

# PM COUPLINGS

INDUSTRIAL RANGE

#### PM FLEXIBLE COUPLING

#### **Features**

- Severe shock load protection
- · Intrinsically fail safe
- · Maintenance free
- Vibration control
- Zero backlash
- · Misalignment capability
- Low cost

#### **Applications**

- Metal manufacture
- · Mining and mineral processing
- Pumps
- Fans
- Compressors
- · Cranes and hoists
- Pulp and paper industry
- General heavy duty industrial applications

#### **Construction Details**

- PM Couplings up to PM 40 are made out of special grade of S.G. Iron.
   Couplings from PM 60 to PM 600 are made of steel casting
- Separate rubber elements with a choice of grade and hardness, styrene butadiene with 60 shore hardness (Sm60) being the standard.

#### **Benefits**

- Gives protection and avoids failure of the driveline under high transient torques.
- Ensures continuous operation of the driveline in the unlikely event of rubber failure or damage.
- With no lubrication or adjustment required resulting in low running costs.
- Achieves low vibratory loads in the driveline components by selection of optimum stiffness characteristics.
- Eliminates torque amplifications through pre compression of the rubber elements.
- Allows axial and radial misalignment between the driving and driven machines.

- Rubber elements loaded in compression.
- Rubber elements are totally enclosed.



### PM SHAFT TO SHAFT PM 0.4 - PM 60



#### **DIMENSIONS, WEIGHT, INERTIA, ALIGNMENT**

| COUPLING SIZ                  | ZE               | 0.4   | 0.7   | 1.3   | 3     | 6     | 8     | 12    | 18    | 27     | 40     | 60     |
|-------------------------------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
|                               | D1               | 161.9 | 187.3 | 215.9 | 260.3 | 260.3 | 302.0 | 338.0 | 392.0 | 440.0  | 490.0  | 568.0  |
|                               | В                | 103.0 | 110.0 | 130.0 | 143.0 | 175.0 | 193.0 | 221.5 | 254.0 | 290.5  | 329.0  | 377.5  |
|                               | С                | 1.0   | 2.0   | 2.0   | 3.0   | 3.0   | 3.0   | 3.5   | 4.0   | 4.5    | 5.0    | 5.5    |
|                               | D                | 51    | 54    | 64    | 70    | 86    | 95    | 109   | 125   | 143    | 162    | 186    |
|                               | D7               | 51    | 54    | 64    | 70    | 86    | 95    | 109   | 125   | 143    | 162    | 186    |
|                               | D2               | 76    | 92    | 108   | 122   | 135   | 148   | 168   | 194   | 220    | 252    | 288    |
|                               | D3               | 146.0 | 171.4 | 196.8 | 235.0 | 240.0 | 276.0 | 312.0 | 360.0 | 407.0  | 458.0  | 528.0  |
|                               | D4               | 133   | 157   | 181   | 214.3 | 222   | 245   | 280   | 320   | 367    | 418    | 479    |
| DIMENSIONS (mm)               | J                | 9.5   | 11.0  | 12.0  | 14.5  | 11.0  | 13.5  | 14.0  | 16.0  | 18.5   | 21.0   | 24.0   |
|                               | Q                | 5     | 5     | 6     | 6     | 8     | 8     | 8     | 8     | 8      | 8      | 8      |
|                               | R                | M8    | M8    | M8    | M8    | M8    | M10   | M12   | M16   | M16    | M16    | M20    |
|                               | S                | 8     | 8     | 8     | 8     | 12    | 12    | 12    | 12    | 12     | 16     | 12     |
|                               | Т                | M8    | M8    | M8    | M8    | M8    | M12   | M12   | M16   | M16    | M16    | M20    |
|                               | W                | 36.0  | 39.0  | 46.0  | 60.0  | 81.0  | 89.0  | 102.0 | 118.0 | 134.0  | 152.7  | 175.0  |
|                               | MAX. d5 & d6 (4) | 41    | 51    | 64    | 73    | 85    | 95    | 109   | 125   | 143    | 162    | 186    |
|                               | MIN.d5 (5)       | 27    | 27    | 35    | 37    | 50    | 62    | 68    | 80    | 90     | 105    | 120    |
|                               | MIN. d6          | 27    | 27    | 37    | 40    | 50    | 55    | 65    | 70    | 85     | 105    | 110    |
| RUBBER                        | Per Cavity       | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1      | 1      | 1      |
| ELEMENTS                      | Per Coupling     | 10    | 10    | 12    | 12    | 16    | 16    | 16    | 16    | 16     | 16     | 16     |
| MAXIMUM SPEED (rpm) (1)       |                  | 7200  | 6300  | 5400  | 4500  | 4480  | 3860  | 3450  | 2975  | 2650   | 2380   | 2050   |
|                               | W1               | 1.90  | 2.80  | 4.50  | 6.90  | 8.90  | 11.62 | 17.74 | 27.00 | 40.18  | 59.50  | 89.45  |
| WEIGHT (3) (kg)               | W2               | 2.00  | 2.90  | 4.60  | 6.00  | 6.55  | 10.92 | 15.86 | 24.59 | 35.34  | 50.47  | 77.80  |
| WEIGHT (5) (kg)               | W3               | 2.80  | 4.30  | 6.60  | 10.00 | 10.84 | 15.14 | 21.24 | 33.03 | 47.80  | 69.32  | 104.63 |
|                               | TOTAL            | 6.70  | 10.00 | 15.70 | 22.90 | 26.30 | 37.70 | 54.80 | 84.60 | 123.30 | 179.30 | 271.90 |
|                               | l1               | 0.002 | 0.004 | 0.008 | 0.018 | 0.026 | 0.050 | 0.101 | 0.203 | 0.392  | 0.756  | 1.491  |
| INERTIA (3)                   | 12               | 0.006 | 0.014 | 0.019 | 0.049 | 0.072 | 0.149 | 0.273 | 0.560 | 1.041  | 1.898  | 3.867  |
|                               | 13               | 0.005 | 0.013 | 0.025 | 0.050 | 0.058 | 0.116 | 0.194 | 0.406 | 0.748  | 1.345  | 2.719  |
|                               |                  |       |       |       |       |       |       |       |       |        |        |        |
| ALLOWARIE                     | RADIAL (mm)      | 0.8   | 0.8   | 0.8   | 1.2   | 1.5   | 1.6   | 1.6   | 1.6   | 1.9    | 2.1    | 2.4    |
| ALLOWABLE<br>MISALIGNMENT (2) | AXIAL(mm)        | 0.8   | 1.2   | 1.2   | 1.2   | 1.25  | 1.5   | 1.75  | 2.0   | 2.25   | 2.5    | 2.75   |
| THIS/ LEGITIVE (Z)            | CONICAL (degree) | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5    | 0.5    | 0.5    |

<sup>(1)</sup> For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balance.

<sup>(2)</sup> Installations should be initially aligned as accurately as possible, in order to allow for deterioration in alignment over time. It is recommended that initial alignment should not exceed 25 % of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowable.

<sup>(3)</sup> Weights and inertias are calculated with mean bore for couplings.

<sup>(4)</sup> Oversize shafts can be accommodated in large boss driving flanges, manufactured to customer's requirements.

<sup>(5)</sup> PM 0.4 - PM 3 driving flanges are available with solid bores on request.

### PM SHAFT TO SHAFT PM 90 - PM 600





#### DIMENSIONS, WEIGHT, INERTIA, ALIGNMENT

| COUPLING SIZE              |                  | 90     | 130    | 180    | 270     | 400     | 600     |
|----------------------------|------------------|--------|--------|--------|---------|---------|---------|
|                            | D1               | 638    | 728    | 798    | 925     | 1065    | 1195    |
|                            | В                | 432.5  | 487.0  | 544.0  | 623.0   | 710.5   | 812.0   |
|                            | С                | 6.5    | 7.0    | 8.0    | 9.0     | 10.5    | 12.0    |
|                            | D                | 213    | 240    | 268    | 307     | 350     | 400     |
|                            | D7               | 213    | 240    | 268    | 307     | 350     | 400     |
|                            | D2               | 330    | 373    | 415    | 475     | 542     | 620     |
|                            | D3               | 598    | 680    | 750    | 865     | 992     | 1122    |
|                            | D4               | 548    | 620    | -      | -       | -       | -       |
| DIMENSIONS (mm)            | J                | 26.5   | 31.0   | 33.5   | 36.0    | 43.0    | 52.0    |
|                            | Q                | 8      | 8      | 12     | 12      | 12      | 12      |
|                            | R                | M20    | M24    | M24    | M30     | M36     | M36     |
|                            | S                | 16     | 16     | 20     | 20      | 20      | 24      |
|                            | Т                | M20    | M24    | M24    | M30     | M36_    | M36     |
|                            | W                | 200.0  | 226.0  | 252.0  | 288.5   | 328.0   | 376.0   |
|                            | MAX. d5 & d6 (4) | 213    | 240    | 268    | 307     | 350     | 400     |
|                            | MIN.d5           | 140    | 160    | 167    | 192     | 232     | 285     |
|                            | MIN.d6           | 140    | 160    | 170    | 195     | 235     | 285     |
| RUBBER                     | Per Cavity       | 2      | 2      | 2      | 2       | 2       | 2       |
| ELEMENTS                   | Per Coupling     | 32     | 32     | 32     | 32      | 32      | 32      |
| MAXIMUM SPEED (rpm) (1)    | •                | 1830   | 1600   | 1460   | 1260    | 1090    | 975     |
|                            | W1               | 132.00 | 191.11 | 262.30 | 389.00  | 562.40  | 813.30  |
| WEIGHT (kg) (3)            | W2               | 111.96 | 165.24 | 266.78 | 414.00  | 633.40  | 909.10  |
| WEIGHT (kg) (5)            | W3               | 151.78 | 222.39 | 297.40 | 437.30  | 651.20  | 946.70  |
|                            | TOTAL            | 395.70 | 578.70 | 826.50 | 1240.30 | 1847.00 | 2669.10 |
|                            | I1               | 2.872  | 5.330  | 9.140  | 17.880  | 34.030  | 65.540  |
| INERTIA (3)                | I2               | 7.188  | 13.680 | 28.800 | 59.300  | 119.500 | 220.200 |
|                            | 13               | 4.955  | 9.565  | 15.350 | 29.890  | 60.660  | 115.700 |
|                            |                  |        |        |        |         |         |         |
|                            | RADIAL (mm)      | 2.8    | 3.3    | 3.5    | 3.9     | 4.6     | 5.2     |
| ALLOWABLE MISALIGNMENT (2) | AXIAL(mm)        | 3.25   | 3.5    | 4.0    | 4.5     | 5.25    | 6.0     |
|                            | CONICAL (degree) | 0.5    | 0.5    | 0.5    | 0.5     | 0.5     | 0.5     |

<sup>(1)</sup> For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balance.

<sup>(2)</sup> Installations should be initially aligned as accurately as possible, in order to allow for deterioration in alignment over time. It is recommended that initial alignment should not exceed 25 % of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowable.

<sup>(3)</sup> Weights and inertias are calculated with mean bore for couplings.

<sup>(4)</sup> Oversize shafts can be accommodated in large boss driving flanges, manufactured to customer's requirements

### PM MILL MOTOR COUPLINGS



Brakedrums may be used in conjunction with the whole range of PM couplings and may be bolted on either the driving flange or flexible half side of the coupling, the recess - ØD1 - locating on the outside diameter of the coupling.

Recommended brake drums for each size of coupling are shown in the table, but ØD10 is adjustable to suit "Non-standard" applications.

TYPE PM - SDW DIMENSIONS TABLE (INGOT MOTOR)

| COUPLING S            | IZE    | 0     | ).7   | 1.3   | 3     | •     | 6     | 1     | 12    | 1     | 8     |
|-----------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| MOTOR FRAM            | E SIZE | 180M  | 180L  | 225L  | 250L  | 280M  | 280L  | 355L  | 400L  | 400LX | 450L  |
| hp                    |        | 12.7  | 16.0  | 26.0  | 43.0  | 63.0  | 82.0  | 123.0 | 170.0 | 228.0 | 300.0 |
| rpm                   |        | 956   | 958   | 730   | 732   | 734   | 735   | 590   | 590   | 591   | 592   |
|                       | D1     | 187.3 | 187.3 | 215.9 | 260.3 | 260.0 | 260.0 | 338.0 | 338.0 | 392.0 | 392.0 |
|                       | В      | 168.0 | 168.0 | 178.0 | 215.0 | 231.0 | 231.0 | 284.5 | 324.5 | 341.0 | 341.0 |
|                       | C      | 2.0   | 2.0   | 2.0   | 3.0   | 3.0   | 3.0   | 3.5   | 3.5   | 4.0   | 4.0   |
|                       | D7     | 54    | 54    | 64    | 70    | 86    | 86    | 109   | 109   | 125   | 125   |
|                       | D3     | 171.4 | 171.4 | 196.8 | 235.0 | 240.0 | 240.0 | 312.0 | 312.0 | 360.0 | 360.0 |
|                       | D4     | 157   | 157   | 181   | 214.3 | 222   | 222   | 280   | 280   | 320   | 320   |
|                       | Н      | 15.3  | 20.3  | 18.7  | 18.9  | 23.5  | 23.5  | 23.5  | 25.5  | 26.0  | 26.0  |
|                       | J      | 11.0  | 11.0  | 12.0  | 14.5  | 11.0  | 11.0  | 14.0  | 14.0  | 16.0  | 16.0  |
|                       | D2     | 100   | 100   | 125   | 140   | 155   | 185   | 205   | 205   | 205   | 215   |
| DIMENSIONS (mm)       | K1     | 90    | 110   | 110   | 140   | 180   | 180   | 180   | 225   | 225   | 225   |
| DIIVILIASIONS (IIIII) | d7     | 42    | 42    | 55    | 60    | 75    | 75    | 95    | 100   | 100   | 110   |
|                       | D9     | 70    | 70    | 90    | 105   | 120   | 120   | 135   | 155   | 155   | 170   |
|                       | M      | 84    | 84    | 84    | 107   | 107   | 107   | 132   | 167   | 167   | 167   |
| •                     | N      | 28    | 28    | 28    | 35    | 35    | 35    | 40    | 45    | 45    | 45    |
|                       | Р      | 112   | 112   | 112   | 142   | 142   | 142   | 172   | 212   | 212   | 212   |
|                       | D10    | 250   | 315   | 315   | 400   | 500   | 500   | 500   | 630   | 630   | 630   |
|                       | W      | 36    | 46    | 46    | 60    | 81    | 81    | 102   | 102   | 118   | 118   |
|                       | MIN.d6 | 27    | 27    | 38    | 49    | 50    | 50    | 72    | 72    | 80    | 80    |
|                       | MAX.d6 | 51    | 51    | 64    | 73    | 85    | 85    | 109   | 109   | 125   | 125   |
|                       | Z      | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 5     | 5     | 5     |

<sup>(1)</sup> The motor ratings are taken for periodic Duty Classes S4 and S5, 150 starts per hour with a cyclic duration factor at 40%.

<sup>(2)</sup> For motors operating outside these ratings, consult Poona Couplings

## PM MILL MOTOR COUPLINGS

#### TYPE PM - mm DIMENSIONS TABLE ( AISE MOTOR)

#### **SERIES 6 MILL MOTORS**

| COUPLING            | G SIZE  | 0.4   | C     | ).7   | 1.3   | 3     | 6     | •     | 12     | 18     |        | 27     |        | 40     |
|---------------------|---------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| MOTOR FRAM          | 1E SIZE | 602   | 603   | 604   | 606   | 608   | 610   | 612   | 614    | 616    | 618    | 620    | 622    | 624    |
| hp                  |         | 7     | 10    | 15    | 25    | 35    | 50    | 75    | 100    | 150    | 200    | 275    | 375    | 500    |
| rpm                 |         | 800   | 725   | 650   | 575   | 525   | 500   | 475   | 460    | 450    | 410    | 390    | 360    | 340    |
|                     | D1      | 161.9 | 187.3 | 187.3 | 215.9 | 260.3 | 260   | 338   | 338    | 392    | 440    | 440    | 440    | 490    |
|                     | В       | 153   | 172   | 172   | 196   | 219   | 237   | 281.5 | 281.5  | 318    | 336.5  | 336.5  | 392.5  | 466    |
|                     | С       | 1     | 2     | 2     | 2     | 3     | 3     | 3.5   | 3.5    | 4      | 4.5    | 4.5    | 4.5    | 5      |
|                     | D7      | 51    | 54    | 54    | 64    | 70    | 86    | 109   | 109    | 125    | 143    | 143    | 143    | 162    |
|                     | D3      | 146   | 171.4 | 171.4 | 196.8 | 235   | 240   | 312   | 312    | 360    | 407    | 407    | 407    | 458    |
|                     | D4      | 133   | 157   | 157   | 181   | 221   | 222   | 280   | 280    | 320    | 367    | 367    | 367    | 418    |
|                     | Н       | 13.5  | 15.3  | 15.3  | 18.7  | 18.9  | 18.5  | 18.5  | 18.5   | 21     | 21     | 21     | 21     | 21     |
|                     | J       | 9.5   | 11    | 11    | 12    | 14.5  | 11    | 14    | 14     | 16     | 18.5   | 18.5   | 18.5   | 21.0   |
|                     | D2      | 102   | 121   | 121   | 133   | 171   | 178   | 190   | 216    | 241    | 254    | 305    | 305    | 305    |
| DIMENSIONS (mm)     | K1      | 83    | 95    | 95    | 146   | 146   | 171   | 222   | 222    | 286    | 286    | 286    | 286    | 286    |
| DIVIENSIONS (IIIII) | d7      | 44.45 | 50.80 | 50.80 | 63.50 | 76.20 | 82.55 | 92.07 | 107.95 | 117.47 | 127.00 | 149.22 | 158.75 | 177.80 |
|                     | D9      | 76.2  | 88.9  | 88.9  | 101.6 | 123.8 | 127.0 | 158.7 | 158.7  | 181.0  | 203.2  | 228.6  | 228.6  | 228.6  |
|                     | М       | 70    | 83    | 83    | 95    | 111   | 111   | 124   | 124    | 137    | 149    | 168    | 178    | 232    |
|                     | N       | 31    | 33    | 33    | 35    | 35    | 37    | 45    | 45     | 52     | 40     | 51     | 67     | 67     |
|                     | Р       | 101   | 116   | 116   | 130   | 146   | 148   | 169   | 169    | 189    | 189    | 219    | 245    | 299    |
|                     | D10     | 203   | 254   | 254   | 330   | 330   | 406   | 483   | 483    | 584    | 584    | 584    | 584    | 584    |
|                     | W       | 36    | 39    | 39    | 46    | 60    | 81    | 102   | 102    | 118    | 134    | 134    | 152.7  | 152.7  |
|                     | MIN.d6  | 22    | 27    | 27    | 38    | 49    | 50    | 72    | 72     | 80     | 92     | 92     | 92     | 105    |
|                     | MAX.d6  | 41    | 51    | 51    | 64    | 73    | 85    | 109   | 109    | 125    | 143    | 143    | 143    | 162    |
|                     | Z       | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3      | 5      | 5      | 5      | 5      | 5      |

#### **SERIES 8 MILL MOTORS**

| COUPLING SI          | ZE     |       | ).4   | 0.7   | 1.3   |       | 3     | 6     | 1     | 2      | 18     | 27     |
|----------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| MOTOR FRAME          | SIZE   | 802   | 802   | 803   | 804   | 806   | 808   | 810   | 812   | 814    | 816    | 818    |
| hp                   |        | 7.5   | 10.0  | 15.0  | 20.0  | 30.0  | 50.0  | 70.0  | 100.0 | 150.0  | 200.0  | 250.0  |
| rpm                  |        | 800   | 800   | 725   | 650   | 575   | 525   | 500   | 475   | 460    | 450    | 410    |
|                      | D1     | 161.9 | 161.9 | 187.3 | 215.9 | 260.3 | 260.3 | 260.0 | 338.0 | 338.0  | 392.0  | 440.0  |
|                      | В      | 153.0 | 153.0 | 172.0 | 182.0 | 203.0 | 219.0 | 237.0 | 281.5 | 281.5  | 318.0  | 336.5  |
|                      | С      | 1.0   | 1.0   | 2.0   | 2.0   | 3.0   | 3.0   | 3.0   | 3.5   | 3.5    | 4.0    | 4.5    |
|                      | D7     | 51    | 51    | 54    | 64    | 70    | 70    | 86    | 109   | 109    | 125    | 143    |
|                      | D3     | 146.0 | 146.0 | 171.4 | 196.8 | 235.0 | 235.0 | 240.0 | 312.0 | 312.0  | 360.0  | 407.0  |
|                      | D4     | 133   | 133   | 157   | 181   | 221   | 221   | 222   | 280   | 280    | 320    | 367    |
|                      | Н      | 13.5  | 15.3  | 15.3  | 18.7  | 18.9  | 18.5  | 18.5  | 18.5  | 18.5   | 21.0   | 21.0   |
|                      | J      | 9.5   | 9.5   | 11.0  | 12.0  | 14.5  | 14.5  | 11.0  | 14.0  | 14.0   | 16.0   | 18.5   |
|                      | D2     | 102   | 102   | 121   | 121   | 133   | 171   | 178   | 190   | 216    | 241    | 254    |
| DIMENSIONS (mm)      | K1     | 83    | 95    | 95    | 146   | 146   | 171   | 171   | 222   | 222    | 286    | 286    |
| DIVILIVSIONS (IIIII) | d7     | 44.45 | 44.45 | 50.80 | 50.80 | 63.50 | 76.20 | 82.55 | 92.07 | 107.95 | 117.47 | 127.00 |
|                      | D9     | 76.2  | 76.2  | 88.9  | 88.9  | 101.6 | 123.8 | 127.0 | 158.7 | 158.7  | 181.0  | 203.2  |
|                      | М      | 70    | 70    | 83    | 83    | 95    | 111   | 111   | 124   | 124    | 137    | 149    |
|                      | N      | 31    | 31    | 33    | 33    | 35    | 35    | 37    | 45    | 45     | 52     | 40     |
|                      | Р      | 101   | 101   | 116   | 116   | 130   | 146   | 148   | 169   | 169    | 189    | 189    |
|                      | D10    | 203   | 254   | 254   | 330   | 330   | 406   | 406   | 483   | 483    | 584    | 584    |
|                      | W      | 36    | 36    | 39    | 46    | 60    | 60    | 81    | 102   | 102    | 118    | 134    |
|                      | MIN.d6 | 22    | 22    | 27    | 38    | 49    | 49    | 50    | 72    | 72     | 80     | 92     |
|                      | MAX.d6 | 41    | 41    | 51    | 64    | 73    | 73    | 85    | 109   | 109    | 125    | 143    |
|                      | Z      | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3      | 5      | 5      |

# 1.1 Prediction of the System Torsional Vibration Characteristics

An adequate prediction of the system torsional vibration characteristics can be made by the following method.

- **1.1.1** Use the torsional stiffness as shown in the technical data, which is based upon data measured at a 30°C ambient temperature (CTdyn)
- 1.1.2 Repeat the calculation made as 1.1.1 but using the maximum temperature correction factor St100 and dynamic magnifier correction factor, M100, for the corrected rubber. Use tables below to adjust valuer for both torsional stiffness and dynamic magnifier. i.e, CTdyn = CTdyn / St100.

| Rubber Grade                                                                     | (Temp) Max <sup>o</sup> C     | S <sub>t</sub>                  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------|---------------------------------|--|--|--|
| SM 60                                                                            | 100                           | St100=0.60                      |  |  |  |
| SM 70                                                                            | 100                           | St100=0.44                      |  |  |  |
| SM 80                                                                            | 100                           | St100=0.37                      |  |  |  |
| SM 6                                                                             | 0 is considered "stand        | ard"                            |  |  |  |
| Rubber Grade  Dynamic Magnifier at 30°C (M30)  Dynamic Magnifier at 100°C (M100) |                               |                                 |  |  |  |
| Rubber Grade                                                                     | at 30°C                       | at 100°C                        |  |  |  |
| Rubber Grade SM 60                                                               | at 30°C                       | at 100°C                        |  |  |  |
|                                                                                  | at 30°C<br>(M <sub>30</sub> ) | at 100°C<br>(M <sub>100</sub> ) |  |  |  |
| SM 60                                                                            | at 30°C<br>(M <sub>30</sub> ) | at 100°C<br>(M <sub>100</sub> ) |  |  |  |

#### 1.1.3 Review calculations 1.1.1 and

1.1.2 and if the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalogue, then the coupling is considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range then actual temperature of the speed range then actual temperature of the coupling will need to be calculated.

# 1.1 Prediction of the Actual Coupling Temperature and Torsional Stiffness

1.2.1 Use the torsional stiffness as published in the catalogue, this is based upon data measured at  $30^{\circ}$ C and the dynamic magnifier at  $30^{\circ}$ C ( $M_{20}$ )

1.2.2 Compare the synthesis value of the calculated heat load in the coupling (Pk) at the speed of interest to the

Allowable Heat Dissipation (PkW). The coupling temperature rise

°C =Temp <sub>coup</sub> = 
$$\left[\frac{P_k}{P_{kW}}\right]$$
 x 70

The coupling temperature =  $\psi$  $\psi$  = Temp<sub>coup</sub> + Ambient Temp.

- 1.2.3 Calculate the temperature correction factor St from 1.3 (if the coupling temperature>100°C, then use St100). Calculate the dynamic Magnifier as per 1.4. Repeat the calculation with the new value of coupling stiffness and dynamic magnifier.
- 1.2.4 Calculate the coupling temperature as per 1.2. Repeat calculation until the temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation.

#### 1.3 Temperature Correction Factor



#### 1.4 Dynamic Magnifier Correction Factor

The Dynamic Magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness.

$$M_{T} = M_{30} \qquad \qquad \Psi_{T} = \Psi_{30} X S_{t}$$

| Rubber<br>Grade                | Dynamic<br>Magnifier<br>(M <sub>30</sub> ) | Relative<br>Damping<br><sup>©</sup> 30 |  |  |  |  |
|--------------------------------|--------------------------------------------|----------------------------------------|--|--|--|--|
| SM 60                          | 8                                          | 0.78                                   |  |  |  |  |
| SM 70                          | 6                                          | 1.05                                   |  |  |  |  |
| SM 80                          | 4                                          | 1.57                                   |  |  |  |  |
| SM 60 is considered "standard" |                                            |                                        |  |  |  |  |

## PM TECHNICAL DATA STANDARD BLOCKS

PM 0.4 - PM 60

| COUPLING SIZE                          |                 | 0.4   | 0.7   | 1.3   | 3      | 6     | 8     | 12    | 18    | 27    | 40    | 60    |
|----------------------------------------|-----------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| kW/rpm                                 |                 | 0.045 | 0.070 | 0.140 | 0.320  | 0.630 | 0.840 | 1.250 | 1.890 | 2.830 | 4.190 | 6.280 |
| MAXIMUM TORQUE                         | Tkmax (kNm)     | 0.43  | 0.67  | 1.30  | 3.00   | 6.00  | 8.00  | 12.00 | 18.00 | 27.00 | 40.00 | 60.00 |
| VIBRATORY TORQU                        | E Tkw (kNm) (2) | 0.054 | 0.084 | 0.163 | 0.375  | 0.750 | 1.000 | 1.500 | 2.250 | 3.375 | 5.000 | 7.500 |
| ALLOWABLE DISSIP<br>AMB. AT AMB. TEMP  |                 | 266   | 322   | 365   | 458    | 564   | 562   | 670   | 798   | 870   | 1018  | 1159  |
| MAXIMUM SPEED (I                       | rpm)            | 7200  | 6300  | 5400  | 4500   | 4480  | 3860  | 3450  | 2975  | 2650  | 2380  | 2050  |
| DYNAMIC TORSIONA<br>CTdyn (MNm/rad) (3 |                 |       |       |       |        |       |       |       |       |       |       |       |
|                                        | SM 60           | 0.003 | 0.005 | 0.012 | 0.029  | 0.073 | 0.097 | 0.146 | 0.218 | 0.328 | 0.485 | 0.728 |
| @ 0.25 Tkn                             | SM 70           | 0.005 | 0.008 | 0.018 | 0.043  | 0.104 | 0.138 | 0.207 | 0.311 | 0.466 | 0.691 | 1.036 |
|                                        | SM 80           | 0.009 | 0.013 | 0.030 | 0.0721 | 0.134 | 0.179 | 0.269 | 0.403 | 0.605 | 0.896 | 1.344 |
|                                        | SM 60           | 0.005 | 0.008 | 0.019 | 0.0461 | 0.104 | 0.138 | 0.207 | 0.311 | 0.466 | 0.691 | 1.036 |
| @ 0.50 Tkn                             | SM 70           | 0.007 | 0.010 | 0.025 | 0.058  | 0.139 | 0.185 | 0.277 | 0.416 | 0.624 | 0.924 | 1.386 |
|                                        | SM 80           | 0.010 | 0.015 | 0.036 | 0.086  | 0.181 | 0.241 | 0.361 | 0.542 | 0.813 | 1.204 | 1.806 |
|                                        | SM 60           | 0.008 | 0.012 | 0.029 | 0.069  | 0.154 | 0.205 | 0.308 | 0.462 | 0.693 | 1.027 | 1.540 |
| @ 0.75 Tkn                             | SM 70           | 0.009 | 0.014 | 0.033 | 0.078  | 0.199 | 0.265 | 0.398 | 0.596 | 0.895 | 1.325 | 1.988 |
| -                                      | SM 80           | 0.012 | 0.018 | 0.043 | 0.102  | 0.265 | 0.353 | 0.529 | 0.794 | 1.191 | 1.764 | 2.646 |
|                                        | SM 60           | 0.001 | 0.018 | 0.043 | 0.102  | 0.224 | 0.299 | 0.448 | 0.672 | 1.008 | 1.493 | 2.240 |
| @ 1.0 Tkn                              | SM 70           | 0.012 | 0.018 | 0.044 | 0.105  | 0.277 | 0.370 | 0.554 | 0.832 | 1.247 | 1.848 | 2.772 |
|                                        | SM 80           | 0.014 | 0.021 | 0.051 | 0.122  | 0.382 | 0.510 | 0.764 | 1.147 | 1.720 | 2.548 | 3.822 |
|                                        | SM 60           | 685   | 723   | 1240  | 2050   | 6276  | 6966  | 7980  | 9140  | 10460 | 11069 | 12680 |
| RADIAL STIFFNESS<br>(N/mm) @ NO LOAD   | SM 70           | 1070  | 1130  | 1950  | 3240   | 8400  | 9320  | 10680 | 12230 | 14000 | 15960 | 18280 |
| (N/MINI) @ NO LOAD                     | SM 80           | 1740  | 1820  | 3210  | 5190   | 11400 | 12650 | 14500 | 16600 | 19000 | 21660 | 24810 |
| RADIAL STIFFNESS                       | SM 60           | 1430  | 1510  | 2600  | 4300   | 13180 | 14630 | 16780 | 19200 | 21970 | 25050 | 28700 |
| (N/mm)                                 | SM 70           | 1760  | 1860  | 3200  | 5240   | 13800 | 15320 | 17550 | 20100 | 23000 | 26220 | 30040 |
| @ 50% Tkmax                            | SM 80           | 2510  | 2650  | 4480  | 7450   | 16500 | 18320 | 20980 | 24000 | 27500 | 31350 | 35910 |
| AVIAL CTIFFNIECC                       | SM 60           | 458   | 502   | 714   | 970    | 1060  | 1176  | 1347  | 1543  | 1766  | 2010  | 2306  |
| AXIAL STIFFNESS (N/mm)                 | SM 70           | 753   | 828   | 1180  | 1610   | 2748  | 3050  | 3495  | 4000  | 4580  | 5220  | 5980  |
| @ NO LOAD                              | SM 80           | 1040  | 1160  | 1670  | 2230   | 4120  | 4573  | 5240  | 6000  | 6867  | 7828  | 8968  |
| AVIAL CTIFFNIESS                       | SM 60           | 920   | 1050  | 1540  | 2020   | 2300  | 2500  | 2920  | 3310  | 3830  | 4360  | 4980  |
| AXIAL STIFFNESS (N/mm)                 | SM 70           | 1100  | 1360  | 1920  | 2610   | 2750  | 3050  | 3500  | 4000  | 4580  | 5220  | 5980  |
| @ 50% Tkmax                            | SM 80           | 1250  | 1450  | 2060  | 2750   | 4120  | 4570  | 5240  | 6000  | 6870  | 7830  | 8970  |
|                                        | SM 60           | 66    | 72    | 102   | 128    | 1501  | 1668  | 1913  | 2178  | 2502  | 2845  | 3267  |
| MAX. AXIAL FORCE<br>(N)@ 50% Tkmax (1) | SM 70           | 78    | 80    | 112   | 140    | 1648  | 1825  | 2099  | 2374  | 2747  | 3139  | 3581  |
| (1)                                    | SM 80           | 85    | 106   | 148   | 185    | 2237  | 2482  | 2845  | 3257  | 3728  | 4265  | 4866  |

<sup>1)</sup> The Couplings will 'slip' axially when the maximum axial force is reached. 2) 10Hz only, allowable vibratory torque at higher or lower frequencies

$$fe = TKw \sqrt{\frac{10Hz}{fe}}$$

3

<sup>3)</sup> These values should be corrected for rubber temperature as shown in the design information section. Tkn = Tkmax

## PM TECHNICAL DATA STANDARD BLOCKS

#### PM 90 - PM 600

| COUPLING SIZE                                                   |           | 90    | 130   | 180    | 270    | 400    | 600   |
|-----------------------------------------------------------------|-----------|-------|-------|--------|--------|--------|-------|
| kW/rpm                                                          |           | 9.43  | 13.62 | 18.86  | 28.29  | 41.91  | 62.86 |
| MAXIMUM TORQUE Tkmax (kNm)                                      |           | 90    | 130   | 180    | 270    | 400    | 600   |
| VIBRATORY TORQUE Tkw (kNm) (2)                                  |           | 11.25 | 16.25 | 22.5   | 33.75  | 50.0   | 75.0  |
| ALLOWABLE DISSIPATED HEAT AT<br>AMB. AT AMB. TEMP. 30°C Pkw (W) |           | 1209  | 1369  | 1526   | 1735   | 1985   | 2168  |
| MAXIMUM SPEED (rpm)                                             |           | 1830  | 1600  | 1460   | 1260   | 1090   | 975   |
| DYNAMIC TORSIONAL STIFFNESS CTdyn (MNm                          | /rad) (3) |       |       |        |        |        |       |
|                                                                 | SM 60     | 1.092 | 1.577 | 2.184  | 3.276  | 4.853  | 7.28  |
| @ 0.25 Tkn                                                      | SM 70     | 1.554 | 2.245 | 3.108  | 4.662  | 6.838  | 10.36 |
|                                                                 | SM 80     | 2.016 | 2.912 | 4.032  | 6.048  | 8.96   | 13.44 |
|                                                                 | SM 60     | 1.554 | 2.245 | 3.108  | 4.661  | 6.838  | 10.36 |
| @ 0.50 Tkn                                                      | SM 70     | 2.079 | 3.003 | 4.158  | 6.237  | 9.24   | 13.86 |
|                                                                 | SM 80     | 2.709 | 3.913 | 5.418  | 8.127  | 12.04  | 18.06 |
|                                                                 | SM 60     | 2.31  | 3.337 | 4.62   | 6.72   | 10.269 | 15.4  |
| @ 0.75 Tkn                                                      | SM 70     | 2.982 | 4.307 | 5.964  | 8.946  | 13.251 | 19.88 |
|                                                                 | SM 80     | 3.969 | 5.733 | 7.938  | 11.907 | 17.64  | 26.48 |
|                                                                 | SM 60     | 3.36  | 4.853 | 6.72   | 10.08  | 14.931 | 22.4  |
| @ 1.0 Tkn                                                       | SM 70     | 4.158 | 6.006 | 8.316  | 12.474 | 18.48  | 27.72 |
|                                                                 | SM 80     | 5.733 | 8.281 | 11.466 | 17.199 | 25.48  | 38.22 |
|                                                                 | SM 60     | 14500 | 16400 | 18270  | 20920  | 23820  | 27300 |
| RADIAL STIFFNESS (N/mm) @ NO LOAD                               | SM 70     | 20916 | 23646 | 26350  | 30170  | 34340  | 39370 |
|                                                                 | SM 80     | 28200 | 32100 | 35750  | 40945  | 46600  | 53400 |
|                                                                 | SM 60     | 32820 | 37110 | 41350  | 47350  | 53890  | 61780 |
| RADIAL STIFFNESS (N/mm) @ 50% Tkmax                             | SM 70     | 34360 | 38850 | 43290  | 49560  | 56420  | 64680 |
|                                                                 | SM 80     | 41100 | 46450 | 51760  | 59260  | 67460  | 77330 |
|                                                                 | SM 60     | 2638  | 2980  | 3324   | 3800   | 4332   | 4966  |
| AXIAL STIFFNESS (N/mm) @ NO LOAD                                | SM 70     | 6840  | 7740  | 8620   | 9870   | 11230  | 12880 |
|                                                                 | SM 80     | 10260 | 11600 | 12924  | 14800  | 16844  | 19310 |
|                                                                 | SM 60     | 5720  | 6460  | 7200   | 8240   | 9380   | 10760 |
| AXIAL STIFFNESS (N/mm) @ 50% Tkmax                              | SM 70     | 6840  | 7740  | 8620   | 9870   | 11230  | 12880 |
|                                                                 | SM 80     | 10260 | 11600 | 12920  | 14800  | 16840  | 19310 |
|                                                                 | SM 60     | 3728  | 4218  | 4709   | 5396   | 6131   | 7034  |
| MAX. AXIAL FORCE (N) @ 50% Tkmax (1)                            | SM 70     | 4101  | 4640  | 5160   | 5915   | 6730   | 7720  |
|                                                                 | SM 80     | 5572  | 6298  | 7014   | 8025   | 9143   | 10477 |

<sup>1)</sup> The Couplings will 'slip' axially when the maximum axial force is reached.

$$fe = TKw \sqrt{\frac{10Hz}{fe}}$$

<sup>2) 10</sup>Hz only, allowable vibratory torque at higher or lower frequencies

<sup>3)</sup> These values should be corrected for rubber temperature as shown in the design information section. Tkn = Tkmax

#### PM DESIGN VARIATIONS

#### **DISC COUPLING**



Combination with a brake disc, for use on Cranes, Fans and Conveyor Drives.

#### LONG SHAFT COUPLING



Long Shaft Coupling is used to increase the distance between shaft ends and give a higher misalignment capability.

#### **SPACER COUPLING**



Spacer Couplings are used to increase the distance between shaft ends and allow access to the driven and driving machine.

#### **COUPLING WITH LARGE BOSS**



Coupling with large boss driving flange and long boss inner member for vertical applications.

#### PM SELECTION PROCEDURE

From the continuous Power (P) and operating Speed (n) calculate the Application Torque Tnorm from the formula:

 $T_{norm} = 9549 \text{ X } (P/n)Nm$ 

Select Prime Mover Service Factor (Fp) from the table below.

Select Driven Equipment Service Factor (Fm). The minimum Service Factor has been set at 1.5.

 $T_{max} = T_{norm} (Fp + Fm)$ 

Select Coupling such that T<sub>max</sub> < T<sub>kmax</sub> Check n < Coupling Maximum Speed (from coupling technical data).

Check Coupling Bore Capacity such that dmin<d<

Consult the factory for alternatives, if catalogue limits are exceeded.

# N.B. If you are within 80% of maximum speed, dynamic balancing is required.

| Prime Mover Servic                  | e Factors   |     |
|-------------------------------------|-------------|-----|
| Prime Mover Service Factor          | FP          |     |
| Diesel Engine                       | 1 Cylinder  | *   |
|                                     | 2 Cylinder  | *   |
|                                     | 3 Cylinder  | 2.5 |
|                                     | 4 Cylinder  | 2.0 |
|                                     | 5 Cylinder  | 1.8 |
|                                     | 6 Cylinder  | 1.7 |
| More than                           | 6 Cylinders | 1.5 |
| Vee Engine                          |             | 1.5 |
| Pertrol Engine                      |             | 1.5 |
| Electric Motor / Turbines           |             | 0   |
| Induction Motor                     |             | 0   |
| Synchronous Motor                   |             | 1.5 |
| Variable Speed                      |             | *   |
| SynchronousConverter LCI)           | -6 Pulse    | 1.0 |
| ,                                   | -12 Pulse   | 0.5 |
| PWM / Quasi Square                  |             | 0.5 |
| Cyclo Converter                     |             | 0.5 |
| Cascade Recovery ( Kramer, Scherbiu |             | 1.5 |

<sup>\*</sup>The application of these drive types is highly specialised and it is recommended that Poona Couplings is consulted for further advice.

Tnorm = Application Torque (Nm)

T<sub>max</sub> = Peak Application Torque (Nm)

Maximum Coupling Rating according to DIN 740 (kNm) (with service factor = 3 according to Poona Couplings standard.

T<sub>kmax</sub> = Nominal Coupling Rating according

to DIN 740 (kNm)

P = Continuous Power to be transmitted by coupling (kW)

n = Speed of coupling application

(rpm)

Fp = Prime Mover Service Factor

Fm = Driven Equipment Service Factor

dmax = Coupling Maximum Bore (mm)

dmin = Coupling Minimum Bore (mm)

#### **WARNING**

It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide.

# SELECTION SAMPLE PRODUCT RANGE

Selection of Indiction Motor 1000 kW and 1500 rpm driving a Rotary Pump.

Tnorm = (P/n) x 9549 Nm = (1000 / 1500) x 9549 Nm

= 6.366 kNm

 $T_{max} = T_{norm} (Fp + Fm)$ = 6.366 ( 0 + 2) = 12.732 kNm

The application requires a steel coupling (by customer specification)

Examination of PM catalogue shows PM 18 as

Tmax = 18 kNm which satisfies the condition Tmax < Tkmax ( 12.732 < 18.0) kNm

n < coupling maximum speed (1500 < 2975

dmin < dp < dmax (70 < 95 < 125) dmin < dm < dmax (70 < 95 < 125)

2975)

#### CALCULATED EXAMPLES

Illustrated below are two different types of transient torsional vibrations analysis that can be produced by Poona Couplings.

This ensures optimum solutions are reached by the correct selection, of torsional stiffness and damping characteristics of the coupling.

Whilst the synchronous resonance and synchronous convertor (LCI) examples are shown, other applications which Poona Couplings have experience of include, Torque Amplification, Electrical Speed Control Devices, PWM, Scherbius/Kramer, ShortCircuit and any re-connection of electrical circuits on the mechanical systems.

#### Table A



Table A shows vibrating torque experienced in the motor shaft when the system is connected rigidly (or by a gear or membrane coupling) to the driven system.

#### Table B



Table B shows the same system connected by DCB coupling. A PM type coupling is also used in such applications.

#### Example 2

We have been engineering couplings for Synchronous Convertos (LCI) drives to control the forced mode conditions through the first natural frquency by judicial selection of torsional stiffness and damping.

#### Table C



Table C shows a typical motor/fan system connected rigidly (or through a gear or memberane coupling) when damaging torques would have been experienced in the motor shaft.

#### Table D



Table D shows the equivalent Poona Couplings engineered solution using a PM coupling.

#### PM DAMPING CHARACTERISTICS

#### Rubber

- Full laboratory control
- Supported by a wide range of specialised equipment
- · Maintains high quality standards
- Consistency in product performance
- Specialised compounds can be developed to meet specific requirements

Standard compounds are listed below



#### **Rubber Compound**

| Identification label                                                                                                                                                                                                                                              | Natural<br>Ped<br>(F, NM)                                         | Styrene-<br>Butadiene<br>Green<br>(SM)                                                           | Neoprene<br>Yellow<br>(CM)                                     | Nitrile<br>White<br>(AM)                                              | Slicone<br>Blue<br>(S)                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| Resistance to Compression Set Resistance to Flexing Resistance to Cutting Resistance to Abrasion Resistance to Oxidation Resistance to Oil& Gasoline Resistance to Acids Resistance to Water Swelling Service Temp Maximum; Continuous Service TemperatureMinimum | Good Excellent Excellent Excellent Fair Poor Good Good 80°C -50°C | Good<br>Good<br>Good<br>Fair<br>Poor<br>Good<br>Good<br>100 <sup>0</sup> C<br>-40 <sup>0</sup> C | Fair Good Good VeryGood Good Fair Good 100°C -30°C Flame Proof | Good<br>Good<br>Good<br>Good<br>Good<br>Fair<br>Good<br>100°C<br>40°C | Good Good Fair Fair Excellent Good Good Good 200 C -50 C |

Coupling damping varies directly with torsional stiffness and inversely with frequency for a given rubber grade. The relationship is conventionally described by the dynamic magnifier M., varying with hardness for the various rubber types.

The rubber compound dynamic magnifier values are

| Rubber Grade | M  |
|--------------|----|
| NM45         | 15 |
| SM50         | 10 |
| SM60         | 8  |
| SM70         | 6  |
| SM80         | 4  |

This property may also be expressed as the Damping Energy Ratio or Relative Damping, , which is the ratio of the damping energy , AD, produced mechanically by the coupling during a vibration cycle and converted into heat energy, to the flexible strain energy Af with respect to the mean position.

# DRIVE EQUIPMENT SERVICE FACTORS

|                                                  | Equipment<br>Factor(Fm) |                                              | oical Driven<br>Equipment<br>Factor(Fm) | Equ                                                            | l Driven<br>ipment<br>tor(Fm) |
|--------------------------------------------------|-------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------------------|-------------------------------|
| gitators                                         |                         | Generators                                   |                                         | Mining                                                         |                               |
| Pure liquids                                     | 1.5                     | Alternating                                  | 1.5                                     | Conveyor - armoured face                                       | 3.0                           |
| Liquids and solids<br>Liquids-variable density   | 2.0<br>2.0              | Not welding<br>Welding                       | 1.5<br>2.2                              | - belt                                                         | 1.5                           |
|                                                  | 2.0                     |                                              |                                         | - bert<br>- bucket                                             | 1.5                           |
| l <b>lowers</b><br>Centrifugal                   | 1.5                     | Hammer mills                                 | 4.0                                     | - chain                                                        | 1.75                          |
| Lobe (Rootes type)                               | 2.5                     | Lumber industry                              |                                         | - screw                                                        | 1.5<br>3.0                    |
| Vane                                             | 2.0                     | Barkers - drum type<br>Edger feed            | 3.0<br>2.5                              | Dintheader<br>Fan - ventilation                                | 2.0                           |
| rewing and Distilling                            |                         | Live rolls                                   | 2.5                                     | Haulages                                                       | 2.0                           |
| Bottling machinery                               | 1.5                     | Log haul-incline                             | 2.5                                     | Lump breakers                                                  | 1.5                           |
| Lauter Tub                                       | 1.75                    | Log haul-well type                           | 2.5                                     | Pulverisor<br>Pump - rotary                                    | 2.0                           |
| riquetter Machines                               | 3.0                     | Off bearing rolls<br>Planer feed chains      | 2.5<br>2.0                              | - ram                                                          | 3.0                           |
| an filling machines                              | 1.5                     | Planer floor chains                          | 2.0                                     | <ul> <li>reciprocating</li> </ul>                              | 3.0                           |
| ane knives                                       | 3.0                     | Planer tilting hoist                         | 2.0                                     | - centrifugal<br>Roadheader                                    | 1.5<br>2.0                    |
|                                                  |                         | Sawing machine<br>Slab conveyor              | 2.0<br>2.0                              | Shearer - Longwall                                             | 2.0                           |
| ar dumpers                                       | 3.0                     | Sorting table                                | 2.0                                     | Winder Colliery                                                | 2.5                           |
| ar pullers - Intermittent Duty                   | 2.5                     | Trimmer feed                                 | 2.0                                     | Mixers                                                         |                               |
| lay working machinery                            | 2.5                     | Metal Manufacture                            |                                         | Concrete mixers                                                | 2.0                           |
| compressors                                      |                         | Bar reeling machine                          | 2.5                                     | Drum type                                                      | 2.0                           |
| Axial Screw                                      | 1.5                     | Crusher-ore                                  | 4.0                                     | Oil industry                                                   |                               |
| Centrifugal                                      | 1.5                     | Feed rolls Forging machine                   | 2.0                                     | Chillers                                                       | 2.0                           |
| Lobe                                             | 2.5<br>3.0              | Rolling machine                              | *                                       | Oil well pumping<br>Paraffin filter press                      | 3.0<br>2.0                    |
| Reciprocating - multi-cylinder<br>Rotary         | 3.0<br>2.0              | Roller table                                 | *                                       | Rotary kilns                                                   | 2.5                           |
| onveyors - uniformly loaded or fed               | 2.0                     | Shears<br>Tube mill (pilger)                 | 3.0                                     | Paper mills                                                    |                               |
| onveyors - unitormly loaded or ted<br>Apron      | 2.0                     | Wire Mill                                    | 2.0                                     | Barker-auxiliaries hydraulic                                   | 3.0                           |
| Assembly                                         | 1.5                     | Metal mills                                  |                                         | Barker-mechanical ´                                            | 3.                            |
| Belt                                             | 1.5                     | Drawn bench - carriage                       | 2.5                                     | Barking drum (Spur Gear only)                                  | 3.                            |
| Bucket<br>Chain                                  | 2.0<br>2.0              | Drawn bench - main drive                     | 2.5                                     | Beater and pulper<br>Bleacher                                  | 3<br>2.0                      |
| Flight                                           | 2.0                     | Forming machines                             | 2.5                                     | Calenders                                                      | 2.0                           |
| Oven                                             | 2.5                     | Slitters Table conveyors - non-reversin      | 2.0                                     | Chippers                                                       | 2.:                           |
| Screw                                            | 2.0                     | - reversing                                  | 9<br>*                                  | Coaters                                                        | 2.                            |
| onveyors - heavy duty                            |                         | Wire drawing and flattening m                |                                         | Converting machine (not cutters, plat<br>Couch                 | ters) 2.0<br>2.0              |
| ot uniformly fed                                 |                         | Wire winding machine                         | 2.0                                     | Cutters, platers                                               | 3.0                           |
| Apron<br>Assembly                                | 2.0<br>2.0              | Metal rolling mills                          |                                         | Cylinders                                                      | 2.0                           |
| Belt                                             | 2.0                     | Blooming mills                               | *                                       | Dryers<br>Felt stretcher                                       | 2.0                           |
| Bucket                                           | 2.5                     | Coilers - hot mill & cold mill<br>Cold mills | 2.5                                     | Felt whipper                                                   | 2.0                           |
| Chain                                            | 2.5                     | Cooling mills                                | *                                       | Jordans                                                        | 2.2                           |
| Flight<br>Oven                                   | 2.5<br>2.5              | Door openers                                 | 2.0                                     | Line shaft                                                     | 2.0                           |
| Reciprocating                                    | 3.0                     | Draw benches                                 | 2.5                                     | Log haul<br>Presses                                            | 2.<br>2.                      |
| Screw                                            | 3.0                     | Edger drives<br>Feed rolls, reversing mills  | 2.5                                     | Pulp grinder                                                   | 3.                            |
| Shaker                                           | 4.0                     | Furnace pushers                              | 2.5                                     | Reel                                                           | 2.                            |
| rane & hoists                                    |                         | Hot mills                                    | *                                       | Stock chests                                                   | 2.<br>2.                      |
| All motions                                      | 3.0                     | Ingot cars<br>Manipulators                   | 2.0<br>3.0                              | Suction roll<br>Washers and thickeners                         | 2.<br>2.                      |
| rushers                                          |                         | Merchant mills                               | 3.0<br>*                                | Winders                                                        | 2.                            |
| Ore                                              | 3.0                     | Piercers                                     | 3.0                                     | Printing presses                                               | 2.                            |
| Stone<br>Sugar (1)                               | 3.5<br>3.5              | Pushers rams                                 | 2.5                                     | • •                                                            | ۷.                            |
| 3                                                | 5.5                     | Reel drives<br>Reel drums                    | 2.0<br>2.0                              | Propellors<br>Marine - fixed pitch                             | 2.                            |
| <b>redgers</b><br>Cable reels                    | 2.5                     | Bar mills                                    | *                                       | - controllable pitch                                           | 2.<br>2.                      |
| Conveyors                                        | 2.0                     | Roughing mill delivery table                 | *                                       | Pullers                                                        | _,                            |
| Cutter head drives                               | 3.5                     | Runout table                                 | *                                       | Barge haul                                                     | 2.                            |
| lig drives<br>Mangaryering winches               | 3.5<br>3.0              | Saws - hot, cold<br>Screwdown drives         | 2.0<br>2.5                              |                                                                |                               |
| Manoeuvering winches<br>Pumps                    | 3.0<br>3.0              | Skelp mills                                  | *                                       | <b>Pumps</b><br>Centrifugal                                    | 1.                            |
| Screen drive                                     | 3.0                     | Slitters                                     | 2.0                                     | Reciprocating - double acting single acting - 1 or 2 cylinders | 3.                            |
| Stackers                                         | 3.0                     | Slabbing mills                               | 2.5                                     | single acting - 1 or 2 cylinders                               | 3.                            |
| Utility winches                                  | 2.0                     | Soaking pit cover drives<br>Straighteners    | 2.5<br>3.0                              | 3 or more cylinders<br>Rotary - gear, lobe, vane               | 3.<br>2.                      |
| ynamometer                                       | 1.5                     | Table transfer & runabout                    | 2.5                                     | , -                                                            | ۷.                            |
| evators                                          |                         | Thrust block                                 | 3.0                                     | <b>Rubber industry</b><br>Mixed - banbury                      | 3.                            |
| Bucket                                           | 3.0                     | Traction drive Tube conveyor rolls           | 2.0<br>2.0                              | Rubber calender                                                | 2.                            |
| Centrifugal discharge                            | 2.0<br>1.5              | Unscramblers                                 | 2.5                                     | Rubber mill (2 or more)                                        | 2.                            |
| Escalators<br>Freight                            | 1.5<br>2.0              | Wire drawing                                 | 2.0                                     | Sheeter                                                        | 2.                            |
| Gravity discharge                                | 2.0                     | Mills, rotary type                           |                                         | Tyre building machines<br>Tyre and tube press openers          | 2.<br>2.                      |
| ns                                               |                         | Ball                                         | 2.5<br>2.5                              | Tubers and strainer                                            | 2.                            |
| Centrifugal                                      | 1.5                     | Cement kilns                                 | 2.5                                     | Screens                                                        |                               |
| Cooling towers                                   | 2.0                     | Dryers and coolers<br>Kilns                  | 2.5<br>2.5                              | Air washing                                                    | 1.                            |
| Forced draft<br>Indused draft (without damper o  | 2.0                     | Hammer                                       | 3.5                                     | Grizzly                                                        | 2.                            |
| nduced draft (without damper o                   | .ontroi) 2.0            | Pebble                                       | 2.5                                     | Rotary, stone or gravel                                        | 2.                            |
| •                                                | 2.0                     | Pug<br>Rod                                   | 3.0                                     | Travelling water intake<br>Vibrating                           | 1.<br>2.                      |
| eeders                                           | 2.0                     | Rod<br>Tumbling barrels                      | 2.5<br>2.5                              |                                                                |                               |
| eeders<br>Apron                                  | 2.0                     |                                              | / 1                                     |                                                                | 2.                            |
| eeders<br>Apron<br>Belt                          | 2.0<br>2.0              | Tarrishing surreis                           | 2.3                                     | Sewage disposal equipment                                      |                               |
| eeders<br>Apron<br>Belt<br>Disc<br>Reciprocating | 2.0<br>3.0              | Turnishing surreis                           | 2.3                                     | Sewage disposal equipment Textile industry                     | 2.                            |
| eeders<br>Apron<br>Belt<br>Disc                  | 2.0                     | Turnishing Surreis                           | 2.3                                     |                                                                |                               |

# ENGINEERED TO ORDER COUPLINGS (ETO)

We design and manufacture couplings to custom fit the drive and driven components for one to one replacement. Our engineering expertise create value added offering for the products by taking efforts to design, develop, analyse, engineer and test.

#### **Engineered to Order Couplings (ETO):**

Cardan Shaft
Spacers of various dimensions
Floating / Long Shaft for large DBSE
Brake Disc / Brake Drum
Stub Shaft
Limited End Float
Underwater Coupling
Shear Pin Device
Long Boss Hubs for increased shaft engagement
Splined Hub
Special Adapters
Slim Line
Uni - Directional Couplings



PM 600 Spacer Coupling of 1200 mm dia used in a ball mill application for a gold mine in South Africa.



PM 27 Underwater Coupling with Shear Pin device on a river dredger in Greece.



Special RB 150 Coupling with splined hub for pump application.



PM 40 Cardan Shaft Coupling for fan drive where motor was coupled to VFD for power saving to replace fluid coupling. DBSE was more than 2 mtrs.

This was for a steel plant.



High temperature blind assembly coupling.

# **GLOBAL PRESENCE**





Regd Office: 'Sumali', 49/A/4 Erandwane, Gulmohar Path, Pune, 411004, India



Works: Gat No. 106, At & Post Pirangut, Taluka Mulshi, Dist. Pune 412108, Maharashtra,India.



+ 91 8087090164 / 5



sales@poonacouplings.com marketing@poonacouplings.com www.poonacouplings.com