PART A

1. Complete the following if f(x) = 4x - 1 and $g(x) = -x^2 + 1$

a) Determine
$$f(-6) = 4(-6)-1$$

= -24-1
= -25

b)
$$g(-4) = -(-4)^2 + 1$$

= -16 + 1

c) Determine
$$f(a+1) - f(a)$$

= $[4(a+1) -] - [4(a) - 1]$
= $4a+4-1-4a+1$
= 4

d) Determine $g \circ f(x)$ =9(f(x))=9(4x-1) $= -(4x-1)^{2}+1$ = - (16x-8x+1)+1 $=-16x^{2}+8x-1+1$ = $-16x^{2}+8x$

$$-\chi^{2}+1=-35$$

$$36=\chi^{2}$$

$$\pm 6=\chi$$

e) If g(x) = -35, solve for x.

f) Simplify $3g(3a) - f(2a^2)$ $=3[-(3a)^2+1]-[4(2a^2)-1]$ =3(-9a2+1)-(8a2-1) =-27a2+3-8a2+1 $=-35a^{2}+4$

a) Determine f(0) = 2

- b) Determine the value(s) of x such that f(x) = 1
- c) Determine the domain and range of

D= {x < R | x < 4} R= {yerly>0}

ıl

3. Complete the chart below:

	Interval Notation	Set-builder Notation	
a)	Xe(-6,5), Xen	$\{x \in \mathcal{R} -6 < x < 5\}$	
b)	x E (-00,10), x G R	$\{x \in \mathcal{R} x < 10\}$	
c)	$x \in [-3, 9), x \in \mathcal{R}$	£xen1-3≤x<93 €xen1x>53	
d)	$x \in [5, \infty), x \in \mathcal{R}$		

4. State the domain and range of the provided graphs:

Domain	Range
{x=12/x>-4}	Eyerly > 13

Domain	Range	
Exem (-4< x < 53	8-2,1,33	

5. Determine the range of the following function:

$$f(x) = -4x^{2} - 32x + 9$$

$$= -4(x^{2} + 8x) + 9$$

$$= -4(x^{2} + 8x + 16 - 16) + 9$$

$$= -4(x^{2} + 8x + 16) + 64 + 9$$

$$= -4(x + 4)^{2} + 73$$

$$R = \frac{2}{5} \text{ year}(y \le 73\frac{3}{5})$$

$$\chi = \frac{-b}{2a}$$

$$\chi = \frac{-(-3^2)}{2(-4)}$$

$$\chi = -4$$

$$f(-4) = -4(-4)^2 - 32(-4) + 9$$

$$= 73$$

$$R = \{ \text{yere} | \text{y} \le 73 \}$$

Relation	Is it a function? (write y or n)	Domain	Range
a) $x^2 + y^2 = 100$	n	XE[-10,10]	y e [-10,10]
b) <i>y</i> = 3	Y	XER	<i>{3}</i>
c) $y = \frac{1}{2}x - 3$	7	XEIR	yen
e) $y = -\frac{1}{2}(x - 33)^2 + 65$	Y	XER	y ∈ (-∞,65]