ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НИУ ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №7. «Работа с системой компьютерной вёрстки ТЕХ»

Вариант 36

Обучающийся: Овсянников Роман Дмитриевич Руководитель: Рудникова Тамара Владимировна

г. Санкт-Петербург, $2021~\mathrm{r.}$

B A	000	001	010	011	100	101	110	111
000		1	2/3	2/3	1/7	5/7	3/7	1
001	1		2	2	1/3	5/3	1	7/3
010	3/2	1/2		1	1	1	3/5	7/5
011	3/2	1/2	1		1	1	3	7
100	7	3	1	1		1	1/2	3/2
101	7/5	3/5	1	1	1		1/2	3/2
110	7/3	1	5/3	1/3	2	2		1
111	1	3/7	5/7	1/7	2/3	2/3	1	

Таблица 3.

Формула Конвея

Формула Конвея позволяет найти d(B, A) при произвольных B и A, не вычисляя никаких вероятностей. Для того, чтобы объяснить эту формулу, нам нужно определить многочлен Конвея K_{XY} слов X, Y.

На рисунке 2 слово У шесть раз записано под словом X, причем каждое новое слово У сдвигается на одну позицию вправо по сравнению с предыдущим (для п-буквенных слов слово У будет записано под Х п раз). Каждому сдвигу слова У поставим в соответствие число 1 или 0 в зависимости от того, совпадают ли все буквы, находящиеся друг под другом в общих позициях Х и Ү, или нет. Полученное таким образом слово (длины n) из нулей и единиц называется корреляцией Х и У и обозначается $\langle X, Y \rangle$. Так, например, для 2-го сдвига У общие позиции совпадают, поэтому во второй строке на рисунке 2 записана единица — вторая буква слова (Х, У). В нашем примере

$$\langle XY \rangle = 010011.$$

В общем случае, пусть $\langle XY \rangle = e_1...e_n$ (где e_i — нули или единицы). Тогда многочлен Конвея Слов X, Y определяется так:

$$K_{XY}({
m t}){=}e_1+e_2+...+e_nt^{n-1}$$
В нашем случае $K_{XY}({
m t}){=}{
m t}+t^4+t^5.$

Очень странное определение! Во всяком случае совершенно непонятно, как до него можно было додуматься. Но оно работает — на нем основана формула Конвея:

$$d(B,A) = \frac{K_{AA}(1/2) - K_{AB}(1/2)}{K_{BB}(1/2) - K_{BA}(1/2)}.(*)$$

Можно понять Гарднера, когда он приписывает вывод этой необычной формулы «потусторонним» силам: ну магия, и только!

Не останавливаясь пока на выводе формулы (*), поясним, как ею пользоваться. Сначала нужно найти корреляции $\langle AA \rangle$, $\langle AB \rangle$, $\langle BB \rangle$, $\langle BA \rangle$. Затем по ним написать четьыре многочлена Конвея, в каждом из них подставить t=1/2 и, наконец, выполнить действия, указанные в правой части формулы (*).

X=100100	Kopp. XY.	началохдоҮ
Y=001001	O	
001001	1	1
001001	0	
001001	0	
001001	1	1001
001001	1	10010

. Puc. 2.

$$A = \iint R dx dy = \int -2a^{a} \left[\int y - a^{a - \frac{y^{2}}{a}} dx \right] dy = \int -2a^{a} \left[x | y - a^{a - \frac{y^{2}}{a}} \right] dy = \int -2a^{a} \left[a - \frac{y^{2}}{a} - (y - a) \right] dy = \int -2a^{a} \left(2a - \frac{y^{2}}{a} - y \right) dy = \left[2ay - \frac{y^{3}}{3z} - \frac{y^{2}}{2} \right] \left| -2a^{a} \right| = \left(2a^{2} - \frac{a^{3}}{3a} - \frac{a^{2}}{2} \right) - \left(-4a^{2} + \frac{8a^{3}}{3a} - \frac{4a^{2}}{2} \right) = \frac{9a^{2}}{2}$$