

Pamukkale Üniversitesi Bilgisayar Mühendisliği Evrimsel Hesaplama Ara Sınav Cevap Kağıdı (05.11.2022)

Öğrenci Numarası: _ Adı Soyadı:

Soru	1	2	3	Toplam
Puan	40	20	40	100
Not				

Tablo 1: Rastgele sayı listesi

$0.25 \mid 0.75 \mid 0.2 \mid 1.0 \mid 0.25$	0.1 0.15 0.5	8 0.05 0.2	0.15 0.7 0.5
--	----------------	------------	--------------

1. Graf teorisinde, tüm düğümleri birbirine bağlı olan alt graflara klik(clique) ismi verilir. Buna göre Şekil 1'de verilen graf için {1,2,3,4} köşelerinin(vertex) oluşturduğu alt graf bir kliktir ve graftaki en büyük kliktir.

vertex	T	2	Э	4	Э	O
1	0	1	1	1	0	0
2	1	0	1	1	0	0
3	1	1	0	1	1	0
4	1	1	1	0	0	1
5	0	0	1	0	0	1
6	0	0	0	1	1	0

Şekil 1: Klik örnek graf

Tablo 2: Örnek graf için komşuluk matrisi

Daha matematiksel bir ifade ile, bir C kümesi, sadece ve sadece G grafının şu şartlar altında bir klikidir:

$$C \subseteq V(G)$$
 ve $u, v \in C \land u \neq v$, $\Longrightarrow uv \in E(G)$

Klik problemi için aşağıda amaç(fitness) fonksiyonu verilmiştir(\vec{x} : İkili çözüm(birey),n: köşe(vertex) sayısı, e_{ij} : i. ve j. vertex arasındaki kenar değeri(0: kenar yok, 1:kenar var, komşuluk matrisinden):

$$f(\vec{x}) = \sum_{i=1}^{n} [x_i - n \cdot x_i \cdot \sum_{j=i+1}^{n} x_j \cdot (1 - e_{ij})]$$
(1)

Bu problemin çözümünde temsil biçimi olarak ikili(binary) temsil seçilmiştir. $\vec{x} = 101010$ bireyi sadece {1,3,5} köşelerinin bulunduğu alt grafi ifade eder ve uygunluk değeri Denklem 1'e göre aşağıdaki şekilde hesaplanmıştır $(x_i = 0)$ olan değerler için hesaplama yapmaya gerek yoktur, ilgili terimler zaten 0 olacaktır. Sadece 1,3 ve 5. köşeler için bakmak yeterlidir).

$$f(\vec{x}) = x_1 - n \cdot x_1 \cdot [x_2 \cdot (1 - e_{12}) + x_3 \cdot (1 - e_{13}) + x_4 \cdot (1 - e_{14}) + x_5 \cdot (1 - e_{15}) + x_6 \cdot (1 - e_{16})] + x_3 - n \cdot x_3 \cdot [x_4 \cdot (1 - e_{34}) + x_5 \cdot (1 - e_{35}) + x_6 \cdot (1 - e_{36})] + x_5 - n \cdot x_5 \cdot [x_6 \cdot (1 - e_{56})]$$

$$f(\vec{x}) = 1 - 6 \cdot 1 \cdot [0 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 1] + 1 - 6 \cdot 1 \cdot [0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0] + 1 - 6 \cdot 1 \cdot [0 \cdot 1]$$

$$= -5 + 1 + 1 = -3$$

(a) (20P) Rastgele sayı listesini ve $P_i=0.5$ değerini kullanarak Şekil 1'deki graf için 6 bitten oluşan ikili temsilde(binary) birey oluşturun $(r \leq P_i \Rightarrow 0)$ ve oluşturduğunuz bu bireyin uygunluk(fitness) değerini hesaplayın.

(b) (20P) **011011** ve **100101** bireylerini ebeveyn olarak kullanın ve rastgele sayı listesini kullanırak $P_c = 0.5$ olasılığı ile tek örnek çaprazlama(uniform crossover) yöntemiyle çaprazlayın $(r \leq P_c \Rightarrow \text{değiştir})$ ve birinci çocuğu değerlendirin.

$$\vec{c_1} = 110001, \ f(\vec{c_1}) = -9$$
 $\vec{c_2} = 001111, \ f(\vec{c_1}) = -8$

2. (20P) Permütasyon temsilinde verilen **71842365** ve **53612478** bireylerini kenar çaprazlama(edge crossover) kullanarak ve seçilecek ilk rastgele değer **5** olacak şekilde çaprazlayın. Rastgele seçim yapmanız gerektiğinde değeri küçük olan elemanı seçin.

Eleman	Komşuluk
1	2,6,7,8
2	1,3,4+
3	2,5,6+
4	2+,7,8
5	3,6,7,8
6	1,3+,5
7	1,4,5,8
8	1,4,5,7

Seçenekler	Seçilen	Sebep	Kısmi Çözüm
hepsi	5	rastgele seçim	5
2,4,8	3	rastgele	53
1,3	4	ortak kenar	534
6,8	2	ortak kenar	5342
7	1	tek değer	53421
1,2,6	6	az komşu	534216
2,6	7	rastgele	5342167
6	2	tek değer	53421678

- 3. Aşağıdaki tabloda 5 bireyin uygunluk(fitness) değerleri verilmiştir.
 - (a) (18P) Bu değerleri kullanarak uygunluk oranlı seçim(fitness proportional selection) ve doğrusal rütbe seçimi(linear ranking selection) için seçilme olasılıklarını belirleyin.

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

Tablo 3: Seçilme olasılıkları

Birey	Fitness	P_{FPS}	Rütbe	$P_{LR}(s=1.5)$	$P_{LR}(s=2)$
A	4	0.2	2	0.2	0.2
В	6	0.3	3	0.25	0.3
С	2	0.1	1	0.15	0.1
D	7	0.35	4	0.3	0.4
Е	1	0.05	0	0.1	0
Toplam	20	1		1	1

(b) (11P) Rütbe seçimi(ranking selection, S=1.5) olasılıklarını kullanarak rulet tekeri(roulette wheel) algoritmasına göre 4 adet ebeveyn seçilirse bunlar hangileri olur? $(r \in [0,1])$

(c) (11P) Turnuva seçim(tournament selection) algoritmasında k=3 değerine göre 4 adet ebeveyn seçilirse bunlar hangileri olur?

- 1. adım: r = 0.25 için B, r = 0.75 için D, r = 0.2 için B
- 2. adım: r = 1.0 için \mathbf{E} , r = 0.25 için \mathbf{B} , r = 0.1 için \mathbf{A}
- 3. adım: r = 0.15 için \mathbf{A} , r = 0.8 için \mathbf{E} , r = 0.05 için \mathbf{A}
- 4. adım: r = 0.2 için \mathbf{B} , r = 0.15 için \mathbf{A} , r = 0.7 için \mathbf{D}

Seçilenler: D, B, A, D