# 01204211 Discrete Mathematics Lecture 10a: Polynomials $(1)^1$

Jittat Fakcharoenphol

October 15, 2024



<sup>&</sup>lt;sup>1</sup>This section is from Berkeley CS70 lecture notes.

# Quick exercise

For any integer  $a \neq 1$ ,  $a - 1|a^2 - 1$ .

#### Quick exercise

For any integer  $a \neq 1$ ,  $a - 1|a^2 - 1$ .

For any integer  $a \neq 1$  and  $n \geq 1$ ,  $a - 1|a^n - 1$ .

# **Polynomials**



A single-variable polynomial is a function p(x) of the form

We call  $a_i$ 's coefficients. Usually, variable x and coefficients  $a_i$ 's are real numbers. The degree of a polynomial is the largest exponent of the terms with non-zero coefficients.

#### **Examples**



### **Folklore**



# **Applications**



(1) at in R and for - an secret lat /

@ on = [k-1] au 7:7; now o: 10 (2) m secretion

4日 > 4団 > 4 三 > 4 三 > 1 三 9 9 ○

# **Applications**

- ► Secret sharing
- ► Error-correcting codes

#### Basic facts





#### Definition

a is a **root** of polynomial f(x) if f(a) = 0.

#### **Properties**

**Property 1** A <u>non-zero</u> polynomial of degree d has at most d roots.

**Property 2:** Given d+1 pairs  $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$  with distinct  $x_i$ 's, there is a unique polynomial p(x) of degree at most d such that  $p(x_i)=y_i$  for  $1\leq i\leq d+1$ .

#### Lemma 1

If two polynomials f(x) and g(x) of degree at most d that share d+1 points  $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$ , where all  $x_i$ 's are distinct, i.e.,  $f(x_i)=g(x_i)=y_i$ , then f(x)=g(x).

#### Proof.

Suppose that  $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0$  and  $g(x) = b_d x^d + b_{d-1} x^{d-1} + \dots + b_0$ . Let h(x) = f(x) - g(x), i.e., let  $h(x) = c_d x^d + c_{d-1} x^{d-1} + \dots + c_0$ , where  $c_i = a_i - b_i$ . Note that h(x) is also a polynomial of degree (at most) d.

We claim that h(x) has d+1 roots. Note that since  $f(x_i)=g(x_i)=y_i$ , we have that

$$h(x_i) = f(x_i) - g(x_i) = y_i - y_i = 0,$$

i.e., every  $x_i$  is a root of h(x).

From **Property 1**, if h(x) is non-zero it has at most d roots; therefore, h(x) must be zero, i.e.,

$$h(y) = f(x) - g(x) = 0$$
 or  $f(x) = g(x)$  as required.



For d+1 points  $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$  where all  $x_i$ 's are distinct, let

$$\Delta_i(x) = \frac{(x-x_1)(x-x_2) \cdot (x-x_{i-1})(x-x_{i+1}) \cdots (x-x_{d+1})}{(x_i-x_1)(x_i-x_2) \cdots (x_i-x_{i-1})(x_i-x_{i+1}) \cdots (x_i-x_{d+1})}.$$

Note that  $\Delta_i(x)$  is a polynomial of degree  $\Delta_i(x) = \{0, 1\}$   $\Delta$ 

For d+1 points  $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$  where all  $x_i$ 's are distinct, let

$$\Delta_i(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{d+1})}{(x_i - x_1)(x_i - x_2) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_{d+1})}.$$

Note that  $\Delta_i(x)$  is a polynomial of degree d. Also we have that

For 
$$j \neq i$$
,  $\Delta_i(x_j) =$ 

For d+1 points  $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$  where all  $x_i$ 's are distinct, let

$$\Delta_i(x) = \frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that  $\Delta_i(x)$  is a polynomial of degree d. Also we have that

- ightharpoonup For  $j \neq i$ ,  $\Delta_i(x_i) = 0$ , and
- $\Delta_i(x_i) =$

For d+1 points  $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$  where all  $x_i$ 's are distinct, let

$$\Delta_i(x) = \frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that  $\Delta_i(x)$  is a polynomial of degree d. Also we have that

- For  $j \neq i$ ,  $\Delta_i(x_j) = 0$ , and
- $\Delta_i(x_i) = 1.$

For d+1 points  $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$  where all  $x_i$ 's are distinct, let

$$\Delta_i(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{d+1})}{(x_i - x_1)(x_i - x_2) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_{d+1})}.$$

Note that  $\Delta_i(x)$  is a polynomial of degree d. Also we have that

- For  $j \neq i$ ,  $\Delta_i(x_j) = 0$ , and
- $\Delta_i(x_i) = 1.$

We can use  $\Delta_i(x)$  to construct a degree-d polynomial

$$y_1 = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

What can you say about  $p(x_i)$ ?



#### Property 2

Given d+1 pairs  $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$  with distinct  $x_i$ 's, there is a *unique* polynomial p(x) of degree at most d such that  $p(x_i) = u_i$  for  $1 \le i \le d+1$ .

#### Proof of Property 2.

 $\rightarrow$ Using Lagrange interpolation, we know that there exists a polynomial p(x) of degree d such that  $p(x_i) = y_i$  for all  $1 \le i \le d+1$ . For uniqueness, assume that there exists another polynomial g(x) of degree d also

satisfying the condition. Since p(x) and g(x) agrees on more than d points, p(x) and

g(x) must be equal from Lemma 1.

4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m >

Polynomials over a finite field GF(p)

#### Examples - evaluation

Suppose that we work over GF(m) where m=11. Let  $p(x)=4\cdot x^2+5\cdot x+3$ . We have

| x  | p(x) | $p(x) \bmod m$ |
|----|------|----------------|
| 0  | 3    | 3              |
| 1  | 12   | 1              |
| 2  | 29   | 7              |
| 3  | 54   | 10             |
| 4  | 87   | 10             |
| 5  | 128  | 7              |
| 6  | 177  | 1              |
| 7  | 234  | 3              |
| 8  | 299  | 2              |
| 9  | 372  | 9              |
| 10 | 453  | 2              |
| 11 | 542  | 3              |

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x).

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

$$\Delta_2(x) = \frac{(x-2)(x-7)}{(4-2)(4-7)} = \frac{x^2 - 9x + 14}{2 \cdot (-3)} = \frac{x^2 + 2x + 3}{5} = 9x^2 + 7x + 5$$

Let m=11. Suppose that p(x) is a polynomial over GF(m) of degree 2 passing through (2,7),(4,10), and (7,3). Find p(x). Let

Thus,

$$p(x) = 7\Delta_1(x) + 10\Delta_2(x) + 3\Delta_3(x)$$
  
=  $(70x^2 + 35) + (90x^2 + 70x + 50) + (9x^2 + 12x + 6)$   
=  $4x^2 + 5x + 3$ 

# Secret sharing scheme - settings

## Secret sharing scheme - settings



- There are n people, a secret(s) and an integer k.
- We want to "distribute" the secret in such a way that any set of k-1 people cannot know anything about s, but any set of k people can reconstruct s.



# Secret sharing scheme

- Pick m to be larger than n and s. (Much larger than s, i.e., m >>> s.)
- Pick a random polynomial of degree k-1 such that P(0)=s.
- Give P(i) to person i, for 1 ≤ i ≤ n.
  Correctness: for any set of k people,

un(p)-, en p(0) -7~ secret

# Secret sharing scheme

- ▶ Pick m to be larger than n and s. (Much larger than s, i.e., m >>> s.)
- ▶ Pick a random polynomial of degree k-1 such that P(0) = s.
- ▶ Give P(i) to person i, for  $1 \le i \le n$ .
- Correctness: for any set of k people,
- ightharpoonup Correctness: for any set of k-1 people, how many possible candidate secrets compatible with the information these people have?