In the Claims

Please substitute the following claim 1 for claim 1 now pending in the above-identified application.

Please cancel claims 4 and 6 without prejudice to the filing of future continuing applications.

1. (Currently Amended) A method for producing an optically active β -hydroxy ester compound represented by the general formula:

$$R^4$$
 R^5
 O_2R^3 (III)

wherein

R¹ represents a hydrogen atom, an optionally substituted aromatic hydrocarbon group, or an optionally substituted heterocyclic group,

 R^2 represents a <u>5- or 6-membered</u> nitrogen-containing heterocyclic group <u>different from</u> $R^{\frac{1}{3}}$ which is represented by the general formula:

$$\bigvee^{N} \qquad \qquad (V)$$

wherein the ring may be substituted, and may have one or more heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom in addition to the nitrogen atom in the formula, and may have one or more double bonds in addition to the double bond in the formula; or the general formula:

wherein the ring may be substituted, and may have one or more heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom in addition to the

nitrogen atom in the formula, and may have one or more double bonds in addition to the double bond in the formula, provided that a case is eliminated where R^1 is an optionally substituted aromatic group and R^2 is not a group represented by the general formula:

$$\bigvee_{N} \qquad \text{(IV)}$$

wherein L represents a protecting group,

R³ represents an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group,

R⁴ and R⁵ are the same or different, and represent a hydrogen atom, a halogen atom, an optionally substituted silyl group, or an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and (1) R³ and R⁴, (2) R³ and R⁵, or (3) R⁴ and R⁵ may be taken together to form a ring, wherein said ring may be substituted,

the symbol "*" represents an optically active center,

or a salt thereof, which comprises reacting, in the presence of a cinchona alkaloid <u>selected from</u>

the group consisting of cinchonine, cinchonidine, quinine and quinidine or a salt thereof, a

compound represented by the general formula:

$$\mathbb{R}^1$$
 \mathbb{R}^2 (I)

wherein R¹ and R² are as defined above or a salt thereof with a compound represented by the general formula:

wherein R^3 , R^4 and R^5 are as defined above, and X is a halogen atom, or a polymer thereof or a salt thereof.

- 2. (Original) The method according to claim 1, which further comprises adding a base.
- 3. (Original) The method according to claim 2, wherein the base is pyridine.
- 4. (Cancelled)
- 5. (Original) The method according to claim 1, wherein R² is an optionally substituted 2-pyridyl group or 4-imidazolyl group.
- 6. (Cancelled)