

撰■管思綺、詹麟璋、徐春明

前言

再生能源的種類很多,包括太陽能、風能、生質能、地熱、沼氣、海流、潮汐及水力等,其中最適合與建築物結合在一起的為太陽能,不只可以當作建材與建築物 (Building) 整合在一起,也可作為建築的外構建材 (Building Exterior Materials) 外掛或附貼於原有建築物外構建材的外部,形成可當作建材又可發電之設備,而前者通稱為BIPV(Building integrated Photovoltaic),後者通稱為BAPV(Building Applied/Attached/Adhesion Photovoltaic)。

建築物為安裝太陽光電模組 (Solar Module) 的完美載體,可利用建築物的外殼,包括屋頂、立面、窗戶、帷幕牆等位置安裝太陽光電板,如圖 1~圖 4。我國住宅及商業建築用電所消耗電力約佔總用電量 27%,是非工業生產最重要的耗能,因此建築物若能自產電能,供應建築物內一定比例的電力需求,則公共電力 (Utility) 即可節省相當多的電力生產,同時也減少在輸配電過程中造成的電力損失,所以 BIPV 或 BAPV 是一種很好的分散式電源設置方式,當地發電,當地使用 (Local power generation,local use)。

圖 1、BIPV 屋頂應用案例 - 竹北市新瓦屋客家文化中心 (左)、工研院綠能所設置的 46 館 BIPV 實驗展示屋 (右)

圖 2、BIPV 立面牆應用案例 - 德國科隆 ZARA 購物商場 (左)、工研院 46 館 BIPV 實驗展示屋 (右)

圖 3、BIPV 窗戶應用案例 - 工研院 46 館 BIPV 實驗展示屋

圖 4、BIPV 玻璃帷幕牆應用案例 - 工研院 10 館 IEK 辦公室(左)、原德國 Shell Solar 公司太陽電池廠(右)

BIPV 市場規模與發展動力

根據美國 BCC 市場調查公司針對 BIPV 技術與全球市場的調查指出 [1]:近年來 BIPV 在全世界的太陽能發電市場當中規模較小,但這部份在未來將會有強勁的成長; 2010 年全球的 BIPV 發電容量為 1.2GWp,預計於 2015 年將擴大至 11.4GWp。另外美國 Virginia 州的研究機構 NanoMarkets 在 2011 年的研究報告 (Report titled: Building Integrated Photovoltaics Markets, 2011) 宣稱,估計未來 BIPV 全球 BIPV 市場預估金

額(設置容量)將會從2009年的17億美元(約240MWp),成長至2016年的87億美元(約2800MWp),市場金額成長約達5倍以上,設置容量規模成長達12倍以上,如圖5所示[2]。由以上兩者的市場調查報告顯示,NanoMarkets對BIPV系統的安裝容量預估遠比BBC預估在2015年的11.4 GWp安裝量少了相當多,這或許是二者對BIPV的定義不同,以及對世界經濟和建築行業本身的條件看法不同所致,且BIPV產業的技術水準總是不斷的在進步和提高,這些研究單位也

圖 5、BIPV 市場趨勢 [2]

圖 6、全球 BIPV 市場具有重要發展性的國家調查分析 [4]

圖 8、BIPV 各面向模組,依序為 BIPV 斜屋頂、BIPV 立面牆、BIPV 氣窗、BIPV 雨遮

會經常修改他們的預測數字。根據 OFweek 行業研究中心出版的《2013年全球與中國 BIPV 市場研究及預測分析報告》介紹,光伏 建築一體化(BIPV)的概念已經存在了一段 時間,但是由於各種因素,包括缺乏公衆認 知度等,使其仍舊只是太陽能市場上的一個 小利基。但是,這一產業的未來正變得鮮明 起來,預計未來五年全球 BIPV 市場規模將達 到 874 億元,使其成為太陽光電產業內增長 最快的領域之一[3]。EuPD Research 2010 調查分析全球 BIPV 市場具有重要發展性的國 家如圖 6 所示,顯見歐洲的法國、德國、義 大利領先其他國家,此外,中國、日本、瑞 士與阿拉伯聯合大公國 (UAE) 等國對於 BIPV 的重視度雖然遠低於歐美,但其發展潛力亦 不容忽視。

BIPV 低零能耗建築案例分享

工研院綠能所於 99 年度開始 BIPV 相關研究,本棟 BIPV 實驗展示屋以工研院 46 館鐵皮屋靠東南側的部分空間改建而成,佔地面積約 65m2,如圖 7 所示。實驗展示屋規劃設置為 4 人辦公室及展示室各一間,並安裝必要的辦公室電力負載設備,以進行整體建築之能耗監測與實證研究。在斜屋頂設置了 4.20 kWp 多晶矽可透光雙層玻璃模組:右側西南立面牆設置了 1.89 kWp 多晶矽不透光

彩色電池模組;東南面氣窗設置了 0.75 kWp 非晶矽薄膜 a-si 模組:東南面雨遮設置了 1.20 kWp 堆疊式 Tandem 模組,如圖 8 所示。根據監測發電結果顯示除斜屋頂系統外,其它面向系統的發電量都明顯偏低,此主要原因為垂直立面與垂直氣窗受光條件不好,發電量自然不佳,而雨遮系統易受通風透氣窗打開時遮陰影響,發電量也不如預期,加上實驗展示屋附近易受大樹遮蔭影響,而降低發電量,這些經驗與事實都是設置 BIPV 系統時必須面對的問題。在整體 BIPV 建築的規劃設計考量上,可提供整棟建築多少的電能比例,以及成本效益上如何適當的設置與評估分析才是發展 BIPV 重要的議題。

BIPV實驗平台(屋)在斜屋頂、右側面、氣窗、雨遮等處各有不同的受光面,2011~年2013年各月各面向PV系統發電量整理如表1所示。以發電量佔比最大的斜屋頂系統作分析(多晶矽雙面玻璃可透光模組,傾斜角11度),2013年與2012年發電量相當,約為3,635kWh,2012年1~12月發電量為3,620kWh,2011年相同月份發電量為4,088kWh,降低了468kWh(約11.4%);發電量次佳者為相同設置方位之雨遮系統(堆疊式 Tandem 薄膜模組,傾斜角5度),2013年總發電量為719kWh,2012年總發電量為723kWh,2011年相同月份

表 1、BIPV 實驗屋各面系統發電量

年	PV 斜屋頂 (kWh)			PV 立面牆 (kWh)			PV 氣窗 (kWh)			PV 雨遮 (kWh)		
月	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011	2012	2013
1月	194	169	230	35	33	54	18	18	29	38	35	43
2月	260	163	220	46	30	45	23	19	24	50	32	44
3月	230	287	294	34	41	57	15	29	32	43	57	55
4月	393	275	220	65	41	38	29	25	17	73	58	43
5月	350	372	307	45	53	50	20	33	21	68	75	63
6月	462	351	386	56	56	61	27	26	27	93	75	78
7月	467	464	450	56	66	58	28	42	33	97	93	96
8月	460	360	370	63	50	61	36	35	29	93	73	82
9月	442	365	364	68	61	65	37	38	41	96	73	72
10月	378	378	362	64	76	79	48	51	67	69	70	56
11月	245	232	254	51	52	57	39	31	35	43	44	49
12月	207	203	179	42	50	37	25	29	22	43	40	37
總計	4088	3620	3635	625	609	662	345	375	378	806	723	719

發電量為 806 kWh, 發電逐年下降, 降幅約 10%~12%, 雨遮發電量較斜屋頂低, 主要為 Tandem 矽薄膜模組之效率較多晶矽模組低, 且易受背後氣窗打開時之遮蔭影響; 另外電 動透氣窗系統 (非晶矽 a-si 薄膜模組),平常 大多處於垂直狀態,2013年總發電量為378 kWh , 與 2012 年發電量 375 kWh 差不多, 而 2011 年總發電量則為 345 kWh。而西南 面立面牆系統(多晶矽彩色電池不透光模組, 垂直設置),2012年1~12月發電量為609 kWh, 2011 年相同月份發電量為 625 kWh, 降低了 17 kWh(約 2.6%), 其發電量較低的 原因主要是因為模組垂直面設置,早上處背 光陰影位置,下午1點後才有斜射陽光照射, 但下午約2點半後卻常受其正面樹蔭影響 而產生部分遮蔭情形,故影響其發電量,而 2013 年總發電量為 662 kWh, 因期間有架設 反射鏡片於模組前進行實驗,故發電量較前 兩年高。

本案例除了進行 BIPV 系統建置與分析外,更重要的是希望 BIPV 建築能結合相關節能方法,達到低能耗甚至是淨零能耗之目標,故 2012 年時進行了節電改善作業(運用負載 客停裝置)、建築隔熱通風設計及提升 PV 系

統發電量之相關手法。

根據 2012 年~ 2013 年之監測資料顯 示,如圖9所示,本BIPV實驗展示屋在 2012 年除 8 月及 11 月末達到 100% 以外, 其餘月份均大於 100%,8 月份主要因為空調 耗電量較大,11月份則連續二週以上陰雨, 發電量較少,故此二個月未達到 100% 以上 的自主供電比例; 而在 2013 年其總負載耗 電量相較於 2012 年高出許多,故其自主供 電比例較低,平均約為 90 %,但整體來看, 自 2012 年~2013 年,整體平均自主供電達 到 111.8%,故本實驗屋可稱之為一低能耗建 築。根據美國國家再生能源實驗室 (NREL) 於 2010 年提出淨零能源建築除了考量建築物 本身隔熱及通風之建築設計外,更需加入再 生能源之應用以降低建築物對傳統石化能源 的依賴,故由以上分析數據可知,本 BIPV 實 驗展示屋除了具有再生能源之應用及簡易建 築節能、設備節能之措施外,未來再結合智 慧電能監控等手法,將可作為淨零能耗建築 技術發展之良好參考範例。

BIPV 未來發展趨勢

二十一世紀以來,各國能源費用逐年攀

圖 9、BIPV 實驗屋自主電力分析,2012 年~2013 年

高旦地球生態環境日益惡化,故近年來節能 減碳風潮興起,根據國際能源總署(IEA)統 計資料顯示,建築部門耗能約占人類耗能的 30%,為最大節能潛力之終端使用者。而參 考國外文獻及相關建築政策發展趨勢,歐美 各國已朝建築節能與自產能源之方向訂定法 規要求,也就是建築物必須提出節能設計之 評估以及自產能源之比例,才可以符合建築 執照申請之條件,如美國能源部並訂出 2030 年前商業新建築需達到淨零耗能、2040年前 50%商業建築需達到淨零耗能,並於2050 年前全面達到淨零耗能的目標。2010年歐盟 發出建築能源效率指令,訂定 2018 年前所 有公共建物及 2020 年前所有新建物,皆需 達到近(Nearly)零耗能的標準。英國也提 出 2016 年後,新住宅 (Home) 建築必須提 出零碳排放證明才能核准興建。因此國内、 外諸多學者均認為,太陽光電與建築整合並 搭配節能手法是太陽光電產業與建築產業發 展的新契機與挑戰,也是未來能源政策的發 展主流。而目前我國高雄市政府於 101 年 7 月1日開始實施綠建築自治條例,規定造價 5 干萬元以上公有新建築建築、16 層以上新 建築、工廠類新建築及前述以外供公衆使用

之新建築,皆須設置太陽光電系統或屋頂線化設施,此為台灣地方政府的一項建管創舉和起步,且與先進國家的發展趨勢與一致,相信之後會有更多縣市政府效法跟進。未來建築的設計將從單純建築導向可自產再生能源的近(淨)零能源建築,BIPV技術發展將朝與低能耗建築整合之設置技術發展,包括規劃、設計、施工之技術,到使用階段之維護與電能管理技術等,本研究案例希冀能為BIPV低能耗建築之設置提供一參考,擴大BIPV產業能量與市場效益。

(作者群:管思綺、詹麒璋、徐春明等服務 於工研院綠能所 PV 系統應用部門)

參考資料

- [1] Building-Integrated Photovoltaics (BIPV): Technologies and Global Markets, BCC Research, 2011.
- [2] NanoMarkets Issues New Report on Building Integrated Photovoltaics (BIPV) Market", 2011.
- [3] 2013 年全球與中國 BIPV 市場研究及預測分析報告, OFweek 行業研究中心, 2013.
- [4] EuPD Research 2010, 2010.