Certifiably Correct SLAM

David M. Rosen

NEU EECE 5550 Mobile Robotics Nov 19, 2021

Given:

Introduction

- Unknown poses $x_1, \ldots, x_n \in SE(d)$
- Noisy relative measurements $\tilde{x}_{ij} = (\tilde{t}_{ij}, \tilde{R}_{ij}) \approx x_i^{-1} x_j$

Find: An estimate $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$ for the hidden states:

$$\hat{x} \in \operatorname*{argmin}_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

Recap: Pose-graph SLAM

Given:

Introduction

- Unknown poses $x_1, \ldots, x_n \in SE(d)$
- Noisy relative measurements $\tilde{x}_{ij} = (\tilde{t}_{ij}, \tilde{R}_{ij}) \approx x_i^{-1} x_j$

Find: An estimate $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$ for the hidden states:

$$\hat{x} \in \underset{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}}{\mathsf{argmin}} \sum_{\substack{(i,j) \in \vec{\mathcal{E}}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

The Big Problem: This is a high-dimensional, nonconvex problem

•000

Recap: Pose-graph SLAM

Convex

- Local min \Rightarrow global min
- Easy to optimize

Nonconvex

- Can have many local minima
- Hard to optimize (generally)

Recap: Pose-graph SLAM

Given:

- Unknown poses $x_1, \ldots, x_n \in SE(d)$
- Noisy relative measurements $\tilde{x}_{ij} = (\tilde{t}_{ij}, \tilde{R}_{ij}) \approx x_i^{-1} x_j$

Find: An estimate $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$ for the hidden states:

$$\hat{x} \in \operatorname*{argmin}_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

The Big Problem: This is a high-dimensional, nonconvex problem

Recap: Pose-graph SLAM

Given:

Introduction

- Unknown poses $x_1, \ldots, x_n \in SE(d)$
- Noisy relative measurements $\tilde{x}_{ii} = (\tilde{t}_{ii}, \tilde{R}_{ii}) \approx x_i^{-1} x_i$

Find: An estimate $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$ for the hidden states:

$$\hat{x} \in \operatorname*{argmin}_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

The Big Problem: This is a high-dimensional, nonconvex problem

- ⇒ LOTS of local minima
- ⇒ **No guarantees** on estimates recovered via *local search*!

The problem of nonconvexity

Introduction

0000

0000

The problem of nonconvexity

Optimal estimate

The problem of nonconvexity

Optimal estimate

Suboptimal critical point

The problem of nonconvexity

Introduction 0000

Optimal estimate

Suboptimal critical point

Suboptimal critical point

Optimal estimate

Suboptimal critical point

Suboptimal critical point

Suboptimal critical point

The problem of nonconvexity

Main Question: Is it possible to *ensure* good SLAM performance?

Optimal estimate

Suboptimal critical point

Suboptimal critical point

Suboptimal critical point

The Main Idea: Convex relaxation for the win!

Introduction

We can't efficiently solve (NP-hard) pose-graph SLAM in general

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate "reasonable" instances?

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

The Main Idea: Convex relaxation for the win!

We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate "reasonable" instances?

Intuition: Nature is not "out to get you"

All pose-graph SLAM instances

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

The Main Idea: Convex relaxation for the win!

We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate "reasonable" instances?

Intuition: Nature is not "out to get you"

All pose-graph SLAM instances

Question: How to *generate* these approximations?

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate "reasonable" instances?

Intuition: Nature is not "out to get you"

All pose-graph SLAM instances

Question: How to *generate* these approximations?

One general approach: Convex relaxation

⇒ Solve a *convex approximation* of original problem

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

The Main Idea: Convex relaxation for the win!

We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate "reasonable" instances?

Intuition: Nature is not "out to get you"

Introduction

All pose-graph SLAM instances

Question: How to *generate* these approximations?

One general approach: Convex relaxation

- ⇒ Solve a *convex approximation* of original problem
 - Standard machinery for constructing these
 - Admit (some) formal guarantees on solution quality.¹

¹Bandeira 2016: Chandrasekaran et al. 2012: Chandrasekaran et al. 2013.

In this talk

- **1** Lagrangian duality: lower bounds for optimization problems via convex relaxation
- Solution verification: certificates of optimality for pose-graph SLAM
- 3 SE-Sync: Fast global pose-graph optimization

Main idea: Compute *lower bounds* for the *optimal value* of an optimization problem:

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g_i(x) = 0, & i = 1, \dots, l \\ h_j(x) \leq 0, & j = 1, \dots, m \end{cases}$

Main idea: Compute *lower bounds* for the *optimal value* of an optimization problem:

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g_i(x) = 0, & i = 1, \dots, l \\ h_j(x) \le 0, & j = 1, \dots, m \end{cases}$

Define the *Lagrangian*:

$$\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}_+^m \to \mathbb{R}$$

$$\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \sum_{i=1}^l \lambda_i g_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$

A primer on Lagrangian duality

Main idea: Compute *lower bounds* for the *optimal value* of an optimization problem:

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g_i(x) = 0, & i = 1, \dots, l \\ h_j(x) \leq 0, & j = 1, \dots, m \end{cases}$

Define the *Lagrangian*:

$$\mathcal{L} \colon \mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}_+^m \to \mathbb{R}$$

$$\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \sum_{i=1}^l \lambda_i g_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$

Key observation: For any $\nu \geq 0$, λ , and feasible x:

Main idea: Compute *lower bounds* for the *optimal value* of an optimization problem:

$$p^* = \min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad \left\{ \begin{array}{l} g_i(x) = 0, & i = 1, \dots, l \\ h_j(x) \leq 0, & j = 1, \dots, m \end{array} \right\}$$

Define the Lagrangian:

$$\mathcal{L} \colon \mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}_+^m \to \mathbb{R}$$
$$\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \sum_{i=1}^l \lambda_i \mathbf{g}_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$

Key observation: For any $\nu \geq 0$, λ , and feasible x:

Main idea: Compute *lower bounds* for the *optimal value* of an optimization problem:

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g_i(x) = 0, & i = 1, \dots, l \\ h_j(x) \le 0, & j = 1, \dots, m \end{cases}$

Define the *Lagrangian*:

$$\mathcal{L} \colon \mathbb{R}^n \times \mathbb{R}^l \times \mathbb{R}_+^m \to \mathbb{R}$$

$$\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \sum_{i=1}^l \lambda_i g_i(x) + \sum_{j=1}^m \nu_j h_j(x).$$

Key observation: For any $\nu \geq 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu) \leq f(x).$$

Recall: For any $\nu \geq 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Introduction

Recall: For any $\nu \geq 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

Introduction

Recall: For any $\nu > 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

$$d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu)$$

Introduction

Recall: For any $\nu > 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

$$d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu) \leq \inf_{\mathbf{x} \text{ feasible}} \mathcal{L}(\mathbf{x}, \lambda, \nu)$$

Introduction

Recall: For any $\nu \geq 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

$$d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu) \leq \inf_{\mathbf{x} \text{ feasible}} \mathcal{L}(\mathbf{x}, \lambda, \nu) \leq f(\mathbf{x}).$$

Introduction

Recall: For any $\nu > 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

$$\frac{d(\lambda,\nu)}{d(\lambda,\nu)} \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x},\lambda,\nu) \leq \inf_{\mathbf{x} \text{ feasible}} \mathcal{L}(\mathbf{x},\lambda,\nu) \leq f(\mathbf{x}).$$

Introduction

Recall: For any $\nu > 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

Lagrangian duality: For all $\nu \geq 0$, λ , and feasible x:

$$\frac{d(\lambda,\nu)}{d(\lambda,\nu)} \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x},\lambda,\nu) \leq \inf_{\mathbf{x} \text{ feasible}} \mathcal{L}(\mathbf{x},\lambda,\nu) \leq \frac{f(\mathbf{x})}{f(\mathbf{x})}.$$

 \Rightarrow Dual function $d(\lambda, \nu)$ lower-bounds f(x) for all feasible x.

Recall: For any $\nu > 0$, λ , and feasible x:

$$\mathcal{L}(x,\lambda,\nu)\leq f(x).$$

Define the *dual function*:

$$d: \mathbb{R}^{I} \times \mathbb{R}_{+}^{m} \to \mathbb{R}$$
$$d(\lambda, \nu) \triangleq \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x, \lambda, \nu).$$

Lagrangian duality: For all $\nu \geq 0$, λ , and feasible x:

$$\frac{d(\lambda,\nu)}{d(\lambda,\nu)} \stackrel{\triangle}{=} \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda,\nu) \leq \inf_{x \text{ feasible}} \mathcal{L}(x,\lambda,\nu) \leq \frac{f(x)}{f(x)}.$$

 \Rightarrow Dual function $d(\lambda, \nu)$ lower-bounds f(x) for all feasible x.

Key fact: The dual function is *always concave*.

The Lagrangian dual problem

Introduction

For all $\nu \geq 0$, λ , and feasible x, we have the *lower bound*:

$$d(\lambda, \nu) \leq p^* \leq f(x).$$

How to get the *tightest* possible bound?

The Lagrangian dual problem

For all $\nu \geq 0$, λ , and feasible x, we have the *lower bound*:

$$d(\lambda, \nu) \leq p^* \leq f(x)$$
.

How to get the *tightest* possible bound? Maximize dual function!

Lagrangian dual problem:

$$d^* = \max_{\nu \geq 0, \, \lambda} d(\lambda, \nu)$$

For all $\nu > 0$, λ , and feasible x, we have the *lower bound*:

$$d(\lambda, \nu) \leq p^* \leq f(x)$$
.

How to get the tightest possible bound? Maximize dual function!

Lagrangian dual problem:

$$d^* = \max_{\nu \geq 0, \, \lambda} d(\lambda, \nu)$$

Recall: The dual function is always concave

le Lagrangian duai problem

For all $\nu \geq 0$, λ , and feasible x, we have the *lower bound*:

$$d(\lambda, \nu) \leq p^* \leq f(x)$$
.

How to get the *tightest* possible bound? Maximize dual function!

Lagrangian dual problem:

$$d^* = \max_{\nu \geq 0, \lambda} d(\lambda, \nu)$$

Recall: The dual function is *always concave* ⇒ Lagrangian dual problem is *always convex*

For all $\nu \geq 0$, λ , and feasible x, we have the *lower bound*:

$$d(\lambda, \nu) \leq p^* \leq f(x).$$

How to get the *tightest* possible bound? Maximize dual function!

Lagrangian dual problem:

$$d^* = \max_{\nu \geq 0, \lambda} d(\lambda, \nu)$$

Recall: The dual function is always concave

- ⇒ Lagrangian dual problem is always convex
- \Rightarrow We can always compute the optimal lower-bound d^*

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Lagrangian duality: $d^* < p^*$

Dual problem

$$d^* = \max_{
u \geq 0, \ \lambda} d(\lambda,
u)$$

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{\nu \geq 0, \ \lambda} d(\lambda, \nu)$$

Lagrangian duality: $d^* \leq p^*$

Strong duality: $d^* = p^*$

Introduction

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{
u \geq 0, \ \lambda} d(\lambda,
u)$$

Lagrangian duality: $d^* < p^*$

Strong duality: $d^* = p^*$

Observe: If strong duality holds and x^* and (λ^*, ν^*) are primal and dual solutions, then:

$$p^* = f(x^*) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda^*, \nu^*) = d(\lambda^*, \nu^*) = d^*.$$

Introduction

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{
u \geq 0, \ \lambda} d(\lambda,
u)$$

Lagrangian duality: $d^* < p^*$

Strong duality: $d^* = p^*$

Observe: If strong duality holds and x^* and (λ^*, ν^*) are primal and dual solutions, then:

$$p^* = f(x^*) = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda^*, \nu^*) = d(\lambda^*, \nu^*) = d^*.$$

Introduction

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{
u \geq 0, \ \lambda} d(\lambda,
u)$$

Lagrangian duality: $d^* < p^*$

Strong duality: $d^* = p^*$

Observe: If strong duality holds and x^* and (λ^*, ν^*) are primal and dual solutions, then:

$$p^* = f(x^*) = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda^*, \nu^*) = d(\lambda^*, \nu^*) = d^*.$$

 $\Rightarrow x^*$ is an unconstrained minimizer of $\mathcal{L}(x, \lambda^*, \nu^*)$.

Introduction

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{
u \geq 0, \ \lambda} d(\lambda,
u)$$

Lagrangian duality: $d^* < p^*$

Strong duality: $d^* = p^*$

Observe: If strong duality holds and x^* and (λ^*, ν^*) are primal and dual solutions, then:

$$p^* = f(x^*) = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda^*, \nu^*) = d(\lambda^*, \nu^*) = d^*.$$

- $\Rightarrow x^*$ is an unconstrained minimizer of $\mathcal{L}(x, \lambda^*, \nu^*)$.
- \Rightarrow Can recover *primal* solution x^* from (convex) dual solution (λ^*, ν^*) if minimizing $\mathcal{L}(x, \lambda^*, \nu^*)$ is easy.

Primal problem

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Solution verification

Lagrangian duality: Summary

Primal problem

Introduction

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Lagrangian:
$$\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$$
.

Primal problem

Introduction

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Lagrangian: $\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$.

Dual function: $d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu)$.

Primal problem

Introduction

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\left\{ \begin{array}{l} g(x) = 0 \\ h(x) \le 0 \end{array} \right\}$

Lagrangian: $\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$.

Dual function: $d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu)$.

Lagrangian duality: $d(\lambda, \nu) \leq f(x)$ for all $\nu \geq 0$, λ , feasible x

 \Rightarrow Dual function provides *lower bounds* on p^*

Primal problem

Introduction

$$p^* = \min_{x \in \mathbb{R}^n} f(x)$$
 s.t. $\begin{cases} g(x) = 0 \\ h(x) \le 0 \end{cases}$

Dual problem

$$d^* = \max_{\nu \geq 0, \, \lambda} d(\lambda, \nu)$$

Lagrangian: $\mathcal{L}(x, \lambda, \nu) \triangleq f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$.

Dual function: $d(\lambda, \nu) \triangleq \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x}, \lambda, \nu)$.

Lagrangian duality: $d(\lambda, \nu) \leq f(x)$ for all $\nu \geq 0$, λ , feasible x \Rightarrow Dual function provides *lower bounds* on p^*

Dual problem:

- Provides *tightest* achievable lower bound $d^* \leq p^*$
- $d(\lambda, \nu)$ concave \Rightarrow dual problem convex

In this talk

- **1** Lagrangian duality: lower bounds for optimization problems via convex relaxation
- Solution verification: certificates of optimality for pose-graph SLAM
- SE-Sync: Fast global pose-graph optimization

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$\rho^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2.$$

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$\rho^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \left\|t_j - t_i - R_i \tilde{t}_{ij}\right\|_2^2.$$

Lagrangian duality: $d^* \leq p^* \leq f(x)$.

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$\rho^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2.$$

Lagrangian duality: $d^* \le p^* \le f(x)$. This implies:

$$f(x) - p^* \le f(x) - d^*.$$

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$p^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2.$$

Lagrangian duality: $d^* \le p^* \le f(x)$. This implies:

$$f(x) - p^* \le f(x) - d^*.$$

• Left-hand side is *suboptimality* of x.

Assessing the quality of a pose-graph SLAM solution

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$\rho^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2.$$

Lagrangian duality: $d^* \le p^* \le f(x)$. This implies:

$$f(x) - p^* \le f(x) - d^*.$$

- Left-hand side is *suboptimality* of *x*.
- Right-hand side can be computed from (convex) dual problem.

Main idea: Use Lagrangian duality to bound the suboptimality of a candidate pose-graph SLAM solution.

Solution verification

Let $x \in SE(d)^n$ be a candidate solution of pose-graph MLE:

$$p^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2.$$

Lagrangian duality: $d^* \le p^* \le f(x)$. This implies:

$$f(x) - p^* \le f(x) - d^*.$$

- Left-hand side is *suboptimality* of x.
- Right-hand side can be computed from (convex) dual problem.
- \Rightarrow We can bound global suboptimality of x using $d^*!$

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{\substack{\mathbf{t}_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|\mathbf{t}_j - \mathbf{t}_i - R_i \tilde{t}_{ij}\|_2^2$$

Solving for $t \triangleq (t_1, ..., t_n)$ in terms of $R \triangleq (R_1, ..., R_n)$ using a generalized Schur complement...

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{\substack{\mathbf{t}_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|\mathbf{t}_j - \mathbf{t}_i - R_i \tilde{t}_{ij}\|_2^2$$

Solving for $t \triangleq (t_1, \dots, t_n)$ in terms of $R \triangleq (R_1, \dots, R_n)$ using a generalized Schur complement...

[Lots of algebra...]

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{\substack{t_i \in \mathbb{R}^d \\ R_i \in \mathsf{SO}(d)}} \sum_{(i,j) \in \vec{\mathcal{E}}} \kappa_{ij} \|R_j - R_i \tilde{R}_{ij}\|_F^2 + \tau_{ij} \|t_j - t_i - R_i \tilde{t}_{ij}\|_2^2$$

Solution verification 00000000000

Solving for $t \triangleq (t_1, \dots, t_n)$ in terms of $R \triangleq (R_1, \dots, R_n)$ using a generalized Schur complement:

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Deriving the dual problem II: Orthogonal relaxation

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Deriving the dual problem II: Orthogonal relaxation

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Solution verification 000000000000

$$\mathsf{SO}(d) = \left\{ R \in \mathbb{R}^{d imes d} \mid R^\mathsf{T} R = I_d, \, \mathsf{det}(R) = +1
ight\}$$

Deriving the dual problem II: Orthogonal relaxation

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

$$\mathsf{SO}(d) = \left\{ R \in \mathbb{R}^{d \times d} \mid R^\mathsf{T} R = I_d, \, \det(R) = +1 \right\}$$

Relaxing the determinantal constraint...

Deriving the dual problem II: Orthogonal relaxation

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

$$\mathsf{SO}(d) = \left\{ R \in \mathbb{R}^{d imes d} \mid R^\mathsf{T} R = I_d, \, \mathsf{det}(R) = +1
ight\}$$

Relaxing the determinantal constraint:

Orthogonally-relaxed MLE

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

NB:
$$SO(d)^n \subset O(d)^n \Rightarrow p_{O^* \leq p_{\mathsf{MLE}}^*}$$
.

Relaxed MLE (intrinsic)

 $p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$

Relaxed MLE (intrinsic)

Introduction

 $p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$

$$O(d) = \left\{ R \in \mathbb{R}^{d \times d} \mid R^{\mathsf{T}}R = I_d \right\}$$

Relaxed MLE (intrinsic)

Introduction

 $p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t.
$$R_i^\mathsf{T} R_i = I_d$$
 $i = 1, \ldots, n$

$$O(d) = \left\{ R \in \mathbb{R}^{d \times d} \mid R^{\mathsf{T}}R = I_d \right\}$$

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t.
$$R_i^{\mathsf{T}} R_i = I_d$$
 $i = 1, ..., n$

Dual function:

$$d(\Lambda_1, \dots, \Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t.
$$R_i^{\mathsf{T}} R_i = I_d$$
 $i = 1, ..., n$

Dual function:

$$d(\Lambda_1,\ldots,\Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Matricized form: For $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_n)$:

$$d(\Lambda) = \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}\left((\tilde{Q} - \Lambda)R^{\mathsf{T}}R\right) + \operatorname{tr}(\Lambda)$$

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t.
$$R_i^{\mathsf{T}} R_i = I_d$$
 $i = 1, ..., n$

Dual function:

$$d(\Lambda_1, \dots, \Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Matricized form: For $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_n)$:

$$d(\Lambda) = \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}\left((\tilde{Q} - \Lambda)R^{\mathsf{T}}R\right) + \operatorname{tr}(\Lambda)$$

Deriving the dual problem III: Constructing the dual

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t.
$$R_i^{\mathsf{T}} R_i = I_d$$
 $i = 1, ..., n$

Dual function:

$$d(\Lambda_1,\ldots,\Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Matricized form: For $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_n)$:

$$d(\Lambda) = \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}\left((\tilde{Q} - \Lambda)R^{\mathsf{T}}R\right) + \operatorname{tr}(\Lambda) = \begin{cases} \operatorname{tr}(\Lambda), & \tilde{Q} - \Lambda \succeq 0 \\ -\infty, & \tilde{Q} - \Lambda \not\succeq 0 \end{cases}$$

s.t. $R_i^{\mathsf{T}} R_i = I_d$ i = 1, ..., n

Deriving the dual problem III: Constructing the dual

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$p_{\mathsf{O}^*} = \min_{R \in \mathbb{R}^{d \times dn}} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Dual function:

$$d(\Lambda_1, \dots, \Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Matricized form: For $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_n)$:

$$d(\Lambda) = \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr} \left((\tilde{Q} - \Lambda) R^{\mathsf{T}} R \right) + \operatorname{tr}(\Lambda) = \begin{cases} \operatorname{tr}(\Lambda), & \tilde{Q} - \Lambda \succeq 0 \\ -\infty, & \tilde{Q} - \Lambda \not\succeq 0 \end{cases}$$

Relaxed MLE (intrinsic)

Introduction

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Relaxed MLE (extrinsic)

$$\implies p_{\mathsf{O}^* = \min_{R \in \mathbb{R}^{d \times dn}} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

s.t. $R_i^{\mathsf{T}} R_i = I_d$ i = 1, ..., n

Dual function:

$$d(\Lambda_1,\ldots,\Lambda_n) \triangleq \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}(\tilde{Q}R^\mathsf{T}R) + \sum_{i=1}^n \operatorname{tr}\left(\Lambda_i(I_d - R_i^\mathsf{T}R_i)\right)$$

Matricized form: For $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_n)$:

$$d(\Lambda) = \inf_{R \in \mathbb{R}^{d \times dn}} \operatorname{tr}\left((\tilde{Q} - \Lambda)R^{\mathsf{T}}R\right) + \operatorname{tr}(\Lambda) = \begin{cases} \operatorname{tr}(\Lambda), & \tilde{Q} - \Lambda \succeq 0 \\ -\infty, & \tilde{Q} - \Lambda \not\succeq 0 \end{cases}$$

Dual problem:

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$
 s.t. $\tilde{Q} - \Lambda \succeq 0$

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{X \in \mathsf{SE}(d)^n} \mathsf{tr}(\tilde{M}X^\mathsf{T}X)$$

Orthogonally-relaxed MLE

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succ 0$$

Lower bounds: $d^* \leq p_{O^* \leq p_{MLF}^*}$

Suboptimality upper bound:

$$f(x) - p_{\mathsf{MLE}}^* \le f(x) - d^* \quad \forall x \in \mathsf{SE}(d)^n$$

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{X \in \mathsf{SE}(d)^n} \mathsf{tr}(\tilde{M}X^\mathsf{T}X)$$

Orthogonally-relaxed MLE

$$p_{O^* = \min_{R \in O(d)^n} \operatorname{tr}(\tilde{Q}R^TR)}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succ 0$$

Lower bounds: $d^* \leq p_{O^* \leq p_{MLF}^*}$

Suboptimality upper bound:

$$f(x) - p_{\mathsf{MLE}}^* \le f(x) - d^* \quad \forall x \in \mathsf{SE}(d)^n$$

Key Question: How *tight* are these?

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{X \in \mathsf{SE}(d)^n} \mathsf{tr}(\tilde{M}X^\mathsf{T}X)$$

Orthogonally-relaxed MLE

$$p_{\mathsf{O}^* = \min_{R \in \mathsf{O}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succ 0$$

Lower bounds: $d^* \leq p_{O^* \leq p_{MLF}^*}$

Suboptimality upper bound:

$$f(x) - p_{\text{MLF}}^* \le f(x) - d^* \quad \forall x \in SE(d)^n$$

Theorem (Rosen et al. 2016)

Let Q be the data matrix constructed from noiseless measurements. Then $\exists \beta \triangleq \beta(Q) > 0 \text{ s.t. if } ||Q - \tilde{Q}|| < \beta,$ then $d^* = p_{O^* = p_{MLE}^*}$.

Pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{X \in \mathsf{SE}(d)^n} \mathsf{tr}\big(\tilde{M}X^\mathsf{T}X\big)$$

Orthogonally-relaxed MLE

$$p_{\mathsf{O}^* = \min_{R \in \mathsf{O}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succ 0$$

Lower bounds: $d^* \leq p_{O^* \leq p_{MLF}^*}$

Suboptimality upper bound:

$$f(x) - p_{\mathsf{MLE}}^* \le f(x) - d^* \quad \forall x \in \mathsf{SE}(d)^n$$

Theorem (Rosen et al. 2016)

Let Q be the data matrix constructed from noiseless measurements. Then $\exists \beta \triangleq \beta(Q) > 0 \text{ s.t. if } ||Q - \tilde{Q}|| < \beta,$ then $d^* = p_{O^* = p_{MLE}^*}$.

- Guarantees strong duality for sufficiently small noise
- $f(x) = d^*$ certifies x's optimality

Pose-graph solution verification (version 1.0)²

Input: Candidate pose-graph SLAM solution $x = (t, R) \in SE(d)^n$ **Output:** Upper-bound on x's suboptimality

Solution verification

0000000000000

Solve dual problem:

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succeq 0$.

• Return $f(x) - d^*$

²L. Carlone et al. "Lagrangian Duality in 3D SLAM: Verification Techniques and Optimal Solutions". In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 2015.

Experiments: When does strong duality hold?

We simulate a small 3D grid map, varying measurement noise...

Experiments: When does strong duality hold?

Tightness of the relaxation exhibits a *phase transition* as a function of the rotational measurement noise:

(NB: $.1 \text{ rad} \approx 6 \text{ degrees}$)

Technical challenge: Scalability

General-purpose semidefinite programming solvers don't scale well.

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$

s.t. $\tilde{Q} - \Lambda \succeq 0$

Typical pose-graphs are 1–2 orders of magnitude larger than this.

Assume:

Introduction

- Strong duality holds
- ② $R^* \in SO(d)^n$ and $\Lambda^* \in SBD(d, n)$ are primal-dual optimal pair

Assume:

Introduction

- Strong duality holds
- $P^* \in SO(d)^n$ and $\Lambda^* \in SBD(d, n)$ are primal-dual optimal pair

Then: R^* is an *unconstrained minimizer* of $\mathcal{L}(R,\Lambda^*)$, where:

$$\mathcal{L}(R,\Lambda) \triangleq \operatorname{tr}(\tilde{Q}R^{\mathsf{T}}R) + \sum_{i=1}^{n} \operatorname{tr}\left(\Lambda_{i}(I_{d} - R_{i}^{\mathsf{T}}R_{i})\right).$$

Assume:

Introduction

- Strong duality holds
- $P^* \in SO(d)^n$ and $\Lambda^* \in SBD(d, n)$ are primal-dual optimal pair

Then: R^* is an *unconstrained minimizer* of $\mathcal{L}(R, \Lambda^*)$, where:

$$\mathcal{L}(R,\Lambda) \triangleq \operatorname{tr}(\tilde{Q}R^{\mathsf{T}}R) + \sum_{i=1}^{n} \operatorname{tr}\left(\Lambda_{i}(I_{d} - R_{i}^{\mathsf{T}}R_{i})\right).$$

Therefore:

$$\nabla_R \mathcal{L}(R^*, \Lambda^*) = 0.$$

Since Lagrangian is *affine* in Λ , this is *linear* equation in Λ^* .

Assume:

Introduction

- Strong duality holds
- $P^* \in SO(d)^n$ and $\Lambda^* \in SBD(d, n)$ are primal-dual optimal pair

Then: R^* is an *unconstrained minimizer* of $\mathcal{L}(R, \Lambda^*)$, where:

$$\mathcal{L}(R,\Lambda) \triangleq \operatorname{tr}(\tilde{Q}R^{\mathsf{T}}R) + \sum_{i=1}^{n} \operatorname{tr}\left(\Lambda_{i}(I_{d} - R_{i}^{\mathsf{T}}R_{i})\right).$$

Therefore:

$$\nabla_R \mathcal{L}(R^*, \Lambda^*) = 0.$$

Since Lagrangian is *affine* in Λ , this is *linear* equation in Λ^* .

Therefore: If $R \in SO(d)^n$ is optimal, and strong duality holds, we can *construct* the corresponding dual certificate Λ from R:

$$\Lambda(R) = \frac{1}{2} \operatorname{BlockDiag}_d \left(\tilde{Q} R^\mathsf{T} R + R^\mathsf{T} R \tilde{Q} \right).$$

Pose-graph solution verification (version 2.0)³

Input: Candidate pose-graph SLAM solution $x = (t, R) \in SE(d)^n$ **Output:** Upper-bound on x's suboptimality

Construct candidate dual certificate:

$$\Lambda(R) = \frac{1}{2} \operatorname{BlockDiag}_d \left(\tilde{Q} R^\mathsf{T} R + R^\mathsf{T} R \tilde{Q} \right).$$

- Compute minimum eigenvalue λ_{\min} of $\tilde{Q} \Lambda(R)$.
- If $\lambda_{\min} \geq 0 \ (\Leftrightarrow \Lambda(R) \ \text{is dual feasible})$: **Return** $f(x) - tr(\Lambda(R))$
- Else: **Return** $+\infty$

³L. Carlone et al. "Lagrangian Duality in 3D SLAM: Verification Techniques and Optimal Solutions". In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 2015.

Experiments: Simulated data

Experiments: Real data

In this talk

- **1** Lagrangian duality: lower bounds for optimization problems via convex relaxation
- Solution verification: certificates of optimality for pose-graph SLAM
- 3 SE-Sync: Fast global pose-graph optimization

From verification to global optimization

The story so far: We can *certify* the optimality of $\hat{x} \in SE(d)^n$ whenever *strong duality* holds.

But: How can we *obtain* such an \hat{x} ?

From verification to global optimization

The story so far: We can *certify* the optimality of $\hat{x} \in SE(d)^n$ whenever *strong duality* holds.

But: How can we *obtain* such an \hat{x} ?

Observe: Any \hat{x} that could be *certified* (using strong duality) could also be *directly computed* (from a solution Λ of the dual).

From verification to global optimization

The story so far: We can *certify* the optimality of $\hat{x} \in SE(d)^n$ whenever *strong duality* holds.

But: How can we *obtain* such an \hat{x} ?

Observe: Any \hat{x} that could be *certified* (using strong duality) could also be *directly computed* (from a solution Λ of the dual).

Key question: Can we do this efficiently?

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succeq 0$$

⁴L. Vandenberghe et al. "Semidefinite Programming". In: *SIAM Review* 38.1 (Mar. 1996), pp. 49–95.

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succeq 0$$

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

General SDP of order *n*:

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

SE-Sync

000000000

SDP redux: What makes SDPs hard?

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

 \Rightarrow Matrices have dimension $O(n^2)$

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

General SDP of order n:

- \Rightarrow Matrices have dimension $O(n^2)$
- \Rightarrow Newton system has dimension $O(n^4)^4$

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

SDP redux: What makes SDPs hard?

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

General SDP of order n:

- \Rightarrow Matrices have dimension $O(n^2)$
- \Rightarrow Newton system has dimension $O(n^4)^4$
- \Rightarrow Solving Newton system (via factorization) has $O(n^6)$ cost

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t. $\tilde{Q} - \Lambda \succ 0$

General SDP of order n:

- \Rightarrow Matrices have dimension $O(n^2)$
- \Rightarrow Newton system has dimension $O(n^4)^4$
- \Rightarrow Solving Newton system (via factorization) has $O(n^6)$ cost

But: Maybe we can build a *specialized* solver for PGO?

⁴L. Vandenberghe et al. "Semidefinite Programming". In: SIAM Review 38.1 (Mar. 1996), pp. 49–95.

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succeq 0$$

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succ 0$$

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t. $\tilde{Q} - \Lambda \succeq 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succ 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \mathsf{SBD}(d,n)} \mathsf{tr}(\Lambda)$$

s.t.
$$\tilde{Q} - \Lambda \succeq 0$$

Dual of Lagrangian dual

$$d^* = \min_{Z \succ 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\mathsf{Diag}_d(Z) = (I_d, \dots, I_d)$$

Question: How does the dual of the dual relate to the (primal) MLE?

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succeq 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succ 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succeq 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

$$R^{\mathsf{T}}R = \begin{pmatrix} I_d & * & \cdots & * \\ * & I_d & & * \\ \vdots & & \ddots & \vdots \\ * & * & \cdots & I_d \end{pmatrix} \succeq 0$$

SDPception

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succeq 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \in \Omega} \operatorname{tr}(\tilde{Q}Z)$$

$$d^* = \min_{Z \succeq 0} \operatorname{tr}(\tilde{Q}Z)$$
 s.t. $\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$

$$R^{\mathsf{T}}R = \begin{pmatrix} I_{d} & * & \cdots & * \\ * & I_{d} & & * \\ \vdots & & \ddots & \vdots \\ * & * & \cdots & I_{d} \end{pmatrix} \succeq 0$$

SE-Svnc

000000000

SDPception

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Lagrangian dual

$$d^* = \max_{\Lambda \in \operatorname{SBD}(d,n)} \operatorname{tr}(\Lambda)$$

s.t. $\tilde{Q} - \Lambda \succeq 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succeq 0} \operatorname{tr}(\tilde{Q}Z)$$

$$d^* = \min_{Z \succeq 0} \operatorname{tr}(ilde{Q}Z)$$
 s.t. $\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$

$$R^{\mathsf{T}}R = \begin{pmatrix} I_d & * & \cdots & * \\ * & I_d & & * \\ \vdots & & \ddots & \vdots \\ * & * & \cdots & I_d \end{pmatrix} \succeq 0$$

⇒ Dual of dual is a *convex relaxation* by expanding MLE's feasible set

SDPception

Introduction

Simplified pose-graph MLE

$$\frac{p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)}{\Downarrow}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succ 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Theorem (Rosen et al. 2016)

Let Q be the data matrix constructed from noiseless measurements. Then $\exists \beta \triangleq \beta(Q) > 0 \text{ s.t. if } ||Q - \tilde{Q}|| < \beta$:

- SDP has a unique solution Z*
- $Z^* = R^{*T}R^*$, where $R^* \in SO(d)^n$ is a global minimizer of MLE.

SDPception

Introduction

Simplified pose-graph MLE

$$\frac{p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)}{\Downarrow}$$

Lagrangian dual

$$d^* = \max_{\Lambda \in SBD(d,n)} tr(\Lambda)$$
s.t. $\tilde{Q} - \Lambda \succ 0$

Dual of Lagrangian dual

$$d^* = \min_{Z \succ 0} \operatorname{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Theorem (Rosen et al. 2016)

Let Q be the data matrix constructed from noiseless measurements. Then $\exists \beta \triangleq \beta(Q) > 0 \text{ s.t. if } ||Q - \tilde{Q}|| < \beta$:

- SDP has a unique solution Z*
- $Z^* = R^{*T}R^*$, where $R^* \in SO(d)^n$ is a global minimizer of MLE.
- \Rightarrow We can compute global minima of MLE by solving SDP
- ⇒ Solutions of SDP are *low-rank*

Exploiting low-rank structure

Introduction

We expect a *low-rank* solution $Z^* = Y^{*T}Y^*$ for:

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}^{dn}_+} \mathsf{tr}(\tilde{Q}Z) \quad \text{s.t.} \quad \mathsf{Diag}_d(Z) = (I_d, \dots, I_d).$$

⁵Burer et al. 2003: Burer et al. 2005: Burer et al. 2006.

Exploiting low-rank structure

We expect a *low-rank* solution $Z^* = Y^{*T}Y^*$ for:

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(\tilde{Q}Z)$$
 s.t. $\mathsf{Diag}_d(Z) = (I_d, \dots, I_d).$

Main idea: Replace Z with its low-rank factorization $Y^TY^{.5}$

$$p^*_{\mathsf{SDPLR}} = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$
 s.t. $\mathsf{Diag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$

⁵Burer et al. 2003; Burer et al. 2005; Burer et al. 2006.

We expect a *low-rank* solution $Z^* = Y^{*T}Y^*$ for:

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(\tilde{Q}Z)$$
 s.t. $\mathsf{Diag}_d(Z) = (I_d, \dots, I_d).$

Main idea: Replace Z with its *low-rank factorization* $Y^TY^{.5}$

$$p^*_{\mathsf{SDPLR}} = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y) \quad \mathsf{s.t.} \quad \mathsf{Diag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$$

Payoffs:

Introduction

• $Y^TY \succeq 0$ for all $Y \Rightarrow PSD$ constraint is redundant \Rightarrow Rank-restricted factorization is an NLP (vs. SDP)

⁵Burer et al. 2003; Burer et al. 2005; Burer et al. 2006.

Exploiting low-rank structure

We expect a *low-rank* solution $Z^* = Y^{*T}Y^*$ for:

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}^{dn}_+} \mathsf{tr}(\tilde{Q}Z)$$
 s.t. $\mathsf{Diag}_d(Z) = (I_d, \dots, I_d).$

Main idea: Replace Z with its *low-rank factorization* $Y^TY^{.5}$

$$p^*_{\mathsf{SDPLR}} = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y) \quad \mathsf{s.t.} \quad \mathsf{Diag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$$

Payoffs:

- $Y^TY \succeq 0$ for all $Y \Rightarrow PSD$ constraint is redundant \Rightarrow Rank-restricted factorization is an NLP (vs. SDP)
- Y is much lower-dimensional than Z for $r \ll dn$

⁵Burer et al. 2003; Burer et al. 2005; Burer et al. 2006.

Exploiting low-rank structure

We expect a *low-rank* solution $Z^* = Y^{*T}Y^*$ for:

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}^d_+} \mathsf{tr}(\tilde{Q}Z)$$
 s.t. $\mathsf{Diag}_d(Z) = (I_d, \dots, I_d).$

Main idea: Replace Z with its *low-rank factorization* $Y^TY^{.5}$

$$p^*_{\mathsf{SDPLR}} = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y) \quad \mathsf{s.t.} \quad \mathsf{Diag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$$

Payoffs:

Introduction

- $Y^TY \succ 0$ for all $Y \Rightarrow PSD$ constraint is redundant ⇒ Rank-restricted factorization is an NLP (vs. SDP)
- Y is much lower-dimensional than Z for $r \ll dn$
- $r \ge \operatorname{rank}(Z^*)$ for some optimal $Z^* \Rightarrow (Y^*)^T Y^*$ solves SDP.

⁵Burer et al. 2003: Burer et al. 2005: Burer et al. 2006.

Exploiting geometric structure⁶

Rank-restricted SDP, NLP form

Introduction

$$p^*_{\mathsf{SDPLR}} = \min_{Y \in \mathbb{R}^{r imes dn}} \mathsf{tr}(ilde{Q}Y^\mathsf{T}Y)$$
 $\mathsf{BlockDiag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$

s.t.
$$\mathsf{BlockDiag}_d(Y^\mathsf{T}Y) = (I_d, \dots, I_d)$$

⁶N. Boumal. "A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with Block-Diagonal Constraints", arXiv preprint; arXiv:1506.00575v2, 2015

Rank-restricted SDP, NLP form

Introduction

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

s.t.
$$\mathsf{BlockDiag}_d(Y^\mathsf{T} Y) = (I_d, \dots, I_d)$$

The constraints are equivalent to:

$$Y_i^{\mathsf{T}} Y_i = I_d, \quad Y_i \in \mathbb{R}^{r \times d}.$$

⁶N. Boumal. "A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with Block-Diagonal Constraints", arXiv preprint; arXiv:1506.00575v2, 2015

Rank-restricted SDP, NLP form

Introduction

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

s.t.
$$\mathsf{BlockDiag}_d(Y^\mathsf{T} Y) = (I_d, \dots, I_d)$$

The constraints are equivalent to:

$$Y_i^{\mathsf{T}} Y_i = I_d, \quad Y_i \in \mathbb{R}^{r \times d}.$$

Notice: This is the definition of the *Stiefel manifold*:

$$\mathsf{St}(k,n) \triangleq \left\{ Y \in \mathbb{R}^{n \times k} \mid Y^\mathsf{T} Y = I_k \right\}.$$

⁶N. Boumal, "A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with Block-Diagonal Constraints", arXiv preprint; arXiv:1506.00575v2, 2015

Exploiting geometric structure⁶

Rank-restricted SDP, NLP form

Introduction

$$p_{\mathsf{SDPLR}}^* = \min_{\mathbf{Y} \in \mathbb{R}^{r \times dn}} \operatorname{tr}(\tilde{Q} \mathbf{Y}^\mathsf{T} \mathbf{Y})$$

s.t.
$$\mathsf{BlockDiag}_d(Y^\mathsf{T} Y) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{\mathbf{Y} \in \mathsf{St}(\mathbf{d}, \mathbf{r})^n} \mathsf{tr}(\tilde{Q} \mathbf{Y}^\mathsf{T} \mathbf{Y})$$

The constraints are equivalent to:

$$Y_i^{\mathsf{T}} Y_i = I_d, \quad Y_i \in \mathbb{R}^{r \times d}.$$

Notice: This is the definition of the *Stiefel manifold*:

$$\mathsf{St}(k,n) \triangleq \left\{ Y \in \mathbb{R}^{n \times k} \mid Y^\mathsf{T} Y = I_k \right\}.$$

⁶N. Boumal. "A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with Block-Diagonal Constraints", arXiv preprint; arXiv:1506.00575v2, 2015

Exploiting geometric structure⁶

Rank-restricted SDP, NLP form

Introduction

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathbb{R}^{r \times dn}} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

s.t.
$$\mathsf{BlockDiag}_d(Y^\mathsf{T} Y) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p^*_{\mathsf{SDPLR}} = \min_{\mathbf{Y} \in \mathsf{St}(\mathbf{d}, \mathbf{r})^n} \mathsf{tr}(\tilde{Q} \mathbf{Y}^\mathsf{T} \mathbf{Y})$$

The constraints are equivalent to:

$$Y_i^{\mathsf{T}} Y_i = I_d, \quad Y_i \in \mathbb{R}^{r \times d}.$$

Notice: This is the definition of the *Stiefel manifold*:

$$\mathsf{St}(k,n) \triangleq \left\{ Y \in \mathbb{R}^{n \times k} \mid Y^\mathsf{T} Y = I_k \right\}.$$

Payoff: This is an *unconstrained* optimization problem.

⁶N. Boumal. "A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with Block-Diagonal Constraints", arXiv preprint; arXiv:1506.00575v2, 2015

Simplified pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Semidefinite relaxation

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}^{dn}_+} \mathsf{tr}(ilde{Q}Z)$$

s.t.
$$\mathsf{BlockDiag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

Simplified pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Semidefinite relaxation

$$p^*_{\mathsf{SDP}} = \min_{Z \in \mathbb{S}^{dn}_{\perp}} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\mathsf{BlockDiag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{\mathbf{Y} \in \mathsf{St}(\mathbf{d}, \mathbf{r})^n} \mathsf{tr}(\tilde{Q} \mathbf{Y}^\mathsf{T} \mathbf{Y})$$

Question:

What have we actually gained?

Simplified pose-graph MLE

Introduction

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Semidefinite relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}^{dn}_+} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\mathsf{BlockDiag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

Proposition (Boumal et al. 2016)

If $Y \in St(d,r)^n$ is a rank deficient 2nd-order critical point for rank-restricted NLP. then:

- Y is a global minimizer of Riemannian NI P
- $Z^* = Y^T Y$ is a solution of the semidefinite relaxation.

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

Semidefinite relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}^{dn}_+} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\mathsf{BlockDiag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

Proposition (Boumal et al. 2016)

If $Y \in St(d,r)^n$ is a rank deficient 2nd-order critical point for rank-restricted NLP. then:

- Y is a global minimizer of Riemannian NI P
- $Z^* = Y^T Y$ is a solution of the semidefinite relaxation.

⇒ We can use (fast) *local* search to find *globally optimal* solutions!

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

SDP relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

The SE-Sync algorithm:

Find low-rank factor Y* using fast (2nd-order) NLP method in Riemannian Staircase.

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

SDP relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(ilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

The SE-Sync algorithm:

- Find low-rank factor Y* using fast (2nd-order) NLP method in Riemannian Staircase.
- 2 Compute SDP lower bound: $p_{SDP}^* = \operatorname{tr}(\tilde{Q}Y^{*\mathsf{T}}Y^*).$

Introduction

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

SDP relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(ilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

The SE-Sync algorithm:

- Find low-rank factor Y* using fast (2nd-order) NLP method in Riemannian Staircase.
- Compute SDP lower bound: $p_{SDD}^* = \operatorname{tr}(\tilde{Q}Y^{*\mathsf{T}}Y^*).$
- **3** Round $Y^* \to \hat{R} \in SO(d)^n$ using truncated SVD.

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

SDP relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

The SE-Sync algorithm:

- Find low-rank factor Y* using fast (2nd-order) NLP method in Riemannian Staircase.
- 2 Compute SDP lower bound: $p_{\text{SDP}}^* = \text{tr}(\tilde{Q}Y^{*\mathsf{T}}Y^*).$
- **3** Round $Y^* \to \hat{R} \in SO(d)^n$ using truncated SVD.
- Return $\{\hat{R}, p_{SDP}^*\}$.

Simplified pose-graph MLE

$$p_{\mathsf{MLE}}^* = \min_{R \in \mathsf{SO}(d)^n} \mathsf{tr}(\tilde{Q}R^\mathsf{T}R)$$

SDP relaxation

$$p_{\mathsf{SDP}}^* = \min_{Z \in \mathbb{S}_+^{dn}} \mathsf{tr}(\tilde{Q}Z)$$

s.t.
$$\operatorname{Diag}_d(Z) = (I_d, \dots, I_d)$$

Riemannian rank-restricted NLP

$$p_{\mathsf{SDPLR}}^* = \min_{Y \in \mathsf{St}(d,r)^n} \mathsf{tr}(\tilde{Q}Y^\mathsf{T}Y)$$

The SE-Sync algorithm:

- Find low-rank factor Y* using fast (2nd-order) NLP method in Riemannian Staircase.
- 2 Compute SDP lower bound: $p_{SDD}^* = \operatorname{tr}(\tilde{Q}Y^{*\mathsf{T}}Y^*).$
- **3** Round $Y^* \to \hat{R} \in SO(d)^n$ using truncated SVD.
- Return $\{\hat{R}, p_{SDP}^*\}$.

Payoff: If strong duality holds:

- \hat{R} is globally optimal
- $\operatorname{tr}(\tilde{Q}\hat{R}^{\mathsf{T}}\hat{R}) = p_{\mathsf{SDP}}^*$ certifies it

		PDL-GN (GTSAM)		SE-Sync		
	# Poses	Objective value	Time [s]	Objective value	Time [s]	Rel. suboptimality
csail	1045	3.170×10^{1}	0.029	3.170×10^{1}	0.010	7.844×10^{-16}
intel	1728	5.235×10^{1}	0.120	5.235×10^{1}	0.071	1.357×10^{-16}
ais2klinik	15115	1.885×10^{2}	12.472	1.885×10^{2}	1.981	2.412×10^{-15}
garage	1661	1.263×10^{0}	0.415	1.263×10^{0}	0.468	1.618×10^{-14}
cubicle	5750	7.171×10^{2}	2.456	7.171×10^{2}	0.754	2.061×10^{-15}
rim	10195	5.461×10^{3}	6.803	5.461×10^{3}	2.256	5.663×10^{-15}

		PDL-GN (GTSAM)		SE-Sync		
	# Poses	Objective value	Time [s]	Objective value	Time [s]	Rel. suboptimality
csail	1045	3.170×10^{1}	0.029	3.170×10^{1}	0.010	7.844×10^{-16}
intel	1728	5.235×10^{1}	0.120	5.235×10^{1}	0.071	1.357×10^{-16}
ais2klinik	15115	1.885×10^{2}	12.472	1.885×10^{2}	1.981	2.412×10^{-15}
garage	1661	1.263×10^{0}	0.415	1.263×10^{0}	0.468	1.618×10^{-14}
cubicle	5750	7.171×10^{2}	2.456	7.171×10^{2}	0.754	2.061×10^{-15}
rim	10195	5.461×10^{3}	6.803	5.461×10^{3}	2.256	5.663×10^{-15}

		PDL-GN (GTSAM)		SE-Sync		
	# Poses	Objective value	Time [s]	Objective value	Time [s]	Rel. suboptimality
csail	1045	3.170×10^{1}	0.029	3.170×10^{1}	0.010	7.844×10^{-16}
intel	1728	5.235×10^{1}	0.120	5.235×10^{1}	0.071	1.357×10^{-16}
ais2klinik	15115	1.885×10^{2}	12.472	1.885×10^{2}	1.981	2.412×10^{-15}
garage	1661	1.263×10^{0}	0.415	1.263×10^{0}	0.468	1.618×10^{-14}
cubicle	5750	7.171×10^{2}	2.456	7.171×10^{2}	0.754	2.061×10^{-15}
rim	10195	5.461×10^{3}	6.803	5.461×10^{3}	2.256	5.663×10^{-15}

		PDL-GN (GTSAM)		SE-Sync		
	# Poses	Objective value	Time [s]	Objective value	Time [s]	Rel. suboptimality
csail	1045	3.170×10^{1}	0.029	3.170×10^{1}	0.010	7.844×10^{-16}
intel	1728	5.235×10^{1}	0.120	5.235×10^{1}	0.071	1.357×10^{-16}
ais2klinik	15115	1.885×10^{2}	12.472	1.885×10^{2}	1.981	2.412×10^{-15}
garage	1661	1.263×10^{0}	0.415	1.263×10^{0}	0.468	1.618×10^{-14}
cubicle	5750	7.171×10^{2}	2.456	7.171×10^{2}	0.754	2.061×10^{-15}
rim	10195	5.461×10^{3}	6.803	5.461×10^{3}	2.256	5.663×10^{-15}

Visualization: Grid world

Main Takeaway: Convex relaxation is a powerful tool!

This talk:

Introduction

- Lagrangian duality & Lagrangian relaxation
- Pose-graph solution verification
- **SE-Sync:** first *practical*, *provably correct* SLAM algorithm⁷

⁷D.M. Rosen et al. "SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group". In: Intl. J. of Robotics Research 38.2–3 (Mar. 2019), pp. 95–125.

⁸D.M. Rosen et al. "Advances in Inference and Representation for Simultaneous Localization and Mapping". In: Annu. Rev. Control Robot. Auton. Syst. (2021). (To appear).

Main Takeaway: Convex relaxation is a powerful tool!

This talk:

Introduction

- Lagrangian duality & Lagrangian relaxation
- Pose-graph solution verification
- **SE-Sync:** first *practical*, *provably correct* SLAM algorithm⁷

Solution verification

Current research frontier: Certifiably correct perception

 \Rightarrow 3D reconstruction, distributed SLAM + BA, sensor cal., etc...

⁷D.M. Rosen et al. "SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group". In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125.

⁸D.M. Rosen et al. "Advances in Inference and Representation for Simultaneous Localization and Mapping". In: Annu, Rev. Control Robot, Auton. Syst. (2021), (To appear).

Main Takeaway: Convex relaxation is a powerful tool!

This talk:

Introduction

- Lagrangian duality & Lagrangian relaxation
- Pose-graph solution verification
- **SE-Sync:** first *practical*, *provably correct* SLAM algorithm⁷

Current research frontier: Certifiably correct perception

 \Rightarrow 3D reconstruction, distributed SLAM + BA, sensor cal., etc...

More info: https://david-m-rosen.github.io

⁷D.M. Rosen et al. "SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group". In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125.

⁸D.M. Rosen et al. "Advances in Inference and Representation for Simultaneous Localization and Mapping". In: Annu, Rev. Control Robot, Auton. Syst. (2021), (To appear).

Main Takeaway: Convex relaxation is a powerful tool!

This talk:

Introduction

- Lagrangian duality & Lagrangian relaxation
- Pose-graph solution verification
- **SE-Sync:** first *practical*, *provably correct* SLAM algorithm⁷

Current research frontier: Certifiably correct perception

 \Rightarrow 3D reconstruction, distributed SLAM + BA, sensor cal., etc...

More info: https://david-m-rosen.github.io

New survey on certifiably correct perception (and other stuff!)⁸

⁷D.M. Rosen et al. "SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special Euclidean Group". In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125.

⁸D.M. Rosen et al. "Advances in Inference and Representation for Simultaneous Localization and Mapping". In: Annu, Rev. Control Robot, Auton. Syst. (2021), (To appear).