Kraków 16 marca 2015

Zadanie D11: Remont Autostrady

W autostradzie znajduje się n dziur – położenie każdej jest opisane liczbą całkowitą nieujemną. Firma budowlana, która wygrała przetarg na remont, dysponuje maszyną, która może położyć łatę asfaltu przykrywającą wszystkie dziury znajdujące się w pewnym przedziale domkniętym o długoćci M. Koszt położenia jednej takiej łaty wynosi a. Jeśli któraś z dziur pozostanie nieprzykryta, firma płaci karę umowną — dla i-tej dziury wynosi ona c_i .

Oczywiście firma chciałaby się wywiązać z kontraktu możliwie najmniejszym kosztem, nawet jeśli oznacza to zapłacenie niektórych kar. Ile wynosi ów koszt?

Dostępna pamięć: 32MB

Wejście

Pierwsza linia standardowego wejścia zawiera liczbę naturalną Z - liczbę zestawów danych. Opis jednego zestawu jest następujący:

Pierwsza linia zawiera liczbę naturalną n ($1 \le n \le 10^6$). W kolejnych n liniach znajdują się po dwie liczby całkowite a_i , c_i ($0 \le a_i, c_i \le 10^9$) — odpowiednio pozycja i-tej dziury oraz kara za pozostawienie jej w obecnym stanie. Dziury są posortowane rosnąco względem położenia (liczby a_i tworzą ciąg rosnący). W ostatniej linii zestawu znajdują się dwie liczby całkowite M ($1 \le M \le 10^9$) i a ($0 \le a \le 10^9$) — długość i cena pojedynczej asfaltowej łaty.

Wyjście

Dla każdego zestawu danych wypisz (w oddzielnej linii) jedną liczbę całkowitą – minimalny koszt remontu drogi.

Przykład

2 3 1 1 2 2 3 3 1 3 5 1 2 2 2 4 1 5 2 6 2 4 3	Dla danych wejściowych:	Poprawną odpowiedzią jest:
3 1 1 2 2 3 3 1 3 5 1 2 2 2 4 1 5 2 6 2		
3 1 1 2 2 3 3 1 3 5 1 2 2 2 4 1 5 2 6 2	2	
1 1 2 2 3 3 3 5 5 1 2 2 2 4 1 5 2 6 2		
3 3 1 3 5 5 1 2 2 2 4 1 5 2 6 2		
1 3 5 1 2 2 2 4 1 5 2 6 2	2 2	
5 1 2 2 2 4 1 5 2 6 2	3 3	
1 2 2 2 4 1 5 2 6 2	1 3	
2 2 4 1 5 2 6 2	5	
4 1 5 2 6 2	1 2	
5 2 6 2	2 2	
6 2	4 1	
	5 2	
Δ 3	6 2	
	4 3	