IV.2. Interpolare cu functii spline pătratice.

Definitia (IV.1. (continuare)) (b) S interpolează f în x_i , $j = \overline{1, n+1}$: $S(x_i) = f(x_i), \quad j = \overline{1, n+1}$

(c) S este continuă în nodurile interioare, i.e.
$$x_{j+1}$$
, $j=\overline{1,n-1}$:

 $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), \quad i = \overline{1, n-1}$

Relatiile (3)-(4) ne furnizează sistemul de ecuatii liniare, i.e. 2n ecuatii

liniare pentru necunoscutele $a_i, b_i \in \mathbb{R}, j = \overline{1, n}$. Conform condiției (b) și ținând cont de faptul că $x_i \in I_i, j = \overline{1, n}$ rezultă

 $S(x_i) = S_i(x_i) = f(x_i)$, deci $a_i = f(x_i)$, $j = \overline{1, n}$

Nodul
$$x_{n+1} \in I_n$$
, deci
$$S(x_{n+1}) = S_n(x_{n+1}) \Rightarrow a_n + b_n(x_{n+1} - x_n) = f(x_{n+1}) \Rightarrow$$

 $b_n = \frac{f(x_{n+1}) - f(x_n)}{x_n}$

Curs #7

(3)

(4)

IV. Interpolarea cu functii spline. IV.1. Interpolare cu functii spline liniare

 $I_n = \bar{I}_n = [x_n, x_{n+1}].$ Definitia (IV.1.)

 $f: [a, b] \longrightarrow \mathbb{R} \ dacă$

unde

S este liniară pe portiuni:

Fie $f: [a, b] \to \mathbb{R}$ și $(x_i)_{i-1}$ o diviziune a intervalului [a, b], i.e. $a = x_1 < ... < x_{n+1} = b$. Fie $I_i = [x_i, x_{i+1}]$ ou $\overline{I}_i = [x_i, x_{i+1}]$. $i = \overline{1, n-1}$.

Functia $S: [a,b] \longrightarrow \mathbb{R}$ s.n. functie spline liniară pentru functia

cu $a_i, b_i \in \mathbb{R}$, $i = \overline{1, n}$, ce trebuie determinate.

 $S(x) = S_i(x), \forall x \in I_i, j = \overline{1, n}$

 $S_i: \overline{I_i} \longrightarrow \mathbb{R}$, $S_i(x) = a_i + b_i(x - x_i)$, $i = \overline{1, n}$

Rezultă următoarea sch
$$a_j,b_j,j=\overline{1,n}$$
 :

a schemă numerică de determinare a coeficiențilo
$$\begin{cases} a_j = f(x_j), & j = \overline{1,n} \\ b_j = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}, & j = \overline{1,n} \end{cases}$$

(2)

(6)

$$(a_j + b_j(x - x_j))|_{x = x_{j+1}} = (a_{j+1} + b_{j+1}(x - x_{j+1}))|_{x = x_{j+1}}$$

 $a_j + b_j(x_{j+1} - x_j) = a_{j+1}, \quad j = \overline{1, n-1}$

$$b_j=\frac{f(x_{j+1})-f(x_j)}{x_{j+1}-x_j},\quad j=\overline{1,n-1}$$
 Rezultă următoarea schemă numerică de determinare a coeficienților

$$\begin{cases} a_j = f(x_j), & j = \overline{1, n} \\ f(x_{j+1}) - f(x_j) & \overline{1 - x_j} \end{cases}$$

ALGORITM (Interpolarea spline liniară) Date de intrare: X: Y: x:

 $S = a_i + b_i(x - X_i);$

STOP endif

Date de iesire: y: Determină n;

2: for i = 1 : n do

 $a_j = Y_j; \quad b_j = \frac{Y_{j+1} - Y_j}{X_{j+1} - X_j};$

endfor

3: for i = 1 : n do

if $x \in [X_i, X_{i+1}]$ do

endfor

v = S:

de unde $a_1 = e^{-2}$, $a_2 = 1$, $a_2 + b_2 = e^2$, deci $b_2 = e^2 - 1$. Pe de altă parte. S este continuă în nodul $x_2 \in (-1,1)$, i.e.

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 = a_2$, de unde rezultă $b_1 = 1 - e^{-2}$. Obţinem astfel, următoarea reprezentare:

(8)

(10)

(9)

unde

Definitia (IV.2.)

 $f:[a,b]\longrightarrow \mathbb{R} \ dac \check{a}:$

echivalent:

S este pătratică pe portiuni:

Rezolvare:

Obs.: Vectorul X contine nodurile de interpolare x_1, \dots, x_{n+1} , iar vectorul

Exemplul # 1: Să se afle funcția spline liniară pentru funcția $f(x) = e^{2x}$

 $S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_2] \end{cases}$

unde $S_1(x) = a_1 + b_1(x - x_1)$ și $S_2(x) = a_2 + b_2(x - x_2)$. Se obține astfel

 $S(x) = \begin{cases} a_1 + b_1(x+1), & x \in [-1,0) \\ a_2 + b_2x, & x \in [0,1] \end{cases}$

 $S(x_1) = f(x_1), S(x_2) = f(x_2), S(x_3) = f(x_3)$

 $S_1(-1) = e^{-2}$, $S_2(0) = 1$, $S_2(1) = e^2$

Functia $S:[a,b] \longrightarrow \mathbb{R}$ s.n. functie spline pătratică pentru funcția

cu $a_i, b_i, c_i \in \mathbb{R}$, $j = \overline{1, n}$, ce trebuie determinate.

 $S(x) = S_i(x), \forall x \in I_i, i = \overline{1.n}$

 $S_i: \overline{I}_i \longrightarrow \mathbb{R}$, $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2, j = \overline{1, n}$

Y conține valorile funcției în nodurile de interpolare, $f(x_1), \dots, f(x_{n+1})$.

relativ la diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$.

Deoarece S interpolează f în cele trei noduri rezultă

IV.2. Interpolare cu functii spline pătratice.

(b) S interpolează f în x_i , $j = \overline{1, n+1}$:

 $S(x_i) = f(x_i), \quad i = \overline{1, n+1}$

Curs #7

 $S(x) = \begin{cases} e^{-2} + (1 - e^{-2})(x+1), & x \in [-1,0) \\ 1 + (e^2 - 1)x, & x \in [0,1] \end{cases}$

 $= \begin{cases} 1 + (1 - e^{-2})x, & x \in [-1, 0) \\ 1 + (e^{2} - 1)x, & x \in [0, 1] \end{cases}$

Definiția (IV.2. (continuare))		$a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 = a_{i+1}, j = \overline{1, n-1}$ (15)
(c) S este continuă în nodurile interioare x_{j+1} , $j = \overline{1, n-1}$:		$a_{j} + b_{j}(x_{j+1} - x_{j}) + c_{j}(x_{j+1} - x_{j}) - a_{j+1}, j = 1, m = 1 $ Sau
$S_j(x_{j+1}) = S_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(11)	$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 = f(x_{j+1}), j = \overline{1, n-1} $ (16)
(d) S' este continuă în nodurile interioare x_{j+1} , $j = \overline{1, n-1}$:		Relațiile (14) și (16) pot fi cuplate și rescrise ca o singură relație pentru
$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}), j = \overline{1, n-1}$	(12)	$j=\overline{1},\overline{n}.$ Cum $S_j'(x)=b_j+2c_j(x-x_j),$ atunci conform condiției (d) rezultă
(e) Una din următoarele condiții este satisfăcută $(e)_1: S'(x_1) = f'(x_1)$		$b_j + 2c_j(x_{j+1} - x_j) = b_{j+1}, j = \overline{1, n-1}$ (17)
(e) ₁ : $S(x_1) = f(x_1)$ (e) ₂ : $S'(x_{n+1}) = f'(x_{n+1})$		Conform condiției (e) rezultă
Conform condiției (b) rezultă		$S'_1(x_1) = f'(x_1) \Rightarrow b_1 = f'(x_1)$ (18)
$a_j = f(x_j), j = \overline{1, n}$	(13)	sau
$a_n + b_n(x_{n+1} - x_n) + c_n(x_{n+1} - x_n)^2 = f(x_{n+1})$	(14)	$S'_n(x_{n+1}) = f'(x_{n+1}) \Rightarrow b_n + 2c_n(x_{n+1} - x_n) = f'(x_{n+1}) \tag{19}$
Conform condiției (c) rezultă		Dacă în (19) considerăm $b_{n+1} = f'(x_{n+1})$ atunci relațiile (19) și (17) pot fi cuplate și rescrise ca o singură relație pentru $j = \overline{1, n}$.
Fie $h_j=x_{j+1}-x_{j},j=\overline{1,n}$ lungimea fiecărei subinterval $[x_j,x_{j+1}].$ Obținem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j,c_j :	9/19	Rezultă schemele numerice de calcul a coeficienților $b_j,c_j,j=\overline{1,n}$
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$	(20)	$(h_i = f(t_i))$
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau	(20) (21)	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ Sall
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$,	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ Sall
Obtinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$,	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ Sall
Obţinem astfel, sistemele complete de ecuații necesare pentru determinarea coeficienților $b_j, c_j:$ $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$ Din (20) $_1$ rezultă	(21)	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ sau $\begin{cases} b_{n+1} = f'(x_{n+1}) \\ b_{n-2} = f(x_{n+1}), & f(x_n) \\ b_{n-2} = f(x_n), & f(x_n) \end{cases} $
Obţinem astfel, sistemele complete de ecuaţii necesare pentru determinarea coeficienților b_j, c_j : $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_1 = f'(x_1) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n-1} \end{cases}$ sau $\begin{cases} a_j + b_j h_j + c_j h_j^2 = f(x_{j+1}), & j = \overline{1,n} \\ b_{n+1} = f'(x_{n+1}) \\ b_j + 2c_j h_j = b_{j+1}, & j = \overline{1,n} \end{cases}$ Din (20) $_1$ rezultă $c_j = \frac{1}{h_j^2} \left(f(x_{j+1}) - f(x_j) - h_j b_j \right), j = \overline{1,n} \end{cases}$	(21)	$\begin{cases} b_1 = f'(x_1) \\ b_{j+1} = \frac{2}{h_j} (f(x_{j+1}) - f(x_j)) - b_j, & j = \overline{1, n - 1} \\ c_j = \frac{1}{h_j^2} (f(x_{j+1}) - f(x_j) - h_j b_j), & j = \overline{1, n} \end{cases} $ Sall

Exemplul #2: Să se afle funcția spline pătratică pentru funcția $f(x) = e^{2x}$ relativ la diviziunea $(x_1, x_2, x_3) = (-1, 0, 1)$.

Rezolvare:

$$S(x) = \begin{cases} S_1(x), & x \in [x_1, x_2) \\ S_2(x), & x \in [x_2, x_3] \end{cases}$$

unde

$$S_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2$$

$$S_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2$$

Se obtine astfel

functiei spline pătratice S:

$$S(x) = \begin{cases} a_1 + b_1(x+1) + c_1(x+1)^2, & x \in [-1,0) \\ a_2 + b_2x + c_2x^2, & x \in [0,1] \end{cases}$$

Deoarece S interpolează f în cele trei noduri rezultă

$$S(x_1) = S_1(x_1) = f(x_1), S(x_2) = S_2(x_2) = f(x_2), S(x_2) = S_2(x_3) = f(x_3)$$

Considerăm în plus satisfăcută conditia $S'(x_1) = f'(x_1)$ sau $S_1'(-1) = f'(-1)$, de unde $b_1 = 2e^{-2}$. Din relația (27) rezultă $c_1 = 1 - 3e^{-2}$, iar din (28) rezultă $b_2 = 2 - 4e^{-2}$. În final, din relatia (26) rezultă $c_2 = e^2 + 4e^{-2} - 3$. Obtinem astfel, următoarea reprezentare a

 $S(x) = \begin{cases} e^{-2} + 2e^{-2}(x+1) + (1-3e^{-2})(x+1)^2, & x \in [-1,0) \\ 1 + (2-4e^{-2})x + (e^2+4e^{-2}-3)x^2, & x \in [0,1] \end{cases}$

Curs #7

echivalent

de unde
$$a_1 = e^{-2}$$
, $a_2 = 1$, $a_2 + b_2 + c_2 = e^2$, deci
$$b_2 + c_2 = e^2 - 1. \tag{26}$$

Pe de altă parte. S este continuă în nodul $x_2 \in (-1,1)$, i.e.

 $S_1(x_2) = S_2(x_2)$ sau $S_1(0) = S_2(0)$, deci $a_1 + b_1 + c_1 = a_2$, de unde rezultă $b_1 + c_1 = 1 - e^{-2}$.

 $S_1(-1) = e^{-2}$, $S_2(0) = 1$, $S_2(1) = e^2$

Derivatele funcțiilor
$$S_1$$
 și S_2 sunt:
 $S'(x) = b_1 + 2c_1(x - x_1)$, $S'(x) = b_2 + 2c_2(x - x_2)$, Funcția S' se exprimă

prin formula

$$S'(x) = \begin{cases} b_1 + 2c_1(x+1), & x \in [-1,0) \\ b_2 + 2c_2x, & x \in [0,1] \end{cases}$$
Derivata S' a functiei spline pătratice este continuă în nodul interior x_2 .

i.e. $S_1'(x_2) = S_2'(x_2)$ sau $S_1'(0) = S_2'(0)$ de unde rezultă

$$b_1 + 2c_1 = b_2 (28)$$