# **EECS 388: Introduction to Computer Security**

#### Network Attacks and Defenses, Part 2

Feb 23, 2015

1

## **Basic Security Properties**

- Confidentiality: Concealment of information or resources
- Authenticity: Identification and assurance of origin of info
- **Integrity:** Trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability: Ability to use desired information or resource
- **Non-repudiation:** Offer of evidence that a party indeed is sender or a receiver of certain information
- Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

# Network protocols with built-in security support

- Many original network protocols did not originally implement security.
  - HTTP, SMTP, BGP, DNS, ARP, IP
- In many cases added on later (e.g. HTTPS)
- When developing secure protocols, assume that your network provides no security

3

## **Network Security**

- Application layer
  - E-mail: PGP, using a web-of-trust
  - Web: HTTPS, using a certificate hierarchy
- Transport layer
  - Transport Layer Security/ Secure Socket Layer
- Network layer
  - IP Sec
- Network infrastructure
  - DNS-Sec and BGP-Sec

## **Broad types of network vulnerabilities**

- Unencrypted Transmission
  - Passive attacker can eavesdrop on any communication
- No source authentication
  - Do not know the source of any packet you receive
- No integrity
  - Protocols do not prevent modification
  - assume that an attacker can modify headers and data
  - checksums in network protocols are to assure no corruption, not prevent attacks
- No built-in bandwidth control

5

#### **Attack model**

- Two general types of attackers we consider
  - 1. passive eavesdropper
  - 2. active main-in-the-middle (MITM)

# **Eavesdropping/MITM Attacks**

- · How can attacker intercept and read traffic?
- Wireless networks
  - open networks -- anyone in range can listen
  - secure protocols added
    - WEP -> now completely broken, do not use
    - WPA -> WPA2
- Wired networks
  - hub versus switch: broadcast vs. forward to a specific port
    - switch under attack becomes a hub when overloaded
  - possible to trick client into sending you traffic using ARP spoofing

7

#### Wired network tricks

- DHCP: how does a client know its gateway to the Internet?
- What is ARP (address resolution protocol) and how does it work?
- How do you trick a client into using you as a GW?
  - ARP spoofing, gratuitous arp

#### **Network attacks**

- What tools do people use?
  - wireshark, tcpdump, dsniff
- what can an attacker do in these situations?
  - capture content
    - sensitive data, session (cookies)
  - replay, drop, etc, etc.
  - modify content: infect executables, inject ads (evidence in real life even at ISP level)
  - What is NSA attack model here?
    - What can you learn if you passively read all data that goes through an ISP?

9

# **Defense against network attacks**

- secure protocols (e.g. TLS, SSH)
- VPNs: tunnel all content back to your home organization
- wireless: WEP, WPA, WPA2
- Anything else?

#### No Source Authentication in IP

- Cannot trust source IP
- RAW sockets: can send anything!
- · egress filtering/bullet-proof hosting
- What about TCP? Why is this different than UDP?
  - what does 3-way handshake prevent?
- · Kaminsky Attack against DNS.
  - only 2^16 transaction IDs
  - fixed with port randomization -> how many possibilities now? (about 134 million: 2^16\*2^11)
- What else does IP spoofing allow?
  - DDoS reflection attacks



## **Weaknesses in Routing**

- What is BGP?
  - How do you decide your best route?
- Sometimes wrong routes get announced
  - Pakistan Youtube announcement of 2012
    - · Nothing prevents this from happening
- Why aren't we using signed routes?
- What is DNSSEC?

13

# **Exploits**

- Virus, worms, trojans
  - virus: exploit that attaches onto another file or program
  - worm: self-propagating exploit
- How do worms work?
  - scanning for other vulnerable hosts, AIM/email contacts
- What do worms do?
  - blackmail (encrypt files), steal data, corrupt files, send SPAM, carry out DoS attacks
- A permanently compromised system is more useful -> rise of the botnet
  - bot = servant

# **IP Security**

15

# **IP Security**

- There are range of app-specific security mechanisms
  - eg. TLS/HTTPS, S/MIME, PGP, Kerberos,
- But security concerns that cut across protocol layers
- Implement by the network for all applications?

### **Enter IPSec!**

#### **IPSec**

- General IP Security framework
- Allows one to provide
  - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
  - Narrow streams: Specific TCP connections
  - Wide streams: All packets between two gateways



#### **Benefits of IPSec**

- If in a firewall/router:
  - -Strong security to all traffic crossing perimeter
  - Resistant to bypass
- Below transport layer
  - Transparent to applications
  - -Can be transparent to end users
- Can provide security for individual users

19

## **IP Security Architecture**

- Specification quite complex
  - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
  - Authentication Header (AH)
    - Connectionless integrity, origin authentication
      - MAC over most header fields and packet body
    - Anti-replay protection
  - Encapsulating Security Payload (ESP)
    - These properties, plus confidentiality

## **Encapsulating Security Payload (ESP)**

- Transport mode: Data encrypted, but not header
  - After all, network headers needed for routing!
  - Can still do traffic analysis, but is efficient
  - Good for host-to-host traffic
- Tunnel mode: Encrypts entire IP packet
  - Add new header for next hop
  - Good for VPNs, gateway-to-gateway security

21

## **Replay Protection is Hard**

- Replay protection goal
  - Eavesdropper can't capture encrypted packet and duplicate later
- Easy with TLS/HTTP on TCP
  - Reliable byte stream
- Hard for IP Sec
  - Transport may not be reliable
  - Sketch of solution: sequence numbers on packets

# **DNS Security**



## **DNS Root Servers**

- 13 root servers (see <a href="http://www.root-servers.org/">http://www.root-servers.org/</a>)
- Labeled A through M



## **DoS attacks on DNS Availability**

- Feb. 6, 2007
  - Botnet attack on the 13 Internet DNS root servers
  - Lasted 2.5 hours
  - None crashed, but two performed badly:
    - g-root (DoD), I-root (ICANN)
    - · Most other root servers use anycast

# **Defense: Replication and Caching**

| Letter | Old name         | Operator               | Location                               |
|--------|------------------|------------------------|----------------------------------------|
| Α      | ns.internic.net  | VeriSign               | Dulles, Virginia, USA                  |
| В      | ns1.isi.edu      | ISI                    | Marina Del Rey, California, USA        |
| С      | c.psi.net        | Cogent Communications  | distributed using anycast              |
| D      | terp.umd.edu     | University of Maryland | College Park, Maryland, USA            |
| E      | ns.nasa.gov      | NASA                   | Mountain View, California, USA         |
| F      | ns.isc.org       | ISC                    | distributed using anycast              |
| G      | ns.nic.ddn.mil   | U.S. DoD NIC           | Columbus, Ohio, USA                    |
| н      | aos.arl.army.mil | U.S. Army Research Lab | Aberdeen Proving Ground, Maryland, USA |
| ı      | nic.nordu.net    | Autonomica &           | distributed using anycast              |
| J      |                  | VeriSign               | distributed using anycast              |
| K      |                  | RIPE NCC               | distributed using anycast              |
| L      |                  | ICANN                  | Los Angeles, California, USA           |
| М      |                  | WIDE Project           | distributed using anycast              |

source: wikipedia27

# **Denial-of-Service Attacks on Hosts**

#### ×40 amplification



580,000 open resolvers on Internet (Kaminsky-Shiffman'06)



## **DNS Integrity and the TLD Operators**

- If domain name doesn't exist, DNS should return NXDOMAIN (non-existant domain) msg
- Verisign instead creates wildcard records for all <u>.com</u> and <u>.net</u> names not yet registered
  - September 15 October 4, 2003
- Redirection for these domain names to Verisign web portal: "to help you search"
  - And serve you ads...and get "sponsored" search
  - Verisign and online advertising companies make \$\$

## **DNS Integrity: Cache Poisoning**

- Was answer from an authoritative server?
  - Or from somebody else?
- DNS cache poisoning
  - Client asks for www.evil.com
  - Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
  - Thanks! I won't bother check what I asked for

31

## **DNS Integrity: DNS Hijacking**

- To prevent cache poisoning, client remembers:
  - The domain name in the request
  - A 16-bit request ID (used to demux UDP response)
- · DNS hijacking
  - 16 bits: 65K possible IDs
  - What rate to enumerate all in 1 sec? 64B/packet
  - -64\*65536\*8 / 1024 / 1024 = 32 Mbps
- Prevention: also randomize DNS source port
  - Kaminsky attack: this source port... wasn't random

http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

#### **DNS Sec**

- Protects against data spoofing and corruption
- Provides mechanisms to authenticate servers and requests
- Provides mechanisms to establish authenticity and integrity

33

## **PK-DNSSEC (Public Key)**

- The DNS servers sign the hash of resource record set with its private (signature) keys
  - Public keys can be used to verify the SIGs
- Leverages hierarchy:
  - Authenticity of name server's public keys is established by a signature over the keys by the parent's private key
  - In ideal case, only roots' public keys need to be distributed out-of-band



### **Conclusions**

- · Security at many layers
  - Application, transport, and network layers
  - Customized to the properties and requirements
- Exchanging keys
  - Public key certificates
  - Certificate authorities vs. Web of trust