University of Wisconsin-Madison Department of Economics

Econ 703 Prof. R. Deneckere Fall 2003

Homework #6 (due Nov. 11)

- 1. Let $f,g:[0,1] \to R$ be continuous functions, and suppose that f(x) > g(x) for all $x \in [0,1]$. Prove or disprove the following statement: There exists $\ddot{\mathbb{A}} > 0$ such that $f(x) \ge g(x) + \ddot{\mathbb{A}}$ for all $x \in [0,1]$. What if instead f and g were only left continuous?
- 2. (Brouwer fixed point theorem) Let I = [0,1], and that suppose that $f: I \to I$ is continuous. Prove that there exists $x \in I$ such that f(x) = x.
- 3. Let f be a continuous real-valued function on R, of which it is known that f'(x) exists for all $x \ne 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists? Either prove or disprove your statement.
- 4. Suppose f'(x) exists, g'(x) exists, g'(x) \neq 0, and f(x)=g(x)=0. Prove that $\lim_{t\to x} f(t)/g(t)=f'(t)/g'(t)$.
- 5. Let f: $R \rightarrow R$ be difined by $f(x)=x^2\sin(1/x)$ for $x\neq 0$, and f(x)=0 for x=0. Show that f'(x) exists at all points $x \in R$, but that f'(x) is not continuous at x=0.