Relatório do ep3 - MAC300

Decomposição QR para o cálculo de mínimos quadrados

Nomes: Nusp:

Fernanda de Camargo Magano 8536044 Eduardo Delgado Coloma Bier 8536148

> São Paulo 2014

Problema de mínimos quadrados, decomposição QR usando reflexões

- O uso de refletores é mais eficiente do que o uso de rotações. As matrizes estão sendo consideradas como retangulares, o que é mais abrangente, pois o algoritmo serve também para matrizes quadradas.
- Uma das coisas implementadas na busca da eficiência foi: a matriz R é guardada na própria A, enquanto a Q não será guardada. Não é necessário guardar a Q, apenas os vetores u de cada iteração e o gama. Com isso já se consegue calcular o valores de Q, sem guardá-la explicitamente. O u(1) é armazenado na primeira coluna de A, u(2) na segunda e assim sucessivamente. O tau também é armazenado na própria matriz A.
- Para evitar que ocorram overflows ou underflows foi implementado o seguinte: procurar o maior elemento da matriz e dividir todos os elementos de A e de b por esse valor máximo. Portanto, foi feito um reescalamento.
- O algoritmo é usado tanto para posto completo, quanto para incompleto. Para isso, é usado o pivoteamento de colunas. Isso garante a troca das mesmas, colocando na frente a que tiver maior norma. Assim, num determinado momento do algorimo, se a matriz for de posto incompleto, a máxima norma das colunas será menor do que um certo epsilon. Esse é momento em que se descobre o posto da matriz e o algoritmo de decomposição QR termina.
- Ainda pensando em eficiência, o código foi implementado com orientação a linhas, mantendo a essência do algoritmo de ir zerando as colunas, colocando a norma de cada coluna no primeiro elemento da mesma. Mesmo o cálculo de normas foi feito orientado a colunas. Cada norma foi sendo calculada parcialmente, percorrendo cada linha para tal finalidade.
- Outro ponto importante para o desempenho do algoritmo foi que as normas calculadas para as colunas são aproveitadas a cada passo, isto é, tem o custo inicial fixo de calcular todas as normas. Contudo, a cada iteração, essas normas previamente calculadas são reaproveitadas. O custo com essa melhoria é de 2(m-1), enquanto antes era 2(m-1)(n-1) se fosse calcular a cada vez.

-----Formato do arquivo-----

Os arquivos para leitura devem ter o seguinte formato:

Na primeira linha estará o inteiro n (número de linhas) e m (número de colunas);

Depois haverá n X m linhas com três números (os dois primeiros são inteiros: a linha e a coluna da matriz e o terceiro é um double – o valor do elemento);

Por último, n linhas contendo um inteiro e um double, indicando a posição e o valor dos elementos do vetor b.

Testes usando QR e polinômios:

Para montar o polinômio de grau 5 pode-se ter em mente que se A é uma matriz e p(x) é o polinômio, "substitui-se" os x's por A, chegando numa matriz modificada que será usada no programa para cálculo dos mínimos quadrados. Assim, testa-se com outros polinômios, fazendo o mesmo processo de cálculo (substituindo x por A nos polinômios usados para a aproximação). O cálculo do resíduo vai mostrar se o polinômio usado fez uma aproximação boa ou razoável da almejada.

------Cálculo do polinômio:-----

- Imagine um polinômio de grau cinco. Então escolhemos 15 pontos do mesmo. Sejam eles: (x1, y1) ...(xm, ym), sendo m=15. Deseja-se conseguir aproximações usando mínimos quadrados
- − O objetivo é encontrar polinômios de grau p que melhor se ajuste a esses dados. Eles são da forma yi = $cp*xi^p + c(p-1)*xi^(p-1)...+c1x1 + c0x0 + resíduo$

- Monta-se a matriz A e b e resolve por QR
- A matriz A, como indicada, é construída usando potências de xi. É uma forma de conseguir uma base que melhor aproxima. Mais adequada do que a canônica, por exemplo.
- Os x's obtidos pelo QR serão usados na montagem do polinômio desejado
- Depois calcula-se o resíduo e é verificado se a aproximação foi boa ou não.
- Seja um polinômio: $P(x) = x^5 + 2x^4 + 1x^3 + 3x^2 7x + 6$
- Considere os seguintes quinze pontos abaixo:

$P(x) = x^5 + 2x^4 + 1x^3 + 3x^2 - 7x + 6$	
Pontos:	Então o b é:
(0, 6)	
(1, 6)	b:
(-1, 16)	6
(1,5; 23,34375)	6
(2; 76)	16
(2,3; 138,26863)	23.34375
(2,8; 326,90688)	76
(3,3; 680,04513)	138.26863
(4; 1626)	326.90688
(5; 4546)	680.04513
(5.5; 7087,59375)	1626
(6; 10656)	4546
(7; 22056)	7087.59375
(8; 41614)	10656
(10; 121,236)	22056
(10 , 121,200)	41614
	121236

O A será montado de acordo com o grau do polinômio que se deseja aproximar. Observação: 2.25 está equivalendo a 2,25 (foi usado o ponto no lugar da vírgula, já que o computador segue o sistema americano).

Por exemplo, se quisermos usar **um polinômio de grau cinco** para fazer a aproximação, o A será igual a:

0	0	0	0	0	1
1	1	1	1	1	1
-1	1	-1	1	-1	1
7.59375	5.0625	3.375	2.25	1.5	1
32	16	8	4	2	1
64.36343	27.9841	12.167	5.29	2.3	1
172.10368	61.4656	21.952	7.84	2.8	1
391.35393	118.5921	35.937	10.89	3.3	1
1024	256	64	16	4	1
3125	625	125	25	5	1
5032.84375	915.0625	166.375	30.25	5.5	1
7776	1296	216	36	6	1
16807	2401	343	49	7	1
32768	4096	512	64	8	1
100000	10000	1000	100	10	1

Polinômio de grau 5 -buscando uma boa aproximação:

 $1x^5 + 2x^4 + 1x^3 + 3x^2 - 7x + 6$

Resíduo = 0.000000

Matriz A – estimando por polinômio de grau 4:

0	0	0	0	1
1	1	1	1	1
1	-1	1	-1	1
5.0625	3.375	2.25	1.5	1
16	8	4	2	1
27.9841	12.167	5.29	2.3	1
61.4656	21.952	7.84	2.8	1
118.5921	35.937	10.89	3.3	1
256	64	16	4	1
625	125	25	5	1
915.0625	166.375	30.25	5.5	1
1296	216	36	6	1
2401	343	49	7	1
4096	512	64	8	1
10000	1000	100	10	1

Polinômio de grau 4:

 $23.999667x^4 - 155.952279x^3 + 379.325192x^2 - 46.335820x - 369.681333$

Resíduo = 1138678.293838

Matriz A – estimando por polinômio de grau 3:

0	0	0	1
1	1	1	1
-1	1	-1	1
3.375	2.25	1.5	1
8	4	2	1
12.167	5.29	2.3	1
21.952	7.84	2.8	1
35.937	10.89	3.3	1
64	16	4	1
125	25	5	1
166.375	30.25	5.5	1
216	36	6	1
343	49	7	1
512	64	8	1
1000	100	10	1

Polinômio de grau 3:

 $269.281686x^3 - 1721.925125x^2 + 2061.359428x + 1565.263011$

Resíduo = 12213847.740735

-------------------------Perturbações em matrizes ------------------------------

- Foi testada uma matriz dois por dois, para ser melhor de visualizado o que estava acontecendo;
- A ideia foi perturbar o vetor b em apenas 0.01, mas como A é mal-condicionada, perturbar na direção do maxmag pode causar estragos na solução;
- A matriz A escolhida foi a seguinte:
 - 25 28
 - 10 12
- Essa matriz foi construída de modo que as colunas são quase LD. Portanto, é mal-condicionada.
 A pequena perturbação em b é feita na direção do maxmag de A que é [1 1]^t
- A norma infinita de ||delta b|| / ||b|| = $0.01/53 = 1.887 \times 10^{-4}$
- A norma infinita de ||delta x|| / ||x|| = $1.28/2.767241 = 0.4625 = 4.625 \times 10^{-1}$
- Fica visível de que a alteração em b é pequena, mas o erro relativo em x tem proporção maior (enquanto no b é da ordem de 10^{-4} a alteração em x é de 10^{-1});
- Os arquivos em que esses testes são realizados são: ill_conditioned e

ill_condictioned_perturbado

- A solução de x por mínimos quadrados do primeiro arquivo foi:
 - -1.000000
 - 2.767241

A do segundo:

- -2.280000
- 3.886810

- Portanto, o delta x é [-1.28 1.119569] transposto
- Esse exemplo mostra a interferência do número de condição num sistema e como mudanças escolhidas cuidadosamente podem causar alterações em x, principalmente se for na direção de máxima magnificação da matriz.

------Testes: estimado cálculo do tempo na decomposição QR------

A contagem de flops para a decomposição QR de uma matriz n por m usando refletores de modo eficiente é da ordem de $2nm^2 - 2m^3/3$ aproximadamente.

Pela lógica, como as matrizes abaixo testadas foram quadradas, o número de flops é aproximadamente (4/3) m³. Se dobra o número de colunas, o tempo deve ser quase multiplicado por 8.

Foram feitos testes com matrizes do genmat do ep1, com modificações na primeira linha do arquivo (300 por 300, 400 por 400 e 600 por 600). Os tempos foram:

- 200X200: 20.000000 mili-segundos
- 300X300: 70.000000 mili-segundos
- 400X400: 180.000000 mili-segundos
- 600X600: 640.000000 mili-segundos

Tempo esperado:

20*8 = 160 mili-segundos (de 200 para 400 colunas)

70*8 = 560 mili-segundos (de 300 para 600)

20*27 = 540 mili-segundos (de 200 para 600)

Tempo obtido respectivamente:

180 mili-segundos;

640 mili-segundos;

640 mili-segundos.

Como essa medições são influênciadas por print's que estão na função, por exemplo, pode-se dizer que o resultado está perto do esperado, mostrando eficiência.

------Observações-----

- O programa foi feito em C;
- Alguns testes estão nos arquivos: identidade, ill_conditioned, ill_conditioned_perturbado, triang, estima_pol_5, a_2x1, a_3x2, a_2x2, nula, testa_eps;
- Para compilar e testar os arquivos basta digitar:
 - gcc -lm EP3.c -o EP3 <nome de um dos arquivos acima> -v
 - Lembrando-se de que a opção -v é opcional (deve ser colocada apenas se quiser imprima várias informações, como a matriz R, a matriz reescalada, normas, entre outros).
- O arquivo testa_eps é um teste de um caso extremo: a matriz não é nula, mas seus valores são menores que eps, então se comporta e é detectado como se fosse uma matriz nula.
- Os arquivos ill_conditioned e ill_conditioned_perturbado testam pequena perturbação em b e seu efeito em x.
- O teste do arquivo a_2x1 é interessante, pois foi escolhido propositalmente com dimensões pequenas (é um vetor de duas linhas) para ficar mais evidente o que está ocorrendo no programa. Mostra o caso de posto incompleto e como o QR calcula os mínimos quadrados.

Num vetor que seja [1 1] transposto e b assuma os valores 5 e 9 (que é o que ocorre no arquivo), uma solução lógica esperada mentalmente seria 7, que é o que de fato acontece.

Para compilar o arquivo que calcula os resíduos deve-se colocar:
 gcc -lm calcula_residuo.c -o calcula_residuo e para rodar:
 ./calcula_residuo <arquivo contendo A e b> <arquivo contendo x aproximado>
 em que x aproximado foi estimado a partir de um polinômio e que deseja-se calcular o resíduo para verificar se a aproximação foi boa.