Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/

https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Chapter 2 Linear Time Invariant Systems

- Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum
- Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral
- Sec. 2.3 Properties of Linear Time-invariant Systems
- Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations
- Sec. 2.5 Singularity Functions

2.1 DT LTI Systems: The Convolution Sum

- Highlights
 - Definition of DT convolution
 - Unit impulse response
 - Any DT LTI system can be modeled by a DT convolution operation.
 - Any DT signals can be represented by a sum of impulses.

2.1.1 Representation of DT Signals in term of Impulses

Recall that, unit impulses are...

Any DT signals can be represented by a sum of impulses.

$$x[n] = \dots + x[-3]\delta[n+3] + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + x[3]\delta[n-3] + \dots$$

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k].$$

2.1.1 Representation of DT Signals in term of Impulses

• Examples

Extension: Representation of Signals in terms of Basis Functions

• An image-based example: image blending

Extension: Representation of Signals in terms of Basis Functions

An image-based example: alpha image blending/feathering

Extension:

Representation of Signals in terms of Basis Functions

Detailed Remarks:

• Will see more in Ch. 3 Fourier Series, etc.

2.1.2 The DT Unit Impulse Response and the Convolution Sum Representation of LTI Systems

For a DT signal, we can represent it as:

$$v x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k].$$

• If a system is linear, then its output corresponding to x[n] can be expressed as:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] h_k[n]$$

where $h_k[n]$ is the system output y[n] with $\delta[n-k]$ as input.

Why?

For a system that is linear but not time-invariant: (will discuss LTI systems in a min)

Input

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k]$$

Output

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k] h_k[n]$$

• If the aforementioned system is time-invariant, then

Input Output

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k] \qquad y[n] = \sum_{k=-\infty}^{+\infty} x[k] h_k[n]$$

we denote the impulse response at time k as $h_k[n] = h_0[n-k]$.

• For simplicity, we drop the subscript and denote $h_0[n]$ by h[n]:

This is the Discrete-Time Convolution.

The convolution operator is typically denoted by *.

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

2.1 DT LTI Systems: The Convolution Sum

- Highlights
 - Definition of DT convolution
 - Unit impulse response
 - Any LTI system can be modeled by a DT convolution operation.
 - Any DT signals can be represented by a sum of impulses.

Example 2.1

Consider an LTI system with impulse response h[n] and input x[n]. We have

$$y[n] = x[n] * h[n] = x[0]h[n-0] + x[1]h[n-1] = 0.5h[n] + 2h[n-1].$$

Example 2.2

Same as Example 2.1 but from a different point of view...

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

That is, y[n] is the sum of the products of x[k] and h[n-k] over k.

Example 2.2 $y[n] = x[n] * h[n] = \sum_{k = -\infty}^{\infty} x[k] h[n - k]$

(b)

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = 0.5.$$

$$y[1] = \sum_{k=-\infty}^{\infty} x[k]h[1-k] = 0.5 + 2.0 = 2.5.$$

$$y[2] = \sum_{k=-\infty}^{\infty} x[k]h[2-k] = 0.5 + 2.0 = 2.5.$$

$$y[3] = \sum_{k=-\infty}^{\infty} x[k]h[3-k] = 2.0.$$

$$y[n] = 0$$
 otherwise

$$x[n] = \alpha^n u[n]$$

$$h[n] = u[n],$$

Example 2.3 (cont'd) $y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$ $x[n] = \alpha^n u[n],$ h[n] = u[n],Tuput n<0

(f)

$$x[n] = \begin{cases} 1 & 0 \le n \le 4 \\ 0, & otherwise \end{cases}$$

$$h[n] = \begin{cases} \alpha^n & 0 \le n \le 6 \\ 0, & otherwise \end{cases}$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Interval 1: n < 0

Interval 2:
$$0 \le n \le 4$$

Interval 3:
$$4 < n \le 6$$
 $y[n] = \frac{\alpha^{n-4} - \alpha^{n+1}}{1 - \alpha}$

Example 2.4 (cont'd)
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-n-6}^{4} \alpha^{n-k}$$
Interval 4: $6 < n \le 10$ $y[n] = \sum_{r=0}^{10-n} \alpha^{6-r} = \frac{\alpha^{n-4} - \alpha^7}{1-\alpha}$.

Interval
$$4: \sqrt{6} < n \le 10$$

$$y[n] = \sum_{r=0}^{10-n} \alpha^{6-r} = \frac{\alpha^{n-4} - \alpha^7}{1 - \alpha}$$

Interval 5: *n* > 10

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = 0.$$

Example 2.5

$$x[n] = 2^n u[-n], h[n] = u[n].$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Interval 1: $n \ge 0$

$$y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k] = \sum_{k=-\infty}^{0} 2^{k} = 2$$

Example 2.5

$$x[n] = 2^n u[-n], h[n] = u[n].$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] \underbrace{h[n-k]}$$

Interval 2: *n* < 0

$$y[n] = \sum_{k \neq -\infty}^{\infty} 2^k = \sum_{l=-n}^{\infty} (\frac{1}{2})^l = \sum_{m=0}^{\infty} (\frac{1}{2})^{m-n}$$
$$= \left(\frac{1}{2}\right)^{-n} \sum_{m=0}^{\infty} (\frac{1}{2})^m = 2^n \cdot 2 = 2^{n+1}.$$

Recall that in Sect. 2.1 DT LTI Systems: The Convolution Sum

- Summary
 - Definition of DT convolution
 - Unit impulse response
 - Any DT LTI system can be modeled by a DT convolution operation.
 - Any DT signals can be represented by a sum of impulses.

Chapter 2 Linear Time Invariant Systems

- Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum
- Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral
- Sec. 2.3 Properties of Linear Time-invariant Systems
- Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations
- Sec. 2.5 Singularity Functions

Sect. 2.2 CT LTI Systems: The Convolution Integral

- Highlights
 - Definition of the convolution integral for CT signals
 - Any CT LTI system can be modeled by a CT convolution integral operation

2.2.1 Representation of CT Signals in term of Impulses

• Recall that, unit impulse in CT is defined as

$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & 0 \le t \le \Delta \\ 0, & otherwise \end{cases},$$

Any CT signals can be represented by a sum of impulses.

2.2.2 The CT Unit Impulse Response and the Convolution Integral Representation of LTI Systems

For a CT signal, we can represent it as:

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta.$$

• If a system is linear, then its output y(t) corresponding to x(t) can be expressed as:

$$y(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{+\infty} x(k\Delta) h_{k\Delta}(t) \Delta.$$

where $h_{k\Delta}(t)$ is the system output with $\delta_{\Delta}(t-\underline{k\Delta})$ as input.

• Here we go again...

2.2.2 The CT Unit Impulse Response and the Convolution Integral Representation of LTI Systems

• For a CT linear system...

$$x(t) = \lim_{\Delta \to 0} \sum_{k = -\infty}^{+\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta. \qquad \Rightarrow \qquad y(t) = \lim_{\Delta \to 0} \sum_{k = -\infty}^{+\infty} x(k\Delta) h_{k\Delta}(t) \Delta$$
$$= \int_{-\infty}^{+\infty} x(\tau) h_{\tau}(t) d\tau. \quad \text{by setting } \tau = k\Delta$$

• Moreover, if such a system is time-invariant, we have...

$$\underbrace{h_{\tau}(t)} = \underbrace{h_0}_{0}(t-\tau)$$

• For notation convenience, we use h(t) to denote $h_0(t)$:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$$

2.2.2 The CT Unit Impulse Response and the Convolution Integral Representation of LTI Systems

• In other words, for a CT LTI system, we observe...

$$x(t)$$
 \Rightarrow LTI system \Rightarrow $y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$.

CT Convolution:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$$

h(t): unit impulse response (impulse response)

i.e., the output of the system when the input is $\delta(t)$ (see slide #10 for the DT version)

Example 2.6
$$x(t) = e^{-at}u(t), \quad a > 0$$

 $h(t) = u(t).$
 $y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$

Interval 1: *t* < 0

$$\gamma(t)=0$$

Example 2.6
$$x(t) = e^{-a\tau}u(t), a > 0$$

$$h(t) = u(t)$$
.

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$$

Interval 2: *t* > 0

$$\gamma(1) = \int_{0}^{\infty} \chi(\tau) f(t-\tau) d\tau$$

$$= \int_{0}^{\infty} e^{-a\tau} d\tau$$

$$x(t) = e^{-a\tau}u(t), \quad a > 0$$

$$h(t) = u(t)$$
.

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau.$$

$$y(t) = \frac{1}{a}(1 - e^{-at})$$
 for $t > 0$

$$y(t) = 0 \qquad \text{for } t < 0$$

$$y(t) = \frac{1}{a}(1 - e^{-at})u(t)$$

Figure 2.18 Response of the system in Example 2.6 with impulse response h(t) = u(t) to the input $x(t) = e^{-at}u(t)$.

Chapter 2 Linear Time Invariant Systems

- Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum
- Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral
- Sec. 2.3 Properties of Linear Time-invariant Systems
- Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations
- Sec. 2.5 Singularity Functions

Sect. 2.3 Properties of LTI Systems

- Highlights
 - All of the LTI systems have the following properties:
 - (a) linearity, (b) time invariance, (c) commutative property,
 - (d) distributive property, and (e) the associative property.
 - Moreover, <u>some</u> of the LTI systems have the properties of

 (a) memory (or memoryless), (b) invertibility, (c) causality, and (d) stability.
 - Learn the definitions of

 (a) absolutely summable, (b) absolutely integrable, and (c) the unit step response

Revisit of DT/CT LTI Systems

• DT/CT LTI systems are determined by their impulse responses:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = x[n] * h[n]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

• [Example 2.9] counterexamples of systems of unit impulse responses

Consider a DT system with unit impulse response as: $h[n] = \begin{cases} 1, & n = 0, 1 \\ 0, & otherwise \end{cases}$. If the system is LTI, we have y[n] = x[n] * h[n] = x[n] + x[n-1].

However, the following systems also have the same impulse responses, but such systems are not LTI (they are actually nonlinear ones):

$$y[n] = (x[n] + x[n-1])^2,$$

 $y[n] = \max(x[n], x[n-1]).$

2.3.1 The Commutative Property

DT

$$x[n]*h[n] = h[n]*x[n]$$

$$\sum_{k=-\infty}^{+\infty} x[k]h[n-k], = \sum_{k=-\infty}^{+\infty} h[k]x[n-k],$$

CT

$$x(t) * h(t) = h(t) * x(t)$$

$$\int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau.$$

2.3.2 The Distributive Property

- Recall that the LTI systems are of interest here.
- DT

$$x[n]*(h_1[n]+h_2[n]) = x[n]*h_1[n]+x[n]*h_2[n],$$

CT

$$x(t) * (h_1(t) + h_2(t)) = x(t) * h_1(t) + x(t) * h_2(t)$$

2.3.2 The Distributive Property (cont'd)

• Example 2.10

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n], \qquad h[n] = u[n].$$

$$y[n] = x[n] * h[n] = y_1[n] + y_2[n]$$

$$y_1[n] = \left(\frac{1}{2}\right)^n u[n] * h[n]$$
 $y_2[n] = 2^n u[-n] * h[n]$

2.3.3 The Associative Property

- Recall that the LTI systems are of interest here.
- DT

$$x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$$

CT

$$x(t)*[h_1(t)*h_2(t)] = [x(t)*h_1(t)]*h_2(t)$$

2.3.4 LTI Systems w/ and w/o Memories

- Recall that the LTI systems are of interest here.
- DT

memoryless y[n] = Kx[n]

i.e., h[n] = 0 when $n \neq 0$

otherwise, the system has memory.

CT

memoryless y(t) = Kx(t)

i.e., h(t) = 0 when $t \neq 0$

otherwise, the system has memory.

2.3.4 Invertibility of LTI Systems

• DT:

If h[n] is the impulse response of a discrete LTI system, then the system has the reversibility property if and only if there exists an $h_1[n]$ such that

$$h[n] * h_1[n] = \delta[n]$$

• CT:

If h(t) is the impulse response of a discrete LTI system, then the system has the reversibility property if and only if there exists an $h_1(t)$ such that

$$h(t) * h_1(t) = \delta(t)$$

2.3.4 Invertibility of LTI Systems (cont'd)

• Example 2.11

$$y(t) = x(t) * h(t) = x(t - t_0)$$
$$h(t) = \delta(t - t_0)$$

If
$$h_1(t) = \delta(t + t_0)$$
$$y(t) * h_1(t) = y(t + t_0) = x(t)$$
$$h(t) * h_1(t) = \delta(t)$$

2.3.4 Invertibility of LTI Systems (cont'd)

• Example 2.12

If
$$h[n] = u[n]$$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]u[n-m] = \sum_{m=-\infty}^{n} x[m]$$

When
$$h_1[n] = \delta[n] - \delta[n-1]$$

$$y[n] * h_1[n] = y[n] - y[n-1] = x[n]$$

$$h[n] * h_1[n] = \delta[n]$$

2.3.6 Causality of LTI Systems

• DT
$$h[n] = 0 \quad \text{for } n < 0$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k],$$

• CT
$$h(t) = 0 \quad \text{for } t < 0$$

$$y(t) = \int_{-\infty}^{t} x(\tau)h(t-\tau)d\tau = \int_{0}^{\infty} h(\tau)x(t-\tau)d\tau$$

2.3.7 Stability of LTI Systems

- CT
 - If |x(t)| is bounded, then |y(t)| is also bounded (for all t).
 - Sufficient condition for a continuous-time LTI system to be stable:

$$\int_{-\infty}^{+\infty} |h(\tau)| \, d\tau < \infty$$

• For a CT LTI stable system:

$$|x(t)| < B \text{ for all } t$$

$$|y(t)| = \left| \int_{-\infty}^{+\infty} h(\tau) x(t - \tau) d\tau \right|$$

$$\Rightarrow |y(t)| \le \int_{-\infty}^{+\infty} |h(\tau)| |x(t - \tau)| d\tau$$

$$\Rightarrow |y(t)| \le B \left(\int_{-\infty}^{+\infty} |h(\tau)| d\tau \right)$$
if $\int_{-\infty}^{+\infty} |h(\tau)| d\tau < \infty$ then $y(t)$ is bounded

2.3.7 Stability of LTI Systems

- DT
 - If |x[n]| is bounded, then |y[n]| is also bounded (for all n).
 - Sufficient condition for a discrete-time LTI system to be stable:

$$\sum_{k=-\infty}^{+\infty} |h[k]| < \infty$$

- CT
 - If |x(t)| is bounded, then |y(t)| is also bounded (for all t).
 - Sufficient condition for a continuous-time LTI system to be stable:

$$\int_{-\infty}^{+\infty} |h(\tau)| \, d\tau < \infty$$

2.3.7 Stability of LTI Systems (cont'd)

• Example 2.13 Stable or Not?

$$h[n] = \delta[n]$$

$$h(t) = \delta(t)$$

$$h[n] = u[n]$$

$$h(t) = u(t)$$

2.3.8 The Unit Step Response of LTI Systems

- Unit Step Response
 - The response (i.e., system output) when the input is u[n] or u(t).
- DT

The unit step response s[n] is

$$s[n] = u[n] * h[n] = \sum_{k=-\infty}^{n} h[k]$$
Therefore, $h[n] = s[n] - s[n-1]$

CT

$$s(t) = u(t) * h(t) = \int_{-\infty}^{t} h(\tau) d\tau,$$

Therefore,
$$h(t) = \frac{ds(t)}{dt} = s'(t)$$

2.3.9* Variation of Support and Length After Convolution

- Support: A set of points where a function has nonzero values.
- CT case:

If
$$x(t) = 0$$
 for $t < t_1$ and $t > t_2$, $t_2 > t_1$,

$$x(t) \neq 0$$
 for $t_1 < t < t_2$,

support:
$$t \in (t_1, t_2)$$

length:
$$t_2 - t_1$$
.

2.3.9 Variation of Support and Length After Convolution

- Support: A set of points where a function has nonzero values.
- CT case (cont'd):

```
If the support of x(t) is t\in (t_1,t_2) the support of h(t) is t\in (t_3,t_4) y(t)=x(t)*h(t) then the support of y(t) is equal to (or within) t\in (t_1+t_3,\ t_2+t_4) the length of y(t) is L_v=t_2+t_4-t_3-t_1=L_x+L_h.
```

2.3.9 Variation of Support and Length After Convolution

- Support: A set of points where a function is nonzero.
- DT case:

If
$$x[n] = 0$$
 for $t < n_1$ and $t > n_2$, $n_2 > n_1$, $x[n] \neq 0$ for $n_1 < t < n_2$,

support:
$$n \in [n_1, n_2]$$

length:
$$n_2 - n_1 + 1$$

2.3.9 Variation of Support and Length After Convolution

- Support: A set of points where a function is nonzero.
- DT case:

If the support of
$$x[n]$$
 is $n \in [n_1, n_2]$
the support of $h[n]$ is $n \in [n_3, n_4]$
 $y[n] = x[n] * h[n]$

then the support of y[n] is equal to (or within) $n \in [n_1 + n_3, n_2 + n_4]$ the length of y[n] is $L_y = n_2 + n_4 - n_3 - n_1 + 1 = L_x + L_h - 1$.

Chapter 2 Linear Time Invariant Systems

- Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum
- Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral
- Sec. 2.3 Properties of Linear Time-invariant Systems
- Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations
- Sec. 2.5 Singularity Functions

CT

Differential equation specification for input/output relationships

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

- Derived by physical phenomena and relationships (e.g., circuits)
- Auxiliary conditions are often needed to completely specify the system of interest.

- CT (cont'd)
 - Differential equation specification for input/output relationships

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

- The response y(t) to an input x(t) generally consists of two parts:
 - Homogeneous solution (natural response):

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = 0$$

Particular solution (to the complete differential equation):

- CT (cont'd)
 - Differential equation specification for input/output relationships

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

Initial rest condition for causal systems

$$x(t) = 0, t \le t_0 \rightarrow y(t) = 0, t \le t_0$$

Initial conditions

$$y(t_0) = \frac{dy(t_0)}{dt} = \frac{d^2y(t_0)}{dt^2} = \dots = \frac{d^Ny(t_0)}{dt^N} = 0$$

- DT
 - Difference equation specification

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

- Derived by sequential behavior of difference processes
- Auxiliary conditions might be needed.
- Response y[n] generally consists of
 - Homogeneous solution for $\sum_{k=0}^{N} a_k \, y[n-k] = 0$
 - Particular solution

- DT (cont'd)
 - Difference equation specification

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Initial rest conditions for causal systems

$$x[n] = 0, n \le n_0 \rightarrow y[n] = 0, n \le n_0$$

Recursive equation

$$y[n] = \frac{1}{a_0} \left\{ \sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k] \right\}$$

i.e., output at time n expressed in terms of inputs/outputs in previous times

• DT (cont'd)

- Recursive equation $y[n] = \frac{1}{a_0} \left\{ \sum_{k=0}^{M} b_k x[n-k] \sum_{k=1}^{N} a_k y[n-k] \right\}$
- When N=0, reduced to a convolution sum

$$y(n) = \sum_{k=0}^{M} \left(\frac{b_k}{a_0}\right) x[n-k]$$

- Note that $h[n] = b_n/a_0$ for $0 \le n \le M$; otherwise h[n] = 0
- Finite impulse response (FIR) vs. infinite impulse response (IIR) systems

2.4.1 Linear Constant-Coefficient Differential Equations

• Example 2.14 $\frac{dy(t)}{dt} + 2y(t) = x(t) \quad \text{where} \quad x(t) = Ke^{3t}u(t)$ Solution: $y(t) = y_p(t) + y_h(t)$ $y(t) \quad \text{is the solution of} \quad \frac{dy(t)}{dt} + 2y(t) = 0 \qquad y_h(t) = Ae^{3t}u(t)$

$$y_h(t)$$
 is the solution of $\frac{dy(t)}{dt} + 2y(t) = 0$ $y_h(t) = Ae^{st}$ $y_p(t)$ is any the original solution $y_p(t) = \frac{K}{5}e^{3t}$, $t > 0$

• Elementary Operations

$$\begin{array}{ccc} x[n] & & a & ax[n] \\ x(t) & & ax(t) \end{array}$$

• Elementary Operations (cont'd)

$$x(t) \longrightarrow \frac{d}{dt} \longrightarrow \frac{dx(t)}{dt}$$

$$x(t) \longrightarrow \int_{-\infty}^{t} x(\tau) d\tau$$

• Example: y[n] + ay[n-1] = bx[n]

- Note that, this systems observes feedback (i.e., with memory). Initial value of the memory element = initial condition of the systems
- Initial rest condition: initial value in the memory element is zero.

• CT Example: $\frac{dy(t)}{dt} + ay(t) = bx(t)$

• CT Example:
$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

• Expressed by integrator, assuming initially at rest

• The integrator represents the memory element.

- 2.5.1 The Unit Impulse as an Idealized Short Pulse
 - There is no explicit form of a unit impulse.
 - Instead, we can say some "functions" behave like a unit impulse.

$$x(t) = x(t) * \delta(t)$$
 when $x(t) = \delta(t)$

when
$$x(t) = \delta(t)$$

$$\delta(t) = \delta(t) * \delta(t)$$

$$r_{\Delta}(t) = \delta_{\Delta}(t) * \delta_{\Delta}(t)$$

and $r_{\Delta}(t)|_{\Delta \to 0}$ can all be viewed as a unit impulse.

- 2.5.2 Defining the Unit Impulse through Convolution
 - We define $\delta(t)$ as the signal for which

$$x(t) = x(t) * \delta(t)$$

is satisfied.

- 2.5.3 Unit Doublets and Other Singularity Functions
 - Define

$$u_1(t) = \frac{d}{dt}\delta(t) \qquad \qquad \frac{d}{dt}x(t) = x(t) * u_1(t)$$

Figure 2.36 The derivative $d\delta_{\Delta}(t)/dt$ of the short rectangular pulse $\delta_{\Delta}(t)$ of Figure 1.34.

- 2.5.3 Unit Doublets and Other Singularity Functions
 - Consider the system $y(t) = \frac{d}{dt}x(t)$.
 - The unit impulse response of the system is the derivative of the unit impulse, which is called the unit doublet $u_1(t)$, which is defined as:

$$u_1(t) = \frac{d}{dt}\delta(t).$$

• From the convolution representation of LTI systems, we have

$$\frac{d}{dt}x(t) = x(t) * u_1(t).$$

- 2.5.3 Unit Doublets and Other Singularity Functions
 - Similarly, we may define $\frac{d^2}{dt^2}x(t) = x(t) * u_2(t)$.
 - We have $\frac{d^2}{dt^2}x(t) = \frac{d}{dt}\left(\frac{d}{dt}x(t)\right) = (x(t)*u_1(t))*u_1(t)$.
 - Therefore, we observe

$$u_2(t) = u_1(t) * u_1(t).$$

• In general, for the kth derivative of $\delta(t)$, we have

$$u_k(t) = u_1(t) * \cdots * u_1(t), k > 0.$$

k times

- 2.5.3 Unit Doublets and Other Singularity Functions
 - Consider x(t) = 1, we have

$$0 = \frac{dx(t)}{dt} = x(t) * u_1(t)$$
$$= \int_{-\infty}^{\infty} u_1(\tau) x(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} u_1(\tau) d\tau$$

• That is, the unit doublet has zero area.

2.5.3 Unit Doublets and Other Singularity Functions

- Integral of Unit Impulse
 - Consider an integrator: $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$
 - The impulse response of an integrator is the unit step. Why?

$$u_{-1}(t) \triangleq \int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$$

• Thus, we have the following operational definition of u(t).

$$x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

2.5.3 Unit Doublets and Other Singularity Functions

- Integral of Unit Impulse
 - Similarly, we observe

$$u_{-2}(t) = u(t) * u(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

• Since u(t) equals 0 for t < 0 and 1 for $t \ge 0$, it follows that

$$u_{-2}(t) = tu(t)$$

unit ramp function

2.5.3 Unit Doublets and Other Singularity Functions

- Integral of Unit Impulse
 - Moreover

$$x(t) * u_{-2}(t) = x(t) * u(t) * u(t)$$

$$= \left(\int_{-\infty}^{t} x(\sigma) d\sigma \right) * u(t)$$

$$= \int_{-\infty}^{t} \left(\int_{-\infty}^{\tau} x(\sigma) d\sigma \right) d\tau$$

• In general,

$$u_{-k} = u(t) * \cdots * u(t) = \int_{-\infty}^{t} u_{-(k-1)}(\tau) d\tau$$

$$u_{-k}(t) = \frac{t^{k-1}}{(k-1)!}u(t)$$

Summary

$$\delta(t) = u_0(t)$$

$$u(t) = u_{-1}(t)$$

 $u_k(t)$ $\begin{cases} k > 0, & \text{Impulse response of a cascade of } k \text{ differentiators} \\ k < 0, & \text{Impulse response of a cascade of } |k| \text{ integrators} \end{cases}$

$$u(t) * u_1(t) = \delta(t)$$
 or $u_{-1}(t) * u_1(t) = u_0(t)$

$$\Rightarrow u_k(t) * u_r(t) = u_{k+r}(t)$$

Property or Definition	Formula
(1) Integration	$\int_{-\infty}^{\infty} \delta(t)dt = 1$
(2) Relation with the unit step function	$\int_{-\infty}^{t} \delta(\tau) d\tau = u(t), \qquad \frac{d}{dt} u(t) = \delta(\tau)$
(3) Convolution	$x(t) * \delta(t) = x(t)$
(4) Auto convolution	$\delta(t) * \delta(t) = \delta(t), \delta(t) * \delta(t) * \dots * \delta(t) = \delta(t)$
(5) Sifting (I)	$\int_{a}^{b} f(t)\delta(t - t_0)dt = f(t_0) \text{ if } a < t_0 < b$
(6) Sifting (II)	$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$
(7) Unit doublet $u_1(t)$	$u_1(t) = \frac{d}{dt} \delta(t)$
	$x(t) * u_1(t) = \frac{d}{dt} x(t)$
(8) $u_k(t)$ (k is a positive integer)	$u_k(t) = \underbrace{u_1(t) * \cdots * u_1(t)}_{k \text{ times}} = \frac{d^k}{dt^k} \delta(t)$
	$x(t) * u_k(t) = \frac{d^k}{dt^k} x(t)$
(9) $u_{-1}(t)$	$u_{-1}(t) = u(t),$
(10) $u_{-k}(t)$ (k is a positive integer)	$u_{-k}(t) = \underbrace{u(t) * \cdots * u(t)}_{k \text{ times}} = \frac{t^{k-1}}{(k-1)!} u(t),$
	$x(t) * u_{-k}(t) = \int_{-\infty}^{t} \int_{-\infty}^{\tau_{k-1}} \dots \int_{-\infty}^{\tau_2} \left(\int_{-\infty}^{\tau_1} x(\sigma) d\sigma \right) d\tau_1 d\tau_2 \dots d\tau_{k-1}.$
	(k times of integration)
When $k = 2$, it is called a unit ramp function	