58 059 297 18/08/2010te Devoir de synthése N°2 SOUSSE Sciences physiques Classes: 2the SC2+4 Exercice N°1(5 On dissout d'une Vg de gaz chlorure d'hydrogène dans l'éanon obtient 500 mL d'une solution(S) de molarité drire l'équation d'ionisation du chierure d'hydrogène dans l'eau. alculer V in ait subir deux tests sur une p<mark>etite q</mark>uantité de la solution(S) un avec le B.B.T t'autre avec une solution de nitrate d'argent Décrite de que l'on obtient avec chacun des tests 4) Dans un volume V=20mL de la solution (S) on introduit une masse m de Constant de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit une masse m de la solution (S) on introduit (S) on introduit une masse m de la solution (S) on introd 48m], de dioxyde de carbone pnate de calcium, on obtient Ecrire l'équation de la réaction b) Monter que le carbonate de calcium est le réactif limitar

Exercice N°2 (3 points)

c) Calculer m

On considère une solution S_1 de sulfate d'aluminium de plume V_1 =0,1L et de concentration molaire C_1 = 0,2 mol.L 1 1) Ecrire l'équation de dissociation ionique du su au quantinium dans l'eau

2) Calculer la concentration molaire des ions

On donne velume mojalie.v_m=24L.moi⁻¹. MijCaCO₃

ans la solution (Si) 3) A la solution (S₁) on ajoute une solution (S₂) chlorure de baryum de volume V₂=0,07 L et de molarité a- Ecrire l'équation de la réaction de

itation, préciser la couleur et le nom du précipité.

b- Calculer la masse du précipité fol

On donne masses molaires at Physique

I- Un solide S de masse m=500g repograr un plan horizontal rugueux, it est relié par l'intermédiaire d'un fil à ul omètre (figure 1)

(S) Figure-1

1)a- Faire l'inventaire des forces exercées sur le solide

b- Représentes ces forces

2) Ecrire la condition d'équilibre https://www.facebook.com/CopiePilotee

3) Déduir $\mathbf{5}$ intensité de la force de frottement $\|\vec{f}\|$

58.059:**297**st posé sur le plan rugueux qui est maintenant incliné d'un angle α pa (Figure 2), l'intensité de la force de frottement est $\|\vec{f}\| = 2N$ Figure-2 Monter que le solide descend e blan incliné. Pour maintenir le solide en équilibre et l'empêcher de descendre le plan incliné on exe force \vec{F} de direction parallèle adplan incliné. Représenter les forces exercées sur le solide Déterminer l'intensité de la Exercise N°2 (6,5 points) autour d'un axe fixe horizonta (Δ) Une barre homogène de longueur AB=L=0,4m et de masse m=500p sant un angle β =30° avec la verticale par un passant par A. La barre est maintenue en équilibre dans une po ressort d'axe horizontal de caldeur K, de longueur à vide 1) Représenter les forces extérieures exercées sur la ba 2) Déterminer la valeur de la tension du ressort 3) Calculer la raideur K du ressort 4) Déterminer la valeur de la réaction de https://www.facebook.com/CopiePilotee 58 059 297 / 27 949 559 58 059 297

Lycée pilote de Sousse IJS	S Poeroir de synthèse n°-2
TE-SOUL	Physico chimie
	95

Mars 2014 Durée :2h Classes :2Sc

On downe en g.mol ⁻¹ : $M(Ba)=137$; $M(C\ell)=35,5$; $M(S)=32$; $M(O)=16$; $M(H)=1$; $M(Ag)=1$	08.	S	
Exercige1 (4 pts):	1	*	
1/ On dissout 2,08 g de chlorure de baryum (BaCl ₂) dans l'eau pour former 200 mL d'une			
solution aqueuse S.			
a. Ecrire l'équation de dissociation ionique de ce composé dans l'eau.	A	2 0	,5
b. Déterminer les concentrations molaires des ions présents dans S.	A	2 1	Ĺ
2/ On mélange 10 mL de S avec 20 mL d'une solution aqueuse de (No SO), ae concentratio	n	}	
C'=1mol.L ⁻¹ . On obtient un précipité blanc.			
a. Ecrire l'équation de la réaction de précipitation produite	A	0,	5
b. Calculer la masse m du précipité obtenu.	A,	1	
3/ A un volume V de solution aqueuse de At ₂ (SO ₄). A un volume V de solution aqueuse de At ₂ (SO ₄).			İ
solution S à fin de précipiter tous les ions Ba ²⁺ n se s , calculer V ?	C,	1	
Exercice 2 (4 pts):			
Sur une solution commerciale d'acide f y drique on lit : masse volumique = 1,73 $kg.L^{-1}$.			
On se propose d'étudier cette sole de la laqueuse. Soit Co sa molarité.			
/ Ecrire l'équation de la réartit. Onisation du chlorure d'hydrogène dans l'eau.	A,	0,5	
Comment peut-on ment en vidence les ions présents dans cette solitique.	A	1	
On preserve I can see respond on commerciale, de concentration Co, et on le dilue. On con-			
agir toute la solution bitenue sur un excès de solution aqueuse de nitrate d'argent. Il se	>		
rme un prétique qui lavé et séché pèse 2,87 g	3	,	
a. Esta la vation de la réaction de précipitation.	A ₁	0,5	
b. Désadiner la molarité Co de la solution commerciale.	C_1	1	
a. Calculer la masse d'HCL dissous dans un litre de la solution commerciale.	A ₂	0,5	
b. L'indication du fabriquant est-elle conforme avec la valeur de Co trouvée dans la	C,	0,5	
question 3/ b ?			
nnées: - On suppose que le volume de la solution est égale au volume du solvant eau.		i	
- masse volumique de l'eau : 1 kg.L ⁻¹ .			
<u>sique (12pts):</u>	-		
rcice1 (7 pts): On donne $ \vec{g} = 10 N \cdot kg^{-1}$.		İ	i L
peintre remet à neuf la façade https://www.facgbardhterphereineineses, homogène, de	CO	ni	e
ueur L = 4 m et de masse $m_1 = 20$ kg qu'il appul contre un mur lisse. Soit $m_2 = 80$ kg la			1

masse du peintre et son équipement. G est le centre de gravité de l'ensemble (échelle ;			
peintre et son équipement () to small persit de la feuille à remettre.			
1/ Faire le bilan dés forces extérieures exercées sur le système (S) = {échelle ; peintre et	A2	1,5	
son équipement) puis donner la ou les condition(s) d'équilibre de (S).			
2/ Sur le document PH1;1 de la feuille à remettre, représenter, à l'échelle 1 cm pour 200 N,	A ₂	0,5	
Le prints total du système (S).			
3/ Par une méthode graphique de votre choix (à construire sur la feuille à remettre) trouver		1	
les descrécistiques de la réaction \vec{R}_B du mur en B et celles de la réaction \vec{R}_A du sol en A			
4/ En réalité l'équilibre n'est réalisé que lorsque l'angle que fait \vec{R}_A avec l'horizontale au	A ₂	0,5	
moins égale à 75°. Cette c <mark>ondition est elle</mark> réalisée ?		0,5	
Ouelle action doit-on effectuer pour avoir la stabilité de l'échelle?	C ₁	0,5	
5/ Le peintre avec son équipement quitte l'échelle en enjambant la fenêtice date de lui			
puis à l'aide d'une corde, qu'il attache au point C de l'échelle tel c $= \frac{5}{6}AB$, il essaye			
de ranger l'échelle sur le sol.	A ₂	0,5	
a. Représenter, sans échelle, les forces qui s'exercent su le lorsqu'elle est en		-,-	±
équilibre dans la position indiquée sur le document	Aı	1	
b. Enoncer le théorème des moments.	BC ₁	1,5	
c. Par application de ce théorème trouver l'in α de la tension de la corde pour $\alpha=60^\circ$.	- 1		
Exercice2 (5 pts):			
Une antenne de télécommunication es sur un poteau vertical, fixé au sol, comme le			•
montre le document PH2 ;1 de la fetu, le l'emettre. On étudie l'équilibre du système			
(S)={poteau, antenne} sachapt q to but tourner autour d'un axe fixe (Δ) horizontal,			
orthogonal au plan du dessin troussant par le point O. On donne : hauteur du systeme : OA = 100 m ; OG =45m evito G centre de gravité de (6.5)			
On donne : hauteur du système : OA = 100 m ; OG =45m evito G centre de gravité de (6,5	5		-
masse a service : 14 = 15 control	9,		
A/ Dans le cas <u>reglige l'effet de l'air</u> (vent) ar le système (S) :	_		
Faire l'invertait des forces extérieures qui s'exercent sur (S) et les déterminer.	A ₂	1,5	
B/ Dans live out souffle avec une vites importante, on admet que son effet est			i
équivalent à une force constante \vec{F} appliquée au point M tel que OM = 60 m $ \vec{F} = 6 \cdot 10^3 N$.			
Voir document PH2 ;2.			
1/ Que risque l'équilibre du système (S) ? expliquer brièvement.	C ₁	1	i
2/ Pour garantir l'équilibre de l'antenne l'installateur a lié le système (S) au sol par un câble			
(BZ) comme le montre le document PH2 ;3. (Le système est vertical)	DC.] ,	[]
Par application du théorème des moments déterminer l'intensité de la tension du câble.	BC ₁	2	
On donne OZ = 5 m et OB = 70 m.	1	လူ	ie
On donne OZ = 5 m et OB = 70 m. 3/ Déterminer la force exercée par le cable sur le sol. 58 059 297	AC	-	60
	4	cop	E

Prénom: SOUSSE-58 05 93

SEARCH ON

Equilibre de la règle OB

₹.

https://www.preparecon/copiepilotec

58 059 297

https://www.facebook.com/CopiePilotee 58 059 297 / 27 949 559 58 059 297

copie

https://www.facebook.com/CopiePilotee

58 059 297 / 27 949 559 **58 059 297** copie