ii. Solve
$$z = px + qy + p^2q^2$$
.

b.i. Solve
$$(D^3 - 3D^2D' + 4D'^3)z = e^{x+2y}$$
.

- ii. Find the general solution of $p \tan x + q \tan y = \tan z$.
- 29. a. Expand $f(z) = x^2$ when $-\pi < x < \pi$ in a fourier series of periodicity 2π . Hence deduce that, $\frac{1}{12} + \frac{1}{2^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{6}; \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{12}.$

b. Compute the first two harmonics of the fourier series of f(x) given by the following table.

x	0	π/3	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
f(x)	1	1.4	1.9	1.7	1.5	1.2	1.0

30. a. A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{t}\right)$. If it is released from rest from this position, find the displacement ν at any time and at any distance from the end x=0.

(OR)

- b. A rod, 30cm, long has its end A and B kept at 20°C and 80°C respectively, until steady state conditions prevail. The temperature at each end is then reduced to 0°C and kept so. Find the resulting temperature function u(x, t) taken x = 0 at A.
- 31. a. Find the Fourier transform of f(x) = 1 |x| if |x| < 1 and hence find the values of $\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$.

- b.i. Find the Fourier sine transform of $\frac{x}{x^2+a^2}$ and fourier cosine transform of $\frac{1}{a^2+x^2}$.
- ii. Using Parseval's identify evaluate $\int_{0}^{\infty} \frac{dx}{\left(a^2 + x^2\right)^2}.$
- 32. a.i. Find $z[\cos \omega t]$.
 - ii. Find the inverse z-transform of $\frac{z^2}{(z-a)^2}$ using covolution theorem.

b. Solve $y_{n+2} - 4y_{n+1} + 4y_n = 0$ given $y_0 = 1$ and $y_1 = 0$.

Reg. No.								
8								

B.Tech. DEGREE EXAMINATION, MAY 2019

Third Semester

MA1003 – TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2013 - 2014 and 2014 - 2015)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

- 1. The complete integral of p = q is

- (A) z = ax + by (B) z = a(x + y) + b(C) z = ax + by + c (D) z = ax by + a
- 2. The complete solution of $z = px + qy + p^2 q^2$ is

- (B) $ax by + a^2b^2$
- (A) $ax + by + a^2 b^2$ (C) $ax + by + a^2b^2$
- (D) $ax + by + a^2 + b^2$
- 3. Solve $(D^3 2D^2D')z = 0$
- (A) $z = \phi_1(y) + x \phi_2(y) + \phi_3(y 2x)$ (B) $z = \phi_1(y) + \phi_2(y) + x \phi_3(y + 2x)$ (C) $z = \phi_1(y) + x \phi_2(y) + \phi_3(y + 2x)$ (D) $z = \phi_1(y) \phi_2(y) \phi_3(y + 2x)$
- 4. Find particular integral of $(D^3 2D^2D')z = e^{x+2y}$
 - (A) $PI = \frac{-1}{2}e^{x+2y}$

(B) $PI = \frac{1}{3}e^{x+2y}$

(C) $PI = \frac{1}{3}e^{x-2y}$

- (D) $PI = \frac{-1}{3}e^{2x+y}$
- 5. The partial differential equaltion $xf_{xx} + yf_{yy} = 0$, x > 0, y > 0
 - (A) Hyperbolic

(B) Elliptic

(C) Parabolic

- (D) None of these
- 6. $\cos x$ is a periodic function with period
 - (A) π

(B) $\pi/2$

(C) 2π

- (D) 4π
- 7. Which one of the following function is an even function?
 - (A) sinx

(C) e^x

(D) x^2

- 8. Half range sine series for f(x) in $(0, \pi)$ is
 - $(A) \sum_{n=1}^{\infty} a_n \cos nx$

(B) $\frac{a_0}{2} + \sum a_n \cos nx$

(C) $\sum_{n=1}^{\infty} b_n \sin nx$

- (D) $\frac{a_0}{2} \sum a_n \cos nx$
- 9. The proper solution of the problems on vibration of string is
 - (A) $y(x, t) = \left(Ae^{\lambda x} + Be^{-\lambda x}\right)\left(Ce^{\lambda at} + De^{-\lambda at}\right)$
 - (B) y(x, t) = (Ax + B)(Ct + D)
 - (C) $y(x, t) = (A\cos \lambda x + B\sin \lambda x)(C\cos \lambda at + D\sin \lambda at)$
 - (D) y(x,t) = (Ax + B)
- 10. One dimensional wave equation used to find
 - (A) Temperature

(B) Displacement

(C) Time

- (D) Mass
- The proper solution of $u_t = \alpha^2 u_{xx}$ is
 - (A) u = (Ax + B)e

- (B) $u = (A\cos\lambda x + B\sin\lambda x)e^{-\alpha^2\lambda^2t}$
- (C) $u = \left(Ae^{\lambda x} + Be^{-\lambda x}\right)e^{\alpha^2 \lambda^2 t}$
- (D) u = At + B
- 12. Heat flows from temperature.
 - (A) Higher to lower

(B) Uniform

(C) Lower to higher

- (D) Stable
- 13. The Fourier transform of $f(x) = e^{-x^2/2}$ is
 - (A) e^{-s^2}

(B) $e^{-s^2/2}$

(C) e^{s^2}

- (D) $e^{s^2/3}$
- 14. If F(f(x)) = F(s), then F(f(ax)) is
 - (A) $\frac{1}{|a|}F\left(\frac{s}{a}\right)$, $a \neq 0$

(B) $\frac{1}{|a|}F\left(\frac{a}{s}\right)$, $a \neq 0$

(C) $\frac{1}{s} F\left(\frac{as}{x}\right), s \neq 0$

(D) $F\left(\frac{a}{s}\right)$

- 15. F[f(x)*g(x)] =
 - (A) F(s) + G(s)

(B) F(s) - G(s)

(C) F(s)G(s)

- (D) $\frac{F(s)}{G(s)}$
- 16. If F[f(x)] = F(s) then $F[f(x)\cos ax]$
 - (A) [F(a) + F(s-a)]/2

- (B) [F(sa) + F(s+a)]/2
- (C) $\frac{1}{2} [F(s-a) + F(s+a)]$
- (D) F(s-a) F(s+a)

17. $z \left[(-1)^n \right]$ (A) z+1

(B) z

(C) $\frac{z}{z+1}$

 $\begin{array}{c} z-1 \\ \hline (D) \quad \frac{-z}{z+1} \end{array}$

- 18. $z \left[\cos \frac{n\pi}{2} \right]$ is
 - $(A) \quad \frac{z}{z^2 + 1}$
 - (C) $\frac{z}{z^2-1}$

- (B) $\frac{z^2}{z^2}$
- (D) $\frac{z^{2}+1}{z^{2}-4}$

- 19. $z^{-1} \left[\frac{az}{(z-a)^2} \right]$ is
 - (A) a^{n-1}

(B) $n a^{n+1}$

(C) na^{n-1}

(D) na^n

- 20. $z[f(n) \times g(n)] = is$
 - (A) $F(z)G^{-1}(z)$

(B) $F^{-1}(z)G^{-1}(z)$

(C) F(z)G(z)

(D) $F^{-1}(z)G(z)$

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Solve $\sqrt{p} + \sqrt{q} = 1$.
- 22. Find a_n for the half range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1.
- 23. Write down any four assumptions made in deriving one dimensional wave equation.
- 24. State and prove change of scale property in fourier transform.
- 25. Find z(t).
- 26. Find the Fourier sine transform of $f(x) = e^{-x}$.
- 27. Find $F_c(e^{-ax})$

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

28. a.i. Form the partial differential equation by eliminating f from $z = xy + f(x^2 + y^2 + z^2)$.