EXTRA PRACTICE PROBLEMS FOR THE MIDTERM

- 1. Find $\lim_{r \to \infty} \frac{2r^2 + 3r 4}{5 3r^2}$ analytically. 2. Find $\lim_{x \to 1} \frac{x^3 7x^2 + 12x}{4 x}$. 3. Find $\lim_{x \to \infty} \frac{x^3 7x^2 + 12x}{4 x}$.

- 4. Is g continuous at x = 4 if $g(x) = \begin{cases} \frac{x^2 16}{x 4} & x \neq 4 \\ 8 & x = 4 \end{cases}$?
- 5. Find $\lim_{x \to a} \frac{\frac{1}{x} \frac{1}{a}}{x a}$.
- 6. Use the definition of the derivative to compute the f'(9) if $f(x) = \sqrt{x}$.
- 7. Use the definition of the derivative to compute f'(x) if $f(x) = 3x^2 x$.
- 8. Find the tangent line to the curve $y = \sin x$ when $x = \pi/4$.
- 9. Find the tangent line to the curve $y = (3t^2 + t)^3$ when t = 1.

- 9. Find the tangent line to the curve $y = (3t^2 + t)^3$ when t = 1.

 10. Find the normal line to the curve $y = 3x^2 2x + 1$ when x = -1.

 11. Compute $\frac{d}{dx} \frac{e^{3x} 24x^2}{x + 1}$.

 12. Compute $\frac{d}{d\theta} \left\{ \sin^3 \theta + \tan^2(3\theta) \right\}$.

 13. Find $\frac{d}{dr} (r^3 \sin r)$.

 14. Compute $\lim_{s \to 1} \left(\frac{1}{s^2 s} \frac{1}{s 1} \right)$.

 15. Find f''(x) if $f(x) = \cos(\ln x)$.
- 16. Find $\frac{d^3y}{dx^3}$ if $y = 12x^5 3x^4 + 6x^3 2x^2 + 15$. 17. Find $\frac{d^3y}{dx}$ if $x + y = \sin y$. 18. Find $\frac{d^2y}{dx^2}$ if $e^y + x = \tan(x + y)$.

- 19. Find the tangent line to the curve $x^2 + y^2 = 1$ at the point (3/5, 4/5).
- 20. Find f'(3) if $f(x) = \tan^2(\pi x/12)$.
- 21. Find f'(2) if $f(x) = 2^{3^x}$
- 22. Two stones are thrown vertically upward with matching initial velocities of 48 ft/s at time t=0. One stone is thrown from the edge of a bridge that is 32 ft above the ground and the other stown is thrown from ground level. The height of the stone through from the bridge after t seconds is $f(t) = -16t^2 + 48t + 32$ and the height of the stone thrown from the ground after t seconds is $g(t) = -16t^2 + 48t$.
 - a. Show that the stones reach their high points at the same time.
 - b. How much higher does the stone thrown from the bridge go than the stone thrown from the ground?
 - c. When do the stones strike and the ground and with what velocities?
- 23. Compute $\frac{d}{dt} \ln(\arctan t)$. 24. Compute $\frac{d}{dt} e^{\arcsin t}$
- 25. If $f(x) = \arccos(x)$, then find f'(1/2).
- 26. Prove that the function $f(x) = -x^3 3x^2 + 100$ has at least one zero on the real line.

- 27. Compute $\lim_{\theta \to 0} \frac{\cos \theta 1}{\sin \theta}$ 28. Compute $\frac{d}{dx} \arccos x$. 29. Use the graph of g in the figure to do the following.
 - (a) Find the values of x in (0,7) at which g is not continuous.
 - (b) Find the values of x in (0,7) at which g is not differentiable.
 - (c) Sketch a graph of g' on (0,7).

