

INTRODUÇÃO AO CÁLCULO INTEGRAL

SUMÁRIO

Cálculo Integral	3
2.1. Primitiva	3
2.2. Integral indefinida	3
2.2.1. Regras básicas de integração	4
2.3. Integral definida	5
2.3.1. Conceito de área	5
2.3.3. Significado geométrico da integral definida	7
2.3.4. Algumas propriedades das integrais definidas	10
2.4. Técnicas de integração	
2.4.1. Método de integração por substituição	
2.4.2. Método de integração por partes	
2.5. Bibliografia	

2. Cálculo Integral

2.1. Primitiva

Uma primitiva da função f no intervalo I é uma função F tal que

$$\frac{dF}{dx}(x) = f(x)$$

Assim, F(x) é uma primitiva de f(x) se F'(x) = f(x).

Exemplo: Dada a função f(x) = 2x, qual a sua primitiva?

Solução:

A primitiva de $f(x) = 2x \in F(x) = x^2$, pois F'(x) = 2x.

Observemos que $F(x)=x^2$ não é a única primitiva de f(x)=2x. Por exemplo, $F_1(x)=x^2+5$ também é uma primitiva de f(x)=2x, pois $F_1'(x)=2x$.

Então, qualquer função do tipo $F(x)=x^2+c$ é uma primitiva de f(x)=2x, onde c é uma constante qualquer.

2.2. Integral indefinida

Chamamos integral indefinida de f(x) e indicamos por $\int f(x) dx$ a uma primitiva qualquer de f(x) adicionada de uma constante arbitrária c. Assim:

$$\int f(x) \, dx = F(x) + c$$

onde F(x) é uma primitiva de f(x), ou seja, F'(x) = f(x).

Para o exemplo dado $\int 2x \, dx = x^2 + c$.

Algumas Integrais Imediatas

$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$	$\int \frac{1}{x} dx = \ln x + c$
$\int_{C} a^{x} dx = \frac{a^{x}}{\ln a} + c; 0 < a \neq -1$	$\int e^x dx = e^x + c$
$\int sen x dx = -cos x + c$	$\int \cos x dx = \sin x + c$
$\int sec^2 x dx = tg x + c$	$\int cossec \ x \ dx = -\cot g \ x + c$
$\int (\sec x)(tg x) dx = \sec x + c$	$\int (cossec \ x)(ctg \ x) \ dx = -cossec \ x + c$
$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$	$\int \frac{dx}{1+x^2} = arctg \ x + c$
$\int senh \ x \ dx = cosh \ x + c$	$\int \cosh x dx = \operatorname{senh} x + c$

4

Exemplo: A função $F(x) = \frac{x^3}{5}$ é uma primitiva da função $f(x) = x^4$, uma vez que $F'(x) = \frac{5x^4}{5} = x^4 = f(x), \forall x \in \Re$.

2.2.1. Regras básicas de integração

1.
$$\int k \, dx = k \, x + c$$
, k é uma constante

$$2. \quad \int kf(x)dx = k \int f(x)dx$$

3.
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

4.
$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

Exemplos: Calcule as integrais indefinidas a seguir.

1.
$$\int (x^2 - 2x + 5) dx$$
$$\int (x^2 - 2x + 5) dx = \int x^2 dx - 2 \int x dx + 5 \int dx = \frac{x^3}{3} - 2 \frac{x^2}{2} + 5x + c = \frac{x^3}{3} - x^2 + 5x + c$$

2.
$$\int \frac{dx}{x}$$
$$\int \frac{dx}{x} = \ln|x| + c$$

3.
$$\int \left(\frac{x^3 + 8}{x}\right) dx$$
$$\int \left(\frac{x^3 + 8}{x}\right) dx = \int \frac{x^3}{x} dx + \int \frac{8}{x} dx = \int x^2 dx + 8 \int \frac{dx}{x} = \frac{x^3}{3} + 8 \ln|x| + c$$

4.
$$\int \left(3x^8 + 8x^3 - \frac{1}{x} - 6\right) dx$$

$$= \int 3x^8 dx - \int 8x^3 dx - \int \frac{1}{x} dx - \int 6 dx = 3 \int x^8 dx - 8 \int x^3 dx - \int \frac{1}{x} dx - 6 \int dx =$$

$$= 3\frac{x^9}{9} + 8\frac{x^4}{4} - \ln|x| - 6x + c = \frac{x^9}{3} + 2x^4 - \ln|x| - 6x + c$$

Exercícios: Calcule as integrais indefinidas a seguir.

1.
$$\int 2x^3 dx$$

$$2. \quad \int \left(x^2 - 3x\right) dx$$

3.
$$\int (x^2 + 3x) dx$$

4.
$$\int (5-x) dx$$

5.
$$\int 5 dx$$

6.
$$\int (3x^3 - 2x^2 + 8x - 6) dx$$

$$7. \quad \int \frac{5}{x} \, dx$$

8.
$$\int \left(x^2 + \frac{6}{x}\right) dx$$

9.
$$\int \left(x^2 + \frac{1}{x^2}\right) dx$$

$$10. \int \left(\frac{1}{x^3} + x^2 - 5x\right) dx$$

11.
$$\int \sqrt{x} \ dx$$

12.
$$\int 5 \sqrt[3]{x} \, dx$$

13.
$$\int \left(\sqrt{x} + \sqrt[3]{x}\right) dx$$

$$14. \int \left(\frac{x^2 - 3x + 5}{x^2}\right) dx$$

15.
$$\int 5e^x dx$$

$$16. \int \left(3e^x + x^3\right) dx$$

2.3. Integral definida

2.3.1. Conceito de área

Existem dois problemas fundamentais em cálculo: o primeiro é encontrar a inclinação de uma curva em um ponto dado e o segundo é encontrar a área sob a curva. O conceito de derivada está diretamente ligado ao problema de traçar a tangente a uma curva e o de integral ao problema de determinar a área de uma figura plana qualquer.

Ao lado de derivadas, o cálculo integral é um dos conceitos mais importantes do cálculo. São as duas noções básicas em torno das quais se desenvolve todo o cálculo.

Para melhor compreender o conceito de integral, iremos analisar o cálculo da área sob uma curva pela aproximação de infinitos retângulos justapostos. Consideremos a figura seguinte e o problema de calcular a área sob a curva f(x) no intervalo [a,b].

Vamos, então, criar uma partição P do intervalo [a,b], que consiste em dividir o intervalo [a,b] sob a curva em n subintervalos menores, conforme indicado na figura. O comprimento de cada subintervalo $[x_i,x_{i-1}]$ é dado por $\Delta x_i=x_i-x_{i-1}$. Cada um dos retângulos construídos tem base x_i-x_{i-1} e altura $f(c_i)$. Assim, a área A_i de cada retângulo é dada pelo produto $f(c_i)$ Δx_i . Logo, a área total dos n retângulos será dada por:

$$A_n = f(c_1) \Delta x_1 + f(c_2) \Delta x_2 + \dots + f(c_n) \Delta x_n = \sum_{i=1}^n f(c_i) \Delta x_i$$

Essa soma é conhecida como *Soma de Riemann* de f relativa à partição P. À medida que aumentamos o número de subintervalos (ou seja, n cresce), a área dos retângulos se aproxima cada vez mais da área real A sob a curva. Então, podemos escrever:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \, \Delta x_i$$

A integral está associada a esse limite. A definição de integral nasceu da formulação dos problemas de áreas.

<u>Definição</u>: sejaf(x) uma função limitada definida no intervalo [a,b] e seja P uma partição qualquer de [a,b]. A integral de f(x) no intervalo [a,b] é dada por:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

desde que o limite do segundo membro exista.

2.3.2. Teorema Fundamental do Cálculo

Seja f(x) uma função contínua em [a,b] e F(x) uma de suas primitivas. Portanto,

$$\int f(x) \, dx = F(x) + c$$

<u>Definição</u>: pelo Teorema Fundamental do Cálculo, se a função f(x) é integrável em [a,b], a integral definida de f(x) entre os limites a e s é a diferença F(b) - F(a), e indicamos por:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Notação alternativa: $F(b) - F(a) = F(x) \Big|_{a}^{b}$. Assim:

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b}$$

Exemplo 1: Calcule $\int_2^5 \frac{1}{x} dx$

Solução:

$$\int_{2}^{5} \frac{1}{x} dx = \left[\ln x \right]_{2}^{5} = \ln 5 - \ln 2$$

Exemplo 2: Calcule $\int_{1}^{3} x \, dx$

Solução:

$$\int_{1}^{3} x \, dx = \left[\frac{x^{2}}{2} \right]_{1}^{3} = \frac{3^{2}}{2} - \frac{1^{2}}{2} = \frac{9 - 1}{2} = \frac{8}{2} = 4$$

2.3.3. Significado geométrico da integral definida

Seja f(x) uma função contínua e não negativa definida em um intervalo [a,b]. A integral $\int_a^b f(x) \, dx$ representa a área sob a função f(x) no intervalo [a,b], ou seja, a área da região compreendida entre o gráfico de f(x), o eixo x e as verticais que passam por a e b.

$$A = \int_{a}^{b} f(x) \, dx$$

Exemplo 1: Calcule
$$\int_2^5 2 dx$$

Solução:

Aplicando o Teorema Fundamental do Cálculo:

$$\int_{2}^{5} 2 \, dx = \left[2x\right]_{2}^{5} = 2.5 - 2.2 = 10 - 4 = 6$$

Exemplo 2: Calcule
$$\int_{1}^{4} x \, dx$$

Solução:

Aplicando o Teorema Fundamental do Cálculo:

$$\int_{1}^{4} x \, dx = \left[\frac{x^{2}}{2} \right]_{1}^{4} = \frac{4^{2} - 1^{2}}{2} = \frac{16 - 1}{2} = \frac{15}{2} = 7,5$$

9

Exemplo 3: Calcule $\int_1^3 x^2 dx$

Solução:

Aplicando o Teorema Fundamental do Cálculo:

$$\int_{1}^{3} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{1}^{3} = \frac{3^{3}}{3} - \frac{1^{3}}{3} = \frac{27}{3} - \frac{1}{3} = \frac{26}{3}$$

Nota: Caso f(x) seja negativa no intervalo [a,b], a área A da região delimitada pelo gráfico de f(x), eixo x e as verticais que passam por a e b é dada por:

$$A = -\int_{a}^{b} f(x) dx$$

Exemplo 4: Calcule a área destacada abaixo $A = \int_0^3 (x^2 - 3x) dx$

Solução:

Aplicando o Teorema Fundamental do Cálculo:

$$A = -\int_0^3 \left(x^2 - 3x\right) dx = -\left[\frac{x^3}{3} - \frac{3x^2}{2}\right]_0^3 = -\left(\frac{3^3}{3} - \frac{3 \cdot 3^2}{2} - \left(\frac{0^3}{3} - \frac{3 \cdot 0^2}{2}\right)\right) = -\left(\frac{27}{3} - \frac{27}{2}\right) = -\left(\frac{54 - 81}{6}\right) = \frac{27}{6}$$

Nota: A integral não significa necessariamente uma área. Dependendo do problema, ela pode representar grandezas como volume, trabalho realizado por uma força, momentos, centro de massa, etc.

2.3.4. Algumas propriedades das integrais definidas

Sejam f(x) e g(x) funções integráveis no intervalo $[a,b], k \in \mathbb{R}$.

1.
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

2.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

3. Se
$$a < c < b$$
 e $f(x)$ integrável em $[a, c]$ e $[c, b]$, então
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Exercícios: Calcule as integrais definidas a seguir.

$$1. \quad \int_{1}^{4} 2x \, dx$$

2.
$$\int_{0}^{3} (2x+1) dx$$

$$3. \quad \int_{1}^{4} -3x \, dx$$

$$4. \quad \int_0^2 x^3 \ dx$$

$$5. \quad \int_0^8 \left(x^2 - 6x\right) dx$$

$$6. \quad \int_0^5 \left(x^2 - 5x\right) dx$$

7.
$$\int_{1}^{4} (x^2 - 3x + 2) dx$$

$$8. \quad \int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

9.
$$\int_{1}^{2} \left(\frac{x^3 - x^2 + 2}{x^2} \right) dx$$

$$10. \int_0^3 e^x dx$$

11. Calcule a integral
$$\int_0^3 f(x) dx$$
 onde $f(x) = \begin{cases} -x + 7, & \text{se } x < 2 \\ x + 3, & \text{se } x \ge 2 \end{cases}$

Exemplo 6: O custo C(x) para produzir a x -ésima TV digital, num programa de produção diária da fábrica GL, é dado por $C(x) = \frac{50}{\sqrt{x}}$, $x \le 200$. Determinar o custo para produzir as 100 primeiras TVs.

Solução:

Seja C o custo total de produção das 100 primeiras TVs. Assim:

$$C = C(1) + C(2) + ... + C(100)$$

Aplicando o Teorema Fundamental do Cálculo, teremos:

$$C = \int_0^{100} \frac{50}{\sqrt{x}} dx = \int_0^{100} \frac{50}{x^{1/2}} dx = \int_0^{100} 50x^{-1/2} dx = 50 \int_0^{100} x^{-1/2} dx = \left[50 \frac{x^{1/2}}{1/2} \right]_0^{100}$$

$$C = \left[2 \cdot 50\sqrt{x}\right]_0^{100} = \left[100\sqrt{x}\right]_0^{100} = 100\sqrt{100} - 100\sqrt{0} = 1.000$$

Portanto, o custo para se produzir as 100 primeiras TVs é R\$ 1.000,00.

2.4. Técnicas de integração

Nesta seção, serão estudados os métodos de integração mais utilizados e que nos permitirão obter uma grande quantidade de integrais não imediatas.

Cada regra de diferenciação tem uma regra correspondente de integração. Por exemplo, a Regra da Substituição para integração corresponde à Regra da Cadeia para diferenciação. A regra que corresponde à Regra do Produto para diferenciação é chamada de Integração por Partes.

2.4.1. Método de integração por substituição

Vamos supor que temos uma função g(x) e outra função f tal que f(g(x)) esteja definida. A integral que desejamos calcular é do tipo

$$\int f(g(x))g'(x)$$

Logo,

$$\int f(g(x))g'(x) = F(g(x)) + c \tag{1}$$

Fazendo
$$u = g(x) \Rightarrow \frac{du}{dx} = g'(x) \Rightarrow du = g'(x) dx$$
 (2)

Substituindo (2) em (1) teremos:

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + c$$

Exemplo 1: Calcule
$$\int 2(2x+4)^5 dx$$

Solução:

Chamamos
$$u = 2x + 4 \implies \frac{du}{dx} = 2 \implies du = 2 dx$$

$$\int 2(2x+4)^5 dx = \int (2x+4)^5 2 dx = \int u^5 du$$

Resolvendo a integral, teremos:

$$\int u^5 du = \frac{u^6}{6} + c$$

Substituindo u = 2x + 4 no resultado, obtemos:

$$\int 2(2x+4)^5 dx = \frac{(2x+4)^6}{6} + c$$

Obs.: para verificar o resultado, calcule a derivada de $\frac{(2x+4)^6}{6}+c$ empregando a regra da cadeia.

Exemplo 2: Calcule a integral da função $\int 2x (x^2 + 5)^3 dx$

Solução:

Reescrevemos a expressão de forma conveniente:

$$\int 2x (x^2 + 5)^3 dx = \int (x^2 + 5)^3 2x dx$$

Aplicamos a mudança de variável:

$$u = x^2 + 5 \implies \frac{du}{dx} = 2x \implies du = 2x dx$$

$$\int (x^2 + 5)^3 2x \, dx = \int u^3 du = \frac{u^4}{4} du$$

Substituindo $u = x^2 + 5$ no resultado, obtemos:

$$\int 2x \left(x^2 + 5\right)^3 dx = \frac{\left(x^2 + 5\right)^4}{4} + c$$

Exemplo 3: Calcule a integral da função $\int \frac{x^2}{x^3 + 1} dx$

Solução:

Aplicamos a mudança de variável:

$$u = x^3 + 1 \implies \frac{du}{dx} = 3x^2 \implies du = 3x^2 dx \implies \frac{du}{3} = x^2 dx$$

$$\int \frac{x^2}{x^3 + 1} dx = \int \frac{1}{u} \frac{du}{3} = \int \frac{1}{3} \frac{du}{u} = \frac{1}{3} \int \frac{du}{u} = \frac{1}{3} \ln|u| + c$$

Substituindo $u = x^3 + 1$ no resultado, obtemos:

$$\int \frac{x^2}{x^3 + 1} dx = \frac{1}{3} \ln \left| x^3 + 1 \right| + c$$

Exemplo 4: Calcule a integral da função $\int x^2 \sqrt{(x^3+1)^3} dx$

Solução:

Reescrevendo a função substituindo a raiz quadrada por expoente fracionário:

$$\int x^2 \sqrt{(x^3+1)^3} dx = \int x^2 (x^3+1)^{3/2} dx$$

Aplicamos a mudança de variável:

$$u = x^3 + 1 \implies \frac{du}{dx} = 3x^2 \implies du = 3x^2 dx \implies \frac{du}{3} = x^2 dx$$

$$\int x^2 (x^3 + 1)^{3/2} dx = \int u^{3/2} \frac{du}{3} = \int \frac{1}{3} u^{3/2} du = \frac{1}{3} \int u^{3/2} du = \frac{1}{3} \frac{2}{5} u^{5/2} + c = \frac{2}{15} u^{5/2} + c$$

Substituindo $u = x^3 + 1$ no resultado, obtemos:

$$\int x^2 \sqrt{(x^3+1)^3} dx = \frac{2}{15} (x^3+1)^{5/2} + c = \frac{2}{15} \sqrt{(x^3+1)^5} + c$$

Exemplo 5: Calcule a integral da função $\int \frac{\ln x}{x} dx$

Solução:

Aplicamos a mudança de variável:

$$u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies du = \frac{dx}{x}$$

$$\int \frac{\ln x}{x} dx = \int u \ du = \frac{u^2}{2} + c$$

Substituindo $u = \ln z$ no resultado, obtemos:

$$\int \frac{\ln x}{x} dx = \frac{(\ln x)^2}{2} + c = \frac{\ln^2 x}{2} + c$$

Exemplo 6: Calcule a integral da função $\int sen^3 x \cos x \, dx$

Solução:

Aplicamos a mudança de variável:

$$u = sen x \implies \frac{du}{dx} = \cos x \implies du = \cos x \, dx$$

$$\int u^3 du = \frac{u^4}{4} + c$$

Substituindo u = sen x no resultado, obtemos:

$$\int sen^{3}x \cos x \, dx = \frac{(sen \, x)^{4}}{4} + c = \frac{sen^{4}x}{4} + c$$

Exemplo 7: Calcule a integral da função $\int \frac{x \, dx}{\sqrt{x+1}}$

Solução:

Aplicamos a mudança de variável (note que a substituição não é imediata):

$$u = \sqrt{x+1} \implies u^2 = x+1 \implies x = u^2 - 1$$

$$u = (x+1)^{\frac{1}{2}} \implies \frac{du}{dx} = \frac{1}{2}(x+1)^{-\frac{1}{2}} \implies 2 du = (x+1)^{-\frac{1}{2}} dx = \frac{dx}{\sqrt{x+1}}$$

$$\int \frac{x \, dx}{\sqrt{x+1}} = 2\int \left(u^2 - 1\right) du = 2\left(\frac{u^3}{3} - u\right) + c = 2\frac{u^3}{3} - 2u + c$$

Substituindo $u = \sqrt{x+1}$ no resultado, obtemos:

$$\int \frac{x \, dx}{\sqrt{x+1}} = 2 \frac{\left(\sqrt{x+1}\right)^3}{3} - 2\sqrt{x+1} + c$$

Exemplo 8: Calcule a integral da função $\int \frac{3x^2}{x^3 + 1} dx$

<u>Solução</u>:

$$u = x^3 + 1$$

$$du = 3x^2 dx$$

$$\int \frac{3x^2}{x^3 + 1} dx = \int \frac{du}{u} = \int \frac{1}{u} du = \ln|u| + c = \ln|x^3 + 1| + c$$

Exemplo 9: Calcule a integral da função $\int \frac{x^3}{x^4 + 2} dx$

Solução:

$$u = x^4 + 2$$

$$du = 4x^3 dx \implies \frac{du}{4} = x^3 dx$$

$$\int \frac{x^3}{x^4 + 2} dx = \int \frac{du/4}{u} = \frac{1}{4} \int \frac{du}{u} = \frac{1}{4} \int \frac{1}{u} du = \frac{1}{4} \ln|u| + c = \frac{1}{4} \ln|x^4 + 2| + c$$

Exemplo 10: Calcule a integral da função $\int \frac{x}{(x^2+1)^3} dx$

Solução:

$$u = x^2 + 1$$

$$du = 2x dx \implies \frac{du}{2} = xdx$$

$$\int \frac{x}{\left(x^2+1\right)^3} dx = \int \frac{du/2}{u^3} = \frac{1}{2} \int \frac{du}{u^3} = \frac{1}{2} \int u^{-3} du = \frac{1}{2} \frac{u^{-2}}{-2} + c = -\frac{1}{4} u^{-2} + c = -\frac{1}{4} \left(x^2+1\right)^{-2} + c$$

Exemplo 11: Calcule a integral da função $\int x (x^2 + 2)^4 dx$

<u>Solução</u>:

$$u = x^2 + 2$$

$$du = 2x \ dx \implies \frac{du}{2} = xdx$$

$$\int x \left(x^2 + 2\right)^4 dx = \int u^4 \frac{du}{2} = \frac{1}{2} \int u^4 du = \frac{1}{2} \frac{u^5}{5} + c = \frac{1}{10} u^5 + c = \frac{1}{10} \left(x^2 + 2\right)^5 + c$$

2.4.2. Método de integração por partes

Sejam f e g funções diferenciáveis no intervalo I. Derivando o produto f. g, teremos:

$$(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)$$

Daí, tiramos que

$$f(x) g'(x) = (f(x) g(x))' - f'(x) g(x)$$

Integrando ambos os membros da equação, teremos

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

Fazendo u = f(x) e dv = g'(x) dx, então du = f'(x) e v = g(x)

Logo:
$$\int f(x) g'(x) dx = \int u dv = u v - \int v du$$

Este método de integração nos permite transformar a integração de $u\,dv$ na integração de $v\,du$. É importante saber "escolher" a substituição $u\,e\,dv$ na integral de partida. Devemos escolher v tal que permita determinar v. As expressões de u e v devem ser mais simples que as de u e v, respectivamente.

Exemplo 1: Calcule a integral da função $\int \ln x \, dx$

Solução:

$$u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \implies du = \frac{dx}{x}$$

$$dv = dx \implies v = x$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int \ln x \, dx = \ln x \, x - \int x \, \frac{dx}{x} = x \ln x - \int dx = x \ln x - x + c$$

Exemplo 2: Calcule a integral da função $\int x e^x dx$

Solução:

$$u = x \implies \frac{du}{dx} = 1 \implies du = dx$$

$$dv = e^{x} dx \implies v = e^{x}$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \, e^{x} \, dx = x \, e^{x} - \int e^{x} dx = x \, e^{x} - e^{x} + c = e^{x} (x - 1) + c$$

Nota. O sucesso do método de integração por partes depende da escolha apropriada de u e de dv .No exemplo 2, se tivéssemos escolhido

$$u = e^x$$
$$dv = x dx$$

teríamos, então,

$$du = e^x dx$$
$$v = \frac{x^2}{2} dx$$

que forneceria como resultado

$$\int x e^{x} dx = u v - \int v du = e^{x} \frac{x^{2}}{2} - \int \frac{x^{2}}{2} e^{x} dx$$

Veja que a nova integral gerada no extremo direito da equação acima é mais difícil de ser calculada que a original $\int x \, e^x \, dx$. Portanto, a escolha de u e dv não foi adequada e não ajudou a resolver a integral original.

Na escolha de u e dv, devemos ter em mente as seguintes diretrizes:

- *u* deverá ter uma derivada *du* mais simples que *u*
- dv deve ser mais fácil de integrar

Exemplo 3: Calcule a integral da função $\int x^2 e^x dx$

Solução:

$$u = x^{2} \Rightarrow \frac{du}{dx} = 2x \Rightarrow du = 2x dx$$

$$dv = e^{x} dx \Rightarrow v = e^{x}$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x e^{x} \, dx = x^{2} e^{x} - \int e^{x} 2x \, dx = x^{2} e^{x} - 2 \int x e^{x} dx$$

$$\int x e^{x} \, dx = x^{2} e^{x} - 2 \int x e^{x} dx \qquad (1)$$

A segunda integral é resolvida como no exemplo 2

$$u = x \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx$$

$$dv = e^{x} dx \Rightarrow v = e^{x}$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \, e^{x} \, dx = x \, e^{x} - \int e^{x} dx = x \, e^{x} - e^{x} + c = e^{x} (x - 1) + c$$
(2)

Substituindo (2) em (1), omitindo a constante c, que será incluída apenas no resultado final:

$$\int x e^x dx = x^2 e^x - 2 e^x (x - 1) = x^2 e^x - 2x e^x + 2e^x + c = e^x (x^2 - 2x + 2) + c$$

$$\int x e^x dx = e^x (x^2 - 2x + 2) + c$$

Nota. Note que foram necessárias duas iterações para resolução da integral do exemplo 3. Generalizando, a integral $\int x^n e^x dx$, com n natural, pode ser resolvida ou fazendo n integrações por partes.

Exemplo 4: Calcule a integral da função $\int x \ln x \, dx$

Solução:

$$u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow du = \frac{dx}{x}$$
$$dv = x \, dx \Rightarrow v = \frac{x^2}{2}$$
$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \ln x \, dx = \ln x \, \frac{x^2}{2} - \int \frac{x^2}{2} \, \frac{dx}{x} = \frac{x^2}{2} \ln x - \int \frac{x}{2} \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \frac{x^2}{2} + c = \frac{x^2}{2} \ln x - \frac{1}{4} x^2 + c$$

$$\int x \ln x \, dx = \frac{x^2}{2} \left(\ln x - \frac{1}{2} \right) + c$$

Exemplo 5: Calcule a integral da função $\int x senx dx$

Solução:

$$u = x \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx$$

$$dv = senx \, dx \Rightarrow v = -\cos x$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \, senx \, dx = x(-\cos x) - \int (-\cos x) dx = -x \cos x + \int \cos x \, dx = -x \cos x + senx + c$$

$$\int x \ln x \, dx = -x \cos x + senx + c$$

Exemplo 6: Calcule a integral da função $\int x^2 senx dx$

Solução:

$$u = x^{2} \Rightarrow \frac{du}{dx} = 2x \Rightarrow du = 2x dx$$

$$dv = senx dx \Rightarrow v = -\cos x$$

$$\int u dv = u v - \int v du$$

$$\int x^{2} senx dx = -\cos x \left(x^{2}\right) - \int (-\cos x) 2x dx = -x^{2} \cos x + 2 \int x \cos x dx$$
(1)

A segunda integral da equação (1) também será calculada usando o método de integração por partes:

$$\int x \cos x \, dx$$

$$u = x \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx$$

$$dv = \cos x \, dx \Rightarrow v = \sin x$$

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \cos x \, dx = x \, \sin x - \int \sin x \, dx = x \sin x - (-\cos x) = x \sin x + \cos x + c$$

$$\int x \cos x \, dx = x \, \sin x + \cos x + c \qquad (2)$$

Substituindo (2) em (1), teremos:

$$\int x^2 \operatorname{senx} dx = -x^2 \cos x + x \operatorname{sen} x + \cos x = (-x^2 + 1) \cos x + x \operatorname{sen} x + c$$

$$\int x^2 \operatorname{sen} x dx = (-x^2 + 1) \cos x + x \operatorname{sen} x + c$$

2.5. Bibliografia

BOULOS, P., Calculo Diferencial e Integral + Pré-Cálculo, Volume 1. Makron, 2006.

BOULOS, P., ABUD, Z. I., Calculo Diferencial e Integral, Volume 2. Makron, 2002.

HAZZAN; MORETTIN; BUSSAB. Introdução ao Cálculo para Administração, Economia e Contabilidade. Saraiva, 2009.

LARSON, R. Cálculo Aplicado - Curso rápido. CENGAGE Learning, 2011.

MEDEIROS, V. Z.; CALDEIRA, A. M.; SILVA, L. M. O.; MACHADO, M. A. S. **Pré-Cálculo**, 2ª edição. CENGAGE Learning, 2010.

SILVA, F. C. M.; ABRÃO, M. **Matemática Básica para Decisões Administrativas**, 2ª edição. Editora Atlas, 2008.

SPIEGEL, M. R., WREDE, R. C., Cálculo Avançado. 2º ed., Coleção SCHAUM Bookman, 2003.

STEWART, J., et al. **Cálculo**, Volume I, 5ª edição. Thomson Learning, 2009.

 $http://www.uapi.edu.br/conteudo/material_online/disciplinas/matematica/download/unidade6.pdf\\$