Package 'dti'

September 26, 2024

Version 1.5.4.3 **Date** 2024-09-26

Title Analysis of Diffusion Weighted Imaging (DWI) Data

Author Karsten Tabelow [aut, cre],

Joerg Polzehl [aut], Felix Anker [ctb]

Maintainer Karsten Tabelow <karsten.tabelow@wias-berlin.de>

Depends R (>= 3.5.0), awsMethods (>= 1.1-1)

SystemRequirements gsl

Imports methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog

LazyData TRUE

Description Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models.

The package provides functionality to manipulate and visualize results in 2D and 3D.

License GPL (>= 2)

Copyright This package is Copyright (C) 2005-2020 Weierstrass Institute for Applied Analysis and Stochastics.

URL https://www.wias-berlin.de/research/ats/imaging/

Suggests covr

RoxygenNote 6.1.0

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-09-26 12:10:03 UTC

2 dti-package

Contents

dti-package	2
AdjacencyMatrix	5
awssigmc	6
colqFA	8
combineDWIdata	9
dkiTensor-methods	10
dti.options	11
dti.smooth-methods	12
dtiIndices-methods	14
dtiTensor-methods	15
dwi-class	17
dwi.smooth-methods	22
dwiMD-methods	24
dwiMixtensor-methods	25
dwiQball-methods	27
dwiRiceBias-methods	28
dwiSqrtODF-methods	29
extract-methods	30
getmask-methods	32
getsdofsb-methods	33
medinria	34
optgrad	35
optgradients	35
plot-methods	35
polyeder	37
print-methods	38
readDWIdata	39
sdpar-methods	41
setmask-methods	42
show-methods	43
show3d-methods	43
showFAColorScale	47
subsetg	47
summary-methods	48
tracking-methods	49
	52

Index

3 dti-package

Description

Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.

Details

The DESCRIPTION file:

Package: dti Version: 1.5.4.3 Date: 2024-09-26

Title: Analysis of Diffusion Weighted Imaging (DWI) Data

Authors@R: c(person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), pe

Author: Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]

Maintainer: Karsten Tabelow karsten.tabelow@wias-berlin.de

R (>= 3.5.0), awsMethods (>= 1.1-1) Depends:

SystemRequirements: gsl

Imports: methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog

LazyData: **TRUE**

Description: Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffus

License: GPL (>= 2)

Copyright: This package is Copyright (C) 2005-2020 Weierstrass Institute for Applied Analysis and Stochastics.

URL: https://www.wias-berlin.de/research/ats/imaging/

Suggests: covr RoxygenNote: 6.1.0

Index of help topics:

AdjacencyMatrix Create an adjacency matrix from fiber tracking

results

Estimate noise variance for multicoil MR awssigmc

systems

colgFA FA map color scheme

combineDWIdata Combine two objects of class "dtiData")

dkiTensor-methods Diffusion Kurtosis Imaging (DKI)

dti-package Analysis of Diffusion Weighted Imaging (DWI)

Data

dti.options Set and manipulate image orientations for

plots.

dti.smooth-methods Methods for Function 'dti.smooth' in Package

'dti'

4 dti-package

dtiIndices-methods Methods for Function 'dtiIndices' in Package

'dti'

dtiTensor-methods Methods for Function 'dtiTensor' in Package

'dti'

dwi-class Class "dwi" dwi.smooth-methods Smooth DWI data

dwiMD Methods for Mean Diffusivity in Package 'dti'

dwiMixtensor-methods Methods for Function 'dwiMixtensor' in Package

'dti'

'dti'

dwiRiceBias-methods Correction for Rician Bias

dwiSqrtODF-methods Methods for positive definite EAP and ODF

estimation in Package 'dti'

extract-methods Methods for Function 'extract' and '[' in

Package 'dti'

medinria Read/Write Diffusion Tensor Data from/to NIFTI

File

optgrad Optimal gradient directions

optgradients Optimal gradient directions for number of

gradients between 6 and 162

plot-methods Methods for Function 'plot' in Package 'dti'
polyeder Polyeders derived from the Icosahedron (icosa0)

by sequential triangulation of surface

triangles

print-methods Methods for Function 'print' in Package 'dti'

readDWIdata Read Diffusion Weighted Data

sdpar-methods Methods for Function 'sdpar' in Package 'dti'
setmask-methods Methods for Function 'setmask' in Package 'dti'
show-methods Methods for Function 'show' in Package 'dti'
show3d-methods Methods for Function 'show3d' in Package 'dti'
showFAColorScale Writes an image with the colqFA colorscale to

disk.

subsetg Create an objects of class "dtiData" containing

only a subset of gradient directions.

summary-methods Methods for Function 'summary' in Package 'dti' tracking-methods Methods for Function 'tracking' in Package

'dti'

Author(s)

Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]

Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>

AdjacencyMatrix 5

References

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

- S. Mohammadi, K. Tabelow, L. Ruthotto, Th. Feiweier, J. Polzehl, and N. Weiskopf, *High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing*, 8 (2015), 427.
- S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, and J. Polzehl, *Adaptive smoothing of multishell diffusion weighted magnetic resonance data by msPOAS*, NeuroImage 95 (2014), pp. 90-105.
- S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann and J. Polzehl, *Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS)*, Medical Image Analysis, 16 (2012), pp. 1142-1155.
- J. Polzehl and K. Tabelow, *Beyond the diffusion tensor model: The package* **dti**, Journal of Statistical Software, 44 no. 12 (2011) pp. 1-26.
- K. Tabelow, H.U. Voss and J. Polzehl, *Modeling the orientation distribution function by mixtures of angular central Gaussian distributions*, Journal of Neuroscience Methods, 203 (2012), pp. 200-211.
- J. Polzehl and K. Tabelow, *Structural adaptive smoothing in diffusion tensor imaging: The R package dti*, Journal of Statistical Software, 31 (2009) pp. 1–24.
- K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. *Diffusion Tensor Imaging: Structural adaptive smoothing*, NeuroImage 39(4), 1763-1773 (2008).

See Also

fmri aws oro.nifti

Examples

```
## Not run: demo(dti_art)
## Not run: demo(mixtens_art)
```

AdjacencyMatrix

Create an adjacency matrix from fiber tracking results

Description

The function takes two objects, fiberobj with class 'dwiFiber' containing fiber tracking results and an array or nifti-object containing atlas information. For each combination of regions defined in the atlas the number of fibers connecting these regions is calculated, resulting in a matrix of fiber counts. As default this matrix is standardized and the diagonal elements are set to zero.

Usage

```
AdjacencyMatrix(fiberobj, atlas, labels = NULL,
  method = c("standardize", "counts"), diagelements = FALSE,
  symmetric=TRUE, verbose = FALSE)
```

6 awssigme

Arguments

fiberobi an object of class 'dwiFiber' atlas an object of class 'array' or 'nifti' containing region indices as intensities. The atlas needs to be registered to DWI (subject) space, with array dimension corresponding to fiberobj@ddim labels optional labels for the regions. Will be used as dimnames of the resulting matrix. method either "standardize" or "counts", determines if fiber counts or a standardized (default) matix is returned. diagelements logical, if FALSE the diagonal elements of the standardized matrix are set to zero (default). symmetric logical, with ni the number of fibers originating if FALSE standardized values counts(i,j)/ni, if TRUE we get counts(i,j)/sqrt(nj*nj). logical, if TRUE report pairwise fiber counts. verbose

Value

A matrix with dimensions equal to the number of regions defined in the atlas and dimnames given by labels or by the region number. The matrix contains fiber counts or values standardized with the number of fibers ni, nj originating/ending from the pair of regions. Depending on symmetric standardization is with 1/sqrt(ni*nj) or with 1/ni.

Author(s)

Joerg Polzehl <polzehl@wias-berlin.de>

See Also

dwiFiber

awssigmc	Estimate noise variance for multicoil MR systems	

Description

The distribution of image intensity values S_i divided by the noise standard deviation in K-space σ in dMRI experiments is assumed to follow a non-central chi-distribution with 2L degrees of freedom and noncentrality parameter η , where L refers to the number of receiver coils in the system and $\sigma\eta$ is the signal of interest. This is an idealization in the sense that each coil is assumed to have the same contribution at each location. For realistic modeling L should be a locally smooth function in voxel space that reflects the varying local influence of the receiver coils in the the reconstruction algorithm used.

The functions assume L to be known and estimate either a local (function awslsigmc) or global (function awssigmc) σ employing an assumption of local homogeneity for the noncentrality parameter η .

Function afsigmc implements estimates from Aja-Fernandez (2009). Function aflsigmc implements the estimate from Aja-Fernandez (2013).

awssigme 7

Usage

Arguments

y 3D array, usually obtained from an object of class dwi as obj@si[,,,i] for

some i, i.e. one 3D image from an dMRI experiment.

steps number of steps in adaptive weights smoothing, used to reveal the unerlying

mean structure.

mask restrict computations to voxel in mask, if is.null(mask) all voxel are used. In

function afsigmc mask should refer to background for method %in% c("modem1chi", "bkm2chi", "bkm1e

and to voxel within the head for method=="modevn".

ncoils number of coils, or equivalently number of effective degrees of freedom of non-

central chi distribution divided by 2.

vext voxel extentions

lambda scale parameter in adaptive weights smoothing

h0 initial bandwidth

verbose if verbose==TRUE density plots and quantiles of local estimates of sigma are

provided.

trace if trace==TRUE intermediate results for each step are returned in component

tergs for all voxel in mask.

sequence if sequence=TRUE a vector of estimates for the noise standard deviation sigma

for the individual steps is returned instead of the final value only.

hadj adjustment factor for bandwidth (chosen by bw.nrd) in mode estimation

q quantile to be used for interquantile-differences.

quantile of distribution of actual sum of weights $N_i = \sum_j w_{ij}$ in adaptive

smoothing. Only voxel i with $N_i > q_{qni}(N)$ are used for variance estimation.

Should be larger than 0.5.

method in case of function awssigme the method for variance estimation, either "VAR"

(variance) or "MAD" (mean absolute deviation). In function afsigmc see last

column in Table 2 in Aja-Fernandez (2009).

level threshold for background separation. Used if !is.null(level) to redefine

mask

h bandwidth for local avaeraging

8 colqFA

minni Minimum sum of weights for updating values of sigma.

hsig Bandwidth of the median filter.

sigma Initial estimate for sigma

family One of "Gauss" or "NCchi" (default) defining the probability distribution to

use.

u if verbose==TRUE an array of noncentrality paramters for comparisons. Internal

use for tests only

Value

a list with components

sigma either a scalar or a vector of estimated noise standard deviations.

theta the estimated mean structure

Author(s)

J\"org Polzehl <polzehl@wias-berlin.de>

References

K. Tabelow, H.U. Voss, J. Polzehl, Local estimation of the noise level in MRI using structural adaptation, Medical Image Analysis, 20 (2015), pp. 76–86.

colqFA FA map color scheme

Description

Color map implementing the FA color scheme develop at Uniklinikum Muenster (M. Deppe)

Usage

colqFA

Format

A vector with 256 RGB color values.

combineDWIdata 9

combineDWIdata Combine two objects of class "dtiData")
--

Description

This function creates a dtiData-object from two compatible dtiData-objects. Compatible means that the spatial dimensions coincide, but gradients and b-values may be different.

Usage

```
combineDWIdata(x1, x2, s0strategy = "first")
```

Arguments

x1 Object of class "dtiData" x2 Object of class "dtiData"

søstrategy Character, dete

Character, determines how the unweighted S0 images are handled. Six strategies are implemented. s0strategy="first" copies the S0 images from object x1, s0strategy="second" copies the S0 images from object x2, s0strategy="both" used the S0 images from both objects. s0strategy="rfirst" creates one average S0 image from object x1, s0strategy="rsecond" creates one average S0 image from object x2, s0strategy="rboth" creates one average S0 image from the S0 images in both objects.

Details

The function can be used to merge two objects of class "dtiData" under the condition that the information in slot ddim in both objects is identical. Also slots voxelext, orientation and rotation should be indentical.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>

See Also

```
dtiData, readDWIdata, dtiData, subsetg
```

10 dkiTensor-methods

dkiTensor-methods

Diffusion Kurtosis Imaging (DKI)

Description

These methods estimate, in each voxel, the diffusion kurtosis tensor (and the diffusion tensor) and some scalar indices.

Usage

Arguments

object	Object of class "dtiData"
method	Method for tensor estimation. May be "CLLS-QP" for a qudratic programm solution for the constrained optimization (requires package quadprog), "CLLS-H" for a heuristic approximation described in Tabesh et al. (2011), or "ULLS" for an unconstrained linear least squares estimation. "QL" and "NLR" correspond to the use of unconstrained quasi-likelihood and nonlinear regression, respectively.
sigma	Scale parameter of intensity distribution (unprocessed). Used with $method="QL"$ in the calculation of the expected intensity values.
L	Effective number of coils, 2*L are the degrees of freedom of the intensity distribution (unprocessed). The default corresponds, e.g., to the case of a SENSE reconstruction. Used with method="QL" in the calculation of the expected intensity values.
mask	argument to specify a precomputed brain mask
mc.cores	Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods . Not yet fully implemented for these methods.

Value

verbose

An object of class "dkiTensor" or "dkiIndices".

Verbose mode.

dti.options 11

Methods

```
signature(object = "ANY") Returns a warning
```

signature(object = "dtiData") The method "dkiTensor" estimates the diffusion kurtosis model, i.e., the kurtosis tensor and the diffusion tensor.

signature(object = "dkiTensor") The method "dkiIndices" estimates some scalar indices from the kurtosis tensor. The method is still experimental, some quantities may be removed in future versions, other might be included.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

References

A. Tabesh, J.H. Jensen, B.A. Ardekani, and J.A. Helpern, *Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging*, Magnetic Resonance in Medicine, 65, 823-836 (2011).

E.S. Hui, M.M. Cheung, L. Qi, and E.X. Wu, *Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis*, Neuroimage, 42, 122-134 (2008).

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

https://www.wias-berlin.de/projects/matheon_a3/

See Also

dtiData, readDWIdata, dtiData, dkiTensor dkiIndices

dti.options

Set and manipulate image orientations for plots.

Description

The function can be used to adjust to radiological conventions in image displays.

Usage

```
dti.options(...)
```

Arguments

The following parameters can be used to determine the behaviour of the plot method for 3D image data in subsequent calls:

- swapx swap image x axis for display
- swapy swap image y axis for display
- swapz swap image z axis for display

all default to FALSE.

12 dti.smooth-methods

Value

returns specified display orientations.

Author(s)

Joerg Polzehl < polzehl@wias-berlin.de>

dti.smooth-methods Methods for Function 'dti.smooth' in Package 'dti'

Description

The function provides structural adaptive smoothing for diffusion weighted image data within the context of an diffusion tensor (DTI) model. It implements smoothing of DWI data using a structural assumption of a local (anisotropic) homogeneous diffusion tensor model (in case a "dtiData"-object is provided). It also implements structural adaptive smoothing of a diffusion tensor using a Riemannian metric (in case a "dtiTensor"-object is given), although we strictly recommend to use the first variant due to methodological reasons.

Usage

Arguments

object	Either an object of class "dtiData" or an object of class "dtiTensor"
hmax	Maximal bandwidth
hinit	Initial bandwidth (default 1)
lambda	Critical parameter (default 20)
tau	Critical parameter for orientation scores (default 10)
rho	Regularization parameter for anisotropic vicinities (default 1)
graph	"logical": Visualize intermediate results (default FALSE)
slice	slice number, determines the slice used in visualization
quant	determines minfa as corresponding quantile of FA if is.null(minfa)
minfa	minimal anisotropy index (FA) to use in visualization
hsig	bandwidth for presmoothing of variance estimates
lseq	sequence of correction factors for lambda
method	Method for tensor estimation. May be "linear", "nonlinear"

dti.smooth-methods 13

rician	"logical": apply a correction for Rician bias. This is still experimental and depends on spatial independence of errors.
niter	Maximum number of iterations for tensor estimates using the nonlinear model.
result	Determines the created object. Alternatives are "Tensor" for create a dtiTensor- object and "dtiData" for a dtiData-object containing a smoothed data cube.

Value

An object of class dtiTensor.

Methods

object = "ANY" Returns a warning.

object = "dtiData" We highly recommend to use the method dti.smooth on DWI data directly, i.e. on an object of class "dtiData", due to methodological reasons, see Tabelow et al. (2008). It is usually not necessary to use any other argument than hmax, which defines the maximum bandwidth of the iteration.

If model=="linear" estimates are obtained using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008). model=="nonlinear" uses a nonlinear regression model with reparametrization that ensures the tensor to be positive semidefinite, see Koay et.al. (2006). If varmethod=="replicates" the error variance is estimated from replicated gradient directions if possible, otherwise (default) an estimate is obtained from the residual sum of squares. If volseq==TRUE the sum of location weights is fixed to 1.25^k within iteration k (does not depend on the actual tensor). Otherwise the ellipsoid of positive location weights is determined by a bandwidth $h_k = 1.25(k/3)$.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>

References

- J. Polzehl and K. Tabelow, *Beyond the diffusion tensor model: The package* **dti**, Journal of Statistical Software, to appear.
- K. Tabelow, H.U. Voss and J. Polzehl, *Modeling the orientation distribution function by mixtures of angular central Gaussian distributions*, Journal of Neuroscience Methods, to appear.
- J. Polzehl and K. Tabelow, *Structural adaptive smoothing in diffusion tensor imaging: The R package dti*, Journal of Statistical Software, 31 (2009) pp. 1–24.
- K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. *Diffusion Tensor Imaging: Structural adaptive smoothing*, NeuroImage 39(4), 1763-1773 (2008).

https://www.wias-berlin.de/projects/matheon_a3/

See Also

 $\tt dtiData, readDWIdata, dtiTensor-methods, dtiIndices-methods, medinria, dtiData, dtiTensor, dtiIndices$

14 dtiIndices-methods

dtiIndices-methods

Methods for Function 'dtiIndices' in Package 'dti'

Description

The method creates estimates of the fractional anisotropy (FA) and relative anisotropy (RA) indices, the main directions of anisotropy and several statistics used for visualization.

Usage

```
## S4 method for signature 'dtiTensor'
dtiIndices(object, mc.cores = setCores(,reprt=FALSE))
```

Arguments

object Object of class "dtiTensor"

mc.cores Number of cores to use. Defaults to number of threads specified for openMP,

see documentation of package awsMethods. Our experience suggests to use 4-6

cores if available.

Value

An object of class "dtiIndices".

Methods

```
obj = "ANY" Returns a warning.
```

obj = "dtiTensor" Estimate tensor indices like trace, fractional and geodesic anisotropy, main diffusion direction and shape parameters.

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>
```

References

- J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
- J. Polzehl and K. Tabelow, *Beyond the diffusion tensor model: The package* **dti**, Journal of Statistical Software, to appear.
- K. Tabelow, H.U. Voss and J. Polzehl, *Modeling the orientation distribution function by mixtures of angular central Gaussian distributions*, Journal of Neuroscience Methods, to appear.
- J. Polzehl and K. Tabelow, *Structural adaptive smoothing in diffusion tensor imaging: The R package dti*, Journal of Statistical Software, 31 (2009) pp. 1–24.

dtiTensor-methods 15

K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. *Diffusion Tensor Imaging: Structural adaptive smoothing*, NeuroImage 39(4), 1763-1773 (2008).

```
https://www.wias-berlin.de/projects/matheon_a3/
```

See Also

```
medinria, dtiTensor-methods, dtiTensor, dtiIndices
```

Examples

```
## Not run: demo(dti_art)
```

dtiTensor-methods

Methods for Function 'dtiTensor' in Package 'dti'

Description

The method estimates, in each voxel, the diffusion tensor from the DWI data contained in an object of class "dtiData".

Usage

Arguments

object	Object of class "dtiData"
method	Method for tensor estimation. May be "linear", or "nonlinear". method=="quasi-likelihood" solves the nonlinear regression problem with the expected value of the signal as regression function and weighting according to the signal variance.
sigma	(local) scale parameter of the signal's distribution.
L	(local) effective degrees of freedom.
mask	argument to specify a precomputed brain mask
mc.cores	Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods . Our experience suggests to use 4-6 cores if available.

Value

An object of class "dtiTensor".

16 dtiTensor-methods

Methods

obj = "ANY" Returns a warning.

obj = "dtiData" Estimate diffusion tensor from data in each voxel with the different options for the regression type and model for variance estimation. If method=="linear" estimates are obtained using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008). method=="nonlinear" uses a nonlinear regression model with reparametrization that ensures the tensor to be positive semidefinite, see Koay et.al. (2006). The imlementation is based on R's internal C code for the BFGS optimization. method=="quasi-likelihood" solves the nonlinear regression problem with the expected value of the signal as regression function and weighting according to the signal variance. Tis requires additional parameters sigma and L characterizing the distribution of the signal. If varmethod=="replicates" the error variance is estimated from replicated gradient directions if possible, otherwise an estimate is obtained from the residual sum of squares. If varmodel=="global" a homogeneous variance is assumed and estimated as the median of the local variance estimates. sigma and 2*L are the scale parameter and degrees of freedom of the (local) signal distribution. L characterizes the effective number of coils. Both parameters are either scalars or arrays of the size of the images.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>

References

- J. Polzehl and K. Tabelow, *Beyond the diffusion tensor model: The package* **dti**, Journal of Statistical Software, 44(12), 1-26 (2011).
- K. Tabelow, H.U. Voss and J. Polzehl, *Modeling the orientation distribution function by mixtures of angular central Gaussian distributions*, Journal of Neuroscience Methods, 203(1), 200-211 (2012).
- J. Polzehl and K. Tabelow, *Structural adaptive smoothing in diffusion tensor imaging: The R package dti*, Journal of Statistical Software, 31(9) 1-24 (2009).
- K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. *Diffusion Tensor Imaging: Structural adaptive smoothing*, NeuroImage 39(4), 1763-1773 (2008).
- C.G. Koay, J.D. Carew, A.L. Alexander, P.J. Basser and M.E. Meyerand. *Investigation of Anomalous Estimates of Tensor-Derived Quantities in Diffusion Tensor Imaging*, Magnetic Resonance in Medicine, 2006, 55, 930-936.
- J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

https://www.wias-berlin.de/projects/matheon_a3/

See Also

 $\tt dtiData, readDWIdata, dtiIndices-methods, medinria, dtiData, dtiTensor dwiMixtensor dwiMixte$

Examples

Not run: demo(dti_art)

dwi-class Class "dwi"

Description

The family of "dwi" classes is used for Diffusion Weighted Imaging (DWI) data and, within the Diffusion Tensor Model (DTI), diffusion tenors and its indices.

Objects from the Class

"dwi" is only a superclass, no instances should be created. However, objects can be created by calls of the form new("dwi", ...). "dtiData", "dtiTensor", and "dtiIndices" can be created from their correspondingly named functions and methods.

Slots

.Data: Object of class "list", usually empty.

gradient: Object of class "matrix", matrix of dimension c(3,ngrad) containing gradient directions.

btb: Object of class "matrix", matrix of dimension c(6,ngrad) obtained from gradient directions.

bvalue: Object of class "numeric", of length ngrad containing b-values if available.

ngrad: Object of class "integer", number of gradients (including zero gradients).

solind: Object of class "integer", index of zero gradients within the sequence 1:ngrad.

replind: Object of class "integer", index (identifier) of unique gradient directions. Used to characterize replications in the gradient design by identical indices. length is ngrad.

ddim: Object of class "integer", dimension of subcube defined by xind, yind and zind.

ddim0: Object of class "integer", dimension of original image cubes. Vector of length 3.

xind, yind, zind: Objects of class "integer", index for subcube definition in x-, y- and z-direction.

voxelext: Object of class "numeric", voxel extensions in x-, y- and z-direction. Vector of length 3.

orientation: Object of class "integer", orientation of data according to AFNI convention. Vector of length 3.

rotation: Object of class "matrix", optional rotation matrix for gradient directions.

level: Object of class "numeric", minimal valid S0-level. No evaluation will be performed for voxels with S0-values less than level.

source: Object of class "character", name of the source imgage file or source directory.

call: Object of class "call", call that created the object.

For class "dtiData":

si: Object of class "array", Diffusion Weighted Data.

sdcoef: Object of class "numeric", Parameters of the model for error standard deviation as a function of the mean. First two entries refer to intercept and slope of a linear function, third and fourth value are the endpoints of the interval of linearity. Contains rep(0,4) if not set. If the function

For class "dtiTensor":

D: Object of class "array", estimated tensors, dimension c(6,ddim). Tensors are stored as upper diagonal matrices.

th0: Object of class "array", estimated intensities in S0 images, dimension ddim

sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions

bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor

method: Object of class "character", either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dtiIndices":

fa: Object of class "array", Fractional anisotropy values (FA)

ga: Object of class "array", Geodetic anisotropy values (GA)

md: Object of class "array", Mean diffusivity values (MD)

andir: Object of class "array", Main directions of anisotropy

bary: Object of class "array", Shape parameters

method: Object of class "character" either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dkiTensor":

D: Object of class "array", estimated tensors, dimension c(6,ddim). Tensors are stored as upper diagonal matrices.

W: Object of class "array", estimated kurtosis tensors, dimension c(15, ddim).

th0: Object of class "array", estimated intensities in S0 images, dimension ddim

sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions

bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor

method: Object of class "character", either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dkiIndices":

fa: Object of class "array", Fractional anisotropy values (FA)

ga: Object of class "array", Geodetic anisotropy values (GA)

md: Object of class "array", Mean diffusivity values (MD)

andir: Object of class "array", Main directions of anisotropy

bary: Object of class "array", Shape parameters

k1: Object of class "array", Kurtosis along DT (Hui et al. 2008)

k2: Object of class "array", Kurtosis along DT (Hui et al. 2008)

k3: Object of class "array", Kurtosis along DT (Hui et al. 2008)

mk: Object of class "array", Mean kurtosis (Hui et al. 2008)

mk2: Object of class "array", Mean Kurtosis (Tabesh et al. (2011))

kaxial: Object of class "array", Axial kurtosis (Hui et al. 2008)

kradial: Object of class "array", Radial kurtosis (Hui et al. 2008)

fak: Object of class "array", Kurtosis anisotropy (Hui et al. 2008)

method: Object of class "character" either "linear" or "nonlinear" or "unknown". Indicates the regression model used for estimating the tensors.

For class "dwiQball":

order: Object of class "integer", maximal order of Spherical Harmonics to use, needs to be even.

forder: Object of class "integer", maximal order Gaussian-Laguerre functions in SPF basis (for EAP estimation)

zeta: Object of class "numeric", Scale parameter used in Gaussian-Laguerre functions (for EAP estimation)

lambda: Object of class "numeric", nonnegative regularization parameter.

sphcoef: Object of class "array", estimated coefficients for spherical harmonics, dimension c((order+1)*(order+2)/2,ddim).

sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions

bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dwiQball

what: Object of class "character", "ODF", "wODF", "aODF" or "ADC". Indicates if the object contains coefficients of the orientation density function (ODF (Descoteaux 2007), wODF (Sapiro(2009) or aODF) or the apparent diffusion coefficient (ADC). Coefficients are computed with respect to spherical harmonics of the specified order.

For class "dwiFiber":

fibers: Object of class "matrix", Matrix of fibers. The first three columns contain the coordinates of the track points, the last three columns the direction vectors for each of these points.

startind: Object of class "integer", indices for the first dimension of fibers where coordinates for a new fiber start.

roix: Object of class "integer", coordinate range of region of interest in x-direction

roiy: Object of class "integer", coordinate range of region of interest in x-direction

roiz: Object of class "integer", coordinate range of region of interest in x-direction

method: Object of class "character", fiber tracking method.

minfa: Object of class "numeric", minimal fractional anisotropy index

maxangle: Object of class "numeric", maximal angle between fibres.

For class "dwiMixtensor":

model: Object of class "character", characterizes the type of the mixed tensor model. Currently the only implemented model is model="homogeneous_prolate".

ev: Object of class "array", estimated eigenvalues, dimension c(2,ddim)

mix: Object of class "array", estimated mixture coefficients, dimension c(nmix, ddim). nmix is the number of mixture components specified.

orient: Object of class "array", estimated tensor orientations, dimension c(2, nmix, ddim)

th0: Object of class "array", estimated intensities in S0 images, dimension ddim

sigma: Object of class "array", estimated error variances if method=="linear", zero otherwise.

scorr: Object of class "numeric", estimated spatial correlations in coordinate directions

bw: Object of class "numeric", bandwidth for a Gaussian kernel that approximately creates the estimated spatial correlations. Needed for adjustments of critical values in the adaptive smoothing algorithm used in function dti.smooth

mask: Object of class "array", logical indicating the voxel where the tensor was estimated.

hmax: Object of class "numeric", maximal bandwidth in case of adaptive smoothing, 1 otherwise.

outlier: Object of class "numeric", index of voxel where physical constraints are not met, i.e. where the observed values in gradient images Si were larger than the corresponding S0 values. These are probably motion effects or registration errors. Values are replaced by the corresponding (mean) S0 values.

scale: Numerical value corresponding to the 95% quantile of the maximal eigenvalues of estimated tensors within the mask. Used for scaling in function show3d.dtiTensor

method: Object of class "character", either "mixtensor" or "Jian". Indicates the regression model used for estimating the tensors.

Methods

Methods only operate on subclasses "dtiData", "dtiTensor", "dtiIndices", "dwiQball" and "dwiFiber".

dti.smooth Create estimates of diffusion tensors in each voxel using structural adaptive spatial smoothing.

dtiTensor signature(object = "dtiData"): Create estimates of diffusion tensors in each voxel.

dtiIndices signature(object = "dtiTensor"): Create estimates of diffusion tensors indices in each voxel.

tracking signature(object = "dtiTensor") or signature(object = "dtiIndices"): Fiber tracking.

dtiQball signature(object = "dtiData"): Create estimates of ADC-parameters with respect to a sherical harmonics ortho-normal system.

show3d Method for Function 'show3d' in Package 'dti'.

plot Method for Function 'plot' in Package 'dti'.

print Method for Function 'print' in Package 'dti'.

summary Method for Function 'summary' in Package 'dti'.

Author(s)

Karsten Tabelow < tabelow@wias-berlin.de>
J\"org Polzehl < polzehl@wias-berlin.de>

References

J. Polzehl and K. Tabelow, *Beyond the diffusion tensor model: The package* **dti**, Journal of Statistical Software, to appear.

K. Tabelow, H.U. Voss and J. Polzehl, *Modeling the orientation distribution function by mixtures of angular central Gaussian distributions*, Journal of Neuroscience Methods, to appear.

22 dwi.smooth-methods

J. Polzehl and K. Tabelow, *Structural adaptive smoothing in diffusion tensor imaging: The R package dti*, Journal of Statistical Software, 31 (2009) pp. 1–24.

K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. *Diffusion Tensor Imaging: Structural adaptive smoothing*, NeuroImage 39(4), 1763-1773 (2008).

See Also

dtiData, readDWIdata, sdpar-methods, getsdofsb-methods, dwiRiceBias-methods, dtiTensor-methods, dwiMixtensor-methods, dti.smooth-methods, dwi.smooth-methods, dtiIndices-methods, dwiQball-methods, tracking-methods, show3d-methods, plot-methods, print-methods, summary-methods, extract-methods

dwi.smooth-methods

Smooth DWI data

Description

Adaptive smoothing of DWI data. Smoothing is performed both in space and on the sphere (e.g. between images obtained for different gradient directions) employing a natural geometrical distance (in SE(3)). Structural adaptation is used in space only. Method dwi.smooth refers to the original POAS approach for single shell data. Method dwi.smooth.ms implements an improved method that is applicable for both single and multi-shell data.

Usage

Arguments

object	Object of class "dtiData"
kstar	Number of steps in structural adaptation
lambda	Scale parameter in adaptation
kappa0	determines amount of smoothing on the sphere. Larger values correspond to stronger smoothing on the sphere. If kappa@=NULL a value is that corresponds to a variace reduction with factor vred on the sphere.
ncoils	Number of coils in MR system
sigma	Error standard deviation. Assumed to be known and homogeneous in the current implementation. A reasonable estimate may be defined as the modal value of standard deviations obtained using method getsdofsb.

dwi.smooth-methods 23

level	Threshold for image intensities when setting mask.
mask	Binary 3D image defining a mask
vred	Used if kappa0=NULL to specify the variance reduction on the sphere when suggesting a value of kappa0
xind	index for x-coordinate
yind	index for y-coordinate
zind	index for z-coordinate
verbose	If verbose=TRUE additional reports are given.
dist	Distance in SE3. Reasonable values are 1 (default, see Becker et.al. 2012), 2 (a slight modification of 1: with k6^2 instead of abs(k6)) and 3 (using a 'naive' distance on the sphere)
model	Determines which quantities are smoothed. Possible values are "Chi" for observed values (assumed to be distributed as noncentral Chi with 2*ncoils degrees of freedom), "Chi2" for squares of observed values (assumed to be distributed as noncentral Chi-squared with 2*ncoils degrees of freedom). "Gapprox" and "Gapprox2" use a Gaussian approximation for the noncentral Chi distribution to smooth ovserved and squared values, respectively.
ws0	Factor to downweight information from S0 images, defaults to 1/numer of s0 images.
usemaxni	If "usemaxni==TRUE" a strikter penalization is used.
memrelease	If "memrelease==TRUE" try to release allocated memory whenever possible.

Value

An object of class "dtiData" with smoothed diffusion weighted images.

Methods

```
signature(object) = "ANY" Returns a warning.
signature(object) = "dtiData" Smoothing of DWI data
```

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de> \normalfont{J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

```
dtiData, dtiData,
```

24 dwiMD-methods

dwiMD-methods

Methods for Mean Diffusivity in Package 'dti'

Description

Compute mean diffusivity (MD) from dtiData or dtiTensor objects

Usage

```
## S4 method for signature 'dtiData'
dwiMD(object, eps=.05)
  ## S4 method for signature 'dtiTensor'
dwiMD(object)
```

Arguments

object Object of class "dtiData" or "dtiTensor"

eps tolerance in search for good gradient combinations.

Value

Array of mean diffusivities.

Methods

```
signature(object = "ANY") Returns a warning
signature(object = "dtiData") searches for three gradients that enable best MD evaluation.
    Returns MD.
signature(object = "dtiTensor") calculates MD values from estimated difusion tensors
```

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

See Also

```
dtiData, dtiTensor,
```

dwiMixtensor-methods 25

dwiMixtensor-methods Methods for Function 'dwiMixtensor' in Package 'dti'

Description

The method estimates, in each voxel, a mixture of radial symmetric tensors from the DWI data contained in an object of class "dtiData".

Usage

Arguments

object	Object of class "dtiData"
maxcomp	Maximal number of mixture components.
model	Specifies the mixture model used. "MT" corresponds to a mixture of prolate tensors, "MTiso" includes an isotropic compartment, "MTisoFA" additionally fixes FA to the value given in argument fa and "MTisoEV" uses eigenvalues specified by fa and lambda.
fa	Value for FA in case of model="MTisoFA" or model="MTisoEV"
lambda	Value for first eigenvalue in case of model="MTisoEV"
mask	Brain mask
reltol	Relative tolerance for R's optim() function.
maxit	Maximal number of iterations in R's optim() function.
ngc	provide information on number of voxel processed, elapsed time and estimated remaining time after ngc voxel.
nguess	number of guesses in search for initial estimates
msc	Criterion used to select the order of the mixture model, either BIC (Bayes Information Criterion) AIC (Akaike Information Criterion) or AICC ((Bias-)Corrected Akaike Information Criterion). None may be specified to only correct for underestimation of variances.
mtobj1	For method "dwiMtCombine" an "dwiMixtensor"-object.
where	Mask of voxel for which "dwiMtImprove" or "dwiMtCombine" should be per-

formed.

26 dwiMixtensor-methods

mtobj2 For method "dwiMtCombine" an "dwiMixtensor"-object obtained from the same

"dwiData" object. The maximum number of components in mtobj2 should preferably be less or equal to the maximum number of components in mtobj1.

mc.cores Number of cores to use. Defaults to number of threads specified for openMP,

see documentation of package awsMethods. Our experience suggests to use 4-6

cores if available.

Details

For model=="MT" the function estimates, in each voxel, a mixture of radial symmetric (prolate) tensors from the DWI data contained in an object of class "dtiData". The number of mixture components is selected depending on the data, with a maximum number of components specified by maxcomp. Optimization is performed usin R's internal BFGS code with mixture weights (volumes of compartments corresponding to a tensor component) computed using the Lawson-Hannson NNLS code. model=="MT" is only available for single shell data. In case of model=="MTiso" the model additionally contains an isotropic compartment. Optimization uses the internal L-BFGS-B code. model=="MTisoFA" and model=="MTisoEV" fix FA and eigenvalues of the prolate tensors, respectively, in the tensor mixture model with isotropic compartment.

The method "dwiMtCombine" enables to combine results obtained for the same dwi data set with different specifications, e.g. for maximum number of components mcomp and settings that influence initial estimates. The combined result contains in each voxel the best result from both reconstructions with respect to the specified model selection criterion msc.

Value

An object of class "dwiMixtensor".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>

References

Jian et al. (2007), A novel tensor distribution model for the diffusion-weighted MR signal, *NeuroImage* **37**, 164–176.

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

See Also

dtiData, readDWIdata, medinria, dtiData, dwiMixtensor

Examples

```
## Not run: demo(mixtens_art)
```

dwiQball-methods 27

dwiQball-methods

Methods for Function 'dwiQball' in Package 'dti'

Description

The method estimates, in each voxel, the coefficients of an expansion of the apparent diffusion cefficient (ADC) with respect to a apherical harmonics orthonormal system from the DWI data contained in an object of class "dtiData".

Usage

```
## S4 method for signature 'dtiData'
dwiQball(object, what="wODF", order=4, lambda=0, mask=NULL)
```

Arguments

object Object of class "dtiData"

what Determines quantity to estimate, coefficients of the orientation density function

(ODF) (what="ODF", what="wODF", what="aODF") or the apparent diffusion coefficient (ADC) (what="ADC") with respect to spherical harmonics of the up to

the specified order.

order even integer: maximum order of the sperical harmonics expansion

lambda nonnegative regularization parameter.

mask optional brain mask

Value

An object of class "dwiQball".

Methods

```
obj = "ANY" Returns a warning.
```

obj = "dtiData" Estimate, in each voxel, the coefficients of an expansion of the orientation density function (ODF) or the apparent diffusion coefficient (ADC) with respect to a apherical harmonics orthonormal system. Note that the maxima of the ADC have no direct interpretation as fibre orientations.

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>
```

References

- M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, *Regularized, Fast and Robust Analytical Q-Ball Imaging*, Magnetic Resonance Methods, 2007, 58, 497-512.
- J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

28 dwiRiceBias-methods

See Also

dtiData, readDWIdata, dtiIndices-methods, medinria, dtiData, dtiTensor

Examples

```
## Not run: demo(dti_art)
```

dwiRiceBias-methods

Correction for Rician Bias

Description

Correction for Rician Bias assuming known variance parameter

Usage

```
## S4 method for signature 'dtiData'
dwiRiceBias(object, sigma=NULL, ncoils=1)
```

Arguments

object Object of class "dtiData"

Scale parameter that relates the distribution of the signal to a χ_{2L} distribution number of effective coils in parallel imaging, the related χ distribution has

2*ncoils degrees of freedom.

Value

An object of class "dtiData".

Methods

```
object = "ANY" Returns a warning.object = "dtiData" Returns a dtiData object with bias-corrected image intensities.
```

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

dtiData, dtiTensor-methods, dwiMixtensor-methods, dtiData, dtiTensor, dwiMixtensor,

dwiSqrtODF-methods 29

uwisui todi ilietilous	dwiSc	rtODF	-methods
------------------------	-------	-------	----------

Methods for positive definite EAP and ODF estimation in Package dti

Description

Compute a positive definite estimate of the Ensemble Average Propagator (EAP) and Orientation Density Function (ODF) using the approach of Cjeng et. al (2012).

Usage

```
## S4 method for signature 'dtiData'
dwiSqrtODF(object,what="sqrtODF",order=4,forder=1,lambda=0,D0=1.4e-3)
```

Arguments

object	Object of class "dtiData"
what	Character, currently only "sqrtODF" is possible
order	Even integer, Order of spherical harmonics approximation.
forder	Integer, Order of radial approximation.
lambda	Non-negative, Regularization parameter.

Methods

DØ

```
signature(object = "ANY") Returns a warning.
signature(object = "dtiData") Compute a positive definite estimate of the Ensemble Average
Propagator (EAP) and Orientation Density Function (ODF) using the approach of Cjeng et. al
(2012).
```

Numeric vector, grid of diffusivity parameters, typically about 1e-3.

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>
```

References

J. Cheng, T. Jiang and R. Deriche. *Nonnegative Definite EAP and ODF Estimation via a Unified Multi-Shell HARDI Reconstruction*, MICCAI 2012.

See Also

```
dtiData, readDWIdata, dtiData, dwiQball
```

30 extract-methods

extract-methods

Methods for Function 'extract' and '[' in Package 'dti'

Description

The methods extract and/or compute specified statistics from object of class "dtiData", "dtiTensor", and "dtiIndices". This can be restricted to a subset of voxel.

Usage

```
## S4 method for signature 'dtiData'
extract(x,
    what=c("data", "gradient", "btb", "s0", "sb", "siq"),
    xind=TRUE, yind=TRUE, zind=TRUE)
  ## S4 method for signature 'dtiTensor'
extract(x, what=c("tensor", "fa", "ga", "md", "evalues",
      "andir", "s0", "mask", "bic", "aic", "outlier"),
    xind=TRUE, yind=TRUE, zind=TRUE, mc.cores = setCores(, reprt = FALSE))
  ## S4 method for signature 'dwiMixtensor'
extract(x, what=c("w0","andir", "order", "ev", "mix", "s0",
      "mask", "fa", "eorder", "bic", "aic"), xind=TRUE, yind=TRUE, zind=TRUE)
  ## S4 method for signature 'dtiIndices'
extract(x, what=c("fa", "andir", "ga", "md", "bary"),
    xind=TRUE, yind=TRUE, zind=TRUE)
  ## S4 method for signature 'dwiQball'
extract(x, what=c("sphcoef", "s0", "mask", "bic", "aic",
      "outlier"), xind=TRUE, yind=TRUE, zind=TRUE)
  ## S4 method for signature 'dtiData'
x[i, j, k, drop=FALSE]
  ## S4 method for signature 'dtiTensor'
x[i, j, k, drop=FALSE]
  ## S4 method for signature 'dtiIndices'
x[i, j, k, drop=FALSE]
  ## S4 method for signature 'dkiTensor'
x[i, j, k, drop=FALSE]
  ## S4 method for signature 'dkiIndices'
x[i, j, k, drop=FALSE]
  ## S4 method for signature 'dwiQball'
x[i, j, k, drop=FALSE]
```

Arguments

Χ	Object of class dti
i	vector of x-coordinates, defaults to whole range.
j	vector of y-coordinates, defaults to whole range.
k	vector of z-coordinates, defaults to whole range.

extract-methods 31

xind	vector of x-coordinates, defaults to whole range.
yind	vector of y-coordinates, defaults to whole range.
zind	vector of z-coordinates, defaults to whole range.
what	Statistic to extract. See Methods Section for details.
drop	unused.
mc.cores	Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods . Our experience suggests to use 4-6 cores if available.

Value

For function extract a list with components carrying the names of the options specified in argument what. For "[" the cutted object.

Methods

The generic extract function "[" does what it is expected to do: it extracts parts of the object specified by i, j, and k.

Returns a warning for extract. Generic funtion for "[" returns an object of same class with data clipped to the indices specified in arguments i, j and k.

- x = "ANY" dtiData" Extraction of squared gradient matrix "btb" or of S0 "s0", Sb "sb", Si/mean(SO) "siq" or all images "data" restricted to the cube defined by arguments i, j and k.
- x = "dtiIndices" Returns an array containing the specified statistics, i.e. fractional anisotropy "fa", geodesic anisotropy "ga", mean diffusivity "md", main direction of anisotropy "andir" and/or shape parameters "bary", as specified in argument what. Information is extracted for voxel within the cube defined by xind, yind, and zind.
- x = "dtiTensor" Returns a list with component names corresponding to what containing the specified statistics, i.e. fractional anisotropy "fa", geodesic anisotropy "ga", mean diffusivity "md", eigenvalues "evalues", main direction of anisotropy "andir", the tensor "tensor" the estimated S0 image "s0", the values of the model selection criteia BIC "bic" or AIC "aic" and/or the mask used to restrict computations "mask", as specified in argument what. Information is extracted for voxel within the cube defined by arguments xind, yind and zind.
- x = "dwiMixtensor" Returns a list with component names corresponding to what containing the specified statistics. Possible values for what are "w0" (size of isotropic department), "order" (estimated number of mixture components), "eorder" effective order), "ev" (eigenvalues), "mix" (mixture weights), "andir" (main directions of diffusion), "fa" (FA index), "s0" (the estimated S0 image), the values of the model selection criteia BIC "bic" or AIC "aic" and mask (the mask used to restrict computations). Information is extracted for voxel within the cube defined by arguments xind, yind and zind.
- x = "dwiQball" Returns an array containing the specified statistics, the estimated coefficients with respect to the selected spherical harmonics basis "sphcoef", the estimated S0 image "s0", the values of the model selection criteia BIC "bic" or AIC "aic" and/or the mask used to restrict computations "mask", as specified in argument what. Information is extracted for voxel within the cube defined by arguments xind, yind and zind.

32 getmask-methods

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>

See Also

```
dtiData, dtiTensor, dtiIndices dwiMixtensor, dwiQball
```

getmask-methods Methods for Function 'getmask' in Package 'dti'

Description

Create a mask containing voxel inside the head

Usage

```
## S4 method for signature 'dtiData'
getmask(object, level = NULL, prop = 0.4, size = 3)
```

Arguments

object an object of class "dtiData"

level S0 intensity value to be used to discriminate between voxel inside and outside

the brain. A good value of level may be determined using method sdpar in

advance.

prop proportion of voxel in test area with s0 value larger than level needed to decide

for a voxel inside the brain

size size of a cube defining a test area

Value

The function returns an object of class dtiData.

Methods

```
obj = "ANY" Returns a warningobj = "dtiData" Create a mask containing voxel inside the headobj = "array" Create a mask containing voxel inside the head
```

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de> J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

```
dtiData, readDWIdata, dti.smooth, sdpar
```

getsdofsb-methods 33

getsdofsb-methods Estimate the noise standard deviation

Description

Estimate the noise standard deviation. Uses an assumption that the standard deviation is a linear function of the expected mean for image intensities. qA0 and qA1 define quantiles of observed image intensities that define the range of values where this assumption is made.

Usage

```
## S4 method for signature 'dtiData'
getsdofsb(object,qA0=.1,qA1=.98,nsb=NULL,level=NULL)
```

Arguments

object	Object of class "dtiData"
qA0	level for lower quantile of image intensities
qA1	level for upper quantile of image intensities
nsb	number of diffusion weighted image to use
level	level for mask

Value

An object of class "dtiData" with results in slot sdcoef in components 5: intercept parameter, 6: slope parameter for linear model, 7: lower bound (depending on qA0) and 8: upper bound (depending on qA1).

Methods

```
signature(object) = "ANY" Returns a warning.
signature(object) = "dtiData" Returns a dtiData object with estimated standard deviation parameters in slot sdcoef.
```

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

```
dtiData, dwi.smooth-methods, dtiData,
```

34 medinria

medinria	Read/Write Diffusion Tensor Data from/to NIFTI File

Description

Read/Write diffusion tensor data from/to NIfTI file. Interface functions to MedINRIA.

Usage

```
medinria2tensor(filename)
tensor2medinria(obj, filename, xind = NULL, yind = NULL, zind = NULL)
```

Arguments

filename	file name for the tensor data.
obj	object of class "dtiTensor"
xind	index to define a subcube in x-direction. If is.null(xind) all voxel indices are used.
yind	index to define a subcube in y-direction. If is.null(yind) all voxel indices are used.
zind	index to define a subcube in z-direction. If is.null(zind) all voxel indices are used.

Value

For function medinria2tensor: object of class "dtiTensor".

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>
```

References

P. Fillard, J. Souplet and N. Toussaint *Medical Image Navigation and Research Tool by INRIA* (*MedINRIA*), INRIA Sophia Antipolis - Research Project ASCLEPIOS 2007

```
https://www-sop.inria.fr/asclepios/software/MedINRIA/
```

See Also

```
dtiTensor, dtiTensor-methods dtiIndices-methods
```

Examples

```
## Not run: demo(dti_art)
```

optgrad 35

optgrad	Optimal gradient directions

Description

List containing gradient directions minimizing Coulomb forces on the sphere following a proposal by D. Jones (1999) for number of gradients between 6 and 162.

optgradients	Optimal gradient directions for number of gradients between 6 and 162
--------------	---

Description

Optimal gradient directions minimizing symmetrized Coulomb forces on the sphere following a proposal by Jones et al. (1999). These directions define an optimal design in DWI for given number of gradients.

Usage

optgrad

Format

a list with name optgrad and component ngrad-5 containing a matrix with ngrad gradients as columns.

```
plot-methods Methods for Function 'plot' in Package 'dti'
```

Description

Visualization of objects of class "dtiData", "dtiIndices", "dtiTensor" and class "dwiMixtensor"

Usage

36 plot-methods

Arguments

yind

zind

currently not used

x	Object of class "dtiIndices", "dtiData" or "dtiTensor"
у	Not used
slice	Slice number
view	Choose "sagittal", "coronal", or "axial" view here
gradient	Index of data cube to plot. Defaults to the first S0 image.
method	Method for color coding tensor indices.
quant	If is.null(minfa) specify minfa as corresponding quantile of the fractal anisotropy (FA) index.
minfa	Display only information for voxel with (G)FA>minfa
show	Visualize information in a graphics device (for classes "dtiData" and "dtiIndices" only).
identify	Enable identification of coordinates by mouse actions, logical with default FALSE. Uses function identify. (for classes "dtiIndices" and "dwiMixtensor" only)
density	Show density of SO(Sb)-values (for class "dtiData") or densities of fractal anisotropy (FA) or geodesic anisotropy (GA) (for class "dtiIndices").
contrast.enh	Enhance image contrast using min(1,x\$anindex/contrast.enh instead of the anisotropy index itself. Effective values are within the interval (0,1).
what	In case of class "dtiIndices" what="ga" uses geodesic anisotropy (GA) in contrast to what="fa" for fractional anisotropy (FA). For class "dwiMixtensor" what="fa" for FA and what="order" for the number of mixture components may be chosen.
mar	Graphical parameter for par.
mgp	Graphical parameter for par.
qrange	Cut image intensity to these quantiles to avoid that outliers determine the dynamic range of the image.
xind	If provided restrict display to indices specified in xind for x-direction.

If provided restrict display to indices specified in yind for y-direction.

If provided restrict display to indices specified in zind for z-direction.

polyeder 37

Methods

- x = "ANY" Generic function: see plot.
- x = "dwi" Returns a warning.
- x = "dtiData" gradient can be used to specify a specific data cube associated with the index of a gradient direction. For objects of class "dtiData" images are produces that are scaled by the maximal observed image value. This guarantees that subsequently produced images are on a comparable grey scale. The resulting image of class "adimpro" from package adimpro is returned.
- x = "dtiIndices" Color coded anisotropy maps are produced depending on the specification in method. method==1, method==2, method==4 and method==5 specify three different color schemes for directional FA-maps. method==6 uses colored FA maps based on scheme developed at Uni Muenster (M. Deppe, Germany). method==3 specifies visualization of dti-Indices using color coded shape parameters. If identify==FALSE the resulting image of class "adimpro" from package adimpro, otherwise a matrix with coordinates of identified voxel is returned.
- **x = "dtiTensor"** The tensor itself, fractional anisotropy (FA), mean diffusivity (MD) and a color coded anisotropy map are provided. NULL is returned.
- x = "dwiMixtensor" Depending of what images of FA (what="fa"), number of mixture components (what="order"), effective order (what="eorder") or maximum eigenvalues (what="ev"). is returned.
- $\mathbf{x} = \mathbf{''dwiFiber''}$ Creates a density plot of fiber lengths. NULL is returned.
- x = "dkiIndices" Prelimanary function to plot a slice of diffusion kurtosis indices: Mean Kurtosis what="mk" or what="mk2", mean diffusivity what="md", fractional anisotropy what="fa".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>

See Also

dtiIndices, dtiData, dtiTensor dwiMixtensor

Examples

Not run: demo(dti_art)

polyeder

Polyeders derived from the Icosahedron (icosa0) by sequential triangulation of surface triangles

Description

icosa0 - icosa4 provide a description of regular polyeders derived from the Icosahedron (icosa0) by sequential triangulation of surface triangles

38 print-methods

Usage

icosa0

Format

a list with components

- 1. vertices array of dimension c(3, nv). containing cartesian coordinate of the nv vertices.
- 2. indices Indices of vertices that define surface triangles of the polyeder.
- 3. edges Indices of vertices that define edges of the polyeder.
- 4. nv number of vertices
- 5. ne number of edges
- 6. ni number of triangles

print-methods

Methods for Function 'print' in Package 'dti'

Description

The function provides information on data dimensions, data source and existing slot-names for objects of class "dti", "dtiData", "dtiTensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiMixtensor", "dwiQball" and "dwiFiber".

Usage

```
## S4 method for signature 'dwi'
print(x)
```

Arguments

```
x Object of class "dtiIndices", "dtiData", "dtiTensor", "dkiIndices", "dkiTensor", "dwiFiber", "dwiMixtensor" or "dwiQball"
```

Methods

```
x = "ANY" Generic function: see print.
```

x = "dwi" The function provides information on data dimensions, data source and existing slotnames for objects of class "dwi".

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

dtiIndices, dtiData, dtiTensor dwiMixtensor dwiQball dwiFiber

readDWIdata 39

readDWIdata Read Diffusion Weighted Data	readDWIdata
--	-------------

Description

The functions create a "dtiData" object from Diffusion Weighted Data from medicial imaging files in a list of directories or from an imagefile, where the diffusion weighted data is given as 2-byte integer.

Usage

```
dtiData(gradient, imagefile, ddim, bvalue = NULL, xind = NULL, yind = NULL, zind = NULL,
    level = 0, mins0value = 1, maxvalue = 32000, voxelext = c(1, 1, 1),
    orientation = c(0L, 2L, 5L), rotation = diag(3))
readDWIdata(gradient, dirlist, format = c("DICOM", "NIFTI", "ANALYZE", "AFNI"),
    nslice = NULL, order = NULL, bvalue = NULL,
    xind = NULL, yind = NULL, zind = NULL, level = 0, mins0value = 1,
    maxvalue = 32000, voxelext = NULL, orientation = c(0L, 2L, 5L),
    rotation = NULL, pattern = NULL, SPM2=TRUE, verbose = FALSE)
```

Arguments

gradient	matrix of diffusion gradients (including zero gradients for S0 images)
imagefile	name of data image file (binary 2Byte integers)
ddim	dimension of image cube (3D)
dirlist	list of directories containing the data files or name of a single data file (e.g. 4D NIFTI)
format	string specifying the medical imaging format, one of "DICOM", "NIFTI", "ANALYZE", or "AFNI"
nslice	number of slices (usually z-direction)
order	vector, specifying a different order of the data files, i.e. other than alphabetic order in the directories given by dirlist. If not given, 1:n is used for n data files (no order change).
bvalue	vector of b-values (default 0 for S0 and 1 for Si)
xind	subindex for x-direction
yind	subindex for y-direction
zind	subindex for z-direction
level	determine mins@value as quantile of positive S0-values
mins0value	set voxel in S0-images with values less than level "inactive"
maxvalue	set voxel with values larger than maxvalue inactive
voxelext	voxel extensions in coordinate directions
orientation	orientations of data as coded in AFNI

40 readDWIdata

rotation optional rotation matrix for the coordinate system.

pattern pattern for file matching in the directories dirlist.

SPM2 Enable some non-standard NIfTI files produced by SPM to be readable.

verbose some progress reports if TRUE

Details

The function dtiData creates an object of class "dtiData" from an image file, where the diffusion weighted data is given as 2-byte integer. This image file has to be prepared by the user. Use writeBin to write out first all S0 images and than all Si images. The gradient should be created according to this order. Run the demo in order to have an example, how to do this!

The function readDWIdata reads the data files given in the directories in dirlist in alphabetic order. The order can be changed using the order argument: If filelist is the vector of files in alphabetic order, they are read in the order filelist[order]. If order is not given order <- 1:n is used (no change!). The medical imaging format is given by format and can be one of "DICOM", "NIFTI", "ANALYZE", or "AFNI". The number of slices of the three dimensional data cube is given by nslice. The diffusion gradients are provided as matrix gradient.

xind, yind, and zind define a region of interest as indices. If not given 1:dim[i] is used. level determine mins0value as quantile of positive S0-values. mins0value sets voxel in S0-images with values less than level "inactive". maxvalue sets voxel with values larger than maxvalue inactive.

voxelext defines the voxel extension, overwrites the values found in the imaging files. orientation codes the data orientation in AFNI notation.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>

References

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

https://afni.nimh.nih.gov/pub/dist/src/README.attributes

See Also

```
dti.smooth, dtiTensor-methods, dtiData
```

Examples

```
## Not run: demo(dti_art)
```

sdpar-methods 41

sdpar-methods	Methods for Function 'sdpar' in Package 'dti'	
---------------	---	--

Description

This function estimates the parameters of a piecewise linear model for the dependence between error standard deviation and mean.

Usage

```
## S4 method for signature 'dtiData'
sdpar(object,level=NULL,sdmethod="none",interactive=TRUE,threshfactor=1)
```

Arguments

object	An object of class dtiData
level	Suggested value for slot level. As a default the value in object@level is used. The value determines the lower endpoint of the linear section in the model for error standard deviation as a function of the mean.
sdmethod	Method for estimating voxelwise standard deviations if replicates of zero weighted images are available, can be set to "sd" or "mad". "none" specifies that no variance model is fitted
interactive	If TRUE a density of values in zero weighted images is plotted together with the specification of the lower endpoint of the interval of linearity. A good choice of this point should correspond, if present, to the minimum between the first two modes of the density estimate. The value can be changed or accepted. If changed a new value for slot lambda is set.
threshfactor	Factor for threshold-value selected if function is run in interactive mode. May be used to correct results if automatic threshold selection fails.

Value

The function returns an object of class dtiData.

Methods

```
obj = "ANY" Returns a warning
```

obj = "dtiData" Estimate parameters of a model for the dependence between error standard deviation and mean.

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>
```

42 setmask-methods

See Also

```
dtiData, readDWIdata, dti.smooth, dtiTensor,
```

Examples

```
## Not run: demo(dti_art)
```

setmask-methods

Methods for Function 'setmask' in Package 'dti'

Description

Read mask definition from NIfTI file and include it in dtiData object

Usage

```
## S4 method for signature 'dtiData'
setmask(object, maskfile)
```

Arguments

object an object of class "dtiData"

maskfile NIfTI file containing mask definition. Dimension need to be compatible, i.e.

either equal object@ddim@ or object@ddim

Value

The function returns an object of class dtiData.

Methods

```
obj = "ANY" Returns a warning
```

obj = "dtiData" Set mask definition in dtiObject using information provided as NIfTI file as e.g.
provided by fsl_bet.

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

```
dtiData, readDWIdata,
```

show-methods 43

show-methods	Methods for Function 'show	y' in Package 'dti'

Description

The function provides information on data dimensions, data source and existing slot-names for objects of class "dti", "dtiData", "dtiTensor", "dwiMixtensor", "dtiIndices", "dwiQball" or "dwiFiber"

Usage

```
## S4 method for signature 'dti'
show(object)
```

Arguments

object

Object of class dtiIndices, dtiData, dtiTensor, dkiTensor, dkiIndices, dwiMixtensor, dwiQball or dwiFiber

Methods

```
x = "ANY" Generic function.
```

x = "dti" The function provides information on data dimensions, data source and existing slotnames for objects of class "dti" and classes that extent "dti".

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>
J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

dtiIndices, dtiData, dtiTensor dwiMixtensor dwiQball dwiFiber

show3d-methods	Methods for Function 'show3d' in Package 'dti'	

Description

The function provides 3D visualization of "dtiData", "dtiTensor", "dwiQball" and "dtiIndices" objects using the "rgl"-package. Functionality of the rgl-package allows to rotate and zoom the displayed object.

44 show3d-methods

Usage

```
## S4 method for signature 'dtiData'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, quant=.8,
         scale=.4,
         bgcolor="black", add=FALSE, maxobjects=729, what=c("adc", "data"),
         minalpha=1, nn=1, normalize=FALSE, box=FALSE, title=FALSE, ...)
## S4 method for signature 'dtiTensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, method=1,
        minfa=.3, mask=NULL, fibers=FALSE,
         maxangle = 30,level=0, quant=.8, scale=.4, bgcolor="black", add=FALSE,
       subdivide=2, maxobjects=729, what=c("tensor", "adc", "odf"), odfscale = 1,
        minalpha=.25, normalize=NULL, box=FALSE, title=FALSE,...)
## S4 method for signature 'dkiTensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, method=1,
         minfa=.3, mask=NULL, level=0, quant=.8, scale=.4, bgcolor="black",
         add=FALSE, subdivide=2, maxobjects=729, what=c("KT", "DT"),
         minalpha=.25, normalize=NULL, box=FALSE, title=FALSE,...)
## S4 method for signature 'dtiIndices'
show3d(obj, index=c("fa","ga"), xind=NULL, yind=NULL,
         zind=NULL, method=1,
         minfa=0, bgcolor="black", add=FALSE, lwd=1, box=FALSE,
         title=FALSE, ...)
## S4 method for signature 'dwiMixtensor'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, minfa=.3,
         minorder = 1, mineo=1, fibers=FALSE, maxangle=30, level=0,
         quant=.8, scale=.4, bgcolor="black", add=FALSE,
         subdivide=3, maxobjects=729, what=c("odf", "axis", "both"), odfscale=1,
         minalpha=1, lwd=3, box=FALSE, title=FALSE, ...)
## S4 method for signature 'dwiQball'
show3d(obj, xind=NULL, yind=NULL, zind=NULL, level=0,
         quant=.8, scale=0.4, odfscale=1, bgcolor="black", add=FALSE,
         subdivide=3, maxobjects=729, minalpha=1, box=FALSE,
         title=FALSE, ...)
## S4 method for signature 'dwiFiber'
show3d(obj, add=FALSE, bgcolor="black", box=FALSE,
         title=FALSE, lwd=1, delta=0, ...)
```

Arguments

obj	An object of class dtiData, dtiTensor, dtiIndices,dwiMixTensor or dwiQball
xind	vector of x-coordinates, defaults to whole range.
yind	vector of y-coordinates, defaults to whole range.
zind	vector of z-coordinates, defaults to whole range.
quant	Quantile of maximal radii of objects used for scaling.
scale	Scale factor for the size of objects
bgcolor	Backgroundcolor for rgl-display

show3d-methods 45

add If true information is added to the current device, otherwise a new device is

opened.

Maximal size of data cube (in voxel) to display maxobjects

minalpha Minimum value for transparency.

nn Number of nearest neighbors used for interpolation onto a regular polyeder.

normalize If TRUE normalize values (project to interval (0,1) within each voxel). For tensor

objects normalize=NULL specifies a default depending on the content of argu-

ment what

(normalize <- switch(what, "tensor"=FALSE, "adc"=TRUE)).</pre>

Logical, add a bounding box. hox

title Either a character string specifying a title or a logical. If title==TRUE a default

title characterizing the type of plot is generated.

method method==1 and method==2 specify two different color schemes for directional

FA-maps.

Minimal FA value for dtiTensor objects and for dwiMixtensor objects. minfa

additional mask for dtiTensor objects. mask minorder Minimal order for dwiMixtensor objects.

mineo Minimal effective order for dwiMixtensor objects.

If TRUE show fibers starting in voxel with fa>=minfa, order>=minorder and fibers

eorder>=mineo, the last two effective for dwiMixtensor objects only.

maxangle argument for fibertracking

level Radius of sphere used as support for ODF visualisation

subdivide Level of subdivisions for meshing, level 0: 4 correspond to use of c(12, 42, 162, 642, 2562)

vertices per tensor, respectively.

what For dtiTensor-objects either "tensor" for visualization using ellipsoids, "adc"

> for Apparent Diffusion Coefficients or "odf" for the Orientation Density Function. For dwiMixtensor-objects possible specifications are "odf", "axis" and "both", with the latter superposing the estimated main directions on the estimated ODF. For "axis" (and "both") the length of the axis corresponds to the mixture weights. For dtiData-objects choices are either "data" or "adc".

odfscale Determines visualisation of the Orientation density function (ODF). For odfscale=3

the ODF values are rescaled such that the volume of the displayes objects is constant. odfscale=1 uses the values of the ODF as radii in the corrsponding vertice direction of the specified polyhedron. This can lead to extremely large volumes in case of one mixture component with high excentricity. values of odfscale inbetween 1 and 3 are possible and allow to balance between volume

based visualization and emphazising highly structured ODF's.

lwd Linewidth for visualization of dtiIndices objects.

index Eiter "FA" for fractional anisotropy index or "GA" for geodesic anisotropy index. delta if delta>0 Join line segments in fiber objects as long as acos of directions is

smaller than delta. Reduces the size of 3D object at the cost of resolution.

Additional parameters passed to function rgl.par from the rgl-package.

46 show3d-methods

Value

The function returns the number of the current rgl-device.

Methods

- obj = "ANY" Returns a warning
- obj = "dtiData" Empirical ADC's are visualized at the voxel centers. Color is determined by gradient directions, ADC values are reflected by both radial extend and transparancy. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.
- **obj = "dtiIndices"** Objects are visualized as a collection of line segments with location given by the voxel center, orientation and color determined by the main direction of inisotropy and length corresponding to either fractional or geodesic anisotropy as specified in index.
 - Displayed objects are restricted to voxel with an fractional (geodesic) anisotropy larger than level.
- obj = "dtiTensor" Ellipsoids/ADC's are visualized at the voxel centers. Orientation and size correspond to the tensor values, color is determined by the main direction of anisotropy using the colorsceme specified with method. The fractional anisotropy value is coded as transparency. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.
- **obj = "dkiTensor"** Prelimenary show3d method for diffusion kurtosis tensors.
- obj = "dwiQball" Estimated ODF/ADC's are visualized at the voxel centers. Color is determined by directions, ODF/ADC values are reflected by both radial extend and transparancy. The value of maxobjects limits the size of datacube and may be increased on hardware with suitable graphics capabilities.
- **obj = "dwiFiber"** Display and combine fibres generated by function tracking. Displays can be closed using function rgl.close

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

J\"org Polzehl <polzehl@wias-berlin.de>
```

See Also

```
dtiIndices-methods, dti.smooth, dtiTensor, dtiIndices
```

Examples

```
## Not run: demo(dti_art)
```

showFAColorScale 47

showFAColorScale

Writes an image with the colqFA colorscale to disk.

Description

Writes an image (type PNG) with the colqFA colorscale to disk.

Usage

```
showFAColorScale(filename = "FAcolorscale.png")
```

Arguments

filename

Name of file to write.

See Also

See Also colqFA

subsetg

Create an objects of class "dtiData" containing only a subset of gradient directions.

Description

This function creates an object of class "dtiData" that containes only a subset, defined by an index vector, of the S0 and diffusion weighted images. This function may e.g. be used to separate information measured on different shells.

Usage

```
subsetg(x, ind)
```

Arguments

x Object of class "dtiData"

ind Indexvector containing values between 1 and x@ngrad.

Value

An object of class "dtiData".

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>

48 summary-methods

See Also

dtiData, readDWIdata, dtiData, combineDWIdata

summary-methods

Methods for Function 'summary' in Package 'dti'

Description

The method provides summary information for objects of class "dti".

Usage

```
## S4 method for signature 'dwi'
summary(object, ...)
```

Arguments

```
object Object of class "dti", "dtiData", "dtiTensor", "dwiMixtensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiQball" or "dwiFiber".

... Additional arguments in ... are passed to function quantile, e.g. argument probs may be specified here.
```

Methods

```
object = "ANY" Generic function: see summary.
object = "dwi" The function provides summary information for objects of class "dwi", "dtiData",
    "dtiTensor", "dwiMixtensor", "dtiIndices", "dkiIndices", "dkiTensor", "dwiQball"
    and , "dwiFiber"
```

Author(s)

```
Karsten Tabelow <tabelow@wias-berlin.de>

λ"org Polzehl <polzehl@wias-berlin.de>
```

See Also

dtiIndices,] dtiData, dtiTensor dwiMixtensor dwiQball dwiFiber

tracking-methods 49

tracking-methods

Methods for Function 'tracking' in Package 'dti'

Description

The function provides fiber tracking of "dtiTensor", "dtiIndices", and "dwiMixtensor" objects and methods for fiber manipulations.

Usage

```
## S4 method for signature 'dtiTensor'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
                    method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1)
## S4 method for signature 'dtiIndices'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
                    method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1)
## S4 method for signature 'dwiMixtensor'
tracking(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
                    method="LINEPROP", minfa=0.3, maxangle=30, subsample = 1,
                    mincompartsize = 0)
## S4 method for signature 'dwiFiber'
selectFibers(obj, roix=NULL, roiy=NULL, roiz=NULL, mask=NULL,
                    minlength=1)
## S4 method for signature 'dwiFiber'
reduceFibers(obj, maxdist=1, ends=TRUE)
## S4 method for signature 'dwiFiber,dwiFiber'
combineFibers(obj, obj2)
## S4 method for signature 'dwiFiber,dwiFiber'
touchingFibers(obj, obj2, maxdist=1, combine=FALSE)
```

Arguments

obj	An object of class "dtiTensor", "dtiIndices", or "dwiMixtensor" for tracking() and "dwiFiber" for selectFiber(), conbineFibers().
obj2	An object of class "dwiFiber" for combineFibers().
roix	Indices defining the ROI in x direction. Currently min/max is used to define ROI x
roiy	Indices defining the ROI in y direction. Currently min/max is used to define ROIy
roiz	Indices defining the ROI in z direction. Currently min/max is used to define ROIz
mask	Mask defining seed points for tracking
method	Method for fibre tracking. "LINEPROP" is simple line propagation algorithm which is the default.

50 tracking-methods

minfa Minimal FA to follow the tracks. default 0.3

maxangle Maximal angle between fiber in adjacent voxels. default 30 degree.

subsample Subsampling order of the data to get more dense fibre tracks. Note, that objects

become very(!) large.

minlength Minimal length of fibers to be selected.

maxdist Maximal supremum distance between fibers in mm

ends Logical: Use only endpoints of shorter fibers for distance (TRUE) or compute

distances using full fiber-length (FALSE). Default (TRUE) removes more fibers

and is significantly faster.

mincompartsize Minimal size of a compartment in dwiMixtensor that will be used in fiber track-

ing.

combine If combine=TRUE fibers selected from obj are combined with the fibers from

obj2.

Value

The function returns an object of class dwiFiber.

Methods

- **obj = "dtiTensor"** Fiber tracking is performed on the estimated vector field of principal diffusion direction using the method method. Currently only line propagation is implemented. The resulting tracks can be visualized using function show3d.
- **obj = "dtiIndices"** Fiber tracking is performed on the estimated vector field of principal diffusion direction using the method method. Currently only line propagation is implemented. The resulting tracks can be visualized using function show3d.
- **obj = "dwiMixtensor"** Fiber tracking is performed on the estimated vector fields of diffusion direction in the mixed tensor model using the method method. Currently only line propagation is implemented. The resulting tracks can be visualized using function show3d.
- obj = "dwiFiber" selectFibers produces a dwiFiber-object containing all fibers that cross the region of interest and exceed a minimum length. reduceFibers eliminates all fibers that are within a maximum supremum distance of maxdist mm of a longer fiber. reduceFibers allows to reduce the size of a dwiFiber-object considerably but is slow!
- signature(obj1 = "dwiFiber", obj2 = "dwiFiber") combineFibers produces a dwiFiber-object containing all fibers that are in one of the supplied objects. touchingFibers takes all fibers from obj that have a minimum distance to a fiber in obj2 of less than maxdist. If combine=TRUE these fibers are combined with the fibers from obj2.

Author(s)

Karsten Tabelow <tabelow@wias-berlin.de>, Joerg Polzehl <polzehl@wias-berlin.de>

References

J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.

tracking-methods 51

See Also

 $\verb|dtiTensor|, \verb|dtiIndices|, \verb|dwiFiber|, show3d|, summary, print|$

Index

<pre># IO</pre>
readDWIdata, 39 * array AdjacencyMatrix, 5 * classes dwi-class, 17 * cluster AdjacencyMatrix, 5 * datasets colqFA, 8 optgrad, 35 optgradients, 35 polyeder, 37 * hplot plot-methods, 39 getmask-methods, 33 plot-methods, 38 sdpar-methods, 41 setmask-methods, 42 show-methods, 43 show-methods, 43 summary-methods, 43 tracking-methods, 49 * misc dti.options, 11 * models plot-methods, 35 dtiIndices-methods, 14
<pre>* array AdjacencyMatrix, 5 * classes dwi-class, 17 * cluster AdjacencyMatrix, 5 * datasets colqFA, 8 optgrad, 35 optgradients, 35 polyeder, 37 * hplot * hplot * models getsdofsb-methods, 33 plot-methods, 35 plot-methods, 35 plot-methods, 38 sdpar-methods, 41 setmask-methods, 42 show-methods, 43 show-methods, 43 summary-methods, 48 tracking-methods, 49 * misc dti.options, 11 * models plot-methods, 35</pre> dtiIndices-methods, 14
AdjacencyMatrix, 5 * classes
<pre>* classes</pre>
dwi-class, 17 * cluster
<pre>* cluster AdjacencyMatrix, 5 AdjacencyMatrix, 5 * datasets colqFA, 8 optgrad, 35 optgradients, 35 polyeder, 37 * hplot plot-methods, 35 </pre> <pre> setmask-methods, 42 show-methods, 43 summary-methods, 48 tracking-methods, 49 wisc dti.options, 11 * models plot-methods, 35 </pre> <pre> dtiIndices-methods, 14</pre>
AdjacencyMatrix, 5 * datasets colqFA, 8 optgrad, 35 optgradients, 35 polyeder, 37 * hplot plot-methods, 45 show-methods, 43 summary-methods, 48 tracking-methods, 49 * misc dti.options, 11 * models dtiIndices-methods, 14
<pre>* datasets</pre>
colqFA, 8 summary-methods, 48 optgrad, 35 tracking-methods, 49 optgradients, 35 misc optlyeder, 37 dti.options, 11 * hplot mplot-methods, 35 dtiIndices-methods, 14
optgrad, 35 tracking-methods, 49 optgradients, 35 * misc polyeder, 37 dti.options, 11 * hplot * models plot-methods, 35 dtiIndices-methods, 14
optgradients, 35 polyeder, 37 * hplot plot-methods, 35 * misc dti.options, 11 * models dtiIndices-methods, 14
polyeder, 37 dti.options, 11 * hplot * models plot-methods, 35 dtiIndices-methods, 14
$\begin{array}{ccc} * \ \textbf{hplot} & * \ \textbf{models} \\ & \text{plot-methods}, 35 & \text{dtiIndices-methods}, 14 \end{array}$
plot-methods, 35 dtiIndices-methods, 14
•
* iplot dwiMixtensor-methods, 25
show3d-methods, 43 dwiQball-methods, 27
* manip dwiSqrtODF-methods, 29
combineDWIdata, 9 * model
dtiIndices-methods, 14 dkiTensor-methods, 10
dtiTensor-methods, 15 dwiMD-methods, 24
dwiMixtensor-methods, 25 * package
dwiQball-methods, 27 dti-package, 2
dwiRiceBias-methods, 28 * smooth
extract-methods, 30 awssigmc, 6
getsdofsb-methods, 33 dti.smooth-methods, 12
showFAColorScale, 47 dwi.smooth-methods, 22
subsetg, 47 * utilities
* methods print-methods, 38
dkiTensor-methods, 10 show-methods, 43
dti.smooth-methods, 12 summary-methods, 48
dtiTensor-methods, 15 [,ANY-method(extract-methods), 30
dwi.smooth-methods, 22 [,dkiIndices-method (extract-methods),
dwiMD-methods, 24 30
dwiMixtensor-methods, 25 [,dkiTensor-method(extract-methods), 30
dwiQball-methods, 27 [,dtiData-method(extract-methods), 30
dwiRiceBias-methods, 28 [,dtiIndices-method (extract-methods),

30	dti.smooth-methods, 12
[,dtiTensor-method(extract-methods),30	dtiData, 9, 11, 13, 16, 22–24, 26, 28, 29, 32,
[,dwiMixtensor-method	33, 37, 38, 40, 42, 43, 48
(extract-methods), 30	dtiData(readDWIdata), 39
[,dwiQball-method(extract-methods), 30	dtiData-class (dwi-class), 17
[-methods (extract-methods), 30	dtiIndices, 13, 15, 32, 37, 38, 43, 46, 48, 51
	dtiIndices (dtiIndices-methods), 14
AdjacencyMatrix,5	dtiIndices, ANY-method
aflsigmc(awssigmc), 6	(dtiIndices-methods), 14
afsigmc (awssigmc), 6	dtiIndices,dtiTensor-method
awslsigmc(awssigmc), 6	(dtiIndices-methods), 14
awssigmc, 6	dtiIndices-class (dwi-class), 17
	dtiIndices-methods, 14
colqFA, 8, <i>47</i>	dtiTensor, 13, 15, 16, 24, 28, 32, 34, 37, 38,
combineDWIdata, 9, 48	42, 43, 46, 48, 51
combineFibers(tracking-methods),49	dtiTensor (dtiTensor-methods), 15
combineFibers,dwiFiber,dwiFiber-method	dtiTensor, ANY-method
(tracking-methods), 49	(dtiTensor-methods), 15
combineFibers-methods	dtiTensor,dtiData-method
(tracking-methods), 49	(dtiTensor-methods), 15
	dtiTensor-class (dwi-class), 17
dkiIndices, <i>11</i>	dtiTensor-methods, 15
dkiIndices(dkiTensor-methods), 10	dwi-class, 17
dkiIndices,ANY-method	dwi.smooth (dwi.smooth-methods), 22
(dkiTensor-methods), 10	dwi.smooth (dwi.smooth methods), 22 dwi.smooth, ANY-method
dkiIndices,dkiTensor-method	(dwi.smooth-methods), 22
(dkiTensor-methods), 10	
dkiIndices-class (dwi-class), 17	dwi.smooth,dtiData-method
dkiIndices-methods(dkiTensor-methods),	(dwi.smooth-methods), 22 dwi.smooth-methods, 22
10	
dkiTensor, <i>11</i>	dwi.smooth.ms (dwi.smooth-methods), 22
dkiTensor (dkiTensor-methods), 10	dwi.smooth.ms, ANY-method
dkiTensor,ANY-method	(dwi.smooth-methods), 22
(dkiTensor-methods), 10	dwi.smooth.ms,dtiData-method
dkiTensor,dtiData-method	(dwi.smooth-methods), 22
(dkiTensor-methods), 10	dwiFiber, 6, 38, 43, 48, 50, 51
dkiTensor-class (dwi-class), 17	dwiFiber-class (dwi-class), 17
dkiTensor-methods, 10	dwiMD (dwiMD-methods), 24
dti (dti-package), 2	dwiMD, ANY-method (dwiMD-methods), 24
dti-package, 2	dwiMD, dtiData-method (dwiMD-methods), 24
dti.options, 11	<pre>dwiMD, dtiTensor-method (dwiMD-methods),</pre>
dti.smooth, 32, 40, 42, 46	24
dti.smooth(dti.smooth-methods), 12	dwiMD-methods, 24
dti.smooth,ANY-method	dwiMixtensor, 16, 26, 28, 32, 37, 38, 43, 48
(dti.smooth-methods), 12	dwiMixtensor (dwiMixtensor-methods), 25
dti.smooth,dtiData-method	dwiMixtensor, ANY-method
(dti.smooth-methods), 12	(dwiMixtensor-methods), 25
dti.smooth,dtiTensor-method	dwiMixtensor,dtiData-method
(dti.smooth-methods), 12	(dwiMixtensor-methods), 25

dwiMixtensor-class (dwi-class), 17	getmask,dtiData-method
dwiMixtensor-methods, 25	(getmask-methods), 32
<pre>dwiMtCombine (dwiMixtensor-methods), 25</pre>	getmask-methods, 32
dwiMtCombine, ANY-method	getsdofsb (getsdofsb-methods), 33
(dwiMixtensor-methods), 25	getsdofsb, ANY-method
dwiMtCombine, dwiMixtensor, dwiMixtensor-metho	od (getsdofsb-methods), 33
(dwiMixtensor-methods), 25	getsdofsb,dtiData-method
dwiMtCombine-methods	(getsdofsb-methods), 33
(dwiMixtensor-methods), 25	getsdofsb-methods, 33
dwiQball, 29, 32, 38, 43, 48	
dwiQball (dwiQball-methods), 27	icosa0 (polyeder), 37
<pre>dwiQball, ANY-method (dwiQball-methods),</pre>	icosa1 (polyeder), 37
27	icosa2 (polyeder), 37
dwiQball,dtiData-method	icosa3 (polyeder), 37
(dwiQball-methods), 27	icosa4 (polyeder), 37
dwiQball-class (dwi-class), 17	
	MedINRIA (medinria), 34
dwiQball-methods, 27	medinria, 13, 15, 16, 26, 28, 34
dwiRiceBias (dwiRiceBias-methods), 28	medinria2tensor (medinria), 34
dwiRiceBias, ANY-method	(
(dwiRiceBias-methods), 28	optgrad, 35
dwiRiceBias, dtiData-method	optgradients, 35
(dwiRiceBias-methods), 28	7
dwiRiceBias-methods, 28	plot, <i>37</i>
dwiSqrtODF (dwiSqrtODF-methods), 29	plot, ANY-method (plot-methods), 35
dwiSqrtODF, ANY-method	plot, dkiIndices-method (plot-methods),
(dwiSqrtODF-methods), 29	35
dwiSqrtODF,dtiData-method	plot, dtiData-method (plot-methods), 35
(dwiSqrtODF-methods), 29	<pre>plot,dtiIndices-method(plot-methods),</pre>
dwiSqrtODF-methods, 29	35
	plot, dtiTensor-method (plot-methods), 35
extract (extract-methods), 30	plot, dwi-method (plot-methods), 35
extract, ANY-method (extract-methods), 30	plot, dwiFiber-method (plot-methods), 35
extract,dtiData-method	plot,dwiMixtensor-method
(extract-methods), 30	(plot-methods), 35
extract,dtiIndices-method	plot-methods, 35
(extract-methods), 30	polyeder, 37
extract,dtiTensor-method	print, 38, 51
(extract-methods), 30	print, ANY-method (print-methods), 38
extract, dwiMixtensor-method	print,dkiIndices-method
(extract-methods), 30	(print-methods), 38
extract,dwiQball-method	<pre>print,dkiTensor-method(print-methods),</pre>
(extract-methods), 30	38
extract-methods, 30	<pre>print,dtiData-method(print-methods), 38</pre>
	print,dtiIndices-method
getmask (getmask-methods), 32	(print-methods), 38
getmask, ANY-method (getmask-methods), 32	print, dtiTensor-method (print-methods),
getmask, array-method (getmask-methods),	38
32	print, dwi-method (print-methods), 38
	p. 1, and meeting (p. 1116 meetings), 50

print,dwiFiber-method(print-methods),	show3d,dtiIndices-method
38	(show3d-methods), 43
print, dwiMixtensor-method	show3d,dtiTensor-method
(print-methods), 38	(show3d-methods), 43
<pre>print,dwiQball-method(print-methods),</pre>	show3d,dwiFiber-method
38	(show3d-methods), 43
print-methods, 38	show3d,dwiMixtensor-method
roadDWIdata 0 11 13 16 22 26 28 20 32	(show3d-methods), 43
readDWIdata, 9, 11, 13, 16, 22, 26, 28, 29, 32, 39, 42, 48	show3d,dwiQball-method
reduceFibers (tracking-methods), 49	(show3d-methods), 43
	show3d-methods, 43
reduceFibers, dwiFiber-method	showFAColorScale, 47
(tracking-methods), 49	subsetg, 9, 47
sdpar, <i>32</i>	summary, 48, 51
sdpar (sdpar-methods), 41	summary, ANY-method (summary-methods), 48
sdpar, ANY-method (sdpar-methods), 41	summary, dkiIndices-method
sdpar, dtiData-method (sdpar-methods), 41	(summary-methods), 48
	summary,dkiTensor-method
sdpar-methods, 41	(summary-methods), 48
selectFibers (tracking-methods), 49	summary,dtiData-method
selectFibers, dwiFiber-method	(summary-methods), 48
(tracking-methods), 49	summary,dtiIndices-method
selectFibers-methods	(summary-methods), 48
(tracking-methods), 49	<pre>summary,dtiTensor-method</pre>
setmask (setmask-methods), 42	(summary-methods), 48
setmask, ANY-method (setmask-methods), 42	summary, dwi-method (summary-methods), 48
setmask,dtiData-method	summary,dwiFiber-method
(setmask-methods), 42	(summary-methods), 48
setmask-methods, 42	<pre>summary,dwiMixtensor-method</pre>
show, ANY-method (show-methods), 43	(summary-methods), 48
show, dkiIndices-method (show-methods),	summary,dwiQball-method
43	(summary-methods), 48
show, dkiTensor-method (show-methods), 43	summary-methods, 48
show, dti-method (show-methods), 43	
show, dtiData-method (show-methods), 43	tensor2medinria(medinria),34
<pre>show,dtiIndices-method(show-methods),</pre>	touchingFibers (tracking-methods), 49
43	touchingFibers,dwiFiber,dwiFiber-method
show, dtiTensor-method (show-methods), 43	(tracking-methods), 49
show, dwiFiber-method (show-methods), 43	touchingFibers-methods
show,dwiMixtensor-method	(tracking-methods), 49
(show-methods), 43	tracking(tracking-methods),49
show-methods, 43	<pre>tracking,ANY-method(tracking-methods),</pre>
show3d, <i>50</i> , <i>51</i>	49
show3d (show3d-methods), 43	tracking,dtiIndices-method
show3d, ANY-method (show3d-methods), 43	(tracking-methods), 49
show3d,dkiTensor-method	tracking,dtiTensor-method
(show3d-methods), 43	(tracking-methods), 49
<pre>show3d,dtiData-method(show3d-methods),</pre>	tracking,dwiMixtensor-method
43	(tracking-methods), 49

 ${\it tracking-methods}, 49 \\ {\it writeBin}, 40 \\$