

用 PT4115 设计 LED 节能 MR16 射灯

目前,PT4115 实用射灯模块可提供 1 颗 1W (绿色)、3 颗 1W (蓝色)、1 颗 3W (红色)三种驱动模块。样品模块可通过 10 万次带载开关试验,在与卤素灯泡相同的亮度下,耗电可降低一半。本文介绍用 PT4115 设计 MR16 射灯的实用技术。

1. 三种可直接用于产品的驱动模块

图 1 是 MR16 射灯和三种模块的实物照片。绿色模块 PM101 用于驱动 1 颗 1W 的 LED,工作电压范围 8~24V,恒流值约 350mA。红色模块 PM103 用于驱动 1 颗 3W 的 LED,工作电压范围 8~24V,恒流值约 700mA。蓝色模块 PM301 用于驱动 3 颗 1W 的 LED,工作电压范围 $12\sim24V$,恒流值约 350mA。用户可以根据不同产商的 LED 参数,通过调整采样电阻 RS 的值修正恒流值。

图 1: 使用 PT4115 的射灯驱动模块和 MR11 / 16 射灯

2. 电原理图和 BOM

图 2 是驱动 3 颗 1W 白光 LED 的电原理图,它是 12~24V 电压范围里交直流两用的,D1~D4 组成整流桥,这个桥有两个功能,在输入是交流电源的时候,把交流整流成直流;在输入是直流电源的时候,起极性转换作用,无论输入电源的极性如何,都能保证电路正常工作。CIN 是滤波电容,把脉动直流变换成平滑的直流。RS 是取样电阻,它决定恒流源的绝对精度。L 是镇流电感,把 100KHz 的脉冲电流变换成三角波电流,L 的电感量会影响工作电压范围内恒流源的稳定性。D5 是续流二极管,在芯片内部 MOS 管处于截止状态时为储存在电感中的电流提供放电回路。由于工作在高频脉冲状态,D5 应选用正向压降小,恢复速度快的肖特基二极管。芯片的 DIM 端可外接 PWM 脉冲或直流电压调光,也可以接热敏电阻作辅助温度控制和自动亮度控制。如果不用这些功能,DIM 端口悬空。

图 2: PT4115 驱动 3 颗 1W 白光 LED 的电原理图

三种模块的电气参数如表 1,这些参数会随着芯片和外围元器件的参差性在工程允许的范围内变化,变化值在10%的范围内不影响安全性和使用寿命。

表 1: 恒流源模块的电气参数

项目	PM101	PM301	PM103
最小输入电压 V_{inmin} (V)	7.6	12	7.6
最大输入电压 V _{inma} (V)	24	24	24
恒流值 I _{LED} (mA)	350	350	700
恒流值精度 %	5%	5%	5%
效率	91%	93%	92%
功率因数	0.72	0.72	0.723
温度保护阀值 (^o C)	160^{0} C	160^{0} C	160^{0} C

表 2: 元器件表

	名称	型号	生产厂商
D1~D4	肖特基二极管	SS14	ONMESI
CIN	电解电容	100uF/25V	宏一 (GRP)
RS	金属膜电阻	$0.27\Omega/0.1W$ (350mA)	SAMSUNG
		$0.13\Omega/0.1W$ (700mA)	
D5	肖特基二极管	SS14	ONMESI
IC	恒流源芯片	PT4115	华润矽威

www.micro-bridge.com 第 2 页

3. 调试细则

当进行测试时,需要一台配备电流探头的示波器和一台功率分析仪。模块焊接无误后,首先测量 VIN 端的电压,工频交流输入时,负载空载,VIN 是输入电压的 1.4 倍,有载时是 1.2 倍。高频交流输入(电子变压器)时,VIN 是高频脉冲的整流后的有效值,此值与高频脉冲的占空比有关。例如 PHILIPS 220v-12v 电子变压器,输出端的脉冲约 30p-p,通过整流后 VIN 电压只有 11V,因为脉冲占空比约 0.3。直流输入时,VIN 比输入电压低 0.3V(肖特基整流管)。然后可以接上负载测量 SW 端的波形和流过负载的电流。电路工作的正常标志时 PT4115 的 SW 脚有开关脉冲波形,流过 LED 的电流是充放电状态的三角波,它的平均值是 LED 的工作电流,即模块的恒流值。调整 RS 的值可以改变恒流值,它决定一批产品的绝对精度,建议 RS 的最低精度不要小于百分之一。在表 1 所示的工作电压范围里,如果恒流精度低于 10%,建议采用电感量更大的功率电感。

图 3 是 PM101 模块实测波形,输入直流 12V, SW 脚脉冲幅度约 11V,频率 531KHz,恒流值 332mA。在/SW 方波脉冲正半周时,芯片内置 MOS 管导通,输入电压通过 RS、LED 给电感充电;负半周时,芯片内置 MOS 管截止,电感中的电流通过 D5 放电。放电电流波形呈锯齿形。为了减小EMI, PT4115 工作在扩频模式,振荡频率随着负载电流增大而降低。

图 3: PM101 恒流源模块 /SW、ILED 信号实测波形

www.micro-bridge.com 第 3 页

图 4 是 PM301 模块实测波形,输入直流 12V,SW 脚脉冲幅度约 11V,频率 406.5KHz,恒流值 349mA。 虽然恒流值与 PM101 相近,但由于负载功率增大了 2 倍,/SW 脉冲的占空比增大,频率降低。

图 4: PM301 恒流源模块 /SW、I_{LED}信号实测波形

图 5 是 PM103 模块实测波形,输入直流 12V, SW 脚脉冲幅度约 10.4V,频率 378KHz,恒流值 670mA。虽然功率与 PM301 相近,但由于负载电流增大了近 1 倍,/SW 脉冲的占空比进一步增大,频率也进一步降低。

在大规模生产时,要严格控制 RS 的精度, L 的磁饱电流和电感量。如果选用的元器件参数正确, 品质合格, 在生产线上极少出质量问题。

www.micro-bridge.com 第 4 页

图 5: PM103 恒流源模块 /SW、ILED 信号实测波形

4. 采样电阻和镇流电感的选择

采样电阻 RS 应选用 0805 的金属膜电阻, 电阻的阻值与负载电流有关, 工程上用下列公式计算:

$$R_S = \frac{0.1}{I_{IED}}$$

例如,负载是2颗1W的自光LED,查得工作电流是350毫安,采样电阻得值是:

$$R_s = \frac{0.1}{0.35} = 0.2857\Omega$$

选用 R24 系列的 0.27 欧姆, 计算恒流值为 370 毫安。实测电阻为 0.265 欧姆, 恒流值为 376 毫安。

5. 镇流电感的选择

电感是这个电路中的关键元件,从原理上讲,电感量越大,恒流精度越高。例如用 47 微亨的电感,输入电压在 8~30V 范围里变化,恒流精度是 30%;如果用 220 微亨的电感,恒流精度就能提高到 9%以下。影响电感质量的重要因素是磁性材料,建议采用锰锌 4000,居里点 400 的磁性。磁性电感的最大缺点是很容易产生硬饱和,这在用户的设计中经常发生。一旦发生磁饱和后果往往是灾难性的,会瞬间烧坏芯片或 LED。因而,推荐按表 3 数值选择电感,尤其注意电感的饱和电流一定要不小于表 3 中的值。一般饱和电流小的电感铜线较细,Q 值也较小,这种电感即是没发生磁饱和稳流效果也会很差。

第6页

表 3	. 1	且咸	L	选择表
\sim	•	LIMEN	ı	ベビリナル

负载电流	饱和电流	电感量	Q值
I_{LED} (mA)	$I_{MO}(A)$	(uH)	(100KHz)
< 400	> 0.6	68~220	> 35
400~800	> 1.2	68~100	> 40
800~1200	> 1.8	47~82	> 45

6. 整流二极管的选择

- ❖ 目前市面上 MR16 射灯的最大输出电流通常设置为 350mA-900mA 之间。
- ❖ 由于 MR16 的驱动板空间有限,通常建议选用体积小、导通压降低的肖特基二极管(1A,40V)搭建整流桥,推荐型号为 MBRS140,其封装体积较小,300mV 左右的导通压降有利于最大可能的提高转换效率。
- ❖ 但是如果输入输出压差超过 8-10V 以上时,从散热的角度以及保证系统能够长时间稳定工作的方面考虑,则应选择体积稍大散热条件较好的 SS14 产品, SS14 在成本方面也有优势,但是其导通压降大约在 500mV 左右。成本和转换效率就看您如何取舍了。

7. 使用高频电子变压器作输入电源的问题

高频电子变压器是把工频交流高频交流的转换器,如图 6 所示。它具有体积小,价格便宜的优点,常用于卤素射灯的电源。由于卤素灯的钨丝热惰性很大,对电压降和电压波形的变化不敏感,用电子变压器供电能正常工作。LED 是电子器件,反映速度快,有正向压降,V/I 特性呈指数曲线等特性,高频电子变压器作 LED 输入电源会面临一些技术问题。首先是有一些厂家的电子变压器采用间歇振荡的方式进行-AC-AC 变换,输出的电压波形不是正弦波,而是不连续的脉冲波形,有的还伴有寄生振荡,如图 7 所示,这种电源有下面问题:

- (1) 内阻很大。
- (2) 整流后不是平滑的直流。
- (3) 存在较大的 EMI。

对于第(1)点,用示波器测试电子变压器的空载输出电压,如图 7 所示脉冲幅度的峰峰值很大,交流 12V 标称输出端的间歇脉冲有 35~50V。接上负载后,会降到 30V 左右,而且输出电压会随着负载电流而变化。全波整流后有效直流电压会降到 11V 以下,驱动 3 颗串联的 LED 就会点不亮。

对于第(2)点,由于是间歇振荡结构,整流后电流不是连续的,LED 会产生闪烁现象。图 8 上边的波形是电子变压器接在 PM103 上全波整流后的电压波形,有 7.5V 的纹波,纹波宽度等于间歇振荡频率的周期,有几到几十毫秒。不同厂家的产品频率会有差异。下边的波形是用电流环测量流过 LED 的电流,可以看出是不连续的。

对于第(3)点,由于高频变压器有高频振荡和间歇振荡两个频率,PT4115 的 SW 端也有一个振荡频率,三个频率本身和它们互调产生的组合频率会在很宽的频带上产生电磁辐射,干扰其它电气设备。

注意不能用三用表的交流电压档直接测量高频电子变压器的输出电压,因为三用表的交流频响低于 1KHz,测量的结果没有参考价值。

图 6: 卤素射灯专用高频电子变压器

图 7: 电子变压器输出的交流波形

www.micro-bridge.com 第 7 页

图 8: 用电子变压器后驱动 LED 的电压和电流

如果用户一定要在低于 11V 的电压点亮 3 颗 LED,可以用图 9 所示的自适应升降压拓扑结构,它能在 $7.5\sim12$ V 电压范围内点亮 3 颗 LED。使用这种方案时电流检测电阻 $R_{\rm S}$ 的取值要适当大一点,使 $V_{\rm IN}-V_{\rm CSN}<150$ mV,否则内部短路保护电路就会启动而关断 MOS 管,使 LED 熄灭。我们推荐的 $R_{\rm S}$ 取值范围是 $0.28\sim0.3$ 欧姆,用精度 1%的电阻,在交流输入 $7.5\sim12$ V 的范围内都能驱动 3 颗 1W 的 LED,输入电流是 $242\sim348$ 毫安。这种方法的缺点是效率略低,恒流效果不如图 2 电路,但工作状态是安全可靠的。

图 9: 自适应升降压 LED 驱动方式

8. PCB注意事项

PT4115 是工作在几百千赫高频下的功率器件,PCB 设计要注意电流容量,散热和 EMI 三项事宜。首先要注意 PCB 板上的铜箔厚度和过孔的直径和数量。推荐按照 2.5A / cm^2 的规范设计电流回路的有效截面积,因而 $D1\sim D4$ 、RS、LED、L、SW、D5 这些节点的 PCB 铜箔宽度不小于 3 毫米,并镀锡加筋,金属化过孔过孔直径不小于 0.3 毫米,用 4 孔并联,用焊锡填充。

MR16 射灯的灯座中,空间小,散热条件差,要挖掘一切潜力保证散热。芯片的 Exposed pad 要可靠

PT4115_AN1

地焊接在 PCB 铺铜上减小热阻,协助散热,双面地铺铜总面积不应小于 180 平方毫米,并且用多个金属化过孔连接起来。当输入功率减去输出功率大于 1.5W 时,不适于安装在 MR16 灯座中。

PT4115 的开关频率在 1MHz 以下,芯片在扩频模式下工作,设计中已经考虑到 EMI, PCB 设计中用滤波和屏蔽手段可进一步减小 EMI。

9. 注意事项

PT4115 是 40 伏的 CMOS 工艺制造的,电子功率器件要安全可靠地工作,必须留有足够的冗余度,如果没有良好的散热条件,不推荐在高于 AC25V 和 DC30V 和电源电压波动大于 12%的环境中使用。

www.micro-bridge.com 第 9 页