Random Field / (Random process)

(a) Deterministic Concept

Figure 2.11. Deterministic and Random Process Concepts

- Random Fluctuations over space and time domain
- Fluctuations due to one or more random variables over the space of interest (Ex, Young's modulus over a plate)

The mean of the random process X(t) is

$$\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x \ f_X(x, t) dx$$
 (2.70)

the autocovariance is

$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 - \mu_X(t_1))(x_2 - \mu_X(t_2)) f_{XX}(x_1, x_2; t_1, t_2) dx_1 dx_2$$
(2.71)

and the autocorrelation is

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{XX}(x_1, x_2; t_1, t_2) dx_1 dx_2$$
(2.72)

· Random field - a mathematical model of fluctuations

- · Spatial variability is characterized by:
 - Distribution type
 - Mean
 - Correlation between two locations

Cantilever Beam (Young's modulus fluctuates over the length)

Random field discretization involves the discretization of its covariance function

Increasing the number of elements facilitates an accurate approximation of the actual covariance

Covariance functions

- Exponential Model $C_{ij} = C_0 \exp\left[-\left|\frac{X_0}{I}\right|\right]$

- Quussian Model

$$C_{ij} = C_{o} \exp \left[-\left(\frac{K_{ij}}{I}\right)^{2} \right]$$

$$C_{ij} = \begin{cases} C_o & \text{for } |X_{ij}| = 0 \\ 0 & \text{otherwise} \end{cases}$$

(*) Correlation length