Bit Manipulation

=> content :- Baric no. System Decimal - Binary Add I decimal nos Negative not in bivary MSB (wosh significan bit) bitwisk Operators. Propurses of Spiratos Probleme.

Number System:

734 => 700 + 30 + 4 => 7 X100 + 3 X10 + 4 X1 => 7x102 + 3x101 + 4x100

This is decimal no system => 600e -> (0 [power of [0] => digits -> 0-9.

2 x103 4 4x102 8 x101 8 6x100

Other no. Systems:

binary, octal, haradeimal, temay, decimal

· Decimal to binary:

: addition of two nos: [decimal]

: add binary nos:

₽)

value = sum % d Cong => sum/d 0 0 1 1 0

Sum 2 19 191 Sum = 1 Sum = 04 170 23 17.2 = 1 = 3%.2=1 1/2 = 0 (1.2= 3/2 = 1 (12 20 Sum = 04 14 1 = 2 Sum 2 (4040 84.20. 2 (2/2 = 1 (1,2 = (1/2:0 d/2 d/2

> 1%2 14.2 1%2 2%2 0 1 1 0 0

O

(11100)2

· Maning convention:

bit
$$\rightarrow$$
 0: unset

? Set

ex => 1 0

uset

uset

set

· ue nos en bourny;

$$\begin{array}{c} -0.7 \\ -0.7 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -128 \\ -10 \\ -$$

left most > all other bits
bit combined

1

MOST SIGNIFICANT

BIT MSB

MOTE => MSB 15 always (-ve)
base value_

 $a^{2}q^{2}$

Ranges
$$-(a^{N-1})$$
 $-(a^{N-1})$

The state of the s	=		
किं क		MIN	MAX
2	[-2,1].	=> -L	-21 20 0 1
4	[-8, 7].	·	-23 22 21 20 0 1 1 1

5 [-16,15]
$$\frac{1}{2^{12}} \frac{1}{12^{21}} \frac{1}$$

Constair => / & am [1] < (09

$$(210)^3 \neq (02)^3 \leftarrow \text{cutting with sides}$$

$$3) \quad 2^{30} \Rightarrow 10^9.$$

comptost on 1 & autil (1018.