

Sommaire

- 1. Introduction: que sont les données synthétiques?
 - 1. Définition
 - 2. Intérêt
 - 3. Cas d'usage
- 2. Différentes méthodes de génération
 - 1. Sans avoir accès à la base de données réelles
 - 2. Les problèmes de confidentialité, l'avatarisation
 - 3. Les méthodes de deep learning
- 3. Conclusion: choisir la meilleure approche et en identifier les limites

1. Introduction

Définition Intérêt Cas d'usage

1.1 Introduction: que sont les données synthétiques?

Définition

On appelle "données synthétiques" des données générées de façon aléatoire répliquant certaines propriétés d'une certaine base de données.

Propriétés réplicables

- Schéma (tables, clés de jointure, type des variables)
- Propriétés statistiques (distributions univariées, corrélations, ...)
- Cohérence (règles métiers,...)

1.2 Pourquoi des données synthétiques?

"What I cannot create, I do not understand."

Motivations

- Restrictions d'accès
- Gain de temps (écrire les programmes sur les données synthétiques)
- Evaluer l'intérêt d'une base de données pour une étude
- Intérêt pédagogique

1.3 Cas d'usage

Cas n°1

Je ne sais pas si la base de données peut répondre à ma problématique

Cas n°2

Je souhaite me former à l'utilisation d'une certaine base de données, sans forcément attendre des résultats valables d'un point de vue statistique

Cas n°3

J'aurais bientôt accès à la base de données réelle et je souhaite commencer à écrire mes programmes

Cas n°4

Je n'ai pas le droit d'avoir accès aux données réelles mais je souhaite tout de même conduire une étude

2. Méthodes de génération

Sans accès à la base de données réelle Confidentialité et avatarisation Méthodes de deep learning

2. Méthodes de génération

Sans accès à la base de données réelle Confidentialité et avatarisation Méthodes de deep learning

Un schéma

- liste des tables
- clés de jointure
- type des variables

Un point de départ: le schéma formel

source	target	joint_var
T_HADaaFI	T_HADaaB	ETA_NUM_EPMSI + RHAD_NUM
T_HADaaFL	T_HADaaB	ETA_NUM_EPMSI + RHAD_NUM
T_HADaaFM	T_HADaaB	ETA_NUM_EPMSI + RHAD_NUM
T_HADaaFP	T_HADaaB	ETA_NUM_EPMSI + RHAD_NUM
T_HADaaGJ	T_HADaaE	ETA_NUM_EPMSI => ETA_NUM

Du schéma formel aux liens entre les tables

Des liens à la matrice d'adjacence

De la matrice d'adjacence, un graphe

Du graphe, un arbre

Génération colonne par colonne

Récupérés depuis T_MCOaaC (table parent)

ETA_NUM RSA_NUM		AGE_ANN	
9000325451	151242	65	
9000646567	135868	42	

Générés aléatoirement

	ETA_NUM	RSA_NUM	AGE_ANN	 DGN_PAL
	9000325451	151242	65	 <u>X34018</u>
NI T-	9000646567	135868	42	 <u>S2200</u>

Générés aléatoirement

Premier levier de réalisme: La cohérence temporelle

On peut s'assurer que l'**ordre** des dates est cohérent, par exemple qu'une sortie d'hospitalisation a bien lieu après l'entrée correspondante.

→ comment trouver les couples de variables qui se correspondent?

Notre proposition: une recherche du **plus proche voisin**, avec une distance calculée à partir du nom de la variable et de sa description

Pour
$$x_1 = (var_1, desc_1)$$
 et $x_2 = (var_2, desc_2)$:

$$d(x_1, x_2) = \frac{1}{Z} Levenshtein(var_1, var_2) + 1 - \frac{\langle bow(desc_1), bow(desc_2) \rangle}{||bow(desc_1)||_2 \cdot ||bow(desc_2)||_2}$$

Deuxième levier de réalisme: statistiques descriptives

Plutôt que de générer nos colonnes aléatoirement, on peut utiliser des données en open data pour se rapprocher des distributions réelles, par exemple des médicaments.

⚠ En revanche, introduire des corrélations est beaucoup plus difficile:

- > les données de corrélation ne sont pas toujours en open data
- les corrélations sont souvent au niveau du parcours du patient, et pas au niveau tabulaire

2. Méthodes de génération

Sans accès à la base de données réelle Confidentialité et avatarisation Méthodes de deep learning

2.2.1 Risques liés à la confidentialité

Nouveau paradigme: on a accès à la base de données réelle

- on peut exploiter de l'information contenue dans les données
 - > ex: perturbation de données existantes, deep learning, ...
- ♦ △ on risque d'enfreindre les contraintes de confidentialité
 - particulièrement risqué si le jeu de données de synthèse est destiné à l'open data
 - potentiellement difficile d'évaluer le niveau de risque représenté par un modèle, en particulier avec les modèles de deep learning (voir differential privacy)
 - > arbitrage plausibilité/ confidentialité

2.2.2 Avatarisation

Technique développée et brevetée par la société Octopize - Mimethik Data

1ère étape - projection des données dans un espace euclidien (embedding)

2.2.2 Avatarisation

Technique développée et brevetée par la société Octopize - Mimethik Data

2ème étape - repérage des *n* plus proches voisins

2.2.2 Avatarisation

Technique développée et brevetée par la société Octopize - Mimethik Data

3ème étape - génération aléatoire de l'avatar

2. Méthodes de génération

Sans accès à la base de données réelle Confidentialité et avatarisation **Méthodes de deep learning**

2.3 Méthodes de deep learning

Paradigme: accès à la base de données réelle, pas de risques liés à la confidentialité

loss =
$$||\mathbf{x} - \mathbf{x}'||^2 + \text{KL}[N(\mu_v, \sigma_v), N(0, I)] = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 + \text{KL}[N(\mu_v, \sigma_v), N(0, I)]$$

Avantages

- Permet de reproduire toute la diversité des données d'entraînement
- La représentation obtenue peut être utilisée pour d'autres tâches

2.3 Méthodes de deep learning

Solution n°2: Réseaux adverses génératifs (GANs)

2.3 Méthodes de deep learning

Avantages

- Peut fournir d'excellents résultats selon les contextes
- Littérature en forte croissance (beaucoup d'attention portée à ces modèles depuis leur création en 2014)

Inconvénients

- Difficile à entraîner (potentiellement instable)
- Mode collapse → ne représente pas la diversité de la distribution réelle
- Règles métiers inférées (contraintes probabilistes)
- Typiquement un modèle où il est difficile d'évaluer le niveau de confidentialité

Pour aller plus loin

- Certaines méthodes permettent de combattre l'effet mode collapse. Voir notamment la littérature sur les Wasserstein GAN
- Certaines techniques permettent d'assurer un certain niveau de confidentialité. Voir la littérature sur la differential privacy

3. Conclusion

Bien choisir sa méthode de génération et en évaluer les limites

3. Bien choisir sa méthode de génération

3. Limites des différentes méthodes

Génération depuis le schéma

Pas ou peu de vraisemblance statistique

Avatarisation

Nécessite d'avoir accès aux données réelles Nécessite un wrapper pour revenir au schéma de la base La phase d'embedding peut être compliquée (eg parcours patients)

Deep learning

Nécessite d'avoir accès aux données réelles Contraintes de confidentialité Nécessite un wrapper pour revenir au schéma de la base

Bibliographie

- Goodfellow et al., Generative adversarial networks
- Kingma et al. Auto-encoding variational Bayes
- Arjovksy et al. Wasserstein GAN
- Dwork, The Algorithmic Foundations of Differential privacy
- Choi et al., Generating Multi-label Discrete Patient Records using Generative Adversarial Networks
- Xu et al., Modeling tabular data with conditional GAN
- Yale et al, Privacy preserving Synthetic Health Data
- Van der Schaar et al, Time-Series generative adversarial networks
- ♦ Tout le travail de Mihaela van der Schaar (voir notamment le challenge *Hide-and-Seek* NeurIPS 2020)
- *****

