

Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

Graded Quiz

Latest Submission Grade 100%

1.	Which approach ensures continual exploration? (Select all that apply)	1/1 point
	Exploring starts	
	Correct Correct Exploring starts guarantee that all state-action pairs are visited an infinite number of times in the limit of an infinite number of episodes.	
	On-policy learning with a deterministic policy	
	$ ightharpoonup$ On-policy learning with an ϵ -soft policy	
	\odot Correct Correctl ϵ -soft policies assign non-zero probabilities to all state-action pairs.	
	☑ Off-Policy learning with an ε-soft behavior policy and a deterministic target policy	
	Correct Correctt ε-soft policies have non-zero probabilities for all actions in all states. The behavior policy is used to generate samples and should be exploratory.	
	Off-Policy learning with an ϵ -soft target policy and a deterministic behavior policy	
2.	When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1 / 1 point
	When the problem is continuing and there are sequences of states, actions, and rewards	
	When the problem is continuing and there is a model that produces samples of the next state and reward	
	When the problem is episodic and there are sequences of states, actions, and rewards	
	Correct Correct! Well-defined returns are available in episodic tasks.	
	When the problem is episodic and there is a model that produces samples of the next state and reward	
	 Correct Correct! Well-defined returns are available in episodic tasks. 	
3.	Which of the following learning settings are examples of off-policy learning? (Select all that apply)	1/1 point
	Learning about multiple policies simultaneously while following a single behavior policy	
	⊙ Correct Correct Off-policy learning enables learning about multiple target policies simultaneously using a single behavior policy.	
	✓ Learning the optimal policy while continuing to explore	
	⊙ Correct Correct! An off-policy method with an exploratory behavior policy can assure continual exploration.	
	✓ Learning from data generated by a human expert	
	Correct Correct Applications of off-policy learning include learning from data generated by a non-learning agent or	

human expert. The policy that is being learned (the target policy) can be different from the human expert's policy (the behavior policy).

4.	Which of the following is a requirement for using Monte Carlo policy evaluation with a behavior policy b for a target policy π ?	1 / 1 point
	$igcirc$ All actions have non-zero probabilities under π	
	$igcom_{s}$ For each state s and action a , if $b(a\mid s)>0$ then $\pi(a\mid s)>0$	
	$igodeligapsup igodeligap $ For each state s and action a , if $\pi(a \mid s) > 0$ then $b(a \mid s) > 0$	
	\bigodot Correct Correct! Every action taken under π must have a non-zero probability under $b.$	
5.	When is it possible to determine a policy that is greedy with respect to the value functions v_π,q_π for the policy π ? (Select all that apply)	1 / 1 point
	${m arphi}$ When state values v_π and a model are available	
	Correct Correct! With state values and a model, one can look ahead one step and see which action leads to the best combination of reward and next state.	
	$lacksquare$ When state values v_π are available but no model is available.	
	$igvee$ When action values q_π and a model are available	
	○ Correct Correct! Action values are sufficient for choosing the best action in each state.	
	${\color{red} \checkmark}$ When action values q_{π} are available but no model is available.	
	○ Correct Correct! Action values are sufficient for choosing the best action in each state.	
6	Monte Carlo methods in Reinforcement Learning work by	1/1 point
٠.	Averaging sample rewards	1/1 point
	Averaging sample returns	
	Performing sweeps through the state set	
	O Planning with a model of the environment	
	✓ Correct Correct! Monte Carlo methods in Reinforcement Learning sample and average returns much like bandit methods sample and average rewards.	
7.	Suppose the state s has been visited three times, with corresponding returns $8,4$, and 3 . What is the current Monte Carlo estimate for the value of s ?	1/1 point
	○ 3	
	O 15	
	(a) 5	
	O 3.5	
	Correct Correct! The Monte Carlo estimate for the state value is the average of sample returns observed from that state.	

8.	When does Monte Carlo prediction perform its first update?	1 / 1 point
	After the first time step	
	When every state is visited at least once	
	At the end of the first episode	
	✓ Correct Correctt Monte Carlo Prediction updates value estimates at the end of an episode.	
9.	In Monte Carlo prediction of state-values, memory requirements depend on (select all that apply)	1/1 point
	The number of states	
	 Correct Correct! Monte Carlo Prediction needs to store the estimated value for each state. 	
	The number of possible actions in each state	
	✓ The length of episodes	
	 Correct Correct! Monte Carlo Prediction needs to store the sequence of states and rewards, during an episode 	
10	In an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other actions with the same value?	1 / 1 point
	$\bigcirc \ 1-\epsilon$	
	○ €	
	$\bigcirc \frac{\epsilon}{A}$	
	 Correct Correct! The highest valued action still has a chance of being selected as an exploratory action. 	