Programiranje 2 - primer teorijskog dela kolokvijuma

Ir	ne, prezime i broj indeksa:
1.	Napisati izraz kojim se komplementira svaki drugi bit promenljive char x, počevši od bitova najmanje težine, dok ostali bitovi ostaju neizmenjeni.
	Dve mane rekurzije su i Eliminisati repnu rekurziju u narednom kodu.
	<pre>int pretraga(int niz[], int n, int x) { if (n==0) return -1; else if(niz[n-1]==x) return n-1; else return pretraga(niz, n-1, x) }</pre>
4.	Prikazati kako se menja stanje na steku prilikom poziva f(4) gde je f funkcija definisana u zadatku 6. U stek okvirima navesti vrednosti lokalnih promenljivih.
5.	U tabeli označiti sve odnose koji važe. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6.	Vremenska složenost naredne funkcije je $\Theta(\underline{\hspace{1cm}})$, a prostorna je $\Theta(\underline{\hspace{1cm}})$.
	<pre>unsigned f(unsigned n) { if(n<=1) return 1; return f(n-2)+f(n-2); }</pre>
7.	Vremenska složenost narednog koda je $\Theta(\underline{\hspace{1cm}})$, a prostorna je $\Theta(\underline{\hspace{1cm}})$.
	<pre>for(i=0; i<n; break;="" for(j="0;" i++)="" if(j="=1)" j++)="" j<n;="" pre="" s++;="" {="" }<=""></n;></pre>
8.	Koja vrsta pretrage je primenljiva u većem broju slučajeva? Koji je preduslov primene binarne pretrage?
9.	Koji algoritam sortiranja ima optimalnu vremensku složenost najgoreg slučaja? Koja je to složenost? Koja je to
0.	Koja je vremenska složenost algoritma brzog sortiranja u najgorem slučaju?Šta se u tom algoritmu postiže particionisanjem?