

Optimization problem

We formulated the optimization problem as linear programming (LP) problem

Considered scenario:

- Single-hop, single-connectivity network
- Both access and backhaul are mmWave
- In-band operation mode
- Time division multiplexing (TDM)
- Single beam at the IAB-donor: backhaul time-frequency resources are shared between UEs connected to IABdonor and IAB-nodes
- IAB-nodes have separate radios for backhaul and access (both are singlebeam)
- IAB-nodes are capable of storing the incoming data to further transmit it at the following timeslot

Timeslot 3

Timeslot 4

UEs

Optimization problem

The problem can be presented as a linear programming (LP) problem (linear optimization):

$$x_{1n}\epsilon_{1}(1-\gamma_{B1}) \to y_{1n}, n = 1...N_{1}$$
 $x'_{1n}\epsilon_{1} \to y'_{1n}, n = 1...N_{2}$ $x_{2n}\epsilon_{2} \to y_{2n}, n = 1...N_{1}$ $x'_{2n}\epsilon_{2} \to y'_{2n}, n = 1...N_{2}$ $x_{3n}\epsilon_{3} \to y_{3n}, n = 1...N_{1}$ $x'_{3n}\epsilon_{3} \to y'_{3n}, n = 1...N_{2}$ $x'_{4n}\epsilon_{4}(1-\gamma_{1B}) \to y_{4n}, n = 1...N_{1}$ $x'_{4n}\epsilon_{4} \to y'_{4n}, n = 1...N_{2}$ $\gamma_{B1}\epsilon_{1} \to y_{B1}$ $\gamma_{1B}\epsilon_{4} \to y_{1B}$

$$x'_{1n}\epsilon_1 \to y'_{1n}, n = 1...N_2$$

$$x'_{2n}\epsilon_2 \to y'_{2n}, n = 1...N_2$$

$$x'_{3n}\epsilon_3 \to y'_{3n}, n = 1...N_2$$

$$x'_{4n}\epsilon_4 \to y'_{4n}, n = 1...N_2$$

Optimization problem

Maximize:

$$\min(h_n^{DL},h_n^{UL},h_n^{'DL},h_n^{'UL})$$

Subject to:

1. Downlink:

$$h_n^{DL} = B\Delta s_{0n}(y_{1n} + y_{3n}), n = 1...N_1$$

 $h_n^{'DL} = B\Delta s_{1n}(y_{3n}' + y_{4n}'), n = 1...N_2$

2. Uplink:

$$h_n^{UL} = B\Delta s_{n0}(y_{2n} + y_{4n}), n = 1...N_1$$

 $h_n^{'UL} = B\Delta s_{n1}(y'_{1n} + y'_{2n}), n = 1...N_2$

3. Backhaul constraints:

$$B\Delta(\sum_{n=1}^{N_2} s_{1n}y_{3n}' + \sum_{n=1}^{N_2} s_{1n}y_{4n}') \le B\Delta s_{B1}y_{B1} \qquad \sum_{n=1}^{N_1} y_{3n} \le \epsilon_3, \sum_{n=1}^{N_2} y_{3n}' \le \epsilon_3$$

$$B\Delta(\sum_{n=1}^{N_2} s_{n1}y_{1n}' + \sum_{n=1}^{N_2} s_{n1}y_{2n}') \le B\Delta s_{1B}y_{1B} \qquad \sum_{n=1}^{N_1} y_{3n} + y_{1B} \le \epsilon_4, \sum_{n=1}^{N_2} y_{3n}' \le \epsilon_4$$

4. Timeslots constraints:

$$\begin{aligned}
\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 &= 1 \\
\sum_{n=1}^{N_1} y_{1n} + y_{B1} &\leq \epsilon_1, \sum_{n=1}^{N_2} y'_{1n} &\leq \epsilon_1 \\
\sum_{n=1}^{N_1} y_{2n} &\leq \epsilon_2, \sum_{n=1}^{N_2} y'_{2n} &\leq \epsilon_2 \\
\sum_{n=1}^{N_1} y_{3n} &\leq \epsilon_3, \sum_{n=1}^{N_2} y'_{3n} &\leq \epsilon_3 \\
\sum_{n=1}^{N_1} y_{3n} + y_{1B} &\leq \epsilon_4, \sum_{n=1}^{N_2} y'_{3n} &\leq \epsilon_4
\end{aligned}$$

- h_n [bits] is the amount of data for a particular UE
- B [Hz] is the total available bandwidth
- △ [s] is the frame duration
- $y [0 \le x \le 1]$ is UE time allocation
- y_{Bi} [0 \leq x \leq 1] is the fraction of the time allocated for communication with the IAB-node i
- s_{ij} [(bit/s)/Hz] is spectral efficiency of the link between the transmitting node i and the receiving node j
- ε_i [$0 \le \varepsilon_i \le 1$] is a fraction of time allocated for timeslot i

System model

Input:

- System parameters
- Positions of IAB-donor, IAB-nodes, and UEs

Variables:

 $y_{1n}, y_{2n}, y_{3n}, y_{4n}, y'_{1n}, y'_{2n}, y'_{3n}, y'_{4n}, y_{B1}, y_{1B}, \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4, \mathbf{Z}_1$

Optimization tool:

GEKKO https://machinelearning.byu.edu/

Parameter	Value
Number of UEs	30
Backhaul bandwidth, B	400 MHz
Access bandwidth	400 MHz
Carrier frequency, f_c	FR2: 30 GHz
IAB-donor height	25 m
IAB-node height	15 m
UE height	1.5 m
IAB-donor Tx power	40 dBm
IAB-node Tx power	33 dBm
Interference margin	3 dB

Results

Output:

- UE data rates
- Timeslots duration (ε_{1} , ε_{2} , ε_{3} , ε_{4})
- Optimized timeslots at the IAB-donor $(y_{1n}, y_{2n}, y_{3n}, y_{4n})$
- Optimized timeslots at the IAB-node (y'_{1n} , y'_{2n} , y'_{3n} , y'_{4n})
- Optimization objective: Max-min fairness
- Downlink and uplink for each UE are optimized separately:

Maximize:

$$\min(h_n^{DL}, h_n^{UL}, h_n^{'DL}, h_n^{'UL})$$

- Fairness criterion affects the UE data rates distribution and, therefore, timeslots durations
- Not used timeslots are flexible and not allocated meaning that they are idle during this timeslots

(3) Optimized timeslots (IAB-donor)

(4) Optimized timeslots (IAB-node)