TCAD for electronic devices part 5

Microelectronics devices, sensors and MEMS

Academic Year 2023/2024

Lucio Pancheri

lucio.pancheri@unitn.it

Example 1. MOSFET

Gate oxide thickness: 10nm

Gate channel Boron implantation

File: P5EX1_MOSFET_sde.txt

Example 1a. Output curves I_D vs. V_{DS}

```
Solve {
        Poisson
       Coupled {Poisson Electron Hole}
       # Ramp the gate and save structures
        # First gate voltage
        Quasistationary (InitialStep=0.1 MaxStep=0.1 MinStep=1e-5
                Goal {Name="gate" Voltage=2}
                Plot { Range = (0 1) Intervals =2}
        ) {Coupled {Poisson Electron Hole}}
        Save(FilePrefix="vg1")
       # Second gate voltage
        Quasistationary (InitialStep=0.1 Maxstep=0.1 MinStep=1e-5
                Goal {Name="gate" Voltage=3})
        {Coupled {Poisson Electron Hole}}
        Save(FilePrefix="vq2")
        # Load the saved structures and ramp the drain
        # First curve
        Load(FilePrefix="vq1")
        NewCurrentPrefix="Curve1 "
        Quasistationary (InitialStep=0.01 MaxStep=0.01 MinStep=1e-5
                Goal {Name="drain" Voltage=5})
        {Coupled {Poisson Electron Hole}}
        # Second curve
        Load(FilePrefix="vg2")
        NewCurrentPrefix="Curve2 "
        Quasistationary (InitialStep=0.01 MaxStep=0.01 MinStep=1e-5
                Goal {Name="drain" Voltage=5})
        {Coupled {Poisson Electron Hole}}
}
```

Simulate I_D - V_{DS} curves with: V(gate) = 2 and V(gate) = 3

Save the I_D-V_{DS} curves for the 2 different gate voltages: File names starts with prefix "Curve1_" and "Curve2_"

File: P5EX1_MOSFET_sdevice.txt

Example 1a. Output curves I_D vs. V_{DS}

Example 1a. Calculate r_{DS}

Create new curves to calculate r_{DS} :

$$r_{DS} = \frac{1}{\frac{dI_D}{dV_{DS}}}$$

Example 1a. Calculate r_{DS}

Report the value of r_{DS} at V_{DS}=4V in the shared spreadsheet: https://docs.google.com/spreadsheets/d/1vW4nCf KBdLVrjY8NMgzHi5-FspXIOoXXMD3CAkGAG8/edit?usp=sharing

Example 1b. Transfer curve I_D vs. V_{GS}

```
Solve {
        Poisson
        Coupled {Poisson Electron Hole}
        # Ramp the drain voltage
        Quasistationary (InitialStep=0.1 MaxStep=0.1 MinStep=1e-5
                Goal {Name="drain" Voltage=5}
        ) {Coupled {Poisson Electron Hole}}
        # Ramp the gate voltage
        NewCurrentPrefix="GateSweep "
        Quasistationary (InitialStep=0.01 Maxstep=0.01 MinStep=1e-5
                Goal {Name="gate" Voltage=5})
        {Coupled {Poisson Electron Hole}}
}
                                         Simulate I_D-V_{GS} curve with V(drain) = 5V
                                         Save the I<sub>D</sub>-V<sub>GS</sub> curve: File names starts
                                         with prefix "GateSweep"
```

File: P5EX1_MOSFET_sdevice1.txt

Example 1b. Transfer curve I_D vs. V_{GS}

drain TotalCurrent (GateSweep_n7_des)

Example 1b. Extract threshold voltage

Plot $\sqrt{I_D}$ vs. V_{GS} on the right axis

Example 1b. Extract threshold voltage

drain TotalCurrent (GateSweep_n7_des)

 V_{Tn} : intercept of the best fit curve for $\sqrt{I_D}$ vs. V_{GS} with the x-axis

Report the value of V_{Tn} in the shared spreadsheet

Exercise 1c. Effect of t_{OX} on V_{Tn}

Transform the gate oxide thickness Tox in a parameter

Simulate the transfer curve with different oxide thickness and estimate the value of V_{Tn} for Tox = 15nm and Tox = 20nm

Report the values of V_{Tn} in the shared spreadsheet

Exercise 1d. Effect of threshold adjustment implantation on V_{Tn}

Change the value of the peak of the threshold adjustment implantation Npeak to obtain a threshold voltage V_{Tn} around 1V

Proceed by iteration if needed

```
(sdedr:define-gaussian-profile "Pch_prof" "BoronActiveConcentration" "PeakPos" 0
"PeakVal" @Npeak@ "ValueAtDepth" 1e16 "Depth" 0.1 "Gauss" "Factor" 0.5)
```

Report the value of Npeak that sets $V_{Tn} = 1V$ in the shared spreadsheet

Exercise 1e. Effect of channel length on r_{DS}

Modify the MOSFET geometry to reduce the channel length from 10um to 5um.

Simulate the output curves and extract the values of of r_{DS} at V_{DS} =4V for both V_{GS} = 2V and V_{GS} = 3V

Report the values of r_{DS} in the shared spreadsheet