

TECHNISCHE UNIVERSITÄT MÜNCHEN

Secure Coding Phase 2

Team 3: Patrick Sattler, Aurel Roci, Stefan Kohler

Executive Summary

Team2

We found several vulnerabilities, which could cause severe damage to the *Team*2. It is possible to get access to the admin page via stealing the session. Thus an attacker can register an arbitrary employee or customer and unlock the registered user. An attacker can also execute a brute force attack on known user ids as there is no lock mechanism to prevent this. Besides the security issues there is also a severe problem with regard to the business logic. In the current state this web application should not be used productively!

Team3 Online Banking

We found some issues, which potentially could cause damage to the *Team3 Online Banking*. However the detected issues are quite easy to fix. If an experienced attacker performs a man in the middle attack he'll be able to track session ids. The implications are severe, as the attacker can take over the role of the customer, but this attack requires advanced knowledge. With regard to the business logic there was only one issue with low risk detected.

Comparison

In summary we were able to clearly state out that the *Team3 Online Banking* web application has less and also less severe vulnerabilites then the *Team2* web application. Furthermore it has to be said that the detected issues of the *Team3 Online Banking* are easier to fix and will cost less money to implement.

Contents

Ex	ecuti [°]	ve Sum	ımary	i	
1	Tim	Time Tracking Table			
2	Vuli	nerabili	ities Overview	3	
	2.1	Team2		3	
		2.1.1	Static Session ID	3	
		2.1.2	File Upload	3	
		2.1.3	Mail	3	
	2.2	Team3	6	3	
3	Tool	s used		4	
4	Deta	ailed Re	eport	5	
	4.1	Config	guration and Deploy Management Testing	6	
		4.1.1	Test File Extensions Handling for Sensitive Information (OTG-		
			CONFIG-003)	6	
		4.1.2	Test HTTP Methods (OTG-CONFIG-006)	8	
		4.1.3	Test HTTP Strict Transport Security (OTG-CONFIG-007)	9	
		4.1.4	Test RIA cross domain policy (OTG-CONFIG-008)	10	
	4.2	Identit	ty Management Testing	11	
		4.2.1	Test Role Definitions (OTG-IDENT-001)	11	
		4.2.2	Test User Registration Process (OTG-IDENT-002)	12	
		4.2.3	Test Account Provisioning Process (OTG-IDENT-003)	14	
		4.2.4	Testing for Account Enumeration and Guessable User Account		
			(OTG-IDENT-004)	15	
		4.2.5	Testing for Weak or unenforced username policy (OTG-IDENT-005)	16	
	4.3	Auther	ntication Testing	17	
		4.3.1	Testing for Credentials Transported over an Encrypted Channel (OTG-		
			AUTHN-001)	17	

Contents

	4.3.2	Testing for default credentials(OTG-AUTHN-002)	18
	4.3.3	Testing for Weak lock out mechanism(OTG-AUTHN-003)	19
	4.3.4	Testing for bypassing authentication schema (OTG-AUTHN-004)	20
	4.3.5	Testing for Browser cache weakness (OTG-AUTHN-006)	21
	4.3.6	Testing for Weak password policy (OTG-AUTHN-007)	22
	4.3.7	Testing for weak password change or reset functionalities (OTG-	
		AUTHN-009)	23
4.4	Autho	rization Testing	24
	4.4.1	Testing Directory traversal/file include (OTG-AUTHZ-001)	24
	4.4.2	Testing for Privilege Escalation (OTG-AUTHZ-003)	25
	4.4.3	Testing for Insecure Direct Object References (OTG-AUTHZ-004)	26
4.5	Session	n Management Testing	27
	4.5.1	Testing for Bypassing Session Management Schema(OTG-SESS-001)	27
	4.5.2	Testing for Cookies attributes(OTG-SESS-002)	28
	4.5.3	Testing for Session Fixation(OTG-SESS-003)	29
	4.5.4	Testing for Exposed Session Variables (OTG-SESS-004)	30
	4.5.5	Testing for Cross Site Request Forgery(OTG-SESS-005)	31
	4.5.6	Testing for logout functionality(OTG-SESS-006)	32
	4.5.7	Test Session Timeout(OTG-SESS-007)	33
	4.5.8	Testing for Session puzzling(OTG-SESS-008)	34
4.6	Data V	Validation Testing	35
	4.6.1	Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)	35
	4.6.2	Testing for Stored Cross Site Scripting(OTG-INPVAL-002)	36
	4.6.3	Testing for HTTP Verb Tampering(OTG-INPVAL-003)	37
	4.6.4	Testing for SQL Injection (OTG-INPVAL-005) and Mysql testing	
		(OTG-INPVAL-005)	39
	4.6.5	Testing for Code Injection, Testing for Local File Inclusion, Testing	
		for Remote File Inclusion(OTG-INPVAL-012)	42
	4.6.6	Testing for Command Injection(OTG-INPVAL-013)	43
	4.6.7	Testing for Buffer overflow, Testing for Heap overflow, Testing for	
		Stack overflow, Testing for Format string (OTG-INPVAL-014)	45
	4.6.8	Testing for incubated vulnerabilities(OTG-INPVAL-015)	46
4.7	Error 1	Handling	47
4.8	Busine	ess Logic Testing	48
	4.8.1	Test Business Logic Data Validation(OTG-BUSLOGIC-001)	48

Contents

	4.8.2	Test Number of Times a Function Can be Used Limits(OTG-	
		BUSLOGIC-005)	49
	4.8.3	Test Upload of Unexpected File Types (OTG-BUSLOGIC-008)	50
4.9	Client	Side Testing	51

1 Time Tracking Table

1 Time Tracking Table

Name	Task	Time
Aurel Roci	Test HTTP Methods	0.25
	Error Handling	1
	Testing for default credentials	0.25
	Testing for Reflected Cross Site Scripting	0.5
	Testing for Stored Cross Site Scripting	2
	Testing for HTTP Verb Tampering	0.5
	Testing for SQL Injection	2
	Test Number of Times a Function Can be Used Limits	0.75
	Test Business Logic Data Validation	1.5
	Executive Summary	0.5
	Testing Report	2
	Testing for Cross Site Request Forgery	0.5
	Testing for Privilege Escalation	1.5
	Presentation	0.25
Stefan Ch. Kofler	Test File Extensions Handling for Sensitive Information	2.0
	Test HTTP Strict Transport Security	0.5
	Test RIA cross domain policy	0.5
	Test Role Definitions	1.25
	Test User Registration Process	0.75
	Test Account Provisioning Process	0.5
	Testing for Account Enumeration and Guessable User Account	0.5
	Testing for Weak or unenforced username policy	0.5
	Testing for DOM based Cross Site Scripting	0.75
	Testing for JavaScript Execution	2.0
	Testing for HTML Injection	0.5
	Testing for Client Side URL Redirect	0.75
	Testing for CSS Injection	0.5
	Testing for Client Side Resource Manipulation	0.5
	Test Cross Origin Resource Sharing	1.25
	Testing for Cross Site Flashing	0.5
	Testing for Clickjacking	1.0
	Testing WebSockets	0.75
	Test Web Messaging	0.5
	Test Local Storage	0.5
Patrick Sattler	understanding w3af and configuration	2
	w3af testing overflow and format string	1.5
	Test bruteforce for password	0.5
	Test bruteforce for TAN	1
	Test Registration process	1
	Test password policy	0.5
	Test credentials transport	1
	Test bypassing authentication schema	1
	Test browser cache weakness	1
	Test weak password policy	0.5
	Testing Directory traversal/file include	1.75
	Testing bypassing session management	1
	Testing cookie attributes	0.75
	Testing session fixation	0.75
	Testing for Exposed Session Variables	0.5
	Testing for Cross Site Request Forgery	1
	Testing for logout functionality	0.5
	Test Session Timeout	0.75
	Testing for Session puzzling	0.25
	Testing for XML/SSI/XPATH Injection	2
	Testing for Code Injection, local or remote file inclusion	1
	Testing for Command Injection	0.5
	Testing for Format string	0.25
	Testing for incubated vulnerabilities	0.5

2 Vulnerabilities Overview

Based on our testing, we identified the following vulnerabilities for the Team2 Bank and the OnlineBanking Bank:

2.1 Team2

2.1.1 Static Session ID

• Likelihood: high

• Implication: high

• Risk: high

The session id is saved in form of the (static) user id in a cookie. This cookie can be used on any machine to take over the account of a user. The lifetime of this cookie is only limited by the cookie lifetime field.

2.1.2 File Upload

There was no instructions on the structure of the information for the file upload functionality. There was a sample file, but after uploading it, and trying it with several accounts, it did not work.

2.1.3 Mail

The e-mail functionality to send the tans upon sign up was not working.

2.2 Team3

After testing the application there were no vulnerabilities found!

3 Tools used

sqlmap - We used sqlmap to test for SQL Injections, and we did not find any.

RIPS - We used RIPS to do a static testing of the PHP code. It showed warnings for SQL Injections which were *false-positives*. The were also some *false-positive* with command execution.

FindBugs - We used this tool to do a static testing of the Java code, and we did not find any vulnerabilities in the code of *Team2*, and we found two *false-positive* warnings in the code of *Team3*.

netcat - We used this tool to check the HTTP methods but it did not give any output.
nmap We used this tool to check HTTP method, and it showed which methods were allowed and which ones were not allowed.

w3af - We used this tool to find if the website had vulnerabilities by running an automatic test one the website. And found CSRF vulnerability.

Zed Attack Proxy (ZAP) - We used this for a spider attack towards the website, and did not find any CSRF vulnerability.

Burp - We used this tool to intercept the message from the web browser to the server and alter it.

4 Detailed Report

The following pages describe for each test how both applications Team2 and Team3. The test is divided in different sections following the OWASP Testing Guide v4.

4.1 Configuration and Deploy Management Testing

4.1.1 Test File Extensions Handling for Sensitive Information (OTG-CONFIG-003)

Team2 Likelihood: 8
Impact: 9
Risk: 3

Team2		
Observation	File extensions are handled correctly but while testing we found	
	folders which we could access.	
Discovery	TODO	
Likelihood	The likelihood is quite high that someone tries a tool to find	
	these kind of vulnerabilities. There is no need for special knowl-	
	edge because the tools work quite automatically without much	
	configuration.	
Impact	There is no impact the folders do not contain sensitive informa-	
	tion.	
Recommendations	Block the access to files and to those folders, or remove them	
	from the directory since they are not needed there.	

Metric	Value: 9.8
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	Н

Team3 Likelihood: 8
Impact: 0
Risk: 1

Team3			
Observation	File extensions are handled correctly but while testing we found		
	folders which we could access smart-card simulator folder.		
Discovery	TODO		
Likelihood	The likelihood is quite high that someone tries a tool to find		
	these kind of vulnerabilities. There is no need for special knowl-		
	edge because the tools work quite automatically without much		
	configuration.		
Impact	There is no impact since there is nothing important hard-coded		
	in the jave file.		
Recommendations	Block the access to files and to those folders.		

Metric	Value: 0
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	N
Availability Impact	N

4.1.2 Test HTTP Methods (OTG-CONFIG-006)

Team2 Likelihood: 0
Impact: 0

Risk: 0

Team2			
Observation	The application is not accessable over HTTP. HTTPS is enforced.		
Discovery	We also tried to connect via <i>netcat</i> using the following command:		
	nc IP_ADDRESS 80, which did not work. We also used nmap for		
	testing which returned the methods used by the webapp.		
Likelihood	N/A		
Implication	N/A		
Recommendations	N/A		
Comparison	The same applies for our web application.		

samurai@samurai-wtf:~\$ nmap -p 80 127.0.0.1 --script http-methods

Starting Nmap 6.25 (http://nmap.org) at 2016-01-01 11:04 CET Nmap scan report for localhost (127.0.0.1) Host is up (0.000036s latency).

PORT STATE SERVICE

30/tcp open http
|_http-methods: GET HEAD POST OPTIONS

Amap done: 1 IP address_(1 host up) scanned in 0.33 seconds

Figure 4.1: RIPS

4.1.3 Test HTTP Strict Transport Security (OTG-CONFIG-007)

Team2 Likelihood: 0
Impact: 0
Risk: 0

Team2		
The webapp is not using Strict Transport Security.		
We found this using <i>Curl</i> .		
It is not complicated to perform a MitM attack to exploit this		
vulnerability.		
A man-in-the-middle attacker attempts to intercept traffic from a		
victim user using an invalid certificate and hopes the user will		
accept the bad certificate.		
Enable Strict Transport Security.		
Our webapp has Strict Transport Security enabled.		

samurai@samurai-wtf:~\$ curl -s -D- 127.0.0.1

HTTP/1.1 200 OK

Date: Fri, **0**1 Jan 2**0**16 1**0:0**6:28 GMT

Server: Apache/2.2.22 (Ubuntu)

Last-Modified: Tue, 26 Jun 2012 09:23:08 GMT

ETag: "a1940-4f-4c35ca5889f57"

Accept-Ranges: bytes Content-Length: 79 Vary: Accept-Encoding Content-Type: text/html

Figure 4.2: RIPS

4.1.4 Test RIA cross domain policy (OTG-CONFIG-008)

Team2 Likelihood: 0
Impact: 0
Risk: 0

Team2		
Observation	There are no RIA applications on the system and therefore is no	
	crossdomain.xml file provided.	
Discovery	Using wget we tried to find a crossdomain.xml or clientaccesspol-	
	icy.xml file and couldn't find it.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results applies for our web application.	

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

4.2 Identity Management Testing

4.2.1 Test Role Definitions (OTG-IDENT-001)

Team2 Likelihood: 10 Impact: 0 Risk: 0

Team2	
Observation	We found out that there exist two different roles in the system.
	There is the role of a normal customer and the role of an banker.
	Employees have the additional functionality to view account and
	transaction details of all the customers. Transactions over 10000
	euro and new user registrations can be accepted by the employee.
Discovery	No special tools except a browser were needed because all the
	roles and their available functions can be seen on the webapp.
	All the roles have the functinalities they are supposed to have.
Likelihood	It is very likely that people find this information.
Impact	There is no direct implication.
Recommendations	N/A
Comparison	Our web application provides the same roles, but the roles are
_	not described on the web page.

4.2.2 Test User Registration Process (OTG-IDENT-002)

Team2 Likelihood: 5
Impact: 5
Risk: 5

	KISK: 3
	Team2
Observation	Any person can register themselves as an user and this registra-
	tion than gets validated by an employee. One person can register
	multiple times and with different roles. There is no proof of
	the identity of a user possible. The identification requirements
	include the email address and username, but only two of these
	can be verified.
Discovery	No special tools are needed to get this information. A browser
	and multiple registration tests provided the necessary results.
Likelihood	It is quite likely that this information can be retrieved by any user
	with minimal experience.
Implication	User could try to register multiple times and with wrong infor-
	mation to get access to user accounts with more permissions or
	to create multiple bank accounts.
Recommendations	The information passed in the registration form should be vali-
	dated. The name can be validated by hand if a customer would go
	to the bank and the employee would than accept his registration.
Comparison	Our web application doesn't require a phone number for the reg-
	istration an the role of the user can be selected in the registration
	form. It doesn't make our application less secure, because the
	registration has still to be accepted by an employee.

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	N
Availability Impact	N

4.2.3 Test Account Provisioning Process (OTG-IDENT-003)

Team2 Likelihood: N/A

Impact: N/A Risk: N/A

Team2	
Observation	Our observation showed us that employees can accept customer registrations.
Discovery	All the observations were made with the <i>Chrome</i> web browser.
Impact	If an employee account gets hacked you can accept new registra-
	tions.
Recommendations	N/A
Comparison	In our web application the employee accepts new registration. It
	makes no difference in the security.

Metric	Value
Access Vector	N/A
Attack Complexity	N/A
Privileges Required	N/A
User Interaction	N/A
Scope	N/A
Confidentiality Impact	N/A
Integrity Impact	N/A
Availability Impact	N/A

4.2.4 Testing for Account Enumeration and Guessable User Account (OTG-IDENT-004)

Team2 Likelihood: 0 Impact: 0

	·	
	Team2	
Observation	We found out that the web application makes no difference be-	
	tween existing usernames and non existing usernames when	
	trying to login with wrong credentials. The same html response	
	and the same response headers are provided by the system.	
Discovery	We used the Charles Web Proxy to analyze the web application	
	responses.	
Implication	N/A	
Recommendations	N/A	
Comparison	Our web application makes no difference between login tries with	
_	existing usernames and non existing ones. Both web applications	
	aren't vulnerable here.	

4.2.5 Testing for Weak or unenforced username policy (OTG-IDENT-005)

Team2 Likelihood: 0

Impact: 0

Team2	
Observation	The usernames should be more than 2 characters.
Discovery	No tool is used here. Trying to sign up with short usernames
	gave us the warning.
Impact	N/A
Recommendations	N/A
Comparison	Our application has no username restriction.

4.3 Authentication Testing

4.3.1 Testing for Credentials Transported over an Encrypted Channel(OTG-AUTHN-001)

Team2	Likelihood: 0
	Impact: 0
	Risk: 0

Team2	
Observation	The webapp uses HTTPS protocol, so all the information is sent
	encrypted through the channel therefore we cannot sniff the data.
Discovery	The website s using an SSL certificate
Likelihood	NA
Impact	NA
Recommendations	
Comparison	Our webapp is using HTTPS, so the data is transported over an
-	encrypted channel.

4.3.2 Testing for default credentials(OTG-AUTHN-002)

Team2 Likelihood: 10

Impact: 4 Risk: 6

Team2	
Observation	There are no default credentials for the webapp.
Discovery	We saw the credentials text file that was given by the other team.
Likelihood	N/A
Impact	N/A
Recommendations	N/A
Comparison	The same goes for our webapp.

4.3.3 Testing for Weak lock out mechanism(OTG-AUTHN-003)

Team2 Likelihood: 0 Impact: 0

	Team2	
Observation	The user is shown redirected from the login page after a 3 failed	
	tries.	
Discovery	We entered the wrong credentials until we had to click the login	
	button to be able to enter the credentials again.	
Likelihood	N/A	
Impact	N/A	
Recommendations	N/A	
Comparison	The same goes for our webapp.	

4.3.4 Testing for bypassing authentication schema (OTG-AUTHN-004)

Team2 Likelihood: NA

Impact: NA Risk: NA

Team2		
Observation	We did not find any possibility to bypass the authentication	
	schema.	
Discovery	N/A	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	Neither we found a possibility in our web app	

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

4.3.5 Testing for Browser cache weakness (OTG-AUTHN-006)

Team2 Likelihood: 0 Impact: NA

Risk: NA

	Nisk. 1971
Team2	
Observation	The web app set the cache-control to no-cache an no-store and
	Pragma to no-cache
Discovery	By checking the <i>about:cache</i> in Firefox we saw the Headers
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	The same goes for our webapp

Metric	Value
Access Vector	NA
Attack Complexity	NA
Privileges Required	NA
User Interaction	NA
Scope	NA
Confidentiality Impact	NA
Integrity Impact	NA
Availability Impact	NA

4.3.6 Testing for Weak password policy (OTG-AUTHN-007)

Team2 Likelihood: 6
Impact: 5
Risk: 5

Team2	
Observation	The registration process does not have a restriction for weak
	passwords. Furthermore the password can contain the username
Discovery	Tested manually the registration process with a one character
	password and the username as password
Likelihood	For every registration process the user has the possibility to
	choose a weak password
Implication	Brute Force is to easy for simple passwords
Recommendations	Introduce password restrictions
Comparison	The same problem we encountered in our webapp

Metric	Value
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	L
Integrity Impact	L
Availability Impact	N

4.3.7 Testing for weak password change or reset functionalities (OTG-AUTHN-009)

Team2 Likelihood: 10

Impact: 8 Risk: 5

	Tubi. 0
	Team2
Observation	The password reset functionality can cause unwanted password
	change or the user to loose access to their account. Since the
	functionality changes the current password to a random one and
	sends an email to the user with the new password.
Discovery	Tested manually to reset the password. An error occurred and
	the email was not send but the password was changed.
Likelihood	It is very high that someone can enter an email address of another
	user and cause change their password without the users request.
Impact	The impact can be quite high especially in case when the email
	with the new password fails to send, the user can loose access to
	his account.
Recommendations	Instead of setting a new random password, sending an email
	with a link where the user can set a new password himself will
	be the best solution.
Comparison	Our webapp sends an email with link to change the password.
	The random number generated for the link is long, so trying to
	brute force it will take a very long time.

Metric	Value : 7.5
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	N
Availability Impact	Н

4.4 Authorization Testing

4.4.1 Testing Directory traversal/file include (OTG-AUTHZ-001)

Likelihood: 0	Team2
Impact: 0	
D: 1 0	

	KISK: U	
	Team2	
Observation	We could not find any path traversals .	
Discovery	We used the <i>dotdotpwn</i> tool to find such traversals with the fol-	
	lowing command:	
	sudo ./dotdotpwn.pl -O -m http -h IP_ADDRESS	
	-O is to get the operating system; -m is to indicate that the protocol	
	is http and -h for the server ip; which gave no results. Afterwards	
	we tried w3af and it did not find anything.	
Likelihood	This is more an additional information for other attacks but it is	
	a good help for attackers to find vulnerabilities faster	
Impact	N/A	
Recommendations	N/A	
Comparison	The results were the same for our webapp.	

4.4.2 Testing for Privilege Escalation (OTG-AUTHZ-003)

Team2 Likelihood: 0 Impact: 0 Risk: 0

	Nisk. 0
Team2	
Observation	It is not possible to escalate privileges of the user.
Discovery	We tried to change the user privilege by changing the user id
	after we saw that they are generated by incrementing from the
	first user ID, using Burp.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	The same results apply for our web application.

4.4.3 Testing for Insecure Direct Object References (OTG-AUTHZ-004)

Team2 Likelihood: 0

Impact: 0 Risk: 0

	Kisk. U	
	Team2	
Observation	It is not possible to retrieve objects belonging to other users or	
	otherwise bypass authorization.	
Discovery	We tried to change the user privilege by changing the user id	
	after we saw that they are generated by incrementing from the	
	first user ID, using <i>Burp</i> .	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results apply for our web application.	

4.5 Session Management Testing

4.5.1 Testing for Bypassing Session Management Schema(OTG-SESS-001)

Team2 Likelihood: 10
Impact: 7
Risk: 7

	Tuon 7
Team2	
Observation	There is no Random Session Token generated, nor any Session
	Time-out functionality. Also there is no cookie configuration.
Discovery	We observed the php code which we were given.
Likelihood	It is very likely that an attacker notices this, since the SessionID
	does not change.
Impact	This can cause a Session Hijack.
Recommendations	Generate random SessionIDs and create a Session Time-out func-
	tionality.
Comparison	Our web app generates random SessionIDs creates a session
	time-out, also set the cookie parameters.

Metric	Value: 6.7
Access Vector	L
Attack Complexity	Н
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

4.5.2 Testing for Cookies attributes(OTG-SESS-002)

Team2Likelihood: 10
Impact: 6

Team2	
Observation	The cookie for the PHP session id has a to general path $("//")$.
	So the application is vulnerable to other web application on the
	same server. They will also get the cookie from the user. The
	HttpOnly is not set also there is no expiration time for the cookie.
Discovery	We used the Firefox Web developer toolbar to analyze the cookie
	attributes.
Likelihood	It is vary easy and straight forward to use this tool so it is highly
	likely for someone to find that out.
Impact	The cookies can be read and used by other web applications that
•	match the path value.
Recommendations	Set the path as tight as possible.
Comparison	Our web app has the all the cookie parameters set, and the
	timeout of the cookie is set to 10 minutes.

Metric	Value : 6.1
Access Vector	L
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	L
Availability Impact	N

4.5.3 Testing for Session Fixation(OTG-SESS-003)

Team2 Likelihood: 9
Impact: 5

	Hox. 0	
Team2		
Observation	The session id is not invalidated and therefore does not change	
	after the user is authenticated. This means an attacker can force a	
	known session id on a user. Once the user is authenticated the	
	attacker can access also as authenticated user	
Discovery	We used <i>ZAP</i> proxy to intercept the traffic.	
Likelihood	This attack is pretty easy and can also be performed by low	
	skilled people	
Implication	The attacker can do everything the user can	
Recommendations	Change the session id after logging in	
Comparison	Our web app generates a new random SessionID after the user	
	logs in.	

Metric	Value: 8.1
Access Vector	N
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

4.5.4 Testing for Exposed Session Variables (OTG-SESS-004)

Team2 Likelihood: 10 Impact: 6

	Kisk. U
Team2	
Observation	The application from Team 2 use SSL certificate and therefore
	the session variables are not accessible during transport. But the
	Session variable is not destroyed after the user logs out.
Discovery	We used the <i>Firefox web developer tools</i> to analyze the cookies. Also
	the Firebug tool and we got the same outcome.
Likelihood	This attack is pretty easy and can also be performed by low
	skilled people
Impact	The attacker can read the session variables and depending on the
	information in them
Recommendations	Remove the cookie after logout.
Comparison	Our application destroys the session after the user logs out.

Metric	Value : 5.9
Access Vector	P
Attack Complexity	L
Privileges Required	N
User Interaction	R
Scope	U
Confidentiality Impact	Н
Integrity Impact	Н
Availability Impact	N

4.5.5 Testing for Cross Site Request Forgery(OTG-SESS-005)

Team2 Likelihood: 10

Impact: 6 Risk: 6

4.5.6 Testing for logout functionality(OTG-SESS-006)

Team2 Likelihood: 4
Impact: 6
Risk: 5

Team2		
Observation	The logout functionallity has been tested an works without any	
	problems. The user gets correctly logged out and pages where au-	
	thentication is needed can't be accessed afterwards. Also reusing	
	the session id does not work. But the application seems to have	
	no automatic logout after a certain amount of time.	
Discovery	We tested the functionallity manually and used the Chrome	
	extension "Advanced Rest Client" to reuse the session cookie	
Likelihood	The only problem is that user sometimes only close the browser	
	tab and than the session continues to exist.	
Impact	An attacker would be logged in if he can access afterwards the	
	computer. Possible scenario Internet cafe or something similar	
Recommendations	implement an automatic server side logout	
Comparison	Our webapp has the same problem that it does not log out after	
	the web browser is closed, but it does log out after 10 minutes of	
	inactivity.	

Metric	Value : 4.6
Access Vector	P
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	Н
Availability Impact	N

4.5.7 Test Session Timeout(OTG-SESS-007)

Team2 Likelihood: 4
Impact: 6
Risk: 7

Team2		
Observation	The application has the timeout of the session set to the browsers	
	session lifetime.	
Discovery	We tested the functionallity manually and used the Chrome	
	developertools to check the cookies.	
Likelihood	The same as for OTG-SESS-006. Public computers are here the	
	biggest problem	
Impact	An attacker is directly authenticated if the session is not ended	
Recommendations	Implement a server side session invalidation and delete the stored	
	data on the client	
Comparison	Our webapp has a session timeout of 10 minutes, which invali-	
	dates the session after 10 minutes of inactivity.	

Metric	Value : 4.6
Access Vector	P
Attack Complexity	L
Privileges Required	N
User Interaction	N
Scope	U
Confidentiality Impact	N
Integrity Impact	Н
Availability Impact	N

4.5.8 Testing for Session puzzling(OTG-SESS-008)

Team2 Likelihood: 0 Impact: 0 Risk: 0

NISK. U		
Team2		
Observation	The application has only one authorization method so a session	
	puzzling is not applicable.	
Discovery	Manually searched	
Likelihood	NA	
Implication	NA	
Recommendations	NA	
Comparison	We provide also only one possibility to login so session puzzling	
-	is not possible	

4.6 Data Validation Testing

4.6.1 Testing for Reflected Cross Site Scripting(OTG-INPVAL-001)

	Likelihood: 8	
Team2	Impact: 5	
	Risk:5	
Team2		
Observation	We observed no reflected cross site scripting vulnerability.	
Discovery	It seems that all parameters are stored in the database before	
	inserting the values in the HTML.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	The same results apply for our web application.	

4.6.2 Testing for Stored Cross Site Scripting(OTG-INPVAL-002)

	Likelihood: 8
Team2	Impact: 5
	Risk:5

	Risk:5		
	Team2		
Observation	We cannot insert javascript code in the webapp.		
Discovery	We tried to insert the following javascript code in the username		
	of the sign up page but there is a restriction in the length of the username to 23 characters therefore it failed.		
	<pre><script>alert("1");</script></pre>		
Likelihood	N/A		
Impact	N/A		
Recommendations	N/A		
Comparison	Our web app does not allow XSS but because we sanitize the		
	input of the user.		

4.6.3 Testing for HTTP Verb Tampering(OTG-INPVAL-003)

Likelihood: 0 Team2 Impact: 0

	Risk: 0
	Team2
Observation	We did not observe any notable behavior.
Discovery	We used a script to automatically test the HTTP methods.
	Methods that were allowed
	• OPTIONS
	• GET
	• POST
	Methods that were rejected
	• TRACE
	• PUT
	• PROPFIND
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	Both webapps have the same allowed methods.

```
samurai@samurai-wtf:Desktop$ ./tet 127.0.0.1
GET HTTP/1.1 200 OK
POST HTTP/1.1 200 OK
PUT HTTP/1.1 405 Method Not Allowed
TRACE HTTP/1.1 405 Method Not Allowed
CONNECT HTTP/1.1 400 Bad Request
OPTIONS HTTP/1.1 200 OK
PROPFIND HTTP/1.1 405 Method Not Allowed
```

Figure 4.3: Results

```
#!/bin/bash
for webservmethod in GET POST PUT TRACE CONNECT OPTIONS PROPFIND;

do
printf "$webservmethod " ;
printf "$webservmethod / HTTP/1.1\nHost: $1\n\n" | nc -q 1 $1 80 | grep "HTTP/1.1"

done
```

Figure 4.4: Script used for testing

4.6.4 Testing for SQL Injection (OTG-INPVAL-005) and Mysql testing (OTG-INPVAL-005)

Team2	Likelihood: 0
	Impact: 0
	Risk: 0

Tubili 0		
Team2		
Observation	We observed that no SQL Injection was possible. Since we knew	
	that the other team had to use Mysql we tested also specifically	
	for Mysql	
Discovery	We tried inserting various SQL statements in the fields of using	
	sqlmap tool and failed, also we did static test of the PHP code	
	using RIPS which did not find any.	
Likelihood	N/A	
Implication	N/A	
Recommendations	N/A	
Comparison	Our web application is also immune to SQL Injections	

Using *RIPS* with verbosity level 1 and vulnerability all server-side we get the above results. The 3 cases of *SQL Injection* are *false-positives*. The input in the query is already set and is not affected by the user input.

The case of file manipulation is *false-positive* since the variables passed as parameters here have nothing to do with user input.

```
Userinput reaches sensitive sink. (Blind exploitation)

• 30: move uploaded file move_uploaded_file($_FILES['fileToUpload']['tmp_name'], $target_file))

7: $target_file = $target_dir . $_SESSION['uid'] . basename($_FILES['fileToUpload']['name']);

6: $target_dir = "uploads/";
```

Figure 4.7: RIPS

Also using the following *sqlmap* command we did not find any SQL Injection possible.

sqlmap -u https://localhost/ex1/securecoding/

Figure 4.5: RIPS

```
Userinput reaches sensitive sink due to insecure usage of mysql_real_escape_string() without quotes

* 46: mysql_query = mysql_query(sprintf("INSERI INTO 'logins' (ipAddr, lockCount)

VALUES ('%s', 1) ON DUBLICATE KEY UPDATE lockCount+1", mysql_real_escape_string(s_SERVER['REMOTE_ADDR']))) or die (mysql_error());
```

Figure 4.6: RIPS

```
[10:53:26] [WARNING] URI parameter '#1*' is not injectable
[10:53:26] [CRITICAL] all tested parameters appear to be not injectable. Try to increase '--level'/'--risk' value s to perform more tests. Also, you can try to rerun by providing either a valid value for option '--string' (or '--regexp')
[10:52:26] [WARNING] UTID organ codes detected during run.
```

Figure 4.8: RIPS

Team3

Using *RIPS* with verbosity level 1 and vulnerability all server-side we get the above results.

Figure 4.9: RIPS

For the *SQL Injection* cases the input data is sanitized before being executed into the queries. So the warnings given by *RIPS* are *false-positive*.

Also using the following *sqlmap* command we did not find any SQL Injection possible.

sqlmap -u https://localhost/SecureCoding-Group3/online_banking/

```
[10:53:26] [WARNING] URI parameter '#1*' is not injectable
[10:53:26] [CRITICAL] all tested parameters appear to be not injectable. Try to increase '--level'/'--risk' value s to perform more tests. Also, you can try to rerun by providing either a valid value for option '--string' (or '--regexp')
```

Figure 4.10: RIPS

4.6.5 Testing for Code Injection, Testing for Local File Inclusion, Testing for Remote File Inclusion(OTG-INPVAL-012)

Team2	Likelihood: 0
	Impact: 0
	Risk: 0
	Team2
Observation	We did not find any vulnerability regarding code injection and
	local or remote file inclusion in our web app. Team 2 we were able
	to upload a file with code but there was no abnormal behavior of
	the web app.
Discovery	Tried to perform a command execution via the backticks (') and
•	also the semicolon (;) in the filename but our webapp correctly
	handled the files without injections. We upload files with code
	written in them but nothing happened.
Likelihood	N/A
Implication	N/A
Recommendations	N/A

4.6.6 Testing for Command Injection(OTG-INPVAL-013)

Team2

The case of command execution is yet again a *false-positive* since the variable entered into the *exec* function is a file. If the file contains malicious user input is another problem, and we have to do the check for that elsewhere.

Figure 4.11: RIPS

Team3

RIPS finds two vulnerabilities for file disclosure and command execution in *application-Download.php*, which are *false-positive* since the variable is taken from the database, the user does not input it directly.

Figure 4.12: RIPS

RIPS finds two vulnerabilities for file disclosure and command execution in *customer.inc.php*, the same case applies here, they are *false-positive* the variables passed on the sensitive functions are not user input.

```
Userinput reaches sensitive sink.

66: file.get_contents %toRash = file_get_contents(%filepath);

* $50: %filepath = _gILES['transactionfile']['tmp_name'];

requires:

9: if(spost)
50: if(suser_SpinBash)

Vulnerability is also triggered in:

C.Users\aure(Desktop\tumer_SpinBash)

Warinput reaches sensitive sink.

* 70: exac %recurn line = exac("./parser_src/upload_parser ". escapeshellary(%filepath) . " ". %user->id . " ". %hash . " . %tanfile . " ". %count, %cutput, %return_var);

70: filepath = & fILES['transactionfile']['tmp_name'];

70: foodsan = %colash . %key;
60: %toRash = %colash . %key;
60:
```

Figure 4.13: RIPS

4.6.7 Testing for Buffer overflow, Testing for Heap overflow, Testing for Stack overflow, Testing for Format string (OTG-INPVAL-014)

Team2	Likelihood: 0
	Impact: 0

Risk: 0

KISK: U	
Team2	
Observation	We did not find any vulnerability regarding buffer overflow, heap
	overflow, stack overflow or string formatting
Discovery	We used w3af to locate such vilnerabilities.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	Our web application is also immune to buffer overflow, heap
	overflow, stack overflow and string formatting

4.6.8 Testing for incubated vulnerabilities(OTG-INPVAL-015)

Team2	Likelihood: 7
	Impact: 7
	Risk: 5

	Tubic o
Team2	
Observation	A part of the XSS injection counts also to this vulnerability thats
	possible on the web app of team 21. Code like the example on
	the owasp page for OTG-INPVAL-015 could exploit the web app
Discovery	We knew that stored XSS is possible so also this attack works and
	someone could hijack an admins account simply by creating an
	user
Likelihood	The attack is pretty easy and the employee only has to view the
	accounts page and if the attacker is a bit skilled the employee
	does not even discover that something was wrong
Implication	The attacker can hijack the session and do all the other things
-	possible with XSS
Recommendations	Validate and escape the user input
Comparison	Our web application has the same vulnerability but there it is a
	lot more restricted. Only really short injection code can be used
	so the possibilities are limited.

4.7 Error Handling

Team2

Team2 provides an error for the transactions using file upload only when the file format is not correct. Every other time when the correct file format is uploaded with incorrect data, the file is accepted even though no transaction is executed.

4.8 Business Logic Testing

4.8.1 Test Business Logic Data Validation(OTG-BUSLOGIC-001)

	Likelihood: 0
Team2	Impact: 0
	Risk:0
Team2	
Observation	Tests show that data validation is both: client side and server
	side.
Discovery	We intercepted the input before it gets send to the server us-
	ing Burp and manipulated the data, and we received an error
	message.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	We got the same result with our application.

4.8.2 Test Number of Times a Function Can be Used Limits(OTG-BUSLOGIC-005)

Team2 Likelihood: 0
Impact: 0
Risk:0

Team2	
Observation	We tried inserting the same tan multiple times.
Discovery	The web application did not accept requests with a TAN that was
	already used.
Likelihood	N/A
Implication	N/A
Recommendations	N/A
Comparison	We got the same result with our application.

4.8.3 Test Upload of Unexpected File Types (OTG-BUSLOGIC-008)

Team2	
Observation	The is no possibility to upload any unexpected file type.
Discovery	We tried to upload different type of files from the one presented
	on the website. There was an error every time the file had different
	extension from the one specified on the website.
Likelihood	N/A
Implication	N/A
Comparison	Our application reacts the same way, it does not allow uploading
_	file types different from the one specified.

4.9 Client Side Testing

We did not do any client-side testing on this website.