CGroups y Namespaces

Explicación de práctica 4

Sistemas Operativos

Facultad de Informática Universidad Nacional de La Plata

2025

Repositorio con código para la práctica

https://gitlab.com/unlp-so/codigo-para-practicas

Algunos motivos para virtualizar / emular

- Ejecutar software hecho para otro:
 - Sistema operativo
 - Arquitectura
 - Ambos
- Ejecutar múltiples instancias de distintos sistemas operativos
- Ejecutar múltiples instancias del mismo sistema operativo
- Ejecutar una aplicación de forma aislada por:
 - Seguridad
 - Facilidad de instalación (dependencias, bibliotecas, aplicaciones legacy)

Emulación

Emulación

QEMU

- Full System Emulation
 - Alpha Legacy 64 bit RISC ISA developed by DEC
 - Arm (arm, aarch64) Wide range of features, see A-profile CPU architecture support for details
 - AVR 8 bit micro controller, often used in maker projects
 - Hexagon Family of DSPs by Qualcomm
 - PA-RISC (hppa) A legacy RISC system used in HP's old minicomputers
 - x86 (i386, x86_64) The ubiquitous desktop PC CPU architecture, 32 and 64 bit.
 - LoongArch A MIPS-like 64bit RISC architecture developed in China
 - m68k Motorola 68000 variants and ColdFire
 - Microblaze RISC based soft-core by Xilinx
 - MIPS (mips*) Venerable RISC architecture originally out of Stanford University
 - OpenRISC Open source RISC architecture developed by the OpenRISC community
 - Power (ppc, ppc64) A general purpose RISC architecture now managed by IBM
 - RISC-V An open standard RISC ISA maintained by RISC-V International
 - RX A 32 bit micro controller developed by Renesas
 - s390x A 64 bit CPU found in IBM's System Z mainframes
 - sh4 A 32 bit RISC embedded CPU developed by Hitachi
 - SPARC (sparc, sparc64) A RISC ISA originally developed by Sun Microsystems
 - Tricore A 32 bit RISC/uController/DSP developed by Infineon
 - Xtensa A configurable 32 bit soft core now owned by Cadence

QEMU otros modos

- QEMU User space emulator
 - Traduce las instrucciones de un programa.
 - No emula todo el hardware, no carga un kernel en el entorno emulado, solo programas.
 - Mismo OS pero distintas arquitecturas.
 - Ante una system call traduce la system call (convirtiendo endianness si es necesario) e invoca a la system call equivalente.
 - Solo Linux y BSD.

QEMU system ejemplo

Emularemos hardware de Sun Microsystems de los años 90

- SPARCstation 5
- CPU SPARC (RISC, 32bits, big endiann)
- Disco SCSI
- 32 MiB de RAM
- Placa de Red <u>Ethernet AMD Lance</u> 10mbps

Ejecutaremos SunOS 4 (Solaris 1) sobre ese hardware emulado

Virtualización

Virtualizadores tipo 1 y 2

- Tipo 1
 - Bare metal (se ejecutan directo sobre el hardware)
 - El Hypervisor accede al hardware directamente
 - Ejemplos: Xen, VMWare ESXi, KVM (integrado en el kernel Linux)
- Tipo 2
 - El Hypervisor se ejecuta sobre un sistema operativo
 - El Hypervisor accede al hardware a través del SO Host
 - Ejemplos: Virtualbox, VMWare Workstation.

QEMU System Emulation + Accelerator

- Permite virtualizar usando hypervisors
 - KVM Linux
 - Xen Linux (as dom0)
 - Hypervisor Framework (hvf) MacOS
 - Windows Hypervisor Platform (whpx)
 - o otros...

chroot

chroot

- Hace creer a un proceso que / es una carpeta
- Permite ejecutar procesos de forma "aislada"
- Los procesos pueden tener sus propias versiones de bibliotecas
- Podríamos ejecutar programas de otra distribución
- Se comparte el mismo kernel
- DEMO

- Resource Limiting: grupos no pueden excederse en la utilización de un recurso (tiempo de CPU, cantidad de CPUs, cantidad de memoria, I/O, etc.)
- Prioritization: un grupo puede obtener prioridad en el uso de los recursos (tiempo de CPU, I/O, etc.)
- Accounting: permite medir el uso de determinados recursos por parte de un grupo (estadísticas, monitoreo, billing, etc.)
- Control: permite freezar y reiniciar un grupo de procesos

- Resource Limiting: grupos no pueden excederse en la utilización de un recurso (tiempo de CPU, cantidad de CPUs, cantidad de memoria, I/O, etc.)
- Prioritization: un grupo puede obtener prioridad en el uso de los recursos (tiempo de CPU, I/O, etc.)
- Accounting: permite medir el uso de determinados recursos por parte de un grupo (estadísticas, monitoreo, billing, etc.)
- Control: permite freezar y reiniciar un grupo de procesos

- Configuraremos los CGroups usando /sys/fs/cgroups
- Existen otras formas:
 - cgexec
 - systemd (se pueden configurar cgroups para los servicios)
- DEMO

- Permiten aislar lo que los procesos ven
- Se puede asignar un proceso al crearlo (clone() o unshare())
- Se puede asignar un proceso en ejecución (setns())

Entre los namespaces provistos por Linux:

- IPC: Flag: CLONE NEWIPC. System V IPC, cola de mensaje POSIX
- Network: Flag: CLONE NEWNET. Dispositivos de red, pilas, puertos, etc
- Mount: Flag: CLONE NEWNS. Puntos de montaje
- PID: Flag: CLONE NEWPID. IDs de procesos
- User: Flag: CLONE NEWUSER. IDs de usuarios y grupos
- UTS: Flag: CLONE NEWUTS. Hostname y nombre de dominio
- Cgroup: Flag: CLONE NEWCGROUP. cgroup root directory
- Time: Flag: CLONE NEWTIME. Distintos offsets al clock del sistema por namespace

DEMO

¿Preguntas?

