1°S

Eléments de correction de l'épreuve commune

Exercice 1

1)Soit M(x ; y) M $\in \Delta$ ssi \overrightarrow{AM} et \overrightarrow{u} sont colinéaires or \overrightarrow{AM} $\binom{x-2}{y-5}$ et \overrightarrow{u} $\binom{-3}{2}$ donc d'après la Condition de colinéarité 2 ×(x-2) - (-3) (y-5) = 0 soit 2x-4+3y-15=0 soit 2x+3y-19=0

2) Soit M (x; y) M \in (AB) ssi \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires or \overrightarrow{AM} $\begin{pmatrix} x-2\\y-5 \end{pmatrix}$ et \overrightarrow{AB} $\begin{pmatrix} -8\\-4 \end{pmatrix}$ donc d'après la condition de colinéarité -4 (x-2) – (-8) (y-5) = 0 soit – 4x+8y-32=0

3) d est parallèle à (AB) donc d a pour équation -4x + 8y + c = 0 or $C \in d$ donc ses coordonnées vérifient l'équation donc $-4 \times 3 + 8 \times (-2) + c = 0$ donc c = 28donc une équation de d est :

$$-4x + 8y + 28 = 0$$

4) Δ et (OC) sont parallèles ssi leurs vecteurs directeurs \vec{u} et \overrightarrow{OC} sont colinéaires

Or \overrightarrow{OC} $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ et \overrightarrow{u} $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ donc \overrightarrow{OC} = $-\overrightarrow{u}$ donc Δ et (OC) sont parallèles.

Exercice 2

1) $v_2 = \frac{1}{4} \times v_1 + 120 = 150$ litres au bout de 2 semaines

 $v_3 = \frac{1}{4} \times v_2 + 120 = 157,5$ litres au bout de 3 semaines

2) chaque semaine il reste $\frac{1}{4}$ de la semaine précédente (car il perd les $\frac{3}{4}$) auxquels on rajoute 120 nouveaux litres . donc $v_{n+1} = \frac{1}{4}v_n + 120$

 $(3)v_2 - v_1 \neq v_3 - v_2$ la suite est donc non arithmétique

$$\frac{v_2}{v_1} \neq \frac{v_3}{v_2}$$
 la suite est donc non géométrique

$$4)u_{n+1} = 160 - v_{n+1} = 160 - \left(\frac{1}{4}v_n + 120\right) = -\frac{1}{4}v_n + 40 = \frac{1}{4}(-v_n + 160) = \frac{1}{4}u_n$$

Donc la suite (u_n) est géométrique de raison $\frac{1}{4}$ et de premier terme $u_1=160-v_1=40$

5) donc d'après le cours u_n = $u_1 \, q^{n-1}$

Soit ici
$$u_n = 40 \times (\frac{1}{4})^{n-1}$$

Donc
$$v_n = 160 - 40 \times (\frac{1}{4})^{n-1}$$

6) Au bout de 10 semaines on a déposé 10×120 litres mais il restera $v_{10} \approx 160$ litres Donc 1040 litres auront été utilisés ou se seront décomposés .

Exercice 3

1) Pour étudier les variations de f on étudie le signe de $f'(x) = 3x^2 - 6x - 5$

 $\Delta = 96$ donc deux solutions $x_1 = \frac{6 - \sqrt{96}}{6} = \frac{3 - 2\sqrt{6}}{3}$ et $x_2 = \frac{3 + 2\sqrt{6}}{3}$ d'après la règle du signe d'un trinôme f'(x) est du signe de a à l'extérieur des racines

Donc f'(x) > 0 sur $]-\infty$; $x_1[\cup]x_2$; $+\infty$ [et f est donc strictement croissante

$$f'(x) < 0$$
 sur $|x_1|$; x_2 [et f est donc strictement décroissante

2) De même $g'(x) = \frac{-1(x+1)-1(4-x)}{(x+1)^2} = \frac{-5}{(x+1)^2} < 0$ donc g est strictement décroissante sur $]-\infty$; -1[et sur]-1; $+\infty[$

$$3) f(0) = 4 g(0) = 4$$

Donc les 2 courbes passent par A (0; 4)

$$f'(0) = -5 et g'(0) = -5$$

Donc les tangentes en A sont communes et ont pour équation réduite

$$y = -5(x-0) + 4 = -5x + 4 \quad y = -5x + 4$$

$$4) f(x) - g(x) = x^3 - 3x^2 - 5x + 4 - \frac{4-x}{x+1} = \frac{x^3(x+1) - 3x^2(x+1) - 5x(x+1) + 4(x+1) - 4+x}{x+1} = \frac{x^4 - 2x^3 - 8x^2}{x+1} = \frac{x^2(x^2 - 2x - 8)}{x+1}$$

Pour étudier la position des 2 courbes on étudie le signe de $\frac{x^2(x^2-2x-8)}{x+1}$ pour x^2-2x-8 on a le signe de a à l'extérieur des racines qui sont -2 et 4

x	$-\infty$		-2		-1		0		4		$+\infty$
x^2		+		+		+	0	+		+	
$x^2 - 2x - 8$		+	0	_		_		_	0	+	
x+1		_		_	0	+		+		+	
f(x) - g(x)		_	0	+		_	0	_	0	+	

Donc
$$f(x) - g(x) < 0$$
 sur $] - \infty$; $-2[\cup] - 1$; $0[\cup] 0$; $4[$ et donc c_f est en dessous de c_g $f(x) - g(x) > 0$ sur $] - 2$; $-1[\cup] 4$; $+\infty$ [et donc c_f est en dessus de c_g

Exercice 4

1)On a: $(\cos x)^2 + (\sin x)^2 = 1$ donc $\sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}$ donc $\sin x = \frac{4}{5}$ ou $\sin x = -\frac{4}{5}$ Or $\sin x < 0$ donc réponse B)

2) à l'aide du cercle trigo on trouve $x=-\frac{5\pi}{6}+2k\pi\ ou\ x=\frac{5\pi}{6}+2k\pi$ avec k \in Z

Or $\in [0; 2\pi] donc S = \{\frac{5\pi}{6}; \frac{7\pi}{6}\}$ réponse A)

3)A $(x) = -\sin x - \cos x + \cos x + \sin x = 0$ donc réponse B)

4) la courbe de f coupe l'axe des abscisses en x = -1 et x = 2 donc f(x) = a(x+1)(x-2)

Or la courbe passe par (-2; 2) donc $2 = a(-1) \times (-4)$ donc a = 0.5

Donc f(x) = 0.5(x+1)(x-2) réponse A)

5) la courbe de g est strictement au dessus de l'axe des abscisses donc g(x) > 0 pour tout x de R

Donc $\Delta < 0$ réponse C)