Loan Defaulter Classification

Yingqing Qiu Metis Data Science Bootcamp

The problem

Goal and Impact

- Predict if a person will be a loan defaulter or not.
- Prevent bank losses and lower the potential of impacting country's economic growth.

Data

- Kaggle Dataset: Bank Loan
 Defaulter Prediction
- 67,463 rows and 35 columns
- Target: Loan Status (1 or 0)

Method

- KNN, Logistic Regression, Decision Tree, Random Forest, and XGBoost
- Oversampling, SMOTE, Cross-validation, GridsearchCV

Classification Work-Flow

EDA

1. Data Cleaning

- 2. Pair Plot
- 3. Prelim. Feature Engineering

Baselining

- 1. Starting with features generated in EDA.
- 2. Using Logistic Regression as the baseline model.

Iteration

- 1. Practicing with multiple Classifiers to generate new Feature set.
- 2. Consider imbalanced dataset.
- 3. Tuning parameters to optimize the models.

Final Model

- 1. Select the most suitable model for the data set.
- 2. Interpret the results.

Summary of Features

Loan Information

Loan Amount
Funded Amount
Grade
Verification Status

•••

Personal Information

Home Ownership
Open Account
Public Record
Employment Duration

Target

Summary of Model Performances

Oversampling + Cross-validation

	KNN	Logistic Regression	Decision Tree	Random Forest	XGBoost
Recall	0.179	0.134	0.118	0.095	0.119
Precision	0.092	0.100	0.102	0.089	0.098
F1	0.121	0.115	0.110	0.092	0.108
Accuracy	0.709	0.662	0.927	0.999	0.871

	KNN	Logistic Regression	Decision Tree	Random Forest	XGBoost
Recall	0.261	0.155	0.992	0.139	0.062
Precision	0.092	0.088	0.090	0.089	0.075
F1	0.136	0.102	0.165	0.109	0.067
Accuracy	0.780	0.663	0.801	0.913	0.897

Optimizing Feature Selection

Optimizing Feature Selection

Final Model Interpretation

Model Parameters

Results

'max_depth': 50, 'F1': 0.099, 'max_features': 'auto', 'AUC': 0.515, 'min_samples_leaf': 1, 'Accuracy': 0.914, 'min_samples_split': 2, 'Precision': 0.104, 'n estimators': 150 'Recall': 0.095

Confusion Matrix

ROC Curve

Conclusion & Future work

- Personal Informations are more important features comparing to Loan Informations
- The final model have 51% chance to distinguish between Loan defaulter and non-defaulter.
- To adjust the model with collecting more valuable personal informations.

Thank you for your time!

Any Questions?