MODELAMIENTO MATEMÁTICO

Trabajo Final

Mateo Orrego Cardona

Universidad Pontificia Bolivariana

Modelo Para Presentar

Calcular el tiempo de vaciado para un tanque cónico de determinadas dimensiones con un orificio de determinadas dimensiones en la parte de abajo.

Ley de Torricelli >

$$Q = A_o \sqrt{2gh}$$

Volumen del Agua >

$$V = \frac{1}{3}\pi R^2 h$$

ED >

Resolviendo la Ecuación Diferencial:

$$\frac{dV}{dt} = -A_o \sqrt{2gh}$$

$$\frac{d}{dt} \left(\frac{1}{3} \pi R_c^2 h \right) = -A_o \sqrt{2gh}$$

$$\left(\frac{1}{3} \pi R_c^2 \right) \frac{d}{dt} (h) = -(\pi R_o^2) \sqrt{2gh}$$

$$\left(\frac{1}{3} R_c^2 \right) \frac{d}{dt} (h) = -(R_o^2) \sqrt{2gh}$$

$$\left(\frac{dh}{\sqrt{2gh}}\right) = -3\left(\frac{R_o^2}{R_c^2}\right)dt$$

$$\frac{1}{\sqrt{2g}}\int \left(\frac{dh}{\sqrt{h}}\right) = -3\left(\frac{R_o^2}{R_c^2}\right)\int dt$$

$$\frac{2\sqrt{h}}{\sqrt{2g}} = -3\left(\frac{R_o^2}{R_c^2}\right)t + C$$

$$\sqrt{h} = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{R_o^2}{R_c^2}\right)t + \left(\frac{\sqrt{2g}}{2}\right)C$$

$$\sqrt{h} = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{R_o^2}{R_c^2}\right)t + C_1$$

Condiciones Iniciales >

Para convertir la solución general implícita, en una solución especifica implícita.

$$h = h_0; t = 0$$

$$\sqrt{h_0} = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{{R_o}^2}{{R_c}^2}\right)0 + C_1$$

$$C_1 = \sqrt{h_0}$$

Reemplazamos >

Para convertir la solución especifica implícita, en una especifica explicita.

$$\sqrt{h} = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{\mathbf{R_o}^2}{\mathbf{R_c}^2}\right)t + \sqrt{h_0}$$

$$h = \left(\left(\frac{-3\sqrt{2g}}{2}\right)\left(\frac{\mathbf{R_o}^2}{\mathbf{R_c}^2}\right)t + \sqrt{h_0}\right)^2$$

Modelo Aplicado:

Condiciones del tanque, halladas experimentalmente.

Diámetro: 12 cm

Diámetro del Orificio: 1,4 cm

Altura del Cono: 14 cm

Tiempo de Vaciado: 40 ~ 50 segundos

Comprobando:

$$h = \left(\left(\frac{-3\sqrt{2g}}{2} \right) \left(\frac{\mathbf{R}_o^2}{\mathbf{R}_c^2} \right) t + \sqrt{h_0} \right)^2$$

$$= \begin{cases} \left(\left(\frac{-3\sqrt{2(9,8)}}{2} \right) \left(\frac{\mathbf{0}, \mathbf{7}^2}{\mathbf{6}^2} \right) 40 + \sqrt{14} \right)^2 = 0,015 \\ \left(\left(\frac{-3\sqrt{2(9,8)}}{2} \right) \left(\frac{\mathbf{0}, \mathbf{7}^2}{\mathbf{6}^2} \right) 50 + \sqrt{14} \right)^2 = 0,604 \end{cases}$$

$$\approx 0,309 cm$$

Aplicando el Método de Euler

$$h_{n+1} = \left(-3\left(\frac{Ro^2}{Rt^2}\right)\right)\left(\sqrt{2gh_n}\right)\Delta t + h_n$$

Т

Relaciones del Modelo

$$h = \left(\left(\frac{-3\sqrt{2g}}{2} \right) \left(\frac{R_o^2}{R_c^2} \right) t + \sqrt{h_0} \right)^2$$

Tiempo de Vaciado:

Utilizado para calcular el error por los tres métodos.

$$0 = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{R_o^2}{R_c^2}\right)t + \sqrt{h_0}$$

$$-\sqrt{h_0} = -3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{R_o^2}{R_c^2}\right)t$$

$$-\frac{\sqrt{h_0}}{-3\left(\frac{\sqrt{2g}}{2}\right)\left(\frac{R_o^2}{R_c^2}\right)} = t$$

$$t = \frac{(2)(R_c)^2\sqrt{h_0}}{(3)(\sqrt{2g})(R_o)^2}$$