# Detecção de Áreas de Florestas Invariantes em Séries Temporais Utilizando Random Forest

Eduardo Ribeiro Lacerda Raul Sanchez

Universidade Federal Fluminense (UFF)



# Algoritmos de detecção de mudança





## Algoritmos de detecção de mudança

- VCT Vegetation Change Tracker (2010)
- Landtrendr (2012)
- ITRA Image Trends from Regression Analysis (2012)
- MIICA Multi-index Integrated Change Analysis (2013)
- EWMACD Exponentially Weighted Moving Average Change Detection (2014)
- CCDC Continuous Change Detection and Classification (2014)
- Shapes-NBR (2016)
- VerDET Vegetation Regeneration and Disturbance Estimates through Time (2017)



• COLD - Continuous Monitoring of Land Disturbance (2020)

## O problema

- A limpeza dos dados na etapa de pós processamento desses algoritmos é essencial para a obtenção de resultados de boa qualidade
- Áreas de floresta que possuem alta declividade, por exemplo, tendem a sofrer mais com certos ruídos
- A limpeza desses dados normalmente acontece utilizando dados de projetos como o Mapbiomas como base para ignorar áreas de não interesse





#### Como resolver?

- O presente trabalho busca elaborar uma alternativa a essa técnica
- Criar uma forma mais precisa de gerar camadas de áreas de estabilidade/invariância
- Utilizamos o algoritmo Random Forest na plataforma Google Earth Engine (GEE) além da linguagem R
  e do pacote MLR (Machine Learning in R)



# Área de Estudo





#### Máximo NDVI

- Landsat 5, 7 e 8 (Surface Reflectance Tier 1)
- Retirou todos os pixels com nuvem/sombra
- Mediana de cada ano (1985 2018)
- Extração do valor máximo do NDVI em uma única camada final (output)



## Definição do limiar para o NDVI Max

- Encontrar um limiar para classificar o que é floresta e o que não é
- Mapbiomas (floresta binário e pasto/agricultura binário) -> raster pra ponto (vetor)
- Seleção aleatória de 2000 pontos para cada classe
- Extração utilizando os pontos dos valores do raster de NDVI max
- Teste T de Student -> valor p = 2.2e-16 (demonstrando diferença significativa entre as classes)
- Extração do valor mínimo encontrado nas 2000 amostras de NDVI max pela classe floresta = 0.83 ndvi
- Criação de uma nova camada raster binária com todos os valores iguais ou maiores que 0.83



# Criação de camada de florestas

• Multiplicação da camada do Mapbiomas de florestas invariantes com a nova camada com o max ndvi



# Camada Landtrendr (florestas que sofreram mudança)

Greatest Loss

1985 – 2018

• Período: 1 de janeiro até 31 de dezembro

Camada: NDVI

Filtros: Magnitude maior que 200 (> 0.2 de NDVI)



#### **Camada Outros**

- Tudo que não foi classificado nem como floresta na camada de florestas e nem como mudança pela camada do Landtrendr
- Água, solo exposto, pasto, etc...
- Amostras selecionadas de forma aleatória (Raster to Point + Random Selection)



# Criação da série temporal para classificação

- Série Landsat 5, 7 e 8
- Limpeza de nuvens de sombras (no data)
- Mediana para a composição das camadas anuais
- Bandas: blue, green, red, nir, swir1, swir2, ndvi, ndmi, ndwi, savi, greenness, wetness, brightness



## Validação Cruzada (cross validation) usando o MLR



- O processo de validação cruzada foi realizado no R utilizando o pacote MLR
- K-fold:10 (90% treino e 10% teste)
- Iterações: 100 (resampling)
- Algoritmo de classificação: Random Forest (100 árvores)
- 24 testes com combinações de bandas diferentes totalizando 24.000 processos de classificação diferentes



# Resultados de acordo com a combinação de bandas utilizada

| BANDA                                                                                                   | Kappa     |
|---------------------------------------------------------------------------------------------------------|-----------|
| Blue + Green + Red + NIR + SWIR1 + SWIR2 + NDVI + NDWI + NDMI + SAVI                                    | 0,844754  |
| Blue + Green + Red + NIR + SWIR1 + SWIR2 + NDVI + NDWI + NDMI + SAVI + Greenness + Wetness + Brightness | 0,8398718 |
| Blue + Green + Red + NIR + SWIR1 + SWIR2                                                                | 0,8388044 |
| Blue + Green + Red + NIR                                                                                | 0,8333813 |
| Blue + Green + Red                                                                                      | 0,8327737 |
| Greenness + Wetness + Brightness + NDVI + NDWI + NDMI + SAVI                                            | 0,8295032 |
| NDVI + NIR + NDMI                                                                                       | 0,8198751 |
| NDVI + NIR                                                                                              | 0,8198327 |
| Greenness + Wetness + Brightness                                                                        | 0,8126214 |
| Red                                                                                                     | 0,8124956 |
| SWIR2                                                                                                   | 0,8089151 |
| Green                                                                                                   | 0,8055279 |
| Blue                                                                                                    | 0,8000793 |
| NDVI + NDWI + NDMI + SAVI                                                                               | 0,7966787 |
| NDVI + NDMI                                                                                             | 0,7833422 |
| SWIR1                                                                                                   | 0,7788457 |
| Wetness                                                                                                 | 0,7675543 |
| Greenness                                                                                               | 0,761319  |
| NDVI                                                                                                    | 0,7554752 |
| SAVI                                                                                                    | 0,7552823 |
| Brightness                                                                                              | 0,7159552 |
| NDMI                                                                                                    | 0,7060223 |
| NDWI                                                                                                    | 0,6343948 |
| NIR                                                                                                     | 0,5760713 |



# Classificação final no Google Earth Engine (Random Forest)







Floresta Invariante
Perda Landtrendr

Outros



## Diferenças entre o resultado obtido e a técnica antiga (Mapbiomas)

- 2000 mil amostras aleatórias para cada classe
- (FOR) Áreas de floresta classificadas pelos dois mapeamentos
- (RF) Áreas de floresta classificadas apenas pela técnica proposta (random forest)
- (Mapbiomas) Áreas de floresta classificadas apenas pelo Mapbiomas
- ANOVA 0,0116 (mostrando uma diferenças estatisticamente significativa)
- Teste de Tukey

| Combinação (Teste de Tukey) | Valor-p   |
|-----------------------------|-----------|
| Mapbiomas - FOR             | 0,0008489 |
| RF - FOR                    | 0,1841643 |
| RF - Mapbiomas              | 0,0000002 |



# Cálculo do erro associado a cada classe (TimeSync)





# Cálculo do erro associado a cada classe (TimeSync)

- 300 amostras por classe
- Mapbiomas (somente mapbiomas) 55% acerto
- RF (somente random forest) 76% acerto
- FOR (ambos) 97% acerto
- Mapeamento final 91,7% acerto



## Link para os dados

Todos os resultados, amostras, imagens, arquivos vetoriais, códigos e materiais para validação utilizados neste trabalho estão disponíveis para visualização e possível reprodução através deste link:

https://github.com/sacridini/Artigo-JGEOTEC-2020

