Kryptografia i kryptoanaliza

Laboratorium 3

Michał Łaskawski

Zadanie 1

Zrealizować program implementujący podstawieniowy algorytm szyfrowania.

- 1. Wybrać fragment tekstu w języku angielskim.
- 2. Usunąć z niego wszystkie znaki nie będące literami (ograniczenie do 26 liter alfabetu łacińskiego).
- 3. Zaszyfrować tekst używając wybranego w sposób losowy klucza (tablicy podstawień): permutacji $\hat{\pi}$.

Zadanie 2

Mając do dyspozycji, otrzymany w ramach pierwszego zadania szyfrogram, dokonać ataku na zaimplementowany kryptosystem wykorzystując Algorytm 1:

Opis algorytmu - postać ogólna:

- Rozpocznij od początkowego przypuszczenia $\hat{\pi}$ dla permutacji dekodowania;
- Dla $\hat{\pi}$ oblicz wiarygodność: Pl $(\hat{\pi})$ na zaszyfrowanym tekście;
- Powtórz następujące kroki dla wystarczającej liczby iteracji:
 - Zamień losowo $\hat{\pi}$ poprzez zamianę dwóch symboli z permutacji $\hat{\pi}$; nowa permutacja jest oznaczana jako $\hat{\pi}'$
 - Oblicz wiarygodność dla $\hat{\pi}'$: Pl $(\hat{\pi}')$
 - * Jeśli $Pl(\hat{\pi}') > Pl(\hat{\pi})$, to zachowaj $\hat{\pi}'$
 - * W przeciwnym przypadku zachowaj $\hat{\pi}'$ z prawdopodobieństwem $\frac{Pl(\hat{\pi}')}{Pl(\hat{\pi})}$ oraz $\hat{\pi}$ z prawdopodobieństwem $1 \frac{Pl(\hat{\pi}')}{Pl(\hat{\pi})}$

Uwagi:

- 1. $\hat{\pi}$ permutacja klucza (tablicy podstawień).
- 2. Pl $(\hat{\pi})$ funkcja wiarygodności zdefiniowana: Pl $(\hat{\pi}) = \prod_{i,j} (M_{i,j})^{\hat{M}_{i,j}}$.
 - M macierz bigramów utworzona na bazie tekstu referencyjnego, $M_{i,j}$ liczba wystąpień pary (i,j) w tekście referencyjnym.
 - \hat{M} macierz bigramów utworzona na bazie szyfrogramu, $\hat{M}_{i,j}$ liczba wystąpień pary (i,j) w szyfrogramie.
- 3. Dla danej permutacji $\hat{\pi}$, rozkład prawdopodobieństwa $q_{\hat{\pi}\hat{\pi}'}:\hat{\pi}'\in\chi$ jest zdefiniowany w następujący sposób:
 - $q_{\hat{\pi}\hat{\pi}'} = \frac{1}{26^2}$ jeśli przejście od $\hat{\pi}$ do $\hat{\pi}'$ może być dokonane przez losową zamianę dwóch wartości, oraz
 - $q_{\hat{\pi}\hat{\pi}'} = 0$ w przeciwnym przypadku.

gdzie: χ to przestrzeń stanów wszystkich możliwych kluczy, które odpowiadają wszystkim możliwym permutacjom, w rozważanym przypadku wszystkich możliwych permutacji jest 26!.

- 4. Algorytm, na bazie funkcji wiarygodności, wygeneruje sekwencję kluczy deszyfrujących: $\{X_t: t=0,\ldots,T\}$.
- 5. Jeśli $U(\{1,2,\ldots,26\})$ oznacza dyskretny rozkład jednostajny na liczbach całkowitych od 1 do 26, to ostatecznie implementacja algorytmu dla szyfru podstawieniowego przyjmuje postać:

Rysunek 1 przedstawia przykład macierzy bigramów dla tekstu referencyjnego:

Algorithm 1 MH

```
1: t \leftarrow 0
 2: X_0 \leftarrow \hat{\pi}_0
 3: for t = 1, ..., T do
            dla X_t \leftarrow \hat{\pi}
            wygeneruji,j \sim U(\{1,2,\dots,26\})
                                                                                                                                                       \triangleright \simznaczy ma rozkład
 5:
            wygeneruj \hat{\pi}'
                                                                                                \trianglerightzamieniając znaki na pozycjach iorazjw kluczu \hat{\pi}
 6:
            wygeneruj n
\rho(\hat{\pi}, \hat{\pi}') \leftarrow \frac{\text{Pl}(\hat{\pi}')}{\text{Pl}(\pi)}
wygeneruj u \sim U([0, 1])
                                                                                                                              \triangleright \rho - prawdopodobieństwo akceptacji
 7:
 8:
            if u \leq \rho(\hat{\pi}, \hat{\pi}') then
 9:
                   X_{t+1} \leftarrow \hat{\pi}'
10:
            else
11:
12:
                   X_{t+1} \leftarrow \hat{\pi}
            end if
13:
14: end for
```


Rysunek 1: Macierz bigramów