Definizioni Algebra

Aggiornato lez. 20 (in completamento)

Anno accademico 2021/2022

Contents

1	Cap	itolo 1	5
	1.1	Corrispondenza	5
	1.2	Relazione in se	5
	1.3	Relazione/Corrispondenza inversa	5
	1.4	Relazione di equivalenza	5
	1.5	Relazione banale (di uguaglianza)	5
	1.6	Relazione caotica	5
	1.7	Classe di equivalenza	5
	1.8	Insieme quoziente	6
	1.9	Partizione insiemistica	6
	1.10	Funzione/Applicazione	6
			6
			7
			7
		Funzione caratteristica	7
	1.15	Operazione binaria	7
			7
			8
			8
2	Calo	colo combinatorio	8
	2.1	Notazione funzionale	8
	2.2	Fattoriale crescente	8
	2.3	Fattoriale decrescente	8
	2.4	Pigenhole principle (principio dei cassetti)	8
	2.5		8
	2.6		8
	2.7	Formula	9
	2.8		9
	2.9		9
	2.10		9
	2.11		9

3	I nu	meri	10
	3.1	Costruzione di \mathbb{Z} (interi)	10
	3.2	Definizione di \mathbb{Z}	10
	3.3	Classi su \mathbb{Z}	10
	3.4	Sottoinsiemi di $\mathbb Z$	10
	3.5	Somma su \mathbb{Z}	10
	3.6	Prodotto su \mathbb{Z} :	10
	3.7	Proprietà operazioni su $\mathbb Z$	10
	3.8	Divisibilità	11
	3.9	Multiplo	11
		Associati	11
		Unità	11
		Irriducibile	11
		Primo	11
	3.13		11
		3.13.1 Proposizione: in \mathbb{Z} , a è primo $\Rightarrow a$ irriducibile	12
	0.14	3.13.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo	
	3.14	Massimo comune divisore	12
		3.14.1 Teor: Esistenza del MCD tra due numeri	12
		3.14.2 Prop: se $c a$ e $c b$ allora c divide ogni combinazione lineare	10
		di a e b	13
	3.15	Proposizione	13
		3.15.1 Lemma $MCD(m,m+1)=1$	13
	3.16	Algoritmo di Euclide	13
		3.16.1 Lemma1: L'algoritmo termina	13
		3.16.2 Lemma2: Se $a = bq + r \ MCD(a, b) = MCD(b, r) \dots$	13
		3.16.3 Corollario: $MCD(a,b) = MCD(r_n,0) = r_n 1 \dots \dots$	14
		3.16.4 Lemma3	14
	3.17	Coprimi	14
		3.17.1 Osservazione1	14
		3.17.2 Osservazione 2	14
		3.17.3 Proposizione 1	14
		3.17.4 Proposizione 2	14
	3.18	Equazione diofantea	14
		3.18.1 Teor: Soluzione equazione diofantea	14
	3.19	Teorema fondamentale dell'aritmetica	15
		3.19.1 Osservazione 1	15
		3.19.2 Osservazione 2	15
		3.19.3 Dimostrazione esistenza	15
	3.20	Dimostrazione unicità	15
	3.21	Teor. Euclide - Esistenza infiniti primi	16
4	Con	gruenze	17
	4.1	Congruenza modulo n	17
	4.2	Proposizione	17
	4.3	Quoziente	17
		Proposizione	17

	4.5	Osservazione	8
	4.6	Proposizione somma	8
	4.7	Dimostrazione prodotto	
	4.8	Proposizione	
	4.9	Classi resto invertibili	
		Teorema Uguaglianza sbagliata	
	4.10	4.10.1 Grande teorema di Fermat	
		4.10.2 Piccolo teorema di Fermat	
	1 11	Teorema Eulero-Fermat	
		Corollario	
	4.12	Coronario	T
5	Stru	atture algebriche 22	2
	5.1	Gruppo	2
	5.2	Gruppo commutativo (abeliano)	2
	5.3	Anello	
		5.3.1 Anello commutativo	
		5.3.2 Anello unitario	
		5.3.3 Divisore dello zero	
		5.3.4 Dominio di integrità	
		5.3.5 Legge di annullamento del prodotto	
	5.4	Campo	
	5.5	Semigruppo	
	5.5	5.5.1 Monoide	
	5.6		
	$5.0 \\ 5.7$	0 11	
	5.7		
		5.7.1 Permutazione	
		$5.7.2 S_n \dots 2^{2^n}$	
		5.7.3 Proposizione	
		5.7.4 Proposizione	
		$5.7.5$ 3^a notazione: Permutazione come prodotto di cicli disgiunti 2^a	
		5.7.6 Orbita	
		5.7.7 Proposizione	
		5.7.8 Permutazione ciclica	
		5.7.9 Teorema prodotto di scambi	
		5.7.10 Teorema parità	5
		5.7.11 Pari, dispari	5
		5.7.12 Gruppo alterno	
		5.7.13 Segno	5
	5.8	Gruppi finiti	6
		5.8.1 Proprietà 1	6
		5.8.2 Proprietà 2	6
	5.9	Sottogruppi	6
		5.9.1 Definizione	
		5.9.2 Criteri di verifica	
		5.9.3 Notazione	
		5.9.4 Proposizione	
		5.6.1 1 1 5 p 5 5 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	٠

	5.10	Proposizione: intersezione di sottogruppi
	5.11	Proposizione 1
		Proposizione 2
6	Sott	ogruppo generato 28
	6.1	Definizione
	6.2	Notazione
	6.3	Proposizione
	6.4	$\langle X \rangle$ è il più piccolo sottogruppo che contiene X
	6.5	Defizione: ordine (periodo)
	6.6	Definizione: gruppo ciclico
	6.7	Proposizione
	6.8	Proposizione
	6.9	Proposizione: sottogruppi di un gruppo ciclico
	6.10	Osservazione
		Proposizione
		Teorema di Lagrange
	0.12	6.12.1 Corollario 1
		6.12.2 Corollario 2
7	Clas	si laterali di un sottogruppo 31
1	7.1	Definizione: congruenza destra modulo
	7.1	
		1
	7.3	Insieme quoziente
	7.4	Proposizione
	7.5	Definizione: congruenza sinistra modulo
8		omorfismi 34
	8.1	Isomorfismo
	8.2	Omomorfismo
	8.3	Epimorfismo
	8.4	Monomorfismo
	8.5	Isomorfismo 2
	8.6	Proposizione
9	Poli	nomi a coefficienti reali in 1 indeterminata 35
	9.1	Descrizione
	9.2	Somma di polinomi
	9.3	Rappresentazione come successioni
		9.3.1 Somma di polinomi
	9.4	Teorema: $(\mathbb{R}[x], +)$ è un gruppo (commutativo)
	9.5	Prodotto di polinomi
	9.6	Teorema $(\mathbb{R}, +, \cdot)$ è un anello
	9.7	Grado del prodotto
	9.1	Fatti importanti

1 Capitolo 1

Relazione e corrispondenza sono interscambiabili.

1.1 Corrispondenza

Una corrispondenza ρ di X in Y è una terna (ρ, X, Y) dove $\rho \subseteq X \times Y$.

1.2 Relazione in se

Una Relazione di X in sè, è una corrispondenza ρ di X in X. Se $(x,y) \in \rho$ si scrive anche $x\rho y$ (notazione infissa), cioè x è in relazione ρ con y.

1.3 Relazione/Corrispondenza inversa

Una corrispondenza ρ di X in Y è la relazione di Y in X denotata con ρ^{-1} data dalla seguente:

$$y\rho^{-1}x \Leftrightarrow x\rho y$$

1.4 Relazione di equivalenza

una relazione su A (cioè un sotto
insieme ρ di AxA) si dice di equivalenza se verifica le tre seguenti proprietà:

Riflessiva: $\forall a \in A, a\rho a$.

Simmetrica: $\forall a, b \text{ in } A, a\rho b \Rightarrow b\rho a$

Transitiva: $\forall a, b, c \in A \text{ se } (a\rho b \wedge b\rho c) \Rightarrow a\rho c$

1.5 Relazione banale (di uguaglianza)

Su A $x, y \in A \ x \rho y \Leftrightarrow x = y$

1.6 Relazione caotica

Su A $x \rho y \ \forall x, y \in A$

1.7 Classe di equivalenza

Data la relazione ρ in A, si definisce classe di equivalenza modulo ρ di un elemento $a \in A$ l'insieme di tutti gli elementi che sono equivalenti ad a; si denota con $[a]_{\rho}$.

$$[x]_{\rho} := \{ y \in A : y \rho x \}$$

1.8 Insieme quoziente

Data la relazione di equivalenza ρ su A, si definisce insieme quoziente l'insieme delle classi di equivalenza di ρ dato $x \in A$ si denota con $A/_{\rho}$.

$$A/_{\rho} = \{ [x]_{\rho} : x \in A \}$$

Nota: Relazione di equivalenza e partizioni insiemistiche sono sostanzialmente la stessa cosa.

1.9 Partizione insiemistica

Una partizione insiemeistica di A è una famiglia di sottoinsiemi di A non vuoti, tali che ad ogni elemento di A corrisponde un solo sottoinsieme.

$$H = \{A_i : i \in I\}$$

con

$$A_i \subseteq A \ \forall i \in I$$

con

$$i \neq j, i, j \in I \Leftrightarrow A_i \cap A_j = \emptyset$$

che equivale a dire:

$$\bigcup_{i \in I} A_i = A$$

cioè la famiglia H ricopre A.

1.10 Funzione/Applicazione

 $f: S \to T$ è un'applicazione di S in T se (f, S, T) è una corrispondenza di S in T, ovvero $f \subseteq S \times T$ che soddisfa la seguente proprietà: $\forall x \in S \exists ! y$ in T denotato con y = f(x), f è una legge univoca (ben definita).

L'elemento f(x) si chiama **immagine dell'elemento**.

L'immagine di f è un sottoinsieme del codominio T definito da:

$$Im(f) := \{ y \in T : \exists \ x \in S, y = f(x) \}$$

Controimmagine di y è il sottoinsieme di S del dominio definito da:

$$f^{-1}(y) := \{x \in S : f(x) = y\} \subseteq S$$

1.11 Iniettiva

f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) = f(x') \Rightarrow x = x'].$ Definizione alternativa: f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) \neq f(x') \Rightarrow x \neq x'].$ f è iniettiva $\Leftrightarrow \forall y \in T \mid f^{-1} \mid \leq 1$, ovvero per ogni elemento y in T esiste al più un'immagine.

1.12 Suriettiva

f è suriettiva se $\Rightarrow \forall y \in T \; \exists \; x \in S : f(x) = y$ Definizione alternativa: f è suriettiva $\Leftrightarrow f(S) = Im(S) = T$. f è suriettiva $\Leftrightarrow \forall y \in T \; |f^{-1}(y)| \geq 1$, ovvero per ogni elemento y in T esiste almeno un'immagine.

1.13 Biunivoca (biiettiva)

se f è sia iniettiva che suriettiva.

f è biiettiva $\Leftrightarrow \forall y \in T |f^{-1}(y)| = 1$, ovvero per ogni elemento y in T esiste una sola immagine.

1.14 Funzione caratteristica

E' la funzione che vale 1 se $x \in S$, 0 se $x \notin S$.

1.15 Operazione binaria

Un'operazione binaria su S, è un'applicazione $m: S \times S \to S$; notazione funzionale $(s, s') \mapsto m(s, s')$; notazione infissa sms' o s*s.

1.16 Assiomi di Peano

per la costruzione dei naturali \mathbb{N}

- 1. I numeri formano una classe
- 2. Lo "zero" è un numero
- 3. Se a è un numero allora il successore a' è un numero
- 4. Se $a \neq b$ sono due numeri allora $a' \neq b'$
- 5. Lo "zero" non è successore di nessun numero ($\nexists a$ numero tale che zero = a')
- 6. Assioma di induzione:

Se S è una classe di numeri tale che:

- $zero \in S$
- Se $a \in S$ allora $a' \in S$

allora ogni naturale è in S.

I naturali sono la più piccola classe che

- Contiene lo zero
- Chiusa rispetto a contenere i successori

1.17 Principio del buon ordinamento di \mathbb{N}

Se $S\subseteq \mathbb{N}, S\neq \emptyset$, allora esiste un minimo in S, cioè esiste $m\in S$ tale che se $h\in \mathbb{N}, h< m$ allora $h\notin S$.

1.18 Teor: Divisione con resto su \mathbb{N}

Siano $a, b \in \mathbb{N}, b \neq 0$; allora esistono $q, r \in \mathbb{N}$ tali che

- a = bq + r
- $0 \le r < b$

 $\forall a,b \in \mathbb{Z}, b \neq 0; \exists$ unici $q,r \in \mathbb{Z}$ con $a=bq+r \land 0 \leq r < b$ TODO: Dimostrazione

2 Calcolo combinatorio

2.1 Notazione funzionale

Insieme delle applicazioni da A verso B

$$B^A = \{f : A \to B\}$$

2.2 Fattoriale crescente

$$n^{(m)} := n * (n+1) * ... * (n+m-1)$$

2.3 Fattoriale decrescente

$$n_{(m)} := n * (n-1) * \dots * (n-m+1)$$

2.4 Pigenhole principle (principio dei cassetti)

Se ho n oggetti e m cassetti, se n > m e devo disporre tutti gli oggetti nei cassetti allora esiste un cassetto che contiene almeno due oggetti.

2.5 Permutazione

Sia A un insieme. Una biiezione $f: A \to A$ si chiama anche permutazione di A.

2.6 Coefficiente binomiale

Prima interpretazione combinatoria: $\binom{n}{i}$ è il coefficiente di $x^i y^{n-i}$ nello sviluppo $(x+y)^n = \sum_{z_i \in \{x,y\}} z_1...z_n$, ovvero il numero di stringhe binarie (su x, y)

- lunghe n
- con i occorrenze di x

- con n-i occorrenze di y
- $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$

Seconda interpretazione combinatoria: numero di sottoinsiemi di cardinalità i su un insieme [n] di cardinalità n.

2.7 Formula

$$\binom{n}{i} = \frac{n(n-1) * \dots * (n-i+1)}{i!} = \frac{n!}{i!(n-i)!}$$

2.8 Relazione ricorsiva

$$\binom{n}{i} = \binom{n-1}{i-1} + \binom{n-1}{i}$$

Dimostrazioni algebrica e combinatoria.

2.9 Simmetria

$$\binom{n}{i} = \binom{n}{n-i}$$

Il coefficiente binomiale è simmetrico rispetto al centro della riga n-esima $\lfloor \frac{n}{2} \rfloor$ del triangolo rappresentante tutti i coefficienti del coefficiente binomiale.

Dimostrazioni algebrica e combinatoria.

2.10 Relazione d'ordine

Una relazione ρ su X è una relazione d'ordine (o un ordine, o un ordinamento) se valgono per ρ le proprietà:

- (R) $\forall x, x \rho x$
- (AS) $\forall x, y (x \rho y \land y \rho x) \Rightarrow x = y$
- (T) $\forall x, y, z \ (x\rho y \land y\rho z) \Rightarrow x\rho z$

2.11 POSET (Partial order set)

Un insieme munito di una relazione d'ordine si dice parzialmente ordinato.

3 I numeri

3.1 Costruzione di \mathbb{Z} (interi)

Partendo da \mathbb{N} : prendiamo su $\mathbb{N} \times \mathbb{N}$ la relazione ρ definita sulle coppie $(n,m) \in \mathbb{N} \times \mathbb{N}$ tale che $(n,m)\rho(n',m') \Leftrightarrow n+m'=m+n'$

3.2 Definizione di \mathbb{Z}

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N}/\rho$$

3.3 Classi su \mathbb{Z}

 $\overline{(0,0)}$ zero $\overline{(m,0)}, m > 0$ positivi $\overline{(0,n)}, n > 0$ negativi

3.4 Sottoinsiemi di \mathbb{Z}

$$\mathbb{Z} = \mathbb{Z}^{>0} \cup \{0,0\} \cup \mathbb{Z}^{<0}$$

3.5 Somma su \mathbb{Z}

$$\overline{(n,m)} + \overline{(n',m')} = \overline{(n+n',m+m')}$$

3.6 Prodotto su \mathbb{Z} :

$$\overline{(n,m)} \cdot \overline{n',m'} = \overline{(nn'+mm',nm'+mn')}$$

3.7 Proprietà operazioni su \mathbb{Z}

 $\forall a, b, c \in \mathbb{Z} \ (a, b, c \text{ coppie } \overline{(n, m)}) \text{ valgono le seguenti:}$

- 1. Associatività: (a+b)+c=a+(b+c)
- 2. Commutatività: a + b = b + a
- 3. Esiste uno zero per la somma, cioè un elemento 0: a+0=0+a=a
- 4. $\forall a \in \mathbb{Z}$ esiste un elemento detto *opposto*, denotato con -a, cioè un elemento tale che: a + (-a) = (-a) + a = 0.

$$a = \overline{(n,m)}$$
$$-a = \overline{(m,n)}$$

- 5. Associatività prodotto: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 6. Commutatività prodotto: $a \cdot b = b \cdot a$

7. Esiste un elemento neutro per il prodotto, "1", cioè un numero in $\mathbb Z$ tale che:

$$\frac{a\cdot 1=1\cdot a=a}{\overline{(n,m)}\cdot \overline{(1,0)}=\overline{(n,m)}}$$

8. Distributività del prodotto sulla somma:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

3.8 Divisibilità

Dati $a, b \in \mathbb{Z}$ si dice che a divide b, e si indica a|b, se e solo se $\exists c \in \mathbb{Z}$ tale che $b = a \cdot c$ (ovvero $a|b \Leftrightarrow \exists c \in \mathbb{Z} : b = a \cdot c$). La divisibilità è una relazione sugli interi:

3.9 Multiplo

Se a|b diremo che b è un multiplo di a.

3.10 Associati

a,b sono associate se a|b e b|a Oss1: in \mathbb{N}^* sono associati $\Leftrightarrow a=b$. Oss2: in generale, in $\mathbb{Z} \Leftrightarrow a=b$ oppure a=-b.

3.11 Unità

In \mathbb{Z} sono +1 e -1.

3.12 Irriducibile

Un elemento $a \in \mathbb{Z}, \ a \neq 0$ è irriducibile se $a = b \cdot c \Rightarrow b$ oppure c sono unità.

3.13 Primo

Un elemento $a \in \mathbb{Z}$ si dice primo se:

$$a|b\cdot c\Rightarrow a|b\ oppure\ b|c$$

3.13.1 Proposizione: in \mathbb{Z} , a è primo $\Rightarrow a$ irriducibile

Sia $a = b \cdot c$: usando l'ipotesi che a è primo allora a|b oppure a|c. Se $a|b \Rightarrow \exists h : b = a \cdot h \Rightarrow a = a \cdot h \cdot c \Rightarrow h \cdot c = 1 \Rightarrow c = \pm 1$ Allora $a = b \cdot (+1)$ oppure $a = b \cdot (-1)$, a è irriducibile.

3.13.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo

Ipotesi: a irriducibile

Tesi: a primo Supponiamo che $a|bc \Leftrightarrow \exists h \in \mathbb{Z} : bc = ah$,

voglio mostrare che a|b oppure a|c ovvero che se $a \nmid b$ allora a|c.

Ora a irriducibile, i suoi divisori sono a, -a, 1, -1. $a \nmid b$ allora anche $-a \nmid b \Rightarrow$ i divisori comuni tra a e b sono $1, -1 \rightarrow MCD(a, b) = 1$.

$$\exists (id. \text{ B\'ezout}) \exists h, k \in \mathbb{Z}$$

$$1 = ah + bk$$

moltiplicando per c

$$c = cah + cbk = a(ck + k)$$
 $[cb = a]$

quindi a|c.

3.14 Massimo comune divisore

Dati a,b non entrambi nulli, un elemento $d\in\mathbb{Z}$ si chiama massimo comune divisore tra a e b un numero tale che:

- $d|a \wedge d|b$
- Se $c|a \wedge c|b$, allora c|d: d è il massimo tra i divisori comuni.

Chiamiamo massimo comune divisore l'unico positivo che soddisfa le due proprietà.

3.14.1 Teor: Esistenza del MCD tra due numeri

 $\forall a,b \in \mathbb{Z}$ non entrambi nulli, esiste un numero $d \in \mathbb{N}^*$ tale che d = MCD(a,b) Il massimo comune divisore si esprime come una combinazione lineare tra a e b, ovvero esistono $s,t \in \mathbb{Z}$ tali che $d = s \cdot a + t \cdot b$ (identità di Bézout).

Dimostrazione:

Sia
$$S = \{xa + yb : x, y \in \mathbb{Z}, xa + yb > 0\}$$

- 1. $S \subseteq \mathbb{N}$
- 2. $S \neq \emptyset$

a e b sono non entrambi nulli, quindi almeno uno dei due è $\neq 0$. Sia esso a.

Se a>0 allora $1\cdot a+0\cdot b=a>0$ Se a<0 allora $(-1)\cdot a+0\cdot b=a>0$

Dimostrazione che $d|a \in d|b$:

Dividiamo a per d (divisione col resto): $\exists q, r$ con a = dq + r, $0 \le r < d$ Se r = 0 allora d|a

Se $r \neq 0$ allora 0 < r < d

$$r=a-dq;$$
dato che $d\in S\Rightarrow d=x_0a+y_0b$ allora

$$r = a - q(x_0a + y_0b) = a - qx_0a + qy_0b = a(1 - qx_0) - (qy_0)b$$

Quindi $r \in S$ perchè è una combinazione lineare > 0 ma r < d, però d è il minimo di $S \Rightarrow$ Assurdo.

Dimostrazione se d'|a e d'|b allora d'|d: Poichè d'|a e d'|b si ha che

$$\exists h : a = d' \cdot h, \exists k : b = d' \cdot k$$

Ora

$$d = x_0 a + y_0 b$$
$$= x_0 (d'h) + y_0 (d'k) =$$
$$= d'(x_0 h + y_0 h) \Rightarrow d'|d$$

3.14.2 Prop: se c|a e c|b allora c divide ogni combinazione lineare di a e b

$$a = ch$$

$$b = ck$$

$$\Rightarrow xa + yb = xch + yck$$

$$= c(xh + yk) \Rightarrow \in \mathbb{Z}$$

$$\Rightarrow c|xa + yb|$$

3.15 Proposizione

$$1 = at + bs \Rightarrow MCD(a, b) = 1$$

3.15.1 Lemma MCD(m,m+1)=1

Sia $m \in \mathbb{N}, \ m \geq 1$ allora MCD(m, m+1) = 1.

Dimostrazione:

$$m+1-m=1 \Rightarrow 1(m+1)+(-1)m=1$$

Potendo scrivere 1 come combinazione lineare di m e m+1, m e m+1 sono primi tra loro.

3.16 Algoritmo di Euclide

3.16.1 Lemma1: L'algoritmo termina

La successione dei resti è un numero $0 \le ... < r_2 < r_1 < b$.

3.16.2 Lemma2: Se $a = bq + r \ MCD(a, b) = MCD(b, r)$

TODO: scrivere dimostrazione

3.16.3 Corollario: $MCD(a, b) = MCD(r_n, 0) = r_n 1$

Per il lemma 2 $MCD(a,b)=MCD(b,r_1)=MCD(r_1,r_2)=\ldots=MCD(r_{n-1},r_n)=MCD(r_n,0)$

3.16.4 Lemma3

Se $x \in \mathbb{N}^*$ allora MCD(x, 0) = x

3.17 Coprimi

a, b non entrambi nulli, $a \in b$ si dicono coprimi (o primi fra loro) se MCD(a, b) = 1.

3.17.1 Osservazione1

Se a e b sono primi fra loro, allora

$$\exists \ x, y \in \mathbb{Z} : 1 = xa + yb$$

3.17.2 Osservazione 2

Se

$$d = MCD(a, b) \Rightarrow \exists x, y : d = ax + by$$

3.17.3 Proposizione 1

Se $\exists x_0, y_0 \text{ con } 1 = ax + by$ allora a, b sono primi tra loro.

3.17.4 Proposizione 2

Se $a \in b$ sono coprimi e dividono un terzo numero c, allora ab|c.

3.18 Equazione diofantea

Equazione con una o più incognite sugli interi di cui si cercano le soluzioni intere. Sono del tipo:

$$ax + by = c$$

3.18.1 Teor: Soluzione equazione diofantea

L'equazione diofante lineare in x e y ax + by = c $a, b, c \in \mathbb{Z}$ possiede soluzioni intere $(x, y) \in \mathbb{Z}^2 \Leftrightarrow d = MCD(a, b)|c$

(Dim \Rightarrow) La condizione MCD(a,b)|c è necessaria.

Ipotesi: esiste una soluzione di $x^2 + y^2 = z^2$

Tesi: d|termine noto, d = MCD(a, b): $d|a \in d|b \Rightarrow d|$ ogni combinazione lineare di a, b.

Se x_0, y_0 sono una soluzione, allora $ax_0 + by_0 = c \Rightarrow d|c = ax_0 + by_0$

(Dim \Leftarrow) La condizione è sufficiente. Ipotesi MCD(a,b) = ah + bk, per opportuni $h,k \in \mathbb{Z}$

3.19 Teorema fondamentale dell'aritmetica

 $\forall n>1, n\in\mathbb{N}, \exists\ p_1,...,p_j\in\mathbb{N}$ (irriducibili) $\exists h_1,...,h_j\geq 1$ tali che:

- $n = p_1^{h_1}...p_j^{h_j} p_1,...p_j$ distinti
- la fattorizzazione di $n=p_1^{h_1}...p_j^{h_j} \ p_1,...p_j$ è unica a meno di riordinare i fattori

3.19.1 Osservazione 1

j può essere 1, cioè potrebbe esserci un solo irriducibile nella fattorizzazione di n, anche h possono essere 1. Se n è irriducibile $\Rightarrow n = n$ è la fattorizzazione in irriducibili di n.

3.19.2 Osservazione 2

1 non è considerato irriducibile perché si perderebbe l'unicità della scrittura in irriducibili.

3.19.3 Dimostrazione esistenza

Con principio di induzione in forma forte.

Base: n=2, 2 è irriducibile.

Per $\mathbf{oss1}\ 2=2^1$ è la fattorizzazione in primi in irriducibili di 2

Ipotesi induttiva: ogni $2 \le a < n \pmod{2} \le a \le n-1$) è fattorizzabile in ir-

riducibili: $\exists \alpha_1...\alpha_t\alpha_i \leq 1$ e $q_1,...q_t$ irriducibili con $a = q_1^{\alpha_1}...q_t^{\alpha_t}$ Passo induttivo: provare che n sia prodotto di irriducibili

Primo caso: n irriducibile \rightarrow fatto, per oss.1

Secondo caso: n riducibile: $\exists b, c \in \mathbb{Z}, 1 \neq b, c \neq n$ (divisori propri) con $n = bc \Rightarrow 2 \leq b, c < n$.

Allora per b e c vale l'ipotesi induttiva e quindi

$$b = q_1^{\alpha_1} ... q_t^{\alpha_t} \quad c = x_1^{\beta_1} ... x_s^{\beta_s}$$

$$n = bc = q_1^{\alpha_1} ... q_t^{\alpha_t} x_1^{\beta_1} ... x_s^{\beta_s}$$

3.20 Dimostrazione unicità

Per induzione su m, con m è la lunghezza minima di una fattorizzazione per n. m: minimo numero di irriducibili di una fattorizzazione di n

Base: $m = 1 \Rightarrow n = n$ è primo.

Se per assurdo $n=q_1...q_s,\ s\geq 2$ allora $n|q_1$ o $n|q_2...q_s$. Prendiamo $n|q_1$, anche q_1 è primo $\Rightarrow n=q_1$; semplificando da entrambe le parti $\Rightarrow 1=q_2...q_s$ che porterebbe ad un assurdo perché 1=1. Quindi $n=q_1$ ed è l'unica fattorizzazione.

Ipotesi induttiva: se il minimo numero di primi in una fattorizzazione di $n \in m-1$, allora la fattorizzazione è unica a meno dell'ordine.

Passo induttivo: m è il minimo di una fattorizzazione di n.

3.21 Teor. Euclide - Esistenza infiniti primi

L'insieme $P = \{ p \in \mathbb{N} : p \text{ è primo} \}$ è infinito.

Dimostrazione: Supponiamo che P sia finito, cioè $P = \{p_1, ..., p_n\}$.

Sia $m = p_1, ...p_n$ il prodotto di tutti i primi.

Considero m+1: per il teorema fondamentale dell'aritmetica $m+1=p_1^{k_1}...p_n^{k_n}$, $k_1,...,k_n\geq 0$ almeno uno degli esponenti $\dot{\varrho}0$.

Per il lemma su MCD di un numero ed il suo successivo m e m+1 sono coprimi. Sia j tale che $k_j > 0$, cioè $p_j^{k_k}|m+1$; vale anche $p_j|m$ allora $p_j|MCD(m,m+1) = 1$ che è un assurdo.

4 Congruenze

4.1 Congruenza modulo n

La congruenza modulo
n (n fissato) è una relazione di equivalenza definita su
 $\mathbb Z.$

$$x \equiv y \pmod{n} \Leftrightarrow x - y$$
 multiplo di $n \Leftrightarrow n|x - y|$

4.2 Proposizione

La congruenza $(mod \ n)$ è una relazione di equivalenza.

Dimostrazione:

(R)
$$\forall x \in \mathbb{Z} : x \equiv x \pmod{n} \Leftrightarrow n | (x - x)$$

Vera perché $0 = 0 \cdot n$.

(S)
$$\forall x, y \in \mathbb{Z} : x \equiv y \pmod{n} \Rightarrow y \equiv x \pmod{n}$$

So che $n|x-y \Leftrightarrow x-y=nh$ per qualche $h \in \mathbb{Z}$.

Moltiplicando per -1: y - x = -nh = n(-h) quindi $n|y - x \Rightarrow y \equiv x \pmod{n}$

(T)
$$x \equiv y \pmod{n} \land y \equiv z \pmod{n} \Rightarrow x \equiv z \pmod{n}$$

$$(x-y)=nh_1\wedge (y-z)=nh_2 (x-z)=(x-y)-(y-z)=nh_1-nh_2=n(h_1-h_2) \text{ quindi } n|x-z\Rightarrow x\equiv z (mod\ n)$$

4.3 Quoziente

Il quoziente della congruenza $(mod\ n)$ si denota come $\mathbb{Z}_{/\equiv (mod\ n)} = \{[x]_n : x \in \mathbb{Z}\}.$

Il quoziente \mathbb{Z}_n si chiama anche **interi modulo n**.

4.4 Proposizione

Dati $x,y\in\mathbb{Z}$ si ha: $x\equiv y \pmod n \Leftrightarrow$ il resto delle divisioni di x e di y per n è lo stesso.

Dimostrazione \Rightarrow (se $x \equiv_n y$ hanno lo stesso resto x - y = nh (per qualche h)

$$x = nh + y$$

Dividendo y per $n: \exists !q, r \in \mathbb{Z} : y = nq + r, \ 0 \le r < n.$

Scambiando in x: x = nh + nq + r = n(h+q) + r, x ed y hanno quindi lo stesso resto.

4.5 Osservazione

Sia $x = nq + r, \ 0 \le r < n$ la divisione con resto di x per n. Allora

$$[x]_n = [r]_n \Leftrightarrow x \equiv r \pmod{n} \Leftrightarrow x - r = nq$$

Quindi

$$n|x-r$$

4.6 Proposizione somma

La somma classi resto in \mathbb{Z}_n , definita da: $\overline{x} + \overline{y} := \overline{x+y}$, è ben posta, ovvero non dipende dalla scelta dei rappresentanti.

Dimostrazione Siano $x' \in \overline{x}$, cioè $\overline{x'} = \overline{x}$ e $y' \in \overline{y}$ cioè $\overline{y'} = \overline{y}$, allora

$$x' \equiv x \pmod{n} \Leftrightarrow x' = x + kn$$

$$y' \equiv y \pmod{n} \Leftrightarrow y' = y + hn$$

Da verificare: $\overline{x'+y'} = \overline{x+y} \Leftrightarrow x'+y' = x+y+tn$ Quindi:

$$x' + y' = x + kn + y + hn$$

= $x + y + kn + hn$
= $x + y + (k + h)n [(k + h) = t]$

4.7 Dimostrazione prodotto

$$x' \cdot y' = (x + kn)(y + hn)$$
$$= xy + xhn + kny + khn^{2}$$
$$xy + n(xh + ky + khn), \quad [(xh + ky + khn) = t]$$

4.8 Proposizione

 $a \in \mathbb{Z}, \overline{a}$ invertibile in $\mathbb{Z}_n \Leftrightarrow MCD(a, n) = 1$

 $\mathbf{Dim} \Rightarrow$

Ipotesi: $\overline{a} \in \mathbb{Z}$ invertibile

Tesi: (a,n)=1

Esiste $b \in \mathbb{Z} : \overline{a} \cdot \overline{b} = 1$

$$\Leftrightarrow ab \equiv 1 \pmod{n}$$
$$\Leftrightarrow n|1 - ab$$
$$\Leftrightarrow 1 - ab = nk$$
$$\Leftrightarrow 1 = ab + nk$$

$$\Rightarrow MCD(a, n) = 1$$

 $Dim \Leftarrow$

Ipotesi: MCD(a, n) = 1

Tesi: \overline{a} è invertibile

Se MCD(a, n) = 1 allora esistono $h, k \in \mathbb{Z}$:

$$1 = ah + nk \in \mathbb{Z}$$

$$\overline{1} = \overline{ah} + n\overline{k}$$

$$\overline{1} = \overline{a}\overline{h} + \overline{n}\overline{k} \in \mathbb{Z}$$

$$\overline{n}\overline{k} = \overline{0}\overline{k}$$

$$\overline{1} = \overline{a}\overline{h} \Rightarrow \overline{h} = (\overline{a})^{-1}$$

4.9 Classi resto invertibili

$$\bigcup(\mathbb{Z}_n) := \{ a \in \mathbb{Z}_n : \overline{a} \ invertibile \} \subseteq \mathbb{Z}_n \\
\cup(\mathbb{Z}_n) = \{ \overline{a} : MCD(a, n) = 1 \}$$

4.10 Teorema Uguaglianza sbagliata

Se p è primo allora $\forall x,y \in \mathbb{Z}$ vale:

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
$$(\overline{x} + \overline{y})^p = \overline{x}^p + \overline{y}^p \pmod{p}$$

Dimostrazione: $(x+y)^p = \sum_{i=0}^p \binom{p}{i} x^i y^{p-i}$

$$\begin{pmatrix} p \\ 0 \end{pmatrix} = 1 = \begin{pmatrix} p \\ p \end{pmatrix}$$
$$\begin{pmatrix} p \\ 0 \end{pmatrix} x^0 y^p = 1 y^p$$
$$\begin{pmatrix} p \\ p \end{pmatrix} x^p y^0 = 1 x^p$$

Considerare con 0 < i < p il coefficiente binomiale è:

$$\begin{split} \binom{p}{i} &= \frac{p(p-1)...(p-i+1)}{i(i-1)...2\cdot 1} \in \mathbb{N} \\ p(\frac{(p-1)...(p-i+1)}{i!}) &\Rightarrow p| \binom{p}{i} \forall i=2,...,p-1 \\ &\Rightarrow \binom{p}{i} \equiv 0 (mod \ p) \end{split}$$

4.10.1 Grande teorema di Fermat

 $x^n + y^n = z^n, n \ge 3$ non ha soluzioni intere.

4.10.2 Piccolo teorema di Fermat

 $\forall a \in \mathbb{Z}, \forall p (mod)$ primo si ha che: $a^p \equiv a (mod \ p)$ in \mathbb{Z}_1 , p primo vale $\overline{a}^p = \overline{a}$.

Dimostrazione per $a \in \mathbb{N}$

Per induzione su a

Base:

$$a = 0$$
$$0^{p} \equiv^{?} 0 \pmod{p}$$
$$0^{p} = 0 \in \mathbb{Z} \Rightarrow 0^{p} \equiv \pmod{p}$$

Ipotesi induttiva: supponiamo vera per a l'affermazione $a^p \equiv a \pmod{p}$

Passo induttivo: verifichiamo per (a + 1).

$$(a+1)^p \equiv a^p + 1^p \equiv a + 1$$

 $a^p \to a$ e $1^p \to 1$ per ipotesi induttiva.

Se a < 0 è ancora vero?

Se a < 0 allora -a > 0, cioè $(-a)^p \equiv -a \pmod{p}$. Ora:

$$0 = a - a$$

$$0^p = (a - a)^p$$

$$0^p \equiv (a - a)^p \equiv a^p + (-a)^p$$

$$\equiv a^p - a \equiv 0 \cdot (mod \ p) \Leftrightarrow a^p \equiv a (mod \ p)$$

4.11 Teorema Eulero-Fermat

Se
$$(a,p)=1$$
 cioè se $\overline{a}\neq \overline{0}$ in \mathbb{Z}_p allora

$$a^{p-1} \equiv 1 (mod \ p)$$

Dimostrazione: se (a,p)=1 allora esiste l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p . So che

$$a^{p} \equiv a \pmod{p}$$

$$(\overline{a}^{p}) \equiv \overline{a} \pmod{p}$$

$$\Rightarrow moltiplicando per l'inverso \Rightarrow \overline{a}^{p-1} = \overline{1} in \mathbb{Z}_{p}$$

$$\Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$$

4.12 Corollario

Se (a,p)=1e se p primo allora \overline{a}^{p-2} è l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p

Dimostrazione: l'inverso di \overline{a} è \overline{x} con $\overline{a} \cdot \overline{x} = \overline{2}$, ma

$$\overline{a} \cdot \overline{a}^{p-2} = \overline{a}^{p-1} = \overline{1}$$

per il teorema di Eulero-Fermat.

5 Strutture algebriche

5.1 Gruppo

Un insieme S non vuoto, munito di una operazione

$$m: S \times S \to S$$

$$(a,b) \mapsto m(a,b) = a * b$$
 (notazione infissa)

che verifica i punti 1, 3, 4 si chiama gruppo(S, *). L'operazione su S è dunque:

- associativa
- con elemento neutro $e: \forall x, x * e = e * x = x$
- per ogni elemento x esiste un inverso rispetto al prodotto * cioè un elemento y tale che x*y=y*x=e, che si denota x^{-1}

5.2 Gruppo commutativo (abeliano)

Se il gruppo (S,*) soddisfa anche la proprietà 2 (quindi associatività, elemento neutro, opposto, +commutatività).

5.3 Anello

Un anello è una terna $(A, +, \cdot)$ con:

- A insieme non vuoto
- \bullet + · due operazioni binarie, associative
- (A, +) è un gruppo abeliano
- Distributività: $\forall a, b, c \in A, \ a \cdot (b+c) = a \cdot b + a \cdot c$

5.3.1 Anello commutativo

Se un anello $(A, +, \cdot)$ il prodotto è commutativo, cioè se $\forall a, b \in A, \ a \cdot b = b \cdot a$.

5.3.2 Anello unitario

Se esiste un elemento di A, che si denota con 1_A , tale che $a \cdot 1_A = 1_A \cdot a = a$.

5.3.3 Divisore dello zero

Un elemento $a\in A,\ a\neq 0_A$ di un anello di dice divisore dello zero se esiste $b\in A, b\neq 0$ con $a\cdot b=0_A.$

5.3.4 Dominio di integrità

Se $(A, +, \cdot)$ è privo di divisori dello zero.

5.3.5 Legge di annullamento del prodotto

Se in un dominio di integrità $a \cdot b = 0_A$ allora $a = 0_A$ oppure $b = 0_A$.

5.4 Campo

Un campo è una terna $(K, +, \cdot)$ con K insieme non vuoto e 2 operazioni.

- $(K, +, \cdot)$ anello commutativo unitario
- Detto 0_k l'elemento neutro della somma e denotato con $K^* = K \setminus \{0_k\}$, deve valere che $\forall x \in K^* : x \cdot x^{-1} = 1_k$

Quindi campo \Leftrightarrow anello commutativo unitario con in più $K\setminus\{0_k\}=(K^*,\cdot)$ gruppo.

5.5 Semigruppo

Sia X un insieme non vuoto.

*:

$$X * X \rightarrow Z$$

$$(a.b) \mapsto a * b$$

una operazione binaria associativa: $\forall a, b, c \in X : a + (b + c) = (a + b) + c$ Un insieme X, munito di una operazione associativa si chiama **semigruppo**.

5.5.1 Monoide

Se (X, +) è un semigruppo ed inoltre esiste un elemento 1_X tale che $a + 1_X = 1_X * a = a$ (1_X elemento neutro dell'operazione *), allora (X, +) si chiama monoide.

5.6 Elenco gruppi

 (A^*,\cdot) è un monoide non commutativo.

 $(\mathbb{N}, +)$ (commutativo) monoide (0 el. neutro) ma non è un gruppo.

 $(\mathbb{Z},+)$ gruppo commutativo (0 el. neutro).

 $(\mathbb{Q},+)$ gruppo commutativo (0 el. neutro); $\frac{p}{a} \to \ opposto \ -\frac{p}{a}.$

 (\mathbb{N}^*, \cdot) monoide, non è un gruppo.

 (\mathbb{Z}^*, \cdot) monoide, non è un gruppo.

 (\mathbb{Q},\cdot) non è un gruppo, 0 non ha inverso.

 (\mathbb{Q}^*,\cdot) gruppo.

 $(\mathbb{R},+)$ gruppo.

 (\mathbb{R}^*,\cdot) monoide, gruppo.

 $(\mathbb{Z}_n, +)$ gruppo finito commutativo; el. neutro $\overline{0}$. (\mathbb{Z}_n, \cdot) monoide, semigruppo (non è un gruppo $\overline{0}$ non è invertibile). $(\cup(\mathbb{Z}_n), \cdot)$ gruppo, el. neutro $\overline{1} = {\overline{a} : (a, n) = 1}$ (el. invertibili).

5.7 Gruppo simmetrico

5.7.1 Permutazione

 $f:[n]\to[n]$ si chiama permutazione di n elementi se f è biiettiva.

5.7.2 S_n

$$S_n := \{ \sigma : [n] \to [n] : \sigma \ e' \ biiettiva \}$$

= $\{ \sigma : \sigma \ e' \ una \ biiettiva \}$

5.7.3 Proposizione

$$|S_n| = n!$$

5.7.4 Proposizione

 (S_n, \cdot) l'insieme delle permutazioni di n elementi con il prodotto di composizione funzionale è un gruppo di cardinalità n! non commutativo.

Dimostrazione

- S_n non vuoto, $n \ge 1$
- Esiste un elemento neutro rispetto al prodotto ·, la permutazione identica: $\sigma \circ id = id \circ \sigma = \sigma$.
- Prodotto associativo $\forall \sigma, \tau, \rho \in S_n \ (\sigma \circ \tau) \circ \rho(i) = \sigma \circ (\tau \circ \rho)(i) = \sigma(\tau(\rho(i)))$
- $\forall \sigma \in S_n$ esiste un elemento σ^{-1} tale che $\sigma \circ \sigma^{-1} = id$.

5.7.5 3^a notazione: Permutazione come prodotto di cicli disgiunti

 S_n : Definire una relazione di equivalenza su [n] associata a $\sigma \in S_n$.

$$x,y \in [n]$$

$$x \equiv_{\sigma} y \Leftrightarrow \exists i : y = \sigma^{i}(x)$$

Si osservi che $\sigma \in S_n$, allora la potenza *i-esima* di σ , con $i \in \mathbb{N}$ è la permutazione $\sigma^i = \sigma \circ ... \circ \sigma$ per i volte.

5.7.6 Orbita

L'orbita di $x \in [n]$ è la classe di equivalenza di x nella relazione \equiv_{σ} .

$$O_{\sigma}(x) = \{ y \in [n] \; \exists i \; con \; y = \sigma^{i}(x) \}$$

5.7.7 Proposizione

Se τ_1 e τ_2 hanno cicli disgiunti $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$

Permutazione ciclica 5.7.8

Chiamo ciclica una permutazione di S_n) in cui nella rappresentazione in cicli disgiunti ha al più un solo ciclo di lunghezza> 1

Teorema prodotto di scambi

Ogni permutazione si può scrivere come prodotto di scambi

Dimostrazione 1: Se la permutazione ha un solo ciclo $\sigma = (a_1, a_2, ..., a_k) =$ un k-ciclo = $(a_1, a_k)(a_1, a_{k-1})...(a_1, a_3)(a_1, a_2) = (a_1, a_2, a_3, ..., a_k)$ **Dimostrazione 2**: Se ho un σ qualunque, allora

 $\sigma = C_1 \cdot C_2 \cdot \dots \cdot C_k$

ne 2: Se no un
$$\sigma$$
 qualunque, allora

dove C_i è un ciclo (nella decomposizione in cicli disgiunti)

$$C_1 = (a_1, ..., a_r) = (a_1, a_r)(a_1, a_{r-1})...(a_1, a_2)$$

$$C_2 = (b_1, ..., b_j) = (b_1, b_j)(b_1, b_{j-1})...(b_1, b_2)$$
...
$$\sigma = (a_1, a_r)(a_1, a_{r-1})...(a_1, a_2) (b_1, b_j)(b_1, b_{j-1})...(b_1, b_2)$$

5.7.10 Teorema parità

Il numero di scambi usati in diverse fattorizzazioni di una permutazione ha sempre la stessa parità.

5.7.11 Pari, dispari

Una permutazione è pari se il numero di scambi (in una sua fattorizzazione in scambi) è pari, dispari altrimenti.

5.7.12 Gruppo alterno

Le premutazioni pari si chiamano gruppo alterno.

5.7.13 Segno

Data σ in $S_n,$ il segno di σ è $\varepsilon(\sigma)=(-1)^{parita'\;di\;(\sigma)}$

5.8 Gruppi finiti

5.8.1 Proprietà 1

Dato (G,\cdot) gruppo e $x,y\in G$ allora $(x\cdot y)^{-1}=y^{-1}\cdot x^{-1}$ (l'inverso del prodotto è il prodotto degli inversi in ordine inverso).

Dimostrazione: $(xy)^{-1} = {}^{?} e_G$ (el. neutro del gruppo).

Ora

$$(x \cdot y)^{-1} \cdot (y^{-1} \cdot x^{-1}) =$$
 $x \cdot (y \cdot y^{-1}) \cdot x^{-1} =$
 $x \cdot e_G \cdot x^{-1} =$
 $x \cdot x^{-1} =$
 e_G

5.8.2 Proprietà 2

In un gruppo vale sempre la cancellazione:

$$ax = bx \Leftrightarrow a = b$$

Dimostrazione: $\exists x^{-1}$: Se ax = bx e moltiplico per x^{-1}

$$axx^{-1} = bxx^{-1}$$
$$a \cdot e = b \cdot e$$
$$a = b$$

Conseguenza: Su una riga (qualunque) della tavola moltiplicativa del gruppo ci sono una e una sola volta tutti gli elementi del gruppo.

5.9 Sottogruppi

5.9.1 Definizione

Un sottogruppo S di (G, \cdot) è:

- $\bullet\,$ Un sottoinsieme non vuoto di $S\subseteq G$
- $\bullet \ S,$ con la stessa operazione di G è un gruppo

5.9.2 Criteri di verifica

Per verificare che S sia un sottogruppo di G;

- Associatività: "gratis" : $S \subseteq G$ e il prodotto in G è associativo.
- 1. $\forall a, b \in S : a \cdot b \in S \text{ ovvero } S \times S \to S$
- $e_G \in S$
- 3. $\forall a \in S \subseteq G, a^{-1} \in S$

5.9.3 Notazione

$$(S, \cdot) \leq (G, \cdot)$$

altrimenti

$$S \leq G$$

5.9.4 Proposizione

S non vuoto e $S\subseteq (G,\cdot)$ è un sottogruppo di G se e solo se

$$\forall a, b \in S : a \cdot b^{-1} \in S \ (*)$$

Dimostrazione

 $\textit{Ipotesi: } \forall a,b:a\cdot b^{-1} \in S$

Tesi: valgono 1, 2, 3 dei criteri di verifica.

Dimostrazione 2:

 $S \neq \emptyset : \exists a_0 \in S \text{ applico } (*) \text{ ad } a_0, a_0:$

$$a_0 \cdot a_0^{-1} = e_G \in S$$

è quindi l'elemento neutro.

 ${\bf Dimostrazione~3:}$

 $\forall a \in S : a^{-1} \in S$? Per 2. $e_G \in S, a \in S$, applico (*)

$$e_G \cdot a^{-1} = a^{-1} \in S$$

Dimostrazione 1:

Dati $a, b \in S$, $a \cdot b \in S$? Per la 3 $b^{-1} \in S$.

Dati a, b^{-1} per (*)

$$a \cdot (b^{-1})^{-1} = a \cdot b \in S$$

5.10 Proposizione: intersezione di sottogruppi

Sia (G,\cdot) un gruppo e $H \leq G, K \leq G$ due sottogruppi. Allora:

$$H \cap K \leq G$$

L'intersezione di sottogruppi di G è un sottogruppo di G

Dimostrazione:

- 1. $1_G \in H \cap K$? Poiche H e K sono sottogruppi $1_G \in H, K$ e quindi $1_G \in H \cap K$
- 2. Siano $x, y \in H \cap K$: verifico che $x \cdot y \in H \cap K$. $x \in H \ e \ x \in K$; $y \in H \ e \ y \in K$ allora:

$$xy \in H; \ xy \in K \Rightarrow xy \in H \cap K$$

3. Se $x \in H \cap K \Rightarrow x^{-1} \in H \cap K$? La dimostrazione è simila a quella del punto precendente

5.11 Proposizione 1

$$H_1, H_2, ... H_t \leq G \Rightarrow H_1 \cap H_2 \cap ... \cap H_t \leq G$$

5.12 Proposizione 2

Siano $S, T \leq G$:

$$S \cup T \leq G \Leftrightarrow S \cup T = T \vee S \cup T = S$$

6 Sottogruppo generato

6.1 Definizione

Siano Gun gruppo e $X\subseteq G,$ si definisce sotto gruppo generato di Xil più piccolo sottogruppo di Gche contenga X

6.2 Notazione

$$\langle X\rangle \ := \bigcap_{X\subseteq H\leq G} H$$

6.3 Proposizione

Se $X = \{x, x_2...\} \subseteq G \neq 0$ allora:

$$\langle X \rangle = \{t_1, t_2, ..., t_r : t_i \in X \text{ oppure } t_i^{-1} \in X\}$$

L'insieme che contiene i prodotti finiti di elementi di X oppure i cui inversi sono in X.

Dimostrazione:

- 1. $\langle X \rangle$ contiene $X, r = 1, t_i \in X$
- 2. $\langle X \rangle \leq G$
 - contiene 1_G : sia $\overline{x} \in X$ qualunque $\Rightarrow \overline{x} \in \langle X \rangle, \overline{x}^{-1} \in \langle X \rangle$ e $\overline{x} \cdot \overline{x}^{-1} = 1_G \in \langle X \rangle$
 - $\langle X \rangle$ è chiuso rispetto al prodotto di G
 - Se $t_1, t_2, ..., t_r \in \langle X \rangle$, e t_1

TODO:CONTROLLARE APPUNTI

6.4 $\langle X \rangle$ è il più piccolo sottogruppo che contiene X

Da dimostrare in proprio, lo ha dato come esercizio

6.5 Defizione: ordine (periodo)

Se un elemento di G ha periodo finito, allora si chiama ordine (o periodo) di g il più piuccolo positivo tale che $g^m=1_G$

6.6 Definizione: gruppo ciclico

Un gruppo G si dice ciclico se esiste $g_0 \in G$ tale che $G = \langle g_0 \rangle$ (gruppo che viene generato da un solo elemento).

6.7 Proposizione

Il sottogruppo generato da un elemento (in un gruppo ciclico) è commutativo. **Dimostrazione:**

$$\langle g \rangle = \{g^h: h \in \mathbb{Z}\}$$

$$x = g^h, \ y = g^k \quad h, k \in \mathbb{Z}$$

$$x \cdot y = g^h g^k = g^{h+k} = g^k g^h = y \cdot x$$

6.8 Proposizione

Sia G gruppo:

- 1. Se $g \in G$ ha periodo infinito $(\nexists h > 0 : g^h = e)$ allora $\exists h, k \in \mathbb{Z}, h \neq k, g^h \neq g^k$: il gruppo ciclico generato da $G, \langle g \rangle \cong \mathbb{Z}$.
- 2. g ha periodo finito. Se n=periodo di $g=o(g)=ord_G(g)$ ovvero $n=min\{k>0:g^k=e\}$ allora $\langle g\rangle=\{e,g,g^2,...,g^{n-1}\}$ dove queste potenze sono tutte distinte.

Dimostrazione pt.1: Dimostro che se:

$$g^h = g^k \Rightarrow h = k$$

infatti moltiplico per g^{-k} ed ho:

$$g^{h-k} = g^{k-k} \Rightarrow g^{h-k} = g^0 = e$$

ma g è aperiodico

$$\Rightarrow h - k = 0 \Rightarrow h = k$$

Dimostrazione pt.2: so che $\langle g \rangle = \{g^h : h \in \mathbb{Z}\}$ devo dimostrare che ogni elemento g^h sta già in $\{e, g, g^2, ... g^{n-1}\}$.

Divido h per n:

$$h = nq + r, \quad 0 \le r < n$$

$$\Rightarrow q^h = q^{nq+r} = q^{nq}q^r = (q^n)^q q^r = e^q q^r = eq^r = q^r$$

ed r è un numero $0 \le r < n$ e quindi è una potenza dell'insieme.

6.9 Proposizione: sottogruppi di un gruppo ciclico

0. Sottogruppi di $(\mathbb{Z}, +)$: sono tutti e soli della forma

$$H = m\mathbb{Z} = \{mh : h \in \mathbb{Z} = \langle m \rangle\}, \ m \in \mathbb{N}$$

Non dimostrato.

1. I sottogruppi di $\langle g \rangle$ con $g \in (G, \cdot), \; g$ aperiodico, sono tutti e soli della forma:

$$H = \langle g^m \rangle$$

per qualche $m \in \mathbb{Z}$.

Non dimostrato.

2. I sottogruppi di un gruppo ciclico generato da un elemento di ordine n $(g^n=e, n$ più piccolo positivo con $g^n=e)$ sono anch'essi ciclici e generati da $\langle g^h \rangle$, h|n.

6.10 Osservazione

I sottogruppi di un gruppo ciclico finito verificano la seguente condizione:

$$H \le \langle g \rangle \Rightarrow |H| |o(g) = |\langle g \rangle|$$

L'ordine di un sottogruppo $H \leq \langle g \rangle$ divide l'ordine dell'elemento g, che è anche l'ordine del gruppo.

6.11 Proposizione

In S_n , sia $\sigma(C_1)(C_2)...(C_k)$ la fattorizzazione di σ come prodotto dei suoi cicli disgiunti. Allora se m_i =lunghezza di C_i

$$ordine(\sigma) = mcm(m_1, m_2, ..., m_k)$$

6.12 Teorema di Lagrange

Se G è un gruppo finito, allora l'ordine di un sottogruppo divide l'ordine del gruppo:

$$H \leq G \Rightarrow |H| |G|$$

TODO: DIMOSTRAZIONE

6.12.1 Corollario 1

Se |G| = p primo, allora gli unici sottogruppi di G sono $H = \{e\}$ oppure H = G (non ci sono sottogruppi intermedi).

6.12.2 Corollario 2

Se |G| = primo, allora G è ciclico (in particolare è abeliano).

Dimostrazione: Se |G| = p primo> 1.

Sia $x_0 \in G, x_0 \neq e$. Sia $H = \langle x_0 \rangle \neq \{e\} \ (H = \{e, x_0, x_0^2 ... \}), \text{ per il } corollario 1:$

$$H = G \Rightarrow G = \langle x_0 \rangle$$

7 Classi laterali di un sottogruppo

7.1 Definizione: congruenza destra modulo

Sia (G, \cdot) un gruppo, sia $H \leq G$ sottogruppo.

Definiamo congruenza destra modulo ${\cal H}$ la relazione così definita:

$$\forall a, b \in G : a \sim_d b \Leftrightarrow a \cdot b^{-1} \in H$$

7.2 Proposizione

 $\sim_d (mod\ H)$ è una relazione di equivalenza.

Dimostrazione:

• (R) $a \sim_d a$?

$$a \cdot a^{-1} = e \in H$$

• (S) $a \sim_d b \Rightarrow b \sim_d a$?

$$ab^{-1} \in H$$

H sottogruppo:

$$(ab^{-1})^{-1} \in H$$

 $\Rightarrow (b^{-1})^{-1} \cdot a^{-1} = b^{-1} \cdot a \Rightarrow b \sim_d a$

• (T) $a \sim_d b \in b \sim_d c \Rightarrow a \sim_d c$?

$$ab^{-1} \in H \ e \ bc^{-1} \in H$$

$$(ab^{-1})(bc^{-1}) \in H$$

 ${\cal H}$ è chiuso rispetto al prodotto

$$(ab^{-1})(bc^{-1}) = ac^{-1} \Rightarrow a \sim_d c$$

7.3 Insieme quoziente

Dato $a \in G$: $[a]_{\sim_d} = H \cdot a$ dove $Ha = \{ha: h \in H\}, H = \{e, h_1, h_2...\}, Ha = \{e \cdot a, h_1 \cdot a, ...\}.$

Dimostrazione: devo provare $1.Ha \subseteq [a]_{\sim_d}$ e $2.[a]_{\sim_d} \subseteq Ha$.

1.

$$b \in Ha$$

$$\Leftrightarrow \exists h : b = ha$$

moltiplicando per a^{-1}

$$\Leftrightarrow h = ba^{-1}$$

$$\Leftrightarrow ba^{-1} \in G$$

$$\Leftrightarrow b \sim_d a \Leftrightarrow b \in [a]_{\sim_d}$$

è la stessa di sopra ma partendo dalla fine verso l'inizio.

7.4 Proposizione

Tutte le classi laterali destre hanno la stessa cardinalità.

Dimostrazione: dimostro che |Ha|=|H| $\forall a\in A$ ($|Ha|=[a]_{\sim_d}$, per transitività |Ha|=|Hb|. Sia

$$\varphi: H \to Ha$$

$$h \to ha$$

- Suriettiva: ogni elemento di Ha è del tipo ha per qualche $h \in H$.
- Iniettiva: $\varphi(a)=\varphi(h')\Rightarrow ha=h'a\Rightarrow$ per la cancellatività nel gruppo $\Rightarrow h=h'$

7.5 Definizione: congruenza sinistra modulo

$$\forall \ a,b \in G, \ a \sim_s b \Leftrightarrow b^{-1}a \in H$$

. La classe laterale sinistra : $[a]_{\sim_s} = aH = \{ah: h \in H\}$

8 Omomorfismi

8.1 Isomorfismo

Dati (G,*)e (H,\cdot) due gruppi, un isomorfismo di G in H è

- $\varphi:G\to H$ una bii
ezione.
- $\bullet \ \varphi$ rispetta le operazioni di gruppo, cioè:

$$\forall a, b \in G : \varphi(a * b) = \varphi(a) \cdot \varphi(b), \ \varphi(a) \ e \ \varphi(b) \in H$$

Si dice che G è isomorfo ad H e si scrive $G \cong H$.

8.2 Omomorfismo

Se $\varphi:G\to H$ conserva le operazioni di G e $H,\,\varphi$ si chiama omomorfismo.

8.3 Epimorfismo

Se φ è suriettiva, φ si chiama epimorfismo.

8.4 Monomorfismo

Se φ è iniettiva, si chiama monomorfismo.

8.5 Isomorfismo 2

Se φ è biunivoca, allora φ si chiama isomorfismo.

8.6 Proposizione

L'isomorfismo tra gruppi è una relazione di equivalenza.

9 Polinomi a coefficienti reali in 1 indeterminata

9.1 Descrizione

$$\mathbb{R}[x] := \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k : a_i \in \mathbb{R}, i = 0, \dots, k, k \in \mathbb{N} \}$$

9.2 Somma di polinomi

Dati

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_k x^k$$

con $k \leq h$

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_k + b_k)x^k + b_{k+1}x^{k+1} + \dots + b_hx^h$$

9.3 Rappresentazione come successioni

Con esempio:

$$p(x) = 1 + 3x - 4x^3 \leftrightarrow (1, 3, 0, -4, 0, 0, ...)$$

9.3.1 Somma di polinomi

$$p(x) = (a_0, a_1, a_2, \dots)$$

$$q(x) = (b_0, b_1, b_2, \dots)$$

$$p(x) + q(x) = (a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, \dots)$$

 a_i, b_i sono i coefficienti di x^i nel polinomio che rappresentano.

9.4 Teorema: $(\mathbb{R}[x], +)$ è un gruppo (commutativo)

Dimostrazione:

- $\mathbb{R}[x]$ è non vuoto
- La somma è associativa

$$(\underline{a} + \underline{b}) + \underline{c} = (...(a_n + b_n) + c_n...) = (...a_n + (b_n + c_n)...) = \underline{a} + (\underline{b} + \underline{c})$$

• $0 \in \mathbb{R}$ è l'elemento neturo di $\mathbb{R}[x]$

$$0 = 0 + 0x + 0x^2 + \dots \rightarrow (0, 0, 0, \dots)$$

• Ogni polinomio ha il suo opposto: se

$$p(x) = a_0 + a_1 x + \dots + a_k x^k$$

allora l'opposto di p(x) è

$$-p(x) = -a_0 - a_1 x - \dots - a_k x^k$$

9.5 Prodotto di polinomi

$$p(x) = a_0 + a_1 x + \dots + a_k x^k \leftrightarrow (a_0, a_1, \dots)$$
$$q(x) = b_0 + b_1 x + \dots + b_k x^k \leftrightarrow (b_0, b_1, \dots)$$
$$p(x) \cdot q(x) = c_0 + c_1 x + \dots + c_r x^r \leftrightarrow (c_0, c_1, \dots)$$

$$c_0 + c_1 x + \dots + c_r x^r = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + (a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0) x^3 + \dots$$

La successione dei coefficienti di $p(x) \cdot q(x)$ è data da:

$$c_n = \sum_{i=0}^n a_i b_{n-i} = \sum_{i+j=n} a_i b_j$$

9.6 Teorema $(\mathbb{R}, +, \cdot)$ è un anello

 $(\mathbb{R},+,\cdot)$ è un anello commutativo, unitario con unità del prodotto uguale a 1 ed è un dominio di integrità. non dimostrato

9.7 Grado del prodotto

Se il grado di p(x)=kèd il grado di q(x)=hil grado del prodotto p(x)q(x)=k+h

9.8 Fatti importanti

• in $\mathbb{R}[x]$ si può fare la "divisione col resto":

$$\forall a(x), b(x) \in \mathbb{R}, \ b(x) \neq 0$$

$$\exists ! \ q(x), r(x) \in \mathbb{R} :$$

- 1. $a(x) = b(x) \cdot q(x) + r(x)$
- 2. il grado di r(x) < grado b(x)
- Conseguenza della divisione col resto:

$$m(x) = n(x) \cdot q_1(x) + r_1(x)$$

$$n(x) = r_1(x) \cdot q_2(x) + r_2(x)$$

...

Termina quando il resto è un polinomio di grado 0.