CSE253 Homework 1

Xiyun Liu A53099348

xi1429@eng.ucsd.edu

1 Problems from Bishop

1.1

From equation (1.42), we can get

$$S_d = \frac{\prod_{i=1}^d \int_{-\infty}^{\infty} e^{-x_i^2} dx_i}{\int_0^{\infty} e^{-r^2} r^{d-1} dr}$$
 (1)

$$= \frac{\prod_{i=1}^{d} \int_{-\infty}^{\infty} e^{-\frac{2}{2}x_{i}^{2}} dx_{i}}{\int_{0}^{\infty} e^{-r^{2}} r^{d-1} dr}$$
 (2)

(3)

Then use equation(1.41) where $\lambda=2$ to simplify $\int_{-\infty}^{\infty}e^{-\frac{2}{2}x_i^2}dx_i$ as $\pi^{\frac{1}{2}}$

Then the nominator of S_d is

$$\Pi_{i=1}^d \pi^{\frac{1}{2}} = \pi^{\frac{d}{2}}$$

For the denominator, let $u=r^2$ and du=2rdr then

$$\int_0^\infty e^{-r^2} r^{d-1} dr = \int_0^\infty e^{-r^2} r^{d-2} r dr \tag{4}$$

$$= \frac{1}{2} \int_0^\infty e^{-u} u^{\frac{d}{2} - 1} du \tag{5}$$

$$=\frac{1}{2}\Gamma(d/2)\tag{6}$$

Therefore, we can get

$$S_d = \frac{\pi^{\frac{d}{2}}}{\frac{1}{2}\Gamma(d/2)} \tag{7}$$

$$=\frac{2\pi^{\frac{d}{2}}}{\Gamma(d/2)} (1.43 \ proved) \tag{8}$$

When $d=2,\,S_2=rac{2\pi}{\Gamma(1)}=2\pi,$ which is the perimeter of a circle

When d=3, $S_3=\frac{2\pi^{\frac{3}{2}}}{\Gamma(\frac{3}{2})}=4\pi$, which is the surface area of a unit sphere in 3 dimensions.

(1) First get the surface area of a sphere of radius a in d dimensions. Consider the surface of a unit sphere in d dimensions is the sum of the area of many enough small cube. Then the area of the small cube is b^{d-1} . If we extend this problem into a sphere of radius a in d dimension, it is obvious that the small cube's area is $(ab)^{d-1}$ since each edge is a times as before. Thus, the area of a sphere of radius a in d dimensions is $S_d a^{d-1}$. Thus the volume of a sphere of radius a in d dimensions is

$$V_d = \int_0^a S_d r^{d-1} dr \tag{9}$$

$$=\frac{S_d a^d}{d} (1.45 \ proved) \tag{10}$$

(2) The volume of a hypercube of side 2a is $(2a)^d$, so

$$\frac{V \ of \ hypersphere}{V \ of \ hypercude} = \frac{\frac{S_d a^d}{d}}{(2a)^d} = \frac{S^d}{d2^d} = \frac{2\pi^{\frac{d}{2}}}{d2^d\Gamma(\frac{d}{2})} = \frac{\pi^{\frac{d}{2}}}{d2^{d-1}\Gamma(\frac{d}{2})} \ (1.46 \ proved) \tag{11}$$

(3) As $d \to \infty$, using equation 1.47, in which $x = \frac{d}{2}$,

$$\Gamma(\frac{d}{2}) \simeq (2\pi)^{\frac{1}{2}} e^{-\frac{d}{2}+1} (\frac{d}{2}-1)^{\frac{d}{2}-\frac{1}{2}}$$
 (12)

$$\simeq (2\pi)^{\frac{1}{2}} e^{-\frac{d}{2}} (\frac{d}{2})^{\frac{d}{2}} \tag{13}$$

Therefore,

$$\frac{V \ of \ hypersphere}{V \ of \ hypercude} \simeq \frac{(\pi e)^{\frac{d}{2}}}{d2^{d-1}(2\pi)^{\frac{1}{2}}(\frac{d}{2})^{\frac{d}{2}}} \xrightarrow{d \to \infty} 0 \tag{14}$$

(4) With geometry knowledge,

$$d_{center to corner} = \frac{2\alpha\sqrt{d}}{2} = \alpha\sqrt{d}$$
 (15)

$$d_{center to edge} = \frac{2a}{2} = a \tag{16}$$

Therefore, we have

$$\frac{d_{center\ to\ corner}}{d_{center\ to\ edge}} = \sqrt{d} \xrightarrow{d \to \infty} \infty \ (proved)$$
(17)

1.3

(1) With equation (1.45), the volume of a sphere of radius a in d dimension is $V_{d,a} = \frac{S_d a^d}{d}$, and the volume of a sphere of radius $a - \epsilon$ in d dimension is $V_{d,a-\epsilon} = \frac{S_d (a-\epsilon)^d}{d}$. Therefore, the fraction of the volume of the sphere which lies at the value of the radius between $a - \epsilon$ and a is

$$\frac{V_{d,a}}{V_{d,a} - V_{d,a-\epsilon}} = \frac{a^d - (a-\epsilon)^d}{a^d} = 1 - (1 - \frac{\epsilon}{a})^d = f \ (1.48 \ proved)$$
 (18)

Since $0 < \epsilon < a$, we have $0 < 1 - \frac{\epsilon}{a} < 1$, therefore, as $d \to \infty$, $(1 - \frac{\epsilon}{a})^d \to 0$, $f = 1 - (1 - \frac{\epsilon}{a})^d \to 1$ (proved)

(2) when $\frac{\epsilon}{a} = 0.01$,

$$f_{d=2} = 1 - (1 - 0.01)^2 = 0.0199$$

 $f_{d=10} = 1 - (1 - 0.01)^1 = 0.0956$
 $f_{d=1000} = 1 - (1 - 0.01)^1 = 0.0999$

When $\epsilon = \frac{a}{2}, \, \frac{\epsilon}{a} = 0.5$, the fraction lying inside ϵ is

$$f_{d=2} = (1 - 0.5)^2 = 0.25$$

 $f_{d=10} = (1 - 0.5)^{10} = 9.7e - 4$
 $f_{d=1000} = (1 - 0.5)^{1000} = 9.3e - 302$

1.4

(1) From equation (1.42), we can get

$$\int_{-\infty}^{+\infty} e^{-||x_i||^2} dx_i = S_d \int_0^{\infty} e^{-r^2} r^{d-1} dr$$
 (19)

Since $\int p(x)dx = \int p(r)dr$, we can get

$$p(r) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{r^2}{2\sigma^2}} S_d r^{d-1} = \frac{S_d r^{d-1}}{(2\pi\sigma^2)^{1/2}} e^{-\frac{r^2}{2\sigma^2}} (1.50 \text{ proved})$$
(20)

(2) Take the derivative of p(r)

$$\frac{dp(r)}{dr} = \frac{S_d(d-1)r^{d-2}}{(2\pi\sigma^2)^{1/2}}e^{-\frac{r^2}{2\sigma^2}} - \frac{S_dr^d}{(2\pi\sigma^2)^{1/2}\sigma^2}e^{-\frac{r^2}{2\sigma^2}}$$
(21)

$$= \frac{S_d r^{d-2}}{(2\pi\sigma^2)^{1/2}\sigma^2} e^{-\frac{r^2}{2\sigma^2}} [(d-1)\sigma^2 - r^2]$$
 (22)

when $\frac{dp(r)}{dr}=0,$ $r^2=(d-1)\sigma^2\xrightarrow{d\to\infty}r\simeq\sqrt{d}\sigma,$ proved.

(3) With equation (1.50), we have

$$\frac{p(\hat{r}+\epsilon)}{p(\hat{r})} = \left(\frac{r+\epsilon}{r}\right)^{d-1} e^{-\frac{(r+\epsilon)^2 - r^2}{2\sigma^2}} \tag{23}$$

$$= (1 + \frac{\epsilon}{r})^{d-1} e^{-\frac{2r\epsilon + \epsilon^2}{2\sigma^2}} \tag{24}$$

$$=e^{(d-1)ln(1+\epsilon/r)}e^{-\frac{2r\epsilon+\epsilon^2}{2\sigma^2}}$$
(25)

$$=e^{\frac{\epsilon}{r}\frac{r^2}{\sigma^2}-\frac{\epsilon^2}{2r^2}\frac{r^2}{\sigma^2}-\frac{r\epsilon}{\sigma^2}-\frac{\epsilon^2}{2\sigma^2}}\left(\ln(1+x)\simeq x-x^2/2,\ d-1\simeq d\right) \tag{26}$$

$$=e^{-\frac{\epsilon^2}{\sigma^2}} (1.51 \ proved) \tag{27}$$