Essential Research Toolkit for the Humanities

Week 4: R basics

Anna Pryslopska May 2, 2022

Psycholinguistics and Cognitive Modeling Lab

- 1. Change the editor theme and pane layout
- 2. Install & load tidyverse, knitr, learnr, +1
- 3. What is typeof():

4. Is the following true:

$$7+0i == 7$$
, $9 == 9.0$, "zero" == $0L$

5. What is the output of the following operations and why

- 6. Complete the "Data basics" tutorial from the package learnr
- 7. Report sessionInfo()

Table of contents

- 1. Where are we this week?
- 2. Inspecting data
- 3. Cleaning and transforming data
- 4. Homework assignment

Where are we this week?

Workflow

Data Understand Communicate Share

import, clean, transform, visualize, model

document, create clean and beautiful reports connect, collaborate backup

Inspecting data

Load the data into environment

moses <- read_csv("moses.csv")</pre>

CTRL+ENTER or CMD+RETURN or click on "Run"

```
Source on Save
دد
36 moses <- read csv("moses.csv")</pre>
   View(moses)
   moses
   head(moses, n=20)
40 tail(moses, n=5)
41 spec(moses)
42 summary(moses)
   describe(moses)
```

You now have a data frame or tibble called moses.

Look at what you did

```
View(moses)
                                               in the RStudio window
                                                      in the console
moses
print(moses, n=Inf)
                                                      in the console
head(moses, n=20)
                                                        first 20 rows
tail(moses, n=5)
                                                         last 5 rows
spec(moses)
                                                  column properties
summary(moses)
                                                  summary statistics
describe(moses)
                                             summary statistics vol. 2
colnames(moses)
                                                      column names
summary(NAME)
                                 → calling function with one argument
head(NAME, n=20)
                                 → calling function with two arguments
dbinom(x=6, size=9, prob=0.5)
                                        3 arguments in order, 2 named
```

Summarize

Min.	min()	minimal value
Max.	<pre>max()</pre>	maximal value
Mean	mean()	average
1st Qu.	<pre>quantile()</pre>	25%
Median	<pre>quantile()</pre>	middle number == 2nd quantile == 50%
3rd Qu.	quantile()	75%
NA's	TBA	nr missing data

Describe

	<pre>colnames()</pre>	item name
vars	<pre>colnames()</pre>	item number
n	TBA	number of valid cases
mean	mean()	mean
median	<pre>median()</pre>	median
min	min()	minimum
max	max()	maximum
range	range()	range
sd	sd()	standard deviation ($\sqrt{variance}$)
trimmed		trimmed mean
mad		median absolute deviation
skew	skew()	skew
kurtosis	<pre>kurtosi()</pre>	kurtosis
se	<pre>mean_se()</pre>	standard error

Central tendency

Set	Values	Mean	Median	SD
1	1,2,3,4,5,6,7	4	4	2
2	4,4,4,4,4,4	4	4	0
3	1,1,1,1,8,8,8	4	1	4
4	2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6	4	4	1

What a mess

too much information

condition 1? 2?? 100???

too little information

- missing information
- inconsistent information
 - Q: Margaret Thatcher was the former president/prime minister of which country?
 - A: uk, the uk, england, united kingdom, great britain...

NA

Clean up after yourselves

```
select meaningful columns

remove missing values

choose or remove data

filter(WHERE, TRUE CONDITION)

reorder values

arrange(WHERE, HOW)

create values

mutate(WHERE, NEW = FUNCTION(OLD))
```

Functions are executed, results are displayed, but nothing is saved.

Selecting

```
Tidyverse
```

```
select(moses, ID, Item, Condition, Answer)
select(moses, c(ID, Item, Condition, Answer))
select(moses, c(ID, Item:Answer))
base R
moses$ID
moses[ , "ID"]
moses[ , c("ID", "Item", "Condition", "Answer")]
moses[ , c(1.4:6)]
Both
c() = concatenate, i.e. combine, join, bundle up
Create a new data frame with columns: ID, Item, Condition, Answer
```

Missing data

Create a new data frame from the previous one with no NAs.

Coding basics: R as a calculator

addition	+	
subtraction	-	
division	/	
multiplication	*	
power	^	
equals	==	
not equals	! =	
greater than	>	
greater than or equal	>=	
less than	<	
less than or equal	<=	
range	NR1:NR2	
identify element	VALUE %in% OBJECT	

Coding basics: Logic

negation ! logical and & logical or |

Wickham and Grolemund (2016)

Filter (out)

```
filter(moses, Condition == 1)
                                                condition 1
filter(moses, Condition %in% 1)
                                                condition 1
filter(moses, Condition >= 1 & Condition < 2)
                                                condition 1
filter(moses, Condition == 1 | Condition == 2)
                                              conditions 1-2
filter(moses, Condition %in% 1:2)
                                             conditions 1-2
filter(moses, Condition == 1:2)
                                             conditions 1–2
filter(moses, Condition < 100)
                                             conditions 1–2
filter(moses, Condition %in% c(1, 2))
                                             conditions 1-2
Create a new data frame from the previous one with conditions 1–2.
```

(Re)arrange

```
arrange(moses, Item) item
arrange(moses, Item, Condition) item, then condition
arrange(moses, desc(List)) list, descending
arrange(moses, desc(is.na(Answer)))
```

Create a new data frame from the previous one and sort it by participant ID.

Create and mutate

Tidyverse

Create and mutate

base R

```
moses$Class <- TRUE
moses$Number <- 1:598
moses$Lists <- moses$List + 1
moses$List1 <- moses$List == 1
moses$Condition <- as.character(moses$Condition)
moses$List1 <- NULL</pre>
```

Assignment saves, so be careful! This code deletes **List1** and permanently changes **Condition**.

Cleaning and transforming data

Stuttgarter Nachrichten www.stuttgarter-nachrichten.de

Task: Tidy up the data

- E remember to save in the environment!
 - 1. select relevant columns (ID, Item, Condition, Answer)
 - 2. remove missing data
 - 3. arrange by Item and Condition
 - 4. recode inconsistent information

Clean up on aisle "Answer"

```
know his name", "dont know", 'idk', "i forget")
cant_answer <- c("can't answer", "can't say",</pre>
"can't say", "cant say", "none")
armstrong <- c("neal armstrong", "neil armstrong",</pre>
"armstrong")
Consolidate the answers for:
everest, madrid, manchester, nobel, olympics,
platypus, prince, printing, roman, sagrada, santa,
scholz, shakespeare, squirrel, switzerland, ten,
two, uk, usa, valentines, whale
A use arrange(), filter(), select(), and unique()
```

dont know <- c("don't know", "don't know", "don't</pre>

Homework assignment

Homework assignment due May 9

Next week: More data manipulation, pipelines, documentation, tidy code, and getting help

- Complete assignment 2 (\rightarrow ILIAS)
- · Tidy up the adjectives data
 - · Download the file adjectives.csv from ILIAS
 - · Examine the data
 - Look for mistakes (missing data, values that don't fit etc.) given the information about the data (next slide)
 - · Remove missing and incorrect values
 - Which variables/columns seem most important? Save a new data frame with just the relevant columns
 - · Arrange the data by participant, item, and condition

```
head(adjectives)
# A tibble: 6 × 9
 Value id
               ITEM CONDITION ADJECTIVE
                                              code
                                                                      ADVERB
                                                                                          age
     1 SD17
                210
                            3 müde
                                              eMeWznye9JLzF7FUWuXreg freiwillia
     5 SD17
                301
                            3 tüchtia
                                              eMeWznye9JLzF7FUWuXrea freiwillia
     3 SD17
                 88
                            3 enthusiastisch eMeWznye9JLzF7FUWuXreg freiwillig
     4 SD17
                150
                            2 herzlos
                                              eMeWznye9JLzF7FUWuXreg bewusst
                            2 defensiv
     3 SD17
                 62
                                              eMeWznve9JLzF7FUWuXrea bewusst
```

· Value

acceptability rating to the sentence on 1–7 scale

·id

participant ID 1-63

· TTFM

sentence ID 1-360

· CONDITION

sentence group 1–3

· ADJECTIVE

adjective used in the sentence

· code

random letters and numbers

· ADVERB

adverb used in the sentence

· LIST

version of experiment 1–6

· age

age of participant in years

Logic exercise

Your world has four individuals:

Two are of the type bird

Two are of the type can swim

Using only basic logical expressions (negation !, and &, or |) and the two groups, describe the groups on the right, as in the first example. Tip: a Venn diagram as on slide 14 might help.

Ø (i.e. exclude all)