What do we observe?

VD Properties

 Every vertex of the Voronoi diagram is the common intersection of exactly three edges of the diagram

Observation

 Voronoi vertices are centers of circles defined by the three points

Voronoi diagram is a regular graph of degree

three

 For every vertex v of the Voronoi diagram of S, the circle C(v) contains no other sites of S

 Every nearest neighbor of p_i in S defines an edge of the Voronoi polygon V(i)

Other related theorems

 Polygon V(i) in a VD of S is unbounded if and only if p_i is a point on the boundary of the convex hull of the set S

 The straight line dual of the Voronoi diagram is a triangulation of S

Straight line dual of a Voronoi diagram

- Graph embedded in the plane
- Obtained by adding a straight line segment between each pair of points of S whose Voronoi polygons share an edge

The straight line dual of the VD

 As stated by the theorem: The straight line dual of the Voronoi diagram is a triangulation of S

What is a straight line dual of a Voronoi

diagram?

Example: Delaunay triangulation (straight line dual of the VD)embedded on its VD

Straight line dual of a Voronoi diagram

- Graph embedded in the plane
- Obtained by adding a straight line segment between each pair of points of S whose Voronoi polygons share an edge

Summary: VD Properties

- Thm1: Every vertex of the Voronoi diagram is the common intersection of exactly three edges of the diagram
- Thm2:For every vertex v of the Voronoi diagram of S, the circle C(v) contains no other point of S
- Thm3:Every nearest neighbor of p_i in S defines an edge of the Voronoi polygon V(i)
- Thm4:Polygon V(i) is unbounded if and only if p_i is a point on the boundary of the convex hull of the set S
- Thm5:The straight line dual of the Voronoi diagram is a triangulation of S

Delaunay Properties

- **D1.** $\mathcal{D}(P)$ is the straight-line dual of $\mathcal{V}(P)$. This is by definition.
- **D2.** $\mathcal{D}(P)$ is a triangulation if no four points of P are cocircular: Every face is a triangle. This is Delaunay's theorem. The faces of $\mathcal{D}(P)$ are called *Delaunay triangles*.
- **D3.** Each face (triangle) of $\mathcal{D}(P)$ corresponds to a vertex of $\mathcal{V}(P)$.
- **D4.** Each edge of $\mathcal{D}(P)$ corresponds to an edge of $\mathcal{V}(P)$.
- **D5.** Each node of $\mathcal{D}(P)$ corresponds to a region of $\mathcal{V}(P)$.
- **D6.** The boundary of $\mathcal{D}(P)$ is the convex hull of the sites.
- **D7.** The interior of each (triangle) face of $\mathcal{D}(P)$ contains no sites. (Compare V5.)

The straight line dual of Voronoi diagram(S) for a set S of N>=3 points in general position (no three points from S are collinear and no four points from S are co circular) is a triangulation: the unique Delaunay triangulation of S.

Algorithms for Voronoi Construction

References

- https://dccg.upc.edu/people/vera/wpcontent/uploads/2013/06/GeoC-Voronoialgorithms.pdf by Professor Vera Sacristan
- de Berg, Van Krevald, Overmars, and Schwarzkpf, Computational Geometry Algorithms and Applications, Springer Third Edition, 1998
- F.P. Preparata & M.I. Shamos, Computational Geometry An Introduction, Springer International Edition, 1985

THANK YOU