Class Imbalance

Scenario: Tinder

The dating scene in 2018 has been quite a struggle. People don't get you no matter how hard you try. You decided to do what any regular person would do: join Tinder! Tinder is on this mission with you to find prospects. However, they notice that you're quite picky: it looks like you swipe right for only a few of Tinder's suggested prospects. The app company wants to build a better machine learning model that is able to provide prospects that seem to match your taste. There appears to be a problem: the model cannot really tell who's likely to pique your interest based on your Tinder data available. Check out the next slide!

Your Tinder Data

S/N	Age	Cute	Degree	Smoker	Animal	Swipe
1	27	Yes	Masters	Yes	Dog	Right
2	35	Yes	Bachelor	No	Dog	Left
3	20	No	High School	Yes	Dog	Left
4	23	No	PhD	No	Cat	Left
5	19	Yes	High School	No	None	Left
6	35	No	PhD	No	None	Right
7	42	Yes	Masters	Yes	Cat	Left
8	21	No	Bachelor	No	None	Left
9	37	No	Bachelor	No	Dog	Left
10	25	Yes	Bachelor	No	Fish	Left
			•••			
200	22	No	None	Yes	Cat	Right

Assumptions

- ► Tinder is able to collect and store all the information in your dataset (yes, Tinder can tell if you think someone is cute).
- ► The data set have 200 observations (meaning you swiped 200 times)
- You have 10 right swipes in your data set and 190 left swipes

Imbalanced Right and Left Swipes

Undersampling

Randomly remove excess observations from the left swipes so the data is balanced with 10 observations from each class

Oversampling

Randomly select an observation from the right swipes, duplicate, and then replace back into the the right swipes

Conclusion

- With undersampling, you lose information because you're literally dropping data
- With oversampling, you're not really gaining additional information from resampling
- Other ways to fix class imbalance would be:
 - Change your performance metrics (e.g. instead of using accuracy to measure performance, you can use precision and recall)
 - Try multiple models
 - Try adding penalties to your models
 - Collect more data
 - When dealing with more than 2 classes, combine minority classes