Zelestra x AWS ML Ascend Challenge

Performance Optimization of Solar Panels

Team Details:

Team Name: Cloud-Catalysts

Team members:

- 1. Kumari Vaishnavi
- 2. Anubhay Kumar
- 3. Ashish Rawat
- 4. Vansh Khattar

Approach

The pipeline employs a multi-step ensemble strategy, where several base models are learned independently, and their predictions are stacked together as inputs for a meta-model. The process includes:

- 1. Data Loading and Preprocessing: We load the training and test data using Pandas and remove any identifier columns to prevent them from interfering with model training. Numeric columns (such as "humidity", "wind_speed", and "pressure") are converted into numeric types (with coercion of non-numeric values to NaN) and then imputed with the median from the training set. Categorical features (like "installation_type" and "error_code") are converted to strings and one-hot encoded to transform them into binary features. Finally, the train and test sets are aligned so that they have identical columns, with any missing features filled with zeros.
- **2. Feature Scaling:** StandardScaler is used to standardize the feature values so that the resulting features have zero mean and unit variance. Scaling plays an important role, particularly for the linear meta-model (Ridge), which combines the outputs of the base models.
- **3. Train–Validation Split:** The dataset is partitioned using train_test_split into a training set (90%) and a validation set (10%) which helps in evaluating the model performance and ensuring that the ensemble generalizes well to unseen data.

- **4. Training Base Models:** The code trains several base models with different strengths:
- XGBoost: A powerful gradient boosting technique well-suited for tabular data.
- **LightGBM:** Another high-performance gradient boosting method that uses a histogram-based approach and early stopping to prevent overfitting.
- **CatBoost:** Known for its capability in handling categorical features, optimized here with loss function RMSE.
- RandomForestRegressor: An ensemble tree algorithm that reduces variance through bagging.
- AdaBoostRegressor: Uses boosting to combine weak learners (e.g., shallow trees) to enhance performance.
- **5. Stacking Predictions:** Each base model generates predictions on the validation and test sets. These predictions are then stacked (using np.column_stack) to form a new feature matrix. This "meta" dataset encapsulates diverse forecasts from different modeling philosophies.
- **6. Training the Meta-Model:** A Ridge regression model is used as the meta-learner. Its regularization parameter (alpha) is tuned using GridSearchCV over a set of candidate values. The meta-model learns to optimally blend the base models' predictions. Final evaluation is performed using RMSE (converted into a custom score).
- **7. Final Predictions and Submission:** The meta-model is trained on the validation predictions, and its learned weights are applied to the test set predictions, culminating in final outputs that are formatted and saved as a submission file.

Feature Engineering Details

- Numeric Processing: Numeric columns are explicitly cast to numeric types with error handling (errors="coerce"), ensuring that any inappropriate string values are set to NaN. Missing values are then imputed using the median, which is a robust measure against outliers.
- Categorical Transformation: Categorical variables are converted to strings and one-hot encoded via pd.get_dummies(). This creates binary columns for each unique category, ensuring that the models can handle nominal data appropriately.
- **Final Alignment:** After one-hot encoding, train and test datasets are aligned so that they include the same features, managing any features that may appear in one set and not the other.
- **Scaling:** Feature scaling with StandardScaler standardizes the data. This is critical for any models sensitive to the scale of input (in our case, the Ridge meta-model).

Tools Used

- Pandas and NumPy: These libraries provide essential data manipulation and numerical computing capabilities, allowing efficient data reading, cleaning, and transformation.
- Scikit-learn: Tools from scikit-learn used in this pipeline include:
- **StandardScaler:** For feature standardization.
- **train test split:** For partitioning the dataset.
- **GridSearchCV:** For exhaustive hyperparameter tuning using cross-validation.
- **Ridge:** The linear regression model with L2 regularization serves as the meta-model.
- **mean squared error:** For evaluating model performance via RMSE.
- XGBoost, LightGBM, and CatBoost: These are state-of-the-art gradient boosting frameworks that provide high predictive power and handle large, structured datasets efficiently.
- RandomForestRegressor and AdaBoostRegressor: Ensemble methods based on decision trees that help to reduce variance (RandomForest) and bias (AdaBoost).

Final Outcome

In our experiments, after meticulously preprocessing the data, engineering features, training multiple base models, and optimally blending their predictions with a tuned Ridge meta-model, we secured a score of **89.87023**.