



## JRC's Mission

As the science and knowledge service
of the Commission our mission is to support
EU policies with independent evidence
throughout the whole policy cycle





## JRC sites

Headquarters in Brussels and research facilities located in **5 Member States:** 

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)





# Keeping the pace with the development of research

- Fully policy-relevant and world class knowledge production
- Priorities driven knowledge and competence management
- One JRC anticipating emerging issues, understanding complexities and bridging silos
- Addressing challenges of research (information deluge, multidisciplinarity, integrity, reproducibility)





# JRC Role: facts & figures

€ 386 million Budget annually, plus € 62 million earned income

**6** locations in 5 Member States: Italy, Belgium, Germany, The Netherlands, Spain

**Independent** of private, commercial or national interests

**30%** of activities in policy preparation, **70%** in implementation

to the EU policy-maker annually

More than **100** economic, bio-physical and nuclear models



#### **Policy neutral:**

has no policy agenda of its own

**42** large scale research facilities, more than 110 online databases



**83%** of core research staff with PhD's



**Over 1,400** scientific publications per year



# JRC role in support to EU GMO legal frame

EURL GMFF (mandate according to Reg. EC No 1829/2003)

#### Support to the GMO authorisation process

"Validation of methods for detection, Identification and quantification of GM events as mandatory requirement for the authorisation process"



#### MetScan

Is a Bioinformatics Pipeline to support EURL GMFF for in-silico analysis of GMO detection methods

Submission

Processing<sup>1,2</sup>

Report







1 Towards Plant Species Identification in Complex Samples: A Bioinformatics Pipeline for the Identification of Novel Nuclear Barcode Candidate <a href="https://doi.org/10.1371/journal.pone.0147692">https://doi.org/10.1371/journal.pone.0147692</a>

2 Novel nuclear barcode regions for the identification of flatfish species <a href="https://doi.org/10.1016/j.foodcont.2017.04.009">https://doi.org/10.1016/j.foodcont.2017.04.009</a>

## MetScan: How does it work?



Amplicon generation bash scripts running on HPC cluster nodes





Blast ncbi-blast-2.2.31+ installed And running on HPC cluster nodes

#### Problems:

- Dependency on the Hardware
- Software versioning (very fast pace)
- Sys Admin burden (increase with the size of the HPC cluster)
- Prone to human errors
- Long time to test new versions

• ....



e-PCR cmdline tool version 2.3.12 running on HPC cluster nodes

### MetScan



docker prova\_amplicon



#### Advantages:

- · Independency of hardware
- No Software versioning
- No Sys Admin burden
- No Prone to human errors
- Less hands-on intervention



docker prova\_blast



docker prova\_epcr

# Nextflow: Docker & Nextflow config file

Built 3 dockers: amplicon, blast and e-pcr with the same versions of MetScan software

```
root@dockersrv-1 scripts]# docker images
                                      TAG
                                                           IMAGE ID
                                                                                CREATED
                                                                                                      SIZE
antoniopuertas/nextflow_containers
                                      prova_amplicon
                                                           49ec99a7b5cf
                                                                                 7 days ago
                                                                                                      200 MB
prova amplicon
                                       latest
                                                                                7 days ago
antoniopuertas/nextflow_containers
                                      blast
                                                                                  weeks ago
prova blast
                                       latest
antoniopuertas/nextflow_containers
                                                                                  weeks ago
                                      e-pcr
                                       atest
                                                                                  weeks ago
                                                                                                      208 MB
locker io/centos
                                                                                 2 months ago
                                                                                                      200 MB
                                       atest
ocker.jo/nextflow/examples
```

Prepare the following configuration file, which call to the docker repository

```
dockersrv-1 CANU
Terminal Sessions View X server Tools Games Settings Macros Help
 Quick connect...
                                    2. dockersrv-1 CANU
                                                                  3. s-jrciprhpc101p
    rocess {
       withName:amplicon {
            container = 'antoniopuertas/nextflow_containers:prova_amplicon
Sessions
       withName:blast {
            container = 'antoniopuertas/nextflow_containers:blast'
SlooT 🔷
       withName:epcr {
            container = 'antoniopuertas/nextflow_containers:epcr'
    ocker
        enabled = true
```

## Nextflow: Launch script

Launch nextflow –C running the following dir proc.nf file and calling the dockers in the repository

```
rocess amplicon {
     container 'prova_amplicon:latest'
containerOptions '--volume /nfs/data/:/data'
           /bin/bash /amplycon/amplycon.sh /data/source_sequences
process blast ·
     containerOptions '--volume /nfs/data/:/dbs'
     output: file 'output.txt'
blastn -query /dbs/myseq -db /dbs/_EXCHANGE/gmobiongs/from/metscandbs/ensembl_plants/last/Ostreococcus_luc
imarinus.GCA_000092065.1.27.dna.toplevel.fa > <mark>output</mark>.txt && cat <mark>output</mark>.txt > /dbs/results/blast/ostreococcus_l
cimarinus.GCA_000092065.1.27.dna.toplevel.fa.blast.out
blastn -query /dbs/myseq -db /dbs/_EXCHANGE/gmobiongs/from/metscandbs/phytozome_plants/last/Csativus_122_v
..fa > output.txt && cat output.txt > /dbs/results/blast/Csativus_122_v1.fa.blast.out
blastn -query /dbs/myseq -db /dbs/_EXCHANGE/gmobiongs/from/metscandbs/phytozome_plants/last/Athaliana_167_
TAIR9.fa > output.txt && cat output.txt > /dbs/results/blast/Athaliana_167_TAIR9.fa.blast.out
process epcr {
     container 'prova_epcr:latest'
containerOptions '--volume /nfs/data/:/dbs'
e-PCR -n 2 -g 2 -f 3 -t 4 -m 1000 -d 20-1000 -o /dbs/results/e-pcr/Ostreococcus_lucimarinus.GCA_000092065.
..27.dna.toplevel.fa.pcr.out /dbs/myamplicon /dbs/_EXCHANGE/gmobiongs/from/metscandbs/ensembl_plants/last/ostr
eococcus_lucimarinus.GCA_000092065.1.27.dna.toplevel.fa
a.toplevel.fa.pcr.out /dbs/myamplicon /dbs/_EXCHANGE/gmobiongs/from/metscandbs/ensembl_plants/last/Cyanidiosch
zon_merolae.ASM9120v1.27.dna.toplevel.fa
mplicon /dbs/_EXCHANGE/gmobiongs/from/metscandbs/phytozome_plants/last/Athaliana_167_TAIR9.fa
```

# Nextflow: Next steps

#### We believed Nextflow could give us support in answering to the following questions

#### AMR workshop held at the JRC in 2018 1

- How to generate, distribute and update pipelines?
- How to evaluate and demonstrate pipelines accuracy?
- Who is the institution entitled to do that ?

#### Regulatory bioinformatics<sup>2</sup>

- *in NGS*: "One of the key issues in applying NGS/bioinformatics in regulatory decision making is ensuring the accuracy and quality of information"
- In computational Toxicology:
- ... "Validation of different software packages, however, remains an issue"...
- standardization and application of different software and computational methods must be resolved.

<sup>1</sup> The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies doi:10.12688/f1000research.14509

<sup>2</sup> Regulatory bioinformatics for food and drug safety <a href="https://doi.org/10.1016/j.yrtph.2016.05.021">https://doi.org/10.1016/j.yrtph.2016.05.021</a>





# Questions?

You can find me at: <u>antonio.puertas-gallardo@ec.europa.eu</u>