NOTAS DE AULA DE ELEMENTOS DE ÁLGEBRA

TIAGO MACEDO

Aula 3

1.3. Grupos simétricos

Para cada n > 0, denote por S_n o conjunto formado por todas as permutações (ou seja, todas as bijeções) do conjunto $X = \{1, ..., n\}$. Defina uma operação binária $m: S_n \times S_n \to S_n$ da seguinte forma $m(f,g) = f \circ g$ (a composição das funções $f \in g$). Vamos verificar que (S_n, \circ) é um grupo.

(i) m(m(f,g),h) e m(f,m(g,h)) são bijeções do conjunto $\{1,\ldots,n\}$, então para compará-las, vamos aplicá-las nos elementos de $\{1,\ldots,n\}$. Para cada $x \in \{1,\ldots,n\}$, temos:

$$m(m(f,g),h)(x) = (m(f,g) \circ h)(x) \qquad m(f,m(g,h))(x) = (f \circ m(g,h))(x) = ((f \circ g) \circ h)(x) \qquad = (f \circ (g \circ h))(x) = (f \circ g)(h(x)) \qquad = f((g \circ h)(x)) = f(g(h(x))),$$

- (ii) A função identidade $\mathrm{id}_X \colon X \to X$ dada por $\mathrm{id}_X(x) = x$ para todo $x \in \{1,\ldots,n\}$ é uma permutação. Além disso, temos que $m(f,\mathrm{id}_X) = f \circ \mathrm{id}_X = f = \mathrm{id}_X \circ f = m(\mathrm{id}_X,f)$ para toda $f \in S_n$. Portanto id_X é o (único) elemento neutro de (S_n,\circ) .
- (iii) Para cada permutação (uma bijeção) σ do conjunto $\{1,\ldots,n\}$, existe uma função inversa, denotada $\sigma^{-1}:\{1,\ldots,n\}\to\{1,\ldots,n\}$. Pela definição, a função inversa de σ é aquela que satisfaz $\sigma\circ\sigma^{-1}=\mathrm{id}_X=\sigma^{-1}\circ\sigma$. Portanto σ^{-1} é exatamente o elemento inverso de σ em (S_n,\circ) , um 2-ciclo.

Agora vamos introduzir uma notação para lidar com os elementos de S_n . Fixe $\sigma \in S_n$. Primeiro, verifique que, para cada $x \in \{1, \ldots, n\}$ existe $k \leq n$ (que depende de σ e x) tal que $\sigma^k(x) = x$. (Use o fato de que σ é uma bijeção e que $\{1, \ldots, n\}$ é um conjunto finito.) Em particular, tome o menor $k \leq n$ tal que $\sigma(1) = 1$. Se k = n, então denotamos σ por $(1 \sigma(1) \ldots \sigma^{n-1}(1))$. Se k < n, então $\{1, \sigma(1), \ldots, \sigma^{k-1}(1)\} \subseteq \{1, \ldots, n\}$. Tome o menor $i \in \{1, \ldots, n\} \setminus \{1, \sigma(1), \ldots, \sigma^{k-1}(1)\}$ e o menor $\ell \leq n$ tal que $\sigma^{\ell}(i) = i$. Se $k + \ell = n$, então denotamos σ por $(i \sigma(i) \ldots \sigma^{\ell-1}(i))(1 \sigma(1) \ldots \sigma^{k-1}(1))$. Caso contrário, repita esse processo até esgotar todos os elementos de $\{1, \ldots, n\}$.

Os termos da forma $(i \ \sigma(i) \ \dots \ \sigma^p(i))$ são chamados de p-ciclos. Caso existam 1-ciclos na decomposição de σ , eles são cancelados (exceto se $\sigma = \mathrm{id}_X$). Por exemplo, se $\sigma = \mathrm{id}_{\{1,\dots,n\}}$, então nós teríamos $\sigma = (n)(n-1)\dots(2)(1)$, e nesse caso, nós denotamos σ simplesmente por (1).

Exemplo 3.1. Considere S_2 , o conjunto de permutações do conjunto $X = \{1, 2\}$. Observe que as únicas permutações de $\{1, 2\}$ são: id_X e $\sigma \colon \{1, 2\} \to \{1, 2\}$ dada por $\sigma(1) = 2$ e $\sigma(2) = 1$. Portanto $|S_2| = 2$. Além disso, observe que $\sigma^2 = \mathrm{id}_X$, ou seja, $o(\sigma) = 2$. Usando a notação acima, denotamos id_X por (1) e σ por (1, 2).

Exemplo 3.2. Considere S_3 , o conjunto de permutações do conjunto $X = \{1, 2, 3\}$. Usando a notação acima, observe que as permutações de $\{1, 2, 3\}$ são as seguintes:

$$id_{X} = (1) \colon X \to X \qquad (1 \ 2) \colon X \to X \qquad (1 \ 3) \colon X \to X$$

$$1 \mapsto 1 \qquad 1 \mapsto 2 \qquad 1 \mapsto 3$$

$$2 \mapsto 2 \qquad 2 \mapsto 1 \qquad 2 \mapsto 2$$

$$3 \mapsto 3 \qquad 3 \mapsto 3 \qquad 3 \mapsto 1$$

$$(2 \ 3) \colon X \to X \qquad (1 \ 2 \ 3) \colon X \to X \qquad (1 \ 3 \ 2) \colon X \to X$$

$$1 \mapsto 1 \qquad 1 \mapsto 2 \qquad 1 \mapsto 3$$

$$2 \mapsto 3 \qquad 2 \mapsto 3 \qquad 2 \mapsto 1$$

$$3 \mapsto 2 \qquad 3 \mapsto 2 \qquad 3 \mapsto 2$$

Em particular, observe que $|S_3| = 6$. Para calcular a multiplicação entre desses elementos, basta ler os elementos como funções (da direita para a esquerda), seguindo o caminho que cada $x \in \{1, 2, 3\}$ faz. Por exemplo, $(1\ 2) \circ (1\ 3) = (1\ 3\ 2)$. Em particular, observe que os 2-ciclos $(1\ 2)$, $(1\ 3)$, $(2\ 3)$ tem ordem 2, e os 3-ciclos $(1\ 2\ 3)$, $(1\ 3\ 2)$ tem ordem 3. Além disso, observe que esse grupo não é comutativo. De fato $(1\ 2) \circ (1\ 3) = (1\ 3\ 2)$ e $(1\ 3) \circ (1\ 2) = (1\ 2\ 3)$.

Exercício 3.3. Mostre que $|S_n| = n!$ e que a ordem de todo *p*-ciclo é *p*.

Exercício 3.4. Dado um grupo G, mostre que, se $|G| \le 5$, então G é abeliano.

1.5. Grupo dos quatérnios

Considere o conjunto \mathbb{H} (ou Q_8) formado pelos símbolos $\{1, -1, i, -i, j, -j, k, -k\}$. Defina $m: \mathbb{H} \times \mathbb{H} \to \mathbb{H}$ como sendo a única operação binária tal que (\mathbb{H}, m) é um grupo e que satisfaz:

$$m(1,h) = m(h,1) = h \quad \text{para todo } h \in \mathbb{H},$$

$$m(-1,-1) = 1, \qquad m(i,i) = m(j,j) = m(k,k) = -1,$$

$$m(-1,i) = m(i,-1) = -i, \quad m(-1,j) = m(j,-1) = -j, \quad m(-1,k) = m(k,-1) = -k,$$

$$m(i,j) = -m(j,i) = k, \quad m(j,k) = -m(k,j) = i, \quad m(k,i) = -m(i,k) = j.$$

Observe que \mathbb{H} é um grupo finito, $|\mathbb{H}|=8$, e que não é abeliano. Observe também que o(1)=1, o(-1)=2 e $o(\pm i)=o(\pm j)=o(\pm k)=4$.

1.2. Grupos diedrais

Para cada n > 2, denote por D_{2n} o conjunto formado por todas as simetrias de um n-ágono regular Δ_n (movimentos rígidos no espaço, ou seja, composições de translações, rotações e reflexões, que preservam Δ_n). Como toda simetria de Δ_n é uma função $f: \Delta_n \to \Delta_n$, defina a operação binária $m: D_{2n} \times D_{2n} \to D_{2n}$ como $m(f,g) = f \circ g$, a composição dessas funções.

Vamos verificar que (D_{2n}, \circ) é um grupo. Primeiro, observe que a composição de duas simetrias de Δ_n é uma simetria de Δ_n . Depois, lembre que a composição de funções é associativa (veja, por exemplo, a verificação da associatividade para o grupo simétrico). Agora observe que a função identidade id_{Δ_n} é uma simetria de Δ_n e satisfaz $\mathrm{id}_{\Delta_n} \circ \sigma = \sigma = \sigma \circ \mathrm{id}_{\Delta_n}$ para todo $\sigma \in D_{2n}$. Finalmente, observe que toda translação, rotação e reflexão é invertível, portanto todo movimento rígido σ que preserva Δ_n admite uma inversa, ou seja, uma função σ^{-1} satisfazendo $\sigma \circ \sigma^{-1} = \mathrm{id}_{\Delta_n} = \sigma^{-1} \circ \sigma$, e que σ^{-1} também preserva Δ_n .

Exemplo 3.5. Considere o grupo D_6 de simetrias de um triângulo equilátero Δ_3 . Para descrever as simetrias de Δ_3 , vamos enumerar seus vértices com inteiros módulo 3:

$$\Delta_3 =$$
 $\overline{}$
 $\overline{}$

Observe que a rotação (no sentido horário) em torno do centro de Δ_3 de um ângulo de $2\pi/3$ (ou 120°), é uma simetria de Δ_3 . De fato, se denotarmos essa rotação por r, teremos:

$$r\left(\Delta_{3}\right) = \sum_{\overline{1}}^{2} \overline{0}$$

Observe ainda que $r^2 = (r \circ r)$ é a rotação de um ângulo de $4\pi/3$ (no sentido horário em torno do centro) de Δ_3 ,

$$r^2(\Delta_3) = \underbrace{\int_{\overline{0}}^{\overline{1}}}_{\overline{2}}$$

e que r^3 é a rotação de um ângulo de 2π , ou seja, $r^3 = \mathrm{id}_{\Delta_3}$. Com isso, concluímos que o(r) = 3.

Observe também que a reflexão de Δ_3 em relação à reta que passa pelo vértice $\overline{0}$ e pelo centro de Δ_3 ,

$$\Delta_3 = \overline{2}$$

é uma outra simetria de Δ_3 . De fato, se denotarmos essa reflexão por s, teremos:

$$s(\Delta_3) = \underbrace{\begin{array}{c} \overline{0} \\ \overline{1} \end{array}}_{\overline{2}} \qquad \qquad s^2(\Delta_3) = \underbrace{\begin{array}{c} \overline{0} \\ \overline{2} \end{array}}_{\overline{1}}$$

Como s troca a ordem dos vértices (no sentido horário, de $\overline{0}$ $\overline{1}$ $\overline{2}$ para $\overline{0}$ $\overline{2}$ $\overline{1}$), mas id $_{\Delta_3}$, r e r^2 não invertem, é fácil concluir que $s \notin \{\mathrm{id}_{\Delta_3}, r, r^2\}$. Além disso, o(s) = 2.

De fato, a disposição dos vértices é uma forma de identificar as simetrias de Δ_3 , pois toda simetria de Δ_3 pode ser unívocamente identificada com uma permutação do conjunto $\{\overline{0}, \overline{1}, \overline{2}\}$. Por exemplo, r pode ser identificada com a permutação $(\overline{0}\ \overline{2}\ \overline{1})$, r^2 pode ser identificada com a permutação $(\overline{0}\ \overline{1}\ \overline{2})$ e s pode ser identificada com a permutação $(\overline{1}\ \overline{2})$. Verifique que, identificando os elementos de D_6 com permutações em S_3 , podemos concluir que id Δ_3 , r, r^2 , s, sr, sr^2 são elementos distintos. Isso implica que $|D_6| \geq 6$.

Além disso, como toda simetria é um movimento rígido, um elemento $\sigma \in D_6$ é unicamente determinado pela permutação induzida dos vértices de Δ_3 . Consequentemente, $|D_6| \leq |S_3| = 6$. Juntando essas duas desigualdades, concluímos que $|D_6| = 6$ e que as simetrias de Δ_3 são $\{\mathrm{id}_{\Delta_3}, r, r^2, s, sr, sr^2\}$. Em particular, todas as outras possíveis simetrias se identificam com uma dessas. Por exemplo, $rs = sr^2$, $srs = r^2$ e $r^2s = sr$.

Voltando ao caso geral, vamos mostrar que $|D_{2n}|=2n$ e vamos descrever todos as simetrias de Δ_n . Primeiro, enumere os vértices de um n-ágono regular Δ_n no sentindo horário com os inteiros módulo n. Denote por r a simetria que rotaciona Δ_n de um ângulo de $2\pi/n$ no sentido horário e por s a reflexão em relação a reta que passa pelo vértice $\overline{0}$ e pelo centro de Δ_n . Assim como no caso n=3, toda simetria de Δ_n pode ser unívocamente identificada com uma permutação do conjunto \mathbb{Z}_n . (Ou seja, podemos definir uma função $\vartheta\colon D_{2n}\to S_n$.) Em particular, r se identifica com a permutação ($\overline{0}$ $\overline{n-1}$ \cdots $\overline{1}$); se n for par, s se identifica com a permutação ($\overline{1}$ $\overline{-1}$)($\overline{2}$ $\overline{-2}$) \cdots ($\overline{n-1}$ $\overline{n-1}$

Agora observe que, como toda simetria é um movimento rígido, se dois vértices são adjacentes, então suas imagens pela simetria devem continuar adjacentes. Em particular, se soubermos as imagens dos vértices $\overline{0}$ e $\overline{1}$ (que devem ser adjacentes), podemos determinar unicamente as imagens de todos os outros vértices. De fato, se $\sigma(\overline{0})=\overline{i}$, então $\sigma(\overline{1})\in\{\overline{i-1},\overline{i+1}\}$. Se $\sigma(\overline{1})=\overline{i+1}$ (resp. $\sigma(\overline{1})=\overline{i-1}$), como $\sigma(\overline{2})$ deve ser adjacente a $\sigma(\overline{1})$ e $\overline{i}=\sigma(\overline{0})$, então $\sigma(\overline{2})=\overline{i+2}$ (resp. $\sigma(\overline{2})=\overline{i-2}$). Usando esse mesmo argumento, verifique que $\sigma(\overline{k})=\overline{i+k}$ (resp. $\sigma(\overline{k})=\overline{i-k}$) para todo $\overline{k}\in\mathbb{Z}_n$. Com isso, concluímos que existem n possibilidades para escolhermos $\sigma(\overline{0})$ e 2 possibilidades para escolhermos $\sigma(\overline{1})$ (os outros seguem como consequência), ou seja, $|D_{2n}|\leq 2n$.

Juntando essas duas desigualdades, concluímos que $|D_{2n}| = 2n$ e que

$$D_{2n} = \{ id_{\Delta_n}, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1} \}.$$

Exercício 3.6. Escreva o elemento rsrsrsrs em termos de $id_{\Delta_n}, r, \ldots, r^{n-1}, s, sr, \ldots, sr^{n-1}$.