SỞ GIÁO DỤC VÀ ĐÀO TẠO TP. HCM TRƯỜNG THPT PHÙNG HƯNG

KIỂM TRA HỌC KỲ I NĂM HỌC 2014 - 2015

Môn: Vật Lý ; Khối: 11

Thời gian làm bài: 45 phút, không kể thời gian phát đề.

HƯỚNG DẪN CHẨM ĐỀ II

CÂU	ĐÁP ÁN	THANG ĐIỂM				
Câu I	Nhiệt lượng tỏa ra ở một vật dẫn tỉ lệ thuận với điện trở của vật dẫn,					
	bình phương cường độ dòng điện và với thời gian dòng điện chạy qua vật dẫn đó.	1,0				
	Biểu thức: $Q = RI^2t$					
	Q: nhiệt lượng tỏa ra (J)					
	R: điện trở vật dẫn (Ω)					
	t: thời gian dòng điện chạy qua vật dẫn (s)					
	Áp dụng: $I = \frac{\xi}{R+r} = \frac{28}{5+2} = 4(A)$	0,25				
	$Q = RI^2t = 5.4^2.(10.60) = 48.10^3(J)$	0,25				
Câu II	Định luật Faraday 1: Khối lượng vật chất được giải phóng ở điện					
	cực của bình điện phân tỉ lệ thuận với điện lượng chạy qua bình đó.	1,0				
	Biểu thức: $m = k.q$					
	Định luật Faraday 2: Đương lượng điện hóa k của một nguyên tố	0.5				
	tỉ lệ với đương lượng gam $\frac{A}{n}$ của nguyên tố đó. Hệ số tỉ lệ là $\frac{1}{F}$,	0,5				
	trong đó F gọi là số Faraday.					
	Biểu thức: $m = \frac{1}{F} \cdot \frac{A}{n} I t$					
	m : khối lượng chất được giải phóng $ig(oldsymbol{g} ig)$					
	F = 96500(C/mol): số Faraday					
	n: hóa trị nguyên tố					
	A: khối lượng mol nguyên tử (dvC)					
	I;t: cường độ dòng điện và thời gian dòng điện phân $(A;s)$					
Câu III	Vẽ hình.	0,5				
	$E_1 = k \frac{ q_1 }{AM^2} = 9.10^9 \frac{\left -5.10^{-8}\right }{0.12^2} = 31250(V/m)$	0,5				

	$E_2 = k \frac{ q_2 }{BM^2} = 9.10^9 \frac{ 4.10^{-8} }{0.02^2} = 9.10^5 (V/m)$	0,5
	$E = E_1 - E_2 = 31250 - 9.10^5 = 868750(V/m)$	0,5
Câu IV	$\xi_b = 5.\xi = 5.6 = 30(V); r_b = \frac{5.r}{2} = \frac{5.0.8}{2} = 2(\Omega)$	0,25
	$R_2 = \frac{U_{dm}^2}{P_{dm}} = \frac{10^2}{10} = 10(\Omega); I_{dm} = \frac{P_{dm}}{U_{dm}} = \frac{10}{10} = 1(A)$	0,25
	$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{10 \cdot 10}{10 + 10} = 5(\Omega)$	0,25
	$R = R_{12} + R_3 = 5 + 8 = 13(\Omega)$	0,25
	1. $I = \frac{\xi_b}{R + r_b} = \frac{30}{13 + 2} = 2(A) = I_3 = I_{12}$	0,5
	2. $U_{12} = I_{12}.R_{12} = 2.5 = 10(V) = U_1 = U_2$	0,25
	$I_2 = \frac{U_2}{R_2} = \frac{10}{10} = 1(A) = I_{dm} \Rightarrow$ Đèn sáng bình thường.	0,25
	3. $m = \frac{A.I_3.t}{F.n} = \frac{64.2.(32.60+10)}{96500.2} = 1,28(g)$	0,5
	4. $P_{ng} = \xi_b I = 30.2 = 60 (W)$	0,25
	$H = \frac{R}{R + r_b}.100\% = \frac{13}{13 + 2}.100\% = 86,67\%$	0,25
Câu V	$F = k \frac{ q_1 \cdot q_2 }{\varepsilon \cdot r^2} \Rightarrow q_2 = \frac{2,5 \cdot 10^{-5} \cdot 2 \cdot 0,3^2}{9 \cdot 10^9 \cdot 10^{-8}} = 5 \cdot 10^{-8} (C)$	0,5
	Hai điện tích hút nhau \Rightarrow q_1 và q_2 trái dấu \Rightarrow $q_2 = -5.10^{-8} (C)$	0,5