COMP-273
Input/Output:
Assignment Project Exam Help
Po pts

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Outline

- ° I/O Background
- ° Polling
- ° Interruptsgnment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Anatomy: 5 components of any Computer

Motivation for Input/Output

- I/O is how humans interact with computers
- I/O gives computers long-term memory.

Assignment Project Exam Help

I/O lets c

- |**/O lets c** azing things:

 · Read pressu https://eduassistpro.githHpdpsynthetic arm and hand of fireman
 Add WeChat edu_assist_pro
 Display complex medical d
- Computer without I/O like a car without wheels; great technology, but won't get you anywhere

I/O Device Examples and Speeds

° I/O Speed: bytes transferred per second

° Device	Behavior	Partner	Data Rate (KBytes/s)
Keyboard Assignment	gnment Projec	t Fram Help	0.01
Mouse	nttps://eduass	istpro.gi am b.	io/ 0.02
Voice output	Add Weehat e	edu assis <mark>h</mark> pi	5.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Network-LAN	I or O	Machine	10,000.00
Graphics Displa	y Output	Human	30,000.00

What do we need to make I/O work?

A way to connect many types of devices to the **APIs** *Files* Proc-Mem **Operating System** A way to control the seam devices, r Mem them, and https://eduassistpro.github.io/ A way to present edu to user programs so they are useful **SCSI Bus** cmd reg. data reg

Current Bus Speeds

- PCI (Peripheral Component Interconnect) bus: PCI bus was created by Intel in 1993. PCI bus can transfer 32 or 64 bits at one time. PCI bus ran originally at 33 Mhz, with a data transfer of 250 Mbyte/s. PCI Express is used with modern graphics processor cards at 1 GByte/s (or more), also network cards.
- SCSI (Small Computer System Interface) bus: It is a high performance 16-blebus which was used for fast disks, scanners, and for devices w h. It has a data rate of 640 MByte/s. https://eduassistpro.github.io/
- * USB (Universal Serial Bus), a s connecting keyboa Addro Mse and pedu_assistepus B devices such as wireless network adapters uter. A USB bus has a connector with four wires. Two wires are used for supplying electrical power to the USB devices. USB 1.0 had a data rate of 1½ MByte/s and USB 2.0 has a data rate of 60 MByte/s. There is now a USB 3.0, that can travel at 640 MByte/s.
- [°] **IEEE 1394 or FireWire:** IEEE 1394 is used for high speed data transfer. It was built by Apple, **though Apple have moved away from it**. It can transfer data at a rate of up to 400 MByte/s. It is a single bit serial bus which is used for connecting cameras, and other multimedia devices.

COMP-273

Instruction Set Architecture for I/O

- ° What must the processor do for I/O?
 - Input: reads a sequence of bytes
 - Output: writes a sequence of bytes
- ° Some progessors have special input and outpu

https://eduassistpro.github.io/

- Alternative model (y MIPS):
 Add WeChat edu_assist_pro
 - · Use loads for input, stores for output
 - Called "Memory Mapped Input/Output"
 - A portion of the address space dedicated to communication paths to Input or Output devices (no memory there)

Memory Mapped I/O (Polling)

- ° Certain addresses are not regular memory
- Instead, they correspond to registers in I/O devices ent Project Exam Help

Processor-I/O Speed Mismatch

- ° 1GHz microprocessor can execute 1 billion load or store instructions per second, or 4,000,000 KB/s data rate
 - I/O devices data rates range from 0.01 KB/s to 30,000 Repignment Project Exam Help
- ° Input: dev https://eduassistpro.githadig/to send data as fast as the predu_assist_boads it
 - Also, might be waiting for human to act
- Output: device may not be ready to accept data as fast as processor stores it
- $^{\circ}~$ What to do?

Processor Checks Status before Acting

- Path to device generally has 2 registers:
 - Control Register, says it's OK to read/write (I/O ready)
 - Data Register, contains data Assignment Project Exam Help
- Processor then loads from (input) or writes to (output) data register
 - Load from or Store into Data Register resets Ready bit (1 ⇒ 0) of Control Register

MARS I/O Simulation

- MARS simulates 1 I/O device: memory-mapped terminal (keyboard + display)
 - Read from keyboard (<u>receiver</u>); 2 device regs
 - Writes to terminal (transmitter); 2 device regs Assignment Project Exam Help

SPIM I/O

- Control register rightmost bit (0): Ready
 - Receiver: Ready==1 means character in Data Register not yet been read;
 1 ⇒ 0 when data is read from Data Reg
 - TransmittennReadyjee1 Imeahslpransmitter is ready to a cter; 0 ⇒ Transhttps://eduassistpro.giththg/last char
 - I.E. bit discussed hat edu_assist_pro
- ° Data register rightmost byte has data
 - Receiver: last char from keyboard; rest = 0
 - Transmitter: when write rightmost byte, writes char to display

I/O Example

Input: Read from keyboard into \$v0

```
lui $t0, 0xffff #ffff0000
             lw $t1, 0($t0) #control
Waitloop:
             andi $t1,$t1,0x0001
       0) Assignment Project Exam Helpaitloop
Output: Wr https://eduassistpro.github.jo/om $a0
            Add WeChat edu_assist_pro
             lui $t0, 0xffff #ffff0000
            lw $t1, 8($t0) #control
Waitloop:
             andi $t1,$t1,0x0001
             beq $t1,$zero, Waitloop
             sw $a0, 12($t0) #data
```

Processor waiting for I/O called "Polling"

Cost of Polling?

- The following example used dated estimates, but it conveys the general idea. Assume for a processor with a 1GHz clock it takes 400 clock cycles for a polling operation (call polling routine, accessing the device, and returning). Determine % of processor time used for polling
 - Mouse: Political of times see so as not to miss user move https://eduassistpro.github.io/
 - Floppy disk: transfer and has a data rate o econd.

 No data transfer can be missed.
 - Hard disk: transfers data in 16-Byte chunks and can transfer at 16 MB/second. Again, no transfer can be missed.

% Processor time to poll mouse, floppy

- ° Mouse Polling, Clocks/sec
 - = 30 * 400 = 12000 clocks/sec
- ° % Processor for polling:
 - $12*10^3/1*10^9 = 0.0012\%$
 - ⇒ Polling mouse little impact on processor
- ° Frequency ohttps://eduassistpro.github.io/
 - = 50 KB/s /25 dc 25 Ke Coballsedu_assist_pro
- ° Floppy Polling, Clocks/sec
 - = 25K * 400 = 10,000,000 clocks/sec
- ° % Processor for polling:
 - $10*10^6/1*10^9 = 1\%$
 - ⇒ OK if not too many I/O devices

% Processor time to hard disk

- * Frequency of Polling Disk
 - = 16 MB/s / 16B = 1M polls/sec
- ° Disk Polling, Clocks/sec
 - = 1M * 400 = 400, 000,000 = 10 ks/sec
- ° % Proceshttps://eduassistpro.github.io/
 - 400*106/1*10th War edu_assist_pro
 - ⇒ Unacceptable

What is the alternative to polling?

- Wasteful to have processor spend most of its time "spin-waiting" for I/O to be ready
- Would Aikienamul plant med procedure call that w only when I/O device https://eduassistpro.github.io/
- Solution: use exce echanism to help I/O. Interrupt program when I/O ready, return when done with data transfer

I/O Interrupt

- ° An I/O interrupt is like overflow exceptions except:
 - An I/O interrupt is "asynchronous"
 - More information needs to be conveyed
- An I/O int https://eduassistpro.gkonous with respect to i
 Add WeChat edu_assist_pro
 - I/O interrupt is not as with any instruction, but it can happen in the middle of any given instruction
 - I/O interrupt does not prevent any instruction from completion

Definitions for Clarification

- Exception: signal marking that something "out of the ordinary" has happened and needs to be handled
- ° Interruptsigasynchronous Expeption
- ° Trap: synhttps://eduassistpro.githubrio/

Add WeChat edu_assist_pro

Interrupt Driven Data Transfer

Instruction Set Support for I/O Interrupt

- Save the PC for return
 - But where?
- ° Where to go when interrupt occurs?
 - · MIPS defines 10 carient: Fox 80 00 00000
- ° Determin https://eduassistpro.github.jo/
 - MIPS has Cause Re edu_assist proleid (bits 5 to 2) gives cause of exception

Instruction Set Support for I/O Interrupt

- Portion of MIPS architecture for interrupts called "coprocessor 0"
- ° Coprocessor 0 Instructions
 - Data tran

 Assignment Project Exam Help
 - Move: mfhttps://eduassistpro.github.io/
- ° Coprocessor 0 Re

name	number	usage
Status	\$12	Interrupt enable
Cause	\$13	Exception type
EPC	\$14	Return address

(details in appendix A.7)

SPIM I/O Simulation: Interrupt Driven I/O

- I.E. stands for <u>Interrupt Enable</u>
- Set Interrupt Enable bit to 1 have interrupt occur whenever Ready bit is set

Benefit of Interrupt-Driven I/O

- Find the % of processor consumed if the hard disk is only active 5% of the time. Assuming 500 clock cycle overhead for each transfer, including interrupt:

 Assignment Project Exam Help
 - Disk Inte = 1M in https://eduassistpro.github.io/
 - Disk Interrupts, Chat edu_assist_pm * 500 = 500,000,000 clocks/sec
 - % Processor for during transfer: 500*10⁶/1*10⁹= 50%
- ° Disk active 5% ⇒ 5% * 50% ⇒ 2.5% busy

COMP-273

Questions Raised about Interrupts

- ° Which I/O device caused exception?
 - Needs to convey the identity of the device generating the interrupt
- ° Can avoidignterrupts: during the interrupt ro

https://eduassistpro.github.io/
• What if more importa pt occurs
while serviced grant edu_assist_pro

- Allow interrupt routine to be entered again?
- Who keeps track of status of all the devices, handle errors, know where to put/supply the I/O data?

4 Responsibilities leading to OS

- The I/O system is shared by multiple programs using the processor
- Low-level control of I/O device is complex because requires managing a set of concurrent events and because requireme https://eduassistpro.giffice/control ar

Add WeChat edu_assist_pro

- ° I/O systems often use interrupts to communicate information about I/O operations
- Would like I/O services for all user programs under safe control

4 Functions OS must provide

- OS: guarantees that user's program accesses only the portions of I/O device to which user has rights (e.g., file access)
- ° provides abstractions for accessing devices by supplying routines that handle low-level de

https://eduassistpro.github.io/

- handles the excepting edu_assisted by I/O devices (and arithme ptions generated by a program)
- ° tries to provide equitable access to the shared I/O resources, as well as schedule accesses to enhance system performance

Things to Remember

- ° I/O gives computers their 5 senses
- ° I/O speed range is a few million to one
- Processor speed means must synchronize with I/O devices before use
- ° Polling w https://eduassistpro.github.io/
 - processor repeatedly devices Add WeChat edu_assist_pro
- ° Interrupts works, more complex
 - devices causes an exception, causing OS to run and deal with the device
- ° I/O control leads to Operating Systems