SOLUTIONS OF HARTSHORNE'S ALGEBRAIC GEOMETRY

CONTENTS

1.	Varieties	1
1.1.	. Affine Varieties	1
1.2.	. Projective Varieties	3
1.3.	. Morphisms	3
1.4.	. Rational Maps	4
1.5.	. Nonsingular Varieties	4
1.6.	. Nonsingular Curves	4
1.7.	. Intersections in Projective Space	4

1. VARIETIES

1.1. Affine Varieties.

Exercise 1.1.1.

- (a) Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial $f = y - x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.
- (b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.
- (c) Let f be any irreducible quadratic polynomial in k[x, y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?

Proof.

(a) Since $y - x^2$ is an irreducible polynomial, $(y - x^2)$ is a prime ideal of k[x, y],

$$A(Y) = k[x, y]/I(Y) = k[x, y]/I(Z(y - x^{2}))$$
$$= k[x, y]/\sqrt{(y - x^{2})} = k[x, y]/(y - x^{2})$$

Consider the map

$$\varphi: k[x,y]/(y-x^2) \to k[t]$$

$$f(x,y) + (y-x^2) \mapsto f(t,t^2)$$

If $y-x^2 \mid f(x,y)$, then $f(t,t^2) = 0$ so it is well defined ring homomorphism. And define

$$\psi: k[t] \to k[x, y]/(y - x^2)$$
$$g(t) \mapsto g(x) + (y - x^2)$$

We want to show that $\varphi \circ \psi = 1_{k[t]}$ and $\psi \circ \varphi = 1_{k[x,y]/(y-x^2)}$ so $k[t] \cong$ $k[x,y]/(y-x^2)$. The first one is easy because

$$\varphi(\psi(g(t))) = \varphi(g(x) + (y - x^2)) = g(t)$$

Take any
$$f(x,y) = \sum_{i,j} a_{ij} x^i y^j \in k[x,y]$$
. Then,
 $\psi(\varphi(f(x,y) + (y-x^2))) = \psi(f(t,t^2)) = f(x,x^2) + (y-x^2)$

so we need to show that $f(x,y) - f(x,x^2) \in (y-x^2)$.

$$f(x,y) - f(x,x^{2}) = \sum_{i,j} a_{ij}x^{i}y^{j} - \sum_{i,j} a_{ij}x^{i}x^{2j}$$

$$= \sum_{i,j} a_{ij}x^{i}(y^{j} - (x^{2})^{j})$$

$$= \sum_{i,j} a_{ij}x^{i}(y - x^{2}) (y^{j-1} + y^{j-2}(x^{2})^{1} + \dots + y^{1}(x^{2})^{j-2} + (x^{2})^{j-1})$$

Hence, $A(Y) \cong k[t]$

(b) Note that

$$A(Z) = k[x, y]/(xy - 1)$$

and suppose $\theta:A(Z)\to k[t]$ is a ring isomorphism. Then, $x+(xy-1),y+(xy-1)\in A(Z)$ are unit elements, so $\theta(x+(xy-1)),\theta(y+(xy-1))\in k[t]$ are unit elements, which implies they are in k. Then there is no element in A(Z) that goes to t through the map θ , which is a contradiction with the fact that θ is an isomorphism.

(c) a

Exercise 1.1.2. The Twisted Cubic Curve. Let $Y \subseteq \mathbb{A}^3$ be the set $Y = \{(t, t^2, t^3) \mid t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation $x = t, y = t^2, z = t^3$.

Proof.

Exercise 1.1.3. Let Y be the algebraic set in \mathbb{A}^3 defined by the two polynomials x^2-yz and xz-x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Proof.

Exercise 1.1.4. If we identify \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way, show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 .

Proof.

Exercise 1.1.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Proof. \Box

Exercise 1.1.6. Any nonempty open subset of an irreducible topological space is dense and irreducible If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Proof. \Box

Exercise 1.1.7.

- (a) Show that the following conditions are equivalent for a topological space X: (i) X is noetherian; (ii) every nonempty family of closed subsets has a minimal elements; (iii) X satisfies the ascending chain condition for open subsetes; (iv) every nonempty family of open subsets has a maximal ele-
- (b) A noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.
- (c) Any subset of a noetherian topological space is noetherian in its induced topology.

(d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.
Proof.
Exercise 1.1.8. Let Y be an affine variety of dimension r in \mathbb{A}^n . Let H be a hypersurface in \mathbb{A}^n , and assume that $Y \nsubseteq H$. Then every irreducible component of $Y \cap H$ has dimension $r - 1$. (See (7.1) for a generalization.)
Proof.
Exercise 1.1.9. Let $\mathfrak{a} \subseteq A = k[x_1, \cdots, x_n]$ be an ideal which can be generated by r elements. Then every irreducible component of $Z(\mathfrak{a})$ has dimension $\geqslant n-r$.
Proof.
Exercise 1.1.10.
 (a) If Y is any subset of a topological space X, then dim Y ≤ dim X. (b) If X is a topological space which is covered by a family of open subsets {U_i}, then dim X = sup dim U_i. (c) Give an example of a topological space X and a dense open subset U with dim U < dim X. (d) If Y is a closed subset of an irreducible finite-dimensional topological space X, and if dim Y = dim X, then Y = X.
(e) Give an example of a noetherian topological space of infinite dimension.

Proof.

Exercise 1.1.11. Let $Y \subseteq \mathbb{A}^3$ be the curve given parametrically by $x = t^3, y = t^3$ $t^4, z = t^5$. Show that I(Y) is a prime ideal of height 2 in k[x, y, z] which cannot be generated by 2 elements. We say Y is not a local complete intersection cf. (Ex. 2.17).

Proof.

Exercise 1.1.12. Give an example of an irreducible polynomial $f \in \mathbb{R}[x,y]$, whose zero set Z(f) in $\mathbb{A}^2_{\mathbb{R}}$ is not irreducible (cf. 1.4.2).

Proof.

1.2. Projective Varieties.

Exercise 1.2.1.

Proof.

1.3. Morphisms.

Exercise 1.3.1.

Proof.

Proof.

SOLUTIONS OF HARTSHORNE'S ALGEBRAIC GEOMETRY