Prob. Basics Normalization: $P(\Omega)=1$ Non-neg: $\forall A \in \mathcal{F}, P(A) \geq 0$ σ -add: $\forall A_1,,A_n \in \mathcal{F}$	Bayesian Learning Prior: $p(\theta)$; Likelihood: $p(y_{1:n} x_{1:n},\theta) = \prod_{i=1}^{n} p(y_i x_i,\theta)$;	GP Pred: $p(f x_{1:m}, y_{1:m}) = GP(f; \mu(x), k(x, x')),$ observe $y_i = f(x_i) + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma^2), A = \{x_1,, x_m\}.$	NOTE: $q(\cdot \lambda)$ dep. on var. params, ELBO then
$/ \infty \setminus \infty$	Posterior $p(y_{1:n} x_{1:n},\theta) - \prod_{i=1}^{n} p(y_{i} x_{i},\theta)$,	Common convention: prior mean $\mu(x) = 0$	ELBO _{λ} : $L(\lambda) = \mathbb{E}_{\theta \sim q(\cdot \lambda)}[\log p(y \theta)] - KL(q_{\lambda} p(\cdot))$
Disjoint: $P(\bigcup A_i) = \sum P(A_i)$		Then $p(f x_{1:m},y_{1:m}) = GP(f;\mu',k')$ where	$\rightarrow \nabla_{\lambda} L(\lambda)$ tricky due to $\theta \sim q_{\lambda}(\cdot)$
Conditional probability: $P(X Y)$	where $Z = \int p(\theta) \prod_{i=1}^{n} p(y_i x_i,\theta) d\theta$ (norm. const.);	$\mu'(x) = \mu(x) + \mathbf{k}_{x,A} (\mathbf{K}_{AA} + \sigma^2 \mathbf{I})^{-1} (\mathbf{y}_A - \mu_A)$	Reparametrization Trick: Suppose $\epsilon \sim \phi$,
Prod. Rule : $P(X,Y)=P(X Y)P(Y)=P(Y X)P(X)$	P: $p(y^* x^*, x_{1:n}, y_{1:n}) = \int p(y^* x^*, \theta) p(\theta x_{1:n}, y_{1:n}) d\theta$	$k'(x,x')=k(x,x')-\mathbf{k}_{x,A}(\mathbf{K}_{AA}+\sigma^2\mathbf{I})^{-1}\mathbf{k}_{x',A}^T$	$\theta = g(\epsilon, \lambda). \text{Then: } q(\theta \lambda) = \phi(\epsilon) \nabla_{\epsilon} g(\epsilon; \lambda) ^{-1} (\text{CoV})$
Chain (Joint Prob.): $P(X_1,,X_n) = P(X_{1:n})$	Bayesian Lin. Reg. Prior: $p(\mathbf{w}) = \mathcal{N}(0, \sigma_w^2 \mathbf{I})$,	$k_{x,A} = [k(x,x_1),,k(x,x_m)]$	and $\mathbb{E}_{\theta \sim q_{\lambda}}[f(\theta)] = \mathbb{E}_{\epsilon \sim \phi}[f(g(\epsilon; \lambda))]$, which allows
$= P(X_1)P(X_2 X_1)P(X_3 X_{1:2})P(X_n X_{1:n-1})$	Likelihood: $p(y_i \mathbf{x_i},\mathbf{w},\sigma_n) = \mathcal{N}(y_i;\mathbf{w}^T\mathbf{x_i},\sigma_n^2)$	Pred posterior: $p(y^* x_{1:m}, y_{1:m}, x^*) = \mathcal{N}(\mu_v^*, \sigma_v^{2^*}),$	$\nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}}[f(\theta)] = \mathbb{E}_{\epsilon \sim \phi}[\nabla_{\lambda} f(g(\epsilon; \lambda))]$
Sum (Joint Prob.) : $P(X_{1:n}) = \sum_{v} P(X_{1:n}, Y = y)$	Posterior: $p(\mathbf{w} \mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{w};\overline{\mu},\Sigma)$,		Markov Chains A stationary MC is a sequence
$= \sum_{y} P(X_{1:n} Y=y)P(Y=y)$	$\overline{\Sigma} = (\sigma_n^{-2} \mathbf{X}^T \mathbf{X} + \sigma_w^{-2} \mathbf{I})^{-1}, \overline{\mu} = \sigma_n^{-2} \overline{\Sigma} \mathbf{X}^T \mathbf{y};$	$\mu_y^* = \mu'(x^*), \sigma_y^{2^*} = \sigma^2 + k'(x^*, x^*)$ Forward compline CPs. Chain rule on $P(f, f)$	of RVs $X_1,,X_N$ with prior $P(X_1)$ and transiti-
$=\int_{v} P(X_{1:n} Y=y)P(Y=y)dy$	$p(f^* \mathbf{X},\mathbf{y},\mathbf{x}^*) = \mathcal{N}(\mathbf{x}^{*T}\overline{\mu},\mathbf{x}^{*T}\overline{\Sigma}\mathbf{x}^*);$	iteratively sample univariate Gauss	on probability $P(X_{t+1} X_t)$ independent of t . An ergodic MC if $\exists t < \infty$ s.t. every state is reachable
Bayes' Rule: $P(X Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(Y X)P(X)}{P(Y)}$	$p(y^* \mathbf{X},\mathbf{y},\mathbf{x}^*) = \mathcal{N}(\mathbf{x}^{*T}\overline{\mu},\mathbf{x}^{*T}\overline{\Sigma}\mathbf{x}^* + \sigma_n^2)$ Epistemic : uncertainty about model due to lack	Model selection: max.marginal likelihood	from every state in exactly t steps.
X, Y indep.: $P(X Y) = P(X)$, $P(X,Y) = P(X)P(Y)$	of data. Aleatoric: Irreducible noise	$\hat{\theta} = amax_{\theta} p(y X,\theta) = amax_{\theta} \int p(y X,f) p(f \theta) df$	Markovian Assumption: $X_{t+1} \perp \perp X_{1:t-1} X_t \forall t$
Exp: $\mathbb{E}_x[f(X)] = \int f(x)p(x)dx = \sum_x f(x)p(x)$	Recursive updates:	Fast GPs : GP prediction has $cost \mathcal{O}(A ^3)$	Stationary Distribution: A stationary ergodic
Lin. Exp: $\mathbb{E}_{x,y}[aX+bY]=a\mathbb{E}_x[X]+b\mathbb{E}_y[Y]$	$\mathbf{X}_{t+1}^{T} \mathbf{X}_{t+1} = \mathbf{X}_{t}^{T} \mathbf{X}_{t} + x_{t+1} x_{t+1}^{T}$		MC has a unique and positive stationary distr. $P(X) = P(X - x) \cdot P(X - x) \cdot$
Var: $Var[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	$\mathbf{X}_{t+1}^{T} y_{t+1} = \mathbf{X}_{t}^{T} y_{t} + y_{t+1} x_{t+1}$	condition on points x' where $ k(x,x') \ge \tau$ 2) k low-dapprox: $k(x,x') \approx \phi(x)^T \phi(x')$, then BLR	$\pi(X) > 0 \text{ s.t. } \forall x: \lim_{N \to \infty} P(X_N = x) = \pi(x) \text{ and } \pi(X)$
Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)	Parallel to Ridge Reg.: $f(x, w) = y \approx \mathbf{w}^{\top} \mathbf{x}$	3) RFF: Stationary kernel has FT: $\frac{k(x,x')}{k(x,x')}$	Simulate MC via forward sampling (chain rule)
Cov: $Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	$\hat{w} = \underset{i=1}{\operatorname{argmin}}_{w} \sum_{i=1}^{n} (y_{i} - w^{\top} x_{i})^{2} + \lambda w _{2}^{2}$	$= \int_{\mathbb{R}^d} p(\omega) e^{j\omega^T (x-x')} d\omega = \mathbb{E}_{\omega,b} [z_{w,b}(x) z_{w,b}(x')]$	MCMC Approx pred. distr. $p(y^* x^*, x_{1:n}, y_{1:n}) =$
CoV: $Y = g(X), f_Y(y) = f_X(g^{-1}(y)) \cdot \frac{d}{dy}g^{-1}(y) $	$= (X^{\top}X + \lambda I)^{-1}X^{\top}y \rightarrow \text{MAP Bayesian inf. w/}$	$= \int_{\mathbb{R}^d} p(w)e^{-x} dw = \mathbb{E}_{\omega,b}[z_{w,b}(x)z_{w,b}(x)]$ $\approx \frac{1}{m} \sum_{i} z_{w^{(i)},b^{(i)}}(x) z_{w^{(i)},b^{(i)}}(x'),$	$\int p(y^* x^*,\theta)p(\theta (x,y)_{1:n})d\theta = \mathbb{E}_{\theta \sim p(\cdot (x,y)_{1:n})}[f(\theta)]$
Gauss: $\mathcal{N} = \left(1/\sqrt{(2\pi)^d \Sigma }\right) exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$	$p(w) = N(0, \sigma_p^2 I) \text{ and } \epsilon_i \sim N(0, \sigma_n^2), \text{ then } \lambda = \sigma_n^2 / \sigma_p^2$ $f^* = \mathbf{w}^T \mathbf{x}^*, y^* = f^* + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma_v^2)$	$\omega \sim p(\omega), b \sim \mathcal{U}[0, 2\pi], z_{\omega,b}(x) = \sqrt{2}\cos(\omega^T x + b)$	$\approx \frac{1}{m} \sum_{i=1}^{m} f(\theta^{(i)}), \text{ sample } \theta^{(i)} \sim p(\theta (x,y)_{1:n}) \text{ from}$
CDF: $\Phi(u;\mu,\sigma^2) = \int_{-\infty}^{u} \mathcal{N}(y;\mu,\sigma^2) dy = \Phi(\frac{u-\mu}{\sqrt{\sigma^2}};0,1);$	BLogR: $p(y_i x_i,\theta) = \sigma(y_i w^T x_i), \ \sigma(a) = \frac{1}{1+e^{-a}}$	$\to k(x,x') \approx \phi(x)^T \phi(x') (\phi_i(x) = \frac{1}{\sqrt{m}} z_{w^{(i)},b^{(i)}}(x))$	MC with stationary distribution $p(\theta (x,y)_{1:n})$.
Multivar. Gauss: $X_V = [X_1,,X_d] \sim \mathcal{N}(\mu_V, \Sigma_{VV}),$	Kalman Fil: $X_{t+1} \perp X_{1:t-1} X_t, Y_t \perp Y_{1:t-1}, X_{1:t-1} X_t$,		Hoeffding: $(P(err) \setminus exp.)$ Assume $f \in [0, C]$:
index sets $A = \{i_1,,i_k\}$, $B = \{j_1,,j_m\}$, $A \cap B = \emptyset$ Marginal: $X_A = [X_{i_1},,X_{i_k}] \sim \mathcal{N}(\mu_A, \Sigma_{AA})$ with	State X_t , Observation Y_t , Prior $P(X_1) \sim \mathcal{N}(\mu, \Sigma)$	values of f at inducing points $\mathbf{u} = [u_1,, u_m]$.	$P(\mathbb{E}_P[f(X)] - \frac{1}{N} \sum_{i=1}^N f(x_i) > \epsilon) \le 2exp(-2N\epsilon^2/C^2)$
()	Motion model: $P(\mathbf{X}_{t+1} \mathbf{X}_t) = \mathcal{N}(x_{t+1}; \mathbf{F}X_t, \Sigma_x)$,	$p(f^*,f) = \int p(f^*,f,u)du = \int p(f^*,f u)p(u)du$	Given unnormalized distr. $Q(x) > 0$, design MC s.t.
$\mu_{A} = [\mu_{i_{1}},, \mu_{i_{k}}], \Sigma_{AA}^{(m,n)} = \sigma_{i_{m}, i_{n}} = \mathbb{E}[(x_{i_{m}} - \mu_{i_{m}})(x_{i_{n}} - \mu_{i_{n}})]$ Cond2DisjSets: $P(X_{A} X_{B} = x_{B}) = \mathcal{N}(\mu_{A B}, \Sigma_{A B}),$		$p(f^*,f) \approx q(f^*,f) = \int q(f^* u)q(f u)p(u)du$	$\pi(x) = \frac{1}{Z}Q(x)$. If MC satisfies detailed
		with $p(f u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, K_{f,f} - Q_{f,f}),$	balance equation (DBE) $\forall x, x'$:
	$\mathbf{Y}_t = \mathbf{H} \mathbf{X}_t + \eta_t, \eta_t \sim \mathcal{N}(0, \Sigma_y)$	$p(f^* u) = \mathcal{N}(K_{f^*,u}K_{u,u}^{-1}u, K_{f^*,f^*} - Q_{f^*,f^*}),$	$Q(x)P(x' x) = Q(x')P(x x') \Longrightarrow \pi(x) = \frac{1}{Z}Q(x).$
$\Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$	Kalman Gain: $K_{t+1} = (F\Sigma_t F^T + \Sigma_x)$	and $Q_{a,b} = K_{a,u} K_{u,u}^{-1} K_{u,b}, p(\mathbf{u}) \sim \mathcal{N}(0, K_{u,u})$	Gibbs Sampling: Asympt.correct but slow
	$\cdot \mathbf{H}^T (\mathbf{H}(\mathbf{F}\Sigma_t \mathbf{F}^T + \Sigma_x) \mathbf{H}^T + \Sigma_y)^{-1}$ Kalman Update:	Subset of Regressors: assume $K_{f,f} - Q_{f,f} = 0$,	1. Init $\mathbf{x}^{(0)}$, fix observed RVs X_B to \mathbf{x}_B
	$\mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)$	replace $n(f u)$ by $a_{n,n}(f u) = \mathcal{N}(K_{n,n}K^{-1} u 0)$	2. Repeat: set $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)}$; select $j \in \{1:m\} \setminus B$
KL: $KL(p q) = \mathbb{E}_p[log\frac{p(x)}{q(x)}] = \sum_{x \in X} p(x) \cdot log\frac{p(x)}{q(x)}$	$\Sigma_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1} \mathbf{H}) (\mathbf{F} \Sigma_t \mathbf{F}^T + \Sigma_x)$	resultingmodelisdegenerateGPwithcovariance	$x_i^{(t)} \sim P\left(X_i \mathbf{x}_{\{1:m\}\setminus\{i\}}^{(t)}\right)$ (efficient samples)
$= \int p(x) \log \frac{p(x)}{q(x)} dx \ge 0, \ p = q \to KL(p q) = 0$	Bayesian Filtering in KFs	function $k_{SoR}(x,x')=k(x,u)K_{u,u}^{-1}k(u,x')$	Random Order: fulfills DBE, find correct distr.
Entropy: $H(q) = \mathbb{E}_q[-\log q(\theta)] = -\int q(\theta) \log q(\theta) d\theta$	Keep track of state X_t using rec. formula.	FITC: Assume $f_i \perp \perp f_j u, \forall i \neq j$	Determ. Order: not fulfill DBE, still correct distr.
$= -\sum_{\theta} q(\theta) \log q(\theta); \ H(\prod_{i} q_i(\theta_i)) = \sum_{i} H(q_i);$	Start $P(X_1) = \mathcal{N}(\mu, \Sigma)$.	$q_{FITC}(f u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, diag(K_{f,f} - Q_{f,f}))$	Expectations via MCMC: Use MCMC sampler
$H(N(\mu,\Sigma)) = \frac{1}{2}ln 2\pi e\Sigma ; H(p,q) = H(p) + H(q p)$	At time t: assume we have $P(X_t y_{1:t-1})$	Laplace Approx $p(w (x,y)_{1:n}) \approx q_{\lambda}(\theta) = \mathcal{N}(\hat{\theta}, \Lambda^{-1})$	(e.g. GS) to get samples $X^{(1:T)}$. After burn-in time
$H(S T) \ge H(S T,U)$ 'information never hurts'	Conditioning: $P(X_t y_{1:t}) = \frac{1}{Z}P(y_t X_t)P(X_t y_{1:t-1})$	$\hat{\theta} = \operatorname{argmax}_{\theta} p(\theta y), \Lambda = -\nabla \nabla \log p(\hat{\theta} y)$	t_0 : $\mathbb{E}[f(\mathbf{X}) \mathbf{x}_b] \approx \frac{1}{T-t_0} \sum_{\tau=t_0+1}^T f(\mathbf{X}^{(\tau)})$
Orth: A: $A^{-1} = A^T$, $AA^T = A^TA = A _2^2 = I$	Prediction: $P(X_{t+1} y_{1:t}) = \int P(X_{t+1} x_t)P(x_t y_{1:t})dx_t$	Predict: $p(y^* x^*, x_{1:n}, y_{1:n}) \approx \int p(y^* f^*)q(f^*)df^*$,	Metropolis/Hastings: Generate MCs.t. DBE sat.
$det(A) \in \{+1,-1\}, (A^{-1})^T = (A^T)^{-1}, rank(A) = n$	Gaussian Processes Gaussian distr. over functions $f \sim GP(\mu(x), K(x))$ (∞ -d Gaussian).	with $q(f^*) = \int p(f^* \theta)q_{\lambda}(\theta)d\theta$. LA first greedily fits	1) Prop. $R(X' X)$, $X_t = x$, sample $x' \sim R(X' X = x)$;
Inv: $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$;	Infinite set of RVs X s.t. $\forall A \subseteq X, A = \{x_1,, x_m\}$ it	mode, then matches curvature (over-conf.).	2) For $X_t = x$, w.p. $\alpha = \min\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\}$: $X_{t+1} = x'$;
Deriv: $(fg)' = f'g + fg'; (f/g)' = (f'g - fg')/g^2$	holds $Y_A = [Y_{x_1},, Y_{x_m}] \sim \mathcal{N}(\mu_A, K_{AA})$ where	Variational Inf. $p(\theta y) = \frac{1}{Z}p(\theta,y) \approx q_{\lambda}(\theta)$	w.p. $1-\alpha:X_{t+1}=x$
$f(g(x))' = f'(g(x))g'(x); \log(x)' = 1/x$	$K_{AA}^{(ij)} = k(x_i, x_j)$ and $\mu_A^{(i)} = \mu(x_i)$ with covariance (ker-	$q_{bwd}^* \in \operatorname{argmin}_{q \in \mathcal{Q}} KL(q p)$: $q \approx p$ where q large	Cont RV: log-concave $p(x) = \frac{1}{7}exp(-f(x))$, f cnvx
Cnvx: $g(x) \operatorname{convex} \Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1]: g''(x) > 0;$	nel) function $k(\cdot,\cdot)$, mean function $\mu(\cdot)$	$q_{fwd} \in \text{arg} \text{ min}_{q \in \mathcal{Q}} \times L(p q)$. $q \approx p \text{ where plange}$	
$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	Cov. (Kernel) k: symmetric, PSD, kernel compo-	$amin_q KL(q p) = amax_q \mathbb{E}_{\theta \sim q}[\log p(\theta, y)] + H(q(\theta))$	M/H: $\alpha = \min\{1, \frac{R(x x')}{R(x' x)} exp(f(x) - f(x'))\}$
	sition rules hold, stationary: $k(x,x')=k(x-x')$,	$= amax_q \mathbb{E}_{\theta \sim q} [\log p(y \theta)] - KL(q(\theta) p(\theta))$ $= \lim_{\theta \to q} \sum_{\theta \to q} [\log p(y \theta)] - KL(q(\theta) p(\theta))$	MALA/LMC: $R(x' x) = \mathcal{N}(x'; x - \tau \nabla f(x); 2\tau I)$
$g \operatorname{concave} (e.g. \log) : g(E[X]) \ge E[g(X)]$	isotropic: $k(x, x') = k(x - x' _2)$.	ELBO: $L(q) = \mathbb{E}_{\theta \sim q}[\log p(y, \theta)] + H(q) \le \log p(y)$	ightarrow Use gradient information for convergence

BNN Prior NN θ ; NN parametrizes likelihood	Fixed Point Iter: 1) init V_0^{π} ; 2) for $t=1:T$ do:	RL via Function Approx Learn parametric approx.	Off-Policy Actor Critic (off)
$\mu \& \log \sigma^2$: $p(y \mathbf{x},\theta) = \mathcal{N}(y; f_1(\mathbf{x},\theta), exp(f_2(\mathbf{x},\theta)))$	$V_t^{\pi} = r^{\pi} + \gamma T^{\pi} V_{t-1}^{\pi} $ (converges)	of (action) value function $V(x;\theta)$, $Q(x,a;\theta)$	Replace $\max_{a'} Q(x', a'; \theta^{old})$ in DQN $L(\theta)$ by
	Greedy policy w.r.t. <i>V</i> : <i>V</i> induces policy		$\pi(x';\theta_{\pi})$, where π should follow the greedy po-
	$\pi_V(x) = \operatorname{argmax}_a r(x, a) + \gamma \sum_{x'} P(x' x, a) V(x')$	date rule can be viewed as SGD on loss	
predict epistemic uncertainty → use VI	Optimal policy: $\pi^* = \operatorname{argmax}_a Q^*(x, a)$	$l_2(\theta; x, x', r) = \frac{1}{2} (V(x; \theta) - r - \gamma V(x'; \theta_{old})^2$. Then,	
VI(BbB): SGD-opt ELBO via $\nabla_{\lambda} L(\lambda)$. Find VI	Every value function induces a policy and v.v.	$V \leftarrow V - \alpha_t \nabla_{V(x;\theta)} l_2$ is equiv. to TD update.	$\mu(x) > 0$ 'explores all states'. If $Q(\cdot; \theta_Q), \pi(\cdot; \theta_{\pi})$
approx q_{λ} . Draw m weights $\theta^{(j)} \sim q_{\lambda}(\cdot)$. Predict		Function Approx Q-learning (Off) slow	diff'able, use backprop to get stoch. gradients.
$p(y^* x^*, x_{1:n}, y_{1:n}) \approx \frac{1}{m} \sum_{j} p(y^* x^*, \theta^{(j)})$	$V^*(x) = \max_{a \in \mathcal{A}} \left[r(x,a) + \gamma \sum_{x' \in X} P(x' x,a) V^*(x') \right]$	Loss $l_2(\theta; x, a, r, x') = \frac{1}{2}\delta^2$ where $\delta = Q(x, a; \theta)$	$\nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim \mu} [\nabla_{\theta} Q(x, \pi(x; \theta); \theta_{Q})]$
MCMC: Produce seq. of weights $\theta^{(1)}$,, $\theta^{(T)}$ via	$= \max_{a \in \mathcal{A}} \mathbb{E}_{x'}[r(x,a) + \gamma V^*(x')] = \max_{a \in \mathcal{A}} Q^*(x,a)$	$r-\gamma \max_{a'} Q(x',a';\theta)$. Alg: Until converged:	$\nabla_{\theta} Q(x, \pi(x; \theta)) = \nabla_{a} Q(x, a) _{a = \pi(x; \theta)} \cdot \nabla_{\theta} \pi(x; \theta)$
SGLD,LD,SG-HMC; predict by avg. weights.	Policy Iteration: 1) Init arbitrary policy π_0	State x , pick action a , observe r , x' . Update: $\theta \leftarrow$,
Active Learning Pick x max. reduce uncertainty	2) Until converged: compute $V^{\pi_t}(x)$; compute	$\theta - \alpha_t \nabla_{\theta} l_2 \Leftrightarrow \theta \leftarrow \theta - \alpha_t \delta \nabla_{\theta} Q(x, a; \theta)$	se (e.g. ϵ_t greedy) to ensure exploration.
Mutual Info: $I(X;Y)=H(X)-H(X Y)=I(Y;X)$	greedy policy π_t^G w.r.t. V^{π_t} ; set $\pi_{t+1} \leftarrow \pi_t^G$	DQN (Off): Q-learning with NN as func. approx.	
Information Gain: utility function $F(S)$, $S \subseteq D$,	Stop if $V^{\pi_t}(x) = V^{\pi_{t+1}}(x)$. PI monotonically impro-	Use experience replay data <i>D</i> , cloned network to maintain constant NN across episode.	1) init θ_Q, θ_{π} 2) repeat: observe x , execute $a = \frac{1}{2}$
$F(S) := H(f) - H(f y_S) = I(f;y_S) = \frac{1}{2} \log I + \sigma^{-2}K_S $ Cready MI antimization, $S = \{x_S = x_S\}$	ves all values $V^{\pi_{t+1}}(x) \ge V^{\pi_t}(x) \forall x$. Finds exact so-	$L(\theta) = \sum_{i} (r + \gamma \max_{a'} Q(x', a'; \theta^{old}) - Q(x, a; \theta))^2$	$\pi(x;\theta_{\pi})+\epsilon$, observe r,x' , store in D. If time to up-
Greedy MI optimization: $S_t = \{x_1,,x_t\}$	lution in $\mathcal{O}(n^2m/(1-\gamma))$.	$L(O) = \sum_{(x,a,r,x') \in D} (r + \gamma \max_{a'} Q(x, a, b')) - Q(x,a,b'))$	date: for ITER: sample B from D , compute targets
$x_{t+1} = \operatorname{argmax}_{x \in D} F(S_t \cup \{x\}) = \operatorname{argmax}_{x \in D} \sigma_{x S_t}^2$	Q: $Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x' x,a) V_{t-1}(x')$	Double DQN (Off): Current NN to evaluate	$y=r+\gamma Q(x',\pi(x',\theta_{\pi}^{old}),\theta_{Q}^{old})$, update
	Value Iteration: 1) Init $V_0(x) = \max_a r(x, a)$ 2) for	action aramax provents maximization bias	Critic: $\theta_Q \leftarrow \theta_Q - \eta \nabla^{1/ B } \sum_B (Q(x, a; \theta_Q) - y)^2$,
Heteroscedastic: $\underset{x \in D}{\operatorname{argmax}} \sigma_f^2(x) / \sigma_n^2(x)$	$t=1:\infty: V_t(x)=\max_a Q_t(x,a)$. Stopif $\ V_t-V_{t-1}\ _{\infty} \le \epsilon$, then choose greedy π_G w.r.t. V_t . Finds ϵ -opt so-	1 may (a) 5 [(a) 4 (b) and (b)	Actor: $\theta_{\pi} \leftarrow \theta_{\pi} + \eta \nabla 1/ B \sum_{B} Q(x, \pi(x; \theta_{\pi}); \theta_{Q}),$
BALD : $x_{t+1} = \arg\max_{x} I(\theta; y_x x_{1:t}, y_{1:t})$	lution in polytime	$O(\kappa, \alpha, \theta)$ ² $\alpha^*(\theta) = \alpha \kappa \alpha \alpha \alpha \alpha A$ $O(\kappa', \alpha', \theta)$	Params: $\theta_j^{old} \leftarrow (1-\rho)\theta_j^{old} + \rho\theta_j \text{ for } j \in \{\pi, Q\}$
$= \operatorname{argmax}_{x} H(y x,(x,y)_{1:t}) - \mathbb{E}_{\theta \sim p(\cdot (x,y)_{1:t})} [H(y x,\theta)]$	POMDP is a controlled HMM. Can only obtain	$a_t = \operatorname{argmax}_a Q(x_t, a; \theta)$ intractable for $ A $ large	Randomized policy DDPG: For Critic: sample
Bayesian Optimization Seq. pick $x_1,,x_T \in D$, get	noisy obsv. Y_t of hidden state X_t . Finite horizon T :	Policy Gradient Methods Parametric policy π_{θ}	$a' \sim \pi(x'; \theta_{\pi}^{old})$ to get unbiased y estimates. For Ac-
$y_t = f(x_t) + \epsilon_t$, find $\max_x f(x)$ s.t. T small	exp. #belief states. BUT: most belief states never	Maximize $J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)](\tau = x_{0:T}, y_{0:T}), r(\tau) =$	tor: consider $\nabla_{\boldsymbol{\theta}_{\pi}} \mathbb{E}_{a \sim \pi(x; \boldsymbol{\theta}_{\pi})} Q(x, a; \boldsymbol{\theta}_{Q})$
	reached → discretize space by sampling.	T	Reparametrization trick: $a = \psi(x; \theta_{\pi}, \epsilon)$
GP-UCB: $x_t = \operatorname{argmax}_{x \in D} \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)$	Use policy gradients with parametric policy.	$\sum_{t=0}^{T} \gamma^{t} r(x_{t}, a_{t})); \text{via } \nabla_{\theta} \text{ (On). Theorem:}$	$\nabla_{\theta_{\pi}} \mathbb{E}_{a \sim \pi_{\theta_{\pi}}} Q(x, a; \theta_{Q}) = \mathbb{E}_{\epsilon} \nabla_{\theta_{\pi}} Q(x, \psi(x; \theta_{\pi}, \epsilon); \theta_{Q})$
(upper confidence bound ≥ best lower bound)	Belief-state MDP: POMDP as MDP where states \equiv beliefs $P(X_t y_{1:t})$ in the OG POMDP.		Model-Based RL Learn MDP, optimize π on it
$\mu(x), \sigma(x)$ from GP marginal. β_t EE-tradeoff.	States $\mathcal{B} = \{b: \{1,,n\} \rightarrow [0,1], \sum_{x \in X} b(x) = 1\},$	MDP: $\pi_{\theta}(\tau) = p(x_0) \prod_{t=0}^{T} \pi(a_t x_t;\theta) p(x_{t+1} x_t,a_t)$	MLE estimate from path trajectory τ :
Thm: $f \sim GP$, correct β_t : $\frac{1}{T}R_T = \mathcal{O}^*(\sqrt{\gamma_T/T})$,	Actions $A = \{1,,m\}$, Transitions: $P(Y_{t+1} =$	Thus: $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \sum_{t=0}^{T} \nabla_{\theta} \log \pi(a_t x_t; \theta)]$	$P(X_{t+1} X_t,A) \approx \frac{Cnt(X_{t+1},X_t,A)}{Cnt(X_t,A)}; r(x,a) \approx 1/N_{x,a} \sum R_t$
$\gamma_T = \max_{ S \le T} I(f; y_S)$ (max. information gain)	$y b_t, a_t) = \sum_{x,x'} b_t(x) P(x' x, a_t) P(y x');$ $b_{t+1}(x') =$		$\operatorname{cnt}(X_t, A) \qquad t: X_t = x, A_t = a$
EI: $\operatorname{choose} x_t = \operatorname{argmax}_{x \in D} EI(x)$ where	$\frac{1}{Z} \sum_{x} b_{t}(x) P(X_{t+1} = x' X_{t} = x, a_{t}) P(y_{t+1} x')$	$\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)\nabla \log \pi_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}}[(r(\tau) - b)\nabla \log \pi_{\theta}(\tau)]$	ϵ_t greedy: Tradeoff exploration-exploitation W.p.
$EI(x) = \mathbb{E}[(y^* - y)_+] = \int_{-\infty}^{\infty} max(0, y^* - y)p(y x)dy$	Reward: $r(b_t, a_t) = \sum_x b_t(x) r(x, a_t)$	Rew2Go: $G_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}; b_t(x_t) = 1/T \sum_{t=0}^{T-1} G_t$	ϵ_t : rand. action; w.p. $1 - \epsilon_t$: best action. If $\epsilon_t \models RM$
	Reinforcement Learning	$\nabla J_T(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \gamma^t G_t \nabla_{\theta} \log \pi(a_t x_t; \theta) \right]$	\Rightarrow converge to π^* w.p. 1.
$f \sim P(f x_{1:t}, y_{1:t})$, select $x_{t+1} \in \operatorname{argmax}_{x \in D} f(x)$	Reinforcement Learning Agent actions change	Mean over returns: replace G_t with $(G_t - b_t(x_t))$	Robbins Monro (RM): $\sum_{t} \epsilon_{t} = \infty$, $\sum_{t} \epsilon_{t}^{2} < \infty$
Probab. Planning Control based on prob. model		REINFORCE (On): Input $\pi(a x;\theta)$, init θ	R_{max} Algorithm: Set unknown $r(x,a)$ to R_{max} , $r(x,a) \le R_{max}$, $\forall x,a$, add fairy tale state x^* , set
MDP: A (finite) MDP is defined by States $X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	-On-policy: agent has full control (actions)	Repeat: generate episode $(x_i, a_i, r_i), i = 0:T$;	$P(x^* x,a)=1$, compute π . Repeat: run π while
$\{1,,n\}$, Actions $A = \{1,,m\}$, Transition probabili-	-Off-policy: no control, only observational data	for $t=0:T$: set G_t , update θ :	updating $r(x,a)$, $P(x' x,a)$, then recompute π .
ties $P(x' x,a)$, Reward function $r(x,a)$ (or $r(x,a,x')$), discount factor $\gamma \in [0,1]$ assume that r and P are	Model-Free RL Directly estimate value function	$\theta = \theta + \eta \gamma^t G_t \nabla_{\theta} \log \pi(A_t X_t; \theta)$	Thm(*): W.p. $1-\delta$, R_{max} will reach ϵ -opt policy in
known reward function is a design choice		Advantage Func: $A^{\pi}(x,a) = Q^{\pi}(x,a) - V^{\pi}(x)$	#steps poly in $ X $, $ A $, T , $1/\epsilon$, $\log(1-\delta)$, R_{max} .
Planning in (Discounted) MDPs: Policy π :	Update: $\hat{V}^{\pi}(x) \leftarrow (1-\alpha_t)\hat{V}^{\pi}(x) + \alpha_t(r+\gamma\hat{V}^{\pi}(x'))$ Thm: $\alpha_t \models RM$ and all (x,a) pairs chosen ∞ often,	$\forall x, a: A^{\pi^*}(x, a) \leq 0; \forall \pi, x: \max_a A^{\pi}(x, a) \geq 0$	Note: MDP is assumed ergodic.
$X \rightarrow A$ (det.), $\pi: X \rightarrow P(A)$ (rand.) induces a MC	Inm: $\alpha_t \in KM$ and all (x,a) pairs chosen ∞ often,	Actor Critic (On) Approx both V^{π} and policy π_{θ}	Problems of Model-based RL: - Memory requi-
with transition probabilities $P(X_{t+1} = x' X_t = x) = P(x' x_t = x') A(x' x$	then v converges to v w.p. 1.	(e.g. 2 NNs). Reinterpret score gradient:	red: $P(x' x,a) \approx \mathcal{O}(X ^2 A), r(x,a) \approx \mathcal{O}(X A)$
$P(x x,\pi(x))$ (det.) or $\sum_a \pi(a x)P(x x,a)$ (rand.)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\nabla J(\theta_{\pi}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q(x_{t}, a_{t}; \theta_{Q}) \nabla \log \pi(a_{t} x_{t}; \theta_{\pi}) \right]$	- Computation: repeatedly solve MDP (VI, PI)
	1) Init estimate / $Q(x,a) = \frac{R_{max}}{1-\gamma} \prod_{t=1}^{I_{init}} (1-\alpha_t)^{-1}$	$\tau \sim \pi_{\theta}$ $\left[O(x, q; \theta_{\pi})\nabla - \log x(q x; \theta_{\pi})\right]$	Planning (off) (cont. obsv. states)
$V^{\pi}(x) = J(\pi X_0 = x) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(X_t, \pi(X_t)) X_0 = x] =$	2) Pick a (e.g. ϵ_t greedy), get (x,a,r,x') , update:	$-\frac{1}{2} (x,a) \sim \pi_{\theta} \left[\mathcal{Q}(x,u,O_{\theta}) \vee \theta_{\pi} \log \mathcal{H}(u x,O_{\pi}) \right]$	MPC (known deterministic dynamics)
$r(x,\pi(x)) + \gamma \sum_{x'} P(x' x,\pi(x)) V^{\pi}(x') \Leftrightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi},$ $V^{\pi} = V^{\pi}(x) + \gamma \sum_{x'} P(x' x,\pi(x)) V^{\pi}(x') \Leftrightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi},$	$Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r+\gamma \max_{a'}Q(x',a'))$	Tillows offittle apaates.	Assume known model $x_{t+1} = f(x_t, a_t)$, plan over
$V_i^{\pi} = V^{\pi}(i), \ r_i^{\pi} = r^{\pi}(i, \pi(i)), \ T_{i,j}^{\pi} = P(j i, \pi(i))$	Test time: greedy $\pi_G(x) = \arg\max_a Q(x, a)$	$\theta_{\pi} \leftarrow \theta_{\pi} + \eta_{t} Q(x, a; \theta_{Q}) \nabla \log \pi(a x; \theta_{\pi})$	finite horizon H . At each step t , maximize:
	Thm: $\alpha_t \models RM$, all (x,a) pairs chosen ∞ often, then		$J_{H}(a_{t:t+H-1}) := \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau})$
$V^{\pi}(x) = Q^{\pi}(x, \pi(x)) \text{ (deterministic policy } \pi)$ $V^{\pi}(x) = \mathbb{F} \qquad Q^{\pi}(x, \pi') \text{ (prob. policy } \pi(x))$	Q converges to Q^* w.p. 1. Thm(*) holds.	Variance redution: replace with $Q(x,a;\theta_Q)$ – $V(x;\theta_Q)$ reduced the section of $Q(x,a;\theta_Q)$	
$V^{\pi}(x) = \mathbb{E}_{a' \sim \pi(x)} Q^{\pi}(x, a')$ (prob. policy $\pi(x)$)	Computation time: $\mathcal{O}(A)$, Memory: $\mathcal{O}(X A)$	$V(x;\theta_V)$: advantage func. estimate \rightarrow A2C	then carry out a_t , then replan.

```
Optimize via gradient based methods (diff. r, f,
cont. action) or via random shooting.
Random shooting: Pick rand. samples a_{t:t+H-1}^{(i)} and pick sample i^* = \operatorname{argmax}_i J_H(a_{t:t+H-1}^{(i)})

MPC with Value estimate: J_H(a_{t:t+H-1}):=
\sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau}) + \gamma^{H} V(x_{t+H})
H=1: J_{1}(a_{t}) = Q(x_{t}, a_{t}); \pi_{G} = \operatorname{argmax}_{a} J_{1}(a)
MPC (known stochastic dynamics)
\max_{a_{t:t+H-1}} \mathbb{E} \left[ \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau} + \gamma^{H} V(x_{t+H}) | a_{t:t+H-1} \right]
Parametrized policy: (H=0 \Leftrightarrow DDPG obj.)
J_H(\theta) = \underset{x_0 \sim \mu}{\mathbb{E}} \left[ \sum_{\tau=0: H-1} \gamma^{\tau} r_{\tau} + \gamma^H Q(x_H, \pi(x_H, \theta)) | \theta \right]
MPC (unknown dynamics): follow \pi, learn
f,r,Q off-policy from replay buf, replan \pi.
BUT: point estimates have poor performance, er-
rors compound \rightarrow use bayesian learning:
Model distribution over f (BNN, GP) and use (ap-
proximate) inference (exact, VI, MCMC,..).
Greedy exploitation for model-based RL:(*)
1) D = \{\}, prior P(f|\{\}) 2) repeat: plan new \pi to ma-
ximize \max_{\pi} \mathbb{E}_{f \sim P(\cdot|D)} J(\pi, f), rollout \pi, add new
data to D, update posterior P(f|D)
PETS algorithm: Ensemble of NNs predicting
cond. Gaussian transition distr., use MPC.
Thompson Sampling: Like greedy* BUT in 2)
sample model f \sim P(\cdot | D) and then \max_{\pi} J(\pi, f)
Use epistemic noise to drive exploration.
Optimistic exploration: Like greedy* BUT in 2)
\max_{\pi} \max_{f \in M(D)} J(\pi, f); with M(D) set of plausi-
ble models given D.
```