LENDING CLUB

Supervised Learning for Credit Risk Assessment

Raissa Angnged ESADE MiBA

Introduction & Business Context

- Lending Club is a lending platform that assesses credit risk to optimize loan approvals and profitability
- The goal of this project is to apply supervised learning techniques to predict loan defaults, minimizing financial losses while maximizing returns
- Machine learning enhances decision making by balancing risk and reward in lending strategies

Overview of ML Lifecycle

1

2

3

4

5

Implement

Model

1. Analyze results'

Define Goals

To leverage machine learning for smarter loan approvals, minimizing defaults while maximizing profitability

Prepare Data

- 1.Explore the data
- 2.Clean the data
- 3. Analyze relevant features
- 4.Data transformations

Create Model

- 1.Define the target variable
- 2.Train the models
- 3. Analyze the performance metrics

Interpret Model

- 1.Evaluate model using most relevant metric
- 2.Compare the confusion matrices3.Interpret results

impact 2.Apply to "open loans"

business

3. Assess strategies

Data Cleaning

Dropped the following columns:

- 1. **Joint Application**: Different borrower profile and will lead to data imbalance
- 2. **Post-Outcome Variables**: Risk of data leakage
- 3. **Hardship & Settlement Features**: Future information bias
- 4. Metadata: Non-predictive

```
columns_to_drop = [
   #Metadata and ID features
   'Unnamed: 0', 'id', 'zip_code', 'title', 'addr_state',
   #Joint application features
    'annual_inc_joint', 'dti_joint', 'verification_status_joint', 'revol_bal_joint',
    'sec_app_fico_range_low', 'sec_app_fico_range_high', 'sec_app_earliest_cr_line',
    'sec_app_inq_last_6mths', 'sec_app_mort_acc', 'sec_app_open_acc', 'sec_app_revol_util',
    'sec_app_open_act_il', 'sec_app_num_rev_accts', 'sec_app_chargeoff_within_12_mths',
    'sec_app_collections_12_mths_ex_med',
   #Post-outcome features
   'recoveries', 'collection_recovery_fee', 'last_pymnt_amnt', 'last_pymnt_d',
    'total_rec_prncp', 'total_rec_int', 'total_pymnt', 'total_pymnt_inv',
    'last_fico_range_low', 'last_fico_range_high',
    'out_prncp', 'out_prncp_inv', 'total_rec_late_fee',
    'next_pymnt_d', 'months_since_last_pymnt_d',
   #Hardship and settlement features
    'hardship_flag', 'hardship_type', 'hardship_reason', 'hardship_status',
    'hardship_amount', 'hardship_start_date', 'hardship_end_date', 'payment_plan_start_date',
    'hardship_length', 'hardship_dpd', 'hardship_loan_status',
    'debt_settlement_flag', 'debt_settlement_flag_date',
    'settlement_status', 'settlement_date', 'settlement_amount',
    'settlement_term', 'settlement_percentage'
```

Data Cleaning

Loading the Dataset

Efficiently processed the dataset through a combined approach of using chunks and samples

Handling Categorical Features

Removed features that are statistically insignificant (Chisquared test) and too unique (variance test)

Handling Numerical Features

Removed highly correlated variables (correlation matrix) and the least predictive features (feature importance)

Data Exploration

Key Insights:

- Majority of loans are B & C grades, indicating mid-tier borrowers dominate the dataset
- Fewer loans in high-risk (E, F, G) and low-risk (A) categories
- Default rates increase sharply as loan grade worsens
- Grade A has the lowest default rate, while G has the highest confirms that **loan grade is a strong predictor of default risk**

Data Exploration

Key Insights:

- Higher loan grades (A, B) have lower interest rates while lower grades (F, G) have higher interest rates, reflecting borrower risk
- Strong positive trend between grade and interest rate
- Loan amounts are relatively stable across grades
- Some outliers in lower-grade loans suggest riskier borrowers may take larger loans

Model Creation and Interpretation

1. Define the target variable

Created a new variable, **loan_outcome**, which is based on the loan_status feature - explored using SMOTEENN to balance dataset

- Loan outcome = 0 if loan was fully paid
- Loan outcome = 1 if loan was defaulted or charged off

2. Train multiple classification models

There were **7 classification models trained**, as they each vary in complexity, efficiency, and approach in handling different data complexities – each with **unique strengths in predicting binary outcomes like loan classification**

3. Interpret models' performance metrics

Analyzed the models based on these **five metrics: accuracy, precision, recall, F1, and ROC AUC**. Together, they provide a holistic view of the model's performance, particularly in terms of handling imbalances between good and bad loan predictions.

Seven Classification Models Used

1. Logistic Regression

2. Random Decision Forests

3. XGBoost

4. Support Vector Machines

5. Neural Networks

6. LightBGM

7. CatBoost

Analyzing Model Performance

- 01 Most Relevant Metrics
 - Main focus should be on Recall, Precision, F1score, and ROC AUC
 - Given the business cost of False Negatives (granting risky loans) and False Positives (rejecting good borrowers)
- 02 Balanced Trade-off: LightGBM & CatBoost
 - Good recall, which means a number of defaulters were correctly identified
 - o Important for risk management.
 - These models would help minimize bad loans but may also reject some good borrowers
- 03 Best Precision: Random Forest
 - Due to the good precision score, this model avoids rejecting too many good borrowers
 - However, its lower Recall means it may miss many actual defaulters.

=== Model Performance Comparison ===										
	Accuracy	Precision	Recall	F1	ROC AUC					
Model										
Logistic Regression	0.6600	0.3205	0.6174	0.4219	0.6986					
Random Forest	0.7329	0.3687	0.4627	0.4104	0.6994					
XGBoost	0.6490	0.3153	0.6370	0.4218	0.7045					
SVM	0.5245	0.2427	0.6443	0.3526	0.5973					
Neural Network	0.7991	1.0000	0.0003	0.0006	0.5000					
LightGBM	0.6485	0.3177	0.6527	0.4274	0.7076					
CatBoost	0.6391	0.3123	0.6623	0.4245	0.7052					

04

Neural Network Anomaly

- Model is severely biased towards predicting nondefaults, classifying almost all cases as "fully paid" and ignoring defaulters
- Likely misleading due to extreme class imbalance

Confusion Matrices

Not Default

Predicted Label

Default

Investment Strategies: Insights and Implications

1. Conservative Lending Strategy (Avoid Rejecting Good Loans)

- a. <u>Best Model</u>: Random Forest (FPR: 19.9%)
 - i.Lowest false positive rate, meaning it rejects fewer good borrowers
- b. <u>Audience</u>: Best for low-risk lending, prioritizing stable borrowers and minimizing lost revenue from falsely rejected loans
- c. <u>Trade-off</u>: It misses some defaulters (lower recall) a few bad loans may still slip through

2. Aggressive Risk-Averse Strategy (Capture Every Risky Loan)

- a. Best Models: CatBoost (Recall: 66.2%), LightGBM (Recall: 65.3%)
 - i.Detect the most defaulters, reducing the risk of bad loans in the portfolio
- b. <u>Audience</u>: Best for high-risk lenders, such as those offering subprime loans or credit cards
- c. <u>Trade-off</u>: More false positives, meaning some good borrowers are wrongly denied

3. Balanced Strategy (Trade-Off Between False Positives and False Negatives

- a. <u>Best Models</u>: XGBoost (Precision: 31.5%, Recall: 63.7%)
 - i. Achieves a reasonable balance between catching defaulters and not over-rejecting good loans.
- b. Implication: Useful for mainstream banks and lenders who want both risk mitigation and loan approvals.
- c. <u>Trade-off:</u> Still makes a fair number of false predictions, but it's not extreme in either direction.

Business Impact of Best Performing Model: LightGBM

=== LightGBM ANALYSIS ===
Optimal threshold: 0.75

Business impact by threshold:

	TN	FP	FN	TP	Net Impact	ROI
Threshold						
0.25	2556	9854	166	2955	\$17,923,800.00	5.27x
0.30	3470	8940	270	2851	\$24,169,000.00	6.13x
0.40	5619	6791	585	2536	\$38,253,700.00	6.95x
0.50	8035	4375	1084	2037	\$52,857,000.00	6.60x
0.60	10108	2302	1694	1427	\$63,841,400.00	5.77x
0.70	11575	835	2400	721	\$69,283,000.00	4.80x
0.75	12045	365	2715	406	\$70,271,500.00	4.43x

Optimal Threshold Comparison of All Models

Open Loans Prediction (Based on Closed Loans Model)

Open Loans Prediction Strategy

1. Investment Strategies:

- 1. High-Grade Strategy (A & B)
 - o Pros: High approval rates, low default probabilities.
 - Cons: Low interest rates, negative expected returns.
 - o Assessment: Low risk but results in losses due to inadequate interest rates compared to defaults.
- 2.Mid-Grade Strategy (C & D)
 - Pros: Higher interest rates than A & B.
 - o Cons: Higher default probabilities, significant negative net return (especially for C).
 - o Assessment: Riskier than A & B but still unprofitable due to high default rates outweighing interest gains.
- 3. High-Risk, High-Return Strategy (E, F, G)
 - o Pros: Highest interest rates, lower approval rates controlling exposure.
 - o Cons: Very high default probabilities, potential for extreme losses.
 - o Assessment: Only E and G show marginally positive net returns, making them selectively viable.

Optimal Strategy to Maximize Returns & Manage Risk:

- 1. Avoid lending to C & D entirely due to poor risk-return balance.
- 2. Selectively invest in E & G, focusing on loans with moderate risk indicators within these grades.
- 3. Minimize exposure to A & B since they are safe but generate losses.
- 4. Implement risk-adjusted approval criteria to optimize the mix of loans.