General Inference

A Bayesian Network gives us a reasonable way to specify the joint probability of a network of many random variables. Before we celebrate, realize that we still don't know how to use such a network to answer probability questions. There are many techniques for doing so. I am going to introduce you to one of the great ideas in probability for computer science: we can use sampling to solve inference questions on Bayesian networks. Sampling is frequently used in practice because it is relatively easy to understand and easy to implement.

Rejection Sampling

As a warmup consider what it would take to sample an assignment to each of the random variables in our Bayes net. Such a sample is often called a "joint sample" or a "particle" (as in a particle of sand). To sample a particle, simply sample a value for each random variable one at a time based on the value of the random variable's parents. This means that if X_i is a parent of X_j , you will have to sample a value for X_i before you sample a value for X_j .

- 1. Sample from P(Uni = 1): Bern(0.8). Sampled value for Uni is 1.
- 2. Sample from $P(Influenza = 1 \mid Uni = 1)$: Bern(0.2). Sampled value for Influenza is 0.
- 3. Sample from $P(\text{Fever} = 1 \mid \text{Influenza} = 0)$: Bern(0.05). Sampled value for Fever is 0.
- 4. Sample from $P(\text{Tired} = 1 \mid \text{Uni} = 1, \text{Influenza} = 0)$: Bern(0.8). Sampled value for Tired is 0.

Thus the sampled particle is: [Uni = 1, Influenza = 0, Fever = 0, Tired = 0]. If we were to run the process again we would get a new particle (with likelihood determined by the joint probability).

Now our strategy is simple: we are going to generate N samples where N is in the hundreds of thousands (if not millions). Then we can compute probability queries by counting. Let $count(\mathbf{X} = \mathbf{k})$ be notation for the number of particles where random variables \mathbf{X} take on values \mathbf{k} . Recall that the bold notation \mathbf{X} means that \mathbf{X} is a vector with one or more elements. By the "frequentist" definition of probability:

1 of 1 2/24/2025, 2:28 AM