MEC-E1050 Finite Element Method in Solids; Mathematica

"Structure is a collection of *elements* (earlier structural parts) connected by *nodes* (earlier connection points)". Displacement of the structure is defined by nodal translations and rotations of which some are known and some unknown."

Structure

$prb = \{ele, fun\}$ where
$ele = \{ prt_1, prt_2, \}$ elements
$fun = \{val_1, val_2, \ldots\}$ nodes
Elements
$prt = \{typ, pro, geo\}$ where
$typ = BEAM \mid PLATE \mid SOLID \mid RIGID \mid \mid$ model
$pro = \{p_1, p_2,, p_n\}$ properties
$geo = Point[\{n_1\}] Line[\{n_1, n_2\}] Polygon[\{n_1, n_2, n_3\}] $ geometry
Nodes
$val = \{crd, tra, rot\}$ where
$crd = \{X, Y, Z\}$ structural coordinates
$tra = \{u_X, u_Y, u_Z\}$ translation components
$rot = \{\theta_X, \theta_Y, \theta_Z\}$
Elements
Constraint
${\text{JOINT}}, {\{\{\underline{u}_X, \underline{u}_Y, \underline{u}_Z\}\}}, {\text{Point}}, {\{n_1\}\}\}}$ displacement constraint
${JOINT, {}, Line[{n_1, n_2}]}$
$\{ \text{RIGID}, \{ \} \{ \{ \underline{u}_X, \underline{u}_Y, \underline{u}_Z \}, \{ \underline{\theta}_X, \underline{\theta}_Y, \underline{\theta}_Z \} \}, \text{Point}[\{n_1\}] \} \dots \text{displacement/rotation constraint}$
$\{ RIGID, \{ \}, Line[\{n_1, n_2\}] \} \qquad \qquad rigid \ constraint$
$\{SLIDER, \{n_X, n_Y, n_Z\}, Point[\{n_1\}]\}$ slider constraint
Force
$\{FORCE, \{F_X, F_Y, F_Z\}, Point[\{n_1\}]\} \dots point \ force$
$\{FORCE, \{F_X, F_Y, F_Z, M_X, M_Y, M_Z\}, Point[\{n_1\}]\} \ \dots \dots point \ load$
$\{ \text{FORCE}, \{f_X, f_Y, f_Z\}, \text{Line}[\{n_1, n_2\}] \} \dots \dots \text{distributed force}$

$\{FORCE, \{f_X, f_Y, f_Z\}, Polygon[\{n_1, n_2, n_3\}]\} \\ \qquad \qquad distributed force$
Beam model
$\{BAR, \{\{E\}, \{A\}, \{f_X, f_Y, f_Z\}\}, Line[\{n_1, n_2\}]\}$ bar mode
$\{ \text{TORSION}, \{ \{G\}, \{J\}, \{ \{m_X, m_Y, m_Z\} \} \}, \text{Line}[\{n_1, n_2\}] \} \ $ torsion mode
$\{BEAM, \{\{E,G\}, \{A,I_{yy},I_{zz}\}, \{f_X,f_Y,f_Z\}\}, Line[\{n_1,n_2\}]\} \$ beam
$\{BEAM, \{\{E,G\}, \{A,I_{yy},I_{zz}, \{j_X,j_Y,j_Z\}\}, \{f_X,f_Y,f_Z\}\}, Line[\{n_1,n_2\}]\} beam$
Plate model
$\{ \text{PLANE}, \{ \{ E, v \}, \{ t \}, \{ f_X, f_Y, f_Z \} \}, \\ \text{Polygon}[\{ n_1, n_2, n_3 \}] \} \\ \dots \\ \dots \\ \text{thin slab mode}$
$\{ \text{PLANE}, \{ \{ E, v \}, \{ t \}, \{ f_X, f_Y, f_Z \} \}, \\ \text{Polygon}[\{ n_1, n_2, n_3, n_4 \}] \} \\ \dots \\ \dots \\ \text{thin slab mode}$
$\{ PLATE, \{ \{ E, \nu \}, \{ t \}, \{ f_X, f_Y, f_Z \} \}, Polygon[\{ n_1, n_2, n_3 \}] \} \\ \dots \\$
Solid model
$\{SOLID, \{\{E,v\}, \{f_X, f_Y, f_Z\}\}\}, Tetrahedron[\{n_1, n_2, n_3, n_4\}]\}$ solid
$\{ \text{SOLID}, \{ \{E, v\}, \{f_X, f_Y, f_Z\} \}, \text{Hexahedron} [\{n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8\}] \} \ \dots \dots$
$\{SOLID, \{\{E,v\}, \{f_X, f_Y, f_Z, m_X, m_Y, m_Z, \}\}, Tetrahedron[\{n_1, n_2, n_3, n_4\}]\} \dots solid$
Operations
prb = REFINE[prb] refine structure representation
Out = FORMATTED[prb]display problem definition
Out = STANDARDFORM[prb]display virtual work expression
sol = SOLVE[prb] solve the unknowns