<mark>3</mark> 저항회로의 일반적 해석방법

3.1 절점해석법

3.3 절점해석법과 망로해석법의 선택 연습문제

3.2 망로해석법

이제까지 취급한 회로는 직병렬구조의 회로였다. 그러나 실제로 접하는 시스템에서는 흔히 그 구조가 매우 복잡하다. 이 장에서는 일반적 구조의 회로는 조직적으로 해석할 수 있는 매우 강력한 두 가지 방법, 즉 (1) 절점해석법과 (2) 망로해석법을 배운다. 엄격히 말해서 망로해석법은 **평면회로**에 대해서만 적용된다. 이것은 어느 지로도 교차되지 않도록 평면상에 그 회로도를 그릴 수 있는 회로를 말한다. 절점해석법은 그와 같은 구조적 제한이 없는 더 일반적 회로에도 적용되는 해석법이다.

연립대수방정식을 푸는 **크래머**(Cramer)**의 방법**을 배우지 않았으면 부록 A.1을 참고한다.

3.1 절점해석법

그림 3.1과 같은 전류전원과 컨덕턴스로 구성된 간단한 회로를 생각하자. 먼저용어를 정의한다. 이 회로에서 0, 1, 2와 같은 소자들(전원과 저항)의 접합점을 **절점**(node)이라 한다. 회로에서 전위의 기준점으로 택한 절점을 특히 **기준절점**이라 하고, 기준절점에 대한 나머지 절점들의 전압을 **절점전압**이라 한다. 또 절점

44 제3 : 저항회로의 일반적 해석방법

그림 3.1 전류전원과 저항으로 구성된 간단한 회로 $(v_{12} = v_1 - v_2)$ 임에 주목)

과 절점 사이의 소자를 **지로**(branch)라 하고 지로를 흐르는 전류를 **지로전류**라 한다. 이 회로는 3개의 절점을 갖고 있다. 여기서는 절점 0을 기준절점으로 택하는 것이 자연스럽다. 기준절점 0에 대한 다른 절점 1, 2의 전압, 곧 절점전압을 각각 v_1 , v_2 라 하고 각 지로전류를 그림과 같이 가정하면 절점 1, 2에서의 KCL은

절점 ① :
$$i_1+i_2-i_{g1}=0$$

 절점 ② : $-i_2+i_3+i_{g2}=0$ $\}$ (3.1)

이 식을 절점전압 v_1 , v_2 로 표시해야 한다. 각 저항에서의 i -v 관계로부터

$$i_1 = \frac{v_1}{R_1}, \quad i_2 = \frac{v_1 - v_2}{R_2}, \quad i_3 = \frac{v_2}{R_3}$$
 (3.2)

여기서 특히 주의할 것은 절점 ①로부터 절점 ②로 생기는 전압강하가 (v_1-v_2) 로 표시된다는 것이다. 식 (3.2)를 식 (3.3)에 대입하면

$$\frac{v_1}{R_1} + \frac{v_1 - v_2}{R_2} - i_{g1} = 0
- \frac{v_1 - v_2}{R_2} + \frac{v_2}{R_3} + i_{g2}$$
(3.3)

식 (3.3)에서 기지(旣知 의 전원전류를 우변에 옮기고 좌변을 v_1 , v_2 에 관하여 정돈하면

$$\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)v_{1} - \frac{1}{R_{2}}v_{2} = i_{g1} \\
- \frac{1}{R_{2}}v_{1} + \left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right)v_{2} = -i_{g2}$$
(3.4)

이제는 이 연립방정식을 풀어서 절점전압 v_1 , v_2 을 구하면 된다. 그런데 이 식을 보면 저항의 역수가 끝까지 따라다니므로 차라리 처음부터 컨덕턴스를 사용하여[그림 3.1 (b)] KCL식을 쓰면

점점 ① :
$$(G_1 + G_2)v_1 - G_2v_2 = i_{g1}$$
 절점 ② : $-G_2v_2 + (G_2 + G_3)v_2 = -i_{g2}$
(단, $G_i = 1/R_i$, $i = 1, 2, 3$)

학기처
$$G_{11}=G_1+G_2$$
, $G_{12}=G_{21}=-G_2$, $G_{22}=G_2+G_3$ $i_1=i_{g1}$, $i_2=-i_{g2}$ (3.6)

라 놓으면 식 (3.4)를 다음과 같은 정돈된 형식으로 고쳐 쓸 수 있다.

$$\left. \begin{array}{l}
 G_{11}v_1 + G_{12}v_2 = i_1 \\
 G_{21}v_1 + G_{22}v_2 = i_2
 \end{array} \right\}
 \tag{3.7}$$

이 방정식을 **절점방정식**이라 한다. 여기서 G_{11} , G_{22} 를 각각 절점 ①, ②의 자기컨덕턴스, G_{12} 와 G_{21} 을 절점 ①과 절점 ② 사이의 **상호컨덕턴스**라고 한다.

식 (3.6)과 원회로 그림 3.1 (b)를 대조하여 보면 G_{11} 은 절점 ①에 직접 연결된 모든 컨덕턴스의 합과 같고, G_{22} 는 절점 ②에 직접 연결된 모든 컨덕턴스의 합과 같다. 또 G_{12} 와 G_{21} 은 절점 ①과 절점 ② 사이에 직접 연결된 컨덕턴스에 -의 부호를 붙인 것이다. 그리고 우변의 i_1 , i_2 는 각 절점에 유입하는 전원전류이다. 이상의 사실을 기억하면 절점방정식 (3.7)은 식 (3.5)를 거치지 않고 회로의 관찰로부터 직접 써 내릴 수 있을 것이다.

이제 식 (3.7)을 풀어서 v_1 , v_2 을 구하면 모든 지로의 전압, 전류를 구할 수 있다.

이상 설명한 것이 절점해석법이며, 회로의 구조 여하에 불구하고 항상 적용될

수 있는 일반적인 회로해석법의 하나이다.

[수치예] 그림 3.1 (b)에서 $G_1=0.4\mathrm{S},~G_2=0.2\mathrm{SS},~G_3=0.2\mathrm{S},~i_{g1}=2\mathrm{A},i_{g2}=0.1\mathrm{A}$ 라면 관찰에 의하여 절점방정식은

절점 ① : $0.6v_1 - 0.2v_2 = 0.2$ 절점 ② : $-0.2v_2 + 0.45v_2 = -0.1$

[주] 주어진 회로에서 82Ω , $4.7\,\mathrm{k}\Omega$ 와 같은 표준저항치들이 주어진 경우 calculator를 써서 컨덕턴스를 계산하는 것은 쉬운 일이다. 오히려 저항치를 그대로 두고 방정식을 푸는 것이 번거롭다.

예제 3.1

그림 3.2 (a)의 회로에서 절점해석법에 의하여 절점전압을 구한 다음 이것을 이용하여 모든 지로의 전압, 전류를 구하라.

그림 3.2 예제 3.1의 회로

풀 이

그림 (b)와 같이 각 지도의 컨덕턴스를 쓰고 전압이 기준점을 정한 다음 이에 대한 2개의 절점 ①, ②에서의 절점전압 $v_1,\ v_2$ 에 관해서 절점방정식을 세우면

절점 ① :
$$(0.5+0.2)v_1-0.2v_2=3.1$$
 \rightarrow $0.7v_1-0.2v_2=3.1$
절점 ② : $-0.2v_1+(0.2+1)v_2=-(-1.4)$ $\rightarrow -0.2v_1+1.2v_2=1.4$ (3.8)

소거법에 의하여 이 연립방정식을 풀면

$$v_1 = 5 \, \text{V}, \qquad v_2 = 2 \, \text{V}$$

또는 더 조직적인 크래머의 방법(부록 참고)으로 풀면

$$v_1 {=} \frac{ \begin{vmatrix} 3.1 & -0.2 \\ 1.4 & 1.2 \end{vmatrix} }{ \begin{vmatrix} 0.7 & -0.2 \\ -0.2 & 1.2 \end{vmatrix} } {=} \frac{N_1}{D}$$

 $D \! = \! 0.7 \! \times \! 1.2 \! - \! 0.2 \! \times \! 0.2 \! = \! 0.8$

$$N_1 = 3.1 \times 1.2 + 0.2 \times 1.4 = 4$$
 : $v_1 = \frac{4}{0.8} = 5 \text{ V}$

$$v_2 {=} \; \frac{\left| \begin{array}{cc} 0.7 & 3.1 \\ -0.2 & 1.4 \end{array} \right|}{D} {=} \; \frac{N_2}{D}$$

$$N_2 = 0.7 \times 1.4 + 0.2 \times 3.1 = 1.6$$
 $\therefore v_2 = \frac{1.6}{0.8} = 2V$

 v_1, v_2 가 구해졌으므로 각 지로의 전압, 전류를 구하면

$$v_{10} = 5 \, \text{V}$$
,

$$i_{10} = 5 \times 0.5 = 2.5 \,\mathrm{A}$$

$$v_{20} = 2 V$$

$$v_{20} \! = 2 \, \mathrm{V} \, , \qquad \qquad i_{20} \! = 2 \! \times \! 1 = 2 \mathrm{A} \,$$

$$v_{12} = 5 - 2 = 3 \text{ V}$$

$$v_{12} = 5 - 2 = 3 \text{ V}, \qquad i_{12} = 3 \times 0.2 = 0.6 \text{ A}$$

이상에서 구한 전압, 전류의 분포를 그림 (c)에 표시하였다.

예제 3.2

그림 3.3 (a)의 휘트스톤 브리지(Wheatstone bridge)에서 절점해석법에 의하여 모든 지 로 전류를 구하라.

풀 이

먼저 전원변환을 하고 모든 지로의 저항을 컨덕턴스로 표시하여 그림 (b)를 얻는다. 여기서 기준전위점을 그림과 같이 택하고 3개의 절점 ①, ②, ③에서의 자기컨덕턴스 와 상호컨덕턴스를 구하면

$$G_{11} = 1 + 0.5 + 0.5 = 2,$$
 $G_{22} = 1 + 0.5 + 0.5 = 2,$

$$G_{33} = 1 + 1 + 0.5 = 2.5$$

$$G_{12} = G_{21} = -0.5$$
, $G_{13} = G_{31} = -0.5$, $G_{23} = G_{32} = -1$ (단위는 모두 S)

그러므로 절점방정식은

절점 ① :
$$2v_1 - 0.5v_2 - 0.5v_3 = 10$$

절점 ② : $-0.5v_1 + 2v_2 - v_3 = 0$
절점 ③ : $-0.5v_1 - v_2 + 2.5v_3 = 0$ (3.9)

이 연립방정식은 **크래머의 방법**에 의하여 푸는 것이 가장 조직적이다(부록 A.1).

$$V_1 = \frac{\begin{vmatrix} \downarrow \\ 10 & -0.5 & -0.5 \\ 0 & 2 & -1 \\ 0 & -1 & 2.5 \end{vmatrix}}{\begin{vmatrix} 2 & -0.5 & -0.5 \\ -0.5 & 2 & -1 \\ -0.5 & -1 & 2.5 \end{vmatrix}} = \frac{N_1}{D}$$

여기서
$$D = 2 \cdot 2 \cdot 2.5 + (-1)(-0.5)(-0.5) + (-0.5)(-0.5)(-1)$$
$$-(0.5) \cdot 2(-0.5) - (-0.5)(-0.5)2.5 - 2(-1)(-1) = 6.375$$

$$N_1 = 10 \begin{vmatrix} 2 & -1 \\ -1 & 2.5 \end{vmatrix} = 10(2 \cdot 2.5 - 1) = 40$$

$$N_2 = \begin{vmatrix} 2 & 10 & -0.5 \\ -0.5 & 0 & -1 \\ -0.5 & 0 & 2.5 \end{vmatrix} = -10 \begin{vmatrix} -0.5 & -1 \\ -0.5 & 2.5 \end{vmatrix} = 17.5$$

$$N_3 = \begin{vmatrix} 2 & -0.5 & 10 \\ -0.5 & 2 & 0 \\ -0.5 & -1 & 0 \end{vmatrix} = 10 \begin{vmatrix} -0.5 & 2 \\ -0.5 & -1 \end{vmatrix} = 15$$

$$\therefore \ v_1 = \frac{40}{6.375} = 6.275 \, \mathrm{V}, \quad v_2 = \frac{17.5}{6.375} = 2.745 \, \mathrm{V}, \quad v_3 = \frac{15}{6.375} = 2.353 \, \mathrm{V}$$

지로전압은 $v_{12}\!=\!v_1-v_2\!=\!6.275-2.745\!=\!3.53\,\mathrm{V},~v_{13}\!=\!3.922\,\mathrm{V}$

$$v_{23}\!=\!0.392\,\mathrm{V},\ \ v_{20}\!=\!v_{2}\!=\!2.745\,\mathrm{V},\ \ v_{30}\!=\!v_{3}\!=\!2.353\,\mathrm{V}$$

그림 3.3 예제 3.2의 회로

지로전류들은 지로전압에 컨덕턴스를 곱해서 얻어지며, 따라서 그림 (b)와 같은 전류 분포를 얻는다. 특히 원회로의 전압전원에서 절점 ①로 유입하는 전류는 $(10-v_1)$ ×1= 3.725 A 이다.

이 절을 끝마치기에 앞서 지적할 것은 식 (3.5), (3.8), (3.9)에서 보는 바와 같 이 절점방정식의 계수들에 대칭성이 존재한다는 것이다. 즉,

$$G_{ij} = G_{ji} \quad , \quad i \neq j \tag{3.10}$$

3.2 망로해석법

먼저 **망로**(mesh)를 정의한다. 이것은 그림 3.4에 예시한 바와 같이 그물눈과 같은 폐로를 의미한다.

그림 3.5와 같은 전압전원과 저항으로 구성된 간단한 회로를 생각하자. 이 회 로에서 망로는 a-b-d-a와 b-c-d-b이고, 이것을 각각 망로 1, 망로 2라 부 르자. 지금 그림과 같이 망로 1을 순환하여 흐르는 전류 i_1 이 존재한다고 가상하 자. 이 i_1 은 전원 v_a 와 저항 R_1 을 흐르는 지로전류 i_a 와 같다. 또 이와는 독립적 으로 망로 2를 순환하는 전류 i_2 가 존재한다고 가상하자. 이것은 R_3 와 v_{q2} 를 흐 르는 지로전류 i_b 와 같다. 그러면 접속점 b에서 d로 흐르는 실제의 지로전류 i_c 는 i_1-i_2 와 같다. 이와 같은 **망로전류**(mesh current)의 도입의 타당성은 곧 밝혀 진다.

회로해석에서 지로전류의 양의 방향을 임의로 택할 수 있는 것과 같이 망로전 류의 양의 방향도 임의로 가정할 수 있다. 그러나 시계방향을 기준으로 하는 것 이 일반적이다. 망로전류의 기준방향을 명시하기 위하여 그림에서 보는 바와 같 은 화살표를 사용한다. 이와 같은 망로전류를 가정하면 각 접속점에서 KCL 식은 자동적으로 만족된다[가령 절점 b에서 KCL 식은 $i_a-i_b-i_c=i_1-i_2-(i_1-i_2)$ =0]. 그러므로 우리는 KVL식만 고려하면 된다. KVL식은 각 망로에 따라 세우

그림 3.4 망 로

그림 3.5 망로전류

망로 1:
$$R_1i_1 + R_3(i_1 - i_2) = v_{g1}$$
 망로 2: $-R_3(i_1 - i_2) + R_2i_2 = -v_{g2}$ (3.11)

둘째 식에서 R_3 앞에 -의 부호가 붙은 것은 망로 2를 시계방향으로 일주할때 점 d에서 b로 생기는 전압강하가 $-R_3i_c=-R_3(i_1-i_2)$ 이기 때문이다. 이제는 위의 두 방정식을 연립시켜 망로전류를 구한 다음 필요하면 모든 실제의 지로전류들은 이것들의 가감으로부터 구하면 된다.

이 방법에 의한 회로방정식 (3.11)이 그림 3.5의 지로전류 i_a , i_b , i_c 를 미지수로 택하여 세운 회로방정식과 일치하는가를 살펴보자.

$$\begin{split} & \text{KCL} \, : \, i_c \! = i_a - i_b \\ & \text{KVL} \, : \, R_1 \, i_a \! + R_3 (i_a \! - \! i_b) \! = v_{g1} \\ & \text{KVL} \, : \, R_3 (i_a \! - \! i_b) \! - R_2 i_b \! = \! - v_{g2} \end{split}$$

이 식들을 식 (3.11)과 비교하면 $i_a=i_1$, $i_b=i_2$ 라 놓고 또 $i_c=i_1-i_2$ 라 놓으면 두 방법에서의 회로방정식이 등가임을 알 수 있다.

식 (3.11)에서 기지의 전원전압을 우변으로 옮기고 좌변을 $i_1,\ i_2$ 에 관하여 정돈하면

$$\begin{array}{c} (R_1 + R_3)i_1 - R_3i_2 = v_{g1} \\ -R_3i_1 + (R_2 + R_3)i_2 = -v_{g2} \end{array}$$
 (3.12)

지금
$$R_{11} = R_1 + R_3, \quad R_{12} = R_{21} = -R_3, \quad R_{22} = R_2 + R_3$$

$$v_1 = v_{g1}, \quad v_2 = -v_{g2}$$
 (3.13)

라 놓으면 식 (3.12)를 다음과 같은 정돈된 형식으로 나타낼 수 있다.

$$\left.\begin{array}{l}
R_{11}i_1 + R_{12}i_2 = v_1 \\
R_{21}i_1 + R_{22}i_2 = v_2
\end{array}\right}$$
(3.14)

이 방정식을 **망로방정식**이라 한다. 여기서 R_{11} , R_{22} 를 각각 망로 1, 망로 2의 **자기저항**, R_{12} 와 R_{21} 을 망로 1과 망로 2 사이의 **상호저항**이라고 한다.

식 (3.13)과 원회로를 대조하여 보면 R_{11} 은 망로 1에 포함된 모든 저항의 합과 같고, R_{22} 는 망로 2에 포함된 모든 저항의 합과 같다. 또 R_{12} 와 R_{21} 은 망로 1과 망로 2에 공통적인 지로의 저항이며, 만일 이 공통지로에서의 전류 i_1 과 i_2 와의 가정방향이 반대이면 -의 부호가 되고, 같은 방향이면 +가 된다(위의 예에서는 반대가 되고 있으므로 -가 되고 있다). 또 식 (3.12)의 우변은 각 망로전류의 양의 방향으로 생기는 전원전압의 상승과 같다. 이상의 사실을 기억하면 식 (3.11)을 거치지 않고 망로방정식 (3.14)는 회로의 관찰로부터 직접 써 내릴 수 있을 것이다. 이제 식 (3.14)를 풀어서 i_1 , i_2 를 구하면 모든 지로의 전류, 전압을 구할수 있다.

이상 설명한 것이 **망로해석법**이며 <u>평면회로</u>(planar circuit; 지로의 교차 없이 평면에 회로도를 그릴 수 있는 회로)에만 항상 적용될 수 있는 해석법이다. (절점해석법은 이런 회로구조상의 제한이 없는 더 일반적인 방법이다)

독자는 이미 절점해석법과 망로해석법 사이에 표 3.1과 같은 대응관계가 있음을 알아차렸을 것이다. 이와 같은 관계를 **쌍대적**(dual) 관계라 하고, 표에서 좌우 양쪽의 양은 서로 쌍대적인 양이다.

절 점 해 석 법	망 로 해 석 법
전 류	전 압
절 점	망 로
전 류 전 원	전 압 전 원
절 점 전 압	망 로 전 류
절 점 방 정 식	망 로 방 정 식
컨 덕 턴 스	저 항
자 기 컨 덕 턴 스	자 기 저 항
상호컨덕턴스	상 호 저 항

표 3.1 쌍대적인 양

[수치에] 그림 3.5에서 $R_1=4\,\Omega,\;R_2=2\,\Omega,\;R_3=2\,\Omega,\;v_{g\,1}=2{\rm V},v_{g\,2}=-1{\rm V}$ 라면 망로방정식은 관찰에 의하여

망로 $1: 6i_1-2i_2=2$ 망로 $2:-2i_1+4i_2=-1$ 이로부터 $i_1,\ i_2$ 을 구하면 $i_1=0.3$ A, $i_2=-0.1$ A

예제 3.3

그림 3.6 (a)의 회로에서 모든 지로의 전류와 전압을 망로해석법에 의하여 구하라.

그림 3.6 예제 3.3의 회로

풀 이

망로전류의 방향을 그림 3.6 (a)에서와 같이 가정하면 회로를 관찰함으로써 망로방정식은

$$29 i_1 - 20 i_2 - 8 i_3 = 8$$

$$-20 i_1 + 50 i_2 - 5 i_3 = 0$$

$$-8 i_1 - 5 i_2 + 20.5 i_3 = 0$$
(3.15)

이 연립방정식은 **크래머의 방법**에 의하여 푸는 것이 가장 조직적이다(부록 A.1).

$$I_{1} = \frac{N_{1}}{D} = \frac{\begin{vmatrix} 8 & -20 & -8 \\ 0 & 50 & -5 \\ 0 & -5 & 20.5 \end{vmatrix}}{\begin{vmatrix} 29 & -20 & -8 \\ -20 & 50 & -5 \\ -8 & -5 & 20.5 \end{vmatrix}}$$

여기서
$$D = 29 \times 20.5 - 20 \times 5 \times 8 - 8 \times 5 \times 20 - 8 \times 50 \times 8 - 20 \times 20 \times 20.5 - 29 \times 5 \times 5$$
$$= 29,725 - 800 - 800 - 3200 - 725 = 16,000$$
$$N_1 = 8 \begin{vmatrix} 50 & -5 \\ -5 & 20.5 \end{vmatrix} = 8(1025 - 25) = 8000$$

$$N_2\!=\!\begin{vmatrix}29 & 8 & -8\\ -20 & 0 & -5\\ -8 & 0 & 20.5\end{vmatrix}\!=\!\!-8\begin{vmatrix}-20 & -5\\ -8 & 20.5\end{vmatrix}\!=\!\!-8(-410-40)=3600$$

$$N_3 = \begin{vmatrix} 29 & -20 & 8 \\ -20 & 50 & 0 \\ -8 & -5 & 0 \end{vmatrix} = 8 \begin{vmatrix} -20 & 50 \\ -8 & -5 \end{vmatrix} = 8(100 + 400) = 4000$$

$$\therefore \ \ I_1 = \frac{8000}{16,000} = 0.5 \, \text{A}, \quad I_2 = \frac{3600}{16,000} = 0.225 \, \text{A}, \quad I_3 = \frac{400}{16,000} = 0.25 \, \text{A}$$

이들로부터 각 지로전류의 분포는 그림 (b)와 같이 된다.

이 절을 끝마치기에 앞서 지적하고 싶은 것은 식 (3.12), (3.15)에서 보는 바와 같이 망로방정식의 계수들에 대칭성이 존재한다는 것이다. 즉.

$$R_{ij} = R_{ji} \quad , \quad i \neq j \tag{3.16}$$

3.3 절점해석법과 망로해석법의 선택

회로해석에서 절점법을 쓸 것인가 또는 망로법을 쓸 것인가 하는 문제는 주로 연립방정식의 수에 따라서 결정할 것이지만 양자의 수가 같거나, 하나 정도의 차가 있을 때에는 전원이 전압원인가 전류원인가, 또 지로의 저항이 주어졌는가 컨덕턴스가 주어졌는가 하는 것도 고려하여야 한다. 일반적으로 전압원을 포함 하고 또 지로의 저항이 주어진 경우에는 망로법을, 그리고 전류원을 포함하고 또 지로의 컨덕턴스가 주어진 경우에는 절점법을 쓰는 것이 계산상 노력이 덜 들 것이다. 또한 구하려는 응답이 전류인가 전압인가도 고려하여야 한다. 이와 같이 망로법과 절점법의 선택에는 여러 가지 요소를 고려해야 하는데, 결국 경 험과 숙련에 의하여 그때그때 가장 노력이 적게 드는 방법을 택할 수밖에 없다.

필요하면 전원변환을 한 후 망로 또는 절점방정식을 쓰는 것이 간단함은 이미 말하였다.

예제 3.4

그림 3.7 (a)의 회로에서 v_{cd} 을 구하라.

그림 3.7 예제 3.4의 회로

우측의 전압원을 전류원으로 변환하여 절점 a, b, c에 대한 절점방정식을 세워서 풀면

54 제3 : 저항회로의 일반적 해석방법

 v_{cd} 가 구해진다. 그러나 두 전류원을 전압원으로 변환하면 그림 $3.7\,(\mathrm{b})$ 와 같이 되고, 이것은 2개의 망로전류만 가정하여 풀면 되기 때문에 절점해석보다 더 간단하다.

망로 1:
$$33i_1 - 20i_2 = 28$$

망로
$$2:-20i_1+50i_2=-5$$

망로 $1: 33i_1-20i_2=28$ 망로 $2:-20i_1+50i_2=-5$ 이 두 식에서 i_1 을 소거하면 $(i_1$ 은 필요없다) $i_2=\frac{395}{1250}=0.316[\mathrm{A}]$

$$i_2 = \frac{395}{1250} = 0.316 [A]$$

연/습/문/제

3.1 그림 p 3.1의 회로에서 절점해석법에 의하여 각 지로전압을 구하라.

- ${\bf 3.2}$ 그림 p 3.2의 회로에서 절점해석법으로 v_1 및 v_2 을 구하라.
- 3.3 그림 p 3.3의 회로에서 망로해석법에 의하여 각 지로전류를 구하라.

3.4 그림 $p \, 3.4$ 의 회로에서 망로해석법에 의하여 i_1 을 구하라. (힌트 : 좌측망로전 류를 10 mA로 하라)

3.5 그림 p 3.4의 회로에서 절점해석법에 의하여 i_1 을 구하라. (힌트 : $4 \, \mathrm{k} \, \Omega$ 과 10V의 직렬을 전원변환하라)

- 3.6 연습문제 2.10을 절점해석법에 의하여 풀어라.
- 3.7 그림 p 3.7의 회로에서 전압 v_1 , v_2 을 구하라. (힌트 : 절점 ①에서 절점 ②로 흐르는 전류를 i_x 라 하고, 두 절점에서의 KCL 식을 합하면 i_x 가 없어진다. 또 $v_1-v_2=3$ V를 이용하라)

- 3.8 그림 p 3.7의 회로에서 망로해석법에 의하여 각 지로전압을 구하라. (힌트 : 우측망로전류는 6 mA이다)
- 3.9 그림 p 3.9의 회로에서 망로전류 i_1,i_2,i_3 을 구하라. (힌트 : 5 A 전원 양단전압을 v_x 라 하고, 망로 2, 3에 대한 망로방정식을 합하면 v_x 가 없어진다. 또 망로 1에 대한 망로방정식과 $i_3-i_2=5$ A를 이용하라)

- **3.10** 그림 p 3.10의 회로에서 절점해석법, 망로해석법 중 적당한 것을 선택하여 i_1 을 구하라. (힌트 : 망로법을 택할 때에는 좌측 망로전류는 $10\,\mathrm{A}$ 이다)
- **3.11** 그림 p 3.11의 회로에서 절점해석법, 망로해석법 중 적당한 것을 선택하여 v_o 를 구하라.
- 3.12 그림 p 3.12의 회로를 절점해석에 편하도록 바꾼 다음 절점방정식을 써라.

- 3.13 그림 p 3.12의 회로를 해석하기 위한 망로방정식을 써라. (힌트 : 2 A가 흐르는 망로전류를 생각하라)
- **3.14** 그림 p 3.14의 회로에서 (a) 절점 ①, ②에서의 절점방정식을 세워서 $v_1,\ v_2$ 을 구하라. (b) 이 결과로부터 전원전류 i_s 를 구하라.

- 3.15 그림 p 3.15의 회로(격자회로; lattice circuit)에서 절점해석법과 망로해석법 중 적당한 것을 택하여 v_o 을 구하라. (힌트 : 휘트스톤 브리지회로로 고쳐 그리고 생각하라)
- **3.16** 그림 p 3.16은 평면회로의 망인가 아닌가?

그림 p 3.16