Computergrafik

Vorlesung

Philipp Lensing

OpenGL-Rendering-Pipeline

Überblick der einzelnen Stufen der OpenGL-Rendering-Pipeline:

Rendering-Pipeline: Vertex Shading

Beim Vertex-Shading werden die Eckpunkte des Modells (Vertizes) affin und projektiv transformiert. Dabei durchlaufen die Vertizes eine **Transformations-Pipeline**.

Vertex Shader

Vertex-ConstantShader aus Praktikum (ConstantShader.cpp):

```
#version 400
in vec4 VertexPos;
uniform mat4 ModelViewProjMat;
void main()
{
    gl_Position = ModelViewProjMat * VertexPos;
}
```

- Eine (kombinierte) Matrix transformiert die Modell-Vertizes (aus Vertexbuffer) in den korrekten Bildraum!
 - Berücksichtigt werden:
 - Modell-Position und -Ausrichtung (Model)
 - Kamera-Position und -Ausrichtung (View)
 - Kamera-Perspektive (*Proj*)

Ein Vertex durchläuft nacheinander unterschiedliche Transformationsräume:

Nach der persp. Teilung befinden sich alle Vertizes in einem Würfel mit den Kantenlängen 2,2,2.

Im Fensterraum werden die normalisierten Modelldaten in Pixelkoordinaten des Fensters transformiert.

Transformations-Pipeline mit OpenGL

Ein Vertex durchläuft nacheinander unterschiedliche Transformationsräume. Bei OpenGL werden die Transformationen für die Räume wie folgt angegeben:

Modell-Transformation (Welt-Transformation)

Nachfolgend soll erläutert werden, wie ein Objekt durch Verschiebung, Rotation und Skalierung im virtuellen Welt-Raum beschrieben wird.

Affine Transformationen

- Zur Verringerung der Komplexität wollen wir vorerst alle Transformationen im Zweidimensionalen betrachten
 - Verschiebung (Translation)
 - Skalierung
 - Rotation
- Als Grundlage dient eine einfaches Modell eines "Hauses"
- Die Form des Hauses wird durch seine 9 Vertizes in der XY-Ebene beschrieben.

Verschiebung (Translation)

 Das Haus soll verschoben werden. Welche Operation muss auf die Eckpunkte des Hauses anwendet werden, damit die folgenden Verschiebungen resultieren?

$$T(\mathbf{p_i}, \mathbf{t}) = \mathbf{p_i} + \mathbf{t} = \begin{pmatrix} x_{pi} \\ y_{pi} \end{pmatrix} + \begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} x_{pi} + x_t \\ y_{pi} + y_t \end{pmatrix}$$

Skalierung

• Das Haus soll skaliert werden. Welche Operation muss auf die Eckpunkte des Hauses anwendet werden, damit die folgenden Skalierungen resultieren?

$$S(\mathbf{p_i}, \mathbf{s}) = \mathbf{sp}_i = \begin{pmatrix} x_s x_{pi} \\ y_s y_{pi} \end{pmatrix}$$

• Das Haus soll rotiert werden. Welche Operation muss auf die Eckpunkte des Hauses anwendet werden, damit die folgenden Rotationen resultieren?

$$R(\mathbf{p_i},\beta) = ?$$

Um ein Objekt zu rotieren, macht es Sinn, die kartesischen Koordinaten als Funktion eines Winkels und eines Radius zu interpretieren:

$$R(\mathbf{p_i}, \beta) = \begin{pmatrix} r_i \cos(\alpha_i + \beta) \\ r_i \sin(\alpha_i + \beta) \end{pmatrix}$$
 Noch etwas unschöne Form ...

1. Ersetzung mit Hilfe des Additionstheorems für Sinus und Cosinus

$$\sin(\alpha + \beta) = \cos(\alpha)\sin(\beta) + \sin(\alpha)\cos(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

2. Wiedereinsetzung der kartesischen Koordinaten

$$\mathbf{p_i} = \begin{pmatrix} r_i \cos(\alpha_i) \\ r_i \sin(\alpha_i) \end{pmatrix} = \begin{pmatrix} x_{pi} \\ y_{pi} \end{pmatrix}$$

$$R(\mathbf{p_i}, \beta) = \begin{pmatrix} r_i \cos(\alpha_i + \beta) \\ r_i \sin(\alpha_i + \beta) \end{pmatrix} = \begin{pmatrix} r_i \cos(\alpha_i) \cos(\beta) - r_i \sin(\alpha_i) \sin(\beta) \\ r_i \cos(\alpha_i) \sin(\beta) + r_i \sin(\alpha_i) \cos(\beta) \end{pmatrix}$$

$$R(\mathbf{p_i}, \beta) = \begin{pmatrix} x_{pi} \cos(\beta) - y_{pi} \sin(\beta) \\ x_{pi} \sin(\beta) + y_{pi} \cos(\beta) \end{pmatrix}$$

WICHTIG: Rotation immer im Bezug zum Ursprung!

Verschiebung, Skalierung & Rotation in der Ebene

• Verschiebung:
$$T(\mathbf{p_i}, \mathbf{t}) = \begin{bmatrix} x_{pi} + X_t \\ y_{pi} + y_t \end{bmatrix}$$

• Skalierung:
$$S(\mathbf{p}_i, \mathbf{s}) = \begin{pmatrix} x_s x_{pi} \\ y_s y_{pi} \end{pmatrix}$$

• Rotation:
$$R(\mathbf{p_i}, \beta) = \begin{pmatrix} x_{pi} \cos(\beta) - y_{pi} \sin(\beta) \\ x_{pi} \sin(\beta) + y_{pi} \cos(\beta) \end{pmatrix}$$

Praktisches Beispiel

2D-Grafik passend auf Bildschirm anzeigen

Praktisches Beispiel

$$G(\mathbf{p}) = T(R(S(T(\mathbf{p}, \mathbf{t_1}), \mathbf{s}), \alpha), \mathbf{t_2})$$

- Jeder Datenpunkt durchläuft nacheinander jede Transformation
- Laufzeitkomplexität bei N Datenpunkten und M Transformationen:

O(MN)

- Praktische Objekte/Grafiken bestehen aus sehr vielen Datenpunkten (z. B. Pixel oder Vertizes bei 3D-Modellen)
- Eine Grafik/Objekt durchläuft u. U. sehr viele Transformationen
- → Diese Transformationsrechnung ist teuer!
- → Diese Transformationsrechnung ist uneinheitlich!
- → Die Verwendung von Matrizen löst Probleme:

$$T_2(R(S(T_1p))) = (T_2RST_1)p = Gp \rightarrow O(M+N)$$

Matrizen

 Matrix beschreibt Koeffizienten für lineares Gleichungssystem in kompakter Form:

$$\mathbf{Ap} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_p \\ y_p \end{pmatrix} = \begin{pmatrix} a_{11}x_p + a_{12}y_p \\ a_{21}x_p + a_{22}y_p \end{pmatrix}$$

Matrix-Multiplikation (Zeile x Spalte):

$$AB = C$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{33} & b_{33} \\ b_{41} & b_{41} & b_{42} & b_{43} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

$$Zeile \qquad Spalte$$

$$a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} = c_{22}$$

Identitätsmatrix (neutrale Matrix):

$$\mathbf{Ip} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \end{pmatrix} = \begin{pmatrix} 1x_p + 0y_p \\ 0x_p + 1y_p \end{pmatrix} = \begin{pmatrix} x_p \\ y_p \end{pmatrix} = \mathbf{p}$$

• Nicht kommutativ:

Verschiebung, Skalierung & Rotation in der Ebene mit 2x2 Matrizen

• Skalierung:
$$S(\mathbf{p_i}, \mathbf{s}) = \begin{pmatrix} x_s x_{pi} \\ y_s y_{pi} \end{pmatrix} \rightarrow S\mathbf{p_i} = \begin{pmatrix} \frac{x_s}{2} & \frac{0}{2} \\ \frac{y_s}{2} & \frac{y_s}{2} \end{pmatrix} \begin{pmatrix} x_{pi} \\ y_{pi} \end{pmatrix}$$

• Rotation:
$$R(\mathbf{p_i}, \beta) = \begin{pmatrix} x_{pi} \cos(\beta) - y_{pi} \sin(\beta) \\ x_{pi} \sin(\beta) + y_{pi} \cos(\beta) \end{pmatrix}$$

$$\rightarrow \mathbf{Rp_i} = \begin{pmatrix} \frac{\cos(\beta)}{\sin(\beta)} & \frac{-\sin(\beta)}{\cos(\beta)} \end{pmatrix} \begin{pmatrix} x_{pi} \\ y_{pi} \end{pmatrix}$$

• Verschiebung:
$$T(\mathbf{p_i}, \mathbf{t}) = \begin{pmatrix} x_{pi} + x_t \\ y_{pi} + y_t \end{pmatrix} \rightarrow \mathbf{T}\mathbf{p_i} = \begin{pmatrix} x_{pi} \\ y_{pi} \end{pmatrix}$$

Homogener Raum/Koordinaten

Problem mit Translation mit 2x2-Matrix

$$\mathbf{T0} = \mathbf{T} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$
, $gewollt : \mathbf{T0} = \mathbf{t}$

Lösung: Einbettung in (n+1)-dimensionalen projektiven Raum \Rightarrow Homogener Raum (hier $H = P(R^3)$

$$R^{2} \to H, \begin{pmatrix} x_{\rho} \\ y_{\rho} \end{pmatrix} \to \begin{pmatrix} x_{\rho} \\ y_{\rho} \\ 1 \end{pmatrix} \qquad H \to R^{2}, \begin{pmatrix} x_{\rho} \\ y_{\rho} \\ z_{\rho} \end{pmatrix} \to \begin{pmatrix} x_{\rho}/z_{\rho} \\ y_{\rho}/z_{\rho} \end{pmatrix}$$

Translation mit homogener Matrix

• Homogene Translationsmatrix mit Translationsvektor $\mathbf{t} = \begin{bmatrix} X_t \\ Y_t \end{bmatrix}$

$$\mathbf{T0} = \mathbf{T} \begin{pmatrix} x_{\rho} \\ y_{\rho} \\ 1 \end{pmatrix} = \begin{pmatrix} x_{\rho} + x_{t} \\ y_{\rho} + y_{t} \\ 1 \end{pmatrix}$$

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & x_{t} \\ 0 & 1 & y_{t} \\ 0 & 0 & 1 \end{pmatrix}$$

Verschiebung, Skalierung & Rotation in der Ebene mit homogenen Matrizen

• Verschiebung:
$$\mathbf{Tp} = \begin{pmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$$

• Skalierung:
$$\mathbf{Sp_i} = \begin{pmatrix} x_{\underline{s}} & 0 & 0 \\ 0 & \underline{y_s} & 0 \\ \underline{0} & \underline{0} & \underline{1} \end{pmatrix} \begin{pmatrix} x_{\rho} \\ y_{\rho} \\ 1 \end{pmatrix}$$

• Rotation:
$$\mathbf{Rp_i} = \begin{pmatrix} \frac{\cos(\beta) & -\sin(\beta) & 0}{\sin(\beta) & \cos(\beta) & 0} & x_{pi} \\ \frac{0}{\cos(\beta)} & \frac{1}{\cos(\beta)} & \frac{1}{\cos(\beta)} & 1 \end{pmatrix}$$

Skalierung & Translation im dreidimensionalen Raum

Translation & Skalierung können einfach um dritte (Z-)Koordinate erweitert werden (wieder homogene Koordinaten):

$$\mathbf{Tp} = \begin{pmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} \qquad \mathbf{Tp} = \begin{pmatrix} 1 & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$$

$$\mathbf{Sp} = \begin{pmatrix} x_s & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & z_s & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ z_p \\ 1 \end{pmatrix}$$

Rotation im dreidimensionalen Raum

- Koordinatensystem-Wahl wirkt sich auf Rotation aus
 - Cinema 4D, Direct3D, ... → linkshändisches Koordinatensystem
 - Maya, OpenGL, ... → rechtshändisches Koordinatensystem
 - Kein einheitlicher Standard

Rotation im dreidimensionalen Raum

- Rotation kann um die 3 Hauptachsen (X,Y,Z) erfolgen
- Prinzip der 2D-Rotation in XY-Ebene, um gedachte Z-Achse, lässt sich direkt in den dreidimensionalen Raum überführen:

$$\mathbf{R} = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R_z} \mathbf{p} = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ z_p \\ 1 \end{pmatrix}$$

- Praktische Konstruktionsregeln:
 - Die Cosinus-Terme müssen immer auf der Hauptdiagonalen liegen und die Sinus-Terme nicht, denn $\gamma = 0 \rightarrow \mathbf{R} = \mathbf{I}$ (*Identitätsmatrix*)
 - Die Koordinaten der Achse, um die gedreht wird, bleiben unverändert (die dazugehörige Spalte ist also neutral)
 - Da die Rotationsmatrix eine orthogonale Matrix bildet, gilt $\mathbb{R}^{-1} = \mathbb{R}^{T}$. Hierdurch ergibt sich, dass ebenfalls eine neutrale Zeile resultiert

Rotation im dreidimensionalen Raum

Rotation für die drei einzelnen Hauptachsen

$$\mathbf{R_{x}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R_{y}} = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0\\ \sin(\gamma) & \cos(\gamma) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R_z} = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Anstatt mit 3 Euler-Winkeln zu arbeiten, kann eine Rotationsmatrix auch durch eine beliebig gewählte Drehachse und einen Drehwinkel berechnet werden.

Rotation um alle Achsen $R(\alpha, \beta, \gamma)$ (Reihenfolge muss einheitlich gewählt werden)

$$R = R_z R_y R_x$$

Translation, Skalierung & Rotation im dreidimensionalen Raum

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & \mathbf{x}_t \\ 0 & 1 & 0 & \mathbf{y}_t \\ 0 & 0 & 1 & \mathbf{z}_t \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{S} = \begin{pmatrix} \mathbf{x}_s & 0 & 0 & 0 \\ 0 & \mathbf{y}_s & 0 & 0 \\ 0 & 0 & \mathbf{z}_s & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{R}_{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{\mathbf{y}} = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_{\mathbf{z}} = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R_z} = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0\\ \sin(\gamma) & \cos(\gamma) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Objekt-Gesamttransformation:

$$\mathbf{M}_{o} = \mathbf{TR}_{z}\mathbf{R}_{y}\mathbf{R}_{x}\mathbf{S}$$

Szenengraph/Szenen-Management

 Hierarchische Anordnung von Objekten, um geometrische und semantische Zusammenhänge abzubilden

Szenengraph

 Hierarchische Anordnung von Objekten, um geometrische und semantische Zusammenhänge abzubilden

• Transformationshierarchie wird durch Matrix-Multiplikation abgebildet:

$$M_{Tisch,Welt} = M_{Tisch,Objekt}$$
 $M_{Flasche,Welt} = M_{Tisch,Objekt} M_{Flasche,Objekt}$

Matrizen als Koordinatensysteme interpretieren

• Gegenwärtig verstehen wir eine Matrix, die eine affine Transformation abbildet, als Operand, der auf die Punkte eines Modells angewendet wird.

• Manchmal ist es aber sinnvoll, eine Matrix mit affiner Transformation als Koordinatensystem zu interpretieren (Right-, Up-, Forward- & Position-

Vektor): $M = \begin{bmatrix} X_r & X_u & X_f & X_t \\ Y_r & Y_u & Y_f & Y_t \\ Z_r & Z_u & Z_f & Z_t \\ 0 & 0 & 1 \end{bmatrix}$

View-Transformation (Kamera-Transformation)

Welt-Raum

Gemeinsamer Raum für alle Objekte einer virtuellen Szene.

Affine Transform.:

- Verschiebung
- Rotation

View-Transform. (Kamera-Transform.)

Kameraraum

Alle Objekte befinden sich in einem Raum, in dem die Kamera im Ursprung liegt.

- Transformationen werden auf Modellpunkte angewendet, dies gilt auch für die Sicht-Transformation.
- Frage: Wie können die Modelle transformiert werden, damit sie in Kamera-Koordinaten liegen?

- Bewegung der Kamera auf passende Position (-2,1)
- Schiff liegt auf (5,0) und Flugzeug auf (4,1) (im Kameraraum)

- Idee: Anstatt die Kamera zu bewegen, werden alle Objekte mit der inversen Sicht-Transformation bewegt.
- → Bewegt sich die Kamera nach rechts, wandern alle Objekte nach links.
- → Bewegt sich die Kamera nach oben, wandern alle Objekte nach unten.

→ Rotiert die Kamera im Uhrzeigersinn, rotieren die Objekte gegen den Uhrzeigersinn.

Schiff liegt wieder im Sicht-Raum auf (0,5) und Flugzeug auf (4,1)

Aufbau der Kamera-Transformation:

- 1. Kamera wird wie Objekt im Raum transformiert (Rotations- und Translationsmatrix, Skalierung nicht nötig) \rightarrow \mathbf{M}_{∞} .
- 2. Die sich ergebene Matrix wird invertiert \rightarrow M_c .
- 3. Die invertierte Matrix wird mit den Objektmatrizen multipliziert.

$$\mathbf{M}_{\infty} = \mathbf{T}_{\infty} \mathbf{R}_{\infty, z} \mathbf{R}_{\infty, y} \mathbf{R}_{\infty, x}$$

$$M_c = M_{\infty}^{-1}$$

Schiff im Kameraraum:
$$M_{c,schiff} = M_c M_{schiff}$$

Inverse für View-Transformation berechnen:

- 1. Der 3x3-Anteil der Matrix bildet orthogonales Koordinatensystem ab.
- 2. Für orthogonale Matrizen gilt: $\mathbf{M} \mathbf{M}^{\mathsf{T}} = \mathbf{I}$.
- 3. Da für Matrizen $\mathbf{M}\mathbf{M}^{-1} = \mathbf{I}$ gilt, folgt aus 2, dass $\mathbf{M}^{-1} = \mathbf{M}^{\mathsf{T}}$.

$$\mathbf{M}_{\infty} = \begin{pmatrix} \mathbf{r} & \mathbf{u} & \mathbf{f} & \mathbf{t} \\ \mathbf{X}_{r} & \mathbf{X}_{u} & \mathbf{X}_{f} & \mathbf{X}_{t} \\ \mathbf{y}_{r} & \mathbf{y}_{u} & \mathbf{y}_{f} & \mathbf{y}_{t} \\ \mathbf{z}_{r} & \mathbf{z}_{u} & \mathbf{z}_{f} & \mathbf{z}_{t} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{M}_{\infty}^{-1} = \begin{pmatrix} \mathbf{X}_{r} & \mathbf{y}_{r} & \mathbf{z}_{r} & -(\mathbf{t} \cdot \mathbf{r}) \\ \mathbf{X}_{u} & \mathbf{y}_{u} & \mathbf{z}_{u} & -(\mathbf{t} \cdot \mathbf{r}) \\ \mathbf{X}_{f} & \mathbf{y}_{f} & \mathbf{z}_{f} & -(\mathbf{t} \cdot \mathbf{f}) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4. Es gilt: $\mathbf{M}_{\infty} = \mathbf{T}_{\infty} \mathbf{R}_{\infty}$, daraus ergibt sich für die Inverse:

$$\mathbf{M}_{\boldsymbol{\omega}}^{-1} = (\mathbf{T}_{\boldsymbol{\omega}} \mathbf{R}_{\boldsymbol{\omega}})^{-1} = \mathbf{R}_{\boldsymbol{\omega}}^{T} \mathbf{T}_{\boldsymbol{\omega}}^{-1} \qquad \text{(die inverse Translationsmatrix besitzt lediglich den negativen Translationsvektor)}$$

Konstruktion einer "LookAt"-View-Matrix mit Hilfe eines Target-, Position-& Up-Vektors (t,p,u)

$$r = \frac{f \times u}{\left| f \times u \right|}$$

$$\mathbf{u'} = \frac{\mathbf{r} \times \mathbf{f}}{|\mathbf{r} \times \mathbf{f}|}$$

$$f' = \frac{-f}{|f|}$$

$$f = t - p$$

$$\mathbf{M}_{\mathbf{c}} = \begin{pmatrix} \mathbf{r} & \mathbf{u}' & \mathbf{f}' & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{r}^{T} & -(\mathbf{r} \bullet \mathbf{p}) \\ \mathbf{u}'^{T} & -(\mathbf{u}' \bullet \mathbf{p}) \\ \mathbf{f}'^{T} & -(\mathbf{f}' \bullet \mathbf{p}) \\ \mathbf{0}^{T} & 1 \end{pmatrix}$$

Projektion

Projektionstransf.

Kameraraum

Alle Objekte befinden sich in einem Raum, in dem die Kamera im Ursprung liegt.

Normalisierter Bildraum

Nach der Projektion befinden sich alle Vertizes in einem Würfel mit den Kantenlängen 2,2,2.

(Kamera-)Projektionen

- Parallelprojektion im Kameraraum (Orthogonale Projektion):
 - w gibt Breite und h gibt Höhe des Sichtfensters an (in Raumeinheiten).
 - n gibt die Near- und f die Far-Clipping-Plane an (in Raumeinheiten)
 - Bei der Parallelprojektion kann die Entfernung zwischen Kamera und Objekt nicht abgeschätzt werden (warum?).
 - Nach der Projektion werden alle Koordinaten, die größer 1 und kleiner
 -1 sind, abgeschnitten (liegen nicht im Bild).

$$\mathbf{M}_{\mathbf{p},\parallel} = \begin{pmatrix} 2/\mathbf{w} & 0 & 0 & 0\\ 0 & 2/h & 0 & 0\\ 0 & 0 & \frac{-2}{f-n} & \frac{n-f}{f-n}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Es wird das physikalische Prinzip einer Lochkamera für die Abbildung der perspektivischen Projektion genutzt:

Der Einfachheit halber wird die Bildebene vor dem Kameraloch angenommen, dies verändert nichts an den Berechnungen oder dem Prinzip der Lochkamera.

(Kamera-)Projektionen

Perspektivische (Zentral-)Projektion:

Einfaches Prinzip:

- Die X- und Y-Koordinate wird durch Z geteilt (perspektivische Teilung).
- Mit zunehmender Entfernung wird so die Abbildung eines Objekts kleiner und sie wird zum Zentrum der Projektion gezogen.

$$\mathbf{M}_{\mathsf{p},\mathsf{persp}}\mathbf{v} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{y}_{v} \\ \mathbf{z}_{v} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{y}_{v} \\ 0 \\ \mathbf{z}_{v} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{v} / \mathbf{z}_{v} \\ \mathbf{y}_{v} / \mathbf{z}_{v} \\ 0 \\ 1 \end{pmatrix}$$

Die Abbildung der Objekte wird mit zunehmender Entfernung kleiner. Ferner wandern entfernte Objekte zur Kameraachse.

Wann liefert die Matrix keine korrekten Ergebnisse?

Entwickeln Sie eine perspektivische Projektionsmatrix, die die Bildweite f und die Breite (b) und Höhe (h) der Bildebene entgegen nimmt. Nach der Projektion soll jeder Punkt der auf der Bildebene abgebildet werden kann zwischen [-1,1]x[-1,1] liegen.

(Kamera-)Projektionen

Perspektivische Projektion:

w gibt Breite und h gibt Höhe der nahen Clipping-Ebene an (in Raumeinheiten).

- n gibt den Abstand der nahen und f den Abstand der fernen Clipping-Ebene an

(in Raumeinheiten).

$$\mathbf{M}_{p,persp} = \begin{pmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Gesamt-Transformation bilden und dem Shader übergeben (Praktikum)

```
Matrix m, v, p;
bool Shader::load(...)
 ShaderProgram = createShaderProgram(pVData, pFData);
 ModelViewProjLoc = glGetUniformLocation(ShaderProgram, "ModelViewProjMat");
void Shader::activate(const BaseCamera& Cam) const
 Matrix ModelViewProj = Cam.getProjectionMatrix() ----
                      * Cam.getViewMatrix() ———
                      * modelTransform();
 glUniformMatrix4fv(ModelViewProjLoc, 1, GL_FALSE, ModelViewProj.m);
            m = m1.translation(Pos) * m2.rotationY(RotY); <
Zum Beispiel:
            v.lookAt(Target, Up, Pos);
            p.perspective(M PI, WinWidth/WinHeight, 0.1f,100.0f);
```

Vielen Dank für Ihre Aufmerksamkeit!