Training the classifier & confidence-based review

In this file we demonstrate how to train the classifier, generate predictions, launch the confidence-based review, and export the project results. We do so as a continuation of the example in the NewProject.mlx script. In that project, we demonstrated how to create a project, import video, extract its frames and features, and launch the annotator, and we did so using a demonstration project with a small number of short, video without annotations. Here, we provide annotations and already extracted features corresponding to the full-length videos in the home-cage dataset, and use these annotations to run steps 6-11 of the project workflow (see below).

Table of Contents

Loading/generating the clip table	1
Splitting into train/validation/test/unlabeled sets	
Setting up the classifier	
Training the classifier	
Training the confidence-based review.	
Running the confidence-based review	
Final checks & data export.	

Loading/generating the clip table

After the video features have been generated and a subset of the video annotated (the former we expedite by using the downloaded features, and the latter by using the dataset labels), we are ready to train the classifier.

To do so, we first contruct a DeepAction project by passing the folder where our project is stored to the DeepActionProjectClass.

```
projectFolder = '/Users/harriscaw/Documents/Behavior classification/Projects/example_p
project = DeepActionProject(projectFolder);
```

```
BehaviorTable(project)
```

```
% project = MarkClipsAsIncomplete(project, 150);
```

Splitting into train/validation/test/unlabeled sets

After we have generated clips for the project, we select clips for use in training, validation, and testing. The training clips will be used directly to train the classifier. The validation clips will be used to tune the classifier training and train the confidence scorer. And the test clips will be used to evaluate both the classifier and the confidence scorer prior to the confidence-based review.

The proportion of labeled data in each of these sets is specified in the [Evaluation] section of the config.txt file. The TrainProportion, ValidationProportion, and TestProportion parameters govern the proportion of clips in each set. By default, 60 percent of data is used in training, and 20 percent in validation and testing.

To generate these sets, we run the SplitClipData method on our project:

```
project = project.SplitClipData();

Loading network data...
   - Splitting into train/validate/test splits
Clip data split into sets:
    Train: 431 clips (70%)
    Validation: 92 clips (15%)
    Test: 92 clips (15%)
```

Setting up the classifier

After the clip data have been split into sets, we create the classifier to use in training. To do so, we first specify the sequence-to-sequence LSTM via the parameters in the [Classifier] section of the configuration file. We also specify the length of the sequences to further divide the clips into. The full set of training parameters is specified using the following configuration file parameters:

▼ SequenceLength=450
Length (in frames) of sequences to be input into RNN.
Default: 450
▼ NumberHiddenUnits=64
Number of hidden units in each layer of the BiLSTM.
Default: 64
▼ NumberLayers=2
Number of BiLSTM layers.
Default: 2
▼ DropoutRatio=0.5
Dropout probability of dropout layers located after each BiLSTM layer.
Default: 0.5
▼ ClassificationLayer=cross-entropy
Classification loss function to use.
• Options:
• cross-entropy : standard cross-entropy loss function
 weighted cross-entropy : cross-entropy loss, where loss is inversely proportional to the incidence of the class
Default: cross-entropy
<pre>project = project.SetUpClassifier('showplots', true);</pre>

```
Setting up network...
 Training options
    - MiniBatchSize: 8
   - InitialLearnRate: 0.001000
   - LearnRateDropPeriod: 4
   - LearnRateDropFactor: 0.100
    - MaxEpochs: 16
```

Network options

- Classification layer: cross-entropy

- NumberLayers: 2

- NumberHiddenUnits: 64

- DropoutRatio: 0.500
Network input

NumItersEpoch: 215NumberFeatures: 512NumberClasses: 9

Training the classifier

% project = project.TrainNetwork()
project = project.TrainClassifier();

Training on single CPU.

========	===========						:==:
Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Ва
1	1	00:00:23	5.52%	23.68%	2.3871	2.1645	
2	430	00:15:48	72.54%	67.26%	0.8249	0.8896	
3 4	860	00:30:12	61.50%	71.15%	0.9328	0.8258	
5 6	1075 1290		76.84% 57.87%	72.36% 73.68%	0.5979 1.1824	0.7954 0.7660	
7 8	1505 1720	00:52:39 01:00:09	53.31% 68.10%	72.98% 73.31%	1.2596 0.7128	0.7778 0.7771	
	=======	1 1 1 215 2 430 3 645 4 860 5 1075 6 1290 7 1505	Epoch Iteration Time Elapsed (hh:mm:ss)	Epoch Iteration Time Elapsed Mini-batch (hh:mm:ss) Accuracy 1 1 00:00:23 5.52% 1 215 00:08:27 68.02% 2 430 00:15:48 72.54% 3 645 00:22:57 63.11% 4 860 00:30:12 61.50% 5 1075 00:37:28 76.84% 6 1290 00:44:56 57.87% 7 1505 00:52:39 53.31%	Epoch Iteration Time Elapsed Mini-batch Validation (hh:mm:ss) Accuracy Accuracy 1	Epoch Iteration Time Elapsed Mini-batch Validation Mini-batch Loss 1	Epoch Iteration Time Elapsed Mini-batch Validation Mini-batch Validation Loss Loss 1

Training finished: Met validation criterion.

Network training completed

Total training time: 01:00:44
Final validation accuracy: 73.3%
Max validation accuracy: 73.3%

Generating clip predictions... complete Evaluating network...

- Generating train set predictions
- Generating validation set predictions
- Generating test set predictions
 Overall performance

	Accuracy	 -	F1	==
Train Validate Test	0.781 0.738 0.729		0.688 0.653 0.653	

Behavior results (test set)

	Precision	Recall	TruePositiveRate	FalsePositiveRate	F1
drink eat groom hang micromovement rear rest walk	NaN	0.000	0.000	0.000	NaN
	0.810	0.642	0.642	0.010	0.717
	0.660	0.802	0.802	0.122	0.724
	0.908	0.857	0.857	0.007	0.882
	0.655	0.611	0.611	0.125	0.632
	0.757	0.731	0.731	0.030	0.744
	0.854	0.948	0.948	0.027	0.898
	0.726	0.557	0.557	0.024	0.630

Training the confidence-based review

% project = project.GenerateConfidenceScores();

Intializing confidence scorer

Training confidence scorer using TemperatureScaling

- Sequence calibrator trained
- TemperatureScaling scorer
 - Training set
 - Test set

Confidence score performance

Set	•		ReviewEfficiency
Train	0.035 -0.007	0.093	0.784

Running the confidence-based review

project = project.LaunchAnnotator()

Final checks & data export

project.CreateLabeledClips('PlaybackSpeed', 3, 'Scale', 1)

project.ExportAnnotations()