Продолжаем серию листочков для самостоятельной подготовки к региональному этапу. По каждой теме вам будет предложено решить от 8 до 15 задач. В конце каждой подборки будут ответы, указания или подсказки.

Лучший способ качественно подготовиться к олимпиадах и глубо разобраться в темах, это решать тематические подборки. А вот проверять Ваши знания я рекомендую на заданиях прошедших олимпиад.

Часть I

4.2 Двойные звезды

- 1. Двойная звезда эпсилон Гидры имеет период обращения 15.3 года, параллакс 0.02" и угловой размер большой полуоси 0.23". Найдите линейные размеры системы и массу компонент.
- **2.** Расстояние между компонентами системы 19 а.е., период 55 лет, отношение масс 2.6. Найдите массу более тяжёлой звезды.
- **3.** Определите массы компонент следующих затменно-переменных звезд. Орбиты звезд считайте круговыми.

Звезда	Скорости компонент	Период переменности
β Персея	44 и $220~{ m km/c}$	2.867 дня
U Змееносца	180 и 205 км/с	1.677 дня
WW Возничего	117 и $122~{ m км/c}$	2.525 дня
U Цефея	120 и $200~{ m km/c}$	2.493 дня

- 4. Двойная звезда состоит из одинаковых компонент, обращающихся по круговой орбите вокруг общего центра масс. Система является затменной переменной, а линия водорода H_{α} (6563A) каждые 5 лет сначала раздваивается на 1.0A, а потом вновь сливается воедино. Чему равно расстояние между звездами? (Рег-2011)
- 5. При наблюдении спектрально двойной звезды линия H_{α} было обнаружено периодического расщепление на две не симметричные компоненты 0.9 А и 0.2 А. Максимальное расщепление линий повторяется каждый 9 месяцев. Определите массы звезд и большую полуось орбиты системы. (ВИ)
- 6. Двойная система из звезд солнечного типа имеет параллакс 0.1". При центральном покрытии Луной, видимом в зените с экватора Земли, звезды скрылись за лунным лимбом с интервалом 1 секунда. Найдите минимальный период обращения звезд в системе. Наклоном орбиты Луны к экватору и ее эксцентриситетом пренебречь. (Всеросс-2018)
- 7. На рисунке 1 изображена видимая орбита спутника двойной системы относительно главного компонента и положение круга склонений, проходящего через главную звезду. Определить графически позиционный угол большой полуоси проекции на небесную сферу. (ВВ)

Рис. 1: Фотография к задаче №7

8. Перед вами график лучевой скорости двойной звезды. Определите массу, компактного невидимого компонента, если масса видимого компонента, у которого измеряли лучевую скорость, составляет $0.5 M_{\odot}$. К какому типу объектов может относиться невидимый компонент?

Рис. 2: График к задаче №8

- 9. Двойная система состоит из двух звезд, вращающихся вокруг центра масс по круговым орбитам с орбитальным периодом 10 дней. Первая звезда наблюдается в видимом диапазоне и у нее измерено при помощи доплеровского смещения скорость орбитального движения 20 км/с. Вторая звезда рентгеновский пульсар. Она имеет радиус орбиты вокруг центра масс $3 \cdot 10^{10}$ м. Определите радиус орбиты визуальной звезды и расстояние между компонентами. Определите сумму масс и массу каждой компоненты. (ВИ)
- 10. Систему 32 Волос Вероники (32 Comae) образуют две звезды класса F5, $m_A = m_B = 5, 22^m$. Наклонение орбиты принимается равным 90°. Фактически оно отличается от 90°, так как затмения в этой системе не наблюдаются. Найти наименьшее

значение угла $90^{\circ} - i$, исходя из того, что большая полуось орбиты в этой системе равна 0.66'', параллакс 0.057'', а спектры компонент F5V. В уточнение полученных результатов учесть дополнительно, что орбита этой пары эксцентрична, e = 0.37, а линия апсид приблизительно направлена на Землю. Найти также, как долго длилось бы затмение, если бы было точно $i = 90^{\circ}$. Период 26 лет. (Мартынов)

11. Угловой размер звезды блеском 4.7 составляет 0.004". Спектроскопические наблюдения этой звезды показывают, что линия натрия с длиной волны 5 890 А имеет две компоненты: яркую и слабую. Длина волны слабой компоненты меняется синусоидально с амплитудой 0.6 А и периодом 30 лет, причем один раз за этот период слабая линия исчезает на 230 дней. Оцените расстояние до звезды, ее массу и температуру поверхности. К какому типу звезд она относится?

1 Экзопланеты

- 12. Астроном наблюдал прохождение экзопланеты по диску звезды. Длительность транзита 180 минут. Период обращения экзопланеты 84 часа. Померив доплеровское смещение линий, астроном посчитал, что разница между лучевыми скоростями в начале и в конце прохождения составляет 30 км/с. Найдите радиус и массу звезды, а также радиус орбиты экзопланеты. (IOAA)
- 13. Астрономы наблюдали далекую звезду, физически похожую на Солнце, и зафиксировали падение ее яркости на 0.1% в течение 5 часов, вызванное прохождением по ее диску планеты. Найдите расстояние между планетой и звездой, считая орбиту планеты круговой. Определите размер планеты, считая, что она прошла по центру диска звезды. На какую планету Солнечной системы похожа эта далекая планета по размерам? (Рег-2015)
- 14. У звезды 12^m спектрального класса G2V обнаружили колебания блеска с периодом 10 лет, вызванные прохождением планеты по ее диску в полосе V глубина составила 1.500% по яркости, а в линии $H_{\alpha}-1.520\%$ по яркости. Оцените размеры планеты и высоту ее атмосферы, считая атмосферу состоящей из атомарного водорода и непрозрачной в линии H_{α} , а орбиту планеты круговой, лежащей на луче зрения. Определите максимальное угловое расстояние между планетой и звездой. (Рег-2018, А. Татарников)

2 Дополнительные усложненные задачи

15. Орбитальный период двойной звезды, в которой происходит перетекание вещества с одного компонента системы на другой, составляет 2.5 суток, причем известно, что за последние 100 лет этот период увеличился на 20 секунд. Массы компонентов составляют 3 и 5 масс Солнца. Оцените темп аккреции в системе — массу вещества, перетекающую с одного компонента за другой, за год. Какой из компонентов отдает вещество, а какой — получает? (СПБАО, П. Тараканов)

Часть II

Ответы и решения

1. 11.5 a.e., $6.5M_{\odot}$ **2.** $1.637M_{\odot}$ **3.** $4.6M_{\odot}$ и $0.9M_{\odot}$; $5.2M_{\odot}$ и $4.6M_{\odot}$; $1.8M_{\odot}$ и $1.8M_{\odot}$; $5.3M_{\odot}$ и $3.2M_{\odot}$ **4.** 15.4 a.e. **5.** 2.5 a.e., $M_1 = 5.73 M_{\odot}$, $M_2 = 1.27 M_{\odot}$ **6.** $T_{min} \approx 1.3$ года. Важно учесть, что орбита двойных звезд зачастую эллиптична. И минимальный период будет при максимально возможном эксцентриситете. Около 85°. Большая полуось орбиты проходит через главную звезду, а центр видимого эллипса совпадает с центром истинного эллипса. **8.** $0.42M_{\odot}$. Это белый **9.** $M_{sum} = 13.9 M_{\odot}, M_p = 1.17 M_{\odot}, M_v c = 12.73 M_{\odot}$ **10.** $90 - i = 89^{\circ}56'$. Длительность затмений в апоцентре и перицентре $t_a = 76^h$, $t_p = 35^h$ **11.** r = 1 кпк, **12.** $a = 6.5 \cdot 10^6$ km, $R = 720\ 000$ km, $M = 0.9 M_{\odot}$ $T = 2 700 \text{ K}, M = 30 M_{\odot}$ $R=0.03R_{\odot}\approx 22~000$ км, $v_{orb}=80$ км/с, d=0.15 а.е. **14.** 0.02'' **15.** Для решения нужно воспользоваться законом сохранения момента импульса. $\Delta M = -2.5 \cdot 10^{-6} M_{\odot}$. Перетекание происходит с менее массивной на более массивную звезду.

©Игнатьев В.Б., Долгопрудный, 2021