# Quantum Volume

Guillermo Mijares Vilariño

Universidad Nebrija

16 September 2022

### Index

- Introduction
- Quantum Volume
  - Generate random square circuits
  - Simulate the circuits classically
  - Run the circuits on a real quantum device
- Transpiler
  - SABRE
  - Noise adaptive layout
- Results
  - Studied Devices
  - Bigger devices vs smaller
  - Qubit Layout
  - Optimization level
  - Number of circuits
- 6 Conclusions

# Benchmarking

There are many ways to evaluate the performance of a quantum computer depending on complexity and priority (speed or quality).



Depending on the complexity they can be classified into:

- Device: intrinsic characteristics of the quantum device.
- Subsystem: evaluate the performance of part of the device.
- Holistic: consider the device as a whole.

### Holistic Benchmarks

Some of the main benchmarks of this kind are:

- Algorithmic qubits [IonQ, 2022]
- CLOPS (Circuit Layer Operations Per Second) [Wack et al. 2021]
- Quantum Volume [Cross et al. 2019]

## Quantum Volume

### Concept

Quantum Volume evaluates what's the biggest square random circuit that can be successfully run. If d is that size, the Quantum Volume is given by  $2^d$ .

The Quantum Volume test can be divided into:

- Generate random square circuit.
- Simulate the circuits classically.
- Run the circuits on a real quantum device.
- Check whether the results are statistically close to those of the simulation.

# Generate random square circuits

### Square circuit

A square circuit of width and depth d is a circuit formed by d qubits and d layers.

### Layer

A random circuit layer consists of a random permutation  $\pi$  of all the qubits, followed by random 2-qubit gates over each pair of adjacent qubits.





# Simulate the circuits classically

We'll use a classical simulator to get the ideal output probabilities.



We look for the heavy outputs, that is, the outputs with higher probability than the median.

# Run the circuits on a real quantum device

The objective is to get a heavy output probability (HOP) higher than  $\frac{2}{3}$ .

#### Intuition

If we run  $n_c$  circuits,  $n_s$  times each and we obtain  $n_h$  heavy outputs, it may seem natural to take

$$HOP = \frac{n_h}{n_c n_s} > \frac{2}{3}$$

#### Confidence

If we want to ensure a confidence of 0.975

$$\label{eq:hop} \mathrm{HOP} - 2\sigma = \frac{n_h - 2\sqrt{n_h(n_s - \frac{n_h}{n_c})}}{n_c n_s} > \frac{2}{3}.$$

## Run the circuits on a real quantum device



Every trick is valid as long as an honest attempt at replicating the circuit is made, like using a circuit-to-circuit transpiler.

### SABRE

SABRE (SWAP-based BidiREctional heuristic algorithm) can be used to add SWAPs or choose the best qubit layout if the device has limited connectivity.

### Routing algorithm steps

- $\bullet$  Order 2-qubit gates in layers and take the first (F)
- Choose a random qubit mapping  $\pi$
- Look for gates from F that can be immediately executed, execute them and remove from F.
- ullet Add to F any successor gates of the execute ones, if possible.
- If there are no gates that can be immediately executed, consider all SWAPs that act on the qubits of the gates of F.
- For each SWAP consider a temporal mapping  $\pi_{temp}$  and evaluate an objective function with it.
- Add the SWAP that minimizes the objective function.
- $\bullet$  Repeat (except first 2 steps) until F is empty.

### SABRE

### Objective functions

$$H_{basic} = \sum_{gate \in F} D[\pi(gate.q_1), \pi(gate.q_2)]$$

$$H_{lookahead} = \frac{1}{|F|} \sum_{gate \in F} D[\pi(gate.q_1), \pi(gate.q_2)]$$

$$+ \frac{W}{|E|} \sum_{gate \in E} D[\pi(gate.q_1), \pi(gate.q_2)]$$

$$H_{decay} = \max(decay(SWAP.q_1), decay(SWAP.q_2))H_{lookahead}$$

This routing algorithm can be used to get an initial layout by going forward and backwards through the circuit several times.

# Noise adaptive layout

The noise adaptive layout algorithm [Murali et al. 2019] uses the device properties to para get a qubit layout.

### Steps

- The virtual CNOTS are ordered by descending weight → ascending control qubit → ascending target qubit.
- If there is a gate with only one mapped qubit, choose it. Otherwise, pick the first from the list.
- If no qubit from the gate is mapped, pick the physical CNOT with the highest total reliability.
- If one of the qubits is mapped, pick the physical qubit that best fits the already mapped neighbors of the virtual qubit.

## Studied Devices

| Dispositivo        | qubits | QV  | obtained QV |
|--------------------|--------|-----|-------------|
| ibm_cairo          | 27     | 64  | 16          |
| $ibmq\_mumbai$     | 27     | 128 | 8           |
| $ibmq\_montreal$   | 27     | 128 | 16          |
| ibmq_jakarta       | 7      | 16  | 16          |
| ${\tt ibm\_perth}$ | 7      | 32  | 8           |
| $ibm\_lagos$       | 7      | 32  | 8           |
| ${\tt ibmq\_lima}$ | 5      | 8   | 8           |

# Bigger devices vs smaller

#### Quantum Volume 8

| Device             | qubits | $n_c$ | $n_s$ | HOP   | $2\sigma$ |
|--------------------|--------|-------|-------|-------|-----------|
| ibmq_lima          | 5      | 200   | 4000  | 0.782 | 0.058     |
| $ibmq_{-}jakarta$  | 7      | 200   | 4000  | 0.781 | 0.058     |
| ${\tt ibm\_perth}$ | 7      | 300   | 5000  | 0.768 | 0.048     |
| $ibm\_lagos$       | 7      | 300   | 5000  | 0.744 | 0.050     |
| ibmq_cairo         | 27     | 300   | 5000  | 0.672 | 0.054     |
| $ibmq\_mumbai$     | 27     | 300   | 5000  | 0.669 | 0.054     |
| $ibmq\_montreal$   | 27     | 300   | 5000  | 0.720 | 0.052     |

Smaller devices give better heavy output probability (HOP).

## Bigger devices vs smaller

#### Quantum Volume 16

| Device             | qubits | $n_c$ | $n_s$ | HOP   | $2\sigma$ |
|--------------------|--------|-------|-------|-------|-----------|
| ibmq_jakarta       | 7      | 1500  | 5000  | 0.587 | 0.025     |
| ${\tt ibm\_perth}$ | 7      | 300   | 5000  | 0.561 | 0.057     |
| $ibm\_lagos$       | 7      | 300   | 5000  | 0.595 | 0.057     |
| ibm_cairo          | 27     | 300   | 5000  | 0.57  | 0.057     |
| $ibmq\_mumbai$     | 27     | 300   | 5000  | 0.548 | 0.057     |
| $ibmq\_montreal$   | 27     | 300   | 5000  | 0.621 | 0.056     |

There are no clear differences between bigger and smaller devices.

## Qubit Layout

#### Smaller devices

| device            | $n_c$ | $n_s$ | HOP   | $2\sigma$ | layout         |
|-------------------|-------|-------|-------|-----------|----------------|
| ibmq_jakarta      | 2400  | 2000  | 0.676 | 0.019     |                |
| $ibmq_{-}jakarta$ | 900   | 2000  | 0.650 | 0.032     | noise adaptive |
| $ibmq_{-}jakarta$ | 3600  | 2000  | 0.687 | 0.015     | SABRE          |
| ibm_perth         | 300   | 5000  | 0.684 | 0.054     |                |
| $ibm\_perth$      | 300   | 5000  | 0.632 | 0.056     | noise adaptive |
| ibm_perth         | 300   | 5000  | 0.679 | 0.054     | SABRE          |
| ibm_lagos         | 300   | 5000  | 0.654 | 0.054     |                |
| $ibm\_lagos$      | 300   | 5000  | 0.632 | 0.056     | noise adaptive |
| $ibm\_lagos$      | 300   | 5000  | 0.646 | 0.055     | SABRE          |

SABRE gives better results

## Qubit Layout

#### Bigger devices

| Device           | $n_c$ | $n_s$ | HOP   | $2\sigma$ | layout         |
|------------------|-------|-------|-------|-----------|----------------|
| ibmq_mumbai      | 300   | 5000  | 0.609 | 0.056     |                |
| ibmq_mumbai      | 300   | 5000  | 0.683 | 0.054     | noise adaptive |
| $ibmq\_mumbai$   | 300   | 5000  | 0.623 | 0.056     | SABRE          |
| ibmq_montreal    | 300   | 5000  | 0.654 | 0.055     |                |
| $ibmq\_montreal$ | 300   | 5000  | 0.714 | 0.052     | noise adaptive |
| $ibmq\_montreal$ | 300   | 5000  | 0.645 | 0.055     | SABRE          |

Noise adaptive gives better results.

# Optimization level

### Quantum Volume 8

| Device         | qubits | HOP increase |
|----------------|--------|--------------|
| ibmq_montreal  | 27     | 0.048        |
| $ibmq\_mumbai$ | 27     | 0.097        |
| $ibm\_cairo$   | 27     | 0.044        |
| ibm_perth      | 7      | 0.016        |
| $ibm\_lagos$   | 7      | 0.014        |

### Quantum Volume 16

| Device         | qubits | HOP increase |
|----------------|--------|--------------|
| ibmq_montreal  | 27     | 0.033        |
| ibm_lagos      | 7      | 0.059        |
| $ibmq\_mumbai$ | 27     | 0.061        |
| ibmq_jakarta   | 7      | 0.089        |
| $ibm\_cairo$   | 27     | 0.082        |
| ibm_perth      | 7      | 0.123        |

### Number of circuits

Heavy output probability (HOP) becomes approximately constant



$$2\sigma = \frac{2\sqrt{n_h\left(n_s - \frac{n_h}{n_s}\right)}}{n_c n_s} = 2\sqrt{\frac{\frac{n_h}{n_s n_c}(1 - \frac{n_h}{n_s n_c})}{n_c}} = 2\sqrt{\frac{\text{HOP}(1 - \text{HOP})}{n_c}}$$

### Conclusiones

- Obtained Quantum Volume is far from the one reported by IBM for bigger devices → need for more techniques.
- $\bullet$  For smaller devices the result is closer to IBM's  $\to$  Fewer variables or less studied?
- Without optimization, smaller devices perform better at Quantum Volume 8 test while there are no clear difference at Quantum Volume 16 test.
- SABRE works better than noise adaptive for smaller devices. For bigger ones noise adaptive is better.
- The effect of increasing optimization level is more noticeable for bigger devices for Quantum Volume 8 test. For Quantum Volume 16 the result varies from device to device.
- Number of circuits doesn't have a big impact on HOP but  $2\sigma$  is inversely proportional to its square root.

### Bibliography



IonQ (2022)

Algorithmic Qubits: A Better Single-Number Metric

URL: https://ionq.com/posts/february-23-2022-algorithmic-qubits



Wack, A., Paik, H., Javadi-Abhari, A., Jurcevic, P., Faro, I., Gambetta, J. M. & Johnson, B. R. (2021)

'Quality, speed, and scale: three key attributes to measure the performance of near-term quantum computers'

URL: https://arxiv.org/abs/2110.14108 83



Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. (2019)

'Validating quantum computers using randomized model circuits'

Physical Review A 100(3). URL: https://doi.org/10.1103%2Fphysreva.100.032328



Li, G., Ding, Y. & Xie, Y. (2018)

'Tackling the qubit mapping problem for nisq-era quantum devices' URL: https://arxiv.org/abs/1809.02573



Murali, P., Baker, J. M., Abhari, A. J., Chong, F. T. & Martonosi, M. (2019)

'Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers' URL: https://arxiv.org/abs/1901.11054