Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Теорія ймовірностей, ймовірнісні процеси та математична статистика 3-й семестр

Спеціальність:

програмна інженерія

БІЛЕТ № 1

- 1. У невеликому приморському місті річні збитки від штормів, пожеж та розкрадань майна ϵ незалежними випадковими величинами, що мають показниковий розподіл з середніми значеннями 10, 30 та 45 відповідно. Знайти ймовірність того, що максимальний з цих збитків буде більше за 40. Записати функцію розподілу та щільність для максимального збитка та побудувати їх графіки.
- 2. Нехай ξ 1, ξ 2,... ξ n вибірка з нормального розподілу з параметрами (θ ,1). Знайти оцінку методом максимальної вірогідності для параметра θ . Дослідити її на незміщеність та конзистентність та ефективність.
- 3. Нехай в.в. α має рівномірний розподіл на $[0,2\pi],\ \xi = \cos\alpha,\ \eta = \sin\alpha$. Довести, що $\xi,\ \eta$ залежні, але некорельовані.

БІЛЕТ № 2

- 1. Рівномірний розподіл. Його математичне сподівання та дисперсія. Нехай ξ і η незалежні випадкові величини, що мають рівномірний розподіл на [-1,1] Знайти розподіл $\zeta + \eta$
- 2. Три екзаменатори приймають іспит з деякого предмету у групі з 27 людей, причому перший опитує 6 студентів, другий— 3 студентів, а третій— 18 студентів. Відношення трьох екзаменаторів до слабо підготовленого студента різне: шанси таких студентів здати іспит у першого викладача дорівнює 30%, у другого— тільки 10%, у третього— 50%. Знайти ймовірність того, що слабо підготовлений студент складе іспит. Відомо, що студент отримав «незадовільно». Кому з трьох викладачів він ймовірніше відповідав?
- 3. $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з показникового розподілу з параметром θ . Знайти оцінку методом максимальної вірогідності та методом моментів для параметра θ .

- 1. Шматок дроту довжиною 7см зігнуто під прямим кутом у випадковому місці. Яка ймовірність того, що відстань між кінцями дроту більша за 5см?
- 2. Нехай ймовірність p_n того, що в сім'ї n дітей, дорівнює $\frac{a}{2^n}$, n>0, i $p_0=1$ -a. Припустимо, що ймовірності народження хлопчика і дівчинки однакові. Довести, що ймовірність того, що в сім'ї κ хлопчиків, дорівнює $2a/3^{\kappa}$. Яка ймовірність, що в сім'ї два або більше хлопчиків, якщо відомо, що в сім'ї ε щонайменше один хлопчик?

3. Випадкові величини $\xi_1, \xi_2,...\xi_n$ незалежні і мають однаковий показниковий розподіл з параметром $\lambda > 0$. Знайти функцію розподілу для $\min \{ \xi_1, \xi_2,...\xi_n \}$, щільність, побудувати їх графіки. Обчислити матем. сподівання та дисперсію.

БІЛЕТ № 4

- 1. Формула повної ймовірності. Авто експлуатується двома особами: чоловіком та жінкою по черзі. Ймовірність ДТП при керуванні авто чоловіком ϵ 0.2, а для жінки 0.05. Відомо, що сталося дорожня пригода. Яка ймовірність, що за кермом був чоловік?
- 2. Випадкова величина має щільність $f(x) = \exp(-2|x|)$. Визначити $M \max(\xi,2)$; розподіл та математичне сподівання величин $\eta_1 = \xi^2, \ \eta_2 = [\xi]$.
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з нормального розподілу з параметрами $(\theta,1)$. Чи ϵ $\hat{\theta} = \bar{\xi} = \frac{1}{n} \sum_{i=1}^n \xi_i$ ефективною оцінкою параметра θ ? Дослідити її на незміщеність та

конзистентність.

БІЛЕТ №5

- 1. З урни, яка містить "m" білих і "n" чорних куль (n>4) загубили дві кулі. Після цього з урни взяли дві кулі, які виявилися чорними. Обчислити ймовірність того, що загублено було дві чорні кулі.
- 2. Випадкова величина ξ має нормальний розподіл з параметрами 0 і σ^2 . Обчислити перший, другий, третій та четвертий моменти для ξ .
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з нормального розподілу з параметрами $(0, \, \theta)$. Чи ϵ $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n \xi_i^2$ ефективною оцінкою параметра θ ? Дослідити на незміщеність та конзистентність.

БІЛЕТ № 6

1. Нижче наведено дані про кмітливість школярів, які мають атлетичну і неатлетичну статуру.

Статура	Ступінь	Разом	
	кмітливос		
	Високий		
Атлетична	583	567	1150
Неатлетична	207	351	559
Разом	790	918	1708

Чи існує зв'язок між кмітливістю школярів та їхньою статурою з довірчою йм. 0.95? (Використати χ^2 –критерій)

- 2. Випадкова величина зосереджена на відрізку [0,1] і її щільність на ньому дорівнює cx^2 . Знайти сталу c, функцію розподілу, математичне сподівання та дисперсію.
- 3. Нехай ξ випадкова величина, яка має рівномірний розподіл у проміжку [0,5]. Треба знайти функцію розподілу $\eta = \min\{2,\xi\}$, а також підрахувати $M\eta$ і $D\eta$.

1. Щоб порівняти відбивну здатність двох видів фарб, провели такий експеримент: з 10 зразків 5 пофарбували однією фарбою, решту — іншою і виміряли їхню відбивну здатність за допомогою оптичного приладу. Одержали: Фарба A: 205, 150, 200, 120, 160.

Фарба Б: 200, 115, 220, 175, 170.

Чи свідчать ці дані про відмінність відбивної здатності фарб при довірчій ймовірності 0,9?

- 2. Випадкова величина ξ рівномірно розподілена на відрізку $[-\pi/2,\pi/2]$. Знайти щільність розподілу та матем. сподівання для $|\sin\xi|$.
- 3. Нехай $\xi_1,\ \xi_2,...\xi_n$ вибірка з генеральної сукупності з невідомою дисперсією
- θ . Чи ϵ $\hat{\theta} = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_i \overline{\xi})^2$ незсунутою оцінкою параметра θ ?

БІЛЕТ № 8

- 1. Незалежні події A і B такі, що P(A) = 0.45, $P(A \cap B) = 0.18$. Знайти ймовірності P(B), $P(\overline{A} \cup \overline{B})$.
- 2. Випадкова величина ξ має рівномірний розподіл на відрізку [0,4]. Знайти математичне сподівання та дисперсію для η =3 ξ +9. Чому дорівнює коваріація та коефіцієнт кореляції між ξ та η ?
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із розподілу з щільністю $f(x; \alpha) = \begin{cases} 0, & \text{якщо} \quad x < 0, \\ \frac{1}{\alpha} \exp\{-\frac{1}{\alpha}x\}, & \text{якщо} \quad x \ge 0. \end{cases}$

Знайти кількість інформації за Фішером для вибірки. Розглядається оцінка $\hat{\alpha} = \bar{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ параметра α . Перевірити, чи досягається для даної оцінки рівність у нерівності Крамера-Рао.

- 1. З відрізка [-2,2] навмання взяли два числа. Яка ймовірність того, що їх сума більша за 1, а добуток менший.
- 2. Нехай ξ випадкова величина, яка має рівномірний розподіл у проміжку [0,5]. Треба знайти функцію розподілу $\eta = \min\{2,\xi\}$, а також підрахувати $M\eta$ і $D\eta$.
- 3. Величини $\xi_1, \xi_2, ..., \xi_n$ незалежні в.в. і кожна з них приймає значення +1 і -1 з ймов. 0.3 і .7 відповідно. Нехай $\eta = \xi_1 \cdot \xi_2 \cdot ... \cdot \xi_n$. Знайти розподіл η і матем.сподівання та дисперсію.

- 1. Нехай ξ і η мають рівномірний розподіл на [1,10] Знайти розподіл $\zeta + \eta$.
- 2. В урні 20 куль, білі та чорні. Усі припущення про число білих куль в урні рівноможливі. З урни взяли одну кулю. Яка ймовірність того, що вона біла?
- 3. Нехай ξ_1 , ξ_2 ,... ξ_n вибірка з генеральної сукупності із щільністю $f(x,\theta) = 3(\theta-x)^2 / \theta^3$ при
- $x \in [0, \theta]$ та $f(x,\theta) = 0$ в інших випадках. Знайти оцінку параметра θ методом моментів. Чи буде вона несунутою, конзистентною?

БІЛЕТ № 11

- 1. З відрізка [0,2] навмання взяли два числа. Яка ймовірність того, що їх сума більша за 1, а добуток менший.
- 2. Нехай ξ_1 , ξ_2 ,... ξ_n незалежні випадкові величини з рівномірним розподілом на відрізку [a,b]. Знайти функцію розподілу та щільність для $\max\{\xi_i\}$ та підрахувати матем. сподівання та дисперсію.
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із розподілу

$$P(k;\theta) = C_{r-1+k}^{r-1} \left(\frac{1}{1+\theta}\right)^r \left(\frac{\theta}{1+\theta}\right)^k, k = 0,1,...,$$

де $\theta > 0$, r — відоме. Знайти оцінку параметра θ методом максимальної вірогідності. Чи буде вона ефективною?

БІЛЕТ № 12

- 1. Нехай X і Y відповідно сума і різниця очок, що з'явилися при підкиданні двох гральних кубиків. Знати сумісний розподіл та довести, що дані величини залежні, але некорельовані.
- 2. Випадкова величина ξ має розподіл Коші: $f(x) = 1/(\pi(1+x^2))$. Знайти а) $P\{|\xi| > 1\}$,
- $\mathsf{G}) \ M\left(|\xi|/(1+\xi^2)\right).$
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із розподілу Релея, тобто із щільністю

$$f(x;\theta) = egin{cases} rac{x}{ heta} \exp\{-rac{x^2}{2 heta}\}, & ext{якщо} & x > 0, \\ 0, & ext{якщо} & x \leq 0. \end{cases}$$

Знайти кількість інформації за Фішером для вибірки. Для оцінки $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^n \xi_i^2$ перевірити, чи досягається рівність в нерівності Крамера-Рао.

- 1. Група з 24 студентів, серед яких 5 відмінників, довільно розбивається порівну на дві групи. Нехай ξ –випадкова величина, що характеризує кількість відмінників у першій групі. Знайти розподіл ξ, матем. сподівання та дисперсію.
- 2. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ незалежні випадкові величини з показниковим розподілом з параметром b. Знайти функцію розподілу, щільність, середнє значення та дисперсію для $\min\{\xi_i\}$.

3. Нехай
$$\xi_1, \xi_2, ..., \xi_n$$
 – вибірка із розподілу з щільністю
$$f(x;m,\theta) = \begin{cases} 0, & \text{якщо} \quad x < m, \\ \frac{1}{\theta} \exp\{-\frac{1}{\theta}(x-m)\}, & \text{якщо} \quad x \ge m, \end{cases}$$

 $\theta > 0$, m- відоме. Чи ε $\hat{\theta} = \overline{\xi} - m$ несунутою, конзистентною, ефективною оцінкою параметра θ ?

БІЛЕТ № 14

- Нехай Х максимальне значення, що з'явилося при підкиданні двох гральних кубиків. Знайти для нього розподіл, математичне сподівання та дисперсію.
- 2. Нехай $\xi_1,\,\xi_2,...\xi_n$ вибірка з рівномірним на [a,b] розподілом. Знайти оцінки параметрів а і в методом моментів.
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із логарифмічно нормального розподілу із щільністю

$$f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \le 0, \end{cases}$$

 $\sigma_0 > 0$ -відоме. Чи є $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \ln \xi_i$ ефективною оцінкою параметра μ ? Дослідити

дану оцінку на незміщеність.

БІЛЕТ № 15

- 1. Два гравці по черзі підкидають монету. Виграє той, у кого вперше випаде герб. Знайти ймовірності виграшу для кожного гравця.
- 2. Нехай ξ випадкова величина, яка має показниковий розподіл з параметром $\lambda = 2$. Треба знайти функцію розподілу $\eta = \min\{1, \xi\}$, а також підрахувати $M\eta$ i $D\eta$.
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із розподілу Релея, тобто із щільністю $f(x;\theta) = \begin{cases} \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, & \text{якщо } x > 0, \\ 0, & \text{якщо } x \le 0. \end{cases}$

$$f(x;\theta) = \begin{cases} \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, & \text{якщо} \quad x > 0\\ 0, & \text{якщо} \quad x \le 0. \end{cases}$$

Чи ϵ $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} \xi_{i}^{2}$ незсунутою, конзистентною, ефективною оцінкою параметра

- 1. Кидають 18 гральних кубиків. Яка ймовірність того, що кожне число з'явиться 3 рази?
- 2. Дисперсія межі міцності проти розриву волокна становить 35,63 фунт². Очікується, що внесені в технологічний процес зміни зменшать зазначену дисперсію. Зареєстровано такі значення міцності на розрив (у фунтах, 1 фунт=453,6 г): 151, 156, 147, 153, 155, 148, 160, 149, 156, 161, 154, 162, 163, 149, 150. Чи привела зміна технологічного процесу до зменшення дисперсії з довірчою йм. <math>0,95.
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із біноміального розподілу

$$P(k; p) = C_m^k p^k (1-p)^{m-k}, k = 0,1,...,m.$$

де m — відоме. Знайти оцінку параметра p методом максимальної вірогідності. З'ясувати, чи ϵ оцінка \hat{p} незсунутою, конзистентною, ефективною оцінкою параметра p.

БІЛЕТ № 17

- 1. Дві особи вирішили зустрітись між восьмою та дев'ятою годинами вечора. Чекати один одного домовились не більше 10 хвилин. Яка ймовірність їх зустрічі?
- 2. Випадкова величина зосереджена на відрізку [0,1] і її щільність на ньому дорівнює cx^7 . Знайти сталу c, функцію розподілу, математичне сподівання та дисперсію.
- 3. У таблиці наведено дані про колонії бактерій, що містяться у трьох тістечок.

Вид	Розміри	Разом		
тістечка	Малі Середні Великі			
Еклер	92	37	46	175
Наполеон	53	15	19	87
Горіхове	75	19	12	106
Разом	220	71	77	368

Чи можна стверджувати, що існує залежність між видами тістечок і розмірами бактеріальних колоній, що містяться в них з довірчою йм. 0,95?

- 1. Фомула Байєса. Дві фабрики виробляють деяку продукцію. Частина браку на першій фабриці становить 3%, на другій 5%. Навмання обрано фабрику і придбано 100 одиниць продукції. Яка ймовірність того, що серед 100 виробів буде 2 бракованих?
- 2. Нехай ξ набуває значень ± 1 , ± 2 кожне з ймовірністю $\frac{1}{4}$, а $\eta = \xi^4$. Знайти сумісний розподіл η і ξ . Довести, що вони залежні, але некорельовані.

3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ — вибірка з розподілу Релея, тобто із щільністю з $f(x,\theta) = \frac{x}{\theta} \exp\{-\frac{x^2}{\theta}\}$, якщо x>0. Знайти оцінку методом максимальної вірогідності для параметра θ . Дослідити її на незміщеність, конзистентність та ефективність.

БІЛЕТ № 19

- 1. Тільки один з N ключів підходить до замка. Яка ймовірність того, що буде перебрано саме К ключів до того, як буде знайдено потрібний ключ?
- 2. Нехай $\xi 1$, $\xi 2$,... ξn вибірка з рівномірним на $[\theta 3, \theta + 3]$ розподілом. Чи ε $\hat{\theta} = \overline{\xi}$ ε незсунутою, конзистентною оцінкою параметра θ ? Чи ε $\hat{\theta}_2 = (\xi_{n-1} + \xi_n)/2$ незсунутою та конз. оцінкою параметра θ ?
- 3. 10 школярів протягом літніх канікул перебували в спортивному таборі. На початку сезону і після його завершення у них визначали місткість легенів(у мілілітрах). За результатами вимірювань необхідно визначити, чи істотно змінився цей показник під впливом інтенсивних фізичних вправ (довірча йм. 0,95).

Школяр	До	Після	Школяр	До	Після
1	3400	3800	6	3100	3200
2	3600	3700	7	3200	3200
3	3000	3300	8	3400	3300
4	3500	3600	9	3200	3500
5	2900	3100	10	3400	3600

БІЛЕТ № 20

- 1. Три фабрики виробляють деяку продукцію, причому на першій фабриці виготовляють 30% всієї продукції, на другій –50%, а на третій –20%. Частина браку на першій фабриці становить 3%, на другій 5%, на третій –7%. Навмання придбано товар. Він виявився бракованим. Яка ймовірність того, що він зроблений на другій фабриці?
- 2. Нехай ξ_1 , ξ_2 ,... ξ_n вибірка з розподілу Релея, тобто із щільністю з $f(x,\theta) = \frac{x}{\theta} \exp\{-\frac{x^2}{\theta}\}$, якщо x>0. Чи буде $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n \xi_i^2$ незсунутою, ефективною оцінкою параметра θ ?
- 3. Вимірюючи опір дроту двох типів (А і В), одержали такі дані:

Дріт А: 0,126; 0,131; 0,126; 0,127; 0,124; 0,130; 0,128; 0,124.

Дріт В: 0,121; 0,121; 0,124; 0,122; 0,120; 0,124; 0,125; 0,120.

Стверджується, що між розкидом опору дроту типу A і B немає різниці. Чи не суперечить це твердження наведеним даним з довірчою йм. 0,95?

- 1. Знайти ймовірність того, що в κ цифр, кожна з яких вибрана навмання (вибірка з поверненням):а) не входить 9; б) не входить 8; в) не входить ні 9, ні 8; г) не входить або 9, або 8.
- 2. Випадкова величина ξ має показниковий розподіл з параметром λ . Знайти розподіл, математичне сподівання та дисперсію для $\eta = \xi^{\alpha}, \ \alpha > 0$.
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з біноміального розподілу з параметрами N і р. Чи буде $\hat{p} = \frac{1}{nN} \sum_{i=1}^n \xi_i$ незсунутою та конзистентною оцінкою параметра р?

Дослідити дану оцінку на ефективність.

БІЛЕТ № 22

1. У результаті перевірки 500 контейнерів зі скляними виробами було добуто такі дані про кількість пошкоджених виробів:

Ι	n_i	I	n_i
0	199	5	3
1	169	6	1
2	87	7	1
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	31	8 i	0
4	9	більше	
		Разом	500

- (i число пошкоджених виробів, n_i к-ть контейнерів з i пошкодженими виробами). Чи можна вважати, що к-ть пошкоджених виробів, яка припадає на контейнер, підпорядковується закону Пуассона з довірчою йм. 0,95.
- 2. Нехай ξ та η незалежні випадкові величини рівномірно розподілені на [0,2]. Знайти функцію розподілу та щільність для $\eta+\xi$.
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з щільністю $f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}$, якщо x>0. Чи буде $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n \xi_i$ ефективною, незсунутою і конзистентною оцінкою параметра θ ?

БІЛЕТ № 23

- 1. З 14 стрільців п'ять влучають у мішень з ймовірністю 0,8, сім з ймовірністю 0,7 і два стрільці з ймовірністю 0,5. Навмання обраний стрілець зробив постріл, але не влучив у мішень. До якої групи найбільш ймовірно він належить?
- 2. У квадрат навмання кидається точка. Яка імовірність того, що відстань до сторони квадрату буде менше, ніж до діагоналі?.
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з біноміального розподілу з параметрами N і р. Чи буде $\hat{p} = \frac{1}{nN} \sum_{i=1}^n \xi_i$ ефективною, незсунутою та конзистентною оцінкою параметра р?

- 1. В квадрат з вершинами (0,0), (0,1), (1,0), (1,1) навмання кинута точка. Нехай (x,y) \ddot{i} координати. Знайти для 0 < z < 1: a) P(|x-y| < z); б) P(xy < z);
- 2. Нехай ξ та η незалежні випадкові величини рівномірно розподілені на [0,1]. Знайти функцію розподілу та щільність для $\eta+\xi$.

3. Нехай ξ_1 , ξ_2 ,... ξ_n — вибірка з щільністю $f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}$, якщо x>0. Знайти кількість інформації за Фішером $I(\theta)$. Чи буде $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ ефективною оцінкою параметра θ ?

БІЛЕТ № 25

- 1. На безмежну шахову дошку зі стороною квадрата l навмання кидають монету радіуса r < l/2. Знайти ймовірність того, що а) монета перетне рівно 1 сторону; б) монета не перетне не більше, ніж одну сторону.
- 2. Авіакомпанія виконує два рейси на добу. Йм. затримки першого рейсу дорівнює 0.1, а другого -0.05 ξ кількість затримок першого рейсу, η сумарна кількість затримок. Знайти сумісний розподіл (ξ , η) та коефіцієнт кореляції між ними.
- 3. Нехай $\xi_1, \, \xi_2, \dots \xi_n$ вибірка з щільністю $f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x-m}{\theta}\}$, якщо х>т. Знайти оцінку параметра θ методом моментів (т вважається відомим). Дослідити її на незміщеність та конзистентність.

БІЛЕТ № 26

1. В роки другої світової війни на Лондон впало 537 літаків-снарядів. Уся територія Лондона була розподілена на 576 ділянок площиною 0,25 км². Нижче наведено числа ділянок n_k, на які впало k снарядів.

K	0	1	2	3	4	5 i
						більше
n_k	229	211	93	35	7	1

Чи узгоджуються ці дані про те, що число снарядів, які впали на кожну ділянку, має розподіл Пуассона з параметром $\lambda = 0.9$. (Прийняти рівень значущості 0,1.)

- 2. Колесо вагону має тріщину на зовнішньому краю. Нехай ξ висота тріщини над землею при випадковій зупинці вагону. Знайти функцію розподілу, щільність та середнє для ξ .
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із логарифмічно нормального розподілу із щільністю

$$f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \le 0, \end{cases}$$

 $\sigma_0 > 0$ -відоме. Знайти оцінку параметра μ методом моментів? Дослідити дану оцінку на незміщеність.

- 1. Скільки раз потрібно підкинути два гральних кубики, щоб ймовірність випадання хоча б один раз суми чисел 5 була більшою за 0.95.
- 2. У чашці Петрі спостерігаються колонії бактерій. Під мікроскопом їх видно як темні цяточки. Чашку Петрі (її дно) поділено на маленькі квадрати, у кожному з яких підраховується кількість колоній (цяток). (k– к-ть колоній у квадраті, n_k к-ть квадратів з κ колоніями)

К	0	1	2	3	4	5	6	7
n_k	5	19	26	26	21	13	8	0

Перевірити гіпотезу про пуассонівський розподіл з параметром $\lambda = 3$ к-ті колоній у квадраті при довірчій йм. 0,95.

3. Нехай $\xi_1, \xi_2, \dots \xi_n$ — вибірка з нормальним розподілом з параметрами $N(0,\theta)$. Знайти оцінку параметра θ методом максимальної вірогідності. Дослідити її на незміщеність та конзистентність.

БІЛЕТ № 28

- 1. \in N питань. Студент знає відповідь на n з них. На іспиті викладач питає κ питань, а для того, щоб здати екзамен потрібно відповісти не менше ніж на r. Знайти ймовірність того, що студент складе іспит.
- 2. Нехай $\xi_1,\ \xi_2,...\xi_n$ незалежні випадкові величини, що мають рівномірний на [0,10] розподіл. Знайти середнє та дисперсію для $\min\{\ \xi_1,\xi_2,...,\xi_n\}$
- 3. Нехай $\xi_1, \xi_2, ..., \xi_n$ вибірка із розподілу Релея, тобто із щільністю

$$f(x;\theta) = \begin{cases} \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, & \text{якщо } x > 0, \\ 0, & \text{якщо } x \le 0. \end{cases}$$

Знайти кількість інформації за Фішером для вибірки. Чи ϵ $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} \xi_i^2$ ефективною оцінкою параметра θ ?

- 1. Курс акції за день може піднятися на 1 пункт з ймовірністю 50%, опуститися на 1 пункт з йм. 30% та залишитися незмінним з йм. 20%. Нехай X дорівнює зміні курсу акції за два дні. Знайти розподіл в.в. X, зобразити її функцію розподілу, а також обчислити МХ та DX.
- 2. Сім спостережень дали наступні результати: 10, 12, 12, 15, 14, 16, 13. Відомо, що вибірка отримана з нормально розподіленої генеральної сукупності. Потрібно знайти довірчі інтервали для середнього та дисперсії з довірчою ймовірністю 0,95
- 3. Нехай ξ_1 , ξ_2 ,... ξ_n вибірка з щільністю $f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x-m}{\theta}\}$, якщо x > m. Знайти оцінку параметра θ методом максимальної вірогідності. Дослідити її на незміщеність та ефективність. (m-відоме значення)

- 1. а)Для довільних A і B довести нерівність $P(A \cup B)P(A \cap B) \leq P(A)P(B)$. б). Скільки разів треба підкинути дві гральнікості, щоб імовірність хоча б одного випадіння шістки була більша за 1/2?
- 2. Колесо вагону має тріщину на зовнішньому краю. Нехай ξ висота тріщини над землею при випадковій зупинці вагону. Знайти функцію розподілу, щільність та середнє для ξ.
- 3. Нехай $\xi_1, \bar{\xi_2}, ..., \xi_n$ вибірка із логарифмічно нормального розподілу із шільністю

$$f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0\\ 0, & \text{якщо} \quad x \le 0, \end{cases}$$

 $f(x;\mu) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma_0^2}x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma_0^2}\right\}, & \text{якщо} \quad x > 0, \\ 0, & \text{якщо} \quad x \leq 0, \end{cases}$ $\sigma_0 > 0$ -відоме. Знайти оцінку параметра μ методом моментів? Дослідити дану оцінку на незміщеність.

Затверджено на засіданні кафедри прикладної статистики (протокол № 3 від 3 листопада 2021 р.) Зав. кафедри Лектор проф. Лебєдєв Є.О. доц. Розора I.B.