# NATIONAL UNIVERSITY OF SINGAPORE

# CS1231S DISCRETE STRUCTURES

(Semester 2: AY2019/2020)

Time Allowed: 2 Hours

# INSTRUCTIONS TO STUDENTS

- 1. This assessment paper contains FOUR questions and comprises FOUR printed pages.
- 2. Answer ALL questions. The marks for each question are indicated in brackets.
- 3. Write your answers on your own paper.

| EXAMINER'S USE ONLY |       |       |
|---------------------|-------|-------|
| Question            | Marks | Score |
| Q1                  | 7     |       |
| Q2                  | 8     |       |
| Q3                  | 21    |       |
| Q4                  | 14    |       |
| Total               | 50    | -     |

- 1. For a set X, the identity function is  $i_X: X \to X$  such that  $i_X(x) = x$  for all  $x \in X$ .
  - (i) Give an example of a function  $f:\{a,b\}\to\{a,b\}$  such that  $f\neq i_{\{a,b\}}$  and f is bijective. [1 mark]

#### Solution:

$$f(a) = b, f(b) = a$$

(ii) Give an example of a function  $g: \{a, b, c\} \to \{a, b, c\}$  such that  $g \neq i_{\{a, b, c\}}$  and  $g \circ g$  is bijective. [2 marks]

## Solution:

$$g(a) = b, g(b) = a, g(c) = c$$
  
Then  $g \circ g(a) = g(g(a)) = g(b) = a, g \circ g(b) = g(g(b)) = g(a) = b$   
and  $g \circ g(c) = g(g(c)) = g(c) = c$   
so  $g \circ g = i_{\{a,b,c\}}$ , which is bijective.

## Note to grader:

Many other possibilities.

(iii) Suppose  $h: X \to X$  is a function such that  $h \circ h$  is 1-1 (injective). Prove that h is 1-1. [2 marks]

#### Solution:

$$h(b)=h(c)\Rightarrow h(h(b))=h(h(c))\Rightarrow h\circ h(b)=h\circ h(c)\Rightarrow b=c$$
 since  $h\circ h$  is 1-1. i.e.  $h$  is 1-1.

#### Alternative:

Tutorial 7, Problem 1(i):  $f: X \to Y, g: Y \to Z, g \circ f$  is 1-1  $\Rightarrow$  f is 1-1. Let X = Y = Z and f = g = h.

(iv) Suppose  $h: X \to X$  is a function such that  $h \circ h$  is onto (surjective). Prove that h is onto. [2 marks]

#### **Solution:**

Consider any  $b \in X$ .

 $h \circ h$  is onto  $\Rightarrow \exists a \in X$  such that  $h \circ h(a) = b$ , so b = h(h(a)) = h(c) where  $c = h(a) \in X$ .

#### Alternative:

Tutorial 7, Problem 1(ii):  $f: X \to Y, g: Y \to Z, g \circ f$  is onto  $\Rightarrow g$  is onto. Let X = Y = Z and f = g = h.

2. Recall from the Assignment and Quiz2 the equivalence relation  $\approx$  on  $\mathbb{R}$  defined by

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x \approx y \leftrightarrow |x| = |y|.$$

The equivalence classes are  $I_n = \{x \in \mathbb{R} \mid n \leq x < n+1\}$ , where  $n \in \mathbb{Z}$ .

(i) Let  $k \in \mathbb{Z}$ . Explain why, if  $k \in I_n$ , then k = n.

[2 marks]

#### Solution:

The only integer in  $I_n$  is n, so if k is an integer and  $k \in I_n$ , then k = n.

(ii) Let  $\mathcal{I} = \{I_n \mid n \in \mathbb{Z}\}$ . Prove that  $\mathcal{I}$  is countable.

[3 marks]

#### Solution:

Define  $g: \mathbb{Z} \to \mathcal{I}$  by  $g(n) = I_n$ . g is 1-1: Suppose g(n) = g(k), where  $n, k \in \mathbb{Z}$ . Then  $k \in I_k = g(k) = g(n) = I_n$ , so k = n by (i). g is onto: Consider any  $I_n \in \mathcal{I}$ . Then  $I_n = g(n)$ . Thus g is bijective. There is a bijection  $f: \mathbb{N} \to \mathbb{Z}$ , so there is a bijection  $g \circ f: \mathbb{N} \to \mathcal{I}$ Thus  $\mathcal{I}$  is countable.

(iii) It is known that  $\mathbb{R}$  is uncountable. Prove that  $I_n$  is uncountable for every  $n \in \mathbb{Z}$ .

[3 marks]

#### Solution:

For any n, there is a bijection  $f: I_0 \to I_n$  defined by f(x) = n + x. (f is well-defined:  $x \in I_0 \Rightarrow 0 \le x < 1 \Rightarrow n \le n + x < n + 1 \Rightarrow f(x) \in I_n$ . f is 1-1:  $f(b) = f(c) \Rightarrow n + b = n + c \Rightarrow b = c$ . f is onto: for any  $g \in I_n$ ,  $g - n \in I_0$  and g(g - n) = g(g - n) = g(g - n). By Tutorial 7, Problem 7,  $g \in I_0$  and  $g \in I_0$  has the same cardinality as  $g \in I_0$ , so  $g \in I_0$  is uncountable. Since  $g \in I_0$  is uncountable (Tutorial 8, Problem 6(i)).

Since  $f: I_0 \to I_n$  is bijective,  $I_n$  is also uncountable.



Now, for integer  $k \geq 1$ , define

 $E_k = \{\{x,y\} \mid x \neq y \text{ and there is a path of length } k \text{ in } G \text{ between } x \text{ and } y\},$  and let  $G_k = (V, E_k)$ . Note that  $E_1 = E$  and  $G_1 = G$ .

Thus, for the undirected graph in Figure 1, we have  $\{e, b\} \in E_1$ ,  $\{e, d\} \in E_2$ ,  $\{e, d\} \in E_3$ , etc.



Figure 1

(i) List the elements of V and E for Figure 1.

[2 marks]

Solution:

$$\begin{split} V &= \{a,b,c,d,e,f\} \\ E &= \{\{a,e\},\{b,e\},\{b,f\},\{c,e\},\{d,f\},\{e,f\}\} \end{split}$$

(ii) What is the length of the longest path in Figure 1?

[1 mark]

**Solution:** 

4 (e.g. 
$$c-e-b-f-d$$
)

(iii) Draw all spanning trees for the graph in Figure 1.

[3 marks]

Solution:



(iv) Draw  $G_2$ ,  $G_3$ ,  $G_4$  and  $G_5$  for the graph in Figure 1.

[4 marks]

Solution:



(v) Identify all (if any) cyclic graphs in (iv).

[1 mark]

Solution:

 $G_2$  and  $G_3$ 

#### Note to grader:

Grade (v) to (viii) according to student's answer to (iv), regardless of whether latter is correct.

(vi) Identify all (if any) connected graphs in (iv).

[1 mark]

#### Solution:

 $G_2$  and  $G_3$ 

(vii) Among  $G_2$ ,  $G_3$ ,  $G_4$  and  $G_5$ , which (if any) are trees?

[1 mark]

# Solution:

None

(viii) In (iv), how many connected components does  $G_4$  have?

[1 mark]

## Solution:

(ix) For this part, consider any G (not just the one in Figure 1). Prove that G is connected if and only if  $\{x,y\} \in \bigcup_{k=1}^{\infty} E_k$  for every  $x,y \in V$  such that  $x \neq y$ . [2 marks]

**Solution:** 

G is connected

 $\Leftrightarrow \forall x \in U \ \forall y \in U \ x \neq y \rightarrow \text{ there is a path in } G \text{ between } x \text{ and } y \text{ (by definition)}$ 

 $\Leftrightarrow \forall x \in U \ \forall y \in U \ x \neq y \ \to \ \exists k \in \mathbb{Z}^+ \text{ there is a path of length } k \text{ in } G \text{ between } x \text{ and } y$   $\Leftrightarrow \forall x \in U \ \forall y \in U \ x \neq y \ \to \ \exists k \in \mathbb{Z}^+ \ \{x,y\} \in \ E_k \text{ (by definition)}$   $\Leftrightarrow \forall x \in U \ \forall y \in U \ x \neq y \ \to \ \{x,y\} \in \bigcup_{k=1}^{\infty} E_k$ 

(x) Determine the number of graphs (with the same V) that are isomorphic to the graph in Figure 1. [5 marks]

Solution:



 $\binom{6}{3}$  choices for triangle

 $\binom{3}{1}$  choices for  $v_3$ ;  $\binom{3}{2}$  choices for  $v_1$ ,  $v_2$ 

 $\binom{2}{1}$  choices for  $v_4$ 

Multiplication Rule  $\Rightarrow$   $\binom{6}{3}\binom{3}{1}\binom{3}{2}\binom{2}{1} = \frac{6\cdot 5\cdot 4}{3\cdot 2\cdot 1}\cdot 3\cdot 3\cdot 2 = 360$  possibilites

#### Alternative:

6! permutations,  $v_1$  and  $v_2$  can be switched

 $\Rightarrow \frac{6!}{2!} = 6 \cdot 5 \cdot 4 \cdot 3 = 360$  possibilities

- 4. Let T be a rooted binary tree of height h. For  $h \ge 1$ , we call T a **strand** if and only if the following holds:
  - (I) there is exactly one leaf and one parent at every level  $\ell$ , for  $1 \le \ell \le h-1$  and
  - (II) there are exactly two leaves at level h.

Figure 2 below illustrates three strands  $T_1$ ,  $T_2$  and  $T_3$ .



Figure 2

(i) Is  $T_1 = T_2$ ? Is  $T_2 = T_3$ ? Justify your answers.

[2 marks]

**Solution:** 

$$T_1 = (\{a, b, c, d, e, f, g\}, \{\{a, b\}, \{a, c\}, \{b, d\}, \{b, e\}, \{d, f\}, \{d, g\})$$
  
=  $T_2$ 

$$T_2 \neq T_3$$
:  $d-g$  in  $T_2$ ,  $d-g$  not in  $T_3$ .

(ii) Prove that, for any  $h \ge 1$ , a strand of height h has 2h + 1 nodes.

[2 marks]

**Solution:** 

Level 0 has 1 node.

(I) and (II)  $\Rightarrow$  for  $1 \le \ell \le h$ , level  $\ell$  has 2 nodes.

Total: 2h + 1 nodes.

Let N(1) = 3 and, for h > 1, let N(h) be the number of different strands of height h, whose nodes are  $\{v_1, v_2, \dots, v_{2h+1}\}.$ 

(iii) Prove that N(h) = 2(2h+1)hN(h-1) for integer h > 1. [5 marks]

# Solution:



From  $\{v_1, v_2, \dots, v_{2h+1}\}$ , there are  $\binom{2h+1}{1}$  choices for  $p_0$   $\binom{2h+1-1}{1}$  choices for  $c_1$ N(h-1) strands rooted at  $p_1$  if h>1total = (2h + 1)(2h)N(h - 1)

(iv) Use induction to prove that  $N(h) = \frac{(2h+1)!}{2}$  for every positive integer h. [5 marks]

#### Solution:



Basis: h = 1

There are 3 strands, so  $N(1) = 3 = \frac{3!}{2}$ so the claim is true for h = 1.

**Induction Hypothesis:** Suppose the claim is true if h = k, for some  $k \ge 1$ .

**Induction Step:** Consider a strand of height k + 1.

$$N(k+1) = 2(2(k+1)+1)(k+1)N(k)$$
 by (iii), since  $k+1>1$   
=  $(2k+3)(2k+2)\frac{(2k+1)!}{2}$  by the Induction Hypothesis  
=  $\frac{(2k+3)!}{2}$   
=  $\frac{(2(k+1)+1)!}{2}$   
so the claim is true for  $h=k+1$ .

By induction, the claim is true for all  $h \ge 1$ .

**Note to grader:** Partial credit for non-inductive proof.

Example: Permute all 2h + 1 nodes and divide by 2 since the lowest 2 leaves can be switched.