

FIG. IA

FIG. 1B

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6A

610	
611	612
MAIN OP	SUB OP
MULT	NOP
ADD	MIN/MAX
MIN/MAX	ADD
NOP	MULT

FIG. 6G

<u>20-bit ISA</u>	<table border="1"> <tr><td>39</td><td>19</td></tr> <tr><td>0</td><td>0</td></tr> <tr><td>0</td><td>1</td></tr> <tr><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td></tr> </table>	39	19	0	0	0	1	1	0	1	1	20-bit parallel	Control II Control
39	19												
0	0												
0	1												
1	0												
1	1												
		20-bit serial	Control # Control										
		40-bit extended	DSP, extensions/Shadow										
		20-bit serial	DSP # DSP										

FIG. 6B

6-bit operand specifier:

A 6-bit specifier is used in DSP extended instructions to access memory and register operands.

5	4	3	2	1	0
---	---	---	---	---	---

M/R

0	0	ac-page
0	1	gpr:0-r15
1	ptr(r0)to(r15)	off

ereg

GPR

Mem[ptr{0-15}]II PTR[0-15]+=offset1/offset2 Always postupdate

This allows access to data memory, ereg and GPR

- Bit 5=1: Use rX(X:0-7) register to obtain effective memory address and post-modify the ptr field by one of two possible offsets specified in rX registers.
 $\text{dmem}[\text{ptr}]$, $\text{ptr}=\text{ptr}+\text{offset1}$, if off=0
 $\text{ptr}=\text{ptr}+\text{offset2}$, if off=1
- Bit 5=0: Access ac-page or GPR

If Bit-4 is set to 0, then bits 3:0 control access to the general-purpose register file (r0-15) or to execution unit registers.

FIG. 6C

4-bit operand specifier:

Memory operands: (rX) specifies an access out of the data memory to the extension unit for the function that needs to be performed. The address for the access is specified in the rX register in the general register file that hold the 14-bit pointer(16K of addressing) to memory, 5-bit signed offset or a 3-bit unsigned offset that can post-modify the address. In addition, each pointer is typed for efficient SIMD processing and includes a permute control for rearranging data elements of a vector on the fly. The "podi" core can deal with 4-element 16-bit real vectors or complex data directly. This ability to manipulate memory data directly reduces the instruction width greatly and allows efficient signal processing.

(rX): Memory Address Registers

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
type	cb	x	permute	offl:(0-7)	off0:(-16 to 15)																									ptr: pointer	

Fig. 6D

For shadow DSP instructions, the 3-bit specifier for operands is defined as follows:

<table border="1"> <tr><td>2</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>0</td></tr> <tr><td>1</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>1</td></tr> </table>	2	1	0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1	0	1	1	1	0	1	1	1	A0	<table border="1"> <tr><td>2</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>0</td></tr> <tr><td>0</td><td>0</td><td>1</td></tr> <tr><td>0</td><td>1</td><td>0</td></tr> <tr><td>0</td><td>1</td><td>1</td></tr> <tr><td>1</td><td>0</td><td>0</td></tr> <tr><td>1</td><td>0</td><td>1</td></tr> <tr><td>1</td><td>1</td><td>0</td></tr> <tr><td>1</td><td>1</td><td>1</td></tr> </table>	2	1	0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	1	0	1	1	1	0	1	1	1	A0
2	1	0																																																							
0	0	0																																																							
0	0	1																																																							
0	1	0																																																							
0	1	1																																																							
1	0	0																																																							
1	0	1																																																							
1	1	0																																																							
1	1	1																																																							
2	1	0																																																							
0	0	0																																																							
0	0	1																																																							
0	1	0																																																							
0	1	1																																																							
1	0	0																																																							
1	0	1																																																							
1	1	0																																																							
1	1	1																																																							
	A1		A1																																																						
	T		T																																																						
	TR		TR																																																						
	SX1		SY1																																																						
	SX1s		SY1s																																																						
	SX2		SY2																																																						
	SX2s		SY2s																																																						

Only the shadow DSP instructions can see the above modified page of execution unit registers.

FIG. 6E

5-bit operand specifier:

The 5-bit specifier includes the 4-bit specifier for general data operands and the special purpose registers. It is used in RISC instructions.

4	3	2	1	0
0	spr:s0-s15			
1	gpr:r0-r15			

SPR	SPR	Intr page	SPR intr page
0	fu-ctl	fu-ctl_l	
1	a-type	a-type_l	
2	ps-ctl	ps-ctl	
3	t-type	t-type	
4	pl-ctl	pl-ctl	
5	cb-ctl	cb-ctl_l	
6	shuffle	shuffle	
7	lo_ptr	lo_ptr	
8	status	status_l	
9	loop-ctl	loop-ctl	
10	pcr	pcr	stack(8)
11	reserved	reserved	
12	reserved	reserved	
13	reserved	reserved	
14	reserved	reserved	

NOTE: All SPR registers are reset to all zeros at power on reset except for the PCR register.

FIG. 6F

DSP instructions

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Multiply	1	0	0	PS	S'	SX	SY	V/SSA	DA	Sub-op	
						$da=sx*sy$				0	0 0 0
						$da=(sx*sy)+sa$				0	0 1
						$da=(sx*sa)+sy$				0	1 0
						$da=(sx*sy)+sa$				0	1 1
						$da=(sx*sa)+sy$				1	0 0
						$da=\min(sx*sy,sa)$				1	0 1
						$da=\min(sx*sa,sy)$				1	1 0
						$da=\max(sx*sy,sa)$				1	1 1

Add	1	0	1	PS	+/-	SX	SY	V/SSA	DA	Sub-op	
						$da=sx+sy$				0	0 0 0
						$da=sx+sy+sa$				0	0 1
						$da=sx+sy; sa=sx+sy;$				0	1 0
						$da=(sx+sy)*sa$				0	1 1
						$da=-(sx+sy)*sa$				1	0 0
						$da=\min(sx+sy,sa)$				1	0 1
						$da=\max(sx+sy,sa)$				1	1 0
						$da=ssum(sa) \quad (sx,sy \text{ unused})$				1	1 1

Extremum	1	1	0	PS	x/n	SX	SY	V/SSA	DA	Sub-op	
						$da=ext(sx,sy)$				0	0 0 0
						$da=ext(sx,sy,sa)$				0	0 1
						$da=ext(sx,sa)*sy$				0	1 0
						$da=-ext(sx,sa)*sy$				0	1 1
						$da=ext(sx,sa)+sy$				1	0 0
						$da=ext(sx,sa)-sy$				1	0 1
						$ext(sa,da) ?1=sx,tr=sy,lcs=lc$				1	1 0

type-match	1	1	0	PS	0	SX	SY	x	x	x	1	1	1
	1	1	0	PS	0	x	x	x	x	x	x	x	x

Permute	1	1	0	PS	1	Type	SY	0	ereg	1	1	1	Permute
	1	1	1	PS	x	SX	SY	SA	DA	N/S	Sub-op		

FIG. 6H

Control and specifier Extensions

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

Mul

0	Pred	PL	Sxt	Syt	Rnd	Lt	S'	S'	S'	0	SA	DA	abs	0	0	0	0	0
---	------	----	-----	-----	-----	----	----	----	----	---	----	----	-----	---	---	---	---	---

Add

0	Pred	PL	Sxt	Syt	Lt	Sub-ext	0	SA	DA	abs	0	0	0	0	0	0	0	0
---	------	----	-----	-----	----	---------	---	----	----	-----	---	---	---	---	---	---	---	---

+/-/+/-/x
x V/S Rnd Fp
tr/ctl Gx Fp

Nop (uadd)
Mul/MulN
Min/Max

Ext

0	Pred	PL	Sxt	Syt	tr-ctl	Gx	Sub-ext	0	SA	DA	abs	0	0	0	0	0	0	0
---	------	----	-----	-----	--------	----	---------	---	----	----	-----	---	---	---	---	---	---	---

Lt	Fp
Rnd	V/S

Add/sub
Mul

0	Pred	PL	Sxt	Syt		Pctl1	0	ereg	Pcell	0	0	0	0	0	0	0	0	0
---	------	----	-----	-----	--	-------	---	------	-------	---	---	---	---	---	---	---	---	---

Type/offset/permute extensions

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

0	Pred	PL	x	Type:SX	Type:SY	0	SA	DA	x	0	1	0	0	0	0	0	0	0
0	Pred	PL	Psx	Permute:SX	Permute:SY	0	SA	DA	Psy	1	0	0	0	0	0	0	0	0
0	Pred	I/R/I/R/prX	Offset:SX	Offset:SY	Offset:SY	0	SA	DA	prY	1	1	0	0	0	0	0	0	0

Type override
permute override
Offset override

Shadow DSP

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

0	Op	PL	Op	SA	ereg1	DA	ereg2	1	SA	DA	Sub-op	0	0	0	0	0	0	0	0
---	----	----	----	----	-------	----	-------	---	----	----	--------	---	---	---	---	---	---	---	---

nop

1	1	0	PL	0	x	x	x	Rnd	x	x	x	x	0	SA	DA	1	1	1
---	---	---	----	---	---	---	---	-----	---	---	---	---	---	----	----	---	---	---

FIG. 61

Control instructions

	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
add,sub	L	Pred	0	0	0		RX				RY			!	RZ	+/-	0			
max,min	L	Pred	0	0	0		RX				RY			!	RZ	X/N	1			
Shift	L	Pred	0	0	1		RX				UI4			!	RZ	UI2	R/L			
Logic	L	Pred	0	1	0		RX				RY			!	RZ	&	&1			
Mux	L	Pred	0	1	1		RX				RY			!	RZ	Pd	0			
mov	L	Pred	0	1	1		RX				DZ			Rxt	Dzl	0	0	0	1	
addi	L	Pred	0	1	1		SI4				DZ	x	x	1	0	0	0	1		
mov2erg	L	Pred	0	1	1		RX				unit	ereq	qd	type	1	0	0	1		
I_dm	L	Pred	0	1	1		RX				DZ1			DZ2		1	1			
Set4bits	L	Pred	1	0	0		UI4:POS				RY			Rzt		UI4		0		
Set2bits	L	Pred	1	0	0		UI4:POS				RY			Rzt	UI2	0	0	0	1	
Setbit	L	Pred	1	0	0		UI4:POS				RY			Rzt	UI1	UI1	1	0	1	
Movi	L	Pred	1	0	0						SI8			!	RZ		1	1		
Jmp	L	Pred	1	0	1						SI9			0	PRED		0	0		
Call	L	Pred	1	0	1						SI9			1	PRED		0	0		
Loop	L	Pred	1	0	1		UI5:Lcount				UI5:Lsize			UI2:Lst		0	1			
Jmpi	L	Pred	1	0	1		RX				x	x	x	x	x	0	PRED	1	0	
Calli	L	Pred	1	0	1		RX				x	x	x	x	x	1	PRED	1	0	
Loopi	L	Pred	1	0	1		RX				x		UI5:Lsize		UI2:Lst		1	1		
Test	L	Pred	1	1	0		RX				RY			PZ	=<,>	0				
Testbit	L	Pred	1	1	0		RX				UI5			PZ	B	0	1			
Andp, orp	L	Pred	1	1	0		Pa				Pb			Pc		PZ	&	1	1	
Load	L	Pred	1	1	1		MX				RZ			Ext		0	0	0		
Store	L	Pred	1	1	1		MZ				RZ			Ext		1	0	0		
eLoad	L	Pred	1	1	1		MX				RY			1	1	1	0	0	0	
eStore	L	Pred	1	1	1		MZ				RY			1	1	1	1	0	0	
Extended	L	Pred	1	1	1									Bits 27:16			1	0		
Logic2	L	Pred	1	1	1		RX				RY/RZ			Rxt	Ryt	&,1,&1,	0	1		
mov-erg	L	Pred	1	1	1		unit	ereq			RZ			qd	Sft	0	1	1		
Crb	L	Pred	1	1	1		RX				RZ			s/m	0	0	1	1	1	
Panty	L	Pred	1	1	1		RX				PZ	!0/E	0	1	0	1	1	1		
Stm	L	Pred	1	1	1		MZ				RX			1	1	0	1	1	1	
Abs	L	Pred	1	1	1		RX				RZ			0	0	1	1	1	1	
Neg	L	Pred	1	1	1		RX				RZ			0	1	1	1	1	1	
Div-step	L	Pred	1	1	1		RX				RZ			1	0	1	1	1	1	
Test&Set	L	Pred	1	1	1		RX				PZ	0	1	1	1	1	1	1	1	
Reserved	L	Pred	1	1	1						0	0	1	1	1	1	1	1	1	
Return	L	Pred	1	1	1		Pred	I-ctl	0	1	0	1	1	1	1	1	1	1	1	
Zero-ac	L	Pred	1	1	1		ac	#	1	1	0	1	1	1	1	1	1	1	1	
eSync	L	Pred	1	1	1		RZ		0	1	1	1	1	1	1	1	1	1	1	
Swi	L	Pred	1	1	1		UI3	0	1	1	1	1	1	1	1	1	1	1	1	
Nop	L	Pred	1	1	1		UI3	1	1	1	1	1	1	1	1	1	1	1	1	

<Bit1,Bits9-6>
 ==UI5 (Shift Amount)

<Bit3,Bits13-10>==UI5 POS

FIG. 6J

Extended Control

jmp, call	dloop	dloopi	mult	add/sub	Reserved	logicp	Testi	Movi	loadi	storei	loadt	storet	Addi/subi	mini,maxi	andj,or
-----------	-------	--------	------	---------	----------	--------	-------	------	-------	--------	-------	--------	-----------	-----------	---------

FIG. 6K

MAC:

		Control																																							
		Rnd					Lt					V/S		S*		S+ DA		SA																							
		Group		Pred		opcode		SY		SX		PL		PS		Subop																									
1-40-bit		39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

-10-

		MUL-NOP		MUL-ADD		MUL-EXT		MUL-MUL	
		S*	S*	S*	S*	S*	S*	S*	S*
PL	PS	Rnd	S*	DA	V/S	Lt	-	S*	eregs
PL	PS	Rnd	S*	DA	V/S	Lt	+/-	S*	
PL	PS	Gx	S+	Rnd	SA	V/S	Lt	=/+	N/X
PI	PS	eren	Rnd	SA	DA	V/S	Lt	=/+	eq

ARITH

1

FIG. 6L-1

Shift:																		Amount	Amount	Position	Position	Setbits				
Group	Pred	opcode	SX								DZ								PL	PS	Lt	Rott	Fill	A/L	I/E	Insert/extract
Group	Pred	opcode	SX								DZ								PL	PS	Lt	Rott	Fill	A/L	I/E	0
Group	Pred	opcode	DZ								Imm14								Length	Position	Position	Position	Position	0	Setbits	

Immediate:

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0						
Group	op	DZ																																											
Group	opcode		SX																DZ																										

Imm16

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0								
Group	Pred	opcode																	DZ																												
Group	Pred	opcode																																													

Test:

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0								
Group	Pred	opcode																	SX																												
Group	Pred	opcode																																													

Branch:

39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0								
Group	Pred	opcode																																													
Group	Pred	opcode																																													

Misc:

FIG. 6L-2

FIG. 7

FIG. 8a

FIG. 8b

FIG. 9A

FIG. 9B

Instructions to Instruction
Register 715

FIG. 10

FIG. 11

FIG. 12A

<u>Data Type</u>	<u>SP Configuration</u>
1 x 4 R	
1 x 8 R	
1 x 16 R	
1 x 32 R	
1 x 40 R	
SXA 550 or SYA 554	

FIG. 12B

<u>Data Type</u>	<u>SP Configuration</u>
$1 \times 4 \text{ R}$ 	$\approx 1 \times 16$
$1 \times 8 \text{ R}$ 	$\approx 1 \times 16$
$1 \times 16 \text{ R}$ 	$\approx 1 \times 16$
$1 \times 32 \text{ R}$ 	$\approx 1 \times 16$
$1 \times 40 \text{ R}$ 	$\approx 1 \times 16$

FIG. 12C

Data Type

SP Configuration

SXA 550A and SXA 550B

or

SYA 554A and SYA 554B

FIG. 12D

Data Type

SP Configuration

SXA 550A, SXA 550B, SXA 550C, and SXA 550D
 or
 SYA 554A, SYA 554B, SYA 554C, and SYA 554D

FIG. 12E

<u>Data Type</u>	<u>SP Configuration</u>
1 x 4 C	$\approx 2 \times 16$
	$\approx 2 \times 16$
1 x 8 C	$\approx 2 \times 16$
	$\approx 2 \times 16$
1 x 16 C	$\approx 2 \times 16$
	$\approx 2 \times 16$
1 x 32 C	$\approx 2 \times 16$
	$\approx 2 \times 16$
1 x 40 C	$\approx 2 \times 16$
	$\approx 2 \times 16$
SXM 552A and SXM 552B or SYM 556A and SYM 556B	

FIG. 12F

SXM 552A, SXM 552B, SXM 552C, and SXM 552D
or
SYM 556A, SYM 556B, SYM 556C, and SYM 556D

Operand 1 Data Type: $N_1 \times S_1 R$
Operand 2 Data Type: $N_2 \times S_2 R$
Type Matching R: $\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) R$

Fig. 13A

Operand 1 Data Type: $N_1 \times S_1 C$
Operand 2 Data Type: $N_2 \times S_2 C$
Type Matching C: $\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) C$

Fig. 13B

Operand 1 Data Type: $N_1 \times S_1 R$
Operand 2 Data Type: $N_2 \times S_2 C$
Type Matching R+C: $\text{Max } (N_1 \text{ or } N_2) \times \text{Max } (S_1 \text{ or } S_2) C$

Fig. 13C

	1x16 real	2x16 real	1x16 cmplx	4x16 real	2x16 cmplx	1x32 real	2x32 cmplx	1x32 real	4x32 cmplx	2x32 real	1x40 real	2x40 real	1x40 real	4x40 real	2x40 cmplx
1x16 real	1	2	2	4	4	2	4	4	4	4					
2x16 real	unit	unit	unit	unit	unit	unit	unit	unit	unit	unit					
1x16 cmplx	2	2	unit												
4x16 real	2	2	unit												
2x16 cmplx	unit	unit	unit												
2x32 real	4	4	unit												
1x32 real	2	2	unit												
2x32 real	4	4	unit												
1x32 cmplx	4	4	unit												
4x32 real															
2x32 cmplx															
1x40 real															
2x40 real															
1x40 real															
4x40 real															
2x40 real															

FIG. 14

	1x16 real	2x16 real	1x16 cmplx	4x16 real	2x16 cmplx	1x32 real	2x32 real	4x32 cmplx	1x32 real	2x40 real	1x40 real	4x40 real	2x40 cmplx	
1x16 real	1	2		4		1	4		4		1	2		
2x16 real	2	2				2	2				2			
1x16 cmplx														
4x16 real	4	-	unit			4			4				4	
2x16 cmplx														
1x32 real	1	2	unit			1	2	unit	4	unit	1	2		
2x32 real	4	2	unit			2	2	unit			2			
1x32 cmplx														
4x32 real	4		unit			4		unit			4		4	
2x32 cmplx														
1x40 real	1						1				4	1		
2x40 real	2	2	unit				2	2	unit			2		
1x40 real														
4x40 real	4		unit								4		4	
2x40 real														

FIG. 15A

	1x16 real	2x16 real	1x16 cpx	4x16 real	2x16 cpx	1x32 real	2x32 real	1x32 cpx	4x32 real	2x32 cpx	1x40 real	2x40 real	1x40 real	4x40 real	2x40 cpx
1x16 real	1 unit	2 unit	2 unit	4 unit	4 unit	1 unit	2 unit	4 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit	4 unit
2x16 real	2 unit	2 unit				2 unit	2 unit				2 unit		2 unit		
1x16 cpx	2 unit		2 unit								2 unit		2 unit		
4x16 real	4 unit					1 unit	4 unit				4 unit				
2x16 cpx	4 unit					4 unit									
1x32 real	1 unit	2 unit				1 unit	2 unit	2 unit	4 unit	4 unit	1 unit	2 unit	2 unit	4 unit	4 unit
2x32 real	2 unit	2 unit				2 unit	2 unit	2 unit			2 unit		2 unit		
1x32 cpx	2 unit		2 unit			2 unit		2 unit			2 unit		2 unit		
4x32 real	4 unit			4 unit		4 unit		4 unit			4 unit		4 unit		
2x32 cpx	4 unit														
1x40 real	1 unit		2 unit			1 unit		2 unit	4 unit	4 unit	1 unit	2 unit		4 unit	4 unit
2x40 real	2 unit	2 unit				2 unit	2 unit	2 unit			2 unit	2 unit			
1x40 real	2 unit							2 unit					2 unit		
4x40 real	4 unit					4 unit		4 unit		4 unit		4 unit		4 unit	
2x40 real	4 unit					4 unit		4 unit		4 unit		4 unit		4 unit	

FIG. 15B

FIG. 16

Data Type: N x S(R/C)

FIG. 17

FIG. 18

Data Type 1801

0000:	1x16 real
0001:	2x16 real
0010:	1x16 complex
0011:	4x16 real
0100:	1x32 real
0101:	2x32 real
0110:	1x32 complex
0111:	2x16 complex
1000:	4x32 real
1001:	2x32 complex
1010:	1x40 real
1011:	2x40 real
1100:	1x40 complex
1101:	4x40 real (only for local add unit operations)
1110:	2x40 complex (only for local add unit operations)
1111:	Reserved

FIG. 19

FIG. 20

FIG. 21

$X' = [SX_{10}, SX_{11}, SX_{12}, SX_{13}]$ e.g. $[X_0, X_1, X_2, X_3]$
 $X'' = [SX_{20}, SX_{21}, SX_{22}, SX_{23}]$ e.g. $[X_4, X_5, X_6, X_7]$

Where SX_{ab} : S=Source; a=delay; b= SP unit number(e.g. SP3,SP2,SP1,SP0; or termed U3,U2,U1,U0)

$Y' = [SY_{10}, SY_{11}, SY_{12}, SY_{13}]$
 $Y'' = [SY_{20}, SY_{21}, SY_{22}, SY_{23}]$

Where SY_{ab} : S=Source; a=delay; b= SP unit number(e.g. SP3,SP2,SP1,SP0; or termed U3,U2,U1,U0)

FIG. 22A

FIR Filter

$$\begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_N \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix} = X_0 Y_0 + X_1 Y_1 + \dots + X_N Y_N$$

Primary Stage		Primary Stage Computations			
Cycle #		SP0	SP1	SP2	SP3
1		$X_0 Y_0$	$X_1 Y_1$	$X_2 Y_2$	$X_3 Y_3$
2		$X_4 Y_4$	$X_5 Y_5$	$X_6 Y_6$	$X_7 Y_7$
3		$X_8 Y_8$	$X_9 Y_9$	$X_{10} Y_{10}$	$X_{11} Y_{11}$
:					
N		$X_{N-3} Y_{N-3}$	$X_{N-2} Y_{N-2}$	$X_{N-1} Y_{N-1}$	$X_N Y_N$

Shadow Stage		Shadow Stage Computations			
Cycle #		SP0'	SP1'	SP2'	SP3
1	No operation				
2	No operation				
3		$X_1 Y_0$	$X_2 Y_1$	$X_3 Y_2$	$X_4 Y_3$
4		$X_5 Y_4$	$X_6 Y_5$	$X_7 Y_6$	$X_8 Y_7$
:					
N+2		$X_{N-2} Y_{N-3}$	$X_{N-1} Y_{N-2}$	$X_N Y_{N-1}$	$X_{N+1} Y_N$

Subsequent Cycles					
Primary Stage		Shadow Stage			
Cycle #			Cycle #		
N+1		$\begin{bmatrix} X_2 \\ \vdots \\ X_{N+2} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$		N+3	$\begin{bmatrix} X_3 \\ \vdots \\ X_{N+3} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$
:				N+5	$\begin{bmatrix} X_5 \\ \vdots \\ X_{N+5} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$
N+4		$\begin{bmatrix} X_4 \\ \vdots \\ X_{N+4} \end{bmatrix} * \begin{bmatrix} Y_0 \\ \vdots \\ Y_N \end{bmatrix}$		N+6	\dots
:				N+7	\dots
3N					

FIG. 22B

shuffle				Shuffle Control Register																											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
u3	u2	u1	u0	u0	u3	u2	u1	u0	u3	u2	u1	u0	u3	u2	u1	u0	u3	u2	u1	u0	SX2S	SX1S	SX2S	SX1S							

Units are connected to their nearest neighbors for shuffling the sources using the following bit diagram:

00	Unit N+1, SX1=X'	(right)
01	Unit N+1, SX2=X''	(right)
10	Unit N-1, SX1=X'	(left)
11	Unit N-1, SX2=X''	(left)

For example to shift the sources to the left by one:

3	2	1	0	From
2	1	0	3	Into

The bits should be 10101010 (AA)

FIG. 22C

FIG. 23A

FIG. 23B

FIG. 23

FIG. 23A

FIG. 23B

$X_0 = SX_{10}, SX_{20}$
 $X_1 = SX_{11}, SX_{21}$
 $X_3 = SX_{13}, SX_{23}$

FIG. 24A

$X_1 = SX_{11}, SX_{21}$
 $X_2 = SX_{12}, SX_{22}$
 $X_0 = SX_{10}, SX_{20}$

FIG. 24B

$X_2 = SX_{12}, SX_{22}$
 $X_3 = SX_{13}, SX_{23}$
 $X_1 = SX_{11}, SX_{21}$

FIG. 24C

FIG. 24D

$X_3 = SX_{13}, SX_{23}$
 $X_0 = SX_{10}, SX_{20}$
 $X_2 = SX_{12}, SX_{22}$

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 31

FIG. 32

FIG. 29

FIG. 33A

FIG. 35

202

FIG. 36A

FIG. 36B

FIG. 37

FIG. 38B

FIG. 38A

FIG. 39

FIG. 40

FIG. 42

FIG. 41

FIG. 44A

FIG. 45

FIG. 44B

