Universidade Presbiteriana Mackenzie Faculdade de Computação e Informática - Ciência de Dados

racultate de Computação e informatica - Ciencia de Dados
Projeto Aplicado III – Sistema de recomendação em site de compras
Membros do grupo: Carlos Oliveira, Felipe Ferraz, Erick Isidoro
São Paulo, 01 de maio de 2025

Resumo

Sumário

Resumo	
Introdução	
Metodologia	
Resultado	
Conclusões e trabalhos Futuros	
GitHub	
Link para acesso ao projeto no GitHub e Youtube	
Tabela de imagens	12
Bibliografia	15

Introdução

Neste projeto, trabalhamos com sistemas de recomendação para sites de vendas, uma ferramenta que contribui significativamente para o aumento das vendas, podendo, em muitos casos, representar a sobrevivência da empresa. Esses sistemas evitam o acúmulo de produtos, otimizam a alocação de espaço e direcionam esforços para produtos que, de fato, trarão resultados relevantes.

O objetivo principal do sistema é compreender os hábitos de compra dos clientes em sites de comércio eletrônico e sugerir produtos frequentemente adquiridos em conjunto. Por exemplo, ao adicionar farinha ao carrinho, o sistema pode sugerir automaticamente ingredientes como açúcar e ovos, que são comumente comprados juntos para o preparo de uma receita. Além disso, o sistema também pode sugerir receitas completas com base nos ingredientes já selecionados ou recomendar ingredientes adicionais de acordo com a preferência culinária do usuário, como pratos típicos italianos, japoneses ou brasileiros.

Este projeto aplicado considera um objetivo extensionista, atendendo às necessidades dos Objetivos de Desenvolvimento Sustentável (ODS) da ONU, especialmente no que diz respeito ao consumo e produção responsáveis (ODS 12). Através da recomendação de produtos que otimizam o uso de recursos e reduzem o desperdício, o sistema contribui para práticas comerciais mais sustentáveis. Além disso, ao priorizar produtos de pequenos comerciantes e negócios locais, o projeto também apoia o crescimento econômico inclusivo (ODS 8) e promove a inovação na gestão de vendas e estoques (ODS 9).

A integração desses objetivos no sistema de recomendação possibilita não apenas aumentar as vendas e a satisfação do cliente, mas também impulsionar práticas comerciais responsáveis e socialmente conscientes, fortalecendo o impacto positivo do projeto tanto no âmbito econômico quanto social.

Os dados utilizados foram obtidos na plataforma Kaggle, <u>Análise do e-Commerce no Brasil - Olist</u>

<u>Dataset</u>, abrangendo o período de 2016 a 2018. Os dados foram disponibilizados pela Olist, uma loja de

departamentos com mais de 100 mil pedidos registrados. Por se tratar de dados reais, foram preservados o anonimato dos indivíduos, parceiros e empresas envolvidas.

Os dados foram organizados em oito conjuntos distintos: Consumidores, Vendedores, Produtos, Pedidos, Artigos dos Pedidos, Pagamento e Geolocalização.

Referencial Teórico

Os sistemas de recomendação têm se tornado ferramentas essenciais em plataformas de comércio eletrônico, redes sociais e serviços de streaming, pois auxiliam os usuários na descoberta de produtos, conteúdos ou informações de interesse. Dentre os algoritmos utilizados nesse contexto, destaca-se o K-Vizinhos Mais Próximos (KNN), um método baseado em instâncias que avalia a similaridade entre itens ou usuários com base em características pré-definidas (RICCI; ROKACH; SHAPIRA, 2015).

O algoritmo KNN foi originalmente proposto por Cover e Hart (1967) e se caracteriza por ser nãoparamétrico, realizando classificações ou previsões com base nos exemplos mais próximos em um espaço métrico. Em sistemas de recomendação, o KNN pode ser aplicado tanto na filtragem colaborativa quanto no conteúdo, identificando itens similares com base em atributos ou no comportamento de usuários (SARWAR et al., 2001).

Segundo Hastie, Tibshirani e Friedman (2009), o desempenho do KNN está diretamente relacionado à escolha da métrica de distância e à seleção de características relevantes, sendo comuns o uso das distâncias Euclidiana, Manhattan e Minkowski. Apesar de sua simplicidade, o algoritmo apresenta bons resultados em bases de dados menores ou de média escala, com o benefício adicional de não requerer um treinamento prévio complexo.

Além disso, McKinney (2010) destaca o papel de bibliotecas como o Pandas na manipulação eficiente de dados estruturados, enquanto Géron (2019) explora a aplicação do KNN em projetos práticos utilizando a biblioteca scikit-learn, amplamente adotada na comunidade científica e profissional para implementação de algoritmos de aprendizado de máquina em Python.

Estudos recentes continuam explorando variações e aplicações do KNN em sistemas de recomendação, muitas vezes combinando-o com técnicas de pré-processamento, redução de dimensionalidade e análise de agrupamentos para melhorar a performance do sistema (ZHANG et al., 2020). Isso demonstra a relevância contínua desse algoritmo como base para soluções práticas e acessíveis no campo da recomendação de produtos.

Metodologia

O projeto envolveu uma série de decisões metodológicas com o objetivo de garantir a eficácia dos modelos testados. Abaixo, descrevemos as etapas realizadas no pipeline:

1. Importação do Dataset

Foi realizada a importação do *dataframe* disponibilizado na plataforma Kaggle, no repositório olistbr/brazilian-ecommerce.

2. Importação das Bibliotecas

Utilizamos as bibliotecas pandas, numpy, seaborn, matplotlib, warnings, folium e sklearn.cluster para análise, visualização e modelagem dos dados.

3. Análise e Cruzamento de Tabelas

As tabelas separadas inicialmente — customers, geolocation, order_items, orders, products, sellers e reviews — foram gradualmente cruzadas. Em cada etapa, selecionamos apenas as colunas de interesse, resultando em uma tabela consolidada com 113.007 linhas e 28 colunas.

4. Tratamento de Dados

No tratamento da tabela consolidada:

- a. Removemos os registros de 2016 (apenas 375 registros, não cobrindo o ano completo).
- b. Também excluímos setembro de 2018, que continha apenas um registro.
- c. Convertimos as colunas de data para o tipo datetime.
- d. Criamos duas novas colunas: uma para o tempo de entrega e outra para a codificação do product id (com Label Encoding).

Ao final do tratamento, o dataframe ficou com 112.632 linhas e 30 colunas.

5. Análises Exploratórias

A seguir, realizamos diversas análises sobre os dados tratados:

- a. Evolução do volume de compras ao longo do tempo (Gráfico I);
- b. Gasto médio com frete por estado e volume de compras por estado (**Gráfico II**);
- volume de compras por horário, destacando os períodos com maior concentração de pedidos (Gráfico III);
- d. Volume e quantidade de itens por consumidor;
- e. Análise da distância entre consumidores, com base em latitude e longitude de 100 clientes selecionados (**Imagem II**).

6. Sistema de Recomendação com KNN

Para o sistema de recomendações, utilizamos as seguintes variáveis:

- a. order_item_id (identificador único do item no pedido),
- b. product id (identificador único do produto),
- c. price (preço),
- d. product category name (categoria do produto).

Selecionamos os 10 produtos mais vendidos para testar o modelo. Utilizamos *Label Encoding* para transformar os product id em valores numéricos. Em seguida:

- e. Dividimos os dados entre treino e teste;
- f. Definimos como variáveis preditoras (X) o order_item_id e o price, e como variávelalvo (y) o product_id codificado;
- g. Testamos o modelo KNN com k = 5 e k = 10, mas os melhores resultados foram obtidos com k = 15;
- h. Também testamos outras composições de variáveis preditoras e alvo, mas todas apresentaram desempenho inferior.

Para a recomendação final, aplicamos o modelo aos 10 produtos mais vendidos. Geramos, para cada um deles, uma lista com os 5 itens mais próximos em termos de similaridade, acompanhados da probabilidade de venda. Os resultados foram consolidados em uma planilha Excel para facilitar a visualização (**Imagem III**).

Resultado

Conclusões e trabalhos Futuros

GitHub

Link para acesso ao projeto no GitHub e Youtube

Abaixo tem-se o link do GitHub onde estão compartilhados, dataset, cronograma, script outros documentos atualizados do projeto:

Demonstração da imagem do cronograma em tabelas de imagem (Imagem 1 – Cronograma de Atividade), arquivo disponibilizado em link Github.

https://github.com/Ferraz0Felipe/Projeto Aplicado III.git

Tabela de imagens

Imagem I – Cronograma de Atividade (disponível na integra link Github)

Gráfico I - evolução do volume de compras realizadas no decorrer do tempo

Gráfico II – Volume de vendas por estado e valor médio de gastos com frete por estado.

Gráfico III – Volume de vendas por horas.

Imagem II - Análise de distância entre consumidores.

Imagem III - demonstração de Excel (disponível na integra link Github).

A	В	C	D	E	F
Top 10 Produto	Categoria do Produto	Produto Recomendado	Categoria do Recomendado	Chance (%)	
ca2eb7d00ea1a7b8eb	moveis_decoracao	30d1842be9c62546d3fb853119602ac2	eletrodomesticos_2	87,5	
ca2eb7d00ea1a7b8eb	moveis_decoracao	fe5827d110a9ba59d4ab407e86ccd6eb	construcao_ferramentas_jardim	65,52	
ca2eb7d00ea1a7b8ek	moveis_decoracao	ee8b16196604ed47b34b094351ce68e2	bebes	73,45	
ca2eb7d00ea1a7b8eb	moveis_decoracao	cc9c93a7dc6ba4b5913c8f3fba62612e	esporte_lazer	72,78	
ca2eb7d00ea1a7b8ek	moveis_decoracao	43423cdffde7fda63d0414ed38c11a73	relogios_presentes	55,4	
9a4788cb24856965c36	cama_mesa_banho	8ac47b3ab13c68f49f10dde899674149	dvds_blu_ray	58,48	
9a4788cb24856965c36	cama_mesa_banho	437c05a395e9e47f9762e677a7068ce7	beleza_saude	78,04	
9a4788cb24856965c36	cama_mesa_banho	f30de5fdde000c5debf03cc49d782249	casa_conforto	94,07	
9a4788cb24856965c36	cama_mesa_banho	7c1e2b3fa0233e46fb3bcdcb9919a72f	papelaria	51,91	
9a4788cb24856965c36	cama_mesa_banho	a6ad77b15e566298a4e8ee2011ab1255	moveis_decoracao	70,13	
22879e10f46682990de	ferramentas_jardim	b9142260cefbbd5688748061179bb7fe	cama_mesa_banho	88,46	
122879e10f46682990de	ferramentas_jardim	167b19e93baccb17916b9a6dd03264e7	eletronicos	57,93	
122879e10f46682990de	ferramentas_jardim	6413f7a28e149a324c4a914000399fb2	cool_stuff	62,25	
22879e10f46682990de	ferramentas_jardim	17606c7d7254ed1f0351fd48a28be932	cama_mesa_banho	82,92	
122879e10f46682990de	ferramentas_jardim	54d9ac713e253fa1fae9c8003b011c2a	cool_stuff	62,06	
89d119b48cf3043d31	ferramentas_jardim	b7605b5b483063d12bd90a772bff9d21	cama_mesa_banho	87,84	
89d119b48cf3043d31	ferramentas_jardim	362b773250263786dd58670d2df42c3b	esporte_lazer	57,39	
89d119b48cf3043d31	ferramentas_jardim	ea546947e2412f88a20ac74103592b42	beleza_saude	67,77	
89d119b48cf3043d31	ferramentas_jardim	777d2e438a1b645f3aec9bd57e92672c	cama_mesa_banho	61,59	
89d119b48cf3043d31	ferramentas_jardim	9007d9a8a0d332c61d9dd611fa341f4b	papelaria	56,97	
68c6c730842d78016ac	ferramentas_jardim	b9142260cefbbd5688748061179bb7fe	cama_mesa_banho	82,49	
68c6c730842d78016ac	ferramentas_jardim	167b19e93baccb17916b9a6dd03264e7	eletronicos	81,91	
68c6c730842d78016ac	ferramentas_jardim	6413f7a28e149a324c4a914000399fb2	cool_stuff	84,62	
368c6c730842d78016ac	ferramentas jardim	17606c7d7254ed1f0351fd48a28be932	cama mesa banho	88,68	

Bibliografia

COVER, T.; HART, P. Nearest neighbor pattern classification. *IEEE Transactions on Information Theory*, v. 13, n. 1, p. 21-27, 1967.

GÉRON, A. *Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow*. 2. ed. Sebastopol: O'Reilly Media, 2019.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* 2. ed. New York: Springer, 2009.

MCKINNEY, W. Data Structures for Statistical Computing in Python. In: *Proceedings of the 9th Python in Science Conference*. 2010.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Recommender Systems Handbook. 2. ed. Springer, 2015.