CPU ORGANIZATION

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Notes
 - Homework 8 is due Thursday (Mar. 28th)
 - Verify your submitted file before midnight

- □ This lecture
 - Single Cycle Processor
 - Multi-Cycle/Pipelined Processor

Recall: Clocking the Processor

- Fetch unit is involved in processing all instructions
 - Program counter (PC) and instruction memory
- Which of the units need a clock?
- What is being saved (latched) on the rising edge of the clock?
- □ The latched value remains there for an entire cycle

R-type Instructions

- Example: add \$t1, \$t2, \$t3
- Registers and ALU

1-type Instructions

- Examples: Iw \$t1, 8(\$t2) and sw \$t1, 8(\$t2)
- Registers, ALU, and data memory
 - Where is the constant operand

1-type Instructions

- Examples: Iw \$t1, 8(\$t2) and sw \$t1, 8(\$t2)
- Registers, ALU, and data memory
 - Where is the constant operand

J-type Instructions

The Processor Datapath

Control signals are generated per instruction

The Single Cycle MIPS Processor

□ A new PC is locked at the beginning of each cycle

Processing Instructions

□ A sequence of processing tasks per instruction

Processing Instructions

- Every RISC instruction may require multiple processing steps
 - Instruction Fetch (IF)
 - Instruction Decode (ID)
 - Register Read (RR)
 - All instructions?
 - Execute Instructions (EXE)
 - Memory Access (MEM)
 - All instructions?
 - Register Write Back (WB)

Single-cycle MIPS Architecture

- □ Example: simple MIPS architecture
 - Critical path includes all of the processing steps

Single-cycle RISC Architecture

Single-cycle RISC Architecture

Reusing Idle Resources

- □ Each processing step finishes in a fraction of a cycle
 - Idle resources can be reused for processing next instructions

Pipelined Architecture

- □ Five stage pipeline
 - Critical path determines the cycle time

