Equações de próxima estado:

$$Y_1(t+1)=x_1x_2 (y_2(t))' + y_1(t)(y_2(t))'$$

 $Y_2(t+1)=x_1'y_1(t) + x_1x_2' + x_2y_2(t) + x_1y_2(t)$

Equação de saída: Z=y₁(t)

Máquina de Huffman

05/06/2020

Circuito Lógico

Tabela de Fluxo de estados

Circuito Lógico

Arquitetura→ Standard RS

O circuito usa elemento de memória → Latch RS com portas NOR

Primeiramente: Obter a equação característica do Latch RS no estilo NOR

Circuito Lógico

Equação característica

Tabela de operações

<u>S</u>	R	Q _{N+1}
0	0	Qn
0	1	0
1	0	1
1	1	proibido
Latch RS com		
Portas NOR		

$$Q_{N+1} = S + \overline{R} Q_N$$

Circuito Lógico

Extrair equações de próximo estado → Y₁ e Y₂

$$S_1 = X_1 Y_2 e R_1 = \overline{X_1} X_2 S_2 = X_1 X_2 e R_2 = \overline{X_2} Y_1$$

$$Y_1 = S_1 + \overline{R}_1 Y_1 = X_1 Y_2 + (X_1 + X_2) Y_1 = X_1 Y_2 + X_1 Y_1 + X_2 Y_1$$

$$Y_2 = S_2 + \overline{R}_2 Y_2 = X_1 X_2 + (X_2 + \overline{Y}_1) Y_2 = X_1 Y_2 + X_2 Y_2 + \overline{Y}_2 Y_1$$

$$S_1 = X_1 Y_2 e R_1 = \overline{X_1} X_2 S_2 = X_1 X_2 e R_2 = \overline{X_2} Y_1$$

Circuito Lógico

$$Y_1 = S_1 + \overline{R}_1 Y_1 = X_1 Y_2 + (X_1 + X_2) Y_1 = X_1 Y_2 + X_1 Y_1 + X_2 Y_1$$

$$Y_2=S_2 + \overline{R}_2 Y_2 = X_1 X_2 + (X_2 + \overline{Y_1}) Y_2 = X_1 Y_2 + X_2 Y_2 + \overline{Y_2 Y_1}$$

Tabela de fluxo de estados

