1st view: max sample variance why max variance preserves info? 2 not view: minimal distance [all var-s in X are stand.-d] re-2 x2 new directions: a.b is higher 1 st view: orient first prirac. comp-t b

sample C-correlation matrix of original warrelles (stand-d or not stand-d) if X are standed thun $C = \frac{1}{n-1} \frac{X^T X}{X} \left[k \times K \right]$ theorem:

5 V1, V2, V3... are just eigenvectors

of C ordered by olever osing

eigenvalues 1, > 12> 13>... > 1x [not a preactical appreaach!]
I not num-bly stable] theorem (Singular value de composition)

Every matrix X can be written

as X= T. E. T, where

Correct [nxn]

[n [fast/colust] PROF SUD M overhogal - "keeps obstances" "motton" [M"M=I] | M·a | = | a | (00 (Ma, Mb) = (00) (q, b) $(= \frac{1}{n-1} \cdot \chi^T \chi = \frac{1}{n-1} (U \mathcal{E} V^T)^T \cdot (U \mathcal{E} V^T) = \frac{1}{n-1} V \mathcal{E}^T \cdot U^T U \mathcal{E} V^T$

	I use only de flavoubable prine.
Ri (Xi E Ru (2	Average R^2 : proportion of explained variance by decomponents $R_d^2(x_1) + R_d^2(x_2) + \dots + R_d^2(x_k)$ K $\lambda_1 + \lambda_2 + \dots + \lambda_d$ $\lambda_1^2 + \lambda_2^2 + \dots + \lambda_d$
	$\widehat{x}_{i1} = \widehat{\beta} \cdot p_{i1} + \widehat{\beta}_{2} \cdot p_{i2} + \dots + \widehat{\beta}_{d} \cdot p_{id}$ $k = k_{\kappa}^{2}(x_{i}) + k_{\kappa}^{2}(x_{2}) + \dots + k_{\kappa}^{2}(x_{k}) = f f f $
	be three.