국내 특허·실용신안 상세 인쇄 화면

다층 복사 냉각 구조

MULTILAYERED RADIANT COOLING STRUCTURE

· Details

IPC	H01L 23/373(2006.01.01) H01L 23/367(2006.01.01) H10H 20/858(2025.01.01) H10H 20/814(2025.01.01) H10F 10/00(2025.01.01)
CPC	H01L 23/3736(2013.01) H01L 23/3672(2013.01) H10H 20/8581(2025.01) H10H 20/814(2025.01) H10F 77/63(2025.01)
Application No. (Date)	1020180067579 (2018.06.12)
Applicant	경희대학교 산학협력단
Translation Submission Date	
Registration No. (Date)	1020360710000 (2019.10.18)
Unex. Pub. No. (Date)	
Publication No. (Date)	(2019.10.24) Full-Doc Down
Int'l Application No.(Date)	
Int'l Unex. Pub. No.(Date)	
Priority info. (Country / No. / Date)	

Legal Status	등록
Examination Status	등록결정(일반)
Trial Info	
Kind	국내출원/신규
Right of Org. Application No. (Date)	
Related Application No.	
Request for an examination(Date)	Y(2018.06.12)
Number of examination claims	18

Abstract

본 발명의 냉각 대상에 부착되어 중적외선을 흡수 및 복사하는 복사 냉각 구조는, 제1 영역의 중적외선을 흡수 및 복사하는 적어도 하나의 유전체층, 그리고 상기 제1 영역보다 짧은 파장을 포함하는 제2 영역의 중적외선을 흡수 및 복사하는 적어도 하나의 금속 박막층를 포함하되, 상기 금속 박막층의 두께는 상기 금속 박막층이 가시광을 투과하도록 결정될 수 있다.

· Biogrphical information

Applicant

No.	Name(No)	Address
	경희대학교 산학협력단 (220040073623)	경기도 용인시 기흥구
	BRN ▼	

(72) Inventor

No.	Name(No)	Address
1	김선경	경기도 화성시

No.	Name(No)	Address
2	조진우	경상북도 포항시 북구
3	신윤정	경기도 파주시

(74) Agent

No.	Name(No)	Address
1	김홍석 (920120011951)	서울특별시 강남구 밤고개로*길 ** (수서동) ****호(제이디기술컨설팅)

Right holder(current)

No.	Name(No)	Address
1	경희대학교 산학협력단	경기도 용인시 기흥구

Inventor information after registration

No.	Name(No)	Address
1	김선경	경기도 화성시
2	조진우	경상북도 포항시 북구
3	신윤정	경기도 파주시

Agent information after registration

No.	Name(No)	Address
1	김홍석 (920120011951)	서울특별시 강남구 밤고개로*길 ** (수서동) ****호(제이디기술컨설팅)

· Designated States

Kind	Country
	Empty

· Citation

Forward Citation

Country	Pub. No	Pub. Date	Title	IPC
Empty				

Backward Citation

Application No.(Date)	Application Date	Title	IPC
1020190137538	2019.10.31	백색 복사 냉각 소자	H01L 23/373
1020190148377	2019.11.19	발광형 냉각 소자	H01L 23/373
1020200024454	2020.02.27	상하면의 열방사 특성이 상이한 수동 복사 냉각 패 널	F28F 13/18
1020200158664	2020.11.24	나노 또는 마이크로 입자로 구현되는 페인트 도막 층을 포함하는 복사 냉각 소자	F25B 23/00
1020200160167	2020.11.25	태양전지 및 이의 제조 방법	H10F 10/00
1020210006597	2021.01.18	복사냉각 방열부를 적용한 유연 열전 소자 및 복사 냉각 방열부의 제조 방법	H10N 10/13
1020210035335	2021.03.18	투명 복사 냉각 소자	F25B 23/00
1020210121903	2021.09.13	투명 복사 냉각 소자	F25B 23/00

· Claim

No.	Claim			
1	냉각 대상에 부착되어 중적외선을 흡수 및 복사하는 복사 냉각 구조에 있어서,			
	제1 영역의 중적외선을 흡수 및 복사하는 적어도 하나의 유전체층; 그리고			
	상기 제1 영역보다 짧은 파장을 포함하는 제2 영역의 중적외선을 흡수 및 복사하는 적어도 하나의 금속 박막층을 포함하되,			
	상기 금속 박막층의 두께는 상기 금속 박막층이 가시광을 투과하도록 결정되는 복사 냉각 구조.			
2	제1항에 있어서,			
	상기 금속 박막층의 두께는 상기 금속 박막층을 구성하는 금속의 침투 깊이보다 작도록 결정되는 복사 냉각 구조.			

No.	Claim			
	제1항에 있어서,			
3	상기 금속 박막층의 두께는 상기 제2 영역의 중적외선을 흡수 및 복사하기 위해 1nm 내지 20nm의 값을 가지는 복사 냉각 구조.			
	제1항에 있어서,			
4	상기 금속 박막층의 두께는 가시광선의 투과율 및 상기 제2 영역의 중적외선에 대한 복사율에 기초하여 결정되는 복사 냉각 구조.			
5	제1항에 있어서,			
	상기 금속 박막층은 Ni, Ti, Au 및 Ag 중 하나로 형성되는 복사 냉각 구조.			
6	제1항에 있어서,			
O	상기 유전체층은 Al_2O_3 , HfO_2 , SiO_2 , TiO_2 , Si_3N_4 , ITO 및 ZnO 중 하나로 형성되는 복사 냉각 구조.			
	제1항에 있어서,			
7	상기 제1 영역은 8µm 내지 20µm의 복사 파장 크기를 포함하고,			
	상기 제2 영역은 4µm 내지 8µm의 복사 파장 크기를 포함하는 복사 냉각 구조.			
	제1항에 있어서,			
8	상기 유전체층은 상기 냉각 대상 상에 적층되고,			
	상기 금속 박막층은 상기 유전체층 상에 적층되는 복사 냉각 구조.			
	제1항에 있어서,			
9	상기 금속 박막층은 상기 냉각 대상 상에 적층되고,			
	상기 유전체층은 상기 금속 박막층 상에 적층되는 복사 냉각 구조.			
10	냉각 대상에 부착되어 중적외선을 흡수 및 복사하는 복사 냉각 구조에 있어서,			
	제1 영역의 중적외선을 흡수 및 복사하는 제1 유전체층;			
	제2 영역의 중적외선을 흡수 및 복사하며, 상기 제1 유전체층 상에 형성되는 제2 유전체층; 그리고			
	제3 영역의 중적외선을 흡수 및 복사하는 금속 박막층을 포함하되,			
	상기 금속 박막층은 상기 냉각 대상과 상기 제1 유전체층 사이, 상기 제1 유전체층과 제2 유전체층의 사이 또는			

No.	Claim				
	상기 제2 유전체층 상부 중 어느 하나의 위치에 형성되고,				
	상기 제1 및 제2 유전체층과 상기 금속 박막층은 가시광선을 투과하는 복사 냉각 구조.				
	제10항에 있어서,				
11	상기 제1 영역은 상기 제2 영역과 동일한 복사 파장 크기를 포함하고,				
	상기 제3 영역은 상기 제1 및 제2 영역의 복사 파장 크기의 최솟값보다 작은 복사 파장 크기를 포함하는 복사 냉각 구조.				
	제10항에 있어서,				
10	상기 제1 영역은 12µm 내지 20µm의 복사 파장 크기를 포함하고,				
12	상기 제2 영역은 8µm 내지 12µm의 복사 파장 크기를 포함하고,				
	상기 제3 영역은 4µm 내지 8µm의 복사 파장 크기를 포함하는 복사 냉각 구조.				
4.7	제10항에 있어서,				
13	상기 제1 유전체층과 상기 제2 유전체층은 서로 다른 두께 및 물질로 형성되는 복사 냉각 구조.				
	냉각 대상에 부착되어 중적외선을 흡수 및 복사하는 복사 냉각 구조에 있어서,				
	전자기파를 반사하며, 상기 냉각 대상 상에 형성되는 금속 반사층;				
	제1 영역의 중적외선을 흡수 및 복사하며, 상기 금속 반사층 상에 형성되는 제1 유전체층;				
14	제2 영역의 중적외선을 흡수 및 복사하며, 상기 제1 유전체층 상에 형성되는 제2 유전체층; 그리고				
	제3 영역의 중적외선을 흡수 및 복사하는 금속 박막층을 포함하되,				
	상기 금속 박막층은 상기 금속 반사층과 상기 제1 유전체층 사이, 상기 제1 유전체층과 제2 유전체층의 사이 또는 상기 제2 유전체층 상부 중 어느 하나의 위치에 형성되고,				
	상기 제1 및 제2 유전체층과 상기 금속 박막층은 가시광선을 투과하는 복사 냉각 구조.				
1.5	제14항에 있어서,				
15	상기 금속 반사층과 상기 금속 박막층은 서로 다른 금속으로 형성되는 복사 냉각 구조.				
16	제14항에 있어서,				

No.	Claim		
	상기 금속 박막층은 Ni, Ti, Au 및 Ag 중 하나로 형성되는 복사 냉각 구조.		
17	제14항에 있어서,		
	상기 금속 반사층과 상기 금속 박막층은 서로 다른 두께를 가지도록 형성되는 복사 냉각 구조.		
18	제14항에 있어서,		
	상기 금속 반사층은 50nm 내지 200nm의 두께를 가지도록 형성되고,		
	상기 금속 박막층은 1nm 내지 20nm의 두께를 가지도록 형성되는 복사 냉각 구조.		

· Patent Family

Integrated Examination Information

No.	Family No.	Application Date	Country(code)	Country	Туре	
Empty						

DOCDB Patent Family

No.	Family No.	Application Date	Country(code)	Country	Туре
Empty					

· National R&D Project

No.	Research Ministry	Leading Institution	Research Project	Research Task		
Empty						