Local Sensitivity and Smooth Sensitivity

Presenter: Guoming Wang

27 Jan, 2015

Materials

- 1. S. Raskhodnikova et al.
 - 1. Smooth Sensitivity and Sampling
- 2. A. Machanavajjhala
 - 1. Smooth Sensitivity and Sampling

Outline

- Local Sensitivity
- Smooth Sensitivity

Laplacian Noise

In order for two worst-case neighboring data sets to produce a similar distribution of privatized answers, we need to add noise to span the sensitivity gap.

Adding laplacian Noise is not the only way, but it's easy.

$$Prob(R = x \mid D \text{ is the true world}) = \frac{\varepsilon}{2\Delta F} e^{-\frac{|x - F(D)|\varepsilon}{\Delta F}}$$

Global Sensitivity

How to privatize a series of FIVE overlapping counts across a data set? (ie, "How many people in the data set are female?", "How many like biber?", "How many are between age 12-16", etc)

$$\Delta F = \max_{\{D1,D2\}} ||F(D1) - F(D2)||_{L1}$$

Add laplacian noise calibrated to $\Delta F = 5$, to each count

Local Sensitivity

Example: median of
$$x_1, \ldots, x_n [0, 1]$$

$$X = 0000111$$
 $x' = 0001111$

Too much noise

$$Median(x) = 0$$
, $median(x') = 1$

$$Gs_{median} = 1$$

Local Sensitivity:
$$LS_f(x) = \max_{y:d(x, y)=1} || f(x) - f(y) ||$$

Global Sensitivity:
$$GS_f = \max_{x,y:d(x,y)=1} ||f(x) - f(y)||$$

$$GS_f = max_x LS_f(x)$$

Local Sensitivity

Add noise proportional to $LS_f(x)$ instead of GS_f ?

Not good idea, because it reveals information.

$$\begin{split} &D_1 = \{0\ 0\ 0\ 0\ 0\ ^{\ \wedge\ \wedge\ ^{\ }}\} \\ &Q_{med}(D1) = 0 \\ &LS_{qmed}(D1) = 0 \\ &D_2 = \{0\ 0\ 0\ 0\ 0\ ^{\ \wedge\ \wedge\ \wedge\ ^{\ }}\} \\ &Q_{med}(D2) = 0 \\ &LS_{qmed}(D2) = ^{\ } \\ &Noise\ sampled\ from\ Lap(^{\ }/\epsilon) \end{split}$$

Smooth Sensitivity

S(x) is an ε -smooth upper bound on $\mathsf{LS}_f(x)$ if:

- for all
$$x$$
: $S(x) \ge \mathsf{LS}_f(x)$

- for all neighbors x, x': $S(x) \leq e^{\varepsilon} S(x')$

Smooth Sensitivity

$$S*_q(d) = max_{d'} (LS_q(d') exp(-m\beta))$$

where d and d' differ in m entries.

d x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

- $x_{5-k} \le q_{med}(d') \le x_{5+k}$
- $LS(d') = max(x_{med+1} x_{med}, x_{med} x_{med-1})$

$$S^*_{qmed}(d) = max_k (exp(-k\beta) x$$

 $max_{5-k \le med \le 5+k} (x_{med+1} - x_{med}, x_{med} - x_{med-1}))$

Smooth Sensitivity

For instance, $\Lambda = 1000$, $\beta = 2$.

1 2 3 4 5 6 7 8 9 10

$$S^*_{qmed}(d) = max (max_{0 \le k \le 4}(exp(-\beta \cdot k) \cdot 1),$$

 $max_{5 \le k \le 10}(exp(-\beta \cdot k) \cdot \Lambda))$
= 1

Thank you – Enjoy the rest of your night

