PHYS 472L #6#17

Parker Whaley

February 6, 2016

1 #6

Using $\vec{\beta} = \vec{x}$ by re-scaling our velocities to units of c and with $\gamma = \frac{1}{\sqrt{1-\vec{\beta}^2}}$ we can construct our four velocity as $u^\mu = (\gamma, \gamma \vec{\beta})$. Now that we have our 4-vector velocity we can take the $\frac{d}{d\tau}$ witch we recall $d\tau^2 = dt^2 - d\vec{x}^2 = dt^2(1-\vec{\beta}^2) \iff \frac{d}{d\tau} = \gamma \frac{d}{dt}$. Now we can calculate $\alpha^\mu = \frac{d}{d\tau}u^\mu = \gamma \frac{d}{dt}[\gamma(1, \vec{\beta})] = \gamma \frac{d\gamma}{dt}(1, \vec{\beta}) + \gamma^2 \frac{d}{dt}[(1, \vec{\beta})]$ so we need to understand what $\frac{d\gamma}{dt}$ is. This is simply a chain rule problem and we get $\frac{d\gamma}{dt} = -\frac{1}{2(1-\vec{\beta}^2)^{\frac{3}{2}}}(-2)(\vec{\beta} \bullet \vec{a}) = \gamma^3(\vec{\beta} \bullet \vec{a})$. So $\alpha^\mu = \gamma^2(0, \vec{a}) + (1, \vec{\beta})\gamma^4(\vec{\beta} \bullet \vec{a})$. Now that we have α^μ let's verify that $\alpha^\mu u_\mu = 0$ we see that $\alpha^\mu u_\mu = \gamma^3(0, \vec{a}) \bullet (1, \vec{\beta}) + \gamma^5(1, \vec{\beta}) \bullet (1, \vec{\beta})(\vec{\beta} \bullet \vec{a}) = \gamma^3(-\vec{a} \bullet \vec{\beta} + \gamma^2(1-\vec{\beta}^2)(\vec{\beta} \bullet \vec{a}))$ (in Tr=-2) noting that $1-\vec{\beta}^2 = \frac{1}{\gamma^2}$ we immediately see $\alpha^\mu u_\mu = \gamma^3(-\vec{a} \bullet \vec{\beta} + \vec{a} \bullet \vec{\beta}) = 0$ witch verifies that the projection of acceleration onto velocity is 0.

2 # 17

In the S' frame the velocity of a particle is $\beta=\tanh(\theta)$ witch would mean $\gamma=\cosh(\theta)$ and $\gamma\beta=\sinh(\theta)$ let us also define the direction of travel of the particle as \hat{x} . We are told that there is another frame S and in frame S frame S' is travelling in the same direction as the particle with velocity β' by inspection in frame S' frame S is moving with velocity $-\beta'\hat{x}$. Using standard rapidity as above we can define a ψ such that $\beta'=\tanh(\psi)$ and so $\gamma'=\cosh(\psi)$ and $\beta'\gamma'=\sinh(\psi)$. Let's now construct the 4-velocity of the particle in frame S' $u_{S'}^{\mu}=(\gamma,\gamma\beta,0,0)=(\cosh(\theta),\sinh(\theta),0,0)$. We also know how to boost a 4-velocity so we can calculate the 4-velocity in frame S $u_S^{\mu}=(\gamma'u_{S'}^{0}-(-\beta'\gamma')u_{S'}^{1},\gamma'u_{S'}^{1}-(-\beta'\gamma')u_{S'}^{0},0,0)=(\cosh(\psi)\cosh(\theta)+\sinh(\psi)\sinh(\theta),\cosh(\psi)\sinh(\theta)+\sinh(\psi)\cosh(\theta),0,0)=(\cosh(\psi+\theta),\sinh(\psi+\theta),0,0)$ it is immediately apparent that the rapidity are additive, since to find the velocity of our particle in frame S we need only calculate $\frac{u_S^{1}}{u_S^{0}}=\tanh(\psi+\theta)$.