Ceng352 - Database Management Systems Written Assignment 2

Spring 2019

Q1 Transactions T1, T2, T3 are to be run concurrently. The following table gives details of the proposed schedule of read/write operations and the time when each such operation is scheduled.

Time	T1	T2	Т3
1		read(C)	
2	read(A)		
3	write(A)		
4		read(A)	
5			read(B)
6			write(B)
7		write(A)	
8		write(C)	
9	write(B)		
10			commit
11		commit	
12	commit		

When answering the following questions, indicate shared locks by s_i and exclusive locks by x_i where i is the transaction number. Also indicate the operations of transactions as $R_i(X)$ and $W_i(X)$ for read and write operations respectively where i is the transaction number and X is a data item.

(a) Describe how the **strict two-phase locking with deadlock detection** would handle the schedule by filling in the following table.

Operation	Given LOCKS on data items			Wait for graph	
Operation	A	В	С	wait for graph	

(b) Describe how the **strict two-phase locking with wound wait deadlock prevention** would handle the schedule. Assume that TS(T1) = 1, TS(T2) = 2, TS(T3) = 3.

Operation	Given LOCKS on data items			Wait for graph	
Operation	A	В	С	wan ioi grapii	

Q2 Consider the schedule H below. The symbol $r_i(x)$ stands for a read by transaction Ti to item x and $w_i(x)$ stands for a write by Ti to item x. Suppose **timestamp-based** scheduler is used as the concurrency control protocol.

$$H: r_1(A)r_2(B)w_1(C)r_3(B)r_3(C)w_2(B)w_3(A)$$

Describe what happens as each operation below executes if

(a)
$$TS(T1) = 1$$
, $TS(T2) = 2$, $TS(T3) = 3$

(b)
$$TS(T1) = 1$$
, $TS(T2) = 3$, $TS(T3) = 2$

Justify whether each operation is accepted or rejected, and show how the RTS and WTS timestamps of the data items are updated in each step.

Note: If an access is rejected, its parent transaction is aborted; so you can ignore (remove from the schedule) all the subsequent accesses by that transaction)

(a)
$$TS(T1) = 1$$
, $TS(T2) = 2$, $TS(T3) = 3$

Operation	A		В		С	
	RTS	WTS	RTS	WTS	RTS	WTS

(b)
$$TS(T1) = 1$$
, $TS(T2) = 3$, $TS(T3) = 2$

Operation	A		В		C	
	RTS	WTS	RTS	WTS	RTS	WTS