1	2	3	\sum

FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

OSNOVE VERJETNOSTI IN STATISTIKE 20010/2011 TEORIJA (20. SEPTEMBER 2011)

	Teorija (20. september 2011)				
	Ime in priimek: Vpisna št:				
,	Navodila				
	Pazljivo preberite besedila vprašanj, predno pričnete pisati odgovore. Čas pisanja je 30 minut. Možnih točk je 30, za pozitivno oceno je potrebno zbrati vsaj polovico (najmanj po 3 pri vsaki nalogi). Veliko uspeha!				
	Definiraj pogojno verjetnost in podaj formulo za njen izračun. Kako izračunamo pogojno verjetnost dveh neodvisnih dogodkov? ODefiniraj popoln sistem dogodkov ter podaj formulo za popolno verjetnost OKako lahko izračunamo verjetnost, da je dogodek A nastopil skupaj z določenim dogodkom (hipotezo) H_i iz prve faze OZa bonus izpelji še Bayesov obrazec. B dogodek P(B) > 0: pogojna verjetnost P(A/B) je verjetnost dogodka A, pri čemer smo, kampleram pogojev K pridružili še, do se je zgodil dogodka B: K' = KAI P(A/B) = P(AB) MAB = ANB (prodult dogodkov Ain B) se zgodi, če se zgodito Ain B. EA,, Ant je popodn sistem dogodkov: Ai ** N i = 1,-, n dogodka A in B ** Togodka A in B ** N i = 1,-, n dogodka A in B ** N i = 1,-,				
	v vsaki ponovitvi poskusa zpodi natanto eden 1/1 in zato P(A/B) = P(Za popaln zistem dopodkov {H1,, Hnf in poljuben dopodel A velja				
7	$P(A) = \sum_{i=1}^{n} P(A \cap H_i) = \sum_{i=1}^{n} P(H_i) P(A \cap H_i). $ (*)				
F	$P(H_{k}/A) = \frac{P(H_{k})P(A/H_{k})}{\sum_{i=1}^{n} P(H_{i})P(A/H_{i})}$ Bayesov obrzzer				
)	Izbefava $P(AB) = P(B) P(A/B)$ in. simetricino $= P(A) P(B/A) = P(B) P(A/B)$				
	n Iconèro P(H) = P(H) P(A/14 h) preostane je uporaba(*)				

2. Definiraj matematično upanje in standardni odklon slučajne spremenljivke. Opiši postopek za standardizacijo slučajne spremenljivke in zapiši njeno matematično upanje ter njen odklon. Naj bo X slučajna spremenljivka z E $X=\mu$ in D $X=\sigma^2$ Za njen slučajen vzorec $\{X_i\}_{i=1}^n$ definiraj vzorčno povprečje \overline{X} in napiši, kaj se dogaja z vzorčnim povprečjem $\mathsf{E} \bar{X}$ in standardno napako $\mathsf{D} \bar{X}$ z naraščanjem velikosti vzorca. pri cemer je Pi = P(X=Xi) (a) EX = { \int xipi, \alpha i j \times distribution \sl. apr. pri \times temer \times pi = T(X = xi)

in p(x) qoststo verjetnosti \sl. spr. X.

in p(x) qoststo verjetnosti \sl. spr. X.

in p(x) qoststo verjetnosti \sl. spr. X.

in p(x) qoststo verjetnosti \sl. spr. X. (IXI P (x) dx $5^{2} = D \times = E(X^{2}) - (EX)^{2} \text{ in obsteje, in obsteje} E(X^{2}).$ Std: Z = X-n (3) EZ=0, DZ=1 Vrorec (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $EX_i = p$ $DX_i = G^2$, X_i med selsoj neodvisni (X_1, \dots, X_n) in $(X_1,$ $\oint \overrightarrow{DX} = \frac{\overrightarrow{DX_1} + ... + \overrightarrow{DX_n}}{N^2} = \frac{n6^2}{N^2} = \frac{6^2}{n} \xrightarrow[n \to \infty]{}$ $\underset{X_i}{\leftarrow} x_i \text{ nesduisni} \Rightarrow \text{ne kovelironi}$

3. Pojasni razliko med točkovno in intervalno oceno? Opiši postopek intervalskega ocenjevanja parametrov in pojasni, kaj nam pove koeficienta zaupanja $(1-\alpha)$ (teoretična interpretacija).

(d) Opiši ocenjevanje parametrov z majhnimi vzorci (čim več možnosti).

Tochovna cenilla je formula (pravilo), la nam pove kalo izračunati num. oceno 1370 parametra populozije na osvovi vzovca in nezultatu ne moremo zaupati v smislu ve Pri intervalni oceni pa znamo oceniti venjetnost, da parameter populacije na

b S slučajnim vzorcem ocenjujemo parameter propulacije

(1) statistiko, ki je nepristranska (tj. Eg = p) in se na vseh možnih vzorcih vsaj približno normalno parazdeljuje s standardno napako SE(g), in

(2) t.i. interval, v kateremi bo z dano gotovostjo (1-2) nahajal ocenjevani paramete (a in b sta spodnja in zp. meja zaupanja, d po stopnja tvepanja)

(3) Izberens ustrezni test.

(4) Za vsak služajni vzorec lahles izračunama ob izbrani stapnji tvepanjak interval zaupanje za parameter p (meji sta slučajni spremenljivki).

(Teoreticna) interpretacija intervala zaupanja: z verjetnostjo trejanje & se perameter je nahoja v tem intervalu. Če zapovedoma izbiramo vzorce velikosti n in za vsakepa izvačunamo interval zaupanja 20 povameter p, tedaj priezkujemo, da bo (1-x).100% intervalor vseboval pravo vrednost parametra.

Majhni vzorci (1) ali se sl. sprementives (2) sli poznamo standardni odkan 6 (DA/NE (3) kaksna je velikost vzorca DA/DA NEDA

DA/NE Velik vorec (n?30) na /mr mali vzorec (N <30)