Nama: Vania Rahma Dewi

> NIM: 064002200030

Hari/Tanggal: Rabu, 9 Agustus 2023

Praktikum Statistika

MODUL 9

Nama Dosen: **Dedy Sugiarto**

Nama Asisten Labratorium

1. Elen Fadilla Estri

064002000008

2. Rukhy Zaifa Aduhalim 064002000041

Probabilitas Peubah Acak Kontinu (Distribusi Normal)

1. Teori Singkat

Distribusi Normal memiliki fungsi kepadatan peluang sebagai berikut:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

 μ = rata-rata populasi $\sigma 2 = \text{ragam populasi}$

Jika sebuah peubah acak berdistribusi Normal maka dapat ditulis dengan notasi sebagai berikut:

$$X \sim N(\mu, \sigma^2)$$

Sedangkah bila peubah acak Normal dengan nilai $\mu = 0$ dan $\sigma = 1$ disebut distribusi Normal Baku (standard normal distribution) atau ditulis sebagai N(0,1)

Perintah untuk membangkitkan data yang berdistribusi Normal adalah sebagai berikut: rnorm(n, mean = , sd =)

2. Alat dan Bahan

Hardware: Laptop/PC Software: R Studio

3. Elemen Kompetensi

- a. Latihan pertama Distribusi Normal
 - 1. Perintah untuk **membangkitkan data** yang berdistribusi Normal adalah sebagai berikut: rnorm(n, mean = , sd =)

```
x = rnorm(100, 0, 1)
View(x)
hist(x)
```

Output:

2. Menghitung peluang di bawah sebaran Normal dapat menggunakan perintah (pnorm). Perlu dicatat bahwa ketika menghitung peluang di bawah sebaran kontinu,

$$p(X \le a) = p(X = a) + p(X \le a) = 0 + p(X \le a) = p(X \le a)$$

Contoh 1

Diketahui tinggi mahasiswa berdistribusi normal dengan rata-rata 165 cm dan standar deviasi 6 cm. (Gunakan distribusi Normal menggunakan R). Jika dipilih secara acak seorang mahasiswa, berapa peluang tingginya kurang dari 160cm.

```
pnorm(160, 165, 6)
```

Output:

```
> pnorm(160, 165, 6)
[1] 0.2023284
```

3. Berapa peluang menemukan seorang mhs yang tingginya lebih dari 180 cm?.

```
1-pnorm(180, 165, 6)
```

Output:

```
> 1-pnorm(180, 165, 6)
[1] 0.006209665
```

4. Jika dipilih 5 orang mahasiswa, berapa peluang terdapat 2 mahasiswa yang tingginya antara 160 dan 180 cm?

```
pnorm(180, 165,6) - pnorm(160, 165,6)
dbinom(2, 5, nilai dari hasil operasi diatas)
```

Output:

```
> pnorm(180, 165,6) - pnorm(160, 165,6)
[1] 0.791462
> dbinom(2, 5, 0.791462)
[1] 0.05680882
```

5. Contoh 2

Diasumsikan nilai tes masuk sebuah perguruan tinggi berdistribusi Normal dengan rerata 72 dan simpangan baku 15.2. Berapakah persentase peserta tes masuk yang memiliki nilai 84 atau lebih?

```
pnorm(84, mean=72, sd=15.2, lower.tail=FALSE)
atau:
1-pnorm(84, 72, 15.2)
```

Output:

```
> pnorm(84, mean=72, sd=15.2, lower.tail=FALSE)
[1] 0.2149176
> 1-pnorm(84, 72, 15.2)
[1] 0.2149176
```

Persentasenya adalah 21.5%.

b. Latihan Kedua – Tugas I

Bangkitkan (generate) data berukuran n = 1000 yang berdistribusi normal dengan:

1. Rerata tinggi badan 165 dan simpangan baku 15.

Script:

```
x=rnorm(1000, 165,15)
View(x)
hist(x)
```

Output:

2. Rerata nilai IPK mhs 3.12 dan simpangan baku 0.25. Script:

```
x=rnorm(1000, 3.12, 0.25)
View(x)
hist(x)
```

Output:

c. Latihan Ketiga – Tugas II

Diketahui tinggi mahasiswa berdistribusi normal dengan rata-rata 165 cm dan standar deviasi 6 cm. (Gunakan distribusi Normal menggunakan R dan juga perhitungan manual menggunakan tabel Normal Baku).

1. Jika dipilih secara acak seorang mahasiswa, berapa peluang tingginya kurang dari 150cm?

Script:

```
pnorm(150, 165, 6)
```

Output:


```
> pnorm(150, 165, 6)
[1] 0.006209665
```

2. Berapa peluang menemukan seorang mhs yang tingginya lebih dari 170 cm? Script:

```
1-pnorm(170, 165,6)
```

Output:

```
> 1-pnorm(170, 165,6)
[1] 0.2023284
```

3. Jika dipilih 7 orang mahasiswa, berapa peluang terdapat 2 mahasiswa atau kurang yang tingginya antara 150 dan 180 cm?

Script:

```
pnorm(180, 165, 6) - pnorm(150, 165, 6)
dbinom(2, 7, 0.9875807)
```

Output:

```
> pnorm(180, 165, 6) - pnorm(150, 165, 6)
[1] 0.9875807
> dbinom(2, 7, 0.9875807)
[1] 6.051319e-09
```

d. Latihan Keempat – Tugas III

Berdasarkan informasi pengelola jalan tol diperkirakan waktu perjalanan dengan menggunakan mobil untuk rute Jakarta-Bandung via Cipularang mengikuti distribusi Normal dengan rata-rata 175 menit dan simpangan baku 30 menit.

1. Agus berencana ke Bandung esok hari lewat tol cipularang. Berapakah peluang waktu perjalanan yang ditempuh Agus berkisar 125 hingga 158 menit?

```
pnorm(158, 175, 30) - pnorm(125, 175, 30)
```

Output

```
> pnorm(158, 175, 30) - pnorm(125, 175, 30)
[1] 0.23768
> |
```

2. Berapakah pula peluang waktu perjalanan Agus tersebut dapat lebih dari 2,5 jam? (Gunakan distribusi Normal menggunakan R dan juga perhitungan manual menggunakan tabel Normal Baku).

```
1-pnorm(150, 175, 30)
```

Output

```
> 1-pnorm(150, 175, 30)
[1] 0.7976716
```

4. File Praktikum

Github Repository:

5. Soal Latihan

Soal:

- 1. Apa yang dimaksud dengan Distribusi Normal?
- 2. Dalam kasus apa Distribusi Normal digunakan?

Jawaban:

- 1. Distribusi Normal merupakan distribusi probabilitas kontinu yang memiliki ciri ciri berbentuk lonceng/simetris di sekitar rata rata dan pusat tertinggi dari kurva berada pada nilai rata- rata.
- 2. Distribusi normal umumnya digunakan untuk menganalisis dan menggambarkan variasi data dalam berbagai fenomena alamiah dan ilmu sosial.

6. Kesimpulan

- a. Dalam pengerjaan praktikum Statistika, saya dapat memahami bagaimana cara membangkitkan data (generate) yang berdistribusi normal menggunakan R studio.
- b. Kita juga dapat mengetahui apa itu distribusi normal serta kegunaan distribusi normal.

7. Cek List (**✓**)

No	Elemen Kompetensi	Penyelesaian	
		Selesai	Tidak Selesai
1.	Latihan Pertama	✓	
2.	Latihan Kedua	✓	
3.	Latihan Ketiga	✓	
4.	Latihan Keempat	✓	

8. Formulir Umpan Balik

No	Elemen Kompetensi	Waktu Pengerjaan	Kriteria
1.	Latihan Pertama	10 Menit	Menarik
2.	Latihan Kedua	10 Menit	Menarik
3.	Latihan Ketiga	10 Menit	Menarik
4.	Latihan Keempat	15 Menit	Menarik

Keterangan:

- 1. Menarik
- 2. Baik
- 3. Cukup
- 4. Kurang