Modelos de Machine learning

WIRACOCHAS

DOCENTE

Mg. Ing. Hugo Espetia Huamanga

EQUIPO

- Abarca Ccarhuarupay Rusbell
- Frisancho Rivero Daniel
- Huamani Tupac Raul Adriano
- Torres Cuyo Bryan Jhosep
- Vargas Baca Gabriela Lesly

Modelo t-SNE

Es una técnica de reducción de dimensionalidad que se utiliza principalmente para visualizar datos de alta dimensión en un espacio de menor dimensión (generalmente 2D o 3D).

Fue introducida por Laurens van der Maaten y Geoffrey Hinton en 2008 y es especialmente útil en inteligencia artificial para analizar y visualizar datos complejos, como imágenes, texto y datos de redes neuronales

Ventajas de t-SNE

- Visualización Intuitiva: Es especialmente potente para la visualización porque crea mapas claros de los datos, permitiendo observar clusters (agrupaciones) o estructuras latentes.
- Detección de Patrones Ocultos: Puede revelar patrones complejos que son difíciles de detectar en espacios de alta dimensión.
- Flexible: Funciona bien con datos complejos, como texto o imágenes.

Limitaciones de t-SNE

- Escalabilidad: Es computacionalmente costoso, lo que lo hace lento para datasets muy grandes.
- No es determinista: Los resultados pueden variar ligeramente entre ejecuciones debido a su componente estocástico.
- Difícil de Interpretar Numéricamente: Los ejes de la visualización no tienen un significado directo y, por lo tanto, es más adecuado para exploración visual que para análisis cuantitativo.
- No mantiene las distancias globales: t-SNE se centra en la estructura local, por lo que las distancias entre clústeres en la visualización no son directamente comparables con las distancias en el espacio de alta dimensión.

Aplicaciones

- 1 Visualización de Representaciones de Redes Neuronales
- 2 Análisis de Textos
- Clasificación y Agrupación

Consejos

- Normalización: Antes de aplicar t-SNE, es importante normalizar los datos.
- Perplejidad: Un parámetro importante de t-SNE que controla el balance entre la estructura local y global. Valores comunes están entre 5 y 50.
- Iteraciones: Aumentar las iteraciones puede mejorar la calidad de la visualización, pero también aumenta el tiempo de procesamiento.

Deep q-network

Teoria - práctica

Conceptos clave

Aprendizaje por refuerzo

Un agente interactúa con un entorno y aprende a tomar decisiones (acciones) para maximizar una recompensa acumulada

Función Q

O función de acción-valor, evalúa qué tan buena es una acción específica en un estado dado

Q(s,a)=Valor esperado de la recompensa tomando la accion a en el estado

Red neuronal profunda

La red neuronal recibe como entrada el estado del entorno y devuelve los valores Q para cada acción posible.

No es factible almacenar la función Q para cada combinación de estado y acción para espacios de estados grandes

Proceso de entrenamiento

- 1 Fase de exploración
- Replay buffer (Memoria de reproducción)
- Fase de explotación (Explotación $1-\epsilon$)
- Red objetivo y red principal (feedback)
- 5 Repetición y ajuste

Link del modelo

GRACIAS

