Chapter 2: Laplace Transform

1. Definition

The Laplace transform of a function f(t), defined for all real numbers $t \ge 0$, is the function F(s), which is a unilateral transform defined by

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt$$
 (Eq 2.1)

2. Properties

f(t)	$\mathcal{L}\{f(t)u(t)\}$	f(t)	$\mathcal{L}\{f(t)u(t)\}$
f(at)	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	$e^{-at}f(t)$	F(s+a)
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	f(t-a)u(t-a)	$e^{-as}F(s)$
f'(t)	sF(s)-f(0)	(f*g)(t)	F(s).G(s)
f''(t)	$s^2F(s) - sf(0) - f'(0)$	$\frac{f(t)}{t}$	$\int_{s}^{+\infty} F(\tau) d\tau$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{n-1}(0)$	$\int_0^t f(\tau)d\tau = u(t) * f(t)$	$\frac{1}{s}F(s)$

3. Formulas

f(t)	$\mathcal{L}\{f(t)u(t)\}$	f(t)	$\mathcal{L}\{f(t)u(t)\}$
1	$\frac{1}{s}$	$\delta(t-a)$	e^{-as}
t^n	$\frac{n!}{s^{n+1}}$	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
e^{-at}	$\frac{1}{s+a}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	t cos ωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	t sin ωt	$\frac{2\omega s}{(s^2+\omega^2)^2}$
cosh at	$\frac{s}{s^2 - a^2}$	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$
sinh at	$\frac{a}{s^2 - a^2}$	tf(t)	-F'(s)

4. Initial and Final Value Theorem

Initial-value theorem

$$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) = f(0^+)$$
 (Eq 2.2)

Final-value theorem

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$
 (Eq 2.3)