m F}=\{f_1,f_2\}$ כאשר ullet

$$f_1(w_1, w_2) = sw_1w_2t$$
 -

$$f_2(w_1, w_2) = w_1 w_2 w_1$$
 -

$(a \in \mathbf{X}_{B,\mathrm{F}})$ איך מראים שאיבר a שייך לקבוצה אינדוקטיבית

? ($a otin \mathrm{X}_{B,\mathrm{F}}$) איך מראים שאיבר a אינו שייך לקבוצה אינדוקטיבית

נמצא קבוצה $T\subseteq X$ המקיימת:

$$X_{B,F} \subseteq T$$
 .1

$$a \notin T$$
 .2

 $a \notin \mathrm{X}_{B,\mathrm{F}}$:מסקנה

 $.tst \notin X_{B,F}$ עבור אוכיחו מהדוגמה מהדוגמה $X_{B,F}$ עבור

:2 תרגיל

נתון:

- bרו a ו־ותיות המילים המילים $\mathbf{X} = \{a,b\}^*$ העולם:
 - $.B = \{aa\}$:הבסיס
 - :כאשר, $\mathcal{F}=\{f\}$ כאשר •

$$f\left(w
ight)=\left\{egin{array}{ll} aawb & a-a \ & bbwa \end{array}
ight.$$
אם w אחרת

 $bba \in \mathrm{X}_{B,\mathrm{F}}$.1. הוכיחו/ הפריכו

 $aabb \in \mathrm{X}_{B,\mathrm{F}}$:ם הוכיחו/ הפריכו.

 $.S_1=S_2$ כך ש־ $S_2=\mathrm{X}_{B_2,\mathrm{F}_2}$ ור $S_1=\mathrm{X}_{B_1,\mathrm{F}_1}$ כך ש־ $S_2=\mathrm{X}_{B_2,\mathrm{F}_2}$ הוכיחו כי מתקיים $.\mathrm{X}_{B_1\cup B_2,\mathrm{F}_1\cup\mathrm{F}_2}=S_1$

תרגול 2 לוגיקה

```
תרגיל 1:
                    T = \{w \in \{s,t\}^* | \ |w|\%2 = 0\} נגדיר קבוצה
                                                  tst \notin T נוכיח כי
                                                     אי־זוגית |tst|
                                             X_{B,F}\subseteq T הוכחנו כי
                                 באינדוקציית מבנה בתירגול קודם.
                                          .tst \in X_{B,F} \Leftarrow מסקנה:
                                                           :2 תרגיל
                                           1. הטענה לא נכונה:
                                                נגדיר תכונה:
                        T_1 = \{w \in \{a, b\}^* | a מתחיל ב w\}
                                   נראה X_{B,F}\subseteq T_1 בא"מ.
                                                       <u>בסיס:</u>
                                w \in B ,w \in T_1 נראה שלכל
                       aמתחילה ביw \cdot \epsilon מתקיים, w = aa
                       aנניח u' \in T_1 כלומר u' \in T_1 נניח
              תהיי aים מתחילה ב־u=f(w') מתחילה ב-u=f(w')
                          aולכן w = aaw'b
                         bba \notin T_1 וכן X_{B,F} \subseteq T_1 מסקנה:
                       .bba \notin X_{B,F} ולכן (aב מתחילה ב')
                                           2. הטענה לא נכונה:
  מספר הפעמיים שאות מופיע בw ונגדיר תכונה \Leftrightarrow \#a(w)
                   T_2 = \{ w \in \{a, b\}^* | \#_a(w) > \#_b(w) \}
              w=aa ,w\in T_2 מתקיים w\in B בסיס: לכל
                                 \#_a(w) = 2 > 0 = \#_b(w)
             \#_a(w')>\#_b(w') כלומר w'\in T_2 כלומר נניח
                                           :w=f(w') תהי
                                              נפריד למקרים:
                      w = aaw'b מתחילה ב־w' מתחילה ש
                             \#_a(w') > \#_b(w') מה"א
\#_a(w) = 2 + \#_a(w') > 1 + \#_b(w') = \#_b(w) ולכן
```

מה"א
$$w=bbw'a$$
 ב מה"א מתחילה ש

$$\#_a(w) = 1 + \#_a(w')$$

 $\#_b(w) = 2 + \#_b(w')$

 $\#_a(w) > \#_b(w)$ האם בהכרח

w' = baa לא, למשל עבור

התכונה לא נשמרת.

האם המשמעות שאיברים ב־ $X_{B,F}$ לא מקיימת את התכונה, לא כי אני יודעים . שבקבוצה האינדוקטיבית כל המילים מתחילות ב־aולכן נרצה לחזק תכונה.

$$T_2' = \{ w \in \{a, b\}^* | w \in X_{B,F}, \#_a(w) > \#_b(w) \}$$

w=aa , $w\in T_{2}^{'}$ מתקיים $w\in B$ נראה שלכל

 $w \in X_{B,F}$ ולכן $w \in B.1$

 $.w \in T_{2}^{'}$ ולכן $\#_{a}(w) = 2 > 0 = \#_{b}(w)$.2 שנור: נניח $w' \in T_{2}^{'}$ נניח

 $\#_a(w') > \#_b(w')$ וכן $w' \in X_{B,F}$ כלומר

תהי $w' \in X_{B,F}$ מה"א מתחיל קודם היא ולכן מסעיף אולכן $w' \in X_{B,F}$ מה"א

- וה פעולה או סגורה תחת פעולה $f \in F \ w' \in X_{B,F}$ סגורה מה"א 1. $w \in X_{B,F}$ מהגדרה ולכן
 - $\#_a(w') > \#_b(w')$ מה"א.2 $\#_a(w) = 2 + \#_a(w') > 1 + \#_b(w') = \#_b(w)$ וְלֹכֹן $aabb \in T_2'$ וכן־ $X_{B,F} \subseteq T_2'$ $\#_a(aabb) = \#_b(aabb)$

$aabb \notin X_{B,F}$ ולכן

לנזדקק תכונה f מקיימת תכונה אדקק מהוכיח לעיתים כאשר נוכל להוכיח לעיתים לא לתכונה 2 שכבר הוכחנו ש $X_{B,F}$ מקיימת לשם כך נגדיר תכונה מחוזקת:

 $T_B = \{w \in X | w \in X_{B,F}, f \text{ מקיים את } \}$

:3 תרגיל

הוכחה:

 $X=X_{B_1\cup B_2,F_1\cup F_2}$ נסמן נוכיח כי $X=\widehat{S_1}$ ע"י הכלה דו כיוונית

מבנה. באינדוקציית מבנה. $S_1 \subseteq X$ כייון ראשון

<u>בסיס:</u>

$$B_1\subseteq X$$
 נוכיח כי $B_1\subseteq B_1\cup B_2\subseteq X$

<u>:סגור</u>

 $a_1,\ldots,a_n\in X$ נניח כי $f \in F_1$ ונראה כי לכל

```
f(a_1, \dots, a_n) \in X
f \in F_1 \cup F_2 \Leftarrow f \in F
        סגורה לF_1 \cup F_2 \cup F_1 ע"י הבנייה x
                   f(a_1,\ldots a_n)\in X ולכן
                                         כיוון שני:
     נוכיח באינדוקציית מבנה X\subseteq S_1
                                                   <u>בסיס:</u>
                               B_1 \cup B_2 \subseteq S_1
                                                     <u>נניח:</u>
                              b \in B_1 \cup B_2 כי
אזי למקרים נחלק b\in B_2או א<br/>וb\in B_1אזי אזי
```

- ע"י הזמנה $b \in S_1$ במקרה ה $b \in B_1$
- ע"י הזמנה $b \in S_2$ במקרה ה $b \in B_2$ $b\in S_1$ מתקיים אב $S_1=S_2$ וגם מכיוון ש

<u>:סגור</u>

נניח $a_1,\ldots,a_n\in S_1$

 $f \in F_1 \cup F_2$ ונראה כי לכל $f(a_1,\ldots,a_n)\in S_1$ נחלק למקים:

- $f(a_1...a_n) \in S_1 \Leftarrow$ מכיוון ש־ $a_1,\ldots,a_n \in S_1$ מכיוון ש־ $f \in F_1$
 - $a_1\dots a_n\in S_2 \Leftarrow S_1=S_2$ בכיוון ש־ $f\in F_2$ מכיוון ש־ $f\in F_2$

 $f(a_1,a_2,\ldots,a_n) \in S_2 \Leftarrow F_2$ סגורה תחת הפעולות ב־ S_2 $f(a_1,a_2,\ldots,a_n)\in S_1 \Leftarrow S_1=S_2$ מכיוון ש־