INTELIGÊNCIA ARTIFICIAL

APRENDIZADO DE MÁQUINA - AVALIAÇÃO DE DESEMPENHO

MATERIAL DE ESTUDO

Artificial Intelligence: A modern approach

Cap. 18

Texto Complementar:

What is Confusion Matrix and Advanced Classification Metrics?

MATERIAL DE ESTUDO

Artificial Intelligence: A modern approach

Cap. 18

Texto Complementar:

What is Confusion Matrix and Advanced Classification Metrics?

SUMÁRIO

- Matriz de confusão (confusion matrix)
- Métricas de desempenho
- Avaliando e escolhendo as melhores hipóteses (modelos).

MATRIZ DE CONFUSÃO

MATRIZ DE CONFUSÃO

- Ferramenta simples para determinar o desempenho de uma hipótese.
- Usada em problemas de classificação (binária ou n-ária)

MATRIZ DE CONFUSÃO

Seja um problema de classificação binária temos a seguinte matriz de confusão:

		Predicted Class	
		Yes	No
True Class	Yes	TP	FN Type II Error
	No	FP Type I Error	TN

TRUE NEGATIVE (TN): QUANTIDADE DE PREDIÇÕES NEGATIVAS (NO) QUE SÃO VERDADEIRAMENTE NEGATIVAS

MÉTRICAS		Predicted Class		
		Yes	No	
True Class	Yes	TP	FN Type II Error	
	No	FP Type I Error	TN	

MÉTRICAS		Predicted Class		
		Yes	No	
True Class	Yes	TP	FN Type II Error	Sensitivity (Recall) $\frac{TP}{TP + FN}$
	No	FP Type I Error	TN	Specificity $TN \ \overline{TN+FP}$

MÉTRICAS		Predicted Class		
		Yes	No	
True Class	Yes	TP	FN Type II Error	Sensitivity (Recall) $\frac{TP}{TP + FN}$
	No	FP Type I Error	TN	Specificity TN $TN+FP$
		Precision $\frac{TP}{TP + FP}$	Lucas Ba	aggio Figueira [<i>@lucasfigueira</i>

MÉTRICAS

Predicted Class

Yes

No

Balancemento entre Precision e Recall

$$F1Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Precision $\frac{TP}{TP + FP}$

Acurácia

 $\frac{TP + TN}{TP + FP + TN + FN}$

Lucas Baggio Figueira [@lucasfigueira]

AVALIANDO E ESCOLHENDO AS MELHORES HIPÓTESES

AVALIANDO E ESCOLHENDO AS MELHORES HIPÓTESES

 Queremos aprender uma hipótese (modelo) que melhor se encaixa nos dados futuros. Queremos aprender uma hipótese (modelo) que melhor se encaixa nos dados futuros.

Queremos aprender uma hipótese (modelo) que melhor se encaixa nos dados futuros.

O QUE SÃO DADOS FUTUROS?

Queremos aprender uma hipótese (modelo) que melhor se encaixa nos dados futuros.

O QUE SÃO DADOS FUTUROS?

O QUE É MELHOR SE ENCAIXA?

DADOS FUTUROS

- Valores do domínio ainda não observados.
- Stationary Assumption: a distribuição de probabilidade dos exemplos é a mesma independentemente da ocorrência dos mesmos.

$$P(E_j | E_{j-1}, E_{j-2}, \dots, E_{j-n}) = P(E_j)$$

 $e_j = (x_j, y_j)$

MELHOR SE ENCAIXA (BEST FIT)

 Taxa de erro (error rate): proporção erros cometidos pela hipótese em questão.

MELHOR SE ENCAIXA (BEST FIT)

 Taxa de erro (error rate): proporção erros cometidos pela hipótese em questão.

$$h(x) \neq y \forall (x, y)$$

MELHOR SE ENCAIXA (BEST FIT)

 Taxa de erro (error rate): proporção erros cometidos pela hipótese em questão.

$$h(x) \neq y \forall (x, y)$$

NÃO É PORQUE A TAXA DE ERRO É BAIXA A PARTIR DO CONJUNTO DE TREINAMENTO QUE A HIPÓTESE EM QUESTÃO GENERALIZARÁ BEM

CONJUNTO DE DADOS

Random Split

CONJUNTO DE DADOS

TREINAMENTO

TESTE

CONJUNTO DE DADOS

TREINAMENTO

TESTE

ERROR RATE

- Problemas:
 - Os dados não estarão, na sua totalidade, disponíveis para treinamento.
 - Escolha do particionamento (split):
 - alto (i.e. 50%) pode deixar poucos dados para treinamento gerando um hipótese pobre.
 - **baixo** (i.e. 10%) pode deixar poucos dados para teste gerando um error rate não confiável.

K-FOLD CROSS-VALIDATION

TREINAMENTO

TESTE

CONJUNTO DE DADOS

APRENDIZADO DE MÁQUINA - AVALIAÇÃO DE DESEMPENHO

K-FOLD CROSS-VALIDATION **TREINAMENTO TESTE** K = 5CONJUNTO DE DADOS SPLIT 1 SPLIT 2 SPLIT 3 SPLIT 4 **ERROR RATE 1** SPLIT 5 1 SPLIT 1 SPLIT 2 SPLIT 3 SPLIT 4 SPLIT 5 **ERROR RATE 2** 2 SPLIT 3 SPLIT 1 SPLIT 2 SPLIT 4 SPLIT 5 **ERROR RATE 3** 3 SPLIT 1 SPLIT 3 SPLIT 4 SPLIT 5 SPLIT 2 4 **ERROR RATE 4** SPLIT 2 SPLIT 3 SPLIT 4 SPLIT 5 SPLIT 1 **ERROR RATE 5** 5 **ERROR RATE**

MÉDIO (+/-)
Lucas Baggio rigueira [@lucasfigueira]

K-FOLD CROSS-VALIDATION

- Atenção:
 - A cada validação cruzada é necessário gerar uma nova hipótese com os mesmos parâmetros de aprendizado (evitar peaking).
 - Possui uma versão extrema chamada Leave-One-Out Cross-Validation: onde k = n, sendo n o tamanho do conjunto de dados disponível.

HANDS ON

