# Recommender Systems:

## Latent-Factors Based

#### Mining Massive Datasets

Prof. Carlos Castillo — <a href="https://chato.cl/teach">https://chato.cl/teach</a>



### Sources

- Data Mining, The Textbook (2015) by Charu
   Aggarwal (Section 18.5) slides by Lijun Zhang
- Mining of Massive Datasets 2<sup>nd</sup> edition (2014) by Leskovec et al. (Chapter 9) slides A, B

## Key idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix in a concise way and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from **incompletely** specified data

## Modeling

- n users:  $\overline{U_1},\ldots,U_n\in\mathbb{R}^k$
- d items:  $\overline{I_1}, \dots, I_d \in \mathbb{R}^k$
- Approximate rating  $r_{ii}$  by  $r_{ij} pprox \langle \overline{U_i}, \overline{I_j} \rangle = \overline{U_i}^T \overline{I_j} = \overline{I_j}^T \overline{U_i}$
- Approximate rating matrix  $D = [r_{ij}]_{n \times d}$   $D \approx F_{\text{user}} F_{\text{item}}^T \qquad F_{\text{user}} \in \mathbb{R}^{n \times k}$   $F_{\text{item}} \in \mathbb{R}^{d \times k}$

### Matrix factorization

Factorizing D into U and V

$$D \approx UV^T$$

Objective when D is fully observed

$$\min \|D - UV^T\|_F^2$$

Objective when D is partially observed

$$\min \sum_{(i,j)\in\Omega} \left( D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2$$

 $\Omega$  is the set of observed cells

 $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}$ 

# Non-negative, regularized matrix factorization

• Matrix factorization  $D \approx UV^T$ 

Objective:
$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j}\right)^2 + \lambda \left(\|U\|_F^2 + \|V\|_F^2\right)$$

 $\Omega$  is the set of observed cells in the matrix

$$U \ge 0, V \ge 0$$

## **Example:** grocery shopping

## **Example:** grocery shopping

|            | John | Alice | Mary | Greg | Peter | Jennifer |
|------------|------|-------|------|------|-------|----------|
| Vegetables | 0    | 1     | 0    | 1    | 2     | 2        |
| Fruits     | 2    | 3     | 1    | 1    | 2     | 2        |
| Sweets     | 1    | 1     | 1    | 0    | 1     | 1        |
| Bread      | 0    | 2     | 3    | 4    | 1     | 1        |
| Coffee     | 0    | 0     | 0    | 0    | 1     | 0        |

- This purchase history indicates the number of time each person has purchased an item
- For clarity we're dealing with categories of items, but they can be the items themselves

## In Python

#### Python code

|            | John | Alice | Mary | Greg | Peter | Jennifer |
|------------|------|-------|------|------|-------|----------|
| Vegetables | 0    | 1     | 0    | 1    | 2     | 2        |
| Fruits     | 2    | 3     | 1    | 1    | 2     | 2        |
| Sweets     | 1    | 1     | 1    | 0    | 1     | 1        |
| Bread      | 0    | 2     | 3    | 4    | 1     | 1        |
| Coffee     | 0    | 0     | 0    | 0    | 1     | 0        |

```
V = np.array(
          [[0,1,0,1,2,2],
          [2.3.1.1.2.2].
          [1.1.1.0.1.1]
          [0,2,3,4,1,1],
          [0.0.0.0.1.01]
V = pd.DataFrame(V, columns=['John',
'Alice', 'Mary', 'Greg', 'Peter',
'Jennifer'l)
V.index = ['Vegetables', 'Fruits',
'Sweets', 'Bread', 'Coffee']
```

This example (2018) by Piotr Gabrys

## Matrix factorization ( $V \simeq WH$ )

Matrix W (items x factors) with possible names for each factor added for legibility

|            | Fruits pickers | Bread eaters | Veggies |
|------------|----------------|--------------|---------|
| Vegetables | 0.00           | 0.04         | 2.74    |
| Fruits     | 1.93           | 0.15         | 0.47    |
| Sweets     | 0.97           | 0.00         | 0.00    |
| Bread      | 0.00           | 2.66         | 1.18    |
| Coffee     | 0.00           | 0.00         | 0.59    |

This example (2018) by Piotr Gabrys

#### **Python code**

```
from sklearn.decomposition
import NMF
nmf = NMF(3)
nmf.fit(V)
H =
pd.DataFrame(np.round(nmf.com
ponents_,2),
columns=V.columns)
H.index = ['Fruits pickers',
'Bread eaters', 'Veggies']
```

w =
pd.DataFrame(np.round(nmf.tra
nsform(V),2),
columns=H.index)

#### **Matrix W (items x factors)**

|            | Fruits pickers | Bread eaters | Veggies |
|------------|----------------|--------------|---------|
| Vegetables | 0.00           | 0.04         | 2.74    |
| Fruits     | 1.93           | 0.15         | 0.47    |
| Sweets     | 0.97           | 0.00         | 0.00    |
| Bread      | 0.00           | 2.66         | 1.18    |
| Coffee     | 0.00           | 0.00         | 0.59    |
|            |                |              |         |

Possible names for each factor added for legibility: these names are **not** needed for the method to work

| H ( | (factors | X | peo | ple) |  |
|-----|----------|---|-----|------|--|

| Coffee            | 0.00             | 0.00 | 0.59           | Matrix H (factors x peop |       |      |      |       | ole)     |  |  |
|-------------------|------------------|------|----------------|--------------------------|-------|------|------|-------|----------|--|--|
|                   |                  | _    |                | John                     | Alice | Mary | Greg | Peter | Jennifer |  |  |
|                   |                  | 1    | Fruits pickers | 1.04                     | 1.34  | 0.55 | 0.26 | 0.89  | 0.90     |  |  |
|                   |                  |      | Bread eaters   | 0.00                     | 0.60  | 1.12 | 1.36 | 0.03  | 0.07     |  |  |
| This example (20: | 18) by Piotr Gal | brys | Veggies        | 0.00                     | 0.35  | 0.00 | 0.34 | 0.77  | 0.69     |  |  |

11/29

#### Reconstruction

| Original matrix (V) |      |       |      |      |       |          | Reconstructed matrix (W H) |      |       |      |      | W H)  |          |
|---------------------|------|-------|------|------|-------|----------|----------------------------|------|-------|------|------|-------|----------|
|                     | John | Alice | Mary | Greg | Peter | Jennifer |                            | John | Alice | Mary | Greg | Peter | Jennifer |
| Vegetables          | 0    | 1     | 0    | 1    | 2     | 2        | Vegetables                 | 0.00 | 0.98  | 0.04 | 0.99 | 2.11  | 1.89     |
| Fruits              | 2    | 3     | 1    | 1    | 2     | 2        | Fruits                     | 2.01 | 2.84  | 1.23 | 0.87 | 2.08  | 2.07     |
| Sweets              | 1    | 1     | 1    | 0    | 1     | 1        | Sweets                     | 1.01 | 1.30  | 0.53 | 0.25 | 0.86  | 0.87     |
| Bread               | 0    | 2     | 3    | 4    | 1     | 1        | Bread                      | 0.00 | 2.01  | 2.98 | 4.02 | 0.99  | 1.00     |
| Coffee              | 0    | 0     | 0    | 0    | 1     | 0        | Coffee                     | 0.00 | 0.21  | 0.00 | 0.20 | 0.45  | 0.41     |

#### Recommendation

| Original matrix (V) |      |       |      |      |       |          | Reconstructed matrix (W H) |      |       |      | W H) |       |          |
|---------------------|------|-------|------|------|-------|----------|----------------------------|------|-------|------|------|-------|----------|
|                     | John | Alice | Mary | Greg | Peter | Jennifer |                            | John | Alice | Mary | Greg | Peter | Jennifer |
| Vegetables          | 0    | 1     | 0    | 1    | 2     | 2        | Vegetables                 | 0.00 | 0.98  | 0.04 | 0.99 | 2.11  | 1.89     |
| Fruits              | 2    | 3     | 1    | 1    | 2     | 2        | Fruits                     | 2.01 | 2.84  | 1.23 | 0.87 | 2.08  | 2.07     |
| Sweets              | 1    | 1     | 1    | 0    | 1     | 1        | Sweets                     | 1.01 | 1.30  | 0.53 | 0.25 | 0.86  | 0.87     |
| Bread               | 0    | 2     | 3    | 4    | 1     | 1        | Bread                      | 0.00 | 2.01  | 2.98 | 4.02 | 0.99  | 1.00     |
| Coffee              | 0    | 0     | 0    | 0    | 1     | 0        | Coffee                     | 0.00 | 0.21  | 0.00 | 0.20 | 0.45  | 0.41     |

If you were to recommend one product to someone, what would you recommend and to whom?

## **Evaluation**

#### **Direct evaluation**

- Randomized controlled experiment
  - Renamed A/B testing for ... reasons
  - People are split randomly in control/experimental
  - Control group: receives one type of recommendation
  - Experimental group: receives another type
- Metrics such as CTR, retention, etc.
- Requires infrastructure, users, policies

## Evaluating with existing data

|       | • | m | ovie | 5 |   | <b></b> |
|-------|---|---|------|---|---|---------|
| 1     | 1 | 3 | 4    |   |   |         |
|       |   | 3 | 5    |   |   | 5       |
|       |   |   | 4    | 5 |   | 5       |
| users |   |   | 3    |   |   |         |
|       |   |   | 3    |   |   |         |
|       | 2 |   |      | 2 |   | 2       |
|       |   |   |      |   | 5 |         |
|       |   | 2 | 1    |   |   | 1       |
|       |   | 3 |      |   | 3 |         |
| 1     | 1 |   |      |   |   |         |

## Evaluating with existing data



#### **Evaluation metrics**

RMSE (root of mean of squared errors)

$$\sqrt{E[(x-\hat{x})^2]}$$

- Precision @ k
  - $^{-}$  % of recommendations that are correct among those in the top k positions
- Rank correlation
  - Spearman's correlation between system and user

## **Evaluating** is hard

- Accuracy is not all
- We also want diversity
- We want to be contextually sensitive
- The order of predictions matters
- RMSE might penalize a method that does well for high ratings but bad for others

## Summary

## Things to remember

- Interaction-based recommendations
  - Latent factors based
- Evaluation methods

### Exercises for TT16-TT18

- Mining of Massive Datasets 2<sup>nd</sup> edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
  - Exercises 9.2.8
  - Exercises 9.3.4
  - Exercises 9.4.6

# Additional contents (not included in exams)



## **Example 2: Netflix prize**

## Example 2: Netflix prize (2009)

- Netflix offered \$1,000,000 to anyone beating their algorithm by 10% in RMSE
- Provided 100M (user, movie) ratings for training
- Held a testing set and allowed one guess/day on the testing set to create a leader board



# Latent factors

In latent factor space, similar movies are mapped to similar points



## Shortly before deadline ...



# The big picture Solution of BellKor's Pragmatic Chaos





#### Leaderboard

Showing Test Score. Click here to show quiz score
Display top 20 \$ leaders.

| Ran | ık  | Team Name                           | Best  | Test Score     | % Improvement | Best Submit Time    |
|-----|-----|-------------------------------------|-------|----------------|---------------|---------------------|
| Gr  | and | Prize - RMSE = 0.8567 - Winning Te  | ar- B | ellVor's Brown | netic Chees   |                     |
| 1   | 1   | BellKor's Pragmatic Chaos           |       | 0.8567         | 10.06         | 2009-07-26 18:18:28 |
| 2   | 1   | The Ensemble                        |       | 0.8567         | 10.06         | 2009-07-26 18:38:22 |
| 3   | 1   | Grand Prize Team                    |       | 0.0002         | g.50          | 2000-07-02-24-40    |
| 4   | 1   | Opera Solutions and Vandelay United |       | 0.8588         | 9.84          | 2009-07-10 01:12:31 |
| 5   | 1   | Vandelay Industries!                |       | 0.8591         | 9.81          |                     |
| 6   | 1   | PragmaticTheory                     |       | 0.8594         | 9.77          |                     |

26 July 2009.- Bellkor team submits 40 minutes before the deadline, "The Ensemble" team made of a mix of other teams submitted 20 minutes before the deadline.

#### Bellkor team wins one million dollars

