Course 7

7. Extensions of the Riomann integral I 971. The Riemann Stieltjes integral f:[0,5] >1R cont \$ = division of [0,5] b=1a xo cx1... cxn =b) ¿ a system of intermediate points E e (xin, xi) The Riemann sum T(f, D, E) = = f(E) (g(x)) = = = f(E() (xi -xi-v) 9: [a15] -1R The R-Stietter sum TRS(t, g, s, E) = = # E/1gut-gu, J fus dgw I front and g = g, -g, where gi, g, non-dereasing than Ja two dx exists (gis of BV) Re a) gixi = x you recover b Riemann 5 b

b) g diff-able than 5 fox) dgixi = 5 fw.gixidx \$ 7.2 Curves in R on more generally in R"

curvilimen integrals - line int - path integrals Def: a Parametrised path is a cont function 8: [a,5]→R3 $\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad \text{on} \quad \begin{cases} x = x(t) \\ x = x(t) \end{cases} \quad \text{for a metery}$ $\begin{cases} x = x(t) \\ x = x(t) \end{cases} \quad \text{on} \quad \begin{cases} x = x(t) \\ x = x(t) \end{cases} \quad \text{for a metery}$ · Is smooth if x,y, t diff-able 或(t) = (x(t), dy(t), dz(t)) and di (+ + 0 , + te (0,5] Y is metifiable if IM>0 s.t. \ & division of 6,5]

\[\frac{2}{2} \left[\frac{1}{2} \lef (I can be approximated polygonal line) I It is smooth => I rectif and it has length ((8) = [] (x) [] dt · &: (9,5) -> R3 and &: [4,2] -> R3 are quivalent it there exists a function P: (a, b) -> (c, a) sijective Tran = c, Plb = d, I and Pr diff able and V1= /2 0 P A curve is the class of all equivalent & paths does not depend on the way we parametricit

& 7.3 Curvilinear integrals - The auxilinear integral are length $s(t) = \int \left| \frac{ds}{dt} (t) \right| dt$ a natual parametrization for a curve A. The anvilinear integral of a scalar field 7: D ⊆ R3 > R cont scalar field I conve (smooth) Y: [a12]=18 and Je ((9,5)) CD Jy f(2) ds = [f(2(H)) | d2 (t) | d B. The curvilinear integral of a victor field F: DCIR3 - IR3 veder field 7-(fy, fc, fs) 1 + cunve (7(2) dz =) = (7(4)). dz (4) dt Physical meaning : WORK di - di 4 of tr. Integrals that don't depend on the path (anne) Def A veder field ? 15 conservative if B I Fan = J Fan whenever 8AB Def A vector field 7 is of potential type if there exists an energy (a potential) E. D CR3> R difficulty and 17 E(2) = 7(2)

The Given that \overrightarrow{T} , ξ , ξ , smooth enough \overrightarrow{T} conservative (=) \overrightarrow{T} potential type $(\overrightarrow{r}_{A}) - \xi(\overrightarrow{r}_{A})$ y is smooth and connects A and B デは) = Dを(な) $\mathcal{E}(\vec{x}_{3}) - \mathcal{E}(\vec{x}_{4}) = \int_{\mathcal{E}} \nabla \mathcal{E}(\vec{x}) d\vec{x}$ 2. Eden sions of the Riemann Integral 11 Impaper indegral Why probability? Speed distribution fiv1 = Cv2e-v2 2 v=11211 Probability deduction J Cuze du § 8.1. Improper integrals are limits" $Ex1 \int e^{x} dx = \lim_{t \to \infty} \int e^{-x} dx = \lim_{t \to \infty} (1-e^{-t}) = 1$ = hom . I + 1 = +>0 +co +

Ex3 \ \frac{1}{x} dx = lim \ \frac{1}{x} \ \ $\int_{-\infty}^{\infty} \frac{1}{x} dx = \int_{0}^{\infty} + \int_{0}^{\infty}$ Def $f: (a,b) \rightarrow R$ (b= ∞ is admitted) $a \in R$, $a \neq \pm \infty$ Riemann integnable on any (a; 6) 3=6 if him f fus du exists and is finite, then use call of fix) dx conv (convergent)

the improper integral

Otherwise of fix) dx is Div (digregant) of 8.2. The Testing the sonvergence of improper integrals T (auchy) f: (a; b) > R iarl on army (a, t), tes The improper of fix dx is CNV iff 4 E>0 Jbe x do st. fromy be < tcb I fixed = E (The improper integral is convergent; f | ft | com be by the arbitraly small) I (Comparison Z)

fig: (a,5) -> R both Riemann int on (a,t) &<6 and of fix, = give . Then

(i) Ig come = Inf come (ii) Is 7 du =) Sg div U (lamparison II)

-> some ass on fig

but g(x) ≠0 \ \(x \in (915) \) and $\lim_{x \to 5} \frac{f(x)}{g(x)} = L < \infty$ (i) L +0, then I I and I g have the same maken (b) l=0 then $\int_{a}^{b} g \cos v = \int_{a}^{b} |f| \cos v$ ex 1 Is se (simx) de conv? conv) abolitely we tros that I ex d=1 on and | ex (simx)3 | = ex (simx)3 \le x Rk 5 x dx is conv 2 < -1

1 x 2 conv 3 > 1 biv B <-1 Kk everything (def, II) works the same may on (a,b) or (9,b)

Homework Je e-1x1 dx =2. Re Into by parts and change of variables both work if the improper int are conv f: [a,5) x[c,d] Fly = for fly, y dr garametu finds => finds Ja funy de +>> Fly) Def The improper int with params converges uniformly (whity) to F iff \text{\$\infty} \text{\$\infty},

I be < b s.t. \text{\$\infty} = t < b and \text{\$\forall y} \infty \text{\$\infty}. 1 J f(x,y) dx - F(y)) < E U Continuity) I: [a,b) × [c,d] >R if I cond (as a function of 2 von) and if

I fixed dx is UNT F Luniformly) comy then Fly = [I kry de is cont ling) U (Diff w.n.t y) f: [ab) x [ad = 18.000)

and at is cond and also f fury dx, Ja 25 (x,y) ax 'u conv', then Fly) = I fund at is different (w. rep to y) and F'y) = 1 of ky de

[1 Integrating w. n.ty) for and and a fixing de wood then Fly integrate and Flypdy = [ff fury dx) dy = = [(fungo dy) dx $f(x) = \begin{cases} \frac{e^{x-1}}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ f diff able? finio =? 1 for = f exy dy la de obiei, Viorel sterge f(y) = jeg-1 > y =0 (1, 9=0 1 f(y) = 5 exy de 7)1y) = [3 (exy) = [xexy dx f"(y) = \ \ \frac{\partial}{\partial} \((xe^{\frac}\frac{\frac{\f{\frac}\firk}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f f'(y) = [1x" exy dx y=0=) 7 (m) (x0) = 5 x dx = 1 fexedx, sinx ox

Course 9

3. Improper integrals: Applications. The Bela and Gamma Functions (of Euler) 8 9. h I= | ex dx - 1 = tof | ex |x = 2 | e + 2 Step 1: Key idea: instruduce an cartificial) additional panameter t20 x= t.y dx= tdy x=0 I = \(\frac{1}{2} e^{-x^2} dx = \int e^{-t^2 y^2} t dy \quad \(x = \times + y = \times \) Step 2: Multiply by et and integrate w.n.t. t I = t \ e - teye dy . let T.et = et f e ty dy I of I - f e t = f te t (f e - t'y' dy) dt I' - I' (t.e. e ty dy) dt Step 3: Grange the order of integr. and compute the Imner integral (4) I'= f (+ e + (1 mg2) dt) dy Jug = 5 t. e te (1+y2) dt

$$\frac{\partial}{\partial t} \left(e^{-t^2(t+y^2)} \right) = e^{-t^2(t+y^2)} \cdot \left(-2 \star (t+y^2) \right)$$

$$\int_{t}^{t} y = \int_{0}^{\infty} t \cdot e^{-t^2(t+y^2)} dt = \frac{1}{2^{1/2}(t+y^2)} \int_{0}^{\infty} \frac{\partial}{\partial t} \left(e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^{-t^2(t+y^2)} \cdot e^{-t^2(t+y^2)} \right) dt = \frac{1}{2^{1/2}(t+y^2)} \cdot \left(e^$$

& 9.4. The Beta and Gamena Functions (Euler) $B(a,b) = \int x^{a-1} (1-x)^{b-1} dx$ a,b>0("two parame family of integrals")

[(a) = \int x \cdot e^x \dx \quad a>0 - Volume of m-dim ball of nadius R Vm (R) = 1 m/2 . Rn "(Properties of Bland) (i) B(a,b) = B(b,a) , +a,600 (a) Bla,b) = 5-1 Bla, 5-1) 9,5>1 (iii) Bland _ (my) aso meNo (1) B(m,n) = (m-1)(n-1)!, m, me N* (Properties of 17(a)) (i) [(a+1) = a [(a) , a>0 (i) [(n+V=m) meN

(m) Bla, b) = [(a+b) 2,5>0

(iv)
$$\Gamma(a) \Gamma(1-a) = \frac{L}{\sin(ax)}$$
 $ac(0,1)$
(v) $\Gamma(\frac{L}{a}) = 2\int_{0}^{\infty} e^{-\frac{1}{2}x} dx = \sqrt{x}$

(u) Stinking

Proof: (ii) So exde = lim (1-ex) = 1 [(m+v) = m [(m) = m.(m-v. [(m-1) = $= m(m-n) - \dots - a \cdot 1 \Gamma(1) = m! \cdot 1 - m!$ Course 10 Part III Sequences O Seies 10. Socies of numbers Infinite sums (and sums of infinitesimals) (+(-1) +1+(-1)+... (1-1)+(1-1)+=0 L rigorous def 1+(+1+1)+(+1)+...=1 6 10th unknowny & 10.1. Segumes and soirs of (real) numbers What is a sequence (of numbers)? A sequence is a map N -> R (am) men IN 3 m + 7 am ER Recall Def a sequence and ment converges to the limit left if 4 & >0 & 1/1(E) EN such that For any m>, N(E) we have lam-el = E bet (am) me we is called fundamental (or Cauchy) seguence if # E>O JN(E) EN st Vm, n ZN(e) I am - am) = & (obviously any com regume is lauchy) Win R (that is for canimons with ane IR) any Cauchy segume converges (an) men conv (=) (am) new Courdy sequence) Let (and ment be a seg of numbers and sn=a1+...+an
(sn) news (the segume of partial sums) Det A seves is a pair (an) neps (sn) neps) and is denoted by Zan Def A series Zan converges (conv) if (swimen converges Sm > S the sum of the sevies if him on is so a does not exist then E an diverges (NV) Two questions: . boes = am com? · What is the sum of Zan? Bard on out of Cauchy seg, and U. "U' (fundamental conv criterion of Carchy) (Sn) nepra Couchy sequence es Z an conv (X E DO J N(E) CM": 1 9 N(E) + 9 ME) +2 ... +9 Frem

3 10.2. Series of positive numbers Standing assumption: and then I (Integral mit of Cauchy)

f: [4: 179] > R; demaxing we define (Im) no m = by In = F(n) E for conv => 5 fixed ox conv Biv => 5 fixed ox conv Proof: Sm = fit... + for (Sm) new f decreasing to the thethe = fun = fun) = for for xetnimen] we integrate w. 1. t. X find = f W = fm . Just we obtain from = I fixed = fm add all these up from 1 tom from + fortout he = 5 for de = for though ... et Smu-fi = frodx = Sm Recul that and men bounded and inveasing =) and convergent (deineasing) Examples:

a) the harmonic series $\sum_{m=1}^{\infty} m$ by $\sum_{n=1}^{\infty} S(auchy) \int_{1}^{\infty} da$ biv) b) generalized series $\stackrel{\sim}{=} \frac{1}{m^2} conv$ with p=2() (I de conv

c) the geometric series (121<1) Z 2" () (S 2 de couv) How: compute & g dx (and discuss 62151 cares) "U (Companison I) am = 5m, + mz, No EN" Z an DIV => Z bm DIV 5 om cony = 2 an conv Proof: HUY [(Comparison I) an mos Laso if L=0 both Zam, Zbm are conv a both Div
if L=0 Z bm conv => Z anconv S an on 7 2 on siv I (Caudry's nost test for conv) · if Jam = 2 = (0,1) +m7, Noe N" then 2 an conv · if Jane >1 (Rye) < animen) then & am DIY (ame and an have the same number of line) Proof (Sketch) Tam = 2 = am = 2 = 1 = 1 good soles and

§ 10.3. Alternate sevies T (ABEL - DIRI CHLET) Niels Hennik it (am) me Mx alconesimg and with among o and (bn) men to Transport differed by In = 51+...+ bm is Than Z ambon conv As a consequence U If an men decreasing and an so then Z Ly 9, conv idea for proof

Apply Alel - Diriblet to an and 5m = (+1)^m dectare 11 13.12.2019 The Lon and Han Pusuit Probl. Lion & Man have same speed Lion Strategy: Try to stay on the nadius that connects the under to the wount pos of Man Mars strategy

(1) Z an = > Otherwise, you've been caught 5 - an total life time in the arma

R)
$$N_1^2 = Not q_1^2$$
 $N_2^2 = N_1 + q_1^2 = Not q_1^2 + q_2^2$
 $N_1^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_2^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_2^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_2^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + \dots + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2 + q_1^2 + q_1^2$
 $N_1^2 = Not q_1^2$

§ 11.2. Sovies of functions
$f_{m}: [a, b] \rightarrow R$
E for socies of functions
sequence of partial sums smoor = from ++++++++++++++++++++++++++++++++++++
- We say the series converges pointwise or uniterally
if some we have go an u conv. property
Motivation: The Taylor Formula
fix , f(x0) + f'(x0) (xx0) + f'(x0) (x-x0) 7
+ fixol lexam + Ry
if we simplify xo=> tw = \frac{1}{2} \frac{1}{4} \frac{1}{(0)} \times \frac{1}{4} \frac{1}{1} \frac{1}{4} 1
Can we let maso (CRm > 0)
Answer is yes and we have fix = 2 Amx" but not
power series
(§ 11.3. Power series)
(WEIERSTRASS) if 2 fm and (am)men and fm: [913] 31R
fn: [9,3] → R
and (i) Z am conv
(ii) $ f_m(x) \leq q_m \forall m \geq mo \in \mathbb{N}^*, \forall x \in [a,b]$
then & for m-conv

TABRIII the sum of the power series & anx that is the function $S(x) = \frac{\pi}{m}$, $a_m x^m$ is cont. at x = R if $\frac{\xi}{m}$ and $\frac{\xi}{m}$ and The most famous cample $e^{\times} = 1 + \times + \times^{2} + ... + \times^{3} + ...$ Course 13
Recap I Diff Calculus I Integral Calculus iv Seguences and soves ? Diff. calculus 1. 10 # calc for + of one variable Continuity, Diff-ability a NO E, of definitions I Werenstrass 7: [a,5] > R cont. then freadies its arranal values lade all values between these Thermat x* local minimax for = + f'(x*)=0 7: [9,6] → R cond on (a,b), differ (a,b) (= + + ce(a,b) f(a) = f(b) f'(c) = 0L' Lagrange cont en [a15], diff en (a15) -) = ce (0,15) s. + f(b)-f(g)=f(v)(a-b) & 1. Give an example of and x to m zi "x bud 0=(x) = . \$? a local min /max.

30 morem

J 11.3. Power series
T (ABEL I) & am x power sever II Re[0] 4.x
the power series n-conv 4xxx [0, A]
Proof (Sketch): R=0 nothing to prove
if Rso s.t. Zam R" = so then this implies
for $ x \ge R$ nurity $\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n R^n \cdot \frac{x^n}{R^n} =$
for $ X \ge R$ murite $\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n R^n$. $\sum_{n=1}^{\infty} a_n R^n$. $\sum_{n=1}^{\infty} a_n R^n$. $\sum_{n=1}^{\infty} a_n R^n$. $\sum_{n=1}^{\infty} a_n R^n$.
equy gm with ozg z1
Det [radius et conveyence] The radius et conv. for a given power sevier = amx is the largest Rso pudiched by WAbel I
(CAUCHY - HARA MARD) if him Tam exists then the radius of court
for Z anx is R- lime Tan
with 1 = so and 1 = 0
Phoof: based on Cauchy's root put for numerical series RK! if lim an exists then Relim an note com

\$ 11.3. Power series
T (ABEL I) & an x power sever J# Re[0; tro] s.x
the power series n-conv +xc(o,R)
Proof (Sketch): R=0 nothing to prove
if Roo s.t. Zan Raco then this implies
for $ x \ge R$ murik $\underset{m=1}{\overset{\infty}{\geq}} \operatorname{an} x^m = \underset{m=1}{\overset{\infty}{\geq}} \operatorname{an} R^m : \underset{m=1}{\overset{\infty}{\simeq}} \operatorname{an} R^m : \underset{m=1}{\overset$
≤M cony
2 m with ozg c1
Det [redius of conveyance] The radius of conv.
Det [redius et conveyence] The radius et conv. for a given power sever of anx is the largest Rso pudiched by U Abd I
(CAUCHY - HABA MARD)
if him Tam exists then the redive of conv
for Z anx is R - 1 lime Tan more
with 1 = so and 1 = 0
Proof: based on Cauchy's noot put for numerical series
Proof: based on Cauchy's root put for numerical series Rk! if lim an exists then R-lim an 1700 and
mas to exister