

Herbert Voß: Die mathematischen Funktionen von Postscript, Die TEXnische Komödie 1/2002, S. 40–47.

Reproduktion oder Nutzung dieses Beitrags durch konventionelle, elektronische oder beliebige andere Verfahren ist nur im nicht-kommerziellen Rahmen gestattet. Verwendungen in größerem Umfang bitte zur Information bei DANTE e.V. melden. Für kommerzielle Nutzung ist die Zustimmung der Autoren einzuholen.

Die TEXnische Komödie ist die Mitgliedszeitschrift von DANTE, Deutschsprachige Anwendervereinigung TEX e.V. Einzelne Hefte können von Mitgliedern bei der Geschäftsstelle von DANTE, Deutschsprachige Anwendervereinigung TEX e.V. erworben werden. Mitglieder erhalten Die TEXnische Komödie im Rahmen ihrer Mitgliedschaft.

Die mathematischen Funktionen von Postscript

Herbert Voß

PostScript, faktisch genauso alt wie TEX, ist im Verhältnis dazu allgemein noch weniger bekannt, wenn es darum geht zu beurteilen, was es denn nun im eigentlichen Sinne ist. Außerdem wird häufig vergessen, dass sich mit den PostScript-Funktionen viele Dinge erledigen lassen, bei denen sonst auf externe Programme zurückgegriffen wird. Dies wird im Folgenden für die mathematischen Funktionen im Zusammenhang mit dem Paket pst-plot gezeigt.

Einführung

PostScript, sehr häufig nur als Druckertreiber bekannt oder im Zusammenhang damit als Seitenbeschreibungssprache, ist ähnlich wie TEX eine Programmiersprache, wobei PostScript eindeutig als sogenannte Hochsprache bezeichnet werden muss.[1] Während die Ursprünge der Entwicklung bis in die Anfänge der siebziger Jahre zurückgehen, datiert die erste veröffentlichte PostScript-Version von 1982, was nicht zufällig das Jahr der Gründung von Adobe System Incorporated ist. Der erste Laserdrucker mit vollständiger

PostScript-Implementierung war der Apple Laserwriter. Der einzige Computer, der PostScript auch für die Bildschirmausgabe (Display PostScript) verwendet, ist Next.

PostScript-Befehle

PostScript arbeitet mit dem so genannten Stack-System, welches den Benutzern von HP-Taschenrechnern geläufig und auch unter dem Namen UPN, $Umgekehrte\ Polnische\ Notation$ (Reverse Polish Notation), bekannt ist und letztlich den internen Standard für alle Computer darstellt. Die normale Notation für die Multiplikation "a*b=" wird zu "a<enter>b<enter>*". Es sind immer zuerst die Parameter (Variablen) auf dem Stack abzulegen (durch <enter> symbolisiert), bevor eine der mathematischen Funktionen aufgerufen wird. Die hier beschriebenen Befehle beziehen sich immer auf das oberste Stack-Element oder die obersten beiden Stack-Elemente.

Die direkte Anwendung der PostScript-Befehle für die Darstellung mathematischer Zusammenhänge bringt gegenüber Programmen wie beispielsweise gnuplot nicht immer Vorteile in der endgültigen Druckausgabe. Auch lässt sich nicht unbedingt jedes mathematische Problem mit den PostScript-Befehlen einfach lösen. Vorteile ergeben sich durch die Übersichtlichkeit und vor allen Dingen in der Länge der Textdateien.

Anwendung mit pst-plot

Das umfangreiche Paket pstricks (CTAN:/graphics/pstricks/) ist nichts weiter als ein Frontend für (IA)TEX zu den PostScript-Funktionen. Das Paket pst-plot (CTAN:/graphics/pstricks/latex/pst-plot.sty), welches Teil des Pakets pstricks ist, ermöglicht mit zwei Befehlen die Anwendung der PostScript-Funktionen für das Zeichnen von mathematischen Funktionen. Mit der Anweisung \usepackage{pst-plot} wird automatisch das übergeordnete Paket pstricks geladen.

Die grundsätzliche Struktur der hier behandelten Befehle ist:

```
\psplot[Parameter]{xmin}{xmax}{Funktion f(x)}
\parametricplot[Parameter]{tmin}{tmax}{Funktionen x(t), y(t)}
```

Hierin bedeuten $[x_{min}; x_{max}]$ und $[t_{min}; t_{max}]$ das jeweilige Definitionsintervall (Start- und Endwert). Die möglichen Parameter können der Dokumentation zu pstricks entnommen werden, die zwar schon älteren Datums

ist, jedoch völlig ausreicht [2]. Hier ist im Zusammenhang mit den Funktionen lediglich der Parameter plotpoints interessant, welcher die Anzahl der Stützstellen angibt und standardmäßig auf 50 gesetzt ist. Sämtliche berechneten Punkte werden intern mit \psline verbunden, so dass sich eine zu geringe Anzahl an Stützstellen durch einen Polygonzug bemerkbar macht. Mit Werten um 200 liegt man in den meisten Fällen auf der richtigen Seite. In diesem Zusammenhang ist unbedingt zu beachten, dass geänderte Parameter so lange ihren Wert behalten, bis innerhalb eines LATEX-Laufs eine neue Wertzuweisung erfolgt.

Der Variablenname für psplot ist per Definition x und für parametricplot t. Beide können nicht verändert werden, was jedoch bezüglich der Anwendung keinerlei Einschränkung darstellt. Die Variablen können beliebig oft innerhalb eines Ausdrucks verwendet werden, denn erst mit der schließenden Klammer für den Funktionsausdruck wird davon ausgegangen, dass die zweite Koordinate für einen Punkt des Graphen oben auf dem Stack liegt. Der einzige Unterschied zwischen diesen beiden Befehlen ist, dass bei psplot nur der oberste Stack-Wert (y) und bei parametricplot die obersten beiden Stack-Werte (x;y) als Argumente verwendet werden.

Zu beachten ist unbedingt, dass mit den beiden Befehlen keine Fehlermeldungen ausgegeben werden, was insbesondere für diejenigen mathematischen Funktionen von Interesse ist, deren Definitionsbereich nicht ganz \Re entspricht. Denn bei *einem* fehlerhaften Argument, beispielsweise $\sqrt{-1}$, wird der komplette Graph nicht gezeichnet!

Der Vollständigkeit halber sei erwähnt, dass pst-plot noch weitere drei Befehle zum Zeichnen von Funktionsgraphen zur Verfügung stellt, die jedoch alle externe Datensätze voraussetzen:

```
\fileplot[Parameter]{Dateiname}
\dataplot[Parameter]{Befehle}
\listplot[Parameter]{Liste}
```

Weitere Informationen kann man der Dokumentation zu pstricks entnehmen [2].

Beispiele für \psplot

Für alle Beispiele wird jeweils die komplette pspicture-Umgebung angegeben, sodass eine direkte Übernahme der Beispiele möglich ist. Eine Doku-

mentation des multido-Befehls findet man unter CTAN:/macros/latex209/contrib/multido/multido.doc, alle anderen in der Dokumenation zu pstricks [2].

Sinusfunktion

Funktion	PostScript
$y(x) = \sin x$	x sin

\psset{xunit=0.0111cm, yunit=1cm} \pspir(x) \p

Potenzfunktion

Dargestellt wird eine Parabel dritten Grades sowie ihre Umkehrfunktion, wobei die Intervallunterscheidung nicht zwingend ist, wenn man die Exponentialschreibweise mit $y=x^{-\frac{1}{3}}$ wählt.

Funktion	PostScript
$y(x) = x^{3}$ $y^{-1}(x) = \begin{cases} +\sqrt[3]{ x } & x > 0 \\ -\sqrt[3]{ x } & x < 0 \end{cases}$	x 3 exp x 0.333 exp (Umkehrfunktion)


```
\left(-3,-3\right)
\psgrid[subgriddiv=1,griddots=10,%
   gridlabels=7pt](-3,-3)(3,3)%
\prootember{psline[linewidth=1pt]{->}(-3,0)(3,0)%}
\psline[linewidth=1pt]\{->\}(0,-3)(0,3)\%
\psline[linewidth=0.5pt,linestyle=dotted]%
   (-3,-3)(3,3)%
\psplot[plotstyle=curve,linewidth=1.5pt]%
   \{-1.4\}\{1.4\}\{x \ 3 \ exp\}\% postscript function
\psplot[plotstyle=curve,linewidth=1.5pt,%
   linestyle=dashed]\{0\}\{3\}\{x 0.333 exp\}
\psplot[plotstyle=curve,linewidth=1.5pt,%
   linestyle=dashed] {-3}{0}%
   \{x -1 \text{ mul } 0.333 \text{ exp } -1 \text{ mul}\}
\rput[1](-.25,3.5){$\mathbf{y}$}%
\propterms [1] (3.5, -.25) { \mathbf{x}} \
\rput[1](1.5,2.5){\$y=x^3\$}\%
\ \left[1\right] (1.25,0.5) {\$y=+\sqrt[3]{|x|}}
\prot{[r] (-1.25,-0.5)} {$y=-\sqrt{3}{|x|}}
\end{pspicture}
```

Beispiel aus der Leistungselektronik

Gezeigt wird die graphische Darstellung des relativen Strommittelwertes für eine Stromrichtersteuerung durch ein Thyristorpaar. Hierbei entspricht der Parameter φ der Phasenverschiebung zwischen Strom und Spannung. Die unabhängige Variable α bezeichnet den Steuerwinkel.

$$\text{Funktion} \quad \frac{I(\alpha)}{I_0} = \begin{cases} \sqrt{1-\frac{\alpha}{\pi}+\frac{1}{2\pi}\sin2\alpha} & \varphi=0 \\ \sqrt{\left(2-\frac{2\alpha}{\pi}\right)\left(2+\cos2\alpha\right)+\frac{3}{\pi}\sin2\alpha} & \varphi=\frac{\pi}{2} \end{cases}$$
 PostScript
$$\begin{cases} 1 \text{ x 180 div sub 1 6.28 div x 2 mul sin} & \varphi=0 \\ \text{mul add sqrt} \\ 2 \text{ x 90 div sub x 2 mul cos 2 add mul x 2} & \varphi=\frac{\pi}{2} \\ \text{mul sin 3 3.15 div mul add sqrt} \end{cases}$$

Zu beachten ist, dass PostScript die Argumente für die trigonometrischen Funktionen im Gradmaß erwartet, sodass für relative Winkel auf gleiche Einheiten zu achten ist. Der Ausdruck $\frac{\alpha}{\pi}$ ist daher durch $\frac{\alpha}{180}$ zu ersetzen.

\psset{xunit=0.0333cm,yunit=3cm} $\begin{array}{l} \begin{array}{l} & \\ \\ \end{array} \begin{array}{l} & \\ \end{array} \begin{array}{l} & \\ \end{array} \begin{array}{l} & \\ \end{array} \begin{array}{l} & \\ \end{array} \begin{array}{l} \\ \end{array}$ $\proonup {190,0} \proonup {190,0}$ $\proonup [linewidth=1pt] {->} (0,0) (0,1.15)$ \mdots \multido{\n=30+30}{6}{\psline[% linestyle=dotted](\n ,0)(\n ,1)% $\model{multido} \n=0.2+0.2}{5}{\psline[%]}$ linestyle=dotted](0,\n)(180,\n)% $\rput[r](-4,\n){\scriptsize \n}}$ \psplot[plotstyle=curve,% linewidth=1.5pt]{0}{180}% {1 x 180 div sub 1 6.28 % div x 2 mul sin mul add sqrt} \psplot[plotstyle=curve,% linewidth=1.5pt,linestyle=dashed]% ${90}{180}{2 \times 90 \text{ div sub } x \text{ 2 mul cos}}$ 2 add mul x 2 mul sin 3 3.15% div mul add sgrt} $\t (0,1.2) {\bf \{I/I_0\}}$ \rput[1](190,-.05){\$\mathbf{\alpha}\$} \rput(45,0.85){\$\varphi=0\$} \rput(120,0.9){\$\varphi=90°\$}

Beispiele für \parametricplot

Lissajous-Figur

Die aus der Physik oder Elektrotechnik bekannten Lissajous-Figuren sind ein typischer Anwendungsfall für Gleichungen in Parameterform. Die hier angegebene Darstellung beruht auf den Funktionen:

Funktion	PostScript
$x = \sin 1.5t$	t 1.5 mul sin
$y = \sin\left(2t + \frac{\pi}{3}\right)$	t 2 mul 60 add sin


```
\psset{xunit=1.5cm,yunit=1.5cm}
\begin{pspicture}(-1,-1)(1,1)
\psgrid[subgriddiv=0,griddots=10,gridlabels=7pt]%
    (-1,-1)(1,1)
\parametricplot[plotstyle=curve,linewidth=1.5pt,%
    plotpoints=200]{-360}{360}{%
    t 1.5 mul sin t 2 mul 60 add sin}
\end{pspicture}
```

Aufgrund der "Länge" des Graphen wurde der Wert für plotpoints auf 200 gesetzt, sodass auch die "Ecken" des Graphen mit starker Krümmung kontinuierlich erscheinen.

Strophoide

Zum Schluss wird eine sogenannte Strophoide dargestellt, die durch folgende Beziehungen gegeben ist, wobei a durch einen Zahlenwert ersetzt werden muss:

Funktion	PostScript
υ . I I	t t mul 1 sub a mul t t mul 1 add div
$y(t) = \frac{at(t^2 - 1)}{t^2 + 1}$	t t mul 1 sub t mul a mul t t mul 1 add div


```
\psset{xunit=2cm,yunit=2cm}
\begin{pspicture}(-1.25,-1.25)(1.25,1.25)
\psgrid[subgriddiv=1,griddots=10,%
  gridlabels=7pt](-1,-1)(1,1)
\parametricplot[plotstyle=curve,plotpoints=200,%
  linewidth=1.5pt]\{-1.85\}\{1.85\}\%
   {t t mul 1 sub t t mul 1 add div % a=1
  t t mul 1 sub t mul t t mul 1 add div}
\parametricplot[plotstyle=curve,plotpoints=200,%
  linewidth=1.5pt, linestyle=dashed]{-5}{5}%
   {t t mul 1 sub 0.25 mul t t mul 1 add div %
  t t mul 1 sub t mul 0.25 mul t t mul 1 add div}
\parametricplot[plotstyle=curve,plotpoints=200,%
  linewidth=1.5pt, linestyle=dashed]{-1}{1}%
   {t t mul 1 sub 0.75 mul t t mul 1 add div %
  t t mul 1 sub t mul 0.75 mul t t mul 1 add div}
\rput[1](-0.95,-0.4){$\scriptstyle %
   a=1; \ 0.75; \ 0.25
\end{pspicture}
```

Zusammenstellung der mathematischen PostScript-Funktionen

Die folgende tabellarische Zusammenstellung enthält bis auf die Matrizenbefehle alle mathematischen Funktionen mit ihren Eigenschaften. Hierin sind $<\!int>$ und $<\!real>$ die bekannten Integer und Reals, während für $<\!any>$ jeder beliebige Typ und für $<\!num>$ real oder integer gesetzt werden kann. Unabhängig von der Null gelten für Zahlen unter PostScript die folgenden Grenzen, wobei die Angaben für real betragsmäßig zu verstehen sind.

	integer	real
kleinster Wert	-2^{32}	$\pm 10^{-38}$
größter Wert	$2^{32} - 1$	$\pm 10^{38}$

Name	Bedeutung	Anwendung	Beispiel
abs	Absolutwert	<num> abs</num>	$-3 \text{ abs} \rightarrow 3$
add	Addition ¹	<num $1><$ num $2>$ add	5 7 add \rightarrow 12
atan	Arcus Tangens ²	<real $1>$ $<$ real $2>$ atan	$2~45~\mathrm{atan}{\to}~2.54$
cos	Cosinus ³	$<$ real $>$ \cos	$60 \cos \rightarrow 0.5$
cvi	${\bf Real}{\rightarrow} {\bf Integer}$	<real> cvi</real>	$14.13~\text{cvi}{\rightarrow}~14$
cvr	$\mathbf{Integer} {\rightarrow} \mathbf{Real}$	<int> cvr</int>	$14~\mathrm{cvr}{\to}~14.00$
div	Division ⁴	<real $1>$ $<$ real $2>$ div	$100~8~\mathrm{div}{\to}~12.5$
dup	Dupliziere	<any> dup</any>	$12~\mathrm{dup}{\to}~12~12$
	oberstes		
	Stack-Element		
exch	Exchange ⁵	<any $1>$ $<$ any $2>$ exch	$12\ 13\ exch \rightarrow 13\ 12$
\exp	Potenz	<real $1>$ $<$ real $2>$ exp	$3.4 \exp \rightarrow 81.0$
idiv	ganzzahlige	<int1 $>$ $<$ int2 $>$ idiv	$100 \ 8 \ idiv \rightarrow 12$
	Division		
\ln	natürlicher	<real $>$ ln	$12\ \mathrm{ln}{\rightarrow}\ 2.48491$
	Logarithmus		
\log	Zehner-	$<$ real $>$ \log	$1000 \log \rightarrow 3.00$
	Logarithmus		
mod	Modulo	<int $1><$ int $2>$ mod	$5 \ 3 \ \mathrm{mod} \rightarrow 2$
mul	Multiplikation ¹	<num1> <num2> mul</num2></num1>	$5 \text{ 3 mul} \rightarrow 15$
neg	Negiere	<num> neg</num>	$5 \text{ neg} \rightarrow -5$
	Vorzeichen		
round	Runden	<real> round</real>	$5.7 \text{ round} \rightarrow 6$
\sin	Sinus^3	$\langle \text{real} \rangle \sin$	$30 \sin \rightarrow 0.5$
sqrt	Quadratwurzel	<real $>$ sqrt	$16 \text{ sqrt} \rightarrow 4.0$
sub	Subtraktion ¹	$<\!\!\mathrm{num1}\!\!><\!\!\mathrm{num2}\!\!>\mathrm{sub}$	$17 \ 19 \ \text{sub} \rightarrow -2$
truncate	Dezimalteil abtrennen ⁶	<real> truncate</real>	$-33.33 \rightarrow 33.00$

Anmerkungen:

 $^{^{\}rm 1}$ Sind beide Argumente ganze Zahlen ist auch das Ergebnis vom Typ Integer.

 $^{^2}$ Entspricht der Darstellung $\alpha = \arctan \frac{< real1>}{< real2>}$

 $^{^3}$ Das Argument wird im Gradmaß erwartet.

 $^{^4}$ Das Ergebnis ist grundsätzlich vom Typ $\it real.$

 $^{^{5}}$ Die Anordnung der letzten beiden Stack-Elemente wird vertauscht.

Literatur

- [1] Nikolai G. Kollock: PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz; IWT; Vaterstetten; 1989.
- [2] Timothy Van Zandt: PSTricks PostScript macros for Generic TeX; 1993; http://www.tug.org/application/PSTricks.

⁶ Das Ergebnis bleibt vom Typ real.