1 Show that the 3-dimensional ADI method given below is an unconditionally stable approximation to the equation $u_t = \nabla^2 u$.

$$\begin{aligned}
&(1 - \frac{1}{2}r\delta_x^2)U_{lmn}^{*j+1} = \left[1 + r\left(\frac{1}{2}\delta_x^2 + \delta_y^2 + \delta_z^2\right)\right]U_{lmn}^{j} \\
&(1 - \frac{1}{2}r\delta_y^2)U_{*lmn}^{*j+1} = \left[1 + r\left(\frac{1}{2}\delta_x^2 + \frac{1}{2}\delta_y^2 + \delta_z^2\right)\right]U_{lmn}^{j} + \frac{1}{2}r\delta_x^2U_{lmn}^{*j+1} \\
&(1 - \frac{1}{2}r\delta_z^2)U_{lmn}^{j+1} = \left[1 + \frac{1}{2}r\left(\delta_x^2 + \delta_y^2 + \delta_z^2\right)\right]U_{lmn}^{j} + \frac{1}{2}r\delta_x^2U_{lmn}^{*j+1} + \frac{1}{2}r\delta_y^2U_{*lmn}^{*j+1}
\end{aligned} \right\} (1)$$

2 Show that the implicit θ -method for the hyperbolic equation $u_{tt} = u_{xx}$ can be written

$$\delta_t^2 U_n^j = s^2 \delta_r^2 (1 + \theta \delta_t^2) U_n^j , \qquad (2)$$

where s = k/h. Show that the truncation error of this scheme is $O(h^4 + k^4)$ for the particular value $\theta = (s^2 - 1)/12s^2$. Would this be a good value to choose in practice?

3 The 'Box scheme' for solving the advection equation $u_t + Vu_x = 0$ (V constant) is similar to the implicit Crank-Nicolson scheme, only it treats t and x derivatives similarly:

$$\frac{1}{2} \left[\frac{(U_{n+1}^{j+1} - U_{n+1}^{j})}{k} + \frac{(U_{n}^{j+1} - U_{n}^{j})}{k} \right] + \frac{V}{2} \left[\frac{(U_{n+1}^{j+1} - U_{n}^{j+1})}{h} + \frac{(U_{n+1}^{j} - U_{n}^{j})}{h} \right] = 0. \quad (3)$$

Calculate the amplification factor λ for an x-dependence like $e^{in\xi}$ and deduce that the scheme is conservative. Obtain the phase shift in the form

$$\operatorname{Arg}(\lambda) = -2 \tan^{-1} \left[q \tan(\xi/2) \right], \quad \text{where} \quad q = \frac{kV}{h} . \tag{4}$$

Observe that the low harmonics (ξ small) are modelled well by the finite difference approximation. Show also that when the Courant number q = 1, the phase factor is exactly correct for all ξ . Deduce that the approximation is exact in this case.

4 Examine the stability of the two-step Lax-Wendroff method for the conservation equation $\underline{u}_t + [\underline{f}(\underline{u})]_x = 0$, namely

$$\underline{U}_{n+1/2}^{j+1/2} = \frac{1}{2} \left[\underline{U}_{n}^{j} + \underline{U}_{n+1}^{j} \right] - \frac{1}{2} s \left[\underline{f}_{n+1}^{j} - \underline{f}_{n}^{j} \right]
\underline{U}_{n}^{j+1} = \underline{U}_{n}^{j} - s \left[\underline{f}_{n+1/2}^{j+1/2} - \underline{f}_{n-1/2}^{j+1/2} \right]$$
(5)

for the case when $\underline{f}(\underline{u}) = \mathbf{A}\underline{u}$, where **A** is a constant matrix. Writing $\underline{U}_n^j = (\lambda)^j e^{in\xi} \underline{V}$, show that

$$\left[2s^2\sin^2(\frac{1}{2}\xi)\mathbf{A}^2 + is\sin(\xi)\mathbf{A} + (\lambda - 1)\mathbf{I}\right]\underline{V} = 0.$$
 (6)

Assuming the eigenvectors of \mathbf{A} are complete, the only non-zero solutions to (6) occur when \underline{V} is an eigenvector of \mathbf{A} , so that

$$2s^{2}\sin^{2}(\frac{1}{2}\xi)\mu^{2} + is\sin(\xi)\mu + (\lambda - 1) = 0,$$
(7)

where μ is an eigenvalue of **A**. Assuming all values of μ are real, show that the stability condition is $s \max \mid \mu \mid \leq 1$. If, conversely, μ takes complex values (in conjugate pairs, of course), show that the low harmonics ($\xi \to 0$) grow exponentially for any value of s. Interpret this behaviour in terms of the existence of characteristics and the underlying nature of the partial differential equation.

5 Show that for a square grid with steplength h, the Laplacian may be approximated by

$$\frac{1}{2h^2} \left[u_{m+1,n+1} + u_{m+1,n-1} + u_{m-1,n-1} + u_{m-1,n+1} - 4u_{m,n} \right] = (\nabla^2 u)_{m,n} + O(h^2) \ . \tag{8}$$

Examine the truncation errors of (8) and the usual 5-point formula $(\nabla^2 \approx (\delta_x^2 + \delta_y^2)/h^2)$ and hence find a linear combination of the two which enables an $O(h^4)$ approximation to $\nabla^2 u = f$ to be made.

6 Consider the solution of the Poisson equation with Dirichlet boundary conditions,

$$u_{xx} + u_{yy} = f$$
 in D, $u = g$ on a curved boundary C. (9)

Using a square mesh, we need to approximate the Laplacian near the boundary. Suppose that the curved boundary intersects the grid at the points A and B whose coordinates are $(x, y) = (M + \theta, N)h$, and $(x, y) = (M, N + \phi)h$ respectively, where $0 < \theta \le 1$, $0 < \phi \le 1$, as in the figure. Calculate approximations to u_{xx} and u_{yy} at the mesh point (Mh, Nh) and hence show that a reasonable approximation to (9) at that point is

$$\frac{2g(A)}{\theta(1+\theta)} + \frac{2g(B)}{\phi(1+\phi)} + \frac{2U_{M-1,N}}{1+\theta} + \frac{2U_{M,N-1}}{1+\phi} - 2\left(\frac{1}{\theta} + \frac{1}{\phi}\right)U_{M,N} = h^2 f_{M,N} , \qquad (10)$$

where g(A) denotes g evaluated at the point A. What is the order of the truncation error of (10)?