6. Vertiefung der Differenzial- und Integralrechnung

6.1 Bedeutung der Ableitung für den Graphen einer Funktion

>> Informieren Sie sich zu diesem Thema zusätzlich in einem Lehrbuch. Machen Sie sich eigene Skizzen!

1. Ableitung Änderungsverhalten von f / Steigung der Tangente f' (x) > 0 Graph steigt, f' (x) < 0 Graph fällt

2. Ableitung Ableitung von f' / Änderungsverhalten von f' / Krümmungsverhalten des Graphen f" (x) > 0 Linkskrümmung, f" < 0 Rechtskrümmung

Daraus folgt für $f:[a,b] \to \mathbb{R}$, 3x differenzierbar

Lokales Extremum (größter oder kleinster Funktionswert in einer gewissen Umgebung)

- I f hat lokales Extremum in $x_E \in]a,b[\Rightarrow f'(x_E) = 0$ (notwendige Bedingung)
- II $f'(x_E) = 0$ und $f''(x_E) \neq 0 \Rightarrow f$ hat in x_E lokales Extremum (hinreichende Bedingung) Für $f''(x_E) > 0$ liegt ein Minimum vor, für $f''(x_E) < 0$ ein Maximum.

Wendepunkt (Punkt, in dem die Krümmung wechselt)

- I f hat Wendepunkt in $x_W \in]a,b[\Rightarrow f'$ hat Extremum $\Rightarrow f''(x_W) = 0$ (notwendige Bedingung)
- II $f''(x_W) = 0$ und $f'''(x_W) \neq 0 \implies f$ hat in x_W Wendepunkt (hinreichende Bedingung) Wendepunkte mit waagerechter Tangente nennt man Sattelpunkte.
- >> Entscheiden Sie: Was ist die Originalfunktion, was ist 1. und 2. Ableitung?

6.2 Kurvendiskussion und Extremwertaufgaben

Für eine Kurvendiskussion sollten Sie folgendermaßen vorgehen:

- Hat die Funktion Symmetrien, ist sie periodisch?
- Definitionsbereich feststellen (ev. Polstellen?)
- Nullstellen bestimmen, Schnittpunkt mit der y-Achse bestimmen
- Verhalten für $x \to \pm \infty$ untersuchen
- 1. bis 3. Ableitung berechnen
- Lokale Extrema und Wendepunkte bestimmen
- Skizze anfertigen (dazu ev. einige weitere Funktionswerte ermitteln)

Beispiel: Kurvendiskussion für $y = f(x) = e^{-\frac{x^2}{2\sigma^2}}$, $\sigma > 0$. Mögliche Wendepunkte nur berechnen, nicht prüfen

f(x) ist symmetrisch zur y-Achse, also eine gerade Funktion.

Definitionsbereich ist \mathbb{R} .

Es gilt f(x) > 0 in \mathbb{R} , f(x) hat also keine Nullstelle. f(x) schneidet die y-Achse bei 1.

Für $x \to \pm \infty$ hat f(x) den Grenzwert 0.

$$f'(x) = e^{-\frac{x^2}{2\sigma^2}} \cdot \left(-\frac{x}{\sigma^2}\right), \quad f''(x) = e^{-\frac{x^2}{2\sigma^2}} \cdot \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)$$

Lokale Extrema: $f'(x) = 0 \implies x = 0$, mögliches Extremum $x_E = 0$.

Prüfen mit der 2. Ableitung: $f''(x_E) = e^0 \cdot \left(-\frac{1}{\sigma^2}\right) < 0$, also Maximum in $(x_E \mid f(x_E)) = (0 \mid 1)$

Wendepunkte: $f''(x) = 0 \implies \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right) = 0$, da $e^{-\frac{x^2}{2\sigma^2}} \neq 0 \implies x^2 = \sigma^2$, mögliche Wendep. $x_{W1,2} = \pm \sigma$

Überprüfung mit der 3. Ableitung ergibt, dass wirklich Wendepunkte vorliegen.

>> Erstellen Sie die Skizze! Kontrollieren Sie die Skizze mit MATLAB!

>> Weitere Aufgaben zur Kurvendiskussion s. Wiederholungsübung, s. Papula.

Extremwertaufgabe: Eine Größe (geometrisch, physikalisch), die von Parametern abhängt, ist zu optimieren, wobei in der Regel Nebenbedingungen vorliegen. Man versucht, das Problem als Funktion einer Variablen darzustellen und das Maximum/Minimum zu bestimmen.

>> Beispiele s. Vorlesung, s. Papula