decture 4: Conservative Finite Differences
Logisties: Office hours: Marc Tu 3-4 pm JGB 4.2166
Mbarah Wed 11am - noon SGB 5.2001
Matlab Gradu -> HW1 is posked
Last time: - Incompressible flow p,p = const
$\Rightarrow 1, \nabla \cdot q = fs$ $\Rightarrow 2, q = -K \nabla h$ $\Rightarrow -\nabla \cdot (K \nabla h) = fs$
- BC: Dirichlet: prescribe h
Neuman: prescribe flux q
- Finite differences: - one side 1st ordor (sx
- contraldiff zer only (1x
- Differentiation malrix: df = D f
qqf = Dz f

Example: Flow around injection well (cylindrical coord)

cylindrical coord:
$$\nabla \cdot q = \frac{1}{r} \frac{d}{dr} (r q_r) = \frac{q_r}{q_r}$$

PDE: $-\frac{1}{r} \frac{d}{dr} (r k \frac{dh}{dr}) = 0$ $r \in [r_\omega]$

BC: $Q_\omega = A_\omega q_r(r_\omega) = -A_\omega k \frac{dh}{dr} |_{r_\omega} \Rightarrow \frac{dh}{dr} |_{r_\omega} = \frac{-Q_\omega}{A_\omega K}$
 $h(r_\omega) = h_\omega$ DIF

 $\vec{k} = \begin{pmatrix} k' & k' \end{pmatrix}$

Finite Différence Approximation

$$\int_{\overline{D}} \frac{\partial L_{5}}{\partial L_{5}} + \frac{\partial L}{\partial L} = 0$$

key to discrete mans conservation is discretize conservation form with divergence intact - V · (k √ h) - f. - d (k dh) = fs

Break it up into 'dir-gad' system two first order

$$4) \qquad \nabla \cdot q = f \qquad \Longrightarrow$$

1)
$$\nabla \cdot q = f$$

$$\frac{10}{2Ax} = f$$

$$\frac{10}{$$

if we co-locate grid hand q on grid

substitute
$$q_{i+1}$$
 and q_{i-1} in mass belonge
$$\frac{1}{20x}\left(-k_{i+1} \frac{h_{i+2}-h_i}{20x} + k_{i-1} \frac{h_i-h_{i-2}}{20x}\right) = f_i$$

$$q_{i+1}$$

$$q_{i+1}$$

$$q_{i+1}$$

$$q_{i+1}$$

=> oscillatory solution because even a odd not property coupled.

Conservative Finite Différences / Finite Volumes

To reduce the width of FD stencil and to couple even

controlvolume

Discretize div-grad system:

1)
$$\nabla \cdot q = f_s \xrightarrow{\text{ID}} \frac{dq}{dx} = f \xrightarrow{\text{CFD}} \frac{q_{i+1} - q_i}{dx} = f_i$$

2) $q = -k \nabla h \xrightarrow{\text{ID}} q = -k \frac{dh}{dx} \xrightarrow{\text{CFD}} q_i = -k_i \frac{h_i - h_i}{\Delta x}$

$$\frac{q_{i+1}-q_{i}}{\Delta x} = f_{i}$$

$$q_{i} = -k_{i-1} \frac{h_{i}-h_{i}}{\Delta x}$$
suitable average

Substitute @ into @

$$-\frac{1}{\Delta x} \left[k_{i+\frac{1}{2}} \frac{h_{i+1} - h_i}{\Delta x} - k_{i-\frac{1}{2}} \frac{h_i - h_{i-1}}{\Delta x} \right] = f_i$$

eimplify

⇒ narow/campact structl