# An Introduction to Deep Learning with TensorFlow

Steven H. H. Ding

**School of Information Studies** 

# Last Workshop - Classification with Decision Tree















































Non-linearity













Non-linearity













Non-linearity













Non-linearity





Recursive Network T≡5L⊓









Non-linearity





Recursive Network T≡5L⊓

Deep Brief Network







Non-linearity





Recursive Network T≡5L⊓

Deep Brief Network

Stochastic Gradient Descend











Non-linearity





Recursive Network T≡5L7

Deep Brief Network

Stochastic Gradient Descend

#### Convolutionary Neural Network

**Auto Encoder** 









Non-linearity

Deep Brief Network





Recursive Network T≡5L□

#### **Back Propagation**

Stochastic Gradient Descend

#### Convolutionary Neural Network

**Auto Encoder** 









Non-linearity





Recursive Network T≡5L□

Deep Brief Network

Recurrent Network

**Back Propagation** 

Stochastic Gradient Descend

Convolutionary Neural Network

**Auto Encoder** 













Non-linearity

'Deep Learning' means using a *neural network* with several layers of nodes between input and output.

It's deep if it has more than one stage of non-linear feature transformation.







#### Agenda

- Logistic Regression
- Neural Network
- Convolutional Neural Network
- Why deep learning works
- Hands-on example using TensorFlow
- Q&A

#### Agenda

• Logistic Regression

Neural Network

Convolutional Neural Network

Why deep learning works

Hands-on example using TensorFlow

Q&A



- Convolutional Neural Network
- Why deep learning works
- Hands-on example using TensorFlow
- Q&A



- Why deep learning works
- Hands-on example using TensorFlow
- Q&A



| Passenger Class | Age | Survived |
|-----------------|-----|----------|
| 1               | 29  | 1        |
| 1               | 2   | 0        |
| 2               | 21  | 1        |
| 2               | 19  | 1        |
|                 |     |          |



| Passenger Class | Age | Survived |
|-----------------|-----|----------|
| 1               | 29  | 1        |
| 1               | 2   | 0        |
| 2               | 21  | 1        |
| 2               | 19  | 1        |
|                 |     |          |





| Passenger Class | Age | Survived |
|-----------------|-----|----------|
| 1               | 29  | 1        |
| 1               | 2   | 0        |
| 2               | 21  | 1        |
| 2               | 19  | 1        |
|                 |     |          |





w1

w2

## Logistic Regression

0.2

| Passenger Class | Age | Survived |
|-----------------|-----|----------|
| 1               | 29  | 1        |
| 1               | 2   | 0        |
| 2               | 21  | 1        |
| 2               | 19  | 1        |
|                 |     |          |

0.6

0.4

0.2

-0.2

-0.4

-0.6







f(x)



$$y = f(a)$$



| Passenger Class | Age | Survived |
|-----------------|-----|----------|
| 1               | 29  | 1        |
| 1               | 2   | 0        |
| 2               | 21  | 1        |
| 2               | 19  | 1        |
|                 |     |          |









$$y = f(a)$$



| Pa | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |









$$y = f(a)$$



| Pa | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |









$$y = f(a)$$



| Pa | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |









$$y = f(a)$$



| Pa | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |











| Pa | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |











| Pá | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |











| Pá | assenger Class | Age | Survived |
|----|----------------|-----|----------|
|    | 1              | 29  | 1        |
|    | 1              | 2   | 0        |
|    | 2              | 21  | 1        |
|    | 2              | 19  | 1        |
|    |                |     |          |











| Passenger Class |   | Age | Survived |
|-----------------|---|-----|----------|
|                 | 1 | 29  | 1        |
|                 | 1 | 2   | 0        |
|                 | 2 | 21  | 1        |
|                 | 2 | 19  | 1        |
|                 |   |     |          |









a = w1 \* Class + w2 \* Age  
a' = -2 \* 1 + 0.1 \* 29 = 0.9 
$$J(w) = \Sigma (y' - y)^2$$
  
y = f(a)  
y' = f(0.9) = 0.71







$$J(w) = \Sigma (y' - y)^2$$









$$J(w) = \Sigma (y' - y)^2$$







$$J(w) = \Sigma (y' - y)^2$$









$$J(w) = \Sigma (y' - y)^2$$









$$J(w) = \Sigma (y' - y)^2$$









$$J(w) = \Sigma (y' - y)^2$$









$$J(w) = \Sigma (y' - y)^2$$





Decision boundary made by a linear model (logistic regression)



Decision boundary made by a decision tree.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



- Adds multiple layer of interconnected regression node.
- Following the same way of training.



A logistic regression model.



A neural network model.



| Passenger Class | Gender | age | Survived |
|-----------------|--------|-----|----------|
| 1               | 1      | 29  | 1        |
| 1               | 2      | 2   | 0        |
| 2               | 2      | 21  | 1        |
| 2               | 1      | 19  | 1        |





| P | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Г | 2              | 1      | 19  | 1        |





| F | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Γ | 2              | 1      | 19  | 1        |





| Р | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Г | 2              | 1      | 19  | 1        |





| E | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
|   | 2              | 1      | 19  | 1        |





| Р | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
|   | 2              | 1      | 19  | 1        |





| F | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Γ | 2              | 1      | 19  | 1        |





| P | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Γ | 2              | 1      | 19  | 1        |







| P | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Γ | 2              | 1      | 19  | 1        |







| P | assenger Class | Gender | age | Survived |
|---|----------------|--------|-----|----------|
|   | 1              | 1      | 29  | 1        |
|   | 1              | 2      | 2   | 0        |
|   | 2              | 2      | 21  | 1        |
| Γ | 2              | 1      | 19  | 1        |







|                 |        |     |            | <b>A</b>                                                                       |
|-----------------|--------|-----|------------|--------------------------------------------------------------------------------|
| Passenger Class | Gender | age | Survived   | <b>J</b> 1                                                                     |
| 1               | 1      | 29  | 1          |                                                                                |
| 1               | 2      | 2   | 0          |                                                                                |
| 2               | 2      | 21  | 1          |                                                                                |
| 2               | 1      | 19  | 1          |                                                                                |
|                 |        | [   | Class<br>1 | 0.71                                                                           |
|                 |        |     | Age<br>29  | $f(x) \qquad f(y) \qquad 1$ $Total cost:$ $J(w) = \sum_{i=1}^{n} (v' - v)^{2}$ |
|                 |        | Ge  | ender 🖯    | $J(w) = \Sigma (y' - y)^2$                                                     |
|                 |        |     | 4          |                                                                                |



| Passenger Class Gender age Survived  1             |                 |        |        |            | <b>▲</b>                           |
|----------------------------------------------------|-----------------|--------|--------|------------|------------------------------------|
| 1 2 2 0<br>2 2 21 1<br>2 1 19 1  Class  1  Age  29 | Passenger Class | Gender | age    | Survived   | , T                                |
| 2 2 21 1<br>2 1 19 1<br>Class 1  Age 29            | 1               | 1      |        | 1          |                                    |
| 2 1 19 1  Class 1  Age 29                          |                 |        |        | 0          |                                    |
| Class 1 O.71 Age 29                                |                 |        |        | 1          |                                    |
| Class 1  Age 29                                    | 2               | 1      | 19     | 1          |                                    |
| Age 29 1                                           |                 |        | c<br>[ | <b>—</b> ` |                                    |
|                                                    |                 |        |        |            | f(x) f(x)  Total cost:             |
| Gender $J(w) = \Sigma (y' - y)^2$                  |                 |        | Ge     | nder       | $J(w) = \sum_{i=1}^{n} (y' - y)^2$ |
| Centre!                                            |                 |        |        | 11461      |                                    |



| Passenger Class |   |     | Survived         | J T                                                  |
|-----------------|---|-----|------------------|------------------------------------------------------|
| 1               | 1 | 29  | 1                |                                                      |
| 1               | 2 | 2   | 0                |                                                      |
| 2               | 2 | 21  | 1                |                                                      |
| 2               | 1 | 19  | 1                |                                                      |
|                 |   | Cli | ass<br>1         | f(x) w1                                              |
|                 |   | 2   | ge<br>29<br>nder | f(x) $f(y)$ $Total cost:$ $J(w) = \Sigma (y' - y)^2$ |
|                 |   |     |                  |                                                      |



#### Approximate minimization





Decision boundary made by a linear model (logistic regression)



Decision boundary made by a neural network



successive layers can learn higher-level features

















A training sample.



A testing sample. The old hidden unit failed to find the curve.

#### Position invariance



A training sample.



LeNet 5, Layer C5

## Why going deep?

- Most deep learning models have been around for more than 25 years.
  - Theoretically even a NN with a single hidden layer can fit any function.
  - Gradient vanishing problem solved by new set of training algorithms and models.
- Deep structure:
  - Successive layers can learn higher-level features (latent factors)
  - Replace manual feature engineering.
  - Better generalizability. Can represent more complex functions with less parameters.

## Why going deep?



#### What else?

- Classification
- Regression
- Sequential output
- Structured output





# Thank you!