Linear Algebra 2, Recitation 8

Final Part of Recitation 7

Definition 1

Let V be an inner product space, and $S \subseteq V$ a subset. Define S's **orthogonal complement** (המרחב הניצב) to be

$$S^{\perp} = \{ v \in V \mid \forall u \in S \colon \langle u, v \rangle = 0 \}$$

Exercise 2

Find the orthogonal complement of $S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$.

The orthogonal complement of S is

$$S^{\perp} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \; \middle| \; \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right\rangle = 0 \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \; \middle| \; \left\{ \begin{matrix} x + 2y + 3z = 0 \\ y + 2z = 0 \end{matrix} \right\}$$

This is just

$$N\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} = N\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} = \operatorname{span}\left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}\right)$$

Exercise 3

Let U, W be subspaces of an inner product space V, prove

$$(U+W)^{\perp}=U^{\perp}\cap W^{\perp}$$

Suppose $v \in (U+W)^{\perp}$, let $u \in U$ and $w \in W$, then $u, w \in U+W$ so $\langle v, u \rangle = \langle v, w \rangle = 0$. Thus $v \in U^{\perp} \cap W^{\perp}$. Conversely, let $v \in U^{\perp} \cap W^{\perp}$, let $u+w \in U+W$ then $\langle v, u \rangle = \langle v, w \rangle = 0$ so $\langle v, u+w \rangle = 0$ by linearity. Thus $v \in (U+W)^{\perp}$ as required.

Exercise 4

Let $A \in \mathbb{R}^{m \times n}$, find $C(A)^{\perp}$ and $C(A^{\top})^{\perp}$.

We know that

$$C(A^{\top}) = \{ A^{\top} w \mid w \in \mathbb{R}^m \}$$

and so $C(A^{\top})^{\perp}$ is the set of all vectors v such that for every $w \in \mathbb{R}^n$: $\langle A^{\top}w, v \rangle = (A^{\top}w)^{\top}v = w^{\top}Av$. Take in particular $w = e_i$, then this requires $e_i^{\top}Av = R_i(A)v = 0$. This precisely means that $v \in N(A)$. So we claim that $C(A^{\top})^{\perp} = N(A)$, we have already shown one direction of the equality. Now suppose Av = 0 then for any w, $\langle A^{\top}w, v \rangle = w^{\top}Av = w^{\top}0 = 0$. So we have shown equality.

Thus we also get

$$C(A)^{\perp} = N(A^{\top}) \qquad \Diamond$$

Note that $C(A^{\top}) = R(A)$, so we have in essence shown that $R(A)^{\perp} = N(A)$.

Recitation 8

Recall the following definition:

Definition 5

Let V be an inner product space, and $S = \{v_1, \dots, v_n\} \subseteq V$, then S's **Gram Matrix** is

$$G_S := \begin{pmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \cdots & \langle v_1, v_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \cdots & \langle v_n, v_n \rangle \end{pmatrix}$$

Last recitation we showed that G_S is invertible iff S is linearly independent. Now we show

Proposition 6

Let V be an inner product space and $B = \{v_1, \dots, v_n\} \subseteq V$ a basis. Then for any $v, u \in V$:

$$\langle v, u \rangle = [v]_B^\top \cdot G_B \cdot \overline{[u]_B}$$

Proof: suppose $[v]_B = (\alpha_1, \dots, \alpha_n)^{\top}$ and $[u]_B = (\beta_1, \dots, \beta_n)^{\top}$. Then

$$\langle v, u \rangle = \left\langle \sum_{i} \alpha_{i} v_{i}, \sum_{j} \beta_{j} v_{j} \right\rangle = \sum_{i} \sum_{j} \alpha_{i} \overline{\beta}_{j} \langle v_{i}, v_{j} \rangle = \sum_{i} \sum_{j} \alpha_{i} \overline{\beta}_{j} (G_{B})_{ij}$$

Now,

$$[v]_B^{\top} G_B \overline{[u]_B} = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} \sum_j \overline{\beta}_j (G_B)_{1j} \\ \vdots \\ \sum_j \overline{\beta}_j (G_B)_{nj} \end{pmatrix} = \sum_i \sum_j \alpha_i \overline{\beta}_j (G_B)_{ij}$$

as required.

Theorem 7 (Cauchy-Schwarz – קושי־שוורץ)

Let V be an inner product space, then for every $v, u \in V$:

$$|\langle v, u \rangle| \le ||v|| ||u||$$

and there is equality if and only if v and u are linearly dependent.

Exercise 8

Let $a_1, \ldots, a_n \in \mathbb{R}$, show that

$$(a_1 + \dots + a_n)^2 \le n(a_1^2 + \dots + a_n^2)$$

Proof: let $V = \mathbb{R}^n$, and define $v = (a_1, \dots, a_n)^{\top}$ and $\mathbf{1} = (1, \dots, 1)^{\top}$. Then $\langle v, \mathbf{1} \rangle = a_1 + \dots + a_n$, $||v|| = \sqrt{a_1^2 + \dots + a_n^2}$, and $||\mathbf{1}|| = \sqrt{n}$. So by Cauchy-Schwarz,

$$|a_1 + \dots + a_n| \le \sqrt{n} \sqrt{a_1^2 + \dots + a_n^2} \implies (a_1 + \dots + a_n)^2 \le n(a_1^2 + \dots + a_n^2)$$

Exercise 9

Let V be an inner product space and define $B_1 = \{u \in V \mid ||u|| = 1\}$. Show that for every $0 \neq v \in V$, $\min\{||v - u|| \mid u \in B_1\}$ is given by v's normalization: $\hat{v} = \frac{v}{||v||}$.

Proof: note that minimizing ||v-u|| is the same as minimizing $||v-u||^2$ since norms are nonnegative. For \hat{v} :

$$||v - \hat{v}||^2 = ||v(1 - \frac{1}{||v||})||^2 = |1 - \frac{1}{||v||}|^2 ||v||^2 = ||v||^2 - 2||v|| + 1$$

And for a general $u \in B_1$:

$$||v - u||^2 = \langle v - u, v - u \rangle = ||v||^2 - \langle v, u \rangle - \langle u, v \rangle + ||u||^2$$

notice that $\langle v, u \rangle + \langle u, v \rangle = \langle v, u \rangle + \overline{\langle v, u \rangle} = 2 \operatorname{Re} \langle v, u \rangle$. So we need to show that

$$||v||^2 - 2||v|| + 1 \le ||v||^2 - 2\operatorname{Re}\langle v, u \rangle + 1 \iff \operatorname{Re}\langle v, u \rangle \le ||v||$$

This is indeed true, as by Cauchy-Schwarz:

$$\operatorname{Re}\langle v, u \rangle \le |\langle v, u \rangle| \le ||v|| ||u|| = ||v||$$

 \Diamond

Theorem 10

Let $U \leq V$ be a subspace, then $V = U \oplus U^{\perp}$.

Exercise 11

Let $U \leq V$ be a subspace, show that $(U^{\perp})^{\perp} = U$.

Proof: firstly, it is obvious that $U \subseteq (U^{\perp})^{\perp}$ since for every $u \in U$, u is orthogonal to everything in U^{\perp} . Now, suppose $\dim V = n$ and $\dim U = k$, then

$$\dim V = \dim U + \dim U^{\perp} \implies \dim U^{\perp} = n - k$$

and

$$\dim V = \dim U^{\perp} + \dim(U^{\perp})^{\perp} \implies \dim(U^{\perp})^{\perp} = k = \dim U$$

so by considering dimensions, we have that $U = (U^{\perp})^{\perp}$.

Definition 12

Let V be an inner product space, and $W \leq V$ a subspace with an orthogonal basis $B = \{w_1, \dots, w_n\}$. Then define the **projection map on** W (הימל) by

$$\pi_W: V \longrightarrow W, \qquad \pi_W(v) = \sum_{i=1}^n \frac{\langle v, w_i \rangle}{\|w_i\|^2} w_i$$

Theorem 13

The following hold for projection maps:

- (1) $\pi_W(v) \in W$ for all $v \in V$ (i.e. π_W is well-defined).
- $\begin{aligned} & (\mathbf{2}) \quad \pi_W(v) = v \iff v \in W. \\ & (\mathbf{3}) \quad \pi_W(v) = 0 \iff v \in W^{\perp}. \\ & (\mathbf{4}) \quad v \pi_W(v) \in W^{\perp}. \end{aligned}$
- (5) π_W is independent on choice of orthogonal basis.

Exercise 14

Let
$$V = \mathbb{R}^3$$
 and $W = \text{span}\left(\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\2\\-3 \end{pmatrix}\right)$. Find the projection of $v = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ onto W .

Proof: the set $\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\2\\-3 \end{pmatrix} \right\}$ is orthogonal so

$$\pi_{W}(v) = \frac{\left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\|^{2}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\-3 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 2\\2\\2\\-3 \end{pmatrix} \right\|^{2}} \begin{pmatrix} 2\\2\\-3 \end{pmatrix} = \frac{3}{14} \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \frac{4}{12} \begin{pmatrix} 2\\2\\-3 \end{pmatrix}$$

Definition 15

The **Gram-Schmidt process** (תהליך גראם שמידם) is a process of converting a basis to an orthogonal basis. Suppose $B = \{v_1, \dots, v_n\}$ is a basis, then we define $C = \{w_1, \dots, w_n\}$ recursively as follows:

$$w_1 = v_1, \qquad w_{i+1} = v_{k+1} - \pi_{\text{span}(w_1, \dots, w_k)}(v_{k+1}) = v_{i+1} - \sum_{i=1}^k \frac{\langle v_{k+1}, w_i \rangle}{\|w_i\|^2} w_i$$

Using the Gram-Schmidt process, we see that every inner product space has an orthogonal, and thus orthonormal, basis.

Exercise 16

Let us define an inner product on \mathbb{R}^3 by

$$\left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\rangle = xa + xb + ya + 2yb + zc$$

Find an orthogonal basis relative to this inner product.

Proof: let us take the standard basis as our initial basis. We will then perform the Gram-Schmidt process on it to convert it to an orthogonal basis. So $w_1 = (1,0,0)^{\top}$ and

$$w_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

and

$$w_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\|^{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\|^{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Exercise 17

Let V be an inner product space, and W a subspace, show that for every $v \in V$ and $w \in W$:

$$||v - \pi_W(v)|| \le ||v - w||$$

and there is equality iff $w = \pi_W(v)$.

Proof: take an orthonormal basis of W (so that π_W looks nicer), $E_W = \{e_1, \dots, e_k\}$, and then extend it to an orthonormal basis of $E = \{e_1, \dots, e_k, \dots, e_n\}$ of V (why can we do this? Don't explain; it'll be in the homework.) Suppose $v = \sum_{i=1}^n \alpha_i e_i$, then

$$\pi_W(v) = \sum_{i=1}^k \langle v, e_i \rangle e_i = \sum_{i=1}^k \alpha_i e_i$$

let $w \in W$ and suppose $w = \sum_{i=1}^{k} \beta_i e_i$. Then by Pythagoras:

$$\|v - \pi_W(v)\|^2 = \left\| \sum_{i=k+1}^n \alpha_i e_i \right\| = \sum_{i=k+1}^n \alpha_i^2$$

and

$$\|v - w\|^2 = \left\| \sum_{i=1}^k (\alpha_i - \beta_i) e_i + \sum_{i=k+1}^n \alpha_i e_i \right\|^2 = \sum_{i=1}^k (\alpha_i - \beta_i)^2 + \sum_{i=k+1}^n \alpha_i^2$$

So we get that

$$||v - \pi_W(v)||^2 \le ||v - 2||^2$$

as required, and there is equality iff $\sum_{i=1}^{k} (\alpha_i - \beta_i)^2 = 0$ which is iff $\alpha_i = \beta_i$ for $1 \le i \le k$, which just means $w = \pi_W(v)$ as required.