Exploratory Data Analysis (EDA)

- **Definition:** Systematic approach to understand dataset characteristics
- Purpose: Discover patterns, spot anomalies, test hypotheses, and check assumptions
- Modeva's EDA capabilities: A suite of visualization tools
- Central component: The DataSet class

The DataSet Class in Modeva

The DataSet class provides five main EDA functions:

- DataSet.eda_1d Generate univariate plots
- DataSet.eda_2d Generate bivariate plots
- DataSet.eda_3d Generate 3D scatter plots
- DataSet.eda_correlation Generate correlation heatmaps
- DataSet.eda_pca Generate PCA plots

Univariate (1D) Plots

DataSet.eda_1d visualizes the distribution of individual features:

- For categorical features:
 - Bar charts showing frequency or count
- For numerical features:
 - Density plots smooth representation of distribution
 - Histograms binned representation of distribution

Implementing Univariate Analysis

Basic Usage

```
# Import necessary libraries
from modeva import DataSet
# Load your dataset
dataset = DataSet(data)
# Generate univariate plots
dataset.eda 1d()
```

Customization Options

```
# Specify plot type for numerical features
dataset.eda_1d(plot_type='histogram') # or 'density'
# Filter specific features to plot
dataset.eda_1d(features=['feature1', 'feature2'])
```

Bivariate (2D) Plots

DataSet.eda_2d visualizes relationships between pairs of features:

- Two numerical features:
 - 2D scatter plots
- Two categorical features:
 - Stacked bar plots
- One numerical and one categorical feature:
 - Side-by-side box plots

Implementing Bivariate Analysis

Basic Usage

Generate bivariate plots for all feature pairs
dataset.eda_2d()

Customization Options

3D Scatter Plots

DataSet.eda_3d creates interactive 3D visualizations:

- Visualizes relationships between three numerical features
- Optional fourth feature represented by color annotation
- Interactive plot allowing rotation and zooming
- Helpful for discovering clusters and nonlinear relationships

Implementing 3D Scatter Plots

Basic Usage

```
# Generate 3D scatter plot for three features
dataset.eda_3d(features=['feature1', 'feature2', 'feature3'])
```

Adding Color Dimension

Correlation Heatmap

DataSet.eda_correlation visualizes pairwise relationships:

- Displays strength and direction of relationships between features
- Color intensity represents correlation magnitude
- Supports multiple correlation methods for different relationship types
- Useful for feature selection and multicollinearity detection

Correlation Methods

DataSet.eda_correlation supports four correlation methods:

- pearson: Measures linear relationships between continuous variables
 - Range: -1 (perfect negative) to 1 (perfect positive)
 - Sensitive to outliers
- spearman: Assesses monotonic relationships based on ranks
 - Range: -1 to 1
 - Robust to outliers, captures non-linear patterns
- **kendall:** Measures association between ranked variables
 - Range: -1 to 1
 - Useful for ordinal data, robust to outliers
- xicor: Detects both linear and nonlinear dependencies
 - Range: typically 0 (no dependence) to 1 (strong dependence)
 - More comprehensive view of relationships

Implementing Correlation Analysis

Basic Usage

Generate correlation heatmap with default method (pearson)
dataset.eda_correlation()

Specifying Correlation Method

```
# Use Spearman correlation
dataset.eda_correlation(method='spearman')
```

```
# Use XiCor for detecting nonlinear relationships
dataset.eda_correlation(method='xicor')
```

PCA Plot

DataSet.eda_pca performs dimensionality reduction:

- Reduces high-dimensional data to principal components
- Visualizes variance explained by each component
- Shows feature loadings (contributions to components)
- Helps identify important features and data structure

Example:

Implementing PCA Analysis

Basic Usage

```
# Generate PCA plot
dataset.eda_pca()
```

Customization Options

```
# Specify number of components
dataset.eda_pca(n_components=3)

# Color points by target variable
dataset.eda_pca(color_by='target_variable')

# Select specific features for PCA
dataset.eda_pca(features=['feature1', 'feature2', 'feature3'])
```

EDA Workflow with Modeva

- Start with univariate analysis:
 - Understand individual feature distributions
 - Identify outliers and data quality issues
- Proceed to bivariate analysis:
 - Explore relationships between feature pairs
 - Identify potential predictive features
- Use correlation analysis:
 - Understand feature interdependencies
 - Detect multicollinearity
- Apply 3D visualization and PCA:
 - Explore higher-dimensional relationships
 - Reduce dimensionality while preserving information

Complete EDA Example

```
# Import necessary libraries
from modeva import DataSet
# Load your dataset
dataset = DataSet(data)
# Perform comprehensive EDA
dataset.eda_1d() # Univariate analysis
dataset.eda_2d() # Bivariate analysis
dataset.eda_correlation(method='pearson') # Linear correlations
dataset.eda correlation(method='xicor') # Nonlinear dependencies
dataset.eda_3d(features=['feature1', 'feature2', 'feature3'],
               color_by='target') # 3D visualization
dataset.eda_pca(color_by='target') # Dimensionality reduction
```

Summary

- Modeva's DataSet class provides comprehensive EDA capabilities
- Five main visualization functions:
 - eda_1d: Univariate distributions
 - eda_2d: Bivariate relationships
 - eda_3d: 3D visualization
 - eda_correlation: Correlation analysis
 - eda_pca: Dimensionality reduction
- Multiple correlation methods for different relationship types
- Integrated workflow from basic to advanced analysis