UNIVERSITY OF OSLO

Master's thesis

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Johan Mylius Kroken

Computational Science: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics
Faculty of Mathematics and Natural Sciences

Johan Mylius Kroken

-sometitle-

Classifying N-body simulations with and without relativistic corrections using machine learning techniques

Supervisors:

A David Fonseca Mota

B Julian Adamek

C Francisco Antonio Villaescusa Navarro

Abstract

Here come 3–6 sentences describing your thesis.

Sammendrag

Here comes the abstract in a different language.

Contents

1	Introd	uction													1
	1.1	Motivation													1
	1.2	Outline													1
	1.3	Aim													1
	1.4	Nomenclature			-										1
I	Cosmo	logical Structure Forma	atio	n											3
2	Backo	round Cosmology											•		5
	2.1	Describing the Universe											•		5
	2.2	The Friedmann Equations	.												5
	2.3	Recombination													5
3	Pertu	bation Theory													7
	3.1	Initial Conditions													7
	3.2	Transfer Functions											•		7
	3.3	Power Spectra											•		7
	3.4	Non-linear Evolution and	the	Bis	pe	ctrı	ım								7
4	Simul	ations													9
	4.1	N-body simulations													9
	4.2	Mass Assignments Scher	nes												9
II	Machir	ne Learning													11
5	Neura	ıl Networks											•		13
	5.1	Forward pass - Prediction											•		13
		5.1.1 Activation functio	ns.												13
		5.1.2 Loss functions.													13
	5.2	Backpropagation - Trainin	g.										•		13
		5.2.1 Gradient descent											•		13
		5.2.2 Optimizers													13
		5.2.3 Regularization													13
6	Conv	olutional Neural Networks													15
	6.1	Convolution													15
	6.2	New Layers													15
		6.2.1 Convolutional lay	ers												15
		6.2.2 Pooling layers.													15
		6.2.3 Dropout lavers			_		_		_			_			15

Contents

List of Figures

List of Figures

List of Tables

Preface

Here comes your preface, including acknowledgments and thanks. $\,$

Preface

Introduction

This is the introduction

- 1.1 Motivation
- 1.2 Outline
- 1.3 Aim
- 1.4 Nomenclature

Part I Cosmological Structure Formation

Background Cosmology

- 2.1 Describing the Universe
- 2.2 The Friedmann Equations
- 2.3 Recombination

Chapter 2. Background Cosmology

Perturbation Theory

- 3.1 Initial Conditions
- 3.2 Transfer Functions
- 3.3 Power Spectra
- 3.4 Non-linear Evolution and the Bispectrum

Chapter 3. Perturbation Theory

Simulations

- 4.1 N-body simulations
- 4.2 Mass Assignments Schemes

Part II Machine Learning

Neural Networks

- 5.1 Forward pass Prediction
- 5.1.1 Activation functions
- 5.1.2 Loss functions
- 5.2 Backpropagation Training
- 5.2.1 Gradient descent
- 5.2.2 Optimizers
- 5.2.3 Regularization

TODO: Add dropout, batch normalization, weight decay, early stopping, data augmentation, etc. [Seljak_1996, 1]

Chapter 5. Neural Networks

Convolutional Neural Networks

- 6.1 Convolution
- 6.2 New Layers
- 6.2.1 Convolutional layers
- 6.2.2 Pooling layers
- 6.2.3 Dropout layers

Chapter 6. Convolutional Neural Networks