

Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG

Regularização

Profs.: Eduardo Vargas Ferreira Walmes Marques Zeviani

Introdução: Regressão Linear

- Considere o exemplo referente ao Advertising data set;
 - $\star Y =$ Sales de um particular produto em 200 lojas;
 - * X = investimento em publicidade na TV, Radio e Newspaper de cada loja.

Introdução: Regressão Linear

• Podemos, p. ex., descrever a relação entre TV e Sales da forma,

Sales
$$\approx \beta_0 + \beta_1 \times TV$$

• Queremos encontrar os valores de $\hat{\beta}_0$ e $\hat{\beta}_1$, tq, a reta resultante seja a mais próxima possível dos pontos;

Estimando os coeficientes

- Existem várias formas de medir a proximidade;
- A mais comum envolve minimizar o Residual Sum of Squares (RSS)

$$min \{J(y_i, h(x))\} \approx min \left\{ \sum_{i=1}^n [y_i - h(x_i)]^2 \right\}$$
$$= min \left\{ \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \right\}$$

Assim, o parâmetro estimado é obtido da forma

$$\frac{\partial J(y_i, h(x))}{\partial \beta_i} = 0$$

Chegando em

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^t \boldsymbol{X})^{-1} \boldsymbol{X} \boldsymbol{y}$$

Estimando os coeficientes

- Abaixo o gráfico de contorno da RSS para os dados Advertising;
- O ponto vermelho representa as estimativas dos parâmetros.

O problema "small n, large p"

- Considere o seguinte problema: queremos verificar se uma substância está ou não relacionada com a incidência de uma doença;
- Cada experimento contém cerca de 5000 variáveis de interesse, baseadas na expressão genética, mas temos apenas 250 animais testados;
- A dificuldade é que a maioria dos métodos modernos de análise de dados falha, por diferentes razões, p. ex.:
 - Modelos Lineares Generalizados falham, pois a matriz do modelo não tem posto completo;
 - * Random Forests falha, pois a probabilidade de selecionar variáveis importantes diminui muito.
 - Análise de Clusters e métodos baseados em distâncias no plano cartesiano falham devido à "maldição da dimensionalidade".

O problema "small n, large p"

- Uma suposição razoável é que nem todas as variáveis serão boas para explicar a resposta:
 - * Algumas serão muito boas;
 - ⋆ Outras que não servem para muita coisa;
- Entretanto, ainda dentro das boas preditoras, algumas são correlacionadas e não são "alavancados" por conta disso.
- Podemos resolver essa questão analisando os vetores um a um (geralmente intratável);
- O ideal seria que o próprio algoritmo realizasse essa seleção;
- Em outras palavras, que o algoritmo regulasse a entrada de algumas variáveis (seja eliminando-as ou diminuindo seus pesos).

Uma solução é a Regularização

 Uma forma de restringir o número de variáveis é impor um custo, ou penalty, ao algoritmo

$$\min_{oldsymbol{eta}} \; \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2 \; ext{sujeito a} \; P(oldsymbol{eta}) < t,$$

em que t é um número real entre zero e infinito.

 Fazemos isso aumentando a função objetivo, utilizando os Multiplicadores de Lagrange

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda P(\boldsymbol{\beta}),$$

em que λ é um número real entre zero e infinito.

• Note que t e λ são inversamente proporcionais.

Uma solução é a Regularização

Função penalty

- $P(\beta)$ representa a função penalty (shrinkage penalty), que tem o papel de manter as estimativas de β_i próximas de zero.
- Utilizaremos a família das potências para penalizar o modelo, ou seja:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \left| \beta_j \right|^q$$

- Quanto maior o valor absoluto do coeficiente, maior a penalidade atribuída a ele;
- λ é o tuning parameter, determinado separadamente. Ele controla o impacto de J e P nas estimativas dos parâmetros.

q = 2 - Penalização Ridge

• Neste caso, o problema de otimização é dado por:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

• A ideia surgiu para solucionar a singularidade da matriz quando p>n. Para isso, soma-se uma constante λ à sua diagonal;

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

• Considerando o caso dos vetores de X ortonormais temos

$$\hat{\beta}_{\lambda}^{R} = \frac{\hat{\beta}^{OLS}}{1+\lambda}$$

• Este fato ilustra a característica essencial da regressão Ridge: shrinkage.

Exemplo: Credit data set

- O gráfico da esquerda, cada curva corresponde à estimativa de cada coeficiente através da regressão Ridge como função de λ ;
- O lado direito refere-se às mesmas estimativas dos coeficientes da regressão, mas como função de $||\hat{\beta}_{\lambda}^{R}||_{2}/||\hat{\beta}||_{2}$;
- $\hat{\beta}$ denota o vetor de estimativas por mínimos quadrados.

q=1 - Penalização Lasso

- A regressão Ridge falha na parcimônia do modelo. Ela inclui todos os p preditores (ainda que com pouco peso);
- Lasso é uma alternativa que contorna essa desvantagem. Os coeficientes Lasso, $\hat{\beta}_{\lambda}^L$, minimizam a quantidade

$$\min_{oldsymbol{eta}} \; \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j \mathsf{x}_{ij}
ight)^2 + \lambda \sum_{j=1}^p |eta_j|$$

O penalty l

1 funciona, também, como um selecionador de variável.

Exemplo: Credit data set

Elastic net

• Elastic net é um compromisso entre a regressão Ridge e Lasso. Os coeficientes elastic net, $\hat{\beta}_{\lambda}^{F}$, minimizam a quantidade

$$\min_{oldsymbol{eta}} \; \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j \mathsf{x}_{ij}
ight)^2 + \lambda \sum_{j=1}^p \left(lpha |eta_j| + (1-lpha)eta_j^2
ight)$$

q < 1 - Penalização horseshoe

- E o que acontece se reduzirmos q ainda mais? Esse estudo deu origem aos estimadores baseados em penalização horseshoe;
- Ela favorece ainda mais a presença de 0's (maior esparsidade);
- Ou seja, tende a encontrar as elipses geradas pelos mínimos quadrados em cima dos eixos com mais frequência que Ridge e Lasso;

• E quando q = 0 voltamos ao Best subset selection.

Selecionando o tuning parameter, λ

- Assim como no subset selection, para regressão Ridge e Lasso necessitamos de um método para determinar qual o melhor modelo;
- Neste caso, precisamos encontrar o valor de λ que fornece esta informação;
- Validação cruzada fornece uma maneira simples de resolver este problema:
 - (a) A partir de uma grade de valores de λ , calculamos a taxa de erro de validação (para cada λ);
 - (b) Escolhemos o valor de λ que fornece a menor taxa de erro;
 - (c) Ajustamos novamente o modelo, utilizando todas as observações disponíveis, com o valor de λ encontrado anteriormente.

Selecionando o tuning parameter, λ

