

Data Challenge '22

The submission guidelines for competition entries as well as the process for evaluating models are outlined in the following slides

Submission Guidelines

Submission Format

- Each submission entry must include:
- Test Classification: the jupyter notebook that runs the classification tasks on new data.
 - Use the provided solution.ipynb as base notebook.
- Models: the trained models that will be used to classify new data
 - Your notebook must read and use them to provide classification
- Short Paper: a short paper (Max 4 pages) describing the team solution

Task 1: AOILabel

• Input:

- SPI DataFrame: a Pandas DataFrame as read from the CSV file using pd.read_csv()
- classification_1() reads a pre-trained model that you should store in the JupyterHub directory (or you can attach to your submission)
 - Predicts whether the AOI will report a defect in a component.

Output:

- AOILabels: the predicted defects in the form a list of tuples in the form (Panel (p), Figure (f), Component (c))
- <u>Note</u>: the list must include the <u>only the defects components</u>. If for a component your classifier does not predict a defect, it must not be included in the list.

PanelID	FigureID	Date	Time	ComponentID	PinNumber	PadID	***	Shape(um)	PosX(mm)	PosY(mm)	Result
25319088000520102844	1.0	9/11/2019	00:07:04	BC1	1	1.0		0.0	55.6	23.6	G000
25319088000520102844	1.0	9/11/2019	00:07:04	BC1	2	2.0		0.0	48.5	23.6	GOOD
25319088000520102844	1.0	9/11/2019	00:07:04	BC2	1	3.0		0.0	13.4	23.6	G000
25319088000520102844	1.0	9/11/2019	00:07:04	BC2	2	4.0		0.0	20.5	23.6	G000
25319088000520102844	1.0	9/11/2019	00:07:04	BC3	1	5.0		0.0	55.6	45.6	GOOD
	-							_			
27219034900520102844	8.0	7/29/2019	23:26:35	U5	6	3156.0		44.4	43.5	87.9	GOOD
27219034900520102844	8.0	7/29/2019	23:26:35	U5	7	3157.0		46.7	43.5	86.6	GOOD
27219034900520102844	8.0	7/29/2019	23:26:35	U5	8	3158.0		44.4	43.5	85.4	GOOD
27219034900520102844	8.0	7/29/2019	23:26:35	Z1	1	3159.0		42.6	43.1	82.4	GOOD
27219034900520102844	8.0	7/29/2019	23:26:35	Z1	2	3160.0		53.3	43.1	80.0	G000

Task 2: OperatorLabel

• Input:

- SPI DataFrame: a Pandas DataFrame as read from the CSV file using pd.read_csv()
- AOI Label: a Pandas DataFrame that we read from the AOI CSV file using pd.read_csv(). We include only a subset of the columns. They are:
 - "PanelID", "FigureID", "MachineID", "ComponentID", "PinNumber",
 "AOILabel"
 - Note: The only useful column in the AOI dataset is the <u>AOILabel</u>. This is the only
 additional feature available. The other columns must be used to join the SPI and the AOI
 dataframes.
- classification_2() reads a pre-trained model that you should store in the JupyterHub directory (or you can attach to your submission).
 - Predicts the operator label for the components present in **both** the SPI and the AOI datasets.

Output:

- The list of predicted operator labels (Good or Bad).
- Each entry is a tuple in the form (Panel (p), Figure (f), Component (c),
 PredictedOperatorLabel (y))

Task 3: RepairLabel

- SPI DataFrame: a Pandas DataFrame as read from the CSV file using pd.read_csv()
- AOI and Operator Label: a Pandas DataFrame that we read from the AOI CSV file using pd.read_csv(). We include only a subset of the columns. They are:
 - "PanelID", "FigureID", "MachineID", "ComponentID", "PinNumber", "AOILabel", "OperatorLabel"
 - Note: The only useful columns in the AOI dataset are <u>AOILabel</u> and <u>OperatorLabel</u>.
 These are the only additional feature available. The other columns must be used to join the SPI and the AOI dataframes.
- classification_3() reads a pre-trained model that you should store in the JupyterHub directory (or you can attach to your submission)
 - Predicts the repair label for the components present in both the SPI and the AOI
 datasets and for which the OperatorLabel is bad.

Output:

- The list of predicted repair labels (NotPossibleToRepair or FalseScrap).
- Each entry is a tuple in the form (Panel (p), Figure (f), Component (c),
 PredictedRepairLabel (y))

	Danalin	FigureID	D-4-	Time	ComponentID	Distriction	Destin		Chang(um)	DW()	Dark(mm)	Danish
	PanellD	FigureiD	Date	Time	ComponentiD	PinNumber	PadID	***	Snape(um)	PosX(mm)	PosY(mm)	Result
253190880005	20102844	1.0	9/11/2019	00:07:04	BC1	1	1.0		0.0	55.6	23.6	GOOD
253190880005	20102844	1.0	9/11/2019	00:07:04	BC1	2	2.0		0.0	48.5	23.6	GOOD
253190880005	20102844	1.0	9/11/2019	00:07:04	BC2	1	3.0		0.0	13.4	23.6	GOOD
253190880005	20102844	1.0	9/11/2019	00:07:04	BC2	2	4.0		0.0	20.5	23.6	GOOD
253190880005	20102844	1.0	9/11/2019	00:07:04	BC3	1	5.0		0.0	55.6	45.6	GOOD
									-			
272190349005	20102844	8.0	7/29/2019	23:26:35	U5	6	3156.0		44.4	43.5	87.9	GOOD
272190349005	20102844	8.0	7/29/2019	23:26:35	U5	7	3157.0		46.7	43.5	86.6	GOOD
272190349005	20102844	8.0	7/29/2019	23:26:35	U5	8	3158.0		44.4	43.5	85.4	GOOD
272190349005	20102844	8.0	7/29/2019	23:26:35	Z1	1	3159.0		42.6	43.1	82.4	GOOD

Model Performance Evaluation

The Notebook TestPerformance is provided to illustrate the performance evaluation process

RepairLabel: Test Classification

- Task 1 runs to predict the AOI presence labels
 - Outputs the list of defects
- 2. Task 2 runs to predict the Operator labels
 - Outputs a list of tuples indicating the operator label of a component
- 3. Task 3 runs to predict the Repair labels
 - Outputs a list of tuples indicating the repair label of a component

