Part II

Listing

Warning: To reproduce the listings in a LATEX document, use the same formatting instructions as those of the documentation portion of oops.dtx (such as \documentclass, \usepackage, and \newtcblisting), and remove any ^A. Any deviation from the original may require tinkering.¹

Listing 1.	
^{x}% {y} @ {z}\$ ^(x)% (y) @ (z)\$ ^{x}, {y} & {z}\$ [{x}% {y} @ {z}]	

Listing 2.	
	$\{x\}\{y\}\{z\}$

Listing 3.

We call $\omega_1, \ldots, \omega_n$ the elementary events, and

$$\Omega = (\omega_1, \ldots, \omega_n)$$

the sample space.

Listing 4.

Let $\{\Omega, \mathcal{F}, \mathcal{P}\}$ denote the probability space, where $\mathcal{F} \subset 2^{\Omega}$.

Listing 5.

 $\Omega \mathcal{F} \mathcal{P}$

Listing 6.

Theorem 1 (Mittelwertsatz für n Variable) Es sei $n \in N$, $D \subseteq N^n$ eine offene Menge und $f \in C^1(D,R)$. Dann gibt es auf jeder Strecke $[x_0,x] \subset D$ einen Punkt $\xi \in [x_0,x]$, so dass gilt

$$\frac{f(x) - f(x_0)}{x - x_0} = \operatorname{grad} f(\xi)^{\top}$$

 $^{^1}$ For instance, in testing v1.1, I realized \usepackage[T1]{fontenc} was needed, to work with \understand ocumentclass{article} in place of \understand ocumentclass[full]{13doc}, hence added it to the documentation portion of oops.dtx

Listing 7.

 $N R D C^1 [x_0, x]$