Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is $A \cap B$?

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is $A \cap B$?

 $A \cap B = \{2, 4\}.$

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is $A \cup B$?

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is $A \cup B$?

 $A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\}.$

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is A - B?

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. What is A - B? $A - B = \{6, 8, 10\}$.

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. If U is the set of all postive integers less than or equal to 10, what is A^c ?

Let $A = \{2, 4, 6, 8, 10\}$ and $B = \{1, 2, 3, 4, 5\}$. If U is the set of all postive integers less than or equal to 10, what is A^c ?

 $A^c = \{1, 3, 5, 7, 9\}.$

What is the sample space of a process that rolls one die and then flips a coin?

What is the sample space of a process that rolls one die and then flips a coin?

 $\{1H,2H,3H,4H,5H,6H,1\,T,2\,T,3\,T,4\,T,5\,T,6\,T\}.$

What is the probability that a hand of poker contains all four suits?

We'll use the naïve definition of probability, counting the number of allowed hand divided by the total number of hands:

$$\mathbb{P}(\text{all four suits}) = \frac{\#\{\text{ways to get all four suits}\}}{\#\{\text{total hands}\}}$$

We'll use the naïve definition of probability, counting the number of allowed hand divided by the total number of hands:

$$\mathbb{P}(\text{all four suits}) = \frac{\#\{\text{ways to get all four suits}\}}{\#\{\text{total hands}\}}$$

We know the denominator is $\binom{52}{5}$. Let's try to figure out the numerator using the the multi-stage experiment formulation.

The easiest way to solve this is to first pick the suit that will have 2 cards in the hand. There are $\binom{4}{1}$ ways to do this.

The easiest way to solve this is to first pick the suit that will have 2 cards in the hand. There are $\binom{4}{1}$ ways to do this.

In the second stage we select the two cards from the choosen suit; there are $\binom{13}{2}$ such selections.

The easiest way to solve this is to first pick the suit that will have 2 cards in the hand. There are $\binom{4}{1}$ ways to do this.

In the second stage we select the two cards from the choosen suit; there are $\binom{13}{2}$ such selections.

In the third stage we choose the $\binom{13}{1} \cdot \binom{13}{1} \cdot \binom{13}{1}$ cards from the other suits.

Putting this together yields:

$$\mathbb{P}(\text{all four suits}) = \frac{\binom{4}{1} \cdot \binom{13}{2} \cdot \binom{13}{1}^3}{\binom{52}{5}}$$
$$= 0.2637455$$

A fairly high percentage!