REPAS ALGEBRA: ESPAIS VECTORIALS

\mathbb{R}^n i les seves operacions

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} : x_i \in \mathbb{R}, \ 1 \le i \le n \right\}$$

Siguin
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{pmatrix}$$
 i $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y \end{pmatrix}$ elements de \mathbb{R}^n i $\lambda \in \mathbb{R}$

Signiff
$$x = \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$$
 if $y = \begin{bmatrix} \vdots \\ y_n \end{bmatrix}$ elements de \mathbb{R} if $x \in \mathbb{R}$

Suma a
$$\mathbb{R}^n$$
: Producte per escalars a \mathbb{R}^n :

$$x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \qquad \lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

PROPIETATS

La suma a \mathbb{R}^n satisfà les propietats següents:

- s1) (associativa) x + (y + z) = (x + y) + z
- s2) (commutativa) x + y = y + x
- s3) (element neutre) x + 0 = x on 0 = (0, 0, ..., 0)
- s4) (element oposats) per tot x existeix x' tal que x + x' = 0

El producte per escalars a \mathbb{R}^n satisfà:

- p1) $\lambda(\mu x) = (\lambda \mu)x$
- p2) $\lambda(x+y) = \lambda x + \lambda y$
- p3) $(\lambda + \mu)x = \lambda x + \mu x$
- p4) 1x = x

(Totes les propietats són certes perquè ho són a \mathbb{R} i les operacions són component a component)

ESPAIS VECTORIALS

Un espai vectorial sobre un cos K consisteix en

- 1. un conjunt no buit E
- 2. una operació interna $E \times E \rightarrow E$ (suma +) i
- 3. una aplicació $\mathbb{K} \times E \to E$ (producte per escalars ·)

de manera que per a tot $u, v, w \in E$ i tot $\lambda, \mu \in \mathbb{K}$ es satisfà:

- e1) (associativa) u + (v + w) = (u + v) + w
- e2) (commutativa) u + v = v + u
- e3) (element neutre) existeix un únic element $\mathbf{0}_E \in E$ tal que $u + \mathbf{0}_E = u$
- e4) (element oposat) per cada $u \in E$ existeix un únic $u' \in E$ tal que $u + u' = \mathbf{0}_E$
- e5) $\lambda(\mu u) = (\lambda \mu)u$
- e6) $\lambda(u+v) = \lambda u + \lambda v$
- e7) $(\lambda + \mu)u = \lambda u + \mu u$
- e8) 1u = u, on 1 és el neutre del producte de $\mathbb K$

EXEMPLES D'ESPAIS VECTORIALS

- $ightharpoonup \mathbb{R}^n$
- \mathbb{Z}_2^n : cadenes de *n* bits La suma és bit a bit: p. ex.,

$$(0,1,1,0)+(1,1,1,0)=(1,0,0,0)$$

Producte per escalars: $0u = \mathbf{0}_{\mathbb{Z}_2^n}$ i 1u = u

- $ightharpoonup \mathcal{M}_{m\times n}(\mathbb{K})$ (les matrius $m\times n$ amb entrades en el cos \mathbb{K})
- Les matrius de $\mathcal{M}_n(\mathbb{R})$ que són triangulars superiors
- $ightharpoonup \mathcal{P}(\mathbb{R})$: el conjunt dels polinomis amb coeficients a \mathbb{R}
- $ightharpoonup \mathcal{P}_d(\mathbb{R})$: els polinomis de grau com a molt d i coeficients a \mathbb{R}
- L'espai vectorial trivial format per un únic element: $\{\mathbf{0}_E\}$
- Les solucions d'un sistema d'equacions lineals homogeni

PROPIETATS

Si v pertany a l'espai vectorial E i λ és un escalar, es satisfà:

- $0v = 0_E$
- $\lambda \mathbf{0}_E = \mathbf{0}_E$
- ▶ Si $\lambda v = \mathbf{0}_E$, aleshores $\lambda = 0$ o $v = \mathbf{0}_E$
- L'element oposat de v és (-1)v; normalment escriurem -v

SUBESPAIS VECTORIALS

Un **subconjunt** vectorial S⊆E es un **subespai** vectorial si compleix les següents característiques:

- S no és buit
- Per tot u, v ∈ S, u + v ∈ S, és a dir, si sumem dos vectors del subconjunt, el resultat també formarà part d'aquest subconjunt
- Per tot $u \in S$ i tot $\lambda \in K$, $\lambda u \in S$, és a dir, si multipliquem qualsevol vector del subconjunt per un escalar del cos, el vector resultant també formarà part d'aquest subconjunt

El vector 0 del espai E pertany a tots els subespais vectorials d'E

EXEMPLES SUBESPAIS VECTORIALS

- $ightharpoonup \mathcal{P}_d(\mathbb{R})$ és un subespai vectorial de l'espai de polinomis $\mathcal{P}(\mathbb{R})$
- Les matrius triangulars superiors de $\mathcal{M}_n(\mathbb{R})$ formen un SEV de $\mathcal{M}_n(\mathbb{R})$
- Les solucions d'un sistema d'equacions lineals homogeni amb n variables i coeficients a \mathbb{R} és un SEV de \mathbb{R}^n

INTERSECCIÓ DE SUBESPAIS

Si fem la **intersecció** de dos subespais vectorials de E (S i S', per exemple) el **subconjunt** vectorial resultant, serà també un **subespai**.

En canvi, si fem la **unió**, pel general, no serà un subespai vectorial d'E, com per exemple:

$$S = \{(x,x) : x \in \mathbb{R}\}\ \mathsf{i}\, S' = \{(x,-x) : x \in \mathbb{R}\}\ ((1,1) + (2,-2) \not\in S \cup S')$$

COMBINACIÓ LINEAAAAAL

La manera d'expressar que un vector és **combinació lineal** dels altres es fa mitjançant els propis vectors, i una sèrie d'escalars (un diferent per cada vector. Si hi penseu, aquests **escalars** són els mateixos que es fan servir a les **transformacions elementals per files**). Aquí en teniu un exemple:

Donats u_1, \ldots, u_k vectors d'E, una combinació lineal de u_1, \ldots, u_k és una expressió del tipus

$$\lambda_1 u_1 + \cdots + \lambda_k u_k$$

on $\lambda_1, \ldots, \lambda_k$ són escalars

El vector v és combinació lineal de u_1, \ldots, u_k si existeixen escalars $\alpha_1, \ldots, \alpha_k$ tals que

$$\mathbf{v} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k$$

"SUBESPAIS VECTORIALS" GENERATS

Ara que ja sabem com funcionen les **combinacions lineals**, hem de saber que quan tenim un conjunt de vectors (li direm Cv), i els combinem com hem vist, podem obtenir nous vectors. Tot aquest conjunt de NOUS vectors:

- S'anomena **subespai generat** i, com indica el nom, és un subespai vectorial
- Té una nomenclatura important: $\langle u_1, \ldots, u_k \rangle$
- Inclou TOTES les combinacions lineals dels vectors de Cv (aquests inclosos òbviament)
- És el subespai més "petit" que inclou als vectors de Cv
- Cv es considera un conjunt de generadors
- Observació: Un vector V pertany a $\langle u_1, \dots, u_k \rangle$ si, i només si, és combinació lineal dels vectors de Cv

INDEPENDÈNCIA LINEAAAAL

LI

Per resumir, un conjunt de vectors és **INDEPENDENT** linealment, quan cap dels vectors és **combinació lineal** de la resta de vectors.

LD

En canvi, quan trobem que un vector o més, són **combinació lineal** de la resta, podem afirmar que el conjunt és linealment **DEPENDENT**.

Explicació formal i exemples:

- ▶ El vector $\mathbf{0}_E$ és linealment dependent
- ▶ Donat un vector $u \neq \mathbf{0}_E$, el vector u és linealment independent
- ▶ Si u és un vector qualsevol i λ és un escalar, $\{u, \lambda u\}$ és LD

Siguin $u_1, \ldots, u_k \in E$. L'equació

$$\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_k u_k = \mathbf{0}_E$$

sempre té la solució $\lambda_1 = \cdots = \lambda_k = 0$.

Si aquesta és l'única solució direm que els vectors u_1, \ldots, u_k són linealment independents (LI)

Si hi ha alguna solució amb un $\lambda_i \neq 0$, direm que els vectors són linealment dependents (LD)

(També direm que el conjunt $\{u_1, \ldots, u_k\}$ és LI o LD, resp.)

COM SABER LA LINEALITAT D'UN CONJUNT DE VECTORS

Simplement hem de col·locar els vectors per **columnes**, obtenir així una matriu, i aleshores, escalonar-la. El RANG ens donarà la informació necessària per saber la linealitat d'aquest conjunt

Per determinar si un conjunt de vectors u_1, u_2, \dots, u_k de \mathbb{R}^n són linealment independents seguim els passos següents:

- (1) formem una matriu A amb els vectors donats, posant-los per columnes
- (2) calculem el rang r d'A
- (3) \triangleright si r = k, aleshores els k vectors són LI
 - ▶ si r < k, aleshores són LD; si hem calculat el rang escalonant la matriu A, aleshores els vectors que corresponen a les columnes on hi ha els uns dominants són un subconjunt LI el més gran possible; si hem calculat el rang per menors, els vectors que corresponent a les columnes del menor d'A més gran amb determinant no nul són un subconjunt LI el més gran possible
 </p>

En general, per determinar si un conjunt de vectors u_1, u_2, \ldots, u_k d'un \mathbb{K} -espai vectorial E són linealment independents seguim els passos següents:

(1) a partir de l'equació vectorial

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_k u_k = \mathbf{0}_E$$

obtenim un sistema homogeni amb incògnites $\lambda_1,\lambda_2,\ldots,\lambda_k$

- (2) discutim el sistema, si és
 - ightharpoonup compatible determinat els vectors u_1, u_2, \ldots, u_k són LI
 - ightharpoonup compatible indeterminat els vectors u_1, u_2, \ldots, u_k són LD

PROPIETATS INDEPENDÈNCIA LINEAL (V/F)

Tenim un conjunt de vectors S:

- Si 0_E pertany a S, els vector de S son LD (amb el vector 0_E i un altre, podem fer tots els vector de S)
- Si els vectors de S són LI, el vector 0 € no pertany a S
- Si els vectors de S són LI, tot subconjunt de S serà LI
- Si els vectors de S són LD, tot conjunt que inclogui al conjunt S, serà LD

Teorema: Si els vectors de S són LD, i el vector v és combinació lineal dels altres, aleshores els S-v genera el mateix espai vectorial que S.

CARACTERITZACIONS INDEPENDÈNCIA LINEAL

Teorema: Un conjunt de vectors és LD si, i només si, hi ha (com a mínim) un vector a S que és combinació lineal dels altres.

Corol·lari: Sigui v un vector de E i S un conjunt de vectors LI de E, llavors, S + v és LI si, i només si, v no és combinació lineal de S. (Per afegir un vector a un conjunt LI i que segueixi sent LI, el vector no pot ser generat pel conjunt inicial)

BASES

Perquè un conjunt de vectors sigui base d'un espai vectorial E, han de cumplir tres condicions. La primera és òbvia, i és que han de formar part d'E. Les altres dues són:

- Aquests vectors han de ser LINEALMENT INDEPENDENTS
- Aquests vectors han de ser GENERADORS del espai E

Observacions:

- 1. Un espai no té una única base
- 2. La dimensió d'un espai E determina el nombre de vectors que tindràn TOTES les seves bases

BASE CANÒNICA

La base canònica

- de \mathbb{K}^n és $\{(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)\}$
- de $\mathcal{M}_{m \times n}(\mathbb{K})$ és la formada per les mn matrius M_{ii} que tenen totes les entrades nul·les excepte la i, j, que és igual a 1
- de $\mathbb{K}_d[x]$ és $\{1, x, x^2, ..., x^d\}$ (també a $\{x^d, x^{d-1}, \dots, 1\}$ li direm base canònica, caldrà especificar quina usem)

PROPOSICIÓ

Com aquest conjunt (la base) genera E, qualsevol vector d'E es pot escriure com a combinació lineal dels vectors de la base. Els escalars que multipliquen els vectors de la base s'anomena vector de coordenades.

Sigui
$$v \in E$$
. Si $v = \alpha_1 b_1 + \cdots + \alpha_n b_n$, diem que

$$\mathbf{v}_{\mathsf{B}} = (\alpha_1, \dots, \alpha_n)$$

és el vector de coordenades de v en la base B

Sigui $v \in E$. Si $v = \alpha_1 b_1 + \cdots + \alpha_n b_n$, diem que **Observació**: Sigui $\{u1, \ldots, uk\}$ un conjunt de vectors d'E que són LI. Aleshores k ≤ n

DIMENSIÓ

Al cardinal de les bases d'un espai vectorial E (o d'un SEV) l'anomenem la **dimensió** de l'espai, denotada **dim(E)**

- Les dimensions dels espais amb els que treballem habitualment són: $\dim(\mathbb{K}^n) = n$, $\dim(\mathcal{M}_{m \times n}(\mathbb{K})) = nm$, i $\dim(\mathcal{P}_d(\mathbb{K})) = d+1$
- ▶ La dimensió del subespai $\{\mathbf{0}_E\}$ és 0
- La dimensió del subespai $\langle u_1, \ldots, u_k \rangle$ donat per generadors és el nombre màxim de vectors LI entre $\{u_1, \ldots, u_k\}$ (que és igual al rang de la matriu que té per columnes les coordenades de u_1, \ldots, u_k)
- La dimensió d'un subespai donat com a solució d'un sistema d'equacions homogeni és el nombre de graus de llibertat del sistema

Suposem que la dimensió d'E és n i sigui $W = \{w_1, \dots, w_n\}$ un subconjunt d'E

- ▶ si W és un conjunt LI, aleshores W és una base d'E
- ▶ si W genera E, aleshores W és una base d'E

Si S és un subespai d'E aleshores

- ▶ $dim(S) \leq dim(E)$
- ightharpoonup si dim(S) = dim(E), S = E

CANVIS DE BASE

Siguin $B = \{b_1, \dots, b_n\}$ i $B' = \{b'_1, \dots, b'_n\}$ dues bases d'un \mathbb{K} -espai vectorial E. Sigui u un vector d'E Veiem com es relacionen els vectors de coordenades u_B i $u_{B'}$

Anomenem matriu del canvi de la base B a la base B' a la matriu que té per columnes els vectors de coordenades $(b_1)_{B'}, \ldots, (b_n)_{B'}$. La denotem per $P_{B'}^B$

$$P_{B'}^{B} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ (b_{1})_{B'} & (b_{2})_{B'} & \dots & (b_{n})_{B'} \\ \vdots & \vdots & & \vdots \end{pmatrix}$$

Aleshores

- $u_{B'} = P_{B'}^B u_B$, expressant els vectors de coordenades en columna
- $P_B^{B'} = \left(P_{B'}^B\right)^{-1}$