- 1. Dar diagramas para:
 - a) Los retículos con 5 elementos.
 - b) Los retículos con 6 elementos.
 - c) El retículo de los subespacios vectoriales de \mathbb{R}^2 .

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 2. Interpretar \land y \lor en los siguientes conjuntos ordenados:
 - a) $(\mathcal{P}(A), \subseteq)$, donde A es un conjunto arbitrario.
 - b) $(\mathbb{N}, |)$, donde | denota la relacion «divide a».
 - c) Álgebra de Lindenbaum-Tarski (ver ejercicio práctica anterior).

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 3. Sea (X, \wedge, \vee) un retículo.
 - a) Probar que para todos $x, y, z \in X$ se satisface:
 - 1) $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$.
 - 2) $x \land (y \lor z) \ge (x \land y) \lor (x \land z)$.
 - 3) $(x \wedge y) \vee (y \wedge z) \vee (z \wedge x) \leq (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$.
 - b) Probar que si una de las desigualdades anteriores es una igualdad, las restantes también lo son.

- a) COMPLETAR.
 - 1) COMPLETAR.
 - 2) COMPLETAR.
 - 3) COMPLETAR.
- b) COMPLETAR.
- 4. Sea (X, \wedge, \vee) un retículo. Probar que los siguientes subconjuntos de X son subretículos:
 - a) $\{x \in X : x < a\}$.
 - b) $\{x \in X : b \le x\}.$
 - c) $\{x \in X : a < x < b\}.$

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 5. Sea (L, \preceq) un retículo. Un polinomio p en n variables es una función $p: L^n \to L$ que pertenece al conjunto inductivo P_L :
 - Para $i \in \{1, \ldots, n\}$, $\pi_i \in P_L$ donde $\pi_i(x_1, \ldots, x_n) = x_i$.
 - Si $f, g \in P_L$ entonces $f \vee g \in P_L$, donde $(f \vee g)(\overline{x}) = f(\overline{x}) \vee g(\overline{x})$.
 - Si $f, g \in P_L$ entonces $f \wedge g \in P_L$, donde $(f \wedge g)(\overline{x}) = f(\overline{x}) \wedge g(\overline{x})$.

Sea f un polinomio en n variables, y $x_i \leq y_i$ para cada i de 1 hasta n. Probar que $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$.

Solución COMPLETAR.

6. Un retículo L se llama modular si para todos $a, b, c \in L$ resulta

$$a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$$

Probar que son equivalentes:

- a) L es modular.
- b) $a \ge c \Rightarrow a \land (b \lor c) = (a \land b) \lor c$ para todos $a, b, c \in L$.
- c) $a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$ para todos $a, b, c \in L$.
- d) $a \wedge (b \vee (a \wedge c)) = (a \wedge b) \vee (a \wedge c)$ para todos $a, b, c \in L$.

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- 7. Probar que todo retículo distributivo es modular. ¿Es cierta la recíproca?

Solución COMPLETAR.

- 8. Sea (X,\wedge,\vee) un retículo. Probar que:
 - a) Si \vee tiene elemento neutro 0, entonces $a \wedge 0 = 0$ para todo $a \in X$.
 - b) Si \wedge tiene elemento neutro 1, entonces $a \vee 1 = 1$ para todo $a \in X$.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 9. Sean (X, \wedge, \vee) y (Y, \wedge', \vee') retículos con 0 y 1; y $h: X \to Y$ un homomorfísmo de retículo. Mostrar con un ejemplo que no siempre $h(1_X) = 1_Y$ o $h(0_X) = 0_Y$

Solución COMPLETAR.

- 10. Sea (X, \wedge, \vee) un retículo acotado (con 0 y 1). Dado $a \in X$, si existe $b \in X$ tal que $a \wedge b = 0$ y $a \vee b = 1$, b se llama complemento de a, y en caso de ser único se nota \overline{a} . Probar que:
 - $a) \ \overline{\overline{a}} = a.$
 - b) $\bar{0} = 1$.
 - c) Si X es distributivo, $\overline{(a \wedge b)} = \overline{a} \vee \overline{b}$ y $\overline{(a \vee b)} = \overline{a} \wedge \overline{b}$.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 11. Sean (X, \land, \lor) y (Y, \land', \lor') retículos y $h: X \to Y$ un homomorfísmo de retículo. Probar que:
 - a) h(X) es un subretículo de Y.
 - b) Si X es distributivo, h(X) es distributivo.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 12. Verificar que todo isomorfismo de retículo se corresponde con un isomorfismo de conjuntos ordenados.

Solución COMPLETAR.

13. Probar que el retículo potencia de cualquier conjunto es completo.

Solución COMPLETAR.

14. *Knaster-Tarski*. Sea (L, \sqsubseteq) un retículo completo y $f: L \to L$ una función monótona. Probar que el mínimo punto fijo de f es $\bigwedge \{x \in L | f(x) \sqsubseteq x\}$.

Solución COMPLETAR.

- 15. Aplicar el resultado del ejercicio anterior para definir el conjunto inductivo de los números pares P como el mínimo punto fijo de una función monótona, donde P se define como el menor conjunto para el cual:
 - $0 \in P$.
 - Si $n \in P$, entonces $n + 2 \in P$.

Solución COMPLETAR.

16. Sea (P, \leq) un orden total. Probar que P es un retículo distributivo.

Solución COMPLETAR.

17. Retículo completo. Sea (P, \leq) un orden. Probar que si todo subconjunto de P tiene supremo, entonces todo subconjunto de P tiene ínfimo.

Solución COMPLETAR.

- 18. Un álgebra de Boole es un retículo acotado distributivo con complementos.
 - a) Dar un ejemplo de álgebra de Bool de los retículos vistos en clase.
 - b) Probar que $O_n = (\{x \in \mathbb{N} : x | n\}, |)$ es un álgebra de Boole si n es producto de factores primos distintos.
 - c) Enunciar y probar la ley de De Morgan para las álgebras de Boole.
 - d) Si (L, \leq) es un álgebra de Boole, entonces para $x, y \in L$ si $x \leq y$ entonces $\overline{y} < \overline{x}$.
 - e) Si $(L, \leq), (L', \leq')$ son álgebras de Boole, entoneces todo isomorfismo de conjuntos ordenados de L en L' preserva complementos.
 - f) Sean $(L, \leq), (L', \leq')$ álgebras de Boole. Construir un orden para $L \times L'$ y probar que es un álgebra de Boole.

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- f) COMPLETAR.