Машинное обучение

Преобразование данных. Часть 1

Материалы > Анализ и обработка данных

Для многих моделей машинного обучения важно, чтобы количественные данные имели **одинаковый масштаб** (same scale). Это справедливо для:

- алгоритмов, рассчитывающих *расстояние* (например, алгоритма k-ближайших соседей или метода k-средних); а также
- моделей, оптимизирующих веса <u>методом градиентного спуска</u> и использующих *регуляризацию* (в частности, это <u>линейная</u> или <u>логистическая</u> регрессия).

Кроме того, в некоторых случаях нам может понадобиться **преобразовать данные** так, чтобы привести их к распределению, более похожему на нормальное. Это может быть важно для:

- проведения статистических тестов;
- превращения нелинейной зависимости в линейную (что важно, в частности, для вычисления линейной корреляции или использования линейной модели);
- стабилизации <u>дисперсии</u>, например, при выявлении гетероскедастичности остатков модели линейной регрессии.

Сегодняшнее занятие в большей степени посвящено способам и инструментам преобразования данных. Практикой их применения мы займемся на последующих занятиях.

Откроем блокнот к этому занятию •

Подготовка данных

Скачаем и подгрузим данные о недвижимости в Бостоне.

boston.csv **Скачать**

Подготовим данные.

1 # возьмем признак LSTAT (процент населения с низким социальным статусом)

2 # и целевую переменную MEDV (медианная стоимость жилья)

Стр. 1 из 27 17.01.2025 17:47

```
3 boston = pd.read_csv('/content/boston.csv')[['LSTAT', 'MEDV']]
4 boston.shape
1 (506, 2)
```

Визуализируем распределения с помощью гистограммы.

```
1 boston.hist(bins = 15, figsize = (10, 5));
```


Посмотрим на основные статистические показатели.

_	
1	boston.describe()

	LSTAT	MEDV
count	506.000000	506.000000
mean	12.653063	22.532806
std	7.141062	9.197104
min	1.730000	5.000000
25%	6.950000	17.025000
50%	11.360000	21.200000
75%	16.955000	25.000000
max	37.970000	50.000000

Линейные и нелинейные преобразования

Ключевое отличие масштабирования от приближения одного распределения к другому, например, нормальному распределению (а именно эти два типа преобразований мы в основном будем рассматривать на сегодняшнем занятии), заключается в том, что первая трансформация линейна, вторая — нелинейна.

Линейные преобразования (linear transformation) не меняют структуру распределения, **нелинейные преобразования** (non-linear transformation) — меняют.

Возьмем скошенное вправо распределение LSTAT и применим к нему один из способов масштабирования, стандартизацию, и нелинейное преобразование Бокса-Кокса (смысл этих преобразований мы подробно рассмотрим ниже).

Стр. 2 из 27 17.01.2025 17:47

```
1
    # создадим сетку подграфиков 1 х 3
2
    fig, ax = plt.subplots(nrows = 1, ncols = 3, figsize = (12,4))
3
4
    # на первом графике разместим изначальное распределение
5
    sns.histplot(data = boston, x = 'LSTAT',
6
                  bins = 15,
7
                  ax = ax[0])
8
    ax[0].set_title('Изначальное распределение')
9
10
    # на втором - данные после стандартизации
11
    sns.histplot(x = (boston.LSTAT - np.mean(boston.LSTAT)) / np.std(boston.LSTAT),
12
                  bins = 15, color = 'green',
13
                  ax = ax[1]
14
    ax[1].set_title('Стандартизация')
15
16
    # наконец скачаем функцию степенного преобразования power_transform()
17
    from sklearn.preprocessing import power_transform
18
19
    # и на третьем графике покажем преобразование Бокса-Кокса
20
    sns.histplot(x = power_transform(boston[['LSTAT']],
21
                                      method = 'box-cox').flatten(),
22
                  bins = 12, color = 'orange',
23
                  ax = ax[2]
    ax[2].set(title = 'Степенное преобразование', xlabel = 'LSTAT')
24
25
26
    plt.tight_layout()
27
    plt.show()
```


Как вы видите, в первом случае скошенность (skewness) и в целом форма распределения сохранилась, изменился только масштаб (среднее значение сместилось к нулю, изменился разброс). Во втором случае, изменилась сама структура распределения, то есть соотношение расстояний между точками.

Добавление выбросов

Как уже было сказано выше, выбросы очень сильно влияют на качество данных. Для того чтобы посмотреть, как рассматриемые нами инструменты справляются с выбросами, добавим несколько сильно отличающихся от общей массы наблюдений.

```
1  # создадим два отличающихся наблюдения
2  outliers = pd.DataFrame({
3    'LSTAT': [45, 50],
```

Стр. 3 из 27 17.01.2025 17:47

```
4 'MEDV': [70, 72]
5 })
6
7 # добавим их в исходный датафрейм
8 boston_outlier = pd.concat([boston, outliers], ignore_index = True)
9 # посмотрим на размерность нового датафрейма
11 boston_outlier.shape
1 [508, 2]
1 # убедимся, что наблюдения добавились
2 boston_outlier.tail()
```

	LSTAT	MEDV
503	5.64	23.9
504	6.48	22.0
505	7.88	11.9
506	45.00	70.0
507	50.00	72.0

Посмотрим на данные с выбросами и без.

```
fig, ax = plt.subplots(1, 2, figsize = (12,6))
sns.scatterplot(data = boston, x = 'LSTAT', y = 'MEDV', ax = ax[0]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = '5e3 Bb sns.scatterplot(data = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = boston_outlier, x = 'LSTAT', y = 'MEDV', ax = ax[1]).set(title = boston_outlier, x = boston_outli
```


Линейные преобразования (масштабирование)

Рассмотрим несколько способов масштабирования признаков (feature scaling).

Стандартизация

Если данные следуют нормальному или близкому к нормальному распределению (что

Стр. 4 из 27 17.01.2025 17:47

желательно для многих моделей ML), имеет смысл прибегнуть к **стандартизации** (standartazation): то есть *приведению к нулевому среднему значению и единичному СКО* (так называемое стандартное нормальное распределение). Приведем формулу.

$$x' = rac{x - \mu}{\sigma}$$

На практике стандартизация оказывается полезна и в тех случаях, когда данные не следуют нормальному распределению.

Стандартизация вручную

Замечу, что часто бывает удобно стандартизировать данные без использования класса sklearn.

```
1 ((boston - boston.mean()) / boston.std()).head(3)

LSTAT MEDV

0 -1.074499  0.159528

1 -0.491953  -0.101424

2 -1.207532  1.322937
```

StandardScaler

Преобразование данных

Точно такой же результат можно получить через класс **StandardScaler** модуля preprocessing библиотеки sklearn. Создадим объект этого класса и применим **метод** .fit().

```
# из модуля preprocessing импортируем класс StandardScaler
from sklearn.preprocessing import StandardScaler

# создадим объект класса StandardScaler и применим метод .fit()
st_scaler = StandardScaler().fit(boston)
st_scaler

1 StandardScaler()
```

При вызове метода .fit() алгоритм рассчитывает среднее арифметическое и СКО каждого из столбцов. Их можно посмотреть через соответствующие атрибуты.

```
1 # выведем среднее арифметическое st_scaler.mean_

1 array([12.65306324, 22.53280632])

1 # и СКО каждого из столбцов array([7.13400164, 9.18801155])
```

Metog .transform() соответственно использует рассчитанные значения среднего и СКО для стандартизации данных.

```
# метод .transform() возвращает массив Numpy с преобразованными значениями
boston_scaled = st_scaler.transform(boston)
```

Стр. 5 из 27 17.01.2025 17:47

```
3 | 4 # превратим массив в датафрейм с помощью функции pd.DataFrame() 5 | pd.DataFrame(boston_scaled, columns = boston.columns).head(3)
```

	LSTAT	MEDV
0	-1.075562	0.159686
1	-0.492439	-0.101524
2	-1.208727	1.324247

Metog .fit_transform() сразу вычисляет статистические показатели и применяет их для масштабирования данных.

```
1 boston_scaled = pd.DataFrame(StandardScaler().fit_transform(boston),
2 columns = boston.columns)

1 # аналогичным образом стандиртизируем данные с выбросами
2 boston_outlier_scaled = pd.DataFrame(StandardScaler().fit_transform(boston_outlier),
3 columns = boston_outlier.columns)
```

Визуализация преобразования

Объявим две вспомогательные функции, которые помогут нам визуализировать эту и ряд последующих трансформаций для данных с выбросами и без. Первая фунция будет выводить точечные диаграммы.

```
1
    # первая функция будет принимать на вход четыре датафрейма
2
    # и визуализировать изменения с помощью точечной диаграммы
3
    def scatter_plots(df, df_outlier, df_scaled, df_outlier_scaled, title):
4
5
      fig, ax = plt.subplots(2, 2, figsize = (12,12))
6
7
      sns.scatterplot(data = df, x = LSTAT', y = MEDV', ax = ax[0, 0])
      ax[0, 0].set_title('Изначальный без выбросов')
8
9
      sns.scatterplot(data = df_outlier, x = 'LSTAT', y = 'MEDV', color = 'green', ax = ax
10
      ax[0, 1].set_title('Изначальный с выбросами')
11
12
13
      sns.scatterplot(data = df_scaled, x = 'LSTAT', y = 'MEDV', ax = ax[1, 0])
14
      ax[1, 0].set_title('Преобразование без выбросов')
15
16
      sns.scatterplot(data = df_outlier_scaled, x = 'LSTAT', y = 'MEDV', color = 'green',
      ax[1, 1].set_title('Преобразование с выбросами')
17
18
      plt.suptitle(title)
19
20
      plt.show()
```

```
1
    # вторая функция будет визуализировать изменения с помощью гистограммы
    def hist_plots(df, df_outlier, df_scaled, df_outlier_scaled, title):
2
3
4
      fig, ax = plt.subplots(2, 2, figsize = (12,12))
5
      sns.histplot(data = df, x = LSTAT', ax = ax[0, 0])
6
7
      ax[0, 0].set_title('Изначальный без выбросов')
8
9
      sns.histplot(data = df_outlier, x = 'LSTAT', color = 'green', ax = ax[0, 1])
10
      ax[0, 1].set_title('Изначальный с выбросами')
11
12
      sns.histplot(data = df_scaled, x = 'LSTAT', ax = ax[1, 0])
```

Стр. 6 из 27

```
ax[1, 0].set_title('Преобразование без выбросов')

sns.histplot(data = df_outlier_scaled, x = 'LSTAT', color = 'green', ax = ax[1, 1])
ax[1, 1].set_title('Преобразование с выбросами')

plt.suptitle(title)
plt.show()
```

Применим эти функции к стандартизированным данным.

```
1 scatter_plots(boston,
2 boston_outlier,
3 boston_scaled,
4 boston_outlier_scaled,
5 title = 'Стандартизация данных')
```

Стандартизация данных

Стандартизация данных

Стр. 7 из 27

Обратите внимание, что стандартизация не ограничивает данные определенным диапазоном и допускает отрицательные значения. Кроме того, этот метод чувствителен к выбросам в том смысле, что влияет на <u>расчет СКО</u>, и диапазон двух признаков с выбросами после стандартизации все равно будет различаться.

Как следствие, при наличии выбросов стандартизация не гарантирует одинаковый масштаб признаков.

Хорошая иллюстрация этого факта есть на сайте библиотеки sklearn 日.

Обратное преобразование

Вернуть исходный масштаб можно с помощью метода .inverse_transform().

```
boston_inverse = pd.DataFrame(st_scaler.inverse_transform(boston_scaled),
columns = boston.columns)
```

Иногда возникает вопрос, почему исходные и преобразованные к исходному виду данные не будут идентичными.

```
1 # используем метод .equals(), чтобы выяснить, одинаковы ли датафреймы
2 boston.equals(boston_inverse)
1 False
```

Это связано лишь с особенностями округления (как видно ниже различия минимальны).

```
1 # вычтем значения одного датафрейма из значений другого
```

Стр. 8 из 27

```
2 | (boston - boston_inverse).head(3)
```

	LSTAT	MEDV
0	0.000000e+00	0.0
1	0.000000e+00	0.0
2	-8.881784e-16	0.0

Оценить приблизительное равенство можно так.

Проблема утечки данных

В ответах на вопросы к занятию по классификации мы уже обсуждали применение стандартизации к обучающей и тестовой выборкам и упомянули проблему **утечки данных** (data leakage). Рассмотрим этот вопрос еще раз.

Если мы сразу отмасштабируем все данные (и обучающую, и тестовую выборки), то информация из тестовой части «утечет» в обучающую просто потому, что в случае стандартизации среднее и СКО будут рассчитываться на основе всех данных. Как следствие, модель на этапе обучения уже «увидит» тестовые данные, а значит качество модели «на тесте» может быть неоправданно завышено.

Для того чтобы тестовые данные никак не влияли на обучающую часть, нужно:

- рассчитать среднее и СКО обучающей выборки;
- отмасштабировать обучающие данные;
- обучить на них модель;
- использовать ранее рассчитанные среднее и СКО для масштабирования тестовых данных;
- сделать прогноз на отмасштабированных тестовых данных и оценить качество модели.

Именно такое разделение и обеспечивают методы .fit() и .transform().

Перейдем к практике.

```
# импортируем данные о недвижимости в Калифорнии
from sklearn.datasets import fetch_california_housing

# при return_X_y = True вместо объекта Випсh возвращаются признаки (X) и целевая переме
параметр as_frame = True возвращает датафрейм и Series вместо массивов Numpy
X, y = fetch_california_housing(return_X_y = True, as_frame = True)

# убедимся, что данные в нужном нам формате
ype(X), type(y)

(pandas.core.frame.DataFrame, pandas.core.series.Series)
```

Стр. 9 из 27 17.01.2025 17:47

```
# посмотрим на признаки
 2 X.head(3)
  MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
0 8.3252
               41.0 6.984127
                               1.023810
                                              322.0 2.555556
                                                                  37.88
                                                                           -122.23
1 8.3014
               21.0 6.238137
                               0.971880
                                             2401.0 2.109842
                                                                  37.86
                                                                           -122.22
2 7.2574
               52.0 8.288136
                               1.073446
                                              496.0 2.802260
                                                                  37.85
                                                                           -122.24
 1
     # разделим данные на обучающую и тестовую выборки
 2
     from sklearn.model_selection import train_test_split
 3
 4
    X_train, X_test, y_train, y_test = train_test_split(X, y,
 5
                                                         random_state = 42)
 1
    # импортируем класс для стандартизации данных
 2
     from sklearn.preprocessing import StandardScaler
     # и создания модели линейной регрессии
 3
 4
     from sklearn.linear_model import LinearRegression
 6
     # создадим объект класса StandardScaler
 7
     scaler = StandardScaler()
 8
     scaler
 1 StandardScaler()
 1
     # масштабируем признаки обучающей выборки
 2
    X_train_scaled = scaler.fit_transform(X_train)
 3
 4
    # убедимся, что объект scaler запомнил значения среднего и СКО
     # для каждого признака
 6 | scaler.mean_, scaler.scale_
 1
     (array([ 3.87831412e+00, 2.85959948e+01, 5.43559839e+00, 1.09688116e+00,
 2
              1.42749729e+03, 3.10665968e+00, 3.56467196e+01, -1.19583736e+02]),
 3
     array([1.90372658e+00, 1.26109222e+01, 2.42157219e+00, 4.38789636e-01,
 4
            1.14289394e+03, 1.19554480e+01, 2.13388067e+00, 2.00237697e+00]))
 1
    # применим масштабированные данные для обучения модели линейной регрессии
 2
    model = LinearRegression().fit(X_train_scaled, y_train)
 3
    model
 1 LinearRegression()
 1
    # преобразуем тестовые данные с использованием среднего и СКО, рассчитанных на обучающе
     # так тестовые данные не повляют на обучение модели, и мы избежим утечки данных
 3
    X_test_scaled = scaler.transform(X_test)
 4
 5
    # сделаем прогноз на стандартизированных тестовых данных
 6
    y_pred = model.predict(X_test_scaled)
 7
    y_pred[:5]
 1 array([0.72412832, 1.76677807, 2.71151581, 2.83601179, 2.603755])
    # и оценим R-квадрат (метрика (score) по умолчанию для класса LinearRegression)
 2 model.score(X_test_scaled, y_test)
 1 0.5910509795491351
```

Применение пайплайна

По мере увеличения количества этапов работы с данными, количество кода также увеличилось. Сделать запись более экономной можно с помощью пайплайна.

Стр. 10 из 27

Пайплайн (pipeline) последовательно применяет заданные преобразования данных (**transformer**) и выдает прогноз или метрику последнего по порядку инструмента, как правило, класса модели (**estimator**).

В нашем случае инструмента два: StandardScaler (transformer) и LinearRegression (estimator). Вначале рассмотрим более простой с точки зрения синтаксиса способ.

Класс make_pipeline

Создадим с помощью класса make_pipeline объект-контейнер, в который поместим необходимые нам инструменты.

Применим метод .fit() к объекту ріре и используем обучающую выборку. Этот метод:

- вызывает соответствующие методы .fit() и .transform() класса StandardScaler, т.е. рассчитывает среднее и СКО и масштабирует данные;
- затем вызовет метод .fit() класса LinearRegression, обучит модель на преобразованных данных и «запомнит» коэффициенты.

Теперь если мы применим к объекту pipe **метод .predict()** и передадим ему признаки тестовой части, то пайплайн вначале стандартизирует выборку с помощью рассчитанных ранее среднего и СКО обучающей выборки, а затем сделает прогноз.

Обратите внимание, что пайплайн также позволил избежать утечки данных.

Аналогично, мы можем применить **метод .score()** и передать ему тестовую выборку. Этот метод выполнит масштабирование, обучит модель, сделает прогноз и посчитает метрику качества.

```
1 pipe.score(X_test, y_test)
1 0.5910509795491351
```

Замечу, что метод .score() применим только в том случае, если последний класс внутри

Стр. 11 из 27 17.01.2025 17:47

пайплайна располагает таким методом. В нашем случае, для класса LinearRegression метод .score() задан и выдает коэффициент детерминации \mathbb{R}^2 .

Сделать масштабирование данных и прогноз или оценку качества модели можно в одну строчку.

```
1  make_pipeline(StandardScaler(), LinearRegression()).fit(X_train, y_train).predict(X_tes
1  array([0.72412832, 1.76677807, 2.71151581, ..., 1.72382152, 2.34689276,
2  3.52917352])
1  make_pipeline(StandardScaler(), LinearRegression()).fit(X_train, y_train).score(X_test,
1  0.5910509795491351
```

Класс make_pipeline является упрощенной версией класса Pipeline.

```
1 type(pipe)
1 sklearn.pipeline.Pipeline
```

Класс Pipeline

Для того чтобы создать объект класса Pipeline, этому классу нужно передать кортежи из названия инструмента и соответствующего класса.

Обратите внимание на параметр **verbose**. Он используется во многих классах и функциях. Изначально, verbose по-английский означает «склонный к многословности, болтливый [человек]», применительно к программированию — это детальный вывод хода выполнения программы.

```
# рассчитаем коэффициент детерминации
pipe.fit(X_train, y_train).score(X_test, y_test)

[Pipeline] ............ (step 1 of 2) Processing scaler, total= 0.0s
[Pipeline] .............. (step 2 of 2) Processing lr, total= 0.0s
0.5910509795491351
```

Нормализация среднего

Нормализация среднего (mean normalization) предполагает деление разности между значением и средним признака не на СКО, а на диапазон от минимального до максимального значения.

$$x' = rac{x - \mu}{x_{max} - x_{min}}$$

Перейдем к другим способам масштабирования.

Стр. 12 из 27 17.01.2025 17:47

Приведение к диапазону

Приведение признаков к заданному диапазону (scaling features to a range) является альтернативой стандартизации в тех случаях, когда нормальное распределение не является условием для обучения алгоритма. Рассмотрим два инструмента: MinMaxScaler и MaxAbsScaler.

MinMaxScaler

MinMaxScaler приводит данные к заданному диапазону (по умолчанию к промежутку от 0 до 1). Приведем формулу.

$$x' = rac{x - x_{min}}{x_{max} - x_{min}}$$

Если мы хотим привести данные к произвольному диапазону [a, b], то можем воспользоваться общей формулой.

$$x' = a + rac{(x - x_{min})(b - a)}{x_{max} - x_{min}}$$

Дополнительно замечу, что при работе с изображениями, если скажем на черно-белой фотографии каждый пиксель имеет диапазон от 0 до 255, то для приведения всех пикселей к диапазону от 0 до 1 достаточно разделить каждое значение на 255.

Применим класс MinMaxScaler к нашим данным.

```
# импортируем класс MinMaxScaler
   from sklearn.preprocessing import MinMaxScaler
3
4
   # создаем объект этого класса,
   # в параметре feature_range оставим диапазон по умолчанию
6
   minmax = MinMaxScaler(feature_range = (0, 1))
7
   minmax
1 MinMaxScaler()
1
   # применим метод .fit() и
2
   minmax.fit(boston)
3
4
   # найдем минимальные и максимальные значения
5
   minmax.data_min_, minmax.data_max_
1 (array([1.73, 5. ]), array([37.97, 50. ]))
1
   # приведем данные без выбросов (достаточно метода .transform())
   boston_scaled = minmax.transform(boston)
3
   # и с выбросами к заданному диапазону
   boston_outlier_scaled = minmax.fit_transform(boston_outlier)
   # преобразуем результаты в датафрейм
   boston scaled = pd.DataFrame(boston scaled, columns = boston.columns)
   boston_outlier_scaled = pd.DataFrame(boston_outlier_scaled, columns = boston.columns)
```

Визуально оценим результат.

```
# построим точечные диаграммы
scatter_plots(boston,
boston_outlier,
```

Стр. 13 из 27 17.01.2025 17:47

```
boston_scaled,
boston_outlier_scaled,
title = 'MinMaxScaler')
```

MinMaxScaler

MinMaxScaler

Стр. 14 из 27

Этот метод также чувствителен к выбросам и при их наличии <u>не обеспечивает</u> единого масштаба признаков.

MaxAbsScaler

Стандартизация разреженных данных

Работая с рекомендательными системами, мы увидели, что данные могут храниться в разреженных матрицах (sparse matrices). Приведем простой пример.

```
1
    # создадим разреженную матрицу с пятью признаками
2
    sparse_data = {}
3
4
    sparse_data['F1'] = [0, 0, 1.25, 0, 2.15, 0, 0, 0, 0, 0, 0]
5
    sparse_data['F2'] = [0, 0, 0, 0.45, 0, 1.20, 0, 0, 0, 1.28, 0, 0]
6
    sparse_data['F3'] = [0, 0, 0, 0, 2.15, 0, 0, 0, 0.33, 0, 0, 0]
7
    sparse_data['F4'] = [0, -6.5, 0, 0, 0, 0, 8.25, 0, 0, 0, 0]
8
    sparse_data['F5'] = [0, 0, 0, 0, 0, 3.17, 0, 0, 0, 0, -1.85]
9
10
    sparse_data = pd.DataFrame(sparse_data)
11
    sparse_data
```

	F1	F2	F3	F4	F5
0	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	-6.50	0.00
2	1.25	0.00	0.00	0.00	0.00
3	0.00	0.45	0.00	0.00	0.00
4	2.15	0.00	2.15	0.00	0.00
5	0.00	1.20	0.00	0.00	3.17
6	0.00	0.00	0.00	8.25	0.00
7	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.33	0.00	0.00
9	0.00	1.28	0.00	0.00	0.00

Стр. 15 из 27 17.01.2025 17:47

10	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	-1.85

Если применить, например, стандартизацию, то в соответствии с формулой этого преобразования нули заполнятся другими отличными от нуля значениями.

```
pd.DataFrame(StandardScaler().fit_transform(sparse_data),
columns = sparse_data.columns).round(2)
```

	F1	F2	F3	F4	F5
0	-0.43	-0.53	-0.35	-0.05	-0.10
1	-0.43	-0.53	-0.35	-2.19	-0.10
2	1.47	-0.53	-0.35	-0.05	-0.10
3	-0.43	0.45	-0.35	-0.05	-0.10
4	2.83	-0.53	3.28	-0.05	-0.10
5	-0.43	2.07	-0.35	-0.05	2.90
6	-0.43	-0.53	-0.35	2.68	-0.10
7	-0.43	-0.53	-0.35	-0.05	-0.10
8	-0.43	-0.53	0.21	-0.05	-0.10
9	-0.43	2.24	-0.35	-0.05	-0.10
10	-0.43	-0.53	-0.35	-0.05	-0.10
11	-0.43	-0.53	-0.35	-0.05	-1.86

Таким образом мы испортим наши данные. Для того чтобы этого избежать можно использовать MaxAbsScaler.

Примечание. MinMaxScaler, в чем вы можете убедиться самостоятельно, справится с сохранением нулей в столбцах, где есть только положительные значения, и не справится со столбцами с отрицательными значениями.

Формула и простой пример

Приведем формулу.

$$x' = rac{x}{|x_{max}|}$$

В данном случае мы делим каждое значение на модуль максимального значения признака. Посмотрим на простом примере, что в этом случае происходит с данными.

Стр. 16 из 27 17.01.2025 17:47

В качестве примера разберем первый столбец. Максимальным значением по модулю будет «два» и именно на это число мы делим каждое значение признака.

Отметим некоторые особенности преобразования MaxAbsScaler:

- нулевые значения сохраняются;
- ullet только положительные значения столбца приводятся к диапазону от 0 до 1 и здесь MaxAbsScaler работает так же, как и MinMaxScaler;
- ullet только отрицательные значения приводятся к диапазону от -1 до 0;
- ullet положительные и отрицательные значения к диапазону от -1 до 1.

Разреженная матрица и MaxAbsScaler

Применим MaxAbsScaler к разреженной матрице.

	F1	F2	F3	F4	F5
0	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	-0.79	0.00
2	0.58	0.00	0.00	0.00	0.00
3	0.00	0.35	0.00	0.00	0.00
4	1.00	0.00	1.00	0.00	0.00
5	0.00	0.94	0.00	0.00	1.00
6	0.00	0.00	0.00	1.00	0.00
7	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.15	0.00	0.00
9	0.00	1.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	-0.58

Матрица csr и MaxAbsScaler

Как мы знаем, разреженные матрицы удобно хранить в формате сжатого хранения строкой

Стр. 17 из 27 17.01.2025 17:47

(compressed sparse row, csr), и мы можем применить MaxAbsScaler непосредственно к данным в этом формате.

```
1
 # создадим матрицу в формате сжатого хранения строкой
2
  from scipy.sparse import csr_matrix
3
  csr_data = csr_matrix(sparse_data.values)
4 print(csr_data)
1
                 -6.5
     (1, 3)
2
                 1.25
     (2, 0)
3
     (3, 1)
                 0.45
     (4, 0)
               2.15
4
     (4, 2)
               2.15
5
6
               1.2
     (5, 1)
7
               3.17
     (5, 4)
8
     (6, 3)
               8.25
9
     (8, 2)
               0.33
10
     (9, 1)
                 1.28
11
                 -1.85
     (11, 4)
1
  # применим MaxAbsScaler
2
   csr_data_scaled = MaxAbsScaler().fit_transform(csr_data)
3 print(csr_data_scaled)
1
     (1, 3)
                 -0.78787878787878
2
     (2, 0)
                 0.5813953488372093
3
     (3, 1)
                 0.3515625
4
     (4, 0)
                 1.0
5
     (4, 2)
                 1.0
               0.9375
6
     (5, 1)
               0.999999999999999
7
     (5, 4)
8
     (6, 3)
                1.0
9
     (8, 2)
                 0.15348837209302327
10
     (9, 1)
                 1.0
11
     (11, 4)
                 -0.583596214511041
   # восстановим плотную матрицу
1
2 csr data scaled.todense().round(2)
1
   array([[ 0. , 0. , 0. , 0. , 0. ],
2
         [0.,0.,
                       0.,-0.79, 0.
                                       ],
          [ 0.58, 0. , 0. , 0. , 0.
3
         [ 0. , 0.35, 0. , 0.
4
                                   0.
          [ 1. , 0. , 1. , 0.
5
         [0., 0.94, 0., 0.
6
                                 , 1.
              , 0. , 0. , 1. , 0.
7
          [ 0.
8
         [ 0.
              , 0. , 0. , 0. , 0.
9
              , 0. , 0.15, 0. , 0. ],
          [ 0.
10
         [0., 1., 0., 0., 0.],
11
         [0.,0.,0.,0.],
12
          [0., 0., 0., 0., -0.58]
```

MaxAbsScaler также чувствителен к выбросам 回.

RobustScaler

В отличие от приведенных выше инструментов, RobustScaler более <u>устойчив к выбросам</u> в силу того, что усреднение происходит по разнице между третьим и первым квартилями, то есть робастными статистическими показателями.

$$x=rac{x-Q_1(x)}{Q_3(x)-Q_1(x)}$$

Стр. 18 из 27 17.01.2025 17:47

Применим класс RobustScaler.

```
from sklearn.preprocessing import RobustScaler

boston_scaled = RobustScaler().fit_transform(boston)
boston_outlier_scaled = RobustScaler().fit_transform(boston_outlier)

boston_scaled = pd.DataFrame(boston_scaled, columns = boston.columns)
boston_outlier_scaled = pd.DataFrame(boston_outlier_scaled, columns = boston.columns)
```

Посмотрим на преобразование на графике.

```
1 scatter_plots(boston,
2 boston_outlier,
3 boston_scaled,
4 boston_outlier_scaled,
5 title = 'RobustScaler')
```

RobustScaler

RobustScaler

Изначальный без выбросов

Изначальный с выбросами

RobustScaler не приводит данные строго к одному диапазону и не меняет структуру распределения (и в частности не изменяет расстояние между основной массой данных и выбросами).

Класс Normalizer

Класс Normalizer, в отличие от предыдущих инструментов, по умолчанию приводит наблюдения (то есть строки, а не столбцы датафрейма) к единичной норме (длине вектора, равной единице; unit norm, unit vector) или нормализует (normalizes) их.

В рамках вводного курса мы уже говорили, что каждое наблюдение можно представить в качестве вектора в n-мерном пространстве.

Понятие нормы вектора

Прежде чем говорить про нормализацию разберём понятие нормы вектора. Под нормой понимается такая функция, которая ставит в соответствие вектору в n-мерном пространстве некоторое число.

Это число часто рассматривают как длину вектора от начала координат до конца вектора. Причем эту длину или расстояние можно измерять по-разному.

Стр. 20 из 27

Рассмотрим вероятно наиболее распространенное **Евклидово расстояние** (Eucledean distance) или как ещё говорят **L2 норму** (L2 norm) вектора $\mathbf x$ с координатами x_1, x_2, \ldots, x_n (термины длины, расстояния и нормы часто оказываются взаимозаменяемы).

$$||\mathbf{x}||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

Другими словами, мы смотрим, на какое расстояние нам необходимо сместиться в каждом из измерений, возводим это расстояние в квадрат, суммируем и извлекаем квадратный корень. Рассмотрим простой пример.

```
1  # возьмем вектор с координатами [4, 3]
2  v = np.array([4, 3])
3
4  # и найдем его длину или L2 норму
5  12norm = np.sqrt(v[0]**2 + v[1]**2)
6  12norm
1  | 5.0
```

Если каждый компонент вектора разделить на L2 норму, то его длина или расстояние *по прямой* от начала координат до конца вектора было бы равно единице.

```
1  # разделим каждый компонент вектора на его норму
2  v_normalized = v/l2norm
3  v_normalized
1  array([0.8, 0.6])
```

Это и есть L2 нормализация.

```
1
    # выведем оба вектора на графике
2
    plt.figure(figsize = (6, 6))
3
4
    ax = plt.axes()
5
6
    plt.xlim([-0.07, 4.5])
7
    plt.ylim([-0.07, 4.5])
8
9
    ax.arrow(0, 0, v[0], v[1], width = 0.02, head\_width = 0.1, head\_length = 0.2, length_i
10
    ax.arrow(0, 0, v_normalized[0], v_normalized[1], width = 0.02, head_width = 0.1, head_
11
12
    plt.show()
```


Стр. 21 из 27 17.01.2025 17:47

L2 нормализация

Возьмём простой двумерный массив данных, вручную выполним построчную L2 нормализацию, а затем с помощью класса Normalizer проверим результат.

```
# каждая строка - это вектор
2
   arr = np.array([[45, 30],
3
                   [12, -340],
4
                   [-125, 4]])
  # найдем L2 норму первого вектора
2 np.sqrt(arr[0][0] ** 2 + arr[0][1] ** 2)
1 54.08326913195984
1
   # в цикле пройдемся по строкам
   for row in arr:
3
     # найдем L2 норму каждого вектора-строки
4
     12norm = np.sqrt(row[0] ** 2 + row[1] ** 2)
5
     # и разделим на нее каждый из компонентов вектора
     print((row[0]/12norm).round(8), (row[1]/12norm).round(8))
6
1
  0.83205029 0.5547002
   0.03527216 -0.99937774
2
3 -0.99948839 0.03198363
1 # убедимся, что L2 нормализация выполнена верно,
   # подставив в формулу Евклидова расстояния новые координаты
3 | np.sqrt(0.83205029 ** 2 + 0.5547002 ** 2).round(3)
1 1.0
1
   # выполним ту же операцию с помощью класса Normalizer
2
   from sklearn.preprocessing import Normalizer
3
4
   Normalizer().fit_transform(arr)
   array([[ 0.83205029, 0.5547002 ],
1
2
          [0.03527216, -0.99937774],
3
          [-0.99948839, 0.03198363]])
```

Графически конец каждого L2 нормализованного вектора оказывается на единичной окружности (то есть окружности с радиусом, равным единице).

```
plt.figure(figsize = (6, 6))
1
2
3
    ax = plt.axes()
4
5
    # в цикле нормализуем каждый из векторов
6
    for v in Normalizer().fit_transform(arr):
7
      # и выведем его на графике в виде стрелки
8
      ax.arrow(0, 0, v[0], v[1], width = 0.01, head_width = 0.05, head_length = 0.05, length
9
10
    # добавим единичную окружность
    circ = plt.Circle((0, 0), radius = 1, edgecolor = 'b', facecolor = 'None', linestyle =
11
12
    ax.add_patch(circ)
13
14
   plt.xlim([-1.2, 1.2])
15
    plt.ylim([-1.2, 1.2])
16
17
    plt.title('L2 нормализация')
18
  plt.show()
19
```

L2 нормализация

Стр. 22 из 27

Этот метод подходит для алгоритмов, основанных на расстоянии между векторами. В частности, вспомним формулу косинусного сходства.

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||_2 ||\mathbf{b}||_2}$$

В знаменателе уже заложена L2 нормализация. По сути, мы вначале приводим каждый вектор к L2 норме, равной одному, а затем с помощью скалярного произведения находим косинус угла между ними.

Опасность нормализации по строкам

С точки зрения масштабирования данных у такого подхода есть один недостаток. Нормализация по строкам разрушает связи внутри признаков. Рассмотрим массив, в котором строки это люди, а столбцы — данных о них (в частности, рост, вес и возраст).

Как мы видим, обоим людям по 50 лет. Проведем L2 нормализацию по строкам.

Как мы видим, после нормализации получается, что возраст у них разный.

По этой причине проводить масштабирование по строкам можно только в том случае, если связи между наблюдениями внутри признаков не имеют значения (другими словами, вам не важно, что в новых данных люди с одинаковым возрастом получают разные значения).

L1 нормализация

Как уже было сказано, длину вектора не обязательно измерять по формуле Евклидова расстояния. Можно воспользоваться формулой расстояния городских кварталов (Manhattan distance, taxicab distance) или **L1 нормой** (L1 norm).

$$||\mathbf{x}||_1 = |x_1| + |x_2| + \ldots + |x_n|$$

Стр. 23 из 27 17.01.2025 17:47

По большому счету, вместо возведения в квадрат мы находим модуль каждой координаты вектора. При этом извлекать квадратный корень для возвращения к исходным единицам измерения уже нет необходимости.

```
# возьмем тот же массив
2 arr
1
   array([[ 45,
                   30],
2
          [ 12, -340],
3
          [-125,
                    4]])
1
   # рассчитаем L1 норму для первой строки
2    np.abs(arr[0][0]) + np.abs(arr[0][1])
1 75
   # вновь пройдемся по каждому вектору
   for row in arr:
3
     # найдем соответствующую L1 норму
4
     linorm = np.abs(row[0]) + np.abs(row[1])
     # и нормализуем векторы
     print((row[0]/l1norm).round(8), (row[1]/l1norm).round(8))
6
1
  0.6 0.4
2
   0.03409091 -0.96590909
   -0.96899225 0.03100775
```

Теперь к единичной норме приведена сумма модулей координат вектора.

```
1 # убедимся в том, что вторая вектор-строка имеет единичную L1 норму
2 пр.abs(0.03409091) + пр.abs(-0.96590909)
1 1.0
```

Сравним результат с объектом класса Normalizer.

Теперь выведем L1 нормализованные векторы на графике и посмотрим, как рассчитывалось расстояние до первого вектора.

```
plt.figure(figsize = (6, 6))
 2
                ax = plt.axes()
 3
 4
                # выведем L1 нормализованные векторы
                for v in Normalizer(norm = 'l1').fit_transform(arr):
 5
                        ax.arrow(0, 0, v[0], v[1], width = 0.01, head_width = 0.05, head_length = 0.05, length = 0.05,
 6
 7
 8
                # то, как рассчитывалось расстояние до первого вектора
 9
                 ax.arrow(0, 0, 0.6, 0, width = 0.005, head_width = 0.03, head_length = 0.05, length_ir
10
                 ax.arrow(0.6, 0, 0, 0.4, width = 0.005, head_width = 0.03, head_length = 0.05, length
11
12
                 # а также границы единичных векторов при L1 нормализации
13
                points = [[1, 0], [0, 1], [-1, 0], [0, -1]]
14
                polygon= plt.Polygon(points, fill = None , edgecolor = 'b', linestyle = '--')
15
                ax.add_patch(polygon)
16
17
                plt.xlim([-1.2, 1.2])
18
                plt.ylim([-1.2, 1.2])
19
```

Стр. 24 из 27 17.01.2025 17:47

```
20 | plt.title('L1 нормализация')
21 |
22 | plt.show()
```


Из графика выше становится очевидно, почему это расстояние L1 (то есть сумма черного и красного векторов, равная единице) называется Manhattan distance или taxicab distance. Водителю такси на Манхэттене, основанном на гипподамовой системе с прямоугольными кварталами, чтобы попасть из точки А в точку Б пришлось бы двигаться строго перпендикулярными отрезками.

Расстояние Минковского

Обобщением Евклидова расстояния и расстояния городских кварталов будет **расстояние Минковского** (Minkowski distance).

$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{rac{1}{p}}$$

где p=1 и p=2 — это соответственно метрика городских кварталов и Евклидово расстояние.

Расстояние Чебышёва

Что интересно, если p стремится к бесконечности, то формула расстояния принимает вид

$$\lim_{p o\infty}\left(\sum_{i=1}^n|x_i|^p
ight)^{rac{1}{p}}=\max_{i=1}^n|x_i|$$

Такое расстояние называется **расстоянием Чебышёва** (Chebyshev distance). По сути для расчета этого расстояния мы берем наибольшую по модулю координату вектора.

```
1 # найдем расстояние Чебышёва для первого вектора
2 max(np.abs(arr[0][0]), np.abs(arr[0][1]))
```

1 45

Стр. 25 из 27 17.01.2025 17:47

```
1
   # теперь для всего массива
   for row in arr:
2
     # найдем соответствующую норму Чебышёва
3
4
     l_inf = max(np.abs(row[0]), np.abs(row[1]))
5
     # и нормализуем векторы
     print((row[0]/l\_inf).round(8), (row[1]/l\_inf).round(8))
6
1
  1.0 0.66666667
   0.03529412 -1.0
3 -1.0 0.032
```

Для нормализации векторов по расстоянию Чебышёва классу Normalizer нужно передать параметр norm = 'max'.

Графически в двумерном пространстве нормализованные таким образом векторы располагаются на квадрате, стороны которого имеют длину, равную двум, и параллельны осям координат.

```
plt.figure(figsize = (6, 6))
 2
                     ax = plt.axes()
 3
 4
                     # выведем нормализованные по расстоянию Чебышёва векторы,
 5
                    for v in Normalizer(norm = 'max').fit_transform(arr):
 6
                             ax.arrow(0, 0, v[0], v[1], width = 0.01, head_width = 0.05, head_length = 0.05, length = 0.05, length = 0.05, head_length = 0.05, length = 0.05, head_length = 0.05, length = 0.05, head_length = 0.05, h
 7
 8
                     # а также границы единичных векторов при такой нормализации
 9
                     points = [[1, 1], [1, -1], [-1, -1], [-1, 1]]
                     polygon= plt.Polygon(points, fill = None , edgecolor = 'b', linestyle = '--')
10
11
                     ax.add_patch(polygon)
12
13
                    plt.xlim([-1.2, 1.2])
14
                    plt.ylim([-1.2, 1.2])
15
16
                    plt.title('Нормализация Чебышёва')
17
18
                   plt.show()
```


Про терминологию

Стр. 26 из 27

Терминология способов преобразования количественных данных пока окончально не устоялась. Например, часто под нормализацией понимают приведение данных к диапазону от 0 до 1 или в целом весь процесс масштабирования данных.

На практике бывает полезно сообщать, какую именно линейную трансформацию вы применяете к данным (а не только ее название), либо приводить название используемого инструмента.

Стр. 27 из 27