

Effective Structured Prompting by Meta-Learning and Representative Verbalizer

Weisen Jiang Yu Zhang James T. Kwokt

Southern University of Science and Technology †Hong Kong University of Science and Technology

Background

- Masked language model (MLM) can fill the masked tokens in a sentence, thus, can be used for classification tasks:
- 1. input sentence is wrapped by a template: "sentence, Topic is [MASK]";
- 2. MLM predicts a token at the [MASK] position;
- 3. a verbalizer map the predicted token to label.
- Prompt tuning introduces a learnable prompt θ in the template:

$$\tilde{\mathbf{x}} \equiv \mathbb{T}(\mathbf{x}; \boldsymbol{\theta}) = (\mathcal{E}(\mathbf{x}), \boldsymbol{\theta}, \mathcal{E}(\texttt{Topic}), \mathcal{E}(\texttt{is}), \mathcal{E}(\texttt{[MASK]})).$$

- The initialization of θ plays an important role in prompt tuning.
- Recently, MetaPrompting (COLING 2022) proposes to meta-learn a shared prompt initialization for all task-specific prompts with a hand-crafting verbalizer.
- Challenges:
- 1. a single meta-initialized prompt is insufficient for adaptation to complex tasks;
- 2. not parameter-efficient as the whole MLM needs tuning;
- 3. hand-crafting verbalizer is labor-intensive.
- Notations: task τ with support set S_{τ} , query set Q_{τ} , and label set Y_{τ} .

Representative Verbalizer (RepVerb)

We propose a novel verbalizer RepVerb, which is simple and effective:

- For input x, compute its feature embeding $h_{\text{IMASK1}}(\tilde{x})$.
- For class y, compute label embedding $\mathbf{v}_y = \frac{1}{|\mathcal{S}_{\tau,y}|} \sum_{(\mathbf{x},y) \in \mathcal{S}_{\tau,y}} \mathbf{h}_{\texttt{[MASK]}}(\tilde{\mathbf{x}})$.
- Prediction: compute cosine similarity between $\mathbf{h}_{\mathsf{IMASKI}}(\tilde{\mathbf{x}})$ and $\{\mathbf{v}_y:y\in\mathcal{Y}_{\tau}\}$.

procedure ComputeLabelEmbedding(\mathcal{S}_{τ}): compute $\mathbf{h}_{\texttt{[MASK]}}(\tilde{\mathbf{x}})$ for $(\mathbf{x},\cdot) \in \mathcal{S}_{\tau}$; compute \mathbf{v}_y for each $y \in \mathcal{Y}_{\tau}$; end procedure

procedure Predict(\mathbf{x} ; \mathbf{v}_{y} : $y \in \mathcal{Y}_{\tau}$)
compute $\mathbf{h}_{[MASK]}(\tilde{\mathbf{x}})$ for \mathbf{x} ; $\tilde{\mathbb{P}}(y|\mathbf{x}; \boldsymbol{\phi}, \boldsymbol{\theta}) = \frac{\exp(\rho \cos(\mathbf{v}_{y}, \mathbf{h}_{[MASK]}(\tilde{\mathbf{x}})))}{\sum_{y' \in \mathcal{Y}_{\tau}} \exp(\rho \cos(\mathbf{v}_{y'}, \mathbf{h}_{[MASK]}(\tilde{\mathbf{x}})))}$ end procedure

MetaPrompter

- Use a prompt pool to extract more task knowledge for constructing instance-dependent prompt:
- 1. The prompt pool has K learnable prompts $\{(\mathbf{k}_i, \boldsymbol{\theta}_i) : i = 1, \dots, K\}$, with key \mathbf{k}_i and value $\boldsymbol{\theta}_i$;
- 2. Instance-dependent prompt is constructed by a weighted combination of all values $(\theta_i$'s): $\theta_{\mathbf{x}}(\mathbf{K}, \mathbf{\Theta}) = \sum_{i=1}^{K} a_i \theta_i$, where attention weight \mathbf{a} is computed between input \mathbf{x} and the K prompts.
- Prediction (hand-crafting verbalizer + RepVerb):

$$\mathbb{P}(y|\mathbf{x};\boldsymbol{\theta}_{\mathbf{x}}) = (1-\lambda) \times \hat{\mathbb{P}}(y|\mathbf{x};\boldsymbol{\theta}_{\mathbf{x}}) + \lambda \times \hat{\mathbb{P}}(y|\mathbf{x};\boldsymbol{\theta}_{\mathbf{x}})$$

where $\hat{\mathbb{P}}(y|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{|\mathcal{V}_y|} \sum_{\mathbf{w} \in \mathcal{V}_y} \mathbb{P}_{\mathcal{M}}(\texttt{[MASK]} = \mathbf{w}|\mathbb{T}(\mathbf{x};\boldsymbol{\theta}))$ (\mathcal{V}_y is a set of label tokens).

- We propose a novel algorithm MetaPrompter to learn the prompt pool by meta-learning (e.g., MAML):
- base learner: (1) build instance-dependent prompts from $(\mathbf{K}, \mathbf{\Theta})$ (2) compute loss on support set $\mathcal{L}(\mathcal{S}_{\tau}; \mathbf{K}, \mathbf{\Theta})$ (3) update task-specific prompt pool $(\mathbf{K}^{(\tau)}, \mathbf{\Theta}^{(\tau)}) = (\mathbf{K}, \mathbf{\Theta}) \alpha \nabla_{(\mathbf{K}, \mathbf{\Theta})} \mathcal{L}(\mathcal{S}_{\tau}; \mathbf{K}, \mathbf{\Theta})$.
- meta-learner: (1) compute loss on query set $\mathcal{L}(\mathcal{Q}_{\tau}; \mathbf{K}^{(\tau)}, \mathbf{\Theta}^{(\tau)})$ (2) update meta prompt pool $(\mathbf{K}, \mathbf{\Theta}) \leftarrow (\mathbf{K}, \mathbf{\Theta}) \eta \nabla_{(\mathbf{K}, \mathbf{\Theta})} \mathcal{L}(\mathcal{Q}_{\tau}; \mathbf{K}^{(\tau)}, \mathbf{\Theta}^{(\tau)})$.
- Compared with MetaPrompting, MetaPrompter is
- 1. Parameter-efficient: only the prompt pool is tuned;
- 2. More flexible: Instance-dependent prompt allows better adaptation to complex tasks.

Evaluation on RepVerb

Table 1: Meta-testing accuracy	of 5-way few-shot classification
--------------------------------	----------------------------------

		20News	Amazon	HuffPost	Reuters	HWU64	Liu54
5-shot	WARP	61.43	59.53	46.31	68.67	68.60	73.11
	ProtoVerb	71.33	71.74	57.93	80.93	73.43	76.19
	RepVerb	78.81	77.56	61.90	88.33	78.37	82.14
1-shot	WARP	49.87	48.94	38.21	52.88	53.20	58.68
	ProtoVerb	54.13	55.07	41.40	57.27	55.17	60.16
	RepVerb	59.86	59.18	44.65	63.63	59.83	66.17

- Baselines: soft verbalizers WARP (ACL 2021) and ProtoVerb (ACL 2022) learned by supervised and contrastive learning, respectively.
- RepVerb outperforms WARP and ProtoVerb on both the 1-shot and 5-shot settings.
- Hence, RepVerb is effective.

(a): WARP. (b): ProtoVerb (c): RepVerb.

Figure 1: t-SNE visualization of feature embeddings (crosses) and label embeddings (circles) for a 5-way 5-shot task from *Reuters*.

- RepVerb has more discriminative and compact embeddings than WARP and ProtoVerb.
- By design, RepVerb's label embedding is consistent with samples' embeddings, but those of WARP and ProtoVerb are not.

Evaluation on MetaPrompter

Table 2: 5-way 5-shot classification meta-testing accuracy.

	#param $(\times 10^6)$	20News	Amazon	HuffPost	Reuters	HWU64	Liu54
HATT	0.07	55.00	66.00	56.30	56.20	_	_
DS	1.73	68.30	81.10	63.50	96.00	_	_
MLADA	0.73	77.80	86.00	64.90	96.70	_	_
ConstrastNet	109.52	71.74	85.17	65.32	95.33	92.57	93.72
MetaPrompting	109.52	85.67	84.19	72.85	95.89	93.86	94.01
MetaPrompting+WARP	109.52	85.81	85.54	71.71	97.28	93.99	94.33
MetaPrompting+ProtoVerb	109.52	86.18	84.91	73.11	97.24	93.81	94.38
MetaPrompting+RepVerb	109.52	86.89	85.98	74.62	97.32	94.23	94.45
MetaPrompter	0.06	88.57	86.36	74.89	97.63	95.30	95.47

- Baselines: (i) state-of-the-art prompt-based methods (MetaPromping and its variants); (ii) non-prompt-based methods (HATT (AAAI 2019), DS (ICLR 2020), MLADA (ACL 2021), ConstrastNet (AAAI 2022)).
- MetaPrompter is **better than** both prompt-based and non-prompt-based baselines.
- MetaPrompter outperforms MetaPrompting+RepVerb, showing effectiveness of the prompt pool.
- MetaPrompter is much more parameter-efficient than MetaPrompting (1800× fewer).
- RepVerb is beneficial to MetaPrompting.

(a): Distribution of attention weights on 5-way 5-shot classification of *Reuters* (15 topics).

gnp

(b): Cosine similarities between learned prompt tokens and topic embeddings on 5-way 5-shot classification of *Reuters* (recall that K and L_p are set to 8). In the x-axis, (i, j) stands for the jth row of θ_i (i.e., $\theta_i^{(j)}$).

• Samples from topic *cocoa* prefer the 4th and 7th prompts (left), as *cocoa*'s embedding is similar to $\theta_A^{(1)}$ and $\theta_7^{(1)}$ (right).

Summary

- Problem: improve the effectiveness and parameter-efficiency of prompt tuning.
- Propose a novel algorithm MetaPrompter, consisting of:
- 1. a novel verbalizer RepVerb: simple and effective.
- 2. structured prompting: a meta-learned prompt pool to construct instance-dependent prompts.
- MetaPrompter is parameter-efficient as only the prompt pool is tuned.
- Experimental results demonstrate:
- 1. RepVerb achieves higher accuracy than other soft verbalizers (WARP and ProtoVerb).
- 2. MetaPrompter performs better than MetaPrompting.
- 3. MetaPrompter is much more parameter-efficient than MetaPrompting (1800 \times).