Date														
Date	•				•	 	•	•	•	•	•	•	•	

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2020

(JULY to DEC.-2020)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

FULL SYLLABUS (PAPER-II)

BATCH-I

TEST CODE: TEST-12: IAS(M)/8-NOV.-2020

Time: 3 Hours

Maximum Marks: 250

INSTRUCTIONS

- This question paper-cum-answer booklet has <u>50</u> pages and has
 PART/SUBPART questions. Please ensure that the copy of the question
- paper-cum-answer booklet you have received contains all the questions.Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- 12. The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ INSTRUCTIONS ON THE LEFT SIDE OF THIS PAGE CAREFULLY

Name	
Roll No.	
Test Centre	
Medium	

Do not write your Roll Number or Name
anywhere else in this Question Paper-
cum-Answer Booklet.

ī	have	read	all	the	instructions	and	shal

abide by them

Signature of the Candidate

Thave verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

		SECTION - A		
1.	(a)	Describe all finite abelian groups of order 2 ⁶ .	LO]	

1.	(b)	Prove that the polynomial $1 + x + \dots + x^{p-1}$ where p is a prime number, is irreducible
		over the field of rational numbers. [10]

1.	(c)	Give an example of each of the following in R.	
----	-----	--	--

- (I) An infinite unbounded set S such that
 - (i) $S' = \varphi$, (ii) $S' = \{a, b\}$, (iii) $S' \neq S \subset S'$.
- (II) A bounded set S such that

(ii)
$$S' = \varphi$$
, (ii) $S' = \{1\} \cup S$, (iii) $S' = [a, b] \cup \{c\}$. [10]

1. (d) The function f defined by

$$f(z) = u + iv = \begin{cases} \frac{Im(z^2)}{\overline{z}} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$

satisfies the C-R equations at the origin, yet it is not differentiable there. [10]

1.	(e)	Make a grap	phical representation of the set of constraints of the following LF	P. Find
		the extreme	e points of the feasible region. Finally, solve the problem grap	hically.
		Max.	$Z = 2x_1 + x_2$	
		subject to	$\mathbf{x}_1 + \mathbf{x}_2 \ge 5$	
			$2x_1 + 3x_2 \le 20$	
			$4x_1 + 3x_2 \le 25$	
			$x_{1}, x_{2} \ge 0.$	[10]

2.	(a)	(i) Find all normal subgroups in S ₄ .
	()	(ii) Give an example of a group G, subgroup H and an element $a \in G$ such that
		aH $a^{-1} \subset H$ but aH $a^{-1} \neq H$
		(iii) List all the conjugate classes in S_3 and verify the class equation. [18]

2. (b) (i) The series $\sum u_n = 1 - \left(\frac{3}{2}\right) - \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^3 - \dots$ and $\sum v_n = 1 + \left[2 + \left(\frac{1}{2}\right)^2\right] + \frac{3}{2}\left[2^2 + \left(\frac{1}{2}\right)^3\right] + \dots$

are divergent but their product series $\sum \bigl(\sum u_r v_{\scriptscriptstyle n-r+1}\bigr)$ converges absolutely.

(ii) If f(x) be defined on [a, b] such that for $\delta > 0$. $|f(x) - f(y)| \le |x - y|^{1+\delta} \forall x, y \in [a, b]$, then f(x) is constant on [a, b]. [16]

16 of 54

			1
3.	(a)	(i)	Let R be a ring with unit element, R not necessarily commutative, such that
			the only right ideals of R are (0) and R. Prove that R is a division ring.
		(32)	
		(11)	Prove that any homomorphism of a field is either a monomorphism or takes
			each element into 0. [16]

- 3. (b) (i) If $f(x) = \sqrt{1-x^2}$ when x is rational, = 1 - x when x is irrational,then $\int_0^1 f(x) dx = \frac{\pi}{4}$, and $\int_0^1 f(x) dx = \frac{1}{2}$.
 - (ii) The sequence $\alpha_n \equiv 1 + \frac{1}{2} + \dots + \frac{1}{n} \log n$, $\forall n$ is monotonically decreasing and

bounded between 0, 1 and converges to a non-zero limit between 0 and 1.

[6+8=14]

4.	(a)	Find the greatest common divisor of the following polynomial over F, the field rational numbers.	of
		$x^2 + x - 2$ and $x^5 - x^4 - 10x^3 + 10x^2 + 9x - 9$	oj

$\sum_{n=1}^{\infty} -$	$\frac{x}{(n+x^2)^2}.$	Also
r	$\sum_{n=1}^{\infty} -$	$\sum_{n=1}^{\infty} \frac{x}{\left(n+x^2\right)^2}.$

prove that
$$\int_0^1 \left(\sum_{n=1}^\infty \frac{x}{\left(n+x^2\right)^2} \right) dx = \frac{1}{2}.$$
 [16]

- **4.** (c) (i) Let f(z) = u + iv be an analytic function. Find f(z) (as a function of z), when $2u + 3v = 13(x^2 y^2) + 2x + 3y$.
 - (ii) Classify the nature of the singularity of the function

$$f(z) = \frac{e^{-z}}{(z-2)^4}$$
 and compute the residue. [8+6=14]

4. (d) Solve the following transportation problem:

			D_1	D_2 I	D_3 I	O_4	D_5 Γ) ₆	Available	
	0_1	9	12	9	6	9	10		5	
Erom	02	7	3	7	7	5	5		5 6 2 9	
FIUIII	0_3	6	5	9	12	3	11		2	
	0_4	6	8	11	2	2	10		9	
			4	4					22 (Total))

[10]

29 of 54						
		SECTION - B				
5.	(a)	Find complete integral of $(x^2 - y^2)$ pq – xy(p ² – q ²) = 1.	[10]			

5.	(b)	Find a surface satisfying the equation $D^2 z = 6x + 2$ and touching $z = x^3 + y^3$ along
		its section by the plane $x + y + 1 = 0$. [10]

5.	(c)	Given that $f(0) = 1$, $f(1) = 3$, $f(3) = 55$, find the unique polynomial of degree 2 or
		less, which fits the given data. Find the bound on the error. [10]

(d)	Simplify the boolean expression:	
	$(a+b)\cdot(\overline{b}+c)+b\cdot(\overline{a}+\overline{c})$ by using the laws of boolean algebra. From its truth table	
	write it in minterm normal form. [10]	
	(d)	(d) Simplify the boolean expression: $(a+b)\cdot(\bar{b}+c)+b\cdot(\bar{a}+\bar{c})$ by using the laws of boolean algebra. From its truth table write it in minterm normal form. [10]

33 of 54

5.	(e)	For a simple pendulum (i) find the Lagrangian function and (ii) Obtain an equation
		describing its motion. [10]

			34 of 54
6.	(a)	(i)	Form partial differential equation by eliminating arbitrary functions f and g from $z = f(x^2 - y) + g(x^2 + y)$.
		(ii)	Find the general integral of the partial differential equation $(2xy - 1) p + (z - 1)$
		()	$2x^2$) q = $2(x - yz)$ and also the particular integral which passes through the line
			x = 1, y = 0. [16]

$$x_{k+1} = -(ax_k + b)/x_k$$

is convergent near $x = \alpha$ if $|\alpha| > |\beta|$ and that

$$x_{k+1} = -b/(x_k + a)$$

is convergent near $x = \alpha$ if $|\alpha| < |\beta|$.

Show also that the iteration method

$$x_{...} = -(x^2 + b)/a$$

$$\begin{split} &x_{k+1} = -\left(x_{-k}^2 + b\right)/a\\ &\text{is convergent near } x = \alpha \text{ is } 2\left|\alpha\right| < \left|\alpha + \beta\right|. \end{split}$$

(ii) Evaluate the integral $I = \int_0^1 \frac{dx}{1+x}$ using Gauss-Legendre three-point formula.

[18]

6.	(c)	A particle of mass m moves in a conservative forces field. Find (i) the Lagrangian function and (ii) the equation of motion in cylindrical coordinates (ρ , ϕ , z). [16]

7.	(a)	Solve the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the following boundary
		conditions : $u(x, 0) = u(x, b) = 0$ for $0 \le x \le a$, $u(0, y) = 0$ and $u(a, y) = f(y)$ for $0 \le y \le b$. [17]
		11

7. (b) (i) Using fourth order Runge-Kutta method find the solution of the initial value problem

$$y' = 1/(x + y), y(0) = 1$$

in the range $0.5 \le x \le 2.0$, by taking h = 0.5.

- (ii) Given the number 59.625 in decimal system. write its binary system.
- (iii) Given the number 3898 in decimal system. Writes its equivalent in system base 8. [12+3+3=18]

43 of 54

7.	(c)	An infinite mass of fluid acted on by a force $\mu r^{-3/2}$ per unit mass is directed to the
- •	(0)	origin. If initially the fluid is a rest and there is a cavity in the form of the sphere
		r = c in it, show that the cavity will be filled up after an interval of time $(2/5\mu)^{1/2}$
		$c^{5/4}$. [15]

8.	(a)	Determine the characteristics of the equation $z=p^2-q^2$ and find the integral surface which passes through the parabola $4z+x^2=0,y=0.$ [18]

8.	(b)	Develop an algorithm for Regula – Falsi method to find a root of $f(x) = 0$ starting with two initial
		iterates x_0 and x_1 to the root such that $sign(f(x_0)) \neq sign(f(x_1))$. Take n as the maximum number
Ī		of iterations allowed and eps be prescribed error. [15]

8.	(c)	Two sources, each of strength m, are placed at the points (-a, 0) and (a, 0) and a sink of strength 2m is placed at the origin. show that the stream lines are curves $(x^2+y^2)^2=a^2\left[x^2-y^2+\lambda xy\right]$, where λ is a parameter. Show also that the fluid speed at any point is $2ma^2/r_1r_2r_3$ where r_1 , r_2 , r_3 are respectively the distances of the point from the source and the sink. [17]

No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)

OUR RANKERS AMONG TOP 10 IN IFoS

PISHI KIIMAR AIR-01 IFoS-2019

PRATAP SINGH AIR-01 IFoS-2015

PRATEEK JAIN AIR-03 IFoS-2016

SIDHARTHA GUPTA AIR-03 IFoS-2014

VARUN GUNTUPALLI AIR-04 IFoS-2014

TESMIANG GYALTSON AIR-04 IFoS-2010

MHATRI VISHAL D AIR-05 IFoS-2019

DESHAL DAN AIR-05 IFoS-2017

AIR-05 IFoS-2014

HIMANSHU GUPTA AIR-05 IFoS-2011

AIR-30

ASHISH REDOV MV AIR-06 IFoS-2015

AMUPAM SHUKLA AIR-07 IFoS-2012

AAMCHAL SRIVASTAVA AIR-09 IFoS-2018

HARSHVARDHAM AIR-10 IFoS-2017

AIR-38 IFoS-2019 AIR-83

AIR-45

AIR-23 Fos-2017

AIR-40

AIR-58

AIR-98 AIR-108 AIR-13

AIR-11 AIR-36

AIR-29 AIR-39 AIR-72 AIR-32 AIR-48 (65-2012)

ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 🥬 www.ims4maths.com 🔞 e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

IMS

OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152