

Université Libre de Bruxelles

Synthèse

Mécanique quantique I PHYS-H-301

Auteur:

Nicolas Englebert

Professeur : Nicolas Cerf

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Nicolas Cerf à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de l'améliorer surtout

que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

Notation de Dirac

Inclure les notes de Terence

1.1 Vecteurs d'état et espace de Hilbert

Le vecteur d'état se dénomme ket et est noté :

$$\begin{aligned}
|\psi\rangle &\in \mathcal{E} \\
&\in \mathcal{E}_H
\end{aligned} \tag{1.1}$$

où \mathcal{E} est l'espace des états et \mathcal{E}_H l'espace de Hilbert. Notons que $\mathcal{E} \subset \mathcal{E}_H$. Par abus de langage, nous désignerons souvent l'espace des états comme étant l'espace de Hilbert, ce qui n'est en toute rigueur pas exact (\mathcal{E}_H contient des états non-physiques). L'espace de Hilbert est un espace complet (si on définit une suite d'état, celle-ci convergera vers un état) muni d'un produit scalaire (défini à la section suivante).

Pourquoi définir un vecteur d'état? En physique classique l'état d'un système ne pose pas de problèmes particuliers. A l'inverse, en physique quantique, la notion même pose déjà un problème, contraignant l'utilisation de vecteurs d'état. La raison physique de leur utilisation vient au principe d'incertitude d'Heisenberg. En effet, il nous est impossible de décrire la particule par le couple position/impulsion d'où la motivation à l'utilisation de ces vecteurs.

A la base de la physique, le **principe de superposition** nous dit que la combili (de coefficients complexes) de deux vecteurs d'états, soit deux kets, est de nouveau un ket, soit un état 100% admissible.

$$|\psi_1\rangle, |\psi_2\rangle \in \mathcal{E}, \qquad |\lambda_1\psi_1 + \lambda_2\psi_2\rangle \equiv \lambda_1 |\psi_1\rangle + \lambda_2 |\psi_2\rangle \qquad \forall \lambda_1, \lambda_2 \in \mathbb{C}$$
 (1.2)

Il s'agit de la linéarité de la physique quantique avec laquelle on peut, par exemple, décrire le phénomène d'interférences.

1.2 Produit scalaire entre deux kets

Le produit scalaire entre deux kets se note

$$\langle \psi_2 | \psi_1 \rangle$$
 (1.3)

Les propriétés de bases de ce produit scalaires sont bien connues :

$$\begin{array}{lll} \bullet & \langle \psi | \psi \rangle & = 0 \\ \bullet & \langle \psi_1 | \psi_2 \rangle & = \langle \psi_2 | \psi_1 \rangle^* \\ \bullet & \langle \psi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle & = \lambda_1 \left\langle \psi_1 | \psi_2 \right\rangle + \lambda_2 \left\langle \psi_1 | \psi_2 \right\rangle & \forall \lambda_i \in \mathbb{C}. \quad \text{Linéarité (à gauche)} \\ \bullet & \langle \lambda_1 \psi_1 + \lambda_2 \psi_2 | \psi \rangle & = \langle \psi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle^* & \text{Antilinéarité (à gauche)} \\ & = (\lambda_1 \left\langle \psi | \psi_1 \right\rangle + \lambda_2 \left\langle \psi | \psi_2 \right\rangle)^* \\ & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_2 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle \\ \bullet & = \lambda_1^* \left\langle \psi_1 | \psi \right\rangle + \lambda_2^* \left\langle \psi_1 | \psi \right\rangle$$

• $\|\psi\| = \||\psi\rangle\| = \sqrt{\langle \psi | \psi \rangle} > 0$

(1.4)

Il est intéressant de s'intéresser à la "représentation" d'un ket au sein d'un espace de Hilbert. Considérons l'exemple suivant (qui reviendra souvent).

EXEMPLE

Considérons un espace de Hilbert de dimension n. Les vecteurs d'états, les ket, ne sont rien d'autres que des vecteurs colonnes dans cet espace de dimension n. Soit

$$|u\rangle = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \qquad |v\rangle = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}, \qquad u_1, v_i \in \mathbb{C}$$
 (1.5)

Le produit scalaire entre ces deux ket est donné par

$$\langle v|u\rangle = \sum_{i=1}^{n} v_i^* u_i = \underbrace{(v_1^* \ v_2^* \dots \ v_n^*)}_{(*)} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
(1.6)

On va définir (*) comme étant un "complémentaire au ket", $\langle v|$ que l'on nomme bra. Ce bra appartient à un espace dual, ce qui est le sujet de la section suivante.

1.3 Espace dual \mathcal{E}^* , vecteur "bra"

Le bra est une forme linéaire : c'est une application qui va depuis l'espace des état (ou de Hilbert, pas de différence dans ce cours) vers $\varphi(\psi)$, un nombre complexe.

$$\varphi: |\psi\rangle \in \mathcal{E} \leadsto \varphi(|\psi\rangle) \in \mathbb{C}$$
 (1.7)

Cette forme linéaire fait correspondre à chaque état un nombre complexe. La superposition est également vérifiée d'où le "linéaire".

$$\varphi(|\lambda_1\psi_1 + \lambda_2\psi_2\rangle) = \lambda_1\varphi(|\psi_1\rangle) + \lambda_2\varphi(|\psi_2\rangle) \qquad \forall \lambda_1, \lambda_2 \in \mathbb{C}$$
(1.8)

où $\varphi \in \mathcal{E}^*$.

Il semble dès lors intéressant d'introduire un nouvel "objet" :

$$\begin{cases}
\varphi \in \mathcal{E}^* \\
\langle \varphi |
\end{cases}$$
(1.9)

Il s'agit de l'ensemble de toutes les formes linéaires, ensemble qui forme un espace dual. L'intérêt réside dans un isomorphisme : on peut associer à chaque état de l'espace des états un bra de l'espace dual.

Ceci étant dit, il faut caractériser et montrer comment cette application agit sur les espaces.

$$\forall |\psi\rangle \in \mathcal{E}, \qquad \varphi(|\psi\rangle) = \langle \varphi|\psi\rangle$$
 (1.10)

Cette application peut ainsi être écrite comme un produit scalaire. Il s'agit de la forme linéaire φ qui s'applique à ψ et qui donne un nombre complexe. Il existe une autre façon de voir ceci. On peut le voir comme le produit scalaire entre deux ket ou encore comme un bra (forme linéaire qui appliquée à un ket qui donnera un complexe) et un ket.

Comme précisé, il s'agit d'une forme linéaire :

$$\varphi(|\lambda_1\psi_1 + \lambda_2\psi_2\rangle) = \langle \varphi|\lambda_1\psi_1 + \lambda_2\psi_2\rangle
= \lambda_1 \langle \varphi|\psi_1\rangle + \lambda_2 \langle \varphi|\psi_2\rangle
= \lambda_1\varphi(|\psi_1\rangle) + \lambda_2\varphi(|\psi_2\rangle)$$
(1.11)

L'espace dual est également un espace de Hilbert : toutes les propriétés de linéarité seront retrouvées. Ainsi, toute combili (complexe) de forme apparentent à \mathcal{E}^* forme une troisième forme appartenant à \mathcal{E}^* .

Si
$$\langle \varphi_1 |, \langle \varphi_2 | \in \mathcal{E}^*, \text{ alors } \lambda_1 \langle \varphi_1 | + \lambda_2 \langle \varphi_2 | \in \mathcal{E}^* \quad \forall \lambda_i \in \mathbb{C}$$
 (1.12)

On peut ainsi démontrer que \mathcal{E}^* est un espace vectoriel.

$$\forall |\psi\rangle : (\lambda_{1} \langle \varphi_{1}| + \lambda_{2} \langle \varphi_{2}|) |\psi\rangle = \lambda_{1} \langle \varphi_{1}|\psi\rangle + \lambda_{2} \langle \varphi_{2}|\psi\rangle
= \lambda_{1} \langle \psi|\varphi_{1}\rangle^{*} + \lambda_{2} \langle \psi|\varphi_{2}\rangle^{*}
= (\lambda_{1}^{*} \langle \psi|\varphi_{1}\rangle + \lambda_{2}^{*} \langle \psi|\varphi_{2}\rangle)^{*}
= \langle \psi|\lambda_{1}^{*}\varphi_{1} + \lambda_{2}^{*}\varphi_{2}\rangle^{*}
= \langle \lambda_{1}^{*}\varphi_{1} + \lambda_{2}^{*}\varphi_{2}|\psi\rangle$$
(1.13)

Nous avons donc bien un espace vectoriel (ce qui est clairement visualisable dans l'équation ci-dessous). La dernière relation applique un certain bra à n'importe que ψ . En terme de bra, on peut alors écrire

$$\lambda \langle \varphi_1 | + \lambda_2 \langle \varphi_2 | = \langle \lambda_1^* \varphi_1 + \lambda_2^* \varphi_2 | \qquad \lambda_1, \lambda_2 \in \mathbb{C}$$
(1.14)

On vient de voir qu'à n'importe quel bras je peux associer un ket. Il serait dès lors intéressant de trouver le ket correspondant à ce bra. Mais avant, on va définir la notion d'opérateur s'appliquant dans l'espace de Hilbert.

Il est possible de se représenter de façon plus précise ce qu'est un bra en se souvenant de l'exemple donné avec un espace de Hilbert de dimension n. Dans un tel espace, un bra n'est qu'un vecteur ligne complexe conjugué.

1.3.1 Opérateurs linéaires (agissant dans \mathcal{E})

Un opérateur linéaire est une application qui fait correspondre un ket à un ket, à la différence de la forme qui fait correspondre un ket à un complexe.

$$|\psi\rangle \in \mathcal{E} \leadsto \hat{A} |\psi\rangle \in \mathcal{E}$$
 (1.15)

Il est coutume d'indiquer les opérateurs linéaires par un chapeau. La sainte superposition reste d'actualité :

$$\hat{A} |\lambda_1 \psi_1 + \lambda_2 \psi_2\rangle = \lambda_1 \hat{A} |\psi_1\rangle + \lambda_2 \hat{A} |\psi_2\rangle \tag{1.16}$$

Pas mal de propriétés valent la peine d'être énoncées :

•
$$(\hat{A} + \hat{B}) |\psi\rangle = \hat{A} |\psi\rangle + \hat{B} + |\psi\rangle$$

• $(\hat{A}.\hat{B}) |\psi\rangle = \hat{A}(\hat{B} |\psi\rangle)$ Opérateur produit $\hat{A}.\hat{B}$ (1.17)

Nous pouvons voir cet opérateur produit comme une notation efficace. Il ne faut cependant pas perdre à l'idée que, en toute généralité, \hat{A} et \hat{B} ne commutent pas. On définit alors le commutateur :

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \neq 0 \tag{1.18}$$

Comme \hat{A} et \hat{B} sont des opérateurs, la différence des opérateurs est toujours un opérateur, le commutateur est bien un opérateur. Il jouit des propriétés suivantes :

•
$$[\hat{B}, \hat{A}] = -[\hat{A}, \hat{B}]$$

• $[\hat{A}, \hat{B} + \hat{C}] = [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}]$
• $[\hat{A}, \hat{B}.\hat{C}] = \hat{B}.[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}].\hat{C}$ (1.19)

On peut montrer qu'un opérateur linéaire peut se représenter comme une matrice. Pour l'illustrer, reconsidérons notre précédent exemple.

EXEMPLE

Soit un espace de Hilbert de dimension n. Soit

$$|u\rangle = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \qquad |v\rangle = \hat{A} |u\rangle \quad ; \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}}_{\hat{\lambda}} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
(1.20)

De par cette représentation, on peut aisément comprendre que la non-commutation vient du fait que les différentes lignes et colonnes de \hat{A} ne peuvent être commutées. Intéressons-nous aux éléments de la matrice de cet opérateur.

1.4 "Élément de matrice" d'un opérateur \hat{A}

Comme précédemment, définissons un nouvel "objet" :

$$|\psi\rangle \text{ et } \begin{cases} |\varphi\rangle \in \mathcal{E} \\ \langle \varphi| \in \mathcal{E}^* \end{cases}, \quad \langle \varphi| \, \hat{A} \, |\psi\rangle = \langle \varphi| \, (\hat{A} \, |\psi\rangle)$$
 (1.21)

Les parenthèses permettent de voir ça "tel un produit scalaire". Revenons à notre précédent problème : quel est finalement ce ket? Lors de l'écriture d'un élément de matrice, il serait intéressant de pouvoir le voir comme un opérateur appliqué à un ket. Une autre vision est celle d'un opérateur qui agit sur un bra, définissant un nouveau bra qui cette fois, agit sur ψ . Revenons à notre exemple.

EXEMPLE Soit

$$|u\rangle = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \qquad \langle v| = \begin{pmatrix} v_1^* & v_2^* & \dots & v_n^* \end{pmatrix}, \qquad \hat{A} |u\rangle = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
(1.22)

Nous avons alors

$$\langle v | \left(\hat{A} | u \right) \right) = \underbrace{\left(v_1^* \ v_2^* \ \dots \ v_n^* \right) \left(\begin{array}{c} a_{11} \ \dots \ a_{1n} \\ \vdots \ \ddots \ \vdots \\ a_{n1} \ \dots \ a_{nn} \end{array} \right) \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array} \right)}_{\langle 2 | u \rangle}$$
(1.23)

1.5 Opérateur adjoint

A toute opérateur \hat{A} , on peut associer un nouvel opérateur noté \hat{A}^{\dagger} . Soit $|\psi\rangle$:

$$\hat{A}$$
 agit dans $\mathcal{E}; |\psi'\rangle = \hat{A} |\psi\rangle$ (1.24)

Chaque ket est associé à un bra; dans ce cas ci il s'agit de $\langle \psi' |$ et $\langle psi |$. Existe-t-il une relation entre ces bra? Mais à quoi cet objet correspond-t-il? Un bra est une forme linéaire, il faut déterminer comment agit ψ' sur n'importe quel ket de l'espace.

$$\forall |\psi\rangle \in \mathcal{E} : \psi'(|\varphi\rangle) \equiv \langle \psi'|\varphi\rangle \qquad \text{Prop. p.scal.}$$

$$= \langle \varphi|\psi'\rangle^*$$

$$= \langle \varphi|\hat{A}|\psi\rangle^* \qquad \text{Def. de } \psi', \text{ def. op. adj.}$$

$$= \langle \psi|\hat{A}^{\dagger}|\varphi\rangle \qquad (*)$$

$$(1.25)$$

Pour arriver à (*), on peut remplacer \hat{A} par son adjoint si l'on permute les termes et considère le complexe conjugué. La conclusion de tous cela - modulo la définition de l'opérateur adjoint - est que l'on voit que l'on peut réécrire le $\langle \psi' |$ en terme de $\langle \psi |$.

$$\langle \psi' | = \langle \psi | \, \hat{A}^{\dagger} \tag{1.26}$$

Cette relation ressemble assez fortement à (1.24) ou $\hat{A} \to \hat{A}^{\dagger}$. De façon générale on peut voir qu'un opérateur linéaire peut être entièrement caractérisé par ses éléments de matrice, exactement comme une matrice est caractérisée par tous ses éléments. Pour parvenir à ce résultat, nous avons utilisé la définition d'un opérateur adjoint :

$$\forall |\psi\rangle \text{ et } |\varphi\rangle \in \mathcal{E}, \qquad \langle \psi | \hat{A}^{\dagger} |\varphi\rangle = \langle \psi | \hat{A} |\varphi\rangle^*$$
 (1.27)

EXEMPLE

Comme toujours, prenons notre espace de Hilbert de dimension n.

$$\langle v | \hat{A} | u \rangle = \underbrace{(v_1^* \ v_2^* \ \dots \ v_n^*)}_{(*)} \begin{pmatrix} a_{11} \ \dots \ a_{1n} \\ \vdots \ \ddots \ \vdots \\ a_{n1} \ \dots \ a_{nn} \end{pmatrix}}_{(*)} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
(1.28)

Le "but" est que (*) devienne notre nouveau bra $(w_1 \ w_2 \ \dots \ w_n)$:

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11}^* & \dots & a_{1n}^* \\ \vdots & \ddots & \vdots \\ a_{n1}^* & \dots & a_{nn}^* \end{pmatrix}}_{A^{\dagger}} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
(1.29)

Pour obtenir le bra, nous avons réalisé une opération semblable à celles réalisées en algèbre linéaire, à savoir pris le complexe conjugé de la matrice conjugué après inversion et transposée du vecteur. L'opérateur adjoint n'est rien d'autre que de la matrice adjointe. Le fait de permuter les lignes et les colonnes ne faisait qu'inverser les bra et ket. Il en découle des propriétés intéressantes :

A titre d'exercice, démontrons la dernière propriété

$$\langle \psi | (\hat{A}.\hat{B})^{\dagger} | \varphi \rangle = \langle \varphi | \hat{A}.\hat{B} | \psi \rangle^{*}$$

$$= ((\langle \varphi | \hat{A} \rangle) (\langle \hat{B} | \psi \rangle))^{*}$$

$$= (\langle \psi | \hat{B}^{\dagger}) (\hat{A}^{\dagger} | \varphi \rangle)$$

$$= \langle \psi | \hat{B}^{\dagger} \hat{A}^{\dagger} | \varphi \rangle$$
(1.30)

1.6 Opérateurs hermitiens/auto-adjoints

Par définition

$$\hat{A} = \hat{A}^{\dagger} \tag{1.31}$$

Dès lors

$$\begin{aligned}
\langle \psi | \, \hat{A} \, | \varphi \rangle &= \langle \varphi | \, \hat{A} \, | \psi \rangle^* \\
\langle \psi | \, \hat{A} \, | \psi \rangle &= \langle \psi | \, \hat{A} \, | \psi \rangle^* \underline{\in \mathbb{R}}
\end{aligned} \tag{1.32}$$

Énonçons quelques propriétés intéressantes

$$\begin{array}{ccc} \forall \hat{A}, \hat{B} \text{ hermitiens }, & \hat{A} + \hat{B} & \text{hermitien} \\ & \hat{A}. \hat{B} & \text{hermitien ssi } [\hat{A}, \hat{B}] = 0 \end{array} \tag{1.33}$$

On peut justifier la dernière propriété de la façon suivante :

$$(\hat{A}.\hat{B})^{\dagger} = \hat{B}^{\dagger}.\hat{A}^{\dagger}$$

 $= \hat{A}^{\dagger}.\hat{B}^{\dagger} \text{ vrai ssi } [\hat{A}^{\dagger},\hat{B}^{\dagger}] = 0 = -\underbrace{[\hat{A},\hat{B}]^{\dagger}}_{=0}$
 $= \hat{A}.\hat{B}$ (1.34)

Le produit position et impulsion n'est pas un opérateur hermitien (ces deux états ne commutent pas); ce n'est donc pas une quantité observable en physique quantique.

^{1.} Mieux expliciter plz

Pour obtenir le complexe conjugué avec les notations de Dirac, il suffit de lire à l'envers pour obtenir ce que l'on souhaite :

$$\begin{array}{lll}
\hat{A} | \psi \rangle & \rightarrow \langle \psi | \hat{A}^{\dagger} \\
\langle \varphi | \hat{B} & \rightarrow \hat{B}^{\dagger} | \varphi \rangle \\
\langle \psi | \hat{A} | \varphi \rangle & \rightarrow \langle \varphi | \hat{A}^{\dagger} | \varphi \rangle = \langle \psi | \hat{A} | \varphi \rangle^{*}
\end{array} (1.35)$$

Un autre exemple, un peu moins trivial est de considérer l'opérateur suivant

$$|u\rangle\langle v| \to (|u\rangle\langle v|)^{\dagger} = |v\rangle\langle u|$$
 (1.36)

Avec la notation $|u\rangle \langle v|\varphi\rangle$, on se rend compte qu'il s'agit bien d'un opérateur agissant sur l'état $|\varphi\rangle$. Afin de s'en rendre compte, développons ceci à titre d'application

$$\langle \varphi | \underline{(|u\rangle \langle v|)^{\dagger}} | \psi \rangle = (\langle \psi | (|u\rangle \langle v|) | \varphi \rangle)^{*} \quad (*)$$

$$= (\langle \psi | u \rangle)^{*} (\langle v | \varphi \rangle)^{*}$$

$$= (\langle u | \psi \rangle) (\langle \varphi | v \rangle)$$

$$= (\langle \varphi | v \rangle) (\langle u | \psi \rangle) \quad \text{Commutativité}$$

$$= \langle \varphi | (|v\rangle \langle u|) | \psi \rangle$$

$$(1.37)$$

Il est possible de voir (*) de deux façons différentes. On peut le comprendre comme un objet (opérateur) dont on fait l'élément de matrice entre ψ et φ (comme le suggère les parenthèses). On peut également le voir comme deux produits scalaire dont on fait le produit simple (en omettant cette fois-ci les parenthèses).

1.6.1 Base Hilbertienne

Une base hilbertienne est une base de l'espace de Hilbert. Il en existe deux particulières : la base discrète de dimension finie et la base continue.

Base discrète

Nous parlons de l'espace de Hilbert et donc d'un espace des états, soit encore un ensemble de ket :

$$\{|u_i\rangle\}\tag{1.38}$$

Ces bases sont orthonormées

$$\langle u_i | u_i \rangle = \delta_{ij} \tag{1.39}$$

Le but d'une telle base est d'exprimer n'importe quel ket, n'importe quel état, comme une combili des vecteurs de cette base. En toute généralité, on peut écrire un ket comme une somme sur i de coefficients multiplicatifs C_i (qui joueront le rôle d'amplitude de probabilité, mais ils sont avant tout des coefficients de Fourier)

$$|\psi\rangle = \sum_{i} C_i |u_i\rangle \tag{1.40}$$

En remarquant que

$$\langle u_j | \psi \rangle = \sum_i C_i \underbrace{\langle u_j | u_i \rangle}_{\delta_{ij}} = C_j$$
 (1.41)

On peut réécrire (1.40) :

$$|\psi\rangle = \sum_{i} \langle u_{i} | \psi \rangle | u_{i} \rangle \quad \text{Notations de Dirac}$$

$$= \sum_{i} |u_{i}\rangle \langle u_{i} | \psi \rangle \quad \text{(Somme d') Op. lin. appliqué(e) à } \psi$$

$$\underbrace{\left(\sum_{i} |u_{i}\rangle \langle u_{i}|\right)}_{\mathbb{I}} |\psi\rangle \quad \forall \psi$$

$$(1.42)$$

Il s'agit de la relation de fermeture. Dès que j'ai une base complète, la somme des $|u_i\rangle\langle u_i|$ donnera l'opérateur identité. On appelle alors la **relation de fermeture** :

$$\sum_{i} |u_i\rangle \langle u_i| = \hat{1} \tag{1.43}$$

On peut alors définir l'opérateur projecteur \hat{P}_i :

$$\hat{P}_i = |u_i\rangle \langle u_i| \tag{1.44}$$

Cet opérateur possède deux propriétés remarquables. La première est qu'il est hermitien, c'està-dire $\hat{P}_i = \hat{P}_i^{\dagger}$.

$$\hat{P}_i^{\dagger} = (|u_i\rangle\langle u_i|)^{\dagger} = |u_i\rangle\langle u_i| = P_i \tag{1.45}$$

La seconde est qu'il est idempotent. Autrement dit, plus d'une application successive ne change rien au résultat obtenu : $\hat{P_i}^2 = \hat{P_i}$.

$$\hat{P}_{i}^{2} = (|u_{i}\rangle\langle u_{i}|)(|u_{i}\rangle\langle u_{i}|)
= |u_{i}\rangle\underbrace{\langle u_{i}|u_{I}\rangle}_{=1}\langle u_{i}|
= \hat{P}_{i}$$
(1.46)

On interprète le projecteur comme on le ferrait dans l'espace euclidien ². La relation de fermeture peut ainsi être réécrite :

$$\sum_{i} \hat{P}_i = \hat{\mathbb{1}} \tag{1.47}$$

Le développement suivi ici est valable pour toute base. Prenons Ceci est valable pour toute base. Prenons l'exemple d'un ket

ket
$$|\psi\rangle = \sum_{i} c_i |u_i\rangle$$
, $c_i = \langle u_i | \psi \rangle$ (1.48)

On peut faire de même pour un bra. Pour définir un bra, il faut premièrement définir un ket puis prendre son élément dual.

$$|\varphi\rangle = \sum_{i} b_{i} |u_{i}\rangle, \qquad b_{i} = \langle u_{i} | \varphi \rangle$$

bra $\langle \varphi | = \sum_{i} b_{i}^{*} \langle u_{i} |$ (1.49)

Comment faire pour exprimer un produit scalaire ? Il suffit de faire apparaître l'opérateur identité et jouer avec les notations de Dirac

$$\langle \varphi | \psi \rangle = \langle \varphi | \mathbb{1} | \psi \rangle$$

$$= \sum_{i} \underbrace{\langle \varphi | u_{i} \rangle}_{b_{i}^{*}} \underbrace{\langle c_{i} | \psi \rangle}_{c_{i}} \quad \text{Relation de fermeture}$$

$$= \sum_{i} b_{i}^{*} c_{i} \qquad (*)$$

$$(1.50)$$

^{2.} Inclure graphe

Dans (*), b_i^* est un vecteur ligne et c_i un vecteur colonne. Si l'espace de Hilbert est complet, il s'agit la d'un produit scalaire.

Cela fonctionne également pour un opérateur, en effectuant la même astuce mathématique :

$$\hat{A} = \hat{\mathbb{1}}\hat{A}\hat{\mathbb{1}}$$

$$= \sum_{i,j} |u_i\rangle \underbrace{\langle u_i | \hat{A} | u_i\rangle}_{A_{i,j}} \langle u_j | \qquad (1.51)$$

Appliquons \hat{A} sur un ket

$$|\psi'\rangle = \hat{A} |\psi\rangle \equiv \sum_{i} a_{i} |u_{i}\rangle , \qquad a_{i} = \langle u_{i} | \psi'\rangle = \langle u_{i} | \hat{A}_{1} | \psi\rangle = \sum_{j} \underbrace{\langle u_{i} | \hat{A} | u_{j}\rangle}_{A_{i,j}} \underbrace{\langle u_{j} | \psi\rangle}_{c_{j}}$$
 (1.52)

où l'on a utilisé
$$|\psi'\rangle = \hat{A} |\psi\rangle$$
 et $a_i = \sum_j A_{ij} c_j$ " = " $\begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix} = \begin{pmatrix} \dots \\ \vdots & \ddots & \vdots \\ \vdots & \dots & \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}$.

Base continue

On va ici partir d'une famille ou cette fois ci l'indice sera "continu".

$$\{|u_{\alpha}\rangle\}\quad \alpha \in \mathbb{R}$$
 (1.53)

On peut comme précédemment fabriquer des états orthogonaux, ce qui va jouer le rôle orthonormalisation standard est le relation

$$\langle u_{\alpha}|u_{\alpha'}\rangle = \delta(\alpha - \alpha') \tag{1.54}$$

où δ est la fonction de Dirac. La subtilité est que u_{α} n'est pas toujours un état physique. Cependant, il peut toujours être utilisé pour décrire un état qui lui, est bien physique. Comme pour le cas continu, il est possible d'exprimer le ket dans la base. Les sommes seront ainsi remplacées par es intégrales et les coefficients de Fourier par une fonction jouant le même rôle.

$$|\psi\rangle = \int d\alpha \ C(\alpha) |u_{\alpha}\rangle \tag{1.55}$$

où les $C(\alpha)$ renseignent sur le poids. Il est possible, comme précédemment, de déterminer ceux-ci en multipliant ce ket par un autre élément de la base.

$$\langle u_{\alpha'} | \psi \rangle = \int d\alpha \ C(\alpha) \underbrace{\langle u_{\alpha'} | u_{\alpha} \rangle}_{=\delta(\alpha - \alpha')} = C(\alpha')$$
 (1.56)

On peut alors ré-écrire (1.55)

$$|\psi\rangle = \int d\alpha \langle u_{\alpha} | \psi \rangle | u_{\alpha} \rangle$$

$$= \int d\alpha |u_{\alpha}\rangle \langle u_{\alpha} | \psi \rangle$$

$$= \left(\int d\alpha |u_{\alpha}\rangle \langle u_{\alpha}| \right) |\psi\rangle \qquad \forall \psi$$
(1.57)

Le terme entre parenthèse n'est, pas identification, rien d'autre que l'opérateur identité $\mathbbm{1}$ que l'on peut également voir comme un opérateur projecteur \hat{P}_{α} . La relation de fermeture s'écrit alors

$$\int d\alpha \ \underline{|u_{\alpha}\rangle\langle u_{\alpha}|} = \hat{\mathbb{1}}$$
(1.58)

Comme nous l'avons fait pour le cas de la base discrète, montrons comment écrire un bra, ket, opérateur linéaire,...

$$14 \tag{1.59}$$

1.6.2 Exemple de base (représentation) continue

Base position:

$$15 (1.60)$$

N'importe quel ket pourra s'exprimer dans cette base position. Le relation fermerture pour la base position nous dis que l'intégration l'espace, en prenant le projecteur pour une position donnée, cela donne l'identité.

$$16 \tag{1.61}$$

Compte-tenu de cette relation, on peut exprimer les ket tel que

$$17 \tag{1.62}$$

Si je viens mettre la relation d'identité à droite de mon bras

$$18 \tag{1.63}$$

J'ai défini la définition???

$$19 \tag{1.64}$$

Le delta n'est pas physique car il représente un état infiniment localisé. Or de telles solutions diverge. Malgré tout, même si ce n'est pas un état physique c'est bien pratique pour former une base.

1.7 7. Observable

Il s'agit d'un observateur linéaire hermitien \hat{A} associa à une grandeur physique observable A. Si l'on a une grandeur physique observable, je sais que je peux lui associer un opérateur linéaire hermitien.

Une autre classification importante est selon le spectre. Le spectre est l'ensemble de toutes les valeurs propres possibles $\{\lambda\}$. Si celui-ci est discret, on retrouvera un système lié (particule dans une boîte). On peut également avoir des spectres continu (système libre), utile dans la théorie des collisions/diffusion.

On peut s'intéresser aux propriétés de bases

$$21$$
 (1.66)

Ceci va nous amener à la décomposition spectrale des opérateurs; on peut toujours les réprésenter dans une base. Unbase particulièrement intégrassante est celle des vecteurs propres de l'observable qui nous intéresse;

Décomposition spectrale de A

L'idée c'est que j'ai les vecteurs propres et un second indice si les valeurs propres sont dégénérées

$$22 \tag{1.67}$$

On a tjs la relation d'orthonormalité

On peut toujours trouver une base grace à GS.

La relation de fermeture dis que si je somme le sprojecteurs sur tous les vecteurs de ma base j'aurai l'identité. La relation de fermeture sera donnée par (pour chaque base on peut écrire cette rel)

$$24 \tag{1.69}$$

Théorème spectral

$$25$$
 (1.70)

Si s'agit d'un projecteur de rang g_n . On va montrer que ces P_n forment des projecteurs orthogonaux

$$26 \tag{1.71}$$

. . .

OBSERVABLE SPECTRE CONTINU

$$27 \tag{1.72}$$

Décomposition spectrale de $\hat{\vec{r}}$

$$28 (1.73)$$

J'ai une intégrale d'opérateur qui me donne un opérateur (bon en fait 3 car j'ai un triplet d'opérateur). La décomposition spectrale peut s'écrire comme ceci. Si au lieu de parler de l'opérateur r je parle de 1, il n'a que une seule valeur propre, je retrouve

$$29 \tag{1.74}$$

Soit la relation de fermeture, qui n'est rien d'autre que la décomposition spectrale d'un opérateur particulier.

La base impulsion est liée à la décomposition en valeur propre de l'omérateur impulsion (triplet d'opérateur) :

$$30 \tag{1.75}$$

COnnaitre l'impulsion implique une position étalée sur l'infinie d'énergie infinie, ce n'est pas physique. Je peux considérere la décomposition sepctrale

$$31 \tag{1.76}$$

On peut exprimer la fonction d'onde dans la ase impulsion

$$32 (1.77)$$

Je peux faire de meme dans la base position.