

Non-Intrusive Item Authentication with High Robustness for RFID-Enabled Logistics

Jiawei Xue*, Chunhui Duan*, Fan Li*, Qihua Feng*, Ziang Wang* and Yinan Zhu[†]

*Beijing Institute of Technology

[†]Hong Kong University of Science and Technology

Background

Problem: Incidents of damaged, lost, or replaced goods can occur during the express transportation

Current Solutions

Lacks the capability to detect item conditions

Authenticate the legitimacy of item tags

Wrap RFID antennas around packages

Confined to stationary scenarios

Extract features from signals penetrating package interiors

Our Scheme

➤ Operating scenario of RF-Express

When the reader antenna communicates with a tag, the wireless signal would be reflected by the item within the tagged package

Our Scheme

➤ Operating process of RF-Express

Data acquisition and registration

Data acquisition and feature matching

Challenge #1

Problem: How to characterize the relationship between the item within the package and the collected RF signals?

Item Feature Extraction

Signal Propagation Model

$$S_T = (S_{A \to T} + (S_{A \to E \to T}) + (S_{A \to P \to T}) \cdot h_T$$

$$= (h_{A \to T} + h_{A \to E \to T} + h_{A \to P \to T}) \cdot S_0 \cdot h_T$$

$$S_{T \to A} = h_A \cdot h_{T \to A} \cdot S_T$$

RF signal propagation in sorting scenarios

Item Feature Extraction

Channel Parameters

Item features:

- ✓ Medium depth
- ✓ Material type
- √ Shape of item

When the status of the item changes, the radio frequency signal will also change accordingly

Signal refraction:

$$h_b = \frac{1}{d_b} e^{-\mathbf{J}2\pi f \frac{d_b(\sqrt{\epsilon_{rb}})}{c}}$$

(Penetration depth)

(Dielectric constant of m_b)

Signal reflection:

$$h_{\text{refl},a \to b \to a} = \sqrt{R_{\text{refl}}} \cdot e^{-\sqrt{\theta_{\text{refl}}}}$$

(Related to the incident angle of the signal and the dielectric constants of mediums)

Challenge #2

Problem: How to minimize the adverse impact of indoor multipath itself and its variations?

Item Feature Extraction

➤ Dealing with Multipath Variations

The difference between the signals of the two tags will be able to retain the feature of the item

Challenge #3

Problem: How to handle the inconsistent signal data lengths between upstream and downstream nodes?

Data Preprocessing

➤ V-zone Detection

$$\theta = (\frac{2\pi f}{c} \times (2d) + \theta_{\text{refl}} + \theta_{\text{hdw}}) \mod 2\pi$$

The relationship between phase and the distance from the tag to the reader antenna

Original sequence

Data Preprocessing

➤ V-zone Detection

(Phase jump: $0 \rightarrow 2\pi \text{ or } 2\pi \rightarrow 0$)

Jump sub-sequence:

$$\max(\Theta_i) - \min(\Theta_i) > \tau$$
 or $|\texttt{last}(\Theta_i) - \texttt{first}(\Theta_{i+1})| > \tau$.

Endpoints of V-Zone:

$$2\pi - \theta_{j,i_2} \le \eta$$
 and $2\pi - \theta_{j,(i+1)_1} \le \eta$,

Sliding window

Data Preprocessing

➤ Signal Selection & Data Interpolation

Signal selection

Concatenated sequence

Feature Matching

➤ Triplet Network

CNN framework

Training process of the triplet network

Implementation

Prototype

ImpinJ R420 reader, Laird S9028PCL antenna

ImpinJ Monza H47 tags

Low Level Reader Protocol (LLRP)

Photography slide rail

Data collection

5 liquids, 5 smartphones

2 mice, 2 building blocks

Metrics

- True Acceptance Rate (TAR)
 - N_{accept} / N_{same}
- True Rejection Rate (TRR)

Equal Error Rate (EER)

The point where TAR and FAR are equal

ROC curves for dual-tag and single-tag cases,

with EERs of 7.79% and 27.02% respectively

Overall accuracy

Average TAR: 90.97%

Average TRR: 94.38%

✓ Loss: 100%

✓ Replacement: 91.36%

✓ Damage: 91.77%

➤ Impact of Different Environmental Changes

Impact of Factors

Conveyor speed

The interpolation approach can successfully handle changes in speed

Package-antenna distance

RF-Express can resist the impact of minor changes in package-antenna distance

Impact of Factors

Item's lateral movement

Item's vertical movement

Minor item movement has a relatively small impact on the system

Conclusion

Current limitations: Item status not visible

Logistics process interrupted

Our target:

Accurate item authentication

Non-intrusive & highly robust

Our solutions:

Dual tagging

V-Zone detection

Triplet network

Results: The prototype experiments showcased the high accuracy and robustness of RF-Express

