Programação Inteira

Matheus Souza D'Andrea Alves

2018.2

Sumário

Introdução	3
Infos gerais	3
Fluxo máximo	3
Para solução	3
Modelagem	4
Categorização em formulação matemática	4
Composição de um problema	4
Definições	5
Modelando com variáveis inteiras	5
Impor que uma ação x só pode ser feira se outra ação y for realizada	. 5
Impor que uma variável X assumir apenas um dos valores de um	
conjunto finito $A = a_1, a_2,, a_m \ldots \ldots \ldots$	6
Modelar funções lineares por partes	6
Modelando restrições dijuntas	7
Exemplo do emparelhamento perfeito	8
Exemplo da coloração de vértices	9
Fortalecer modelo enfraquecendo variáveis	9
Outra modelagem para coloração	11
Caxeiro viajante	11
Otimização relaxamento limites	12
Branch and bound	12
Plano de corte	12
Branch and cut	12
Relaxação Lagrangiana	12
Geração de colunas em PI	12

Branch and Price	1
Teoria Poliédrica	1
Cortes	1
Faces	1
Facetas	1

Introdução

Infos gerais

Site

Salas:

- 2ª 306
- 4ª 202

Para a parte prática vamos implementar modelos e soluções usando o CP
lex## Programação linear

É um problema de otimização onde tanto a função objetivo quanto as restrições são lineares.

min/max c^tX

 $A_x eq 0$

Modelagem

- Defina as variáveis do problema \rightarrow como representar uma solução do problema
- Definir as restrições do problema \rightarrow limites que definem o conjunto de pontos viáveis.
- A função objetivo \rightarrow que vai ponderar cada solução

Fluxo máximo

Existe um grafo direcionado G=(V,E) com um e apenas um vértice fonte e sumidouro, $\forall (i,j) \in E(G)$ tem uma capacidade $C_{i,j}$. Queremos maximizar a quantidade de produto que passa de $F \to S$

São minhas variáveis: $X_{i,j} \to \forall (i,j) \in E(G)$. Representando a quantidade de produto que sai de i e chega em j.

São minhas restrições: $X_{i,j} < C_{i,j}$;

É meu objetivo: $max\{\sum\limits_{j\in N^+(S)}X_{j,s}\}$

Para solução

Métodos:

- Simplex (exponencial, rápido)
- Ponto Interiores (polinomial, rápido)

Modelagem

Categorização em formulação matemática

As categorias quando modelamos problemas em matemática caem nas seguintes categorias.

- Linear ou não linear
- Convexo ou não-convexo
- Contínuo ou Discreto
- Estocástica ou Determinismo

Dentro dessa categorização a programação inteira busca resolver os problemas:

- Discretos
- Determinísticos
- Não convexos
- Lineares e não lineares

Isso faz com que seja possível resolver a maioria dos problemas combinatórios propostos em computação.

Composição de um problema

Um problema de programação matemática é composto de :

- Variáveis de decisão
- Restrições
- Função objetivo
- Parametro de entrada

Um problema de programação inteira tem formato:

$$\begin{cases} min/max\{f(x)\} \\ g_i(x) \begin{cases} \leq \\ = \\ \geq \end{cases} b_i \\ \geq \\ x \in X|X \text{\'e discreto} \end{cases}$$

Definição:

Solução viável: valores atribuidos as variáveis que respeitam as Restrições. Solução ótima: é uma solução viável que maximiza/minimiza a função objetivo.

Forma padrão:

$$\begin{cases} maxC^Tx \\ A_x \leq b \\ x \in Z_+^p * R_+^{n-p} \end{cases}$$

A melhor formulação possível, é uma formulação que defina a involtória convexa dos pontos inteiros, i.e. as o poliedro minimal que contém toda solução inteira, se isso acontecer conseguimos resolver através de PL, e logo resolver de forma polinomial.

Porém, a involtória convexa não é conhecida, ou sua representação é exponencial.

Definições

Considere duas formulações A e B para o mesmo PPI. Denominamos P_A e P_B seus poliedros equivalentes.

A formulação A é dita tão forte quanto a formulação B se $P_A \subseteq P_B$. Se a inclusão é estrita, isto é, $P_A \subset P_B$ então dizemos que A é uma formulação mais forte.

Se F é o conjunto de todas as viáveis soluções desse PPI, então temos que $Convo(F) \subseteq A$. Formulação ideal é aquela tal que $Convo(F) = P_A$

Modelando com variáveis inteiras.

Impor que uma ação x só pode ser feira se outra ação y for realizada.

$$x, y \in [0, 1] | y \le x$$

Problema da Localização Facilitada:

- Conjunto de facilidades J
- \bullet Conjunto de Clientes I

Que facilidades precisam ser abertas para atender as demandas dos Clientes a um custo mínimo?

Seja $C_{i,j}$ o custo da facilidade j atender o cliente i. f_j o custo da abertura de uma facilidade.

Variáveis:

$$X_{j,i} = \begin{cases} 1, \text{ se } j \text{ atende } i \\ 0, \text{caso contrário.} \end{cases}$$

$$Y_j = \begin{cases} 1, \text{ se } j \text{ aberto} \\ 0, \text{ caso contrário.} \end{cases}$$

Restrições:

$$X_{i,i} \in \{0,1\}, \forall j \in J, \forall i \in I$$

$$Y_i \in \{0, 1 \, \forall j \in J\}$$

$$\sum_{i \in J} X_{j,i}, \forall i \in I$$

$$|I|Y_j \ge \sum_{i \in I} X_{j,i}$$

Impor que uma variável X assumir apenas um dos valores de um conjunto finito $A=a_1,a_2,..,a_m$

$$Y_i = \begin{cases} 1, \text{se } X \text{ assume } a_i \\ 0, \text{caso contrário} \end{cases}.$$

$$\sum_{i=1}^{m} Y_i = 1$$

$$X = \sum_{i=1}^{m} Y_i a_i$$

Modelar funções lineares por partes

- Para cada intervalo que a slução x esteja temos uma função linear diferente
- A função f é conhecida apenas nos pontos a_i
- O valor de f é dado pela combinação linear de dois pontos consecutivos

$$\lambda f(a_i) + (1 - \lambda)f(a_{i+1})$$

Variáveis:

$$Y_i = \begin{cases} 1, \text{se solução está no intervalo } [a_i, a_{i+1}] \ . \\ 0, \text{caso contrário, } \forall i = \{\} \dots k \end{cases}$$

 $\lambda_i \to \text{combinação linear}, \forall i = \{\} \dots k$

Restrições:

$$\min \sum_{i=1}^k \lambda_i = 1$$

$$\min \sum_{i=1}^{k} Y_i = 1$$

$$\lambda_i \le Y_i + Y_{i-1} | \forall i = 2, \dots, k$$

$$\lambda_i \le Y_i$$

$$\lambda_i \geq 0, foralli = 1, \dots, k$$

$$Y_i \in \{0, 1\}, foralli = 1, \dots, k$$

Objetivo:

$$min\sum_{i=1}^{k} \lambda_i f(a_i)$$

Modelando restrições dijuntas

Suponha duas restrições:

- $a^T X > b^*$
- $c^T V > d**$

Queremos que pelo menos uma delas sejam satisfeitas.

Variáveis:

$$Y = \begin{cases} 1, \text{se satisfaz *.} \\ 0, \text{se satisfaz **} \end{cases}$$

Restrições:

$$a^tX \geq bY$$

$$c^t X \ge d(1 - Y)$$

Suponha que tenho agora k restrições: $a_i^t \ge b_i, \ \forall i \in [1..k],$ quero ativar p restrições.

minhas restrições extras são:

$$Y_i \in [0, 1], \forall i = 1..k$$

$$\sum_{i=1}^{k} Y_i = p$$

Exemplo do emparelhamento perfeito

Temos um grupo de n pessoas que precisam formar pares. Seja c_j o custo de parear pessoa i com j.

Queremos minimizar o custo dos emparelhamentos.

Variáveis:

$$x_{i,j} = \begin{cases} 1, \text{se satisfaz } i \text{ parear com } j. \\ 0, \text{caso contrário} \end{cases}$$

Restrições:

$$\sum_{j \in E} x_{i,j} = 1$$

 ${\bf Objetivo:}$

$$\min \sum_{j \in E} x_{i,j} c_{i,j}$$

Exemplo da coloração de vértices

Seja um Grafo G, definimos a coloração de G como a atribuição de uma entre k para cada vértice de forma que dada qqr aresta suas extremidades não compartilham cores.

Variáveis:

$$x_{i,j} = \begin{cases} 1, \text{se v\'ertice } i \text{ \'e colorido com } j. \\ 0, \text{caso contr\'ario} \end{cases}$$

$$w_j = \begin{cases} 1, \text{se } j \text{ for usado na coloração.} \\ 0, \text{caso contrário} \end{cases}$$

Restrições:

$$\sum_{j=1}^{|V(G)|} X_{i,j} = 1$$

$$X_{i,j} + x_{k,j} \le w_j, \forall i, k \in V(G)$$

Objetivo:

$$min \sum_{j=1}^{|V(G)|} w_j$$

Fortalecer modelo enfraquecendo variáveis

Exemplo: Lot Sizing

Seja $d_t \to \text{demanda}$ do tempo $t; f_t \to \text{custo}$ de produzir no tempo $t; p_t \to \text{custo}$ de produção por unidade; $h_t \to \text{custo}$ de armazenamento em t.

Modelagem padrão:

Variáveis:

$$X_t \to \operatorname{Qtd} \text{ produzida em } t$$

$$S_t \to \operatorname{Qtd} \text{ em estoque em } t$$

$$Y_t = \begin{cases} 1, \text{se algo foi produzido em } t. \\ 0, \text{caso contrário} \end{cases}$$

Restrições:

$$S_m = 0$$

$$X_t \le Y_t M$$

$$S_{t-1} + X_t = d_t + S_t$$

removendo M temos

$$X_t \le Y_t \sum_{t=1}^m d_t$$

Objetivo:

$$\min \sum_{t=1}^{m} (h_t S_t + f_t Y_t + p_t X_t)$$

Modelagem com fortalecimento

Variáveis:

 $W_{i,t} o \mathrm{Qtd}$ produzida em i para suprir a demanda em t $S_t o \mathrm{Qtd} \text{ em estoque em } t$ $Y_t = \begin{cases} 1, \text{se algo foi produzido em } t. \\ 0, \text{caso contrário} \end{cases}$

Restrições:

$$S_{m} = 0$$

$$S_{1} = 0$$

$$W_{i,t} \le Y_{i}d_{t}$$

$$S_{t-1} + \sum_{i=t}^{n} W_{t,i} = d_{t} + S_{t}$$

Objetivo:

$$min \sum_{t=1}^{m} (h_t S_t + f_t Y_t + p_t \sum_{i=t}^{n} W_{t,i})$$

Outra modelagem para coloração

Sabemos que coloração é equivalente a encontrar uma partição de G em k conjuntos idenpendentes maximais.

Dessa forma podemos escolher um vértice como *representante* de seu conjunto independente, nos levando as seguintes variáveis.

Variáveis:

$$X_{i,j} = \begin{cases} 1, \text{se o v\'ertice } i \text{ e o v\'ertice } j \text{ pertencem ao mesmo conjunto. Onde } i \leq j. \\ 0, \text{caso contr\'ario} \end{cases}$$

Restrições:

$$\sum_{N(v) \neq u \le v} X_{u,v} = 1$$

$$X_{k,i} + X_{k,j} \le X_{k,k}, \forall ij \in E, \forall k \in V, k \notin N[i] \sup N[j]$$

$$X_{i,j} \le X_{i,i}$$

Caxeiro viajante

Variáveis

$$X_{i,j} = \begin{cases} 1, \text{se viajo de } i \text{ para } j. \text{ Onde } i \leq j. \\ 0, \text{caso contrário} \end{cases}$$

Restrições:

$$\sum_{j \in N(i)} X_{i,j}$$

$$\sum_{j \in N(i)} X_{j,i}$$

$$\sum_{j \in V/S} \sum_{i \in S} X_{j,i} \ge 1$$

$$\sum_{j \in S} \sum_{i \in S} X_{j,i} \le |S| - 1$$

Seja:

- J um conjunto de n tarefas
- M um conjunto de m máquinas
- Cada tarefa $j \in J$ temos a ordem de processamento $(\lambda_1^j, \lambda_2^j, ..., \lambda_m^j)$ para a execução de j.

Otimização relaxamento limites

Branch and bound

Plano de corte

Branch and cut

Relaxação Lagrangiana

Geração de colunas em PI

Branch and Price

Teoria Poliédrica

Cortes

Faces

Facetas