

MindSpore Challenge 21

Pathology Diagnosis

Deadline: 30 SEP 2021 **Register Now**

Computer Vision Identifying Cancer Cells

BRIEF INTRODUCTION

MindSpore is an Open AI framework that supports the best Ascend matching and multi-processor architecture for all scenarios

Your team's goal is to develop and design an Al model with the assistance of MindSpore to locate and classify cancer cells in pathological images.

WHO & WHY TO PARTICIPATE

Student/ Startups/ Corporation/ Researcher

- Win a chance to cooperate with Huawei.
- 2. Attend a series of workshops for free. 3. A Great chance to interact with experts.

WINNER PRIZE

Total Prize up to HKD 345.000!!

The Challenge - Pathology Diagnosis

competition, participants are invited **MindSpore** as the AI training and inference framework, for developing trustworthy AI pathology diagnosis models that ensures *privacy*, *explainable* and *high accuracy*.

Ouota 30 Teams

Team size 1 - 3 Members

Events Workshops, Pitching, Award Ceremony

Competition Rounds Qualification and Final Rounds

Organizers:

Qualification Round - Problem Statement

Training a **MindSpore** AI model to **identify locations and classifications** of cancer cells in pathological images. The AI Models will **assist pathologists** in the diagnosis of **peripheral pulmonary diseases**.

This is a form of **multi-label object detection**.

Classification:

 Class of diagnosed cell

Location:

 Bounding Boxes

Class	English Name	Subclass	Example
SCC	Squamous Cell Carcinoma	NSCLC	1 500 C
AC	Adenocarcinom a	NSCLC	
SCLC	Small Cell Lung Cancer	-	A.
NSCLC	Non-Small Cell Lung Cancer	-	

Qualification Round - Evaluation

$$ext{Classification Score} = rac{1}{|M|} \sum_{i \in M} ext{FROC}_i$$

$$ext{AUC} = rac{1}{M imes N} \sum_{i \in ext{positive class}} rank_i - rac{M(1+M)}{2}$$

Accuracy - FROC

- The trained MindSpore AI models should *accurately locate* and *classify* cancer cells.

Explainability (Bonus) - AUC

- The trained MindSpore AI models should provides *pixel level feature attribution* as an explanation for the task!

Model Score = Accuracy Score * 0.8 + Explainable Score * 0.2

The top 6 highest model score teams are invited to enter the FINAL ROUND

Final Round & Ceremony

Pitching

15 October 2021

Venue Charles K Kao Auditorium HKSTP

Time 2 - 6pm

Agenda

- Welcoming Speech
- Solution Pitching
- On-site Evaluation
- Result Announcement

Award Ceremony

Event Huawei Cloud Summit 2021

Date **26 October 2021**

Venue TBD

Time Afternoon

Charles K Kao Auditorium HKSTP

Prizes!

Winning Teams Award	Prizes per Team	
Model Score Winner	HKD 70,000	
Model Score Runner-up	HKD 50,000	
Pitching Score Winner	HKD 50,000	
Pitching Score Runner-up	HKD 35,000	
Special Price for Explainability	HKD 2,000 (max: 30 winners)	

Register Now!

OFFICIAL WEBSITE
Sign Up!

RULE BOOK & GUIDELINES

Get Informed

What is MindSpore?

An **Open AI-framework** that supports the multi-processor architectures developed by Huawei.

It provides a unified APIs and end-to-end AI capabilities for AI model development, execution and deployment in all scenarios, including cloud, edge and devices.

Experience

Flexible Debugging

Fully Unleashing Hardware Performance

Quick Deployment in All Scenarios

DL Python Modules

	Dataset Preparation and Preprocessing	Network Construction and Training	Explainable XAI
MindSpore Modules MindSpore MindSpore	mindspore.dataset: Complete solution equipped with vision and text operators.	mindspore.nn: network constructions mindspore.ops: common operators in neural networks mindspore.model: defining model, optimizers and loss function mindspore.train: provides common training utilities	mindspore .explainer: Provides methods to evaluate generate saliency maps/other explainable figures from inputs.
Tensorflow Pytorch Modules	tf.data torch.utils.data	tf.keras.Model torch.nn	-

MindSpore Model Design and Training

Dataset

```
dataset = ms.dataset.MnistDataset()

dataset.batch # batching data
dataset.map # preprocessing data
```

Network

```
class Net(ms.nn.Cell):
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = ms.nn.Flatten()
        self.dense = ms.nn.Dense(1024, 10)

def construct(self, x):
        x = self.flatten(x)
        x = self.dense(x)
        return x

net = Net()
```

import mindspore as ms

Model

```
loss = ms.nn.SoftmaxCrossEntropyWithLogits()
optimizers = ms.nn.Adam(
   net.trainable_params(),
   learning_rate=0.01
)

model = ms.Model(
   net,
   loss,
   optimizers,
   metrics={"Accuracy": ms.nn.Accuracy()}
)

model.train(epoch=10, dataset)
```

AI APPS

Huawei Cloud

Elastic Cloud Server

ModelArts

ELASTIC CLOUD SERVICE (ECS)

A powerful compute engine for you to deploy any application

HUAWEI CLOUD

Object Storage Service

OBJECT STORAGE SERVICE (OBS)

A **cloud storage service** optimized for storing massive amounts of data

MODELARTS

A one-stop **development platform** for AI developers

AND MANY MORE...

Get your user_id from Discord!

Press IAM User in Login Page

Login with Credentials!

Use Another Account: HUAWELID | Federated User

Username: hwstaff_msc21_tutor

lam: user_XX

Password: msc2021!

Change the Region to CN-North-Beijing4

Hands on time!

Go to Service List, Search ModelArts

Click DevEnviron > Notebooks

Create your own notebook

Hands on time!

Name: user_XX

Work Environment: Choose, Ascend + ARM

Flavour:

Ascend: 1*Ascend 910|CPU: 24vCPUs

96GB

Wait for the creation to finish and you can click Open

Hands on time!

https://github.com/MindSporeChallenge21/resources

Download required notebooks In notebooks folder.

Right Click RAW > save link as

Drag and drop the file into the empty region to upload!

Agenda

Part I - Beginner Tutorial

- MindSpore Dataset
- MindSpore Neural Network Design
- MindSpore Model Training

Part II - Intermediate Tutorial

- Training a YoloV3 model
- Using ModelArts, OBS and Moxing Framework
- Submission to Portal