

# Embedded Systems Kapitel 6: Analoge Eingabe

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Sommersemester 2020

## Inhalt

- Einführung
- Arbeitsweise von A/D Wandlern
- A/D Umsetzung beim ATmega2560

# Analog vs. Digital



Quelle: <a href="https://www.giga.de/extra/ratgeber/specials/unterschied-zwischen-analog-und-digital-einfach-erklaert/">https://www.giga.de/extra/ratgeber/specials/unterschied-zwischen-analog-und-digital-einfach-erklaert/</a>

### Abtastung / Zeitliche Diskretisierung

Werte Signal nur nach Ablauf von (festen) Zeitintervallen aus.

### Quantisierung

Messe dabei die Werte nur mit einer bestimmten Genauigkeit.

# Analoge Ein- und Ausgabe: Beispiele

- Analoge Eingabe: Sehr oft trägt ein analoger Spannungswert Information
  - Druckempfindliche Buttons (IBM Trackpoint)
  - Potentiometer
  - DMS-Streifen
  - Temperatursensor
  - Fotodiode
  - 0 ...

### Analoge Ausgabe

- Beispiele: Helligkeitskontrolle einer LED, Ansteuern eines Motors
- o In der Praxis oft: Pulsweitenmodulation → siehe letztes Kapitel.

# A/D Umsetzung

### Abbildung von

- o analogem Wertebereich [U<sub>min</sub>; U<sub>max</sub>] (meist Spannungsbereich) auf
- binärem Digitalwert (Code) der Länge r (Dualzahl)



## A/D bzw. D/A Umsetzer

- A/D Wandler (auch A/D Umsetzer)
  - o Muss Spannung V in digitalen Wert  $B = (b_{r-1}..b_0)$ ,  $r \ge 1$  umsetzen.
  - Sicht des Mikrocontrollers: Eingaberichtung
  - Implementierung über D/A Umsetzer (Rückkopplung)
- D/A Wandler (auch D/A Umsetzer)
  - o Muss digitalen Wert  $B = (b_{r-1}..b_0)$ , r ≥ 1 in eine proportionale Spannung V umwandeln.
  - Sicht des Mikrocontrollers: Ausgaberichtung
  - Widerstandsnetzwerk

## Inhalt

- Einführung
- Arbeitsweise von A/D Wandlern
- A/D Umsetzung beim ATmega2560

## Exkurs: Ohmsches Gesetz Kein Stoff

### Ohmsches Gesetz

 $\circ$  R = U/I

### Schaltung

- Widerstände  $R_1$  und  $R_2$  sind parallel.
- Strom I teilt sich auf.

### Frage:

- Wie groß Ersatzwiderstand  $R_{1,2}$ , damit insgesamt gleicher Strom?
- Herleitung durch Ohmsches Gesetz

### Feststellung

$$R_{1,2} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

• Falls 
$$R_1 = R_2 \to R_{1,2} = \frac{R_1}{2}$$

### **Parallelschaltung**



#### **Ersatzwiderstand**



Quelle [5]

# Exkurs: D/A Umsetzung mit R2R Netzwerk (1)

Kein Stoff

- Widerstandsnetzwerk: Widerstände der Größe R und 2R.
- Es werden Teilspannungen der Referenzspannung  $U_{ref}$  im Verhältnis der Wertigkeit der Binärziffern  $z_0$  bis  $z_3$  der Dualzahl ( $z_3z_2z_1z_0$ ) erzeugt.



# A/D Umsetzung

### **Lineare Abbildung**

- Analoge Eingangsspannung  $V_{in}$  aus dem Bereich [ $U_{min}$ ;  $U_{max}$ ], meist [0;  $V'_{ref}$ ]
- auf binären Code mit r Bits

### Auflösung eines A/D Wandlers

- Länge des binären Codes
  - Hier: r = 3
- Kleinster Spannungsunterschied, Least Significant Bit (LSB)
  - Hier: LSB =  $V_{ref}/2^r$
- Um Fehler zu minimieren liegt "Repräsentant" eines Intervalls immer in Intervallmitte; Ausnahme:
  - 1. Intervall: Repräsentant des Codes 000 sollte 0V sein → Stufenbreite ½ LSB.
  - Letztes Intervall: Stufenbreite 1½ LSB



Analog

# Übung

Handbuch: Seite 268

Welche Auflösung hat der ATmega2560 Mikroprozessor, falls die Referenzspannung 5V beträgt?

Ein 8-Bit A/D Wandler wird mit der Referenzspannung 5V betrieben. Die Eingangsspannung sei 3,5V. Wie lautet der resultierende binäre Code?

# Exkurs: Fehlerquellen bei A/D Umsetzung

## Quantisierungsrauschen (1)

 Abweichung des gewandelten treppenförmigen vom tatsächlichen stufenlosen Analogsignals.

### Umsetzungszeit (2)

- Umsetzung benötigt Zeit, manche Änderungen werden übersehen .
- Änderungen des Eingangs während der Umsetzung
  - Abhilfe: Abtast/Halteglieder halten analoge Spannung während der Umsetzung konstant.



## A/D Wandler als Blackbox: Integrated Circuit (IC)

- AVCC und GND
  - Stromversorgung des A/D Wandlers
- VREF
  - Maximale, analoge Spannung
  - Definiert den analogen Wertebereich von [0; VREF]
- $\Box$   $V_{in}$ 
  - Eingang
  - Analoger Spannungswert, der umgesetzt werden soll.
- EN
  - Schaltet den Baustein ein.
- SC
  - Startet eine Umsetzung



## Wie implementiert man A/D Umsetzer in Hardware?

- Komparator (1 Bit)
- Parallelverfahren
- Zählverfahren
- Wägeverfahren

# Komparator

- Bauelement, das 2 Eingangsspannungen miteinander vergleicht.
  - V1 > V2 → Ausgabe: HIGH
  - V1 < V2 → Ausgabe: LOW</p>
- Unterschied zu digitalem Eingangspin
  - Vergleicht 2 Spannungen
  - Kein Schmitt-Trigger
- In den meisten Mikrocontroller vorhanden
  - ATmega2560: Kapitel 25
  - AIN0 > AIN1 → AC0 ist HIGH
- Komparator = 1-Bit A/D Wandler
  - Grundlage f
    ür alle weiteren Verfahren



Eingangsspannungen Ausgabe: TRUE oder FALSE

## Parallelverfahren

#### Idee

- 2<sup>r-1</sup> Komparatoren, 1 Komparator für jede "Flanke" bzw. Stufengrenze
- Vergleiche gegen 2<sup>r</sup>-1
   Referenzspannungen
- Ergebnis der Vergleiche ist Input für Encoder.
- Encoder gibt die Binärzahl ( $b_0$ , ..  $b_{r-1}$ ) aus.

### Vorteil

Umsetzung schnell, da parallel.

#### Nachteil

 Aufwendig, da 2<sup>r</sup>-1 Komparatoren notwendig.



Quelle: [1]

### Zählverfahren

- Idee
  - Verwende D/A-Wandler (DAC) für eine A/D Umsetzung!
  - Digitaler Zähler (Counter) speichert "Schätzung" des digitalen Wertes
  - DAC wandelt Schätzwert in analoge Spannung um
  - Rückkopplung: Komparator vergleicht gegen Eingangsspannung und anschließendes Erhöhen bzw. Erniedrigen des Zählers.
- Vorteil: Einfache Realisierung
- Nachteil: Geschwindigkeit, lange Einschwingzeit.







Zählverfahren: Einschwingvorgang

## Wägeverfahren

- Modifiziertes Zählverfahren
  - Ersetze Zähler gegen Successive Approximation Register (SAR)
  - SAR implementiert binäre Suche (in Hardware) anstatt einfach hochzuzählen.
- Sukzessive Approximation des Wertes der Eingangsspannung
  - Vom MSB zum LSB (least significant Bit)
  - Runde i: Setze Bitwert b<sub>i</sub> auf 1, erzeugte Spannung größer als zu messende Spannung?
    - Ja: Behalte b<sub>i</sub>=1
    - Nein: Setze b<sub>i</sub>=0



- Beispiel: r=3; V<sub>in</sub>≈(1011)V
  - 1. Runde: b=1000
  - 2. Runde: b=1100
  - 3. Runde: b=1010
  - 4. Runde: b=1011

## Inhalt

- Einführung
- Arbeitsweise von A/D Wandlern
- A/D Umsetzung beim ATmega2560

# A/D Umsetzung beim ATmega2560 (1)

- 1 echter A/D-Umsetzer, mehrere analoge Eingangspins!
  - 16 Eingangspins können an A/D weitergeleitet werden.
  - Konfigurierbar, welcher Eingang an A/D weitergeleitet wird.
- Trigger einer A/D Umsetzung
  - Manuell durch Codeanweisung.
  - Auto Trigger: Hardware löst automatisch eine A/D Umsetzung aus
    - Free Running Mode: Sobald fertig, nächste Umsetzung → Endlosschleife.
    - Nach Timer Overflow Interrupts
    - Nach Änderungen am Komparatorausgang
- Wie erkennt man, das A/D Umsetzung beendet?
  - Auswerten eines speziellen Flags, gesetzt durch ATmega
  - Durch speziellen Interrupt.
  - [Geänderter Wert steht in Datenregister]

# A/D Umsetzung beim ATmega2560 (2)

#### Prescaler

- Interner A/D Umsetzer, der spezielle Taktrate benötigt.
- Konfigurierbar.
- Referenzspannung, Alternativen:
  - Versorgungsspannung AVCC des Mikrocontrollers als Referenz (hier 5,0V)
  - Feste interne Spannungen: 1,1V und 2,56 V
  - Pin (AREF), an dem beliebige Spannung angelegt werden kann.
- Wertebereich der umsetzbaren Spannungswerte
  - Single-Ended Conversion: Nur positive Spannungen  $[0, V_{ref}]$ 
    - Vergleiche Spannung an Eingangspin mit GND.
  - Differential Conversion: Vorzeichenbehaftet [-V<sub>ref</sub>/2, V<sub>ref</sub>/2]
    - Vergleiche Spannungen zwischen 2 Eingangspins.
    - Komplexer: Unterscheidung zwischen negativen und positiven Spannungswerten

## Wichtige Register für A/D Umsetzer

#### ADMUX

- Wahl der Referenzspannung
- Wahl der analogen Eingangspins für A/D Umsetzung

#### ADCSRB

- Wahl der analogen Eingangspins für A/D Umsetzung
- Single-Ended oder Differential Conversion
- Free Running Mode oder manuelles Triggern

#### ADCSRA

- Aktivieren und Starten der A/D Umsetzung
- Prescaler
- Interrupts

#### ADCL und ADCH

- Speichert Ergebnis der A/D Umsetzung
- Erst ADCL, dann ADCH lesen (atomarer Zugriff)

#### **Achtung:**

Teilweise verteilen sich die logisch zusammengehörige Bits / Flags über mehrere Register.

## Quellenverzeichnis

- [1] G. Gridling und B. Weiss. *Introduction to Microcontrollers*, Version 1.4, 26. Februar 2007, Kapitel 2.5, verfügbar online:

  <a href="https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf">https://ti.tuwien.ac.at/ecs/teaching/courses/mclu/theory-material/Microcontroller.pdf</a>
  (abgerufen am 08.03.2017)
- [2] Datenblatt ATmega2560, <a href="http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561\_datasheet.pdf">http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561\_datasheet.pdf</a>, (abgerufen am 19.03.2017)
- [3] M. Jimenez, R. Palomera und I.Couvertier. Introduction to Embedded Systems, Springer Verlag, 2014
- [4] U. Brinkschulte, T. Ungerer. Mikrocontroller und Mikroprozessoren, 3. Auflage, Springer Verlag, 2010
- [5] <a href="http://www.leifiphysik.de/elektrizitaetslehre/komplexere-schaltkreise/ersatzwiderstand-bei-serien-und-parallelschaltung">http://www.leifiphysik.de/elektrizitaetslehre/komplexere-schaltkreise/ersatzwiderstand-bei-serien-und-parallelschaltung</a> (abgerufen am 01.05.2017)