importing pandas

```
import pandas as pd

df=pd.read_csv('Mall_Customers.csv')
```

printing the dataframe

df

→		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)					
	0	1	Male	19	15	39					
	1	2	Male	21	15	81					
	2	3	Female	20	16	6					
	3	4	Female	23	16	77					
	4	5	Female	31	17	40					
	195	196	Female	35	120	79					
	196	197	Female	45	126	28					
	197	198	Male	32	126	74					
	198	199	Male	32	137	18					
	199	200	Male	30	137	83					
	200 rows × 5 columns										

df.columns

printing the data types

df.dtypes


```
import numpy as np
```

```
import matplotlib.pyplot as plt
import seaborn as sns
```

print(df.isnull().sum())

dtype: int64

```
CustomerID 0
Genre 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
```

df.head()

₹	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score	(1-100)
0) 1	Male	19	15		39
1	2	Male	21	15		81
2	: 3	Female	20	16		6
3	4	Female	23	16		77
4	5	Female	31	17		40

df.drop(['CustomerID'],axis=1,inplace=True)

df.head()

₹	Ge	nre .	Age	Annual Income	(k\$)	Spending Score (1-100)
() N	ale	19		15	39
	l N	ale	21		15	81
2	2 Fen	ale	20		16	6
;	B Fen	ale	23		16	77
4	Fen	ale	31		17	40
4						

preprocessing

from sklearn.preprocessing import LabelEncoder

from sklearn import metrics

le = LabelEncoder()

df["Genre"] = le.fit_transform(df["Genre"])

df.head()

→		Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	1	21	15	81
	2	0	20	16	6
	3	0	23	16	77
	4	0	31	17	40
	1				

data = df.copy()

x = data.iloc[:,[2,3]]

from sklearn.cluster import KMeans

data

3		Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	1	21	15	81
	2	0	20	16	6
	3	0	23	16	77
	4	0	31	17	40
	195	0	35	120	79
	196	0	45	126	28
	197	1	32	126	74
	198	1	32	137	18
	199	1	30	137	83
	200 rc	ws × 4 c	column	ns	

```
wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init='k-means++',random_state=42)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
    print('k:',i,"->wcss:",kmeans.inertia_)
    k: 1 ->wcss: 269981.28000000014
     k: 2 ->wcss: 183653.3289473683
     k: 3 ->wcss: 106348.37306211119
     k: 4 ->wcss: 73880.64496247198
     k: 5 ->wcss: 44448.45544793369
     k: 6 ->wcss: 40825.16946386947
     k: 7 ->wcss: 33642.57922077922
     k: 8 ->wcss: 26686.837785187785
     k: 9 ->wcss: 24766.471609793436
     k: 10 ->wcss: 23103.122085983905
```

plotting the graph

```
plt.figure(figsize=(8, 6))
plt.plot(range(1,11),wcss,marker='o')
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


fitting of data

```
kmeans = KMeans(n_clusters=5)
kmeans.fit(data)
y=kmeans.predict(data)
data["label"] = y
```

visualization of clusters

```
plt.close()
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='label', data=data, palette='viridis')
plt.title('Clusters of Customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```



```
centroids = kmeans.cluster_centers_
print(centroids)
```

plotting the centroid

```
plt.close()
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='label', data=data, palette='viridis')
plt.scatter(centroids[:, 2], centroids[:, 3], s=100, c='black', label='Centroids')
plt.title('Clusters of Customers with Centroids')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

₹

Clusters of Customers with Centroids

