Spatial sensitivity of the evolutionary swarm chemistry model

J. Raimbault^{1,2,3,4,*}
* juste.raimbault@ign.fr

¹ LASTIG, IGN-ENSG
 ²CASA, UCL
 ³UPS CNRS 3611 ISC-PIF
 ⁴UMR CNRS 8504 Géographie-cités

ALife 2024
Parallel session 2: Artificial Chemistry
July 22th 2024

Evolution and space

- \rightarrow role of spatial structure and dynamics in evolution [Lion and Baalen, 2008]
- ightarrow niche construction linked to spatial effects [Silver and Di Paolo, 2006]
- \rightarrow [Holland, 2012]'s theory for complex adaptive systems links spatial boundaries with niches
- \rightarrow biogeography optimisation algorithms rely on island geography [Simon, 2008]

Spatial sensitivity of social simulation models

Raimbault, J., Cottineau, C., Le Texier, M., Le Nechet, F., Reuillon, R. (2019). Space Matters: Extending Sensitivity Analysis to Initial Spatial Conditions in Geosimulation Models. *Journal of Artificial Societies and Social Simulation*, 22(4).

Raimbault, J., Perret, J., & Reuillon, R. (2020). A scala library for spatial sensitivity analysis. GISRUK 2020 Proceedings, 32.

Raimbault, J. (2019). Second-order control of complex systems with correlated synthetic data. *Complex Adaptive Systems Modeling*, 7(1), 1-19.

Raimbault, J., Perret, J. (2019). Generating urban morphologies at large scales. In *Artificial Life Conference Proceedings* (pp. 179-186).

Research objective

- \rightarrow Does the role of space in socio-spatial systems transfer to other disciplines?
- \rightarrow ALife as an interdisciplinary field to investigate spatial effects in various models.

Contribution: considering Swarm Chemistry as an iconic model in ALife [Sayama, 2009], we investigate how different types of spatial structures for selection rules influence outcomes in the evolutionary swarm chemistry model [Sayama, 2018].

Evolutionary swarm chemistry

- "Static" swarm chemistry model [Sayama, 2009]: self-propelled particles with kinetic parameters (c_1 cohesion, c_2 alignement, c_3 separation), self-organise into spatial patterns
- Evolutionary dynamics on long times [Sayama, 2018] induced by mutation in particle parameters and transmission occurring at particle collision
- Different rules for parameters transmission: faster transmits, slower, local majority, behind, . . .
- Rules can be changed in space and time to foster evolutionary dynamics: in [Sayama, 2018], particles in half of the space switch their rule (faster/slower) during a time window

Spatial generators

→ introducing an heterogeneous spatial context for evolutionary rules (random among "Faster", "Slower", "Behind", "Majority" and "Majority Relative"), randomly generated: (i) uniform (baseline), (ii) random, (iii) four quadrant split, (iv) polycentric with Zipf's law inspired by urban systems [Pumain et al., 2006] [Lemoy and Caruso, 2020]

Indicators and experimental setup

Indicators: summary statistics on main kinetic parameters on the swarm $\bar{c}_1, \bar{c}_2, \bar{c}_3, \sigma(c_1), \sigma(c_2), \sigma(c_3)$

Swarm parameters at default values [Sayama, 2018]; swarm size N=200 and final time $t_f=10000$; initialised with 20 random and 180 inactive particles.

Application of the **PSE** diversity search algorithm [Chérel et al., 2015] to obtain a feasible space maximising diversity for indicators, with free parameters random seed and type of spatial generator.

Model implementation

Model reimplemented in scala, based on the open source java implementation by [Sayama, 2018]

Open git repository: https://github.com/JusteRaimbault/ SwarmChemistrySpatialSensitivity

Coupled with the spatial structure generators from [Raimbault et al., 2020] and integrated into the OpenMOLE platform for model exploration and validation [Reuillon et al., 2013]

Results: feasible spaces

Results: statistical analysis

 \rightarrow t-tests to compare statistical distributions of each generator on each indicator.

Significant differences:

- $\sigma(c_1)$: zipf uniform, p = 0.055
- \bar{c}_2 : split uniform, p = 0.057
- \bar{c}_2 : random zipf : p = 0.017
- \bar{c}_2 : zipf uniform : p = 0.005
- \rightarrow average alignement is the parameter which is the most influenced by the spatial structure of evolution; Zipf's law spatial context has the strongest effect.

Discussion

Main result: proof-of-concept of spatial sensitivity in the swarm chemistry model, and more generally in ALife models.

Next steps:

- more experiments to link type of spatial structure to swarm typology
- better qualitative understanding of spatial evolutionary dynamics and of the emerging biogeography
- other types of spatial generators

Conclusion: spatial sensitivity across disciplines; application to more realistic evolutionary processes?

References I

Chérel, G., Cottineau, C., and Reuillon, R. (2015).

Beyond corroboration: Strengthening model validation by looking for unexpected patterns.

PloS one, 10(9):e0138212.

Holland, J. H. (2012).

Signals and boundaries: Building blocks for complex adaptive systems.

Mit Press.

Lemoy, R. and Caruso, G. (2020).

Evidence for the homothetic scaling of urban forms. *Environment and Planning B: Urban Analytics and City Science*, 47(5):870–888.

Lion, S. and Baalen, M. v. (2008). Self-structuring in spatial evolutionary ecology. *Ecology letters*, 11(3):277–295.

References II

Pumain, D., Paulus, F., Vacchiani-Marcuzzo, C., and Lobo, J. (2006).

An evolutionary theory for interpreting urban scaling laws. *Cybergeo: European Journal of Geography.*

Raimbault, J. (2019).

Second-order control of complex systems with correlated synthetic data.

Complex Adaptive Systems Modeling, 7(1):1–19.

Raimbault, J., Cottineau, C., Le Texier, M., Le Nechet, F., and Reuillon, R. (2019).

Space matters: Extending sensitivity analysis to initial spatial conditions in geosimulation models.

Journal of Artificial Societies and Social Simulation, 22(4).

References III

Raimbault, J. and Perret, J. (2019).

Generating urban morphologies at large scales.

In *The 2019 Conference on Artificial Life*, pages 179–186. MIT Press.

Raimbault, J., Perret, J., and Reuillon, R. (2020). A scala library for spatial sensitivity analysis. GISRUK.

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). Openmole, a workflow engine specifically tailored for the distributed exploration of simulation models.

Future Generation Computer Systems, 29(8):1981–1990.

Sayama, H. (2009).
Swarm chemistry.
Artificial life, 15(1):105–114.

References IV

journals-info

Sayama, H. (2018).

Seeking open-ended evolution in swarm chemistry ii: Analyzing long-term dynamics via automated object harvesting.

In Artificial Life Conference Proceedings, pages 59–66. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA

Silver, M. and Di Paolo, E. (2006).

Spatial effects favour the evolution of niche construction.

Theoretical Population Biology, 70(4):387–400.

Simon, D. (2008).
Biogeography-based optimization.

IEEE transactions on evolutionary computation, 12(6):702–713.