Weitere "Neoklassische" Effekte

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

"Neoklassische" Effekte

- Erhöhter Transport durch Teilchenstöße (s. vorige Vorlesung)
- "Ripple"-Transport
- Modifikation der elektrischen Leitfähigkeit
- Der "Bootstrap"-Strom
- Der "Ware-pinch"

"Ripple"-Transport

Durch <u>nicht-axisymmetrische</u> \vec{B} -Feld Variation können stoßfreie Teilchenverluste entstehen.

Beispiel: Toroidale Modulation von \vec{B} durch diskrete Toroidalfeldspulen ("field ripple")

Ein kleiner Anteil von Teilchen kann im Ripple-Feld gefangen sein.

Verlauf von *B* im poloidalen Schnitt:

Def:
$$\delta \equiv \frac{\Delta B}{B}$$

Im ripple gefangene Teilchen sind bei endlichem θ lokalisiert

(laufen nicht mehr poloidal um)

⇒ unkompensierte vertikale Drift

Abschätzung "ripple"-Diffusivität

Ansatz für die Diffusivität (random walk)

$$D_R \sim f_{\rm rg} (\Delta x)^2 v_{\rm eff}$$

Analog zu Bananen-Teilchen ist der Anteil der ripple-gefangenen Teilchen $f_{rg} = \delta^{1/2}$

Ebenfalls analog zu Bananen-Teilchen ist die effektive Stoßfrequenz v_{eff} für im ripple gefangene Teilchen gleich dem Quadrat des pitch-Streuwinkels, der zum Impulsverlust führt:

$$v_{\rm eff} \sim \frac{v_c}{\delta} \gg v_c$$

Der radiale Bahnversatz ist größenordnungsmäßig die senkrechte Drift zwischen Stößen, $\Delta x \sim v_D/v_{\rm eff}$.

$$\Rightarrow D \sim \delta^{1/2} \frac{v_D^2}{v_{\text{eff}}} \sim \underbrace{\frac{\delta^{3/2}}{v_c}}_{\propto T^{3/2}} \underbrace{\left(\frac{v_{\text{th}}r_L}{R_0}\right)^2}_{\propto T^2} \propto T^{7/2}$$

Stöße behindern die Ripple-Diffusion:

- Je stoßärmer das Plasma, desto größer ist D_R
- Ganz ohne Stöße ist der Teilchenverlust eine Drift ($\sim v_D$), d.h. nicht durch Dichtegradienten getrieben.

Die ripple-Verluste sind traditionell das größte Problem für toroidale, nicht-axisymmetrische Konfigurationen (z.B. den "Stellarator").

Um diese zu vermeiden, müssen neue Symmetrien gefunden werden, die die Driftbahnen wieder in sich schließen.

Elektrische Leitfähigkeit $\| \vec{B} \|$

Einfachster Ansatz: Leitfähigkeit $||\vec{B}|$ entsteht nur durch umlaufende Teilchen (vorwiegend Elektronen), denn gefangene Teilchen kehren um und tragen keinen Strom, obwohl das elektrische Feld an ihnen Arbeit verrichtet.

$$\sigma = \sigma_c \left(1 - \sqrt{2\varepsilon} \right)$$

Das ist aber nicht ganz richtig:

Für $\nu_e^* = \nu_{eff,e}/\nu_{T,e} \gg 1$ (Elektronen!) tauschen gefangene und umlaufende Elektronen untereinander Impuls aus, so dass der Unterschied verschwindet und die Leitfähigkeit wieder steigt.

Verbesserte Näherungsformel:

$$\sigma = \sigma_c \left(1 - \frac{\sqrt{2\epsilon}}{1 + \nu_e^*} \right)$$

Außerdem:

Hin- und Rückweg der Bananenbahn erfolgen nicht beim selben Radius (s. unten)

Elektrischer Strom durch gefangene Teilchen

Betrachte Volumenelement, das von verschiedenen Bananenbahnen berührt wird:

Im Volumenelement heben sich bei endlichem Druckgradient die Ströme der Bananenteilchen nicht auf, es entsteht eine Netto-Stromdichte. Analogie: Gyrobewegung bei endlichem Druckgradient, ergibt den diamagnetischen Strom $\perp \vec{B}$

Der Netto-Strom hat eine Komponente $\|\vec{B}\|$:

Dichte gefangener Teilchen: $n \, \epsilon^{1/2}$ (bis auf Faktor $\sqrt{2}$)

Typ. Parallelgeschwindigkeit: $v_{\parallel} \sim \epsilon^{1/2} v_{\text{th}}$

$$\Rightarrow j_{\parallel,\text{trapped}} \sim e(n_2 - n_1) \varepsilon v_{\text{th}} \sim e \varepsilon v_{\text{th}} \Delta x_{\text{gef}} \frac{\mathrm{d}n}{\mathrm{d}r}$$

bzw.

$$j_{\parallel, \mathrm{trapped}} \sim rac{arepsilon^{3/2} k_B T}{B_{\Theta}} rac{\mathrm{d}n}{\mathrm{d}r}$$

Der Bootstrap-Strom

Strom durch gefangene Teilchen:

$$j_{\parallel, ext{trapped}} \sim rac{arepsilon^{3/2} k_B T}{B_{ heta}} rac{ ext{d} n}{ ext{d} r}$$

- "druckgetrieben" ($\propto T \nabla n \sim \nabla p$)
- kleiner Effekt ($\propto \varepsilon^{3/2}$)
- steigt mit sinkendem I_{ϕ} ($\propto B_{\theta}^{-1}$)

Durch Reibung der gefangenen Teilchen (Minderheit) mit den umlaufenden Teilchen (Mehrheit) tragen diese einen "echten" Strom $||\vec{B}||$

Betrachte Impulsbilanz für umlaufende Elektronen:

- Gewinn durch Stöße von gefangenen Teilchen.
- Verlust durch Stöße mit ruhendem Hintergrund.

$$j_{\parallel,\mathrm{gef}} \, \mathrm{v}_{\mathrm{ee}}^{\mathrm{eff}} = j_{\parallel,\mathrm{uml}} \, \mathrm{v}_{\mathrm{ei}}$$

wobei $v_{ee}^{eff} \sim v_{ee}/\epsilon \propto v_{ei}/\epsilon$

⇒ "Bootstrap"-Strom

$$j_{\parallel,\mathrm{uml}} \propto \frac{1}{\varepsilon} j_{\parallel,\mathrm{gef}} \sim \frac{\varepsilon^{1/2} k_B T}{B_{\theta}} \frac{\mathrm{d}n}{\mathrm{d}r}$$

... hängt schwächer von ε ab als $j_{\parallel, \text{gef}}$... steigt mit steigendem $\beta_p \equiv \mu_0 p/B_{\Theta}^2$.

Bootstrap-Strom im Tokamak-Experiment

Kann der Bootstrap-Strom den induktiven toroidalen Strom im Tokamak überflüssig machen?

Idee ("Advanced tokamak"):

Flaches / invertiertes q-Profil erzeugt guten Einschluß

- \rightarrow hohes β_p
- → hoher Bootstrap-Strom (off-axis)
- \rightarrow flaches / invertiertes q-Profil . . .

A. Bock et al, Physics of Plasmas 25 (2018) 056115

https://doi.org/10.1063/1.5024320

ASDEX Upgrade #33379:

Radiale Driften: $E \times B$ -**Drift**

Im Tokamak wird der toroidale Plasmastrom meist ganz oder teilweise durch ein toroidales, induziertes \vec{E} -Feld getrieben.

Dadurch entsteht eine Drift:

$$ec{v}_{ ext{E} imes ext{B}} = rac{ec{E}_{\phi} imes ec{B}_{ heta}}{B^2}$$

Diese Drift ist immer radial einwärts gerichtet!

Größenordnung der Radialkomponente:

Sei $E_{\phi} = 1$ V/m (realistischer Wert bei rein ohm'scher Heizung)

 $B_{\theta} = 0.1 \text{ T (typ. Wert bei halbem Radius}$ in ASDEX Upgrade)

B = 1 T (für den Gyroradius)

 $\Rightarrow \vec{v}_{\text{E} \times \text{B}} \sim 0.1 \text{ m/s}$

Das ist *sehr* langsam im Vergleich z.B. zur ∇B -Drift!

Radiale Driften: "Ware-pinch"

Bei endlichem toroidalen \vec{E} -Feld werden gefangene Teilchen in einem Zweig ihrer Bananenbahn beschleunigt, im anderen verzögert:

Das moduliert v_{\parallel} des Gyrozentrums, und die vertikale Drift wirkt in beiden Zweigen unterschiedlich lange.

Radiale Ein- und Auswärtsbewegung heben sich nicht mehr auf und es ensteht eine radiale Drift.

Im poloidalen Schnitt ist die Bananenbahn nicht mehr oben-unten symmetrisch (wie bei $E_{\phi}=0$) sondern verschiebt sich um einen poloidalen Winkel $\delta\theta$.

Abschätzung des "Ware-pinch"-Teilchenflusses Γ_{Ware}

Teilchenenergie W, bei Durchlaufen der Bahn $\ell || \vec{B}$, bleibt erhalten:

$$W = \frac{mv_{\parallel}^2}{2} + \frac{mv_{\perp}^2}{2} + e\int_0^{\ell} E_{\parallel} d\ell$$

wobei $\mathrm{d}\ell = (B_{\phi}/B_{\theta})\mathrm{d}\ell_{\theta} = (B_{\phi}/B_{\theta})r\mathrm{d}\theta \sim Rq\mathrm{d}\theta.$ Mit dem magnetischen Moment $\mu = mv_{\perp}^2/(2B)$... für $\vec{E}_{\parallel} = 0$ (Umkehrpunkt $\theta_0, v_{\parallel}(\theta_0) = 0$):

$$W = \mu B_0 \left[1 - \varepsilon \cos \theta_0 \right]$$

... für $\vec{E}_{\parallel} \neq 0$ (Umkehrpunkt $\theta_0 + \delta\theta$):

$$W = \mu B_0 \left[1 - \varepsilon \cos(\theta_0 + \delta \theta) \right] + e E_{\parallel} Rq \left(\theta_0 + \delta \theta \right)$$

Mit $\cos(x+y) = \cos x \cos y - \sin x \sin y$, $\cos(\delta\theta) \approx 1$, und $\sin(\delta\theta) \approx \delta\theta$:

$$W = \mu B_0 \left[1 - \varepsilon \cos(\theta_0) \right] - \mu B_0 \varepsilon \sin(\theta_0) \delta \theta + e E_{\parallel} Rq \theta_0$$

Gleichungen mit $E_{\parallel} = 0$ und $E_{\parallel} \neq 0$ voneinander abziehen:

$$\delta\theta = \frac{eE_{\parallel}Rq\theta_0}{\mu B_0 \varepsilon \sin\theta_0} \sim \frac{eE_{\parallel}Rq}{\mu B_0 \varepsilon}$$

Mit Sicherheitsfaktor $q=rB_{\phi}/(R_0B_{\theta})$, inversem Aspektverhältnis $\epsilon=r/R_0$, Anteil gefangener Teilchen $\sim\epsilon^{1/2}$, und ∇B -Driftgeschwindigkeit:

$$v_D \sim v_{\rm th} r_L/R_0 \sim m v_{\rm th}^2/(eB_0R_0) \sim \mu/eR_0$$

$$\Rightarrow \Gamma_{\text{Ware}} = \varepsilon^{1/2} n v_D \delta\theta = \varepsilon^{1/2} n \frac{E_{\parallel}}{B_{\theta}}$$

Verhältnis zur $E \times B$ -Drift:

$$\frac{\Gamma_{
m Ware}}{\Gamma_{
m E imes B}} \sim \, \epsilon^{1/2} \, rac{B^2}{B_{
m heta}^2} \, \sim \, q^2 \epsilon^{-3/2}$$

Der Ware-Pinch überwiegt bei weitem!

Zusammenfassung: Neoklassische Effekte

- **Ripple-Transport**: Zusätzliche magnetische Spiegel durch toroidale Asymmetrie erzeugen stoßfreie Driftverluste für darin gefangene Teilchen.
 - Grund: Komplette poloidale Umläufe werden nicht mehr durchlaufen und daher wird die vertikale Drift nicht kompensiert (im Unterschied zu Bananen-Teilchen bei Axisymmetrie).
- Gefangene Teilchen modifizieren leicht die **elektrische Leitfähigkeit** $\|\vec{B}$: Ohne Stöße tragen sie nicht zum elektrischen Strom bei.
- Mit endlichem Druckgradient ∇p ergibt sich durch gefangene Teilchen lokal eine endliche Stromdichte ("Bootstrap"-Strom), die durch Stöße auf die umlaufenden Teilchen übertragen werden und dadurch einen endlichen Gesamtstrom verursachen.
- Ein toroidales elektrisches Feld verursacht radiale Driften, einerseits eine $E_{\phi} \times B_{\theta}$ -Drift mit radialer Einwärtskomponente und andererseits den "Ware-pinch" durch Versatz der Bananenbahnen gefangener Teilchen. Unter üblichen Bedingungen (z.B. Tokamaks) überwiegt der Ware-pinch.