Human LAS1 protein sequence

MSGSKKKKVTKAERLKLLQEEEERRLKEEEEARLKYEKEEMERL	44
EIQRIEKEKWHRLEAKDLERRNEELEELYLLERCFPEAEKLKQETKLLSQWKHYIQCD	102
GSPDPSVAQEMNTFISLWKEKTNETFEEVIEKSKVVLNLIEKLKFILLETPPCDLQDK	160
NIIQYQESILQLQELLHLKFGVATEILLKQASTLADLDSGNMEKVIKDENVTLYVWAN	218
LKKNPRHRSVRFSETQIGFEIPRILATSDIAVRLLHTHYDHVSALHPVSTPSKEYTSA	276
VTELVKDDVKNVEKAISKEVEEESKQQERGSHLIQEEEIKVEEEQGDIEVKMSSAEEE	334
SEAIKCEREMKVLSETVSAAQLLLVENSSEKPDFFEDNVVDLCQFTTLGGVYHLDILE	392
LPPQCKPVKGWMIVEILKEGLQKYTYPPETTEFFETENAFPPIEVTLEVHENVIFFED	450
PVVVRWDAEGKHWRTDGISNVSYKPKERLVTFSLDTFGPVTLIQDAHINMPYQSWELR	508
PLDVNKVLLTVTTVFTEIQIQIKENLCMLSSIKLKDKKHISILEGTWMTPIPFIIALK	266
EAGLNIFPTRHSHFYVIINNKVPLVEVKAYRQMALLSSAFAFGWSKWNLLCNSTKVVF	624
KVREHLTEECTENPNWALLMFSGDRAQRLKIKEESEAFSEALKEETEFHSTLYHMVKD	682
FASEEAMEKVRSSNCQFVNSVCHMLLSTRLLSYS	716

Figure 2

Human LAS1 gene sequence

gctacaagag gaaagaagaa agtgctaaat gcaagataaa tcttaaattc aactgagctt agaagagtcc tgaggaggaa cataaaatgt tqaaqcaaaa gtgttttcct ctacattcaa tagtttgtgg ggacagtgga aaacctcaag tgagattcca tgatcatgtt ageteettea aaataaagt acacgtttat atacccacta aggaggtcga aatctgaagc gattgaagct ggcatcgact tattagagag agtggaagca agagtaaagt catgtgattt tggcagatct atgtgtgggc aaattggatt cttctgcagt tgaaatatga aaagaataca gcaatcagca caggaggaag gtgattgaga gaaactccac gttactctgt totgaaacac cgactcctgc gctgaggaag ttgatttata caagaaatga caactgcagg gctagtactt aaagctgaac gaagcccgtt aaagaaaat gaactttatt gaaagtcacc ggaaactaaa tcacttaatt gcgaattgag agaacttgaa ttcagtagcc ttttgaggaa tattttactg atcaatacta tctcaaacaa tgttagattc cattgctgta aacaccatca tgtagaaaaa aatgagttct agaggaagag agatgaaaat aaagaggtc acctgtttc atqttaaqaa ttgaagtgaa aattgaaatt aqtaccaaqa aagtcattaa caacaagtga gtaagaaaa gacgactgaa ggagaaatga aattqaaaca gtcctgatcc caaatgagac cagaaatact ggcacagaag ttqaaataca aatataatac tctgcactgc aaacaacaag atgtctggca gaggaggaga atggaaaggc tgtgatggga aaagagaaaa ttaattgaga ggtgtagcca aatatggaaa aagaatccaa aggatattag gtcaaagatg caaggtgata gatctagaaa gaagcagaga 61 301 481 541 241 361 721 781 841 181 421 601 661

Figure 2 (continued)

Human LAS1 gene sequence

ď	gctactccta	agattgctca	gctctctacc	gccacatgct	aactctgtgt	2101
tcagtttgtc	gttccaactg	aaagtcagga	agcaatggag	cttctgagga	aaggattttg	2041
tcacatggtg	ctactttata	gagtttcatt	agaagaaact	aagcacttaa	gcattttctg	1981
agagagtgag	agatcaagga	caaagactga	tgacagagca	tgtttagtgg	gcccttttaa	1921
tcctaattgg	gtactgagaa	actgaagaat	ggaacacctt	ttaaggtgag	aaagtcgtat	1861
taattctaca	acctactatg	agcaagtgga	atttggttgg	ctgcttttgc	ctactaagtt	1801
acagatggcc	aagcttatcg	gtagaagtga	ggttcctttg	taaacaataa	tatgttatta	1741
ctctcatttt	ctactagaca	aatatctttc	agctggactg	ctttgaaaga	ttcattattg	1681
tcctattcct	cctggatgac	ttggaaggaa	catctctatt	acaagaaaca	aaactaaaag	1621
atcttcaatc	tctgcatgtt	aaggaaaacc	aatacaaatt	ctgagattca	acagtattta	1561
aactgtgact	aagtactttt	gatgtaaata	aagaccactt	catgggaact	ccgtaccagt	1501
tattaacatg	aagatgctca	accttgattc	tggccctgtt	tggacacctt	acattcagcc	1441
aagacttgta	aaccaaaaga	gtatcctaca	catcagcaat	gaactgatgg	aaacattgga	1381
tgctgaaggt	taaggtggga	cctgtggttg	ttttgaggat	atgtaatctt	gttcatgaga	1321
cacacttgag	ctatagaggt	gctttcccac	gacagaaaat	aagagtttga	gaaactacag	1261
atatcctccg	agaaatacac	gaaggattac	aatactcaaa	tgattgtgga	aagggatgga	1201
taaaccagtg	ctccacagtg	ttggagcttc	cttggatatt	gagtatacca	actctgggtg	1141
ccagttcaca	tggatttatg	gacaatgtgg	tttctttgaa	aaaagccaga	aattcttctg	1081
gctggtagag	cacagttgtt	gtttcagcag	aagtgaaact	tgaaagtatt	gaacgagaga	1021

Mouse Las1 protein sequence

MAPKSKKAPSKKKMTKAERLRLMQEEEERRLKEEEBARLKFEKE	44
EQERLEIQRIEREKWNLLEKKDLERRSQELEELALLEGCFPEAEKQKREIRALAQWKH	102
YTECDGSPDPWVAQEMNTFISLWEEEKNQAFEQVMEKSKLVLSLIEKVKLILLETPTY	160
ELDHRTVLQHQGSILRLQELLSLKINVATELLLRQASNLADLDTGNMEKIIKDENVTL	218
YVWANLKKNPRHRSVRFSETQIGFEIPRILATSNVALRLLHTRYDHITPLFPIAVTEQ	276
NONPVGAEQVNVEESTEKAMTEEKLFTEEKAANEDEOPKAEQERELNLVOEENKYEAI	334
ENTVLQRTSDSEGEDSQTTQLELEMKLLSEAVLAAQLCLVENVVELPEASQAYKVDLC	392
HFSTLGGVYHLDVLELPPQCKPVKGWVLVEILQEGLQRFIYPPDTTEEPDPDVTFPPI	450
EVTLEIHKSVIFFERPRVVRWDNEGKFWRSDGISSVYYNREDRLLTFSMDTLGPVTLI	508
QDAHVNMPYQSWEMSPCGMNKVLLIVKTVFMELQIYIKENLCMLASVKLRGKGLEFHL	266
KGKWMAPIPFILALKEAGLNIFPAVYSHFYVVINNKVPQVELKAYRQMALLSSAFSFG	624
WSKWNMVCNSTRVVIRVREQLSEETEHHTWSLLMFSGDRAQMLKMQEENDKFSEALRE	682
GTEFHSTLYHMMKDFASPVAMERVRHSNCOFIDSVCYMLLSIRVLSYS	730

Figure 4

Mouse Las1 gene sequence

gaggagaaca ttagcagcac tacaaggtgg ggggaggatt tgcagcgttc aaggctccca gaggagagac gaaaggctag gaggagaaga attgaaaagg ctagaacgaa gcagagaaac gatgggagcc gtcctgcagc gtggccacag atcctggcca aacgtcgagg atggagaaaa aatccaaddc acattattac gctgccaacg cttggttcaa cgactctgaa tgaagcagtc ctcacaadcc gttcctgctc caaatcaaaa agagcaagtc tgaagaaaaa gcaggaggag agaagaacag aaagaaagac ttttcctgaa cacggagtgt cctgtgggaa ccacaggact gaagatcaac cactgggaat cctcaaaaag aatcccaagg ccacatcaca gctgtcgttg gagagctcaa aaaggacttc agctgctgag tgccagaagc agctctttac aaccgtgagc tcatggctcc aatttgaaaa atctgctgga cgttcattag cacgctatga ccgtgggagc tgcggctgat tcgagggttg ggaagcacta gcaaactggt atgagctgga tgctcagcct cagatctgga tgtgggcaaa ttggatttga actgtcttac ctggagatga gaacaggaaa gtggtggaat tcgtcttgac gccgagcgac gcgcggctga cctgcttctg gagaagtgga cttgctctgc ctggctcagt gaaatgaaca atggagaaaa actccgacat ctacaagagc agtaacttag accetgtacg gagacacaa cttctacaca aatcaaaacc actgaagaaa tatagagaac ccaacttgaa gcccaaggct ggtagagaat cactgagcaa aaaggccatg gcgtggcctg aattctgcgc aagcaaagtt gatgaccaaa ggaagaagag gattgagaga gcttgaagag aattcgagct ggttgcccag tgaacaagtg tttactggaa tcgacaagct tgagaatgtc gaggttctca tgctcttcgg cccaaaccac aagatgagca aatatgaagc agctgtgcct ttgtgagtgg aaagtacaga acttttccct gtaagaaaa aaatacagcg gaagccaaga agaagcggga ccgacccttg accaggcctt atcaagggtc tcatcaaaga cgagcaatgt ccattgccgt gcctgaagga **Egaagttaat** aactacttct accggagtgt 1201 181 241 301 361 421 481 541 601 661 721 781 841

Figure 4 (continued)

Mouse Las1 gene sequence

ttccagccac gagctgccc ggactgcaga tattacaacc aagtggaaca gaagaaacag ctcaagatgc cactccacct aggcattcga accgagagga ttcccaccca agggtcgtca ttgattcagg atgaacaaag gaaaacctct aaaggaaaat atcttccctg gagttgaagg ctcaqctatt gcaccaggcg caccgagttc ggagaggtc tatccgcgtc ggacccttat ggatgttctg actccaddaa agacgtcacc tgagcgccct cagcagtgtc ccctgtgacc tccctgtggc atacatcaag gtttcatcta cgggctgaac accccaggtg tggctggagc acaactgtca agcgcagatg gggtgaggga taagcatggt tgtaccacct tagtggagat aacctgatcc tcatcttctt cagatggcat atactttggg gggagatgag agctccagat agggactcga tgaaagaggc acaataaggt cctcccgtt gtggtgacag tcagggaggg ccgtggcaat tgctgctgtc tgatttaaga ggctgggtgc acagcgtgtg ctgggcggcg accacagagg cacaagagcg ttctggcggt ttcagtatgg taccagtcct gttttcatgg ctgaggggca attctggctt gtggtcatca ctgagctctg gttgtgattc ctcatgttca teggaggeee ttadaataaa gtgtgctaca gccgctaaag tttctctacc tgaaggtaaa gcctgtgaag tcctccagac actggagatc gctcctaacc gaacatgcct ttcaqtqaaa cgacaagttc gatgaaggac catcgactca cctagccctt tttccagtca agtgaagacg tatacccttc ccatttttat aatggccctg ttccacaagg ctggtcgctc gaa acttdtdcca ctcagtgcaa ggtttatata gcatgctggc ggatggctcc ctgtatactc cctatcggca tggtctgcaa aqcaccatac aggaagagaa atcaggtatc tagaggtcac ggtgggacaa gagaagacag tccttctaat tgtaccacat actgccagtt cctagctatt actgcaaaag atgctcacgt 1381 1981 2101 2161 501 561 2041 2341 441 621 681 741 801 1861 2221 2401 1921

Figure 5

Figure 6

Figure 9

Table 1. All ge	enes found in the n	narrowed Pas1	Table 1. All genes found in the narrowed Pas1 QTL region encompassed by marker D6OSU6 and D6OSU12	60SU6 and D	60SUI	2	
Location	Gene ID	Gene	Description	Amino	acid cha	Arnino acid changing polymorphisms	orphisms
		23111001		Codon	A/J	CS7BL/6J	Derived from
145,053,958-	mCG13310	Bcat1	Branched chain aminotransferase 1, cytosolic	No ^a			i
145,189,964-	mCG13301	Lrmp	Lymphoid-restricted membrane	Codon 31	GAC	299	Direct
145,249,134		•	protein	Codon 56	299	GAC	sequencing
•				Codon 58	TTC	TTG	
				Codon 438	AGG	999	
				Codon 537	ပ္ပင္ပ	CTG	
145.248.888-	mCG13308	Pasici		Codon 60	AAT	AGT	Direct
145,257,579							sequencing
145,285,432-	mCG13311	Ak015530 6	Growth hormone -inducible soluble	Codon 28	ggc	GAC	Direct
145,291,225			protein				seduencing
145,290,331-	mCG13312	Kras2	Kirsten rat sarcoma oncogene 2	No.			
145,324,539				, e			
145,340,836-	mCG1027072		Similar to 40S ribosomal protein	, Q			
145,341,323			S25	٠			
145,377,523-	mCG1027183			°OX			
145,383,294				<u>ن</u>			
145,388,589-	mCG1027184			, P			
145,390,646				Ļ			
145,391,857-	mCG115945		Lactate dehydrogenase pseudo gene	, Q			
145,392,891				٠			
145,403,203-	mCG1027185			, Q			
145,415,908				į.			
145,460,150-	mCG13304		60S ribosomal protein pseudo gene	, P			
145,460,954						i	i
145,465,863-	mCG13305	Ak016641°	Intermediate filament-related,	Codon218	ည ပြ	CAC	Direct
145,503,064			alternatively splicing	Codon258	GGA	GAA	sednencing

^aNo functional polymorphisms were identified in coding region.

^bND: Not determined because any following reason: pseudogene or ribosomal protein or transcripts not detected by RT-PCR.

^cAk015530 corresponds to Riken cDNA 4930469P12, Ak016641 corresponds to Riken cDNA 4933403M22.

Figure 10 Human LRMP cDNA sequence

cattacccag	tcctcactac	caggggatat	tgctgcagtc	cctgagagcc	acgcgtgtgt	781
atggtgttga	atggaagaga	tgacccaagt	ggatgaatga	ggctgcatca	gaatctctca	721
gcccaggaac	agtggcccca	aggccccaca	acaagtgccc	aaaagacaac	tttggatgta	661
aggatggtgc	ggagaagtaa	gcccacatat	tgtgtgaaag	atccacactc	agccaaccaa	601
tctcaggtgt	tcaacacctt	aaccctggaa	cagcagttcc	gatagtttta	cttatctctg	541
tgctggatgc	tacacacctc	tacgtgctgg	ccttgaaaca	acacccctga	aatacatcag	481
aagaagcaag	tatggtggtc	ccacaaacta	agcagtgttg	gaaaaattga	acctcttcaa	421
caattcaaca	tgcgcagatg	ttccctgtcc	ctcactatga	gaggaatttc	ctttttagat	361
actgaagaag	agacaaggaa	cttcagcaga	ttgccaggca	tatcgaacac	aatactgaat	301
tcaaactata	aacggaacct	atttcggaac	agaggaagca	tgcataaatt	acgtetttae	241
tgaaaaagct	acactgccag	cgagaagccc	ggatcgagat	tccagggtaa	actatccatg	181
tccagcacta	actgctacaa	tcctggccac	ttgctttctt	gagcactcca	tcataagagt	121
tttgcctgca	cattttcagt	aattataacc	ttaaaaaatg	ctatatttta	ataaaacagt	61
aatatttttg	agaatgtata	atattgtaac	gtaaagcaat	gttattgagg	tatattggca	H

Figure 10 (continued)

ctcttcctgt atgagaagga tgaagaaaga ttaccttgga atgacaacca agtgtgcagc ccaaagagca ccaagccatc aaattctgaa atacaagatc gccaaagagg gtggtttccc gaagaaatt aggatgtatg gaaaggtctt acgttcagct tctctaaact acttctgcta tgtgactggt ctgtgtgaag tttcttagcc agccatcaat caggaaagcc cctggattag catgataata aaagaggagg aggagactct aaaccatatt aaatctggaa gggatttaag tttaacacct gagtataaag aaacttgaag aagtgagaac tgactgggca tctgcagaat gtactataac ttcaagtgat gctctgtaag aagtccagct aacatgette agaggtcccg acgttagaca gattatcttt tattagagtc agatgttggg agcacgtaga aacaggttct aaattaaaaa agctggagaa cccaaggcac acagaaactc agtaaggata cataaaaag aaatcggtta gaatttctca tctttaaaac atcattaaga agtagggctg gatgactgcc aagcttgaag gtgatgattc gaagaactga acacacttca tcgacagacg acgatagagg tgtgaccttg tgaagatgat agactctacg aatagaagaa aatcactaac aaccactgtg ggtggaggca ggcacaggaa acgagtggcc gaagagagtg agcagttgaa cgctgaatta tatggcttct agcttctccc 1021 1381 1441 1141 1201 1621 1081 1261 1321 1501 1561 901

Figure 10 (continued)

				caatggg	aactaaaata	2401
ttatctccc	ctttttgcct	tacatttcct	taagatagct	agaatgaccg	agaggttctc	2341
gcatgaaacc	ggaaagtata	cttttagctg	aaattagtaa	tgaacttcgt	tttcagtatc	2281
gatttttaag	tatggatctt	catcctaata	gacagcagga	ccaccagtgt	caatgggcca	2221
gactccgaca	ccatttacca	tatcttgtgg	ctctagaaca	tcatggacgt	gcaagaggac	2161
ctcccacaca	gtggatgccg	ccagaagtct	gccaattatt	ttcctcacag	tttgatgagc	2101
tgtttgcagc	ttcattgtac	ctctattgca	ccctctggct	gctaataagg	catcagaaag	2041
tcaagtcctc	gcaacaaatc	agcttcctgg	atgacacaat	tcttcagttt	gtgggatgtc	1981
atccatcaaa	aagaaaaata	tctttctgaa	ggaagccaag	gaaaggacaa	agaaacagta	1921
catctggaga	gactcagagc	aactaaagat	gtgaactaaa	gaagaaaaat	agatgctgaa	1861
attcctgggc	attagcacct	acctcgattt	gtccctcatt	agtgaacacc	gtcaaagcag	1801
gtattttggg	agcagttggc	tagaaggtca	atcgattcag	gaaaataatg	ggctgggatg	1741
caggaatggt	attggaaatg	acccagaaat	ttgcctcttt	agagtgacta	ttctctacga	1681

Figure 11

Mouse Lrmp cDNA sequence

ggaggaggaa	tctgtgagaa	tgcaaacctc	tgaccttgac	tggcttctgg	attttgcaca	661
tggatcagac	caagtgagtc	actgtgacgt	ctcggagagc	agacttcatc	tcgtctgaac	601
cacacagcca	gggagtatct	tcacagctca	cgagagcccg	acttgtattc	ggtgctgacc	541
agacgagaat	accagagtac	atgaacgagg	ctgtaccaga	agcttctaga	ttgggacagg	481
aggctccatc	tccccacgga	cagtgcccac	aagagggtgc	tggacgtgac	gatggggctt	421
ggaaccagaa	ccccagagca	gtaaaaggtc	catgctctgt	aaactcagcc	catgtgccag	361
acacccatct	gctagaactg	caattccaag	ggcctcacag	gtgtcttgac	cagtatgcct	301
cagggggggtt	agctgaagac	cagactcagg	cagcactact	tcacagtccc	cagaaggaga	241
gaagcgattc	agaactagag	ctctgctaca	tgaggcaagc	ggcctgcgca	atcaggatgg	181
ggtcaggggg	tgtgcatatg	caggctgacc	ggctcaaacc	cccttcccgc	gcatccagcg	121
ctaagaacaa	tttcctgtgc	atatttccag	gaagaaaagc	atttccgtga	tacgcttatc	61
aagttgagcc	agaattgcag	ccgtgcaaac	ctgcgcccgc	cctgggcctg	aagaggtaat	~

Figure 11 (continued)

ttggaaatgt ggggctggtg aggaaaattt gaagaaagaa ggacaaccag gtgcacagcc caaagagcac acaggtettt taactetetg tggagactac actcagaacc gcccccaaa tgagaaggaa tacattggag ggatgtacgc ctctaaattc tgctcagcca tgtgtgaaga aggaaagccg agatttccat cttcagctaa gtgactggtt ctgctgctta caggagagga gcaagcactg ctgcagaacg cgttcatctt gagtgaccat tgcctctttg cccaggaatc ctgactcccc agtatagtac gccatcaacc aacctgaagc gacctggcag agtgaaaaca ggacttaagt gcaaggcacc agcctagctc ggagagacgg cagctggaag gattaaaag gaggtcccgg tttagagtcg gctggagaag gatgctgggc gcacgtggag ggctgcatcc cagtgccccg gttatctttg gcatctgtga agctcgttaa ctttcagcag aggatctgaa gtttaaagct tgatgatcca gcagggctga atgactgtca agcttgaaga tcgttaagaa gagggaaggg cctctgccat gcgtggccaa agttcctcag aagagggtga gctcaggaaa cgagtggcca ccagatgaag tctcttcgaa atcacaaact gcggtggagg gcagagctgg gcaagagccg acgagtgtgg acagaaacg gtgggggag 1201 1441 1021 1261 1321 1381 1081 1141 196 721 901 781 841

Figure 11 (continued)

	tgtatccaaa taaagaccat tcaaatctta aaaaaaaaa
gcatgg aaaataatga agcagg gtgagcaccg ttgagg acgagagaag aagtgg acgagagaag gaagag ccaacagagc gaggt tcctcacagg gaccat tcctcacagg ttgaga tttgtaaatt gcagct gggatctttt	
	ø
1501 tcaggcatg 1561 acaaagcagg 1621 gacgctgagg 1741 tgggacagg 1861 ttcagaaga 1921 gaggggac 1921 gaggggacca 2041 cttctgag 2101 ctcagcagc	tco

Human BCAT1 cDNA sequence (coding region)

ggcagagtgt accggagaag gaggatcaaa agaggtggtg ggaaaaacca ggcatttcga tctgtatatt caaagccctg gtgtattcaa ggactgcaag aagacgtaga taatgggtgt ggtggagtgg gtcattgcac aatgtatcgc catctgctag gtggaacctt aaggattgaa agctcttaga agaagcctac ccattttaaa atatgctgac ttcagaacct acatggatag gtggaactgg agaatgggtc ccatattcaa tgagcettet ettggagtea tatttttcaa atcaagcctc ccaaacctca acaccagcta gacaaagaag tggaactgtg ttcacggatc gaattatttg atctctttt gcccaatgtg gcctggaaag agtgggacct cctaatagtc ctatgcagtg actgtttcag gtatgtaaga gaaacctcat gccggtattt cgtcctgcat tcattggaac atggattgca gtaacggatc aggctaaaga cagctttgca ataaaattcg cagcttgtga aattggatca attacggctc atctggtttt ttggatggga gggcaactct tcttgagccc ccaatcccaa gggactttta ctctttgtac cctggctcat atgggaggga gaccccaata tcctcagagt ggagtagata tctgctgtga tccctgtggg 181 661 361 421 481 61 121 241 301 541 601

Figure 12 (continued)

agaatggtcc taagctggca cagcaggtcc tgtggctcta tggcagagac catcagatca ctgaagtggg aactatgaat tccactagat cctggagggg aacagagtga gagagatgtt tagctctggt acagcctgtg ttgtttgccc agtttctgat tcagtggggt gaagaaga tggcaactcc tgtcagagag atacctcacc atggatgact tgacaacagc acctggcaca 1021 atactgtaca aaggcgagac aatacacatt ccaactatgg gacaaggcgg tgcattctgg tgaagatgga actggataaa ttccaggagt ctttttcttt ggcatcattc gaatttaagg 721 961 781 901 841

gagaagag cgactggaca agccgcatct.tgagcaaatt aactgatatc cagtatggaa 1081

1141 attgtgctat cctga

Mouse Bcatl cDNA sequence (coding region)

atcagaagaa cttaaaagag gctgacggtg aaacttgccc cttgaaagcc ggatagaatg gccttccaaa cctaaagtgt tgccagcctc atcttttact cgtggagaat actccacctc atgctccgcg ccgtttgctg gagaaagagg cagccactgt ggtctttgga gctacgttta ctgaccacat cctcacatta agccttttgg tgtttgaagg atgtttgaca aggaggagct ccggtgtccc tgtgggccaa tccaaagtac atcagagcct ggaaaggtgg acctcaacat gcgtcaagaa tgcaagatgg gcggcaatta tggagcctcc cttctggcac agtgcgaggc ggaccttatt tttctagtgg caaagatctc atcatcacac gctgtggaac cgaccaagaa tgggttccct ttaaggaagg ccatctcttg atgggagaaa ccacatttat cggaactgag tttgcactac gatccgattg cacgctgccg gccctactct ttgtgatcct gagccccgtg ctgtgaggac gcagtaatgg cttttagggc cggattcgct ctgcgtctgg ttctacagat ctgcctctgt ttgataacaa gtggcagaga atgaaggact aagccggacc gagtggtcct atacatcccg tttcggggag tgccgatctg attcttcagc tacatccgcc 61 481 121 181 241 361 301 421 541 601 661

aaagctgact gatatccagt atggaagggt ggagagtgac

Figure 13 (continued)

ccagatgctg catattccaa cgatggagaa tggccccaag ggctgtcagc aggtcctgtg gctgtacggc aaggacaacc agataactga agtaggcaca aacgcccca ggcacaacag gaggggaaca gagtgaagga gatgttcggc tcagggacag cctgcgttgt ctgcccagtc tggggtgaat ttaaggtatg tgagagacac ctcaccatgg atgacctggc caccgccctt aggagctggc ctagatggca tcattctccc gggagtgacc aggcagagca tcctggagct gacggagaag gataaacgaa 1021 totgatatto tgtacaaggg tcctctactg atgaatcttt 901 841 721 781 196

1141 tggacaatcg agctaccctg a

gaatcctggg

cttgcaagtc

1081

Human KRAS2 isoform a cDNA sequence

ggcagtggcg gcggcgaagg tggcggcggc gtgccttgac aggattccta gctttctttg gagaacaaat acacagcagg gcaagaagtt atggaattcc gaagaaaga ctcctggctg gatgcttttt atacattggt cgggagagag gtaggcaaga tgatgatgcc caccattata gtaggaaata cgagcgcggc ccaacaatag gatattctcg actggggagg ccgccatttc ggactgggag ctcccaggtg agctggtggc tcaggactta cgaatatgat ctgtctcttg gtacatgagg tgaagatatt tatggtccta gagagtggag ttataatgta atctgggtgt aatcagcaaa ಶ್ರತ್ಯತ್ತುತ್ತುತ್ತು ತ್ರತ್ಯತ್ತುತ್ತುತ್ತುತ್ತುತ್ತುತ್ತುತ್ತುತ್ತುತ್ತ ggctcagcgg aagatgtacc acagtagaca caaaacaggc tggtagttgg atggagaaac attttgtgga tgagggacca ctaaatcatt acatcagcaa agacaagaca gattgaaaaa teggecagta cteceggece cggggccaga tataaacttg ataaataata aaggactctg tgtgaaaatt aaaaaatgca tacagtgcaa gtagtaattg attcagaatc cgacaataca aaggcggcgg gccttctaga gatacagcta aatgactgaa caggaagcaa tcaagaggag taaaagagtt ttttattgaa tgtatttgcc gagggagatc 61 421 121 481 541 601 721 181 241 301 661

Figure 14 (continued)

aattactata attattatag agggaacaca ggaaaaaat ttcccagagt tttggttttt atttctgtct tggggttttt taaatggatt ttgtcatccc gctattagtc aagaagaaa tcttaaggca gttttagcat gcttatttta acattagata gtgaatgttg gtcctatagt aagactccta atagcttttc ctgttaaggc agacccagta tgaaatgggg tctagtcaca cctttccact agaaaaaat tgaaacattg agatggtaaa tgtacttttt attagcattt taccttaaat ctgtgtttta ggttttgtct ttctataaaa tttccttttc agtgccagta aatacctaag cttaccaatt tggtttttac taggcatcat tgttagcttt aaatacaatt agatgagcaa acactaaatt atgattcttc tataaggcca ttttcctcta aaagaaactg tcttatttt catccctatt accttctaat tgttcacaaa attatattt ccatgcagac cataaagaaa tttgtacatt gtaattatgt ggaagttttt tggaaactat gttgattact gcttttgaat aaagttacac tccccaaaat tgcctgtgaa ttcagttgag cttcctgatg aattcgaaaa agtggtaatt ttttcctgct gacaaagtgt gaactagcaa ggtgcatgca tgatgaatgt atggtcactc tacaaggcaa aaatgacagt aattaatgaa aattactaat aatttatggg tagttcgaga tactagtaca tacctaattt agaagtcaaa 1021 1081 1321 1381 1501 1561 1141 1261 1441 1201 781 901 196 841

Figure 14 (continued)

aaaagatttt	gactgctctt	tttaattctg	aagagaccaa	cacagcatgg	gggaggaac	ctgctgacaa	ttacttttaa	atttttttt	ttaacactgg	tgctttaaaa	aataaatgaa	cttaggttct	tttcttcatg
ataataattg	ccctgtgtca	tgaagatagt	ttaggtgttg	tagagagttt	tagtcaaaat	tgtggtggtc	tttttaaaaa	caagacatta	gctagttctc	tatttaataa	cttattttaa	aagaaggtga	ttactatcca
ctaaattttt	aatgtagtct	cttgagtctt	ttatagctta	tgagctttca	atgcattggt	aatctcactc	aacaaactct	ggtggtgtgc	tctaggtttg	gtctgatcca	taaaatgtta	ctggactagg	aggacatcac
ttacatgcta	ataggaatta	ttttcttcaa	tttgggccag	tgtgaacctt	cagtgttgtc	aacaagatac	ttcttaagaa	attttggggt	ttttacaatc	cacttttcaa	ttgataaatt	gaaagtatca	tctgattttg
ggggctatat	aaaaattctc	actttaaatc	taaaagatta	ccaggccctg	cacggtcatc	tggatagete	ttgattttgt	aaaagttgag	agtgaaaaag	attgcataaa	aacaatcctt	atggtgaggt	cttttaggac
caaccatttt	aacaagtata	tcatagtata	cttgtgacat	ggttgcaagg	actgtgtccc	tagggcagtt	atcaagagca	atattaactc	taaacaatga	ttaaattaac	taaaaataaa	gtgagatggc	agataggtgt
1621	1681	1741	1801	1861	1921	1981	2041	2101	2161	2221	2281	2341	2401

Figure 14 (continued)

Ę,

caactatgta atttatattc ttttaaccta agtttatatt gcctccctac aaccataaga agaaatgccc gatttgacct ccaatccatt agtggaagga ggactactcc atgaaaaata gtctcgctct tgtcacccag gttcaagcga acactcaact atctgtaaat caagaggtga gtgtcatctt gagtcacatc taattcccct accataaagg tctttgctgc aaccctatcc tctataacta tcttcatgca agtggcgcca tctcagctca ctgcaacctc catctcccag gtgtgccact tcatctcaaa ctcttagttt ttttttttta gctcagcaca caaaattgtg ttccatatta ttaatacttg ttttcccact ccttaggtaa taaccagaaa tctgacagat tttgaacatc gaatagacag ctttaattca tgaagcttac tttttttttt tggtgtcaga gattacaggc tatttgtcaa cagtcttggg tgaatatcca ttctcgtttt aggactcttc cccatgact tgatgcagtt ctgtggatat ctccatgaag ctcaagagaa tggctgatgc tgaaagaatt attgttttag aacctggtat ttctcgtgcc tcggcctcct gagtagctgg aggatacact tcttcagtgc ggatttttca ttcctcaggg tttcaggtgg aagatagtgc aatacattcc ttaaaagaag cttccacatg catttacata tgttacacca tttactgctg tacatcttat aatcactaat agcgacagta gaatttaata gctggaatgc tggtaacagt 2461 2581 2641 2521 3061 2761 2821 3121 3001 3241 2881 2941 3181

Figure 14 (continued)

gtctcgaact	aactcattta	cactgggtat	gtggtctgta	ttttagtttt	attccactga	ataaacttga	tgtacacatt	ttctctgcat	aacaggtgcc	ctgaattgct	tacacagtac	ttatgagggg
ggccaggctg gt	tgttttgcag aa	ccgcacaagg ca	tagtgctagt gt	acgatgcgta tt	ttttgctacg at	ttttaaagga at	ggacaattac tg	tattccagtt tt	ggtacaaata aa	actatgattt ct	tgttaagact ta	actgcagtgc tt
ggccs	tgtti	aagas	tagt	acgat	ttt	ttt	ggac	tatt	ggta	acta	tgtt	actg
tcaccctgtt	ctcataaacc	atgccagtca	ggtccttagg	cagagataac	tctataattg	cacttcattg	gattctttta	aaatgtgtaa	gttttatctg	tgtaaaaatc	ttaggtaggg	tacttcagga
agacggggtt	ccaccttggc	tgcctaccag	acataatccc	gtatacgacc	ctgtgccagc	ttatgtaaat	gcataactgt	atattgaccc	aaaattaata	gaaacttcta	ggaacactgt	gaaatggcca
tttttaggag	agtgattcac	atttattgag	caaacaagag	aaggcctttg gtatacgacc	ggtttggtct	tcaagctact	tttttatttg	tcagatattc	aatatactta	cacagacaag	acagatcttt	cacagagaaa
aatttttgta	cctgacctca	ttcagcaaat	atggtatccc	atatcttact	gcaaagaagg	aactcttcga	ttatattgtt	aaggtgtatg	aagtaattaa	tgaactagtt	atgtgaaact	ctcgtttcta
3301	3361	3421	3481	3541	3601	3661	3721	3781	3841	3901	3961	4021

Figure 14 (continued)

	gt ttttgtagag attttaaagg	gc cttaaagaca aaaatccttg	ag gcattaacat gtttgtggaa	tt cccaagtagg cattctaggc	ct aacttttata ggttatcaaa	ca tagaaacttt gtggggcatg	cc attgattttt tttttcttct	gg gattttttt tagacagcaa	tt tcttgataat tgtgtagtaa	ta tatttagtaa cttctgtgtt	ta gctgtcataa aatgaaactt	at agtcataact agattaagat	at aatgataggt aatttagatg
atgggcattt	aaagatttgt	ttattacagc	atagacttag	agtgaatgtt	tttagaacct	aatatataca	tttgtattcc	ttttttaggg	agtaatgatt	gctgaattta	aaactgaata	cttgaagaat	tgtttgggat
tttgatgtag	tggtttaaca	tgttacctaa	gctaaattac	gtatcatttg	tgcataggaa	attttgtcct	gttcatctca	gtatataact	tttgtcaaaa	ttaccttaaa	ctgcattgag	cacatgagtt	ttgaagtgcc
ctcttgaatt	gaactttgaa	tagaaataaa	tttaaaaaaa	gacgtatatt	tgagtcacac	ccattgcaca	gtttgcacaa	tettcaaaca	aagatttcca	aacccagcag	agcatgaatt	gaaagatact	gtttaatagt
atatttaggc	acctttatgt	gggagaattc	ttgaagtttt	gaatatagca	tctatttaac	actgttgtca	ttaagttaca	aaacatttt	aaactatctg	tgttttttag	aatactggat	tetttetaaa	ctgtgtttta
4081	4141	4201	4261	4321	4381	4441	4501	4561	4621	4681	4741	4801	4861

Figure 14 (continued)

4921	aatttagggg	aaaaaaagt	tatctgcaga	aaaaaaaagt tatctgcaga tatgttgagg gcccatctct	gcccatctct	cccccacac
4981	ccccacagag	ctaactgggt	tacagtgttt	ctaactgggt tacagtgttt tatccgaaag tttccaattc	tttccaattc	cactgtcttg
5041	tgttttcatg	ttgaaaatac	ttgaaaatac ttttgcattt	ttcctttgag	tgccaatttc ttactagtac	ttactagtac
5101	tatttcttaa	tgtaacatgt	ttacctggaa	tgtaacatgt ttacctggaa tgtattttaa	ctatttttgt	atagtgtaaa
5161	ctgaaacatg	cacattttgt	acattgtgct	cacattttgt acattgtgct ttcttttgtg	ggacatatgc	agtgtgatcc
5221	agttgttttc	catcatttgg	ttgcgctgac	catcatttgg ttgcgctgac ctaggaatgt tggtcatatc	tggtcatatc	aaacattaaa
5281	aatgaccact	cttttaattg	aaattaactt	aaattaactt ttaaatgttt ataggagtat gtgctgtgaa	ataggagtat	gtgctgtgaa
5341	gtgatctaaa	atttgtaata	tttttgtcat	atttgtaata tttttgtcat gaactgtact actcctaatt attgtaatgt	actcctaatt	attgtaatgt

aataaaaata gttacagtga caaaaaaaaa aaaaaa

Human KRAS2 isoform b cDNA sequence

geggegaagg tggeggegge gtgccttgac aggattccta acacagcagg gagaacaaat aatgtgattt atggaattcc atacattagt agaaaagaa aaggcatact gcaggcactg gcctgctgaa acaatttgta cttttttctt gtaggcaaga gatattctcg gtaggaaata gcaagaagtt gatgccttct ggtaaaaga cgagcgcggc cgggagagag ccaacaatag actggggagg caccattata ggcagtggcg ctcccaggtg ctgtctcttg gtacatgagg tgaagatatt tatggtccta tcaggactta gggtgttgat gagcaaagat ggactgggag agctggtggc cgaatatgat cagcggcggc ccgccatttc atggagaaac ggctcagcgg tggtagttgg attttgtgga tgagggacca ctaaatcatt aagatgtacc caaaacaggc agacaagaca aagaaaagat aagtgtgtaa ttatgtaaat gcggaggcag gtagtaattg acatcagcaa acagtagaca cgaaaacata tacagtgcaa ctcccggccc cggggccaga tataaacttg attcagaatc ataaataata aaggactctg ddccdcddcd caggaagcaa ttttattgaa teggecagta aatgactgaa gatacagcta tcaagaggag gccttctaga tcgagaatt gtcaaagaca aaggcggcgg tgtatttgcc taaaagagtt 661 61 121 301 421 601 721 181 481 541 241

Figure 15 (continued)

gattttaaca gaaacaaatt tggattaatt catccctgat aaaaattaca actataaaga ttatagcaac gctcttcat aacacaaatt ttagtcatgg tagcattacc attttaaaat gtttttgaac gtttttggtg atggggatta tagtctcct gtgtcagact atgttggtgt gtcacataaa acattgaggg tatagtttgt tccactgcta aaaaatggaa tagataaatt taattgaaaa gcatttgttt cagagttttg ctgtcttggg ttaaatgctt gttttatcta cttttcacat atttttataa attacttctt atttttctta ccaattgtga ttttactgaa ttgtctcctt ataaaaagaa ccagtatgaa catcatgtcc taaattatta ccagtattcc cctaagattt agettttace aactattata aggccatttc taaggcagac atgctactaa gaattaaatg ttgaatcatc cctattctgt tctaattggt ttcttctagg cacaaaggtt tatttttct tacattacac aaactgaata gcagactgtt cctctaagtg gttgagacct caaaatatta ctttcctgt ctgatgatga ctatatttac ttacactgtt attctcatag gtaatttttg gtttttttt tgtgaaaag cctgctccat ctcctaatag agtataaaaa aatgaagctt actaatttca catgcagttg tatgggcttc gaatgtaaag tcactctccc aggcaatgga cattttgggg tagcaatgcc agtacaagtg taattttttt gacagtggaa 1441 1561 1261 1321 1381 1501 196 781 841 901

Figure 15 (continued)

tgacaaatca gttctcttaa cactggttaa aatgaagtga ggttctagat ttcatgttaa aacctatgtt taaatctttt cttcaacttg agtctttgaa gatagtttta attctgcttg gcatggactg agggactagg ttttaaatat gaccaaggtt tatccatttc acattaattt gtaaattttt taataatgct aggtgactta tatgtaattt gtgttgaaga gagtttcaca gtggtcctgc taaaaattac ttttaaaata caaaatgggg ggtttggcta gatccatatt attttgagga catcacttac tttttacaac agcttattag attggttagt tcactctgtg aactcttttt gtgtgccaag atgttactta actaggaaga agcacaatct ctttcataga agatacaatc taagaaaaca gttgagattt tgggggtggtg acaatctcta tttcaagtct tagtttttt tgtcaagctc ggccagttat aacctttgag gttgtcatgc taaatttaaa gtatcactgg ttttgtttct tacacttatt aaaagtttt cataaacact atccttttga taggactctg ctcaaactct tagctcaaca tgaggtgaaa agattatttg gccctgtgtg gtcatccagt agtataactt tgacattaaa gcagtttgga taactcaaaa attaacattg aggtgtcttt aagaagtcat tacataagga agagcattgc caatgaagtg aataaaaca tgtccccacg gcaaggccag gatggcatgg 2401 2041 1621 1681 1801 2101 2221 2281 2341 1861 2161 1741

Figure 15 (continued)

aagcgattct tcaactaatt cgaactcctg catttattca tccattagcg aaaatacttt acccaggctg tatatttgaa ccctaccttc ataagattta atgccctaca tgacctaatc gaaggagaat taactaggac gccactacac aggctggtct cttgggcaaa attgtgcaag aggtgaagtt cacatcagaa ctatccagtg cgctcttgtc teccaggtte ttgcagaact tgctgcccaa catgcaatga catcttgcct tacactaaca taaagggatt aggtaatcta aacctccatc cctgttggcc taaacctgtt tacttgtaat acagatacca aacatctctt agacagaacc cagaaatctt gtcagagtct acaggcgtgt cccactgagt atattagtgt agctgggatt ggggtttcac cttggcctca agctcactgc gcagttttaa atgaagtttt ttttcaaacc tggtatgaat agaattcctt ctcttcttcc ttttagtaac tttttttggt agagaatctg tgatgctttg acaccatctt cagtgccagt cctcctgagt attcacccac tagtgctgaa gcttactttt gagacatata taggagagac cgttttagga ggatatctcc tcagggctca cattccattg aggtggtggc atgacttgat ttaataaaga tttgtatttt aacagtaata cgtgcctcgg tottatttoo acagtaggat tatccattct ctgctgctgt actaattttc aattcatgaa gaatgcagtg acctcaagtg cacatgccc 2881 2641 3181 2521 2581 2701 2761 3001 3061 3121

Figure 15 (continued)

gggtatatgg tctgtaatat agttttgcaa cactgaaact acttgattat cacattaagg gtgtaatatt ccagttttct ctgcataagt gaggggatat ttaattacct taaaggggga tccttgttga acaaggcact gctacgattc aaaggaataa aattactgta caaataaca aagacaaaa gctagtgtgg tgcgtatttt tgatttctga aagacttaca cagtgcttat aaggtagtgg gtagagattt cagtcaccgc gataacacga aaaatcacta tatctgggta cttaggtagt taattgtttt tcattgtttt cttttaggac tcaggaactg gcattttttt atttgttttt gtagggtgtt tacagcctta ttaatagttt taccagatgc gccagctcta gtaaatcact ttaacaaaag acgacccaga aactgtgatt atattcatat tgacccaaat tggccatact aatcccggtc cttctatgta cactgtttag atgtagatgg acctaattat attgagtgcc caagagacat cctttggtat gctactttat tatttggcat tacttaaaaa atctttggaa gagaaagaaa aataaatgtt tggtctctgt gacaaggaaa tgaatttttg tttgaatggt tatccccaaa attgttttt gcaaatattt cttactaagg agaaggggtt cttcgatcaa tgtatgtcag aattaaaata ctagttcaca gaaactacag tttctacaca ttaggcctct ttatgtgaac gaattctaga 3301 3361 3601 4021 3421 3481 3661 3901 3961 4081 3781 3841

Figure 15 (continued)

acttaggcat taacatgttt gtggaagaat ctaggctcta atcaaaactg ggcatgttaa tcttctaaac cagcaaaaac tagtaatgtt tagtaacttc tgtgttaata aaactttctt taagatctgt tagatgaatt CCacaccccc gtcttgtgtt tagtactatt gataattgtg aatttcttac attttttttt atctctcccc agtaggcatt aactttgtgg tttttttaga tcataaaatg ataactagat ataggtaatt caattccact tttataggtt aatttatatt aatgttccca gaacctaact tatacataga tattccattg ttaggggatt atgatttett tgaatagctg tgggataatg ttgagggccc cgaaagtttc tttgagtgcc aagaatagtc gcatttttcc aattacatag tgtcctaata attgagaaac catttgagtg ataacttttt tcaaaaagta cttaaagctg agtgcctgtt tgcagatatg gtgttttatc taggaattta atctcatttg tgagttcttg aaaaaagcta aaaagttatc tatattgtat tcacactgca tgcacaattt caaacagtat tttccatttg cagcagttac tgaattctgc gatactcaca aatagtttga aaatactttt gcacaagttc ctgggttaca agttttttta ttgtcaccat attttttctt tatctgaaga ttttagaacc ctggatagca taggggaaaa acagagctaa ttcatgttga atagcagacg tttaactgag gttacagttt gttttagttt tctaaagaaa 4501 4201 4261 4321 4621 4681 4801 4381 4741 4861

Figure 15 (continued)

4981	tcttaatgta	tcttaatgta acatgtttac ctggaatgta ttttaactat ttttgtatag tgtaaactga	ctggaatgta	ttttaactat	ttttgtatag	tgtaaactga
5041	aacatgcaca	catgcaca ttttgtacat tgtgctttct tttgtgggac atatgcagtg tgatccagtt	tgtgctttct	tttgtgggac	atatgcagtg	tgatccagtt
5101	gttttccatc	gttttccatc atttggttgc gctgacctag gaatgttggt catatcaaac attaaaaatg	gctgacctag	gaatgttggt	catatcaaac	attaaaaatg
5161	accactcttt	t taattgaaat taacttttaa atgtttatag gagtatgtgc tgtgaagtga:	taacttttaa	atgtttatag	gagtatgtgc	tgtgaagtga
5221	tctaa	aattt gtaatatttt tgtcatgaac tgtactactc ctaattattg taatgtaata	tgtcatgaac	tgtactactc	ctaattattg	taatgtaata
5281	, aaaatagtta	aaaatagtta cagtgacaaa	a aaaaaaaa	ರ		

Figure 16

(coding region) sednence isoform a cDNA Mouse Kras2

cacagcaggt ctttctttgt agaacaaatt gtgtgatttg cgggattccg tacattggtg tcctggctgt taggcaagag cgccttgacg ggactcctac tagtaattga tggagaaacc tgtctcttgg atattctcga aaaagagtaa aggactctga agatgtgcct atggtcctgg tagggaataa caaggagtta aagaaaagac atgcttttta accattatag ctggggaggg ctacgataga gagggaccag tacatgagaa ggtggttgga gctggtggcg taaataatac taaatcattt gaagatattc gaaacaggct caggagttag atcagcaaag agagtggagg atacagetaa tteagaatea etttgtggat gagtatgaee gacaagacag attgaaaaaa tataatgtaa ataaacttgt acagtgcaat cagtagacac cctcagcaaa aaaaatgcgt gacagtacag gtatttgcca ccttctagaa gtgaaaatta aggaaacaag caagaggagt ttcattgaga atgactgagt agagagatcc

Mouse Kras2 isoform b cDNA sequence

ggcacactta	tctttcttaa	tactttgtac	gttatgtgaa	aaggtgtaca	agtcaaggac	721
aagaaga	tgggaagaag	tgagcaaaga	aaagaaaaga	tcgaaaacat	tccgagaaat	661
tatacattag	cgatgccttc	agggtgttga	aagacaagac	gacctcagca	cgttcattga	601
tacgggattc	agcaaggagt	ctcaggagtt	acgaaacagg	aacagtagac	tgccttctag	541
aagtgtgatt	ggtagggaat	ctatggtcct	gaagatgtgc	aaaggactct	ttaaaagagt	481
agagaacaaa	tcaccattat	ttgaagatat	actaaatcat	cataaataat	gtgtatttgc	421
ggctttcttt	aactggggag	agtacatgag	atgagggacc	gtacagtgca	gtcaagagga	361
gacacagcag	ggatattctc	cctgtctctt	gatggagaaa	agtagtaatt	acaggaaaca	301
gaggactcct	ccctacgata	atgagtacga	cactttgtgg	aattcagaat	cgatacagct	241
agcgccttga	cgtaggcaag	gagctggtgg	gtggtggttg	gtataaactt	aaatgactga	181
ggcctgctga	cgcggagaga	ggctccgcgg	gaggcgcggc	gcgggagcct	gaaggcggcg	121
gagagaaat	agcgagcgcg	teggaeeegg	ccgcgccatt	agtecegete	ctcggcccgg	61
ರ್ವಿತ್ತಿಕ್ಕಾಗಿ ಹೆಚ್ಚುಗಳು	gcaggggaag	ggctgagacg	ctgtggcggc	ggcggcagcg	cggacgcgtg	 1

Figure 17 (continued)

agcaggataa gtcattagca ttttgtaata tccattcagt aaggcagacc aaaaaaaa attttttcta atttggtgca agcattacct tgattattt tttggactta taggctccct gctactaaat aatgttgaaa actgatggga atccaatgga gcagactgtt ttttcctggt attaagtaca caaatagtat catttgtttt ttatctcaaa ctgtcttggg ttccctgggt gtcacagact ctataatagc atatttacat tctcataaga aactgtgaac ccatctactc gtcactccct ggcaatggaa agaggcgtag aaattattag agtgccagta ctgtcagctt acctgagact ttctcttacc tgtaagattc tataaaaagt tgatatgtgt acactgaggg atcatctttc attaatcttg aaaaaaaaa catttgggct tgatttttgt acattacact ttcgtgcaaa cttttttcta gagactaaag ggaccatccc gctaaattac tccttgctag tagtaataac ctttagcata gcttcactgg cctagacttt ttccactgca aaaatggaaa ttttcttctg tggaaacctt gcctgtggaa tgcagttgat cagtatgaaa attcaaacaa gtcaatcgca ttctctagct gaaaagggga ttccatgtta tgaagettee tccagcgtgt agtaaaagtg aatcttttt aactagcaat aaaagaacag 1381 1261 1321 1441 1501 1561 841 781 901 961

Mouse Ak016641 cDNA sequence

gattettege ceatagagag aggeattgaa taegtegaet gccaatttac atccagttct ctcggagaaa tgaggtaaat atcaagggcc tctttgtgag gcttgtcaac tcctccaatg cggaggcagc tatttccttt aacgtgagcg tcataaaatt catcactcca togaaacago agcacccaga ctgagctgct catggttcca cttttgggaa tggtgaggat ccaagccgag agcaaaggaa ggcacctcct ctccaccacg atccaccatc ccagatcacc catcaataag cccacacacc aaattggaac tggattcaga gcaccagctc gaagagaaga gtgtcaccag ttggcttcta tggcttctaa gtaccagtgt aagctcaccg ccaaagataa gatacgtata gaaatgccaa gaggaagtcg ggtctttcta cctctagcca agaaaagaaa agaggacagc ggaaagcaga gattagcagg ggggaggtgg ccacttcttc tgtgatcctt agaatcgaag ctctgacgtg agcatcggag tggagagata attttcccaa cttatcgtcc cagcagcctg tcgtgagaat aagacagttg acacagactg ttaaaatagc ctgacatttc attcttcagt cccagtcgag ctttgtttgg aacacctttc tgatgaagga aagtacagga tgtcccgctc acagetecae cccacaaaga tgataaactg 721 601 661 481 541 61 121 301 181 241

Figure 18 (continued)

gacattgaat ccctcccaag cacaaataat tggataacag gactcacatg accaagccca aagccatgaa gaacagagca gaggccattg cacgcagtct acagtgtggg catgtttgga gcctcagcca agaaaatgga caaaatattc gttagagact acagaaacg tgtcttaccc ctctctgatt cgtgaatgga ctccacggtg tgtttgggag gcccaatggt tgctttataa tgagaaacca tcccgccaac caaagtcata cctgggagaa aagaaccaat cacageteaa atccgtacag ttcagcaaaa caacggactt tgcaggccaa tcttgtgcaa gtcccatcaa agtttagata attgtagagt gaaaaggaaa aaaagaaag tggaagcaag gaggagaaag acttctccac ctcgctttat aaccacattc tgcacgacca ccacagccac aacatcacac tcctatccac gtgagtaact ctcagtggtg cctctacaga caatcccaac ttccgaaagc agggaccaag ttttgagggt ttccacaaac agagattgga ggaagcaaag cagtccggac gttccccgac cctggtacac catctgtctc tcgaaagatg tctaccctgt cctggtgccg acteggacat aaccagaccc atctgtgaac tgcaataaat aaaaggaagt agttccgatc ccttgtacca cagcagcttc 1081 1501 1261 1321 1381 1441 781 841 901 961

Mouse Ak015530 CDNA sequence

gggccgtggt gccgcaaagc gctggagtga ggcggtctga gcaagctgtc gtctggaccc ctgtatcttg gttttcctta tcttaagtct atcaattcca tgttaagtga ggagaatttg ttaggaaata cagagctatg aagcaacgtt catgataata cttgcccttt accagtgctg gatacatggt tgatactgag tagtatacta gigtetitgt ectigititi tgitgititg trageceate taaaaatctg cgagctgaca tagtaccttt tagccaattt tatcgcacga tcaaccttat gtctgacagg tttgaagaac aaaagggtga tgactcttta tcaaagaact atagtaactt ttaaaaggcg aaacatgtta ataaaagtgg ttgcaccagt aattcagttt gaaataggtt atcgaatggt ttgtacttcc ggagaagtac ೧೭೩೮೩೩೮೩ tgaccaatca tattactgaa cttaattttt tatatcatgt gcagactatt gattgtcact ctactgtact attaaaaaat ggtggtgaag tgtggaggac gctagaggcc ataatccttt agaaaataca ttcgttacga taccaaagtc atgagttgcc ttactgatga tccaaaagga tgtaccaact aaaacaagga aaatggccaa atttcttcat gacgggacta actattcaga ttttaaaaaa taattttgaa agcttctaga cagacctgct taatgaagga agctttgccc gctgtttgcc 61 121 301 481 601 721 181 241 361 421 541 661

Figure 19 (continued)

tgtaagttta agacagtgta ctcaaaatga tttaaatgca gttatcaaaa tatattttct cattgtgtag agttctgaac cacttcaagt caggcaggac agagatggct taacatttct cagcaaccat gtctgaacac gggtgactag ttaaagctgg gtttttagca acgttataaa gtcgacctgt aaccgagtcc atgtggcagt ggacctaacc atcaggctgg atttaattcc cttctggtgt atttctgcca gcctgcctta gaagctcagt ctt aggattctgt ctgatgtcca acgaataaat gaggtcctga tcaaggctct ctacagacac atgttcctct tctatcttga cattattctt tgtgctgctg tttatgtaat tgttgcttat tgatattada aaataaataa gtaatgggat aggagttgta gaaggtgacc agcaaaaatg ctgcaaatag ctcatagaat gagcactgac acaaccatct aagtgcatat ctattattcc taagacatgt agctttcatg 1021 1321 1201 1261 196 841 901