

基于ARM® 32位Cortex®-M4微控制器+FPU,配有128 K字节到256 K字节闪存、sLib、14个定时器、1个ADC、19个通信接口(CAN、OTGHS、OTGFS)

功能

■ 内核: 带有FPU的ARM® 32位的Cortex®-M4 CPU

- 最高216 MHz工作频率,带存储器保护单元 (MPU),内建单周期乘法和硬件除法
- 内建浮点运算(FPU)
- 具有DSP指令集

■ 存储器

- 128 K字节到256 K字节的闪存存储器
- 20 K字节的启动程序代码区作启动加载程序 (Bootloader)用,可一次性配置成一般用 户区
- sLib: 将指定之主存储区设为执行代码安全 库区,此区代码仅能调用无法读取
- 70 K字节到102 K字节的SRAM(前48 K字节可规划带奇偶校验)
- 1个QSPI接口,用于连接外部SPI闪存存储器或SPI RAM扩展,支持地址映射模式

■ 电源控制 (PWC)

- 2.4 V至3.6 V供电
- 上电复位(POR)、低电压复位(LVR)、 电源电压监测器(PVM)
- 低功耗模式: 睡眠、深睡眠、和待机
- 20个32位的电池供电寄存器(BPR)

■ 时钟和复位管理(CRM)

- 4至25 MHz晶体振荡器 (HEXT)
- 内置经出厂调校的48 MHz高速时钟 (HICK), 25 °C达1 %精度, -40 °C至 +105 °C达2.5 %精度,带自动时钟校准
 - (ACC) 功能
- 32 kHz晶振(LEXT)
- 低速内部时钟(LICK)

■ 模拟模块

- 1个12位2 MSPS A/D转换器,多达16个外部输入通道,硬件过采样最高达16位分辨率
- 温度传感器(V_{TS})和内部参考电压 (V_{INTRV})

DMA

- 2个7通道DMA控制器共14通道,支持完全弹性映射

■ 多达56个快速GPIO端口

- 所有GPIO口可以映像到16个外部中断 (EXINT)
- 几乎所有GPIO口可容忍5 V输入信号

■ 多达14个定时器(TMR)

- 1个16位7通道高级定时器,包括3对互补通道 PWM输出,带死区控制和紧急停止功能
- 多达7个16位和1个32位通用定时器,每个定时器最多达4个用于输入捕获/输出比较/PWM或脉冲计数的通道和增量编码器输入
- 2个16位基本定时器
- 2个看门狗定时器(一般型WDT和窗口型 WWDT)
- 系统滴答定时器: 24位递减计数器
- ERTC:增强型RTC,具有自动唤醒、闹钟、亚 秒级精度、及硬件日历,带校准功能

■ 多达19个通信接口

- 3个I²C接口, 支持SMBus/PMBus
- 3个SPI接口(36 M位/秒),均可复用为半双工I²S接口;任意2个半双工I²S可以组合为1个 全双工I²S
- 另有1个独立全双工I²S接口(I²SF)
- 多达6个USART和2个UART接口;支持主同步SPI和调制解调器控制;支持ISO7816接口、LIN、IrDA、和RS485驱动使能;支持TX/RX可配置引脚互换
- 1个CAN接口(2.0B主动),内置256字节的 专用缓存
- 1个OTGHS高速控制器含片上PHY,内置4 K 字节的专用缓存(只有AT32F405支持)
- 1个OTGFS全速控制器含片上PHY,内置 1280字节的专用缓存,设备模式支持无晶振 (Crystal-less)
- 红外发射器 (IRTMR)
- CRC计算单元
- 96位的芯片唯一码(UID)

■ 调试模式

- 串行线调试(SWD)和串行线输出(SWO) 接口
- 温度范围: -40至+105°C

■ 封装

- LQFP64 10 x 10 mm
- LQFP64 7 x 7 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm
- QFN32 4 x 4 mm

表 1. AT32F405 选型列表

闪存存储器	型号
256 K字节	AT32F405RCT7, AT32F405RCT7-7, AT32F405CCT7, AT32F405CCU7, AT32F405KCU7-4
128 K字节	AT32F405RBT7, AT32F405RBT7-7, AT32F405CBT7, AT32F405CBU7, AT32F405KBU7-4

表 2. AT32F402 选型列表

闪存存储器	型号
256 K字节	AT32F402RCT7, AT32F402RCT7-7, AT32F402CCT7, AT32F402CCU7, AT32F402KCU7-4
128 K字节	AT32F402RBT7, AT32F402RBT7-7, AT32F402CBT7, AT32F402CBU7, AT32F402KBU7-4

景

1	规格	说明	12
2	功能	简介	15
	2.1	ARM®Cortex®-M4	15
	2.2	存储器	15
		2.2.1 闪存存储器(Flash)	15
		2.2.2 存储器保护单元(MPU)	15
		2.2.3 随机存取存储器(SRAM)	15
		2.2.4 四线串行外设存储器接口(QSPI)	15
	2.3	中断	15
		2.3.1 嵌套的向量式中断控制器(NVIC)	15
		2.3.2 外部中断(EXINT)	16
	2.4	电源控制(PWC)	16
		2.4.1 供电方案	16
		2.4.2 复位和电源电压监测器(POR / LVR / PVM)	16
		2.4.3 电压调节器(LDO)	16
		2.4.4 低功耗模式	16
	2.5	启动模式	17
	2.6	时钟	18
	2.7	通用输入输出口(GPIO)	19
	2.8	直接存储器访问控制器(DMA)	19
	2.9	定时器(TMR)	20
		2.9.1 高级定时器(TMR1)	20
		2.9.2 通用定时器(TMR2~4,TMR9~11,和 TMR13~14)	21
		2.9.3 基本定时器(TMR6 和 TMR7)	21
		2.9.4 系统滴答定时器(SysTick)	21
	2.10	看门狗(WDT)	21
	2.11	窗口型看门狗(WWDT)	21

	2.12	增强型头时时钟(ERIC)和电池供电奇仔器(BPR)	
	2.13	通信接口	22
		2.13.1 串行外设接口(SPI)	22
		2.13.2 半双工和全双工内部集成音频接口(I ² S / I ² SF)	22
		2.13.3 通用同步/异步收发器(USART)	23
		2.13.4 内部集成电路总线(I ² C)	23
		2.13.5 控制器区域网络(CAN)	23
		2.13.6 通用串行总线 On-The-Go 高速(OTGHS)	23
		2.13.7 通用串行总线 On-The-Go 全速(OTGFS)	24
		2.13.8 红外发射器(IRTMR)	24
	2.14	循环冗余校验(CRC)计算单元	24
	2.15	模拟/数字转换器(ADC)	25
		2.15.1 温度传感器(V _{TS})	25
		2.15.2 内部参考电压(V _{INTRV})	25
	2.16	串行线调试(SWD)和串行线输出(SWO)接口	25
		٠, ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠	
3	引脚	'功能定义	26
3 4		特性	
		特性	36
	电气	特性	36
	电气	特性 测试条件	36
	电气	特性 测试条件	36 36 36
	电气	特性	36363636
	电气	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.3 典型曲线	
	电气 4.1	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案	
	电气 4.1	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案 绝对最大值 4.1.4 供电方案	
	电气 4.1	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案 绝对最大值 4.2.1 额定值	
	电气 4.1 4.2	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案 绝对最大值 4.2.1 额定值 4.2.2 电气敏感性	
	电气 4.1 4.2	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案 绝对最大值 4.2.1 额定值 4.2.2 电气敏感性 规格	
	电气 4.1 4.2	特性 测试条件 4.1.1 最小和最大数值 4.1.2 典型数值 4.1.3 典型曲线 4.1.4 供电方案 绝对最大值 4.2.1 额定值 4.2.2 电气敏感性 规格 4.3.1 通用工作条件	

		4.3.4 存储器特性	.41
		4.3.5 供电电流特性	.41
		4.3.6 外部时钟源特性	.49
		4.3.7 内部时钟源特性	.53
		4.3.8 PLL 特性	.54
		4.3.9 低功耗模式唤醒时间	.54
		4.3.10 EMC 特性	.54
		4.3.11 GPIO 端口特性	.55
		4.3.12 NRST 引脚特性	.57
		4.3.13 TMR 定时器特性	.58
		4.3.14 SPI 接口特性	.58
		4.3.15 I ² S / I ² SF 接口特性	.60
		4.3.16 QSPI 接口特性	.61
		4.3.17 I ² C 接口特性	.62
		4.3.18 OTGHS 接口特性	.62
		4.3.19 OTGFS 接口特性	.63
		4.3.20 12 位 ADC 特性	.64
		4.3.21 内部参照电压(V _{INTRV})特性	.66
		4.3.22 温度传感器(V _{TS})特性	.66
5	封装数	枚据	68
	5.1	LQFP64 – 10 x 10 mm 封装	68
	5.2	LQFP64 – 7 x 7 mm 封装	70
	5.3	LQFP48 – 7 x 7 mm 封装	72
	5.4	QFN48 – 6 x 6 mm 封装	74
	5.5	QFN32 – 4 x 4 mm 封装	76
	5.6	封装丝印	78
	5.7	热特性	79

AT32F405/402系列 数据手册

6	型号说明	80
_		0.4
7	文档版本历史	81

表目录

表 1. AT32F405 选型列表	2
表 2. AT32F402 选型列表	2
表 3. AT32F405 系列器件功能和配置	13
表 4. AT32F402 系列器件功能和配置	14
表 5. AT32F405 启动加载程序(Bootloader)的型号支持和引脚配置	17
表 6. AT32F402 启动加载程序(Bootloader)的型号支持和引脚配置	18
表 7. 定时器功能比较	20
表 8. USART/UART 功能比较	23
表 9. AT32F405/402 系列引脚定义	31
表 10. 电压特性	37
表 11. 电流特性	37
表 12. 温度特性	37
表 13. 静电放电值	38
表 14. 静态栓锁值	38
表 15. 通用工作条件	39
表 16. 上电和掉电时的工作条件	39
表 17. 内置复位和电源管理模块特性	39
表 18. 可编程电压检测器特性	40
表 19. 内部闪存存储器特性	41
表 20. 内部闪存存储器寿命和数据保存期限	41
表 21. 运行模式下的典型电流消耗	42
表 22. 睡眠模式下的典型电流消耗	43
表 23. 运行模式下的最大电流消耗	44
表 24. 睡眠模式下的最大电流消耗	45
表 25. 深睡眠和待机模式下的典型和最大电流消耗	46
表 26. 内置外设的电流消耗典型值	48
表 27. HEXT 4 ~ 25 MHz 晶振特性	49
表 28. 高速外部用户时钟特性	50
表 29. LEXT 32.768 kHz 晶振特性	51
表 30. 低速外部用户时钟特性	52

表 31. HICK 时钟特性	53
表 32. LICK 时钟特性	53
表 33. PLL 特性	54
表 34. 低功耗模式的唤醒时间	54
表 35. EMS 特性	54
表 36. GPIO 静态特性	55
表 37. 输出电压特性	56
表 38. 输入交流特性	56
表 39. NRST 引脚特性	57
表 40. TMR 定时器特性	58
表 41. SPI 特性	58
表 42. I ² S/I ² SF 特性	60
表 43. QSPI 特性	61
表 44. OTGHS 直流特性	62
表 45. OTGHS 电气特性	62
表 46. OTGFS 启动时间	63
表 47. OTGFS 直流特性	63
表 48. OTGFS 电气特性	63
表 49. ADC 特性	64
表 50. f _{ADC} = 14 MHz 时的最大 R _{AIN}	64
表 51. f _{ADC} = 28 MHz 时的最大 R _{AIN}	65
表 52. ADC 精度	65
表 53. 内置参照电压特性	66
表 54. 温度传感器特性	66
表 55. LQFP64 – 10 x 10 mm 64 引脚薄型正方扁平封装机械数据	69
表 56. LQFP64 – 7 x 7 mm 64 引脚薄型正方扁平封装机械数据	71
表 57. LQFP48 – 7 x 7 mm 48 引脚薄型正方扁平封装机械数据	73
表 58. QFN48 – 6 x 6 mm 48 引脚正方扁平无引线封装机械数据	75
表 59. QFN32 – 4 x 4 mm 32 引脚正方扁平无引线封装机械数据	77
表 60. 封装的热特性	79

AT32F405/402系列 数据手册

表 61.	AT32F405/402 系列型号说明8	0
表 62.	文档版本历史8	<u>;</u> 1

图目录

图 1. AT32F405 系列 LQFP64 引脚分布	26
图 2. AT32F402 系列 LQFP64 引脚分布	27
图 3. AT32F405 系列 LQFP48 引脚分布	28
图 4. AT32F402 系列 LQFP48 引脚分布	28
图 5. AT32F405 系列 QFN48 引脚分布	29
图 6. AT32F402 系列 QFN48 引脚分布	29
图 7. AT32F405 系列 QFN32 引脚分布	30
图 8. AT32F402 系列 QFN32 引脚分布	30
图 9. 供电方案	36
图 10. 上电复位和低电压复位的波形图	40
图 11. LDO 在运行模式时,深睡眠模式下的典型电流消耗在不同的 V _{DD} 时与温度的对比	46
图 12. LDO 在低功耗模式时,深睡眠模式下的典型电流消耗在不同的 V _{DD} 时与温度的对比	47
图 13. 待机模式下的典型电流消耗在不同的 VDD 时与温度的对比	47
图 14. 使用 12 MHz 晶振的典型应用	49
图 15. 外部高速时钟源的交流时序图	50
图 16. 使用 32.768 kHz 晶振的典型应用	51
图 17. 外部低速时钟源的交流时序图	52
图 18. HICK 时钟精度与温度的对比	53
图 19. 建议的 NRST 引脚保护	57
图 20. SPI 时序图 – 从模式和 CPHA = 0	59
图 21. SPI 时序图 – 从模式和 CPHA = 1	59
图 22. SPI 时序图 – 主模式	59
图 23. I ² S/I ² SF 从模式时序图(Philips 协议)	60
图 24. I ² S/I ² SF 主模式时序图(Philips 协议)	61
图 25. QSPI 时序图	62
图 26. OTGFS 时序:数据信号上升和下降时间定义	63
图 27. ADC 精度特性	65
图 28. 使用 ADC 典型的连接图	66
图 29. V _{TS} 对温度理想曲线图	67
图 30. LQFP64 – 10 x 10 mm 64 引脚薄型正方扁平封装图	68

AT32F405/402系列 数据手册

图 31.	LQFP64 – 7 x 7 mm 64 引脚薄型正方扁平封装图	70
图 32.	LQFP48 – 7 x 7 mm 48 引脚薄型正方扁平封装图	72
图 33.	QFN48 – 6 x 6 mm 48 引脚正方扁平无引线封装图	74
图 34.	QFN32 – 4 x 4 mm 32 引脚正方扁平无引线封装图	76
图 35.	丝印示意图	78

1 规格说明

AT32F405/402系列微控制器基于高性能的ARM®Cortex®-M4 32位的RISC内核,最高工作频率达到 216 MHz,Cortex®-M4内核带有单精度浮点运算单元(FPU),支持所有ARM®单精度数据处理指令 和数据类型。它还具有一组DSP指令和提高应用安全性的一个存储器保护单元(MPU)。

AT32F405/402系列产品内置高速片上存储器(高达256 K字节的闪存和96+6 K字节的SRAM),丰富的增强GPIO端口和联接到两条APB总线的外设。内置存储器可设置任意范围程序区受sLib保护,成为执行代码安全库区。另外AT32F405/402系列产品包含高阶的存储器扩展: 1个四线串行外设接口(QSPI)。

AT32F405/402系列产品包含1个12位的ADC、7个16位和1个32位通用定时器、2个基本定时器、1个高级定时器、和1个低功耗ERTC。它们还带有标准和先进的通信接口:多达3个I²C接口、3个SPI接口(复用为半双工I²S接口)、1个全双工I²SF接口、6个USART和2个UART接口、1个CAN接口、1个OTGHS接口(含片上PHY,只有AT32F405支持)、1个OTGFS接口、和1个红外发射器。

AT32F405/402系列产品工作于-40°C至+105°C的温度范围,供电电压2.4 V至3.6 V,省电模式可达到低功耗应用的要求。

AT32F405/402系列产品提供各种不同封装形式;根据不同的封装形式,其系列产品之间是完全地引脚兼容,软件和功能上也兼容,仅产品中的外设配置不尽相同。

表 3. AT32F405 系列器件功能和配置

		ΔT32F/(表 3. AT32F405 系列希什功能和配直 AT32F405xxU7-4 AT32F405xxU7 AT32F405xxT7 AT32F405xxT7-7 AT						AT32F4	.05xxT7		
	型号	KB	KC KC	CB	CC	CB	CC	RB	RC	RB	RC	
	频率(MHz)		216							· · ·		
闪存(K 字节)		128	256	128	256	128	256	128	256	128	256	
	SRAM (K 字节)		96+6	64+6	96+6	64+6	96+6	64+6	96+6	64+6	96+6	
QSPI			1	,	1	,	İ	1	İ	1		
	高级		1		1		1		1	,	l	
	32 位通用		1		1		I	,	1	,		
	16 位通用	-	7	-	7	-7	7	-7	7	7	7	
器	基本	2	2	2	2	2	2	2	2	2	2	
定时器	SysTick		1	,	1	,	1	,	1	,]	
	WDT		1		1	1		1		1		
	WWDT		1		1		I		1	1		
	ERTC	,	1	1		1		1		1		
	I ² C	;	3		3		3		3		3	
	SPI ⁽¹⁾	2 ⁽³⁾		3		3		3		3		
	I ² S(半双工) ⁽¹⁾⁽²⁾	2 ⁽³⁾		3		3		3		3		
	I ² SF(全双工)		1	1		1		1		1		
通信接口	USART/UART	5/2 ⁽⁴⁾		5/2 ⁽⁴⁾		5/2 ⁽⁴⁾		6/2		6/2		
関	CAN	1		1		1		1		1		
	OTGHS		1		1		1		1		1	
	OTGFS		1		1	,	I	,	1	,	l	
	红外发射器		1		1 1		1		1		1	
模拟	12 位 ADC 转换器/		1		1		I	,	1	,		
型型	外部通道数	外部通道数 10		10		1	10		6	16		
	GPIO	2	:5	3	7	3	7	5	3	5	3	
	工作温度					-40 °C 至	+105 °C					
封装形式			N32 I mm		N48 3 mm	LQF 7 x 7	P48 mm		P64 mm	LQF 10 x 1	P64 0 mm	

⁽¹⁾ 半双工 I^2 S和SPI功能复用。

⁽²⁾ 任意2个半双工 I^2 S可由硬件组合成1个全双工 I^2 S。

⁽³⁾ QFN32封装仅支持SPI1/I²S1和SPI3/I²S3。

^{(4) 48}引脚以下封装无UART8,而USART6因缺少CK引脚,只能作UART使用。

表 4. AT32F402 系列器件功能和配置

		AT22E46)2xxU7-4		02xxU7	永列奋件 AT22E4		AT32F402xxT7-7		AT32F402xxT7			
	型号		KC	CB	CC	CB	AT32F402xxT7 CB CC		RC	RB RC			
	<u> </u>	KB											
	频率(MHz)		216										
	闪存(K 字节)	128 256		128	256	128	256	128	256	128	256		
	SRAM (K 字节)	64+6 96+6		64+6	96+6	64+6	96+6	64+6	96+6	64+6	96+6		
	QSPI		1		1	,	1	1	ĺ	1			
	高级	,	1	,	1	,	1	,	1	1			
	32 位通用		1	,	1	,	1	,	1	1			
	16 位通用		7	-	7	7	7	7	7	7	,		
器.	基本	2	2	2	2	2	2	2	2	2	<u>)</u>		
定时器	SysTick		1		1		1	,	1	1			
	WDT		1		1		1	1		1			
	WWDT		1		1		1	1		1			
	ERTC	,	1		1		1	1		1			
	I ² C	;	3	;	3	:	3	3	3	3	3		
	SPI ⁽¹⁾	2	(3)	;	3	(3	3	3	3	3		
	I ² S(半双工) ⁽¹⁾⁽²⁾	2	(3)	;	3	:	3	3		3	3		
	I ² SF(全双工)		1		1		1	1		1			
通信接口	USART/UART	5/2	2 ⁽⁴⁾	5/2	2 ⁽⁴⁾	5/2	2(4)	6/2		6/2			
画	CAN	,	1	,	1	,	1	1		1			
	OTGHS		-	,	-		-	-		-			
	OTGFS		1		1		1	,	1	1			
	红外发射器		1		1		1		1	1			
过	12 位 ADC 转换器/		1		1		1		1	1			
模拟	外部通道数	1	0	1	0	1	0	16		1	6		
	GPIO	2	.8	4	.0	4	40		6	5	6		
	工作温度					-40 °C 至	£+105 °C	<u> </u>					
	封装形式	4 x 4	N32 I mm		N48 6 mm	LQFP48 7 x 7 mm		LQFP64 7 x 7 mm		LQFP64 10 x 10 mm			

⁽¹⁾ 半双工 I^2 S和SPI功能复用。

⁽²⁾ 任意2个半双工 I^2 S可由硬件组合成1个全双工 I^2 S。

⁽³⁾ QFN32封装仅支持SPI1/I²S1和SPI3/I²S3。

^{(4) 48}引脚以下封装无UART8,而USART6因缺少CK引脚,只能作UART使用。

2 功能简介

2.1 ARM®Cortex®-M4

ARM®Cortex®-M4是最新一代的嵌入式ARM®内核处理器,它是一款32位的RISC高性能处理器,具有优异的代码效率,卓越的计算性能和先进的中断系统响应。该处理器支持一组DSP指令,能够实现有效的信号处理和复杂的算法执行。它配有的单精度FPU(浮点单元)可加速浮点运算需求并防止饱和。

2.2 存储器

2.2.1 闪存存储器 (Flash)

内置高达256 K字节的闪存存储器,用于存放程序和数据。内置存储器可指定任意一范围程序区受 sLib保护,成为仅能执行无法被读取的执行代码安全库区。sLib是基于保护方案商代码安全之下,又 顾及其客户便于进行二次开发而设计的。

片上另有20 K字节的启动程序代码区,启动加载程序(Bootloader)存放于其中。用户若无启动加载程序使用需求,可一次性将启动程序代码区配置成一般用户程序和数据区使用。

另外片上包含用户系统数据区块,用于配置访问擦写保护、看门狗自启动、SRAM奇偶校验等硬件设置行为。用户系统数据对于存储器提供擦写保护和访问保护各自设置功能,其中访问保护有2个级别可配置。

2.2.2 存储器保护单元(MPU)

存储器保护单元(MPU)用于管理CPU对存储器的访问,防止一个任务意外损坏另一个激活任务所使用的存储器或资源。此存储区由最多8个保护区组成,还可依次再被分为最多8个子区。保护区大小可为32字节至可寻址存储器的整个4 G字节。MPU特别适合有一些关键的或认证的代码必须受到保护,以免被其它任务的错误行为影响。它通常是一个RTOS(实时操作系统)。

2.2.3 随机存取存储器(SRAM)

片上SRAM最高可规划为102 K字节(无奇偶校验;出厂默认)或96 K字节(前48 K字节带奇偶校验),CPU能以零等待周期访问(读/写)。

2.2.4 四线串行外设存储器接口(QSPI)

AT32F405/402系列产品内置1个四线串行外设接口(QSPI),是一种专用的通信接口,连接单、双、或四条数据线的SPI闪存存储器或SPI RAM。可工作于间接模式(使用寄存器执行全部操作)、状态轮询模式、或地址映射模式,最高映射256 M字节的外部闪存存储器或RAM。QSPI允许字节、半字和字访问,支持芯片内执行(XIP)操作,并完全可编程操作码和帧格式。

2.3 中断

2.3.1 嵌套的向量式中断控制器(NVIC)

AT32F405/402系列产品内置嵌套的向量式中断控制器,可管理16个优先级,处理Cortex®-M4内核的可屏蔽中断通道及16个中断线。该模块以最小的中断延迟提供灵活的中断管理功能。

2.3.2 外部中断 (EXINT)

外部中断(EXINT)与NVIC直接连接,EXINT包含22个边沿检测器,用于产生中断请求。每个中断 线都可以独立地配置它的触发事件(上升沿、下降沿、或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求的状态。外部中断其中最多有16根可从GPIO中选择连接。

2.4 电源控制 (PWC)

2.4.1 供电方案

- V_{DD} = 2.4~3.6 V: 通过V_{DD}引脚为GPIO引脚、ERTC、外部32 kHz晶振(LEXT)、电池供电寄存器(BPR)、和调压器(LDO)等内部模块供电。
- V_{DDA} = 2.4~3.6 V: 通过V_{DDA}引脚为ADC供电。V_{DDA}和V_{SSA}必须分别与V_{DD}和V_{SS}等电位。

2.4.2 复位和电源电压监测器(POR/LVR/PVM)

本产品内部集成了上电复位(POR)和低电压复位(LVR)电路,该电路始终处于工作状态,可使器件在供电超过 $2.4\,V$ 时工作;当 V_{DD} 压降低于规定阈值(V_{LVR})时,置器件于复位状态,而不必使用外部复位电路。

产品中还包含一个电源电压监测器(PVM),它监视V_{DD}供电并与阈值V_{PVM}比较,当V_{DD}下降低于或爬升高于阈值V_{PVM}时产生中断。PVM功能需要通过程序开启。

2.4.3 电压调节器(LDO)

LDO有三个操作模式:正常模式、低功耗模式、和关断模式。

- 正常模式:用于正常的运行/睡眠操作并可用于CPU的深睡眠模式:
- 低功耗模式:可用于CPU的深睡眠模式:
- 关断模式:用于CPU的待机模式。LDO的输出为高阻状态,内核电路的供电切断,寄存器和SRAM的内容将丢失。

该LDO在复位后处于正常模式工作状态。

2.4.4 低功耗模式

AT32F405/402系列产品支持三种低功耗模式。

● 睡眠模式(Sleep)

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

● 深睡眠模式 (Deepsleep)

深睡眠模式下可以实现低功耗,同时保持SRAM和寄存器的内容。此时,LDO供电域中的所有时钟都会停止,PLL、HICK时钟、和HEXT晶振也被关闭。还可以将LDO置于正常模式或低功耗模式。

可以通过任一配置成EXINT的信号把微控制器从深睡眠模式中唤醒,EXINT信号可以是16个外部GPIO口之一、PVM的输出、ERTC闹钟/唤醒/入侵检测/时间戳事件、OTGHS或OTGFS的唤醒信号。

● 待机模式(Standby)

在待机模式下可以达到最低的电能消耗。内部的LDO被关闭,因此所有内部LDO供电域的供电被切断。PLL、HICK时钟、和HEXT晶振也被关闭。进入待机模式后,SRAM和寄存器的内容将消失,但ERTC寄存器和电池供电寄存器的内容仍然保留,待机电路仍工作。

从待机模式退出的条件是: NRST上的外部复位信号、WDT复位、WKUPx引脚上的一个上升边沿或ERTC的闹钟/唤醒/入侵检测/时间戳事件。

注: 在进入深睡眠或待机模式时,ERTC对应的时钟不会被停止。WDT视用户系统数据设置决定。

2.5 启动模式

在启动时,通过BOOT0引脚和用户系统数据nBOOT1位设置可以选择三种启动模式中的一种:

- 从用户闪存存储器启动;
- 从启动程序代码区启动;
- 从内部**SRAM**启动。

启动加载程序(Bootloader)存放于启动程序代码区中,可以通过USART1、USART2、USART3、OTGHS1、OTGFS1、I²C1、I²C2、I²C3、CAN1、或SPI1对闪存重新编程。其中OTGHS1必须配合使用外部HEXT 12 MHz晶振,OTGFS1支持无晶振(crystal-less)操作,CAN1必须配合使用以下频率外部HEXT晶振: 4, 6, 8, 12, 14.7456, 16, 20, 24, 或25 MHz晶振。表5提供启动加载程序(Bootloader)对AT32F405/402的型号支持和引脚配置。

表 5. AT32F405 启动加载程序(Bootloader)的型号支持和引脚配置

外设	适用型号	对应引脚
	AT32F405KxU7-4	不支持
USART1	甘砂荆旦	PA9: USART1_TX
	其它型号	PA10: USART1_RX
USART2	全部型号	PA2: USART2_TX
USARIZ	生那至专	PA3: USART2_RX
	AT32F405RxT7,AT32F405RxT7-7	PC10: USART3_TX
USART3	A132F403RX17, A132F403RX17-7	PC11: USART3_RX
	其它型号	不支持
OTGHS1	全部型号	OTGHS1_D-
Ordrist	主即空う	OTGHS1_D+
OTGFS1	全部型号	PA11: OTGFS1_D-
OTGFST	主即空う	PA12: OTGFS1_D+
I ² C1	全部型号	PB6: I2C1_SCL
101	主即生う	PB7: I2C1_SDA
	AT32F405KxU7-4	不支持
I ² C2	其它型号	PB10: I2C2_SCL
	発し至う	PB3: I2C2_SDA
	AT32F405KxU7-4	不支持
I ² C3	其它型号	PA8: I2C3_SCL
	央占至与	PB4: I2C3_SDA
	AT32F405KxU7-4	不支持
CAN1	其它型号	PB8: CAN1_RX
	発し至う	PB9: CAN1_TX
		PA4: SPI1_CS
SPI1	全部型号	PA5: SPI1_SCK
5111	工程生で	PA6: SPI1_MISO
		PA7: SPI1_MOSI

表 6	AT32F402	自动加裁程序	(Bootloader)	的型号支持和引脚配置
~ U.	AIVEI TVE			11 T 7 X N 1 P 1 M P 1 L P .

外设	发 6. AT 321 402 归纳加敦强介(Bootloader)的显 适用型号	对应引脚
LICADT1	全部型号	PA9: USART1_TX
USART1	生命至与	PA10: USART1_RX
USART2	全部型号	PA2: USART2_TX
USANTZ	王마至 5	PA3: USART2_RX
		PC10: USART3_TX
		PC11: USART3_RX
	AT32F402RxT7,AT32F402RxT7-7	或
USART3		PB10: USART3_TX
USARTS		PB11: USART3_RX
	AT32F402CxT7,AT32F402CxU7	PB10: USART3_TX
	A132F402GX17, A132F402GX07	PB11: USART3_RX
	其它型号	不支持
OTGFS1	全部型号	PA11: OTGFS1_D-
Oldrai	王叩至 5	PA12: OTGFS1_D+
I ² C1	全部型号	PB6: I2C1_SCL
101	王마至 5	PB7: I2C1_SDA
	AT32F402KxU7-4	不支持
I ² C2	其它型号	PB10: I2C2_SCL
	共 占至 5	PB3: I2C2_SDA
I ² C3	全部型号	PA8: I2C3_SCL
1-03	上 即 至 5	PB4: I2C3_SDA
	AT32F402KxU7-4	不支持
CAN1	其它型号	PB8: CAN1_RX
	共七至亏 	PB9: CAN1_TX
		PA4: SPI1_CS
SPI1	全部型号	PA5: SPI1_SCK
3711	生命型写	PA6: SPI1_MISO
		PA7: SPI1_MOSI

2.6 时钟

系统时钟在复位后,高速内部48 MHz时钟(HICK)经6分频后(8 MHz)被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~25 MHz高速晶振(HEXT);当检测到高速外部晶振失效时,它将被关闭,系统将自动地切换到HICK,软件可以接收到相应的中断。同样当PLL使用的高速外部晶振失效时,硬件也会如此自动设置。

时钟控制分成多个预分频器用于配置AHB的频率和APB(APB1和APB2)的频率。AHB/APB2的最高频率是216 MHz,APB1的最高频率为120 MHz。存取CRM_BPDC寄存器或CRM_CTRLSTS寄存器时,AHB时钟频率不可超过120 MHz。

另外,AT32F405/402系列产品内置一个特别的自动时钟校准(ACC)模块,高速内部时钟HICK 48 MHz可被此模块校准,可保证在整个芯片可操作温度范围内HICK的最佳准确度。

2.7 通用输入输出口(GPIO)

每个GPIO引脚都可以由软件配置成输出(推挽或开漏、带或不带上拉/下拉)、输入(浮空、带或不带上拉或下拉)或复用的外设功能端口。多数GPIO引脚都与数字或模拟的多个外设共享。所有的GPIO引脚都有大电流通过能力。

在需要的情况下,GPIO引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入GPIO寄存器。

2.8 直接存储器访问控制器(DMA)

灵活的14路通用DMA(DMA1上有7个通道,DMA2上有7个通道)能够管理存储器到存储器、外设到存储器和存储器到外设的数据传输。DMA通道与各个外设连接支时完全弹性映射。

DMA控制器支持环形缓冲区的管理,当控制器到达缓冲区末尾时,无需通过用户代码进行干预。

每个通道都与专门的硬件DMA请求相连,同时支持软件触发。通过软件进行相关配置,并且数据源和数据目标之间传输的数据量不受限制。

DMA可以用于主要的外设: SPI/I²S(半双工),I²SF(全双工),I²C,USART/UART,所有定时器TMR,ADC,和QSPI。

2.9 定时器 (TMR)

AT32F405/402系列产品包含最多1个高级定时器、8个通用定时器和2个基本定时器,以及1个系统滴答定时器。

下表比较了高级定时器、通用定时器和基本定时器的功能:

计数器 定时器类型 定时器 计数器类型 预分频系数 产生 DMA 请求 捕获/比较通道 互补输出 分辩率 递增,递减, 1~65536 之间 高级 TMR1 16位 有 4 3 递增/递减 的任意整数 递增,递减, 1~65536 之间 TMR2 16 或 32 位 有 4 无 递增/递减 的任意整数 递增,递减, TMR3 1~65536 之间 16 位 有 4 无 TMR4 递增/递减 的任意整数 递增,递减, 1~65536 之间 16 位 有 2 2 通用 TMR9 递增/递减 的任意整数 TMR10 TMR11 递增,递减, 1~65536 之间 16 位 有 1 1 TMR13 递增/递减 的任意整数 TMR14 TMR6 1~65536 之间 递增 基本 16 位 有 无 无 TMR7 的任意整数

表 7. 定时器功能比较

2.9.1 高级定时器 (TMR1)

一个高级定时器(TMR1)可以被看成是分配到6个通道的三相PWM发生器,它具有带可编程死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 輸入捕获
- 输出比较
- 产生PWM(边缘或中心对齐模式)
- 单周期输出

配置为16位标准定时器时,它与TMRx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时PWM输出被禁止,从而切断由这些输出所控制的开关。 很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与通用定时器协同操作,提供同步或事件连接功能。

2.9.2 通用定时器(TMR2~4, TMR9~11, 和 TMR13~14)

AT32F405/402系列产品中,内置了多达8个可同步运行的通用定时器。

● TMR2, TMR3, 和TMR4

TMR2是基于一个32位自动加载递增/递减计数器和一个16位的预分频器,而TMR3和TMR4是基于一个16位自动加载递增/递减计数器和一个16位的预分频器。这些定时器在最大的封装配置中可提供4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出。

它们还能通过定时器链接功能与高级定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。这些定时器还能够处理增量编码器的信号,也能处理1至3个来自霍尔传感器的数字输出。在调试模式下,计数器可以被冻结。

TMR9

TMR9有一个16位自动加载递增/递减计数器、一个16位的预分频器、2个独立的通道和2个互补通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出,可以与全功能通用定时器同步。TMR9也可以用作简单的定时器。在调试模式下,计数器可以被冻结。TMR9有独立的DMA请求生成机制。

● TMR10, TMR11, TMR13和TMR14

这些定时器都有一个16位的自动加载递增/递减计数器、一个16位的预分频器、1个独立的通道和1个互补通道,每个通道都可用于输入捕获、输出比较、PWM和单周期模式输出,它们可以与全功能通用定时器同步。它们也可以用作简单的定时器。在调试模式下,计数器可以被冻结。这些定时器有独立的DMA请求生成机制。

2.9.3 基本定时器(TMR6 和 TMR7)

这2个定时器是当成通用的16位时基计数器。

2.9.4 系统滴答定时器(SysTick)

这个定时器是专用于实时操作系统,也可当成一个通用的递减计数器。它包含以下功能:

- 24位的递减计数器
- 自动重加载功能
- 当计数器为0时,产生一个可屏蔽系统中断
- 可编程时钟源(HCLK或HCLK/8)

2.10 看门狗(WDT)

看门狗由一个12位的递减计数器和一个8位的预分频器所组成,它的时钟源由低速内部时钟(LICK) 提供;因为这个时钟独立于主时钟,所以它可运行于深睡眠和待机模式。它可以被当成看门狗用于在 发生错误时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过用户系统数据可以 配置看门狗是否自启动。在调试模式下,计数器可以被冻结。

2.11 窗口型看门狗(WWDT)

窗口型看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生错误时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

2.12 增强型实时时钟(ERTC)和电池供电寄存器(BPR)

电池供电域包括:

- 增强型实时时钟(ERTC)
- 20个32位电池供电寄存器(BPR)

增强型实时时钟(ERTC)是一个独立的BCD定时器/计数器。它支持下列功能:

- 日历具有秒、分、小时(12或24小时格式)、星期几、日、月、年,格式为BCD(二进码十进数)。
- 提供二进制格式的亚秒值。
- 自动调整每月的天数为28、29(闰年)、30、还是31天。
- 可编程闹钟和可编程的周期性中断具有从深睡眠和待机模式唤醒的能力。
- 为补偿天然石英的偏差,可通过512 Hz的外部输出对ERTC进行校准。

两个闹钟寄存器用于在特定的时间生成闹铃,可单独屏蔽日历字段以比较闹钟。为生成周期性中断,使用了分辨率可编程的16位可编程二进制自动重载递减计数器,可从每隔120 μs至每隔36小时自动唤醒和周期性闹铃。其它32位寄存器还包含可编程的闹钟亚秒、秒、分钟、小时、星期几和日期。

预分频器用于时间基准时钟,默认被配置为从32.768 kHz时钟生成1秒的时间基准。

电池供电寄存器(BPR)为32位寄存器存储80字节的用户应用数据。电池供电寄存器不会在系统复位或电源复位时复位,也不会在器件从待机模式唤醒时复位。

2.13 通信接口

2.13.1 串行外设接口(SPI)

多达3个SPI接口,在主或从模式下,全双工和半双工的通信速率可达36兆位/秒。预分频器可产生多种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡、MMC、和SDHC模式。所有的SPI接口都可以使用DMA操作。

SPI接口可配置为TI模式工作,用于主模式和从模式的通信。

2.13.2 半双工和全双工内部集成音频接口(I²S / I²SF)

多达3个与SPI复用标准的半双工I²S接口可以工作于主或从模式。这3个接口可以配置为16/24/32位分辨率的输入或输出通道工作,支持音频采样频率从8 kHz到192 kHz。当任一个I²S接口配置为主模式,它的主时钟可以以256倍采样频率输出。所有I²S均可使用DMA控制器。

另外AT32F405/402系列产品具有任意2个半双工l²S接口硬件组合成1个全双工l²S功能,其余1个l²S接口仍可独立操作或作为SPI使用。

在半双工I²S接口外,AT32F405/402另有1个独立全双工I²S接口(I²SF),可以工作于主或从模式配置为16/24/32位分辨率的输入和输出通道工作。当全双工I²S接口配置为主模式,它的主时钟可以以256倍采样频率输出。

I²SF接口的输入主时钟可以来源于系统时钟、PLL输出时钟、高速内部时钟HICK 48 MHz、以及外部输入时钟。通过配置I²SF的输入主时钟,可以得到更加精确的音频频率。

2.13.3 通用同步/异步收发器(USART)

AT32F405/402系列产品中,内置了6个通用同步/异步收发器(USART1~6)和2个通用异步收发器(UART7~8)。

这8个接口主要提供异步通信、支持IrDA SIR ENDEC传输编解码、多处理器通信模式、单线半双工通信模式、和LIN主/从功能。而大部分USART接口具有硬件的CTS和RTS信号管理、RS485驱动使能信号、兼容ISO7816的智能卡和类似SPI通信模式。所有接口都可以使用DMA操作。

USART1和USART6通信速率均可达13.5兆位/秒,其余USART可达7.5兆位/秒。

USART1 | USART2 | USART3 | USART4 | USART5 | USART6 USART/UART 功能 **UART7 UART8** 调制解调器的硬件流控 支持 支持 支持 支持 使用 DMA 连续通信 支持 支持 支持 支持 支持 支持 支持 支持 多处理器通信 支持 支持 支持 支持 支持 支持 支持 支持 同步模式 支持 支持 支持 支持 支持 支持 支持 智能卡模式 支持 支持 支持 支持 支持 单线半双工通 支持 支持 支持 支持 支持 支持 支持 支持 红外 IrDA SIR 编解码 支持 支持 支持 支持 支持 支持 支持 支持 LIN 模式 支持 支持 支持 支持 支持 支持 支持 支持 TX/RX 交换 支持 支持 支持 支持 支持 支持 支持 支持 RS-485 驱动使能 支持 支持 支持 支持 支持 支持

表 8. USART/UART 功能比较

2.13.4 内部集成电路总线(I²C)

3个I²C总线接口,能够工作于多主模式或从模式。它们支持标准模式(standard mode,最高100 kHz)、快速模式(fast mode,最高400 kHz)、和增强快速模式(fast mode plus,最高1 MHz),部分GPIO支持超高电流吸入能力20 mA。

I²C接口支持7位或10位寻址,7位从模式时支持双从地址寻址。内置了硬件CRC发生器/校验器。它们可以使用DMA操作并支持SMBus总线2.0版/PMBus总线。

2.13.5 控制器区域网络(CAN)

1个CAN接口兼容规范2.0A和2.0B(主动),位速率高达1兆位/秒。它可以接收和发送11位标识符的标准帧和29位标识符的扩展帧。具有3个发送邮箱,2个具3级深度的接收缓存,和14个可调节的滤波器。CAN控制器分配有256个字节的专用缓存,不和其他硬件外设共享。

为保证传输品质,根据CAN 2.0协议规范的时钟准确度要求,CAN的时钟源必须来自由HEXT晶振为源头所产生的PLL时钟。

2.13.6 通用串行总线 On-The-Go 高速 (OTGHS)

此外设只有AT32F405系列产品支持。

AT32F405內置1个集成了高速收发器(PHY)的OTG高速(480 Mb/s)设备和主机模式控制模块。 高速收发器对外提供专用OTGHS_D+和OTGHS_D-并需求一支OTGHS_R专用引脚,不与GPIO和其 它功能复用。OTGHS控制器具有可由软件配置的端点设置,并支持挂起/恢复机制。

OTGHS PHY专用的480 MHz时钟只能由外挂HEXT 12 MHz晶振提供给PHY内部专用PLL产生,不支持使用内部时钟源或外部其它频率晶振。

OTGHS模块的主要特性有:

- 专用的4096字节缓存(不和其他任何外设共享)
- 8个IN + 8个OUT端点(包含双向控制端点0,设备模式)
- 16个通道(主机模式)
- 专用DMA控制器
- SOF和OE输出
- 兼容USB2.0协议,提供以下传输速率:
 - 主机模式: 高速、全速、和低速
 - 设备模式: 高速和全速

2.13.7 通用串行总线 On-The-Go 全速(OTGFS)

AT32F405/402内置1个集成了收发器(PHY)的OTG全速(12 Mb/s)设备和主机模式控制模块。它具有可由软件配置的端点设置,并支持挂起/恢复机制。OTGFS模块要求专用的48 MHz时钟,用作主机模式时此时钟必须来自由HEXT晶振为源头所产生的PLL时钟源,只有用作设备模式时此时钟可另选择直接来自48 MHz HICK。

OTGFS模块的主要特性有:

- 专用的1280字节缓存(不和其他任何外设共享)
- 8个IN + 8个OUT端点(包含端点0,设备模式)
- 16个通道(主机模式)
- SOF和OE输出
- 兼容USB2.0协议,提供以下传输速率:
 - 主机模式: 全速和低速
 - 设备模式: 全速

2.13.8 红外发射器 (IRTMR)

AT32F405/402器件提供了红外发射器。基于TMR10、USART1、或USART2与TMR11间的内部连接。TMR11用于提供载波频率,TMR10、USART1、或USART2提供要发送的主信号。红外输出信号在PB9或PA13上可用。

为生成红外遥控信号,必须正确配置TMR10通道1和TMR11通道1以生成正确的波形。所有标准红外脉冲调制模式都可通过编程两个定时器输出比较通道获得。

2.14 循环冗余校验(CRC)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。

2.15 模拟/数字转换器 (ADC)

AT32F405/402系列产品,内置1个12位2 MSPS的模拟/数字转换器(ADC),共享多达16个外部通道和2个内部通道,其中这两个内部通道分别内部连接到内部温度传感器(V_{TS})和内部参考电压(V_{REFINT})。ADC控制器具有2到256倍硬件过采样,最高达等效16位分辨率;并可以实现单次或序列转换,在序列模式下,自动进行在选定的一组模拟通道上的转换。

ADC可以使用DMA操作。

电压监测功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阈值时,将产生中断。

由通用定时器(TMRx)和高级定时器(TMR1)产生的事件,分别可以内部连到ADC的普通转换和 抢占转换,应用程序能使ADC转换与时钟同步。

2.15.1 温度传感器(V_{TS})

温度传感器产生一个随温度线性变化的电压V_{TS}。温度传感器在内部被连接到ADC1_IN16的输入通道上,用于将传感器的输出转换到数字数值。

由于工艺不同,温度传感器的偏移因芯片而异,因此内部温度传感器主要适合检测温度变化的应用, 而不是检测绝对温度的应用。如果需要读取精确温度,则应使用外部温度传感器部分。

2.15.2 内部参考电压(VINTRV)

内部参考电压(V_{INTRV})为ADC提供了一个稳定的电压输出。V_{INTRV}内部连接到ADC1_IN17输入通道。

2.16 串行线调试(SWD)和串行线输出(SWO)接口

内置ARM®的SWD接口,这是一个串行线调试的接口,可以实现串行线调试接口连接到目标,实现对目标的烧录及调试。另提供SWO功能作为调试时异步跟踪使用。

3 引脚功能定义

AT32F405和AT32F402大部分引脚互相兼容,除了少数以蓝底粗体字标注者外。

图 1. AT32F405 系列 LQFP64 引脚分布

图 2. AT32F402 系列 LQFP64 引脚分布

图 3. AT32F405 系列 LQFP48 引脚分布

图 4. AT32F402 系列 LQFP48 引脚分布

图 5. AT32F405 系列 QFN48 引脚分布

图 6. AT32F402 系列 QFN48 引脚分布

图 7. AT32F405 系列 QFN32 引脚分布

图 8. AT32F402 系列 QFN32 引脚分布

下表为AT32F405/402系列引脚定义,"-"表示对应封装下没有该引脚。除非在引脚名下面的括号中特别说明,复位期间和复位后的引脚功能与实际引脚名相同。除非特别注释说明,否则在复位期间和复位后所有GPIO都设为浮空输入。引脚复用是通过GPIOx_MUXx寄存器选择功能,附加功能是通过外设寄存器直接选择/启用的功能。

表 9. AT32F405/402 系列引脚定义

		引身	申号						2F4U5/4U2	
A ⁻	T32F4	05	A	Γ32F4	02	引脚名称	型(1)	梅(2)		
QFN32	LQFP48/ QFN48	LQFP64	QFN32	LQFP48/ QFN48	LQFP64	(复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	1	1	-	1	1	V_{DD}	S	-	数字电源	
-	2	2	-	2	2	PC13	I/O	FT	-	ERTC_OUT / TAMP1 / WKUP2
-	3	3	1	3	3	PC14	I/O	TC	-	LEXT_IN
-	4	4	-	4	4	PC15	I/O	TC	-	LEXT_OUT
2	5	5	2	5	5	PF0	I/O	TC	TMR1_CH1 / I2C1_SDA	HEXT_IN
3	6	6	3	6	6	PF1	I/O	тс	TMR1_CH2C / I2C1_SCL / SPI2_CS / I2S2_WS	HEXT_OUT
4	7	7	4	7	7	NRST	I/O	R	器件复位输入 / 内部复位输出	(低电平有效)
-	-	8	-	-	8	PC0	I/O	FTa	I2C3_SCL / I2C1_SCL / USART6_TX / UART7_TX	ADC1_IN10
-	-	9	-	-	9	PC1	I/O	FTa	I2C3_SDA / SPI3_MOSI / I2S3_SD / SPI2_MOSI / I2S2_SD / I2C1_SDA / USART6_RX / UART7_RX	ADC1_IN11
-	-	10	1	-	10	PC2	I/O	FTa	SPI2_MISO / I2S2_MCK / I2S_SDEXT / UART8_TX	ADC1_IN12
		11			11	PC3	I/O	FTa	SPI2_MOSI / I2S2_SD / UART8_RX	ADC1_IN13
-	8	12	-	8	12	Vssa	S	-	模拟地	
5	9	13	5	9	13	V _{DDA}	S	-	模拟供电	
6	10	14	6	10	14	PA0	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR9_CH2C / I2C2_SCL / USART2_RX / USART2_CTS / USART4_TX /	ADC1_IN0 / TAMP2 / WKUP1
7	11	15	7	11	15	PA1	I/O	FTa	TMR2_CH2 / TMR9_CH1C / I2C2_SDA / I2C1_SMBA / I2SF5_SD / USART2_RTS_DE / USART4_RX / QSPI1_IO3	ADC1_IN1
8	12	16	8	12	16	PA2	I/O	FTa	TMR2_CH3 / TMR9_CH1 / I2SF5_CKIN / USART2_TX / QSPI1_CS	ADC1_IN2
9	13	17	9	13	17	PA3	I/O	FTa	TMR2_CH4 / TMR9_CH2 / I2S2_MCK / USART2_RX	ADC1_IN3
-	-	18	•	-	18	PF4	I/O	FT	TMR2_CH1 / I2C1_SDA	-
-	-	19	-	-	19	PF5	I/O	FT	TMR2_CH2 / I2C1_SCL	-

		引展	却号							
A	Г32F4	05	A	Г32F4	02	引脚名称	型(1)	宇构 (2)		
QFN32	LQFP48/ QFN48	LQFP64	QFN32	LQFP48/ QFN48	LQFP64	(复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
10	14	20	10	14	20	PA4	I/O	FTa	I2C1_SCL / SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART2_CK / USART6_TX / TMR14_CH1 / OTGHS1_SOF	ADC1_IN4
11	15	21	11	15	21	PA5	I/O	FTa	TMR2_CH1 / TMR2_EXT / SPI1_SCK / I2S1_CK / USART3_CK / USART3_RX / USART6_RX / TMR13_CH1C	ADC1_IN5
12	16	22	12	16	22	PA6	I/O	FTa	TMR1_BRK / TMR3_CH1 / SPI1_MISO / I2S1_MCK / I2S2_MCK / USART3_CTS / USART3_RX / TMR13_CH1 / QSPI1_IO0 / QSPI1_IO2	ADC1_IN6
13	17	23	13	17	23	PA7	I/O	FTa	TMR1_CH1C / TMR3_CH2 / I2C3_SCL / SPI1_MOSI / I2S1_SD / USART3_TX / TMR14_CH1 / QSPI1_IO1	ADC1_IN7
-		24	-		24	PC4	I/O	FTa	TMR9_CH1 / I2S1_MCK / USART3_TX / TMR13_CH1 / QSPI1_IO2	ADC1_IN14
-	-	25	ı	-	25	PC5	I/O	FTa	TMR9_CH2 / I2C1_SMBA / USART3_RX / TMR13_CH1C / QSPI1_IO3	ADC1_IN15
14	18	26	14	18	26	PB0	I/O	FTa	TMR1_CH2C / TMR3_CH3 / SPI1_MISO / I2S1_MCK / SPI3_MOSI / I2S3_SD / USART2_RX / USART3_CK / QSPI1_IO0 / I2SF5_CK	ADC1_IN8
15	19	27	15	19	27	PB1	I/O	FTa	TMR1_CH3C / TMR3_CH4 / SPI1_MOSI / I2S1_SD / SPI2_SCK / I2S2_CK / USART2_CK / USART3_RTS_DE / TMR14_CH1 / QSPI1_SCK / I2SF5_WS	ADC1_IN9
16	20	28	16	20	28	PB2	I/O	FT	TMR2_CH4 / TMR3_EXT / I2C3_SMBA / SPI3_MOSI / I2S3_SD / TMR14_CH1C / QSPI1_SCK	-
-	21	29	-	21	29	PB10	I/O	FTf	TMR2_CH3 / I2C2_SCL / SPI2_SCK / I2S2_CK / I2S3_MCK / USART3_TX / QSPI1_IO1 / QSPI1_CS	-
-	-	-	-	22	30	PB11	I/O	FT	TMR2_CH4 / I2C2_SDA / I2SF5_CKIN / USART3_RX / TMR13_BRK / QSPI1_IO0	-
-	22	30	-	-	-	PB12	I/O	FT	TMR1_BRK / I2C2_SMBA / SPI2_CS / I2S2_WS / SPI3_SCK / I2S3_CK / USART3_CK / OTGHS1_ID / I2SF5_WS	-

		引用	却号							
A	T32F4	05	Α٦	Γ32F4	02	」 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	型(1)	梅(2)		
QFN32	LQFP48/ QFN48	LQFP64	QFN32	LQFP48/ QFN48	LQFP64	(复位后功能)	引脚类型(1)	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	23	31	-	23	31	Vss	S	-	数字地	
-	-	-	17	24	32	V _{DD}	S	-	数字电源	
-	1	-	-	25	33	PB12	I/O	FT	TMR1_BRK / I2C2_SMBA / SPI2_CS / I2S2_WS / SPI3_SCK / I2S3_CK / USART3_CK / I2SF5_WS	-
-	24	32	-	26	34	PB13	I/O	FT	CLKOUT / TMR1_CH1C / I2C3_SMBA / SPI2_SCK / I2S2_CK / I2SF5_CK / I2C3_SCL / USART3_CTS / OTGHS1_VBUS	-
17	25	33	-	-	-	OTGHS1_R ⁽⁴⁾	-	-	OTGHS1 PHY参考电流 (外接12 kΩ ± 1%电阻到	
18	26	34	-	-	1	OTGHS1_D-(4)	-	-	OTGHS1_D-	
19	27	35	-	-	1	OTGHS1_D+(4)	-	-	OTGHS1_D+	
-	1	-	-	27	35	PB14	I/O	FT	TMR1_CH2N / I2C3_SDA / SPI2_MISO / I2S2_MCK / I2S_SDEXT / USART3_RTS_DE	-
-	,	-	-	28	36	PB15	I/O	FT	RTC_REFIN / TMR1_CH3N / I2C3_SCL / SPI2_MOSI / I2S2_SD	-
20	28	36	-	-	-	V _{DD}	S	-	数字电源	
-	-	37	-	-	37	PC6	I/O	FT	TMR1_CH1 / TMR3_CH1 / I2C1_SCL / I2S2_MCK / USART6_TX / UART7_TX	-
-	-	38	-	-	38	PC7	I/O	FT	TMR1_CH2 / TMR3_CH2 / I2C1_SDA / SPI2_SCK / I2S2_CK / I2S3_MCK / USART6_RX / UART7_RX	-
-	-	39	-	-	39	PC8	I/O	FT	TMR1_CH3 / TMR3_CH3 / I2SF5_MCK / UART8_TX / USART6_CK_RTS_DE / QSPI1_IO2	-
-	-	40	-	-	40	PC9	I/O	FT	CLKOUT / TMR1_CH4 / TMR3_CH4 / I2C3_SDA / I2SF5_CKIN / UART8_RX / I2C1_SDA / OTGHS1_OE / QSPI1_IO0	-
-	29	41	18	29	41	PA8	I/O	FT	CLKOUT / TMR1_CH1 / TMR9_BRK / I2C3_SCL / USART1_CK / USART2_TX / UART7_TX / OTGFS1_SOF	-
-	30	42	19	30	42	PA9	I/O	FT	CLKOUT / TMR1_CH2 / I2C3_SMBA / SPI2_SCK / I2S2_CK / USART1_TX / I2C1_SCL / TMR14_BRK / OTGFS1_VBUS	-

		引展	却号							
A	Г32F4	05	A٦	Γ32F4	02	引脚名称	(1)	吉梅(2)	A T T . I A D (0)	WH. T P. A.I.
QFN32	LQFP48/ QFN48	LQFP64	QFN32	LQFP48/ QFN48	LQFP64	(复位后功能)	引脚类型 ⁽¹⁾	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能
-	31	43	20	31	43	PA10	I/O	FT	ERTC_REFIN / TMR1_CH3 / SPI2_MOSI / I2S2_SD / I2SF5_SD / USART1_RX / I2C1_SDA / OTGFS1_ID / I2SF5_MCK	•
21	32	44	21	32	44	PA11	I/O	FT	TMR1_CH4 / I2C2_SCL / SPI2_CS / I2S2_WS / I2C1_SMBA / USART1_CTS / USART6_TX / CAN1_RX	OTGFS1_D-
22	33	45	22	33	45	PA12	I/O	FT	TMR1_EXT / I2C2_SDA / SPI2_MISO / I2S2_MCK / I2SF5_SDEXT / USART1_RTS_DE / USART6_RX / CAN1_TX	OTGFS1_D+
23	34	46	23	34	46	PA13 (SWDIO ⁽⁵⁾)	I/O	FT	PA13 / IR_OUT / I2C1_SDA / I2S_SDEXT / SPI3_MISO / I2S3_MCK / OTGFS1_OE	-
-	35	47	-	35	47	PF6	I/O	FT	I2C2_SCL / UART7_RX / QSPI1_IO0	-
-	36	48	-	36	48	PF7	I/O	FT	I2C2_SDA / UART7_TX	-
24	37	49	24	37	49	PA14 (SWCLK ⁽⁵⁾)	I/O	FT	PA14 / I2C1_SMBA / SPI3_MOSI / I2S3_SD / USART2_TX	-
25	38	50	25	38	50	PA15	I/O	FT	TMR2_CH1 / TMR2_EXT / SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART1_TX / USART2_RX / UART7_TX / USART4_RTS_DE / QSPI1_IO2	-
-	,	51	-	1	51	PC10	I/O	FT	SPI3_SCK / I2S3_CK / USART3_TX / USART4_TX / QSPI1_IO1	-
-	1	52	ı	-	52	PC11	I/O	FT	I2S_SDEXT / SPI3_MISO / I2S3_MCK / USART3_RX / USART4_RX / QSPI1_CS	-
-	-	53	-	-	53	PC12	I/O	FT	TMR11_CH1 / I2C2_SDA / SPI3_MOSI / I2S3_SD / USART3_CK / USART4_CK / USART5_TX	-
-	-	54	-	-	54	PD2	I/O	FT	TMR3_EXT / USART3_RTS_DE / USART5_RX	-
26	39	55	26	39	55	PB3	I/O	FTf	SWO / TMR2_CH2 / I2C2_SDA / SPI1_SCK / I2S1_CK / SPI3_SCK / I2S3_CK / USART1_RX / USART1_RTS_DE / UART7_RX / USART5_TX / QSPI1_IO3	-

		引度	申号								
Α٦	Г32F4	05	Α٦	Γ32F4	02	引脚名称	脚类型(1)	計构 (2)	A		
QFN32	LQFP48/ QFN48	LQFP64	QFN32	LQFP48/ QFN48	LQFP64	(复位后功能)	子文章	GPIO结构 ⁽²⁾	复用功能 ⁽³⁾	附加功能	
27	40	56	27	40	56	PB4	I/O	FT	TMR3_CH1 / TMR11_BRK / I2C3_SDA / SPI1_MISO / I2S1_MCK / SPI3_MISO / I2S3_MCK / USART1_CTS / UART7_TX / USART5_RX / QSPI1_SCK / I2S_SDEXT	-	
28	41	57	28	41	57	PB5	I/O	FT	TMR3_CH2 / TMR10_BRK / I2C3_SMBA / SPI1_MOSI / I2S1_SD / SPI3_MOSI / I2S3_SD / USART1_CK / USART5_RX / USART5_CK_RTS_DE / QSPI1_IO0	WKUP6	
29	42	58	29	42	58	PB6	I/O	FT	TMR4_CH1 / TMR10_CH1C / I2C1_SCL / I2S1_MCK / I2SF5_WS / USART1_TX / USART5_TX / USART4_CK / QSPI1_CS	-	
30	43	59	30	43	59	PB7	I/O	FT	TMR4_CH2 / TMR11_CH1C / I2C1_SDA / I2SF5_CK / USART1_RX / USART4_CTS / QSPI1_IO1	-	
31	44	60	31	44	60	PF11 ⁽⁶⁾ / BOOT0	I/O	FT	-	启动模式选择0	
32	45	61	32	45	61	PB8	I/O	FT	TMR2_CH1 / TMR2_EXT / TMR4_CH3 / TMR10_CH1 / I2C1_SCL / I2SF5_SDEXT / USART1_TX / USART5_RX / CAN1_RX / I2SF5_SD	-	
-	46	62	1	46	62	PB9	I/O	FTf	IR_OUT / TMR2_CH2 / TMR4_CH4 / TMR11_CH1 / I2C1_SDA / SPI2_CS / I2S2_WS / I2SF5_SD / I2C2_SDA / USART5_TX / CAN1_TX / I2S1_MCK / QSPI1_CS	-	
-	47	63	ı	47	63	Vss	S	-	数字地		
1	48	64	1	48	64	V_{DD}	S	-	数字电源		
-	-/49	-	1	-/49	-	EPAD (V _{SS})	S	-	数字地		
33	-	-	33	-	-	EPAD (Vss / Vssa)	S	-	数字地 / 模拟地		

- (1) I = 输入, O = 输出, S = 电源。
- (2) TC = 标准电平, FT = 一般5 V电平容忍, FTa = 带模拟功能5 V电平容忍, FTf = 5 V电平容忍带20 mA吸入能力, R = 配有内置弱上拉电阻的双向复位引脚。其中FTa引脚设置为输入浮空、输入上拉、或输入下拉时,具有5 V电平容忍特性;设置为模拟模式时,不具5 V电平容忍特性,此时输入电平必须小于VDD + 0.3 V。
- (3) 任一GPIO皆拥有EVENTOUT功能。
- (4) OTGHS专用引脚,不具GPIO及其它复用功能。
- (5) 复位后,PA13/PA14引脚被配置为复用功能SWDIO/SWCLK,此时SWDIO引脚的内部上拉电阻和SWCLK引脚的内部下拉电阻为开启状态。
- (6) 该引脚在芯片复位期间作BOOT0功能用,芯片采样其电平决定启动模式;复位后,该引脚作GPIO PF11使用,默认为输入下拉状态,软件可再设置为其它状态。

4 电气特性

4.1 测试条件

4.1.1 最小和最大数值

所有最小和最大值是在最坏的条件下得出,在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性,以其平均值 ± 3 倍标准差(mean $\pm 3\sigma$)得到的数据,不会在生产线上进行测试。

4.1.2 典型数值

典型数据是基于 $T_A = 25$ °C和 $V_{DD} = 3.3 V$ 。

4.1.3 典型曲线

典型曲线仅用于设计指导而未经测试。

4.1.4 供电方案

Backup circuitry (LEXT, RTC, Wake-up logic, BPR) Ю GPIO Logic Kernel logic (CPU, Digital Memories) LDO 1 x 100 nF $4.7 \, \mu F$ each V_{DD}/V_{SS} pair VDD HICK, PLL, 100 nF ADC

图 9. 供电方案

4.2 绝对最大值

4.2.1 额定值

加在器件上的载荷如果超过「绝对最大额定值」列表(*表10*,*表11*,*表12*)中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表 10. 电压特性

符号	描述	最小值	最大值	单位
V _{DDx} -V _{SS}	外部主供电电压	-0.3 4.0		
	在FT,FTf引脚上的输入电压			
	在FTa引脚上的输入电压,引脚设置为输入浮空、	V _{SS} -0.3 6.0		V
V _{IN}	输入上拉、或输入下拉模式			V
	在TC引脚上的输入电压	V _{SS} -0.3	4.0	
VIIN	在FTa引脚上的输入电压,引脚设置为模拟模式	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	不同供电引脚之间的电压差	- 50		m\/
V _{SSx} -V _{SS}	不同接地引脚之间的电压差	-	50	mV

表 11. 电流特性

符号	描述	最大值	单位
I _{VDD}	经过V _{DD} 电源线的总电流(流入电流)	150	
I _{VSS}	经过Vss地线的总电流(流出电流)	150	mΛ
1	任意GPIO和控制引脚上的输出灌电流	25	mA
I _{IO}	任意GPIO和控制引脚上的输出电流	-25	

表 12. 温度特性

符号	描述	数值	单位
T _{STG}	储存温度范围	-60 ~ +150	°C
TJ	最大结温度	125	C

4.2.2 电气敏感性

基于三个不同的测试(HBM, CDM, 和LU),使用标准的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电施加到所有样品的所有引脚上。这个测试符合JS-001-2017/JS-002-2018标准。

表 13. 静电放电值

符号	参数	条件	类型	最小值	单位
VESD(HBM)	静电放电电压 (人体模型)	T _A = +25 °C,符合JS-001-2017	3A	±5000	V
VESD(CDM)	静电放电电压(充电设备模型)	T _A = +25 °C,符合JS-002-2018	III	±1000	V

静态栓锁(Static latch-up)

为了评估栓锁性能需要在样品上进行符合EIA/JESD78E集成电路栓锁标准的互补静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的GPIO引脚上注入电流。

表 14. 静态栓锁值

符号	参数	条件	级别/类型
LU	静态栓锁	T _A = +105 °C,符合EIA/JESD78E	II 类A(±200 mA)

4.3 规格

4.3.1 通用工作条件

表 15. 通用工作条件

符号	参数	ĝ.	条件	最小值	最大值	单位
			1.3 V	0	216 ⁽¹⁾	
fhclk	内部AHB时钟频率	LDO电压	1.2 V	0	168 ⁽¹⁾	MHz
			1.0 V	0	108	
f	由郊ADD4时抽垢交	LDO th IF	1.3 V,1.2 V	0	120	MU
fpclk1	内部APB1时钟频率	LDO电压	1.0 V	0	fHCLK	MHz
fpclk2	内部APB2时钟频率		-		fHCLK	MHz
V _{DD}	数字电源工作电压		-	2.4	3.6	V
V_{DDA}	模拟电源工作电压	必须与VDD相同		V	DD	V
		LQFP64 – 10 x 10 m	m	-	232	
		LQFP64 – 7 x 7 mm		-	212	
P_D	功率耗散: T _A = 105 ℃	LQFP48 – 7 x 7 mm	LQFP48 – 7 x 7 mm -	-	212	mW
		QFN48 – 6 x 6 mm		-	350	
		QFN32 – 4 x 4 mm		-	279	
TA	环境温度		-	-40	105	°C

⁽¹⁾ 存取CRM_BPDC寄存器或CRM_CTRLSTS寄存器时,AHB时钟频率不可超过120 MHz.

4.3.2 上电和掉电时的工作条件

表 16. 上电和掉电时的工作条件

符号	参数	最小值	最大值	单位
4	V _{DD} 上升速率	0	∞	ms/V
t _{VDD}	V _{DD} 下降速率	20	∞	μs/V

4.3.3 内置复位和电源控制模块特性

表 17. 内置复位和电源管理模块特性(1)

符号	参数	最小值	典型值	最大值	单位
Vpor	上电复位阈值	1.81	2.08	2.4	V
VLVR	低电压复位阈值	1.68 ⁽²⁾	1.9	2.08	V
V _{LVRhyst}	LVR迟滞	-	180	-	mV
Tresttempo	复位持续时间: VDD高于VPOR且持续时间超过TRESTTEMPO后	_	3.5	_	ms
	CPU开始运行		2.0		

⁽¹⁾ 由综合评估得出,不在生产中测试。

⁽²⁾ 产品的特性由设计保证至最小的数值VLVR。

图 10. 上电复位和低电压复位的波形图

表 18. 可编程电压检测器特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{PVM1}	PVM阈值1(PVMSEL[2:0] = 001)	上升沿(1)	2.19	2.28	2.37	V
V PVM1	PVM购值I(PVMSEL[2.0] - 001)	下降沿(1)	2.09	2.18	2.27	V
VPVM2	PVM阈值2(PVMSEL[2:0] = 010)	上升沿(1)	2.28	2.38	2.48	V
V PVM2	FVIM网值2(FVIMSEL[2:0] - 010)	下降沿(1)	2.18	2.28	2.38	V
V _{PVM3}	PVM阈值3(PVMSEL[2:0] = 011)	上升沿(1)	2.38	2.48	2.58	V
V PVM3	PVIM购值3(PVIMSEL[2:0] - 011)	下降沿(1)	2.28	2.38	2.48	V
Vanas	D\/M南传4(D\/MCFI [2:0] = 400)	上升沿(1)	2.47	2.58	2.69	V
VPVM4	PVM阈值4(PVMSEL[2:0] = 100)	下降沿(1)	2.37	2.48	2.59	V
V	D\/M南佐 (D\/MCEL [2:0] = 404 \	上升沿(1)	2.57	2.68	2.79	V
VPVM5	PVM阈值5(PVMSEL[2:0] = 101)	下降沿(1)	2.47	2.58	2.69	V
V	PVM阈值6(PVMSEL[2:0] = 110)	上升沿(1)	2.66	2.78	2.9	V
VPVM6	PVM购值6(PVMSEL[2.0] - 110)	下降沿(1)	2.56	2.68	2.8	V
\/=\	D\/M\国	上升沿	2.76	2.88	3	V
V _{PVM7}	PVM阈值7(PVMSEL[2:0] = 111)	下降沿	2.66	2.78	2.9	V
V _{HYS_P} ⁽¹⁾	PVM迟滞	-	-	100	-	mV
I _{DD} (PVM) ⁽¹⁾	PVM电流消耗	-	-	18	40	μΑ

⁽¹⁾ 由综合评估得出,不在生产中测试。

4.3.4 存储器特性

表 19. 闪存存储器特性(1)

符号	参数	条件	典型值	最大值	单位
T _{PROG}	编程时间	-	40	42	μs
4	扇区(2K字节)擦除时间	AT32F405xC/402xC	13.2	16	200
tse	扇区(1 K 字节)擦除时间	AT32F405xB/402xB	6.6	8	ms
t _{ME}	全擦除时间	-	8.2	10	ms

⁽¹⁾ 由设计保证,不在生产中测试。

表 20. 闪存存储器寿命和数据保存期限(1)

符号	参数	条件	条件 最小值		最大值	单位
NEND	寿命 (擦写次数)	T _A = -40 ~ 105 °C	100	-	-	千次
t RET	数据保存期限	T _A = 105 °C	10	ı	ı	年

⁽¹⁾ 由设计保证,不在生产中测试。

4.3.5 供电电流特性

电流消耗是与多种参数和因素有关的综合指标,由综合评估得出,不在生产中测试。这些参数和因素包括工作电压、环境温度、GPIO引脚的负载、产品的软件配置、工作频率、GPIO脚的翻转速率、以及执行的代码等。

典型和最大电流消耗

微控制器处于下述条件下:

- 所有的GPIO引脚都处于模拟模式。
- 闪存存储器的访问时间随f_{HCLK}的频率调整 (0~32 MHz时为0个等待周期,33~64 MHz时为1个等待周期,65~96 MHz时为2个等待周期,97~128 MHz时为3个等待周期,129~160 MHz时为4个等待周期,161~192 MHz时为5个等待周期,193 MHz以上为6个等待周期)。
- 指令预取功能开启。
- 当开启外设时:
 - 若fhclk > 120 MHz, fpclk1 = fhclk/2, fpclk2 = fhclk, fadcclk = fpclk2/8;
 - 若fhclk ≤ 120 MHz, fpclk1 = fhclk, fpclk2 = fhclk, fadcclk = fpclk2/8。
- 除非特别标注,典型值是在V_{DD} = 3.3 V和T_A = 25 °C时测试得到,最大值是在V_{DD} = 3.6 V时测试得到。

表 21. 运行模式下的典型电流消耗

** H	الملاء الملاء	And tot	_	LDO电压	典型	型值	At D
符号	参数	条件	f _{HCLK}	(V)	使能所有外设	关闭所有外设	单位
			216 MHz	1.3	57.1	30.6	
			200 MHz	1.3	53.1	28.5	
			180 MHz	1.3	49.8	26.5	
			168 MHz	1.2	40.7	22.0	
			144 MHz	1.2	35.1	19.1	
		高速外部晶振	120 MHz	1.2	32.7	16.6	mA
		(HEXT) (1)(2)	108 MHz	1.0	24.1	12.2	
Ì			72 MHz	1.0	16.7	8.83	
			48 MHz	1.0	11.7	6.47	
			36 MHz	1.0	9.19	5.21	
			24 MHz	1.0	6.74	4.06	
I_{DD}	运行模式的		12 MHz	1.0	3.59	2.21	
	供应电流		216 MHz	1.3	57.0	30.4	
			200 MHz	1.3	52.9	28.4	
			180 MHz	1.3	49.6	26.3	
			168 MHz	1.2	40.5	21.8	
			144 MHz	1.2	34.9	18.9	
		高速内部时钟	120 MHz	1.2	32.5	16.4	~ ∧
		(HICK) (2)	108 MHz	1.0	23.9	11.9	mA
			72 MHz	1.0	16.5	8.61	
			48 MHz	1.0	11.5	6.25	
			36 MHz	1.0	8.97	4.99	
			24 MHz	1.0	6.51	3.84	
ı			12 MHz	1.0	2.56	1.61	

⁽¹⁾ 外部时钟为12 MHz。

⁽²⁾ 当f_{HCLK} > 12 MHz时启用PLL。

表 22. 睡眠模式下的典型电流消耗

** F	- W	Are tol	_	LDO电压	典型	创值	AL D.
符号	参数	条件	f _{HCLK}	(V)	使能所有外设	关闭所有外设	单位
			216 MHz	1.3	43.1	8.92	
			200 MHz	1.3	40.0	8.37	
			180 MHz	1.3	36.0	7.75	
			168 MHz	1.2	31.0	7.19	
Ì			144 MHz	1.2	26.8	6.20	
		高速外部晶振 (HEXT) ⁽¹⁾⁽²⁾	120 MHz	1.2	25.8	6.23	mA
			108 MHz	1.0	18.5	4.22	IIIA
	睡眠模式的		72 MHz	1.0	13.2	3.59	
			48 MHz	1.0	9.47	3.03	
			36 MHz	1.0	7.54	2.69	
			24 MHz	1.0	5.72	2.44	
l			12 MHz	1.0	3.23	1.52	
I _{DD}	供应电流		216 MHz	1.3	42.9	8.64	
			200 MHz	1.3	39.8	8.10	
			180 MHz	1.3	35.8	7.51	
			168 MHz	1.2	30.8	6.76	
			144 MHz	1.2	26.6	6.03	
		高速内部时钟	120 MHz	1.2	25.6	5.80	m Λ
		(HICK) (2)	108 MHz	1.0	18.3	3.99	mA
			72 MHz	1.0	13.0	3.39	
			48 MHz	1.0	9.27	2.83	
			36 MHz	1.0	7.33	2.49	
			24 MHz	1.0	5.50	2.27	
			12 MHz	1.0	2.40	1.26	

⁽¹⁾ 外部时钟为12 MHz。

⁽²⁾ 当f_{HCLK} > 12 MHz时启用PLL。

表 23. 运行模式下的最大电流消耗

Andr. 177	<u>ک الال .</u>	he bi		LDO电压	最	大值	34 D.
符号	参数	条件	f _{HCLK}	(V)	T _A = 85 °C	T _A = 105 °C	単位
			216 MHz	1.3	67.1	74.3	
			200 MHz	1.3	63.1	69.8	
			180 MHz	1.3	59.0	65.1	
			168 MHz	1.2	48.5	54.0	
			144 MHz	1.2	42.8	48.2	
		高速外部晶振(HEXT) ⁽¹⁾	120 MHz	1.2	40.3	45.7	m Λ
		使能所有外设	108 MHz	1.0	29.4	33.2	mA
			72 MHz	1.0	21.4	25.0	
			48 MHz	1.0	16.4	20.0	
			36 MHz	1.0	13.8	17.4	
			24 MHz	1.0	11.4	14.9	
1	运行模式的		12 MHz	1.0	8.19	11.7	
I _{DD}	供应电流		216 MHz	1.3	39.4	46.0	
			200 MHz	1.3	37.4	43.7	
			180 MHz	1.3	35.5	41.2	
			168 MHz	1.2	29.1	34.3	
			144 MHz	1.2	26.2	31.3	
		高速外部晶振(HEXT) ⁽¹⁾	120 MHz	1.2	23.7	28.8	m Λ
		关闭所有外设	108 MHz	1.0	17.0	20.5	mA
			72 MHz	1.0	13.3	16.8	
			48 MHz	1.0	11.0	14.5	1
			36 MHz	1.0	9.72	13.2	
			24 MHz	1.0	8.55	12.0	
			12 MHz	1.0	6.70	10.1	

⁽¹⁾ 外部时钟为12 MHz, 当fHCLK > 12 MHz时启用PLL。

表 24. 睡眠模式下的最大电流消耗

Andr. 177	∠ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	to bi		LDO电压	最	大值	36 D.
符号	参数	条件	f _{HCLK}	(V)	T _A = 85 °C	T _A = 105 °C	単位
			216 MHz	1.3	52.7	59.7	
			200 MHz	1.3	49.8	56.1	
			180 MHz	1.3	47.1	52.1	
		168 MHz	1.2	38.3	43.7		
			144 MHz	1.2	34.0	39.4	
		高速外部晶振(HEXT) ⁽¹⁾	120 MHz	1.2	33.0	38.3	A
		使能所有外设	108 MHz	1.0	23.5	27.5	mA
			72 MHz	1.0	17.8	21.4	
			48 MHz	1.0	14.0	17.5	
			36 MHz	1.0	12.0	15.5	
			24 MHz	1.0	10.1	13.6	
1	睡眠模式的		12 MHz	1.0	7.58	11.0	
I _{DD}	供应电流	电流	216 MHz	1.3	17.1	23.3	
			200 MHz	1.3	16.7	22.7	
			180 MHz	1.3	16.3	22.1	
			168 MHz	1.2	13.4	18.3	
			144 MHz	1.2	12.6	17.6	
		高速外部晶振(HEXT) ⁽¹⁾	120 MHz	1.2	12.4	17.4	A
		关闭所有外设	108 MHz	1.0	8.75	12.1	mA
			72 MHz	1.0	7.83	11.3	
			48 MHz	1.0	7.25	10.7	1
			36 MHz	1.0	6.91	10.3	
			24 MHz	1.0	6.67	10.1	
			12 MHz	1.0	5.73	9.15	

⁽¹⁾ 外部时钟为12 MHz, 当fHCLK > 12 MHz时启用PLL。

μΑ

10.3

		次 23.	574 1. H13 74	空仰取入	电机相和			
			典型值 ⁽¹⁾		最大值 ⁽²⁾			
符号参数		条件	V _{DD} =	V _{DD} =	T _A =	T _A =	T _A =	单位
			2.4 V	3.3 V	25 °C	85 °C	105 °C	
		LDO 处于运行模式,HICK 和	005	000		7000	40000	
	深睡眠模式	HEXT 关闭,WDT 关闭	895	900		7600	12600	
	的供应电流	LDO 处于低功耗模式且 LPDS1			参见 ⁽⁴⁾			μA
IDD	(3)	设置为 1,HICK 和 HEXT 关	463	465		4200	7300	
		闭,WDT 关闭						
	待机模式的	LEXT和ERTC关闭	2.4	3.7	4.7	6.1	8.6	

表 25. 深睡眠和待机模式下的典型和最大电流消耗

(1) 典型值是在TA = 25°C下测试得到。

LEXT和ERTC开启

供应电流

- (2) 由综合评估得出,不在生产中测试。
- (3) 必须先对OTGHS做低功耗设置再进入深睡眠模式。详细参见AT32F405/402系列勘误手册。
- (4) 随工艺徧移可能为典型值的数倍。

图 11. LDO 在运行模式时,深睡眠模式下的典型电流消耗在不同的 V_{DD} 时与温度的对比

3.4

5.1

6.3

7.8

图 12. LDO 在低功耗模式时,深睡眠模式下的典型电流消耗在不同的 V_{DD} 时与温度的对比

图 13. 待机模式下的典型电流消耗在不同的 VDD 时与温度的对比

内置外设电流消耗

微控制器的工作条件如下:

- 所有的GPIO引脚都处于模拟模式。
- 给出的数值是通过测量只开启一个外设的时钟与关闭所有外设的时钟电流消耗相差值计算得出。

表 26. 内置外设的电流消耗典型值

pilo E	FI M. M.		LDO电压(V)		34 22
Mi	置外设	1.3	1.2	1.0	单位
	DMA1	4.11	3.78	3.00	
	DMA2	4.07	3.73	2.99	
	SRAM	1.42	1.32	1.09	
	Flash	16.39	14.77	11.85	
	CRC	0.38	0.36	0.31	
	GPIOA	0.45	0.44	0.37	
AHB	GPIOB	0.45	0.43	0.35	μΑ/MHz
	GPIOC	0.45	0.44	0.35	
	GPIOD	0.46	0.44	0.35	
	GPIOF	0.45	0.44	0.35	
	OTGHS1	18.42	16.58	13.53	
	OTGFS1	15.89	14.35	11.96	
	QSPI1	14.13	12.65	10.17	
	TMR2	8.61	7.80	7.32	
	TMR3	6.44	5.84	5.25	
	TMR4	7.31	6.63	6.00	
	TMR6	0.37	0.37	0.36	
	TMR7	0.37	0.36	0.34	
	TMR13	3.24	2.95	2.74	
	TMR14	3.30	2.99	2.71	
	WWDT	0.11	0.09	0.08	
	SPI2/I ² S2	2.42	2.24	1.79	
	SPI3/I ² S3	2.47	2.27	1.81	
APB1	USART2	2.66	2.42	1.98	μΑ/MHz
	USART3	2.63	2.42	1.98	
	USART4	2.75	2.49	1.99	
	USART5	2.65	2.42	1.98	
	I ² C1	6.28	5.57	4.38	
	I ² C2	6.37	5.68	4.68	
	I ² C3	6.31	5.66	4.41	
	CAN1	2.62	2.44	1.96	
	PWC	0.43	0.39	0.33	
	UART7	2.66	2.44	1.98	
	UART8	2.67	2.42	1.94	

H- 199	arc i A i		LDO电压(V)			
) 	外设	1.3	1.2	1.0	単位	
	TMR1	10.18	9.24	7.53		
	USART1	2.59	2.36	1.93		
	USART6	2.63	2.40	1.95		
	ADC1	2.07	1.90	1.55		
	SPI1/I ² S1	2.53	2.32	1.91		
APB2	SCFG	0.09	0.08	0.07	μA/MHz	
	TMR9	5.92	5.34	4.34		
	TMR10	3.63	3.29	2.69		
	TMR11	3.74	3.39	2.77		
	I ² SF5	1.00	0.95	0.77		
	ACC	0.23	0.20	0.17		

4.3.6 外部时钟源特性

使用晶体/陶瓷谐振器产生的高速外部时钟

高速外部晶振(HEXT)可以使用一个4~25 MHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

符号	参数	条件	最小值	典型值	最大值	单位
fhext_in	振荡器频率	-	4	12	25	MHz
tsu(HEXT)(3)	启动时间	VDD是稳定的	-	1.6	-	ms

表 27. HEXT 4~25 MHz 晶振特性(1)(2)

- (1) 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- (2) 由综合评估得出,不在生产中测试。
- (3) tsu(HEXT)是启动时间,是从软件使能HEXT开始测量,直至得到稳定的12 MHz振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计的(典型值为)5~25 pF之间的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,PCB和MCU引脚的容抗应该考虑在内(可以粗略地把引脚与PCB板的电容按10 pF估计)。

行组合给出负载电容的参数。在选择C_{L1}和C_{L2}时,PCB和MCU引脚的容抗应该考虑在内(可以粗略地把引脚与PCB板的电容按10 pF估计)。

图 14. 使用 12 MHz 晶振的典型应用

使用外部振荡源产生的高速外部时钟

下表中给出的特性参数是使用一个高速的外部时钟源测得。

表 28. 高速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fHEXT_ext	用户外部时钟频率(1)		1	12	25	MHz
VHEXTH	HEXT_IN输入引脚高电平电压		0.7V _{DD}	-	VDD	V
VHEXTL	HEXT_IN输入引脚低电平电压		Vss	-	0.3V _{DD}	V
tw(HEXT)	HEXT IN高或低的时间 ⁽¹⁾	-	5			
tw(HEXT)	TEXI_III 同以似的时间(**)		5		-	ns
t _{r(HEXT)}	 HEXT_IN 上升或下降的时间 ⁽¹⁾				20	115
t _{f(HEXT)}	TICXI_IN工/J·线下阵的时间(*/		1	1	20	
Cin(HEXT)	HEXT_IN输入容抗 ⁽¹⁾	-	ı	5	-	pF
Duty(HEXT)	占空比	-	45	-	55	%
lι	HEXT_IN输入漏电流	Vss ≤ Vin ≤ Vdd	-	-	±1	μA

⁽¹⁾ 由设计保证,不在生产中测试。

图 15. 外部高速时钟源的交流时序图

使用晶体/陶瓷谐振器产生的低速外部时钟

低速外部晶振(LEXT)可以使用一个32.768 kHz的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

表 29.	LEXT	32.768	kHz	晶振特性(1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
t _{SU(LEXT)}	启动时间	V _{DD} 是稳定的	-	160	-	ms

- (1) 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- (2) 由综合评估得出,不在生产中测试。

对于CL1和CL2,建议使用高质量的5~20 pF之间的资介电容器,并挑选符合要求的晶体或谐振器。通常CL1和CL2具有相同参数。晶体制造商通常以CL1和CL2的串行组合给出负载电容的参数。

负载电容 C_L 是基于下列算式计算出: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$,其中 C_{stray} 是引脚的电容和 PCB板或PCB相关的电容,它的典型值是介于2 pF至7 pF之间。

32.768 kHz crystal LEXT_IN Bias Controlled gain

图 16. 使用 32.768 kHz 晶振的典型应用

注: LEXT IN和LEXT OUT间不需要外部电阻,也禁止添加。

使用外部振荡源产生的低速外部时钟

下表中给出的特性参数是使用一个低速的外部时钟源测得。

表 30. 低速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fLEXT_ext	用户外部时钟频率(1)		-	32.768	1000	kHz
VLEXTH	LEXT_IN输入引脚高电平电压		0.7V _{DD}	-	V _{DD}	V
VLEXTL	LEXT_IN输入引脚低电平电压		Vss	-	0.3V _{DD}	V
tw(LEXT)	LEXT IN高或低的时间 ⁽¹⁾	-	450			
tw(LEXT)	LEAT_IN同以似的时间(**				•	ns
tr(LEXT)	 LEXT_IN上升或下降的时间 ⁽¹⁾				50	115
t _{f(LEXT)}	LEXI_IN工厂以下件的时间()				30	
Cin(LEXT)	LEXT_IN输入容抗 ⁽¹⁾	-	ı	5	ı	pF
Duty(LEXT)	占空比	-	30	-	70	%
lι	LEXT_IN输入漏电流	Vss ≤ Vin ≤ Vdd	-	-	±1	μA

⁽¹⁾ 由设计保证,不在生产中测试。

图 17. 外部低速时钟源的交流时序图

4.3.7 内部时钟源特性

高速内部时钟 (HICK)

表 31. HICK 时钟特性

符号	参数		条件		典型值	最大值	单位
fніск	频率		-		48	-	MHz
DuCy(HICK)	占空比		-		-	55	%
	HICK时钟的精度	使用者校准(以寄存器CRM_CTRL) (1)	-1	-	1	
		ACC校准 ⁽¹⁾		-0.25	ī	0.25	
ACCHICK		出厂校准(2)	T _A = -40 ~ 105 °C	-2.5	Ī	2.5	<u></u> %
ACCHICK			T _A = -40 ~ 85 °C	-2	-	2	
			T _A = 0 ~ 70 °C	-1.5	-	1.5	
			T _A = 25 °C	-1	0.5	1	
tsu(HICK) ⁽²⁾	HICK时钟启动时间	-		-	2.0	2.4	μs
IDD(HICK)(2)	HICK时钟功耗		-	-	315	370	μA

- (1) 由设计保证,不在生产中测试。
- (2) 由综合评估得出,不在生产中测试。

图 18. HICK 时钟精度与温度的对比

低速内部时钟(LICK)

表 32. LICK 时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
fLICK ⁽¹⁾	频率	-	25	35	45	kHz

(1) 由综合评估得出,不在生产中测试。

4.3.8 PLL 特性

表 33. PLL 特性

符号	参数	最小值(1)	典型值	最大值(1)	单位
f	PLL输入时钟 ⁽²⁾	2	12	16	MHz
fpll_in	PLL输入时钟占空比	40	-	60	%
fpll_out	PLL倍频输出时钟	16	-	216	MHz
tLOCK	PLL锁相时间	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

⁽¹⁾ 由设计保证,不在生产中测试。

4.3.9 低功耗模式唤醒时间

下表列出的唤醒时间是在系统时钟为HICK时钟的唤醒阶段测量得到。唤醒时使用的时钟源依据当前的操作模式而定:

- 睡眠模式:时钟源是进入睡眠模式时所使用的时钟;
- 深睡眠或待机模式:时钟源是HICK时钟。

表 34. 低功耗模式的唤醒时间

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	-	3.4	μs
	几次時記棋子時期	LDO处于运行模式	450	
twudeepsleep	从深睡眠模式唤醒	LDO处于低功耗模式	500	μs
twustdby	从待机模式唤醒	-	800	μs

4.3.10 EMC 特性

敏感性测试是在产品的综合评估时抽样进行测试的。

功能性EMS(电磁敏感性)

● **EFT:** 在V_{DD}和V_{SS}上通过耦合/去耦合网路施加一个瞬变电压的脉冲群(正向和反向)直到产生功能性错误。这个测试符合**IEC** 61000-4-4标准。

表 35. EMS 特性

符号	参数	条件	级别/类型
VEFT	在VDD和Vss上通过符合IEC 61000-4-4规范的耦合/去耦合网路施加导致功能错误的瞬变脉冲群电压极限,VDD和Vss入口有一47 μF电容并且每对VDD和Vss电源各有一0.1 μF旁路电容	V _{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 216 MHz, LDO电压1.3 V V _{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 168 MHz, LDO电压1.2 V V _{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 108 MHz, LDO电压1.0 V	4A (±4 kV)

在器件级进行EMC的评估和优化,是在典型的应用环境中进行的。应注意好的EMC性能与用户应用和具体的软件密切相关。因此,建议用户对软件实行EMC优化,并进行与EMC有关的测试。

⁽²⁾ 需要注意使用正确的倍频系数,从而根据PLL输入时钟频率使得fpll_out处于允许范围内。

4.3.11 GPIO 端口特性

通用输入/输出特性

所有的GPIO端口都是兼容CMOS和TTL。

表 36. GPIO 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
VIL	输入低电平电压	-	-0.3	-	0.28 x V _{DD} + 0.1	٧
	TC输入高电平电压	-		_	V _{DD} + 0.3	
	FTa输入高电平电压 模拟模式 FT和FTf输入高电平电压 - FTa输入高电平电压 输入浮空、输入上拉、或输入下拉	模拟模式	0.31 x V _{DD} +	_	V 00 1 0.3	
VIH		0.8			V	
		输入浮空、输入上	0.0	-	5.5	
		拉、或输入下拉				
1/4	施密特触发器电压迟滞(1)		200 5% Vdd	-	-	mV
Vhys		-		-	-	-
		Vss ≤ V _{IN} ≤ V _{DD}			±1	
		TC GPIO脚	-	_	Ξ1	μA
lıkg	输入浮空模式漏电流(2)	Vss ≤ V _{IN} ≤ 5.5 V				
		FT,FTf,和 FTa	-	-	±1	
		GPIO 脚				
Rpu	弱上拉等效电阻(3)	VIN = VSS	65	80	130	kΩ
RPD	弱下拉等效电阻(3)(4)	V _{IN} = V _{DD}	65	70	130	kΩ
C _{IO}	GPIO引脚的电容	-	-	9	-	pF

- (1) 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。
- (2) 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- (3) FT, FTf, 和FTa引脚当输入高于VDD+0.3 V时, 必须禁用内部上拉/下拉电阻。
- (4) BOOT0引脚弱下拉电阻不可禁用。

所有GPIO端口都是CMOS和TTL兼容(不需软件配置),它们的特性考虑了多数严格的CMOS工艺或TTL参数。

输出驱动电流

在用户应用中,GPIO脚的数目必须保证驱动电流不能超过4.2.1节给出的绝对最大额定值:

- 所有**GPIO**端口从**V**_{DD}上获取的电流总和,加上**MCU**在**V**_{DD}上获取的最大运行电流,不能超过绝对最大额定值**I**_{VDD}(参见*表11*)。
- 所有GPIO端口吸收并从V_{SS}上流出的电流总和,加上MCU在V_{SS}上流出的最大运行电流,不能超过绝对最大额定值I_{VSS}(参见*表11*)。

输出电压

所有的GPIO端口都是兼容CMOS和TTL的。

表 37. 输出电压特性(1)

符号	参数	条件	最小值	最大值	单位
适中电流技	推动/吸入能力				•
Vol	输出低电平	CMOS端口,I _{IO} = 4 mA	-	0.4	V
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -0.4	-	_ v
Vol	输出低电平	TTL端口,l _{IO} = 2 mA	-	0.4	V
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	V
Vol	输出低电平	I _{IO} = 9 mA	-	1.3	V
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -1.3	-	\ \
V _{OL}	输出低电平	I _{IO} = 2 mA	-	0.4	V
Vон	输出高电平	2.4 V ≤ V _{DD} < 2.7 V	V _{DD} -0.4	-	\ \
较大电流技	能 动/吸入能力				
Vol	输出低电平	CMOS端口,I _{IO} = 6 mA	-	0.4	V
V _{OH}	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -0.4	-	\ \
V _{OL}	输出低电平	TTL端口,l _{lo} = 5 mA	-	0.4	V
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	\ \
V _{OL}	输出低电平	I _{IO} = 18 mA	-	1.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V _{OH}	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -1.3	-	V
Vol	输出低电平	I _{IO} = 4 mA	-	0.4	.,,
Vон	输出高电平	2.4 V ≤ V _{DD} < 2.7 V	V _{DD} -0.4	-	V
极大电流技	推动/吸入能力				
Vol	输出低电平	CMOS端口,I _{IO} = 15 mA	-	0.4	\/
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} -0.4	-	V
Vol	输出低电平	TTL端口,l _l o = 12 mA	-	0.4	
Vон	输出高电平	2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	V
Vol	输出低电平	I _{IO} = 12 mA	-	0.4	V
Vон	输出高电平	2.4 V ≤ V _{DD} < 2.7 V	V _{DD} -0.4	-	_ v
超高电流。	及入能力(2)				
Vol	输出低电平	$I_{IO} = 25 \text{ mA}, 2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$		0.4	V
Vol	输出低电平	I _{IO} = 18 mA,2.4 V ≤ V _{DD} < 2.7 V		U. 4	V

⁽¹⁾ 由综合评估得出,不在生产中测试。

输入交流特性

输入交流特性的定义和数值在下表给出。

表 38. 输入交流特性

	符号	参数	最小值	最大值	単位
te	EXINTpw ⁽¹⁾	EXINT控制器检测到外部信号的脉冲宽度	10	-	ns

⁽¹⁾ 由设计保证,不在生产中测试。

⁽²⁾ GPIO使能超高流吸入能力时,其VoH同极大电流推动能力。

4.3.12 NRST 引脚特性

NRST引脚输入驱动使用CMOS工艺,它连接了一个不能断开的上拉电阻,R_{PU}(参见下表)。

	次 55:11(5) 57/27 位					
符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)} ⁽¹⁾	NRST输入低电平电压	-	-0.3	-	0.8	V
VIH(NRST) ⁽¹⁾	NRST输入高电平电压	-	2	-	V _{DD} + 0.3	V
V _{hys(NRST)} ⁽¹⁾	NRST施密特触发器电压迟滞	-	-	500	-	mV
R _{PU} ⁽²⁾	弱上拉等效电阻	V _{IN} = V _{SS}	30	40	50	kΩ
t _{ILV(NRST)} (1)	NRST输入低电平无效时间	-	-	-	40	μs
t _{ILNV(NRST)} (1)	NRST输入低电平有效时间	-	80	-	-	μs

表 39. NRST 引脚特性

- (1) 由设计保证,不在生产中测试。
- (2) 由综合评估得出,不在生产中测试。

External (1) reset circuit

NRST (2) R_{PU}

Filter Internal Reset

图 19. 建议的 NRST 引脚保护

- (1) 复位网络是为了防止寄生复位。
- (2) 用户必须保证NRST引脚的电位能够低于表39中列出的最大V_{IL(NRST)}以下,否则MCU不能得到复位。

4.3.13 TMR 定时器特性

下表列出的参数由设计保证,不在生产中测试。

表 40. TMR 定时器特性

符号	参数	条件	最小值	最大值	单位
t (TMD)	定时器分辨时间	-	1	-	tmrxclk
tres(TMR)	tres(TMR) 足时器分辨时间	f _{TMRxCLK} = 216 MHz	4.63	-	ns
f EXT	CH1至CH4的定时器外部时钟频率	-	0	f _{TMRxCLK} /2	MHz

4.3.14 SPI 接口特性

表 41. SPI 特性

符号	参数	条件	最小值	最大值	单位	
fsск		主模式	-	36		
(1/t _{c(SCK)}) ⁽¹⁾	SPI时钟频率 ⁽²⁾⁽³⁾	从收模式	-	36	MHz	
(I/IC(SCK))		从发模式	-	25		
t _{su(CS)} (1)	CS建立时间	从模式	4t _{PCLK}	-	ns	
t _{h(CS)} ⁽¹⁾	CS保持时间	从模式	2t _{PCLK}	-	ns	
$t_{w(SCKL)}^{(1)}$ $t_{w(SCKL)}^{(1)}$	SCK高和低的时间	主模式, 预分频系数 = 4	2t _{PCLK} - 3	2t _{PCLK} + 3	ns	
t _{su(MI)} ⁽¹⁾		主模式	6	-		
t _{su(SI)} (1)	数据输入建立时间	从模式	5	-	ns	
t _{h(MI)} (1)	₩ 扫 Þ	主模式	4	-		
t _{h(SI)} (1)	数据输入保持时间	从模式	5	-	ns	
t _{a(SO)} (1)(4)	数据输出访问时间	从模式	t _{PCLK} - 2	2t _{PCLK} + 2	ns	
t _{dis(SO)} (1)(5)	数据输出禁止时间	从模式	t _{PCLK} - 2	2t _{PCLK} + 2	ns	
t _{v(SO)} (1)	数据输出有效时间	从模式(使能边沿之后)	-	25	ns	
t _{v(MO)} ⁽¹⁾	数据输出有效时间	主模式 (使能边沿之后)	-	10	ns	
t _{h(SO)} ⁽¹⁾	数据输出保持时间	从模式 (使能边沿之后)	9	-	no	
t _{h(MO)} ⁽¹⁾	数功相制正式打印 印	主模式 (使能边沿之后)	2	-	ns	

- (1) 由设计保证,不在生产中测试。
- (2) 从模式最大时钟频率不得超过fpclk/2。
- (3) 最大时钟频率与器件和PCB布局高度相关。想要获得更完整详细的解决方案,可以联系邻近的雅特力销售处寻求 技术支持。
- (4) 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- (5) 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

图 20. SPI 时序图 - 从模式和 CPHA = 0

图 21. SPI 时序图 - 从模式和 CPHA = 1

图 22. SPI 时序图 - 主模式

4.3.15 I²S / I²SF 接口特性

表 42. I2S/I2SF 特性

符号	参数	条件	最小值	最大值	单位
tr(CK)	I ² S时钟上升和下降时间	负载电容: C = 15 pF	-	12	
t _{v(WS)} (1)	WS有效时间	主模式	0	4	
t _{h(WS)} (1)	WS保持时间	主模式	0	4	
t _{su(WS)} (1)	WS建立时间	从模式	9	-	
t _{h(WS)} ⁽¹⁾	WS保持时间	从模式	0	-	
tsu(SD_MR) ⁽¹⁾	数据输入建立时间	主接收器	6	-	20
tsu(SD_SR) ⁽¹⁾	数据制八建立时间	从接收器	2	-	ns
t _{h(SD_MR)} (1)	数据输入保持时间	主接收器	0.5	-	
th(SD_SR)(1)	数据棚八体行时间	从接收器	0.5	-	
t _{v(SD_ST)} (1)	数据输出有效时间	从发送器(使能边沿之后)	-	20	
th(SD_ST) ⁽¹⁾	数据输出保持时间	从发送器(使能边沿之后)	9	-	
t _{v(SD_MT)} (1)	数据输出有效时间	主发送器 (使能边沿之后)	-	15	
th(SD_MT) ⁽¹⁾	数据输出保持时间	主发送器 (使能边沿之后)	0	-	

⁽¹⁾ 由设计保证,不在生产中测试。

图 23. I2S/I2SF 从模式时序图(Philips 协议)

(1) 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。

2024.4.1 第 60 页 版本 2.01

图 24. I²S/I²SF 主模式时序图(Philips 协议)

(1) 前一字节的最低位发送/接收。在第一个字节之前没有这个最低位的发送/接收。

4.3.16 QSPI 接口特性

表 43. QSPI 特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{SCK}	QSPI时钟频率	-	-	-	108	MHz
tw(CKH)	QSPI时钟高和低的时间	OSDI时知亨和瓜的时间	(t _(CK) / 2) - 2	-	t _(CK) / 2	ns
tw(CKL)		-	t _(CK) / 2	-	(t _(CK) / 2) + 2	ns
ts(IN)	数据输入建立时间	-	2	-	-	ns
th(IN)	数据输入保持时间	-	4.5	-	-	ns
t _{v(OUT)}	数据输出有效时间	-	-	1.5	3	ns
th(OUT)	数据输出保持时间	-	0	-	-	ns

25.9

mΑ

图 25. QSPI 时序图

4.3.17 I2C 接口特性

SDA和SCL GPIO要求的满足有以下限制: SDA和SCL不是"真"开漏的引脚, 当配置为开漏输出时, 在引出脚和V_{DD}之间的PMOS管被关闭, 但仍然存在。

 I^2C 总线接口支持标准模式(最高100 kHz)、快速模式(最高400 kHz)、和增强快速模式(最高1 MHz)。

4.3.18 OTGHS 接口特性

条件 最小值(1) 典型值 最大值(1) 符号 参数 单位 V_{DD} OTGHS操作电压 3.0 V 3.6 $V_{DI}^{(2)}$ 差分输入灵敏度 I (OTGHS_D+/D-) 300 $V_{CM}^{(2)}$ 差分共模范围 -50 500 输入电平 mV $V_{SQ}^{(2)}$ 静噪检测阈值 100 200 $V_{DSC}^{(2)}$ 断开检测阈值 525 625 _ V_{OI} 空闲输出 -20 20 V_{OI} 低电平输出 -20 20 输出电平 V_{OH} 440 高电平输出 360 400 mV (差分) Chirp J输出 700 1100 VCHIRPJ Chirp K输出 -900 -500 VCHIRPK **R**REF OTGHS R外接电阻 11.88 12 12.12 kΩ 运行电流(数据传输和无 | fhclk = 168 MHz, LDO =

表 44. OTGHS 直流特性

(1) 所有的电压测量都是以设备端地线为准。

传输电流消耗差值)

(2) 由设计保证,不在生产中测试。

 I_{DD}

表 45. OTGHS 电气特性

1.2 V

符号	参数	条件	最小值(1)	典型值	最大值(1)	单位
t _r	上升时间(2)	-	100	-	-	ps
t _f	下降时间(2)	-	100	-	-	ps
Z _{DRV}	驱动输出阻抗	-	40.5	45	49.5	Ω

- (1) 由设计保证,不在生产中测试。
- (2) 测量数据信号从10%至90%。

4.3.19 OTGFS 接口特性

表 46. OTGFS 启动时间

符号	参数	最大值	单位
t _{STARTUP} (1)	OTGFS收发器启动时间	1	μs

⁽¹⁾ 由设计保证,不在生产中测试。

表 47. OTGFS 直流特性

符号		参数	条件	最小值(1)	典型值	最大值(1)	单位
V _D	D	OTGFS操作电压	-	3.0(2)	-	3.6	V
	V _{DI} (3)	差分输入灵敏度	I (OTGFS_D+/D-)	0.2	-	-	
输入电平	$V_{CM}^{(3)}$	差分共模范围	包含V _{DI} 范围	0.8	-	2.5	V
	$V_{SE}^{(3)}$	单端接收器阈值	-	1.3	-	2.0	
输出电平	V _{OL} 静态输出低电平 1.24 kg		1.24 kΩ的R _L 接至3.6 V ⁽⁴⁾	-	-	0.3	V
棚田屯丁	V_{OH}	静态输出高电平	15 kΩ的RL接至V _{SS} ⁽⁴⁾	2.8	-	3.6	V
D _o		OTGFS_D+内部上拉	VIN = VSS	0.97	1.24	1.58	kΩ
R _{PU}		电阻	VIIV = V55	0.97	1.24	1.56	K12
R _{PD}		OTGFS_D+/D-内部	VIN = VDD	15	19	25	kΩ
KP	ט	下拉电阻	טטע = אווע	15	19	25	V77

- (1) 所有的电压测量都是以设备端地线为准。
- (2) AT32F405/402系列的正确OTGFS功能可以在2.7 V得到保证,而不是全部的电气特性在2.7~3.0 V电压范围下降级。
- (3) 由设计保证,不在生产中测试。
- (4) RL是连接到USB驱动器上的负载。

图 26. OTGFS 时序: 数据信号上升和下降时间定义

表 48. OTGFS 电气特性

符号	参数	条件	最小值(1)	最大值(1)	单位
t _r	上升时间(2)	C _L ≤ 50 pF	4	20	ns
t _f	下降时间(2)	C _L ≤ 50 pF	4	20	ns
t _{rfm}	上升下降时间匹配	t_r/t_f	90	110	%
V _{CRS}	输出信号交叉电压	-	1.3	2.0	V

- (1) 由设计保证,不在生产中测试。
- (2) 测量数据信号从10%至90%。更多详细信息,参见USB规范第7章(2.0版)。

2024.4.1 第 63 页 版本 2.01

4.3.20 12 位 ADC 特性

除非特别说明,下表的参数是使用符合表15的条件的环境温度, f_{PCLK2} 频率和 V_{DDA} 供电电压测量得到。

注: 建议在每次上电时执行一次校准。

表 49. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
VDDA	供电电压	-	2.4	-	3.6	٧
Idda	在VDDA输入脚上的电流	-	-	475 ⁽¹⁾	560	μA
fadc	ADC时钟频率	-	0.6	-	28	MHz
fs ⁽²⁾	采样速率	-	0.05	-	2	MHz
f _{TRIG} (2)	加如猫头蓝家	f _{ADC} = 28 MHz	-	-	1.65	MHz
ITRIG(=)	外部触发频率	-	-	-	17	1/fadc
Vain	转换电压范围(3)	-	0(V _{REF} -内部连接到地)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	外部输入阻抗	-	参见 <i>表50</i> 和 <i>表51</i>			Ω
C _{ADC} ⁽²⁾	内部采样和保持电容	-	-	8.5	13	pF
t _{CAL} ⁽²⁾	校准时间	f _{ADC} = 28 MHz	6.6	1		μs
ICAL(=)	权在时间	-	185			1/fadc
t _{latr} (2)	An 4-たたねロナスエ	f _{ADC} = 28 MHz	-	-	71.4	ns
llatr'-/	触发转换时延	-	-	-	2 ⁽⁴⁾	1/fadc
4 (2)	立社中包	f _{ADC} = 28 MHz	0.053	-	8.55	μs
ts ⁽²⁾	采样时间	-	1.5	-	239.5	1/fadc
t _{STAB} (2)	上电时间	-	42			1/fadc
t · · · (2)	总转换时间(包括采样	f _{ADC} = 28 MHz	0.5 - 9		9	μs
t _{CONV} ⁽²⁾	时间)	-	14~252(采样ts + 逐步逼近12.5)			1/fadc

- (1) 由综合评估得出,不在生产中测试。
- (2) 由设计保证,不在生产中测试。
- (3) VREF+在内部连接到VDDA, VREF-在内部连接到VSSA。
- (4) 对于外部触发,必须加上一个延迟1/fpcLK2。

表50和表51决定最大的外部阻抗,使得误差可以小于1 LSB。

表 50. f_{ADC} = 14 MHz 时的最大 $R_{AIN}^{(1)}$

Ts(周期)	t _S (μ s)	最大Rain(kΩ)
1.5	0.11	0.35
7.5	0.54	3.9
13.5	0.96	7.4
28.5	2.04	16.3
41.5	2.96	24.0
55.5	3.96	32.3
71.5	5.11	41.8
239.5	17.11	50.0

(1) 由设计保证。

表 51.	fanc =	28	MHz	时的	最大	$R_{AIN}^{(1)}$
1 V V I .	IADC -		141112	MJ HJ	ハスノ	· VAIN

T _S (周期)	t _S (µs)	最大R _{AIN} (kΩ)
1.5	0.05	0.1
7.5	0.27	1.6
13.5	0.48	3.4
28.5	1.02	7.9
41.5	1.48	11.7
55.5	1.98	15.9
71.5	2.55	20.6
239.5	8.55	50.0

⁽¹⁾ 由设计保证。

表 52. ADC 精度⁽¹⁾⁽²⁾

符号	参数	测试条件	典型值	最大值	单位
ET	综合误差		±2	±3	
EO	偏移误差	fadg = 28 MHz, Rain < 10 kΩ,	±1	±1.5	
EG	增益误差	VDDA = 3.0~3.6 V, TA = 25 °C	±1.5	±2.5	LSB
ED	微分线性误差	VBBA = 0.0 0.0 V, TA = 20 0	±0.8	±1	
EL	积分线性误差		±1.2	±1.5	
ET	综合误差		±3	±4	
EO	偏移误差	fadc = 28 MHz, Rain < 10 kΩ,	±1.5	±2.5	
EG	增益误差	$V_{DDA} = 2.4 \sim 3.6 \text{ V}, T_{A} = -40 \sim 105 \text{ °C}$	±2	±3	LSB
ED	微分线性误差	2.1 0.0 0, 14 40 100 0	±1	-1/+1.5	
EL	积分线性误差		±1.5	±2.5	

- (1) ADC的直流精度数值是在经过内部校准后测量的。
- (2) 由综合评估得出,不在生产中测试。

图 27. ADC 精度特性

图 28. 使用 ADC 典型的连接图

- (1) 有关RAIN和CADC的数值,参见表49。
- (2) Cparasitic表示PCB(与焊接和PCB布局质量相关)与焊盘上的寄生电容(大约7 pF)。较大的Cparasitic数值将降低转换的精度,解决的办法是减小f_{ADC}。

PCB设计建议

应如图中所示执行电源去耦。100 nF的电容器应为陶瓷型(高质量),应与芯片尽可能靠近放置。

4.3.21 内部参照电压(V_{INTRV})特性

表 53. 内置参照电压特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{INTRV} ⁽¹⁾	内部参照电压	-	1.16	1.20	1.24	٧
T _{Coeff} ⁽¹⁾	温度系数	-	-	50	100	ppm/°C
Ts_VINTRV ⁽²⁾	当读出内部参照电压时,ADC的采样时间	-	5.1	-	-	μs

- (1) 由综合评估得出,不在生产中测试。
- (2) 由设计保证,不在生产中测试。

4.3.22 温度传感器 (V_{TS}) 特性

表 54. 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
T _L (1)	V _{TS} 相对于温度的线性度	T _A = -10 ~ +70 °C	1	±1	±2	°C
I L(·)		T _A = -40 ~ +105 °C	-	-	±3.5	30
Avg_Slope ⁽¹⁾⁽²⁾	平均斜率	-	1.59	-1.69	-1.79	mV/°C
V ₂₅ ⁽¹⁾⁽²⁾	在25℃时的电压	-	460	490	520	mV
t _{START} (3)	建立时间	-	ı	-	20	μs
Ts_temp ⁽³⁾	当读取温度时,ADC采样时间	-	5.1	-	-	μs

- (1) 由综合评估得出,不在生产中测试。
- (2) 温度传感器输出电压随温度线性变化,由于生产过程的变化,温度变化曲线的偏移在不同芯片上会有不同(最多相差约20℃)。内部温度传感器更适合于检测温度的变化,而不是测量绝对的温度。如果需要测量精确的温度,应该使用一个外置的温度传感器。
- (3) 由设计保证,不在生产中测试。

利用下列公式得出温度:

温度(°C) = {(V25 – VTS) / Avg Slope} + 25

这里:

V25 = VTS在25°C时的数值

Avg Slope = 温度与Vrs曲线的平均斜率(单位为mV/°C)

图 29. V_{TS} 对温度理想曲线图

5 封装数据

5.1 LQFP64 - 10 x 10 mm 封装

图 30. LQFP64 - 10 x 10 mm 64 引脚薄型正方扁平封装图

表 55. LQFP64 - 10 x 10 mm 64 引脚薄型正方扁平封装机械数据

1-11		毫米					
标号	最小值	典型值	最大值				
А	-	-	1.60				
A1	0.05	-	0.15				
A2	1.35	1.40	1.45				
b	0.17	0.20	0.27				
С	0.09	-	0.20				
D	11.75	12.00	12.25				
D1	9.90	10.00	10.10				
E	11.75	12.00	12.25				
E1	9.90	10.00	10.10				
е		0.50 BSC.					
Θ		3.5° REF.					
L	0.45	0.60	0.75				
L1	1.00 REF.						
ccc		0.08					

5.2 LQFP64 - 7 x 7 mm 封装

图 31. LQFP64 - 7 x 7 mm 64 引脚薄型正方扁平封装图

表 56. LQFP64 - 7 x 7 mm 64 引脚薄型正方扁平封装机械数据

标号	亳米		
	最小值	典型值	最大值
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.13	0.18	0.23
С	0.09	-	0.20
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	0.40 BSC.		
Θ	0°	3.5°	7°
L	0.45	0.60	0.75
L1		1.00 REF.	

5.3 LQFP48 - 7 x 7 mm 封装

图 32. LQFP48 - 7 x 7 mm 48 引脚薄型正方扁平封装图

表 57. LQFP48 - 7 x 7 mm 48 引脚薄型正方扁平封装机械数据

标号	亳米		
	最小值	典型值	最大值
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09	-	0.20
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	0.50 BSC.		
Θ	0°	3.5°	7°
L	0.45	0.60	0.75
L1		1.00 REF.	

5.4 QFN48 - 6 x 6 mm 封装

图 33. QFN48 - 6 x 6 mm 48 引脚正方扁平无引线封装图

表 58. QFN48 - 6 x 6 mm 48 引脚正方扁平无引线封装机械数据

标号	毫米		
	最小值	典型值	最大值
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.203 REF.		
b	0.15	0.20	0.25
D	5.90	6.00	6.10
D2	3.07	3.17	3.27
Е	5.90	6.00	6.10
E2	3.07	3.17	3.27
е	0.40 BSC.		
K	0.20	-	-
L	0.35	0.40	0.45

5.5 QFN32 - 4 x 4 mm 封装

图 34. QFN32 - 4 x 4 mm 32 引脚正方扁平无引线封装图

表 59. QFN32 - 4 x 4 mm 32 引脚正方扁平无引线封装机械数据

标号	毫米		
	最小值	典型值	最大值
А	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.203 REF.		
b	0.15	0.20	0.25
D	3.90	4.00	4.10
D2	2.65	2.70	2.75
E	3.90	4.00	4.10
E2	2.65	2.70	2.75
е	0.40 BSC.		
K	0.20	-	-
L	0.25	0.30	0.35

5.6 封装丝印

AT32F405/402 根据不同封装大小有下列几类丝印, 丝印显示内容图示如下:

图 35. 丝印示意图

(1) 未按比例绘制。

5.7 热特性

根据电路板为FR-4材质, 板厚1.6 mm, 两层板仿真计算。由设计保证, 不在生产中测试。

表 60. 封装的热特性

符号	参数	数值	单位
	结到环境的热阻抗 - LQFP64 - 10 x 10 mm	86.0	
	结到环境的热阻抗 - LQFP64 - 7 x 7 mm	94.3	
Θ_{JA}	结到环境的热阻抗 - LQFP48 - 7 x 7 mm	94.3	°C/W
	结到环境的热阻抗 - QFN48 - 6 x 6 mm	57.1	
	结到环境的热阻抗 - QFN32 - 4 x 4 mm	71.5	

型号说明 6

-7 = LQFP64 - 7 x 7 mm封装

-4 = QFN32 - 4 x 4 mm封装

无 = 其他封装

关于更多的选项列表(速度、封装等)和其他相关信息,请与您本地的雅特力销售处联络。

7 文档版本历史

表 62. 文档版本历史

日期	版本	变更
2023.10.17	2.00	最初版本
2024.4.1	2.01	 修改PA11和PA12支持5 V电平容忍 修正USART/UART最高速率

重要通知 - 请仔细阅读

买方自行负责对本文所述雅特力产品和服务的选择和使用,雅特力概不承担与选择或使用本文所述雅特力产品和服务相关的任何责任。

无论之前是否有过任何形式的表示,本文档不以任何方式对任何知识产权进行任何明示或默示的授权或许可。如果本文档任何部分涉及任何 第三方产品或服务,不应被视为雅特力授权使用此类第三方产品或服务,或许可其中的任何知识产权,或者被视为涉及以任何方式使用任何 此类第三方产品或服务或其中任何知识产权的保证。

除非在雅特力的销售条款中另有说明,否则,雅特力对雅特力产品的使用和/或销售不做任何明示或默示的保证,包括但不限于有关适销性、适合特定用途(及其依据任何司法管辖区的法律的对应情况),或侵犯任何专利、版权或其他知识产权的默示保证。

雅特力产品并非设计或专门用于下列用途的产品:(A)对安全性有特别要求的应用,例如:生命支持、主动植入设备或对产品功能安全有要求的系统;(B)航空应用;(C)航天应用或航天环境;(D)武器,且/或(E)其他可能导致人身伤害、死亡及财产损害的应用。如果采购商擅自将其用于前述应用,即使采购商向雅特力发出了书面通知,风险及法律责任仍将由采购商单独承担,且采购商应独力负责在前述应用中满足所有法律和法规要求。

经销的雅特力产品如有不同于本文档中提出的声明和/或技术特点的规定,将立即导致雅特力针对本文所述雅特力产品或服务授予的任何保证 失效,并且不应以任何形式造成或扩大雅特力的任何责任。

© 2024 雅特力科技 保留所有权利