

Basic key exchange

Public-key encryption

Establishing a shared secret

Goal: Alice and Bob want shared secret, unknown to eavesdropper

For now: security against eavesdropping only (no tampering)

This segment: a different approach

Public key encryption

Public key encryption

<u>**Def**</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Semantic Security

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E = (G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

$$Adv_{ss}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$$

Establishing a shared secret

Alice Bob $(pk, sk) \leftarrow G()$ "Alice", pk choose random $x \in \{0,1\}^{128}$ "Bob", C-E(PK,X) $D(SK,c) \rightarrow X$

X: Shared secret

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants $x \in M$

```
Semantic security ⇒

adversary cannot distinguish

{ pk, E(pk, x), x } from { pk, E(pk, x), rand∈M }
```

 \Rightarrow can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle

Insecure against man in the middle

As described, the protocol is insecure against active attacks

Public key encryption: constructions

Constructions generally rely on hard problems from number theory and algebra

Next module:

Brief detour to catch up on the relevant background

Further readings

Merkle Puzzles are Optimal,
 B. Barak, M. Mahmoody-Ghidary, Crypto '09

On formal models of key exchange (sections 7-9)
 V. Shoup, 1999

End of Segment