Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR05/000967

International filing date: 01 April 2005 (01.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: KR

Number: 10-2004-0032174

Filing date: 07 May 2004 (07.05.2004)

Date of receipt at the International Bureau: 30 June 2005 (30.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office

출 원 번 호

특허출원 2004년 제 0032174 호

Application Number

10-2004-0032174

출원일 기

자 : 2004년 05월 07일

Date of Application

MAY 07, 2004

赱

<u>!</u> 인 :

한국전자통신연구원

Applicant(s)

Electronics and Telecommunications Research

Institute

2005 년 06 월 09 일

특 허 청 COMMISSIONER

【서지사항】

【서류명】 특허출원서

【**권리구분**】 특허

【수신처】 특허청장

[제출일자] 2004.05.07

【발명의 국문명칭】 16상태 트렐리스 코딩 방식, 4잔류 측대파 변조 방식과

P-2VSB 방식을 혼합한 이중 스트림 구조의 디지털 텔레

비전 송수신 방법

【발명의 영문명칭】 Double Stream Structure Digital Television Transmission

and Receiving Method using Hybrid of E-8VS, E-4V

SB and P-2VSB

【출원인】

【명칭】 한국전자통신연구원

【출원인코드】 3-1998-007763-8

【대리인】

【명칭】 특허법인 신성

【대리인코드】 9-2000-100004-8

【지정된변리사】 변리사 정지원, 변리사 원석희, 변리사 박해천

【**포괄위임등록번호**】 2000-051975-8

【발명자】

【성명의 국문표기】 김성훈

【성명의 영문표기】 KIM, Sung Hoon

 【주민등록번호】
 700716-1019222

【**우편번호**】 302-170

【주소】 대전광역시 서구 갈마동 갈마아파트 203-304

【국적】 KR

【발명자】

【성명의 국문표기】 이재영

【성명의 영문표기】 LEE, Jae Young

 【주민등록번호】
 770912-1042821

【**우편번호**】 138-916

【주소】 서울특별시 송파구 잠실5동 27번지 주공아파트 514-201

【국적】 KR

【발명자】

【성명의 **국문표기**】 지금란

【성명의 영문표기】 JI,Kum Ran

 【주민등록번호】
 790215-2641435

【**우편번호**】 519-806

【주소】 전라남도 화순군 화순읍 만연리 167번지

【국적】 KR

【발명자】

【성명의 국문표기】 김승원

【성명의 영문표기】 KIM, Seung Won

 【주민등록번호】
 640609-1268419

【**우편번호**】 305-390

【주소】 대전광역시 유성구 전민동 나래아파트 109-1804

【국적】 KR

【발명자】

【성명의 국문표기】 이수인

【성명의 영문표기】 LEE,Soo In

 【주민등록번호】
 620216-1683712

【우편번호】 302-120

【주소】 대전광역시 서구 둔산동 크로바아파트 106-606

【국적】 KR

【발명자】

【성명의 국문표기】 안치득

【성명의 영문표기】 AHN, Chie Teuk

 【주민등록번호】
 560815-1053119

【**우편번호**】 305-761

【주소】 대전광역시 유성구 전민동 엑스포아파트 208-603

【국적】 KR

[취지] 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대

리인 특허법인 신

성 (인)

【수수료】

【기본출원료】 0 면 38,000 원

【**가산출원료**】 21 면 0 원

 【우선권주장료】
 0
 건
 0
 원

【심사청구료】 0 항 0 원

【합계】 38,000 원

【감면사유】 정부출연연구기관

【**감면후 수수료**】 19,000 원

【기술이전】

【기**술양도**】 희망

【실시권허여】 희망

【기술지도】 희망

【요약서】

[요약]

1. 청구범위에 기재된 발명이 속한 기술분야

본 발명은 차세대 텔레비전 시스템 위원회(Advanced Television System Committee, ATSC)의 디지털 텔레비전(Digital Television, DTV) 표준(A/53)에 관련수신 성능 개선 작업으로 진행되고 있는 이중 스트림을 이용한 송수신용 DTV 송수신 장치의 개발과 관련 Philips의 P-2VSB 방식, 한국전자통신연구원의 E-4VSB 방식및 E-8VSB방식을 혼합한 Hybrid-VSB방식를 이용한 강인 데이터 생성 방법에 관한것임.

2. 발명이 해결하려고 하는 기술적 과제

본 발명은, Hybrid-VSB 방식은 종래기술인 Philips의 P-2VSB 방식, 한국전자 통신연구원의 E-4VSB 방식과 E-8VSB 방식을 일정한 비율로 혼합하여 성능을 개선시 키는데 그 목적이 있음.

3. 발명의 해결방법의 요지

본 발명은 차세대 텔레비전 시스템 위원회(Advanced Television System Committee, ATSC)의 디지털 텔레비전(Digital Television, DTV) 표준(A/53)에 관한 수신 성능 개선 작업으로 진행되고 있는 이중 스트림을 이용한 송수신용 DTV 송수신 장치의 개발과 관련 Hybrid-VSB 방식을 이용한 강인 데이터 생성 방법에 관한 것으로, Hybrid-VSB 방식에서 P-2VSB + E-8VSB, P-2VSB + E-4VSB, E-4VSB + E-

8VSB, P-2VSB + E-4VSB + E-8VSB의 조합을 이용하고, Philips의 P-2VSB 방식과 한 국전자통신연구원의 E-8VSB 방식을 혼합하여 강인 데이터를 생성함.

4. 발명의 중요한 용도

본 발명은 DTV 송수신 장치 등에 이용됨.

【대표도】

도 1

【색인어】

트렐리스 코딩, 4잔류 측파대 변조, P-2VSB

【명세서】

【발명의 명칭】

16상태 트렐리스 코딩 방식, 4잔류 측대파 변조 방식과 P-2VSB 방식을 혼합한 이중 스트림 구조의 디지털 텔레비전 송수신 방법{Double Stream Structure Digital Television Transmission and Receiving Method using Hybrid of E-8VS, E-4VSB and P-2VSB}

【도면의 간단한 설명】

- <!> 도 1은 한국전자통신연구원이 기존에 제안한 16state E-8VSB TCM 구조.
- 도 2는 한국전자통신연구원이 기존에 제안한 {-7, -1, 3, 5} 신호 레벨을 이용한 강인 데이터 트렐리스 코딩 블록도.
- 도 3은 한국전자통신연구원이 기존에 제안한 {-5, -3, 1, 7} 신호 레벨을 이용한 강인 데이터 트렐리스 코딩 블록도.
- <4> 도 4는 필립스가 제안한 강인 데이터 트렐리스 코딩 블록도.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<5> 본 발명은 차세대 텔레비전 시스템 위원회(Advanced Television System

Committee, ATSC)의 디지털 텔레비전(Digital Television, DTV) 표준(A/53)에 관련수신 성능 개선 작업으로 진행되고 있는 이중 스트림을 이용한 송수신용 DTV 송수신 장치의 개발과 관련 Philips의 P-2VSB 방식, 한국전자통신연구원의 E-4VSB 방식 및 E-8VSB방식을 혼합한 Hybrid-VSB방식를 이용한 강인 데이터 생성 방법에 관한것이다. (Zenith, Philips, ETRI 관련 특허 참고)

북미 및 국내에서 채택한 디지털 TV 방송방식 표준인 8-VSB방식은 방송사들이 요구하는 실내, 휴대 및 이동 수신의 성능에 미치지 못하고 있다. 이에 ATSC는 DTV의 수신 성능 개선을 위하여 성능 개선에 관한 제안을 받아 이중 스트림 구조를이용한 DTV의 송수신 시스템 개발을 진행하였다. 본 발명에서는 이중 스트림의 구조를 이용한 DTV 송수신 시스템의 강인 데이터를 생성하는데 이용할 수 있는 Hybrid-VSB방식에 관한 것이다.

ETRI가 제안한 E-8VSB 방식

<6>

<7>

<8>

<9>

도 1는 본 발명의 실시 예에 따른 16 상태 트렐리스 코딩을 이용한 강인 데이터 생성 방법1이다.(한국전자통신연구원이 기존에 제안한 16state E-8VSB TCM 구조)

도 1을 참조하면 먼저 입력된 정보 데이터(X1')을 이용하여 표준 트렐리스 인코더의 2 개의 메모리에 추가적으로 강인 데이터 생성을 위한 메모리를 추가적으 로 이용하여 강인 데이터가 4 개의 메모리를 이용하여 코딩되도록 한다. 도 1의 개 선 코딩(enhance coding)블록과 표준 트렐리스 코딩(Trellis encoding)을 이용하여 입력에 따라 출력 신호와 다음 상태는 표 1과 같은 결과를 갖는다. 표 1의 16 상태 (현재 상태, 다음 상태)는 [수학식 1]과 같은 방법을 통해서 표시한 값이다. [수학식 1]의 S는 상태 값을 나타낸다. 도1의 강인 데이터 생성을 위해 추가적으로 사용되는 메모리는 일반 데이터가 입력되는 경우에는 그 상태값이 변하지 않으며 입력에 따른 출력 신호와 다음 상태 신호는 표 2와 같다.

16 상태 트렐리스 코딩을 이용한 강인 데이터 생성 방법1을 이용한 경우 표 1과 표 2를 이용하여 수신기의 등화기에서 사용하는 신호 레벨 판정기로 쓰이는 단 순 트렐리스 디코더를 설계에 이용하여 신호 레벨 판정기의 성능을 개선할 수 있다. 또, 트렐리스 디코더의 설계를 표 1과 표 2를 참조로 16 상태를 이용한 디코 딩 방법을 사용 트렐리스 디코더의 성능을 개선할 수 있다.

【수학식 1】

<10>

$$S = D1 \times 8 + D2 \times 4 + D3 \times 2 + D4$$

【班 1】

a. 트렐리스 인코더의 출력 표

b. 트렐리스 인코더의 다음 상태 표

조 표 1. 제안한 16 상태 트렐리스 코딩을 이용한 강인 데이터의 생성 방법1을 이용하는 경우 강인 데이터의 입력에 따른 16상태의 변화와 출력

【班 2】

<15>

부호기의 다음 상태 표

표 2. 제안한 16 상태 트렐리스 코딩을 이용한 강인 데이터의 생성 방법을

이용하는 경우 일반 데이터의 입력에 따른 16상태의 변화와 출력

ETRI가 제안한 E-4VSB 방식

<16>

<18>

<19>

<20>

<17> 도 2는 한국전자통신연구원(ETRI)에서 제안한 강인 데이터 생성을 위한 트렐리스 코딩 방법이다.(한국전자통신연구원이 기존에 제안한 {-7, -1, 3, 5} 신호 레벨을 이용한 강인 데이터 트렐리스 코딩 블록도)

도 2의 트렐리스 코딩은 표준 트렐리스 인코더의 코딩 값 Z0을 예측하여, 입력신호 X1'을 이용하여 Z0 값이 '0'일 때는 표준 트레리스 인코더의 코딩 값 Z2와 Z1이 서로 같은 값을 갖도록 하며, Z0 값이 '1'일 때는 표준 트렐리스 인코더의 코딩 값 Z2와 Z1이 서로의 역 값을 갖도록 강인 데이터 코딩하여 표준 트렐리스 인코더의 출력 심볼 값의 레벨이 {-7, -1, 3, 5}로 되도록 제안하는 방법이다.

도 3는 한국전자통신연구원(ETRI)에서 제안한 강인 데이터 생성을 위한 트렐리스 코딩 방법이다. (한국전자통신연구원이 기존에 제안한 {-5, -3, 1, 7} 신호레벨을 이용한 강인 데이터 트렐리스 코딩 블록도)

도 3의 트렐리스 코딩은 표준 트렐리스 인코더의 Z0 값을 예측하여, 입력신호 X1'값을 이용하여 Z0 값이?0?일 때는 표준 트렐리스 인코더의 코딩 값 Z2와 Z1이 서로의 역 값을 갖도록 하며, Z0 값 '1'일 때는 표준 트렐리스 인코더의 코딩값 Z2와 Z1이 서로 같은 값을 갖도록 강인 데이터 코딩하여 표준 트렐리스 인코더의 코딩의 출력 심볼 값의 레벨이 {-5, -3, 1, 7}로 되도록 제한하는 방법이다.

Philips가 제안한 P-2VSB 방식

<21>

<22>

종래기술로서 강인 데이터를 {-7, -5, 5, 7} 또는 {-7, -3, 3, 7}의 4개 레 심볼 중 어느 하나로 전송하는 기술이 개시되어 있으나(국제공개번호 WO 02/080559, 국제공개번호 WO 02/100026, 미합중국 특허공개번호 US2002/0194570), 이러한 종래기술에 따르면 강인 데이터가 매핑되는 심볼이 제한됨으로 인해 강인 데이터를 나타내는 심볼의 평균 전력이 종래의 8-VSB 방식에 비해 증가한다는 문제 점이 있다(종래의 8-VSB 방식에 따르면, 강인 데이터의 심볼 평균 전력은 21 energy/symbol이다). 즉 강인 데이터를 {-7, -5, 5, 7}의 4개 레벨 심볼 중 어느 하나로 할 경우에는 심볼 평균 전력이 37 energy/symbol이고, 강인 데이터를 {-7, -3, 3, 7}의 4개 레벨 심볼 중 어느 하나로 할 경우에는 심볼 평균 전력이 29 energy/symbol로서, 강인 데이터를 나타내는 심볼의 평균 전력이 종래의 8-VSB 방 식에 비해 증가한다. 강인 데이터를 나타내는 심볼의 평균 전력 상승은 전체 평균 전력 증가를 야기시키고, 제한된 송신 출력으로 신호를 전송하는 경우(통상의 경우)에 일반 데이터의 송신 전력이 종래의 8-VSB 방식에 비해 상대적으로 감소하 게 되어 동일한 채널 환경에서 종래의 8-VSB 방식보다 더 열악한 수신 성능을 갖게 된다는 문제점이 있다. (도 4는 필립스가 제안한 강인 데이터 트렐리스 코딩 블록 도)

【발명이 이루고자 하는 기술적 과제】

본 발명은, 상기한 바와 같은 문제점을 해결하기 위하여 제안된 것으로, Hybrid-VSB 방식은 종래기술인 Philips의 P-2VSB 방식, 한국전자통신연구원의 E-4VSB 방식과 E-8VSB 방식을 일정한 비율로 혼합하여 성능을 개선시키는데 그 목적이 있다.

【발명의 구성】

<23>

본 발명은 차세대 텔레비전 시스템 위원회(Advanced Television System Committee, ATSC)의 디지털 텔레비전(Digital Television, DTV) 표준(A/53)에 관한수신 성능 개선 작업으로 진행되고 있는 이중 스트림을 이용한 송수신용 DTV 송수신 장치의 개발과 관련 Hybrid-VSB 방식을 이용한 강인 데이터 생성 방법에 관한것이다. Hybrid-VSB 방식은 종래기술인 Philips의 P-2VSB 방식, 한국전자통신연구원의 E-4VSB 방식과 E-8VSB 방식을 일정한 비율로 혼합하여 성능을 개선시키는데그 목적을 두고 있다.

이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 방법 및 이를 사용하는 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시예들은 원칙적으로, 본 발

명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와같이 특별히 열거된 실시예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.

- 또한, 본 발명의 원리, 관점 및 실시예들 뿐만 아니라 특정 실시예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한 이러한 균등물들은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든소자를 포함하는 것으로 이해되어야 한다.
- <27> 따라서, 예를 들어, 본 명세서의 흐름도, 개념도가 판독 가능한 매체에 실질적으로 나타낼 수 있고 컴퓨터 또는 프로세서가 명백히 도시되었는지 여부를 불문하고 컴 퓨터 또는 프로세서에 의해 수행되는 다양한 프로세스를 나타내는 것으로 이해되어 야 한다.
- 본 발명이 적용되는 프로세서는 적절한 소프트웨어와 관련하여 소프트웨어를 실행할 능력을 가진 하드웨어의 사용으로 제공될 수 있다. 프로세서에 의해 제공될 때, 상기 기능은 단일 전용 프로세서, 단일 공유 프로세서 또는 복수의 개별적 프로세서에 의해 제공될 수 있고, 이들 중 일부는 공유될 수 있다.
- 또한 프로세서, 제어 또는 이와 유사한 개념으로 제시되는 용어의 명확한 사용은 소프트웨어를 실행할 능력을 가진 하드웨어를 배타적으로 인용하여 해석되어서는 아니되고, 제한 없이 디지털 신호 프로세서(DSP) 하드웨어, 소프트웨어를 저장하기 위한 롬(ROM), 램(RAM) 및 비 휘발성 메모리를 암시적으로 포함하는 것으로이해되어야 한다. 주지관용의 다른 하드웨어도 포함될 수 있다.

<30> Hybrid-VSB 방식에서 가능한 조합은 다음과 같다.

<31> P-2VSB + E-8VSB

<32> P-2VSB + E-4VSB

<33> E-4VSB + E-8VSB

<35>

<36>

<34> P-2VSB + E-4VSB + E-8VSB

P-2VSB + E-8VSB

본 Hybrid-VSB 방식은 Philips의 P-2VSB 방식과 한국전자통신연구원의 E-8VSB 방식을 혼합하여 강인 데이터를 생성한다. 종래방식은 도 4 의 P-2VSB 방식혹은 도 1 의 E-8VSB 방식 중 한가지로 강인 데이터를 전송하였다. Philips의 P-2VSB 방식은 다중경로 채널에서 우수한 성능을 보이나 {-7, -5, 5, 7}의 4개의 레벨을 사용하여 강인 데이터를 나타내는 심볼의 평균 전력이 종래의 8-VSB 방식에비해 증가한다는 문제점이 있다. 반면에 한국전자통신연구원에서 제안한 E-8VSB 방식은 심볼의 평균 전력이 증가하는 문제는 없으나, 종래의 8-VSB 방식과 동일한 {-7, -5, -3, -1, 1, 3, 5, 7}의 8레벨을 사용하므로 다중경로 채널에서 P-2VSB 방식에비해 열악한 성능을 보이는 문제점이 있다. 따라서 제안한 E-8VSB방식과 P2-VSB방식을 혼합하여 강인 데이터를 생성하는 Hybrid-VSB 방식은 그 혼합 비율에 따라 수신 성능 개선을 가져올 수 있다. 본 Hybrid-VSB 방식이 최적의 성능을 보이기

위해서는 P-2VSB방식의 평균전력 증가의 영향이 제한되도록 P-2VSB 방식에 의하여 강인 데이터를 전송하는 비율을 전체 데이터의 33% 이하가 되도록 한다. 표 3은 P-2VSB 방식으로 전송하는 강인 패킷의 위치를 연속되는 두 패킷의 거리가 3 이상이되도록 유지함으로써 최적의 성능을 보여줄 수 있는 강인 패킷의 삽입 방법을 나타낸 것이다. 한국전자통신연구원이 제안한 E-8VSB 방식 이외에도 Zenith/ATI 가 제안한 E-8VSB방식을 포함한 다른 모든 구조의 16상태 8 레벨 트렐리스 코딩 방식도이와 동일하게 적용할 수 있다.

【班 3】

패킷번호	패킷종류		
0	강인(P2)		
1	강인(E8)		
2	강인(E8)		
3	강인(P2)		
4	강인(E8)		
5	강인(E8)		
6	강인(P2)		
7	강인(E8)		
8	강인(E8)		
9	강인(P2)		
10	강인(E8)		
11	강인(E8)		
12	강인(P2)		
13	강인(E8)		
14	강인(E8)		
15	강인(P2)		
16	강인(E8)		
	•••		

 <38>
 표 3. Philips의 P-2VSB 방식과 16 상태를 이용한 트렐리스 코딩 방식을 혼합한 Hybrid-VSB 방식의 강인 패킷 삽입 방법

<39> **P-2VSB + E-4VSB**

<40>

본 Hybrid-VSB 방식은 Philips의 P-2VSB 방식과 한국전자통신연구원의 E-4VSB 방식을 혼합하여 강인 데이터를 생성한다. 종래방식은 도 4 의 P-2VSB 방식 혹은 도 2, 도 3 의 E-4VSB 방식 중 한가지로 강인 데이터를 전송하였다. Philips 의 P-2VSB 방식은 다중경로 채널에서 우수한 성능을 보이나 {-7, -5, 5, 7}의 4개 의 레벨을 사용하여 강인 데이터를 나타내는 심볼의 평균 전력이 종래의 8-VSB 방 식에 비해 증가한다는 문제점이 있다. 반면에 한국전자통신연구원에서 제안한 E-4VSB 방식은 심볼의 평균 전력이 증가하는 문제는 없으나, 강인 데이터의 성능을 결정하는 트렐리스 인코더의 자유거리 (free distance) 가 기존의 표준 8-VSB방식 의 6에 비해 별로 크지 않은 으로 AWGN 채널 환경에서 성능 개선이 P-2VSB 방식 보다 작은 것으로 나타났다. 따라서 제안한 E-4VSB방식과 P2-VSB방식을 혼합한 Hybrid-VSB 방식은 P-2VSB방식의 평균전력의 증가로 인한 성능 열화 문제가 발생하 지 않도록 P-2VSB 방식에 의하여 강인 데이터를 전송하는 비율을 전체 데이터의 33% 이내로 제한함으로써 수신 성능 개선을 가져올 수 있다. 본 Hybrid-VSB 방식이 최적의 성능을 보이기 위해서는 표 4과 같이 Philips의 P-2VSB 방식으로 전송하는 강인 패킷의 위치를 연속되는 두 패킷의 거리가 3 이상이 되도록 유지시켜야 한다.

【丑 4】

패킷번호	패킷종류			
0	강인(P2)			
1	강인(E4)			
2	강인(E4)			
3	강인(P2)			
4	강인(E4)			
5	강인(E4)			
6	강인(P2)			
7	강인(E4)			
8	강인(E4)			
9	강인(P2)			
10	강인(E4)			
11	강인(E4)			
12	강인(P2)			
13	강인(E4)			
14	강인(E4)			
15	강인(P2)			
16	강인(E4)			

<42>

<43>

표 4. Philips의 P-2VSB 방식과 한국전자통신연구원의 E-4VSB 방식을 혼합한
Hybrid-VSB 방식의 강인 패킷 삽입 방법

E-4VSB + E-8VSB 와 P-2VSB + E-4VSB + E-8VSB

<44>

위와 같은 방식으로 한국전자통신연구원의 E-4VSB 방식과 E-8VSB 방식을 혼합하여 강인 데이터를 생성하는Hybrid-VSB 방식, Philips의 P-2VSB방식과 한국전자 통신연구원의 E-4VSB방식, E-8VSB방식을 모두 혼합하여 강인 데이터를 생성하는 Hybrid-VSB 방식이 가능하다. 이와 같은 다양한 Hybrid-VSB 방식을 제공함으로써 방송사들은 특정한 용도와 요구되는 강인성에 따라 적절한 방식을 선택하여 전송할수 있다.

E-8VSB와 P-2VSB를 혼합한 Hybrid-VSB의 실시예

<46>

<45>

본 실시 예에서는 이중 스트림 구조에서 강인 데이터와 일반 데이터의 혼합비율을 50:50으로 하여 실시한다. 종래 방식일 경우 50%의 강인 데이터를 한국전자통신연구원의 E8-VSB 방식이나 Philips의 P-2VSB방식 중 한가지로 전송하도록 되어있다. 본 실시 예에서 사용하는 Hybrid-VSB 는 한국전자통신연구원의 E-8VSB방식으로 전송하는 강인 데이터의 양을 35%, Philips의 P-2VSB 방식으로 전송하는 강인데이터의 양을 15%로 나누어 실시한다. 강인데이터가 50%인 경우 강인패킷의 수는 162개 이므로, 한국전자통신연구원의 E-8VSB방식으로 전송하는 강인패킷의 수는 108개, Philips의 P-2VSB방식으로 전송하는 강인패킷의 수는 54개 이다. 이와같이 한국전자통신연구원의 E-8VSB를 35%, Philips의 P-2VSB를 15% 혼합하여 강인데이터의 50%를 전송하고, 일반 데이터를 50% 전송할 때 최적의 성능을 보이는 패킷의 삽입 위치는 표 5 과 같다.

【班 5】

패킷번호	패킷종류	패킷번호	패킷종류	패킷번호	패킷종류
0	강인(P2)	18	강인(P2)		
1	강인(E8)	19	강인(E8)	162	일반
2	강인(E8)	25	강인(E8)	163	일반
3	강인(P2)	21	강인(P2)	164	일반
4	강인(E8)	22	강인(E8)		
5	강인(E8)	23	같인(E8)	281	일반
6	강인(P2)	21	강인(P2)	282	일반
7	강인(E8)	25	강인(E8)	283	일반
8	강인(E8)	26	강인(E8)	284	일반
9	강인(P2)	27	강인(P2)	285	일반
10	강인(E8)	28	강인(E8)	286	일반
11	강인(E8)	25	강인(E8)		•••
12	강인(P2)	30	강인(P2)	306	일반
13	강인(E8)	31	강인(E8)	307	일반
14	강인(E8)	32	강인(E8)	308	일반
15	강인(P2)	33	강인(P2)	309	일반
16	강인(E8)	34	강인(E8)	310	일반
17	강인(E8)	35	강인(E8)	311	일반

표 5. E-8VSB(35%), P-2VSB(15%), 일반데이터(50%)를 혼합한 실시예 (강인
 (E8): 한국전자통신연구원의 E8-VSB로 전송되는 강인패킷, 강인(P2): Philips의
 P-2VSB로 전송되는 강인패킷, 일반: 일반 패킷)

표 5 와 같이 Philips의 P-2VSB 로 전송하는 강인 패킷의 위치는 연속되는 두 패킷의 거리가 3 이상인 경우 최적의 성능을 보여준다.

이상에서 설명한 본 발명은 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지 식을 가진 자에게 있어 명백할 것이다.

【발명의 효과】

<5l> 따라서, 상기한 바와 같은 본 발명은, 종래방식에 비하여 송수신 성능을 개선시킬 수 있는 효과가 있다.

【특허청구범위】

【청구항 1】

Philips의 P-2VSB방식과 한국전자통신연구원의 E-8VSB방식을 혼합하여 강인데이터를 생성하는 Hybrid-VSB 방식

【청구항 2】

제 1 항 에 있어서,

한국전자통신연구원의 E-8VSB 방식 이외에16 상태를 이용한 모든 8 레벨 트렐리스 코딩 방식(Zenith/ATI의 E-8VSB 방식 포함) 과 Philips의 P-2VSB 방식을 혼합하여 강인 데이터를 생성하는 Hybrid-VSB 방식

【청구항 3】

제 1 항 또는 제 2 항에 있어서,

Philips의 P-2VSB방식에 의하여 강인 데이터를 전송하는 비율을 전체 데이터의 33% 이내로 제한하는 방법

【청구항 4】

제 1 항 내지 제 3 중 어느 한 항에 있어서,

표 3에 도시한 강인 패킷 삽입방법

【청구항 5】

Philips의 P-2VSB방식과 한국전자통신연구원의 E-4VSB방식을 혼합하여 강인데이터를 생성하는 Hybrid-VSB 방식

【청구항 6】

제 5 항에 있어서,

Philips의 P-2VSB방식에 의하여 강인 데이터를 전송하는 비율을 전체 데이터의 33% 이내로 제한하는 방식

【청구항 7】

제 5 항 또는 제 6 항 에 있어서,

표 4 에 도시한 강인 패킷 삽입방법.

【청구항 8】

한국전자통신연구원의 E-4VSB방식과 E-8VSB 방식을 혼합하여 강인 데이터를 생성하는 Hybrid-VSB 방식

【청구항 9】

Philips의 P-2VSB방식과 한국전자통신연구원의 E-4VSB 방식, E-8VSB방식을 혼합하여 강인 데이터를 생성하는 Hybrid-VSB 방식

[도 1]

[도 2]

[도 3]

[도 4]

