Bioinformatics for Metabolomics and Fluxomics

RL 1 & 2; pathway reconstruction

RL 2; metabolic flux analysis

Metabolites and Metabolic Fluxes Play Key Roles in Organisms

First Example Application Domain : 200,000 metabolites in plants

original LC-QTOF MS profiles

significantly different metabolites (factor 2 or more, 99% conf., n=5)

Metabolomics: (large scale) measurements of metabolites and their levels

Metabolites and Metabolic Fluxes Play Key Roles in Organisms

Second Example : metabolic flux analysis in micro-organisms

Metabolic flux analysis of *E. coli* strain grown in chemostat culture

Fluxomics: (large scale) measurements of metabolic fluxes

Metabolites and Metabolic Fluxes Play Key Roles in Organisms

Third Example : Human and Animal Brain Neurotransmitter Cycling

from: Metabolic Engineering (2004)

Fluxomics: (large scale) measurements of metabolic fluxes

Goals Project

develop bioinformatics methods for

- metabolite and pathway identification
- quantification of metabolite levels and isotopic composition
- analysis of dynamic metabolic experiments
- quantification of metabolic fluxes

Two Connected Research Lines

RL 1; metabolite identification

RL 1 & 2; pathway reconstruction

RL 2; metabolic flux analysis

Expertise in the Netherlands Bundled

Key Participants

Roeland C.H.J. van Ham, Raoul J. Bino,

Centre for BioSystems Genomics / Plant Research International, Wageningen

Wouter A. van Winden, Joseph J. Heijnen, Kluyver Centre / Delft University of Technology, Dept. of Biotechnology

Johannes H.G.M. van Beek,

Centre for Medical Systems Biology / VU University medical centre, Amsterdam

Ivo H.M. van Stokkum, **Centre for Medical Systems Biology** / Applied Computer Science, Vrije Universiteit, Amsterdam

Further participants / consultants / collaborators : on the one hand computer science/database (Bakker/Kok, Bal), signal analysis (Verheijen, Van Ormondt/De Beer) and bioinformatics (a.o. Heringa) expertise.

On the other hand many scientists with metabolic research expertise and interests.

RL1: Metabolite Identification

- Develop platform for identification of metabolites from highthroughput metabolome data
- algorithms for compound identification from (LC-) mass spectrometry and NMR spectroscopy
- databases for raw and processed information; retrieving matching spectra of known chemical composition
- standardized and automated procedure for metabolite identification, in particular from LC-MS/MS (liquid chromatography coupled to tandem MS)

Metabolite Identification

Fig. 2 Typical LC-QTOF-MS-ESI-positive chromatogram (given as base peak intensities) of aqueous methanol extracts from red fruits of control (a) and $hp-2^{ag}$ (b) Lycopersicon esculentum (tomato) plants (numbers at peaks refer to retention time and mass), and mass peaks (c) that were significantly (P < 0.06) increased at least twofold in fruits of $hp-2^{ag}$ plants compared with the control. All chromatographic data were processed and compared using METALICN software. Peaks were identified based on mass fragmentation patterns and PDA absorbance: peak 1, quercetin-3-trisaccharide: 2, rutin: 3, tomatine: 4, naringenin-chalcone glucoside.

Bino et al. New Phytologist (2005) **166**: 427–438

Metabolite Identification

Health compounds in cherry tomatoes

RL2: Metabolic Flux Analysis

- Develop platform for flux analysis, derived from stable isotope incorporation measured with NMR and mass spectrometry
- a problem solving environment for simulation and analysis of metabolic flux models and experimental design
- optimization algorithms for flux quantification
- new metabolic pathway modules

¹³C-experiment for metabolic flux analysis in micro-organisms

Detection of mass isotopomer fractions of glucose-6-phosphate with LC-MS

Flux Quantification in vivo Animal Experiment

Fit to NMR
multiplets of the
4-carbon of
glutamate from a
biopsy from
porcine heart

Flux Quantification in Vivo Animal Experiment

Myocardial Metabolism

Integrated Problem Solving Environment

Integrated PSE (Problem Solving Environment) for metabolic flux experiment analysis

Large Data Sets Analysed

Summary

Bioinformatics tools and problem solving environments are developed for

- metabolite identification and quantification
- analysis of dynamic experiments and quantification of metabolic fluxes
- expertise in the Netherlands is bundled
- collaboration of bioinformaticians, computer scientists and domain experts RL1

