Consider the following Python dictionary data and Python list labels:

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

In [2]: # do common operations here import pandas as pd import numpy as np data = { 'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'n o', 'no'] } labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] df = pd.DataFrame(data, index=labels) df

Out[2]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no

	birds	age	visits	priority
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
ï	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

1. Create a DataFrame birds from this dictionary data which has the index labels.

```
In [3]: dfBirds = pd.DataFrame(data['birds'], index=labels)
    dfBirds
```

Out[3]:

	0
а	Cranes
b	Cranes
С	plovers
d	spoonbills
е	spoonbills
f	Cranes
g	plovers
h	Cranes
i	spoonbills

	ilongo	0
	j spoo	noilis
	2. Displa	ay a sum
In [4]:	dfBird	s.descr
Out[4]:		r
		0
	count	10
	unique	3
	top	Cranes
	freq	4
	3. Print 1	ho firet
	J. FIIII	
In [5]:	dfBird	s[:2]
Out[5]:		
		0
	a Cran	
	b Cran	es
	4. Print a	all the ro

	birds	age
а	Cranes	3.5
b	Cranes	4.0
C	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [7]: dfNew = df[['birds', 'age', 'visits']]
    pd.concat([dfNew[2:4:], dfNew[7:8:]])
```

Out[7]:

	birds	age	visits
С	plovers	1.5	3
d	spoonbills	NaN	4
h	Cranes	NaN	2

6. select the rows where the number of visits is less than 4

```
In [8]: df[df.visits < 4]</pre>
```

Out[8]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [9]: dfNew = df[df.age.isnull()]
    dfNew[['birds', 'visits']]
```

Out[9]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

```
In [10]: df[(df.birds == 'Cranes') \& (df.age < 4)]
```

Out[10]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes

	birds	age	visits	priority
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

```
In [11]: df[(df.age \ge 2) \& (df.age \le 4)]
```

Out[11]:

		birds	age	visits	priority
а	1	Cranes	3.5	2	yes
b	•	Cranes	4.0	4	yes
f		Cranes	3.0	4	no
j		spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

```
In [12]: df[df.birds == 'Cranes'].visits.sum()
Out[12]: 12
```

11. Calculate the mean age for each different birds in dataframe.

```
In [13]: g = df.groupby('birds')
g.age.mean()
```

```
Out[13]: birds
Cranes 3.5
plovers 3.5
spoonbills 6.0
```

Name: age, dtype: float64

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

```
In [14]: print(df)
        # create new df with sample values
        df1 = pd.DataFrame({
            'birds':['foo'],
            'age' : 1.0,
            'visits':2.0,
            'priority':['no']
        }, index=['k'])
        # append both data frames
        dfNew = pd.concat([df, df1])
        print ('\n')
        print('******************************)
        print(dfNew)
        # dfNew.loc['k']
        dfNew = dfNew[:-1]
        print ('\n')
        print('*****************************)
        print(dfNew)
                birds age visits priority
              Cranes 3.5
                                      yes
        a
              Cranes 4.0
        h
                                      yes
        c plovers 1.5
d spoonbills NaN
                                     no
                                      yes
        e spoonbills 6.0
                                  no
              Cranes 3.0
                                     no
                                  no
              plovers 5.5
        g
              Cranes NaN
        h
                                      yes
        i spoonbills 8.0
                                       no
           spoonbills 4.0
                                       no
```

```
***********
                birds age visits priority
               Cranes 3.5
                              2.0
        а
                                       yes
        b
              Cranes 4.0
                              4.0
                                       yes
              plovers 1.5
                              3.0
                                       no
           spoonbills NaN
                              4.0
                                       yes
           spoonbills 6.0
                              3.0
                                       no
               Cranes 3.0
                              4.0
                                       no
              plovers 5.5
                              2.0
                                       no
                              2.0
        h
              Cranes NaN
                                      yes
        i spoonbills 8.0
                              3.0
                                       no
           spoonbills 4.0
                              2.0
                                       no
                  foo 1.0
                              2.0
                                       no
        **********
                birds age visits priority
               Cranes 3.5
                              2.0
                                      yes
        h
               Cranes 4.0
                              4.0
                                       yes
              plovers 1.5
                              3.0
        С
                                       no
           spoonbills NaN
                              4.0
                                       yes
           spoonbills 6.0
                              3.0
                                       no
               Cranes 3.0
                              4.0
                                       no
              plovers 5.5
                              2.0
        q
                                       no
               Cranes NaN
                              2.0
        h
                                      yes
        i spoonbills 8.0
                              3.0
                                       no
           spoonbills 4.0
                              2.0
                                       no
        13. Find the number of each type of birds in dataframe (Counts)
In [15]: countBirds = {}
        for birds, birds def in g:
            countBirds[birds] = birds def.birds.count()
        countBirds
```

Out[15]: {'Cranes': 4, 'plovers': 2, 'spoonbills': 4}

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

In [16]: df.sort_values(['age','visits'], ascending=[0, 1])

Out[16]:

	birds	age	visits	priority
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
j	spoonbills	4.0	2	no
b	Cranes	4.0	4	yes
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no
С	plovers	1.5	3	no
h	Cranes	NaN	2	yes
d	spoonbills	NaN	4	yes

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

```
In [19]: dfNew = df.copy()
    dfNew.priority.replace(['yes', 'no'], [1, 0], inplace=True)
    dfNew
```

Out[19]:

birds	age	visits	priority
-------	-----	--------	----------

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

```
In [21]: dfNew2 = df.copy()
    dfNew2.birds.replace(['Cranes'], ['trumpeters'], inplace=True)
    dfNew2
```

Out[21]:

	birds	age	visits	priority
а	trumpeters	3.5	2	yes
b	trumpeters	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no

	birds	age	visits	priority
f	trumpeters	3.0	4	no
g	plovers	5.5	2	no
h	trumpeters	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no