Práctica 2 - Lógica digital

Yago Pajariño

Agosto 2022

Ejercicio 1

a)

p	\mathbf{q}	$((pq) + (p\overline{q}))$
F	F	\mathbf{F}
F	Т	F
Т	F	T
Т	Т	T

b)

x	y	\mathbf{z}	$((x + y) \cdot ((x + \neg y) \cdot (\neg x + z)))$	XZ
F	F	F	F	F
F	F	Т	F	F
F	Т	F	F	F
F	Т	Т	F	F
Т	F	F	F	F
Т	F	Т	T	Т
Т	Т	F	F	F
Т	Т	Т	T	Т

Tablas de verdad generator: https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Ejercicio 2

$$\begin{split} x \oplus (y.z) &= (x \oplus y).(x \oplus z) \\ x \oplus (y.z) &= ((\overline{x}.y) + (x.\overline{y})).((\overline{x}.z) + (x.\overline{z})) \\ x \oplus (y.z) &= (\overline{x}.y.z) + (y.\overline{z}) + (\overline{y}.z) + (x.\overline{y}.\overline{z}) \\ x \oplus (y.z) &= (\overline{x}.y.z) + (x.\overline{y}.\overline{z}) \\ x \oplus (y.z) &= x \oplus (y.z) \end{split}$$

Ejercicio 3

- a) Sí, el operador descripto equivale al NAND lógico que funciona para representar todas las funciones booleanas.
- b) Sí, el operador descripto equivale al NOR lógico que funciona para representar todas las funciones booleanas.