Modelos de computación (2017-2018)

Doble Grado en Ingeniería Informática y Matemáticas Universidad de Granada

Relación de problemas I

Alberto Jesús Durán López

27 de septiembre de 2017

Índice

1.	Ejercicio 13	3
2.	Ejercicio 16	4
3.	Ejercicio 17	5
4.	Ejercicio 18	6
5.	Ejercicio 19	7

■ Dados dos homomorfismos f: $A^* \to B^*$, g: $A^* \to B^*$, se dice que son iguales si f(x)=g(x), $\forall x \in A^*$. ¿Existe un procedimiento algorítmico para comprobar si dos homomorfismos son iguales?

Nota: Si x es un elemento cualquiera de un grupo, f es un homomorfismo y n es un entero mayor o igual que cero, por la definición de homomorfismo tenemos que:

$$f(x^n) = f(x)^n$$

Tampoco es difícil ver que:

$$f(x^{-1}) = f(x)^{-1}$$

Si n es un entero negativo, entonces -n es un entero positivo por lo que aplicando el resultado anterior, se tiene

$$f(x^n) = f((x^{-1})^{-n}) = f(x^{-1})^{-n} = f(x)^{(-1)(-n)} = f(x)^n$$

En consecuencia,

$$f(x^n) = f(x)^n, \forall n \in \mathbb{Z}$$

Sabemos que para que f: G \to G' y g: G \to G' sean iguales, $\forall y \in G$, f(y) = g(y). Tenemos que si $y \in G$ entonces:

$$y = x_1^{k_1} \cdot \dots \cdot x_n^{k_n}$$

para algunos

$$k_1,...,k_n \in \mathbb{Z}$$

Esto nos garantiza que:

$$f(y) = f(x_1^{k_1} \cdot \dots \cdot x_n^{k_n}) = f(x_1^{k_1}) \cdot \dots \cdot f(x_n^{k_n}) =$$

$$= f(x_1)^{k_1} \cdot \dots \cdot f(x_n)^{k_n} = g(x_1)^{k_1} \cdot \dots \cdot g(x_n)^{k_n} = g(x_1^{k_1}) \cdot \dots \cdot g(x_n^{k_n}) = g(x_1^{k_1} \cdot \dots \cdot x_n^{k_n}) = g(y).$$

 \blacksquare Dada la gramática $G{=}(\{S{,}A\}\ ,\,\{a{,}b\}\ ,\,P,\,S\rightarrow abAS\ ,\,abA\rightarrow baab\ ,\,S\rightarrow a\ ,\,A\rightarrow b).$ Determinar el lenguaje que genera.

Observando las reglas de producción de P, podemos darnos cuenta que siempre vamos a llegar a una palabra terminada en 'a', es decir:

$$\begin{split} \mathbf{S} &\to \mathbf{a} \\ \mathbf{S} &\to \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{S} \to \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{a} \\ \mathbf{S} &\to \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{a} \to \mathbf{b} \mathbf{a} \mathbf{a} \mathbf{b} \\ \mathbf{S} &\to \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{S} \to \dots \to \dots \mathbf{a} \end{split}$$

Por tanto:

$$\mathcal{L} = \{ u \cdot a : u \in A^* \}$$

- Sea la gramática G = (V,T,P,S) donde:
 - $-V = {< n\acute{u}mero>, < d\acute{g}ito>}$
 - $-T = \{0,1,2,3,4,5,6,7,8,9\}$
 - -S = <número>
 - -Las reglas de producción de P son:

$$<$$
número $>\rightarrow<$ número $><$ dígito $>$ $<$ número $>\rightarrow<$ dígito $>$ $<$ dígito $>\rightarrow$ 0|1|2|3|4|5|6|7|8|9

Determinar el lenguaje que genera.

Repasaremos unas nociones básicas antes de seguir con el ejercicio:

- -V es un alfabeto, llamado variables o símbolos no terminales. Sus elementos se representan con letras mayúsculas.
- -T son los símbolos terminales, se representan con letras minúsculas S es el símbolo de partida

Además, hacemos un cambio de notación:

$$S = < n umero > A = < d umero > a \in [0, 9]$$

Resultando:

$$\begin{array}{c} S \rightarrow SA \\ S \rightarrow A \\ A \rightarrow 0|1|2|3|4|5|6|7|8|9 \end{array}$$

Podemos observar que:

S
$$\rightarrow$$
 SA \rightarrow SAA \rightarrow ... \rightarrow ... aaaa S \rightarrow SA \rightarrow SAA \rightarrow Aaa \rightarrow aaa S \rightarrow A \rightarrow a

Por tanto, todas las palabras que se pueden formar están formados por números a partir del 0 en adelante, es decir, el lenguaje generado por esta gramática es:

$$\mathcal{L} = \{n : n \in \mathbb{Z}^+\}$$

■ Sea la gramática $G=(\{A,S\}, \{a,b\}, S, P)$ donde las reglas de producción son:

$$egin{aligned} \mathbf{S} &
ightarrow \mathbf{a} \mathbf{S} \ \mathbf{S} &
ightarrow \mathbf{a} \mathbf{A} \ \mathbf{A} &
ightarrow \mathbf{b} \mathbf{A} \end{aligned}$$

Determinar el lenguaje que genera.

Observando las reglas de producción de la gramática, vemos que cada vez que tenemos una A, obtenemos una b por lo que siempre vamos a obtener palabras terminadas en 'b', es decir:

$$\begin{array}{l} S \rightarrow aS \rightarrow aaS \rightarrow aaaS \rightarrow ... \rightarrow ... \ b \\ S \rightarrow aS \rightarrow aaA \rightarrow aabA \rightarrow ... \rightarrow ... \ b \\ S \rightarrow aS \rightarrow aaA \rightarrow aab \\ S \rightarrow aA \rightarrow ab \\ S \rightarrow aA \rightarrow abbA \rightarrow ... \ b \\ S \rightarrow aA \rightarrow abA \rightarrow abb \end{array}$$

Por tanto:

$$\mathcal{L} = \{u \cdot b : u \in A^*\}$$

- Encontrar si es posible una gramática lineal por la derecha o una gramática independiente del contexto que genere el lenguaje L, en cada uno de los casos, supuesto que L $\subseteq \{a,b,c\}^*$ y verifica:
 - a) $u \in L$ sii verifica que u no contiene dos símbolos consecutivos
 - b) $u \in L$ sii verifica que u contiene dos símbolos b consecutivos
 - c) u \in L sii verifica que contiene un número impar de símbolos c
 - d) $u \in L$ sii verifica que no contiene el mismo número de símbolos b que de símbolos c
 - a) Si se puede:

$$S \to \epsilon$$

$$S \to cS$$

$$S \to aS$$

$$S \to bX$$

$$X \to aS$$

$$X \to \epsilon$$

$$X \to cS$$

b) Si se puede:

$$S \to aS$$

$$S \to bS$$

$$S \to cS$$

$$S \to b X$$

$$X \to bY$$

$$Y \to a Y$$

$$Y \to bY$$

$$Y \rightarrow cY$$

$$Y \to \epsilon$$

c) Si se puede:

$$S \to aS$$

$$S \to bS$$

$$S \to cX$$

$$X \to aX$$

$$X\to bX$$

$$X \to \epsilon$$

$$X \to cS$$

d) No se puede