

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 725 267 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
07.08.1996 Patentblatt 1996/32

(51) Int Cl. 6: G01N 1/00, B01L 3/02

(21) Anmeldenummer: 96101332.3

(22) Anmeldetag: 31.01.1996

(84) Benannte Vertragsstaaten:
AT BE CH DE DK FR GB IT LI NL SE

(72) Erfinder:

- Howitz, Steffen, Dr.
D-01309 Dresden (DE)
- Bürger, Mario
D-01796 Pirna (DE)
- Wegener, Thomas
D-16816 Neuruppin (DE)

(30) Priorität: 01.02.1995 DE 19503141

(71) Anmelder: Forschungszentrum Rossendorf e.V.
01474 Schönefeld-Weissig (DE)

(54) Elektrisch steuerbare Mikro-Pipette

(57) Die Erfindung betrifft eine elektrisch steuerbare Mikro-Pipette zur Handhabung kleinsten Fluidvolumina im Bereich von einigen hundert pl bis zu einigen µl. Die Mikro-Pipette ermöglicht die Aufnahme von Fluiden, Fluidgemischen oder den gegebenenfalls in ihnen enthaltenen Mikropartikeln, deren Abtransport in das Innere komplexer Systeme sowie die zielgerichtete Abgabe der aufgenommenen Stoffe an den Ort einer Probeweißerverarbeitung bzw. eines Probeabfalls.

Die elektrisch steuerbare Mikro-Pipette besteht aus einer mit einer inerten Trägerflüssigkeit gefüllten als Mikroejektionspumpe (2) eingesetzten Mikromembranpumpe, welche aus einer mikrotechnisch hergestellten Kammer (7) mit einer einen elektrisch ansteuerbaren Aktuator (12) aufweisenden elastischen Kammerwand (14) aufgebaut ist, deren Mikroauslaufkapillare (4) als Pipettenspitze ausgebildet ist.

Die erfindungsgemäße, elektrisch ansteuerbaren Mikro-Pipette wird mittels der Technologien der Mikrosystemtechnik hergestellt, sie kann als Hybridaufbau aus mehreren Einzelchips zum System Mikro-Pipette integriert werden, oder auch kompakt in nur einen Silizium-Chip integriert sein. Grundsätzlich eignen sich beide Fertigungsalternativen für die Massenproduktion und zeichnen sich durch extrem hohe Genauigkeit und Reproduzierbarkeit aus. Der Einsatz der erfindungsgemäßen Mikro-Pipette führt je nach Anwendung zu einer Verringerung des Totvolumens bzw. des Medienverbrauchs. Aufgrund des Fehlens mechanisch bewegter Teile weist sie eine extrem hohe Zuverlässigkeit und wartungsfreie Standzeit auf.

Figur 2:

Beschreibung

Die Erfindung betrifft eine elektrisch steuerbare Mikro-Pipette zur Handhabung kleinsten Fluidvolumina im Bereich von einigen hundert pl bis zu einigen μ l. Diese können reine Stoffe, Stoffgemische sowie in Flüssigkeiten suspendierte Mikropartikel sein, die in der chemischen Analytik, der Medizintechnik und der Biotechnologie einer gezielten Weiterverarbeitung zugeführt werden sollen. Die Mikro-Pipette ermöglicht die Aufnahme von Fluiden, Fluidgemischen oder den gegebenenfalls in ihnen enthaltenen Mikropartikeln, deren Abtransport in das Innere komplexer Systeme sowie die zielgerichtete Abgabe der aufgenommenen Stoffe an den Ort einer Probeweiterverarbeitung bzw. eines Probeabfalls.

In vielen Bereichen der chemischen Analysentechnik sowie in einer Reihe von Einsatzgebieten der biotechnologischen Präzisionstechnik ist die Dosierung, d. h. Mikropippettierung, kleinsten Flüssigkeitsvolumina bzw. Suspensionen, eine relevante Problemstellung. Bekannte Vorrichtungen zur Mikropippettierung gehen generell vom Einsatz mechanisch bewegter Kolben aus, deren Kolbenstange entsprechend fein stellbar ist. Bekannte technische Lösungen reichen von manuellen-, mechanischen- bis hin zu pneumatischen Stellgliedern. Präzise manuelle Stellglieder basieren auf dem Einsatz von Mikrometerschraubenantrieben (Katalog Coole Palmer, 1994). Pneumatische Feinstellglieder (Produktkatalog, ECET-Eppendorf-Cell-Technologie, 1994) werden zum Ansaugen und Abspritzen der Probelflüssigkeit genutzt. Die Stellbereiche liegen je nach Antriebssystem im Nanoliter bis Mikroliterbereich, realisierbare Inkremeute betragen je nach dem Kompliziertheitsgrad der Stellglieder einige hundert Pikoliter bis zu wenigen Nanolitern.

Die höchste Präzision wird gegenwärtig erreicht, wenn die mechanisch exzellent gelagerte Pumpkolbenstange durch eine elektromechanische Stellvorrichtung angetrieben wird und dieser Antrieb direkt über Hochpräzisions-Schrittmotoren vorgenommen wird. Die Firma ABIMED setzt dieses Prinzip an kommerziellen HPLC-Analysatoren ein. Dosierzvorrichtungen, die das Dosieren im Pikoliterbereich gewährleisten müssen, sind z.B. mit einem piezoelektrischen Schrittmotor zur Auslenkung des Pumpkolbens ausgerüstet, welche Schrittweiten-Inkremeute im Bereich von 130 bis 250 Nanometer ermöglichen. Die Kleinheit dieser Inkremeute gestattet, daß minimale Volumenquanten im Pikoliterbereich, bei direktem Kontakt von Dosier- und Zielfluid übergeben werden können, der direkte Kontakt bei der Fluide ist aber in jedem Fall Voraussetzung.

Über eine neue Methode zur Aufnahme kleinsten Fluidvolumina im Piko- bis Femtoliterbereich in Mikrokapillaren berichten Fishman u.a. in [Anal. Chem. 1994, 66, 2318-2329]. Grundsätzlich ist auch bei diesem Verfahren der direkte Kontakt zwischen Dosierfluid und Zielfluid zwingende Voraussetzung für die Fluidübergabe. Das von Fishman als "spontane Injektion" bezeichnete Pipettierverfahren in Mikrokapillaren, nutzt die an gekrümmten Grenzflächen auftretende Druckdifferenz zur Aufnahme kleinsten Fluidvolumina aus. Dabei wird eine Glaskapillare zur Probeinjektion verwendet, die aber selbst kein aktives fluidisches Element darstellt. Es ist nicht möglich, kleinste Fluidmengen aufzunehmen und abzugeben, ohne die Kapillare zu leeren. Ein weiterer Nachteil der passiven Mikrokapillare nach Fishman wird deutlich, wenn man ein System aus mehreren Mikrokapillaren z.B. bei der Vielkanalanalyse oder in Multidispensersystemen einsetzen würde. Dies ginge nur unter Verwendung zusätzlicher Mikroventile, und genau diese existieren bis heute nicht in der benötigten Kleinheit und Qualität.

- 5 nete Pipettierverfahren in Mikrokapillaren, nutzt die an
gekrümmten Grenzflächen auftretende Druckdifferenz
zur Aufnahme kleinsten Fluidvolumina aus. Dabei wird
eine Glaskapillare zur Probeinjektion verwendet, die
aber selbst kein aktives fluidisches Element darstellt. Es
ist nicht möglich, kleinste Fluidmengen aufzunehmen
und abzugeben, ohne die Kapillare zu leeren. Ein wei-
terer Nachteil der passiven Mikrokapillare nach Fish-
man wird deutlich, wenn man ein System aus mehreren
10 Mikrokapillaren z.B. bei der Vielkanalanalyse oder in
Multidispensersystemen einsetzen würde. Dies ginge
nur unter Verwendung zusätzlicher Mikroventile, und
genau diese existieren bis heute nicht in der benötigten
Kleinheit und Qualität.
- 15 Mit der Erfindung soll eine multifunktionale, kom-
pakt aufgebaute und kostengünstig herstellbare Mikro-
pipette geschaffen werden, die für die Pipettierung flüs-
siger Proben, einschließlich Suspensionen für das
Fluidhandling im Volumenbereich von einigen Pikolitern
20 bis zu einigen hundert Mikrolitern geeignet ist, ein ge-
ringstes Totvolumen sowie einen geringen Medienver-
brauch aufweist, und auch für Vielkanaldispenser keine
komplizierten mechanischen Stellglieder und Ventile
benötigt.
- 25 Dies wird mit der erfindungsgemäß, in den Pa-
tentansprüchen dargestellten elektrisch ansteuerbaren
Mikro-Pipette gelöst. Diese Mikro-Pipette wird mittels
der Technologien der Mikrosystemtechnik hergestellt.
Sie kann als Hybridaufbau aus mehreren Einzelchips
30 zum System Mikro-Pipette integriert werden, oder auch
kompakt in nur einen Silizium-Chip integriert sein. Somit
sind sehr einfach Vielkanaldispenser mit einer beliebi-
gen Anzahl einzeln, in Gruppen oder komplett ansteu-
erbaren Fluidkanälen herstellbar. Grundsätzlich eignen
35 sich beide Fertigungsalternativen für die Massenpro-
duktion und zeichnen sich durch extrem hohe Genauig-
keit und Reproduzierbarkeit aus. Der Einsatz der erfin-
dungsgemäß Mikro-Pipette führt je nach Anwendung
40 zu einer Verringerung des Totvolumens bzw. des Medi-
enverbrauchs. Aufgrund des Fehlens mechanisch be-
wegter Teile weist sie eine extrem hohe Zuverlässigkeit
und wartungsfreie Standzeit auf. Ein Kontakt zwischen
Dosier- und Zielfluid ist zum Zwecke der Übergabe nicht
45 erforderlich.
- Nachfolgend wird die Erfindung anhand einzelner
Ausführungsbeispiele näher erläutert. Die zugehörige
Zeichnung zeigt in
- 50 Fig. 1 : die schematische Ansicht einer Mikro-Pi-
pette bei der Probeaufnahme (a) sowie bei
der Probeabgabe (b) einschließlich Steuer-
spannungsdiagramm
- Fig. 2 : den Schnitt durch eine Mikro-Pipette ent-
sprechend Fig. 1
- 55 Fig. 3 : die schematische Ansicht der Mikro-Pipet-
te mit zusätzlicher Mikromembranpumpe
bei der Probeaufnahme (a) sowie bei der
Probeabgabe (b)

Fig. 4 : die schematische Ansicht der Mikro-Pipette mit zusätzlicher Mikromembranpumpe beim Spülen der Pipette

Fig. 5 : den Schnitt durch eine Mikro-Pipette entsprechend Fig. 4

Das Hauptelement der Mikro-Pipette ist eine aus einem Silizium-Glas-Chip (1) aufgebaute, als Mikroejektionspumpe (MEP) betriebene Mikromembranpumpe (2), welche z.B. die Außenabmessungen L x B x H = 30 mm x 10 mm x 1,5 mm aufweist. Als Mikroejektionspumpe wird eine Mikromembranpumpe bezeichnet, welche generell am Ende eines Strömungskanals angeordnet ist, und das kontinuierliche Saugen von Fluiden im Piko- bis Mikroliterbereich gestattet. In Fig. 1 ist die Ansicht in den Momenten der Probenahme (a) bzw. Probeabgabe (b) dargestellt. Fig. 2 zeigt die Mikro-Pipette in einer Schnittdarstellung.

Grundsätzliche Voraussetzung für die Herstellung der Betriebsfähigkeit der als Mikropipette eingesetzten Mikroejektionspumpe ist die vollständige und blasenfreie Befüllung der Anordnung mit einem Fluid, z. B. einem in bezug auf die zu pipettierenden Fluide inerten Trägerfluid. Für den weiteren Betrieb der Anordnung unterscheidet man nun zwei mögliche Betriebsfälle. In ersterem Fall wird die Anordnung nach der Befüllung mit dem Fluid aus einem Vorrat wieder abgeklemmt, und kann nunmehr zeitlich begrenzt so lange arbeiten, bis die Pumpkammer (7) der Mikroejektionspumpe (2) nicht mehr vollständig gefüllt ist. Dieser Betriebsfall ist dann von Interesse, wenn eine möglichst vollständig miniaturisierte und kurzeitig arbeitsfähige Mikropipettenanordnung gefordert ist. Die zu pipettierende Probe (6) kann dabei nur über den Vorgang der spontanen Injektion, gegen den der Anordnung innerwohnenden hydrostatischen Druck aufgenommen, und über die Mikroejektionspumpe wieder dosiert abgegeben werden.

Im zweiten Betriebsfall wird die Anordnung nach der Befüllung mit dem inerten Fluid nicht vom Fluidvorrat (5) abgetrennt, sondern verbleibt zwecks kontinuierlicher Nachbefüllung in ständigem Kontakt mit diesem Vorrat.

In diesem Fall kann die Anordnung zeitlich unbegrenzt zur Mikro-Pipettierung eingesetzt werden, wenn man davon ausgeht, daß auch der Füllstand im Vorrat (5) zeitweise nachgeregelt wird. Dieser Betriebsfall ist von Interesse, wenn die Anordnung in Systemen mit langen bzw. quasi endlosen Arbeitszyklen eingesetzt werden soll. Infolge der durchgehend blasenfreien Fluidfüllung der Anordnung von der als Pipettenspitze gestalteten Auslaufkapillare (4) über die Mikroejektionspumpe (2) und den Verbindungskanal mit dem Fluidvorrat (5), bildet sich im Bereich des Düsenmeniskus in Abhängigkeit von der Höhendifferenz Δh zwischen Fluidvorrat und Pipettenspitze ein positiver bzw. negativer Druckgradient aus.

Dieser Druckgradient stellt sich in jedem Fall unter

Wirkung des hydrostatischen Drucks im System Vorrat-Kanal-Mikroejektionspumpe ein und ist nur für den Fall Null, daß die Höhendifferenz Δh ebenfalls gleich Null ist. Ist der Druckgradient ins Innere der Mikroejektionspumpe gerichtet und kommt es zur direkten Benetzung von

5 Pipettenspitze (4) und Probe (6) an der Probeoberfläche, wird die zu pipettierende Probe (6) wiederum durch den Vorgang der spontanen Injektion in das Innere der Pumpkammer (7) aufgesogen. Dieser Vorgang ist durch 10 die Eintauchzeit, durch das angebotene Probevolumen, die Geometrie aller Mikrokomponenten, die fluidischen Eigenschaften der Probe (6) und den Betrag des Druckgradienten im Unterschied zur erstgenannten Betriebsweise definierbar. Zur Einstellung definierter Benetzungsverhältnisse zwischen der Auslaufkapillare (4) und dem Probefluid (6) ist es außerdem erforderlich, die Eintauchfläche möglichst klein zu gestalten. Diese Bedingung wird erfindungsgemäß durch die vorzugsweise 15 als Pyramiden spitze ausgeformte Auslaufkapillare (4) der Mikroejektionspumpe erfüllt

Um die zeitlichen Verhältnisse des Eintauchvorganges definieren zu können, wurde erfindungsgemäß ein Eintauchsensor in Form eines metallischen Dünnsfilmkontaktes (10) angebracht. Im Zusammenwirken dieser 20 Gestaltungsprämissen ist es möglich, definierte Volumina im Nanoliterbereich aufzunehmen und im Piko- bis Nanoliterbereich abzugeben. Die Abgabe des aufgenommenen Probefluides erfolgt durch Anregung (U_{MEP}) des piezoelektrischen Aktors (12) auf der elastischen Kammerwand oder Membran (14). Der Probeausstoß 25 erfolgt gemäß der Bauelementespezifik in volumendefinierten Mikrotropfen (9), deren Durchmesser 80 - 150 μm beträgt.

Um die Arbeitsweise der im Ausführungsbeispiel 30 dargestellten Mikro-Pipette zu erläutern, ist eine separate Betrachtung der Vorgänge der Probenahme und der Probeabgabe nützlich.

Die Probenahme wird in den Figuren 1a und 3a beschrieben. Dabei wird die Pipettenspitze (4) der Mikroejektionspumpe (2) so in Kontakt mit der Probeflüssigkeit (6) gebracht, daß diese unter Bildung einer gekrümmten Oberfläche durch spontane Injektion und den wirkenden hydrostatischen Druck in das Innere der Mikroejektionspumpe (2) gesaugt wird.

Zur Aufnahme eines definierten Probevolumens kann dieser Vorgang durch den Betrieb der als Düse-Diffusor-Pumpe (DDP) aufgebauten Mikromembranpumpe (3), entsprechend Steuerspannungsdiagramm (U_{DDP}) unterstützt werden, indem die Düse-Diffusor-Pumpe zur Begrenzung der aufzunehmenden Probemenge als Mikrodruckpumpe oder zur Vergrößerung der aufzunehmenden Probemenge als Mikrosaugpumpe betrieben wird. Die Mikroejektionspumpe (2) wird während der Probeaufnahme entsprechend Steuer spannungsdiagramm (U_{MEP}) nicht aktiv betrieben.

Die Probeabgabe beschreiben die Figuren 1b und 3b. Hierbei wird die Mikroauslaufkapillare (4) auf die Ablageregion justiert, und nunmehr werden die Mikroejek

tionspumpe (2) entsprechend Steuerspannungsdia-gramm (U_{MEP}) aktiv und die Düse-Diffusor-Pumpe (3) generell passiv (U_{DDP}) betrieben.

Zur Reinigung der Mikro-Pipette sowie zur Rück-versetzung der Anordnung in den Ausgangszustand ist die Spülung der Mikro-Pipette mit einem inerten Spül-fluid erforderlich. Für diesen Zweck kann die Mikro-Pi-pette über den Anschluß für den Fluidvorrat (14) mit einem Spülfluidvorrat oder einem Abfallbehälter verbun-den werden. Wird die Mikro-Pipette entsprechend der Anordnung nach Figur 1 bzw. 2 gespült, arbeitet die Mikroejektionspumpe (2) als Saugpumpe am Ausgang der Anordnung und zieht Spülfluid aus einem Vorratsbehäl-ter bis zur Erreichung des Ausgangszustandes durch die Mikroauslaufkapillare (4) in ein Abfallgefäß.

Die Spülung der Mikropipettenanordnung entspre-chend der Figuren 3 bis 5 erfolgt vorteilhafterweise so, daß die als Saug-, Druck- oder Bidirektionalpumpe ausgelegte zweite Düse-Diffusor-Pumpe (3) bei inaktiver Mikroejektionspumpe (2) betrieben wird, und je nach Pumprichtung Spülfluid- bzw. Abfallgefäß am Anschluß (14) bzw. an der Pipettenspitze (4) angeordnet werden.

Die technologische Realisierung des Silizium-Glas-Verbundes (1) erfolgt durch Verwendung der mikrotech-nischen Siliziumformgebung und die atomare Fü-ge-technik des Anodischen Bondens. Im ersten Präparati-onsprozeß, bestehend aus den Teilschritten thermische Oxidation, Fotolithografie und anisotropes Siliziumform-ätzen, wird ein zweiseitig strukturiertes Siliziumsubstrat (1) hergestellt. Dieses Siliziumsubstrat enthält danach die Strukturen einer Mikroejektionspumpe (2) mit Mikroauslaufkapillare (4), ggf. einer zusätzlichen Mikromembranpumpe (3) sowie des diese Pumpen verbin-denden Mikrokanalsystems mit Fluidanschluß (11). Das so strukturierte Siliziumsubstrat wird nach einer mehr-stufigen Reinigung mit einer Pyrex-7740-Glasplatte (16) von 1 mm Dicke durch Anodisches Bonden zum Silizi-um-Glas-Verbund (1) gefügt, es entsteht das Kapillar-system der Mikro-Pipette. Im Bereich der Pumpkam-mern (7) und (8) befinden sich je eine Siliziummembran (14) und (15), deren Dicke im Bereich von 50 - 190 µm liegt. Diese Siliziummembran wird durch je einen piezo-elektrisch aktivierbaren Plattenaktuator (12), (13) lateral ausgelenkt, wobei die Dicke der eingesetzten Aktuator-en im Bereich von 100 - 260 µm ausgewählt wurde. Die Verbindung zwischen dem Fluidanschluß (11) der Mi-kro-Pipette und der Außenwelt kann z. B. mittels Silikon- oder PVC-Schlauchanschlußstücken realisiert werden. Für die Anpassung der mikrotechnisch gefertigten Mi-kropipette an eine Umgebung, die realen Pipettierauf-gaben entspricht, wird das Bauelement an entspre-chend geformten Haltevorrichtungen an ein x-y-z-Bewegungssystem angeschlossen. Damit ist die Bedie-nung von Zielsystemen mit mikrofluidischen Bauele-menten effektiv möglich.

Patentansprüche

1. Elektrisch steuerbare Mikro-Pipette für Volumina im Bereich von einigen hundert pl bis zu einigen µl zum Pipettieren beliebiger flüssiger Proben mit oder ohne Mikropartikelanteilen gekennzeichnet durch den Aufbau aus einer Mikroejektionspumpe (2), welche aus einer mikrotechnisch hergestellten Kammer (7) mit einer einen elektrisch ansteuerba-ren Aktuator (12) aufweisenden elastischen Kammerwand (14) besteht (Mikromembranpumpe), und einer als Pipettenspitze ausgebildeten Mikroauslaufkapillare (4), wobei diese Anordnung für den zweckbestimmten Einsatz mit einer inerten Träger-flüssigkeit befüllt ist.
2. Elektrisch steuerbare Mikro-Pipette nach Anspruch 1, gekennzeichnet dadurch, daß zur definierten Einstellung der zu pipettierenden Probevolumina zusätzliche an der Mikroejektionspumpe (2) eine zweite Mikromembranpumpe (3) angekoppelt ist, die als Mikrodruck- oder Mikrosaugpumpe ausge-staltet ist.
3. Elektrisch steuerbare Mikro-Pipette nach Anspruch 1, gekennzeichnet dadurch, daß die Probeaufnah-me an der Öffnung der Mikroauslaufkapillare (4) durch spontane Injektion erfolgt und das aufgenom-mene Probevolumen durch die fertigungstechnisch frei wählbare Auslaufgeometrie der Mikroauslauf-kapillare (4) und die Kontaktzeit zwischen flüssiger Probe (6) und der Mikroauslaufkapillare (4) definiert wird.
4. Elektrisch steuerbare Mikro-Pipette nach Anspruch 2, gekennzeichnet dadurch, daß die Probeaufnah-me an der Öffnung der Mikroauslaufkapillare (4) über eine durch die Mikrosaug- bzw. Mikrodruck-pumpe (3) erzeugte hydrostatische Druckdifferenz erfolgt, wobei die Mikroauslaufkapillare (4) als Drosselstelle wirkt und mit ihrem Querschnitt das pro Zeiteinheit einströmende Flüssigkeitsvolumen bestimmt wird.
5. Elektrisch steuerbare Mikro-Pipette nach Anspruch 1, gekennzeichnet dadurch, daß die Probeabgabe an der Öffnung der Mikroauslaufkapillare (4) durch Aktivieren der Mikroejektionspumpe (2) in Form einzelnzählbarer, gerichteter, impulsbehaftet be-schleunigter und hinsichtlich ihres Tropfenvolu-mens definierter Tropfen (9) reproduzierbar durch die elektrischen Parameter der Mikropumpensteue-rung im Bereich von 200 pl bis 3,5 nl einstellbar ist, wobei die Förderraten durch die Frequenz der Pum-penanregung (U_{MEP}) eingestellt werden.
6. Elektrisch steuerbare Mikro-Pipette nach Anspruch 1, gekennzeichnet dadurch, daß zusätzlich an der

Mikroejektionspumpe (2) eine zweite, als Saug-, Druck- oder Bidirektionalpumpe ansteuerbare Mikromembranpumpe (3) zur Spülung der Anordnung angekoppelt ist.

5

7. Elektrisch steuerbare Mikro-Pipette nach Anspruch 1, gekennzeichnet dadurch, daß auf der Mikropipette bis zur Pipettenspitze (4) eine elektrisch aktive Kontaktmetallisierung (10) als Eintauchsensor für die Probeaufnahme angebracht ist.

10

15

20

25

30

35

40

45

50

55

5

Figur 1a :

Figur 1b :

Figur 2:

Figur 3a :

Figur 3b:

Figur 4:

Figur 5:

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.