CSE User's Manual

California Simulation Engine

Contents

1	Introduction				
	1.1	Greetin	ngs	4	
	1.2	Manua	d Organization	4	
	1.3	Installa	ation	5	
		1.3.1	Hardware and Software Requirements	5	
			Installation Procedure	5	
2	Оре	eration		5	
	2.1	Comma	and Line	5	
	2.2	Locatin	ng Files	5	
	2.3		File Names	6	
	2.4	-	evel	6	
3	Inp	ut Stru	icture	6	
	3.1		uction	6	
	3.2		of the CSE Data	7	
	3.3		ew of CSE Input Language	8	
		3.3.1	Statements – Overview	8	
			Nested Objects	9	
			Expressions – Overview	10	
		3.3.4	The Preprocessor – Overview	11	
	3.4		reprocessor	11	
	5.4		Line splicing	12	
				12	
			Macro definition and expansion		
			File inclusion	13	
		3.4.4	Conditional inclusion of text	13	
			Preprocessor examples	14	
	3.5		nput Language Statements	15	
		3.5.1	Object Statements	15	
		3.5.2	Member Statements	19	
		3.5.3	Action Commands	20	
	3.6	Expres	sions	20	
		3.6.1	Expression Types	21	
		3.6.2	Constants	22	
		3.6.3	Operators	23	
		3.6.4	System Variables	24	
		3.6.5	Built-in Functions	26	
		3.6.6	User-defined Functions	32	
		3.6.7	Probes	32	
		3.6.8	Variation Frequencies Revisited	34	
			1		
4	Inp	ut Data	a	35	
	4.1	TOP N	Members	35	
		4.1.1	TOP General Data Items	35	
		4.1.2	TOP Daylight Saving Time Items	39	
		4.1.3	TOP Model Control Items	40	
		4.1.4	TOP Weather Data Items	42	
		4.1.5	TOP TDV (Time Dependent Value) Items	47	
		4.1.6	TOP Report Data Items	48	
		4.1.7	TOP Autosizing	50	
		4.1.8	TOP Debug Reporting	51	
	4.2	HOLIE		51	
	4.3	WALE	RIAL	54	

4.4	CONSTRUCTION	56
4.5	FOUNDATION	
4.6	FNDBLOCK	60
4.7	LAYER	64
4.8	GLAZETYPE	66
4.9	METER	69
1.0	DHWMETER	70
4.11	ZONE	71
	4.11.1 ZONE General Members	71
	4.11.2 ZONE Infiltration	75
	4.11.3 ZONE Exhaust Fan	76
4.12	GAIN	77
	SURFACE	81
		89
	WINDOW	
	SHADE	94
	SGDIST	
4.17	DOOR	98
4.18	PERIMETER	102
	IZXFER	
	RSYS	
	DUCTSEG	
	DHWDAYUSE	
	DHWUSE	
4.24	DHWSYS	127
4.25	DHWHEATER	133
4.26	DHWLOOPHEATER	141
	DHWHEATREC	
	DHWTANK	
	DHWPUMP	
	DHWLOOP	
	DHWLOOPPUMP	
	DHWLOOPSEG	
4.33	DHWLOOPBRANCH	150
4.34	DHWSOLARSYS	152
	DHWSOLARCOLLECTOR	
	PVARRAY	
	SHADEX	
	BATTERY	
	REPORTFILE	
4.40	REPORT	171
4.41	REPORTCOL	176
4.42	EXPORTFILE	178
	EXPORT	
	EXPORTCOL	
	IMPORTFILE	
4.40	IMPORTFILE	104
Out	put Reports	186
5.1	Units	
5.1	Time	
5.3	METER Reports	
5.4	Energy Balance Report	
5.5	Air Handler Load Report	
5.6	Air Handler Papart	100

 $\mathbf{5}$

6	Prol	be Definitions 18	39
	6.1	ahRes	89
	6.2	airHandler	93
	6.3	Battery	28
	6.4	boiler (owner: heatPlant)	
	6.5	chiller (owner: coolPlant)	
	6.6	construction	
	6.7	coolPlant	
	6.8	DESCOND	
		DHWDayUse	
		DHWHeater (owner: DHWSys)	
		DHWHeatRec (owner: DHWSys)	
		DHWLoop (owner: DHWSys)	
		DHWLoopBranch (owner: DHWLoopSeg)	
		DHWLoopHeater	
		DHWLoopPump (owner: DHWLoop)	
		DHWLoopSeg (owner: DHWLoop)	
		DHWmeter	
		DHWPump (owner: DHWSys)	
		DHWSolarCollector (owner: DHWSolarSys)	
	6.20	DHWSolarSys	66
	6.21	DHWSys	69
	6.22	DHWTank (owner: DHWSys)	80
	6.23	DHWUse (owner: DHWDayUse)	80
	6.24	door (owner: surface)	81
		DuctSeg (owner: RSYS)	
		export (owner: exportFile)	
		exportCol (owner: export)	
		exportFile	
		foundation	
		foundationBlock (owner: foundation)	
		gain (owner: zone)	
		glazeType	
		heatPlant	
		holiday	
		impFileFldNames	
		importFile	
		Inverse	
		izXfer	
		kiva	
		layer (owner: construction) $\dots \dots \dots$	
		mass	
	6.42	material	20
	6.43	meter	20
	6.44	perimeter (owner: zone)	27
	6.45	PVArray	27
	6.46	report (owner: reportFile)	31
		reportCol (owner: report)	
		reportFile	
		RSYS	
		RSYSRes	
		sgdist (owner: window)	
		shade (owner: window)	
		SHADEX	
	0.05	рнареа	49

6.54	surface (owner: zone)
6.55	terminal (owner: zone)
6.56	top
6.57	towerPlant
6.58	weather
6.59	weatherFile
6.60	weatherNextHour
6.61	window (owner: surface)
6.62	xsurf
6.63	zhx (owner: zone)
6.64	znRes
6.65	zone

1 Introduction

1.1 Greetings

The purpose of this manual is to document the California Simulation Engine computer program, CSE. CSE is an hourly building and HVAC simulation program which calculates annual energy requirements for building space conditioning and lighting. CSE is specifically tailored for use as internal calculation machinery for compliance with the California building standards.

CSE is a batch driven program which reads its input from a text file. It is not intended for direct use by people seeking to demonstrate compliance. Instead, it will be used within a shell program or by technically oriented users. As a result, this manual is aimed at several audiences:

- 1. People testing CSE during its development.
- 2. Developers of the CSE shell program.
- 3. Researchers and standards developers who will use the program to explore possible conservation opportunities.

Each of these groups is highly sophisticated. Therefore this manual generally uses an exhaustive, one-pass approach: while a given topic is being treated, *everything* about that topic is presented with the emphasis on completeness and accuracy over ease of learning.

Please note that CSE is under development and will be for many more months. Things will change and from time to time this manual may be inconsistent with the program.

1.2 Manual Organization

This Introduction covers general matters, including program installation.

Operation documents the operational aspects of CSE, such as command line switches, file naming conventions, and how CSE finds files it needs.

Input Structure documents the CSE input language in general.

Input Data describes all of the specific input language statements.

Output Reports will describe the output reports.

Lastly, Probe Definitions lists all available probes.

Generated: 2020-05-11T15:34:27+00:00

1.3 Installation CSE User's Manual 2 OPERATION

1.3 Installation

1.3.1 Hardware and Software Requirements

CSE is a 32-bit Microsoft Windows console application. That is, it runs at the command prompt on Windows XP, Windows Vista, and Windows 7. Memory and disk space requirements depend on the size of projects being modeled, but are generally modest.

To prepare input files, a text editor is required. Notepad will suffice, although a text editor intended for programming is generally more capable. Alternatively, some word processors can be used in "ASCII" or "text" or "non-document" mode.

1.3.2 Installation Procedure

Create a directory on your hard disk with the name \CSE or some other name of your choice. Copy the files into that directory. Add the name of the directory to the PATH environment setting unless you intend to use CSE only from the CSE directory.

2 Operation

2.1 Command Line

CSE is invoked from the command prompt or from a batch file using the following command:

```
CSE *inputfile* {*switches*}
```

where:

inputfile specifies the name of the text input file for the run(s). If the filename has an extension other than ".cse" (the default), it must be included. The name of the file with weather data for the simulation(s) is given in this file (wfName= statement, see Weather Data Items).

{switches} indicates zero or more of the following:

- -Dname defines the preprocessor symbol name with the value "". Useful for testing with #ifdef name, to invoke variations in the simulation without changing the input file. The CSE preprocessor is described "The Preprocessor".
- -Dname=value defines the preprocessor symbol name with the specified value. Name can then be used in the input file to allow varying the simulation without changing the input file see "The Preprocessor" for more information. The entire switch should be enclosed in quotes if it contains any spaces otherwise the command processor will divide it into two arguments and CSE will not understand it.
- -b batch mode: CSE will never stop for a response from the user when an error occurs. Error messages may thus scroll off the screen, but will all be in the error message file.
- -p display all the class and member names that can be "probed" or accessed in CSE expressions. "Probes" are described in "Probes". Use with command processor redirection operator ">" to obtain a report in a file. *Inputfile* may be given or omitted when -p is given.
- -q similar to -p, but displays additional member names that cannot be probed or would not make sense to probe in an input file (development aid).
- -x specifies report test prefix; see TOP repTestPfx. The -x command line setting takes precedence over the input file value, if any.

2.2 Locating Files

As with any program, in order to invoke CSE, the directory containing CSE.EXE must be the current directory, or that directory must be on the operating system path, or you must type the directory path

before CSE.

2.3 Output File Names

A CSE simulation requires a weather file. The name of the weather file is given in the CSE input file (wfName= statement, see Weather Data Items). The weather file must be in one of the same three places: current directory, directory containing CSE.EXE, or a directory on the operating system path; or, the directory path to the file must be given in the wfName= statement in the usual pathName syntax. ?? Appears that file must be in current directory due to file locating bugs 2011-07

The CSE input file, named on the CSE command line, must be in the current directory or the directory path to it must be included in the command line.

Included input files, named in #include preprocessor directives (see "The Preprocessor") in the input file, must be in the current directory or the path to them must be given in the #include directive. In particular, CSE will NOT automatically look for included files in the directory containing the input file. The default extension for included files is ".CSE".

Output files created by default by CSE (error message file, primary report and export files) will be in the same directory as the input file; output files created by explicit command in the input file (additional report and/or export files) will be in the current directory unless another path is explicitly specified in the command creating the file.

Output File Names 2.3

If any error or warning messages are generated, CSE puts them in a file with the same name and path as the input file and extension .ERR, as well as on the screen and, usually, in the primary (default) report file. The exception is errors in the command line: these appear only on the screen. If there are no error or warning messages, any prior file with this name is deleted.

By default, CSE generates an output report file with the same name and path as the input file, and extension ".REP". This file may be examined with a text editor and/or copied to an ASCII printer. If any exports are specified, they go by default into a file with the same name and path as the input file and extension ".EXP".

In response to specifications in the input file, CSE can also generate additional report and export files with user-specified names. The default extensions for these are .REP and .CSV respectively and the default directory is the current directory; other paths and extensions may be specified. For more information on report and export files, see REPORTFILE and EXPORTFILE in "Input Data".

2.4 Errorlevel

CSE sets the command processor ERRORLEVEL to 2 if any error occurs in the session. This should be tested in batch files that invoke CSE, to prevent use of the output reports if the run was not satisfactory. The ERRORLEVEL is NOT set if only warning messages that do not suppress or abort the run occur, but such messages DO create the .ERR file.

3 Input Structure

DRAFT: In the following, any text annotated with ?? indicates areas of uncertainty or probable change. As the program and input language develop, these matters will be resolved.

Introduction 3.1

The CSE Input Language is the fundamental interface to the CSE program. The language has been designed with three objectives in mind:

1. Providing direct access to all program features (including ones included for self-testing), to assist in program development.

- 2. Providing a set of parametric and expression evaluation capabilities useful for standards development and program testing.
- 3. Providing a means for other programs, such as an interactive user interface, to transmit input data and control data to the program.

Thus, the language is not intended to be used by the average compliance or simulation user. Instead, it will be used during program development for testing purposes and subsequently for highly technical parametric studies, such as those conducted for research and standards development. In all of these situations, power, reproducibility, and thorough input documentation take precedence over user-friendliness.

CSE reads its input from a file. The file may be prepared by the user with a text editor, or generated by some other program.

3.2 Form of the CSE Data

The data used by CSE consists of *objects*. Each object is of a class, which determines what the object represents. For example, objects of class ZONE represent thermally distinct regions of the building; each thermally distinct region has its own ZONE object. An object's class determines what data items or members it contains. For instance, a ZONE object contains the zone's area and volume. In addition, each object can have a name.

The objects are organized in a hierarchy, or tree-like structure. For example, under each ZONE object, there can be SURFACE objects to represent the walls, floors, and ceilings of the ZONE. Under SURFACEs there can be WINDOW objects to represent glazings in the particular wall or roof. SURFACE is said to be a subclass of the class ZONE and WINDOW a subclass of SURFACE; each individual SURFACE is said to be a subobject of its particular ZONE object. Conversely, each individual SURFACE is said to be owned by its zone, and the SURFACE class is said to be owned by the ZONE class.

The hierarchy is rooted in the one top-level object (or just Top). The top level object contains information global to the entire simulation, such as the start and end dates, as well as all of the objects that describe the building to be simulated and the reports to be printed.

Objects and their required data must be specified by the user, except that Top is predefined. This is done with input language statements. Each statement begins an object (specifying its class and object name) or gives a value for a data member of the object being created. Each object is specified with a group of statements that are usually given together, and the objects must be organized according to the hierarchy. For example, SURFACEs must be specified within ZONEs and WINDOWs within SURFACEs. Each SURFACE belongs to (is a subobject of) the ZONE within which it is specified, and each WINDOW is a subobject of its SURFACE.

The entire hierarchy of CSE classes can be represented as follows, using indentation to indicate subclasses:

TODO: review hierarchy

```
TOP (Top-level class; object of this class supplied automatically by CSE)
    HOLIDAY
    MATERIAL
    CONSTRUCTION
        LAYER
    METER.
    DHWMETER
    IZXFER
    DHWDAYUSE
        DHWUSE
    DHWSYS
        DHWHEATER
        DHWTANK
        DHWPUMP
```

```
DHWLOOP
    DHWLOOPPUMP
    DHWLOOPSEG
        DHWLOOPBRANCH
DHWSOLARSYS
    DHWSOLARCOLLECTOR
ZONE
    GATN
    SURFACE
        WINDOW
             SHADE
             SGDIST
        DOOR.
REPORTFILE
REPORT
REPORTCOL
EXPORTFILE
EXPORT
EXPORTCOL
```

3.3 Overview of CSE Input Language

The CSE Input Language consists of *commands*, each beginning with a particular word and, preferably, ending with a semicolon. Each command is either an *action-command*, which specifies some action such as starting a simulation run, or a *statement*, which creates or modifies an *object* or specifies a value for a *member* of an object.

3.3.1 Statements – Overview

A statement that creates an object consists basically of the *class name* followed by your name for the object to be created. (The name can be omitted for most classes; optional modifying clauses will be described later.) For example,

```
ZONE "north";
```

begins an object of class ZONE; the particular zone will be named "north". This zone name will appear in reports and error messages, and will be used in other statements that operate on the zone. As well as creating the ZONE, this statement sets CSE to expect statements specifying ZONE data members or ZONE subobjects to follow.

A statement specifying a data member consists of the data member's name, an = sign, an *expression* specifying the value, and a terminating semicolon. An expression is a valid combination of operands and operators as detailed later; commonly it is just a number, name, or text enclosed in quotes. For example,

```
znVol = 100000;
```

specifies that the zone has a volume of 100000 cubic feet. (If the statement occurs outside of the description of a ZONE, an error message occurs.) All of the member names for each class are described in the input data section; most of them begin with an abbreviation of the class name for clarity.

The description of a zone or any object except Top can be terminated with the word "END"; but this is not essential; CSE will assume the ZONE ends when you start another ZONE or any object not a subobject of ZONE, or when you specify a member of a higher level class (Top for ZONE), or give an action-command such as RUN.

Statements are free-form; several can be put on a line, or a single statement can occupy several lines. Indentation according to class hierarchy will help make your input file readable. Spaces may be used freely except in the middle of a word or number. Tab characters may be used. Each statement should end with

a semicolon. If the semicolon is omitted and the statement and the following statement are both correctly formed, CSE will figure out your intent anyway. But when there is an error, CSE gives clearer error messages when the statements are delimited with semicolons.

Capitalization generally does not matter in input language statements; we like to capitalize class names to make them stand out. Words that differ only in capitalization are NOT distinct to CSE.

Comments (remarks) may be interspersed with commands. Comments are used to make the input file clearer to humans; they are ignored by CSE. A comment introduced with "//" ends at the end of the line; a comment introduced with "/*" continues past the next "*/", whether on the same line, next line, or many lines down. Additional input language may follow the */ on the same line.

3.3.2 Nested Objects

The following is a brief CSE input file, annotated with comments intended to exemplify how the input language processor follows the object hierarchy when decoding input describing objects and their subobjects.

```
// short example file
                        // initially, the current object is Top.
wfName = "CZ12RV2.CEC"; // give weather file name, a Top member
begDay = Jan 1;
                        // start and ...
                        // ...end run dates: Top members.
endDay = Dec 31;
MATERIAL carpet;
                        // create object of class MATERIAL
matThk = .296;
                        // specify 'matThk' member of MATERIAL 'carpet'
matCond = 1./24;
                        // give value of 'matCond' for 'carpet'
CONSTRUCTION slab140C; /* create object of class CONSTRUCTION, named
                           slab140C. Terminates MATERIAL, because
                           CONSTRUCTION is not a subclass of material
                           in the hierarchy shown in another section ** */
  LAYER
                        /* start an unnamed object of class LAYER.
                           Since LAYER is a subclass of CONSTRUCTION,
                           this will be a subobject of slab140C. */
    lrMat = carpet;
                        /* member of the LAYER. Note use of name of
                           MATERIAL object. */
  // (additional layers would be here)
METER Elec;
                        /* create METER named Elec;
                           since METER is a subobject of Top,
                           this ends slab140C and its LAYER. */
ZONE North;
                        // start a ZONE named North. Ends METER.
  znArea = 1000;
                        // specify data members of ZONE North.
  znVol = 10;
                        // (you don't have to capitalize these as shown.)
  GAIN NorthLights
                        /* create GAIN object named NorthLights.
                           Creates a subobject of ZONE North. */
                        // member of NorthLights -- numeric value
    gnPower = 0.01;
    gnMeter = Elec;
                        // member of NorthLights -- object name value
  znCAir = 3.5;
                        /* processor knows that znCAir is a member of ZONE;
                           thus this statement terminates the GAIN
                           subobject & continues ZONE 'North'. */
  /*lrMat = ...
                           would be an error here, because the current
                           object is not a LAYER nor a subobject of LAYER */
```

```
RUN; /* initiate simulation run with data given.

Terminates ZONE North, since action-commands terminate all objects being constructed. */
```

** See Form of the CSE Data

3.3.3 Expressions – Overview

Expressions are the parts of statements that specify values – numeric values, string values, object name values, and choice values. Expressions are composed of operators and operands, in a manner similar to many programming languages. The available operators and operands will be described in the section on operators.

Unlike most programming languages, CSE expressions have Variation. Variation is how often a value changes during the simulation run – hourly, daily, monthly, yearly (i.e. does not change during run), etc. For instance, the operand **\$hour** represents the hour of the day and has "hourly" variation. An expression has the variation of its fastest-varying component.

Each data member of each object (and every context in which an expression may be used) has its allowed *variability*, which is the fastest variation it will accept. Many members allow no variability. For example, begDay, the date on which the run starts, cannot meaningfully change during the run. On the other hand, a thermostat setting can change hourly. Thermostat settings and other scheduled values are specified in CSE with expressions that often make use of variability; there is no explicit SCHEDULE class.

For example, a heating setpoint that was 68 during business hours and 55 at night might be expressed as

```
select( $hour > 8 && $hour < 18, 68, default 55)
```

An example of a complete statement containing the above expression is:

```
tuTH = select( $hour > 8 && $hour < 18, 68, default 55);
```

The preceding is valid a statement if used in a TERMINAL description. The following:

```
begDay = select( $hour > 8 && $hour < 18, 68, default 55);
```

would always get an error message, because begDay (the starting day of the run) will not accept hourly variation, and the expression varies hourly, since it contains \$hour. The expression's variation is considered "hourly" even though it changes only twice a day, since CSE has no variation category between hourly and daily.

CSE's expression capability may be used freely to make input clearer. For example,

```
znVol = 15 * 25 * 8;
```

meaning that the zone volume is 15 times 25 times 8 is the same to CSE as

```
znVol = 3000;
```

but might be useful to you to tersely indicate that the volume resulted from a width of 15, a length of 25, and a height of 8. Further, if you wished to change the ceiling height to 9 feet, the edit would be very simple and CSE would perform the volume calculation for you.

CSE computes expressions only as often as necessary, for maximum simulation speed. For example,

```
tuTH = 68;
```

causes 68 to be stored in the heating setpoint once at the start of the run only, even though tuTH will accept expressions with variability up to hourly. Furthermore, constant inner portions of variable expressions are pre-evaluated before the run begins.

CSE statements and expressions do not (yet) have user-settable variables in the usual programming language sense. They do, however, have user-defined functions to facilitate using the same computation several places,

and preprocessor macros, to facilitate using the same text several places, specifying parametric values in a separate file, etc.

3.3.4 The Preprocessor – Overview

The preprocessor scans and processes input file text before the language processor sees the text. The preprocessor can include (embed) additional files in the input, include sections of input conditionally, and define and expand macros.

Macros are a mechanism to substitute a specified text for each occurrence of a word (the macro name). For example,

```
#define ZNWID 20
#define ZNLEN 30
znArea = ZNWID * ZNLEN;
znVol = ZNWID * ZNLEN * 8;
```

The first line above says that all following occurrences of "ZNWID" are to be replaced with "20" (or whatever follows ZNWID on the same line). The effect of the above is that the zone width and length are specified only one place; if the single numbers are editing, both the zone area and zone volume change to match.

Macros can be especially powerful when combined with the file inclusion feature; the generic building description could be in one file, and the specific values for multiple runs supplied by another file. By also using conditional compilation, the values-specifying file can select from a range of features available in the building description file.

The preprocessor is similar to that of the C programming language, and thus will be familiar to C program-

The next section describes the preprocessor in detail. The preprocessor description is followed by sections detailing statements, then expressions.

3.4 The Preprocessor

Note: The organization and wording of this section is based on section A12 of Kernigan and Richie [1988]. The reader is referred to that source for a somewhat more rigorous presentation but with the caution that the CSE input language preprocessor does not completely comply to ANSI C specifications.

The preprocessor performs macro definition and expansion, file inclusion, and conditional inclusion/exclusion of text. Lines whose first non-whitespace character is # communicate with the preprocessor and are designated preprocessor directives. Line boundaries are significant to the preprocessor (in contrast to the rest of the input language in which a newline is simply whitespace), although adjacent lines can be spliced with \, as discussed below. The syntax of preprocessor directives is separate from that of the rest of the language. Preprocessor directives can appear anywhere in an input file and their effects last until the end of the input file. The directives that are supported by the input language preprocessor are the following:

```
#if
#else
#elif
#endif
#ifndef
#define
#redefine
#undef
```

#include

3.4.1 Line splicing

If the last character on a line is the backslash \, then the next line is spliced to that line by elimination of the backslash and the following newline. Line splicing occurs before the line is divided into tokens.

Line splicing finds its main use in defining long macros:

3.4.2 Macro definition and expansion

A directive of the form

```
#define _identifier_ _token-sequence_
```

is a macro definition and causes the preprocessor to replace subsequent instances of the identifier with the given token sequence. Note that the token string can be empty (e.g. #define FLAG).

A line of the form

```
#define _identifier_( _identifier-list_) _token-sequence_
```

where there is no space between the identifier and the (, is a macro with parameters given by the identifier list. The expansion of macros with parameters is discussed below.

Macros may also be defined on the CSE command line, making it possible to vary a run without changing the input files at all. As described in the command line section, macros are defined on the CSE command line using the -D switch in the forms

```
-D_identifier_
-D_identifier_=_token-sequence_
```

The first form simply defines the name with no token-sequence; this is convenient for testing with #ifdef, #ifndef, or defined(), as described in the section on conditional inclusion of tex. The second form allows an argument list and token sequence. The entire command line argument must be enclosed in quotes if it contains any spaces.

A macro definition is forgotten when an **#undef** directive is encountered:

```
#undef _identifier_
```

It is not an error to #undef an undefined identifier.

A macro may be re-#defined without a prior #undef unless the second definition is identical to the first. A combined #undef/#define directive is available to handle this common case:

```
#redefine _identifier_ _token-sequence_
#redefine _identifier_( _identifier-list_) _token-sequence_
```

When a macro is **#redefined**, it need not agree in form with the prior definition (that is, one can have parameters even if the other does not). It is not an error to **#redefine** an undefined identifier.

Macros defined in the second form (with parameters) are expanded whenever the preprocessor encounters the macro identifier followed by optional whitespace and a comma-separated parameter list enclosed in parentheses. First the comma separated token sequences are collected; any commas within quotes or nested parentheses do not separate parameters. Then each unquoted instance of the each parameter identifier in the macro definition is replaced by the collected tokens. The resulting string is then repeatedly re-scanned for more defined identifiers. The macro definition and reference must have the same number of arguments.

It is often important to include parentheses within macro definitions to make sure they evaluate properly in all situations. Suppose we define a handy area macro as follows:

```
#define AREA(w, h) w*h
                               // WRONG
```

Consider what happens when this macro is expanded with arguments 2+3 and 4+1. The preprocessor substitutes the arguments for the parameters, then the input language processor processes the statement containing the macro expansion without regard to the beginning and end of the arguments. The expected result is 25, but as defined, the macro will produce a result of 15. Parentheses fix it:

```
#define AREA(w, h) ((w)*(h)) // RIGHT
```

The outer enclosing set of parentheses are not strictly needed in our example, but are good practice to avoid evaluation errors when the macro expands within a larger expression.

Note 1: The CSE preprocessor does not support the ANSI C stringizing (#) or concatenation (##) operators.

Note 2: Identifiers are case insensitive (unlike ANSI C). For example, the text "myHeight" will be replaced by the #defined value of MYHEIGHT (if there is one).

The preprocessor examples at the end of this section illustrate macro definition and expansion.

3.4.3 File inclusion

Directives of the form

#include "filename" and

#include <filename>

cause the replacement of the directive line with the entire contents of the referenced file. If the filename does not include an extension, a default extension of .INP is assumed. The filename may include path information; if it does not, the file must be in the current directory.

#includes may be nested to a depth of 5.

For an example of the use #includes, please see the preprocessor examples at the end of this section.

3.4.4 Conditional inclusion of text

Conditional text inclusion provides a facility for selectively including or excluding groups of input file lines. The lines so included or excluded may be either CSE input language text or other preprocessor directives. The latter capability is very powerful.

Several conditional inclusion directive involve integer constant expressions. Constant integer expressions are formed according the rules discussed in the section on expressions with the following changes:

- 1. Only constant integer operands are allowed.
- 2. All values (including intermediate values computed during expression evaluation) must remain in the 16 bit range (-32768 - 32767). The expression processor treats all integers as signed values and requires signed decimal constants - however, it requires unsigned octal and hexadecimal constants. Thus decimal constants must be in the range -32768 - 32767, octal must be in the range 0 - 00177777, and hexadecimal in the range 0 - 0xffff. Since all arithmetic comparisons are done assuming signed values, 0xffff < 1 is true (unhappily). Care is required when using the arithmetic comparison operators (<, <=,>=,>).
- 3. The logical relational operators && and || are not available. Nearly equivalent function can be obtained with & and |.

4. A special operand defined() is provided; it is described below.

Macro expansion is performed on constant expression text, so symbolic expressions can be used (see examples below).

The basic conditional format uses the directive

```
#if constant-expression
```

If the constant expression has the value 0, all lines following the #if are dropped from the input stream (the preprocessor discards them) until a matching #else, #elif, or #endif directive is encountered.

The defined (identifier) operand returns 1 if the identifier is the name of a defined macro, otherwise 0. Thus

```
#if defined( _identifier_ )
```

can be used to control text inclusion based on macro flags. Two #if variants that test whether a macro is defined are also available. #ifdef identifier is equivalent to #if defined(identifier) and #ifndef identifier is equivalent to #if !defined(identifier).

Defined(), #ifdef, and #ifndef consider a macro name "defined" even if the body of its definition contains no characters; thus a macro to be tested with one of these can be defined with just

```
#define _identifier_
```

or with just "-Didentifier" on the CSE command line.

Conditional blocks are most simply terminated with #endif, but #else and #elif constant-expression are also available for selecting one of two or more alternative text blocks.

The simplest use of #if is to "turn off" sections of an input file without editing them out:

```
#if OThis text is deleted from the input stream.#endif
```

Or, portions of the input file can be conditionally selected:

```
#define FLRAREA 1000
                       // other values used in other runs
#if FLRAREA <= 800
    CSE input language for small zones
#elif FLRAREA <= 1500</pre>
    CSE input language for medium zones
#else
    CSE input language for large zones
#endif
```

Note that if a set of #if ... #elif ... #elif conditionals does not contain an #else, it is possible for all lines to be excluded.

Finally, it is once again important to note that conditional directives nest, as shown in the following example (indentation is included for clarity only):

```
#if 0
    This text is NOT included.
    #if 1
        This text is NOT included.
    #endif
#else
    This text IS included.
#endif
```

3.4.5 Preprocessor examples

This section shows a few combined examples that demonstrate the preprocessor's capabilities.

The simplest use of macros is for run parameterization. For example, a base file is constructed that derives values from a macro named FLRAREA. Then multiple runs can be performed using #include:

```
// Base file
    ... various input language statements ...
    ZONE main
        znArea = FLRAREA
        znVol = 8*FLRAREA
        znCAir = 2*FLRAREA ...
        ... various other input language statements ...
    RUN
    CLEAR
The actual input file would look like this:
    // Run with zone area = 500, 1000, and 2000 ft2
    #define FLRAREA 500
    #include "base."
    #redefine FLRAREA 1000
    #include "base."
    #redefine FLRAREA 2000
    #include "base."
```

Macros are also useful for encapsulating standard calculations. For example, most U-values must be entered without surface conductances, yet many tabulated U-values include the effects of the standard ASHRAE winter surface conductance of 6.00 Btuh/ft²-°F. A simple macro is very helpful:

```
#define UWinter(u) ( 1/(1/(u)-1/6.00) )
```

This macro can be used whenever a U-value is required (e.g. SURFACE ... sfU=UWinter(.11) ...).

3.5 CSE Input Language Statements

This section describes the general form of CSE input language statements that define objects, assign values to the data members of objects, and initiate actions. The concepts of objects and the class hierarchy were introduced in the section on form of CSE data. Information on statements for specific CSE input language classes and their members is the subject of the input data section.

3.5.1 Object Statements

As we described in a previous section, the description of an object is introduced by a statement containing at least the class name, and usually your chosen name for the particular object. In addition, this section will describe several optional qualifiers and modifying clauses that permit defining similar objects without repeating all of the member details, and reopening a previously given object description to change or add to it.

Examples of the basic object-beginning statement:

```
ZONE "North";
METER "Electric - Cooling";
LAYER;
```

As described in the section on nested objects, such a statement is followed by statements giving the object's member values or describing subobjects of the object. The object description ends when you begin another

object that is not of a subclass of the object, or when a member of an embedding (higher level) object previously begun is given, or when END is given.

3.5.1.1 Object Names

An object name consists of up to 63 characters. If you always enclose the name in quotation marks, punctuation and spaces may be used freely; if the name starts with a letter or dollar sign and consists only of letters, digits, underscore, and dollar sign, and is different from all of the words already defined in CSE input language (as listed below in this section), you may omit the quotes. Capitalization, and Leading and trailing spaces and tabs, are always disregarded by input language processor. Names of 0 length, and names containing control characters (ASCII codes 0-31) are not allowed.

Examples of valid names that do not require quotes:

```
North
gas_meter
slab140E
```

The following object names are acceptable if always enclosed in quotes:

```
"Front Door"
"M L King Day"
"123"
"3.5-inch wall"
```

We suggest always quoting object names so you won't have to worry about disallowed words and characters.

Duplicate names result in error messages. Object names must be distinct between objects of the same class which are subobjects of the same object. For example, all ZONE names must be distinct, since all ZONEs are subobjects of Top. It is permissible to have SURFACEs with the same name in different ZONEs – but it is a good idea to keep all of your object names distinct to minimize the chance of an accidental mismatch or a confusing message regarding some other error.

For some classes, such as ZONE, a name is required for each object. This is because several other statements refer to specific ZONEs, and because a name is needed to identify ZONEs in reports. For other classes, the name is optional. The specific statement descriptions in the Input Data Section 5 say which names are required. We suggest always using object names even where not required; one reason is because they allow CSE to issue clearer error messages.

The following reserved words will not work as object names unless enclosed in quotes:

(this list needs to be assembled and typed in)

3.5.1.2 ALTER

ALTER is used to reopen a previously defined object when it is not possible or desired to give the entire description contiguously.

ALTER could be used if you wish to order the input in a special way. For example, SURFACE objects are subobjects of ZONE and are normally described with the ZONE they are part of. However, if you wanted to put all roofs together, you could use input of the general form:

ALTER can be used to facilitate making similar runs. For example, to evaluate the effect of a change in the size of a window, you might use:

```
ZONE "South";
    SURFACE "SouthWall";
    ...
    WINDOW "BigWindow";
        wnHeight = 6; wnWidth = 20;
...

RUN;    // perform simulation and generate reports
// data from simulation is still present unless CLEAR given
ALTER ZONE "South";
    ALTER SURFACE "SouthWall";
    ALTER WINDOW "BigWindow";
        wnHeight = 4; wnWidth = 12; // make window smaller
RUN;    // perform simulation and print reports again
```

ALTER also lets you access the predefined "Primary" REPORTFILE and EXPORTFILE objects which will be described in the Input Data Section:

```
ALTER REPORTFILE "Primary"; /* open description of object automatically supplied by CSE -- no other way to access */

rfPageFmt = NO; /* Turn off page headers and footers --

not desired when reports are to be reviewed on screen. */
```

3.5.1.3 **DELETE**

DELETE followed by a class name and an object name removes the specified object, and any subobjects it has. You might do this after RUN when changing the data for a similar run (but to remove all data, CLEAR is handier), or you might use DELETE after COPYing (below) an object if the intent is to copy all but certain subobjects.

3.5.1.4 LIKE clause

LIKE lets you specify that an object being defined starts with the same member values as another object already defined. You then need give only those members that are different. For Example:

```
MATERIAL "SheetRock";  // half inch gypsum board
  matCond = .0925;  // conductivity per foot
  matSpHt = .26;  // specific heat
  matDens = 50;  // density
  matThk = 0'0.5;  // thickness 1/2 inch

MATERIAL "5/8 SheetRock" LIKE "SheetRock"; // 5/8" gypsum board
  matThk = 0'0.625;  // thickness 5/8 inch
  // other members same as "SheetRock", need not be repeated
```

The object named after LIKE must be already defined and must be of the same class as the new object.

LIKE copies only the member values; it does not copy any subobjects of the prototype object. For example, LIKEing a ZONE to a previously defined ZONE does not cause the new zone to contain the surfaces of the prototype ZONE. If you want to duplicate the surfaces, use COPY instead of LIKE.

3.5.1.5 COPY clause

COPY lets you specify that the object being defined is the same as a previously defined object including all of the subobjects of that object. For example,

```
ZONE "West" COPY "North";

DELETE WALL "East";

ALTER WALL "South";

sfExCnd = ambient;
```

Specifies a **ZONE** named "West" which is the same as **ZONE** North except that it does not contain a copy of West's East wall, and the South wall has ambient exposure.

3.5.1.6 USETYPE clause

USETYPE followed by the type name is used in creating an object of a type previously defined with DEFTYPE (next section). Example:

Any differences from the type, and any required information not given in the type, must then be specified. Any member specified in the type may be respecified in the object unless FROZEN (see this section) in the type (normally, a duplicate specification for a member results in an error message).

3.5.1.7 **DEFTYPE**

DEFTYPE is used to begin defining a TYPE for a class. When a TYPE is created, no object is created; rather, a partial or complete object description is stored for later use with DEFTYPE. TYPES facilitate creating multiple similar objects, as well as storing commonly used descriptions in a file to be #included in several different files, or to be altered for multiple runs in comparative studies without changing the including files. Example (boldface for emphasis only):

```
DEFTYPE SURFACE "BaseWall"
                                          // common characteristics of all walls
                                          // walls are walls, so say it once
    sfType = WALL;
    sfTilt = 90;
                                          // all our walls are vertical;
                                          // but sfAzm varies, so it is not in TYPE.
    sfU = .83;
                                          // surf conductance; override if different
    sfModel = QUICK;
DEFTYPE SURFACE "ExtWall" USETYPE "BaseWall";
    sfExCnd = AMBIENT;
                                          // other side of wall is outdoors
    sfExAbs = 0.5;
                                          // member only needed for exterior walls
DEFTYPE SURFACE "IntWall" USETYPE "BaseWall";
                                                // interior wall
    sfExCnd = ADJZN;
                                          // user must give sfAdjZn.
```

In a TYPE as much or as little of the description as desired may be given. Omitting normally-required members does not result in an error message in the type definition, though of course an error will occur at use if the member is not given there.

At use, member values specified in the TYPE can normally be re specified freely; to prevent this, "freeze" the desired member(s) in the type definition with

```
FREEZE *memberName*;
```

Alternately, if you wish to be sure the user of the TYPE enters a particular member even if it is normally optional, use

```
REQUIRE *memberName*
```

Sometimes in the TYPE definition, member(s) that you do not want defined are defined – for example, if the TYPE definition were itself initiated with a statement containing LIKE, COPY, or USETYPE. In such cases the member specification can be removed with

UNSET *memberName*;

3.5.1.8 END and ENDxxxx

END, optionally followed by an object name, can be used to unequivocally terminate an object. Further, as of July 1992 there is still available a specific word to terminate each type of object, such as ENDZONE to terminate a ZONE object. If the object name is given after END or ENDxxxx, an additional check is performed: if the name is not that of an object which has been begun and not terminated, an error message occurs. Generally, we have found it is not important to use END or ENDxxxx, especially since the member names in different classes are distinct.

3.5.2 Member Statements

As introduced in the section on statements, statements which assign values to members are of the general form:

```
*memberName* = *expression*;
```

The specific member names for each class of objects are given in Section 5; many have already been shown in examples.

Depending on the member, the appropriate type for the expression giving the member value may be numeric (integer or floating point), string, object name, or multiple-choice. Expressions of all types will be described in detail in the section on expressions.

Each member also has its *variability* (also given in the input data section), or maximum acceptable *variation*. This is how often the expression for the value can change during the simulation – hourly, daily, monthly, no change (constant), etc. The "variations" were introduced in the expressions overview section and will be further detailed in a section on variation frequencies.

Three special statements, UNSET, REQUIRE, and FREEZE, add flexibility in working with members.

3.5.2.1 UNSET

UNSET followed by a member name is used when it is desired to delete a member value previously given. UNSETing a member resets the object to the same internal state it was in before the member was originally given. This makes it legal to specify a new value for the member (normally, a duplicate specification results in an error message); if the member is required (as specified in the input data section), then an error message will occur if RUN is given without re specifying the member.

Situations where you really might want to specify a member, then later remove it, include:

- After a RUN command has completed one simulation run, if you wish to specify another simulation run without CLEARing and giving all the data again, you may need to UNSET some members of some objects in order to re specify them or because they need to be omitted from the new run. In this case, use ALTER(s) to reopen the object(s) before UNSETing.
- In defining a TYPE (see this section), you may wish to make sure certain members are not specified so that the user must give them or omit them if desired. If the origin of the type (possibly a sequence of DEFTYPEs, LIKEs, and/or COPYs) has defined unwanted members, get rid of them with UNSET.

Note that UNSET is only for deleting members (names that would be followed with an = and a value when being defined). To delete an entire object, use DELETE (see this section).

3.5.2.2 REQUIRE

REQUIRE followed by a member name makes entry of that member mandatory if it was otherwise optional; it is useful in defining a TYPE (see this section) when you desire to make sure the user enters a particular member, for example to be sure the TYPE is applied in the intended manner. REQUIRE by itself does not delete any previously entered value, so if the member already has a value, you will need to UNSET it. ?? verify

3.5.2.3 FREEZE

FREEZE followed by a member name makes it illegal to UNSET or redefine that member of the object. Note that FREEZE is unnecessary most of the time since CSE issues an error message for duplicate definitions without an intervening UNSET, unless the original definition came from a TYPE (see this section). Situations where you might want to FREEZE one or more members include:

- When defining a TYPE (see this section). Normally, the member values in a type are like defaults; they can be freely overridden by member specifications at each use. If you wish to insure a TYPE is used as intended, you may wish to FREEZE members to prevent accidental misuse.
- When your are defining objects for later use or for somebody else to use (perhaps in a file to be included) and you wish to guard against misuse, you may wish to FREEZE members. Of course, this is not foolproof, since there is at present no way to allow use of predefined objects or types without allowing access to the statements defining them.

3.5.3 Action Commands

CSE has two action commands, RUN and CLEAR.

3.5.3.1 RUN

RUN tells CSE to do an hourly simulation with the data now in memory, that is, the data given in the preceding part of the input file.

Note that CSE does NOT automatically run the simulator; an input file containing no RUN results in no simulation (you might nevertheless wish to submit an incomplete file to CSE to check for errors in the data already entered). The explicit RUN command also makes it possible to do multiple simulation runs in one session using a single input file.

When RUN is encountered in the input file, CSE checks the data. Many error messages involving inconsistencies between member values or missing required members occur at this time. If the data is good, CSE starts the simulation. When the simulation is complete and the reports have been output, CSE continues reading the input file. Statements after the first run can add to or change the data in preparation for another RUN. Note that the data for the first run is NOT automatically removed; if you wish to start over with complete specifications, use CLEAR after RUN.

3.5.3.2 CLEAR

CLEAR removes all input data (objects and all their members) from CSE memory. CLEAR is normally used after RUN, when you wish to perform another simulation run and wish to start clean. If CLEAR is not used, the objects from the prior run's input remain in memory and may be changed or added to produce the input data for the next simulation run.

3.6 Expressions

Probably the CSE input language's most powerful characteristic is its ability to accept expressions anywhere a single number, string, object name, or other value would be accepted. Preceding examples have shown the inputting zone areas and volumes as numbers (some defined via preprocessor macros) with *'s between them to signify multiplication, to facilitate changes and avoid errors that might occur in manual arithmetic. Such

expressions, where all operands are constants, are acceptable anywhere a constant of the same type would be allowed.

But for many object members, CSE accepts *live expressions* that *vary* according to time of day, weather, zone temperatures, etc. (etc., etc., etc.!). Live expressions permit simulation of many relationships without special-purpose features in the language. Live expressions support controlling setpoints, scheduling HVAC system operation, resetting air handler supply temperature according to outdoor temperature, and other necessary and foreseen functions without dedicated language features; they will also support many unforeseen user-generated functionalities that would otherwise be unavailable.

Additional expression flexibility is provided by the ability to access all of the input data and much of the internal data as operands in expressions (*probes*, see this section).

As in a programming language, CSE expressions are constructed from operators and operands; unlike most programming languages, CSE determines how often an expression's operands change and automatically compute and store the value as often as necessary.

Expressions in which all operands are known when the statement is being decoded (for example, if all values are constants) are always allowed, because the input language processor immediately evaluates them and presents the value to the rest of the program in the same manner as if a single number had been entered. Most members also accept expressions that can be evaluated as soon as the run's input is complete, for example expressions involving a reference to another member that has not been given yet. Expressions that vary during the run, say at hourly or daily intervals, are accepted by many members. The variability or maximum acceptable variation for each member is given in the descriptions in the input data section, and the variation of each non-constant expression component is given in its description in this section.

Interaction of expressions and the preprocessor: Generally, they don't interact. The preprocessor is a text processor which completes its work by including specified files, deleting sections under false #if's, remembering define definitions, replacing macro calls with the text of the definition, removing preprocessor directives from the text after interpreting them, etc., then the resulting character stream is analyzed by the input language statement compiler. However, the if statement takes an integer numeric expression argument. This expression is similar to those described here except that it can only use constant operands, since the preprocessor must evaluate it before deciding what text to feed to the input statement statement compiler.

3.6.1 Expression Types

The type of value to which an expression must evaluate is specified in each member description (see the input data section) or other context in which an expression can be used. Each expression may be a single constant or may be made up of operators and operands described in the rest of this section, so long as the result is the required type or can be converted to that type by CSE, and its variation is not too great for the context. The possible types are:

float	A real number (3.0, 5.34, -2., etc.). Approximately 7 digits are carried internally. If an int is given where a real is required, it is automatically converted.
int	An integer or whole number (-1, 0, 1, 2 etc.). If a real is given, an error may result, but we should change it to convert it (discarding any
	fractional part).
Boolean	Same as int; indicates that a 0 value will be interpreted as "false" and any non-0 value will be interpreted as "true".
string	A string of characters; for example, some text enclosed in quotes.
$object\ name$	Name of an object of a specified class. Differs from <i>string</i> in that the name need not be enclosed in quotes if it consists only of letters, digits, _, and \$, begins with a non-digit, and is different from all reserved words now in or later added to the language (see Object Names).

Generated: 2020-05-11T15:34:27+00:00

	The object may be defined after it is referred to. An expression using conditional operators, functions, etc. may be used provided its value is known when the RUN action command is reached.; no members requiring object names accept values that vary during the simulation.
choice	One of several choices; a list of the acceptable values is given wherever
	a <i>choice</i> is required. The choices are usually listed in CAPITALS but
	may be entered in upper or lower case as desired. As with object
	names, quotes are allowed but not required.
	Expressions may be used for choices, subject to the variability of the
	context.
date	May be entered as a 3-letter month abbreviation followed by an <i>int</i> for
	the day of the month, or an int for the Julian day of the year
	(February is assumed to have 28 days). Expressions may be used
	subject to variability limitations. Examples:
	Jan 23 // January 23
	23 // January 23
	32 // February 1
	7, 1001441, 1

These words are used in following descriptions of contexts that can accept more than one basic type:

$\overline{numeric}$	float or int. When floats and ints are intermixed with the same
	operator or function, the result is float.
any Type	Any type; the result is the same type as the argument. If floats and
	ints are intermixed, the result is float. If strings and valid choice
	names are intermixed, the result is <i>choice</i> . Other mixtures of types are
	generally illegal, except in expressions for a few members that will
	accept either one of several choices or a numeric value.

The next section describes the syntax of constants of the various data types; then, we will describe the available operators, then other operand types such as system variables and built-in functions.

3.6.2 Constants

This section reviews how to enter ordinary non-varying numbers and other values.

int	optional - sign followed by digits. Don't use a decimal point if your
	intent is to give an int quantity – the decimal point indicates a float to
	CSE. Hexadecimal and Octal values may be given by prefixing the
	value with 0x and 0O respectively (yes, that really is a zero followed
	by an 'O').
float	optional - sign, digits and decimal point. Very large or small values
	can be entered by following the number with an "e" and a power of
	ten. Examples;
	1.0 11 -5534.6 123.e25 4.56e-23
	The decimal point indicates a float as opposed to an int. Generally it
	doesn't matter as CSE converts ints to floats as required, but be
	careful when dividing: CSE interprets "2/3" as integer two divided by
	integer 3, which will produce an integer 0 before CSE notices any need
	to convert to <i>float</i> . If you mean .6666667, say 2./3, 2/3., or .6666667.

Feet and inches may be entered where a <i>float</i> number of feet is required by typing the feet (or a 0 if none), a single quote ', then the
inches. (Actually this is an operator meaning "divide the following
value by 12 and add it to the preceding value", so expressions can
• • • • • • • • • • • • • • • • • • • •
work with it.) Examples:
3'6 0'.5 (10+20)'(2+3)
"Text" – desired characters enclosed in double quotes. Maximum
length 80 characters (make 132??). To put a "within the "'s, precede
it with a backslash. Certain control codes can be represented with
letters preceded with a backslash as follows:
\\e escape
\\t tab
\\f form feed
\\r carriage return
\\n newline or line feed
Same as <i>string</i> , or without quotes if name consists only of letters,
digits, $\underline{}$, and $\$$, begins with a non-digit, and is different from all
reserved words now in or later added to the language (see Object
Names). Control character codes (ASCII 0-31) are not allowed.
Same as string; quotes optional on choice words valid for the member.
Capitalization does not matter.
Julian day of year (as int constant), or month abbreviation
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De c
followed by the int day of month. (Actually, the month names are
operators implemented to add the starting day of the month to the
following int quantity).

3.6.3 Operators

For *floats* and *ints*, the CSE input language recognizes a set of operators based closely on those found in the C programming language. The following table describes the available numeric operators. The operators are shown in the order of execution (precedence) when no ()'s are used to control the order of evaluation; thin lines separate operators of equal precedence.

Operator	Name	Notes and Examples
,	Feet-Inches Separator	a' b yields $a + b/12$; thus $4'6 = 4.5$.
+	Unary plus	The familiar "positive", as in $+3$. Does nothing; rarely used.
-	Unary minus	The familiar "minus", as in -3. $-(-3) = +3$ etc.
!	Logical NOT	Changes 0 to 1 and any non-0 value to 0. $!0$ = 1, $!17 = 0$.
~	One's complement	Complements each bit in an <i>int</i> value.
*	Multiplication	Multiplication, e.g. $3*4 = 12$; $3.24*18.54 = 60.07$
/	Division	Division, e.g. $4/2 = 2$, $3.24/1.42 = 2.28$. Integer division truncates toward 0 (e.g. $3/2 = 1$, $3/-2 = -1$, $-3/2 = -1$, $2/3 = 0$) CAUTION!
%	Modulus	Yields the remainder after division, e.g. $7\%2 = 1$. The result has the same sign as the left operand (e.g.(-7)\%2 = -1). \% is defined for both integer and floating point operands (unlike ANSI C).

Operator	Name	Notes and Examples
+	Addition	Yields the sum of the operands, e.g. $5+3=8$
-	Subtraction	Yields the difference of the operands, e.g. 5-3 = 2
>>	Right shift	a >> b yields a shifted right b bit positions, e.g. $8>>2=2$
<<	Left shift	a $<<$ b yields a shifted left b bit positions, e.g. $8<<2=32$
<	Less than	a < b yields 1 if a is less than b, otherwise 0
<=	Less than or equal	$a \le b$ yields 1 if a is less than or equal to b, otherwise 0
>=	Greater than or equal	a >= b yields 1 if a is greater than or equal to b, otherwise 0
>	Greater than	a > b yields 1 if a is greater than b, otherwise 0
==	Equal	a == b yields 1 if a is exactly (bit wise) equal to b, otherwise 0
!=	Not equal	a != b yields 1 if a is not equal to b, otherwise 0
&	Bitwise and	a & b yields the bitwise AND of the operands, e.g. $6 \& 2 = 2$.
^	Bitwise exclusive or	a $$ b yields the bitwise XOR of the operands, e.g. 6 $$ 2 = 4.
	Bitwise inclusive or	a b yields the bitwise IOR of the operands, e.g. $6 \mid 2 = 6$.
&&	Logical AND	a && b yields 1 if both a and b are non-zero, otherwise 0. && guarantees left to right evaluation: if the first operand evaluates to 0, the second operand is not evaluated and the result is 0.
	Logical OR	a b yields 1 if either a or b is true (non-0), otherwise 0. guarantees left to right evaluation: if the first operand evaluates to non-zero, the second operand in not evaluated and the result is 1.
?:	Conditional	a? b: c yields b if a is true (non-0), otherwise c.

Dates are stored as *ints* (the value being the Julian day of the year), so all numeric operators could be used. The month abbreviations are implemented as operators that add the first day of the month to the following *int* value; CSE does not disallow their use in other numeric contexts.

For *strings*, *object names*, and *choices*, the CSE input language currently has no operators except the ?: conditional operator. A concatenation operator is being considered. Note, though, that the choose, choose1, select, and hourval functions described below work with strings, object names, and choice values as well as numbers.

3.6.4 System Variables

System Variables are built-in operands with useful values. To avoid confusion with other words, they begin with a \$. Descriptions of the CSE system variables follow. Capitalization shown need not be matched. Most system variables change during a simulation run, resulting in the variations shown; they cannot be used where the context will not accept variation at least this fast. (The Input Data Section gives the variability,

or maximum acceptable variation, for each object member.)

\$dayOfYear	Day of year of simulation, 1 - 365; 1 corresponds to Jan-1. (Note that this is not the day of the simulation unless begDay is Jan-1.) Variation: daily.
\$month	Month of year, 1 - 12. Variation : monthly.
\$dayOfMonth	Day of month, 1 - 31. Variation : daily.
\$hour	Hour of day, 1 - 24, in local time; 1 corresponds to midnight - 1 AM.
	Variation: hourly.
hourST	Hour of day, 1 - 24, in standard time; 1 corresponds to midnight - 1 AM.
	Variation: hourly.
\$subhour	Subhour of hour, 1 - N (number of subhours). Variation: subhourly.
dyOfWeek	Day of week, 1 - 7; 1 corresponds to Sunday, 2 to Monday, etc.
	Variation: daily.
\$DOWH	Day of week 1-7 except 8 on every observed holiday. Variation: daily.
\$isHoliday	1 on days that a holiday is observed (regardless of the true date of the
	holiday); 0 on other days. Variation : daily.
\$isHoliTrue	1 on days that are the true date of a holiday, otherwise 0. Variation :
	daily.
\$isWeHol	1 on weekend days or days that are observed as holidays. Variation:
	daily.
\$isWeekend	1 on Saturday and Sunday, 0 on any day from Monday to Friday.
	Variation: daily.
\$isWeekday	1 on Monday through Friday, 0 on Saturday and Sunday. Variation: daily.
sisBegWeek	1 for any day immediately following a weekend day or observed holiday
-	that is neither a weekend day or an observed holiday. Variation: daily.
\$isWorkDay	1 on non-holiday Monday through Friday, 0 on holidays, Saturday and
	Sunday. Variation: daily.
sisNonWorkDay	1 on Saturday, Sunday and observed holidays, 0 on non-holiday Monday
	through Friday. Variation: daily.
sisBegWorkWeek	1 on the first workday after a non-workday, 0 all other days. Variation:
	daily.
sisDT	1 if Daylight Saving time is in effect, 0 otherwise. Variation: hourly.
\$autoSizing	1 during autosizing calculations, 0 during main simulation. Variation:
	for each phase.
\$dsDay	Design day type, 0 during main simulation, 1 during heating autosize, 2
	during cool autosize. Variation: daily.

Weather variables: the following allow access to the current hour's weather conditions in you CSE expressions. Units of measure are shown in parentheses. All have Variation: hourly.

\$radBeam	Solar beam irradiance (on a sun-tracking surface) this hour (Btu/ft2)
\$radDiff	Solar diffuse irradiance (on horizontal surface) this hour (Btu/ft2)
tDbO	Outdoor drybulb temperature this hour (degrees F)
\$tWbO	Outdoor wetbulb temperature this hour (degrees F)
\$wO	Outdoor humidity ratio this hour (lb H2O/lb dry air)
$\$ wind Dir Deg	Wind direction (compass degrees)
$\$ wind Speed	Wind speed (mph)

3.6.5 Built-in Functions

Built-in functions perform a number of useful scheduling and conditional operations in expressions. Built-in functions have the combined variation of their arguments; for *hourval*, the minimum result variation is hourly. For definitions of *numeric* and *anyType*, see Expression Types.

3.6.5.1 brkt

Function Syntax	limits a value to be in a given range numeric brkt(numeric min, numeric val, numeric max)
Remark	If val is less than min , returns min ; if val is greater than max , returns max ;
Example	if val is in between, returns val. In an AIRHANDLER object, the following statement would specify a
-	supply temperature equal to 130 minus the outdoor air temperature, but
	not less than 55 nor greater than 80: ahTsSp = brkt(55, 130 - \$tDb0, 80);
	This would produce a 55-degree setpoint in hot weather, an 80-degree setpoint in cold weather, and a transition from 55 to 70 as the outdoor temperature moved from 75 to 50.

3.6.5.2 fix

Function	converts float to int
Syntax	$int \ \mathbf{fix}(\ float \ val \)$
Remark	val is converted to int by truncation – $\mathbf{fix}(1.3)$ and $\mathbf{fix}(1.99)$ both return 1.
	$\mathbf{fix}(-4.4)$ returns -4.

3.6.5.3 toFloat

Function	converts int to float
Syntax	float toFloat(int val)

3.6.5.4 min

Function	returns the lowest quantity from a list of values.
Syntax	numeric min(numeric value1, numeric value2, numeric valuen)
Remark	there can be any number of arguments separated by commas; if floats and
	ints are intermixed, the result is float.

3.6.5.5 max

Function	returns the highest quantity from a list of values.
Syntax	$numeric\ \mathbf{max}\ (\ numeric\ value1,\ numeric\ value2,\\ numeric\ valuen\)$

3.6.5.6 choose

Function	returns the nth value from a list. If $arg\theta$ is 0, $value\theta$ is returned; for 1,
	value1 is returned, etc.

Syntaxany Type choose (int argθ, any Type value0, any Type value1, ... any Type
valuen) or any Type choose (int argθ, any Type value0, ... any Type valuen,
default valueDef)RemarksAny number of value arguments may be given. If default and another
value is given, this value will be used if argθ is less than 0 or too large;
otherwise, an error will occur.

3.6.5.7 choose1

Function	same as choose except $arg\theta$ is 1-based. Choose1 returns the second argument
	value1 for $arg\theta = 1$, the third argument value2 when $arg\theta = 2$, etc.
Syntax	anyType choose1 (int arg0, anyType value1, anyType value2, anyType
	valuen) or any Type choose1 (int arg0, any Type value1, any Type valuen,
	$\mathbf{default} \ valueDef)$
Remarks	choose1 is a function that is well suited for use with daily system variables.
	For example, if a user wanted to denote different values for different days of
	the week, the following use of choose1 could be implemented:
	<pre>tuTC = choose1(\\$dayOfWeek, MonTemp, TueTemp,)</pre>
	Note that for hourly data, the hourval function would be a better choice,
	because it doesn't require the explicit declaration of the \$hour system
	variable.

3.6.5.8 select

```
Function
                   contains Boolean-value pairs; returns the value associated with the first
                   Boolean that evaluates to true (non-0).
Syntax
                   any Type (Boolean arg1, any Type value1, Boolean arg2, any Type value2, ...
                   default any Type) (the default part is optional)
Remark
                   select is a function that simulates if-then logic during simulation (for people
                   familiar with C, it works much like a series of imbedded conditionals:
                   (a?b:(a?b:c))).
Examples
                   Select can be used to simulate a dynamic (run-time) if-else statement:
                   gnPower = select( $isHoliday, HD_GAIN, // if ($isHolid a y)
                   default WD_GAIN) // else
                   This technique can be combined with other functions to schedule items on a
                   hourly and daily basis. For example, an internal gain that has different
                   schedules for holidays, weekdays, and weekends could be defined as follows:
                   // 24-hour lighting power schedules for weekend, weekda y ,
                   holiday:
                   #define WE_LIGHT hourval( .024, .022, .021, .021, .021, .026,
                            .038, .059, .056, .060, .059, .046, \
                            .045, .005, .005, .005, .057, .064, \
                            .064, .052, .050, .055, .044, .027)
                   #define WD_LIGHT hourval( .024, .022, .021, .021, .021, .026,
                            .038, .059, .056, .060, .059, .046, \
                            .045, .005, .005, .005, .057, .064, \
                            .064, .052, .050, .055, .044, .027)
                   #define HD_LIGHT hourval( .024, .022, .021, .021, .021 , . 026,
                            .038, .059, .056, .060, .059, .046, \
```

```
.045, .005, .500, .005, .057, .064, \
.064, .052, .050, .055, .044, .027)

// set power member of zone's GAIN object for lighting
gnPower = BTU_Elec( ZAREA*0.1) * // .1 kW/ft2 ti mes...
select( $isHoliday, HD_LIGHT, // Holidays
$isWeekend, WE_LIGHT, // Saturday & Sunday
default WD_LIGHT); // Week Days

In the above, three subexpressions using hourval (next) are first defined as
macros, for ease of reading and later change. Then, gnPower (the power
```

In the above, three subexpressions using **hourval** (next) are first defined as macros, for ease of reading and later change. Then, gnPower (the power member of a GAIN object) is set, using **select** to choose the appropriate one of the three **hourval** calls for the type of day. The expression for gnPower is a *live expression* with hourly variation, that is, CSE will evaluate it an set gnPower to the latest value each hour of the simulation. The variation comes from **hourval**, which varies hourly (also, \$isHoliday and \$isWeekend vary daily, but the faster variation determines the variation of the result).

3.6.5.9 hourval

Function	from a list of 24 values, returns the value corresponding to the hour of day.
Syntax	anyType hourval (anyType value1, anyType value2, anyType value24)
	anyType hourval (anyType value1, anyType value2, default anyType)
Remark	hourval is evaluated at runtime and uses the hour of the day being simulated
	to choose the corresponding value from the 24 suppplied values.
	If less than 24 value arguments are given, default and another value (or
	expression) should be supplied to be used for hours not explicitly specified.
Example	see select , just above.

3.6.5.10 abs

Function	converts numeric to its absolute value
Syntax	numeric abs (numeric val)

3.6.5.11 sqrt

Function	Calculates and returns the positive square root of val (val must be ≥ 0).
Syntax	float sqrt (float val)

$3.6.5.12 \exp$

Function	Calculates and returns the exponential of $val (= e^{val})$
Syntax	$float \ exp(\ float \ val)$

$3.6.5.13 \log E$

Function	Calculates and returns the base e logarithm of val (val must be ≥ 0).
Syntax	float logE(float val)

$3.6.5.14 \log 10$

Funci Synta			ates and returns the base 10 logarithm of val (val must be ≥ 0). $og10$ ($float\ val$)	
3.6.5.15	\sin			
		Function Syntax	Calculates and returns the sine of val (val in radians) float $sin(float val)$	
3.6.5.16	sind			
		Function Syntax	Calculates and returns the sine of val (val in degrees) $float \ \mathbf{sind}(\ float \ val)$	
3.6.5.17	asin			
		Function Syntax	Calculates and returns (in radians) the arcsine of val float $asin(float\ val)$	
3.6.5.18	asind			
		Function Syntax	Calculates and returns (in degrees) the arcsine of val float asind(float val)	
3.6.5.19	cos			
		Function Syntax	Calculates and returns the cosine of val (val in radians) float $\cos($ float val)	
3.6.5.20	$\cos d$			
		Function Syntax	Calculates and returns the cosine of val (val in degrees) float $\mathbf{cosd}($ float val)	
3.6.5.21	acos			
		Function Syntax	Calculates and returns (in radians) the arccosine of val $float$ $acos($ $float$ $val)$	
3.6.5.22	acosd			
		Function Syntax	Calculates and returns (in degrees) the arccosine of val float acosd(float val)	
3.6.5.23	tan			

Function Syntax	Calculates and returns the tangent of val (val in radians) float $tan(float val)$
3.6.5.24 tand	
Function Syntax	Calculates and returns the tangent of val (val in degrees) float $\mathbf{tand}(\ float\ val)$
3.6.5.25 atan	
	Function Calculates and returns (in radians) the arctangent of val Syntax float atan(float val)
3.6.5.26 atand	
	Function Calculates and returns (in degrees) the arctangent of val Syntax float atand(float val)
3.6.5.27 atan2	
Function Syntax	Calculates and returns (in radians) the arctangent of y/x (handling $x=0$) float $atan2$ (float y, float x)
3.6.5.28 atan2	${f d}$
Function Syntax	Calculates and returns (in degrees) the arctangent of y/x (handling x = 0) float $\mathbf{atan2d}$ (float y, float x)
3.6.5.29 pow	
Function Syntax	Calculates and returns val raised to the x th power (= val^x). val and x canno both be 0. If $val < 0$, x must be integral. float \mathbf{pow} (float val , numeric x)
3.6.5.30 entha	lpy
Function	Returns enthalpy of moist air (Btu/lb) for dry bulb temperature (F) and humidity ratio (lb/lb)
Syntax	float enthalpy (float tDb, float w)
3.6.5.31 wFror	${ m mDbWb}$
Function	Returns humidity ratio (lb/lb) of moist air from dry bulb and wet bulb
	temperatures (F)

3.6.5.32 wFromDbRh

Function	Returns humidity ratio (lb/lb) of moist air from dry bulb temperature (F)
-	and relative humidity $(0-1)$
Syntax	float wFromDbRh(float tDb, float rh)

3.6.5.33 import

Function	Returns <i>float</i> read from an import file.
Syntax	$float \ \mathbf{import}(\ string \ importFile, \ string \ colName)$
	$float \ \mathbf{import}(\ string \ importFile, \ int \ colN)$
Remark	Columns can be referenced by name or 1-based index.
	See IMPORTFILE for details on use of import()

3.6.5.34 importStr

**Functio n	Returns <i>string</i> read from an import file.
Syntax	string importStr(string importFile, string colName)
	string importStr(string importFile, int colN)
Remark	See IMPORTFILE for details on use of importStr()

3.6.5.35 contin

Function	Returns continuous control value, e.g. for lighting control
Syntax	float contin(float mpf, float mlf, float sp, float val)
Remark	contin is evaluated at runtime and returns a value in the range $0-1$???
Example	_

3.6.5.36 stepped

Function	Returns stepped reverse-acting control value, e.g. for lighting control			
Syntax	float stepped(int nsteps, float sp, float val)			
Remark	stepped is evaluated at runtime and returns a value in the range $0-1$. If val			
	$\leq 0, 1$ is returned; if val $\geq sp, 0$ is returned; otherwise, a stepped			
	intermediate value is returned (see example)			

example:

stepped(3, 12, val) returns

val	result
$\overline{\text{val} < 4}$	1
$4 \le \text{val} < 8$.667
$8 \le \text{val} < 12$.333
$val \ge 12$	0

3.6.6 User-defined Functions

User defined functions have the format:

```
type FUNCTION name ( arg decls ) = expr ;
```

Type indicates the type of value the function returns, and can be:

```
INTEGER

FLOAT

STRING

DOY (day of year date using month name and day; actually same as integer).
```

Arg decls indicates zero or more comma-separated argument declarations, each consisting of a type (as above) and the name used for the argument in expr.

Expr is an expression of (or convertible to) type.

The tradeoffs between using a user-defined function and a preprocessor macro (#define) include:

- 1. Function may be slightly slower, because its code is always kept separate and called, while the macro expansion is inserted directly in the input text, resulting in inline code.
- 2. Function may use less memory, because only one copy of it is stored no matter how many times it is called.
- 3. Type checking: the declared types of the function and its arguments allow CSE to perform additional checks.

Note that while macros require line-splicing ("\")to extend over one line, functions do not require it:

3.6.7 Probes

Probes provide a universal means of referencing data within the simulator. Probes permit using the inputtable members of each object, as described in the Input Data Section, as operands in expressions. In addition, most internal members can be probed; we will describe how to find their names shortly.

Three general ways of using probes are:

1. During input, to implement things like "make this window's width equal to 10% of the zone floor area" by using the zone's floor area in an expression:

```
wnWidth = @zone[1].znArea * 0.1;
```

Here "@zone[1].znArea" is the probe.

2. During simulation. Probing during simulation, to make inputs be functions of conditions in the building or HVAC systems, is limited because most of the members of interest are updated *after* CSE has evaluated the user's expressions for the subhour or other time interval – this is logically necessary since the expressions are inputs. (An exception is the weather data, but this is also available through system variables such as \$tDbO.)

However, a number of *prior subhour* values are available for probing, making it possible to implement relationships like "the local heat output of this terminal is 1000 Btuh if the zone temperature last subhour was below 65, else 500":

```
tuMnLh = @znres["North"].S.prior.tAir < 65 ? 1000 : 500;</pre>
```

3. For output reports, allowing arbitrary data to be reported at subhourly, hourly, daily, monthly, or annual intervals. The REPORT class description describes the user-defined report type (UDT), for which you write the expression for the value to be reported. With probes, you can thus report almost any datum within CSE – not just those values chosen for reporting when the program was designed. Even values calculated during the current subhour simulation can be probed and reported, because expressions for reports are evaluated after the subhour's calculations are performed.

Examples:

The general form of a probe is

```
@ className [ objName ] . member
```

The initial @ is always necessary. And don't miss the period after the].

className is the CLASS being probed

objName	is the name of the specific object of the class; alternately, a numeric subscript is allowed. Generally, the numbers correspond to the objects in the order created. [objName] can be omitted for the TOP class, which has only one
	member, Top.
member	is the name of the particular member being probed. This must be exactly correct. For some input table members, the probe name is not the same as the input name given in the Input Data Section, and there are many probe-able members not described in the Input Data section.

How do you find out what the probe-able member names are? CSE will display the a list of the latest class and member names if invoked with the -p switch. Use the command line

```
CSE -p >probes.txt
```

to put the displayed information into the file PROBES.TXT, then print the file or examine it with a text editor.

A portion of the -p output looks like:

<pre>@exportCol[1].</pre>	I	R		owner: export
name	I	R	string	constant
colHead	I	R	string	input time
colGap	I	R	integer number	input time
colWid	I	R	integer number	input time
colDec	I	R	integer number	input time
colJust	I	R	integer number	constant
colVal	I	R	un-probe-able	end of each subhour
nxColi	I	R	integer number	constant
@holiday[1].	I			
· ·	_			
name	Ι		string	constant
hdDateTrue	Ι		integer number	constant
hdDateObs	Ι		integer number	constant

hdOnMonday I integer number constant

In the above "exportCol" and "holiday" are class names, and "name", "colHead", "colGap", . . . are member names for class exportCol. Some members have multiple names separated by .'s, or they may contain an additional subscript. To probe one of these, type all of the names and punctuation exactly as shown (except capitalization may differ); if an additional subscript is shown, give a number in the specified range. An "I" designates an "input" parameter, an R means "runtime" parameter. The "owner" is the class of which this class is a subclass.

The data type and variation of each member is also shown. Note that *variation*, or how often the member changes, is shown here. (*Variability*, or how often an expression assigned to the member may change, is given for the input table members in the Input Data Section). Members for which an "end of" variation is shown can be probed only for use in reports. A name described as "un-probe-able" is a structure or something not convertible to an integer, float, or string.

surface[].sgdist[].f[]: f[0] is winter solar coupling fraction; f[1] is summer.

3.6.8 Variation Frequencies Revisited

At risk of beating the topic to death, we're going to review once more the frequencies with which a CSE value can change (variations), with some comments on the corresponding variabilities.

subhourly	changes in each "subhour" used in simulation. Subhours are commonly
	15-minute intervals for models using znModel=CNE or 2-minute intervals
	for CSE znModels.
hourly	changes every simulated hour. The simulated weather and many other
	aspects of the simulation change hourly; it is customary to schedule
	setpoint changes, HVAC system operation, etc. in whole hours.
daily	changes at each simulated midnite.
monthly	changes between simulated months.
monthly-hourly, or	changes once an hour on the first day of each month; the 24 hourly values
"hourly on first day of	from the first day of the month are used for the rest of the month. This
each month"	variation and variability is used for data dependent on the sun's position, to save calculation time over computing it every hour of every day.
run start time	value is derived from other inputs before simulation begins, then does not
run start time	change.
	Members that cannot change during the simulation but which are not
	needed to derive other values before the simulation begins have "run start
	time" variability.
input time	value is known before CSE starts to check data and derive "run start
input time	time" values.
	Expressions with "input time" variation may be used in many members
	that cannot accept any variation during the run. Many members
	documented in the Input Data Section as having "constant" variability
	may actually accept expressions with "input time" variation; to find out,
	try it: set the member to an expression containing a proposed probe and
	see if an error message results.
	"Input time" differs from "constant" in that it includes object names
	(forward references are allowed, and resolved just before other data
	checks) and probes that are forward references to constant values.
constant	does not vary. But a "constant" member of a class denoted as R (with no
	I) in the probes report produced by CSE -p is actually not available until
	run start time.

Also there are end-of varieties of all of the above; these are values computed during simulation: end of each

hour, end of run, etc. Such values may be reported (using a probe in a UDT report), but will produce an error message if probed in an expression for an input member value.

4 Input Data

This section describes the input for each CSE class (object type). For each object you wish to define, the usual input consists of the class name, your name for the particular object (usually), and zero or more member value statements of the form name=expression. The name of each subsection of this section is a class name (HOLIDAY, MATERIAL, CONSTRUCTION, etc.). The object name, if given, follows the class name; it is the first thing in each description (hdName, matName, conName, etc.). Exception: no statement is used to create or begin the predefined top-level object "Top" (of class TOP); its members are given without introduction.

After the object name, each member's description is introduced with a line of the form name=type. Type indicates the appropriate expression type for the value:

- float
- int
- string
- _____name (object name for specified type of object)
- choice
- date

These types discussed in the section on expression types.

Each member's description continues with a table of the form:

Units	Legal Range	Default	Required	Variability
ft^2	x > 0	wnHeight * wnWidth	No	constant

where the column headers have the following meaning:

Units	units of measure (lb., ft, Btu, etc.) where applicable	
Legal	limits of valid range for numeric inputs; valid choices	
Range	for <i>choice</i> members, etc.	
Default	value assumed if member not given; applicable only if not required	
Required	YES if you must give this member	
Variability	how often the given expression can change: hourly, daily, etc. See section	
	on expressions, statements, and variation frequencies	

4.1 TOP Members

The top-level data items (TOP members) control the simulation process or contain data that applies to the modeled building as a whole. No statement is used to begin or create the TOP object; these statements can be given anywhere in the input (they do, however, terminate any other objects being specified – ZONEs, REPORTs, etc.).

4.1.1 TOP General Data Items

doMainSim = choice

Specifies whether the simulation is performed when a Run command is encountered. See also doAutoSize.

Units	Legal Range	Default	Required	Variability
	NO,YES	YES	No	constant

begDay = date

Date specifying the beginning day of the simulation performed when a Run command is encountered. See further discussion under endDay (next).

Units	Legal Range	Default	Required	Variability
	date	Jan 1	No	constant

endDay = date

Date specifying the ending day of the simulation performed when a Run command is encountered.

The program simulates 365 days at most. If begDay and endDay are the same, 1 day is simulated. If begDay precedes endDay in calendar sequence, the simulation is performed normally and covers begDay through endDay inclusive. If begDay follows endDay in calendar sequence, the simulation is performed across the year end, with Jan 1 immediately following Dec 31.

Units	Legal Range	Default	Required	Variability
	date	Dec 31	No	constant

jan1DoW=choice

Day of week on which January 1 falls.

Units	Legal Range	Default	Required	Variability
	SUN	THU	No	constant
	MON			
	TUE			
	WED			
	THU			
	FRI			
	SAT			

workDayMask=int TODO

Units	Legal Range	Default	Required	Variability
		Mon-fri?	No	constant

wuDays = int

Number of "warm-up" days used to initialize the simulator. Simulator initialization is required because thermal mass temperatures are set to arbitrary values at the beginning of the simulation. Actual mass temperatures must be established through simulation of a few days before thermal loads are accumulated. Heavier buildings require more warm-up; the default values are adequate for conventional construction.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	7	No	constant

nSubSteps = int

Number of subhour steps used per hour in the simulation. 4 is the time-honored value for models using CNE zones. A value of 30 is typically for CSE zone models.

Units	Legal Range	Default	Required	Variability
	x > 0	4	No	constant

tol = float

Endtest convergence tolerance for internal iteration in CNE models (no effect for CSE models) Small values for the tolerance cause more accurate simulations but slower performance. The user may wish to use a high number during the initial design process (to quicken the runs) and then lower the tolerance for the final design (for better accuracy). Values other than .001 have not been explored.

Units	Legal Range	Default	Required	Variability
	x > 0	.001	No	constant

humTolF=float

Specifies the convergence tolerance for humidity calculations in CNE models (no effect in for CSE models), relative to the tolerance for temperature calculations. A value of .0001 says that a humidity difference of .0001 is about as significant as a temperature difference of one degree. Note that this is multiplied internally by "tol"; to make an overall change in tolerances, change "tol" only.

Units	Legal Range	Default	Required	Variability
	x > 0	.0001	No	

ebTolMon = float

Monthly energy balance error tolerance for internal consistency checks. Smaller values are used for testing the internal consistency of the simulator; values somewhat larger than the default may be used to avoid error messages when it is desired to continue working despite a moderate degree of internal inconsistency.

Units	Legal Range	Default	Required	Variability
	x > 0	0.0001	No	constant

ebTolDay=float

Daily energy balance error tolerance.

Units	Legal Range	Default	Required	Variability
	x > 0	0.0001	No	constant

ebTolHour = float

Hourly energy balance error tolerance.

Units	Legal Range	Default	Required	Variability
	x > 0	0.0001	No	constant

ebTolSubhr = float

Sub-hourly energy balance error tolerance.

Units	Legal Range	Default	Required	Variability
	x > 0	0.0001	No	constant

grndMinDim = float

The minimum cell dimension used in the two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
ft	x > 0	0.066	No	constant

grndMaxGrthCoeff = float

The maximum ratio of growth between neighboring cells in the direction away from the near-field area of interest. Used in the two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
	$x \ge 1.0$	1.5	No	constant

grndTimeStep = choice

Allows the user to choose whether to calculate foundation conduction on hourly or subhourly intervals. Hourly intervals require less overall computation time, but with less accuracy.

Units	Legal Range	Default	Required	Variability
	HOURLY, SUBHOURLY	HOURLY	No	constant

humMeth = choice

Developmental zone humidity computation method choice for CNE models (no effect for CSE models).

Rob's backward difference method. Works well within limitations of backward
difference approach.
Phil's central difference method. Should be better if perfected, but
initialization at air handler startup is unresolved, and ringing has been
observed.

Units	Legal Range	Default	Required	Variability
	ROB, PHIL	ROB	No	constant

dflExH = float

Default exterior surface (air film) conductance used for opaque and glazed surfaces exposed to ambient conditions in the absence of explicit specification.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	2.64	No	constant

bldgAzm = float

Reference compass azimuth (0 = north, 90 = east, etc.). All zone orientations (and therefore surface orientations) are relative to this value, so the entire building can be rotated by changing bldgAzm only. If a value outside the range $0^{\circ} \le x < 360^{\circ}$ is given, it is normalized to that range.

Units	Legal Range	Default	Required	Variability
o (degrees)	unrestricted	0	No	constant

elevation = float

Elevation of the building site. Used internally for the computation of barometric pressure and air density of the location.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0 (sea level)	No	constant

runTitle=string

Run title for the simulation. Appears in report footers, export headers, and in the title lines to the INP, LOG, and ERR built-in reports (these appear by default in the primary report file; the ERR report also appears in the error message file, if one is created).

Units	Legal Range	Default	Required	Variability
	63 characters	blank (no title)	No	constant

runSerial = int

Run serial number for the simulation. Increments on each run in a session; appears in report footers.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 999$	0	No	constant

4.1.2 TOP Daylight Saving Time Items

Daylight savings starts by default at 2:00 a.m. of the second Sunday in March. Internally, hour 3 (2:00-3:00 a.m.) is skipped and reports for this day show only 23 hours. Daylight savings ends by default at 2:00 a.m.

of the first Sunday of November; for this day 25 hours are shown on reports. CSE fetches weather data using standard time but uses daylight savings time to calculate variable expressions (and thus all schedules).

DT = choice

Whether Daylight Savings Time is to be used for the current run.

Units	Legal Range	Default	Required	Variability
	YES, NO	YES	No	constant

DTbegDay = date

Start day for daylight saving time (assuming DT=Yes)

Units	Legal Range	Default	Required	Variability
	date	second Sunday in March	No	constant

DTendDay = date

End day for daylight saving time (assuming DT=Yes)

Units	Legal Range	Default	Required	Variability
	date	first Sunday in November	No	constant

4.1.3 TOP Model Control Items

ventAvail = choice

Indicates availability of outdoor ventilation strategies. CSE cannot model simultaneously-operating alternative ventilation strategies. For example, an RSYS central fan integrated (CFI) OAV system is never modeled while whole house fan ventilation is available. ventAvail controls which ventilation mode, if any, is available for the current hour. Note that mode availability means that the strategy could operate but may not operate due to other control assumptions.

Choice	Ventilation Strategy Available
NONE WHOLEBUILDING	None IZXFER (window and whole-house fan)
RSYSOAV	RSYS central fan integrated (CFI) outside air ventilation (OAV)

As noted, ventAvail is evaluated hourly, permitting flexible control strategy modeling. The following example specifies that RSYSOAV (CFI) ventilation is available when the seven day moving average temperature is above 68 °F, otherwise whole building ventilation is available between 7 and 11 PM, otherwise no ventilation.

Units	Legal Range	Default	Required	Variability
	$Choices\ above$	WHOLEBUILDING	No	hourly

dhwModel = choice

Modifies aspects of DHW calculations.

Choice	Effect
T24DHW	Matches results from T24DHW.DLL
2013	Corrected CEC 2013 methods with 2016 upd

Units	Legal Range	Default	Required	Variability
	$Choices\ above$	2013	No	constant

exShadeModel = choice

Specifies advanced exterior shading model used to evaluate shading of PVARRAYs by SHADEXs or other PVARRAYs. Advanced shading is not implemented for building surfaces and this setting has no effect on walls or windows.

Choice	Effect
PENUMBRA	Calculate shading using the Penumbra model
NONE	Disable advanced shading calculations

Units	Legal Range	Default	Required	Variability
	$Choices\ above$	PENUMBRA	No	constant

ANTolAbs = float

AirNet absolute convergence tolerance. Ideally, calculated zone air pressures should be such that the net air flow into each zone is 0 – that is, there should be a perfect mass balance. The iterative AirNet solution techniques are deemed converged when netAirMassFlow $< \max(\text{ANTolAbs}, \text{ANTolRel*totAirMassFlow})$.

Units	Legal Range	Default	Required	Variability
lbm/sec	x > 0	0.00125 (about 1 cfm)	No	constant

ANTolRel = float

AirNet relative convergence tolerance. See AnTolAbs just above.

Units	Legal Range	Default	Required	Variability
	x > 0	.0001	No	constant

The ASHWAT complex fenestration model used when WINDOW wnModel=ASHWAT yields several heat transfer results that are accurate over local ranges of conditions. Several values control when these value are recalculated. If any of the specified values changes more than the associated threshold, a full ASHWAT calculation is triggered. Otherwise, prior results are used. ASHWAT calculations are computationally expensive and conditions often change only incrementally between time steps.

AWTrigT = float

ASHWAT temperature change threshold – full calculation is triggered by a change of either indoor or outdoor environmental (combined air and radiant) temperature that exceeds AWTrigT.

Units	Legal Range	Default	Required	Variability
°F	x > 0	1	No	constant

AWTrigSlr = float

ASHWAT solar change threshold – full calculation is triggered by a fractional change of incident solar radiation that exceeds AWTrigSlr.

Units	Legal Range	Default	Required	Variability
	x > 0	.05	No	constant

AWTrigH=float

ASHWAT convection coefficient change threshold – full calculation is triggered by a fractional change of inside surface convection coefficient that exceeds AWTrigH.

Units	Legal Range	Default	Required	Variability
	x > 0	.1	No	constant

4.1.4 TOP Weather Data Items

The following system variables (4.6.4) are determined from the weather file for each simulated hour:

\$radBeam	beam irradiance on tracking surface (integral for hour, Btu/ft ²).
\$radDiff	diffuse irradiance on a horizontal surface (integral for hour, Btu/ft ²).
tDbO	dry bulb temp (°F).
\$tWbO	wet bulb temp (°F).
\$wO	humidity ratio
$\$ wind Dir Deg	wind direction (degrees, NOT RADIANS; 0=N, 90=E).
$\boldsymbol{\text{SwindSpeed}}$	wind speed (mph).

The following are the terms determined from the weather file for internal use, and can be referenced with the probes shown.

@Top.depressWbWet bulb depression (F).

@Top.windSpeedSquaredWind speed squared (mph2).

wfName=string

Weather file path name for simulation. The file should be in the current directory, in the directory CSE.EXE was read from, or in a directory on the operating system PATH. Weather file formats supported are CSW, EPW, and ET1. Only full-year weather files are supported.

Note: Backslash (\) characters in path names must be doubled to work properly (e.g. "\\wthr\\mywthr.epw"). Forward slash (/) may be used in place of backslash without doubling.

Units	Legal Range	Default	Required	Variability
	file name,path optional		Yes	constant

Units	Legal Range	Default	Required	Variability
	file name,path optional		Yes	constant

$\mathbf{skyModel} {=} \mathit{choice}$

Selects sky model used to determine relative amounts of direct and diffuse irradiance.

ISOTROPIC	traditional isotropic sky model
ANISOTROPIC	Hay anisotropic model

Units	Legal Range	Default	Required	Variability
	$choices\ above$	ANISOTROPIC	No	constant

skyModelLW = choice

Selects the model used to derive sky temperature used in long-wave (thermal) radiant heat exchange calculations for SURFACEs exposed to ambient conditions. See the RACM alorithms documentation for technical details.

Choice	Description
DEFAULT	Default: tSky from weather file if available else Berdahl-Martin
BERDAHLMARTIN	Berdahl-Martin (tSky depends on dew point, cloud cover, and hour)
DRYBULB	tSky = dry-bulb temperature (for testing)
BLAST	Blast model (tSky depends on dry-bulb)

Units	Legal Range	Default	Required	Variability
	$choices\ above$	DEFAULT	No	constant

The reference temperature and humidity are used to calculate a humidity ratio assumed in air specific heat calculations. The small effect of changing humidity on the specific heat of air is generally ignored in the interests of speed, but the user can control the humidity whose specific heat is used through the refTemp and refRH inputs.

refTemp = float

Reference temperature (see above paragraph).

Units	Legal Range	Default	Required	Variability
°F	$x \ge 0$	$60^{\rm o}$	No	constant

refRH = float

Reference relative humidity (see above).

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0.6	No	constant

grndRefl=float

Global ground reflectivity, used except where other value specified with sfGrndRefl or wnGrndRefl. This reflectivity is used in computing the reflected beam and diffuse radiation reaching the surface in question. It is also used to calculate the solar boundary conditions for the exterior grade surface in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
<u> </u>	$0 \le x \le 1$	0.2	No	Monthly-Hourly

The following values modify weather file data, permitting varying the simulation without making up special weather files. For example, to simulate without the effects of wind, use wind F = 0; to halve the effects of diffuse solar radiation, use radDiff F = 0.5. Note that the default values for windSpeedMin and wind F = 0.5 result in modification of weather file wind values unless other values are specified.

grndEmit=float

Long-wave emittance of the exterior grade surface used in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
	$0.0\ le\ge le\ 1.0$	0.8	No	constant

grndRf

Ground surface roughness. Used for convection and wind speed corrections in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0.0$	0.1	No	constant

windSpeedMin=float

Minimum value for wind speed

Units	Legal Range	Default	Required	Variability
mph	$x \ge 0$	0.5	No	constant

windF = float

Wind Factor: multiplier for wind speeds read from weather file. windF is applied *after* windSpeedMin. Note that windF does *not* effect infiltration rates calculated by the Sherman-Grimsrud model (see e.g. ZONE.infELA). However, windF does modify AirNet flows (see IZXFER).

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	0.25	No	constant

terrainClass = int

Specifies characteristics of ground terrain in the project region.

1	ocean or other body of water with at least 5 km unrestricted expanse
2	flat terrain with some isolated obstacles (buildings or trees well separated)
3	rural areas with low buildings, trees, etc.
4	urban, industrial, or forest areas
5	center of large city

Units	Legal Range	Default	Required	Variability
	$1 \le x \le 5$	4	No	constant

radBeamF = float

Multiplier for direct normal (beam) irradiance

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	1	No	constant

radDiffF = float

Multiplier for diffuse horizonal irradiance.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	1	No	constant

hConvMod=choice

Enable/disable convection convective coefficient pressure modification factor.

$$0.24 + 0.76 \cdot P_{Location} / P_{SeaLevel}$$

Units	Legal Range	Default	Required	Variability
	YES, NO	YES	No	constant

soilDiff = float

Note: soilDiff is used as part of the simple ground model, which is no longer supported. Use soilCond, soilSpHt, and SoilDens instead.

Soil diffusivity, used in derivation of ground temperature. CSE calculates a ground temperature at 10 ft depth for each day of the year using dry-bulb temperatures from the weather file and soilDiff. Ground temperature is used in heat transfer calculations for SURFACEs with sfExCnd=GROUND. Note: derivation

of mains water temperature for DHW calculations involves a ground temperature based on soil diffusivity = 0.025 and does not use this soilDiff.

Units	Legal Range	Default	Required	Variability
$\mathrm{ft^2/hr}$	x > 0	0.025	No	constant

soilCond = float

Soil conductivity. Used in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	**Variability
Btuh-ft/ft ² -°F	x > 0	1.0	No	constant

soilSpHt=float

Soil specific heat. Used in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
Btu/lb-°F	x > 0	0.1	No	constant

soilDens = float

Soil density. Used in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
$\frac{1}{\mathrm{lb}/\mathrm{ft}^3}$	x > 0	115	No	constant

farFieldWidth = float

Far-field width. Distance from foundation to the lateral, zero-flux boundary condition. Used in two-dimensional finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
ft	x > 0	130	No	constant

${\tt deepGrndCnd} {=} {\it choice}$

Deep-ground boundary condition type. Choices are WATERTABLE (i.e., a defined temperature) or ZEROFLUX.

Units	Legal Range	Default	Required	Variability
_	WATERTABLE, ZEROFLUX	ZEROFLUX	No	constant

deepGrndDepth = float

Deep-ground depth. Distance from exterior grade to the deep-ground boundary. Used in two-dimensional

finite difference calculations for FOUNDATIONs.

Units	Legal Range	Default	Required	Variability
ft	x > 0	130	No	constant

deepGrndT = float

Deep-ground temperature. Used when deepGrndCnd=WATERTABLE.

Units	Legal Range	Default	Required	Variability
F	x > 0	Annual average drybulb temperature	No	hourly

4.1.5 TOP TDV (Time Dependent Value) Items

CSE supports an optional comma-separated (CSV) text file that provides hourly TDV values for electricity and fuel. TDV values are read along with the weather file and the values merged with weather data. Several daily statistics are calculated for use via probes. The file has no other effect on the simulation. Only full-year TDV files are supported.

The format of a TDV file is the same as an **IMPORTFILE** with the proviso that the 4 line header is not optional and certain header items must have specified values. In the following table, non-italic items must be provided as shown (with optional quotes).

Line	Contents	Notes
1	TDV Data (TDV/Btu), runNumber	runNumber is not checked
2	timestamp	optionally in quotes accessible via @TOP.TDVFileTimeStamp
3	title, hour	title (in quotes if it contains commas) accessible via @TOP.TDVFileTitle
4	tdvElec, tdvFuel	comma separated column names (optionally in quotes) not checked
5	val Elec, val Fuel	comma separated numerical values (8760 or 8784 rows) tdvElec is always in column 1, tdvFuel always in column 2 column names in row 4 do not determine order

Example TDV file -

```
"TDV Data (TDV/Btu)","001"
```

[&]quot;Wed 14-Dec-16 12:30:29 pm"

[&]quot;BEMCmpMgr 2019.0.0 RV (758), CZ12, Fuel NatGas", Hour

[&]quot;tdvElec", "tdvFuel"

^{7.5638,2.2311}

^{7.4907,2.2311}

^{7.4478,2.2311}

^{7.4362,2.2311}

^{7.5255,2.2311}

^{7.5793,2.2311}

```
7.6151,2.2311
7.6153,2.2311
7.5516,2.2311
(... continues for 8760 or 8784 data lines ...)
```

Note: additional columns can be included and are ignored.

The table below shows probes available for accessing TDV data in expressions. Except as noted, daily values are updated based on standard time, so they may be inaccurate by small amounts when daylight savings time is in effect.

Probe	Variability	Description
@Weather.tdvElec	Hour	current hour electricity TDV
@Weather.tdvFuel	Hour	current hour fuel TDV
@Weather.tdvElecPk	Day	current day peak electricity TDV (includes future
		hours). Updated at hour 23 during daylight savings.
@Weather.tdvElecAvg	Day	current day average electricity TDV (includes
_		future hours)
@Weather.tdvElecPvPk	Day	previous day peak electricity TDV
@Weather.tdvElecAvg0 1	Day	previous day average electricity TDV
@weather.tdvElecHrRa nk	Day	hour ranking of TDVElec values. tdvElecHrRank[
		1] is the hour having the highest TDVElec,
		tdvElecHrRank[2] is the next highest, etc. The
		hour values are adjusted when dayight savings
		time is in effect, so they remain consistent with
		system variable \$hour.
@weatherFile.tdvFile	Constant	TDV file timestamp (line 2 of header)
TimeStamp		
$@weather File.tdv File\ Title\\$	Constant	TDV file title (line 3 of header)
@Top.tdvFName	Constant	TDV file full path

TDVfName = string

Note: Backslash (\) characters in path names must be doubled to work properly (e.g. "\\data\\mytdv.tdv"). Forward slash (/) may be used in place of backslash without doubling.

Units	Legal Range	Default	Required	Variability
	file name, path optional	(no TDV file)	No	constant

4.1.6 TOP Report Data Items

These items are used in page-formatted report output files. See REPORTFILE, Section 5.245.21, and REPORT, Section 5.25.

repHdrL=string

Report left header. Appears at the upper left of each report page unless page formatting (rfPageFmt) is OFF. If combined length of repHdrL and repHdrR is too large for the page width, one or both will be truncated.

Units	Legal Range	Default	Required	Variability
		blank	No	constant??

repHdrR=string

Report right header. Appears at the upper right of each report page unless page formatting (rfPageFmt) is OFF. If combined length of repHdrL and repHdrR is too large for the page width, one or both will be truncated.

Units	Legal Range	Default	Required	Variability
		blank(no right header)	No	constant??

repLPP = int

Total lines per page to be assumed for reports. Number of lines used for text (including headers and footers) is repLPP - repTopM - repBotM.

Units	Legal Range	Default	Required	Variability
lines	$x \ge 50$	66	No	constant??

repTopM = int

Number of lines to be skipped at the top of each report page (prior to header).

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
lines	$0 \ge x \ge 12$	3	No	constant

repBotM = int

Number of lines reserved at the bottom of each report page. repBotM determines the position of the footer on the page (blank lines after the footer are not actually written).

Units	Legal Range	Default	Required	Variability
lines	$0 \le x \le 12$	3	No	constant

repCPL = int

Characters per line for report headers and footers, user defined reports, and error messages. CSE writes simple ASCII files and assumes a fixed (not proportional) spaced printer font. Many of the built-in reports now (July 1992) assume a line width of 132 columns.

Units	Legal Range	Default	Required	Variability
characters	$78 \le x \le 132$	78	No	constant

repTestPfx=string

Report test prefix. Appears at beginning of report lines that are expected to differ from prior runs. This is useful for "hiding" lines from text comparison utilities in automated testing schemes. Note: the value specified with command line -x takes precedence over this input.

Units	Legal Range	Default	Required	Variability
		blank	No	constant??

4.1.7 TOP Autosizing

doAutoSize = choice

Controls invocation of autosizing phase prior to simulation.

Units	Legal Range	Default	Required	Variability
	YES, NO	NO, unless AUTOSIZE commands in input	No	constant

auszTol = float

Autosize tolerance. Sized capacity results are deemed final when successive design day calculations produce results within auszTol of the prior iteration.

Units	Legal Range	Default	Required	Variability
		.005	No	constant

heatDsTDbO=float

Heating outdoor dry bulb design temperature used for autosizing heating equipment.

Units	Legal Range	Default	Required	Variability
°F			if autosizing	hourly

heatDsTWbO=float

Heating outdoor Whether bulb design temperature used for autosizing heating equipment.

Units	Legal Range	Default	Required	Variability
°F		derived assuming RH=.7	No	hourly

coolDsDay=list of up to 12 days

Specifies cooling design days for autosizing. Each day will be simulated repeatedly using weather file conditions for that day.

Units	Legal Range	Default	Required	Variability
dates		none	No	constant

coolDsMo=list of up to 12 months

Deprecated method for specifying cooling autosizing days. Design conditions are taken from ET1 weather file header, however, the limited available ET1 files do not contain design condition information.

Units	Legal Range	Default	Required	Variability
months		none	No	constant

4.1.8 TOP Debug Reporting

verbose = int

Controls verbosity of screen remarks. Most possible remarks are generated during autosizing of CNE models. Little or no effect in CSE models. TODO: document options

Units	Legal Range	Default	Required	Variability
	0 - 5	1	No	constant

The following dbgPrintMask values provide bitwise control of addition of semi-formated internal results to the run report file. The values and format of debugging reports are modified as required for testing purposes.

${\operatorname{dbgPrintMaskC}} = int$

Constant portion of debug reporting control.

Units	Legal Range	Default	Required	Variability
		0	No	constant

dbgPrintMask = int

Hourly portion of debug reporting control (generally an expression that evaluates to non-0 only on days or hours of interest).

Units	Legal Range	Default	Required	Variability
		0	No	hourly

Related Probes:

- @top
- @weatherFile
- @weather
- @weatherNextHour

4.2 HOLIDAY

HOLIDAY objects define holidays. Holidays have no inherent effect, but input expressions can test for holidays via the \$DOWH, \$isHoliday, \$isHoliTrue, \$isWeHol, and \$isBegWeek system variables (4.6.4).

Examples and the list of default holidays are given after the member descriptions.

hdName

Name of holiday: must follow the word HOLIDAY.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

A holiday may be specified by date or via a rule such as "Fourth Thursday in November". To specify by date, give hdDateTrue, and also hdDateObs or hdOnMonday if desired. To specify by rule, give all three of hdCase, hdMon, and hdDow.

hdDateTrue = date

The true date of a holiday, even if not celebrated on that day.

Units	Legal Range	Default	Required	Variability
	date	blank	No	constant

hdDateObs = date

The date that a holiday will be observed. Allowed only if hdDateTrue given and hdOnMonday not given.

Units	Legal Range	Default	Required	Variability
	date	hdDateTrue	No	constant

hdOnMonday = choice

If YES, holiday is observed on the following Monday if the true date falls on a weekend. Allowed only if hdDateTrue given and hdDateObs not given.

Note: there is no provision to celebrate a holiday that falls on a Saturday on Friday (as July 4 was celebrated in 1992).

Units	Legal Range	Default	Required	Variability
	YES NO	YES	No	constant

hdCase = choice

Week of the month that the holiday is observed. hdCase, hdMon, and hdDow may be given only if hdDateTrue, hdDateObs, and hdOnMonday are not given.

Units	Legal Range	Default	Required	Variability
	FIRST SECOND THIRD FOURTH LAST	FIRST	No	constant

hdMon=choice

Month that the holiday is observed.

Units	Legal Range	Default	Required	Variability
	JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC	none	required if hdCase given	constant

hdDow=choice

Day of the week that the holiday is observed.

Units	Legal Range	Default	Required	Variability
	SUNDAY, MONDAY, TUESDAY, WEDNES- DAY, THURSDAY, FRIDAY, SATURDAY	MONDAY	required if hdCase given	constant

endHoliday

Indicates the end of the holiday definition. Alternatively, the end of the holiday definition can be indicated by "END" or simply by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Examples of valid HOLIDAY object specifications:

• Holiday on May first, observed date moved to following Monday if the first falls on a weekend (hdOn-Monday defaults Yes).

```
HOLIDAY MAYDAY;
   hdDateTrue = May 1;
```

• Holiday on May 1, observed on May 3.

```
HOLIDAY MAYDAY;
hdDateTrue = May 1;
hdDateObs = May 3;
```

• Holiday observed on May 1 even if on a weekend.

```
HOLIDAY MAYDAY;
hdDateTrue = May 1;
hdOnMonday = No;
```

• Holiday observed on Wednesday of third week of March

```
HOLIDAY HYPOTHET;
hdCase = third;
hdDow = Wed;
hdMon = MAR
```

As with reports, Holidays are automatically generated for a standard set of Holidays. The following are the default holidays automatically defined by CSE:

New Year's Day	*January 1
M L King Day	*January 15
President's Day	3rd Monday in February
Memorial Day	last Monday in May
Fourth of July	*July 4
Labor Day	1st Monday in September
Columbus Day	2nd Monday in October
Veterans Day	*November 11

Thanksgiving	4th Thursday in November
Christmas	*December 25

^{*} observed on the following Monday if falls on a weekend, except as otherwise noted:

If a particular default holiday is not desired, it can be removed with a DELETE statement:

```
DELETE HOLIDAY Thanksgiving

DELETE HOLIDAY "Columbus Day" // Quotes necessary (due to space)

DELETE HOLIDAY "VETERANS DAY" // No case-sensitivity
```

Note that the name must be spelled *exactly* as listed above.

Related Probes:

• @holiday

4.3 MATERIAL

MATERIAL constructs an object of class MATERIAL that represents a building material or component for later reference a from LAYER (see below). A MATERIAL so defined need not be referenced. MATERIAL properties are defined in a consistent set of units (all lengths in feet), which in some cases differs from units used in tabulated data. Note that the convective and air film resistances for the inside wall surface is defined within the SURFACE statements related to conductances.

matName

Name of material being defined; follows the word "MATERIAL".

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	Yes	constant

matThk=float

Thickness of material. If specified, matThk indicates the discreet thickness of a component as used in construction assemblies. If omitted, matThk indicates that the material can be used in any thickness; the thickness is then specified in each LAYER using the material (see below).

Units	Legal Range	Default	Required	Variability
ft	x > 0	(omitted)	No	constant

matCond = float

Conductivity of material. Note that conductivity is *always* stated for a 1 foot thickness, even when matThk is specified; if the conductance is known for a specific thickness, an expression can be used to derive matCond.

Units	Legal Range	Default	Required	Variability
Btuh-ft/ft ² -°F	x > 0	none	Yes	constant

matCondT=float

Temperature at which matCond is rated. See matCondCT (next).

Units	Legal Range	Default	Required	Variability
°F	x > 0	$70~{}^{\rm o}{\rm F}$	No	constant

matCondCT = float

Coefficient for temperature adjustment of matCond in the forward difference surface conduction model. Each hour (not subhour), the conductivity of layers using this material are adjusted as followslrCond = matCond * $(1 + \text{matCondCT*}(T_{\text{layer}} - \text{matCondT}))$

Units	Legal Range	Default	Required	Variability
°F-1		0	No	constant

Note: A typical value of matCondCT for fiberglass batt insulation is 0.00418 F⁻¹

matSpHt=float

Specific heat of material.

Units	Legal Range	Default	Required	Variability
Btu/lb-°F	$x \ge 0$	0 (thermally massless)	No	constant

matDens = float

Density of material.

Units	Legal Range	Default	Required	Variability
lb/ft^3	$x \ge 0$	0 (massless)	No	constant

matRNom = float

Nominal R-value per foot of material. Appropriate for insulation materials only and used for documentation only. If specified, the current material is taken to have a nominal R-value that contributes to the reported nominal R-value for a construction. As with matCond, matRNom is always stated for a 1 foot thickness, even when matThk is specified; if the nominal R-value is known for a specific thickness, an expression can be used to derive matRNom.

Units	Legal Range	Default	Required	Variability
ft ² -°F/Btuh	x > 0	(omitted)	No	constant

endMaterial

Optional to indicate the end of the material. Alternatively, the end of the material definition can be indicated by "END" or simply by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @material

4.4 CONSTRUCTION

CONSTRUCTION constructs an object of class CONSTRUCTION that represents a light weight or massive ceiling, wall, floor, or mass assembly (mass assemblies cannot, obviously, be lightweight). Once defined, CONSTRUCTIONs can be referenced from SURFACEs (below). A defined CONSTRUCTION need not be referenced. Each CONSTRUCTION is optionally followed by LAYERs, which define the constituent LAYERs of the construction.

conName

Name of construction. Required for reference from SURFACE and DOOR objects, below.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

conU = float

U-value for the construction (NOT including surface (air film) conductances; see SURFACE statements). If omitted, one or more LAYERs must immediately follow to specify the LAYERs that make up the construction. If specified, no LAYERs can follow.

Units	Legal Range	Default	Required	Variability
Btuh/ft²- °F	x > 0	calculated from LAYERs	if omitted, LAYERs must follow	constant

endConstruction

Optional to indicates the end of the CONSTRUCTION. Alternatively, the end of the CONSTRUCTION definition can be indicated by "END" or by beginning another object If END or endConstruction is used, it should follow the construction's LAYER subobjects, if any.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @construction

4.5 FOUNDATION

Foundation describes the two-dimensional relationship between ground-contact SURFACEs (i.e., sfExCnd = GROUND) and the surrounding ground. A FOUNDATION is referenced by Floor SURFACEs (see sfFnd). FOUNDATIONs are used to describe the two-dimensional features of foundation designs that cannot be captured by the typical one-dimensional constructions. Dimensions from the one-dimensional CONSTRUCTIONs associated with ground-contact floors and walls will automatically be interpreted into the two-dimensional context.

Any wall SURFACEs in contact with the ground must refer to a Floor SURFACE object (see sfFndFloor) to indicate which floor shares the same ground domain as a boundary condition (and establish the two-dimensional context for the basis of the ground calculations).

Figure 1: Two-dimensional context

FOUNDATION objects are used to instantiate instances of heat transfer within Kiva.

MATERIALs used in a FOUNDATION cannot have variable properties at this time.

Most of the relevant dimensions and properties in the two-dimensional context are defined in the FOUNDA-TION object (and FNDBLOCK subobjects) with a few exceptions specified by specific SURFACEs:

- sfFnd
- sfFndFloor
- sfHeight
- sfExpPerim
- sfCon

Some properties applying to all FOUNDATIONs are defined at the TOP level:

- soilCond
- soilSpHt
- soilDens
- grndEmiss
- grndRefl
- grndRf
- farFieldWidth
- deepGrndCnd
- deepGrndDepth
- deepGrndT
- grndMinDim
- grndMaxGrthCoeff
- grndTimeStep

The following data members describe the dimensions and properties of the foundation wall. For below-grade walls, the CONSTRUCTION (and corresponding width) of the foundation wall is defined by the Wall SURFACEs referencing the FOUNDATION object. For on-grade floors, the CONSTRUCTION of the foundation wall must be defined using fdFtCon. The actual height of the foundation wall (from the top of the wall to the top of the slab) is defined by the corresponding SURFACE objects.

Other components of the foundation design (e.g., interior/exterior insulation) as well as other variations in thermal properties within the ground are defined using FNDBLOCK (foundation block) objects. Any number of FNDBLOCKs can appear after the definition of a FOUNDATION to be properly associated.

fdName

Name of foundation; give after the word FOUNDATION. Required for reference from SURFACE objects.

Units	Legal Range	Default	Required	Variability
_	63 characters	none	Yes	constant

fdWlHtAbvGrd=float

Wall height above grade.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0.0	No	constant

fdWlDpBlwSlb=float

Wall depth below slab.

Figure 2: Foundation wall dimensions

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0.0	No	constant

fdFtCon = conName

Name of CONSTRUCTION of the footing wall. Only required **IF** it is a slab foundation (i.e., no wall surfaces reference this FOUNDATION object).

Units	Legal Range	Default	Required	Variability
_	Name of a	none	if a slab	constant
	Construction		foundation	

endFoundation

Indicates the end of the foundation definition. Alternatively, the end of the foundation definition can be indicated by the declaration of another object or by END.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

4.6 FNDBLOCK

Foundation blocks are materials within the two-dimensional domain beyond those defined by the slab and wall SURFACEs. Each block is represented as a rectangle in the domain by specifying the X (lateral) and Z (vertical) coordinates of two opposite corners. The coordinate system for each point is relative to the X and Z references defined by the user. As a convention The positive X direction is away from the building, and the positive Z direction is down.

Options for X and Z references are illustrated in the figure below.

The default reference is WALLINT, WALLTOP.

An example of defining a block for interior wall insulation is shown below. Here the two points defining the block (P1 and P2) are both shown relative to their reference points (Ref1 and Ref2, respectively).

Note: X and Z point values of zero imply that a point is the same as the reference point. The default for X and Z point values is zero since points will often align with one or both of the reference values.

It does not matter which of the four corners of a block are used to define the two points as long as they are opposite corners.

fbMat = matName

Name of MATERIAL of the foundation block.

Units	Legal Range	Default	Required	Variability
_	Name of a $Material$	none	Yes	constant

fbX1Ref = choice

Relative X origin for fbX1 point. Options are:

• SYMMETRY

Figure 3: Foundation block references

Figure 4: Foundation block example

- WALLINT
- WALLCENTER
- WALLEXT
- FARFIELD

Units	Legal Range	Default	Required	Variability
	$choices\ above$	WALLINT	No	constant

$\mathbf{fbZ1Ref} {=} \mathit{choice}$

Relative Z origin for fbZ1 point. Options are:

- WALLTOP
- GRADE
- SLABTOP
- SLABBOTTOM
- WALLBOTTOM
- DEEPGROUND

Units	Legal Range	Default	Required	Variability
	$choices\ above$	WALLTOP	No	constant

fbX1 = float

The X position of the first corner of the block relative to fbX1Ref.

Units	Legal Range	Default	Required	Variability
ft		0.0	No	constant

$\mathbf{fbZ1} \small{=} \mathit{float}$

The Z position of the first corner of the block relative to fbZ1Ref.

Units	Legal Range	Default	Required	Variability
ft		0.0	No	constant

fbX2Ref = choice

Relative X origin for fbX2 point. Options are:

- SYMMETRY
- WALLINT
- WALLCENTER
- WALLEXT
- FARFIELD

Units	Legal Range	Default	Required	Variability
	$choices\ above$	WALLINT	No	constant

${\tt fbZ2Ref} {=} {\it choice}$

Relative Z origin for fbZ2 point. Options are:

- WALLTOP
- GRADE
- SLABTOP
- SLABBOTTOM
- WALLBOTTOM
- DEEPGROUND

Units	Legal Range	Default	Required	Variability
	$choices\ above$	WALLTOP	No	constant

fbX2 = float

The X position of the second corner of the block relative to fbX2Ref.

Units	Legal Range	Default	Required	Variability
ft		0.0	No	constant

fbZ2 = float

The Z position of the second corner of the block relative to fbZ2Ref.

Units	Legal Range	Default	Required	Variability
ft		0.0	No	constant

endFndBlock

Indicates the end of the foundation block definition. Alternatively, the end of the foundation block definition can be indicated by the declaration of another object or by END.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

4.7 LAYER

LAYER constructs a subobject of class LAYER belonging to the current CONSTRUCTION. LAYER is not recognized except immediately following CONSTRUCTION or another LAYER. The members represent one layer (that optionally includes framing) within the CONSTRUCTION.

The layers should be specified in inside to outside order. A framed layer (lrFrmMat and lrFrmFrac given) is modeled by creating a homogenized material with weighted combined conductivity and volumetric heat capacity. Caution: it is generally preferable to model framed constructions using two separate surfaces (one with framing, one without). At most one framed layer (lrFrmMat and lrFrmFrac given) is allowed per construction.

The layer thickness may be given by lrThk, or matThk of the material, or matThk of the framing material if any. The thickness must be specified at least one of these three places; if specified in more than one place and not consistent, an error message occurs.

lrName

Name of layer (follows "LAYER"). Required only if the LAYER is later referenced in another object, for example with LIKE or ALTER; however, we suggest naming all objects for clearer error messages and future flexibility.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	None	No	constant

lrMat = matName

Name of primary MATERIAL in layer.

Units	Legal Range	Default	Required	Variability
	name of a $MATERIAL$	none	Yes	constant

lrThk = float

Thickness of layer.

Units	Legal Range	Default/Required	Variability
ft	x > 0	Required if $matThk$ not specified in referenced $lrMat$	constant

lrFrmMat = matName

Name of framing MATERIAL in layer, if any. At most one layer with lrFrmMat is allowed per CONSTRUCTION. See caution above regarding framed-layer model.

Units	Legal Range	Default	Required	Variability
	name of a MATERIAL	no framed layer	No	constant

lrFrmFrac=float

Fraction of layer that is framing. Must be specified if frmMat is specified. See caution above regarding framed-layer model.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	no framed layer	Required if lrFrmMat specified, else disallowed	constant

endLayer

Optional end-of-LAYER indicator; LAYER definition may also be indicated by "END" or just starting the definition of another LAYER or other object.

Related Probes:

• @layer

4.8 GLAZETYPE

GLAZETYPE constructs an object of class GLAZETYPE that represents a glazing type for use in WINDOWs.

gtName

Name of glazetype. Required for reference from WINDOW objects, below.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

gtModel = choice

Selects model to be used for WINDOWs based on this GLAZETYPE.

Units	Legal Range	Default	Required	Variability
	SHGC ASHWAT	SHGC	No	constant

gtU = float

Glazing conductance (U-factor without surface films, therefore not actually a U-factor but a C-factor). Used as wnU default; an error message will be issued if the U value is not given in the window (wnU) nor in the glazeType (gtU). Preferred Approach: To use accurately with standard winter rated U-factor from ASHRAE or NFRC enter as:

$$gtU = (1/((1/U-factor)-0.85)$$

Where 0.85 is the sum of the interior (0.68) and exterior (0.17) design air film resistances assumed for rating window U-factors. Enter wnInH (usually 1.5=1/0.68) instead of letting it default. Enter the wnExH or let it default. It is important to use this approach if the input includes gnFrad for any gain term. Using approach 2 below will result in an inappropriate internal gain split at the window.

Approach 2. Enter gtU=U-factor and let the wnInH and wnExH default. This approach systematically underestimates the window U-factor because it adds the wnExfilm resistance to 1/U-factor thereby double counting the exterior film resistance. This approach will also yield incorrect results for gnFrad internal gain since the high wnInH will put almost all the gain back in the space.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	none	No	constant

gtUNFRC = float

Fenestration system (including frame) U-factor evaluated at NFRC heating conditions. For ASHWAT windows, a value for the NFRC U-factor is required, set via gtUNFRC or wnUNFRC.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	none	No	constant

gtSHGC = float

Glazing Solar Heat Gain Coefficient: fraction of normal beam insolation which gets through glass to space inside. We recommend using this to represent the glass normal transmissivity characteristic only, before

shading and framing effects

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	none	Yes	Constant

gtSMSO = float

SHGC multiplier with shades open. May be overriden in the specific window input.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	1.0	No	Monthly - Hourly

gtSMSC = float

SHGC multiplier with shades closed. May be overriden in the specific window input.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	gtSMSO (no shades)	No	Monthly - Hourly

gtFMult=float

Framing multiplier used if none given in window, for example .9 if frame and mullions reduce the solar gain by 10%. Default of 1.0 implies frame/mullion effects allowed for in gtSHGC's or always specified in Windows.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	$\operatorname{gtSHGCO}$	No	Monthly - Hourly

gtPySHGC = float

Four float values separated by commas. Coefficients for incidence angle SHGC multiplier polynomial applied to gtSHGC to determine beam transmissivity at angles of incidence other than 90 degrees. The values are coefficients for first through fourth powers of the cosine of the incidence angle; there is no constant part. An error message will be issued if the coefficients do not add to one. They are used in the following computation:

angle = incidence angle of beam radiation, measured from normal to glass.

 $\begin{aligned} \cos I &= \cos(\text{ angle}) \\ &\text{angMult} = \text{a*cosI} + \text{b*cosI^2} + \text{c*cosI^3} + \text{d*cosI^4} \\ &\text{beamXmisvty} = \text{gtSHGCO* angMult (shades open)} \end{aligned}$

Units	Legal Range	Default	Required	Variability
float	any	none	Yes	Constant

gtDMSHGC = float

SHGC diffuse multiplier, applied to gtSHGC to determine transmissivity for diffuse radiation.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	none	yes	Constant

gtDMRBSol = float

SHGC diffuse multiplier, applied to qtSHGC to determine transmissivity for diffuse radiation reflected back out the window. Misnamed as a reflectance. Assume equal to DMSHGC if no other data available.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	none	yes	Constant

gtNGlz = int

Number of glazings in the Glazetype (bare glass only, not including any interior or exterior shades).

Units	Legal Range	Default	Required	Variability
	$0 < x \le 4$	2	no	Constant

gtExShd = choice

Exterior shading type (ASHWAT only).

Units	Legal Range	Default	Required	Variability
	NONE INSCRN	NONE	no	Constant

gtInShd = choice

Interior shade type (ASHWAT only).

Units	Legal Range	Default	Required	Variability
	NONE DRAPEMED	NONE	no	Constant

gtDirtLoss = float

Glazing dirt loss factor.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	0	no	Constant

endGlazeType

Optional to indicates the end of the Glazetype. Alternatively, the end of the GLAZETYPE definition can be indicated by "END" or by beginning another object

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @glazeType

4.9 METER

A METER object is a user-defined "device" that records energy consumption of equipment as simulated by CSE. The user defines METERs with the desired names, then assigns energy uses of specific equipment to the desired meters using commands described under each equipment type's class description (AIRHANDLER, TERMINAL, etc.). Additional energy use from equipment not simulated by CSE (except optionally for its effect on heating and cooling loads) can also be charged to METERs (see GAIN). The data accumulated by meters can be reported at hourly, daily, monthly, and annual (run) intervals by using REPORTs and EXPORTs of type MTR.

Meters account for energy use in the following pre-defined categories, called *end uses*. The abbreviations in parentheses are used in MTR report headings (and for gnMeter input, below). You also get a column for the net total on the meter (abbreviated "Tot").

<u></u>	C. P.
Clg	Cooling
Htg	Heating (includes heat pump compressor)
HPHTG	Heat pump backup heat
DHW	Domestic (service) hot water
DHWBU	Domestic (service) hot water heating backup (HPWH resistance)
DHWMFL	Domestic (service) hot water heating multi-family loop pumping and loss makeup
FANC	Fans, AC and cooling ventilation
FANH	Fans, heating
FANV	Fans, IAQ venting
FAN	Fans, other purposes
AUX	HVAC auxiliaries such as pumps
PROC	Process
LIT	Lighting
RCP	Receptacles
EXT	Exterior lighting
REFR	Refrigeration
DISH	Dishwashing
DRY	Clothes drying
WASH	Clothes washing
COOK	Cooking
USER1	User-defined category 1
USER2	User-defined category 2
BT	Battery charge power
PV	Photovoltaic power generation

The user has complete freedom over how many meters are defined and how equipment is assigned to them. At one extreme, a single meter "Electricity" could be defined and have all of electrical uses assigned to it. On the other hand, definition of separate meters "Elect_Fan1", "Elect_Fan2", and so forth allows accounting of the electricity use for individual pieces of equipment. Various groupings are possible: for example, in a building with several air handlers, one could separate the energy consumption of the fans from the coils, or one could separate the energy use by air handler, or both ways, depending on the information desired from the run.

The members that assign energy use to meters include:

• GAIN: gnMeter, gnEndUse

• ZONE: xfanMtr

- IZXFER: izfanMtr
- RSYS: rsElecMtr. rsFuelMtr
- DHWSYS: wsElecMtr, wsFuelMtr
- DHWHEATER: whElectMtr, whFuelMtr
- DHWPUMP: wpElecMtr
- DHWLOOPPUMP: wlpElecMtr
- PVARRAY: pvElecMeter
- TERMINAL: tuhcMtr, tfanMtr
- AIRHANDLER: sfanMtr, rfanMtr, ahhcMtr, ahccMtr, ahhcAuxOnMtr, ahhcAuxOffMtr, ahhcAuxFullOnMtr, ahhcAuxOnAtAllMtr, ahccAuxOnMtr, ahccAuxOffMtr, ahccAuxFullOnMtr, ahccAuxOnAtAllMtr
- BOILER: blrMtr, blrpMtr, blrAuxOnMtr, blrAuxOffMtr, blrAuxFullOnMtr, blrAuxOnAtAllMtr
- CHILLER: chMtr, chppMtr, chcpMtr, chAuxOnMtr, chAuxOffMtr, chAuxFullOnMtr, chAuxOnAtAllMtr
- TOWERPLANT: tpMtr

The end use can be specified by the user only for GAINs and PVARRAYs; in other cases it is hard-wired to Clg, Htg, FanC, FanH, FanV, Fan, or Aux as appropriate.

mtrName

Name of meter: required for assigning energy uses to the meter elsewhere.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

endMeter

Indicates the end of the meter definition. Alternatively, the end of the meter definition can be indicated by the declaration of another object or by END.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @meter

4.10 DHWMETER

A DHWMETER object is a user-defined "device" that records water consumption as simulated by CSE. The data accumulated by DHWMETERs can be reported at hourly, daily, monthly, and annual (run) intervals by using REPORTs and EXPORTs of type DHWMTR. Water use is reported in gallons.

DHWMETERs account for water use in the following pre-defined end uses. The abbreviations in parentheses are used in DHWMTR report headings.

- Total water use (Total)
- Unknown end use (Unknown)
- Miscellaneous draws (Faucet)
- Shower (Shower)
- Bathtub (Bath)
- Clothes washer (CWashr)
- Dishwasher (DWashr)

DHWSYS items wsWHhwMtr and wsFXhwMtr specify the DHWMETER(s) to which water consumption is accumulated.

dhwMtrName

Name of meter: required for assigning water uses to the DHWMETER.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

endDhwMeter

Related Probes:

• @DHWmeter

4.11 **ZONE**

ZONE constructs an object of class ZONE, which describes an area of the building to be modeled as having a uniform condition. ZONEs are large, complex objects and can have many subobjects that describe associated surfaces, shading devices, HVAC equipment, etc.

4.11.1 ZONE General Members

znName

Name of zone. Enter after the word **ZONE**; no "=" is used.

Units	Legal Range	Default	Required	Variability
	63 characters	none	Yes	constant

znModel = choice

Selects model for zone.

CNE	Older, central difference model based on original CALPAS methods. Not fully	
	supported and not suitable for current	
	compliance applications.	
CZM	Conditioned zone model.	
	Forward-difference, short time step	
	methods are used.	
UZM	Unconditioned zone model. Identical to	
	CZM except heating and cooling are not	
	supported. Typically used for attics,	
	garages, and other ancillary spaces.	

Units	Legal Range	Default	Required	Variability
	$choices\ above$	CNE	No	constant

znArea = float

Nominal zone floor area.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	x > 0	none	Yes	constant

znVol = float

Nominal zone volume.

Units	Legal Range	Default	Required	Variability
ft^3	x > 0	none	Yes	constant

znAzm = float

Zone azimuth with respect to bldgAzm. All surface azimuths are relative to znAzm, so that the zone can be rotated by changing this member only. Values outside the range 0° to 360° are normalized to that range.

Units	Legal Range	Default	Required	Variability
degrees	unrestricted	0	No	constant

znFloorZ=float

Nominal zone floor height relative to arbitrary 0 level. Used redetermination of vent heights

Units	Legal Range	Default	Required	Variability
ft	unrestricted	0	No	constant

znCeilingHt = float

Nominal zone ceiling height relative to zone floor (typically 8 - 10 ft).

Units	Legal Range	Default	Required	Variability
ft	x > 0	zn Vol / zn Area	No	constant

${\tt znEaveZ} = float$

Nominal eave height above ground level. Used re calculation of local surface wind speed. This in turn influences outside convection coefficients in some surface models and wind-driven air leakage.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	znFloorZ + infStories*8	No	constant

znCAir = float

Zone "air" heat capacity: represents heat capacity of air, furniture, "light" walls, and everything in zone except surfaces having heat capacity (that is, non-QUICK surfaces).

Units	Legal Range	Default	Required	Variability
Btu/°F	$x \ge 0$	3.5*znArea	No	constant

znHcAirX = float

Zone air exchange rate used in determination of interior surface convective coefficients. This item is generally used only for model testing.

Units	Legal Range	Default	Required	Variability
ACH	$x \ge 0$	as modeled	No	subhourly

znHcFrcF = float

Zone surface forced convection factor. Interior surface convective transfer is modeled as a combination of forced and natural convection. $hcFrc = znHcFrcF * znHcAirX^{\circ}.8$. See CSE Engineering Documentation.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{Btuh/ft^2}}$ -°F		.2	No	hourly

znHIRatio = float

Zone hygric inertia ratio. In zone moisture balance calculations, the effective dry-air mass = znHIRatio * (zone dry air mass). This enhancement can be used to represent the moisture storage capacity of zone surfaces and contents.

Units	Legal Range	Default	Required	Variability
	x > 0	1	No	constant

znSC=float

Zone shade closure. Determines insolation through windows (see WINDOW members wnSCSO and wnSCSC) and solar gain distribution: see SGDIST members sgFSO and sgFSC. 0 represents shades open; 1 represents shades closed; intermediate values are allowed. An hourly variable CSE expression may be used to schedule shade closure as a function of weather, time of year, previous interval HVAC use or zone temperature, etc.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	1 when cooling was used in $\mathit{previous}$ hour, else 0	No	hourly

znTH = float

Heating set point for znModel=CZM.

Units	Legal Range	Default	Required	Variability
°F	$x \ge 0$			subhourly

znTD = float

Desired set point (temperature maintained with ventilation if possible) for znModel=CZM

Units	Legal Range	Default	Required	Variability
°F	$x \ge 0$			subhourly

znTC=float

Cooling set point for znModel=CZM.

Units	Legal Range	Default	Required	Variability
°F	$x \ge 0$			subhourly

CZM zone heating and cooling is provided either via an $\overline{\text{RSYS}}$ HVAC system or by "magic" heat transfers specified by znQxxx items.

${\tt znRSys}{=}rsysName$

Name of RSYS providing heating, cooling, and optional central fan integrated ventilation to this zone.

Units	Legal Range	Default	Required	Variability
	$RSYS\ name$	(no RSYS)	No	constant

$\mathbf{znQMxH} \!=\! \! float$

Heating capacity at current conditions

Units	Legal Range	Default	Required	Variability
Btuh	$x \ge 0$			hourly

znQMxHRated = float

Rated heating capacity

Units	Legal Range	Default	Required	Variability
Btuh	$x \ge 0$			constant

znQMxC = float

Cooling capacity at current conditions

Units	Legal Range	Default	Required	Variability
Btuh	$x \leq 0$			hourly

${\tt znQMxCRated} {=} {\it float}$

Rated cooling capacity

Units	Legal Range	Default	Required	Variability
Btuh	$x \le 0$			constant

4.11.2 ZONE Infiltration

The following control a simplified air change plus leakage area model. The Sherman-Grimsrud model is used to derive air flow rate from leakage area and this rate is added to the air changes specified with infAC. Note that TOP.windF does *not* modify calculated infiltration rates, since the Sherman-Grimsrud model uses its own modifiers. See also AirNet models available via IZXFER.

$\inf AC = float$

Zone infiltration air changes per hour.

Units	Legal Range	Default	Required	Variability
1/hr	$x \ge 0$	0.5	No	hourly

infELA = float

Zone effective leakage area (ELA).

Units	Legal Range	Default	Required	Variability
$\overline{\ln^2}$	$x \ge 0$	0.0	No	hourly

$\inf Shld = int$

Zone local shielding class, used in derivation of local wind speed for ELA infiltration model, wind-driven AirNet leakage, and exterior surface coefficients. infShld values are –

1	no obstructions or local shielding
2	light local shielding with few obstructions
3	moderate local shielding, some obstructions within two house heights
4	heavy shielding, obstructions around most of the perimeter
5	very heavy shielding, large obstructions surrounding the perimeter within two
	house heights

\mathbf{Units}	Legal Range	Default	Required	Variability
	$1 \le x \le 5$	3	No	constant

infStories = int

Number of stories in zone, used in ELA model.

Units	Legal Range	Default	Required	Variability
	$1 \le x \le 3$	1	No	constant

znWindFLkg=floatTODO

Units	Legal Range	Default	Required	Variability
		1	No	constant

4.11.3 ZONE Exhaust Fan

Presence of an exhaust fan in a zone is indicated by specifying a non-zero design flow value (xfanVfDs).

Zone exhaust fan model implementation is incomplete as of July, 2011. The current code calculates energy use but does not account for the effects of air transfer on room heat balance. IZXFER provides a more complete implementation.

xfanFOn = float

Exhaust fan on fraction. On/off control assumed, so electricity requirement is proportional to run time.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	1	No	hourly

Example: The following would run an exhaust fan 70% of the time between 8 AM and 5 PM:

xfanVfDs = float

Exhaust fan design flow; 0 or not given indicates no fan.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{cfm}}$	x 0	0 (no fan)	If fan present	constant

xfanPress = float

Exhaust fan external static pressure.

Units	Legal Range	Default	Required	Variability
inches H ₂ O	$0.05 \le x \le 1.0$	0.3	No	constant

Only one of xfanElecPwr, xfanEff, and xfanShaftBhp may be given: together with xfanVfDs and xfanPress, any one is sufficient for CSE to determine the others and to compute the fan heat contribution to the air stream.

xfanElecPwr = float

Fan input power per unit air flow (at design flow and pressure).

Units	Legal Range	Default	Required	Variability
W/cfm	x > 0	derived from xfanEff and xfanShaftBhp	If xfanEff and xfanShaftBhp not present	constant

xfanEff = float

Exhaust fan/motor/drive combined efficiency.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	0.08	No	constant

xfanShaftBhp=float

Fan shaft power at design flow and pressure.

Units	Legal Range	Default	Required	Variability
ВНР	x > 0	derived from xfanElecPwr and xfanVfDs	If xfanElecPwr not present	constant

xfanMtr=mtrName

Name of METER object, if any, by which fan's energy use is recorded (under end use category "fan").

Units	Legal Range	Default	Required	Variability
	name of a METER	$not\ recorded$	No	constant

endZone

Indicates the end of the zone definition. Alternatively, the end of the zone definition can be indicated by the declaration of another object or by "END". If END or endZone is used, it should follow the definitions of the ZONE's subobjects such as GAINs, SURFACEs, TERMINALs, etc.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @zone
- @znRes (accumulated results)

4.12 GAIN

A GAIN object adds sensible and/or latent heat to the ZONE, and/or adds arbitrary energy use to a METER. GAINs may be subobjects of ZONEs and are normally given within the input for their ZONE. As many GAINs as desired (or none) may be given for each ZONE. Alternatively, GAINs may be subobjects of TOP and specify gnZone to specify their associate zone.

Each gain has an amount of power (gnPower), which may optionally be accumulated to a METER (gnMeter). The power may be distributed to the zone, plenum, or return as sensible heat with an optional fraction radiant, or to the zone as latent heat (moisture addition), or not.

gnName

Name of gain; follows the word GAIN if given.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

gnZone = znName

Name of ZONE to which heat gains are added. Omitted when GAIN is given as a ZONE subobject. If a TOP subobject (i.e., not a ZONE subobject) and znZone is omitted, heat gains are discarded but energy use is still recorded to gnMeter. This feature can be used to represent energy uses that our outside of conditioned zones (e.g. exterior lighting).

Units	Legal Range	Default	Required	Variability
	name of ZONE	parent zone if any	No	constant

gnPower=float

Rate of heat addition/energy use. Negative gnPower values may be used to represent heat removal/energy generation. Expressions containing functions are commonly used with this member to schedule the gain power on a daily and/or hourly basis. Refer to the functions section in Section 4 for details and examples.

All gains, including electrical, are specified in Btuh units unless associated with DHW use (see gnCtrlD-HWSYS), in which case gnPower is specified in Btuh/gal. Note that meter reporting of internal gain is in MBtu (millions of Btu) by default.

Units	Legal Range	Default	Required	Variability
Btuh	no restrictions	none	Yes	hourly

gnMeter = choice

Name of meter by which this GAIN's gnPower is recorded. If omitted, gain is assigned to no meter and energy use is not accounted in CSE simulation reports; thus, gnMeter should only be omitted for "free" energy sources.

Units	Legal Range	Default	Required	Variability
	name of METER	none	No	constant

gnEndUse = choice

Meter end use to which the GAIN's energy use should be accumulated.

Clg	Cooling
Htg	Heating (includes heat pump compressor)
HPHTG	Heat pump backup heat
DHW	Domestic (service) hot water
DHWBU	Domestic (service) hot water heating backup (HPWH resistance)
DHWMFL	Domestic (service) hot water heating multi-family loop pumping and loss makeup
FANC	Fans, AC and cooling ventilation
FANH	Fans, heating
FANV	Fans, IAQ venting
FAN	Fans, other purposes
AUX	HVAC auxiliaries such as pumps
PROC	Process
LIT	Lighting
RCP	Receptacles
EXT	Exterior lighting
REFR	Refrigeration

DISH	Dishwashing
DRY	Clothes drying
WASH	Clothes washing
COOK	Cooking
USER1	User-defined category 1
USER2	User-defined category 2
BT	Battery charge power
PV	Photovoltaic power generation

Units	Legal Range	Default	Required	Variability
	$Codes\ listed\ above$	none	Required if gnMeter is given	constant

The gnFrZn, gnFrPl, and gnFrRtn members allow you to allocate the gain among the zone, the zone's plenum, and the zone's return air flow. Values that total to more than 1.0 constitute an error. If they total less than 1, the unallocated portion of the gain is recorded by the meter (if specified) but not transferred into the building. By default, all of the gain not directed to the return or plenum goes to the zone.

gnFrZn=float

Fraction of gain going to zone. gnFrLat (below) gives portion of this gain that is latent, if any; the remainder is sensible.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	1.	No	hourly

Gain Modeling in zones

The radiant internal gain is distributed to the surfaces in the zone, rather than going directly to the zone "air" heat capacity (znCAir). A simple model is used – all surfaces are assumed to be opaque and to have the same (infrared) absorptivity – even windows. Along with the assumption that the zone is spherical (implicit in the current treatment of solar gains), this allows distribution of gains to surfaces in proportion to their area, without any absorptivity or transmissivity calculations. The gain for windows and quick-model surfaces is assigned to the znCAir, except for the portion which conducts through the surface to the other side rather than through the surface film to the adjacent zone air; the gain to massive (delayed-model) surfaces is assigned to the side of surface in the zone with the gain.

Radiant internal gains are included in the IgnS (Sensible Internal Gain) column in the zone energy balance reports. (They could easily be shown in a separate IgnR column if desired.) Any energy transfer shows two places in the ZEB report, with opposite signs, so that the result is zero – otherwise it wouldn't be an energy balance. The rest of the reporting story for radiant internal gains turns out to be complex. The specified value of the radiant gain (gnPower * gnFrZn * gnFrRad) shows in the IgnS column. To the extent that the gain heats the zone, it also shows negatively in the Masses column, because the zone CAir is lumped with the other masses. To the extent that the gain heats massive surfaces, it also shows negatively in the masses column. To the extent that the gain conducts through windows and quick-model surfaces, it shows negatively in the Conduction column. If the gain conducts through a quick-model surface to another zone, it shows negatively in the Izone (Interzone) column, positively in the Izone column of the receiving zone, and negatively in the receiving zone's Masses or Cond column.

gnFrRad=float

Fraction of total gain going to zone (gnFrZn) that is radiant rather than convective or latent.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0.	No	hourly

gnFrLat = float

Fraction of total gain going to zone (gnFrZn) that is latent heat (moisture addition).

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0.	No	hourly

${\tt gnDlFrPow} {=} \textit{float}$

Hourly power reduction factor, typically used to modify lighting power to account for daylighting.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	1.	No	hourly

gnCtrlDHWSYS = dhwsysName

Name of a DHWSYS whose water use modulates gnPower. For example, electricity use of water-using appliances (e.g. dishwasher or clothes washer) can be modeled based on water use, ensuring that the uses are synchronized. When this feature is used, gnPower should be specified in Btuh/gal.

\mathbf{Units}	Legal Range	Default	Required	Variability
	name of a DHWSYS	no DHWSYS/GAIN linkage	No	constant

gnCtrlDHWEndUse = dhwEndUseName

Name of the DHWSYS end use consumption that modulates gnPower. See DHWMETER for DHW end use definitions.

Units	Legal Range	Default	Required	Variability
	DHW end use	Total	No	constant

endGain

Optional to indicate the end of the GAIN definition. Alternatively, the end of the gain definition can be indicated by END or by the declaration of another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @gain

4.13 SURFACE

Surface constructs a ZONE subobject of class SURFACE that represents a surrounding or interior surface of the zone. Internally, SURFACE generates a QUICK surface (U-value only), a DELAYED (massive) surface (using the finite-difference mass model), interzone QUICK surface, or interzone DELAYED surface, as appropriate for the specified construction and exterior conditions.

sfName

Name of surface; give after the word SURFACE.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

sfType = choice

Type of surface:

FLOOR	Surface defines part or all of the "bottom" of the zone; it is horizontal with inside facing up. The outside of the surface is not adjacent to the current
WALL	zone. Surface defines a "side" of the zone; its outside is not adjacent to the current
CEILING	zone. Surface defines part or all of the "top" of the zone with the inside facing down. The outside of the surface is not adjacent to the current zone.

sfType is used extensively for default determination and input checking, but does not have any further internal effect. The Floor, Wall, and Ceiling choices identify surfaces that form boundaries between the zone and some other condition.

Units	Legal Range	Default	Required	Variability
·	FLOOR WALL CEILING	none	Yes	constant

sfArea=float

Gross area of surface. (CSE computes the net area for simulation by subtracting the areas of any windows and doors in the surface.).

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	x > 0	none	Yes	constant

sfTilt = float

Surface tilt from horizontal. Values outside the range 0 to 360 are first normalized to that range. The default and allowed range depend on sfType, as follows:

sfType = FLOOR	sfTilt=180, default = 180 (fixed value)
sfType = WALL	60 < sfTilt < 180, default = 90
sfType = CEILING	$0 \le sfTilt \le 60$, default = 0

Units	Legal Range / Default	Required	Variability
degrees	Dependent upon sfType. See above	No	constant

sfAzm = float

Azimuth of surface with respect to znAzm. The azimuth used in simulating a surface is bldgAzm + znAzm + sfAzm; the surface is rotated if any of those are changed. Values outside the range 0 to 360 are normalized to that range. Required for non-horizontal surfaces.

Units	Legal Range	Default	Required	Variability
degrees	unrestricted	none	Required if $sfTilt \neq 0$ and $sfTilt \neq 180$	constant

sfModel = choice

Provides user control over how CSE models conduction for this surface.

QUICK	Surface is modeled using a simple conductance.
	Heat capacity effects are ignored. Either sfCon
	or sfU (next) can be specified.
DELAYED, DELAYED_HOUR,	Surface is modeled using a multi-layer finite
DELAYED_SUBHOUR	difference technique that represents heat capacity
	effects. If the time constant of the surface is too
	short to accurately simulate, a warning message
	is issued and the Quick model is used. The
	program cannot use the finite difference model
	if sfU rather than sfCon is specified.
AUTO	Program selects Quick or the appropriate
	Delayed automatically according to the time
	constant of the surface (if sfU is specified, Quick
	is selected).
FD (or FORWARD_DIFFERENCE)	Selects the forward difference model (used with
	short time steps and the CZM/UZM zone
	model).
KIVA	Uses a two-dimensional finite difference model to
	simulate heat flow through foundation surfaces.

Units	Legal Range	Default	Required	Variability
	QUICK, DELAYED, DELAYED_HOUR, DE- LAYED_SUBOUR , AUTO, 2D_FND	AUTO	No	constant

Either sfU or sfCon must be specified, but not both.

$\mathbf{sfU} {=} \mathit{float}$

Surface U-value (NOT including surface (air film) conductances). For surfaces for which no heat capacity is to be modeled, allows direct entry of U-value without defining a CONSTRUCTION.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	Determined from sfCon	if $sfCon$ not given	constant

sfCon = conName

Name of CONSTRUCTION of the surface.

Units	Legal Range	Default	Required	Variability
	Name of a $CONSTRUCTION$	none	unless sfU given	constant

sfLThkF = float

Sublayer thickness adjustment factor for FORWARD_DIFFERENCE conduction model used with sfCon surfaces. Material layers in the construction are divided into sublayers as needed for numerical stability. sfLThkF allows adjustment of the thickness criterion used for subdivision. A value of 0 prevents subdivision; the default value (0.5) uses layers with conservative thickness equal to half of an estimated safe value. Fewer (thicker) sublayers improves runtime at the expense of accurate representation of rapid changes.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$.5	No	constant

sfExCnd=choice

Specifies the thermal conditions assumed at surface exterior, and at exterior of any subobjects (windows or doors) belonging to current surface. The conditions accounted for are dry bulb temperature and incident solar radiation.

AMBIENT	Exterior surface is exposed to the "weather" as read from the weather file. Solar gain is calculated using
	solar geometry, sfAzm, sfTilt, and sfExAbs.
SPECIFIEDT	Exterior surface is exposed to solar radiation as in
	AMBIENT, but the dry bulb temperature is
	calculated with a user specified function (sfExT).
	sfExAbs can be set to 0 to eliminate solar effects.
ADJZN	Exterior surface is exposed to another zone, whose
	name is specified by sfAdjZn. Solar gain is 0 unless
	gain is targeted to the surface with SGDIST below.
GROUND	The surface is in contact with the ground. Details of
	the two-dimensional foundation design are defined by
	sfFnd. Only floor and wall surfaces may use this
	option.
ADIABATIC	Exterior surface heat flow is 0. Thermal storage
	effects of delayed surfaces are modeled.

sfExAbs = float

Surface exterior absorptivity.

Units	Legal Range	Default	Required	**Variabili ty
(none)	$0 \le x \le 1$	0.5	Required if $sfExCnd =$ AMBIENT or $sfExCnd =$ SPECIFIEDT	monthly- hourly

$\mathbf{sfInAbs} {=} \mathit{float}$

Surface interior solar absorptivity.

Units	Legal Range	Default	Required	**Variabili ty
(none)	$0 \le x \le 1$	sfType = CEILING, 0.2; sfType = WALL, 0.6; sfType = FLOOR, 0.8	No	monthly- hourly

sfExEpsLW = float

Surface exterior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.9	No	constant

$\mathbf{sfInEpsLW} \! = \! float$

Surface interior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.9	No	constant

sfExT = float

Exterior air temperature.

Units	Legal Range	Default	Required	Variability
°F	unrestricted	none	Required if $sfExCnd = SPECIFIEDT$	hourly

$\mathbf{sfAdjZn} {=} znName$

Name of adjacent zone; used only when sfExCnd is ADJZN. Can be the same as the current zone.

Units	Legal Range	Default	Required	Variability
	name of a $ZONE$	none	Required when $sfExCnd = ADJZN$	constant

sfGrndRefl = float

Ground reflectivity for this surface.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	$\operatorname{grndRefl}$	No	Monthly - Hourly

sfInH = float

Inside surface (air film) conductance. Ignored for sfModel = Forward_Difference. Default depends on the surface type.

sfType = FLOOR or CEILING	1.32
other	1.5

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	$see\ above$	No	constant

sfExH = float

Outside combined surface (air film) conductance. Ignored for sfModel = Forward_Difference. The default value is dependent upon the exterior conditions:

sfExCnd = AMBIENT sfExCnd = SPECIFIEDT	dflExH (Top-level member, described above) dflExH (described above)
sfExCnd = ADJZN $sfExCnd = ADIABATIC$	1.5 not applicable

Units	Legal Range	Default	Required	Variability
Btuh/ft²-°F	x > 0	see above	No	constant

When sfModel = Forward_Difference, several models are available for calculating inside and outside surface convective coefficients. Inside surface faces can be exposed only to zone conditions. Outside faces may be exposed either to ambient conditions or zone conditions, based on sfExCnd. Only UNIFIED and INPUT are typically used. The other models were used during CSE development for comparison. For details, see CSE Engineering Documentation.

Model	Exposed to ambient	Exposed to zone
UNIFIED	default CSE model	default CSE model
INPUT	hc = sfExHcMult	hc = sfxxHcMult
AKBARI	Akbari model	n/a
WALTON	Walton model	n/a
WINKELMANN	Winkelmann model	n/a
DOE2	DOE2 model	n/a
MILLS	n/a	Mills model
ASHRAE	n/a	ASHRAE handbook values
TARP	n/a	TARP model

sfExHcModel = choice

Selects the model used for exterior surface convection when sfModel = Forward Difference.

Units	Legal Range	Default	Required	Variability
	$choices\ above$	UNIFIED	No	constant

sfExHcLChar = float

Characteristic length of surface, used in derivation of forced exterior convection coefficients in some models when outside surface is exposed to ambient. See sfExHcModel.

Units	Legal Range	Default	Required	Variability
ft	x > 0	10	No	constant

sfExHcMult = float

Exterior convection coefficient adjustment factor. When sfExHcModel=INPUT, hc=sfExHcMult. For other sfExHcModel choices, the model-derived hc is multiplied by sfExHcMult.

Units	Legal Range	Default	Required	Variability
		1	No	subhourly

sfExRf = float

Exterior surface roughness factor. Used only when surface is exposed to ambient (i.e. with wind exposure). Typical values:

Roughness Index	sfExRf	Example
1 (very rough)	2.17	Stucco
2 (rough)	1.67	Brick
3 (medium rough)	1.52	Concrete
4 (Medium smooth)	1.13	Clear pine
5 (Smooth)	1.11	Smooth plaster
6 (Very Smooth)	1	Glass

Units	Legal Range	Default	**Require d	Variabilit y
		sfExHcModel = WINKELMANN: 1.66 else 2.17	No	constant

sfInHcModel = choice

Selects the model used for the inside (zone) surface convection when sfModel = Forward_Difference.

Units	Legal Range	Default	Required	Variability
	choices above (see sfExHcModel)	UNIFIED	No	constant

$\mathbf{sfInHcMult} \! = \! float$

Interior convection coefficient adjustment factor. When sfInHcModel=INPUT, hc=sfInHcMult. For other sfInHcModel choices, the model-derived hc is multiplied by sfInHcMult.

Units	Legal Range	Default	Required	Variability
		1	No	subhourly

The items below give values associated with CSE's model for below grade surfaces (sfExCnd=GROUND). See CSE Engineering Documentation for technical details.

sfFnd = fdName

Name of FOUNDATION applied to ground-contact Floor SURFACEs; used only for Floor SURFACEs when sfExCnd is GROUND.

Units	Legal Range	Default	Required	Variability
_	Name of a Foundation	none	when $sfExCnd = GROUND$ and $sfType = Floor$	constant

sfFndFloor = sfName

Name of adjacent ground-contact Floor SURFACE; used only for Wall SURFACEs when sfExCnd is GROUND.

Units	Legal Range	Default	Required	Variability
_	Name of a Surface	none	$\begin{aligned} \text{when} \textit{sfExCnd} &= \\ \text{GROUND and } \textit{sfType} &= \\ \text{Wall} \end{aligned}$	constant

sfHeight = float

Needed for foundation wall height, otherwise ignored. Maybe combine with sfDepthBG?

Units	Legal Range	Default	Required	Variability
ft	x > 0	none	when $sfType$ is WALL and $sfExtCnd$ is GROUND	constant

sfExpPerim = float

Exposed perimeter of foundation floors.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	none	when $sfType$ is FLOOR, $sfFnd$ is set, and $sfExtCnd$ is GROUND	constant

sfDepthBG=float

Note: sfDepthBG is used as part of the simple ground model, which is no longer supported. Use sfHeight with sfFnd instead.

Depth below grade of surface. For walls, sfDepthBG is measured to the lower edge. For floors, sfDepthBG is measured to the bottom face.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$		No	constant

Note: The following data members are part of the simple ground model, which is no longer supported. Use sfFnd instead.

sfExCTGrnd = float

sfExCTaDbAvg07 = float

sfExCTaDbAvg14 = float

sfExCTaDbAvg31 = float

sfExCTaDbAvgYr = float

Conductances from outside face of surface to the weather file ground temperature and the moving average outdoor dry-bulb temperatures for 7, 14, 31, and 365 days.

Units	Legal Range	Default	Required	Variability
Btuh/ft²-°F	$x \ge 0$	see above	No	constant

sfExRConGrnd = float

Resistance overall construction resistance. TODO: full documentation.

Units	Legal Range	Default	Required	Variability
$x \ge 0$			No	constant

endSURFACE

Optional to indicates the end of the surface definition. Alternatively, the end of the surface definition can be indicated by END, or by beginning another SURFACE or other object definition. If used, should follow the definitions of the SURFACE's subobjects – DOORs, WINDOWS, SHADES, SGDISTS, etc.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @surface
- @xsurf
- @mass

4.14 WINDOW

WINDOW defines a subobject belonging to the current SURFACE that represents one or more identical windows. The azimuth, tilt, and exterior conditions of the window are the same as those of the surface to which it belongs. The total window area $(wnHt \cdot wnWid \cdot wnMult)$ is deducted from the gross surface area. A surface may have any number of windows.

Windows may optionally have operable interior shading that reduces the overall shading coefficient when closed.

wnName

Name of window: follows the word "WINDOW" if given.

\mathbf{Units}	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

wnHeight = float

Overall height of window (including frame).

Units	Legal Range	Default	Required	Variability
ft	x > 0	none	Yes	constant

wnWidth = float

Overall width of window (including frame).

Units	Legal Range	Default	Required	Variability
ft	x > 0	none	Yes	constant

wnArea = float

Overall area of window (including frame).

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	x > 0	wnHeight*wnWidth	No	constant

wnMult=float

Area multiplier; can be used to represent multiple identical windows.

Units	Legal Range	Default	Required	Variability
	x > 0	1	No	constant

wnModel = choice

Selects window model

Units	Legal Range	Default	Required	Variability
	SHGC, ASHWAT	SHGC	No	constant

wnGt=choice

GLAZETYPE for window. Provides many defaults for window properties as cited below.

wnU = float

Window conductance (U-factor without surface films, therefore not actually a U-factor but a C-factor).

Preferred Approach: To use accurately with standard winter rated U-factor from ASHRAE or NFRC enter as:

$$wnU = (1/((1/U-factor)-0.85)$$

Where 0.85 is the sum of the interior (0.68) and exterior (0.17) design air film resistances assumed for rating window U-factors. Enter wnInH (usually 1.5=1/0.68) instead of letting it default. Enter the wnExH or let it default. It is important to use this approach if the input includes gnFrad for any gain term. Using approach 2 below will result in an inappropriate internal gain split at the window.

Approach 2. Enter wnU=U-factor and let the wnInH and wnExH default. Thormally this approach systematically underestimates the window U-factor because it adds the wnExfilm resistance to 1/U-factor thereby double counting the exterior film resistance. This approach will also yield incorrect results for gnFrad internal gain since the high wnInH will put almost all the gain back in the space.

Units	Legal Range	Default	Required	Variability
Btuh/ft²-°F	x > 0	none	Yes	constant

wnUNFRC = float

Fenestration system (including frame) U-factor evaluated at NFRC heating conditions.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	$\operatorname{gtUNFRC}$	Required when $wnModel = ASHWAT$	constant

wnExEpsLW = float

Window exterior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.84	No	constant

wnInEpsLW=float

Window interior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.84	No	constant

wnInH = float

Window interior surface (air film) conductance.

Preferred Approach: Enter the appropriate value for each window, normally:

wnInH = 1.5

where 1.5 = 1/0.68 the standard ASHRAE value.

The large default value of 10,000 represents a near-0 resistance, for the convenience of those who wish to include the interior surface film in wnU according to approach 2 above.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	10000	No	constant

wnExH = float

Window exterior surface (air film) conductance.

Units	Legal Range	Default	Required	Variability
Btuh/ft²-°F	x > 0	same as owning surface	No	constant

Several models are available for calculating inside and outside surface convective coefficients. Inside surface faces can be exposed only to zone conditions. Outside faces may be exposed either to ambient conditions or zone conditions, based on wnExCnd. Only UNIFIED and INPUT are typically used. The other models were used during CSE development for comparison. For details, see CSE Engineering Documentation.

Model	Exposed to ambient	Exposed to zone
UNIFIED	default CSE model	default CSE model
INPUT	hc = wnExHcMult	hc = wnxxHcMult
AKBARI	Akbari model	n/a
WALTON	Walton model	n/a
WINKELMANN	Winkelmann model	n/a
MILLS	n/a	Mills model
ASHRAE	n/a	ASHRAE handbook values

wnExHcModel = choice

Selects the model used for exterior surface convection when wnModel = Forward Difference.

Units	Legal Range	Default	Required	Variability
	$choices\ above$	UNIFIED	No	constant

wnExHcLChar = float

Characteristic length of surface, used in derivation of forced exterior convection coefficients in some models when outside face is exposed to ambient (i.e. to wind).

Units	Legal Range	Default	Required	Variability
ft	x > 0	10	No	constant

wnExHcMult = float

Exterior convection coefficient adjustment factor. When wnExHcModel=INPUT, hc=wnExHcMult. For other wnExHcModel choices, the model-derived hc is multiplied by wnExHcMult.

Units	Legal Range	Default	Required	Variability
		1	No	subhourly

wnInHcModel = choice

Selects the model used for the inside (zone) surface convection when wnModel = Forward_Difference.

Units	Legal Range	Default	Required	Variability
•	choices above (see wnExHcModel)	UNIFIED	No	constant

wnInHcMult = float

Interior convection coefficient adjustment factor. When wnInHcModel=INPUT, hc=wnInHcMult. For other wnInHcModel choices, the model-derived hc is multiplied by wnInHcMult.

Units	Legal Range	Default	Required	Variability
		1	No	subhourly

wnSHGC = float

Rated Solar Heat Gain Coefficient (SHGC) for the window assembly.

Units	Legal Range	Default	Required	Variability
fraction	0 < x < 1	gtSHGC	No	constant

wnFMult=float

Frame area multiplier = areaGlaze / areaAssembly

Units	Legal Range	Default	Required	Variability
fraction	0 < x < 1	$\operatorname{gtFMult}$ or 1	No	constant

wnSMSO = float

SHGC multiplier with shades open. Overrides gtSMSO.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	gt SMSO or 1	No	Monthly - Hourly

wnSMSC = float

SHGC multiplier with shades closed. Overrides gtSMSC

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	wn SMSO or gt SMSC $$	No	Monthly - Hourly

wnNGlz = int

Number of glazings in the window (bare glass only, not including any interior or exterior shades).

Units	Legal Range	Default	Required	Variability
	$0 < x \le 4$	gtNGLZ	Required when $wnModel = ASHWAT$	Constant

$\mathbf{wnExShd} {=} \mathit{choice}$

Exterior shading type (ASHWAT only).

Units	Legal Range	Default	Required	Variability
	NONE, INSCRN	$\operatorname{gtExShd}$	no	Constant

wnInShd=choice

Interior shade type (ASHWAT only).

Units	Legal Range	Default	Required	Variability
	NONE, DRAPEMED	$\operatorname{gtInShd}$	no	Constant

wnDirtLoss = float

Glazing dirt loss factor.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	0	no	Constant

${\bf wnGrndRefl} = {\it float}$

Ground reflectivity for this window.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	$\operatorname{sfGrndRefl}$	No	Monthly - Hourly

wnVfSkyDf = float

View factor from this window to sky for diffuse radiation. For the shading effects of an overhang, a wnVfSkyDf value smaller than the default would be used

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	0.5 - 0.5 * $\cos(\text{tilt}) = .5 \text{ for}$ vertical surface	No	Monthly - Hourly

Generated: 2020-05-11T15:34:27+00:00

wnVfGrndDf = float

View factor from this window to ground for diffuse radiation. For the shading effects of a fin(s), both wnVfSkyDf and wnVfGrndDf would be used.

Units	Legal Range	Default	Required	Variability
fraction	$0 \le x \le 1$	0.5 + 0.5 * $\cos(\text{tilt}) = .5 \text{ for}$ vertical surface	No	Monthly - Hourly

endWINDOW

Optionally indicates the end of the window definition. Alternatively, the end of the window definition can be indicated by END or the declaration of another object. END or endWindow, if used, should follow any subobjects of the window (SHADEs and/or SGDISTs).

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @window
- @xsurf

4.15 SHADE

SHADE constructs a subobject associated with the current WINDOW that represents fixed shading devices (overhangs and/or fins). A window may have at most one SHADE and only windows in vertical surfaces may have SHADEs. A SHADE can describe an overhang, a left fin, and/or a right fin; absence of any of these is specified by omitting or giving 0 for its depth. SHADE geometry can vary on a monthly basis, allowing modeling of awnings or other seasonal shading strategies.

shName

Name of shade; follows the word "SHADE" if given.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

ohDepth = float

Depth of overhang (from plane of window to outside edge of overhang). A zero value indicates no overhang.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

ohDistUp = float

Distance from top of window to bottom of overhang.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

ohExL = float

Distance from left edge of window (as viewed from the outside) to the left end of the overhang.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

oh ExR = float

Distance from right edge of window (as viewed from the outside) to the right end of the overhang.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

ohFlap = float

Height of flap hanging down from outer edge of overhang.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

lfDepth = float

Depth of left fin from plane of window. A zero value indicates no fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

${\bf lfTopUp} {=} \textit{float}$

Vertical distance from top of window to top of left fin.

\mathbf{Units}	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

lfDistL=float

Distance from left edge of window to left fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

lfBotUp = float

Vertical distance from bottom of window to bottom of left fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

rfDepth = float

Depth of right fin from plane of window. A 0 value indicates no fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

$\mathbf{rfTopUp} \!=\! \mathit{float}$

Vertical distance from top of window to top of right fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

${\tt rfDistR} {=} \textit{float}$

Distance from right edge of window to right fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

rfBotUp = float

Vertical distance from bottom of window to bottom of right fin.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	0	No	monthly-hourly

endShade

Optional to indicate the end of the SHADE definition. Alternatively, the end of the shade definition can be indicated by END or the declaration of another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @shade

4.16 SGDIST

SGDIST creates a subobject of the current window that distributes a specified fraction of that window's solar gain to a specified delayed model (massive) surface. Any remaining solar gain (all of the window's solar gain if no SGDISTs are given) is added to the air of the zone containing the window. A window may have up to three SGDISTs; an error occurs if more than 100% of the window's gain is distributed.

Via members sgFSO and sgFSC, the fraction of the insolation distributed to the surface can be made dependent on whether the zone's shades are open or closed (see ZONE member znSC).

sgName

Name of solar gain distribution (follows "SGDIST" if given).

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

sgSurf=sfName

Name of surface to which gain is targeted.

If there is more than surface with the specified name: if one of the surfaces is in the current zone, it is used; otherwise, an error message is issued.

The specified surface must be modeled with the Delayed model. If gain is targeted to a Quick model surface, a warning message is issued and the gain is redirected to the air of the associated zone.

Units	Legal Range	Default	Required	Variability
	name of a SURFACE	none	Yes	constant

sgSide = choice

Designates the side of the surface to which the gain is to be targeted:

INTERIOR	Apply gain to interior of surface
EXTERIOR	Apply gain to exterior of surface

Units	Legal Range	Default	Required	Variability
	INTERIOR, EXTERIOR	Side of surface in zone containing window; or INTERIOR if both sides are in zone containing window.	Yes	constant

sgFSO = float

Fraction of solar gain directed to specified surface when the owning window's interior shading is in the open position (when the window's zone's shade closure (znSC) is 0).

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$,and sum of window's sgFSO's ≤ 1	none	Yes	monthly-hourly

sgFSC = float

Fraction of solar gain directed to specified surface when the owning window's interior shading is in the closed position. If the zone's shades are partly closed (znSC between 0 and 1), a proportional fraction between sgFSO and sgFSC is used.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$, and sum of window's sgFSC's ≤ 1	sgFSO	No	monthly-hourly

endSGDist

Optionally indicates the end of the solar gain distribution definition. Alternatively, the end of the solar gain distribution definition can be indicated by END or by just beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @sgdist

4.17 DOOR

DOOR constructs a subobject belonging to the current SURFACE. The azimuth, tilt, ground reflectivity and exterior conditions associated with the door are the same as those of the owning surface, although the exterior surface conductance and the exterior absorptivity can be altered.

drName

Name of door.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

drArea = float

Overall area of door.

Units	Legal Range	Default	Required	Variability
ft^2	x > 0	none	Yes	constant

drModel = choice

Provides user control over how CSE models conduction for this door:

QUICK	Surface is modeled using a simple conductance.
	Heat capacity effects are ignored. Either drCon or drU (next) can be specified.
	, ,

DELAYED, DELAYED_HOUR, DELAYED_SUBOUR	Surface is modeled using a multi-layer finite difference technique which represents heat capacity effects. If the time constant of the door is too short to accurately simulate, a warning
	message is issued and the Quick model is used.
	drCon (next) must be specified – the program
	cannot use the finite difference model if drU
	rather than drCon is specified.
AUTO	Program selects Quick or appropriate Delayed
	automatically according to the time constant of
	the surface (if drU is specified, Quick is selected).
FD or FORWARD_DIFFERENCE	Selects the forward difference model (used with short time steps and the CZM/UZM zone models)

Units	Legal Range	Default	Required	Variability
	$choices\ above$	AUTO	No	constant

Either drU or drCon must be specified, but not both.

drU = float

Door U-value, NOT including surface (air film) conductances. Allows direct entry of U-value, without defining a CONSTRUCTION, when no heat capacity effects are to be modeled.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	Determined from $drCon$	if $drCon$ not given	constant

drCon = conName

Name of construction for door.

\mathbf{Units}	Legal Range	Default	Required	Variability
	name of a $CONSTRUCTION$	None	unless drU given	constant

drLThkF = float

Sublayer thickness adjustment factor for FORWARD_DIFFERENCE conduction model used with drCon surfaces. Material layers in the construction are divided into sublayers as needed for numerical stability. drLThkF allows adjustment of the thickness criterion used for subdivision. A value of 0 prevents subdivision; the default value (0.5) uses layers with conservative thickness equal to half of an estimated safe value. Fewer (thicker) sublayers improves runtime at the expense of accurate representation of rapid changes.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
	$x \ge 0$.5	No	constant

drExAbs = float

Door exterior solar absorptivity. Applicable only if sfExCnd of owning surface is AMBIENT or SPECI-

FIEDT.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	same as owning surface	No	monthly-hourly

drInAbs = float

Door interior solar absorptivity.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.5	No	monthly-hourly

drExEpsLW = float

Door exterior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.9	No	constant

drInEpsLW = float

Door interior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.9	No	constant

drInH = float

Door interior surface (air film) conductance. Ignored if drModel = Forward_Difference

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	same as owning surface	No	constant

drExH = float

Door exterior surface (air film) conductance. Ignored if drModel = Forward_Difference

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	x > 0	same as owning surface	No	constant

When drModel = Forward_Difference, several models are available for calculating inside and outside surface convective coefficients. Inside surface faces can be exposed only to zone conditions. Outside faces may be exposed either to ambient conditions or zone conditions, based on drExCnd. Only UNIFIED and INPUT are typically used. The other models were used during CSE development for comparison. For details, see CSE Engineering Documentation.

Model	Exposed to ambient	Exposed to zone
UNIFIED	default CSE model	default CSE model
INPUT	hc = drExHcMult	hc = drxxHcMult
AKBARI	Akbari model	n/a
WALTON	Walton model	n/a
WINKELMANN	Winkelmann model	n/a
MILLS	n/a	Mills model
ASHRAE	n/a	ASHRAE handbook values

drExHcModel = choice

Selects the model used for exterior surface convection when drModel = Forward_Difference.

Units	Legal Range	Default	Required	Variability
	$choices\ above$	UNIFIED	No	constant

${\tt drExHcLChar} {=} \textit{float}$

Characteristic length of surface, used in derivation of forced exterior convection coefficients in some models when outside face is exposed to ambient (i.e. to wind).

Units	Legal Range	Default	Required	Variability
ft	x > 0	10	No	constant

drExHcMult=float

 $\label{lem:exterior} Exterior\ convection\ coefficient\ adjustment\ factor.\ When\ drExHcModel=INPUT,\ hc=drExHcMult.\ For\ other\ drExHcModel\ choices,\ the\ model-derived\ hc\ is\ multiplied\ by\ drExHcMult.$

Units	Legal Range	Default	Required	Variability
		1	No	subhourly

drExRf = float

Exterior roughness factor. Typical roughness values:

Roughness Index	drExRf	Example
1 (very rough)	2.17	Stucco
2 (rough)	1.67	Brick
3 (medium rough)	1.52	Concrete
4 (Medium smooth)	1.13	Clear pine
5 (Smooth)	1.11	Smooth plaster
6 (Very Smooth)	1	Glass

Units	Legal Range	Default	Required	Variability
		drExHcModel = WINKELMANN: 1.66 else 2.17	No	constant

drInHcModel = choice

Selects the model used for the inside (zone) surface convection when drModel = Forward_Difference.

Units	Legal Range	Default	Required	Variability
	choices above (see drExHcModel)	UNIFIED	No	constant

drInHcMult = float

Interior convection coefficient adjustment factor. When drInHcModel=INPUT, hc=drInHcMult. For other drInHcModel choices, the model-derived hc is multiplied by drInHcMult.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
		1	No	subhourly

endDoor

Indicates the end of the door definition. Alternatively, the end of the door definition can be indicated by the declaration of another object or by END.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @door
- @xsurf
- @mass

4.18 PERIMETER

PERIMETER defines a subobject belonging to the current zone that represents a length of exposed edge of a (slab on grade) floor.

prName

Optional name of perimeter.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

prLen=float

Length of exposed perimeter.

Units	Legal Range	Default	Required	Variability
ft	x > 0	none	Yes	constant

prF2 = float

Perimeter conduction per unit length.

Units	Legal Range	Default	Required	Variability
Btuh/ft-°F	x > 0	none	Yes	constant

endPerimeter

Optionally indicates the end of the perimeter definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @perimeter
- @xsurf

4.19 IZXFER

IZXFER constructs an object that represents an interzone or zone/ambient heat transfer due to conduction and/or air transfer. The air transfer modeled by IZXFER transfers heat only; humidity transfer is not modeled as of July 2011. Note that SURFACE is the preferred way represent conduction between ZONEs.

The AIRNET types are used in a multi-cell pressure balancing model that finds zone pressures that produce net 0 mass flow into each zone. The model operates in concert with the znType=CZM or znType=UZM to represent ventilation strategies. During each time step, the pressure balance is found for two modes that can be thought of as "VentOff" (or infiltration-only) and "VentOn" (or infiltration+ventilation). The zone model then determines the ventilation fraction required to hold the desired zone temperature (if possible). AIRNET modeling methods are documented in the CSE Engineering Documentation.

Note that fan-driven types assume pressure-independent flow. That is, the specified flow is included in the zone pressure balance but the modeled fan flow does not change with zone pressure. The assumption is that in realistic configurations, zone pressure will generally be close to ambient pressure. Unbalanced fan ventilation in a zone without relief area will result in runtime termination due to excessively high or low pressure.

izName

Optional name of interzone transfer; give after the word "IZXFER" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

izNVType=choice

Choice determining interzone ventilation

NONE	No interzone ventilation
ONEWAY	Uncontrolled flow from izZn1 to izZn2 when izZn1 air
	temperature exceeds izZn2 air temperature (using
	ASHRAE high/low vent model).
TWOWAY	Uncontrolled flow in either direction (using ASHRAE
	high/low vent model).
AIRNETIZ	Single opening to another zone (using pressure
	balance AirNet model). Flow is driven by buoyancy.
AIRNETEXT	Single opening to ambient (using pressure balance
	AirNet model). Flow is driven by buoyancy and wind
	pressure.
AIRNETHORIZ	Horizontal (large) opening between two zones, used to
	represent e.g. stairwells. Flow is driven by buoyancy;
	simultaneous up and down flow is modeled.
AIRNETEXTFAN	Fan from exterior to zone (flow either direction).
AIRNETIZFAN	Fan between two zones (flow either direction).
AIRNETEXTFLOW	Specified flow from exterior to zone (either direction).
	Behaves identically to AIRNETEXTFAN except no
	electricity is consumed and no fan heat is added to
	the air stream.
AIRNETIZFLOW	Specified flow between two zones (either direction).
	Behaves identically to AIRNETIZFAN except no
	electricity is consumed and no fan heat is added to
	the air stream.
AIRNETHERV	Heat or energy recovery ventilator. Supply and
	exhaust air are exchanged with the exterior with heat
	and/or moisture exchange between the air streams.
	Flow may or may not be balanced.

Units	Legal Range	Default	Required	Variability
	choices above	NONE	No	constant

izZn1=znName

Name of primary zone. Flow rates >0 are into the primary zone.

Units	Legal Range	Default	Required	Variability
	name of a ZONE		Yes	constant

$\mathbf{izZn2} {=} \mathit{znName}$

Name of secondary zone.

Units	Legal Range	Default	Required	Variability
	name of a ZONE		required unless izNVType = AIRNETEXT, AIRNETEXTFAN, AIRNE- TEXTFLOW, or AIRNETHERV	constant

Give izHConst for a conductive transfer between zones. Give izNVType other than NONE and the following variables for a convective (air) transfer between the zones or between a zone and outdoors. Both may be given if desired. Not known to work properly as of July 2011

${\bf izHConst} {=} {\it float}$

Conductance between zones.

Units	Legal Range	Default	Required	Variability
Btu/°F	$x \ge 0$	0	No	hourly

izALo=float

Area of low or only vent (typically VentOff)

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	$x \ge 0$	0	No	hourly

izAHi=float

Additional vent area (high vent or VentOn). If used in AIRNET, izAHi > izALo typically but this is not required.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	$x \ge 0$	izALo	No	hourly

${\bf izL1} {=} \textit{float}$

Length or width of AIRNETHORIZ opening.

Units	Legal Range	Default	Required	Variability
ft	x > 0		$if\ izNVType = AIRNETHORIZ$	constant

izL2 = float

Width or length of AIRNETHORIZ opening.

Units	Legal Range	Default	Required	Variability
ft	x > 0		$if\ izNVType = AIRNETHORIZ$	constant

izStairAngle = float

Stairway angle for AIRNETHORIZ opening. Use 90 for an open hole. Note that 0 prevents flow.

Units	Legal Range	Default	Required	Variability
degrees	x > 0	34	No	constant

izHD = float

Vent center-to-center height difference (for TWOWAY) or vent height above nominal 0 level (for AirNet types)

Units	Legal Range	Default	Required	Variability
ft		0	No	constant

izNVEff = float

Vent discharge coefficient.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0.8	No	constant

izfanVfDs = float

Fan design or rated flow at rated pressure. For AIRNETHERV, this is the net air flow into the zone, gross flow at the fan is derived using izEATR (see below).

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{cfm}}$	$x \ge 0$	0 (no fan)	If fan present	constant

izCpr=float

Wind pressure coefficient (for AIRNETEXT).

\mathbf{Units}	Legal Range	Default	Required	Variability
	$x \ge 0$	0.	No	constant

izExp = float

Opening exponent (for AIRNETEXT).

Units	Legal Range	Default	Required	Variability
none	x > 0	0.5	No	constant

izVfMin=float

Minimum volume flow rate (VentOff mode).

Units	Legal Range	Default	Required	Variability
cfm	$x \ge 0$	iz fan V f D s	No	subhourly

izVfMax = float

Maximum volume flow rate (VentOn mode)

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{cfm}}$	$x \ge 0$	izVfMin	No	subhourly

${\bf izASEF} {=} \textit{float}$

Apparent sensible effectiveness for AIRNETHERV ventilator. ASEF is a commonly-reported HERV rating and is calculated as (supplyT - sourceT) / (returnT - sourceT). This formulation includes fan heat (in supplyT), hence the term "apparent". Ignored if izSRE is given. CSE does not HRV exhaust-side condensation, so this model is approximate.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0	No	subhourly

izSRE = float

Sensible recovery efficiency (SRE) for AIRNETHERV ventilator. Used as the sensible effectiveness in calculation of the supply air temperature. Note that values of SRE greater than approximately 0.6 imply exhaust-side condensation under HVI rating conditions. CSE does not adjust for these effects. High values of izSRE will produce unrealistic results under mild outdoor conditions and/or dry indoor conditions.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0	No	subhourly

izASRE = float

Adjusted sensible recovery efficiency (ASRE) for AIRNETHERV ventilator. The difference izASRE - izSRE is used to calculate fan heat added to the supply air stream. See izSRE notes. No effect when izSRE is 0.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le izSRE$	0	No	subhourly

izEATR = float

Exhaust air transfer ratio for AIRNETHERV ventilator. NetFlow = (1 - EATR)*(grossFlow).

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{cfm}}$	$0 \le x \le 1$	0	No	subhourly

izLEF=float

Latent heat recovery effectiveness for AIRNETHERV ventilator. The default value (0) results in sensible-only

heat recovery.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0	No	subhourly

izRVFanHeatF = float

Fraction of fan heat added to supply air stream for AIRNETHERV ventilator. Used only when when izSRE is 0 (that is, when izASEF specifies the sensible effectiveness).

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0	No	subhourly

izVfExhRat = float

Exhaust volume flow ratio for AIRNETHERV ventilator = (exhaust flow) / (supply flow). Any value other than 1 indicates unbalanced flow that effects the zone pressure.

Units	Legal Range	Default	Required	Variability
		1 (balanced)	No	subhourly

izfanPress = float

Design or rated fan pressure.

Units	Legal Range	Default	Required	Variability
inches H ₂ O	x > 0	.3	No	constant

Only one of izfanElecPwr, izfanEff, and izfanShaftBhp may be given: together with izfanVfDs and izfanPress, any one is sufficient for CSE to determine the others and to compute the fan heat contribution to the air stream.

izfanElecPwr=float

Fan input power per unit air flow (at design flow and pressure).

Units	Legal Range	Default	Required	Variability
W/cfm	x > 0	derived from izfanEff and izfanShaftBhp	If izfanEff and izfanShaftBhp not present	constant

izfanEff=float

Fan efficiency at design flow and pressure, as a fraction.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	derived from $izfanShaftBhp$ if given, else 0.08	No	constant

izfanShaftBhp=float

Fan shaft brake horsepower at design flow and pressure.

Units	Legal Range	Default	Required	Variability
bhp	x > 0	derived from <i>izfanEff</i> .	No	constant

$izfanCurvePy=k_0, k_1, k_2, k_3, x_0$

 k_0 through k_3 are the coefficients of a cubic polynomial for the curve relating fan relative energy consumption to relative air flow above the minimum flow x_0 . Up to five *floats* may be given, separated by commas. 0 is used for any omitted trailing values. The values are used as follows:

$$z = k_0 + k_1 \cdot (x - x_0)| + k_2 \cdot (x - x_0)|^2 + k_3 \cdot (x - x_0)|^3$$

where:

- x is the relative fan air flow (as fraction of izfan VfDs; $0 \le x \le 1$);
- x_0 is the minimum relative air flow (default 0);
- $(x-x_0)$ is the "positive difference", i.e. $(x-x_0)$ if $x>x_0$; else 0;
- z is the relative energy consumption.

If z is not 1.0 for x = 1.0, a warning message is displayed and the coefficients are normalized by dividing by the polynomial's value for x = 1.0.

Units	Legal Range	Default	Required	Variability
· · · · · · · · · · · · · · · · · · ·		0, 1, 0, 0, 0 (linear)	No	constant

izFanMtr=mtrName

Name of meter, if any, to record energy used by supply fan. End use category used is specified by izFanEndUse (next).

Units	Legal Range	Default	Required	Variability
	name of a METER	not recorded	No	constant

izFanEndUse = choice

End use to which fan energy is recorded (in METER specified by izFanMtr). See METER for available end use choices.

Units	Legal Range	Default	Required	Variability
	end use choice	Fan	No	constant

endIZXFER

Optionally indicates the end of the interzone transfer definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @izXfer

4.20 RSYS

RSYS constructs an object representing an air-based residential HVAC system.

rsName

Optional name of HVAC system; give after the word "RSYS" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

${\tt rsType}{=}{\it choice}$

Type of system.

\overline{rsType}	Description
ACFURNACE	Compressor-based cooling and fuel-fired heating.
	Primary heating input energy is accumulated to end use HTG of meter rsFuelMtr.
ACRESISTANCE	Compressor-based cooling and electric ("strip") heating. Primary
	heating input energy is accumulated to end use HTG of meter rsElecMtr.
ASHP	Air-source heat pump (compressor-based heating and cooling).
	Primary (compressor) heating input energy is accumulated to end
	use HTG of meter rsElecMtr. Auxiliary heating input energy is
	accumulated to end use HPHTG of meter rsElecMtr.
ASHPHYDRONIC	Air-to-water heat pump with hydronic distribution. Compressor
	performance is approximated using the air-to-air model with
	adjusted efficiencies.
AC	Compressor-based cooling; no heating.
FURNACE	Fuel-fired heating. Primary heating input energy is accumulated to
	end use HTG of meter rsFuelMtr.
RESISTANCE	Electric heating. Primary heating input energy is accumulated to end use HTG of meter rsElecMtr

Units	Legal Range	Default	Required	Variability
	one of above choices	ACFURNACE	No	constant

rsDesc=string

Text description of system, included as documentation in debugging reports such as those triggered by rsPerfMap=YES

Units	Legal Range	Default	Required	Variability
	string	blank	No	constant

rsModeCtrl = choice

Specifies systems heating/cooling availability during simulation.

OFF	System is off (neither heating nor cooling is available)
HEAT	System can heat (assuming rsType can heat)
COOL	System can cool (assuming rsType can cool)
AUTO	System can either heat or cool (assuming rsType
	compatibility). First request by any zone served by
	this RSYS determines mode for the current time step.

Units	Legal Range	Default	Required	Variability
	OFF, HEAT, COOL, AUTO	AUTO	No	hourly

rsPerfMap = choice

Generate performance map(s) for this RSYS. Comma-separated text is written to file PM_[rsName].csv. This is a debugging capability that is not necessarily maintained.

Units	Legal Range	Default	Required	Variability
	NO, YES	NO	No	constant

rsFanTy = choice

Specifies fan (blower) position relative to cooling coil.

Units	Legal Range	Default	Required	Variability
	BLOWTHRU, DRAWTHRU	BLOWTHRU	No	constant

${\tt rsFanMotTy} {=} {\it choice}$

Specifies type of motor driving the fan (blower). This is used in the derivation of the coil-only cooling capacity for the RSYS.

PSC	Permanent split capacitor
BPM	Brushless permanent magnet (aka ECM)

Units	Legal Range	Default	Required	Variability
	PSC, BPM	PSC	No	constant

rsElecMtr = mtrName

Name of METER object, if any, by which system's electrical energy use is recorded (under appropriate end uses).

Units	Legal Range	Default	Required	Variability
Units	Legal Range	Default	Required	Variability

rsFuelMtr = mtrName

Name of METER object, if any, by which system's fuel energy use is recorded (under appropriate end uses).

Units	Legal Range	Default	Required	Variability
	$name\ of\ a\ METER$	$not\ recorded$	No	constant

rsAFUE = float

Heating Annual Fuel Utilization Efficiency (AFUE).

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1$	0.9 if furnace, 1.0 if resistance	No	constant

rsCapH = float

Heating capacity, used when rsType is ACFURNACE, ACRESISTANCE, FURNACE, or RESISTANCE.

Units	Legal Range	Default	Required	Variability
Btu/hr	$AUTOSIZE \text{ or } x \geq 0$	0	No	constant

rsTdDesH = float

Nominal heating temperature rise (across system, not at zone) used during autosizing (when capacity is not yet known) and to derive heating air flow rate from heating capacity.

Units	Legal Range	Default	Required	Variability
°F	x > 0	$30~{\rm ^oF}$ if ASHP or ASHPHYDRONIC else $50~{\rm ^oF}$	No	constant

rsFxCapH = float

Heating autosizing capacity factor. If AUTOSIZEd, rsCapH or rsCap47 is set to rsFxCapH \times (peak design-day load). Peak design-day load is the heating capacity that holds zone temperature at the thermostat set point during the *last substep* of all hours of all design days.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
	x > 0	1.4	No	constant

rsFanPwrH = float

Heating fan power. Heating air flow is calculated from heating capacity and rsTdDesH.

Units	Legal Range	Default	Required	Variability
W/cfm	$x \ge 0$.365	No	constant

rsHSPF = float

For rsType=ASHP, Heating Seasonal Performance Factor (HSPF).

Units	Legal Range	Default	Required	Variability
Btu/Wh	x > 0		Yes if rsType=ASHP	constant

rsCap47 = float

For rsType=ASHP, rated heating capacity at outdoor dry-bulb temperature = 47 °F.

If both rsCap47 and rsCapC are autosized, they are set to consistent values based on the relative values of heating and cooling loads. If the autosized capC is greater than 75% of the autosized cap47, then rsCapC is set to autosized capC and rsCap47 is derived from rsCapC. Otherwise, rsCap47 is set to 75% of autosized cap47 and rsCapC is derived from rsCap47.

Units	Legal Range	Default	Required	Variability
Btu/Wh	AUTOSIZE or x > 0	Calculated from rsCapC	no	constant

rsCap35 = float

For rsType=ASHP, rated heating capacity at outdoor dry-bulb temperature = 35 °F. rsCap35 typically reflects reduced capacity due to reverse (cooling) heat pump operation for defrost.

Units	Legal Range	Default	Required	Variability
Btu/Wh	x > 0	Calculated from rsCap47 and rsCap17	no	constant

rsCap17 = float

For rsType=ASHP, rated heating capacity at outdoor dry-bulb temperature = 17 °F.

Units	Legal Range	Default	Required	Variability
Btu/Wh	x > 0	Calculated from rsCap47	no	constant

rsCOP47 = float

For rsType=ASHP, rated heating coefficient of performance at outdoor dry-bulb temperature = 47 °F.

Units	Legal Range	Default	Required	Variability
	x > 0	Estimated from rsHSPF, rsCap47, and rsCap17	no	constant

rsCOP35 = float

For rsType=ASHP, rated heating coefficient of performance at outdoor dry-bulb temperature = 35 °F.

Units	Legal Range	Default	Required	Variability
	x > 0	Calculated from rsCap35, rsCap47, rsCap17, rsCOP47, and rsCOP17	no	constant

rsCOP17 = float

For rsType=ASHP, rated heating coefficient of performance at outdoor dry-bulb temperature = 17 °F.

Units	Legal Range	Default	Required	Variability
	x > 0	Calculated from rsHSPF, rsCap47, and rsCap17	no	constant

rsCapAuxH = float

For rsType=ASHP, auxiliary electric ("strip") heating capacity. If AUTOSIZEd, rsCapAuxH is set to the peak heating load evaluated at the heating design temperature (Top.heatDsTDbO).

Units	Legal Range	Default	Required	Variability
Btu/hr	$AUTOSIZE \text{ or } x \geq 0$	0	no	constant

rsDefrostModel = choice

Selects modeling options for ASHP outdoor coil defrosting when $17 \, ^{\circ}\text{F} < \text{TDbO} < 45 \, ^{\circ}\text{F}$. In this temperature range, heating capacity and/or efficiency are typically reduced due to frost accumulation on the outdoor coil.

REVCYCLE	Reverse compressor (cooling) operation. Net capacity and efficiency is derived from
	rsCap17/rsCOP17 and rsCap35/rsCOP35 using linear interpolation. Auxiliary heat
	is not modeled.
REVCYCLEA	Reverse compressor (cooling) operation with provision of sufficient auxiliary heat to
UX	make up the loss of heating capacity. Auxiliary heating is typically used to prevent
	cold air delivery to zones during the defrost cycle.

Units	Legal Range	Default	Required	Variability
	one of above choices	REVCYCLEAUX	No	constant

rsFxCapAuxH = float

Auxiliary heating autosizing capacity factor. If AUTOSIZEd, rsCapAuxH is set to rsFxCapAuxH \times (peak design-day load). Peak design-day load is the heating capacity that holds zone temperature at the thermostat set point during the *last substep* of all hours of all design days.

Units	Legal Range	Default	Required	Variability
	x > 0	1	No	constant

rsCOPAuxH = float

For rsType=ASHP, auxiliary electric ("strip") heating coefficient of performance. Energy use for auxiliary heat is accumulated to end use HPHTG of meter rsElecMtr (that is, auxiliary heat is assumed to be electric).

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	1.0	no	constant

rsSEER = float

Cooling rated Seasonal Energy Efficiency Ratio (SEER).

Units	Legal Range	Default	Required	Variability
Btu/Wh	x > 0		Yes	constant

${\tt rsEER} {=} {\it float}$

Cooling Energy Efficiency Ratio (EER) at standard AHRI rating conditions (outdoor drybulb of 95 $^{\circ}$ F and entering air at 80 $^{\circ}$ F drybulb and 67 $^{\circ}$ F wetbulb).

Units	Legal Range	Default	Required	Variability
Btu/Wh	x > 0	Estimated from SEER	no	constant

rsCapC = float

Cooling capacity at standard AHRI rating conditions. If rsType=ASHP and both rsCapC and rsCap47 are autosized, both are set to the larger consistent value.

Units	Legal Range	Default	Required	Variability
Btu/hr	$\begin{array}{l} AUTOSIZE \text{ or } x \leq \\ 0 \text{ (x > 0 coverted to} \\ < 0) \end{array}$		Yes if rsType includes cooling	constant

rsTdDesC=float

Nominal cooling temperature fall (across system, not zone) used during autosizing (when capacity is not yet known).

Units	Legal Range	Default	Required	Variability
°F	x < 0	-25	No	constant

rsFxCapC=float

Cooling autosizing capacity factor. rsCapC is set to rsFxCapC \times (peak design-day load). Peak design-day load is the cooling capacity that holds zone temperature at the thermostat set point during the *last substep* of all hours of all design days.

Units	Legal Range	Default	Required	Variability
	x > 0	1.4	No	constant

rsFChg = float

Cooling refrigerant charge adjustment factor. See rsFSize (below).

Units	Legal Range	Default	Required	Variability
	x > 0	1	no	constant

rsFSize = float

Cooling compressor sizing factor. The effective cooling capacity is adjusted by the factor (rsFChg*rsFSize) as specified by California Title 24 procedures.

Units	Legal Range	Default	Required	Variability
	x > 0	1	no	constant

rsVFPerTon = float

Standard air volumetric flow rate per nominal ton of cooling capacity.

Units	Legal Range	Default	Required	Variability
cfm/ton	$150 \le x \le 500$	350	no	constant

rsFanPwrC = float

Cooling fan power.

Units	Legal Range	Default	Required	Variability
W/cfm	$x \ge 0$.365	No	constant

${\tt rsASHPLockOutT} {=} {\it float}$

Source air dry-bulb temperature below which the air source heat pump compressor does not operate.

Units	Legal Range	Default	Required	Variability
°F		(no lockout)	No	hourly

${\tt rsCdH} {=} \textit{float}$

Heating cyclic degradation coefficient, valid only for compressor-based heating (heat pumps).

Units	Legal Range	Default	**Require d	Variabili t y
	$0 \le x \le 0.5$	ASHPHYDRONIC: 0.25 ASHP: derived from rsHSPF	No	hourly

rsCdC = float

Cooling cyclic degradation coefficient, valid for configurations having compressor-based cooling.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 0.5$	0	No	hourly

rsFEffH = float

Heating efficiency factor. At each time step, the heating efficiency is multiplied by rsFEffH.

Units	Legal Range	Default	Required	Variability
	x > 0	1	no	subhourly

rsFEffC = float

Cooling efficiency factor. At each time step, the cooling efficiency is multiplied by rsEffC.

Units	Legal Range	Default	Required	ed Variability	
	x > 0	1	no	subhourly	

rsCapNomH = float

Heating nominal capacity. Provides type-independent probe source for RSYS heating capacity. Daily variability is specified to support value changes during AUTOSIZEing. Values set via input are typically constant.

Units	Legal Range	Default	Require d	Variabili t y
Btu/hr	$x \ge 0$	no heating: 0 heat pump: rsCap47 (input or AUTOSIZEd) other: rsCapH (input or AUTOSIZEd)	no	daily

rsCapNomC = float

Cooling nominal capacity. Provides type-independent probe source for RSYS cooling capacity. Daily variability is specified to support value changes during AUTOSIZEing. Values set via input are typically constant.

Units	Legal Range	Default	Require d	Variabili t y
Btu/hr	$x \ge 0$	no cooling: 0 other: rsCap95 (input or AUTOSIZEd)	no	daily

rsDSEH = float

Heating distribution system efficiency. If given, (1-rsDSEH) of RSYS heating output is discarded. Cannot be combined with more detailed DUCTSEG model.

Units	Legal Range	Default	Required	Variability
	0 < x < 1	(use DUCTSEG model)	No	hourly

rsDSEC=float

Cooling distribution system efficiency. If given, (1-rsDSEC) of RSYS cooling output is discarded. Cannot be combined with more detailed DUCTSEG model.

Units	Legal Range	Default	Required	Variability
	0 < x < 1	(use DUCTSEG model)	No	hourly

rsOAVType = choice

Type of central fan integrated (CFI) outside air ventilation (OAV) included in this RSYS. OAV systems use the central system fan to circulate outdoor air (e.g. for night ventilation).

OAV cannot operate simultaneously with whole building ventilation (operable windows, whole house fans, etc.). Availability of ventilation modes is controlled on an hourly basis via Top ventAvail.

NONE	No CFI ventilation capabilities
FIXED	Fixed-flow CFI (aka SmartVent). The specified rsOAVVfDs is used whenever the
THE	RSYS operates in OAV mode.
VARIABLE	Variable-flow CFI (aka NightBreeze). Flow rate is determined at midnight based
	on prior day's average dry-bulb temperature according to a control algorithm
	defined by the NightBreeze vendor.

Units	Legal Range	Default	Required	Variability
	NONE, FIXED, VARIABLE	NONE	No	constant

rsOAVVfDs = float

Design air volume flow rate when RSYS is operating in OAV mode.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{cfm}}$	≥ 0		if rsOAVType \neq NONE	constant

rsOAVVfMinF = float

Minimum air volume flow rate fraction when RSYS is operating in OAV mode. When rsOAV-Type=VARIABLE, air flow rate is constrained to rsOAVVfMinF * rsOAVVfDs or greater.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 1$	0.2	No	constant

rsOAVFanPwr = float

RSYS OAV-mode fan power.

**Unit s	Legal Range	Default	Required	Variabil i ty
W/cfm	$0 < x \le 5$	per rsOAVTYPE FIXED: rsFanPwrC VARIABLE: NightBreeze vendor curve based on rsOAVvfDs	No	constant

rsOAVTDbInlet = float

OAV inlet (source) air temperature. Supply air temperature at the zone is generally higher due to fan heat. Duct losses, if any, also alter the supply air temperature.

Units	Legal Range	Default	Required	**Variabili ty
°F		Dry-bulb temperature from weather file	No	hourly

rsOAVTdiff = float

OAV temperature differential. When operating in OAV mode, the zone set point temperature is max(znTD, inletT+rsOAVTdiff). Small values can result in inadvertent zone heating, due to fan heat.

Units	Legal Range	Default	Required	Variability
°F	> 0	$5~{}^{\rm o}{ m F}$	No	hourly

rsOAVReliefZn = znName

Name of zone to which relief air is directed during RSYS OAV operation, typically an attic zone. Relief air flow is included in the target zone's pressure and thermal balance.

Units	Legal Range	Default	Required	Variability
	name of ZONE		if rsOAVType \neq NONE	constant

rsParElec=float

Parasitic electrical power. rsParElec is unconditionally accumulated to rsElecMtr (if specified) and has no other effect.

Units	Legal Range	Default	Required	Variability
W		0	No	hourly

rsParFuel = float

Parasitic fuel use. rsParFuel is unconditionally accumulated to rsFuelMtr (if specified) and has no other effect.

Units	Legal Range	Default	Required	Variability
Btuh		0	No	hourly

rsRhIn = float

Entering air relative humidity (for model testing).

Units	Legal Range	Default	Required	Variability
W/cfm	$0 \le x \le 1$	Derived from entering air state	No	constant

rsTdbOut = float

Air dry-bulb temperature at the outdoor portion of this system.

Units	Legal Range	Default	Required	Variability
°F		From weather file	No	hourly

endRSYS

Optionally indicates the end of the RSYS definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @rsvs
- @RSYSRes (accumulated results)

4.21 DUCTSEG

DUCTSEG defines a duct segment. Each RSYS has at most one return duct segment and at most one supply duct segment. That is, DUCTSEG input may be completely omitted to eliminate duct losses.

dsName

Optional name of duct segment; give after the word "DUCTSEG" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

dsTy = choice

Duct segment type.

Units	Legal Range	Default	Required	Variability
	SUPPLY, RETURN		Yes	constant

The surface area of a DUCTSEG depends on its shape. 0 surface area is legal (leakage only). DUCTSEG shape is modeled either as flat or round -

• dsExArea specified: Flat. Interior and exterior areas are assumed to be equal (duct surfaces are flat and corner effects are neglected).

• dsExArea not specified: Round. Any two of dsInArea, dsDiameter, and dsLength must be given. Insulation thickness is derived from dsInsulR and dsInsulMat and this thickness is used to calculate the exterior surface area. Overall inside-to-outside conductance is also calculated including suitable adjustment for curvature.

${\tt dsExArea} {=} \textit{float}$

Duct segment surface area at outside face of insulation for flat duct shape, see above.

Units	Legal Range	Default	Required	Variability
$\overline{\mathrm{ft}^2}$	$x \ge 0$		No	constant

dsInArea = float

Duct segment inside surface area (at duct wall, duct wall thickness assumed negligible) for round shaped duct.

Units	Legal Range	Default	Required	Variability
ft²	$x \ge 0$	Derived from dsDiameter and dsLength	(see above re duct shape)	constant

dsDiameter = float

Duct segment round duct diameter (duct wall thickness assumed negligible)

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	Derived from dsInArea and dsLength	(see above re duct	constant shape)

dsLength = float

Duct segment length.

Units	Legal Range	Default	Required	Variability
ft	$x \ge 0$	Derived from dsInArea and dsDiameter	(see above re duct shape)	constant

dsExCnd = choice

Conditions surrounding duct segment.

Units	Legal Range	Default	Required	Variability
	ADIABATIC, AMBIENT, SPECIFIEDT, ADJZN	ADJZN	No	constant

dsAdjZn=znName

Name of zone surrounding duct segment; used only when dsExCon is ADJZN. Can be the same as a zone served by the RSYS owning the duct segment.

Units	Legal Range	Default	Required	Variability
	name of a $ZONE$	none	Required when $dsExCon = ADJZN$	constant

dsEpsLW = float

Exposed (i.e. insulation) outside surface exterior long wave (thermal) emittance.

Units	Legal Range	Default	Required	Variability
(none)	$0 \le x \le 1$	0.9	No	constant

dsExT = float

Air dry-bulb temperature surrounding duct segment.

Units	Legal Range	Default	Required	Variability
°F	unrestricted	none	Required if $sfExCnd = SPECIFIEDT$	hourly

dsInsulR = float

Insulation thermal resistance *not including* surface conductances. dsInsulR and dsInsulMat are used to calculate insulation thickness (see below). Duct insulation is modeled as a pure conductance (no mass).

Units	Legal Range	Default	Required	Variability
$\overline{\rm ft^2\text{-}F\text{-}hr\ /\ Btu}$	$x \ge 0$	0	No	constant

dsInsulMat = matName

Name of insulation MATERIAL. The conductivity of this material at 70 °F is combined with dsInsulR to derive the duct insulation thickness. If omitted, a typical fiberglass material is assumed having conductivity of 0.025 Btu/hr-ft²-F at 70 °F and a conductivity coefficient of .00418 1/F (see MATERIAL). In addition, insulation conductivity is adjusted during the simulation in response its average temperature. As noted with dsInsulR, duct insulation is modeled as pure conductance – MATERIAL matDens and matSpHt are ignored.

Units	Legal Range	Default	Required	Variability
	name of a $MATERIAL$	fiberglass	No	constant

dsLeakF = float

Duct leakage. Return duct leakage is modeled as if it all occurs at the segment inlet. Supply duct leakage is modeled as if it all occurs at the outlet.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1$		No	constant

dsExH = float

Outside (exposed) surface convection coefficient.

Units	Legal Range	Default	Required	Variability
Btuh/ft²-°F	x > 0	.54	No	subhourly

endDuctSeg

Optionally indicates the end of the DUCTSEG definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

- @ductSeg
- @izXfer (generated as "<Zone Name>-DLkI" for supply or "<Zone Name>-DLkO" for return)

4.22 DHWDAYUSE

Defines an object that represents domestic hot water use for a single day. A DHWDAYUSE contains a collection of DHWUSE objects that specify the time, volume, and duration of individual draws. DHWDAYUSEs are referenced by DHWSYS wsDayUse. Unreferenced DHWDAYUSEs are allowed.

DHWDAYUSEs and their child DHWUSEs are used to construct minute-by-minute hot water use schedules in addition to aggregated hourly schedules. The minute-by-minute schedules are used for modeling resistance and heat pump storage water heaters, see DHWHEATER whType=SmallStorage whHeatSrc=ResistanceX or whHeatSrc=ASHPX.

The following illustrates some features of DHWDAYUSE / DHWUSE -

```
DHWDAYUSE "Sample"
   // 6 AM: 7 min shower, 2 gpm @ 105 F
  DHWUSE whStart=6.0 wuDuration=7 wuFlow=2 wuTemp=105 wuEndUse=Shower wuEventID=1
   // 7 AM: 1 min faucet draw, 100% hot
  DHWUSE whStart=7.0 wuDuration=1 wuFlow=1 wuHotF=1 whEndUse=Faucet wuEventID=2
   // 12:30 PM: dishwasher start, several draws over 70 mins; note common wuEventID
  DHWUSE whStart=12.5 wuDuration=2 wuFlow=2 wuHotF=1 whEndUse=DWashr wuEventID=3
  DHWUSE whStart=12.8 wuDuration=1.5 wuFlow=2 wuHotF=1 whEndUse=DWashr wuEventID=3
  DHWUSE whStart=13.6 wuDuration=3 wuFlow=2 wuHotF=1 whEndUse=DWashr wuEventID=3
   // 7 PM every 2nd day: clothes washer runs
       even days: 0 gpm (no draw)
       odd days: 3 gpm, 22% hot
  DHWUSE whStart=19 wuDuration=30 wuFlow = ($dayOfYear%2)*3 whEndUse=CWashr whHotF=.22 wuEventID=4
   // 11:54 PM: 20 min bath, 1.5 gpm, 80% hot water
   // Duration spans midnight: draw is wrapped to beginning of *current* day
       In this case a 12 M - 12:14 AM draw is modeled -- before (!) the bath start.
  DHWUSE whStart 23.9 wuDuration=20 wuFlow=1.5 wuHotF=.8 whEndUse=Bath wuEventID=99
endDHWDAYUSE
```

```
DHWSYS "DHWSYS1"
...
wsDayUse = "Sample"
...
```

During the simulation, DHWUSEs are evaluated each hour. Many DHWUSE values have hourly variability and this allows complicated schemes to be constructed very flexibly. For example:

```
DHWDAYUSE "HourlyFaucet"
   // Every hour on the half hour: 5 minute, 2 gpm draw
   // Same as 24 DHWUSEs, one for each hour
   DHWUSE wuStart=$hour+.5 wuDuration=5 wuFlow=2 wuEndUse=Faucet
endDAYUSE
```

Some DHWUSE configurations involve mixing to specified wuTemp. Hot and cold water arriving at the point of use is assumed to be at DHWSYS wsUseTemp and wsMainsTemp respectively. It is possible to set up situations where wuTemp cannot be achieved (wuTemp > wsUseTemp, for example). Runtime error messages are produced when impossible conditions are detected.

When more than one DHWSYS references the same DHWDAYUSE, DHWUSEs are allocated to DHWSYSs in wuEventID rotation. This procedure divides the water heating load approximately equally while retaining the peak demand of individual events. When detailed information is available about which loads are served by specific systems, separate DHWDAYUSEs should be given.

dhwDayUseName

Object name, given after "DHWDAYUSE". Required for referencing from DHWSYS.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	Yes	constant

wduMult = float

Scale factor applied to all draws in this DHWDAYUSE.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

endDHWDAYUSE

Indicates the end of the DHWDAYUSE definition. endDHWDAYUSE should follow all child DHWUSEs. Alternatively, the end of the meter definition can be indicated by the declaration of another object or by END.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @DHWDayUse

4.23 DHWUSE

Defines a single hot water draw as part of a DHWDAYUSE. See discussion and examples under DHW-DAYUSE. As noted there, most DHWUSE values have hourly variability, allowing flexible representation.

wuName

Optional name; give after the word "DHWUSE" if desired.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

wuStart=float

The starting time of the hot water draw.

Units	Legal Range	Default	Required	Variability
hr	$0 \le x \le 24$	_	Yes	constant

wuDuration=float

Draw duration. wuDuration = 0 is equivalent to omitting the DHWUSE. Durations that extend beyond midnight are included in the current day.

Units	Legal Range	Default	Required	Variability
min	$0 \le x \le 1440$	0	N	hourly

wuFlow = float

Draw flow rate at the point of use (in other words, the mixed-water flow rate). $var{wu} = 0$ is equivalent to omitting the DHWUSE. There is no enforced upper limit on wuFlow, however, unrealistically large values can cause runtime errors.

Units	Legal Range	Default	Required	Variability
gpm	$0 \le x$	0	N	hourly

wuHotF=float

Fraction of draw that is hot water. Cannot be specified with wuTemp or wuHeatRecEF.

Units	Legal Range	Default	Required	Variability
_	$0 \le x \le 1$	1	N	hourly

wuTemp=float

Mixed-water use temperature at the fixture. Cannot be specified when wuHotF is given.

				Variabil i
**Unit s	Legal Range	**Defaul t	$\mathbf{Required}$	\mathbf{ty}
°F	$0 \le x$	0	when wuHeatRecEF is given or parent DHWSYS includes $\mathrm{DHWHEATREC}(s)$	hourly

$\mathbf{wuHeatRecEF} = float$

Heat recovery effectiveness, allows simple modeling of heat recovery devices such as drain water heat exchangers.

If non-0 (evaluated hourly), hot water use is reduced based on wuTemp, DHWSYS wsTUse, and DHWSYS wsTInlet. DHWHEATREC(s), if any, are ignored for this use. wuTemp must be specified.

If 0, detailed heat recovery modeling may apply, see DHWHEATREC.

Units	Legal Range	Default	Required	Variability
_	$0 \le x \le 0.9$	0	N	hourly

wuHWEndUse = choice

Hot-water end use: one of Shower, Bath, CWashr, DWashr, or Faucet. wuHWEndUse has the following functions –

- Allocation of hot water use among multiple DHWSYSs (if more than one DHWSYS references a given DHWDAYUSE).
- DHWMETER end-use accounting (via DHWSYS).
- Activation of the detailed heat recovery model (available for end use Shower when wuHeatRecEF=0 and the parent DHWSYS includes DHWHEATREC(s)).

Units	Legal Range	Default	Required	Variability
_	One of above choices	(use allocated to Unknown)	N	constant

wuEventID = integer

User-defined identifier that associates multiple DHWUSEs with a single event or activity. For example, a dishwasher uses water at several discrete times during a 90 minute cycle and all DHWUSEs would be assigned the same wuEventID. All DHWUSEs having the same wuEventID should have the same wuHWEndUse.

Units	Legal Range	Default	Required	Variability
_	$0 \le x$	0	N	constant

endDHWUSE

Optionally indicates the end of the DHWUSE definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWUse

4.24 DHWSYS

DHWSYS constructs an object representing a domestic hot water system consisting of one or more hot water heaters, storage tanks, loops, and pumps (DHWHEATER, DHWTANK, DHWLOOP, and DHWPUMP, see below) and a distribution system characterized by loss parameters. This model is based on Appendix B of the 2019 Residential ACM Reference Manual and the Ecotope HPWHSim air source heat pump water heater model (called HPWH herein).

The parent-child structure of DHWSYS components is determined by input order. For example, DHWHEATERs belong to the DHWSYS that precedes them in the input file. The following hierarchy shows the relationship among components. Note that any of the commands can be repeated any number of times.

- DHWSYS
 - DHWHEATER
 - DHWLOOPHEATER
 - DHWHEATREC
 - DHWTANK
 - DHWPUMP
 - DHWLOOP
 - * DHWLOOPPUMP
 - * DHWLOOPSEG
 - · DHWLOOPBRANCH

Minimal modeling is included for physically realistic controls. For example, if several DHWHEATERs are included in a DHWSYS, an equal fraction of the required hot water is assumed to be produced by each heater, even if they are different types or sizes. Thus a DHWSYS is in some ways a collection of components as opposed to an explicitly connected system. This approach avoids requiring detailed input that would impose impractical user burden, especially in compliance applications.

dhwsysName

Optional name of system; give after the word "DHWSYS" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

wsCalcMode = choice

Enables preliminary simulation that derives values needed for simulation.

PRERUN	Calculate hot water heating load; at end of run,
	derive whLDEF for all child DHWHEATERs for
	which that value is required and defaulted (this
	emulates methods used in the T24DHW.DLL
	implementation of CEC DHW procedures). Also
	derived are average number of draws per day by end
	use (used in the wsDayWaste scheme).
SIMULATE	Perform full modeling calculations

To use PRERUN efficiently, the recommended input file structure is:

• General input

- DHWSYS(s) and child objects
- RUN
- ALTER DHWSYS input (as needed)
- Building input
- RUN

This order avoids duplicate time-consuming simulation of the full building model.

Units	Legal Range	Default	Required	Variability
	Codes listed above	SIMULATE	No	

wsCentralDHWSYS = dhwsysName

Name of the central DHWSYS that serves this DHWSYS, allowing representation of multiple units having distinct distribution configurations and/or water use patterns but served by a central DHWSYS. The child DHWSYS(s) may not include DHWHEATERs – they are "loads only" systems. wsCentralDHWSYS and wsLoadShareDHWSYS cannot both be given.

Units	Legal Range	Default	Required	Variability
	name of a DHWSYS	DHWSYS is standalone	No	constant

wsLoadShareDHWSYS = dhwsysName

Name of a DHWSYS that serves the same loads as this DHWSYS, allowing representation of multiple water heating systems within a unit. If given, wsUse and wsDayUse are not allowed, hot water requirements are derived from the referenced DHWSYS. wsCentralDHWSYS and wsLoadShareDHWSYS cannot both be given.

For example, two DHWSYSs should be defined to model two water heating systems serving a load represented by wsDayUse DayUseTyp. Each DHWSYS should include DHWHEATER(s) and other components as needed. DHWSYS Sys1 should specify wsDayUse=DayUseTyp and DHWSYS Sys2 should have wsLoad-ShareDHWSYS=Sys1 in place of wsDayUse.

Loads are shared by assigning DHWUSE events sequentially by end use to all DHWSYS with compatible fixtures (determined by wsFaucetCount, wsShowerCount etc., see below) in the group. This algorithm approximately divides load for each end use by the number of compatible fixtures in the group. In addition, assigning 0 to a fixture type prevents assignment of an end use load to a DHWSYS – for example, wsDWashrCount=0 could be provided for a DHWSYS that does not serve a kitchen.

Units	Legal Range	Default	Required	Variability
	name of a DHWSYS	No shared loads	No	constant

wsMult=float

Number of identical systems of this type (including all child objects). Any value > 1 is equivalent to repeated entry of the same DHWSYS. A value of 0 is equivalent to omitting the DHWSYS. Non-integral values scale all results; this may be useful in parameterized models, for example.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

```
ws Faucet Count = integer \\ ws Shower Count = integer \\ ws Bath Count = integer \\ ws CWashr Count = integer \\ ws DWashr Count = integer \\
```

Specifies the count of fixtures served by this DHWSYS that can accommodate draws of each end use (see DHWUSE). These counts are used for distributing draws in shared load configurations (multiple DHWSYSs serving the same loads, see wsLoadShareDHWSYS above).

In addition, wsShowerCount participates in assignment of Shower draws to DHWHEATRECs (if any).

Unless this DHWSYS is part of a shared-load group or includes DHWHEATREC(s), these counts have no effect and need not be specified.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

wsTInlet = float

Specifies cold (mains) water temperature supplying this DHWSYS. DHWHEATER supply water temperature wsTinlet adjusted (increased) by any DHWHEATREC recovered heat and application of wsSSF (approximating solar preheating).

Units	Legal Range	Default	Required	Variability
°F	> 32 °F	Mains temp from weather file	No	hourly

Hot water demand determination

wsUse = float

Hourly hot water use (at the point of use). See further info under wsDayUse.

Units	Legal Range	Default	Required	Variability
gal	≥ 0	0	No	hourly

wsDayUse = dhwdayuseName

Name of DHWDAYUSE object that specifies a detailed schedule of mixed water use at points of hot water use (that is, "at the tap"). The mixed water amounts are used to derive hot water requirements based on specified mixing fractions or mixed water temperature (see DHWDAYUSE and DHWUSE).

The total water use modeled by CSE is the sum of amounts given by wsUse and the DWHDAYUSE schedule. DHWDAYUSE draws are resolved to minute-by-minute bins compatible with the HPWH model and wsUse/60 is added to each minute bin. Conversely, the hour total of the DHWDAYUSE amounts is included in the draw applied to non-HPWH DHWHEATERs.

wsDayUse variability is daily, so it is possible to select different schedules as a function of day type (or any other condition), as follows –

```
DHWSYS "DHW1"
...
wsDayUse = choose( $isWeHol, "DUSEWeekday", "DUSEWeHol")
...
```

Note that while DHWDAYUSE selection is updated daily, the DHWUSE values within the DHWDAYUSE can be altered hourly, providing additional scheduling flexibility.

Units	Legal Range	Default	Required	Variability
	name of a DHWDAYUSE	(no scheduled draws)	No	daily

 $wsFaucetWaste=float\\ wsShowerWaste=float\\ wsBathWaste=float\\ wsCWashrWaste=float\\ wsDWashrWaste=float$

Specifies additional draw volume per DHWUSE event (at fixture, by end use). This can be used to account for water discarded during warmup or otherwise adjust the draw volume. Because the values are at the fixture, the impact on hot water demand additionally depends on DHWUSE parameters. The value is applied by lengthening (or shortening) the draw duration.

Note that DHWUSE draws can be referenced by multiple DHWSYSs; these adjustments apply only to the current DHWSYS.

These adjustments have not impact on draw specifified by wsUse.

Units	Legal Range	Default	Required	Variability
gal/draw	_	0	No	hourly

wsBranchModel = choice

ToDo

wsDayWasteVol = float

Average amount of waste per day.

**Unit s	Legal Range	Default	**Require d	Variabili t y
gal/day	≥ 0	wsDayWasteBranchVolF * (Total DHWLOOPBRANCH vol)	No	constant

wsDayWasteBranchVolF = float

Day waste scaling factor.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

 $\begin{tabular}{ll} ws Day Waste Faucet F=float\\ ws Day Waste Shower F=float\\ ws Day Waste Bath F=float\\ ws Day Waste C Washr F=float\\ ws Day Waste D Washr F=float\\ \end{tabular}$

ToDo

*Units** *	*Legal Range** *	*Default** *	*Required** *	*Variability**
	≥ 0	0 N	o s	ubhourly

wsTUse = float

Hot water delivery temperature (at output of water heater(s) and at point of use). Delivered water is mixed down to wsTUSe (with cold water) or heated to wsTUse (with extra electric resistance backup, see DHWHEATER whXBUEndUse). Note that draws defined via DHWDAYUSE / DHWUSE can specify mixing to a lower temperature.

Units	Legal Range	Default	Required	Variability
°F	$>32~{\rm ^oF}$	120	No	hourly

wsTSetPoint = float

Specifies the hot water setpoint temperature for all child DHWHEATERs. Used only for HPWH-based DHWHEATERs (HPWH models tank temperatures and heating controls), otherwise has no effect.

Units	Legal Range	Default	Required	Variability
°F	> 32 °F	wsTUse	No	hourly

wsTSetPointLH = float

Specifies the hot water setpoint temperature for all child DHWLOOPHEATERs. Used only for HPWH-based DHWHLOOPEATERs (HPWH explicitly models tank temperatures and heating controls), otherwise has no effect.

Units	Legal Range	Default	Required	Variability
°F	$>$ 32 $^{\rm o}{\rm F}$	wsTSetPoint	No	hourly

wsSDLM = float

Specifies the standard distribution loss multiplier. See App B Eqn 4. To duplicate CEC 2019 methods, this value should be set according to the value derived with App B Eqn 5.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wsDSM = float

Distribution system multiplier. See RACM App B Eqn 4. To duplicate CEC 2016 methods, wsDSM should be set to the appropriate value from App B Table B-2. Note the NCF (non-compliance factor) included in App B Eqn 4 is *not* a CSE input and thus must be applied externally to wsDSM.

\mathbf{Units}	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wsWF = float

Waste factor. See RACM App B Eqn 1. wsWF is applied to hot water draws. The default value (1) reflects the inclusion of waste in draw amounts. App B specifies wsWF=0.9 when the system has a within-unit pumped loop that reduces waste due to immediate availability of hot water at fixtures.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	hourly

wsSSF = float

NOTE: Deprecated. Use wsSolarSys instead.

Specifies the solar savings fraction, allowing recognition of externally-calculated solar water heating energy contributions. The contributions are modeled by deriving an increased water heater feed temperature –

$$tWHFeed = tInletAdj + wsSSF * (wsTUse - tInletAdj)$$

where tInletAdj is the source cold water temperature *including any DHWHEATREC* tempering (that is, wsTInlet + heat recovery temperature increase, if any). This model approximates the diminishing returns associated with combined preheat strategies such as drain water heat recovery and solar.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 0.99$	0	No	hourly

wsSolarSys = dhwSolarSys

Name of DHWSOLARSYS object, if any, that supplies pre-heated water to this DHWSYS.

Units	Legal Range	Default	Required	Variability
	name of a DHWSOLARSYS	$not\ recorded$	No	constant

wsParElec=float

Specifies electrical parasitic power to represent recirculation pumps or other system-level electrical devices. Calculated energy use is accumulated to the METER specified by wsElecMtr (end use DHW). No other effect, such as heat gain to surroundings, is modeled.

Units	Legal Range	Default	Required	Variability
W	≥ 0	0	No	hourly

wsElecMtr=mtrName

Name of METER object, if any, to which DHWSYS electrical energy use is recorded (under end use DHW). In addition, wsElecMtr provides the default whElectMtr selection for all DHWHEATERs and DHWPUMPs in this DHWSYS.

Units	Legal Range	Default	Required	Variability
	$name\ of\ a\ METER$	$not\ recorded$	No	constant

wsFuelMtr = mtrName

Name of METER object, if any, to which DHWSYS fuel energy use is recorded (under end use DHW). DHWSYS fuel use is usually (always?) 0, so the primary use of this input is to specify the default whFuelMtr choice for DHWHEATERs in this DHWSYS.

Units	Legal Range	Default	Required	Variability
	$name\ of\ a\ METER$	$not\ recorded$	No	constant

wsWHhwMtr = dhwmtrName

Name of DHWMETER object, if any, to which hot water quantities (at water heater) are recorded by hot water end use.

Units	Legal Range	Default	Required	Variability
	name of a METER	$not\ recorded$	No	constant

wsFXhwMtr = dhwmtrName

Name of DHWMETER object, if any, to which mixed hot water use (at fixture) quantities are recorded by hot water end use. DHWDAYUSE and wsUse input can be verified using DHWMETER results.

Units	Legal Range	Default	Required	Variability
	name of a METER	$not\ recorded$	No	constant

${\bf wsWriteDrawCSV} {=} {\it choice}$

If Yes, a comma-separated file is generated containing 1-minute interval hot water draw values for testing or linkage purposes.

Units	Legal Range	Default	Required	Variability
	Yes or No	No	No	constant

endDHWSys

Optionally indicates the end of the DHWSYS definition.

Units	Legal Range	Default	Required	Variability
n/a	n/a	n/a	No	n/a

Related Probes:

 \bullet @DHWSys

4.25 DHWHEATER

DHWHEATER constructs an object representing a domestic hot water heater (or several if identical).

whName

Optional name of water heater; give after the word "DHWHEATER" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

$\mathbf{whMult} {=} integer$

Number of identical water heaters of this type. Any value > 1 is equivalent to repeated entry of the same DHWHEATER.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
	> 0	1	No	constant

$\mathbf{whType} {=} \mathit{choice}$

Type of water heater. This categorization is based on CEC and federal rating standards that change from time to time.

SMALLSTORAGE	A storage water heater having an energy factor (EF) rating. Generally, a gas-fired storage water heater with input of 75,000 Btuh or less, an oil-fired storage water heater with input of 105,000 Btuh or less, an electric storage water heater with input of 12 kW or less, or a heat pump water heater rated at 24 amps or less.
LARGESTORAGE	Any storage water heater that is not SMALLSTORAGE.
SMALLINSTANTANEOUS	A water heater that has an input rating of at least 4,000 Btuh per gallon of stored water. Small instantaneous water heaters include: gas instantaneous water heaters with an input of 200,000 Btu per hour or less, oil instantaneous water heaters with an input of 210,000 Btu per hour or less, and electric instantaneous water heaters with an input of 12 kW or less.
LARGEINSTANTANEOUS	An instantaneous water heater that does not conform to the definition of SMALLINSTANTANEOUS, an indirect fuel-fired water heater, or a hot water supply boiler.
INSTANTANEOUSUEF	An instantaneous water heater having a UEF rating (as opposed to EF).

Units	Legal Range	Default	Required	Variability
	Codes listed above	SMALLSTORAGE	No	constant

whHeatSrc=choice

Heat source for water heater. CSE implements uses efficiency-based models for all whTypes (as documented in RACM, App. B). In addition, the detailed Ecotope HPWH model is available for electric (air source heat pump and resistance) SMALLSTORAGE water heaters.

RESISTANCE	Electric resistance heating element Deprecated for whType=SMALLSTORAGE (use RESISTANCEX)
RESISTANCEX	Electric resistance heating element, detailed HPWH model
ASHP	Air source heat pump, EF model Deprecated for whType=SMALLSTORAGE (use ASHPX)
ASHPX FUEL	Air source heat pump, detailed HPWH model Fuel-fired burner

Units	Legal Range	Default	Required	Variability
	Codes listed above	FUEL	No	constant

whVol = float

Storage tank volume. Must be omitted or 0 for instantaneous whTypes. Used by HPWH model (wh-HeatSrc=RESISTANCEX or whHeatSrc=ASHPX). Required when whHeatSrc=RESISTANCEX or whHeat-Src=ASHPX with whASHPType=GENERIC. For all other configurations, whVol is documentation-only.

Units	Legal Range	Default	Required	Variability
gal	≥ 0.1 (caution: small values may cause runtime errors)	per whASHPType if HPWH else 50	For some HPWH configurations, see above	constant

whEF = float

Rated energy factor that specifies DHWHEATER efficiency under test conditions. Used by CSE to derive annual water heating efficiency and/or other characteristics as described below. Calculation methods are documented in RACM, Appendix B.

Configuration	whEF default	Use
whType=SMALLSTORAGE	0.82	Derivation of whLDEF
wh $HeatSrc=RESISTANCE$ or FUEL		
whType=SMALLSTORAGE	0.82	Derivation of whLDEF
whHeatSrc=ASHP		note inappropriate default
		(deprecated, use ASHPX)
whType=SMALLSTORAGE	(req'd)	Tank losses
whHeatSrc=ASHPX		Overall efficiency
whASHPType=GENERIC		
whType=SMALLSTORAGE	(req'd)	Tank losses
$\begin{tabular}{ll} wh HeatSrc=RESISTANCEX \\ \end{tabular}$		Note: maximum whEF=0.98.
whType=SMALLINSTANTANEOUS	0.82	Annual efficiency $=$
$\begin{tabular}{ll} wh HeatSrc=RESISTANCE or FUEL \\ \end{tabular}$		whEF*0.92
Any other	(unused)	

Units	Legal Range	**Defaul t	**Require d	Variabilit y
	> 0 Caution: maximum not checked. Unrealistic values will cause runtime errors and/or invalid results	See above	See above	constant

whLDEF = float

Load-dependent energy factor for DHWHEATERs with whType=SMALLSTORAGE and whHeat-Src=FUEL or whHeatSrc=RESISTANCE. If not given, whLDEF is derived using a preliminary simulation activated via DHWSYS wsCalcMode=PRERUN. See RACM Appendix B.

Units	Legal Range	Default	Required	Variability
	> 0	Calculated via DHWSYS PreRun mechanism	When whType = SMALLSTORAGE and PreRun not used	constant

whUEF=float

Water heater Uniform Energy Factor efficiency rating, used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
	≥ 0	_	when wh Type=INSTANTANEOUSUEF	constant

whAnnualElec = float

Annual electricity use assumed in UEF rating derivation. Used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
kWh	≥ 0	_	when whType=INSTANTANEOUSUEF	constant

whAnnualFuel = float

Annual fuel use assumd in UEF rating derivation, used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
therms	≥ 0	_	when wh Type=INSTANTANEOUSUEF	constant

whRatedFlow = float

Maximum flow rate assumed in UEF rating derivation. Used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
gpm	>0	_	when wh Type=INSTANTANEOUSUEF	constant

${\bf whStbyElec} {=} \textit{float}$

Instantaneous water heater standby power (electricity consumed when heater is not operating). Used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
W	≥ 0	4	No	constant

whLoadCFwdF = float

Instanteous water heater load carry forward factor – approximate number of hours the heater is allowed to meet water heating demand that is unmet on a 1 minute basis, used when whType=INSTANTANEOUSUEF.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	Constant

whZone = znName

Name of zone where water heater is located, used only in detailed HPWH models (whHeatSrc=ASHPX or whHeatSrc=RESISTANCEX), otherwise no effect. Zone conditions are used for tank heat loss calculations. Heat exchanged with the DHWHEATER are included in the zone heat balance. whZone also provides the default for whASHPSrcZn (see below). whZone and whTEx cannot both be specified.

Units	Legal Range	Default	Required	**Variability
	name of a ZONE	Not in a zone (heat losses discarded)	No	constant

whTEx = float

Water heater surround temperature, used only in detailed HPWH models (whHeatSrc=ASHPX or whHeat-Src=RESISTANCEX), otherwise no effect. whZone and whTEx cannot both be specified.

Units	Legal Range	Default	Required	Variability
°F	≥ 0	wh Zone air temperature if specified, else 70 $^{\rm o}{\rm F}$	No	hourly

whASHPType = choice

Air source heat pump type, valid only if whHeatSrc=ASHPX. These choices are supported by the detailed HPWH model. Except for Generic, all heater characteristics are set by HPWH based on whASHPType.

Choice	Specified type
Generic	General generic (parameterized by wh_EF and wh_vol)
AOSmithPHPT60	60 gallon Voltex
AOSmithPHPT80	80 gallon Voltex
AOSmithHPTU50	50 gallon AOSmith HPTU
AOSmithHPTU66	66 gallon AOSmith HPTU
AOSmithHPTU80	80 gallon AOSmith HPTU
Sanden40	Sanden 40 gallon CO2 external heat pump
Sanden80	Sanden 80 gallon CO2 external heat pump

Choice	Specified type
GE2012	2012 era GeoSpring
GE2014	2014 50 gal GE run in the efficiency mode
GE2014StdMode	2014 50 gal GE run in standard mode
GE2014StdMode80	2014 80 gal GE run in standard mode
RheemHB50	newish Rheem (2014 model?)
RheemHBDR2250	50 gallon, 2250 W resistance Rheem HB Duct Ready
RheemHBDR4550	50 gallon, 4500 W resistance Rheem HB Duct Ready
RheemHBDR2265	65 gallon, 2250 W resistance Rheem HB Duct Ready
RheemHBDR4565	65 gallon, 4500 W resistance Rheem HB Duct Ready
RheemHBDR2280	80 gallon, 2250 W resistance Rheem HB Duct Ready
RheemHBDR4580	80 gallon, 4500 W resistance Rheem HB Duct Ready
Stiebel220E	Stiebel Eltron (2014 model?)
GenericTier1	Generic Tier 1
GenericTier2	Generic Tier 2
GenericTier3	Generic Tier 3
UEF2Generic	Experimental UEF=2
BasicIntegrated	Typical integrated HPWH
ResTank	Resistance heater (no compressor). Superceded by
	$\begin{tabular}{ll} wh Heat Src = RESITANCEX \\ \end{tabular}$
ResTankNoUA	Resistance heater (no compressor) with no tank losses.
	Superseded by whHeatSrc=RESISTANCEX.
AOSmithHPTU80DR	80 gallon AOSmith HPTU with fixed backup setpoint
	(experimental for demand response testing)
AOSmithSHPT50	50 gal AOSmith SHPT
AOSmithSHPT66	66 gal AOSmith SHPT
AOSmithSHPT80	80 gal AOSmith SHPT

Units	Legal Range	Default	Required	Variability
	Codes listed above	_	When whHeatSrc=ASHPX	constant

whASHPSrcZn=znName

Name of zone that serves as heat pump heat source used when whHeatSrc=ASHPX. Used for tank heat loss calculations and default for whASHPSrcZn. Heat exchanges are included in zone heat balance. whASHPSrcZn and whASHPSrcT cannot both be specified.

Units	Legal Range	Default	Required	Variability
	name of a ZONE	Same as whZone if whASHPSrcT not specified. If no zone is specified by input or default, heat extracted by ASHP has no effect.	No	$\operatorname{constant}$

whASHPSrcT = float

Heat pump source air temperature used when whHeatSrc=ASHPX. Heat removed from this source is added to the heated water but has no other effect. whASHPSrcZn and whASHPSrcT cannot both be specified.

Units	Legal Range	Default	Required	Variability
°F	≥ 0	wh ASHPZn air temperature if specified, else 70 $^{\rm o}{\rm F}$	No	hourly

${\bf whASHPResUse} = float$

Specifies activation temperature difference for resistance heating, used only when whHeatSrc=ASHPX and whASHPType=GENERIC. Refer to HPWH engineering documentation for model details.

Units	Legal Range	Default	Required	Variability
°C	≥ 0	7.22	N	constant

whResHtPwr = float

Specifies resistance upper element power, used only with whHeatSrc=RESISTANCEX.

Units	Legal Range	Default	Required	Variability
W	≥ 0	4500	N	constant

whResHtPwr2 = float

Specifies resistance lower element power, used only with whHeatSrc=RESISTANCEX.

Units	Legal Range	Default	Required	Variability
W	≥ 0	whResHtPwr	N	constant

whUAMult=float

Tank UA multiplier, used only with whHeatSrc=RESISTANCEX. Used to account for e.g. tank wrap insulation. Note that tank UA is derived from whEF and cannot be directly set.

Units	Legal Range	Default	Required	Variability
	> 0	1	N	constant

whInHtSupply=float whInHtLoopRet=float

Fractional tank height of inlets for supply water and DHWLOOP return, used only with HPWH types (whHeatSrc=RESISTANCEX or whHeatSrc=ASHPX). 0 indicates the bottom of the water heater tank and 1 specifies the top. Inlet height influences tank layer mixing and can impact heat pump COP and/or heating activation frequency.

$\overline{ ext{Units}}$	Legal Range	Default	Required *	*Variability**
_	$0 \le x \le 1$	HPWH default (0?)	N	constant

whHPAF = float

Heat pump adjustment factor, applied to whLDEF when modeling whType=SMALLSTORAGE and wh-HeatSrc=ASHP. This value should be derived according to RACM App B Table B-6. Deprecated: the

detailed HPWH model (whHeatSrc=ASHPX) is recommended for air source heat pumps.

Units	Legal Range	Default	Required	Variability
	> 0	1	When whType=SMALLSTORAGE and whHeatSrc=ASHP	constant

whEff=float

Water heating efficiency, used in modeling whType=LARGESTORAGE and whType=LARGEINSTANTANEOUS.

Units	Legal Range	Default	Required	Variability
	$0 < \text{whEff} \le 1$.82	No	constant

whSBL = float

Standby loss, used in modeling whType=LARGESTORAGE.

Units	Legal Range	Default	Required	Variability
Btuh	≥ 0	0	No	constant

whPilotPwr=float

Pilot light consumption, included in fuel energy use of DHWHEATERs with whHeatSrc=FUEL.

Units	Legal Range	Default	Required	Variability
Btuh	≥ 0	0	No	hourly

whParElec=float

Parasitic electricity power, included in electrical energy use of all DHWHEATERs.

Units	Legal Range	Default	Required	Variability
W	≥ 0	0	No	hourly

whElecMtr=mtrName

Name of METER object, if any, by which DHWHEATER electrical energy use is recorded (under end use DHW).

Units	Legal Range	Default	Required	Variability
	name of a METER	Parent DHWSYS wsElecMtr	No	constant

whxBUEndUse=choice

Specifies the whElecMtr end use, if any, to which extra backup energy is accumulated. In some water heater types, extra backup energy is modeled to maintain output temperature at wsTUse. By default, extra backup energy is included in end use dhwBU. whxBUEndUse allows specification of an alternative end use to which extra backup energy is accumulated.

Units	Legal Range	Default	Required	Variability
	$end\ use\ code$	(extra backup accums to dhwBU)	No	constant

whFuelMtr = mtrName

Name of METER object, if any, by which DHWHEATER fuel energy use is recorded (under end use DHW).

Units	Legal Range	Default	Required	Variability
	name of a METER	Parent DHWSYS wsFuelMtr	No	constant

endDHWHEATER

Optionally indicates the end of the DHWHEATER definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWHeater

4.26 DHWLOOPHEATER

DHWHEATERLOOP constructs an object representing a hot water heater dedicated to heating DHWLOOP return water (or several if identical).

Refer to DHWHEATER.

4.27 DHWHEATREC

DHWHEATREC constructs an object representing one or more heat recovery devices in a DHWSYS. Drain water heat recovered by the device increases parent DHWSYS wsInlet temperature and/or fixture cold water feed temperature. This reduces water heating energy consumption.

wrName

Optional name of device; give after the word "DHWHEATREC" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

wrMult=integer

Number of identical heat recovery devices of this type. Any value >1 is equivalent to repeated entry of the same DHWHEATREC.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wrHWEndUse = choice

Hot water end use to which this DHWHEATREC is applied: one of Shower, Bath, CWashr, DWashr, or Faucet. Selects DHWUSE draws for heat recovery calculations. Currently, only Shower is supported.

Units	Legal Range	Default	Required	Variability
_	Shower	Shower	No	constant

wrCountFXDrain = integer

Number of fixtures (of type wrHWEndUse) whose drain lines pass through this heat recovery device. wrCountFXDrain=0 causes this DHWHEATREC to have no effect (that is, equivalent to omitting the DHWHEATREC command).

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

wrCountFXCold = integer

Number of fixtures (of type wrHWEndUse) with cold water supply connected to the DHWHEATREC potable-side outlet and thus use tempered water to mix with hot water.

Units	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

wrFeedsWH=choice

Specifies whether the potable-side outlet of the DHWHEATREC is connected to the DHWHEATER(s) inlet.

Units	Legal Range	Default	Required	Variability
_	Yes, No	No	No	constant

wrType = choice

Specifies the type of heat recovery device: Vertical, Horizontal, or SetEF. Horizontal and Vertical derive effectiveness from wrCSARatedEF, flow rates, and water temperatures. As of Feb. 2019, the same correlation is used for both Horizontal and Vertical, so these choices have no effect on results. Choice SetEF uses wrCSARatedEF without modification as the effectiveness (note hourly variability).

Units	Legal Range	Default	Required	Variability
_	Vertical, Horizontal, SetEF	Vertical	No	constant

wrCSARatedEF = float

Specifies the heat recovery effectiveness, generally determined using CSA B55.2 rating conditions. This value is modified during simulation based on water flow rates and temperatures. If wrType=SetEF, wsCSARatedEF is used without modification.

Units	Legal Range	Default	Required	Variability
_	$0 \le x \le 1$	_	Yes	hourly

wrTDInDiff = float

Temperature drop between the fixture drain and DHWHEATREC drain-side inlet. The drain-side inlet temperature is thus DHWUSE wuTemp - wrTDInDiff.

Units	Legal Range	Default	Required	Variability
°F	≥ 0	4.6 °F	N	hourly

wrTDInWarmup=float

Drain-side inlet water temperature during warmup. During the warmup portion of a draw (if any), the drain-side inlet temperature will initially be lower than that based on DHWUSE wuTemp. wrTDInWarmup allows input of user estimates for this temperature. Note wrTDInWarmup is *not* adjusted by wrTDInDiff.

Units	Legal Range	Default	Required	Variability
°F	> 0	65 °F	N	hourly

endDHWHEATREC

Optionally indicates the end of the DHWHEATREC definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

4.28 DHWTANK

DHWTANK constructs an object representing one or more unfired water storage tanks in a DHWSYS. DHWTANK heat losses contribute to the water heating load.

wtName

Optional name of tank; give after the word "DHWTANK" if desired.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

wtMult=integer

Number of identical tanks of this type. Any value > 1 is equivalent to repeated entry of the same DHWTANK.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

Tank heat loss is calculated hourly (note that default heat loss is 0) -

$$qLoss = wtMult \cdot (wtUA \cdot (wtTTank - wtTEx) + wtXLoss)$$

wtUA = float

Tank heat loss coefficient.

Units	Legal Range	Default	Required	Variability
Btuh/°F	≥ 0	Derived from wtVol and wtInsulR	No	constant

wtVol = float

Specifies tank volume.

Units	Legal Range	Default	Required	Variability
gal	≥ 0	0	No	constant

wtInsulR = float

Specifies total tank insulation resistance. The input value should represent the total resistance from the water to the surroundings, including both built-in insulation and additional exterior wrap insulation.

Units	Legal Range	Default	Required	Variability
ft ² -°F/Btuh	≥ .01	0	No	constant

wtTEx = float

Tank surround temperature.

Units	Legal Range	Default	Required	Variability
°F	≥ 0	70	No	hourly

wtTTank = float

Tank average water temperature.

Units	Legal Range	Default	Required	Variability
°F	$>$ 32 $^{\rm o}{\rm F}$	Parent DHWSYSTEM wsTUse	No	hourly

wtXLoss = float

Additional tank heat loss. To duplicate CEC 2016 procedures, this value should be used to specify the fitting loss of 61.4 Btuh.

Units	Legal Range	Default	Required	Variability
Btuh	(any)	0	No	hourly

endDHWTank

Optionally indicates the end of the DHWTANK definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWTank

4.29 DHWPUMP

DHWPUMP constructs an object representing a domestic hot water circulation pump (or more than one if identical).

wpName

Optional name of pump; give after the word "DHWPUMP" if desired.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

${\bf wpMult} {=} integer$

Number of identical pumps of this type. Any value > 1 is equivalent to repeated entry of the same DHW-PUMP.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wpPwr=float

Pump power.

Units	Legal Range	Default	Required	Variability
$\overline{ m W}$	> 0	0	No	hourly

wpElecMtr=mtrName

Name of METER object, if any, to which DHWPUMP electrical energy use is recorded (under end use DHW).

Units	Legal Range	Default	Required	Variability
	$name\ of\ a\ METER$	Parent DHWSYS wsElecMtr	No	constant

endDHWPump

Optionally indicates the end of the DHWPUMP definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWPump

4.30 DHWLOOP

DHWLOOP constructs one or more objects representing a domestic hot water circulation loop. The actual pipe runs in the DHWLOOP are specified by any number of DHWLOOPSEGs (see below). Circulation pumps are specified by DHWLOOPPUMPs (also below).

wlName

Optional name of loop; give after the word "DHWLOOP" if desired.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

wlMult = integer

Number of identical loops of this type. Any value > 1 is equivalent to repeated entry of the same DHWLOOP (and all child objects).

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wlFlow = float

Loop flow rate (when operating).

Units	Legal Range	Default	Required	Variability
gpm	≥ 0	6	No	hourly

wlTIn1=float

Inlet temperature of first DHWLOOPSEG.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
°F	> 0	DHWSYS wsTUse	No	hourly

wlRunF=float

Fraction of hour that loop circulation operates.

Units	Legal Range	Default	Required	Variability
_	≥ 0	1	No	hourly

wlFUA = float

DHWLOOPSEG pipe heat loss adjustment factor. DHWLOOPSEG UA is derived (from wgSize, wgLength, wgInsulTh, wgInsulThk, and wgExH) and multiplied by wlFUA. Note: does not apply to child DHWLOOP-

BRANCHs (see wbFUA).

Units	Legal Range	Default	Required	Variability
_	> 0	1	No	constant

wlLossMakeupPwr=float

Specifies electrical power available to make up losses from DHWLOOPSEGs (loss from DHWLOOPBRANCHs is not included). Separate loss makeup is typically used in multi-unit HPWH systems to avoid inefficiencies associated with high condenser temperatures. Loss-makeup energy is calculated hourly and is the smaller of loop losses and wlLossMakeupPwr. The resulting electricity use (including the effect of wlLossMakeupEff) is accumulated to the METER specified by wlElecMtr (end use dhwMFL). No other effect, such as heat gain to surroundings, is modeled.

Units	Legal Range	Default	Required	Variability
W	≥ 0	0	No	hourly

wlLossMakeupEff = float

Specifies the efficiency of loss makeup heating if any. No effect when wlLossMakeupPwr is 0.

Units	Legal Range	Default	Required	Variability
_	> 0	1	No	hourly

wlElecMtr = mtrName

Name of METER object, if any, to which DHWLOOP electrical energy use is recorded (under end use dhwMFL).

Units	Legal Range	Default	Required	Variability
	name of a METER	Parent DHWSYS wsElecMtr	No	constant

endDHWLoop

Optionally indicates the end of the DHWLOOP definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

@DHWLoop

4.31 DHWLOOPPUMP

DHWLOOPPUMP constructs an object representing a pump serving part a DHWLOOP. The model is identical to DHWPUMP *except* that that the electricity use calculation reflects wlRunF of the parent DHWLOOP.

wlpName

Optional name of pump; give after the word "DHWLOOPPUMP" if desired.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

wlpMult = integer

Number of identical pumps of this type. Any value > 1 is equivalent to repeated entry of the same DHW-PUMP.

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

wlpPwr=float

Pump power.

Units	Legal Range	Default	Required	Variability
W	> 0	0	No	hourly

wlpLiqHeatF = float

Fraction of pump power that heats circulating liquid. The remainder is discarded.

Units	Legal Range *	*Default** *	*Required** *	*Variability**
	$0 \le x \le$	1	No	hourly

wlpElecMtr=mtrName

Name of METER object, if any, to which DHWLOOPPUMP electrical energy use is recorded (under end use dhwMFL).

Units	Legal Range	Default	Required	Variability
	name of a METER	$Parent\ DHWLOOP\ wl ElecMtr$	No	constant

endDHWLOOPPUMP

Optionally indicates the end of the **DHWPUMP** definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWLoopPump

4.32 DHWLOOPSEG

DHWLOOPSEG constructs one or more objects representing a segment of the preceding DHWLOOP. A DHWLOOP can have any number of DHWLOOPSEGs to represent the segments of the loop with possibly differing sizes, insulation, or surrounding conditions.

wgName

Optional name of segment; give after the word "DHWLOOPSEG" if desired.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

wgTy = choice

Specifies the type of segment. RETURN segments, if any, must follow SUPPLY segments.

SUPPLY	Indicates a supply segment (flow is sum of circulation and draw flow, child DHWLOOPBRANCHs
RETURN	permitted). Indicates a return segment (flow is only due to circulation, child DHWLOOPBRANCHs not allowed)

Units	Legal Range	Default	Required	Variability
_		_	Yes	constant

wgLength = float

Length of segment.

Units	Legal Range	Default	Required	Variability
ft	≥ 0	0	No	constant

wgSize = float

Nominal size of pipe. CSE assumes the pipe outside diameter = size + 0.125 in.

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
in	> 0	1	Yes	constant

wgInsulK = float

Pipe insulation conductivity

Units	Legal Range	Default	Required	Variability
Btuh-ft/ft ² -°F	> 0	0.02167	No	constant

wgInsulThk = float

Pipe insulation thickness

Units	Legal Range	Default	Required	Variability
in	≥ 0	1	No	constant

wgExH = float

Combined radiant/convective exterior surface conductance between insulation (or pipe if no insulation) and surround.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	> 0	1.5	No	hourly

wgExT = float

Surrounding equivalent temperature.

Units	Legal Range	Default	Required	Variability
°F	> 0	70	No	hourly

wgFNoDraw = float

Fraction of hour when no draw occurs.

Units	Legal Range	Default	Required	Variability
°F	> 0	70	No	hourly

endDHWLoopSeg

Optionally indicates the end of the DHWLOOPSEG definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWLoopSeg

4.33 DHWLOOPBRANCH

DHWLOOPBRANCH constructs one or more objects representing a branch pipe from the preceeding DHWLOOPSEG. A DHWLOOPSEG can have any number of DHWLOOPBRANCHs to represent pipe runs with differing sizes, insulation, or surrounding conditions.

wbName

Optional name of segment; give after the word "DHWLOOPBRANCH" if desired.

	63 characters	none	No	constant
Units	Legal Range	Default	Required	Variability
Units	Legal Range	Default	Required	Variability

wbMult=float

Specifies the number of identical DHWLOOPBRANCHs. Note may be non-integer.

Units	Legal Range	Default	Required	Variability
_	> 0	1	No	constant

${\bf wbLength} {=} {\it float}$

Length of branch.

Units	Legal Range	Default	Required	Variability
ft	≥ 0	0	No	constant

${\bf wbSize} {=} \textit{float}$

Nominal size of pipe. CSE assumes the pipe outside diameter = size + 0.125 in.

Units	Legal Range	Default	Required	Variability
in	> 0	_	Yes	constant

wbInsulK = float

Pipe insulation conductivity

Units	Legal Range	Default	Required	Variability
Btuh-ft/ft ² -°F	> 0	0.02167	No	constant

${\bf wbInsulThk} {=} \textit{float}$

Pipe insulation thickness

Units	Legal Range	Default	Required	Variability
in	≥ 0	1	No	constant

wbExH = float

Combined radiant/convective exterior surface conductance between insulation (or pipe if no insulation) and surround.

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -°F	> 0	1.5	No	hourly

wbFUA = float

Adjustment factor applied to branch UA. UA is derived (from wbSize, wbLength, wbInsulK, wbInsulThk, and wbExH) and then multiplied by wbFUA. Used to represent e.g. imperfect insulation. Note that parent DHWLOOP wlFUA does not apply to DHWLOOPBRANCH (only DHWLOOPSEG)

$\overline{ ext{Units}}$	Legal Range	Default	Required	Variability
	≥ 0	1	No	constant

wbExT = float

Surrounding equivalent temperature.

Units	Legal Range	Default	Required	Variability
°F	> 0	70	No	hourly

wbFlow = float

Branch flow rate assumed during draw.

Units	Legal Range	Default	Required	Variability
gpm	≥ 0	2	No	hourly

wbFWaste=float

Number of times during the hour when the branch volume is discarded.

Units	Legal Range	Default	Required	Variability
	≥ 0	0	No	hourly

endDHWLOOPBRANCH

Optionally indicates the end of the DHWLOOPBRANCH definition.

Units	Legal Range	Default	Required	Variability
		N/A	No	

Related Probes:

• @DHWLoopBranch

4.34 DHWSOLARSYS

Solar water heating system.

• DHWSOLARSYS

- DHWSOLARCOLLECTOR
- DHWSOLARTANK

May have any number of solar collectors, but only one tank.

May have no tank for direct system? What if system has multiple primary tanks?

swElecMtr=mtrName

Name of METER object, if any, to which DHWSOLARSYS electrical energy use is recorded (under end use ???).

Units	Legal Range	Default	Required	Variability
F	name of a METER	$not\ recorded$	No	constant

swEndUse

End use of pump energy; defaults to "DHW".

swParElec=float

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	0	No	hourly

$\mathbf{swFluidVolSpHt} \! = \! float$

Default specific heat for Ethylene Glycol.

Units	Legal Range	Default	Required	Variability
Btu/gal-°F		5.31	No	constant

$\mathbf{swTankHXEff} \!\!=\!\! \mathit{float}$

Tank heat exchanger effectiveness.

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 0.99$	0	No	hourly

swTankUA = float

Heat transfer coefficient for the tank multiplied by area.

Units	Legal Range	Default	Required	Variability
Btuh/°F			No	constant

swTankVol = float

Units	Legal Range	Default	Required	Variability
gal			No	constant

swTankInsulR = float

Total tank insulation resistance, built-in plus exterior wrap.

Units	Legal Range	Default	Required	Variability
ft ² -°F/Btuh			No	constant

swTankZn

Pointer to tank zone location, use sw_tankTEx if NULL

Units	Legal Range	Default	Required	Variability
			No	constant

swTankTEx = float

Surrounding temperature.

Units	Legal Range	Default	Required	Variability
°F			No	hourly

endDHWSOLARSYS

Optionally indicates the end of the DHWSOLARSYS definition.

Units	Legal Range	Default	Required	Variability
n/a	n/a	n/a	No	n/a

4.35 DHWSOLARCOLLECTOR

Solar Collector Array. May be multiple collectors on the same DHWSOLARSYS system. All inlets come from the DHWSOLARTANK.

Uses SRCC Ratings.

scArea = float

Collector area.

Units	Legal Range	Default	Required	Variability
ft^2	> 0	0	Yes	constant

scMult

Number of identical collectors, default 1

Units	Legal Range	Default	Required	Variability
	> 0	1	No	constant

scTilt = float

Array tilt.

Units	Legal Range	Default	Required	Variability
$\overline{\deg}$		0	Yes	constant

$\mathbf{scAzm} {=} \mathit{float}$

Array azimuth.

Units	Legal Range	Default	Required	Variability
$\overline{\deg}$		0	Yes	constant

$\mathbf{scFRUL} \!=\! \mathit{float}$

Fit slope

Units	Legal Range	Default	Required	Variability
Btuh/ft ² -o^F		-0.727	No	constant

scFRTA = float

Fit y-intercept

Units	Legal Range	Default	Required	Variability
\overline{none}	> 0	0.758	No	constant

$\mathbf{scPumpFlow} = \mathit{float}$

Units	Legal Range	Default	Required	Variability
gpm	$x \ge 0$	from $scArea, scMult$	No	constant

$\mathbf{scPumpPwr} = \mathit{float}$

Units	Legal Range	Default	Required	Variability
Btu/h	$x \ge 0$	$from \ \textit{scPumpflow}$	No	constant

${\tt scPumpOnDeltaT} {=} \textit{float}$

Temperature difference between the tank and collector outlet where pump turns on

Units	Legal Range	Default	Required	Variability
°F		10.0	No	constant

scPumpOffDeltaT = float

Temperature difference between the tank and collector outlet where pump turns off

Units	Legal Range	Default	Required	Variability
°F		5.0	No	constant

endDHWSOLARCOLLECTOR

Optionally indicates the end of the DHWSOLARCOLLECTOR definition.

Units	Legal Range	Default	Required	Variability
n/a	n/a	n/a	No	n/a

4.36 PVARRAY

PVARRAY describes a photovoltaic panel system. The algorithms are based on the PVWatts calculator.

pvName

Name of photovoltaic array. Give after the word PVARRAY.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

pvElecMtr = choice

Name of meter by which this PVARRAY's AC power out is recorded. Generated power is expressed as a negative value.

Units	Legal Range	Default	Required	Variability
	name of a METER	none	No	constant

$\mathbf{pvEndUse} \!=\! choice$

Meter end use to which the PVARRAY's generated energy should be accumulated.

Clg	Cooling
Htg	Heating (includes heat pump compressor)
HPHTG	Heat pump backup heat
DHW	Domestic (service) hot water
DHWBU	Domestic (service) hot water heating backup (HPWH resistance)
DHWMFL	Domestic (service) hot water heating multi-family loop pumping and loss makeup
FANC	Fans, AC and cooling ventilation
FANH	Fans, heating
FANV	Fans, IAQ venting

FAN	Fans, other purposes
AUX	HVAC auxiliaries such as pumps
PROC	Process
LIT	Lighting
RCP	Receptacles
EXT	Exterior lighting
REFR	Refrigeration
DISH	Dishwashing
DRY	Clothes drying
WASH	Clothes washing
COOK	Cooking
USER1	User-defined category 1
USER2	User-defined category 2
BT	Battery charge power
PV	Photovoltaic power generation

Units	Legal Range	Default	Required	Variability
	Codes listed above	PV	No	constant

${\tt pvDCSysSize} {=} \textit{float}$

The rated photovoltaic system DC capacity/size as indicated by the nameplate.

Units	Legal Range	Default	Required	Variability
kW	$x \ge 0$	none	Yes	constant

pvModuleType=choice

Type of module to model. The module type determines the refraction index and temperature coefficient used in the simulation. Alternatively, the "Custom" module type may be used in conjunction with user-defined input for pvCoverRefrInd and pvTempCoeff.

Module Type	${\bf pvCoverRefrInd}$	$\mathbf{pvTempCoeff}$
Standard	1.3	-0.00206
Premium	1.3	-0.00194
ThinFilm	1.3	-0.00178
Custom	User-defined	User-defined

Units	Legal Range	Default	Required	Variability
	Standard Premium ThinFilm Custom	Standard	No	constant

pvCoverRefrInd = float

The refraction index for the coating applied to the module cover. A value of 1.0 represents refraction through air. Coatings have higher refraction indexes that capture more solar at lower angles of incidence.

Units	Legal Range	Default	Required	Variability
	$x \ge 1.0$	1.3	No	constant

pvTempCoeff=float

The temperature coefficient how the efficiency of the module varies with the cell temperature. Values are typically negative.

Units	Legal Range	Default	Required	Variability
1/°F	no restrictions	-0.00206	No	constant

pvArrayType = choice

The type of array describes mounting and tracking options. Roof mounted arrays have a higher installed nominal operating cell temperature (INOCT) of 120 °F compared to the default of 113 °F. Array self-shading is not currently calculated for adjacent rows of modules within an array.

Units	Legal Range	Default	Required	Variability
	FixedOpenRack, FixedRoofMount, OneAxisTracking, TwoAxisTracking	FixedOpenRack	No	constant

pvTilt=float

The tilt of the photovoltaic array from horizontal. Values outside the range 0 to 360 are first normalized to that range. For one-axis tracking, defines the tilt of the rotation axis. Not used for two-axis tracking arrays. Should be omitted if pvVertices is given.

Units	Legal Range	Default	**Require d	Variabili ty
degrees	unrestricted	from pvVertices (if given) else 0	No	hourly

The following figures illustrate the use of both pvTilt and pvAzm for various configurations:

pvAzm = float

Photovoltaic array azimuth (0 = north, 90 = east, etc.). If a value outside the range $0^{\circ} \le x < 360^{\circ}$ is given, it is normalized to that range. For one-axis tracking, defines the azimuth of the rotation axis. Not used for two-axis tracking arrays. Should be omitted if pvVertices is given.

**Unit s	Legal Range	Default	Required	Variabilit y
degrees	unrestricted	from pv Vertices (if given) else 0	No	hourly

pvVertices=list of up to 36 floats

Vertices of an optional polygon representing the position and shape of the photovoltaic array. The polygon is used to calculate the shaded fraction using an advanced shading model. Only PVARRAYs and SHADEXs are

Figure 5: Fixed, south facing, tilted at $40^{\rm o}$

Figure 6: One-axis tracker, south facing, tilted at $20^{\rm o}$

Figure 7: One-axis tracker, horizontal aligned North/South (more common)

Figure 8: One-axis tracker, horizontal aligned East/West (less common)

considered in the advanced shading model – PVARRAYs can be shaded by SHADEXs or other PVARRAYs. If pvVertices is omitted, the PVARRAY is assumed to be unshaded at all times. Advanced shading must be enabled via TOP exShadeModel. Note that the polygon is used only for evaluating shading; array capacity is specified by pvDCSysSize (above).

The values that follow pvVertices are a series of X, Y, and Z values for the vertices of the polygon using a coordinate system defined from a viewpoint facing north. X and Y values convey east-west and north-south location respectively relative to an arbitrary origin (positive X value are to the east; positive Y values are to the north). Z values convey height relative to the building 0 level and positive values are upward.

The vertices are specified in counter-clockwise order when facing the receiving surface of the PVARRAY. The number of values provided must be a multiple of 3. The defined polygon must be planar and have no crossing edges. When pvMounting=Building, the effective position of the polygon is modified in response to building rotation specified by TOP bldgAzm.

For example, to specify a rectangular photovoltaic array that is 10×20 ft, tilted 45 degrees, and facing south

pvVertices = 0, 0, 15, 20, 0, 15, 20, 7.07, 22.07, 0, 7.07, 22.07

Units	Legal Range	Default	Required	Variability
ft	unrestricted	no polygon	9, 12, 15, 18, 21, 24, 27, 30, 33, or 36 values	constant

pvSIF=float

Shading Impact Factor (SIF) of the array used to represent the disproportionate impact on array output of partially shaded modules at the sub-array level. This impact is applied to the effective beam irradiance on the array:

$$I_{poa,beam,eff} = \max (I_{poa,beam} \cdot (1 - SIF \cdot f_{sh}), 0)$$

where f_{sh} is the fraction of the array that is shaded.

Default value is 1.2, which is representative of PV systems with sub-array microinverters or DC power optimizers. For systems without sub-array power electronics, values are closer to 2.0.

Units	Legal Range	Default	Required	Variability
_	$x \ge 1.0$	1.2	No	constant

pvMounting = choice

Specified mounting location of this PVARRAY. pvMounting=Site indicates the array position is not altered by building rotation via TOP bldgAzm, while PVARRAYs with pvMounting=Building are assumed to rotate with the building.

Units	Legal Range	Default	Required	Variability
	Building or Site	Building	No	constant

pvGrndRefl = float

Ground reflectance used for calculating reflected solar incidence on the array.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1.0$	0.2	No	hourly

pvDCtoACRatio = float

DC-to-AC ratio used to intentionally undersize the AC inverter. This is used to increase energy production in the beginning and end of the day despite the possibility of clipping peak sun hours.

Units	Legal Range	Default	Required	Variability
	x > 0.0	1.2	No	constant

pvInverterEff = float

AC inverter efficiency at rated DC power.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1.0$	0.96	No	constant

pvSysLosses = float

Fraction of total DC energy lost. The total loss from a system is aggregated from several possible causes as illustrated below:

Loss Type	Default Assumption
Soiling	0.02
Shading	$0 \ (handled \ explicitly)$
Snow	0
Mismatch	0 (shading mismatch handled explicitly [see pvSIF])
Wiring	0.02
Connections	0.005
Light-induced degradation	0.015
Nameplate rating	0.01
Age	0.05 (estimated $0.5%$ degradation over 20 years)
Availability	0.03
Total	0.14

Italic lines indicate differences from PVWatts assumptions.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1.0$	0.14	No	hourly

endPVARRAY

Optionally indicates the end of the PVARRAY definition. Alternatively, the end of the definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

@PVArray

4.37 **SHADEX**

SHADEX describes an object that shades other building surfaces using an advanced shading model. Advanced shading calculations are provided only for PVARRAYs. Advanced shading must be enabled via Top exShadeModel.

sxName

Name of photovoltaic array. Give after the word SHADEX.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

sxMounting=choice

Specifies the mounting location of the shade. sxMounting=Site indicates the SHADEX position is fixed and is not modified if the building is rotated. The position of SHADEXs with sxMounting=Building are modified to include the effect of building rotation specified via Top bldgAz

Units	Legal Range	Default	Required	Variability
	Building or Site	Site	No	constant

sxVertices=list of up to 36 floats

Vertices of a polygon representing the shape of the shading object.

The values that follow sxVertices are a series of X, Y, and Z values for the vertices of the polygon. The coordinate system is defined from a viewpoint facing north. X and Y values convey east-west and north-south location respectively relative to an arbitrary origin (positive X value are to the east; positive Y values are to the north). Z values convey height relative to the building 0 level and positive values are upward.

The vertices are specified in counter-clockwise order when facing the shading object from the south. The number of values provided must be a multiple of 3. The defined polygon must be planar and have no crossing edges. When sxType=Building, the effective position of the polygon reflects building rotation specified by TOP bldgAzm.

For example, to specify a rectangular shade "tree" that is 10×40 ft, facing south, and 100 ft to the south of the nominal building origin –

sxVertices = 5, -100, 0, 15, -100, 0, 15, -100, 40, 5, -100, 40

Units	Legal Range	Default	Required	Variability
ft	unrestricted	none	9, 12, 15, 18, 21, 24, 27, 30, 33 or 36 values	constant

endSHADEX

Optionally indicates the end of the SHADEX definition. Alternatively, the end of the definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @SHADEX

4.38 BATTERY

BATTERY describes input data for a model of an energy-storage system which is not tied to any specific energy storage technology. The battery model integrates the energy added and removed (accounting for efficiency losses). Note: although we use the term battery, the underlying model is flexible enough to model any energy storage system.

The modeler can set limits and constraints on capacities and flows and the associated efficiencies for this model.

btName

Name of the battery system. Given after the word BATTERY.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

btMeter = choice

Name of a meter by which the BATTERY's power input/output (i.e., charge/discharge) is recorded. Charges to the BATTERY system would be seen as a positive powerflow while discharges from the BATTERY system would be seen as a negative value.

Units	Legal Range	Default	Required	Variability
	meter name	none	No	constant

btEndUse = choice

Meter end use to which the BATTERY's charged/discharged energy should be accumulated. Note that the battery end use is seen from the standpoint of a "load" on the electric grid. That is, when the battery is being charged, the end use will show up as positive. When the battery is being discharged (i.e., when it is offsetting other loads), it is seen as negative.

Clg	Cooling
Htg	Heating (includes heat pump compressor)
HPHTG	Heat pump backup heat
DHW	Domestic (service) hot water
DHWBU	Domestic (service) hot water heating backup (HPWH resistance)
DHWMFL	Domestic (service) hot water heating multi-family loop pumping and loss makeup
FANC	Fans, AC and cooling ventilation
FANH	Fans, heating
FANV	Fans, IAQ venting
FAN	Fans, other purposes
AUX	HVAC auxiliaries such as pumps
PROC	Process

LIT	Lighting
RCP	Receptacles
EXT	Exterior lighting
REFR	Refrigeration
DISH	Dishwashing
DRY	Clothes drying
WASH	Clothes washing
COOK	Cooking
USER1	User-defined category 1
USER2	User-defined category 2
BT	Battery charge power
PV	Photovoltaic power generation

Units	Legal Range	Default	Required	Variability
	Codes listed above	BT	No	constant

btChgEff=float

The charging efficiency of storing electricity into the BATTERY system. A value of 1.0 means that no energy is lost and 100% of charge energy enters and is stored in the battery.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1$	0.975	No	hourly

btDschgEff=float

The discharge efficiency for when the BATTERY system is discharging power. A value of 1.0 means that no energy is lost and 100% of discharge energy leaves the system.

Units	Legal Range	Default	Required	Variability
	$0 < x \le 1$	0.975	No	hourly

btMaxCap = float

This is the maximum amount of energy that can be stored in the BATTERY system in kilowatt-hours. Once the BATTERY has reached its maximum capacity, no additional energy will be stored.

Units	Legal Range	Default	Required	Variability
KWhr	$x \ge 0$	16	No	constant

btInitSOE = float

The initial state of energy of the BATTERY system as a fraction of the total capacity. If btInitSOE is specified, the battery state-of-energy at the beginning of the actual simulation will be set to the amount specified, regardless of whether there was a warm-up period or not. If btInitSOE is NOT specified, it will default to 1.0 (i.e., 100%) at the beginning of the warmup period (if any).

Units	Legal Range	Default	Required	Variability
	$0 \le x \le 0$	1.0	No	constant

btInitCycles = int

The number of cycles on the battery at the beginning of the run.

Units	Legal Range	Default	Required	Variability
number of cycles	$x \ge 0$	0	No	runly

${\bf btMaxChgPwr} = float$

The maximum rate at which the BATTERY can be charged in kilowatts (i.e., energy flowing *into* the BATTERY).

Units	Legal Range	Default	Required	Variability
kW	$x \ge 0$	4	No	hourly

btMaxDschgPwr=float

The maximum rate at which the BATTERY can be discharged in kilowatts (i.e., energy flowing out of the BATTERY).

Units	Legal Range	Default	Required	Variability
kW	$x \ge 0$	4	No	hourly

btControlAlg=choice

Selects charge/discharge control algorithm. btChgReq (next) specifies the desired battery charge or discharge rate. btControlAlg allows selection of alternative algorithms for deriving btChgReq.

DEFAULT	btChgReq is used as input or defaulted (see below)
${\bf TDVPEAKSAV}$	btChgReq input (if any) is ignored. Instead, a California-specific algorithm is used
E	that saves battery charge until peak TDV (Time Dependant Valuation) hours of
	the day, shifting energy generated on site (e.g. PV) to supply feed the grid during
	critical periods. The algorithm requires availability of hourly TDV data, see
	Top.tdvFName.

Note btControlAlg has hourly variability, allowing dynamic algorithm selection. In California compliance applications, TDVPEAKSAVE is typically used only on days with high TDV peaks.

Units	Legal Range	Default	Required	Variability
	DEFAULT or TDVPEAKSAVE	DEFAULT	No	hourly

btChgReq = float

The power request to charge (or discharge if negative) the battery. If omitted, the default strategy is used (attempt to satisfy all loads and absorb all available excess power). btChgReq and the default strategy

4.39 REPORTFILE CSE User's Manual 4 INPUT DATA

requested power are literally *requests*: that is, more power will not be delivered than is available; more power will not be absorbed than capacity exits to store; and the battery's power limits will be respected.

btChgReq can be set by an expression to allow complex energy management/dispatch strategies.

Units	Legal Range	Default	Required	Variability
kW		btMeter net load	No	hourly

btUseUsrChg = choice

Former yes/no choice that currently has no effect. Deprecated, will be removed in a future version.

endBATTERY

Optionally indicates the end of the BATTERY definition. Alternatively, the end of the definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @battery

4.39 REPORTFILE

REPORTFILE allows optional specification of different or additional files to receive CSE reports.

By default, CSE generates several "reports" on each run showing the simulated HVAC energy use, the input statements specifying the run, any error or warning messages, etc. Different or additional reports can be specified using the REPORT object, described in Section 5.25, next.

All CSE reports are written to text files as plain ASCII text. The files may be printed (on most printers other than postscript printers) by copying them to your printer with the COPY command. Since many built-in reports are over 80 characters wide; you may want to set your printer for "compressed" characters or a small font first. You may wish to examine the report file with a text editor or LIST program before printing it. (?? Improve printing discussion)

By default, the reports are output to a file with the same name as the input file and extension .REP, in the same directory as the input file. By default, this file is formatted into pages, and overwrites any existing file of the same name without warning. CSE automatically generates a REPORTFILE object called "Primary" for this report file, as though the following input had been given:

```
REPORTFILE "Primary"
    rfFileName = <inputFile>.REP;
    // other members defaulted: rfFileStat=OVERWRITE; rfPageFmt=YES.
```

Using REPORTFILE, you can specify additional report files. REPORTs specified within a REPORTFILE object definition are output by default to that file; REPORTs specified elsewhere may be directed to a specific report file with the REPORT member rpReportFile. Any number of REPORTFILEs and REPORTs may be used in a run or session. Any number of REPORTs can be directed to each REPORTFILE.

Using ALTER (Section 4.5.1.2) with REPORTFILE, you can change the characteristics of the Primary report output file. For example:

```
ALTER REPORTFILE Primary

rfPageFmt = NO; // do not format into pages
```

rfFileStat = NEW; // error if file exists

rfName

Name of REPORTFILE object, given immediately after the word REPORTFILE. Note that this name, not the fileName of the report file, is used to refer to the REPORTFILE in REPORTs.

Units	Legal Range	Default	Required	Variability
	$63\ characters$		No	constant

rfFileName = path

path name of file to be written. If no path is specified, the file is written in the current directory. The default extension is .REP.

Units	Legal Range	Default	Required	Variability
	file name, path and extension optional		Yes	constant

rfFileStat = choice

Choice indicating what CSE should do if the file specified by rfFileNamealready exists:

OVERWRITE	Overwrite pre-existing file.
NEW	Issue error message if file exists at beginning of session. If there are several
	runs in session using same file, output from runs after the first will append.
APPEND	Append new output to present contents of existing file.

If the specified file does not exist, it is created and rfFileStat has no effect.

Units	Legal Range	Default	Required	Variability
	OVERWRITE, NEW, APPEND	OVERWRITE	No	constant

rfPageFmt = Choice

Choice controlling page formatting. Page formatting consists of dividing the output into pages (with form feed characters), starting a new page before each report too long to fit on the current page, and putting headers and footers on each page. Page formatting makes attractive printed output but is a distraction when examining the output on the screen and may inappropriate if you are going to further process the output with another program.

Yes	Do page formatting in this report file.
No	Suppress page formatting. Output is continuous, uninterrupted by page headers and
	footers or large blank spaces.

Units	Legal Range	Default	Required	Variability
	Yes, No	Yes	No	constant

Unless page formatting is suppressed, the page formats for all report files are controlled by the TOP members

repHdrL, repHdrR, repLPP, repTopM, repBotM, and repCPL, described in Section 5.1.

Each page header shows the repHdrL and repHdrR text, if given.

Each page footer shows the input file name, run serial number within session (see runSerial in Section 5.1), user-input runTitle (see Section 5.1), date and time of run, and page number in file.

Vertical page layout is controlled by repLPP, repTopM, and repBotM (Section 5.1). The width of each header and footer is controlled by repCPL. Since many built-in reports are now over 80 columns wide, you may want to use repCPL=120 or repCPL=132 to make the headers and footers match the text better.

In addition to report file *page* headers and footers, individual REPORTs have *REPORT* headers and footers related to the report content. These are described under REPORT, Section 5.25.

endReportFile

Optionally indicates the end of the report file definition. Alternatively, the end of the report file definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @reportFile

4.40 REPORT

REPORT generates a report object to specify output of specific textual information about the results of the run, the input data, the error messages, etc. The various report types available are enumerated in the description of rpType in this section, and may be described at greater length in Section 6.

REPORTs are output by CSE to files, via the REPORTFILE object (previous section). After CSE has completed, you may print the report file(s), examine them with a text editor or by TYPEing, process them with another program, etc., as desired.

REPORTs that you do not direct to a different file are written to the automatically-supplied "Primary" report file, whose file name is (by default) the input file name with the extension changed to .REP.

Each report consists of a report header, one or more data rows, and a report footer. The header gives the report type (as specified with rpType, described below), the frequency (as specified with rpFreq), the month or date where appropriate, and includes headings for the report's columns where appropriate.

Usually a report has one data row for each interval being reported. For example, a daily report has a row for each day, with the day of the month shown in the first column.

The report footer usually contains a line showing totals for the rows in the report.

The header-data-footer sequence is repeated as necessary. For example, a daily report extending over more than one month has a header-data-footer sequence for each month. The header shows the month name; the data rows show the day of the month; the footer contains totals for the month.

In addition to the headers and footers of individual reports, the report file has (by default) page headers and footers, described in the preceding section.

Default Reports: CSE generates the following reports by default for each run, in the order shown. They are output by default to the "Primary" report file. They may be ALTERed or DELETEd as desired, using the object names shown.

rpName	rpType	Additional members	
Err	ERR		
eb	ZEB	rpFreq=MONTH;	
		rpZone=SUM;	
Log	LOG		
Log Inp	INP		

Any reports specified by the user and not assigned to another file appear in the Primary report file between the default reports "eb" and "Log", in the order in which the REPORT objects are given in the input file.

Because of the many types of reports supported, the members required for each REPORT depend on the report type and frequency in a complex manner. When in doubt, testing is helpful: try your proposed REPORT specification; if it is incomplete or overspecified, CSE will issue specific error messages telling you what additional members are required or what inappropriate members have been given and why.

rpName

Name of report. Give after the word REPORT.

Units	Legal Range	Default	Required	Variability
	$63\ characters$	none	No	constant

rpReportfile = rfname

Name of report file to which current report will be written. If omitted, if REPORT is within a REPORTFILE object, report will be written to that report file, or else to REPORTFILE "Primary", which (as described in previous section) is automatically supplied and by default uses the file name of the input file with the extension .REP.

Units	Legal Range Default		Required	Variability
	name of a $REPORTFILE$	current REPORTFILE, if any, else "Primary"	No	constant

rpType=choice

Choice indicating report type. Report types may be described at greater length, with examples, in Section 6.

ERR	Error and warning messages. If there are any such messages, they are also displayed on the screen <i>AND</i> written to a file with the same name as the input file and extension .ERR. Furthermore, * *many error messages are repeated in the INP report.
LOG	Run "log". As of July 1992, contains only CSE version number; should be enhanced or
LOG	deleted.??
INP	Input echo: shows the portion of the input file used to specify this run. Does not repeat descriptions of objects left from prior runs in the same session when CLEAR is not used.
	Error and warning messages relating to specific lines of the input are repeated after or near the line to which they relate, prefixed with "?". Lines not used due to a preprocessor #if command (Section 4.4.4) with a false expression are prefixed with a
	"0" in the leftmost column; all preprocessor command lines are prefixed with a "#" in
	that column.
SUM	Run summary. As of July 1992, NOT IMPLEMENTED: generates no output and no error message. Should be defined and implemented, or else deleted??.

ZDD	Zone data dump. Detailed dump of internal simulation values, useful for verifying that
	your input is as desired. Should be made less cryptic (July 1992)??. Requires rpZone.
ZST	Zone statistics. Requires $rpZone$.
ZEB	Zone energy balance. Requires rpZone.
MTR	Meter report. Requires rpMeter.
DHWMTR	DHW meter report. Requires rpDHWMeter
UDT	User-defined table. Data items are specified with REPORTCOL commands (next
	section). Allows creating almost any desired report by using CSE expressions to
	specify numeric or string values to tabulate; "Probes" may be used in the expressions
	to access CSE internal data.

Units	Legal Range	Default	Required	Variability
see above			Yes	constant

The next three members specify how frequently values are reported and the start and end dates for the REPORT. They are not allowed with rpTypes ERR, LOG, INP, SUM, and ZDD, which involve no time-varying data.

rpFreq=choice

Report Frequency: specifies interval for generating rows of report data:

YEAR	at run completion
MONTH	at end of each month (and at run completion if mid-month)
DAY	at end of each day
HOUR	at end of each hour
HOURANDSUB	at end of each subhour AND at end of hour
SUBHOUR	at end of each subhour

rpFreq values of HOURANDSUB and SUBHOUR are not supported in some combinations with data selection of ALL or SUM.

We recommend using HOURly and more frequent reports sparingly, to report on only a few typical or extreme days, or to explore a problem once it is known what day(s) it occurs on. Specifying such reports for a full-year run will generate a huge amount of output and cause extremely slow CSE execution.

Units	Legal Range	Default	Required	Variability
	$choices\ above$		$\operatorname{per}\operatorname{rpType}$	constant

rpDayBeg = date

Initial day of period to be reported. Reports for which rpFreq = YEAR do not allow specification of rpDayBeg and rpDayEnd; for MONTH reports, these members default to include all months in the run; for DAY and shorter-interval reports, rpDayBeg is required and rpDayEnd defaults to rpDayBeg.

Units	Legal Range	Default	Required	Variability
	date	first day of simulation if $rpFreq = MONTH$	Required for rpTypes ZEB, ZST, MTR, AH, and UDT if rpFreq is DAY, HOUR, HOURANDSUB, or SUBHOUR	constant

rpDayEnd = date

Final day of period to be reported, except for YEAR reports.

Units	Legal Range	nge Default		Variability
	date	last day of simulation if $rpFreq = MONTH$, else $rpDayBeg$	No	constant

rpZone = znName

Name of **ZONE** for which a ZEB, ZST, or ZDD report is being requested. For rpType ZEB or ZST, you may use rpZone=SUM to obtain a report showing only the sum of the data for all zones, or rpZone=ALL to obtain a report showing, for each time interval, a row of data for each zone plus a sum-of-zones row.

Units	Legal Range	Default	Required	Variability
	name of a $\it ZONE, ALL, SUM$		Required for $rpTypes$ ZDD, ZEB, and ZST.	constant

rpMeter = mtrName

Specifies meter(s) to be reported, for rpType=MTR.

Units	Legal Range	Default	Required	Variability
	name of a $METER$, ALL, SUM		Required for $rpType=MTR$	constant

rpDHWMeter = dhwMtrName

Specifies DHW meter(s) to be reported, for rpType=DHWMTR.

Units	Legal Range	Default	Required	Variability
	name of a $DHWMETER$, ALL, SUM		Required for $rpType=DHWMTR$	constant

rpBtuSf=float

Scale factor to be used when reporting energy values. Internally, all energy values are represented in Btu. This member allows scaling to more convenient units for output. rpBtuSf is not shown in the output, so if you change it, be sure the readers of the report know the energy units being used. rpBtuSf is not applied in UDT reports, but column values can be scaled as needed with expressions.

Units	Legal Range	Default	Required	Variability
	any multiple of ten	1,000,000: energy reported in MBtu.	No	constant

rpCond = expression

Conditional reporting flag. If given, report rows are printed only when value of expression is non-0. Permits selective reporting according to any condition that can be expressed as a CSE expression. Such conditional reporting can be used to shorten output and make it easy to find data of interest when you are only interested in the information under exceptional conditions, such as excessive zone temperature. Allowed with rpTypes ZEB, ZST, MTR, AH, and UDT.

Units	Legal Range	Default	Required	Variability
	any numeric expression	1 (reporting enabled)	No	subhour /end of interval

rpCPL=int

Characters per line for a User-Defined report. If widths specified in REPORTCOLs add up to more than this, a message occurs; if they total substantially less, additional whitespace is inserted between columns to make the report more readable. If rpCpl = -1, the report width determined based on required space with a single between each column. Not allowed if rpType is not UDT.

Units	Legal Range	Default	Required	Variability
	x = -1 or x > 78	top level	repCPL No	constant

rpTitle=string

Title for use in report header of User-Defined report. Disallowed if rpType is not UDT.

Units	Legal Range	Default	Required	Variability
		"User-defined Report"	No	constant

rpHeader = choice

Use NO to suppress the report header which gives the report type, zone, meter, or air handler being reported, time interval, column headings, etc. One reason to do this might be if you are putting only a single report in a report file and intend to later embed the report in a document or process it with some other program (but for the latter, see also EXPORT, below).

Use with caution, as the header contains much of the identification of the data. For example, in an hourly report, only the hour of the day is shown in each data row; the day and month are shown in the header, which is repeated for each 24 data rows.

See REPORTFILE member rfPageFmt, above, to control report FILE page headers and footers, as opposed to REPORT headers and footers.

Units	Legal Range	Default	Required	Variability
	YES, NO	YES	No	constant

rpFooter=choice

Use NO to suppress the report footers. The report footer is usually a row which sums hourly data for the day, daily data for the month, or monthly data for the year. For a report with rpZone, rpMeter, or rpAh = ALL, the footer row shows sums for all zones, meters, or air handlers. Sometimes the footer is merely a blank line.

Units	Legal Range	Default	Required	Variability
	YES, NO	YES	No	constant

endReport

Optionally indicates the end of the report definition. Alternatively, the end of the report definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @report

4.41 REPORTCOL

Each REPORTCOL defines a single column of a User Defined Table (UDT) report. REPORTCOLs are not used with report types other than UDT.

Use as many REPORTCOLs as there are values to be shown in each row of the user-defined report. The values will appear in columns, ordered from left to right in the order defined. Be sure to include any necessary values to identify the row, such as the day of month, hour of day, etc. CSE supplies NO columns automatically.

colName

Name of REPORTCOL.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

${\tt colReport} {=} rpName$

Name of report to which current report column belongs. If REPORTCOL is given within a REPORT object, then *colReport* defaults to that report.

Units	Legal Range	Default	Required	Variability
	name of a $REPORT$	current report, if any	Unless in a $REPORT$	constant

colVal = expression

Value to show in this column of report.

Units	Legal Range	Default	Required	Variability
	any numeric or string expression		Yes	subhour /end interval

colHead=string

Text used for column head.

Units	Legal Range	Default	Required	Variability
		colName or blank	No	constant

colGap = int

Space between (to left of) column, in character positions. Allows you to space columns unequally, to emphasize relations among columns or to improve readability. If the total of the colGaps and colWids in the report's REPORTCOLs is substantially less than the REPORT's rpCPL (characters per line, see REPORT), CSE will insert additional spaces between columns. To suppress these spaces, use a smaller rpCPL or use rpCPL = -1.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	1	No	constant

colWid = int

Column width.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	10	No	constant

colDec = int

Number of digits after decimal point.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	flexible format	No	constant

colJust = choice

Specifies positioning of data within column:

Left	Left justified
Right	Right justified

endReportCol

Optionally indicates the end of the report column definition. Alternatively, the end of the report column definition can be indicated by END or by beginning another REPORTCOL or other object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

@reportCol

4.42 EXPORTFILE

EXPORTFILE allows optional specification of different or additional files to receive CSE EXPORTS.

EXPORTs contain the same information as reports, but formatted for reading by other programs rather than by people. By default, CSE generates no exports. Exports are specified via the EXPORT object, described in Section 5.28 (next). As for REPORTs, CSE automatically supplies a primary export file; it has the same name and path as the input file, and extension .csv.

Input for EXPORTFILEs and EXPORTs is similar to that for REPORTFILEs and REPORTs, except that there is no page formatting. Refer to their preceding descriptions (Sections 5.24 and 5.25) for more additional discussion.

xfName

Name of EXPORTFILE object.

Units	Legal Range	Default	Required	Variability
	$63\ characters$		No	constant

xfFileName=string

path name of file to be written. If no path is specified, the file is written in the current directory. If no extension is specified, .csv is used.

Units	Legal Range	Default	Required	Variability
	file name, path and extension optional		Yes	constant

xfFileStat = choice

What CSE should do if file xfFileName already exists:

OVERWRITE	Overwrite pre-existing file.
NEW	Issue error message if file exists.
APPEND	Append new output to present contents of existing file.

If the specified file does not exist, it is created and xfFileStat has no effect.

Units	Legal Range	Default	Required	Variability
	OVERWRITE, NEW, APPEND	OVERWRITE	No	constant

endExportFile

Optionally indicates the end of the export file definition. Alternatively, the end of the Export file definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @exportFile

4.43 **EXPORT**

Exports contain the same information as CSE reports, but in a "comma-quote" format intended for reading into a spreadsheet or other program for further processing, plotting, special print formatting, etc.

No exports are generated by default; each desired export must be specified with an EXPORT object.

Each row of an export contains several values, separated by commas, with quotes around string values. The row is terminated with a carriage return/line feed character pair. The first fields of the row identify the data. Multiple fields are used as necessary to identify the data. For example, the rows of an hourly ZEB export begin with the month, day of month, and hour of day. In contrast, reports, being subject to a width limitation, use only a single column of each row to identify the data; additional identification is put in the header. For example, an hourly ZEB Report shows the hour in a column and the day and month in the header; the header is repeated at the start of each day. The header of an export is never repeated.

Depending on your application, if you specify multiple exports, you may need to place each in a separate file. Generate these files with EXPORTFILE, preceding section. You may also need to suppress the export header and/or footer, with exHeader and/or exFooter, described in this section.

Input for EXPORTs is similar to input for REPORTs; refer to the REPORT description in Section 5.25 for further discussion of the members shown here.

exName

Name of export. Give after the word EXPORT.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

exExportfile=fname

Name of export file to which current export will be written. If omitted, if EXPORT is within an EXPORT-FILE object, report will be written to that export file, or else to the automatically-supplied EXPORTFILE "Primary", which by default uses the name of the input file with the extension .csv.

Units	Legal Range	Default	Required	Variability
	name of an <i>EXPORTFILE</i>	current EXPORTFILE, if any, else "Primary"	No	constant

exType=choice

Choice indicating export type. See descriptions in Section 5.22, REPORT. While not actually disallowed, use of exType = ERR, LOG, INP, or ZDD is unexpected.

Units	Legal Range	Default	Required	Variability
	ZEB, ZST, MTR, DHWMTR, AH, UDT, or SUM		Yes	constant

exFreq=choice

Export Frequency: specifies interval for generating rows of export data:

Units	Legal Range	Default	Required	Variability
	YEAR, MONTH, DAY, HOUR, HOURANDSUB, SUBHOUR		Yes	constant

exDayBeg = date

Initial day of export. Exports for which exFreq = YEAR do not allow specification of exDayBeg and exDayEnd; for MONTH exports, these members are optional and default to include the entire run; for DAY and shorter-interval exports, exDayBeg is required and exDayEnd defaults to exDayBeg.

Units	Legal Range	Default	Required	Variability
	date	first day of simulation if $exFreq = MONTH$	Required for exTypes ZEB, ZST, MTR, AH, and UDT if exFreq is DAY, HOUR, HOURANDSUB, or SUBHOUR	constant

exDayEnd = date

Final day of export period, except for YEAR exports.

Units	Legal Range	Default	Required	Variability
	date	last day of simulation if $exFreq$ = MONTH, else $exDayBeg$	No	constant

exZone=znName

Name of ZONE for which a ZEB, ZST, or ZDD export is being requested; ALL and SUM are also allowed except with exType = ZST.

Units	Legal Range	Default	Required	Variability
	name of a $ZONE$, ALL, SUM		Required for $exTypes$ ZDD, ZEB, and ZST.	constant

exMeter = mtrName

Specifies meter(s) whose data is to be exported, for exType=MTR.

Units	Legal Range	Default	Required	Variability
name of a *M	ETER*, ALL, SUM	Required for	exType=MTR constant	

exDHWMeter = dhwMtrName

Specifies DHW meter(s) whose data is to be exported, for exType=DHWMTR.

Units	Legal Range	Default	Required **V	ariability**
	name of a $\it DHWMETER,$ ALL, SUM		Required for $exType=DHWMTR$	constant

exAh=ahName

Specifies air handler(s) to be exported, for exType=AH.

Units	Legal Range	Default	Required	Variability
	name of an $\emph{AIRHANDLER},$ ALL, SUM		Required for exType=AH	constant

exBtuSf=float

Scale factor used for exported energy values.

Units	Legal Range	Default	Required	Variability
	any multiple of ten	1,000,000: energy exported in MBtu.	No	constant

exCond = expression

Conditional exporting flag. If given, export rows are generated only when value of expression is non-0. Allowed with exTypes ZEB, ZST, MTR, AH, and UDT.

Units	Legal Range	Default	Required	Variability
	any numeric expression	1 (exporting enabled)	No	subhour /end of interval

exTitle=string

Title for use in export header of User-Defined export. Disallowed if exType is not UDT.

Units	Legal Range	Default	Required	Variability
		"User-defined Export"	No	constant

exHeader = choice

Use NO to suppress the export header which gives the export type, zone, meter, or air handler being exported, time interval, column headings, etc. You might do this if the export is to be subsequently imported to a program that is confused by the header information. Alternatively, one may use COLUMNSONLY to print only the column headings. This can be useful when plotting CSV data in a spreadsheet tool or DView.

The choices YESIFNEW and COLUMNSONLYIFNEW cause header generation when the associated EX-PORTFILE is being created but suppress headers when appending to an existing file. This is useful for accumulating results from a set of runs where typically column headings are desired only once.

If not suppressed, the export header shows, in four lines:

run Title and run Serial (see Section 5.1); the run date and time the export type ("Energy Balance", "Statistics", etc., or exTitle if given) and frequency ("year", "day", etc.) a list of field names in the order they will be shown in the data rows ("Mon", "Day", "Tair", etc.)

The *specific* month, day, etc. is NOT shown in the export header (as it is shown in the report header), because it is shown in each export row.

The field names may be used by a program reading the export to identify the data in the rows which follow; if the program does this, it will not require modification when fields are added to or rearranged in the export in a future version of CSE.

Units	Legal Range	Default	Required	Variability
	YES, YESIFNEW, NO, COLUMNSONLY, COLUMNSONLYIFN	YES NEW	No	constant

exFooter = choice

Use NO to suppress the blank line otherwise output as an export "footer". (Exports do not receive the total lines that most reports receive as footers.)

Units	Legal Range	Default	Required	Variability
	YES, NO	YES	No	constant

endExport

Optionally indicates the end of the export definition. Alternatively, the end of the export definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

• @export

4.44 EXPORTCOL

Each EXPORTCOL defines a single datum of a User Defined Table (UDT) export; EXPORTCOLs are not used with other export types.

Use as many EXPORTCOLs as there are values to be shown in each row of the user-defined export. The values will appear in the order defined in each data row output. Be sure to include values needed to identify the data, such as the month, day, and hour, as appropriate – these are NOT automatically supplied in user-defined exports.

EXPORTCOL members are similar to the corresponding REPORTCOL members. See Section 5.265.1.5 for further discussion.

colName

Name of EXPORTCOL.

Units	Legal Range	Default	Required	Variability
	63 characters	none	No	constant

colExport = exName

Name of export to which this column belongs. If the EXPORTCOL is given within an EXPORT object, then colExport defaults to that export.

Units	Legal Range	Default	Required	Variability
	name of an $EXPORT$	current export, if any	Unless in an $EXPORT$	constant

colVal = expression

Value to show in this position in each row of export.

Units	Legal Range	Default	Required	Variability
•	any numeric or string expression		Yes	subhour /end interval

colHead = string

Text used for field name in export header.

Units	Legal Range	Default	Required	Variability
		colName or blank	No	constant

colWid = int

Maximum width. Leading and trailing spaces and non-significant zeroes are removed from export data to save file space. Specifying a *colWid* less than the default may reduce the maximum number of significant digits output.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	13	No	constant

colDec = int

Number of digits after decimal point.

Units	Legal Range	Default	Required	Variability
	$x \ge 0$	$flexible\ format$	No	constant

${\bf colJust} {=} {\it choice}$

Specifies positioning of data within column:

Left	Left justified
Right	Right justified

${\bf endExportCol}$

Optionally indicates the end of the EXPORTCOL. Alternatively, the end of the definition can be indicated by END or by beginning another object.

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

4.45 IMPORTFILE CSE User's Manual 4 INPUT DATA

Related Probes:

• @exportCol

4.45 IMPORTFILE

IMPORTFILE allows specification of a file from which external data can be accessed using the import() and importStr() functions. This allows external values to be referenced in expressions. Any number of IMPORTFILEs can be defined and any number of import()/importStr() references can be made to a give IMPORTFILE.

Import files are text files containing an optional header and comma-separated data fields. With the header present, the structure of an import file matches that of an EXPORT file. This makes it convenient to import unmodified files EXPORTed from prior runs. The file structure is as follows (noting that the header in lines 1-4 should not be present when imHeader=NO) –

Line	Contents	Notes
1	$runTitle,\ runNumber$	read but not checked
2	timestamp	in quotes, read but not checked
3	title,freq	should match imTitle and imFreq (see below)
4	$colName 1, colName 2, \dots$	comma separated column names optionally in quotes
5	$val1, val2, \dots$	comma separated values (string values optionally in quotes)

Example import file imp1.csv

```
"Test run",001
    "Fri 04-Nov-16
                   10:54:37 am"
    "Daily Data", "Day"
   Mon, Day, Tdb, Twb
   1,1,62.2263,53.2278
   1,2,61.3115,52.8527
   1,3,60.4496,52.4993
    1,4,60.2499,52.4174
    1,5,60.9919,52.7216
   1,6,61.295,52.8459
   1,7,62.3178,53.2654
    1,8,62.8282,53.4747
    (... continues for 365 data lines ...)
Example IMPORTFILE use (reading from imp1.csv)
    // ... various input statements ...
   IMPORTFILE Example imFileName="imp1.csv" imFreq=Day imTitle="Daily Data"
   // Compute internal gain based on temperature read from import file.
    // result is 3000 W per degree temperature is above 60.
    // Note gnPower can have hourly variability, but here varies daily.
   GAIN gnPower = 3000 * max( 0, import(Example, "Tdb") - 60) / 3.412
    . . .
```

Notes

- As usual, file order is not important IMPORTFILEs can be referenced before they are defined.
- Columns are referenced by 1-based index or column names (assuming file header is present). In the example above, "Tdb" could be replaced by 3.

- Column names should be case-insensitive unique. CSE issues a warning for each non-unique name found. Reference to a non-unique name in import()/importStr() is treated as an error (no run).
- Heading or data string values generally do not need to be quoted except for values that include comma(s).

imName

Name of IMPORTFILE object (for reference from Import()).

Units	Legal Range	Default	Required	Variability
	63 characters		No	constant

imFileName = string

Gives path name of file to be read. If directory is specified, CSE first looks for the file the current directory and searches include paths specified by the -I command line parameter (if any).

Units	Legal Range	Default	Required	Variability
	file name, path optional		Yes	constant

imTitle=string

Title expected to be found on line 3 of the import file. A warning is issued if a non-blank imTitle does not match the import file title.

Units	Legal Range	Default	Required	Variability
	Text string	(blank)	No	constant

imFreq=choice

Specifies the interval at which CSE reads from the import file. Data is read at the beginning of the indicated interval and buffered in memory for access in expressions via import() or importStr().

Units	Legal Range	Default	Required	Variability
	YEAR, MONTH, DAY, or HOUR		Yes	constant

imHeader = choice

Indicates whether the import file include a 4 line header, as described above. If NO, the import file should contain only comma-separated data rows and data items can be referenced only by 1-based column number.

Units	Legal Range	Default	Required	Variability
	YES NO	YES	No	constant

endImportFile

Optionally indicates the end of the import file definition. Alternatively, the end of the import file definition can be indicated by END or by beginning another object.

5.2 Time CSE User's Manual 5 OUTPUT REPORTS

Units	Legal Range	Default	Required	Variability
		N/A	No	constant

Related Probes:

- @importFile
- @impFileFldNames

5 Output Reports

CSE report data is accumulated during simulation and written to the report file at the end of the run. Some reports are generated by default and cannot be turned off. There are a set of predefined reports which may be requested in the input. The user may also define custom reports which include many CSE internal variables. Reports may accumulate data on an a variety of frequencies including subhourly, hourly, daily, monthly, and annual (run) intervals.

5.1 Units

The default units for CSE reports are:

Energy	mBtu, millions of Btu (to convert to kWh divide by 292)
Temperature	degrees Farenheit
Air Flow	cfm (cubic feet per minute)

5.2 Time

Hourly reports show hour 1 through 24 where hour 1 includes the time period from midnight to 1 AM. By default, CSE specifies that January first is a Thursday and the simulation occurs on a non-leap year. Daylight savings is in effect from the second Sunday of March on which CSE skips hour 3 until the first Sunday of November when CSE simulates 25 hours. These calendar defaults can be modified as required.

5.3 METER Reports

A Meter Report displays the energy use of a METER object, a user-defined "device" that records energy consumption of equipment as simulated by CSE. CSE allows the user to define as many meters as desired and to assign any energy using device to any meter.

Meters account for energy use in pre-defined categories, called end uses, that are documented with METER.

5.4 Energy Balance Report

The Energy Balance Report displays the temperature and sensible and latent heat flows into and out of the air of a single zone. Sign conventions assume that a positive flow increases the air temperature. Heat flow from a warm mass element such as a concrete wall into the zone air is defined as a positive flow, heat flow from air into mass is negative. Solar gain into the zone is defined as a positive heat flow. Solar gain that is incident on and absorbed directly into a mass element is shown as both a positive in the SOLAR column (gain to the zone) and a negative in the MASS column (lost from the zone to the mass).

In a real building zone energy and moisture flows must balance due to the laws of physics. CSE uses approximate solutions for the energy and moisture balances and displays the net balance which is a measure of internal calculation error.

The following items are displayed (using the abbreviations shown in the report headings):

Tair	Air temperature in the zone (since CSE uses combined films this is technically
	the effective temperature and includes radiant effects).
WBair	Wet Bulb temperature in the zone.
Cond	Heat flow through light weight surfaces from or to the outdoors.
InfS	Sensible infiltration heat flow from outdoors.
Slr	Solar gain through glazing (net) and solar gains absorbed by light surfaces and
	transmitted into the zone air.
IgnS	Sensible internal gains from lights, equipment, people, etc.
Mass	Net heat flow to (negative) and from (positive) the mass elements of the zone.
Izone	Net heat flows to other zones in the building.
MechS	Net heat flows from heating, cooling and ventilation.
BALS	The balance (error) calculated by summing the sensible gains and losses.
InfL	Latent infiltration heat flow.
IgnL	Latent internal gains.
AirL	Latent heat absorbed (negative) or released (positive) by changes in the room air
	moisture content.
MechL	Latent heat added or removed by cooling or ventilation.
BalL	The balance (error) calculated by summing the sensible gains and losses.

5.5 Air Handler Load Report

The Air Handler Load Report displays conditions and loads at the peak load hours for the air handler for a single zone. The following items are displayed:

PkVf	Peak flow (cfm) at supply fan
VfDs	Supply fan design flow (same as peak for E10 systems)
PkQH	Peak heat output from heating coil.
Hcapt	Rated capacity of heat coil

The rest are about the cooling coil. Most of the columns are values at the time of peak part load ratio (plr). Note that, for example, the peak sensible load is the sensible load at the time of peak part load ratio, even if there was a higher sensible load at another time when the part load ratio was smaller.

PkMo	Month of cooling coil peak plr, 1-12
Dy	Day of month 1-31 of peak
${ m Hr}$	Hour of day 1-24 of cooling coil peak plr.
Tout	Outdoor drybulb temperature at time of cooling coil peak plr.
Wbou	Outdoor wetbulb similarly
Ten	Cooling coil entering air temperature at time of peak plr.
Wben	Entering wetbulb similarly
Tex	Exiting air temperature at plr peak
	WbexExiting air wetbulb similarly
-PkQs	Sensible load at time of peak plr, shown positive.
-PkQl	Latent load likewise
-PkQC	Total load – sum of PkQs and PkQl

CPlr	Peak part load ratio: highest fraction of coil's capacity used, reflecting both fraction of maximum output under current conditions used when on and fraction of the time the
	fan is on. The maximum output under actual conditions can vary considerably from
	the rated capacity for DX coils. The fraction of maximum output used can only be 1.0
	if the sensible and total loads happen to occur in the same ratio as the sensible and
	total capacities. The time the fan is on can be less than 1.0 for residential systems in
	which the fan cycles on with the compressor. For example, if at the cooling peak the
	coil ran at .8 power with the fan on .9 of the time, a CPlr of .72 would be reported.
	The preceding 12 columns are values at the time this peak occurred.
Ccapt	Cooling coil rated total capacity
Ccaps	Rated sensible capacity.

Air Handler Report 5.6

The Air Handler Load Report displays conditions and heat flows in the air handler for the time period specified. It is important to note that the air handler report only accumulates data if the air handler is on during an hour. The daily and monthly values are averages of the hours the air handler was on and DO NOT INCLUDE OFF HOUR VALUES. The following items are displayed:

Tout	Outdoor drybulb temperature during hours the air handler was on.
Wbou	Outdoor wetbulb temperature similarly.
Tret	Return air dry bulb temperature during hours the air handler was on before return duct losses or leaks.
Wbre	Return air wetbulb similarly
po	Fraction outside air including economizer damper leakage, but not return duct leakage.
Tmix	Mixed air dry bulb temperature – after return air combined with outside air; after return fan, but before supply fan and coil(s).
Wbmi	Mixed air wet bulb temperature, similarly.
Tsup	Supply air dry bulb temperature to zone terminals – after coil(s) and air handler supply duct leak and loss; (without in zone duct losses after terminals).
WBsu	Supply air wet bulb temperature similarly.
HrsOn	Hours during which the fan operated at least part of the time.
FOn	Fraction of the time the fan was on during the hours it operated (HrsOn). CHECK FOR VAV, IS IT FLOW OR TIME
VF	Volumetric flow, measured at mix point/supply fan/coils; includes air that leaks out of supply duct and is thus non-0 even when zone terminals are taking no flow
Qheat	Heat energy added to air stream by heat coil, if any, MEASURED AT COIL not as delivered to zones (see Qload).
Qsens, Qlat and	Sensible, latent, and total heat added to air stream (negative values) by cooling
Qcool	coil, MEASURED AT COIL, including heat cancelled by fan heat and duct losses, and heat added to air lost through supply duct leak.
Qout	Net heat taken from outdoor air. Sum of sensible and latent, measured RELATIVE TO CURRENT RETURN AIR CONDITIONS.
Qfan	Heat added to air stream by supply fan, plus return fan if any – but not relief fan
Qloss	Heat added to air stream by supply and return duct leaks and conductive loss. Computed in each case as the sensible and latent heat in the air stream relative to return air conditions after the leak or loss, less the same value before the leak or loss.
Qload	Net energy delivered to the terminals – Sensible and latent energy, measured relative to return air conditions. INCLUDES DUCT LOSSES after terminals; thus will differ from sum of zone qMech's + qMecLat's.

Qbal

Sum of all the 'Q' columns, primarily a development aid. Zero indicates consistent and accurate computation; the normal printout is something like .0000, indicating that the value was too small to print in the space alloted, but not precisely zero, due to computational tolerances and internal round-off errors.

6 Probe Definitions

6.1 ahRes

@ahRes[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	-	X	string	constant	_
Y.n	_	X	unrecognized	end of run (of each	_
				phase, autoSize or	
V +Dl-O		X	1	simulate)	
Y.tDbO	_	Λ	number	end of run (of each phase, autoSize or	_
				simulate)	
Y.wO	_	X	number	end of run (of each	_
				phase, autoSize or	
				simulate)	
Y.tr	_	X	number	end of run (of each	_
				phase, autoSize or	
				simulate)	
Y.wr	_	X	number	end of run (of each	_
				phase, autoSize or	
Y.tmix		X	number	simulate) end of run (of each	
1.UIIIX	_	Λ	number	phase, autoSize or	_
				simulate)	
Y.wmix	_	X	number	end of run (of each	_
				phase, autoSize or	
				simulate)	
Y.ts	_	X	number	end of run (of each	_
				phase, autoSize or	
3.7		37	1	simulate)	
Y.ws	_	X	number	end of run (of each	_
				phase, autoSize or simulate)	
Y.po	_	X	number	end of run (of each	_
1.po		11	114111501	phase, autoSize or	
				simulate)	
Y.frFanOn	_	X	number	end of run (of each	_
				phase, autoSize or	
				simulate)	
Y.vf	_	X	number	end of run (of each	_
				phase, autoSize or	
Vah		X	number	simulate) end of run (of each	
Y.qh	_	Λ	пашыег	phase, autoSize or	_
				simulate)	
				Simulate	

Generated: 2020-05-11T15:34:27+00:00

Name	Input?	Runtime?	Type	Variability	Description
Y.qc	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qs	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.ql	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qO	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qFan	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qLoss	-	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qLoad	-	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qBal	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.ph	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.pc	-	X	number	end of run (of each phase, autoSize or simulate)	_
Y.pAuxH	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.pAuxC	-	X	number	end of run (of each phase, autoSize or simulate)	_
Y.pFan	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.hrsOn	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.nSubhr	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.nIter1	_	X	number	end of run (of each phase, autoSize or simulate)	-
Y.nIter2	_	X	number	end of run (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
Y.nIter4	-	X	number	end of run (of each phase, autoSize or simulate)	_
Y.nIterFan	_	X	number	end of run (of each phase, autoSize or simulate)	_
M.n	_	X	unrecognized	end of each month	_
M.tDbO	_	X	number	end of each month	_
M.wO	_	X	number	end of each month	_
M.tr	_	X	number	end of each month	_
M.wr	_	X	number	end of each month	_
M.tmix	_	X	number	end of each month	_
M.wmix	_	X	number	end of each month	_
M.ts	_	X	number	end of each month	_
M.ws	_	X	number	end of each month	_
M.po	_	X	number	end of each month	_
M.frFanOn	_	X	number	end of each month	_
M.vf	_	X	number	end of each month	_
M.qh	_	X	number	end of each month	_
M.qc	_	X	number	end of each month	_
M.qs	_	X	number	end of each month	_
M.ql	_	X	number	end of each month	_
Op.M	_	X	number	end of each month	_
M.qFan	_	X	number	end of each month	_
M.qLoss	_	X	number	end of each month	_
M.qLoad	_	X	number	end of each month	_
M.qBal	_	X	number	end of each month	_
M.ph	_	X	number	end of each month	_
M.pc	_	X	number	end of each month	_
M.pAuxH	_	X	number	end of each month	_
M.pAuxC	_	X	number	end of each month	_
M.pFan	_	X	number	end of each month	_
M.hrsOn	_	X	number	end of each month	_
M.nSubhr	_	X	number	end of each month	_
M.nIter1	_	X	number	end of each month	_
M.nIter2	_	X	number	end of each month	_
M.nIter4	_	X	number	end of each month	_
M.nIterFan	_	X	number	end of each month	_
D.n	_	X	unrecognized	end of each day	_
D.tDbO	_	X	number	end of each day	_
D.wO	_	X	number	end of each day	_
D.tr	_	X	number	end of each day	_
D.wr	_	X	number	end of each day	_
D.tmix	_	X	number	end of each day	_
D.wmix	_	X	number	end of each day	_
D.ts	_	X	number	end of each day	_
D.ws	_	X	number	end of each day	_
D.po	_	X	number	end of each day	_
D.frFanOn	_	X	number	end of each day	_
D.vf	_	X	number	end of each day	_
D.vi D.qh	_	X	number	end of each day	_
-	_	X X	number	end of each day end of each day	_
D.qc	_	Λ	пишьег	end of each day	_

Name	Input?	Runtime?	Type	Variability	Description
D.qs	_	X	number	end of each day	_
D.ql	_	X	number	end of each day	_
D.qO	_	X	number	end of each day	_
D.qFan	_	X	number	end of each day	_
D.qLoss	_	X	number	end of each day	_
D.qLoad	_	X	number	end of each day	_
D.qBal	_	X	number	end of each day	_
D.ph	_	X	number	end of each day	_
D.pc	_	X	number	end of each day	_
D.pAuxH	_	X	number	end of each day	_
D.pAuxC	_	X	number	end of each day	_
D.pFan	_	X	number	end of each day	_
D.hrsOn	_	X	number	end of each day	_
D.nSubhr	_	X	number	end of each day	_
D.nIter1	_	X	number	end of each day	_
D.nIter2	_	X	number	end of each day	_
D.nIter4	_	X	number	end of each day	_
D.nIterFan	_	X	number	end of each day	_
H.n	_	X	unrecognized	end of each hour	_
H.tDbO	_	X	number	end of each hour	_
H.wO	_	X	number	end of each hour	_
H.tr	_	X	number	end of each hour	_
H.wr	_	X	number	end of each hour	_
H.tmix	_	X	number	end of each hour	_
H.wmix		X	number	end of each hour	_
H.ts	_	X	number	end of each hour	_
H.ws	_	X	number	end of each hour	_
	_	X X	number	end of each hour	_
H.po	_	X X			
H.frFanOn	_		number	end of each hour	_
H.vf	_	X	number	end of each hour	_
H.qh	_	X X	number	end of each hour	_
H.qc	_		number	end of each hour	_
H.qs	_	X	number	end of each hour	_
H.ql	_	X	number	end of each hour	_
H.qO	_	X	number	end of each hour	_
H.qFan	_	X	number	end of each hour	_
H.qLoss	_	X	number	end of each hour	_
H.qLoad	_	X	number	end of each hour	_
H.qBal	_	X	number	end of each hour	_
H.ph	_	X	number	end of each hour	_
H.pc	_	X	number	end of each hour	_
H.pAuxH	_	X	number	end of each hour	_
H.pAuxC	_	X	number	end of each hour	_
H.pFan	_	X	number	end of each hour	_
H.hrsOn	_	X	number	end of each hour	_
H.nSubhr	_	X	number	end of each hour	_
H.nIter1	_	X	number	end of each hour	_
H.nIter2	_	X	number	end of each hour	_
H.nIter4	_	X	number	end of each hour	_
H.nIterFan	_	X	number	end of each hour	_
S.n	_	X	unrecognized	end of each subhour	_
D.II					

Name	Input?	Runtime?	Type	Variability	Description
S.wO	_	X	number	end of each subhour	_
S.tr	_	X	number	end of each subhour	_
S.wr	_	X	number	end of each subhour	_
S.tmix	_	X	number	end of each subhour	_
S.wmix	_	X	number	end of each subhour	_
S.ts	_	X	number	end of each subhour	_
S.ws	_	X	number	end of each subhour	_
S.po	_	X	number	end of each subhour	_
S.frFanOn	_	X	number	end of each subhour	_
S.vf	_	X	number	end of each subhour	_
S.qh	_	X	number	end of each subhour	_
S.qc	_	X	number	end of each subhour	_
S.qs	_	X	number	end of each subhour	_
S.ql	_	X	number	end of each subhour	_
S.qO	_	X	number	end of each subhour	_
S.qFan	_	X	number	end of each subhour	_
S.qLoss	_	X	number	end of each subhour	_
S.qLoad	_	X	number	end of each subhour	_
S.qBal	_	X	number	end of each subhour	_
S.ph	_	X	number	end of each subhour	_
S.pc	_	X	number	end of each subhour	_
S.pAuxH	_	X	number	end of each subhour	_
S.pAuxC	_	X	number	end of each subhour	_
S.pFan	_	X	number	end of each subhour	_
S.hrsOn	_	X	number	end of each subhour	_
S.nSubhr	_	X	number	end of each subhour	_
S.nIter1	_	X	number	end of each subhour	_
S.nIter2	_	X	number	end of each subhour	_
S.nIter4	_	X	number	end of each subhour	_
S.nIterFan	_	X	number	end of each subhour	_

6.2 airHandler

@air Handler [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
ahTsDsH	X	X	number	hourly	Heating design supply temperature, for sizing coil vs fan. defaulted hourly to ahtsmx.
ahTsDsC	X	X	number	hourly	Cooling
ahccSHR	X	X	number	autosize and simulate phase start time	Sensible heat ratio (caps/capt) for cooling coil
coilOversize	X	X	number	autosize and simulate phase start time	Fraction oversize for autosized heat/cool coils

Name	Input?	Runtime?	Type	Variability	Description
fanOversize	X	X	number	autosize and simulate phase start time	Fraction oversize for autosized fan(s)
asRfan	X	X	integer number	run start time (of each phase, autoSize	True to autosize return/relief fan (to same capacity as supply fan)
				or simulate)	
asFlow	X	X	integer number	run start time (of each phase, autoSize or	True if autosizing supply fan and/or flow of any connected terminal:
	77	77		simulate	
hcAs.az_active	X	X	integer number	run start time (of each phase, autoSize	
				or simulate)	
hcAs.az_a	X	X	number	end of each subhour	_
hcAs.az_b	X	X	number	end of each	-
hcAs.ldPk	X	X	number	subhour end of each	_
hcAs.ldPkAs	X	X	number	subhour end of	_
hcAs.ldPkAs1	X	X	number	each day end of each day	_
hcAs.plrPk	X	X	number	each day end of each	_
hcAs.plrPkAs	X	X	number	subhour end of each day	-
hcAs.xPk	X	X	number	end of each	_
hcAs.xPkAs	X	X	number	subhour end of each day	-

Name	Input?	Runtime?	Type	Variability	Description
ccAs.az_active	X	X	integer number	run start time (of each phase, autoSize or	_
$ccAs.az_a$	X	X	number	simulate) end of each	_
ccAs.az_b	X	X	number	subhour end of	_
ccAs.ldPk	X	X	number	each subhour end of	_
ccAs.ldPkAs	X	X	number	each subhour end of	_
ccAs.ldPkAs1	X	X	number	each day end of	-
ccAs.plrPk	X	X	number	each day end of each	_
ccAs.plrPkAs	X	X	number	subhour end of each day	-
ccAs.xPk	X	X	number	end of each subhour	_
ccAs.xPkAs	X	X	number	end of each day	_
$fanAs.az_active$	X	X	integer number	run start time (of each phase, autoSize or	
fanAs.az_a	X	X	number	simulate) end of each	_
fanAs.az_b	X	X	number	subhour end of each	_
${\rm fan As. ld Pk}$	X	X	number	subhour end of each	_
${\rm fan As. ld Pk As}$	X	X	number	subhour end of each day	_
fan As.ldPkAs1	X	X	number	end of each day	_

Name	Input?	Runtime?	Type	Variability	Description
fanAs.plrPk	X	X	number	end of each	_
fanAs.plrPkAs	X	X	number	subhour end of	-
fanAs.xPk	X	X	number	each day end of each	_
fanAs.xPkAs	X	X	number	subhour end of each day	-
bVfDs	X	X	number	each day end of each subhour	Sfan.vfds. see coil::bcaptrat for ahhc and ahcc.
qcPkS	X	X	number	end of each subhour	Sensible load @ peak total load
qcPkL	X	X	number	end of each subhour	Latent cool coil load ditto
qcPkH	X	X	integer number	end of each subhour	Hour 1-24 of peak total cool coil load
qcPkD	X	X	integer number	end of each subhour	Day of month 1-31 of peak load, not used for autosizing
qcPkM	X	X	integer number	end of each subhour	Month 1-12 of peak load, or 0 for heat design month
qcPkTDbO	X	X	number	end of each subhour	Outdoor temp at time of peak load
qcPkWO	X	X	number	end of each	Outdoor hum rat at time of peak load. w's must follow t's for reports.
qcPkTen	X	X	number	subhour end of each	Entering air temp
qcPkWen	X	X	number	subhour end of each	Hum rat
qcPkTex	X	X	number	subhour end of each	Exiting air temp (b4 remix w bypass air)
qcPkWex	X	X	number	subhour end of each	Hum rat (b4 remix w bypass air)
qcPkSAs	X	X	number	subhour end of each	Sensible load @ peak total load
qcPkLAs	X	X	number	subhour end of each subhour	Latent cool coil load ditto

Name	Input?	Runtime?	Type	Variability	Description
qcPkHAs	X	X	integer number	end of each	Hour 1-24 of peak total cool coil load
qcPkDAs	X	X	integer number	subhour end of each	Day of month 1-31 of peak load, not used for autosizing
qcPkMAs	X	X	integer number	subhour end of each	Month 1-12 of peak load, or 0 for heat design month
qcPkTDbOAs	X	X	number	subhour end of each	Outdoor temp at time of peak load
qcPkWOAs	X	X	number	subhour end of each subhour	Outdoor hum rat at time of peak load. w's must follow t's for reports.
qcPkTenAs	X	X	number	end of each subhour	Entering air temp
qcPkWenAs	X	X	number	end of each subhour	Hum rat
qcPkTexAs	X	X	number	end of each subhour	Exiting air temp (b4 remix w bypass air)
qcPkWexAs	X	X	number	end of each subhour	Hum rat (b4 remix w bypass air)
ahTsSp	X	X	unrecognized		Supply temperature setpoint or control method: ra, wz, cz, zn, zn2, or number, hourly,
ahFanCycles	X	X	unrecognized	hourly	Yes if fan (and coil) cycles with zone thermostat; hourly;
ahTsMn	X	X	number	hourly	Hourly, default 40.
ahTsMx	X	X	number	hourly	Hourly, default 250.
ahTsRaMn	X	X	number	hourly	Return air temp at which tssp is at ahtsmx. hourly.
ahTsRaMx	X	X	number	hourly	ahtsmn. hourly. if return air moves outside this range, tssp does not change further.
ahCtu	X	X	integer number	run start time (of each phase, autoSize or simulate)	Terminal for determining whether to heat or cool under zn, zn2 tsu sp control.
ahWzCzns[0]	X	X	integer number	simulate) autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.

Name	Input?	Runtime?	Type	Variability	Description
ahWzCzns[1]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[2]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[3]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[4]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[5]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[6]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[7]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[8]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[9]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[10]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.

Name	Input?	Runtime?	Type	Variability	Description
ahWzCzns[11]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[12]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[13]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[14]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
ahWzCzns[15]	X	X	integer number	autosize and simulate phase start time	Zone names monitored for warmest zone and coolest zone ts sp control, respectively.
${\rm ahCzCzns}[0]$	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[1]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[2]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[3]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[4]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.

Name	Input?	Runtime?	Type	Variability	Description
ahCzCzns[5]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[6]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[7]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[8]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[9]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[10]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[11]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[12]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[13]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
ahCzCzns[14]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.

Name	Input?	Runtime?	Type	Variability	Description
ahCzCzns[15]	X	X	integer number	autosize and simulate phase start time	Each input may be all, all_but, and/or zone names, comma-separated. default all.
oaMnCm	X	X	unrecognized	autosize and simulate phase start time	Min oa flow control method, choice of vol or frac, default vol, constant.
oaMnFrac	X	X	number	hourly	Fraction 0-1 of minimum oa to use now, hourly, default 1.0. eg to shut off oa during warmup.
oaVfDsMn	X	X	number	run start time (of each phase, autoSize or simulate)	Design minimum outside air flow (cfm actual air), constant, dfl .15 * area.
oaEcoTy	X	X	unrecognized		Choice of none, nonintegrated, two_stage, integrated. constant. default none.
oaLimT	X	X	unrecognized		Economizer oa temp hi limit: number -50 to 999, or ra for current return air temp,
oaLimE	X	X	unrecognized	hourly	Economizer oa enthalpy hi limit: number or ra, constant, dfl 999 (enth limit disabled).
oaOaLeak	X	X	number	autosize and simulate phase start time	Outside air damper leakage to mixed air, fraction of supply fan design cfm if have economizer,
oaRaLeak	X	X	number	autosize and simulate phase start time	Return air damper leakage to mixed air, fraction supply fan design cfm,
ahSOLeak	X	X	number	autosize and simulate phase start time	Supply duct leakage to outdoors, 01 of sfanvfds, default .01. use 0 if duct indoors.
ahROLeak	X	X	number	autosize and simulate phase start time	Return duct leakage from outdoors, 01, of sfanvfds, default .01, use 0 if duct indoors.

Name	Input?	Runtime?	Type	Variability	Description
ahSOLoss	X	X	number	autosize and simulate phase start time	Supply duct loss/gain to outdoors, 01, default .02? (taylor 0.5f), use 0 if duct indoors.
ahROLoss	X	X	number	autosize and simulate phase start time	Return duct heat loss/gain to outdoors, 01, default .02? (ditto), use 0 if duct indoors.
ahSch	X	X	unrecognized	hourly	Supply fan and thus air handler schedule: choice of on or off, hourly variable; default on.
sfan.fanTy	X	X	unrecognized	autosize and simulate phase start time	
sfan.vfDs	X	X	number	end of each subhour	_
sfan.vfDs_As	X	X	number	autosize and simulate phase start time	
$sfan.vfDs_AsNov$	X	X	number	autosize and simulate phase start time	
sfan.vfMxF	X	X	number	autosize and simulate phase start time	
sfan.press	X	X	number	run start time (of each phase, autoSize or simulate)	
sfan.eff	X	X	number	run start time (of each phase, autoSize or simulate)	

Name	Input?	Runtime?	Туре	Variability	Description
sfan.shaftPwr	X	X	number	run start time (of each phase, autoSize or simulate)	-
sfan.elecPwr	X	X	number	run start time (of each phase, autoSize or	
sfan.motTy	X	X	unrecognized	time (of each phase, autoSize or	
sfan.motEff	X	X	number	simulate) autosize and simulate phase start time	_
sfan.motPos	X	X	unrecognized		
sfan.curvePy.k[0]	X	X	number	autosize and simulate phase	
sfan.curvePy.k[1]	X	X	number	start time autosize and simulate phase start time	
sfan.curvePy.k[2]	X	X	number	autosize and simulate phase start time	
sfan.curvePy.k[3]	X	X	number	autosize and simulate phase start time	

Name	Input?	Runtime?	Type	Variability	Description
sfan.curvePy.k[4]	X	X	number	autosize and simulate phase start time	_
sfan.curvePy.k[5]	X	X	number	autosize and simulate phase start time	
sfan.mtri	X	X	integer number	autosize and simulate phase start time	_
sfan.endUse	X	X	integer number	autosize and simulate phase start time	_
sfan.ausz	X	X	integer number	run start time (of each phase, autoSize or simulate)	
sfan.outPower	X	X	number	subhourly	_
sfan.airPower	X	X	number	subhourly	_
sfan.cMx	X	X	number	end of each subhour	_
sfan.c	X	X	number	end of each subhour	_
sfan.t	X	X	number	end of each subhour	_
sfan.frOn	X	X	number	end of each subhour	_
sfan.p	X	X	number	end of each subhour	_
sfan.q	X	X	number	end of each subhour	Average (not fan-on) output power level for subhour
sfan.dT	X	X	number	end of each subhour	How much warmer than outdoor temp crankcase oil is assumed to be, in subhrs when compr does not run.

Name	Input?	Runtime?	Type	Variability	Description
sfan.qAround	X	X	number	end of each	_
				subhour	
rfan.fanTy	X	X	unrecognized		_
				and	
				simulate	
				phase	
				start time	
rfan.vfDs	X	X	number	end of	_
				each	
			_	subhour	
rfan.vfDs_As	X	X	number	autosize	_
				and	
				simulate	
				phase	
C CT A INT	37	37	1	start time	
rfan.vfDs_AsNov	X	X	number	autosize	_
				and	
				simulate	
				phase start time	
rfan.vfMxF	X	X	number	autosize	
Hall.VIIVIXI	Λ	Λ	number	and	
				simulate	
				phase	
				start time	
rfan.press	X	X	number	run start	_
r				time (of	
				each	
				phase,	
				autoSize	
				or	
				simulate)	
rfan.eff	X	X	number	run start	_
				time (of	
				each	
				phase,	
				autoSize	
				or	
c 1 c 5	37	37	1	simulate)	
rfan.shaftPwr	X	X	number	run start	_
				time (of	
				each	
				phase, autoSize	
				or simulate)	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
rfan.elecPwr	X	X	number	run start time (of each phase, autoSize or simulate)	_
rfan.motTy	X	X	unrecognized	,	
rfan.motEff	X	X	number	simulate) autosize and simulate phase	-
rfan.motPos	X	X	unrecognized	and simulate phase	_
rfan.curve Py.k $[0]$	X	X	number	start time autosize and simulate phase	_
rfan.curvePy.k[1]	X	X	number	start time autosize and simulate phase start time	
rfan.curvePy.k[2]	X	X	number	autosize and simulate phase start time	
${\it rfan.curvePy.k[3]}$	X	X	number	autosize and simulate phase start time	
rfan.curvePy.k[4]	X	X	number	autosize and simulate phase start time	

Name	Input?	Runtime?	Туре	Variability	Description
rfan.curvePy.k[5]	X	X	number	autosize and simulate phase start time	-
rfan.mtri	X	X	integer number	autosize and simulate phase start time	_
rfan.endUse	X	X	integer number	autosize and simulate phase start time	_
rfan.ausz	X	X	integer number	run start time (of each phase, autoSize or simulate)	
rfan.outPower	X	X	number	$\operatorname{subhourly}$	_
rfan.airPower	X	X	number	subhourly	_
rfan.cMx	X	X	number	end of each subhour	_
rfan.c	X	X	number	end of each subhour	_
rfan.t	X	X	number	end of each subhour	_
rfan.frOn	X	X	number	end of each subhour	_
rfan.p	X	X	number	end of each subhour	_
rfan.q	X	X	number	end of each subhour	Average (not fan-on) output power level for subhour
rfan.dT	X	X	number	end of each subhour	How much warmer than outdoor temp crankcase oil is assumed to be, in subhrs when compr does not run.
rfan.qAround	X	X	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
cch.cchCM	X	X	unrecognized	run start time (of each phase, autoSize	Crankcase heater presence and control method choice. niles cchctlmtd.
				or simulate)	
cch.pMx	X	X	number	autosize and simulate phase	Crankcase resistance heater input power; maximum power if cchcm is ptc or ptc_clo.
cch.pMn	X	X	number	start time autosize and simulate phase	Min cch input power. default .04kw. entered in kw, internally in btuh. niles pcchmn.
cch.tMx	X	X	number	start time autosize and simulate	Low temp (max power) setpoint default 0 f. niles tcchptcmx.
$\mathrm{cch.tMn}$	X	X	number	phase start time autosize and simulate	High temp (min power) setpoint for cchcm = ptc or ptc_clo. default 150 f. niles tcchptcmn.
$\operatorname{cch.dt}$	X	X	number	phase start time autosize and simulate	How much warmer than outdoor temp crankcase oil is assumed to be, in subhrs when compr does not run.
cch.tOn	X	X	number	phase start time autosize and simulate	_
cch.tOff	X	X	number	phase start time run start time (of each	_
cch.mtri	X	X	integer number	phase, autoSize or simulate) autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
cch.p47Off	X	X	number	run start time (of each phase, autoSize or	Power input during off part of one cycle of ari 47 degree cycling test, kwh.
cch.p17	X	X	number	simulate) run start time (of each phase, autoSize	Power input to crankcase heater in ari 17 degree continuous operation test, kw. niles pcch17.
cch.p47	X	X	number	or simulate) run start time (of each phase, autoSize or	Ditto 47 degree test. niles pcch47. p17 and p47 always the same; p47 may be used in code as
cch.frCprOn	X	X	number	simulate) end of each subhour	_
cch.tState	X	X	integer number	end of each subhour	Thermostat state for cchcm = tstat: must remember to implement hysteresis
cch.p	X	X	number	end of each subhour	_
ahhc.coilTy	X	X	unrecognized		Coil type choice according to application, as follows. constant.
ahhc.sched	X	X	unrecognized	,	Avail when coil available, off when disabled, hourly, default avail.
ahhc.captRat	X	X	number	end of each subhour	_
$ahhc.captRat_As$	X	X	number	autosize and simulate phase	_
$ahhc.captRat_AsN$	N o X	X	number	start time autosize and simulate phase start time	

Name	Input?	Runtime?	Type	Variability	Description
ahhc.bCaptRat	X	X	number	end of each subhour	Start-subhr captrat, to undo size increases not in use as converged at end subhr (ahhc,ahcc).
ahhc.eirRat	X	X	number	hourly	Rated load energy input ratio===heat input ra- tio===input/output===1/efficiency for dx,gas,oil at least.
ahhc.mtri	X	X	integer number	autosize and simulate phase start time	
ahhc.auxOn	X	X	number	hourly	Additional input energy used in proportion to plr when coil on, as for induced draft fan,
ahhc.auxOnMtri	X	X	integer number	autosize and simulate phase start time	Mtr to which to charge "auxon"
ahhc.auxOff	X	X	number	hourly	Addl input energy when off for part or all of subhr (proportional to 1-plr), for unforseen uses.
ahhc.auxOffMtri	X	X	integer number	autosize and simulate phase start time	Mtr for "auxoff"
ahhc. aux On At all	X	X	number	hourly	Addl input energy used in toto when coil on for any part of subhour, for unforseen uses.
ahhc. aux On At all N	It X	X	integer number	autosize and simulate phase start time	Mtr for "auzonatall"
ahhc.auxFullOff	X	X	number	hourly	Additional input energy when off for entire subhour (as opposed to in proportion to 1-plr).
ahhc.auxFullOffM	tr ī X	X	integer number	autosize and simulate phase start time	Mtr to which auxfulloff is charged
ahhc.q	X	X	number	end of each subhour	Average (not fan-on) output power level for subhour
ahhc.qPr	X	X	number	end of each subhour	Output at which coil's plant last computed, for call-flagging plant. set: cnhp.cpp. used: cncoil.cpp

Name	Input?	Runtime?	Type	Variability	Description
ahhc.p	X	X	number	end of	_
				each subhour	
ahha nlu	X	X	numb an	end of	Cument for an (on function on)
ahhc.plr	Λ	Λ	number		Current fan-on (or furnace-on)
				each subhour	relative load (part load ratio)
ahhc.plrAv	X	X	number	end of	Current average relative load (plr *
anne.pn Av	Λ	Λ	number	each	frfanon)
				subhour	manon)
ahhc.eir	X	X	number	end of	Energy input ratio: current
anne.en	Λ	Λ	number	each	input/output, fan on===average.
				subhour	rob's addition, for probes, 5-92.
ahhc.pAuxOn	X	X	number	end of	Coil-on proporotinal aux power this
anne.pAuxOn	Λ	Λ	number	each	subhour
				each subhour	Subflour
ahhc.pAuxOff	X	X	number	end of	Coil-off proportional aux power this
anne.pAuxOn	Λ	Λ	number	each	subhour
				subhour	subhour
ahhc.pAuxOnAtall	v	X	number	end of	Coil on-at-all aux power this
anne.pauxonatan	Λ	Λ	number	each	subhour
				each subhour	Subflour
ahhc.pAuxFullOff	X	X	number	end of	Appropriate (does nilet) never this
anne.pAuxrunOn	Λ	Λ	number	each	Auxfulloff (doe2 pilot) power this subhour
				subhour	subhour
ahhc.effRat	X	X	number	autosize	Efficiency @ rated load: alternate eir
amic.emtat	Λ	Λ	number	and	input, converted into eirrat in setup.
				simulate	input, converted into entat in setup.
				phase	
				start time	
ahhc.pyEi.k[0]	X	X	number	autosize	_
anne.pyEn.k[0]	Λ	Λ	number	and	
				simulate	
				phase	
				start time	
ahhc.pyEi.k[1]	X	X	number	autosize	_
anne.py Di.k[1]	11	71	number	and	
				simulate	
				phase	
				start time	
ahhc.pyEi.k[2]	X	X	number	autosize	_
anne.py En.k[2]	11	71	number	and	
				simulate	
				phase	
				start time	
ahhc.pyEi.k[3]	X	X	number	autosize	_
winc.py Di.n[0]	11	11	number	and	
				simulate	
				phase	
				start time	
				Source office	

Name	Input?	Runtime?	Type	Variability	Description
ahhc.pyEi.k[4]	X	X	number	autosize and simulate phase start time	_
ahhc.stack Effect	X	X	number	hourly	Fraction of unused capacity that must be used (increasing plr) to make up for increased
ahhc.hpi	X	X	integer number	autosize and simulate phase start time	Subscript of heatplant serving hw coil
ahhc.nxTu4hp	X	X	integer number	run start time (of each phase, autoSize or simulate)	Tub subscr of next tu with hw coil on same heatplant. 1st is heatplant.tu1.
ahhc.nxAh4hp	X	X	integer number	run start time (of each phase, autoSize or	Ahb subscr of next ah with hw coil on same heatplant. 1st is heatplant.ah1.
ahhc.flueLoss	X	X	number	simulate) end of each subhour	Part-load flue loss this subhour, gas and oil only
ahhc.qWant	X	X	number	end of each subhour	Hw: desired output===input, dohwcoil to hpcompute, used in determining capf.
ahhc.cap17	X	X	number	autosize and simulate phase start time	Ari steady state rated cap @ 17 out, 70 indoor (return) air, btuh, rqd for ahp, niles pcapss17.
ahhc.cap47	X	X	number	autosize and simulate phase start time	Ari steady state rated cap @ 47 out, 70 indoor (return) air, btuh, rqd for ahp, niles pcapss47.
ahhc.cap35	X	X	number	run start time (of each phase, autoSize or simulate)	Ari steady state rated cap @ 35f outdoor, btuh, default per fd35df, niles pcapss35.

Name	Input?	Runtime?	Type	Variability	Description
ahhc.fd35Df	X	X	number	autosize and simulate phase start time	Default frost/defrost degradation factor at 35 f, default .85, niles fdf35dft.
ahhc.capIa	X	X	number	autosize and simulate phase start time	Capacity correction factor for indoor (return) air temperature, default .004, niles iaccap.
ahhc.supRh	X	X	number	autosize and simulate phase start time	Input (& output) of supplemental resistance reheat coil, kw, default 10, niles psuprh.
ahhc.tFrMn	X	X	number	autosize and simulate phase start time	Lowest temp for frost buildup & defrost effects, default 17f, niles tfrstmn.
ahhc.tFrMx	X	X	number	autosize and simulate phase start time	Highest temp for frost buildup & defrost effects, default 47f, niles tfrstmx.
ahhc.tFrPk	X	X	number	autosize and simulate phase start time	Temp for peak frost buildup & defrost effects, default 42f, niles tfrstpk.
ahhc.dfrFMn	X	X	number	autosize and simulate phase start time	Min frac time in reverse cycle cooling, default .0222 (2/90 min), niles tmfrcdefmn.
ahhc.dfrFMx	X	X	number	autosize and simulate phase start time	Max frac time in reverse cycle cooling, default .0889 (8/90 min), niles tmfrcdefmx.
ahhc.dfrCap	X	X	number	run start time (of each phase, autoSize or simulate)	Cooling capacity (to ah supply air) during defrosting, default 2 * cap17 niles pdefcool.
ahhc.dfrRh	X	X	number	autosize and simulate phase start time	Input (& output) power of addl reheat coil run during defrost, default 5kw, niles pdefrh.

Name	Input?	Runtime?	Type	Variability	Description
ahhc.tOff	X	X	number	autosize and simulate phase start time	_
ahhc.tOn	X	X	number	autosize and simulate phase start time	
ahhc.in17	X	X	number	autosize and simulate phase start time	Steady state power input @ 17 outdoor, 70 indoor (return). rqd for ahp. niles pinss17.
ahhc.in47	X	X	number	autosize and simulate phase start time	Steady state power input @ 47 outdoor, 70 indoor (return). rqd for ahp. niles pinss47.
ahhc.inIa	X	X	number	autosize and simulate phase start time	Indoor (return) air temp power input correction factor, default .004, niles iacin.
ahhc.cd	X	X	number	autosize and simulate phase start time	Ari cycling degradation coefficient, default .25, niles cd.
ahhc.in17c	X	X	number	run start time (of each phase, autoSize or simulate)	Compressor input power @ 17 degrees out, 70 in: in17 with cch power removed. niles pinss17.
ahhc.in47c	X	X	number	run start time (of each phase, autoSize or	Ditto 47 degrees. niles pinss47.
ahhc.cdm	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	Modified cd: cycling degradation coefficient adjusted to remove cch. niles cdm.

Name	Input?	Runtime?	Type	Variability	Description
ahhc.tIa	X	X	number	end of each subhour	Indoor air temp: copy of tmix or whatever ah variable is chosen
ahhc.qSupLim	X	X	number	end of each subhour	Caller-set heat output limit for when suppl heat in use: kludge when fan cycling
ahhc.frFanOn	X	X	number	end of each subhour	_
ahhc.loTLockout	X	X	integer number	end of each subhour	True if compressor locked out due to low outdoor temp (see toff, ton)
ahhc.supOn	X	X	integer number	end of each subhour	True if supplementary heat enabled (frfanon is \sim 1.0, with hysterisis to keep ah stable).
ahhc.capCon	X	X	number	end of each subhour	Continuous cpr capac incl frost/defrost @ actual indoor temp, excl def & reg rh. niles pcapmx.
ahhc.pDfrhCon	X	X	number	end of each subhour	Continuous avg power input to defrost heater @ outdoor temp (not cycling). niles pdefrhmx.
ahhc.cap	X	X	number	end of each subhour	Capacity this subhour incl suppl heaters. rob's addition, used by doahpheatcoil re tpossh.
ahhc.frCprOn	X	X	number	end of each subhour	_
ahhc.pCpr	X	X	number	end of each subhour	Power input to compressor (niles pincomp): copy to .p in coilsendsubhr.
ahhc.pRh	X	X	number	end of each subhour	Input===output of reg & dfr supplemental resistance heaters. included in q, not in p. niles prh.
ahccBypass	X	X	number	autosize and simulate phase start time	Fraction of air flow which bypasses cool coil (for better humidity control), constant, dfl 0.
ahcc.coilTy	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Coil type choice according to application, as follows. constant.
ahcc.sched	X	X	unrecognized	,	Avail when coil available, off when disabled, hourly, default avail.
ahcc.captRat	X	X	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
ahcc.captRat_As	X	X	number	autosize and simulate phase start time	_
$ahcc.captRat_AsN$	No X	X	number	autosize and simulate phase start time	
ahcc.bCaptRat	X	X	number	end of each subhour	Start-subhr captrat, to undo size increases not in use as converged at end subhr (ahhc,ahcc).
ahcc.eirRat	X	X	number	hourly	Rated load energy input ratio===heat input ratio===input/output===1/efficiency for dx,gas,oil at least.
ahcc.mtri	X	X	integer number	autosize and simulate phase start time	
ahcc.auxOn	X	X	number	hourly	Additional input energy used in proportion to plr when coil on, as for induced draft fan,
ahcc.auxOnMtri	X	X	integer number	autosize and simulate phase start time	Mtr to which to charge "auxon"
ahcc.auxOff	X	X	number	hourly	Addl input energy when off for part or all of subhr (proportional to 1-plr), for unforseen uses.
ahcc.auxOffMtri	X	X	integer number	autosize and simulate phase start time	Mtr for "auxoff"
ahcc.auxOnAtall	X	X	number	hourly	Addl input energy used in toto when coil on for any part of subhour, for unforseen uses.
ahcc.auxOnAtallM	Itı X	X	integer number	autosize and simulate phase start time	Mtr for "auzonatall"
ahcc.auxFullOff	X	X	number	hourly	Additional input energy when off for entire subhour (as opposed to in proportion to 1-plr).

Name	Input?	Runtime?	Туре	Variability	Description
ahcc.auxFullOffMt	riX	X	integer number	autosize and simulate phase start time	Mtr to which auxfulloff is charged
ahcc.q	X	X	number	end of each subhour	Average (not fan-on) output power level for subhour
ahcc.qPr	X	X	number	end of each subhour	Output at which coil's plant last computed, for call-flagging plant. set: cnhp.cpp. used: cncoil.cpp
ahcc.p	X	X	number	end of each subhour	-
ahcc.plr	X	X	number	end of each subhour	Current fan-on (or furnace-on) relative load (part load ratio)
ahcc.plrAv	X	X	number	end of each subhour	Current average relative load (plr * frfanon)
ahcc.eir	X	X	number	end of each subhour	Energy input ratio: current input/output, fan on===average. rob's addition, for probes, 5-92.
ahcc.pAuxOn	X	X	number	end of each subhour	Coil-on proporotinal aux power this subhour
ahcc.pAuxOff	X	X	number	end of each subhour	Coil-off proportional aux power this subhour
ahcc.pAuxOnAtall	X	X	number	end of each subhour	Coil on-at-all aux power this subhour
ahcc.pAuxFullOff	X	X	number	end of each subhour	Auxfulloff (doe2 pilot) power this subhour
ahcc.capsRat	X	X	number	end of each subhour	Dx: sensible rated capacity <= captrat btu/hr, const for input, *s cuz varies during autosize.
$ahcc.capsRat_As$	X	X	number	autosize and simulate phase start time	_
ahcc.capsRat_AsN	Jo X	X	number	autosize and simulate phase start time	

Name	Input?	Runtime?	Type	Variability	Description
ahcc.minTEvap	X	X	number	autosize and simulate phase start time	Dx: min evaporator (effective surface) temp (below which compressor cuts out), default 35f. (40f til 8-95)
ahcc.k1	X	X	number	autosize and simulate phase start time	Dx, chw: power of relative air flow to which outside number of transfer units is proportional.
ahcc.dsTDbCnd	X	X	number	autosize and simulate phase start time	Design (rating) (dx) condenser temp (outdoor temp pending water option), default = ari = 95f.
ahcc.dsTDbEn	X	X	number	autosize and simulate phase start time	Design (rating) (dx,chw) entering air dry bulb temp, default = ari = 80f.
ahcc.dsTWbEn	X	X	number	autosize and simulate phase start time	Design (rating) (dx) entering air wet bulb temp, default = ari = 67f. replaces taylor's dseawb.
ahcc.vfR	X	X	number	run start time (of each phase, autoSize or	Rating (dx,chw) air flow (cfm). default: dx: per vfrperton. chw: sfan.vfds.
ahcc.vfRperTon	X	X	number	simulate) run start time (of each phase, autoSize or	Dx default vfr per ton (12000 btuh) of captrat. default: 400.
ahcc.minUnldPlr	X	X	number	simulate) autosize and simulate phase start time	Part load ratio (fraction of full load) at/above which "compressor unloading" is used. dfl 1.
ahcc.minFsldPlr	X	X	number	autosize and simulate phase start time	Plr above which "false loading" is used (up to minunldplr). dfl minunldplr: no false loading.

Name	Input?	Runtime?	Type	Variability	Description
ahcc.pydxCaptT.k	x[0]X	X	number	autosize	-
				and	
				simulate	
				phase start time	
ahcc.pydxCaptT.k	-[1 X	X	number	autosize	_
ance.py dxcapt 1.s	.[14x	71	number	and	
				simulate	
				phase	
				start time	
ahcc.pydxCaptT.k	x[2]X	X	number	autosize	_
				and	
				simulate	
				phase	
	r-a-		_	start time	
ahcc.pydxCaptT.k	x[3]X	X	number	autosize	_
				and	
				simulate	
				phase start time	
ahcc.pydxCaptT.k	-[1] Y	X	number	autosize	_
ance.pydxcapt1.s	144	Λ	number	and	
				simulate	
				phase	
				start time	
ahcc.pydxCaptT.k	x[5] X	X	number	autosize	_
				and	
				simulate	
				phase	
	r_a_		_	start time	
ahcc.pydxCaptT.k	x[6]X	X	number	autosize	_
				and	
				simulate	
				phase start time	
ahcc.pydxCaptF.k	·[0]X	X	number	autosize	_
ance.py an capti in	1011	11	Hallisoi	and	
				simulate	
				phase	
				start time	
ahcc.pydxCaptF.k	:[1] X	X	number	autosize	_
				and	
				simulate	
				phase	
1 10 101	[otv	V	1	start time	
ahcc.pydxCaptF.k	[2]X	X	number	autosize	_
				$\begin{array}{c} { m and} \\ { m simulate} \end{array}$	
				phase	
				start time	
				Start time	

Name	Input?	Runtime?	Type	Variability	Description
ahcc.pydxCaptF.k	[3]X	X	number	autosize and simulate phase start time	_
ahcc.pydxCaptF.k	[4]X	X	number	autosize and simulate phase start time	
ahcc.pydxCaptFLi	mΧ	X	number	autosize and simulate phase start time	Upper limit for value of pydxcaptf, 8-28-95
ahcc.pydxEirT.k[0]	X	X	number	autosize and simulate phase start time	
ahcc.pydxEirT.k[1]	X	X	number	autosize and simulate phase start time	
ahcc.pydxEirT.k[2]	X	X	number	autosize and simulate phase	
ahcc.pydxEirT.k[3]	X	X	number	start time autosize and simulate phase	_
ahcc.pydxEirT.k[4]	X	X	number	start time autosize and simulate phase	_
ahcc.pydxEirT.k[5]	X	X	number	start time autosize and simulate phase start time	-
ahcc.pydxEirT.k[6]	X	X	number	autosize and simulate phase start time	

Name	Input?	Runtime?	Type	Variability	Description
ahcc.pydxEirUl.k	x[0] X	X	number	autosize and simulate phase	_
ahcc.pydxEirUl.k	x[1] X	X	number	start time autosize and	_
ahcc.pydxEirUl.k	x[2] X	X	number	simulate phase start time autosize and	_
ahcc.pydxEirUl.l	-[3] X	X	number	simulate phase start time autosize	
ансс.ручхЕн от.	[J] A	Α	number	and simulate phase	
ahcc.pydxEirUl.k	x[4] X	X	number	start time autosize and simulate phase	_
ahcc.cpi	X	X	integer number	start time autosize and simulate phase	Subscript of coolplant serving chw coil, rqd for chw.
ahcc.gpmDs	X	X	number	start time autosize and simulate phase	Design (i.e. maximum) chilled water flow, gpm, rqd for chw. niles mwd[g].
ahcc.ntuoDs	X	X	number	start time autosize and simulate phase	Outside number of transfer units at design air flow (vfr), default 2. niles ntuod.
ahcc.ntuiDs	X	X	number	start time autosize and simulate phase	Inside number of transfer units at design water flow (gpmds), default 2. niles ntuid.
ahcc.ws at Min TE	vapX	X	number	start time run start time (of each phase, autoSize or simulate)	Hum ratio of saturated air at mintevap (minimum evaporator temp)

Name	Input?	Runtime?	Type	Variability	Description
ahcc.hsatMinTEv	арХ	X	number	run start time (of each phase, autoSize or	Enthalpy of saturated air at mintevap
ahcc.efecOR	X	X	number	simulate) run start time (of each phase, autoSize	(outside) effectiveness at rated conditions (in record for probing only)
ahcc.ntuR	X	X	number	or simulate) run start time (of each phase, autoSize	Number of trasfer units (like time constants) at rated conditions
ahcc.eir Min Unld F	Plr X	X	number	or simulate) run start time (of each phase, autoSize	Pydxeirul(minunldplr): precomputed dx input correction for falseloading; prorate for cycling.
ahcc.menR	X	X	number	or simulate) run start time (of each phase, autoSize	Chw/dx coil rating air flow (lb/hr) (for chw, niles 'mad')
ahcc.nxAh4cp	X	X	integer number	or simulate) run start time (of each phase, autoSize	0 or subscr of next ah with chw coil served by same coolplant. 1st is coolplant.ah1.
ahcc.mwDs	X	X	number	or simulate) run start time (of each phase, autoSize	_
${\it ahcc.} {\it wantQflag}$	X	X	integer number	or simulate) end of each subhour	Nz if cooling desired (texwant < ten) regardless of sched, etc. docoils—>cpestimate.

Name	Input?	Runtime?	Type	Variability	Description
ahcc.tewd	X	X	number	end of each	_
- l lO	v	v	1	subhour	
ahcc.chwQ	X	X	number	end of each	_
				subhour	
ahcc.tr	X	X	number	end of	_
W1100.01	11	11	namoer	each	
				subhour	
ahcc.cpTsPr	X	X	number	end of	Cp ts for which coil last computed,
•				each	re compute-flagging coil from plant
				$\operatorname{subhour}$	
ahcc.trPr	X	X	number	end of	Coil tr at last coil compute, re
				each	call-flagging cp from coil model
				$\operatorname{subhour}$	
ahcc.full Load Wet	X	X	integer	end of	True if chw coil wet @ full load,
			number	each	
			_	subhour	
ahcc.frCprOn	X	X	number	end of	_
				each	
1 (1111.17)	37	37	1	subhour	
ahcc.tWbEn	X	X	number	end of	_
				each subhour	
ahcc.hen	X	X	number	end of	
ance.nen	Λ	Λ	number	end of each	_
				subhour	
ahcc.tDbCnd	X	X	number	end of	_
ance.tDbena	11	11	namber	each	
				subhour	
ahcc.efecO	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
ahcc.capt	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
ahcc.caps	X	X	number	end of	_
				each	
			_	subhour	
ahcc.plrVf	X	X	number	end of	_
				each	
1 1.0	37	37	1	subhour	
ahcc.plrSens	X	X	number	end of	_
				each	
nhaa as	X	X	number	subhour end of	
ahcc.qs	Λ	Λ	number	end or each	_
				each subhour	
ahcc.ql	X	X	number	end of	_
ano.qi	11	11	numoci	each	
				subhour	
				Sasmour	

Name	Input?	Runtime?	Type	Variability	Description
ahcc.xLGain	X	X	number	end of each	Condensation heat added to air (const enthalpy) to fix
ahcc.xLGainYr	X	X	number	subhour end of each	supersaturated wen, this subhr cumulative over run, for message at end run.
ahcc.nSubhrsLX	X	X	number	subhour end of each	Number of subhours in which supersaturated entering air fixed
ahcc.minTLtd	X	X	integer number	subhour end of each subhour	Output limited by mintevap b4 reaching ahtsmn (dx, 7-95)
ahcc.cfm2Few	X	X	integer number	end of each subhour	Too little flow to permit sizing coil to meet load at min temp (dx, 7-95)
tu1	X	X	integer number	run start time (of each phase, autoSize or	Chain head: tub ss of 1st terminal for air handler. next is tu.nxtu4a.
zhx1	X	X	integer number	simulate) run start time (of each phase, autoSize or	Chain head of ah's zhx's (zone hvac xfers): 0 or zhxb subscript of first. next: zhx.nxzhx4a.
ahMode	X	X	unrecognized	each	What ah is doing: set to: ahoff/ahfan/ahheating/ahcooling/ahon(normal
ts	X	X	number	subhour end of each	_
WS	X	X	number	subhour end of each subhour	-
wsls	X	X	number	subhourly	_
airxTs	X	X	number	end of each subhour	_
tsMnFo	X	X	number	end of each subhour	_
tsMnFoOk	X	X	integer number	end of each subhour	True if tsmnfo has been calc'd since last ahestimate/ahcompute. set/used in gettsmnfo().
tsMxFo	X	X	number	end of each subhour	

Name	Input?	Runtime?	Type	Variability	Description
tsMxFoOk	X	X	integer number	end of each	True if tsmxfo has been calc'd since last ahestimate/ahcompute.
t n	X	X	numbar	subhour end of	set/used in gettsmxfo().
tr	Λ	Λ	number	end of each	_
				subhour	
wr	X	X	number	end of	_
				each	
				subhour	
cr	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
cMxfcc	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
frFanOn	X	X	number	end of	_
				each	
				subhour	
leakCOn	X	X	number	end of	_
				each	
	37	37	1	subhour	
tr1	X	X	number	end of	_
				each subhour	
wr1	X	X	number	end of	
WII	Λ	Λ	number	end of each	_
				subhour	
cr1	X	X	number	end of	_
CII	71	71	number	each	
				subhour	
tr2	X	X	number	end of	_
				each	
				subhour	
rfanQ	X	X	number	end of	Return fan power copied at
•				each	commitment to this iteration (rfan.q
				subhour	is next iter)
tmix	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
wen	X	X	number	end of	_
				each	
				$\operatorname{subhour}$	
cmix	X	X	number	end of	_
				each	
1/1/41 - 17	37	v	1	subhour	
dtMixEn	X	X	number	end of	_
				each	
ton	v	v		subhour	
ten	X	X	number	end of	_
				each	
				subhour	

Name	Input?	Runtime?	Type	Variability	Description
cen	X	X	number	end of each subhour	_
men	X	X	number	end of each	-
tex	X	X	number	subhour end of	_
wex	X	X	number	each subhour end of	_
				each subhour	
tex1	X	X	number	end of each subhour	_
dtExSen	X	X	number	end of each	-
tSen	X	X	number	subhour end of each	_
dtSenS	X	X	number	subhour end of each	-
aTs	X	X	number	subhour end of each	-
aWs	X	X	number	subhour end of each	-
trNx	X	X	number	subhour end of each	_
wrNx	X	X	number	subhour end of each	_
crNx	X	X	number	subhour end of each	-
cMxnx	X	X	number	subhour end of each	-
frFanOnNx	X	X	number	subhour end of each	-
leakCOnNx	X	X	number	subhour end of each	-
${ m tr}1{ m Nx}$	X	X	number	subhour end of each subhour	_

Name	Input?	Runtime?	Type	Variability	Description
wr1Nx	X	X	number	end of each	_
cr1Nx	X	X	number	subhour end of each	_
tr2Nx	X	X	number	subhour end of each	_
uUseAr	X	X	unregernized	subhour	'or' of tu.usear's at refine() entry,
uOseAI	Λ	Λ	unrecognized	each subhour	for detecting pegged terminals, set in zrat, tentative.
fcc	X	X	integer number	end of each hour	True if fan cycles: fan runs only fraction of subhour requested by control terminal, else off.
is ZN or ZN 2	X	X	integer number	end of each hour	True if ahtssp is zn or zn2 this hour 5-95.
tsSp1	X	X	number	end of each subhour	-
tsFullFlow	X	X	number	end of each	_
ecoEnabled	X	X	integer number	subhour end of each	True if economizer present and currently enabled
coilLockout	X	X	integer number	subhour end of each	True if cooling coil disabled by full-open non-integrated economizer
po	X	X	number	subhour end of each	Current fraction outside air
coilUsed	X	X	unrecognized	each	Coil in use, docoils to coilsendsubhr cunone, cuheat, or cucool. 12-3-92.
fanF	X	X	number	subhour end of each	"fan factor" used in determining current max flows. reduce when fan
fanFMax	X	X	number	subhour end of each	overloads. Fanf value for full flow: max tu vfmx/vfds, reflecting both vfmxh's
fanLimited	X	X	integer number	subhour end of each	& vfmxc's. True if using full capacity of fan without getting desired flow
coilLimited	X	X	integer number	subhour end of each	True if using full capacity of available coil without getting
tPossH	X	X	number	subhour end of each subhour	desired delta-t –

Name	Input?	Runtime?	Type	Variability	Description
tPossC	X	X	number	end of each subhour	_
ahClf	X	X	integer number	end of each subhour	Call-flag: set nz if must call ahcompute so it can test tr,cr etc to see if computation needed.
ahPtf	X	X	integer number	end of each subhour	Compute-flag: set if must call ahcompute and it should unconditionally recompute this ah:
ahPtf2	X	X	integer number	end of each subhour	Secondary flag for compute only after zones computed again, for non-convergence.

6.3 Battery

@Battery[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
meter	X	X	integer number	input time	Meter for system electricity production
endUse	X	X	integer number	autosize and simulate phase start time	End use of energy. defaults to "bt"
useUsrChg	X	X	integer number	run start time (of each phase, autoSize or simulate)	Yes: user specifies charge request;
controlAlg	X	X	unrecognized	hourly	Control algorithm choice
maxCap	X	X	number	run start time (of each phase, autoSize or simulate)	Maximum (usable) battery capacity in kwh
initSOE	X	X	number	run start time (of each phase, autoSize or simulate)	Initial state of energy $(0 \le \sec \le 1)$
initCycles	X	X	number	run start time (of each phase, autoSize or simulate)	Initial number of cycles on battery (>= 0)
chgEff	X	X	number	hourly	Battery efficiency while charging
dschgEff	X	X	number	hourly	Battery efficiency while discharging (fraction)
maxChgPwr	X	X	number	hourly	Maximum allowable charging power (kw)
maxDschgPwr	X	X	number	hourly	Maximum discharge power (kw)

Name	Input?	Runtime?	Type	Variability	Description
chgReq	X	X	number	end of each hour	Battery charge request (kw) +=charge;-=discharge
${\rm soeBegIvl}$	X	X	number	hourly	Battery soe at beginning of interval
loadSeen	X	X	number	end of each hour	The adjusted load seen by the battery for current hour (kw)
soe	X	X	number	end of each hour	Battery state of energy (soe) $(0 \le soe \le 1)$
soelh	X	X	number	hourly	Battery state of energy (soe) at end of prior hour
cycles	X	X	number	end of each hour	Accumulated battery cycles
cycleslh	X	X	number	hourly	Accumulated battery cycles, end of prior hour
energy	X	X	number	end of each hour	Current amount of energy in battery (kwh)
energylh	X	X	number	hourly	Amount of energy in battery (kwh)

6.4 boiler (owner: heatPlant)

@boiler[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
blrCap	X	X	number	autosize and simulate phase start time	Capacity (btuh). required input.
blrEffR	X	X	number	autosize and simulate phase start time	Efficiency at steady-state full load, default .80.
blrEirR	X	X	number	autosize and simulate phase start time	Energy input ratio (1/eff): alternate input; used internally.
blrPyEi.k[0]	X	X	number	autosize and simulate phase start time	_
blrPyEi.k[1]	X	X	number	autosize and simulate phase start time	-
blrPyEi.k[2]	X	X	number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
blrPyEi.k[3]	X	X	number	autosize and simulate phase start time	-
blrPyEi.k[4]	X	X	number	autosize and simulate phase start time	_
mtri	X	X	integer number	input time	Subscript of mtr to which to charge boiler input power, default none
blrp.gpm	X	X	number	run start time (of each phase, autoSize or simulate)	_
blrp.hdLoss	X	X	number	autosize and simulate phase start time	_
blrp.motEff	X	X	number	autosize and simulate phase start time	_
blrp.hydEff	X	X	number	autosize and simulate phase start time	_
blrp.ovrunF	X	X	number	run start time (of each phase, autoSize or simulate)	_
blrp.mtri	X	X	integer number	autosize and simulate phase start time	Subscript of mtr to which to charge boiler input power, default none
blrp.mw	X	X	number	run start time (of each phase, autoSize or simulate)	_
blrp.q	X	X	number	run start time (of each phase, autoSize or simulate)	Current output power level (excluding pump heat), share of total of connected coils & hx's
blrp.p	X	X	number	run start time (of each phase, autoSize or simulate)	Current input power
auxOn	X	X	number	hourly	Addl input energy used in proportion to plr when on, default 0, hourly vbl for future flexblty.

Name	Input?	Runtime?	Type	Variability	Description
auxOnMtri	X	X	integer number	input time	Mtr to which to charge "auxon"
auxOff	X	X	number	hourly	Addl input energy when off for part or all of subhr (proportional to 1-plr), for unforseen uses.
auxOffMtri	X	X	integer number	input time	Mtr for "auxoff"
auxOnAtall	X	X	number	hourly	Addl input energy used in toto when blr on for any part of subhour, for unforseen uses.
auxOnAtallMtri	X	X	integer number	input time	Mtr for "auzonatall"
auxFullOff	X	X	number	hourly	Additional input energy when off for entire subhour (as opposed to in proportion to 1-plr).
auxFullOffMtri	X	X	integer number	input time	Mtr to which auxfulloff is charged, default c.mtri.
nxBlr4hp	X	X	integer number	run start time (of each phase, autoSize or simulate)	0 or subscript of next boiler for same heatplant. 1st is heatplant.blr1.
used	X	X	integer number	run start time (of each phase, autoSize or simulate)	During input checking (cncult6.cpp), true if a stage uses this boiler
blrMode	X	X	unrecognized	end of each subhour	Mode this subhour: off or on. can be on with 0 q if in heatplant's 1st stage.
plr	X	X	number	end of each subhour	Part load ratio
q	X	X	number	end of each subhour	Current output power level (excluding pump heat), share of total of connected coils & hx's
p	X	X	number	end of each subhour	Current input power

Name	Input?	Runtime?	Type	Variability	Description
pAuxOn	X	X	number	end of each subhour	Blr-on proporotinal aux power this subhour
pAuxOff	X	X	number	end of each subhour	Blr-off proportional aux power this subhour
pAuxOnAtall	X	X	number	end of each subhour	Blr on-at-all aux power this subhour
pAuxFullOff	X	X	number	end of each subhour	Auxfulloff power this subhour

6.5 chiller (owner: coolPlant)

@chiller[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
chCapDs	X	X	number	autosize and	Capacity at
				simulate	chdsts,chdstcnd, btuh.
				phase start	required. negative
				$_{ m time}$	internally. niles capdsn.
chTsDs	X	X	number	autosize and	Temp leaving chiller at
				$\operatorname{simulate}$	which cheapds applies,
				phase start	default 44. niles
				$_{ m time}$	twsudsn.
chTcndDs	X	X	number	autosize and	Temp entering
				simulate	condenser (twodel
				phase start	value) for chcapds,
				$_{ m time}$	default 85. niles
1 D C	3.5	77	,		twenddsn.
chPyCapT.k[0]	X	X	number	run start	_
				time (of each	
				phase,	
				autoSize or	
chPyCapT.k[1]	X	X	number	$\begin{array}{c} { m simulate}) \\ { m run\ start} \end{array}$	
chr yCap1.k[1]	Λ	Λ	number	time (of each	_
				phase,	
				autoSize or	
				simulate)	
chPyCapT.k[2]	X	X	number	run start	_
om , eap : m[=]			11011110 01	time (of each	
				phase,	
				autoSize or	
				simulate)	
chPyCapT.k[3]	X	X	number	run start	_
				time (of each	
				phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
chPyCapT.k[4]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chPyCapT.k[5]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chPyCapT.k[6]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chCop	X	X	number	autosize and simulate phase start time	Full-load coefficient of performance (output btu/input btu) @ chtsds/chtcndds, reflecting
chEirDs	X	X	number	run start time (of each phase, autoSize or simulate)	Full-load eir (energy input ratio) @ chtsds/chtcndds, relecting motor and chiller efficiency.
${\rm chPyEirT.k[0]}$	X	X	number	run start time (of each phase, autoSize or simulate)	-
chPyEirT.k[1]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chPyEirT.k[2]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chPyEirT.k[3]	X	X	number	run start time (of each phase, autoSize or simulate)	_
chPyEirT.k[4]	X	X	number	run start time (of each phase, autoSize or simulate)	_

loading
default
ıldplr.
ng part
ult 0.1.
. must
ıldplr.
r
, default
eff, used
ne
hmtr")
g
0
g rgy used

Name	Input?	Runtime?	Type	Variability	Description
chpp.gpm	X	X	number	run start time (of each phase, autoSize or	-
chpp.hdLoss	X	X	number	simulate) autosize and simulate phase start	_
chpp.motEff	X	X	number	time autosize and simulate phase start	_
chpp.hydEff	X	X	number	time autosize and simulate phase start	_
chpp.ovrunF	X	X	number	time run start time (of each phase, autoSize or	-
chpp.mtri	X	X	integer number	simulate) autosize and simulate phase start time	Meter name ("chmtr") for accumulating compressor energy used by chiller,
chpp.mw	X	X	number	run start time (of each phase, autoSize or simulate)	by eniner, _
chpp.q	X	X	number	run start time (of each phase, autoSize or simulate)	This chiller's current primary output power to pri loop
chpp.p	X	X	number	run start time (of each phase, autoSize or simulate)	Compressor power input. also see chpp.p, chcp.p. (niles cndpmppwrin, prmpmppwrin, totpwrin)
chcp.gpm	X	X	number	run start time (of each phase, autoSize or simulate)	
chcp.hdLoss	X	X	number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
chcp.motEff	X	X	number	autosize and simulate phase start	_
chcp.hydEff	X	X	number	time autosize and simulate phase start	-
chcp.ovrunF	X	X	number	time run start time (of each phase,	-
chcp.mtri	X	X	integer number	autoSize or simulate) autosize and simulate phase start	Meter name ("chmtr") for accumulating compressor energy used
chcp.mw	X	X	number	time run start time (of each phase, autoSize or	by chiller,
chcp.q	X	X	number	simulate) run start time (of each phase, autoSize or	This chiller's current primary output power to pri loop
chcp.p	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	Compressor power input. also see chpp.p, chcp.p. (niles cndpmppwrin, prmpmppwrin,
auxOn	X	X	number	hourly	totpwrin) Addl input energy used in proportion to plr when on, default 0, hourly vbl for future flexblty.
auxOnMtri	X	X	integer	input time	Mtr to which to charge
auxOff	X	X	number number	hourly	"auxon" Addl input energy when off for part or all of subhr (proportional to 1-plr), for unforseen
auxOffMtri	X	X	integer	input time	uses. Mtr for "auxoff"
auxOnAtall	X	X	number number	hourly	Addl input energy used in toto when chiller on for any part of subhour, for unforseen uses.

Name	Input?	Runtime?	Type	Variability	Description
auxOnAtallMtri	X	X	integer number	input time	Mtr for "auxonatall"
auxFullOff	X	X	number	hourly	Additional input energy when off for entire subhour (as opposed to in proportion to 1-plr).
auxFullOffMtri	X	X	integer number	input time	Mtr to which auxfulloff is charged, default c.mtri.
nxCh4cp	X	X	integer number	run start time (of each phase, autoSize or simulate)	0 or subscript of next chiller in same coolplant. 1st is coolplant.ch1.
used	X	X	integer number	run start time (of each phase, autoSize or simulate)	Non-0 if a coolplant uses this chiller – else warning
eirMinUnldPlr	X	X	number	run start time (of each phase, autoSize or simulate)	Chpyeirul(minunldplr): precomputed energy input corr for false loading, prorate for cycling
chMode	X	X	unrecognized	end of each subhour	C_offonch_off or _on: whether this chiller is running, set by staging code.
cap	X	X	number	end of each subhour	_
q	X	X	number	end of each subhour	This chiller's current primary output power to pri loop
p	X	X	number	end of each subhour	Compressor power input. also see chpp.p, chcp.p. (niles cndpmppwrin, prmpmppwrin, totpwrin)
pAuxOn	X	X	number	end of each subhour	Chiller-on proporotinal aux power this subhour
pAuxOff	X	X	number	end of each subhour	Chiller-off proportional aux power this subhour
pAuxOnAtall	X	X	number	end of each subhour	Chiller on-at-all aux power this subhour
pAuxFullOff	X	X	number	end of each subhour	Auxfulloff power this subhour

6.6 construction

@construction [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
conU	X	_	number	input time	U-value. entered by user or calculated from associated layers (lrs). 0 allowed.
nLr	X	_	integer number	run start time (of each phase, autoSize or simulate)	0 or number of layers (in lr rat). layers are entered in order from inside out.
nFrmLr	X	_	integer number	run start time (of each phase, autoSize or simulate)	# framed layers: error if > 1; is-framed flag.
r	X	_	number	run start time (of each phase, autoSize or simulate)	Thermal resistance of layers accumulated here for conu
hc	X	_	number	run start time (of each phase, autoSize or simulate)	Accumulated heat capacity per square foot
rNom	X	_	number	run start time (of each phase, autoSize or simulate)	Nominal r value

6.7 coolPlant

@coolPlant[1..].

Name	Input?	Runtime?	Type	Variability	Description
name cpSched	X X	X X	string unrecognized	constant hourly	Schedule, hourly choice of off, avail (default), on.
cpTsSp	X	X	number	hourly	Supply temp cooling setpoint, hourly variable, default 44.
cpPipeLossF	X	X	number	autosize and simulate phase start time	Pipe "loss": heat gain equal to this fraction of largest stage <- change **
cpTowi	X	X	integer number	input time	Subscript of towerplant supporting this coolplant. input as name "cptowerplant". rqd.
cpStage1[0]	X	X	integer number	autosize and simulate phase start time	_
cpStage1[1]	X	X	integer number	autosize and simulate phase start time	_
cpStage1[2]	X	X	integer number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
cpStage1[3]	X	X	integer number	autosize and simulate phase start time	_
cpStage1[4]	X	X	integer number	autosize and simulate phase	_
cpStage1[5]	X	X	integer number	start time autosize and simulate phase	_
cpStage1[6]	X	X	integer number	start time autosize and simulate phase start time	-
cpStage1[7]	X	X	integer number	autosize and simulate phase start time	-
cpStage2[0]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[1]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[2]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[3]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[4]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[5]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[6]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage2[7]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no cpstage values entered:
cpStage3[0]	X	X	integer number	autosize and simulate phase start time	entered. –
cpStage3[1]	X	X	integer number	autosize and simulate phase	-
cpStage3[2]	X	X	integer number	start time autosize and simulate phase start time	_
cpStage3[3]	X	X	integer number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
cpStage3[4]	X	X	integer number	autosize and simulate phase start time	_
cpStage3[5]	X	X	integer number	autosize and simulate phase start time	_
cpStage3[6]	X	X	integer number	autosize and simulate phase start time	-
cpStage3[7]	X	X	integer number	autosize and simulate phase start time	-
cpStage4[0]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[1]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[2]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[3]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[4]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[5]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[6]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage4[7]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none(0).
cpStage5[0]	X	X	integer number	autosize and simulate phase start time	-
cpStage5[1]	X	X	integer number	autosize and simulate phase start time	-
cpStage5[2]	X	X	integer number	autosize and simulate phase start time	_
cpStage5[3]	X	X	integer number	autosize and simulate phase start time	-
cpStage5[4]	X	X	integer number	autosize and simulate phase start time	-

Name	Input?	Runtime?	Type	Variability	Description
cpStage5[5]	X	X	integer number	autosize and simulate phase start time	-
cpStage5[6]	X	X	integer number	autosize and simulate phase start time	-
cpStage5[7]	X	X	integer number	autosize and simulate phase start time	-
cpStage6[0]	X	X	integer number	autosize and simulate phase start time	_
cpStage6[1]	X	X	integer number	autosize and simulate phase start time	-
cpStage6[2]	X	X	integer number	autosize and simulate phase start time	-
cpStage6[3]	X	X	integer number	autosize and simulate phase	-
cpStage6[4]	X	X	integer number	start time autosize and simulate phase start time	-
cpStage6[5]	X	X	integer number	autosize and simulate phase start time	_
cpStage6[6]	X	X	integer number	autosize and simulate phase	_
cpStage6[7]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[0]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[1]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[2]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[3]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[4]	X	X	integer number	start time autosize and simulate phase	-
cpStage7[5]	X	X	integer number	start time autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
cpStage7[6]	X	X	integer number	autosize and simulate phase start time	-
cpStage7[7]	X	X	integer number	autosize and simulate phase start time	-
ch1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st chiller in this coolplant. next is chiller.nxch4cp.
ah1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st ah with chw coil served by this coolplant. next is ah.ahcc.nxah4cp.
nxCp4tp	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of next coolplant using same towerplant. 1st is towerplant.c1.
mwDsCoils	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[0]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[1]	X	X	number	run start time (of each phase, autoSize or simulate)	-
stgPPQ[2]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[3]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[4]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[5]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPPQ[6]	X	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
stgCPQ[0]	X	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[1]	X	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[2]	X	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[3]	X	X	number	run start time	_
0 11 1				(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[4]	X	X	number	run start time	_
0 61				(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[5]	X	X	number	run start time	_
20801 % [0]			1101111001	(of each phase,	
				autoSize or	
				simulate)	
stgCPQ[6]	X	X	number	run start time	_
50801 % [0]	11	21	namoor	(of each phase,	
				autoSize or	
				simulate)	
stgPMw[0]	X	X	number	run start time	_
sigi ww [o]	71	71	number	(of each phase,	
				autoSize or	
				simulate)	
stgPMw[1]	X	X	number	run start time	_
50g1 WW[1]	71	TL .	number	(of each phase,	
				autoSize or	
				simulate)	
stgPMw[2]	X	X	number	run start time	_
sigi mw[2]	1	Λ	number	(of each phase,	
				autoSize or	
				simulate)	
stgPMw[3]	X	X	number	run start time	_
sigi mw[5]	Λ	Λ	number	(of each phase,	
				autoSize or	
stgPMw[4]	X	X	number	simulate) run start time	_
orgi miw[4]	Λ	Λ	пашъег	(of each phase,	
				,	
				autoSize or	
ataDMr[E]	v	v	numb on	simulate)	
stgPMw[5]	X	X	number	run start time	_
				(of each phase,	
				autoSize or	
				$\operatorname{simulate})$	

Name	Input?	Runtime?	Type	Variability	Description
stgPMw[6]	X	X	number	run start time (of each phase, autoSize or	-
stgCMw[0]	X	X	number	simulate) run start time (of each phase,	-
stgCMw[1]	X	X	number	autoSize or simulate) run start time (of each phase,	_
stgCMw[2]	X	X	number	autoSize or simulate) run start time	_
50801111[2]	71	71	namser	(of each phase, autoSize or simulate)	
stgCMw[3]	X	X	number	run start time (of each phase, autoSize or	_
stgCMw[4]	X	X	number	simulate) run start time (of each phase, autoSize or	_
stgCMw[5]	X	X	number	simulate) run start time (of each phase, autoSize or	-
stgCMw[6]	X	X	number	simulate) run start time (of each phase, autoSize or	-
${ m stgN}$	X	X	integer number	simulate) run start time (of each phase, autoSize or	Max+1 used stage subscript 1-7 (used stages need not be
$\operatorname{stgMxCap}$	X	X	integer number	simulate) run start time (of each phase, autoSize or	contiguous) Subscript 0-6 of stage with most design power
mxCapDs	X	X	number	simulate) run start time (of each phase, autoSize or	-
mxPMw	X	X	number	simulate) run start time (of each phase, autoSize or	_
mxPMwOv	X	X	number	simulate) run start time (of each phase, autoSize or	-

Name	Input?	Runtime?	Type	Variability	Description
mxCondQ	X	X	number	run start time (of each phase, autoSize or	_
${\rm mxCondGpm}$	X	X	number	simulate) run start time (of each phase, autoSize or	-
qPipeLoss	X	X	number	simulate) run start time (of each phase, autoSize or	-
cpTs	X	X	number	simulate) end of each subhour	-
q	X	X	number	end of each subhour	_
qTow	X	X	number	end of each subhour	_
tTow	X	X	number	end of each subhour	_
mwTow	X	X	number	end of each subhour	_
tCnd	X	X	number	end of each subhour	_
cpClf	X	X	integer number	end of each subhour	Call-flag: set nz if must call cpcompute so it can test tr, etc to see if computation needed.
cpPtf	X	X	integer number	end of each subhour	Compute-flag: set if must call cpcompute and it should unconditionally recompute this plant
cpMode	X	X	unrecognized	end of each subhour	Mode this subhour: off or on: per cpsched; per demand for avail. set in cpestimate, cpcompute.
${\rm qLoadNx}$	X	X	number	end of each subhour	-
qLoad	X	X	number	end of each subhour	_
tr	X	X	number	end of each subhour	_
stgi	X	X	integer number	end of each subhour	Stage in use, 0-6 for cpstage1-7.
qNeed	X	X	number	end of each subhour	-
cap	X	X	number	end of each subhour	_
plr	X	X	number	end of each subhour	_

6.9	DHWDayUse
0.3	DII W Day USC

Name	Input?	Runtime?	Type	Variability	Description
puteTs	X	X	number	end of each subhour	_
cpTsSpPr	X	X	number	end of each subhour	For cpestimate
cpTsEstPr	X	X	number	end of each subhour	For cpestimate
${\rm cpModePr}$	X	X	unrecognized	end of each subhour	For cpcompute
trMxPr	X	X	number	end of each subhour	For cpcompute: tr-assuming-max-flow when last computed
qLoadPr	X	X	number	end of each subhour	For epcompute
mwTowPr	X	X	number	end of each subhour	For cpcompute, set by tpcompute
tTowPr	X	X	number	end of each subhour	For epcompute, set by tpcompute

6.8 DESCOND

@DESCOND[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
doy	X	X	integer number	input time	Calc date for this descond (1-365)
DB	X	X	number	input time	Design dry-bulb temp, f
MCDBR	X	X	number	input time	Coincident daily db range, f
MCWB	X	X	number	input time	Coincident wet-bulb temp, f
MCWBR	X	X	number	input time	Coincident daily wb range, f
wndSpd	X	X	number	input time	Wind speed, mph
tauB	X	X	number	input time	Beam tau
tauD	X	X	number	input time	Diffuse tau
ebnSlrNoon	X	X	number	input time	Solar noon beam normal, btuh/ft2
edhSlrNoon	X	X	number	input time	Solar noon diffuse horiz, btuh/ft2

6.9 DHWDayUse

@DHWDayUse [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_

Name	Input?	Runtime?	Type	Variability	Description
mult	X	X	number	hourly	Multiplier applied to all child dhwuse wuflows
wuSsBeg	X	X	integer number	run start time (of each phase, autoSize or simulate)	Initial ss
wuSsEnd	X	X	integer number	run start time (of each phase, autoSize or simulate)	Last ss+1
wuCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Count of child dhwuses

6.10 DHWHeater (owner: DHWSys)

@DHWHeater[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	number	run start time (of each phase, autoSize or	Count of identical water heaters (default
1	37	37	. 1	simulate)	1)
heatSrc	X	X	unrecognized	input time	Heat source
type	X	X	unrecognized	input time	Heater type
desc	X	X	string	input time	Probe-able description text
fcn	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Function of this dhwheater per whfcnxxx enum
ashpTy	X	X	unrecognized	input time	Air source heat pump type, required iff ashpx, else ignored
znTi	X	X	integer number	input time	Dhwheater location zone re tank loss
tEx	X	X	number	subhourly	_
ashpSrcZnTi	X	X	integer number	input time	Ashp source zone
ashpTSrc	X	X	number	subhourly	Ashp source temperature, f
ashpResUse	X	X	number	input time	Resistance heat parameter for
vol	X	X	number	run start time (of each phase, autoSize or simulate)	Actual storage tank vol, gal (not rated)

Name	Input?	Runtime?	Type	Variability	Description
UA	X	X	number	run start time (of each phase, autoSize or simulate)	Hpwh-type tank ua, btuh/f
insulR	X	X	number	run start time (of each phase, autoSize or simulate)	Hpwh-type tank insulation resistance, hr-f/btuh
inHtSupply	X	X	number	input time	Fractional tank height of supply inlet (0=bottom, 1=top)
in Ht Loop Ret	X	X	number	input time	Fractional tank height of loop return inlet(s) (0=bottom, 1=top)
EF	X	X	number	input time	Rated energy factor
LDEF	X	X	number	input time	Load-dependent energy factor
UEF	X	X	number	input time	Rated uniform energy factor
ratedFlow	X	X	number	input time	Max rated flow per uef test, gpm
annualFuel	X	X	number	input time	Annual fuel use per uef method, therms/yr
annualElec	X	X	number	input time	Annual electricity use per uef method, kwh/yr
cycLossFuel	X	X	number	run start time (of each phase, autoSize or simulate)	Derived startup fuel use (=cyclic loss) for instuef, btu/cycle
cycLossElec	X	X	number	run start time (of each phase, autoSize or simulate)	Derived startup electricity use (=cyclic loss) for instuef, btu/cycle
$\max Flow X$	X	X	number	run start time (of each phase, autoSize or simulate)	Derived max flow for instuef, gal/tick-f
$\max InpX$	X	X	number	run start time (of each phase, autoSize or simulate)	Input at max flow, btu/tick
eff	X	X	number	input time	Efficiency (aka recovery efficiency)

Name	Input?	Runtime?	Type	Variability	Description
SBL	X	X	number	input time	Standby loss, btuh
pilotPwr	X	X	number	hourly	Pilot light power, btuh
parElec	X	X	number	hourly	Parasitic electric use, w
tHWOut	X	X	number	hourly	_
stbyTicks	X	X	unrecognized	subhourly	Time since last draw, for hpwh and instuef, ticks
loadCFwdF	X	X	number	input time	Load carry-forward allowed (user input frac of capacity)
loadCFwdMax	X	X	number	input time	Max load carry-forward energy (from wh_loadcfwdf), btu
loadCFwd	X	X	number	subhourly	Current load carry forward, btu
nTickFullLoad	X	X	number	subhourly	Instuef: current subhour equiv full load ticks (fractional)
nColdStarts	X	X	number	subhourly	Instuef: current subhour # of cold startups
effSh	X	X	number	end of each subhour	Current subhour efficiency, used to support former hourly
operElec	X	X	number	run start time (of each phase, autoSize or simulate)	Electrical power during operation at rating conditions, btuh
stbyElec	X	X	number	run start time (of each phase, autoSize or simulate)	Electrical power during standby, w
resHtPwr	X	X	number	input time	Upper element resistance heating power, w
resHtPwr2	X	X	number	input time	Lower element resistance heating power, w
HPWH.HSCount	X	X	unrecognized	end of each subhour	# of hpwh heatsources in use for current config

Name	Input?	Runtime?	Type	Variability	Description
HPWH.tEx	X	X	number	end of each subhour	
HPWH.tASHPSrc	X	X	number	end of each subhour	Temp of heat pump air source, f
HPWH.qTXTick	X	X	number	end of each subhour	Current tick extra tank heat added lower tank nodes, btu
HPWH.nQTXNodes	X	X	unrecognized	end of each subhour	# of tank 1/12s used in hw_qtx extra tank heat
HPWH.fMixUse	X	X	number	end of each subhour	Factor for draw adjustment re hpwh setpoint > dhwsys::ws_tuse
HPWH.fMixRL	X	X	number	end of each subhour	Factor for loop return flow adjustment re hpwh setpoint > dhwsys::ws_tuse
${\rm HPWH.inElec}[0]$	X	X	number	end of each subhour	_
HPWH.inElec[1]	X	X	number	end of each subhour	_
HPWH.HPWHxBU	X	X	number	end of each subhour	_
HPWH.qEnv	X	X	number	end of each subhour	_
HPWH.qLoss	X	X	number	end of each subhour	_
HPWH.qHW	X	X	number	end of each subhour	_
HPWH.qTX	X	X	number	end of each subhour	Current subhr extra heat tank heat, kwh (not btu)
HPWH.tankTempSet	X	X	unrecognized	end of each subhour	Nz iff hpwh tank temp has been initialized
HPWH.tankHCNominal	X	X	number	end of each subhour	Nominal hpwh tank heat content, kwh (at 40 c)
HPWH.tankHCStart	X	X	number	end of each subhour	Current step starting tank heat content, kwh
HPWH.tHWOutF	X	X	number	end of each subhour	Current substep working total re calc of hw_thwout

Name	Input?	Runtime?	Type	Variability	Description
HPWH.nzDrawCount	X	X	unrecognized	end of each subhour	_
HPWH.tHWOut	X	X	number	end of each subhour	_
${\rm HPWH.bWriteCSV}$	X	X	unrecognized	end of each subhour	_
HPWH.balErrCount	X	X	unrecognized	end of each subhour	_
HPWH.balErrMax	X	X	number	end of each subhour	Maximum substep energy balance error for run, kwh
HPWHxBU	X	X	number	run start time (of each phase, autoSize or simulate)	_
qEnv	X	X	number	end of each subhour	_
qLoss	X	X	number	end of each subhour	_
qHW	X	X	number	end of each subhour	_
${\rm nzDrawCount}$	X	X	unrecognized	end of each subhour	_
${\bf bWriteCSV}$	X	X	unrecognized	end of each hour	_
totHARL	X	X	number	hourly	Cumulative recovery load at heater, btu
hrCount	X	X	unrecognized	hourly	# of hourly values included in wh_totharl
totOut	X	X	number	hourly	Total heat delivered to hot water, btu
inElecSh	X	X	number	end of each subhour	Primary electricity (including wh_parelec) (note not kwh)
in Elec BUSh	X	X	number	end of each subhour	Backup electricity (>0 only for hpwh resistance heat)
in Elec XBUSh	X	X	number	end of each subhour	"extra" backup (reheating to maintain ws_tuse)
inFuelSh	X	X	number	end of each subhour	Fuel (including wh_pilotpwr)
inElec	X	X	number	end of each hour	- Provp)

Name	Input?	Runtime?	Type	Variability	Description
inElecBU	X	X	number	end of each hour	Backup electricity (>0 only for hpwh resistance heat)
inElecXBU	X	X	number	end of each hour	"extra" backup (reheating to maintain ws tuse)
inFuel	X	X	number	end of each hour	Fuel (including wh_pilotpwr)
inElecTot	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total electricity, btu
inFuelTot	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total fuel, btu
elecMtri	X	X	integer number	input time	Meter for system electricity use (default = parent ws_elecmtri)
fuelMtri	X	X	integer number	input time	Meter for system fuel use (default = parent ws electmtri)
xBUEndUse	X	X	integer number	input time	Wh_elecmtri end use for separate accounting of wh hpwhxbu
unMetSh	X	X	unrecognized	end of each hour	Count of subhrs in this hour
unMetHrs	X	X	unrecognized	end of run (of each phase, autoSize or simulate)	Annual count of hrs having any wh_unmetsh
balErrCount	X	X	unrecognized	end of each subhour	_

6.11 DHWHeatRec (owner: DHWSys)

@DHWHeatRec [1..].

Name	Input?	Runtime?	Type	Variability	Description
name mult	X X	X X	string integer number	constant input time	– Multiplier
hwEndUse	X	X	integer number	input time	End use source for this device
type	X	X	unrecognized	input time	Type: c_dwhrtych_

Name	Input?	Runtime?	Type	Variability	Description
nFXDrain	X	X	integer number	input time	Number of fixtures (of type wr_whenduse) draining
nFXCold	X	X	integer number	input time	Number of fixtures (of type wr_whenduse) draining
feedsWH	X	X	integer number	input time	Iff c_noyesch_yes, potable output is plumbed to water heater
effRated	X	X	number	hourly	Rated effectiveness (generally csa rating value)
tdInDiff	X	X	number	hourly	Drain-side inlet water temp drop from fixture mixed temp, f
tdInWarmup	X	X	number	hourly	Drain-side inlet temp during warmup portion of draw
eff	X	X	number	end of each subhour	Effectiveness under current conditions
tpO	X	X	number	end of each subhour	Most recent potable-side output temp, f
vp	X	X	number	end of each subhour	Most recent potable-side flow, gpm

6.12 DHWLoop (owner: DHWSys)

@DHWLoop[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	integer number	input time	Multiplier: number of identical loops
wlpCount	X	X	integer number	run start time (of each phase, autoSize or simulate)	Total # of child dhwlooppumps
flow	X	X	number	hourly	Current loop recirculation max flow, gpm
runF	X	X	number	hourly	Current hour recirculation operation fraction

Name	Input?	Runtime?	Type	Variability	Description
tIn1	X	X	number	hourly	Entering temperature at
fUA	X	X	number	input time	1st dhwloopseg Ua adjustment factor for child dhwloopsegs
loss Makeup Pwr	X	X	number	hourly	Loss makeup heating (electrical) power, w
lossMakeupEff	X	X	number	hourly	Loss makeup heating efficiency
elecMtri	X	X	integer number	input time	Meter for loop electricity use (default = parent ws_elecmtri)
${\bf segTotals.count}$	X	X	number	run start time (of each phase, autoSize or simulate)	_
${\it segTotals.len}$	X	X	number	run start time (of each phase, autoSize or simulate)	-
${\it segTotals.vol}$	X	X	number	run start time (of each phase, autoSize or simulate)	-
${\it segTotals.exArea}$	X	X	number	run start time (of each phase, autoSize or simulate)	_
${\it segTotals.UA}$	X	X	number	run start time (of each phase, autoSize or simulate)	-
branchTotals.count	X	X	number	run start time (of each phase, autoSize or simulate)	_
branchTotals.len	X	X	number	run start time (of each phase, autoSize or simulate)	_
branchTotals.vol	X	X	number	run start time (of each phase, autoSize or simulate)	_
branch Totals. ex Area	X	X	number	run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
branchTotals.UA	X	X	number	run start time (of each phase, autoSize or simulate)	-
volRL	X	X	number	end of each hour	Current hour volume returned to water heater, gal
qLiqLP	X	X	number	end of each hour	Heat added to liquid by dhwlooppump(s), btu
HRLL	X	X	number	end of each hour	Current hour loop seg pipe losses, btu
HRLLnet	X	X	number	end of each hour	Wl_hrll adjusted for pump by pump heat and
HRBL	X	X	number	end of each hour	Current hour branch pipe loss, btu
t24WL	X	X	number	end of each hour	Current hour branch waste loss volume, gal
tRL	X	X	number	end of each hour	Current hour average return temp, f

6.13 DHWLoopBranch (owner: DHWLoopSeg)

@DHWLoopBranch[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
absSlr	X	X	number	subhourly	_
awAbsSlr	X	X	number	subhourly	_
epsLW	X	X	number	subhourly	_
zi	X	X	integer number	subhourly	_
F	X	X	number	subhourly	_
Fp	X	X	number	subhourly	_
frRad	X	X	number	subhourly	_
fSky	X	X	number	subhourly	_
fAir	X	X	number	subhourly	_
hcNat	X	X	number	end of each	_
				subhour	
hcFrc	X	X	number	end of each	_
				subhour	
hcMult	X	X	number	end of each	_
				subhour	
hxa	X	X	number	end of each	_
				subhour	

Name	Input?	Runtime?	Type	Variability	Description
hxr	X	X	number	end of each	_
				subhour	
hxtot	X	X	number	end of each	_
				subhour	
uRat	X	X	number	end of each	_
				subhour	
fRat	X	X	number	end of each	_
				subhour	
CX	X	X	number	end of each	_
			_	subhour	
$\operatorname{sgTarg.bm}$	X	X	number	end of each	_
			_	subhour	
$\operatorname{sgTarg.df}$	X	X	number	end of each	_
				subhour	
sgTarg.tot	X	X	number	end of each	_
				subhour	
sg	X	X	number	end of each	_
				subhour	
tSrf	X	X	number	end of each	_
				subhour	
tSrfls	X	X	number	subhourly	_
qrAbs	X	X	number	end of each	_
	37	37	1	subhour	
txa	X	X	number	end of each	_
	37	37	,	subhour	
txr	X	X	number	end of each	_
	37	37	1	subhour	
txe	X	X	number	end of each	_
	37	37	1	subhour	
W	X	X	number	end of each	_
C C	37	N.	1	subhour	
qSrf	X	X	number	end of each	_
DC	37	N.	. 1	subhour	
pDS	X	X	unrecognized	subhourly	_
len	X	X	number	input time	_
size	X	X	number	input time	_
insulK	X	X	number	input time	_
insulThk	X	X	number	input time	_
exH	X	X	number	input time	_
exCnd	X	X	integer number	input time	_
exT	X	X	number	hourly	_
totals.count	X	X	number	run start time (of	_
				each phase,	
				autoSize or	
1 1	3.7	V	1	simulate)	
totals.len	X	X	number	run start time (of	_
				each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
totals.vol	X	X	number	run start time (of each phase, autoSize or simulate)	-
totals.exArea	X	X	number	run start time (of each phase, autoSize or simulate)	_
totals.UA	X	X	number	run start time (of each phase, autoSize or simulate)	_
fRhoCpX	X	X	number	run start time (of each phase, autoSize or simulate)	_
fvf	X	X	number	end of each hour	_
tIn	X	X	number	end of each hour	_
tOut	X	X	number	end of each hour	_
PLWF	X	X	number	end of each hour	_
PLCD	X	X	number	end of each hour	_
PL	X	X	number	end of each hour	_
mult	X	X	number	input time	# of identical branches
fUA	X	X	number	input time	Ua adjustment factor for this branch
fWaste	X	X	number	hourly	Waste fraction
flow	X	X	number	hourly	Assumed flow during use, gpm
HBUL	X	X	number	end of each hour	when water in use
HBWL	X	X	number	end of each hour	waste loss
t24WL	X	X	number	end of each hour	waste loss volume, gal

6.14 DHWLoopHeater

@DHWLoopHeater[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
mult	_	X	number	run start time (of each phase, autoSize or simulate)	_
heatSrc	_	X	unrecognized	input time	_
type	_	X	unrecognized	input time	_
desc	_	X	string	input time	_

Name	Input?	Runtime?	Type	Variability	Description
fcn	_	X	unrecognized	run start time (of each phase,	_
				autoSize or	
				simulate)	
ashpTy	_	X	unrecognized	input time	_
znTi	_	X	integer number	input time	_
tEx	_	X	number	subhourly	_
ashpSrcZnTi	_	X	integer number	input time	_
ashpTSrc	_	X	number	subhourly	_
ashpResUse	_	X	number	input time	_
vol	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
T T A		37	1	simulate)	
UA	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
. 10		37	1	simulate)	
insulR	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
• TT: 0 1		37	,	simulate)	
inHtSupply	_	X	number	input time	_
inHtLoopRet	_	X	number	input time	_
EF 	_	X	number	input time	_
LDEF	_	X	number	input time	_
UEF	_	X	number	input time	_
ratedFlow	_	X	number	input time	_
annualFuel	_	X	number	input time	_
annualElec	_	X	number	input time	_
cycLossFuel	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
cycLossElec	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
$\max Flow X$	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
$\max InpX$	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
eff	_	X	number	input time	_
SBL	_	X	number	input time	_
$\operatorname{pilotPwr}$	_	X	number	hourly	_
parElec	_	X	number	hourly	_
tHWOut	_	X	number	hourly	_
stbyTicks		X	unrecognized	subhourly	

Name	Input?	Runtime?	Type	Variability	Description
loadCFwdF	_	X	number	input time	_
loadCFwdMax	_	X	number	input time	_
loadCFwd	_	X	number	$\operatorname{subhourly}$	_
nTickFullLoad	_	X	number	$\operatorname{subhourly}$	_
nColdStarts	_	X	number	$\operatorname{subhourly}$	_
effSh	_	X	number	end of each	_
				$\operatorname{subhour}$	
operElec	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
stbyElec	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
resHtPwr	_	X	number	input time	_
resHtPwr2	_	X	number	input time	_
HPWH.HSCount	_	X	unrecognized	end of each	_
				$\operatorname{subhour}$	
HPWH.tEx	_	X	number	end of each	_
				$\operatorname{subhour}$	
HPWH.tASHPSrc	_	X	number	end of each	_
				$\operatorname{subhour}$	
HPWH.qTXTick	_	X	number	end of each	_
				subhour	
HPWH.nQTXNodes	_	X	unrecognized	end of each	_
			_	subhour	
HPWH.fMixUse	_	X	number	end of each	_
				subhour	
HPWH.fMixRL	_	X	number	end of each	_
TIDIUM DI [o]		37	1	subhour	
HPWH.inElec[0]	_	X	number	end of each	_
11D11111 · D1 [4]		37	1	subhour	
HPWH.inElec[1]	_	X	number	end of each	_
HDIVII HDIVII DII		37	1	subhour	
HPWH.HPWHxBU	_	X	number	end of each	_
прил р		W	1	subhour	
HPWH.qEnv	_	X	number	end of each	_
HDWH I		V	1	subhour	
HPWH.qLoss	_	X	number	end of each	_
HDWH -HW		v	1	subhour	
HPWH.qHW	_	X	number	end of each	_
IIDWII - TV		v	1	subhour	
HPWH.qTX	_	X	number	end of each	_
IIDWII 4 1-TT C - 4		v		subhour	
HPWH.tankTempSet	_	X	unrecognized	end of each	_
UDWU tombilOM: 1		v	numban	subhour	
HPWH.tankHCNominal	_	X	number	end of each	_
IIDWII 4 1 II CC - 4		V		subhour	
HPWH.tankHCStart	_	X	number	end of each	_
				subhour	

Name	Input?	Runtime?	Type	Variability	Description
HPWH.tHWOutF	_	X	number	end of each	_
HDIIII D. G.		37		subhour	
HPWH.nzDrawCount	_	X	unrecognized	end of each	_
		37	1	subhour	
HPWH.tHWOut	_	X	number	end of each	_
IIDWII I W: L-CCV		X		subhour	
HPWH.bWriteCSV	_	Λ	unrecognized	end of each subhour	_
HPWH.balErrCount		X	unrecognized	end of each	
IIF WII.DaiEIICount	_	Λ	unrecognized	subhour	_
HPWH.balErrMax	_	X	number	end of each	_
III WII.DaiEIIWax		Λ	number	subhour	
HPWHxBU	_	X	number	run start time	_
III WIIXDO		Λ	number	(of each phase,	
				autoSize or	
				simulate)	
qEnv	_	X	number	end of each	_
qLiiv		71	number	subhour	
qLoss	_	X	number	end of each	_
42000			114111001	subhour	
qHW	_	X	number	end of each	_
1				subhour	
nzDrawCount	_	X	unrecognized	end of each	_
			O .	subhour	
bWriteCSV	_	X	unrecognized	end of each	_
				hour	
totHARL	_	X	number	hourly	_
hrCount	_	X	unrecognized	hourly	_
totOut	_	X	number	hourly	_
inElecSh	_	X	number	end of each	_
				$\operatorname{subhour}$	
inElecBUSh	_	X	number	end of each	_
				$\operatorname{subhour}$	
inElecXBUSh	_	X	number	end of each	_
				subhour	
inFuelSh	_	X	number	end of each	_
. 171		37	,	subhour	
inElec	_	X	number	end of each	_
· DI DII		V	1	hour	
inElecBU	_	X	number	end of each	_
inElecXBU		X	numb on	hour end of each	
IIIEIeCADU	_	Λ	number	hour	_
inFuel		X	numban	end of each	
mr, net	_	Λ	number	end of each hour	_
inElecTot		X	number	end of run (of	_
III FIEC TOU	_	Λ	number	each phase,	_
				autoSize or	
				simulate)	
				Sillidia (C)	

Name	Input?	Runtime?	Type	Variability	Description
inFuelTot	_	X	number	end of run (of each phase, autoSize or simulate)	-
elecMtri	_	X	integer number	input time	_
fuelMtri	_	X	integer number	input time	_
xBUEndUse	_	X	integer number	input time	_
unMetSh	_	X	unrecognized	end of each hour	_
unMetHrs	_	X	unrecognized	end of run (of each phase, autoSize or simulate)	_
balErrCount	_	X	unrecognized	end of each subhour	_

6.15 DHWLoopPump (owner: DHWLoop)

@DHWLoopPump[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	integer number	input time	_
elecMtri	X	X	integer number	input time	_
pwr	X	X	number	hourly	_
liqHeatF	X	X	number	hourly	_
inElec	X	X	number	end of each hour	_
U0026: Internal error	_	_	ous class name 'DHWLo	opHeater':	_
there are TWO run	_	_	h that .what. Change	one of them.	_

6.16 DHWLoopSeg (owner: DHWLoop)

@DHWLoopSeg[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
absSlr	X	X	number	subhourly	_
awAbsSlr	X	X	number	subhourly	_
epsLW	X	X	number	subhourly	_
zi	X	X	integer number	subhourly	_
F	X	X	number	subhourly	_
Fp	X	X	number	subhourly	_
frRad	X	X	number	subhourly	_
fSky	X	X	number	subhourly	_
fAir	X	X	number	subhourly	_

Name	Input?	Runtime?	Type	Variability	Description
hcNat	X	X	number	end of each	_
				subhour	
hcFrc	X	X	number	end of each	_
				$\operatorname{subhour}$	
hcMult	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxa	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxr	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxtot	X	X	number	end of each	_
				subhour	
uRat	X	X	number	end of each	_
				subhour	
fRat	X	X	number	end of each	_
				$\operatorname{subhour}$	
cx	X	X	number	end of each	_
				$\operatorname{subhour}$	
$\operatorname{sgTarg.bm}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
$\operatorname{sgTarg.df}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
sgTarg.tot	X	X	number	end of each	_
				subhour	
sg	X	X	number	end of each	_
				subhour	
tSrf	X	X	number	end of each	_
				subhour	
tSrfls	X	X	number	subhourly	_
qrAbs	X	X	number	end of each	_
				subhour	
txa	X	X	number	end of each	_
				subhour	
txr	X	X	number	end of each	_
				subhour	
txe	X	X	number	end of each	_
	37	77	,	subhour	
W	X	X	number	end of each	_
C. C	37	37	1	subhour	
qSrf	X	X	number	end of each	_
Da	N.	v	. 1	subhour	
pDS	X	X	unrecognized	subhourly	_
len ·	X	X	number	input time	_
size	X	X	number	input time	_
insulK	X	X	number	input time	_
insulThk	X	X	number	input time	_
exH	X	X	number	input time	_
exCnd	X	X	integer number	input time	_
exT	X	X	number	hourly	_

Name	Input?	Runtime?	Type	Variability	Description
totals.count	X	X	number	run start time (of each phase, autoSize or	_
totals.len	X	X	number	simulate) run start time (of each phase,	-
totals.vol	X	X	number	autoSize or simulate) run start time (of each phase,	_
${\it totals.} {\it exArea}$	X	X	number	autoSize or simulate) run start time (of each phase,	_
totals.UA	X	X	number	autoSize or simulate) run start time (of each phase,	_
fRhoCpX	X	X	number	autoSize or simulate) run start time (of each phase, autoSize or	_
fvf	X	X	number	simulate) end of each hour	_
tIn	X	X	number	end of each	_
tOut	X	X	number	hour end of each	_
PLWF	X	X	number	hour end of each	_
PLCD	X	X	number	hour end of each	_
PL	X	X	number	hour end of each	_
ty	X	X	unrecognized	hour input time	Type: c_dhwlsegtych_sup
wbCount	X	X	number	run start time (of each phase, autoSize or	/ _ret Total # of child dhwloopbranchs
fNoDraw	X	X	number	simulate) hourly	Fraction of hour when there is no draw
LL	X	X	number	end of each	Current hour loop
BL	X	X	number	hour end of each hour	loss, btu Current hour child dhwloopbranch losses, btu

Name	Input?	Runtime?	Type	Variability	Description
t24WL	X	X	number	end of each hour	Current hour child dhwloopbranch waste loss volume, gal

6.17 DHWmeter

@DHWmeter[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
Y.total	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.unknown	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.faucet	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.shower	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.bath	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.cwashr	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
Y.dwashr	X	X	number	end of run (of each phase,	_
				autoSize or simulate)	
M.total	X	X	number	end of each month	_
M.unknown	X	X	number	end of each month	_
M.faucet	X	X	number	end of each month	_
M.shower	X	X	number	end of each month	_
M.bath	X	X	number	end of each month	_
M.cwashr	X	X	number	end of each month	_
M.dwashr	X	X	number	end of each month	_
D.total	X	X	number	end of each day	_
D.unknown	X	X	number	end of each day	_
D.faucet	X	X	number	end of each day	_
D.shower	X	X	number	end of each day	_
D.bath	X	X	number	end of each day	_
D.cwashr	X	X	number	end of each day	_
D.dwashr	X	X	number	end of each day	_
H.total	X	X	number	end of each hour	_
H.unknown	X	X	number	end of each hour	_
H.faucet	X	X	number	end of each hour	_
H.shower	X	X	number	end of each hour	_
H.bath	X	X	number	end of each hour	_
H.cwashr	X	X	number	end of each hour	_
H.dwashr	X	X	number	end of each hour	_

6.18 DHWPump (owner: DHWSys)

@DHWPump[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	integer number	input time	Count of identical dhw pumps (default 1)
elecMtri	X	X	integer number	input time	Meter for pump electricity use (default = parent ws_elecmtri)
pwr	X	X	number	hourly	Pump power, w
liqHeatF	X	X	number	hourly	Fraction of wp_pwr added to liquid stream
inElec	X	X	number	end of each hour	Electricity (note not kwh)

$6.19 \quad DHWSolarCollector \ (owner: \ DHWSolarSys)$

@DHWSolar Collector [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	number	input time	Multiplier (for multiple panels). default 1.
multLR	X	X	number	end of run (of each phase, autoSize or simulate)	Last run multiplier, re probing in chained runs
area	X	X	number	input time	Srcc collector area, ft2
areaTot	X	X	number	run start time (of each phase, autoSize or simulate)	Total area, ft2 (=sc_area*sc_mult)
FRUL	X	X	number	input time	Srcc slope
FRTA	X	X	number	input time	Srcc intercept
tilt	X	X	number	input time	Array tilt, radians (input as degrees)
azm	X	X	number	input time	Array azimuth, radians (input as degrees)
poa	X	X	number	end of each hour	Plane of array incidence, btu/h-ft2
Qpoa	X	X	number	end of each hour	Plane of array incident heat, btu
eff	X	X	number	end of each hour	Fraction of incident heat added to the fluid
Qfluid	X	X	number	end of each hour	Heat added to the fluid, btu
tOutlet	X	X	number	end of each hour	Outlet temperature,
tOutletP	X	X	number	end of each hour	Potential outlet temperature, f

Name	Input?	Runtime?	Type	Variability	Description
pumpPwr pumpLiqHeatF	X X	X X	number number	input time input time	Pump power, w Fraction of sc_pumppwr added
pumpFlow	X	X	number	input time	to liquid stream Rated flow rate,
pumpOnDeltaT	X	X	number	input time	gpm Temperature difference between
pumpOffDeltaT	X	X	number	input time	the Temperature difference between
tickVol	X	X	number	end of each subhour	the Volume moved during this tick, gal
tickOp	X	X	unrecognized	end of each subhour	Nz iff pump is operating during prior tick
mdot	X	X	number	end of each hour	Actual mass flow rate, lb/hr
pumpInElec	X	X	number	end of each hour	Actual electricity use (note not kwh)

$6.20 \quad DHWSolarSys$

@DHWSolarSys[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
elecMtri	X	X	integer number	input time	Meter for pump and parasitic electricity use
endUse	X	X	integer number	input time	End use of pump energy. defaults to "dhw"
parElec	X	X	number	hourly	Parasitic electricity use, w
wsCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	# of dhwsyss supplied by this dhwsolarsys
scAreaTot	X	X	number	run start time (of each phase, autoSize or simulate)	Total of child dhwsolarcollectors, ft2
scCount	X	X	number	run start time (of each phase, autoSize or simulate)	# of child dhwsolarcollectors (not necessarily # of panels)

Name	Input?	Runtime?	Type	Variability	Description
tank.HSCount	X	X	unrecognized	end of each subhour	_
tank.tEx	X	X	number	end of each subhour	_
tank.tASHPSrc	X	X	number	end of each subhour	-
${\rm tank.qTXTick}$	X	X	number	end of each subhour	_
tank.nQTXNodes	X	X	unrecognized	end of each subhour	_
${\rm tank.fMixUse}$	X	X	number	end of each	_
tank.fMixRL	X	X	number	subhour end of each	_
tank.inElec[0]	X	X	number	subhour end of each	_
tank.inElec[1]	X	X	number	subhour end of each	_
tank.HPWHxBU	X	X	number	subhour end of each	_
tank.qEnv	X	X	number	subhour end of each	_
tank.qLoss	X	X	number	subhour end of each	_
tank.qHW	X	X	number	subhour end of each	_
tank.qTX	X	X	number	subhour end of each	_
tank.tankTempSet	X	X	unrecognized	subhour end of each	_
tank.tankHCNominal	X	X	number	subhour end of each	_
tank.tankHCStart	X	X	number	subhour end of each	_
tank.tHWOutF	X	X	number	subhour end of each	_
tank.nzDrawCount	X	X	unrecognized	subhour end of each	_
tank.tHWOut	X	X	number	subhour end of each	_
tank.bWriteCSV	X	X	unrecognized	subhour end of each	_
tank.balErrCount	X	X	unrecognized	subhour end of each	_
tank.balErrMax	X	X	number	subhour end of each	
				$\operatorname{subhour}$	— —
tankVol	X	X	number	run start time (of each phase, autoSize or simulate)	Tank volume, gal

Name	Input?	Runtime?	Type	Variability	Description
tankUA	X	X	number	run start time (of each phase, autoSize or simulate)	Tank water-to-air ua, btuh/f
tankInsulR	X	X	number	run start time (of each phase, autoSize or simulate)	Total tank insulation resistance, hr-f/btuh
tankZnTi	X	X	integer number	input time	Tank location zone re tank loss
tankTEx	X	X	number	hourly	Surrounding temperature, f for tank loss
tankQLoss	X	X	number	end of each hour	Current hour's total tank loss, btu
tankHXEff	X	X	number	hourly	Tank heat exchanger effectiveness
tankTHxLimit	X	X	number	input time	Tank temp limit, f; collector heat
${\it over} {\it HeatTkCount}$	X	X	unrecognized	end of each hour	# of ticks in this hour when collector did not run
tickVol	X	X	number	end of each subhour	Current tick draw to dhwsyss, gal
tickVolT	X	X	number	end of each subhour	Current tick (vol * inlet temp), gal-f
drawVol	X	X	number	end of each hour	Current hour total draw, gal
$\operatorname{tankQGain}$	X	X	number	end of each hour	Current hour's total gain from solar hx, btu
tankTInlet	X	X	number	end of each hour	Tank inlet temperature, f
tankTOutlet	X	X	number	end of each hour	Tank outlet temperature, f
tankTHx	X	X	number	end of each hour	Nominal tank heat exchange temp, f
scFluidSpHt	X	X	number	input time	Collector working fluid specific heat, btu/lbm-f
scFluidDens	X	X	number	input time	Collector working fluid density, lb/ft3
scFluidVHC	X	X	number	run start time (of each phase, autoSize or simulate)	Collector working fluid volumetric heat capacity, btu/gal-f
$\operatorname{scTInlet}$	X	X	number	end of each hour	Mixed collector inlet temperature, f

Name	Input?	Runtime?	Type	Variability	Description
scTOutlet	X	X	number	end of each hour	Mixed collector outlet temperature, f
overHeatHrCount	X	X	unrecognized	end of run (of each phase, autoSize or simulate)	Number of hours during which collector did not
SSFAnnual	X	X	number	end of run (of each phase, autoSize or simulate)	Annual solar savings fraction

6.21 DHWSys

@DHWSys[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
calcMode	X	X	unrecognized	input time	Calculation mode
central DHWSYSi	X	X	integer	input time	Index of central
			number		(parent) dhwsys, 0 if none
mult	X	X	number	input time	Multiplier: model as ws_mult identical systems
elecMtri	X	X	integer	input time	Meter for system
			number	-	electricity use
fuelMtri	X	X	integer	input time	Meter for system
			number	•	fuel use
inElec	X	X	number	end of each	Electricity (note
				hour	not kwh)
inFuel	X	X	number	end of each	Fuel (for
				hour	generality, always 0?)
swTi	X	X	integer	input time	Dhwsolarsys
			number		serving preheated
					water to this
					system
SSFAnnualSolar	X	X	number	end of run (of	Annual solar heat
				each phase,	added (numerator
				autoSize or	to calculate ssf),
				simulate)	gal-f
SSFAnnualReq	X	X	number	end of run (of	Annual heat
				each phase,	required
				autoSize or	(denominator to
				simulate)	calculate ssf),
				•	gal-f
SSFAnnual	X	X	number	end of run (of	Annual solar
				each phase,	savings fraction
				autoSize or	
				simulate)	
				,	

Name	Input?	Runtime?	Type	Variability	Description
tInlet	X	X	number	end of each hour	Current hour cold water inlet temp, f for this dhwsys
tInletX	X	X	number	end of each hour	Hour average adjusted cold water temp, f
hwUse	X	X	number	hourly	Current hour hot water use (at fixtures), gal
iTk0DWHR	X	X	unrecognized	end of each hour	1st tick with possible dwhr
iTkNDWHR	X	X	unrecognized	end of each hour	Last+1 tick with possible dwhr
qDWHR	X	X	number	end of each hour	Hour total heat recovered by all dhwheatrec devices, btu
WHhwMtri	X	X	integer number	input time	Dhwmtr for hot water use at water heater(s) (= ws_whuse), gal
FXhwMtri	X	X	integer number	input time	Dhwmtr for hot water use at fixtures (= ws_fxusemix), gal
whUseNoHR	X	X	number	end of each hour	Current hour virtual hot water use w/o heat recovery, gal
${\bf fxUse Mix.total}$	X	X	number	end of each hour	
fxUseMix.unknown	X	X	number	end of each hour	_
fxUseMix.faucet	X	X	number	end of each hour	_
fxUseMix.shower	X	X	number	end of each hour	_
fxUseMix.bath	X	X	number	end of each hour	_
fxUseMix.cwashr	X	X	number	end of each hour	_
fxUseMix.dwashr	X	X	number	end of each hour	_
fxUseMixTot[0]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[1]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal

Name	Input?	Runtime?	Type	Variability	Description
fxUseMixTot[2]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[3]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[4]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[5]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[6]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixTot[7]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total (mixed) water use at fixtures, gal
fxUseMixLH.total	X	X	number	hourly	_
fxUseMixLH.unknown	X	X	number	hourly	_
fxUseMixLH.faucet	X	X	number	hourly	_
fxUseMixLH.shower	X	X	number	hourly	_
fxUseMixLH.bath	X	X	number	hourly	_
fxUseMixLH.cwashr	X	X	number	hourly	_
fxUseMixLH.dwashr	X	X	number	hourly	_
whUse.total	X	X	number	end of each hour	_
whUse.unknown	X	X	number	end of each hour	_
whUse.faucet	X	X	number	end of each hour	_
whUse.shower	X	X	number	end of each hour	_
whUse.bath	X	X	number	end of each hour	_
whUse.cwashr	X	X	number	end of each hour	_
whUse.dwashr	X	X	number	end of each hour	_
whUseTot[0]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal

Name	Input?	Runtime?	Type	Variability	Description
whUseTot[1]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[2]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[3]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[4]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[5]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[6]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
whUseTot[7]	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total hot water use (at ws_tuse), gal
drawMaxDur	X	X	integer number	input time	Draw duration window, hr (user input, default 4)
drawMax	X	X	number	input time	Largest draw total in any conseq ws_drawmaxdur hrs, gal
loadMaxDur	X	X	integer number	input time	Load duration window, hr (user input, default 12)
loadMax	X	X	number	input time	Largest load total in any conseq ws_loadmaxdur hrs, btu
tUse	X	X	number	hourly	Hot water use temp, f
tSetpoint	X	X	number	hourly	Dhwheater set point (for all dhwheaters using hpwh model), f

Name	Input?	Runtime?	Type	Variability	Description
tSetpointLH	X	X	number	hourly	Dhwloopheater set point (for all child dhwloopheaters using hpwh model), f
tOutPrimLT	X	X	number	end of each subhour	Primary water heater outlet temp, f
dayUsei	X	X	integer number	daily	Idx of dhwdayuse
dayUseName	X	X	string	daily	Name of dhwdayuse (resolved at runtime)
${\it child} DHWDAYUSEF lag$	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Nz iff at least one child dhwsys has specified ws_dayusename
parElec	X	X	number	hourly	Electrical
SDLM	X	X	number	input time	parasitic power, w Standard distribution loss multiplier
DSM	X	X	number	input time	Distribution system multiplier (appe table re-2)
SSF	X	X	number	hourly	Solar savings fraction
WF	X	X	number	hourly	Waste factor applied to ws_hwuse and dhwuses
$\operatorname{drawCount}[0]$	X	X	unrecognized	end of each hour	_
$\operatorname{drawCount}[1]$	X	X	unrecognized	end of each hour	_
$\operatorname{drawCount}[2]$	X	X	unrecognized	end of each hour	_
$\operatorname{drawCount}[3]$	X	X	unrecognized	end of each hour	-
drawCount[4]	X	X	unrecognized	end of each hour	_
$\operatorname{drawCount}[5]$	X	X	unrecognized	end of each hour	-
drawsPerDay[0]	X	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
drawsPerDay[1]	X	X	number	run start time (of each phase, autoSize or simulate)	_
drawsPerDay[2]	X	X	number	run start time (of each phase, autoSize or	-
drawsPerDay[3]	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	-
drawsPerDay[4]	X	X	number	run start time (of each phase, autoSize or simulate)	_
drawsPerDay[5]	X	X	number	run start time (of each phase, autoSize or simulate)	_
${\rm drawDurF}[0]$	X	X	number	end of each hour	Water heater draw duration factors by end use
${\rm drawDurF}[1]$	X	X	number	end of each hour	Water heater draw duration factors by end use
${\rm drawDurF}[2]$	X	X	number	end of each hour	Water heater draw duration factors by end use
drawDurF[3]	X	X	number	end of each hour	Water heater draw duration factors by end use
${\rm drawDurF}[4]$	X	X	number	end of each hour	Water heater draw duration factors by end use
drawDurF[5]	X	X	number	end of each hour	Water heater draw duration factors by end use
branchModel	X	X	unrecognized	input time	Branch model selection
drawWaste[0]	X	X	number	hourly	Water waste per draw, gal
drawWaste[1] drawWaste[2]	X X	X X	number number	hourly hourly	Water waste per draw, gal Water waste per

Name	Input?	Runtime?	Type	Variability	Description
drawWaste[3]	X	X	number	hourly	Water waste per draw, gal
drawWaste[4]	X	X	number	hourly	Water waste per draw, gal
drawWaste[5]	X	X	number	hourly	Water waste per draw, gal
${\rm dayWasteDrawF}[0]$	X	X	number	input time	Relative draw for day waste scheme
${\rm dayWasteDrawF}[1]$	X	X	number	input time	Relative draw for day waste scheme
${\rm dayWasteDrawF}[2]$	X	X	number	input time	Relative draw for day waste scheme
${\rm dayWasteDrawF}[3]$	X	X	number	input time	Relative draw for day waste scheme
${\rm dayWasteDrawF}[4]$	X	X	number	input time	Relative draw for day waste scheme
${\rm dayWasteDrawF}[5]$	X	X	number	input time	Relative draw for day waste scheme
dayWasteVol	X	X	number	input time	Base daily total draw waste, gal/day
${\it day Waste Branch Vol F}$	X	X	number	input time	Additional daily draw waste, discards/day
dayWaste	X	X	number	run start time (of each phase, autoSize or simulate)	Daily draw waste, gal/day
dayWasteScale	X	X	number	end of run (of each phase, autoSize or simulate)	_
${\it child} DHWSYSCount$	X	X	number	run start time (of each phase, autoSize or simulate)	# of child dhwsyss iff central system (else 0)
whCount	X	X	number	run start time (of each phase, autoSize or simulate)	# of (primary) dhwheaters serving this dhwsys
wlhCount	X	X	number	run start time (of each phase, autoSize or simulate)	# of dhwloopheaters in this dhwsys

Name	Input?	Runtime?	Type	Variability	Description
whCountUseTS	X	X	number	run start time (of each phase, autoSize or simulate)	# of dhwheaters serving this dhwsys that respond to ws_tsetpoint
${\it wlhCountUseTS}$	X	X	number	run start time (of each phase, autoSize or simulate)	# of dhwloopheaters serving this dhwsys that respond to
wtCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	ws_tsetpointlh # of child dhwtanks
wpCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	# of child dhwpumps
wlCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	# of child dhwloops (aka nloopk)
configChecked	X	X	unrecognized	run start time (of each phase, autoSize or	Set non-0 when configuration has been checked (see ws_init())
loop Seg Totals. count	X	X	number	simulate) run start time (of each phase, autoSize or	# of segments included in totals
loop Seg Totals.len	X	X	number	simulate) run start time (of each phase, autoSize or	Length, ft
loop Seg Totals. vol	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	Volume, gal
loop Seg Totals. ex Area	X	X	number	run start time (of each phase, autoSize or simulate)	Outside surface area (at insulation surface), ft2

Name	Input?	Runtime?	Type	Variability	Description
loopSegTotals.UA	X	X	number	run start time (of each phase, autoSize or simulate)	Fluid-to-surround loss, btuh/f-hr
branchTotals.count	X	X	number	run start time (of each phase, autoSize or simulate)	# of segments included in totals
branchTotals.len	X	X	number	run start time (of each phase, autoSize or simulate)	Length, ft
branchTotals.vol	X	X	number	run start time (of each phase, autoSize or simulate)	Volume, gal
branch Totals. ex Area	X	X	number	run start time (of each phase, autoSize or	Outside surface area (at insulation surface), ft2
branch Totals. UA	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	Fluid-to-surround loss, btuh/f-hr
wrCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Total child dhwheatrecs
${\bf wr} {\bf FeedWHCount}$	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Count of child dhwheatrecs that provide
wrFxDrainCount	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Count of fixture drains feeding (possibly shared) dhwheatrecs
fxCount[0]	X	X	integer number	run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
fxCount[1]	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
fxCount[2]	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
fxCount[3]	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
fxCount[4]	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
fxCount[5]	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
loadShareDHWSYSi	X	X	integer number	input time	Index of dhwsys with which this dhwsys shares load
loadShareCount[0]	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
loadShareCount[1]	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
${\bf loadShareCount[2]}$	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
${\bf loadShareCount[3]}$	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
loadShareCount[4]	X	X	unrecognized	run start time (of each phase, autoSize or	-
${\it loadShareCount[5]}$	X	X	unrecognized	simulate) run start time (of each phase, autoSize or	_
${\rm loadShareWS0[0]}$	X	X	unrecognized	simulate) end of each day	Re allocation of shared load
${\rm loadShareWS0[1]}$	X	X	unrecognized	end of each day	Re allocation of shared load
${\rm loadShareWS0[2]}$	X	X	unrecognized	end of each day	Re allocation of shared load
${\rm loadShareWS0[3]}$	X	X	unrecognized	end of each day	Re allocation of shared load
${\rm loadShareWS0[4]}$	X	X	unrecognized	end of each day	Re allocation of shared load
${\rm loadShareWS0[5]}$	X	X	unrecognized	end of each day	Re allocation of shared load
drawCSV	X	X	integer number	input time	Iff c_noyesch_yes, write tick-level
ННЖО	X	X	number	end of each hour	draw data to Hourly hot water output (at water heater), btu
DLM	X	X	number	end of each hour	Distribution loss multiplier (calc'd)
volRL	X	X	number	end of each hour	Current hour all-dhwloop return volume,
tRL	X	X	number	end of each hour	gal Current hour all-dhwloop return temp, f
HRBL	X	X	number	end of each hour	Current hour all-dhwloopbranch losses, btu
t24WL	X	X	number	end of each hour	Current hour all- dhwloopbranch waste loss volume, gal
t24WLTot	X	X	number	end of run (of each phase, autoSize or simulate)	Annual total ws_t24wl
HRDL	X	X	number	end of each hour	Current hour recirculation loss, btu

Name	Input?	Runtime?	Type	Variability	Description
HJLsh	X	X	number	end of each subhour	Current subhour jacket losses (from dhwtanks), btu
HJL	X	X	number	end of each hour	Hour total jacket losses (from dhwtanks), btu
HARL	X	X	number	end of each hour	Hour total adjusted recovery load, btu

6.22 DHWTank (owner: DHWSys)

@DHWTank[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mult	X	X	integer number	input time	Count of identical dhw tanks (default 1)
UA	X	X	number	input time	Tank water-to-air ua, btuh/f
vol	X	X	number	input time	Tank volume, gal
insulR	X	X	number	input time	Total tank insulation resistance, hr-f/btuh
tTank	X	X	number	hourly	Assumed tank water temperature, f
znTi	X	X	integer number	input time	Dhwtank location zone re tank loss
tEx	X	X	number	hourly	Surrounding temperature, f for tank loss
xLoss	X	X	number	hourly	Other tank temp-independent losses, btuh
qLossSh	X	X	number	end of each subhour	Current subhr loss rate, btuh
qLoss	X	X	number	end of each hour	Current hour's total loss, btu

6.23 DHWUse (owner: DHWDayUse)

@DHWUse[1..].

Name	Input?	Runtime?	Type	Variability	Description
name hwEndUse	X X	X X	string	constant	– Hot water end use
eventID	X	X	integer number integer number	input time input time	User-defined index
					dhwuses belonging to a single
start	X	X	number	hourly	Draw starting hour of day, $0 - 23.999$

Name	Input?	Runtime?	Type	Variability	Description
dur	X	X	number	hourly	Flow duration, min
flow	X	X	number	hourly	Mixed flow rate,
hotF	X	X	number	hourly	gpm Fraction hot water, default = 1
temp	X	X	number	hourly	Use temperature, f.
					if given,
heatRecEF	X	X	number	hourly	Heat recovery
				, .	effectiveness
drawSeqN	X	X	unrecognized	run start time (of	Sequence number
				each phase,	of draw by
				autoSize or	ws_hwenduse
				$\operatorname{simulate})$	

6.24 door (owner: surface)

@door[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
ty	X	_	integer	input time	_
	37		number		
area	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
0.770	X		number	simulate) run start time	
azm	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
tilt	X	_	number	run start time	_
0110	11		namber	(of each phase,	
				autoSize or	
				simulate)	
dircos[0]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
dircos[1]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
dircos[2]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 /1 DC	37		1	simulate)	
depthBG	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
height	X	_	number	run start time (of each phase, autoSize or simulate)	and to compute area b4 mutliplier.
model	X	_	integer	input time	_
modelr	X	_	number integer number	run start time (of each phase, autoSize or	_
lThkF	X	_	number	simulate) run start time (of each phase, autoSize or	_
gti	X	-	integer number	simulate) run start time (of each phase, autoSize or	-
sco	X	_	number	simulate) monthly-	_
scc	X	_	number	hourly monthly- hourly	_
${\rm sbcI.absSlr}$	X	_	number	hourly monthly-	_
${\rm sbcI.awAbsSlr}$	X	_	number	hourly monthly-	_
sbcI.epsLW	X	_	number	hourly run start time (of each phase, autoSize or	_
sbcI.zi	X	-	integer number	simulate) run start time (of each phase, autoSize or	-
sbcI.F	X	-	number	simulate) run start time (of each phase, autoSize or	-
sbcI.Fp	X	-	number	simulate) run start time (of each phase, autoSize or	_
sbcI.frRad	X	-	number	simulate) run start time (of each phase, autoSize or	-
sbcI.fSky	X	_	number	simulate) run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
sbcI.fAir	X	_	number	run start time (of each phase, autoSize or simulate)	_
sbcI.hcNat	X	_	number	end of each subhour	-
sbcI.hcFrc	X	_	number	end of each subhour	_
sbcI.hcMult	X	_	number	end of each subhour	-
sbcI.hxa	X	_	number	end of each subhour	-
sbcI.hxr	X	_	number	end of each subhour	-
sbcI.hxtot	X	_	number	end of each subhour	-
sbcI.uRat	X	_	number	end of each subhour	_
sbcI.fRat	X	_	number	end of each	_
sbcI.cx	X	_	number	subhour end of each	_
sbcI.sgTarg.bm	X	_	number	subhour end of each	_
${ m sbcI.sgTarg.df}$	X	_	number	subhour end of each	_
sbcI.sgTarg.tot	X	_	number	subhour end of each	_
sbcI.sg	X	_	number	subhour end of each	_
sbcI.tSrf	X	_	number	subhour end of each	_
sbcI.tSrfls	X	_	number	subhour subhourly	_
sbcI.qrAbs	X	_	number	end of each subhour	_
sbcI.txa	X	_	number	end of each subhour	_
sbcI.txr	X	_	number	end of each subhour	_
sbcI.txe	X	_	number	end of each subhour	_
sbcI.w	X	_	number	end of each subhour	_
sbcI.qSrf	X	_	number	end of each subhour	_
sbcI.pXS	X	_	unrecognized	run start time (of each phase, autoSize or simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.si	X	_	unrecognized	run start time (of each phase, autoSize or	-
$\operatorname{sbcI.fcWind}$	X	_	number	simulate) run start time (of each phase, autoSize or	-
${\rm sbcI.fcWind2}$	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.eta	X	_	number	simulate) end of each subhour	_
${\it sbcI.widNom}$	X	_	number	run start time (of each phase, autoSize or	_
$\operatorname{sbcI.lenNom}$	X	_	number	simulate) run start time (of each phase, autoSize or	_
${\it sbcI.lenCharNat}$	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.lenEffWink	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.cosTilt	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.atvDeg	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.cosAtv	X	_	number	simulate) run start time (of each phase, autoSize or	_
sbcI.hcModel	X	-	unrecognized	simulate) run start time (of each phase, autoSize or	_
sbcI.hcLChar	X	-	number	simulate) run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
sbcI.hcConst[0]	X	-	number	run start time (of each phase, autoSize or	-
${\rm sbcI.hcConst}[1]$	X	_	number	simulate) run start time (of each phase, autoSize or	-
${\rm sbcI.hcConst}[2]$	X	-	number	simulate) run start time (of each phase,	-
${\bf sbcI.groundModel}$	X	_	unrecognized	autoSize or simulate) run start time (of each phase,	_
${\rm sbcI.cTaDbAvgYr}$	X	_	number	autoSize or simulate) run start time (of each phase,	_
${\rm sbcI.cTaDbAvg31}$	X	_	number	autoSize or simulate) run start time	_
sbcI.cTaDbAvg14	X	_	number	(of each phase, autoSize or simulate) run start time	_
	11		ramso:	(of each phase, autoSize or simulate)	
sbcI.cTaDbAvg07	X	-	number	run start time (of each phase, autoSize or simulate)	_
${\rm sbcI.cTGrnd}$	X	-	number	run start time (of each phase, autoSize or	_
sbcI.rGrnd	X	-	number	simulate) run start time (of each phase, autoSize or	_
${\rm sbcI.rConGrnd}$	X	-	number	simulate) run start time (of each phase, autoSize or	-
sbcO.absSlr	X	_	number	simulate) monthly- hourly	_
${\rm sbcO.awAbsSlr}$	X	_	number	monthly- hourly	_
sbcO.epsLW	X	-	number	run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
sbcO.zi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
sbcO.F	X		number	simulate) run start time	
SDCO.F	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.Fp	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${ m sbcO.frRad}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
sbcO.fSky	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.fAir	v		munah an	simulate)	
SDCO.IAIr	X	_	number	run start time (of each phase,	_
				autoSize or	
				simulate)	
sbcO.hcNat	X	_	number	end of each	_
DS CO MICI (ac			110111001	subhour	
sbcO.hcFrc	X	_	number	end of each	_
				subhour	
sbcO.hcMult	X	_	number	end of each	_
				subhour	
sbcO.hxa	X	_	number	end of each	_
				subhour	
sbcO.hxr	X	_	number	end of each	_
-l -O l4-4	v		1	subhour	
sbcO.hxtot	X	_	number	end of each	_
sbcO.uRat	X		number	subhour end of each	_
suco.unai	Λ		number	subhour	
sbcO.fRat	X	_	number	end of each	_
bbco.iitaa	11		namoei	subhour	
sbcO.cx	X	_	number	end of each	_
				subhour	
sbcO.sgTarg.bm	X	_	number	end of each	_
				subhour	
${ m sbcO.sgTarg.df}$	X	_	number	end of each	_
				subhour	
sbcO.sgTarg.tot	X	_	number	end of each	_
				subhour	
sbcO.sg	X	_	number	end of each	_
1 0 (0 0	v		1	subhour	
sbcO.tSrf	X	_	number	end of each	_
				$\operatorname{subhour}$	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.tSrfls	X	_	number	subhourly	_
$\rm sbcO.qrAbs$	X	_	number	end of each	_
				subhour	
sbcO.txa	X	_	number	end of each	_
				subhour	
sbcO.txr	X	_	number	end of each	_
				subhour	
sbcO.txe	X	_	number	end of each	_
				subhour	
sbcO.w	X	_	number	end of each	_
				subhour	
sbcO.qSrf	X	_	number	end of each	_
				subhour	
sbcO.pXS	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.si	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.fcWind	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
sbcO.fcWind2	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 0	3.5		,	simulate)	
sbcO.eta	X	_	number	end of each	_
1 0 111	37		1	subhour	
sbcO.widNom	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 O 1 N	v		1	simulate)	
sbcO.lenNom	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
ab aO lan ChanNat	v		round on	simulate)	
sbcO.lenCharNat	X	_	number	run start time	_
				(of each phase,	
				autoSize or simulate)	
sbcO.lenEffWink	X		number	run start time	
SDCO.IEIIEII WIIIK	Λ	_	number	(of each phase,	_
				` - '	
				autoSize or	
sbcO.cosTilt	X		number	simulate) run start time	_
SDCO.COSTIII	Λ	_	number		_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.atvDeg	X	_	number	run start time (of each phase, autoSize or	_
sbcO.cosAtv	X	_	number	simulate) run start time (of each phase,	_
	.			autoSize or simulate)	
sbcO.hcModel	X	_	unrecognized	run start time (of each phase, autoSize or	-
sbcO.hcLChar	X	_	number	simulate) run start time (of each phase, autoSize or	-
sbcO.hcConst[0]	X	_	number	simulate) run start time	_
				(of each phase, autoSize or simulate)	
sbcO.hcConst[1]	X	_	number	run start time (of each phase, autoSize or	_
sbcO.hcConst[2]	X	_	number	simulate) run start time (of each phase, autoSize or	-
${\bf sbcO.groundModel}$	X	_	unrecognized	simulate) run start time (of each phase,	_
${\rm sbcO.cTaDbAvgYr}$	X	_	number	autoSize or simulate) run start time	_
	11		namoor	(of each phase, autoSize or simulate)	
sbcO.cTaDbAvg31	X	-	number	run start time (of each phase, autoSize or	-
sbcO.cTaDbAvg14	X	_	number	simulate) run start time (of each phase, autoSize or	-
sbcO.cTaDbAvg07	X	_	number	simulate) run start time (of each phase,	_
sbcO.cTGrnd	X		number	autoSize or simulate) run start time	
SDCO.CT GIIIQ	Λ		number	(of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
sbcO.rGrnd	X	-	number	run start time (of each phase, autoSize or simulate)	_
${\bf sbcO.rConGrnd}$	X	_	number	run start time (of each phase, autoSize or simulate)	_
fenModel	X	_	unrecognized	input time	_
SHGC	X	_	number	input time	_
${ m fMult}$	X	_	number	run start time (of each phase, autoSize or simulate)	_
UNFRC	X	_	number	input time	_
NGlz	X	_	$rac{1}{2}$ integer $rac{1}{2}$ number	input time	_
exShd	X	_	unrecognized	input time	_
inShd	X	_	unrecognized	input time	_
dirtLoss	X	_	number	run start time (of each phase, autoSize or simulate)	-
sfExCnd	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
sfExT	X	_	number	subhourly	_
sfAdjZi	X	_	$rac{ ext{integer}}{ ext{number}}$	input time	_
uI	X	_	number	run start time (of each phase, autoSize or simulate)	_
uC	X	_	number	run start time (of each phase, autoSize or simulate)	_
uX	X	_	number	run start time (of each phase, autoSize or simulate)	_
Rf	X	-	number	run start time (of each phase, autoSize or simulate)	_
grndRefl	X	_	number	monthly- hourly	_
vfSkyDf	X	_	number	monthly- hourly	_
vfGrndDf	X	_	number	monthly- hourly	_

Name	Input?	Runtime?	Type	Variability	Description
vfSkyLW	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
$_{ m r}$ fGrndLW	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
ıval	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
JNom	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
- 1			_	simulate)	
JANom	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
SrfNom[0]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
SrfNom[1]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
SrfNom[0]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
C mr [4]				simulate)	
SrfNom[1]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
.	37		,	simulate)	
Fctr	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
11	v		: 4	simulate)	
wshad	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
•	v		: 4	simulate)	0 1
nsi	X	_	integer	run start time	0 or msrat msr subscr
			number	(of each phase,	which will be used if
				autoSize or	delayed model
ID[0]	v		1	simulate)	
LrB[0]	X	_	number	end of each	_
TD[1]	v		1	hour	
LrB[1]	X	_	number	end of each	_
				hour	

Name	Input?	Runtime?	Type	Variability	Description
tLrB[2]	X	-	number	end of each hour	_
tLrB[3]	X	_	number	end of each hour	_
tLrB[4]	X	_	number	end of each hour	_
tLrB[5]	X	_	number	end of each	_
tLrB[6]	X	_	number	hour end of each	_
tLrB[7]	X	_	number	hour end of each	_
tLrB[8]	X	_	number	hour end of each	_
tLrB[9]	X	_	number	hour end of each	_
nsgdist	X	_	integer number	hour run start time (of each phase, autoSize or	_
$\operatorname{sgdist}[0].\operatorname{targTy}$	X	_	integer number	simulate) run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[0].\operatorname{targTi}$	X	-	integer number	simulate) run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[0].\operatorname{FSO}$	X	_	number	simulate) monthly-	_
$\operatorname{sgdist}[0].\operatorname{FSC}$	X	_	number	hourly monthly-	_
sgdist[1].targTy	X	-	integer number	hourly run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[1].\operatorname{targTi}$	X	-	integer number	simulate) run start time (of each phase, autoSize or	-
sgdist[1].FSO	X	_	number	simulate) monthly-	_
$\operatorname{sgdist}[1].\operatorname{FSC}$	X	_	number	hourly monthly-	_
$\operatorname{sgdist}[2].\operatorname{targTy}$	X	_	integer number	hourly run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[2].\operatorname{targTi}$	X	-	integer number	simulate) run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
$\operatorname{sgdist}[2].\operatorname{FSO}$	X	_	number	monthly-	_
				hourly	
$\operatorname{sgdist}[2].\operatorname{FSC}$	X	_	number	monthly-	_
				hourly	
sgdist[3].targTy	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
11 · [0] · · · · · ·	37			simulate)	
sgdist[3].targTi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
1: +[a] TCO	37		1	simulate)	
sgdist[3].FSO	X	_	number	monthly-	_
1:-+[9] FCC	v		1	hourly	
sgdist[3].FSC	X	_	number	monthly-	_
1:-+[4] +T	v		:	hourly	
sgdist[4].targTy	X	_	integer number	run start time	_
			number	(of each phase,	
				autoSize or simulate)	
sgdist[4].targTi	X		intoron	,	
sguist[4].targ11	Λ	_	$rac{ ext{integer}}{ ext{number}}$	run start time (of each phase,	_
			number	autoSize or	
				simulate)	
sgdist[4].FSO	X		number	monthly-	_
sguist[4].1 5O	Λ		number	hourly	
sgdist[4].FSC	X	_	number	monthly-	_
sgdist[4].1 DC	11		number	hourly	
sgdist[5].targTy	X	_	integer	run start time	_
bgaibt[0].taigiy	21		number	(of each phase,	
			iidiii50i	autoSize or	
				simulate)	
sgdist[5].targTi	X	_	integer	run start time	_
0 [] 0			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[5].FSO	X	_	number	monthly-	_
				hourly	
sgdist[5].FSC	X	_	number	monthly-	_
				hourly	
sgdist[6].targTy	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[6].targTi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[6].FSO	X	_	number	monthly-	_
				hourly	
sgdist[6].FSC	X	_	number	monthly-	_
				hourly	

Name	Input?	Runtime?	Type	Variability	Description
sgdist[7].targTy	X	_	integer number	run start time (of each phase, autoSize or simulate)	-
$\operatorname{sgdist}[7].\operatorname{targTi}$	X	-	integer number	run start time (of each phase, autoSize or simulate)	_
sgdist[7].FSO	X	_	number	monthly- hourly	-
sgdist[7].FSC	X	-	number	monthly- hourly	_
sfClass	X	_	unrecognized	input time	Sfcnul, sfcsurf, sfcdoor, sfcwindow
sfArea	X	_	number	input time	Surface: gross area, net in x.xs_area.
sfU	X	_	number	input time	Uval input if no sfcon given (excl surf films)
sfCon	X	_	integer number	input time	Surface construction (optional)
sfTy	X	_	integer number	constant	Wall/floor/ceil/[intmass1/2] for input cking.
sfFnd	X	_	integer number	input time	Surface foundation object (floors only, optional)
sfFndFloor	X	_	integer number	input time	Surface foundation floor object (walls only, optional)
sfExpPerim	X	_	number	input time	Foundation floor exposed perimeter (floors only)
width	X	_	number	input time	Width and height: used to compute shading,
height	X	_	number	input time	and to compute area b4 mutliplier.
mult	X	_	number	input time	Area multiplier (for multiple identical windows)
xi	X	_	integer number	run start time (of each phase, autoSize or simulate)	Subscript in runtime xsrat, to facilitate access by probers 1-92
msi	X	_	integer number	run start time (of each phase, autoSize or simulate)	0 or msrat msr subscr which will be used if delayed model

6.25 DuctSeg (owner: RSYS)

@DuctSeg[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_

Name	Input?	Runtime?	Type	Variability	Description
ty	X	X	unrecognized	input time	Type: c_ducttych_ret / _sup
absSlr	X	X	number	subhourly	
awAbsSlr	X	X	number	subhourly	_
epsLW	X	X	number	subhourly	_
zi	X	X	integer	subhourly	_
			number	sasiro arry	
F	X	X	number	subhourly	_
Fp	X	X	number	subhourly	_
frRad	X	X	number	subhourly	_
fSky	X	X	number	subhourly	_
fAir	X	X	number	subhourly	_
hcNat	X	X	number	end of each	_
				subhour	
$_{ m hcFrc}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
hcMult	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxa	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxr	X	X	number	end of each	_
				$\operatorname{subhour}$	
hxtot	X	X	number	end of each	_
				$\operatorname{subhour}$	
uRat	X	X	number	end of each	_
				$\operatorname{subhour}$	
fRat	X	X	number	end of each	_
				$\operatorname{subhour}$	
cx	X	X	number	end of each	_
				$\operatorname{subhour}$	
$\operatorname{sgTarg.bm}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
$\operatorname{sgTarg.df}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
$\operatorname{sgTarg.tot}$	X	X	number	end of each	_
				$\operatorname{subhour}$	
sg	X	X	number	end of each	_
				$\operatorname{subhour}$	
tSrf	X	X	number	end of each	_
				$\operatorname{subhour}$	
tSrfls	X	X	number	subhourly	_
qrAbs	X	X	number	end of each	_
•				subhour	
txa	X	X	number	end of each	_
				$\operatorname{subhour}$	
txr	X	X	number	end of each	_
				subhour	
txe	X	X	number	end of each	_
				subhour	
W	X	X	number	end of each	_
				subhour	

Name	Input?	Runtime?	Type	Variability	Description
\overline{qSrf}	X	X	number	end of each subhour	_
pDS	X	X	unrecognized	subhourly	Pointer to parent ductseg
exArea	X	X	number	input time	Exterior heat transfer surface area, ft2 (outside of insulation)
diam	X	X	number	input time	Duct diameter (w/o insulation), ft
len	X	X	number	input time	Total length (all branches), ft
branchLen	X	X	number	run start time (of each phase, autoSize or simulate)	Average branch length, ft
branchCount	X	X	integer number	input time	# of branches
branchCFA	X	X	number	input time	Floor area served per per branch, ft2
airVelDs	X	X	number	input time	Design air velocity, fpm
inArea	X	X	number	input time	Interior surface area, ft2
insulR	X	X	number	input time	Rated insulation resistance, ft2-f/btuh
insulMati	X	X	integer number	input time	Insulation material, 0 if none
insulKA	X	X	number	run start time (of each phase, autoSize or simulate)	Constants for insul conductivity: kinsul = ka + kb*t
insulKB	X	X	number	run start time (of each phase, autoSize or simulate)	_
insulThk	X	X	number	run start time (of each phase, autoSize or simulate)	Insulation actual thickness, ft
insulThkEff	X	X	number	run start time (of each phase, autoSize or simulate)	Effective insulation thickness, ft
RconvIn	X	X	number	autosize and simulate phase start time	Inside surfce convection resistance, ft2-f/btuh
Rduct	X	X	number	end of each hour	Total resistance from duct air to exterior surface of insulation

Name	Input?	Runtime?	Type	Variability	Description
Uduct	X	X	number	end of each hour	1/ds_rduct
insulREff	X	X	number	end of each hour	Effective insulation resistance, ft2-f/btuh
exCnd	X	X	integer number	input time	Adjacent cond: adiabatic/ambient/spect/adjz
leakF	X	X	number	input time	Leakage fraction, 0-1
uaTot	X	X	number	end of each subhour	Cur step total conductance between duct air
beta	X	X	number	end of each subhour	Cur step conduction loss parameter (1 - effectiveness)
air[0].tdb	X	X	number	end of each subhour	
air[0].w	X	X	number	end of each subhour	_
air[1].tdb	X	X	number	end of each subhour	_
air[1].w	X	X	number	end of each subhour	_
air[2].tdb	X	X	number	end of each subhour	_
air[2].w	X	X	number	end of each subhour	_
air[3].tdb	X	X	number	end of each subhour	_
air[3].w	X	X	number	end of each subhour	_
amfFL	X	X	number	end of each subhour	Dry air mass flow rate at full load, lbm/hr
qCondFL	X	X	number	end of each subhour	Full load total conduction losses to surround (+ = out of duct), btuh
qCondAirFL	X	X	number	end of each subhour	to txa (air)
${\bf qCondRadFL}$	X	X	number	end of each subhour	to txr (radiant)

6.26 export (owner: exportFile)

@export[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X X	_	string	constant	- Zana fan gana gnasifia
zi	Λ	_	integer number	input time	Zone for zone-specific reports. can be ti_sum, ti_all.
mtri	X	-	integer number	input time	Meter to report/export for meter-specific reports. can be ti_sum, ti_all.

Name	Input?	Runtime?	Type	Variability	Description
ahi	X	-	integer number	input time	Air handler to report/export for air-handler-specific reports. can be ti_sum, ti_all.
tui	X	_	integer number	input time	Terminal to report/export for terminal-specific reports. can be ti all
dhwMtri	X	_	integer number	input time	Dhw meter to report/export for dhw meter-specific reports. can be ti_all.
isExport	X	_	integer number	input time	1 if export not report, so same fcns can be used with rib and xib records
rpTy	X	_	integer number	constant	Report/export type c_rptych_eb etc
rpFreq	X	_	integer number	constant	R/xport frequency c_ivlch_m etc
rpDayBeg	X	_	integer number	input time	Start 1-based julian day of year, where applicable
rpDayEnd rpBtuSf	X X	_	integer number number	input time input time	End Energy (btu) scale
rpCond	X	-	number	end of each subhour	factor Condition: if given, rpt lines omitted when false (si; li used to hold nan) (li currently
rpTitle rpCpl	X X	_ _	string integer number	input time input time	unprobeable) Title, for udt, in dm Chars per line,
rpHeader	X	_	unrecognized	input time	inputtable re udt's Table header or export header yes/no (default yes)
rpFooter	X	-	integer number	input time	Table footer (summary line) or export footer (just blank line?) yes/no (default yes)
coli	X	-	integer number	run start time (of each phase, autoSize or simulate)	Rcolb/xcolb subscript of first column (thence linked by .nxcoli).
nCol	X	_	integer number	run start time (of each phase, autoSize or simulate)	# columns
wid	X	_	integer number	run start time (of each phase, autoSize or simulate)	Total col width for user-defined report

Name	Input?	Runtime?	Type	Variability	Description
vrh	X	-	unrecognized	run start time (of each phase, autoSize or simulate)	Assigned virtual report handle, used from here to build unspoolinfo.

6.27 exportCol (owner: export)

@exportCol[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
colHead	X	X	string	input time	Column head string, in dm. *i cuz veoi in cncult.cpp:rpcolt[].
colGap	X	X	integer number	input time	Space to left of column, default 1
colWid	X	X	integer number	input time	Column width
colDec	X	X	integer number	input time	Coldecimals: max digits after point
colJust	X	X	integer number	input time	Justification: c_justch_l or r
colVal	X	X	un-probe-able	end of each subhour	Value .val and data type .dt (tyfl/tystr in input, dtfloat/dtchp in run), used at end report interval.
nxColi	X	X	integer number	constant	For runtime: col subscript of next column in this report, 0 if last one

6.28 exportFile

@exportFile [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
fileName	X	_	string	input time	File name, path optional, in dm (or pseudocode, but not "text"). *i cuz veoi in cncult.
fileStat	X	_	integer number	run start time (of each phase, autoSize or simulate)	Fresh(overwrite,default)/new(errif exists)/append
pageFmt	X	_	integer number	input time	Page formatting on no/yes
fileStatChecked	X	-	integer number	run start time (of each phase, autoSize or simulate)	Check filestat only once to prevent "file exists" error or re-setting "overwrite" on later run

Name	Input?	Runtime?	Type	Variability	Description
overWrite	X	-	integer number	run start time (of each phase, autoSize or simulate)	Append if 0. set by filestat=fresh, cleared on use, so addl runs do not erase earlier output.
wasNotEmpty	X	_	integer number	run start time (of each phase, autoSize or simulate)	Nz if existed and size > 0 at filestat check

6.29 foundation

@foundation [1..].

Name	Input?	Runtime?	Type	Variability	Description
name wlHtAbvGrd	X X	-	string number	constant input time	Height of foundation wall above grade
${\bf wlDpBlwSlb}$	X	_	number	input time	Depth of foundation wall below the slab
ftWlConi	X	_	integer number	input time	Foundation wall construction (con subscript) rqd if

6.30 foundationBlock (owner: foundation)

@foundationBlock [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
mati	X	_	integer number	input time	Material (mat subscript) for this component
x1Ref	X	_	unrecognized	input time	Point 1 x reference
z1Ref	X	_	unrecognized	input time	Point 1 z reference
x1	X	_	number	input time	Point 1 x value (relative to reference)
z1	X	_	number	input time	Point 1 x value (relative to reference)
x2Ref	X	_	unrecognized	input time	Point 2 x reference
z2Ref	X	_	unrecognized	input time	Point 2 z reference
x2	X	_	number	input time	Point 2 x value (relative to reference)
z2	X	_	number	input time	Point 2 x value (relative to reference)

6.31 gain (owner: zone)

@gain[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
gnPower	X	X	number	hourly	Amount of gain (demand – b4 reduction by gndlfrpow), btuh, hourly expression
mtri	X	X	integer number	input time	Meter to which gain is charged
gnEndUse	X	X	integer number	autosize and simulate phase start time	End use of energy: cooling, heating, receptacles, etc. reqd if gnmeter != none, else disallowed.
gnFrLat	X	X	number	hourly	Fraction of gain which is latent (0 - 1, hourly expression)
gnFrRad	X	X	number	hourly	Fraction of gain which is radiant, added 11-95
gnFrZn	X	X	number	hourly	Fraction of gain going to zone (0 - 1, hourly expression)
gnFrPl	X	X	number	hourly	Fraction of gain going to plenum (0 - 1, hourly expression)
gnFrRtn	X	X	number	hourly	Fraction of gain going to return (0 - 1, hourly expression)
gnDlFrPow	X	X	number	hourly	Fraction power on for daylighting, 0-1, default 1.0, hourly expression
dhwsysi	X	X	integer number	input time	Controlling dhwsys, 0 if none
dhwEndUse	X	X	integer number	input time	With gn_dhwsysi, specifies controlling hw end use

6.32 glazeType

@glazeType[1..].

Name	Input?	Runtime?	Type	Variability	Description
name gtSHGC	X X	X X	string number	constant input time	Rated shgc of assembly

Name	Input?	Runtime?	Type	Variability	Description
gtSMSO	X	X	number	monthly-hourly	Optional solar heat gain coef multiplier, shades open, used if not spec'd in window, dflt 1.0.
gtSMSC	X	X	number	monthly-hourly	Ditto shades closed, defaults at window level.
gtFMult	X	X	number	input time	Optional frame/mullion multiplier for use when not spec'd in window. constant.
gtPySHGC.k[0]	X	X	number	autosize and simulate phase start time	-
${\rm gtPySHGC.k[1]}$	X	X	number	autosize and simulate phase start time	_
gtPySHGC.k[2]	X	X	number	autosize and simulate phase start time	_
gtPySHGC.k[3]	X	X	number	autosize and simulate phase start time	_
gtPySHGC.k[4]	X	X	number	autosize and simulate phase start time	_
gtPySHGC.k[5]	X	X	number	autosize and simulate phase start time	_
gtDMSHGC	X	X	number	input time	Diffuse shgc multiplier used (in place of polynomial). rqd. constant.
${\rm gtDMRBSol}$	X	X	number	input time	Reflectance for diffuse solar on inside of glass, for cavity absorptance calc'ns (cgsolar.cpp).
gtU	X	X	number	input time	Optional u-value for use when not spec'd in window. contant.

Name	Input?	Runtime?	Type	Variability	Description
gtUNFRC	X	X	number	input time	Overall u-factor evaluated under per nfrc heating conditions
gtNGlz	X	X	integer number	input time	# of glazings bare-glass assembly
gtFenModel	X	X	unrecognized	input time	Fenestration model: user input
gtExShd	X	X	unrecognized	input time	Exterior shade (ashwat only)
$\operatorname{gtInShd}$	X	X	unrecognized	input time	Interior shade (ditto)
gtDirtLoss	X	X	number	input time	Dirt loss fraction (all solar gain reduced by this factor

6.33 heatPlant

@heat Plant [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
hpSched	X	X	unrecognized	hourly	Hourly choice of off, avail (default; plant runs on demand), or on (at least 1st stage runs).
${\it hpPipeLossF}$	X	X	number	autosize and simulate phase start time	Pipe loss, default .01, fraction of largest stage boiler capac whenever any boiler running
hpStage1[0]	X	X	integer number	autosize and simulate phase start time	-
hpStage1[1]	X	X	integer number	autosize and simulate phase start time	_
hpStage1[2]	X	X	integer number	autosize and simulate phase start time	_
hpStage1[3]	X	X	integer number	autosize and simulate phase start time	_
hpStage1[4]	X	X	integer number	autosize and simulate phase start time	_
hpStage1[5]	X	X	integer number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
hpStage1[6]	X	X	integer number	autosize and simulate phase start time	_
hpStage1[7]	X	X	integer number	autosize and simulate phase start time	_
hpStage2[0]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[1]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[2]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[3]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[4]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[5]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[6]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage2[7]	X	X	integer number	autosize and simulate phase start time	Defaulted by code, if no hpstage values entered:
hpStage3[0]	X	X	integer number	autosize and simulate phase start time	entered. –
hpStage3[1]	X	X	integer number	autosize and simulate phase start time	_
hpStage3[2]	X	X	integer number	autosize and simulate phase start time	-
hpStage3[3]	X	X	integer number	autosize and simulate phase start time	-
hpStage3[4]	X	X	integer number	autosize and simulate phase start time	-
hpStage3[5]	X	X	integer number	autosize and simulate phase start time	-
hpStage3[6]	X	X	integer number	autosize and simulate phase start time	_

Name	Input?	Runtime?	Type	Variability	Description
hpStage3[7]	X	X	integer number	autosize and simulate phase start time	_
hpStage4[0]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[1]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[2]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[3]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[4]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[5]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[6]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
hpStage4[7]	X	X	integer number	autosize and simulate phase start time	stage 1: ti_all. stages 2-7: none (0).
${\it hpStage5[0]}$	X	X	integer number	autosize and simulate phase start time	_
${\it hpStage5[1]}$	X	X	integer number	autosize and simulate phase start time	_
${\it hpStage5[2]}$	X	X	integer number	autosize and simulate phase start time	_
hpStage5[3]	X	X	integer number	autosize and simulate phase start time	-
hpStage5[4]	X	X	integer number	autosize and simulate phase start time	-
hpStage5[5]	X	X	integer number	autosize and simulate phase start time	-
hpStage5[6]	X	X	integer number	autosize and simulate phase start time	-
hpStage5[7]	X	X	integer number	autosize and simulate phase start time	-

Name	Input?	Runtime?	Type	Variability	Description
hpStage6[0]	X	X	integer number	autosize and simulate phase start time	-
hpStage6[1]	X	X	integer number	autosize and simulate phase	_
hpStage6[2]	X	X	integer number	start time autosize and simulate phase	_
hpStage6[3]	X	X	integer number	start time autosize and simulate phase	_
hpStage6[4]	X	X	integer number	start time autosize and simulate phase start time	-
hpStage6[5]	X	X	integer number	autosize and simulate phase	_
hpStage6[6]	X	X	integer number	start time autosize and simulate phase start time	_
hpStage6[7]	X	X	integer number	autosize and simulate phase start time	_
hpStage7[0]	X	X	integer number	autosize and simulate phase	_
hpStage7[1]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[2]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[3]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[4]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[5]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[6]	X	X	integer number	start time autosize and simulate phase	_
hpStage7[7]	X	X	integer number	start time autosize and simulate phase	_
blr1	X	X	integer number	start time run start time (of each phase, autoSize or simulate)	Subscript of 1st boiler for this heatplant. next is boiler.nxblr4hp.

Name	Input?	Runtime?	Type	Variability	Description
tu1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st tu with hw coil served by this heatplant. next is tu.tuhc.nxtu4hp.
ah1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st ah with hw coil served by this heatplant. next is ah.ahhc.nxah4hp.
hl1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st hploop with hx for this heatplant
qPipeLoss	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgCap[0]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgCap[1]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgCap[2]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgCap[3]	X	X	number	run start time (of each phase, autoSize or	-
stgCap[4]	X	X	number	simulate) run start time (of each phase, autoSize or	-
stgCap[5]	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	-
stgCap[6]	X	X	number	run start time (of each phase, autoSize or simulate)	-
stgPQ[0]	X	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
stgPQ[1]	X	X	number	run start time (of each phase, autoSize or simulate)	_
stgPQ[2]	X	X	number	run start time (of each phase, autoSize or	-
stgPQ[3]	X	X	number	simulate) run start time (of each phase, autoSize or	_
stgPQ[4]	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	-
stgPQ[5]	X	X	number	run start time (of each phase, autoSize or simulate)	-
stgPQ[6]	X	X	number	run start time (of each phase, autoSize or simulate)	-
stgN	X	X	integer number	run start time (of each phase, autoSize or simulate)	Max+1 used stage subscript 1-7 (used stages need not be contiguous)
stgMxQ	X	X	integer number	run start time (of each phase, autoSize or simulate)	Most powerful stage subscript 0-6
hpClf	X	X	integer number	end of each subhour	Call-flag: set nz if must call hpcompute so it can test tr, etc to see if computation needed.
hpPtf	X	X	integer number	end of each subhour	Compute-flag: set if must call hpcompute and it should unconditionally recompute this plant.
hpMode	X	X	unrecognized	end of each subhour	Mode this subhour: off or on: per hpsched; per demand for avail. set in hpestimate, hpcompute.
capF	X	X	number	end of each	_
stgi	X	X	integer number	subhour end of each subhour	Stage in use, 0-6 for hpstage1-7.

Name	Input?	Runtime?	Type	Variability	Description
qNx	X	X	number	end of each subhour	_
q	X	X	number	end of each subhour	_
qPk	X	X	number	end of each subhour	Peak load re error autosizing overload message
qPkAs	X	X	number	end of each subhour	Peak load on a converged autosizing design day re error autosizing overload message
hpModePr	X	X	unrecognized	end of each subhour	_
qPr	X	X	number	end of each subhour	_
capFPr	X	X	number	end of each subhour	_

6.34 holiday

@ holiday [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
hdDateTrue	X	_	integer number	input time	True date of holiday, 1-365
hdDateObs	X	_	integer number	input time	Day holiday is observed, 1-365
hdOnMonday	X	_	integer number	input time	Yes if holiday that falls on weekend is observed on monday
hdCase	X	_	unrecognized	input time	Case: c_holicasech_first, _second, _third, fourth, last
hdDow	X	_	integer number	input time	Day of week, sun=1. subtract 1 before using.
hdMon	X	_	unrecognized	input time	Month 1-12

${\bf 6.35}\quad impFileFldNames$

@impFileFldNames [1..].

Name	Input?	Runtime?	Type	Variability	Description
name impfi		X X	string integer number	constant input time	- 0 or subscript of impf record for file in impfib/impfb

Name	Input?	Runtime?	Type	Variability	Description
fnmiN	_	X	integer number	input time	Number of named fields seen for this file / max fnmi (+ 1 if 0-based)

6.36 importFile

@importFile [1..].

Name	Input?	Runtime?	Type	Variability	Description
name fileName	X X	X X	string string	constant autosize and simulate phase	File name, path optional, in heap or
imTitle	X	X	string	start time autosize and simulate phase start time	pseudocode. *i cuz veoi in cncult. rqd. Title string. if given, file's must match.
im Phase Spare	X	X	integer number	constant	For possible future autosize/mainsim/both choice 6-95
imFreq	X	X	integer number	input time	Frequency of record reads, y m d h; hs and subhour not allowed. rqd.
hasHeader	X	X	integer number	autosize and simulate phase start time	File has header no/yes, default yes.
iffnmi	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of import file field record in iffnmb. holds used names b4 file opened;
isOpen	X	X	integer number	run start time (of each phase, autoSize or simulate)	Non-0 if file is open and buffer has been allocated successfully
fh	X	X	integer number	run start time (of each phase, autoSize or simulate)	File handle. caution: initial value, 0, is a valid file handle.
posEndHdr	X	X	number	run start time (of each phase, autoSize or simulate)	File pointer after header, for repositioning file after warmup
bufSz	X	X	integer number	run start time (of each phase, autoSize or simulate)	0 or allocated size of buffer (actually 1 larger to hold 0)
bufN	X	X	integer number	hourly	Number of characters in buffer === subscript of 1st unused byte

Name	Input?	Runtime?	Type	Variability	Description
eofRead	X	X	integer number	hourly	True after end file has been input to buffer (unused records may remain in buffer)
eof	X	X	integer number	hourly	True after last record has been used
bufI1	X	X	integer number	hourly	Buffer subscript 1: start or next unscanned field in current record
bufI2	X	X	integer number	hourly	Buffer subscript 2: end current record. ==bufi1 if no current record.
lineNo	X	X	$rac{ ext{integer}}{ ext{number}}$	hourly	1-based line number (n count) in file
lineNoEndHdr	X	X	integer number	run start time (of each phase, autoSize or simulate)	Lineno corresponding to posendhdr
nFieldsScanned	X	X	integer number	end of each hour	0 or number of fields already scanned in current record
eorScanned	X	X	integer number	end of each hour	Non-0 if all fields in record have been scanned

6.37 Inverse

@Inverse[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
freq	X	_	integer	run start time (of each	_
			number	phase, autoSize or simulate)	
X0	X	_	number	run start time (of each	_
				phase, autoSize or simulate)	
Y0	X	_	number	run start time (of each	_
				phase, autoSize or simulate)	
YTarg	X	_	number	run start time (of each	_
				phase, autoSize or simulate)	
X	X	_	number	end of each subhour	_
Y	X	_	number	end of each subhour	_
XEst	X	_	number	input time	_

6.38 izXfer

@izXfer[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_

Name	Input?	Runtime?	Type	Variability	Description
zi1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscripts of zones involved (air flow > 0 = into zone 1)
zi2	X	X	integer number	run start time (of each phase, autoSize or simulate)	Iz_zi2 = -1 iff not interzone
ua	X	X	number	hourly	Air-to-air coupling const (btuh/f) thru walls etc.
nvcntrl	X	X	integer number	input time	Control type for nat vents:
a1	X	X	number	hourly	Vent area 1, ft2
a2	X	X	number	hourly	Vent area 2, ft2
L1	X	X	number	input time	Opening dim 1, ft (_anhoriz)
L2	X	X	number	input time	Opening dim 2, ft
hz	X	X	number	input time	_an (non fan): height of iz_a1 relative to arbitrary 0 (ft)
stairAngle	X	X	number	input time	Stair angle, deg (_anhoriz) (90 = vert)
cd	X	X	number	input time	Orifice coefficient, dimless (user input default 0.8)
exp	X	X	number	run start time (of each phase, autoSize or simulate)	Power law exponent, (user input, default 0.5)
cpr	X	X	number	input time	Wind pressure coefficient (ignored if not _anext)
vfMin	X	X	number	subhourly	Min vent flow rate, cfm (for fixed flow types)
vfMax	X	X	number	subhourly	Max vent flow rate, cfm (for fixed flow types)
ASEF	X	X	number	subhourly	Apparent sensible effectiveness (for _anherv)
LEF	X	X	number	subhourly	Latent effectiveness (for _anherv)
SRE	X	X	number	subhourly	Hvi sensible recovery efficiency (for _anherv)

Name	Input?	Runtime?	Type	Variability	Description
ASRE	X	X	number	subhourly	Hvi adjusted sensible recovery efficiency (for _anhery)
RVFanHeatF	X	X	number	subhourly	Fraction of herv fan power that heats supply air (experimental)
vfExhRat	X	X	number	subhourly	Exhaust ratio (for _anherv) = (vfgross exhaust)/(vfgross
EATR	X	X	number	subhourly	supply) Exhaust air transfer ratio (for _anhery)
fan.fanTy	X	X	unrecognized	autosize and simulate phase start time	
fan.vfDs	X	X	number	end of each subhour	_
fan.vfDs_As	X	X	number	autosize and simulate phase start time	-
fan.vfDs_AsNov	X	X	number	autosize and simulate phase start time	_
fan.vfMxF	X	X	number	autosize and simulate phase start time	_
fan.press	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.eff	X	X	number	run start time (of each phase, autoSize or simulate)	-
${\rm fan.shaftPwr}$	X	X	number	run start time (of each phase, autoSize or simulate)	-
${\rm fan.elecPwr}$	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.motTy	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
fan.motEff	X	X	number	autosize and simulate phase	_
fan.motPos	X	X	unrecognized	start time autosize and simulate phase	_
fan.curvePy.k[0]	X	X	number	start time autosize and	_
fan.curvePy.k[1]	X	X	number	simulate phase start time autosize and	_
	11	11	mamoor	simulate phase start time	
fan.curvePy.k[2]	X	X	number	autosize and simulate phase start time	_
fan.curvePy.k[3]	X	X	number	autosize and simulate phase start time	_
fan.curvePy.k[4]	X	X	number	autosize and simulate phase start time	_
fan.curvePy.k[5]	X	X	number	autosize and simulate phase	_
fan.mtri	X	X	integer number	start time input time	_
fan.endUse	X	X	integer number	autosize and simulate phase start time	_
fan.ausz	X	X	integer number	run start time (of each phase, autoSize or simulate)	-
fan.outPower	X	X	number	subhourly	_
fan.airPower	X	X	number	subhourly	_
fan.cMx	X	X	number	end of each subhour	_
fan.c	X	X	number	end of each subhour	_
fan.t	X	X	number	end of each subhour	_
fan.frOn	X	X	number	end of each subhour	_
fan.p	X	X	number	end of each subhour	_
fan.q	X	X	number	end of each subhour	_
fan.dT	X	X	number	end of each subhour	_
fan.qAround	X	X	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
nvcoeff	X	X	number	run start time (of each phase, autoSize or simulate)	Nat vent overall coeff btuh/(dt^.5). set by izxsetup().
air1.tdb	X	X	number	end of each subhour	_
air1.w	X	X	number	end of each subhour	_
air2.tdb	X	X	number	end of each subhour	_
air2.w	X	X	number	end of each subhour	_
rho1	X	X	number	subhourly	Z1 moist air density, lb/cf
rho2	X	X	number	subhourly	Z2 moist air density, lb/cf (may be ambient)
${\rm ad}[0]. Ae$	X	X	number	end of each subhour	Effective vent area, ft2; function of vent type and iz_cd
ad[0].AeLin	X	X	number	end of each subhour	Modified iz_ae, ft2; prevents discontinuity at
ad[0].delP	X	X	number	end of each subhour	delplinear Pressure diff across element, lbf/sf (+ = pz1 > pz2)
ad[0].mdotP	X	X	number	end of each subhour	Air mass flow rate, (lbm moist air)/sec (+ into z1)
ad[0].dmdp	X	X	number	end of each subhour	Derivative of iz_mdotp wrt pressure (0 for fix flow)
ad[0].mdotB	X	X	number	end of each subhour	Add'l buoyancy-driven mass flow, (lbm
${\rm ad}[0].{\rm mdot}X$	X	X	number	end of each subhour	moist air)/sec Air mass exhaust flow, (lbm moist air)/sec (+ out of
ad[0].xDelpF	X	X	number	end of each subhour	z2) Buoyancy flooding
ad[0].xMbm	X	X	number	end of each	pressure factor Buoyancy max
ad[0].tdFan	X	X	number	subhour end of each	possible flow factor Air stream temp
${\rm ad}[0].{\rm pFan}$	X	X	number	subhour end of each subhour	rise across fan, f Fan (electrical) power for meter, btuh (not w)

Name	Input?	Runtime?	Type	Variability	Description
$\overline{\mathrm{ad}[1].\mathrm{Ae}}$	X	X	number	end of each subhour	Effective vent area, ft2; function of vent type and iz_cd
ad[1]. AeLin	X	X	number	end of each subhour	Modified iz_ae, ft2; prevents discontinuity at delplinear
ad[1].delP	X	X	number	end of each subhour	Pressure diff across element, lbf/sf (+ = pz1 > pz2)
ad[1].mdotP	X	X	number	end of each subhour	Air mass flow rate, (lbm moist air)/sec (+ into z1)
ad[1].dmdp	X	X	number	end of each subhour	Derivative of iz_mdotp wrt pressure (0 for fix flow)
${\rm ad}[1].{\rm mdotB}$	X	X	number	end of each subhour	Add'l buoyancy-driven mass flow, (lbm moist air)/sec
ad[1].mdotX	X	X	number	end of each subhour	Air mass exhaust flow, (lbm moist air)/sec (+ out of z2)
${\rm ad}[1].{\rm xDelpF}$	X	X	number	end of each subhour	Buoyancy flooding pressure factor
$\mathrm{ad}[1].\mathrm{xMbm}$	X	X	number	end of each subhour	Buoyancy max possible flow factor
ad[1].tdFan	X	X	number	end of each subhour	Air stream temp rise across fan, f
ad[1].pFan	X	X	number	end of each subhour	Fan (electrical) power for meter, btuh (not w)
amfNom	X	X	number	end of each subhour	Nominal air mass flow, lbm/sec

6.39 kiva

@kiva[1..].

Name	Input?	Runtime?	Type	Variability	Description
name floor	-	X X	string integer number	constant run start time (of each phase, autoSize or simulate)	– Floor reference

Name	Input?	Runtime?	Type	Variability	Description
perimWeight	-	X	number	run start time (of each phase, autoSize or simulate)	Weight of this kiva instance for results of corresponding floor

6.40 layer (owner: construction)

@layer[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
thk	X	_	number	input time	Thickness of layer, ft. dfl mt_thk else rqd. *i cuz veoi in cncult:lrt[].
mati	X	_	integer number	input time	Primary material (mat subscript). rqd.
frmMati	X	_	integer number	input time	Framing material in layer, 0 if unframed layer
frmFrac	X	_	number	input time	Fraction framing in layer. rqd if lrfrmmati nz.
uvy	X	_	number	run start time (of each phase, autoSize or simulate)	Conductivity: weighted combo of pri & framing; not specific to thickness.
r	X	-	number	run start time (of each phase, autoSize or simulate)	Layer r-value (for thk, per ft2)
vhc	X	_	number	run start time (of each phase, autoSize or simulate)	Volumetric heat capac (dens*spht, framing-weighted)

6.41 mass

@mass[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
sfi	-	X	integer number	run start time (of each phase, autoSize or simulate)	Associated surface subscript
sfClass	-	X	unrecognized	run start time (of each phase, autoSize or simulate)	Associated surface class (sfcsurf or sfcdoor)

Name	Input?	Runtime?	Type	Variability	Description
xri	_	X	integer number	run start time (of each phase, autoSize or simulate)	Xsrat subscript: ditto
area	-	X	number	run start time (of each phase, autoSize or simulate)	Area, ft2
isSubhrly	_	X	integer number	run start time (of each phase, autoSize or simulate)	True iff this mass simulated subhourly (else hourly)
isFD	_	X	integer number	run start time (of each phase, autoSize or simulate)	True iff this mass used forward-difference model (always subhourly)
inside.msi	_	X	integer number	run start time (of each phase, autoSize or simulate)	Parent mass subscr
inside.ty	_	X	integer number	run start time (of each phase, autoSize or simulate)	Bound cond type: msbcadiabatic, msbcambient, msbcground, msbczone, or msbcspect.
inside.zi	_	X	integer number	run start time (of each phase, autoSize or simulate)	Zone sbscr if .bc_ty == msbczone.
inside.exTa	_	X	number	hourly	Adjacent air temp,
inside.exTr	_	X	number	hourly	Adjacent radiant temp, f
inside.rsurf	-	X	number	run start time (of each phase, autoSize or simulate)	Extra surf resis, from masstype, for "light" surf lyrs eg carpet: res for solar to 1st hvy lyr.
inside.h	-	X	number	run start time (of each phase, autoSize or simulate)	Combined surface conductance, air to 1st "heavy" layer (btuh/ft2-f)

Name	Input?	Runtime?	Type	Variability	Description
inside.ha	-	X	number	run start time (of each phase, autoSize or simulate)	Bc_h * area, btuh/f
in side.r Ig	-	X	unrecognized	hourly	Radiant internal gain target (float) (btuh). pointed to by znr.rigdist; set/used in cnloads. 11-95
inside.qxhnet	-	X	number	end of each hour	Net heat xfer for hour (btu, + = into mass): signed sum of all transfers.
inside.qxdnet	_	X	number	end of each day	ditto current day
inside.qxmnet	_	X	number	end of each month	ditto current month
inside.qxhtot	_	X	number	end of each hour	Total xfer for hour (btu): sum of abs(xfer). used as divisor for determining relative error.
in side. qxdtot	_	X	number	end of each day	ditto current day
inside.qxmtot	_	X	number	end of each month	ditto current month
in side. surf Temp	_	X	number	end of each subhour	Probe-able duplicate copy of inside or outside layer surface temp, set in loadssurfaces.
outside.msi	-	X	integer number	run start time (of each phase, autoSize or simulate)	Parent mass subscr
outside.ty	_	X	integer number	run start time (of each phase, autoSize or simulate)	Bound cond type: msbcadiabatic, msbcambient, msbcground, msbczone, or msbcspect.
outside.zi	_	X	integer number	run start time (of each phase, autoSize or simulate)	Zone sbscr if .bc_ty == msbczone.

Name	Input?	Runtime?	Type	Variability	Description
outside.exTa	_	X	number	hourly	Adjacent air temp,
outside.exTr	-	X	number	hourly	Adjacent radiant temp, f
outside.rsurf	_	X	number	run start time (of each phase, autoSize or simulate)	Extra surf resis, from masstype, for "light" surf lyrs eg carpet: res for solar to 1st hvy lyr.
outside.h	_	X	number	run start time (of each phase, autoSize or simulate)	Combined surface conductance, air to 1st "heavy" layer (btuh/ft2-f)
outside.ha	_	X	number	run start time (of each phase, autoSize or simulate)	Bc_h * area, btuh/f
${\it outside.rIg}$	_	X	unrecognized	hourly	Radiant internal gain target (float) (btuh). pointed to by znr.rigdist; set/used in cnloads. 11-95
outside.qxhnet	_	X	number	end of each hour	Net heat xfer for hour (btu, + = into mass): signed sum of all transfers.
outside.qxdnet	-	X	number	end of each day	ditto current day
outside.qxmnet	_	X	number	end of each month	ditto current month
outside.qxhtot	-	X	number	end of each hour	Total xfer for hour (btu): sum of abs(xfer). used as divisor for determining relative error.
outside.qxdtot	_	X	number	end of each day	ditto current day
outside.qxmtot	_	X	number	end of each month	ditto current month
out side. surf Temp	-	X	number	end of each subhour	Probe-able duplicate copy of inside or outside layer surface temp, set in loadssurfaces.

Name	Input?	Runtime?	Type	Variability	Description
UNom	_	X	number	run start time (of each phase, autoSize or simulate)	Overall uval incl nominal surface films, btuh/ft2-f
tc	-	X	number	run start time (of each phase, autoSize or simulate)	Time constant (con->hc/sfinh) as used to default sfmodel & issubhrly, for reporting, 1-95
pMM	-	X	un-probe-able	run start time (of each phase, autoSize or simulate)	Pointer to runtime mass model for this mass (type determined per input)

6.42 material

@material [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
thk	X	_	number	input time	-1 or optional default
					thickness, ft
cond	X	_	number	input time	Conductivity,
					btuh-ft/ft2-f (at
					$mt_condtrat$)
$\operatorname{condTRat}$	X	_	number	input time	Rating temp for
					mt_cond, f (typically 70
					f)
condCT	X	_	number	input time	Conductivity temp
					coefficient, 1/f
$_{\mathrm{spHt}}$	X	_	number	input time	Specific heat, btu/lb-f
dens	X	_	number	input time	0 (massless) or density,
			_		lb/ft3
rNom	X	_	number	input time	Nominal r of insulation,
,	37		1		ft2-f/btuh-ft
vhc	X	_	number	run start time (of	Volumetric heat capac
				each phase, autoSize	(btu/ft3-f):
				or simulate)	mt_spht*mt_dens

6.43 meter

@meter[1..].

Name	Input?	Runtime?	Type	Variability	Description
name rate	X X	X X	string $ number$	constant input time	Cost per btu of use

Name	Input?	Runtime?	Type	Variability	Description
dmdRate	X	X	number	input time	Dmdcost per btu of demand, for a month
Y.tot	X	X	number	end of run (of each phase, autoSize or simulate)	Total of following specific end uses. code assumes precedes them.
Y.clg	X	X	number	end of run (of each phase, autoSize or simulate)	Space cooling. code assumes 1st member.
Y.htg	X	X	number	end of run (of each phase, autoSize or simulate)	Space heating incl heat pump compressor
Y.hp	X	X	number	end of run (of each phase, autoSize or simulate)	Heat pump auxiliary (backup) heat
Y.dhw	X	X	number	end of run (of each phase, autoSize or simulate)	Domestic (service) hot water heating
Y.dhwBU	X	X	number	end of run (of each phase, autoSize or simulate)	Domestic (service) hot water backup
Y.dhwMFL	X	X	number	end of run (of each phase, autoSize or simulate)	Domestic (service) multi-family loop energy
Y.fanC	X	X	number	end of run (of each phase, autoSize or simulate)	Fans - cooling and cooling ventilation
Y.fanH	X	X	number	end of run (of each phase, autoSize or simulate)	Fans - heating
Y.fanV	X	X	number	end of run (of each phase, autoSize or simulate)	Fans - iaq ventilation
Y.fan	X	X	number	end of run (of each phase, autoSize or simulate)	Fans - other
Y.aux	X	X	number	end of run (of each phase, autoSize or simulate)	Hvac auxiliaries and parasitics, not including fans

Name	Input?	Runtime?	Type	Variability	Description
Y.proc	X	X	number	end of run (of each phase, autoSize or	Process energy
Y.lit	X	X	number	simulate) end of run (of each phase, autoSize or	Lighting
Y.rcp	X	X	number	simulate) end of run (of each phase, autoSize or	Receptacles
Y.ext	X	X	number	simulate) end of run (of each phase, autoSize or	External – outdoor lights, etc
Y.refr	X	X	number	simulate) end of run (of each phase, autoSize or	Refrigeration
Y.dish	X	X	number	simulate) end of run (of each phase, autoSize or	Dish washing
Y.dry	X	X	number	simulate) end of run (of each phase, autoSize or	Clothes drying
Y.wash	X	X	number	simulate) end of run (of each phase, autoSize or	Clothes washing
Y.cook	X	X	number	simulate) end of run (of each phase, autoSize or	Cooking
Y.usr1	X	X	number	simulate) end of run (of each phase, autoSize or	User-defined end use 1
Y.usr2	X	X	number	simulate) end of run (of each phase, autoSize or	User-defined end use 2
Y.bt	X	X	number	simulate) end of run (of each phase, autoSize or	Battery output (negative)
Y.pv	X	X	number	simulate) end of run (of each phase, autoSize or simulate)	Photovoltaic array output (negative)

Y.allEU	X	X	number	end of run (of	Subtotal, clg usr2 (=
				each phase, autoSize or simulate)	load w/o bt and pv)
Y.cost	X	X	number	end of run (of each phase, autoSize or simulate)	Accumulated tot*rate
Y.dmdCost	X	X	number	end of run (of each phase, autoSize or simulate)	Largest dmd*dmdrate to month level, then accumulates (cnguts.cpp:mtraccum)
Y.dmd	X	X	number	end of run (of each phase, autoSize or simulate)	Peak use in interval; hourly value same as .tot.
Y.dmdShoy	X	X	unrecognized	end of run (of each phase, autoSize or simulate)	Peak time as subhour of year, subhr unused: $4(hr+24jday)$.
M.tot	X	X	number	end of each month	Total of following specific end uses. code assumes precedes them.
M.clg	X	X	number	end of each month	Space cooling. code assumes 1st member.
M.htg	X	X	number	end of each month	Space heating incl heat pump compressor
M.hp	X	X	number	end of each month	Heat pump auxiliary (backup) heat
M.dhw	X	X	number	end of each month	Domestic (service) hot water heating
M.dhwBU	X	X	number	end of each month	Domestic (service) hot water backup
M.dhwMFL	X	X	number	end of each month	Domestic (service) multi-family loop energy
M.fanC	X	X	number	end of each month	Fans - cooling and cooling ventilation
M.fanH	X	X	number	end of each month	Fans - heating
M.fanV	X	X	number	end of each	Fans - iaq ventilation
M.fan	X	X	number	month end of each	Fans - other
M.aux	X	X	number	month end of each month	Hvac auxiliaries and parasitics, not including fans
M.proc	X	X	number	end of each month	Process energy
M.lit	X	X	number	end of each month	Lighting
M.rcp	X	X	number	end of each month	Receptacles

Name	Input?	Runtime?	Type	Variability	Description
M.ext	X	X	number	end of each month	External – outdoor lights, etc
M.refr	X	X	number	end of each month	Refrigeration
M.dish	X	X	number	end of each month	Dish washing
M.dry	X	X	number	end of each month	Clothes drying
M.wash	X	X	number	end of each month	Clothes washing
M.cook	X	X	number	end of each month	Cooking
M.usr1	X	X	number	end of each month	User-defined end use 1
M.usr2	X	X	number	end of each	User-defined end use 2
M.bt	X	X	number	month end of each	Battery output
M.pv	X	X	number	month end of each	(negative) Photovoltaic array
M.allEU	X	X	number	month end of each	output (negative) Subtotal, clg usr2 (=
M.cost	X	X	number	month end of each	load w/o bt and pv) Accumulated tot*rate
M.dmdCost	X	X	number	month end of each month	Largest dmd*dmdrate to month level, then accumulates
M.dmd	X	X	number	end of each month	(cnguts.cpp:mtraccum) Peak use in interval; hourly value same as .tot.
M.dmdShoy	X	X	unrecognized	end of each month	Peak time as subhour of year, subhr unused: $4(hr+24jday)$.
D.tot	X	X	number	end of each day	Total of following specific end uses. code assumes precedes them.
D.clg	X	X	number	end of each day	Space cooling. code assumes 1st member.
D.htg	X	X	number	end of each day	Space heating incl heat pump compressor
D.hp	X	X	number	end of each day	Heat pump auxiliary (backup) heat
D.dhw	X	X	number	end of each day	Domestic (service) hot water heating
D.dhwBU	X	X	number	end of each	Domestic (service) hot
D.dhwMFL	X	X	number	day end of each	water backup Domestic (service)
D.fanC	X	X	number	day end of each day	multi-family loop energy Fans - cooling and cooling ventilation

Name	Input?	Runtime?	Type	Variability	Description
D.fanH	X	X	number	end of each day	Fans - heating
D.fanV	X	X	number	end of each day	Fans - iaq ventilation
D.fan	X	X	number	end of each day	Fans - other
D.aux	X	X	number	end of each day	Hvac auxiliaries and parasitics, not including fans
D.proc	X	X	number	end of each day	Process energy
D.lit	X	X	number	end of each day	Lighting
D.rcp	X	X	number	end of each day	Receptacles
D.ext	X	X	number	end of each day	External – outdoor lights, etc
D.refr	X	X	number	end of each day	Refrigeration
D.dish	X	X	number	end of each day	Dish washing
D.dry	X	X	number	end of each day	Clothes drying
D.wash	X	X	number	end of each day	Clothes washing
D.cook	X	X	number	end of each day	Cooking
D.usr1	X	X	number	end of each day	User-defined end use 1
D.usr2	X	X	number	end of each	User-defined end use 2
D.bt	X	X	number	day end of each	Battery output
D.pv	X	X	number	day end of each	(negative) Photovoltaic array
D.allEU	X	X	number	day end of each	output (negative) Subtotal, clg usr2 (=
D.cost	X	X	number	day end of each	load w/o bt and pv) Accumulated tot*rate
D.dmdCost	X	X	number	day end of each day	Largest dmd*dmdrate to month level, then
D.dmd	X	X	number	end of each day	accumulates (cnguts.cpp:mtraccum) Peak use in interval; hourly value same as
D.dmdShoy	X	X	unrecognized	end of each day	tot. Peak time as subhour of year, subhr unused:
H.tot	X	X	number	end of each hour	4(hr+24jday). Total of following specific end uses. code assumes precedes them.

Name	Input?	Runtime?	Type	Variability	Description
H.clg	X	X	number	end of each	Space cooling. code
H.htg	X	X	number	hour end of each	assumes 1st member. Space heating incl heat
11.1105	21	21	number	hour	pump compressor
H.hp	X	X	number	end of each	Heat pump auxiliary
•				hour	(backup) heat
H.dhw	X	X	number	end of each	Domestic (service) hot
				hour	water heating
H.dhwBU	X	X	number	end of each	Domestic (service) hot
II II MEI	v	v	1	hour	water backup
H.dhwMFL	X	X	number	end of each hour	Domestic (service)
H.fanC	X	X	number	end of each	multi-family loop energy Fans - cooling and
11.1a11C	Λ	Λ	number	hour	cooling ventilation
H.fanH	X	X	number	end of each	Fans - heating
				hour	 0
H.fanV	X	X	number	end of each	Fans - iaq ventilation
				hour	
H.fan	X	X	number	end of each	Fans - other
				hour	
H.aux	X	X	number	end of each	Hvac auxiliaries and
				hour	parasitics, not including
II	v	v		J -£ J-	fans
H.proc	X	X	number	end of each hour	Process energy
H.lit	X	X	number	end of each	Lighting
11.110	11	21	number	hour	Digiting
H.rcp	X	X	number	end of each	Receptacles
•				hour	1
H.ext	X	X	number	end of each	External - outdoor
				hour	lights, etc
H.refr	X	X	number	end of each	Refrigeration
TT 1: 1	37	37	1	hour	D. 1 1.
H.dish	X	X	number	end of each	Dish washing
H.dry	X	X	number	hour end of each	Clothes drying
11.dry	Λ	Λ	number	hour	Clothes drying
H.wash	X	X	number	end of each	Clothes washing
11. Waisii	11	11	namoor	hour	ciotines washing
H.cook	X	X	number	end of each	Cooking
				hour	<u> </u>
H.usr1	X	X	number	end of each	User-defined end use 1
				hour	
H.usr2	X	X	number	end of each	User-defined end use 2
TT 1 .	37	37	1	hour	D
H.bt	X	X	number	end of each	Battery output
H.pv	X	X	number	hour end of each	(negative) Photovoltaic array
11.pv	Λ	Λ	пишвег	end of each hour	output (negative)
H.allEU	X	X	number	end of each	Subtotal, clg usr2 (=
			HUHHOUL	ond or cach	~ uni

Name	Input?	Runtime?	Type	Variability	Description
H.cost	X	X	number	end of each hour	Accumulated tot*rate
H.dmdCost	X	X	number	end of each hour	Largest dmd*dmdrate to month level, then accumulates (cnguts.cpp:mtraccum)
H.dmd	X	X	number	end of each hour	Peak use in interval; hourly value same as .tot.
H.dmdShoy	X	X	unrecognized	end of each hour	Peak time as subhour of year, subhr unused: $4(hr+24jday)$.

6.44 perimeter (owner: zone)

@perimeter[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
prLen	X	_	number	input time	Length. input.
prF2	X	_	number	input time	Conduction per unit length. input.
xi	X	-	integer number	run start time (of each phase, autoSize or simulate)	Subscript in runtime xsurf rat, to facilitate access by probers 1-92

6.45 PVArray

@PVArray[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
nounting	X	X	unrecognized	input time	_
onIdx	X	X	unrecognized	input time	_
irea	X	X	number	input time	_
Beam	X	X	number	end of each	_
				hour	
BeamErrCount	X	X	unrecognized	end of each	_
				hour	
$\operatorname{vrtInp}[0]$	X	X	number	input time	_
$\operatorname{vrtInp}[1]$	X	X	number	input time	_
$\operatorname{vrtInp}[2]$	X	X	number	input time	_
$\operatorname{vrtInp}[3]$	X	X	number	input time	_
$\operatorname{vrtInp}[4]$	X	X	number	input time	_
$\operatorname{vrtInp}[5]$	X	X	number	input time	_
$\operatorname{vrtInp}[6]$	X	X	number	input time	_
$\operatorname{vrtInp}[7]$	X	X	number	input time	_
$\operatorname{rtInp}[8]$	X	X	number	input time	_
$\operatorname{vrtInp}[9]$	X	X	number	input time	_
$\operatorname{vrtInp}[10]$	X	X	number	input time	_

Generated: 2020-05-11T15:34:27+00:00

Name	Input?	Runtime?	Type	Variability	Description
${\text{vrtInp[11]}}$	X	X	number	input time	_
vrtInp[12]	X	X	number	input time	_
vrtInp[13]	X	X	number	input time	_
vrtInp[14]	X	X	number	input time	_
vrtInp[15]	X	X	number	input time	_
vrtInp[16]	X	X	number	input time	_
vrtInp[17]	X	X	number	input time	_
vrtInp[18]	X	X	number	input time	_
vrtInp[19]	X	X	number	input time	_
vrtInp[20]	X	X	number	input time	_
vrtInp[21]	X	X	number	input time	_
vrtInp[22]	X	X	number	input time	_
vrtInp[23]	X	X	number	input time	_
vrtInp[24]	X	X	number	input time	_
vrtInp[25]	X	X	number	input time	_
vrtInp[26]	X	X	number	input time	_
$\operatorname{vrtInp}[27]$	X	X	number	input time	_
vrtInp[28]	X	X	number	input time	_
vrtInp[29]	X	X	number	input time	_
$\operatorname{vrtInp}[30]$	X	X	number	input time	_
vrtInp[31]	X	X	number	input time	_
$\operatorname{vrtInp}[32]$	X	X	number	input time	_
vrtInp[33]	X	X	number	input time	_
vrtInp[34]	X	X	number	input time	_
$\operatorname{vrtInp}[35]$	X	X	number	input time	_
vrtInp[36]	X	X	number	input time	_
elecMtri	X	X	integer number	input time	Meter for system
Ciccivitii	71	71	moger number	input time	electricity production
endUse	X	X	integer number	input time	End use of energy.
1.0	37	37	,		defaults to "pv"
dcCap	X	X	number	input time	System
					capacity/size (dc
					nameplate), kw
moduleType	X	X	unrecognized	input time	Type of module
					(standard,
					premium,
					$\operatorname{thinfilm})$
tempCoeff	X	X	number	input time	Temperature
			_		coefficient, 1/f
covRefrInd	X	X	number	input time	Refraction index
					for coating
_					applied to cover
$\operatorname{arrayType}$	X	X	unrecognized	input time	Type of array
					(fixed, fixedroof,
					1axis,
					backtracked,
					2axis)
tilt	X	X	number	hourly	Array tilt, radians
					(input as degrees)

Name	Input?	Runtime?	Type	Variability	Description
azm	X	X	number	hourly	Array azimuth, radians (input as
grndRefl	X	X	number	hourly	degrees) Ground reflectance
gcr	X	X	number	input time	Ground coverage ratio (what fraction of the ground is covered by the array). 1.0 implies no spacing.
dcacRat	X	X	number	input time	Dc to ac ratio
sif	X	X	number	hourly	Shading impact factor
invEff	X	X	number	input time	Inverter efficiency at rated power
sysLoss	X	X	number	hourly	System losses
tCell	X	X	number	end of each hour	Cell temperature, f
aoi	X	X	number	end of each hour	Angle of incidence (radians)
panelTilt	X	X	number	end of each hour	Tilt of pv panel (different from array tilt for tracking systems), radians
panelAzm	X	X	number	end of each hour	Azimuth of pv panel (different from array tilt for tracking systems), radians
panelRot	X	X	number	end of each hour	Rotation of pv panel for 1-axis tracking systems, radians clockwise from vertical
poa	X	X	number	end of each hour	Plane of array incidence (before shading), btu/h-ft2
poaBeam	X	X	number	end of each hour	Plane of array beam incidence (before shading), btu/h-ft2
${\rm radIBeam}$	X	X	number	end of each hour	Beam radiation incident on array, btu/h-ft2

Name	Input?	Runtime?	Type	Variability	Description
radIBeamEff	X	X	number	end of each hour	Effective beam radiation incident on array (accounts for shading impact factor), btu/h-ft2
radI	X	X	number	end of each hour	Total radiation incident on array, btu/h-ft2
radIEff	X	X	number	end of each hour	Effective total radiation incident on array (accounts for shading impact factor), btu/h-ft2
radTrans	X	X	number	end of each hour	Transmitted radiation (after accounting for shading impact), btu/h-ft2
dcOut	X	X	number	end of each hour	Dc power output, btu
acOut	X	X	number	end of each hour	Ac power output, btu
tauNorm	X	X	number	run start time (of each phase, autoSize or simulate)	Transmittance at normal incidence
inoct	X	X	number	run start time (of each phase, autoSize or simulate)	Installed nominal operating cell temperature, f
convRatio	X	X	number	run start time (of each phase, autoSize or simulate)	Ratio of back convection to front convection
tGrndRatio	X	X	number	run start time (of each phase, autoSize or simulate)	Ratio of ground-cell temperature diff. to air-cell temperature diff.
radILs	X	X	number	end of each hour	Last step (curently hour) total radiation incident on array, btu/h-ft2
tCellLs	X	X	number	end of each hour	Last step (curently hour) cell temperature, f

6.46 report (owner: reportFile)

@report[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
zi	X	_	integer number	input time	Zone for zone-specific reports. can be ti_sum,
mtri	X	-	integer number	input time	ti_all. Meter to report/export for meter-specific reports. can be ti_sum,
ahi	X	-	integer number	input time	ti_all. Air handler to report/export for air-handler-specific reports. can be ti_sum, ti_all.
tui	X	-	integer number	input time	Terminal to report/export for terminal-specific reports. can be ti all
dhwMtri	X	_	integer number	input time	Dhw meter to report/export for dhw meter-specific reports. can be ti_all.
isExport	X	_	integer number	input time	1 if export not report, so same fcns can be used with rib and xib records
rpTy	X	_	integer number	constant	Report/export type c_rptych_eb etc
rpFreq	X	_	integer number	constant	R/xport frequency c ivlch m etc
rpDayBeg	X	_	integer number	input time	Start 1-based julian day of year, where applicable
rpDayEnd	X	_	integer number	input time	End
rpBtuSf	X	_	number	input time	Energy (btu) scale factor
rpCond	X	_	number	end of each subhour	Condition: if given, rpt lines omitted when false (si; li used to hold nan) (li currently unprobeable)
rpTitle	X	_	string	input time	Title, for udt, in dm
rpCpl	X	_	integer number	input time	Chars per line, inputtable re udt's
rpHeader	X	_	unrecognized	input time	Table header or export header yes/no (default yes)
rpFooter	X	-	integer number	input time	Table footer (summary line) or export footer (just blank line?) yes/no (default yes)

Name	Input?	Runtime?	Type	Variability	Description
coli	X	-	integer number	run start time (of each phase, autoSize or simulate)	Rcolb/xcolb subscript of first column (thence linked by .nxcoli).
nCol	X	_	integer number	run start time (of each phase, autoSize or simulate)	# columns
wid	X	-	integer number	run start time (of each phase, autoSize or simulate)	Total col width for user-defined report
vrh	X	-	unrecognized	run start time (of each phase, autoSize or simulate)	Assigned virtual report handle, used from here to build unspoolinfo.

6.47 reportCol (owner: report)

@reportCol[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
colHead	X	X	string	input time	Column head string, in dm. *i cuz veoi in cncult.cpp:rpcolt[].
colGap	X	X	integer number	input time	Space to left of column, default 1
colWid	\mathbf{X}	X	integer number	input time	Column width
colDec	X	X	integer number	input time	Coldecimals: max digits after point
colJust	X	X	integer number	input time	Justification: c_justch_l or r
colVal	X	X	un-probe-able	end of each subhour	Value .val and data type .dt (tyfl/tystr in input, dtfloat/dtchp in run), used at end report interval.
nxColi	X	X	integer number	constant	For runtime: col subscript of next column in this report, 0 if last one

6.48 reportFile

@ reportFile [1..].

Name	Input?	Runtime?	Type	Variability	Description
name fileName	X X		string string	constant input time	File name, path optional, in dm (or pseudocode, but not "text"). *i cuz veoi in cncult.

Name	Input?	Runtime?	Type	Variability	Description
fileStat	X	-	integer number	run start time (of each phase, autoSize or simulate)	Fresh(overwrite,default)/new(err if exists)/append
pageFmt	X	_	integer number	input time	Page formatting on no/yes
fileStatChecked	X	_	integer number	run start time (of each phase, autoSize or simulate)	Check filestat only once to prevent "file exists" error or re-setting "overwrite" on later run
overWrite	X	_	integer number	run start time (of each phase, autoSize or simulate)	Append if 0. set by filestat=fresh, cleared on use, so addl runs do not erase earlier output.
wasNotEmpty	X	-	integer number	run start time (of each phase, autoSize or simulate)	Nz if existed and size > 0 at filestat check

6.49 RSYS

@RSYS[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
type	X	X	unrecognized	input time	System type (acfurn, acres, ashp, ac, furn, res)
desc	X	X	string	input time	Optional description string (e.g. model #)
perfMap	X	X	integer number	input time	If yes, make performance map (development aid)
areaServed	X	X	number	run start time (of each phase, autoSize or simulate)	Total zone floor area served by this rsys, ft2
zonesServed	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	# of zones served by this rsys
elecMtri	X	X	integer number	input time	Meter for system electricity use
fuelMtri	X	X	integer number	input time	Meter for system fuel use

Name	Input?	Runtime?	Type	Variability	Description
parElec	X	X	number	hourly	Electrical parasitic power, w
parFuel	X	X	number	hourly	Fuel parasitic consumption, btuh
$\operatorname{capNomH}$	X	X	number	daily	Nominal heating capacity, btuh. default=rs_caph or rs_cap47
$\operatorname{capNomC}$	X	X	number	daily	Nominal cooling capacity, btuh. default=rs_cap95
fan.fanTy	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
fan.vfDs	X	X	number	end of each subhour	_
fan.vfDs_As	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.vfDs_AsNov	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.vfMxF	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.press	X	X	number	run start time (of each phase, autoSize or simulate)	-
fan.eff	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.shaftPwr	X	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
fan.elecPwr	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.motTy	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
fan.motEff	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.motPos	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
fan.curvePy.k[0]	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.curvePy.k[1]	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.curvePy.k[2]	X	X	number	run start time (of each phase, autoSize or simulate)	-
fan.curvePy.k[3]	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.curvePy.k[4]	X	X	number	run start time (of each phase, autoSize or simulate)	_
fan.curvePy.k[5]	X	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
fan.mtri	X	X	integer	run start	_
			number	time (of each	
				phase,	
				autoSize or	
				simulate)	
fan.endUse	\mathbf{X}	X	integer	run start	_
			number	time (of each	
				phase,	
				autoSize or	
				simulate)	
fan.ausz	X	X	integer	run start	_
			number	time (of each	
				phase,	
				autoSize or	
				simulate)	
fan.outPower	X	X	number	subhourly	_
fan.airPower	X	X	number	subhourly	_
fan.cMx	X	X	number	end of each	_
				subhour	
fan.c	X	X	number	end of each	_
				subhour	
fan.t	X	X	number	end of each	_
1001110			114111001	subhour	
fan.frOn	X	X	number	end of each	_
				subhour	
fan.p	X	X	number	end of each	_
				subhour	
fan.q	X	X	number	end of each	_
141114			11011110 01	subhour	
fan.dT	X	X	number	end of each	_
			11011110 01	subhour	
fan.qAround	X	X	number	end of each	_
iam qriro ama			114111001	subhour	
asRet.tdb	X	X	number	end of each	_
asitoas	11	11	namoer	subhour	
asRet.w	X	X	number	end of each	_
COST COU. W	11	11	namoer	subhour	
asIn.tdb	X	X	number	end of each	_
	11	11	namoer	subhour	
asIn.w	X	X	number	end of each	_
COSIII. W	11	11	namoer	subhour	
twbIn	X	X	number	end of each	Entering air wet bulb
· Wolli	11	11	namoer	subhour	(after return ducts)
asOut.tdb	X	X	number	end of each	-
as Cat. tas	21	11	namber	subhour	
asOut.w	X	X	number	end of each	_
asout.w	21	21	number	subhour	
asOutAux.tdb	X	X	number	end of each	_
aso auriun.tut	11	11	number	subhour	
asOutAux.w	X	X	number	end of each	_
asOutAux.W	Λ	Λ	number	subhour	•
				Submour	

Name	Input?	Runtime?	Type	Variability	Description
asSup.tdb	X	X	number	end of each	_
				$\operatorname{subhour}$	
asSup.w	X	X	number	end of each	_
				subhour	
asSupAux.tdb	X	X	number	end of each	_
•				subhour	
asSupAux.w	X	X	number	end of each	_
•				subhour	
tSupLs	X	X	number	subhourly	supply dry-bulb at
1				v	last step, f
DSEH	X	X	number	hourly	Heating
DSEC	X	X	number	hourly	Cooling
isAuszH	X	X	unrecognized	run start	True iff currently
101140211	11	11	umrecogmzea	time (of each	autosizing heating
				phase,	advosizing nearing
				autoSize or	
				simulate)	
isAuszC	X	X	unrecognized	run start	Ditto cooling
15114520	A	Λ	umrecogmzeu	time (of each	rsys cap95
				phase,	1sys_capso
				autoSize or	
tdDesH	X	X	number	simulate) run start	Design temperature
tuDesII	Λ	Λ	number		Design temperature
				time (of each	difference (rise) across
				phase,	rsys for heating
				autoSize or	
, ID, C	v	v	1	simulate)	D : 4
tdDesC	X	X	number	run start	Design temperature
				time (of each	difference (fall) across
				phase,	rsys for cooling
				autoSize or	
c Q [0]	37	37	1	simulate)	
fxCap[0]	X	X	number	end of each	Current step excess
				subhour	capacity factor =
					amfavailable / max(
0.00 [.]			_		amfrequest)
fxCap[1]	X	X	number	end of each	Current step excess
				subhour	capacity factor =
					amfavailable / max(
			_		amfrequest)
fxCapCDay	X	X	number	end of each	Current day excess
			_	hour	cooling capacity factor
fxCapHDay	X	X	number	end of each	Ditto heating
				hour	
fxCapHTarg	X	X	number	run start	Target excess capacity
O				time (of each	factor for heating
				phase,	autosize
				phase, autoSize or simulate)	

Name	Input?	Runtime?	Type	Variability	Description
fxCapHAsF	X	X	number	run start time (of each phase, autoSize or simulate)	Working excess capacity factor for heating autosize
fxCapCTarg	X	X	number	run start time (of each phase, autoSize or simulate)	Target excess capacity factor for cooling autosize
fxCapCAsF	X	X	number	run start time (of each phase, autoSize or simulate)	Working excess capacity factor for cooling autosize
fxCapAuxHTarg	X	X	number	autosize and simulate phase start time	Target excess capacity factor for auxh autosize
$auszH.az_active$	X	X	integer number	run start time (of each phase, autoSize or simulate)	_
auszH.az_a	X	X	number	end of each subhour	_
auszH.az_b	X	X	number	end of each subhour	-
auszH.ldPk	X	X	number	end of each subhour	-
auszH.ldPkAs	X	X	number	end of each	_
auszH.ldPkAs1	X	X	number	day end of each	_
auszH.plrPk	X	X	number	day end of each	_
auszH.plrPkAs	X	X	number	subhour end of each	_
auszH.xPk	X	X	number	day end of each	-
auszH.xPkAs	X	X	number	subhour end of each	_
$auszC.az_active$	X	X	integer number	day run start time (of each phase, autoSize or	-
auszC.az_a	X	X	number	simulate) end of each subhour	_
auszC.az_b	X	X	number	end of each subhour	_

Name	Input?	Runtime?	Type	Variability	Description
auszC.ldPk	X	X	number	end of each subhour	_
auszC.ldPkAs	X	X	number	end of each day	_
auszC.ldPkAs1	X	X	number	end of each day	_
auszC.plrPk	X	X	number	end of each subhour	_
auszC.plrPkAs	X	X	number	end of each day	_
auszC.xPk	X	X	number	end of each subhour	_
auszC.xPkAs	X	X	number	end of each	_
HSPF	X	X	number	day run start time (of each	Rated hspf, btuh/w
				phase, autoSize or simulate)	
cap47	X	X	number	end of each phase (autosize or	Full speed heating capacity at odb=47 f
COP47	X	X	number	simulate) end of each phase (autosize or	Cop at odb=47 f
cap35	X	X	number	simulate) end of each phase (autosize or	Ditto 35 f
COP35	X	X	number	simulate) end of each phase (autosize or	_
cap17	X	X	number	simulate) end of each phase (autosize or	Ditto 17 f
COP17	X	X	number	simulate) end of each phase (autosize or	-
CdH	X	X	number	simulate) end of each phase (autosize or	Heating cycling degradation factor
inp47	X	X	number	simulate) end of each phase (autosize or simulate)	Input power at outdoor dry-bulb = 47 f (btuh (not w))

Name	Input?	Runtime?	Type	Variability	Description
inp35	X	X	number	end of each phase (autosize or simulate)	Ditto 35 f
inp17	X	X	number	end of each phase (autosize or simulate)	Ditto 17 f
ASHPCapF[0]	X	X	number	run start time (of each phase, autoSize or simulate)	Capacity slope: $cap(t)$ = $cap17 + capf^*(t - 17)$
ASHPCapF[1]	X	X	number	run start time (of each phase, autoSize or simulate)	Capacity slope: $cap(t)$ = $cap17 + capf*(t - 17)$
ASHPInpF[0]	X	X	number	run start time (of each phase, autoSize or simulate)	Input slope: $inp(t) = inp17 + inpf^*(t - 17)$
ASHPInpF[1]	X	X	number	run start time (of each phase, autoSize or simulate)	Input slope: $inp(t) = inp17 + inpf^*(t - 17)$
capAuxH	X	X	number	end of each phase (autosize or simulate)	Auxiliary heating capacity (not including fan heat), btuh
capAuxHInp	X	X	number	end of each phase (autosize or simulate)	Rs_capauxh as input (may be autosize)
COPAuxH	X	X	number	autosize and simulate phase start time	Auxiliary heating cop (assumed constant), default 1
${\bf ASHPLockOutT}$	X	X	number	hourly	Air source heat pump compressor lockout temp, f
${\bf defrostModel}$	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Defrost model
AFUE	X	X	number	autosize and simulate phase start time	Heating system rated afue, $0 < \text{afue} <= 1$

Name	Input?	Runtime?	Type	Variability	Description
сарН	X	X	number	end of each phase (autosize or simulate)	Rated heating output (including fan), btuh
capH_As	X	X	number	end of each phase (autosize or simulate)	_
capH_AsNov	X	X	number	end of each phase (autosize or simulate)	_
${\rm fan} {\rm HRtdH}$	X	X	number	autosize and simulate phase start time	Fan heat included in ashp rated cap/cop/hspf, btuh
${\rm fanPwrH}$	X	X	number	autosize and simulate phase start time	Heating fan power, w/cfm
fanHeatH	X	X	number	end of each phase (autosize or simulate)	Heating fan total electrical power, btuh
amfH	X	X	number	end of each phase (autosize or simulate)	Heating dry air mass flow rate, lbm/hr
effHt	X	X	number	end of each subhour	Current step full load heating efficiency, dimless
capHt	X	X	number	end of each subhour	Current step heating capacity (including fan and ashp defrost heat), btuh
capDefrostHt	X	X	number	end of each subhour	Current step defrost heating capacity, btuh
PLF	X	X	number	end of each subhour	Efficiency degradation due to cycling
SEER	X	X	number	autosize and simulate phase start time	Cooling ahri rated seer, btuh/w
EER95	X	X	number	autosize and simulate phase start time	Cooling ahri rated eer at 95 f, btuh/w
cap95	X	X	number	end of each phase (autosize or simulate)	Rated total cooling capacity at 95 f, btuh todo: decide on sign

Name	Input?	Runtime?	Type	Variability	Description
cap95_As	X	X	number	end of each phase (autosize or simulate)	_
cap95_AsNov	X	X	number	end of each phase (autosize or simulate)	_
vfPerTon	X	X	number	autosize and simulate phase start time	Air flow ratio, cfm/ton (= cfm/(rs_cap95/12000))
fanPwrC	X	X	number	autosize and simulate phase start time	Cooling fan operating power ratio, w/cfm (default 0.365)
fanHeatC	X	X	number	end of each phase (autosize or simulate)	Cooling fan operating electrical power, btuh
fanDeltaTC	X	X	number	end of each phase (autosize or simulate)	Cooling fan heat temperature rise, f
amfC	X	X	number	end of each phase (autosize or simulate)	Cooling dry air mass flow rate, lbm/hr
CdC	X	X	number	end of each phase (autosize or simulate)	Cooling cycling degradation factor
rhInTest	X	X	number	end of each hour	Specified entering air relnum (for testing), 0-1
rhIn	X	X	number	end of each subhour	Plenum entering air relnum, 0-1
twbCoilIn	X	X	number	end of each subhour	Coil entering wet bulb, f (after blow-thru fan if any)
tdbCoilIn	X	X	number	end of each subhour	Coil entering dry bulb, f (ditto)
wetCoil	X	X	unrecognized	end of each subhour	1 = wet coil, 0 = dry
SHR	X	X	number	end of each subhour	Cooling sensible heat ratio (derived using coil model)
fChg	X	X	number	autosize and simulate phase start time	Refrigerant charge factor (default 1, 0.9 or 0.96 for ca compliance)

Name	Input?	Runtime?	Type	Variability	Description
fSize	X	X	number	autosize and simulate phase start time	Compressor sizing factor (default 1, 0.95 or 1 for ca compliance)
fanHRtdC	X	X	number	autosize and simulate phase start time	Fan heat included in rated rs_cap95, btuh
capnfX	X	X	number	autosize and simulate phase start time	Constant for rs_capct calc
capAdjF	X	X	number	autosize and simulate phase start time	_
SEERnfX	X	X	number	end of each phase (autosize or simulate)	Constant for rs_seernf calc
EERnfX	X	X	number	end of each phase (autosize or simulate)	Constant for rs_eernfcalc
fCondCap	X	X	number	end of each subhour	Conditions factor,
fCondSEER	X	X	number	end of each subhour	capacity Conditions factor, seer
fCondEER	X	X	number	end of each subhour	Conditions factor, eer
SEERnf	X	X	number	end of each subhour	Seer w/o fan power
EERnf	X	X	number	end of each subhour	Eer w/o fan power
EERt	X	X	number	end of each subhour	Compressor eer, btuh/w (temperature weighted mix of
effCt	X	X	number	end of each subhour	Temp adjusted compressor efficiency (= cet in acm)
$\operatorname{capTotCt}$	X	X	number	end of each subhour	Coil total cooling capacity at current
capLatCt	X	X	number	end of each subhour	conditions, btuh (<0) Coil latent cooling capacity at current
capSenCt	X	X	number	end of each subhour	conditions, btuh (<0) Coil sensible cooling capacity at current conditions, btuh (<0)

Name	Input?	Runtime?	Type	Variability	Description
OAVType	X	X	unrecognized	input time	Type: none, fixedflow (aka smartvent), varflow (aka smartbreeze)
OAVReliefZi	X	X	integer number	input time	Oav relief zone index
OAVTdbInlet	X	X	number	subhourly	Oav inlet dry-bulb temp, f
OAVTdiff	X	X	number	hourly	Oav temperature differential, f
OAVAvfDs	X	X	number	input time	Oav design air flow rate, cfm actual air
OAVFanPwr	X	X	number	input time	Oav design fan power (based on rs_oavvfds); w/cfm
OAVAvfMinF	X	X	number	input time	Oav minimum volume flow (rs_avfoav always >= rs_oavavfminf *rs_oavavfds)
avfOAV	X	X	number	daily	Oav current air volume flow, cfm (set at beg of each day)
fanHeatOAV	X	X	number	daily	Ditto fan power, btuh
amfOAV	X	X	number	daily	Ditto air mass flow, lbm/hr
tdbOut	X	X	number	subhourly	Outdoor dry-bulb temp at condensor or other outdoor components, f
modeCtrl	X	X	unrecognized	hourly	Mode control (off, heat, cool, auto }
mode	X	X	unrecognized	end of each subhour	Mode (rsmoff, rsmheat, rsmcool, rsmoav)
modeLs	X	X	unrecognized	subhourly	Last step mode (rsmoff, rsmheat, rsmcool, rsmoav)
amf	X	X	number	end of each subhour	Full-load (maximum) dry air mass flow rate, lbm/hr
$\operatorname{amfReq}[0]$	X	X	number	end of each subhour	Total amf (at system) requested by zones, lbm/hr
amfReq[1]	X	X	number	end of each subhour	Total amf (at system) requested by zones, lbm/hr
runF	X	X	number	end of each subhour	Run fraction
runFLs	X	X	number	subhourly	Last step run fraction (for probe access at step beg)

Name	Input?	Runtime?	Type	Variability	Description
runFAux	X	X	number	end of each subhour	Auxiliary run fraction
outSen	X	X	number	end of each subhour	Average primary sensible heat delivery rate for last subhr, btuh
outLat	X	X	number	end of each subhour	Ditto latent, btuh
outFan	X	X	number	end of each subhour	Ditto fan heat added to air stream, btuh
outDefrost	X	X	number	end of each subhour	Ditto defrost heat, btuh
outAux	X	X	number	end of each subhour	Ditto auxiliary heat added to air stream, btuh (for ashp)
FEffH	$\mathbf{X}_{\mathbf{x}}$	X	number	subhourly	Heating
FEffC	$\mathbf{X}_{\mathbf{x}}$	X	number	subhourly	Cooling
inPrimary	X	X	number	end of each subhour	Primary input, btuh (compressor, burner,)
inFan	X	X	number	end of each subhour	Fan electricity input, btuh (not kwh)
inDefrost	X	X	number	end of each subhour	Defrost heating input, btuh (ashp only)
inAux	X	X	number	end of each subhour	Auxiliary heating input, btuh

6.50 RSYSRes

@RSYSRes[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
Y.n	-	X	unrecognized	end of run (of each phase, autoSize or simulate)	_
Y.hrsOn	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.hrsOnAux	_	X	number	end of run (of each phase, autoSize or simulate)	_
Y.qh	_	X	number	end of run (of each phase, autoSize or simulate)	-
Y.qcSen	-	X	number	end of run (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
Y.qcLat	-	X	number	end of run (of each phase,	_
				autoSize or	
W D		v	1	simulate)	
Y.qFan	_	X	number	end of run (of	_
				each phase, autoSize or	
				simulate)	
Y.qDefrost	_	X	number	end of run (of	_
1.qDell'ost		21	namoer	each phase,	
				autoSize or	
				simulate)	
Y.qAux	_	X	number	end of run (of	_
1				each phase,	
				autoSize or	
				simulate)	
M.n	_	X	unrecognized	end of each	_
				month	
M.hrsOn	_	X	number	end of each	_
				month	
M.hrsOnAux	_	X	number	end of each	_
				month	
M.qh	_	X	number	end of each	_
				month	
M.qcSen	_	X	number	end of each	_
				month	
M.qcLat	_	X	number	end of each	_
) (P		77	,	month	
M.qFan	_	X	number	end of each	_
M .D -f+		v	1	month	
M.qDefrost	_	X	number	end of each month	_
M.qAux		X	number	end of each	
M.qAux	_	Λ	пишвег	month	_
D.n	_	X	unrecognized	end of each day	_
D.hrsOn	_	X	number	end of each day	_
D.hrsOnAux	_	X	number	end of each day	_
D.qh	_	X	number	end of each day	_
D.qcSen	_	X	number	end of each day	_
D.qcLat	_	X	number	end of each day	_
D.qFan	_	X	number	end of each day	_
D.qDefrost	_	X	number	end of each day	_
D.qAux	_	X	number	end of each day	_
H.n	_	X	unrecognized	end of each hour	_
H.hrsOn	_	X	number	end of each hour	_
H.hrsOnAux	_	X	number	end of each hour	_
H.qh	_	X	number	end of each hour	_
H.qcSen	_	X	number	end of each hour	_
H.qcLat	_	X	number	end of each hour	_
H.qFan	_	X	number	end of each hour	_
H.qDefrost H.qAux	_	X X	number number	end of each hour end of each hour	_

Name	Input?	Runtime?	Type	Variability	Description
S.n	_	X	unrecognized	end of each subhour	_
S.hrsOn	_	X	number	end of each subhour	_
S.hrsOnAux	_	X	number	end of each subhour	_
S.qh	_	X	number	end of each subhour	_
S.qcSen	_	X	number	end of each subhour	_
S.qcLat	_	X	number	end of each subhour	_
S.qFan	_	X	number	end of each subhour	_
S.qDefrost	_	X	number	end of each subhour	_
S.qAux	_	X	number	end of each subhour	_
prior.Y.n	_	X	unrecognized	run start time (of each phase, autoSize or	_
prior.Y.hrsOn	-	X	number	simulate) run start time (of each phase, autoSize or	-
prior.Y.hrsOnAux	-	X	number	simulate) run start time (of each phase, autoSize or	-
prior.Y.qh	_	X	number	simulate) run start time (of each phase, autoSize or	_
prior.Y.qcSen	-	X	number	simulate) run start time (of each phase, autoSize or	-
prior.Y.qcLat	_	X	number	simulate) run start time (of each phase, autoSize or	_
prior.Y.qFan	-	X	number	simulate) run start time (of each phase, autoSize or	_
prior.Y.qDefrost	-	X	number	simulate) run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
prior.Y.qAux	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
prior.M.n	_	X	unrecognized	monthly	_
prior.M.hrsOn	_	X	number	monthly	_
prior.M.hrsOnAux	_	X	number	monthly	_
prior.M.qh	_	X	number	monthly	_
prior.M.qcSen	_	X	number	monthly	_
prior.M.qcLat	_	X	number	monthly	_
prior.M.qFan	_	X	number	monthly	_
prior.M.qDefrost	_	X	number	monthly	_
prior.M.qAux	_	X	number	monthly	_
prior.D.n	_	X	unrecognized	daily	_
prior.D.hrsOn	_	X	number	daily	_
prior.D.hrsOnAux	_	X	number	daily	_
prior.D.qh	_	X	number	daily	_
prior.D.qcSen	_	X	number	daily	_
prior.D.qcLat	_	X	number	daily	_
prior.D.qFan	_	X	number	daily	_
prior.D.qDefrost	_	X	number	daily	_
prior.D.qAux	_	X	number	daily	_
prior.H.n	_	X	unrecognized	hourly	_
prior.H.hrsOn	_	X	number	hourly	_
prior.H.hrsOnAux	_	X	number	hourly	_
prior.H.qh	_	X	number	hourly	_
prior.H.qcSen	_	X	number	hourly	_
prior.H.qcLat	_	X	number	hourly	_
prior.H.qFan	_	X	number	hourly	_
prior.H.qDefrost	_	X	number	hourly	_
prior.H.qAux	_	X	number	hourly	_
prior.S.n	_	X	unrecognized	subhourly	_
prior.S.hrsOn	_	X	number	subhourly	_
prior.S.hrsOnAux	_	X	number	subhourly	_
prior.S.qh	_	X	number	subhourly	_
prior.S.qcSen	_	X	number	subhourly	_
prior.S.qcLat	_	X	number	subhourly	_
prior.S.qEar	_	X	number	subhourly	_
prior.S.qDefrost	_	X	number	subhourly	_
	_	X		v	_
prior.S.qAux	_	X	number	subhourly	_

6.51 sgdist (owner: window)

@sgdist[1..].

Name	Input?	Runtime?	Type	Variability	Description
name sgSide	X X	-	string integer number	constant input time	C_sidech_interior or _exterior - side reving gain

	~	
6.53	SHA	$I \cap L^1 V$
(1.,1)	DII A	11111

Name	Input?	Runtime?	Type	Variability	Description
targTy	X	-	integer number	run start time (of each phase, autoSize or simulate)	-
targTi	X	_	integer number	input time	_
FSO FSC	X X	_ _	number number	monthly-hourly monthly-hourly	_ _

6.52 shade (owner: window)

 $@{\rm shade}[1..].$

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
wWidth	X	X	number	run start time (of each	Wwidth window width.
				phase, autoSize or simulate)	*r: set (from window) by input check/setup (topckf).
wHeight	X	X	number	run start time (of each phase, autoSize or simulate)	Wheight window height
ohDepth	X	X	number	monthly-hourly	Ohdepth depth of overhang. *mh: may change monthly-hourly: m-h user exprs accepted.
ohDistUp	X	X	number	monthly-hourly	Ohwd distance from top of window to bot of oh
ohExL	X	X	number	monthly-hourly	Ohlx overhang extension beyond left edge of window
ohExR	X	X	number	monthly-hourly	Ohrx ditto right edge
ohFlap	X	X	number	monthly-hourly	Ohflap len of flap hanging down from front of overhang
lfDepth	X	X	number	monthly-hourly	Fldepth left fin depth
lfTopUp	X	X	number	monthly-hourly	Fltx left fin top of window to top of fin
lfDistL	X	X	number	monthly-hourly	Flwd left fin distance to left edge of window
lfBotUp	X	X	number	monthly-hourly	Flwbx left fin bottom to window bottom distance
rfDepth	X	X	number	monthly-hourly	Frdepth right fin values analogous to left
${\rm rfTopUp}$	X	X	number	monthly-hourly	Frtx
rfDistR	X	X	number	monthly-hourly	Frwd
rfBotUp	X	X	number	monthly-hourly	Frwbx

6.53 SHADEX

@SHADEX[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
mounting	X	X	unrecognized	input time	Mounting
pnIdx	X	X	unrecognized	input time	Penumbra
					surface index
area	X	X	number	input time	Area derived
					from polygon,
fD	X	v	1	end of each	ft2
fBeam	Λ	X	number	end of each hour	Fraction of area receiving direct
				nour	beam
fBeamErrCount	X	X	unrecognized	end of each	Counter for
ibeamErrCount	Λ	Λ	umecogmzed	hour	fbeam > 1
				nour	errors
vrtInp[0]	X	X	number	input time	Input vertices
vionip[0]	11	21	namber	input time	(x, y, z), ft
vrtInp[1]	X	X	number	input time	Input vertices
I []				r	(x, y, z), ft
vrtInp[2]	X	X	number	input time	Input vertices
1.1				-	(x, y, z), ft
vrtInp[3]	X	\mathbf{X}	number	input time	Input vertices
					(x, y, z), ft
vrtInp[4]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[5]	X	X	number	input time	Input vertices
T [a]	**	77	,		(x, y, z), ft
$\operatorname{vrtInp}[6]$	X	X	number	input time	Input vertices
, T [#]	37	37	1		(x, y, z), ft
$\operatorname{vrtInp}[7]$	X	X	number	input time	Input vertices
rmtInn[0]	X	X	number	input time	(x, y, z), ft Input vertices
vrtInp[8]	Λ	Λ	пишвег	mput time	(x, y, z), ft
vrtInp[9]	X	X	number	input time	Input vertices
vi (imp[o]	11	21	namber	input time	(x, y, z), ft
vrtInp[10]	X	X	number	input time	Input vertices
v=P [- v]					(x, y, z), ft
vrtInp[11]	X	X	number	input time	Input vertices
				-	(x, y, z), ft
vrtInp[12]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[13]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[14]	X	X	number	input time	Input vertices
[4 =]					(x, y, z), ft
vrtInp[15]	X	X	number	input time	Input vertices
I [10]	37	37	1		(x, y, z), ft
vrtInp[16]	X	X	number	input time	Input vertices
vrtInn[17]	V	v	numban	innut time	(x, y, z), ft
$\operatorname{vrtInp}[17]$	X	X	number	input time	Input vertices (x, y, z) , ft
vrtInp[18]	X	X	number	input time	Input vertices
v10111b[10]	11	11	number	mpu time	(x, y, z), ft
					(x, y, z), 10

Name	Input?	Runtime?	Type	Variability	Description
${\text{vrtInp[19]}}$	X	X	number	input time	Input vertices
.T. [00]	77	77	,		(x, y, z), ft
vrtInp[20]	X	X	number	input time	Input vertices
vrtInp[21]	X	X	number	input time	(x, y, z), ft Input vertices
v10111p[21]	Λ	Λ	number	mput time	(x, y, z), ft
vrtInp[22]	X	X	number	input time	Input vertices
1()				1	(x, y, z), ft
vrtInp[23]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[24]	X	X	number	input time	Input vertices
			_		(x, y, z), ft
vrtInp[25]	X	X	number	input time	Input vertices
41[0.6]	v	V		:	(x, y, z), ft
vrtInp[26]	X	X	number	input time	Input vertices
vrtInp[27]	X	X	number	input time	(x, y, z), ft Input vertices
V10111p[21]	71	71	number	mpar time	(x, y, z), ft
vrtInp[28]	X	X	number	input time	Input vertices
· · · · · · · · · · · · · · · · · · ·				Γ	(x, y, z), ft
vrtInp[29]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[30]	X	X	number	input time	Input vertices
					(x, y, z), ft
vrtInp[31]	X	X	number	input time	Input vertices
[00]	37	77	,		(x, y, z), ft
vrtInp[32]	X	X	number	input time	Input vertices
tInn [22]	X	X	numb on	innut time	(x, y, z), ft
vrtInp[33]	Λ	Λ	number	input time	Input vertices
vrtInp[34]	X	X	number	input time	(x, y, z), ft Input vertices
v10mb[94]	Λ	Λ	number	mput time	(x, y, z), ft
vrtInp[35]	X	X	number	input time	Input vertices
		· -		r	(x, y, z), ft
vrtInp[36]	X	X	number	input time	Input vertices
				-	(x, y, z), ft

6.54 surface (owner: zone)

@surface [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
ty	X	_	integer number	input time	_
area	X	_	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
azm	X	_	number	run start time (of each phase,	_
				autoSize or simulate)	
tilt	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
dircos[0]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1. [4]	37		1	simulate)	
dircos[1]	X	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
dircos[2]	X		number	run start time	_
direos[2]	Λ		number	(of each phase,	
				autoSize or	
				simulate)	
depthBG	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
height	X	_	number	run start time	and to compute area b4
				(of each phase,	mutliplier.
				autoSize or	
				simulate)	
model	X	_	integer	input time	_
1 1	v		number		
modelr	X	_	integer number	run start time (of each phase,	_
			number	autoSize or	
				simulate)	
lThkF	X	_	number	run start time	_
	11		namber	(of each phase,	
				autoSize or	
				simulate)	
gti	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate	
sco	X	_	number	monthly-	_
			_	hourly	
scc	X	_	number	monthly-	_
1 7 1 ~:	37		1	hourly	
sbcI.absSlr	X	_	number	monthly-	_
ab aT arm A 1C1-	v			hourly	
sbcI.awAbsSlr	X	_	number	monthly-	_
				hourly	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.epsLW	X	_	number	run start time (of each phase, autoSize or	-
sbcI.zi	X	_	integer number	simulate) run start time (of each phase,	_
			number	autoSize or simulate)	
sbcI.F	X	_	number	run start time (of each phase, autoSize or	_
sbcI.Fp	X	-	number	simulate) run start time (of each phase, autoSize or	_
sbcI.frRad	X	_	number	simulate) run start time (of each phase,	-
sbcI.fSky	X	_	number	autoSize or simulate) run start time (of each phase,	-
sbcI.fAir	X	_	number	autoSize or simulate) run start time (of each phase,	-
sbcI.hcNat	X		number	autoSize or simulate) end of each	
sbcI.hcFrc	X	_	number	subhour end of each	-
sbcI.hcMult	X	_	number	subhour end of each subhour	-
sbcI.hxa sbcI.hxr	X X	_	number number	end of each subhour end of each	_
sbcI.hxtot	X	_	number	subhour end of each subhour	-
sbcI.uRat	X	_	number	end of each subhour	_
sbcI.fRat sbcI.cx	X X	_	number number	end of each subhour end of each	_
sbcI.sgTarg.bm	X	_	number	subhour end of each	-
${\rm sbcI.sgTarg.df}$	X	-	number	subhour end of each subhour	_
sbcI.sgTarg.tot	X	_	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
sbcI.sg	X	_	number	end of each subhour	_
sbcI.tSrf	X	-	number	end of each	_
				subhour	
sbcI.tSrfls	X	_	number	subhourly	_
sbcI.qrAbs	X	_	number	end of each	_
				subhour	
sbcI.txa	X	_	number	end of each	_
				subhour	
sbcI.txr	X	_	number	end of each	_
			_	subhour	
sbcI.txe	X	_	number	end of each	_
				subhour	
sbcI.w	X	_	number	end of each	_
1 T C C	37		1	subhour	
sbcI.qSrf	X	_	number	end of each	_
1 7 770	37		. 1	subhour	
sbcI.pXS	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
1 т •	37		. 1	simulate)	
sbcI.si	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
sbcI.fcWind	X		number	simulate)	
SDC1.1C W IIIQ	Λ	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcI.fcWind2	X		number	run start time	_
SDC1.1C W IIIQ2	Λ		number	(of each phase,	
				autoSize or	
				simulate)	
sbcI.eta	X	_	number	end of each	_
55021000			1101111001	subhour	
${ m sbcI.widNom}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${ m sbcI.lenNom}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${\bf sbcI.lenCharNat}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${\rm sbcI.lenEffWink}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.cosTilt	X	_	number	run start time (of each phase, autoSize or	-
sbcI.atvDeg	X	_	number	simulate) run start time (of each phase,	-
1 - 1	77			autoSize or simulate)	
sbcI.cosAtv	X	_	number	run start time (of each phase, autoSize or	_
$\operatorname{sbcI.hcModel}$	X	_	unrecognized	simulate) run start time (of each phase, autoSize or	_
sbcI.hcLChar	X	_	number	simulate) run start time (of each phase,	-
sbcI.hcConst[0]	X	_	number	autoSize or simulate) run start time	_
				(of each phase, autoSize or simulate)	
${\tt sbcI.hcConst[1]}$	X	-	number	run start time (of each phase, autoSize or	_
${\rm sbcI.hcConst}[2]$	X	-	number	simulate) run start time (of each phase, autoSize or	-
${\bf sbcI. ground Model}$	X	_	unrecognized	simulate) run start time (of each phase,	-
${\bf sbcI.cTaDbAvgYr}$	X	_	number	autoSize or simulate) run start time	_
	V		1	(of each phase, autoSize or simulate)	
sbcI.cTaDbAvg31	X	_	number	run start time (of each phase, autoSize or	_
sbcI.cTaDbAvg14	X	-	number	simulate) run start time (of each phase, autoSize or	-
sbcI.cTaDbAvg07	X	_	number	simulate) run start time (of each phase, autoSize or	_

Name	Input?	Runtime?	Type	Variability	Description
sbcI.cTGrnd	X	_	number	run start time (of each phase, autoSize or	_
				simulate)	
sbcI.rGrnd	X	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
$\operatorname{sbcI.rConGrnd}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.absSlr	X		mumb on	simulate)	
spcO.abs5ir	Λ	_	number	monthly- hourly	_
sbcO.awAbsSlr	X	_	number	monthly-	_
				hourly	
${\rm sbcO.epsLW}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.zi	X	_	integer	simulate) run start time	_
SDCO.ZI	11		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.F	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.Fp	X	_	number	simulate) run start time	_
55cO.1 p	71		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.frRad	X	_	number	run start time	_
				(of each phase,	
				${ m auto Size \ or \ simulate})$	
sbcO.fSky	X	_	number	run start time	_
5500115115			114111501	(of each phase,	
				autoSize or	
				simulate)	
sbcO.fAir	X	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcO.hcNat	X	_	number	end of each	_
				subhour	
${\rm sbcO.hcFrc}$	X	_	number	end of each	_
1 01 35	7.7			subhour	
sbcO.hcMult	X	_	number	end of each	_
sbcO.hxa	X	_	number	subhour end of each	_
ысолиа	Λ	_	number	subhour	
				SUDIIUII	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.hxr	X	_	number	end of each	_
				subhour	
sbcO.hxtot	X	_	number	end of each	_
				subhour	
sbcO.uRat	X	_	number	end of each	_
				subhour	
sbcO.fRat	X	_	number	end of each	_
				subhour	
sbcO.cx	X	_	number	end of each	_
				subhour	
sbcO.sgTarg.bm	X	_	number	end of each	_
				subhour	
$\rm sbcO.sgTarg.df$	X	_	number	end of each	_
				subhour	
sbcO.sgTarg.tot	X	_	number	end of each	_
			_	subhour	
sbcO.sg	X	_	number	end of each	_
				subhour	
sbcO.tSrf	X	_	number	end of each	_
				subhour	
sbcO.tSrfls	X	_	number	subhourly	_
sbcO.qrAbs	X	_	number	end of each	_
				subhour	
sbcO.txa	X	_	number	end of each	_
1.0.	37			subhour	
sbcO.txr	X	_	number	end of each	_
1 0	37			subhour	
sbcO.txe	X	_	number	end of each	_
1.0	37		1	subhour	
sbcO.w	X	_	number	end of each	_
1 0 0 6	37		1	subhour	
sbcO.qSrf	X	_	number	end of each	_
1 O VC	v		. 1	subhour	
sbcO.pXS	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
ab aO ai	v			simulate)	
sbcO.si	X	_	unrecognized	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcO.fcWind	X		number	run start time	
SDCO.IC WILL	Λ		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.fcWind2	X	_	number	run start time	_
SDCO.IC WILIUZ	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.eta	X	_	number	end of each	_
sucO.cia	Λ	_	number	subhour	
				SUDITION	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.widNom	X	_	number	run start time (of each phase,	_
				autoSize or	
sbcO.lenNom	X		number	simulate) run start time	
soco.iemvom	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.lenCharNat	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${\it sbcO.lenEffWink}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 501	37		1	simulate)	
sbcO.cosTilt	X	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcO.atvDeg	X	_	number	run start time	_
bbco.acvDcg	11		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.cosAtv	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.hcModel	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
sbcO.hcLChar	X		number	simulate) run start time	_
soco.nclonar	Λ		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.hcConst[0]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.hcConst[1]	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 1 0 10	3.5		,	simulate)	
sbcO.hcConst[2]	X	_	number	run start time	_
				(of each phase,	
				autoSize or simulate)	
				,	
she() groundModel	X	_	unrecognized	riin start time	_
${\bf sbcO.groundModel}$	X	_	unrecognized	run start time (of each phase.	_
${ m sbcO.groundModel}$	X	_	unrecognized	run start time (of each phase, autoSize or	_

Name	Input?	Runtime?	Type	Variability	Description
$\overline{\mathrm{sbcO.cTaDbAvgYr}}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTaDbAvg31	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTaDbAvg14	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
sbcO.cTaDbAvg07	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTGrnd	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.rGrnd	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.rConGrnd	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
fenModel	X	_	unrecognized	input time	_
SHGC	X	_	number	input time	_
fMult	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
UNFRC	X	_	number	input time	_
NGlz	X	_	integer	input time	_
			number		
exShd	X	_	unrecognized	input time	_
inShd	X	_	unrecognized	input time	_
dirtLoss	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sfExCnd	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sfExT	X	_	number	subhourly	_
sfAdjZi	X	_	integer	input time	_
			number		

Name	Input?	Runtime?	Туре	Variability	Description
nSrfNom[0]	X	_	number	run start time (of each phase, autoSize or	_
nSrfNom[1]	X	_	number	simulate) run start time (of each phase,	_
cF c tr	X	_	number	autoSize or simulate) run start time	_
1 1	V		. ,	(of each phase, autoSize or simulate)	
wshad	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
msi	X	_	integer number	run start time (of each phase, autoSize or simulate)	0 or msrat msr subscr which will be used if delayed model
${ m LrB}[0]$	X	_	number	end of each hour	-
LrB[1]	X	_	number	end of each hour	_
LrB[2]	X	_	number	end of each hour	_
LrB[3]	X	-	number	end of each hour	_
$^{\mathrm{tLrB}}[4]$	X	_	number	end of each hour	_
$^{\mathrm{tLrB}[5]}$	X	_	number	end of each hour	_
$^{\mathrm{LrB}[6]}$	X	_	number	end of each hour	_
:LrB[7]	X	_	number	end of each hour	_
LrB[8]	X	_	number	end of each hour	_
LrB[9]	X	-	number	end of each hour	_
nsgdist	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
sgdist[0].targTy	X	_	integer number	run start time (of each phase, autoSize or	_
$\operatorname{sgdist}[0].\operatorname{targTi}$	X	_	integer number	simulate) run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
sgdist[0].FSO	X	_	number	monthly-	_
				hourly	
$\operatorname{sgdist}[0].\operatorname{FSC}$	X	_	number	monthly-	_
				hourly	
sgdist[1].targTy	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
11 ([4]) [77]	37			simulate)	
sgdist[1].targTi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
andiat[1] ECO	v		mumah an	simulate)	
sgdist[1].FSO	X	_	number	monthly-	_
sgdist[1].FSC	X		number	hourly	
sguist[1].F5C	Λ	_	number	monthly- hourly	_
sgdist[2].targTy	X		integer	run start time	_
sgdist[2].targ ry	11		number	(of each phase,	
			number	autoSize or	
				simulate)	
sgdist[2].targTi	X	_	integer	run start time	_
584150[2].041811	11		number	(of each phase,	
			110111501	autoSize or	
				simulate)	
sgdist[2].FSO	X	_	number	monthly-	_
0 11				hourly	
sgdist[2].FSC	X	_	number	monthly-	_
				hourly	
sgdist[3].targTy	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[3].targTi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
11 . [o] FGO	37		,	simulate)	
sgdist[3].FSO	X	_	number	monthly-	_
1: .[e] FIGG	37		1	hourly	
$\operatorname{sgdist}[3].\operatorname{FSC}$	X	_	number	monthly-	_
andiat[4] tonoTer	v		intomon	hourly	
sgdist[4].targTy	X	_	integer number	run start time	_
			number	(of each phase, autoSize or	
				simulate)	
sgdist[4].targTi	X	_	integer	run start time	_
Panolal margin	11		number	(of each phase,	
			110111001	autoSize or	
				simulate)	
sgdist[4].FSO	X	_	number	monthly-	_
0 [-]	•			hourly	
sgdist[4].FSC	X	_	number	monthly-	_
○ []				hourly	
				J	

CSE User's Manual

Name	Input?	Runtime?	Type	Variability	Description
sgdist[5].targTy	X	_	integer number	run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[5].\operatorname{targTi}$	X	_	integer	simulate) run start time	_
			number	(of each phase, autoSize or simulate)	
sgdist[5].FSO	X	_	number	monthly- hourly	_
sgdist[5].FSC	X	_	number	monthly- hourly	_
sgdist[6].targTy	X	_	integer number	run start time (of each phase, autoSize or	-
$\operatorname{sgdist}[6].\operatorname{targTi}$	X	_	integer number	simulate) run start time (of each phase,	_
sgdist[6].FSO	X	_	number	autoSize or simulate) monthly-	_
sgdist[6].FSC	X	_	number	hourly monthly-	_
sgdist[7].targTy	X	_	integer number	hourly run start time (of each phase, autoSize or	_
sgdist[7].targTi	X	_	integer number	simulate) run start time (of each phase, autoSize or	-
sgdist[7].FSO	X	_	number	simulate) monthly-	-
sgdist[7].FSC	X	_	number	hourly monthly- hourly	-
sfClass	X	_	unrecognized	input time	Sfcnul, sfcsurf, sfcdoor, sfcwindow
sfArea	X	_	number	input time	Surface: gross area, net in x.xs area.
sfU	X	_	number	input time	Uval input if no sfcon given (excl surf films)
sfCon	X	_	integer number	input time	Surface construction (optional)
sfTy	X	-	integer number	constant	Wall/floor/ceil/[intmass1/: for input cking.
sfFnd	X	_	integer number	input time	Surface foundation object (floors only, optional)
$\operatorname{sfFndFloor}$	X	_	number integer number	input time	Surface foundation floor object (walls only, optional)

Name	Input?	Runtime?	Type	Variability	Description
sfExpPerim	X	_	number	input time	Foundation floor exposed perimeter (floors only)
width	X	_	number	input time	Width and height: used to compute shading,
height	X	_	number	input time	and to compute area b4 mutliplier.
mult	X	_	number	input time	Area multiplier (for multiple identical windows)
xi	X	_	integer number	run start time (of each phase, autoSize or simulate)	Subscript in runtime xsrat, to facilitate access by probers 1-92
msi	X	_	integer number	run start time (of each phase, autoSize or simulate)	0 or msrat msr subscr which will be used if delayed model

6.55 terminal (owner: zone)

@terminal [1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
tuVfMxHC	X	X	unrecognized	autosize and simulate phase start time	Autosize tuvfmxh and -c same or (default) different.
tuOversize	X	X	number	autosize and simulate phase start time	Fraction oversize to make autosized terminal values
asHcSame	X	X	integer number	run start time (of each phase, autoSize or simulate)	True to autosize tuvfmxh and -c the same – specified with "tuvfmxhc = same"
asKVol	X	X	integer number	run start time (of each phase, autoSize or simulate)	True to autosize for constant volume – specified with "autosize tuvfmn" (implies ashcsame).
hcAs.az_active	X	X	integer number	run start time (of each phase, autoSize or simulate)	
hcAs.az_a	X	X	number	end of each subhour	-
$hcAs.az_b$	X	X	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
hcAs.ldPk	X	X	number	end of each	_
1 4 1 1701 4	v	v	1	subhour	
hcAs.ldPkAs	X	X	number	end of each day	_
hcAs.ldPkAs1	X	X	number	end of each	_
neris.iqi krisi	71	21	number	day	
hcAs.plrPk	X	X	number	end of each	_
-				subhour	
hcAs.plrPkAs	X	X	number	end of each	_
			_	day	
hcAs.xPk	X	X	number	end of each	_
hcAs.xPkAs	v	X	1	subhour	
IICAS.XPKAS	X	Λ	number	end of each day	_
vhAs.az_active	X	X	integer	run start	_
, III 15 (dbdc 01) c			number	time (of	
				each phase,	
				autoSize or	
				simulate)	
vhAs.az_a	X	X	number	end of each	_
	37	77	,	subhour	
vhAs.az_b	X	X	number	end of each subhour	_
vhAs.ldPk	X	X	number	end of each	_
VIII IS.IGI K	Λ	21	number	subhour	
vhAs.ldPkAs	X	X	number	end of each	_
				day	
vhAs.ldPkAs1	X	X	number	end of each	_
				day	
vhAs.plrPk	X	X	number	end of each	_
1 4 1 101 4	v	v	1	subhour	
vhAs.plrPkAs	X	X	number	end of each day	_
vhAs.xPk	X	X	number	end of each	_
VIII IO.XI K	21	21	namoer	subhour	
vhAs.xPkAs	X	X	number	end of each	_
				day	
$vcAs.az_active$	X	X	integer	run start	_
			number	time (of	
				each phase,	
				autoSize or	
vcAs.az_a	X	X	number	simulate) end of each	_
v0115.02_a	11	11	Humber	subhour	
vcAs.az_b	X	X	number	end of each	_
_				subhour	
vcAs.ldPk	X	X	number	end of each	_
				subhour	
vcAs.ldPkAs	X	X	number	end of each	_
νο Λ α 1 dDl- Λ -1	v	v	number:	day	
vcAs.ldPkAs1	X	X	number	end of each day	_
				uay	

CSE User's Manual

Name	Input?	Runtime?	Type	Variability	Description
vcAs.plrPk	X	X	number	end of each	_
				subhour	
vcAs.plrPkAs	X	X	number	end of each	_
A D1	37	37	1	day	
vcAs.xPk	X	X	number	end of each	_
vcAs.xPkAs	X	X	namah an	subhour	
VCAS.XPKAS	Λ	Λ	number	end of each	_
qhPk	X	X	number	day end of each	_
qiii k	Λ	<i>1</i> L	Humber	subhour	
qcPk	X	X	number	end of each	Peak values of qh and qc,
qci k	71	71	number	subhour	for load reports and
				Sublicui	-pkas's. qc negative.
qhPkAs	X	X	number	end of each	–
1				subhour	
qcPkAs	X	X	number	end of each	Peak values for all
				subhour	autosize converged design
					days, for size reports
bVfMn	X	X	number	end of each	_
				$\operatorname{subhour}$	
bVfMxH	X	X	number	end of each	_
				$\operatorname{subhour}$	
bVfMxC	X	X	number	end of each	_
				subhour	
dtLoHSh	X	X	integer	end of each	_
1.7 001			number	subhour	
dtLoCSh	X	X	integer	end of each	this subhr, set in
			number	subhour	cnztu.cpp:ztumode, cleared in ztuabs.
aDtLoHSh	X	X	integer	end of each	_
			number	$\operatorname{subhour}$	
aDtLoCSh	X	X	integer	end of each	this subhr, set at end
			number	$\operatorname{subhour}$	of cnah1.cpp:ahcompute
aDtLoTem	X	X	integer	end of each	Cnah2:antratts to
			number	subhour	ahcompute temp flag re adtlohsh, csh
dtLoH	X	X	integer	end of each	adtionsii, csii
dtLoff	Λ	A	number	subhour	
dtLoC	X	X	integer	end of each	on this autosizing
dthoc	71	11	number	subhour	design day iteration (or
			namoer	Sabiloai	poss run)
dtLoHAs	X	X	integer	end of each	- -
			number	day	
dtLoCAs	X	X	integer	end of each	on any converged pass
			number	subhour	2 design day: invokes
					endautosizing() message.
tuTLh	X	X	number	hourly	Local heating set point
				-	for tstat control. hourly.
					default: no tstat control.

Name	Input?	Runtime?	Type	Variability	Description
tuQMnLh	X	X	number	hourly	Desired continuous output (btuh) if no setpoint, or minimum if tutlh given, hourly, default 0.
${ m tuQMxLh}$	X	X	number	hourly	Max desired power, subject to plant limits, btuh, hourly, rqd if tutlh given, else disallowed.
tuPriLh	X	X	integer number	autosize and simulate phase start time	Priority if setpoint equals another, low #'s used first, dfl 100, disallowed if tutlh not given.
tuLh Needs Flow	X	X	integer number	autosize and simulate phase start time	Yes to disable lh when tu fan off and central fan off or vav flow 0 (coil in terminal).
tuhc.coilTy	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	
tuhc.sched	X	X	unrecognized	hourly	_
tuhc.captRat	X	X	number	end of each subhour	_
$tuhc.captRat_As$	X	X	number	autosize and simulate phase start time	_
$tuhc.captRat_AsNov$	X	X	number	autosize and simulate phase start time	_
tuhc.bCaptRat	X	X	number	end of each subhour	_
tuhc.eirRat	X	X	number	hourly	_
tuhc.mtri	X	X	integer number	autosize and simulate phase start time	_
tuhc.auxOn	X	X	number	hourly	_
tuhc.auxOnMtri	X	X	integer number	autosize and simulate phase start time	_
tuhc.auxOff	X	X	number	hourly	_
tuhc. aux Off Mtri	X	X	integer number	autosize and simulate phase start time	-
tuhc.auxOnAtall	X	X	number	hourly	_

Name	Input?	Runtime?	Type	Variability	Description
tuhc.auxOnAtallMtri	Χ	X	integer	autosize and	_
			number	simulate	
				phase start	
tuhc.auxFullOff	X	X	number	$_{ m hourly}$	
tuhc.auxFullOffMtri	X	X X	integer	autosize and	_
tunc.auxi unomviti	Λ	Λ	number	simulate	
			number	phase start	
				time	
tuhc.q	X	X	number	end of each	_
1				subhour	
tuhc.qPr	X	X	number	end of each	_
•				$\operatorname{subhour}$	
tuhc.p	X	X	number	end of each	_
				$\operatorname{subhour}$	
tuhc.plr	X	X	number	end of each	_
				subhour	
tuhc.plrAv	X	X	number	end of each	_
				subhour	
tuhc.eir	X	X	number	end of each	_
, 1 A O	v	V	1	subhour	
tuhc.pAuxOn	X	X	number	end of each subhour	_
tuhc.pAuxOff	X	X	number	end of each	_
tune.pruxon	11	Λ	number	subhour	
tuhc.pAuxOnAtall	X	X	number	end of each	_
vano.priano in tani	11	11	namoor	subhour	
tuhc.pAuxFullOff	X	X	number	end of each	_
•				subhour	
tuhc.effRat	X	X	number	autosize and	_
				simulate	
				phase start	
				time	
tuhc.pyEi.k[0]	X	X	number	autosize and	_
				simulate	
				phase start	
tuhc.pyEi.k[1]	X	X	number	time autosize and	
tune.pyEn.k[1]	Λ	Λ	пишьег	simulate	_
				phase start	
				time	
tuhc.pyEi.k[2]	X	X	number	autosize and	_
- F 0[-]				simulate	
				phase start	
				time	
tuhc.pyEi.k[3]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	

Name	Input?	Runtime?	Type	Variability	Description
tuhc.pyEi.k[4]	X	X	number	autosize and simulate phase start	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37	37	1	time	
tuhc.stackEffect tuhc.hpi	X X	X X	number integer	hourly autosize and	_
tunc.npi	Λ	Λ	number	simulate	_
			namoor	phase start	
				time	
tuhc.nxTu4hp	X	X	integer	run start	_
			number	time (of	
				each phase,	
				autoSize or	
tuha ny Ah Ahn	X	X	integra	simulate)	
tuhc.nxAh4hp	Λ	Λ	integer number	run start time (of	_
			number	each phase,	
				autoSize or	
				simulate)	
tuhc. flueLoss	X	X	number	end of each	_
				subhour	
tuhc.qWant	X	X	number	end of each	_
				subhour	
tuTH	X	X	number	hourly	Air heating set point (f). hourly. default: no tstat-controlled air heating.
tuTC	X	X	number	hourly	Air cooling set point (f). hourly. default: no tstat-controlled air cooling.
tuVfMn	X	X	number	end of each subhour	Min flow (cfm actual air); if no setpoints given, this is "specified output".
1 3.7 CN / A	v	v	1	1	hourly, dlf 0.
tuVfMn_As	X	X	number	autosize and simulate	_
				phase start	
				time	
tuVfMn_AsNov	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
ai	X	X	integer number	input time	0 or ah ss (subscript) for air handler serving tu (input as air handler name). rqd if sp or mn given.
${ m tuVfMxH}$	X	X	number	end of each subhour	Heating max flow (cfm actual air) b4 ah limits, hourly, rqd if tuth given else disallowed

Name	Input?	Runtime?	Type	Variability	Description
tuVfMxH_As	X	X	number	autosize and simulate phase start	-
$tuVfMxH_AsNov$	X	X	number	time autosize and simulate phase start	_
tuVfMxC	X	X	number	time end of each subhour	Cooling max flow (cfm actual air) b4 ah limits, hourly, rqd if tutc given else disallowed
tuVfMxC_As	X	X	number	autosize and simulate phase start time	_
$tuVfMxC_AsNov$	X	X	number	autosize and simulate phase start time	_
tuVfDs	X	X	number	run start time (of each phase, autoSize or simulate)	Design flow (cfm actual air), constant, to apportion flow when ah fan overloads.
tuPriH	X	X	integer number	autosize and simulate phase start time	Heat setpoint priority: lowest # used first when equal setpoints in zone. const. default: 1.
tuPriC	X	X	integer number	autosize and simulate phase start time	Cool likewise rqd if corress sp given, else disallowed.
tuSRLeak	X	X	number	autosize and simulate phase start time	Leakage 05 of supply air to return, increasing supply vol and return temp. constant; dfl .05.
tuSRLoss	X	X	number	run start time (of each phase, autoSize or simulate)	Supply air to return plenum heat loss as a fraction 05 of supply air to return air
tfanSch	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Terminal fan schedule, choice of off, on, heating, or vav, hourly, rqd if tfantype not none.
tfanOffLeak	X	X	number	run start time (of each phase, autoSize or simulate)	Backdraft leakage when fan off, 0 to .25 of tfanvfds, constant, dfl .1, or 0 if no fan.

Name	Input?	Runtime?	Type	Variability	Description
tfan.fanTy	X	X	unrecognized	autosize and simulate phase start	-
				time	
tfan.vfDs	X	X	number	end of each	_
				subhour	
tfan.vfDs_As	X	X	number	autosize and	_
				simulate	
				phase start time	
tfan.vfDs_AsNov	X	X	number	autosize and	_
01a11. V1D57151 V0V	71	21	number	simulate	
				phase start	
				time	
tfan.vfMxF	X	X	number	autosize and	_
				simulate	
				phase start	
. C	V	v	1	time	
tfan.press	X	X	number	run start	_
				time (of each phase,	
				autoSize or	
				simulate)	
tfan.eff	X	X	number	run start	_
				time (of	
				each phase,	
				autoSize or	
. C. 1. C.D.	7.7	3.7	,	simulate)	
tfan.shaftPwr	X	X	number	run start	_
				time (of each phase,	
				autoSize or	
				simulate)	
tfan.elecPwr	X	X	number	run start	_
				time (of	
				each phase,	
				autoSize or	
				simulate)	
tfan.motTy	X	X	unrecognized	run start	_
				time (of	
				each phase, autoSize or	
				simulate)	
tfan.motEff	X	X	number	autosize and	_
				simulate	
				phase start	
				time	
tfan.motPos	X	X	unrecognized	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	

Name	Input?	Runtime?	Type	Variability	Description
tfan.qAround	X	X	number	end of each subhour	_
nxTu4z	X	X	integer number	run start time (of each phase, autoSize or simulate)	Chain: 0 or ss (subscript) of next tu in zone chain. head is znr.tu1.
nxTu4a	X	X	integer number	run start time (of each phase, autoSize or simulate)	Chain: 0 or ss (subscript) of next tu in air handler chain. head is ah.tu1.
xiLh	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of zhx for terminal's local heat capability
xiArH	X	X	integer number	run start time (of each phase, autoSize or simulate)	Ss of zhx for setout air heat/cool or settemp air heat capability
xiArC	X	X	integer number	run start time (of each phase, autoSize or simulate)	Ss of zhx for tu's settemp air cool, if any
cmLh	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Was tucmlh // local heat: none=0; settmph: tstat-controlled (setpoint given); or setout (only output/flow given).
cmAr	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Tucmar // air heat and cool: none=0, setout, settmph, settmpc, settmpboth = settmph settmpc.
ctrlsAi	X	X	integer number	run start time (of each phase, autoSize or simulate)	Ss of ah ctrl'd by this tu under zn/zn2 control method, this hour (setup time).
wantMd	X	X	unrecognized	end of each subhour	Terminal request to ctrl'd ah: heating, cooling, off. set in tu::estimate, ztucompute, ah::wzczxxxx.
lhMn	X	X	number	end of each subhour	——————————————————————————————————————
lhMx	X	X	number	end of each subhour	_

Name	Input?	Runtime?	Type	Variability	Description
lhMxMx	X	X	number	end of each subhour	_
cMn	X	X	number	end of each subhour	_
cMxH	X	X	number	end of each subhour	_
cMxC	X	X	number	end of each subhour	-
useLh	X	X	unrecognized	end of each subhour	Local heat use this subhour: unone(0)/uso/umn/usth/umxh
useAr	X	X	unrecognized	end of each subhour	Air cool/heat use this subhour, same plus ustc/umxc.
qLhWant	X	X	number	end of each subhour	–
cv	X	X	number	end of each subhour	-
cz	X	X	number	end of each subhour	-
aCv	X	X	number	end of each subhour	-
tfanRunning	X	X	integer number	end of each subhour	True if terminal fan running this subhour (no backflow).
tfanBkC	X	X	number	end of each subhour	- '

6.56 top

@top.

Name	Input?	Runtime	? Type	Variability	Description
name	X	X	string	constant	_
bAutoSizeCmd	X	X	integer number	input time	Non-0 if any autosize commands seen in input, set via arg to cul() from cse.cpp. 6-95.
chAutoSize	X	X	integer number	run start time (of each phase, autoSize or simulate)	Whether to do autosizing, default per bautosizecmd
chSimulate	X	X	integer number	input time	Whether to do main simulation, default true, can input false for autosizing only. 6-95.
begDay	X	X	integer number	input time	1st 1-based julian day of year of run
endDay	X	X	integer number	input time	Last ditto, inclusive

Name	Input?	Runtime	? Type	Variability	Description
nDays	X	X	integer number	run start time (of each phase, autoSize or simulate)	Derived: # days in run
jan1DoW	X	X	integer number	input time	January 1 day of week, sun=1 subtract 1 for most internal uses
year	X	X	integer number	run start time (of each phase, autoSize or simulate)	Derived: tdpak generic non-leap year, -1 = jan 1 is monday7 = jan 1 is sunday.
wuDays	X	X	integer number	input time	Number of warmup days
nSubSteps	X	X	integer number	input time	# subhours per hour, determines subhour duration.
wfName	X	X	string	autosize and simulate phase start time	Weather file path string
TDVfName	X	X	string	autosize and simulate phase start time	Tdv (time dependent value) file path string
elevation	X	X	number	run start time (of each phase, autoSize or simulate)	Site elevation (for determining air density) (ft). defaults from weather file 1-95.
refTemp	X	X	number	autosize and simulate phase start time	Temp for computing the hum ratio (w) used in air-density calculations, default 70 f
refRH	X	X	number	autosize and simulate phase start time	Relative humidity (as fraction) ditto, default .6 (60%).
grndRefl	X	X	number	monthly- hourly	Ground surface reflectivity, re solar gain.
$\operatorname{grndEmit}$	X	X	number	input time	Ground surface emittance, re long wave exchange in kiva. dflt .8.
grndRf	X	X	number	input time	Ground surface roughnes, ft, re exterior convection in kiva. dflt 0.1.
soilDiff	X	X	number	input time	Local soil diffusivity, ft2/hr, re annual deep ground temp cycle estimation
soilCond	X	X	number	input time	Local soil conductivity, btuh-ft/ft2-f, re kiva calcs. dflt=1.0.
soilSpHt	X	X	number	input time	Local soil specific heat, btu/lb-f, re kiva calcs. dflt=0.1.

Name	Input?	Runtime	? Type	Variability	Description
soilDens	X	X	number	input time	Local soil density, lb/ft3, re kiva calcs. dflt=115.
${\it far Field Width}$	X	X	number	input time	Far-field boundary distance, ft, re kiva calcs. dflt=130.
deepGrndCnd	X	X	unrecognized	input time	Deep ground boundary type
deepGrndDepth	X	X	number	input time	Deep-ground boundary distance, ft, re kiva calcs. dflt=130.
deepGrndT	X	X	number	input time	Deep-ground boundary temperature, f, re kiva calcs. dflt=annual average db.
tol	X	X	number	input time	(relative) tolerance used in many hvac calculations, default .001f or as changed
humTolF	X	X	number	input time	W change to consider as important as 1f temp re convergedness
ebTolMon	X	X	number	input time	Monthly tolerance
ebTolDay	X	X	number	input time	Daily
ebTolHour	X	X	number	input time	Hourly
ebTolSubhr	X	X	number	input time	Subhourly
${\rm grndMinDim}$	X	X	number	input time	Minimum cell dimension in kiva, ft, default .066f
grndMaxGrthCoe	effX	X	number	input time	Maximum cell growth in kiva, default 1.5f
$\operatorname{grndTimeStep}$	X	X	unrecognized	input time	Kiva time step
AWTrigT	X	X	number	input time	Inside or outside environmental temperature, f (default = 1)
AWTrigSlr	X	X	number	input time	Incident solar, fraction (default = .05)
AWTrigH	X	X	number	input time	Total surface coefficient (conv+rad), fraction (default=.1)
ANTolAbs	X	X	number	input time	Absolute tolerance, lbm/sec, dflt=.00125 (about 1 cfm)
ANTolRel	X	X	number	input time	Relative tolerance, dflt = .0001
bldgAzm	X	X	number	input time	Angle to add to all zone/surface azms
skyModel	X	X	integer number	input time	Sky model: ciso or _aniso
skyModelLW	X	X	unrecognized	input time	Long-wave sky model
$\stackrel{\circ}{\mathrm{exShadeModel}}$	X	X	unrecognized	-	Exterior shading model (other than overhang/fins)
dhwModel	X	X	unrecognized	input time	Runtime dhw model selection (debug aid)
humMeth	X	X	unrecognized	input time	Humidity calculation method: rob (w = wa/wb) or phil (central difference), 6-92
dflExH	X	X	number	input time	Default ext (air film) cond for os & gz. 2-91
workDayMask	X	X	integer number	input time	Mask with bits set for "work" days, clear for "non-work" days, default monfri, 5-95.

Name	Input?	Runtime	? Type	Variability	Description
DT	X	X	integer number	input time	Yes (default) to enable daylight saving time
DTBegDay	X	X	integer number	run start time (of each phase, autoSize or simulate)	Daylight saving start day, 1-365, default 1st sun (sun after 1st sat?) in april
DTEndDay	X	X	integer number	run start time (of each phase, autoSize or simulate)	Daylight saving end day, 1-365, defaulted by cncult2.cpp code to last sun in october
windSpeedMin	X	X	number	input time	Minimum, mph (default=.5)
windF	X	X	number	input time	Factor (default=1)
terrainClass	X	X	integer number	input time	Terrain class (1-5) re wind speed adjustment
radBeamF	X	X	number	input time	Beam radiation fctr. appl sees aniso() * beamradfactor. cgwthr.cpp.
radDiffF	X	X	number	input time	Diffuse variant of beamradfactor, ditto.
ventAvail	X	X	unrecognized	hourly	All-zone ventilation availability (default=c_ventavailch_wholehous
hConvMod	X	X	integer number	run start time (of each phase, autoSize or simulate)	Enable/disable convection convective coefficient pressure modification factor (tp_hconvf below)
verbose	X	X	integer number	autosize and simulate phase start time	Screen messages: autosizing: 0 none, 1 some (dflt?), 2-5 more
dbgPrintMask	X	X	number	hourly	Debug print mask, controls dbprintf() etc., schedulable via std capabilities
dbgPrintMaskC	X	X	number	input time	Ditto, constant portion (value known during setup)
auszTol	X	X	number	input time	Autosizing result tolerance, dfl .005
heatDsTDbO	X	X	number	hourly	Heat design outdoor temp, dfl per et1 wthr file hdr.
heatDsTWbO	X	X	number	hourly	Heating design outdoor wetbulb temp, dfl for 70% rh @ heatdstdbo.
coolDsMo[0]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[1]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.

Name	Input?	Runtime	? Type	Variability	Description
coolDsMo[2]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[3]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[4]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[5]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[6]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[7]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[8]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[9]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[10]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[11]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
coolDsMo[12]	X	X	integer number	input time	Si[13] cooling design month(s) 1-12 + 0 terminator. default per et1 wthr file hdr.
$\operatorname{coolDsDay}[0]$	X	X	integer number	input time	Doy[13] design day(s) read from weather file + 0 terminator
coolDsDay[1]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[2]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[3]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[4]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[5]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[6]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[7]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator
coolDsDay[8]	X	X	integer number	input time	Doy[13] design day(s) read from weather file $+$ 0 terminator

Name	Input?	Runtime	'Type	Variability	Description
coolDsDay[9]	X	X	integer	input time	Doy[13] design day(s) read from
			number		weather file $+$ 0 terminator
coolDsDay[10]	X	X	integer	input time	Doy[13] design day(s) read from
			number		weather file $+$ 0 terminator
coolDsDay[11]	X	X	integer	input time	Doy[13] design day(s) read from
			number		weather file $+$ 0 terminator
coolDsDay[12]	X	X	integer	input time	Doy[13] design day(s) read from
0			number		weather file $+ 0$ terminator
coolDsCond[0]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
0			number		terminator
coolDsCond[1]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
0 1-1			number		terminator
coolDsCond[2]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
0			number		terminator
coolDsCond[3]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
			number		terminator
coolDsCond[4]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
o			number		terminator
coolDsCond[5]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
0 1-1			number		terminator
coolDsCond[6]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
15 G 1[=]			number		terminator
coolDsCond[7]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
			number		terminator
coolDsCond[8]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
15 0 161			number		terminator
coolDsCond[9]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
1D G 1[40]	37	37	number		terminator
coolDsCond[10]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
1D G 1[44]	37	37	number		terminator
coolDsCond[11]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
ID (C. 1[10]	37	37	number		terminator
coolDsCond[12]	X	X	integer	input time	Ti[13] descond $idx(s) + 0$
D ./1	v	v	number	, ,	terminator
exePath	X	X	string	run start	Full path to current .exe
				time (of	
				each phase,	
				autoSize or	
exeInfo	X	X	atnina	simulate) run start	Info about aument are (from
exemio	Λ	Λ	string		Info about current .exe (from
				time (of each phase,	header)
				autoSize or	
exeCodeSize	v	X	unrocomized	simulate)	Code size butes (from over header)
execodesize	X	Λ	unrecognized		Code size, bytes (from exe header)
				time (of each phase,	
				each phase, autoSize or	
				simulate)	
				simulate)	

Name	Input?	Runtime	? Type	Variability	Description
progVersion	X	X	string	run start time (of each phase, autoSize or simulate)	Program version identifier as string (for probing); set from ::progversion
HPWHVersion	X	X	string	run start time (of each phase, autoSize or simulate)	Ecotope hpwh (heat pump water heater) model version
$\operatorname{cmdLineArgs}$	X	X	string	run start time (of each phase, autoSize or simulate)	Command line args for current input file
runSerial	X	X	integer number	input time	Run #, 000-999, per (future 11-91) status file (meanwhile, see cnguts:cnrunserial 7-92).
runTitle	X	X	string	input time	User text for report titles, footers, export title 11-22-91.
${\bf runDateTime}$	X	X	string	run start time (of each phase, autoSize or simulate)	Run date & time string, set by cncult2.cpp:topstarprf2(), used in reports & bin res file, 9-94.
brs	X	X	integer number	run start time (of each phase, autoSize or simulate)	Yes to generate basic binary results file, default no. from input file or cmd line switch.
brHrly	X	X	integer number	run start time (of each phase, autoSize or simulate)	Yes to generate hourly binary results file, default no. from input file or cmd line.
brFileName	X	X	string	input time	File name for binary results, extension .brs and/or .bhr added. default: input file name.
brMem	X	X	integer number	run start time (of each phase, autoSize or simulate)	Put binary results in windows global memory and return handles; do not write file.
brDiscardable	X	X	integer number	run start time (of each phase, autoSize or simulate)	Put binary results in discardable memory as well as file, return handles. overrides brfmem.
${\rm repHdrL}$	X	X	string	input time	User-spec'd text for left end of report header line
${\rm repHdrR}$	X	X	string	input time	right

Name	Input?	Runtime?	Type	Variability	Description
repCpl	X	X	integer number	input time	Report characters per line
repLpp	X	X	integer number	input time	Total number of lines per page (paper size)
repTopM	X	X	integer number	input time	Top margin in lines; # newlines written above header
repBotM	X	X	integer number	input time	Bottom margin in lines; not actually output
repTestPfx	X	X	string	input time	Prefix pre-pended to e.g. footer lines re hiding lines re automated testing
exshNShade	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	# of shading surfaces in model
exshNRec	X	X	unrecognized	,	# of receiving surfaces in model (may also be shading)
latitude	X	X	number	run start time (of each phase, autoSize or simulate)	Degrees north
longitude	X	X	number	run start time (of each phase, autoSize or simulate)	Degress west
timeZone	X	X	number	run start time (of each phase, autoSize or simulate)	Hours west (fraction ok)
presAtm	X	X	number	run start time (of each phase, autoSize or simulate)	Nominal atmospheric pressure at top.elevation (in hg)
refW	X	X	number	run start time (of each phase, autoSize or simulate)	Humidity ratio for reftemp, refrh (ratio)
refWX	X	X	number	run start time (of each phase, autoSize or simulate)	1/(1.+rp_refw)

Name	Input?	Runtime	? Type	Variability	Description
airSH	X	X	number	run start time (of each phase, autoSize or simulate)	Air specific heat (btu/lbdryair-f) @ tp_refw
airVK	X	X	number	run start time (of each phase, autoSize or simulate)	Specific volume per temp(ft3/lb-f): multiply by abs temp.
airRhoK	X	X	number	run start time (of each phase, autoSize or simulate)	Density*temp (lb-f/ft3): divide by abs temp to get density.
airVshK	X	X	number	run start time (of each phase, autoSize or simulate)	Volumetric specific heat/temp (btu/ft3-f): div by abs temp for heat capacity per ft3
airXK	X	X	number	run start time (of each phase, autoSize or	Divide by abs temp for specific heat of flow (btuh/cfm-f)
hConvF	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	Convective coefficient pressure modification factor
nDesDays	X	X	unrecognized	,	Number of design days: 1 for heating + number of non-0 cooldsmo's.
auszSmTol	X	X	number	run start time (of each phase, autoSize or simulate)	Autosizing small tolerance, eg ausztol/10 $(.001)$
auszTol2	X	X	number	run start time (of each phase, autoSize or simulate)	Half of given tolerance – added to values; used in convergence tests.
auszHiTol2	X	X	number	run start time (of each phase, autoSize or simulate)	1 + half of tolerance, eg 1 + ausztol/2.

Name	Input?	Runtime	? Type	Variability	Description
vrSum	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	Vrh for summary report (not written to as of 11/22/91)
dvriY	X	X	integer number	daily	0 or dvrib subscript of 1st rpfreq=year report or export
dvriM	X	X	integer number	daily	month report/export currently active
dvriD	X	X	integer number	daily	day report/export to write to today
dvriH	X	X	integer number	daily	hourly
dvriHS	X	X	integer number	daily	hourly and subhourly. a vr car only be in one list, so this list is
dvriS	X	X	integer number	daily	subhourly
hrxFlg	X	X	integer number	daily	Nz if any hour reporting or exporting today: dvrih -hs
shrxFlg	X	X	integer number	daily	Nz if any subhour reporting or exporting today: dvris -hs
$\operatorname{tmrInput}$	X	X	number	end of each day	Input processing time, sec
${ m tmrAusz}$	X	X	number	end of each day	Autosizing time, sec
tmrRun	X	X	number	end of each day	Main simulation time, sec
tmrTotal	X	X	number	end of each day	Total execution time (not including reports), sec
tmrAirNet	X	X	number	end of each day	Add'l timers active iff detailed_timing
tmrAWTot	X	X	number	end of each day	-
$\operatorname{tmrAWCalc}$	X	X	number	end of each day	-
tmrCond	X	X	number	end of each day	_
$\operatorname{tmrKiva}$	X	X	number	end of each day	-
tmrBC	X	X	number	end of each day	_
$\operatorname{tmrZone}$	X	X	number	end of each day	-
subhrDur	X	X	number	subhourly	Duration of subhour, hr (= 1/nsubsteps)
nSubhrTicks	X	X	integer number	run start time (of each phase, autoSize or simulate)	# of subhour ticks for e.g. hpwh simulation

Name	Input?	Runtime	? Type	Variability	Description
ickDurMin	X	X	number	run start time (of each phase, autoSize or simulate)	Duration of subhr tick, min
ickDurHr	X	X	number	run start time (of each phase, autoSize or simulate)	Duration of subhr tick, hr
nonStr	X	X	string	monthly	Month being simulated as (non-heap) string
ateStr	X	X	string	daily	Date being simulated as heap string
ate	X	X	un-probe- able	daily	Date: .month is 1-12, .mday 1-31, .wday 0-6. set/used: cnguts. used:cuparse;cgsolar;cgresult;cgenbal.
Day	X	X	integer number	daily	Day of year now simulating, 1365. set: tp_mainsimi; used:cnguts;cuparse;cgwthr;cgsolar;cgre
zJDay	X	X	integer number	daily	Extended jday: same for main sim, 512 heat autosizing, 529-540 cooling autosizing.
Hr	X	X	integer number	hourly	Hour of day, 0-23. set/used: tp_mainsim()
Subhr	X	X	integer number	subhourly	Subhour of hour being simulated, 0 set cnguts.cpp, used cnztu,cnvhac,cnguts,cgresult.cpp.
hoy	X	X	unrecognized	subhourly	Extended subhour of year, for reporting peaks: subhr + 4 * (hr + 24*xjday). set/used: cnguts.
вDТ	X	X	integer number	hourly	1 if daylight saving time in effect, 0 if not. unspecified time/date variables are daylight.
HrST	X	X	integer number	hourly	Standard time hour of day now simulating, 0-23. set/used cnguts, used cgsolar.cpp.
DayST	X	X	integer number	hourly	Standard time day of year, 1365. changes @ 1am ->*h. set/used cnguts, used cgsolar.cpp.
utoSizing	X	X	integer number	autosize and simulate phase start time	True if setting up for or doing autosizing, 0 for main simulation setup/run
pass1	X	X	integer number	daily	True autosizing pass 1 (a or b) thru dsn days: find big-enuf sizes with open-ended models
ass1A	X	X	integer number	daily	True for pass 1a of each dsn day: use idealized const-supply-temp models
pass1B	X	X	$rac{1}{2}$ integer number	daily	True for pass 1b of each dsn day: use real models

Name	Input?	Runtime?	Type	Variability	Description
pass2	X	X	integer number	daily	True autosizing for pass 2 thru dsn days: determine loads, reduce oversize sizes.
sizing	X	X	integer number	daily	True when can increase sizes. eg false during pass 2: warming up.
dsDayI	X	X	unrecognized	daily	Index of design day being simulated: 0 heat, 1-12 cooldsmo[1]. set in cnausz.cpp. 6-95.
dsDay	X	X	integer number	daily	0 main sim, 1 heating autosize design day, 2 cooling ausz
auszMon	X	X	integer number	daily	Cool design day month 1-12 or generic month 0 for heat. 6-95.
ivl	X	X	integer number	subhourly	Interval now starting or ending (c_ivlch_y, _m, etc),
isBegOf	X	X	integer number	subhourly	0 or interval now starting (for expression eval) (c_ivlch_y, _m, etc; 0 except during expr eval)
isEndOf	X	X	integer number	subhourly	Ditto ending set in cnguts.cpp, tested in cueval.cpp.
isBegRun	X	X	integer number	subhourly	1st subhr of warmup, not set for run unless no warmup.
is Beg Main Sim	X	X	integer number	subhourly	1st subhr of main sim (not warmup, not autosize)
is First Mon	X	X	integer number	monthly	True if 1st month of main sim. set dobeg/endivl. used: doivlaccum.
isLastDay	X	X	integer number	daily	Last day of main sim
is Last Warm up Day	X	X	integer number	daily	True iff last day of main sim warmup. set: cgmainsimi. used: cgwthr.cpp. 1-95.
isBegHour	X	X	integer number	subhourly	True if subhour 0 of hour. set cnztu.cpp/cnguts.cpp, used cnguts.cpp, .
isEndHour	X	X	integer number	subhourly	True if last subhour of hour. set cnguts.cpp, used cnguts, cgresult.cpp.
isBegDay	X	X	integer number	hourly	True if hour 0. set: dobegivl. used: dobegivl,doivlaccum; cgresult.cpp
isEndDay	X	X	integer number	hourly	True if hour 23. set: dobegivl. used: doendivl,doivlaccum; cgresult.cpp
is Beg Month	X	X	integer number	daily	1st day of month/run/warmup or 1st rep of dsn day.
isEndMonth	X	X	integer number	daily	Mon/run, not warmup, last day.
isSolarCalcDay	X	X	integer number	daily	True if 1st day of month/run or 1st rep of dsn day: do 24 hours of solar calcs today. cnguts.

Name	Input?	Runtime	Type	Variability	Description
isWarmup	X	X	integer number	daily	True if main sim warmup. set/used: cgmainsimi. used: dobe- givl,doendivl,doivlaccum,doivlreport exman,impf.
dowh	X	X	integer number	daily	Autosizing: 8 heat 9 cool, else 7 if observed holiday, else day of week 0-6, for \$dowh.
isHoliday	X	X	integer number	daily	True on observed holiday: monday after certain true holidays on weekend. same as old isholiobs, 7-92.
isHoliTrue	X	X	integer number	daily	True (non-0) on true date of holiday
isWeHol	X	X	integer number	daily	Weekend or holiday
isWeekend	X	X	integer number	daily	Saturday or sunday
isBegWeek	X	X	integer number	daily	Non-wehol after wehol
isWeekday	X	X	integer number	daily	Mon-fri
isWorkDay	X	X	integer number	daily	Workday per top.workdaymask (default mon-fri), 5-95
isNonWorkDay	X	X	integer number	daily	Non-workday ditto 5-95
isBegWorkWeek	X	X	integer number	daily	Workday after non-workday ditto 5-95
notDone	X	X	integer number	daily	Combined results of autosize pass endtests
dsDayNIt	X	X	unrecognized	daily	Number of times this design day has been iterated
radBeamHrAv	X	X	number	hourly	Beam irradiance on tracking surface, hour energy = average power, from weather file
radBeamPvHrAv	X	X	number	hourly	previous hour (used to generate -shav)
radBeamNxHrAv	X	X	number	hourly	next hour (wthr file read ahead) (used to generate -shav)
radBeamShAv	X	X	number	subhourly	current beam subhour average power, interpolated, btuh/ft2
	X	X	number	constant	_
radDiffHrAv	X	X	number	hourly	Diffuse irradiance on horizontal surface, hour energy = average power, from weather file
${ m radDiffPvHrAv}$	X	X	number	hourly	flavors as for radbeam
${ m radDiffNxHrAv}$	X	X	number	hourly	
radDiffShAv	X	X	number	subhourly	current diffuse subhour power, interpolated by cgwthr.cpp, btuh/ft2
radDiffShSpare	X	X	number	constant	_
tDbOHr	X	X	number	hourly	Outdoor dry bulb temp at end of hour, from wthr file, deg f.

Name	Input?	Runtime	? Type	Variability	Description
tDbOPvHr	X	X	number	hourly	previous hour (used to compute -hrav and -sh)
tDbOHrAv	X	X	number	hourly	average over hour (used re hourly masses, bin res files, \$variable)
${\it tDbOSh}$	X	X	number	subhourly	end subhour, interpolated (used re zone temp heat balance)
tDbOPvSh	X	X	number	subhourly	end previous subhr (used to compute -shav)
tDbOShAv	X	X	number	subhourly	average over subhour (used re subhourly masses)
tWbOHr	X	X	number	hourly	Outdoor wet bulb temp at end of hour, from wthr file wb depression, deg f.
${ m tWbOPvHr}$	X	X	number	hourly	previous hour (used to compute -hrav, -sh)
${ m tWbOHrAv}$	X	X	number	hourly	hour average (for \$ variable)
tWbOSh	X	X	number	subhourly	end subhour, interpolated (used re zone temp heat balance)
tSkyHr	X	X	number	hourly	Sky temperature, f
tSkyPvHr	X	X	number	hourly	previous hour (used to compute -sh)
tSkySh	X	X	number	subhourly	end subhr, interpolated)
${\bf windSpeedHr}$	X	X	number	hourly	Wind speed, mph, at end hour
windSpeedPvHr	X	X	number	hourly	previous hour (used to compute -hrav, -sh)
${\bf windSpeedHrAv}$	X	X	number	hourly	hour average (for \$ variable)
windSpeedSh	X	X	number	subhourly	end subhour, mph, interpolated: for \$variable and
windSpeedSquare		X	number	subhourly	end subhour squared (re zone infiltration), mph^2
windSpeedSqrtSh		X	number	subhourly	end subhour sqrt (re outside surface convection), mph^.5
windSpeedPt8Sh		X	number	subhourly	end subhour ^.8 (re outside surface convection), mph^.8
windDirDegHr	X	X	number	hourly	Wind direction at end hour from wthr file, degrees, 0=n, 90=e. (used for \$variable)
wOHr	X	X	number	hourly	Outdoor humidity ratio at end current hour, computed from tdbo and twbo (used for \$ variable)
wOPvHr	X	X	number	hourly	previous hour (used to compute -hrav)
wOHrAv	X	X	number	hourly	hour average (for \$ variable)
wOSh	X	X	number	subhourly	at end current subhour: used throughout zones and systems models in program
hOSh	X	X	number	subhourly	Outdoor enthalpy at end subhour. used at in ah::doeco, towerplant::towmodel. 9-92.
airxOSh	X	X	number	subhourly	Air flow heat transfer @tdbosh (vhc*60) (btuh/cfm-f).

Name	Input?	Runtime	? Type	Variability	Description
rhoMoistOSh	X	X	number	subhourly	Outdoor moist air density at end of subhour, lbm/ft3
${\rm rhoDryOSh}$	X	X	number	subhourly	Outdoor dry air density at end of subhour, lbm/ft3
iter	X	X	integer number	subhourly	Hvac terminal / air handler / plant iteration counter for cnztu.cpp:hvacitersubhr.
qcPeak	X	X	number	hourly	Maximum cooling load for an hour for entire building. negative (if not 0).
qcPeakH	X	X	integer number	hourly	Hour 1-24 of peak cooling load
qcPeakD	X	X	integer number	hourly	Day of month 1-31 of peak load
qcPeakM	X	X	integer number	hourly	Month 1-12 of peak load
qhPeak	X	X	number	hourly	Maximum heating load for entire building during an hour
qhPeakH	X	X	integer number	hourly	Hour 1-24 of peak heating load
qhPeakD	X	X	integer number	hourly	Day of month 1-31 of peak load
qhPeakM	X	X	integer number	hourly	Month 1-12 of peak load
ck5aa5	X	X	integer number	run start time (of each phase, autoSize or simulate)	Stuffed with 0x5aa5 from top cult for verifying initialization & matching versions

6.57 towerPlant

@towerPlant [1..].

Name	Input?	Runtime?	Type	Variability	Description
name ctN	X X	X X	string integer number	constant autosize and simulate phase start time	Number of towers. niles' ctno. default 1.
tpStg	X	X	unrecognized	autosize and simulate phase start time	Staging choice, default together. niles' stgop.
tpTsSp	X	X	number	hourly	Towers delivered water setpoint temperature (niles' twosp). degrees f, hourly, default 85f.
tpMtr	X	X	integer number	input time	Subscript of meter object to which tower fan energy input will be posted,

Generated: 2020-05-11T15:34:27+00:00

Name	Input?	Runtime?	Type	Variability	Description
$\overline{ ext{ctTy}}$	X	X	unrecognized	autosize and simulate phase start time	Cooling tower fan control type choice: onespeed (default), twospeed, or variable.
ctLoSpd	X	X	number	autosize and simulate phase start time	Low speed for a twospeed fan, as a fraction of full cfm. default 0.5.
ctShaftPwr	X	X	number	autosize and simulate phase start time	Shaft power of one tower fan motor. rqd. user name 'shaftbhp'.
$\operatorname{ctMotEff}$	X	X	number	autosize and simulate phase start time	Motor (and drive, if any) efficiency, default 0.88
ctFcOne.k[0]	X	X	number	run start time (of each phase, autoSize or	_
ctFcOne.k[1]	X	X	number	simulate) run start time (of each phase, autoSize or	-
ctFcOne.k[2]	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctFcLo.k[0]	X	X	number	simulate) run start time (of each phase, autoSize or	-
${\it ctFcLo.k[1]}$	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctFcLo.k[2]	X	X	number	simulate) run start time (of each phase, autoSize or simulate)	_
ctFcHi.k[0]	X	X	number	run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
ctFcHi.k[1]	X	X	number	run start time (of each phase, autoSize or	_
${\it ctFcHi.k[2]}$	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctFcVar.k[0]	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctFcVar.k[1]	X	X	number	simulate) run start time (of each phase, autoSize or	-
ctFcVar.k[2]	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctFcVar.k[3]	X	X	number	simulate) run start time (of each phase, autoSize or	-
ctFcVar.k[4]	X	X	number	simulate) run start time (of each phase, autoSize or	_
ctCapDs	X	X	number	simulate) run start time (of each phase, autoSize or	Design capacity, btuh. (replaces niles' design water inlet temperature.)
ctVfDs	X	X	number	simulate) autosize and simulate phase start time	Design air flow volume rate through tower / full speed fan flow??, cfm, rqd.
ctGpmDs	X	X	number	run start time (of each phase, autoSize or simulate)	Design water flow rate, gpm. default: sum of connected heat rejection pump capacities / ctn.

Name	Input?	Runtime?	Type	Variability	Description
ctTDbODs	X	X	number	autosize and simulate phase start time	Design outdoor drybulb temperature, f, rqd. (only needed to convert ctvfds from cfm to lb/hr).
ctTWbODs	X	X	number	autosize and simulate phase start time	Design outdoor wetbulb temperature, f, rqd.
ctTwoDs	X	X	number	autosize and simulate phase start time	Design leaving water temperature, f, default 85.
ctCapOd	X	X	number	run start time (of each phase, autoSize or simulate)	Off-design capacity, btuh. (replaces niles' design water inlet temperature.)
ctVfOd	X	X	number	autosize and simulate phase start time	Off-design air flow volume rate through one tower, cfm, must != ctvfds.
ctGpmOd	X	X	number	run start time (of each phase, autoSize or simulate)	Off-design water flow rate, gpm. default: sum of connected heat rejection pump capacities/ ctn.
ctTDbOOd	X	X	number	autosize and simulate phase start time	Off-design outdoor drybulb temperature, f. (only needed to convert ctvfod from cfm to lb/hr).
ctTWbOOd	X	X	number	autosize and simulate phase start time	Off-design outdoor wetbulb temperature, f.
$\operatorname{ctTwoOd}$	X	X	number	autosize and simulate phase start time	Off-design leaving water temperature, f, default 85.
ctK	X	X	number	run start time (of each phase, autoSize or simulate)	Exponent in formula ntua = const * (mw/ma)^ctk, as alternative to "off design" inputs.
ctStkFlFr	X	X	number	autosize and simulate phase start time	Stack effect flow: air flow that occurs thru tower when fan is off, as a fraction of ctvfds.

Name	Input?	Runtime?	Type	Variability	Description
ctBldn	X	X	number	autosize and simulate phase start time	Blowdown rate: frac inflowing water bled down drain, to reduce impurities buildup. default .01.
ctDrft	X	X	number	autosize and simulate phase start time	Drift rate: frac inflowing water blown out of tower as droplets, w/o evaporating. default 0.
ctTWm	X	X	number	autosize and simulate phase start time	Temperature of water in mains, for makeup water. default 60.
cp1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st coolplant served by this towerplant. next is coolplant.nxcp4tp.
hl1	X	X	integer number	run start time (of each phase, autoSize or simulate)	Subscript of 1st hploop with hx served by this towerplant. next is hploop.nxhl4tp.
oneFanP	X	X	number	run start time (of each phase, autoSize or simulate)	_
maDs	X	X	number	run start time (of each phase, autoSize or simulate)	_
maOd	X	X	number	run start time (of each phase, autoSize or simulate)	_
mwDs	X	X	number	run start time (of each phase, autoSize or simulate)	_
mwOd	X	X	number	run start time (of each phase, autoSize or simulate)	

Name	Input?	Runtime?	Type	Variability	Description
maOverMwDs	X	X	number	run start time (of each phase, autoSize or simulate)	Mads/mwds, precomputed in setup.
ntuADs	X	X	number	run start time (of each phase, autoSize or simulate)	Number of transfer units for air side at design conditions (niles ntuad)
ntuAOd	X	X	number	run start time (of each phase, autoSize or simulate)	at off-design conditions, if given, member only as debug aid.
tpTs	X	X	number	end of each subhour	_
tpClf	X	X	integer number	end of each subhour	Call-flag: set nz if must call tpcompute so it can test tr, etc to see if computation needed.
tpPtf	X	X	integer number	end of each subhour	Compute-flag: set if must call tpcompute and it should unconditionally recompute.
trNx	X	X	number	end of each subhour	–
mwAllNx	X	X	number	end of each subhour	_
${\rm qLoadNx}$	X	X	number	end of each subhour	_
tr	X	X	number	end of each subhour	_
mwAll	X	X	number	end of each subhour	_
qLoad	X	X	number	end of each	_
mwi1	X	X	number	subhour end of each	_
qNeed	X	X	number	subhour end of each	_
qMax1	X	X	number	subhour end of each subhour	_
qMin1	X	X	number	end of each subhour	_
towldCase	X	X	unrecognized	subhour end of each subhour	Tower load case, tpcompute to endsubhr: facilitates deferring fan power calc

subhour

end of each subhour

end of each subhour

end of each

subhour

subhour

subhour

subhour

subhour

subhour

subhour

subhour

subhour

Number of tower fans

Fraction of full speed

subhour (btuh!)

For tpestimate

For tpestimate

For tpcompute

For tpcompute

For tpcompute

for change

10-19-92

(fraction on for one speed fan), for lead tower only

Plant's fan input pwr this

Power imparted to water,

detection/probes/reports

operating

if lead.

qVarTem

puteTs

nCtOp

f

fanP

tpTsSpPr

tpTsEstPr

tDbOShPr

wOShPr

tpTsPr

q

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

number

number

integer number

number

number

number

number

number

number

number

number

6.58 weather

@weather.

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	
sunup	_	X	unrecognized	hourly	Nz if sun is up for any portion of current hour
slAzm	_	X	number	hourly	Azimuth, radians (0=n, +clockwise)
slAlt	_	X	number	hourly	Altitude, radians (0=horizon, +upwards)

Name	Input?	Runtime?	Type	Variability	Description
$\overline{\mathrm{db}}$	_	X	number	hourly	Air dry bulb
DNI	-	X	number	hourly	temp, deg f Direct normal irradiance from
DHI	_	X	number	hourly	weather file (integrated value for hour, btu/ft2) Diffuse horizontal irradiance from weather file
bmrad	-	X	number	hourly	(integrated value for hour, btu/ft2) Dni as adjusted per anisotropic sky, top.radbeamf.
dfrad	_	X	number	hourly	etc (integrated value for hour, btu/ft2) Dhi as adjusted per anisotropic sky, top.raddifff, etc (integrated
wb	_	X	number	hourly	value for hour, btu/ft2) Air wet bulb temp, deg f
${\rm wndDir}$	_	X	number	hourly	Wind direction,
wndSpd	_	X	number	hourly	deg, 0=n, 90=e Wind speed, mph
glrad	-	X	number	hourly	Global irradiance on horizontal surface, for daylighting calculations
cldCvr	_	X	number	hourly	Total cloud cover in tenths, 0-11, or 15 for missing data
tSky	_	X	number	hourly	Sky temperature, f from weather file or calcskytemp()
tGrnd	_	X	number	hourly	(berdahl-martin) Ground
taDp	-	X	number	hourly	temperature, f Air dew point temp, f
tMains	_	X	number	hourly	Cold water mains temp, f
tdvElec	_	X	number	hourly	Electricity
tdvFuel		X	number	hourly	Fuel

Name	Input?	Runtime?	Type	Variability	Description
taDbPk	_	X	number	hourly	Current day peak db (includes future hours), f
taDbAvg	_	X	number	hourly	Current day average db (includes future hours), f
taDbPvPk	_	X	number	hourly	Previous-day peak db, f
taDbAvg01	-	X	number	hourly	Previous-day avg db (not including current day), f
taDbAvg07	_	X	number	hourly	Trailing 7-day avg db (not including current day), f
taDbAvg14	-	X	number	hourly	Trailing 14-day avg db (not including current
taDbAvg31	_	X	number	hourly	day), f Trailing 31-day avg db (not including current day), f
tdvElecPk	_	X	number	hourly	Current day peak tdvelec (includes future hours)
tdvElecPkRank	_	X	integer number	hourly	Current day wd_tdvelecpk rank within year (1-365/366)
tdvElecAvg	_	X	number	hourly	Current day avg tdvelec (includes future hours)
tdvElecPvPk	_	X	number	hourly	Previous-day peak tdvelec
tdvElecAvg01	-	X	number	hourly	Previous-day avg tdvelec (not including current day)
tdvElecHrRank[0]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[1]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[2]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[3]	-	X	integer number	hourly	Hour ranking of tdv values for current day

Name	Input?	Runtime?	Type	Variability	Description
tdvElecHrRank[4]	_	X	integer number	hourly	Hour ranking of tdv values for
tdvElecHrRank[5]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[6]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[7]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[8]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[9]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[10]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[11]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[12]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[13]	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[14]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[15]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[16]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[17]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[18]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[19]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[20]	_	X	integer number	hourly	current day Hour ranking of tdv values for current day

Name	Input?	Runtime?	Type	Variability	Description
tdvElecHrRank[21]	-	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[22]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[23]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[24]	_	X	integer number	hourly	Hour ranking of tdv values for current day

6.59 weatherFile

@weather File.

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
wFileFormat	-	X	integer number	run start time (of each phase, autoSize or simulate)	File format enum: unk, bsgs, et1, etc.
loc	-	X	string	run start time (of each phase, autoSize or simulate)	Char loc[] location (for et, is loc 1 only: city etc).
lid	-	X	string	run start time (of each phase, autoSize or simulate)	Char lid[] location id
yr	_	X	integer number	run start time (of each phase, autoSize or simulate)	Year of weather data $(00 - 99, -1)$ if n/a
jd1	_	X	integer number	run start time (of each phase, autoSize or simulate)	Julian day of first weather record (-1 if not known)
jdl	-	X	integer number	run start time (of each phase, autoSize or simulate)	Julian day of last weather record (ditto)
lat	_	X	number	run start time (of each phase, autoSize or simulate)	Latitude, degrees n (-90.0 to 90.0)

Name	Input?	Runtime?	Type	Variability	Description
lon	_	X	number	run start time (of each phase, autoSize or simulate)	Longitude, degrees w (-180. to 180.0). us locations are >0, note
tz	-	X	number	run start time (of each phase, autoSize or simulate)	non-standard Time zone, hours w of greenwich (est = +5, note non-standard
elev	-	X	number	run start time (of each phase, autoSize or simulate)	Elevation of locn in ft (-9999. to 99999.)
${ m taDbAvgYr}$	_	X	number	run start time (of each phase, autoSize or simulate)	Annual average dry-bulb temp, f
tMainsAvgYr	_	X	number	autosize and simulate phase start time	Annual average cold water temp, f
solartime	-	X	integer number	run start time (of each phase, autoSize or simulate)	True if file is in solar time
loc2	-	X	string	run start time (of each phase, autoSize or simulate)	Char[] location 2 (state or country, etc)
isLeap	_	X	integer number	run start time (of each phase, autoSize or simulate)	Non-0 if weather file is for a leap year (feb 29 counted in dates) – possible future use
${\rm firstDdm}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	Month 1-12 of first design day in file
lastDdm	-	X	integer number	run start time (of each phase, autoSize or simulate)	Month 1-12 of last design day in file
winMOE	-	X	integer number	run start time (of each phase, autoSize or simulate)	Winter median of extremes (deg f)

Name	Input?	Runtime?	Type	Variability	Description
win99TDb	_	X	integer number	run start time (of each phase, autoSize or simulate)	Winter 99% design temp (deg f)
win97TDb	-	X	integer number	run start time (of each phase, autoSize or simulate)	Winter 97.5% design temp (deg f)
sum1TDb	_	X	integer number	run start time (of each phase, autoSize or simulate)	Summer 1% design temp (deg f)
sum1TWb	_	X	integer number	run start time (of each phase, autoSize or simulate)	Summer 1% design coincident wb (deg f)
sum2TDb	-	X	integer number	run start time (of each phase, autoSize or simulate)	Summer 2.5% design temp (deg f)
sum2TWb	-	X	integer number	run start time (of each phase, autoSize or	Summer 2.5% design coincident wb
$\operatorname{sum} 5 \operatorname{TDb}$	_	X	integer number	simulate) run start time (of each phase, autoSize or	(deg f) Summer 5% design temp (deg f)
${\rm sum} 5 {\rm TWb}$	_	X	integer number	simulate) run start time (of each phase, autoSize or	Summer 5% design coincident wb
range	_	X	integer number	simulate) run start time (of each phase, autoSize or	(deg f) Mean daily range (deg f)
$\operatorname{sumMonHi}$	_	X	integer number	simulate) run start time (of each phase, autoSize or	Month of hottest design day, 1-12
TDVFileTimeStamp	-	X	string	simulate) autosize and simulate phase start time	Timestamp string
TDVFileTitle	_	X	string	autosize and simulate phase start time	Title string (identifies file cz, fuel, vintage,)
$\operatorname{TDVFileJHr}$	_	X	unrecognized	run start time (of each phase, autoSize or simulate)	Last hour (row) in file that has read (1 based)

6.60 weather Next Hour

@weather Next Hour.

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
sunup	_	X	unrecognized	hourly	Nz if sun is up for any portion of current hour
slAzm	_	X	number	hourly	Azimuth, radians (0=n, +clockwise)
slAlt	-	X	number	hourly	Altitude, radians (0=horizon, +upwards)
db	_	X	number	hourly	Air dry bulb temp, deg f
DNI	-	X	number	hourly	Direct normal irradiance from weather file (integrated value for hour, btu/ft2)
DHI	-	X	number	hourly	Diffuse horizontal irradiance from weather file (integrated value for hour, btu/ft2)
bmrad	-	X	number	hourly	Dni as adjusted per anisotropic sky, top.radbeamf, etc (integrated value for hour, btu/ft2)
dfrad	-	X	number	hourly	Dhi as adjusted per anisotropic sky, top.raddifff, etc (integrated value for hour, btu/ft2)
wb	_	X	number	hourly	Air wet bulb temp, deg f
wndDir	_	X	number	hourly	Wind direction, deg, 0=n, 90=e
wndSpd	_	X	number	hourly	Wind speed, mph
glrad	-	X	number	hourly	Global irradiance on horizontal surface, for daylighting calculations
cldCvr	-	X	number	hourly	Total cloud cover in tenths, 0-11, or 15 for missing data

Name	Input?	Runtime?	Type	Variability	Description
tSky	-	X	number	hourly	Sky temperature, f from weather file or calcskytemp() (berdahl-martin)
tGrnd	_	X	number	hourly	Ground temperature, f
taDp	_	X	number	hourly	Air dew point temp, f
tMains	_	X	number	hourly	Cold water mains temp, f
tdvElec	_	X	number	hourly	Electricity
tdvFuel	_	X	number	hourly	Fuel
taDbPk	_	X	number	hourly	Current day peak
${ m taDbAvg}$	_	X	number	hourly	db (includes future hours), f Current day average db
taDbPvPk	_	X	number	hourly	(includes future hours), f Previous-day peak db, f
taDbAvg01	_	X	number	hourly	Previous-day avg db (not including
taDbAvg07	-	X	number	hourly	current day), f Trailing 7-day avg db (not including
taDbAvg14	-	X	number	hourly	current day), f Trailing 14-day avg db (not including current
taDbAvg31	_	X	number	hourly	day), f Trailing 31-day avg db (not including current
tdvElecPk	-	X	number	hourly	day), f Current day peak tdvelec (includes
tdvElecPkRank	-	X	integer number	hourly	future hours) Current day wd_tdvelecpk rank within year
tdvElecAvg	-	X	number	hourly	(1-365/366) Current day avg tdvelec (includes future hours)
tdvElecPvPk	_	X	number	hourly	Previous-day peak tdvelec
tdvElecAvg01	-	X	number	hourly	Previous-day avg tdvelec (not including current day)

Name	Input?	Runtime?	Type	Variability	Description
$\overline{\mathrm{tdvElecHrRank}[0]}$	_	X	integer number	hourly	Hour ranking of tdv values for
tdvElecHrRank[1]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[2]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[3]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[4]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[5]	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[6]	-	X	integer number	hourly	current day Hour ranking of tdv values for
${\rm tdvElecHrRank}[7]$	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[8]	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[9]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[10]	_	X	integer number	hourly	current day Hour ranking of tdv values for
${\rm tdvElecHrRank}[11]$	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[12]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[13]	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[14]	_	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[15]	-	X	integer number	hourly	current day Hour ranking of tdv values for
tdvElecHrRank[16]	_	X	integer number	hourly	current day Hour ranking of tdv values for current day

Name	Input?	Runtime?	Type	Variability	Description
tdvElecHrRank[17]	-	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[18]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[19]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[20]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[21]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[22]	-	X	integer number	hourly	Hour ranking of tdv values for current day
tdvElecHrRank[23]	_	X	integer number	hourly	Hour ranking of tdv values for current day
tdv Elec Hr Rank [24]	-	X	integer number	hourly	Hour ranking of tdv values for current day

6.61 window (owner: surface)

 $@{\rm window}[1..].$

Name	Input?	Runtime?	Type	Variability	Description
name	X	_	string	constant	_
ty	X	_	integer number	input time	_
area	X	_	number	run start time (of each phase, autoSize or simulate)	_
azm	X	_	number	run start time (of each phase, autoSize or simulate)	_
tilt	X	_	number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{dircos}[0]$	X	_	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
dircos[1]	X	_	number	run start time (of each phase, autoSize or simulate)	_
dircos[2]	X	_	number	run start time (of each phase, autoSize or simulate)	_
depthBG	X	_	number	run start time (of each phase, autoSize or simulate)	-
height	X	_	number	run start time (of each phase, autoSize or simulate)	and to compute area b4 mutliplier.
model	X	_	integer number	input time	_
modelr	X	-	integer number	run start time (of each phase, autoSize or	_
lThkF	X	-	number	simulate) run start time (of each phase, autoSize or simulate)	-
gti	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
SCO	X	_	number	monthly- hourly	_
SCC	X	_	number	monthly- hourly	-
sbcI.absSlr	X	_	number	monthly- hourly	-
sbcI.awAbsSlr	X	_	number	monthly- hourly	_
sbcI.epsLW	X	-	number	run start time (of each phase, autoSize or simulate)	-
sbcI.zi	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
sbcI.F	X	-	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
sbcI.Fp	X	_	number	run start time (of each phase,	_
1.160.1	37		,	autoSize or simulate)	
sbcI.frRad	X	_	number	run start time (of each phase,	_
				autoSize or simulate)	
sbcI.fSky	X	_	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcI.fAir	X	_	number	run start time (of each phase,	_
				autoSize or	
sbcI.hcNat	X	_	number	simulate) end of each	_
				subhour	
sbcI.hcFrc	X	_	number	end of each subhour	_
${\rm sbcI.hcMult}$	X	_	number	end of each	_
sbcI.hxa	X	_	number	subhour end of each	_
sbcI.hxr	X		numb an	subhour end of each	
SDC1.fixf	Λ	_	number	subhour	_
sbcI.hxtot	X	_	number	end of each subhour	_
sbcI.uRat	X	_	number	end of each	_
sbcI.fRat	X	_	number	subhour end of each	_
				subhour	
sbcI.cx	X	_	number	end of each subhour	_
${\rm sbcI.sgTarg.bm}$	X	_	number	end of each	_
sbcI.sgTarg.df	X	_	number	subhour end of each	_
				subhour	
sbcI.sgTarg.tot	X	_	number	end of each subhour	_
sbcI.sg	X	_	number	end of each	_
sbcI.tSrf	X	_	number	subhour end of each	_
sbcI.tSrfls	X		number	subhour subhourly	_
sbcI.qrAbs	X X	_	number number	end of each	_
				subhour	
sbcI.txa	X	_	number	end of each subhour	_
sbcI.txr	X	_	number	end of each	_
				subhour	

CSE User's Manual

Name	Input?	Runtime?	Type	Variability	Description
sbcI.txe	X	_	number	end of each subhour	_
sbcI.w	X	_	number	end of each subhour	_
sbcI.qSrf	X	_	number	end of each	_
sbcI.pXS	X	_	unrecognized	subhour run start time	_
				(of each phase, autoSize or simulate)	
sbcI.si	X	-	unrecognized	run start time (of each phase, autoSize or	-
1 7 6 777	77		,	simulate)	
sbcI.fcWind	X	_	number	run start time (of each phase, autoSize or	-
sbcI.fcWind2	X	_	number	simulate) run start time	_
				(of each phase, autoSize or simulate)	
sbcI.eta	X	_	number	end of each subhour	_
$\operatorname{sbcI.widNom}$	X	_	number	run start time	_
				(of each phase, autoSize or simulate)	
sbcI.lenNom	X	_	number	run start time	_
				(of each phase, autoSize or simulate)	
sbcI.lenCharNat	X	_	number	run start time (of each phase,	_
				autoSize or	
sbcI.lenEffWink	X	_	number	simulate) run start time	_
				(of each phase, autoSize or simulate)	
sbcI.cosTilt	X	_	number	run start time	_
				(of each phase, autoSize or simulate)	
sbcI.atvDeg	X	_	number	run start time	_
				(of each phase, autoSize or simulate)	
sbcI.cosAtv	X	_	number	run start time (of each phase, autoSize or	_
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.hcModel	X	_	unrecognized	run start time (of each phase, autoSize or	-
sbcI.hcLChar	X	_	number	simulate) run start time (of each phase,	-
${\rm sbcI.hcConst}[0]$	X	_	number	autoSize or simulate) run start time (of each phase,	_
${\bf sbcI.hcConst[1]}$	X	_	number	autoSize or simulate) run start time	_
sbcI.hcConst[2]	X	_	number	(of each phase, autoSize or simulate) run start time	_
				(of each phase, autoSize or simulate)	
sbcI.groundModel	X	_	unrecognized	run start time (of each phase, autoSize or simulate)	_
sbcI.cTaDbAvgYr	X	_	number	run start time (of each phase, autoSize or	_
sbcI.cTaDbAvg31	X	-	number	simulate) run start time (of each phase, autoSize or	_
sbcI.cTaDbAvg14	X	_	number	simulate) run start time (of each phase, autoSize or	_
${ m sbcI.cTaDbAvg07}$	X	_	number	simulate) run start time (of each phase, autoSize or	_
${\rm sbcI.cTGrnd}$	X	_	number	simulate) run start time (of each phase,	_
sbcI.rGrnd	X	_	number	autoSize or simulate) run start time (of each phase,	-
${\rm sbcI.rConGrnd}$	X	_	number	autoSize or simulate) run start time (of each phase, autoSize or	-

Name	Input?	Runtime?	Type	Variability	Description
sbcO.absSlr	X	_	number	monthly-	_
				hourly	
sbcO.awAbsSlr	X	_	number	monthly-	_
			_	hourly	
sbcO.epsLW	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 1	37			simulate)	
sbcO.zi	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
-1 -O E	v			simulate)	
sbcO.F	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.Fp	X		number	simulate) run start time	
suco.rp	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.frRad	X	_	number	run start time	_
ssco.mrad	71		number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.fSky	X	_	number	run start time	_
2.				(of each phase,	
				autoSize or	
				simulate)	
sbcO.fAir	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
${\rm sbcO.hcNat}$	X	_	number	end of each	_
				subhour	
${ m sbcO.hcFrc}$	X	_	number	end of each	_
				$\operatorname{subhour}$	
${ m sbcO.hcMult}$	X	_	number	end of each	_
				subhour	
sbcO.hxa	X	_	number	end of each	_
				subhour	
sbcO.hxr	X	_	number	end of each	_
1 01	37		1	subhour	
sbcO.hxtot	X	_	number	end of each	_
-lOD '	v		1	subhour	
sbcO.uRat	X	_	number	end of each	_
abaO fDs+	v		numban	subhour	
sbcO.fRat	X	_	number	end of each subhour	_
sbcO.cx	X	_	number	end of each	_
SDCO.CX	Λ	_	numbel	subhour	
sbcO.sgTarg.bm	X	_	number	end of each	_
bbco.sgraig.bill	11		number	subhour	
				Sublidui	

Name	Input?	Runtime?	Type	Variability	Description
${\rm sbcO.sgTarg.df}$	X	_	number	end of each subhour	_
sbcO.sgTarg.tot	X	_	number	end of each	_
5500.551415.000	71		number	subhour	
sbcO.sg	X	_	number	end of each	_
2.00				subhour	
sbcO.tSrf	X	_	number	end of each	_
				subhour	
${ m sbcO.tSrfls}$	X	_	number	subhourly	_
${\rm sbcO.qrAbs}$	X	_	number	end of each	_
				subhour	
sbcO.txa	X	_	number	end of each	_
				subhour	
sbcO.txr	X	_	number	end of each	_
				subhour	
sbcO.txe	X	_	number	end of each	_
			_	subhour	
sbcO.w	X	_	number	end of each	_
1 0 0 0	37		1	subhour	
sbcO.qSrf	X	_	number	end of each	_
1 0 370	37		. 1	subhour	
sbcO.pXS	X	_	unrecognized	run start time	_
				(of each phase,	
				autoSize or simulate)	
sbcO.si	X		unrecognized	run start time	_
SDCO.SI	Λ		umecogmzea	(of each phase,	
				autoSize or	
				simulate)	
sbcO.fcWind	X	_	number	run start time	_
bbco.ic (Vilia	11		namoer	(of each phase,	
				autoSize or	
				simulate)	
${ m sbcO.fcWind2}$	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.eta	X	_	number	end of each	_
				subhour	
sbcO.widNom	X	_	number	run start time	_
				(of each phase,	
				autoSize or	
1 O 1 N	V		1	simulate)	
sbcO.lenNom	X	_	number	run start time	_
				(of each phase, autoSize or	
sbcO.lenCharNat	X	_	number	simulate) run start time	_
anco lenonantat	Λ	_	number	(of each phase,	_
				autoSize or	
				simulate)	
				Silliala (C)	

Name	Input?	Runtime?	Type	Variability	Description
${\bf sbcO.lenEffWink}$	X	_	number	run start time (of each phase, autoSize or	_
sbcO.cosTilt	X	_	number	simulate) run start time	_
				(of each phase, autoSize or	
sbcO.atvDeg	X	_	number	simulate) run start time (of each phase,	-
				autoSize or simulate)	
sbcO.cosAtv	X	_	number	run start time (of each phase,	_
sbcO.hcModel	X	_	unrecognized	autoSize or simulate) run start time	_
sbeo.newoder	Α		umecogmzeu	(of each phase, autoSize or	
sbcO.hcLChar	X	_	number	simulate) run start time (of each phase,	_
				autoSize or simulate)	
${\tt sbcO.hcConst}[0]$	X	_	number	run start time (of each phase,	_
sbcO.hcConst[1]	X	_	number	autoSize or simulate) run start time	_
	11		namoor	(of each phase, autoSize or	
${\rm sbcO.hcConst}[2]$	X	_	number	simulate) run start time (of each phase,	_
				autoSize or simulate)	
${\it sbcO.groundModel}$	X	_	unrecognized	run start time (of each phase,	_
sbcO.cTaDbAvgYr	X	_	number	autoSize or simulate) run start time	_
				(of each phase, autoSize or	
sbcO.cTaDbAvg31	X	_	number	simulate) run start time (of each phase,	-
				autoSize or simulate)	
${\rm sbcO.cTaDbAvg14}$	X	_	number	run start time (of each phase,	-
				autoSize or simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.cTaDbAvg07	X	_	number	run start time (of each phase, autoSize or	_
sbcO.cTGrnd	X	_	number	simulate) run start time	_
				(of each phase, autoSize or	
sbcO.rGrnd	X	_	number	simulate) run start time (of each phase,	-
-h -O C C 1	v			autoSize or simulate)	
sbcO.rConGrnd	X	_	number	run start time (of each phase, autoSize or simulate)	_
fenModel	X		unrecognized	input time	_
SHGC	X	_	number	input time	_
fMult	X		number	run start time	
initii	Α		number	(of each phase, autoSize or	
				simulate)	
UNFRC	X	_	number	input time	_
NGlz	X	_	$rac{ ext{integer}}{ ext{number}}$	input time	_
exShd	X	_	unrecognized	input time	_
inShd	X	_	unrecognized	input time	_
dirtLoss	X	_	number	run start time (of each phase, autoSize or simulate)	_
sfExCnd	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
sfExT	X	_	number	subhourly	_
sfAdjZi	X	_	integer number	input time	_
uI	X	_	number	run start time (of each phase, autoSize or simulate)	_
uC	X	_	number	run start time (of each phase, autoSize or	-
uX	X	_	number	simulate) run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
Rf	X	_	number	run start time (of each phase, autoSize or simulate)	-
$\operatorname{grndRefl}$	X	_	number	monthly- hourly	_
vfSkyDf	X	_	number	monthly- hourly	_
vfGrndDf	X	_	number	monthly- hourly	_
vfSkyLW	X	-	number	run start time (of each phase, autoSize or simulate)	_
vfGrndLW	X	_	number	run start time (of each phase, autoSize or	_
uval	X	_	number	simulate) run start time (of each phase, autoSize or	_
UNom	X	-	number	simulate) run start time (of each phase, autoSize or	_
UANom	X	-	number	simulate) run start time (of each phase, autoSize or	-
rSrfNom[0]	X	-	number	simulate) run start time (of each phase, autoSize or	-
rSrfNom[1]	X	_	number	simulate) run start time (of each phase, autoSize or	_
hSrfNom[0]	X	_	number	simulate) run start time (of each phase, autoSize or	-
hSrfNom[1]	X	-	number	simulate) run start time (of each phase, autoSize or	-
cFctr	X	-	number	simulate) run start time (of each phase, autoSize or simulate)	-

Name	Input?	Runtime?	Type	Variability	Description
iwshad	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
msi	X	_	integer number	run start time (of each phase, autoSize or simulate)	0 or msrat msr subscr which will be used if delayed model
tLrB[0]	X	_	number	end of each hour	_
tLrB[1]	X	_	number	end of each hour	_
tLrB[2]	X	_	number	end of each hour	_
tLrB[3]	X	_	number	end of each hour	_
tLrB[4]	X	_	number	end of each hour	_
${ m LrB}[5]$	X	_	number	end of each hour	_
tLrB[6]	X	_	number	end of each hour	_
LrB[7]	X	_	number	end of each hour	_
LrB[8]	X	_	number	end of each hour	_
LrB[9]	X	-	number	end of each hour	_
nsgdist	X	-	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[0].\operatorname{targTy}$	X	-	integer number	run start time (of each phase, autoSize or simulate)	_
sgdist[0].targTi	X	_	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[0].\operatorname{FSO}$	X	_	number	monthly- hourly	_
$\operatorname{sgdist}[0].\operatorname{FSC}$	X	_	number	monthly- hourly	_
$\operatorname{sgdist}[1].\operatorname{targTy}$	X	-	integer number	run start time (of each phase, autoSize or simulate)	_
sgdist[1].targTi	X	-	integer number	run start time (of each phase, autoSize or simulate)	_

CSE User's Manual

Name	Input?	Runtime?	Type	Variability	Description
sgdist[1].FSO	X	_	number	monthly- hourly	_
$\operatorname{sgdist}[1].\operatorname{FSC}$	X	_	number	monthly- hourly	_
sgdist[2].targTy	X	_	integer	run start time	_
8.4.[] 4.8.9			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[2].targTi	X	_	integer	run start time	_
0 11 0			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[2].FSO	X	_	number	monthly-	_
				hourly	
$\operatorname{sgdist}[2].\operatorname{FSC}$	X	_	number	monthly-	_
				hourly	
$\operatorname{sgdist}[3].\operatorname{targTy}$	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
$\operatorname{sgdist}[3].\operatorname{targTi}$	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or	
11 - [a] 11 0 0				simulate)	
sgdist[3].FSO	X	_	number	monthly-	_
11 . [0] FGG	37			hourly	
$\operatorname{sgdist}[3].\operatorname{FSC}$	X	_	number	monthly-	_
1: .[4]	37		. ,	hourly	
$\operatorname{sgdist}[4].\operatorname{targTy}$	X	_	integer	run start time	_
			number	(of each phase,	
				autoSize or simulate)	
sgdist[4].targTi	X		integer	run start time	
sguist[4].targ11	Λ	_	number	(of each phase,	_
			number	autoSize or	
				simulate)	
sgdist[4].FSO	X	_	number	monthly-	_
290100[1].1 DO	11		Hamber	hourly	
sgdist[4].FSC	X	_	number	monthly-	_
-0am [1].1 DO	4.		110111001	hourly	
sgdist[5].targTy	X	_	integer	run start time	_
0 [2] 8 + 1			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[5].targTi	X	_	integer	run start time	_
0 [2] 8	•		number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[5].FSO	X	_	number	monthly-	_
○ []				hourly	
sgdist[5].FSC	X	_	number	monthly-	_
				hourly	

CSE User's Manual

Name	Input?	Runtime?	Type	Variability	Description
msi	X	-	integer number	run start time (of each phase, autoSize or simulate)	0 or msrat msr subscr which will be used if delayed model

6.62 xsurf

@xsurf[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
nxXsurf	_	X	integer	run start time	0 or xsrat subscr of next
			number	(of each phase,	record for zone. chain
				autoSize or	head is znr.xsurf1.
				simulate)	
nxXsSpecT	_	X	integer	run start time	Addl chain of records w/
			number	(of each phase,	$x.sfexcnd == c_excndch_spec$
				autoSize or	used hourly. head is
				simulate)	znr.xsspect1.
ty	_	X	integer	run start time	_
v			number	(of each phase,	
				autoSize or	
				simulate)	
area	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
azm	_	X	number	run start time	_
0.2.11		11	number	(of each phase,	
				autoSize or	
				simulate)	
tilt	_	X	number	run start time	_
		11	Hamser	(of each phase,	
				autoSize or	
				simulate)	
dircos[0]	_	X	number	run start time	_
direos[o]		Λ	Hulliber	(of each phase,	
				autoSize or	
				simulate)	
dircos[1]	_	X	number	run start time	_
uncos[1]		Λ	number	(of each phase,	
				autoSize or	
				simulate)	
d:mana[9]		X	namah an	,	
dircos[2]	_	Λ	number	run start time	_
				(of each phase,	
				autoSize or	
141 DC		v	1	simulate)	
depthBG	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
height	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
model	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
		37		simulate)	
modelr	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
1471-1-17		X		simulate)	
lThkF	_	Λ	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
gti	_	X	integer	run start time	_
801		Λ	number	(of each phase,	
			number	autoSize or	
				simulate)	
sco	_	X	number	monthly-	_
500		11	iidiiio ci	hourly	
scc	_	X	number	monthly-	_
				hourly	
sbcI.absSlr	_	X	number	monthly-	_
				hourly	
sbcI.awAbsSlr	_	X	number	monthly-	_
				hourly	
sbcI.epsLW	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcI.zi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sbcI.F	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1.10		37	,	simulate)	
sbcI.Fp	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
sbcI.frRad		v	maranah am	simulate)	
SUCI.II NAU	_	X	number	run start time (of each phase,	_
				(or each phase, autoSize or	
				simulate)	
sbcI.fSky	_	X	number	run start time	_
SOCI.IONY		11	namper	(of each phase,	
				autoSize or	
				simulate)	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.fAir	_	X	number	run start time (of each phase,	-
				autoSize or simulate)	
sbcI.hcNat	_	X	number	end of each	_
So carried (a)			1141110 01	subhour	
${\rm sbcI.hcFrc}$	_	X	number	end of each	_
1 71 77 1		V	1	subhour	
sbcI.hcMult	_	X	number	end of each subhour	_
sbcI.hxa	_	X	number	end of each	_
bbel.ii.xa		21	namber	subhour	
sbcI.hxr	_	X	number	end of each	_
				subhour	
sbcI.hxtot	_	X	number	end of each	_
1.1.0.4		37	1	subhour	
sbcI.uRat	_	X	number	end of each subhour	_
sbcI.fRat	_	X	number	end of each	_
SSCI.II(a)		21	number	subhour	
sbcI.cx	_	X	number	end of each	_
				subhour	
${\rm sbcI.sgTarg.bm}$	_	X	number	end of each	_
1 7 7 16		37	1	subhour	
sbcI.sgTarg.df	_	X	number	end of each subhour	_
sbcI.sgTarg.tot	_	X	number	end of each	_
sbci.sg raig.tot		21	number	subhour	
sbcI.sg	_	X	number	end of each	_
Ü				subhour	
sbcI.tSrf	_	X	number	end of each	_
1 7 0 0				subhour	
sbcI.tSrfls	_	X	number	subhourly	_
sbcI.qrAbs	_	X	number	end of each subhour	_
sbcI.txa	_	X	number	end of each	_
bbellere.			namoor	subhour	
sbcI.txr	_	X	number	end of each	_
				subhour	
sbcI.txe	_	X	number	end of each	_
1 7		37	1	subhour	
sbcI.w	_	X	number	end of each subhour	_
sbcI.qSrf	_	X	number	end of each	_
bber.qbii		11	number	subhour	
sbcI.pXS	_	X	unrecognized	run start time	_
-				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.si	_	X	unrecognized	run start time (of each phase,	
				autoSize or	
1 7 6 337 1		V	1	simulate)	
sbcI.fcWind	_	X	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcI.fcWind2		X	number	run start time	
SDC1.1C W IIIQ2		Λ	number	(of each phase,	
				autoSize or	
				simulate)	
sbcI.eta	_	X	number	end of each	_
5501.000		11	namoor	subhour	
sbcI.widNom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcI.lenNom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcI.lenCharNat	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcI.lenEffWink	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcI.cosTilt	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1.1.15		W	1	simulate)	
sbcI.atvDeg	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
sbcI.cosAtv		v	number	simulate)	
SDC1.COSAUV	_	X	number	run start time (of each phase,	_
				autoSize or	
				simulate)	
sbcI.hcModel	_	X	unrecognized	run start time	_
bbo1.HelviOdel		11	amccogmzca	(of each phase,	
				autoSize or	
				simulate)	
sbcI.hcLChar	_	X	number	run start time	_
		21	17(1111001	(of each phase,	
				autoSize or	

Name	Input?	Runtime?	Type	Variability	Description
sbcI.hcConst[0]	_	X	number	run start time (of each phase,	_
				autoSize or	
1 71 0[4]		77	,	simulate)	
sbcI.hcConst[1]	_	X	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
sbcI.hcConst[2]	_	X	number	run start time	_
SDCI.IICCOIISt[2]		71	number	(of each phase,	
				autoSize or	
				simulate)	
sbcI.groundModel	_	X	unrecognized	run start time	_
Q			Q	(of each phase,	
				autoSize or	
				simulate)	
${\it sbcI.cTaDbAvgYr}$	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
sbcI.cTaDbAvg31	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
-L -T -T-DL A14		X	1	simulate)	
sbcI.cTaDbAvg14	_	Λ	number	run start time (of each phase,	_
				autoSize or	
				simulate)	
sbcI.cTaDbAvg07	_	X	number	run start time	_
220110102		21	110111001	(of each phase,	
				autoSize or	
				simulate)	
sbcI.cTGrnd	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
sbcI.rGrnd	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
sbcI.rConGrnd		X	number	simulate) run start time	
soci.iColiGilid	_	Λ	number	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.absSlr	_	X	number	monthly-	_
				hourly	
sbcO.awAbsSlr	_	X	number	monthly-	_
				hourly	
sbcO.epsLW	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.zi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.F	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.Fp	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.frRad	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.fSky	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 64 1		37		simulate)	
sbcO.fAir	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 1 11		37	1	simulate)	
sbcO.hcNat	_	X	number	end of each	_
1 01 E		v	1	subhour	
sbcO.hcFrc	_	X	number	end of each	_
sbcO.hcMult		X	mumah an	subhour end of each	
sbcO.nemun	_	Λ	number	subhour	_
sbcO.hxa		X	number	end of each	
sbcO.iixa		Λ	number	subhour	_
sbcO.hxr	_	X	number	end of each	_
SDCO.IIXI		71	number	subhour	
sbcO.hxtot	_	X	number	end of each	_
SDCO.IIX000		21	number	subhour	
sbcO.uRat	_	X	number	end of each	_
ssco.areae		11	namber	subhour	
sbcO.fRat	_	X	number	end of each	_
			110111001	subhour	
sbcO.cx	_	X	number	end of each	_
				subhour	
sbcO.sgTarg.bm	_	X	number	end of each	_
				subhour	
sbcO.sgTarg.df	_	X	number	end of each	_
3 3 -				subhour	
sbcO.sgTarg.tot	_	X	number	end of each	_
				subhour	
sbcO.sg	_	X	number	end of each	_
Ü				subhour	
		37	1		
sbcO.tSrf	_	X	number	end of each	_

Name	Input?	Runtime?	Type	Variability	Description
sbcO.tSrfls	_	X	number	subhourly	_
${\rm sbcO.qrAbs}$	_	X	number	end of each	_
				subhour	
sbcO.txa	_	X	number	end of each	_
				$\operatorname{subhour}$	
sbcO.txr	_	X	number	end of each	_
				$\operatorname{subhour}$	
sbcO.txe	_	X	number	end of each	_
				$\operatorname{subhour}$	
sbcO.w	_	X	number	end of each	_
				$\operatorname{subhour}$	
sbcO.qSrf	_	X	number	end of each	_
				$\operatorname{subhour}$	
sbcO.pXS	_	X	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.si	_	X	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
				$\operatorname{simulate})$	
sbcO.fcWind	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate	
${ m sbcO.fcWind2}$	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 0		37	,	simulate)	
sbcO.eta	_	X	number	end of each	_
1 0 111		37	1	subhour	
sbcO.widNom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 O 1 N		v	1	simulate)	
sbcO.lenNom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
sbcO.lenCharNat		X	mumb on	simulate) run start time	
soco.ienchariyat	_	Λ	number		_
				(of each phase, autoSize or	
				simulate)	
sbcO.lenEffWink	_	X	number	run start time	_
SOCO TEHEN WILK	_	Λ	number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.cosTilt	_	X	number	run start time	_
5500.005111		21	number	(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.atvDeg	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cosAtv	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.hcModel	_	X	unrecognized	run start time	_
				(of each phase,	
				autoSize or	
1 0 1 1 01		37	1	simulate)	
sbcO.hcLChar	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 01 0 4[0]		37	1	simulate)	
sbcO.hcConst[0]	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 01 0 4[1]		37	1	simulate)	
sbcO.hcConst[1]	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
1 0 1 0 4 [0]		v	1	simulate)	
sbcO.hcConst[2]	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
shaO groundModol		X	unnagamizad	simulate) run start time	
sbcO.groundModel		Λ	unrecognized	(of each phase,	_
				autoSize or	
				simulate)	
sbcO.cTaDbAvgYr	_	X	number	run start time	_
beo.e1aDbhwg11		21	number	(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTaDbAvg31	_	X	number	run start time	_
,5000.010.5511,851		11	namoor	(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTaDbAvg14	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTaDbAvg07	_	X	number	run start time	_
<u> </u>				(of each phase,	
				autoSize or	
				simulate)	
sbcO.cTGrnd	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
sbcO.rGrnd	_	X	number	run start time (of each phase, autoSize or	_
${\bf sbcO.rConGrnd}$	-	X	number	simulate) run start time (of each phase, autoSize or	-
fenModel	-	X	unrecognized	simulate) run start time (of each phase, autoSize or	-
SHGC	-	X	number	simulate) run start time (of each phase, autoSize or	-
fMult	-	X	number	simulate) run start time (of each phase, autoSize or	_
UNFRC	_	X	number	simulate) run start time (of each phase, autoSize or	_
NGlz	_	X	integer number	simulate) run start time (of each phase, autoSize or	_
exShd	_	X	unrecognized	simulate) run start time (of each phase, autoSize or	_
inShd	_	X	unrecognized	simulate) run start time (of each phase, autoSize or	_
dirtLoss	_	X	number	simulate) run start time (of each phase, autoSize or	-
sfExCnd	-	X	integer number	simulate) run start time (of each phase, autoSize or	_
m sfExT $ m sfAdjZi$		X X	number integer number	simulate) subhourly run start time (of each phase, autoSize or simulate)	

Name	Input?	Runtime?	Type	Variability	Description
uI	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
uC	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
37		37	1	simulate)	
uX	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
Dt		v		simulate)	
Rf	_	X	number	run start time	_
				(of each phase, autoSize or	
				simulate)	
grndRefl	_	X	number	monthly-	_
griiditeii		Λ	number	hourly	
vfSkyDf	_	X	number	monthly-	_
VIORYDI		<i>1</i> L	number	hourly	
vfGrndDf	_	X	number	monthly-	_
vidingbi		11	namoor	hourly	
vfSkyLW	_	X	number	run start time	_
<i>y</i>				(of each phase,	
				autoSize or	
				simulate)	
vfGrndLW	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
uval	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	
UNom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
			_	simulate)	
UANom	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
C CNT [O]		v	1	simulate)	
rSrfNom[0]	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
CfNI [1]		v	1	simulate)	
rSrfNom[1]	_	X	number	run start time	_
				(of each phase,	
				autoSize or	
				simulate)	

Name	Input?	Runtime?	Type	Variability	Description
hSrfNom[0]	-	X	number	run start time (of each phase, autoSize or simulate)	_
hSrfNom[1]	-	X	number	run start time (of each phase, autoSize or	_
cFctr	-	X	number	simulate) run start time (of each phase, autoSize or simulate)	_
iwshad	_	X	integer number	run start time (of each phase, autoSize or simulate)	_
msi	_	X	integer number	run start time (of each phase, autoSize or simulate)	_
tLrB[0]	_	X	number	end of each hour	_
tLrB[1]	_	X	number	end of each hour	_
tLrB[2]	_	X	number	end of each hour	_
tLrB[3]	_	X	number	end of each hour	-
tLrB[4]	_	X	number	end of each hour	_
tLrB[5]	_	X	number	end of each	_
tLrB[6]	-	X	number	hour end of each hour	-
tLrB[7]	_	X	number	end of each hour	-
tLrB[8]	-	X	number	end of each hour	_
tLrB[9]	_	X	number	end of each hour	_
nsgdist	_	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[0].\operatorname{targTy}$	_	X	integer number	run start time (of each phase, autoSize or simulate)	_
sgdist[0].targTi	_	X	integer number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
sgdist[0].FSO	_	X	number	monthly-	
				hourly	
sgdist[0].FSC	_	X	number	monthly-	_
				hourly	
sgdist[1].targTy	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[1].targTi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[1].FSO	_	X	number	monthly-	_
				hourly	
sgdist[1].FSC	_	X	number	monthly-	_
				hourly	
sgdist[2].targTy	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate	
sgdist[2].targTi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate	
sgdist[2].FSO	_	X	number	monthly-	_
				hourly	
sgdist[2].FSC	_	X	number	monthly-	_
				hourly	
sgdist[3].targTy	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate	
sgdist[3].targTi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[3].FSO	_	X	number	monthly-	_
				hourly	
sgdist[3].FSC	_	X	number	monthly-	_
				hourly	
sgdist[4].targTy	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate	
sgdist[4].targTi	_	X	integer	run start time	_
			number	(of each phase,	
				autoSize or	
				simulate)	
sgdist[4].FSO	_	X	number	monthly-	_
				hourly	
sgdist[4].FSC	_	X	number	monthly-	_
				hourly	

Name	Input?	Runtime?	Type	Variability	Description
sgdist[5].targTy	-	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[5].\operatorname{targTi}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[5].FSO$	-	X	number	monthly- hourly	_
$\operatorname{sgdist}[5].\operatorname{FSC}$	_	X	number	monthly- hourly	_
sgdist[6].targTy	-	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[6].\operatorname{targTi}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[6].\operatorname{FSO}$	_	X	number	monthly- hourly	_
$\operatorname{sgdist}[6].\operatorname{FSC}$	-	X	number	monthly- hourly	_
$\operatorname{sgdist}[7].\operatorname{targTy}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	_
$\operatorname{sgdist}[7].\operatorname{targTi}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	-
$\operatorname{sgdist}[7].\operatorname{FSO}$	_	X	number	monthly- hourly	_
$\operatorname{sgdist}[7].\operatorname{FSC}$	_	X	number	monthly- hourly	_

6.63 zhx (owner: zone)

@zhx[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	_	X	string	constant	_
zhxTy	_	X	unrecognized	run start time (of each phase, autoSize or simulate)	Zhx type (cndtypes.def): lhso, lhsth, arso, arsth, arstc, or (future) nv.
sp	_	X	number	hourly	Setpoint if heat xfer is tstat controlled (settmp), else unused (hourly variability)

Name	Input?	Runtime?	Type	Variability	Description
spPri	-	X	integer number	run start time (of each phase, autoSize or simulate)	Setpoint priority: low #'s used first if setpoints equal, so can eg peg air heat b4 using local heat.
ui	-	X	integer number	run start time (of each phase, autoSize or simulate)	Terminal tu subscript if a term cap type
zi	_	X	integer number	run start time (of each phase, autoSize or simulate)	Zone znr subscript always – for term cap or vent zhx. when stable, just use ownti?
ai	_	X	integer number	run start time (of each phase, autoSize or simulate)	0 or ah ss (subscript) of air handler supplying ar zhx (copied from tu).
xiLh	_	X	integer number	run start time (of each phase, autoSize or simulate)	Subscr of local heat zhx for same terminal if any, else 0; not set for self.
xiArH	_	X	integer number	run start time (of each phase, autoSize or simulate)	Was xiheat. subscr of air heat or air set output zhx for same terminal, if any, else 0
xiArC	_	X	integer number	run start time (of each phase, autoSize or simulate)	Xicool. subscr of air cool zhx for same terminal, if any, else 0
nxZhx4z	-	X	integer number	run start time (of each phase, autoSize or simulate)	Chain: 0 or subscript of next terminal zhx for this zone; 0?? if vent; head znr.zhx1.
nxZhxSt4z	-	X	integer number	hourly	Chain: 0 or ss of next settmp zhx for this zone; head znr.zhx1st; kept sorted on sp/pri at runtime.
nxZhx4a	_	X	integer number	run start time (of each phase, autoSize or simulate)	Chain: 0 or subscript of next terminal zhx for this air handler; head ah.zhx1.
mda	_	X	integer number	hourly	For settmp, mode (mdseq[] subscr) in which this is active (ctrl'd by its sp) zhx.

6.64 znRes

@znRes[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	-	X	string	constant	_
Y.n	_	X	unrecognized	end of run (of each phase, autoSize or simulate)	Accumulate call count (to convert sums to averages)
Y.nHrHeat	_	X	integer number	end of run (of each phase, autoSize or simulate)	# of hours in which any heating occurred; 1st "# of hours"
Y.nHrCool	-	X	integer number	end of run (of each phase, autoSize or simulate)	Ditto cooling
Y.nHrFanv	_	X	integer number	end of run (of each phase, autoSize or simulate)	Ditto fan vent
Y.nHrNatv	-	X	integer number	end of run (of each phase, autoSize or simulate)	Ditto natural vent
Y.nHrCeilFan	-	X	integer number	end of run (of each phase, autoSize or simulate)	Ditto ceiling fan operation; last "# of hours"
Y.nIter	-	X	number	end of run (of each phase, autoSize or simulate)	# of iterations
Y.nHrUnMetH	_	X	number	end of run (of each phase, autoSize or simulate)	# of hours in this intervals having any unmet heating subhours
Y.nHrUnMetC	-	X	number	end of run (of each phase, autoSize or simulate)	Ditto heating
Y.nShVentH	_	X	number	end of run (of each phase, autoSize or simulate)	# of substeps int this interval when ventilation caused heating
Y.nSubhr	-	X	number	end of run (of each phase, autoSize or simulate)	Subhour counter (convenience)
Y.nSubhrLX	_	X	number	end of run (of each phase, autoSize or simulate)	# subhours with condensation (excess latent gain)

Name	Input?	Runtime?	Type	Variability	Description
Y.tAir	_	X	number	end of run (of each phase, autoSize or simulate)	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
Y.tRad	-	X	number	end of run (of each phase, autoSize or simulate)	Zone radiant temp; meaningful iff convective/radiant model active for this zone
Y.PMV7730	-	X	number	end of run (of each phase, autoSize or simulate)	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
Y.PPD7730	_	X	number	end of run (of each phase, autoSize or simulate)	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
Y.ivAirX	_	X	number	end of run (of each phase, autoSize or simulate)	Zone air exchange rate not including hvac or ducts, ach
Y.pz0	_	X	number	end of run (of each phase, autoSize or simulate)	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
Y.wAir	-	X	number	end of run (of each phase, autoSize or simulate)	Zone air humidity ratio; last float to average
Y.qCond	-	X	number	end of run (of each phase, autoSize or simulate)	Zone wall conduction gain, btu; 1st heat flow and first float to sum
Y.qsInfil	_	X	number	end of run (of each phase, autoSize or simulate)	Zone infiltration sensible gain, btu
Y.qSlr	_	X	number	end of run (of each phase, autoSize or simulate)	Zone solar gain, btu
Y.qsIg	-	X	number	end of run (of each phase, autoSize or simulate)	Zone internal sensible gain, btu

Name	Input?	Runtime?	Type	Variability	Description
Y.qMass	-	X	number	end of run (of each phase, autoSize or simulate)	Zone net sensible transfer from mass, btu. see qlair for moisture.
Y.qsIz	_	X	number	end of run (of each phase, autoSize or simulate)	Interzone gain to zone, btu
Y.qsMech	_	X	number	end of run (of each phase, autoSize or simulate)	Zone total sensible mechanical heat gain, btu
Y.eqfVentHr	_	X	number	end of run (of each phase, autoSize or simulate)	$ \begin{aligned} & \text{Equivalent full} \\ & \text{vent hours} = \text{sum}(\\ & \text{zn_fvent}) \end{aligned} $
Y.qlInfil	-	X	number	end of run (of each phase, autoSize or simulate)	Zone infiltration latent gain, btu
Y.qlIg	-	X	number	end of run (of each phase, autoSize or simulate)	Zone internal latent gain, btu
Y.qlIz	_	X	number	end of run (of each phase, autoSize or simulate)	Zone izxfer latent gain (infil, vent, duct leakage)
Y.qlAir	_	X	number	end of run (of each phase, autoSize or simulate)	Latent heat of moisture removed from zone air: moisture analog of zncair.
Y.qlMech	-	X	number	end of run (of each phase, autoSize or simulate)	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
Y.qsBal	-	X	number	end of run (of each phase, autoSize or simulate)	Sensible balance: sum of sensible heats, should be near 0. set in cnguts.cpp.
Y.qlBal	_	X	number	end of run (of each phase, autoSize or simulate)	Latent balance similarly. consider removing bals after development.

Name	Input?	Runtime?	Type	Variability	Description
Y.qlX	-	X	number	end of run (of each phase, autoSize or simulate)	Latent gain rejected to prevent zone supersaturation === heat of condensation.
Y.unMetHDH	-	X	number	end of run (of each phase, autoSize or simulate)	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
Y.unMetCDH	-	X	number	end of run (of each phase, autoSize or simulate)	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
Y.qcMech	_	X	number	end of run (of each phase, autoSize or simulate)	Zone accumulated cooling (negative)
Y.qhMech	-	X	number	end of run (of each phase, autoSize or simulate)	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
Y.qvMech	_	X	number	end of run (of each phase, autoSize or simulate)	mechanical (oav) vent (negative)
Y.litDmd	-	X	number	end of run (of each phase, autoSize or simulate)	Zone lighting demand and energy use,
Y.litEu	_	X	number	end of run (of each phase, autoSize or simulate)	from gains, in addition to posting eu to meter, re daylighting for nrel. 9-94.
M.n	-	X	unrecognized	end of each month	Accumulate call count (to convert sums to averages)
M.nHrHeat	-	X	integer number	end of each month	# of hours in which any heating occurred; 1st "# of hours"
M.nHrCool	_	X	integer number	end of each month	Ditto cooling
M.nHrFanv	-	X	integer number	end of each month	Ditto fan vent
M.nHrNatv	_	X	integer number	end of each month	Ditto natural vent

Name	Input?	Runtime?	Type	Variability	Description
M.nHrCeilFan	_	X	integer number	end of each month	Ditto ceiling fan operation; last "# of hours"
M.nIter	_	X	number	end of each month	# of iterations
M.nHrUnMetH	-	X	number	end of each month	# of hours in this intervals having any unmet heating subhours
M.nHrUnMetC	_	X	number	end of each month	Ditto heating
M.nShVentH	-	X	number	end of each month	# of substeps int this interval when ventilation caused heating
M.nSubhr	_	X	number	$\begin{array}{c} \text{end of each} \\ \text{month} \end{array}$	Subhour counter (convenience)
M.nSubhrLX	_	X	number	end of each month	# subhours with condensation (excess latent gain)
M.tAir	-	X	number	end of each month	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
M.tRad	-	X	number	end of each month	Zone radiant temp; meaningful iff convective/radiant model active for this zone
M.PMV7730	-	X	number	end of each month	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
M.PPD7730	-	X	number	end of each month	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
M.ivAirX	_	X	number	end of each month	Zone air exchange rate not including hvac or ducts, ach
M.pz0	-	X	number	end of each month	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
M.wAir	-	X	number	end of each month	Zone air humidity ratio; last float to average

Name	Input?	Runtime?	Type	Variability	Description
M.qCond	_	X	number	end of each	Zone wall
				month	conduction gain,
					btu; 1st heat flow
					and first float to
M. caInfil		X	number	end of each	sum Zone infiltration
M.qsInfil	_	Λ	number	month	sensible gain, btu
M.qSlr	_	X	number	end of each	Zone solar gain,
mqon		11	namoer	month	btu
M.qsIg	_	X	number	end of each	Zone internal
1 0				month	sensible gain, btu
M.qMass	_	X	number	end of each	Zone net sensible
				month	transfer from mass,
					btu. see qlair for
					moisture.
M.qsIz	_	X	number	end of each	Interzone gain to
3.5 3.5 1		37	1	month	zone, btu
M.qsMech	_	X	number	end of each	Zone total sensible
				month	mechanical heat
M.eqfVentHr		X	number	end of each	gain, btu Equivalent full
wi.eqi ventiii	_	Λ	number	month	vent hours = $sum($
				monum	zn_fvent)
M.qlInfil	_	X	number	end of each	Zone infiltration
1				month	latent gain, btu
M.qlIg	_	X	number	end of each	Zone internal
				month	latent gain, btu
M.qlIz	_	X	number	end of each	Zone izxfer latent
				month	gain (infil, vent,
					duct leakage)
M.qlAir	_	X	number	end of each	Latent heat of
				month	moisture removed
					from zone air:
					moisture analog of
M.qlMech	_	X	number	end of each	zncair. Zone latent
wi.qiwiecii		Λ	number	month	mechanical heat
				momm	gain, btu; last heat
					flow and last float
					to sum
M.qsBal	_	X	number	end of each	Sensible balance:
•				month	sum of sensible
					heats, should be
					near 0. set in
					cnguts.cpp.
M.qlBal	_	X	number	end of each	Latent balance
				month	similarly. consider
					removing bals after
					development.

Name	Input?	Runtime?	Type	Variability	Description
M.qlX	_	X	number	end of each month	Latent gain rejected to prevent zone supersaturation === heat of condensation.
M.unMetHDH	-	X	number	end of each month	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
${\bf M.unMetCDH}$	_	X	number	end of each month	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
M.qcMech	_	X	number	end of each month	Zone accumulated cooling (negative)
M.qhMech	-	X	number	end of each month	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
M.qvMech	_	X	number	end of each month	mechanical (oav) vent (negative)
M.litDmd	_	X	number	end of each month	Zone lighting demand and energy use,
M.litEu	-	X	number	end of each month	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
D.n	_	X	unrecognized	end of each day	Accumulate call count (to convert sums to averages)
D.nHrHeat	-	X	integer number	end of each day	# of hours in which any heating occurred; 1st "# of hours"
D.nHrCool	-	X	integer number	end of each day	Ditto cooling
D.nHrFanv	_	X	$rac{ ext{integer}}{ ext{number}}$	end of each day	Ditto fan vent
D.nHrNatv	_	X	integer number	end of each day	Ditto natural vent
D.nHrCeilFan	_	X	integer number	end of each day	Ditto ceiling fan operation; last "# of hours"

Name	Input?	Runtime?	Type	Variability	Description
D.nIter	_	X	number	end of each day	# of iterations
D.nHrUnMetH	-	X	number	end of each day	# of hours in this intervals having any unmet heating subhours
${\bf D.nHrUnMetC}$	_	X	number	end of each day	Ditto heating
D.nShVentH	-	X	number	end of each day	# of substeps int this interval when ventilation caused heating
D.nSubhr	_	X	number	end of each day	Subhour counter (convenience)
D.nSubhrLX	-	X	number	end of each day	# subhours with condensation (excess latent gain)
D.tAir	-	X	number	end of each day	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
D.tRad	-	X	number	end of each day	Zone radiant temp; meaningful iff convective/radiant model active for this zone
D.PMV7730	-	X	number	end of each day	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
D.PPD7730	-	X	number	end of each day	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
D.ivAirX	-	X	number	end of each day	Zone air exchange rate not including hvac or ducts, ach
D.pz0	-	X	number	end of each day	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
D.wAir	-	X	number	end of each day	Zone air humidity ratio; last float to average
D.qCond	-	X	number	end of each day	Zone wall conduction gain, btu; 1st heat flow and first float to sum

Name	Input?	Runtime?	Type	Variability	Description
D.qsInfil	_	X	number	end of each	Zone infiltration
D.qSlr	_	X	number	day end of each	sensible gain, btu Zone solar gain,
D.qon		Λ	number	day	btu
D.qsIg	_	X	number	end of each	Zone internal
1 0				day	sensible gain, btu
D.qMass	_	X	number	end of each	Zone net sensible
				day	transfer from mass.
					btu. see qlair for
DI		V		ll-	moisture.
D.qsIz	_	X	number	end of each day	Interzone gain to zone, btu
D.qsMech	_	X	number	end of each	Zone total sensible
D.qsiviccii		Λ	number	day	mechanical heat
				day	gain, btu
D.eqfVentHr	_	X	number	end of each	Equivalent full
				day	vent hours $=$ sum(
					$zn_fvent)$
D.qlInfil	_	X	number	end of each	Zone infiltration
D 11		37	1	day	latent gain, btu
D.qlIg	_	X	number	end of each	Zone internal
D.qlIz	_	X	number	day end of each	latent gain, btu Zone izxfer latent
D.qnz		Λ	number	day	gain (infil, vent,
				day	duct leakage)
D.qlAir	_	X	number	end of each	Latent heat of
•				day	moisture removed
					from zone air:
					moisture analog of
D 11.5 1		77	,	1 0 1	zncair.
D.qlMech	_	X	number	end of each	Zone latent mechanical heat
				day	gain, btu; last heat
					flow and last float
					to sum
D.qsBal	_	X	number	end of each	Sensible balance:
				day	sum of sensible
					heats, should be
					near 0. set in
D 1D 1		V	1	1 0 1	cnguts.cpp.
D.qlBal	_	X	number	end of each	Latent balance
				day	similarly. consider removing bals after
					development.
D.qlX	_	X	number	end of each	Latent gain
1				day	rejected to prevent
				v	zone
					supersaturation
					=== heat of
					condensation.

Name	Input?	Runtime?	Type	Variability	Description
D.unMetHDH	-	X	number	end of each day	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
D.unMetCDH	-	X	number	end of each day	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
D.qcMech	_	X	number	end of each day	Zone accumulated cooling (negative)
D.qhMech	-	X	number	end of each day	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
D.qvMech	_	X	number	end of each day	mechanical (oav) vent (negative)
D.litDmd	_	X	number	end of each day	Zone lighting demand and energy use,
D.litEu	_	X	number	end of each day	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
H.n	-	X	unrecognized	end of each hour	Accumulate call count (to convert sums to averages)
H.nHrHeat	_	X	integer number	end of each hour	# of hours in which any heating occurred; 1st "# of hours"
H.nHrCool	_	X	integer number	end of each hour	Ditto cooling
H.nHrFanv	_	X	integer number	end of each hour	Ditto fan vent
H.nHrNatv	_	X	integer number	end of each hour	Ditto natural vent
H.nHrCeilFan	-	X	integer number	end of each hour	Ditto ceiling fan operation; last "# of hours"
H.nIter	_	X	number	end of each hour	# of iterations
H.nHrUnMetH	-	X	number	end of each hour	# of hours in this intervals having any unmet heating subhours

Name	Input?	Runtime?	Type	Variability	Description
H.nHrUnMetC	_	X	number	end of each hour	Ditto heating
H.nShVentH	_	X	number	end of each hour	# of substeps int this interval when ventilation caused heating
H.nSubhr	_	X	number	end of each hour	Subhour counter (convenience)
H.nSubhrLX	_	X	number	end of each hour	# subhours with condensation (excess latent gain)
H.tAir	_	X	number	end of each hour	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
H.tRad	-	X	number	end of each hour	Zone radiant temp; meaningful iff convective/radiant model active for this zone
H.PMV7730	-	X	number	end of each hour	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
H.PPD7730	_	X	number	end of each hour	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
H.ivAirX	_	X	number	end of each hour	Zone air exchange rate not including hvac or ducts, ach
H.pz0	_	X	number	end of each hour	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
H.wAir	_	X	number	end of each hour	Zone air humidity ratio; last float to average
H.qCond	_	X	number	end of each hour	Zone wall conduction gain, btu; 1st heat flow and first float to sum
H.qsInfil	-	X	number	end of each hour	Zone infiltration sensible gain, btu
H.qSlr	_	X	number	end of each hour	Zone solar gain, btu
H.qsIg	-	X	number	end of each hour	Zone internal sensible gain, btu

Name	Input?	Runtime?	Type	Variability	Description
H.qMass	-	X	number	end of each hour	Zone net sensible transfer from mass, btu. see qlair for moisture.
H.qsIz	_	X	number	end of each	Interzone gain to
H.qsMech	_	X	number	hour end of each hour	zone, btu Zone total sensible mechanical heat gain, btu
H.eqfVentHr	-	X	number	end of each hour	Equivalent full vent hours = sum(zn_fvent)
H.qlInfil	_	X	number	end of each hour	Zone infiltration latent gain, btu
H.qlIg	_	X	number	end of each hour	Zone internal
H.qlIz	_	X	number	end of each hour	latent gain, btu Zone izxfer latent gain (infil, vent, duct leakage)
H.qlAir	-	X	number	end of each hour	Latent heat of moisture removed from zone air: moisture analog of zncair.
H.qlMech	_	X	number	end of each hour	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
H.qsBal	_	X	number	end of each hour	Sensible balance: sum of sensible heats, should be near 0. set in cnguts.cpp.
H.qlBal	-	X	number	end of each hour	Latent balance similarly. consider removing bals after development.
H.qlX	-	X	number	end of each hour	Latent gain rejected to prevent zone supersaturation === heat of condensation.
H.unMetHDH	_	X	number	end of each hour	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)

Name	Input?	Runtime?	Type	Variability	Description
H.unMetCDH	-	X	number	end of each hour	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
H.qcMech	_	X	number	end of each hour	Zone accumulated cooling (negative)
H.qhMech	-	X	number	end of each hour	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
H.qvMech	_	X	number	end of each hour	mechanical (oav) vent (negative)
H.litDmd	_	X	number	end of each hour	Zone lighting demand and energy use,
H.litEu	-	X	number	end of each hour	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
S.n	_	X	unrecognized	end of each subhour	Accumulate call count (to convert sums to averages)
S.nHrHeat	_	X	integer number	end of each subhour	# of hours in which any heating occurred; 1st "# of hours"
S.nHrCool	_	X	integer number	end of each subhour	Ditto cooling
S.nHrFanv	_	X	integer number	end of each subhour	Ditto fan vent
S.nHrNatv	_	X	integer number	end of each subhour	Ditto natural vent
S.nHrCeilFan	_	X	integer number	end of each subhour	Ditto ceiling fan operation; last "# of hours"
S.nIter	_	X	number	end of each subhour	# of iterations
S.nHrUnMetH	_	X	number	end of each subhour	# of hours in this intervals having any unmet heating subhours
S.nHrUnMetC	_	X	number	end of each subhour	Ditto heating
S.nShVentH	_	X	number	end of each subhour	# of substeps int this interval when ventilation caused heating

Name	Input?	Runtime?	Type	Variability	Description
S.nSubhr	_	X	number	end of each subhour	Subhour counter (convenience)
S.nSubhrLX	_	X	number	end of each subhour	# subhours with condensation (excess latent gain)
S.tAir	_	X	number	end of each subhour	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
S.tRad	_	X	number	end of each subhour	Zone radiant temp; meaningful iff convective/radiant model active for this zone
S.PMV7730	-	X	number	end of each subhour	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
S.PPD7730	_	X	number	end of each subhour	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
S.ivAirX	_	X	number	end of each subhour	Zone air exchange rate not including hvac or ducts, ach
S.pz0	-	X	number	end of each subhour	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
S.wAir	_	X	number	end of each subhour	Zone air humidity ratio; last float to average
S.qCond	-	X	number	end of each subhour	Zone wall conduction gain, btu; 1st heat flow and first float to sum
S.qsInfil	_	X	number	end of each subhour	Zone infiltration sensible gain, btu
S.qSlr	_	X	number	end of each subhour	Zone solar gain, btu
S.qsIg	_	X	number	end of each subhour	Zone internal sensible gain, btu
S.qMass	-	X	number	end of each subhour	Zone net sensible transfer from mass, btu. see qlair for moisture.
S.qsIz	_	X	number	end of each subhour	Interzone gain to zone, btu

Name	Input?	Runtime?	Type	Variability	Description
S.qsMech	_	X	number	end of each subhour	Zone total sensible mechanical heat gain, btu
S.eqfVentHr	-	X	number	end of each subhour	Equivalent full vent hours = sum(zn_fvent)
S.qlInfil	-	X	number	end of each subhour	Zone infiltration latent gain, btu
S.qlIg	_	X	number	end of each subhour	Zone internal latent gain, btu
S.qlIz	_	X	number	end of each subhour	Zone izxfer latent gain (infil, vent, duct leakage)
S.qlAir	-	X	number	end of each subhour	Latent heat of moisture removed from zone air: moisture analog of zncair.
S.qlMech	-	X	number	end of each subhour	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
S.qsBal	-	X	number	end of each subhour	Sensible balance: sum of sensible heats, should be near 0. set in cnguts.cpp.
S.qlBal	_	X	number	end of each subhour	Latent balance similarly. consider removing bals after development.
S.qlX	-	X	number	end of each subhour	Latent gain rejected to prevent zone supersaturation === heat of condensation.
S.unMetHDH	_	X	number	end of each subhour	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
S.unMetCDH	-	X	number	end of each subhour	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
S.qcMech	_	X	number	end of each subhour	Zone accumulated cooling (negative)

Name	Input?	Runtime?	Type	Variability	Description
S.qhMech	-	X	number	end of each subhour	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
S.qvMech	_	X	number	end of each subhour	mechanical (oav) vent (negative)
S.litDmd	_	X	number	end of each subhour	Zone lighting demand and energy use,
S.litEu	_	X	number	end of each subhour	from gains, in addition to posting eu to meter, re daylighting for nrel. 9-94.
prior.Y.n	-	X	unrecognized	run start time (of each phase, autoSize or simulate)	Accumulate call count (to convert sums to averages)
prior.Y.nHrHeat	_	X	integer number	run start time (of each phase, autoSize or simulate)	# of hours in which any heating occurred; 1st "# of hours"
prior.Y.nHrCool	_	X	integer number	run start time (of each phase, autoSize or simulate)	Ditto cooling
prior.Y.nHrFanv	_	X	integer number	run start time (of each phase, autoSize or simulate)	Ditto fan vent
prior.Y.nHrNatv	-	X	integer number	run start time (of each phase, autoSize or simulate)	Ditto natural vent
prior.Y.nHrCeilFan	_	X	integer number	run start time (of each phase, autoSize or simulate)	Ditto ceiling fan operation; last "# of hours"
prior.Y.nIter	-	X	number	run start time (of each phase, autoSize or simulate)	# of iterations

Name	Input?	Runtime?	Type	Variability	Description
prior.Y.nHrUnMetH	-	X	number	run start time (of each phase, autoSize or simulate)	# of hours in this intervals having any unmet heating subhours
${\it prior. Y.n Hr Un Met C}$	_	X	number	run start time (of each phase, autoSize or simulate)	Ditto heating
prior.Y.nShVentH	_	X	number	run start time (of each phase, autoSize or simulate)	# of substeps int this interval when ventilation caused heating
prior.Y.nSubhr	_	X	number	run start time (of each phase, autoSize or simulate)	Subhour counter (convenience)
prior.Y.nSubhrLX	_	X	number	run start time (of each phase, autoSize or simulate)	# subhours with condensation (excess latent gain)
prior.Y.tAir	_	X	number	run start time (of each phase, autoSize or simulate)	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
prior.Y.tRad	_	X	number	run start time (of each phase, autoSize or simulate)	Zone radiant temp; meaningful iff convective/radiant model active for this zone
prior.Y.PMV7730	_	X	number	run start time (of each phase, autoSize or simulate)	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
prior.Y.PPD7730	_	X	number	run start time (of each phase, autoSize or simulate)	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
prior.Y.ivAirX	-	X	number	run start time (of each phase, autoSize or simulate)	Zone air exchange rate not including hvac or ducts, ach

Name	Input?	Runtime?	Type	Variability	Description
prior.Y.pz0	-	X	number	run start time (of each phase, autoSize or simulate)	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
prior.Y.wAir	-	X	number	run start time (of each phase, autoSize or simulate)	Zone air humidity ratio; last float to average
prior.Y.qCond	-	X	number	run start time (of each phase, autoSize or simulate)	Zone wall conduction gain, btu; 1st heat flow and first float to sum
prior.Y.qsInfil	-	X	number	run start time (of each phase, autoSize or simulate)	Zone infiltration sensible gain, btu
prior.Y.qSlr	-	X	number	run start time (of each phase, autoSize or simulate)	Zone solar gain, btu
prior.Y.qsIg	_	X	number	run start time (of each phase, autoSize or simulate)	Zone internal sensible gain, btu
prior.Y.qMass	_	X	number	run start time (of each phase, autoSize or simulate)	Zone net sensible transfer from mass, btu. see qlair for moisture.
prior.Y.qsIz	-	X	number	run start time (of each phase, autoSize or simulate)	Interzone gain to zone, btu
prior.Y.qsMech	_	X	number	run start time (of each phase, autoSize or simulate)	Zone total sensible mechanical heat gain, btu
prior.Y.eqfVentHr	_	X	number	run start time (of each phase, autoSize or simulate)	Equivalent full vent hours = sum(zn_fvent)

Name	Input?	Runtime?	Type	Variability	Description
prior.Y.qlInfil	-	X	number	run start time (of each phase, autoSize or simulate)	Zone infiltration latent gain, btu
prior.Y.qlIg	-	X	number	run start time (of each phase, autoSize or simulate)	Zone internal latent gain, btu
prior.Y.qlIz	_	X	number	run start time (of each phase, autoSize or simulate)	Zone izxfer latent gain (infil, vent, duct leakage)
prior.Y.qlAir	_	X	number	run start time (of each phase, autoSize or simulate)	Latent heat of moisture removed from zone air: moisture analog of zncair.
prior.Y.qlMech	_	X	number	run start time (of each phase, autoSize or simulate)	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
prior.Y.qsBal	_	X	number	run start time (of each phase, autoSize or simulate)	Sensible balance: sum of sensible heats, should be near 0. set in enguts.cpp.
prior.Y.qlBal	-	X	number	run start time (of each phase, autoSize or simulate)	Latent balance similarly. consider removing bals after development.
prior.Y.qlX	-	X	number	run start time (of each phase, autoSize or simulate)	Latent gain rejected to prevent zone supersaturation === heat of condensation.
prior.Y.unMetHDH	_	X	number	run start time (of each phase, autoSize or simulate)	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
prior.Y.unMetCDH	-	X	number	run start time (of each phase, autoSize or simulate)	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)

Name	Input?	Runtime?	Type	Variability	Description
prior.Y.qcMech	_	X	number	run start time (of each phase, autoSize or simulate)	Zone accumulated cooling (negative)
prior.Y.qhMech	-	X	number	run start time (of each phase, autoSize or simulate)	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
prior.Y.qvMech	_	X	number	run start time (of each phase, autoSize or simulate)	mechanical (oav) vent (negative)
prior.Y.litDmd	_	X	number	run start time (of each phase, autoSize or simulate)	Zone lighting demand and energy use,
prior.Y.litEu	_	X	number	run start time (of each phase, autoSize or simulate)	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
prior.M.n	_	X	unrecognized	monthly	Accumulate call count (to convert sums to averages)
prior.M.nHrHeat	_	X	integer number	monthly	# of hours in which any heating occurred; 1st "# of hours"
prior.M.nHrCool	_	X	integer number	monthly	Ditto cooling
prior.M.nHrFanv	_	X	integer number	monthly	Ditto fan vent
prior.M.nHrNatv	_	X	integer number	monthly	Ditto natural vent
prior.M.nHrCeilFan	-	X	integer number	monthly	Ditto ceiling fan operation; last "# of hours"
prior.M.nIter	_	X	number	monthly	# of iterations
prior.M.nHrUnMetH	_	X	number	monthly	# of hours in this intervals having any unmet heating subhours
prior.M.nHrUnMetC prior.M.nShVentH	_	X X	number number	monthly monthly	Ditto heating # of substeps int this interval when ventilation caused heating

Name	Input?	Runtime?	Type	Variability	Description
prior.M.nSubhr	_	X	number	monthly	Subhour counter (convenience)
prior.M.nSubhrLX	_	X	number	monthly	# subhours with condensation (excess latent gain)
prior.M.tAir	-	X	number	monthly	Zone air temp; must be 1st float, is first float to average (see
prior.M.tRad	-	X	number	monthly	cnguts.h) Zone radiant temp; meaningful iff convective/radiant model active for
prior.M.PMV7730	_	X	number	monthly	this zone Iso7730 predicted mean vote = predicted comfort
prior.M.PPD7730	_	X	number	monthly	per ashrae thermal sensation scale Iso7730 predicted percent dissatisfied = % of people not satisfied with
prior.M.ivAirX	-	X	number	monthly	conditions Zone air exchange rate not including hvac or ducts, ach
prior.M.pz0	-	X	number	monthly	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
prior.M.wAir	_	X	number	monthly	Zone air humidity ratio; last float to average
prior.M.qCond	-	X	number	monthly	Zone wall conduction gain, btu; 1st heat flow and first float to sum
prior.M.qsInfil	_	X	number	monthly	Zone infiltration sensible gain, btu
prior.M.qSlr	_	X	number	monthly	Zone solar gain, btu
prior.M.qsIg	-	X	number	monthly	Zone internal
prior.M.qMass	-	X	number	monthly	sensible gain, btu Zone net sensible transfer from mass, btu. see qlair for
prior.M.qsIz	-	X	number	monthly	moisture. Interzone gain to zone, btu

Name	Input?	Runtime?	Type	Variability	Description
prior.M.qsMech	_	X	number	monthly	Zone total sensible mechanical heat
prior. M. eqf Vent Hr	_	X	number	monthly	gain, btu Equivalent full vent hours = sum(
prior.M.qlInfil	_	X	number	monthly	zn_fvent) Zone infiltration latent gain, btu
prior.M.qlIg	_	X	number	monthly	Zone internal
prior.M.qlIz	_	X	number	monthly	latent gain, btu Zone izxfer latent gain (infil, vent,
prior.M.qlAir	_	X	number	monthly	duct leakage) Latent heat of moisture removed from zone air: moisture analog of
prior.M.qlMech	_	X	number	monthly	zncair. Zone latent mechanical heat gain, btu; last heat flow and last float
prior.M.qsBal	-	X	number	monthly	to sum Sensible balance: sum of sensible heats, should be near 0. set in
prior.M.qlBal	-	X	number	monthly	cnguts.cpp. Latent balance similarly. consider removing bals after
prior.M.qlX	_	X	number	monthly	development. Latent gain rejected to prevent zone supersaturation === heat of
prior.M.unMetHDH	-	X	number	monthly	condensation. Zone end-of-hour air temp excursion below heating set point, deg-hr
prior.M.unMetCDH	_	X	number	monthly	(<=0) Zone end-of-hour air temp excursion above cooling set point, deg-hr
prior.M.qcMech	_	X	number	monthly	(>=0) Zone accumulated cooling (negative)

Name	Input?	Runtime?	Type	Variability	Description
prior.M.qhMech	-	X	number	monthly	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
prior.M.qvMech	_	X	number	monthly	mechanical (oav) vent (negative)
prior.M.litDmd	-	X	number	monthly	Zone lighting demand and energy use,
prior.M.litEu	-	X	number	monthly	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
prior.D.n	-	X	unrecognized	daily	Accumulate call count (to convert sums to averages)
prior.D.nHrHeat	_	X	integer number	daily	# of hours in which any heating occurred; 1st "# of hours"
prior.D.nHrCool	_	X	integer number	daily	Ditto cooling
prior.D.nHrFanv	_	X	integer number	daily	Ditto fan vent
prior.D.nHrNatv	_	X	integer number	daily	Ditto natural vent
prior.D.nHrCeilFan	-	X	integer number	daily	Ditto ceiling fan operation; last "# of hours"
prior.D.nIter prior.D.nHrUnMetH	_	X X	number number	daily daily	# of iterations # of hours in this intervals having any unmet heating subhours
prior.D.nHrUnMetC	_	X	number	daily	Ditto heating
prior.D.nShVentH	_	X	number	daily	# of substeps int this interval when ventilation caused heating
prior.D.nSubhr	_	X	number	daily	Subhour counter (convenience)
prior.D.nSubhrLX	-	X	number	daily	# subhours with condensation (excess latent gain)
prior.D.tAir	-	X	number	daily	Zone air temp; must be 1st float, is first float to average (see cnguts.h)

Name	Input?	Runtime?	Type	Variability	Description
prior.D.tRad	-	X	number	daily	Zone radiant temp; meaningful iff convective/radiant model active for this zone
prior.D.PMV7730	_	X	number	daily	Iso7730 predicted mean vote = predicted comfort per ashrae thermal
prior.D.PPD7730	-	X	number	daily	sensation scale Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
prior.D.ivAirX	_	X	number	daily	Zone air exchange rate not including hvac or ducts, ach
prior.D.pz0	_	X	number	daily	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
prior.D.wAir	_	X	number	daily	Zone air humidity ratio; last float to average
prior.D.qCond	_	X	number	daily	Zone wall conduction gain, btu; 1st heat flow and first float to sum
prior.D.qsInfil	_	X	number	daily	Zone infiltration sensible gain, btu
prior.D.qSlr	_	X	number	daily	Zone solar gain, btu
prior.D.qsIg	_	X	number	daily	Zone internal sensible gain, btu
prior.D.qMass	_	X	number	daily	Zone net sensible transfer from mass, btu. see qlair for moisture.
prior.D.qsIz	_	X	number	daily	Interzone gain to zone, btu
prior.D.qsMech	_	X	number	daily	Zone total sensible mechanical heat gain, btu
prior.D.eqfVentHr	_	X	number	daily	Equivalent full vent hours = sum(zn_fvent)
prior.D.qlInfil	_	X	number	daily	Zone infiltration latent gain, btu
prior.D.qlIg	_	X	number	daily	Zone internal latent gain, btu

Name	Input?	Runtime?	Type	Variability	Description
prior.D.qlIz	-	X	number	daily	Zone izxfer latent gain (infil, vent, duct leakage)
prior.D.qlAir	_	X	number	daily	Latent heat of moisture removed from zone air: moisture analog of zncair.
prior.D.qlMech	-	X	number	daily	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
prior.D.qsBal	-	X	number	daily	Sensible balance: sum of sensible heats, should be near 0. set in
prior.D.qlBal	-	X	number	daily	cnguts.cpp. Latent balance similarly. consider removing bals after development.
prior.D.qlX	-	X	${\rm number}$	daily	Latent gain rejected to prevent zone supersaturation === heat of condensation.
prior.D.unMetHDH	_	X	number	daily	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
prior.D.unMetCDH	-	X	number	daily	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
prior.D.qcMech	_	X	number	daily	Zone accumulated cooling (negative)
prior.D.qhMech	-	X	number	daily	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
prior.D.qvMech	_	X	number	daily	mechanical (oav) vent (negative)
prior.D.litDmd	_	X	number	daily	Zone lighting demand and energy use,

Name	Input?	Runtime?	Type	Variability	Description
prior.D.litEu	_	X	number	daily	from gains, in addition to posting eu to meter, re daylighting for nrel. 9-94.
prior.H.n	_	X	unrecognized	hourly	Accumulate call count (to convert sums to averages)
prior.H.nHrHeat	-	X	integer number	hourly	# of hours in which any heating occurred; 1st "# of hours"
prior.H.nHrCool	_	X	integer number	hourly	Ditto cooling
prior.H.nHrFanv	_	X	integer number	hourly	Ditto fan vent
prior.H.nHrNatv	_	X	integer number	hourly	Ditto natural vent
prior.H.nHrCeilFan	_	X	integer number	hourly	Ditto ceiling fan operation; last "# of hours"
prior.H.nIter	_	X	number	hourly	# of iterations
prior.H.nHrUnMetH	_	X	number	hourly	# of hours in this intervals having any unmet heating subhours
prior.H.nHrUnMetC	_	X	number	hourly	Ditto heating
prior.H.nShVentH	_	X	number	hourly	# of substeps int this interval when ventilation caused heating
prior.H.nSubhr	_	X	number	hourly	Subhour counter (convenience)
prior.H.nSubhrLX	_	X	number	hourly	# subhours with condensation (excess latent gain)
prior.H.tAir	-	X	number	hourly	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
prior.H.tRad	_	X	number	hourly	Zone radiant temp; meaningful iff convective/radiant model active for this zone
prior.H.PMV7730	_	X	number	hourly	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale

Name	Input?	Runtime?	Type	Variability	Description
prior.H.PPD7730	_	X	number	hourly	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
prior.H.ivAirX	_	X	number	hourly	Zone air exchange rate not including hvac or ducts, ach
prior.H.pz0	_	X	number	hourly	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
prior.H.wAir	_	X	number	hourly	Zone air humidity ratio; last float to average
prior.H.qCond	_	X	number	hourly	Zone wall conduction gain, btu; 1st heat flow and first float to sum
prior.H.qsInfil	_	X	number	hourly	Zone infiltration sensible gain, btu
prior.H.qSlr	_	X	number	hourly	Zone solar gain, btu
prior.H.qsIg	_	X	number	hourly	Zone internal
prior.H.qMass	_	X	number	hourly	sensible gain, btu Zone net sensible transfer from mass, btu. see qlair for moisture.
prior.H.qsIz	_	X	number	hourly	Interzone gain to zone, btu
prior.H.qsMech	_	X	number	hourly	Zone total sensible mechanical heat gain, btu
prior.H.eqfVentHr	-	X	number	hourly	Equivalent full vent hours = sum(zn_fvent)
prior.H.qlInfil	_	X	number	hourly	Zone infiltration
prior.H.qlIg	_	X	number	hourly	latent gain, btu Zone internal
prior.H.qlIz	-	X	number	hourly	latent gain, btu Zone izxfer latent gain (infil, vent, duct leakage)
prior.H.qlAir	_	X	number	hourly	Latent heat of moisture removed from zone air: moisture analog of zncair.

Name	Input?	Runtime?	Type	Variability	Description
prior.H.qlMech	-	X	number	hourly	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
prior.H.qsBal	_	X	number	hourly	Sensible balance: sum of sensible heats, should be near 0. set in cnguts.cpp.
prior.H.qlBal	-	X	number	hourly	Latent balance similarly. consider removing bals after development.
prior.H.qlX	-	X	number	hourly	Latent gain rejected to prevent zone supersaturation === heat of condensation.
prior.H.unMetHDH	_	X	number	hourly	Zone end-of-hour air temp excursion below heating set point, deg-hr (<=0)
prior.H.unMetCDH	_	X	number	hourly	Zone end-of-hour air temp excursion above cooling set point, deg-hr (>=0)
prior.H.qcMech	_	X	number	hourly	Zone accumulated cooling (negative)
prior.H.qhMech	-	X	number	hourly	and heating (positive) mechanical heat gains. latent & sensible combined. 10-93.
prior.H.qvMech	-	X	number	hourly	mechanical (oav) vent (negative)
prior.H.litDmd	_	X	number	hourly	Zone lighting demand and energy use,
prior.H.litEu	_	X	number	hourly	from gains, in addition to posting eu to meter, re daylighting for nrel 9-94.
prior.S.n	-	X	unrecognized	subhourly	Accumulate call count (to convert sums to averages)

Name	Input?	Runtime?	Type	Variability	Description
prior.S.nHrHeat	_	X	integer number	subhourly	# of hours in which any heating occurred; 1st "# of hours"
prior.S.nHrCool	_	X	integer number	subhourly	Ditto cooling
prior.S.nHrFanv	_	X	integer number	subhourly	Ditto fan vent
prior.S.nHrNatv	_	X	integer number	subhourly	Ditto natural vent
prior.S.nHrCeilFan	-	X	integer number	subhourly	Ditto ceiling fan operation; last "# of hours"
prior.S.nIter	_	X	number	subhourly	# of iterations
prior.S.nHrUnMetH	-	X	number	subhourly	# of hours in this intervals having any unmet heating subhours
prior.S.nHrUnMetC	_	X	number	subhourly	Ditto heating
prior.S.nShVentH	_	X	number	subhourly	# of substeps int this interval when ventilation caused heating
prior.S.nSubhr	_	X	number	subhourly	Subhour counter (convenience)
prior.S.nSubhrLX	_	X	number	subhourly	# subhours with condensation (excess latent gain)
prior.S.tAir	-	X	number	subhourly	Zone air temp; must be 1st float, is first float to average (see cnguts.h)
prior.S.tRad	-	X	number	subhourly	Zone radiant temp; meaningful iff convective/radiant model active for this zone
prior.S.PMV7730	-	X	number	subhourly	Iso7730 predicted mean vote = predicted comfort per ashrae thermal sensation scale
prior.S.PPD7730	_	X	number	subhourly	Iso7730 predicted percent dissatisfied = % of people not satisfied with conditions
prior.S.ivAirX	-	X	number	subhourly	Zone air exchange rate not including hvac or ducts, ach

Name	Input?	Runtime?	Type	Variability	Description
prior.S.pz0	_	X	number	subhourly	Zone air pressure relative to patm at nominal z=0, lbf/sf (from zn_pz0)
prior.S.wAir	_	X	number	subhourly	Zone air humidity ratio; last float to average
prior.S.qCond	-	X	number	subhourly	Zone wall conduction gain, btu; 1st heat flow and first float to sum
prior.S.qsInfil	_	X	number	subhourly	Zone infiltration sensible gain, btu
prior.S.qSlr	-	X	number	subhourly	Zone solar gain, btu
prior.S.qsIg	_	X	number	subhourly	Zone internal sensible gain, btu
prior.S.qMass	_	X	number	subhourly	Zone net sensible transfer from mass, btu. see qlair for moisture.
prior.S.qsIz	_	X	number	subhourly	Interzone gain to zone, btu
prior.S.qsMech	_	X	number	subhourly	Zone total sensible mechanical heat gain, btu
prior.S.eqfVentHr	_	X	number	subhourly	Equivalent full vent hours = sum(zn_fvent)
prior.S.qlInfil	_	X	number	subhourly	Zone infiltration latent gain, btu
prior.S.qlIg	_	X	number	subhourly	Zone internal latent gain, btu
prior.S.qlIz	_	X	number	subhourly	Zone izxfer latent gain (infil, vent, duct leakage)
prior.S.qlAir	-	X	number	subhourly	Latent heat of moisture removed from zone air: moisture analog of zncair.
prior.S.qlMech	-	X	number	subhourly	Zone latent mechanical heat gain, btu; last heat flow and last float to sum
prior.S.qsBal	-	X	number	subhourly	Sensible balance: sum of sensible heats, should be near 0. set in cnguts.cpp.

Name	Input?	Runtime?	Type	Variability	Description
prior.S.qlBal prior.S.qlX	-	X	number number	subhourly subhourly	Latent balance similarly. consider removing bals after development. Latent gain rejected to prevent zone
prior.S.unMetHDH	_	X	number	subhourly	supersaturation === heat of condensation. Zone end-of-hour air temp excursion below heating set
prior.S.unMetCDH	_	X	number	subhourly	point, deg-hr (<=0) Zone end-of-hour air temp excursion above cooling set
prior.S.qcMech	_	X	number	subhourly	point, deg-hr (>=0) Zone accumulated cooling (negative)
prior.S.qhMech	-	X	number	subhourly	and heating (positive) mechanical heat gains. latent & sensible combined.
prior.S.qvMech	_	X	number	subhourly	mechanical (oav)
prior. S. lit Dmd	_	X	number	subhourly	vent (negative) Zone lighting demand and
prior.S.litEu	-	X	number	subhourly	energy use, from gains, in addition to posting eu to meter, re daylighting for nrel. 9-94.

6.65 zone

@zone[1..].

Name	Input?	Runtime?	Type	Variability	Description
name	X	X	string	constant	_
znModel	X	X	integer number	input time	_
znArea	X	X	number	input time	_
znVol	X	X	number	input time	_
floorZ	X	X	number	input time	_

Name	Input?	Runtime?	Type	Variability	Description
ceilingHt	X	X	number	run start	_
				time (of	
				each phase,	
				autoSize or	
				simulate	
znCAir	X	X	number	input time	_
HIRatio	X	X	number	run start	_
				time (of	
				each phase,	
				autoSize or	
				simulate)	
m znAzm	\mathbf{X}	X	number	input time	_
plenumRet	X	X	integer	input time	_
•			number	•	
znSC	X	X	number	hourly	_
znTH	X	X	number	subhourly	_
znTD	X	X	number	subhourly	_
znTC	X	X	number	subhourly	_
znQMxH	X	X	number	hourly	_
znQMxHRated	X	X	number	run start	_
				time (of	
				each phase,	
				autoSize or	
				simulate)	
znQMxC	X	X	number	hourly	_
znQMxCRated	X	X	number	run start	_
ZIIQIVIXCIGACA	21	71	number	time (of	
				each phase,	
				autoSize or	
				simulate)	
rsi	X	X	integer	run start	_
151	Λ	Λ	number	time (of	
			number	each phase,	
				autoSize or	
				simulate)	
h a Dra E	v	v	numban	,	
hcFrcF	X X	X X	number	hourly end of each	_
hcAirX	Λ	Λ	number		_
1 A:VI-C-+	v	v		subhour	
hcAirXIsSet	X	X	unrecognized	run start	_
				time (of	
				each phase,	
				autoSize or	
f FO	37	37	1	simulate)	
xfanFOn	X	X	number	hourly	_
xfan.fanTy	X	X	unrecognized	autosize and	_
				simulate	
				phase start	
. ~	- -		_	time	
xfan.vfDs	X	X	number	end of each	_
				subhour	

xfan.vfDs_As X X number autosize an simulate	nd –
phase start	
time	,
xfan.vfDs_AsNov X X number autosize an	nd –
simulate	
phase start	i .
time	
xfan.vfMxF X X number autosize an	id –
simulate	
phase start	i
xfan.press X X number run start	
time (of	_
each phase	
autoSize or	
simulate)	
xfan.eff X X number run start	_
time (of	
each phase	,
autoSize or	•
simulate)	
xfan.shaftPwr X X number run start	_
time (of	
each phase	
autoSize or	•
xfan.elecPwr X X number run start	
time (of	_
each phase	
autoSize or	
simulate)	
xfan.motTy X X unrecognized run start	_
time (of	
each phase	,
autoSize or	•
simulate)	
xfan.motEff X X number autosize an	id –
simulate	
phase start	
time	4
xfan.motPos X X unrecognized autosize an simulate	ia –
simulate phase start	
time	
xfan.curvePy.k[0] X X number autosize an	nd –
simulate	.c.
phase start	
time	

Name	Input?	Runtime?	Type	Variability	Description
xfan.curvePy.k[1]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
xfan.curvePy.k[2]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
xfan.curvePy.k[3]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
xfan.curvePy.k[4]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
xfan.curvePy.k[5]	X	X	number	autosize and	_
				simulate	
				phase start	
				$_{ m time}$	
xfan.mtri	X	X	integer	input time	_
			number		
xfan.endUse	X	X	integer	autosize and	_
			number	simulate	
				phase start	
c	37	37		time	
xfan.ausz	X	X	integer	run start	_
			number	time (of	
				each phase,	
				autoSize or	
xfan.outPower	v	v	1	simulate)	
xfan.outPower xfan.airPower	X	X	number	subhourly	_
	X	X	number	subhourly	_
xfan.cMx	X	X	number	end of each	_
C	v	v	1	subhour	
xfan.c	X	X	number	end of each	_
refore t	v	v	number	subhour end of each	
xfan.t	X	X	number		_
xfan.frOn	X	X	numbon	subhour end of each	
xian.irOn	Λ	Λ	number	subhour	_
reform to	X	v	mumah an		
xfan.p	Λ	X	number	end of each subhour	_
yfan a	X	X	numbor	end of each	
xfan.q	Λ	Λ	number	end of each subhour	_
xfan.dT	v	X	numb an	subnour end of each	
TD.IISIX	X	Λ	number		_
reform a A normal	v	v	numb an	subhour	
xfan.qAround	X	X	number	end of each subhour	_
infAC	v	v	numbor		
	X X	X X	number	hourly	_
infELA	Λ	Λ	number	hourly	_

Name	Input?	Runtime?	Type	Variability	Description
infShld	X	X	integer number	input time	_
infStories	X	X	integer number	input time	_
eaveZ	X	X	number	run start time (of each phase, autoSize or	_
				simulate)	
windFLkg	X	X	number	subhourly	_
vrZdd	X	X	unrecognized	run start time (of each phase, autoSize or simulate)	_
xsurf1	_	X	integer number	run start time (of each phase, autoSize or simulate)	Chain head (xsrat subscr) of zone's xsurfs: surface/window/perim/masswall info. next: xsrat.nxxsurf.
xsSpecT1	_	X	integer number	run start time (of each phase, autoSize or	0 or chain head of zn's xsurfs with .sfex-cnd==c_excndch_spect: used hourly. next:
tu1	-	X	integer number	run start time (of each phase, autoSize or	xsrat.nxxsspect. Head of chain of zone's terminals: 0 or tub subscript. next: tu.nxtu.
zhx1	-	X	integer number	simulate) run start time (of each phase, autoSize or simulate)	Chain head of zone's zhx's (zone hvac xfers): 0 or zhxb subscript. next: zhx.nxzhx4z.
zhx1St	-	X	integer number	run start time (of each phase, autoSize or simulate)	zone's settmp (tstat-ctrl'd) zhx's. next: zhx.nxzhzst4z.
znSCF	-	X	integer number	run start time (of each phase, autoSize or simulate)	Non-0 if i.znsc given by user; 0 to default shade closure in cnloads.cpp
stackc	-	X	number	run start time (of each phase, autoSize or simulate)	Stack coefficient for zone height (sherman-grimsrud model)

Name	Input?	Runtime?	Type	Variability	Description
windc	-	X	number	run start time (of each phase, autoSize or simulate)	Wind coefficient for zone height and shielding (sherman-grimsrud model)
${\rm rIgDistNAl}$	-	X	integer number	run start time (of each phase, autoSize or simulate)	0 or number of allocated entries in
rIgDistN	_	X	integer number	run start time (of each phase, autoSize or simulate)	0 or number of used entries in
m rIgDist	-	X	unrecognized	run start time (of each phase, autoSize or simulate)	Null or ptr to heap array of distrubution info for rad int gain originating in zone.
surfA	-	X	number	run start time (of each phase, autoSize or simulate)	Total surface area in zone, ft2 (surfaces, doors, windows, ducts)
surfASlr	-	X	number	run start time (of each phase, autoSize or simulate)	Total "short wave" surface area in zone, ft2
ductA	-	X	number	run start time (of each phase, autoSize or simulate)	Total duct surface area in zone, ft2 (included in zn_surfa)
surfEpsLWAvg	-	X	number	run start time (of each phase, autoSize or simulate)	Area-weighted surface lw emissivity = sum(surfarea * surfepslw) / zn_surfa
airRadXC1	-	X	number	run start time (of each phase, autoSize or simulate)	Constants re zn_airradxarea calc
airRadXC2	-	X	number	run start time (of each phase, autoSize or simulate)	_

Name	Input?	Runtime?	Type	Variability	Description
airRadXArea	-	X	number	run start time (of each phase, autoSize or simulate)	Area of air "surface", ft2
FAir	-	X	number	run start time (of each phase, autoSize or simulate)	Air f "view factor" (constant during simulation)
airCxF	_	X	number	end of each hour	Air factor for zn_cxsh re lw exchange
airCx	-	X	number	end of each subhour	Air contribution to zn_cxsh, btuh/f
rmTrans[0]	_	X	number	end of each hour on 1st day of month/run	Area-weighted summed diffuse transmissivity of windows in zone,
rmTrans[1]	_	X	number	end of each hour on 1st day of month/run	Area-weighted summed diffuse transmissivity of windows in zone,
rmAbs	_	X	number	end of each hour on 1st day of month/run	Sum of area-weighted solar (sw) absorptivity for opaque room surfaces (dimensionless).
${\rm adjRmAbs}[0]$	_	X	number	end of each hour on 1st day of month/run	Rmabs adjusted for reflected energy that goes out windows (m-h):
${\rm adjRmAbs}[1]$	_	X	number	end of each hour on 1st day of month/run	Rmabs adjusted for reflected energy that goes out windows (m-h):
rmAbsCAir	_	X	number	end of each hour on 1st day of month/run	Sum of area-weighted absorptivity for non-massive room surfaces
${\rm cavAbsCAir}[0]$	_	X	number	end of each hour on 1st day of month/run	Zone cair cavity absorptance === portion insolation to no particular surface
${\rm cavAbsCAir}[1]$	_	X	number	end of each hour on 1st day of month/run	Zone cair cavity absorptance === portion insolation to no particular surface
${\rm sgfCavBm}[0]$	-	X	number	end of each hour on 1st day of month/run	Zone's solar gain factors from its windows not explicitly targeted for hour,

Name	Input?	Runtime?	Type	Variability	Description
sgfCavBm[1]	-	X	number	end of each hour on 1st day of month/run	Zone's solar gain factors from its windows not explicitly targeted for hour,
${\rm sgfCavDf}[0]$	-	X	number	end of each hour on 1st day of month/run	to be distributed amoung surface and cair sgr entries after accumulation.
sgfCavDf[1]	_	X	number	end of each hour on 1st day of month/run	to be distributed amoung surface and cair sgr entries after accumulation.
${\rm sgSaBm}[0]$	_	X	number	end of each hour on 1st day of month/run	Cair adjustments to above for gains getting to other side of (quick) surface or
sgSaBm[1]	-	X	number	end of each hour on 1st day of month/run	Cair adjustments to above for gains getting to other side of (quick) surface or
$\operatorname{sgSaDf}[0]$	-	X	number	end of each hour on 1st day of	lost to outdoors due to surface film vs conductance thru (quick) surface
sgSaDf[1]	-	X	number	month/run end of each hour on 1st day of month/run	lost to outdoors due to surface film vs conductance thru (quick) surface
${\rm sgfCAirBm}[0]$	-	X	number	end of each hour on 1st day of month/run	Beam solar gain factor this hour to zone cair
${\rm sgfCAirBm}[1]$	_	X	number	end of each hour on 1st day of month/run	Beam solar gain factor this hour to zone cair
$\operatorname{sgfCAirDf}[0]$	_	X	number	end of each hour on 1st day of month/run	Diffuse these are multipliers for wthr data, later, via sgr
$\operatorname{sgfCAirDf}[1]$	_	X	number	end of each hour on 1st day of month/run	Diffuse these are multipliers for wthr data, later, via sgr
uaSpecT	-	X	number	run start time (of each phase, autoSize or simulate)	Ua to specified temps (excnd=spect surfaces), for bcon. set/used only in cnguts.cpp.

Name	Input?	Runtime?	Type	Variability	Description
ua	_	X	number	run start time (of each phase, autoSize or simulate)	Overall loss to ambient (sum uval*area), constant for run, for bcon and zn_aqldhr. btuh/f.
UANom	_	X	number	run start time (of each phase, autoSize or simulate)	Ua to ambient based on surface unom (derived with default surf conductances), btuh/f
${\bf ductCondUANom}$	_	X	number	run start time (of each phase, autoSize or simulate)	Nominal total ua of ducts in zone, btuh/f (due to conduction, not air leakage)
haMass	_	X	number	run start time (of each phase, autoSize or simulate)	Total ha (surf conductance * area) to mass (btuh/f)
BGWallPerim	_	X	number	run start time (of each phase, autoSize or simulate)	Total below grade wall perimeter, ft
BGWallPA4	_	X	number	run start time (of each phase, autoSize or simulate)	Sum (perim*a4)
BGWallPA5	_	X	number	run start time (of each phase, autoSize or simulate)	Sum (perim*a5)
qSgTot	_	X	number	end of each hour	Hour total solar gain to some
$\operatorname{sgTotTarg.bm}$	_	X	number	end of each subhour	_
$\operatorname{sgTotTarg.df}$	_	X	number	end of each subhour	_
sgTotTarg.tot	-	X	number	end of each subhour	_
qrIgTot	-	X	unrecognized	end of each hour	Total originating in this zone: redundant total for energy balance check only.
qrIgTotO	_	X	unrecognized	end of each hour	Subtotal lost to outdoors thru light surfaces, to show in zeb rpt as -cond.
qrIgTotIz	_	X	unrecognized	end of each hour	Net subtotal to other zones thru light surfaces, to show in zeb rpt as -izone.

Name	Input?	Runtime?	Type	Variability	Description
qrIgAir	-	X	unrecognized	end of each hour	Rad int gain to this zone's cair (for light surfaces/windows), for zn_aqldhr. 11-95.
${ m qrIgMs}$	-	X	number	end of each hour	Rad int gain to mass sides in this zone, for energy balance, set in cnloads. 11-95.
znSGain	_	X	number	end of each hour	_
znLGain	_	X	number	end of each hour	_
znLitDmd	_	X	number	end of each hour	-
${ m znLitEu}$	_	X	number	end of each hour	_
znXLGain	_	X	number	end of each subhour	-
znXLGainLs	_	X	number	end of each subhour	-
bcon	_	X	number	run start time (of each phase,	Portion of b constant for run: ua + uaspect. setup time.
m qMsSg	_	X	number	autoSize or simulate) end of each	_
qSgAir	_	X	number	subhour end of each	Subhour's solar gain rate
$\operatorname{sgAirTarg.bm}$	_	X	number	subhour end of each	(btuh) to air –
sgAirTarg.df	_	X	number	subhour end of each	_
sgAirTarg.tot	_	X	number	subhour end of each	_
qSgTotSh	_	X	number	subhour end of each	_
$\operatorname{sgTotShTarg.bm}$	_	X	number	subhour end of each	-
$\operatorname{sgTotShTarg.df}$	_	X	number	subhour end of each	_
$\operatorname{sgTotShTarg.tot}$	_	X	number	subhour end of each	_
qIzXAnSh	-	X	number	subhour end of each subhour	Subhourly gain due to non-airnet izxfers (btuh, +=into zone)
qIzSh	-	X	number	end of each subhour	Subhourly part of interzone gain rate (btuh, +=into zone)
pz0W[0]	-	X	number	end of each subhour	Working zone pressures relative to patm at nominal z=0, lbf/sf

Name	Input?	Runtime?	Type	Variability	Description
pz0W[1]	_	X	number	end of each subhour	Working zone pressures relative to patm at nominal z=0, lbf/sf
pz0	_	X	number	end of each subhour	Final zone pressure relative to patm at nominal z=0, lbf/sf
ventUt	_	X	unrecognized	end of each subhour	Vent utility for this substep
${\bf q} {\bf Duct} {\bf Cond} {\bf Air}$	_	X	number	end of each subhour	To ta (convection)
${\rm qDuctCondRad}$	_	X	number	end of each subhour	To tr (radiation)
$\operatorname{qDuctCond}$	_	X	number	end of each subhour	Sum from last step (else energy balance trouble)
${\it qDHWLossAir}$	_	X	number	end of each subhour	To ta (convection)
${\it qDHWLossRad}$	_	X	number	end of each subhour	To tr (radiation)
qDHWLoss	_	X	number	end of each	Sum
qHPWH	_	X	number	subhour end of each	Heat extracted from zone
hpwhAirX	_	X	number	subhour end of each	by heat pump dhwheater(s) Approximate zone air
airNet I[0].tdb	_	X	number	subhour end of each	change rate due to –
airNet I[0].w	_	X	number	subhour end of each	_
airNet I[0].amf	_	X	number	subhour end of each	_
airNetI[1].tdb	_	X	number	subhour end of each	_
airNetI[1].w	_	X	number	subhour end of each	_
airNetI[1].amf	_	X	number	subhour end of each	_
fVent	_	X	number	subhour end of each	Vent fraction; venting used
tzVent	_	X	number	subhour end of each	to hold zone at zntd Zone air temp with full
anAmfCpVent	_	X	number	subhour end of each	vent, f (debug aid) Vent flow (in excess of
anAmfCpTVent	_	X	number	subhour end of each	$zn_airneti[0])$ Ditto *temp
ductLkI.tdb	_	X	number	subhour end of each	_
ductLkI.w	_	X	number	subhour end of each	_
ductLkI.amf	_	X	number	subhour end of each	_
	_			subhour	_
ductLkO.tdb	_	X	number	end of each subhour	_

Name	Input?	Runtime?	Type	Variability	Description
ductLkO.w	_	X	number	end of each subhour	_
${\rm ductLkO.amf}$	_	X	number	end of each	_
				$\operatorname{subhour}$	
sysAirI.tdb	_	X	number	end of each	_
A + T		37	1	subhour	
sysAirI.w	_	X	number	end of each	_
arra AinT a maf		X	numb an	subhour end of each	
sysAirI.amf	_	Λ	number	subhour	_
sysAirO.tdb	_	X	number	end of each	_
systin O.tab		71	number	subhour	
sysAirO.w	_	X	number	end of each	_
5,5111 5111			110111001	subhour	
sysAirO.amf	_	X	number	end of each	_
v				$\operatorname{subhour}$	
OAVRlfO.tdb	_	X	number	end of each	_
				$\operatorname{subhour}$	
OAVRlfO.w	_	X	number	end of each	_
				subhour	
OAVRlfO.amf	_	X	number	end of each	_
D A: TI + II		37	1	subhour	
sysDepAirIls.tdb	_	X	number	end of each	_
arraDon AinIla er		X	numb an	subhour	
sysDepAirIls.w	_	Λ	number	end of each subhour	_
sysDepAirIls.amf	_	X	number	end of each	_
бубъертинб.ани		11	namber	subhour	
qCondQS	_	X	number	end of each	Total quick surface
1000000				subhour	conduction, btuh $(+ = into zone)$
qCondMS	_	X	number	end of each subhour	Total mass exterior surface conduction, btuh (+ = into
					zone)
rsAmfSysReq[0]	_	X	number	end of each subhour	Requested rsys air mass flow (at system) to hold
				Sublidui	current step set point,
					lbm/hr
rsAmfSysReq[1]	_	X	number	end of each	Requested rsys air mass
			110111001	subhour	flow (at system) to hold
					current step set point,
					lbm/hr
rsFSize	_	X	number	end of each	Fraction of requested air
				$\operatorname{subhour}$	that rsys could provide
rsAmfSup	_	X	number	end of each	Final rsys supply air mass
				subhour	flow (at register, $+=$ in),
A CD		37	1	1 6 1	lbm/hr
rsAmfRet	_	X	number	end of each	Final rsys return air mass
				subhour	flow (out of zone at grille,
rsAmfRetLs	_	X	number	subhourly	+=out), lbm/hr Last step zn_rsamfret (+
151111111100115		11	110111001	Sasmourry	= out)
					540)

Name	Input?	Runtime?	Type	Variability	Description
tzsp	_	X	number	end of each subhour	Current step controlling set point, f
hcMode	_	X	integer	end of each	Heating / cooling mode
			number	subhour	required per set point (rsmheat, rsmcool,)
unMetHDH	_	X	number	end of each	Tz - znth at end of hour,
				subhour	deg-hr
${\rm unMetCDH}$	_	X	number	end of each	Tz - zntc at end of hour,
				$\operatorname{subhour}$	deg-hr
fConvH	_	X	number	subhourly	Heating
fConvC	_	X	number	subhourly	Cooling
fConv	_	X	number	subhourly	Current step
qsHvac	_	X	number	end of each subhour	Subhour total (sensible) power of all hvac (btuh)
qlHvac	_	X	number	end of each	Subhour total latent power
				subhour	(btuh) (moisture * 1061) likewise
qlIz	_	X	number	end of each subhour	Latent gain from izxfer sources (infil, vent, and
					duct leakage), btuh
wCase	_	X	number	end of each subhour	Debug aid, see code
airMode	_	X	number	end of each	System mechanical air
				subhour	circulation mode (0=off,
					1=on) re evaluation of
rho	_	X	number	end of each subhour	Zone moist air density at nominal w=tp_refw, lb/cf
rho0	_	X	number	end of each subhour	Zone moist air density at nominal z=0, lb/cf;
					computed from tzls and $zn_pz0[0]$
rho0ls	_	X	number	subhourly	Ditto, prior step
dryAirMass	_	X	number	end of each subhour	Total mass of dry air in zone, lbm
dryAirMassEff	_	X	number	end of each subhour	Effective dry air mass in zone, lbm
ivAirX	_	X	number	end of each subhour	Zone infiltration/ventilation air
				Sublidui	change rate (changes/hr)
airX	_	X	number	end of each	Overall zone air change
hcAirXls		X	numah an	subhour	rate (changes/hr)
	_		number	subhourly	Prior subhour value of i.zn_hcairx
hcFrc	_	X	number	subhourly	Inside surface forced convection coefficient, btuh/ft2-f
${\bf windPresV}$	_	X	number	subhourly	Wind velocity pressure, lbf/ft2
tz	_	X	number	end of each subhour	-
aTz	_	X	number	end of each subhour	-

Name	Input?	Runtime?	Type	Variability	Description
WZ	_	X	number	end of each	_
				$\operatorname{subhour}$	
relHum	_	X	number	end of each	Zone relative humidity, 0 -
				subhour	1
relHumls	_	X	number	subhourly	Zone relative humidity, end
					last subhour, 0 - 1
relHumlh	_	X	number	hourly	Zone relative humidity, end
					last hour, 0 - 1
twb	_	X	number	end of each	Zone wet bulb temp, f
				$\operatorname{subhour}$	
aWz	_	X	number	end of each	_
				$\operatorname{subhour}$	
tzls	_	X	number	subhourly	_
wzls	_	X	number	subhourly	_
tzlh	_	X	number	hourly	_
tzlsDelta	_	X	number	constant	_
wzlsDelta	_	X	number	constant	_
tr	_	X	number	end of each	_
				$\operatorname{subhour}$	
trls	_	X	number	end of each	_
				$\operatorname{subhour}$	
trlh	_	X	number	hourly	_
md	_	X	integer	end of each	Current hvac mode:
			number	subhour	subscript of mdseq