Lecture 13 - Floating-Point Arithmetic

OBJECTIVE:

Floating-point arithmetic is the hardware analogue of scientific notation. Before we can assess the accuracy of the algorithms of numerical linear algebra, we must examine this topic.

♦ LIMITATIONS OF DIGITAL REPRESENTATIONS

Digital computers must represent real numbers with a finite number of bits; i.e., only a finite set of numbers can be represented.

This leads to 2 limitations:

- 1. the numbers cannot be arbitrarily large or arbitrarily small
- 2. they cannot be arbitrarily close together (i.e., there must be gaps between numbers!)

The first limitation is often not of concern: IEEE double precision supports a largest number of 1.79×10^{308} and a smallest number of 2.23×10^{-308} .

In other words, *overflow* and *underflow* are not common problems.

However, the gaps between numbers can pose real problems if you're not careful!

In IEEE double precision, the interval $\left[1,2\right]$ is represented by the discrete subset

$$1, 1 + 2^{-52}, 1 + 2 \times 2^{-52}, 1 + 3 \times 2^{-52}, \dots, 2$$
 (1)

Similarly, the interval $\left[2,4\right]$ is represented by the same set of numbers multiplied by 2

$$2, 2 + 2^{-51}, 2 + 2 \times 2^{-51}, 2 + 3 \times 2^{-51}, \dots, 4$$

In general, the interval $[2^j, 2^{j+1}]$ is represented by 2^j times (1).

Note 1. The gaps between numbers in a relative sense is never larger than $2^{-52}\approx 2.22\times 10^{-16}$. This seems unimportant! It is — but only if your algorithm is stable!

♦ FLOATING-POINT NUMBERS

In this situation, the "position" of the decimal point is stored as an exponent, separate from the digits.

This leads to gaps between numbers that are equal on a relative basis (but grow in absolute value as the numbers themselves grow).

This is in contrast to *fixed-point numbers*, where the gaps between numbers are fixed.

e.g., in a 3-digit fixed-point representation 0.abc, the difference between adjacent numbers is always 0.001. (verify!)

Consider a discrete subset $\mathbb F$ of the real numbers $\mathbb R$ to be our floating-point number system. The elements of $\mathbb F$ are the number 0 together with all numbers of the form

$$x = \pm \left(\frac{m}{\beta^t}\right) \beta^e$$

 $\beta \geq 2$ is an integer called the *base* (or radix) \rightarrow usually $\beta = 2$.

 $t \ge 1$ is an integer called the *precision* (t = 53 for IEEE double precision).

m is an integer satisfying $\beta^{t-1} \leq m \leq \beta^t - 1$.

e is called the exponent.

With these restrictions, the choices of m and e are unique (and thus so is the representation of every number in \mathbb{F}).

Note 2. $\left(\frac{m}{\beta^t}\right) \leq 1$ and is called the fraction or mantissa of x.

♦ MACHINE EPSILON

The resolution of \mathbb{F} is typically defined as half the distance between 1 and the next larger floating-point number.

This number is known as *machine epsilon* and represents a measure of the worst case of the relative amount by which a given real number is rounded off when represented as a machine number (i.e., a number of \mathbb{F})

$$\epsilon_{\text{machine}} = \frac{1}{2} \beta^{1-t}$$

Another way to view this is

for all $x \in \mathbb{R}$, there is an $x' \in \mathbb{F}$ such that

$$|x - x'| \le \epsilon_{\text{machine}} |x|$$

We can define a function

$$\mathrm{fl}:\mathbb{R} \to \mathbb{F}$$

as a function that takes a real number and rounds it off to the nearest floating-point number.

So,

for all $x \in \mathbb{R}$, there is an ϵ satisfying $|\epsilon| \leq \epsilon_{\text{machine}}$

such that
$$f(x) = x(1 + \epsilon)$$

i.e., the difference between a real number and its closest floating-point number is always smaller than $\epsilon_{\mathrm{machine}}$ in relative terms.

◇ FLOATING-POINT ARITHMETIC

The classic arithmetic operations are $+, -, \times, \text{ and } /.$

These are of course operations on elements of \mathbb{R} .

On a computer, they have analogous operations on \mathbb{F} . We denote these by \oplus , \ominus , \otimes , and \oslash .

These operations are most naturally defined as follows:

Let $x, y \in \mathbb{F}$.

Let * stand for one of $+, -, \times$, and /, and let * be its floating-point analogue.

Then

$$x \circledast y = \mathrm{fl}(x * y)$$

This leads us to the "fundamental axiom of the floating-point arithmetic".

for all $x, y \in \mathbb{F}$, there is an ϵ satisfying $|\epsilon| \le \epsilon_{\text{machine}}$

such that
$$x \circledast y = (x * y)(1 + \epsilon)$$

i.e., every operation of floating-point arithmetic is exact up to a relative error of size at most $\epsilon_{\text{machine}}$.

Note 3. We are often interested in $x, y \in \mathbb{R}$ not $x, y \in \mathbb{F}!$

In this case,

$$x \circledast y = \operatorname{fl}(\operatorname{fl}(x) * \operatorname{fl}(y))$$

$$= \operatorname{fl}(x(1+\epsilon_1) * y(1+\epsilon_2))$$

$$= x * y(1+\epsilon_1+\epsilon_2)(1+\epsilon)$$

$$= x * y(1+\epsilon_1+\epsilon_2+\epsilon) \quad \text{(verify!)}$$