COMP5046: Statistical Phrase Structure Parsing

Joel Nothman joel.nothman@sydney.edu.au

School of Information Technologies University of Sydney

2018-05-22

Part I

Probabilistic Context Free Grammars

Preposition attachment ambiguity

I saw the girl on the hill with the telescope

THE UNIVERSITY OF SYDNEY

Coordination ambiguity

Ambiguity

0000

THE UNIVERSITY OF SYDNEY

I do not like green eggs and bark

Example

Coordination ambiguity

Ambiguity

I do not like green eggs and bark

- I do not like green (eggs and bark)
- I do not like (green eggs and bark)
- I do not (like green eggs and bark)
- I (do not like green eggs and bark)

Coordination ambiguity

Ambiguity

THE UNIVERSITY OF

I do not like green eggs and bark

Note: this case also relies on homonymy resulting in a part of speech ambiguity

Joel Nothman Statistical Parsing 2018-05-22

Noun compound ambiguity

THE UNIVERSITY OF SYDNEY

Natural language processing is tricky

Ambiguity

THE UNIVERSITY OF

- (almost) any useful natural language grammar is ambiguous
- and most wide-coverage grammar is highly ambiguous
- we must choose the correct parse amongst many
- we do this using statistical models of language
- and select the most probable parse

THE UNIVERSITY OF

Context-free Phrase Structure Grammar

- A CFG consists of a list of rewrite rules or production rules
- Each rule is of the form $\langle X \longrightarrow Y Z \rangle$ (need not be binary)
- A string is considered part of the language if it reduces to an S symbol spanning the whole sentence
- Each production can be written as a branch in a tree:

Can find all parses efficiently with CKY or Earley

2018-05-22

Probabilistic CFGs

Ambiguity

- how do we handle ambiguous sentences?
 probabilities!
- how can we assign probabilities to parse trees?
- assign probabilities to individual production rules: $P(N_i \longrightarrow \zeta_i | N_i)$ abbrev. to $P(N_i \longrightarrow \zeta_i)$

PCFG Assumptions

Ambiguity

THE UNIVERSITY OF

- Place Invariance $P(N_i \longrightarrow \zeta_i)$ is the same no matter where in the sentence the rule is being applied
- Context Freeness P does not depend on words dominated by the subtree
- Ancestor Freeness P does not depend on parent/ancestor nodes in tree
- given a sentence S and a tree T:

$$P(T,S) = \prod_{N_i \longrightarrow \zeta_i \in T} P(N_i \longrightarrow \zeta_j)$$
 (1)

2018-05-22

An PCFG example grammar

THE UNIVERSITY OF SYDNEY

$S \rightarrow NP VP$.80	$Det \rightarrow that [.05] \mid the [.80] \mid a$	[.15]
$S \rightarrow Aux NP VP$.15	$Noun \rightarrow book$.10
$S \rightarrow VP$.05	$Noun \rightarrow flights$	[.50]
$NP \rightarrow Det Nom$	[.20]	$Noun \rightarrow meal$.40
NP → Proper-Noun	.35	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$.05	$Verb \rightarrow include$	[.30]
$NP \rightarrow Pronoun$.40	$Verb \rightarrow want$	[.40]
Nom → Noun	.75	$Aux \rightarrow can$	[.40]
Nom → Noun Nom	.20	$Aux \rightarrow does$	[.30]
Nom → Proper-Noun Nom	.05	$Aux \rightarrow do$	[.30]
VP ightarrow Verb	.55	Proper-Noun → TWA	.40
$VP \rightarrow Verb NP$.40	Proper-Noun → Denver	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you[.40] \mid I[.60]$	

Jurafsky and Martin, Figure 12.1

Joel Nothman Statistical Parsing 2018-05-22

Example

0000

An PCFG example parse

THE UNIVERSITY OF

Rules			P
S	\rightarrow	Aux NP VP	.15
NP	\rightarrow	Pro	.40
VP	\rightarrow	V NP NP	.05
NP	\rightarrow	Nom	.05
NP	\rightarrow	PNoun	.35
Nom	\rightarrow	Noun	.75
Aux	\rightarrow	Can	.40
NP	\rightarrow	Pro	.40
Pro	\rightarrow	you	.40
Verb	\rightarrow	book	.30
PNoun	\rightarrow	TWA	.40
Noun	\rightarrow	flights	.50

Jurafsky and Martin, Figure 12.2(a)

An PCFG example parse

Ambiguity

Rules		P	
S	\rightarrow	Aux NP VP	.15
NP	\rightarrow	Pro	.40
VP	\rightarrow	V NP	.40
NP	\rightarrow	Nom	.05
Nom	\rightarrow	PNoun Nom	.05
Nom	\rightarrow	Noun	.75
Aux	\rightarrow	Can	.40
NP	\rightarrow	Pro	.40
Pro	\rightarrow	you	.40
Verb	\rightarrow	book	.30
Pnoun	\rightarrow	TWA	.40
Noun	\rightarrow	flights	.50

Example

0000

Jurafsky and Martin, Figure 12.2(b)

2018-05-22

13

Example probabilities

• 12.2(a)

THE UNIVERSITY OF

$$VP \longrightarrow V NP NP \quad 0.05$$

 $NP \longrightarrow PNoun \quad 0.35$
 $NP \longrightarrow Nom \quad 0.05$

- $0.05 \times 0.35 \times 0.05 = 0.000875$
- 12.2(b)

$$VP \longrightarrow V NP$$
 0.40
 $NP \longrightarrow Nom$ 0.05
 $Nom \longrightarrow PNoun Nom$ 0.05

• $0.40 \times 0.05 \times 0.05 = 0.001$

Training PCFGs

- can be trained like MM and HMM for sequence tagging
- if an annotated corpus is available read counts off for relative frequencies (Maximum Likelihood Estimate)
- for unannotated data use Inside-Outside algorithm which is a tree generalisation of Forward-Backward for HMMs
- apply smoothing

Joel Nothman Statistical Parsing 2018-05-22 THE UNIVERSITY OF

15

Finding the most probable PCFG parse

- similar to Viterbi algorithm for finding best tag sequence
- but with CKY chart
- computed recursively from bottom up
- initial step $P(N_i \longrightarrow w_i)$
- calculate product of child probabilities at parent position
- choose maximum for each parent category: $\forall i$, argmax $P(N_i \rightarrow w_i)$

See NLTK chart parser demos

Probabilistic CKY

Ambiguity

THE UNIVERSITY OF

```
function CYK(words,grammar) returns The most probable parse
                                               and its probability
 Create and clear \pi[num\_words, num\_words, num\_nonterminals]
 # base case
 for i \leftarrow 1 to num\_words
    for A \leftarrow 1 to num\_nonterminals
      if (A \rightarrow w_i) is in grammar then
         \pi[i,i,A] \leftarrow P(A \rightarrow w_i)
 # recursive case
 for span \leftarrow 2 to num\_words
    for begin \leftarrow 1 to num\_words - span + 1
      end \leftarrow begin + span - 1
      for m = begin to end - 1
         for A = 1 to num nonterminals
         for B = 1 to num\_nonterminals
         for C = 1 to num\_nonterminals
            prob = \pi [begin, m, B] \times \pi [m + 1, end, C] \times P(A \rightarrow BC)
            if (prob > \pi [begin, end, A]) then
               \pi [begin, end, A] = prob
               back[begin,end,A] = \{m,B,C\}
 return build_tree(back[1,num_words, 1]), \pi [1, num_words, 1]
```

Jurafsky and Martin, Figure 12.3 (corrected)

Joel Nothman Statistical Parsing 2018-05-22 THE UNIVERSITY OF

Problems with Probabilistic PCFGs

- bias towards smaller trees
- bias to include non-terminals with fewer alternative expansions
- PCFGs don't account for word co-occurrences, i.e. plausibility
- in fact, there's lots they don't take into account
- much is addressed by Collins' parser and more recent work:
 - · lexicalised production rules with backoff
 - annotated non-terminals
 - · discriminative reranking

Joel Nothman Statistical Parsing 2018-05-22

18

Comparative parsers

THE UNIVERSITY OF SYDNEY

	CFG	PCFG	Dep
Is x a valid sentence?	\checkmark	?	?
Estimate the probability of x		\checkmark	
Identify best parse under ambiguity		\checkmark	\checkmark
Extract constituents (phrases, clauses, etc.)	\checkmark	\checkmark	
Extract useful paths between words	?	?	\checkmark
Parse in under $O(n^2)$			\checkmark

Joel Nothman Statistical Parsing 2018-05-22

Part II

Annotated PCFGs and Reranking

Undergeneration and overgeneration

Underspecified

THE UNIVERSITY OF

- Context-free phrase-structure grammar is a language for writing grammars
- A perfect grammar will not under- or over-generate
 - ...This is really really hard!
- $\langle NP \longrightarrow DT JJ \rangle$, e.g. 'The elderly'

2018-05-22

Undergeneration and overgeneration

- Context-free phrase-structure grammar is a language for writing grammars
- A perfect grammar will not under- or over-generate
 - ... This is really really hard!
- $\langle NP \longrightarrow DT JJ \rangle$, e.g. 'The elderly'
 - ...But not an elderly :(
- In practice, all grammars are at least a little leaky

THE UNIVERSITY OF

Making a grammar less leaky

- Most words have their own usage kinks
- Conflating words into categories invites problems
 - DT for the, a, an, this, that...
 - Small class, but not all behave the same!
 - e.g. the dogs vs. a dogs
 - e.g. the old vs. an old
- A basic PCFG trained on PTB is underspecified
- E.g. grammars are better if structure is driven by the words This is called *lexicalisation*

Joel Nothman Statistical Parsing 2018-05-22

Lexicalisation: letting words rule

Underspecified

THE UNIVERSITY OF

- Phrase-structure grammars assign strings, e.g. DT
 - Each string is an arbitrary identifier
 - Meaning of the strings determined by their usage in the grammar
 - $\langle NP \longrightarrow DT \ NN \rangle$ means a DT is 'a class of words that occur before a noun as part of an NP'
 - $\langle DT \longrightarrow the/a/an \rangle$ means a DT is 'a class of words including the, a and an
- Instead of strings, we can assign structured objects
- This helps us to declare more at once, making finer-grained, word-appropriate distinctions

Joel Nothman Statistical Parsing 2018-05-22

Preposition Phrase (PP) attachment

- I saw the girl on the hill...
 - ... with the binoculars.
 - ... with the dress.
 - with the church.
- these attachment choices require knowledge of the noun
- I saw the girl on the hill...
 - ... with the telescope.
 - ... through the telescope.
 - ... beside the highway.
- these attachment choices require knowledge of the preposition

Joel Nothman

THE UNIVERSITY OF

Lexicalised PCFGs

THE UNIVERSITY OF

- we need more information than non-terminals:
 - to constrain the grammar
 - to model attachment better
- add information about the words (lexicalise)
- which words to choose? heads
- add this information to the rules (expand the rule set)

2018-05-22

Icel Nothman Statistical Parsing

Lexicalised PCFG example

THE UNIVERSITY OF SYDNEY

Lexicalised PCFG example

THE UNIVERSITY OF SYDNEY

2018-05-22

Joel Nothman Statistical Parsing

Lexicalised PCFG example

THE UNIVERSITY OF SYDNEY

Lexicalised PCFG rules

THE UNIVERSITY OF

 $S \longrightarrow NP NP VP$

1

S(bought) → NP(week) NP(IBM) VP(bought)

,

 $S(bought, VBD) \longrightarrow NP(week, NN) NP(IBM, NNP) VP(bought, VBD)$

THE UNIVERSITY OF

Problems with Lexicalised PCFGs

- massive increase in the number of rules
- potential reduction in coverage
- increased sparsity is the biggest problem
 - backoff or interpolation models
 - smoothing
- heads still don't provide all the info we need
 - e.g. preposition + head noun for PPs

2018-05-22

Ancestor freeness assumption is wrong

- e.g. choice of NP expansion varies dramatically with parent
- overall NP → NP PP is preferred
- under S, NP → PRP is preferred
- we can annotate the nodes with their parent (Johnson, 1998)
- and/or their grandparent

Underspecified

THE UNIVERSITY OF

Joel Nothman Statistical Parsing 2018-05-22

Parent annotation (Johnson, 1998)

Underspecified

THE UNIVERSITY OF SYDNEY

Joel Nothman Statistical Parsing 2018-05-22

Annotation in general

Underspecified

THE UNIVERSITY OF

- perhaps the Penn Treebank labels are too coarse
- we can choose to split certain labels (e.g. with parent)
- heading towards feature-based grammars

Underspecified

THE UNIVERSITY OF SYDNEY

Unlexicalised PCFGs (Klein and Manning, 2003)

- add the minimum annotation to reach lexicalised performance
- annotation with open class words not allowed
- lots of small annotations, including annotation of:
 - parents

THE UNIVERSITY OF

- splitting % into a separate POS tag
- adding -AUX to auxiliary verbs
- adding Penn Treebank annotations (NP-TMP is child of S)
- possessive NPs

Underspecified

- VPs distinguished: finite, infinitive and gerund
- depth in tree
- or split rules automatically (Petrov and Klein)

2018-05-22

Joel Nothman Statistical Parsing THE UNIVERSITY OF

Generative and discriminative models

- joint or generative models
 - model **both** observed instance (i.e. outcome) and classification
 - as if class **generated** instance
 - requires modelling probability of an observation
 - language models, Naïve Bayes, hidden markov models, PCFGs
 - trained using (smoothed) Maximum Likelihood Estimate
- conditional or discriminative models
 - model classification given observed instance
 - may incorporate arbitrary features as evidence
 - Maximum Entropy, SVMs, perceptrons
 - trained using (smoothed) conditional Maximum Likelihood Estimate

Joel Nothman Statistical Parsing 2018-05-22

Discriminative reranking

Underspecified

THE UNIVERSITY OF

- PCFGs are a generative model: model the joint probability of a sentence and its parse
- have to model dependencies explicitly

- \therefore use a PCFG to generate *n* best parses (n = 50?)
- then re-score them with a discriminative model
- training: find feature weights scoring correct parses higher than alternatives
- similar methods are successful in information retrieval

THE UNIVERSITY OF

- features (evidence) derived from sentence and parse
- not constrained to local production decisions
 - features to prefer right-branching trees
 - features to prefer heavy constituents at end
 - features to require subject-verb agreement
- can incorporate multiple formalisms/theories/parsers
 - e.g. compare proposed phrase structure parse to dependency parser output
- features can be expensive to compute relative to initial score
- state-of-the art parsing $\approx 91\%$ F_1 over PTB constituencies

Joel Nothman Statistical Parsing 2018-05-22

Take away

THE UNIVERSITY OF

- A PCFG adds probabilities to each production rule in the grammar
- Defines a language model:

Underspecified

- probability of sentence = product of probability of production rules
- May decide among ambiguous structures
- Chart parsing as for CFGs, like Viterbi for sequences
- Discriminative reranking can help make generative models perform better

