Übungsblatt 1 zur Kommutativen Algebra

Abgabe bis zum Montag, den 19. Oktober 2015

Aufgabe 1. (2+2+2+2) Invertierbarkeit und Nilpotenz in Polynomringen

Sei A ein Ring. Sei $f = a_0 + a_1 X + \cdots + a_m X^m \in A[X]$ ein Polynom über A. Zeige:

- a) Genau dann ist f eine Einheit in A[X], wenn a_0 in A invertierbar und die a_1, \ldots, a_m nilpotent sind.
- b) Genau dann ist f nilpotent, wenn a_0, \ldots, a_m nilpotent sind.
- c) Jacobsches Radikal und Nilradikal von A[X] stimmen miteinander überein.
- d) Ist A reduziert, d. h. ist nur die Null in A nilpotent, und ist $g = b_0 + \cdots + b_n X^n \in A[X]$ mit fg = 0, so gilt für alle passenden Indizes i und j: $a_i b_j = 0$.

Aufgabe 2. (2+1) Lokale Ringe

- a) Zeige, dass ein Ring A genau dann ein lokaler Ring ist, wenn $1 \neq 0$ in A und, wann immer eine Summe aus zwei Elementen invertierbar ist, schon mindestens ein Summand invertierbar ist.
- b) Was sind die einzigen idempotenten Elemente in einem lokalen Ring?

Aufgabe 3. (4) Ringe mit nur einem Primideal

Sei A ein Ring mit Nilradikal \mathfrak{n} . Zeige, dass folgende Aussagen äquivalent sind:

- 1. In A gibt es genau ein Primideal.
- 2. Jedes Element von A ist entweder invertierbar oder nilpotent.
- 3. Der Faktorring A/\mathfrak{n} ist ein Körper.

Aufgabe 4. (1+2+2+2) Boolsche Ringe

Sei A ein Boolscher Ring, d. h. ein kommutativer Ring mit $x^2 = x$ für alle $x \in A$. Zeige:

- a) Für alle $x \in A$ gilt 2x = 0.
- b) Jedes Primideal \mathfrak{p} von A ist maximal.
- c) Für jedes Primideal \mathfrak{p} von A ist A/\mathfrak{p} ein Körper mit zwei Elementen.
- d) Jedes endlich erzeugte Ideal von A ist ein Hauptideal.

