

planetmath.org

Math for the people, by the people.

permutation model

Canonical name PermutationModel
Date of creation 2013-03-22 14:46:48
Last modified on 2013-03-22 14:46:48

Owner ratboy (4018) Last modified by ratboy (4018)

Numerical id 13

Author ratboy (4018) Entry type Definition Classification msc 03E25

Defines Gödel Operations

A permutation model is a model of the axioms of set theory in which there is a non trivial automorphism of the set theoretic universe. Such models are used to show the consistency of the negation of the Axiom of Choice (AC).

A typical construction of a permutation model is done here. By ZF^- we denote the axioms of ZF minus the axiom of foundation. In particular we allow sets a such that $a = \{a\}$ which we will call atoms. Let A be an infinite set of atoms.

Define $V_{\alpha}(A)$ by induction on α as follows:

$$\begin{aligned} V_0(A) &= A \\ V_{\alpha+1}(A) &= \mathcal{P}(V_\alpha) \\ V_\alpha(A) &= \bigcup_{\gamma < \alpha} V_\gamma(A) \text{ for } \alpha \text{ limit} \end{aligned}$$

Finally define $V = \bigcup_{\alpha \in ON} V_{\alpha}(A)$. Then we have

$$A = V_0(A) \subset V_1(A) \subset \cdots \subset V_{\alpha}(A) \cdots \subset V$$

For any $x \in V$ we can assign a rank,

$$\operatorname{rank}(x) = \operatorname{least} \alpha[x \in V_{\alpha+1}(A)]$$

Let G be the group of permutations of A. For $\pi \in G$ we extend π to a permutation of V by induction on \in by defining

$$\pi(x) = \{\pi(y) : y \in x\}$$

and letting $\pi(\emptyset) = \emptyset$. Then G permutes V and fixes the well founded sets $WF \subseteq V$.

Lemma. For all $x, y \in V$ and any $\pi \in G$.

$$x \in y \iff \pi(x) \in \pi(y)$$

That is, π is an \in -automorphism of V. From this we can prove that $\pi(\{X,Y\}) = \{\pi(X), \pi(Y)\}$ and so

$$\pi((X,Y)) = (\pi(X), \pi(Y))$$

$$\pi((X,Y,Z)) = (\pi(X), \pi(Y), \pi(Z))$$

Also by induction on α it is easy to show that

$$rank(x) = rank(\pi(x))$$

for all $x \in V$.

Let $a_1, \dots, a_n \in A$ and define

$$[a_1, \dots, a_n] = \{ \pi \in G : \pi(a_i) = a_i, \text{ for } i = 1, \dots, n \}$$

Call a set $X \in V$ symmetric if there exists $a_1, \dots, a_n \in A$ such that $\pi(X) = X$ for all $\pi \in [a_1, \dots, a_n]$. Define the class $HS \subseteq V$ of hereditarily symmetric sets

$$HS = \{x \in V : x \text{ is symmetric and } x \subseteq HS\}$$

Call a class N transitive if

$$\forall x \in N[x \subseteq N]$$

and call N almost universal if (for sets S)

$$\forall S \subseteq N[\exists Y \in N(S \subseteq Y)]$$

HS is transitive and almost universal.

To show that a class $N \models ZF^-$ is straightforward for most axioms of ZF^- except for the axiom of Comprehension. To show N is a model of Comprehension it suffices to show that N is closed under **Gödel Operations**:

$$G_{1}(X,Y) = \{X,Y\}$$

$$G_{2}(X,Y) = X \setminus Y$$

$$G_{3}(X,Y) = X \times Y$$

$$G_{4}(X) = \text{dom}(X)$$

$$G_{5}(X) = \{ (a,b,c) : (b,c,a) \in X \}$$

$$G_{7}(X) = \{ (a,b,c) : (c,b,a) \in X \}$$

$$G_{8}(X) = \{ (a,b,c) : (a,c,b) \in X \}$$

Theorem. (ZF) If N is transitive, almost universal and closed under Gödel Operations, then $N \models ZF$.

HS is closed under Gödel operations and so $HS \models ZF^-$. The class HS is a permutation model. The set of atoms $A \in HS$ and furthermore:

Lemma. Let $f: \omega \to A$ be a one to one function. Then $f \notin HS$ and so A cannot be well ordered in HS.

Which proves the theorem:

Theorem. $HS \models ZF^- + \neg AC$.

which completes the proof that $Con(ZF^-) \implies Con(ZF^- + \neg AC)$. In particular we have that $ZF^- \nvdash AC$.