CBCS SCHEME

First Semester B.E Degree Examination, ____

Engineering Mechanics for Civil Engineering Stream (BCIVC103)

TIME: 03Hours Max.Marks:100 NOTES:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is permitted.
- 3. M M arks, L B loom's L evel, C C ourse O utcomes

		Module - 1	M	L	С			
Q.1	a	Explain classifications of force system.	6	L2	CO1			
	b	State and prove law of parallelogram of forces.	7	L2	CO1			
	С	Determine the magnitude and direction of the resultant of the	7	L3	CO1			
		coplanar force system. shown in in Fig. 1(c)						
		800 N 600 N 600 N 100 N Fig.1(c)						
		OR						
Q.2	a	Define force and explain its characteristics.	4	L2	CO1			
	b	State and prove Varignon's theorem.	6	L2	CO1			
	С	Determine the magnitude, direction and position of the resultant of	10	L3	CO1			
		the coplanar non concurrent force system, shown in Fig.2(c)						
		4 kN B 1 m 1 m C 1 m 1.2 m 8 kN-m						
		Fig.2(c)						
	Module – 2							

Q.3	a	State and prove Lami's theorem.	5	L2	CO2		
Q .5	b	Explain different types of Beams.	5	L2	CO2		
	С	Determine the reactions at the supports for the beam shown in Fig.	10	L3	CO2		
		3(c)					
		20 KN/m 100 KN 50 KN/m					
		B B					
		<u>k 3m</u> <u>k 1m</u> <u>k 3m</u> ∀					
		Fig. 3(c)					
OR							
Q.4	a	What is meant by equilibrium? State the conditions of static	5	L2	CO2		
		equilibrium for both coplanar concurrent and non-concurrent force					
		system.		* 0	200		
	b	Draw the FBD of sphere shown in Fig.4(b) and find the reactions of	7	L2	CO2		
		the points of contact.					
		1 kN					
		A B					
		30° () 45°					
		Fig.4(b)					
	С	Determine the tension in the strings. Also calculate '\theta' for shown in	8	L3	CO2		
		Fig. 4(c)					
		<i>!!!!!</i> !					
		AVθ					
		B 350- 411/41					
		60°					
		1000 N					
		800 N					
		Fig. 4(c)					
		Module - 3					
Q5	a	Outline the assumptions made in truss analysis.	4	L2	CO3		
	b	Explain the different types of friction.	4	L2	CO3		
	C	Two blocks A & B weighing 4.0 kN& 2.5kN respectively are	12	L3	CO3		
		connected by a wire passing over a smooth pulley as shown in					
		Fig.5(c) and determine the value of 'P'. Take μ between the contact					

