

Radiation Characterization of a 0.11 μm Modified Commercial CMOS Process

C. Poivey¹, H. Kim¹, M. Vilchis², J. Forney¹,
A. Phan¹, K. LaBel³, R. Saigusa², R. Finlinson²,
A. Sukharnov², V. Hornback², J.Song², J. Tung²,
M. Mirabedini²

¹ MEI Technologies ² LSI Logic ³ NASA-GSFC

To be presented by Christian Polyey at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA

Outline

- Background Introduction
- Test vehicles
- Test conditions
- Test results
 - SRAM
 - Logic chip
- Conclusion

A STATE OF THE STA

Background - Introduction

- 2004:
 - Evaluation of LSI Logic 0.18 μm standard process
 - Evaluation of 0.18 μm modified process with a buried layer
 - . No SEL up to a LET of 75 MeVcm²/mg
 - · High SEU sensitivity
- 2005:
 - Evaluation of LSI Logic 0.11 μm standard process
 - 0.11 μm drawn bulk process with Small Trench Isolation (STI)
 - · 1.2V core voltage, up to 3,3V I/O voltage
 - · Up to 70 million logic gates on a chip
 - · High density embedded SRAM
 - and two different versions of a modified process with buried layer

To be presented by Christian Poivey at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA

Test Vehicles

- SRAMs
 - 4 Mbit (512K*8) made with standard embedded cells
 - RAM249, high speed design
 - RAM187, high density design
 - I/O voltage = 2.5V
 - 64 PQFP

To be presented by Christian Poivey at the 2006 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA

Test Vehicles

- · Logic chip
 - Made of 384 64-bit ALUs with registered inputs, outputs, and function control signals
 - Scan D type flip-flop with set and clear
 - I/O voltage = 3.3V
 - 492 EPBGA

To be presented by Christian Polvey at the 2008 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA

Test conditions

- Used NASA-GSFC low cost digital tester (LCDT)
- SRAM: static and dynamic (10MHz clock cycle)
- Logic chip: test in scan mode (6 shift register chains of 200 flipflop each) at 2 to Mhz clock speed.

To be presented by Christian Polvey at the 2008 Single Event Effects Symposium (SEESYM), April 10, 2006 to April 12, 2006 in Long Beach, CA

Conclusion • 0.11 µm process with 1.2V core voltage may still be sensitive to SEU/SEL • SRAM cells have a very low LET threshold • Significant diffusion effect at high LET • Significant transient sensitivity even at low speed