Recuperación de Información Multimedia

Descriptores Globales Gris

(Histogramas, Bordes, Texturas)

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2020

Vector de Intensidades

- Escalar la imagen a un tamaño fijo W x H
- Convertir la imagen a escala de grises
- El descriptor será un vector de largo W*H con la intensidad de cada pixel
- Comparar vectores usando:
 - □ Distancia L₁: Manhattan, Taxicab o City block
 - □ Distancia L₂: Euclidiana

$$L_1(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|$$
 $L_2(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$

NA.

Ordinal Measurement Descriptor (OMD)

- Dividir la imagen en zonas (ej., 8 x 8)
- Calcular la intensidad promedio en cada zona
- Ordenar las intensidades de menor a mayor
- Representar cada zona por la posición en que queda en el arreglo ordenado
- Distancia de Hamming:

$$H(\vec{x}, \vec{y}) = \sum_{i=1}^{n} d_i \qquad d_i = \begin{cases} 0 & \text{si } x_i = y_i \\ 1 & \text{si } x_i \neq y_i \end{cases}$$

M

Ordinal Measurement (OMD)

64	61	46
135	146	116
185	174	145

Γ		٦
3	2	1
5	7	4
9	8	6
L		

10	40	20
50	70	90
30	80	60

$$\begin{bmatrix} 1 & 4 & 2 \\ 5 & 7 & 9 \\ 3 & 8 & 6 \end{bmatrix}$$

M

Histograma de intensidades

- Calcular un histograma de grises de la imagen
- Parámetros:
 - □ Cantidad de bins
 - □ Tipo de asignación (hard vs soft)
 - □ Tipo de normalización (norma L1, L2)
 - □ Tipo de dato a guardar (float, unsigned char)
 - Función de distancia: Minkowski (L_P), Test estadístico como χ² o Kullback-Leibler

$$\chi^2(\vec{x}, \vec{y}) = \sum_{i=1}^n \frac{(x_i - \bar{p}_i)^2}{\bar{p}_i} \qquad \bar{p}_i = \frac{x_i + y_i}{2}$$

8 bins

32 bins

64 bins

128 bins

256 bins

Histograma por Zonas

- Un histograma descarta la ubicación espacial de los pixeles
- La información espacial se puede mantener (en cierta medida) si se divide la imagen en P x Q zonas y se calcula un histograma de N bins independiente por zona
 - □ Asignación "soft" entre zonas → Interpolación "tri-lineal"
- Se concatenan todos los histogramas para formar un descriptor de largo PxQxN
 - Se puede también concatenar el histograma global de la imagen más otras divisiones
- Concatenar divisiones cada vez más finas
 - \square Por ejemplo 1x1 + 2x2 + 4x4, total de 21 zonas
 - Estrategia conocida como "Spatial Pyramid"

Histograma por Zonas

Descriptores de Bordes

M

Histogram of Oriented Gradients (HOG)

- Calcular pixeles de borde
 - Ej: filtros Sobel y luego un threshold sobre magnitud del gradiente
- Para cada pixel de borde calcular su dirección:

$$\theta(i,j) = \arctan\left(\frac{I_y(i,j)}{I_x(i,j)}\right)$$

- Histograma de las direcciones del gradiente
 - □ Usualmente 18 bins en el rango [-180,180] o en el rango [-90, 90] (juntando los sentidos opuestos)
- Mejoras:
 - □ Mejorar detección de bordes (segunda derivada, etc.)
 - Mejorar histograma (usar zonas, asignación suave, normalización, etc.)

Histogram of Oriented Gradients (HOG)

Edge Histogram Descriptor (EHD)

- Dividir la imagen en 4x4 zonas
 - □ Cada zona dividir en muchos bloques de 2x2
 - Mediante filtros detectar la orientación dominante en cada bloque (probar 5 filtros)
 - La orientación dominante debe superar cierto umbral
 - Cada zona se representa por un histograma de los filtros dominantes dentro de ésta (cantidad de bloques de 2x2 para cada filtro)
- Comparación con distancia Manhattan

1	-1
1	-1

$$\begin{array}{|c|c|c|}\hline \sqrt{2} & 0 \\ \hline 0 & -\sqrt{2} \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|} \hline 0 & \sqrt{2} \\ \hline -\sqrt{2} & 0 \\ \hline \end{array}$$

Ver paper Manjunath et al., 2001.

Variación EHD

- Una variante es no usar un histograma si no que representar cada bloque por su tipo de borde
- Dividir la imagen en N bloques de 2x2
 - Mediante filtros detectar la orientación dominante en una zona
 - Representar el bloque por su orientación dominante (entre 10 posibles) o sin orientación (si no supera un valor umbral)
 - □ Vector de largo N, cada dimensión varía entre 0 y 10 (0=sin orientación o "No-Edge")
- Comparación mediante distancia de Hamming

(1)Partition the image into N blocks

Edge Type	Filter
0 deg.	-1 1
	-1 1
45 deg.	0 \sqrt{2}
	-√2 0
90 deg.	1 1
	-1 -1
135 deg.	√2 0
	0 -√2

Edge Type	Filter
180 deg.	1 -1
	1 -1
-135 deg.	0 -√2
	√2 0
-90 deg.	-1 -1
	1 1
-45 deg.	-√2 0
	0 √2

Edge Type	Filter
Non-	2 -2
Direction1	-2 2
Non- Direction2	-2 2
	2 -2
No Edge	

Ver paper Iwamoto et al., 2006.

Un descriptor basado en Canny

- Calcular bordes según Canny, dividir imagen NxM zonas
- Calcular el centroide de bordes y cuantizarlo en PxQ posiciones
- Vector de NxM dimensiones, cada dim entre 1 y PxQ
 Parámetros N=M=15 y P=Q=4
- Comparar vectores con distancia de Hamming

Ejercicio

Calcular los descriptores globales anteriores para estas imágenes de 8x8:

$$\frac{\partial I}{\partial y}(x,y) = I(x,y+1) - I(x,y)$$

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y)$$

Descriptores de Texturas (Frecuencias)

Coeficientes DCT

 Tomar los primeros n² coeficientes (esquina superior izquierda) de aplicar DCT sobre la imagen y cuantizar:

$$\sigma(i) = \begin{cases} 1 & \text{if } DCT\left(\lfloor \frac{i}{n} \rfloor, i - \lfloor \frac{i}{n} \rfloor n\right) \ge m \\ 0 & \text{otherwise} \end{cases} \text{ for } i \in [1, n^2]$$

■ Vector de n² bits

m=media de los n² coeficientes

n=8

n=6

n=7

n=5

Ordinal Measurement con DCT

- Usando DCT, el descriptor OMD puede ser robusto a flip
- Calcular la matriz de intensidades, aplicar DCT y crear una nueva matriz con los coeficientes
- A la matriz de coeficientes aplicar Ordinal Measurement

$$\begin{bmatrix} 1 & 4 & 2 \\ 5 & 7 & 9 \\ 3 & 8 & 6 \end{bmatrix} \begin{bmatrix} 2 & 4 & 1 \\ 9 & 7 & 5 \\ 6 & 8 & 3 \end{bmatrix} \begin{bmatrix} 15.0 & -3.3 & -2.8 \\ -4.1 & 1.0 & 0.6 \\ -4.2 & 1.2 & -2.0 \end{bmatrix} \begin{bmatrix} 15.0 & 3.3 & -2.8 \\ -4.1 & -1.0 & 0.6 \\ -4.2 & -1.2 & -2.0 \end{bmatrix}$$

Homogeneous Texture Descriptor

Dividir el espacio de frecuencias en 30 zonas:

Homogeneous Texture Descriptor

Utilizar filtros de Gabor:

$$h_p(k,\ell) = \frac{1}{2\pi\sigma_p^2} \exp\left(\frac{-(k^2 + \ell^2)}{2\sigma_p^2}\right) \exp\left(j2\pi \left(u_p k + v_p \ell\right)\right)$$

Filtros Gabor

Homogeneous Texture Descriptor

- Para cada zona se aplica un filtro Gabor, según la orientación y el tamaño
- Se representa cada zona según el logaritmo de la media y de la desviación estándar
- Además se guarda la media y desviación estándar de la imagen
- Vector de 62 dimensiones:

$$(\mu, \sigma, \mu_1, ..., \mu_{30}, \sigma_1, ..., \sigma_{30})$$

- Dividir cada valor por la desviación estándar de esa dimensión en la bd
- Distancia Manhattan

Local Binary Patterns

- En una imagen se convierten los pixeles en gris en pixeles del tipo de patrón
- El valor de gris de un pixel se compara con sus 8 pixeles vecinos
 - ☐ Es un 1 si es mayor o igual al pixel central
- Convertirlos a una cadena de 8 bits recorriendo según algún orden.
- Interpretar los 8 bits como entero que es el nuevo valor del pixel
- El descriptor de la imagen es un histograma de estos valores

181	19	72
61	70	91
70	119	27

		
1	0	1
0		1
1	1	0

Local Binary Patterns

- Variantes:
 - Considerar vecindades a un radio r (interpolar pixeles)

- □ El comparar 2 pixeles, es 1 si la diferencia es superior a cierto umbral
- □ Restringir los posibles patrones:
 - Las cadenas de bits con tres o más transiciones 0->1 1->0 se agrupan en un único código
 - Usar machine learning para seleccionar solo las mejores patrones

Bibliografía

- The Essential Guide To Image Processing. Bovik. 2009.
 - □ Cap 3 (Histogramas)

- Multimedia Retrieval. Blanken et al.
 - □pág 143 (Gabor)

Papers

- Manjunath et al. "Color and Texture Descriptors". 2001.
- **Kim et al.** "Content-based image copy detection" y "Spatiotemporal Sequence Matching for Efficient Video Copy Detection". 2002 y 2005.
- Iwamoto et al. "Image signature robust to caption superimposition for video sequence identification". 2006.
- Naturel et al. "A Fast Shot Matching Strategy for Detecting Duplicate Sequences in a Television Stream". 2005.
- Hampapur et al. "Comparison of distance measures for video copy detection" y "Videogrep: video copy detection using inverted file indices". 2001 y 2002.
- Ojala et al. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns". 2002.