

香港考試及評核局2019年香港中學文憑考試

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內, 每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原子質量。

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2019

考試結束前不可將試卷攜離試場

甲部 工業化學

回答試題的所有部分。

- 1. (a) 回答以下短問題:
 - (i) 解釋為什麼哈柏法對增加農作物產量有重要的貢獻。

(1分)

- (ii) (1) 寫出從甲烷生成合成氣的化學方程式。
 - (2) 合成氣可從生物量的轉化而得。提出為什麼這可被視為甲醇生產科技的改進。

(2分)

(iii) 在相同實驗條件下,進行了三次實驗來研習以下反應的動力學:

$$2A(aq) + B(aq) \rightarrow 2C(aq) + 2D(aq) + E(s)$$

下表顯示所得的數據:

次數	A (aq)的 初始濃度/mol dm ⁻³	B (aq) 的 初始濃度 / mol dm ⁻³	D (aq)的 生成初速/mol dm ⁻³ s ⁻¹
1	0.0836	0.202	0.26×10^{-4}
2	0.0836	0.404	1.04×10^{-4}
3	0.0418	0.404	0.52×10^{-4}

推定對應 A(aq) 及對應 B(aq) 的反應級數。

(2分)

- (b) 某氯鹼化工廠使用膜電解池來生產氫、氯和氫氧化鈉。
 - (i) 輔以各化學方程式,簡述在膜電解池怎樣生產氫、氯和氫氧化鈉。

(4分)

(ii) 從膜電解池所獲取的產物可製造次氯酸鈉 (NaOCI)。寫出其生成的化學方程式。

(1分)

(iii) 這化工廠藉使用 NaOCl 可生產在太空船用作推進劑的肼 (H₂NNH₂):

$$NaOCl + 2NH_3 \rightarrow H_2NNH_2 + NaCl + H_2O$$
 反應 (I)

然而,也可使用H₂O₂而不使用NaOCl來生產肼:

$$H_2O_2 + 2NH_3 \rightarrow H_2NNH_2 + 2H_2O$$
 反應 (II)

藉計算反應 (I) 和反應 (II) 的各原子經濟,比較它們何者可被視為較綠色。 (式量: NaOCl = 74.5, NH₃ = 17.0, H₂O₂ = 34.0, H₂NNH₂ = 32.0, NaCl = 58.5, H₂O = 18.0)

(2分)

1. (c) 在工業上, CaO(s) 是從 CaCO₃(s) 的分解而產得:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

$$\Delta H = +180 \text{ kJ mol}^{-1}$$

下圖顯示在某工廠內生產 CaO(s) 的一個操作中的熔爐。 $CaCO_3(s)$ 和 C(s) 從頂端進入熔爐,而空氣則在靠近底部進入熔爐。

(i) 寫出 CaCO₃(s) 的一種原料。

(1分)

(ii) 解釋為什麼注入 C(s) 和空氣可令到 B 區的平均溫度較 A 區高。

(1分)

(iii) 操作壓強是設定於約 1 atm 的。舉出**兩個**原因,說明為什麼較高的操作壓強並不可取。

(2分)

(iv) 上述 $CaCO_3(s)$ 分解的活化能是 160 kJ mol^{-1} 。計算 $CaCO_3(s)$ 的分解在 1500 K 的速率常數與在 1200 K 的速率常數之比。 (氣體常數 $R=8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

(3分)

(v) 根據化學平衡,提出為什麼 $CaCO_3(s)$ 的分解主要在 B 區內發生。

(1分)

甲部完

乙部 物料化學

回答試題的所有部分。

- 2. (a) 回答以下短問題:
 - (i) 從分子層面,解釋為什麼棉花(主要含有纖維素)容易吸水。 (2 分)
 - (ii) 繪畫一圖以顯示在液晶的向列相中各分子的排列。 (1分)
 - (iii) 根據所給資料,提出**兩個**原因,說明為什麼下面的反應可被視為綠色。

+
$$CH_2=CH_2$$
 $AlCl_3$ CH_2CH_3 (2 $\%$)

- (b) 鐵和銅是生活中廣泛應用的金屬。
 - (i) 於室內條件下,鐵晶體具敞開結構。 寫出這結構的名稱,並繪畫一圖以表示 它的一個晶胞。 (2分)
 - (ii) 如要把鐵製食水管更換成銅製的管,可能需把這些銅管用合適的焊料接合一起。寫出你會選擇下列 A、B和C哪合金來用作合適的焊料,並給出兩個原因以支持你的選擇。

合金	所含金屬	密度/g cm ⁻³	熔點/℃
A	Pb · Sn	8.8	183
В	Ag 、 Cu 、 Sn	7.4	217
C	Al · Sn · Ti	4.5	1590

(2分)

(iii) 提出為什麼水龍頭一般是用黃銅而非銅製造的。

(1分)

- (iv) 鐵製排水管可更換成聚乙烯基氯(PVC)製的管。
 - (1) 繪出聚乙烯基氯的結構式。
 - (2) 建議一個製造 PVC 管的成型方法。

(2分)

2. (c) X、Y和Z是聚合物料,它們的部分結構顯示如下:

- (i) X是一熱固性聚合物。
 - (1) 繪出 X 各單體的結構。
 - (2) 寫出在形成 X 的聚合作用的類別名稱。
- (ii) 在工業上,Y與物質W共熱得到Z。
 - (1) W是什麽?
 - (2) 寫出所涉及過程的名稱。

(2分)

(3分)

- (iii) 在這三種物料中,製造汽車輪胎最佳為Z。
 - (1) 考慮它們的物理性質,提出一個原因為什麼 \mathbf{Z} 較 \mathbf{X} 更適合製造汽車輪 胎。
 - (2) 從分子層面,解釋為什麼 Z 較 Y 更適合製造汽車輪胎。 (3 分)

乙部完

5

2019-DSE-CHEM 2-5

續後頁

丙部 分析化學

回答試題的所有部分。

- 3. (a) 回答以下短問題:
 - (i) 某碳氫化合物(相對分子質量 = 40.0) 的紅外光譜約在 2150 cm^{-1} 處顯示一吸收峰。根據下表,推定這碳氫化合物的可能結構式。 (相對原子質量: H = 1.0, C = 12.0)

特徵紅外吸收波數域 (伸展式)

鍵合	化合物類別	波數域 / cm ⁻¹
C=C	烯	1610至1680
C=O	醛、酮、羧酸及其衍生物	1680 至 1800
C≡C	炔	2070 至 2250
C≡N	腈	2200 至 2280
О–Н	帶「氫鍵」的酸	2500 至 3300
С–Н	烷、烯及芳烴	2840 至 3095
О–Н	帶「氫鍵」的醇	3230 至 3670
N-H	胺	3350 至 3500

(2分)

(ii) 有機化合物可藉適當的溶劑從其水溶液中萃取出來,這些溶劑須溶解要萃取 的有機化合物且不與其起反應。寫出這些溶劑應有的另一種性質。

(1分)

(iii) 建議一個化學測試以顯示怎樣可辨別以下的化合物 A 和 B:

- (b) 為測定在一個煙肉樣本中的鈉含量(以 NaCl 存在),需先找出其 Cl 含量。把 2.0 g 的 煙肉樣本加入 2.50 cm³ 的 1.0 M AgNO₃(aq),之後將過量稀 HNO₃(aq) 加進所得混合物, 然後用過濾法把所生成的 AgCl(s) 除掉。 繼而在有適當的指示劑下,用 0.10 M KSCN(aq) 滴定濾液中所剩餘的過量 AgNO₃(aq) 以得出 AgSCN(s) 直至達到終點。把所 有步驟重複幾次,達到終點所用 KSCN(aq) 的平均體積為 9.42 cm³。
 - (i) 為什麼要把過量稀 HNO₃(aq) 加進該混合物?

(1分)

(ii) 繪畫在滴定所用裝置的圖,標示所有儀器和試劑。

(2分)

(iii) 假設煙肉樣本中的所有 CI^- 來自 NaCl ,計算在這煙肉樣本中鈉的質量百分率。 (相對原子質量: Na = 23.0, Cl = 35.5, Ag = 107.9)

(4分)

- 3. (c) 氯與乙苯(CH₂CH₃)在日光下反應得出不同氯化合物的混合物。
 - (i) 用了薄層色層法 (TLC) 把小量混合物分離。
 - (1) 簡單解釋為什麼可用色層法把混合物分離。
 - (2) 根據 TLC 的結果,建議一個把大量混合物分離的方法。

(3分)

(ii) 從這混合物把一個單氯化合物分離出來。已知氯有兩個同位素 (³⁵Cl 和 ³⁷Cl)。 這化合物的質譜顯示如下:

參照所標示的各峰,推定這化合物的一個可能結構。

(3分)

- (iii) 在製造某些含氯產品的過程中,可生成如二噁英的污染物。
 - (1) 解釋為什麼需要量度二噁英水平。
 - (2) 提出為什麼通常使用現代儀器來量度二噁英水平。

(2分)

丙部完 試卷完

		٥		e	2		_	0		-	·		e	3		u	2)			
	0	2 He	10	Ne	70.	18	V	40.	36	×	83.	54	×	131	98	×	(222)			
		ļ	6 AII	Ţ	19.0	17	こ	35.5	35	Br	79.9	53	_	126.9	85	At	(210)			
		ļ	8	0	16.0	16	S	32.1	34	Se	79.0	52	Te	127.6	84	P_0	(209)			
		;	>	Z	14.0	15	Ь	31.0	33	As	74.9	51	Sb	121.8	. 83	Bi	209.0			
		ì	N 9	C	12.0	14	Si	28.1	32	Ge	72.6	50	Sn	118.7	82	Pb	207.2			
		}	5	В	10.8	13	Al	27.0	31	Ga	2.69	49	In	114.8	81	E	204.4			
									30	Zn	65.4	48	Cq	112.4	80	Hg	200.6			
周期表									29	Cu	63.5	47	Ag	107.9	79	Αu	197.0			
						質量			28	Z	58.7	46	Pd	106.4	78	Pt	195.1			
PERIODIC TABLE	1PF					相對原子質量			27	ပိ	58.9	45	Rh	102.9	77	ļ	192.2			
PERI	number 原子序					nic mass			26	Fe	55.8	44	Ru	101.1	9/	SO	190.2			
	atomic numb					relative atomic mass			25	Mn	54.9	43	Tc	(86)	75	Re	186.2			
	ato			/	/	rel			24	Ċ	52.0	42	Mo	95.9	74	*	183.9			
	\	H (23	>	50.9	41	QN.	92.9	73	La	180.9	105	Db	(262)
									22	ï	47.9	40	Zr	91.2	72	Ht	178.5	104	Rf	(261)
									21	Sc	45.0	39	X	88.9	57 *	Га	138.9	** 68	Ac	(227)
	棌	}	4 II	Be	0.6	12	Mg	24.3	20	Ca	40.1	38	Sr	9.78	99	Ba	137.3	88	Ra	(226)
	GROUP)	3	Ľ	6.9	11	Na	23.0	19	×	39.1	37	Rb	85.5	55	Č	132.9	87	Fr	(223)

* 58 59 60 61 62 63 64 65 66 67 68 69 70 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140.1 140.9 144.2 (145) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 * 90 91 92 93 94 95 96 97 98 99 100 101 102 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 232.0 (231) 238.0 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259)															
Pm Sm Eu Gd Tb Dy Ho Er Tm (145) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 93 94 95 96 97 98 99 101 101 Np Pu Am Cm Bk Cf Es Fm Md (237) (244) (243) (247) (247) (251) (252) (257) (258)	*	28	59	09	61	62	63	64	65	99	29	89	69	70	71
(145) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 93 94 95 96 97 98 99 100 101 Np Pu Am Cm Bk Cf Es Fm Md (237) (244) (243) (247) (247) (251) (252) (257) (258)		C	Pr	PN	Pm	Sm	Eu	В	Tb	Dy	Ho	Er	Tm	ΧP	Lu
93 94 95 96 97 98 99 100 101 Np Pu Am Cm Bk Cf Es Fm Md (237) (244) (243) (247) (247) (247) (251) (252) (257) (258)		140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Np Pu Am Cm Bk Cf Es Fm Md (237) (244) (245) (247) (247) (251) (252) (257) (258)	*	06	91	92	93	94	95	96	62	86	66	100	101	102	103
(237) (244) (243) (247) (247) (251) (252) (257) (258)		Th	Pa	n	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr
		232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)