Gedämpfter LC Schwingkreis Oszilloskop, Teilversuch 4.4.1

Erik Zimmermann

14. März 2016

Versuchsaufbau und Durchführung

Abbildung: Versuchsaufbau

- Alle Versuche wurden bei einer Eingangspannung von $U_0 = 5.6 V$ durchgeführt, dabei wurde das Oszilloskop auf "Single Sequence" eingestellt.
- Aus dem resultierenden Standbild wurden die Spannungsmaxima mit entsprechenden Zeitwerten abgelesen.
- Die Ablesefehler wurden zu $\sigma_U = \frac{0.08}{\sqrt{12}} V \& \sigma_T = \frac{100 \cdot 10^{-6}}{\sqrt{12}} s$ bestimmt.

Rohdaten (beispielhaft)

Tabelle: 1. Messung

$$egin{array}{c|c} U_1 = 3.12 \ V & t_1 = 0.5 \textit{ms} \\ U_2 = 1.76 \ V & t_2 = 4.4 \textit{ms} \\ U_3 = 1.04 \ V & t_3 = 8.2 \textit{ms} \\ U_4 = 0.56 \ V & t_4 = 12.0 \textit{ms} \\ \end{array}$$

Transformation der Rohdaten

Tabelle: Messung 1

Frequenz in Hz	σ_f in Hz	Abklingkoeffizient in $\frac{1}{s}$	σ_{δ} in $\frac{1}{s}$
f = 256.410	$\sigma_f = 1.898$	$\delta=150.047$	$\sigma_{\delta}=$ 4.264
f = 263.158	$\sigma_f = 1.999$	$\delta=143.827$	$\sigma_{\delta} = 7.260$
f = 263.158	$\sigma_f = 1.999$	$\delta=174.551$	$\sigma_{\delta}=13.535$

Hier wurden die Fehler aus den folgenden Gleichungen ermittelt:

$$\sigma_f = \frac{\sigma_T}{T^2} \tag{1}$$

$$\sigma_{\delta_n} = \frac{1}{T_n} \cdot \sqrt{\left(\frac{\sigma_{U_n}}{U_n}\right)^2 + \left(\frac{\sigma_{U_{n+1}}}{U_{n+1}}\right)^2 + \left(\delta_n \cdot \sigma_{T_n}\right)^2} \tag{2}$$

Der Abklingkoeffizient δ wird bestimmt aus:

$$\delta_n = \frac{\ln \frac{U_n}{U_{n+1}}}{t_{n+1} - t_n} \tag{3}$$

Ergebnis

Aus den Einzelmessungen haben wir für die Frequenz und den Abklingkoeffizient den gewichteten Mittelwert mit seinem Fehler bestimmt:

Tabelle: Ergebnis

$ar{f}$ in Hz	$\sigma_{ar{f}}$ in Hz	f_{Theo}	$\bar{\delta}$ in $\frac{1}{s}$	$\sigma_{ar{\delta}}$ in $rac{1}{s}$	δ_{Theo}
259.960	0.617	264.426	148.025	1.994	131.944

Abbildung: Frequenz

Abbildung: Abklingkoeffizient

Zusammenfassung der Analyse/ Fazit

- Es fällt auf, dass δ größer ist als δ_{theo} . Der Grund dafür ist, dass $\delta \sim R$ und wir bei R mit Sicherheit einen höheren Wert erwarten müssten, da zum Beispiel alle Bauteile einen Innenwiderstand aufweisen.
- Die jeweiligen Fehler auf die Mittelwerte liegen in einem realistischen Rahmen.