DEPARTMENT OF MATHEMATICS JORHAT ENGINEERING COLLEGE JORHAT-785007, ASSAM

Continuous Internal Evaluation (CIE) _____ (I/II/III)

Programme: B. Tech.

Semester: III

Branch/Department: Computer Science 4 Engineering

Course Code: MA181301B

Course Name: Mathematics III-B

Roll No.: 200710007062

Date of Examination: 03/12/2021

Kubayer Ahmed Zidhan Laskar Signature of the Student (9.1) soln: Let, x = no. of cars hired out per day Given,

for Poisson distribution, mean = 2

We know, $P(x=x) = \frac{e^{-\lambda} \cdot \lambda^{T}}{x!}$ $= P(x=x) = \frac{e^{-\lambda \cdot \lambda^{T}}}{x!}$

(i) P(neither can is used) = P(x=0) $= \frac{e^{-1s} \cdot (1s)^{\circ}}{0!}$ $= e^{-1s}$ $= e^{-1s}$ $= e^{-1s}$ $= e^{-1s}$

= 0.2231 x 100
= 22.31%

(ii) $\rho(\text{some demand is refused}) = P(x > 2)$ = 1 - P(x < 2) $= 1 - \left[P(x = 0) + P(x = 1) + P(x = 2)\right]$ $= 1 - \left[\frac{e^{-1/5}(t/5)^{\circ}}{0!} + \frac{e^{-1/5}(t/5)^{2}}{2!} + \frac{e^{-1/5}(t$

= 1 - 0.8087

Scanned with CamScanner

200720007062

o's The proportion of days on which some demand is refused

= 0'1913 x 100

= 19.13 %

(8.2) Sol?: Civa, $f(x) = \int_{x}^{x} kx$, for $0 \le x < 2$ (x-kx+6k), for $4 \le x < 6$ (x-kx+6k), otherwise

of f(x) is a density function.

 $\int_{-\infty}^{\infty} f(x) dx = 1$

 $= \sum_{-\mathcal{L}} \int_{-\mathcal{L}}^{\mathcal{L}} f(x) dx + \int_{0}^{\mathcal{L}} f(x) dx + \int_{0}^{\mathcal{L}} f(x) dx + \int_{0}^{\mathcal{L}} f(x) dx + \int_{0}^{\mathcal{L}} f(x) dx = 1$

=> 0 + $\int k x dx + \int 2 n dx + \int (-k x + 6k) dn + 0 = 1$

 $\Rightarrow k \left[\frac{n^2}{a} \right]^2 + 2 \left[\frac{n^2}{a} \right]^4 + \left[-\frac{k n^2}{a} + 6k n \right]^6 = 1$

 $\Rightarrow \frac{\kappa}{2} \left[2^{2} - 0 \right] + \left[4^{2} - 2^{2} \right] + \left[-\frac{k}{2} \left(6^{2} - 4^{2} \right) + 6k(6 - 4) \right] = 1$

=> $2k + (16-4) + \left[-\frac{k}{2} (36-16) + 6k \cdot 2 \right] = 1$

=>2k+12+[-k.10+12k]=1

=) 2k+12+2k=1

 $\Rightarrow 4k = -11$ $\Rightarrow k = -11$

=>
$$f(n) = \begin{cases} -1/4n & \text{for } 0 < x < 2 \\ 1/4n & \text{for } 2 < x < 4 \\ 1/4n & -3% & \text{for } 4 < n < 6 \\ 0 & \text{otherwise.} \end{cases}$$

Mean =
$$E[x]$$

= $\int_{a}^{b} x f(x) dx$

= $\int_{a}^{b} x f(x) dx$

= $\int_{a}^{b} x f(x) dx$

+ $\int_$

$$0^{\circ}$$
 $k = -\frac{1}{4}$ $Mean = 4.33$

20072007062 (3)

8.3) Sol: Marginal distorbution table is given by,

X] 1	3	9	/4(n)
2	1/8	1/24	1/12	424
4	1/4	1/4	0	2/4
6	78	44	1/12	6/24
fy(y)	4/8	8/24	2/12	1

(a) Marginal distribution of
$$y$$
 is,
$$P(Y=1) = \frac{4}{8} = \frac{1}{2}$$

$$P(Y=3) = \frac{8}{24} = \frac{1}{3}$$

$$P(Y=9) = \frac{4}{12} = \frac{1}{6}$$
i.e. $P(Y=4) = \begin{cases} \frac{1}{2} & y=1 \\ \frac{1}{3} & y=3 \end{cases}$

(b) The conditional distribution of
$$y$$
 given $x=4$ is $P(Y=Y \mid X=4) = \frac{P(Y=Y \mid X=4)}{P(X=4)}$

Non

$$P(Y=1/x=4) = \frac{P(Y=1/x=4)}{P(X=4)} = \frac{2/4}{2/4} = \frac{4}{2}$$

$$P(\gamma=3/x=4) = \frac{P(\gamma=3)(x=4)}{P(x=4)} = \frac{4/4}{2/4} = 4/2$$

$$P(y=9 | x=4) = \frac{P(y=9/1x=4)}{P(x=4)} = \frac{6}{2/4} = 0$$

00
$$P(Y=Y|X=4)=\begin{cases} 5/2 & 3 & Y=2, & X=4 \\ 2/2 & y=3, & x=4 \\ 0 & y=9, & x=4 \end{cases}$$

©
$$cov(x,y) = E[xy] - E[x]E[y] - 0$$

$$cov(x,y) = E[xy] - E[x]E[y] - 0$$

$$cov(x,y) = [(2x 24) + (4x 24) + (6x 24)]$$

$$= [(2x 4) + 2 + 6x 4]$$

$$= \frac{1}{2} + 2 + 3/2$$

$$= 4$$

$$E[y] = [3x 2 + 9x 4]$$

$$= \frac{1}{2} + 2 + 3/2$$

$$= \frac{1}{2} + 2 + 3/2$$

$$E[xy] = \sum xy f_{x,y}(x,y)$$

$$= \int (2x2xf_0) + (2x3xf_0) + (2x9xf_0)f(4xxf_0) + (4x3xf_0)$$

$$+ \int (6x2xf_0) + (6x3xf_0) + (6x9xf_0)f(6x9xf_$$

Now, from Do

$$cov(x,y) = 12 - 4.3$$

=> $cov(x,y) = 12 - 12$
=> $cov(x,y) = 0$

(a) We know, if
$$f_{x,y}(x,y) = f_{x}(x) \cdot f_{y}(y) = f_{x}(x) \cdot f_{y}(y) = f_{x}(x) \cdot f_{y}(y)$$
 then the Yare independent.

É

avois toon the distribution tables

$$f_{\chi}(2) = 924$$

$$24(2) \cdot f_{y}(3) = \frac{6}{24} \cdot \frac{8}{24} = \frac{1}{12} \neq f_{x,y}(2,3)$$

O.4) Sol " Let the age and dontelligence be knowled by n & y resp.

		-		+	+		e			
Mi d Value	yx	18	19	,20	21	4	и	fu	fu 2	fuo
15	10-20	4	2	2		8	-3	24	72	30
25	20-30	5	4	6	4	19	-2	-38	76	20
35	30-40	6	8	20	11	35	-1	-35	35	9
45	40-50	4	4	ь	8	22	O	0	0	0
55	50-60		2	4	4	20	1	10	10	2
65	60-70		2	3 1	-	6	2	12	24	-2
4	£	19	22	31	28	100	Totals	-75	217	59

O

\$0

fo2

fuo