	Teste de Matemática A
	2023 / 2024
Teste N.º 1	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta az	zul ou preta.
Não é permitido o uso de corretor. Risque aquilo	que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do e	enunciado.
Na resposta aos itens de escolha múltipla, selec	ione a opção correta. Escreva, na folha de
respostas, o número do item e a letra que identif	ica a opção escolhida.
Na resposta aos restantes itens, apresente todo	os os cálculos que tiver de efetuar e todas
as justificações necessárias. Quando para um	resultado não é pedida a aproximação,
apresente sempre o valor exato.	

1. Na figura ao lado está representado o trapézio retângulo [ABCD].

Sabe-se que:

- P é ponto médio de [AB];
- $\frac{\overline{BC}}{\overline{DC}} = \sqrt{5}$;
- $\alpha \in \left]0, \frac{\pi}{2}\right[$ é a amplitude, em radianos, do ângulo *BAD*;
- $\beta \in \left[0, \frac{\pi}{2}\right]$ é a amplitude, em radianos, do ângulo *ADP*.

Qual das seguintes opções é verdadeira?

(A)
$$sen(\alpha) = \frac{\sqrt{6}}{6}$$
 (B) $tg(\alpha) = \sqrt{6}$ (C) $sen(\beta) = \frac{\sqrt{6}}{6}$ (D) $tg(\beta) = \sqrt{6}$

(B)
$$tg(\alpha) = \sqrt{6}$$

(C)
$$\operatorname{sen}(\beta) = \frac{\sqrt{6}}{6}$$

(D)
$$tg(\beta) = \sqrt{6}$$

2. De um ângulo de amplitude α , sabe-se que $\alpha \in]-30^{\circ}, 60^{\circ}]$.

Em qual das seguintes opções está indicado o conjunto dos valores de k para os quais se tem $sen(90^{\circ} - \alpha) = \frac{1 - \sqrt{3}k}{2}$?

(A)
$$\left[-\frac{\sqrt{3}}{3}, 0 \right]$$

(A)
$$\left] - \frac{\sqrt{3}}{3}, 0 \right]$$
 (B) $\left[\frac{\sqrt{3}}{3} - 1, 0 \right]$ (C) $\left[\frac{\sqrt{3}}{3} - 1, 0 \right]$

(C)
$$\left] \frac{\sqrt{3}}{3} - 1, 0 \right]$$

(D)
$$\left[-\frac{\sqrt{3}}{3}, 0 \right]$$

3. Na figura estão representados, em referencial o.n. Oxy, a circunferência trigonométrica, o quadrilátero [ABCD] e a reta de equação x = 1.

Sabe-se que:

• o ponto
$$\mathcal C$$
 pertence à reta de equação $x=1;$

• D é o ponto de interseção da semirreta $\dot{O}C$ com a circunferência trigonométrica;

•
$$B\widehat{O}C = \alpha$$
, $0 < \alpha < \frac{\pi}{2}$ e sen $\alpha = \frac{2}{3}$.

Determine o valor exato da área do quadrilátero [ABCD].

Apresente o resultado na forma $\frac{a\sqrt{b}}{c}$, $a, b \in c \in \mathbb{N}$.

4. Considere uma função f, de domínio \mathbb{R} , definida por $f(x) = a - 3 + b \operatorname{sen}\left(2x - \frac{\pi}{6}\right)$, $a, b \in \mathbb{R}^+$. Sabe-se que $D'_f = [-4, 2]$.

Recorrendo a processos exclusivamente analíticos determine os valores de a e de b.

5. Considere a função f definida por:

$$f(x) = \frac{\operatorname{tg}(x)}{\cos^2(x) - 1}$$

Considere as seguintes proposições:

(I)
$$D_f = \mathbb{R} \setminus \left\{ x : x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

(II) π é período da função f.

Em relação às proposições anteriores, podemos afirmar que:

- (A) são ambas verdadeiras.
- (B) são ambas falsas.
- (C) apenas (I) é verdadeira.
- (D) apenas (II) é verdadeira.
- **6.** Na figura ao lado estão representadas, em referencial o.n. Oxy, a circunferência trigonométrica e as retas r e s.

Sabe-se que:

- a reta r tem equação x = 1;
- ullet o ponto A, situado no segundo quadrante, pertence circunferência;

- o ponto *T* pertence à reta *r* e tem coordenadas $(1, -\sqrt{2})$;
- a reta s passa na origem do referencial e contém os pontos A e T;
- o ângulo de amplitude α tem, por lado origem, o semieixo positivo das abcissas e, por lado extremidade, a semirreta $\dot{O}A\left(\alpha\in\left]\frac{\pi}{2},\pi\right[\right)$.

Determine, sem recorrer à calculadora, o valor exato de

$$\frac{\sqrt{2}}{2} sen\left(\frac{\pi}{2} - \alpha\right) \times cos\left(-\frac{\pi}{2} - \alpha\right) - cos^2\left(\frac{3\pi}{2} - \alpha\right) - tg(-\alpha)$$

7. Mostre que, para todo x onde a expressão tem significado, é válida a seguinte igualdade:

$$\frac{(tg^2x+1)(1-2\cos^2x+\cos^4x)}{tg^2x} = \sin^2x$$

8. Considere, em \mathbb{R} , a equação trigonométrica $\cos^2 x = 1$.

Quantas soluções tem esta equação no intervalo [0, 2023π[?

- **(A)** 2022
- **(B)** 2023
- **(C)** 1011
- **(D)** 1012

9. Considere as funções f e g, ambas de domínio $[-\pi, \pi]$, representadas graficamente na figura ao lado e definidas por:

$$f(x) = 2\cos\left(-x + \frac{\pi}{3}\right) + 1$$
 e $g(x) = -2\cos(2x) + 1$

- **9.1** Para qualquer $x \in [-\pi, \pi], g\left(x + \frac{\pi}{2}\right) f\left(x \frac{\pi}{6}\right)$ é
 - igual a:
 - **(A)** $2\cos(2x) 2\sin(x)$

(B) $2 \text{sen}(2x) - 2 \cos(x)$

(C) $2\cos(2x) + 2\sin(x)$

- **(D)** $2 \text{sen}(2x) + 2 \cos(x)$
- **9.2** Recorrendo a processos exclusivamente analíticos, determine as abcissas dos pontos de interseção dos gráficos das funções f e g, no respetivo domínio.
- **9.3** Existem dois pontos P e Q pertencentes, respetivamente, aos gráficos de f e de g dos quais se sabe que:
 - têm a mesma abcissa e esta é positiva;
 - a ordenada de P é maior 2 unidades do que a ordenada de Q.

Recorrendo às capacidades gráficas da calculadora, determine um valor, aproximado às décimas, da abcissa de P e de Q.

Na sua resposta:

- reproduza, na folha de respostas, o(s) gráfico(s) visualizado(s) na calculadora, devidamente identificado(s), incluindo o referencial;
- apresente a(s) coordenada(s) do(s) ponto(s) relevante(s), arredondadas às centésimas.

10. Na figura está representada, em referencial o.n. 0xy, a circunferência de equação:

$$(x-2)^2 + (y+1)^2 = 9$$

Sabe-se que:

- o ponto C é o centro da circunferência;
- A e B são dois pontos da circunferência;
- o arco de circunferência AB tem comprimento 2π .

Determine, recorrendo a processos exclusivamente analíticos, o valor exato da área do setor a que corresponde o arco de circunferência AB.

11. Na figura estão representados, num referencial o.n. 0xy, uma circunferência trigonométrica de centro na origem do referencial e o triângulo isósceles [ABC].

Sabe-se que:

- $\overline{AC} = \overline{BC}$:
- o vértice C pertence ao semieixo positivo Oy;
- o lado [AB] é tangente à circunferência num ponto de abcissa nula e é paralelo ao eixo 0x;
- o lado [BC] é tangente à circunferência no ponto T;
- α é a amplitude, em radianos, do ângulo cujo lado origem é o semieixo positivo 0x e o lado extremidade é a semirreta $\partial T \left(\alpha \in \left[0, \frac{\pi}{2}\right]\right)$.

Prove que a área do triângulo [ABC] é dado, em função de α , por

$$\frac{(\operatorname{sen} \alpha + 1)^2}{\operatorname{sen} \alpha \times \cos \alpha}$$

FIM

COTAÇÕES

	Item												
Cotação (em pontos)													
1.	2.	3.	4.	5.	6.	7.	8.	9.1	9.2	9.3	10.	11.	Total
10	10	20	18	10	18	18	10	10	20	20	18	18	200