15. Topologie-Übung

Joachim Breitner

13. Februar 2008

Aufgabe 1

Sei $f \in \mathbb{C}[X]$ nicht konstant, $W := \{f(z) \mid z \in \mathbb{C}, f'(z) = 0\}.$

Behauptung: $p:\{(z,w)\mid f(z)=w,W\notin W\}\to\mathbb{C}\setminus W,\,(z,w)\mapsto w$ ist eine Überlagerung.

Sei $w\in\mathbb{C}\setminus W$. Zu zeigen ist: Es gibt eine Umgebung $U\subseteq\mathbb{C}\setminus W$ von w: $p^{-1}(U)=\bigcup_{i\in I}V_i,\,V_i$ paarweise disjunkt, $V_i\cong U$.

Anschaulich: Sei U eine ϵ -Umgebung von w, die ganz in $\mathbb{C} \setminus W$ liegt, dann ist $p^{-1}(U) = \{(z, f(z)) \mid f(z) \in U\}$

Sei $w \in \mathbb{C} \setminus W$ und $p^{-1}(w) = \{z_1, \ldots, z_n\}$, wobei $f'(z_i) \neq 0, i = 1, \ldots, n$. Nach dem Umkehrsatz gilt dann: Für alle $i = 1, \ldots, n$ gibt es eine offene Umgebung U_i von z_i , so dass $f|_{U_i}$ bijektiv ist.

Wähle ε so klein, dass für $i=1,\ldots,n$ gilt: $B_{\varepsilon}(z_i)\subseteq U$ und $B_{\varepsilon}(z_j)$ sind disjunkt für $i\neq j$ und setze

$$U \coloneqq \bigcap_{i=1}^{n} f(B_{\varepsilon}(z_i))$$

Es ist

$$p^{-1}(V) := \underbrace{\{(z, f(z)) \mid z \in (f|_{U_1})^{-1}(V)\}}_{=:V_1} \cup \cdots \cup \underbrace{\{(z, f(z)) \mid z \in (f|_{U_n})^{-1}(V)\}}_{=:V_n}$$

Die V_i sind nach Konstruktion offen, disjunkt und alle homöomorph zu U.

Aufgabe 2

Sei $X := \bigcup_{n \in \mathbb{N}} K_{\frac{1}{n}}((\frac{1}{n}, 0)),$ "Havaiianische Ohrringe".

Vorüberlegung: Ist $p: \tilde{X} \to X$ eine universelle Überlagerung, dann ist X semi-lokal einfach zusammenhängend.

Denn: Ist $x \in X$ und $y \in p^{-1}(x)$, dann gibt es eine Umgebung U von x mit $p^{-1}(U) = \bigcup i \in IV_i$, wobei dei V_i offen, paarweise disjunkt und zusammenhängend sind. Sei $V := V_i$ für das i, für das gilt: $y \in V_i$, dann gibt es einen Homöomorphismus $q := p|_V : V \to U$. Wir erhalten das kommutative Diagram:

$$\begin{array}{ccc}
\pi_1(V,y) & \xrightarrow{\pi_1(\iota)} & \pi_1(\tilde{X},y) \\
\pi_1(q) \downarrow & & \downarrow \pi_1(p) \\
\pi_1(U,x) & \xrightarrow{\pi_1(\iota)} & \pi_1(X,x)
\end{array}$$

 \tilde{X} ist einfach zusammenhängend, also ist $\pi_1(\tilde{X},y)=\{1\}$ und man sieht im Diagramm: $\pi_1(\iota):\pi_1(U,x)\to\pi_1(X,x)$ ist der triviale Homomorphismus, das heißt jeder geschlossene Weg in U ist nullhomotop in X, und damit ist X semilokal einfach zusammenhängend.

Behauptung: X hat keine universelle Überlagerung.

X ist nicht semi-lokal einfach zusammenhängend, denn der Punkt (0,0) hat keine Umgebung, in der jeder geschlossene Weg nullhomotop ist, da in jeder Umgebung von (0,0) einen Kreis enthält.

Aufgabe 3

Seien $p_1:Y_1\to X$ und $p_2:Y_2\to X$ Überlagerungen und Y_1,Y_2 zusammenhängend.

Behauptung: Ein Morphismus $f: Y_1 \to Y_2$ (d.h. eine stetige Abbildung $f: Y_1 \to Y_2$ mit $p_1 = p_2 \circ f$) ist eine Überlagerung.

Sei $y \in Y_2$ und $x \coloneqq p_2(y)$. Dann gilt: $\tilde{y} \in f^{-1}(y) \Longrightarrow f(\tilde{y}) = y \Longrightarrow (p_2 \circ f)(\tilde{y}) = p_2(y) \Longrightarrow p_1(\tilde{y}) = p_2(y)$. p_1 und p_2 sind Überlagerungen, also gibt es eine Umgebungen $U \subseteq X$ und $\tilde{U} \subseteq X$ von x, so dass $p_1^{-1}(U) = \bigcup_{i \in I} V_i$

und $p_2^{-1}(\tilde{U}) = \bigcup_{j \in K} \tilde{V}_j$, so dass die V_i und \tilde{V}_j offen, untereinander paarweise disjunkt und zusammenhängend sind. Sei o.B.d.A $U = \tilde{U}$.

Ist f surjektiv, so ist $f^{-1}(y) \neq 0$. Es gibt ein $j \in J$, so dass $y \in \tilde{V}_j$. Dann ist $f^{-1}(\tilde{V}_j) = \bigcup_{i \in \tilde{I} \subset I} V_i$, woraus die Behauptung folgt.

Aufgabe 4

Behauptung: Für $n \geq 2$ gilt: $\pi_1(\mathbb{P}^n(\mathbb{R})) = \mathbb{Z}/2\mathbb{Z}$.

Definiere Operation von $\mathbb{Z}/2\mathbb{Z}$ auf S^n durch $\bar{0}\cdot x=x, \bar{1}\cdot x=-x$. Diese Operation ist eigentlich diskontinuierlich und fixpunktfrei, also ist $\pi:S^n\to S^n/(\mathbb{Z}/2\mathbb{Z})$ ist eine Überlagerung, und $S^n/(\mathbb{Z}/2\mathbb{Z})$ ist gerade $\mathbb{P}^n(\mathbb{R})$. Für $n\geq 2$ ist S^n einfach zusammenhängend, also ist π eine universelle Überlagerung und $\pi_1(\mathbb{P}^n(\mathbb{R}))\cong \mathrm{Deck}(\pi)\cong \mathbb{Z}/2\mathbb{Z}$.