МОДУЛЬ 2 ИМПУЛЬСНЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА

В модуле 2 дисциплины «Основы импульсной и цифровой электроники» изучаются простейшие импульсные электронные устройства (ключи, генераторы и формирователи импульсов), а также даются основные сведения об устройствах питания электронных устройств в целом и некоторых элементах импульсных устройств электропитания.

Введение

Импульсными электронными устройствами называются устройства формирования и преобразования импульсных сигналов. *Импульсными сигналами* (электрическими импульсами) можно назвать сравнительно кратковременное отклонение напряжения (тока) от начального значения. В электронных устройствах наиболее распространено использование импульсов прямоугольной формы. В частности, входные, выходные и внутренние сигналы цифровых устройств в общем случае представляют собой последовательности прямоугольных (или близких по форме к прямоугольным) импульсов – это является основанием для изучения цифровых и импульсных устройств в рамках одной дисциплины. Кроме того, в электронных устройствах используются пилообразные, треугольные, гауссовы импульсы, а также импульсы более сложной формы (например, ступенчато нарастающее напряжение и др.)

К импульсным электронным устройствам относятся:

- 1) устройства коммутации напряжения (тока) простейшие электронные ключи на транзисторах и более сложные коммутирующие устройства на их основе;
- 2) генераторы импульсных сигналов устройства для получения импульсов требуемой формы, амплитуды, длительности и частоты повторения; часто также выполняются на основе простейших транзисторных ключей либо ИМС (ОУ, компараторов и т. д.), работающих в ключевом режиме;
 - 3) более сложные импульсные устройства ключевые усилители, импульсные измерительные преобразователи;
- 4) отдельно стоит выделить импульсные устройства электропитания (импульсные стабилизаторы, импульсные преобразователи питания) и управления разного рода устройствами: двигателями, нагревательными элементами, группами светодиодов и др.

Для примера: управлять частотой вращения двигателя постоянного тока можно несколькими способами. Первый способ – подключение двигателя к регулируемому источнику питания: удобно при выполнении эксперимента, но слишком дорого для реализации конкретного устройства. Второй способ – подключение к источнику постоянного напряжения через потенциометр. Просто, но энергетически невыгодно потому, что через потенциометр и двигатель протекает один и тот же ток, а значит, на потенциометре будет выделяться большая мощность (возможно, превышающая мощность, развиваемую двигателем). Третий способ – подключение двигателя к источнику постоянного напряжения через транзисторный ключ, который замыкается и размыкается с частотой несколько кГц. Таким образом, на двигатель подается не постоянное напряжение, а импульсы напряжения с амплитудой, равной напряжению источника питания. Сохраняя неизменной частоту повторения импульсов и изменяя их длительность (выполняя так называемую ишротно-импульсную модуляцию или ШИИ), можно управлять частотой вращения двигателя. Такой способ энергетически более выгоден, так как транзистор ключа циклически переходит из режима отсечки в режим насыщения, при этом мощность, выделяемая на ключе, остается достаточно малой. Кроме того, управление ключом может осуществляться с помощью цифровых схем, например микроконтроллеров, что дает дополнительные возможности (стабилизация частоты вращения, отключение при перегреве и др.).

Транзисторные электронные ключи

Электронные ключи – устройства для коммутации электрического тока с помощью управляющих сигналов.

Простейшие электронные ключи могут быть построены на основе одного транзистора, в выходную цепь которого включается нагрузка. В режиме отсечки транзистор эквивалентен разомкнутому ключу, в режиме насыщения – замкнутому. Из одного режима в другой транзистор переводится с помощью управляющего напряжения $U_{\text{УПР}}$. Подобные ключи позволяют коммутировать в нагрузке ток одного направления (подсоединяя к нагрузке напряжение одной полярности). Такие ключи могут быть построены как на биполярных, так и на полевых транзисторах, а также на сравнительно недавно разработанных типах транзисторов: биполярных транзисторах с изолированным затвором (БТИЗ) и транзисторах со статической индукцией (СИТ). Несмотря на простоту, такие ключи имеют очень широкое применение как по прямому назначению, так и в составе более сложных устройств. В частности, схемотехнически элементы цифровых ИМС представляют собой комбинацию соединённых друг с другом транзисторных ключей.

Для подключения к нагрузке двуполярного напряжения (для коммутации тока обоих направлений) используются двунаправленные ключи. Также их называют аналоговыми, имея в виду возможность их работы с аналоговыми сигналами, которые в общем случае могут иметь разную полярность. Схемотехника таких ключей более сложная. Хотя они могут быть выполнены на дискретных элементах, но в настоящее время они выполняются в виде специализированных ИМС.

Рис. 9.1 Варианты ключей с последовательной (а), параллельной (б) и последовательно-параллельной (в) коммутацией

В ключах с последовательной коммутацией (рис. 9.1, а) коммутирующий элемент S соединяется последовательно с нагрузкой $R_{\rm H}$. В зависимости от управляющего напряжения $U_{\rm упр}$ сопротивление коммутирующего элемента может быть либо очень малым (в идеале нулевым), что соответствует замкнутому ключу, либо увеличиваться на несколько порядков и становиться очень большим (в идеале бесконечным), что соответствует разомкнутому ключу.

В ключах с параллельной коммутацией (рис. 9.1, б) нагрузка и коммутирующий элемент соединяются параллельно. При замкнутом ключе нагрузка шунтируется очень малым сопротивлением замкнутого ключа и напряжение нагрузки становится близким к нулю, а ток нагрузки пренебрежимо малым. Токоограничивающий резистор $R_{O\Gamma P}$ необходим для того, чтобы не допустить режима короткого замыкания для источника входного напряжения. Ток в нагрузке обеспечивается при разомкнутом ключе, тогда напряжение нагрузки определяется делителем $R_{O\Gamma P} - R_H$. В некоторых ключах используется комбинированная или последовательно-параллельная коммутация (рис. 9.1, в). В таких ключах ток в нагрузке обеспечивается при замкнутом S_1 и разомкнутом S_2 , а при разомкнутом S_1 и замкнутом S_2 напряжение нагрузки становится близким к нулю. Для этого напряжения $U_{Y\Pi P1}$ и $U_{Y\Pi P2}$, управляющие работой S_1 и S_2 , должны быть противофазными.

Простейший ключ на биполярном транзисторе

Наиболее распространённой является схема ключа на биполярном транзисторе, включенном по схеме с общим эмиттером (ОЭ), показанная на рис. 9.2, а. Нагрузка в виде резистора R_K включена в коллекторную цепь, и тогда схема представляет собой ключ с последовательной коммутацией.

При подаче на вход схемы отрицательного запирающего напряжения $U_{3A\Pi}$ оба перехода транзистора находятся под обратным напряжением, поэтому транзистор находится в режиме отсечки (рис. 9.2, в, точка A), т. е. заперт и эквивалентен разомкнутому ключу. Через нагрузку протекает чрезвычайно малый обратный ток коллекторного перехода I_{KDO} , а напряжение на коллекторе $U_{K\Im}=E_K-I_{KEO}R_K\approx E_K$. Примечание. Очень часто $U_{3A\Pi}=0$, т. е. входное напряжение ключа является однополярным. Тогда через нагрузку протекает ток $I_{K\Im O}=(1+\beta)I_{KEO}$, который всё равно остаётся очень малым.

Для перевода ключа в замкнутое состояние нужно ввести транзи- стор в режим насыщения. Для этого на вход надо подать отпирающее напряжение положительной полярности U_{OTII} такое, чтобы ток базы $I_{E.OTII}$ превысил базовый ток насыщения I_{EH} , (рис. 9.2, в, точка В).

Тогда на транзисторе устанавливается очень малое *напряжение насыщения* $U_{K\! \supset H\! A\! C}$ (обычно 0,1...0.3 В), а через транзистор и через R_K протекает *коллекторный ток насыщения*

$$I_{KH} = (E_K - U_{K \ni HAC}) / R_K \approx E_K / R_K$$
,

определяемый в основном нагрузкой и напряжением питания и мало зависящий от транзистора.

Задавая *степень насыщения* $S = I_{E.OTII} / I_{EH} = Bi_{E.OTII} / I_{KH}$ в пределах 2...5 и учитывая, что $I_{E.OTII} = SI_{EH}$ и $I_{KH} = \beta I_{EH}$, можем получить

$$U_{OT\Pi} = I_{B.OT\Pi}$$
, $R_B + U_{B \ni HAC}$

Полученные соотношения могут быть использованы для расчета схемы ключа (см. прошлый семестр, ЭиМЭ, задачи РК модуля 1).

<u>Примечание.</u> В методических указаниях к лабораторной работе по исследованию ключа на биполярном транзисторе (http://ebooks.bmstu.ru/catalog/212/book1376.html, работа 4) рассматривается аналогичная схема на p-n-p транзисторе. Обратите внимание на то, что полярности напряжения питания и входного управляющего напряжения в схемах на n-p-n и p-n-p транзисторах противоположны.

На рис. 9.2, б импульсы тока и напряжения на выходе ключа показаны прямоугольными. Однако таким образом временные диаграммы работы ключа выглядят в случае, когда длительность входного управляющего импульса значительно (на 3 порядка и более) превышает длительность переходных процессов в схеме ключа. Если на вход схемы подавать отпирающие импульсы малой длительности, то можно заметить, что переход транзистора из одного состояния в другое не происходит мгновенно (рис. 9.3). Можно выделить следующие характерные стадии работы ключа.

Переходные процессы в ключе на биполярном транзисторе

Рис. 9.3. Переходные процессы в ключе на биполярном транзисторе

- **1.** Интервал **0...t**₁. На вход ключа подается запирающее напряжение $U_{BX} = U_{3A\Pi} < 0$, *транзистор находится в режиме отсечки*. Коллекторный ток транзистора I_{KEO} очень мал и близок к 0, напряжение U_{K9} близко к E_K .
- **2.** Интервал $t_1...t_2$. На вход ключа подается отпирающее напряжение $U_{OT\Pi} > 0$, но ток I_K остается близким к 0, а напряжение $U_{K\mathfrak{I}}$ остается близким к E_K , т. е. наблюдается задержка включения. Длительность данного интервала $t_{3\mathcal{I}} = t_2 t_1$ определяется как время задержки включения
- **3.** Интервал $t_2...t_3$. Коллекторный ток плавно нарастает от близкого к нулю $I_{K\!BO}$ до $I_{K\!H}$, а напряжение $U_{K\!9}$ одновременно уменьшается от значения, близкого к E_K , до $U_{K\!9\,H\!AC}$. Длительность данного интервала $t_H\!=t_3-t_2$ определяется как *время нарастания коллекторного тока*. Таким образом, включение транзистора проходит в 2 этапа, а *время включения* определяется как $t_{B\!K\!Л}\!=t_{3\!L}+t_H$.
- **4.** Интервал $t_3...t_4$. Транзистор находится в режиме насыщения, $I_K = I_{KH}$, $U_{K} = U_{K} + U_{K} U_{K} + U_{K} + U_{K} + U_{K} = U_{K} + U_{K} +$
- **5.** Интервал $t_4...t_5$. На вход ключа вновь подается запирающее напряжение $U_{BX}=U_{3A\Pi}<0$, однако ток коллектора остается близким к I_{KH} , т. е. *происходит задержка выключения транзистора*, связанная с рассасыванием заряда, накопленного в базе на интервале $t_3...t_4$. Длительность данного интервала $t_P=t_5-t_4$ определяется как время рассасывания заряда в базе или сокращенно время рассасывания (ещё одно название время задержки выключения).
- **6. Интервал** $t_5...t_6$. Коллекторный ток плавно уменьшается от I_{KH} до I_{KBO} , а напряжение синхронно возрастает от $U_{K\ni HAC}$ до значения, близкого к E_K . Длительность данного интервала $t_C = t_6 t_5$ определяется как **время спада коллекторного тока.** Выключение транзистора также проходит в две стадии, а **время выключения** определяется как $t_{BыKЛ} = t_P + t_C$.

С момента t₆ транзистор находится в режиме отсечки.

Причина задержки включения транзистора — конечное время перезаряда его входной ёмкости $C_{BX} = C_{ЭБ} + C_{KB}$ через резистор R_{B} . На рис. 9.4 показана эквивалентная схема входной цепи ключа при подаче на вход отпирающего напряжения U_{OTII} и временные диаграммы входного напряжения и напряжения $U_{EЭ}$. Момент t_1 на рис. 9.3 соответствует t=0 на рис. 9.4, момент t_2 на рис. 9.3 — моменту $t_{3Д}$ на рис. 9.4. Изначально входная ёмкость была заряжена до напряжения U_{3an} , при подаче на вход отпирающего напряжения начинается перезаряд входной ёмкости, вследствие чего $U_{EЭ}$ начинает нарастать. Однако I_K остается близким к 0 до тех пор, пока в момент t_2 $U_{EЭ}$ не превысит пороговое напряжение $U_{EЭ\,ПОР}$ (для кремниевых транзисторов примерно 0,6 B).

Рис. 9.4 К расчёту времени задержки включения $t_{3Д}$

Закон Кирхгофа для входной цепи:

$$U_{OTII}=i_{B}R_{B}+U_{B\ni}=R_{B}C_{BX}\frac{dU_{B\ni}}{dt}+U_{B\ni}$$

Решение этого уравнения:

$$U_{\mathit{Б}\!\mathit{Э}}(t) = U_{\mathit{OTII}} + (U_{\mathit{3AII}} - U_{\mathit{OTII}}) \expiggl(-rac{t}{ au_{\mathit{BX}}}iggr)$$
, где

 $au_{BX} = R_B C_{BX} = R_B (C_{3B} + C_{KB})$ Для момента $t = t_{3I}$ получаем

$$U_{\mathit{Б}\!\mathit{Э}}(t_{\mathit{3}\!\mathit{Д}}) = U_{\mathit{OTII}} + (U_{\mathit{3A\!\Pi}} - U_{\mathit{OTII}}) \exp\!\left(\!-rac{t_{\mathit{3}\!\mathit{Д}}}{ au_{\mathit{B\!X}}}\!
ight) \! = U_{\mathit{\mathit{Б}\!\mathit{9}\,\mathit{\Pi}\mathit{OP}}}\!,$$
 тогда

$$t_{3\!I\!J} = \tau_{B\!X} \ln \! \left[\frac{U_{O\!T\!I\!I} - U_{3\!A\!I\!J}}{U_{O\!T\!I\!I} - U_{B\!\ni\!\Pi\!O\!P}} \right] \! . \label{eq:t3}$$

Для расчёта $t_{3Д}$ можно получить более простую формулу с учётом ряда приближений. Можно считать, что на интервале задержки включения заряд входной ёмкости происходит мало изменяющимся (приближённо — постоянным) отпирающим базовым током $I_{EOTII} = (U_{OTII} - U_{EOTII} - V_{EOTII} / R_E \approx U_{OTII} / R_E$. Тогда

$$i(t) = C_{\mathit{BX}} \, \frac{dU_{\mathit{B}\mathfrak{I}}}{dt} \approx \, C_{\mathit{BX}} \, \frac{\Delta U_{\mathit{B}\mathfrak{I}}}{\Delta t} \approx C_{\mathit{BX}} \left[\frac{U_{\mathit{B}\mathfrak{I}\mathit{\Pi}\mathit{OP}} - U_{\mathit{3}\mathit{A}\mathit{\Pi}}}{t_{\mathit{3}\mathit{I}\!\!I}} \right] \approx I_{\mathit{B}\mathit{O}\mathit{T}\mathit{\Pi}} \approx U_{\mathit{O}\mathit{T}\mathit{\Pi}} / R_{\mathit{B}}, \text{ тогда } t_{\mathit{3}\mathit{I}\!\!I} \approx \tau_{\mathit{BX}} \left[\frac{U_{\mathit{B}\mathfrak{I}\mathit{\Pi}\mathit{OP}} + \left| U_{\mathit{3}\mathit{A}\mathit{\Pi}} \right|}{U_{\mathit{O}\mathit{T}\mathit{\Pi}}} \right].$$

Из полученных формул и из временных диаграмм видно, что для уменьшения $t_{3Д}$ можно увеличивать отпирающий базовый ток (увеличивая U_{OTII} или уменьшая R_{E}), уменьшать постоянную времени входной цепи (выбирая транзистор с меньшими емкостями C_{2E} и C_{KE} , а также уменьшая R_{E}), уменьшать (по модулю) U_{3AII} .

Остальные три характерных процесса будем рассматривать, решая так называемое уравнение заряда:

$$i_{E}(t) = C_{3E} \frac{dU_{3E}}{dt} + C_{KE} \frac{dU_{KE}}{dt} + \frac{dQ_{E}}{dt} + \frac{Q_{E}}{\tau_{\beta}}$$
(9.1)

Смысл этого уравнения: ток базы транзистора определяется зарядом емкостей транзистора (первые 2 слагаемых), изменением пространственного заряда в базе (3-е слагаемое) и рекомбинацией заряда в базе (4-е слагаемое). $\tau_{\beta}=1/2\pi f_{\beta}$ — постоянная времени коэффициента передачи базового тока.

Нарастание тока коллектора. В момент t_2 (рис. 9.3) транзистор открывается, т. е переходит в активный режим. Начинается плавный рост коллекторного тока, который прекращается в момент t_3 , когда транзистор переходит в режим насыщения. Рассматривая процесс нарастания коллекторного тока, следует учесть: так как эмиттерный переход открыт, то напряжение на нем изменяется незначительно, тогда первым слагаемым в уравнении заряда можно пренебречь. Также приближенно можно считать, что базовый ток меняется незначительно, и полагать его равным $I_{\delta.omn}$. Кроме того, можно учесть

$$Q_K = \tau_{\beta} i_K(t) = \tau_{\beta} \frac{i_K(t)}{\beta}, \quad \frac{dU_{KB}}{dt} = R_K \frac{di_K}{dt} \quad (9.2)$$

Тогда (9.1) запишется в виде

$$I_{\text{БОТП}} = R_{\text{K}} C_{\text{KE}} \frac{di_{\text{K}}(t)}{dt} + \frac{\tau_{\beta}}{\beta} \frac{di_{\text{K}}(t)}{dt} + \frac{i_{\text{K}}(t)}{\beta},$$

$$_{\text{ИЛИ}} \beta I_{\text{БОТП}} = (\beta R_{\text{K}} C_{\text{KE}} + \tau_{\beta}) \frac{di_{\text{K}}(t)}{dt} + i_{\text{K}}(t) \qquad (9.3)$$

Рис. 9.5,а К расчёту времени нарастания коллекторного тока $t_{\rm H}$

Здесь и далее для удобства будем за начальный момент времени принимать начало рассматриваемого процесса (рис. 9.5, a), аналогично тому, как поступали при рассмотрении задержки включения. Момент t=0 на рис. 9.5, a соответствует моменту t_1 на рис. 9.3, момент t_H на рис. 9.5, a - моменту t_3 на рис. 9.3.

Решение (9.3) с учетом нулевых начальных условий в мо- мент t₂ (рост тока коллектора начинается практически от нуля) записывается следующим образом:

$$i_{K}(t) = \beta I_{EOTII} \left(1 - \exp\left(-\frac{t}{\tau_{SKB}}\right) \right), \quad (9.4)$$

т. е. коллекторный ток плавно нарастает с эквивалентной постоянной времени $au_{ЭКB} = au_{eta} + eta R_K C_{K\!E}$ от 0, асимптотически стремясь к уровню $eta I_{BOTTI}$. В момент t_3 коллекторный ток достигает уровня $I_{K\!H}$ и прекращает свой рост. При этом в базу поступает граничный заряд $Q_{\Gamma P} = Q_{E}(t_H) = au_{eta} I_{E\!H} = au_{eta} rac{I_{E\!H}}{eta}$. С учетом этого, из (9.4) можно получить формулу для расчёта времени нарастания коллекторного тока:

$$t_{H} = \tau_{SKB} \ln \left[\frac{\beta I_{SOTII}}{\beta I_{SOTII} - I_{KH}} \right] = -\tau_{SKB} \ln \left[1 - \frac{1}{S} \right] \quad (9.5)$$

Из полученных результатов следует, что для уменьшения t_H можно увеличить степень насыщения (*каким образом – рассмом- реть самостоятельно*) или выбрать транзистор с более высоким быстродействием (с меньшими емкостями переходов и с более высокой f_{β}). Отметим, что изменение некоторых элементов ключа неоднозначно влияет на t_H . Например, при увеличении R_K с одной стороны уменьшается I_{KH} , что ведет к уменьшению t_H ; с другой стороны, при этом увеличивается τ_{2KB} , что приводит к увеличению t_H .

После прекращения роста коллекторного тока (момент t_3) продолжается накопление заряда в базе: заряд, поступающий в базу, продолжает увеличиваться с постоянной времени τ_{HAK} , обычно превышающей τ_{β} . В течение интервала (2...3) τ_{HAK} заряд в базе перестает расти, достигнув максимального значения $Q_{HAK} = \tau_{HAK} I_{\delta,omn}$.

Рассасывание заряда в базе. Несмотря на подачу на вход запирающего напряжения, на интервале t_4 - t_5 транзистор остается открытым. В базовой цепи протекает запирающий ток $I_{E.3A\Pi} \approx U_{3A\Pi}/R_E$, который обусловлен движением носителей заряда, накопленных в базе на интервале t_3 – t_4 , обратно в эмиттер (рассасывание заряда в базе); направление этого тока противоположно $I_{E.OTII}$.

Уравнение заряда может быть получено исходя из (9.1) с учётом того, что на данном интервале напряжения на переходах транзистора изменяются незначительно (первые 2 слагаемых (9.1) могут не учитываться). Кроме того, вместо τ_{3KB} вводится τ_{HAK} . Тогда

$$\frac{dQ_{E}}{dt} + \frac{Q_{E}}{\tau_{HAK}} = -I_{E 3A\Pi} \qquad (9.6)$$

Изменение заряда в базе на интервале t_4 - t_5 показано на рис. 9.5, б. Аналогично предыдущему случаю, переносим начальный момент времени таким образом, что момент t=0 на рис. 9.5, б соответствует моменту t_4 на рис. 9.3, момент t_P на рис. 9.5, б - моменту t_5 на рис. 9.3. С учётом начального условия $Q(0)=Q_{HAK}=\tau_{HAK}\,I_{E.OTII}$ решение (9.6) записывается следующим образом:

$$Q_{B}(t) = \tau_{HAK} I_{BOTTI} \exp\left(-\frac{t}{\tau_{HAK}}\right) - \tau_{HAK} I_{B3ATI} \left(1 - \exp\left(-\frac{t}{\tau_{HAK}}\right)\right) \quad (9.7)$$

Рис. 9.5, б К расчёту времени времени рассасывания t_P

Заряд в базе уменьшается с постоянной времени au_{HAK} , стремясь к физически недостижимому значению $- au_{HAK}\,I_{E,3A\Pi}$ и в момент $t=t_P$ достигает значения $Q_{\Gamma P}= au_{eta}I_{EH}= au_{eta}\frac{I_{KH}}{eta}$. С учетом этого из (9.7) можно получить формулу для расчёта t_p

$$t_{P} = \tau_{HAK} \ln \left(\frac{I_{EOTTI} - I_{E3AII}}{I_{EH} - I_{E3AII}} \right) = \tau_{HAK} \ln \left(\frac{\left| I_{EOTTI} \right| + \left| I_{E3AII} \right|}{\left| I_{EH} \right| + \left| I_{E3AII} \right|} \right)$$

Можно показать, что t_P увеличивается при возрастании степени насыщения и уменьшается с увеличением $I_{E,3A\Pi}$ по модулю (т.е. с увеличением $U_{3A\Pi}$ по модулю).

Процесс формирования спада коллекторного тока на интервале $t_5 - t_6$, аналогичен процессу нарастания коллекторного тока, но развивается в обратном направлении (рис. 9.5, в). Уравнение заряда для данного интервала аналогично (9.3) с учётом того, что ток базы изменил направление и равен – $I_{E.3AII}$. Заряд в

базе плавно уменьшается от $Q_{\mathit{\Gamma P}} = au_{\beta} I_{\mathit{EH}} = au_{\beta} \frac{I_{\mathit{KH}}}{\beta}$, асимптотически стремясь к

 $-\tau_{\beta}\,I_{E.3A\Pi}$. Одновременно коллекторный ток плавно уменьшается от I_{KH} , стремясь к физически недостижимому значению $-\beta I_{E.3A\Pi}$. В момент t_6 заряд в базе уменьшается до нуля, коллекторный ток уменьшается до близкого к нулю I_{KEO} , транзистор переходит в режим отсечки. Не вдаваясь в подробности, приведём выражение для определения времени спада

$$t_{C} = \tau_{\mathcal{H}B} \ln \left(\frac{I_{\mathit{BH}} - I_{\mathit{B}\; \mathit{3A\Pi}}}{I_{\mathit{B}\; \mathit{3A\Pi}}} \right)$$

Рис. 9.5, в K расчёту времени спада коллекторного тока $t_{\rm C}$

Возвращаясь к рис. 9.3, обратим внимание на то, что при запирании транзистора напряжение $U_{K\Im}$ изменяется несколько медленнее, чем коллекторный ток (t_C ' > t_C). Причина — заряд ёмкости нагрузки C_H , которая часто присутствует в коллекторной цепи. В ряде случаев транзистор уже может быть заперт, а заряд ёмкости нагрузки ещё продолжается. Если C_H достаточно велика, то можно оценить t_C ' $\approx 2,3R_K$ C_H .

Варианты простых ключевых схем на биполярных транзисторах

Рис. 9.6 Простейший ключ с заземлённой нагрузкой (а), ключ на двух транзисторах (б)

Ключ с «заземлённой» нагрузкой. В схеме на рис. 9.2 нагрузка включена между коллектором и питанием, т. е. является незаземлённой. Некоторые нагрузки допускают такое подключение (реле, группы светодиодов и др.), но в ряде случаев нагрузка одним из выводов должна быть подключена к общему проводу. Такая нагрузка может быть подключена к выходу ранее рассмотренной схемы, как показано на рис. 9.6, а. Нагрузка R_H оказывается включённой параллельно транзистору, тогда получаем ключ с параллельной коммутацией. Если на вход подается $U_{BX} > 0$, то транзистор открыт и насыщен, напряжение нагрузки равно $U_{K\Im}$ HAC (близко к 0), ток нагрузки очень мал. При подаче на вход $U_{BX} < 0$ транзистор закрывается и перестает своим малым сопротивлением шунтировать R_H , через нагрузку протекает ток. Напряжение нагрузки U_H будет определяться делителем напряжения R_K - R_H :

$$U_H = E_K \frac{R_H}{R_K + R_H}$$

Напряжение нагрузки остается близким к E_K , если $R_H >> R_K$. Но тогда ток нагрузки оказывается гораздо меньше тока коллектора I_{KH} , поэтому мощность, выделяемая в нагрузке, оказывается значительно меньше мощности, рассеиваемой на R_K . Таким образом, рассматриваемая схема оказывается энергетически невыгодной и в мощных ключевых схемах не используется. С уменьшением R_H напряжение нагрузки существенно уменьшается, что также можно отнести к недостаткам схемы.

Дополнив схему рис. 9.6, а еще одним транзистором, получаем энергетически более выгодную схему (рис. 9.6, б). При подаче на вход $U_{BX} \le 0$ транзистор VT1 закрыт. База транзистора VT2 через резисторы R_{KI} и R_{b2} соединена с E_K , U_{b3} транзистора VT2 близко к нулю. Поэтому VT2 также закрыт, ток в нагрузке практически равен нулю. При подаче на вход напряжения $U_{BX} > 0$ транзистор VT1 открыт и насыщен и через него резистор R_{b2} подключается к общему проводу. Переход эмиттер-база VT2 оказывается под прямым напряжением, VT2 открыт и насыщен, через R_H протекает ток, а напряжение нагрузки мало отличается от E_K . Отметим, что схемы рис 9.2 и 9.6, а являются инверторами (высокий уровень входного напряжения соответствует низкому уровню выходного), а схема рис. 9.6, б является неинвертирующей. Общий недостаток рассмотренных схем - замедленное изменение напряжения нагрузки при запирании транзистора, вызванное зарядом ёмкости нагрузки через R_K (рис. 9.6, б).

Двухтактные ключи на биполярных транзисторах. В таких ключах выходная цепь выполняется на двух транзисторах, которые находятся в противоположных состояниях. Примеры таких схем приведены на рис. 9.7. Сравнивая с рис. 9.1, заметим, что в таких ключах реализована последовательно-параллельная коммутация: один из транзисторов включён последовательно с нагрузкой, другой – параллельно нагрузке.

На рис. 9.7, а приведена схема двухтактного ключа на комплементарных транзисторах (транзисторах разного типа проводимости, т.е. n-p-n и p-n-p). Она может быть получена из схемы рис. 9.6, б введением дополнительного транзистора VT3, который подключается параллельно нагрузке. При подаче на вход напряжения $U_{BX}>0$ транзистор VT1 открыт и насыщен, поэтому также открыт и насыщен VT2, через него нагрузка запитывается от источника питания. Транзистор VT3 закрыт и не влияет на работу схемы. Если $U_{BX}\leq 0$, то транзисторы VT1 и VT2 закрыты, нагрузка отключается от источника питания. С коллектора VT1 напряжение близкое к E_K через резистор R_{B3} подается на базу VT3, переводя его в режим насыщения. Таким образом, происходит быстрый разряд ёмкости нагрузки через очень малое сопротивление насыщенного VT3, поэтому существенно уменьшается время спада напряжения нагрузки.

Рис. 9.7 Двухтактный ключ на комплементарных транзисторах (а) и транзисторах одного типа проводимости (б).

Схема двухтактного ключа может быть выполнена на транзисторах одного типа проводимости. В схеме рис 9.7, б в выходной цепи ключа установлены два n-p-n транзистора. В отличие от предыдущей схемы, в которой оба выходных транзистора включены по схеме O9, в данной схеме на рис. 9.7, б «верхний» транзистор VT2 включен как эмиттерный повторитель. Если $U_{BX} \le 0$, то транзисторы VT1 и VT3 закрыты. Напряжение на коллекторе VT1 близко к E_K . Через эмиттерный повторитель на VT2 это напряжение практически повторяется на нагрузке. Если $U_{BX} > 0$, то транзистор VT1 открыт и насыщен, напряжение на его коллекторе близко к нулю, поэтому транзистор VT2 закрывается и ток в нагрузке прерывается. Транзистор VT3 также открыт и насыщен, через его малое сопротивление также происходит быстрый разряд ёмкости нагрузки.

Понятие о мостовых ключевых схемах. Мостовые транзисторные каскады представляют собой 4 транзистора, образующие мост, к одной диагонали которого подключается источник питания, а в другую диагональ включается нагрузка. Если транзисторы работают в ключевом режиме (отсечка — насыщение), то имеем мостовую ключевую схему. Подобную схему можно получить, объединив 2 двухтактных каскада и обеспечив им противофазные входные сигналы (рис. 9.8).

Рис. 9.8 Простейший мостовой ключ

В первый такт работы схемы с длительностью t^+ открыты и насыщены транзисторы VT2 и VT3, транзисторы VT1 и VT4закрыты. Ток нагрузки I_H^+ протекает по цепи + $E_K - VT3 - R_H$ -VT2 — общий провод (выделено красным). Во второй такт с длительностью t транзисторы VT2 и VT3 закрыты, VT1 и VT4открыты и насыщены; ток нагрузки I_H^- протекает по цепи $+E_{K}-VT1-R_{H}-VT4-$ общий провод (выделено синим), т. е. направление тока нагрузки меняется на противоположное. В отличие от простейших и двухтактных ключей, обеспечивающих в нагрузке напряжение близкое к напряжению питания, в мостовых ключевых схемах возможно получение размаха импульсов напряжения на нагрузке, соизмеримого с удвоенным напряжением питания, что является одним из достоинств мостовых схем ключей. Кроме того, мостовые ключи позволяют создавать устройства с более широкими функциональными возможностями.

Проиллюстрируем это на упрощенных примерах управления двигателями постоянного тока. Можно включить двигатель в коллекторную цепь простейшего однотактного ключа. На вход ключа подается последовательность импульсов постоянной и достаточно высокой частоты (единицы к Γ ц) и регулируемой длительности. При увеличении длительности импульсов растет среднее значение тока двигателя, следовательно растёт частота вращения вала двигателя. Однако при изменении скорости вращения направление вращения остается неизменным. Включая двигатель в схему мостового ключа, кроме регулировки частоты вращения получаем возможность менять направление вращения: если $t^+ > t^-$, то вал двигателя вращается в одну сторону если $t^+ < t^-$, - то в другую. Если $t^+ = t^-$, то средний ток обмотки двигателя равен нулю и вал двигателя не вращается.

Недостатики ключей на биполярных транзисторах. Биполярный транзистор – прибор, управляемый входным током. Соотношение выходного и входного токов определяется величиной β (десятки – сотни), поэтому при больших токах нагрузки входной ток также может быть значительным. Это налагает дополнительные требования по нагрузочной способности к источнику управляющего сигнала. Маломощные цифровые и аналоговые ИМС не могут быть использованы для непосредственного управления мощными ключами на биполярных транзисторах, в таких случаях приходится использовать промежуточные ключи. По этой причине в мощных ключевых схемах биполярные транзисторы практически полностью вытеснены полевыми транзисторами, а также транзисторами с статической индукцией и биполярными транзисторами с изолированным затвором. Еще один недостаток – наличие значительного времени рассасывания, которое часто превышает время задержки, фронта и спада. Особенно сильно этот недостаток проявляется в двухтактных ключах: если один из транзисторов открывается, а другой из-за задержки выключения также остаётся открытым, то в течение интервала рассасывания открыты оба транзистора и через них протекает импульс сквозного тока, величина которого ограничена очень малым сопротивлением открытых транзисторов. При этом растёт мощность, выделяемая на транзисторах, что может привести к выходу транзисторов из строя.

Ключи на полевых транзисторах

Основное преимущество полевых транзисторов перед биполярными, которое проявляется при их использовании практически во всех типах электронных устройств – очень малые входные токи. Особенно это важно при построении мощных ключевых схем, коммутирующих токи до сотен ампер. Кроме того, полевые транзисторы более устойчивы к перегрузкам, что также делает предпочтительным их применение в мощных ключах, являющихся основой импульсных устройств электропитания и управления. Однако полевые транзисторы могут использоваться и в маломощных ключевых схемах. В частности, значительная часть цифровых ИМС построена на комплементарных полевых транзисторах (ИМС КМОП), работающих в ключевом режиме.

Рис. 9.9 Работа ключей на полевых транзисторах различных типов: на полевом транзисторе с управляющим переходом (а), полевом транзисторе со встроенным (б) и индуцированным (в) каналом.

Существует несколько типов полевых транзисторов, и все они могут работать в ключевом режиме, но некоторые типы полевых транзисторов для этого оказываются менее удобными. На рис. 9.9 показаны схемы простейших ключей на полевом транзисторе с управляющим переходом ПТУП (рис. 9.9,а), на полевом транзисторе с изолированным затвором ПТИЗ со встроенным (рис. 9.9, б) и индуцированным (рис. 9.9. в) каналом, ВАХ передачи транзисторов и упрощенные временные диаграммы работы ключей. В приведенных схемах используются транзисторы с п-каналом, включённые по схеме с общим истоком, цепь стока подключена к источнику питания положительной полярности. Из ВАХ и временных диаграмм ключа на ПТУП следует, что при нулевом входном напряжении транзистор открыт, а для запирания транзистора требуется на его затвор подать напряжение отрицательной полярности, по модулю превышающее напряжение отсечки $U_{3 Home}$. Для формирования такого сигнала требуется устройство с отрицательным напряжением питания, в то время как напряжение питания ключа должно быть положительным. Поэтому использование ПТУП в ключевой схеме принципиально возможно, но неудобно. Для запирания ПТИЗ со встроенным п-каналом также необходимо входное отрицательное напряжение, что создает аналогичные проблемы. ПТИЗ с индуцированным каналом заперт при $U_{\rm ex} < 0$ и открывается при положительном входном напряжении, превышающем пороговое напряжение U_{nop} . Таким образом имеем напряжение питания и управляющее напряжение одной полярности, что более удобно. Поэтому в большинстве ключевых схем, особенно силовых, применяют ПТИЗ со встроенным каналом.

На рис. 9.10 показана схема ключа на ПТИЗ, а также показаны ВАХ транзистора с определением его режимов работы. На вход схемы подаются отпирающие импульсы положительной полярности. В цепь затвора включено сопротивление R_3 , При этом необходимости в этом резисторе нет, так как входной ток ПТИЗ чрезвычайно мал и его не надо ограничивать внешним резистором. Поэтому в схемах часто этот резистор отсутствует, и в этом случае R_3 фактически является выходным сопротивлением источника входного сигнала.

Рис. 9.10 Схема ключа на полевом транзисторе с индуцированным каналом, определение режимов работы транзистора ключа по BAX.

Когда входное напряжение равно 0, транзистор заперт; ток стока I_C =0, напряжение U_{CM} близко к E_C . На выходных ВАХ это состояние соответствует точке 1 (точка пересечения нагрузочной прямой с осью абсцисс). На ВАХ передачи это состояние также соответствует точке 1. Как следует из ВАХ передачи, транзистор открывается при подаче на затвор положительного напряжения, превышающего пороговое напряжения транзистора U_{HOP} . При увеличении U_{BX} растёт I_C и уменьшается U_{CM} , т. е. рабочая точка движется вверх по нагрузочной прямой до тех пор, пока на доходит до крутой области выходной ВАХ (точка 2). Эта точка соответствует замкнутому состоянию ключа: сопротивление канала транзистора становится очень малым, поэтому на транзисторе падает очень малое напряжение U_{CM} $_{BKJ}$.

Найдём отпирающее входное напряжение U_{3H0} , соответствующее заданному току нагрузки I_H , (точка 2 на выходных ВАХ и ВАХ передачи). Для этого приближенно будем считать, что ВАХ передачи хорошо аппроксимируется прямой линией (как и показано на рис. 9.10). Тогда в известной формуле для крутизны транзистора бесконечно малые изменения токов и напряжений могут быть заменены на конечные приращения, определяемые как разность токов и напряжений в точках 2 и 1:

$$S = rac{dI_C}{dU_{3M}} pprox rac{\Delta I_C}{\Delta U_{3M}} = rac{I_H}{U_{3M0} - U_{\Pi O P}};$$
 тогда $U_{3M0} = U_{\Pi O P} + rac{I_H}{S}$ (9.8), где $I_H = rac{E_c - U_{CM \; BK \Pi}}{R_C + R_H} pprox rac{E_C}{R_C}$

Здесь R_K — сопротивление канала транзистора в открытом состоянии, U_{CU_BKJ} — падение напряжения на открытом транзисторе. Обычно $R_K << R_C$, поэтому $U_{CU_BKJ} << E_C$. Для надёжного отпирания транзистора отпирающее напряжение должно превышать

$$U_{\scriptscriptstyle 3u0}$$
. Обычно выбирают $U_{\scriptscriptstyle OTH} > 1,5 \bigg[U_{\scriptscriptstyle HOP} + \frac{I_{\scriptscriptstyle H}}{S} \bigg]$.

Переходные процессы в ключе на полевом транзисторе

Можно выделить несколько характерных временных интервалов (рис. 9.11).

Рис. 9.11 Переходные процессы в ключе на биполярном транзисторе

Задержка включения (интервал $0...t_1$). В момент t=0 на вход подается импульс отпирающего напряжения амплитудой U_{OTII} . Начинается заряд входной емкости транзистора через сопротивление R_3 , напряжение U_{3M} плавно нарастает с постоянной времени $\tau_{BX}=R_3C_{BX}=R_3(C_{3M}+C_{3C})$, асимптотически стремясь к U_{OTII} . Транзистор остаётся запертым, пока в момент t_1 U_{3M} не превысит U_{IIOP} . Поэтому в течение интервала $t_{3.BKJ}$ (время задержки включения) ток стока остаётся равным нулю, а напряжение U_{CM} остается практически равным E_C .

Нарастание выходного тока (интервал $t_1...t_2$). В момент t_1 U_{3H} становится больше U_{HOP} и транзистор переходит в активный режим. Это значит, что схема фактически представляет собой не ключ, а инвертирующий усилитель. Характерной особенностью инвертирующих усилителей является эффект Миллера (см. прошлый семестр, ЭиМЭ), из-за которого существенно возрастает входная ёмкость транзистора:

$$C_{BX}^* = C_{3H} + (1 + |K|)C_{3C}$$

где $K=SR_C$ - коэффициент усиления усилителя. Т. к. |K|>>1, поэтому $C_{BX}^*>>C_{BX}$. Постоянная времени входной цепи транзистора $\tau_{BX}^*=R_3C_{BX}^*$ заметно возрастает по сравнению с τ_{BX} , и на интервале $t_1...t_2$ рост U_{3M} существенно замедляется. Рост U_{3M} сопровождается возрастанием тока I_C и уменьшением U_{CM} . Время нарастания тока стока t_{HAP} , определяемое как длительность интервала $t_1...t_2$, как правило, существенно превышает $t_{3.BK/I}$. Значения S, C_{3M} и C_{3C} (а значит и τ_{BX}^*) не являются постоянными из-за изменения напряжения между выводами транзистора, поэтому характер переходного процесса на интервале $t_1...t_2$ может быть достаточно сложным, а формулы для расчёта t_{HAP} могут быть получены только с учетом ряда приближений.

Установление включения (интервал $t_2...t_3$). В момент t_2 напряжение превышает значение U_{3M0} , определяемое по (9.8), транзистор выходит из активного режима и эффект Миллера перестаёт действовать. Входная ёмкость уменьшается до значения, близкого к начальному $C_{BX} = C_{3H} + C_{3C}$, ее заряд через R_C ускоряется и дальнейшее нарастание U_{3M} вновь происходит с постоянной времени τ_{BX} . Так как точка 2, соответствующая данному режиму, находится в области выходных ВАХ, где они очень слабо расходятся, ток I_C и напряжение U_{CM} практически не изменяются. Длительность интервала $t_2...t_3$ определяется как время установления включения $t_{V,BK,T}$. В момент t_3 заряд входной емкости прекращается, напряжение U_{3M} стабилизируется на уровне U_{OTH} . Общее время включения $t_{BK,T} = t_{3.BK,T} + t_{HAP} + t_{V,BK,T}$. На интервале $t_3...t_4$ транзистор находится в стационарном режиме, соответствующем замкнутому ключу. Через нагрузку протекает ток, определяемый напряжением питания и нагрузкой, на транзисторе падает небольшое напряжения $U_{CU_BK,T}$, определяемое сопротивлением канала открытого транзистора.

Задержка выключения (интервал $t_4...t_5$). В момент t_4 напряжение U_{BX} становится равным нулю. Начинается разряд входной ёмкости транзистора, потем этому напряжение U_{3M} уменьшается с постоянной времени τ_{BX} , асимптотически стремясь к нулю. Однако напряжение U_{CH} и ток I_C меняются очень мало до момента t_5 , когда U_{3M} становится меньше U_{3M0} и транзистор переходит в активный режим.

Спад выходного тока (интервал $t_5...t_6$). Переход транзистора в активный режим вызывает увеличение входной емкости вследствие эффекта Миллера t (аналогично стадии нарастания выходного тока), поэтому постоянная времени входной цепи t_{BX}^* многократно увеличивается по сравнению с t_{BX} и уменьшение U_{3M} существенно замедляется. Длительность интервала $t_5...t_6$ определяется как время спада выходного тока t_{CM} . Синхронно с уменьшением U_{3M} происходит плавное уменьшение тока t_{CM} и рост напряжения t_{CM} практически до t_{CM} .

Установление выключения (интервал $t_6...t_7$). В момент t_6 напряжение U_{3M} становится меньше $U_{\Pi OP}$. Транзистор переходит в режим отсечки и ток I_C становится близким к нулю. Эффект Миллера перестает действовать, поэтому входная ёмкость транзистора уменьшается и разряжается до нуля сравнительно быстро, т.е. время установления выключения $t_{V.BЫKЛ}$ оказывается небольшим. Напряжение U_{CM} окончательно устанавливается на уровне E_C . Общее время выключения $t_{BЫKЛ} = t_{3.BЫKЛ} + t_{CM} + t_{V.BЫKЛ}$.

•

Таким образом, длительность переходных процессов в ключе на полевом транзисторе в первую очередь зависит от емкостей C_{3M} и C_{3C} , а также от сопротивления в цепи затвора R_3 . Отметим, что как таковой резистор в цепи затвора часто отсутствует, тогда R_3 представляет собой выходное сопротивление источника входного напряжения ключа.

<u>Примечание</u>. В некоторых случаях в цепь затвора все-таки устанавливают резистор R_3 . У мощных полевых транзисторов могут быть достаточно большие ёмкости C_{3H} и C_{3C} , а значит и повышенная входная ёмкость. Заряд большой входной ёмкости сопровождается импульсом входного тока, амплитуда которого может превысить допустимый выходной ток источника входного сигнала. Чтобы предотвратить выход из строя источника входного сигнала, с помощью резистора R_3 ограничивается ток заряда входной ёмкости, но при этом снижается быстродействие ключа.