

UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI

Campus Senador Helvídio Nunes de Barros - CSHNB

Curso Bacharelado em Sistemas de Informação

ALGORITMOS E PROGRAMAÇÃO I

Glauber Dias Gonçalves ggoncalves outpi.edu.br

CONTEÚDO

- Representação de algoritmos
 - Fluxogramas
 - Linguagem algorítmica (nosso "portugol")

FORMAS DE REPRESENTAR UM ALGORITMO

- 1. Linguagem Natural (aula anterior)
 - Descrição em português via tópicos ou passos

2. Fluxogramas

- Representação gráfica para descrever algoritmos.
- 3. Linguagem Algorítmica (Pseudocódigo)
 - Linguagem mais formal para descrever algoritmos.
 - Ex.: Portugol (Programação Estruturada).

Linguagem Natural

Conversão de temperatura de Fahrenheit
 para Celsius:

3 passos

 Na temperatura dada, subtraia 32, multiplique por 5 e divida por 9;

3. Exiba o valor do resultado. 👡

$$\frac{{}^{\circ}C}{5} = \frac{{}^{\circ}F - 32}{9}$$

LINGUAGEM NATURAL (REVISÃO)

Média de três notas de um aluno

- 1. Solicite as três notas;
- 2. Some as três notas e divida o resultado por três;
- 3. Exiba o valor do resultado final.

LINGUAGEM NATURAL (REVISÃO)

• Faça o algoritmo para calcular a área de um triângulo em linguagem natural.

LINGUAGEM NATURAL (REVISÃO)

 Faça o algoritmo para calcular a área de um triângulo em linguagem natural.

- 1. Solicite base e altura do triângulo;
- 2. Multiplique a base pela altura e divida por 2;
- Exiba o valor do resultado final.

FLUXOGRAMAS

- Uso de diagramas para representar passos do algoritmo
- Formato do diagrama representa um tipo de instrução computacional

Início/Conector

FL'UXOGRAMAS

•Fluxograma do algoritmo para converter uma temperatura de graus Fahrenheit

para Celsius: 212°F 100°C **Processamento** Entrada 20°C 70 °F 0°C 32 °F Exibir Terminador Resultado $^{\circ}$ *F* − 32

FLUXOGRAMAS

•Fluxograma do algoritmo para converter uma temperatura de graus Fahrenheit

$$\frac{{}^{\circ}C}{5} = \frac{{}^{\circ}F - 32}{9}$$

FL'UXOGRAMA

•Fluxograma do algoritmo da média de três notas:

FL¹²UXOGRAMA

•Fluxograma do algoritmo da média de três notas:

FL¹³UXOGRAMA

•Fluxograma de um algoritmo para calcular a área de um triângulo.

FL¹UXOGRAMA

•Fluxograma de um algoritmo para calcular a área de um triângulo.

LINGUAGEM ALGORITMICA

- Estruturas / aspectos importantes:
 - Variável
 - Tipos de variável
 - Atribuição à variável
 - Entrada e saída de dados
 - Bloco de comandos

 Variável é um local na memória principal onde serão armazenados valores utilizados durante a execução de MEMÓRIA

programas.

200		
mas.	01	3,14
	02	
Número	03	Algoritmos
	04	31
Disciplina	05	não
Idade	06	
Encontrou	07	
	08	
	09	

- Tipos básicos de variáveis
 - Inteiro:

```
0; 1; 2; 3; 32.000; -1; -2; ...
```

∘ Real:

```
3,1432; 1; 2; -0,4; -1000; ...
```

- Lógico (ou booleano):
 - <u>verdadeiro</u> ou <u>falso</u> (<u>sim</u> ou <u>não</u>)
- Caractere (valor representado entre aspas):

```
■ "A"; "32"; "#"; "Algoritmos I"; "@lg0r1tm0sI"; ...
```

- Declaração de variáveis
 - nome_da_variável: tipo
 - O nome deve iniciar com letra seguida de letras ou números, sem espaços ou símbolos (exceto undeline).
 - Exemplos:
 - numero, Num, n, i, idade: <u>inteiro</u>;
 - salario, média_das_notas, altura, f: <u>real</u>;
 - Positivo, util, colorido: <u>lógico</u>;
 - Nome, sexo, naturalidade: <u>caractere</u>;

- Declaração de variáveis
 - nome_da_variável: tipo
 - O nome deve iniciar com letra seguida de letras ou números, sem espaços ou símbolos (exceto undeline).
 - Exemplos de declarações erradas:
 - 2numero: inteiro;
 - s@l@rio, media das notas, f(x): real;

- Atribuição de valor a uma variável
 - Valores podem ser atribuídos (ou armazenados) em variáveis de acordo com seus tipos.

Variáveis chamadas de **a**, **b** e **c** do tipo **inteiro** com os valor **1**, **2** e **3** atribuídos, respectivamente. A variável **d** não possui valor atribuído.

- Atribuição de valor a uma variável
 - Valores podem ser atribuídos (ou armazenados) em variáveis de acordo com seus tipos.
 - Exemplos:
 - Numero ← 2;
 - \blacksquare altura ← 1,71;
 - colorido ← <u>falso</u>;
 - Sexo ← "masculino";

LINGUAGEM ALGORÍTMICA: entrada e saída (E/S)

- Leia (X): atribui um valor fornecido pelo usuário a uma variável (X é uma variável qualquer).
- •Escreva (X): exibe o valor armazenado em uma variável (X é uma variável qualquer).
- Observações: a entrada padrão é o teclado e a saída padrão é a tela
- ●Entrada/Saída (E/S) ou Input/Output (I/O)

Conversão de Fahrenheit para Celsius:

```
<u>algoritmo</u> Converte_fahrenheit_celsius;
   fahrenheit. celsius: real
<u>início</u>
    <u>leia</u> (fahrenheit)
    celsius ← (fahrenheit - 32) * 5/9
    escreva (celsius)
fim.
```

Conversão de Fahrenheit para Celsius:

Conversão de Fahrenheit para Celsius:

```
<u>algoritmo</u> Converte_fahrenheit_celsius;
fahrenheit, celsius: real:
<u>início</u>
    escreva ("Digite a temperatura em Fahrenheit:");
    leia (fahrenheit);
    celsius \leftarrow (fahrenheit-32) * 5/9;
    escreva ("Conversão p/ Celsius: ", celsius);
fim.
```


Mensagens na tela para interação com o usuário

Conversão de Fahrenheit para Celsius:

```
<u>algoritmo</u> Converte_fahrenheit_celsius;
fahrenheit, celsius: real:
<u>início</u>
    escreva ("Digite a temperatura em Fahrenheit:");
    leia (fahrenheit);
    celsius \leftarrow (fahrenheit-32) * 5/9;
    escreva ("Conversão p/ Celsius: ", celsius);
fim.
```


Média de três notas

```
algoritmo Calcular_media;
Média, N1, N2, N3: real;
início
    escreva ("Digite a primeira nota:");
    <u>leia</u> (N1);
    <u>escreva</u> ("Digite a segunda nota:");
    leia (N2);
    <u>escreva</u> ("Digite a terceira nota:");
    leia (N3);
    Média \leftarrow (N1 + N2 + N3)/3;
    escreva ("Média = ", Média);
fim.
```


Média de três notas

```
algoritmo Calcular_media;
Média, N1, N2, N3: real;
início
    escreva ("Digite a primeira nota:");
    <u>leia</u> (N1);
    <u>escreva</u> ("Digite a segunda nota:");
    leia (N2);
    escreva ("Digite a terceira nota:");
    leia (N3);
    Média \leftarrow (N1 + N2 + N3)/3;
    escreva ("Média = ", Média);
fim.
```


Operador	Símbolo	Exemplo
Adição	+	a + b
Subtração	-	a - b
Multiplicação	*	a * b
Divisão	1	a / b
Divisão Inteira	<u>div</u>	a <u>div</u> b
Resto de Divisão Inteira	mod	a <u>mod</u> b
Exponenciação	٨	a ^ b
Raiz Quadrada	<u>raiz</u>	<u>raiz</u> (a)

 hipotenusa de um triângulo, dados seus catetos:

```
algoritmo Calcula_hipotenusa;
a, b, c: real;
início
    escreva ("Digite o 1° cateto:");
     <u>leia</u> (b);
    escreva ("Digite o 2" cateto:");
    <u>leia</u> (c);
    a \leftarrow raiz(c^*c + b^*b);
    escreva ("Hipotenusa = ", a);
<u>fim</u>.
```

 hipotenusa de um triângulo, dados seus catetos:

```
algoritmo Calcula_hipotenusa;
a. b. c: real:
início
    escreva ("Digite o 1" cateto:");
     <u>leia</u> (b);
    escreva ("Digite o 2" cateto:");
    <u>leia</u> (c);
    a \leftarrow raiz(c^*c + b^*b);
    escreva ("Hipotenusa = ", a);
<u>fim</u>.
```


 hipotenusa de um triângulo, dados seus catetos:

```
algoritmo Calcula_hipotenusa;
a, b, c: real;
início
    escreva ("Digite o 1" cateto:");
     <u>leia</u> (b);
    escreva ("Digite o 2" cateto:");
    <u>leia</u> (c);
    a \leftarrow raiz(c^*c + b^*b);
    escreva ("Hipotenusa = ", a);
<u>fim</u>.
```


ATIVIDADES EM SALA DE AULA

Faça fluxogramas para um algoritmo que transforma uma medida em milhas para metros.

O usuário deverá digitar um valor em milhas e o algoritmo deverá exibir o seu valor em metros. Uma milha terrestre tem 1.609,3 metros.

ATIVIDADES EM SALA DE AULA

Faça fluxogramas para um algoritmo que calcula a velocidade média (Km/h) que um carro necessita ter para sair de uma cidade *A* e chegar a uma cidade *B* em um determinado tempo.

A distância em metros entre as cidades e o tempo em minutos de percurso são fornecidos pelo usuário.

ATIVIDADES EM SALA DE AULA

Faça um algoritmo em linguagem algorítmica para calcular a média de consumo de combustível em Km/L de um veículo qualquer. O usuário deverá informar:

- a posição inicial marcada em metros
- a posição final marcada em metros
- a quantidade de litros abastecida

SUMÁRIO

- Representação de algoritmos:
 - Fluxogramas
 - Representação gráfica
 - Visão geral ocultando detalhes técnicos
 - Linguagem algorítmica:
 - Regras/sintaxe de Programação estruturada
 - Foco no problema e oculta detalhes de linguagem de programação
- Próxima aula: lista de atividades 02

DÚVIDAS?

