

# Winning Space Race with Data Science

Hafizah Abdul Wahid 18 September 2024



## **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

# **Executive Summary**

In this presentation I am investigating what are the key factors that influence the landing outcomes of SpaceX's Falcon 9 launches, and creating a model that will predict the outcomes of future launches.

The dataset is collected from the SpaceX API as well as webscraping. Data analysis is done using visualization, SQL, Folium, and Plotly Dash, the results of which then inform a predictive classification model.

#### **Summary of Results**

Key factors identified in the successful landing of a launch are Flight Number, Booster Version, Orbit Type, and Payload Mass. The predictive models identified as the most suitable are Logistic Regression, SVM and KNN.

### Introduction

 SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each. Much of the savings is because SpaceX can reuse the first stage of their launches.

• Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

• This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Using SpaceX's API and Webscraping
- Perform data wrangling
  - Further classify data into successful and unsuccessful landings
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Using Logistic Regression, SVM, Decision Tree and KNN

## **Data Collection**

- Data was collected in two ways:
  - Using the SpaceX API
  - Webscraping

# Data Collection – SpaceX API

Data collection via SpaceX API was done in two steps:

- Data harvesting using GET
- Parsing launch data for only useful features to create a new dataframe, which is later filtered for Falcon 9 launches only

#### Github URL:

https://github.com/hafizah-aw/IBM-SpaceX-Capstone-Project/blob/e713de2ba7bcb5941724 3ed92af6677baa6cdb87/jupyter-labsspacex-data-collection-api.ipynb



# **Data Collection - Scraping**

Data collection via Webscraping was done in two steps:

- Using BeautifulSoup to extract Falcon 9 launch data from Wikipedia
- Parsing the data and converting it into a dataframe

#### GitHub URL:

https://github.com/hafizahaw/IBM-SpaceX-Capstone-Project/blob/b2d9673d65b63dfb d67c7fa4c39ba62b2b21c168/ju pyter-labs-webscraping.ipynb



# **Data Wrangling**

The launch data was further processed to identify the types of landing outcomes.

These were further classified as "successful" or "unsuccessful".

#### GitHub URL:

https://github.com/hafizah-aw/IBM-SpaceX-Capstone-Project/blob/b2d9673d65b63dfbd67c 7fa4c39ba62b2b21c168/labs-jupyterspacex-Data%20wrangling.ipynb



#### **EDA** with Data Visualization

- In exploratory analysis of the data, the following charts were used to find out how different variables affected the success rate of a launch:
  - Scatter point chart, to visualize the relationships between selected variables
  - Bar chart, to visualize the success rate for a chosen variable
  - Line chart, to visualize the any trends in successful landings

#### GitHub URL:

• <a href="https://github.com/hafizah-aw/IBM-SpaceX-Capstone-">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
<a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/edadataviz.ipynb">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
<a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/edadataviz.ipynb">Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/edadataviz.ipynb</a>

## **EDA** with SQL

- These are the SQL queries I've performed:
  - Display the names of the unique launch sites in the space mission
  - Display 5 records where launch sites begin with the string 'CCA'
  - Display the total payload mass carried by boosters launched by NASA (CRS)
  - Display average payload mass carried by booster version F9 v1.1
  - List the date when the first successful landing outcome in ground pad was achieved
  - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

## **EDA** with SQL

- These are the SQL queries I've performed:
  - List the total number of successful and failure mission outcomes
  - List the names of the booster\_versions which have carried the maximum payload mass using a subquery
  - List the records which will display the month names, failure landing\_outcomes in drone ship ,booster versions, launch\_site for the months in year 2015
  - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))
     between the date 2010-06-04 and 2017-03-20, in descending order
- GitHub URL:
  - <a href="https://github.com/hafizah-aw/IBM-SpaceX-Capstone-">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
    <a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/jupyter-labs-eda-sql-coursera-sqllite.ipynb">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
    <a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/jupyter-labs-eda-sql-coursera-sqllite.ipynb">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
    <a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/jupyter-labs-eda-sql-coursera-sqllite.ipynb">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
    <a href="Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/jupyter-labs-eda-sql-coursera-sqllite.ipynb">Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/jupyter-labs-eda-sql-coursera-sqllite.ipynb</a>

# Build an Interactive Map with Folium

- To the interactive map, I added:
  - Circles to represent each of the SpaceX launch sites
  - Marker clusters to show the number of successful and unsuccessful landings at each of these sites
  - Polylines with distance between launch sites and nearby areas of interest such as coastlines, railways, airports, etc.
- On the map, these objects can immediately tell you how often a launch site is used, its landing success rate, and possible reasons for the site location with respect to natural and built features of the surrounding area.
- GitHub URL
  - <a href="https://github.com/hafizah-aw/IBM-SpaceX-Capstone-">https://github.com/hafizah-aw/IBM-SpaceX-Capstone-</a>
    Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/lab jupyter launch site location%20(1).ipynb

# Build a Dashboard with Plotly Dash

- For my dashboard, I have added:
  - A Launch Site Drop-down Input Component
  - A callback function to render success-pie-chart based on selected site dropdown
  - A Range Slider to Select Payload
  - A callback function to render the success-payload-scatter-chart scatter plot
- These plots and interactions can tell you:
  - Which of the sites is most successful and the success rate of each site
  - The highest performing payload range and booster version
- GitHub URL
  - https://github.com/hafizah-aw/IBM-SpaceX-Capstone-Project/blob/b2d9673d65b63dfbd67c7fa4c39ba62b2b21c168/spacex\_dash\_app.py

# Predictive Analysis (Classification)

- To find the best performing classification model, the following steps were employed:
  - Standardize data
  - Split data into training and testing data
  - Run GridSearchCV with selected model on training data
  - Evaluate accuracy on test data
  - Plot a confusion matrix
  - Iterate the same process for other models
- GitHub URL
  - https://github.com/hafizah-aw/IBM-SpaceX-Capstone-Project/blob/b2d9673d65b63dfbd67c7fa4c39ba6 2b2b21c168/SpaceX Machine%20Learning%20Pr ediction Part 5%20(4).ipynb



## Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results



# Flight Number vs. Launch Site

Scatter plot of Flight Number vs. Launch Site



 Analysis – we can see that CCAFS SLC 40 seems to be a preferred launch site with the highest number of launches, although the launch sites themselves do not appear to be much of a factor in the success rate of launches.

# Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site



Analysis – there has been no launches from VAFB SLC 4E with payloads above 10000 kg.
 Payload or Launch Site do not seem to influence success rate.

# Success Rate vs. Orbit Type

 Bar chart for the success rate of each orbit type

 Analysis – all launches for ES-L1, GEO, HEO and SSO orbits have been successful.



# Flight Number vs. Orbit Type

Scatter point of Flight number vs. Orbit type



• Analysis – it is clear that GEO, HEO, ES-L1 and SSO orbits have extremely high success rates because of low launch numbers. Flight number still appears to be a greater factor in success rate than orbit type.

# Payload vs. Orbit Type

Scatter point of Payload vs. Orbit type



 Analysis - with heavy payloads, the successful landing or positive landing rate are more for Polar, LEO and ISS. However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

# Launch Success Yearly Trend

 Line chart of yearly average success rate

 Analysis – there is a general trend of increasing success over the years, likely due to better technologies and greater refinement of the Falcon 9 design.



#### All Launch Site Names

• Find the names of the unique launch sites

• Result - SpaceX only uses 4 launch sites.



# Launch Site Names Begin with 'CCA'

- Find 5 records
   where launch sites
   begin with `CCA`
- Result nothing to comment on.



# **Total Payload Mass**

- Total payload carried by boosters from NASA
- Result nothing to comment on.

```
Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

In [14]: 

**Sql
SELECT SUM("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "Customer" == 'NASA (CRS)'

* sqlite:///my_datal.db
Done.

Out[14]: 

SUM("PAYLOAD_MASS__KG_")

45596
```

# Average Payload Mass by F9 v1.1

- Average payload mass carried by booster version F9 v1.1
- Result the F9 v1.1 carried smaller payloads

```
Task 4

Display average payload mass carried by booster version F9 v1.1

In [15]: %%sql
SELECT AVG("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "Booster_Version" LIKE 'F9 v1.1%'

* sqlite:///my_datal.db
Done.

Out[15]: AVG("PAYLOAD_MASS__KG_")

2534.6666666666665
```

# First Successful Ground Landing Date

 Find the dates of the first successful landing outcome on ground pad

 Result - the first successful landing outcome occurred on 22 Dec 2015



#### Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Result nothing to comment on



#### Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Result SpaceX has had a very high mission success rate. Landing outcomes are not considered in the success or failure of a mission.



# **Boosters Carried Maximum Payload**

- List the names of the booster which have carried the maximum payload mass
- Result nothing to comment on.

```
Task 8
          List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
In [28]: %%sql
          SELECT "Booster_Version" FROM SPACEXTBL
          WHERE "PAYLOAD_MASS__KG_" = (SELECT_MAX("PAYLOAD_MASS__KG_") FROM_SPACEXTBL)
           * sqlite:///my_data1.db
          Done.
Out[28]:
           Booster_Version
              F9 B5 B1048.4
              F9 B5 B1049.4
              F9 B5 B1051.3
              F9 B5 B1056.4
              F9 B5 B1048.5
              F9 B5 B1051.4
              F9 B5 B1049.5
             F9 B5 B1060.2
              F9 B5 B1058.3
              F9 B5 B1051.6
              F9 B5 B1060.3
              F9 B5 B1049.7
```

#### 2015 Launch Records

 List the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Result – nothing to comment on.



#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

 Result – nothing to comment on.





# Map of SpaceX Launch Sites



• SpaceX has chosen its 4 launch sites to be on the Western and Eastern coast, with 3 sites clustered close together on the Eastern coast.

#### Close up of KSC LC-39A Launch Site with Launch Outcomes



• Most missions have launched from launch sites on the Eastern coast, primarily at the CCAFS LC-40 and KSC LC-39A facilities.

### Close up of VAFB SLC-4E facility and surrounding features



- SpaceX's launch sites are all located close to the ocean (1.37km away, in this instance), for ocean landings and also for rockets to safely disintegrate in case missions go awry
- Launch sites are also observed to be close to railways, highways, and airports presumably for the easy transportation of personnel and rocket components
- They are also situated far away from cities as a safety measure



## SpaceX Launch Records Dashboard Pt 1

- The pie chart shows the landing success rate of SpaceX's four launch sites
- The site with highest rate of success is KSC LC-39A (41.7%) followed by CCAFS LC-40 (29.2%)
- It is important to note that these sites also have markedly more launches than the others



## SpaceX Launch Records Dashboard Pt 2

- The pie chart shows the landing success rate of the launch site with highest success rate, KSC LC-39A
- 76.9% of launches from this site have had successful landing outcomes



## SpaceX Launch Records Dashboard Pt 3

- The scatter point chart shows the relationship between Payload Mass, Booster Version and Success rate.
- It is observed that most payloads fall within the selected range (~2000kg -~5500kg)
- Payload does not seem to influence landing outcomes
- However, 'FT' appears to be the best performing booster version across all payloads, and 'v1.1', the worst





# Classification Accuracy

 Bar chart representing accuracy scores for all predictive models tested

 The best performing classification models were Logistic regression, SVM, and KNN with equal accuracy scores of 0.833



#### **Confusion Matrix**

 Confusion matrix for Logistic regression, SVM, and KNN models

- Out of the 6 unsuccessful landings, the models correctly predicted 3
- Out of the 12 successful landings, the models correctly predicted 12



#### **Conclusions**

- The one factor that influences landing outcomes the most is Flight Number. This makes sense as the more launches SpaceX makes, the better it gets at getting it right
- Orbit type, Payload mass, and Booster version also somewhat influence the success rate of landings – however, the relationships are less straightforward.
   For instance, only certain orbits have a linear relationship with payload range and success
- Launch sites have the least influence the data is skewed to favor sites with more launches

# **Appendix**

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

