LECTURE 10 DIFFERENTIABILITY

1. Derivatives of functions of a real variable

We remind here the concept of derivative of a function; this notion encompasses the idea of speed of change of the value of a function with respect to its variable.

DEFINITION. Let $A \subseteq \mathbb{R}$ be a non-empty set and $f : A \to \mathbb{R}$ a function.

a) We call the *derivative* of f in a point $x_0 \in A \cap A'$ the limit (if existent)

$$f'(x_0) \coloneqq \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}},$$

also denoted $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$.

- **b**) We say that f is *derivable* in a point $x_0 \in A \cap A'$ if the derivative of f in x_0 exists and is finite.
- *c*) We say that f is *derivable* on a subset $B \subseteq A$ if f is derivable in all points $x_0 \in B$ (this implies that $B \subseteq A \cap A'$).
- d) We denote f' or $\frac{df}{dx}$ the function $x \mapsto f'(x)$ defined on the subset of A consisting in all points of A where f is derivable.
- e) If $x_0 \in A$ is a left-limit point (right-limit point) of A, we call the *left-derivative* (right-derivative) of f in x_0 the limit (if existent)

$$f'_{\mathbf{l}}(x_0) \coloneqq \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}} \quad \left(f'_{\mathbf{r}}(x_0) \coloneqq \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}} \right).$$

If $x_0 \in A$ is both a left-limit point and a right-limit point, it is clear that the derivative $f'(x_0)$ exists if and only if the lateral derivatives $f'_1(x_0)$ and $f'_r(x_0)$ exist and are equal. In this case, $f'(x_0) = f'_1(x_0) = f'_1(x_0)$. Of course, f is derivable in x_0 if, moreover, the two equal lateral derivatives are finite.

Proposition 1.1. Let $A \subseteq \mathbb{R}$ be a non-empty set, $f: A \to \mathbb{R}$ a function and $x_0 \in A \cap A'$. If f is derivable in x_0 , then f is continuous in x_0 .

Definition. Let $A \subseteq \mathbb{R}$ be a non-empty set.

- a) We say that a function $f: A \to \mathbb{R}$ is of class C^1 if f is derivable on A and f' is continuous.
- **b**) We denote by $C^1(A)$ the family of all functions $f: A \to \mathbb{R}$ of class C^1 .
- c) We denote by C(A) the family of all continuous functions $f: A \to \mathbb{R}$.

By Proposition 1.1, $C^1(A) \subseteq C(A)$.

The following theorem gives us rules of derivation for sums, products and composition.

Theorem 1.2. Let $A, B \subseteq \mathbb{R}$ be non-empty sets.

i) If the functions $f, g: A \to \mathbb{R}$ are derivable in a point $x_0 \in A \cap A'$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ and fg are derivable in x_0 and

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0);$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0) \text{ (Leibniz rule)}.$$

If, moreover, $g(x_0) \neq 0$, then $\exists \varepsilon > 0 : g(x) \neq 0$, $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ and 1/g, f/g are derivable in x_0 with

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g(x_0)^2};$$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

ii) If the function $f: A \to \mathbb{R}$ is derivable in $x_0 \in A \cap A'$, $f(x_0) \in B \cap B'$ and g is derivable in $f(x_0)$, then $g \circ f$ is derivable in x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$
 (chain rule).

iii) If the function $f: A \to B$ is bijective and derivable in $x_0 \in A \cap A'$ such that $f'(x_0) \neq 0$ and $f(x_0) \in B'$, then f^{-1} is derivable in $f(x_0)$ and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

If the functions f and g are derivable, the above rules cand be written as:

•
$$(f+g)' = f' + g';$$

$$\bullet (fq)' = f'q + fq';$$

•
$$\left(\frac{1}{f}\right)' = -\frac{f'}{f}$$
 (provided that $0 \notin \text{Im } f$);

•
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
 (provided that $0 \notin \text{Im } g$);

•
$$(g \circ f)' = (g' \circ f) \cdot f';$$

•
$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$
 (provided that $0 \notin \operatorname{Im} f'$).

The last two rules can be intuitively remembered if we see f as a *change of variable* y = f(x):

•
$$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}u} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$$
;

•
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$$

Let us remind some of the most usual derivatives:

•
$$c' = \frac{\mathrm{d}c}{\mathrm{d}x} = 0, x \in \mathbb{R}, \text{ for } c \in \mathbb{R};$$

•
$$(a^x)' = a^x \ln a, x \in \mathbb{R}$$
, for $a \in \mathbb{R}_+^*$;

•
$$(\log_a x)' = \frac{1}{x \ln a}, x \in \mathbb{R}, \text{ for } a \in \mathbb{R}_+^* \setminus \{1\};$$

•
$$(x^p)' = px^{p-1}, x \in \mathcal{D}_p$$
, for $p \in \mathbb{R}$;

•
$$(\sin x)' = \cos x$$
;

•
$$(\cos x)' = -\sin x$$
;

•
$$(\operatorname{tg} x)' = \frac{1}{(\cos x)^2}, x \in \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2} \mid k \in \mathbb{N}\};$$

•
$$(\operatorname{ctg} x)' = -\frac{1}{(\sin x)^2}, x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{N}\};$$

•
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1);$$

•
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, x \in (-1,1);$$

•
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}, x \in \mathbb{R};$$

•
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}, x \in \mathbb{R},$$

where $\mathcal{D}_p := \mathbb{R}$ if $p \in \mathbb{N}^*$, $\mathcal{D}_p := \mathbb{R}^*$ if $p \in \mathbb{Z} \setminus \mathbb{N}^*$, $\mathcal{D}_p := \mathbb{R}_+$ if $p \in \mathbb{R}_+ \setminus \mathbb{N}$ and $\mathcal{D}_p := \mathbb{R}_+^*$ if $p \in (-\infty, 0) \setminus \mathbb{Z}$.

If $f: A \to \mathbb{R}_+^*$ and $g: A \to \mathbb{R}$ are derivable functions, then according to the rules of calculus, we have:

$$(f^g)' = (e^{g \ln f})' = e^{g \ln f} (g' \ln f + \frac{gf'}{f}) = f^g (\ln f)g' + f^{g-1}f'g.$$

The definition of derivable real functions can be easily adapted for functions of one variable with values in \mathbb{R}^m , because the limit

$$f'(x_0) := \lim_{x \to x_0} \frac{1}{x - x_0} (f(x) - f(x_0))$$

makes sense for functions $f: A \to \mathbb{R}^m$ and $x_0 \in A \cap A'$. As in the case of limits of function, the derivatives can be computed on components:

Proposition 1.3. Let $A \subseteq \mathbb{R}$ be a non-empty set and $f: A \to \mathbb{R}^m$ a function with components f_1, f_2, \ldots, f_m . If $x_0 \in A \cap A'$, then f is derivable in x_0 if and only if f_1, f_2, \ldots, f_m are derivable in x_0 . In this case, $f'(x_0) = (f'_1(x_0), \ldots, f'_m(x_0))$.

Similar rules of calculus apply in this case as well:

Theorem 1.4. Let $A \subseteq \mathbb{R}$ be a non-empty set, $x_0 \in A \cap A'$ and the functions $f, g : A \to \mathbb{R}^m$, $\varphi : A \to \mathbb{R}$, derivable in x_0 . Then:

i) f + g is derivable in x_0 and

$$(f+q)'(x_0) = f'(x_0) + g'(x_0);$$

ii) $\langle f, q \rangle$ is derivable in x_0 and

$$(\langle f,g\rangle)'(x_0) = \langle f'(x_0),g(x_0)\rangle + \langle f(x_0),g'(x_0)\rangle;$$

iii) φf is derivable in x_0 and

$$(\varphi f)'(x_0) = \varphi'(x_0)f(x_0) + \varphi(x_0)f'(x_0).$$

2. Gâteaux differentiability

If we want to derivate functions of several variables (even with values in \mathbb{R}), a simple generalization is not possible, because for $n \ge 2$, $\mathbf{x}_0 \in \mathbb{R}^n$ and a function $f : \mathbb{R}^n \to \mathbb{R}$, the ratio $\frac{f(\mathbf{x}) - f(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0}$ is not defined. There exist several possibilities to circumvent this difficulty. One is to consider *directional derivatives*, which is based on the remark that the derivative of a function $f : A \to \mathbb{R}$ in some point x_0 can be written as

$$f'(x_0) = \lim_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t}.$$

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f: D \to \mathbb{R}^m$ a function.

a) If $\mathbf{x}_0 \in D$ and $\mathbf{u} \in \mathbb{R}^n$, we say that f is derivable in \mathbf{x}_0 along the direction \mathbf{u} if the limit

$$f'(\mathbf{x}_0; \mathbf{u}) \coloneqq \lim_{t \to 0} \frac{1}{t} \left(f(\mathbf{x}_0 + t\mathbf{u}) - f(\mathbf{x}_0) \right) \in \mathbb{R}^m$$

exists. In this case, $f'(\mathbf{x}_0; \mathbf{u})$ is called the *directional derivative* of f in \mathbf{x}_0 in the *direction* \mathbf{u} .

- **b**) If $\mathbf{x}_0 \in D$ and f is derivable in \mathbf{x}_0 along each direction $\mathbf{u} \in \mathbb{R}^n$, we say that f is Gâteaux differentiable in \mathbf{x}_0 . The Gâteaux differential is then the function $\mathbf{u} \mapsto f'(\mathbf{x}_0; \mathbf{u})$ and is denoted by $\mathrm{D} f(\mathbf{x}_0)$.
- c) If $\mathbf{x}_0 \in D$ and f is Gâteaux differentiable in \mathbf{x}_0 , we say that f is Gâteaux derivable in \mathbf{x}_0 if the Gâteaux differential $\mathrm{D}f(\mathbf{x}_0): \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping.
- d) We say that f is $G\hat{a}teaux$ differentiable or derivable on a subset $D_0 \subseteq D$ if f is $G\hat{a}teaux$ differentiable, respectively derivable in any point $\mathbf{x}_0 \in D_0$.

Remark. Since

$$f'(\mathbf{x}_0; \alpha \mathbf{u}) = \lim_{t \to 0} \frac{1}{t} (f(\mathbf{x}_0 + t\alpha \mathbf{u}) - f(\mathbf{x}_0)) = \lim_{s \to 0} \frac{\alpha}{s} (f(\mathbf{x}_0 + s\mathbf{u}) - f(\mathbf{x}_0)) = \alpha f'(\mathbf{x}_0; \mathbf{u})$$

for every $\alpha \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^n$, we see first that the existence of $f'(\mathbf{x}_0; \alpha \mathbf{u})$ is equivalent to the existence of $f'(\mathbf{x}_0; \mathbf{u})$ in the case $\alpha \in \mathbb{R}^*$, $\mathbf{u} \in \mathbb{R}^n \setminus \{\mathbf{0}_{\mathbb{R}^n}\}$. Therefore, in the definition of differentiability one can require the existence of $f'(\mathbf{x}_0; \mathbf{u})$ only for versors $\mathbf{u} \in \mathbb{R}^n$. Second, if f is differentiable in \mathbf{x}_0 , the mapping $\mathrm{D}f(\mathbf{x}_0) : \mathbb{R}^n \to \mathbb{R}^m$ is homogeneous; hence for the derivability of f in \mathbf{x}_0 , it is enough to ask only that $\mathrm{D}f(\mathbf{x}_0)$ is additive.

The constant functions and the linear functions are Gâteaux derivable. Indeed, if $c \in \mathbb{R}$ and $T \in L(\mathbb{R}^n; \mathbb{R}^m)$, then

$$c'(\mathbf{x}_0;\mathbf{u}) = \lim_{t \to 0} \frac{1}{t}(c-c) = 0$$

and

$$T'(\mathbf{x}_0;\mathbf{u}) = \lim_{t\to 0} \frac{1}{t} \left(T(\mathbf{x}_0 + t\mathbf{u}) - T(\mathbf{x}_0) \right) = T(\mathbf{u}), \ \forall \mathbf{x}_0, \mathbf{u} \in \mathbb{R}^n.$$

In consequence, $Dc(\mathbf{x}_0) = 0$, $DT(\mathbf{x}_0) = T$, $\forall \mathbf{x}_0 \in \mathbb{R}^n$.

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$ and $f : A \to \mathbb{R}^m$ a function. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ be the canonical basis in \mathbb{R}^n . If f is derivable in \mathbf{x}_0 along the direction \mathbf{e}_k for some $k \in \{1, \dots, n\}$, we say that f admits a *partial derivative* with respect to x_k in \mathbf{x}_0 and we denote

$$\frac{\partial f}{\partial x_k}(\mathbf{x}_0) \coloneqq f'(\mathbf{x}_0; \mathbf{e}_k).$$

We can see that the partial derivative of f with respect to x_k in \mathbf{x}_0 is obtained by derivating the function which is obtained by varying only the k^{th} -component of \mathbf{x}_0 , the others remaining fixed. Indeed, if $\mathbf{x}_0 = (x_1^0, \dots, x_n^0) \in D$, then

$$\frac{\partial f}{\partial x_k}(\mathbf{x}_0) = \lim_{t \to 0} \frac{1}{t} \left(f(\mathbf{x}_0 + t\mathbf{e}_k) - f(\mathbf{x}_0) \right) \\
= \lim_{x_k \to x_k^0} \frac{1}{x_k - x_k^0} \left(f(x_1^0, \dots, x_{k-1}^0, x_k, x_{k+1}^0, \dots, x_n^0) - f(x_1^0, \dots, x_{k-1}^0, x_k^0, x_{k+1}^0, \dots, x_n^0) \right).$$

Of course, $\frac{\partial f}{\partial x_k}(\mathbf{x}_0) = \left(\frac{\partial f_1}{\partial x_k}(\mathbf{x}_0), \dots, \frac{\partial f_m}{\partial x_k}(\mathbf{x}_0)\right) \in \mathbb{R}^m$, where f_1, \dots, f_m are the components of f. The existence of partial derivatives of a function of several variables in a point does not imply the existence of all

The existence of partial derivatives of a function of several variables in a point does not imply the existence of all directional derivatives (in other words, the Gâteaux differentiability) in that point, as the following example shows: Example. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

Then $\frac{\partial f}{\partial x}(0,0) = 0$ and $\frac{\partial f}{\partial y}(0,0) = 0$, but

$$\frac{f((0,0)+t(u,v))-f((0,0))}{t}=\frac{\frac{t^2uv}{t^2(u^2+v^2)}}{t}=\frac{1}{t}\frac{uv}{u^2+v^2}.$$

Hence the directional derivative f'((0,0);(u,v)) does not exist if $uv \neq 0$.

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$ and $f:D \to \mathbb{R}^m$ a Gâteaux derivable function in \mathbf{x}_0 .

- a) The matrix in \mathcal{M}_{nm} associated to $\mathrm{D}f(\mathbf{x}_0)$ (with respect to the canonical bases in \mathbb{R}^n and \mathbb{R}^m) is called the *Jacobian matrix* of f in \mathbf{x}_0 and is denoted $J_f(\mathbf{x}_0)$.
- **b**) In the case m = 1, the Jacobian matrix of f in \mathbf{x}_0 is also called the gradient of f and is denoted by $\nabla f(\mathbf{x}_0)$.
- c) In the case m = n, the determinant of $J_f(\mathbf{x}_0)$ is called the *Jacobian* of f in \mathbf{x}_0 and is denoted by $\frac{D(f_1, \dots, f_n)}{D(\mathbf{x}_1, \dots, \mathbf{x}_n)}(\mathbf{x}_0)$, where f_1, \ldots, f_n are the components of f.

Remarks.

1. Let $f: D \to \mathbb{R}^m$ be a Gâteaux derivable function in \mathbf{x}_0 . It can be easily shown that $J_f(\mathbf{x}_0) = [\nabla f_1(\mathbf{x}_0) \dots \nabla f_m(\mathbf{x}_0)]$, i.e. the matrix having as columns the elements of $\nabla f_k(\mathbf{x}_0)$ for $k \in \{1, \dots, m\}$. On the other hand,

$$J_f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial f}{\partial x_m}(\mathbf{x}_0) \end{bmatrix},$$

i.e. the matrix having as rows the elements of $\frac{\partial f}{\partial x_i}(\mathbf{x}_0)$ for $i \in \{1, ..., n\}$:

$$J_{f}(\mathbf{x}_{0}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}_{0}) & \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}_{0}) \\ \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{x}_{0}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial x_{2}}(\mathbf{x}_{0}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}_{0}) & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{x}_{0}) \end{bmatrix}.$$

Particularizing for the case m = 1, we get

$$\nabla f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f}{\partial x_n}(\mathbf{x}_0) \end{bmatrix}^{\mathrm{T}}.$$

We can see the colum matrix $\nabla f(\mathbf{x}_0)$ as an element of \mathbb{R}^n ; in this case we can write

$$f'(\mathbf{x}_0;\mathbf{u}) = \langle \nabla f(\mathbf{x}_0),\mathbf{u} \rangle = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)u_i, \ \forall \mathbf{u} = (u_1,\ldots,u_n) \in \mathbb{R}^n.$$

- 2. Concerning operations with functions of several variables, we have the following rules, which apply whenever the concerned directional derivatives exist for the functions $f, q: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $\varphi: D \subseteq \mathbb{R}^n \to \mathbb{R}$:

 - $(f+g)'(\mathbf{x}_0;\mathbf{u}) = f'(\mathbf{x}_0;\mathbf{u}) + g'(\mathbf{x}_0;\mathbf{u});$ $(\varphi f)'(\mathbf{x}_0;\mathbf{u}) = \varphi'(\mathbf{x}_0;\mathbf{u})f(\mathbf{x}_0;\mathbf{u}) + \varphi(\mathbf{x}_0;\mathbf{u})f'(\mathbf{x}_0;\mathbf{u});$ $\left(\frac{1}{\varphi}\right)'(\mathbf{x}_0;\mathbf{u}) = -\frac{\varphi'(\mathbf{x}_0;\mathbf{u})}{\varphi(\mathbf{x}_0;\mathbf{u})^2} \text{ if } 0 \notin \text{Im } \varphi.$
- 3. If a function $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ is only Gâteaux differentiable in some point $\mathbf{x}_0\in D$, we cannot infer the continuity of f in \mathbf{x}_0 , but only the directional continuity in \mathbf{x}_0 , i.e. the continuity in 0 of the function $t \mapsto f(\mathbf{x}_0 + t\mathbf{u})$ for any $\mathbf{u} \in \mathbb{R}^n$. Even if we require that f is Gâteaux derivable in \mathbf{x}_0 , f is not necessarily continue in \mathbf{x}_0 . However, the situation changes if we require that the partial derivatives exist and are bounded on a neighbourhood of x₀:

Theorem 2.1. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$ and $f: A \to \mathbb{R}^m$. If there exists $V \in \mathcal{V}(\mathbf{x}_0)$ such that the partial derivatives $\frac{\partial f}{\partial x_i}(\mathbf{x})$ exist for any $\mathbf{x} \in V \cap D$ and $\frac{\partial f}{\partial x_i}$ are bounded on $V \cap D$ for every $i = \overline{1, n}$, then f is continuous in \mathbf{x}_0 .

Remark. A sufficient condition for the functions $\frac{\partial f}{\partial x_i}$ to be bounded on a neighbourhood of \mathbf{x}_0 is that they are continuous in x_0 .

Definition. Let $A \subseteq \mathbb{R}^n$ be a non-empty set.

- a) If A is open, we say that a function $f:A\to\mathbb{R}^m$ is of class C^1 if all the partial derivatives of f exist and are
- b) If A is open, we denote by $C^1(A; \mathbb{R}^m)$ the family of all functions $f: A \to \mathbb{R}$ of class C^1 . If m = 1, we simply denote it $C^1(A)$.

c) We denote by $C(A; \mathbb{R}^m)$ the family of all continuous functions $f: A \to \mathbb{R}$. If m = 1, we simply denote it C(A). Theorem 2.1 and the remark below allow us to conclude that $C^1(D; \mathbb{R}^m) \subseteq C(D; \mathbb{R}^m)$ for any open subset $D \subseteq \mathbb{R}^n$.

3. Fréchet differentiability

We remark that a function $f: A \to \mathbb{R}$ is derivable in some point x_0 if there exists $a \in \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - a(x - x_0)}{|x - x_0|} = 0.$$

In this case, $a = f'(x_0)$. In order to extend the concept of derivative to the case of functions of several variables, another possibility is to replace in the above property the real number a by a matrix, or, equivalently, a linear operator.

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f: D \to \mathbb{R}^m$ a function.

a) For $\mathbf{x}_0 \in D$, we say that f is Fréchet differentiable in \mathbf{x}_0 if there exists a linear operator $T \in L(\mathbb{R}^n; \mathbb{R}^m)$ such that

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{1}{\|\mathbf{x}-\mathbf{x}_0\|}\left(f(\mathbf{x})-f(\mathbf{x}_0)-T(\mathbf{x}-\mathbf{x}_0)\right)=\mathbf{0}_{\mathbb{R}^m}.$$

In this case, the operator T is called the *Fréchet differential* of f in \mathbf{x}_0 and is denoted by $\mathrm{d}f(\mathbf{x}_0)$.

b) We say that f is Fréchet differentiable on a subset $D_0 \subseteq D$ if f is Fréchet differentiable in any point $\mathbf{x}_0 \in D_0$.

Remark. Another way to express that f is Fréchet differentiable in \mathbf{x}_0 is that there exist $T \in L(\mathbb{R}^n; \mathbb{R}^m)$ and a continuous function $\alpha : D \to \mathbb{R}^m$ such that $\alpha(\mathbf{x}_0) = \mathbf{0}_{\mathbb{R}^m}$ and

$$f(\mathbf{x}) = f(\mathbf{x}_0) + T(\mathbf{x} - \mathbf{x}_0) + \|\mathbf{x} - \mathbf{x}_0\| \alpha(\mathbf{x}), \ \forall \mathbf{x} \in D.$$

In fact, one can define α by

$$\alpha(\mathbf{x}) := \begin{cases} \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|} \left(f(\mathbf{x}) - f(\mathbf{x}_0) - T(\mathbf{x} - \mathbf{x}_0) \right), & \mathbf{x} \in D \setminus \{\mathbf{x}_0\}; \\ \mathbf{0}_{\mathbb{R}^m}, & \mathbf{x} = \mathbf{x}_0. \end{cases}$$

The link between Fréchet differentiability and Gâteaux differentiability is given by the following result:

Theorem 3.1. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f: D \to \mathbb{R}^m$ a function. If f is Fréchet differentiable in some point $\mathbf{x}_0 \in D$, then f is Gâteaux derivable in \mathbf{x}_0 and $Df(\mathbf{x}_0) = df(\mathbf{x}_0)$.

A simple consequence of this theorem is that the Fréchet differential is unique, since the Gâteaux derivative is unique, because $Df(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0; \mathbf{u})$, for every $\mathbf{u} \in \mathbb{R}^n$.

Another consequence is that if f is Fréchet differentiable in $\mathbf{x}_0 \in D$, then f has partial derivatives in \mathbf{x}_0 and

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = \mathrm{d}f(\mathbf{x}_0)(\mathbf{e}_i), \ \forall i \in \{1,\ldots,n\}.$$

Constant functions and linear mappings are Fréchet differentiable, too. Indeed, if $c \in \mathbb{R}$ and $T \in L(\mathbb{R}^n; \mathbb{R}^m)$,

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|} \left(c - c - \mathbf{0}_{L(\mathbb{R}^n; \mathbb{R}^m)} (\mathbf{x} - \mathbf{x}_0) \right) = \mathbf{0}_{\mathbb{R}^m}$$

and

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{1}{\|\mathbf{x}-\mathbf{x}_0\|}\left(T(\mathbf{x})-T(\mathbf{x}_0)-T(\mathbf{x}-\mathbf{x}_0)\right)=\mathbf{0}_{\mathbb{R}^m},$$

which clearly prove the claim and moreover, that $dc(\mathbf{x}_0) = 0$, $dT(\mathbf{x}_0) = T$, $\forall \mathbf{x}_0 \in \mathbb{R}^n$.

Let $\operatorname{pr}_i:D\to\mathbb{R}$ be the projection on the i^{th} -component:

$$\operatorname{pr}_{i}(x_{1},...,x_{n})=x_{i},(x_{1},...,x_{n})\in D, i=\overline{1,n}.$$

The Fréchet differential of pr_k is traditionally denoted dx_k :

$$\mathrm{d}x_i(u_1,\ldots,u_n)=u_i,\ (u_1,\ldots,u_n)\in\mathbb{R}^n,\ i=\overline{1,n}.$$

Since

$$df(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0; \mathbf{u}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)u_i = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0)dx_i(\mathbf{u}), \ \forall \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{R}^n,$$

we have

$$\mathrm{d}f(\mathbf{x}_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) \mathrm{d}x_i.$$

In contrast to Gâteaux derivability, Fréchet differentiability implies continuity:

Theorem 3.2. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f: D \to \mathbb{R}^m$ a function. If f is Fréchet differentiable in some point $\mathbf{x}_0 \in D$, then f is continuous in \mathbf{x}_0 .

A sufficient condition for Fréchet differentiability is given by the following result:

Theorem 3.3. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$ and $f: D \to \mathbb{R}^m$ a function. If there exists $V \in \mathcal{V}(\mathbf{x}_0)$ such that the partial derivatives $\frac{\partial f}{\partial x_i}(\mathbf{x})$ exist for any $\mathbf{x} \in V \cap D$ and $\frac{\partial f}{\partial x_i}$ are continuous on $V \cap D$ for every $i = \overline{1, n}$, then f is Fréchet differentiable in \mathbf{x}_0 .

A consequence of the above result is that if $f \in C^1(D; \mathbb{R}^m)$, then f is Fréchet differentiable. Concerning the calculus with the Fréchet differential, we can apply the following rules:

Theorem 3.4. Let $D \subseteq \mathbb{R}^n$ and $E \subseteq \mathbb{R}^m$ be non-empty open sets.

i) If $f, g: D \to \mathbb{R}^m$ are Fréchet differentiable in $\mathbf{x}_0 \in D$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha f + \beta g$ is Fréchet differentiable in \mathbf{x}_0 and

$$d(\alpha f + \beta g)(\mathbf{x}_0) = \alpha df(\mathbf{x}_0) + \beta dg(\mathbf{x}_0), \ \forall \alpha, \beta \in \mathbb{R}.$$

ii) If $f: D \to \mathbb{R}^m$ and $\varphi: D \to \mathbb{R}$ are Fréchet differentiable in $\mathbf{x}_0 \in D$, then φf is Fréchet differentiable in \mathbf{x}_0 and

$$d(\varphi f)(\mathbf{x}_0) = d\varphi(\mathbf{x}_0)f(\mathbf{x}_0) + \varphi(\mathbf{x}_0)df(\mathbf{x}_0).$$

iii) If $\varphi: D \to \mathbb{R}$ is Fréchet differentiable in $\mathbf{x}_0 \in D$ and $\varphi(\mathbf{x}_0) \neq 0$, then there exists $D_0 \subseteq D$ an open neighbourhood of \mathbf{x}_0 such that $0 \notin \varphi[D_0], \frac{1}{\varphi}: D_0 \to \mathbb{R}$ is Fréchet differentiable in \mathbf{x}_0 and

$$d\left(\frac{1}{\varphi}\right)(\mathbf{x}_0) = -\frac{1}{\varphi(\mathbf{x}_0)^2}d\varphi(\mathbf{x}_0).$$

iv) If $E \subseteq \mathbb{R}^p$ is an open set, $f: D \to E$ is Fréchet differentiable in $\mathbf{x}_0, g: E \to \mathbb{R}^p$ is Fréchet differentiable in $f(\mathbf{x}_0)$, then $g \circ f$ is Fréchet differentiable in \mathbf{x}_0 and

$$d(g \circ f)(\mathbf{x}_0) = dg(f(\mathbf{x}_0)) \circ df(\mathbf{x}_0).$$

The last relation is known as the *chain rule* for Fréchet differentials. Since the Jacobian matrix of a Fréchet differentiable function is the matrix associated to its Fréchet differential, this can be written as

$$J_{g \circ f}(\mathbf{x}_0) = J_f(\mathbf{x}_0) \cdot J_g(f(\mathbf{x}_0))$$

or, in terms of partial derivatives

$$\frac{\partial (g_j \circ f)}{\partial x_i}(\mathbf{x}_0) = \sum_{k=1}^n \frac{\partial g_j}{\partial y_k} (f(\mathbf{x}_0)) \frac{\partial f_k}{\partial x_i}(\mathbf{x}_0), \ \forall i = \overline{1, n}, \ \forall j = \overline{1, p}.$$

In the case m = n = p, applying the determinants to the above matrix relation, we get

$$\frac{\mathrm{D}(g_1\circ f,\ldots,g_n\circ f)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0)=\frac{\mathrm{D}(g_1,\ldots,g_n)}{\mathrm{D}(y_1,\ldots,y_n)}(f(\mathbf{x}_0))\cdot\frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0).$$

Therefore, if $f:D\to E$ is bijective and f^{-1} is also Fréchet differentiable in $f(\mathbf{x}_0)$, then $J_f(\mathbf{x}_0)$ is non-singular, $J_{f^{-1}}(f(\mathbf{x}_0))=(J_f(\mathbf{x}_0))^{-1}$ and

$$\frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0) \neq 0;$$

$$\frac{\mathrm{D}(f_1^{-1},\ldots,f_n^{-1})}{\mathrm{D}(x_1,\ldots,x_n)}(f(\mathbf{x}_0)) = \frac{1}{\frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0)}.$$

DEFINITION. Let $D, E \subseteq \mathbb{R}^n$ be non-empty open sets. A function $f: D \to E$ is called a *diffeomorphism* if f is bijective, $f \in C^1(D; \mathbb{R}^n)$ and $J_f(\mathbf{x})$ is non-singular for every $\mathbf{x} \in D$.

It can be shown that if $f: D \to E$ is a diffeomorphism, then $f^{-1} \in C^1(E; \mathbb{R}^n)$.

4. Higher order derivatives

We consider first the case of real functions of one variable. For a function $f:A\to\mathbb{R}$, one can define the derivative function $f': A_1 \to \mathbb{R}$, where $A_1 \subseteq A \cap A'$ is the set of elements where f is derivable. Therefore, we can speak about the derivability of the new function f': the derivative of f' in some point $x_0 \in A_1 \cap A_1'$, if existent, will be denoted $f''(x_0)$ or $\frac{d^2f}{dx^2}(x_0)$ and is called the second order derivative of f in x_0 . Of course, this defines a function, called the second order *derivative* of $f: f'': A_2 \to \mathbb{R}$, where $A_2 \subseteq A_1 \cap A_1'$ is the set of elements where f' is derivable.

The process can continue: if $f^{(n-1)}: A_{n-1} \to \mathbb{R}$ is the $(n-1)^{\text{th}}$ -order derivative of f (for $n \geq 3$), then $f^{(n)}(x_0)$ or $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}(x_0)$ denotes, if existent, the derivative of $f^{(n-1)}$ in $x_0 \in A_{n-1} \cap A'_{n-1}$ and is called the n^{th} -order derivative of f in x_0 . It defines, in its turn, the function $f^{(n)}: A_n \to \mathbb{R}$, called the n^{th} -order derivative of f, where $A_n \subseteq A_{n-1} \cap A'_{n-1}$ is the set of elements where $f^{(n-1)}$ is derivable.

Recursively, one can also define the higher order directional derivatives, higher order Gâteaux differentiability or derivability and higher order Fréchet differentiability. A particular case of higher order directional derivatives is the notion of higher order partial derivatives:

Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f: D \to \mathbb{R}^m$ a function. If $i_1, \ldots, i_p \in \{1, \ldots, n\}$ for $p \geq 2$, the partial *derivative of order p* of f with respect to $x_{i_1}, x_{i_2}, \ldots, x_{i_p}$ in a point $\mathbf{x}_0 \in D$ is defined recursively as

$$\frac{\partial^p f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_p}}(\mathbf{x}_0) \coloneqq \frac{\partial \left(\frac{\partial^{p-1} f}{\partial x_{i_2} \dots \partial x_{i_p}}\right)}{\partial x_1}(\mathbf{x}_0),$$

provided that the partial derivative (of order p-1) $\frac{\partial^{p-1}f}{\partial x_2...\partial x_p}$ exists on some open neighbourhood of \mathbf{x}_0 and has a partial

derivative with respect to x_1 in \mathbf{x}_0 .

If $i_1 = \cdots = i_p = i$, instead of $\frac{\partial^p f}{\partial x_1 \dots \partial x_p}$ we can write $\frac{\partial^p f}{\partial x_i^p}$. If it is not the case, the partial derivative is called a *mixt* partial derivative. The following results gives us sufficient conditions for grouping the indices i_1, \ldots, i_b .

Theorem 4.1 (Schwartz). Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$, $f: D \to \mathbb{R}^m$ a function and $i, j \in \{1, \dots n\}$ with $i \neq j$. If the mixt partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_i}$ and $\frac{\partial^2 f}{\partial x_i \partial x_i}$ exist on a neighbourhood of \mathbf{x}_0 and they are continuous in \mathbf{x}_0 , then

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{x}_0).$$

Theorem 4.2 (Young). Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $\mathbf{x}_0 \in D$, $f: D \to \mathbb{R}^m$ a function and $i, j \in \{1, ...n\}$ with $i \neq j$. If the partial derivatives $\frac{\partial f}{\partial x_i}$ and $\frac{\partial f}{\partial x_j}$ exist on an open neighbourhood of \mathbf{x}_0 and they are Fréchet differentiable in \mathbf{x}_0 , then $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_i \partial x_i}$ exist and are equal.

In the conditions of Schwartz or Young theorems, one can order and group the indices i_1, \ldots, i_p in a mixt partial derivative $\frac{\partial^p f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_p}}$ and write it as

$$\frac{\partial^p f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}},\tag{*}$$

where, for $i = \overline{1, n}$, α_i is the number of i's occurring in the list i_1, \ldots, i_p . The vector $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}^n$ is called a *multi-index* and we have $p = |\alpha| := \alpha_1 + \cdots + \alpha_n$. In fact, in the expression (*), one can omit the terms $\partial x_i^{\alpha_i}$ if $\alpha_i = 0$.

If $D \subseteq \mathbb{R}^n$ is a non-empty open set and $p \ge 2$, $C^p(D;\mathbb{R}^m)$ denotes the set of all functions $f:D \to \mathbb{R}$ such all the partial derivatives of order p exist and are continuous. We also denote by $C^{\infty}(D;\mathbb{R}^m)$ the set of functions $f:D\to\mathbb{R}$ such that $f \in C^p(D; \mathbb{R}^m)$, for every $p \ge 1$. In the case m = 1, we will simply denote $C^p(D)$ instead of $C^p(D; \mathbb{R})$ (for $p \in \mathbb{N}^*$ or $p = \infty$). Of course, we have

$$C^{\infty}(D;\mathbb{R}^m)\subseteq\cdots\subseteq C^p(D;\mathbb{R}^m)\subseteq\cdots\subseteq C^1(D;\mathbb{R}^m)\subseteq C(D;\mathbb{R}^m).$$

The Fréchet differentiability of higher-order can be introduced as follows:

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $f: D \to \mathbb{R}^m$ a function and $p \in \mathbb{N}^* \setminus \{1\}$.

- a) We say that f is Fréchet differentiable of order p in $\mathbf{x}_0 \in D$ if there exists $D_0 \subseteq D$ an open neighbourhood of \mathbf{x}_0 such that all the partial derivatives of order p-1 exist and are Fréchet differentiable in \mathbf{x}_0 .
- **b**) We say that f is Fréchet differentiable of order p in a subset $D_0 \subseteq D$ if f is Fréchet differentiable of order p in any point $\mathbf{x}_0 \in D_0$.

c) If f is Fréchet differentiable of order p in $\mathbf{x}_0 \in D$, then the Fréchet differential of order p in \mathbf{x}_0 is defined as $d^p(\mathbf{x}_0): \mathbb{R}^n \to \mathbb{R}^m$ by

$$\mathbf{d}^p(\mathbf{x}_0)(\mathbf{u}) := \sum_{1 \leq i_1, \dots, i_p \leq n} \frac{\partial^p f}{\partial x_{i_1} \dots \partial x_{i_p}}(\mathbf{x}_0) \cdot u_{i_1} \cdot \dots \cdot u_{i_n}, \ \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{R}^n.$$

Using multi-indexes, the formula defining $d^p(\mathbf{x}_0)$ is similar to that defining $(u_1 + \cdots + u_n)^p$. For instance, if n = 2,

$$d^{p}(\mathbf{x}_{0})(u_{1},u_{2}) = \sum_{j=0}^{p} C_{p}^{j} \frac{\partial^{p} f}{\partial x_{1}^{j} \partial x_{2}^{p-j}}(\mathbf{x}_{0}) u_{1}^{j} u_{2}^{p-j}.$$

4.1. Taylor series.

An important application of higher-order derivatives is the *Taylor's formula*, which can now be written for functions of several variables.

Theorem 4.3 (Taylor's formula). Let $D \subseteq \mathbb{R}^n$ be a non-empty open set, $f: D \to \mathbb{R}^m$ a function Fréchet differentiable of order p+1 on some open ball $B(\mathbf{x}_0;r)\subseteq D$, where $p\in\mathbb{N}^*$. Then for every $\mathbf{x}\in B(\mathbf{x}_0;r)$ there exists $t\in(0,1)$ such that

$$f(\mathbf{x}) = f(\mathbf{x}_0) + df(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2!}d^2f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \dots + \frac{1}{p!}d^pf(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \frac{1}{(p+1)!}d^pf(\xi)(\mathbf{x} - \mathbf{x}_0),$$

where $\xi := \mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0)$.

DEFINITION. Let $D \subseteq \mathbb{R}^n$ be a non-empty open set and $f \in C^{\infty}(D)$.

a) The Taylor series associated with f in neighbourhood of (around) a point $\mathbf{x}_0 \in D$ is the following series

$$f(\mathbf{x}_0) + \sum_{p=1}^{\infty} \frac{1}{p!} d^p f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$$

- b) In the case $\mathbf{x}_0 = \mathbf{0}_{\mathbb{R}^n}$ the above Taylor series is called the *Maclaurin series* associated to f.
- c) We say that a function is analytic in a ball $B(\mathbf{x}_0;r) \subseteq D$ if the Taylor series associated with f around \mathbf{x}_0 is convergent to $f(\mathbf{x})$ for every $\mathbf{x} \in B(\mathbf{x}_0; r)$.

In the case n = 1, the Taylor series associated with a function is a power series. Conversely, if a function f is defined by a power series $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ in its domain of convergence, then f is analytic in (-r,r), where $r \in [0,+\infty]$ is its radius of convergence. In fact,

$$f^{(p)}(x) = \sum_{k=0}^{\infty} (k+1) \cdot \cdots \cdot (k+p) a_{k+p}(x-x_0)^k, \ \forall x \in (-r,r), \ \forall p \in \mathbb{N}^*.$$

Hence, $f^{(p)}(x_0) = p!a_p$ and the Taylor series associated to f around x_0 is precisely $\sum_{k=0}^{\infty} a_k(x-x_0)^k$ (which proves that fis analytic in (-r, r)).

However, the convergence of Taylor series associated to a function f does not imply that its sum is equal to f. For instance, let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

Then $f^{(p)}(0) = f(0) = 0$, $\forall p \in \mathbb{N}^*$, hence its Maclaurin series is the zero series; hence its sum is different from f on any interval centered in 0.

In the sequel we give some Maclaurin series for some well known analytic functions:

•
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, x \in (-1,1);$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, x \in (-1,1);$$

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, x \in \mathbb{R};$$

•
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, x \in \mathbb{R};$$

• $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, x \in \mathbb{R};$
• $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{5}}{5!} + \dots, x \in \mathbb{R};$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^3}{5!} + \dots, \ x \in \mathbb{R}$$

•
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, x \in \mathbb{R}.$$

SELECTIVE BIBLIOGRAPHY

- [1] E. Cioară, M. Postolache, Capitole de analiză matematică, Editura "Fair Partners", București, 2010.
- [2] R. M. Dăneț, S. D. Niță, I. Popescu, M. V. Popescu, F. Voicu, Curs modern de analiză matematică, Editura "Fair Partners", București, 2010.
- [3] D. Guichard & al., Single and Multivariable Calculus, Creative Commons, San Francisco, 2016.
- [4] F. Iacob, Matematică pentru anul II ID, seria 2004-2005.
- [5] R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2005.
- [6] David B. Massey, Worldwide Multivariable Calculus, Worldwide Center of Mathematics, LLC, 2015.
- [7] E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- [8] A. Precupanu, Bazele analizei matematice, Editura Polirom, Iași, 1998.