Tomo-Project 使用说明

张冉颢

一、安装

先解压,然后进入"Tomo-Project"目录。

```
tar -zxvf Tomo-Project.tar.gz
cd Tomo-Project
```

(一) 安装依赖

安装 fftw3 至 3rdlib 文件夹下。

```
cd external
./build-fftw.sh
cd ..
```

(二) 编译

编译,并将可执行文件安装到 bin 目录下。

```
make clean make
```

二、参数文件

程序通过参数文件传递参数,参数文件为 conf/para.conf,参数文件格式为每行一个参数,以"A=B"的形式输入,具体格式可参考 conf 文件夹下的*.conf 文件。

(一) Alignment

目前实现的 Alignment 算法是基于 patch tracking 的,patch 中心将整张投影 图片均分,后续可能会考虑实现随机 patch 中心或人工指定 patch 中心。

参数	值	含义
do_alignment	1	执行 Alignment 算法
path	./	指定输入输出文件的文件夹位置,所有输入
		文件都应放在该文件夹下,所有输出文件也
		都会保存至该文件夹下
original_mrc	tomo_001.st	输入,原始的 MRC stack
input_mrc	tomo_001.st	输入,真正用于计算 alignment 的 MRC

		stack,可以是原始的 stack,也可以是经过
		一些操作的 stack (便于跳过一些预处理步
		骤)
input_rawtlt	tomo_001.rawtlt	输入,与输入的 MRC stack 顺序对应的投
		影图片原始倾转角度
output_mrc	tomo_001.ali	输出,经过 alignment 的 MRC stack
prfx	tomo_001	一些中间文件的命名前缀
bin	4	多少倍降采样(通过傅里叶空间按比例截取
		低频部分实现)
lp	0.1	低通滤波的截止频率(单位:百分比)
j	4	多少线程并行(使用 OpenMP 并行)
skip_lowpass	0/1	是否跳过低通滤波(0-执行低通滤波;1-跳
		过低通滤波)
skip_bin	0/1	是否跳过 bin(0-执行 bin;1-跳过 bin)
skip_coarse	0/1	是否跳过 coarse alignment (0-执行 coarse
		alignment; 1-跳过 coarse alignment)
skip_patch	0/1	是否跳过 patch tracking (0-执行 patch
		tracking; 1-跳过 patch tracking)
skip_fine	0/1	是否跳过 fine alignment (0-执行 fine
		alignment; 1-跳过 fine alignment)
it_max	5	fine alignment 的最大迭代轮数
patch_size_coarse	255	coarse alignment 中 patch 的大小(单位:像
		素)
patch_Nx_coarse	6	coarse alignment 中 x 方向的 patch 数量
patch_Ny_coarse	6	coarse alignment 中 y 方向的 patch 数量
patch_size_tracking	255	patch tracking 中 patch 的大小(单位: 像素)
patch_Nx_tracking	6	patch tracking 中 x 方向的 patch 数量
patch_Ny_tracking	6	patch tracking 中 y 方向的 patch 数量
beam_induced_motion	0/1	是否考虑在 fine alignment 的最后一轮迭代
		中加入多项式拟合修正样品隆起(0-不考
		虑; 1-考虑)
unrotated_stack	0/1	是否输出经过 alignment 但未将转轴旋转至
		y 轴的 MRC stack(0-输出;1-不输出)
unbinned_stack	0/1	是否输出原始 MRC stack (original_mrc) 经
		过 alignment 后的结果(0-输出;1-不输出)

可参考 conf/para_alignment.conf。

【注意】

1、执行完整的 alignment 流程后,还会生成一些中间文件,包括: coarse.txt (保存每张图经过 coarse alignment 后计算得到的平移量)、patch.txt(保存经过 patch tracking 后每个 patch 中心的位置坐标及该 patch 是否仍然保留在 track 中)、psi.txt(保存经过 fine alignment 后估计得到的转轴与

y 轴之间的夹角)

- 2、若跳过 coarse alignment,则需要提供 coarse.txt 文件
- 3、若跳过 patch tracking,则需要提供 patch.txt 文件
- 4、后续的重构步骤都需要提供 psi.txt 文件

(二) WBP

参数	值	含义
do_reconstruction_WBP_in_RAM	1	执行 WBP 重构算法,"in_RAM"
(或 do_reconstruction_WBP)		表示将整个重构的模型保存在内
		存中(对于常见的 4000*4000*1000
		的重构模型大约需要 50GB), 无
		"in_RAM"表示重构模型逐层存
		取 (二选一)
path	./	指定输入输出文件的文件夹位置,
		所有输入文件都应放在该文件夹
		下,所有输出文件也都会保存至该
		文件夹下
input_mrc	tomo_001.ali	输入,待重构的一系列投影图片
		(经过 align)
input_tlt	tomo_001.tlt	输入,与输入的 MRC stack 顺序对
		应的投影图片倾转角度(经过
		align)
output_mrc	tomo_001.rec	输出,重构结果
defocus_file	defocus_file.txt	输入, CTF 参数文件, 格式为
		CTFFIND4 的输出格式,顺序与输
		入的 MRC stack 顺序对应
prfx	tomo_001	一些中间文件的命名前缀
h	250	重构模型的高度(单位:像素)
skip_ctfcorrection	0/1	是否跳过 CTF 校正
skip_weighting	0/1	是否跳过加权滤波(0-WBP; 1-BP)
skip_3dctf	0/1	是否跳过 3D-CTF 校正 (0-3D-CTF
		校正 (同 NovaCTF); 1-普通 CTF
		校正)
weighting_radial	0.05	加权滤波器的截断位置(百分比)
weighting_sigma	0.5	加权滤波器高斯截尾的方差(百分
		比)
j	4	多少线程并行(使用 OpenMP 并行)
Cs	2.7	球差(单位:毫米)
pixel_size	13.684	像素尺寸(单位:埃)
voltage	300	加速电压(单位: kV)
w	0.07	振幅衬度

flip_contrast	0/1	重构是否需要反衬度(0-不变; 1-黑
		白颠倒)
defocus_step	15	3D-CTF 校正的步长参数(单位:像
		素)
unrotated_stack	0/1	输入的 MRC stack 在 align 的过程
		中是否通过旋转将转轴与 y 轴对齐
		(0-未旋转; 1-旋转)

【注意】还需要一个输入文件"psi.txt",该文件只有一行,为一个浮点数,表示从原始的 MRC stack 将转轴转至 y 轴所需的旋转角度。

可参考 conf/para_reconstruction_WBP.conf。

(三) SIRT

参数	值	含义
do_reconstruction_SIRT_in_RAM	1	执行 SIRT 重构算法,"in_RAM"
(或 do_reconstruction_SIRT)		表示将整个重构的模型保存在内
		存中(对于常见的 4000*4000*1000
		的重构模型大约需要 400GB), 无
		"in_RAM"表示将重构模型分块
		重构(大约需要 100GB)(二选一)
path	./	指定输入输出文件的文件夹位置,
		所有输入文件都应放在该文件夹
		下,所有输出文件也都会保存至该
		文件夹下
input_mrc	tomo_001.ali	输入,待重构的一系列投影图片
		(经过 align)
input_tlt	tomo_001.tlt	输入,与输入的 MRC stack 顺序对
		应的投影图片倾转角度(经过
		align)
output_mrc	tomo_001.rec	输出,重构结果
defocus_file	defocus_file.txt	输入, CTF 参数文件, 格式为
		CTFFIND4 的输出格式,顺序与输
		入的 MRC stack 顺序对应
prfx	tomo_001	一些中间文件的命名前缀
h	250	重构模型的高度(单位:像素)
skip_ctfcorrection	0/1	是否跳过 CTF 校正
skip_3dctf	0/1	是否跳过 3D-CTF 校正 (0-3D-CTF
		校正(3D-SIRT); 1-普通 CTF 校正)
j	4	多少线程并行(使用 OpenMP 并行)
Cs	2.7	球差(单位:毫米)
pixel_size	13.684	像素尺寸(单位:埃)
voltage	300	加速电压(单位: kV)
W	0.07	振幅衬度

flip_contrast	0/1	重构是否需要反衬度(0-不变;1-黑
		白颠倒)
defocus_step	15	3D-CTF 校正的步长参数(单位:像
		素)
unrotated_stack	0/1	输入的 MRC stack 在 align 的过程
		中是否通过旋转将转轴与y轴对齐
		(0-未旋转; 1-旋转)
it_max	1	迭代轮数
lambda	0.001	迭代公式中的超参数
num_blocks	20	重构时分多少块(仅用于
		"do_reconstruction_SIRT")

【注意】还需要一个输入文件"psi.txt",该文件只有一行,为一个浮点数,表示从原始的 MRC stack 将转轴转至 y 轴所需的旋转角度。

可参考 conf/para_reconstruction_SIRT.conf。

三、 运行程序

由于路径的原因,目前必须在 bin 文件夹下执行该程序,在执行的同时需指定参数文件的位置(若使用相对路径则为相对 bin 文件夹)。

cd bin
./tomo_cpp ../conf/para.conf