Arraylist - tidskompleksitet

Skemaer - til sammenligning

Skriv noget klogt her!

Arraylist er en udvikling af standard arrays, der er tilføjet metoder / funktioner til at hovedsageligt indsætte og fjerne elementer i listen.

De fleste af disse nye funktioner er dyre (O(n)).

Arraylist

Læs et element ¹	første	sidste	midterste	i'te	næste ²
	0(1)	0(1)	0(1)	0(1)	O(n) O(1) *
Find element ³	eksisterer usorteret liste	eksisterer sorteret liste	eksisterer ikke usorteret liste	eksisterer ikke sorteret liste	
	O(n) **	$O(\log n)$	O(n)	$O(\log n)$	
Indsæt nyt element	i starten	i slutningen	i midten	efter node	før node
	O(n)	O(1)/O(n)	O(n)	n/a	n/a
Fjern element	første	sidste	i'te	efter node	før node
	O(n)	O(1)	O(n)	n/a	n/a
Byt om på to elementer	første og sidste	første og i'te	sidste og i'te	i'te og j'te	nodes
	O(1)	O(1)	O(1)	O(1)	n/a

Disse scenarios går ud fra worst case.

**, vi kan være heldige at finde den før vi har været hele arrayet igennem

^{*,} hvis vi kender index

¹ At læse et element er som regel det samme som at skrive nyt indhold i et eksisterende element

² Hvis vi allerede har fat i ét element i en datastruktur, kan vi måske læse det "næste" hurtigere end i+1'te

³ Find et element med en bestemt værdi – alt efter om vi ved at listen er sorteret eller ej, og om elementet findes eller ej.