Homework 5 MATH CS 121 Intro to Probability

Harry Coleman

November 30, 2020

Exercise 1

Let $X \stackrel{d}{=} \operatorname{Bin}(4,1/3)$ and $Y \stackrel{d}{=} \operatorname{Geom}(1/2)$. For each choice of Z, find the range (image) $R \subset \mathbb{R}$ of Z defined by

$$R := \{ x \in \mathbb{R} : \exists \omega \in \Omega \text{ s.t. } Z(\omega) = x \}$$

and calculate $\mathbb{E}[Z]$:

Exercise 1(a)

$$Z = Y - X$$
.

Proposition 1. $Z(\Omega) = \{-3, -2, -1, 0\} \cup \mathbb{N}$.

Proof. We assume that X and Y are independent variables defined on the probability space Ω . By definition, $X(\Omega) = \{0, 1, 2, 3, 4\}$ and $Y(\Omega) = \mathbb{N}$. Then the independence of X and Y imply that for any $a \in \{0, 1, 2, 3, 4\}$ and $b \in \mathbb{N}$, we can find some $\omega \in \Omega$ such that $X(\omega) = a$ and $Y(\omega) = b$. Thus,

$$\begin{split} Z(\Omega) &= \{Z(\omega) : \omega \in \Omega\} \\ &= \{Y(\omega) - X(\omega) : \omega \in \Omega\} \\ &= \{b - a : a \in \{0, 1, 2, 3, 4\}, \ b \in \mathbb{N}\} \\ &= \{-3, -2, -1, 0\} \cup \mathbb{N}. \end{split}$$

I know it probably isn't necessary, and there's probably a much more concise ways of proving it, but I went ahead and proved the expected values for general binomial and geometric distributions.

Lemma 1. If $X \stackrel{d}{=} Bin(n,p)$ with $n \in \mathbb{N}$ and $p \in (0,1)$, then $\mathbb{E}[X] = np$.

Proof. We define the following indicator for each $k \in \{0, ..., n\}$ and $\omega \in \Omega$:

$$I_{X=k}(\omega) = \begin{cases} 1 & \text{if } X(\omega) = k, \\ 0 & \text{if } X(\omega) \neq k. \end{cases}$$

Then, X has the representation

$$X = \sum_{k=0}^{n} k \cdot I_{X=k}.$$

This implies that X is a simple random variable and, therefore, its expected value is given by

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \cdot \mathbb{P}(X = k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1 - p)^{n-k}.$$

Notice that when k = 0, then the summand is zero. Therefore, we can start the indexing of the summation at k = 1, giving us

$$\mathbb{E}[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k (1-p)^{n-k}.$$

This is very similar to the binomial formula, but with an extra factor of k in each summand. Our goal, now, is to simplify $\mathbb{E}[X]$ by getting it in terms of the binomial formula. First, for a fixed $k \in \{1, ..., n\}$, we look at the first two factors of the summand and expand the binomial coefficient; we derive the following equality:

$$k \binom{n}{k} = k \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k-1)!(n-k)!}$$

$$= (n-k+1) \frac{n!}{(k-1)!(n-k+1)!}$$

$$= (n-k+1) \binom{n}{k-1}.$$

Then substituting this back into our equation for $\mathbb{E}[X]$ and obtain

$$\mathbb{E}[X] = \sum_{k=1}^{n} (n-k+1) \binom{n}{k-1} p^k (1-p)^{n-k}.$$

We re-index the summation to be from 0 to n-1 and replace k with k+1 in the summand to obtain

$$\mathbb{E}[X] = \sum_{k=0}^{n-1} (n-k) \binom{n}{k} p^{k+1} (1-p)^{n-k-1}.$$

To make the exponents of p and (1-p) more favorable, we pull a common factor from all of the summands, so that

$$\mathbb{E}[X] = \frac{p}{1-p} \sum_{k=0}^{n-1} (n-k) \binom{n}{k} p^k (1-p)^{n-k}.$$

We now notice that if we were to have k = n, then the first factor of n - k would make the who term zero. Therefore, we can increase the indexing of summation up to n and not change its value, giving us

$$\mathbb{E}[X] = \frac{p}{1-p} \sum_{k=0}^{n} (n-k) \binom{n}{k} p^k (1-p)^{n-k}.$$

We now distribute over (n-k) and split the summation into two recognizable expressions.

$$\mathbb{E}[X] = \frac{p}{1-p} \left(n \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} - \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} \right)$$

$$= \frac{p}{1-p} \left(n(p+1-p)^n - \mathbb{E}[X] \right)$$

$$= \frac{p}{1-p} (n - \mathbb{E}[X]).$$

Finally, we solve for $\mathbb{E}[X]$ to complete the proof.

$$(1-p)\mathbb{E}[X] = np - p\mathbb{E}[X],$$

$$(1-p+p)\mathbb{E}[X] = np,$$

$$\mathbb{E}[X] = np.$$

Lemma 2. If
$$Y \stackrel{d}{=} \text{Geom}(p)$$
 with $n \in \mathbb{N}$ and $p \in (0,1]$, then $\mathbb{E}[Y] = \frac{1}{p}$.

Unlike Lemma 1, the proof of Lemma 2 will involve defining, specifically, the probability space Ω for which Y is a random variable. We do this under the assumption that the expected value of a geometric random variable is the same, regardless of the particular probability space.

Proof. We begin by defining a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. First, Ω will be the set of all infinite sequences in the set $\{0, 1\}$, i.e.,

$$\Omega := \{ \{\omega_n\}_{n \in \mathbb{N}} : \omega_k \in \{0, 1\} \text{ for all } k \in \mathbb{N} \} = \{0, 1\}^{\mathbb{N}}.$$

We could define \mathcal{F} to be the power set of Ω , but because Ω is uncountable, then the power set is not the most convenient σ -algebra to define. Instead, since we are chiefly concerned with the probabilities of Y attaining certain values, it will be beneficial to have $\mathcal{F} = \sigma(Y)$. If we can do this, it will be easier to define $\mathbb{P} : \mathcal{F} \to [0,1]$ in such a way that makes finding $\mathbb{P}(Y = k)$, for any $k \in \mathbb{N}$, more natural.

First, for each $k \in \mathbb{N}$, we define

$$A_k := \{\{\omega_n\}_{n \in \mathbb{N}} \in \Omega : \omega_1 = \dots = \omega_{k-1} = 0, \ \omega_k = 1\}.$$

Taking a zero to mean a failure and a one to mean a success, then A_k is precisely what we want $Y^{-1}(k)$ to be: the set of sequences of trials in which the first k-1 trials are failures and the kth trial is a success. Additionally, for reasons which will soon become clear, we define

$$A_{\infty} := \{\{\omega_n\}_{n \in \mathbb{N}} \in \Omega : \omega_k = 0 \text{ for all } k \in \mathbb{N}\} = \{\{0\}_{n \in \mathbb{N}}\},\$$

which is the singleton of the sequence in Ω of all zeros. Note that this definition of the A_k 's imply that they are all pairwise disjoint. Obviously, A_{∞} is disjoint from A_k for all $k \in \mathbb{N}$. Now if $k, \ell \in \mathbb{N}$ with $k \neq \ell$, then without loss of generality we assume $k < \ell$. Then $\omega \in A_k$ implies that $\omega_k = 1$, so $\omega \notin A_{\ell}$. We now define \mathcal{F} to be closure of the set

$${A_k : k \in \mathbb{N} \cup {\infty}}$$

under countable unions. In other words

$$\mathcal{F} := \{ \cup_{i \in I} A_i : I \subseteq \mathbb{N} \cup \{\infty\} \} .$$

By definition, \mathcal{F} is closed under countable unions, so to show that \mathcal{F} is a σ -algebra, we need only show that \emptyset , $\Omega \in \mathcal{F}$ and that \mathcal{F} is closed under complements. We can either add \emptyset to the definition of \mathcal{F} or consider it to be the result of an empty union; either way, we have $\emptyset \in \mathcal{F}$. To show that $\Omega \in \mathcal{F}$, we claim that

$$\Omega = \bigcup_{k \in \mathbb{N} \cup \{\infty\}} A_k,$$

which is clearly in \mathcal{F} . The inclusion of the union in Ω is trivial, as each A_k is defined to be a subset of Ω . For the opposite inclusion, suppose $\omega = \{\omega_n\}_{n \in \mathbb{N}} \in \Omega$. It is either the case

that ω is a sequence of all zeros or has a one at at least one index. If ω is all zeros, then $\omega = \{0\}_{n \in \mathbb{N}} \in A_{\infty}$. Otherwise, ω has some ones and we define $k = \min\{j \in \mathbb{N} : \omega_j = 1\}$. Then we have

$$\omega_1 = \cdots \omega_{k-1} = 0$$
 and $\omega_k = 1$,

which implies that $\omega \in A_k$. Thus, the equality is proven and we have $\Omega \in \mathcal{F}$. Along with the fact that the A_k 's are disjoint, this implies that the set of A_k 's are a partition of Ω . Now to show that \mathcal{F} is closed under complements, let $\bigcup_{i \in I} A_i \in \mathcal{F}$ and consider the complement

$$\left(\bigcup_{i\in I}A_i\right)^C.$$

Since Ω is equal to the union of all A_k 's, then

$$\left(\bigcup_{i\in I} A_i\right)^C = \left(\bigcup_{k\in\mathbb{N}\cup\{\infty\}} A_k\right) \setminus \left(\bigcup_{i\in I} A_i\right) = \bigcup_{\substack{k\in\mathbb{N}\cup\{\infty\}\\k\notin I}} A_k.$$

The second equality follows from the fact that the A_k 's are pairwise disjoint. Then if we define $J = (N \cup \{\infty\}) \setminus I \subseteq \mathbb{N} \cup \{\infty\}$, then

$$\left(\bigcup_{i\in I} A_i\right)^C = \bigcup_{i\in J} A_i \in \mathcal{F}.$$

Thus, \mathcal{F} is closed under complements and is, therefore, a σ -algebra.

We now define the probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ on each of the A_k 's by

$$\mathbb{P}(A_k) := \begin{cases} (1-p)^{k-1}p & \text{if } k \in \mathbb{N}, \\ 0 & \text{if } k = \infty. \end{cases}$$

Then for each $\cup_{i\in I} A_i \in \mathcal{F}$, we define

$$\mathbb{P}(\cup_{i\in I}A_i):=\sum_{i\in I}\mathbb{P}(A_i).$$

This map is well-defined since each element of \mathcal{F} only has one representation as the union of A_k 's. Moreover, it is non-negative and for all $\bigcup_{i \in I} A_i \in \mathcal{F}$, we have

$$\mathbb{P}(\cup_{i \in I} A_i) = \sum_{i \in I} \mathbb{P}(A_i)$$

$$\leq \sum_{k \in \mathbb{N} \cup \{\infty\}} \mathbb{P}(A_k)$$

$$= \mathbb{P}(A_\infty) + \sum_{k \in \mathbb{N}} \mathbb{P}(A_k)$$

$$= 0 + \sum_{k \in \mathbb{N}} (1 - p)^{k-1} p$$

$$= \sum_{k=0}^{\infty} (1 - p)^k p.$$

This is a geometric series with common ratio 1-p. And since $p \in (0,1]$, then $1-p \in [0,1)$, so

$$\mathbb{P}(\cup_{i \in I} A_i) \le \sum_{k=0}^{\infty} (1-p)^k p = \frac{p}{1-(1-p)} = \frac{p}{p} = 1.$$

Thus, $\mathbb{P}(\bigcup_{i\in I} A_i) \in [0,1]$. This also shows that $\mathbb{P}(\Omega) = 1$ since

following way:

$$\mathbb{P}(\Omega) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N} \cup \{\infty\}} A_k\right) = \sum_{k \in \mathbb{N} \cup \{\infty\}} \mathbb{P}(A_k) = 1.$$

And by definition, the probability \mathbb{P} of a union of disjoint sets in \mathcal{F} is the sum of the probabilities of the sets. Thus, \mathbb{P} is a probability measure on \mathcal{F} .

We now define the random variable $Y:\Omega\to\mathbb{N}\cup\{\infty\}$ such that

$$Y(\omega) := k, \quad \omega \in A_k, \quad k \in \mathbb{N} \cup \{\infty\}.$$

This is defined for all $\omega \in \Omega$ since the set of A_k 's is a partition of Ω . Our definition of \mathcal{F} makes it clear that Y is \mathcal{F} -measurable, since $Y^{-1}(k) = A_k \in \mathcal{F}$ for all $k \in \mathbb{N} \cup \{\infty\}$. Moreover, $\mathbb{P}(Y = k) = \mathbb{P}(Y^{-1}(k)) = \mathbb{P}(A_k)$ for all $k \in \mathbb{N} \cup \{\infty\}$. Now even though $\infty \notin \mathbb{R}$, we still consider Y to be a function from Ω to \mathbb{R} since $\mathbb{P}(Y = \infty) = \mathbb{P}(A_\infty) = 0$. This means that the range of Y is, effectively, $\mathbb{N} \subseteq \mathbb{R}$, since the only thing Y maps to ∞ is the all-zero sequence $\{0\}_{n \in \mathbb{N}}$. And for all $k \in \mathbb{N}$, we have

$$\mathbb{P}(Y = k) = \mathbb{P}(A_k) = (1 - p)^{k-1}p.$$

Thus, we have that $Y \stackrel{d}{=} \text{Geom}(p)$ is a random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We now construct a sequence of simple random variables $\{Y_n\}_{n\in\mathbb{N}}$ converging to Y in the

$$Y_n = \sum_{k=1}^n k I_{A_k}.$$

Each Y_n is \mathcal{F} -measurable since $Y_n^{-1}(k) = A_k \in \mathcal{F}$ for each $k \in \{1, \ldots, n\}$, where $\{1, \ldots, n\}$ is the range of Y_n . One can see that $Y_n \to Y$ as $n \to \infty$, since for each $\omega \in \Omega$,

$$\lim_{n\to\infty} Y_n(\omega) = \sum_{k=1}^{\infty} k I_{A_k}(\omega).$$

Recall that the set of A_k 's is a partition of Ω , so ω is in some A_ℓ , in which case

$$\lim_{n\to\infty} Y_n(\omega) = \ell I_{A_\ell}(\omega) = \ell = Y(\omega).$$

Now for some $n \in \mathbb{N}$, Y_n is a simple random variable, so we have the expected value

$$\mathbb{E}[Y_n] = \sum_{k=1}^n k \mathbb{P}(A_k) = \sum_{k=1}^n k(1-p)^{k-1} p = p \sum_{k=1}^n k(1-p)^{k-1}.$$

Now since $Y_n \to Y$, we have the

$$\mathbb{E}[Y] = \lim_{n \to \infty} p \sum_{k=1}^{n} k(1-p)^{k-1} = p \sum_{k=1}^{\infty} k(1-p)^{k-1}.$$

We now define the power series

$$F(z) = \sum_{k=1}^{\infty} z^k.$$

Taking the derivative of F, we find

$$F'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \sum_{k=1}^{\infty} z^k = \sum_{k=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}z} z^k = \sum_{k=1}^{\infty} k z^{k-1}.$$

Therefore,

$$\mathbb{E}[Y] = pF'(1-p).$$

Moreover, if |z| < 1, then F(z) is a geometric series with common ratio z and

$$F(z) = \frac{1}{1-z}.$$

Taking the derivative, we find

$$F'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \frac{1}{1-z} = \frac{1}{(1-z)^2}.$$

Now since $p \in (0, 1]$, then $1 - p \in [0, 1)$, so |1 - p| < 1. Thus,

$$\mathbb{E}[Y] = pF'(1-p) = p \cdot \frac{1}{(1-(1-p))^2} = \frac{p}{p^2} = \frac{1}{p}.$$

Proposition 2. For $X \stackrel{d}{=} \text{Bin}(4,1/3)$, $Y \stackrel{d}{=} \text{Geom}(1/2)$, and Z = Y - X, $\mathbb{E}[Z] = 2/3$

Proof. By the linearity of \mathbb{E} proved in Exercise 2, we have

$$\mathbb{E}[Z] = \mathbb{E}[Y - X] = \mathbb{E}[Y] - \mathbb{E}[X].$$

Using the expected values for X and Y found in Lemmas 1 and 2, respectively, we have

$$\mathbb{E}[Z] = \frac{1}{1/2} - 4 \cdot \frac{1}{3} = \frac{2}{3}.$$

Exercise 1(b)

$$Z = X^2 + 3Y.$$

Proposition 3. $Z(\Omega) = \{3k : k \in \mathbb{N}\} \cup \mathbb{P}\{3k+1 : k \in \mathbb{N}\}.$

Proof. Recall that $X(\Omega) = \{0, 1, 2, 3, 4\}$ and $Y(\Omega) = \mathbb{N}$. Then

$$X^{2}(\Omega) = \{k^{2} : k \in X(\Omega)\} = \{0, 1, 4, 9, 16\},\$$

and

$$3Y(\Omega) = \{3k : k \in Y(\Omega)\} = \{3k : k \in \mathbb{N}\}.$$

Now,

$$\begin{split} Z(\Omega) &= \{Z(\omega) : \omega \in \Omega\} \\ &= \{X^2(\omega) + 3Y : \omega \in \Omega\} \\ &= \{a + b : a \in \{0, 1, 4, 9, 16\}, \ b \in \{3k : k \in \mathbb{N}\}. \end{split}$$

Now since 0 and 9 are both multiples of 3 while 1, 4, and 16 are all one more than a multiple of 3, this set can be equivalently written as

$$Z(\Omega) = \{a+b: a \in \{0,1\}, \ b \in \{3k: k \in \mathbb{N}\} = \{3k: k \in \mathbb{N}\} \cup \{3k+1: k \in \mathbb{N}\}.$$

Proposition 4. $\mathbb{E}[Z] = 26/3$.

Proof. We first calculate $\mathbb{E}[X^2]$.

 $\mathbb{E}[X^{2}] = \sum_{k \in X^{2}(\Omega)} k \mathbb{P}(X^{2} = k)$ $= \sum_{k \in X(\Omega)} k^{2} \mathbb{P}(X^{2} = k^{2})$ $= \sum_{k=0}^{4} k^{2} \mathbb{P}(X = k)$ $= \sum_{k=0}^{4} k^{2} \binom{4}{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{4-k}$ $= \frac{8}{3}.$

Then

$$\mathbb{E}[Z] = \mathbb{E}[X^2 + 3Y] = \mathbb{E}[X^2] + 3\mathbb{E}[Y] = \frac{8}{3} + 3\frac{1}{1/2} = \frac{26}{3}.$$

Show that the integral we defined for simple random variables is linear, i.e., for simple random variables X, Y we get that $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ (this of course extends to general random variables).

Proposition 5. For simple random variables X, Y we get that $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.

Proof. Suppose X and Y are simple random variables with

$$X = \sum_{i=1}^{n} a_i I_{A_i}$$
 and $Y = \sum_{j=1}^{m} b_j I_{B_j}$,

where $\{A_i\}$ and $\{B_j\}$ are partitions of Ω . Now let $a, b \in \mathbb{R}$ and consider the random variable aX + bY. For i = 1, ..., n and j = 1, ..., m, we define

$$C_{ij} := A_i \cap B_j$$
.

Now for any $\omega \in \Omega$, we have $\omega \in A_i$ and $\omega \in B_j$ for some i, j. This implies that

$$\omega \in A_i \cap B_j = C_{ij}$$
.

Now if $ij \neq k\ell$, then

$$C_{ij} \cap C_{k\ell} = (A_i \cap B_j) \cap (A_k \cap B_k) = (A_i \cap A_k) \cap (B_j \cap B_e ll).$$

Since $ij \neq k\ell$, then either $i \neq k$, in which case $A_i \cap A_k = \emptyset$, or $j \neq \ell$, in which case $B_j \cap B_\ell = \emptyset$. Either way, we have

$$C_{ij} \cap C_{k\ell} = (A_i \cap A_k) \cap (B_j \cap B_\ell) = \varnothing.$$

Thus, $\{C_{ij}\}$ is a partition of Ω . Similarly, for a fixed i, $\{C_{ij}\}$ is a partition of A_i and for a fixed j, $\{C_{ij}\}$ is a partition of B_j . Therefore,

$$I_{A_i} = \sum_{j=1}^{m} I_{C_{ij}}$$
 and $I_{B_j} = \sum_{i=1}^{n} I_{C_{ij}}$,

which gives us

$$X = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} I_{C_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i I_{C_{ij}}$$

and

$$Y = \sum_{j=1}^{m} b_j \sum_{i=1}^{n} I_{C_{ij}} = \sum_{j=1}^{m} \sum_{i=1}^{n} b_j I_{C_{ij}}.$$

Since the expected value of a simple random variable is independent of its representation, then

$$\mathbb{E}[X] = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i \mathbb{P}(C_{ij}) \quad \text{and} \quad \mathbb{E}[Y] = \sum_{j=1}^{m} \sum_{i=1}^{n} b_j \mathbb{P}(C_{ij}).$$

Now,

$$aX + bY = a\sum_{i=1}^{n} \sum_{j=1}^{m} a_i I_{C_{ij}} + b\sum_{j=1}^{m} \sum_{i=1}^{n} b_j I_{C_{ij}}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} a a_i I_{C_{ij}} + \sum_{j=1}^{m} \sum_{i=1}^{n} b b_j I_{C_{ij}}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (a a_i + b b_j) I_{C_{ij}}.$$

Thus, aX + bY is a simple random variable, with the above representation. Then

$$\mathbb{E}[aX + bY] = \sum_{i=1}^{n} \sum_{j=1}^{m} (aa_i + bb_j) \mathbb{P}(C_{ij})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} aa_i \mathbb{P}(C_{ij}) + \sum_{j=1}^{m} \sum_{i=1}^{n} bb_j \mathbb{P}(C_{ij})$$

$$= a \sum_{i=1}^{n} \sum_{j=1}^{m} a_i \mathbb{P}(C_{ij}) + b \sum_{j=1}^{m} \sum_{i=1}^{n} b_j \mathbb{P}(C_{ij})$$

$$= a \mathbb{E}[X] + b \mathbb{E}[Y].$$

Suppose we play the following game based in tosses of a fair coin. You pay me \$10, and I agree to pay you n^2 if heads comes up first on the *n*th toss. If we play this game repeatedly, how much money do you expect to win or lose per game over the long run?

Proposition 6. We expect to lose \$4.

Proof. Let $X \stackrel{d}{=} \text{Geom}(1/2)$ be the random variable denoting the index of the first occurrence of heads after an arbitrary number of tosses of a fair coin. Then the random variable denoting the amount of money we win in this scenario is given by

$$X^2 - 10$$
.

Then the amount of money we expect to win, in dollars, is given by

$$\mathbb{E}[X^2 - 10] = \mathbb{E}[X^2] - 10.$$

To find $\mathbb{E}[X^2]$, we use that fact that $X \stackrel{d}{=} \text{Geom}(p)$ implies that

$$Var(X) = \frac{1-p}{p^2}.$$

Now using the definition of variance, we find

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \mathbb{E}[X^2 - 2\mathbb{E}[X]X + \mathbb{E}[X]^2]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Therefore,

$$\mathbb{E}[X^2] = \operatorname{Var}(X) + \mathbb{E}[X]^2$$

$$= \frac{1 - 1/2}{(1/2)^2} + \left(\frac{1}{1/2}\right)^2$$

$$= \frac{1 - 1/2}{(1/2)^2} + \left(\frac{1}{1/2}\right)^2$$

$$= \frac{1/2}{1/4} + 4$$

$$= 2 + 4$$

$$= 6.$$

Thus,

$$\mathbb{E}[X^2 - 10] = 6 - 10 = -4,$$

meaning we expect to lose \$4 dollars.

If
$$\mathbb{E}[X] = 1$$
 and $Var(X) = 5$, find

Exercise 4(a)

$$\mathbb{E}[(2+X)^2],$$

First, we use the linearity of expected value.

$$\begin{split} \mathbb{E}[(2+X)^2] &= \mathbb{E}[4+4X+X^2] \\ &= 4+4\mathbb{E}[X] + \mathbb{E}[X^2] \\ &= 4+4\cdot 1 + \mathbb{E}[X^2] \\ &= 8+\mathbb{E}[X^2]. \end{split}$$

Now since $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$, then

$$\mathbb{E}[(2+X)^2] = 8 + \text{Var}(X) + \mathbb{E}[X]^2$$
= 8 + 5 + 1²
= 14.

Exercise 4(b)

$$Var(4+3X)$$
.

We use the definition of variance and the linearity of expected value.

$$Var(4 + 3X) = \mathbb{E}[(4 + 3X - \mathbb{E}[4 + 3X])^{2}]$$

$$= \mathbb{E}[(4 + 3X - 4 - 3\mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[(3X - 3\mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[9(X - \mathbb{E}[X])^{2}]$$

$$= 9\mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$= 9 \text{Var}(X)$$

$$= 9 \cdot 5$$

$$= 45.$$

Geno (the basketball coach for UConn) goes to the grocery store and finds that Wheaties is placing pictures of UConn basketball players inside its cereal boxes. A total of 6 players are featured, each appearing with equal probability. Find the expected number of boxes Geno needs to buy in order to obtain pictures of 3 different players.

Hint: Let X be the total number of cereal boxes that Geno buys and let N_i be the number of boxes that Geno buys to get the *i*th player after obtaining the (i-1)th player. Then, $X = N_1 + N_2 + N_3$. What type of random variable is each N_i ? Use the fact that the expected value is linear!

Assuming that each box contains a picture of some player, then the first box Geno buys will have a picture of a player; $N_1 = 1$. Then N_2 is the number of boxes Geno must buy to obtain a picture of a player other than the first player. In other words, $N_2 \stackrel{d}{=} \text{Geom}(5/6)$, since every box bought after the first has a probability of 5/6 of having a picture different from that of the first box. After the box containing the second unique player picture has been purchased, N_3 is the number of boxes Geno must buy to obtain a picture of a player different from both the first and second player. That is, $N_3 \stackrel{d}{=} \text{Geom}(4/6)$, since every box after the $(N_1 + N_2)$ th box has a probability of 4/6 of containing a picture of a player different from the first two. Then by the linearity of the expected value,

$$\mathbb{E}[X] = \mathbb{E}[N_1 + N_2 + N_3] = \mathbb{E}[N_1] + \mathbb{E}[N_2] + \mathbb{E}[N_3] = 1 + \frac{1}{5/6} + \frac{1}{4/6} = \frac{37}{10}.$$