MIDTERM EXAMINATION

Spring 2009 CS402- Theory of Automata (Session - 1)

Question No: 1	(Marks: 1) - Please choose one
Alphabet $S = \{a,b\}$	c,cc} has number of letters.
► One	
► Two	
► Three	
► Four	
Question No: 2	(Marks: 1) - Please choose one
In which of the fo	llowing language Rev(s)=s
► EQUAL	
► INTEGER	
► PALINDR	OME
► FACTORIA	AL
Question No: 3	(Marks: 1) - Please choose one
If $S = \{ab, bb\}$, th	en S* will not contain
► abbbab	
▶ bbba	
▶ bbbbab	
► ababbb	
Ouestion No. 4	(Marks: 1) - Please choose one

Above given FA generates the language having strings of _____

- ▶ ODD length
- ► EVEN length
- ► Equal number of a's and b's
- ▶ None of these

Question No: 5 (Marks: 1) - Please choose one

Above given GTG accepts the language in which strings

- ► Contains double a or double b
- ► Contains both a and double b
- ► Depends on the alphabet
- ▶ None of these

Question No: 6 (Marks: 1) - Please choose one

If above given TG is drawn like

Then what will be written in place of X.

- ► (ab+ba)(aa+bb)(ba+ab)
- ► (ab+ba)(aa+bb)(ab+ba)
- ► (ab+ba)(aa+bb)*(ab+ba)
- ► (ab+ba)(aa+bb)(ab+ba)*

Question No: 7 (Marks: 1) - Please choose one

FA3 expresses r1r2. Then initial state of FA3 will consist of

- ▶ Initial state of FA2
- ▶ Initial state of FA1
- ▶ Initial states of both FA1 & FA2
- ▶ Depends on FA's

Question No: 8 (Marks: 1) - Please choose one

FA3 expresses r1r2. Then there will be at least one final state of FA3 that consist of final state of FA1 and initial state of FA2.

- ► True
- ▶ False
- ► Depends on language
- ▶ None of these

Question No: 9 (Marks: 1) - Please choose one

Two machines are said to be equivalent if they print the same output string when the different input string is run on them

- ► True
- ▶ False
- ► Depends on language
- ► May be or may not be

Question No: 10 (Marks: 1) - Please choose one

Running the string abbabbba on this Moore machine. The outputs will be

- **▶** 101111010
- **▶** 01111010
- **▶** 01011110
- **▶** 01010101

Question No: 11 (Marks: 1) - Please choose one

Above given TG's are _____

- ▶ None of these
- ▶ Equivalent
- ▶ Non-equivalent
- ► TG's are not valid

Question No: 12 (Marks: 1) - Please choose one

TG can have more than one initial state.

- ► True
- ► False
- ► Depends on alphabets
- ▶ None of these

Question No: 13 (Marks: 1) - Please choose one

Above given FA accepts null string.

► True	
► False	
► FA is not valid	
► None of these	
Question No: 14 (Marks: 1) - Please choose one	
If in an NFA, \wedge is allowed to be a label of an edge then that NFA is called	
► Will not remain NFA	
► NFA with ∧	
► NFA with null string	
► Either "NFA with null string" OR "NFA with ∧"	
Question No: 15 (Marks: 1) - Please choose one	
One FA has n states and m letters in the alphabet. Then FA will have number of transitions in the diagram.	
► (n)+(m)	
► (m)(n) OR (n)(m)	
► None of the given options	
► (m)-(n)	
Question No: 16 (Marks: 1) - Please choose one	
$(a+b)*a(a+b)*b(a+b)*$ is the RE of language defined over $S=\{a,b\}$ having at least one a and one b	

► True

- ► False
- ► Such a language does not exist
- ▶ None of the given options

Question No: 17 (Marks: 1)

Is the following statement trure? A regular language can not be infinite.

Question No: 18 (Marks: 1)

Can you say that for a certain string there may be more than one paths in a TG?

Question No: 19 (Marks: 2)

If a language can be accepted by an FA then it can be accepted by a TG as well. What are the other two statements of kleenes's theorem?

Question No: 20 (Marks: 3)

Describe the method of NFA corresponding to Concatenation of FAs.

Question No: 21 (Marks: 5)

Draw FA corresponding to following NFA?

Question No: 22 (Marks: 10)

Let L be any language. Let us define the transpose of L to be the language of exactly those words that are the words in L spelled backward. If $w \in L$ then reverse $(w) \in L$. for example, if $L = \{a, abb, bbaab, bbbaa\}$ Then Transpose $(L) = \{a, bba, baabb, aabbb, Prove that if there is an FA that accepts L, then there is a TG that accepts the transpose of L.$