Zusammenfassung Funktionalanalysis

© M Tim Baumann, http://timbaumann.info/uni-spicker

Notation. Sei im Folgenden $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition. Ein **Prä-Hilbertraum** ist ein \mathbb{K} -Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.

Definition. Sei V ein \mathbb{K} -Vektorraum. Eine **Fréchet-Metrik** ist eine Funktion $\rho: V \to \mathbb{R}_{>0}$, sodass für $x, y \in V$ gilt:

- \bullet $\rho(x) = 0 \iff x = 0$
- $\rho(x+y) \le \rho(x) + \rho(y)$

Definition. Sei (X, d) ein metrischer Raum und $A_1, A_2 \subset X$, so ist dist $(A_1, A_2) := \inf\{d(x, y) \mid x \in A_1, y \in A_2\}$

der **Abstand** zwischen A_1 und A_2 .

Definition. Ein topologischer Raum ist ein paar (X, τ) , wobei X eine Menge und $\tau \subset \mathcal{P}(X)$ ein System von offenen Mengen, sodass gilt:

- $\emptyset \in \tau$
- $\bullet \ \ \tilde{\tau} \subset \tau \implies \bigcup_{U \in \tilde{\tau}} U \in \tau$
- $U_1, U_2 \in \tau \implies U_1 \cap U_2 \in \tau$

Definition. Ein topologischer Raum (X, τ) heißt **Haussdorff-Raum**, wenn folgendes Trennungsaxiom erfüllt ist:

$$\forall x_1, x_2 \in X : \exists U_1, U_2 \in \tau : x_1 \in U_1 \land x_2 \in U_2 \land U_1 \cap U_2 = \emptyset$$

Definition. Sei (X,τ) ein topologischer Raum. Eine Menge $A\subset X$ heißt abgeschlossen, falls $X\setminus A\in \tau$, also das Komplement offen ist.

Definition. Sei (X,τ) ein topologischer Raum und $A\subset X.$ Dann heißen

$$A^{\circ} := \{ x \in X \mid \exists U \in \tau \text{ mit } x \in U \text{ und } U \subset A \}$$
$$\overline{A} := \{ x \in X \mid \forall U \in \tau \text{ mit } x \in U \text{ gilt } U \cap A \neq \emptyset \}$$

Abschluss bzw. Inneres von A.

Definition. Ist (X, τ) ein topologischer Raum und $A \subset X$, dann ist auch (A, τ_A) ein topologischer Raum mit der *Relativtopologie* $\tau_A := \{U \cap A \mid U \in \tau\}.$

Definition. Sei (X, τ) ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt dicht in X, falls $\overline{A} = X$.

Definition. Ein topologischer Raum (X, τ) heißt **separabel**, falls X eine abzählbare dichte Teilmenge enthält. Eine Teilmenge $A \subset X$ heißt separabel, falls (A, τ_A) separabel ist.

Definition. Seien τ_1, τ_2 zwei Topologien auf einer Menge X. Dann heißt τ_2 **stärker** (oder feiner) als τ_1 bzw. τ_1 **schwächer** (oder gröber) als τ_2 , falls $\tau_1 \subset \tau_2$.

Definition. Seien d_1 und d_2 Metriken auf einer Menge X und τ_1 und τ_2 die induzierten Topologien. Dann heißt d_1 stärker als d_2 , falls τ_1 stärker ist als τ_2 .

 $\mathbf{Satz.} \ \mathrm{Sind} \ \|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf dem K-Vektorraum X. Dann gilt:

- $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1 \iff \exists C > 0 : \forall x \in X : \|x\|_1 \le C\|x\|_2$
- $\|\cdot\|_1$ und $\|\cdot\|_2$ sind äquivalent $\iff \exists c, C > 0 : \forall x \in X : c\|x\|_1 \le \|x\|_2 \le C\|x\|_1$

Definition. Die p-Norm auf dem \mathbb{K}^n ist definiert als

$$||x||_p := \left(\sum_{i=1}^n |x_j|^p\right)^{\frac{1}{p}} \text{ für } 1 \le p < \infty$$
$$||x||_\infty := ||x||_m ax := \max_{1 \le i \le n} |x_i|.$$

Bemerkung. Alle p-Normen sind zueinander äquivalent.

Definition. Seien $S \subset X$ eine Menge, (X, τ_X) und (Y, τ_Y) Hausdorff-Räume sowie $x_0 \in S$. Eine Funktion $f: S \to Y$ heißt **stetig** in x_0 , falls gilt:

$$\forall V \in \tau_Y : f(x_0) \in V \implies \exists U \in \tau_X \text{ mit } x_0 \in U \land f(U \cap S) \subset V$$

Ist X = S, so heißt $f: X \to Y$ stetige Abbildung, falls f stetig in allen Punkten $x_0 \in X$ ist, d. h. $V \in \tau_Y \implies f^{-1}(V) \in \tau_X$.

Bemerkung. In metrischen Räumen ist diese Definition äquivalent zur üblichen Folgendefinition.

Definition. Sei (X,d) ein metrischer Raum. Eine Folge $(x_k)_{k\in\mathbb{N}}$ heißt Cauchy-Folge, falls $d(x_k,x_l)\xrightarrow{k,l\to\infty}0$. Ein Punkt $x\in X$ heißt Häufungspunkt der Folge, falls es eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$ gibt mit $x_{k_i}-x\xrightarrow{i\to\infty}0$.

Definition. Ein metrischer Raum (X,d) heißt vollständig, falls jede Cauchy-Folge in X einen Häufungspunkt besitzt.

Definition. Ein normierter K-Vektorraum heißt **Banachraum**, falls er vollständig bzgl. der induzierten Metrik ist.

Definition. Ein Banachraum heißt **Banach-Algebra**, falls er eine Algebra ist mit $\|x \cdot y\|_X \leq \|x\|_x \cdot \|y\|_X$.

Definition. Ein **Hilbertraum** ist ein Prähilbertraum, der vollständig bzgl. der vom Skalarprodukt induzierten Norm ist.

Bemerkung. Ein normierter Raum ist genau dann ein Prähilbertraum, falls die Parallelogrammidentität

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

gilt. Folglich ist ein Banachraum genau dann ein Hilbertraum, falls die Parallelogrammidentität gilt.

Definition. Sei $\mathbb{K}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} \mid \forall i \in \mathbb{N} : x_i \in \mathbb{K}\}$ die Menge aller Folgen in \mathbb{K} . Mit der Fréchet-Metrik

$$\rho(x) := \sum_{i=1}^{\infty} 2^{-i} \frac{|x_i|}{1 + |x_i|} < 1$$

wird der Folgenraum $\mathbb{K}^{\mathbb{N}}$ zu einem Banachraum.

Satz. Sind $(x^k) = (x_i^k)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ und $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, so gilt $\rho(x^k - x) \xrightarrow{k \to \infty} 0 \iff \forall i \in \mathbb{N} : x_i^k \xrightarrow{k \to \infty} x_i.$

Definition. Die Norm

$$\begin{aligned} \|x\|_{\ell^p} &\coloneqq \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \in [0, \infty], \text{ für } 1 \le p < \infty \\ \|x\|_{\ell^\infty} &\coloneqq \sup_{i \in \mathbb{N}} |x_i| \in [0, \infty] \end{aligned}$$

heißt ℓ^p -Norm auf dem Raum $\ell^p(\mathbb{K}) := \{x \in \mathbb{K}^{\mathbb{N}} \mid ||x||_{\ell^p} < \infty \}.$

Satz. Der Raum $\ell^p(\mathbb{K})$ ist vollständig, also ein Banachraum. Bemerkung. Im Fall p=2 wird $\ell^2(\mathbb{K})$ ein Hilbertraum mit dem Skalarprodukt $\langle x,y\rangle_{\ell^2} \coloneqq \sum_{i=0}^{\infty} x_i \overline{y_i}$.

Definition (Vervollständigung). Sei (X, d) ein metrischer Raum. Betrachte die Menge $X^{\mathbb{N}}$ aller Folgen in X und definiere

$$\tilde{X} \coloneqq \{x \in X^{\mathbb{N}} \, | \, x \text{ ist Cauchy-Folge in } X\} / \sim$$

mit der Äquivalenzrelation

$$x \sim y \text{ in } \tilde{X} \iff d(x_j, y_j) \xrightarrow{j \to \infty} 0.$$

Diese Menge wird mit der Metrik

$$\tilde{d}(x,y) := \lim_{i \to \infty} d(x_i, y_i)$$

zu einem vollständigen metrischen Raum. Die injektive Abbildung $J:X\to \tilde{X}$, welche $x\in X$ auf die konstante Folge $(x)_{i\in\mathbb{N}}$, ist isometrisch, d. h. sie erhält. Wir können also X als einen dichten Unterraum von \tilde{X} auffassen. Man nennt \tilde{X} Vervollständigung von X.

Definition (Raum der beschränkten Funktionen). Sei S eine Menge und Y ein Banachraum über \mathbb{K} mit Norm $y\mapsto |y|$. Dann ist $B(S;Y)\coloneqq\{f:S\to Y\,|\,f(S)\text{ ist eine beschränkte Teilmenge von }Y\}$ die Menge der beschränkten Funktionen von B nach Y. Diese Menge ist ein $\mathbb{K}\text{-Vektorraum}$ und wird mit der Supremumsnorm $\|f\|_{B(S)}:=\sup_{x\in S}|f(x)|$ zu einem Banachraum.

Satz. Ist (X,d) ein vollständiger metrischer Raum und $Y\subset X$ abgeschlossen, so ist auch (Y,d) ein vollständiger metrischer Raum.

Definition (Raum stetiger Funktionen auf einem Kompaktum). Sei $S \subset \mathbb{R}^n$ beschränkt und abgeschlossen (d. h. kompakt) und Y ein Banachraum über \mathbb{K} mit Norm $y \mapsto |y|$, so ist

$$\mathcal{C}^0(S;Y) := \mathcal{C}(S;Y) := \{ f : S \to Y \mid f \text{ ist stetig } \}$$

die Menge der stetigen Funktionen von S nach Y. Sie ist ein abgeschlossener Unterraum von B(S;Y) mit der Norm $\|\cdot\|_{\mathcal{C}(S;Y)} = \|\cdot\|_{B(S;Y)}$, also ein Banachraum.

Bemerkung. Für $Y = \mathbb{K}$ ist $C^0(S; \mathbb{K}) = C(S)$ eine kommutative Banach-Algebra mit dem Produkt $(f \cdot g)(x) := f(x) \cdot g(x)$.

Definition. Eine Teilmenge $A \subset X$ heißt **präkompakt**, falls es für jedes $\epsilon > 0$ eine Überdeckung von A mit endlich vielen ϵ -Kugeln $A \subset B_{\epsilon}(x_1) \cup ... \cup B_{\epsilon}(x_{n_{\epsilon}})$ mit $x_1, x_{n_{\epsilon}} \in X$ gibt.

Definition. Eine Teilmenge $A \subset X$ eines metrischen Raumes (X, d) heißt **kompakt**, falls eine der folgenden äquivalenten Bedinungen erfüllt ist:

- A ist **überdeckungskompakt**: Für jede Überdeckung $A \subset \bigcup_{i \in I} A_i$ mit $A_i \odot X$, gibt es eine endl. Teilmenge $J \subset I$ mit $A \subset \bigcup_{i \in I} A_i$.
- A ist folgenkompakt: Jede Folge in A besitzt eine konvergente Teilfolge mit Grenzwert in A.
- $(A, d|_A)$ ist vollständig und A ist **präkompakt**.

Satz. Sei (X, d) ein metrischer Raum. Dann gilt:

- A präkompakt $\implies A$ beschränkt,
- \bullet A kompakt \implies A abgeschlossen und präkompakt,
- Falls X vollständig, dann A präkompakt $\iff \overline{A}$ kompakt.

Satz. Sei $A \subset \mathbb{K}^n$. Dann gilt:

- A präkompakt $\iff A$ beschränkt,
- \bullet A kompakt \iff A abgeschlossen und beschränkt (Heine-Borel).

Satz. Sei (X,d) ein metrischer Raum und $A \subset X$ kompakt. Dann gibt es zu $x \in X$ ein $a \in A$ mit d(x,a) = dist(x,A).

Definition. Sei $S \subset \mathbb{R}^n$ und $(K_n)_{n \in \mathbb{N}}$ eine Folge kompakter Teilmengen des \mathbb{R}^n . Dann heißt (K_n) eine **Ausschöpfung** von S, falls

- $S = \bigcup_{n \in \mathbb{N}} K_n$,
- $\emptyset \neq K_i \subset K_{i+1} \subset S$ für alle $i \in \mathbb{N}$ und
- für alle $x \in S$ gibt es ein $\delta > 0$ und $i \in \mathbb{N}$, sodass $B_{\delta}(x) \subset K_i$.

Bemerkung. Zu $S \subseteq \mathbb{R}^n$ und $S \subseteq \mathbb{R}^n$ existiert eine Ausschöpfung.

Definition (Raum stetiger Funktionen auf Menge mit Ausschöpfung). Es sei $S \subset \mathbb{R}^n$ so, dass eine Ausschöpfung $(K_i)_{i \in \mathbb{N}}$ von S existiert und Y ein Banachraum. Dann bildet die Menge aller stetigen Funktionen

$$C^0(S;Y) := \{f: S \to Y \mid f \text{ ist stetig auf } S\}$$

einen K-Vektorraum und wird mit der Fréchet-Norm

$$\varrho(f) := \sum_{i \in \mathbb{N}} 2^{-i} \frac{\|f\|_{C^0(K_i)}}{1 + \|f\|_{C^0(K_i)}}$$

zu einem vollständigen metrischen Raum.

Bemerkung. • Die von dieser Metrik erzeugte Topologie ist unabhängig von der Wahl der Ausschöpfung.

• Ist $S \subset \mathbb{R}^n$ kompakt, so stimmt die Topologie mit der von $\|\cdot\|_{B(s)}$ überein.

Definition. Sei $S\subset \mathbb{R}^n$ und Yein Banachraum. Für $f:S\to Y$ heißt

$$\operatorname{supp} f \coloneqq \{x \in S \,|\, f(x) \neq 0\}$$

Träger (engl. support) von f.

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Dann ist

$$C_0^0(S;Y) := \{ f \in C^0(S;Y) \mid \text{supp } f \text{ ist kompakt in } S \}$$

die Menge der stetigen Fktn. mit kompaktem Träger von S nach Y.

Definition (Raum differenzierbarer Funktionen). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und $m \in \mathbb{N}$. Dann ist die Menge der differenzierbaren Funktionen von Ω nach Y

$$\mathcal{C}^m(\overline{\Omega},Y):=\{f:\Omega\to Y\,|\,f\text{ ist m-mal stetig differenzierbar in }\Omega$$
 und für $k\le m$ und $s_1,...,s_k\in\{1,...,n\}$

ist
$$\partial_{s_1}...\partial_{s_k}f$$
 auf $\overline{\Omega}$ stetig fortsetzbar }

ein Vektorraum und mit folgender Norm ein Banachraum:

$$||f||_{\mathcal{C}^m(\overline{\Omega})} = \sum_{|s| \le m} ||\partial^s||_{\mathcal{C}^0(\overline{\Omega})}$$

Bemerkung. In obiger Norm wird die Summe über alle k-fache partielle Ableitungen mit $k \le m$ gebildet.

Satz. Sei X ein normierter Raum und $Y \subset X$ ein abgeschlossener echter Teilraum. Für $0 < \Theta < 1$ (falls X Hilbertraum, geht auch $\Theta = 1$) gibt es ein $x_{\Theta} \in X$ mit

$$||x_0|| = 1 \quad \text{und}\Theta \le \text{dist}(x_{\Theta}, Y) \le 1.$$

Satz. Für jeden normierten Raum X gilt:

$$\overline{B_1(0)}$$
 kompakt \iff dim $(X) < \infty$.

Definition. Sei $S \subset \mathbb{R}^n$ kompakt, Y ein Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann heißt A gleichgradig stetig, falls

$$\sup_{f \in A} |f(x) - f(y)| \xrightarrow{|x-y| \to 0} 0.$$

Definition (Arzelà-Ascoli). Sei $S \subset \mathbb{R}^n$ kompakt, Y ein endlichdimensionaler Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann gilt

A präkompakt \iff A ist beschränkt und gleichgradig stetig.

Satz (Fundamentallemma der Variationsrechnung). Sei $\Omega \subset \mathbb{R}^n$ und Y ein Banachraum. Für $g \in \mathcal{L}^1(\Omega, Y)$ sind dann äquivalent:

- Für alle $\xi \in \mathcal{C}_0^{\infty}$ gilt $\int_{\Omega} (\xi \cdot g) \, \mathrm{d}x = 0$.
- Für alle beschränkten $E\in\mathfrak{B}(\Omega)$ mit $\overline{E}\subset\Omega$ gilt $\int\limits_E g\,\mathrm{d}x=0$.
- Es gilt $g \stackrel{\text{f.\"u.}}{=} 0$ in Ω .

 $\mathbf{Satz.} \ \mathrm{Sei} \ T: X \to Y$ eine lineare Abbildung zwischen Vektorräumen X und Y. Dann sind äquivalent:

- T ist stetig. T ist stetig in 0. $\sup_{\|x\| \le 1} \|Tx\| < \infty$.
- $\bullet \ \exists \, C>0 \, : \, \forall \, x \in X \, : \, \|Tx\| \leq C \cdot \|x\|.$

Definition. Seien X,Y Vektorräume mit einer Topologie. Dann ist

$$\mathcal{L}(X,Y) = \{T : X \to Y \mid X \text{ ist linear und stetig } \}$$

die Menge aller linearen Operatoren zwischen X und Y. Falls die Stetigkeit nicht nur topologisch, sondern bezüglich einer Norm gilt, so redet man von beschränkten Operatoren.

Satz. Seien $X \neq \{0\}$, $Y \neq \{0\}$ Banachräume und $T, S \in \mathcal{L}(X, Y)$. Dann gilt: Falls T invertierbar ist und $||S - T|| < \frac{1}{||T^{-1}||}$, dann ist auch S invertierbar.

Bemerkung. Die Menge aller invertierbaren Operatoren in $\mathcal{L}(X,Y)$ ist somit eine offene Teilmenge.

Definition. Seien X und Y Banachräume über \mathbb{K} . Eine lineare Abbildung $T: X \to Y$ heißt **kompakter** (linearer) **Operator**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:

- $T(B_1(0))$ ist kompakt. $T(B_1(0))$ ist präkompakt.
- Für alle beschränkten $M \subset X$ ist $T(M) \subset Y$ präkompakt.
- Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in X besitzt $(Tx_n)_{n\in\mathbb{N}}$ eine in Y konvergente Teilfolge.

Definition. Sei X ein Vektorraum über \mathbb{K} . Dann ist $X' := \mathcal{L}(X, \mathbb{K})$ der **Dualraum** von X. Elemente von X' werden **lineare Funktionale** genannt.

Satz (Rieszscher Darstellungssatz). Ist X ein Hilbertraum, so ist

$$J: X \to X', \quad x \mapsto y \mapsto (y, x)_X$$

ein isometrischer konjugiert linearer Isomorphismus.

Satz (Lax-Milgram). Sei X ein Hilbertraum über \mathbb{K} und $a: X \times X \to \mathbb{K}$ sesquilinear. Es gebe Konstanten c_0 und C_0 mit $0 < c_0 \le C_0 < \infty$, sodass für alle $x,y \in X$ gilt:

- $|a(x,y)| \le C_0 \cdot ||x|| \cdot ||y||$ (Stetigkeit)
- $Rea(x,x) \ge c_0 \cdot ||x||^2$ (Koerzivität)

Dann existiert genau eine Abbildung $A: X \to X$ mit

$$a(y, x) = (y, Ax)$$
 für alle $x, y \in X$.

Außerdem gilt: $A \in \mathcal{L}(X)$ ist ein invertierbarer Operator mit

$$||A|| \le C_0$$
 und $||A^{-1}|| \le \frac{1}{c_0}$.

Satz (Hahn-Banach). Sei X ein \mathbb{R} -VR und

- $p: X \to \mathbb{R}$ sublinear, d. h. für alle $x, y \in X$ und $\alpha \in \mathbb{R}_{\geq 0}$ gelte p(x+y) < p(x) + p(y) und $p(\alpha x) = \alpha p(x)$,
- $f: Y \to \mathbb{R}$ linear auf einem Unterraum $Y \subset X$ und
- f(x) < p(x) für $x \in Y$.

Dann gibt es eine lineare Abbildung $F: X \to \mathbb{R}$ mit

$$F(x) = f(x) \text{ für } x \in Y \quad \text{und} \quad F(x) \leq p(x) \text{ für } x \in X.$$

Satz. (Hahn-Banach für lineare Funktionale) Sei X ein \mathbb{R} -VR, $Y \subset X$ ein Unterraum, $p: X \to \mathbb{R}$ linear und $f: Y \to \mathbb{R}$ linear, sodass $f(x) \leq p(x)$ für alle $x \in Y$. Dann existiert eine lineare Abbildung $F: X \to \mathbb{R}$ mit $f = F|_Y$ und $F \leq p$.

Satz. Sei $(X, \|\cdot\|_X)$ ein normierter \mathbb{K} -Vektorraum und $(Y, \|\cdot\|_Y)$ ein Unterraum. Dann gibt es zu $y \in Y'$ ein $x' \in X'$ mit $x'|_Y = y'$ und $\|x'\|_{X'} = \|y'\|_{Y'}$.

Satz. Sei Y abgeschlossener Unterraum des normierten Raumes X und $x_0 \in X \setminus Y$. Dann gibt es ein $x' \in X'$ mit $x'|_Y = 0$, $||x'||_{X'} = 1$, $\langle x', x_0 \rangle = \operatorname{dist}(x_0, Y)$.

Bemerkung. Dann gibt es auch ein $x' \in X'$ mit $x'|_{Y} = 0$,

$$||x'||_{X'} = (\operatorname{dist}(x_0, Y))^{-1} \quad \text{und} \quad \langle x', x_0 \rangle = 1.$$

Satz. Seien X normierter Raum und $x_0 \in X$. Dann gilt

- Ist $x_0 \neq 0$, so gibt es $x'_0 \in X'$ mit $||x'_0||_{X'} = 1$ und $\langle x'_0, x_0 \rangle_{X' \times X} = ||x_0||_X$.
- Ist $\langle x', x_0 \rangle_{X' \times X} = 0$ für alle $x' \in X'$, so ist $x_0 = 0$.
- Durch $Tx' = \langle x', x_0 \rangle_{X' \times X}$ für $x' \in X'$ ist ein $T \in \mathcal{L}(X', \mathbb{K}) = X''$, dem Bidualraum, definiert mit $||T|| = ||x_0||_X$.

 \mathbf{Satz} (Baire'scher Kategoriensatz). Es sei $X\neq\emptyset$ ein vollständiger metrischer Raum und $X=\bigcup_{k\in\mathbb{N}}A_k$ mit abgeschlossenen Mengen

 $A_k \subset X$. Dann gibt es ein $k_0 \in \mathbb{N}$ mit $\operatorname{int}(A_{k_0}) \neq \emptyset$.

Korollar. Jede Basis eines ∞ -dimensionalen Banachraumes ist überabzählbar.

Satz (Prinzip der gleichmäßigen Beschränktheit). Es sei X ein nichtleerer vollständiger metrischer Raum und Y ein normierter Raum. Gegeben sei eine Menge von Funktionen $F \subset \mathcal{C}^0(X,Y)$ mit $\forall x \in X$: sup $\|f(x)\|_Y < \infty$. Dann gibt es ein $x_0 \in X$ und ein $\epsilon > 0$, sodass sup sup $\|f(x)\|_Y < \infty$. $B_{\epsilon}(x_0) f \in F$

Satz (Banach-Steinhaus). Es sei X ein Banachraum und Y ein normierter Raum, $\mathcal{T} \subset \mathcal{L}(X,Y)$ mit $\forall x \in X : \sup_{T \in \mathcal{T}} \|Tx\|_Y < \infty$. DAnn ist \mathcal{T} eine beschränkte Menge in $\mathcal{L}(X,Y)$, d. h. $\sup_{T \in \mathcal{T}} \|T\|_{\mathcal{L}(X,Y)}$.

Definition. Seien X und Y topologische Räume, so heißt eine Abbildung $f: X \to Y$ **offen**, falls für alle offenen U @ X das Bild f(U) @ Y offen ist.

Bemerkung. Ist f bijektiv, so ist f genau dann offen, wenn f^{-1} stetig ist. Sind X, Y normierte Räume und ist $T: X \to Y$ linear, so gilt: T ist offen $\iff \exists \, \delta > 0 : B_{\delta}(0) \subset T(B_1(0))$.

Satz (von der offenen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$. Dann ist T genau dann surjektiv, wenn T offen ist.

Satz (von der inversen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$ bijektiv, so ist T^{-1} stetig, also $T^{-1} \in \mathcal{L}(Y, X)$.

Satz (vom abgeschlossenen Graphen). Seien X,Y Banachräume und $T:X\to Y$ linear. Dann ist $\operatorname{Graph}(T)=\{(x,Tx)\,|\,x\in X\}$ genau dann abgeschlossen, wenn T stetig ist. Dabei ist $\operatorname{Graph}(T)\subset X\times Y$ mit der $\operatorname{Graphennorm}\ \|(x,y)\|_{X\times Y}=\|x\|_X+\|y\|_Y.$

Definition. Sei X ein Banachraum.

• Eine Folge $(x_k)_{k\in\mathbb{N}}$ in X konvergiert schwach gegen $x\in X$ (notiert $x_k \xrightarrow{k\to\infty} x$), falls für alle $x'\in X'$ gilt:

$$\langle x', x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

• Eine Folge $(x'_k)_{k \in \mathbb{N}}$ in X' konvergiert schwach* gegen $x' \in X'$ (notiert $x'_k \xrightarrow{k \to \infty} x'$), falls für alle $x \in X$ gilt:

$$\langle x'_k, x \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

- Analog sind schwache und schwache* Cauchyfolgen definiert.
- Eine Menge $M \subset X$ (bzw. $M \subset X'$) heißt schwach folgenkompakt bzw. schwach* folgenkompakt, falls jede Folge in der Menge M eine schwach (bzw. schwach*) konvergente Teilfolge besitzt deren Grenzwert wieder in M liegt.

Bemerkung. Der schwache bzw. schwache* Grenzwert einer Folge ist eindeutig bestimmt. Starke Konvergenz impliziert schwache Konvergenz.

Satz. Es gilt für $x, x_k \in X, x', x'_k \in X'$:

$$x_k \xrightarrow{k \to \infty} x$$
 in $X \iff J_x x_k \xrightarrow{k \to \infty} J_x x$ in X''

$$x'_k \xrightarrow{k \to \infty} x'$$
 in $X' \implies x'_k \xrightarrow{k \to \infty} x'$ in X'

Lemma. • Aus $x'_k \xrightarrow{k \to \infty} x'$ in X' folgt $||x'||_{X'} \le \liminf_{k \to \infty} ||x'_k||_{X'}$, aus $x_k \xrightarrow{k \to \infty} x$ in X folgt $||x||_X \le \liminf_{k \to \infty} ||x_k||_X$.

- Schwach bzw. schwach* konvergente Folgen sind beschränkt.
- Aus $x_k \xrightarrow{k \to \infty} x$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X' folgt $\langle x'_k, x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$. Dasselbe folgt mit $x_k \xrightarrow{k \to \infty} x$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X'.

Achtung. In der letzten Behauptung müssen wir vorraussetzen, dass mindestens eine Folge stark konvergiert. Für beidesmal schwache/schwache* Konvergenz ist die Aussage i. A. falsch.

Satz (Banach-Alaoglu). Sei X ein separabler Banachraum. Dann ist die abgeschl. Einheitskugel $\overline{B_1(0)} \subset X'$ schwach* folgenkompakt.

Beispiel. Sei $\Omega \subset \mathbb{R}^n$ beschränkt und offen. Dann ist $L^1(\Omega)$ separabel (Approximation durch Treppenfunktionen und der Satz besagt: Ist $(f_k)_{k \in \mathbb{N}}$ in $L^{\infty}(\Omega)$ beschränkt, so gibt es eine Teilfolge $(f_k)_{l \in \mathbb{N}}$ und ein $f \in L^{\infty}(\Omega)$, sodass

$$\int_{\Omega} f_{k_l} x \cdot \overline{g} \, \mathrm{d} \xrightarrow{l \to \infty} \int_{\Omega} f \cdot \overline{g} \, \mathrm{d} x \quad \text{für alle } g \in L^1(\Omega)$$

Bemerkung. Schwach*-Konvergenz impliziert eine sogenannte Schwach*-Topologie in dem Sinne, dass man sagt, eine Folge $(x'_k)_{k\in\mathbb{N}}$ in X' ist bzgl. dieser Topologie konvergent, wenn sie punktweise für alle $x\in X$ konvergiert.

Definition. Sei X ein Banachraum und J_X die Isometrie bzgl. des Bidualraumes. Dann heißt X reflexiv, falls J_X surjektiv ist.

Lemma. • Ist X reflexiv, so stimmen schwache* und schwache konvergenz in X' überein.

- Ist X reflexiv, so ist jeder abgeschlossene Unterraum von X reflexiv.
- Ist $T: X \to Y$ ein Isomorphismus, so gilt:

$$X$$
 reflexiv $\iff Y$ reflexiv

• Es gilt: X reflexiv $\iff X'$ reflexiv.

Lemma. Für jeden Banachraum X gilt: X' separabel $\implies X$ separabel.

Bemerkung. Die Umkehrung gilt i. A. nicht! Gegenbeispiel: $X = L^1$.

Satz (Eberlein-Shmulyan). Sei X reflexiver Banachraum. Dann ist die abgeschlossene Einheitskugel $\overline{B_1(0)} \subset X$ schwach folgenkompakt.

Beispiel. • Hilberträume X sind reflexiv (folgt direkt aus dem Riesz'schen Darstellungssatz; im Reellen $J_X = (R_X R_{X'})^{-1}$, wobei $R_X : X \to X'$ der zugehörige isomorphismus). Daher: Ist $(x_k)_{k \in \mathbb{N}}$ eine beschränkte Folge in X, so existiert eine Teilfolge $(x_{k_l})_{l \in \mathbb{N}}$ und $x \in X$, sodass

$$(y|x_{k_l})_X \xrightarrow{l\to\infty} (y|x)_X$$

für alle $y \in X$.

- Sei $\Omega \subset \mathbb{R}^n$ beschränkt, $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$. Dann ist $L^p(\Omega)$ reflexiv.
- L^1 und L^∞ sind genau dann nicht reflexiv, wenn sie unendlich-dimensional sind.

Bemerkung. Analog zur schwach*-Topologie kann man auch eine schwache Topologie einführen.

Satz (Trennungssatz). Seien X ein normierter Raum, $M \subset X$ nicht leer, abgeschlossen, konvex und $x_0 \in X \setminus M$. Dann gibt es ein $x' \in X'$ und ein $\alpha \in \mathbb{R}$ mit

$$Re\langle x', x_0 \rangle_{X' \times X} > \alpha$$
 und $Re\langle x', x \rangle_{X' \times X} \le \alpha$ für $x \in M$.

Satz. Sei X ein normierter Raum, $M\subset X$ konvex und abgeschlossen. Dann ist M schwach folgenabgeschlossen, d. h. sind $x_k,x\in X$ für $k\in \mathbb{N}$, so gilt

$$\forall k \in \mathbb{N} : x_k \in M, x_k \xrightarrow{k \to \infty} x \text{ in } X \implies x \in M$$

Lemma (Mazur). Sei X normierter Raum und $(x_k)_{k\in\mathbb{N}}$ Folge in X mit $x_k \xrightarrow{k\to\infty} x$. Dann gilt $x\in\operatorname{conv}\{x_k\mid k\in\mathbb{N}\}$

Satz. Sei X ein reflexiver Banachraum und $M \subset X$ nicht leer, konvex, abgeschlossen. Dann gibt es zu \tilde{x} ein $x \in M$ mit $\|x - \tilde{x}\| = \operatorname{dist}(\tilde{x}, M)$.

Beispiel. • Sei $M = W_0^{1,2}(\Omega)$. Dann ist die eindeutige Lösbarkeit des zugehörigen (schwachen) Dirichlet-Problems gesichert.

• Sei $M=\{u\in W^{1,2}(\Omega)\,|\,\int\limits_{\Omega}u\,\mathrm{d}x=0\}$ und gelte $\int\limits_{\Omega}f\,\mathrm{d}x=0$. Dann sichern Punkt 3, 4 die eindeutige Lösbarkeit des zugehörigen Neumann-Problems.

• Seien $u_0, \psi_0 \in W^{1,2}(\Omega)$ gegeben und $u_0(x) \ge \phi_0(x)$ für fast alle $x \in \Omega$. Definiere $M = \{v \in W^{1,2}(\Omega) \mid v = u_0 \text{ auf } \partial\Omega, v \ge \psi \text{ in } \Omega\}$. Dann sichern die Punkte 1 bzw. 2 und 4 die eindeutige Existenz einer Lösung dieses Hindernis-Problems.

Lemma. Ist $X \infty$ -dimensionaler Raum, so sind äquivalent:

- X ist separabel
- $\exists X_n \subset X$ endlich-dim. Unterräume : $\forall n \in \mathbb{N} : X_n \subset X_{n+1}$ und $\bigcup X_n$ ist dicht in X.
- $\exists X_n \subset X$ endlich-dim. Unterräume : $E_n \cap E_m = \{0\}$ für $n \neq m$ und $\bigcup (E_0 \oplus ... \oplus E_n)$ ist dicht in X.
- \exists linear unabhängige Menge $\{e_n \mid n \in \mathbb{N}\}$ mit span $\{e_n \mid n \in \mathbb{N}\}$ ist dicht in X.

Definition. Sei X normierter Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Schauder-Basis von X, falls:

$$\forall\,x\in X\,:\,\exists\,\text{eindeutige bestimmte}\,\,\alpha_k\in\mathbb{K}\,:\,\sum_{k=0}^n\alpha_ne_k\xrightarrow{n\to\infty}x\,\,\text{in}\,\,X.$$

S ist also eindeutig bestimmt durch die "unendliche Matrix" $(a_{k,l})_{k,l\in\mathbb{N}}$.

Definition. Sei X ein Prähilbertraum. Eine Folge $(e_k)_{k\in\mathbb{N}}, N\subset\mathbb{N}$ in X heißt Orthogonalsystem, falls $(e_k|e_l) = 0$ für $k \neq l$ und $e_k \neq 0$ für alle $k \in \mathbb{N}$ und Orthonormalsystem, falls zusätzlich $||e_k|| = 1$ für alle $k \in \mathbb{N}$ gilt.

Lemma (Besselsche Ungleichung). Sei $(e_k)_{k\in\mathbb{N}}$ ein (endliches) Orthonormalsystem des Prähilbertraumes X. Dann gilt für alle

$$x \in X$$
: $0 \le ||x||^2 - \sum_{k=0}^n |(x|e_k)|^2 = ||x - \sum_{k=0}^n \infty(x|e_k)e_k||^2 = \text{dist}(x, \text{span}\{e_0, ..., e_n\})^2$.

Satz. Sei $(e_k)_{k\in\mathbb{N}}$ ein Orthonormalsystem des Prä-Hilbertraumes X. Dann sind äquivalent:

- span $\{e_k \mid k \in \mathbb{N}\}$ liegt dicht in X
- $(e_k)_{k\in\mathbb{N}}$ ist eine Schauder-Basis von X.
- Für alle $x \in X$ $x = \sum_{k=0}^{\infty} (x|e_k)e_k$ (Darstellung)
- Für alle $x,y \in X$ gilt $(x|y) = \sum_{k=0}^{\infty} (x|e_k) \overline{(y|e_k)}$ (Parseval-Identität)
- Für alle $x \in X$ gilt $||x||^2 = \sum_{k=0}^{\infty} |(x|e_k)|^2$

Definition. Ist eine dieser Bedingungen erfüllt, nennen wir die $(e_k)_{k\in\mathbb{N}}$ Orthonormalbasis.

Satz. Jeder ∞ -dim. Hilbertraum über \mathbb{K} ist genau dann X separabel, wenn X eine Orthonormalbasis besitzt.

Bemerkung. In diesem Fall ist X isometrisch isomorph zu $\uparrow^2(\mathbb{K})$ (Übergang zu Koeffizienten bzgl. Basis)

Beispiel. Betrachte $L^2(]-\pi,\pi[\,,\mathbb{K})$. Dann ist durch $e_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$ für $k \in \mathbb{Z}$ eine Orthonormalbasis von $L^{2}(]-\pi,\pi[\,,\mathbb{C})$ gegeben. Weiter ist durch $\widetilde{e}_{0}(x)=\frac{1}{\sqrt{2\pi}}$ $\widetilde{e}_k(x) = \frac{1}{\sqrt{2\pi}}\sin(kx)$ für k > 0 und $\widetilde{e}_k(x) = \frac{1}{\sqrt{2\pi}}\cos(kx)$ für k < 0

Lemma. Zu $f \in L^2(]-\pi,\pi[\,,\mathbb{C})$ sei $P_n f = \sum_{|k| \leq n} (f|e_k)_{L^2} e_k$ mit e_k wie im Beispiel die Fourier-Summe von f. Ist f Lipschitz-stetig gilt $f(x) = \lim_{n \to \infty} P_n f(x)$.

Die Fourier-Summe erlaubt die explizite Approximation von f im Unterraum $X = \text{span}\{e_k \mid |k| \le n\}$. Allgemein führt man ein:

Definition. Sei Y Unterraum des Vektorraums X. Eine lineare Abbildung $P: X \to X$ heißt (lineare) Projektion auf Y, falls $P^2 = P$ und Bild(P) = Y.

Lemma. • P ist Projektion auf $Y \iff P: X \to Y \text{ und } P = \text{Id}$ auf Y.

- $P: X \to X$ ist Projektion $\implies X = \ker(P) \oplus \operatorname{im}(P)$
- $P: X \to X$ ist Projektion \Longrightarrow Id P ist Projektion und $\ker(\operatorname{Id} - P) = \operatorname{im}(P), \operatorname{im}(\operatorname{Id} - P) = \ker(P).$
- Zu jedem Unterraum Y von X gibt es eine Projektion auf Y.

Lemma. Für $P \in \mathcal{P}(X)$ gilt:

• $\ker(P)$ und $\operatorname{im}(P)$ sind abgeschlossen

eine ONB von $L^2(]-\pi,\pi[\,,\mathbb{R})$ gegeben.

• ||P|| > 1 oder ||P|| = 0

Satz (vom abgeschlossenen Komplement). Sei X ein Banachraum. Gegeben sei ein abgeschlossener Unterraum Y sowie ein Unterraum Z mit $X = Y \oplus Z$. Dann gilt:

 \exists stetige Projektion P auf Y mit $Z = \ker(P : \iff Z \text{ ist abgeschlossen})$

Bemerkung. Ist Y abgeschlossener Unterraum eines Banachraumes X, so besitzt Y ein abeschlossenes Komplement genau dann, wenn es eine stetige Projektion auf Y gibt.

Zwei wichtige Klassen von Unterräumen, die ein abgeschlossenes Komplement besitzen, sind endlich-dimensionale Unterräume beliebiger Banachräume sowie abgeschlossene Unterräume von Hilberträumen.

Satz. Sei X ein normierter Vektorraum, E ein n-dimensionaler Unterraum mit Basis $\{e_i \mid i=1,...,n\}$ und Y ein abgeschlossener Unterraum mit $Y \cap E = \{0\}$. Dann gilt:

- $\exists e'_1, ..., e'_n \in X' : e'_i = 0$ auf Y und $\langle e'_i, e_i \rangle = \delta_{ij}$.

Lemma. Ist Y abgeschlossener Unterraum eines Hilbertraums X und P die orthogonale Projektion aus Abschnitt 2.1, so gilt

- $\operatorname{im}(P) = Y$ und $\ker(P) = Y^{\perp}$
- Ist $Z \subset X$ Unterraum mit $X = Z \perp Y$, so gilt $Z = Y^{\perp}$.

Als Alternative zum Zugang in Abschnitt 2.1 lässt sich festhalten:

Lemma. Seien X Hilbertraum und $P: X \to X$ linear. Dann sind äquivalent:

- P ist die orthogonale Projektion auf im(P), d. h. $\forall x, y \in X : ||x - Px|| \le ||x - Py||$
- $\forall x, y \in X : (x Px|Py) = 0$
- $P^2 = P$ und $\forall x, y \in X : (Px|y) = (x|Py)$
- $P \in \mathcal{P}(X)$ mit ||P|| < 1

Sei X Banachraum und X_n endlich-dimensionale Unterräume wie in (2) des ersten Lemmas des Kapitels. Dann gibt es nach Aussage (2) des obigen Satzes also $P_n \in \mathcal{P}(X)$ mit $X_n = \operatorname{im}(P_n)$. Eine stärkere Eigenschaft als (2) des ersten Lemmas ist:

(P1)
$$\forall x \in X : P_n x \xrightarrow{n \to \infty} x$$

(P1) impliziert nach dem Satz von Banach-Steinhaus $C = \sup ||P_n|| < \infty.$ $n \in \mathbb{N}$

Wir forden noch:

(P2)
$$\forall m, n : P_n \circ P_m = \P_{\min(n, m)}$$

Man rechnet leicht nach, dass zu einer Folge $(P_n)_{n\in\mathbb{N}}$ mit (P1), (P2) mittels $Q_n := P_n - P_{n-1}$ (wobei $P_1 = 0$) bzw. $P_n = \sum_{i=0}^{n} Q_i$ eine Folge $(Q_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(X)$ mit

(Q1)
$$\forall x \in X : \sum_{i=0}^{n} Q_i x \xrightarrow{n \to \infty} x$$
 (Q2) $\forall m, n : Q_n \circ Q_m = \delta_{mn} Q_n$

Die Unterräume $E_n = \operatorname{im}(Q_n)$ erfüllen dann (3) aus dem ersten Lemma und (2) mit $X_n = E_0 \oplus ... \oplus E_n$.

• Ist X Hilbertraum und $X = \overline{\bigcup_{n \in \mathbb{N}} X_n}$ mit $\mathrm{dim} X_n < \infty$, $X_n \subset X_{n+1}$, so sei P_n die orthogonale Projektion auf X_n und mit $X_{n+1} = X_n \perp E_n$ sei Q_n die orthogonale Projektion auf E_n . Ist speziell $X_n = \text{span}\{e_i \mid 0 \le i \le n\}$ mit einer ONB $(e_i)_{i \in \mathbb{N}}$, so ist

$$Q_n x = (x|e_n)e_n$$
 und $P_n x = \sum_{i=0}^n (x|e_i)e_i$

• Ist $(e_i)_{i\in\mathbb{N}}$ Schauder-Basis eines Banachraumes X, definiere die **duale Basis** $(e'_i)_i$ durch $e'_i = \alpha_i$ für $i \in \mathbb{N}$, falls

 \exists stetige Projektion P auf E mit $Y = \ker(P)$, nämlich $P_X = \sum_{j=1}^n \langle e'_j, x \rangle e_{i_j=1}^{\sum_{j=1}^n \alpha_k e_k} \xrightarrow{n \to \infty} x$. Man kann zeigen, dass für alle $i \in \mathbb{N}$ diese $e'_i \in X'$ eindeutig bestimmt sind. Damit ist

$$Q_n = \langle e'_n, x \rangle e_n, \quad P_n x = \sum_{i=0}^n \langle e'_i, x \rangle e_i$$

• Zerlege [0,1] in Punkte $M_n = \{x_{n,i} \mid i=0,....,m_n\}$ mit $0 = x_{n,0} < ... < x_{n,m} = 1$ und $h_n = \max_i |x_{n_i,i} - x_{n_i,i-1}| \xrightarrow{n \to \infty} 0$ sowie $\forall n \in \mathbb{N} : M_n \subset M_{n+1}$. Sei $A_{n_i,i} = (x_{n_i,i},x_{n_i,i})$, $h_{n_i,i} = x_{n_i,i} - x_{n_i,i-1}$. Dann ist der Raum der stückweise konstanten Funktionen bzgl. dieser Zerlegung auf Level n:

$$X_n = \{ \sum_{i=1}^m \alpha_i \chi_{A_{n_i,i}} \mid \alpha_i \in \mathbb{K} \}, \dim(X_n) = m_n$$

Für
$$f \in L^1(]0,1[)$$
 definiere $P_n f = \sum_{i=1}^{m_n} (\frac{1}{n_{n_i,i}} \int_{A_{n_i,i}} f(s) \, \mathrm{d}s) \chi_{A_{n_i,i}}$.

Es ist $\operatorname{im}(P_1)=X_n$ und für die Standardzerlegung $x_{n_i,i}=i2^{-n}$ ist $E_n=\operatorname{span}\{e_{n_i}\mid 1\leq i\leq 2^{n-1}\}$ mit $e_0=\chi_{]0,1[},e_{n,i}=\chi_{A_{n,2i-1}}-\chi_{A_{n,2i}}.$

Für normierte \mathbb{K} -Vektorräume X,Y hatten wir im Abschnitt 3 die Menge der kompakten linearen Operatoren von X nach Y

$$\mathcal{K}(X,Y) = \{ T \in \mathcal{L}(X,Y) \mid \overline{T(B_1(0))} \text{ ist kompakt} \}$$

Wir hatten aber schon festgestellt, dass wir, wenn Y vollständig, " $\overline{T(B_1(0))}$ ist kompakt" durch " $T(B_1(0))$ ist präkompakt" ersetzen können. Außerdem gilt:

Lemma. Seien X, Y Banachräume über \mathbb{K} . Dann sind äquivalent:

- $T \in \mathcal{K}(X,Y)$
- $M \subset X$ beschränkt $\implies T(M)$ ist präkompakt

• Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ besitzt $(Tx_n)_{n\in\mathbb{N}}$ eine in Y konvergente Teilfolge.

Lemma. Seien X, Y Banachräume. Dann gilt:

- Für jede lineare Abbildung $T:X\to Y$ gilt: T kompakt $\Longrightarrow T$ vollständig. Ist X zudem reflexiv, gilt auch die Rückrichtung.
- K(X,Y) ist abgeeschlossener Unterraum von $\mathcal{L}(X,Y)$
- Ist $T \in L(X,Y)$ mit dim im $(T) < \infty$, so ist $T \in K(X,Y)$
- Ist Y Hilbertraum, so gilt für $T \in \mathcal{L}(X,Y)$

$$T \in K(X,Y) \iff \exists (T_n)_{n \in \mathbb{N}} \text{ Folge in } \mathcal{L}(X,Y) \text{ mit im}(T_n) < \infty : ||T - T_n|| \xrightarrow{n \to \infty} 0$$

• Für $P \in \mathcal{P}(X)$ gilt: $P \in K(X) \iff \dim \operatorname{im}(P) < \infty$

Lemma. Für $T_1 \in \mathcal{L}(X,Y)$ und $T_2 \in \mathcal{L}(X,Y)$ gilt: T_1 oder T_2 kompakt $\implies T_2T_1$ kompakt

Definition. Die Resolventenmenge von T ist definiert als

$$\rho(T) := \{ \lambda \in \mathbb{C} \mid \ker(\lambda \operatorname{Id} - T) = \{0\} \} \text{ und } \operatorname{im}(\lambda \operatorname{Id} - T) = X,$$

das Spektrum von T durch $\sigma(T) \coloneqq \mathbb{C} \setminus \rho(T)$. Das Spektrum zerlegen wir in das Punktspektrum

$$\sigma_p(T) := \{ \lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) \neq \emptyset \},$$

das kontinuierliche Spektrum

 $\sigma_c(T) := \{\lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) = \{0\} \text{ und } \operatorname{im}(\lambda \operatorname{Id} - T) \neq X, \text{ aber } \overline{\operatorname{im}(\lambda \operatorname{Id} - T) = X}\},$ sowie das **Restspektrum** (Residualspektrum)

$$\sigma_r(T) := \{ \lambda \in \sigma(T) \mid \ker(\lambda \operatorname{Id} - T) = \{ 0 \} \text{ und } \overline{\operatorname{im}(\lambda \operatorname{Id} - T)} \neq X \}.$$

Offenbar ist $\lambda \in \rho(T)$ genau dann, $\lambda \mathrm{Id} - T: X \to X$ bijektiv ist. Nach dem Satz von der inversen Abbildung ist dies äquivalent zur Existenz von

$$R(\lambda, T) = (\lambda \operatorname{Id} - T)^{-1} \in \mathcal{L}(X),$$

der sogenannten **Resolvente** von T in λ . Als Funktion von λ heißt sie auch **Resolventenfunktion**. Weiterhin ist $\lambda \in \sigma_p(T)$ offenbar äquivalent zu $\exists \, x \neq 0 : Tx = \lambda x$, dann heißt λ **Eigenwert** und x **Eigenvektor** (oder **Eigenfunktion**). Der Unterraum ker(Id $\lambda - T$) ist der **Eigenraum** von T zum Eigenwert λ . Er ist T-invariant.

Satz.
$$\rho(T)$$
 ist offen und $\lambda \mapsto R(\lambda, T)$ ist eine komplex-analytische Abbildung von $\rho(T)$ nach $\mathcal{L}(X)$. Es gilt für $\lambda \in \rho(T)$: $\|R(\lambda, T)\|^{-1} \leq \operatorname{dist}(\lambda, \rho(T))$

Satz. Das Spektrum $\sigma(T)$ ist kompakt und nichtleer (falls $X \neq \{0\}$) mit $(\lambda \operatorname{Id} - T) = X\}$, $\sup_{\lambda \in \sigma(T)} = \lim_{m \to \infty} \|T^m\|^{\frac{1}{m}} \leq \|T\|.$

Der Wert heißt Spektralradius.