ESE 406/505 & MEAM 513 - 2012-Feb-1 - Quiz - Name:

- Choose only one answer (A through D) for each question by circling the letter.
- A correct answer is worth 2 points.
- No answer is worth 0 points.
- An incorrect answer is worth -1 point. Random guessing will hurt you.
- 1. We use Laplace Transforms because they...
 - A. ...convert Fredholm Equations of the second kind into integers.
 - B. ...none of the other answers.
 - C. ...convert nonlinear equations into linear equations.
 - D. ...convert linear constant-coefficient ODEs into algebraic equations.
- 2. Which of the following is the correct expression for the Laplace Transform of $\tau \frac{dy}{dt} + 2y$?
 - A. $(\tau s + 2)Y(s) \tau y(0)$
 - B. None of the other answers.
 - C. $(\tau + 2s)Y(s) \frac{dy}{dt}(0)$
 - D. $(\tau + 2)Y(s) 2sy(0)$
- 3. Which of the following is the correct partial-fraction expansion of $Y(s) = \frac{6}{(s+1)(s-2)}$?
 - A. $Y(s) = \frac{6}{(s+1)} + \frac{3}{(s-2)}$
 - B. $Y(s) = \frac{-2}{(s+1)} + \frac{2}{(s-2)}$
 - C. None of the other answers.
 - D. $Y(s) = \frac{-1}{(s+1)} + \frac{2}{(s-2)}$
- 4. Which of the following is a trim (or equilibrium) condition for the system $\frac{dx}{dt} = -\sqrt{x} + \cos u$?
 - A. $\sqrt{x_o} = \sin u_o$
 - B. $\frac{dx_o}{dt} = -\sqrt{x_o}$
 - $C. \quad \frac{dx_o}{dt} = -\sin u_o$
 - D. None of the other answers.
- 5. Which of the following statements is NOT correct concerning the linearization $\Delta \underline{\dot{x}} \approx A \Delta \underline{x} + B \Delta u$ of the non-linear system $\underline{\dot{x}} = f(\underline{x}, u)$:
 - A. A is a row (1-by-n) vector.
 - B. B is a column (n-by-1) vector (because we are considering only one control input).
 - C. A and B depend on the trim (equilibrium) condition.
 - D. Δx and Δu are small perturbations, measured from the trim condition.