ELEC 221 Lecture 02 LTI systems, DT impulse response and the convolution sum

Tuesday 10 September 2024

Announcements

- Quiz 1 today
- Tutorial assignment 1 Monday 16 Sept 23:59
- Assignment 1 due Thursday 19 Sept 23:59

Last time

We saw continuous-time and discrete-time signals, and applied some simple transformations to them.

Last time

We introduced systems, which respond to signals, transform them, and output new signals.

Image credits: Signals and Systems 2nd ed., Oppenheim

Last time

We explored some properties of systems:

- 1. Memory
- 2. Invertibility
- 3. Causality
- 4. Stability
- 5. Linearity
- 6. Time invariance

Quiz time

Available at us.prairielearn.com

- Work individually
- You may use lecture slides, notes, or the textbook.
- Please do not search online for answers

Once you start the quiz you will have 10 minutes to complete it.

You have one attempt per question.

Questions will re-enabled later for practice with random variants.

Today

Learning outcomes:

- Define what it means for a system to be LTI (linear, time-invariant)
- Define the DT unit impulse and unit step functions
- Define the convolution sum and use it to compute the output of a system

Linearity

Consider a function f such that y = f(x).

If *f* is linear, what key properties does it have?

Properties of systems: linearity

A **linear** system $x(t) \rightarrow y(t)$ sends

Thus, a linear system sends

for arbitrary a, b (which may be complex).

Example: linearity

Is the following system linear?

$$x(t) \to y(t) = x(n+1) - x(n-1)$$

Example: linearity

Is the following system linear?

$$x(t) \to y(t) = x(n+1) - x(n-1)$$

Exercise: linearity

Is the following system linear?

$$x[n] \to y[n] = x[n] + 1$$

Properties of systems: time invariance

A system is **time invariant** if a time-shifted input leads to an output time-shifted by the same amount.

Intuition: behaviour of the system is fixed over time.

Example: time invariance

Is this system time-invariant?

$$y(t) = \cos(3t)x(t)$$

Exercise: time invariance

Is this system time-invariant?

$$y(t) = x(t+1) - x(t-1)$$

LTI systems

We are most interested in systems that are both **linear** and **time-invariant**, i.e., LTI systems.

How can we characterize the behaviour of LTI systems?

The DT unit impulse

The DT unit step

Relationships between basic signals

We can express these in terms of each other:

The sifting property

The unit impulse is an important tool for characterizing the behaviour of systems.

By considering unit impulses time-shifted as various points, we can pick out, or *sift* out specific parts of the signal.

The sifting property

The value of a DT at every point is a weighted, shifted impulse.

The unit impulse as a sampler

Multiplying by a shifted impulse "samples" the signal at that point:

Any signal can be written as a **superposition of weighted impulses**.

The impulse response

Given a signal

how does an LTI system respond to it?

For a **linear** system $z[n] \rightarrow w[n]$,

More generally,

The impulse response

Suppose the system sends $\delta[n-k] \to h_k[n]$. Then

 $h_k[n]$ is called the **impulse response**.

Real-world example: nerve conduction study

Image source: https://neupsykey.com/nerve-conduction-studies-and-electromyography/

The impulse response and time-invariance

What if the system is also time invariant?

Then

The convolution sum

If we know how a **linear** system responds to the unit impulse, we can learn how it responds to **any other signal**!

This is the **convolution sum**. We are "convolving" the sequences x[n] and h[n].

Exercise: impulse response

Consider an LTI system with input/output relationship

$$y[n] = 2x[n] + x[n-1]$$

What is the impulse response of the system?

Consider the signal

input to a system with impulse response

To learn the system output, we must consider the contribution of each weighted impulse response:

Only $x[k] \neq 0$ only for $k \in \{-2, -1, 0, 1\}$. So need to determine x[k]h[n-k] for these cases, and sum them.

Properties of convolutions

Image credits: Signals and Systems 2nd ed., Oppenheim

Convolution is:

Associative:

$$x[n] * (h_1[n] * h_2[n]) =$$

 $(x[n] * h_1[n]) * h_2[n]$

Commutative:

$$x[n] * h[n] = h[n] * x[n]$$

Distributive:

$$x[n] * (h_1[n] + h_2[n]) =$$

 $x[n] * h_1[n] + x[n] * h_2[n]$

Consider an LTI system with impulse response

$$h[n] = 3\delta[n] + 2\delta[n+1]$$

What is output of the system if

$$x[n] = \left(\frac{2}{3}\right)^n u[n]$$

Example/exercise: convolution sum

What is output of the system

$$x[n] = \left(\frac{2}{3}\right)^n u[n], \quad h[n] = 3\delta[n] + 2\delta[n+1]$$

Example/exercise: convolution sum

What is output of the system

$$x[n] = \left(\frac{2}{3}\right)^n u[n], \quad h[n] = 3\delta[n] + 2\delta[n+1]$$

Recap

Today's learning outcomes were:

- Define what it means for a system to be LTI (linear, time-invariant)
- Define the DT unit impulse and unit step functions
- Define the convolution sum and use it to compute the output of a system

For next time

Content:

- Continuous-time unit impulse and step
- Convolution integral
- Characterizing systems with the impulse response

Action items:

- 1. Work on Tutorial Assignment 1
- 2. Work on Assignment 1

Recommended reading:

- from today's class: Oppenheim 1.6.5-6, 1.4, 2.1
- practice problems: 1.16-1.20, 2.1-2.7, 2.21
- for next class: Oppenheim 1.4, 2.2-2.3