

OVERVIEW

Business Problem

Models used

The Data

Results

Business Problem

- Building a model that can classify whether the patient is suffering from Pneumonia or not.
- Using chest X-Ray Images.
- Metrics used:
- Accuracy
- Recall

Pneumonia Background:

- Pneumonia is an infection that causes the lungs air sacs to inflame with fluid/pus making breathing difficult.
- Caused by Bacteria, Viruses, Fungi.
- Severe pneumonia can inflame the lungs to a point where they cannot take enough oxygen or expel enough carbon-di-oxide.

It causes:

- Cough
- Fever
- Chills
- Breathing issues.

Data:

Ol Source: Kaggle

02

No of X-Ray Images(JPEG:

5,863, divided in 2 categories(Pneumonia/Normal

- Train: 5216
- Test: 624
- Validation: 16

Models Implemented:

Convolutional Neural Network Model.

Proposed two CNN models-

- One with a dropout layer
- One without a dropout layer

Data augmentation was applied.

CNN model Results:

Without a dropout layer:

		precision	recall	f1-score	support
Pneumonia(class	0)	0.92	0.97	0.94	390
Normal(Class	1)	0.94	0.85	0.89	234
accuracy				0.92	624
macro	avg	0.93	0.91	0.92	624
weighted	avg	0.93	0.92	0.92	624

With a dropout layer:

		precision	recall	f1-score	support
Pn	eumonia(class 0)	0.82	0.99	0.90	390
	Normal(Class 1)	0.97	0.64	0.77	234
accuracy			0.86	624	
	macro ave	0.89	0.81	0.83	624
	weighted av	0.87	0.86	0.85	624

Conclusion

- CNN(without dropout layers)performed best with an accuracy of 93%.
- Results are not completely reliable.
- If model's recall and accuracy scores are good it can surely help in reducing patient wait times.
- Using Transfer learning methods can provide room for improvement.

Way forward:

- Training selected models with a a higher no of epochs to try to reach convergence.
- Gathering more data for a better model.
- Testing this data on different models.
- This work can be extended to detect and classify X-Ray images with lung cancer & Pneumonia.

Thank you

Namita Rana Email:namitarana21@gmail.com Github:<u>https://github.com/namitarana1</u>