2021年上海市高考数学试卷

一. 填空题(本大题共 12 题, 满分 54 分, 第 1~6 题每题 4 分, 第 7~12 题每题 5 分)

- 1. 已知 $z_1 = 1 + i$, $z_2 = 2 + 3i$,则 $z_1 + z_2 = \underline{\hspace{1cm}}$
- 2. 己知 $A = \{x \mid 2x \le 1\}$, $B = \{-1,0,1\}$,则 $A \cap B =$ ______
- 3. 已知圆 $x^2 + y^2 2x 4y = 0$,则该圆的圆心坐标为

- 4. 如图,正方形 \overrightarrow{ABCD} 的边长为 3,则 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$
- 5. $\exists \exists f(x) = \frac{3}{x} + 2$, $\bigcup f^{-1}(1) = \underline{\hspace{1cm}}$
- 6. 已知二项式 $(x+a)^5$ 展开式中, x^2 项的系数为80,则a=
- 8. 已知无穷等比数列 $\{a_n\}$ 和 $\{b_n\}$,满足 $a_1=3$, $b_n=a_{2n}$, a_n 的各项和为9,则数列 $\{b_n\}$ 的各项和为____
- 9. 已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,C 为下底面圆周上的一个动点,则 $\triangle ABC$ 的面积的取值范围为
- 10. 已知花博会有四个不同的场馆 $A \times B \times C \times D$,甲、乙两人每人选 2 个去参观,则他们的选择中,恰有 一个场馆相同的概率为
- 11. 已知抛物线: $y^2 = 2px \ (p > 0)$,若第一象限的 $A \ B$ 两点在抛物线上,焦点为F,|AF| = 2,|BF| = 4, |AB|=3,则直线 AB 的斜率为
- 12. 已知 $a_i \in \mathbf{N}^*$ (i=1,2,...,9),对任意的 $k \in \mathbf{N}^*$ $(2 \le k \le 8)$, $a_k = a_{k-1} + 1$ 或 $a_k = a_{k+1} 1$ 中有且仅有一个 成立,且 $a_1 = 6$, $a_9 = 9$,则 $a_1 + \cdots + a_9$ 的最小值为_____

二. 选择题(本大题共4题,每题5分,共20分)

13. 下列函数中, 既是奇函数又是减函数的是()

$$A. \quad y = -3x$$

$$B. \quad y = x^3$$

A.
$$y = -3x$$
 B. $y = x^3$ C. $y = \log_3^x$ D. $y = 3^x$

$$D. \quad y = 3^{3}$$

 $\begin{cases} x = 3t - 4t^3 \\ v = 2t\sqrt{1 - t^2} \end{cases}, \ t \in [-1, 1], \ \text{下列选项的图中, 符合该方程的是 (} \end{cases}$

15. 己知 $f(x) = 3\sin x + 2$, 对任意的 $x_1 \in [0, \frac{\pi}{2}]$, 都存在 $x_2 \in [0, \frac{\pi}{2}]$, 使得 $f(x_1) + 2f(x_2 + \theta) = 3$ 成立,

则下列选项中, θ 可能的值为(

- A. $\frac{3\pi}{5}$ B. $\frac{4\pi}{5}$ C. $\frac{6\pi}{5}$ D. $\frac{7\pi}{5}$

- 16. 已知实数 x_1 、 y_1 、 x_2 、 y_2 、 x_3 、 y_3 同时满足: ① $x_1 < y_1$, $x_2 < y_2$, $x_3 < y_3$;
- ② $x_1 + y_1 = x_2 + y_2 = x_3 + y_3$; ③ $x_1y_1 + x_3y_3 = 2x_2y_2 > 0$, 则下列选项中恒成立的是(
 - A. $2x_2 < x_1 + x_3$ B. $2x_2 > x_1 + x_3$ C. $x_2^2 < x_1 x_3$ D. $x_2^2 > x_1 x_3$

- 三. 解答题(本大题共5题,共14+14+14+16+18=76分)
- 17. 如图,在长方体 $ABCD-A_1B_1C_1D_1$ 中,已知 AB=BC=2 , $AA_1=3$.
- (1) 若点P是棱 A_iD_i 上的动点,求三棱锥C-PAD的体积;
- (2) 求直线 AB_1 与平面 ACC_1A_1 的夹角大小.

- 18. 已知在 $\triangle ABC$ 中, $A \setminus B \setminus C$ 所对边分别为 $a \setminus b \setminus c$,且a=3,b=2c.
- (1) 若 $A = \frac{2\pi}{3}$, 求 $\triangle ABC$ 的面积;
- (2) 若 $2\sin B \sin C = 1$, 求 $\triangle ABC$ 的周长.

- 19. 已知某企业今年(2021年)第一季度的营业额为 1.1 亿元,以后每个季度的营业额比上个季度增加 0.05 亿元,该企业第一季度的利润为 0.16 亿,以后每季度比前一季度增长 4%.
- (1) 求 2021 年起前 20 季度营业额的总和;
- (2) 请问哪一季度的利润首次超过该季度营业额的 18%?

20. 已知椭圆 Γ : $\frac{x^2}{2}+y^2=1$, F_1 、 F_2 是其左右焦点,直线l 过点P(m,0) $(m<-\sqrt{2})$ 交椭圆

 Γ 于 A、B 两点,且 A、B 在 x 轴上方,点 A 在线段 BP 上.

- (1) 若 B 是上项点, $|\overline{BF_1}| = |\overline{PF_1}|$,求 m 的值;
- (2) 若 $\overrightarrow{F_1A} \cdot \overrightarrow{F_2A} = \frac{1}{3}$, 且原点O到直线l的距离为 $\frac{4\sqrt{15}}{15}$, 求直线l的方程;
- (3)对于任意点 P,是否存在唯一直线 l ,使得 $\overrightarrow{F_1A}//\overrightarrow{F_2B}$ 成立,若存在,求出直线 l 的斜率,若不存在,请说明理由.

- 21. 已知 f(x) 是定义在 **R** 上的函数,若对任意的 x_1 、 $x_2 \in \mathbf{R}$, $x_1 x_2 \in S$,均有 $f(x_1) f(x_2) \in S$,则 称 f(x) 是 S 关联.
- (1) 判断和证明 f(x) = 2x + 1 是否是 $[0,+\infty)$ 关联? 是否是[0,1] 关联?
- (2) 若 f(x) 是 {3} 关联, 当 $x \in [0,3)$ 时, $f(x) = x^2 2x$, 解不等式 $2 \le f(x) \le 3$;
- (3) 证明: "f(x) 是 $\{1\}$ 关联,且是 $\{0,+\infty\}$ 关联"的充要条件是" $\{f(x)\}$ 是 $\{1,2\}$ 关联".

参考答案

一、填空题

1. 3+4i 2. $\{-1,0\}$ 3. (1,2) 4. 9 5. -3 6. 2

7. 4 8. $\frac{18}{5}$ 9. $\left[2,\sqrt{5}\right]$ 10. $\frac{2}{3}$ 11. $\frac{\sqrt{5}}{2}$ 12. 31

二、选择题

13. A 14. B 15. D 16. A

三、解答题

17. (1) 2

(2) $\arcsin \frac{\sqrt{26}}{13}$

18. (1) $\frac{9\sqrt{3}}{14}$

(2) $3+4\sqrt{2}\pm\sqrt{5}$

19. (1) 31.5 亿元

(2) 今年起第26个季度时满足条件

20. (1) $m = -1 - \sqrt{2}$

(2) $y = \frac{1}{3}(x + \frac{4\sqrt{6}}{3})$

(3) 证明略

21. (1) 是; 不是

 $(2) \left[1+\sqrt{3},5\right]$

(3) 证明略