		Not	е
		I	II
Name Vorname	1		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur	7		
Mathematik 3 für Physiker	'		
(Analysis 2)	8		
Prof. Dr. M. Keyl			
29. Juli 2016, 11:00 – 12:30 Uhr	\sum		
Hörsaal: Platz:	I	 Erstkorrel	ktur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	II	 Zweitkorr	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ${ m ein}$ selbsterstelltes DIN A4 Blatt			
Erreichbare Gesamtpunktzahl: 64 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Fur von der Aufsicht auszufüllen: Törsaal verlassen von bis			
orzeitig abgegeben um			

 $Musterl\ddot{o}sung \hspace{0.5cm} ({\rm mit\; Bewertung})$

 $Be sondere\ Bemerkungen:$

1. Kurvenintegral (6 Punkte)

Gegeben Sei die Kurve γ von (0,0) nach (1,0) die sich aus der Teilkurve $\gamma_1:[0,1]\to\mathbb{R}^2, t\mapsto (t^2,t)$ und der Strecke γ_2 von (1,1) nach (1,0) zusammensetzt (d.h. wir durchlaufen erst γ_1 von (0,0) nach (1,1) und dann γ_2 von (1,1) nach (1,0)). Berechnen sie das Kurvenintegral

$$\int_{\gamma} X(y) \cdot dy \quad \text{mit} \quad X(x) = (2x_1x_2 - x_1^2, x_1 + x_2^2)$$

LÖSUNG:

Mit $\gamma_1(t) = (t^2, t)$ und $\gamma_2(t) = (1, 1 - t)$ erhalten wir

$$\begin{split} \int_{\gamma} X(y) \cdot dy &= \int_{\gamma_{1}} X(y) \cdot dy + \int_{\gamma_{2}} X(y) \cdot dy & [\mathbf{1}] \\ &= \int_{0}^{1} \langle X(\gamma_{1}(t)), \gamma_{1}'(t) \rangle dt + \int_{0}^{1} \langle X(\gamma_{2}(t)), \gamma_{2}'(t) \rangle dt & [\mathbf{1}] \\ &= \int_{0}^{1} \langle (2t^{3} - t^{4}, 2t^{2}), (2t, 1) \rangle dt + \int_{0}^{1} \langle (2(1 - t) - 1, 1 + (1 - t)^{2}), (0, -1) \rangle dt & [\mathbf{2}] \\ &= \int_{0}^{1} 4t^{4} - 2t^{5} + 2t^{2} - 1 - (1 - t)^{2} dt = \int_{0}^{1} -2t^{5} + 4t^{4} + t^{2} + 2t - 2dt & [\mathbf{1}] \\ &= \left[-\frac{1}{3}t^{6} + \frac{4}{5}t^{5} + \frac{1}{3}t^{3} + t^{2} - 2t \right]_{t=0}^{t=1} = -\frac{1}{3} + \frac{4}{5} + \frac{1}{3} + 1 - 2 = -\frac{1}{5} & [\mathbf{1}] \end{split}$$

2. Differenzierbarkeit

(12 Punkte)

[3]

Gegeben sei die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x) = \frac{x_1^3 - 3x_1x_2^2}{x_1^2 + x_2^2}$$
 für $x \neq 0$ und $f(0) = 0$

(a) Zeigen Sie, dass in Polarkoordinaten $(r, \varphi) \in \mathbb{R}^+ \times [0, 2\pi)$ gilt:

$$\tilde{f}(r,\varphi) = f(r\cos(\varphi), r\sin(\varphi)) = r\cos(3\varphi)$$

Hinweis: Benutzen Sie (ohne Beweis) die trigonometrische Formel $\cos(3\varphi) = 4\cos^3(\varphi) - 3\cos(\varphi)$

- (b) Folgern Sie aus (a) dass für alle $x \in \mathbb{R}^2$ gilt: $|f(x)| \le ||x||$. Warum folgt daraus, dass f in 0 stetig ist?
- (c) Beweisen Sie ferner, dass die partiellen Ableitungen $\partial_1 f(0)$ und $\partial_2 f(0)$ existieren, und geben Sie deren Wert an. [3]
- (d) Betrachten Sie zusätzlich die Kurve $\gamma: \mathbb{R} \to \mathbb{R}^2$, $\gamma(t) = (t, t)$ und zeigen Sie dass die Gleichung

$$\frac{d}{dt}f(\gamma(t)) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle$$

für t = 0 nicht gilt. [3]

LÖSUNG:

(a) Es ist $\tilde{f}(r,\varphi) = r(\cos(\varphi)^3 - 3\cos(\varphi)\sin^2(\varphi))$ und außerdem wie im Hinweis angegeben:

$$\cos(3\varphi) = 4\cos^3(\varphi) - 3\cos(\varphi) = \cos^3(\varphi) + 3(\cos^3(\varphi) - \cos(\varphi))$$

Ferner ist $\cos^2(\varphi) - 1 = -\sin^2(\varphi)$ also

$$\cos^3(\varphi) - \cos(\varphi) = \cos(\varphi)(\cos^2(\varphi) - 1) = -\cos(\varphi)\sin^2(\varphi).$$

Zusammen also $\tilde{f}(r,\varphi) = r\cos(3\varphi)$ wie behauptet.

(b) Für $x \neq 0$ gibt es $(r, \varphi) \in \mathbb{R}^+ \times [0, 2\pi)$ mit $x = (r \cos \varphi, r \sin \varphi)$. Also

$$|f(x)| = |r\cos(3\varphi)| \le |r| = r = \sqrt{x_1^2 + x_2^2} = ||x||$$

Für x = 0 gilt ebenfalls |f(0)| = 0 = ||0||. Für den Beweis der Stetigkeit wählen wir ein beliebiges $\epsilon > 0$ und erhalten für $||x|| < \epsilon$:

$$|f(0) - f(x)| = |f(x)| \le ||x|| < \epsilon$$

also ist f in 0 stetig.

(c) Die partiellen Ableitungen bei 0 berechnen sich zu:

$$\partial_1 f(0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^3 - 0}{h^2 h} = 1$$
$$\partial_2 f(0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h^2 h} = 0$$

(d) Offenbar ist $\nabla f(0) = (1,0)$; daher:

$$\frac{d}{dt}f(\gamma(t)) = \frac{d}{dt}\frac{t^3 - 3t^3}{2t^2} = -1 \neq 1 = \langle (1,0), (1,1) \rangle = \langle \nabla f(0), \gamma'(0) \rangle$$

3. Taylorentwicklung

(8 Punkte)

Bestimmen Sie die Taylorentwicklung bis zur 6-ten Ordnung von $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = e^{-(x^2+y^2)},$$

mit dem Ursprung als Entwicklungspunkt.

$$T_6f((x,y);(0,0)) = 1 - x^2 - y^2 + \frac{1}{2}x^4 + \frac{1}{2}y^4 + x^2y^2 - \frac{1}{6}x^6 - \frac{1}{6}y^6 - \frac{1}{2}x^2y^4 - \frac{1}{2}x^4y^2$$

LÖSUNG:

$$e^z = 1 + z + z^2/2 + z^3/6 + \dots$$
 mit $z = -x^2 - y^2$ folgt

$$f(x,y) = 1 - x^2 - y^2 + \frac{1}{2}(x^2 + y^2)^2 - \frac{1}{6}(x^2 + y^2)^3 + \dots$$

[1] für die 0. Ordnung, je [2] für die 2. und 4. und 6. Ordnung, [1] wenn keine weiteren Terme angegeben sind.

Extr Gege		i die Fu	ınktio	on $f: \mathbb{I}$	$\mathbb{R}^2 o$	$\mathbb{R},$							(8 Punkte
					f((x,y) =	(x -	$(-6)^2 +$	-(x +	$(2)y^2$	+ 10,		
und o	lie folg	genden	Punk	te in I	\mathbb{R}^2 ,								
		x_1 =	= (2, 4)	1), x	$x_2 = ($	-2, 4),	x_3	= (6,	2),	$x_4 =$	(-2, -	-4), $x_5 = (6, 0)$).
Welcl	ne Aus	sagen s	sind r	ichtig'	- ` }	, ,,			,,	-		,,	,
		tzt ein x_1				x_3	X	x_4	X	x_5		nirgendwo	[
(b)	f besi	tzt ein x_1	e loka □	les M	inimu			x_4		x_5		nirgendwo	[
(c)	f besi	tzt ein x_1		x_2		x_3		x_4		x_5	X	nirgendwo	[
(d)	f besi	tzt ein x_1		ttelpu x_2			X	x_4		x_5		nirgendwo	[
						$\in \mathbb{R}^{2 \times 2}$ gativen	_		A < 0	$\Leftrightarrow A$	nicht	singulär und in	adefinit (= eine
Lösu	NG:												
(a)	Beh	x_2, x_4	und a	$x_5 \sin \alpha$	l krit	ische P	unkt	se von	f.				
,	$\frac{\text{Bew}}{\text{von } f}$	Um d								rechne	en wir	die Nullstellen	des Gradiente
	J	,			$\nabla f(\cdot)$	(x,y) =	(2(x)	(-6)	$+y^2$	2(x +	(2)y) =	=(0,0).	

angegeben kritischen Punkte.

(b) <u>Beh</u> f besitzt in x_5 ein lokales Minimum und in x_2, x_4 Sattelpunkte.

Wir berechnen die Hesse-Matrix,

$$H_f(x,y) = \begin{pmatrix} 2 & 2y \\ 2y 2(x+2) \end{pmatrix}.$$

An den kritischen Punkten x_2 , x_4 und x_5 erhalten wir,

$$H_f(x_2) = \begin{pmatrix} 2 & 8 \\ 8 & 0 \end{pmatrix}, \quad H_f(x_4) = \begin{pmatrix} 2 & -8 \\ -8 & 0 \end{pmatrix}, \quad H_f(x_5) = \begin{pmatrix} 2 & 0 \\ 0 & 16 \end{pmatrix}.$$

wegen det $H_f(x_2) = \det H_f(x_4) = -64$ sind x_2, x_4 Sattelpunkte. Dagegen hat $H_f(x_5)$ die Eigenwerte 2 und 16, ist also positiv definit, weshalb in x_5 ein lokales Minimum vorliegt.

5. Implizite Funktionen

(8 Punkte)

Betrachten Sie die Funktion: $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = 10x^2 + 12xy + 10y^2 + 8x + 24y$$

und den Punkt $(x_0, y_0) = (0, -12/5)$.

(a) Zeigen Sie, dass offene Umgebungen $U,V\subset\mathbb{R}$ von x_0,y_0 und eine eindeutige Funktion $y\in \mathrm{C}^\infty(U,V)$ existieren, so dass

$$f(x, y(x)) = 0 \quad \forall x \in U$$

gilt. [3]

- (b) Bestimmen Sie die Ableitung y'(0) in Punkt 0. [3]
- (c) Bestimmen Sie die Gleichung der Tangente $T: \mathbb{R} \to \mathbb{R}^2$ an die Höhenlinie $N_f(0) = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$ im Punkt (x_0,y_0) .
- (d) Geben Sie eine Approximation für y(0.1) an. [1]

LÖSUNG:

- (a) Die Abbildung ist glatt und es gilt: $\partial_2 f(x,y) = 12x + 20y + 24$. Also ist $\partial_2 f(x_0,y_0) = -24$. Nach dem Satz über implizite Funktionen existieren daher offene Umgebungen $U,V \subset \mathbb{R}$ von x_0,y_0 und eine Abbildung $y \in C^{\infty}(U,V)$ mit $f(x,y(x)) = 0 \ \forall x \in U$.
- (b) Es ist

$$0 = \frac{d}{dx}f(x, y(x)) = \partial_1 f(x, y(x)) + \partial_2 f(x, y(x))y'(x)$$

Also für $\partial_2 f(x, y(x)) \neq 0$:

$$y'(x) = -\frac{\partial_1 f(x, y(x))}{\partial_2 f(x, y(x))}$$

Da $y(x_0) = y_0$ und $\partial_2 f(x_0, y_0) \neq 0$ können wir diese Gleichung anwenden und erhalten:

$$y'(x_0) = -\frac{20x_0 + 12y_0 + 8}{12x_0 + 20y_0 + 24} = -\frac{13}{15}$$

(c) Es handelt sich um das Taylorpolynom bis zum linearen Glied:

$$T(x) = y(x_0) + y'(x_0)(x - x_0) = -\frac{12}{5} - \frac{13}{15}x$$

(d) Wir werten T(0.1) aus:

$$T(0.1) = -\frac{12}{5} - \frac{13}{15} \frac{1}{10} = -\frac{373}{150} = -2.48\overline{6}$$

Hinweis für den Korrektor: Angabe als Bruch reicht.

6. Untermannigfaltigkeiten

(6 Punkte)

Zeigen Sie, dass die Menge

$$M = \{(x, y, z) \in (0, \infty)^3 \mid z = \sqrt{xy}\}$$

eine Untermannigfaltigkeit des \mathbb{R}^3 ist [3] und bestimmen Sie den Tangentialraum im Punkt p = (3, 12, 6) [3].

LÖSUNG:

M ist die Nullstellenmenge der C^{∞} Funktion

$$f:(0,\infty)^3\to\mathbb{R},\quad f(x,y,z)=z-\sqrt{xy}.$$

Der Gradient von f ist

$$\nabla f(x, y, z) = \left(-\frac{1}{2}\sqrt{\frac{y}{x}}, -\frac{1}{2}\sqrt{\frac{x}{y}}, 1\right) \neq (0, 0, 0) \quad \forall (x, y, z) \in (0, \infty)^3$$

damit ist (0,0,0) regulärer Wert von f und M eine Untermannigfaltigkeit. Der Tangentialraum T_pM ist das Orthokomplement des Gradienten $\nabla f(p) = (-1,-1/4,1)$ also

$$T_p M = \{(x, y, z) \in \mathbb{R}^3 \mid z - x - y/4 = 0\}$$

7. Extrema mit Nebenbedingungen

(10 Punkte)

Bestimmen Sie die Extrema der Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = x + y + z$$

längs der Ellipse in der die Ebene E den Zylinder Z schneidet

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + z = 1\}$$
 $Z = \{(x, y, z) \mid x^2 + y^2 = 4\}$

 $\mathit{Hinweis}\colon \textsc{Sie}$ dürfen ohne Beweis benutzen, dass der Durchschnitt von E und Z kompakt ist. Lösung:

Die Nebenbedingungen sind $g_1(p) = g_2(p) = 0$ mit

$$q_1(x, y, z) = x + z - 1, \quad q_2(x, y, z) = x^2 + y^2 - 4$$

Die Funkionen f, g_1, g_2 sind glatt und

$$\nabla g_1(x, y, z) = (1, 0, 1), \quad \nabla g_2(x, y, z) = (2x, 2y, 0), \quad \nabla f(x, y, z) = (1, 1, 1).$$

Offenbar sind $\nabla g_1(p)$ und $\nabla g_2(p)$ für alle p die die Nebenbedingung erfüllen linear unabhängig. Daher müssen die Extremalpunkte die Bedingung

$$\nabla f(p) - \lambda_1 \nabla g_1(p) - \lambda_2 g_2(p) = 0$$

für geeignete Lagrange-Multiplikatoren $\lambda_1, \lambda_2 \in \mathbb{R}$ erfüllen [3]. Wir erhalten also fünf Gleichungen [1]

$$1 - \lambda_1 - 2\lambda_2 x = 0$$
, $1 - 2\lambda_2 y = 0$, $1 - \lambda_1 = 0$
 $x + z = 1$, $x^2 + y^2 = 4$

Dies ergibt zunächst $\lambda_1 = 1$ und somit $2\lambda_2 x = 0$. Wegen $\lambda_2 y = 1$ muss $\lambda_2 \neq 0$ gelten. Also ist x = 0. Damit ist $y = \pm 2$ und z = 1. Für λ_2 ergibt sich schließlich $\lambda_2 = \pm 1/4$ [3]. (*Hinweis* zur Korrektur: λ_2 muss nicht bestimmt werden.) Wir erhalten somit zwei stationäre Punkte:

$$p_1 = (0, 2, 1), p_2 = (0, -2, 1) \text{ mit } f(p_1) = 3, f(p_2) = -1$$
 [1]

Da die Menge $\{p \in \mathbb{R}^3 \mid g_1(p) = g_2(p) = 0\}$ kompakt ist (und f stetig) werden Maximum und Minimum angenommen – müssen also stationäre Punkte sein. Somit ist p_1 das Maximum und p_2 das Minimum [1].

8. Vektoranalysis

(6 Punkte)

Zeigen Sie, dass für $v \in C^2(\mathbb{R}^3, \mathbb{R}^3)$ die Identität

$$\nabla \times (\nabla \times v) = \nabla(\nabla \cdot v) - \Delta v \quad \text{mit } \Delta v = (\Delta v_1, \Delta v_2, \Delta v_3)$$

gilt.

LÖSUNG:

$$(\nabla \times (\nabla \times v))_{i} = \sum_{jk} \epsilon_{ijk} \partial_{j} (\nabla \times v)_{k} = \sum_{jk} \epsilon_{ijk} \partial_{j} \sum_{lm} \epsilon_{klm} \partial_{l} v_{m} \quad [2]$$

$$= \sum_{jlm} \left(\sum_{k} \epsilon_{ijk} \epsilon_{klm} \right) \partial_{j} \partial_{l} v_{m} \quad [1]$$

$$= \sum_{jlm} (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \partial_{j} \partial_{l} v_{m} = \sum_{j} \partial_{j} \partial_{i} v_{j} - \sum_{j} \partial_{j} \partial_{j} v_{i} \quad [1]$$

$$= \partial_{i} \sum_{j} \partial_{j} v_{j} - \left(\sum_{j} \partial_{j} \partial_{j} \right) v_{i} = \partial_{i} (\nabla \cdot v) - \Delta v_{i} = (\nabla (\nabla \cdot v) - \Delta v)_{i}. \quad [2]$$