Exercise 6. Find an infinite collection of subsets of \mathbb{R} that contains \mathbb{R} , is closed under the formation of countable unions, and is closed under the formation of countable intersections, but is not a σ -algebra.

Proof. Let $\mathscr{A} = \{\mathbb{R}\} \cup \{[-n,n], n \in \mathbb{N}\}$, with $\mathscr{D} = [-0,0]$, and let $\{A_n\}_{n \in \mathbb{N}}$ be a family of elements of \mathscr{A} . For all $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that $A_n = [-k, k]$. Let K be the set of all such integers k.

If K is bounded above, then it has a largest element M since \mathbb{N} is well-ordered. Then for all $n \in \mathbb{N}$, $A_n \subset [-M, M]$, and there exists $m \in \mathbb{N}$ such that $A_m = [-M, M]$. From this we deduce that $\bigcup_{n \in \mathbb{N}} A_k = [-M, M] \in \mathscr{A}$. Otherwise, let $x \in \mathbb{R}$. Since K is not bounded above, there exists $M, m \in \mathbb{N}$ such that $x \in A_m = [-M, M]$. From this we deduce that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{R} \in \mathscr{A}$.

Since K is nonempty, it has a smallest element P since \mathbb{N} is well-ordered, and there is some $p \in \mathbb{N}$ such that $A_p = [-p, p]$. From this we deduce that $A_p = \bigcap_{n \in \mathbb{N}} A_n \in \mathscr{A}$.

The set \mathscr{A} is stable by countable union and countable intersection, and contains \mathbb{R} . However it is not stable by complementation: for example $[-1,1] \in \mathscr{A}$, but $[-1,1]^c = (-\infty,1) \cup (1,+\infty)$ is not a closed interval with integer boundaries. Therefore \mathscr{A} is not a σ -algebra.