Question #1:

Write the frequency and time-domain MNA equations for the following circuit.

Question #2:

Write the frequency MNA equations for the following circuit.

If the gain of the operational amplifier as a function of frequency is given by: $A=\frac{k_1}{s+k_2}$ where k_1 and k_2 are constants, write the time-domain MNA equations for the circuit

Electrical Circuits, Project #2 Dr. Sadr, University of Tehran

Question #3

Write a computer program to formulate the frequency domain MNA SPARSE equations in the form (G+sC) X = b

Specifications:

INPUT: Netlist in a SPICE-like format or equivalent

Components: resistors, capacitors, inductors, voltage sources, current sources, current-controlled voltage sources, voltage-controlled current sources

OUTPUT: Frequency response (magnitude and phase)

Verify manually the correctness of your formulation using simple circuits. Include these circuits in your report.

Question #4

Use the program in (3) and the sparse commands in MATLAB to write a program to compute the frequency response of the circuits shown in Figure 1-2 using LU decomposition and forward/backward substitution.

Plot the response vs frequency. Verify your results using HSPICE (or equivalent).

Plot the sparsity pattern of the MNA matrix before and after the LU decomposition.

Figure 1.

$R_{1a} = 9,606\Omega$ $R_{1b} = 23,280\Omega$	$C_3 = C_4 = 15 \text{ nF}$ $R_3 = R_4 = 9,304 \Omega$	$V_i = 1V$
$R_2 = 6.8 \text{K} \Omega$ $C_1 = 94.9 \text{nF}$	$R_q = 52,107 \Omega$ $R_g = 9,304 \Omega$	Gain of all OpAmps = 50,000
$C_2 = 20.5 \text{nF}$	r=20KΩ	

Figure 2.

Electrical Circuits, Project #2 Dr. Sadr, University of Tehran

Question #5

Consider the linear algebraic equation Ax=b; where A and b are generated using the listed code. Compare the two following scenarios for solving for x in terms of memory and CPU time.

Scenario#1: treat A as a sparse matrix

- a) Plot the sparsity pattern of A
- b) Plot the sparsity pattern of the LU factors of A
- c) Find x and verify its accuracy
- d) Find the CPU time required for the LU decomposition and the F/B substitution.
- e) Plot the CPU time vs. n for 1000<n<30,000

Program:

```
clear
global A n b
n=4000; %number of nodes
A=sparse(n,n);
b=sparse(n,1);
b(1)=1;
for i=1:n
       A([i,n-4-i],[i,n-4-i])=A([i,n-4-i],[i,n-4-i])+[1,-1;-1,1];
   end
   if i >= 6
       A([i,n+5-i],[i,n+5-i])=A([i,n+5-i],[i,n+5-i])+[1,-1;-1,1];
   if i<=n-5
       A([i,i+5],[i,i+5]) = A([i,i+5],[i,i+5]) + [1,-1;-1,1];
   end
   if i<=n/2
       A([i,n+1-i],[i,n+1-i])=A([i,n+1-i],[i,n+1-i])+[1,-1;-1,1];
end
[L,U,P,Q] = lu(A,0.1);
z=L\setminus (P*b);
Y=U \setminus z;
X=0*Y;
t = toc;
spy(A)
title('Sparisty of A');
spy(L)
title('Sparisty of L');
spy(U)
title('Sparisty of U');
```