Pontificia Universidad Javeriana Diseño de Experimentos Parcial 2

1. En un experimento 2⁴ se obtienen los siguientes gráficos de interacción, que conclusión es válida:

- a) Posiblemente existe interacción entre el factor A y el factor B.
- b) Posiblemente existe interacción entre el factor B y el factor D.
- c) Posiblemente existe interacción entre el factor C y el factor D.
- d) Posiblemente existe interacción entre el factor A y el factor C.
- 2. AstraZeneca está probando la efectividad de su nueva vacuna para COVID bajo dos factores: edad (joven, adulto, adulto mayor) y peso (delgado, normal, sobrepeso).
 - a) Diseño factorial 2³
 - b) Diseño factorial 32
 - c) Diseño factorial de dos factores
 - d) By C son viables
 - e) AyCson viables
- **3.** Un experimentador ejecuta un diseño factorial 2^5 pero pierde algunos de los resultados de su modelo ANOVA. Complete el modelo con los datos faltantes (celdas en amarillo).

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Factor1	1	257.3	257.3	1.843	0.184
Factor2	1	136.4	136.4	0.993	0.327
Factor3	1	208.9	208.9	1.516	0.227
Factor4	1	457.3	457.3	3.284	0.073
Factor5	1	115	115	0.826	0.373
Residuals	24	3379.2	140.8		

4. Para el siguiente diseño factorial con dos factores y 3 réplicas, cuál sería el valor del efecto principal de A:

- a) Aproximadamente 8
- b) Aproximadamente 9
- c) Aproximadamente 10
- d) Aproximadamente 7
- 5. Tras ajustar un modelo de regresión lineal sobre un ANOVA factorial 2^6 se obtienen los siguientes intervalos de confianza para las betas de la regresión:

Factor	Beta	Limite menor	Limite mayor
Α	eta_1	2.3	2.7
В	eta_2	-9.7	1.6
С	β_3	1.1	2.3
D	eta_4	0.6	0.9
E	eta_5	-7.8	-4.5
F	β_6	-0.8	6.5

- a) Los únicos factores significativos son A, C, D, E y F.
- b) Los únicos factores significativos son B y F.
- c) Los únicos factores significativos son A, C y D.

- d) Ninguna opción es correcta.
- **6.** A que se refiere el termino confusión en diseños factoriales:
 - a) Es una forma de estimar los efectos de los factores mediante regresión lineal.
 - b) Es una forma de estimar la significancia de los factores mediante regresión lineal.
 - c) Es una forma de agrupar el efecto de un bloque al de una interacción o factor cuando no se puede calcular una corrida entera para cada bloque
 - d) Es una forma de agrupar el efecto de un bloque al de una interacción o factor cuando se puede calcular una o más corridas entera para cada bloque.
- 7. Al ajustar una regresión lineal a un modelo ANOVA 2^2 con interacción se obtiene el siguiente ajuste, con todos los efectos significativos:

$$y = 2.4 x_1 + 6.4 x_2 - 3.5 x_1 x_2 + 1.1$$

Dado que los factores se codificaron como -1 y 1, cual es el efecto principal del factor B (x_2):

- a) El efecto es 6.4
- b) El efecto es 3.2
- c) El efecto es 12.8
- d) Ninguna de las opciones es correcta
- **8.** Un experimentador corre varios modelos en un diseño 2⁴ con distintas transformaciones de la variable respuesta, cual considera usted es la mejor conclusión para un nivel de significancia del 5%:

Transformación	Shapiro.test p-value (residuos)		
ln(x+1)	0.034		
Х	0.000		
ln(x)	0.750		
\sqrt{x}	0.021		

- a) La mejor opción es la transformación \sqrt{x}
- b) La mejor opción es la transformación ln(x+1)
- c) La mejor opción es la transformación ln(x)
- d) No es necesario hacer ninguna transformación sobre la variable respuesta
- **9.** En un diseño experimental 2^4 se planea ejecutar una réplica para cada tratamiento como se visualiza en la tabla a continuación. Se requiere confundir un bloque de operario con dos niveles con la interacción ABCD, ¿qué planteamientos serian correctos?

Tratamiento	Α	В	С	D
1	-1	-1	-1	-1
2	1	-1	-1	-1
3	-1	1	-1	-1
4	-1	-1	1	-1
5	-1	-1	-1	1
6	1	1	-1	-1
7	-1	1	1	-1
8	-1	-1	1	1
9	1	-1	1	-1
10	-1	1	-1	1
11	1	1	1	-1
12	-1	1	1	1
13	1	-1	1	1
14	1	1	-1	1
15	1	1	1	1

- a) No es posible determinar la distribución del bloque con la información dada.
- b) El bloque uno debe cubrir los tratamientos 1, 6, 7, 8, 9, 10, 15. El resto de las muestras se debe tomar bajo el bloque dos.
- c) El bloque uno debe cubrir los tratamientos 1, 2, 3, 4, 5, 6, 7. El resto de las muestras se debe tomar bajo el bloque dos.
- d) El bloque uno debe cubrir los tratamientos 1, 3, 5, 7, 9, 11, 13 y 15. El resto de las muestras se debe tomar bajo el bloque dos.
- e) Ninguna de las respuestas es correcta.

10. A que se refiere el termino *bloqueo* en diseños factoriales:

- a) Es una forma de estimar los efectos de los factores mediante regresión lineal.
- b) Es una forma de estimar la significancia de los factores mediante regresión lineal.
- c) Es una forma de asilar la variabilidad que induce un factor perturbador y controlable.
- d) Es una forma de agrupar el efecto de un bloque al de una interacción o factor cuando se puede calcular una o más corridas entera para cada bloque.