

$$A = \pi (r^2)$$

$$A = d^2 (.7854)$$

$$C = \pi d$$

Sphere

Area of a Surface =
$$4 \pi r^2$$

$$V = \frac{4 \pi r^2}{3} \text{ or } \frac{\pi d^2}{6}$$

Cone

$$A = \pi r \sqrt{r^2 + h^2}$$

$$V = \frac{\pi r^2 h}{3}$$

Circular Segment

$$A = .5 [rl - c(r - h)]$$

where $l = .01745 r \varnothing$

Cylinder

$$A = 2 \pi r 1$$

$$V = \pi r^2 1$$

Spherical Segment

Area of spherical surface = $2 \pi r h$

$$V = \pi h^2(r - \frac{h}{3})$$

Ellipse

$$A = \pi dD$$

Paraboloid

$$V = \frac{\pi r^2 l}{2}$$

Frustrum of a Cone

$$A = \pi s (R + r)$$

$$V = \frac{\pi h}{3} (R^2 + Rr + r^2)$$

Paraboloid

$$A = \frac{21r}{3}$$

Parallelogram

Triangles

$$A = \frac{bh}{2}$$

Pyramid

$$V = \frac{N s r h}{6}$$

A =the sum of the areas of the sides

Trapezium

$$A = \frac{(H+h) a + bh + cH}{2}$$

Circular Section

$$A = \frac{r \, l}{2}$$

$$1 = \frac{\pi r \varnothing}{180}$$

$$A = \frac{h(a+b)}{2}$$

