Bits & Bytes

Computer Systems Organization

Why Don't Computers Use Decimal Numbers?

Decimal representation (base 10): Natural representation used by humans

Why Don't Computers Use Base 10?

Question: why don't computers use decimal numbers?

Implementing electronically

 Hard to represent the signal: need high precision to encode 10 signal levels on single wire

Solution

Use a binary (0/1) representation of numbers/data

How to Calculate Binary Representations?

Binary representation of 75

Subtraction method (or division by 2 method with the last reminder most significant)

- What is the biggest multiple of two that is less or equal than 75?
- · 75 64 = 11
- What is the biggest multiple of two that is less or equal than 11?
- · 11 8 = 3
- · 3 2 = 1
- · 1 1 = 0

Keep the multiples of 2 in mind

How to Calculate Binary Representations?

Binary representation of 339

Subtraction method

- · 339 256 = 83
- · 83 64 = 19
- · 19 16 = 3
- · 3 2 = 1
- · 1 1 = 0

Multiples of 2

Small Binary Numbers

Useful to keep in mind

Decimal Binary

0	0000
1 -2 3	0001
- 2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Hexadecimal Numbering System (Base 16)

- Binary (base 2): 0 1
- Decimal (base 10): 0 1 2 3 4 5 6 7 8 9
- Hexadecimal (base 16): 0 1 2 3 4 5 6 7 8 9 A B C D E F
 10 11 12 13 14 15

$$E7 = 224 + 7 = 231$$

You can write this hexadecimal number in C as 0xE7 Or 0xe7

Hex Decimal

0	0	
0 1 2 3 4 5 6 7 8 9 A B C D E	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
E	14	
F	15	

Hexadecimal <-> Binary

- Hexadecimal -> Binary
 - Expand each hexadecimal digit to its binary equivalent

1 7 3 A 4 C

- Binary -> Hexadecimal
 - Split it into groups of 4 bits each, then convert each group to the hexadecimal equivalent

Hex Decimany

0	0	0000
1	1	0001
2	2	0010
	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Try to memorize this table

Practice

Calculate the binary representation of

5 3 A 1 F E

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
<u>4</u> 5	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Decimal <--> hexadecimal

Decimal to Hexadecimal (division by 16 with the last reminder as most significant):

$$314,156 = 19,634 \times 16 + 12$$
 (C)
 $19,634 = 1,227 \times 16 + 2$ (2)
 $1,227 = 76 \times 16 + 11$ (B)
 $76 = 4 \times 16 + 12$ (C)
 $4 = 0 \times 16 + 4$ (4)
 $0x4CB2C$

Hexadecimal to Decimal:

0x7AF7 x 16pow2 + 10 x 16pow1 + 15 x 16pow0 = 7 x 256 + 10 x 16 + 15 = 1,792 + 160 + 15 = 1,967

Bits, Bytes and Words

Bit = 0 or 1

Byte = 8 bits

 $_{\circ}$ Binary 00000000_{2} to 11111111_{2}

 \circ Decimal: 0_{10} to 255_{10}

Hexadecimal 00₁₆ to FF₁₆

Word = multiple bytes

- E.g., 4 bytes (32 bits) or 8 bytes (64 bits)
- Size of pointer data usually determines the number of bytes in a word
- W-bit word size
 - => The virtual addresses can range from 0 to 2w 1 bytes
- Older machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- Today systems are 64 bits (8 bytes)
 - Can address 1.84 X 10¹⁹ bytes

Data Representations

Sizes of C objects (in Bytes)

C Data Types	32-bit machine	64-bit
char	1	1
short	2	2
int	4	4
long int	4	8
int32_t	4	4
int64_t	8	8
float	4	4
double	8	8
Pointer	4	8

Word-Oriented Memory Organization

Memory is a sequence of bytes

- The byte is the smallest addressable unit in memory
- Each byte has an address
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Byte Ordering

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

How should x be stored in memory?

	0x100	0x101	0x102	0x103	

 0x100	0x101	0x102	0x103	

Byte Ordering

Byte Ordering Example

Big Endian

- Most significant byte has lowest address
- Sun's, Mac's (PowerPC)

Little Endian

- Least significant byte has lowest address
- PC's (x86), Mac's (x86), Alphas, ARM with iOS and Android

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * creates byte array

```
typedef unsigned char * pointer;

void show_bytes(pointer start, int len)
{
  int i;
  for (i = 0; i < len; i++)
    printf("%p \t %.2x\n", start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("%d is", a);
printf("%x in hexadecimal \n", a);
show_bytes((pointer) &a, sizeof(int));
```

15213 is 0x00003b6d in hexadecimal

Result (Linux, Intel X86):

int a = 15213; 0x11ffffcb8 6d 0x11ffffcb9 3b 0x11ffffcba 00 0x11ffffcbb 00

Result (Solaris, Sun SPARC):

```
int a = 15213;
0x11ffffcb8 00
0x11ffffcb9 00
0x11ffffcba 3b
0x11ffffcbb 6d
```

Representing Strings in C

Represented by array of characters

char S[6] = "15213";

- Strings end with a null character
 - Final character = 0
- Each character encoded in ASCII format
 - ASCII = American Standard Code for Information Interchange
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon

Representing Strings in C

ASCII TABLE

	_	Decimal Hex	(Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
		0 0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
		o 1 12Cimal 0 2Cimal 3 4 Binary	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
	L .	² C1112	[START OF TEXT]	34	22	"	00	42	В	98	62	D
Ne	' \(\sigma^2 \)	3	[END OF TEXT]	35	23	#	67	43	С	99	63	С
		4 4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
0	0	0000	[ENQUIRY] [ACKNOWLEDGE]	37 38	25 26	% &	69 70	45 46	E F	101 102	65 66	e f
1	1	0001	[BELL]	39	27	Ĩ.	71	47	G	103	67	g
							72	48	H	104	68	h
2	2	0010			9-		73	49	1	105	69	i
3	3	0011					74	4A	J	106	6A	j
3	3	0011					75	4B	K	107	6B	k
4	4	0100	0100	0111			76	4C	L	108	6C	I
			6116	3161			77	4D	M	109	6D	m
5	5	0101	ăffăi	នាំទីវ			78 79	4E 4F	N O	110 111	6E 6F	n o
6	6	0110	ăiiă	íðíi l			80	50	P	112	70	р
7	7	0111	And if you	can read			81	51	Q	113	71	q
/	/	0111	0.120 200 0				82	52	R	114	72	r
8	8	1000					83	53	S	115	73	S
_							84	54	T	116	74	t
9	9	1001					85	55	U	117	75	u
A	10	1010					86 87	56 57	V W	118 119	76 77	v w
							88	58	X	120	78	X
В	11	1011					89	59	Υ	121	79	y
С	12	1100					90	5A	Z	122	7A	z
							91	5B	1	123	7B	{
D	13	1101		The second			92	5C	\	124	7C	Į .
E	14	1110					93	5D 5E	,	125 126	7D 7E	} ~
		1111	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7E 7F	~ [DEL]
F	15	TTTT		· · ·			1 = 3		_			[]

Practice

Write a function that takes a character as input and returns whether it is a digit:

```
isdigit('4') ==> 1
isdigit('9') ==> 1
isdigit('a') ==> 0
isdigit('?') ==> 0
Try to write isdigit()!
```

```
int isdigit(char c)
{
  if ((c >= '0') && (c <= '9'))
     return 1;
  else
    return 0;
}</pre>
```

Machine-Level Code Representation

- A program as a sequence of instructions
- Each instruction is a simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes

```
int sum(int x, int y)
{
   return x+y;
}
```

- Different instruction encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!

PC sum

55 89

E5

8B

45

0C

03 45

08

89

EC

5D

С3

Practice

Write a C function that finds the length of a string

```
int strlen(char * text)
{
   int index= 0;

   while(text[index] != '\0')
   {
      index++;
   }

   return index;
}
```