Definition: Event

An **event** in probability theory is a Subset of the Sample Space Ω . It represents a collection of outcomes to which a probability can be assigned.

Formal Definition

Given a sample space Ω , an event A is any subset of Ω :

$$A \subseteq \Omega$$

The collection of all events forms a -algebra (sigma-algebra) \mathcal{F} on Ω .

Types of Events

- 1. Elementary Event: Contains exactly one outcome
 - Example: {3} when rolling a die
- 2. Compound Event: Contains multiple outcomes
 - Example: "Even number" = $\{2,4,6\}$ when rolling a die
- 3. Certain Event: The entire sample space Ω
 - Always occurs with probability 1
- 4. Impossible Event: The empty set \emptyset
 - Never occurs, has probability 0

Event Operations

Using set operations from Union and Intersection:

- Union $A \cup B$: "A or B occurs"
- Intersection $A \cap B$: "Both A and B occur"
- Complement A^c : "A does not occur"
- **Difference** $A \setminus B$: "A occurs but not B"

Examples

For a die roll with $\Omega=\{1,2,3,4,5,6\}$: - Event "rolling an even number": $A=\{2,4,6\}$ - Event "rolling at least 4": $B=\{4,5,6\}$ - $A\cap B=\{4,6\}$ (even and at least 4) - $A\cup B=\{2,4,5,6\}$ (even or at least 4)

Probability of Events

In a Probability Space, each event A is assigned a probability P(A) such that: $-0 \le P(A) \le 1$ $-P(\Omega) = 1 - P(\emptyset) = 0$

Special Relationships

- Mutually Exclusive: Events A and B where $A \cap B = \emptyset$
- Exhaustive: Events whose union equals Ω
- **Independent**: Events where $P(A \cap B) = P(A)P(B)$

Dependency Graph

Local dependency graph