

性能优化利器——数据库审核平台(Themis)实践

韩锋 <u>宣信技术研发中心数据库架</u>构师

DBAplus

面临的挑战 审核平台选型 审核平台实践 不足及发展

面临的挑战

DBAplus

SELECT /* + INDEX (A1 xxxxxx) */ SUM(A2.CRKSL), UM(A2.CRKSL*A2.DJ) ... FROM xxxx A2, xxxx A1
WHERE A2.CRKFLAG=xxx AND A2.CDATE>=xxx AND A2.CDATE<xxx;

ld	Operation	Name	Rows	Bytes	Cost (%CPU)	Time	Pstart	Pstop
0	SELECT STATEMENT				9890G(100)			
1	SORT AGGREGATE		1	41				
2	MERGE JOIN CARTESIAN		3505T	127P	9890G (1)	999:59:59		
3	PARTITION RANGE ITERATOR		25M	1010M	170K (1)	00:34:12	153	243
4	TABLE ACCESS FULL	<u> </u>	25M	1010M	170K (1)	00:34:12	153	243
5	BUFFER SORT		135M		9890G (1)	999:59:59		
6	INDEX FULL SCAN	English B	135M		382K (1)	01:16:34		

重运维,轻架构、优化

重商业产品,轻开源产品

重手工,轻平台、工具

重初级,轻中高级

- Oracle结构设计规范
- Oracle开发规范
- MySQL结构设计规范
- MySQL开发规范

平台的选型

代表做法	特点	优点	缺点
智能分析引擎	自研SQL分析引擎,分析 语句成本,并自动实现审 核、分流、限流等操作。	可自动审核扩展后可线上使用,实现分流等	难度大效率不高
工具+人工 审核	自研工具加后期人工审核,事后过滤、人工标记,跟踪全流程	对SQL精细粒度控制, 灵活度大。完成对SQL整个生命周期的管理。技术难度较小	• 人工投入
商业产品	直接抽取SQL,自主分析, 仍需人工介入	功能强大,有技术支持周期短,见效快	费用较高扩展性差

我们的选择 — 自研

转变思想,全民动员,人人开发

知识沉淀,做好标准,方便落地

小步快跑,落地实施,不断修正

结合自身,定制目标,学做减法

他山之石可以攻玉,大胆引进

DBAplus

审核平台实践

提供能力

• 快速发现问题

操作方式

• WEB界面

审核力度

Schema

审核维度

• 结构、语句、文本、执行计划、执行特征

审核结果

• 报告(WEB, EXCEL)

背景 — 技术栈

平台设计 — 审核对象

审核类别	示例规则
对象级	大表未分区
	未创建主键
语句级	多表关联
	标量子查询
执行计划级	大表全表扫描
	笛卡尔积
执行特征级	扫描块数与返回记录比例过低
	子游标数过多

平台设计 — 架构简图

平台设计 — 流程图

平台设计 — 模块划分

【数据采集】——采集内容

	采集内容	Oracle	MySQL
	统计信息	√	√ *
对象	存储特征	✓	√*
7320	结构信息	✓	√*
	访问特征	✓	
	SQL文本	✓	✓
SQL	执行计划	✓	√*
	游标	✓	
	绑定变量	✓	
	执行特征	✓	✓

【数据采集】——采集原理

DBAplus

规则解析是系统的核心部分,主要包括规则判断、计分等。 规则部分可简单划分如下:

• 数据库类型

Oracle、MySQL

・规则复杂度

简单、复杂规则

• 审核对象

对象类、文本类、执行计划类、执行特征类

【规则解析】 — 规则定义

```
"db_type" : "mysql",
"input_parms" : [],
"max_score" : 20,
"output_parms" : [],
"rule_complexity": "simple",
"rule_cmd": "like .\\%",
"rule_desc" : "谓词条件使用like %xxx,无法使用索引",
"rule_name" : "LIKE_UNINDEX",
"rule_status" : "ON",
"rule_summary" : "谓词条件使用like %xxx,无法使用索引",
"rule_type" : "TEXT",
"solution" : [
   "从业务角度出发,分析是否可使用精确运算符或类似like'xx%'"
"weight" : 2
```


【规则解析】—规则定义(对象级)

规则类别	规则说明
表、分区	大表过多
	超过指定规模没有分区
	单表或单分区数据量过多
	存在并行属性
	分区数量过多
索引	外键没有索引
	字段重复索引
	聚簇因子多大索引
	字段重复索引
字段	字段数量过多
	记录长度多长
	字段类型不匹配

【规则解析】—规则实现(对象级)

```
sql变量,返回传入用户的组合索引数量和所有索引数量
SELECT 'COMBINEINDEX',
      COUNT(DISTINCT IC.INDEX_NAME) AS COMBINEINDEXNUMBER
FROM DBA_IND_COLUMNS IC
WHERE IC.INDEX_OWNER = '@username@'
 AND IC.COLUMN_POSITION > 1
 UNION ALL
 SELECT 'ALLINDEX',
        COUNT(1)
 FROM DBA_INDEXES I WHERE I.OWNER = '@username@'
.....
```

对象类规则解析比较简单,原理是从目标数据里查询数据字典信息,再根据结果进行分数的计算。

【规则解析】 — 规则定义(执行计划级)

规则类别	规则说明
访问路径	大表扫描
	大索引扫描
	大索引快速全扫描
	索引跳跃扫描
	分区全扫描
	非连续分区扫描
	跨分区扫描
表间关联	笛卡尔积
	多表关联
	嵌套循环层次过多
类型转换	存在隐式类型转换
绑定变量	未使用绑定变量

【规则解析】— 信息存储格式

```
> explain format=json select * from film where
"query_block":
   "select_id": 1,
  "nested_loop": [
        "table": {
          "table_name": "film_actor",
"access_type": "ref",
"possible_keys": [
    "PRIMARY",
    "idx_fk_film_id"

],
"key": "P IMA Y",
"used_key_p r s";
"actor id"
              "actor is
             key_length": "2",
              "const"
           "rows": 19,
"filtered": 100,
           "using_index": true
        "table": {
           "table_name": "film",
```


【规则解析】—规则实现(执行计划)

```
"USERNAME" : "CLIC111123",
"SQL_ID": "9ckavqbv8dap8",
"DB_SID" : "CEDB".
"BYTES": 12,
"OBJECT_TYPE" : "TABLE",
"ETL_DATE" : "2016-08-04",
"PARTITION_ID" : null.
"PARTITION_STOP" : null,
"DEPTH" : 2.
"COST" : 3.
"OTHER_TAG" : null,
"OBJECT_NODE" : null,
"OPERATION_DISPLAY" : " TABLE ACCESS".
"IO_COST" : 3,
"PARTITION_START" : null,
"OPTIONS" : "BY INDEX ROWID",
"OPTIMIZER" : null,
"OBJECT_OWNER" : "CLIC111123",
"CPU_COST" : 30481,
"IPADDR" : "10.100.33.77",
"DISTRIBUTION" : null,
"ID" : 2,
"PARENT_ID" : 1,
"OBJECT_NAME" : "TC_BS_TRANSPORT",
"OTHER" : null,
"PLAN_HASH_VALUE": NumberLong(3152128743),
"POSITION": 1,
"OPERATION" : "TABLE ACCESS".
"CARDINALITY" : 1,
```

```
db.@collection_name@.find({
    "OPERATION": "PARTITION RANGE",
    "OPTIONS": "ALL",
    "USERNAME": "@username@",
    "ETL_DATE": "@etl_date@"
}).forEach(function(x){
    db.@sql@.find({
        "SQL_ID":x.SQL_ID,
        "PLAN_HASH_VALUE":x.PLAN_HASH_VALUE,
        "ID":{$eq:x.ID+1}
    }).forEach(function(y){
        db.@tmp@.save({
            "SQL_ID":y.SQL_ID,
            "PLAN HASH VALUE": y. PLAN HASH VALUE,
            "OBJECT_NAME": y.OBJECT_NAME,
            "ID":y.ID,
            "COST":x.COST.
            "COUNT":""})
        });
```

左侧,采集执行计划数据样本。

右侧,规则实现样例(mongo语句)。

大表全表扫描规则 →

```
db.sqlplan.find({SQL_ID:'fzzxntg1g9u6r'},
     {OBJECT_TYPE:1,OBJECT_NAME:1,OPERATION_DISPLAY:1,OPTIONS:1,_id:0})

{ "O" : "SELECT STATEMENT", "OPTIONS" : null, "OBJECT_NAME" : null }
{ "O" : " TABLE ACCESS", "OPTIONS" : "FULL", "OBJECT_NAME" : "T_TEST" }
```

平台实现 — 规则实现

```
db.@sql@.find({"OPERATION":"TABLE ACCESS",
      "OPTIONS":"FULL",
       "USERNAME":"@username@",
      "ETL_DATE":"@etl_date@"}
).forEach(function(x)
 if(db.obj_tab_info.findOne({
    "TABLE NAME":x.OBJECT NAME,
    $or:
    [{"NUM_ROWS":{$gt:@params1@}},
    {"PHY_SIZE(MB)":{$gt:@params0@}}
)db.@tmp@.save({
      "SQL_ID":x.SQL_ID,
      "PLAN HASH VALUE":x.PLAN HASH VALUE,
      "OBJECT_NAME":x.OBJECT_NAME});})"
```

- 过滤执行计划
- 按统计信息筛选
- 按存储特征筛选
- 获得执行计划
- 后台存储并计分
- 汇总展示报告

【规则解析】— 规则实现(执行计划)

```
mysql> explain format=json select * from rbac_city;
 EXPL
      if isinstance(arg, dict):
         level = level + 1
         for ₹
                  "_id":0bjectId("57359bf4199f9c8ed0d84c53"),
                  "checksum": "XXXXXXX",
                  "item_type": "query_block",
                  "item_level": "1",
                  "select_id": 1,
      elif isi
                 "citem_type": "table",
          for
                  "citem" : [ObjectId("57359bf4199f9c8ed0d84c54")]
                  "_id":0bjectId("57359bf4199f9c8ed0d84c54"),
1 row
                  "checksum": "XXXXXXX",
mysq1>
                  "item_type": "table",
                  "item_level": "1_1",
          pass
                  "table_name": "r_bac_city",
                  "rows": 3295,
                  "filtered": 100,
                  "access_type" : "ALL",
                  "citem" : [ObjectId("57359bf4199f9c8ed0d84c55")]]
```


【规则解析】—规则定义(文本级)

规则说明
select *
嵌套select子句
谓词中出现反向操作符
多个过滤条件通过or连接
存在子查询
存在三个以上的多表关联
存在全连接或外连接
delete中必须出现where
update中出现order by子句
inlist元素过多
重复查询子句
出现union集合操作

【规则解析】—规则实现(文本级)

实现就是基于正则表达式,做模式匹配。

・ 示例 — BAD_JOIN

"rule_cmd": "(cross join)|(outer join)"

・ 示例 — SUB QUERY

```
left_bracket = []
sql_content = []
for k in sql_length:
    if sql[k] == "(":
        left_bracket.append(k)
    if sql[k] == ")":
        start = left_bracket.pop() + 1
        stop = k - 1
        sql_content.append(sql[start:stop])
```


【规则解析】—规则定义(执行特征级)

规则说明
扫描块数与返回记录数比例过低
子游标过多
elapsed_time
cpu_time
buffer_gets
disk_reads
direct_writes
Executions

【系统管理】— 规则管理

待执行sql或mongo语句 查询语句				
数据库类型	规则名称		最大扣分	2
mysql	规则名称		最大扣分	
规则类型	规则概要	扩展字段	规则权重	
OBJ \$	规则概要	对象扩展字段	规则权重	
规则描述		解决方案		
规则描述		解决方案,每行	·一条	4
增加输入参数 减少输入参数		增加输出参数减少输出参数	t	提交

规则是平台核心,其丰富程度代表整体能力。为了满足不同需求,平台允许动态增加自有规则,只要遵守统一格式即可。

【系统管理】 — 规则管理

COUNT_RECORD_TAB	单表或单分区记录数 量过大	ON	0.5	3	OBJ	Oracle	10000000	0	0	0	0	TABLE
COUNT_SUBPART_TAB	复合分区数量过多	ON	0.5	3	OBJ	Oracle	200	0	0	0	0	PART_TABLE
COUNT_SUMPART_FULL_TAB	分区表数量过多	ON	1	5	OBJ	Oracle	10	0	0	0	0	PART_TABLE
COUNT_SUMPART_SINGLE_TAB	分区数量过多	ON \$	0.5	3	OBJ	Oracle	200	0	0	0	0	PART_TABLE
DBLINKS_NUM	存在DBLINK	ON	10	10	OBJ	Oracle	0	0	0	0	0	DBLINK
DUPLICATE_INDEX	字段重复索引	ON	0.3	3	OBJ	Oracle	0	0	0	0	0	COLUMN

平台允许对规则动态关闭,打开,修改规则参数等。

【系统管理】— 任务管理

ip地址:	10.1	20.12.51		+	上面为任	E务发布!	界面	
端口号:				*				
schema:				*				
规则类型:	o pla	un ○ text ○ 对象	○ 执行特征					
日期选择:			选择日期					
导出报告	执行查看报告	〒任务		_	下面为任	E务结果i	查看界面	Ī
操作用户		用户名	创建时间	状态	类型	开始日期	结束日期	选择
system		NEWDX	2016-12-29 15:16:42	成功	TEXT	2016-12-20	2016-12-21	✓
system		NEWDX	2016-12-21 15:06:43	成功	SQLPLAN	2016-12-20	2016-12-20	

【结果展示】— 对象审核结果概览

idx clustering factor

规则扣分

- long column tab
- use function
- table_mis_pk
- table fk noind
- triggers_num
- big_table
- col_wrong_type
- use procedure
- count_sumpart_full_tab
- idx clustering factor
- idx_bitmap
- timestamp
- table col num
- singletable index num
- seq_cachesize
- duplicate index

规则扣分详情 invalid index

table lob

tab_exists_fk

combined index percent

combined index percent -

【结果展示】— 对象审核结果明细

规则名称	规则描述	参数个数 ↓	违反次数	扣分 ↓ 🛊
big_table	超过指定规模且没有分区的表	1	0	0
big_table_count	大表数量	1	1	0
col_wrong_type	表字段类型不匹配	3	153	3.558139534883721
combined_index_percent	组合索引数量过多或没有索引	1	13	0
count_sumpart_full_tab	分区表数量过多	1	11	5
duplicate_index	字段重复索引	0	1	0.3
idx_bitmap	是否使用位图索引	0	6	3
idx_clustering_factor	索引的聚簇因子	1	238	10

DBAplus

【结果展示】— 执行计划审核结果概览

- SQL_TAB_REL_NUM
- SQL_LOOP_NUM
- SQL_PARTITION_RANGE_ALL
- SQL_MERGE_JOIN_CARTESIAN
- SQL_PARTITION_RANGE_ITERATOR
- SQL_TO_CHANGE_TYPE
- SQL_TABLE_FULL_SCAN
- SQL_PARTITION_RANGE_INLIST_OR
- SQL_INDEX_SKIP_SCAN
- SQL_VIEW_SCAN
- SQL_INDEX_FULL_SCAN
- LOOP_IN_TAB_FULL_SCAN
- SQL_INDEX_FAST_FULL_SCAN
- SQL_PARALLEL_FETCH

规则总分: 68.516

规则扣分详情

€ 🖫 🕒 🗲

【结果展示】— 执行计划审核结果明细

规则名称	规则描述	违反次数	扣分 ↓;
SQL_TABLE_FULL_SCAN	大表全表扫描	1213	20
SQL_TAB_REL_NUM	过多的表关联,影响性能	184	10
SQL_INDEX_FAST_FULL_SCAN	大索引快速全扫描	148	10
LOOP_IN_TAB_FULL_SCAN	嵌套循环内层表访问方式为全表扫描	12	8
SQL_PARTITION_RANGE_ALL	分区全扫描	1	0.5
SQL_MERGE_JOIN_CARTESIAN	笛卡尔积	3	0.3
SQL_LOOP_NUM	嵌套层次过深	0	0
SQL_PARTITION_RANGE_ITERATOR	跨分区扫描	0	0
SQL_TO_CHANGE_TYPE	隐式转换	0	0
SQL_PARTITION_RANGE_INLIST_OR	非连续分区扫描	0	0

【结果展示】— 执行计划审核结果明细

SQL_TABLE_FULL_SCAN

解决方案

- 1.缺索引评估创建索引
- 2.取max、min值评估创建索引
- 3.索引失效重建索引,分区表维护记得维护索引
- 4.对条件字段使用函数或表达式a.函数、表达式放到等于号的右边b.创建函数索引(下策)
- 5.出现隐式转换a.不同类型的谓词匹配先显式转换b.表定义根据数据选择正确的数据类型
- 6.使用isNULL做查询条件a.不建议使用null值b.null值较少的情况可创建组合索引或者伪列索引(createindexidx_1ontab1(col1,0)c.将null定义一个普通变量
- 7.使用不等运算符<>!=做查询条件a.尽量少用不等判断; b.如果列值是连续,可把否定操作更改为两个区间; c.如果列值不多,可用inlist枚举其他所有值
- 8.模糊匹配'%a%"%a'建议精确匹配
- 9.sql逻辑,比如最大值,改用窗口函数
- 10.弱选择sql,返回结果集较大建议a.添加更多的谓词减少数据的访问,比如时间b.改造分区表c.使用覆盖索引
- 11.hintfull禁用hint1
- 2.统计信息不准确数据批量加载程序触发收集统计信息

搜索:

sqlid 🏥	sqltext	plan_hashvalue 🎼	pos ↓\$	object_name	COST 1	COUNT 1
00akdkgu8tmys	SELECT COUNT(*) FROM (SELECT data_record	3398998570	17	ICP_BORROW_CONTRACT	12681	空
00akdkgu8tmys	SELECT COUNT(*) FROM (SELECT data_record	3398998570	13	ICP_CONTRACT_REMARK	1779	空

【结果展示】— 执行计划审核结果明细

SQL文本[sql_id:04qwkz1cjnsrc]

select Llending_id lendingld,
Llender_id lenderld,
Ltype type,
Linvest_amt investAmt,
pti.match_irr_low irrYearMin,
pti.match_irr_upper irrYearMax,
i.reinvest reinvest,
i.recommend_deadline recommendDeadline,
Lrecommend_deadline_end lastMatchingDate,

执行计划

sql	OPTIONS	OBJECT_OWNER	OBJECT_NAME
■ SELECT STATEMENT	null	null	null
■ NESTED LOOPS	SEMI	null	null
♣ NESTED LOOPS	null	null	null
■ TABLE ACCESS	BY INDEX ROWID	PHENIX	TP_DIGITAL_CER
INDEX	RANGE SCAN	PHENIX	IDX_TP_DIGITAL_CER_LENDER_ID

行特征							
					搜索		
PER_ELAPSED_TIME 🏥	DISK_READS_DELTA J#	PER_DISK_READS J\$	PER_BUFFER_GETS J	CPU_TIME_DELTA 🎼	BUFFER_GETS_DELTA J	ELAPSED_TIME_[
32.423500000000004	649848	649848	1268174	11.4503	1268174	32.4235000000000	
显示第1至1项结果,共1项							
←							

对象信息

LAST_ANALYZED 🏥	BLOCKS J\$	COL_NUM J\$	TABLE_TYPE J\$	LAST_DDL_TIME 』	OBJECT_TYPE J\$	OBJECT_NAME J\$	TABLE_NAME 🕸	NUM_ROWS J\$
2016-11-16 22:29:21	634035	24	NORMAL	2016-11-11 04:39:36	TABLE	TP_LENDING	TP_LENDING	32192022

显示第1至1项结果,共1项

mysql在解析json格式执行计划中暴露出的问题...

【会话进入sleep状态,假死】

解决方法执行会话之前设置wait timtout=3,这个时间根据实际情况进行调整。

【数据量过大,长时间没有结果】

会话处于query状态,但是数据量很大或因为数据库对format=json支持不是很好, 长时间解析不出来,会影响其他会话。解决方法使用pt-kill工具杀掉会话。为了防止 误杀,可打个标识"eXplAin format=json",然后使用pt-kill识别eXplAin关键字。

DBAplus THANK YOU!

https://github.com/bjbean/Themis