dvanced Analog Circuits Data Sheet

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ494A

General Description

The AZ494A incorporates on a single chip all the functions required in the construction of a pulse-width-modulation (PWM) control circuit. Designed primarily for power supply control, this device offers the flexibility to tailor the power supply control circuitry to a specific application.

The AZ494A contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5V regulator, and output control circuits. The error amplifiers exhibit a common-mode voltage range from -0.3V to $V_{\rm CC}$ -2V. The dead-time control comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator can be bypassed by terminating the RT pin to the reference output and providing a sawtooth input to the CT pin, or it can drive the common circuits in synchronous multiple-rail power supplies.

The uncommitted output transistors can be configured in either common-emitter or emitter-follower output topology. The AZ494A provides for push-pull or single-ended output operation, which can be selected through the output control function. The architecture of this device prohibits the possibility of either output being pulsed twice during push-pull operation. The AZ494A is characterized for operation from -40°C to 85°C.

Features

- Complete PWM power-control circuitry
- Uncommitted outputs for 200mA sink or source current
- Output control selects single-ended or push-pull operation
- Internal circuitry prohibits double pulse at either output
- Variable dead time provides control over total range
- Internal regulator provides a stable 5V reference supply with ±1.5% tolerance
- Circuit architecture allows easy synchronization

Applications

- SMPS
- Back Light Inverter

Figure 1. Package Types of AZ494A

AZ494A

Pin Configuration

Figure 2. Pin Configuration of AZ494A

Function Table

Input To Output Control	Output Function
$V_I = GND$	Single-ended or parallel output
$V_{I} = V_{ref}$	Normal push-pull operation

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ494A

Advanced Analog Circuits Data Sheet

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SOIC-16	-40°C~85°C	AZ494AM	AZ494AM	Tube
DIP-16		AZ494AP	AZ494AP	Tube

Absolute Maximum Ratings (Note 1)

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

Parameter	Symbol	Value		Unit		
Supply Voltage (Note 2)	V _{CC}	40		V		
Amplifier Input Voltage	$V_{\rm I}$	-0.3 to $V_{CC} + 0.3$		V		
Collector Output Voltage	V_{O}	40		40		V
Collector Output Current	I_{O}	250		mA		
Package Thermal Impedance	θ_{JA}	M Package	73	°C/W		
(Note 3)		P Package	67			
Lead Temperature 1.6mm from case for 10 seconds		260		°C		
Storage Temperature Range	T _{STG}	-65 to 150		°C		
ESD rating (Machine Model)		200		V		

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: All voltage values are with respect to the network ground terminal.

Note 3: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A) / \theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

AZ494A

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	7	36	V
Amplifier Input Voltage	V_{I}	-0.3	V _{CC} - 2	V
Collector Output Voltage	V_{O}		36	V
Collector Output Current (Each Transistor)			200	mA
Current Into Feedback Terminal			0.3	mA
Oscillator Frequency	f_{osc}		300	KHz
Timing Capacitor	C_{T}	0.47	10000	nF
Timing Resistor	R_{T}	1.8	500	ΚΩ
Operating Free-Air Temperature	T _A	-40	85	°C

AZ494A

Electrical Characteristics

All typical values, except for parameter changes with temperature, are at $T_A = 25^{\circ}$ C. Vcc=15V, f=10KHz unless otherwise noted.

Parameter		Symbol	Conditions (Note 4)	Min	Тур	Max	Unit
Reference Section		•		•	•	•	•
Output Voltage (REF)		Vref	IO=1mA	4.90	5.00	5.05	V
Line Regulation			$V_{CC} = 7V \text{ to } 36V$		2	25	mV
Load Regulation			I _O =1mA to 10mA		1	15	mV
Output Voltage Change with	Temperature		$\Delta T_A = MIN \text{ to } MAX$		2	10	mV/V
Short-Circuit Output Current	(Note 5)	I_{SC}	REF = 0V		25		mA
Oscillator Section, $C_T = 0.0$	$1\mu F, R_T = 12K$	Ω (See Fig	ure 4)	·	ı		•
Frequency		f_{osc}			10		KHz
Standard Deviation of Freque (Note 6)	ncy		All values of V_{CC} , C_T , R_T and T_A constant		100		Hz/KHz
Frequency Change with Volta	ge		V_{CC} =7V to 36V, T_A = 25°C		1		Hz/KHz
Frequency Change with Temp (Note 7)	perature		$\Delta T_A = MIN \text{ to } MAX$			10	Hz/KHz
Error-Amplifier Section (Se	e Figure 5)			•	•	•	•
Input Offset Voltage		V _{OS}	V_{O} (FEEDBACK) = 2.5V		2	10	mV
Input Offset Current		I_{OS}	V_{O} (FEEDBACK) = 2.5V		25	250	nA
Input Bias Current		I_{BIAS}	V_{O} (FEEDBACK) = 2.5V		0.2	1	μΑ
Common-Mode Input Voltage	e Range		V _{CC} =7V to 36V	-0.3 to V _{CC} -2			V
Large-Signal Open-Loop Vol	tage Gain	A _{VO}	$\Delta V_{O} = 3V, R_{L} = 2K\Omega,$ $V_{O} = 0.5V \text{ to } 3.5V$	70	95		dB
Large-Signal Unity-Gain Ban	dwidth	GB	$V_O = 0.5 \text{V to } 3.5 \text{V}, R_L = 2 \text{K}\Omega$		800		KHz
Common-Mode Rejection Ra	tio	CMRR	$\Delta V_{\rm O} = 36 \text{V}, T_{\rm A} = 25^{\rm o} \text{C}$	65	80		dB
Output Sink Current (FEEDB	SACK)	I _{SINK}	$V_{ID} = -15 \text{mV} \text{ to } -5 \text{V},$ V(FEEDBACK) = 0.7 V	0.3	0.7		mA
Output Source Current (FEEDBACK)		I _{SOURCE}	$V_{ID} = 15$ mV to 5V, V(FEED-BACK) = 3.5V	-2			mA
Output Section			1	u			
Collector Off-State Current I _C		I _{C, OFF}	$V_{CE} = 36V, V_{CC} = 36V$		2	100	μΑ
$ Emitter Off-State Current \qquad \qquad I_{E, OFF} $		I _{E, OFF}	$V_{CC} = V_C = 36V, V_E = 0$			-100	μΑ
Collector-Emitter Saturation Voltage	Common Emitter		$V_E = 0, I_C = 200 \text{mA}$		1.1	1.3	V
	Emitter Follower		V_{O} (C1 or C2) = 15V, I_{E} = -200mA		1.5	2.5	

dyanced Analog Circuits Data Sheet

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ494A

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Control Input Current		$V_{\rm I} = V_{\rm ref}$				3.5	mA
Dead-Time Control Section	•			•			
Input Bias Current		$V_{\rm I} = 0 \text{ to } 5.25 \text{V}$			-2	-10	μΑ
Maximum Duty Cycle, Each Output		V_I (DEAD-TIME CTRL) = 0, C_T =0.01 μ F, R_T =12 $K\Omega$			45		%
Input Threshold Voltage		Zero Duty Cycle			3	3.3	V
		Maximum Duty Cycl	le	0			
PWM Comparator Section (See Figure	4)	•					
Input Threshold Voltage (FEEDBACK)		Zero duty cycle			4	4.5	V
Input Sink Current (FEEDBACK)		V(FEEDBACK) = 0.7V		0.3	0.7		mA
Total Device		•					
Standby Supply Current	I _{STDBY}	RT=V _{ref} , All other	$V_{CC} = 15V$		6	10	mA
		inputs and outputs open	$V_{CC} = 36V$		9	15	
Average Supply Current		V _I (DEAD-TIME-CTRL) =2V See Figure 4.			7.5		mA
Switching Characteristics							
Rise Time	t _r	Common-emitter Configuration See Figure 6			100	200	ns
Fall Time	t_{f}				25	100	ns
Rise Time	t _r	Emitter-follower Configuration See Figure 7			100	200	ns
Fall Time	t_{f}				40	100	ns

Note 4: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

Note 5: Duration of the short circuit should not exceed one second.

Note 6: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

$$\sigma = \sqrt{\sum_{n=1}^{N} (X_n - \overline{X})^2}$$

Note 7: Temperature coefficient of timing capacitor and timing resistor are not taken into account.

AZ494A

Parameter Measurement Information

Test Circuit

Voltage Waveforms

Figure 4. Operational Test Circuit and Waveforms

AZ494A

Parameter Measurement Information

Figure 5. Error Amplifier Characteristics

Note A: C_L includes probe and jig capacitance.

Figure 6. Common-Emitter Configuration

Note A: C_L includes probe and jig capacitance.

Figure 7. Emitter-Follower Configuration

AZ494A

Typical Performance Characteristics

Figure 8. Oscillator Frequency vs. Timing Resistance

Figure 9. Error Amplifier Small-Signal Voltage Gain vs. Frequency

AZ494A

Mechanical Dimensions

SOIC-16 Unit: mm

AZ494A

Mechanical Dimensions (Continued)

DIP-16 Unit: mm

http://www.aacmicro.com

USA: 860 Hillview Court, Suite 160, Milpitas, CA 95035, USA Tel: 408-586 8809, Fax: 408-586 8801

China: 8th Floor, Zone B, 900 Yi Shan Road, Shanghai 200233, China

Tel: 86-21-6495 9539, Fax: 86-21-6485 9673

Taiwan: Room 2210, 22nd Fl, 333, Keelung Road, Sec. 1, Taipei 110, Taiwan Tel: 886-2-2758 6828, Fax: 886-2-2758 6892

IMPORTANT NOTICE

Advanced Analog Circuits Corporation reserves the right to make changes to its products or specifications at any time, without notice, to improve design or performance and to supply the best possible product. Advanced Analog Circuits does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Advanced Analog Circuits' products. The company makes no representation that circuitry described herein is free from patent infringement or other rights of Advanced Analog Circuits Corporation.