Guarded Kleene Algebra with Tests: Automata Learning

Stefan Zetzsche ¹ Alexandra Silva ^{1,3}
Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

³Cornell University

MFPS 2022, Ithaca, New York

1

Ohttps://arxiv.org/abs/2204.14153

Introduction

Title

Guarded Kleene Algebra with Tests: Automata Learning

3

Guarded Kleene Algebra with Tests: Automata Learning

$$[System] \stackrel{\supseteq}{=} [Model] \in A^* \to B$$

5

$$[\![\mathsf{System}]\!] = [\![\mathsf{Model}]\!] \in A^* \to B$$

6

L*-algorithm

Angluin, D., Learning Regular Sets from Queries and Counterexamples (1987).

$$L^*$$
 for $\llbracket \mathscr{X}_{1+a\cdot a\cdot a^*} \rrbracket \subseteq \{a\}^*$

8

Theorem If L* is instantiated with $[\![\mathscr{X}]\!]$, then it terminates with $m(\mathscr{X})$.

Angluin, D., Learning Regular Sets from Queries and Counterexamples (1987).

Guarded Kleene Algebra with Tests: Automata Learning

$$e, f \in \mathsf{Exp}_{\Sigma} \coloneqq 0 \mid 1 \mid p \in \Sigma \mid e + f \mid e \cdot f \mid e^*$$

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid \overline{b}$$
 $e, f \in \mathsf{Exp}_{\Sigma, T} ::= 0 \mid 1 \mid p \in \Sigma \mid e + f \mid e \cdot f \mid e^* \mid b \in \mathsf{BExp}_T$

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid \overline{b}$$
 $e, f \in \mathsf{Exp}_{\Sigma, T} ::= 0 \mid 1 \mid p \in \Sigma \mid e + f \mid e \cdot f \mid e^* \mid b \in \mathsf{BExp}_T$

$$[[(bp)^*\overline{b}\cdot q]] = \{\overline{b}qb, \overline{b}q\overline{b}, bp\overline{b}qb, bp\overline{b}q\overline{b}, ...\}$$

$$\in (\mathsf{At}\cdot \Sigma)^* \cdot \mathsf{At} \to 2$$

If $T = \{t_1, \ldots, t_n\}$, then At $\cong \{c_1 \cdot \ldots \cdot c_n \mid c_i \in \{t_i, \overline{t_i}\}\}$.

Kozen, D., Kleene Algebra with Tests (1997).

Kozen, D., On the Coalgebraic Theory of Kleene Algebra with Tests (2008).

```
while b do begin p;
while c do q
end
```

```
if b then begin
p;
while b+c do
   if c then q else p
end
```

```
while b do \mathbf{e} : \Leftrightarrow (b\mathbf{e})^* \overline{b}
if b then \mathbf{e} else \mathbf{f} : \Leftrightarrow b\mathbf{e} + \overline{b}\mathbf{f}
Kozen, D., Kleene Algebra with Tests (1997).
```

KAT	KAT	KAT	KAT
+	+	+	+
Network	Temporal	Probabilistic	Weighted
=	Network	Network	Network
NetKAT	=	=	=
	Temporal	ProbNetKAT	Weighted
	NetKAT		NetKAT

Anderson, C. J., et al., NetKAT: Semantic Foundations for Networks (2014).

Beckett, R., et al., Temporal NetKAT (2016).

Foster, N., et al., Probabilistic NetKAT (2016).

Larsen, Kim G., et al., WNetKAT: A Weighted SDN Programming and Verification Language (2016).

Guarded Kleene Algebra with Tests: Automata Learning

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid b$$
 $e, f \in \mathsf{Exp}_{\Sigma, T} ::= 0 \mid 1 \mid p \in \Sigma \mid e \cdot f \mid b \in \mathsf{BExp}_T$
 $e + f \mid e^*$

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid b$$
 $e, f \in \mathsf{Exp}_{\Sigma, T} ::= 0 \mid 1 \mid p \in \Sigma \mid e \cdot f \mid b \in \mathsf{BExp}_T$
 $e + f \mid e^*$

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid \overline{b}$$
 $e, f \in \mathsf{GExp}_{\Sigma, T} ::= 0 \mid 1 \mid p \in \Sigma \mid e \cdot f \mid b \in \mathsf{BExp}_T$
 $e +_b f \mid e^b$

Smolka, S., et al., Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (2019).

$$b, c \in \mathsf{BExp}_T ::= 0 \mid 1 \mid t \in T \mid b + c \mid b \cdot c \mid \overline{b}$$

$$e, f \in \mathsf{GExp}_{\Sigma,T} ::= 0 \mid 1 \mid p \in \Sigma \mid e \cdot f \mid b \in \mathsf{BExp}_T \mid$$

$$\text{if } b \text{ then } e \text{ else } f \mid$$

$$\text{while } b \text{ do } e \mid$$

Smolka, S., et al., Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (2019).

$$[[(\text{while } b \text{ do } p) \cdot q]] = \{\overline{b}qb, \overline{b}q\overline{b}, bp\overline{b}qb, bp\overline{b}q\overline{b}, ...\}$$

$$\in (\text{At} \cdot \Sigma)^* \cdot \text{At} \to 2$$

Kozen, D., et al., The Böhm-Jacopini Theorem is False, Propositionally (2008).

Theorem

The equational theory of KAT is decidable in polynomial time.

Theorem

The equational theory of GKAT is decidable in almost linear time.

Kozen, D., et al., The Complexity of Kleene Algebra with Tests (1996).

Kozen, D., et al., Kleene Algebra with Tests: Completeness and Decidability (1996).

Smolka, S., et al., Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (2019).

Contributions

Contributions

Guarded Kleene Algebra with Tests: Automata Learning

L^* for $[e]_{GKAT}$

$$[e]_{GKAT}$$

$$\in$$

$$(At \cdot \Sigma)^* \cdot At \to 2$$

$$\cong$$

$$(At \cdot \Sigma)^* \to (At \to 2)$$

$$=$$

$$A^* \to B$$

L^* for $\llbracket (\mathtt{while}\ b\ \mathtt{do}\ p) \cdot q rbracket_{\mathsf{GKAT}}$

Issues

- Learns Moore instead of GKAT automata
- Redundant transitions to a sink-state
- Doesn't account for deterministic nature
- Cells are labelled by functions At → 2
- Unfeasible amount of membership queries

GL^* for $\llbracket (\mathtt{while}\ b\ \mathtt{do}\ p) \cdot q \rrbracket_{\mathsf{GKAT}}$

	Ь	Ъ		
ε	0	0		
bp	0	0		
bq	0	0		
bр	0	0		
bq	1	1		
(a)				

	Ь	Б		
ε	0	0		
bq	1	1		
bp	0	0		
bq	0	0		
bр	0	0		
bqbp	0	0		
bqbq	0	0		
bqbp	0	0		
bqbq	0	0		
(b)				

$\Rightarrow b \mid 0$ $\rightarrow (row(\varepsilon)) \xrightarrow{\overline{b} \mid q}$	$\Rightarrow b, \overline{b} \mid 1$ $row(\overline{b}q)$
(c)	

	Ь	Ь	bp b qb	bqb	
ε	0	0	1	1	
Бq	1	1	0	0	
bp	0	0	1	1	
bq	0	0	0	0	
bр	0	0	0	0	
bqbp	0	0	0	0	
bqbq	0	0	0	0	
bqbp	0	0	0	0	
bqbq	0	0	0	0	
(d)					

Minimization

Lemma

- $\llbracket m(\mathscr{X}) \rrbracket = \llbracket \mathscr{X} \rrbracket$
- $\llbracket \mathscr{Y} \rrbracket = \llbracket \mathscr{X} \rrbracket$ implies $|m(\mathscr{X})| \le |\mathscr{Y}|$
- $\llbracket \mathscr{X} \rrbracket = \llbracket \mathscr{Y} \rrbracket$ if(f) $m(\mathscr{X}) \cong m(\mathscr{Y})$
- $m(\mathscr{X})$ satisfies nesting coequation, if \mathscr{X} does

We assume that ${\mathscr X}$ and ${\mathscr Y}$ are normal.

Correctness

Theorem

If GL^* is instantiated with $[\![\mathscr{X}]\!]$, then it terminates with $m(\mathscr{X})$.

We assume that ${\mathscr X}$ is normal.

Comparison: Complexity

Lemma

- L* requires at most O(a * (|At|*b)) membership queries to [e];
- GL* requires at most O(a * (|At|+b)) membership queries to [e].

Let m be the maximum length of a counterexample and n the size of the minimal Moore automaton accepting $[\![e]\!]$, then $a=n*|\mathrm{At}|*|\Sigma|$ and b=m*n.

If T is finite, then At $\cong 2^T$.

Comparison: Implementation

- (a)
 - $e = \text{if } t_1 \text{ then } p_1 \text{ else } p_2$
 - $\bullet \quad \Sigma = \{p_1, p_2, p_3\}$

- $e = (\text{while } t_1 \text{ do } p_1) \cdot p_2$
- $\Sigma = \{p_1, p_2\}$

https://github.com/zetzschest/gkat-automata-learning

Comparison: Embedding

Lemma

$$f(m(\mathscr{X})) \cong m(f(\mathscr{X}))$$

 $[\![(\mathtt{while}\ b\ \mathtt{do}\ p)\cdot q]\!]$

The end

Thanks for listening!

 $^{^{0}}$ https://fgh.xyz