Introduction

The Lattice Problem for Models of PA

Athar Abdul-Quader

Purchase College, SUNY

CT Logic Seminar February 18, 2025 Wesleyan University

Substructure / Interstructure Lattices

- If $\mathcal{M} \models \mathsf{PA}$, then $\mathsf{Lt}(\mathcal{M}) = (\{\mathcal{K} : \mathcal{K} \preccurlyeq \mathcal{M}\}, \preccurlyeq)$ is a lattice, called the substructure lattice of \mathcal{M} .
- ② If $\mathcal{M} \leq \mathcal{N}$, then Lt $(\mathcal{N}/\mathcal{M}) = (\{\mathcal{K} : \mathcal{M} \leq \mathcal{K} \leq \mathcal{N}\}, \leq)$ is a lattice, called the interstructure lattice between \mathcal{M} and \mathcal{N} .

Question

Introduction

For which finite lattices L is there M such that $Lt(M) \cong L$?

Similarly for interstructure lattices: given (countable / nonstandard) \mathcal{M} , for which finite lattices L is there $\mathcal{M} \prec \mathcal{N}$ such that $Lt(\mathcal{N}/\mathcal{M}) \cong L$?

We focus on the interstructure lattice question as it is more general (take $\mathcal{M} = Scl(0)$).

Some Results

Introduction

Suppose $\mathcal{M} \models PA$.

- If $K \in Lt(\mathcal{M})$ is compact, then it is finitely generated (ie, $K = Scl(\bar{a})$ for some finite $\bar{a} \in \mathcal{M}$; by coding, can take K = Scl(a) for a single $a \in M$).
- **2** Lt(\mathcal{M}) is complete.
- **3** Every $K \in Lt(M)$ is the supremum of a set of compact elements.
- Every compact $K \in Lt(M)$ has countably many compact predecessors.

Taken together, (2)-(4): Lt(\mathcal{M}) is \aleph_1 -algebraic. Similarly, if $|\mathcal{M}| = \kappa$ and $\mathcal{M} \prec \mathcal{N}$, then Lt(\mathcal{N}/\mathcal{M}) is κ^+ -algebraic.

Other restrictions?

Essentially no other restrictions are known about which lattices can be the substructure lattice of a model of PA! In particular, there is nothing that rules out any finite lattice from being such a substructure lattice.

Problem

Is every finite lattice L *the substructure lattice of some* $\mathcal{M} \models PA$?

Flavors of results

Introduction

There are essentially three kinds of results that are known for classes of lattices \mathcal{L} :

- For every $L \in \mathcal{L}$ and every $\mathcal{M} \models \mathsf{PA}$, there is $\mathcal{N} \models \mathsf{PA}$ such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong L$.
- ② For every $L \in \mathcal{L}$ and every countable $\mathcal{M} \models \mathsf{PA}$, there is $\mathcal{N} \models \mathsf{PA}$ such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong L$.
- **③** For every $L \in \mathcal{L}$ and every countable, nonstandard $\mathcal{M} \models \mathsf{PA}$, there is $\mathcal{N} \models \mathsf{PA}$ such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong L$.

Examples (1)

Introduction

- Gaifman (1965, published 1976): If I is any set, then every $\mathcal{M} \models \mathsf{PA}$ has an elementary (end) extension \mathcal{N} such that $Lt(\mathcal{N}/\mathcal{M}) \cong (\mathcal{P}(I), \subseteq).$
- Mills (1979): Let D be a distributive lattice. Then D is \aleph_1 -algebraic if and only if every \mathcal{M} has an elementary (end) extension \mathcal{N} such that $Lt(\mathcal{N}/\mathcal{M}) \cong D$.

Example (2)

Introduction

N₅: Pentagon lattice

- Wilkie (1977): for every countable $\mathcal{M} \models \mathsf{PA}$, there is \mathcal{N} such that $\mathcal{M} \prec \mathcal{N}$ and $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{N}_5$.
- Schmerl: there are uncountable \mathcal{M} for which no $\mathcal{N} \succ \mathcal{M}$ exists with $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{N}_5$.

Example (3)

Introduction

 M_3 : modular lattice with three atoms

- Paris (1977) / Schmerl (1986): Every countable, nonstandard $\mathcal{M} \models \mathsf{PA}$ has a cofinal elementary extension \mathcal{N} such that $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{M}_3$.
- If Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{M}_3 , then \mathcal{N} must be a cofinal extension of \mathcal{M} ; in particular, \mathbb{N} does not have an elementary extension \mathcal{M} where $Lt(\mathcal{M}) \cong \mathbf{M}_3$.

Unknown

Introduction

- For each n, the lattice \mathbf{M}_n is the lattice with n+2 elements: 0, 1, and n atoms in between.
- \mathbf{M}_1 is the three element chain (3) and \mathbf{M}_2 is the Boolean algebra on a 2-element set \mathbf{B}_2 : both are distributive (and hence: every $\mathcal{M} \models \mathsf{PA}$ has an elementary extension \mathcal{N} such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathbf{3}, \mathbf{B}_2$.
- \mathbf{M}_n for $n \geq 3$ are non-distributive.

Problem (Embarrassing)

Is M_{16} a substructure lattice?

n = 16 is the smallest case for which this is unknown.

Schmerl

Introduction

- The most general results we have rely on a technique devised by Schmerl (1986): representations of lattices.
- A representation: $\alpha: L \to Eq(A)$ associates an equivalence relation Θ to each element $r \in L$ (subject to some constraints).
- Idea: given a countable, nonstandard \mathcal{M} , describe a type p(x)which ensures that every \mathcal{M} -definable function t(x) induces exactly one of those Θ (on a large definable set).

To motivate the definitions / results, let's go the other way, starting with $\mathcal{M} \prec \mathcal{N}$ such that $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{B}_2$.

The Lattice **B**₂

Introduction

Figure: The lattice \mathbf{B}_2

Fix $\mathcal{M} \prec \mathcal{N}$ is such that $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{B}_2$.

Generators

Introduction

 \mathbf{B}_2 is finite: so each element is compact. There are $a, b \in N$ such that $Lt(\mathcal{N}/\mathcal{M})$ is exactly:

In fact: $tp(\langle a, b \rangle / \mathcal{M})$ knows this! (How can we make this precise?)

$\mathsf{tp}(\langle a,b \rangle)$

Introduction

Suppose $c \in N$. Let t be such that $\mathcal{N} \models t(\langle a, b \rangle) = c$. One of the following must hold:

- $\mathbf{0}$ $c \in M$.

If $c \in M$: Let

$$X = \{x : t(x) = c\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a,b\rangle\in X^{\mathcal{N}}$ and $\mathcal{M}\models t\restriction X$ is constant.

In other words: on X, t induces the trivial equivalence relation.

$\mathcal{M}(a)$

Introduction

If $\mathcal{M}(c) = \mathcal{M}(a)$: There are \mathcal{M} -definable g_1, g_2 such that $\mathcal{N} \models g_1(c) = a \land g_2(a) = c$. Let π_1 be the projection function $\pi_1(\langle x, y \rangle) = x$. Let

$$X = \{x : g_1(t(x)) = \pi_1(x) \land g_2(\pi_1(x)) = t(x)\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a, b \rangle \in X^{\mathcal{N}}$, and $\mathcal{M} \models \forall x, y \in X(t(x) = t(y) \leftrightarrow \pi_1(x) = \pi_1(y)).$

In other words: on X, t induces the same equivalence relation as π_1 .

$\mathcal{M}(b)$

Introduction

If $\mathcal{M}(c) = \mathcal{M}(b)$: There are \mathcal{M} -definable g_1, g_2 such that $\mathcal{N} \models g_1(c) = b \land g_2(b) = c$. Let π_2 be the projection function $\pi_2(\langle x, y \rangle) = y$. Let

$$X = \{x : g_1(t(x)) = \pi_2(x) \land g_2(\pi_2(x)) = t(x)\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a, b \rangle \in X^{\mathcal{N}}$. and $\mathcal{M} \models \forall x, y \in X(t(x) = t(y) \leftrightarrow \pi_2(x) = \pi_2(y)).$

Similarly as before, on X, t induces the same equivalence relation as π_2 .

Introduction

If $\mathcal{M}(c) = \mathcal{N}$: there is \mathcal{M} -definable g_1 such that $\mathcal{N} \models g_1(c) = \langle a, b \rangle$. Let

$$X = \{x : g_1(t(x)) = x\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a,b\rangle \in X^{\mathcal{N}}$, and $\mathcal{M} \models \forall x, y \in X(t(x) = t(y) \leftrightarrow x = y).$

Here: t induces the discrete equivalence relation.

Notice

Introduction

Whenever t is an \mathcal{M} -definable (total) function, consider the equivalence relation induced by $t: x \sim y$ iff t(x) = t(y). We can find an infinite, \mathcal{M} -definable X such that $\langle a,b\rangle\in X^{\mathcal{N}}$ and one of the following holds on X:

- \bullet is trivial (ie, for all $x, y \in X$, $x \sim y$).
- ② $x \sim y$ iff $\pi_1(x) = \pi_1(y)$.
- **3** $x \sim y$ iff $\pi_2(x) = \pi_2(y)$.
- \bullet is discrete (ie, for all $x, y \in X$, $x \sim y$ iff x = y).

Definitions

Introduction

Let X be a set and L a finite lattice. Then:

Technique

- Eq(X) is the lattice of equivalence relations on X, with top element $\mathbf{1}_X = X \times X$ (trivial relation) and bottom element $\mathbf{0}_X = \{(a, a) : a \in X\}$ (discrete relation).
- $\alpha: L \to Eq(X)$ is a representation if it is one to one and:
 - $\alpha(0_L) = \mathbf{1}_X \ (\alpha(0) \text{ is trivial}),$
 - $\alpha(1_L) = \mathbf{0}_X \ (\alpha(1) \text{ is discrete})$, and
 - $\alpha(x \vee y) = \alpha(x) \wedge \alpha(y)$.

That is, a representation picks out specific equivalence relations on X, one for each $r \in L$. Ensure that if $x \leq y$, then $\alpha(y)$ refines $\alpha(x)$.

Example

Introduction

In any $\mathcal{M} \models \mathsf{PA}$, let X be the set of pairs

$$\{\langle x, y \rangle : x \in M, y \in M, \text{ and } x < y\}.$$

Define $\alpha: \mathbf{B}_2 \to \mathrm{Eq}(X)$:

- $\alpha(0)$ is trivial,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(a)$ iff $a_1 = b_1$.
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(b)$ iff $a_2 = b_2$, and
- $\alpha(1)$ is discrete.

(Clearly a representation.)

More definitions

Introduction

Let $\alpha: L \to Eq(X)$ be a representation. Then:

- **1** If $Y \subseteq X$, then $\alpha | Y : L \to Eq(Y)$ is defined by $(\alpha|Y)(r) = \alpha(r) \cap Y^2$ for each $r \in L$.
- ② If $\Theta \in Eq(X)$, Θ is canonical for α if there is $r \in L$ such that for all $x, y \in X$, $(x, y) \in \Theta$ iff $(x, y) \in \alpha(r)$.

Constructing **B**₂

Introduction

Let $\mathcal{M} \models \mathsf{PA}$ be countable. Fix X to be the set of pairs, and $\alpha: \mathbf{B}_2 \to \mathsf{Eq}(X)$ as before. We wish to construct a complete type p(x) such that if c realizes p(x), then $\mathsf{Lt}(\mathcal{M}(c)/\mathcal{M}) \cong \mathbf{B}_2$.

We do this by constructing a sequence $X_0 \supseteq X_1 \supseteq ...$ of definable sets that will generate p(x); that is,

$$p(x) = {\phi(x) : \exists n \in \omega(X_n \subseteq \phi(\mathcal{M}))}.$$

We ensure that p(x) knows that $\mathrm{Lt}(\mathcal{M}(c)/\mathcal{M})\cong \mathbf{B}_2$: that is, for each t(x), we ensure that there is X_n where (the equivalence relation induced by) t is canonical for $\alpha|X_n$.

(Skipping details.)

Definitions

Introduction

Definition (Schmerl 1986)

Let $\alpha: L \to Eq(X)$ be a representation.

- \bullet has the 0-canonical partition property, or is 0-CPP, if for each $r \in L$, $\alpha(r)$ does not have exactly two classes.
- α is (n+1)-CPP if, for each $\Theta \in Eq(X)$ there is $Y \subseteq X$ such that $\alpha|Y$ is an *n*-CPP representation and $\Theta \cap Y^2$ is canonical for $\alpha | Y$.

The α we used was n-CPP for every $n \in \omega$.

Main Results

Introduction

Theorem (Schmerl 1986)

Let $\mathcal{M} \models PA$ be countable and nonstandard and let L be a finite lattice. Then the following are equivalent:

- **1** \mathcal{M} has an elementary extension \mathcal{N} such that $Lt(\mathcal{N}/\mathcal{M}) \cong L$.
- **2** L has an n-CPP representation for each $n \in \omega$.
- **3** \mathcal{M} has a cofinal elementary extension \mathcal{N} such that $Lt(\mathcal{N}/\mathcal{M}) \cong L$.

Refining the method

We can refine the previous result.

Definition

Introduction

Let $\mathcal{M} \models \mathsf{PA}$ and L a finite lattice.

- **1** $\alpha: L \longrightarrow \text{Eq}(X)$ is an \mathcal{M} -representation if α and X are \mathcal{M} -definable.
- ② If $X \in \text{Def}(\mathcal{M})$, then by $\text{Eq}^{\mathcal{M}}(X)$ we mean the lattice of \mathcal{M} -definable equivalence relations on X.
- ③ $\mathcal C$ is an $\mathcal M$ -correct set of representations of L if $\mathcal C$ is a nonempty set of 0-CPP $\mathcal M$ -representations of L and whenever $\alpha: L \longrightarrow \mathsf{Eq}(X) \in \mathcal C$ and $\Theta \in \mathsf{Eq}^{\mathcal M}(X)$, there is $Y \subseteq X$ such that $\alpha|Y \in \mathcal C$ and $\Theta \cap Y^2$ is canonical for $\alpha|Y$.

Refined Theorem

Introduction

Theorem (Schmerl 2024)

Let $\mathcal{M} \models PA$ and L be a finite lattice. Then:

- If there is \mathcal{N} such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathsf{L}$, then there is an \mathcal{M} -correct set of representations of L.
- If M is countable and there is an M-correct set of representations of L, then there is $\mathcal{N} \succ \mathcal{M}$ such that $Lt(\mathcal{N}/\mathcal{M}) \cong L$.

Connection

Introduction

In particular: if L has n-CPP representations $(n \in \omega)$:

- We can express this in \mathcal{L}_{PA} ; there is a formula cpp(L, n) such that, for each $n \in \omega$ and each finite lattice L. L has an n-CPP representation if and only if PA $\vdash cpp(L, n)$.
- If $\mathcal{M} \models PA$ is countable and nonstandard, and L has an *n*-CPP representation for each $n \in \omega$, then $\mathcal{M} \models cpp(L,c)$ for some nonstandard c (overspill).
- Then the set \mathcal{C} of all c-CPP \mathcal{M} -representations for some nonstandard c is an \mathcal{M} -correct set of representations of L.

(That is, Schmerl 2024 generalizes Schmerl 1986.)

The Lattice Problem

Introduction

So how do we attack the lattice problem in general?

- For each finite lattice L, try to find a specific representation?
- Is there a proof that all finite lattices have n-CPP representations for every $n \in \omega$? (not yet)
- Is there a proof that all finite lattices in some infinite class have n-CPP representations for every $n \in \omega$? (Yes!)

Again: we will look at an example to motivate the general result; this time, we consider M_3 .

The lattice M₃

Introduction

Figure: The lattice M_3 .

Easy representation: $\alpha: \mathbf{M}_3 \to \text{Eq}(\{0,1,2\})$ defined by:

- $(x, y) \in \alpha(a)$ iff x = y = 0 or $x \neq 0$ and $y \neq 0$,
- $(x, y) \in \alpha(b)$ iff x = y = 1 or $x \neq 1$ and $y \neq 1$,
- $(x, y) \in \alpha(c)$ iff x = y = 2 or $x \neq 2$ and $y \neq 2$.

(Exercise: check that this determines a representation. In fact, this is an isomorphism!)

CPP?

Introduction

The aforementioned α is not n-CPP, for any n. However, let \mathcal{M} be countable, nonstandard, and $m \in M$ (possibly nonstandard). Then:

- Let 3^m refer to the set of codes of \mathcal{M} -finite sequences s of length m, such that for each i < m, $(s)_i \in \{0,1,2\}$.
- Define $\alpha^m : \mathbf{M}_3 \to 3^m$ by $(s,t) \in \alpha^m(r)$ iff $((s)_i,(t)_i) \in \alpha(r)$ for each i < m.
- Let $\alpha_1: L \to \text{Eq}(A_1), \alpha_2: L \to \text{Eq}(A_2)$. Define $\alpha_1 \cong \alpha_2$ to mean that there is a bijection $f: A_1 \to A_2$ such that for all $x, y \in A_1$ and $r \in L$, $(x, y) \in \alpha_1(r)$ if and only if $(f(x), f(y)) \in \alpha_2(r)$.
- Define $\alpha_1 \to \alpha_2$ to mean that whenever $\Theta \in Eq(A_1)$, there is $B \subseteq A_1$ such that Θ is canonical for $\alpha_1 | B$ and $\alpha_1 | B \cong \alpha_2$.
- For each $m \in \omega$, there is n > m such that $\alpha^n \to \alpha^m$.

This is not obvious: how do we prove it? Combinatorial generalization: extended Hales-Jewett / Prömel-Voigt.

Congruence Lattices

Introduction

Let A be a set, I an index set, and for each $i \in I$, $f_i : A^n \to A$ (for some $n \in \omega$). Then $(A, \langle f_i : i \in I \rangle)$ is called an algebra.

If $\mathcal{A} = (A, \langle f_i : i \in I \rangle)$ is an algebra, then $\theta \in Eq(A)$ is a congruence if it commutes with all f_i .

Cg(A) is the set of all congruences on A; sublattice of Eq(A); such lattices are referred to as congruence lattices.

Congruence representations

If L is a lattice, then L^d is the lattice with the ordering reversed.

Definition

Let L be a finite lattice and $\alpha: L \to \operatorname{Eq}(A)$ be a representation. Then α is a congruence representation if there is an algebra $\mathcal A$ such that $\alpha \cong \operatorname{Cg}(\mathcal A)^d$. (Such a representation is a finite congruence representation if $\mathcal A$ can be taken to be finite.)

Theorem

Suppose L is a finite lattice with a finite congruence representation. Then L has an n-CPP representation for every $n \in \omega$. (Corollary: for every \mathcal{M} , there is \mathcal{N} such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathsf{L}$.)

Idea: Let α be a finite congruence representation. Then show that α^2 is 0-CPP and for each $n \in \omega$, there is m > n such that $\alpha^m \to \alpha^n$.

Known and unknown

Introduction

- Known: every algebraic lattice is isomorphic to a congruence algebra.
- Open ("finite lattice representation problem"): is every finite lattice isomorphic to Cg(A) for some finite A?
- Every finite lattice that is currently known to be a substructure lattice has a congruence representation.
- Unknown: is there a finite substructure lattice that is not a congruence representation?

Thank you!

Introduction

Everything mentioned today is surveyed in Abdul-Quader and Kossak, "The Lattice Problem for models of PA" (BSL).

Some other references:

- Kossak and Schmerl, The Structure of Models of Peano Arithmetic (Chapter 4)
- Schmerl, Substructure lattices of models of Peano arithmetic.
 Logic Colloquium 84, pp. 225-243 (1986).
- Schmerl, The pentagon as a substructure lattice of models of Peano arithmetic. The Journal of Symbolic Logic, pp. 1-25 (2024).