

Network Layer and Internetworking

Andy Carpenter (Andy.Carpenter@manchester.ac.uk)

Elements these slides come from Kurose and Ross, authors of "Computer Networking: A Top-down Approach", and are copyright Kurose and Ross

Network Layer

- Transports segments between hosts
- In every host and router
- Segments in frames
- Issues:
 - spanning the globe
 - service model
 - coordination
 - minimise data
 - minimal manual setup
 - forwarding & routing

P&D: 4.1.1 The University of Manchester Example Internet(work) Internetworking: host-to-host Multiple technologies delivery across these Different service models Different address structures **FDDI** Different frame sizes Different frame formats Different error detection and recovery

Internet Network Layers

Internet Network Layers

IP: Service Model

- Created via service models of underlying networks
 - can only promise achievable
- Connectionless:
 - places minimal demands on underlying networks
 - datagrams may be delivered out of order
- Unreliable:
 - no error recovery implemented in network by IP
 - although delivery not guaranteed, is best effort
 - reasons for datagrams not being delivered:
 - datagram corruption, physical link failure
 - congestion causing datagrams to be discarded

Coordination: Addresses

Minimise Data: Routing

- Hierarchical addressing allows efficient advertisement of routing information:
- Address Block Aggregation

Network Address Translation (NAT)

- Another way to conserve address; also some security
- Addresses unique only within local/corporate network
- Interact with rest of Internet via "NAT Box"
 - translates local addresses to globally unique ones
 - uses pool of globally unique addresses
- Relies on fact that at any point in time:
 - only subset of computers interact with the Internet
- Requires that applications:
 - not to put IP address in application data

Minimise Manual: Host

Minimise Manual: DHCP

Dynamic Host Configuration Protocol

Minimise Manual: DHCP

Minimise Manual: ARP

Address Resolution Protocol

Address Resolution Protocol

Minimise Manual: Router

Internet Protocol Version 6 (IPv6)

- Main motivation was to deal with growth of Internet
- Adding more scalable addresses means changing:
 - datagram format and software on all computers
- Opportunity for other fundamental changes; wish list:
 - support for resource allocation, auto-configuration
 - security support, improved option mechanism
 - support for real-time services
 - enhanced routing functionality (mobile host support)
- Many wish list features now added to IPv4
- Transition plan (IPv4 → IPv6) also part of design goal

IPv6: Addressing

- 2^{128} or 3.4×10^{38} addresses; every atom on planet!
 - for realistic utilisation: 1500 per square foot of surface
- Address space is partitioned; again decoded by ms bits
- Partitioning is for usage not address structure; e.g.:
 - aggregatable unicast addresses; c.f. CIDR
 - encapsulating other address spaces
 - IPv4, NSAP (ISO), IPX (Novell)
 - locally (link or site) significant/unique addresses
 - multicast addresses
 - lots reserved to solve future problems

IPv6: Multicast/Anycast Addressing

P&D: 4.3.5

- Multicast partition:
 - sub-fields for flags, scope and group identifier
 - current scopes: link, site, organisation, planet
 - values spread over possible to allow extension
 - 14 is planet, 15 is unassigned (solar system/universe?)
- Anycasting partition:
 - group only only need to deliver to one (nearest?)
 - e.g. accessing service from group of servers
 - routing system chooses actual destination

Summary

- Provide host-to-host delivery across multiple networks
- Provides simple service model
 - places minimum demands on underlying networks
- Defines own addressing scheme and packet format
- Addresses must be mapped to underlying addresses
- Datagrams must be fitted into physical frames
- Must address scalability issues:
 - size and updating of routing tables
 - hierarchy to address, subnetting, supernetting
- Eventually unable to cope, IPv6 being introduced