1. (35 points) Évaluez les intégrales suivantes.

(a)
$$\int \frac{6x^3 + 33x^2 + 36x - 2}{3x^2 + 18x + 24} dx$$

(d)
$$\int_{0}^{\pi/4} \sec^{5}(\theta) \tan^{3}(\theta) d\theta$$
 (g) $\int \frac{1}{x^{2} - 8x + 41} dx$

(g)
$$\int \frac{1}{x^2 - 8x + 41} dx$$

(b)
$$\int_{1}^{4} \frac{(\sqrt{x}+1)^3}{\sqrt{x}} dx$$

(e)
$$\int x \operatorname{arcsec}(x) dx$$

(c)
$$\int e^{\sqrt{x}} dx$$

(f)
$$\int \sqrt{4-x^2} \ dx$$

2. (6 points) Évaluez les limites suivantes. Si vous utilisez la règle de l'Hospital, justifiez pourquoi elle peut être utilisée.

(a)
$$\lim_{x \to 0^+} xe^{\frac{1}{x}}$$

(b)
$$\lim_{x\to 0} (x+1)^{\cot x}$$

- 3. (5 points) Trouvez la surface de la région délimitée par les courbes $y=x^2-8x$ et y=7-2x.
- 4. (4 points) Établissez une intégrale pour trouver le volume d'une pyramide de hauteur h et de base rectangulaire de dimensions b et 3b. Évaluez l'intégrale.
- 5. (4 points) Résolvez l'équation différentielle $\frac{dy}{dx} = \frac{x}{y(1+x)}$ avec condition initiale y(0) = -2. Exprimez y explicitement en fonction de x et simplifiez complètement votre réponse.
- 6. (5 points) Une culture de bactéries croît à un taux proportionnel au nombre de bactéries présentes. Initialement, la culture contient 1000 bactéries. Après 3 heures, la population atteint 8000 bactéries.
 - (a) Établissez une équation différentielle avec les conditions initiales décrivant la croissance de la population.
 - (b) Trouvez une expression pour le nombre de bactéries en fonction du temps t.
 - (c) Trouvez le moment où la population atteint 100 000 bactéries.
- 7. (3 points) Trouvez la somme de la série $\sum_{n=0}^{\infty} \frac{3+4^n}{7^n}$
- 8. (3 points) Déterminez si la suite avec terme général $a_n = \ln(n+1) \ln(n)$ converge ou diverge. Justifiez votre réponse.
- 9. (9 points) Déterminez si chacune des séries suivantes converge ou diverge. Justifiez vos réponses.

(a)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 5}{n^3 + 3n + 7}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(n+7)^n}{7^{n^2}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^4}$$

10. (6 points) Déterminez si chacune des séries suivantes converge absolument, converge conditionnellement ou diverge. Justifiez vos réponses.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{e^n + e^{-n}}$$

- 11. (5 points) Trouvez le rayon et l'intervalle de convergence de la série de puissances (série entière) $\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{n \ 2^n}$.
- 12. (5 points) Trouvez une représentation en série de puissances pour la fonction $f(x) = \arctan(x^2)$ en utilisant des séries connues et déterminez le rayon de convergence.
- 13. (4 points) Soit $f(x) = \frac{1}{(3-x)^2}$. Écrivez les quatre premiers termes non nuls de la série de MacLaurin pour f(x).
- 14. (6 points) (a) Utilisez une série de MacLaurin connue pour obtenir la série de MacLaurin de $f(x) = e^{3x^2}$
 - (b) Utilisez la partie (a) pour évaluer $\int e^{3x^2} dx$ en tant que série entière.

ANSWERS

- 1. (a) $x^2 x + \frac{5}{3} \ln|3x + 6| + \frac{1}{3} \ln|x + 4| + C$
 - (b) $\frac{6}{2}$
 - (c) $2\sqrt{x}e^{\sqrt{x}} 2e^{\sqrt{x}} + C$
 - (d) $\frac{12\sqrt{2}+2}{35}$
 - (e) $\frac{x^2 \operatorname{arcsec}(x)}{2} \frac{1}{2}\sqrt{x^2 1} + C$
 - (f) $2\arcsin(\frac{x}{2}) + \frac{x\sqrt{4-x^2}}{2} + C$
 - (g) $\frac{1}{5}\arctan\left(\frac{x-4}{5}\right) + C$
- **2.** (a) ∞
 - (b) *e*
- 3. $\frac{256}{3}$
- **4.** $V = \int_0^h 3 \frac{x^2 b^2}{h^2} dx = b^2 h$
- 5. $y = -\sqrt{2x 2\ln|x + 1| + 4}$
- **6.** (a) $\frac{dN}{dt} = kN$, N(0) = 1000, N(3) = 8000
 - (b) $N(t) = 1000(2)^t$
 - (c) $t = \frac{\ln 100}{\ln 2}$
- 7. $\frac{35}{6}$
- 8. $\lim_{n\to\infty} a_n = 0$, conv.
- **9.** (a) div.
 - (b) conv.
 - (c) conv.
- 10. (a) converge conditionnellement
 - (b) converge absolument
- **11.** R = 2, I de C (3,7]
- **12.** $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1}, R = 1$
- **13.** $\frac{1}{(3-x)^2} = \frac{1}{9} + \frac{2}{27}x + \frac{3}{81}x^2 + \frac{4}{243}x^3 + \dots$
- **14.** (a) $f(x) = \sum_{n=0}^{\infty} \frac{3^n x^{2n}}{n!} = 1 + \frac{3x^2}{1!} + \frac{9x^4}{2!} + \frac{27x^6}{3!} + \dots, R = \infty$
 - (b) $C + \sum_{n=0}^{\infty} \frac{3^n x^{2n+1}}{(2n+1) \cdot n!} = C + x + \frac{3x^3}{3 \cdot 1!} + \frac{9x^5}{5 \cdot 2!} + \frac{27x^7}{7 \cdot 3!} + \dots, R = \infty$