An abstract Howe theorem

Peio Borthelle Tom Hirschowitz¹ Ambroise Lafont²

¹Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA Chambéry, France

²UNSW, Sydney

LIMD September 2020

Motivation: generalisation of theorem statements

- Often, theorems are stated for one "typical" programming language.
- Goal: provide high-level tools for stating them for all suitable languages and models.

State of the art

- Formats: Tyft/tyxt, GSOS, PATH,...
 - Do not cover denotational models (exclusively syntactic).
 - Low-level.
- Bialgebraic semantics (Turi and Plotkin '97).
 - Deeply developed.
 - Very good at quantitative semantics.
 - Functional languages only starting to be investigated (Peressotti '17).
- Transition monads (Hirschowitz et al. '20).
 - Focus on signatures (less primitive than ours).
 - No big metatheoretical theorem (yet).
- Previous work on cellular monads (POPL '19, SOS/EXPRESS '19).
 - Does not cover higher-order languages.
 - Virtually no notion of signature, models constructed by hand.

Summary of contributions

- 1. General setting: Howe context.
- 2. Notion of signature for programming languages, in any Howe context.
- 3. Definition of substitution-closed bisimilarity. Particular case: open extension of Abramsky's applicative bisimilarity in cbn λ -calculus.
- 4. A semantic format for congruence of bisimilarity:

Main theorem

If the signature preserves functional bisimulations (plus mild technical hypotheses), then substitution-closed bisimilarity is a congruence.

Proof: abstract analogue of Howe's method.

This talk

Sketch main ideas on one example, big-step, cbn λ -calculus.

- (1) Introduction
- 2 Brief recap on applicative bisimilarity
- $\widehat{\mathbf{3}}$ Howe context for cbn λ
- (4) Models of syntax
- 5 Models of transition rules
- 6 Substitution-closed bisimilarity
- (7) Main result
- 8 Conclusion

Call-by-name λ -calculus

Slightly non-standard presentation.

$$\frac{e_1 \Downarrow e_3 \qquad e_3[e_2] \Downarrow e_4}{e_1 e_2 \Downarrow e_4}$$

Typing: \downarrow \subseteq closed terms \times terms with 1 free variable. Example:

Applicative bisimilarity

Definition

A relation R between terms is

substitution-closed iff

$$e_1 R e_2$$
 then $e_1[\sigma] R e_2[\sigma]$.

a bisimulation iff

(for all / exists).

Standard applicative bisimilarity := largest substitution-closed bisimulation. Notation \sim^{\otimes} .

Congruence theorem

Theorem

Applicative bisimilarity is a congruence, in particular

- $e_1 \sim^{\otimes} e_2$ entails $\lambda x.e_1 \sim^{\otimes} \lambda x.e_2$,
- $e_1 \sim^{\otimes} e_2$ and $e_3 \sim^{\otimes} e_4$ entails $e_1 e_3 \sim^{\otimes} e_2 e_4$.

Naive proof attempt

- Let ~
 [•] denote the context closure of ~
 [⊗].
- Prove that it is a bisimulation. Indeed, if so,
 - $\sim^{\otimes} \subseteq \sim^{\bullet} \subseteq \sim^{\otimes}$, hence
 - ~[⊗] = ~[•].
 - but ~ is context-closed.

But! Hard to prove the bisimulation property.

Naive proof attempt

- Let ~
 [•] denote the context closure of ~
 [⊗].
- Prove that it is a bisimulation. Indeed, if so,
 - $\sim^{\otimes} \subseteq \sim^{\bullet} \subseteq \sim^{\otimes}$, hence
 - ~[⊗] = ~[•],
 - but ~ is context-closed.

But! Hard to prove the bisimulation property.

Howe closure

Solution: context closure +
$$\frac{e \sim^{\bullet} e' \sim e''}{e \sim^{\bullet} e''}$$

What now?

- Categorical point of view on
 - syntax,
 - dynamics,
 - substitution-closed bisimulation,
 - Howe's method.
- Amenable to generalisation: see paper.

Main question for us

What is a model of call-by-name λ -calculus?

Models of syntax

The category
$$\mathbb{F}\coloneqq \mathbf{Set}^{op}_f$$
 $0 \longleftarrow 1 \longleftarrow 2 \qquad ... \qquad n$.

Let $X \in \widehat{\mathbb{F}}$, presheaf on \mathbb{F} , i.e., $X \colon \mathbf{Set}_f \to \mathbf{Set}$.

- X(n): "terms" with potential free variables in $\{x_1, ..., x_n\}$.
- $X(n) \xrightarrow{X(f)} X(m)$: "renaming".

Example

- L(n) = actual terms over n.
- $L(2) \xrightarrow{L(\text{swap})} L(2)$ $\lambda x.(x_1 \ x_2 \ x) \mapsto \lambda x.(x_2 \ x_1 \ x).$

Models of syntax

Model of syntax: $X \in \widehat{\mathbb{F}}$ equipped with

Operations
$$\lambda_n : X(n+1) \to X(n)$$
 $app_n : X(n)^2 \to X(n)$.

- Substitution Let $(Y \otimes Z)(n) = \sum_{p} Y(p) \times Z(n)^{p}$ (modulo std eqs.).
 - Elements $y(|\zeta|)$ are like formal substitutions.
 - Substitution: $m_X : X \otimes X \rightarrow X$ $x(|\chi|) \mapsto x[\chi].$

Variables $e_X: I \to X$, where I(n) = n (notation for $\{1, ..., n\}$).

Model of syntax =
$$\Sigma_0$$
-monoid :=

 $X \in \mathbb{F} + app, \lambda$, substitution, variables + compatibility conditions.

Free Σ_0 -transition monoids

Definition

Category Σ_0 -mon of Σ_0 -monoids.

Syntax := $\mathcal{L}_0(\emptyset)$.

Remark

"High-level" definition of syntax: no fuss about α -equivalence.

Transition systems

Let $X \in \mathbb{F}^{\downarrow}$, presheaf on \mathbb{F}^{\downarrow} , i.e., $X : (\mathbb{F}^{\downarrow})^{op} \to \mathbf{Set}$.

- X(n), X(f): "terms" and "renaming" as before.
- X(↓): "evaluation witnesses".
- $X(s): X(\downarrow) \to X(0)$: source/input.
- $X(t): X(\downarrow) \to X(1)$: body of value.

Transition system with syntactic structure on states

Consider the following pullback in CAT.

$$\begin{array}{ccc} \Sigma_0\operatorname{\mathbf{-Mon}} & \xrightarrow{\hspace{1cm}\mathscr{D}} & \Sigma_0\operatorname{\mathbf{-mon}} \\ & & & \downarrow^{\mathscr{U}_0} & & \downarrow^{\mathscr{U}_0} \\ & & & \widehat{\mathbb{F}^{\downarrow}} & \xrightarrow{\hspace{1cm}} & \xrightarrow{\Delta_E} & \widehat{\mathbb{F}} \end{array}$$

- Objects: $X \in \widehat{\mathbb{F}^{\Downarrow}}$ with Σ_0 -monoid structure on the restriction $\Delta_{\mathbb{F}}(X) \in \widehat{\mathbb{F}}$.
- Name: transition Σ_0 -monoids.

Transition system with syntactic structure on states

Consider the following pullback in CAT.

- Objects: $X \in \widehat{\mathbb{F}^{\Downarrow}}$ with Σ_0 -monoid structure on the restriction $\Delta_{\mathbb{F}}(X) \in \widehat{\mathbb{F}}$.
- Name: transition Σ_0 -monoids.

Both projections have left adjoints!

Models of transition rules

Remember our variant of cbn λ -calculus:

$$\frac{e_1 \Downarrow e_3 \qquad e_3[e_2] \Downarrow e_4}{e_1 e_2 \Downarrow e_4}$$

Model of rules: transition Σ_0 -monoid $X \in \widehat{\mathbb{F}^{\downarrow}}$ equipped with

$$X(1) \to X(\downarrow)$$
 and $A_{\beta}(X) \to X(\downarrow)$

where $A_{\beta}(X) = \{(r_1, e_2, r_2) \mid r_2 \cdot s = (r_1 \cdot t)[e_2]\},$ + compatibility conditions for source and target.

Models of rules as algebras

Lemma

Models of rules are vertical algebras for a suitable endofunctor

$$\Sigma_0\operatorname{-\mathbf{Mon}} \xrightarrow{\check{\Sigma}_1} \Sigma_0\operatorname{-\mathbf{Mon}}$$

Proof:
$$\check{\Sigma}_1(X)(\downarrow) = X(1) + A_{\beta}(X)...$$

Syntactic transition system

Syntactic transition system Z := initial model.

Yoneda

Some presheaves in $\widehat{\mathbb{F}^{\downarrow}}$:

- **y**₀: just one element over 0.
- **y**₁: just one element over 1.
- y_{||}: just one element over ↓ + its source and target.

Functional bisimulation

A morphism f in $\widehat{\mathbb{F}^{\downarrow}}$ is a functional bisimulation iff

$$\mathbf{y}_0 \xrightarrow{x} X$$
 $\mathbf{y}_s \downarrow \qquad \qquad \downarrow_f$
 $\mathbf{y}_{\parallel} \xrightarrow{e'} Y$
i.e., concretely

$$\begin{array}{ccc}
x & \longmapsto & f(x) \\
\downarrow e \downarrow & & \downarrow e' \\
x' & \longmapsto & y.
\end{array}$$

Notation

$$\mathbf{y}_s \boxtimes f, \ f \in \{\mathbf{y}_s\}^{\boxtimes}.$$

Bisimulation

Definition

In $\widehat{\mathbb{F}^{\downarrow}}$, a span $X \leftarrow R \rightarrow Y$ is a bisimulation iff both legs are functional bisimulations.

Substitution-closed spans

For $X \in \Sigma_0$ -Mon, a span $R \to X \times X$ is substitution-closed iff (omitting \mathscr{D} for readability):

Essentially:

$$x_1 R x_2$$
 entails $x_1[\sigma] R x_2[\sigma]$.

Substitution-closed bisimulation relation = applicative bisimulation.

Substitution-closed bisimilarity

Proposition

For any $X \in \Sigma_0$ -Mon, there is a terminal substitution-closed bisimulation, \sim_X^{\otimes} , called substitution-closed bisimilarity.

Relevance:

- Recall Z, the initial model.
- One can prove that $\sim_{\mathbf{Z}}^{\otimes}$ coincides with the relation originally considered by Howe: open extension of applicative bisimilarity.

Generalisation

$cbn\ \lambda$	general case
$\mathbb{F} \hookrightarrow \mathbb{F}^{\downarrow}$	"two-level" category $\mathbb{C}_0 \hookrightarrow \mathbb{C}$
\otimes	monoidal structure on $\widehat{\mathbb{C}_0}$
$\mathbf{y}_0 \to \mathbf{y}_{\downarrow \downarrow} \leftarrow \mathbf{y}_1$	"border inclusions" from level 0
Σ_0	any "pointed strong" endofunctor

Main result

Theorem

For any suitable signature (Σ_0, Σ_1) , substitution-closed bisimilarity on the initial model (\sim_7^8) is a congruence.

Essentially:

$$e_1 \sim_{\mathbf{Z}}^{\otimes} e_1', ..., e_n \sim_{\mathbf{Z}}^{\otimes} e_n'$$
 entails $op(e_1, ..., e_n) \sim_{\mathbf{Z}}^{\otimes} op(e_1', ..., e_n')$.

What's suitable?

Lemma

 $\widehat{\mathbb{F}^{\downarrow}}$ is isomorphic to the category of triples $(X_0 \in \widehat{\mathbb{F}}, X_1 \in \mathbf{Set}, \partial_X)$, where

$$X_{\downarrow\downarrow}$$

$$\downarrow \partial_X$$

$$X_0(0) \times X_0(1).$$

 Σ_0 -Mon: same with Σ_0 -monoid structure on X_0 .

What's suitable?

Definition

The functor $\check{\Sigma}_1$ is suitable iff it may be decomposed as

such that Σ_1 preserves functional bisimulations.

Rigorous definition

Dynamic signatures $\check{\Sigma}_1$ in fact defined to induce

$$\begin{array}{ccc} \Sigma_0\operatorname{\mathbf{-Mon}} & \xrightarrow{\Sigma_1} & \widehat{\mathbb{F}}_{\boldsymbol{s}} \\ \downarrow & & \downarrow \\ \widehat{\mathbb{F}} & \xrightarrow{\Sigma_0} & \widehat{\mathbb{F}} \end{array}$$

Definition

Functional bisimulation in $\widehat{\mathbb{F}}_{\mathbf{s}}$: $\{s\}^{\square}$.

Why is cbn λ suitable?

Lemma

If Σ_1 is familial then

 $suitable \iff cellular.$

- Cellular ≈ input arities of rules are in [□]({s}[□])
 input arities of rules are functional cobisimulations.
- Let us see why cbn λ input arities are cellular.

Input arity

By example:
$$\frac{e_1 \Downarrow e_3 \qquad e_3[e_2] \Downarrow e_4}{e_1 \ e_2 \Downarrow e_4}$$

Goal

Find E_{β} such that Σ_0 -Mon $(E_{\beta}, X) \cong A_{\beta}(X)$, naturally in X.

$$egin{aligned} \mathscr{L}(\mathbf{y}_0) & \stackrel{\mathscr{L}(\mathbf{y}_s)}{\longrightarrow} \mathscr{L}(\mathbf{y}_{\Downarrow}) \ \mathscr{L}(\mathbf{y}_{\Downarrow} + \mathbf{y}_0) & \stackrel{\longleftarrow}{\longrightarrow} E_{eta} \end{aligned}$$

Cellularity

The composite $\mathcal{L}(\mathbf{y}_0 + \mathbf{y}_0) \to \mathcal{L}(\mathbf{y}_{\parallel} + \mathbf{y}_0) \to E_{\beta}$ is in $^{\square}(\{s\}^{\square})$.

Cellularity for cbn λ -calculus

Lemma

Stability properties for functional cobisimulations.

- Contain s and all isomorphisms.
- Closed under (transfinite) composition.
- Closed under pushouts.
- Closed under retracts.

$$egin{aligned} \mathscr{L}(\mathbf{y}_0) & \longrightarrow \mathscr{L}(\mathbf{y}_{\Downarrow}) \ \downarrow & & & \downarrow \ \mathscr{L}(\mathbf{y}_0 + \mathbf{y}_0) & \longrightarrow \mathscr{L}(\mathbf{y}_{\parallel} + \mathbf{y}_0) & \longrightarrow E_{eta} \end{aligned}$$

Cellularity for cbn λ -calculus

Lemma

Stability properties for functional cobisimulations.

- Contain s and all isomorphisms.
- Closed under (transfinite) composition.
- Closed under pushouts.
- Closed under retracts.

Summary

Semantic format for congruence of substitution-closed bisimilarity

Input arities should be functional cobisimulations.

- Shown here: example of cbn λ .
- In the paper: cbv λ .

Perspectives

- More examples!
- Other kinds of bisimilarity: normal form, environmental, contextual,...
 (+ weak variants)
- Other kinds of results: type soundness, compiler correctness...