MODULE 6: R PRACTICE

BY: SARVESH THORVE

FOR: PROF AMIN

Dummy Variables:

Dummy variables are numeric variable used in the regression analysis, they are used to represent subsets or subgroups of the sample in our study. They are often used to distinguish different groups of treatment.

Example: We use 0,1, a subject is given the value of 0 when they are in the control group and of they are given the value of 1 then they are into the treated group.

I have taken a Dataset of smokers and non-smokers, how it affects their lung capacity and height. It consists of 8 variables and 725 observations.

Impact of the categorical variable on the regression:

The categorical variable requires to be identified while performing regression because unlike continuous variables, categorical variables cannot by entered in to the regression equation. They need to be recorded into a series of variable first so later they can be entered into the regression equation.

We have created a dummy variable using the Smoke variables, Smokers and Non Smokers. As we can see below we have converted smoke variables in two dummy variables Smoke_no and Smoke_yes which represent people who smoke and people who do not smoke. It is represented with the help of binary numbers 1 and 0.

	<-dummy_c	cols	(df,sel	ect_co	lumns =	'smoke')		
> d					_		_	
						Caesarean		
1	6.475	6	62.1	no	male	no	1	0
2	10.125	18	74.7		female	no	0	1
3	9.550	16	69.7		female	yes	1	0
4	11.125	14	71.0	no	male	no	1	0
5	4.800	5	56.9	no	male	no	1	0
6	6.225	11	58.7		female	no	1	0
7	4.950	8	63.3	no	male	yes	1	0
8	7.325	11	70.4	no	male	no	1	0
9	8.875	15	70.5	no	male	no	1	0
10	6.800	11	59.2	no	male	no	1	0
11	11.500	19	76.4	no	male	yes	1	0
12	10.925	17	71.7	no	male	no	1	0
13	6.525	12	57.5	no	male	no	1	0
14	6.000	10	61.1	no	female	no	1	0
15	7.825	10	61.2	no	male	no	1	0
16	9.525	13	63.5	no	male	yes	1	0
17	7.875	15	59.2	no	male	no	1	0
18	5.050	8	56.1	no	male	no	1	0
19	7.025	11	61.2	yes	female	no	0	1
20	9.525	14	70.6	no	female	no	1	0
21	3.975	6	57.3	no	male	no	1	0
22	5.325	8	59.7	no	female	no	1	0
23	10.025	16	72.4	no	male	no	1	0
24	8.725	11	68.0	no	male	yes	1	0
25	9.375	11	65.7	no	female	no	1	0
26	8.350	12	61.3	no	male	ves	1	0
27	6.750	12	60.7		female	no	1	0
28	9.025	- 9	65.6	no	male	no	1	Ö
29	1.125	4	48.7		female	no	1	O
30	10.475	18	72.0		female	no	Ō	í
31	4.650	4	53.7		female	no	í	0
32	7.725	13	64.7	no	male	no	1	Ö
33	10.600	13	69.3	no	male	no	1	Ö
34	11.025	13	65.6	no	male	yes	1	Ö
35	8.650	12	67.8	no	male	no	1	ŏ
36	8.825	10	65.5	no	male	no	1	0
37	4.200	- 6	52.7	no	male	no	1	Ö
38	8.775	9	63.6	no	male	no	1	0
39	6.325	11	64.6		female	no	1	Ö
40	11.325	17	77.7	no	male	no	1	0
41	8.225	14	65.4		female	no	1	0
41	10.725	17	72.5		female		1	0
43	5.875	8	58.9		female	yes	1	0
44	7.275		67.7			no	1	0
		12		no	male	no		
45	1.575	- 6	49.3	no	male	no	1	0
46	6.700	11	62.6		female	no	1	0
47	7.650	11	61.7	no	male	yes	1	0

Now, I have made two different dataset for each dummy variable with their dependent and independent variables in them. S_no for people who do not smoke and S_yes for people who do smoke.

Here is the summary of the two dataset, it is shown below:

```
summary(S_no)
Age LungCap Height
Min. : 3.00 Min. : 0.507 Min. :45.30
Mean :12.04 Mean : 7.770 Mean :64.40
3rd Qu.:15.00 3rd Qu.: 9.731 3rd Qu.:69.62
      :19.00 Max. :14.675 Max. :81.80
> # Dataset of Smokers with their dependent variables
> yes<-subset(d,Smoke_yes>0,select =c('Age','LungCap','Height'))
> S_yes<-data.frame(yes)</pre>
> # Summary
> summary(S_yes)
                LungCap
                                 Height
     Age
     :10.00 Min. : 3.850 Min. :58.00
Min.
Median :15.00 Median : 8.650 Median :69.00
Mean :14.78 Mean : 8.645 Mean :68.52
3rd Qu.:17.00 3rd Qu.:10.125 3rd Qu.:72.60
Max. :19.00 Max. :13.325 Max. :78.90
```

As we can see from the summary, we have created three subsets form our dummy variables. Here Age being the Independent variable and the Lung capacity and Height being the dependent variables.

We count the Lung capacity and height for the smokers and non-smokers from our dataset for dummy variables. Single regression is performed and separate regression lines are created for each subset data.

Here the two scatterplot show us the regression line for Lung capacity and height for **non-smoker** with the independent variable Age.

In the first plot, we can observe that as the Age increases the Lung capacity for the non-smokers also increases, it is the most between the age 10 and 15. It gets very prominent that the lung capacity is the most dense during this age group and it keeps on increasing.

In the second plot, we can observe that as the Age increases so does our height for the subjects increase. The height of non-smoker has a very gradual scatterplot, it increases with the age and this change is visible from the scatterplot.

Here the two scatterplot show us the regression line for Lung capacity and height for **Smoker** with the independent variable Age.

In the first plot, we can observe that as the Age increases there is a very moderate increase in the Lung capacity for the non-smokers. As we can see the plots are very scattered and this increases the variance in our plots, telling us that there is no strong relations between two.

In the second plot, we can observe that as the Age increases so does our height for the subjects increase but in a moderate manner. The height of non-smoker has a very scattered, there is a lot of variance that can be seen around the regression line. We create a multiple regression model for our Lung dataset for subjects who are **Non-smokers.**

The summary for the non-smoker dataset is given below:

We can see that we get a summary of a residuals or errors, estimate of the intercept, standard errors, test statistic and p value.

Residual standard error value tells us about the measure of the variance of observations around the regression line. We get the r squared and the adjusted r square value.

The R square gives us a measure of what percent of the variance in the response variable can be explained by the regression.

We created a scatterplot with multiple regression for the same model of Non-smokers.

The Lung capacity for non-smokers increases with increase in Age and the height remains stagnant at a particular age (18 as shown) as seen from the scatter plots.

We create a multiple regression model for our Lung dataset for subjects who are **Smokers.**

The summary for the Smoker dataset is given below:

We can see that we get a summary of a residuals or errors, estimate of the intercept, standard errors, test statistic and p value.

Residual standard error value tells us about the measure of the variance of observations around the regression line. We get the r squared and the adjusted r square value.

The R square gives us a measure of what percent of the variance in the response variable can be explained by the regression.

We created a scatterplot with multiple regression for the same model of Smokers.

We can see that with the increase in age there is a very slight increase in the lung capacity for smokers and the height stops at a particular age. There is a lot of variance in the scatter plot for Lung capacity as it does not have a strong relation with age and it is very scattered.

References:

- Dummy variables in Regression. (n.d.). Retrieved from Stat Trek: https://stattrek.com/multiple-regression/dummy-variables.aspx
- gallo, A. (2015, November 4). A Refresher on Regression Analysis. Retrieved from Harvard Business Review: https://hbr.org/2015/11/a-refresher-on-regression-analysis
- Regression Analysis. (n.d.). Retrieved from Statistical tools for high-throughput: http://www.sthda.com/english/articles/40-regression-analysis/163-regression-with-categorical-variables-dummy-coding-essentials-in-r/
- Working with Dummy variable. (n.d.). Retrieved from Princeton University Library:
 - https://dss.princeton.edu/online help/analysis/dummy variables.htm