DEVOIR 1

LOGIQUE NUMÉRIQUE ET CIRCUITS COMBINATOIRES

ETIENNE COLLIN | 20237904 Ange Lilian Tchomtchoua Tokam | 20230129 Justin Villeneuve | 20132792

Architecture des ordinateurs - IFT1227

Section A Professeure Alena Tsikhanovich

UNIVERSITÉ DE MONTRÉAL À remettre le 16 Février 2023 à 23:59

Table des matières

Ta	able o	des matières								
1	Réduction de la logique numérique									
2 Conception schématique des circuits combinatoires										
	2.1	Partie a								
	2.2	Partie b								
		2.2.1 Simplification S_4								
		2.2.2 Simplification S_6								
	2.3	Quartus								

1 Réduction de la logique numérique

En utilisant la méthode tabulaire de Quine-McCluskey, simplifiez la function logique suivante :

$$F(A, B, C, D) = \sum_{d} (0, 9, 13, 15) + \sum_{d} (2, 3, 4, 6, 11)$$

Commençons par créer le tableau contenant les minterms (sans passer par une table de vérité, le $minterm\ x$ sera la représentation binaire de x) et simplifions en utilisant la technique de Quine-McCluskey.

Nombre de 1s	Minterm	Nombre de 1s	Minterm	Nombre de 1s	Minterm
0	0000√	0	00-0√	0	00*
1	0010√	0	0-00✓	2	1 1*
1	0100✓		001-*		
	0011√	1	0-10✓		
2	0110✓		01-0✓		
	1001✓		-011*		
3	1011√	2	10-1√		
3	1101✓		1-01✓		
4	1111√	3	1-11√		
		3	11-1√		

À l'aide de ces tableaux, trouvons maintenant les prime implicants.

Prime implicants	Minterms					
1 Time implicants	0000	1001	1101	1111		
001-						
-011						
00	√					
11		√	√	√		

Ainsi, selon cette table, la simplification de la function logique F est :

$$F(A, B, C, D) = \bar{A}\bar{D} + AD \tag{1}$$

2 Conception schématique des circuits combinatoires

2.1 Partie a

Concevoir la table de vérité de l'afficheur. Sur la carte, pour allumer un segment de de l'afficheur, il faudra générer le signal 0 et le signal 1 pour l'éteindre.

D_3	D_2	D_1	D_0	Chiffres & Lettres	S_0	S_1	S_2	S_3	S_4	S_5	S_6
0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	1	0	0	1	1	1	1
0	0	1	0	2	0	0	1	0	0	1	0
0	0	1	1	3	0	0	0	0	1	1	0
0	1	0	0	4	1	0	0	1	1	0	0
0	1	0	1	5	0	1	0	0	1	0	0
0	1	1	0	6	0	1	0	0	0	0	0
0	1	1	1	7	0	0	0	1	1	1	1
1	0	0	0	8	0	0	0	0	0	0	0
1	0	0	1	9	0	0	0	0	1	0	0
1	0	1	0	A	0	0	0	1	0	0	0
1	0	1	1	b	1	1	0	0	0	0	0
1	1	0	0	-	d	d	d	d	d	d	d
1	1	0	1	-	d	d	d	d	d	d	d
1	1	1	0	-	d	d	d	d	d	d	d
1	1	1	1	-	d	d	d	d	d	d	d

2.2 Partie b

Simplifier la SOP des functions logiques contrôlant les segments 4 et 6 avec la méthode de Karnaugh.

2.2.1 Simplification S_4

L'équation simplifiée est donc :

$$S_4 = \bar{D}_3 D_0 + D_2 \bar{D}_1 + \bar{D}_1 D_0 \tag{2}$$

2.2.2 Simplification S_6

L'équation simplifiée est donc :

$$S_6 = \bar{D}_3 \bar{D}_2 \bar{D}_1 + D_2 D_1 D_0 \tag{3}$$

2.3 Quartus

Voici maintenant le schéma résultant de la synthèse du circuit dans Quartus. Notez que pour montrer les symbols VCC et GND, l'option Show constant value est décochée. Le même GND est lié à data2, data4 et data5 dans le Mux8, mais ils sont montrés séparément dans le schéma.

