МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

Звіт

до лабороторної роботи №6 «ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ»

Виконав: Перепечай Владислав Олександрович

Звіт

Звіт. Операційні підсилювачі з негативним зворотним зв'язком: 00 с.

Мета роботи — ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком, та способи виконання математичних операцій за допомогою схем з ОП.

Метод вимірювання — це метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Об'єкт дослідження: способи підсилення електричних сигналів та моделювання математичних операцій (наприклад, інтегрування сигналу) за допомогою універсального підсилювача електричних сигналів на основі інтегральної мікросхеми, який називається операційним підсилювачем.

Використано програму LTspice.

Зміст

Теоритичні відомості	4
Виконання роботи	5
Інвертуючий підсилювач	5
Неінвертуючий підсилювач	6
Інтегратор на базі інвертуючого підсилювача	7
Висновки	8
Джерела	8

Теоритичні відомості

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу, то зворотний зв'язок називають негативним (Н33). Якщо ж він подається на вхід у фазі до вхідного сигналу, то такий зворотний зв'язок називають позитивним (П33).

У сучасній електроніці для конструювання різних електронних пристроїв (підсилювачів, детекторів, перетворювачів і т. д.) використовуються інтегральні мікросхеми (англ. integrated circuit, microcircuit chip). Шляхом комутації (створення певних електричних з'єднань) виводів інтегральних мікросхем і додавання кількох зовнішніх дискретних елементів (резисторів, конденсаторів, діодів і т. п.) вдається створити великий набір різноманітних електронних схем на основі одієї і тієї ж мікросхеми.

Основною інтегральною мікросхемою для створення аналогових електронних пристроїв ϵ операційний підсилювач (ОП). ОП явля ϵ собою мікросхему, що за своїми розмірами і ціною практично не відрізня ϵ ться від окремого транзистора, хоча вона й містить кілька десятків транзисторів, діодів і резисторів.

Завдяки практично ідеальним характеристикам ОП реалізація на їх основі різних схем виявляєьться значно простішою і дешевшою, ніж на окремих транзисторах і резисторах.

Операційним підсилювачем називають багатокаскадний диференціальний підсилювач постійного струму, який має в діапазоні частот до кількох десятків кілогерц коефіцієнт підсилення більший за 104 і за своїми властивостями наближається до уявного «ідеального» підсилювача. Під «ідеальним» розуміють такий підсилювач, який має: 1) нескінченний коефіцієнт підсилення за напругою диференціального вхідного сигналу; 2) нескінченний вхідний імпеданс; 3) нульовий вихідний імпеданс; 4) рівну нулеві напругу на виході при рівності напруг на вході; 5) нескінченний діапазон робочих частот.

Прототипом ОП може слугувати класичний диференціальний підсилювач з двома входами і несиметричним виходом.

Виконання роботи

Інвертуючий підсилювач.

Схема:

Вхідний та вихідний сигнали:

Неінвертуючий підсилювач. Схема:

Вхідний та вихідний сигнали:

Інтегратор на базі інвертуючого підсилювача.

Схема:

Вхідний та вихідний сигнали:

Висновки

Ознайомилися з властивостями операційних підсилювачів, опанували способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком, та способи виконання математичних операцій за допомогою схем з ОП.

Методом співставлення: одночасно спостерігали вхідний та вихідний сигнали на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Джерела

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 2. Вивчення радіоелектронних схем методом комп'ютерного моделювання / Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян, Методичне видання. К.: 2006.-с.