МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 6304	Пискунов Я.А.
Преполаватель	Кирьянчиков В А

Санкт-Петербург 2020

Цель работы.

Исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времени обнаружения отказов и различного числа используемых для анализа данных.

Формулировка задания.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1.Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в $\pi.3$), в соответствии с:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет mpaвн = 10, CKO spaвн = 20/(2*sqrt(3)) = 5.8.
 - Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y), y>=0, c$$
 параметром b=0.1

и соответственно mэксп=sэксп= 1/b=10.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно mpeл = c*sqrt($\pi/2$), speл= c*sqrt($2-\pi/2$).

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t,

равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3.Для каждого из 3-х массивов {Xi} оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах {Xi} использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k <= 5 следующих ошибок и общее время на выполнение тестирования.

Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая — оценки полных времен проведения тестирования - для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

Равномерный закон, n=30. Сгенерированные числа представлены в табл. 1.

Таблица 1. исходные данные для равномерного закона, n=30

i	1	2	3	4	5	6	7	8	9	10
X	0.944	1.141	3.205	3.633	3.965	4.056	4.278	5.968	6.105	6.446

i	11	12	13	14	15	16	17	18	19	20
X	6.813	6.995	7.306	7.675	8.060	8.719	9.082	9.567	11.396	12.092
i	21	22	23	24	25	26	27	28	29	30
X	12.365	13.278	13.547	14.346	14.438	15.214	17.276	18.325	18.421	19.988

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 20.211 > 15.5$$

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 2.

Таблица 2. Данные для поиска m, равномерный закон, n=30

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.781	2.545	2.346	2.176	2.029	1.900
f-g	1.214	0.483	0.213	0.080	0.006	0.037

Минимум наблюдается при m=35. Тогда B=34, K=0.007126.

Оценка среднего времени. Данные представлены в табл. 3.

Таблица 3. Данные для оценки времени, равномерный закон, n=30

I	31	32	33	34
X_{i}	35.080	46.774	70.161	140.322

Таким образом, время до полного завершения тестирования -292.337, а полное время -576.981.

Равномерный закон, n=24. Сгенерированные числа представлены в табл. 4.

Tаблица 4. исходные данные для равномерного закона, n=24

i	1	2	3		4	5		6		7		8		9	10
X	0.670	4.458	4.86	52	6.709	7.12	0	7.38	31	8.76	57	8.86	4	10.326	10.359
			•	•		•	•								
i	11	12	13		14	15		1	6	1	7	18	3	19	20
X	11.004	11.478	11.4	99	11.572	12.4	93	14.0	543	15.	648	15.7	797	16.005	16.093
				<u> </u>			<u> </u>			•				•	
				i	2	1	22	2	2	3	2	4			

16.415 19.055 19.488

Проверка существования максимума:

X

$$A > (n+1)/2$$

A = 15.39 > 12.5,

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 5.

Tаблица 5. Данные для поиска m, равномерный закон, n=24

m	25	26	27	28	29	30	31	32
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545	1.434
g	2.497	2.262	2.067	1.903	1.763	1.643	1.547	1.445
f-g	1.279	0.554	0.287	0.155	0.080	0.036	0.008	0.010

Минимум наблюдается при m=31. Тогда B=30, K=0.005477

Оценка среднего времени. Данные представлены в табл. 6.

Tаблица 6. Данные для оценки времени, равномерный закон, n=24

I	25	26	27	28	29	30
X_{i}	30.428	36.514	45.642	60.856	91.284	182.568

Таким образом, время до полного завершения тестирования — 447.292, а полное время — 727.98.

Равномерный закон, n=18. Сгенерированные числа представлены в табл.

Tаблица 7. исходные данные для равномерного закона, n=18

i	1	2	3	4	5	6	7	8	9	10
X	0.353	1.239	2.190	3.794	4.160	6.349	7.284	9.624	14.025	14.381

i	11	12	13	14	15	16	17	18
X	15.414	16.267	16.906	17.421	17.584	18.530	18.610	19.014

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 12.488 > 9.5$$
,

значит максимум существует.

7.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 8.

Tаблица 8. Данные для поиска m, равномерный закон, n=18

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.747	2.384	2.105	1.884
f-g	0.748	0.164	0.007	0.072

Минимум наблюдается при m=21. Тогда B=20, K=0.01361

Оценка среднего времени. Данные представлены в табл. 9.

Tаблица 6. Данные для оценки времени, равномерный закон, n=18

I	19	20
Xi	48.257	96.515

Таким образом, время до полного завершения тестирования — 144.772, а полное время — 347.917.

Нормальный закон, n=30. Сгенерированные числа представлены в табл. 10.

Tаблица 10. uсходные данные для нормального закона, n=30

i	1	2	3	4	5	6	7	8	9	10
X	0.069	0.823	1.512	1.633	1.716	2.422	2.478	4.000	4.881	5.760
i	11	12	13	14	15	16	17	18	19	20
X	5.916	6.101	6.598	7.756	8.025	8.551	8.847	8.897	11.039	12.778
						- I	- I	· I	-	
i	21	22	23	24	25	26	27	28	29	30
X	14.712	16.160	16.251	16.920	17.005	17.382	17.425	18.854	20.408	23.889

Проверка существования максимума:

$$A > (n+1)/2$$

$$A = 21.401 > 15.5$$
,

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 11.

Таблица 11. Данные для поиска m, нормальный закон, n=30

m	31	32	33	34
f	3.995	3.027	2.558	2.255
g	3.125	2.830	2.586	2.381
f-g	0.870	0.197	0.028	0.126

Минимум наблюдается при m=33. Тогда B=32, K=0.008955.

Оценка среднего времени. Данные представлены в табл. 12.

Таблица 12. Данные для оценки времени, нормальный закон, n=30

I	31	32
X_{i}	55.832	111.665

Таким образом, время до полного завершения тестирования -167.497, а полное время -456.305.

Нормальный закон, n=24. Сгенерированные числа представлены в табл. 13.

Tаблица 13. исходные данные нормального закона, n=24

i	1	2	3	4	5	6	7	8	9	10
X	0.734	1.239	1.364	1.549	2.090	2.653	4.107	4.761	5.733	8.637
		•				1	•	•		
i	11	12	13	14	15	16	17	18	19	20
X	8.700	8.788	9.094	9.933	10.284	11.778	13.851	16.029	20.995	21.228

i	21	22	23	24
X	21.604	33.889	46.749	55.997

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 18.682 > 12.5$$
,

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 14.

Tаблица 14. Данные для поиска m, нормлальный закон, n=24

m	25	26		
f	3.776	2.816		
g	3.799	3.280		
f-g	0.023	0.464		

Минимум наблюдается при m=25. Тогда B=24, K=0.011805

Оценка среднего времени. Время до полного завершения тестирования – 0, а полное время – 321.786.

Нормальный закон, n=18. Сгенерированные числа представлены в табл. 15.

Tаблица 15. исходные данные для нормального закона, n=18

i	1	2	3	4	5	6	7	8	9	10
X	0.035	0.722	1.714	2.265	2.302	3.885	2.943	3.181	4.960	5.104

i	11	12	13	14	15	16	17	18
X	6.551	7.107	8.223	18.514	29.046	32.597	35.657	39.954

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 14.685 > 9.5$$
,

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 16.

Tаблица 16. Данные для поиска m, нормальный закон, n=18

m	19	20
f	3.495	2.548
g	4.172	3.387
f-g	0.677	0.839

Минимум наблюдается при m=18. Тогда B=19, K=0.020473

Оценка среднего времени. Время до полного завершения тестирования – 0, а полное время – 203.76.

Релеевский закон, n=30. Сгенерированные числа представлены в табл. 17.

Таблица 17. Исходные данные для релеевского закона, n=30

i	1	2	3	4	5	6	7	8	9	10
X	2.027	2.326	3.296	4.297	4.694	5.219	5.759	5.862	6.431	6.630

i	11	12	13	14	15	16	17	18	19	20
X	7.299	7.747	8.592	8.692	8.767	9.641	10.499	11.338	11.552	11.658
i	21	22	23	24	25	26	27	28	29	30
X	12.433	12.832	13.362	15.620	16.339	16.735	17.080	17.779	18.470	24.733

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 19.932 > 15.5$$

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 18.

Таблица 18. Данные для поиска m, релеевский закон, n=30

m	31	32	33	34	35	36	37
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725
g	2.711	2.486	2.2966	2.133	1.991	1.867	1.758
f-g	1.284	0.541	0.263	0.123	0.044	0.004	0.033

Минимум наблюдается при m=36. Тогда B=35, K=0.006068

Оценка среднего времени. Данные представлены в табл. 19.

Таблица 19. Данные для оценки времени, релеевский закон, n=30

I	31	32	33	34	35
X_{i}	32.961	41.202	54.936	82.403	164.807

Таким образом, время до полного завершения тестирования -376.309, а полное время -684.018.

Релеевский, n=24. Сгенерированные числа представлены в табл. 20.

Tаблица 20. исходные данные для релевского закона, n=24

i	1	2	3	4	1	5	6	7		8	9	10
X	1.613	2.611	3.528	4.4	.96 5	5.181	5.235	5.92	29	6.383	7.783	8.290
		•		•	•			1	•	•	•	
i	11	12	13	14	4	15	16	1	7	18	19	20
X	8.343	8.426	8.947	9.7	32 9	9.749	10.56	2 11.	181	11.847	12.097	12.438
				i	21	2	2	23	24	4		

16.508

16.324

Проверка существования максимума:

X

$$A > (n+1)/2$$

A = 15.838 > 12.5,

18.053

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 21.

Tаблица 21. Данные для поиска m, релеевский закон, n=24

m	25	26	27	28	29	30	31
f	3.776	2.816	2.354	2.058	1.844	1.678	1.545
g	2.620	2.362	2.150	1.973	1.823	1.695	1.583
f-g	1.156	0.454	0.204	0.085	0.020	0.016	0.038

Минимум наблюдается при m=30. Тогда B=29, K=0.007583

Оценка среднего времени. Данные представлены в табл. 22.

Tаблица 22. Данные для оценки времени, релеевский закон, n=24

I	25	26	27	28	29
Xi	26.375	32.969	43.959	65.939	131.877

Таким образом, время до полного завершения тестирования -301.119, а полное время -524.608.

Равномерный закон, n=18. Сгенерированные числа представлены в табл. 23.

Tаблица 23. исходные данные для релеевского закона, n=18

i	1	2	3	4	5	6	7	8	9	10
X	2.707	3.844	4.272	5.044	6.426	6.689	7.030	7.559	8.485	10.582

i	11	12	13	14	15	16	17	18
X	10.642	10.915	11.738	12.019	12.334	13.450	14.686	18.137

Проверка существования максимума:

$$A > (n + 1)/2$$

$$A = 11.724 > 9.5$$
,

значит максимум существует.

Поиск $m \ge n + 1$. Расчетные данные представлены в табл. 24.

Tаблица 24. Данные для поиска m, релеевский закон, n=18

m	19	20	21	22	23	24
f	3.495	2.548	2.098	1.812	1.607	1.451
g	2.474	2.175	1.941	1.752	1.596	1.466
f-g	1.021	0.373	0.157	0.060	0.011	0.015

Минимум наблюдается при m=23. Тогда B=22, K=0.009584

Оценка среднего времени. Данные представлены в табл. 25.

Tаблица 25. Данные для оценки времени, релеевский закон, n=18

I	19	20	21	22
Xi	26.085	34.780	52.169	104.339

Таким образом, время до полного завершения тестирования -217.373, а полное время -383.932.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.