

Une variable nominale dichotomique et une variable continue

Mélange de variables explicatives: 1 numérique et 1 nominale Données Step 1: la variable nominale qu'on veut tester est-elle dichotomique (H/F) ou polytomique (VSO, VSG, VSB)?

	∂ a SEXE	♦ AGE	♦ SEI	<i></i> ♣ VOIE	♦ MATH	
1	G	16.00	54	VSG	431	
2	G	15.50	45	VSG	393	
3	F	15.75	51	VSG	479	
4	F	15.67	54	VSG	518	
5	G	15.83	40	VSG	573	
6	F	16.25	34	VSG	547	
7	F	15.67	60	VSG	427	
8	G	15.50	55	VSG	585	
9	G	15.75	32	VSG	418	
10	F	15.67	69	VSG	461	
11	G	15.92	71	VSG	554	
12	F	15.83	51	VSO	525	
13	G	15.92	23	VSO	499	
14	F	15.42	70	VSO	544	
15	G	15.83	45	VSG	624	
16	G	15.83	69	VSG	292	
17	G	15.75	43	VSG	477	
18	F	15.75	51	VSG	588	
19	F	15.50	69	VSG	514	
20	G	15.42	37	VSG	467	

Statistique II : Statistique Multivariée

Codage traitement (dummy) variable indicatrice / muette / dummy

variable indicatrice / muette / dummy D.G

retour word

⁻ Analyse de covariance

Une variable nominale dichotomique et une variable continue

Modèle complet

Cheminement dans JAMOVI

Analyses

↓
Regression
↓
Linear Regression

⁻ Analyse de covariance

Une variable nominale dichotomique et une variable continue

Une variable nominale dichotomique et une variable continue

Modèle complet

Tableau des coeff

Une variable nominale dichotomique et une variable continue

Modèle complet

Model C	oeffi	cients	ES associé	à	
Predic	tor	Estimate	SE	t	р
Interce	pt a^	440.238	7.421	59.320	< .001
SEI	β^	1.444	0.133	10.873	< .001
D.G	γ^	23.622	4.305	5.487	< .001

on divise l'estimation par l'erreur standard pour avoir le t de l'ancova. La proba critique ici est toute petite. on rejette H0.

Apa: t(1582 = 2e paramètre global) = 5.487 ...

retour word

Analyse de covariance

Une variable nominale dichotomique et une variable continue

Model Fit Measures

Model	Model R	
1	0.268	0.072
2	0.299	0.089

APA: F(1, 1582) = 30.105, p<.001

Model Comparisons

Comparison			_					
	Model		Model	ΔR²	F	df1	df2	р
	1	-	2	0.017	30.105	1	1582	< .001

(1582 = dd)

Analyse de covariance

Une variable nominale dichotomique et une variable continue

Statistique II : Statistique Multivariée

Codage traitement (dummy)

Analyse de covariance

Une variable nominale polytomique et une variable continue

Une variable nominale polytomique et une variable continue

Codage traitement (dummy)

Analyse de covariance

Une variable nominale polytomique et une variable continue

Analyse de covariance

Une variable nominale polytomique et une variable continue

Une variable nominale polytomique et une variable continue

Modèles emboîtés

Model Fit Measures

On teste l'impotance de la variable nominale polytomique

			Overall Model Test				
Model	R	R²	F	df1	df2	р	
1	0.268	0.072	122.473	1	1583	< .001	
2	0.607	0.368	307.443	3	1581	< .001	

Model Comparisons

Comparison

Mode	I	Model	ΔR²	F	df1	df2	р
1	-	2	0.297	371.281	2	1581	< .001

F de 371 est grand et significatif. On rejette H0. Il y a des différences entre les 3 filières VSO VSG et VSB APA: F(2, 1581) = 371.281, p<.001

Tableau des coefficients Graphique

Model Coefficients

Predict	or	Estimate	SE	t	р
Intercep	ot â	445.396	6.307	70.614	< .001
SEI	β^	0.243	0.120	2.033	0.042
D.VSG	γ1′	48.730	4.756	10.247	< .001
D.VSB	γ2′	130.506	4.993	26.137	< .001

Analyse de covariance

Une variable nominale polytomique et une variable continue

└ Modélisation des interactions

Model Fit Measures

			Ove	rall M	odel Tes	t
Model	R	R²	F	df1	df2	р
1	0.2680	0.0718	122.4731	1	1583	< .001
2	0.6070	0.3684	307.4433	3	1581	< .001
3	0.6073	0.3689	184.5667	5	1579	< .001

Analyse de covariance

Modélisation des interactions

└ Modélisation des interactions

Modèles emboîtés

Model Comparisons

Comparison							
Model		Model	ΔR^2	F	df1	df2	р
1	-	2	0.2966	371.2807	2	1581	< .001
2	-	3	4.2165e-4	0.5275	2	1579	0.590