

IBPSA Project 1

Task 2: Building and City Quarter Models

WP 2.2: Building Information Modeling

Christoph van Treeck

Eric Fichter

IBPSA Project 1

Work Package 2.2 – Geometry Processing

Content

- Space boundary algorithms for model topology analysis and multi-scale simulation model generation
- Update exchange with Energy Plus

Method

- Review of existing approaches, algorithms, codes and model checkers
- Evaluation of best-in-class algorithms for modelgarbage analysis and processing
- Decision on development path and code re-use
- Development of modular tools for space boundary and model topology analysis

Result

- Joint journal publication / review paper
- GIT repository with modular tools

Suggestions from the Coordination Meeting, 10 July 2018

Geometry

- Reading and parsing IFC and dealing with this information
- Full access to geometry and topology
- Separation of geology and topology as long as possible
- Creation of connection graph between objects
- Manipulation of geometry:
 - Reduction of level of detail and complexity
 - Finding relations between room and spaces based on topology only
- In the end discussing about space boundaries

Suggestions from the Coordination Meeting, 10 July 2018

General

- Investigation on state of the art (Annex 60, SBT, ...)
- Testing libraries based on IFC files
- Authoring tools don't matter at this point
- Different setup cases, from easy to complex
- Constructing an example with all building related entities available in IFC
- Sharable IFC-examples stored in Git
- Creation of an open source Sharable Environment Team

Today's Agenda

Team structure, active developers

 Tools and software development environment for model parsing, visualization and analysis

 Consensus on overall process of geometry reading and processing, BRep transformation, decomposition and space boundary generation

Open Source Sharable Environment Team

- E. Fichter (RWTH Aachen)
- C. Waluga (LiNear)
- J. O'Donnell (University College Dublin)
- J. Lin (Tsinghua University)
- G. Giannakis (Technical University of Crete)
- V. Bazjanac (Stanford University)

Open Source Sharable Environment Team

- E-Mail Distribution List
- Git Repository IBPSA-WP-2.2 (Contact Eric Fichter)

Testing Team

- K.-H. Häfele (Karlsruhe Institute of Technology)
- Whoever wants to join ...

To Do

Everyone

- Review of space boundary algorithms
- Summary of algorithms in a joint publication
- Conditions within the BIM to SIM workflow (level of detail, objects of interest, design requirements for IFC, etc.)

To Do

Open Source Sharable Environment Team

- Define the working environment
- Setup the working environment
- Testing basic geometrical and topological explorer algorithms

Testing Team

- Providing an IFC example file with all available entities
- Providing further IFC examples from easy to complex

Break-Out

Task 2: Building and City Quarter Models

WP 2.2: Building Information Modeling

Christoph van Treeck

Eric Fichter

IFC Libraries

IFC libraries supporting IFC versions 2x3 and 4 as well as extraction of geometric data

Library	Language	License	Modeling kernel	
IfcOpenShell	C++, Python	LGPL, Open source	OpenCascade	
IfcPlusPlus	C++	MIT, Open source	OpenSceneGraph	
IFC Engine DLL	C++	AGPL, Closed Source	Embedded	
xBIM Toolkit	C# (C++)	CDDL, Open Source	OpenCascade	
apstex IFC Framework (IFC Tools Project)	Java	Free for research	Embedded	
Not usable: STEPcode ISDAL nuthonific ifcedly Geometry/GymlECEvamples Ifc-Script Ifc-dotnet				

Not usable: 5 I EPcode, JSDAI, pythonitc, itcsdk, geometrygymifgexamples, itcscript, itc-dotnet

Sharable Environment Team: J. Lin - "IfcOpenShell, IFC Engine, XBIM"

Geometric Modeling Kernel

Most popular kernels licensed for more than one CAD software

Library	License	
ACIS	Proprietary	
C3D	Proprietary	
Parasolid	Proprietary	
OpenCascade	LGPL, Open source	
pythonOCC (OpenCascade wrapper)	LGPL, Open source	
Further suggestions?		
One software only: Catia, Granite, Shape Manager (Autdesk, based on ACIS)		

Coordination Meeting: K. Häfele "Open source backup kernel"

Tool Chain

Space boundary algorithm without graphs

G.N. Lilis et al., Automatic generation of second-level space boundary topology from IFC geometry inputs, Automation in Construction (2016), http://dx.doi.org/10.1016/j.autcon.2016.08.044

Common Boundary Intersection Projection Algorithm

- Parsing: Classification stage of geometrical entities of interest (walls, windows, ...) to Constructions, Openings and Volumes
- BRep: Boundary Surface Extraction (BSE) of Constructions (IfcProduct) and Opening Construction Subtractions of Openings
- Common Faces: Common Boundary Intersection of different combinations (e.g. shared face of Construction and Opening) using Clipping functions
- 2nd level space boundaries: Boundary Intersection Projection
- Save in IFC file: IfcRelSpaceBoundary2ndLevel

Space boundary algorithm with graphs

C. Van Treeck: Dissertation. Gebäudemodell-basierte Simulation von Raumluftströmungen

Boolean Operation ${\it Differenzobjekte}$

Kopplungsobjekt

Parsing

▼ IfcProject	0N7Fis0C1	Projektnummer
▼ IfcSite		Oberfläche:817241
▼ IfcBuilding	0NZEis0C1	
▼ IfcBuildingStorey	0NZEis0C1	-01 OKFD
IfcColumn		IPE-Stütze:IPE550:799602
IfcWallStandardCase		Basiswand:Fertigteilsockel 25:808252
IfcWallStandardCase		Basiswand:Fassade 25:808253
IfcSlab		Sohle:Magerbeton 50:817250
IfcFooting		Wandfundament:Wandfundament:9
IfcFooting		Wandfundament:Wandfundament:9
IfcSlab		Sohle:Magerbeton 50:940185
IfcWallStandardCase		Basiswand:STB 25.0:940862
IfcWallStandardCase	OIMUORRI	Basiswand:STB 25.0:940955
IfcSlab		Geschossdecke:FB Halle 1:941048
IfcWallStandardCase		Basiswand:Fertigteilsockel 25:942996
▼ IfcWallStandardCase		Basiswand:Fassade 25:942997
IfcOpeningElement	0Ou9idlcvF	Basiswand:Fassade 25:942997
IfcFooting		Wandfundament:Wandfundament:9
IfcFooting	18221KPlz	Wandfundament:Wandfundament:9
IfcSlab	23kaYs A1	Sohle:Magerbeton 50:961353
IfcSlab		Sohle:Magerbeton 50:962150
IfcSlab		Sohle:Magerbeton 50:962660
▼ IfcBuildingStorey	0NZEis0C1	
▼ IfcWallStandardCase		Basiswand:Fertigteilsockel 25:807998
IfcOpeningElement	0 OGOHB	Basiswand:Fertigteilsockel 25:807998
IfcOpeningElement	0 OGQHB	Basiswand:Fertigteilsockel 25:807998
IfcOpeningElement	0 OGOHB	Basiswand:Fertigteilsockel 25:807998
▼ IfcWallStandardCase	00kSc73mv	Basiswand:Fassade 25:807999
IfcOpeningElement	2orxNh93r	Basiswand:Fassade 25:807999
IfcOpeningElement	24R2qa3Oj	Basiswand:Fassade 25:807999
IfcOpeningElement		Basiswand:Fassade 25:807999
IfcOpeningElement	0 OGQHB	Basiswand:Fassade 25:807999
IfcWallStandardCase	00kSc73mv	Basiswand:Fertigteilsockel 25:808094
▼ IfcWallStandardCase	00kSc73mv	Basiswand:Fassade 25:808095
IfcOpeningElement	1UCMr2B1	Basiswand:Fassade 25:808095
IfcOpeningElement	3iTppyQy9	Basiswand:Fassade 25:803892
IfcWallStandardCase	00kSc73mv	Basiswand:Fertigteilsockel 25:808355
▼ IfcWallStandardCase		Basiswand:Fassade 25:808356
IfcOpeningElement		Basiswand:Fassade 25:808356
▼ IfcWallStandardCase		Basiswand:Fertigteilsockel 25:941559
IfcOpeningElement	3zjK8uvLn	Basiswand:Fertigteilsockel 25:941559

Pset_WallCommon
ThermalTransmittance: 0.625 (IfcThermalTransmittanceMeasure)
LoadBearing: False (IfcBoolean)
IsExternal: True (IfcBoolean)
Reference: b'Fassade 25' (IfcIdentifier)
ExtendToStructure: False (IfcBoolean)

Direct and inverse attributes callable

#76511=IfcRelSpaceBoundary('0F8DHwVIWaA92A8pankadM',#12,'2ndLevel','2a',#20909,#15042,#76510,PHYSICAL.,.INTERNAL.)
#15042=IfcWallStandardCase('2XPyKWY018sA1ygZKgQPtU',#12,'Wand-Int-ERDG-4',\$,\$,#14983,#15037,'BC6F0F70-6195',\$)
#20909=IfcSpace('347jFE2yX7lhCEIALmupEH',#12,'4',\$,\$,#20819,#20904,'Schlafzimmer', ELEMENT.,\$,\$)

Writing to file

```
// This window will be placed at five locations within the building. A list of placements is
      // created and is iterated over to create all window instances.
      IfcSchema::IfcLocalPlacement::list::ptr window_placements (new IfcSchema::IfcLocalPlacement::list);
      window placements->push(file.addLocalPlacement(storey placement, 2*-1770-430-930,
      window placements->push(file.addLocalPlacement(storey placement, -1770-430-930, -45, 400));
      window placements->push(file.addLocalPlacement(storey placement,
                                                                              -430-930, -45, 400));
      window placements->push(file.addLocalPlacement(storey placement,
                                                                              3000-930, -45, 400));
      window placements->push(file.addLocalPlacement(storey placement, -4855+45, 885-930, 400, 0, 0, 1, 0, 1, 0));
      for (IfcSchema::IfcLocalPlacement::list::it it = window_placements->begin(); it != window_placements->end(); ++it) {
              // Create the window at the current location
              IfcSchema::IfcLocalPlacement* place = *it;
              IfcSchema::IfcWindow* window = new IfcSchema::IfcWindow(guid(), file.getSingle<IfcSchema::IfcOwnerHistory>(),
                      null, null, null, place, 0, null, 1600, 1860
#ifdef USE IFC4
                      , IfcSchema::IfcWindowTypeEnum::IfcWindowType WINDOW
                      , IfcSchema::IfcWindowTypePartitioningEnum::IfcWindowTypePartitioning_SINGLE_PANEL
                      , null
#endif
              file.addBuildingProduct(window);
```


Geometry

Implemented Classes (state of 2016)

If ItcKectangularPyramid ☑ HcEdgeCurve ☑ IfcAdvancedBrep ☑ IfcRectangularTrimmedSurface ☑ IfcEdgeLoop ☑ IfcAdvancedBrepWithVoids □ IfcReparametrisedCompositeCurveSegment ☑ IfcEllipse ☑ IfcAdvancedFace ☑ IfcRevolvedAreaSolid ☑ IfcExtrudedAreaSolid ☑ IfcAxis1Placement ☐ IfcRevolvedAreaSolidTapered ☑ IfcExtrudedAreaSolidTapered ☑ IfcAxis2Placement2D ☑ IfcRightCircularCone ☑ HcFace ☑ IfcAxis2Placement3D IfcRightCircularCylinder ☑ IfcFaceBasedSurfaceModel ☑ IfcBSplineCurveWithKnots ■ IfcSectionedSpine ☑ McFaceBound IfcBSplineSurfaceWithKnots ☑ IfcShellBasedSurfaceModel ☑ IfcFaceOuterBound ☑ HcBlock IfcSphere ☑ IfcFaceSurface IfcBooleanClippingResult ☑ IfcStyledItem ☑ IfcFacetedBrep. ☑ IfcBooleanResult ☑ HcSubedge ☑ IfcFacetedBrepWithVoids IfcBoundaryCurve ☑ IfcSurfaceCurveSweptAreaSolid IfcFixedReferenceSweptAreaSolid IfcBoundingBox ☑ IfcSurfaceOfLinearExtrusion ☑ IfcGeometricCurveSet IfcBoxedHalfSpace IfcSurfaceOfRevolution ☑ IfcGeometricSet ☑ IfcCartesianPoint ☑ IfcSweptDiskSolid ☑ IfcHalfSpaceSolid ☐ HcCartesianPointList2D ☐ IfcSweptDiskSolidPolygonal ☑ IfcIndexedPolyCurve □ IfcCartesianPointList3D ☑ IfcTriangulatedFaceSet ☑ IfcLine ☑ HcCartesianTransformationOperator2D ☑ HcTrimmedCurve IfcLoop IfcCartesianTransformationOperator2DnonUniform ☑ IfcVector ☑ IfcMappedItem ☑ IfcCartesianTransformationOperator3D ☐ HcVertex ☐ IfcOffsetCurve2D ☑ HrCartesianTransformationOperator3DnonUniform ☐ IfcVertexLoop ☐ IfcOffsetCurve3D [7] HcCircle ☑ IfcVertexPoint ☑ IfcOperShell ☑ IfcClosedShell ☑ HcOrientedEdge ☑ IfcCompositeCurve □ IfcOuterBoundaryCurve ☐ IfcCompositeCurveOnSurface ☐ HcPath ☑ IfcCompositeCurveSegment ☐ HcPcurve ☑ IfcConnectedFaceSet. ☑ IfcPlane ☑ HcCsqSolid ☐ HcPointOnCurve ☑ IfcCurveBoundedPlane ☐ IfcPointOnSurface ☐ IfcCurveBoundedSurface ☑ IfcPolyLoop ☑ IfcCylindricalSurface ☑ IfcPolygonalBoundedHalfSpace ☑ IfcDirection ☑ IfcPolyline ☑ IfcEdge ☑ IfcRationalBSplineCurveWithKnots ☑ IfcEdgeCurve ☑ IfcRationalBSplineSurfaceWithKnots

http://blog.ifcopenshell.org/

Some basic conversion tests to other file formats (.obj, .stp, .igs)

IFC file | .ifc

Object File | .obj

Creation of Brep Shapes

- Shapes can be created for further use in OpenCascade, also for abstract representions as IfcSpaces
- There are some options to include e.g. IfcConnectedFaceSets or IfcOpeningElement

Geometrical Information

Geometrical Smoothing and product filtering

Needs to be done for high performance and speed as well as robustness

- IFC file:
 - Filtering using IfcOpenShell (semantical data, hierarchy of IFC file)
 - ...
- Geometry:
 - Oriented bounding box
 - **...**

OpenCascade

Boolean Operations

- Boolean Operations, which allow creating new shapes from the combinations of source shapes. For two shapes S1 and S2:
 - Common contains all points that are in S1 and S2;
 - Fuse contains all points that are in S1 or S2;
 - Cut contains all points in that are in S1 and not in S2

- Negative of walls and windows
- Fail for non-sewed shells

Topological Elements

 Staircase and its topological elements

Sew shells

Sewed shells 66 faces 156 edges

Unsewed shells 66 faces 312 edges

Tests

 Connection between building elements using fuse and check for intersection

