

5
1
3 9
4
8
7 +
1 2

RETURN TO QA
CALIBRATION AREA

QA
mii
21

INSTRUCTION MANUAL
SERIES X-2
DIGITAL VOLTMETER

non-linear systems, inc.

8 7
5 9
3 1
4 +
6 2
7
8 + 3
5
2
5 1
7
9 4
3

non | linear
systems, inc.
The NLS logo is a circular emblem containing the letters "NLS" in a stylized font.

DEL MAR, CALIFORNIA

1
3
5
6
+

Document No. 837B
Revised July 1967

INSTRUCTION MANUAL
SERIES X-2
DIGITAL VOLTmeter

Originator of the Digital Voltmeter
non-linear systems, inc.
DEL MAR, CALIFORNIA

MODIFICATION DATA

The Series X-2 Digital Voltmeter (S/N X-2.463 and Subsequent) differs from the Series X-2 DVM, described in this manual, in the following respects:

1. Power Requirements: 115 or 230 VAC, 50 - 420 Hz, $\pm 10\%$.
2. The ventilating fan has been removed.
3. Substitute the following schematic diagrams for those in the manual:

UTILIZE	DESCRIPTION	DELETE
37-272	Reference Assembly	37-36
37-275	Attenuator Assembly	37-39
37-278	Ohms Converter and Pre-amp Assembly	37-42
37-281	AC Converter Assembly	
37-298	Main Board Assembly	37-72 & 37-105

ERRATA

Pin 29, J13 - Main Board Assembly Schematic - 37-72, 37-105 & 37-298
is -PULSE

Pin 33, J13 - Main Board Assembly Schematic - 37-72, 37-105 & 37-298
is +PULSE

CAUTION

WHEN THE INSTRUMENT DESCRIBED IN THIS MANUAL
IS INSTALLED IN A SERIES X-1-TYPE OUTER CHASSIS
(FOR SYSTEM APPLICATION), REMOVE CABLE CON-
NECTIONS PRIOR TO REMOVING THE INSTRUMENT
DRAWER ASSEMBLY FROM THE CHASSIS. FAILURE TO
OBSERVE THIS PRECAUTION MAY CAUSE DAMAGE TO
CABLE AND INSTRUMENT CONNECTORS.

Originator of the Digital Voltmeter
non-linear systems, inc.
DEL MAR, CALIFORNIA

TABLE OF CONTENTS

Chapter	Title	Page
I	INTRODUCTION AND SPECIFICATIONS	1-1
	Optional Function Accessories	1-1
	General	1-1
	Operating Principle	1-1
	Digital Output	1-1
	Floating Input	1-1
	Common Mode Rejection	1-1
	Procedure to Determine CMR	1-2
	Specifications	1-2
II	INSTALLATION AND OPERATION	2-1
	Unpacking	2-1
	Mounting	2-1
	Power Source	2-1
	Fusing	2-1
	Power Grounding	2-1
	Connectors (S/N's X-2.1 thru X-2.156)	2-1
	Connectors (S/N's X-2.157 & subsequent)	2-2
	Cable Connections	2-2
	Controls	2-2
	Power Switch (S/N's X-2.1 thru X-2.156)	2-2
	Power Switch (S/N's X-2.157 & subsequent)	2-2
	Range Switch	2-4
	Function Switch	2-5
	Offset Controls	2-5
	Digital Readout	2-5
III	CALIBRATION	3-1
	Scope	3-1
	DC Voltage Calibration	3-1
	Equipment Required	3-1
	Initial Preparation	3-1
	Procedure	3-1
	Reference Adjustment	3-1
	Zero Offset Adjustment	3-2
	10-Volt Range Calibration for Positive Input	3-2
	10-Volt Range Calibration for Negative Input	3-4
	100-Volt Range Calibration	3-4
	1000-Volt Range Calibration	3-5
	AC Converter Calibration	3-5

TABLE OF CONTENTS (CON'T)

Chapter	Title	Page
III	CALIBRATION (Continued)	
	Additional Equipment Required	3-5
	Initial Preparation	3-5
	Procedure	3-5
	Ohms Converter and Pre-amplifier Calibration	3-6
	Additional Equipment Required	3-6
	Initial Preparation	3-6
	Procedure	3-6
IV	MAINTENANCE	4-1
	Digital Readout Replacement	4-1
	Fan Lubrication	4-1
V	RECOMMENDED SPARE PARTS LIST	5-1
	APPENDIX	A-1

LIST OF TABLES

Number	Title	Page
I	Measurement Capabilities	2-5

LIST OF ILLUSTRATIONS

Figure	Title	Page
1-1	Connections to Determine CMR	1-3
1-2	Series X-2 DVM Outline Drawing	1-3
2-1	Power Plug Pin Coding	2-2
2-2	Front Views	2-3
2-3	Rear Views	2-3
2-4	Input Connections	2-4
3-1	Cover Removal	3-2
3-2	Location of Major Subassemblies and Adjustment Points	3-3
3-3	Reference Adjustment	3-4
4-1	Block Diagram Series X-2 DVM	4-2
4-2	Simplified Diagram, Auto-ranging	4-3
4-3	Simplified Diagram, Reference Supply	4-4
4-4	Simplified Diagram, Series X-2 Input - Integrator with Resetter Circuitry and Temperature Compensation Potentiometers	4-5
4-5	Simplified Diagram, AC Converter	4-6
4-6	Simplified Diagram, Pre-Amplifier	4-7

LIST OF ILLUSTRATIONS (CONT)

Figure	Title	Page
4-7	Simplified Diagram, Ohms Converter	4-7
4-8	Type SN 7490N Decade Counter	4-8
4-9	Type SN7473N Dual J-K Master-Slave Flip-Flop	4-8
4-10	Type SN7474N Dual D-Type Edge-Triggered Flip-Flop	4-9
4-11	Type SNX7441N BCD-to-Decimal Decoder/Driver	4-9
4-12	Type SN7472N JK Master-Slave Flip-Flop	4-10
4-13	Type SN7400N Quadruple 2-Input Positive Nand Gate	4-10
4-14	Type SN7430N 8-Input Positive Nand Gate	4-10
4-15	Type SN7475 N Quadruple Bistable Latch	4-11

LIST OF SCHEMATIC DIAGRAMS

37-30, "B" Chg.	Decade Assembly (S/N's X-2. 1 thru X-2. 150)
37-30, "D" Chg.	Decade Assembly (S/N's X-2. 151 thru X-2. 301)
37-36	Reference Assembly
37-39	Attenuator Assembly
37-69	Start/Stop Assembly
37-72	Main Board and Power Supply Assembly (S/N's X-2. 1 thru X-2. 156)
37-105	Main Board and Power Supply Assembly (S/N's X-2. 157 & subsequent)
37-160	Decade Assembly (S/N's X-2. 302 & subsequent)

OPTIONAL ACCESSORIES

37-33	Start/Stop & Auto Range Assembly
37-42	Pre-Amplifier & KΩ/DC Converter Assembly
37-45	AC/DC Converter Assembly (10K Hz)
37-77	AC/DC Converter Assembly (100K Hz)
37-89	Print Board Assembly

CHAPTER I

INTRODUCTION AND SPECIFICATIONS

The NLS Series X-2 Digital Voltmeter is a three-range, four-digit instrument with automatic polarity and with provisions for 20% over-ranging on the two lowest ranges. An automatic ranging feature is offered as an option. The instrument may be used as a bench model or, with the use of rack-mounting adapters, may be rack-mounted in a standard 19-inch mounting rack.

OPTIONAL FUNCTION ACCESSORIES

In addition to measuring DC voltages, the Series X-2 DVM is capable of measuring AC voltages, millivolts and ohms. These extra features may be obtained by utilizing optional plug-in modules. A K Ohms converter/pre-amplifier provides ohms and millivolt measurements and one of two types of AC converters (50 Hz to 10K Hz or 50K Hz to 100K Hz) provides AC voltage measurement.

GENERAL

The Series X-2 Digital Voltmeters are solid state integrating instruments that measure the absolute value of DC voltages or the integral of varying voltages. In these instruments the unknown input voltage is converted to a pulse train whose repetition rate is directly proportional to input voltage magnitude. The total number of pulses generated over a clocked 0.1 second interval is counted electronically and displayed as the voltage value.

OPERATING PRINCIPLE

An input of 10 volts to the instrument creates 10,000 pulses in 0.1 second; this is displayed as 10.000 volts. If the input

voltage changes during the measuring interval, the pulse repetition rate changes proportionately, and the total number of pulses that occurs during the 0.1 second sample period is a measure of the number of volt-seconds at the input. Since these instruments mathematically integrate the input voltage, they are useful for obtaining the velocity from a voltage which is proportional to acceleration. In addition, these instruments are inherently able to reject sinusoidal ripple because the integrated value of an integral number of sine waves is zero. Therefore if an integral number of cycles of sine wave noise occurs during the 0.1-second sampling interval, its contribution to the overall reading is "integrated out".

DIGITAL OUTPUT

Beginning with serial number X-2.157, the instrument possesses a printout and remote triggering capability for operation with data printers, tape punches, typewriters and other recording devices. For printout, the Print Board Assembly, with pendant cable and connector, is offered as an option.

FLOATING INPUT

Because input signal leads may be disconnected from the Series X-2's outer chassis (by removing a shorting strap between J5 and J6 on the rear of the instrument), signal-to-chassis potentials up to 500 volts are permissible. Floating input adds to the DVM's versatility by permitting it to measure voltage sources which could not be accurately measured by a non-isolated meter.

COMMON MODE REJECTION

Rejection of common-mode signals, those

caused by AC or DC currents flowing between signal source ground and instrument chassis ground is a feature of the Series X-2 DVM. (To obtain CMR, the shorting strap described in the above paragraph must be removed.) Common-mode signal rejection is important in a wide range of applications - testing complex electrical and electronic systems, in automatic measuring systems, and measuring outputs from thermocouples, strain gages and other transducers where common-mode signals may be many times greater than the measured DC voltage.

PROCEDURE TO DETERMINE CMR

1. Turn the X-2 DVM on and allow 30 minutes for warm-up.
2. Remove shorting strap between J5 and J6.
3. Connect DVM to signal source and common-mode source as shown in Figure 1-1. Signal source is preferably a series string of three or four 1.5V batteries (flashlight cells or 1.3V mercury cells). To obtain an accurate measurement of CMR, the source resistance of the signal source should be less than 10 ohms. The output of a variac, connected as shown in Figure 1-1, will adequately provide the required common-mode source.
4. Set variac to zero volts then advance variac in voltage until a one digit "bobble"

is observed in the least significant decade then, back off variac until "bobble" just stops. Measure the variac output with an AC voltmeter and convert to peak-to-peak voltage.

5. To obtain rejection ratio, divide peak-to-peak common voltage by 1 MV.

$$\text{Common-mode rejection ratio} = \frac{E_{p-p}}{10^{-3}}$$

$$DB = 20 \log \frac{E_{p-p}}{10^{-3}}$$

$$DB = 20 \log 1,000 E_{p-p}$$

6. For example, if the common-mode voltage is 3.5V

$$E_{p-p} = 3.5 \times 2.828$$

$$E_{p-p} = 10V \text{ and}$$

$$DB = 20 \log 1,000 \times 10$$

$$DB = 20 \log 10^4$$

$$DB = 20 \times 4 = 80$$

$$\text{Common-mode rejection} = 80 \text{ DB}$$

The NLS Sales Representative or Engineering Department will be pleased to assist you with specific application problems and, of course, will gladly welcome your comments and suggestions.

SPECIFICATIONS

CIRCUITRY: All solid state.

ANALOG-TO-DIGITAL

CONVERSION: Bi-polar integrator.

FULL SCALE DC RANGES: $\pm 9.999, \pm 99.99, \pm 999.9$ with 20% over-range on the two lower ranges.

Figure 1-1. Connections to Determine CMR

Figure 1-2. Series X-2 DVM Outline Drawing

ACCURACY AT ASA	
REFERENCE CONDITIONS:	±0. 01% of full scale ±0. 02% of reading.
RESOLUTION:	One digit.
RESPONSE TIMES:	Voltage-to-Frequency Converter Settling Time - 100 MS (with filter). Digitizing Time - 100 MS. Range Selection Time - 100 MS.
INPUT RESISTANCE:	10 megohms, constant all ranges, except when 20% over-range is exceeded.
COMMON MODE REJECTION:	100 DB @ DC; 80 DB @ 60 Hz ± 1KΩ unbalance
RANGE SELECTION:	Manual or Automatic/Manual (see options).
POLARITY SELECTION:	Automatic.
INPUT CONNECTIONS:	Front and rear. Input may be floated ±500 volts above chassis by removing shorting strap from rear input connectors.
AMBIENT TEMPERATURE:	Extreme - 12° C to 50° C.
POWER REQUIREMENTS:	105/125 VAC, 50/60 Hz.
MOUNTING POSITION:	Any.
WEIGHT:	12 pounds
SIZE:	5-1/4 inches (excluding feet and handle) x 8-7/16 inches x 16-3/8 inches.
OPTIONS AVAILABLE:	Automatic ranging.
ACCESSORIES AVAILABLE:	AC/DC Converters K Ohms/DC Converter and Pre-Amplifier Print Board Assembly - BCD 8-4-2-1 Logic "0" = 0 volt to +0. 5 volt, Logic "1" = +3 volts ±0. 1 volt Rack Mounting Adapters
AC/DC Converter, Types I and II for X-2	
RANGES; including 20% over-range	1. 1999/11. 999 119. 99 & 500. 00 VAC
FREQUENCY RESPONSE	10K Hz 100K Hz Lower frequency converters are available on special order. The 10K Hz converter is usable to 30K Hz in the manual ranging mode

ACCURACY: 10K Hz	0.05% reading + 0.02% FS, 200 Hz to 3K Hz, 1000 VAC 0.1% reading + 0.05% FS, 50 Hz to 200 Hz and 3K Hz to 10K Hz, 1000 VAC 30 Hz accuracy is typically 0.3%	
100K Hz	Same as 10K Hz, plus: 0.3% reading + 0.1% FS, 10K Hz to 30K Hz, 500 VAC 0.5% reading + 0.1% FS, 30 K Hz to 100K Hz, 150 VAC	
RESPONSE TIME	600 milliseconds to 0.1% of final value	
INPUT IMPEDANCE	One megohm, shunted by 100 PF	
RANGING	Automatic and manual	
ACCURACY	Ohms/DC Converter	
$\pm 0.01\%$ FS and $\pm 0.02\%$ reading (1K Ω , 10K Ω , 100K Ω and 1000K Ω ranges)	Four Digit	Maximum Current
$\pm 0.01\%$ FS $\pm 0.1\%$	1. 1999K Ω 11. 999K Ω 119. 99K Ω 1199. 9K Ω	10 MA 1 MA 100 μ A 10 μ A
STABILITY	11, 999. K Ω	1 μ A
RESPONSE TIME	0.05% full scale for at least 90 days on all ranges	
RANGING	100 milliseconds for step response. 200 milliseconds for step response with range change. 700 milliseconds on 10 megohm range	
INPUT CONFIGURATION	Automatic and manual (Manual only 10,000K Range)	
RANGES X10 X100	Two wire with voltage protection	
ACCURACY X10 X100	Automatic Ranging DC Preamplifier	
GAIN STABILITY	± 000.1 MV to ± 1199.9 MV	
ZERO STABILITY	± 00.01 MV to ± 119.99 MV	
INPUT IMPEDANCE	$\pm 0.02\%$ reading and $\pm 0.01\%$ Full Scale	
RESPONSE TIME	$\pm 0.05\%$ reading and $\pm 0.05\%$ Full Scale	
	0.01% for at least 30 days	
	Drift does not exceed $\pm 50\mu$ V or ± 5 digits, whichever is greater, for at least seven days at constant temperature.	
	Greater than 100 megohms	
	500 MS for step response to 0.01%	

Specifications are Subject to Change Without Notice

CHAPTER II

INSTALLATION AND OPERATION

UNPACKING

The instrument is shipped in a heavy cardboard container. Cut the tape on the top of the container and open. If damage is seen, promptly notify the carrier.

MOUNTING

The instrument was primarily designed as a bench instrument, however, three types of mounting adapters for mounting in a standard 19-inch mounting rack are available at customer's option. One type may be obtained with an additional drawer for storage of tools, spare parts, etc; a second type will accommodate two Series X-2 DVM's; and the third type is a 19-inch front panel attached to the instrument.

CAUTION

Do not operate the instrument before ensuring that each plug-in board is firmly in place. Failure to take this precaution may cause damage to components on the board assemblies.

POWER SOURCE

The instrument is usually supplied for operation from 110-120-volt, 50-60 Hz, single phase power sources. However, the instrument will operate from 220-230-volt, 50-60 Hz, single phase sources if the two primaries of the power transformer are wired in series instead of parallel. The ventilating fan must be rated at the correct voltage (some modified instruments with S/N's between X-2.1 and

X-2.157 have a ventilating fan; all instruments with S/N's X-2.157 and subsequent were shipped from the factory with a ventilating fan). The Serial No. tag at the rear of the instrument indicates the correct power source if other than 110-120 volts or 50-60 Hz.

FUSING

The instrument is protected by a 3AG one-half ampere fuse which is located in an extractor post on the rear panel. When a 220-230-volt power source is to be used (and the power transformer primary rewired as indicated above), it is recommended that a one-fourth ampere fuse be used to provide maximum protection.

POWER GROUNDING

The third pin of the power plug grounds the outer chassis of the instrument (Figure 2-1). Despite the presence of the third grounding pin, there is no real assurance that the instrument will be correctly connected since the power outlets in many installations are erroneously wired. Be certain that the power source is in agreement with the power and grounding requirements of the instrument.

CONNECTORS (S/N's X-2.1 thru X-2.156)

Two input connectors (J1 and J2, labeled HI and LO respectively) are located on the front panel of the instrument (Figure 2-2) and are wired in parallel with two connectors (J3 and J4) located on the rear of the instrument (Figure 2-3). Two additional connectors (J5 and J6) are located on the rear of the unit and under normal operating conditions are connected together with a shorting strap. To

Figure 2-1. Power Plug Pin Coding

float the input above chassis ground (up to ± 500 volts), the shorting strap must be removed.

CONNECTORS (S/N's X-2.157 & subsequent)

These instruments have the same input connectors as those described in the above paragraph and, in addition, have three remote triggering connectors (J17, J18 and J19) installed on the rear panel. If the printout option is elected, digital output connector J7 is also installed on the rear panel (see Print Board Assembly Schematic Diagram, 37-89, for connector pin information).

CABLE CONNECTIONS

The instrument is supplied with an input cable (P/N 2BC-AL-36) for insertion into J1 and J2 on the front panel or J3 and J4 on the rear

panel. See Figure 2-4 for connection information. A mating connector is supplied for J7 when the printout capability option is elected.

CONTROLS

POWER SWITCH (S/N's X-2.1 thru X-2.156)

The power switch is located on the front panel of the instrument and has three positions (OFF, STBY. AND ON). The STBY. position is used to stop the instrument from taking further readings. The ON position commands the instrument to take readings at its maximum rate (allow 30 minutes for instrument warm-up).

POWER SWITCH (S/N's X-2.157 & subseq.)

The STBY. position of the power switch on these instruments has been re-labeled REMOTE. In the REMOTE position, a print/record pulse is issued at the completion of each measurement; in the ON position this pulse is inhibited. In the absence of a remote triggering pulse, the REMOTE position serves as a standby control, i.e., the last reading taken remains stored in the readout.

To externally trigger the instrument by a recording device through connector J7, the shorting strap between connectors J17 and J18 must be kept in place. Each pulse applied through connector J7 will provide only a single reading. For each pulse applied, a delay of 180 MS will take place in the VDC, MVDC and K ohms functions and a delay of 900 MS will take place in the AC function.

With the shorting strap between connectors J17 and J18 removed, the instrument may also be externally triggered by a contact

S/N's X-2.1 THRU X-2.156

S/N's X-2.157 AND SUBSEQUENT

Figure 2-2. Front Views

3700-1

Figure 2-4. Input Connections

closure between connectors J18 and J19. For a single reading only, the duration of this closure must be less than 100 MS. Closures in excess of 100 MS (with the exception of range changes) will cause the instrument to continuously scan as long as the closure is applied.

To eliminate first-reading-error with either method of triggering, the input signal to be measured must be applied prior to the application of the triggering pulse.

RANGE SWITCH

The range switch is located on the front panel of the instrument and has six positions. (See table I.) When in the 1 position, the instrument is locked in the 1 volt range for the measurement of AC voltages or in the 1K range for the measurement of K ohms. When

in the 10 position, the instrument is locked in the 10-volt range for the measurement of AC or DC voltages or in the 10K range for the measurement of K ohms. When in the 100 position, the instrument is locked in the 100-volt range for the measurement of AC and DC voltages, in the 100 MV range for the measurement of millivolts or in the 100K range for the measurement of K ohms. When in the 1000 position, the instrument is locked in the 1000-volt range for the measurement of AC and DC voltages, in the 1000 MV range for the measurement of millivolts or in the 1000K Ω range for the measurement of K ohms. When in the 10,000 position, the instrument is locked in the 10,000 K Ω range for the measurement of K ohms. If the instrument has the automatic ranging capability, the proper range is automatically selected when the switch is in the AUTO position. (The 10,000 K Ω range can only be selected

C A U T I O N

K OHMS MODE OF OPERATION

1. INPUT LO is NOT connected to GUARD (K ohms mode only), reference Figure 2-4. DO NOT therefore connect shorting strap between INPUT LO and GUARD.
2. If INPUT LO lead is allowed to contact EARTH, GUARD or CHASSIS with strap between GUARD and CHASSIS, fuse on K ohms Converter will blow.

Table I. Measurement Capabilities

		Range Switch Positions					
		1	10	100	1000	10,000	AUTO
Function Switch Positions	MV	X	X	X	100 MV RANGE	1000 MV RANGE	100 MV or 1000 MV RANGES
	DC	X	X	10 VDC RANGE	100 VDC RANGE	1000 VDC RANGE	10 VDC, 100 VDC, or 1000 VDC RANGES
	AC	1 VAC RANGE	10 VAC RANGE	100 VAC RANGE	1000 VAC RANGE (500 VAC MAX.)	X	1 VAC, 10 VAC 100 VAC or 1000 VAC RANGES (500 VAC Max)
	K Ω	1K Ω RANGE	10K Ω RANGE	100K Ω RANGE	1000K Ω RANGE	10,000K Ω RANGE	ALL EXCEPT 10,000K Ω RNG.
NOTE: The combined positions of the range and function switches as indicated by above will produce erroneous readings.							

manually.) With the switch in the AUTO position (if the instrument does not have the auto-ranging capability), the readout will not display decimals and the instrument will be in the lowest range of the particular function selected by the function switch.

FUNCTION SWITCH

The function switch is located on the front panel of the instrument and has four positions. (See Table I.) It is used to select the desired measurement function, either MV, DC, AC or K Ω .

OFFSET CONTROLS

Three screwdriver-adjust potentiometers are located on the rear of the unit. They are provided to zero the reading of the instrument in each of its measuring functions.

The specific use of these controls is described in the calibration instructions.

DIGITAL READOUT

The instrument is normally supplied with six readout tubes: polarity display; over-range display; and four 0 thru 9 digital and decimal displays (left to right respectively). A function tube (displaying MV, DC, AC or K Ω) is offered as an optional accessory and when utilized is located on the extreme right of the readout. The polarity display (S/N's X-2.307 and subsequent) also indicates an overload condition, i.e., when the input exceeds the limits of a particular manually selected range, the left-most readout tube will display Q. With the range switch in the AUTO position, the overload display will only illuminate when the extreme limits of the instrument have been reached. Refer to specifications for limits of each measurement function.

CHAPTER III

CALIBRATION

In the calibration instructions provided in this chapter, it is assumed that the instrument is in good working order and only requires calibration. If any components are defective, it may be difficult, if not impossible, to calibrate the instrument.

SCOPE

The basic DC calibration procedure is divided into six distinct areas: reference adjustment; zero offset adjustment; 10-volt range calibration for a positive input; 10-volt range calibration for a negative input; 100-volt range calibration; and 1000-volt range calibration.

Since the Series X-2 instruments are capable of millivolts, AC and ohms measurements, calibration procedures for these functions are also included.

DC VOLTAGE CALIBRATION

EQUIPMENT REQUIRED

1. A voltmeter capable of measuring -20 VDC (± 1 MVDC).
2. An extension board, NLS No. 1009-41.
3. A voltage standard between 9.000 volts and 11.998 volts.
4. A voltage standard between 90.00 volts and 119.98 volts.
5. A voltage standard between 900.0 volts and 1000.0 volts.

NOTE

It should be noted that the error in making a measurement with the

Series X-2 DVM can be as much as the stated accuracy of the instrument plus the accuracy of the voltage standards used in its calibration.

INITIAL PREPARATION

1. Remove the cover of the instrument by removing the four screws (two on each side) attaching the cover to the chassis (Figure 3-1).
2. Plug the power cord into a 115 VAC, 50-60 Hz, single phase power source.
3. Place the power switch in the STBY. position and allow 30 minutes for instrument warm-up.

PROCEDURE

Reference Adjustment

1. Remove the reference assembly, P/N 37-36, from instrument (Figure 3-2).
2. Insert extension board into J12 main board assembly.
3. Mount reference assembly on top of extension board by inserting reference board pins into extension board. Use care to ensure proper pin alignment.
4. Connect a voltmeter capable of measuring -20 VDC (± 1 MVDC) between ground and -20V output, pin 33 and pin 39 (Figure 3-3). *Page 3.3*
5. Adjust R1 (Figure 3-3) on reference assembly until test meter reads -20V (± 1 MVDC).

6. Remove reference assembly from extension board and remove extension board from instrument.
7. Insert reference assembly into J12.

Zero Offset Adjustment

1. Place function switch in the DC position.
2. Place power switch in the ON position.
3. Place range switch in the 10 position.
4. Connect the red and black clips of the DVM input cable together.
5. Rotate the DVM OFFSET potentiometer R1, located on the rear of the instrument, to a position which causes the readout to display ± 0.000 DC.

10-Volt Range Calibration for a Positive Input Voltage

1. Connect the black lead of the DVM input

cable to the negative terminal of the voltage standard described in paragraph 3 under Equipment Required. Connect the red lead to the positive terminal.

2. Apply approximately 9.5 volts.
3. The numerical value displayed in the readout should be equal to the voltage of the voltage standard. If it is not, adjust potentiometer R30 (Figure 3-2) of the Attenuator Assembly, P/N37-39, until the readout displays the correct value. Note that input impedance of DVM is 10 Megohms.

NOTE

Potentiometers R31 and R38 (Figure 3-2) have been adjusted and sealed at the factory and must not be adjusted in the field. They are temperature coefficient compensators for the \pm prime calibration.

Figure 3-1. Cover Removal

Figure 3-2. Location of Major Subassemblies and Adjustment Points

R 5 = 100 J.
AD 5.

WARNING

Use extreme caution in performing the following steps as dangerously high voltages will be employed.

1000-Volt Range Calibration

1. Place the range switch in the 1000 position.
2. Connect the black lead of the DVM input cable to the negative terminal of the voltage standard described in paragraph 5 under Equipment Required. Connect the red lead to the positive terminal.
3. Apply approximately 950 volts.
4. The numerical value displayed in the readout should be equal to the voltage standard. If it is not, adjust potentiometer R3 (Figure 3-2) of the Attenuator Assembly until the readout displays the correct value.

AC CONVERTER CALIBRATION

ADDITIONAL EQUIPMENT REQUIRED

1. An Audio Voltage Standard between 1 volt, 200 Hz - 10K Hz and 500 volts, 200 Hz - 10K Hz.

INITIAL PREPARATION

1. Ensure that the instrument is properly calibrated in the DC voltage measurement function and ensure a 30-minute warm-up period.

PROCEDURE

1. Place the function switch in the AC position.
2. Place the range switch in the 1000 position.

3. Place the power switch in the ON position.
4. Connect the red and black clips of the DVM input cable together.
5. Rotate the AC OFFSET potentiometer, R2, located on the rear of the instrument, to a position which causes the readout to display 0.000 AC.

WARNING

Use extreme caution in performing the following steps as dangerously high voltages will be employed.

CAUTION

Do not apply more than 500 VAC or damage to the AC Converter Assembly may result.

6. Connect the red lead of the DVM input cable to the AC HI terminal and the black lead to the AC LO terminal of the Audio Voltage Standard.
7. Apply approximately 450.00 volts, 200 Hz and adjust R1 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.
8. Apply approximately 450.00 volts, 10K Hz and adjust C1 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.

WARNING

Use extreme caution in performing the following steps as dangerously high voltage will be employed.

9. Place the range switch in the 100 position. Apply approximately 90.00 volts, 200 Hz and adjust R2 (Figure 3-2) of the AC Converter Assembly until the

numerical value displayed in the readout is equal to the voltage applied.

10. Apply approximately 90.00 volts 10 K Hz and adjust C2 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.
11. Place the range switch in the 10 position. Apply approximately 9.000 volts, 200 Hz and adjust R3 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.
12. Apply approximately 9.000 volts, 10K Hz and adjust C3 of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.
13. Apply approximately 0.9000 volts, 200 Hz and adjust R4 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.
14. Apply approximately 0.9000 volts, 10K Hz and adjust C4 (Figure 3-2) of the AC Converter Assembly until the numerical value displayed in the readout is equal to the voltage applied.

OHMS CONVERTER AND PRE-AMPLIFIER CALIBRATION

ADDITIONAL EQUIPMENT REQUIRED

1. An ohms standard accurate to 0.01%.
2. A voltage standard between 90.00 millivolts and 119.98 millivolts.

INITIAL PREPARATION

1. Ensure that the instrument is properly calibrated in the DC voltage measurement function and ensure a 30-minute

warm-up period.

PROCEDURE

1. Place the power switch in the ON position.
2. Place the range switch in the 10000 position.
3. Place the function switch in the $K\Omega$ position.
4. Connect the red and black clips of the DVM input cable together.
5. Rotate the $K\Omega/MV$ OFFSET R3 potentiometer, located on the rear of the instrument, to a position which causes the readout to display 0000 $K\Omega$.
6. Connect the two leads of the DVM input cable to the two output terminals of the ohms standard. (9 $m\Omega$)
7. Apply approximately 9000 $K\Omega$ and adjust R1 (Figure 3-2) of the Ohms Converter and Pre-amplifier Assembly until the numerical value displayed in the readout is equal to the ohmic value applied.
8. Place the range switch in the 100 position.
9. Place the function switch in the MV position.
10. Connect the red and black clips of the DVM input cable together.
11. Rotate the $K\Omega/MV$ OFFSET R3 potentiometer, located on the rear of the instrument, to a position which causes the readout to display 00.00 MV.
12. Connect the black lead of the DVM input cable to the negative terminal of the voltage standard described in paragraph 2 under Additional Equipment Required. Connect the red lead to the

positive terminal.

13. Apply approximately 95.00 millivolts and adjust R19 of the Ohms Converter/

Pre-amplifier Assembly (Figure 3-2) until the numerical value displayed in the readout is equal to the voltage of the voltage standard.

CHAPTER IV

MAINTENANCE

In the Series X-2 Digital Voltmeter, virtually all circuit components are assembled on plug-in modules. Thus maintenance problems are simplified to the point where the instrument can be kept operating without the need for highly trained maintenance personnel. Because of this plug-in design, downtime is held to a minimum; the unit can be kept operating in locations from which it would be impractical or inconvenient to send the instrument to a repair facility or to the manufacturer. Only a very few minutes are needed to replace all the plug-in boards. By using trial-and-error techniques the instrument can be rapidly returned to service, and the defective module repaired at a later date.

For a general understanding of the principles of operation of the Series X-2 DVM, refer to Figures 4-1 through 4-15. For a more detailed analysis, refer to the schematic and wiring diagrams at the end of this manual.

In order to pursue the plug-in philosophy to the fullest, spare modules as listed in Section V, Recommended Spare Parts List, should be kept in stock.

If it is desired to measure voltages and check waveforms on a particular plug-in module, a 41-pin extension board will be required to raise the board so that pin contacts become accessible. These boards, NLS part number 1009-41, may be ordered from any NLS representative or from the NLS Main Office in Del Mar, California.

DIGITAL READOUT REPLACEMENT

The readout tubes providing the digital, polarity and function displays have exceedingly long-life expectancy and rarely require replacement. However, to replace a readout tube in the event of failure, perform the following steps:

1. Remove the cover from the instrument by removing the four screws (two on each side) attaching the cover to the chassis.
2. Remove the decade assembly (front board) from the instrument.
3. Firmly grasp the decade assembly with one hand and the malfunctioning tube with the other.
4. With a rocking motion, carefully pull the tube from its socket.
5. Install new tube, using care to properly align pins into tube socket, and replace decade board and cover in reverse order of removal.

FAN LUBRICATION

Under normal operating conditions, the ventilating fan (S/N's X-2.157 & subsequent and those of earlier S/N's so modified) should be lubricated every two or three months.

To lubricate the fan, remove the blue slotted plug from rear of fan assembly and apply two or three drops of Rotron M-21 lubricant.

Figure 4-1. Block Diagram Series X-2 DVM

Figure 4-2. Simplified Diagram, Auto-ranging

Figure 4-3. Simplified Diagram, Reference Supply

Figure 4-4. Simplified Diagram, Series X-2 Input - Integrator with Resetter Circuitry and Temperature Compensation Potentiometers

Figure 4-5. Simplified Diagram AC Converter

Figure 4-6. Simplified Diagram Pre-amplifier

Figure 4-7. Simplified Diagram Ohms Converter

3700-10

Figure 4-8. Type SN7490N Decade Counter

Figure 4-9. Type SN7473N Dual J-K Master-Slave Flip-Flop

Figure 4-10. Type SN7474N Dual D-Type Edge-Triggered Flip-Flop

Figure 4-11. Type SNX7441N BCD-to-Decimal Decoder/Driver

Figure 4-12. Type SN 7472N JK Master-Slave Flip-Flop

Figure 4-13. Type SN7400N Quadruple 2-Input Positive Nand Gate

Figure 4-14. Type SN7430N 8-Input Positive Nand Gate

Figure 4-15. Type SN7475N Quadruple Bistable Latch

CHAPTER V

RECOMMENDED SPARE PARTS LIST

<u>Part No.</u>	<u>Description</u>	<u>Qty.</u>
37-30	Decade Assembly (S/N's X-2, 1 thru X-2.301)	1
37-36	Reference Assembly	1
37-39	Attenuator Assembly	1
37-69	Start-Stop Assembly*	1
37-160	Decade Assembly (S/N's X-2.302 & Subsequent)	1
SP2A2	Fan Assembly	1
31300.5	Fuse, 3AG0.5A, Slo-Blo	6
1009-41	Extension Board (Test Equipment)	1

*If instrument has auto ranging capability, substitute 37-33, Auto-Range and Start-Stop Assembly.

APPENDIX

SHIPPING INSTRUCTIONS

Depending upon location, the choice of carrier will vary. Never ship an instrument to us without having received shipping instructions. If requested, an estimate of charges can be made before work begins.

Be certain to pack the instrument carefully; while an outer and inner box, separated by two or three inches of excelsior is desirable, the instrument can be placed into a single container provided it is so packed that it will not shift about. As with the double box method, use two or three inches of shock-absorbent packing materials. The instrument itself should be first wrapped in heavy

paper so as to keep excelsior or other particles from entering the instrument's louvers. If the original shipping container is in good condition, it may be used.

CLAIM FOR DAMAGE IN SHIPMENT

The instrument should be tested as soon as it is received. If it does not operate or is damaged, a claim should be made with the carrier. The claim agent should receive a full report of damage, and this report sent to Non-Linear Systems, Inc. After receiving such a report we will advise you of the disposition of the instrument and arrange for its repair or replacement. Be certain to include model and serial number when corresponding.

www.everything4lessstore.com

www.everything4lessstore.com

THE BIBLICAL

REFERENCE ASSY

Ku/PRE-AMP ASSY
(OPT)

J12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
-33V
15
-30V
16
17
18
+33V
19
GND
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
-20V
39
40
41

AC CONV ASSY
(OPT)

J10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
-33V
15
-30V
16
17
18
19
20
21
22
23
24
25
26
27
28
29
-20V
30
31
32
33
34
35
36
37
38
39
40
41

S3-GW

S3-HW

1000

10,000

S3-C1

S2-B5

S3-C4

-33V

S3-C3

-33V

S3-E4

+33V

S3-E3

+33V

GND

S3-E1

S3-J1

S3-J3

REVISIONS				
ZONE	LTR.	EFFECT.	DESCRIPTION	DATE APPROVED
A	ALL	C.O.P.	INCORP. E.O. 1 OF REV "D" INCORP. E.O. 2 OF REV "D"	4-11-67 R.D.W. <i>R. Johnson</i>
4D F/D	B	ALL	INCORP. E.O. 1 OF REV "A" ADDED SWITCH & ASSY NOMENCLATURE	11-21-67 <i>J. Karpel</i>

E1 OCW
E2 OW R1 DVM
E3 OCCW

E4 OCW
E5 OW R2 AC
E6 OCCW

E7 OCW
E8 OW R3 KΩ/MV
E9 OCCW

QTY REQD	PART OR IDENTIFYING NO.	NOMENCLATURE OR DESCRIPTION	MFR. CODE	CIRCUIT REF.	ITEM NO.
PARTS LIST					

UNLESS OTHERWISE SPECIFIED			
DIMENSIONS ARE IN INCHES		CONTR. NO.	
DECIMALS ± .010	ANGLES = 0° 30'	DRAWN <i>Tom Deucher</i>	2-1-67
FRACTIONS ± 1/32		CHECK <i>R. Johnson</i>	2-10-67
		APPR <i>R. Johnson</i>	2-10-67
		RELEASE DATE	2-10-67
MATERIAL			

NLS NON-LINEAR SYSTEMS, INC.
DEL MAR, CALIFORNIA

SCHEMATIC -
MAIN BOARD AND POWER SUPPLY
SERIES X-2

SIZE CODE IDENT NO.	37-72
R 03626	

SCALE NONE WEIGHT SHEET 2 OF 3

- J3

DECADe ASSY

(AUTO RANGE OPT.)
START-STOP ASSY

ATTENUATOR ASSY

	J15	PWR
S3-A3	1	
	2	AC +5V
	3	
S3-A4	4	K/L
E19	5	+200V
S3-A2	6	DC
	7	
S3-A1	8	MV
	9	
	10	RATIO
	11	
J16-15	12	I
	13	
J16-17	14	B
	15	
J16-18	16	Z
	17	
J16-19	18	▲
	19	
J16-21	20	10
	21	
J16-26	22	80
	23	
J16-25	24	20
	25	
J16-23	26	40
S2-A4	27	DEC
J16-22	28	100
S2-A3	29	DEC 1
J16-27	30	800
S2-A2	31	DEC 1
J16-29	32	200
S2-A1	33	DEC
J16-30	34	400
J16-31	35	1000
J16-33	36	4000
J16-34	37	2000
J16-35	38	4000
J16-14	39	+POL
	40	
J16-38	41	10000

J14 Pinout Diagram:

- Pin 1:** E1B
- Pin 2:** E21
- Pin 3:** CLK
- Pin 4:** (No label)
- Pin 5:** (No label)
- Pin 6:** (No label)
- Pin 7:** (No label)
- Pin 8:** (No label)
- Pin 9:** (No label)
- Pin 10:** (No label)
- Pin 11:** (No label)
- Pin 12:** (No label)
- Pin 13:** (No label)
- Pin 14:** (No label)
- Pin 15:** (No label)
- Pin 16:** (No label)
- Pin 17:** (No label)
- Pin 18:** (No label)
- Pin 19:** (No label)
- Pin 20:** (No label)
- Pin 21:** (No label)
- Pin 22:** (No label)
- Pin 23:** (No label)
- Pin 24:** (No label)
- Pin 25:** (No label)
- Pin 26:** DC
- Pin 27:** (No label)
- Pin 28:** MV
- Pin 29:** R
- Pin 30:** (No label)
- Pin 31:** (No label)
- Pin 32:** E
- Pin 33:** (No label)
- Pin 34:** (No label)
- Pin 35:** AUTO
- Pin 36:** 1000
- Pin 37:** 100
- Pin 38:** (No label)
- Pin 39:** (No label)
- Pin 40:** (No label)
- Pin 41:** 10

J13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

www.everything4lessstore.com

REVISIONS

ZONE LTR. EFFECT. DESCRIPTION DATE APPROVED

E1 OCW P1 DVM
E2 OCCW 50K
E3 OCCW

E4 OCW P2 AC
E5 OW 50K
E6 OCCW

E7 OCW P3 KSL/MV
E8 OW 50K
E9 OCCW

OUTPUT DATA J7 (REF)

RANGE { 4 - 24
8 - 27 } RANGEDIGITS { 4 - 30
8 - 31
40 - 32
80 - 33
400 - 34
800 - 35
4,000 - 36
8,000 - 37 }AC 41
MV 42
KL 43
EXT. TRIG 44+ POL 14
RATIO 15
DC 16
PRINT PULSE 23
+ 5V 24
25 GND

B-1 (REF)

ALTERNATE CONNECTION FOR 230V AC

QTY	REO	PART OR IDENTIFYING NO.	NOMENCLATURE OR DESCRIPTION	MFR. CODE	CIRCUIT REF.	ITEM NO.
-----	-----	-------------------------	-----------------------------	-----------	--------------	----------

PARTS LIST

UNLESS OTHERWISE SPECIFIED		CONTROL NO.
DIMENSIONS ARE IN INCHES	TOLERANCES ON DECIMALS ± .005	DRAWN WEINBERG 4-1967
FRACTIONS ± 1/16	ANGLES ± 0° 30'	CHECK 4-1967
		APPR 4-1967
		RELEASE DATE 4-1967
MATERIAL		

NON-LINEAR SYSTEMS, INC.
DEL MAR, CALIFORNIASCHEMATIC -
MAIN BOARD AND POWER SUPPLY

SHEET X-2 N/PRINT

SIZE	CODE/NUMBER	37-105
R	D3626	

APPLICATION	CITY.
37-5	37-5 / /

QTY REFD	PART OR IDENTIFYING NO.	NOMENCLATURE OR DESCRIPTION	MFR. CODE	CIRCUIT ITEM REF. NO.
PARTS LIST				
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ON ANGLES $\pm 0^{\circ} 30'$ DECIMALS ± 0.010 FRACTIONS $\pm \frac{1}{64}$ MATERIAL				
CONTR. NO.	DRAWIN <i>44-645</i>	CHECK <i>W.A. K. 10</i>	APPR <i>10-26-67</i>	RELEASE DATE <i>10-23-67</i>
NON-LINEAR SYSTEMS, INC. DEL MAR, CALIFORNIA NLS SCHEMATIC REFERENCE ASSEMBLY				
SIZE	CODE IDENT NO.			
	C 03626	37-2772		
SCALE —	WEIGHT			
		SHEET 2 OF 2		

X-2

3. REFERENCE DESIGNATIONS ARE ABBREVIATED; PREFIX WITH ASSEMBLY DESIGNATION SHOWN ON SHEET 2 OF FINAL ASSEMBLY
 2. RESISTORS R2 THRU R7 & R77 ARE NLS PN 2016
 1. RESISTORS ARE $\frac{1}{4}$ W, $\pm 5\%$, CARBON

NOTES: UNLESS OTHERWISE SPECIFIED

376 DIAETETIC-H-POST CLEARPRINT 1000H10

QTY REQD	PART OR IDENTIFYING NO.	NOMENCLATURE OR DESCRIPTION	MFR. CODE	CIRCUIT REF.	ITEM NO.
PARTS LIST					

UNLESS OTHERWISE SPECIFIED
 DIMENSIONS ARE IN INCHES
 TOLERANCES ON
 DECIMALS ANGLES
 $\pm .010$ $\pm 0^\circ 30'$
 FRACTIONS
 $\pm 1/32$

NON-LINEAR SYSTEMS, INC.
DEL MAR, CALIFORNIA

SCHEMATIC -
MAIN BOARD AND POWER SUPPLY

SERIES X-2 W/PRINT

<u>37-98</u>	<u>37-98</u>	<u>1</u>	<u>1</u>
NEXT ASSY.	FINAL ASSY.	NEXT ASSY.	FINAL ASSY.
<u>APPLICATION</u>		<u>QTY.</u>	

ZE	CODE IDENT NO.
	03626
	37-298
NAME	WEIGHT
SHEET	2 OF 2

non linear
systems, inc.

DEL MAR, CALIFORNIA