Multiple View Geometry in Computer Vision

- Projective Geometry and Transformation of 2D -

Sohee Lim

Image Processing and Intelligent Laboratory Chung-Ang University 19.03.07. Thu.

Table of Contents

Projective Geometry and transformations of 2D

Homogeneous coordinates

Equivalence class

Line and points

Ideal points and lines at infinity

Conics

2. PROJECTIVE GEOMETRY AND TRANSFORMATIONS OF 2D

- Homogeneous coordinates
- Equivalence class
- Line and points
- Ideal points and the line at infinity
- Conics

Homogeneous Coordinates

Cartesian

Homogeneous

$$\begin{bmatrix} wx \\ wy \\ \hline w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
scale factor $\begin{cases} 0 : \text{vector} \\ 1 : \text{point} \end{cases}$

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} \qquad \vec{\mathbf{v}} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

Point at infinity can be represented using finite coordinates

a point
$$(x, y) \rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{1}{w}\right) \xrightarrow{w \rightarrow 0} \left(\frac{x}{w}, \frac{y}{w}\right) \rightarrow (\infty, \infty)$$

homogeneous coordinates

A single matrix can represent affine & projective transformations Combine rotation and translation into a single transformation matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} x + dx \\ y + dy \end{bmatrix}$$

$\begin{vmatrix} x \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} m_{xx} & m_{xy} & ax \\ m_{yx} & m_{yy} & dy \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$

- Translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Invariant to scaling

$$k \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \implies \begin{bmatrix} kx/kw \\ ky/kw \end{bmatrix} = \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

$$p \sim \lambda p \qquad \lambda \neq 0$$

$$(x, y, 1)$$

$$W = 1 \text{ plane}$$

Equivalence Class

Equivalence Relation

Let R be the relation on X. If R satisfies three condition,

(1) Reflexive : $\forall x \in X, x \sim x$

(2) Symmetry : if $x \sim y$, then $y \sim x$

(3) Transisitive: if $x \sim y$ and $y \sim z$ then $x \sim z$

Then the relation R is called "Equivalence relation on X"

Equivalence Class

Let $R(\neq \emptyset)$ be the equivalence relation on X. For each $x \in X$, the set

$$[x] = \{y \in X \mid y \sim x\}$$
 then $[x]$ is called the equivalence class

Quotient Set

Collection of equivalence class is called 'Quotient Set'

$$X / \sim := \{ [x] \mid x \in X \}$$

- = The partition of X induced by R
- = A modulo R

Partitions

If the relation $' \sim '$ is an equivalence on X.

 X/\sim is partition of X

Line and points

Homogeneous representation

$$x = (x, y, 1)^{T}$$

1:
$$(a, b, c)^{T} \sim k(a, b, c)^{T} \quad k \neq 0$$

A point x lies on the line I ax + by + c = 0 $(x, y, 1)(a, b, c)^{T} = 0$

$$ax + by + c = 0$$

$$(x, y, 1)(a, b, c)^{T} = 0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{1} = \mathbf{1}^{\mathrm{T}}\mathbf{x} = \mathbf{0}$$

The intersection of 2 lines I and I

$$x = 1 \times 1'$$

The line through 2 points x and x'

$$1 = \mathbf{x} \times \mathbf{x'}$$

Ideal points and the line at infinity

Intersection of parallel lines

$$1 = (a, b, c)^T$$
 and $1' = (a, b, c')^T$ are parallel

$$1 \times 1' = \begin{vmatrix} i & j & k \\ a & b & c \\ a & b & c' \end{vmatrix} = \begin{pmatrix} c' - c \\ c \end{pmatrix} \begin{pmatrix} b, -a, 0 \end{pmatrix}^{T} \sim \begin{pmatrix} b, -a, 0 \end{pmatrix}^{T}$$
ignoring

point
$$(b, -a, 0)^{\mathrm{T}} \rightarrow (b/0, a/0)^{\mathrm{T}} \rightarrow (\infty, \infty)$$
Homogenoeus coordinates

$$(x_1, x_2, 0)^{\mathsf{T}}$$

Ideal points $(x_1, x_2, 0)^T$ Line at infinity $l_{\infty} = (0, 0, 1)^T$

Ideal points and the line at infinity

$$1 \times 1' = \begin{vmatrix} i & j & k \\ a & b & c \\ a & b & c' \end{vmatrix} = (b, -a, 0)^{T} \rightarrow \text{intersection} \implies \text{ideal point}$$

Ideal point set lies on a single line, the line at infinity

$$1_{\infty} = (0, 0, 1)^{\mathrm{T}}$$

$$1_{\infty} = (0, 0, 1)^{T}$$
 $(0, 0, 1)(x_{1}, x_{2}, 0)^{T} = 0$

A model of the projective plane

 R^3 P^2 → Rays **Points** Lines \rightarrow Planes $x_1 x_2$ -plane \rightarrow line at infinity l_{∞} Lines in $x_1 x_2$ -plane \rightarrow ideal points

Duality

There is symmetry between points and lines

$$1^{T}x = x^{T}1 = 0$$

Intersection of lines

$$x = 1 \times 1'$$

$$1 = \mathbf{x} \times \mathbf{x'}$$

Conics

Non-degenerate conic

A curve obtained as the intersection of a cone with a plane

2nd Equation

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

$$\downarrow \quad x \leftarrow x_{1} / x_{3} \quad y \leftarrow x_{2} / x_{3}$$

$$ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2} + dx_{1}x_{3} + fx_{3}^{2} = 0$$

Matrix form

$$x^{T}C x = 0$$

$$(x \quad y \quad 1) \begin{pmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$
symmetric matrix

 $\{a:b:c:d:e:f\}$ 5 DOF

Tangent lines to conics

The line I tangent to a conic C at a point x is given by 1 = Cx

proof: x lies on I, since
$$x^{T}1 = x^{T}Cx = 0$$

Assume) There exists another point y lying on C and I

$$(x + \alpha y)^T C (x + \alpha y) = 0 \quad \forall \alpha$$

any point $x + \alpha y$ should lie on C

Degenerate conics

A conic is degenerate if the plane goes through the vertex of the cones.

If C is not of full rank, then the conic is termed degenerate

rank 2 : two lines

$$C = lm^{T} + ml^{T}$$

rank 1 : repeated lines $C \sim 11^T$

Dual conics = Line conics = Conic envelope

A conic C gives a set of point

A dual conic C* gives a set of tangent lines to conic

If C is full rank, then $C^* = C^{-1}$

$$1 = Cx \qquad \rightarrow \quad x = C^{-1}l$$

$$1^{T}C^{*} \mid l = 0 \qquad \rightarrow \quad (Cx)^{T}C^{*} \quad (Cx) = x^{T}C \quad x \qquad \text{where } C^{*} = C^{-1} \quad (C: symmetric)$$

$$x^{T}C \quad x = 0 \qquad \rightarrow \quad (C^{-1}l)^{T}C \quad (C^{-1}l) = 1^{T}C^{-1}l = 0 \qquad \text{where } C^{-T} = C^{-1} \quad (C: symmetric)$$

