Завдання до комп'ютерного практикуму № 2 з дисципліни «Алгоритми та структури даних»

Тема: «Хешування»

Мета роботи

Отримати навички роботи з алгоритмами організації хеш-таблиць з прямою адресацією та хеш-таблиць з вирішенням конфліктів (колізій) методом ланцюгів.

Основні теоретичні відомості

Хешування (HASHING) — це пошук, який принципово відрізняється від методів пошуку, що мають в основі порівняння значень ключів елементів. Замість переміщення по структурі даних з порівнянням ключа пошуку з ключем в елементі, відбувається спроба звернення до потрібного елемента (що зберігається в хеш-таблиці) за рахунок виконання арифметичних операцій над його ключем.

Хеш-таблиця – це зазвичай масив, розмір якого пропорційний реальній кількості елементів, що зберігаються.

Для обчислення адреси елемента в хеш-таблиці використовується хешфункція h. Функція h відображає сукупність ключів у адреси хеш-таблиці.

1. Алгоритми пошуку (хешування)

<u>І крок</u>. Обчислення хеш-функції, що перетворює ключ пошуку в адресу в хеш-таблиці.

В ідеальному випадку різні ключі мають відображатись у різні адреси, однак, часто два та більше різних ключів можуть перетворюються в одну і ту саму адресу – звідси ІІ крок.

<u>II крок</u>. Вирішення конфліктів – процес, що обробляє ключі, які перетворюються в одну і ту саму адресу хеш-таблиці.

2. Хеш-таблиці з прямою адресацією

Хеш-функція: h(key) = key (ключ елемента використовують як адресу).

Переваги: миттєве звернення до елементів, O(1).

Недоліки: не всі ключі можна інтерпретувати як індекси (від'ємні, з плаваючою точкою, слова тощо); розмір таблиці залежить від діапазону значень ключів елементів, що необхідно обробити; кількість елементів, що зберігається, може бути набагато меншою за сукупність ключів; значення в послідовності мають бути різними.

Приклад структури елемента:

```
#define KEY int
typedef struct {
    KEY * key;
} item;
```

Приклад структури хеш-таблиці:

```
typedef struct {
    int n;
    item ** array;
} hash_table;
```

Блок-схема алгоритму ініціалізації хеш-таблиці (функція DA_INIT(T, x) 1), рис. 1, де:

Т – вказівник на хеш-таблицю (масив);

MAX — максимальне значення ключа елемента + 1, розмір хештаблиці залежить від діапазону значень ключів елементів.

¹ DA – DIRECT ADDRESS

_

2.1. Операції

2.1.1. Додавання елемента в хеш-таблицю, функція DA INSERT(T, x)

У комірку масиву T з індексом x->key (ключ елемента) записати вказівник на елемент, рис. 2 а), де:

T – вказівник на хеш-таблицю (масив);

х – вказівник на елемент, що необхідно додати.

Рис. 1. Блок-схема інішіалізації хеш-таблиці

2.1.2. Видалення елемента з хеш-таблиці, функція DA_DELETE(T, x)

У комірку масиву T з індексом x->key (ключ елемента) записати нульовий вказівник, рис. 2 б), де:

T – вказівник на хеш-таблицю (масив);

х – вказівник на елемент, що необхідно видалити.

<u>Увага!</u> Можливий витік пам'яті – вивільнення пам'яті, що була виділена під елемент, необхідно передбачити окремо.

2.1.3. Пошук елемента за ключем, функція DA SEARCH(T, key)

Повернути вказівник на елемент, що зберігається в комірці з індексом key масиву T, рис. 2 в), де:

T – вказівник на хеш-таблицю (масив);

key – ключ-пошуку елемента.

Рис. 2. Блок-схеми алгоритмів організації хеш-таблиць з прямою адресацією

3. Метод ланцюгів (роздільне зв'язування)

При вирішенні конфліктів (collision) методом ланцюгів, елементи, що були хешовані в одну адресу таблиці, зв'язуємо у список, рис. 3.

Рис. 3. Метод ланцюгів, вирішення конфліктів.

Перевага: економія пам'яті.

Недоліки: пошук у списку пропорційний довжині списку; використання вказівників.

3.1. Операції

3.1.1. Додавання елемента в хеш-таблицю, функція СН INSERT $(T, x)^2$

Додати елемент x у голову списку, вказівник на який зберігається у комірці масиву T з індексом h(x->key), рис. 4 а), де:

T – вказівник на хеш-таблицю (масив);

х – вказівник на елемент, що необхідно додати.

Рис. 4. Блок-схеми алгоритмів організації хеш-таблиць з вирішенням конфліктів (колізій) методом ланцюгів

3.1.2. Видалення елемента з хеш-таблиці, функція CH_DELETE(T, x)

Видалити елемент x зі списку, вказівник на голову якого зберігається у комірці масиву T з індексом h(x->key), рис. 4 б), де:

T – вказівник на хеш-таблицю (масив);

х – вказівник на елемент, що необхідно видалити.

<u>Увага!</u> Можливий витік пам'яті – вивільнення пам'яті, що була виділена під елемент, необхідно передбачити окремо.

² CH – CHAINED HASH

3.1.3. Пошук елемента за ключем, функція СН SEARCH(T, key)

Пошук елемента з ключем key у списку, вказівник на голову якого зберігається у комірці масиву T з індексом h(x->key), рис. 4 в), де:

T – вказівник на хеш-таблицю (масив);

key – ключ-пошуку елемента.

Строк виконання комп'ютерного практикуму № 2 $10~\kappa$ вітня 2019 року

Порядок виконання роботи

- 1. Написати програму, відповідно варіанту завдання, табл. 3.
- 2. Згенерувати послідовність із *N* елементів, у хеш-таблицю, отримавши мінімальну, середню та максимальну кількість порівнянь і копіювань. Для організації хеш-таблиці з прямою адресацією передбачити перевірку, чи елемент вже зберігається, із відповідним повідомленням.

Для організації хеш-таблиці методом ланцюгів додатково згенерувати послідовність із 100 елементів, у нову хеш-таблицю (розмірності 100), отримавши мінімальну, середню та максимальну кількість порівнянь і копіювань.

- 3. Реалізувати пошук N випадкових елементів із заданого діапазону, отримавши мінімальну, середню та максимальну кількість порівнянь і копіювань.
- 4. Реалізувати видалення N випадкових елементів із заданого діапазону, отримавши мінімальну, середню та максимальну кількість порівнянь і копіювань.
- 5. Результати оформити в звіт:
 - 1. Титульний лист.
 - 2. Варіант завдання.
 - 3. Завдання.
 - 4. Лістинг програми.
 - 6. Результати роботи програми у вигляді таблиць (табл. 1, 2)
 - 7. Висновки.

Табл. 1. Результати роботи програми, кількість порівнянь

	Розмір	Додатково	Порівнянь								
Організація	хеш-таблиці,	, , , ,	До	Додавання		Видалення		Пошук		К	
хеш-таблиці	, ,	пам'ять, байт	•	cep	макс	мін	cep	макс	мін	cep	макс

Табл. 2. Результати роботи програми, кількість копіювань

		Розмір	Додатково	Копіювань								
Організація		хеш-таблиці,	7 1 7 1	До	даван	КНІ	Видалення			Пошук		
хеш-таблиці	N	байт	пам'ять,байт	мін	cep	макс	мін	cep	макс	мін	cep	макс

Табл. 3. Варіанти завдань

	. :	10.		п	
	Організація	Кількість		Діапазон	
$N_{\underline{0}}$	хеш-таблиці	елементів, <i>N</i>	Хеш-функція, <i>h</i>	значень	
1	3 прямою адресацією	401	h(key) = key	020000	
1	Метод ланцюгів	701	h(key) = key % N	02000	
2	3 прямою адресацією	101	h(key) = key	011000	
2	Метод ланцюгів	101	h(key) = key % N	011000	
3	3 прямою адресацією	127	h(key) = key	0.25000	
3	Метод ланцюгів	137	h(key) = key % N	025000	
4	3 прямою адресацією	107	h(key) = key	032000	
4	Метод ланцюгів	107	h(key) = key % N	032000	
5	3 прямою адресацією	821	h(key) = key	018000	
3	Метод ланцюгів	821	h(key) = key % N	018000	
6	3 прямою адресацією	277	h(key) = key	029000	
0	Метод ланцюгів	211	h(key) = key % N	029000	
7	3 прямою адресацією	89	h(key) = key	08000	
	Метод ланцюгів	0,9	h(key) = key % N	08000	
8	3 прямою адресацією	223	h(key) = key	03000	
0	Метод ланцюгів	223	h(key) = key % N	03000	
9	3 прямою адресацією	272	h(key) = key	0.15000	
9	Метод ланцюгів	373	h(key) = key % N	015000	
10	3 прямою адресацією	(77	h(key) = key	026000	
10	Метод ланцюгів	677	h(key) = key % N	020000	
11	3 прямою адресацією	523	h(key) = key	030000	
11	Метод ланцюгів	323	h(key) = key % N	030000	
12	3 прямою адресацією	599	h(key) = key	09000	
12	Метод ланцюгів	399	h(key) = key % N		
13	3 прямою адресацією	173	h(key) = key	02000	
13	Метод ланцюгів	1/3	h(key) = key % N	02000	

Продовж. табл. 3.

	Opposionis	I/ii o		довж. таол. 5.		
3.0	Організація	Кількість	X 1 ' 1	Діапазон		
№	хеш-таблиці	елементів, <i>N</i>	Хеш-функція, h	значень		
14	3 прямою адресацією	263	h(key) = key	024000		
	Метод ланцюгів		h(key) = key % N			
15	3 прямою адресацією	307	h(key) = key	016000		
	Метод ланцюгів		h(key) = key % N			
16	3 прямою адресацією	727	h(key) = key	05000		
	Метод ланцюгів	, _ ,	h(key) = key % N			
17	3 прямою адресацією	853	h(key) = key	07000		
	Метод ланцюгів	300	h(key) = key % N	0		
18	З прямою адресацією	443	h(key) = key	010000		
	Метод ланцюгів	113	h(key) = key % N	010000		
19	3 прямою адресацією	181	h(key) = key	027000		
1)	Метод ланцюгів	101	h(key) = key % N	027000		
20	3 прямою адресацією	97	h(key) = key	01000		
20	Метод ланцюгів	71	h(key) = key % N	01000		
21	3 прямою адресацією	227	h(key) = key	031000		
21	Метод ланцюгів	221	h(key) = key % N	031000		
22	3 прямою адресацією	523	h(key) = key	013000		
22	Метод ланцюгів	323	h(key) = key % N	013000		
23	З прямою адресацією	823	h(key) = key	06000		
23	Метод ланцюгів	623	h(key) = key % N	00000		
24	3 прямою адресацією	337	h(key) = key	017000		
24	Метод ланцюгів	337	h(key) = key % N	017000		
25	3 прямою адресацією	499	h(key) = key	0.21000		
23	Метод ланцюгів	499	h(key) = key % N	021000		
26	3 прямою адресацією	557	h(key) = key	028000		
26	Метод ланцюгів	557	h(key) = key % N	028000		
27	3 прямою адресацією	601	h(key) = key	014000		
21	Метод ланцюгів	001	h(key) = key % N	014000		
20	3 прямою адресацією	290	h(key) = key	0. 22000		
28	Метод ланцюгів	389	h(key) = key % N	023000		
20	3 прямою адресацією	162	h(key) = key	0.4000		
29	Метод ланцюгів	463	h(key) = key % N	04000		
20	3 прямою адресацією	007	h(key) = key	0 10000		
30	Метод ланцюгів	907	h(key) = key % N	019000		
21	3 прямою адресацією	202	h(key) = key	0. 12000		
31	Метод ланцюгів	293	h(key) = key % N	012000		
22	3 прямою адресацією	102	h(key) = key	0. 22000		
32	Метод ланцюгів	193	h(key) = key % N	022000		
		ı	1 () / / / /	ı		