Lecture 4: Closure and NFAs

CSC 320: Foundations of Computer Science

Quinton Yong
quintonyong@uvic.ca

Closure Properties for Sets

• A set is **closed under some operation** if applying the operation to elements of the set returns **another element of the set**

• **Example:** The set of **even numbers** is closed under **addition** since adding even numbers returns another even number

Closure Properties for Language Classes

- We can also have closure properties for classes of languages (e.g. regular languages)
- That is, if we apply a set operation to languages in a certain class, the resulting language is also in that class
- We will prove that performing the union, intersection, and concatenation of two regular languages L_1 and L_2 results in another regular language
- i.e. Regular languages are **closed under** union, intersection, and concatenation

Theorem: If L_1 and L_2 are **regular languages** over alphabet Σ , then the language $L_1 \cup L_2$ is a **regular language**

Proof: Since L_1 and L_2 are regular languages, then there exist DFAs M_1 and M_2 where $L_1 = L(M_1)$ and $L_2 = L(M_2)$

Proof idea: Construct a DFA M that accepts exactly the strings accepted by M_1 as well as the strings accepted by M_2

We do this by creating a DFA which **simulates both machines concurrently**, and accepts if at least one of them accepts

Example: $\Sigma = \{0, 1\}$

• L_1 : set of strings that, after a **possible prefix of 1s**, consists of **at least one 0** followed by **at least one symbol**

• L_2 : set of all strings of **length exactly 1**

Union idea for M:

• Use pairs of states of M_1 and M_2 as states in M

- Transitions for a symbol $a \in \Sigma$ is the state pair corresponding to where M_1 goes with a and where M_2 goes with a (simulate both DFAs)
- State is an accept state if either resulting state in M_1 or M_2 is an accept state

Proof continued:

Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be DFAs.

We construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows:

- $Q = \{ (r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2 \},$
 - all pairs of states where one is from M_1 and one is from M_2
- For each $(r_1,r_2)\in Q$ and each $a\in \Sigma$ define transition function $\delta:\delta((r_1,r_2),a)=\left(\delta_1(r_1,a),\delta_2(r_2,a)\right)$
- $\bullet \ q_0 = (q_1, q_2)$
 - Start from the state pair with starts states of M_1 and M_2
- $F = \{ (r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2 \}$
 - Strings are accepted if at least one DFA accepts

M recognizes $L_1 \cup L_2$

• Same **example** as before (fully worked out):

• For each $(r_1,r_2)\in Q$ and each $a\in \Sigma$ define transition function $\delta:\deltaig((r_1,r_2),aig)=ig(\delta_1(r_1,a),\delta_2(r_2,a)ig)$

	$oldsymbol{Q}$	0	1
-	(q_1,q_2)	(p_a, s_a)	(q_1, s_a)
	(q_1, s_a)	(p_a, s_b)	(q_1, s_b)
	(q_1, s_b)	(p_a, s_b)	(q_1, s_b)
	(p_a, q_2)		
	(p_a, s_a)		
	(p_a, s_b)		
	(p_b, q_2)		
	(p_b, s_a)		
	(p_b, s_b)		

• Same **example** as before (fully worked out):

	$oldsymbol{Q}$	0	1
—	(q_1,q_2)	(p_a, s_a)	(q_1, s_a)
	(q_1, s_a)	(p_a, s_b)	(q_1, s_b)
	(q_1, s_b)	(p_a, s_b)	(q_1, s_b)
	(p_a, q_2)	(p_b, s_a)	(p_b, s_a)
	(p_a, s_a)	(p_b, s_b)	(p_b, s_b)
	(p_a, s_b)	(p_b, s_b)	(p_b, s_b)
	(p_b, q_2)	(p_b, s_a)	(p_b, s_a)
	(p_b, s_a)	(p_b, s_b)	(p_b, s_b)
	(p_b, s_b)	(p_b, s_b)	(p_b, s_b)

• Same **example** as before (fully worked out):

• $F = \{ (r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F \}$

	Q	0	1
	(q_1,q_2)	(p_a,s_a)	(q_1, s_a)
	(q_1, s_a)	(p_a, s_b)	(q_1, s_b)
	(q_1, s_b)	(p_a,s_b)	(q_1, s_b)
	(p_a, q_2)	(p_b, s_a)	(p_b, s_a)
Accept states	(p_a, s_a)	(p_b, s_b)	(p_b, s_b)
	(p_a,s_b)	(p_b,s_b)	(p_b,s_b)
	(p_b,q_2)	(p_b, s_a)	(p_b, s_a)
	(p_b, s_a)	(p_b,s_b)	(p_b, s_b)
	(p_b, s_b)	(p_b, s_b)	(p_b, s_b)

$$L(M) = L_1 \cup L_2$$

$oldsymbol{Q}$	0	1
(q_1,q_2)	(p_a, s_a)	(q_1, s_a)
(q_1, s_a)	(p_a, s_b)	(q_1, s_b)
(q_1, s_b)	(p_a, s_b)	(q_1, s_b)
(p_a,q_2)	(p_b, s_a)	(p_b, s_a)
(p_a, s_a)	(p_b, s_b)	(p_b, s_b)
(p_a, s_b)	(p_b, s_b)	(p_b, s_b)
(p_b, q_2)	(p_b, s_a)	(p_b, s_a)
(p_b, s_a)	(p_b, s_b)	(p_b, s_b)
(p_b, s_b)	(p_b,s_b)	(p_b, s_b)

Recall:

- L_1 : set of strings that, after a **possible prefix of 1s**, consists of **at least one 0** followed by **at least one symbol**
- L₂: set of all strings of length exactly 1
- Verify that $\mathbf{0} \in L_1 \cup L_2$ and also $\mathbf{11100} \in L_1 \cup L_2$ are accepted by M

Recall:

- L_1 : set of strings that, after a **possible prefix of 1s**, consists of **at least one 0** followed by **at least one symbol**
- L₂: set of all strings of length exactly 1
- Verify that $\mathbf{0} \in L_1 \cup L_2$ and also $\mathbf{11100} \in L_1 \cup L_2$ are accepted by M

0

Recall:

- L_1 : set of strings that, after a **possible prefix of 1s**, consists of **at least one 0** followed by **at least one symbol**
- L₂: set of all strings of length exactly 1
- Verify that $\mathbf{0} \in L_1 \cup L_2$ and also $\mathbf{11100} \in L_1 \cup L_2$ are accepted by M

11100

Theorem: If L_1 and L_2 are **regular languages** over alphabet Σ , then the language $L_1 \cap L_2$ is a **regular language**

Proof: Since L_1 and L_2 are regular languages, then there exist DFAs M_1 and M_2 where $L_1 = L(M_1)$ and $L_2 = L(M_2)$

Proof idea: We can create a DFA which simulates both machines concurrently in the exact same way as the union closure proof.

However, now the strings that are accepted by the new DFA are the strings which are accepted by **both** M_1 **and** M_2 (instead of either one)

Proof continued:

Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be DFAs.

We construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows:

- $Q = \{ (r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2 \},$
- For each $(r_1,r_2)\in Q$ and each $a\in \Sigma$ define transition function $\delta:\deltaig((r_1,r_2),aig)=ig(\delta_1(r_1,a),\delta_2(r_2,a)ig)$
- $\bullet \ q_0 = (q_1, q_2)$
- $F = \{ (r_1, r_2) | r_1 \in F_1 \text{ and } r_2 \in F_2 \}$ as before, except for which states we

The DFA construction is exactly the same as before, except for which states we make **accept states**

• $L(M) = L_1 \cap L_2$ (where L_1 and L_2 are same as union closure example)

• $F = \{ (r_1, r_2) | r_1 \in F_1 \text{ and } r_2 \in F_2 \}$

	Q	0	1
	(q_1,q_2)	(p_a,s_a)	(q_1, s_a)
	(q_1, s_a)	(p_a, s_b)	(q_1, s_b)
	(q_1, s_b)	(p_a,s_b)	(q_1, s_b)
	(p_a, q_2)	(p_b, s_a)	(p_b, s_a)
Accept states	(p_a, s_a)	(p_b,s_b)	(p_b, s_b)
	(p_a,s_b)	(p_b,s_b)	(p_b,s_b)
	(p_b, q_2)	(p_b, s_a)	(p_b, s_a)
	(p_b, s_a)	(p_b,s_b)	(p_b,s_b)
	(p_b, s_b)	(p_b, s_b)	(p_b, s_b)

- L_1 : set of strings that, after a **possible prefix of 1s**, consists of **at least one 0** followed by **at least one symbol**
- L₂: set of all strings of length exactly 1
- Notice that the strings in L_1 all have length **at least 2** and the strings in L_2 have length **exactly 1**, so the $L_1 \cap L_2 = \emptyset$

Regular Languages are Closed under Concatenation

- How do we create a DFA which accepts the concatenation of two regular languages?
- We will introduce a different computational model which makes this easier but has the same computational power as a DFA

Deterministic Computation

Computation on a **DFA** is **deterministic**

- When computing a string, there is **no ambiguity** (deterministic) for the current state is and the next state when reading a character
- Single execution path for every string

Nondeterministic Computation

We describe another computational model with the **same computational power** as a DFA, but has **nondeterministic** computation

Nondeterminism:

- Can have multiple (simultaneous) execution paths
- Strings are accepted if there exists at least one execution path that accepts (still need to read all symbols of string)

Nondeterministic Finite Automata (NFA)

Differences between **NFA** and **DFA** state diagrams:

- 1. Transitions go from states to **sets of states**
 - From a state q, reading symbol a can transition to more than one state
 - We can also **not have transitions** for a symbol a out of a state q
 - Formally $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$
- 2. We allow **empty transitions** (ε -transitions) \longrightarrow
 - Can take this transition without reading any symbol
 - Essentially a **free transition** from a state to another state

 $M_1=(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_4\})$ with $\delta: Q imes (\Sigma \cup \{\epsilon\}) o \mathcal{P}(Q)$ defined by

δ	0	1	3
q_1	{ <i>q</i> ₁ }	$\{q_1,q_2\}$	$\{q_4\}$
q_2	$\{q_3,q_4\}$	$\{q_4\}$	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

State diagram **omits** transitions into Ø

Is the string w = 1 accepted by M_1 ? **Yes**

Is the string w = 101 accepted by M_1 ? Yes

What is the $L(M_1)$?

- Every string in Σ^* is accepted
- $L(M_1) = \Sigma^*$

 $M_2=(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_1,q_4\})$ with $\delta: Q imes (\Sigma \cup \{\epsilon\}) o \mathcal{P}(Q)$ defined by

δ	0	1	3
q_1	{ <i>q</i> ₁ }	$\{q_1,q_2\}$	$\{q_4\}$
q_2	$\{q_3,q_4\}$	Ø	$\{q_3\}$
q_3	Ø	Ø	$\{q_4\}$
q_4	$\{q_{4}\}$	$\{q_{4}\}$	Ø

Does $L(M_2) = L(M_1)$?

- Every string in Σ^* is also accepted by M_2
- $L(M_2) = L(M_1)$

 $M_3=(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_1,q_4\})$ with $\delta: Q imes (\Sigma \cup \{\epsilon\}) o \mathcal{P}(Q)$ defined by

δ	0	1	ε
q_1	{ <i>q</i> ₁ }	$\{q_2\}$	$\{q_4\}$
q_2	$\{q_3,q_4\}$	Ø	{q ₃ }
q_3	Ø	Ø	$\{q_4\}$
q_4	$\{q_{4}\}$	Ø	Ø

Does $L(M_3) = L(M_1)$?

- No, not every string in Σ^* is accepted by M_3
- E.g. w = 11 is not accepted by M_3

Formal Definition: Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set called the states
- Σ is a **finite set** called the **alphabet**
- $\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(\mathbf{Q})$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

NFA: Formal Definition of Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let $w = w_1 w_2 \dots w_n$ be a string over Σ

Then *M* accepts *w* if

- we can write $w = y_1 y_2 \dots y_m$ with $y_i \in \Sigma \cup \{\varepsilon\}$
- and there is a sequence of states $r_0, r_1, r_2, ..., r_m$ in ${\it Q}$ such that
- 1. $r_0 = q_0$
- 2. $\delta(r_i, y_{i+1}) = r_{i+1}$
- 3. $r_m \in F$

M recognizes language L if $L = L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$

NFA Computation Example

Is the string w = 1101 in L(M)?

- We can rewrite **1101** as $\mathbf{w} = \mathbf{1}\boldsymbol{\varepsilon}\mathbf{101}$ which gives state sequence $q_1, q_1, q_4, q_4, q_4, q_4$
 - (There are also other execution paths from start state to accept state)
 - Note that the state sequence q_1, q_1, q_1, q_1, q_1 does not yield acceptance, but $w \in L(M)$
- Since there is at least one accepting execution path, $w \in L(M)$