PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

Document FP11 Appl. No.: 10/514,427

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 00/04901
A61K 31/35	A1	(43) International Publication Date: 3 February 2000 (03.02.00)
(21) International Application Number: PCT/US (22) International Filing Date: 20 July 1999 (DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(30) Priority Data: 60/093,561 21 July 1998 (21.07.98) 60/128,100 7 April 1999 (07.04.99) (71) Applicant: THOMAS JEFFERSON UNIVERSITY 11th and Walnut Streets, Philadelphia, PA 19107 (72) Inventors: HUANG, Ziwei; South 10th Street #505C phia, PA 19107 (US). LUI, Dongxiang; 201 S Street #627, Philadelphia, PA 19107 (US). HAN, 251-10 Echelon Road, Vorhees, NJ 08043 (US). Zhijia; 11A Cherry Park, Park Boulevard, Cherr 08002 (US). WANG, Jialun; 11A Cherry Park, Part, Part, Cherry Hill, NJ 08043 (US). (74) Agent: MONACO, Daniel, A.; Seidel, Gonda, & Monaco, P.C., Two Penn Center Plaza, Si Philadelphia, PA 19102 (US).	[US/US] (US). , Philad fouth 11 Xiaobir ZHAN y Hill, ark Bou	th g; G, NJ de-

(54) Title: SMALL MOLECULE INHIBITORS OF BCL-2 PROTEINS

(57) Abstract

Small molecule inhibitors of Bcl-2 function are used to induce apoptosis of cells which are subject to Bcl-2, which cells are otherwise subject to Bcl-2 mediated blockage of apoptosis. The compounds are useful for treating cancer, autoimmune disorders and viral infection.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
вв	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Солдо	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

SMALL MOLECULE INHIBITORS OF BCL-2 PROTEINS

Cross-Reference to Related Applications

This application claims priority from provisional applications Ser. No. 60/128,100, filed April 7, 1999, and 60/093,561, filed July 21, 1998, the entire disclosures of which are incorporated herein by reference.

Field of the Invention

The present invention generally relates to the field of oncology and inhibitors of Bcl-2 proteins, and more particularly to small molecule inhibitors of Bcl-2 proteins involved in mediating the death of cancer cells, virally infected cells and self-reactive lymphocytes.

Background of the Invention

Bcl-2 (B cell lymphoma/leukemia 2) was originally identified at the chromosomal breakpoint of t(14;18)-bearing B-cell lymphomas. Bcl-2 is now known to belong to a growing family of proteins which regulate programmed cell death or apoptosis. The Bcl-2 family includes both death antagonists (Bcl-2, Bcl-x_L, Bcl-w, Bfl-1, Brag-I, Mcl- I and Al) and death agonists (Bax, Bak, Bcl-x₅, Bad, Bid, Bik and Hrk) (Thompson, *Science* 267:1456-62 (1992); Reed, *J. Cell Biol.* 124:1-6 (1994); Yang *et al.*, *Blood* 88:386-401 (1996)). This family of molecules shares four homologous regions termed Bcl homology (BH) domains BH 1, BH2, BH3, and BH4. All death antagonist members contain the BH4 domain while the agonist

10

15

20

25

30

members lack BH4. It is known that the BHI and BH2 domains of the death antagonists such as BcI-2 are required for these proteins to heterodimerize with death agonists, such as Bax, and to repress cell death. On the other hand, the BH3 domain of death agonists is required for these proteins to heterodimerize with BcI-2 and to promote apoptosis.

Programmed cell death or apoptosis plays a fundamental role in the development and maintenance of cellular homeostasis. Homologous proteins and pathways in apoptosis are found in a wide range of species, indicating that cellular demise is critical for the life and death cycle of the cell in all organisms. When extracellular stimuli switch on the cell-death signal, the response of the cell to such stimuli is specific for the particular cell type (Bonini et al., Cell 72:379-95 (1993)). The pathway to cellular suicide is controlled by certain checkpoints (Oltvai, Cell 79:189-92 (1994)). The Bcl family proteins, including both antagonists of apoptosis (such as Bcl-2) and agonists of apoptosis (such as Bax), constitute the primary checkpoint. As such, the transmission of a cell-death signal can be either promoted or blocked by the different combinations of the Bcl-2 family members. The three-dimensional structure of a death antagonist, $Bcl-X_L$, as determined by X-ray crystallography and NMR spectroscopy, provides a structural basis for understanding the biological functions of Bcl-2 family members and for developing novel therapeutics targeting Bcl-2 mediated apoptotic pathways (Muchmore et al., Nature 381:335-41 (1996)).

The detailed mechanism of Bcl-2 proteins in mediating molecular pathways of apoptosis has been the subject of intensive investigation. It is known that the apoptotic signaling pathway involves the activation of caspases which, once activated, cleave several cellular substrates such as poly(adenosine diphosphate-ribose) polymerase (PARP) and lead to final events of apoptosis. Bcl-2 plays a crucial role in regulating the process of apoptosis. One possible mechanism for Bcl-2 function is that Bcl-2 inhibits the release of cytochrome c from mitochondria. Cytochrome c is important for the activation of caspases.

10

15

20

25

30

As such, Bcl-2 blocks caspase activation and subsequent events leading to apoptosis.

Being able to block apoptosis, Bcl-2 is known to contribute to neoplastic cell expansion by preventing normal cell turnover caused by physiological cell death mechanisms. High levels and aberrant patterns of Bcl-2 gene expression are found in a wide variety of human cancers, including ~30-60% of prostate, ~90% of colorectal, ~60% of gastric, ~20% of non-small cell lung cancers, ~30% of neuroblastomas, and variable percentages of melanomas, renal cell, and thyroid cancers, as well as acute and chronic lymphocytic and non-lymphocytic leukemias (Ellis *et al.*, *Cell Biol.* 7, 663 (1991); Henkart, *Immunity* 1, 343 (1994)); Kägi *et al.*, *Science* 265, 528 (1994); Kägi *et al.*, *Nature* 369, 31 (1994); Heusel *et al.*, *Cell* 76, 977 (1994)).

The expression levels of Bcl-2 protein also correlate with relative resistance to a wide spectrum of current chemotherapeutic drugs and γ-irradiation (Hanada *et al.*, Cancer Res. 53:4978-86 (1993); Kitada *et al.*, Antisense Res. Dev. 4:71-9 (1994); Miyashita *et al.*, Cancer Res. 52:5407-11 (1992); Miyashita *et al.*, Blood 81:151-7 (1993)). Since Bcl-2 can protect against such a wide variety of drugs which have very different mechanisms of action, it is possible that all these drugs use a common final pathway for the eventual induction of cell death which is regulated by Bcl-2. This notion is supported by the findings that chemotherapeutic drugs induce cell death through a mechanism consistent with apoptosis as opposed to necrosis. Therefore, Bcl-2 can inhibit the cell killing effect of currently available anticancer drugs by blocking the apoptotic pathway.

Because of its role in blocking apoptosis, Bcl-2 plays an important role in many types of cancer. As noted above, Bcl-2 blocks apoptosis, thereby preventing normal cell turnover. As a result, neoplastic cell expansion occurs unimpeded by the normal cellular turnover process. Prostate cancer is one particular example where Bcl-2 has important implication in the pathogenesis and treatment for a disease. Approximately

10

15

20

25

30

100,000 new cases of prostate cancer are diagnosed each year in the United States and about 30,000 deaths per year are attributable to this disease (Lynn et al., JNCI 87:867 (1995)). It has recently been found that hormone therapy-resistant prostate cancers express Bcl-2 (McDonnell et al., Cancer Res. 52:6940-4 (1992)), while the normal prostate cells from which prostate cancers originate lack Bcl-2 (Colombel et al., Am J Pathol 143:390-400 (1993)). This indicates that Bcl-2 may protect prostate cancer cells from undergoing apoptosis induced by the anticancer drugs, such as Taxol (Haldar et al., Cancer Res., 56:1235-5 (1996)). The clinical efficacy of nearly every cytotoxic anticancer drug currently available depends directly or indirectly on the assumption that tumor cells grow more rapidly than normal cells. However, this may not apply to human prostate cancer cells, which show very slow growth kinetics. Tumor kinetics studies have indicated that prostate cancer may be the consequence of the imbalance in cell turnover mechanisms more so than an increase in cell cycle rates. Thus, current anticancer drugs may not be effective in eradicating these nonproliferative prostate cancer cells.

The understanding of the biology of Bcl-2 in cancer and chemoresistance has opened new avenues in the development of novel anticancer strategies. One effective approach to overcome the chemoresistance of prostate cancers is to inhibit the protective function of Bcl-2 proteins. New drugs that modulate Bcl-2 mediated apoptotic response would represent a novel mechanism-based strategy for the treatment of prostate cancers and other cancers. Because the function of Bcl-2 is not absolutely necessary in many normal cell types (Veis et al., Cell, 75:229-40 (1993)), a systematic inhibition of Bcl-2 may not affect the normal cellular function. This notion is supported by recent encouraging data from the clinical trial that antisense oligonucleotides targeted against the Bcl-2 gene can specifically inhibit non-Hodgkin's lymphoma in humans (Webb et al., Lancet 349:1137-41 (1997)). However, the clinical value of such antisense oligonucleotides is limited by their lack of enzymatic stability, cell

10

permeability, and oral activity. As discussed above, currently available anticancer drugs may not be effective due to the chemoresistance of prostate cancer cells. Therefore, there is an impending need for highly potent, cell permeable, and orally active Bcl-2 inhibitors as a new generation of effective therapeutics for the treatment of prostate cancer, as well as other cancers.

Compared to other therapeutics such as antibodies, peptides or antisense oligonucleotides, small organic drugs may possess several advantages in the clinical application: (1) they are less likely to be immunogenic; (2) they are likely to be stable and to be able to cross the cell membrane; (3) they are more likely to be administrable through the oral route, which is most desirable in terms of patient compliance; and (4) they are amenable to synthesis and modification which significantly lowers the cost of the therapeutic treatment.

15

Summary of the Invention

It is an object of the invention to provide small molecule inhibitors of bcl-2 function useful in treatment of cancer, autoimmune disease and certain types of viral infection which are characterized by cellular signals which inhibit apoptosis.

20

It is an object of the invention to induce apoptosis of cells, particularly cancer cells, most particularly cancer cells which are regulated by Bcl-2.

It is an object of the invention to provide novel therapeutics and methods of treatment for reversing Bcl-2-mediated blockage of cell apoptosis in cancer cells.

25

It is an object to provide of the invention to overcome Bcl-2-mediated chemoresistance in tumor cells.

These and other objects of the invention are apparent from the following description.

10

15

20

25

30

A method of inducing apoptosis of cells regulated by Bcl-2 in a subject is provided. An effective amount of an active compound is administered to the subject. Preferably, the compound causes the fragmentation of DNA in a Bcl-2 transfected HL-60 cell line when incubated with such cells at a concentration of not more than 100 μ M for 24 hours. In some embodiments, the compound is also characterized by a dissociation constant K_D of not more than about 500 μ M, preferably no more than about 100 μ M, most preferably no more than about 10 μ M, for binding the hydrophobic pocket on the Bcl-2 protein formed by the BH1, BH2, and BH3 domains.

By "regulated by Bcl-2" with respect to the condition of a cell is meant that the balance between cell proliferation and apoptotic cell death is controlled, at least in part, by Bcl-2. By "apoptotic cell death" is meant the programed death which results in controlled autodigestion of the cell, as opposed to necrotic cell death. Apoptotic cell death is characterized by cytoskeletal disruption, cell shrinkage, and membrane blebbing. The nucleus undergoes condensation and nuclear DNA becomes degraded and fragmented. Apoptosis is also characterized by loss of mitochondrial function. Necrotic cell death, on the other hand, is a pathological form of cell death resulting from acute cellular injury, which is typified by rapid swelling and lysis.

According to certain embodiments of the invention, the cells induced to undergo apoptosis comprise cancer cells, virus-infected cells or self-reactive lymphocytes. Thus, the active compounds are used to treat cancer, viral infection, or autoimmune disorders.

In another embodiment, a method of reversing Bcl-2-mediated blockage of apoptosis in cancer cells is provided by contacting such cells with an active compound of the invention. In another embodiment, a method is provided for treating a subject afflicted with a cancer characterized by cancer cells which express Bcl-2. The method comprises administering an effect amount of an active compound of the invention.

Active compounds which have a molecular weight in the range of from about 150 to about 500 daltons.

According to one embodiment of the invention, the compounds have the formula I:

$$\begin{matrix} R_4 & & & \\ R_5 & & & & \\ R_5 & & & & & \\ \end{matrix} \qquad \begin{matrix} R_3 & & \\ R_2 & & & \\ & & & & \\ \end{matrix} \qquad \begin{matrix} R_2 & & & \\ & & & \\ & & & \\ \end{matrix}$$

5 wherein:

X is selected from the group consisting of CH_2 ; $CHOCH_3$; NH; O; and S;

Y and Z are independently selected from the group consisting of CH and N; and when Z is N, then Y may further be $-CR_6$, where R_6 is selected from the group consisting of CH_3 ; OCH_3 ; CNH_2 ; and COH;

R₁ is selected from the group consisting of hydrogen; C₁₋₅ alkyl; C₁₋₅ alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COCH₃; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃: NHNHCOCH₃; NHNHCONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings, preferably a heterocyclic ring selected from the group consisting of piperidino, piperazino, morpholino, pyrimidyl, pyrrolidino and imidazo;

10

15

20

R₂ is selected from the group consisting of hydrogen; C₁₋₃ alkyl; C₁₋₃ alkoxy; halogen; CF₃; NH₂; OH; COOH; COOCH₃; CONH₂; and CONHCH₃;

or, R₁ and R₂ together may form the group - CH₂CH₂CH₂- or -CH₂CH₂CH₂CH₂-;

or, R₁ and R₂ together may form, starting from R₁, the group -NHCH₂CH₂-, -NHCOCH₂-, or -OCOCH₂-;

R₃ is selected from the group consisting of H; CH₃; CF₃; OCH₃; NH₂; OH; COOH; COCH₃; CH=CH₂; CH₂=CHCH₂; CH(CH₃)₂; CH₂OH; CH₂NH₂; CH₂COOH; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, OCH₃ or CF₃; five- and six-member heterocyclic rings, preferably a heterocyclic ring selected from the group consisting of piperidinyl, piperazinyl, morpholino, pyrimidyl, pyrrolyl, pyrrolidino, and imidazyl; and a substituted phenyl group of the formula:

$$R_7$$

wherein

R₇, R₈ and R₉ are independently selected from the group consisting of hydrogen, CH₃, CF₃, OH, OCH₃, CH₂OH and CHO; provided that at least two of the members of the group R₇, R₈ and R₉ must be OH or OCH₃ when the remaining member of the group is hydrogen, CH₃ or CF₃;

10

5

15

20

 R_4 and R_5 are independently selected from the group consisting of hydrogen, CH_3 , and OCH_3 ; and when Y and Z are both CH, R_4 and R_5 may be further selected from OH and NH_2 ;

5

or, R_4 and R_5 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2CH_2$ -;

or, R_4 and R_5 together may form, starting from R_4 , the group -NHCH₂CH₂-, -NHCOCH₂-, -OCOCH₂- or -O(CH₂)_nO-, wherein n is 1, 2 or 3;

10

20

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH_2 or COOH substituent.

Preferably, R_2 is CH_3 , CH_2CH_3 , COOH, $COOCH_3$, $CONH_2$, or $CONHCH_3$

Preferably, R_7 , R_8 and R_9 are all OCH $_3$; or R_7 and R_9 are OCH $_3$, and R_8 is OH.

When R_1 or R_3 is substituted cyclohexyl, the preferred position of the substitution is *para*. Likewise, when R_1 is substituted phenyl, the preferred position of the substitution is *para*.

The preferred group corresponding to R₃ in formula I is the substituted phenyl group of the formula:

$$R_9$$
 R_7

Preferred compounds according to formula I include the compounds identified as HA11-1 through HA11-73, listed in Table 1, below. Most preferred compounds according to formula I include HA11-57 and HA11-17:

According to another embodiment of the invention, the active compounds have the formula II:

$$R_2$$
 R_3
 R_4
 R_5
 R_6
 R_8
 R_8

wherein

5

 R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; and NH(C₁₋₃ alkyl); and one of R_1 , R_2 , R_3 and R_4 may be phenyl or a heterocyclic ring, preferably a heterocyclic ring selected from the group consisting of piperidino, piperazino, morpholino, pyrimidyl, pyrrolidino and imidazo; provided at least one of R_1 , R_2 , R_3 and R_4 must be hydrogen;

10

R₅ and R₆ are independently selected from the group consisting of hydrogen; CN; CH₂CN; COOCH₃; CONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CH₃, OCH₃, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings, preferably a heterocyclic ring selected from

15

10

15

20

the group consisting of pyrrolyl, imidazolyl, piperidinyl, piperazinyl, morpholino, pyrimidyl and pyrrolidino; provided, only one of $R_{\rm 5}$ or $R_{\rm 6}$ may be phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic in the same compound, and further provided that when one of $R_{\rm 5}$ or $R_{\rm 6}$ is phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic, then the other must be hydrogen;

or at least one of $R_{\rm 5}$ and $R_{\rm 6}$ may be halogen, provided that the other must be $C_{\rm 1-5}$ alkyl or $C_{\rm 1-5}$ alkoxy.

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

When R_5 or R_6 is substituted phenyl or substituted cyclohexyl, in formula II, the preferred position of the substitution is *para*.

Preferred compounds according to formula II include the compounds identified as HA12-3 and HA12-16 (compound HA12-16 may also be identified herein as "HA01"):

In the compounds of formula I and II, where halogen substitution is possible, chorine, fluorine and bromine are preferred, with fluorine being most preferred.

According to another embodiment of the invention, the active compounds have the formula III:

wherein:

X is selected from the group consisting of CH_2 ; $CHOCH_3$; NH; NCH_3 ; O; and S;

5

R₁ is selected from the group consisting of OH; NH₂; CHO; COCH₃; COOH; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); and five- and six-member heterocyclic rings, preferably a heterocyclic ring selected from the group consisting piperidinyl, piperazinyl, morpholino, pyrimidyl, pyrrolyl, pyrrolidino and imidazyl;

10

 $R_2 \text{ is selected from the group consisting of C}_{1\text{-}3} \text{ alkyl; C}_{1\text{-}3}$ $\text{alkoxy; OH; NH}_2; \text{ CHO; COCH}_3; \text{ OCOCH}_3; \text{ OCOCH}_2\text{CH}_3; \text{ COOCH}_2\text{CH}_2\text{CH}_3; \text{ COOCH}_2\text{CH}_3; \text{ COOCH}_3; \text{ COOCH}_3\text{ COOCH}_3; \text{ COOCH}_3; \text{ COOCH}_3\text{ COOCH}_3; \text{ COOCH}_3\text{ COOCH}_3; \text{ COOCH}_3\text$

15

R₃ is selected from the group consisting of C₁₋₃ alkyl; C₁.

3 alkoxy; CN; CH₂CN; CH₂NO₂; CHO; COCH₃; COOH;

OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃;

NHNHCONH₂; CH=CH₂; CH₂CH=CH₂; CH₂CHO; and five- and six-member heterocyclic rings, preferably a heterocyclic ring selected from the group consisting piperidinyl, piperazinyl, morpholino, pyrimidyl, pyrrolyl, pyrrolidino and imidazyl;

20

 R_4 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; CN; CH₂CN; CH₂NO₂; CHO; COCH₃; COCH₃; COCH₃;

COOCH₃;COOCH₂CH₃; COOCH₂CH₂CH₃; OCOCH₃; OCOCH₂CH₃;

R₅ is selected from the group consisting of hydrogen CH₃; OCH₃; OH: NH₂; Br; Cl; and F; and

5

 R_6 , R_7 and R_8 are selected from the group consisting of hydrogen, CH_3 ; CH_2CH_3 ; CF_3 ; NH_2 ; OH; OCH_3 ; CN; NO_2 ; Cl; Br; F; COOH; and $COOCH_3$; provided, at least one member of the group R_6 , R_7 or R_8 must be Cl, Br or F when the remaining members of said group are hydrogen;

10

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH_2 or COOH substituent.

Preferred for formula III are the following:

15

R₁: NH₂; N(C₁₋₃ alkyl)₂; and NH(C₁₋₃) alkyl; piperidinyl; piperazinyl; morpholino; pyrimidyl; pyrrolyl; pyrrolidino; and imidazyl;

R₂: COCH₃; OCOCH₃; OCOCH₂CH₃; COOH; COOCH₃; COOCH₂CH₃; and COOCH₂CH₂CH₃;

R₃: CN; CH₂CN; CH₂NO₂; CH=CH₂; CH₂CH=CH₂; and CH₂CHO;

20

R₄: COCH₃; OCOCH₂CH₃; COOH; COOCH₂CH₂CH₃; COOCH₂CH₂CH₃;

R₅: hydrogen, Br; Cl; and F;

F.

R₆, R₇ and R₈: NH₂; OH; OCH₃; CN; NO₂; CI; Br and

When $R_{6},\,R_{7}$ or R_{8} are Br, CI or OCH $_{3},$ the preferred positions of the substitution are R_{6} and $R_{8}.$

5

According to another embodiment of the invention, the active compound for use in the method of the invention is selected from the group consisting of compounds HA13, HA14, HA02, HA03 and HA04:

$$O_{2}N$$
 $O_{2}N$
 $O_{3}N$
 $O_{4}N$
 $O_{5}N$
 O

10

15

20

25

30

Description of the Figures

Fig. 1 is a plot of the binding of fluorescein-labeled peptide 1193 with Bcl-2 protein.

Fig. 2 is a graph of the binding interaction of fluorescein-labeled peptide 1193 (Flu-1193) with Bcl-2 protein (Bcl2:Flu-1193) and other proteins such as Bax, CD4, and the SH3 domain of the Bcr-Abl oncoprotein. Fig. 2 also shows the binding of Bcl-2 protein to fluorescein-labeled peptides derived from CD4 (Flu-1250 and Flu-1251) and Bcr-Abl SH3 (Flu-1217). The lack of binding interaction detected in these control systems (the signals were close to the background level of free Flu-1193 (Flu-1193 alone)), demonstrates the specificity of the binding of Flu-1193 to Bcl-2.

Fig. 3 is a DNA fragmentation assay of HL-60 cells transfected to overexpress Bcl-2 and treated with compound HA13, HA14 or HA11-57: lane 0, control; lane 1, HA13; lane 2, HA14; lane 3, HA11-57.

Fig. 4 is a DNA fragmentation assay of 697 cells treated with compound HA01, HA02 HA04, Taxol or negative control compound having no affinity for Bcl-2.

Fig. 5 is a DNA fragmentation assay of HL-60 cells transfected to overexpress Bcl-2 and treated with compound HA14-1. Lane A: cells treated with HA14-1; lane B, cells pretreated with fluoromethyl ketone, then treated with HA14-1.

Fig. 6 is a graph of an assay measuring the binding of compound HA14-1 to Bcl-2 protein.

Detailed Description of the Invention

A computer screening technique has been employed to discover a novel class of small organic compounds as potent Bcl-2 inhibitors and new anticancer agents. The three dimensional structure of Bcl-2 was constructed based on the X-ray and NMR structure of the highly homologous protein Bcl- x_L (>98% sequence homology to Bcl-2 in the four functionally important BH domains) published by others (McDonnell *et al.*,

15

20

25

30

Cancer Res. 52:6940 (1992); Hague et al., Oncogene 9, 3367 (1994); Castle et al., Am. J. Pathol 143, 1543 (1993); Littman, Curr. Biol. 4:618 (1994)). A hydrophobic binding pocket was found in the structure of Bcl-2 which is formed by the BH1, BH2, and BH3 domains. A highly sensitive Bcl-2 ligand binding assay was then employed to test these compounds for specific binding to the hydrophobic surface pocket. This pocket is required for the anti-apoptotic function of Bcl-2; a variety of mutations at his site have been shown to inhibit function of Bcl-2 proteins (Yin et al., Nature 369:321-3, 1994).

10 Molecular Modeling

DOCK3.5 is an automatic algorithm to screen small-molecule databases for ligands that could fit a given receptor. Meng et al., J. Comp. Chem. 15:505 (1992). The program exploits a geometric description of the surface of the target molecule to define plausible binding pockets. To exploit this approach, a "negative image" of the ligand binding pocket on the protein surface is created. The image is created by the computational equivalent of placing atom-sized spheres into the binding pocket. A representative set of spheres are identified by DOCK3.5 that fit extremely well into the binding pocket. The generated spheres constitute an irregular grid that is matched to the atomic centers of potential ligands. The list of atom centers, or more conveniently the matrix of interatomic distances linking these atom centers forms a useful description of the binding site. The matrix of interatomic distances for the putative ligand is also made. The best mutual overlap of the two matrices is sought. This alignment specifies the orientation of the ligand relative to the negative image of the protein and thus docks the ligand into the protein's binding pocket.

The DOCK3.5 compound was used to screen the 150,000 compounds contained in the Available Chemicals Dictionary (Molecular Design Limited, San Leonadro, CA) as potential ligands for the Bcl-2 binding pocket. Both shape complementarity and electrostatic interactions with the

Bcl-2 binding pocket were used as scoring criteria. On a computer, these compounds were then visually screened three times independently in the context of the Bcl-2 binding pocket. The result is the compounds compiled in Table 1. Screening also identified compounds HA02, HA03 and HA04. The compounds identified as "RCL __" in Table 1 are available from Molecular Design Limited. Compounds HA02, HA03 and HA04 are also commercially available.

WO 00/04901 PCT/US99/12384

Table I

-18-Compounds for formula I

Comp. Number	MOLNAME	M.W	MOLSTRUCTURE
HA11-1	MILLETTONE	378.378	Chall The cody Cody
HA11-2	9-(2,4-DI-MEO-PH)-5A-MEO-4H- 1,3,5,7-TETRAOXA- DICYCLOPENTA(B,G)NAPHTHALEN- 8-ONE	400.381	H ₃ C O H ₃ C
HA11-3	1-(10-(2,4-DIMETHOXY-PH)-1,3,5- TRIOXA- CYCLOPENTA(B)ANTHRACEN-5A- YL)-PYRROLIDINE	437.533	H ₃ C OCH ₃
HA11-4	5A-MEO-9-(2-MEO-PH)-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA(B,G)NAPHTHALEN- 8-ONE	370.355	H ₃ C O O O O O O O O O O O O O O O O O O O

PCT/US99/12384

Table i

-19-Compounds for formula I

HA11-5	6-MEO-6,7-DIMETHYL-8-(3,4,5- TRIMETHOXY-PH)-7,8-2H-6H- (1,3)DIOXOLO(4,5-G)CHROMENE	402.44	H ₂ C CH ₃ CH ₃ CH ₃
HA11-6	8-(4-HO-3,5-DIMETHOXY-PH)-7-ME- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	360.36	H,C O CH,
HA11-7	6-HO-6-ME-8-(TRI-MEO-PH)- [1,3]DIOXOLO[4,5-G]CHROMENE-7- CARBOXYLIC ACID ET ESTER	446.449	H ₃ C OCH ₃ OCH
HA11-8	RCL R17,027-5	431.443	H ₂ C O CH ₃

• WO 00/04901 PCT/US99/12384

Table I

-20-Compounds for formula I

HA11-9	RCL R17,028-3	455.504	CH ₃ OH ₃ OH ₃ OH ₃
HA11-10	1-[6-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	427.494	H,C O CH, O CH, N
HA11-11	6-MEO-8-(4-METHOXY-PHENYL)-6- METHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	328.362	CH ₃ CH ₃ CH ₃
HA11-12	6-ME-8-(3,4,5-TRIMETHOXY- PHENYL)-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OI	374.387	H,C O CH, O CH, OH OH OH

WO 00/04901 PCT/US99/12384

Table I

-21-Compounds for formula I

HA11-13	8-(2-HYDROXY-PHENYL)-7-METHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	300.308	HO CH,
HA11-14	8-(4-HO-3,5-DIMETHOXY-PH)-6-ME- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	360.36	H ₃ C O CH ₃
HA11-15	9-(3-MEO-PH)-5A,6,8A,9-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	340.329	£, 0, 5
HA11-16	1-[8-(2,4-DI-MEO-PH)-7-ME-7,8-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE	397.468	H ₃ C O CH ₃

Table I

-22-Compounds for formula I

HA11-17	4-[7-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- MORPHOLINE	443.493	H ₂ C-O CH ₃ O CH ₃ O CH ₃ O CH ₃ O CH ₃
HA11-18	1-[8-(3-MEO-PH)-6,7-DI-ME-7,8-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL] PYRROLIDINE		CH3 CH3 CH3
HA11-19	2-MEO-6-(6-ME-6-PYRROLIDIN-1-YL- 2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	383.441	CH ₃ HO CH ₃ CH ₃
HA11-20	9-(4-MEO-PH)-5A,6,8A,9-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	340 330	CH,

PCT/US99/12384-

Table i

Compounds for formula I

HA11-21	(4-MEO-PH)-[7-ME-8-(3,4,5-TRI-MEO- PH)-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-YL]-AMINE	479.526	H ₃ C O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
HA11-22	DI-ME-[4-(6-ME-6-PYRROLIDIN-1-YL-6H-[1,3]DIOXOLO[4,5-G]CHROMEN-8 YL)-PH]-AMINE	- 380.485	H,C, CH,
HA11-23	1-[6-HO-8-(4-HO-3,5-DI-MEO-PH)-6- ME-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-7-YL]-ETHANONE	402.397	H,C O OH, OH, OH, OH, OH, OH, OH, OH, OH, O

PCT/US99/12384

Table I

-24-Compounds for formula I

HA11-24	1-[8-(2,4-DI-MEO-PH)-6,7-DI-ME-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	411.495	н,с о сн, сн, м
HA11-25	8-(4-METHOXY-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	328.362	O CH ₃ OH CH ₃
HA11-26	6,7-DIMETHYL-8-(3,4,5-TRIMETHOXY PH)-7,8-2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	388.414	H ₃ C O CH ₃
HA11-27	5A-HO-10-(3,4,5-TRI-MEO-PH)- HEXAHYDRO-1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	428.435	H ₃ C O CH ₃

PCT/US99/12384

Table I

-25-Compounds for formula I

HA11-28	10-(2,4-DIMETHOXY-PH)-5A-HO- HEXAHYDRO-1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	398.409	H ₃ C OOH
HA11-29	2-MEO-6-(7-ME-6-PYRROLIDIN-1-YL- 2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	383.441	CH ₃ O O O O O O O O O O O O O O O O O O O
HA11-30	6-(4-MEO-PH)-7-[3-(4-MEO-PH)- ALLYL]-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	430.497	CH, CH, CH,
HA11-31	8-(2-HO-3-MEO-PHENYL)-6-METHYL 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	330.334	CH ₃ OH

WO 00/04901 PCT/US99/12384

Table I

-26-Compounds for formula I

HA11-32	RCL R17,093-3	469.531	H ₃ COCH ₃ CH ₃ CH ₃
HA11-33	RCL R17,094-1	439.505	CH ₃ CH ₃
HA11-34	9-(3,4,5-TRI-MEO-PH)-4H-5AH-1,3,5- TRIOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	398.409	ңс ^О СН ₃

• WO 00/04901 PCT/US99/12384

Table I

-27-Compounds for formula I

HA11-35	RCL R17,0976	528.579	H,C OH,
HA11-36	1-[8-(4-DI-ME-AMINO-PH)-6-HO-6-ME- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-7- YL]-ETHANONE	369.415	H,C, CH, OH OH CH,
HA11-37	RCL R17,106-9	403.428	H ₃ C O CH ₃ OH OH OH OH OH OH

PCT/US99/12384

Table I

-28-Compounds for formula I

HA11-38	8-(2-HO-3-MEO-PHENYL)-7-METHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	330.334	CH ₃ HO CH ₃ OH
HA11-39	RCL R17,118-2	469.531	H ₃ C O CH ₃
HA11-40	N-PH-N'-[8-(3,4,5-TRI-MEO-PH)-2H- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6 YL]-HYDRAZINE	450.488	H ₃ C O CH ₃
HA11-41	2,6-DI-MEO-4-(7-ME-6-PIPERIDIN-1- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	427.494	H ₃ C O CH ₃

PCT/US99/12384

Table I

-29-Compounds for formula I

HA11-42	1-[7-ET-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	441.521	H ₃ C O CH ₃ CH ₃
HA11-43	5A-HO-9-(HO-3,5-DI-MEO-PH)-4H- 1,3,5,7-TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	402.353	H ₃ C O CH ₃
HA11-44	6-CYCLOHEXYLAMINO-8-(3,4,5-TRI- MEO-PH)-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	457.52	H ₂ C CH ₃

· WO 00/04901 PCT/US99/12384

Table I

-30-Compounds for formula I

HA11-45	RCL R17,135-2	458.417	СН ₃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HA11-46	2,6-DI-MEO-4-(7-ME-6-PYRROLIDIN-1- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	413.467	H ₃ C ^O CH ₃
HA11-47	RCL R17,138-7	420.55	H,C, CH,
HA11-48	7-ME-8-(3,4,5-TRIMETHOXY- PHENYL)-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	374.387	H ₃ C O CH ₃ CH ₃ CH ₃ CH ₃

PCT/US99/12384-

Table I

-31-Compounds for formula I

·			
HA11-49	6-MEO-8-(4-MEO-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	342.389	CH ₃ CH ₃ H ₃ C
HA11-50	8-(2,3-DIMETHOXY-PHENYL)-7- METHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	344.361	H ₃ C OH OH
HA11-51	RCL R17,150-6	460.476	H ₃ C O CH ₃
HA11-52	1-[7-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE	-]- 427.494	H ₃ C O CH ₃

PCT/US99/12384

Table I

-32-Compounds for formula I

HA11-53	RCL R17,155-7	426.462	H ₃ C OH CH ₃
HA11-54	2-(7-ME-6-MORPHOLIN-4-YL-7,8- DIHYDRO-6H-[1,3]DIOXOLO(4,5- G]CHROMEN-8-YL)-PHENOL	369.415	HO CH ₃
HA11-55	RCL R17,160-3	407.507	H ₃ C O
HA11-56	8-(2-HO-3-MEO-PH)-6,7-DIMETHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	344.361	CH ₃ HO CH ₃ CH ₃ CH ₃

PCT/US99/12384-

Table I

-33-Compounds for formula I

HA11-57	2,6-DI-MEO-4-(7-ME-6-MORPHOLIN-4- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	429.466	H ₃ C O CH ₃
HA11-58	2-(6,7-DI-ME-6-PYRROLIDIN-1-YL-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-8-YL) 6-MEO-PHENOL	397.468	CH ₃ HO CH ₃ CH ₃
HA11-59	RCL R17,171-9	452.548	H ₃ C CH ₃ CH ₃

• WO 00/04901 PCT/US99/12384

Table I Compounds for formula I

		l	
HA11-60	1-[8-(4-MEO-PH)-6-ME-7,8-DIHYDRO- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6- YL]-PYRROLIDINE	367.443	CH,
HA11-61	6-ETHOXY-6,7-DIMETHYL-8-(3,4,5- TRI-MEO-PH)-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	416.467	H,C O CH, CH, CH, CH,
HA11-62	RCL R17,174-3	467.559	H ₃ C O CH ₃

Table i

-35-Compounds for formula I

HA11-63	5A-HO-10-(4-MEO-PH)-HEXAHYDRO- 1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	368.383	OH, OH
HA11-64	RCL R17,178-6	499.557	H,C O CH, O
HA11-65	8-(2-METHOXY-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	328.362	H ₃ C OH OH CH ₃
HA11-66	1-[8-(4-MEO-PH)-6,7-DI-ME-7,8-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE		CH ₃

WO 00/04901 PCT/US99/12384

Table I

-36-Compounds for formula I

HA11-67	1-[8-(4-MEO-PH)-7-ME-7,8-DIHYDRO- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6- YL]-PYRROLIDINE	367.443	O CH3 O CH3 O CH3
HA11-68	RCL R17,204-9	456.488	H,C O CH ₃ OCH
HA11-69	1-[HO-6-ME-8-(3,4,5-TRI-MEO-PH)-2H 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-7- YL]-ETHANONE		H,C O CH, O CH, OH OH OH
HA11-70	8-(3-METHOXY-PHENYL)-6-METHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL		CH ₃ OH CH ₃

Table I

-37-Compounds for formula I

HA11-71	1-[6,7-DI-ME-8-(3,4,5-TRI-MEO-PH)- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN- YL]-PYRROLIDINE	441.521	H,C O CH, CH, CH,
HA11-72	8-(2,4-DIMETHOXY-PH)-6-MEO-6,7- DIMETHYL-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	372.415	H ₃ C O CH ₃ CH ₃ CH ₃ H ₄ C O CH ₃
HA11-73	RCL R17,216-2	453.532	H,C O CH,

Table I

-38-Compounds for formula I

Comp. Number	MOLNAME	M.W	MOLSTRUCTURE
HA11-1	MILLETTONE	378.378	OPER COL
HA11-2	9-(2,4-DI-MEO-PH)-5A-MEO-4H- 1,3,5,7-TETRAOXA- DICYCLOPENTA(B,G)NAPHTHALEN- 8-ONE	400.381	H ₃ C O O O O O O O O O O O O O O O O O O O
HA11-3	1-(10-(2,4-DIMETHOXY-PH)-1,3,5- TRIOXA- CYCLOPENTA(B)ANTHRACEN-5A- YL)-PYRROLIDINE	437.533	H ₃ C O CH ₃
HA11-4	5A-MEO-9-(2-MEO-PH)-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA(B,G)NAPHTHALEN- 8-ONE	370.355	H ₃ C O O O O O O O O O O O O O O O O O O O

• WO 00/04901 PCT/US99/12384

Table I

-39-Compounds for formula I

			
HA11-5	6-MEO-6,7-DIMETHYL-8-(3,4,5- TRIMETHOXY-PH)-7,8-2H-6H- (1,3)DIOXOLO(4,5-G)CHROMENE	402.44	H ₃ C O CH ₃ CH ₃ CH ₃ H ₄ C O CH ₃
HA11-6	8-(4-HO-3,5-DIMETHOXY-PH)-7-ME- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	360.36	H ₃ C O CH ₃
HA11-7	6-HO-6-ME-8-(TRI-MEO-PH)- [1,3]DIOXOLO[4,5-G]CHROMENE-7- CARBOXYLIC ACID ET ESTER	446.449	H,C O CH, O CH, OH CH,
HA11-8	RCL R17,027-5	431.443	H ₃ C O CH ₃ C

PCT/US99/12384-

Table I

-40-Compounds for formula I

HA11-9	RCL R17,028-3	455.504	CH ₃ CH ₃ CH ₃ CH ₃
HA11-10	1-[6-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL] PYRROLIDINE	427.494	H ₃ C O CH ₃
HA11-11	6-MEO-8-(4-METHOXY-PHENYL)-6- METHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	328.362	CH ₃ CH ₃ CH ₃
HA11-12	6-ME-8-(3,4,5-TRIMETHOXY- PHENYL)-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-O	374.387 L	H,C O CH, OH OH CH,

Table I

-41-Compounds for formula I

HA11-13	8-(2-HYDROXY-PHENYL)-7-METHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	300.308	HO CH ₃
HA11-14	8-(4-HO-3,5-DIMETHOXY-PH)-6-ME- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	360.36	H,C O CH ₃
HA11-15	9-(3-MEO-PH)-5A,6,8A,9-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	340.329	CH ₃
HA11-16	1-[8-(2,4-DI-MEO-PH)-7-ME-7,8-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE	1-]- 397.468	H ₃ C ₃ CH ₃

Table I

-42-Compounds for formula I

HA11-17	4-[7-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- MORPHOLINE	443.493	H ₃ C O CH ₃ CH ₃ CH ₃
HA11-18	1-[8-(3-MEO-PH)-6,7-DI-ME-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	381.469	CH ₃ CH ₃ CH ₃
HA11-19	2-MEO-6-(6-ME-6-PYRROLIDIN-1-YL- 2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	383.441	CH ₃ O HO O CH ₃ O N O N O N O N O N O N O N O N O N O
HA11-20	9-(4-MEO-PH)-5A,6,8A,9-4H-1,3,5,7- TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN 8-ONE	340 329	CH ₃

PCT/US99/12384-

Table I

-43-Compounds for formula I

HA11-21	(4-MEO-PH)-[7-ME-8-(3,4,5-TRI-MEO- PH)-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-YL]-AMINE	479.526	H ₃ C O CH ₃ CH ₃ CH ₃ H ₄ C O
HA11-22	DI-ME-[4-(6-ME-6-PYRROLIDIN-1-YL- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-8 YL)-PH]-AMINE	380.485	H,C, CH,
HA11-23	1-[6-HO-8-(4-HO-3,5-DI-MEO-PH)-6- ME-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-7-YL]-ETHANONE	402.397	H ₂ C O CH ₃ CH ₃ O

Table I

Compounds for formula I

HA11-24	1-[8-(2,4-DI-MEO-PH)-6,7-DI-ME-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	411.495	H,C, CH, CH,
HA11-25	8-(4-METHOXY-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	328.362	CH ₃ OH CH ₃
HA11-26	6,7-DIMETHYL-8-(3,4,5-TRIMETHOXY PH)-7,8-2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	388.414	H ₃ C O CH ₃
HA11-27	5A-HO-10-(3,4,5-TRI-MEO-PH)- HEXAHYDRO-1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	428.435	H ₃ C O CH ₃

Table I

-45-Compounds for formula I

HA11-28	10-(2,4-DIMETHOXY-PH)-5A-HO- HEXAHYDRO-1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	398.409	H,C OH
HA11-29	2-MEO-6-(7-ME-6-PYRROLIDIN-1-YL- 2H-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	383.441	CH ₃ O N O N
HA11-30	6-(4-MEO-PH)-7-[3-(4-MEO-PH)- ALLYL]-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	430.497	CH,
HA11-31	8-(2-HO-3-MEO-PHENYL)-6-METHYL 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL		HO OH CH3

WO 00/04901 PCT/US99/12384

Table I

-46-Compounds for formula I

HA11-32	RCL R17,093-3	469.531	H ₃ C O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
HA11-33	RCL R17,094-1	439.505	CH ₃
HA11-34	9-(3,4,5-TRI-MEO-PH)-4H-5AH-1,3,5- TRIOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	308 400	H ₃ C O CH ₃

PCT/US99/12384-

Table I

· WO 00/04901

-47-Compounds for formula I

HA11-35	RCL R17,0976	528.579	H,C O CH, OH OH OH OH OH OH OH OH OH
HA11-36	1-[8-(4-DI-ME-AMINO-PH)-6-HO-6-ME- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-7- YL]-ETHANONE	369.415	H ₃ C CH ₃ CH ₃ OH CH ₃
HA11-37	RCL R17,106-9	403.428	H ₃ COCH ₃

Table I

-48-Compounds for formula I

HA11-38	8-(2-HO-3-MEO-PHENYL)-7-METHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	330.334	CH ₃ OH OH
HA11-39	RCL R17,118-2	469.531	H ₂ C OCH ₃
HA11-40	N-PH-N'-[8-(3,4,5-TRI-MEO-PH)-2H- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6 YL]-HYDRAZINE	- 450.488	H ₃ CO CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
HA11-41	2,6-DI-MEO-4-(7-ME-6-PIPERIDIN-1- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	427.494	H ₂ C OH OCH ₃

Table I

-49-Compounds for formula I

HA11-42	1-[7-ET-8-(3,4,5-TRI-MEO-PH)-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL]- PYRROLIDINE	441.521	H,C O CH, CH,
HA11-43	5A-HO-9-(HO-3,5-DI-MEO-PH)-4H- 1,3,5,7-TETRAOXA- DICYCLOPENTA[B,G]NAPHTHALEN- 8-ONE	402.353	H,C O CH,
HA11-44	6-CYCLOHEXYLAMINO-8-(3,4,5-TRI- MEO-PH)-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	457.52	H ₃ C O CH ₃

• WO 00/04901 PCT/US99/12384

Table I

-50-Compounds for formula I

_	т		Т	
	HA11-45	RCL R17,135-2	458.417	H ₂ C CH ₃
	HA11-46	2,6-DI-MEO-4-(7-ME-6-PYRROLIDIN-1- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	413.467	H ₃ C-O CH ₃ CH ₃
	HA11-47	RCL R17,138-7	420.55	H,C CH,
	HA11-48	7-ME-8-(3,4,5-TRIMETHOXY- PHENYL)-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-O	374.387 L	H ₃ C O CH ₃ CH ₃ CH ₃ O CH ₃

WO 00/04901 PCT/US99/12384

Table I

-51-Compounds for formula I

HA11-49	6-MEO-8-(4-MEO-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	342.389	CH ₃ CH ₃ H ₃ C
HA11-50	8-(2,3-DIMETHOXY-PHENYL)-7- METHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	344.361	H ₃ C OH OH
HA11-51	RCL R17,150-6	460.476	H,C O CH ₃ O
HA11-52	1-[7-ME-8-(3,4,5-TRI-MEO-PH)-2H-6H [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE	-]- 427.494	H ₂ C O CH ₃ O CH ₃ O CH ₃

Table I

-52-Compounds for formula I

HA11-53	RCL R17,155-7	426.462	H ₃ C OH CH ₃
HA11-54	2-(7-ME-6-MORPHOLIN-4-YL-7,8- DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	369.415	HO CH ₃
HA11-55	RCL R17,160-3	407.507	H _s C.
HA11-56	8-(2-HO-3-MEO-PH)-6,7-DIMETHYL- 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL		CH ₃ HO CH ₃ CH ₃ OH CH ₃

WO 00/04901

Table I

-53-Compounds for formula I

HA11-57	2,6-DI-MEO-4-(7-ME-6-MORPHOLIN-4- YL-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-8-YL)-PHENOL	429.466	H ₂ C OH OCH ₃
HA11-58	2-(6,7-DI-ME-6-PYRROLIDIN-1-YL-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-8-YL) 6-MEO-PHENOL	397.468	CH ₃ O CH ₃ CH ₃
HA11-59	RCL R17,171-9	452.548	H ₃ C CH ₃ CH ₃

• WO 00/04901 PCT/US99/12384•

Table i

Compounds for formula I

HA11-60	1-[8-(4-MEO-PH)-6-ME-7,8-DIHYDRO- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6- YL]-PYRROLIDINE	367.443	0 CH3
HA11-61	6-ETHOXY-6,7-DIMETHYL-8-(3,4,5- TRI-MEO-PH)-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	416.467	H ₃ C O CH ₃ CH ₃ CH ₃ CH ₃
HA11-62	RCL R17,174-3	467.559	H ₃ C O CH ₃

Table I

-55-Compounds for formula I

HA11-63	5A-HO-10-(4-MEO-PH)-HEXAHYDRO- 1,3,5-TRIOXA- CYCLOPENTA[B]ANTHRACEN-9- ONE	368.383	CH ₃
HA11-64	RCL R17,178-6	499.557	H,C O CH, O CH, O CH, O CH, O CH,
HA11-65	8-(2-METHOXY-PHENYL)-6,7- DIMETHYL-7,8-DIHYDRO-6H- [1,3]DIOXOLO[4,5-G]CHROMEN-6-OL	328.362	H ₃ C OCH ₃ OCH OCH
HA11-66	1-[8-(4-MEO-PH)-6,7-DI-ME-7,8-2H-6I [1,3]DIOXOLO[4,5-G]CHROMEN-6-YL PYRROLIDINE	381.469	о сн, сн, сн,

Table I

-56-Compounds for formula I

HA11-67	1-[8-(4-MEO-PH)-7-ME-7,8-DIHYDRO- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-6- YL]-PYRROLIDINE	367.443	OCH ₃
HA11-68	RCL R17,204-9	456.488	H,C O CH, OH CH, OH CH,
HA11-69	1-[HO-6-ME-8-(3,4,5-TRI-MEO-PH)-2H 6H-[1,3]DIOXOLO[4,5-G]CHROMEN-7 YL]-ETHANONE	416.424	H,C O CH ₃
HA11-70	8-(3-METHOXY-PHENYL)-6-METHYL 7,8-DIHYDRO-6H-[1,3]DIOXOLO[4,5- G]CHROMEN-6-OL	314.335	CH ₃ OH CH ₃

WO 00/04901 PCT/US99/12384

Table I

-57-Compounds for formula I

HA11-71	1-[6,7-DI-ME-8-(3,4,5-TRI-MEO-PH)- 6H-[1,3]DIOXOLO[4,5-G]CHROMEN- YL]-PYRROLIDINE	441.521	H,C O CH, O CH, O CH, O CH, O CH,
HA11-72	8-(2,4-DIMETHOXY-PH)-6-MEO-6,7- DIMETHYL-7,8-2H-6H- [1,3]DIOXOLO[4,5-G]CHROMENE	372.415	H ₃ C CH ₃ CH ₃ H ₃ C
HA11-73	RCL R17,216-2	453.532	H,C O CH,

Preferred compounds according to formula III

$$R_6$$
 R_7
 R_8
 R_9
 R_1
 R_1

include the compounds of Table II:

-59-

Table II

Compounds for formula III

Comp. Number	MOLNAME	M.W.	MOLSTRUCTURE
HA14-1	ETHYL 2-AMINO-6- BROMO-4-(1-CYANO-2- ETHOXY-2-OXOETHYL)- 4H-CHROMENE-3- CARBOXYLATE	409.2340	Br O N
HA14-2	2-(2-AMINO-6-CHLORO- 3-CYANO-4H- CHROMEN-4- YL)MALONONITRILE	270.6780	CI
HA14-3	2-(2-AMINO-6,8- DIBROMO-3-CYANO-4H- CHROMEN-4- YL)MALONONITRILE	394.0250	Br N
HA14-4	METHYL 2-AMINO-6- CHLORO-4-(1-CYANO-2- METHOXY-2- OXOETHYL)-4H- CHROMENE-3- CARBOXYLA	336.7300	CI
HA14-5	2-(2-AMINO-3-CYANO-6- METHOXY-4H- CHROMEN-4- YL)MALONONITRILE	266.2590	N N N N N N N N N N N N N N N N N N N
HA14-6	ETHYL 2-AMINO-4-(1- CYANO-2-ETHOXY-2- OXOETHYL)-4H- CHROMENE-3- CARBOXYLATE	330.3380	
HA14-7	METHYL 2-AMINO-6,8- DIBROMO-4-(1-CYANO- 2-METHOXY-2- OXOETHYL)-4H- CHROMENE-3-CARBOX	460.0770	N≡ O O O O O O O O O O O O O O O O O O O

Table II

Compounds for formula III

HA14-8	METHYL 2-AMINO-6- BROMO-4-(1-CYANO-2- METHOXY-2- OXOETHYL)-8- METHOXY-4H- CHROMENE-3-	411.2070	Br N
HA14-9	METHYL 2-AMINO-4- (DICYANOMETHYL)-4H- CHROMENE-3- CARBOXYLATE	269.2590	N N N
HA14-10	2-(2-AMINO-6-BROMO-3- CYANO-4H-CHROMEN- 4-YL)MALONONITRILE	315.1290	Br N N
HA14-11	METHYL 2-AMINO-4-(1- CYANO-2-METHOXY-2- OXOETHYL)-4H- CHROMENE-3- CARBOXYLATE	302.2850	
HA14-12	ETHYL 2-AMINO-4- (DICYANOMETHYL)-4H- CHROMENE-3- CARBOXYLATE	283.2860	
HA14-13	METHYL 2-AMINO-4-(1- CYANO-2-METHOXY-2- OXOETHYL)-6-NITRO- 4H-CHROMENE-3- CARBOXYLAT	347.2820	

15

20

The compounds of Table II are available from Maybridge Chemical Company. Particularly preferred compounds of formula III include compounds HA14-1 and HA14-8:

5 Bcl-2 Binding Assay for Candidate Inhibitors of Bcl-2

To measure the specific Bcl-2 binding of computer-predicted organic inhibitors, a Bcl-2 competition binding assay may be employed. The assay is based on fluorescence polarization. The assay can rapidly measure Bcl-2 receptor-ligand interaction without using filter binding, electrophoresis, or precipitation steps. Fluorescence polarization gives a direct, instantaneous equilibrium measure of the bound/free ratio between ligand and receptor molecules.

In order to set up the competition binding assay, the specific binding of a known peptide ligand of the targeted Bcl-2 functional pocket was first demonstrated. The peptide, designated peptide 1193 (GQVGRQLAIIGDDINR), is derived from the BH3 domain of the death agonist Bak. It has been shown in high-resolution X-ray structure to bind strongly to the Bcl-2 pocket (Muchmore *et al.*, *Nature* 381:335-41, 1996; Sattler *et al.*, *Science* 275:983-6, 1997) Peptide 1193 was synthesized and labeled with a fluorescein tracer (Flu-1193). The binding affinity of Flu-1193 to the Bcl-2 protein (purified soluble Bcl-2 proteins purchased from Santa Cruz Biotechnology, Inc., CA) was determined by a saturation experiment. Since the polarization value is derived from the ratio of bound versus free tracer, the lowest concentration of Flu-1193 was chosen, such that the

concentration would yield a reasonable fluorescent signal and a stable polarization value. Using a fixed concentration of Flu-1193 peptide, Bcl-2 protein was titrated at increasing concentrations to achieve a saturated binding. The binding of the Flu-1193 peptide to Bcl-2 protein was measured on a LS-50 luminescence spectrometer equipped with polarizers using a dual path length quartz cell (500µL) (Perkin-Elmer Corp.). The fluorophore is excited with vertical polarized light at 485 nm (excitation slit width 10 nm), and the polarization value of the emitted light is observed through vertical and horizontal polarizers at 520 nm (emission slit width 10 nm).

10

5

Figure 1 illustrates a nonlinear least-squares fit for a saturation experiment using Flu-1193 and Bc1-2 protein in which the Bcl-2 concentration varied from 6nM to 2 μ M and Flu-1193 concentration remained at 30nM. The dissociation constant K_D of Flu-1193 was determined to be approximately 0.2 μ M by using a nonlinear least-squares fit and single-site binding mode (R^2 = 0.99).

15

The binding affinity was also analyzed by Scatchard analysis. The Scatchard analysis is a standard method for analyzing the equilibrium binding parameters of a labeled molecule wily its target protein. The Scatchard plot is sensitive to presence of nonspecific binding, positive or negative cooperativity, and multiple classes of binding sites. The K_{D} calculated from the Scatchard plot (K_{D} = 1/slope), is approximately 0.25 μM which is in agreement with the value from dose-response calculation (K_{D} ~0.20 μM). The data fit best to linear function, indicating a single class of binding site.

25

30

20

To further verify the specificity of the interaction of Flu-1193 and Bcl-2, a number of control experiments were carried out including measuring the binding of Flu-1193 to other proteins such as Bax, CD4, and the SH3 domain of the Bcr-Abl oncoprotein, and measuring the Bcl-2 binding of other Flu-labeled peptides derived from CD4 (Flu-1250 and Flu-1251) and Bcr-Abl SH3 (Flu-1217) (Fig. 2). The lack of binding interaction detected in these control systems (the signals were close to the background

10

15

20

25

level of free Flu-1193), demonstrated the specificity of the binding of Flu-1193 to Bcl-2.

Using Flu-1193 as a specific probe, a competition binding protocol may be set up for non-peptide organic ligands of Bcl-2. The competition format utilizes fixed concentrations of Flu-1193 and Bcl-2 proteins (30nM and 0.55µM, respectively), with increasing concentrations of organic compounds added to generate inhibition curves. The binding equation proposed by Weinhold *et al.*, *J. Am. Chem. Soc.* 114:9270-9275, 1992, is then used to derive the dissociation constant K_D of an inhibitor from its competition inhibition curve,

$$[Inhibitor] = \frac{K_D}{K_L} \left[[Bcl - 2]x \left(\frac{A_B - A}{A - A_F} \right) - [Flu - 1193]x \left(\frac{A_B - A}{A_B - A_F} \right) \right] - K_D$$

wherein [Inhibitor], [Bcl-2], and [Flu-1193] are the concentrations of inhibitor, Bcl-2 protein and Flu-1193 peptide, respectively; K_L is the dissociation constant of the Flu-1193 peptide; A is the observed fluorescence anisotropy, A=2P/(3-P), where P is the observed fluorescence polarization values; and A_B and A_F are fluorescence anisotropy values when all of the Flu-1193 peptide is either bound to the Bcl-2 protein (A_B) or free in solution (A_F) . The K_D value is adjusted by a factor of 5 as suggested by others for FP-based assays.

The dissociation constant of small molecule organic inhibitors of Bcl-2 identified in the foregoing binding assay with peptide Flu-1193 is preferably no more than about 500 μ M, preferably no more than about 100 μ M, most preferably no more than about 10 μ M.

Biological Activity Assay of Candidate Inhibitors of Bcl-2

The small organic compounds which bind to the active pocket of Bcl-2 as described above may be tested for inhibition of Bcl-2 biological activity, and hence the ability to induce apoptosis in cancer cells where Bcl-2 proteins play a role in resisting apoptosis.

10

15

20

25

30

DNA fragmentation is an important and characteristic marker of apoptosis. Accordingly, cells of a variant of HL-60 are incubated with test compound at 100µM concentration for 24 hours. The DNA of the cells is then isolated by conventional techniques and analyzed for fragmentation on 2% agarose gels containing 0.2µg/ml ethidium bromide. Visible DNA fragmentation resulting from incubation of 100µM of compound with the cells for 24 hours generally indicates that the compound is active in inducing apoptosis.

Therapeutic Administration

The small molecule inhibitors of Bcl-2 function may be used to treat any condition characterized by the accumulation of cells which are regulated by Bcl-2. For the most part, the cells express or overexpress Bcl-2. Enhancement of Bcl-2 expression has been demonstrated to increase the resistance of cells to almost any apoptotic signal (Hockenbery et al., Nature 348, 334 (1990); Nuñez et al., Immunol. 144, 3602 (1990); Vaux et al., Nature 335, 440 (1988); Hockenbery et al., Cell 75, 241 (1993); Ohmori et al., Res. Commun. 192, 30 (1993); Lotem et al., Cell Growth. Differ 4, 41 (1993); Miyashita et al., Blood 81, 115 (1993); Minn et al.)). Principally, the proliferative disorders associated with the inhibition of cell apoptosis include cancer, autoimmune disorders and viral infections. Overexpression of Bcl-2 specifically prevents cells from initiating apoptosis in response to a number of stimuli (Hockenbery et al., Nature 348, 334 (1990); Nunez et al., J. Immunol. 144, 3602 (1990); Vaux et al., Nature 335, 440 (1988); Hockenbery et al., Cell 75, 241 (1993)). The induction of genes that inhibit Bcl-2 can induce apoptosis in a wide variety of tumor types, suggesting that many tumors continually rely on Bcl-2 or related gene products to prevent cell death. Bcl-2 expression has been associated with a poor prognosis in at least prostatic cancer, colon cancer and neuroblastoma (McDonnell et al., Cancer Res. 52, 6940 (1992); Hague et al., Oncogene 9, 3367 (1994); Castle et al., Am. J. Pathol. 143, 1543 (1993)). Bcl-2 or the related gene

10

15

20

25

30

Bcl_x has been found to confer resistance to cell death in response to several chemotherapeutic agents (*Ohmori et al., Res. Commun.* 192, 30 (1993); Lotem *et al., Cell Growth.Differ* 4, 41 (1993); Miyashita *et al., Blood* 81, 115 (1993); Minn et al.)).

Physiologic cell death is important for the removal of potentially autoreactive lymphocytes during development and for the removal of excess cells after the completion of an immune response. Failure to remove these cells can result in autoimmune disease. A lupus-like autoimmune disease has been reported in transgenic mice constitutively overexpressing Bcl-2 in their B cells (Stressed *et al.*, *Proc. Natl. Acad. Sci. USA* 88, 8661 (1991)). Linkage analysis has established an association between the Bcl-2 locus and autoimmune diabetes in non-obese diabetic mice (Garchon *et al.*, *Eur. J. Immunol.* 24, 380 (1994). The compounds of the invention may be used to induce apoptosis of self-reactive lymphocytes. By "self-reactive" is meant a lymphocyte which participates in an immune response against antigens of host cells or host tissues.

The small molecule inhibitors of Bcl-2 function may be used in the treatment of viral infection, to induce apoptosis of virally infected cells. Viruses have developed mechanisms to circumvent the normal regulation of apoptosis in virus-infected cells, and theses mechanisms have implicated Bcl-2. For example, the E1B 19-kDa protein is instrumental in the establishment of effective adenoviral infection. The apoptosis-blocking ability of E1B can be replaced in adenoviruses by Bcl-2 (Boyd *et al.*, *Cell* 79, 341 (1994)). Genes of certain other viruses have been shown to have sequence and functional homology to Bcl-2 (Neilan *et al.*, *J. Virol.* 67, 4391 (1993); Henderson *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 90, 8479 (1993)). The viral gene LMP-1 specifically upregulates Bcl-2 providing a survival advantage over latently infected cells (Henderson *et al.*, *Cell* 65, 1107 (1991)). Sindbis infection is dependent on the host cell's expression of Bcl-2 (Levine *et al.*, *Nature* 361,739 (1993)).

· WO 00/04901 PCT/US99/12384

The effective amount of compound needed to treat a subject may be routinely determined through procedures well known to those skilled in the art which address such parameters as biological half-life, bioavailability, and toxicity. Such determination is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

5

10

15

20

25

30

The present invention provides pharmaceutical compositions that comprise the compounds of the invention and pharmaceutically acceptable carriers or diluents.

For parenteral administration, the compounds of the invention can be, for example, formulated as a solution, suspension, or lyophilized powder in association with a pharmaceutically acceptable parenteral vehicle. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. The vehicle or lyophilized powder may contain additives that maintain isotonicity (e.g., sodium chloride, mannitol) and chemical stability (e.g., buffers and preservatives). For example, a parenteral composition suitable for administration by injection is prepared by dissolving 1.5% by weight of active ingredient in 0.9% sodium chloride solution. The formulation can be sterilized by any commonly used technique.

The pharmaceutical compositions according to the invention may be administered as a single dose or in multiple doses. The pharmaceutical compositions of the present invention may be administered either as individual therapeutic agents or in combination with each other or with other therapeutic agents. The treatments of the present invention may be combined with conventional therapies, which may be administered sequentially or simultaneously.

The pharmaceutical compositions of the present invention may be administered by any means that enables the active agent to reach the targeted cells. Because compounds of the invention may be subject to being digested when administered orally, parenteral administration, i.e., intravenous, subcutaneous or intramuscular, would ordinarily be used to optimize absorption. Intravenous administration may be accomplished with the aid of an infusion pump. Alternatively, the compounds of the invention can be formulated as aerosol medicaments for intranasal inhalation or topical administration.

5

10

15

20

25

30

The dosage administered varies depending upon factors such as: pharmacodynamic characteristics; its mode and route of administration; age, health, and weight of the recipient; nature and extent of symptoms; kind of concurrent treatment; and frequency of treatment. Usually, the dosage of the compound of the invention can be about 1 to 3000 milligrams per 50 kilograms of body weight; preferably 10 to 1000 milligrams per 50 kilograms of body weight; more preferably 25 to 80 milligrams per 50 kilograms of body weight. Ordinarily, 8 to 800 milligrams are administered to an individual per day in divided doses 1 to 6 times a day or in sustained release form is effective to obtain desired results.

Example 1

Bcl-2 Ligand Binding Assay

The binding of selected organic compounds to Bcl-2 protein in the presence of peptide Flu-1193 was measured on a LS-50 luminescence spectrometer equipped with polarizers using a dual path length quartz cell (500μL) (Perkin-Elmer Corp.). The fluorophore was excited with vertical polarized light at 485 nm (excitation slit width 10 nm). The polarization value of the emitted light was observed through vertical and horizontal polarizers at 520 nm (emission slit width 10 nm). Fixed concentrations of Flu-1193 and Bcl-2 proteins (30nM and 0.55μM, respectively), with increasing concentrations of test compound was added to generate inhibition curves. The binding equation proposed by Weinhold et al., J. Am. Chem. Soc. 114:9270-9275, 1992, was used to derive the dissociation constant K_D of the test compound from its competition inhibition curve,

·WO 00/04901 PCT/US99/12384

$$[Inhibitor] = \frac{K_D}{K_L} \left[[Bcl - 2]x \left(\frac{A_B - A}{A - A_F} \right) - [Flu - 1193]x \left(\frac{A_B - A}{A_B - A_F} \right) \right] - K_D$$

wherein [Inhibitor], [Bcl-2], and [Flu-1193] are the concentrations of inhibitor, Bcl-2 protein and Flu-1193 peptide, respectively; K_L is the dissociation constant of the Flu-1193 peptide; A is the observed fluorescence anisotropy, A=2P/(3-P), where P is the observed fluorescence polarization values; and A_B and A_F are fluorescence anisotropy values when all of the Flu-1193 peptide is either bound to the Bcl-2 protein (A_B) or free in solution (A_F) .

5

10

15

20

25

According to this binding protocol, 716 organic compounds selected from computer screening studies were initially tested at 100 μ M concentration. A group of compounds found to be active in the assay with a level of inhibition ranging from 35% to 98%. Four of the active compounds comprised compounds HA12-16 (compound HA12-16 may also be identified herein as "HA01"), HA02, HA03 and HA04. A clear concentration-dependent competition binding was observed for these compounds and their biding affinities determined by the above procedure. The two most potent compounds, HA12-16 and HA02, exhibited a binding affinity (K_D) of 7 μ M and 15 μ M, respectively.

Compound HA14-1 was tested in the same manner. A clear concentration-dependent competition binding was observed for this compound over a concentration of from 1 to 100 μ M. The results are set forth in Fig. 6.

Example 2

DNA Fragmentation Assay A

The cells for this assay comprised a variant of the human myeloid leukemia HL-60 cell line transfected with Bcl-2 to overexpress Bcl-2 (Liu *et al.*, *Cell* 86:147-57, 1996). Cells of the parent line are sensitive to 50 µM of the apoptosis-inducing drug etoposide. The Bcl-2-transfected line is

10

15

20

25

30

resistant to the same concentration of drug, indicating that Bcl-2 blocked apoptosis by the drug.

The Bcl-transfected cells were incubated with Bcl-2 inhibitor test compounds at 50 μ M for 24 hours and then examined for apoptosis by the following DNA fragmentation assay. Then the treated cells were washed in PBS, lysed in digestion buffer (100 mM NaCl, 10 mM Tris-Cl, pH8, 25 mM EDTA, pH 8, 0.5% SDS, 0.1 mg/ml proteinase K), and incubated overnight at 50°C. The samples were extracted three times with phenol-chloroform, precipitated with an equal volume isopropanol, and spun down for 15 minutes in a microcentrifuge at room temperature. The DNA precipitate was washed once with 70% ethanol and resuspended in TE buffer containing 200 μ g/ml DNase-free RNase A (Boehringer Mannheim, Indianapolis, IN). Alter incubation at 37°C for 30 min., the DNA was loaded into a 2% agarose mini-gel with 2 μ g/ml ethidium bromide, and electrophoresis is run at 50 V for 2 hours in 0.5 x TBE buffer. The gel was destained with water for 1 hour arid photographed under UV light.

The results are shown in Fig. 3: lane 0, control; lane 1, compound HA13; lane 2, compound HA14; lane 3, compound HA11-57. DNA fragmentation is apparent in each lane, except for the control, indicating that each compound is effective in reversing Bcl-2 block of apoptosis.

Example 3

DNA Fragmentation Assay B

The assay of Example 2 was repeated for compounds HA01 (also designated "HA12-16"), HA02 and HA04, with the following modifications. First, the ethidium bromide stain concentration was 1 μ g/ml instead of 2 μ g/ml. Second, the cells for the assay comprised 697 cells. The 697 line is a human pre-B leukemia line with a t(1;19) chromosomal translocation (no translocation involving Bcl-2). Bcl-2 is highly expressed in this line. The high expression of Bcl-2 in 697 cells was confirmed by protein

10

15

20

25

immunoblot analysis (data not shown). Taxol (Sigma Chemical Co., St. Louis, MO), a widely-used anticancer drug known to induce apoptosis in 697 cells, was used as a positive control. A randomly selected organic compound which was inactive in the Bcl-2 binding assay was included in the assay as a negative control. DNA markers were phiX174 DNA with restriction endonuclease Hae III (Boehringer Mannheim, Indianapolis, IN). The cells were incubated with test compound at 50 μ M concentration or Taxol at 5 μ M concentration for 48 hours. The results are shown in Fig. 4. The test compounds induced DNA fragmentation to various extents while the control compound did not show any effect.

A control experiment was carried out to investigate the specificity of the apoptosis-inducing effect of the compounds in a human myeloid leukemia HL-60 neo line in which apoptosis is not regulated by Bcl-2. the lack of effect in inducing apoptosis of the HL-60 neo cells by a representative compound HA01 at the same concentration (50µM) which induced apoptosis in the 697 cells (data not shown) indicated the specificity of the compound for the Bcl-2 mediated apoptotic pathway.

Example 4

DNA Fragmentation Assay C

The assay of Example was repeated by incubating HL-60 Bcl-2 cells with compound HA14-1 (50 μ M for 24 hours). Alternatively, the cells were first pretreated with 100 μ M fluoromethyl ketone at 100 μ M for 2 hours, followed by 50 μ M HA14-1 for 24 hours. The results are set forth in Fig. 5: lane A, HA14-1; lane B, fluoromethyl ketone and HA14-1. Fluoromethyl ketone is an inhibitor of a downstream target of Bcl-2. Fluoromethyl ketone pretreatment of HL-60 Bcl-2 cells should neutralize the action of HA14-1. This is indeed shown in Fig. 5, lane B.

All references discussed herein are incorporated by reference.

One skilled in the art will readily appreciate that the present invention is well

· WO 00/04901 PCT/US99/12384 ·

- 71 -

adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

CLAIMS

1. A method of inducing apoptosis of cells in a subject, which cells are regulated by Bcl-2, comprising administering to the subject an effective amount of an active compound of the formula I:

$$\begin{array}{c|c} R_4 & X & R_3 \\ \hline R_5 & X & R_1 \end{array}$$

5 wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; O; and S;

Y and Z are independently selected from the group consisting of CH and N; and when Z is N, then Y may further be -CR₆, where R₆ is selected from the group consisting of CH₃; OCH₃; CNH₂; and COH;

R₁ is selected from the group consisting of hydrogen; C₁₋₅ alkyl; C₁₋₅ alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂;phenyl; phenyl which is mono-, di-, or trisubstituted with NH₂, OH, halogen, NO₂, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or trisubstituted with NH₂, OH, halogen or CF₃; and five- and sixmember heterocyclic rings;

R₂ is selected from the group consisting of hydrogen; C₁₋₃ alkyl; C₁₋₃ alkoxy; halogen; CF₃; NH₂; OH; COOH; COOCH₃; CONH₂; and CONHCH₃;

10

15

or, R₁ and R₂ together may form the group - CH₂CH₂CH₂- or -CH₂CH₂CH₂CH₂-;

or, R_1 and R_2 together may form, starting from R_1 , the group -NHCH₂CH₂-, -NHCOCH₂-, or -OCOCH₂-;

5

R₃ is selected from the group consisting of hydrogen; CH₃; CF₃; OCH₃; NH₂; OH; COOH; COCH₃; CH=CH₂; CH₂=CHCH₂; CH(CH₃)₂, CH₂OH; CH₂NH₂; CH₂COOH; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, OCH₃ or CF₃; five- and six-member heterocyclic rings; and a substituted phenyl group of the formula:

10

wherein

15

 R_7 , R_8 and R_9 are independently selected from the group consisting of hydrogen, CH_3 , CF_3 , OH, OCH_3 , CH_2OH and CHO; provided that at least two of the members of the group R_7 , R_8 and R_9 must be OH or OCH_3 when the remaining member of the group is hydrogen, CH_3 or CF_3 ;

20

 R_4 and R_5 are independently selected from the group consisting of hydrogen, CH_3 , and OCH_3 ; and when Y and Z are both CH, R_4 and R_5 may be further selected from OH and NH_2 ;

10

or, R_4 and R_5 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2$ -;

or, R_4 and R_5 together may form, starting from R_4 , the group -NHCH₂CH₂-, -NHCOCH₂-, -OCOCH₂- or -O(CH₂)_nO-, wherein n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

- 2. The method according to claim 1 wherein the compound has a dissociation constant of not more than about 500 μ M for binding the hydrophobic pocket on the Bcl-2 protein formed by the BH1, BH2, and BH3 domains of the Bcl-2 protein.
- 3. The method according to claim 1 wherein R_1 is a heterocyclic ring selected from the group consisting of piperidino, piperazino, morpholino, pyrimidyl, pyrrolidino and imidazo.
- 15 4. The method according to claim 1 wherein R₃ is a heterocyclic ring selected from the group consisting of piperidinyl, piperazinyl, morpholino, pyrimidyl, pyrrolyl, pyrrolidino, and imidazyl.
 - 5. The method according to claim 1 wherein R_7 , R_8 and R_9 are all OCH₃.
- 20 6. The method according to claim 1 wherein R_7 and R_9 are OCH₃, and R_8 is OH.
 - 7. The method according to claim 1 wherein R_1 or R_3 is mono-substituted cyclohexyl, and the position of the substitution is *para*.

10

- 8. The method according to claim 1 wherein R_1 is monosubstituted phenyl, and the position of the substitution is *para*.
- 9. The method according to claim 7 wherein R_5 is CH_3 , CH_2CH_3 , COOH, $COCH_3$, $CONH_2$ or $CONHCH_3$.
- 10. The method according to claim 1 wherein the compound is selected from the group consisting of compound HA11-57 and compound HA11-17:

- 11. The method according to claim 1 wherein the compound causes the fragmentation of DNA in a Bcl-2 transfected HL-60 cell line when incubated with such cells at a concentration of not more than $100 \, \mu M$ for 24 hours.
- 12. The method according to claim 1 wherein the cells induced to undergo apoptosis comprise cancer cells.
- 13. The method according to claim 1 wherein the cells induced to undergo apoptosis comprise virus-infected cells.
 - 14. The method according to claim 1 wherein the cells induced to undergo apoptosis comprise self-reactive lymphocytes.

15. A method of inducing apoptosis of cells in a subject which are regulated by Bcl-2 comprising administering to the subject an effective amount of an active compound of the formula II

wherein

5

 R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; and NH(C₁₋₃ alkyl); and one of R_1 , R_2 , R_3 and R_4 may be phenyl or a heterocyclic ring; provided at least one of R_1 , R_2 , R_3 and R_4 must be hydrogen;

10

 R_5 and R_6 are independently selected from the group consisting of hydrogen; CN; CH₂CN; COOCH₃; CONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CH₃, OCH₃, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings; provided, only one of R_5 or R_6 may be phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic in the same compound, and further provided that when one of R_5 or R_6 is phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic, then the other must be hydrogen;

20

15

or at least one of R_5 and R_6 may be halogen, provided that the other must be C_{1-5} alkyl or C_{1-5} alkoxy.

15

20

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

- 16. The method according to claim 15 wherein the compound has a dissociation constant of not more than about 500 μ M for binding the hydrophobic pocket on the Bcl-2 protein formed by the BH1, BH2, and BH3 domains of the Bcl-2 protein.
- 17. The method of claim 15 wherein at least one of R_1 , R_2 , R_3 and R_4 is selected from the group consisting of piperidino, piperazino, morpholino, pyrimidyl, pyrrolidino and imidazo.
- 10 18. The method of claim 15 wherein at least one of R_s or R_s is selected from the group consisting of pyrrolyl, imidazolyl, piperidinyl, piperazinyl, morpholino, pyrimidyl and pyrrolidino.
 - 19. The method of claim 15 wherein one of $R_{\scriptscriptstyle 5}$ or $R_{\scriptscriptstyle 6}$ is substituted phenyl.
 - 20. The method of claim 15 wherein one of R_5 or R_6 is mono-substituted phenyl or mono-substituted cyclohexyl, and the position of the substitution is *para*.
 - 21. The method according to claim 15 wherein the compound is selected from the group consisting of compounds HA12-3 and HA12-16:

- 22. The method according to claim 15 wherein the compound causes the fragmentation of DNA in a Bcl-2 transfected HL-60 cell line when incubated with such cells at a concentration of not more than 100 µM for 24 hours.
- 5 23. The method according to claim 15 wherein the cells induced to undergo apoptosis comprise cancer cells.
 - 24. The method according to claim 15 wherein the cells induced to undergo apoptosis comprise virus-infected cells.
- The method according to claim 15 wherein the cells induced to undergo apoptosis comprise self-reactive lymphocytes.
 - 26. A method of inducing apoptosis of cells in a subject which are regulated by Bcl-2 comprising administering to the subject an effective amount of a compound selected from the group consisting of compounds HA13, HA14, HA02, HA03 and HA04:

- 27. The method according to claim 26 wherein the cells induced to undergo apoptosis comprise cancer cells.
- 28. The method according to claim 26 wherein the cells induced to undergo apoptosis comprise virus-infected cells.

- 29. The method according to claim 26 wherein the cells induced to undergo apoptosis comprise self-reactive lymphocytes.
- 30. A method of inducing apoptosis of cells in a subject, which cells are regulated by Bcl-2, comprising administering to the subject an effective amount of an active compound of the formula III:

$$R_{5}$$
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{1}

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; NCH₃; O; and S;

10

R₁ is selected from the group consisting of OH; NH₂; CHO; COCH₃; COOH; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); and five- and six-member heterocyclic rings;

15

 R_2 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; OH; NH₂; CHO; COCH₃; OCOCH₃; OCOCH₂CH₃; COOH; COOCH₃;COOCH₂CH₃; COOCH₂CH₂CH₃;

 R_3 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; CN; CH_2CN ; CH_2NO_2 ; CHO; $COCH_3$; COOH; $OCOCH_3$; $OCOCH_2CH_3$; $OCOCH_3$; OC

NHNHCONH₂; CH=CH₂; CH₂CH=CH₂; CH₂CHO; and five- and six-member heterocyclic rings;

 R_4 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; CN; CH_2CN ; CH_2NO_2 ; CHO; $COCH_3$; $COCH_3$; $COOCH_3$; $COOCH_2CH_3$; $COOCH_2CH_3$; $COOCH_2CH_3$; $COOCH_2CH_3$;

5

R₅ is selected from the group consisting of hydrogen CH₃; OCH₃; OH: NH₂; Br; Cl; and F; and

10

15

20

 R_6 , R_7 and R_8 are selected from the group consisting of hydrogen, CH_3 ; CH_2CH_3 ; CF_3 ; NH_2 ; OH; OCH_3 ; CN; NO_2 ; CI; Br; F; COOH; and $COOCH_3$; provided, at least one member of the group R_6 , R_7 or R_8 must be CI, Br or F when the remaining members of said group are hydrogen;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

- 31. The method according to claim 30 wherein the compound has a dissociation constant of not more than about 500 µM for binding the hydrophobic pocket on the Bcl-2 protein formed by the BH1, BH2, and BH3 domains of the Bcl-2 protein.
- 32. The method according to claim 30 wherein R_1 and R_3 are selected from the group consisting of piperidinyl, piperazinyl, morpholino, pyrimidyl, pyrrolyl, pyrrolidino and imidazyl.
- 33. The method according to claim 30 wherein R₂ and R₄ are selected from the group consisting of COCH₃; OCOCH₃; OCOCH₂CH₃; COOH; COOCH₃; COOCH₂CH₃; and COOCH₂CH₂CH₃.
 - 34. The method according to claim 30 wherein:

10

 R_5 is selected from the group consisting of hydrogen, Br; Cl; and F;

R₆, R₇ R₈ are independently selected from the group consisting of NH₂; OH; OCH₃; CN; NO₂; CI; Br; F.

35. The method according to claim 30 wherein the compound is selected from the group consisting of HA14-1 and HA14-8:

- 36. The method according to claim 30 wherein the compound causes the fragmentation of DNA in a Bcl-2 transfected HL-60 cell line when incubated with such cells at a concentration of not more than $100~\mu\text{M}$ for 24 hours.
- 37. The method according to claim 30 wherein the cells induced to undergo apoptosis comprise cancer cells.
- 38. The method according to claim 30 wherein the cells induced to undergo apoptosis comprise virus-infected cells.
- 15 39. The method according to claim 30 wherein the cells induced to undergo apoptosis comprise self-reactive lymphocytes.
 - 40. A method of reversing Bcl-2-mediated blockage of apoptosis in cancer cells comprising contacting said cells with a compound of the formula I:

$$R_4$$
 R_5
 R_5
 R_7
 R_8

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; O; and S;

5

Y and Z are independently selected from the group consisting of CH and N; and when Z is N, then Y may further be -CR₆, where R₆ is selected from the group consisting of CH₃; OCH₃; CNH₂; and COH;

10

15

R₁ is selected from the group consisting of hydrogen; C₁₋₅ alkyl; C₁₋₅ alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; $COOCH_3$; $N(C_{1-3} \text{ alkyl})_2$; $NH(C_{1-3} \text{ alkyl})$; $OCOCH_3$; OCOCH, CH3; NHCOCH3: NHNHCOCH3; NHNHCONH₂;phenyl; phenyl which is mono-, di-, or trisubstituted with NH₂, OH, halogen, NO₂, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or trisubstituted with NH2, OH, halogen or CF3; and five- and sixmember heterocyclic rings;

R₂ is selected from the group consisting of hydrogen; C₁₋₃ alkyl; C₁₋₃ alkoxy; halogen; CF₃; NH₂; OH; COOH; COOCH₃; CONH₂; and CONHCH₃;

20

or, R₁ and R₂ together may form the group -CH2CH2CH2- or -CH2CH2CH2CH2-;

or, R₁ and R₂ together may form, starting from R₁, the group -NHCH₂CH₂-, -NHCOCH₂-, or -OCOCH₂-;

R₃ is selected from the group consisting of hydrogen; CH₃; CF₃; OCH₃; NH₂; OH; COOH; COCH₃; CH=CH₂; CH₂=CHCH₂; CH(CH₃)₂; CH₂OH; CH₂NH₂; CH₂COOH; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, OCH₃ or CF₃; five- and six-member heterocyclic rings; and a substituted phenyl group of the formula:

$$R_9$$

10 wherein

 R_7 , R_8 and R_9 are independently selected from the group consisting of hydrogen, CH_3 , CF_3 , OH, OCH_3 , CH_2OH and CHO; provided that at least two of the members of the group R_7 , R_8 and R_9 must be OH or OCH_3 when the remaining member of the group is hydrogen, CH_3 or CF_3 ;

15

 R_4 and R_5 are independently selected from the group consisting of hydrogen, CH_3 , and OCH_3 ; and when Y and Z are both CH, R_4 and R_5 may be further selected from OH and NH_2 ;

20

or, R_4 and R_5 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2$ -;

or, R₄ and R₅ together may form, starting from R₄, the group -NHCH₂CH₂-, -NHCOCH₂-, -OCOCH₂- or -O(CH₂)_nO-, wherein n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

41. A method of reversing Bcl-2-mediated blockage of apoptosis in cancer cells comprising contacting said cells with a compound of the formula II:

wherein

10

 R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; and NH(C₁₋₃ alkyl); and one of R_1 , R_2 , R_3 and R_4 may be phenyl or a heterocyclic ring; provided at least one of R_1 , R_2 , R_3 and R_4 must be hydrogen;

15

 R_5 and R_6 are independently selected from the group consisting of hydrogen; CN; CH₂CN; COOCH₃; CONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CH₃, OCH₃, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings; provided, only one of R_5 or R_6 may be phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic in the same compound, and further provided

that when one of R_5 or R_6 is phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic, then the other must be hydrogen;

or at least one of R_5 and R_6 may be halogen, provided that the other must be C_{1-5} alkyl or C_{1-5} alkoxy.

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH_2 or COOH substituent.

42. A method of reversing Bcl-2-mediated blockage of apoptosis in cancer cells comprising contacting said cells with a compound selected from the group consisting of compounds HA13, HA14, HA02, HA03 and HA04:

43. A method of reversing Bcl-2-mediated blockage of apoptosis in cancer cells comprising contacting said cells with a compound of the formula III:

$$\begin{array}{c|c} R_{6} & R_{3} \\ R_{7} & R_{8} \end{array}$$

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; NCH₃; O; and S;

5

R₁ is selected from the group consisting of OH; NH₂; CHO; COCH₃; COOH; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); and five- and six-member heterocyclic rings;

10

 R_2 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; OH; NH₂; CHO; COCH₃; OCOCH₃; OCOCH₂CH₃; COOCH₂CH₃; COOCH₂CH₂CH₃;

15

20

R₅ is selected from the group consisting of hydrogen CH₃; OCH₃; OH: NH₂; Br; Cl; and F; and

R₆, R₇ and R₈ are selected from the group consisting of hydrogen, CH₃; CH₂CH₃; CF₃; NH₂; OH; OCH₃; CN; NO₂; Cl; Br; F; COOH; and COOCH₃; provided, at least one member

of the group R_6 , R_7 or R_8 must be CI, Br or F when the remaining members of said group are hydrogen;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

44. A method for treating a subject afflicted with a cancer characterized by cancer cells which express Bcl-2 comprising administering to the subject an effective amount of a compound of the formula I:

$$R_4$$
 X R_2 X R_1

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; O; and S;

Y and Z are independently selected from the group consisting of CH and N; and when Z is N, then Y may further be -CR₆, where R₆ is selected from the group consisting of CH₃; OCH₃; CNH₂; and COH;

15

10

 R_1 is selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH_2 ; NO_2 ; CHO; $COCH_3$; COOH; $COOCH_3$; $N(C_{1-3} \text{ alkyl})_2$; $NH(C_{1-3} \text{ alkyl})$; $OCOCH_3$; $OCOCH_$

substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings;

R₂ is selected from the group consisting of hydrogen; C₁₋₃ alkyl; C₁₋₃ alkoxy; halogen; CF₃; NH₂; OH; COOH; COOCH₃; CONH₂; and CONHCH₃;

or, R_1 and R_2 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2$ -;

or, R₁ and R₂ together may form, starting from R₁, the group -NHCH₂CH₂-, -NHCOCH₂-, or -OCOCH₂-;

10

5

R₃ is selected from the group consisting of hydrogen; CH₃; CF₃; OCH₃; NH₂; OH; COOH; COCH₃; CH=CH₂; CH₂=CHCH₂; CH(CH₃)₂; CH₂OH; CH₂NH₂; CH₂COOH; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, OCH₃ or CF₃; five- and six-member heterocyclic rings; and a substituted phenyl group of the formula:

15

wherein

20

 R_7 , R_8 and R_9 are independently selected from the group consisting of hydrogen, CH_3 , CF_3 , OH, OCH_3 , CH_2OH and CHO; provided that at least two of the members of the group R_7 , R_8 and R_9 must be OH or OCH_3 when the remaining member of the group is hydrogen, CH_3 or CF_3 ;

 R_4 and R_5 are independently selected from the group consisting of hydrogen, CH_3 , and OCH_3 ; and when Y and Z are both CH, R_4 and R_5 may be further selected from OH and NH_2 ;

5

or, R_4 and R_5 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2$ -;

or, R_4 and R_5 together may form, starting from R_4 , the group -NHCH₂CH₂-, -NHCOCH₂-, -OCOCH₂- or -O(CH₂)_nO-, wherein n is 1, 2 or 3;

10

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

45. A method for treating a subject afflicted with a cancer characterized by cancer cells which express Bcl-2 comprising administering to the subject an effective amount of a compound of the formula II:

15 wherein

 R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; and NH(C₁₋₃ alkyl); and one of R_1 , R_2 , R_3 and R_4 may be phenyl or a heterocyclic ring; provided at least one of R_1 , R_2 , R_3 and R_4 must be hydrogen;

10

15

20

R₅ and R₆ are independently selected from the group consisting of hydrogen; CN; CH₂CN; COOCH₃; CONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CH₃, OCH₃, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen or CF₃; and five- and six-member heterocyclic rings; provided, only one of R₅ or R₆ may be phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic in the same compound, and further provided that when one of R₅ or R₆ is phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic, then the other must be hydrogen;

or at least one of R_5 and R_6 may be halogen; provided that the other must be $C_{1.5}$ alkyl or $C_{1.5}$ alkoxy.

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

46. A method for treating a subject afflicted with a cancer characterized by cancer cells which express Bcl-2 comprising administering to the subject an effective amount of a compound selected from the group consisting of compounds HA13, HA14, HA02, HA03 and HA04:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4
 O_4
 O_4
 O_4
 O_5
 O_5
 O_5
 O_7
 O_7

47. A method for treating a subject afflicted with a cancer characterized by cancer cells which express Bcl-2 comprising administering to the subject an effective amount of a compound of the formula III:

$$\begin{array}{c}
R_{6} \\
R_{7} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
R_{4} \\
R_{7} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
R_{2} \\
R_{1}
\end{array}$$

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; NCH₃; O; and S;

5

R₁ is selected from the group consisting of OH; NH₂; CHO; COCH₃; COOH; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); and five- and six-member heterocyclic rings;

10

 $R_2 \text{ is selected from the group consisting of C}_{1\text{-}3} \text{ alkyl; C}_{1\text{-}}$ $_3 \text{ alkoxy; OH; NH}_2; \text{ CHO; COCH}_3; \text{ OCOCH}_3; \text{ OCOCH}_2\text{CH}_3;$ $\text{COOH; COOCH}_3; \text{COOCH}_2\text{CH}_3; \text{ COOCH}_2\text{CH}_2\text{CH}_3;$

15

R₃ is selected from the group consisting of C₁₋₃ alkyl; C₁.

3 alkoxy; CN; CH₂CN; CH₂NO₂; CHO; COCH₃; COOH;

OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃;

NHNHCONH₂; CH=CH₂; CH₂CH=CH₂; CH₂CHO; and five- and six-member heterocyclic rings;

R₄ is selected from the group consisting of C₁₋₃ alkyl; C₁₋₃ alkoxy; CN; CH₂CN; CH₂NO₂; CHO; COCH₃; COCH₃; COOH; COOCH₃; COOCH₂CH₃; COOCH₃; COOCH₃; COOCH₃; COOCH₃; COOCH₃;

20

R₅ is selected from the group consisting of hydrogen CH₃; OCH₃; OH: NH₂; Br; Cl; and F; and

 R_6 , R_7 and R_8 are selected from the group consisting of hydrogen, CH_3 ; CH_2CH_3 ; CF_3 ; NH_2 ; OH; OCH_3 ; CN; NO_2 ; CI; P; P; P; P0 and P1 and P2 are the group P3 and P4 are the group P4 are the group P5 are the group P6 are the group P8 are the group P9 are hydrogen;

5

10

15

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

- 48. A method according to claim 44 wherein the cancer is selected from the group of cancers consisting of prostate, colorectal, gastric, non-small lung, renal and thyroid cancers, neuroblastoma, melanoma, and acute and chronic lymphocytic and non-lymphocytic leukemia.
- 49. A method according to claim 45 wherein the cancer is selected from the group of cancers consisting of prostate, colorectal, gastric, non-small lung, renal and thyroid cancers, neuroblastoma, melanoma, and acute and chronic lymphocytic and non-lymphocytic leukemia.
- 50. A method according to claim 46 wherein the cancer is selected from the group of cancers consisting of prostate, colorectal, gastric, non-small lung, renal and thyroid cancers, neuroblastoma, melanoma, and acute and chronic lymphocytic and non-lymphocytic leukemia.

20

51. A method according to claim 47 wherein the cancer is selected from the group of cancers consisting of prostate, colorectal, gastric, non-small lung, renal and thyroid cancers, neuroblastoma, melanoma, and acute and chronic lymphocytic and non-lymphocytic leukemia.

52. A method for treating a subject for an autoimmune disorder comprising administering to the subject an effective amount of a compound of the formula I:

wherein:

5

X is selected from the group consisting of CH₂; CHOCH₃; NH; O; and S;

Y and Z are independently selected from the group consisting of CH and N; and when Z is N, then Y may further be $-CR_6$, where R_6 is selected from the group consisting of CH_3 ; OCH_3 ; CNH_2 ; and COH;

10

. 15

R₁ is selected from the group consisting of hydrogen; C₁₋₅ alkyl; C₁₋₅ alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂ CH₃; NHCOCH₃; NHNHCONH₂;phenyl; phenyl which is mono-, di-, or trisubstituted with NH₂, OH, halogen, NO₂, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or trisubstituted with NH₂, OH, halogen or CF₃; and five- and sixmember heterocyclic rings;

20

 R_2 is selected from the group consisting of hydrogen; C_{1-3} alkyl; C_{1-3} alkoxy; halogen; CF_3 ; NH_2 ; OH; COOH; $COOCH_3$; $CONH_2$; and $CONHCH_3$;

or, R₁ and R₂ together may form the group - CH₂CH₂CH₂- or -CH₂CH₂CH₂CH₂-;

or, R₁ and R₂ together may form, starting from R₁, the group -NHCH₂CH₂-, -NHCOCH₂-, or -OCOCH₂-;

5

R₃ is selected from the group consisting of hydrogen; CH₃; CF₃; OCH₃; NH₂; OH; COOH; COCH₃; CH=CH₂; CH₂=CHCH₂; CH(CH₃)₂; CH₂OH; CH₂NH₂; CH₂COOH; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, OCH₃ or CF₃; five- and six-member heterocyclic rings; and a substituted phenyl group of the formula:

10

$$R_9$$
 R_7

wherein

15

 R_7 , R_8 and R_9 are independently selected from the group consisting of hydrogen, CH_3 , CF_3 , OH, OCH_3 , CH_2OH and CHO; provided that at least two of the members of the group R_7 , R_8 and R_9 must be OH or OCH_3 when the remaining member of the group is hydrogen, CH_3 or CF_3 ;

20

 R_4 and R_5 are independently selected from the group consisting of hydrogen, CH_3 , and OCH_3 ; and when Y and Z are both CH, R_4 and R_5 may be further selected from OH and NH_2 ;

or, R_4 and R_5 together may form the group - $CH_2CH_2CH_2$ - or - $CH_2CH_2CH_2$ -;

or, R₄ and R₅ together may form, starting from R₄, the group -NHCH₂CH₂-, -NHCOCH₂-, -OCOCH₂- or -O(CH₂)_aO-, wherein n is 1, 2 or 3;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

53. A method for treating a subject for an autoimmune disorder comprising administering to the subject an effective amount of a compound of the formula II:

$$R_2$$
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

wherein

 R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of hydrogen; C_{1-5} alkyl; C_{1-5} alkoxy; OH; NH₂; NO₂; CHO; COCH₃; COOH; COOCH₃; N(C_{1-3} alkyl)₂; and NH(C_{1-3} alkyl); and one of R_1 , R_2 , R_3 and R_4 may be phenyl or a heterocyclic ring; provided at least one of R_1 , R_2 , R_3 and R_4 must be hydrogen;

R₅ and R₆ are independently selected from the group consisting of hydrogen; CN; CH₂CN; COOCH₃; CONH₂; phenyl; phenyl which is mono-, di-, or tri-substituted with NH₂, OH, halogen, NO₂, CH₃, OCH₃, CF₃, COOH or COOCH₃; cyclohexyl; cyclohexyl which is mono-, di-, or tri-substituted

20

15

with NH_2 , OH, halogen or CF_3 ; and five- and six-member heterocyclic rings; provided, only one of R_5 or R_6 may be phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic in the same compound, and further provided that when one of R_5 or R_6 is phenyl, substituted phenyl, cyclohexyl, substituted cyclohexyl or heterocyclic, then the other must be hydrogen;

or at least one of R_5 and R_6 may be halogen, provided that the other must be $C_{1.5}$ alkyl or $C_{1.5}$ alkoxy.

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

54. A method for treating a subject for an autoimmune disorder comprising administering to the subject an effective amount of a compound selected from the group consisting of compounds HA13, HA14, HA02, HA03 and HA04:

55. A method for treating a subject for an autoimmune disorder comprising administering to the subject an effective amount of a compound of the formula III:

$$\begin{array}{c} R_{5} \\ R_{7} \\ R_{7} \\ R_{8} \end{array}$$

wherein:

X is selected from the group consisting of CH₂; CHOCH₃; NH; NCH₃; O; and S;

5

R₁ is selected from the group consisting of OH; NH₂; CHO; COCH₃; COOH; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); OCOCH₃; OCOCH₂CH₃; NHCOCH₃; NHNHCOCH₃; NHNHCONH₂; N(C₁₋₃ alkyl)₂; NH(C₁₋₃ alkyl); and five- and six-member heterocyclic rings;

10

 R_2 is selected from the group consisting of C_{1-3} alkyl; C_{1-3} alkoxy; OH; NH₂; CHO; COCH₃; OCOCH₃; OCOCH₂CH₃; COOCH₂CH₃; COOCH₂CH₂CH₃;

15

20

R₅ is selected from the group consisting of hydrogen CH₃; OCH₃; OH: NH₂; Br; Cl; and F; and

R₆, R₇ and R₈ are selected from the group consisting of hydrogen, CH₃; CH₂CH₃; CF₃; NH₂; OH; OCH₃; CN; NO₂; CI;

Br; F; COOH; and COOCH₃; provided, at least one member of the group R_6 , R_7 or R_8 must be CI, Br or F when the remaining members of said group are hydrogen;

or a pharmaceutically acceptable salt thereof when the compound includes at least one NH₂ or COOH substituent.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/12384

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 31/35 US CL :514/453, 454, 455, 456 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)		
U.S. : 514/454, 456		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WEST: Bcl-2, cancer, inhibition		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where app	propriate, of the relevant passages Relevant to claim No.	
A US 5,028,606 A (VENET et al.) 02 Jul	y 1991, see entire document 1-55	
Further documents are listed in the continuation of Box C	. See patent family annex.	
Special categories of cited documents:	"T" later document published after the international filing data or priority data and not in conflict with the application but cited to understand	
A document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the invention	
E earlier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step	
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be	
O document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	
P document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family	
Date of the actual completion of the international search 05 NOVEMBER 1999	Date of mailing of the international search report	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT	Authorized officer Authorized officer PARALEGAL SPECIALIST THEODORE J. CRIARES CV CHEMICAL MATRIX	
Washington, D.C. 20231 Becsimile No. (703) 305-3230	Telephone No. (703) 308-1235 B. L.	

Form PCT/ISA/210 (second sheet)(July 1992)*

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

™ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
☐ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.