Supplementary Information for "Representation of global change drivers across biodiversity datasets"

Authors: Gergana N. Daskalova^{1*}, Diana E. Bowler²⁻⁴, Isla H. Myers-Smith¹, Maria Dornelas⁵

Affiliations:

- ¹ School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3FF, Scotland
- ² German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, Leipzig 04103, Germany
- ³ Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- ⁴ Helmholtz Center for Environmental Research UFZ, Department of Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany
- ⁵ Centre for Biological Diversity, University of St Andrews, Greenside Place, St Andrews KY16 9TF, Scotland

*Correspondence to:

Gergana Daskalova, Room 401, Crew Building, School of GeoSciences University of Edinburgh, West Mains Road, Scotland gndaskalova@gmail.com

Extended Data Figure 1. Global change representation varies across taxa. Figure shows Principal Component Analysis of the magnitudes of human use, climate change, human

population density, pollution and invasion potential across the locations of the Living Planet, BioTIME and PREDICTS databases, split by taxa, as well as one million randomly sampled locations across the full extent of the globe (in grey). For example, in the Living Planet Database, amphibians occupy the part of global change space that corresponds with moderate to high human population density and relatively low climate change. PCA axes omitted for visual clarity. Upwards PCA arrow shows climate change, arrow pointing right shows human population density. Arrows show direction and magnitude of PCA scores. Human use, pollution and invasion potential were correlated with human population density. For details on the global change driver layers, see Bowler et al. 2020. Annotations show the percentage overlap between the 95% prediction ellipses covered by random sampling of global change space and the variation in global change sampled by the different databases across taxa.

Extended Data Table S1. Model outputs for all statistical analyses. Term names starting with "b" refer to fixed effects and sigma indicates the residual variance. Continuous variables (intensities of global change drivers) were scaled between zero and one to make them comparable. We used Bayesian general linear models and we analyzed the terrestrial and marine data separately.

Model	Term	Estimate	Lower	Upper	Rhat
			95% CI	95% CI	
Terrestrial global	b_intercept	0.518	0.507	0.528	1.002
change drivers across	b_samplinglivingplanet	0.070	0.058	0.081	1.001
databases and	b_samplingbiotime	-0.144	-0.157	-0.131	1.002
the world	b_samplingpredicts	-0.024	-0.038	-0.010	1.001
	b_drivercumulative	-0.109	-0.123	-0.094	1.002
	b_driverhuman_population	-0.379	-0.393	-0.365	1.002
	b_driverhuman_use	-0.113	-0.127	-0.098	1.001
	b_driverinvasions	-0.350	-0.365	-0.336	1.001
	b_driverpollution	-0.290	-0.305	-0.276	1.001
	b_samplinglivingplanet.drivercumulative	0.072	0.056	0.089	1.001
	b_samplingbiotime.drivercumulative	0.391	0.372	0.409	1.002
	b_samplingpredicts.drivercumulative	0.199	0.179	0.218	1.001
	b_samplinglivingplanet.driverhuman_population	0.298	0.282	0.315	1.001
	b_samplingbiotime.driverhuman_population	0.723	0.706	0.742	1.002
	b_samplingpredicts.driverhuman_population	0.568	0.549	0.588	1.001
	b_samplinglivingplanet.driverhuman_use	-0.061	-0.077	-0.044	1.001
	b_samplingbiotime.driverhuman_use	0.328	0.311	0.347	1.001
	b_samplingpredicts.driverhuman_use	0.198	0.179	0.219	1.001
	b_samplinglivingplanet.driverinvasions	0.362	0.345	0.378	1.001
	b_samplingbiotime.driverinvasions	0.787	0.767	0.805	1.002
	b_samplingpredicts.driverinvasions	0.551	0.531	0.571	1.000

	b_samplinglivingplanet.driverpollution	0.219	0.204	0.236	1.000
	b_samplingbiotime.driverpollution	0.675	0.657	0.693	1.001
	b_samplingpredicts.driverpollution	0.432	0.413	0.453	1.000
	sigma	0.231	0.230	0.232	1.000
Marine global	b_intercept	0.484	0.460	0.507	1.000
change drivers across	b_samplinglivingplanet	0.002	-0.024	0.027	1.000
databases and the world	b_samplingbiotime	0.013	-0.010	0.037	1.000
	b_drivercumulative	-0.030	-0.064	0.004	1.001
	b_driverhuman_population	-0.194	-0.226	-0.157	1.001
	b_driverhuman_use	-0.110	-0.144	-0.076	1.000
	b_driverinvasions	-0.133	-0.168	-0.101	1.000
	b_driverpollution	-0.155	-0.188	-0.121	1.000
	b_samplinglivingplanet.drivercumulative	0.121	0.085	0.160	1.001
	b_samplingbiotime.drivercumulative	0.107	0.073	0.141	1.001
	b_samplinglivingplanet.driverhuman_population	0.158	0.123	0.196	1.001
	b_samplingbiotime.driverhuman_population	0.006	-0.028	0.041	1.001
	b_samplinglivingplanet.driverhuman_use	0.212	0.175	0.248	1.001
	b_samplingbiotime.driverhuman_use	0.228	0.194	0.262	1.000
	b_samplinglivingplanet.driverinvasions	0.201	0.165	0.236	1.000
	b_samplingbiotime.driverinvasions	0.134	0.100	0.168	1.000
	b_samplinglivingplanet.driverpollution	0.192	0.156	0.229	1.000
	b_samplingbiotime.driverpollution	0.166	0.132	0.199	1.000
	sigma	0.274	0.273	0.274	1.000
Terrestrial temperature	b_intercept	0.011	0.009	0.013	1.000
change (Living Planet Database	b_periodduringmonitoring)	0.017	0.015	0.020	1.000
	sigma	0.080	0.080	0.081	1.000
	b_intercept	0.004	0.001	0.007	1.000

Marine	b_periodduringmonitoring	0.013	0.009	0.017	1.000
temperature change (Living Planet Database	sigma	0.050	0.048	0.051	1.000
Terrestrial	b_intercept	0.027	0.024	0.031	1.000
temperature change	b_periodduringmonitoring	-0.011	-0.017	-0.007	1.000
(BioTIME)	sigma	0.104	0.102	0.105	1.000
Marine	b_intercept	0.010	0.009	0.012	1.000
temperature change (BioTIME)	b_periodduringmonitoring	0.008	0.007	0.010	1.000
	sigma	0.058	0.057	0.058	1.000

Extended Data Table S2. Metadata and web links for each variable dataset included in the global change driver layers used to quantify global change space and extract driver information for the sites represented by the Living Planet, BioTIME and PREDICTS databases. The table is extracted from Bowler et al. 2020³ where there are additional driver data details. In the "Realm" column "T" stands for terrestrial and "M" for marine.

Variable	Realm	Data Layer	Time series	Resolution	Description/Url/Reference
Temperature	Т	CRU v 4.02	Yes	0.5°	mean monthly and yearly temperatures (°C) https://crudata.uea.ac.uk/cru/data/hrg/ (Harris et al. 2014)
Aridity change	Т	CRU v 4.02	Yes	0.5°	ratio of mean monthly and yearly pet (mm day-1) and precipitation (mm) https://crudata.uea.ac.uk/cru/data/hrg/ (Harris et al. 2014)
Sea surface temperature	M	HadISST	Yes	1°	mean monthly and yearly sea surface temperatures (°C) https://www.metoffice.gov.uk/hadobs/hadisst/data/download.htm [(Rayner et al. 2003)

Ocean acidification	M	Ocean Acidification	Yes* (2000-2009 vs 1870)	1 km²	change in aragonite saturation state https://www.nceas.ucsb.edu/globalmarine/impactbyactivity (Halpern et al. 2008)
Pasture	Т	Pasture fraction	No (2000)	5'	fraction of cell area (0-1) based on agricultural inventory data and satellite-derived land cover data http://www.earthstat.org/ (Ramankutty et al. 2008)
Cropland	Т	Cropland fraction	No (2005)	5'	fraction of cell area (0-1) based on national and subnational agricultural data and satellite-derived land cover data (Fritz et al. 2015)
Cattle density		Gridded Livestock of the World	No (2005)	1 km	FAOSTAT national estimates and modelled downscaling (Robinson <i>et al.</i> 2014)
Forest loss	Т	Land-Use Harmonization 2 (primary forest cover)	Yes	0.25°	fraction of cell area (0-1) using FAO national wood harvest volume data and an ecosystem model http://luh.umd.edu/ (Hurtt et al. (in prep))
Urban cover	Т	MODIS	No (2001)	5'	Urban cover (0 or 1) based on satellite-derived land cover data http://glcf.umd.edu/data/lc/

	<u>, </u>				(Friedl <i>et al.</i> 2010)
					· · · · · · · · · · · · · · · · · · ·
Fishing	M	Commercial fishing	No	1 km²	tons of caught fish per ton of carbon
		layers	(1999-		https://www.nceas.ucsb.edu/globalmarine/impactbyactivity
			2003)		(Halpern <i>et al.</i> 2008)
Population	Т	SEDAC population	No	30"	UN-adjusted population density
density		data v4	(2000)		http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-
					density/data-download
					(Center for International Earth Science Information Network -
					CIESIN - Columbia University 2017)
Coastal	М	Coastal population	No	1 km²	number of people within 25 km radius
population			(1992-		https://www.nceas.ucsb.edu/globalmarine/impactbyactivity
			2002)		(Halpern <i>et al.</i> 2008)
N deposition	Т	Atmospheric	No	5° x 3.75°	mg N/m² of total inorganic nitrogen (N), NHx (NH3 and NH4+),
		nitrogen deposition	(1993)		and NOy
					http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=830
					(Dentener 2006)

Fertilizer application	Т	Nitrogen fertilizer application (v1)	No (1994- 2001)	0.5°	kg of Nitrogen fertilizer per hectare of cropland http://sedac.ciesin.columbia.edu/data/set/ferman-v1-nitrogen-fertilizer-application (Potter et al. 2010)
Pesticides	Т	Riverthreat.net: Pesticide loading	No (2000)	0.5°	kg of pesticide per hectare of cropland http://www.riverthreat.net/data.html (Vorosmarty et al. 2010)
Light pollution	T/M	NOACC NGDC stable night lights	No (2006)	1 km	radiance values https://knb.ecoinformatics.org/#view/doi:10.5063/F15718ZN (Halpern et al. 2008)
Coastal pollution	М	Pesticide, Fertilizer	No (1993- 2002)	1 km²	average annual use in agricultural land https://knb.ecoinformatics.org/#view/doi:10.5063/F15718ZN (Halpern et al. 2008)
Shipping pollution	М	Shipping pollution	No (2004- 2005)	1 km²	ship activity (number of ships) https://knb.ecoinformatics.org/#view/doi:10.5063/F15718ZN (Halpern et al. 2008)
Invasions	Т	Accessibility (Travel time)	No (2000)	30"	travel time to major cities (in hours and days) http://forobs.jrc.ec.europa.eu/products/gam/

					(Nelson 2008)
Invasions	M	Port volume (cargo volume at ports)	No (1999- 2003)	1 km²	amount of cargo traffic at ports https://knb.ecoinformatics.org/#view/doi:10.5063/F15718ZN (Halpern et al. 2008)