Ecuaciones diferenciales

Variación de Parámetros Ecuación de Cauchy-Euler Semana 06: Teoría

Profesores del curso:

Hermes Pantoja Carhuavilca Sergio Quispe Rodríguez Patricia Reynoso Quispe Cristina Navarro Flores Orlando Galarza Gerónimo César Barraza Bernaola Daniel Camarena Pérez

Índice

- 1 Método de variación de parámetros
- 2 Ecuación de Cauchy-Euler

Objetivos

- Aplicar el método de variación de parámetros en la resolución EDOs lineales no homogéneas de coeficientes constantes.
- Resolver EDOs lineales homogéneas de coeficientes variables ecuaciones tipo Cauchy-Euler.
- Resolver EDOs lineales no homogéneas de Cauchy-Euler utilizando le método de variación de parámetros.

Ecuaciones diferenciales

MÉTODO DE VARIACIÓN DE PARÁMETROS

1

Logro

■ Aplica el método de variación de parámetros en la resolución EDOs lineales no homogéneas de coeficientes constantes. (L.4.6.2.9)

Ecuaciones diferenciales

May 8, 2024

Introducción

Dada una ecuación lineal no homogénea de *n*-ésimo orden

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \quad g(x) \neq 0. \quad (1)$$

El método de los coeficientes indeterminados nos permite resolver esta EDO cuando la función resto g(x) tiene cierta forma conocida.

¿Qué sucede cuando la función
$$g(x)$$
 no tiene forma conocida, por ejemplo $g(x) = \ln(x)$?

En estos casos, el método de coeficientes indeterminados no es suficiente. Por ende, es necesario estudiar otros métodos de solución.

El método de **variación de parámetros** nos permitirá resolver este tipo de ecuaciones.

Ecuaciones diferenciales

Procedimiento para una EDO de segundo orden

Dada una EDO no homogénea de segundo orden

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x), \quad g(x) \neq 0$$
 (2)

Paso 1: Llevar la ecuación a su forma estándar

$$y'' + p(x)y' + q(x)y = f(x)$$
 (3)

Paso 2: Resolver la ecuación homogénea asociada a (3): y'' + p(x)y' + q(x)y = 0. La solución es de la forma

$$y_H(x) = c_1 y_1(x) + c_2 y_2(x),$$

donde y_1 y y_2 son funciones LI y forman un conjunto fundamental de soluciones.

Paso 3: Se plantea la siguiente solución particular

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$
(4)

donde y_1 y y_2 son las soluciones de la ecuación homogénea asociada y u_1 , u_2 son funciones que dependen solamente de x. Deberemos hallar estas funciones.

Paso 4: Reemplazar la solución asumida en la EDO y factorizar convenientemente. De donde se obtienen las siguientes ecuaciones:

$$y_1 u_1' + y_2 u_2' = 0$$

$$y_1' u_1' + y_2' u_2' = f(x)$$
(5)

Paso 5: Resolver el sistema de ecuaciones (5) Usando el método de Cramer, obtenemos:

$$u_1'=rac{W_1}{W},\quad u_2'=rac{W_2}{W}$$

Donde

$$W = egin{bmatrix} oldsymbol{y}_1 & oldsymbol{y}_2 \ oldsymbol{y}_1' & oldsymbol{y}_2' \ oldsymbol{y}_1' & oldsymbol{y}_2' \end{bmatrix}, \quad W_1 = egin{bmatrix} 0 & oldsymbol{y}_2 \ f(x) & oldsymbol{y}_2' \ \end{pmatrix}, \quad W_2 = egin{bmatrix} oldsymbol{y}_1 & 0 \ oldsymbol{y}_1' & f(x) \ \end{pmatrix}$$

Observación: W es el Wronskiano y este nunca será cero puesto que u_1 y u_2 son U. Paso 6: Integrar

$$u_1=\int rac{W_1}{W}dx, \qquad u_2=\int rac{W_2}{W}dx$$

Finalmente, usar estos resultados en la ecuación (4).

May 8, 2024

Ejercicios

Determinar la solución de la EDO: $y'' - 2y' + y = \frac{e^x}{v^2}$

Solución

Paso 1: La ecuación va está en su forma estándar.

Paso 2: Resolver la ecuación homogénea asociada: y'' - 2y' + y = 0. La solución es:

$$y_H(x) = c_1 e^x + c_2 x e^x \tag{6}$$

Paso 3: Se plantea la siguiente solución particular

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x) = u_1(x)e^x + u_2(x)xe^x$$
 (7)

Ecuaciones diferenciales

Esta solución deberá ser reemplazada en la ecuación del paso 1 para hallar las funciones $u_1(x)$ y $u_2(x)$. Nosotros ya conocemos el método para calcular $u'_1(x)$ y $u_2'(x)$ directamente.

Paso 4: Se calcula los siguientes determinantes:

$$W = egin{array}{c|c} y_1 & y_2 \ y_1' & y_2' \ \end{vmatrix} = egin{array}{c|c} e^x & xe^x \ e^x + xe^x \ \end{vmatrix} = e^{2x} \ W_1 = egin{array}{c|c} 0 & y_2 \ f(x) & y_2' \ \end{vmatrix} = egin{array}{c|c} 0 & xe^x \ \frac{e^x}{x^2} & e^x + xe^x \ \end{vmatrix} = -\frac{e^{2x}}{x} \ W_2 = egin{array}{c|c} y_1 & 0 \ y_1' & f(x) \ \end{vmatrix} = egin{array}{c|c} e^x & 0 \ e^x & \frac{e^x}{x^2} \ \end{vmatrix} = \frac{e^{2x}}{x^2}.$$

Con estos resultados se puede determinar u'_1 y u'_2 :

$$u'_{1} = \frac{W_{1}}{W} = \frac{-\frac{e^{2x}}{x}}{e^{2x}} \quad \Rightarrow \quad u'_{1} = -\frac{1}{x}$$

$$u'_{2} = \frac{W_{2}}{W} = \frac{e^{2x}}{x^{2}} \quad \Rightarrow \quad u'_{2} = \frac{1}{x^{2}}$$
(8)

Paso 5: Integrar los resultados de la ecuación (8):

$$u_1(x) = \int -\frac{1}{x} dx = -\ln(x)$$

 $u_2(x) = \int \frac{1}{x^2} dx = -\frac{1}{x}.$

Reemplazando este resultado en la ecuación (7),

$$y_p = -\ln(x)e^x - e^x \tag{9}$$

Finalmente, de las ecuaciones (6) y (9), se obtiene la solución:

$$y = c_1 e^x + c_2 x e^x - \ln(x) e^x - e^x$$

Para el alumno

Determinar la solución de la EDO: $y'' + y = \csc(x)$

Respuesta:

$$y = c_1 \sin(x) + c_2 \cos(x) + \sin(x) \ln|\sin(x)| - x \cos(x)$$

Actividad: Duración 10 minutos

Objetivo: Resolver una ecuación diferencial no homogénea utilizando ambos métodos (variación de parámetros y coeficientes indeterminados) de forma rápida y eficiente.

Escenario:

La clase se ha dividido en dos equipos para resolver la siguiente ecuación diferencial no homogénea:

$$y'' + y = \cos(x)$$

Ecuaciones diferenciales

Equipo Variación está resolviendo por el método de variación de parámetros, mientras que **Equipo Coeficientes** utiliza el método de coeficientes indeterminados.

Continuación...

- Buscar la solución de la ecuación homogénea asociada y'' + y = 0.
- Aplicar el método de variación de parámetros y escribir un sistema de ecuaciones diferenciales para las funciones $u_1(x)$ y $u_2(x)$ que multiplican a $\cos(x)$ y $\sin(x)$ en la solución general:
 - $u_1'(x)\cos(x) + u_2'(x)\sin(x) = 0$
 - $u_1'(x)(-\sin(x)) + u_2'(x)\cos(x) = \cos(x)$
- 3 Resolver el sistema de ecuaciones.
- 4 Sustituir $u_1(x)$ y $u_2(x)$ en la solución general para obtener la solución a la ecuación diferencial original.

¿Qué método consideras que fue más eficiente o conveniente para resolver esta ecuación en particular? Justifica tu respuesta considerando la complejidad de los cálculos, la facilidad de aplicación del método y la posibilidad de errores.

ECUACIÓN DE CAUCHY-EULER

2

Logros

- **Resuelve** EDOs lineales homogéneas de coeficientes variables ecuaciones tipo Cauchy-Euler. (L.4.6.2.10)
- **Resuelve** EDOs lineales no homogéneas de Cauchy-Euler utilizando le método de variación de parámetros. (L.4.6.2.11)

EDOs lineales con coeficientes variables

Hemos estudiado cómo resolver EDOs lineales cuando los coeficientes son constantes, ahora veremos qué sucede si estos coeficientes no son constantes. En general, este tipo de ecuaciones pueden escribirse como:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \quad g(x) \neq 0,$$
 (10)

donde $a_n(x), a_{n-1}(x), \dots, a_0(x)$ son funciones que dependen únicamente de x.

Analizaremos solamente un caso particular de estas ecuaciones: La ecuación de Euler-Cauchy.

Ecuación de Cauchy-Euler

La forma general de una EDO lineal de n-ésimo orden de Cauchy-Euler es la siguiente:

$$a_{n}x^{n}\frac{d^{n}y}{dx^{n}} + a_{n-1}x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}x\frac{dy}{dx} + a_{0}y = 0,$$
 (11)

donde $a_n, a_{n-1}, \ldots, a_1, a_0$ son constantes. Método de solución

Se propone la solución de la forma $y = x^m$. Seguidamente, reemplazamos en la ecuación (11) para hallar los posibles valores de m. Tener en cuenta que:

$$\frac{dy}{dx} = mx^{m-1}$$
 \Rightarrow $\frac{d^2y}{dx^2} = m(m-1)x^{m-2}$

En general

$$\frac{d^k y}{dx^k} = m(m-1)(m-2)\cdots(m-k+1)x^{m-k}$$

$$\Rightarrow a_k x^k \frac{d^k y}{dx^k} = a_k m(m-1)(m-2)\cdots(m-k+1)x^m$$

Reemplazando en (11),

$$a_n m(m-1)(m-2)\cdots(m-n+1)x^m+\cdots+a_1 mx^m+a_0x^m=0$$

Factorizando y simplificando x^m , se obtiene la ecuación característica o auxiliar:

$$a_n m(m-1)(m-2)\cdots(m-n+1)+\cdots+a_1 m+a_0=0$$
 (12)

Al resolver la ecuación (12) se encuentra los posibles valores de m, (al igual que en EDOs lineales homogéneas de coeficientes constantes).

Caso particular: EDO de Cauchy-Euler de 2do orden

En este caso, se busca determinar la solución de la ecuación:

$$ax^2y'' + bxy' + cy = 0 (13)$$

Se propone la solución

$$y = x^m$$
, \Rightarrow $y' = mx^{m-1}$, $y'' = m(m-1)x^{m-2}$

Reemplazando en la ecuación (13):

$$ax^{2}m(m-1)x^{m-2} + bxmx^{m-1} + cx^{m} = 0$$

$$\Rightarrow am(m-1)x^{m} + bmx^{m} + cx^{m} = 0$$

$$\Rightarrow am(m-1) + bm + c = 0$$

Obteniéndose la ecuación auxiliar

$$am^2 + (b-a)m + c = 0$$
 (14)

De acuerdo a las raíces de la ecuación (14), se tiene los siguientes casos:

■ Caso 1: Raíces reales y diferentes:

$$y = c_1 x^{m_1} + c_2 x^{m_2}$$

Caso 2: Raíces reales y repetidas:

$$y = c_1 x^{m_1} + c_2 x^{m_1} \ln(x)$$

Caso 3: Raíces complejas conjugadas. Sean las raíces $m_1 = \alpha + i\beta$ y $m_2 = \alpha - i\beta$, entonces

$$y = c_1 x^\alpha \cos(\beta \ln(x)) + c_2 x^\alpha \sin(\beta \ln(x))$$

Ejercicios

Determinar la solución de la EDO: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$

Solución:

La ecuación auxiliar para una ecuación de Cauchy-Euler de segundo orden está dada por la ecuación (14):

$$am^2 + (b-a)m + c = 0,$$

donde, para este problema, $a=1,\ b=-2,\ c=-4.$ Por lo tanto, se obtiene la ecuación

$$m^2 - 3m - 4 = 0$$

cuyas raíces son $m_1 = -1$, $m_2 = 4$. Finalmente, la solución general de la EDO es

$$y = c_1 x^{-1} + c_2 x^4$$

Observación: No es necesario memorizar la ecuación (14), lo puede deducir rápidamente a partir de suponer la solución $y = x^m$.

Ecuaciones diferenciales

2 Determinar la solución de la EDO: $4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} + y = 0$

Solución:

La ecuación auxiliar para una ecuación de Cauchy-Euler de segundo orden está dada por la ecuación (14):

$$am^2 + (b-a)m + c = 0,$$

donde, para este problema, $a=4,\ b=8,\ c=1.$ Por lo tanto, se obtiene la ecuación

$$4m^2 + 4m + 1 = 0$$

cuyas raíces son $m_1=-1/2,\,m_2=-1/2.$ Finalmente, la solución general de la EDO es

$$y = c_1 x^{-1/2} + c_2 x^{-1/2} \ln(x)$$

EDO de Cauchy-Euler no homogénea

3 Determinar la solución de la EDO: $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = 2x^4 e^x$

Solución:

Puesto que la EDO es no homogénea, primero se resuelve la ecuación homogénea asociada y luego podemos buscar la solución particular mediante variación de parámetros.

Paso 1: Hallamos la solución de la ecuación homogénea asociada:

$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = 0.$$

Proponiendo la solución $y = x^m$ se llega a la ecuación auxiliar

$$m^2 - 4m + 3 = 0 \Rightarrow m_1 = 1, m_2 = 3$$

Así, la solución de la ecuación homogénea asociada es

$$y = c_1 x + c_2 x^3 (15)$$

Paso 2: Utilizamos el método de variación de parámetros, por ende, lo primero que debemos hacer es dividir la ecuación por x^2 (llevar a su forma estándar):

$$\frac{d^2y}{dx^2} - \frac{3}{x}\frac{dy}{dx} + \frac{3}{x^2}y = 2x^2e^x$$

Se propone la solución particular

$$y_p = u_1 y_1 + u_2 y_2 (16)$$

donde $y_1 = x$ y $y_2 = x^3$ son las soluciones de la ecuación homogénea asociada. Para determinar las funciones u_1 y u_2 , se halla los siguientes determinantes

$$egin{aligned} W &= egin{array}{cc} x & x^3 \ 1 & 3x^2 \ \end{array} = 2x^3, \ W_1 &= egin{array}{cc} 0 & x^3 \ 2x^2 e^x & 3x^2 \ \end{array} = -2x^5 e^x, \ W_2 &= egin{array}{cc} x & 0 \ 1 & 2x^2 e^x \ \end{array} = 2x^3 e^x \end{aligned}$$

Ecuaciones diferenciales

Con lo cuál se obtiene

$$u_1' = \frac{W_1}{W} = \frac{-2x^5 e^x}{2x^3} = -x^2 e^x \quad \Rightarrow \quad u_1 = -\int x^2 e^x dx = e^x (-x^2 + 2x - 2)$$

$$u_2' = \frac{W_2}{W} = \frac{2x^3 e^x}{2x^3} = e^x \quad \Rightarrow \quad u_2 = \int e^x dx = e^x.$$

Reemplazando estos resultados en (16) se obtiene la ecuación particular,

$$y_p(x) = e^x(-x^2 + 2x - 2)y_1 + e^x y_2$$

= $e^x(-x^2 + 2x - 2)x + e^x x^3$
= $2x^2e^x - 2xe^x$

Considerando esta última y la ecuación (15), la solución del problema es

$$y = c_1 x + c_2 x^3 + 2x^2 e^x - 2x e^x$$

Conclusiones

- Se observó que la solución complementaria puede usarse para calcular la solución particular de una EDO no homogénea.
- 2 El Wronskiano es de utilidad en el cálculo de la solución particular de una EDO no homogénea.
- 3 El método de variación de parámetros también puede ser usado para calcular la solución particular de una EDO no homogénea de coeficientes variables.

Gracias UTEC UNIVERSIDAD DE INGENIERIA YTECNOLOGÍA

