Logica — 3-6-2019

Tutte le risposte devono essere adeguatamente giustificate

1.	Per ognuna	delle seguenti	domande segnare	TUTTE	le risposte	corrette:
----	------------	----------------	-----------------	-------	-------------	-----------

- (a) Sia Pla formula proposizionale $(A \to (\neg A \to B)) \to \neg A$
 - \square P è soddisfacibile.
 - $\square \neg P$ è soddisfacibile.
 - \square P è vera se e solo se B è vera.
 - \Box Il valore di verità di P non dipende dal valore di verità di B.
- (b) Sia $L = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c (\forall y R(f(x,y),c) \land (R(c,x) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una *L*-formula.
- \square ($\mathbb{N}, \leq, +, 1$) è una *L*-struttura.
- \square Non esiste alcun L-enunciato soddisfacibile.
- \square Non esiste alcun *L*-enunciato valido.
- 2. Si considerino le formule proposizionali

$$P: \neg A, \qquad Q: (A \to B) \land (A \to \neg B)$$

Si determini se:

- (a) $P \models Q$
- (b) $Q \models P$
- (c) $P \equiv Q$
- **3.** Sia $L = \{D, M, S, A\}$ un linguaggio del prim'ordine, dove D, M, S sono simboli relazionali unari e A è simbolo relazionale binario. Si consideri la seguente interpretazione di L:
 - -D(x): x è un docente;
 - -M(x): x è mediocre;
 - -S(x): x è uno studente;
 - -A(x,y): x apprezza y.

Si scrivano le seguenti frasi in formule del linguaggio L:

- 1. I docenti mediocri apprezzano gli studenti mediocri.
- 2. Gli unici studenti apprezzati dai docenti mediocri sono quelli mediocri.
- 3. I docenti mediocri non apprezzano alcuno studente.
- 4. Sia $L=\{P,Q\}$ un linguaggio del prim'ordine, dove P è simbolo relazionare unario e Q è simbolo relazionale binario. Si considerino gli enunciati

$$\varphi : \forall x \forall y (Q(x, x) \land P(y)), \qquad \psi : \forall x \forall y (Q(x, y) \land P(y))$$

Si definisca una L-struttura

$$\mathcal{A} = (A, P^{\mathcal{A}}, Q^{\mathcal{A}})$$

tale che \mathcal{A} soddisfi esattamente uno tra φ e ψ .

Svolgimento

- 1. Per ognuna delle seguenti domande segnare TUTTE le risposte corrette:
 - (a) Sia P la formula proposizionale $(A \to (\neg A \to B)) \to \neg A$
 - \blacksquare P è soddisfacibile.
 - $\blacksquare \neg P$ è soddisfacibile.
 - \square P è vera se e solo se B è vera.
 - \blacksquare Il valore di verità di P non dipende dal valore di verità di B.
 - (b) Sia $L = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c(\forall y R(f(x,y),c) \land (R(c,x) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una *L*-formula.
- \blacksquare ($\mathbb{N}, \leq, +, 1$) è una *L*-struttura.
- \square Non esiste alcun *L*-enunciato soddisfacibile.
- \square Non esiste alcun *L*-enunciato valido.
- **2.** (a) Sia i un'interpretazione tale che i(P)=1. Allora i(A)=0, quindi $i(A\to B)=i(A\to \neg B)=1$; pertanto i(Q)=1. Quindi $P\models Q$.
 - (b) Sia i un'interpretazione tale che i(Q)=1. Allora $i(A \to B)=i(A \to \neg B)=1$. Se fosse i(A)=1, allora dal fatto che $i(A \to B)=1$ segue che i(B)=1, e dal fatto che $i(A \to \neg B)=1$ segue che i(B)=1, cioè che i(B)=0. Quindi non può essere che i(A)=1, cioè $i(\neg A)=1$. Pertanto $Q \models P$.
 - (c) Poiché $P \models Q$ e $Q \models P$, si ha $P \equiv Q$.
- 3. 1. $\forall x \forall y (D(x) \land M(x) \land S(y) \land M(y) \rightarrow A(x,y))$
 - 2. $\forall x (D(x) \land M(x) \rightarrow \forall y (S(y) \land A(x,y) \rightarrow M(y)))$
 - 3. $\forall x (D(x) \land M(x) \rightarrow \neg \exists y (S(y) \land A(x,y)))$
- 4. Interpretate nella struttura A:
 - $-\varphi$ asserisce che $Q^{\mathcal{A}}$ contiene tutte le coppie (a,a), qualunque sia $a \in A$, e $P^{\mathcal{A}}$ contiene tutti gli elementi di A
 - ψ asserisce che $Q^{\mathcal{A}}$ contiene tutte le coppie di elementi di A, e $P^{\mathcal{A}}$ contiene tutti gli elementi di A

Pertanto ogni struttura che soddisfa ψ , soddisfa anche φ ; una struttura come richiesta deve quindi soddisfare φ ma non ψ . Un esempio è:

$$-A = \{0, 1\}$$
$$-P^{\mathcal{A}} = A$$

$$- Q^{\mathcal{A}} = \{(0,0), (1,1)\}$$