Fundamentos de la Arquitectura TCP/IP

Ing. Gilberto Sánchez Quintanilla

Introducción

- La familia de protocolos: Protocolo de Control de Transmisión/Protocolo de Internet (TCP/IP Transmission Control Protocol/Internet Protocol), llevan su nombre por los dos principales protocolos. TCP en capa de transporte e IP en capa de red.
- Es la base de la Internet actual, así como la base de muchas redes privadas de computadoras.

- Internet comenzó a finales de los sesenta como un experimento de la Agencia de Proyectos de Investigación Avanzada – ARPA.
- DARPA experimentó con la conexión de redes de computadoras, concediendo becas a múltiples universidades y compañías privadas que se involucraran en la investigación.

- 1969, nace una red experimental con la conexión de cuatro nodos a través de circuitos de 56 Kbps.
- La nueva tecnología resulto ser altamente exitosa y condujo a la creación de dos redes militares similares: MILNET, en los Estados Unidos, y MINET, en Europa
- Posteriormente miles de servidores y usuarios conectaron sus redes privadas (las universidades y el gobierno) a ARPANET, creando de esta forma la inicial "ARPA Internet".

- Hacia 1985, ARPANET era altamente utilizada y estaba cargada de atascos.
- En 1986, la NSFNET creo una arquitectura de red mas distribuida, los enlaces originales de 56 Kbps se actualizaron en 1988 a enlaces T1 mas rápidos (1.544 Mbps).
- Hacia 1991, el trafico de datos se había incrementado enormemente, lo que hizo necesario actualizar el servicio de red del backbone de la NSFNET a enlaces T3 (45 Mbps).

- A principios de los años noventa, la NSFNET todavía estaba reservada para aplicaciones de investigación y educación.
- Intereses comerciales y de propósito general clamaban por el acceso a la red, y los proveedores de servicio de Internet (ISP) emergían para dar cabida a dichos intereses.

- A finales de 1970 empezó a ver la luz lo que ahora conocemos como TCP/IP.
- Un conjunto de RFCs (791, 793, 768, etc.)
 definen el núcleo de la familia de protocolos TCP/IP.
- Quizá el mayor empujón a la adopción de TCP/IP fue la publicación e 1983 de la versión BSD 4.2 de UNIX, que incorporaba TCP/IP.

Con la versión BSD 4.2 muchas universidades podían permitirse minicomputadoras adicionales y el software que ejecutaba en ellas. El resultado fue un crecimiento explosivo en el uso de ARPANET y el desarrollo de muchas herramientas y utilidades que ahora podemos conseguir gratuitamente.

Arquitectura de la familia de protocolos TCP/IP

 La pila de protocolos TCP/IP tiene una arquitectura con propiedades distintas a la del modelo OSI.

Arquitectura TCP/IP

La arquitectura es la siguiente:

Modelo OSI

	The state of the s
Aplicación	
Presentación	Aplicación
Sesión	
Transporte	Transporte
Red	Internet
Enlace	Interfaz
Física	de red

- La familia de protocolos TCP/IP eligieron un modelo más simple con menos niveles para mejorar el rendimiento y facilitar la implantación.
- Este modelo conocido como DARPA, es mas simple que el modelo de ISO, constando sólo de cuatro niveles.

Protocolos de la Arquitectura TCP/IP

FTP DNS Telnet DHCP SMTP SNMP **TFTP** HTTP TCP UDP ICMP **IGMP** ARP RARP Interfaz de red

Aplicación

Transporte

Red

NIC

- Algunas diferencias con el modelo OSI son:
 - No hay definición en cuanto a la capa física y de enlace, pues en principio TCP/IP se diseño para funcionar sobre las facilidades de transmisión existentes; es decir, puede funcionar sobre IEEE 802.3, 802.5, Ethernet, etc

Una capa tiene mas de un protocolo.

FTP DNS DHCP Telnet Aplicación SNMP SMTP **TFTP** HTTP Transporte TCP UDP ICMP **IGMP** Red IΡ ARP RARP Interfaz NIC de red

 Se sigue un orden jerárquico, que permite a los protocolos utilizar los servicios de otro protocolo siempre y cuando se encuentren en la misma capa o en la capa inferior (no necesariamente la inmediata inferior).

TCP HTTP

IP TCP HTTP

NIC IP TCP HTTP Cola Inter

Aplicación

Transporte

Red

Interfaz de Red

- Se basa en el protocolo IP, en un servicio no orientado a conexión (transmisión de datagramas).
- Datagrama: La decisión de enrutamiento se realiza para cada paquete; por lo que cada paquete de una misma transmisión puede seguir trayectorias distintas. Por lo tanto puede llegar fuera de secuencia o repetidos

- Protocolo de Resolución de Direcciones por sus siglas en ingles ARP (Address Resolution Protocol).
- ARP es el protocolo utilizado por tecnologías de red de acceso compartido basadas en difusión (broadcast), como Ethernet y Token Ring.

 ARP es un protocolo de capa de red, el cual utiliza los servicios de la capa de Interfaz de red.

Protocolo ARP — Red

NIC Protocolo ARP Cola Interfaz de red

 En el caso de la red Ethernet como protocolo de Interfaz de Red, identifica al protocolo ARP con el Ethertype 0x0806

- Este protocolo se utiliza para resolver la dirección física (dirección MAC) del siguiente nodo en base a su correspondiente dirección lógica (dirección IP).
- Esto lo realiza enviando un mensaje de broadcast (la dirección destino de la trama será FF:FF:FF:FF:FF:FF).

- El mensaje que envía la terminal origen se le llama: solicitud de ARP.
- Este mensaje es enviado preguntando:
 - ◆ ¿Quién tiene la dirección IP 10.0.0.1? y ¿Cuál es su dirección MAC?
- Este mensaje lo reciben todas las terminales dentro de la red de broadcast, pero solo contesta la terminal que tiene esa dirección IP.

Nodo 1

Dirección IP: 10.0.0.99

Dirección MAC: 00-60-08-52-F9-D8

Solicitud ARP

SHA: 00-60-08-52-F9-D8

SPA: 10.0.0.99

THA: 00-00-00-00-00

TPA: 10.0.0.1

Nodo 2

Dirección IP: 10.0.0.1

Dirección MAC: 00-10-54-CA-E1-40

• El mensaje que envía la terminal destino es llamado, respuesta de ARP. Y es donde envía su dirección MAC.

Nodo 1

Dirección IP: 10.0.0.99

Dirección MAC: 00-60-08-52-F9-D8

Node 2

Dirección IP: 10.0.0.1

Dirección MAC: 00-10-54-CA-E1-40

RespuestaARP

SHA: 00-10-54-CA-E1-40

SPA: 10.0.0.1

THA: 00-60-08-52-F9-D8

TPA: 10.0.0.99

Mensaje de ARP

Tipo de Hardware Tipo de Protocolo Long. de dirección de hardware Long. de dirección de protocolo Código de operación Dirección hardware del origen Dirección de protocolo del origen Dirección hardware del destino Dirección de protocolo del destino

■ **Tipo de Hardware:** Campo de 2 bytes que indica el tipo de hardware que esta presente en la capa de Interfaz de red.

Tecnología de la capa de Interfaz de red
Ethernet (10 Mbps)
Redes IEEE 802.3 Token Ring
Frame Relay
ATM

- **Tipo de Protocolo:** Campo de 2 bytes que indica el tipo de protocolo que es utilizado para realizar el transporte de los datos.
- Es el protocolo al cual ARP le presta el servicio de resolución de direcciones.
- Para la resolución de direcciones ARP, el campo Tipo de Protocolo se configura con 0x0800.

- Longitud de Direcciones de Hardware: Campo de 1 bytes que indica el tamaño de las direcciones de hardware de capa de Interfaz de red. Para Ethernet el valor es de 6 (0x06).
- Longitud de Direcciones de protocolo: Campo de 1 bytes que indica el tamaño de las direcciones de protocolo. Para IP (Internet Protoco) el valor es de 4 (0x04).

 Codigo de operación (opcode): Campo de 2 bytes que indica el tipo de trama ARP. La tabla muestra los valores más utilizados de Operación ARP

Valor de Operación	Tipo de trama ARP
1 (0x0001)	Solicitud ARP
2 (0x0002)	Respuesta ARP
8 (0x0008)	Solicitud ARP inversa
9 (0x0009)	Respuesta ARP inversa

Solicitud ARP

de la terminal 192.168.0.1 a la terminal 192.168.0.2

Respuesta ARP

de la terminal 192.168.0.2 a la terminal 192.168.0.1

```
      0000
      00
      19
      d1
      ac
      20
      21
      00
      19
      d1
      ac
      1f
      ca
      08
      06
      00
      01
      ...
      !
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      <td
```

Solicitud ARP

de la terminal

a la terminal

```
0000 ff ff ff ff ff ff 08 00 46 43 44 f6 08 06 00 01 ...... FCD.....
0010 08 00 06 04 00 01 08 00 46 43 44 f6 94 cc b7 bd ...... FCD.....
0020 00 00 00 00 00 94 cc b7 fe
```

Respuesta ARP

de la terminal

a la terminal

```
0000 08 00 46 43 44 f6 00 01 f4 43 c9 19 08 06 00 01 ..FCD... .C.....
0010 08 00 06 04 00 02 00 01 f4 43 c9 19 94 cc b7 fe ...... .C.....
0020 08 00 46 43 44 f6 94 cc b7 bd 00 00 00 00 00 ..FCD... ......
```

ARP gratuito y detección de IP duplicada

- ARP también se utiliza para proporcionar detección de IP duplicada mediante la transmisión de solicitudes ARP, conocida como *ARP gratuito*.
- Un ARP gratuito es una solicitud ARP para la propia dirección IP del nodo.

- En el ARP gratuito, SPA y TPA están configurados con la misma dirección IP.
- Si un nodo envía una solicitud ARP para su propia dirección IP y no se recibe ninguna trama de respuesta ARP, el nodo determina que otros nodos no utilizan su dirección IP asignada.
- Si un nodo envía una solicitud ARP para su propia dirección IP y se recibe una trama de respuesta ARP, el nodo determina que otro nodo esta utilizando su dirección IP asignada.

Detección de conflictos de direcciones IP

- En un conflicto de direcciones IP, el nodo que se ha configurado correctamente con la dirección IP se conoce como *nodo defensor*.
- El nodo que envía el ARP gratuito (al encender) se conoce como nodo infractor.

 Solicitud ARP (ARP gratuito), enviada por la terminal infractora que enciende. La dirección IP esta en conflicto.

```
      00000
      ff ff ff ff ff ff ff 00 60
      97 02 6e 8f 08 06 00 01
      .....` .n....

      0010
      08 00 06 04 00 01 00 60
      97 02 6e 8f a9 fe 00 01
      .....` .n....

      0020
      00 00 00 00 00 00 a9 fe 00 01 01 01 01 01 01 01
      ......

      0030
      01 01 01 01 01 01 01 01 01 01 01
      ......
```

 Respuesta de ARP de la terminal defensora a la terminal infractora. Cuando la terminal infractora recibe la respuesta, no toma la dirección IP.

```
      0000
      00 60
      97 02 6e 8f 00 60
      97 02 6d 3d 08 06 00 01
      .`.n..` .m=...

      0010
      08 00 06 04 00 02 00 60
      97 02 6d 3d a9 fe 00 01
      .....` .m=...

      0020
      00 60 97 02 6e 8f a9 fe 00 01
      ...n...
```

 La terminal defensora envía un ARP gratuito, para informarle a todas las terminales que a ella le pertenece la IP.

 La función mas importante de la capa de red es la de conducir los paquetes de datos de la fuente al destino.

 Esta función la designaremos con el nombre de ruteo y el dispositivo que la realiza es el ruteador.

 Así el ruteo es el proceso de descubrir, seleccionar y emplear la mejor trayectoria o camino para transmitir un paquete de datos de un nodo (ruteador) a otro nodo en una red.

 En la red Internet un paquete es llamado datagrama IP (Internet Protocol) y tiene el siguiente formato general:

• El encabezado IP contiene información que controla hacia donde y como es enviado el paquete. El tamaño del datagrama IP es determinado por la aplicación que envía los datos y puede ser tan grande como 64 Kbytes (65,536 bytes) incluido el encabezado IP.

 Para ir de la fuente al destino, un datagrama IP sigue una trayectoria formada por una secuencia de ruteadores (hops o nodos). Hay dos métodos para llegar de la fuente al destino:

- Source Route
- Conducción de Ruteador por Ruteador

Source Route

 En este método la fuente pone en el encabezado del paquete la lista de hops (ruteadores) por los cuales pasara el mensaje. No se utiliza actualmente.

Conducción de Ruteador por Ruteador

 La conducción del datagrama de la fuente al destino, se hace escogiendo en cada ruteador de la trayectoria el siguiente hop (ruteador) al cual será enviado el datagrama. En este método no es necesario que la fuente tenga toda la información a cerca de cómo ir a un destino, basta con que sepa como ir al siguiente nodo en la ruta al destino. Este ruteador a su vez sabe a cual ruteador remitir en seguida el paquete para hacerlo llegar a su destino.

- Con el método de conducción de ruteador por ruteador, cada uno de estos dispositivos a lo largo de la trayectoria recibe el datagrama, examinan la dirección IP destino y usan la dirección para determinar el siguiente ruteador al cual enviar el datagrama, para hacerlo llegar a su destino.
- Para realizar estas tarea los ruteadores conservan información en una tabla llamada de ruteo.

 Ejemplo: En la siguiente figura se muestran subredes (redes independientes), las cuales están conectadas con ruteadores. Cada uno de los ruteadores tiene una tabla de ruteo que incluye las direcciones de subred, para saber a que nodo (ruteador) siguiente transmitir los paquetes.

 Como observación, cabe mencionar que al inicio los ruteadores únicamente conocen las subredes (direcciones de subred) que tienen conectadas en sus interfaces; con estos datos informan a los ruteadores adyacentes lo que conocen, y ellos son informados de lo que conocen los otros ruteadores. Al conjuntar esta información recibida, los ruteadores crean sus tablas de ruteo.

- Ejercicio: Encuentre la tabla de ruteo de los ruteadores R1, R2, R3, R4 y R5.
 - Inicialice las tablas de ruteo con las direcciones de red (subred) que conoce, y posteriormente intercambie la información con los nodos adyacentes.

- Para administrar correctamente y solucionar problemas entre redes IP, es importante comprender todos los aspectos del direccionamiento IP.
- Uno de los aspectos más importantes de las redes TCP/IP es la asignación de direcciones IP únicas y correctas a todos los nodos de una red IP.

- Tipos de direcciones IP
 - Unidifusión: Se asigna a una única interfaz de red conectada a una red IP.
 Son utilizadas en comunicación de uno a uno.
 - Difusión: Esta diseñada para ser procesada por todos los nodos IP del mismo segmento de red. Se utilizan en comunicaciones de uno a muchos.

 Multidifusión: Es una dirección en la que uno o varios nodos pueden escuchar en el mismo o en diferente segmento de red. Se utilizan en comunicaciones de uno a varios.

Número de 8 bits

/	Ь	5	4	3	2	1	U	
07	06	05	04	03	02	01	00	
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
128	64	32	16	8	4	2	1	

Estructura de una dirección IP de unicast

- Clases de direcciones IP
 - Actualmente el direccionamiento de Internet no incluye clases.
 - Sin embargo, las clases de direcciones de Internet son un elemento importante para comprender el direccionamiento IP.

 RFC 791 definió la dirección IP de unidifusión en términos de clases de direcciones para crear redes bien definidas de diversos tamaños.

Objetivo:

- Un pequeño número de grandes redes (redes con una gran cantidad de nodos).
- Un número moderado de redes de tamaño mediano.
- Un número de pequeñas redes.

Formato de direcciones IP

- Reglas de enumeración de ID de RED
 - El ID de red no puede empezar con 127 en el primer octeto.
 - Las direcciones 127.x.y.z están reservadas como direcciones de bucle invertido.
 - Todos los bits del ID de red no pueden ser configurados como 1.
 - Todos los ID de red definidos como 1 están reservados para direcciones de difusión.

- Reglas de enumeración de ID de RED
 - Todos los bits del ID de red no pueden ser configurados como 0.
 - Todos los ID de red definidos como 0 están reservados para indicar un host en la red local.
 - El ID de red debe ser único en la red local.

Direcciones de clase A

Clase de Dirección	Primer ID de RED	Ultimo ID de RED	Número de IDs de RED
Class A	1.0.0.0	126.0.0.0	126

Nota: Las direcciones 127.x.y.z están reservadas para direcciones de bucle invertido (de local host).

Direcciones de clase B

Clase de Dirección	Primer ID de RED	Ultimo ID de RED	Número de IDs de RED	
Class B	128.0.0.0	191.255.0.0	16,384	

Direcciones de clase C

Clase de Dirección	Primer ID de RED	Ultimo ID de RED	Número de IDs de RED
Class C	192.0.0.0	223.255.255.0	2,097,152

- Reglas de enumeración de ID de HOST
 - Todos los bits del ID de host no se pueden configurar como 1.
 - Todos los ID de host configurados como 1 están reservados para direcciones de difusión.
 - Todos los bits del ID de host no se pueden configurados como 0.
 - Todos los ID de host configurados como 0
 están reservados para expresar ID de dirección
 IP.
 - Los ID deben ser únicos en la red.

Intervalos de clases de direcciones de ID de host

Clase de	Primer ID	Ultimo ID	Número de	
dirección	de host	de host	host	
Clase A	w.0.0.1	w.255.255.254	16,777,214	
Clase B	w.x.0.1	w.x.255.254	65,534	
Clase C	w.x.y.1	w.x.y.254	254	

- Subredes y máscaras de subred
 - En una dirección IP de red, los bits de red son fijos y los bits de host son variables.
 - Originalmente, los bits de host se diseñaron para indicar ID de host en un dirección IP de red.
 - Sucesivamente, los bits de host se utilizan para expresar una combinación de direcciones IP de subred e ID de host de subred, mejorando el uso de los bits de host.

- Las subredes están diseñadas para que sea más eficaz el uso de un espacio de direcciones fijo, principalmente una dirección IP de red.
 - Imagine una red de clase B con 65,534 host.
 - Es técnica posible, aunque no es práctico por su acumulación de tráfico de difusión.
- Para redes de menor tamaño y utilizar mejor los bits de host, una dirección IP de red puede ser dividida en subredes (subconjunto de la red original basada en clases).

Como dividir una red en subredes

- Considere una dirección IP de clase B:
 - 131.107.0.0 RÉD HOST
- Los bytes 131 y 107 son fijos. Los otros dos bytes son de host (65,534 host)
- Los 16 bits de host se pueden dividir para crear subredes.

Un ID de red de clase B antes de crear subredes

- Tenemos 16 bits de host, de los cuales se pueden tomar *n bits* para crear subredes:
 - No. de subredes = $2^n 2$
 - Donde n es el número de bits tomados de host para crear subredes.
- Suponiendo que de los 16 bits de host, se toman 8 para crear subredes y quedan 8 para host, entonces tenemos:
 - No. de subredes = $2^8 2 = 254$
 - No. de host = $2^8 2 = 254$ (en cada subred)

Un ID de red de clase B después de crear subredes
131.107.1.0

Mascara de subred

- Para que un host o un enrutador conozca la dirección IP de red o la dirección IP de subred, requiere una configuración adicional para distinguir entre los bits de red o subred y los bits de host, de una dirección IP de host.
- Se define el uso de una máscara de bits para poder diferenciar esto.
- A esta mascara se le conoce como máscara de subred.

- ♦ Valor de 32-bit
 - "1" indica que los bits son usados para el ID de RED
 - "0" indica que los bits son usados para el ID de HOST
- Expresado en bits y en notación decimal

Clase de Dirección		Mascara	a de RED		Notación Decimal
Class A	11111111	0000000	00000000	00000000	255.0.0.0
Class B	11111111	11111111	00000000	0000000	255.255.0.0
Class C	11111111	11111111	11111111	00000000	255.255.255.0

 Notación de prefijo de red para máscaras de subred predeterminadas.

Clase de dirección		Mascara	a de RED		Longitud del prefijo de RED
Clase A	11111111	00000000	00000000	00000000	/8
Clase B	11111111	11111111	00000000	00000000	/16
Clase C	11111111	11111111	11111111	00000000	/24

Un ID de red de clase B y la máscara de red antes de crear subredes

Un ID de red de clase B y la máscara de subred después de crear subredes.

- Los ID de red o subred expresados correctamente, deben ser de la siguiente forma:
 - 192.168.45.0, 255.255.255.0 o
 - 192.168.45.0/24
 - 10.99.0.0, 255.255.0.0 o
 - 10.99.0.0/16

 Todos los host de la misma red lógica deben utilizar los mismos bits de ID de red o subred, y la misma máscara de subred.

Ejemplo: ¿cuáles son las direcciones IP de host de 131.107.0.0/16 y 131.107.0.0/24?

Se le asigna la dirección de red 190.10.0.0 y su jefe le dice que cree el máximo de subredes que tengan 100 host como máximo. ¿Cuántas subredes se crean?, ¿Cuántos host por subred?, ¿Cuál es la máscara de subred?, indique el rango de subredes e indique el rango de los host en la subred 200.

- ■190.10.0.0/20 MS: 255.255.11110000.00000000
 - *190.10.00010000.00000000 190.10.11100000.00000000
- ■190.10.0.0/21 MS: 255.255.11111000.00000000
 - *190.10.00001000.00000000 190.10.11110000.00000000
- ■190.10.0.0/22 MS: 255.255.111111100.00000000
 - *190.10.00000100.00000000 190.10.11111000.00000000
- ■190.10.0.0/23 MS: 255.255.111111110.00000000
 - *190.10.00000010.00000000 190.10.111111100.0000000
- ■190.10.0.0/24 MS: 255.255.111111111.00000000
 - •190.10.00000001.00000000 190.10.111111110.00000000

- El uso de la máscara de subred es el siguiente:
 - Determinación del ID de red o subred, utilizando la máscara de subred.
 - Se realiza una operación AND (Y) bit a bit entre la Dirección IP de host y la máscara de subred.

Bit A	Bit B	Salida
0	0	0
0	1	0
1	0	0
1	1	1

Determinación del ID de red o subred

Dirección IP Máscara desubred

10000011	01101011	10100100	00011010
11111111	11111111	11110000	00000000

Resultado

10000011 01101011 10100000 00000000

131.107.164.26 AND 255.255.240.0 = 131.107.160.0

Uso de la máscara de subred en el host:

- El host origen utiliza su máscara de subred junto con las direcciones IP origen y destino, para determinar si el host destino esta en la misma subred o en diferente subred.
- Primero: IP origen AND M. Subred = Subred A
- Segundo: IP destino AND M. Subred = Subred B

- Tercero: Comparar Subred A con Subred B.
 - Si el valor de Subred A es igual a Subred B, el destino esta en la misma subred, entonces el host origen le envía una solicitud ARP al host de destino, y le envía el mensaje.
 - Si el valor de Subred A es diferente al de la Subred B, el destino esta en una subred diferente, entonces el host origen le envía una solicitud ARP a la puerta de enlace, al cual le envia el mensaje.

 Ejemplo: La terminal A desea comunicarse con la terminal B.

10. 131.107. 1 .2 255.255.255.0 131.107. 1 .0

20. 131.107. 1 .3 255.255.255.0 131.107. 1 .0

3o. 131.107.1.0 es igual a 131.107.1.0

131.107.1.2 envía una solicitud de ARP a 131.107.1.3

■ Ejemplo: La terminal A desea comunicarse

con la terminal C.

131.107.254.0 255.255.255.0 C 131.107.254.3 **20.** 131.107.254.3 255.255.255.0 131.107.254.0

30. 131.107.1.0 es diferente a 131.107.254.0

131.107.1.2 envía una solicitud de ARP a 131.107.1.1 que es la puerta de enlace.

- Ejercicio. Realice lo siguiente:
 - Configure su terminal con los siguientes parametros: dirección IP (192.168.0.X), máscara de subred (255.255.255.0) y puerta de enlace (192.168.0.1).
 - Ejecute el analizador de protocolos (wireshark), capturando con su interfaz de red (eth0) y filtrando con su MAC (ether host 00:20:18:66:c6:02).
 - Capture y ejecute el comando c:\>ping 192.168.0.Y, analice las tramas ARP capturadas y concluya.
 - Capture y ejecute el comando c:\>ping 192.168.254.3, analice las tramas ARP capturadas y concluya.

- Uso de la máscara de subred en el ruteador.
 - Como sabemos un ruteador tiene una tabla llamada de ruteo, la cual le ayuda a decidir hacia que nodo adyacente enviar el paquete.

Destino	Siguiente HOP	Mascara de ruteo	Tipo
131.107.1.0	131.107.1.254	255.255.255.0	DIR
131.107.2.0	131.107.1.1	255.255.255.0	REM
131.107.254.0	131.107.1.1	255.255.255.0	REM

- •Cuando un ruteador recibe un paquete IP, este analiza la dirección IP destino y aplica una operación **AND** con la máscara de subred de la primera linea de la tabla de ruteo, obtiene una dirección de subred y la compara con el destino.
- •Si no es igual se pasa a la siguiente línea hasta que la subred sea igual al destino.
- •Si es igual la subred al destino, el paquete es enviado al siguiente HOP.

•Supongamos que el la IP destino es 131.107.2.3

Destino	Siguiente HOP	Mascara de	Tipo
		ruteo	
131.107.1.0	131.107.1.254	255.255.255.0	DIR
131.107.2.0	131.107.1.1	255.255.255.0	REM
131.107.254.0	131.107.1.1	255.255.255.0	REM

131.107. 2 .3255.255.255.0131.107. 2 .0

*131.107. 2 .3 255.255.255.0 131.107. 2 .0

¿Es igual al destino? No Se pasa a la siguiente línea ¿Es igual al destino? Si Entonces, envía el paquete al siguiente HOP.

■ Utilice la dirección 192.1.1.0/28

Subredes de longitud variable

- Como se pudo observar, se puede dividir una red en subredes del mismo tamaño.
- Para maximizar el uso del espacio de direcciones fijo, las subredes que se crearon pueden ser utilizadas para crear otras subredes. Esto se conoce como subred de longitud variable.
- Se debe tener cuidado de que cada subred sea única, y con su máscara de subred, pueda distinguirse de otras subredes.

- Ejemplo de subred de longitud variable:
 - Se tiene 131.107.0.0/16
 - Se realiza la división en subredes de 3 bits.
 - La mitad de las direcciones están reservadas para su uso posterior.
 - Tres subredes se asignan con un máximo de 8190 direcciones IP.
 - 29 subredes se asignan con un máximo de 254 direcciones IP.
 - 62 subredes se asignan, únicamente con 2 direcciones IP.

Direcciones Privadas

- Cuando Internet empezó a crecer de forma exponencial, la demanda de direcciones IP publicas aumento considerablemente.
- Dado que cada nodo de la red corporativa de una organización requería una dirección IP publica, las organizaciones solicitaban suficientes direcciones IP.

- Las autoridades de Internet descubrieron que la mayoría de las organizaciones requerían muy pocas direcciones publicas.
- Los únicos host que requerían direcciones publicas eran los servidores WEB, FTP, e-mail, proxy y de seguridad.
- Los host de la red corporativa (interna) de la organización no requieren acceso directo a Internet, pero debían utilizar un espacio valido de direcciones IP.

- Direcciones de Intranet
- Los tres bloques de direcciones siguientes definen el espacio de direcciones privado:
 - 10.0.0.0/8 La red privada de 24 bits de host, puede utilizar cualquier esquema de subredes en la organización privada.
 - 172.16.0.0/12 Espacio de 20 bits de host. Desde la perspectiva de clases, el ID de red privada 172.16.0.0/12 es el intervalo de 14 redes de clase B de 172.17.0.0/16 a 173.30.0.0/16.

■ 192.168.0.0/16 – Espacio de direcciones con 16 bits de host . Desde una perspectiva con clase, el ID de red privada 192.168.0.0/16 es el intervalo de 254 ID de red de clase C de 192.168.1.0/24 a 192.168.254.0/24.