

Sumário

- 1. Definição e Nomenclaturas
- 2. Propriedades dos Paralelogramos
- 3. Propriedades do Retângulo
- 4. Propriedades do Losango
- 5. O Trapézio

Definição e Nomenclaturas

Definição

1

Definição 1

Denominamos de quadrilátero ao polígono de quatro lados.

Definição 2

O quadrilátero cujos lados opostos (que não possuem vértices em comum) são paralelos é denominado **paralelogramo**.

Definição 3

Um paralelogramo cujos ângulos são retos é denominado **retângulo**.

Definição 4

Um retângulo cujos lados são congruentes é dito um **quadrado**.

Definição 5

Um paralelogramo cujos lados são congruentes é denominado losango.

Propriedades dos Paralelogramos

Teorema

Teorema 1

Em todo paralelogramo:

- a) os ângulos opostos são congruentes;
- b) os lados opostos são congruentes;
- c) as diagonais se bissecam.

Antes de demonstrar o teorema, prove o seguinte lema:

'Segmentos paralelos compreendidos entre dois segmentos paralelos são congruentes.'

- a) Trace uma diagonal e separe o paralelogramo em dois triângulos. Mostre que são congruentes, usando o paralelismo dos lados opostos.
- b) Use a conclusão do item a).
- c) De fato, na figura abaixo

mostre que $\hat{BIC} = \hat{AID}$ e $\hat{IBC} = \hat{IDA}$. Conclua que $\triangle BIC \equiv \triangle AID$ (LAA).

► Com isso, teremos $\overline{BI} = \overline{ID}$ e $\overline{CI} = \overline{IA}$ (Por quê?)

Teorema

Teorema 2

Reciprocamente, um quadrilátero convexo:

- a) cujos lados opostos são congruentes é um paralelogramo;
- b) cujos ângulos opostos são congruentes é um paralelogramo;
- c) cujas diagonais se bissecam é um paralelogramo.

a) Trace uma das diagonais do quadrilátero, dividindo-o em dois triângulos: △ABD e △BCD. Mostre que eles são congruentes.

Conclua que $\angle CBD = BDA$ e mostre que os segmentos \overline{BC} e \overline{AD} são paralelos.

▶ Do mesmo modo, conclua que $A\hat{B}D = B\hat{D}C$ e mostre que os segmentos \overline{AB} e \overline{DC} são paralelos.

b) Trace uma das diagonais do quadrilátero.

- Por hipótese, $\hat{A} = \hat{C} e \hat{B} = \hat{D}$.
- Na figura acima, temos que $\alpha + \beta = \rho + \theta$ (por hipótese).
- ▶ Além disso, pela Lei Angular de Tales (soma dos ângulos internos):

$$\beta + \theta = \alpha + \rho$$
 (confira!)

- Some estas equações, membro a membro, e conclua que $\alpha = \theta$.
- Mostre que, por isso, os segmentos \overline{BC} e \overline{AD} são paralelos.
- Analogamente, conclua que $\beta=\rho$ e, com isso, mostre que os segmentos \overline{AB} e \overline{DC} são paralelos.
- ▶ Portanto, *ABDC* é um paralelogramo.

c) Trace as diagonais do quadrilátero.

- ▶ Qual caso de congruência garante que $\triangle BIC \equiv \triangle AID$?
- Dessa congruência, como podemos relacionar os ângulos *CBD* e *BDA*?
- ► Conclua que $\overline{BC} = \overline{AD}$.

Analogamente, conclua a congruência dos triângulos AIB e DIC.

- Dessa congruência, relacione os ângulos ABD e BDC.
- ► Conclua que $\overline{AB} = \overline{DC}$.

Do exposto acima, conclui-se que ABCD é um paralelogramo.

Teorema

Teorema 3

O quadrilátero que tem dois lados paralelos e congruentes é um paralelogramo.

Trace a diagonal do quadrilátero, transversal aos lados paralelos e congruentes, \overline{AD} e \overline{BC} :

► Temos $\hat{ABD} = \hat{BDC}$ (justifique!) e, assim,

$$\triangle CBD = \triangle BDA$$
 (qual congruência?).

- ightharpoonup Dessa forma, AB = DC (por quê?).
- ▶ Pelo item a), do Teorema 2, segue-se que *ABCD* é um paralelogramo.

Propriedades do Retângulo

Teorema

Teorema 4

As diagonais de um retângulo são congruentes.

Figura 1: Se *EFGH* é um retângulo, então EG = HF.

Demonstração: Exercício.

Teorema

Teorema 5

Reciprocamente, o paralelogramo que tem as diagonais congruentes é um retângulo.

► Trace as diagonais do paralelogramo:

- ▶ Pelo Teorema 1, item c), as diagonais se bissecam.
- ► Como AC = BD, temos que $\frac{AC}{2} = AI = BI = DI = CI = \frac{BD}{2}$.
- Portanto, são isósceles os triângulos AID, BIC, AIB e DIC.
- ► Conclua que $\triangle AID \equiv \triangle BIC$ e $\triangle AIB \equiv \triangle DIC$.

Assim, teremos $\hat{A} = \hat{B} = \hat{C} = \hat{D} = \alpha + \beta$.

Como a soma dos ângulos internos de um quadrilátero é $180^{\circ}(4-2)=360^{\circ}$, segue que

$$360^{\circ} = \hat{A} + \hat{B} + \hat{C} + \hat{D} = 4(\alpha + \beta) \Leftrightarrow \alpha + \beta = 90^{\circ}.$$

Portanto, $\hat{A} = \hat{B} = \hat{C} = \hat{D} = 90^{\circ}$, sendo o paralelogramo um retângulo.

Propriedades do Losango

Teorema

Teorema 6

Em todo losango:

- a) as diagonais são perpendiculares;
- b) as diagonais são bissetrizes dos ângulos do quadrilátero.

- ► Na figura acima, △*PMN* é isósceles.
- ► O segmento MI divide a base PN em dois segmentos congruentes. Portanto, é mediana referente a este lado.
- Como a mediana da base é também a altura do triângulo isósceles, temos que MI é perpendicular à diagonal PN.
- ► Conclua daí que $\overline{MO} \perp \overline{PN}$.

Para o item b), sabemos que a mediana da base é também a bissetriz do vértice oposto.

- Conclua que \overline{MO} é a bissetriz de \hat{M} e de \hat{O} .
- Conclua que \overline{PN} é a bissetriz de \hat{P} e de \hat{N} .

4

 $ightharpoonup PMI = I\hat{O}N \text{ (por quê?)}$

► Com isso, \overline{MN} é bissetriz dos ângulos \hat{M} e \hat{O} .

Para concluir a demonstração do item b), mostre que \overline{NP} é bissetriz dos ângulos \hat{P} e \hat{N} .

Teorema

Teorema 7

Reciprocamente, se as diagonais de um quadrilátero se bissecam e são perpendiculares, então o quadrilátero é um losango.

- Pelo Teorema 2, se as diagonais de um quadrilátero se bissecam, então ele é um paralelogramo.
- ▶ Logo, MN = PO e MP = NO (por quê?).

Para concluir a demonstração, precisamos mostrar que os quatro lados são iguais.

▶ Verifique que $\triangle PMI = \triangle MIN$

ightharpoonup Conclua que MP = MN e, portanto, MN = PO = MP = NO, c.q.d.

O Trapézio

Um quadrilátero que não é um paralelogramo

Definição 6

Um quadrilátero que tem apenas dois lados paralelos é denominado trapézio.

Os segmentos \overline{AB} e \overline{CD} são as **bases** do trapézio.

Trapézios Especiais

- O trapézio cujos lados não paralelos são congruentes é dito isósceles.
- O trapézio que possui dois ângulos retos é dito **trapézio retângulo**.

Propriedades do Trapézio

Teorema 8

No trapézio isósceles, os ângulos adjacentes à mesma base são congruentes.

Demonstração:

- $\blacktriangleright \ \, \mathsf{Hip\acute{o}tese:} \, \mathit{AB} = \mathit{CD} \, \,$
- ► Tese: $\hat{A} = \hat{D} e \hat{B} = \hat{C}$

▶ Trace pelo vértice *D* o segmento \overline{DE} paralelo a \overline{AB} com $E \in \overline{BC}$.

- O quadrilátero ABCD é um paralelogramo (pq?). Logo,
 - ightharpoonup AB = ED
 - ightharpoonup AB = DE = DC

► Como $\hat{B} = D\hat{E}C$ e $C\hat{E}D = \hat{C}$ (pq?), então $\hat{B} = \hat{C}$.

lacktriangle Por serem suplementos de ângulos congruentes, temos $\hat{A}=\hat{D}$.

Propriedades do Trapézio

Teorema 9

O segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e igual à sua semi-soma.

Demonstração:

- ▶ Hipótese: MB = MA e NC = ND.
- ► Tese: $\overline{MN} \parallel \overline{BC}$, $\overline{MN} \parallel \overline{AD}$ e $\overline{MN} = \frac{BC + AD}{2}$

Trace pelo vértice B o segmento \overline{BE} , que passa pelo ponto médio N, com $E \in \overrightarrow{AD}$.

- Os triângulos formados BCN e NDE formados são congruentes, pois
 - ► *NC* = *ND* (hipótese)
 - $ightharpoonup B\hat{N}C = D\hat{N}E \text{ (pq?)}$
 - $\hat{C} = N\hat{D}E \text{ (pq?)}$
- Assim, BC = DE e BN = NE (lados opostos à ângulos congruentes).

▶ Dessa forma, \overline{MN} une os pontos médios dos lados \overline{AB} e \overline{BE} do $\triangle ABE$. Logo,

$$\overline{MN} \parallel \overline{AE}$$
.

- ightharpoonup Como $\overline{AE} \parallel \overline{BC}$, a primeira parte do teorema está demonstrada.
- ► Finalmente,

$$MN = \frac{AE}{2} = \frac{AD + DE}{2} = \frac{AD + BC}{2}.$$

O segmento \overline{MN} é denominado base média ou mediana do trapézio.