# Tarea 2 Calculo Computacional

Victor Tortolero CI:24.569.609

## Respuesta 1

Al correr el programa, que calcula el resultado del método de Newton en para hallar raíces de la función:

$$f(t) = 1 - \frac{3}{2} * e^{(-1*(t*t - 2*t + 0.9775))} - e^{(-1*(t*t - 8*t + 15.96))}$$

con los siguientes puntos iniciales:

$$[0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20]$$

obtenemos la siguiente información:

Figura 1: Punto inicial: 0.80

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$  |
|---|------------|------------|------------|
| 0 | 0.8000000  | -0.4740155 | -0.5898284 |
| 1 | -0.0036499 | 0.4397364  | -1.1246161 |
| 2 | 0.3873603  | -0.0540499 | -1.2915172 |
| 3 | 0.3455103  | 0.0003899  | -1.3084770 |
| 4 | 0.3458083  | 0.0000000  | -1.3083914 |

Figura 2: Punto inicial: 0.85

| $\overline{}$ |            |            |            |
|---------------|------------|------------|------------|
| i             | $x_i$      | $f(x_i)$   | $f'(x_i)$  |
| 0             | 0.8500000  | -0.5000511 | -0.4503210 |
| 1             | -0.2604324 | 0.6867409  | -0.7896827 |
| 2             | 0.6092092  | -0.3168673 | -1.0293012 |
| 3             | 0.3013622  | 0.0583564  | -1.3157409 |
| 4             | 0.3457147  | 0.0001225  | -1.3084183 |
| 5             | 0.3458083  | 0.0000000  | -1.3083914 |

Figura 3: Punto inicial: 0.90

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$  |
|---|------------|------------|------------|
| 0 | 0.9000000  | -0.5189375 | -0.3042058 |
| 1 | -0.8058763 | 0.9411771  | -0.2124534 |
| 2 | 3.6241634  | 0.0947282  | -0.6710567 |
| 3 | 3.7653262  | 0.0142263  | -0.4582679 |
| 4 | 3.7963698  | 0.0008478  | -0.4032092 |
| 5 | 3.7984726  | 0.0000040  | -0.3993906 |
| 6 | 3.7984826  | 0.0000000  | -0.3993724 |

Figura 4: Punto inicial: 0.95

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$  |
|---|------------|------------|------------|
| 0 | 0.9500000  | -0.5303969 | -0.1536090 |
| 1 | -2.5029032 | 0.9999928  | -0.0000504 |

Figura 5: Punto inicial: 1.00

| i | $x_i$     | $f(x_i)$   | $f'(x_i)$  |
|---|-----------|------------|------------|
| 0 | 1.0000000 | -0.5342610 | -0.0007707 |

Figura 6: Punto inicial: 1.05

| $x_i$     | $f(x_i)$                                                                   | $f'(x_i)$                                                                                                                          |
|-----------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1.0500000 | -0.5304750                                                                 | 0.1520096                                                                                                                          |
| 4.5397473 | 0.2222265                                                                  | 0.8396434                                                                                                                          |
| 4.2750795 | 0.0350064                                                                  | 0.5311111                                                                                                                          |
| 4.2091679 | 0.0036925                                                                  | 0.4171101                                                                                                                          |
| 4.2003153 | 0.0000715                                                                  | 0.4009391                                                                                                                          |
| 4.2001369 | 0.0000000                                                                  | 0.4006113                                                                                                                          |
| 4.2001368 | 0.0000000                                                                  | 0.4006112                                                                                                                          |
|           | 1.0500000<br>4.5397473<br>4.2750795<br>4.2091679<br>4.2003153<br>4.2001369 | 1.0500000 -0.5304750   4.5397473 0.2222265   4.2750795 0.0350064   4.2091679 0.0036925   4.2003153 0.0000715   4.2001369 0.0000000 |

Figura 7: Punto inicial: 1.10

| i | $x_i$     | $f(x_i)$   | $f'(x_i)$  |
|---|-----------|------------|------------|
| 0 | 1.1000000 | -0.5190994 | 0.3024291  |
| 1 | 2.8164331 | 0.6869363  | -0.4013668 |
| 2 | 4.5279259 | 0.2123474  | 0.8316886  |
| 3 | 4.2726052 | 0.0336973  | 0.5270527  |
| 4 | 4.2086698 | 0.0034850  | 0.4162053  |
| 5 | 4.2002966 | 0.0000640  | 0.4009047  |
| 6 | 4.2001369 | 0.0000000  | 0.4006113  |
| 7 | 4.2001368 | 0.0000000  | 0.4006112  |

Figura 8: Punto inicial: 1.15

| i | $x_i$     | $f(x_i)$   | $f'(x_i)$ |
|---|-----------|------------|-----------|
| 0 | 1.1500000 | -0.5003089 | 0.4482386 |
| 1 | 2.2661664 | 0.6397468  | 0.6032816 |
| 2 | 1.2057216 | -0.4709837 | 0.6026869 |
| 3 | 1.9871949 | 0.4029704  | 1.0701177 |
| 4 | 1.6106285 | -0.0600950 | 1.2739408 |
| 5 | 1.6578011 | 0.0004120  | 1.2891744 |
| 6 | 1.6574815 | 0.0000000  | 1.2891160 |

Figura 9: Punto inicial: 1.20

| i | $x_i$     | $f(x_i)$   | $f'(x_i)$ |
|---|-----------|------------|-----------|
| 0 | 1.2000000 | -0.4743881 | 0.5872960 |
| 1 | 2.0077496 | 0.4246754  | 1.0415920 |
| 2 | 1.6000320 | -0.0735670 | 1.2686661 |
| 3 | 1.6580197 | 0.0006939  | 1.2892140 |
| 4 | 1.6574815 | 0.0000000  | 1.2891160 |
| 5 | 1.6574815 | -0.0000000 | 1.2891160 |

$$f(t) = 1 - \frac{3}{2} * e^{(-1*(t*t - 2*t + 0.9775))} - e^{(-1*(t*t - 8*t + 15.96))}$$



Entonces tenemos que todos los valores convergen excepto  $t_0=0.95$ , y  $t_0=1$ . Como podemos ver en , se pierde en estos valores por la pendiente de la curva ya que están cerca de un punto critico, entonces al trazar las rectas tangentes el método se aleja mucho. Los cambios en  $t_0$ , a pesar de ser pequeños, la pendiente en estos puntos cambia bastante y por lo tanto también la velocidad de convergencia.

Al correr el programa, que calcula el resultado del método de Newton para resolver la equacion

$$\frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x + \frac{1}{2} = 0$$

con los siguientes puntos iniciales

$$[\frac{\pi}{2}, 5\pi, 10\pi]$$

obtenemos la siguiente información:

Figura 10: Punto inicial:  $\pi$  (Converge)

|    | igura 10. Fur | 100 IIIICiai. 7 | (Converge) |
|----|---------------|-----------------|------------|
| i  | $x_i$         | $f(x_i)$        | $f'(x_i)$  |
| 0  | 1.7853982     | 0.0460539       | -0.2146018 |
| 1  | 1.8445616     | 0.0071170       | -0.1202935 |
| 2  | 1.8708344     | 0.0016385       | -0.0623666 |
| 3  | 1.8833464     | 0.0003963       | -0.0316759 |
| 4  | 1.8894638     | 0.0000976       | -0.0159548 |
| 5  | 1.8924896     | 0.0000242       | -0.0080059 |
| 6  | 1.8939946     | 0.0000060       | -0.0040100 |
| 7  | 1.8947451     | 0.0000015       | -0.0020068 |
| 8  | 1.8951198     | 0.0000004       | -0.0010038 |
| 9  | 1.8953071     | 0.0000001       | -0.0005020 |
| 10 | 1.8954007     | 0.0000000       | -0.0002510 |
| 11 | 1.8954475     | 0.0000000       | -0.0001255 |
| 12 | 1.8954709     | 0.0000000       | -0.0000628 |
| 13 | 1.8954826     | 0.0000000       | -0.0000314 |
| 14 | 1.8954884     | 0.0000000       | -0.0000157 |
| 15 | 1.8954913     | 0.0000000       | -0.0000078 |
| 16 | 1.8954928     | 0.0000000       | -0.0000039 |
| 17 | 1.8954935     | 0.0000000       | -0.0000020 |
| 18 | 1.8954939     | 0.0000000       | -0.0000010 |
| 19 | 1.8954941     | 0.0000000       | -0.0000005 |
| 20 | 1.8954942     | 0.0000000       | -0.0000002 |
| 21 | 1.8954942     | 0.0000000       | -0.0000001 |
| 22 | 1.8954942     | 0.0000000       | -0.0000001 |
|    |               |                 |            |

Figura 11: Punto inicial:  $5\pi$  (Converge)

| i  | $x_i$      | $f(x_i)$    | $f'(x_i)$  |
|----|------------|-------------|------------|
| 0  | 13.0899694 | 61.6850275  | 23.5619449 |
| 1  | 21.3475720 | 36.5418400  | -4.4252359 |
| 2  | 17.4729273 | 101.4799493 | 26.1907751 |
| 3  | 1.6486799  | 94.4331539  | 5.9676237  |
| 4  | 1.7980631  | 0.0298006   | -0.1994913 |
| 5  | 1.8499401  | 0.0056632   | -0.1091663 |
| 6  | 1.8733573  | 0.0013193   | -0.0563373 |
| 7  | 1.8845720  | 0.0003203   | -0.0285638 |
| 8  | 1.8900682  | 0.0000790   | -0.0143762 |
| 9  | 1.8927898  | 0.0000196   | -0.0072112 |
| 10 | 1.8941442  | 0.0000049   | -0.0036113 |
| 11 | 1.8948197  | 0.0000012   | -0.0018071 |
| 12 | 1.8951571  | 0.0000003   | -0.0009039 |
| 13 | 1.8953257  | 0.0000001   | -0.0004520 |
| 14 | 1.8954100  | 0.0000000   | -0.0002260 |
| 15 | 1.8954521  | 0.0000000   | -0.0001130 |
| 16 | 1.8954732  | 0.0000000   | -0.0000565 |
| 17 | 1.8954837  | 0.0000000   | -0.0000283 |
| 18 | 1.8954890  | 0.0000000   | -0.0000141 |
| 19 | 1.8954916  | 0.0000000   | -0.0000071 |
| 20 | 1.8954930  | 0.0000000   | -0.0000035 |
| 21 | 1.8954936  | 0.0000000   | -0.0000018 |
| 22 | 1.8954939  | 0.0000000   | -0.0000009 |
| 23 | 1.8954941  | 0.0000000   | -0.0000004 |
| 24 | 1.8954942  | 0.0000000   | -0.0000002 |
| 25 | 1.8954942  | 0.0000000   | -0.0000001 |
| 26 | 1.8954942  | 0.0000000   | -0.0000001 |
| 27 | 1.8954943  | 0.0000000   | -0.0000000 |

Figura 12: Punto inicial:  $10\pi$  (Converge)

| i  | $x_i$          | $f(x_i)$         | $f'(x_i)$      |
|----|----------------|------------------|----------------|
| 0  | 47.1238898     | 246.7401100      | -15.7079633    |
| 1  | 39.2699082     | 555.1652476      | 70.6858347     |
| 2  | 20.6349541     | 347.2615137      | 18.6349541     |
| 3  | 14.0844908     | 87.2433669       | 13.3186561     |
| 4  | 7.3295384      | 36.5254936       | 5.4072170      |
| 5  | 1921.5404903   | 7.8353322        | -0.0040932     |
| 6  | -6212.1139178  | 924804.9759238   | 113.7010413    |
| 7  | -4438.8695742  | 9653346.7729376  | -5443.8897877  |
| 8  | -3689.0763974  | 4925005.2698354  | -6568.4850462  |
| 9  | -9361.6753668  | 3399558.4368288  | 599.2946893    |
| 10 | -14410.6158688 | 21912745.2270146 | 4340.0680238   |
| 11 | -11995.1385095 | 51918335.7955691 | -21494.0270898 |

| 12 | -20350.8637606 | 35964693.1763045  | 4304.1976723   |
|----|----------------|-------------------|----------------|
| 13 | -32153.6935851 | 103546838.6734365 | 8773.0519048   |
| 14 | -26303.8986398 | 258449384.2733945 | -44180.9305611 |
| 15 | -21214.5387407 | 172957713.6523489 | -33984.1781835 |
| 16 | -17148.2210877 | 112501555.1255755 | -27666.6912741 |
| 17 | -4477.3764256  | 73498450.0392219  | -5800.5959349  |
| 18 | -3630.0860097  | 5014278.7724454   | -5918.0166310  |
| 19 | -1898.2094594  | 3298011.1230452   | -1904.2991964  |
| 20 | -3636.3713853  | 899595.5784556    | 517.5556805    |
| 21 | -1894.2216866  | 3309435.6950319   | -1899.6276252  |
| 22 | -1575.9045549  | 896719.6524757    | -2817.0637499  |
| 23 | 1871.4510788   | 622323.6879867    | -180.5220447   |
| 24 | 7001.0593921   | 877092.1883610    | -170.9861913   |
| 25 | 3637.1758662   | 12246709.5161439  | 3640.6461228   |
| 26 | 8075.3076376   | 3309842.2222794   | -745.7737608   |
| 27 | 2214.1410621   | 16294672.4394335  | 2780.1073779   |
| 28 | 1780.7410806   | 1224210.2955517   | 2824.6662390   |
| 29 | 1452.7934396   | 791841.4393738    | 2414.5361647   |
| 30 | 275.3098815    | 526227.3832642    | 446.9084767    |
| 31 | -479.7389156   | 19201.0395684     | 25.4301969     |
| 32 | -371.2700565   | 57154.9340550     | -526.9248201   |
| 33 | -638.6617194   | 34262.7667743     | 128.1370047    |
| 34 | -494.0812020   | 102480.3341694    | -708.8115050   |
| 35 | -387.1924527   | 61401.1941242     | -574.4401962   |
| 36 | -307.1248467   | 37751.3449524     | -471.4933647   |
| 37 | -641.2088390   | 23791.5089290     | 71.2141541     |
| 38 | -998.6794801   | 102583.1971350    | 286.9695727    |
| 39 | -1565.9782382  | 249679.9054533    | 440.1206628    |
| 40 | -574.8496464   | 611515.7109923    | -616.9892747   |
| 41 | -478.9398636   | 82577.5244163     | -860.9916736   |
| 42 | -135.8801421   | 56873.4811346     | -165.7830330   |
| 43 | -107.3387362   | 4713.0408533      | -165.1299474   |
| 44 | -180.0664384   | 2826.8908166      | 38.8695192     |
| 45 | -136.5431877   | 8257.7814073      | -189.7326436   |
| 46 | -80.3063845    | 4797.6211971      | -85.3110584    |
| 47 | -12.9785910    | 1692.0133666      | -25.1309790    |
| 48 | -20.2925756    | 37.0716685        | 5.0686009      |
| 49 | -8.0070693     | 83.8037739        | -6.8213529     |
| 50 | -5.6965144     | 9.0916100         | -3.9348167     |
| 51 | -10.8076459    | 11.5725758        | 2.2641905      |
|    |                | L.                | l-             |

| 52 | -6.1585544 | 40.7837593 | -8.7724148  |
|----|------------|------------|-------------|
| 53 | -9.4126197 | 10.2629614 | 3.1538892   |
| 54 | -7.8478253 | 22.0350615 | -14.0817616 |
| 55 | -4.8874436 | 8.5493760  | -2.8879303  |
| 56 | 0.3735117  | 11.7541929 | -2.2342316  |
| 57 | 0.1668875  | 0.0317308  | 0.1535677   |
| 58 | 0.0818546  | 0.0068344  | 0.0803730   |
| 59 | 0.0407434  | 0.0016676  | 0.0405625   |
| 60 | 0.0203491  | 0.0004145  | 0.0203266   |
| 61 | 0.0101717  | 0.0001035  | 0.0101689   |
| 62 | 0.0050855  | 0.0000259  | 0.0050852   |
| 63 | 0.0025427  | 0.0000065  | 0.0025427   |
| 64 | 0.0012714  | 0.0000016  | 0.0012713   |
| 65 | 0.0006357  | 0.0000004  | 0.0006357   |
| 66 | 0.0003178  | 0.0000001  | 0.0003178   |
| 67 | 0.0001589  | 0.0000000  | 0.0001589   |
| 68 | 0.0000795  | 0.0000000  | 0.0000795   |
| 69 | 0.0000397  | 0.0000000  | 0.0000397   |
| 70 | 0.0000199  | 0.0000000  | 0.0000199   |
| 71 | 0.0000099  | 0.0000000  | 0.0000099   |
| 72 | 0.0000050  | 0.0000000  | 0.0000050   |
| 73 | 0.0000025  | 0.0000000  | 0.0000025   |
| 74 | 0.0000012  | 0.0000000  | 0.0000012   |
| 75 | 0.0000006  | 0.0000000  | 0.0000006   |
| 76 | 0.0000003  | 0.0000000  | 0.0000003   |
| 77 | 0.0000002  | 0.0000000  | 0.0000002   |
| 78 | 0.0000001  | 0.0000000  | 0.0000001   |
| 79 | 0.0000000  | 0.0000000  | 0.0000000   |
| 80 | 0.0000000  | 0.0000000  | 0.0000000   |
|    |            |            |             |

Figura 13: Desde -30 a 30  $f(x) = \frac{1}{4}x^{2} - x \sin x - \frac{1}{2} \cos 2x + \frac{1}{2}$   $250 \uparrow f(x)$  200 150 50 -30 -20 -10 10 20 30



El método converge en los 3 casos aunque no con la velocidad que esperaríamos de este método. En el primer  $(x_0 = \pi/2)$  caso se debe a la cercanía que tiene la curva con el eje x, por lo que al trazar las rectas tangentes, no hay mucho avance.

En los otros dos casos de  $(x_0 = 5\pi \text{ y } x_0 = 10\pi)$  se debe a las irregularidades de la curva, en  $x_0 = 5\pi$  se pierde pero no tarda tanto en converger, y luego tarda por las mismas, ya que en este punto no existen tantas regularidades entre la solución y el punto inicial. Con  $x_0 = 10\pi$ , tarde en coverger por la pendiente al trazar las rectas tangentes toma un punto pero como la pendiente cambia su sentido de manera irregular entonces el método se pierde y por eso tarda en encontrar la solución.

Al correr el programa, para encontrar las primeras 10 raíces positivas de la ecuación:

$$x - \tan x = 0$$

obtenemos la siguiente información:

Figura 15: Punto inicial: 4.66

| i | $x_i$     | $f(x_i)$    | $f'(x_i)$    |
|---|-----------|-------------|--------------|
| 0 | 4.6623890 | -15.3209416 | -399.3335001 |
| 1 | 4.6240227 | -6.6630402  | -127.3977882 |
| 2 | 4.5717216 | -2.4902976  | -49.8721154  |
| 3 | 4.5217880 | -0.6610857  | -26.8621799  |
| 4 | 4.4971777 | -0.0774590  | -20.9273010  |
| 5 | 4.4934763 | -0.0013510  | -20.2034728  |
| 6 | 4.4934095 | -0.0000004  | -20.1907326  |
| 7 | 4.4934095 | -0.0000000  | -20.1907286  |

Figura 16: Punto inicial: 7.80

| i | $x_i$     | $f(x_i)$    | $f'(x_i)$    |
|---|-----------|-------------|--------------|
| 0 | 7.8039816 | -12.1793489 | -399.3335001 |
| 1 | 7.7734824 | -4.6221579  | -153.6518994 |
| 2 | 7.7434004 | -1.2628375  | -81.1123214  |
| 3 | 7.7278314 | -0.1571323  | -62.1726535  |
| 4 | 7.7253041 | -0.0031192  | -59.7285267  |
| 5 | 7.7252519 | -0.0000013  | -59.6795360  |
| 6 | 7.7252518 | -0.0000000  | -59.6795159  |

Figura 17: Punto inicial: 10.95

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 10.9455743 | -9.0377563 | -399.3335001 |
| 1 | 10.9229422 | -2.8208555 | -188.8919748 |
| 2 | 10.9080085 | -0.4827718 | -129.7498756 |
| 3 | 10.9042877 | -0.0197784 | -119.3352211 |
| 4 | 10.9041220 | -0.0000360 | -118.9006618 |
| 5 | 10.9041217 | -0.0000000 | -118.8998692 |

Figura 18: Punto inicial: 14.09

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 14.0871669 | -5.8961636 | -399.3335001 |
| 1 | 14.0724019 | -1.3464395 | -237.7406718 |
| 2 | 14.0667384 | -0.1085768 | -200.9395614 |
| 3 | 14.0661981 | -0.0008294 | -197.8812635 |
| 4 | 14.0661939 | -0.0000000 | -197.8578126 |

Figura 19: Punto inicial: 17.23

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 17.2287596 | -2.7545710 | -399.3335001 |
| 1 | 17.2218617 | -0.3345028 | -308.2259352 |
| 2 | 17.2207764 | -0.0062743 | -296.7712770 |
| 3 | 17.2207553 | -0.0000023 | -296.5544913 |

Figura 20: Punto inicial: 20.37

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 20.3703522 | 0.3870217  | -399.3335001 |
| 1 | 20.3713214 | -0.0076628 | -415.3029993 |
| 2 | 20.3713030 | -0.0000029 | -414.9901022 |

Figura 21: Punto inicial: 23.51

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 23.5119449 | 3.5286143  | -399.3335001 |
| 1 | 23.5207812 | -0.7587207 | -589.4942094 |
| 2 | 23.5194941 | -0.0230297 | -554.2504282 |
| 3 | 23.5194525 | -0.0000225 | -553.1657083 |
| 4 | 23.5194525 | -0.0000000 | -553.1646458 |

Figura 22: Punto inicial: 26.65

| i | $x_i$      | $f(x_i)$   | $f'(x_i)$    |
|---|------------|------------|--------------|
| 0 | 26.6535376 | 6.6702070  | -399.3335001 |
| 1 | 26.6702409 | -3.3517103 | -901.3175525 |
| 2 | 26.6665222 | -0.3369726 | -729.1887304 |
| 3 | 26.6660601 | -0.0041589 | -711.3005805 |
| 4 | 26.6660543 | -0.0000006 | -711.0784844 |

Figura 23: Punto inicial: 29.80

|   | 1 igura 29. 1 unito iniciai. 29.00 |            |               |  |  |
|---|------------------------------------|------------|---------------|--|--|
| i | $x_i$                              | $f(x_i)$   | $f'(x_i)$     |  |  |
| 0 | 29.7951302                         | 9.8117997  | -399.3335001  |  |  |
| 1 | 29.8197006                         | -9.4961358 | -1545.7349954 |  |  |
| 2 | 29.8135572                         | -1.8485454 | -1002.4887435 |  |  |
| 3 | 29.8117132                         | -0.1020710 | -894.8344894  |  |  |
| 4 | 29.8115992                         | -0.0003475 | -888.7521642  |  |  |
| 5 | 29.8115988                         | -0.0000000 | -888.7314227  |  |  |

Figura 24: Punto inicial: 32.94

|   | 1 18 dr a 2 1. 1 drive iniciai. 02.01 |             |               |  |
|---|---------------------------------------|-------------|---------------|--|
| i | $x_i$                                 | $f(x_i)$    | $f'(x_i)$     |  |
| 0 | 32.9367229                            | 12.9533923  | -399.3335001  |  |
| 1 | 32.9691604                            | -23.9645837 | -3241.4512185 |  |
| 2 | 32.9617672                            | -7.1010237  | -1605.0272201 |  |
| 3 | 32.9573430                            | -1.0697688  | -1157.8443361 |  |
| 4 | 32.9564191                            | -0.0326349  | -1088.2776818 |  |
| 5 | 32.9563891                            | -0.0000323  | -1086.1257083 |  |
| 6 | 32.9563890                            | -0.0000000  | -1086.1235785 |  |

Estas serian las 10 primeras raíces positivas para la ecuación:

- 1. 4.4934095
- 2. 7.7252518
- 3. 10.9041217
- $4.\ \ 14.0661939$
- 5. 17.2207553
- $6.\ \ 20.3713030$
- 7. 23.5194525
- $8.\ \ 26.6660543$
- 9. 29.8115988
- 10. 32.9563890

Nos piden calcular la raíz de la función:

$$f(x) = 2x^3 - \frac{34}{7}x^2 + \frac{209}{49}x - \frac{173}{343}$$

En el intervalo de [-1,1]. Con el método de la secante tenemos:

Figura 25: Punto inicial: 0.50

| i  | $x_{i-1}$  | $x_i$      | $x_{i+1}$  | $f(x_{i-1})$ | $f(x_i)$    | $f(x_{i+1})$ |
|----|------------|------------|------------|--------------|-------------|--------------|
| 0  | 0.5000000  | 1.0000000  | -0.8844985 | 0.6639942    | 0.9037901   | -9.4609080   |
| 1  | 1.0000000  | -0.8844985 | 0.8356738  | 0.9037901    | -9.4609080  | 0.8352291    |
| 2  | -0.8844985 | 0.8356738  | 0.6961324  | -9.4609080   | 0.8352291   | 0.7857636    |
| 3  | 0.8356738  | 0.6961324  | -1.5204967 | 0.8352291    | 0.7857636   | -25.2495379  |
| 4  | 0.6961324  | -1.5204967 | 0.6292330  | 0.7857636    | -25.2495379 | 0.7546590    |
| 5  | -1.5204967 | 0.6292330  | 0.5668464  | -25.2495379  | 0.7546590   | 0.7170005    |
| 6  | 0.6292330  | 0.5668464  | -0.6209630 | 0.7546590    | 0.7170005   | -5.5047415   |
| 7  | 0.5668464  | -0.6209630 | 0.4299619  | 0.7170005    | -5.5047415  | 0.5905911    |
| 8  | -0.6209630 | 0.4299619  | 0.3281353  | -5.5047415   | 0.5905911   | 0.4429048    |
| 9  | 0.4299619  | 0.3281353  | 0.0227619  | 0.5905911    | 0.4429048   | -0.4097797   |
| 10 | 0.3281353  | 0.0227619  | 0.1695170  | 0.4429048    | -0.4097797  | 0.0888364    |
| 11 | 0.0227619  | 0.1695170  | 0.1433703  | -0.4097797   | 0.0888364   | 0.0132001    |
| 12 | 0.1695170  | 0.1433703  | 0.1388071  | 0.0888364    | 0.0132001   | -0.0005541   |
| 13 | 0.1433703  | 0.1388071  | 0.1389909  | 0.0132001    | -0.0005541  | 0.0000032    |
| 14 | 0.1388071  | 0.1389909  | 0.1389899  | -0.0005541   | 0.0000032   | 0.0000000    |
| 15 | 0.1389909  | 0.1389899  | 0.1389899  | 0.0000032    | 0.0000000   | -0.0000000   |

Y con el método de falsa posición(regula falsi):

Figura 26: Punto inicial: -1.00

| i | $x_{i-1}$  | $x_i$     | $x_{i+1}$ | $f(x_{i-1})$ | $f(x_i)$  | $f(x_{i+1})$ |
|---|------------|-----------|-----------|--------------|-----------|--------------|
| 0 | -1.0000000 | 1.0000000 | 0.8557469 | -11.6268222  | 0.9037901 | 0.8420818    |
| 1 | -1.0000000 | 0.8557469 | 0.7304198 | -11.6268222  | 0.8420818 | 0.7991187    |
| 2 | -1.0000000 | 0.7304198 | 0.6191356 | -11.6268222  | 0.7991187 | 0.7492116    |
| 3 | -1.0000000 | 0.6191356 | 0.5211175 | -11.6268222  | 0.7492116 | 0.6823630    |
| 4 | -1.0000000 | 0.5211175 | 0.4367940 | -11.6268222  | 0.6823630 | 0.5986685    |
| 5 | -1.0000000 | 0.4367940 | 0.3664358 | -11.6268222  | 0.5986685 | 0.5048004    |
| 6 | -1.0000000 | 0.3664358 | 0.3095780 | -11.6268222  | 0.5048004 | 0.4099093    |
| 7 | -1.0000000 | 0.3095780 | 0.2649805 | -11.6268222  | 0.4099093 | 0.3220181    |

| 8  | -1.0000000 | 0.2649805 | 0.2308896 | -11.6268222 | 0.3220181 | 0.2461248 |
|----|------------|-----------|-----------|-------------|-----------|-----------|
| 9  | -1.0000000 | 0.2308896 | 0.2053734 | -11.6268222 | 0.2461248 | 0.1840661 |
| 10 | -1.0000000 | 0.2053734 | 0.1865883 | -11.6268222 | 0.1840661 | 0.1353730 |
| 11 | -1.0000000 | 0.1865883 | 0.1729317 | -11.6268222 | 0.1353730 | 0.0983220 |
| 12 | -1.0000000 | 0.1729317 | 0.1630960 | -11.6268222 | 0.0983220 | 0.0707565 |
| 13 | -1.0000000 | 0.1630960 | 0.1560606 | -11.6268222 | 0.0707565 | 0.0505796 |
| 14 | -1.0000000 | 0.1560606 | 0.1510533 | -11.6268222 | 0.0505796 | 0.0359826 |
| 15 | -1.0000000 | 0.1510533 | 0.1475020 | -11.6268222 | 0.0359826 | 0.0255103 |
| 16 | -1.0000000 | 0.1475020 | 0.1449898 | -11.6268222 | 0.0255103 | 0.0180416 |
| 17 | -1.0000000 | 0.1449898 | 0.1432158 | -11.6268222 | 0.0180416 | 0.0127374 |
| 18 | -1.0000000 | 0.1432158 | 0.1419648 | -11.6268222 | 0.0127374 | 0.0089816 |
| 19 | -1.0000000 | 0.1419648 | 0.1410833 | -11.6268222 | 0.0089816 | 0.0063278 |
| 20 | -1.0000000 | 0.1410833 | 0.1404626 | -11.6268222 | 0.0063278 | 0.0044553 |
| 21 | -1.0000000 | 0.1404626 | 0.1400258 | -11.6268222 | 0.0044553 | 0.0031356 |
| 22 | -1.0000000 | 0.1400258 | 0.1397184 | -11.6268222 | 0.0031356 | 0.0022062 |
| 23 | -1.0000000 | 0.1397184 | 0.1395022 | -11.6268222 | 0.0022062 | 0.0015519 |
| 24 | -1.0000000 | 0.1395022 | 0.1393501 | -11.6268222 | 0.0015519 | 0.0010915 |
| 25 | -1.0000000 | 0.1393501 | 0.1392432 | -11.6268222 | 0.0010915 | 0.0007676 |
| 26 | -1.0000000 | 0.1392432 | 0.1391680 | -11.6268222 | 0.0007676 | 0.0005398 |
| 27 | -1.0000000 | 0.1391680 | 0.1391151 | -11.6268222 | 0.0005398 | 0.0003795 |
| 28 | -1.0000000 | 0.1391151 | 0.1390779 | -11.6268222 | 0.0003795 | 0.0002669 |
| 29 | -1.0000000 | 0.1390779 | 0.1390518 | -11.6268222 | 0.0002669 | 0.0001876 |
| 30 | -1.0000000 | 0.1390518 | 0.1390334 | -11.6268222 | 0.0001876 | 0.0001319 |
| 31 | -1.0000000 | 0.1390334 | 0.1390205 | -11.6268222 | 0.0001319 | 0.0000928 |
| 32 | -1.0000000 | 0.1390205 | 0.1390114 | -11.6268222 | 0.0000928 | 0.0000652 |
| 33 | -1.0000000 | 0.1390114 | 0.1390050 | -11.6268222 | 0.0000652 | 0.0000459 |
| 34 | -1.0000000 | 0.1390050 | 0.1390005 | -11.6268222 | 0.0000459 | 0.0000322 |
| 35 | -1.0000000 | 0.1390005 | 0.1389973 | -11.6268222 | 0.0000322 | 0.0000227 |
| 36 | -1.0000000 | 0.1389973 | 0.1389951 | -11.6268222 | 0.0000227 | 0.0000159 |
| 37 | -1.0000000 | 0.1389951 | 0.1389936 | -11.6268222 | 0.0000159 | 0.0000112 |
| 38 | -1.0000000 | 0.1389936 | 0.1389925 | -11.6268222 | 0.0000112 | 0.0000079 |
| 39 | -1.0000000 | 0.1389925 | 0.1389917 | -11.6268222 | 0.0000079 | 0.0000055 |
| 40 | -1.0000000 | 0.1389917 | 0.1389911 | -11.6268222 | 0.0000055 | 0.0000039 |
| 41 | -1.0000000 | 0.1389911 | 0.1389908 | -11.6268222 | 0.0000039 | 0.0000027 |
| 42 | -1.0000000 | 0.1389908 | 0.1389905 | -11.6268222 | 0.0000027 | 0.0000019 |
| 43 | -1.0000000 | 0.1389905 | 0.1389903 | -11.6268222 | 0.0000019 | 0.0000014 |
| 44 | -1.0000000 | 0.1389903 | 0.1389902 | -11.6268222 | 0.0000014 | 0.0000010 |
| 45 | -1.0000000 | 0.1389902 | 0.1389901 | -11.6268222 | 0.0000010 | 0.0000007 |
| 46 | -1.0000000 | 0.1389901 | 0.1389900 | -11.6268222 | 0.0000007 | 0.0000005 |
| 47 | -1.0000000 | 0.1389900 | 0.1389900 | -11.6268222 | 0.0000005 | 0.0000003 |
|    |            | I         | l         | I           | l .       | 1         |

| 48 | -1.0000000 | 0.1389900 | 0.1389899 | -11.6268222 | 0.0000003 | 0.0000002 |
|----|------------|-----------|-----------|-------------|-----------|-----------|
| 49 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000002 | 0.0000002 |
| 50 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000002 | 0.0000001 |
| 51 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000001 | 0.0000001 |
| 52 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000001 | 0.0000001 |
| 53 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000001 | 0.0000000 |
| 54 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000000 | 0.0000000 |
| 55 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000000 | 0.0000000 |
| 56 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000000 | 0.0000000 |
| 57 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222 | 0.0000000 | 0.0000000 |

Por ambos métodos converge, aunque notablemente mas rapido con el método de la secante. Y vemos que ambos métodos convergen al mismo valor, a 0.1389899.

Normalmente el método de falsa posición calculamos el próximo punto  $(x_{i+1})$  usando la siguiente formula:

$$x_{i+1} = x_{i-1} - \frac{f(x_{i-1})}{\left(\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}\right)}$$

Si cambiamos la formula usada en el método por la siguiente:

$$x_{i+1} = \frac{f(x_i) x_{i-1} - \frac{1}{2} f(x_{i-1}) x_i}{f(x_i) - \frac{1}{2} f(x_{i-1})}$$

Obtenemos los siguientes resultados:

Figura 27: Punto inicial: -1.00

|    |            |           |           | 1            |           |              |
|----|------------|-----------|-----------|--------------|-----------|--------------|
| i  | $x_{i-1}$  | $x_i$     | $x_{i+1}$ | $f(x_{i-1})$ | $f(x_i)$  | $f(x_{i+1})$ |
| 0  | -1.0000000 | 1.0000000 | 0.7309028 | -11.6268222  | 0.9037901 | 0.7992977    |
| 1  | -1.0000000 | 0.7309028 | 0.5216834 | -11.6268222  | 0.7992977 | 0.6828335    |
| 2  | -1.0000000 | 0.5216834 | 0.3617362 | -11.6268222  | 0.6828335 | 0.4976389    |
| 3  | -1.0000000 | 0.3617362 | 0.2543606 | -11.6268222  | 0.4976389 | 0.2992127    |
| 4  | -1.0000000 | 0.2543606 | 0.1929597 | -11.6268222  | 0.2992127 | 0.1521799    |
| 5  | -1.0000000 | 0.1929597 | 0.1625277 | -11.6268222  | 0.1521799 | 0.0691411    |
| 6  | -1.0000000 | 0.1625277 | 0.1488639 | -11.6268222  | 0.0691411 | 0.0295381    |
| 7  | -1.0000000 | 0.1488639 | 0.1430560 | -11.6268222  | 0.0295381 | 0.0122581    |
| 8  | -1.0000000 | 0.1430560 | 0.1406508 | -11.6268222  | 0.0122581 | 0.0050233    |
| 9  | -1.0000000 | 0.1406508 | 0.1396660 | -11.6268222  | 0.0050233 | 0.0020477    |
| 10 | -1.0000000 | 0.1396660 | 0.1392647 | -11.6268222  | 0.0020477 | 0.0008329    |
| 11 | -1.0000000 | 0.1392647 | 0.1391015 | -11.6268222  | 0.0008329 | 0.0003385    |
| 12 | -1.0000000 | 0.1391015 | 0.1390352 | -11.6268222  | 0.0003385 | 0.0001375    |
| 13 | -1.0000000 | 0.1390352 | 0.1390083 | -11.6268222  | 0.0001375 | 0.0000559    |
| 14 | -1.0000000 | 0.1390083 | 0.1389973 | -11.6268222  | 0.0000559 | 0.0000227    |
| 15 | -1.0000000 | 0.1389973 | 0.1389929 | -11.6268222  | 0.0000227 | 0.0000092    |
| 16 | -1.0000000 | 0.1389929 | 0.1389911 | -11.6268222  | 0.0000092 | 0.0000037    |
| 17 | -1.0000000 | 0.1389911 | 0.1389904 | -11.6268222  | 0.0000037 | 0.0000015    |
| 18 | -1.0000000 | 0.1389904 | 0.1389901 | -11.6268222  | 0.0000015 | 0.0000006    |
| 19 | -1.0000000 | 0.1389901 | 0.1389899 | -11.6268222  | 0.0000006 | 0.0000003    |
| 20 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222  | 0.0000003 | 0.0000001    |
| 21 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222  | 0.0000001 | 0.0000000    |
| 22 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222  | 0.0000000 | 0.0000000    |
| 23 | -1.0000000 | 0.1389899 | 0.1389899 | -11.6268222  | 0.0000000 | 0.0000000    |

Esta nueva formula es equivalente a:

$$x_{i+1} = x_{i-1} - \frac{f(x_{i-1})}{\left(\frac{2f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}\right)}$$

Tenemos que esta formula es muy parecida a la formula original. Lo que cambia es el  $2f(x_i)$ . Esto hace que la recta se incline mas hacia arriba, y por lo tanto este mas cerca del resultado, por lo que logramos converger de manera mas rápida en este caso usando esta formula.

Tenemos que

$$c(t) = Ate^{-t/3}$$

y queremos saber la cantidad A que debe inyectarse para lograr la concentración máxima de c(t) = 1mg/mL, entonces calculamos la derivada de c para saber en que punto alcanza el máximo.

$$\left(te^{-t/3}\right)' = \frac{e^{-t/3}}{3}(3-t)$$

Si igualamos la derivada a 0, obtendremos el punto máximo de la función, entonces para encontrar la solución de:

$$\frac{e^{-t/3}}{3}(3-t) = 0$$

Aqui tenemos que la solucion es t = 3. Entonces teniendo esto, y que el punto máximo de c(t) debe ser 1, y remplazando t por 3 tendríamos:

$$A = \frac{e}{3}$$

Entonces quedamos con:

$$c(t) = \frac{e}{3}te^{-t/3}$$

Tenemos que se debe administrar  $\frac{e}{3}$  unidades al paciente, y que toma 3 horas alcanzar la concentración máxima (1mg/mL). Para saber cuando debe colocarse la segunda inyección debemos saber cuando la función desciende a 0.25mg/mL luego de que alcanza su máximo. Entonces tendríamos:

$$\frac{e^{-t/3}}{3}(3-t) = 0.25$$
$$\frac{4e^{-t/3}}{3}(3-t) - 1 = 0$$

Y ahora teniendo esto, si lo derivamos y le aplicamos newton y tomamos un valor inicial de 6, tenemos que converge a 11.0779036.

Entonces tarda 11.0779036 horas, o lo que es lo mismo, 11 horas con 4.20 minutos.