91-050 May 1965 New information

QUICK REFERENCE GUIDE

Molecular Electronics Division

INTEGRATED CIRCUITS

COMMERCIAL

DTL LINE

WC 204 G,T Single NAND Gate 4 input with node

WC 214 G,T Single NAND Gate 6 input with node

WC 224 G,T Single NAND Gate 8 input with node

WC 201 G,T Dual NAND Gate 3 input

WC 211 G,T Dual NAND Gate 4 input

WC 221 G,T Dual NAND Gate 3 input with nodes

WC 231 G Dual NAND Gate 4 input with nodes

WC 241 G Dual NAND Gate 4 input with collector resistors

WC 261 G Dual NAND Gate 4 input with nodes, collector resistors

WC 206 G Triple NAND Gate Two 3 inputs; one 2 input with node

WC 216 G Triple NAND Gate Three 3 inputs

WC 226 G Triple NAND Gate Two 3 inputs, one 2 input with node, collector resistors

WC 236 G Triple NAND Gate Three 3 inputs, collector resistors

WC 202 G,T RS flip flop 3 input

WC 212 G,T RS flip flop 3 input with nodes

WC 213 G,T pulse binary counter

WC 215 G,T JK flip flop

WC 210 G,T line driver Two 3 input

WC 208 G,T Level Detector-Schmitt Trigger

WC 246 G Quad NAND Gate Four 2 input

WC 286 G Hex NAND Gate Six 1 input

WC 217 G,T diode array

WC 266 G Quad NAND Gate Four 2 input; collector resistors

WC 296 G Hex NAND Gate Six 1 input; collector resistors

WC 227 G,T diode array

packages

8 or 12 lead 1 TO-5 pack

14 lead ½" x ½" FLAT-PAK TM

Electrical Characteristics

		vali	ues at tempera	ture	
parameter		limit	+25°0	0° to 75°C worst case	units
STANDARD GATE CHARACTERISTICS (FOR V _{cc} =6.0 VOLTS)					
power consumption, per gate, 50% duty cycle	P _c	max. typ.	9.5 7.5	10.5	mw mw
input current, input grounded	1 _{in}	max.	1.80	2.10	ma
input voltage for 0-state output, fan-out of six	V _{in} /0	min.	1.80	2.10	volts
input voltage for 1-state output, fan-out of one	$V_{in}/1$	max.	1.00	0.60	volts
output current @ specified V _{CE(SAT)}	V CE(SAT)	min. typ. max.	20 32 0.45		ma ma volts
fan-out available each gate	Fo	min.	11	6	
noise margin, worst case	$\triangle V_n$	typ. min.	1.00 0.55	0.25	volts
average switching time $(T_{on} + T_{off}) \div 2$	Tavs	typ. max.	23 32	23	ns
ring propagation delay time, (ring of five gates)	T _{rod}	typ.	30	30	ns
SPECIAL CHARACTERISTICS (FO	R V _{cc} =6.	typ.	30 (S)	\ 	
SPECIAL CHARACTERISTICS (FO		typ.	30	30 52 39	mw
SPECIAL CHARACTERISTICS (FO	R V _{cc} =6.	typ. O VOL max.	30 TS) 50	52	mw mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total	P _c	typ. O VOL max. typ.	30 50 35 9 10 12	52 39	mw mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total	P _c	max. typ. min. min.	50 35 9	52 39 7 8 10 65 52	mw mw mc mc mc
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215	P _c F _o f _c	max. typ. min. min. typ. max.	50 35 9 10 12 56 45	52 39 7 8 10 65	mw mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate	P _c P _c F _o f _c P _c	max. typ. min. min. typ. max. typ.	50 35 9 10 12 56 45	52 39 7 8 10 65 52	mw mw mc mc mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 210 power consumption, total, 50% duty cycle	P _c F _o F _c P _c F _o F _c	max. typ. min. min. typ. max. typ.	50 35 9 10 12 56 45 9 5	52 39 7 8 10 65 52 7 4	mw mw mc mc mw mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 210 power consumption, total, 50 % duty cycle input current, input grounded	P _c F _o f _c P _c F _o f _c	max. typ. min. min. typ. max. typ. min. typ.	50 35 9 10 12 56 45 9 5	52 39 7 8 10 65 52 7 4 36	mw mw mc mc mc mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 210 power consumption, total, 50 % duty cycle input current, input grounded output current @ V _{CE(SAT)} = 0.60 volts	P _c F _o f _c P _c F _o F _o F _o F _o F _o F _o	max. typ. min. min. typ. max. typ. min. typ.	50 35 9 10 12 56 45 9 5	52 39 7 8 10 65 52 7 4 36 2.10 30	mw mw mc mc mw mw
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 210 power consumption, total, 50 % duty cycle input current, input grounded output current @ V _{CE(SAT)} = 0.60 volts fan-out available each output @ standard V _{CE(SAT)} and I _{in}	Pc Fo Fo Fc I in	max. typ. min. typ. max. typ. min. typ. min. typ. max. typ. min. typ. max. typ. max. max.	50 35 9 10 12 56 45 9 5 33 1.80 40	52 39 7 8 10 65 52 7 4 36 2.10 30 12	mw mw mw mw mw ma ma
SPECIAL CHARACTERISTICS (FO WC 213 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 215 power consumption, total fan-out available each output @ standard V _{CE(SAT)} count rate WC 210 power consumption, total, 50 % duty cycle input current, input grounded output current @ V _{CE(SAT)} = 0.60 volts	Pc Fo Fo Fc I in lout	max. typ. min. typ. max. typ. min. typ. max. typ. min. typ. min. typ. max. min.	50 35 9 10 12 56 45 9 5 33 1.80	52 39 7 8 10 65 52 7 4 36 2.10 30	mw mw mw mw ma

All values shown subject to design change for product improvement.

Features

- Fan-out 11 minimum
- Noise margin typically greater than 1 volt—guaranteed minimum 550 mv
- 19 ns average switching time
- 9.5 mw maximum power consumption per gate
- Single 6 volt power supply required
- 0° to + 75°C temperature range
- AND-OR-NOT function in one stage
- Compatible driver: fan-out 17 minimum; drives 40 ma, 250 pf
- Compatible binary counter and shift register elements; dc and ac coupled; counting rates to 12 mc
- Expandable fan-in through diode arrays
- 14 lead ¼" x ½" G style FLAT-PAK™ makes possible increased logic power per package

Westinghouse Electric Corporation MOLECULAR ELECTRONICS DIVISION

Box 7377, Elkridge, Maryland 21227 🔳 Box 305, Newbury Park, California 91320

For complete specifications and prices, contact your **Westinghouse sales** engineer or distributor

Westinghouse Sales Offices

mooringingado.	
Atlanta, Ga	(404) 874-1641
Baltimore, Md	(301) 828-5400
Boston, Mass	(617) 542-0600
Chicago, III	(312) 527-3860
Cleveland, Ohio	(216) 241-7600
Compton, Calif	(213) NE 8-7781
Dallas, Tex	(214) ME 1-2811
Dayton, Ohio	(513) 461-3720
Denver, Colo	(303) 534-8121
Detroit, Mich.	(313) TR 2-7010
Hartford, Conn	(203) 246-5441
Houston, Tex.	(713) 224-7791
Huntsville, Ala	(205) 881-2591
Indianapolis, Ind	(317) 632-3301
Johnson City, N. Y	(607) 729-2258
Long Island, N. Y	(516) 248-9800
Los Angeles, Calif	(213) 482-9660
Milwaukee, Wisc	(414) 276-1800
Minneapolis, Minn.	(612) 927-6551
Newark, N. J.	(201) 621-9000
Orlando, Fla	(305) 425-4511
Philadelphia, Pa	(215) EV 2-1200
Phoenix, Ariz	(602) 254-5231
Pittsburgh, Pa	(412) EX 1-2800
Red Bank, N. J	(201) 747-5800
Rochester, N. Y	(716) 232-4380
Seattle, Wash	(206) 622-0808
St. Louis, Missouri	(314) 421-6911
Sunnyvale, Calif	
Washington, D. C.	(202) 628-8843

Westinghouse Distributors

westingnouse distribu	tors
Calif., Los Angeles(213)	870-3300
Hamilton Electro Sales	
Calif., Los Angeles(213)	685-5888
K-Tronics	
Calif., San Francisco(415)	826-8811
Fortune Electronics	
Calif., San Francisco(415):	321-7541
Hamilton Electro North	
D. C., Washington(202)	864-6330

Milgray Electronics, Inc. Florida, Melbourne(305) 723-1441 Electronic Wholesalers, Inc.

Illinois, Chicago(312) 829-9121

Allied Electronics Corp.
Illinois, Chicago(312) 622-8860
Semiconductor Specialists, Inc. Maryland, Baltimore (301) 889-4242

Kann-Ellert Electronics, Inc. Massachusetts, Newton. (617) 969-7700 Cramer Electronics, Inc.

New Jersey, Camden(609) 964-8560

General Radio Supply Co. Inc.

N. Y., New York City ...(212) 989-1600
Milgray Electronics, Inc.

New York, Westbury(516) 334-7474
Schweber Electronics
Penna., Philadelphia.....(215) 923-2210

Washington, Seattle.....(206) 723-7310 Almac Electronics Corp.

You can be sure if it's Westinghouse

technical data 91-180

Equivalent circuit

R₁ 3KΩ R₂ 25KΩ R₃ 3.6KΩ R₄ 6KΩ R₆ 4KΩ

Function and application

The WS 150Q is a monolithic planar epitaxial silicon integrated circuit with an input compatible with a digital device output. It converts a zero level logic input into a positive output voltage and a one level logic input into an equal negative output voltage. It is characterized by a very low output impedance for minimum output level change with loading.

The WS 150Q finds application in digital to analog conversion equipment and is compatible with other logic units of the Westinghouse WS 800 family of four volt devices.

Design features

- Low output impedance
- Precise analog output voltage
- Accepts standard 800 series logic level inputs

Reliability assurance

Mechanical and environmental reliability assurance EVERY unit receives

- High temperature storage bake at +150°C
- 3 cycles of thermal shock —55°C to +150°C
- 20,000 G centrifuge
- Gross and helium hermeticity tests

WS 1500

interface circuit—level shifter

technical data 91-180

Absolute maximum ratings¹

Parameter	Symbol	Value	Units
Supply voltage	V_{p1}	13	volts
Supply voltage	V_{p2}	10	volts
Supply voltage	V _{n1}	— 13	volts
Supply voltage	V_{n2}	— 10	volts
Input voltage	Vin	+ 10	volts
Output voltage	Vout	± 10	volts
Ambient storage temperature	Tstg	- 65 to + 175	°C
Ambient operating temperature.	Topg	- 55 to + 125	°C
Ambient storage temperature	Tstg	- 65 to + 175	°C

Static Electrical Characteristics @ 25°C

for $V_{p1} = 10V$, $V_{p2} = 6.4V$, $V_{n1} = -10V$, $V_{n2} = -6.4V$

Parameter	Limit	Symbol	Value	Units
Power consumption	max.	Pc	100	mw
Input current (input grounded)	max.	In	4.5	ma
Output impedance	max.	Zo	10	ohms
Output voltage for "O" state input @	min.	Vo, 1	+6.3	volts
Output voltage for "1" state input ②	max.	Vo, 0	6.3	volts

Power supply application restriction

 $V_{\rm p1}$ must be more positive than $V_{\rm p2}$ by at least 2.75 volts $V_{\rm n1}$ must be more negative than $V_{\rm n2}$ by at least 0.7 volt

Package

Q style FLAT-PAK · 0.25 grams

Gold plated Kovar $^{\! 8}$ leads are 15 x 5 mils on 50 mil centers. Lid and base of package are Kovar.

- ① Limiting values beyond which the serviceability of the device may be impaired.
- ② The "1" logic level is defined as 2.5 to 9.0 volts
 The "0" logic level is defined as 0 to 1.5 volts

Pin connections

- 1 Input
- $2\,$ 10 volt supply, $V_{\rm n1}$
- 3 No connection
- 4-6.4 Volt Supply, V_{n2}
- 5 Output
- 6 6.4 Volt Supply, Vp2
- 7 Ground
- 8 10V Supply, $V_{\rm p1}$
- 9 Resistor measurement point
- 10 Diode measurement point

Further information

Selling policy: catalog 91-000

Prices: section 91-120

Westinghouse Electric Corporation / MOLECULAR ELECTRONICS DIVISION

BOX 7377 ELKRIDGE, MARYLAND 21227 • BOX 305 NEWBURY PARK, CALIFORNIA 91320

Equivalent circuit

Resistance values shown are typical

Packages and type numbers Q Q WM 208T WM 208G WM 208Q

Letter suffixes T, Q, and G indicate standard body style. For details on number and configuration of leads see individual package drawings.

Circuit function

The level detector is designed to give an output signal determined by the voltage level at the input. The output transistor will be on (low voltage output) for voltages below the limiting value and off (high voltage output) for voltages above the limiting value. The triggering level is determined by the emitter-to-ground element used. Very low on-off hysteresis is obtainable if a zener diode is used as the level setting device between pin E and ground (pin G).

Design features

- Schmitt Trigger Operation
- Low Hysteresis
- Low Triggering Current
- Low Power Consumption
- Triggering Voltage Adjustable
- Compatible With DTL Gates

Reliability assurance

EVERY unit receives

- High temperature storage bake at +150°C
- 3 cycles of thermal shock —55°C to +150°C
- 20,000 G centrifuge
- Gross and helium hermeticity tests

Absolute maximum ratings¹

Parameter	Symbol	Valve	Units
Supply voltage	V_{PG}	+ 12	volts
Input voltage	V_{TG}	-6	volts
Ambient storage temperature	Tstg	-65 to + 175	°C
Ambient operating temperature	Topg	- 55 to + 125	°C

Electrical characteristics, $V_{PE} = 6.0V$ and $R_{QE} = 4.3K$

(Refer to Test Circuit)	Parameter	Min.	Тур.	Max.	Units
Input ON ² (25°C to +50°C)					
Test Ckt. Condition (A) SA	$V_{ ext{TE}}$.6	.8	.9	units
Test Ckt. Condition (B) S _B	V_{TG}	.6	.8	.9	volts
Test Ckt. Condition (C) Sc	$V_{{f T}{f G}}$.9	1.0	1.2	volts
Input ON -20°C					
Test Ckt. Condition (A) SA	$V_{ ext{TE}}$.6	.9	1.0	volts
Test Ckt. Condition (B) S _B	V_{TG}	.6	.9	1.0	volts
Test Ckt. Condition (C) Sc	V_{TG}	.9	1.1	1.3	volts
Input ON-OFF differential (-20°C					
to +50°C)				.1	volts
Input ON—OFF differential spread					
(-20°C to +50°C)				.4	volts
ON input current	1 _T ②			200	μa
ON output (-20°C to +50°C)	$V_{ m QE}$	2.5			volts
OFF output (-20°C to +50°C)	V_{QE}			.3	volts
Operating frequency					
(sinewave input, 1 volt peak to peak)	f。	1			Mcps

- ① Limiting values beyond which serviceability of device may be impaired.
- ② Input OFF = Maximum increasing input voltage at which V_{QE} ≤ .3 volts = Output OFF Input ON = Minimum decreasing input voltage at which V_{QE} ≥ 2.5 volts = Output ON All values are subject to change for improvement of product.

Test circuits

Page 2 of 4

Voltage transfer characteristic

Circuit for viewing voltage transfer function characteristic on a transistor curve tracer (see Figure 3).

Settings:

Vertical Horizontal Base Step Collector Sweep $\begin{array}{l} 0.5 v/\text{div } (V_{\text{B}}) \\ 0.2 v/\text{div } (V_{\text{C}}) \\ \text{Open} \\ 2 \text{ Volts} \end{array}$

NOTE: The load resistor in the test circuit, $R_{\rm QE}$, is connected between the output and the emitters for simplicity; the load resistor in the voltage transfer function circuit and for the typical characteristic curves, $R_{\rm QG}$, is connected between the output and ground so that the hysteresis, $V_{\rm DIF}$, is dependent upon $R_{\rm EG}$ only.

Typical electrical characteristics

Figure 1

Figure 2

Figure 3

level detector

technical data 91-197

WM 208T WM 208G WM 208Q (formerly WS 113)

Figure 4

Figure 5

Figure 6

WM 208T WM 208G WM 2080 (formerly **WS 113)**

level detector

technical data 91-197

T package 8 pins • 1.05 grams

8 lead .016 diameter gold plated KOVAR.

Q style FLAT-PAK® • 0.25 grams

Gold plated Kovar® leads are 15 x 5 mils on 50 mil centers.

G style FLAT-PAK® ⋅ 0.1 grams

Gold plated Kovar® leads are 12 x 4 mils on 50 mil centers. Base of package is ceramic. Lid is gold plated Kovar®.

Further information

Selling policy: catalog 91-000 section 91-120

Prices:

Westinghouse Electric Corporation / MOLECULAR ELECTRONICS DIVISION

BOX 7377 ELKRIDGE, MARYLAND 21227 • BOX 305 NEWBURY PARK, CALIFORNIA 91320

Quadruple DTL NAND gates

technical data 91-201

WM 246G

Equivalent circuit

Package

Gold plated Kovar® leads are 12 x 4 mils on 50 mil centers. Base of package is ceramic. Lid is gold plated Kovar.

General description

The Westinghouse quadruple DTL NAND gates incorporate four independent gates each having fan-in capabilities of 2. These devices are available in the 14 pin $\frac{1}{4}$ x $\frac{1}{8}$ flat package as shown below. The collectors of these four NAND gates may be externally connected to form an AND-OR-NOT function. Electrical equivalent circuits describing these dual NAND gates are shown on the following pages.

The WM 246G is compatible with all other members of the Westinghouse Molecular DTL logic family.

NAND/NOR function

This gate accomplishes the NAND logic function when the positive logic definition is used. When negative logic is used, the gate accomplishes the NOR logic function. Positive logic results when the more positive of the two voltage levels is defined as the 1-state.

Design features¹

- Fan-out 11 minimum
- Noise margin 550 mv minimum
- Switching time 32 ns maximum
- Power consumption 9.5 mw maximum per gate

Reliability assurance

EVERY unit receives

- High temperature storage bake at +150°C
- 3 cycles of thermal shock —55°C to +150°C
- 20,000 G centrifuge
- Gross and helium hermeticity tests
- ① at $V_{ee} = 6.0v$ and at $25^{\circ}C$

Absolute maximum ratings¹

Parameter	Symbol	Value	Units
Supply voltage	Vec	+10	volts
Input voltage	Vin	+10②	volts
Output voltage	Vout	+7②	volts
Ambient storage temperature	Tstg	-65 to +175	°C
Ambient operating temperature.	Topg	-55 to +125	°C

Parameter	Symbol Limit		1	Values at tempe	rature	Units
			55°C	+25°C	+125°C	
Static Electrical Characteristics for	$V_{cc} = +$	6.0 volts				
Total power consumption, 50% duty cycle per package	Pe	max. typ.	42	38 30	30	mw mw
Input current, input grounded	lin	max.	2.10	1.80	1.50	ma
Input voltage for 0-state output, fan-out of six.	V _{in} /0	min.	2.30	2.00	1.70	volts
Input voltage for 1-state output, fan-out of one.	V _{in} /1	max.	1.40	1.00	0.60	volts
Input diode reverse current at $V_{in} = +6.0$ volts	I _R	max. typ.		0.01	25 1.0	μa μa
Output current at the specified $V_{\text{CE(SAT)}}$	V _{CE(SAT)}	min. typ. max.	13.0 0.55	20.0 32.0 0.45	9.0 0.35	ma ma volts
Output cutoff current for $V_{\text{CEX}} = +6.0 \text{ volts}$ $V_{\text{in}} = +0.4 \text{ volts}$	ICEX	max. typ.		0.05	30.0 2.0	μa μa
Fan-out available each gate	F _o	min.	6	11	6	
Noise margin, worst case 3	ΔV_n	min.	0.85	0.55	0.25	volts
Dynamic Electrical Characteristics	for Vcc =	+6.0 volt	S			
Switching time (see figures 1 and 2) Turn-on time	Ton Toff Tavs	typ. typ. typ. max.	20 22 21	24 22 23 32	32 24 28	ns ns ns
Ring propagation delay time, see figure 11) (ring of five gates)	T _{rpd}	typ.	30	30	30	ns

Limiting values beyond which the serviceability of the device may be impaired.
 These terminals must not be biased negatively with respect to ground.
 Minimum noise margin is given by: V_{In}/1 - V_{CE(SAT)}, where V_{In}/1 is the maximum input voltage for a 1-state output, and V_{CE(SAT)} is the maximum output voltage in the 0-state at rated fan-out (6 or 11).

Switching time test circuit and waveforms

Figure 1 Total capacitance C_o is 10 pf which includes test jig and scope probe. Unused inputs are open circuited.

Figure 2 Average switching time: $T_{avs} = \frac{T_{on} + T_{off}}{2}$

Input pulse is 15 ns rise and fall, 200 ns width, 2 volt amplitude, and 100 kc repetition rate.

Figure 3 Change in $T_{\rm avs}$ vs. input resistor value $R_{\rm I}$ at

Quadruple DTL NAND gates

WM 246G

technical data 91-201

Typical electrical characteristics

Output and input current vs. temperature and supply voltage

Figure 4

Figure 5

Figure 6

Output saturation characteristic vs. temperature

Figure 7

Output voltage vs. input voltage and temperature

Figure 8

Figure 9

WM 246G

Quadruple DTL NAND gates

technical data 91-201

Fan-out test circuit (all integrated gates)

Typical electrical characteristics

Power consumption (50% duty cycle).

Figure 10

Ring propagation delay time vs. supply voltage and temperature

Figure 11

Propagation time vs. fan-out

Figure 13

Figure 14

Further information

Selling policy: catalog 91-000

Prices:

section 91-120

Westinghouse Electric Corporation / MOLECULAR ELECTRONICS DIVISION

BOX 7377 ELKRIDGE, MARYLAND 21227 • BOX 305 NEWBURY PARK, CALIFORNIA 91320

destructive readout bit driver

technical data 91-181

WS 151Q

page l

silicon planar epitaxial monolithic integrated electronic blocks for digital systems

general description

The Westinghouse WS 151Q is a planar epitaxial silicon integrated circuit providing the function of a destruct readout core driver which may be utilized in driving memory core with currents up to 150 ma.

design features

- high input impedance, low driving impedance
- low power dissipation
- one power supply capability
- high speed
- output current greater than 100 ma.

reliability assurance

EVERY unit receives

- high temperature storage bake at +150°C
- 3 cycles of thermal shock —55°C to +150°C
- 20,000 G centrifuge
- gross and helium hermeticity tests

parameter	value	units
absolute maximum rati	ngs ^①	
supply voltage	15	volts
input voltage	9	volts
output voltage	10	volts
ambient storage temp.	-65 to +175	°C
ambient operating temp.	— 0 to +125	°C

① Limiting values beyond which the serviceability of the device may be impaired.

technical data 91-181

Parameter ($V_{p1} = V_{p2} = 10v$)	Condition	Symbol	Limit	Value	Units
static electrical charac	teristics (25°C)				
Input Impedance		Zin	Min.	5	kohms
Input Voltage	I _{out} = 130ma	Vin	Max.	7.5	volts
Output Saturation Voltage	I _{out} = 100ma	V _{CE(SAT)}	Max.	1	volts
Power Consumption	25% duty cycle	Pc	Max.	150	mw
Input Current	V _{in} = 7.5v	Iin	Max.	1.5	ma
dynamic electrical ch	aracteristics				
Turn on time		Ton	Max.	100	ns
Turn off time		Toff	Max.	350	ns

switching time test circuit and waveforms

mechanical characteristics

Q style FLAT-PAK 0.25 grams

Gold plated Kovar $^{\circledR}$ leads are 15 x 5 mils on 50 mil centers.

pin connections

- 1 Ground 6 Input B
- 2 no connection 7 Supply
- 3 Output A 8 Supply 4 no connection 9 Output B
- 5 Input A 10 no connection

further information

condensed catalog 91-000 prices: section 91-120

Westinghouse Electric Corporation

All values shown subject to design change for product improvement.

MOLECULAR ELECTRONICS DIVISION • Elkridge, P. O. Box 1836 • Baltimore, Md. 21203

dual darlington

technical data 91-182

ws 153Q

page l

silicon planar epitaxial monolithic integrated electronic blocks for analog systems

circuit schematic

design features

- high package density
- high beta
- high input impedance
- low V_{sat}

reliability assurance

EVERY unit receives

- high temperature storage bake at +150°C
- 3 cycles of thermal shock -55° C to $+150^{\circ}$ C
- 20,000 G centrifuge
- gross and helium hermeticity tests

general description

The WS 153Q high current dual darlington is a silicon planar epitaxial monolithic integrated circuit consisting of two isolated medium power darlington switches. It is useful at current levels up to five hundred milliamperes and voltage levels up to twenty-five volts.

electrical characteristics

typical planar epitaxial silicon integrated circuit

dual darlington

technical data 91-182

WS 153Q

page 2

parameter	value	units
absolute m	aximum rating	rs ¹
BV _{EBO}	7	volts
LV _{CEO}	20	volts
BV_{CBO}	40	volts
ambient storage temperature		−65°C to +175°C
ambient operat	ing temperature	-55°C to +125°C

Parameter	Condition	Value	Limit	Units
static el	ectrical characteris	tics (min. max. max. max. typ.	5°C
h _{fe} V _{CE(SAT)}	$I_{\rm c}$ =100 ma		min.	
V _{CE (SAT)}	I_e =500 ma I_b =10 ma	1.5	max.	volts
I_{CBO}	$V_{CB}=20v$	5	max.	μa
I_{EBO}	$V_{EB} = 5v$	5	max.	μα
dynamic	electrical characteris	tics a	t 25°(C
$T_R + T_D$	$I_{\rm c}=100~{ m ma}$	150	typ.	ns
$T_{\rm F} + T_{\rm S}$	$I_b = 1 \text{ ma}$	150	typ.	ns

mechanical characteristics

Q style FLAT-PAK • 0.25 grams

Gold plated Kovar® leads are 15 x 5 mils on 50 mil centers.

pin connections

- 1 No connection
- 2 Input A
- 3 No connection
- 4 Output A
- 5 Ground
- 6 Ground
- 7 Input B
- 8 No connection
- 9 Output B
- 10 No connection

further information

condensed catalog 91-000 prices: section 91-120

1) Limiting values beyond which the serviceability of the device may be impaired.

Westinghouse Electric Corporation

All values shown subject to design change for product improvement.

MOLECULAR ELECTRONICS DIVISION • Elkridge, P. O. Box 1836 • Baltimore, Md. 21203

Additional Facilities Located at Newbury Park, California

PRINTED IN U. S. A.

high speed, high current quad transistor

technical data 91-183

WS 1540

page 1

silicon planar epitaxial monolithic integrated electronic blocks.

circuit schematic

design features

- high breakdown voltage
- \bullet F_T over 200 megacycles
- Ic greater than I amp
- low saturation voltage $V_{\it ce}$ (Sat)
- multiple core driving capability
- isolated pairs

reliability assurance

EVERY unit receives

- high temperature storage bake at +150°C
- ullet 3 cycles of thermal shock -55°C to $+150^{\circ}\text{C}$
- 20,000 G centrifuge
- gross and helium hermeticity tests

general description

The WS 154Q is a silicon planar epitaxial integrated circuit consisting of four high speed medium power isolated transistors mounted in one package. The transistors are suitable for operation at current levels up to one ampere and voltage levels up to twenty-five volts. The transistors may be connected in other specified circuit configurations to offer a multiplicity of functional variations.

electrical characteristics

high speed, high current quad transistor

technical data 91-183

WS 154Q

page 2

absolute maximum ratings®

typical planar, epitaxial silicon integrated circuit

ambient operating temperature —65
ambient storage temperature —65
average power per package

-0°C to +125°C

-65°C to +175°C

+.5 watts

	· W	1									
	parameter	conditions	value	limit	units						
	static electrical characteristics @ 25° C										
	Ісво	$V_{CB} = 30V$	1	max.	μ a						
200	I_{EBO}	$V_{\scriptscriptstyle \mathrm{EB}}=5\mathrm{V}$	10	max.	$\mu \mathbf{a}$						
	$V_{\rm CEO}$	*I _{CE} = 100ma	30	min.	volts						
	hre	$egin{array}{ll} I_c &= 100 ext{ma} \ V_c &= 1.0 ext{V} \end{array}$	30	min.							
	h_{fe}	${ m *I_c}=1~{ m amp} \ { m V_C}=2.0{ m V}$	15	min.							
100	V _{CE(SAT)}	$^*I_c = 1.0 \text{ amp}$ $I_B = 100 \text{ma}$	1	max.	volts						
	Сов	$V_{CB} = 10V$	15	max.	pf						
	ft	$V_{CE} = 10V$	200	typ.	me						
	$\mathrm{LV}_{\scriptscriptstyle\mathrm{CEO}}$		30		volts						
	вV _{сво}	_	60		volts						
	$\mathrm{BV}_{\mathrm{EBO}}$	_	7		volts						

^{*} Test made with 300 $\mu {
m sec.}$, 2% duty cycle pulse.

Q style FLAT-PAK • 0.25 grams

Gold plated Kovar \circledR leads are 15 x 5 mils on 50 mil centers.

pin connections

- l Base A
- 2 Emitter A
- 3 Base C
- 4 Collector C
- 5 Emitter C & D
- 6 Collector A & B
- 7 Base B
- 8 Emitter B
- 9 Base D
- 10 Collector D

① Limiting values beyond which the serviceability of the device may be impaired.

further information

condensed catalog 91-000 prices: section 91-120

Westinghouse Electric Corporation

All values shown subject to design change for product improvement.

MOLECULAR ELECTRONICS DIVISION • Elkridge, P. O. Box 1836 • Baltimore, Md. 21203

Additional Facilities Located at Newbury Park, California

PRINTED IN U. S. A.

technical data 91-191

WS 934

Equivalent circuit

Package

Description and application

The Westinghouse WS 934 is a four-stage voltage amplifier with external taps for controlling the gain. It is designed as a magnetic pick-up read preamplifier capable of compensating for head-to-head signal level variations. It is particularly well suited to computer readout from drum, disc or tape memories.

It also performs well as a general purpose voltage amplifier with an output capability greater than one volt rms and a frequency response beyond one megacycle. A capacitor is included to roll-off the gain above 900 kc if desired.

The WS 934 is a monolithic silicon block. It contains both pnp and npn transistors and is fabricated by planar epitaxial techniques. It is packaged in a Westinghouse standard glass Kovar® FLAT-PAKTM with a ceramic base and gold plated leads. Dimensions are ½" x ½" exclusive of leads and weight is approximately 0.1 gram.

Design features

- High input impedance (180 KΩ)
- Low output impedance (100 Ω)
- Frequency response to 1 mc
- Gain of 30 at mid-frequency
- Gain variable in 32 increments

Reliability assurance

EVERY unit receives

- 150°C bake for 24 hours minimum
- 3 cycles of thermal shock
 -55°C to +150°C
- 20,000 G centrifuge
- Gross and helium hermeticity tests

WS 934

Nominal circuit parameters

C_1	68 uufd	R_4	10 K	R_8	4 K	R ₁₂ 8 K
R_1	36 K	R_5	3 K	R ₉	2 K	RL 0-31K
R_2	4 K	R ₆	16 K	R_{10}	1 K	
R_3	5 K	R_7	8 K	R_{11}	1 K	

Absolute maximum limits

Power dissipation Input breakdown voltage Supply voltages Input voltage: Non-operating Power application sequence Storage temperature range 200 milliwatts 9 volts ± 10 volts ± 10 volts (no restriction) -65 to $+175^{\circ}$ C

Test conditions

Circuit as shown above Input bias resistor = 20 KΩ Vcc = 9 volts
Temperature range 0-60°C C₁ grounded

Electrical characteristics

Characteristic 45		Conditions	Symbols	Min	Values Min Typical* Max		Units	
	Current drain	Pin 3 grounded	I ₁	_	2.3 2.3	3.5 4.5	milliamperes milliamperes	
	AC input impedance	Pins 8 through 13 open Ein = 100 mv p-p @160 kc	Z _{in}	18 (1)	19.5	20	kilohms	
	AC output impedance		Zout		100	250	ohms	
	Off-set voltage	Bias resistor $=$ 4.7 K Ω Pin 3 grounded	△V	—3 —3		+3 +3	volts volts	
	AC voltage gain at 160 kc ⁽²⁾	Pin 13 connected to 11 Pin 10 connected to 8	V ₄	4.4	5.2	5.9	volts/volt	
	4	Pin 13 connected to 12 Pin 11 connected to 9	V ₉	8.8	9.7	10.6	volts/volt	
		Pin 12 connected to 8	V ₁₆	14.7	16.7	17.7	volts/volt	
		Pins 8 through 13 open	V ₃₁	25.8	30.0	32.5	volts/volt	
	AC voltage gain at 320 kc	Pins 8 through 13 open	V ₃₁	23.4		31.5	volts/volt	
	Phase shift at 320 kc ⁽³⁾	Pins 8 through 13 open	0	0.2	0.25	0.5	microsecond	

^{*} Based on measurements taken on 700 devices.

Note 1: This is input impedance of the device with the 20 $K\Omega$ input bias resistor. An impedance of greater than 180 $K\Omega$ looking into device terminals 3 and 6 is thus insured.

^{2:} Connections for four gain steps are measured on all devices. These connections assure all load resistor segments and taps in the spec. Input voltage 100 mv p-p.

^{3:} Measured from displacement of axis crossing of input and output waveforms.

Connections for gain increments

LOAD RESIS	TOR TAP CON	NECTIONS	EFFECTIVE LOAD RESISTOR (RL)	NOMINAL GAIN (volts/volt)
Pin to Pin 13 to 9 13 to 10 13 to 10 13 to 11 13 to 11 13 to 11 13 to 12 13 to 11 12 to 11 12 to 9 12 to 10 12 to 10 12 to 11 12 to 11 12 to 11 11 to 8 11 to 9 11 to 10 10 to 8 10 to 9 9 to 8 None	Pin to Pin 9 to 8 10 to 8 10 to 9 9 to 8 11 to 8 11 to 9 11 to 10 11 to 10 10 to 8 10 to 9 9 to 8 9 to 8 9 to 8 9 to 8 9 to 8	Pin to Pin	1 K ohms 2 K 3 K 4 K 5 K 6 K 7 K 8 K 9 K 10 K 11 K 12 K 13 K 14 K 15 K 16 K 17 K 18 K 20 K 21 K 22 K 23 K 24 K 25 K 26 K 27 K 28 K 30 K 31 K	2.25 3.2 4.0 5.2 5.8 6.7 7.6 8.6 9.7 10.7 11.6 12.6 13.6 14.6 15.6 16.7 17.7 18.7 19.7 20.7 21.7 22.7 23.7 24.7 25.7 26.6 27.4 28.2 28.8 29.3 30.0

Gain vs. frequency for WS 934

Typical applications

- Read preamplifier for computer magnetic disc memory
- Buffer or compensating amplifier

Read Preamplifier — computer magnetic disc memory: bit rate of 320 KC

ws 934 read preamplifier technical data 91-191

View showing the extensive cleanroom facilities in continuous operation for the manufacture of Westinghouse Integrated Circuits.

Westinghouse Electric Corporation / MOLECULAR ELECTRONICS DIVISION

91-121

OEM PRICE LIST COMMERCIAL DTL (0°C to +75°C)

	net unit pr	rice
Aura mumban and das sufeting	quantity	
type number and description	50-499	1-49
WC 204G Single NAND Gate, Four Input with Node. WC 204T Single NAND Gate, Four Input with Node. WC 214G Single NAND Gate, Six Input with Node. WC 214T Single NAND Gate, Six Input with Node. * WC 224G Single NAND Gate, Eight Input with Nodes. WC 224T Single NAND Gate, Eight Input with Nodes.	6.20 5.00 6.20 5.00	\$ 6.80 8.50 6.80 8.50 6.80 8.50
WC 201G Dual NAND Gate, Three Input. WC 201T Dual NAND Gate, Three Input. WC 211G Dual NAND Gate, Four Input. WC 211T Dual NAND Gate, Four Input. WC 221G Dual NAND Gate, Three Input with Node. WC 221T Dual NAND Gate, Three Input with Node. * WC 231G Dual NAND Gate, Four Input with Node. WC 241G Dual NAND Gate, WC 211G with Collector Resistors. * WC 261G Dual NAND Gate, WC 231G with Collector Resistors.	7.10 6.00 7.50 6.00 7.50 6.00 6.00	7.80 9.70 8.20 10.50 8.20 10.50 8.20 8.20 8.20
WC 206G Triple NAND Gate, 2 Three Inputs, 1 Two Input with Node. * WC 216G Triple NAND Gate, 3 Three Inputs. WC 226G Triple NAND Gate, WC 206 with Collector Resistors. * WC 236G Triple NAND Gate, WC 216 with Collector Resistors.	7.10 7.10	9.70 9.70 9.70 9.70
* WC 246G Quad NAND Gate, 4 Two Input * WC 266G Quad NAND Gate, WC 246 with Collector Resistors		10.50 10.50
* WC 286G Hex NAND Gate, 6 One Input	9.55 9.55	13.10 13.10
WC 202G RS Flip-Flop, Three Input WC 202T RS Flip-Flop, Three Input * WC 212G RS Flip-Flop, Three Input with Node WC 212T RS Flip-Flop, Three Input with Node	7.80 6.90	9.00 10.50 9.40 11.70
* WC 213G Pulse Binary Counter WC 213T Pulse Binary Counter		10.40 12.70
* WC 215G JK Flip-Flop WC 215T JK Flip-Flop		10.40 12.70
WC 217G Diode Expander, Seven Input. WC 217T Diode Expander, Seven Input. * WC 227G Diode Expander, Ten Input	4.60	5.10 6.40 5.60
* WC 210G Line Driver, 2 Three Input		9.80 12.70
* WC 208G Level Detector — Schmitt Trigger		12.70 17.10

June 1, 1965

Prices effective June 1, 1965, subject to change without notice

Supersedes Issue of February 21, 1965

For Standard terms and conditions of sale, refer to Selling Policy 91-000

* Latest, most advanced design: suggested for all new applications.

Westinghouse Electric Corporation Molecular Electronics Division Box 7377 Elkridge, Maryland 21227

printed in U.S.A.