Chemical Bonding

Bonding - chemical linking of two or more elements

- Bond to have 8 valence electrons (makes them stable)
 - Valence e⁻ responsible for bonding outermost electrons
- Octet rule 8 valence electrons = stable (happy) octet
- Two types of bonds: Ionic and Covalent

Ionic Bonding - transfer of electrons

- Between metals and nonmetals
- Electronegativity (EN) how much an atom wants electrons
 - Metals low EN give away electrons
 - Nonmetals high EN take electrons

Ionic Bonding

- Metals lose e⁻ to become positively charged
- Nonmetals gain e⁻ to become negatively charged

Positive and negative charges attract

Ionic Bonding

- Polyatomics also bond ionically
 - Group of atoms that have covalently bonded but not satisfied the octet rule - want to bond again
 - Stay together as a group (Do Not Change Them!)

Ionic Bonding - Polyatomic Chart (on the back of your Periodic Table)

COMMON POLYACOMIC IONS

+1	
ammonium	NH4*1
1	
acetate	C2H2O2
amide	NH ₂ ·1
bicarbonate or hydrogen carbonate	HCO ₃ ·1
bisulfate or hydrogen sulfate	HSO ₆ -1
sisu <mark>lfide or</mark> hydrogen sulfide	HS ⁻¹
bisulfite or hydrogen sulfite	HSO ₃ -1
bromate	BrO ₃ ·1
hlorate	C1O3-1
hlorite	ClO ₂ -1
yanide	CN-1
lihydrogen phosphate	H ₂ PO ₄ -1
nydroxide	OH-1
rypobromite	BrO-1
nypochlorite	ClO-1
ypoiodite	10-1
odate	103-1
itrate	NO ₃ -1
itrite	NO ₂ -1
erchlorate	ClO ₄ -1
ermanganate	MnO ₄ -1
hiocyanate	SCN-1

-2		
carbonate	CO ₅ -2	
chromate	CrO+2	
dichromate	Cr ₂ O ₇ -2	
monohydrogen phosphate	HPO4-2	
oxalate	C2O4-2	
sulfate	SO ₄ -2	
sulfite	SO ₃ -2	
thiosulfate	S2Oy-2	

-3	
arsenate	AsO ₄ -3
arsenite	AsO ₃ -2
borate	BO ₃ -3
phosphate	PO4'3
ferricyanide	Fe(CN) ₆ -3

-4	
ferrocyanide	Fe(CN)6-4
pyrophosphate	P207-4
orthosilicate	SiO ₄ -4

-5		
periodate	1065	

Oxidation Number - represents the number of electrons lost or gained by an element

Positive Oxidation Number: lost e

Negative Oxidation Number: gained e

Group # will tell you the Oxidation # **except** for Transition Metals

- Can potentially have more than one Oxidation #.
 - Your periodic table identifies the Transition metals with a circle around the Atomic Numbers
 - Examples coming soon be patient!

Ionic Bonding - Lewis Dot Structure

Shows the Valence Electrons

i =

Ca C S

1

Ionic Bonding Process: Electron from Cation to Anion

Na C

Ca C

Ionic Bonding with Transition Metals

You will be told the charge of the Transition Metal

Iron (II) Oxide

Iron (III) Oxide

Covalent Bonding

Covalent Bond - share electrons to have 8

- Between 2 non-metals

Covalent Bonding

H O H

O C C