ЛЕКЦ 10. Функцийн уламжлал, түүний геометр ба механик утга. Дифференциалчлагдах функцийн тухай үндсэн теоремууд. Функцийн дифференциал. Дээд эрэмбийн уламжлал ба дифференциал. Тейлорын томъёо. Лопиталын дүрэм.

Багш С. Уранчимэг

2021 он

[a,b] дээр тодорхойлогдсон y=f(x) функц авъя. $\forall x\in [a,b]$ цэгт $x+\Delta x\in [a,b]$ байх Δx өөрчлөлт өгье.

Тодорхойлолт

Хэрэв $\Delta x \to 0$ үед $\frac{\Delta y}{\Delta x}$ харьцааны хязгаар төгсгөлөг байвал уг хязгаарыг f(x) функцийн x цэг дээрх уламжлал гэнэ.

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$$

Тэмдэглэгээ: f', $\frac{dy}{dx}$, $\frac{d}{dx}y$, Dy

Багш С. Уранчимэг

Шүргэгч шулуун (цэнхэр) нь огтлогч шулууны (улаан) $\Delta x \to 0$ үеийн хязгаарын байр юм.

$$tg\alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Уламжлалын геометр утга нь, f(x) функцийн графикийн a цэгд татсан шүргэгчийн өнцгийн коэффициент f'(a) байна. Шүргэгч шулууны тэгшитгэл:

$$y - f(a) = f'(a) \cdot (x - a)$$

Нормал шулууны тэгшитгэл:

$$y - f(a) = -\frac{1}{f'(a)} \cdot (x - a)$$

Бие координатын дагуу \boldsymbol{V} хурдтай хөдөлсөн гэе.

$$\Delta x = x(t + \Delta t) - x(t)$$

Дундаж хурд

$$v_{\rm II} = \frac{\Delta x}{\Delta t}$$

Уламжлалын механик утгаар, v'(t) нь v хурдтай биеийн t момент дахь агшин зуурын хурд.

$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = v'(t)$$

Функцийн уламжлалыг олох үйлдлийг функцийг дифференциалчлах гэнэ. Төгсгөлөг уламжлалтай функцийг дифференциалчлагддаг функц гэнэ.

Теорем

y = f(x) функц x цэг дээр дифференциалчлагдах гарцаагүй нөхцөл нь функц уг цэг дээр тасралтгүй.

Тасралтгүй функц уламжлалтай байх албагүй!

1. Нийлбэрийн уламжлал.

Төгсгөлөг тооны дифференциалчлагдах функцын алгебрын нийлбэрийн уламжлал нэмэгдэхүүн тус бүрийн уламжлалуудын алгебрын нийлбэртэй тэнцүү байна.

$$(u_1 + u_2 + ... + u_n)' = u'_1 + u'_2 + ... + u'_n$$

2. Үржвэрийн уламжлал.

 $u(x),\ v(x)$ нь дифференциалчлагдах функцууд байг. Тэгвэл

$$(u\cdot v)'=u'\cdot v+u\cdot v'$$

Тогтмол үржигдэхүүнийг уламжлалын тэмдгийн өмнө гаргаж болно.

$$(c \cdot v)' = c \cdot v', \quad c - const$$

3. Ноогдворын уламжлал.

u(x),v(x) нь дифференциалчлагдах функцууд байг. $v(x)\neq 0$ үед

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(\frac{c}{v})' = -\frac{cv'}{v^2}, \ c-const$$

4. Давхар функцын уламжлал

X муж дээр тодорхойлогдсон y=f[arphi(x)] функц байг.

 $\mathbf{z}=arphi(\mathbf{x}),\,\mathbf{y}=\mathbf{f}(\mathbf{z})$ функцууд дифференциалчлагдаж байвал

$$f'[\varphi(x)] = f'(z) \cdot z'$$

буюу

$$f'[\varphi(x)] = f'[\varphi(x)] \cdot \varphi'(x)$$

Жишээ (1.)

 $y = \cos^2 x$ функцийн уламжлалыг ол.

$$y' = 2\cos x(\cos x)' = -2\cos x\sin x = -\sin 2x$$

5. Урвуу функцын уламжлал

Хэрэв y=f(x) дифференциалчлагдах ба $f'(x)\neq 0$, мөн $x=f^{-1}(y)$ урвуу функц нь оршин байвал

$$x_y' = \frac{1}{y_x'}$$

Жишээ (2.)

$$y = \arccos x$$
 функцын уламжлалыг ол. $x = \cos y$ $x'_y = -\sin y = -\sqrt{1 - \cos^2 y}$ $y'_x = \frac{1}{x'_y} = -\frac{1}{\sqrt{1 - \cos^2 y}} = -\frac{1}{\sqrt{1 - \cos^2 arccos x}} = -\frac{1}{\sqrt{1 - x^2}}$ $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$

6. Параметрт хэлбэрээр өгөгдсөн функцын уламжлал

Функц
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}; t_0 \le t \le T$$
 тэгшитгэлээр өгөгдсөн.

 $\varphi(t),\,\psi(t)$ функцүүд дифференциалчлагдах ба $\varphi'(t)\neq 0$ байг.

$$\frac{dy}{dx} = \frac{\frac{d\psi}{dt}}{\frac{d\varphi}{dt}}$$

$$y_x' = \frac{\psi'(t)}{\varphi'(t)}$$

7. Далд функцын уламжлал Аргумент \boldsymbol{x} , түүнээс хамаарсан \boldsymbol{y} функц нь

$$F(x,y)=0$$

тэгшитгэлтэй бол y-ыг далд хэлбэрээр өгөгдсөн функц гэнэ. F(x,y)=0 тэгшитгэлийн хоёр талыг y(x) функц болохыг анхаарч дифференциалчилна.

Жишээ (3.)

$$y^2 - 2xy = 0$$
 функцын уламжлалыг ол.

$$2yy' - (2y + 2xy') = 0 \implies y' = \frac{y}{y - x}$$

Жишээ (4.)

$$x^2 + 3xy + y^2 + 1 = 0$$
 функцын уламжлалыг ол.

$$2x + 3y + 3xy' + 2yy' = 0 \implies y' = -\frac{2x + 3y}{3x + 2y}$$

8. Зэрэг илтгэгч $y = f(x)^{g(x)}$ функцын уламжлал

 $\ln y = \ln f^g \implies \ln y = g \ln f$ уламжлал авъя.

$$\frac{y'}{y} = g' \ln f + g \frac{f'}{f} \implies y' = f(x)^{g(x)} \left(g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)} \right)$$

Жишээ (5.)

 $y = (\sin x)^{\text{tg}x}$ функцийн уламжлалыг ол.

$$\begin{split} & \ln y = \operatorname{tg} x \cdot \ln \sin x \\ & \frac{y'}{y} = \frac{1}{\cos^2 x} \ln \sin x + \frac{\cos x}{\sin x} t g x, \quad \frac{y'}{y} = \frac{\ln \sin x}{\cos^2 x} + 1, \\ & \frac{y'}{(\sin x)^{\operatorname{tg} x}} = \frac{\ln \sin x}{\cos^2 x} + 1, \ y' = (\sin x)^{\operatorname{tg} x} (1 + \sec^2 x \cdot \ln \sin x) \end{split}$$

Уламжлалын таблиц

1.
$$y = x^{\alpha}$$
; $y' = \alpha x^{\alpha - 1}$, $\forall \alpha \in \mathbb{R}$
 $y = x$; $y' = 1$
 $y = \sqrt{x}$; $y' = \frac{1}{2\sqrt{x}}$
 $y = \frac{1}{x}$; $y' = -\frac{1}{x^2}$
 $y = c$ $y' = 0$, $c = const$
2. $y = \sin x$ $y' = \cos x$
3. $y = \cos x$ $y' = -\sin x$
4. $y = \lg x$ $y' = \frac{1}{\cos^2 x}$
5. $y = \operatorname{ctg} x$ $y' = -\frac{1}{\sin^2 x}$
6. $y = \log_a^x$ $y' = \frac{1}{x \ln a}$
 $y = \ln x$ $y' = \frac{1}{x}$

Багш С. Уранчимэг

7.
$$y = a^{x}$$
 $y' = a^{x} \ln a$
 $y = e^{x}$ $y' = e^{x}$
8. $y = \arcsin x$ $y' = \frac{1}{\sqrt{1 - x^{2}}}$
9. $y = \arccos x$ $y' = -\frac{1}{1 + x^{2}}$
10. $y = \arctan x$ $y' = \frac{1}{1 + x^{2}}$
11. $y = \arctan x$ $y' = -\frac{1}{1 + x^{2}}$
12. $y = \sinh x$ $y' = \cosh x$
13. $y = \cosh x$ $y' = \sinh x$
14. $y = \sinh x$ $y' = \frac{1}{\cosh^{2} x}$
15. $y = \coth x$ $y' = -\frac{1}{\sinh^{2} x}$

Гиперболлог функцүүд:

$$\operatorname{ch} x = \frac{e^{x} + e^{-x}}{2}, \quad \operatorname{sh} x = \frac{e^{x} - e^{-x}}{2}$$

$$\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}, \quad \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$$

$$\operatorname{ch}^{2} x + \operatorname{sh}^{2} x = 1$$

Teopeм (Fermat's)

Хэрэв f(x) бодит утгатай функц (a,b) интервал дээр дифференциалчлагддаг ба $c \in (a,b)$ цэг f(x) функцийн тах эсвэл то бол f'(c) = 0 байна.

Teopeм (Rolle's)

Хэрэв y = f(x) функц [a, b] хэрчим дээр тасралтгүй, (a, b) завсарт дифференциалдах ба f(a) = f(b) байвал f'(c) = 0 $a \le c \le b$ байх ядаж нэг цэг олдоно.

Teopeм (Lagrange's)

y = f(x) функц [a, b] хэрчим дээр тасралтгүй бөгөөд (a, b) завсар дээр дифференциалчлагдвал

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

байх $a \le c \le b$ цэг ядаж нэг олдоно.

Teopeм (Cauchy's)

Хэрэв y=f(x), y=g(x) функцүүд $[a,\ b]$ хэрчим дээр тасралтгүй бөгөөд $(a,\ b)$ завсар дээр дифференциалчлагдахаас гадна $g'(x)\neq 0$, $x\in (a,b)$ байвал

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$$

байх a < c < b цэг ядаж нэг олдоно.

Функцийн дифференциал.

$$\lim_{\Delta X \to 0} \frac{\Delta y}{\Delta x} = f'(x) \implies \frac{\Delta y}{\Delta x} = f'(x) + \alpha(x)$$

$$\implies \Delta y = f'(x)\Delta x + \alpha(x)\Delta x, \quad \alpha(x) \to 0$$

Функцийн өөрчлөлтийн гол хэсгийг функцийн дифференциал гээд $extit{dy}$ гэж тэмдэглэнэ. ($extit{\Delta x} = extit{dx}$)

$$dy = f'(x)dx$$

Жишээ (6.)

 $y = x^3 + x$ функцийн дифференциалыг ол.

$$dy = (3x^2 + 1)dx$$

Функцийн дифференциал.

- Чанар.
- \bullet d(u+v)=du+dv
- \bullet d(uv)=udv+vdu
- $d(\frac{u}{v}) = \frac{vdu udv}{v^2}$

Функцийн дифференциал.

Функцийн дифференциалыг ойролцоо бодолтонд хэрэглэх.

$$\Delta y = f(x + \Delta x) - f(x)$$
 for $\Delta y = f'(x)\Delta x \implies$
 $f(x + \Delta x) = f(x) + f'(x)\Delta x$

Жишээ

$$\sin 46^{\circ} = ?$$

$$\sin 46^{\circ} = \begin{vmatrix} f(x) = \sin x & x = 45^{\circ} \\ f'(x) = \cos x & \Delta x = 1^{\circ} \end{vmatrix} = \\ \sin 45^{\circ} + \cos 45^{\circ} \cdot 1^{\circ} = \frac{1}{\sqrt{2}} (1 + \frac{\pi}{180}) = 0.7194$$

Дээд эрэмбийн уламжлал ба дифференциал.

Хэрэв y = f(x) функц [a, b] хэрчмийн цэг бүр дээр уламжлалтай бол f'(x) нь [a, b] дээр тодорхойлогдсон функц байна.

Энэ функцээс авсан уламжлалыг 2-р эрэмбийн уламжлал гэнэ.

$$(y')'=y''$$

Үүний адилаар:

$$(y'')' = y'''$$

 $(y^{(3)})' = y^{(4)}$
 \vdots
 $(y^{n-1})' = y^{(n)}$

Дээд эрэмбийн уламжлал ба дифференциал.

Жишээ (7.)

$$y = (2x - 3)^3$$
 функцийн 1, 2, 3-р эрэмбийн уламжлалыг ол.

$$y'=6(2x-3)^2$$

$$y''=24(2x-3)$$

$$y''' = 48$$

(.8) еешиЖ

 $y = e^{kx}$ функцийн n эрэмбийн уламжлалыг ол.

$$y' = ke^{kx}, \quad y'' = k^2e^{kx}, \quad \cdots \quad y^{(n)} = k^ne^{kx}$$

Дээд эрэмбийн уламжлал ба дифференциал.

Үндсэн элементар функцийн *п* эрэмбийн уламжлал олох.

$$y = x^{n} \quad y' = nx^{n-1}, \quad y'' = n(n-1)x^{n-2}, \dots, y^{(m)} = n(n-1)(n-2)\dots(n-m+1)x^{(n-m)}$$

- $y = a^x$, $(a \ne 1, a > 0)$ $y' = a^x \ln a$, $y'' = a^x \ln^2 a$, ..., $y^{(m)} = a^x \ln^m a$
- **3** $y = \sin x$ $y' = \cos x = \sin(x + \frac{\pi}{2})$, $y'' = -\sin x = \sin(x + \pi)$, ..., $y^{(m)} = \sin(x + \frac{m\pi}{2})$
- ① y = cosx $y' = -sinx = cos\left(x + \frac{\pi}{2}\right)$, $y'' = -cosx = cos(x + \pi)$, ..., $y^{(m)} = cos\left(x + \frac{m\pi}{2}\right)$
- **6** $y = log_a x$ $y' = \frac{1}{x lna},$ $y'' = -\frac{1}{x^2 lna},$..., $y^{(m)} = \frac{(-1)^{m-1} (m-1)!}{x^m lna}$

Дээд эрэмбийн уламжлал ба дифференциал.

Нэгдүгээр эрэмбийн дифференциалаас авсан дифференциалыг **2**-р эрэмбийн дифференциал гэнэ.

$$d^2y=d(dy)$$

Түүнчлэн

$$d^{3}y = d(d^{2}y)$$

$$\vdots$$

$$d^{n}y = d(d^{n-1}y)$$

Дээд эрэмбийн дифференциалыг олохдоо:

$$d^{2}y = y''(dx)^{2}$$
$$d^{3}y = y'''(dx)^{3}$$
$$d^{n}y = y^{(n)}(dx)^{n}$$

Тейлорын томъёо.

y=f(x), функц x=a цэгийг агуулсан ямар нэг интервал дээр n+1 удаа дифференциалчлагдвал

$$P_{(n,a)}(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Тейлорын томъёо (Taylor) хүчинтэй байна. Үлдэгдэл нь:

$$\lim_{x \to a} \frac{f(x) - P_{n,a}(x)}{(x - a)^n} = \lim_{x \to a} \frac{P_{n,a}(x)}{(x - a)^n} = 0$$

x = 0 цэгийн орчинд

$$f(x) = f(0) + \frac{f'(0)}{1!}(x) + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

Маклорены томъёо (Maclaurin) гэнэ.

Тейлорын томъёо.

Жишээ (9.)

 $f(x)=\sin x$ функцийн $\mathbf{X}=\pi$ цэгийн орчинд Тейлорын 3-р эрэмбийн олон гишүүнтийг ол.

$$P_{(3,\pi)}(x) = \sin \pi + \frac{\cos \pi}{1!} (x - \pi) + \frac{-\sin \pi}{2!} (x - \pi)^2 + \frac{-\cos \pi}{3!} (x - \pi)^3$$

$$P_{(3,\pi)}(x) = -(x - \pi) + \frac{(x - \pi)^3}{3!}$$

Дээд эрэмбийн уламжлал ба дифференциал.

Лопиталын дүрэм.(l'hopital's rule)

 $y=f(x),\ y=g(x)$ функцүүд x=a цэгийн орчинд дифференциалчлагдах ба $g(x)\neq 0$ байг. Хэрэв

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$

эсвэл

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty$$

байвал:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

байна.

Жишээ (10.)

$$\lim_{x\to 1}\frac{x^3-1}{\ln x}$$
 хязгаарыг бод.

$$\lim_{x \to 1} \frac{x^3 - 1}{\ln x} = \lim_{x \to 1} \frac{3x^2}{\frac{1}{x}} = \lim_{x \to 1} 3x^3 = 3$$

Жишээ (11.)

$$\lim_{x\to 0} \frac{1-\cos x}{2x^2}$$
 хязгаарыг бод.

$$\lim_{x \to 0} \frac{1 - \cos x}{2x^2} = \lim_{x \to 0} \frac{\sin x}{4x} = \frac{1}{4}$$

Жишээ (12.)

$$\lim_{x \to \infty} \frac{x}{e^x}$$
 хязгаарыг бод.

$$\lim_{x\to\infty}\frac{x}{e^x}=\lim_{x\to\infty}\frac{1}{e^x}=0$$

Жишээ (13.)

 $\lim_{x\to 0} x \ln x$ хязгаарыг бод.

$$\lim_{x \to 0} x \ln x = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} -x = 0$$

Жишээ (14.)

$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$
 хязгаарыг бод.

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \lim_{x \to 0} \frac{e^x}{e^x + e^x + xe^x} = \lim_{x \to 0} \frac{e^x}{e^x(x+2)} = \lim_{x \to 0} \frac{1}{(x+2)} = \frac{1}{2}$$

Жишээ (15.)

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\lg x}$$
 хязгаарыг бод.

Хязгаарыг логарифмчлоод Лопиталийн дүрэм хэрэглэе.

$$A = \lim_{x \to \frac{\pi}{2}} (\sin x)^{\operatorname{tg} x}$$

гэе.

$$\ln A = \ln \left[\lim_{X \to \frac{\pi}{2}} (\sin X)^{\operatorname{tg} X} \right]$$

Логарифм функц тасралтгүй учир

Жишээ (15)

$$\lim_{x \to \frac{\pi}{2}} [\ln(\sin x)^{\lg x}] = \lim_{x \to \frac{\pi}{2}} [\lg x \ln \sin x] = \lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin x)}{\operatorname{ctg} x} = \lim_{x \to \frac{\pi}{2}} \frac{\frac{1}{\sin x} \cos x}{-\frac{1}{\sin^2 x}} = \lim_{x \to \frac{\pi}{2}} (-\sin x \cdot \cos x) = 0$$

$$\ln A = 0 \implies A = 1 \text{ Gyoy } \lim_{x \to \frac{\pi}{2}} (\sin x)^{\operatorname{tg} x} = 1$$

Санамж. $0^0, \infty^0$ хэлбэрийн тодорхой биш илэрхийллийг $\frac{0}{0}, \quad \frac{\infty}{\infty}$ болгон хувиргаж Лопиталийн дүрмээр бодно.

