Trabalho 1

- Desenvolvimento de programa em linguagem de montagem MIPS
- Ferramenta usada: MARS
 - MIPS Assembler and Runtime Simulator
 - http://courses.missouristate.edu/KenVollmar/MARS/
 - Instalada nos laboratórios
- Objetivos:
 - Familiarização com:
 - Conjunto de instruções MIPS
 - Técnicas de programação em linguagem de montagem
- Programa: Ordenação de vetor e visualização
 - Bubble Sort (método da bolha)
 - Algoritmo de ordenação simples
 - Exemplo:
 - www.hackerearth.com/pt-br/practice/algorithms/sorting/bubble-sort/visualize/

Programa Principal: Ordenação

Algoritmo:

Entrada de dados: armazenados na memória

- n: número de elementos do vetor
- vetor de n inteiros

```
Imprime mensagem inicial
mostra_vetor()
trocou = true
limite = n - 1
while (limite > 0) AND (trocou)
   trocou = false
   for (i = 0 ; i < limite ; i++)
      if vetor[i] > vetor[i+1]
         troca vetor[i] e vetor[i+1] na memória
         trocou = true
   mostra_vetor()
   limite — —
```

Encerra execução do programa

Rotina mostra_vetor()

- Mostra no display bitmap cor correspondente a todos os elementos de vetor
- Possui chamada aninhada de rotina:
 - Chama rotina mostra_elemento_vetor
- Algoritmo:

```
Salva endereço de retorno ($ra) na pilha

Salva registradores na pilha (se necessário)

for (j = 0 ; j < n ; j++)

   mostra_elemento_vetor(j)

Restaura endereço de retorno ($ra) da pilha

Restaura registradores da pilha (se necessário)
```

Programa

- Implementar:
 - Programa principal (com ordenação)
 - Rotina mostra_vetor
- Rotina fornecida pronta:
 - mostra_elemento_vetor

Importante

Inicialmente:

- Entender programa BubbleSort.asm fornecido (incompleto)
- Entender algoritmo de ordenação pelo método da bolha
- Em seguida: desenvolver o programa completo
 - Planejar alocação de variáveis na memória
 - Planejar uso dos registradores
 - Traduzir algoritmo para linguagem de montagem:
 - Manter lógica das estruturas de controle: laços, if, ...
 - Para rotina:
 - Planejar passagem de parâmetros por registradores
 - Planejar salvamento/restauração de endereço de retorno e registradores na pilha
- Colocar comentários:
 - Uso dos registradores, trechos de código
- Não modificar manipulação do display
- Para executar:
 - Configurar memória e display de acordo com orientações fornecidas
 - Testar programa para diferentes vetores
- Simplificação: n = 16, elementos do vetor com valores entre 0 e 15

Ideias de Melhorias e Extensões: Opcional

- Entrada de dados:
 - Ler valor de n do teclado
 - Ler elementos do vetor do teclado ou de um arquivo de entrada
- Saída de dados:
 - Escrever elementos do vetor **ordenado** na tela ou em um arquivo de saída
- Implementar outros algoritmos de ordenação:
 - Insertion Sort
 - Selection Sort
 - Merge Sort
 - •
- Eliminar simplificações:
 - Elementos do vetor poder ter quaisquer valores
- Outras formas de visualização

•

Entrega do Trabalho

- Grupos: 2 alunos
- Programa fornecido: BubbleSort.asm (incompleto)
- Entrega do trabalho:
 - Submissão no Moodle
 - Submeter um único arquivo BubbleSort.asm com:
 - Programa desenvolvido em linguagem de montagem MIPS
 - Nome dos alunos do grupo em comentários
- Data de entrega: