МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Кафедра комп'ютерної інженерії та електроніки

ЗВІТ З ПРАКТИЧНОЇ РОБОТИ № 3

з навчальної дисципліни

«Алгоритми та структури даних»

Тема «Алгоритми сортування та їх складність. Порівняння алгоритмів сортування»

Студентка гр. КН-24-1 Бояринцова П. С. Викладач Сидоренко В. М.

Тема роботи: Алгоритми сортування та їх складність. Порівняння алгоритмів сортування

1.1 Постановка завдання

Мета роботи: опанувати основні алгоритми сортування та навчитись методам аналізу їх асимптотичної складності.

Завдання: реалізувати алгоритми сортування

1.2 Розв'язання завдань

Завдання 1.

- 1. Записати алгоритм бульбашкового сортування. Оцінити асимптотику алгоритму. Порівняти бульбашковий алгоритм з алгоритмом сортування вставлянням.
- 2. Чому на практиці бульбашковий алгоритм виявляється менш ефективним у порівнянні з сортуванням методом зливанням?

Розв'язання:

Рисунок 1 – Бульбашкове сортування

lef insertion_sort(nums): Tac et-ms people for in Tange (1, len nums): C2 n-1 C3 n-1 C4 n-1 C5 n-1 C5 n-1 C5 n-1 C6 n-1 C7 n-1 C8 n-1 C9 nums C1 > key: C1 n-1 C2 n-1 C3 n-1 C4 nums C1 > key: C4 nums C1 > key: C5 nums C1 > key: C6 nums C1 > key: C7 nums C1 > key: C8 nums C1 > key: C9 nums C1 > key: C1 nums C1 > key: C2 nums C1 > key: C3 n-1 C4 nums C1 > key: C5 nums C1 > key: C6 nums C1 > key: C7 nums C1 > key: C8 nums C1 > key: C8 nums C1 > key: C9 nums C1 > key: C1 nums C1 > key: C2 nums C1 > key: C3 n-1 C4 nums C1 > key: C6 nums C1 > key: C7 nums C1 > key: C8 nums C1 > key: C8 nums C1 > key: C9 nums C1 > key: C1 nums C1 > key: C2 nums C1 > key: C3 n-1 C4 nums C1 > key: C6 nums C1 > key: C7 nums C1 > key: C8 nums C1 > key: C9 nums C1 > key: C9 nums C1 > key: C1 nums C1 > key: C2 nums C1 > key: C3 nums C1 > key: C4 nums C1 > key: C5 nums C1 > key: C6 nums C1 > key: C7 nums C1 > key: C8 nums C1 > key: C8 nums C1 > key: C8 nums C1 > key: C9 nums C1 > key:
1) $C_{1}(n-1)$ 4) $\stackrel{<}{\underset{>}{\sim}} t_{2} = \frac{(n-1)n}{2}$; $C_{4} \cdot \frac{(n-1)n}{2}$ 2) $C_{2}(n-1)$ 5) $C_{5} \cdot \frac{(n-1)n}{2}$; 6) $C_{6} \cdot \frac{(n-1)n}{2}$ 3) $C_{3}(n-1)$ 7) $C_{7}(n-1)$
Tworst $(n) = C_1(n-1) + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_5(n-1) + C_6(n-1) + C_6(n-1) + C_6(n-1) = ((C_4 + C_4 + C_4$
$= (C_1 + C_2 + C_3 + C_4) \cdot (n-1) + (C_4 + C_5 + C_6) \cdot (n-1) n = $ $= (C_1 + C_2 + C_3 + C_4) \cdot (n-1) + (C_4 + C_5 + C_6) \cdot (n-1) n = $ $= (C_1 + C_2 + C_3 + C_4) \cdot n - (C_1 + C_2 + C_3 + C_2) + $
+ $\frac{1}{2}(1+(2+(3+(2+(2+(2+(2+(2+(2+(2+(2+(2+(2+(2+(2+(2+$

Рисунок 2 – Алгоритм вставлянням

Чому Bubble Sort менш ефективний, ніж Merge Sort?

- Вubble Sort завжди проходить по масиву кілька разів, роблячи велику кількість перестановок.
- Merge Sort працює по принципу "розділяй і володарюй" та виконує лише мінімальну кількість копіювань.
- Merge Sort має гарантовану складність $O(n \log n)$, яка набагато краща за $O(n^2)$ y Bubble Sort.

Завдання 2.

Оцінити асимптотичну складність алгоритму сортування зливанням, скориставшись основною теоремою рекурсії.

Рисунок 3 — Сортування зливанням

Завдання 3.

Записати алгоритм швидкого сортування. Оцінити асимптотичну складність алгоритму.

Рисунок 4 – Швидке сортування

1.3 Відповіді на контрольні питання

1. Що таке асимптотична складність алгоритму сортування і чому вона важлива для порівняння алгоритмів?

Асимптотична складність показує, скільки часу або пам'яті потребує алгоритм, коли розмір даних (п) стає дуже великим.

Чому це важливо:

Дає змогу порівнювати алгоритми між собою. Наприклад, один алгоритм працює швидше за інший при великих масивах, і це видно саме по склалності.

2. Які алгоритми сортування мають квадратичну складність у найгіршому випадку? Поясніть, чому це може бути проблемою для великих обсягів даних.

Алгоритми з $O(n^2)$:

Бульбашкове сортування (Bubble Sort)

Сортування вибором (Selection Sort)

Сортування вставками (Insertion Sort)

Чому погано:

При великих масивах (наприклад, з мільйоном елементів) — ці алгоритми працюють дуже повільно. Це може займати години замість секунд.

3. В чому полягає перевага сортування злиттям над сортуванням вставками для великих наборів даних?

Сортування злиттям (Merge Sort) завжди має складність O(n log n) — швидко.

Сортування вставками (Insertion Sort) може працювати як $O(n^2)$ — повільно.

Висновок:

Сортування злиттям краще підходить для великих масивів, бо працює стабільно і швидше.

- 4. Які алгоритми сортування використовуються для сортування списків у стандартних бібліотеках мов програмування, таких як Python, Java або C++?
- Python: Timsort (поєднання злиття та вставок)
- Java: Timsort для об'єктів, QuickSort для чисел
- C++: Introsort (поєднання QuickSort, HeapSort і вставок)

Ці алгоритми підібрані так, щоб працювати швидко в реальних задачах.

5. Яка різниця між алгоритмами сортування злиттям і швидким сортуванням? У яких випадках краще використовувати кожен з цих алгоритмів?

	Merge Sort	Quick Sort
Складність	Завжди O(n log n)	Найгірше — O(n²), але часто O(n log n)
Швидкість	Стабільна	Швидший у середньому
Пам'ять	Більше використовує	Менше використовує
Стабільність	Так	Hi

- Merge Sort якщо важлива стабільність (однакові елементи не міняють порядок).
- Quick Sort якщо треба швидко відсортувати дані у пам'яті.
 - 6. Які фактори слід враховувати при виборі алгоритму сортування для конкретної задачі?

Скільки даних?

Чи треба стабільність?

Чи обмежена пам'ять?

Чи дані вже трохи відсортовані?

Чи критичний найгірший випадок?

Наприклад:

- Якщо даних небагато можна брати простий алгоритм.
- Якщо даних багато краще брати Merge Sort або Quick Sort.