Университет ИТМО

Проект

по дисциплине «Визуализация и моделирование»

Автор: Логвинов Лев Анатольевич

Поток: 11.03.02 Группа: К3220 Факультет: ИКТ

Преподаватель: Чернышева А.В.

Ссылка на датасет: Датасет

После обработки данный датасет содержит данные о погодных храктеристиках в некотором городе и был ли там дождь в этот день.

Название столбца	Даннные, хранящиеся в	Тип данных
	столбце	
TempAvgF	Температура в градусах	Целое число
	Фаренгейта	
DewPointAvgF	Точка росы в градусах Фа-	Число с плавающей
	ренгейта	точкой
HumidityAvgPercent	Влажность в процентах	Число с плавающей
		точкой
SeaLevelPressureAvgInches	Давление на уровне моря в	Число с плавающей
	дюймах ртутного столбца	точкой
VisibilityAvgMiles	Видимость в милях	Число с плавающей
		точкой
WindAvgMPH	Скорость ветра в милях в	Число с плавающей
	час	точкой
PrecipitationSumInches	Общее количество осадков	Число с плавающей
		точкой
Events	Был дождь или нет	Целое число

Всего в датасете 1307 строк, 80% из которых мы зададим как тренировочные, а остальные 20% - как тестовые. Посмотрим, как отработает наивный байесовский классификатор на представленных данных. Получившаяся точность - 87%, является довольно неплохим результатом. Построим кривую рабочей характеристики приемника.

Теперь применим метод ближайших соседей для того же соотношения тренировочных и тестовых данных. Точность классификации при разных k примерно одинакова (около 80%), однако при k=2 является наибольшей и равна 84%. Построим кривую рабочей характеристики приемника.

Представим обе кривые на одном графике. Кривые ROC обычно показывают истинное положительное значение по оси Y и ложное срабатывание по оси X. Это означает, что верхний левый угол графика является «идеальной» точкой: ложноположительный показатель равен нулю, а истинный положительный показатель равен единице. Это означает, что большая площадь под кривой (AUC) обычно лучше. Как видно из графика, у нас получился хороший результат и для байесовского классификатора, и для метода KNN (при k=2).

