SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1.						or nuclea			
	a.	²³⁹ ₉₄ Pu	+ ⁴ ₂ He		-		+	$^{27}_{13}Al$	(01 mark)
	b.				-	$^{234}_{90}Th$	-	+ α	(01 mark)
	C.	²¹⁴ ₈₃ Bi		-	²⁰⁶ ₈₂ Pk) +		+ 3 ₂ He	(01 mark)
	d.	²⁵⁰ ₉₈ Cf	+	–		$- \frac{257}{103}L_1$	w + ·	$4^{1}_{0}n$	(01 mark)
2.			ee succes 26KJ/m		nisatio	n energie	s of el	ement T	are 549 ,
					ne vari	ation en	e rgy o	f T .	(03 marks)
	h	State th	ne grann	in the	neriod	lic table	to whi	ch T he	longs to.
	υ.	State II.	e er oup	in the	periot	iic woic	CO WIII	on i bc	(01 mark)

3.		\mathbf{cm}^{3} of a hydrocarbon $\mathbf{P}\left(\mathbf{C_{x}H_{y}}\right)$ was exploded in $\mathbf{90.0cm}$	• •
	_	On cooling to room temperature, the residual gases occ	-
	70.00	${f cm^3}$, when the residual gases were passed through pot	assium
	hydro	oxide solution, the volume reduced to 40.0 cm 3 .	
	a.	(i). Write the equation for the reaction between hydr	ocarbon P
		and oxygen gas .	(01 mark)
			D
		(ii).Determine the molecular formula of hydrocarbo	
			(03 marks)
			•••••
	b.	Write equations to show how hydrocarbon P can be p	repared
		from propan-2-ol .	(02 marks)

_		suggested mechani	sm for
CH ₃ I	$HC=CH_2 + Br_2 \xrightarrow{H_2O} \dots$	(04 marks)
Proce	Atomization of calcium First ionization energy of calcium Second ionization energy of calcium Formation of calcium fluorine Electron affinity of fluorine Bond dissociation of fluorine (i). Calculate the lattice energy of calculate the lattice of calculate the lattice energy of calcium the latt	Energy (KJ/mol) +178 +590 +1146 -1220 -328 +242.7 fium fluoride crystal. (02)	marks)
	the reconstruction of	the reaction. CH ₃ HC=CH ₂ + Br ₂ Thermo energy data for some processes are Processes Atomization of calcium First ionization energy of calcium Formation of calcium fluorine Electron affinity of fluorine Bond dissociation of fluorine a. (i). Calculate the lattice energy of calcium (ii). Determine the enthalpy of solution	CH ₃ HC=CH ₂ + Br ₂ Thermo energy data for some processes are shown in the table be Processes ✓ Atomization of calcium ✓ First ionization energy of calcium ✓ Second ionization energy of calcium ✓ Formation of calcium fluorine ✓ Electron affinity of fluorine ✓ Bond dissociation of fluorine ✓ Bond dissociation of fluorine ✓ Bond crystal.

	b.	(i).State the effect of temperature of the solution of fluoride.	calcium (01 mark)
		(ii).Give a reason for your answer in b (i).	(0½ mark)
6.	$CH_{4(g)}$ The e -76, -2	ane reacts with steam according to the following equal $(g) + 2H_2O_{(1)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$ $H_r = ?$ In thalpy of formation of methane, water & carbon diox $(242 \& -394 \text{KJ/mol})$	
	a.	Calculate the enthalpy of reaction . $CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$	(03 marks)
	••••		
	b.	State whether the reaction above is feasible , give a r oyour answer.	eason for (01 mark)

7.	2.0g of phosphorus raises the boiling point of 37.4g of carb by 1.003°C , whereas 4.65g of sulphur raises the boiling po of carbondisulphide by 0.42°C .	•
	a. (i). Calculate the boiling point constant for carbond	isulphide.
	(Molar mass of sulphur is 256)	(03 marks)
	(ii). Molar mass of phosphorus in carbondisulpide.	
	b. Determine the molecular formula of phosphorus.	(02 marks)

3.	(a). (i). State the condit sulphuric acid.		(01 mark)
			reaction in (a). (i) . (02 marks)
	(b).Write equation (s) to hydroxybenzene.	o show the pro	duct in (a) (ii) can be converted (02 marks
9.	(a). Define the order of	reaction.	
9.	(a). Define the order of	reaction. sults in the table onoxide gas and 2NO	(01 mark)
9.	(a). Define the order of in the order of in the order of i	reaction. sults in the table onoxide gas and 2NO	(01 mark) e were obtained for the reaction oxygen gas. (2(g)
9.	(a). Define the order of (b). The experimental results between nitrogen model and 2NO _(g) + O _{2(g)} Initial concentral	reaction. sults in the table onoxide gas and 2NO ations (mol/dm³)	(01 mark) e were obtained for the reaction oxygen gas. (2(g)
9.	(a). Define the order of (b). The experimental results between nitrogen model 2NO _(g) + O _{2(g)} Initial concentration NO	sults in the table onoxide gas and 2NO ations (mol/dm³)	(01 mark) e were obtained for the reaction oxygen gas. (2(g)) Rate of reaction (mol/dm ³ /s)

Oxygen.	(01 mark)
(ii).Write the rate equation for the reaction.	
(c).Calculate the: (i). Overall order of reaction .	(0½ mark)
(ii).Rate constant for the reaction and state it's S.	(0½ mark)
SECTION B-54 MARKS ATTEMPT <u>ANY</u> SIX QUESTIONS IN TH	IS SECTION.
10.(a). Define the term radioactivity .	(01 mark)
	•••••

(b). The table below shows how the mass of radioactive protactinium, $^{234}_{~91}Pa$ varies with time.

mass of protactinium (g)	60.0	38.5	26.0	17.2	11.1
Time (s)	0	40	80	120	160

(i).Plot a **graph of mass** of protactinium against **time**. (03 marks)

(11).Use your graph to determine the half-life of protacti	(01 mark)
(iii).Calculate the radioactive decay of protactinium.	(02 marks)
11.Name one reagent that can be used to distinguish between t pairs of compounds. In each case state what would be obser member of the pair is treated with the named reagent.	the following
11.Name one reagent that can be used to distinguish between t pairs of compounds. In each case state what would be obser	the following
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obsert member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne	the following wed if each (01 mark)
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obserd member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne Reagent.	the following wed if each (01 mark)
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obserd member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne Reagent.	the following wed if each (01 mark)
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obserd member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne Reagent.	the following ved if each (01 mark)
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obserd member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne Reagent.	the following ved if each (01 mark)
11.Name one reagent that can be used to distinguish between to pairs of compounds. In each case state what would be obserd member of the pair is treated with the named reagent. a. But-2-yne and But-1-yne Reagent.	the following ved if each (01 mark)

Observations.	(02 marks)
CH ₃ COONa and ÇOONa	
c. COONa Reagent.	(01 mark)
Observations	(02 aulsa)
Observations.	(02 marks)
12. The vapour pressure of a solution containing 108.2g of a 1000g of water at 20°C was reduced by 0.186mmHg . (The vapour pressure of water at 20°C is 17.54mmHg)	
a. Calculate the molecular mass of substance Y .	,
	•••••

b	. State three	e assumption made in (a).	(03 marks)
	•••••		
С	_	y the vapour pressure of a solution oute is less than the vapour pressure	_
	solvent.	ace is ress than the vapour pressure	(03 marks)
	Oraw the stru trogen gas.	cture and name the shape of the foll	owing oxy anions (03 marks)
01 111	ti ogen gas.		(03 marks)
	Oxy anions	Structure	Shape
		Structure	Shape
	Oxy anions NO ₂	Structure	Shape
		Structure	Shape
		Structure	Shape
	NO ₂	Structure	Shape
		Structure	Shape
	NO ₂	Structure	Shape
	NO ₂ -		
(b)	NO ₂ - NO ₃ - (i).Name the	reagent (s) that can be used to disti	nguish between
(b)	NO ₂ - NO ₃ - (i).Name the		

above. (02 mar
(iii).Write three equation (s) if any reaction (s) that would take pla when a solution of each oxy anion is treated separately with th reagent (s) you have named in b (i).
14. The table shows the atomic radius and first ionization energy of some elements in period 3 of the periodic table.
Elements Na Mg Al Si P S Cl
Atomic radius 0.186 0.160 0.143 0.117 0.110 0.104 0.099
1 st I.E(KJ/mol) 496 738 577 787 1060 1000 1251
a. (i). State how atomic radius of the elements varies across the period. (01 ma
a. (i). State how atomic radius of the elements varies across the period. (01 ma
a. (i). State how atomic radius of the elements varies across the
a. (i). State how atomic radius of the elements varies across the period. (01 ma
a. (i). State how atomic radius of the elements varies across the period. (01 ma

b.	(i).Explain how atomic radius affects the ionization energy. (02 marks)
	(ii).Why the first ionization energy of aluminium is lower than that of magnesium. (03 marks)

15.Write equations to show how the following compounds can be synthesized and in each case state the conditions for the reaction.

a	CHCH ₂	from C ₆	H ₅ COCH ₃		(03 marks)
b. (SO ₃ H from		СООН		(03 marks)
c. CH	I ₃ COCH ₃	from	CH ₃ HC=CI	\mathcal{H}_2	(03 marks)
			0113110 01	2	(00 11111111111111111111111111111111111
	_	r the resu			wing compounds in l, acidic or basic. (02 marks)

b)	Ammonium Methanoate.	(02 marks)
c)	Phenyl Ammonium Chloride.	(03 marks)
d)	Sodium Benzoate.	(02 marks)

	plete the following equations and in each	case outline a suitable
		(02 1)
a. (CH ₃ CH ₂ C≡CH 2HBr ➤	(03 marks)

b. Conc.H ₂ SO ₄ Conc.HNO ₃ (02 ½ marks
c. $C(CH_3)_3Br \xrightarrow{NaOH_{(aq)}/CH_3CH_2OH}$ (03½ marks)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1														1.0 H	4.0 He 2		
6.9 Li 3	9.0 Be	Be							10.8 12.0 14.0 1 B C N 5 6 7 8							19.0 F 9	20.2 Ne 10
Na	24.3 Mg 12		27.0 28.1 31.0 Al Si P 13 14 15								32.1 S 16	35.4 Cl 17					
39.1 K 19	40.1 Ca 20		47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28			69.7 Ga 31				79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	1		101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75			195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				2 13 2 133 70 133	4 1	9 65 In									2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		6				144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		17.	227 Ac 89		231 Pa 91							251 Cf 98	Es	Fm	256 Md 101	No	Lw

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2019
This is the last page of the printed paper, Page 17