COMP9414: Artificial Intelligence Solutions Week 5: Propositional Logic

1. (i)
$$(\neg Ja \land \neg Jo) \to T$$

Where:

Ja: Jane is in town

Jo: John is in town

T: we will play tennis

(ii)
$$R \vee \neg R$$

Where:

R: it will rain today

(iii)
$$\neg S \rightarrow \neg P$$
, or $\neg (P \land \neg S)$ (check these are equivalent)

Where:

S: you study

P: you will pass this course

2. (i)
$$P \to Q$$

 $\neg P \lor Q \text{ [Remove } \to \text{]}$

(ii)
$$(P \rightarrow \neg Q) \rightarrow R$$

 $\neg(\neg P \lor \neg Q) \lor R \text{ [Remove } \rightarrow]$

 $(\neg \neg P \land \neg \neg Q) \lor R$ [De Morgan]

 $(P \wedge Q) \vee R$ [Double Negation]

 $(P \vee R) \wedge (Q \vee R)$ [Distribute \vee over \wedge]

(iii) $\neg (P \land \neg Q) \rightarrow (\neg R \lor \neg Q)$

 $\neg\neg(P \land \neg Q) \lor (\neg R \lor \neg Q) \text{ [Remove } \rightarrow]$

 $(P \land \neg Q) \lor (\neg R \lor \neg Q)$ [Double Negation]

 $(P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R \lor \neg Q)$ [Distribute \lor over \land]

This can be further simplified to $(P \vee \neg R \vee \neg Q) \wedge (\neg Q \vee \neg R)$

and even further simplified to $\neg Q \lor \neg R$, since $\neg Q \lor \neg R$ subsumes $P \lor \neg R \lor \neg Q$

		Ρ	Q	P o Q	$\neg Q$	$\neg P$
		T	T	T	F	F
3.	(i)	T	F T	F	T	F
		F	T	T	F	T
		F	F	T	T	T

In all rows where both $P \to Q$ and $\neg Q$ true, $\neg P$ is true. Therefore, valid inference.

	P	Q	$\neg P$	$\neg Q$	$P \rightarrow Q$	$\neg Q \rightarrow \neg P$
	T	T	F	F	T	T
(ii)	T	F	F	T	F	F
	F	T	T	F	T	T
	F	\overline{F}	T	T	T	T

In all rows where both $P \to Q$ true, $\neg Q \to \neg P$ is true. Therefore, valid inference.

					-	
	P	Q	R	$P \rightarrow Q$	$Q \to R$	$P \to R$
	T	T	T	T	T	T
	T	T	F	T	F	F
	T	F	T	F	T	T
(iii)	T	F	F	F	T	F
	F	T	T	T	T	T
	F	T	F	T	F	T
	F	F	T	T	T	T
	F	F	F	T	T	T

In all rows where both $P \to Q$ and $Q \to R$ true, $P \to R$ is true. Therefore, valid inference.

$$\begin{array}{ll} \text{4.} & \text{(i)} \ \operatorname{CNF}(P \to Q) \\ & \Leftrightarrow \neg P \lor Q \ [\operatorname{Remove} \to] \end{array}$$

$$\begin{array}{l} \operatorname{CNF}(\neg Q) \\ \Leftrightarrow \neg Q \end{array}$$

$$CNF(\neg \neg P)$$

 $\Leftrightarrow P$ [Double Negation]

Proof:

- $\neg P \lor Q$ [Hypothesis] 1.
- 2. $\neg Q$ [Hypothesis]
- 3. P[Negation of Query]
- $4. \quad Q$ 1, 3 Resloution
- 5.2, 4 Resloution

(ii)
$$\operatorname{CNF}(P \to Q)$$

 $\Leftrightarrow \neg P \lor Q$

$$CNF(\neg(\neg Q \to \neg P))$$

$$\Leftrightarrow \neg(\neg\neg Q \lor \neg P) \text{ [Remove } \rightarrow]$$

$$\Leftrightarrow \neg(Q \vee \neg P)$$
 [Double Negation]

$$\Leftrightarrow \neg Q \wedge \neg \neg P \text{ [De Morgan]}$$

$$\Leftrightarrow \neg Q \land P$$
 [Double Negation]

Proof:

1.
$$\neg P \lor Q$$
 [Hypothesis]

- 2. [Negation of Query] $\neg Q$
- 3. P[Negation of Query]
- 4. $\neg P$ 1, 2 Resolution
- 5.3, 4 Resolution

(iii)
$$P \to Q, Q \to R \vdash P \to R$$

$$\begin{array}{l} \operatorname{CNF}(P \to Q) \\ \Leftrightarrow \neg P \vee Q \end{array}$$

$$CNF(Q \to R)$$

$$\Leftrightarrow \neg Q \lor R$$

$$CNF(\neg(P \to R))$$

- $\Leftrightarrow \neg(\neg P \lor R) \text{ [Remove } \rightarrow]$
- $\Leftrightarrow \neg \neg P \wedge \neg R$ [De Morgan]
- $\Leftrightarrow P \land \neg R$ [Double Negation)

Proof:

- 1. $\neg P \lor Q$ [Hypothesis]
- 2. $\neg Q \vee R$ [Hypothesis] P3.
- [Negation of Query] 4. $\neg R$ [Negation of Query]
- 5. Q1, 3 Resolution
- 6. R2, 5 Resolution
- 7. 4, 6 Resolution

		P	Q	$\neg P$	$P \lor Q$	$(P \lor Q) \land \neg P$	$((P \lor Q) \land \neg P) \to Q$
		T	T	F	T	F	T
5.	(i)	T	F	F	T	F	T
		F	T	T	T	T	T
		F	F	T	F	F	T

Last column is always true no matter what truth assignment to P and Q. Therefore $((P \lor Q) \land \neg P) \to Q$ is a tautology.

(ii) $S = ((P \to Q) \land \neg (P \to R)) \to (P \to Q)$

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$\neg (P \to R)$	$(P \to Q) \land \neg (P \to R)$	S
T	T	T	T	T	F	F	T
T	T	F	T	F	T	T	T
T	F	T	F	T	F	F	T
T	F	F	F	F	T	F	T
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	F	F	T
F	F	F	T	T	F	F	T

Last column is always true no matter what truth assignment to P, Q and R. Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

	P	$\neg P$	$\neg P \wedge P$	$\neg(\neg P \land P)$	$\neg(\neg P \land P) \land P$
(iii)	T	F	F	T	T
	F	T	F	T	F

Last column is not always true. Therefore $\neg(\neg P \land P) \land P$ is not a tautology.

(iv) $(P \lor Q) \to \neg(\neg P \land \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \land \neg Q$	$\neg(\neg P \land \neg Q)$	$(P \lor Q) \to \neg(\neg P \land \neg Q)$
T	T	F	F	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	F	T	F	$\mid T \mid$

Last column is always true no matter what truth assignment to P and Q. Therefore $(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$ is a tautology.

(i) $CNF(\neg(((P \lor Q) \land \neg P) \to Q))$

 $\Leftrightarrow \neg(\neg((P \lor Q) \land \neg P) \lor Q) \text{ [Remove } \rightarrow]$

 $\Leftrightarrow \neg \neg ((P \lor Q) \land \neg P) \land \neg Q \text{ [De Morgan]}$

 $\Leftrightarrow (P \lor Q) \land \neg P \land \neg Q$ [Double Negation]

 $\begin{array}{c} \text{Proof:} \\ 1. \quad P \vee Q \end{array}$ [Negated Query]

 $\neg P$ [Negated Query]

 $\neg Q$ [Negated Query]

4. Q1, 2 Resolution

5.3, 4 Resolution

Therefore $\neg(((P \lor Q) \land \neg P) \to Q)$ is a tautology.

(ii) $CNF(\neg(((P \to Q) \land \neg(P \to R)) \to (P \to Q)))$

 $\Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg(\neg P \lor R)) \lor (\neg P \lor Q))$ [Remove \rightarrow]

 $\Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg (\neg P \lor R)) \land \neg (\neg P \lor Q)$ [De Morgan]

 $\Leftrightarrow (\neg P \lor Q) \land (\neg \neg P \land \neg R) \land (\neg \neg P \land \neg Q)$ [Double Negation and De Morgan]

 $\Leftrightarrow (\neg P \lor Q) \land (P \land \neg R) \land (P \land \neg Q)$ [Double Negation]

Proof:

 $\neg P \lor Q$ [Negated Query]

P[Negated Query]

 $\neg R$ 3. [Negated Query]

 $\neg Q$ 4. [Negated Query]

Q1, 2 Resolution

4, 5 Resolution

Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

(iii)
$$\operatorname{CNF}(\neg(\neg(\neg P \land P) \land P))$$

 $\Leftrightarrow \neg \neg(\neg P \land P) \lor \neg P \text{ [De Morgan]}$
 $\Leftrightarrow (\neg P \land P) \lor \neg P \text{ [Double Negation]}$
 $\Leftrightarrow (\neg P \lor \neg P) \land (P \lor \neg P) \text{ [Distribute } \land \text{ over } \lor]$
 $\Leftrightarrow \neg P \text{ [Remove repetition and tautologies]}$

Proof:

1.
$$\neg P$$
 (Negated Query)

Cannot obtain empty clause using resolution so $\neg(\neg P \land P) \land P$ is not a tautology.

$$\begin{array}{ll} \text{(iv)} & \operatorname{CNF}(\neg((P \vee Q) \to \neg(\neg P \wedge \neg Q))) \\ & \Leftrightarrow \neg(\neg(P \vee Q) \vee \neg(\neg P \wedge \neg Q)) \text{ [Remove } \to] \\ & \Leftrightarrow \neg\neg(P \vee Q) \wedge \neg\neg(\neg P \wedge \neg Q) \text{ [De Morgan]} \\ & \Leftrightarrow (P \vee Q) \wedge \neg P \wedge \neg Q \text{ [Double Negation)} \\ \end{array}$$

- $\begin{array}{c} \text{Proof:} \\ 1. \quad P \vee Q \end{array}$ [Negated Query]
- $2. \neg Q$ [Negated Query]
- 3. $\neg P$ [Negated Query]
- 4. P 1, 2 Resolution
- 5.3, 4, Resolution

Therefore $(P \lor Q) \to \neg(\neg P \land \neg Q)$ is a tautology.