

Estrutura desta apresentação

- Distância entre dois pontos
- Distância de um ponto a uma reta
- Distância entre duas retas
- Distância de um ponto a um plano
- Distância entre dois planos
- Distância de uma reta a um plano

- Neste ponto da disciplina, já foram abordados os conceitos de pontos, retas e planos;
- Foca-se neste momento na distância entre duas destas estruturas;
- Para tal, serão utilizados os conceitos até então estudados e a geometria do problema.

Distância entre dois pontos

Para calcular a distância d entre dois pontos $P_1(x_1, y_1, z_1)$ e $P_2(x_2, y_2, z_2)$:

- i. É criado o vetor $\overrightarrow{P_1P_2}$;
- ii. Calcula-se o comprimento deste vetor.

Ou seja,

$$d(P_1, P_2) = |\overrightarrow{P_1 P_2}|$$

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

1) Distância entre dois pontos

Sejam:

- uma reta r, definida por um ponto $P_1(x_1, y_1, z_1)$ e pelo vetor diretor $\vec{v} = (a, b, c)$; e
- um ponto $P_0(x_0, y_0, z_0)$ qualquer do espaço.

Há duas possibilidades:

1. Caso $P_0 \in r$

Nesta situação,

$$d(P_0, r) = 0$$

2. Caso $P_0 \notin r$

Neste caso, a distância será o comprimento do menor segmento que une o ponto à reta.

Mas como calculá-lo? Note que:

- i. É possível criar um paralelogramo com o vetor diretor \vec{v} e o vetor que une P_1 e P_0 ;
- ii. Já foi visto que a área desse paralelogramo pode ser calculada com

$$A_P = \left| \vec{v} \times \overrightarrow{P_1 P_0} \right|$$

iii. Ao mesmo tempo, sabe-se de geometria plana que a área de um paralelogramo é dada pela fórmula

$$A_P = \text{base} \cdot \text{altura}$$

Nesta situação, isto se reflete como

$$A_P = |\vec{v}| \cdot d$$

Com esses dados, comparando as duas fórmulas obtidas para a área, é possível obter uma expressão para a distância.

$$A_P = |\vec{v}| \cdot d = |\vec{v} \times \overrightarrow{P_1 P_0}|$$

Assim,

$$d = d(P_0, r) = \frac{\left| \overrightarrow{v} \times \overline{P_1 P_0} \right|}{\left| \overrightarrow{v} \right|}$$

O cálculo da distância entre duas retas r_1 e r_2 depende da posição relativa entre elas.

1. As retas são concorrentes

Neste caso, por definição,

3) Distância entre duas retas

2. As retas são paralelas

A distância entre as retas é a distância de um ponto qualquer P_0 de uma das retas à outra, isto é

$$d(r_1, r_2) = d(P_0, r_1), P_0 \in r_2$$

$$d(r_1, r_2) = d(P_0, r_2), P_0 \in r_1$$

3) Distância entre duas retas

$$d(P_0,r) = \frac{\left|\overrightarrow{v} \times \overline{P_1 P_0}\right|}{\left|\overrightarrow{v}\right|}$$

3. As retas são reversas

3) Distância entre duas retas

Sejam duas retas reversas:

- uma reta r_1 , definida por um ponto $P_1(x_1, y_1, z_1)$ e pelo vetor diretor $\overrightarrow{v_1} = (a_1, b_1, c_1)$; e
- uma reta r_2 , definida por um ponto $P_2(x_2, y_2, z_2)$ e pelo vetor diretor $\overrightarrow{v_2} = (a_2, b_2, c_2)$.

Note que:

i. É possível criar um paralelepípedo com os vetores $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ e $\overrightarrow{P_1P_2}$;

ii. Já foi visto que o volume desse paralelepípedo pode ser calculado com

$$V_P = \left| \left(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{P_1P_2} \right) \right|$$

- ii. A altura desse paralelepípedo é a distância entre as retas, uma vez que a reta r_1 é paralela ao plano base do paralelepípedo;
- iii. A base do paralelepípedo é definida pelos vetores diretores, de modo que sua área pode ser dada por

$$A_b = |\overrightarrow{v_1} \times \overrightarrow{v_2}|$$

iv. Ao mesmo tempo, sabe-se de geometria espacial que o volume de um paralelepípedo é dado pela fórmula

$$V_P =$$
área da base \cdot altura

Nesta situação, isto se reflete como

$$V_P = |\overrightarrow{v_1} \times \overrightarrow{v_2}| \cdot d$$

Com esses dados, comparando as duas fórmulas obtidas para o volume, é possível obter uma expressão para a distância.

$$V_P = |\overrightarrow{v_1} \times \overrightarrow{v_2}| \cdot d = |(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{P_1P_2})|$$

Assim,

$$d = d(r_1, r_2) = \frac{\left| \left(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{P_1P_2} \right) \right|}{\left| \overrightarrow{v_1} \times \overrightarrow{v_2} \right|}$$

Sejam:

- um plano π : ax + by + cz + d = 0; e
- um ponto $P_0(x_0, y_0, z_0)$ qualquer do espaço.

Há duas possibilidades:

1. Caso $P_0 \in \pi$

Nesta situação,

$$d(P_0,\pi)=0$$

4) Distância de um ponto a um plano

2. Caso $P_0 \notin \pi$

Considere A o pé da perpendicular conduzida por P_0 sobre o plano π , e P(x, y, z) qualquer ponto deste plano.

Note que:

i. O vetor $\overrightarrow{n} = (a, b, c)$ é normal ao plano π e, portanto, o vetor $\overrightarrow{AP_0}$ tem a mesma direção de \overrightarrow{n} ;

4) Distância de um ponto a um plano

ii. A distância d do ponto P_0 ao plano π é

$$d(P_0, \pi) = \left| \overrightarrow{AP_0} \right|$$

iii. O vetor $\overrightarrow{AP_0}$ é a projeção do vetor $\overrightarrow{PP_0}$ na direção de \overrightarrow{n} .

Pela fórmula da projeção,

$$\overrightarrow{AP_0} = \left(\frac{\overrightarrow{PP_0} \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}}\right) \overrightarrow{n}$$

4) Distância de um ponto a um plano

Assim,

$$d(P_0, \pi) = \left| \overrightarrow{AP_0} \right| = \left| \left(\frac{\overrightarrow{PP_0} \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}} \right) \overrightarrow{n} \right|$$

$$d(P_0, \pi) = \left| \frac{\overrightarrow{PP_0} \cdot \overrightarrow{n}}{|\overrightarrow{n}|^2} \right| |\overrightarrow{n}|$$

$$d(P_0, \pi) = \left| \overrightarrow{PP_0} \cdot \frac{\overrightarrow{n}}{|\overrightarrow{n}|} \right|$$

$$d(P_0, \pi) = \left| \overrightarrow{PP_0} \cdot \frac{\overrightarrow{n}}{|\overrightarrow{n}|} \right|$$

Como

$$\overrightarrow{PP_0} = (x_0 - x, y_0 - y, z_0 - z)$$

e

$$\frac{\vec{n}}{|\vec{n}|} = \frac{(a,b,c)}{\sqrt{a^2 + b^2 + c^2}}$$

tem-se

$$d(P_0, \pi) = \left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} \right|$$

$$d(P_0, \pi) = \left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} \right|$$

$$d(P_0, \pi) = \frac{|a(x_0 - x) + b(y_0 - y) + c(z_0 - z)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$d(P_0, \pi) = \frac{|ax_0 + by_0 + cz_0 - (ax + by + cz)|}{\sqrt{a^2 + b^2 + c^2}}$$

Da equação geral do plano, uma vez que P pertence ao plano π ,

$$ax + by + cz + d = 0$$
$$ax + by + cz = -d$$

Substituindo,

$$d(P_0, \pi) = \frac{|ax_0 + by_0 + cz_0 - (-d)|}{\sqrt{a^2 + b^2 + c^2}}$$
$$d(P_0, \pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Distância entre dois planos

O cálculo da distância entre dois planos π_1 e π_2 depende da posição relativa entre eles.

1. Os planos não são paralelos

Neste caso, por definição,

5) Distância entre dois planos

2. Os planos são paralelos

A distância entre os planos é a distância de um ponto qualquer P_0 de um dos planos ao outro, isto é

$$d(\pi_1, \pi_2) = d(P_0, \pi_1), P_0 \in \pi_2$$

$$d(\pi_1, \pi_2) = d(P_0, \pi_2), P_0 \in \pi_1$$

5) Distância entre dois planos

$$d(P_0,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Distância de uma reta a um plano

O cálculo da distância entre uma reta e um plano depende da posição relativa entre eles.

1. A reta e o plano não são paralelos

Neste caso, por definição,

$$d(r,\pi)=0$$

6) Distância de uma reta a um plano

2. A reta e o plano são paralelos

A distância da reta ao plano é a distância de um ponto qualquer P_0 da reta ao plano, isto é

$$d(r,\pi)=d(P_0,\pi), P_0\in r$$

6) Distância de uma reta a um plano

$$d(P_0,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$