

 Introducción 	2
* Clasificación de los algoritmo	OS
probabilistas	9
 Algoritmos numéricos 	13
 La aguja de Buffon 	14
 Integración probabilista 	16
 Algoritmos de Monte Carlo 	21
 Verificación de un producto matrio 	cial 23
 Comprobación de primalidad 	33
 Algoritmos de Las Vegas 	50
 Ordenación probabilista 	61
 Factorización de enteros 	65

Una historia sobre un tesoro, un dragón, un computador, un elfo y un doblón.

En A o B hay un **tesoro** de x lingotes de oro pero no sé si está en A o B.

 Un dragón visita cada noche el tesoro llevándose y lingotes.

 Sé que si permanezco 4 días más en O con mi computador resolveré el misterio.

Un elfo me ofrece un trato:
 Me da la solución ahora si le
 pago el equivalente a la
 cantidad que se llevaría el
 dragón en 3 noches.

¿Qué debo hacer?

- Si me quedo 4 días más en O hasta resolver el misterio, podré llegar al tesoro en 9 días, y obtener *x*-9*y* lingotes.
- Si acepto el trato con el elfo, llego al tesoro en 5 días, encuentro allí x-5y lingotes de los cuales debo pagar 3*y* al elfo, y obtengo *x*-8*y* lingotes.
 - Es mejor aceptar el trato pero...
 - ...;hay una solución mejor!

¿Cuál?

- ¡Usar el **doblón** que me queda en el bolsillo!
- Lo lanzo al aire para decidir a qué lugar voy primero (A o B).
 - Si acierto a ir en primer lugar al sitio adecuado, obtengo x-5y lingotes.
 - ◆ Si no acierto, voy al otro sitio después y me conformo con *x*-10*y* lingotes.

El beneficio esperado medio es x-7'5y.

¿Qué hemos aprendido?

- En algunos algoritmos en los que aparece una decisión, es preferible a veces elegir aleatoriamente antes que perder tiempo calculando qué alternativa es la mejor.
- Esto ocurre si el tiempo requerido para determinar la elección óptima es demasiado frente al promedio obtenido tomando la decisión al azar.

Característica fundamental de un algoritmo probabilista:

- Más diferencias entre los algoritmos deterministas y probabilistas:
 - A un algoritmo determinista **nunca** se le permite que no termine: hacer una división por 0, entrar en un bucle infinito, etc.
 - A un algoritmo probabilista se le puede permitir siempre que eso ocurra con una probabiliad muy pequeña para datos cualesquiera.
 - Si ocurre, se aborta el algoritmo y se repite su ejecución con los mismos datos.
 - Si existe más de una solución para unos datos dados, un algoritmo determinista siempre encuentra la **misma solución** (a no ser que se programe para encontrar varias o todas).
 - Un algoritmo probabilista puede encontrar soluciones diferentes ejecutándose varias veces con los mismos datos.

* Más diferencias:

- A un algoritmo determinista no se le permite que calcule una solución incorrecta para ningún dato.
- Un algoritmo probabilista puede equivocarse siempre que esto ocurra con una probabilidad pequeña para cada dato de entrada.
 - Repitiendo la ejecución un número suficiente de veces para el mismo dato, puede aumentarse tanto como se quiera el grado de confianza en obtener la solución correcta.
- El análisis de la eficiencia de un algoritmo determinista es, a veces, difícil.
- El análisis de los algoritmos probabilistas es, muy a menudo, muy difícil.

- Un comentario sobre "el azar" y "la incertidumbre":
 - A un algoritmo probabilista se le puede permitir calcular una solución equivocada, con una probabilidad pequeña.
 - Un algoritmo determinista que tarde mucho tiempo en obtener la solución puede sufrir errores provocados por fallos del hardware y obtener una solución equivocada.
 - Es decir, el algoritmo determinista tampoco garantiza siempre la certeza de la solución y además es más lento.

- Más aún:

Hay problemas para los que no se conoce ningún algoritmo (determinista ni probabilista) que dé la solución con certeza y en un tiempo razonable (por ejemplo, la duración de la vida del programador, o de la vida del universo...):

Es mejor un algoritmo probabilista rápido que dé la solución correcta con una cierta probabilidad de error.

Ejemplo: decidir si un nº de 1000 cifras es primo.

Algoritmos probabilistas: Clasificación

Algoritmos probabilistas

Algoritmos que no garantizan la corrección de la solución

Algoritmos numéricos:

- dan una solución aproximada
- dan un intervalo de confianza ("con probab. del 90% la respuesta es 33 ± 3")
- a mayor tiempo de ejecución, mejor es la aproximación

Algoritmos de Monte Carlo:

- dan la respuesta exacta con una alta probabilidad
- en algunas ocasiones dan una respuesta incorrecta
- no se puede saber si la respuesta es la correcta
- se reduce la probabilidad de error alargando la ejecución

Algoritmos que nunca dan una solución incorrecta

Algoritmos de Las Vegas:

- toman decisiones al azar
- si no encuentran la solución correcta lo admiten
- es posible volver a intentarlo con los mismos datos hasta obtener la solución correcta

Algoritmos probabilistas: Clasificación

 Ejemplo de comportamiento de los distintos tipos ante un mismo problema

"¿Cuándo descubrió América Cristobal Colón?"

- Algoritmo numérico ejecutado cinco veces:
 - "Entre 1490 y 1500."
 - "Entre 1485 y 1495."
 - "Entre 1491 y 1501."
 - "Entre 1480 y 1490."
 - "Entre 1489 y 1499."

Aparentemente, la probabilidad de dar un intervalo erroneo es del 20% (1 de cada 5).

Dando más tiempo a la ejecución se podría reducir esa probabilidad o reducir la anchura del intervalo (a menos de 11 años).

Algoritmos probabilistas: Clasificación

"¿Cuándo descubrió América Cristobal Colón?"

Algoritmo de Monte Carlo ejecutado diez veces:

1492, 1492, 1492, 1491, 1492, 1492, 357 A.C., 1492, 1492, 1492.

De nuevo un 20% de error.

Ese porcentaje puede reducirse dando más tiempo para la ejecución.

Las respuestas incorrectas pueden ser próximas a la correcta o completamente desviadas.

"¿Cuándo descubrió América Cristobal Colón?"

Algoritmo de Las Vegas ejecutado diez veces:

1492, 1492, ¡Perdón!, 1492, 1492, 1492, 1492, 1492, ¡Perdón!, 1492.

El algoritmo nunca da una respuesta incorrecta.

El algoritmo falla con una cierta probabilidad (20% en este caso).

Algoritmos numéricos: Introducción

Primeros en aparecer

- SGM, clave "Monte Carlo"

Un ejemplo ya conocido:

- Simulación de un sistema de espera (cola)
 - Estimar el tiempo medio de espera en el sistema.
 - En muchos casos la solución exacta no es posible.
- La solución obtenida es siempre aproximada pero su precisión esperada mejora aumentando el tiempo de ejecución.
- Normalmente, el error es inversamente proporcional a la raíz cuadrada del esfuerzo invertido en el cálculo
 - Se necesita cien veces más de trabajo para obtener una cifra más de precisión.

Algoritmos numéricos: La aguja de Buffon

G.L. Leclerc, Conde de Buffon:

"Essai d'arithmétique morale", 1777.

* Teorema de Buffon:

Si se tira una aguja de longitud λ a un suelo hecho con tiras de madera de anchura ω ($\omega \ge \lambda$), la probabilidad de que la aguja toque más de una tira de madera es $p=2\lambda/\omega p$.

Aplicación:

- Si $\lambda=\omega/2$, entonces p=1/p.
- Si se tira la aguja un número de veces n suficientemente grande y se cuenta el número k de veces que la aguja toca más de una tira de madera, se puede estimar el valor de p:

$$k \approx n/p \Rightarrow p \approx n/k$$

Es (probablemente) el primer algoritmo probabilista de la historia.

Algoritmos numéricos: La aguja de Buffon

- * Pregunta natural: ¿Es útil este método?
 - ¿Cómo de rápida es la convergencia?
 Es decir, ¿cuántas veces hay que tirar la aguja?

Es muy lenta, es decir el método no sirve [BB96]: n=1500000 para obtener un valor de p±0'01 con probabilidad 0'9.

p≈3±0'5, con probabilidad 0'85

Problema:

Calcular:

$$I = \int_{a}^{b} f(x) dx$$
, donde $f: \mathbb{R} \to \mathbb{R}^{+}$ es continua y $a \le b$

I/(b-a) es la altura media de f entre a y b.

Algoritmos numéricos: Integración probabilista

```
función int prob(f:función; n:entero;
                  a,b:real) devuelve real
{Algoritmo probabilista que estima la integral
de f entre a y b generando n valores aleatorios
x_i en [a,b), haciendo la media de los f(x_i) y
multiplicando el resultado por (b-a).
 Se utiliza la función uniforme(u,v) que genera
 un número pseudo-aleatorio uniformemente
distribuido en [u,v).}
variables suma, x:real; i:entero
principio
  suma := 0.0;
  para i:=1 hasta n hacer
    x:=uniforme(a,b);
    suma := suma + f(x)
  fpara;
  devuelve (b-a)*(suma/n)
fin
```

Algoritmos numéricos: Integración probabilista

* Análisis de la convergencia:

- Puede verse [BB96] que la varianza del estimador calculado por la función anterior es inversamente proporcional al número n de muestras generadas y que la distribución del estimador es aproximadamente normal, cuando n es grande.
- Por tanto, el error esperado es inversamente proporcional a \sqrt{n} .
 - 100 veces más de trabajo para obtener una cifra más de precisión

* La versión determinista:

- Es similar pero estima la altura media a partir de puntos equidistantes.

```
función int_det(f:función; n:entero;
                 a,b:real) devuelve real
variables suma,x:real; i:entero
principio
  suma := 0.0; delta := (b-a)/n; x := a + delta/2;
  para i:=1 hasta n hacer
    suma := suma + f(x);
    x:=x+delta
  fpara;
  devuelve suma*delta
fin
```

Algoritmos numéricos: Integración probabilista

- En general, la versión determinista es más eficiente (menos iteraciones para obtener precisión similar).
- Pero, para todo algoritmo determinista de integración puede construirse una función que "lo vuelve loco" (no así para la versión probabilista).

Por ejemplo, para $f(x) = \sin^2(100!px)$ toda llamada a int_det(f,n,0,1) con 1\le n\le 100 devuelve 0, aunque el valor exacto es 0 ' 5.

- Otra ventaja: cálculo de integrales múltiples.
 - Algoritmos deterministas: para mantener la precisión, el coste crece exponencialmente con la dimensión del espacio.
 - En la práctica, se usan algoritmos probabilistas para dimensión 4 o mayor.
 - Existen técnicas híbridas (parcialmente sistemáticas y parcialmente probabilistas): integración cuasi-probabilista.

Algoritmos de Monte Carlo: Introducción

Hay problemas para los que no se conocen soluciones deterministas ni probabilistas que den siempre una solución correcta (ni siquiera una solución aproximada).

* Algoritmo de Monte Carlo:

- A veces da una solución incorrecta.
- Con una alta probabilidad encuentra una solución correcta sea cual sea la entrada.
 (NOTA: Esto es mejor que decir que el algoritmo funciona bien la mayoría de las veces).

Algoritmos de Monte Carlo: Introducción

Sea p un número real tal que 0<p<1. Un algoritmo de Monte Carlo es pcorrecto si:

Devuelve una solución correcta con probabilidad mayor o igual que *p*, cualesquiera que sean los datos de entrada.

A veces, *p* dependerá del tamaño de la entrada, pero nunca de los datos de la entrada en sí.

Problema:

– Dadas tres matrices $n \times n$, A, B y C, se trata de verificar si C = AB.

* Solución trivial:

- Multiplicar *A* por *B* con:
 - El algoritmo directo: coste $\Theta(n^3)$.
 - El algoritmo de Strassen (*Divide y vencerás*, pág. 46): se puede llegar hasta $\Omega(n^{2,376})$.
- ¿Puede hacerse mejor?

R. Freivalds: "Fast probabilistic algorithms", Proceedings of the 8th Symposium on the Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 74, Springer-Verlag, 1979.

Solución de Monte Carlo:

Suponer que D = AB - C

Sea *i* el índice de una fila no nula de *D*: $D_i \neq \vec{0}$.

- Sea S ⊆ {1,...,n} cualquiera.

- Sea
$$\Sigma_S(D) = \sum_{i \in S} D_i$$
 $(\Sigma_{\emptyset}(D) = \vec{0})$

- Sea

$$S = \begin{cases} S \cup \{i\} & \text{si } i \notin S \\ S \setminus \{i\} & \text{si } i \in S \end{cases}$$

- Como D_i es no nulo, $\Sigma_S(D)$ y $\Sigma_{S'}(D)$ no pueden ser simultaneamente nulos.
- Si S se elige al azar (lanzando una moneda para cada j), la pertenencia de i a S es tan probable como la no pertenencia, luego:

$$P\left\{\Sigma_S(D) \neq \vec{0}\right\} \geq \frac{1}{2}$$

- Por otra parte, si C = AB, $\Sigma_S(D) = \vec{0}$ siempre.
- Idea para decidir si C = AB o no: Calcular $\Sigma_S(D)$ para un conjunto elegido al azar S y comparar el resultado con $\vec{0}$.
- ¿Cómo calcular $\Sigma_S(D)$ eficientemente?

Sea X el vector de n 0's y 1's tal que

$$X_j = \begin{cases} 1, & \text{si } j \in S \\ 0, & \text{si } j \notin S \end{cases}$$

Entonces:

$$\Sigma_S(D) = XD$$

Es decir, se trata de decidir si XAB = XC o no para un vector binario X elegido al azar.

- El coste del cálculo de XAB = (XA)B y de XC es $\Theta(n^2)$.
- Algoritmo $^{1}/_{2}$ –correcto para decidir si AB = C:

```
tipo matriz=vector[1..n,1..n]de real
función Freivalds(A,B,C:matriz)
        devuelve booleano
variables X:vector[1..n]de 0..1
          j:entero
principio
 para j:=1 hasta n hacer
    X[j]:=uniforme_entero(0,1)
  fpara;
  si (X*A)*B=X*C
    entonces devuelve verdad
    sino devuelve falso
  fsi
fin
```

- ❖ ¿Es útil un algoritmo ¹/₂−correcto para tomar una decisión?
- * Es igual que decidir tirando una moneda al aire.

¡Y sin siquiera mirar los valores de las matrices!

- * La clave:
 - Siempre que Freivalds (A,B,C) devuelve falso, podemos estar seguros de que $AB \neq C$.
 - Sólo cuando devuelve verdad, no sabemos la respuesta.

Idea: Repetir varias veces la prueba...

```
función repe_Freivalds(A,B,C:matriz;
                        k:entero)
        devuelve booleano
variables i:entero; distinto:booleano
principio
 distinto:=verdad; i:=1;
 mq i≤k and distinto hacer
    si freivalds(A,B,C)
      entonces i:=i+1
      sino distinto:=falso
    fsi
  fmq;
 devuelve distinto
```

- Si devuelve falso, es seguro que $AB \neq C$.
- ¿Y si devuelve verdad? ¿ Cuál es la probabilidad de error?

 Si C = AB, cada llamada a Freivalds devuelve necesariamente el valor verdad, por tanto repe_Freivalds devuelve siempre verdad.

En este caso, la probabilidad de error es 0.

- Si $C \neq AB$, la probabilidad de que cada llamada devuelva (incorrectamente) el valor verdad es como mucho 1/2.

Como cada llamada a Freivalds es independiente, la probabilidad de que k llamadas sucesivas den todas una respuesta incorrecta es como mucho $1/2^k$.

→ El algoritmo repe_Freivalds es (1-2-k)-correcto.

Por ejemplo, si k = 10, es mejor que 0'999–correcto; si k = 20, la probabilidad de error es menor que uno entre un millón.

 Situación típica en algoritmos de Monte Carlo para problemas de decisión:

> Si está garantizado que si se obtiene una de las dos respuestas (verdad o falso) el algoritmo es correcto

> > el decrecimiento de la probabilidad de error es espectacular repitiendo la prueba varias veces.

 Alternativa: diseñar el algoritmo con una cota superior de la probabilidad de error como parámetro.

- Coste: $\Theta(n^2 \log 1/\text{epsilon})$.

* Interés práctico:

- Se necesitan $3n^2$ multiplicaciones escalares para calcular XAB y XC, frente a las n^3 necesarias para calcular AB.
 - Si exigimos epsilon= 10^{-6} , y es cierto que AB = C, se requieren 20 ejecuciones de Freivalds, es decir, $60n^2$ multiplicaciones escalares, y eso sólo es mejor que n^3 si n>60.
- Limitado a matrices de dimensión grande.

- Algoritmo de Monte Carlo más conocido: decidir si un número impar es primo o compuesto.
 - Ningún algoritmo determinista conocido puede responder en un tiempo "razonable" si el número tiene cientos de cifras.
 - La utilización de primos de cientos de cifras es fundamental en criptografía (ver *Divide y vencerás*, pág. 35 y siguientes).

- La historia comienza en 1640 con Pierre de Fermat...
 - Pequeño Teorema de Fermat.
 Sea n primo. Entonces,

$$a^{n-1} \mod n = 1$$

para todo entero *a* tal que 1≤*a*≤*n*-1.

- Ejemplo: n = 7, $a = 5 \Rightarrow 5^6 \mod 7 = 1$. En efecto, $5^6 = 15625 = 2232 \times 7 + 1$.
- Enunciado **contrarrecíproco** del mismo teorema. Si *a* y *n* son enteros tales que $1 \le a \le n-1$, y si $a^{n-1} \mod n \ne 1$, entonces *n* no es primo.

- Una anécdota sobre Fermat y su teorema:
 - El mismo formuló la hipótesis:

"
$$F_n = 2^{2^n} + 1$$
 es primo para todo n ."

- Lo comprobó para: F_0 =3, F_1 =5, F_2 =17, F_3 =257, F_4 =65537.
- Pero no pudo comprobar si F_5 =4294967297 lo era.
- Tampoco pudo darse cuenta de que:

$$3^{F_5-1} \mod F_5 = 3029026160 \neq 1 \Rightarrow F_5$$
 no es primo (por el contrarrecíproco de su propio teorema) .

 Fue Euler, casi cien años después, quien factorizó ese número:

$$F_5 = 641 \times 6700417$$

- Utilización del pequeño teorema de Fermat para comprobar la primalidad:
 - En el caso de F_5 , a Fermat le hubiera bastado con ver que

$$\exists a: 1 \le a \le F_5 - 1 \text{ t.q. } a^{F_5 - 1} \mod F_5 \ne 1$$

 $(a = 3)$

Esto nos da la siguiente idea:

```
función Fermat(n:entero) devuelve booleano
variable a:entero
principio
  a:=uniforme_entero(1,n-1);
  \mathbf{si} a^{n-1} mod n=1
    entonces devuelve verdad
    sino devuelve falso
  fsi
fin
```

- El cálculo de aⁿ⁻¹ mod n puede hacerse con el algoritmo de potenciación discreta que ya vimos (Divide y vencerás, pág. 33):

```
función potIter(a,n,z:entero) devuelve entero
{Devuelve a<sup>n</sup> mod z.}
variable i,x,r:entero
principio
  i:=n; x:=a; r:=1;
  mq i>0 hacer
    si i es impar entonces r:=r*x mod z fsi;
    x := x * x \mod z;
    i:=i div 2
  fmq;
  devuelve r
fin
```

- Estudio del algoritmo basado en el pequeño teorema de Fermat:
 - Si devuelve el valor falso, es seguro que el número no es primo (por el teorema de Fermat).
 - Si devuelve el valor verdad: ¡No podemos concluir!
 - Necesitaríamos el recíproco del teorema de Fermat:

"Si a y n son enteros tales que $1 \le a \le n-1$ y $a^{n-1} \mod n = 1$, entonces n es primo."

Pero este resultado es falso:

- ◆ Casos triviales en que falla: $1^{n-1} \mod n = 1$, para todo $n \ge 2$.
- ◆ Más casos triviales en que falla: $(n-1)^{n-1} \mod n = 1$, para todo impar $n \ge 3$.

 Pero, ¿falla el recíproco del teorema de Fermat en casos no triviales (a≠1 y a≠n-1)?

SI.

El ejemplo más pequeño: $4^{14} \mod 15 = 1$ y sin embargo 15 no es primo.

Definición:

Falso testigo de primalidad.

Dado un entero n que no sea primo, un entero a tal que $2 \le a \le n-2$ se llama falso testigo de primalidad de n si a^{n-1} mod n=1.

◆ Ejemplo: 4 es un falso test. de prim. para 15.

Modificación del algoritmo "Fermat":

- Elegir *a* entre 2 y *n*-2 (en lugar de entre 1 y *n*-1).
- El algoritmo falla para números no primos sólo cuando elige un falso testigo de primalidad.

La buena noticia:

Hay "pocos" testigos falsos de primalidad.

Si bien sólo 5 de los 332 números impares no primos menores que 1000 carecen de falsos testigos de primalidad:

- más de la mitad de ellos tienen sólo 2 falsos testigos de primalidad,
- menos del 16% tienen más de 15,
- en total, hay sólo 4490 falsos testigos de primalidad para todos los 332 números impares no primos menores que 1000 (de un total de 172878 candidatos existentes)
- puede verse que la probabilidad media de error del algoritmo sobre los números impares no primos menores que 1000 es menor que 0'033 y es todavía menor para números mayores que 1000.

* La mala noticia:

 Hay números no primos que admiten muchos falsos testigos de primalidad.

Recordar la característica fundamental de un algoritmo de Monte Carlo:

"Con una alta probabilidad encuentra una solución correcta **sea cual sea la entrada**."

Por ejemplo, 561 admite 318 falsos testigos.

Otro ejemplo peor:

Fermat(651693055693681) devuelve verdad con probabilidad mayor que 0'999965 y sin embargo ese número no es primo.

- Puede demostrarse que el algoritmo de Fermat no es p-correcto para ningún p>0.
 - Por tanto la probabilidad de error no puede disminuirse mediante repeticiones independientes del algoritmo.

Una solución:

G.L. Miller: "Riemann's hipothesis and tests for primality", *Journal of Computer and System Sciences*, 13(3), pp. 300-317, 1976.

M.O. Rabin: "Probabilistic algorithms", Algorithms and Complexity: Recent Results and New Directions, J.F. Traub (ed.), Academic Press, 1976.

Hay una extensión del teorema de Fermat:
Sea *n* un entero impar mayor que 4 y primo.
Entonces se verifica el predicado
B(n)=(a^t mod n=1) ∨
∨ (∃i entero, 0≤i<s, t.q. a^{2it} mod n=n-1)
para todo trío de enteros a, s y t tales que:
2≤a≤n-2 y n-1=2^st, con t impar.

 De nuevo, necesitaríamos el recíproco de ese teorema...

"Si n, s, t y a son enteros tales que n>4, $n-1=2^st$, con n y t impares, $2 \le a \le n-2$, y se verifica B(n), entonces n es primo."

Pero tampoco es cierto:

Existen números n y a con n>4 e impar, $2 \le a \le n-2$, para los que se verifica B(n) para algunos valores de s y t verificando $n-1=2^st$, con t impar, y n no es **primo**.

Por ejemplo: *n*=289, *a*=158, *s*=5, *t*=9.

Si n y a son excepciones del recíproco del teorema se dice que n es un pseudoprimo en el sentido fuerte para la base a y que a es un falso testigo de primalidad para n en el sentido fuerte.

* Veamos primero como evaluar B(n):

```
función B(a,n:entero) devuelve booleano
{Pre: n es impar y 2 \le a \le n-2}
{Post: B(a,n) = verdad \Leftrightarrow a verifica B(n) para algún}
 valor de s y t tales que n-1=2st con t impar}
variables s,t,x,i:entero; parar:booleano
principio
  s:=0; t:=n-1;
  repetir
    s:=s+1; t:=t div 2
  hastaOue t mod 2=1;
  x:=a<sup>t</sup> mod n; {se puede calcular con expdIter}
  si x=1 or x=n-1 entonces devuelve verdad
    sino
      i:=1; parar:=falso;
      mq i≤s-1 and not parar hacer
         x := x * x \mod n;
         si x=n-1
           entonces parar:=verdad
           sino i:=i+1
         fsi
       fmq;
      devuelve parar
  fsi
fin
```

 Podemos basar el algoritmo probabilista de comprobación de primalidad en la función B:

- Como con el algoritmo Fermat, si la función devuelve falso, es seguro que el número no es primo (por la extensión del teorema de Fermat).
- ¿Y si devuelve verdad?
 El algoritmo puede fallar sólo para números pseudoprimos en el sentido fuerte (cuando elige como a un falso testigo de primalidad para n en el sentido fuerte).

- Por suerte (?), el número de falsos testigos de primalidad en el sentido fuerte es mucho menor que el de falsos testigos de primalidad.
 - Considerando los impares no primos menores que 1000, la probabilidad media de elegir un falso testigo (en el sº fuerte) es menor que 0'01.
 - Más del 72% de esos números no admiten ningún falso testigo (en el sº fuerte).
 - Todos los impares no primos entre 5 y 10¹³ fallan como pseudoprimos (en el sº fuerte) para al menos una de las bases 2, 3, 5, 7 ó 61.

Es decir, para todo $n \le 10^{13}$, n es primo si y sólo si $B(2,n) \land B(3,n) \land B(5,n) \land B(7,n) \land B(61,n) = \text{verdad}$ (éste es un algoritmo **determinista**, para $n \le 10^{13}$).

* Y lo más importante:

 La proporción de falsos testigos de primalidad (en el sº fuerte) es pequeña para todo impar no primo.

* Teorema.

Sea *n* un entero impar mayor que 4.

- Si n es primo, entonces B(n)=verdad para todo a tal que $2 \le a \le n-2$.
- ◆ Si *n* es compuesto, entonces

 $|\{a \mid 2 \le a \le n-2 \land B(n) = \text{verdad para } a\}| \le (n-9)/4.$

* Corolario.

La función Miller_Rabin siempre devuelve el valor verdad cuando *n* es primo.

Si *n* es un impar no primo, la función Miller_Rabin devuelve falso con una probabilidad mayor o igual que 3/4.

Es decir, Miller_Rabin es un algoritmo 3/4-correcto para comprobar la primalidad.

- Como la respuesta "falso" siempre es correcta, para reducir la probabilidad de error se puede aplicar la misma técnica que para verificar el producto de matrices:

```
función repe_Miller_Rabin(n,k:entero)
        devuelve booleano
{Pre: n>4 e impar}
variables i:entero; distinto:booleano
principio
  distinto:=verdad; i:=1;
 mq i≤k and distinto hacer
    si Miller_Rabin(n)
      entonces i:=i+1
      sino distinto:=falso
    fsi
  fma;
  devuelve distinto
fin
```

- Es un algoritmo de Monte Carlo (1-4-k)-correcto.
- Por ejemplo, si k=10 la probabilidad de error es menor que una millonésima.
- Coste con cota de probabilidad de error ε: $O(\log^3 n \log^{1}/\epsilon)$. (Es razonable para nos de mil cifras con ϵ <10⁻¹⁰⁰.)

- Un algoritmo de Las Vegas nunca da una solución falsa.
 - Toma decisiones al azar para encontrar una solución antes que un algoritmo determinista.
 - Si no encuentra solución lo admite.
 - Hay dos tipos de algoritmos de Las Vegas, atendiendo a la posibilidad de no encontrar una solución:
 - *a*) Los que **siempre** encuentran una solución correcta, aunque las decisiones al azar no sean afortunadas y la eficiencia disminuya.
 - b) Los que **a veces**, debido a decisiones desafortunadas, no encuentran una solución.

Tipo a: Algoritmos de Sherwood

 Existe una solución determinista que es mucho más rápida en media que en el peor caso.

Ejemplo: quicksort.

Coste peor $\Omega(n^2)$ y coste promedio $O(n \log n)$.

- Coste promedio: se calcula bajo la hipótesis de **equiprobabilidad** de la entrada.
- En aplicaciones concretas, la equiprobabilidad es una falacia: entradas catastróficas pueden ser muy frecuentes.
- Degradación del rendimiento en la práctica.

- Los algoritmos de Sherwood pueden reducir o eliminar la diferencia de eficiencia para distintos datos de entrada:
 - Uniformización del tiempo de ejecución para todas las entradas de igual tamaño.
 - En promedio (tomado sobre todos los ejemplares de igual tamaño) no se mejora el coste.
 - Con alta probabilidad, ejemplares que eran muy costosos (con algoritmo determinista) ahora se resuelven mucho más rápido.
 - Otros ejemplares para los que el algoritmo determinista era muy eficiente, se resuelven ahora con más coste.

Efecto Robin Hood:

"Robar" tiempo a los ejemplares "ricos" para dárselo a los "pobres".

- * Tipo *b*: Algoritmos que, a veces, no dan respuesta.
 - Son aceptables si fallan con probabilidad baja.
 - Si fallan, se vuelven a ejecutar con la misma entrada.
 - Resuelven problemas para los que no se conocen algoritmos deterministas eficientes (ejemplo: la factorización de enteros grandes).
 - El tiempo de ejecución no está acotado pero sí es razonable con la probabilidad deseada para toda entrada.

- Consideraciones sobre el coste:
 - Sea LV un algoritmo de Las Vegas que puede fallar y sea p(x) la probabilidad de éxito si la entrada es x.

```
algoritmo LV(ent x:tpx; sal s:tpsolución;
              sal éxito:booleano)
{éxito devuelve verdad si LV encuentra la solución
 y en ese caso s devuelve la solución encontrada}
```

- Se exige que p(x)>0 para todo x.
- ♦ Es mejor aún si \exists δ>0: p(x)≥δ para todo x

(así, la probabilidad de éxito no tiende a 0 con el tamaño de la entrada).

```
función repe_LV(x:tpx) devuelve tpsolución
variables s:tpsolución; éxito:booleano
principio
    repetir
        LV(x,s,éxito)
    hastaQue éxito;
    devuelve s
fin
```

- El número de ejecuciones del bucle es 1/p(x).
- ◆ Sea *v*(*x*) el tiempo esperado de ejecución de LV si éxito=verdad y *f*(*x*) el tiempo esperado si éxito=falso.
- Entonces el tiempo esperado t(x) de repe_LV es:

$$t(x) = p(x)v(x) + (1-p(x))(f(x) + t(x))$$

$$\Rightarrow t(x) = v(x) + \frac{1-p(x)}{p(x)}f(x)$$

$$t(x) = v(x) + \frac{1 - p(x)}{p(x)} f(x)$$

Notar que una disminución de v(x) y f(x)suele ser a costa de disminuir p(x).

ß

Hay que optimizar esta función.

- Ejemplo sencillo: El problema de las 8 reinas en el tablero de ajedrez.
 - Algoritmo determinista (*Búsqueda con retroceso*, pág. 16 y siguientes):

Nº de nodos visitados 114 (de los 2057 nodos del árbol)

 Algoritmo de Las Vegas voraz: colocar cada reina aleatoriamente en uno de los escaques posibles de la siguiente fila.

El algoritmo puede terminar con éxito o fracaso (cuando no hay forma de colocar la siguiente reina).

 N^{o} de nodos visitados si hay éxito: v=9

Nº esperado de nodos visitados si hay fracaso: *f*=6´971

Probabilidad de éxito: p=0'1293

(más de 1 vez de cada 8)

Nº esperado de nodos visitados repitiendo hasta obtener un éxito: t=v+f(1-p)/p=55'93.

¡Menos de la mitad!

- Puede hacerse mejor combinando ambos:
 - Poner las primeras reinas al azar y dejarlas fijas y con el resto usar el algoritmo de búsqueda con retroceso.

Cuantas más reinas pongamos al azar:

Menos tiempo se precisa para encontrar una solución o para fallar.

Mayor es la probabilidad de fallo.

nº al azar	p	V	f	t
0	1,0000	114,00	_	114,00
1	1,0000	39,63	_	39,63
2	0,8750	22,53	39,67	28,20
3	0,4931	13,48	15,10	29,01
4	0,2618	10,31	8,79	35,10
5	0,1624	9,33	7,29	46,92
6	0,1357	9,05	6,98	53,50
7	0,1293	9,00	6,97	55,93
8	0,1293	9,00	6,97	55,93

Mejor solución a mano: 3 reinas al azar (¡probadlo!)

nº al azar	p	V	f	t	REAL
0	1,0000	114,00	_	114,00	0,45 ms
1	1,0000	39,63	_	39,63	
2	0,8750	22,53	39,67	28,20	0,14 ms
3	0,4931	13,48	15,10	29,01	0,21 ms
4	0,2618	10,31	8,79	35,10	
5	0,1624	9,33	7,29	46,92	
6	0,1357	9,05	6,98	53,50	
7	0,1293	9,00	6,97	55,93	
8	0,1293	9,00	6,97	55,93	1 ms

Datos reales medidos en un computador:

¡Discrepancias!

En el caso "nº al azar = 8", el 71% del tiempo se gasta en generar números pseudo-aleatorios.

El valor óptimo es colocar 2 reinas al azar.

- Para dimensiones mayores a 8:

Para 39 reinas en un tablero de dimensión 39.

Algoritmo determinista:

11402835415 nodos

41 horas en un computador

Algoritmo Las Vegas, con 29 reinas al azar:

p=0,21

v≈f≈100 nodos

 \Rightarrow *t* \approx 500 nodos (20×10⁶ veces mejor)

8,5 milisegundos

Algoritmo L.V. puro (39 reinas al azar):

p=0.0074

150 milisegundos (106 veces mejor)

- * Ejemplo de algoritmo de Las Vegas "de tipo a" (algoritmo de Sherwood).
 - Recordar el método de ordenación de Hoare (Divide y vencerás, pág. 14)):

- Coste promedio: *O*(*n*log *n*)
- Coste peor: $\Omega(n^2)$

```
algoritmo divide(e/s T:vect[1..n]de dato;
                    ent i,d:1..n; ent p:dato;
                    sal m:1..n)
{Permuta los elementos i..d de T de forma que:
   i≤m≤d.
   \forall k \text{ t.q. } i \leq k < m : T[k] \leq p,
   T[m]=p
   \forall k \text{ t.q. } m < k \leq d : T[k] > p
variables k:1..n
principio
  k := i; m := d+1;
  repetir k := k+1 hasta que (T[k]>p)or(k \ge d);
  repetir m:=m-1 hasta que (T[m]≤p);
  mg k<m hace
     intercambiar(T[k],T[m]);
    repetir k:=k+1 hasta que T[k]>p;
    repetir m:=m-1 hasta que T[m]≤p
  fmq;
  intercambiar(T[i],T[m])
fin
```

- Un ejemplo del caso peor: Si todos los elementos son iguales, el algoritmo anterior no se percata.
- Mejora evidente:

```
algoritmo ordRápida(e/s T:vect[1..n]de dato;
                         ent i,d:1..n)
{Ordenación de las componentes i..d de T.}
variable m:1..n
principio
  si d-i es pequeño
     entonces ordInserción(T,i,d)
     sino
       p:=T[i]; {pivote}
       divideBis(T,i,d,p,m,r);
        \{m+1 \le k \le r-1 \Rightarrow T[k] = p \land i \le k \le m \Rightarrow T[k] 
              \land m \le k \le d \Rightarrow T[k] > p
       ordRápida(T,i,m);
       ordRápida(T,r,d)
  fsi
fin
```

Versión probabilista:

En lugar de elegir el pivote p como el primer elemento del vector, lo ideal sería elegir la mediana, pero esto sería muy costoso, luego elegimos el pivote al azar en el intervalo i..d.

```
algoritmo ordRápidaLV(e/s T:vect[1..n]de dato;
                         ent i,d:1..n)
{Ordenación de las componentes i..d de T.}
variable m:1..n
principio
  si d-i es pequeño
     entonces ordInserción(T,i,d)
     sino
       p:=T[uniforme_entero(i,d)]; {pivote}
       divideBis(T,i,d,p,m,r);
        \{m+1 \le k \le r-1 \Rightarrow T[k] = p \land i \le k \le m \Rightarrow T[k] 
           \land m \le k \le d \Rightarrow T[k] > p
       ordRápida(T,i,m);
       ordRápida(T,r,d)
  fsi
fin
```

Tiempo **esperado** en el peor caso: O(nlog n)

- * Ejemplo de algoritmo de Las Vegas "de tipo b".
- Problema: descomponer un número en sus factores primos.
- Problema más sencillo: partición
 - Dado un entero *n*>1, encontrar un divisor no trivial de *n*, suponiendo que *n* no es primo.
- ❖ Factorización =
 - = test de primalidad + partición
 - Para factorizar n, hemos terminado si n es primo, si no, encontramos un divisor m de n y recursivamente factorizamos m y n/m.

 Solución ingenua para el problema de la partición:

```
función partición(n:entero) devuelve entero
variables m:entero; éxito:booleano
principio
  m:=2; éxito:=falso;
 mq m ≤ [sqrt(n)] and not éxito hacer
    si m divide a n
      entonces éxito:=verdad
      sino m := m+1
    fsi
  fmq;
  si éxito
    entonces devuelve m
    sino devuelve n
  fsi
fin
```

- Coste en el peor caso: $\Omega(\sqrt{n})$

- El coste de la solución ingenua es demasiado alto:
 - Partir un número "duro" de unas 40 cifras:

Si cada ejecución del bucle tarda 1 nanosegundo, el algoritmo puede tardar miles de años.

Número "duro" significa que es el producto de dos primos de tamaño parecido.

Partir un número n de 100 cifras:

$$\sqrt{n} \approx 7 \times 10^{49}$$

(Nota: 10³⁰ picosegundos es el doble de la edad estimada del Universo.)

Recordar el sistema RSA de criptografía

 En 1994 se factorizó un número duro de 129 cifras tras 8 meses de trabajo de más de 600 computadores de todo el mundo.

Se utilizó un algoritmo de Las Vegas.

- Existen varios algoritmos de Las Vegas para factorizar números grandes (véase [BB96]).
 - Están basado en resultados avanzados de teoría de números.
 - Siguen teniendo costes altísimos (factorizar un número de 100 cifras precisa del orden de 2×10^{15} operaciones).