6.036 Introduction to Machine Learning

(meets with 6.862)

Nonlinear Classification - Kernels (Chapter 5 in notes)

Administrivia

Project #1 due tomorrow Friday 3/3 @ 9AM.

Homework #3 posted, due 3/10 @ 9AM.

As always:

- Check LMOD/Piazza for announcements.
- To contact staff, use Piazza
 (6036-staff@lists.csail.mit.edu for exceptions only)

So far...

Tasks:

- Binary classification (linear)

$$h\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = -1 \qquad \qquad h: \mathcal{X} \to \{-1, +1\}$$

- Regression (linear)

- **Formulations:** hyperplane separation, empirical risk minimization, regularization, ...
- Algorithms: perceptron, stochastic gradient, ...

Why "linear"?

Binary Classification:hyperplane separation

What if data is *not* linearly separable?

 Regression: predictor is a linear function of feature vectors

$$f(x; \theta, \theta_0) = \theta \cdot x + \theta_0 = \sum_{i=1}^{a} \theta_i x_i + \theta_0$$

What if the right predictor is not linear?

The world is complicated...

Sometimes (often), even if data points are well-separated, a hyperplane may not be enough...

Or, the "true" relationship may be nonlinear...

Key idea: create new features

 Nonlinear map φ(x) to a higher-dimensional space

Example:

$$\phi([x_1, x_2]^T) = [x_1, x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2]^T$$

- Here the map is $\varphi: \mathbb{R}^2 \to \mathbb{R}^5$
- Why this may be a good idea?

Linear becomes nonlinear!

 Upstairs, we separate with hyperplanes

However, in the base space, decision boundaries are not hyperplanes!

Q: Why?

Much more expressive power! :)

- ▶ But, dimension may be much higher: in our example, O(n²)
- Typically, computationally too expensive :(

However...

Notice that many algorithms only rely on inner products

Binary classification (e.g., perceptron)

If
$$y^{(t)}(\theta \cdot x^{(t)}) \le 0$$
 (mistake)
then $\theta \leftarrow \theta + y^{(t)}x^{(t)}$

Linear regression (e.g, stochastic gradient)

set
$$\theta^{(0)} = 0$$

randomly select $t \in \{1, ..., n\}$
 $\theta^{(k+1)} = \theta^{(k)} + \eta_k (y^{(t)} - \theta \cdot x^{(t)}) x^{(t)}$

Kernel "magic"

In some cases, we can very efficiently compute inner products between feature vectors.

E.g, for

$$\phi([x_1, x_2]^T) = [x_1, x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2]^T$$

we have (magic!)

$$\phi(x) \cdot \phi(y) = x \cdot y + (x \cdot y)^2$$

More generally, we may have

$$\phi(x) \cdot \phi(y) = K(x, y)$$

For some "easy" function K(.,.).

Kernels

Associated to a feature map $\varphi(.)$, define the *kernel*:

$$K(x,y) := \phi(x) \cdot \phi(y)$$

If kernel can be computed efficiently, then we can compute inner products between feature vectors!

Can extend ("kernelize") all the algorithms we have learned so they can use nonlinear features!

Kernel perceptron

If
$$y^{(t)}(\theta \cdot \phi(x^{(t)})) \le 0$$
 (mistake)
then $\theta \leftarrow \theta + y^{(t)}\phi(x^{(t)})$

By construction, at any stage of the algorithm we have

$$\theta = \sum_{i=1}^{n} \alpha_i y^{(i)} \phi(x^{(i)})$$

where ai is the number of mistakes made in data point i

But then

$$\theta \cdot \phi(x) = \sum_{i=1}^{n} \alpha_i y^{(i)} \phi(x^{(i)}) \cdot \phi(x) = \sum_{i=1}^{n} \alpha_i y^{(i)} K(x^{(i)}, x)$$

To run the algorithm, only need the kernel, not features!

Standard vs kernel perceptron

If
$$y^{(t)}(\theta \cdot \phi(x^{(t)})) \le 0$$
 (mistake)
then $\theta \leftarrow \theta + y^{(t)}\phi(x^{(t)})$

Keep parameter in "feature" representation, then:

If
$$y^{(t)} \sum_{i=1}^{n} \alpha_i y^{(i)} K(x^{(i)}, x^{(t)}) \leq 0$$
 (mistake)
then $\alpha_t \leftarrow \alpha_t + 1$

Often, solution quite sparse (many ai are zero)

Kernel linear regression

Recall regularized empirical risk minimization:

$$J_{n,\lambda}(\theta) = R_n(\theta) + \frac{\lambda}{2} \|\theta\|^2$$

$$= \frac{1}{n} \sum_{t=1}^n (y^{(t)} - \theta \cdot x^{(t)})^2 / 2 + \frac{\lambda}{2} \|\theta\|^2$$

Solving optimality conditions (derivative equal to zero):

$$n\lambda\alpha_t + \sum_{i=1}^n \alpha_i K(x^{(i)}, x^{(t)}) = y^{(t)}$$
 for all $t = 1, \dots, n$

Predictor is now

$$\hat{\theta} \cdot \phi(x) = \sum_{i=1}^{n} \hat{\alpha}_i \phi(x^{(i)}) \cdot \phi(x) = \sum_{i=1}^{n} \hat{\alpha}_i K(x^{(i)}, x)$$

13

Examples of kernels

Polynomial kernel

$$K(x,y) = (1 + x \cdot y)^d$$

Gaussian (or "radial basis") kernel

$$K(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

Q: What are the associated feature maps?

Kernel rules

How to combine known kernels to produce new ones?

- K(x,y) = 1 is a kernel
- If K(x,y) is a kernel, then so is f(x)*K(x,y)*f(y).
- If K_1 and K_2 are kernels, so are K_1+K_2 and K_1*K_2

Q: Can you use this to show the Gaussian kernel is actually valid?

Summary - Kernels

- Nonlinear map φ(x) to high-dim feature space
- Kernel efficiently computes inner products in feature space (e.g., polynomial, Gaussian)

$$K(x,y) := \phi(x) \cdot \phi(y)$$

- Algorithms (e.g., perceptron and linear regression) can be "kernelized", by replacing inner products by kernel
- Yields nonlinear decision boundaries for classification, or nonlinear functions for regression
 - much more powerful!