Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 5 ИНТЕРПОЛЯЦИЯ ФУНКЦИИ ВАРИАНТ 12

Студент: Пышкин Никита Сергеевич, Р3213

Преподаватель:

Содержание

Цель лабораторной работы	3
Порядок выполнения лабораторной работы	3
Рабочие формулы	4
Вычислительная часть задания	4
Листинг программы	6
Результаты работы программы	8
Reiron	q

Цель лабораторной работы

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Порядок выполнения лабораторной работы

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента *X*1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы х, у), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- c) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций)
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);
- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Рабочие формулы

Интерполяционная формула Ньютона (для левой половины отрезка):

$$t = \frac{x - x_0}{h}$$

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_i$$

Интерполяционная формула Ньютона (для правой половины отрезка):

$$t = \frac{x - x_n}{h}$$

$$N_n(x) = y_n + t\Delta y_{n-1} + \frac{t(t-1)}{2!} \Delta^2 y_{n-2} + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_0$$

Первая интерполяционная форма Гаусса (x > a):

$$P_{n}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-1} + \cdots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-(n-1)} + \frac{(t+n-1)\dots(t-n)}{(2n)!} \Delta^{2n} y_{-n}$$

Вторая интерполяционная форма Гаусса (x < a):

$$P_{n}(x) = y_{0} + t\Delta y_{-1} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-2} + \cdots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-n} + \frac{(t+n)\dots(t-n+1)}{(2n)!} \Delta^{2n} y_{-n}$$

Вычислительная часть задания

Таблица 1:

X	y
0.50	1.5320
0.55	2.5356
0.60	3.5406
0.65	4.5462
0.70	5.5504
0.75	6.5559
0.80	7.5594

Таблица конечных разностей:

$y_i + y_i + \Delta y_i$		y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$		$\Delta^5 y_i$	$\Delta^6 y_i$
---	--	-------	--------------	----------------	----------------	--	----------------	----------------

x_0	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	-0.0166
x_1	2.5356	1.0050	0.0006	-0.0020	0.0047	-0.0107	
x_2	3.5406	1.0056	-0.0014	0.0027	-0.0060		
x_3	4.5462	1.0042	0.0013	-0.0033			
x_4	5.5504	1.0055	-0.002				
x_5	6.5559	1.0035					
x_6	7.5594						

Вычисляем значение X_1 формулой Ньютона:

$$\begin{split} x_0 &< X_1 (= 0.523) < x_1 \\ t &= \frac{0.523 - 0.50}{0.05} = 0.46 \\ N_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \dots + \frac{t(t-1) \dots (t-n+1)}{n!} \Delta^n y_0 \\ 1.5320 + 0.46 * 1.0036 + \frac{0.46(0.46-1)}{2} * 0.0014 - \frac{0.46(0.46-1)(0.46-2)}{6} \\ &* 0.0008 - \frac{0.46(0.46-1)(0.46-2)(0.46-3)}{24} * 0.0012 \\ &+ \frac{0.46(0.46-1)(0.46-2)(0.46-3)(0.46-4)}{120} * 0.0059 \\ &- \frac{0.46(0.46-1)(0.46-2)(0.46-3)(0.46-4)(0.46-5)}{720} * 0.0166 \\ 1.5320 + 0.461656 - 0.00017388 - 0.000051 - 0.000049 + 0.000169 + 0.00036 \\ &= 1.99391 \\ N_n(0.523) = 1.99391 \end{split}$$

Вычисляем значение X_2 формулой Гаусса:

Перепишем таблицу разностей для формулы Гаусса:

	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
x_{-3}	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	<mark>-0.0166</mark>
x_{-2}	2.5356	1.0050	0.0006	-0.0020	0.0047	-0.0107	
x_{-1}	3.5406	1.0056	-0.0014	0.0027	-0.0060		
x_0	<mark>4.5462</mark>	1.0042	0.0013	-0.0033			
x_1	5.5504	1.0055	-0.002				
x_2	6.5559	1.0035					
x_3	7.5594						

$$X_{2}(=0.639) < a (= 0.65)$$

$$t = \frac{0.639 - 0.65}{0.05} = -0.22$$

$$P_{n}(x) = y_{0} + t\Delta y_{-1} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{2!} \Delta^{3} y_{-2}$$

$$\begin{split} P_n(x) &= y_0 + t\Delta y_{-1} + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-n} + \frac{(t+n)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

$$P_n(x) = 4.5462 - 0.22 * 1.0056 + \frac{0.22(-0.22 - 1)}{2} * 0.0014$$

$$+ \frac{(-0.22 + 1)0.22(-0.22 - 1)}{6} * 0.0020$$

$$- \frac{(-0.22 + 1)0.22(-0.22 - 1)(-0.22 + 2)}{24} * 0.0047$$

$$- \frac{(-0.22 + 2)(-0.22 + 1)0.22(-0.22 - 1)(-0.22 - 2)}{120} * 0.0059$$

$$+ \frac{(-0.22 + 3)(-0.22 + 2)(-0.22 + 1)0.22(-0.22 - 1)(-0.22 - 2)}{720} * 0.0166$$

$$4.5462 - 0.22123 + 0.00019 + 0.00007 - 0.000073 - 0.00004 + 0.000053$$

= 4.32517

$$P_n(0.639) = 4.32517$$

Листинг программы

Метод Гаусса:

import math

```
def gauss_interpolation(x_vals, diffs, x):
    n = len(x_vals)
    h = x_vals[1] - x_vals[0]
    m = n // 2
    t = (x - x_vals[m]) / h
```

for k in range(1, n):

$$P = 1.0$$

result = diffs[0][m]

```
offset = k // 2
        for j in range(k):
            P *= (t - offset + j)
        i = m - offset
        if i < 0 or i >= len(diffs[k]):
            break
        result += P * diffs[k][i] / math.factorial(k)
    return result
Метод Ньютона:
def newton_interpolation(x_vals, diffs, x):
    n = len(x vals)
   h = x_vals[1] - x_vals[0]
    t = (x - x_vals[0]) / h
    result = diffs[0][0]
   product = 1
    for k in range(1, n):
        product *= (t - (k - 1)) / k
        result += product * diffs[k][0]
    return result
Метод Лагранжа:
def lagrange_interpolation(x_vals, y_vals, x):
    n = len(x_vals)
    result = 0
    for i in range(n):
        term = y vals[i]
        for j in range(n):
```

```
if j != i:
    term *= (x - x_vals[j]) / (x_vals[i] - x_vals[j])
```

return result

Результаты работы программы

Вариант 1:

Выберите способ ввода данных:

result += term

- 1. Ввод с клавиатуры
- 2. Загрузка из файла
- 3. Генерация на основе функции

Ваш выбор: 1

Введите значения х через пробел: 1 2 3 Введите значения у через пробел: 1 2 4

Таблица значений:

x: 1.0000 2.0000 3.0000

y: 1.0000 2.0000 4.0000

Таблица конечных разностей:

X	У	ΔУ	Δ^2γ
1.0000	1.0000	1.0000	1.0000
2.0000	2.0000	2.0000	
3.0000	4.0000		

Введите значение х, которое хотите найти: 3

Полученное значение для интерполяции Гаусса: 4.0

Полученное значение для интерполяции Ньютона: 4.0

Полученное значение для интерполяции Лагранжа: 4.0

Вариант 2:

Выберите способ ввода данных:

- 1. Ввод с клавиатуры
- 2. Загрузка из файла

3. Генерация на основе функции

Ваш выбор: 2

Введите имя файла: txt/2.txt

Таблица значений:

x: 1.0000 2.0000 3.0000 4.0000 5.0000

y: 1.1230 2.1230 4.2080 8.6460 16.4850

Таблица конечных разностей:

X	У	ΔΥ	Δ^2γ	Δ^3γ	Δ^4y
1.0000	1.1230	1.0000	1.0850	1.2680	-0.2200
2.0000	2.1230	2.0850	2.3530	1.0480	
3.0000	4.2080	4.4380	3.4010		
4.0000	8.6460	7.8390			
5.0000	16.4850				

Введите значение х, которое хотите найти: 3.57

Полученное значение для интерполяции Гаусса: 6.3770427155750005

Полученное значение для интерполяции Ньютона: 6.3770427155750005

Полученное значение для интерполяции Лагранжа: 6.377042715575

Вывод

В ходе выполнения лабораторной работы я изучил интерполяционные методы и реализовал их на языке Python.