Computer Graphics 1

4 Camera

Summer Semester 2022 Ludwig-Maximilians-Universität München

Tutorial 4: Camera

- Scene Graph and Model Transformation
- Viewing Transformations
 - View Transformation
 - Projection Transformations
 - Viewport Transformation
- Summary

What's in the scene?

Scene Graph

Scene Graph

Model Transformation

- The multiplied matrix of all transformations is the *model transformation* matrix of a given object.
 - \circ e.g. $\mathbf{M}_1\mathbf{M}_2$ is the model transformation matrix of the bunny 3.

Breakout 1: Group Transformations

In the previously discussed scene graph the sun remains orbiting around +Y, but the sky is getting darker.

The middle bunny grows up and gets a little bit bigger than the others.

Find the TODO comment in src/main.ts from the provided code skeleton "scene".

- 1. Rotate the three bunnies around their intrinsic +Y axis individually
- 2. Rotate the three bunnies around the extrinsic +Y axis together
- 3. Rotate the three bunnies both around intrinsic +Y axis and extrinsic +Y axis simultaneously

Tutorial 4: Camera

- Scene Graph and Model Transformation
- Viewing Transformations
 - View Transformation
 - Projection Transformations
 - Viewport Transformation
- Summary

Viewing Transformation Pipeline

Viewing transformation is a 3D to 2D mapping that can be considered as 3 major transformation stages:

camera space

- 1. View transformation: World space to camera space
- 2. **Projection transformation:** Camera space to projective space
- 3. **Viewport transformation:** Projection space to screen space

projection space

Changkun Ou, Dennis Dietz, Prof. Butz | LMU Munich CG1 SS22

word space

screen space

View Transformation

The *view transformation* transforms the camera to the origin, it looks at -Z and the upwards direction is +Y.

Translation first, then rotation: $\mathbf{T}_{ ext{view}} = \mathbf{T}_r \mathbf{T}_t$

View Transformation: Translation

Translate based on the camera position:

$$\mathbf{T}_t = \begin{pmatrix} 1 & 0 & 0 & -p_1 \\ 0 & 1 & 0 & -p_2 \\ 0 & 0 & 1 & -p_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

View Transformation: Rotation

- Goal: Rotate camera coordinate frame from ${\bf l}$ to -Z, ${\bf u}$ to +Y and ${\bf l} \times {\bf u}$ to +X.
- ullet The inverse problem is easier: Rotate +X to ${f l} imes {f u}$, +Y to ${f u}$, and +Z to $-{f l}$.
- ullet For rotation matrices (orthonormal matrices), we have: $\mathbf{T}_r^{-1} = \mathbf{T}_r^ op$

Thus:

$$\mathbf{T}_{r}^{-1} = \begin{pmatrix} x_{\mathbf{l} \times \mathbf{u}} & x_{\mathbf{u}} & x_{-\mathbf{l}} & 0 \\ y_{\mathbf{l} \times \mathbf{u}} & y_{\mathbf{u}} & y_{-\mathbf{l}} & 0 \\ z_{\mathbf{l} \times \mathbf{u}} & z_{\mathbf{u}} & z_{-\mathbf{l}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \mathbf{T}_{r} = (\mathbf{T}_{r}^{-1})^{\top} = \begin{pmatrix} x_{\mathbf{l} \times \mathbf{u}} & y_{\mathbf{l} \times \mathbf{u}} & z_{\mathbf{l} \times \mathbf{u}} & 0 \\ x_{\mathbf{u}} & y_{\mathbf{u}} & z_{\mathbf{u}} & 0 \\ x_{-\mathbf{l}} & y_{-\mathbf{l}} & z_{-\mathbf{l}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Q: How can we do this using quaternions?

Camera Projection

For the process of projecting our 3D scene onto a 2D image, we can use different methods.

One of the most common projections is the *perspective projection*.

It is similar to our visual process and similar to real

cameras. Therefore, it is often perceived as natural.

Objects far away appear smaller.

The captured area is defined by a near (n) and a far (f) plane, aspect ratio (w/h), as well as the field of view (fov)

Camera Projection

Another commonly used form of projection is the *orthographic projection*.

It is a special form of parallel projection, which is independent of the distance to the camera.

As an example we can imagine to project the whole 3D space onto the x-y plane by just setting z=0.

Here, the area captured by the camera is given by a near (n) and a far (f) plane as well as left (I), bottom(b), top (t), and right (r) borders.

How can we orthographically project an object onto the camera plane (image)?

Orthographic Projection

We translate the center of the cube to the origin, then scale its length, width, and height to 2

This transforms the scene into the unit cube

$$\mathbf{T}_{\text{ortho}} = \begin{pmatrix} 2/(r-l) & 0 & 0 & 0\\ 0 & 2/(t-b) & 0 & 0\\ 0 & 0 & 2/(n-f) & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -(r+l)/2\\ 0 & 1 & 0 & -(t+b)/2\\ 0 & 0 & 1 & -(n+f)/2\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

scale

translation

$$= \begin{pmatrix} 2/(r-l) & 0 & 0 & (l+r)/(l-r) \\ 0 & 2/(t-b) & 0 & (b+t)/(b-t) \\ 0 & 0 & 2/(n-f) & (f+n)/(f-n) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $[-1,1]^3$

Perspective Projection

Now, a perspective projection can be considered as a composition two transformations: ${f T}_{ortho}{f T}_{persp o ortho}$

We already know T_{ortho} . So how can we calculate $T_{persp
ightarrow ortho}$?

If we consider (x, y, z) with its projection being (x', y', ?), we get similar triangles for x and y:

$$\frac{y'}{y} = \frac{n}{z}$$
 , similarly: $\frac{x'}{x} = \frac{n}{z}$

Thus, the transformation is:

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \to \begin{pmatrix} nx/z \\ ny/z \\ ? \\ 1 \end{pmatrix} = \begin{pmatrix} nx \\ ny \\ ? \\ z \end{pmatrix}$$

homogeneous coordinates

We can now define the transformation matrix, such that:

$$\begin{pmatrix} nx \\ ny \\ ? \\ z \end{pmatrix} = \mathbf{T}_{persp \to ortho} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ ? & ? & ? & ? \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Note that any point, which lies already on the near plane is not affected by this transformation. If z = n then (x, y, n, 1) will not move. $\begin{pmatrix} nx \\ ny \\ ? \\ n \end{pmatrix} \leftarrow \begin{pmatrix} x \\ y \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} nx \\ ny \\ n^2 \\ n \end{pmatrix}$

Because ? is irrelevant to x and y, the transformation matrix for points on the near plane looks like:

$$\begin{pmatrix} nx \\ ny \\ n^2 \\ n \end{pmatrix} = \mathbf{T}_{\text{persp}\to \text{ortho}} \begin{pmatrix} x \\ y \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & w_1 & w_2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ n \\ 1 \end{pmatrix}$$

Further, the center of the far plane will not change, thus when x = 0, y = 0, z = f:

$$\begin{pmatrix} n \cdot 0 \\ n \cdot 0 \\ ? \\ f \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ f^2 \\ f \end{pmatrix}$$

Therefore, the transformation matrix looks like

$$\begin{pmatrix} 0 \\ 0 \\ f^2 \\ f \end{pmatrix} = \mathbf{T}_{\text{persp}\to \text{ortho}} \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & w_1 & w_2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \end{pmatrix}$$

Near plane:
$$\begin{pmatrix} nx \\ ny \\ n^2 \\ n \end{pmatrix} = \mathbf{T}_{\text{persp}\to \text{ortho}} \begin{pmatrix} x \\ y \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & w_1 & w_2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ n \\ 1 \end{pmatrix} \implies nw_1 + w_2 = n^2$$

Center of the far plane:
$$\begin{pmatrix} 0 \\ 0 \\ f^2 \\ f \end{pmatrix} = \mathbf{T}_{\text{persp} o \text{ortho}} \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & w_1 & w_2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ f \\ 1 \end{pmatrix} \implies fw_1 + w_2 = f^2$$

$$\implies w_1 = n + f, w_2 = -nf$$

$$\Rightarrow \mathbf{T}_{\text{persp}\to \text{ortho}} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

We know that

$$\mathbf{T}_{\text{ortho}} = \begin{pmatrix} 2/(r-l) & 0 & 0 & (l+r)/(l-r) \\ 0 & 2/(t-b) & 0 & (b+t)/(b-t) \\ 0 & 0 & 2/(n-f) & (f+n)/(f-n) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and

$$\mathbf{T}_{\mathrm{persp} o \mathrm{ortho}} = egin{pmatrix} n & 0 & 0 & 0 \ 0 & n & 0 & 0 \ 0 & 0 & n+f & -nf \ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\Rightarrow \mathbf{T}_{\text{ortho}} \mathbf{T}_{\text{persp}\to \text{ortho}} = \begin{pmatrix} 2n/(r-l) & 0 & (l+r)/(l-r) & 0\\ 0 & 2n/(t-b) & (b+t)/(b-t) & 0\\ 0 & 0 & (n+f)/(n-f) & 2nf/(f-n)\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Perspective Projection Matrix

Are we finished? No, we don't know *l*, *r*, *b*, *t*! But we can easily get them:

$$l = -r = -\lambda t = -\lambda(-n)\tan\frac{\theta}{2} = \lambda n\tan\frac{\theta}{2}$$
$$b = -t = -(-n)\tan\frac{\theta}{2} = n\tan\frac{\theta}{2}$$

$$\Rightarrow \mathbf{T}_{\text{ortho}} \mathbf{T}_{\text{persp}\to \text{ortho}} = \begin{pmatrix} -\frac{1}{\lambda \tan \frac{\theta}{2}} & 0 & 0 & 0\\ 0 & -\frac{1}{\tan \frac{\theta}{2}} & 0 & 0\\ 0 & 0 & \frac{n+f}{n-f} & \frac{2nf}{f-n}\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Viewport Transformation

A projection to the x-y plane is independent of z

Transform in x-y plane from $[-1,1]^2$ to $[0,w] \times [0,h]$

$$\mathbf{T}_{ ext{viewport}} = egin{pmatrix} w/2 & 0 & 0 & w/2 \ 0 & h/2 & 0 & h/2 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Summary of Viewing Transformations

Model matrix $\mathbf{T}_{\mathrm{model}} = \mathbf{M}_n \mathbf{M}_{n-1} \cdots \mathbf{M}_1$

View matrix $\mathbf{T}_{ ext{view}} = \mathbf{T}_r \mathbf{T}_t$

Orthographic **p**rojection matrix ${f T}_{
m ortho}$

Perspective **p**rojection matrix $\mathbf{T}_{\mathrm{persp}} = \mathbf{T}_{\mathrm{ortho}} \mathbf{T}_{\mathrm{persp} o \mathrm{ortho}}$

Viewport matrix $\mathbf{T}_{ ext{viewport}}$

Model-View-Projection matrices are often called the MVP-Matrices.

We have prepared everything for creating the viewport, what's next? ⇒ Rasterization

Breakout 2: Switch Between Cameras

Find TODO comment in the src/renderer.ts file from the provided code skeleton "cameras".

- 1. Render the view depending on different types of cameras (perspective and orthographic) in the render loop
- 2. Update projection matrix in the render loop then try tweaking parameters in the menu

Answer: Why was the menu not working before the projection matrix updates?

Tutorial 4: Camera

- Scene Graph and Model Transformation
- Viewing Transformations
 - View Transformation
 - Projection Transformations
 - Viewport Transformation
- Summary

Summary

We discussed

- The scene graph and model transformations
- The viewing transformation pipeline from 3D model space to 2D screen space
- Camera as a powerful tool to express visual effects not only for photography but also computer-generated animations