RÓWNANIA RÓŻNICZKOWE, II rok matematyki LISTA 5

Zadanie 1. Określić typ równania

$$\frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + z \frac{\partial^2 u}{\partial z^2} = 0.$$

Zadanie 2. Pokazać, że równanie (liniowe, ze stałymi współczynnikami)

$$u_{xy} + au_x + bu_y + cu = 0$$

sprowadza się przez zamianę zmiennych $u(x,y) = v(x,y) \exp(-bx - ay)$ do

$$v_{xy} + (c - ab)v = 0.$$

Zadanie 3. Znaleźć rozwiązanie ogólne równania $u_{xy} + au_x = 0$.

Zadanie 4. Sprowadzić do postaci kanonicznej równanie

$$u_{xx} + 2u_{xy} - 2u_{xz} + 2u_{yy} + 6u_{zz} = 0.$$

Zadanie 5. Rozwiązać (używając wzorów d'Alemberta) następujące zagadnienie dla równania falowego $u_{tt} = u_{xx}$ z warunkami u = h, $\frac{\partial u}{\partial \nu} = g$ zadanymi na prostej t = kx (k > 0, ν jest wektorem normalnym do tej prostej).

Zbadać przypadek k = 1 (zagadnienie Goursata).

Zadanie 6. Udowodnić, że laplasjan $\Delta = \frac{\partial^2}{\partial x_1^2} + ... + \frac{\partial^2}{\partial x_n^2}$ jest niezmienniczy ze względu na liniowe ortogonalne transformacje zmiennych $x_1, ..., x_n$.

Zadanie 7.* Pokazać, że jeżeli $\Delta u = f$ w pewnym obszarze $\Omega \subset \mathbb{R}^n$, to przekształcenie Kelvina funkcji u zdefiniowane wzorem $v(x) = |x|^{2-n}u(x/|x|^2)$ dla $x/|x|^2 \in \Omega$ spełnia równanie $\Delta v(x) = |x|^{-n-2}f(x/|x|^2)$.

Zadanie 8. Rozwiązać korzystając ze wzoru d'Alemberta następujące zagadnienie brzegowo-początkowe dla równania falowego

$$u_{tt} = u_{xx}$$
 w obszarze $\{(x, t) : x > 0, t > 0\},\$

$$u(0,t) = 0, u(x,0) = f(x), u_t(x,0) = g(x)$$

(w szczególności dla $f(x) = x \exp(-x^2), q(x) = 0$).

Zadanie 9. Rozwiązać metodą Fouriera zagadnienie brzegowo-początkowe dla równania struny

$$u_{tt} = u_{xx}$$
 w $\{(x,t) : 0 < x < 1, t > 0\}$

(i) u(x,0) = 2hx dla 0 < x < 1/2, u(x,0) = 2h(1-x) dla 1/2 < x < 1; h > 0 $u_t(x,0) = 0$, u(0,t) = u(1,t) = 0;

(ii) u(x,0) = 0, $u_t(x,0) = 0$ dla 0 < x < a i dla b < x < 1, $u_t(x,0) = h > 0$ dla $a \le x \le b$, u(0,t) = u(1,t) = 0.

Czy otrzymane szeregi Fouriera można dwukrotnie różniczkować?

Zadanie 10.* Rozwiązać zagadnienie Cauchy'ego dla równania falowego w \mathbb{R}^n , n = 1, 2, 3, z warunkami początkowymi u(x, 0) = 0, $u_t(x, 0) = 1$ dla $|x| \leq 1$, $u_t(x, 0) = 0$ dla |x| > 1. Określić jaki jest nośnik rozwiązania. Porównać wyniki i zinterpretować zasadę Huygensa na powyższych przykładach.

Zadanie 11.* Sprawdzić, że szereg

$$u(x,t) = \sum_{k=0}^{\infty} \left(\Delta^k f(x) \frac{t^{2k}}{(2k)!} + \Delta^k g(x) \frac{t^{2k+1}}{(2k+1)!} \right)$$

formalnie spełnia równanie falowe $u_{tt} = \Delta u$ z warunkami u(x,0) = f(x), $u_t(x,0) = g(x)$. Podać (przykładowo) dla jakich funkcji f i g powyższy szereg przedstawia faktycznie rozwiazanie.

Czy szereg ten ma sens dla $f, g \in C_c^{\infty}(\mathbb{R}^n)$?

Wsk. porównać z zasadą Huygensa.

* — zadanie dodatkowe

24 kwietnia 2020

Piotr Biler