Limits and continuity

- 1. In each part below, determine formulas for f(x) and g(x) so that the statement is satisfied.
 - (a) $\lim_{x\to 0} (fg)(x)$ exists but $\lim_{x\to 0} f(x)$ does not.
 - (b) $\lim_{x\to 0} \left(\frac{f}{g}\right)(x)$ exists but $\lim_{x\to 0} g(x) = 0$.

Examples: (a) $f(x) = \sin(1/x), g(x) = x$; (b) $f(x) = x^2, g(x) = x$.

2. Draw the curves $y = \cos(x)$ and $y = 2 - \cos(x)$. Then draw the graph of a function f so that $\cos(x) \le f(x) \le f(x)$ $2-\cos(x)$. Based on your graph, determine the value of $\lim_{x\to 2\pi} f(x)$.

Ans: The limit is 1.

3. Suppose f is the function defined below. Determine $\lim_{x\to 0} f(x)$. (Hint: graph $y=x^2$ and y=3x.)

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is irrational} \\ 3x & \text{otherwise} \end{cases}$$

Ans: 0

- 4. This exercise refers to the graph below.
 - (a) Is there any value of x where the one-sided limits are the same but the function is not continuous?
 - (b) We say that a function is left-continuous at x = c if $f(c) = \lim_{x \to c^{-}} f(x)$. Find any/all points at which $f(c) = \lim_{x \to c^{-}} f(x)$. is discontinuous but is left-continuous.
 - (c) We say that a function is right-continuous at x = c if $f(c) = \lim_{x \to c^+} f(x)$. Find any/all points at which f is discontinuous but is left-continuous.
 - (d) We say that f has a jump discontinuity at x = c if $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ both exist but are different. Find any/all points where f has a jump discontinuity.

- (a) Yes, at x = 1.5 (b) At x = -2 (c) x = 3 (d) x = -2, x = 1, and x = 3
- 5. In each case, determine a value for f(c) that makes the function continuous at x=c

(a)
$$f(x) = \frac{x^2 + 1x - 6}{x^2 - x - 2}, c = 2$$

(c)
$$f(x) = \frac{x^3 - 1}{\sqrt{x} - 1}, c = 1$$

(b)
$$f(x) = \frac{x^2 + 4x + 7}{x^2 + x + 12}, c = 0$$

(d)
$$f(x) = \frac{\cos(4x)-1}{\cos(10x)-1}, c = 0$$

Ans: (a) 5/3, (b) 7/12 (the function is already continuous), (c) 6 (requires the difference of two cubes!)

6. Suppose f and g are as seen below.

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases} \qquad g(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} x^2 & \text{if } x \text{ is rationa} \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find $\lim_{x\to 0} f(x)$ or explain why it does not exist.
- (b) Find $\lim_{x\to 0} g(x)$ or explain why it does not exist.

- (c) Identify any/all points at which f is continuous.
- (d) Identify any/all points at which g is continuous.
- 7. Design a function f that is discontinuous at x=2 but is continuous everywhere else.
- 8. A fixed point is a number c at which f(c) = c. Suppose $f(x) = 1 + \cos(x) x^2$. Without using your calculator, and without finding c, show that f has a fixed point.

Solution. Let g(x) = f(x) - x. A fixed point of f is a zero of g. Now, g is continuous. Also g(0) = 2 > 0 and $g(-\pi) = -\pi - \pi^2 < 0$. So somewhere between $x = -\pi$ and x = 0 there is a zero of g(x) by the intermediate value theorem, and so a fixed point of f(x).

9. Prove that you were exactly 3 feet tall at some point in your life. What assumptions do you need to make about your height as a function of time?

Ans: When I was born, I was less than three feet tall, and now I am more than three feet tall. I was exactly three feet tall, by the intermediate value theorem, assuming that my height is a continuous function of my age.

10. Suppose f is continuous on the interval $I_1 = [a, b]$, with f(a) < 0 and f(b) > 0. The Intermediate Value Theorem guarantees that f has a root somewhere in [a, b]. Without further information, our best guess is that the root is at the midpoint of the interval, $x_1 = (a+b)/2$. In the bisection algorithm for finding roots, we use this "best guess" to gather more information about f. After calculating $f(x_1)$, we know that a root is in the subinterval across which we see a change in the sign of f(x), either $[a, x_1]$ or $[x_1, b]$. Define I_2 to be that subinterval, and repeat the process: calculate the midpoint of I_2 , which we'll label as x_2 , and based on $f(x_2)$ determine which half of I_2 has a root of f. Call that subinterval I_3 The process continues until we either find a root (which is unlikely, generally speaking) or we reach a stopping criterion.

Figure: Diagrams depicting possible scenarios. A third scenario is possible. What is it?

(a) Demonstrate your understanding of the bisection method by finding x_3 when f(x) = 2x - 12 and $I_1 = [4, 7]$.

$$x_1 = 11/2, x_2 = 25/4, x_3 = 47/8$$

- (b) Suppose $f(x_1) > 0$, so we select the left half of [a, b] to be I_1 . Is it possible for f to have a root in the other subinterval? If so, draw a diagram showing how this might happen. If not, explain why not. Ans: Yes it is possible. The function may dip below the x axis between a and x_1 .
- (c) Let's denote by x_* the actual root of f in [a,b]. A reasonable stopping criterion is that x_n is "close enough" to x_* . We quantify "close enough" numerically with a positive number δ (which is typically very small). Write an inequality that says the distance between x_* and x_k does not exceed δ . $|x_k x_*| < \delta$
- (d) Although we don't know the distance between x_k and x_* exactly we know that it's no larger than the radius of I_k . Suppose $\delta = 0.01$. Show that the number of steps required to get "close enough" to x_* is always the same, regardless of f. How many steps is that? $\lfloor \log_2[(b-a)/\delta] \rfloor$