Gradient Descent Mini-Quiz

TA: Raguvir Kunani

DS100 Spring 2020

The questions are meant to increase in difficulty, with a challenge question at the end. The challenge question is at least as hard, if not harder, than a hard exam question.

1. What is the purpose of gradient descent (i.e. what goal does it accomplish for us that is

	relevant to the modeling process):
2.]	Recall the gradient descent update rule:
	$ heta^{(t+1)} \leftarrow heta^{(t)} - ho \left(\nabla L(\theta) \big _{\theta = \theta^{(t)}} \right)$
	(a) Could gradient descent still find a minimum if the minus sign was changed to a plus sign (no other changes)?
	(b) Could gradient descent still find a minimum if the ρ term was removed (no other changes)?
	(c) When does gradient descent stop? <i>Hint</i> : See when $\theta^{(t+1)} = \theta^{(t)}$ in the update rule.
	Are there any functions for which gradient descent is not guaranteed to find the global minimum? If so, give an example and explain.
ſ	
L	

4.	Which values of ρ are guaranteed to produce incorrect results for gradient descent? Assume the initial guess $\theta^{(0)}$ is not the minimum. Select all that apply.
	A. 1
	B. $-\frac{1}{2}$
	C. 0
	D. 100
	E1
5.	We often replace the ρ term in the gradient descent update rule with a $\rho(t)$ term. This allows each iteration of gradient descent to have its own value of ρ . Give an example of one appropriate selection of $\rho(t)$ and explain why your choice is appropriate.
6.	Challenge Question
	Recall the gradient descent update rule:
	$\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \left(\nabla L(\theta) \big _{\theta = \theta^{(t)}} \right)$
	For this question, assume that $L(\theta)$ is MSE (mean squared error) and the model is $f_{\theta}(x)$.
	(a) Rewrite the gradient descent update rule replacing the gradient with a summation of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \frac{1}{n} \sum_{i=1}^{n} g(x_i, y_i, \theta^{(t)})$, where you define the g function.
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow$
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \frac{1}{n} \sum_{i=1}^{n} g(x_i, y_i, \theta^{(t)})$, where you define the g function.
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \frac{1}{n} \sum_{i=1}^{n} g(x_i, y_i, \theta^{(t)})$, where you define the g function.
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \frac{1}{n} \sum_{i=1}^{n} g(x_i, y_i, \theta^{(t)})$, where you define the g function.
	of terms, one for each of n data points. The final form should look like: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \rho \frac{1}{n} \sum_{i=1}^{n} g(x_i, y_i, \theta^{(t)})$, where you define the g function. (b) Gradient descent requires the computation of gradients during each iteration.

Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration.	teration. average nbiased points. e $B < n$.
 (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration. (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration. (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration. (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration. (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 Update the gradient descent update rule you wrote in part (a) to reflect the that we are only computing B gradients at each iteration. (e) For a fixed B, how does the performance of the updated gradient descent computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradiescent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time	
computes only B gradients per iteration) relate to the original gradient descent? all that apply. A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradescent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time	
 A. On average, finds a minimum in less iterations than original gradient descent B. On average, finds a minimum in more iterations than original gradient descent C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	•
 C. Will find the same minimum as original gradient descent D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradescent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 D. On average, finds a minimum in less time than original gradient descent E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradescent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 E. On average, finds a minimum in more time than original gradient (f) How does increasing B affect the performance of the updated version of gradient? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
 (f) How does increasing B affect the performance of the updated version of gradescent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time 	
descent? Select all that apply. A. Finds a minimum in less iterations B. Finds a minimum in less time	
A. Finds a minimum in less iterationsB. Finds a minimum in less time	radient
B. Finds a minimum in less time	
C. Finds a minimum in more iterations	
O. FINGS A HIMMIUM IN MOLE RELATIONS	
D. Finds a minimum in more time	
(g) The updated gradient descent is also known as gradient descent	t.