Self-healing Materials

Self-healing can be defined as the ability of a material to heal damages automatically and autonomously, that is, without any external intervention.

- Autonomic (without any intervention)
 - -Release of healing agent
 - > Microcapsule embedment
 - > Hollow fiber embedment
 - Microvascular systems
- Nonautonomic (needs an external trigger)
 - -Reversible cross-links
 - > Reversible cycloaddition reactions
 - > Ionomers
 - Supramolecular polymers

Self-healing via Microsphere Embedment

Autonomic healing

DCPD Monomer Grubbs' Catalyst

Multiple healing impossible

White et. al. *Nature* **2001**, *409*, 794.

Dual Capsule System

Catalyst free, Room-temp. Self-healing Elastomer

Rekondo et.al. *Mater. Horiz.*, **2014**, 1, 237.

Thermally Cross-linked Self-healing Materials

- Multiple cycles of autonomic crack mending
- Uncatalyzed thermal treatment

Polymer network

Chen et. al. Science 2002, 295, 1698.

Smart, Self-healing Coating

Scratch Resistant Self-healing Coating

New scratches

One week later

TOKYO (Dec. 2, 2005)-- Nissan Motor Co., Ltd

Photovoltaic Devices: Challenges

Protection from moisture / oxygen is needed

Edge Sealant

: substrate
: adhesive
: display media
: inorganic coating

Polymers used: silicones, epoxies, polyurethanes, acrylates, fluorine containing polymers, etc.

Drawback

- Insufficient barrier properties
- Insufficient oxidative, thermal and UV stability

Objective

To develop self-healing sealant with high barrier properties and stability