PROBABILITY AND STOCHASTIC PROCESS (MTL106)

ANANTA KUMAR MAJEE

1. Probability Theory:

Consider the experiment of tossing a coin. There are two possible outcome $\{H, T\}$ and we don't know whether H or T will come in advance for any performance of this experiment. From this example, we arrive at the following:

Befinition 1.1 (Random Experiment). A random experiment is an experiment in which

- i) all outcomes of the experiment are known in advance
- ii) any performance of the experiment results in an outcome that is not known in advance
- iii) the experiment can be repeated under identical conditions.

Definition 1.2 (Sample space). The set Ω of all possible outcomes of a random experiment is called sample space. An element $\omega \in \Omega$ is called a sample point.

A die is thrown once. We are interested in the possible occurrences of the 'events'

- a) the outcome is the number 1
- b) the outcome is even number
- c) the outcome is even but does not exceed 3
- d) the outcome is not even

Each of the above events can be specified as a subset A of the sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$ as follows:

a)
$$A = \{1\}, b)$$
 $A = \{2, 4, 6\}, c)$ $A = \{2, 4, 6\} \cap \{1, 2, 3\}, d)$ $A = \{2, 4, 6\}^{\complement}$

Thus, events are subsets of Ω , but need all the subsets of Ω be events? The answer is NO. We need the collection of events be closed under *complement* and countable union.

Definition 1.3 (σ-algebra). Let $\Omega \neq \emptyset$. A collection \mathcal{F} of subsets of Ω is called a σ-algebra or σ-field over Ω if the following properties hold:

- i) $\emptyset \in \mathcal{F}$
- ii) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- iii) If $A \in \mathcal{F}$, then A^{\complement} .

The elements of \mathcal{F} are called 'events'. One can easily show that if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

Example 1.1. i) The smallest σ -field associated to Ω is the collection $\mathcal{F} = \{\emptyset, \Omega\}$.

- ii) If A is any subset of Ω , then $\mathcal{F} = \{\emptyset, A, A^{\complement}, \Omega\}$ is a σ -field.
- ii) $\mathcal{P}(\Omega) := \{A : A \subseteq \Omega\}$ is a σ -field, called the total σ -field over Ω .

Remark 1.1. In general, union of σ -algebras over Ω may not be a σ -algebra. For example, let $\Omega = \{1, 2, 3\}$ and $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$ and $\mathcal{F}_2 = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$. Then both \mathcal{F}_1 and \mathcal{F}_2 are σ -algebra, but $\mathcal{F}_1 \cup \mathcal{F}_2$ is NOT a σ -algebra.

Lemma 1.1. Intersection of two σ -fields over Ω is a σ -field over Ω . More generally, if $\{\mathcal{F}_i : i \in I\}$ is a family of σ -fields over Ω , then $\mathcal{G} = \bigcap_{i \in I} \mathcal{F}_i$ is also a σ -field.

Definition 1.4 (Generated σ -field). Let $\Omega \neq \emptyset$ and A be be collection of subsets of Ω . Let $\mathcal{M} := \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-field over } \Omega \text{ containing } A\}.$

Then $\sigma(A) := \cap_{\mathcal{F} \in \mathcal{M}} \mathcal{F}$ is the smallest σ -field over Ω containing A. $\sigma(A)$ is called the σ -field generated by A.

Example 1.2 (Borel σ -field). The smallest σ -algebra over \mathbb{R} containing all intervals of the form $(-\infty, a]$ with $a \in \mathbb{R}$ is called the Borel σ -algebra and denoted by $\mathcal{B}(\mathbb{R})$.

- Any $A \in \mathcal{B}(\mathbb{R})$ is called a Borel subset of \mathbb{R} .
- The followings are Borel subsets of \mathbb{R} : for $a \leq b$

$$(a,\infty) = \mathbb{R} \setminus (-\infty,a], \quad (a,b] = (-\infty,b] \cap (a,\infty), \quad (\infty,a) = \bigcup_{n=1}^{\infty} (-\infty,a-\frac{1}{n}],$$
$$[a,\infty) = \mathbb{R} \setminus (-\infty,a), \quad (a,b) = (-\infty,b) \cap (a,\infty), \quad [a,b] = \mathbb{R} \setminus \left((-\infty,a) \cup (b,\infty)\right),$$
$$\{a\} = [a,a], \quad \mathbb{N} = \bigcup_{n=0}^{\infty} \{n\}, \quad \mathbb{Q} = \bigcup_{m,n \in \mathbb{Z}, n \neq 0} \{\frac{m}{n}\}, \quad \mathbb{Q}^{\complement} = \mathbb{R} \setminus \mathbb{Q}.$$

Example 1.3 (Borel σ -algebra on \mathbb{R}^n). It is σ -algebra generated by the n-dimensional rectangles of the form $\prod_{i=1}^n (a_i, b_i]$

Definition 1.5 (Measurable space). Let $\Omega \neq \emptyset$ and \mathcal{F} be a sigma-algebra over Ω . The pair (Ω, \mathcal{F}) is called a measurable space.

Our goal now is to assign to each event A, a non-negative real number which indicates its chance of happening.

Definition 1.6 (Probability measure). Let (Ω, \mathcal{F}) is a measurable space. A function \mathbb{P} : $\mathcal{F} \to [0,1]$ is called probability measure if

- i) $\mathbb{P}(A) > 0 \quad \forall A \in \mathcal{F}$
- ii) $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$
- iii) If $\{A_i\} \subset \mathcal{F}$ and A_i 's are pairwise disjoint, then

$$\mathbb{P}\big(\cup_{i=1}^{\infty} A_i\big) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space.

Example 1.4. Let $\Omega = \{1, 2, 3\}$ and $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3\}\}$. Define $\mathbb{P} : \mathcal{F} \to [0, 1]$ via

$$\mathbb{P}(A) = \begin{cases} 1, & \text{if } 3 \in A \\ 0, & \text{if } 3 \notin A. \end{cases}$$

Then \mathbb{P} is a probability measure on (Ω, \mathcal{F}) .

Example 1.5. Let $\Omega = (0, \infty)$ and \mathcal{F} is the Borel σ -field on Ω . Define, for each interval $A \subset \Omega$

$$\mathbb{P}(A) = \int_A e^{-x} \, dx.$$

Observe that $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$ and $\int_{\Omega} e^{-x} dx = 1$. Let $\{A_i\} \subset \mathcal{B}$ and pairwise disjoint. Then $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \int_{\mathbb{R}} e^{-x} \mathbf{1}_{\bigcup_{i=1}^{\infty} A_i}(x) dx$. We need to show that

$$\int_{\mathbb{R}} e^{-x} \mathbf{1}_{\bigcup_{i=1}^{\infty} A_i}(x) \, dx = \sum_{i=1}^{\infty} \int_{A_i} e^{-x} \, dx = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

One can show the first equality by using monotone convergence theorem on the sequence of functions $f_n(x) = e^{-x} \mathbf{1}_{\bigcup_{i=1}^n A_i}(x)$.

Example 1.6. Let $\Omega = \{1, 2, 3, \ldots\}$ and \mathcal{F} be the set of all subsets of Ω . Define $\mathbb{P} : \mathcal{F} \to [0, 1]$ via

$$\mathbb{P}(\{i\}) = \frac{1}{2^i}.$$

Note that since $\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$, we have $\mathbb{P}(\Omega) = 1$. Check that \mathbb{P} is a probability measure on (Ω, \mathcal{F}) .

Theorem 1.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Then the followings hold:

- 1) $\mathbb{P}(A^{\complement}) = 1 \mathbb{P}(A)$ for any $A \in \mathcal{F}$.
- 2) If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(A) + \mathbb{P}(B \setminus A) = \mathbb{P}(B)$.
- 3) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$. More generally, if A_1, A_2, \dots, A_n are events, then

$$\mathbb{P}(\cup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \mathbb{P}(\cap_{i=1}^{n} A_i).$$

4) Let $\{A_n\}$ be an increasing sequence of elements in \mathcal{F} i.e., $A_n \in \mathcal{F}$ and $A_n \subseteq A_{n+1}$ for all $n = 1, 2, \ldots$ Then

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n). \tag{1.1}$$

5) Let $\{A_n\}$ be a decreasing sequence of elements in \mathcal{F} i.e., $A_n \in \mathcal{F}$ and $A_{n+1} \subseteq A_n$ for all $n = 1, 2, \ldots$ Then

$$\mathbb{P}(\cap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n). \tag{1.2}$$

The property (1.1) is called continuity of \mathbb{P} from below and property (1.2) is called continuity of \mathbb{P} from above.

Proof. Proof of 1): Since $A \cup A^{\complement} = \Omega$, we see that $\mathbb{P}(A^{\complement}) = 1 - \mathbb{P}(A)$ for any $A \in \mathcal{F}$. Proof of 2): Observe that

$$B = A \sqcup (B \setminus A) \implies \mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) > \mathbb{P}(A).$$

Proof of 3): We have

$$A \cup B = A \sqcup (B \setminus A) \implies \mathbb{P}(A \cup B) = \mathbb{A} + \mathbb{P}(B \setminus A). \tag{1.3}$$

Observe that $B \setminus A \subseteq B$, and hence by 2), we get that

$$\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(B \setminus (B \setminus A)) = \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$$

$$\implies \mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A \cap B). \tag{1.4}$$

Combining (1.3) and (1.4), we obtain

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Proof of 4): Let $A = \bigcup_{n=1}^{\infty} A_i$. Define

$$C_1 = A_1, \quad C_2 = A_2 \setminus A_1, \quad C_3 = A_3 \setminus A_2, \dots, C_n = A_n \setminus A_{n-1}.$$

Then $\{C_n\}$ are pairwise disjoint and $A = \bigcup_{n=1}^{\infty} C_n$ with $A_n = \bigcup_{i=1}^n C_i$. Hence we have

$$\mathbb{P}(A) = \mathbb{P}(\cup_{n=1}^{\infty} C_n) = \sum_{n=1}^{\infty} \mathbb{P}(C_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{P}(C_k) = \lim_{n \to \infty} \mathbb{P}(\cup_{k=1}^{n} C_k) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

Proof of 5): Since A_n 's are deceasing, A_n^{\complement} are increasing. Hence by 4), we get

$$\mathbb{P}(\cup_{n=1}^{\infty}A_n^{\complement}) = \lim_{n \to \infty} \mathbb{P}(A_n^{\complement}) \implies \mathbb{P}\left(\cup_{n=1}^{\infty}A_n^{\complement}\right)^{\complement} = \lim_{n \to \infty} \mathbb{P}(A_n) \implies \mathbb{P}(\cap_{n=1}^{\infty}A_n) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

Example 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $A, B \in \mathcal{F}$ such that $\mathbb{P}(A) = \frac{3}{4}$ and $\mathbb{P}(B) = \frac{1}{3}$. Show that

$$\frac{1}{12} \le \mathbb{P}(A \cap B) \le \frac{1}{3}, \quad \frac{3}{4} \le \mathbb{P}(A \cup B) \le 1.$$

Solution: Since $\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B)$, and $\mathbb{P}(A \cup B) \leq 1$, we have

$$\mathbb{P}(A \cap B) \ge -1 + \frac{1}{3} + \frac{3}{4} = \frac{1}{12}.$$

Also, since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have

$$\mathbb{P}(A \cap B) \le \min{\{\mathbb{P}(A), \mathbb{P}(B)\}} = \frac{1}{3}.$$

Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, and fact that $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$, we get

$$\max\{\mathbb{P}(A), \mathbb{P}(B)\} \le \mathbb{P}(A \cup B) \le \min\{\mathbb{P}(A) + \mathbb{P}(B), 1\}$$

$$\implies \frac{3}{4} \le \mathbb{P}(A \cup B) \le 1.$$

Let $\Omega \subseteq \mathbb{R}^n$ be a given set, and A be a subset of Ω with $A \in \mathcal{F}$. We are interested in the probability that a 'randomly chosen point' in Ω which falls in A. We define

$$\mathbb{P}(A) = \frac{\text{measure}(A)}{\text{measure}(\Omega)}.$$

For example, if a point is chosen at random from the interval (a, b), the probability that it lies in the interval (c, d), $a \le c < d \le b$ is $\frac{d-c}{b-a}$. Moreover, the probability that the randomly selected point lies in any interval of length (d-c) is the same.

Example 1.8. A point is picked 'at random' from a unit square. Find the probability that the point falls in the set of all points which are at most a unit distance from the origin.

Solution: Here $\Omega = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1\}$ and $A = \{(x,y) \in \Omega : x^2 + y^2 \le 1\}$. Note that

$$Area(\Omega) = 1$$
, $Area(A) = \frac{\pi 1^2}{4}$.

Thus, the probabilty that the point falls in A is given by

$$\mathbb{P}(A) = \frac{\text{measure}(A)}{\text{measure}(\Omega)} = \frac{\pi}{4}.$$

1.1. Conditional Probability & its properties. Suppose we know that an event B has happened. Then using this information, we want to measure the chances of happening another event A i.e., to find $\mathbb{P}(A|B)$. Given that the event B occurred, for if it is the case that A occurs if and only iff $A \cap B$ occurs. Thus, $\mathbb{P}(A|B) \sim \mathbb{P}(A \cap B)$ i.e., $\mathbb{P}(A|B) = \alpha \mathbb{P}(A \cap B)$ for some constant $\alpha = \alpha(B)$.

Definition 1.7 (Conditional Probability). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. If $A, B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, then the conditional probability of A given B is defined as

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Example 1.9. Two fair dice are thrown. Given that the first shows 3, what is the probability that total exceeds 6?

Solution: Here $\Omega = \{(i,j) : 1 \leq i,j \leq 6\}$, $\mathcal{F} = \mathcal{P}(\Omega)$, $\mathbb{P}(A) = \frac{|A|}{36}$ for any $A \subseteq \Omega$. Let B be the event that first die shows 3 and A be the event that total exceeds 6, i.e.,

$$B := \{(3, b) : 1 \le b \le 6\}, \quad A := \{(a, b) \in \Omega : a + b \ge 6\}$$

Note that $\mathbb{P}(B) = \frac{6}{36} = \frac{1}{6}$.

$$A \cap B = \{(3,4), (3,5), (3,6)\} \implies \mathbb{P}(A \cap B) = \frac{3}{36} = \frac{1}{12}.$$

Thus, the required probability is given by

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{6}{12} = \frac{1}{2}.$$

We now discuss some important properties of conditional probability.

Theorem 1.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

1) Let $A \in \mathcal{F}$ with $\mathbb{P}(A) > 0$. Then $\mathbb{P}_A := \mathbb{P}(\cdot|A)$ is a probability measure over Ω with $\mathbb{P}_A(A) = 1$.

Multiplication rule: If $A_1, A_2, \ldots, A_n \in \mathcal{F}$ with $\mathbb{P}(\bigcap_{i=1}^{n-1} A_i) > 0$, then

$$\mathbb{P}(\cap_{i=1}^{n} A_i) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_2 \cap A_1)\dots\mathbb{P}(A_n|\cap_{i=1}^{n-1} A_i).$$

3. Total probability rule: Let A_1, A_2, \ldots be finite or countable partition of Ω i.e.,

$$A_i \cap A_j = \emptyset \quad \forall i \neq j, \quad and \quad \bigcup_{i=1}^{\infty} A_i = \Omega$$

such that $\mathbb{P}(A_i) > 0$. Then for any $B \in \mathcal{F}$

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i).$$

Bayes' rule: Let $A_1, A_2,...$ be finite or countable partition of Ω such that $\mathbb{P}(A_i) > 0$. Then for any $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$,

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i)\mathbb{P}(B|A_i)}{\sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}.$$

Proof. Proof of 1): Observe that $0 \leq \mathbb{P}_A(B) \leq 1$ for any $B \in \mathcal{F}$ and $\mathbb{P}_A(\Omega) = 1$. Moreover, $\mathbb{P}_A(A) = 1$. Let $\{B_i\}$ are disjoint events. Then $C_i := B_i \cap A$ are disjoint. Hence we have

$$\mathbb{P}_A(\cup_{i=1}^{\infty} B_i) = \frac{\mathbb{P}(A \cap (\cup_{i=1}^{\infty} B_i))}{\mathbb{P}(A)} = \frac{\mathbb{P}(\sqcup_{i=1}^{\infty} C_i)}{\mathbb{P}(A)} = \frac{\sum_{i=1}^{\infty} \mathbb{P}(C_i)}{\mathbb{P}(A)} = \sum_{i=1}^{\infty} \frac{\mathbb{P}(C_i)}{\mathbb{P}(A)} = \sum_{i=1}^{\infty} \mathbb{P}_A(B_i).$$

This show that $\mathbb{P}_A := \mathbb{P}(\cdot|A)$ is a probability measure over Ω .

Proof of 2): Let us take $A_0 = \Omega$ for convenient. Then, we have

$$\mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_2\cap A_1)\dots\mathbb{P}(A_n|\cap_{i=1}^{n-1}A_i)$$

$$= \prod_{r=1}^{n} \mathbb{P}(A_r | \cap_{k=1}^{r-1} A_k) = \prod_{r=1}^{n} \frac{\mathbb{P}(A_r \cap (\cap_{k=1}^{r-1} A_k))}{\mathbb{P}(\cap_{k=1}^{r-1} A_k)} = \prod_{r=1}^{n} \frac{\mathbb{P}(\cap_{k=1}^{r} A_k)}{\mathbb{P}(\cap_{k=1}^{r-1} A_k)} = \mathbb{P}(\cap_{i=1}^{n} A_i).$$

Proof of 3): Observe that, since $\{A_i\}$ is disjoint, $\{B \cap A_i\}$ is also disjoint. Moreover,

$$B = B \cap \Omega = B \cap (\cup_{i=1}^{\infty} A_i) = \sqcup_{i=1}^{\infty} (B \cap A_i).$$

Thus, by using the property of \mathbb{P} , we obtain

$$\mathbb{P}(B) = \mathbb{P}\left(\sqcup_{i=1}^{\infty} (B \cap A_i)\right) = \sum_{i=1}^{\infty} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i).$$

Proof of 4): By using the definition of conditional probability and the total probability rule 2), we have

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A_i)\mathbb{P}(B|A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A_i)\mathbb{P}(B|A_i)}{\sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}.$$

A. K. MAJEE

Example 1.10. Three teenagers want to get into a R-rated movie. At the box office, ther are asked to produce their IDs; after the clerk checks them and denies them to enter, he returns the IDs randomly. Find the probability that none of the teenagers get their own ID.

Solution: Let A be the event that none of the teenagers get their own ID and A_i denotes the event that i-th teenager gets his own ID. Our required probability is $\mathbb{P}(A)$. Note that since there are three possible cases and only one is favourable, $\mathbb{P}(A_i) = 1/3$ for i = 1, 2, 3. Note that after giving the right ID to i-th teenager, probability that j-th teenager will get his own ID is equal to 1/2 as there are two possible ones in which one is favourable. Thus, for $i \neq j$, we see that

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j|A_j) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}.$$

In a similar fashion, we get

$$\mathbb{P}(\cap_{i=1}^{3} A_i) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|(A_1 \cap A_2)) = 1/3 \times 1/2 \times 1 = 1/6.$$

Hence, we compute

6

$$\mathbb{P}(A) = \mathbb{P}(\cap_{i=1}^{3} A_{i}^{\complement}) = 1 - \mathbb{P}(\cup_{i=1}^{3} A_{i}) = 1 - \sum_{i=1}^{3} \mathbb{P}(A_{i}) + \sum_{i < j} \mathbb{P}(A_{i} \cap A_{j}) - \mathbb{P}(\cap_{i=1}^{3} A_{i})$$
$$= 1 - (3 \times 1/3) + (3 \times 1/6) - 1/6 = 2/6 = 1/3.$$

Example 1.11. An insurance company believes that people can be divided into two classes: those who are accident prone and those who are not. During any given year, an accident-prone person will have an accident with probability 0.4, whereas the corresponding figure for a person who is not prone to accidents is 0.2. If we assume that 30 percent of the population is accident prone

- a) What is the probability that a new policyholder will have an accident within a year of purchasing a policy?
- b) What is the probability that policyholder is accident prone given that he/she has an accident within a year of purchasing a policy?
- c) What is the probability that a new policyholder will have accident in his/her second year of policy ownership given that the policyholder has had accident in the first year?

Solution: Let A be the event that the policyholder is accident prone and A_i be the event that the policyholder has had accident in i-th year. We need find $\mathbb{P}(A_1)$, $\mathbb{P}(A|A_1)$ and $\mathbb{P}(A_2|A_1)$. From the given conditions, we have

$$\mathbb{P}(A_1|A) = 0.4 = \mathbb{P}(A_2|A \cap A_1), \quad \mathbb{P}(A_1|A^{\complement}) = 0.2 = \mathbb{P}(A_2|A^{\complement} \cap A_1), \quad \mathbb{P}(A) = 0.3, \quad \mathbb{P}(A^{\complement}) = 0.7$$

By the total probability rule, we obtain

$$\mathbb{P}(A_1) = \mathbb{P}(A_1|A)\mathbb{P}(A) + \mathbb{P}(A_1|A^{\complement})\mathbb{P}(A^{\complement}) = (0.4)(0.3) + (0.2)(0.7) = 0.26.$$

Moreover, by using definition of conditional probability, we get

$$\mathbb{P}(A|A_1) = \frac{\mathbb{P}(A \cap A_1)}{\mathbb{P}(A_1)} = \frac{\mathbb{P}(A_1|A)\mathbb{P}(A)}{\mathbb{P}(A_1)} = \frac{(0.3)(0.4)}{0.26} = \frac{6}{13}.$$

Note that $\mathbb{P}_{A_1}(\cdot) := \mathbb{P}(\cdot|A_1)$ is a probability measure. Thus, by total probability rule, we have

$$\mathbb{P}(A_{2}|A_{1}) = \mathbb{P}_{A_{1}}(A_{2}) = \mathbb{P}_{A_{1}}(A_{2}|A)\mathbb{P}_{A_{1}}(A) + \mathbb{P}_{A_{1}}(A_{2}|A^{\complement})\mathbb{P}_{A_{1}}(A^{\complement})$$

$$= \mathbb{P}(A_{2}|(A \cap A_{1}))\mathbb{P}(A|A_{1}) + \mathbb{P}(A_{2}|(A^{\complement} \cap A_{1}))\mathbb{P}(A^{\complement}|A_{1})$$

$$= \mathbb{P}(A_{2}|(A \cap A_{1}))\mathbb{P}(A|A_{1}) + \mathbb{P}(A_{2}|(A^{\complement} \cap A_{1}))[1 - \mathbb{P}(A|A_{1})]$$

$$= (0.4)\frac{6}{13} + (0.2)\frac{7}{13} \approx 0.29.$$

 \checkmark

1.2. Independence of Events and its properties: Sometimes the occurrence of an event B does not affect the probability of an event A i.e., $\mathbb{P}(A|B) = P(A)$. In that case, we say the event A is "independent" from event B.

Definition 1.8. We make the following definition regarding various notion of independent of events:

- i) **Independent Events:** Two events A and B are said to be independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- ii) **Pairwise Independent Events:** A family of events $\{A_i : i \in I\}$ is said to be pairwise independent if

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j) \quad \forall \ i \neq j.$$

iii) **Independent family:** A family of events $\{A_i : i \in I\}$ is said to be independent / mutually independent if for every finite subset $J \neq \emptyset$ of I, there holds

$$\mathbb{P}(\cap_{j\in J} A_j) = \prod_{j\in J} \mathbb{P}(A_j).$$

Example 1.12. Two fair dice are thrown. Consider the following events: let A be the events that first die shows 2, B be the event that second die shows 5 and C be the event that total is equal to 7, i.e.,

$$A = \{(2,b) : 1 \le b \le 6\}, \quad B = \{(a,5) : 1 \le a \le 6\}, \quad C = \{(a,b) : a+b=7, 1 \le a, b \le 6\}$$

$$Here \ \Omega = \{(i,j) : 1 \le i, j \le 6\}, \ \mathcal{F} = \mathcal{P}(\Omega), \ \mathbb{P}(D) = \frac{|D|}{36} \ for \ any \ D \subseteq \Omega. \ It \ is \ easy \ to \ check \ that$$

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{6}, \quad \mathbb{P}(A \cap B) = \mathbb{P}(B \cap C) = \mathbb{P}(C \cap A) = \frac{1}{36}, \mathbb{P}(A \cap B \cap C) = \frac{1}{36}.$$

$$Hence$$

- a) The family $\{A, B, C\}$ is pairwise independent.
- b) The family $\{A, B, C\}$ is NOT mutually independent as $\mathbb{P}(A \cap B \cap C) = \frac{1}{36} \neq \frac{1}{216} = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$.