Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2023

PHYSICAL SCIENCES: (CHEMISTRY) P2

MARKS: 150

TIME: 3 hours

This question paper consists of 21 pages, including 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name and surname in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the correct letter (A–D) next to the question numbers (1.1–1.10) in the ANSWER BOOK, for example 1.11 E.

- 1.1 Which ONE of the following homologous series has members that are SATURATED hydrocarbons?
 - A Alcohols
 - B Alkenes
 - C Alkanes
 - D Alkynes (2)
- 1.2 When an ALKENE is converted to an ALKANE, the catalyst that is used is ...
 - A Ni or Fe.
 - B Pt or Ni.
 - C H₂SO₄ or Ni.
 - D H_2SO_4 or Pt. (2)
- 1.3 The boiling point versus chain length graph below was obtained for straight chain molecules of aldehydes, alkanes, alcohols and carboxylic acids.

The curve for EACH homologous series is labelled as A, B, C or D.

Which ONE of the curves above represents alcohols?

- A Curve A
- B Curve B
- C Curve C
- D Curve **D**

1.4 Consider the organic reaction below:

Which ONE of the following is CORRECT about reactant **X** and the reaction condition?

	X is	Reaction condition
A	H ₂ O	Concentrated H ₂ SO ₄ in excess
В	H ₂ O	Small quantity of concentrated H ₂ SO ₄
С	dilute KOH	Mild heat
D	concentrated KOH	Strong heat

(2)

1.5 Consider the reaction between an EXCESS hydrochloric acid (HCl) solution and magnesium powder:

$$Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

Which ONE of the following factors when INCREASED will cause an increase in both the REACTION RATE and the TOTAL VOLUME of H₂ produced?

- A Mass of Mg
- B Volume of HCl
- C Concentration of HCl
- D Temperature of the reaction mixture

(2)

- 1.6 Which ONE of the following will affect BOTH the equilibrium position of a reversible reaction, and its K_c value?
 - A Mass
 - B Pressure
 - C Temperature
 - D Concentration

(2)

1.7 The graph below shows how the reaction rate changes with time for the reaction represented by the balanced equation below:

Consider the following changes made to the equilibrium mixture.

- I More HI is added
- II Temperature is increased
- III Pressure is increased by decreasing the volume at constant temperature

Which ONE of the following changes will cause the change at t₁?

- A I only
- B II only
- C I and III

D III only (2)

- 1.8 A substance that loses protons in some reactions and gains protons in other reactions is called a/an ...
 - A base.
 - B acid.
 - C ampholyte.
 - D acid-base indicator. (2)

1.9 Four titrations are carried out using the pairs of substances shown below.

For which pair of substances when titrated will phenolphthalein be the most suitable indicator?

- A HNO₃ and NaOH
- B CH₃COOH and NaOH
- C Na₂CO₃ and HCl

D
$$H_2SO_4$$
 and NaOH (2)

1.10 The following equilibrium exists in pure water at 25 °C.

$$2 H_2O(\ell) \Rightarrow H_3O^+(aq) + OH^-(aq)$$

How will the addition of NaOH to the pure water affect the concentration of the hydronium ion [H₃O⁺] and pH of water at constant temperature?

	[H ₃ O ⁺]	pH of water
Α	Increases	Decreases
В	Decreases	Increases
С	Increases	Increases
D	Decreases	Decreases

(2)

[20]

QUESTION 2 (Start on a new page.)

2.2

Consider the organic compounds A to F given in the table below.

	C ₅ H ₁₂	В	CH ₃ CH ₂ CH ₃
С	Propan-1-ol	D	Methanal
E	CH₃CH(OH)CH₃	F	CH ₃ CH ₂ COOH
G	Propanone	Н	H-C≡C-H

2.1 Write down the LETTER that represents the following compounds:

2.1.1	An alkyne	(1)
2.1.2	An aldehyde	(1)
2.1.3	That has the general formula C _n H _{2n+2}	(1)
2.1.4	That has a solution with pH < 7	(1)
2.1.5	That has the same general formula as an ester	(1)
Compo	unds C and E are structural isomers.	

2.2.1 Define the term *structural isomer*. (2)

2.2.2 What TYPE of structural isomers are compounds **C** and **E**?Choose from CHAIN, POSITIONAL or FUNCTIONAL. (1)

2.2.3 Is compound **E** a PRIMARY, SECONDARY or TERTIARY ALCOHOL?

Give a reason for your answer. (3)

2.3	Write d	own the:	
9	2.3.1	IUPAC name of compound B	(3)
	2.3.2	CONDENSED STRUCTURAL formula of a FUNCTIONAL isomer of compound \boldsymbol{G}	(2)
2.4	For cor	npound F write down the:	
_	2.4.1	Empirical formula	(1)
	2.4.2	Name of its functional group	(1)
2.5	•	und F reacts with methanol in the presence of concentrated sulphuric produce organic product X .	
	For cor	npound X write down the:	
	2.5.1	Name of the homologous series to which it belongs	(1)
	2.5.2	IUPAC name and STRUCTURAL formula	(4) [23]

QUESTION 3 (Start on a new page.)

The table below shows a number of organic compounds and their respective melting points.

Study the table below and answer the questions that follow.

	Compound	Melting point (°C)
Α	Propane	-187
В	Butane	-138
С	Pentane	-129
D	2-methyl butane	X
E	Butanal	-96,8
F	Butan-1-ol	-89,8

3.1 Define the term *melting point*.

(2)

3.2 Explain the trend in melting points from compound **A** to **C**.

- (3)
- 3.3 Which compound (**A**, **B** or **C**) will have the highest vapour pressure at a given temperature?
 - Give a reason for the answer by referring to the data in the table above.

(2)

- 3.4 Consider compounds **C** and **D**. The melting point of compound **D** is indicated by **X**.
 - 3.4.1 Draw the structural formula of compound **D**.

(2)

(1)

- 3.4.2 How does the value of **X** compare to the melting point of compound **C**?
 - Choose from GREATER THAN -129 °C or LESS THAN -129 °C.
- 3.4.3 Is the comparison between compounds **C** and **D** a fair comparison?Write only YES or NO.
 - Give a reason for your answer.

(2)

3.5 Explain the difference in the melting points of compounds **E** and **F** by referring to intermolecular forces present and energy.

(4) [16]

QUESTION 4 (Start on a new page.)

4.1 Consider the flow diagram showing organic reactions given below.

Consider **REACTION 1**.

Write down:

- 4.1.1 The name of the homologous series to which the compound C₃H₈O belongs (1)
- 4.1.2 ONE reaction condition (1)
- 4.1.3 The formula of the inorganic reactant (1)

Consider **REACTION 2**.

- 4.1.4 Name the type of elimination reaction taking place. (1)
- 4.1.5 Using structural formulae for the organic compounds, write down a balanced equation for the reaction. (6)

Consider **REACTIONS 3** and **4**.

Write down the:

- 4.1.6 Name given to these types of reactions (1)
- 4.1.7 Formula of the inorganic reactant used in **REACTION 4** (1)
- 4.1.8 IUPAC name and structural formula of compound **Q** (4)

4.2 Consider the incomplete equations for reactions I and II.

$C_{15}H_{32}$ \longrightarrow ALKANE P + 2 Q + C_xH_6
CH₃CH₂Br + KOH → Q + KBr + Z

In reaction I, the compound $C_{15}H_{32}$ undergoes cracking. **Q** is an organic compound while compound **Z** is an inorganic compound.

The compounds ${\bf Q}$ and C_xH_6 have the same FUNCTIONAL GROUP.

- 4.2.1 Define *cracking*. (2)
- 4.2.2 Write down a balanced equation for the complete combustion of ALKANE **P**. (Show ALL workings.) (6) [24]

QUESTION 5 (Start on a new page.)

A group of learners use the reaction between sodium thiosulphate ($Na_2S_2O_3$) and EXCESS hydrochloric acid (HC ℓ) to investigate one of the factors that affect reaction rate. The balanced equation for the reaction is:

$$Na_2S_2O_3$$
 (aq) + 2 HC ℓ (aq) \longrightarrow 2 NaC ℓ (aq) + S (s) + H₂O (ℓ) + SO₂ (g)

The learners carry out five experiments under the same conditions changing only the factor that is investigated in EACH experiment using the experimental set-up shown below.

They recorded the time taken for the cross to become invisible, when viewed from the top.

The learners' results are shown in the graph below.

- 5.1 Define *reaction rate.* (2)
- 5.2 Write down an investigative question for the above investigation. (2)
- 5.3 Name the substance responsible for the disappearance of the cross. (1)
- 5.4 Give a reason why the same cross must be used in ALL the experiments. (1)
- 5.5 Use the collision theory to explain the effect of concentration on reaction rate. (3)
- 5.6 In one of the experiments 50 cm³ of Na₂S₂O₃ is used and it takes 20 seconds for the cross to become invisible.
 - Calculate the total mass of sulphur, **S**, formed in this experiment. (6)
- 5.7 The graph below represents Maxwell-Boltzmann distribution curve for SO₂(g) at 30 °C.

Q is a label on the vertical axis.

5.7.1 What does **Q** in the graph represent?

Redraw the graph in the ANSWER BOOK. Clearly label the curve as A.

5.7.2 On the same set of axes, sketch the curve that will be obtained for $SO_2(g)$ at 40 °C.

Label this curve as **B**.

(2) **[18]**

(1)

QUESTION 6 (Start on a new page.)

The following reaction reaches equilibrium at a temperature of 200 °C.

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g) \Delta H > 0$$

- 6.1 State Le Chatelier's principle.
- Two conditions must be met for a chemical reaction to establish equilibrium. One of the conditions is represented by the double arrow "⇌".

State the other condition.

(1)

(2)

- 6.3 The reaction is initiated by heating 83,4 grams $PC\ell_5(g)$ in a sealed 2 dm³ container. At equilibrium it is found that the initial concentration of $PC\ell_5$ has changed by \mathbf{x} mol·dm⁻³.
 - 6.3.1 Show that the equilibrium constant is, $K_c = \mathbf{x}^2 / 0.2 \mathbf{x}$. (6)
 - 6.3.2 The concentration of PC ℓ_5 at equilibrium is found to be 0,001 mol·dm⁻³.

Show by calculation that the value of K_c is equal to 39,601 at 200 °C. (2)

6.3.3 Is there a LOW or HIGH YIELD at 200 °C?

Give a reason for your answer. (2)

6.4 What effect will the addition of a suitable catalyst have on the following:

Choose from DECREASES, INCREASES or NO EFFECT.

- 6.4.1 Percentage decomposition of $PCl_5(g)$? (1)
- 6.4.2 Time taken to reach equilibrium? (1)

The graph below shows changes of concentration of reagents PC ℓ_5 and C ℓ_2 against time.

6.5.1 What does the horizontal section of the graph between $\mathbf{0}$ - \mathbf{t}_1 represent? (1)

At time t₂ the temperature of the equilibrium mixture is changed.

- 6.5.2 Was the container COOLED or HEATED at time t₂? (1)
- 6.5.3 Use Le Chatelier's principle to fully explain the answer to QUESTION 6.5.2. (3) [20]

QUESTION 7 (Start on a new page.)

7.1 An investigation is carried out to compare the strengths of TWO acids CH₃COOH(aq) and H₂CO₃(aq).

To determine the strength of EACH acid electrical conductivity of the acid is measured at 25 °C using the experimental set-up shown below.

The concentration of the acids is the same.

- 7.1.1 Define an acid according to the *Arrhenius theory.* (2)
- 7.1.2 State ONE property of the carbon electrodes that make them suitable for this investigation. (1)

The ammeter readings taken for each acid are given in the table below.

FORMULA OF ACID	AMMETER READING (mA)
CH₃COOH	500
H ₂ CO ₃	133

7.1.3 Which ACID (CH₃COOH or H₂CO₃) is stronger?

Explain the answer.

(3)

H₂CO₃ undergoes ionisation in a TWO step process as shown below:

I
$$H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
II $HCO_3^- + H_2O \rightleftharpoons X + H_3O^+$

Write down the formula of the substance(s) that:

- 7.2 Ammonium chloride (NH₄Cl) undergoes hydrolysis.
 - 7.2.1 Define hydrolysis.

(2)

- 7.2.2 Is a solution of ammonium chloride ACIDIC, ALKALINE or NEUTRAL?
 - Explain the answer with the aid of a balanced equation.

(4)

- 7.3 A school laboratory has a hydrochloric acid (HCℓ) solution of concentration 1 mol·dm⁻³.
 - 7.3.1 Calculate the pH of the HCℓ solution.

(3)

250 cm³ of the HCl solution is used to dissolve an eggshell.

7.3.2 Calculate the number of moles of HCl in 250 cm³ of solution

(3)

The eggshell contains 99,3% calcium carbonate (CaCO₃) by mass. The calcium carbonate (CaCO₃) in the eggshell reacts with EXCESS HCl according to the balanced equation below:

$$CaCO_3(s) + 2 HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

The unreacted HCl is neutralised by 103 cm³ of a solution of sodium hydroxide (NaOH) of concentration 0,5 mol·dm⁻³ according to the balanced equation:

NaOH (aq) + HC
$$\ell$$
 (aq) \longrightarrow NaC ℓ (aq) + H₂O (ℓ)

7.3.3 Calculate the mass of the eggshell.

(8) 1001

[29]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/ <i>WAARDE</i>		
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{ heta}}$	1,013 x 10 ⁵ Pa		
Molar gas volume at STP Molêre gasvolume teen STD	Vm	22,4 dm ³ ·mol ⁻¹		
Standard temperature Standaardtemperatuur	Τ ^θ	273 K		
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C		
Avogadro's constant Avogadro se konstante	Na	6,02 x 10 ²³ mol ⁻¹		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$ or/of	$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	pH= -log[H ₃ O ⁺]
$n = \frac{N}{N_A}$ or/of	$c_aV_a - n_a$	$K_{w} = [H_3O^+][OH^-] = 1x10^{-14}$
N _A	$\frac{1}{c_b V_b} = \frac{1}{n_b}$	at/by 298 K
$n = \frac{V}{V_o}$		

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1 (I)	2 (I		3		4	5 KEY/	6 SLEUTE	7 =1	8 Atoon	9 ngetal	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
1, H						KL 17	OLLO 1 L	- -	Atomic 2	<u>, </u>									2 He 4
o, Li 7		4 Be 9					<i>ktronega</i> ectronega	_	္ ၂	Su	Simbe			5 0.2 B 11	6 C 12	7 0.6 N 14	3.5 0 16	4.0 4.0 8 19	10 Ne 20
ე 11 ი Na 23	1,2	12 Mg 24						ı	derde rel		1			13 - Al 27	ω 14 Si 28	15 N P 31	16 S 32	ວ 17 ເກີ Cℓ 35,5	18 Ar 40
ω 19 6 K 39	1,0	20 Ca 40	2,7 2,8 4,3	c 5	22 Ti 48	9 V 51	9 Cr 52	25 Mn 55	26 Fe 56	∞ Co 59	59	63,5 63,5	9 Zn 65	9 Ga 70	∞ 32 Ge 73	33 0 As 75	79 79 34 34 79	80 80 80	36 Kr 84
37 © Rb 86	1,0	38 Sr 88	1,2 X X	/ 9	40 - Zr 91	41 Nb 92	∞ 42 Mo 96	6. Tc	101	45 Rh 103	106	108	248 Cd 112	49 - In 115	∞ Sn 119	51 Sb 122	52 7 Te 128	53 5; I 127	54 Xe 131
55 Cs 133	6,0	56 Ba 137	5 L 13		72 9 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ∞ Tℓ 204	∞ Pb 207	6. Bi 209	84 O'7	85 At	86 Rn
87 2, Fr	6,0	88 Ra 226	8: A			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
						140 90 Th 232	141 91 Pa	144 92 U 238	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr

Increasing oxidising ability/Toenemende oksiderende vermoë

Half-reaction	Half-reactions/Halfreaksies							
F ₂ (g) + 2e ⁻	=	2F-	Ε ^θ (V)					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77					
MnO ₄ + 8H+ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51					
Cℓ₂(g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36					
Cr ₂ O ₇ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33					
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23					
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	=	2Br	+ 1,07					
NO ₃ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96					
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85					
Ag+ + e-	=	Ag	+ 0,80					
NO ₃ + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68					
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54					
Cu+ + e-	=	Cu	+ 0,52					
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45					
2H ₂ O + O ₂ + 4e ⁻	=	40H-	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15					
S + 2H+ + 2e-	=	$H_2S(g)$	+ 0,14					
2H⁺ + 2e⁻	=	H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	\Rightarrow	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	=	Co	- 0,28					
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻ Ał ³⁺ + 3e ⁻	=	Mn Al	- 1,18					
	=		- 1,66					
Mg ²⁺ + 2e ⁻ Na ⁺ + e ⁻	#	Mg	- 2,36 2.71					
Na' + e Ca ²⁺ + 2e ⁻		Na Ca	- 2,71					
Sr ²⁺ + 2e	#	Sr	- 2,87 - 2,89					
Ba ²⁺ + 2e ⁻	≠	Ba	- 2,89 2,00					
Cs ⁺ + e ⁻	≠	Сs	- 2,90 - 2,92					
K+ + e-	=	K						
Li ⁺ + e ⁻	≠	K Li	- 2,93 - 3.05					
니 푸딩	_	ы	- 3,05					

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

Increasing oxidising ability/Toenemende oksiderende vermoë

Half-reactions/Halfreaksies			Ε ^θ (V)
Li+ + e-	=	Li	- 3,05
K+ + e⁻	=	K	- 2,93
Cs+ + e-	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na+ + e⁻	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Aℓ ³⁺ + 3e ⁻	=	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	=	$H_2(g) + 2OH^-$	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H⁺ + 2e⁻	=	H₂(g)	0,00
S + 2H+ + 2e-	=	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	=	4OH⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu ⁺ + e ⁻	=	Cu	+ 0,52
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag+ + e-	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
NO ₃ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^{-\ell}$	≠	2Br	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	≠		+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O 2Cr ³⁺ + 7H ₂ O	+ 1,23
$Cr_2O_7^- + 14H^+ + 6e^-$ $Cl_2(g) + 2e^-$	=	2Cl ²⁺ + 7H ₂ O 2Cl ^{2−}	+ 1,33 + 1,36
_	=	Mn ²⁺ + 4H ₂ O	+ 1,50
MnO ₄ + 8H ⁺ + 5e ⁻		_	
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81

2F

+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

Copyright reserved

 $F_2(g) + 2e^{-}$

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIORSERTIFIKAAT

GRADE/GRAAD 12

JUNE/JUNIE 2023

PHYSICAL SCIENCES: CHEMISTRY P2
MARKING GUIDELINE/
FISIESE WETENSKAPPE: CHEMIE V2
NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 17 pages./ Hierdie nasienriglyn bestaan uit 17 bladsye.

QUESTION 1/VRAAG 1

1.1	C√√	(2)
1.2	BVV	(2)
1.3	B√√	(2)
1.4	B✓✓	(2)
1.5	A✓✓	(2)
1.6	C✓✓	(2)
1.7	D✓✓	(2)
1.8	C✓✓	(2)
1.9	B✓✓	(2)
1.10	B√√	(2) [20]

(3)

QUESTION 2/VRAAG 2

2.1 2.1.1 H ✓ (1)

2.1.2 D ✓ (1)

2.1.3 A ✓ (1)

2.1,4 F ✓ (1)

2.1.5 F ✓ (1)

Marking criteria/Nasienkriteria

If any of the underlined key words/phrases in the **correct context** are omitted: - 1 mark per word/phrase.

Indien enige van die sleutelwoorde/frases in die **korrekte konteks** weggelaat word: - 1 punt per woord/frase.

2.2 2.2.1 Compounds that have the <u>same molecular formula</u> but <u>different structural formulae</u>. $\checkmark\checkmark$

Verbindings wat <u>dieselfde molekulêre formule</u> maar <u>verskillende</u> <u>struktuurformules het</u>. (2)

2.2.2 POSITIONAL / POSISIONEEL ✓ (1)

2.2.3 SECONDARY / SEKONDÊR ✓

The C bonded to OH is bonded to two other carbons/ C of functional group bonded to two other carbons / C bonded to OH has 1 hydrogen/ C of functional group has one hydrogen $\checkmark \checkmark$

Die C wat verbind is aan die OH is verbind aan twee ander koolstowwe / C van die funksionele groep is verbind aan twee ander koolstowwe / C wat verbind is aan die OH het 1 waterstof / C van die funksionele groep het 1 waterstof.

2.3.1 3,4-dimethylhept-3-ene / 3,4-dimethylhept-3-ene 3,4-dimetielhept-3-een / 3,4-dimetiel-3-hepteen

Marking criteria/Nasienkriteria:

- Heptene / Hept-een ✓
- Dimethyl / dimetiel ✓
- Whole name correct / hele naam korrek √

(3)

2.3.2

Marking criteria/Nasienkriteria:

- Whole structure correct/Hele struktuur korrek: 2/2
- Only functional group correct

Slegs funksionele groep korrek Max./Maks. 1/2

OR / OF

$$CH_3CH_2CHO \checkmark \checkmark$$
 (2)

2.4.1
$$C_2H_4O \checkmark$$
 (1)

2.5.2 Methyl ✓ butanoate ✓ / Metiel butanoaat

Marking criteria/Nasienkriteria

- Functional group/Funksionele groep √ 1/2
- Whole structure correct/ Hele struktuur korrek √

2/2

(4) [**23**]

QUESTION 3/VRAAG 3

Marking criteria/Nasienkriteria

If any of the underlined key words/phrases in the **correct context** are omitted: - 1 mark per word/phrase.

Indien enige van die sleutelwoorde/frases in die **korrekte konteks** weggelaat word: - 1 punt per woord/frase.

3.1 Melting point is the <u>temperature</u> at which the <u>solid and liquid substances are</u> at equilibrium. $\checkmark\checkmark$

Smeltpunt is die <u>temperatuur</u> waarby die <u>vastof- en vloeistoffases</u> <u>van 'n stof in ewewig is</u>.

(2)

3.2 Marking criteria

- Increase in molecular size from A to C
- Increase in molecular size leads to increase in the strength of the London forces/Dispersion forces/Induced dipole forces
- Relate the strength of London forces /dispersion forces/induced dipole to energy involved.

Nasienkriteria

- Toename in molekulêre grootte vanaf A na C
- Toename in molekulêre grootte lei na 'n toename in die sterkte van die Londonkragte/verspreidingskragte/geïnduseerde dipoolkragte
- Verwys die sterktes van Londonkragte/Verspreidingskragte/ Geïnduseerde dipoolkragte met energie betrokke.

From A to C / Vanaf A na C

- Surface area/molecular size/chain length increases ✓
- Strength of London forces/dispersion forces/induced dipole forces increases √
- More energy is needed to overcome intermolecular forces ✓
- Oppervlakte/molekulêre grootte/kettinglengte neem toe
- Sterkte van die Londonkragte/verspreidingskragte/geïnduseerde dipoolkragte neem toe
- Meer energie word benodig om die intermolekulêrekragte te oorkom

OR/OF

Marking criteria

- Decrease in molecular size from C to A
- Decrease in molecular size leads to decrease in the strength of the London forces/dispersion forces/induced dipole forces
- Relate the strength of London forces to energy involved.

Nasienkriteria

- Afname in molekulêre grootte vanaf C na A
- Afname in molekulêre grootte lei na n afname in die sterkte van die Londonkragte/verspreidingskragte/geïnduseerde dipoolkragte
- Verwys die sterktes van Londonkragte/verspreidingskragte/ geïnduseerde dipoolkragte met energie betrokke

From C to A / Vanaf C na A

- Surface area/molecular size/chain length decreases ✓
- Strength of London forces/Dispersion forces/Induced dipole forces decreases √
- Less energy needed to overcome intermolecular forces ✓
- Oppervlakte/ molekulêre grootte/ kettinglengte neem af
- Sterkte van Londonkragte/verspreidingskragte/geïnduseerde dipoolkragte neem af
- Minder energie word benodig om die intermolekulêrekragte te oorkom
- 3.3 **A** / Propane / *Propaan* ✓

Lowest melting point / Laagste smeltpunt ✓

(2)

(3)

3.4 3.4.1

Marking criteria/Nasienriglyne

- 4 Carbons in longest chain √
 ½
 - 4 koolstowwe in die langste ketting ½
- Whole structure correct 2/2 √
 Hele struktuur korrek 2/2
- 3.4.2 LESS THAN / MINDER AS 129 °C ✓

(1)

(2)

3.4.3 Yes / Ja ✓

Compounds **C** and **D** have the same molecular mass/chain isomers ✓ *Verbindings* **C** en **D** het dieselfde molekulêremassa/ketting-isomere. (2)

3.5 Marking criteria

- E has dipole-dipole forces
- F has hydrogen bonds
- Correctly compare the strength of hydrogen bonds to dipole-dipole forces
- Relate the strength of the intermolecular forces to energy involved.

Nasienkriteria

- E het dipool-dipoolkragte
- F het waterstofbindings
- Vergelyk die sterkte van die waterstofbindings korrek aan die dipooldipoolkragte
- Verwys die sterktes van intermolekulêrekragte met energie betrokke
- **F** has hydrogen bonds ✓ (and London forces)
- E has dipole-dipole forces ✓ (and London forces)
- Hydrogen bonds are stronger than dipole-dipole forces ✓
- More energy is needed to overcome intermolecular forces in E ✓
- **F** het waterstofbindings (en Londonkragte)
- E het dipool-dipoolkragte (en Londonkragte)
- · Waterstofbinding is sterker as dipool-dipoolkragte
- Meer energie word benodig om die intermolekulêrekragte te oorkom

OR/OF

Marking criteria

- E has dipole-dipole forces
- F has hydrogen bonds
- Correctly compare the strength of hydrogen bonds to dipole-dipole forces
- Relate the strength of the intermolecular forces to energy involved

Nasienkriteria

- E het dipool-dipoolkragte
- F het waterstofbindings
- Vergelyk die sterkte van die waterstofbindings korrek aan die dipooldipoolkragte
- Verwys die sterktes van intermolekulêrekragte met energie betrokke
- F has hydrogen bonds ✓ (and London forces)
- **E** has dipole-dipole forces ✓ (and London forces)
- Dipole-dipole forces are weaker than hydrogen bonds ✓
- Less energy is needed to overcome intermolecular forces in F
- **F** het waterstofbindings (en Londonkragte)
- **E** het dipool-dipoolkragte (en Londonkragte)
- · Dipool-dipoolkragte is swakker as waterstofbinding
- Minder energie word benodig om die intermolekulêrekragte in **F** te oorkom

(4)

[16]

QUESTION 4/VRAAG 4

4.1 4.1.1 Alcohol / Alkohol ✓ (1)

4.1.2 (Mild) heat / dilute base / (Matige) hitte / verdunde basis ✓ (1)

4.1.3 H₂O/KOH/NaOH/LiOH ✓ (1)

4.1.4 Dehydration/Dehidrasie / dehidratering/dehidrerend ✓ (1)

4.1.5

Marking criteria/Nasienkriteria: Organic compounds only

- Functional group/Funksionele groep. ✓ 1/2
- Whole structure correct/
 Hele struktuur korrek ✓

2/2

4.1.6 Addition ✓ or <u>halogenation and hydrohalogenation</u> ✓ *Addisie of <u>halogenering en hidrohalogenering</u> (1)*

4.1.8 1,2-dibromopropane ✓✓ 1,2-dibromopropaan

Marking criteria/Nasienkriteria

- Functional group (2 Br atoms)/Funksionele groep. ✓ 1/2
- Whole structure correct/
 Hele struktuur korrek √ 2/2

(4)

4.2 4.2.1 Breaking down of long chain hydrocarbon molecules into more useful shorter chains ✓✓ (2 or 0)

Afbreek van langer koolwaterstof-molekules in korter meer gebruikbare molekules (2 of 0) (2)

4.2.2 Marking criteria/Nasienkriteria:

- Identifying compound Q / Identifisering van verbinding Q
- Identifying C_xH₆ / Identifisering van C_xH₆
- Identifying compound P / Identifisering van verbinding P
- Reactants / Reaktanse
- Products / Produkte
- Balancing / Balansering

$$Q = C_2H_4 \checkmark$$

 $C_xH_6 = C_3H_6 \checkmark$
 $P = C_8H_{18} \checkmark$

$$2 C_8 H_{18} + 25 O_2 \checkmark \longrightarrow 16 CO_2 + 18 H_2 O \checkmark \checkmark Bal.$$
 (6) [24]

(2)

QUESTION 5/VRAAG 5

5.1 Marking criteria/Nasienkriteria

If any of the underlined key words/phrases in the **correct context** are omitted: - 1 mark per word/phrase.

Indien enige van die sleutelwoorde/frases in die korrekte konteks weggelaat word: - 1 punt per woord/frase

ANY ONE

Change in concentration ✓ of reactant or product per (unit) time. ✓

<u>Change in amount/number of moles/volume/mass</u> ✓ of products or reactants per (unit) time. ✓

<u>Change in amount/number of moles/volume/mass</u> ✓ of products formed or reactants used reactants <u>per (unit) time</u>. ✓

ENIGE EEN

Verandering in konsentrasie van reaktanse of produkte per (eenheid) tyd.

<u>Verandering in hoeveelheid/getal mol/volume/massa</u> van reaktanse of produkte <u>per (eenheid) tyd</u>.

<u>Verandering in hoeveelheid/getal mol/volume/massa van produkte gevorm/reaktanse gebruik per (eenheid) tyd.</u>

OR/OF

The rate of change in concentration/amount of moles/number of moles / volume / mass. $\checkmark \checkmark$ (2 or 0)

Die tempo van verandering in konsentrasie/hoeveelheid mol/getal mol/volume/massa ✓✓ (2 of 0)

5.2 Marking criteria /Nasienkriteria

Both variables correctly identified/ Beide veranderlike korrek geïdentifiseer (1/2)

Question relates dependent and independent variables/ Vraag toon die verband tussen die afhanklike en onafhanklike veranderlike (1/2)

What is the relationship between <u>concentration</u> and <u>reaction rate</u>? ✓✓ **OR** How does <u>concentration</u> affect <u>reaction rate</u>?

Wat is die verhouding tussen <u>konsentrasie</u> en <u>reaksietempo</u>? **OF**Hoe affekteer <u>konsentrasie</u> die <u>reaksietempo</u>? (2)

5.3 Sulphur / Swawel ✓ (1)

5.4 There must be ONE independent variable ✓/ The size of the cross is a control variable

Daar moet slegs EEN onafhanklike veranderlike wees. / Die grootte van die kruis is 'n beheerde veranderlike. (1)

(3)

(6)

5.5 **Higher concentration**

- More particles per unit volume √
- More particles collide with correct orientation ✓
- Frequency of effective collisions increases √/More effective collisions per unit time √

Hoër konsentrasie

- Meer deeltjies per eenheid volume
- Meer deeltijes bots teen die korrekte oriëntasie
- Frekwensie vir effektiewe botsings neem toe/Meer effektiewe botsings per eenheid tyd

OR/OF

Lower concentration

- Fewer particles per unit volume ✓
- Fewer particles collide with correct orientation ✓
- Frequency of effective collisions decreases/Fewer effective collisions per unit time √

Lae konsentrasie

- Minder deeltjies per eenheid volume
- Minder deeltjies bots teen die korrekte oriëntasie
- Frekwensie vir effektiewe botsings neem af/Minder effektiewe botsings per eenheid tyd

5.6 Marking criteria/Nasienkriteria

- Reading the correct concentration of Na₂S₂O₃/Korrekte lesing van die konsentrasie van Na₂S₂O₃
- Subst. into/Vervanging in n = cV
- Using the mol ratio/Gebruik van mol verhouding Na₂S₂O₃: S
- Formula/Formule m = nM
- Subst. into/Vervanging m = nM
- Final answer/Finale antwoord

$$\begin{split} c\; (Na_2S_2O_3) &= 0,125\; mol\cdot dm^{-3} \,\checkmark \\ n(Na_2S_2O_3) &= cV \\ &= 0,125\; x\; 50/1000 \,\checkmark \\ &= 6,25\; x\; 10^{-3}\; mol \\ n(Na_2S_2O_3) &= n(S) &= 6,25\; x\; 10^{-3}\; mol \,\checkmark \\ m &= nM\; \checkmark \end{split}$$

5.7 5.7.1 Number of particles/molecules / Aantal deeltjies/molekules ✓ (1)

 $= 6.25 \times 10^{-3} \times 32 \checkmark$

 $= 0.2 g \checkmark$

Marking criteria / Nasienkriteria

- Shape of / Vorm van B
- Peak of *B* lower / Piek van B laer ✓

NOTE: A or B must be indicated LET WEL: A of B moet aangedui

word

(2) **[18]**

QUESTION 6/VRAAG 6

6.1 Marking criteria/ Nasienkriteria

If any of the underlined key words/phrases in the **correct context** are omitted: - 1 mark per word/phrase.

Indien enige van die sleutelwoorde/frases in die korrekte konteks weggelaat word: - 1 punt per woord/frase

When the <u>equilibrium in a closed system is disturbed</u>, the system will <u>re-instate a new equilibrium</u> by <u>favouring the reaction that will oppose the</u> disturbance. $\checkmark\checkmark$

Wanneer <u>die ewewig in 'n geslote sisteem</u> versteur word, sal die sisteem 'n <u>nuwe ewewig instel</u> deur die <u>reaksie te bevoordeel wat die versteuring teenwerk.</u>

(2)

6.2 Closed system / container √/ Geslote sisteem/houer

(1)

6.3 6.3.1 OPTION 1: MOLE CALCULATIONS/

- a. Substitute into n = m/M ✓
- b. Determine $\Delta n = 2x \checkmark$
- c. Correct ratio PCl₅: PCl₃: Cl₂ ✓
- d. Divide the equilibrium md by 2 dm³ ✓
- e. Correct K_c expression (formulae in square brackets) ✓
- f. Substitution into the correct equilibrium expressions (K_c) ✓

OPSIE 1: MOL BEREKENINGE

- a. Vervanging $n = m/M \checkmark$
- b. Bepaal $\Delta n = 2x \checkmark$
- c. Korrekte verhouding PCl₅: PCl₃: Cl₂ ✓
- d. Deel deur 2 dm³ ✓
- e. Korrekte Kc uitdrukking (formule met viekant hakkies) ✓
- f. Vervanging in korrekte Kc uitdrukking ✓

$$n = \frac{m}{M}$$

n =
$$\frac{83,4}{208,5}$$
 (a) \checkmark

n = 0.4 mol

$$\Delta n (PCℓ5) = (x)(2) = 2x \checkmark (b)$$

	PCl ₅	PCl ₃	Cl ₂
Initial mol	0,4		-
Change in mol	-2x	+2x	2x (
Equilibrium mol	0,4-2x	2x	2x
	0,4-2x / 2	2x / 2	2x / 2 √ (d)
Concentration			, ,
I	0,2-x	X	X

$$\mathsf{K}_{c} \quad = \frac{ [\mathsf{PC}\ell_{3}][\; \mathsf{C}\ell_{2}] }{ [\mathsf{PC}\ell_{5}] } \; (e) \; \checkmark \label{eq:Kc}$$

$$K_c = \frac{(x)(x)}{(0,2-x)}$$
 (f) \checkmark

$$K_c = \frac{x^2}{0.2 - x}$$
 (6)

6.3.1 **OPTION/OPSIE 2: CONCENTRATION** CALCULATIONS/KONSENTRASIE BEREKENINGE

- a. Substitute into n = m/M ✓
- b. Substitute into $c = n/V \checkmark$
- c. Correct ratio PCl₅: PCl₃: Cl₂ ✓
- d. Equilibrium conc correct ✓
- e. Correct K_C expression (formulae in square brackets) ✓
- f. Substitution into the correct equilibrium expressions (K_c) ✓

$$\begin{array}{l} n = m/M \\ = 83,4/208,5 \ \ (a) \checkmark \\ = 0,4 \ mol \\ c_i \ (PC\ell_5) = n/V \\ = 0,4/2 \ \ (b) \checkmark \\ = 0,2 \ mol.dm^{-3} \end{array}$$

	PCℓ ₅	PCl ₃ Cl ₂
Initial	0,2	-
concentration	0,2	ШПП
Change in	V	+X
concentration	-X	ATILITY X
Equilibrium	0.2 v	X V
concentration	0,2-x	^

$$\mathsf{K}_{c} \quad = \frac{ \ [\mathsf{PC}\ell_{3}][\ \mathsf{C}\ell_{2}] }{ \ [\mathsf{PC}\ell_{5}] } \ (e) \ \checkmark$$

$$K_c = \frac{(x)(x)}{(0,2-x)}$$
 (f) \checkmark

$$K_c = \frac{x^2}{0.2 - x}$$

Marking criteria/Nasienkriteria 6.3.2

- Determine the value of x / Bepaal die waarde van x
- Subst. into K_c expression / Vervanging in K_c uitdrukking

$$0.2 - x = 0.001$$

$$x = 0,1999$$

$$K_c = x^2/(0.2 - x)$$

$$= 0.199^2/(0.001) \checkmark$$

HIGH YIELD / HOË OPBRENGS ✓ 6.3.3

$$K_c > 1/Kc$$
 is large / groot \checkmark (2)

- NO EFFECT/ GEEN EFFEK ✓ 6.4 6.4.1 (1)
 - 6.4.2 DECREASES / VERLAAG ✓ (1)
- 6.5.1 6.5 Equilibrium/ Stage where rate of forward reaction equals rate of reverse reaction ✓

Ewewig / die plek waar die tempo van die voorwaartse reaksie gelyk is aan die tempo van die terugwaartse reakse. (1)

- 6.5.2 HEATED / VERHIT ✓ (1)
- 6.5.3 Increase in temperature favours the endothermic reaction. ✓
 - Concentration of PC₁₅ decreases while concentration of C₁₂ increases √
 - The forward reaction was favoured/ equilibrium position shifted towards the right ✓
 - Toename in temperatuur bevoordeel die endotermiese reaksie.
 - Konsentrasie PCℓ₅ neem af terwyl die konsentrasie van Cℓ₂ toe
 - Die voorwaartse reaksie word bevoordeel/ ewewigsposisie verksuif regs.

(3)

[20]

QUESTION 7/VRAAG 7

A substance that forms hydrogen ions (H+)/ hydronium ions (H3O+) in 7.1 7.1.1 water √√

> 'n Stof wat waterstofione (H+)/hydroniumione (H₃O+) in water vorm (2)

Good electrical conductor / Inert ✓ 7.1.2 Goeie elektriese geleidingsvermoë / Inert (1)

7.1.3 CH₃COOH ✓

Higher ammeter reading / Hoër ammeterlesing

Undergoes higher degree of ionisation / Ondergaan 'n hoër graad van ionisasie √

Higher concentration of ions in solution / Hoër konsentrasie van ione in die oplossing ✓ (3)

7.1.4 H₂O √ and/ *en* HCO₃ √ (2)

7.1.5 CO₃²⁻√ (1)

7.2 7.2.1 Reaction of a salt with water \checkmark (2 or 0) Reaksie van 'n sout met water (2 of 0) (2)

7.2.2 ACIDIC / SUUR ✓

$$NH_4^+ + H_2O \checkmark \longrightarrow NH_3 + H_3O^+ \checkmark$$

(reactants and products) / (reaktanse en produkte)

Excess H₃O⁺ are formed / Oormaat H₃O⁺ vorm √ (4)

7.3 7.3.1 $pH = - log [H₃O⁺] \checkmark$ = - log 1 ✓ **=** 0 ✓ (3)

7.3.2 $n = cV \checkmark$ $= 1 \times 250/1000 \checkmark$ $= 0.25 \text{ mol } \checkmark$ (3)

7.3.3

Positive marking from 7.3.2/ Positiewe nasien vanaf 7.3.2 Marking criteria/Nasienkriteria

- Formula / Formule n = cV
- Subst. of NaOH conc. and vol. into/ Vervanging van NaOH kons. En vol. in n = cV
- Mol ratio / Mol verhouding NaOH : HCl
- Subtract initial mol (from 7.3.2) from mol reacting with NaOH / Aftrek van aanvanklike mole (vanaf 7.3.2) van regerende mol NaOH
- Mol ratio / Mol verhouding CaCO3: HCl
- Subst. into / Vervanging in m = nM for CaCO₃
- Multiply mass of/ Vermenigvuldig massa van CaCO₃ by/met 100/99,3
- Final answer/ Finale antwoord

```
 \begin{aligned} & \text{n(NaOH)} &= \text{cV} \checkmark \\ &= 0.5 \text{x} \ 103/1000 \ \checkmark \\ &= 0.0515 \ \text{mol} \end{aligned} \\ & \text{n (HC\ell reacting with / reageer met NaOH)} = 0.0515 \ \text{mol} \ \checkmark \\ & \text{n (HC\ell reacting with / reageer met CaCO_3)} = 0.25 - 0.0515 \ \checkmark \\ & \text{n (HC\ell reacting with / reageer met CaCO_3)} = 0.1985 \ \text{mol} \\ & \text{n(CaCO_3)} = \frac{1}{2} \ (0.1985) \ \checkmark \\ & \text{n(CaCO_3)} = 0.09925 \ \text{mol} \\ & \text{m(CaCO_3)} = \text{nM} \\ & = 0.0925 \ \text{x} \ 100 \ \checkmark \\ & = 9.925 \ \text{g} \end{aligned} \\ & \text{m} = 9.925 \ \text{x} \ 100/99.3 \ \checkmark
```

(8) **[29]**

TOTAL/TOTAAL: 150

 $m = 9.99 q \checkmark$

(RANGE / GEBIED: 9,99 to 10,07 g)