

高等数值分析

病态线性方程组的求解

作者: 罗雁天

学号: 2018310742

日期: 2018年12月4日

目录

1	1 题目描述				
2	Hilbert 矩阵 2-条件数和阶数的关系 2.1 使用 Matlab 自带的 cond() 函数进行计算				
3	Gauss 消去法	2			
4	Jacobi 矩阵迭代法	4			
5	Gauss-Seidel 矩阵迭代法	5			

1 题目描述

理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组,Hx=b,其中H 是 Hilbert 矩阵, $H=(h_{ij}), h_{ij}=\frac{1}{i+j-1}, i,j=1,2,\cdots,n$ 。本次大作业从条件数、高斯消去法、Jacobi 迭代法、Gauss-Seidel 迭代法、SOR 迭代法等角度分析上述病态线性方程组并进行对比。

2 Hilbert 矩阵 2-条件数和阶数的关系

2.1 使用 Matlab 自带的 cond() 函数进行计算

由于 Matlab 自带了求 2-条件数的函数 *cond()*,因此我们首先采用此种方式讨论 Hilbert 矩阵 2-条件数和阶数的关系。

我们首先计算了几个低阶的条件数如表1所示。从表中我们可以看出,随着矩阵阶数 n 的增长,2-条件数增加幅度很快,因此我们采用对数坐标绘制 2-条件数和矩阵阶数 n 的关系曲线。

表 1: Hilbert 矩阵 2-条件数与阶数的关系表格

		741 741 741 75 77 76 77 77			- I H
阶数 n	1	2	3	4	5
2-条件数	1.0000	19.2815	524.0568	15513.7387	476607.2502

取矩阵的阶数从 $1 \rightarrow 100$,在对数坐标下绘制 2-条件数和矩阵阶数 n 的关系曲线如图2.1所示。从图中我们可以看出,当阶数较低 (大约 $1 \rightarrow 13$) 时,对数化 2-条件数大约与阶数呈现线性关系,当阶数变高时,对数化的 2-条件数波动起来,不再增加,根据我们对 Hilbert 矩阵病态性的知识,图2.1中阶数较大时的曲线显然不正确,由此可以说明 Matlab 自带的 cond() 函数在矩阵阶数较高时计算的条件数误差较大。因此我们考虑另一种方法计算矩阵的条件数。

2.2 使用 2-条件数的定义进行计算

根据 2-条件数的定义 $cond_2(H) = ||H||_2||H^{-1}||_2$,Matlab 中有专门针对 Hilbert 矩阵逆矩阵的 函数 invhilb(),因此我们可以采用定义法来计算 Hilbert 矩阵的 2-条件数。同样在对数坐标下,绘制出此种方法计算出的 2-条件数和矩阵阶数的关系图如图2.2所示,从此图中可以看出,随着矩阵阶数的增加,对数化的 2-条件数近似与阶数呈现线性关系,符合我们对 Hilbert 矩阵病态性的理解。

我们将对数化的 2-条件数和矩阵阶数进行线性回归,得到拟合公式为: $cond2=10^{1.5257n-2.0758}$,相关系数 $r\approx 1$,拟合之后图像如图2.3所示。

3 Gauss 消去法

用 Gauss 消去法将 Hilbert 矩阵消成上三角矩阵,然后求解结果。我们将阶数 n=2,5,10,20,50,100 的误差列表如表2所示,从表中我们可以看出,随着矩阵阶数的增加,Gauss 消去法的误差上升较快,当阶数为 13 时,误差就已经达到了 3.0655,相对误差已经很大了,因此 Gauss 消去法不适和高

图 2.1: 使用 cond() 函数计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

图 2.2: 使用定义计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

阶 Hilbert 矩阵求解。我们绘制出 $n=1\to 100$ 时的 Gauss 消去法求解的相对误差曲线如图3.1所示。

图 2.3: 使用定义计算的 2-条件数和矩阵阶数 n 在对数坐标下的曲线

表 2: Gauss 消去法相对误差与阶数关系表格

阶数 n	Gauss 消去法的相对误差		
2	5.66104886700368e-16		
5	1.55303820484067e-12		
10	0.000223773106799740		
20	23.5417423737487		
50	240.055736859534		
100	78.1201736046372		

4 Jacobi 矩阵迭代法

设 H=D-L-U,其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线,L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。因此,线性方程组 Hx=b 可以转换为 $x=B_Jx+f$,其中 $B_J=D^{-1}(L+U),f=D^{-1}b$,由此得到 Jacobi 迭代格式 $x^{(k+1)}=B_Jx^{(k)}+f$ 。由于此种迭代格式只有当矩阵 B_J 的谱半径小于 1时,迭代才是收敛的,因此,我们首先绘制出 Jacobi 迭代矩阵 B_J 的谱半径与阶数 n 的曲线图如图4.1所示,从图4.1(b)中可以看出,当阶数 n>2 时,我们设置当两次迭代的变化小于 1e-6 时,停止迭代,此时,Jacobi 迭代相对误差为 3.18555931744235e-07,误差比 Gauss 消去法在 n=2 时的误差还要大,因此,Jacobi 迭代法不适合 Hilbert 矩阵线性方程组的求解。

图 3.1: Gauss 消去法相对误差与阶数关系曲线图

图 4.1: Jacobi 迭代矩阵谱半径图

5 Gauss-Seidel 矩阵迭代法

设 H=D-L-U,其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线,L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。因此,线性方程组 Hx=b 可以转换为 $x=B_Gx+f$,其中 $B_G=(D+L)^{-1}U$, $f=(D+L)^{-1}b$ 。与 Jacobi 矩阵迭代法类似,只有当矩阵 B_G 的谱半径小于 1 时,迭代才是收敛的,因此我们绘制出 Gauss-Seidel 迭代矩阵 B_G 的谱半径示意图如图5.1所示,从图中我们可以看出,当阶数 $n\geq 13$

时,谱半径已经 ≥ 1 了,因此此时 Gauss-Seidel 迭代法已经不收敛了。由此可知,Gauss-Seidel 迭代法效果比 Jacobi 迭代法支持的 Hilbert 矩阵阶数高一点,但是仍然不能够用于高阶 Hilbert 矩阵线性方程组的求解。

图 5.1: Gauss-Seidel 迭代矩阵谱半径与阶数 n 的关系图

6 SOR 迭代法

设 H=D-L-U, 其中 $D=diag(h_{11},h_{22},\cdots,h_{nn})$ 表示 Hilbert 矩阵 H 的对角线, L 表示 H 的左下角元素的相反数,是一个下三角矩阵,U 表示 H 的右上角元素的相反数,是一个上三角矩阵。 因此,线性方程组 Hx=b 可以转换为 $x=L_wx+f$,其中 $L_w=(D-wL)^{-1}((1-w)D+wU),f=(D-wL)^{-1}b$ 。