Harmonic Functions

Definition

To say that a real-valued function h(x,y) is *harmonic* in a domain D means that the first and second partial derivatives exist and are continuous in D, and:

$$\nabla^2 h = h_{xx} + h_{yy} = 0$$

This is known as the Laplace's equation.

Theorem

Let D be a domain:

$$f(z) = u + iv$$
 analytic in $D \implies u$ and v harmonic in D

Proof

$$u_x = v_y$$
 and $v_x = -u_y$

$$u_{xx} = v_{yx}$$
 and $v_{xy} = -u_{yy}$

But since the partials are continuous, $v_{xy} = v_{yx}$

$$u_{xx} = -u_{yy}$$

$$\therefore u_{xx} + u_{yy} = 0$$

$$u_{xy} = v_{yy}$$
 and $v_{xx} = -u_{yx}$

But since the partials are continuous, $u_{xy} = u_{yx}$

$$v_{yy} = -v_{xx}$$

$$\therefore v_{xx} + v_{yy} = 0$$

Example

$$f(z) = z^2 = (x^2 - y^2) + i2xy$$

f(z) is entire

$$u_x = 2x$$
 and $u_{xx} = 2$

$$u_y = -2y$$
 and $u_{yy} = -2$

$$u_{xx} + u_{yy} = 2 - 2 = 0$$

 $\therefore u$ is harmonic

$$v_x = 2y$$
 and $v_{xx} = 0$

$$v_y=2x \ \mathrm{and} \ y_{yy}=0$$

$$v_{xx} + v_{yy} = 0 + 0 = 0$$

 $\therefore v$ is harmonic

Note that the converse is *not* true!

Example

$$f(z) = x + i(x^2 - y^2)$$

$$u_x = 1 \text{ and } u_{xx} = 0$$

$$u_y = 0 \text{ and } u_{yy} = 0$$

$$u_{xx} + u_{yy} = 0 + 0 = 0$$

$$u_{xx} + u_{yy} = 0 + 0 = 0$$

$$u_{xx} + u_{yy} = 0 + 0 = 0$$

$$\begin{aligned} v_x &= 2x \text{ and } v_{xx} = 2 \\ v_y &= -2y \text{ and } v_{yy} = -2 \\ v_{xx} + v_{yy} &= 2 - 2 = 0 \end{aligned}$$

 $\therefore v$ is harmonic

$$f(z) = \frac{z + \overline{z}}{2} + i \left[\left(\frac{z + \overline{z}}{2} \right)^2 - \left(\frac{z - \overline{z}}{2i} \right)^2 \right]$$

$$= \frac{z + \overline{z}}{2} + i \left[\frac{(z^2 + 2z\overline{z} + \overline{z}^2) + (z^2 - 2z\overline{z} + \overline{z}^2)}{4} \right]$$

$$= \frac{z + \overline{z}}{2} + i \left(\frac{2z^2 + 2\overline{z}^2}{4} \right)$$

$$= \frac{1}{2} (z + \overline{z} + iz^2 + i\overline{z}^2)$$

$$\frac{df}{d\overline{z}} = \frac{1}{2}(1 + i2\overline{z}) = \frac{1}{2} + i\overline{z} \neq 0$$

 $\therefore f(z)$ is analytic nowhere

So, u and v harmonic is necessary but not sufficient.

Definition

To say that v is a *harmonic conjugate* of u on a domain D means that u and v are harmonic and CR holds.

Theorem

Let D be a domain:

f(z) = u + iv analytic in $D \iff v$ is a harmonic conjugate of u in D

Proof

$$\implies$$
 Assume $f(z) = u + iv$ analytic in D u and v are harmonic

CR holds

 $\therefore v$ is a harmonic conjugate of u

 \iff Assume v is a harmonic conjugate of u

u and v are harmonic

The partials of u and v exist and are continuous

CR holds

 $\therefore f$ is analytic

Theorem

Let $u(z, \overline{z})$ be a real-valued function on a domain D:

$$\nabla^2 u = 4u_{z\overline{z}}$$

Proof

Let:
$$z = x + iy$$
 $z_x = 1$ $z_y = i$ $\overline{z} = x - iy$ $\overline{z}_x = 1$ $\overline{z}_y = -i$

$$u_x = u_z z_x + u_{\overline{z}} \overline{z}_x = u_z + u_{\overline{z}}$$

$$u_{xx} = u_{zz}z_x + u_{z\overline{z}}\overline{z}_x + u_{\overline{z}z}z_xu_{\overline{z}\overline{z}} + \overline{z}_x$$

$$= u_{zz} + u_{z\overline{z}} + u_{\overline{z}z} + u_{\overline{z}\overline{z}}$$

$$= u_{zz} + u_{z\overline{z}} + u_{z\overline{z}} + u_{\overline{z}\overline{z}}$$

$$= u_{zz} + 2u_{z\overline{z}} + u_{\overline{z}\overline{z}}$$

$$u_y = u_z z_y + u_{\overline{z}} \overline{z}_y = i u_z - i u_{\overline{z}} = i (u_z - u_{\overline{z}})$$

$$\begin{array}{rcl} u_{yy} & = & i(u_{zz}z_y + u_{z\overline{z}}\overline{z}_y - u_{\overline{z}z}z_y - u_{\overline{z}\overline{z}}\overline{z}_y) \\ & = & i(iu_{zz} - iu_{z\overline{z}} - iu_{\overline{z}z} + iu_{\overline{z}\overline{z}}) \\ & = & i(iu_{zz} - iu_{z\overline{z}} - iu_{z\overline{z}} + iu_{\overline{z}\overline{z}}) \\ & = & i(iu_{zz} - 2iu_{z\overline{z}} + iu_{\overline{z}\overline{z}}) \\ & = & -u_{zz} + 2u_{z\overline{z}} - u_{\overline{z}\overline{z}} \end{array}$$

$$\nabla^z u = u_{xx} + u_{yy} = (u_{zz} + 2u_{z\overline{z}} + u_{\overline{z}\overline{z}}) - (-u_{zz} + 2u_{z\overline{z}} - u_{\overline{z}\overline{z}}) = 4u_{z\overline{z}}$$

Corollary

Let $u(z, \overline{z})$ be a real-valued, analytic function on a domain D:

$$u_{z\overline{z}} = 0$$

Proof

 $u(z,\overline{z})$ is harmonic

$$\nabla^2 u = 4u_{z\overline{z}} = 0$$

$$\therefore u_{z\overline{z}} = 0$$

Note that this is consistent with the fact that for f analytic, $f_{\overline{z}} = 0$.

Theorem

Let $\phi(x,y)$ be harmonic in a domain D_z and let w=f(z) be analytic in D_z such that $f'(z)\neq 0$. ϕ is harmonic in D_w .

Proof

Let w = u + iv. In order for ϕ to be harmonic in D_w :

$$\phi_{uu} + \phi_{vv} = 4\phi_{w\overline{w}} = 0$$

So, WTS $\phi_{w\overline{w}} = 0$

$$\phi_z = \phi_w w_z + \phi_{\overline{w}} \overline{w}_z$$

But in order for ϕ to be differentiable on $D_w, \phi_{\overline{w}} = 0$, so:

$$\phi_z = \phi_w w_z$$

$$\phi_{z\overline{z}} = (\phi_{ww} w_{\overline{z}} + \phi_{w\overline{w}} \overline{w}_{\overline{z}}) w_z + \phi_w w_{z\overline{z}}$$

But for f to be differentiable in D_z , $w_{\overline{z}}=0$ and for w_z to be differentiable in D_z , $w_{z\overline{z}}=0$, so: $\phi_{z\overline{z}}=\phi_{w\overline{w}}\overline{w}_{\overline{z}}w_z=\phi_{w\overline{w}}\overline{w}_zw_z=\phi_{w\overline{w}}\left|w_z\right|^2=\phi_{w\overline{w}}\left|f'(z)\right|^2$

But for ϕ harmonic on D_z , $\phi_{z\overline{z}}=0$, so

$$\phi_{w\overline{w}} \left| f'(z) \right|^2 = 0$$

But $f'(z) \neq 0$ by assumption,

$$\therefore \phi_{w\overline{w}} = 0$$