Stats 426 Lecture 4

Thomas Cohn

2/1/21

Continuous Random Variables and Probability Distributions

Recall: A random variable X is continuous if its set of possible values contains an entire interval of numbers. The distribution of X is characterized by a pdf f(x) s.t. $\forall a, b \in \mathbb{R}$ with a < b, $P(a < X < b) = \int_a^b f(x) dx$. Also, $f(x) \ge 0 \ \forall x \in \mathbb{R}$, f is piecewise continuous, and $\int_{\mathbb{R}} f = 1$.

Defn: Suppose X is a continuous random variable with density function f. Then the cumulative distribution function (or cdf) of X is

$$F(x) \stackrel{\text{def}}{=} P(X \le x) = \int_{-\infty}^{x} f(u) \, du$$

Observe: $\lim_{s\to-\infty} F(s) = 0$, $\lim_{s\to\infty} F(s) = 1$.

Some facts about X, an arbitrary continuous random variable:

- $P(X=c)=0, \forall c \in \mathbb{R}$
- $P(a \le X \le b) = F(b) F(a)$
- $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$ $\forall x \text{ where } F'(x) \text{ exists, } \frac{d}{dx}F(x) = f(x).$

Quantiles

Defn: If a cdf F is strictly increasing, for $p \in (0,1)$, $x = F^{-1}(p)$ is called the pth quantile.

Defn: The 0.5 quantile is the median.

The 0.25 quantile is the lower quantile.

The 0.75 quantile is the upper quantile.

Defn: X follows an exponential distribution with parameter λ (X ~ Exp(λ)) if

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases} \qquad F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Note: We must have $\lambda > 0$.

Exp is often used as the distribution of lifetimes, or times between the occurrence of successive events.

Suppose $X \sim \text{Exp}(\lambda)$, and $x, x_0 > 0$. Then $P(X \ge x + x_0 \mid X \ge x_0) = P(X \ge x)$.

Proof:

$$P(X \ge x + x_0 \mid X \ge x_0) = \frac{P(X \ge x + x_0, X \ge x_0)}{P(X \ge x_0)} = \frac{P(X \ge x + x_0)}{P(X \ge x_0)} = \frac{1 - (1 - e^{-\lambda(x + x_0)})}{1 - (1 - e^{-\lambda x_0})} = e^{-\lambda x} = P(X \ge x)$$

Ex: The lifetime of a component is exponentially-distributed, with parameter $\lambda = 3$. If it has already worked for 10 hours, what is the probability that it works for 4 more hours?

$$P(X \ge 10 + 4 \mid X \ge 10) = P(X \ge 4) = e^{-3.4} = e^{-12}$$

Defn: X follows a gamma distribution with shape parameter $\alpha > 0$ and scale parameter $\lambda > 0$ $(X \sim \gamma(\lambda, \alpha))$ if

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where the gamma function Γ satisfies

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

Some properties of the gamma function:

- $\forall \alpha > 1, \ \Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- $\forall n \in \mathbb{N}, \Gamma(n) = (n-1)!$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Some properties of the gamma distribution:

- Exp is a special case with $\alpha = 1$.
- The sum of i.i.d. exponential random variables follows a gamma distribution. If $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Exp}(\lambda)$, then

$$Y = \sum_{i=1}^{n} X_i \sim \Gamma(\lambda, n)$$

• The sum of i.i.d. gamma random variables follows a gamma distribution. If $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \Gamma(\lambda, \alpha)$, then

$$Y = \sum_{i=1}^{n} X_i \sim \Gamma(\lambda, n\alpha)$$

Defn: X follows a beta distribution with parameters a, b $(X \sim \text{Beta}(a, b))$ if, for $0 \le x \le 1$,

$$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$$

Observe: When a = b = 1, $X \sim \text{Unif}[0, 1]$.

Defn: The normal distribution, with $\mu = 0$ and $\sigma = 1$, is called the <u>standard normal distribution</u>. $Z \sim N(0,1)$ is called a standard normal random variable, with

$$f(z) = \phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$
 $F(z) = \Phi(z) = P(Z \le z)$

We can standardize any normal random variable: $X \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$. Now, $P(X \leq x) = \Phi(\frac{x - \mu}{\sigma})$.

Quantiles of the Normal Distribution

Notation: z_{α} is the $100(1-\alpha)$ percentile $/1-\alpha$ quantile of the standard normal distribution. Say $X \sim N(\mu, \sigma^2)$. Let η_p be the p quantile of X. By standardizing, $P(X \leq \eta_p) = \Phi(\frac{\eta_p - \mu}{\sigma})$. We then solve $\Phi(\frac{\eta_p - \mu}{\sigma}) = p$, and get $z_{1-p} = \frac{\eta_p - \mu}{\sigma}$, i.e., $\eta_p = \mu + \sigma z_{1-p}$.

Say X is a random variable with pdf f_X and cdf F_X . Let Y = g(X). We want to find $f_Y = f_{g(X)}$.

Approach 1: The direct approach – work through the cdf. Derive F_Y and differentiate.

Ex: $X \sim N(0,1), Y = X^2$. Then $f_Y(y) = y^{-1/2}\phi(\sqrt{y})$ for $y \ge 0$, and 0 otherwise.

Proof: For $y \ge 0$,

$$F_Y(y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}) = \Phi(\sqrt{y}) - \Phi(-\sqrt{y})$$

$$f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}(\Phi(\sqrt{y}) - \Phi(-\sqrt{y})) = \frac{1}{2}\phi(y)y^{-1/2} - (-1 \cdot \frac{1}{2})\phi(y)y^{-1/2} = \phi(y)y^{-1/2}$$

Ex: If $X \sim N(\mu, \sigma^2)$, Y = aX + b, then $Y \sim N(a\mu + b, a^2\sigma^2)$.

Approach 2: Chain rule.

Thm: (Chain Rule) Suppose f, g are differentiable, and $h = g \circ f$. Then $h' = (g' \circ f)f'$.

Now suppose g is differentiable, and monotonic on an interal I, with $f_X(x) = 0$ outside of I. Then

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| = f_X(g^{-1}(y)) \left| \frac{1}{g'(g^{-1}(y))} \right|$$

for all y s.t. $\exists x \in I$ s.t. y = g(x). Otherwise, $f_Y(y) = 0$.

Defn: The joint probability mass function of a pair of discrete random variables X, Y is $p(x, y) = P(X = x \land Y = y)$.

The joint pmf must satisfy

- $p(x,y) \ge 0, \forall (x,y)$ $\sum_{x} \sum_{y} p(x,y) = 1$

Defn: The marginal probability mass function of X, given a joint probability mass function p, is $p_X(x) = \sum_y p(x,y)$.

Defn: X and Y are independent if $\forall (x,y), p(x,y) = p_X(x)p_Y(y)$.

Defn: The cumulative distribution function of X and Y is

$$F(x,y) = P(X \le x, Y \le y) = \sum_{\substack{x_i \le x \\ y_i \le y}} p(x_i, y_i)$$

For $X_1, ..., X_m$, the pdf is $p(x_1, ..., x_m) = P(X_1 = x_1, ..., X_m = x_m)$.

The marginal pdf of X_k is

$$p_{X_k}(x) = \sum_{\substack{x_1, \dots, x_{k-1}, \\ x_{k+1}, \dots, x_m}} p(x_1, \dots, x_{k-1}, x, x_{k+1}, \dots, x_m)$$

The marginal pdf of X_k and X_ℓ is (WOLOG $k < \ell$)

$$p_{X_k,X_{\ell}}(s,t) = P(X_k = s, X_{\ell} = t) = \sum_{\substack{x_1,\dots x_{k-1}, \\ x_{k+1},\dots x_{\ell-1}, \\ x_{\ell+1},\dots x_m}} p(x_1,\dots,x_{k-1},s,x_{k+1},\dots,x_{\ell-1},t,x_{\ell+1},\dots,x_m)$$

Ex: A fair coin is tossed 3 times. X is 1 if the first toss is heads, and 0 if it's tails. Y is the total number of heads. Then the sample space is

$$\{(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, H), (T, T, T)\}$$

The pdf of (X,Y) is

$$\begin{array}{l} P(X=0,Y=2)=\frac{1}{8} \\ P(Y=2)=P(X=0,Y=2)+P(X=1,Y=2)=\frac{3}{8} \\ F_{X,Y}(0,2)=P(X\leq 0,Y\leq 2)=\frac{1}{8}+\frac{2}{8}+\frac{1}{8}=\frac{1}{2} \end{array}$$
 The marginal cdf of Y is