Fisica 1 per Chimica (Canali A-E ed P-Z) Simulazione esame scritto di Laboratorio/Statistica 07/06/2018

docenti: Francesco Santanastasio, Paolo Gauzzi

Nome:	Cognome:	
Matricola	<u>Aula:</u>	
<u>Canale:</u>	Docente:	
possibile utilizzare una calcolatrice Riportare a penna (non matita) sul	I cellulari devono essere spenti. Non è possibile consultare libri di test ed il formulario fornito insieme al compito. presente foglio i risultati numerici finali (con unità di misura ed incertezze liato degli esercizi (indicando tutte le formule utilizzate ed i passaggi) che	di misura). Nell'elaborato
Esercizio 1		
Durante le votazioni per elegge candidato X ha ottenuto 667 pre	re il Presidente della Repubblica, dopo che sono state scrutinate eferenze.	1000 su 1007 schede, il
a) Sulla base delle schede già	scrutinate, stimare la probabilità che ha il candidato ${\bf X}$ di ricevere	un voto a favore.
$p = \underline{\hspace{1cm}}$		
Sulla base di questa stima, deter	minare:	
b) la probabilità che il candid	lato X non riceva nessun voto nelle ultime 7 schede	
$p(0 \ voti \ su \ 7 \ schede) = $ c) la probabilità che il candid	lato X riceva 5 o più voti nelle ultime 7 schede	
$p(\geq 5 \ voti \ su \ 7 \ schede) =$		
Esercizio 2		
Il numero di guasti registrati a ha dato luogo alla seguente distr	alle diverse componenti di un certo numero di computer della ma ribuzione di dati:	rca X, durante 5 anni,
n_k = numero di guasti in 5 and O_k = occorrenza	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
a) Nell'ipotesi che il numero atteso (λ) di guasti in 5 ar	di guasti segua una distribuzione Poissoniana, calcolare la miglior suni.	stima del numero medio
$\lambda = \underline{\hspace{1cm}}$		
b) Ho acquistato 5 computer di non avere nessun guasto	della marca X per il mio ufficio. Sulla base della stima ottenuta per o in 5 anni?	λ , qual'è la probabilità
$p(nessun\ guasto\ in\ 5\ anni)$	ı =	
c) Verificare la validità dell'i chi-quadro con un livello d	potesi che il numero di guasti segua una distribuzione Poissoniana li significatività del $5\%.$	utilizzando un test del
Il chi-quadro ridotto $\tilde{\chi}^2_{mis}$	$=rac{\chi^2_{mis}}{ u}(u \ indica \ il \ numero \ di \ gradi \ di \ libertà)=$	_
La probabilità $p_{\nu}(\tilde{\chi}^2 > \tilde{\chi}^2_{mi})$	$_{is}) = \underline{\hspace{2cm}}$	
IPOTESI ACCETTATA	IPOTESI RIGETTATA □	

Esercizio 3

In una ripetizione dell'esperimento di Joule (per la misura dell'equivalente meccanico della caloria) si utilizza un motorino di potenza $P=10.0\pm0.1W$ (1 Watt = 1 Joule/secondo) che aziona un mulinello inserito in un recipiente contenente un fluido di capacità termica $C=3.41\pm0.01cal/K$. Tenendo il motorino in funzione per un tempo Δt viene registrata la variazione di temperatura ΔT all'interno del fluido. La misura viene ripetuta per sei diversi valori di Δt ed ogni volta il fluido viene riportato alla stessa temperatura iniziale prima di azionare nuovamente il motorino. I dati dei sei esperimenti sono riportati nella seguente tabella:

Δt [s]	10	20	30	40	50	60
$\Delta T [K]$	7.1	13.9	21.3	28.3	34.9	41.6

Le variazioni di temperatura sono note tutte con una incertezza di 0.5 K, mentre l'incertezza sugli intervalli di tempo è trascurabile. È noto inoltre che l'equivalente meccanico della caloria si calcola a partire dalla seguente relazione $J_{EQ} = \frac{P\Delta t}{C\Delta T}$, ovvero esiste una relazione lineare tra la variazione di temperatura e l'intervallo di tempo: $\Delta T = \frac{P}{CJ_{EQ}}\Delta t$

a) Verificare l'ipotesi di relazione lineare tra ΔT e Δt utilizzando il metodo dei minimi quadrati ed un test del chi-quadro con un livello di significatività del 5%.

Il chi-quadro ridotto $\tilde{\chi}^2_{mis} = \frac{\chi^2_{mis}}{\nu} (\nu \text{ indica il numero di gradi di libertà}) = _______$

La probabilità $p_{\nu}(\tilde{\chi}^2 > \tilde{\chi}^2_{mis}) = \underline{\hspace{1cm}}$

IPOTESI ACCETTATA \square IPOTESI RIGETTATA \square

b) Determinare la miglior stima dell'equivalente meccanico della caloria J_{EQ} e la sua incertezza (espresso in J/cal)

 $J_{EQ} = \underline{\hspace{1cm}}$

c) Stabilire se il valore misurato di J_{EQ} è in accordo ("entro 2 deviazioni standard") con il valore accettato pari a 4.1855 J/cal

ACCORDO \square DISACCORDO \square

NOTA:

 \underline{Me} todo dei minimi quadrati non pesati per una relazione lineare del tipo y=Bx

$$B = \frac{\sum xy}{\sum x^2}$$

$$\sigma_B = \frac{\sigma_y}{\sqrt{\sum x^2}}$$

Incertezze "a posteriori" sulle y (sulla base dei punti osservati): $\sigma_y = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (y_i - Bx_i)^2}$

Soluzione Esercizio 1.

a)
$$p = \frac{667}{1000} = 0.667$$
 b)
$$n = 0 , N = 7 , p = 0.667$$

$$p(0 \text{ voti su } 7 \text{ schede}) = B_{N,p}(0) = \frac{7!}{0!(7-0)!}(0.667)^0(1 - 0.667)^{7-0} = 0.045\%$$
 c)
$$p(\geq 5 \text{ voti su } 7 \text{ schede}) = B_{N,p}(5) + B_{N,p}(6) + B_{N,p}(7)$$

$$B_{N,p}(5) = \frac{7!}{5!(7-5)!}(0.667)^5(1 - 0.667)^{7-5} = 30.74\%$$

$$B_{N,p}(6) = \frac{7!}{6!(7-6)!}(0.667)^6(1 - 0.667)^{7-6} = 20.53\%$$

$$B_{N,p}(7) = \frac{7!}{7!(7-7)!}(0.667)^7(1 - 0.667)^{7-7} = 5.87\%$$

$$p(\geq 5 \text{ voti su } 7 \text{ schede}) = B_{N,p}(5) + B_{N,p}(6) + B_{N,p}(7) \sim 57\%$$

Soluzione Esercizio 2.

a)
$$\lambda = \overline{n_k} = \frac{\sum_{k=1}^{Nbin} n_k O_k}{\sum_{k=1}^{Nbin} O_k} = \frac{0.255 + 1.100 + 2.26 + 3.8}{255 + 100 + 26 + 8} = \frac{176}{389} = 0.45$$

"successo" = nessun guasto in 5 anni per un certo computer $\rightarrow p = P_{\lambda}(0) = \frac{0.45^{0}e^{-0.45}}{0!} = 0.6376$ N=5 (numero di computer, numero di prove indipendenti) n=numero di successi in N prove con probabilità di successo pari a p=0.6376 $p(\text{nessun guasto in 5 anni}) = B_{N,p}(n=5) = \frac{5!}{5!(5-5)!}(0.6376)^5(1-0.6376)^{5-5} = 0.105 = 10.5\%$

Il numero atteso di eventi in ciascun bin (ovvero per un certo valore n_k) e' uguale ad $E_k = N \cdot p_k$ dove:

$$N = \sum_{k} O_{k} = 255 + 100 + 26 + 8 = 389;$$

 p_k rappresenta la probabilita' di osservare un numero n_k di guasti assumendo una distribuzione Poissoniana $P_{\lambda}(n_k)$ $\frac{\lambda^{n_k} e^{-\lambda}}{n_k!}$ con valore atteso $\lambda = 0.45$.

$$n_k!$$
 Con valore access $\chi = 0.45$. $p_o = P_{\lambda}(0) = \frac{0.45^0 e^{-0.45}}{0!} = 0.6376$ $p_1 = P_{\lambda}(1) = \frac{0.45^1 e^{-0.45}}{1!} = 0.2869$ $p_2 = P_{\lambda}(2) = \frac{0.45^2 e^{-0.45}}{2!} = 0.0646$ $p_3 = P_{\lambda}(3) = \frac{0.45^3 e^{-0.45}}{3!} = 0.0097$ Lyalori attesi sono quindi:

I valori attesi sono quindi:

$$E_0 = N \cdot p_0 = 248$$
, $E_1 = N \cdot p_1 = 111.6$, $E_2 = N \cdot p_2 = 25.1$, $E_3 = N \cdot p_3 = 3.77$.

Per eseguire un test del chi-quadro è necessario avere almeno 5 eventi attesi in ciascun bin. Si sommano quindi i valori attesi relativi ad $n_k = 2$ ed $n_k = 3$, ottenendo $E_{2+3} = E_2 + E_3 = 28.87$

Si calcola il chi-quadro a partire dai dati in tabella:

n_k	O_k	E_k
0	255	248
1	100	111.6
2 o 3	34	28.87

ottenendo:

$$\chi^2_{mis} = \sum_k \left(\frac{O_k - E_k}{\sqrt{E_k}}\right)^2 = 2.35$$

il numero di gradi di libertà è $\nu = 3 - 2 = 1$, essendo 3 i punti sperimentali e 2 i parametri (λ ed N) calcolati a partire dai dati ed utilizzati per la stima dei valori attesi E_k .

Il chi-quadro ridotto è quindi $\tilde{\chi}_{mis}^2 = \frac{\chi_{mis}^2}{\nu} = \frac{2.35}{1} = 2.35$. La probabilità associata è $p_{\nu}(\tilde{\chi}^2 > \tilde{\chi}_{mis}^2) = 12 - 14\% > \alpha = 5\%$, dove α e' il livello di significatività del test.

L'ipotesi Poissoniana è quindi verificata.

Soluzione Esercizio 3.

Si applica il metodo dei minimi quadrati non pesati per una relazione lineare del tipo y = Bx dove $y = \Delta T$ ed $x = \Delta t$, con incertezze gaussiane su y tutte uguali ($\sigma_y = 0.5 \text{ K}$) ed incertezze su x trascurabili.

$$\sum xy = 6361 \text{ sK}$$

$$\sum x^2 = 9100 \text{ s}^2$$

$$B = \frac{\sum xy}{\sum x^2} = 0.6990 \text{ K/s}$$

$$\sigma_B = \frac{\sigma_y}{\sqrt{\sum x^2}} = 0.0052 \text{ K/s}$$

Si esegue un test del chi-quadro sui risultati del fit ai dati.

$$\chi^2_{mis} = \sum_i \left(\frac{y_i - Bx_i}{\sigma_y}\right)^2 = 1.45$$

 $\chi^2_{mis} = \sum_i \left(\frac{y_i - Bx_i}{\sigma_y}\right)^2 = 1.45$ numero di gradi di libertà = $\nu = 6 - 1 = 5$ essendo 6 i punti sperimentali e solo 1 il parametro (B) stimato dai dati per il calcolo dei valori attesi di y_i .

Il chi-quadro ridotto è quindi $\tilde{\chi}^2_{mis} = \frac{\chi^2_{mis}}{\nu} = \frac{1.45}{5} = 0.29$. La probabilità associata è $p_{\nu}(\tilde{\chi}^2 > \tilde{\chi}^2_{mis}) = 85 - 96\% > \alpha = 5\%$, dove α e' il livello di significatività del test.

L'ipotesi lineare è quindi accettata.

b)

$$B = \frac{P}{CJ_{EQ}} \text{ da cui } J_{EQ} = \frac{P}{CB} \text{ con:}$$

$$P = 10.0 \pm 0.1 \text{ J/s}$$

$$C = 3.41 \pm 0.01 \text{ cal/K}$$

$$B = 0.6990 \pm 0.0052 \text{ K/s}$$

Utilizzando la formula di propagazione delle incertezze si ottiene:
$$\frac{\delta J_{EQ}}{J_{EQ}} = \sqrt{(\delta P/P)^2 + (\delta C/C)^2 + (\delta B/B)^2} = 1.3\% \text{ essendo}$$

$$\delta P/P = 1\%, \ \delta C/C = 0.3\%, \ \delta B/B = 0.7\%$$

$$\delta J_{EQ} = J_{EQ} \cdot 1.3\% \text{ e quindi la miglior stima di } J_{EQ} : \ J_{EQ} = (4.195 \pm 0.055) \text{ J/cal}$$

 $t_{mis} = \frac{4.195 - 4.1855}{0.055} = 0.17$ (il valore misurato dista 0.17 deviazioni standard dal valore accettato) Quindi c'e' accordo (ben entro una deviazione standard) con il valore accettato.