

71-01-4202 Lecture #24

Lecture #24

Lecture #24

Autoencoders

Garrett Wells revised October 17, 2024

Review

- ► Three paradigms of ML
- ► Neural Networks
- ► Layers, Nodes, Weights, & Bias
- ► Prediction → Feedforward
- ► Update → Backpropagation
- ► Other Considerations...
- ► Learning Rate
 - ► Learning Optimizations
 - ► Others

Unsupervised Learning

- ► Supervised Learning
 - ► Inputs & Labels
 - ► Labels/predictions are (usually) far less complex than input data
 - ► Some blob of pixels \rightarrow car
 - ► Input data → symbolic/abstract representation
 - ► "If I could use x inputs to predict y I could do..."

- ▶ Supervised Learning
 ▶ Inputs & Labels
- ► Labels/predictions are (usually) far less complex than input data
- Some blob of pixels → car
 Inout data → symbols/abstract representation
- Input data → symbolic/abstract representation
 "If I could use x inputs to predict v I could do...

Unsupervised Learning

- ► Unsupervised Learning
 - Creative tasks
 - ► Symbols → complex data output
 - ► Set of facial features → image of human face
 - ► Data compression & Reconstruction
 - ► Music, Images, *etc.* have lossy data storage types
 - ► Algorithmic compression leaves artifacts
 - ► Adding color back into images

pervised Learning

- Unsupervised Learning
 Creative tasks
- Symbols → complex data output
 Set of facial features → image of human face
- Data compression & Reconstruction
 Music, Images, etc. have lossy data stora
- Algorithmic compression leaves artifacts
 Adding color back into images

Architecture...

Architecture...

X Input data, image, etc. Encoder Input data \rightarrow abstract features Latent Space Minimal feature set, "compressed" Decoder Abstract features \rightarrow data \hat{X} Image...

Figure: Autoencoder Example from [1]

$$h = f(x) \tag{1}$$

h = f(x)Reconstruction...

$$r = g(h) \tag{2}$$

1. $r \approx x$, r(output) should approximate x(input) or match.

Describing the latent space...

► Latent layer is the narrowest

- ► Latent layer is the narrowest
- ► A "complete" layer has the same number of nodes as inputs

- ► Latent layer is the narrowest
- ► A "complete" layer has the same number of nodes as inputs
- ► Thus we describe the latent space as being "undercomplete"

- ► Latent layer is the narrowest
- ► A "complete" layer has the same number of nodes as inputs
- ► Thus we describe the latent space as being "undercomplete"
- ► Layer with more nodes than inputs ☞ "overcomplete"
- ► If complete, not learning useful characteristics

- ► Latent layer is the narrowest
- ► A "complete" layer has the same number of nodes as inputs
- ► Thus we describe the latent space as being "undercomplete"
- ► Layer with more nodes than inputs ☞ "overcomplete"
- ► If complete, not learning useful characteristics
- ► Just copying data

Art & Science...

The Ideal Autoencoder[2]...

- 1. Sensitive enough to the inputs to reconstruct the input.
- 2. Insensitive enough to avoid memorizing the training data.

Undercompletion...

If your autoencoder learns to copy your training data(overfitting)...

- 1. Note that this graph is more typical of what we would see in supervised learning where calculating performance and accuracy is more straight forward.
- 2. This is why true model performance is determined by accuracy on data outside the training data.

Undercompletion...

If your autoencoder learns to copy your training data(overfitting)...

► Learning features specific to dataset

- 1. Note that this graph is more typical of what we would see in supervised learning where calculating performance and accuracy is more straight forward.
- 2. This is why true model performance is determined by accuracy on data outside the training data.

Undercompletion...

If your autoencoder learns to copy your training data(overfitting)...

- ► Learning features specific to dataset
- ► Datasets often contain class imbalances

2. This is why true model performance is determined by accuracy on data outside the training data.

Undercompletion...

If your autoencoder learns to copy your training data(overfitting)...

- ► Learning features specific to dataset
- ► Datasets often contain class imbalances
- ► More likely to be incorrect for inputs not represented in dataset

- 1. Note that this graph is more typical of what we would see in supervised learning where calculating performance and accuracy is more straight forward.
- 2. This is why true model performance is determined by accuracy on data outside the training data.

Dimensionality reduction...

Principal Component Analysis

Principal component analysis is a dimensionality reduction and machine learning method used to simplify a large dataset into a smaller set while still maintaining significant patterns and trends.

Dimensionality reduction...

Principal Component Analysis

Principal component analysis is a **dimensionality reduction** and machine learning method used to simplify a large dataset into a smaller set while still maintaining significant patterns and trends.

Dimensionality reduction...

Principal Component Analysis

Principal component analysis is a dimensionality reduction and machine learning **method used to simplify a large dataset into a smaller set** while still maintaining significant patterns and trends.

1. Standardize the range of continuous initial variables.

- 1. Standardize the range of continuous initial variables.
- 2. Compute the covariance matrix to identify correlations.

- 1. Standardize the range of continuous initial variables.
- 2. Compute the covariance matrix to identify correlations.
- 3. Compute eigenvectors and eigenvalues of the covariance matrix to identify principal components.

- 1. Standardize the range of continuous initial variables.
- 2. Compute the covariance matrix to identify correlations.
- 3. Compute eigenvectors and eigenvalues of the covariance matrix to identify principal components.
- 4. Create a feature vector to decide which principal components to keep.

Dimensionality reduction...

- 1. Standardize the range of continuous initial variables.
- 2. Compute the covariance matrix to identify correlations.
- 3. Compute eigenvectors and eigenvalues of the covariance matrix to identify principal components.
- 4. Create a feature vector to decide which principal components to keep.
- 5. Recast the data along principal component's axes.

5. Recast the data along principal component's axes.

Principal Component Analysis

Dimensionality reduction...

- 1. Standardize the range of continuous initial variables.
- 2. Compute the covariance matrix to identify correlations.
- 3. Compute eigenvectors and eigenvalues of the covariance matrix to identify principal components.
- 4. Create a feature vector to decide which principal components to keep.
- 5. Recast the data along principal component's axes.

5. Recast the data along principal component's axes.

Principal Component Analysis

- ► PCA is trying to find a **lower dimensional hyperplane representation** of data[2].
- ► Autoencoders can learn **non-linear manifolds**.

Data PCA would struggle with...

Sparse Autoencoders

Instead of reducing the number of nodes in latent space, create a loss function penalizing node activations within the latent space.

Theoretical outcome...

- 1. Limit network's ability to memorize input data[2]
- 2. Network still able to extract features from input data

Activation Based Loss [2]

L1 Regularization:

$$L(x,\hat{x}) + \lambda \sum_{i} |a_{i}^{(h)}| \tag{1}$$

 λ tuning parameter a activations in layer h for observation i (1)

Lecture #24

Sparse Autoencoders

Losparse Autoencoders

Sparse Autoencoders

Losparse Autoencoders

Sparse Autoencoders

Losparse Autoencoders

Data Denoising

- ► Input Image → Autoencoder reconstructs image
- ► May lose some information, but good if loses noise

Data Denoising

Lecture #24

-Applications

Data Denoising

Data Denoising

Restyling & Recoloring

Figure: Example of Recoloring from [3]

- ► Grayscale image
- ► Score based on difference between color image and autoencoder output

Lecture #24

Applications

Restyling, Reconstruction, & Recoloring

Restyling & Recoloring

Gaycon image

Core based on difference between color image and autoencoder output

Image Upscaling

Types of Autoencoders

- 1. Vanilla/Basic [1]
- 2. Multilayer
- 3. Convolutional
- 4. Regularized

Vanilla/Basic [1]
 Multilayer
 Convolutional
 Regularized

hidden size = 64 output size = 784 x = Input(shape=(input size,))

Encoder

h = Dense(hidden_size, activation='relu')(x)

Decoder r = Dense(output_size, activation='sigmoid')(h)

autoencoder = Model(input=x, output=r) autoencoder.compile(optimizer='adam', loss='mse') -Applications —Other Types of Autoencoders h = Dense(hidden size activation='relu')(x) └─Vanilla r = Dense(output_size, activation='sigmoid')(h

Lecture #24

1. "Vanilla" is a model with the minimum number of layers. Not an example of "deep" learning.

 Other Types of Autoencoders hidden_1 = Dense(hidden_size, activation='relu')(x h = Dense(code size, activation='relu')(hidden 1) └─Multilayer hidden_2 = Dense(hidden_size, activation='relu')(h) r = Dense(input size, activation='sigmoid')(hidden 2 autoencoder = Model(input=x. output=r) autoencoder compile(optimizer='adam' loss='mse') 1. Any network with any number of nodes.

hidden size = 128

code_size = 64 x = Input(shape=(input size))

Lecture #24

-Applications

Convolutional Convolutional

```
# Encoder
conv1 1 = Conv2D(16, (3, 3), ...)(x)
pool1 = MaxPooling2D((2, 2),...)(conv1_1)
conv1_2 = Conv2D(8, (3, 3), ...)(pool1)
pool2 = MaxPooling2D((2, 2), ...)(conv1_2)
conv1_3 = Conv2D(8, (3, 3), ...)(pool2)
h = MaxPooling2D((2, 2),...)(conv1_3)
# Decoder
conv2 1 = Conv2D(8, (3, 3), ...)(h)
up1 = UpSampling2D((2, 2))(conv2_1)
conv2_2 = Conv2D(8, (3, 3), ...)(up1)
up2 = UpSampling2D((2, 2))(conv2_2)
conv2_3 = Conv2D(16, (3, 3), ...)(up2)
up3 = UpSampling2D((2, 2))(conv2_3)
r = Conv2D(1, (3, 3),...)(up3)
```

Lecture #24 conv1_1 = Conv2D(16, (3, 3),...)(x) -Applications pool1 = MaxPooling2D((2, 2),...)(conv1 1 conv1 2 = Conv2D(8, (3, 3),...)(pool1) pool2 = MaxPooling2D((2, 2),...)(conv1 2)conv1 3 = Conv2D(8, (3, 3),...)(pool2) Other Types of Autoencoders h = MaxPooling2D((2, 2),...)(conv1 3)conv2 1 = Conv2D(8 (3 3))(h) up1 = UpSampling2D((2, 2))(conv2_1) └─Convolutional conv2_2 = Conv2D(8, (3, 3), ...)(up1 up2 = UpSampling2D((2, 2))(conv2, 2)conv2 3 = Conv2D(16, (3, 3),...)(up2) up3 = UpSampling2D((2, 2))(conv2, 3) $\tau = Conv2D(1 (3 3))(un3)$

Regularized Autoencoders

Sparse & Denoising

- ► Encompasses methods of constraining reconstruction
- ► Penalizing activations, etc.

1. These are differentiated by adding a different regularization method to the layers.

Bibliography I

- [1] N. Hubens, "Deep inside: Autoencoders," Medium, (Apr. 10, 2018), [Online]. Available: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f (visited on 10/16/2024).
- [2] "Introduction to autoencoders.," Jeremy Jordan, (Mar. 19, 2018), [Online]. Available: https://www.jeremyjordan.me/autoencoders/(visited on 10/16/2024).
- [3] "Autoencoders deep learning bits #1 | HackerNoon," (), [Online]. Available: https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694 (visited on 10/16/2024).

Lecture #24

Other Types of Autoencoders

☐ Bibliography

 N. Hubens, "Deep inside: Autoencoders," Medium, (Apr. 10, 2018 [Online]. Available: https://towardsdatascience.com/deep inside-autoencoders-7e41f319999f (visited on 10/16/2024

[2] "Introduction to autoencoders.," Jeremy Jordan, (Mar. 19, 2018), [Online Available: https://www.jeremyjordan.me/autoencoders/(visited on 10/16/2024).

[3] "Autoencoders — deep learning bits #1 | HackerNoon," (), [Online]. Available: https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694 (visited on 10/16/2024).