PROJECT TITLE: SMART WATER FOUNTAIN

PHASE_3: DEVELOPMENT PART-1

INTRODUCTION:

A smart water fountain using IoT, or the Internet of Things, is a modern and innovative device designed to provide a more efficient and convenient way to manage and monitor the water supply in various contexts. Here's a brief introduction to the concept:

- 1. *IoT Integration*: The heart of a smart water fountain is its integration with IoT technology. This enables the fountain to be connected to the internet and to other devices, allowing for remote control and data collection.
- 2. *Remote Monitoring*: With IoT, you can monitor the status of the water fountain in real-time from anywhere, using a smartphone or computer. This makes it easier to ensure the fountain is working correctly and efficiently.

COMPONENTS REQUIRED:

RASPBERRY Pi

Ultrasonic Sensor

Water pump

LED

Resistor

HARDWARE DEVELOPMENT:

Developing the hardware for a smart fountain using IoT involves integrating various components to enable connectivity, monitoring, and control. Here's an overview of the key hardware elements required for such a project:

1. *Water Fountain Unit*:

- *Fountain Structure*: This is the physical structure of the fountain, which includes the reservoir, pipes, and nozzles.
- *Pump*: A water pump is used to circulate and deliver water to the nozzles.
- *Water Filter*: To ensure clean water, a filtration system is essential, and this may include UV sterilization or other purification methods.
- *Sensors*: Water level sensors, temperature sensors, and water quality sensors (pH, turbidity) are integrated to monitor various parameters.

2. *Microcontroller/Processor*:

- A microcontroller (e.g., Arduino, Raspberry Pi) serves as the brain of the system. It manages sensor data, controls actuators, and connects to the internet.

3. *IoT Connectivity*:

- *Wi-Fi/Bluetooth Module*: To enable wireless communication, you can integrate Wi-Fi or Bluetooth modules.
- *IoT Communication Protocols*: MQTT, HTTP, or CoAP can be used to transmit data to the cloud.

4. *Power Supply*:

- Ensure a reliable and safe power source for the fountain and the IoT components. This may involve using a combination of mains power and battery backup.

5. *Actuators*:

- *Valves and Solenoids*: These are used to control water flow and direction within the fountain.
- *LED Lights*: For decorative and lighting effects, integrated LED lights can be controlled via IoT.

<u>STEP-1:</u>

<u>STEP-2:</u>

STEP-3:


```
CODE:
import time
TRIG_PIN 2
ECHO PIN=3
PUMP PIN=4
LED PIN=5
ultrasonic_sensor = Ultrasonic(TRIG PIN, ECHO PIN)
pump Motor (PUMP_PIN)
led LED(LED_PIN
while True:
distance = ultrasonic_sensor.distance_cm
if distance> 200:
led.blink(on_time=0.5, off_time=0.5)
pump.on() # Water pump is turned on
else:
led.off()
pump.off()
time.sleep(0.1)
```

OUTPUT:

