Homework #3: 1.5: 4, 8(a-d), 12(a-f), 1.6: 4, 8 24, 1.7: 10

I pledge my honor that I have abided by the Stevens honor system.

1.5:

- 4.) Let P(x, y) be the statement "Student x has taken class y," where x consists of students in your class and y consists of all computer science classes.
- a. $\exists x \exists y P(x, y)$:
 - There is a student in your class who has taken a computer science class.
- b. $\exists x \forall y P(x, y)$:
 - There is a student in your class who has taken all computer science classes.
- c. $\forall x \exists y P(x, y)$:
 - Every student in your class has taken a computer science class.
- d. $\exists y \forall x P(x, y)$:
 - Every student in your class had to take the same computer science class.
- e. $\forall y \exists x P(x, y)$:
 - For all computer science classes, a student in your class has taken it.
- f. $\forall x \forall y P(x, y)$:
 - Every student in your class has taken every computer science class.
- 8.) Let Q(x, y) be the statement "student x has been a contestant on quiz show y."
- a. There is a student at your school who has been a contestant on a quiz show:
 - $\exists x \exists y Q(x, y)$
- b. No student at your school has ever been a contestant on a quiz show:
 - $\neg \exists x \exists y Q(x, y)$
- c. There is a student at your school who has been a contestant on Jeopardy and Wheel of Fortune.
 - $\exists x (Q(x, Jeopardy) \land Q(x, Wheel of Fortune))$
- d. Every quiz show has had a student from your school as a contestant.
 - $\forall y \exists x Q(x, y)$
- 12. Let I(x) be the statement "x has an internet connection" and C(x, y) be the statement "x and y have chatted over the Internet," where the domain for x and y consists of students in your class.
- a. Jerry does not have an Internet connection.
 - ¬I(Jerry)
- b. Rachel has not chatted with Chelsea.
 - ¬C(Rachel, Chelsea)
- c. Jan and Sharon have never chatted online.
 - ¬C(Jan, Sharon)
- d. No one in the class has chatted with Bob.
 - $\neg \exists x C(x, Bob)$
- e. Sanjay has chatted with everyone except Joseph.
 - $\forall y: y \neq Joseph, C(Sanjay, y) \land \neg C(Sanjay, Joseph)$
- f. Someone in your class does not have an Internet connection.
 - ∃x I(x)

- 1.6:
- 4. What rule of inference was used in each?
- a. Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.
 - Simplification: p∧q→q
- b. It is either hotter that 100° today or the pollution is dangerous. It is less than 100° outside today. Therefore, the pollution is dangerous.
 - Disjunctive Syllogism: $((p \lor q) \land \neg p) \rightarrow q$
- c. Linda is an excellent swimmer. If Linda is an excellent swimmer, then she can work as a lifeguard. Therefore, Linda can work as a lifeguard.
 - Modus Ponens: $(p \land (p \rightarrow q)) \rightarrow q$
- d. Steve will work at a computer company this summer. Therefore, this summer, Steve will work at a computer company or he will be a beach bum.
 - Addition: $p \rightarrow (p \lor q)$
- e. If I work all night on this homework, then I can answer all the exercises. If I answer all the exercises, I will understand the material. Therefore, if I work all night on this homework, then I will understand the material.
 - Hypothetical Syllogism: $((p\rightarrow q)\land (q\rightarrow r))\rightarrow (p\rightarrow r)$
- 8. What rules of inference are used in this argument? "No man is an island. Manhattan is an island. Therefore, Manhattan is not a man."
 - Modus Tollens
- 24. Identify the error or errors in this argument that supposedly shows that if $\forall x \ (P(x) \lor Q(x))$ is true then $\forall x \ P(x) \lor \forall x \ Q(x)$ is true.
 - 1. $\forall x (P(x) \lor Q(x))$ Premise
 - 2. $P(c) \vee Q(c)$ Universal instantiation from (1)
 - 3. P(c) Simplification from (2)
 - 4. $\forall x P(x)$ Universal generalization from (3)
 - 5. Q(c) Simplification from (2)
 - 6. $\forall x Q(x)$ Universal generalization from (5)
 - 7. $\forall x (P(x) \lor \forall x Q(x))$ Conjunction from (4) and (6)
 - Step 3 and $5 \rightarrow$ not simplification, its addition
- 1.7:
- 10. Use a direct proof to show that the product of two rational numbers is rational.

STEP	REASON
1. r and s are rational numbers	Premise
2. \exists (a, b, c, d) \in Z	Definition of rational numbers
3. $r = a/b$, $b \neq 0$	Substitute a/b for r
4. $s = c/d$, $d \neq 0$	Substitute c/d for s
5. $r*s = (a*c)/(b*d)$	Multiply (3) and (4)
6. $x = r * s$	Assign x to r*s
7. x is rational	$b*d \neq 0$, and $a*c \in Z$, therefore, rational