Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Whatever the approach to development may be, the final program must satisfy some fundamental properties. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Also, specific user environment and usage history can make it difficult to reproduce the problem. Many applications use a mix of several languages in their construction and use. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Many applications use a mix of several languages in their construction and use. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Scripting and breakpointing is also part of this process. Programs were mostly entered using punched cards or paper tape. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" a series of pasteboard cards with holes punched in them. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code.