Expansion/Contraction dynamics for non-strictly convex projective Manifolds

Teddy Weisman
University of Texas at Austin

Convex hyperbolic manifolds: M compact hyperbolic d-manifold (possibly with boundary) Def. M is convex if MCHd is a convex subset of 1H. cocompactly 0 ^ Convex cocompact.

Thm (Sullivan). r cpo(d,1) discrete group.

(virtually)

Convex hyperbolic manifold

(is Gromov-hyperbolic and Jequivariant embedding $\phi: 200 \longrightarrow 200$) = 2, M

expansion dynamics

a closed invariant subset

1 c 2/Hd. limit set = 2im

Expansion dynamics:

PO(1,1) C PGL(1+1, IR)

Fix a netric on 127^d.

and a constant (>1 30 that

 $J(\gamma, \gamma) > (a, b)$

all a, b \in \bigcup . tos

For each XEACDIH, we can find JET and UCIRP

Convex Cocompact in PO (d, 1)

geometric structures

P= T,M, M compact

Convex hyperbolic manifold

projective munifold

embedding $\phi: 20 \longrightarrow 2Hd$

Geometric group theory

Jynamic S

Tacks with expansion dynamics on a closed invariant subset $\Lambda \subset \partial H^d$.

What if CPGL(dtl, R)?

Closed	manifold M has a convex projective structure if
	Mr, where:
	RP^d is a properly convex open set S is bornded and convex in an affine chart of RP^d . $PGL(d+1, 1R)$ is discrete and preserves S .
	losed hyperbolic manifolds
	It is strictly convex if DIR contains no projective segment

Thm: (Danciyer - Guéritand - Kassel):

Discrete subgroup of PGL(d+1, IR), I preserves

a properly and Strictly convex domain so.

on closed convex subset

C C \(\int_{\int}^{\int} \)

Tis Gromov-hyperbolic and Jequivariant boundary embedding GGT

d: 20 - RP

and

f acts with expansion

dynamics on $\phi(20)$ dynamics

PGL(2+1, IR) is a P, - Anosov representation. What if 52 is not strictly convex?

. P = 72 which is not Consu-hyperbolic

. T does not act 2/ expansion dynamics on DD.

Expansion on Grassmannians:

Thm (W.): onvex domain, Γ CPGL(d+1, IR) discrete, preserves Ω . acts with uniform expansion Lynamics Tacts Cocompactly on on the faces of so: for each face FCD_SI, there exists JET expanding in a nbhd. of supp(F) in Gr(k, d+1), where k-dim (F). (ulso a version for manifolds w/ barry)

A 3-lin example (Benoist):

Recovering a boundary embedding:
hyperbolic relative to free abelian subgroups. Has a natural Bowditch boundary.
Ex: (CPO(3,1) is holonomy of a finite-volume hyperbolic 3-manifold.
Cusp groups = peripheral subgroups Bowditch bandary = 2H = 52
Dowditch bandary = OTT = 5 Thm (W.): \(CPGL(1), \(R \) discrete, preserves \(\Omega_{\text{n}}, \) hyperbolic
relative to free abelian subgroups. All compact () Jequirariant homeomorphism from DBT to DAL

Idea: use result of Vaman: relatively hyperbolic group actions on Bowlitch boundary are characterized by topological dynamics.

Use expansion/contraction dynamics on quotient to see that it must be Bowditch boundary.

Find on so on xn EK for compact fundamental domain K.

one known kn e compart subset of PGL

Thank you for listening.