The Theoretical Minimum Classical Mechanics - Solutions

L06E03

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Use the Euler-Lagrange equations to derive the equations of motions from the Lagrangian in Eq. (12).

Again, let us recall the general form of Euler-Lagrange equations for a configuration space of size $n \in \mathbb{N}$: $(\forall i \in [1, n])$,

$$\frac{d}{dt}\left(\frac{\partial}{\partial \dot{x_i}}L\right) = \frac{\partial}{\partial x_i}L\tag{1}$$

In the case of this exercise, the Lagrangian L is defined in Eq. (12) as:

$$L = \frac{m}{2}(\dot{X}^2 + \dot{Y}^2) + \frac{m\omega^2}{2}(X^2 + Y^2) + m\omega(\dot{X}Y - \dot{Y}X)$$

Let's compute the partial derivatives of L on \dot{X} , X, \dot{Y} and Y:

$$\frac{\partial}{\partial \dot{X}} L = \frac{\partial}{\partial \dot{X}} \left(\frac{m}{2} \dot{X}^2 + m\omega \dot{X} Y \right) \qquad \qquad \frac{\partial}{\partial X} L = \frac{\partial}{\partial X} \left(\frac{m\omega^2}{2} X^2 - m\omega \dot{Y} X \right)$$
$$= m\dot{X} + m\omega Y \qquad \qquad = m\omega^2 X - m\omega \dot{Y}$$

$$\frac{\partial}{\partial \dot{Y}} L = \frac{\partial}{\partial \dot{Y}} \left(\frac{m}{2} \dot{Y}^2 - m\omega \dot{Y} X \right) \qquad \qquad \frac{\partial}{\partial Y} L = \frac{\partial}{\partial Y} \left(\frac{m\omega^2}{2} Y^2 + m\omega \dot{X} Y \right)
= m\dot{Y} - m\omega X \qquad \qquad = m\omega^2 Y + m\omega \dot{X} \qquad (2)$$

Finally, by plugging (2) into (1), we obtain:

$$\frac{d}{dt}\left(m\dot{X} + m\omega Y\right) = m\omega^2 X - m\omega \dot{Y}$$

$$\Leftrightarrow \boxed{m\ddot{X} = m\omega^2 X - 2m\omega \dot{Y}}$$

$$\Leftrightarrow \boxed{m\ddot{Y} = m\omega^2 Y + 2m\omega \dot{X}} \quad \Box$$

Remark 1. Those results indeed matches the equations proposed in the book just slightly before this exercise.