Data Analysis Tools and Practice(Using R)

ggplot2画图

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

课堂测试05

先用电脑完成 30分钟 然后誊抄纸上

- I、数据集alpe_d_huez2描述了环法自行车赛期间Alpe d'Huez赛段的最快时间,以及关于年份和吸毒指控的背景信息。绘制出车手最快时间的分布。使用a)直方图和b)箱线图显示它们。
- 2、mtcars是datasets包中的数据集。请使用str()函数了解这个数据集的构成,并输出数据集,然后按要求画图:
 - * a. 我们要设置一个蓝色背景和红色的点或线。 我们应该使用什么命令
 - * b. 画出cyl和mpg关系的散点图,并将结果输出为plot.png,要求输出为白底, 360px*360px,点的大小为72
- 3、obama_vs_mccain数据集描述了2008年美国总统选举中的各州投票信息,以及关于收入,失业,种族和宗教的背景信息。
 - * a. 画出收入Income和参加选举比例Turnout之间的关系的散点图。提示: Turnout存在Na值。
 - * b. 将上述图形点的形状为黑色实心三角形(17)
 - * c. 数据集中有一个因子类型的列regions,请画出每个地区region下的收入Income和参加选举比例Turnout之间的关系的散点图。要求设置布局为5列,行优先。

ggplot2简介

ggplot2

https://cran.r-project.org/web/packages/ggplot2/index.html

V 2.2.1

- graphics, grid, lattice
- ggplot2

http://hadley.nz/

为什么使用ggplot2

- 函数繁杂,语法复杂
- "笔纸"工作方式,不能增减
- 自动化低
- 主次不分

• 有理论基础,支持一套图形语法

- 采用图层的设计方式,可增减
- 媲美商业数据化软件的作图效果

• 使用简单,定制容易(主题)

忘记一切

从头开始

install.packages("ggplot2")

图形语法

- 数据 (data)映射 (mapping) ← 图形属性 (aesthetic attributes)
- 几何对象 (geometric object)
- 统计变换(statistical transformation s)
- 标度 (scale)
- 坐标系 (coordinate system)
- 分面(facet)

qplot

钻石数据集

carat	cut	color	clarity	depth	table	price	х	у	z
0.2	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
0.2	Premium	\mathbf{E}	SI1	59.8	61.0	326	3.89	3.84	2.31
0.2	Good	\mathbf{E}	VS1	56.9	65.0	327	4.05	4.07	2.31
0.2	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
0.2	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.2	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48

carat: 克拉重量

cut: 切工

color: 颜色

clarity: 净度

depty: 深度

table: 钻面宽度

depth = z depth / z * 100table = table width / x * 100

qplot(carat, price, data = diamonds)

qplot(log(carat), log(price), data = diamonds)

qplot(carat, x * y * z, data = diamonds)

颜色属性

set.seed(1410) dsmall <- diamonds[sample(nrow(diamonds), 100),]
qplot(carat, price, data = dsmall, colour = color)

切工属性

qplot(carat, price, data = dsmall, shape = cut)

Alpha取值

```
qplot(carat, price, data = diamonds, alpha = I(1/10)) qplot(carat, price, data = diamonds, alpha = I(1/100)) qplot(carat, price, data = diamonds, alpha = I(1/200))
```


集合对象 geom

- point: 散点图 geom = "point"
- smooth: 平滑曲线和标准误
- boxplot: 箱线图
- · path、line:连线(曲线图、路径图)
- histogram: 直方图
- freqpoly: 频率多边形
- density: 密度曲线
- bar: 柱状图 (条形图)

qplot(carat, price, data = dsmall, geom = c("point", "smooth")) 15000 -20000 -5000 -15000 -1.0 . 10000 carat 5000 -

qplot(carat, price, data = diamonds, geom = c("point", "smooth"))

qplot(color, price / carat, data = diamonds, geom = "boxplot")

qplot(color, price / carat, data = diamonds, geom = "jitter")

扰动点图的透明度

qplot(color, price / carat, data = diamonds, geom = "jitter", alpha = I(1/5)) qplot(color, price / carat, data = diamonds, geom = "jitter", alpha = I(1/50)) qplot(color, price / carat, data = diamonds, geom = "jitter", alpha = I(1/200))

qplot(carat, data = diamonds, geom = "histogram")

直方图的区间

qplot(carat, data = diamonds, geom = "histogram", binwidth = 1, xlim = c(0,3)) qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.1,xlim = c(0,3)) qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.01,xlim = c(0,3))

直方图的颜色

qplot(carat, data = diamonds, geom = "histogram", fill = color)

qplot(carat, data = diamonds, geom = "density")

qplot(carat, data = diamonds, geom = "density", colour = color)

条形图

qplot(color, data = diamonds, geom = "bar")

求和

qplot(color, data = diamonds, geom = "bar", weight = carat) +
scale_y_continuous("carat")

曲线图/折线图

qplot(date, unemploy / pop,
data = economics, geom =
"line")

qplot(date, unempmed,
data = economics,
geom = "line")

路径图

year <- function(x) as.POSIXIt(x) \$year + 1900

qplot(unemploy / pop, uempmed,
data = economics,

geom = c("point", "path"))

分面

qplot(carat, data = diamonds, facets = color \sim ., geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

其余参数

- xlim
- ylim
- log
- main
- xlab
- ylab

语法突破

MPG数据集

manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
audi	a4	1.80	1999	4	auto(l5)	f	18	29	р	compact
audi	a4	1.80	1999	4	manual(m5)	f	21	29	p	compac
audi	a4	2.00	2008	4	manual(m6)	f	20	31	\mathbf{p}	compac
audi	a4	2.00	2008	4	auto(av)	f	21	30	p	compac
audi	a4	2.80	1999	6	auto(l5)	f	16	26	p	compac
audi	a4	2.80	1999	6	manual(m5)	f	18	26	\mathbf{p}	compac
audi	a4	3.10	2008	6	auto(av)	f	18	27	p	compac
audi	a4 quattro	1.80	1999	4	manual(m5)	4	18	26	р	compac
audi	a4 quattro	1.80	1999	4	auto(l5)	4	16	25	p	compac
audi	a4 quattro	2.00	2008	4	manual(m6)	4	20	28	P	compac

散点图

qplot(displ, hwy, data = mpg, colour = factor(cyl))

数据到属性的映射

Disp映射到x坐标,hwy映射到y坐标,cyl映射到颜色

manufact	turer model	disp year	cyl cty	hwy class	х усо	lour
audi	a 4	1.8 1999	4 18	29 compact	1.8 29	4
audi	$\mathbf{a4}$	1.8 1999	4 21	29 compact	1.8 29	4
audi	$\mathbf{a4}$	$2.0\ 2008$	4 20	31 compact	$2.0\ 31$	4
audi	$\mathbf{a4}$	$2.0\ 2008$	4 21	30 compact	2.0 30	4
audi	$\mathbf{a4}$	$2.8\ 1999$	6 16	26 compact	$2.8\ 26$	6
audi	$\mathbf{a4}$	$2.8\ 1999$	6 18	26 compact	$2.8\ 26$	6
audi	a4	$3.1\ 2008$	6 18	27 compact	$3.1\ 27$	6
audi	a4 quattro	1.8 1999	4 18	26 compact	$1.8\ 26$	4
audi	a4 quattro	1.8 1999	4 16	25 compact	$1.8\ 25$	4
audi	a4 quattro	2.0 2008	$4\ 20$	28 compact	2.0 28	4

qplot(displ, hwy, data=mpg, colour=factor(cyl), geom="line")

标度变换

- 把数据从其计量单位(例如油耗的升数,里程等)转化为 计算机能识别的显示要素(例如像素,颜色等)的过程, 称为Scaling
- 在右图中有几项scaling
 - *将水平坐标x映射到[0,1]区间。这里不使用具体像素值的原因是grid包替我们完成最终的转换
 - *将垂直坐标y映射到[0,1]区间
 - *由坐标系统(coord)根据x,y 的组合最终定位,常见的 坐标系统包括直角坐标系, 极坐标系,球面映射等
 - *颜色的scaling

х	У	colour	size	shape
0.037	0.531	#FF6C91	1	19
0.037	0.531	#FF6C91	1	19
0.074	0.594	#FF6C91	1	19
0.074	0.562	#FF6C91	1	19
0.222	0.438	#00C1A9	1	19
0.222	0.438	#00C1A9	1	19
0.278	0.469	#00C1A9	1	19
0.037	0.438	#FF6C91	1	19
0.037	0.406	#FF6C91	1	19
0.074	0.500	$\#\mathrm{FF}6\mathrm{C}91$	1	19

x y colour

1.829

1.829

 $2.0 \ 31$

 $2.0\ 30$

2.8 26

2.8 26

3.1 27

1.826

1.8 25

2.028

qplot(displ, hwy, data=mpg, colour=factor(cyl)) +
geom_smooth(data= subset(mpg, cyl != 5), method="lm")

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

绘图过程

- 将变量映射到图形属性
- 对数据进行分面处理
- 标度转换
- 计算图形属性
- 标度训练
- 标度影射
- 渲染几何对象

图层

坐标系

5432-

5.0

7.5

2.5

笛卡尔

极坐标

半对数

10.0

用图层构建图形

```
ggplot(data = NULL,
    mapping = aes(),
    ...,
    environment = parent.frame())
```

layer() 自己查帮助


```
geom(mapping = NULL,
    data = NULL,
    stat = "identity"
    position = "identity"
    ...,
    na.rm = FALSE,
    show.legend = NA,
    inherit.aes = TRUE
)
```

见教材ggplot2的58页

```
geom_point()
geom_line()
geom_path()
geom_bar()
geom_histogram()
geom_smooth()
geom_density()
geom_jitter()
geom_text()
geom_hline()
geom_vline()
geom_blank()
geom_area()
geom_abline()
```

```
stat(mapping = NULL,
data = NULL,
geom/stat = ""
position = "identity"
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
```

见教材ggplot2的60页

```
stat_identity()
stat_smooth()
stat_function()
stat_boxplot()
stat_density()
stat_quantile()
stat_sum()
stat_summary()
stat_unique()
stat_bin()
stat_bindot()
```

layer()和geom_xxx()

summary()

```
> p <- ggplot(msleep, aes(sleep_rem / sleep_total, awake))</pre>
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem,
  sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
 faceting: facet_null()
> p <- p + geom_point()</pre>
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem,
  sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
faceting: facet_null()
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity
```


aes()

图形属性vs. 图层属性

p <- ggplot(mtcars, aes(mpg, wt))</pre>

p + geom_point(colour = "darkblue")

colour • darkblue

p + geom_point(aes(colour = "darkblue"))

分组


```
p <- ggplot(Oxboys,</pre>
                                                         170 -
                 aes(age,
                      height,
                                                          160 -
                      group = Subject)
                                                       height
120
 p + geom_smooth(aes(group = Subject),
                                                         140 -
                              method="lm",
                              se = F)
                                                          130 -
                                                                                               0.5
                                                             -1.0
                                                                         -0.5
                                                                                                           1.0
                                                                                    0.0
                                                                                    age
 170 -
                                                                  p <- ggplot(Oxboys,
                                                                                aes(age,
 160 -
                                                                                     height,
                                                                                     group = Subject)
height
150 -
 140 -
                                                                p + geom\_smooth(aes(group = 1),
                                                                                            method="lm",
 130 -
                                                                                             se = F)
                   -0.5
                                             0.5
                                                          1.0
                                0.0
      -1.0
```

age

提问时间!

孙惠平 sunhp@ss.pku.edu.cn

练习

- ggplot2的I-4章,熟悉所有例子。
- R数据可视化手册的2-5章,熟悉所有例子。
- 教材RIA(第二版)的第19章,熟悉所有例子。

· 用qplot和ggplot重新做前面所有画图的练习题

0022、0023、0024、0025、0026

• 课堂测试04、课堂测试05

谢谢!

孙惠平 sunhp@ss.pku.edu.cn