UNIVERSITY

	LAB TASK
	COMPUTER NETWORKING
SUBMIT B	/ :
	NAME
	ROLL NO
	DATE -2025
SUBMIT TO	D:

DEPARTMENT OF COMPUTING AND EMERGING TECHNOLOGIES

TABLE OF CONTENT:

TASK 1	PREPARING ETHERNET CABLE
TASK 2	UNDERSTANDING NETWORK COMMANDS
TASK 3	IP ADDRESSING AND SUBNETTING
TASK 4	SUBNETTING SCENARIO
TASK 5	CONFIGURING STATIC ROUTING
TASK 6	
TASK 7	
TASK 8	
TASK 9	
TASK 10	

PREPARING ETHERNET CABLE:

Aim:

To prepare Straight-Through and Crossover Ethernet cables using RJ-45 connectors and Crimping Tool for connecting networking devices.

Apparatus / Tools Required:

Tool / Component Purpose

RJ-45 Connectors Connector for Ethernet cables

Cat-5e / Cat-6 Cable Twisted pair cable for data transmission

Crimping Tool To fix RJ-45 connector to the cable

Cable Stripper / Cutter To remove outer sheath of cable

Cable Tester (optional) To test cable continuity

Theory:

Ethernet cables are used to connect computers, switches, routers, etc., in a local area network (LAN).

There are two common types of Ethernet cables:

- Straight-through cable: Connects different devices (PC to Switch/Router).
- Crossover cable: Connects similar devices (PC to PC, Switch to Switch).

Color coding follows TIA/EIA standards:

- TIA/EIA 568A
- TIA/EIA 568B

	Pin No	T568A Color	T568B Color
1		White/Green	White/Orange
2		Green	Orange
3		White/Orange	White/Green
4		Blue	Blue
5		White/Blue	White/Blue
6		Orange	Green
7		White/Brown	White/Brown
8		Brown	Brown

Procedure:

For Straight-Through Cable:

- 1. Cut a length of Cat-5e/6 cable.
- 2. Strip about 1 inch of outer jacket from both ends.
- 3. Untwist the pairs and arrange the wires in **same order** at both ends:
- 4. Use T568B on both sides (commonly used).
- 5. Trim wires evenly and insert into **RJ-45 connector**.
- 6. Insert connector into **crimping tool** and crimp it tightly.
- 7. Repeat for the other end.
- 8. Use cable tester to verify connectivity.

For Crossover Cable:

- 1. Same steps as above.
- 2. Use T568A on one end, T568B on the other end.
- 3. Crimp and test.

Diagrams:

STRAIGHT THROUGH CABLE:

CROSS OVER CABLES:

RJ 45 CABLE:

Observation:

Cable Type	End A Standard	End B Standard	Status
Straight-Through	T568B	T568B	Working <
Crossover	T568A	T568B	Working <

Result / Conclusion:

The Ethernet cables (Straight-through and Crossover) were successfully prepared using RJ45 connectors and tested for correct pin alignment and connectivity.

UNDERSTANDING NETWORK COMMANDS:

Aim:

To understand and use basic network commands for troubleshooting and analyzing network configuration and connectivity in a computer system.

Apparatus / Tools Required:

Tool/Software Purpose

Computer (Windows/Linux) To execute network commands

Command Prompt / Terminal For entering the commands

Network connectivity

To test live network behavior

Theory:

Network commands help users:

- Check the system's IP address
- Test connectivity to another host
- View routing and DNS information
- Analyze network adapter configuration

These commands are widely used for network troubleshooting and configuration analysis.

Commonly Used Network Commands:

1. ipconfig (Windows) / ifconfig (Linux)

- Shows IP address, Subnet Mask, Default Gateway
 Use:
- ipconfig

2. ping

- Tests reachability of a host on a network Sends ICMP Echo Request and checks replies
- Use:
- ping <u>www.google.com</u>

3. tracert (Windows) / traceroute (Linux)

- Displays **path taken** to reach a destination host Use:
- tracert <u>www.google.com</u>

4. netstat

- Displays **network connections**, routing tables, interface stats Use:
- netstat -an

5. nslookup

- Used to obtain **DNS** server information and IP of domain names Use:
- nslookup <u>www.google.com</u>

6. arp -a

- Shows the ARP table (IP

 MAC Address)
- Use:
- arp -a

Procedure:

- 1. Open Command Prompt (Windows) or Terminal (Linux).
- 2. Type each command listed above and press Enter.
- 3. Observe the output carefully.
- 4. Take note of your IP address, gateway, and DNS server.
- 5. Try pinging a website and observe response time.
- 6. Use tracert to see route taken by packets.
- 7. Record your observations.

Observation Table:

Command	Purpose	Sample Output Data / Status
ipconfig	Shows IP and Gateway	IP: 192.168.1.2
ping	Test connectivity	Replies received 🗸
tracert	Shows packet route	10+ hops shown ✓
netstat	Shows active connections	TCP/UDP ports listed
nslookup	Resolves domain to IP	IP of www.google.com shown
arp -a	Displays MAC to IP mapping	ARP entries listed

Result / Conclusion:

The basic network commands were executed successfully. These commands are essential for diagnosing and troubleshooting network problems.

IP ADDRESSING AND SUBNETTING:

Aim:

To understand **IP addressing**, **classful addressing**, and perform **subnetting** to divide an IP network into multiple subnetworks.

Apparatus / Tools Required:

Tool/Software Purpose

Computer / Notebook For calculation and simulation
Calculator For binary & subnet calculation

Packet Tracer (optional) For visual simulation

Theory:

What is IP Address?

An **IP address** is a 32-bit unique identifier used to identify devices on a network.

Format: xxx.xxx.xxx (e.g., 192.168.1.1)

- Divided into Network and Host parts.
- Belongs to different classes.

IP Address Classes:

Class	Range	Default Subnet Mask	Use Case
A	1.0.0.0 - 126.255.255.255	255.0.0.0	Large networks
В	128.0.0.0 - 191.255.255.255	255.255.0.0	Medium networks
C	192.0.0.0 - 223.255.255.255	255.255.255.0	Small networks

Note: 127.x.x.x is reserved for loopback.

Subnetting:

Subnetting divides a larger network into smaller subnets.

- · Allows better IP management.
- Helps isolate traffic for better performance and security.

Subnetting Example:

Given IP Address: 192.168.10.0

Required Subnets: 4 Step 1: Identify IP Class

- $192 \rightarrow \text{Class C}$
- Default Mask: 255.255.255.0

Step 2: Calculate number of bits needed

• 4 subnets \rightarrow Needs 2 bits (2² = 4)

Step 3: New Subnet Mask

- Add 2 bits to default mask:
 - \rightarrow New mask = 255.255.255.192 or /26 **Step**

4: Subnet Ranges:

Subnet	Network Addres	s First Host	Last Host	Broadcast Address
1	192.168.10.0	192.168.10.1 192	.168.10.62	92.168.10.63
2	192.168.10.64	192.168.10.65	192.168.10.126	192.168.10.127
3	192.168.10.128	192.168.10.129	192.168.10.190	192.168.10.191
4	192.168.10.192	192.168.10.193	192.168.10.254	192.168.10.255

Procedure:

- 1. Identify the class of given IP address.
- 2. Determine the required number of subnets.
- 3. Calculate how many bits to borrow from the host portion.
- 4. Derive the new subnet mask.
- 5. List all subnet ranges (network address to broadcast).
- 6. Identify usable IPs (first to last host).
- 7. Validate with subnetting formula:
 - Total subnets = 2^n (n = bits borrowed) Hosts per subnet = 2^h 2 (h = bits left for host)

Observation Table:

Par	rameter	Value
Given IP Address	192.168.10.0	
Class	C	
Default Subnet Mask	255.255.255.0 (/24)	
Required Subnets	4	
Bits Borrowed	2	
New Subnet Mask	255.255.255.192 (/26) Hosts per Subnet 62	2
usable IPs		

Result / Conclusion:

The IP address 192.168.10.0 was successfully subnetted into 4 subnets using a /26 subnet mask. Each subnet has 62 usable host addresses.

SUBNETTING SCENARIO:

TOPOLOGY:

ADDRESSING TABLE:

DEVICE	INTERFACE	IP ADDRESS	SUBNETT MASK	DEFAULT GTEWAY
R1	Fa0/0	192.168.1.1	255.255.255.0	N/A
R1	Fa1/0	192.168.2.1	255.255.255.0	N/A
R1	Se2/0	10.10.1.1	255.255.255.0	N/A
R2	Fa0/0	192.168.9.1	255.255.255.0	N/A
R2	Fa1/0	192.168.8.1	255.255.255.0	N/A
R2	Se2/0	10.10.2.1	255.0.0.0	N/A
PC0	Fa0/0	192.168.1.9	255.255.255.0	192.168.1.1
PC1	Fa0/0	192.168.2.2	255.255.255.0	192.168.2.1
PC2	Fa0/0	192.168.9.2	255.255.255.0	192.168.9.1
PC3	Fa0/0	192.168.8.2	255.255.255.0	192.168.8.1

Part 1: Design an IP Addressing Scheme

Step 1: Subnet the 192.168.100.0/24 network into the appropriate number of subnets.

a. Based on the topology, how many subnets are needed?

Α-

b. How many bits must be borrowed to support the number of subnets in the topology table?

- A- 3
- c. How many subnets does this create?
- A- 8
- d. How many usable hosts does this create per subnet?
 - A- 30

Note: If your answer is less than the 25 hosts required, then you borrowed too many bits.

Step 2: Assign the subnets to the network shown in the topology.

- a. Assign Subnet 0 to the LAN connected to the GigabitEthernet 0/0 interface of R1: 192.168.1.1
- b. Assign Subnet 1 to the LAN connected to the GigabitEthernet 0/1 interface of R1: 192.168.2.1
- c. Assign Subnet 2 to the LAN connected to the GigabitEthernet 0/0 interface of R2: 192.168.9.1
- d. Assign Subnet 3 to the LAN connected to the GigabitEthernet 0/1 interface of R2: 192.168.8.1

Part 2: Assign IP Addresses to Network Devices and Verify Connectivity

- Step 1: Configure IP addressing on R1 LAN interfaces.
- Step 2: Configure IP addressing on S3, including the default gateway.
- Step 3: Configure IP addressing on PC4, including the default gateway.

COMPLETE

CONFIGURING STATIC ROUTING:

TOPOLOGY:

ADDRESSING TABLE:

DEVICE	INTERFACE	IP ADDRESS	SUBNETT MASK	DEFAULT GTEWAY
R1	Fa0/0	192.168.12.1	255.255.255.0	N/A
R1	Fa1/0	192.168.22.1	255.255.255.0	N/A
R1	Se2/0	10.10.0.1	255.255.255.0	N/A
R2	Fa0/0	192.168.90.1	255.255.255.0	N/A
R2	Fa1/0	192.168.80.1	255.255.255.0	N/A
R2	Se2/0	10.10.0.1	255.0.0.0	N/A
PC0	Fa0/0	192.168.12.9	255.255.255.0	192.168.12.1
PC1	Fa0/0	192.168.22.2	255.255.255.0	192.168.22.1
PC2	Fa0/0	192.168.90.2	255.255.255.0	192.168.90.1
PC3	Fa0/0	192.168.80.2	255.255.255.0	192.168.80.1

Objectives

Part 1: Examine the Network Requirements

Part 2: Design the VLSM Addressing Scheme

Part 3: Assign IP Addresses to Devices and Verify Connectivity Part

1: Examine the Network Requirements:

Step 1

Q: How many subnets are needed in the network topology?

A: 5 subnets are needed (Sw1, Sw2, Sw3, Sw4, and the point-to-point link between RemoteSite1 and Remote-Site2).

Step 2

 ${\bf a.\ Which\ subnet\ mask\ will\ accommodate\ the\ number\ of\ IP\ addresses\ required\ for\ Sw1?}$

A: /27

How many usable host addresses will this subnet support?

A: 30 usable hosts

b. Which subnet mask will accommodate the number of IP addresses required for Sw2?

A: /27

How many usable host addresses will this subnet support?

A: 30 usable hosts

c. Which subnet mask will accommodate the number of IP addresses required for Sw3?

A: /28

How many usable host addresses will this subnet support?

A: 14 usable hosts

d. Which subnet mask will accommodate the number of IP addresses required for Sw4?

A: /28

How many usable host addresses will this subnet support?

A: 14 usable hosts

e. Which subnet mask will accommodate the number of IP addresses required for the connection between Remote-Site1 and Remote-Site2?

A:/30

How many usable host addresses will this subnet support?

A: 2 usable hosts

Part 2: Design the VLSM Addressing Scheme

Step 1:Divide the 172.31.103.0/24 network based on the number of hosts per subnet.

- a. Use the first subnet to accommodate the largest LAN.
- b. Use the second subnet to accommodate the second largest LAN.
- c. Use the third subnet to accommodate the third largest LAN.
- d. Use the fourth subnet to accommodate the fourth largest LAN.

e. Use the fifth subnet to accommodate the connection between **Remote-Site1** and **Remote-Site2**.

Step 3: Document the addressing scheme.

- a. Assign the first usable IP addresses to Remote-Site1 for the two LAN links and the WAN link.
- b. Assign the first usable IP addresses to Remote-Site2 for the two LANs links. Assign the last usable IP address for the WAN link.
- c. Assign the second usable IP addresses to the switches.
- d. Assign the last usable IP addresses to the hosts.

Part 3: Assign IP Addresses to Devices and Verify Connectivity

Most of the IP addressing is already configured on this network. Implement the following steps to complete the addressing configuration.

- Step 1: Configure IP addressing on Remote-Site1 LAN interfaces.
- Step 2: Configure IP addressing on Sw3, including the default gateway. Step
- 3: Configure IP addressing on User-4, including the default gateway.\

Step 4: Verify connectivity.

You can only verify connectivity from Remote-Site1, Sw3, and User-4. However, you should be able to ping every IP address listed in the Addressing Table.

COMPLETE

Lab Task:06

RIP Configuration in Routers

Objective:

To configure **RIP** (**Routing Information Protocol**) on two routers and verify that routes are exchanged dynamically between them for successful communication between hosts.

Required Materials:

- 2 Routers (with Serial and Ethernet interfaces)
- 2 Computers (Windows XP)
- 2 Straight-through Ethernet cables
- 1 Crossover Ethernet cable
- 1 Serial cable
- 2 Console cables
- Access to Command Prompt on H1 and H2
- Access to router configuration mode (CLI) **IP Address Table:**

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	FastEthernet0/0	192.168.1.1	255.255.255.0	_
R1	Serial0/0/0	10.0.1.2	255.0.0.0	
R2	Serial0/0/0	10.0.1.1	255.0.0.0	_
R2	FastEthernet0/0	192.168.2.1	255.255.255.0	_
H1	_	192.168.1.2	255.255.255.0	192.168.1.1
H2	_	192.168.2.2	255.255.255.0	192.168.2.1

Procedure / Steps:

Step 1: Build the Network

- Connect routers, switches, and hosts as shown in the topology.
- Use correct cable types for each connection.

Step 2: Configure Hosts

- **Host H1** IP: 172.16.0.2, Mask: 255.255.0.0, Gateway: 172.16.0.1
- **Host H2** IP: 172.18.0.2, Mask: 255.255.0.0, Gateway: 172.18.0.1

Step 3: Configure Routers

```
R1(config-if) #ip address 192.168.1.1255.255.255.0
R1(config-if) #no shutdown R1(config) #interface
s0/0/0
R1(config-if) #ip address 10.0.1.2 255.0.0.0
R1(config-if) #no shutdown

R2(config) #hostname R2
R2(config) #interface fa0/0
R2(config-if) #ip address 192.168.2.1 255.255.255.0
R2(config-if) #no shutdown
R2(config-if) #no shutdown
R2(config-if) #ip address 10.0.1.1 255.0.0.0 R2(config-if) #no shutdown
```

Step 4: Check Initial Routing Table (Before RIP)

• Use: show ip route

Q1: What does "C" mean?

C = Directly connected network.

Q2: Is R2's network visible in R1's table?

No, because RIP is not configured yet.

Step 5: Configure RIP v2

```
R1(config) #router rip
R1(config-router) #version 2
R1(config-router) #network 192.168.1.0
R1(config-router) #network 10.0.1.0

R2(config) #router rip
R2(config-router) #version 2
R2(config-router) #network 192.168.2.0
R2(config-router) #network 10.0.1.0

Save configs: copy running-config
startup-config
```

Step 6: Verify Routing Tables

On R1: show

ip route

Q3: What networks are shown? 192.168.1.0, 192.168.2.0, 10.0.1.0

Q4: What does "R" mean?

Learned via RIP

Q5: What does "via 192.168.1.2" mean?

It is the next-hop router IP

Q6: What does "Serial0/0/0" mean?

The interface through which the route is learned

Step 7: Test Connectivity

- From **R1**: ping 102.168.1.1
- From **H1**: ping 192.168.1.2

Are pings successful?

Yes

Q7: Why are they successful now?

Because RIP exchanged routing info between routers.

Step 8: Debug RIP

debug ip rip

Check RIP updates between routers. Then turn off debugging: undebug

all

Q8: What interface does R1 send/receive updates on? Serial0/0/0

Q9: Why is metric 1 for 192.168.1.0 and metric 2 for 191.168.2.0? 192.168.1.0 is directly connected; 192.169.2.0 is 1 hop away.

Step 9: Reflection

Q10: What happens if R2's Ethernet goes down?

R1 will remove 192.168.1.0 from its routing table.

Q11: What if R1 runs RIPv1 and R2 runs RIPv2?

They won't communicate correctly; RIPv1 do esn't support subnet info or multicasting.

