Problems for Signals and Systems

Chapter 4-3. Frequency Domain Analysis of Continuous Time System

• Frequency Response

1. For the system as shown in Figure 4.9, $H_1(\omega)$ has the property of ideal low-pass filter

$$H_1(\omega) = \begin{cases} e^{-j\omega t_0} , & |\omega| \le 1 \\ 0 , |\omega| > 1 \end{cases}$$

Figure 4.9

- (a) If $u_1(t)$ is the unite step signal u(t), write down the expression of $u_2(t)$;
- (b) If $u_1(t) = \frac{2\sin(t/2)}{t}$, write down the expression of $u_2(t)$.
- 2. Consider a causal LTI system with frequency response $H(j\omega)=-2j\omega$. Calculate the system's zero-state responses $y_{zs}(t)$ to the following input signals.
- (a) $x(t) = e^{jt}$;
- (b) $x(t) = \sin \omega_0 t \cdot u(t)$
- 3. If a LTI system's frequency response $H(j\omega)$ is the same as that in Question 2, given the following frequency spectra of input signals, determine the system's zero-state response $y_{zs}(t)$:
- (a) $X(j\omega) = \frac{1}{j\omega(6+j\omega)}$
- (b) $X(j\omega) = \frac{1}{2+j\omega}$.

• Filter

4. Consider a continuous time system with the frequency response $H(j\omega)=\frac{j\omega}{3\pi}$, $-3\pi<\omega<3\pi$, it is called low pass differentiator. For each of the following input signals x(t), determine the system's output y(t):

(a)
$$x(t) = \cos(2\pi t + \theta)$$
;

(b)
$$x(t) = \cos(4\pi t + \theta)$$
.

5. The amplitude property and phase property of an ideal band-pass filter are shown in Figure 4.10.

Figure 4.10

- (a) Determine the system's unit impulse response. Plot its waveform, and discuss whether or not the system is physically attainable;
- (b) If $\omega_0=2\omega_c$, when the excitation is $x(t)=\mathrm{S}a^2(\frac{\omega_c t}{2})\cos\omega_0 t$, determine the response y(t) of the filter.

Modulation

6. In Figure 4.11, an synchronous demodulation system is shown with input signal $f(t)=g(t)\cos(\omega_c t)$. When carrier phase θ_c is random, prove that w(t) can be denoted as $w(t)=\frac{1}{2}g(t)\cos\theta_c+\frac{1}{2}g(t)\cos(2\omega_c t+2\theta_c)$.Does g(t) can be recovered from this demodulation system now?

Figure 4.11

7. Figure 4.12 shows an amplitude modulation system, which consists of two parts: the sum of modulation signal and carrier get squared firstly, then the modulated signal is obtained through a band-pass filter. If g(t) is band-limited, i.e., $G(\omega) = 0$, $|\omega| > \omega_m$. Determine the band-pass filter's parameters A, ω_L and ω_H that make $f(t) = g(t) \cos \omega_c t$, and clearly state the constraints on ω_c and ω_m .

Figure 4.12

8. Figure 4.13(b) shows a sinusoidal carrier modulation system. The frequency spectrum $G(\omega)$ of the modulation signal g(t) is shown in Figure 4.13(a).

Figure 4.13

- (a) Plot frequency spectra $Y_1(\omega)$, $Y_2(\omega)$ and $F(\omega)$ for $y_1(t)$, $y_2(t)$ and f(t) respectively.
- (b) Explain that the system is a single side band (SSB) modulation system and point out which side band is going to be retained between the upper and lower side band.

Sampling

- 9. Identify the minimum sampling frequency and Nyquist period for the following signals:
- (1) $1 + \cos(2000\pi t) + \sin(4000\pi t)$;

- (2) $(Sa)^2(100t)$.
- 10. Signal f(t) is convoluted from two band-limited signals $f_1(t)$ and $f_2(t)$,

i.e.,
$$y(t) = f_1(t) * f_2(t)$$
, and

$$F_1(\omega) = \mathfrak{F}[f_1(t)] = 0, \ |\omega| > 1000\pi; \ F_2(\omega) = \mathfrak{F}[f_2(t)] = 0, \ |\omega| > 2000\pi.$$

Make impulse-train sampling on y(t) and obtain

$$y_s(t) = \sum_{n=-\infty}^{\infty} y(nT)\delta(t - nT)$$

Determine the range of sampling period T that ensures y(t) can be recovered from $y_s(t)$.

• Differential Equation and Frequency Response

11. If a LTI system's zero-state response to the excitation $x(t) = [e^{-t} +$

$$e^{-3t}u(t)$$
 is $y(t) = [2e^{-t} - 2e^{-4t}]u(t)$

- (a) Determine the frequency response of the system;
- (b) Determine the impulse response of the system;
- (c) Determine the differential equation of the system.
- 12. The output y(t) and input x(t) of a causal LTI system is combined by the following equation:

$$\frac{dy(t)}{dt} + 10y(t) = \int_{-\infty}^{\infty} x(\tau)z(t-\tau)d\tau - x(t)$$

in which $z(t) = e^{-t}u(t) + 3\delta(t)$.

- (a) Determine the system's frequency response $H(j\omega) = Y(j\omega)/X(j\omega)$. Plot the amplitude and phase response of $H(j\omega)$.
- (b) Determine the system's impulse response.