INICIOS Y EVOLUCIÓN DE LOS PROCESADORES GRÁFICOS (GPUs)

JGPU 2020

Albert García-García < agarcia@dtic.ua.es >

ALBERT GARCÍA

GARCÍA

MAIL: ALBERT.GARCIA @ GMAIL.COM

Alberto Garcia-Garcia

agarciag

(https://www.linkedin.com/in/agarciag/)

Albert Garcia-Garcia

albertgarcia93 (https://twitter.com/albertgarcia93)

Albert García

albert.garcia.garcia

(https://www.instagram.com/albert.garcia.garcia/)

Alberto Garcia-Garcia

SQ2viFYAAAAJ

[https://scholar.google.com/citations?user=5Q2viFYAAAAJ]

TRAYECTORIA

INVESTIGADOR POSTDOCTORAL

GRADO EN INGENIERÍA INFORMÁTICA (2011-2015)

UNIVERSIDAD DE ALICANTE

SUMMER OF HPC STUDENT (2015)

JÜLICH SUPERCOMPUTING CENTER, ALEMANIA

MÁSTER EN AUTOMÁTICA Y ROBÓTICA (2015-2016)

UNIVERSIDAD DE ALICANTE

MACHINE LEARNING SOFTWARE INTERN (2016)

NVIDIA CORPORATION, CALIFORNIA, EEUU

DOCTORADO EN MACHINE LEARNING Y COMPUTER VISION (2016-2019)

UNIVERSIDAD DE ALICANTE

RESEARCH INTERN (2017)

FACEBOOK REALITY LABS, REDMOND, EEUU

INTERN (2019)

OCULUS CORE TECH, ZURICH, SUIZA

INVESTIGADOR POSTDOCTORAL (ACTUALMENTE)

INSTITUTO DE CIENCIAS DEL ESPACIO, CSIC, ESPAÑA

La Ley de Moore

El Pipeline Gráfico

La Unidad de Procesamiento Gráfico (GPU)

Primeros Pasos en Computación sobre GPUs

La Arquitectura CUDA

CONTENIDO

GORDON MOORE

GORDON MOORE

Cramming More Components onto Integrated Circuits. Gordon E. Moore, 1965

"THE NUMBER OF TRANSISTORS ON A CHIP DOUBLES EVERY 12 MONTHS"

- GORDON MOORE, COFUNDADOR DE INTEL, 1965

"THE NUMBER OF TRANSISTORS ON A CHIP DOUBLES EVERY 24 MONTHS"

- GORDON MOORE, COFUNDADOR DE INTEL, 1975

CADA DOS AÑOS, APROXIMADAMENTE, SE DUPLICA EL NÚMERO DE TRANSISTORES

PROBLEMAS: TAMAÑO DEL TRANSISTOR Y EFECTO TÚNEL

PROBLEMAS: CONSUMO ENERGÉTICO Y DISIPACIÓN DE CALOR

¿CÓMO CONTINUAR ESCALANDO? MULTICORE

RENDERING

RENDERING

OpenGL GRAPHICS PIPELINE OVERVIEW por Owens

RAY TRACING

GEFORCE 256 (1999)

GEFORCE 256 (1999)

"A SINGLE-CHIP PROCESSOR WITH INTEGRATED TRANSFORM, LIGHTING, TRIANGLE SETUP/CLIPPING, AND RENDERING ENGINES THAT IS CAPABLE OF PROCESSING A MINIMUM OF 10 MILLION POLYGONS PER SECOND."

GEFORCE 256 TECH DEMO

LA ESENCIA DE LA GPU

DEJEMOS QUE LOS CAZADORES DE MITOS LO EXPLIQUEN

ARQUITECTURA CPU/GPU TÍPICA

ARQUITECTURA CPU/GPU INTEGRADA

COMPUTACIÓN HETEROGÉNEA

GEFORCE 3 CON VERTEX Y PIXEL SHADERS PROGRAMABLES (2001)

GEFORCE 3 TECH DEMO

ENGAÑAR A LA GPU EMPLEANDO APIS GRÁFICAS (OPENGL O DIRECTX)

```
float saxpy (
       float2 coords : TEXCOORDO,
    uniform sampler2D textureY,
    uniform sampler2D textureX,
    uniform float alpha ) : COLOR
       float result;
       float yval=y old[i];
       float y = tex2D(textureY, coords);
       float xval=x[i];
       float x = tex2D(textureX, coords);
       y new[i]=yval+alpha*xval;
       result = y + alpha * x;
       return result;
```

LIMITACIONES QUE IMPIDIERON EL PROGRESO

CURVA DE APRENDIZAJE DE OPENGL/DIRECTX Y ESFUERZO DE TRADUCCIÓN

NECESIDAD DE APRENDER LENGUAJES DE SHADING (CG, GLSL)

SOPORTE DE FLOAT O DOUBLE NO GARANTIZADO

LIMITACIONES EN LOS PATRONES DE ESCRITURA Y LECTURA DE MEMORIA

CARENCIA DE HERRAMIENTAS DE DEPURACIÓN Y CONTROL DE ERRORES

RECURSOS LIMITADOS: MEMORIA, VELOCIDAD, FLEXIBILIDAD...

GEFORCE 8800 GTX (2007)

GEFORCE 8800 GTX TECH DEMO

SHADERS UNIFICADOS

PRECISIÓN FLOAT Y PATRONES DE ACCESO

ECOSISTEMA

ARQUITECTURA HARDWARE PROPIA

DRIVER ESPECIALIZADO PARA LA GPU

LENGUAJE DE PROGRAMACIÓN FLEXIBLE (BASADO EN C++ INICIALMENTE)

COMPILADOR Y ENTORNO DE DESARROLLO Y DEPURACIÓN

DOCUMENTACIÓN, TUTORIALES, DONACIONES

GEFORCE RTX

TURING

REAL-TIME RAYTRACING

TURING

REAL-TIME SIMULATIONS

¿QUÉ NECESIDAD HAY DE UN PROCESADOR GRÁFICO PARA CÓMPUTO GENERAL?

AR/VR

Coches Autónomos

Deep Learning

AR/VR

AR/VR

COCHES AUTÓNOMOS

COCHES AUTÓNOMOS

DEEP LEARNING

DEEP LEARNING

DEEP LEARNING

10X GROWTH IN GPU COMPUTING

2008

2015

150,000 CUDA Downloads

27 CUDA Apps

60
Universities Teaching

4,000

Supercomputing Teraflops

800

319

INICIOS Y EVOLUCIÓN DE LOS PROCESADORES GRÁFICOS (GPUs)

JGPU 2020

Albert García-García < agarcia@dtic.ua.es >