MST UID:18BCS6074

```
# Supress Warnings
import warnings
warnings.filterwarnings('ignore')
# Uploading files to drive
from google.colab import files
uploaded = files.upload()
     Choose Files A2.csv

    A2.csv(application/vnd.ms-excel) - 2643 bytes, last modified: 10/29/2020 - 100% done

     Saving A2.csv to A2.csv
# Importing necessary libraries
import numpy as np
import pandas as pd
# Importing csv file
df = pd.read_csv('A2.csv', encoding='unicode_escape')
df.head()
С→
         Head Size(cm^3) Brain Weight(grams)
      0
                    4512
                                          1530
                    3738
                                          1297
      1
      2
                    4261
                                          1335
      3
                    3777
                                          1282
                    4177
                                          1590
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 237 entries, 0 to 236
     Data columns (total 2 columns):
          Column
                                Non-Null Count Dtype
          -----
                                -----
      0
          Head Size(cm^3)
                                237 non-null
                                                 int64
```

df.describe()

dtypes: int64(2)
memory usage: 3.8 KB

int64

Brain Weight(grams) 237 non-null

	Head Size(cm^3)	Brain Weight(grams)
count	237.000000	237.000000
mean	3633.991561	1282.873418
std	365.261422	120.340446
min	2720.000000	955.000000
25%	3389.000000	1207.000000
50%	3614.000000	1280.000000
75%	3876.000000	1350.000000

df.shape

(237, 2)

1. Check for missing values

2. Checking for outliers

```
X = df.iloc[:,:-1].values
y = df.iloc[:,1].values

# Importing libraries for plotting
import matplotlib.pyplot as plt
import seaborn as sns

# Boxplot
sns.boxplot(df['Brain Weight(grams)'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f11846dc9e8>

sns.boxplot(df['Head Size(cm^3)'])

<matplotlib.axes. subplots.AxesSubplot at 0x7f1182975a20>


```
col = df.select_dtypes(include=['int64'])
for x in col:
    ten = df[x].quantile(0.10)
    nin = df[x].quantile(0.90)
    df[x] = np.where(df[x] < ten, ten, df[x])
    df[x] = np.where(df[x] > nin, nin, df[x])
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
IQR = q3 - q1
print(IQR)
     Head Size(cm^3)
                             487.0
     Brain Weight(grams)
                             143.0
     dtype: float64
df_out = df[\sim((df < (q1 - 1.5 * IQR)) | (df > (q3 + 1.5 * IQR))).any(axis=1)]
print(df_out.shape)
     (237, 2)
```

sns.boxplot(df['Brain Weight(grams)'])

sns.boxplot(df['Head Size(cm^3)'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f11829212b0>

X = df_out.iloc[:,:-1].values
y = df_out.iloc[:,1].values

3. Model Building.

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.31,random_state=101)

lm = LinearRegression()
lm.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
import statsmodels.api as sm
lm = sm.OLS(y_train,X_train).fit()
```

print(lm.summary())

OLS Regression Results

Dep. Variable:			У	R-sq	uared (uncent	ered):		0.997
Model:			OLS	Adj.	R-squared (u	ıncentered):		0.997
Method:		Least Squ	ıares	F-sta	etistic:		6	.030e+04
Date:	T	hu, 29 Oct	2020	Prob	(F-statistic	:):	2	.95e-210
Time:		06:3	35:25	Log-l	Likelihood:			-915.18
No. Observation	ns:		163	AIC:				1832.
Df Residuals:			162	BIC:				1835.
Df Model:			1					
Covariance Typ	e:	nonro	bust					
=========	======	========				========	=======	
	coef	std err		t	P> t	[0.025	0.975]	
x1	0.3531	0.001	24!	5.554	0.000	0.350	0.356	
Omnibus:	======	 1	===== L.166	===== :Durb	======== in-Watson:		2.127	
Prob(Omnibus):		6	3.558	Jarqı	ue-Bera (JB):		0.781	

Warnings:

Kurtosis:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi

Prob(JB):

Cond. No.

0.068

3.311

import statsmodels.api as sm
lm = sm.OLS(y_test,X_test).fit()

print(lm.summary())

OLS Regression Results

	=====		====	=====	=======			
Dep. Variable: y		R-squ	ared (unce		0.997			
Model:		(OLS	Adj.	R-squared	(uncentered):		0.997
Method:		Least Squa	res	F-sta	tistic:		2	2.627e+04
Date:		Thu, 29 Oct 2	020	Prob	(F-statist	ic):		4.22e-95
Time:		06:54	:51	Log-L	ikelihood:			-416.85
No. Observations	5:		74	AIC:				835.7
Df Residuals:			73	BIC:				838.0
Df Model:			1					
Covariance Type: nonrobust		ust						
============	coef	std err	====	t	P> t	[0.025	0.975]	
x1 (3.3499	0.002	162	2.088	0.000	0.346	0.354	

0.677

1.00

=======================================							
Omnibus:	1.442	Durbin-Watson:	1.839				
Prob(Omnibus):	0.486	Jarque-Bera (JB):	1.359				
Skew:	-0.322	Prob(JB):	0.507				
Kurtosis:	2.835	Cond. No.	1.00				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi

4

4. Model Evaluation

```
predictions = lm.predict(X_test)
```

plt.scatter(y_test,predictions)

<matplotlib.collections.PathCollection at 0x7f117539ec50>

Regression Evaluation Metrics

from sklearn import metrics

```
print('MAE:' , metrics.mean_absolute_error(y_test,predictions))
print('MSE:' , metrics.mean_squared_error(y_test,predictions))
print('RMSE:' , np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 53.53143624374527 MSE: 4709.43998707502 RMSE: 68.6253596498774