Una Problema en Probabilidad

Sam Scheuerman*

Una Problema en Probabilidad

Sam Scheuerman*

*(Una persona que no conoce la probabilidad)

Mi Pregunta

¿Cuál es el valor esperado si tiramos p dados y sumos los q mayor de ellos?

¿Porqué me importa?

- Me gusta el jugo se llama calabazos y dragones
- Para obtenar estadísticas de personajes, tiramos 4 dados y sumos los 3 mayor de ellos
- Quiero usar matemáticas para hacer el mejor personaje posible

Primero Problema

Esta problema es muy difícil para responder.

Primero Problema

Esta problema es muy difícil para responder. ¿Podemos obtenar una problema más facíl para resolvar?

Primero Problema

Esta problema es muy difícil para responder.
¿Podemos obtenar una problema más facíl
para resolvar?
Para esta oracion, encontremos el valor
esperada de tirar 3 dados y sumar los 2
mayores de ellos

Primero: Los Basicos

- ullet Sea A un evento en X
- $P(A) = \text{probabilidad } A \text{ occura} = \frac{\#A}{\#X}$
- Valor esperada: $E[X] = \sum_{A \in X} A \cdot P(A)$

Probabilidad Condicional

- Si eventos A y B no son independiente, debemos tener en cuenta el doble conteo
- $P(A \circ B) = P(A) + P(B) P(A \cap B)$
- P(A y B) = P(A|B)P(B)

Proxima: Una Problema Introductorio

¿Cual es la probabilidad que N es la maxima cuando tiramos 2 dados?

- A: probabilidad $D1 \ge D2$ y D1 = N
- B: probabilidad D2 > D1 y D2 = N
- $A \cap B$: probabilidad D1 = D2 = N

•

$$P(A) = \frac{1}{6} \sum_{i=1}^{N} \frac{1}{6} = \frac{N}{36}$$

$$P(B) = \frac{1}{6} \sum_{i=1}^{N} \frac{1}{6} = \frac{N}{36}$$

$$P(A \cap B) = \frac{1}{6} \frac{1}{6} = \frac{1}{36}$$

$$P(N) = \frac{2N - 1}{36}$$

Estrategia 1

- Sea $P_3^+(N)$ probabilidad N es el mayor de 3 dados
- ullet Sea $P_3(N)$ probabilidad N es la media de 3 dados

• Computar
$$P_{\sigma}(N) = \sum_{\substack{(a,b) \\ a+b=N}} P_3^+(a) P_3^-(b)$$

 Si conoces la probabilidad, sabes que es una mala idea, pero you no sé probabilidad

Encontrando $P_3^+(N)$

- A: $D1 \ge D2$, D3 y D1 = N
- B: $D2 \ge D1$, D3 y D2 = N
- C: $D3 \ge D1$, D2 y D3 = N

$$P(A) = P(B) = P(C) = \frac{1}{6} \frac{N}{6} \frac{N}{6} = \frac{N^2}{216}$$

• $A \cap B$: $D1 = D2 \ge D3$, otros similares

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{1}{6} \frac{1}{6} \frac{N}{6} = \frac{N}{216}$$

•
$$A \cap B \cap C$$
: $D1 = D2 = D3 = N$, $P(A \cap B \cap C) = \frac{1}{216}$

$$P_3^+(N) = \frac{3N^2 - 3N + 1}{216}$$

Tratando de encontrar P_3 : Intento 1

- Darse cuenta de $P_3^-(N) = P_3^+(7 N)$
- Escribiendo

$$P(N ext{ es maxima o minima o medio}) = P_3^+(N) + P_3^-(N) + P_3^-(N)$$
 $- P(\text{maxima y minima})$
 $- P(\text{maxima y medio})$
 $- P(\text{minima y medio})$
 $+ P(\text{todos})$
 $= 1$

- Bueno porque todos otro que P_3^{\cdot} son facíl de calcular
- Problema: ¡Esto no funciona!
- ¿Por qué? Existe la probabilidad que que N no esté de ninguno de los dados

Intento 2

- Trabajé la probabilidad condicional
- Sea A: $(D2 \le D1 \le D3 \text{ o } D3 \le D1 \le D2) \text{ y } D1 = N$, otros similares.
- Cuando resolví todo, obtuve

$$P_3(N) = \frac{3(2N(7) - 2N^2 - 1) - 3(6) - 1}{216}$$

- ¡ Podemos verificar con una computadora que esto es correcto!
- \bullet Problema: no podemos user este cálculo porque P_3^+ y P_3^\cdot no son independiente

Estratagia 2

- Abandonando a tratar obtenar una buena fórmula
- Cuenta los tiros en cambio
- Definir X :=la colección de todas las tiradas de dados
- Definir $Y := \text{particiones de } N \in [2, ..., 12]$
- ullet $\phi: X o Y$ selecciona los dos rollos más grandes
- Esta función da una probabilidad: $P(b, a) = |\phi^{-1}(b, a)|$

Contando ϕ^{-1}

- Nobra la tercera numero c
- Si $b \neq a$ y c < a, hay $\binom{3}{1} = 3$ formas de agregar c al par (a, b), y 2 formas de arreglar a y b en cada caso
- ullet Podemos hacer esto para cada a-1 possibilidades para c
- Si c = a, entonces sólo hay 3 maneras para argragar c
- En total, $|\phi^{-1}(b,a)| = 6(a-1)+3$
- Si a = b, solomente 1manera de arreglar a y b despues de agregar c, y sólo 1 manera de insertar c si c = a = b
- Obtenemos $|\phi^{-1}(b,a)| = 3(a-1)+1$
- Combinando, tenemos

$$|\phi^{-1}(b,a)| = \begin{cases} 3(a-1)+1 & a=b\\ 6(a-1)+3 & a \neq b \end{cases}$$

Calcular P(N) y E[X]

• El probabilidad que N es la cuenta de los dos rollos mas grandes es

$$P(N) = \sum_{\substack{(b,a)\\a+b=N}} P(b,a)$$

Podemos computar eso con

$$P(N) = \sum_{i=\max(N+1-6,1)}^{\lfloor \frac{N+1}{2} \rfloor} P(N-i,i)$$

• y podemos uso esto para computar el valor esperada

$$E[X] = \sum_{\substack{(b,a)\\a+b=N}} N \cdot P(b,a) = \frac{1827}{216} \approx 8.46$$

• Entonces, si tiras 3 dados y sumas los dos mayores, obtendrás entre 8 y 9

¿Pero Sam, qué pasa con el caso general?

¿Pero Sam, qué pasa con el caso general?

Yo no se

¿Preguntas?