Initial Prediction Model

The original README file says:

Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be (or not) subscribed

Therefore, let's start with a simple binary classification model to predict Deposit yes/no

#checking the options available under the "deposit" field

bank main df = pd.get dummies(bank main df, drop first=True)

age balance day duration campaign pdays previous deposit

bank_main_df['deposit'].value_counts()

bank main df

Out[7]:

```
#import the right libraries
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: #this option just allwos us to see every column in the notebook
        pd.set_option('display.max_columns', None)
```

```
#pd.get option("display.max columns")
```

	ba	nk_ma	in the data ain_df = po ain_df.head	l.read_c					/ban}	_market:	ing.c	csv',de	limiter=	';')			
)ut[3]:		age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	pou
	0	58.0	management	married	tertiary	no	2143	yes	no	unknown	5	may	261	1	-1	0	unl
		440	ta alautata a				20				-		151	4	4	•	

4 33.0 unknown single unknown no 1 no no NaN 5 may 198 1 -1 0 unknown	3	47.0	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	76 92	1	-1 -1	0) (
---	---	------	-------------	---------	---------	----	------	-----	----	---------	---	-----	----------	---	----------	---	-----

	3 4	7.0 bl	lue-collar	married (unknown no	1506	yes no	unknown 5	may	92	1	-1	0	unl
	4 3	3.0	unknown	single u	unknown no) 1	no no	NaN 5	may	198	1	-1	0	unl
In [4]:	banl	x_main_	df.desc	ribe()										
Out[4]:			age	balan	ce day	duration	campaig	gn pda	ys pre	vious				
	coun	t 43872	2.000000	45211.00000	00 45211.000000	45211.000000	45211.00000	00 45211.0000	00 45211.00	00000				
	mea	n 40	.924781	1362.27205	15.806419	258.163080	2.76384	41 40.1978	28 0.58	80323				

			3					,
In [4]:	bank_	main_df.desc	cribe()					
Out[4]:		age	balance	day	duration	campaign	pdays	previous
	count	43872.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000
	mean	40.924781	1362.272058	15.806419	258.163080	2.763841	40.197828	0.580323
	std	10.610835	3044.765829	8.322476	257.527812	3.098021	100.128746	2.303441
	min	19 000000	9010 000000	1 000000	0.00000	1 000000	1 000000	0.000000

std	10.610835	3044.765829	8.322476	257.527812	3.098021	100.128746	2.303441
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000000	0.000000
25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000000	0.000000
50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000000	0.000000
75 %	48.000000	1428.000000	21.000000	319.000000	3.000000	-1.000000	0.000000
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000000	275.000000

39922 no Out[5]: yes 5289 Name: deposit, dtype: int64 #replacing the yes/no categorical values with 1/0 binary digits bank_main_df['deposit'] = [0 if (bank_main_df['deposit'][i] == 'yes') else 1 for i in range(len(bank_main_df)) #because we have so many cateogrical variables, we should one-hot encode them (i.e. create dummy categorical va #we also use drop first=True to reduce the redundant column count

0 0 **0** 58.0 2143 5 261 0 0 5 0 **1** 44.0 29 151 -1 0 0 0 -1 0 0 0 **2** 33.0 2 5 76 1 0 1 1 **3** 47.0 1506 5 92 -1 0 0 0 5 198 1 -1 0 1 0 0 0 **4** 33.0 1 **45206** 51.0 977 3 -1 0 0 0 0 0 0 825 17 **45207** 71.0 2 0 0 0 1729 17 456 -1 0 0 45208 72.0 5715 17 1127 5 184 3 0 0 0 0 45209 57.0 668 17 508 -1 0 1 0 2 0 0 0 **45210** 37.0 2971 17 361 188 11 1

job_blue-

collar

job_entrepreneur job_housemaid job_management job_

45211 rows × 43 columns #note that only the "age" category has null values pd.isnull(bank main df).sum() balance 0 0 day 0 duration 0 campaign 0 pdays previous 0 0 deposit 0 job_blue-collar 0 job_entrepreneur 0 job_housemaid job_management 0 0

In [8]: Out[8]: job_retired job_self-employed 0 0 job_services 0 job_student job_technician 0 0 job_unemployed 0 job_unknown marital_married 0 marital_single 0 education_secondary 0 education tertiary 0 education unknown 0 0 default_yes 0 housing_yes loan_yes 0 0 contact_telephone

In [10]: from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from sklearn.model selection import train test split from sklearn.metrics import confusion matrix, classification report

In [12]: #instantiate scaler and LogisticRegression model sc = StandardScaler() logreg = LogisticRegression() #fit/transform the X train and X test datasets

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, shuffle=True)

#split the data appropriately into training and testing datasets

0

0

0

0 0

0

0

0

0

0

0

0 0

0 0

In [9]: #for simplification, let's just drop the nulls for now

bank main df = bank main df.dropna()

Setting up Logistic Regression

In [11]: #set up the X matrix and y target variable

y = bank main df['deposit']

X = bank_main_df.drop(columns='deposit')

X train sc = sc.fit transform(X train)

X_test_sc = sc.transform(X_test)

y preds = logreg.predict(X test sc)

precision

0.64

0.92

0.78

0.89

[[543 1009]

0

1

accuracy

macro avg weighted avg

0.50

0.25

contact_unknown

month aug

month dec

month_feb

month_jan

month_jul

month_jun month mar

month may

month nov

month oct

month sep

poutcome_other poutcome success

poutcome_unknown dtype: int64

#train the logreg model logreg.fit(X_train_sc, y_train) LogisticRegression() Out[12]: In [13]: #score the model print(f"Train score: {logreg.score(X train sc, y train)}") print(f"Test score: {logreg.score(X test sc, y test)}") Train score: 0.902800390752198 Test score: 0.9003191004406625

In [15]: print(f"Confusion matrix so we can find Type I / Type II errors:\n{confusion_matrix(y_true=y_test, y_pred=y_pred=y_pred=y_pred=y_test)

support

1552

11610

13162

13162

13162

[303 11307]] In [16]: print("Here is a classification report, based on the confusion matrix") print(classification_report(y_true=y_test,y_pred=y_preds)) Here is a classification report, based on the confusion matrix

0.35

0.97

0.66

0.90

recall f1-score

0.45

0.95

0.90

0.70

0.89

In [14]: #for the test dataset, make predictions for the target variable

Confusion matrix so we can find Type I / Type II errors:

In [18]: plt.figure(figsize=(24,8)) sns.barplot(x=X.columns,y=logreg.coef_[0]) plt.xticks(rotation=60) plt.title("Extracting the Feature Importance") plt.savefig('Images/first regression features.png'); Extracting the Feature Importance 0.75

> -0.50-0.75 Further discussion for the group • What further refinements to the dataset should we make as part of the EDA / cleanup? ■ Removing the *pdays* variable, for example Dropping outliers

- How might the use of other classification algorithms and scalers affect the final predictions?
- Algorithms like LogisticRegression, DecisionTree, RandomForest, Kneighbors, NaiveBayes, neural net, etc. Scalers like StandardScaler, MinMaxScaler, RobustScaler
- PCA (principal component analysis) to reduce dimensions
- Playing with parameters, pipelines, gridsearches to maximize True Negatives and minimize False Negatives ■ That is, maximize deposit==1 correct predictions and reducing deposit==0 wrong predictions • Even if that means accidentally overpredicting the number of true deposits, better to try a bad path than miss a potential
- business opportunity • Extending this to other predictions
- e.g. predicting a range for continuous values based on categorical values Best ways to impute missing data?

• e.g. predicting the "default" variable, or some other classification