Rappel sur les domaines abstraits

Domaines abstraits

Un domaine abstrait permet de représenter une surapproximation d'un ensemble \mathscr{D} de propriétés, aussi appelées invariants, du programme analysé. Il doit également permettre de calculer ces surapproximations.

Un domaine abstrait doit donc spécifier :

- un ensemble \mathscr{D}^{\sharp} muni d'une structure de *treillis*, soit :
 - un ordre partiel \sqsubseteq^{\sharp} ;
 - une borne supérieure binaire ⊔[‡];
 - une borne inférieure binaire \sqcap^{\sharp} ;
 - deux extremums \top et \bot ;
- une fonction de concrétisation $\gamma: \mathcal{D}^{\sharp} \to \mathcal{D}$, l'ordre abstrait \sqsubseteq^{\sharp} devant représenter l'ordre concret \sqsubseteq , cette fonction doit être monotone :

$$\forall x^{\sharp}, y^{\sharp} \in \mathscr{D}^{\sharp}, \quad x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \Rightarrow \gamma \left(x^{\sharp} \right) \sqsubseteq \gamma \left(y^{\sharp} \right),$$

- on notera que cette fonction est purement mathématique, nul besoin de l'implémenter;
- (éventuellement) une fonction d'abstraction $\alpha: \mathcal{D} \to \mathcal{D}^{\sharp}$ formant une correspondance de Galois avec γ , mais on n'a pas toujours existence d'une telle fonction;
- des équivalents abstraits (par exemple $+^{\sharp}: (\mathscr{D}^{\sharp} \times \mathscr{D}^{\sharp}) \to \mathscr{D}^{\sharp}$) des opérations concrètes (par exemple $+: (\mathscr{D} \times \mathscr{D}) \to \mathscr{D}$), ces opérations doivent être des surapproximations correctes (sound en anglais) de la version concrète :

$$\forall x^{\sharp}, y^{\sharp} \in \mathscr{D}^{\sharp}, \quad \gamma \left(x^{\sharp} \right) + \gamma \left(y^{\sharp} \right) \sqsubseteq \gamma \left(x^{\sharp} + {}^{\sharp} y^{\sharp} \right),$$

on notera que si l'on dispose d'une correspondance de Galois, la meilleure opération abstraite est donnée par $x^{\sharp} + {}^{\sharp} y^{\sharp} = \alpha \left(\gamma \left(x^{\sharp} \right) + \gamma \left(y^{\sharp} \right) \right)$;

- si le treillis \mathscr{D}^{\sharp} possède des chaînes strictement croissantes infinies, il faut un *élargissement* (widening en anglais) ∇ pour garantir la convergence de l'analyse :

 - pour toute suite $(x^{\sharp})_{n\in\mathbb{N}}$, la suite croissante

$$\begin{cases} y_0^{\sharp} &= x_0^{\sharp} \\ y_{i+1}^{\sharp} &= y_i^{\sharp} \nabla x_{i+1}^{\sharp} \end{cases}$$

est stationnaire.

Domaines abstraits numériques non relationnels

Dans notre cas, $(\mathcal{D}, \sqsubseteq) = (\mathcal{P}(\mathbb{Z}), \subseteq)$.