AVIFAUNAL DIVERSITY OF TOLIPIR NATIONAL PARK AZAD JAMMU AND KASHMIR (AJK) PAKISTAN

Article in The Journal of Animal and Plant Sciences · January 2015

CITATIONS READS

0 2,497

1 author:

Fakhar-i-Abbas Dr
Center for Bioresource Research
136 PUBLICATIONS 380 CITATIONS

SEE PROFILE

AVIFAUNAL DIVERSITY OF TOLIPIR NATIONAL PARK AZAD JAMMU AND KASHMIR PAKISTAN

A. H. Faiz¹*, F-I-Abbas¹, Z. Ali² and L. Zahra³

¹Bio Resource Research Centre (BRC) Islamabad, Pakistan

²Environmental Health & Wildlife, Department of Zoology, University of the Punjab, Lahore-54590, Pakistan

³Department of Zoology, Women University, Bagh, AJK

Corresponding Author's Email: sabulhussan@gmail.com

ABSTRACT

In present study, we examined the wetlands avifaunal diversity of the Tolipir National Park to provide the baseline data of about species composition, and distribution. Field surveys were conducted during February 2013to February 2014. Data was collected by point count method. In total, a total of 202 bird species belonging to 55 families two vulnerable (*Tragopanmelanocephalus*, *Catreuswallichii*), one near threatened (*Coracias garrulous*), one endangered (*Falco peregrines*), and one rear species (*Falco cherrugmilvipes*). Various diversity indices Simpson index(0.0067), Shannon Wiener index (2.22) were also calculated. We assume that focusing the conservation practices upon these species will promote the preservation of a wide range of organisms inhabiting Tolipir National Park.

Key words: Avifauna, diversity, National Park, Endangered.

INTRODUCTION

Birds are conspicuous, ubiquitous, and arguably the best studied group of vertebrates on the planet (Whelan et al. 2008).Birds are highly mobile, occur globally in nearly all habitats and fill many ecological roles (Daniel, 2011). The activities of birds provide links within and between ecosystems and can have large effects on other species. Birds provide all ecosystem services such as provisioning services refer to natural products that are directly used by humans for food, clothing, medicines, tools, or other uses (Carver, 2009). Cultural services provide recreational opportunities, inspiration for art and music, and spiritual value (Mynott, 2009). Regulating services include pest control and carcass removal (Whelan et al. 2010). Supporting services, such as pollination, seed dispersal, water purification, and nutrient cycling, provide processes essential for ecological communities and agricultural ecosystems (Brenner et al.2010).

One of the most general features of life on earth is changes of abundance and diversity of organisms along the earth's major environmental gradients, including elevation (Brown, 2001). Bird communities are correlated with topography, precipitation, latitude, altitude and with plant communities (Rabhek and Graves 2001). The composition and diversity of birds vary at every 1000 m altitude due to change in precipitation (Price *et al.* 2003). Birds serve as bio-indicators and suggest the status of biodiversity in general (Urfi, 2011). Biodiversity assessment provides valuable guidelines for the prioritization of reserves and protected areas for the resource conservation and planning accordingly at state

and regional level (Badola and Aitken, 2010). In biodiversity conservation efforts, the assessment and evaluation of bird communities have been considered as important tools (Shafiq *et al.* 1997). In understanding biodiversity, altitudinal gradients for the bird distribution provide highly useful clues (McCain, 2009).

No specific study is available for the area under Tolipir National Park, or even for the general Tolipir tract. The specific reference to the presence or distribution of different birds' species is also lacking even in books/reviews. Inferences on the possible presence of different species birdsspecies can, however, be drawn from the available literature on the habitat, biology and distribution range of different species for Pakistan/ Indian subcontinent (Birds: Roberts, 1992, Grewal *et al.* 2002), depending upon available variation in altitude, habitat and associated biotic/ abiotic factors. The aim of thestudy was to measure avifaunal diversity atTolipir National Park, by measuring Simpson index and Shannon-Weiner Diversity Index.

MATERIALS AND METHODS

Tolipir (33°NL, 73°E, top altitudes 2600 - 3100 m asl) area presents a Y-shaped hill fold (located around the mausoleum of a saint) falling in the PirPanjal Hills, constituting the western reaches of the Himalayan Range. This is a famous hill-station having a mixture of the highland pastures, hill slopes, dense coniferous forests, ravines and water channels; dotted with human settlements and agriculture fields, especially on the southfacing slopes, north-facing slopes having denser forested growth of vegetation.

The study site was systematically divided into observation plots forming grid cells of $1 \text{ km} \times 1 \text{ km}$. Five (5) grids were positioned horizontally and data collection was conducted in each grid. Subplots of observation were systematically selected in each grid and were regularly arranged so that distance between subplots was 500 m. Each subplot was checked in the field with reference to a handheld Global Positioning System (GPS, Garmin 12XL) for correct placement and site accessibility. At each subplot, the surveyor wait for 5 min (settling down period) before starting the counts during 3 hr. morning session starting just before sun rise. Birds observed within 50m fixed radius were recorded visually or acoustically. Each subplot point was visited twice under favorable weather conditions. Bird abundance was judged as encounter rates of each species in point counts. The bird fauna was observed using Binocular (12X 50X) and identified using available keys (Ali and Ripley, 1983; Roberts 1991).

Simpson's Diversity Index: It was calculated by D = n(n-1)/N(N-1)

where N = the total number of organisms of all species and n = the total number of organisms of a particular species from which Simpson's Diversity Index, 1 - D, is found.

Shannon – Wiener diversity index: The diversity index was calculated by using the Shannon – Wiener diversity index (1949). Diversity index = H = - Pi In Pi where Pi = S / N

S = number of individuals of one species N = total number of all individuals in the sample.

In = logarithm to base e

RESULTS AND DISCUSSION

A total of 202 bird species have been recorded, which exploit the TNP tracts to different degrees in different ways (Table 1). Keeping to the size of the TNP area (some 50 km²), it is a high diversity, which can be expected under the available diversity in the available habitat conditions, ascribable to the altitudinal variation (>1,200 m); all grades between grasslands and thick forested vegetation; natural vegetation, cultivated fields and human settlements running side by side; and hill tops, slopes and deep ravines; and presence of small hill streams at places. Twenty one species (Wood Sandpiper, Cattle Egret, Great Bittern, Ibis Bill, Masked Wagtail, Red-wattled Lapwing, Ruff, Common Moorhen, Northern Lapwing, Black-winged Stilt, Brown Dipper, Grey Heron, Indian Pond Heron, Little Egret, Common Kingfisher, Common Sandpiper, White-capped Redstart, Plumbeous Redstart, Northern Shoveler, Speckled Wood Pigeon, Marsh Harrier, Citrine Wagtail, and Short-eared Owl) of this list have a stronger association with aquatic habitat. Keeping in view the fact that well defined aquatic

habitat is lacking in TNP, these species may not be regularly exploiting of the TNP area and may be regarded as occasional visitors, yet contribute to the total avian biodiversity of TNP.

The majority of species (196) representing the bird fauna of TNP, have been regarded as least concern species on a global scale by IUCN. Therefore, the major part of the avifauna of TNP is not of a direct international concern. However, the area is important from the bird watchers stand point, where students and wildlife enthusiasts can capture a glimpse of these species. At a global level, Spotted Owlet and White-Rumped Vulture have been regarded as critically endangered; Asian Paradise Flycatcher and European Roller near threatened; Cheer Pheasant and Tragopan vulnerable; Saker Falcon and Egyptian Vulture endangered; while Shangar Falcon is rare. Recent information on the status of Eurasian Griffon Vulture, Himalayan Griffon Vulture and Cinereous Vulture in TNP is not known, but the species have declined to very low levels in the adjacent tracts. There are indications of presence of Khalij Pheasant, Koklass Pheasant, Himalayan Monal Pheasant, Snow Partridge, Common Quail and Chukar in/ and around TNP, which needs to be protected and can add to the beauty of the area.

A majority of the bird fauna is summer visitor to TNP, and visit the area after spending the winter in the relatively southern parts located at lower altitude and latitudes. The area is thus a breeding ground for a large number of bird species. Most of the animal species have a very narrow range of tolerance for all the different biotic and abiotic potential during the breeding season. An availability of an undisturbed environment in the summering grounds of such species in the TNP will provide favorable breeding habitat for such species. The summers can attract a higher number of the visitors into TNP, which will allow them to enjoy the bird diversity. However, such visitors will be required to be managed in such a way that they do not enter the privacy of the birds or cause a disturbance in the natural habitat of the breeding birds.

The winter diversity in the avifauna is contributed by the residents and winter visitors. Jackdaw, Eurasian Tree Creeper, Jungle Crow, White-cheeked Nuthatch, Baya Weaver, Asian Brown Flycatcher, Greybreasted Prinia, Collared Pygmy Owlet, Long-billed Pipit, Wedge-tailed Green Pigeon, Black Bulbul, Common Babbler, Rufous Dove, Oriental White Eye, Ashy Wood Pigeon, Himalayan Bulbul, Red-vented Bulbul, Eurasian Tree Sparrow, Pied Stone Chat, Blue-Tailed Bee-eater, Speckled Wood Pigeon, Black Drongo, Coppersmith Barbet, Laughing Dove, Eagle Owl, Green Backed Tit, Spotted Owlet, Black Kite, Common Wood Pigeon, Slaty Blue Flycatcher, White Throated Needle Tail, Great Tit or Grey Tit, Long Tailed Minivet, Mountain Hawk Eagle, Bank Mynah, Spotted Forktail,

Table 1: List of bird species in Tolipir National PARK (TNP)

Sr	Avivorous Species	Sighting	Sr.no	species	Sighting	Sr.no	species	Sighting
1	Hodgsoniusphoenicuroides	15	5	Botaurusstellaris	4	9	Falco cherrug	13
2	Lophophorusimejanus	9	6	Accipiter badius	36	10	Falcocherrugmilvipes	13
3	Parusmelanolophus	33	7	Accipiter gentiles	15	11	Falco peregrinus	20
4	Priniacriniger	12	8	Accipiter nisus melaschistos	47	12	Falco subbuteo	24
				Carnivorous				
13	Aegypiusmonachus	11	22	Ardeacinerea	9	31	Bubo bubohemachalana	23
14	Anasclypeata	19	23	Ardeolagrayii	11	32	Buteobuteo	11
15	Aquila chrysaetos	21	24	Asioflammeus	41	33	Cincluspallasii	8
16	Aquila nipalensis	17	25	Athenebrama	22	34	Circusaeruginosus	23
17	Coracias garrulous	12	26	Gyps bengalensis	17	35	Hieraaetuspennatus	11
18	Elanuscaeruleus	11	27	Gyps fulvus	47	36	Milvusmigrans	31
19	Falco tinnunculus	19	28	Gyps himalayensis	16	37	Neophronpercnopterus	6
20	Spizaetusnipalensis	33	29	Strixaluco	32			
21	Urocissaflavirostris	53	30	Tringaglareola	6			
			•	Frugivorous species	•	,		•
38	Megalaimahaemacephala	21	42	Psittaculacyanocephala	31	44	Sturnuspogodarum	1
39	Megalaimavirens	20	43	Psittaculahimalayana	40	45	Psittaculaeupatria	41
40	Phoenicuruserythrogaster	18		·			•	
	, , , , , , , , , , , , , , , , , , ,			Granivorous				T.
46	Catreuswallichii	14	52	Columba livia	58	58	Lophuraleucomelanos	31
47	Cloumbapulchric	16	53	Coturnixcoturnix	9	59	Mycerobasicterioides	10
48	Columba hodgsonii	20	54	Garruluslanceolatus	38	60	Passer domesticusindicus	36
49	Passer hispaniolensis	24	55	Passer montanus	18	61	Pucrasiamacrolopha	11
50	Streptopeliaorientalis	14	56	Passerrutilans	73	62	Streptopeliadecaocto	27
51	Streptopeliasenegalensis	22	57	Treronsphenura	13	64	Sitta leucosis	11
	1 1		1	Omnivorous			J	
65	Corvuscorax	1	68	Turdusmerula	13	71	Monticolasolitarius	21
66	Corvusfrugilegus	1	69	Monticolasaxatilis	9	72	Dendrocittavagabunda	47
67	Corvusmacrorhynchos	10	70	Corvusmonedula	1			
	1		1	Herbivorous			J	
73	Alectorischukar	7	75	Gallinulachloropus	6	77	Lerwalerwa	9
74	Columba palumbus	28	76	Tragopanmelanocephalus	6			
		<u> </u>	1	Molluscivorous	1	1	J	1
78	Actitishypoleucos	17	80	Lusciniasvecica	13	81	Myophonuscaeruleus	36
79	Tringaochropus	13						
		-1	1	Nectivorous	- I	1		1
82	Zosteropspalpebrosus	15						
	TT	_					1	
		_1	- I	Piscivorous	1	_ [J	l
83	Alcedoatthis	17	85	Egrettagarzetta	17	87	Enicurus maculates	32

84	Ficedula tricolor	28	86	Pericrocotusethologus	34			
				Insectivorous				
88	Acridotheresfuscus	1	129	Cardueliscarduelis	12	169	Copsychussaularis	15
89	Acridotheresginginianus	33	130	Carduelisspinoides	18	170	Cuculuscanorus	8
90	Acridotherestristis	1	131	Carpodacuspuniceus	10	171	Cyornisrubeculoides	18
91	Anthusroseatus	11	132	Cephalopyrusflammiceps	12	172	Delichonurbica	8
92	Anthus similes	12	133	Certhiafamiliaris	9	173	Dendrocoposauriceps	13
94	Anthustrivialis	24	134	Certhiahimalayana	29	174	Dendrocoposhimalayensis	18
95	Bubulcus ibis	5	135	Cettiabrunnifrons	16	175	Dendrocoposmahrattensis	15
96	Calidrisminuta	13	136	Cettiafortipes	24	17	Dicrurusmacrocercus	20
97	Callacanthisburtoni	9	137	Chaimarrornisleucocephalus	18	17	Dinopiumbenghalense	20
98	Caprimulguseuropaeus	5	138	Charadriusdubius	20	17	Emberizacia	22
99	Emberizafucata	15	139	Glaucidiumcuculoides	48	17	Laniusvittatus	10
100	Emberizaleucocephalos	34	140	Heterophasiacapistrata	17	17	Leucostictebrandti	18
101	Emberizastewarti	18	141	Himantopushimantopus	8	180	Leucostictenemoricola	16
102	Enicurusscouleri	26	142	Hirundapuscaudactus	28	18	Lusciniabrunnea	18
103	Eumyiasthalassina	13	143	Hirundodaurica	9	18	Lusciniapectoralis	10
104	Ficedulasuperciliaris	15	144	Hirundorupestris	15	18	Melophuslathami	14
105	Garrulaxalbogularis	11	145	Hypsipetesmadagascariensis	13	18	Meropsapiaster	5
106	Garrulaxlineatus	25	146	Ibidorhynchastruthersii	3	18	Meropsphilippinus	20
107	Garrulaxvariegates	16	147	Ixobrychusminutus	10	18	Monticolacinclorhynchu	18
108	Glaucidiumbrodiei	12	148	Jynxtorquilla	6	18	Monticolarufiventris	13
109	Motacilla alba personata	15	149	Phylloscopusccollybita	22	18	Phoenicurusochruros	9
110	Motacillacitreola	26	150	Picumnusinnominatus	6	18	Phylloscopusaffinis	26
111	Motacillaflava	19	151	Picussquamatus	8	190	Phylloscopuschloronotus	12
112	Muscicapadauuric	11	152	Ploceusphilippinus	10	191	Phylloscopushumei	16
113	Muscicaparuficauda	13	153	Porzanafusca	3	192	Phylloscopusinornatus	16
114	Muscicapasibirica	29	154	Porzanapusilla	11	193	Phylloscopusmagnirostris	6
115	Muscicapathalassina	8	155	Priniahodgsonii	12	194	Phylloscopusoccipitalis	17
116	Parus major	27	156	Prunellaatrogularis	25	195	Phylloscopusproregulus	7
117	Parusmonticolus	23	157	Prunellastrophiata	8	196	Phylloscopussindianus	30
118	Philomachuspugnax	7	158	Pteruthiusxanthochlorus	38	197	Phylloscopustytleri	15
119	Pycnonotuscafer	17	159	Saxicolacaprata	20	198	Streptopeliachinensis	34
120	Pycnonotusleucogenys	16	160	Saxicolatorquata	35	199	Sylviacurruca	11
121	Pyrrhulaaurantiaca	8	161	Saxicoloidesfulicata	20	200	Tachymarptismelba	11
122	Regulusregulus	7	162	Scolopaxrusticola	6	201	Tarsigercyanurus	24
123	Rhyacornisfulginosus	19	163	Seicercusxanthoschistos	20	201	Terpsiphoneparadisi	15
124	Tichodromamuraria	15	164	Turdoidesstriatus	16	202	Turdusruficollisatrogutaris	13
125	Troglodytes troglodytes	23	165	Turdusboulboul	3			
126	Turdoidescaudatus	14	166	Turdusrubrocanus	7			
127	Upupaepops	71	167	Vanellusvanellus	8			
128	Vanellusindica	6	168	Zootheradauma	13			

Tawny Owl, Shikra, Black-headed Jay, Slaty-headed Parakeet, Alexandrine Parakeet, Asian Barred Owlet, and Common Hoopoe are the resident bird species of TNP. The populations of these species also increase during summers, attracting the birds from the lower latitudes through local movements. The winter visitors are also relatively few in the number, which include: Short-eared Owl, Pine Bunting, Long Tailed Minivet, Mountain Chiffchaff, Citrine Wagtail, Black-throated Accentor, Tree Pipit, Spanish Sparrow, Common Chiffchaff, Indian Robin, Northern Shoveler, Yellow Wagtail, Steppe Eagle, Hume's Warble, Yellow-browed Warbler, Rufous Dove, Dark-throated Thrush, Lesser White Throat, Rosy Pipit, Black Redstart, Eurasian Woodcock, and Rook.

These species were categorized according to their feeding preferences into ten different types (Table 2). The highest percentage was found to be of insectivorous birds which were 58.1 %, followed carnivore birds 12.3%, 8.3% granivorous 5.9% Avivorous, 4.4% omnivores, 3.4% frugivore, 2.4% herbivores, 2.4piscivores, 1.9% molluscivore and nectivore 0.4%.

Table 2. Classification of birds on feeding habits

S#	Type	% Population	Birds (n)
1	Insectivorous	58.1	118
2	Carnivorous	12.3	25
3	Granivorous	8.3	17
4	Avivorous	5.9	12
5	Omnivorous	4.4	9
6	Frugivorous	3.4	7
7	Herbivorous	2.4	5
8	Piscivorous	2.4	5
9	Molluscivorous	1.9	4
10	Nectivorous	0.4	1

The value of the Simpson Index is (0.0067), which represents lower diversity because this index ranges from 0-1, with 0 representing infinite diversity and 1 representing no diversity. Mature and stable communities have high diversity values (0.6 to 0.9), while the communities under stress conditions, exhibiting low diversity, usually show close to a zero value (Dash, 2003). The Simpson diversity index is always higher where the community is dominated by fewer species and when the dominance is shared by a large number of species (Whittaker, 1965).

Typical values of the Shannon Index are between 1.5 and 3.5 in most ecological studies, so a value above 3 signifies stable environmental conditions and our ShannonIndex results (2.22) indicate satisfactory diversity.

REFERENCES

- Ali, S. and S. D. Ripley (1983). Handbook of the birds of India and Pakistan. Oxford University Press Delhi.
- Badola, H. K., Rai, L. K. and Kbasnet (2010).
 Biodiversity Conservation in Trans-boundary
 Landscapes Project in Sikkim- Assessment of
 Biodiversity Values and Ecosystem Services in
 the Protected Areas of Sikkim Himalayas.
 Output 1. 1. (Biodiversity Component).
 ICIMOD, Nepal-GBPIHED, Kosi-Almora, India
 sponsored Project. FTR, p.88. Unpublished
 report.
- Brenner, J., J. A. Jimenez, R. Sarda, and A. Garola. (2010). An assessment of the non-market value of the ecosystem services provided by the Catalan coastal zone, Spain. Ocean & Coastal Management 53:27–38
- Brown, S., C. Hickey, B. Harrington, and R. Gill, eds. (2001). The U.S. Shorebird Conservation Plan, 2nd ed. Manomet Center for Conservation Sciences, Manomet, MA.
- Carver, E. (2009). Birding in the United States: A demographic and economic analysis.Report 2006-4. U.S. Fish and Wildlife Service, Washington, D.C
- Daniel, G., Wenny, Travis L. De Vault, Matthew D. Johnson, Dave Kelly, Cagan H. Sekercioglu, Diana F. Tomback, and Christopher J. Whelan (2011). The need to quantify ecosystem services provided by birds. The Auk 128(1):1–14.
- Dash, M. C. (2003). Fundamental of Ecology. 2nd Edition Tata McGraw Hill publishing company limited, New Delhi
- Grewal, B., V. Harvey and O. Pfister (2002). A photographic guide to the birds of India. Periplus Editions (HK) Ltd. Singapore
- McCain, C.M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography 18: 346-360.
- Mynott, J. (2009). Birdscapes: Birds in Our Imagination and Experience. Princeton University Press, Princeton, New Jersey.
- Price, T., J. Zee, K. Jamdar and N. Jamdar (2003). Bird species diversity along the Himalaya: A comparison of Himachal Pradesh with Kashmir. J. Bombay Nat. Hist. Soc. 100: 394–410.
- Rahbek, C. and G. R. Graves, (2001).Multiscale assessment of patterns of avian species richness.Proc. Natl Acad. Sci. USA 98, 4534–4539. (doi:10.1073/pnas.071034898)
- Roberts, T. J. (1991). The birds of Pakistan 1 NonPasseriformes, Oxford University Press, Karachi, 558p.

- Roberts, T. J. (1992). The birds of Pakistan 2. Passeriformes, Oxford University Press, Karachi, 592pp
- Shafiq, T. S., J. Javed and A. Khan (1997). Bird community structure of middle altitude oak forest in Kumaon Himalayas, India: a preliminary Investigation. International J. Ecology and Environmental Science 23: 389-400.
- Urfi, A. J. (2011). Climate change and its impacts on Indian birds: monsoon phenology andmonitoring heronry birds. Current Science. 101 (9): 1140-1142.

- Simpson, E. H. (1949). Measurement of diversity. Nature, 163: 688.
- Shannon, C. E. and W. Weaver (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana, Illinois. 144pp.
- Whelan, C. J., D. G. Wenny, and R. J. Marquis (2008). Ecosystem services provided by birds. Annals of the New York Academy of Sciences 1134:25–60
- Whelan, C. J., D. G. Wenny, and R. J. Marquis.(2010). Policy implications of ecosystem services provided by birds. Synesis 1:11–20
- Whittaker, R. H. (1965). Dominance and diversity in land plant communities. Science (Washington, D.C.), 147:250–260.