Probabilidade e Estatística

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Lembrando ...

- → Funções discretas de probabilidade
- → Modelos discretos

Uniforme

Bernoulli

Binomial

Geométrico

Poisson

Hipergeométrico

Aula 6

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Medidas de resumo (para variáveis aleatórias discretas)

Conteúdo:

- 6.1 Medidas de posição
 - média
 - mediana
 - moda
- 6.2 Exemplo
- 6.3 Medidas de dispersão
 - variância
 - desvio padrão

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sigma_X^2 \quad \overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$A \cap B = \emptyset$$

6. <u>Medidas de resumo para variáveis</u> <u>aleatórias discretas</u>

Descrição do comportamento das variáveis aleatórias discretas feitas através

função de probabilidade

Medida utilizada para resumir o comportamento das variáveis aleatórias discretas

6. <u>Medidas de resumo para variáveis</u> <u>aleatórias discretas</u>

Descrição do comportamento das variáveis aleatórias discretas feitas através

função de probabilidade

Medida utilizada para resumir o comportamento das variáveis aleatórias discretas

6.1 Medidas de posição (tendência central)

medidas mais comuns:

média mediana moda

A <u>média</u> ou <u>valor esperado</u> ou <u>esperança</u> de uma variável **X** é dada pela expressão:

$$E(X) = \sum_{i=1}^{k} x_i p_i$$

A <u>média</u> ou <u>valor esperado</u> ou <u>esperança</u> de uma variável **X** é dada pela expressão:

$$E(X) = \sum_{i=1}^{k} x_i p_i$$

Outras notações utilizadas para E(X)

 μ_x ou simplesmente μ

Exemplo:

Considere a variável aleatória **X** e a função discreta de probabilidade a ela associada p_i

$$X = -5$$
 10 15 20 $P_i = 0.3$ 0,2 0,4 0,1

A média ou esperança ou valor esperado é dado por:

Exemplo:

Considere a variável aleatória **X** e a função discreta de probabilidade a ela associada p_i

A média ou esperança ou valor esperado é dado por:

$$\mu = \sum_{i=1}^{4} x_i p_i = -5 \times 0.3 + 10 \times 0.2 + 15 \times 0.4 + 20 \times 0.1$$

$$\mu = 8, 5$$

$$P(\mathbf{X} \ge Md) \ge 0, 5$$

e
 $P(\mathbf{X} \le Md) \ge 0, 5$

$$P(\mathbf{X} \ge Md) \ge 0, 5$$

$$\mathbf{e}$$
 $P(\mathbf{X} \le Md) \ge 0, 5$

Exemplo:

X	-5	10	15	20
p_i	0,3	0,2	0,4	0,1

$$P(\mathbf{X} \ge Md) \ge 0, 5$$
e
$$P(\mathbf{X} \le Md) \ge 0, 5$$

Exemplo:

A mediana pode ser qualquer valor entre 10 e 15.

$$P(\mathbf{X} \ge Md) \ge 0,5$$

 \mathbf{e}
 $P(\mathbf{X} \le Md) \ge 0,5$

Exemplo:

A mediana pode ser qualquer valor entre 10 e 15. Adotaremos a mediana igual a média, ou seja:

$$Md = \frac{10+15}{2} = 12,5$$

Observações:

• como no exemplo, às vezes as desigualdades que definem a mediana são verificadas em qualquer valor de um determinado intervalo. Nesse caso tomamos a mediana como o ponto médio do intervalo.

Observações:

- como no exemplo, às vezes as desigualdades que definem a mediana são verificadas em qualquer valor de um determinado intervalo. Nesse caso tomamos a mediana como o ponto médio do intervalo.
- nem a mediana nem a média precisam ser valores assumidos pela variável aleatória. No exemplo:

A moda (Mo) é o valor (ou valores) da variável que tem a maior probabilidade de ocorrência, ou seja:

$$P(X = Mo) = \max(p_1, p_2, ..., p_k)$$

A moda (Mo) é o valor (ou valores) da variável que tem a maior probabilidade de ocorrência, ou seja:

$$P(X = Mo) = \max(p_1, p_2, ..., p_k)$$

Exemplo:

Outras Observações:

Como nas medidas de resumo para um conjunto de dados tem-se:

- a multiplicação das variáveis aleatórias por uma constante fará com que as medidas de posição fiquem multiplicadas por essa constante;
- a adição de uma constante as variáveis aleatórias fará com que as medidas de posição fiquem acrescidas dessa constante;

Calcular a média, a mediana e a moda.

X	2	5	8	15	20
p_i	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{5} x_i p_i = 2 \times 0, 1 + 5 \times 0, 3 + 8 \times 0, 2 + 15 \times 0, 2 + 20 \times 0, 2 = 10, 3$$

$$\mu = 10, 3$$

Mediana: Md = 8

Moda: Mo = 5

Calcular a média, a mediana e a moda.

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{5} x_i p_i = 2 \times 0, 1 + 5 \times 0, 3 + 8 \times 0, 2 + 15 \times 0, 2 + 20 \times 0, 2 = 10, 3$$

$$\mu = 10, 3$$

Mediana: Md = 8

Moda: Mo = 5

Calcular a média, a mediana e a moda.

X	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{5} x_i p_i = 2 \times 0, 1 + 5 \times 0, 3 + 8 \times 0, 2 + 15 \times 0, 2 + 20 \times 0, 2 = 10, 3$$

$$\mu = 10, 3$$

Mediana: Md = 8

Moda: Mo = 5

Calcular a média, a mediana e a moda.

X	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{5} x_i p_i = 2 \times 0.1 + 5 \times 0.3 + 8 \times 0.2 + 15 \times 0.2 + 20 \times 0.2 =$$

$$\mu = 10.3$$

Mediana: Md = 8

Moda:

Mo = 5

Média.

Mediana:

Moda:

$$\mu_X = 10,3$$

$$Md(X) = 8$$

$$Mo(X) = 5$$

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:

Mediana:

Moda:

$$\mu_X = 10,3$$

$$Md(X) = 8$$

$$Mo(X) = 5$$

X2581520
$$P_i$$
0,10,30,20,20,2

Média.

Mediana.

Moda:

$$\mu_{x} = 10,3$$

$$Md(X) = 8$$

$$Mo(X) = 5$$

X	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

X	2	5	8	15	20
p_i	0,1	0,3	0,2	0,2	0,2

		X	2	5	8	15	20
		$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2
Y=5X-10							
		Υ	0	15	30	65	90
	V	p_{i}	0,1	0,3	0,2	0,2	0,2

		Χ	2	5	8	15	
연설하 취상 수 취소		$\overline{p_i}$	0,1	0,3	0,2	0,2	
Y=5X-10	M		T-				
		Υ	0	15	30	65	
	7	\mathcal{D} .	0.1	U 3	0.2	0.2	

Υ	0	15	30	65	90
p_{i}	0,1	0,3	0,2	0,2	0,2

$$\mu = \sum_{i=1}^{5} y_i p_i = 0 \times 0.1 + 15 \times 0.3 + 30 \times 0.2 + 65 \times 0.2 + 90 \times 0.2 = 41.5$$

X	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{3} y_i p_i = 0 \times 0.1 + 15 \times 0.3 + 30 \times 0.2 + 65 \times 0.2 + 90 \times 0.2 = 41.5$$

<u>Mediana</u>: Md = 30 (onde $P(Y \ge 30) \ge \frac{1}{2}$ e $P(Y \le 30) \ge \frac{1}{2}$)

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Υ	0	15	30	65	90
p_{i}	0,1	0,3	0,2	0,2	0,2

Média:

$$\mu = \sum_{i=1}^{5} y_i p_i = 0 \times 0.1 + 15 \times 0.3 + 30 \times 0.2 + 65 \times 0.2 + 90 \times 0.2 = 41.5$$

<u>Mediana</u>: Md = 30 (onde $P(Y \ge 30) \ge \frac{1}{2}$ e $P(Y \le 30) \ge \frac{1}{2}$)

Moda:

Mo = 15

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:
$$\mu_X = 10,3$$

Mediana:
$$Md(X) = 8$$

$$\underline{\mathsf{Moda}} \colon \quad \mathsf{Mo}(\mathsf{X}) = 5$$

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

Média:
$$\mu_X = 10.3 \longrightarrow \mu_Y = 5\mu_X - 10 = 41.5$$

Mediana:
$$Md(X) = 8 \longrightarrow Md(Y) = 5Md(X) - 10 = 30$$

Moda:
$$Mo(X) = 5$$
 $Mo(X) = 5Mo(X) - 10 = 15$

Χ	2	5	8	15	20
$\overline{p_i}$	0,1	0,3	0,2	0,2	0,2

$$\mu_{x} = 10.3 \longrightarrow \mu_{y} = 5\mu_{x} - 10 = 41.5$$

Mediana:
$$Md(X) = 8 \longrightarrow Md(Y) = 5Md(X) - 10 = 30$$

Moda:
$$Mo(X) = 5$$
 $Mo(X) = 5Mo(X) - 10 = 15$

Υ	0	15	30	65	90	
p_i	0,1	0,3	0,2	0,2	0,2	

Média: $\mu_X = 41,5$

Mediana: Md = 30

 $\underline{\mathsf{Moda}}$: Mo = 15

	Conjunto de dados	Variável aleatória	
valores	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
média	$\frac{-}{x_{obs}} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$	$\mu_X = \sum_{i=1}^k x_i p_i$	
mediana	md _{obs} ∶ valor central	<i>Md</i> : $P(X \ge Md) \ge 0,5$ e $P(X \le Md) \ge 0,5$	
moda	<i>mo_{obs} :</i> valor com maior freqüência	<i>Mo :</i> valor com maior probabilidade	

	Conjunto de dados	Variável aleatória	
valores	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
média	$\frac{-}{x_{obs}} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$	$\mu_X = \sum_{i=1}^k x_i p_i$	
mediana	<i>md_{obs}</i> : valor central	<i>Md</i> : $P(X \ge Md) \ge 0,5$ e $P(X \le Md) \ge 0,5$	
moda	<i>mo₀ы</i> : valor com maior freqüência	<i>Mo :</i> valor com maior probabilidade	

	Conjunto de dados	Variável aleatória	
valores	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
média	$\frac{1}{x_{obs}} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$	$\mu_X = \sum_{i=1}^k x_i p_i$	
mediana	<i>md_{obs}</i> ∶ valor central	<i>Md</i> : $P(X \ge Md) \ge 0,5$ e $P(X \le Md) \ge 0,5$	
moda	<i>mo_{obs} :</i> valor com maior freqüência	<i>Mo :</i> valor com maior probabilidade	

	Conjunto de dados	njunto de dados Variável aleatória	
valores	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
média	$\frac{1}{x_{obs}} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$	$\mu_X = \sum_{i=1}^k x_i p_i$	
mediana	md _{obs} : valor central	<i>Md</i> : $P(X \ge Md) \ge 0,5$ e $P(X \le Md) \ge 0,5$	
moda	<i>mo_{obs}</i> : valor com maior freqüência	<i>Mo :</i> valor com maior probabilidade	

Uma pequena cirurgia dentária pode ser realizada por 3 diferentes técnicas. Foi feito um estudo para avaliar a recuperação, em dias (variável X_i), para cada uma das 3 técnicas, obtendo:

$$X_1$$
 0
 4
 5
 6
 10

 P_i
 0,2
 0,2
 0,2
 0,2
 0,2

 X_2
 1
 5
 9

 P_i
 1/3
 1/3
 1/3

 X_3
 4
 5
 6

Encontrar as medidas de tendência central.

Técnica 1

$$X_1$$
 0 4 5 6 10 P_i 0,2 0,2 0,2 0,2 0,2

Média:

$$\mu = \sum_{i=1}^{5} x_i p_i = 0 \times 0, 2 + 4 \times 0, 2 + 5 \times 0, 2 + 6 \times 0, 2 + 10 \times 0, 2$$

$$\mu = 5$$

Mediana: Md = 5

Moda: Mo multimodal!

Técnica 2

$$\frac{X_2}{P_i}$$
 1 5 9 $\frac{1}{3}$ 1/3 1/3

Média:

$$\mu = \sum_{i=1}^{3} x_i p_i = 1 \times \frac{1}{3} + 5 \times \frac{1}{3} + 9 \times \frac{1}{3}$$

$$\mu = 5$$

Mediana: Md = 5

Moda: Mo multimodal!

Técnica 3

$$X_3 = 4$$
 5 6 $P_i = 0,3$ 0,4 0,3

Média:

$$\mu = \sum_{i=1}^{3} x_i p_i = 4 \times 0, 3 + 5 \times 0, 4 + 6 \times 0, 3$$

$$\mu = 5$$

 $\underline{\mathsf{Mediana}}: \ \mathit{Md} = 5$

Moda: Mo = 5

Técnica 1

$$X_1$$
 0 4 5 6 10 P_i 0,2 0,2 0,2 0,2 0,2

Técnica 2

$$\frac{X_2}{P_i}$$
 1 5 9 1/3 1/3

Técnica 3

Técnica 1

$$\frac{\text{M\'edia}}{\mu = 5}$$

Mediana:

Moda

Técnica 2

 $\mu = 5$

Md = 5

Md = 5

Multimodal

Consorcio Cedel

Multimodal

Técnica 3

$$\mu = 5$$

$$Md = 5$$

Mo = 5

6.3 Medidas de dispersão

Variância de uma variável aleatória discreta $(Var(X) = \sigma^2 = \sigma_X^2)$

Seja \boldsymbol{X} uma variável aleatória com $P(X_i = x_i) = p_i i = 1, 2, ..., k$ e média μ . A variância de \boldsymbol{X} é o somatório dos desvios, relativos à média, elevados ao quadrado e ponderados pela respectiva probabilidade

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$

6.3 Medidas de dispersão

Variância de uma variável aleatória discreta $(Var(X) = \sigma^2 = \sigma_X^2)$

Seja \boldsymbol{X} uma variável aleatória com $P(X_i = x_i) = p_i i = 1, 2, ..., k$ e média μ . A variância de \boldsymbol{X} é o somatório dos desvios, relativos à média, elevados ao quadrado e ponderados pela respectiva probabilidade

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$

Que pode também ser definida como o valor esperado do desvio ao quadrado:

$$Var(X) = \sigma^2 = E[(X - \mu)^2]$$

6.3 Medidas de dispersão

Variância de uma variável aleatória discreta $(Var(X) = \sigma^2 = \sigma_X^2)$

Seja \boldsymbol{X} uma variável aleatória com $P(X_i = x_i) = p_i i = 1, 2, ..., k$ e média μ . A variância de \boldsymbol{X} é o somatório dos desvios, relativos à média, elevados ao quadrado e ponderados pela respectiva probabilidade

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$

Que pode também ser definida como o valor esperado do desvio ao quadrado:

$$Var(X) = \sigma^2 = E[(X - \mu)^2]$$

Ou... (fica para você mostrar...):

$$Var(X) = \sigma^2 = E(X^2) - \mu^2 = \sum_{i=1}^k p_i x_i^2 - \mu^2$$

Desvio padrão de uma variável aleatória discreta

Definido com a raiz quadrada da variância.

$$\sigma = \sqrt{\sum_{i=1}^{k} (x_i - \mu)^2 p_i}$$

ou

$$\sigma = \sqrt{E[(X - \mu)^2]}$$

Voltando ao exemplo....

Uma pequena cirurgia dentária pode ser realizada por 3 diferentes técnicas. Foi feito um estudo para avaliar a recuperação, em dias (variável X_i), para cada uma das 3 técnicas, obtendo:

X_1	0	4	5	6	10
p_i	0,2	0,2	0,2	0,2	0,2
X_2	1	5	9		
p_{i}	1/3	1/3	1/3		
X_3	4	5	6		
p_i	4 0,3	0,4	0,3		

Encontrar as medidas de dispersão

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$
 com $\mu = 5$

Técnica 1

$$\sigma^2 = (0-5)^2 \times 0, 2 + (4-5)^2 \times 0, 2 + (5-5)^2 \times 0, 2 + (6-5)^2 \times 0, 2 + (10-5)^2 \times 0, 2$$

$$\sigma^2$$
= 10,40

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$
 com $\mu = 5$

Técnica 1

$$\sigma^2 = (0-5)^2 \times 0, 2 + (4-5)^2 \times 0, 2 + (5-5)^2 \times 0, 2 + (6-5)^2 \times 0, 2 + (10-5)^2 \times 0, 2$$

$$\sigma^2 = 10,40$$

Técnica 2

$$\sigma^2 = (1-5)^2 \times \frac{1}{3} + (5-5)^2 \times \frac{1}{3} + (9-5)^2 \times \frac{1}{3}$$

$$\sigma^2 = 10,67$$

$$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$$
 com $\mu = 5$

Técnica 1

$$\sigma^2 = (0-5)^2 \times 0, 2 + (4-5)^2 \times 0, 2 + (5-5)^2 \times 0, 2 + (6-5)^2 \times 0, 2 + (10-5)^2 \times 0, 2$$

$$\sigma^2 = 10,40$$

Técnica 2

$$\sigma^2 = (1-5)^2 \times \frac{1}{3} + (5-5)^2 \times \frac{1}{3} + (9-5)^2 \times \frac{1}{3}$$

$$\sigma^2 = 10,67$$

Técnica 3

$$\sigma^2 = (4-5)^2 \times 0.3 + (5-5)^2 \times 0.4 + (6-5)^2 \times 0.3$$

$$\sigma^2$$
= 0,60

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline p_i & 1-p & p \end{array}$$

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline p_i & 1-p & p \end{array}$$

A média (E(X) ou μ)

$$\mu = 0 \times (1 - p) + 1 \times p = p$$

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline p_i & 1-p & p \end{array}$$

A média (E(X) ou μ)

$$\mu = 0 \times (1 - p) + 1 \times p = p$$

$$\sigma^2 = (0-p)^2 \times (1-p) + (1-p)^2 \times p$$

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline p_i & 1-p & p \end{array}$$

A média (E(X) ou μ)

$$\mu = 0 \times (1 - p) + 1 \times p = p$$

$$\sigma^2 = (0-p)^2 x (1-p) + (1-p)^2 x p$$

 $\sigma^2 = p^2 - p^3 + (1 - 2p + p^2) x p$

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline p_i & 1-p & p \end{array}$$

A média (E(X) ou μ)

$$\mu = 0 \times (1 - p) + 1 \times p = p$$

$$\sigma^{2} = (0-p)^{2} x (1-p) + (1-p)^{2} x p$$

$$\sigma^{2} = p^{2} - p^{3} + (1 - 2p + p^{2}) x p$$

$$\sigma^{2} = p^{2} - p^{3} + p - 2p^{2} + p^{3}$$

Cacular o valor esperado (média) e a variância da distribuição de Bernoulli

$$X = 0$$
 1 $p_i = 1-p$ p

A média (E(X) ou μ)

$$\mu = 0 \times (1 - p) + 1 \times p = p$$

$$\sigma^{2} = (0-p)^{2} x (1-p) + (1-p)^{2} x p$$

$$\sigma^{2} = p^{2} - p^{3} + (1 - 2p + p^{2}) x p$$

$$\sigma^{2} = p^{2} - p^{3} + p - 2p^{2} + p^{3}$$

$$\sigma^{2} = p - p^{2} = p(1-p)$$

Valor esperado e variância de modelos discretos

Variável discreta	Valor esperado	<u>Variância</u>
Uniforme (1,k)	$\frac{1+k}{2}$	$\frac{k^2-1}{12}$
Bernoulli (p)	p	p(1-p)
Binomial (n,p)	np	np(1-p)
Geométrico (p)	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Poisson (λ)	λ	λ
Hipergeométrica (n,m,r)	rm n	$\frac{rm(n-m)(n-r)}{n^2(n-1)}$

Medidas de dispersão: para um conjunto de dados e para variáveis aleatórias discretas

	Conjunto de dados	Variável aleatória	
Valores	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Variância	$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2$	$Var(X) = \sum_{i=1}^{k} (x_i - \mu)^2 p_i$	
Variância (outra opção)	$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}_{obs}^2$	$Var(X) = \sum_{i=1}^{k} p_i x_i^2 - \mu^2$	

aula 6: Medidas de resumo medidas de dispersão

Lembrando...vimos na <u>aula 6</u>:

"Medidas de resumo
(para variáveis aleatórias discretas)"

Medidas de posição (tendência central)

média mediana moda

Medidas de dispersão

variância desvio padrão

Pergunta: e se as variáveis que temos interesse assumem valores aleatórios mas pertencem ao algum intervalo de números reais (variáveis contínuas)? — Aulas 8 e 9

Aula 6

Professores:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

Medidas de resumo (para variáveis aleatórias discretas)

Conteúdo:

- 6.1 Medidas de posição
 - média
 - mediana
 - moda
- 6.2 Exemplo
- 6.3 Medidas de dispersão
 - variância
 - desvio padrão

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sigma_X^2 \quad \overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$A \cap B = \emptyset$$

