Honors Mathematics III RC 4

CHEN Xiwen

UM-SJTU Joint Institute

June 12, 2018

Table of contents

Determinants

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Determinant — Summary

- 1. Determinant in \mathbb{R}^2 and \mathbb{R}^3 .
 - Area of parallelogram.
 - Volume of parallel epipeds.
- 2. Permutations.
 - Cyclic permutations.
 - Transpositions.
 - Sign of a permutation.
- 3. Group.
- 4. Determinant in \mathbb{R}^n .
 - Multilinear, alternating and normed.
 - Leibnitz formula.
 - Cramer's rule.
 - Laplace expansion.
 - Determinants and systems of equation.

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Determinant in \mathbb{R}^2

The *determinant* in \mathbb{R}^2 is defined as a map

$$\det: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \qquad \det\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}\right) = a_1b_2 - a_2b_1$$

It is

- **normed**: $det(e_1, e_2) = 1$.
- bilinear.

$$\det(\lambda a, b) = \det(a, \lambda b) = \lambda \det(a, b)$$
$$\det(a + b, c) = \det(a, c) + \det(b, c)$$
$$\det(a, b + c) = \det(a, b) + \det(a, c)$$

▶ alternating: det(a, b) = -det(b, a).

Vector product in \mathbb{R}^3

The *vector product* $a \times b \in \mathbb{R}^3$ of two vectors $a, b \in \mathbb{R}^3$ is determined by

- 1. length: $|a \times b| = A(a, b)$.
- 2. direction: $a \times b \perp \operatorname{span}\{a, b\}$.
- 3. orientation: $(a, b, a \times b)$ form a "right-hand system".

$$e_1 \times e_2 = e_3, \ e_2 \times e_3 = e_1, \ e_3 \times e_1 = e_2$$

$$a \times b = \begin{pmatrix} +\det\begin{pmatrix} a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} \\ -\det\begin{pmatrix} a_1 & b_1 \\ a_3 & b_3 \end{pmatrix} \\ +\det\begin{pmatrix} a_1 & b_1 \\ a_2 & b_1 \end{pmatrix} \end{pmatrix}$$

Determinant in \mathbb{R}^3

The determinant in \mathbb{R}^3 is defined as an *oriented volume*.

$$\det: \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3, \qquad \det(a, b, c) = \langle a \times b, c \rangle$$

- $ightharpoonup \det(a,b,c) > 0$ if (a,b,c) form a right-hand system.
- $ightharpoonup \det(a,b,c) < 0$ if (a,b,c) form a left-hand system.
- ▶ det(a, b, c) = 0 if $a = \lambda b$ or $a = \lambda c$ or $b = \lambda c$ for any $\lambda \in \mathbb{R}$.

Determinant in \mathbb{R}^3

The determinant in \mathbb{R}^3 is calculated as

$$\det(a, b, c) = \langle b \times c, a \rangle$$

$$= a_1 \det \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} - a_2 \det \begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix} + a_3 \det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix}$$

$$= \det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$

The determinant for \mathbb{R}^3 is also

- multilinear,
- alternating and
- normed.

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Permutations

An ordered list of elements is endowed with a relation (x_1, \ldots, x_n) with $x_1 \prec x_2 \cdots \prec x_n \prec x_1$.

A *permutation* is a bijective map defined by

$$\pi:\{x_1,\ldots,x_n\} \to \{x_1,\ldots,x_n\}, \quad x_k \to \pi(x_k) = x_r \text{ for some } r$$

A cyclic permutation is a permutation if

$$\pi(x_1) \prec \pi(x_2) \prec \cdots \prec \pi(x_n) \prec \pi(x_1)$$

▶ A permutation of *n* elements is represented by

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}$$

Transpositions

A *transposition* switches the positions of two elements while leaving the other n-2 elements invariant. For a transposition τ ,

$$\tau(k) = \begin{cases} i & \text{if } k = j \\ j & \text{if } k = i \\ k & \text{otherwise} \end{cases}$$

for some $i, j \in \{1, \dots, n\}$.

Permutations as Transpositions

Lemma 1.7.7. Every permutation $\pi \in S_n, n \geq 2$, is a composition of transpositions, $\pi = \tau_1 \circ \cdots \circ \tau_k$.

Definition and Theorem 1.7.8 Let $\pi \in S_n$ be represented as a composition of k transpositions, $\pi = \tau_1 \circ \cdots \circ \tau_k$. Then the **sign** of π ,

$$\operatorname{sgn}\,\pi:=(-1)^k$$

does not depend on the representation chosen.

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Group

A *group* is a pair (G, \circ) with a set G and a *group operation* $\circ : G \times G \to G$ s.t.

- 1. $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$ (associativity),
- 2. $\exists e \in G$ such that $a \circ e = e \circ a = a$ for all $a \in G$ (unit element),
- 3. for every $a \in G$ there exists an element $a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$ (inverse).

Additionally for commutative group:

4. $a \circ b = b \circ a$ for all $a, b \in G$ (commutativity).

Group Actions

Let (G, \circ) be a group and X a set. Then an action (or operation) of G on X from the left is a map

$$\Phi: G \times X \to X$$
 $(g,x) \mapsto \Phi(g,x) = \Phi_g x = gx$

with the properties

- 1. ex = x ($e \in G$ is the unit element),
- 2. $(a \circ b)x = a(bx)$ for $a, b \in G, x \in X$.

We say that G acts (operates) on X.

Group and Permutations

Proposition 1.7.10. Let X be the set of all maps $f: \mathbb{R}^n \to \mathbb{R}$. Then S_n acts on X via

$$(\pi f)(x_1,\ldots,x_n)=f(x_{\pi(1)},\ldots,x_{\pi(n)}), \qquad \pi \in S_n$$

Lemma 1.7.11. Denote by $\Delta : \mathbb{R}^n \to \mathbb{R}$ the function

$$\Delta(x_1,\ldots,x_n)=\prod_{i< j}(x_j-x_i)$$

Then $\tau \Delta = -\Delta$ for any transposition $\tau \in S_n$.

Corollary 1.7.12. For every permutation $\pi = \tau_1 \circ \cdots \circ \tau_k \in S_n$,

$$\pi\Delta = (\tau_1 \circ \cdots \circ \tau_k)\Delta = (-1)^k\Delta$$

and in particular, sgn $\pi = (-1)^k$.

Characterization of Alternating Forms

Lemma 1.7.14. Let $f: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ be a *p*-multilinear map, then the followings are equivalent:

- 1. f is alternating.
- 2.

$$f(a_1, \ldots, a_{j-1}, a_j, a_{j+1}, \ldots, a_{k-1}, a_k, a_{k+1}, \ldots, a_p)$$

= $-f(a_1, \ldots, a_{j-1}, a_k, a_{j+1}, \ldots, a_{k-1}, a_j, a_{k+1}, \ldots, a_p)$

3. $f(a_1, \ldots, a_p) = 0$ if a_1, \ldots, a_p are linearly dependent.

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Determinants in \mathbb{R}^n

Theorem 1.7.15. For every $n \in \mathbb{N}$, n > 1, there exists a unique, normed, alternating n-multilinear form $\det : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \cong \operatorname{Mat}(n \times n; \mathbb{R}) \to \mathbb{R}$ given by

$$\det(a_1,\ldots,a_n) = \det A = \sum_{\pi \in S_n} \operatorname{sgn} \pi \ a_{\pi(1)1} \cdots a_{\pi(n)n}$$

Proof.

- 1. The det function above is multilinear, normed and alternating.
- 2. The linear map with the above properties is unique.

$$\det(a_1, \ldots, a_n) = \det\left(\sum_{j_1=1}^n a_{j_1 1} e_{j_1}, \ldots, \sum_{j_n=1}^n a_{j_n n} e_{j_n}\right)$$

$$= \sum_{\pi \in S_n} a_{\pi(1) 1} \cdots a_{\pi(n) n} \det(e_{\pi(1)}, \ldots, e_{\pi(n)})$$

Determinants in \mathbb{R}^n

- 1. Elementary column operations.

 - $\det(a_1,\ldots,a_j,\ldots,a_k+\lambda a_j,\ldots,a_n) = \det(a_1,\ldots,a_j,\ldots,a_k,\ldots,a_n).$
- 2. det $A = \det A^T$.
- 3. Leibnitz Formula. det $A = \sum_{\pi \in S_n} \operatorname{sgn} \pi \ a_{1\pi(1)} \cdots a_{n\pi(n)}$.
- 4. Proposition 1.7.19. For $A \in \operatorname{Mat}(n \times n)$ in upper triangular form with diagonal elements $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, $\det A = \lambda_1 \cdots \lambda_n$.
- 5. $\det(AB) = (\det A)(\det B)$.
- 6. Laplace Expansion. det $A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$.

Results from Determinant

The properties of determinant can be applied in matrices and system of linear equations.

- ▶ Proposition 1.7.20. A matrix $A \in Mat(n \times n)$ is invertible iff det $A \neq 0$.
- ► Fredholm Alternative 1.7.21.
 - ▶ det A = 0. (ker $A \neq \{0\}$).
 - ▶ det $A \neq 0$ \Rightarrow A is invertible \Rightarrow $x = A^{-1}b$ is a unique solution for any $b \in \mathbb{R}^n$.
- ► Cramer's Rule 1.7.22. Find solution for the system Ax = b with invertible A:

$$x_i = \frac{1}{\det A} \det(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n), \quad i = 1, \ldots, n$$

Results from Determinant

We can use determinants to find inverses.

- 1. The (i, j)th **minor** of A: $m_{ij} := \det A_{ij}$.
- 2. The (i,j)th **cofactor** of A: $c_{ij} := (-1)^{i+j} \det A_{ij}$.
- 3. The *cofactor matrix* of A: Cof $A := (c_{ij})_{1 \le i,j \le n}$.
- 4. The *adjugate* of A: $A^{\sharp} := (\operatorname{Cof} A)^{T}$.

Then we have

▶ Theorem 1.7.25. For an invertible matrix,

$$A^{-1} = \frac{1}{\det A} A^{\sharp}$$

Lemma 1.7.26. Denoting e_i as the *i*th standard basis vector in \mathbb{R}^n ,

$$\det(a_1,\ldots,a_{j-1},e_i,a_{j+1},\ldots,a_n)=(-1)^{i+j}\det A_{ij}=c_{ij}$$

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Few methods to calculate determinant:

- 1. In \mathbb{R}^3 : expand to the case of \mathbb{R}^2 and calculate directly.
- In higher dimensions: use properties of determinant. Apply elementary row or column operations combined with Laplace expansion.
- 3. Leibnitz Formula.

Exercise 1. Calculate the determinant for the following matrix:

$$A = egin{pmatrix} -1 & 1 & 1 & 0 & 1 \ 2 & 1 & 0 & 0 & -1 \ 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 & 1 \ 1 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Exercise 2. Calculate the determinant for the matrix $A \in \operatorname{Mat}(2n \times 2n, \mathbb{R})$.

$$A^{(2n)} = \begin{pmatrix} a & 0 & \cdots & 0 & b \\ 0 & a & \cdots & b & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & b & \cdots & a & 0 \\ b & 0 & \cdots & 0 & a \end{pmatrix}$$

Exercise 3. Calculate the determinant for the following $n \times n$ matrix, where $a, b, c \in \mathbb{R}$.

$$D_n = \begin{pmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & c & a & \ddots & \vdots \\ \vdots & & \ddots & \ddots & b \\ c & \cdots & \cdots & c & a \end{pmatrix}$$

Summary

Determinant in \mathbb{R}^2 and \mathbb{R}^3

Permutations

Group

Determinant in \mathbb{R}^n

Exercises

Calculate Determinant

Cramer's Rule

Exercise 4. Use Cramer's rule to solve the following systems of equations.

1.

$$\begin{cases} 2x_1 - x_2 + 3x_3 + 2x_4 &= 6 \\ 3x_1 - 3x_2 + 3x_3 + 2x_4 &= 5 \\ 3x_1 - x_2 - x_3 + 2x_4 &= 3 \\ 3x_1 - x_2 + 3x_3 - x_4 &= 4 \end{cases}$$

2.

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 &= 6 \\ 2x_2 - x_2 - 2x_3 - 3x_4 &= 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 &= 4 \\ 2x_1 - 3x_2 + 3x_3 + x_4 &= -8 \end{cases}$$

Thanks for your attention!