

Sung Soo Hwang

Ministry of

Introduction

- Spatial filtering
 - Spatial filters = spatial masks, kernels, templates, windows

When using 3X3 spatial filters,

$$g(x,y) = w(-1,-1)f(x-1,y-1) \text{ }$$

+w(-1,0)f(x-1,y) \text{ } 2

$$+w(0,0)f(x,y)$$
 5
+...
 $+w(1,1)f(x+1,y+1)$ 9

Introduction

Example

5	5	5	3	3
5	5	5	3	5
5	5	5	3	3
5	5	3	3	3
5555	5	3	3	3
5	5	3	3	3

0	1/5	0
1/5	1/5	1/5
0	1/5	0

• Result of spatial filtering on red pixel:

$$5*(0)+5*(1/5)+5*(0)+5*(1/5)+5*(1/5)+5*(1/5)+5*(0)+5*(1/5)+5*(0)=5$$

• Result of spatial filtering on blue pixel:

$$3*(0)+3*(1/5)+3*(0)+3*(1/5)+3*(1/5)+3*(0)+3*(1/5)+3*(0)=3$$

• Result of spatial filtering on green pixel:

$$5*(0)+5*(1/5)+3*(0)+5*(1/5)+3*(1/5)+3*(1/5)+5*(0)+3*(1/5)+3*(0)=19/5$$

- Averaging filter
 - The average of the pixels contained in the neighborhood of the filter mask
 - Sometimes called low pass filters
 - For every pixel, replace the value of the pixel by the average of the intensity levels in the neighborhood
 - Advantage and disadvantage
 - It reduces random noises
 - It blurs an image

Spatial filtering • Averaging filter

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

Gaussian Function

1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

3x3 filter mask

• Floating-point Gaussian kernel ($\sigma = 1$)

0.075	0.124	0.075
0.124	0.204	0.124
0.075	0.124	0.075

3x3

0.003	0.013	0.022	0.013	0.003
0.013	0.060	0.098	0.060	0.013
0.022	0.098	0.162	0.098	0.022
0.013	0.060	0.098	0.060	0.013
0.003	0.013	0.022	0.013	0.003

5x5

0.000	0.000	0.001	0.002	0.001	0.000	0.000
0.000	0.003	0.013	0.022	0.013	0.003	0.000
0.001	0.013	0.059	0.097	0.059	0.013	0.001
0.002	0.022	0.097	0.159	0.097	0.022	0.002
0.001	0.013	0.059	0.097	0.059	0.013	0.001
0.000	0.003	0.013	0.022	0.013	0.003	0.000
0.000	0.000	0.001	0.002	0.001	0.000	0.000

• Discretized Gaussian kernel ($\sigma = 1$)

5x5

	0	0	1	2	1	0	0
	0	3	13	22	13	3	0
	1	13	59	97	59	13	1
1/1003 x	2	22	97	159	97	22	2
	1	13	59	97	59	13	1
	0	3	13	22	13	3	0
	0	0	1	2	1	0	0

- Mask size
 - Mask size matters
 - If you want to blur small objects, use a small size mask
 - Using a large mask is computationally expensive

- Sharpening
 - The principal objective of sharpening is to highlight transitions in intensity

Sharpening can be accomplished by spatial differentiation

• Sharpening using second derivative

- Sharpening using second derivative
 - Mask for applying second derivative

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

- Algorithm
 - 1. Obtain second derivative of the input image
 - 2. Add the second derivative with the input image

First derivative and second derivative

One-Dimensional Signal f(x)

1-Order:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

2-Order:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

2nd order derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

$$\frac{\partial^2 f}{\partial y^2} = f(y+1) + f(y-1) - 2f(y)$$

Convolution Kernel

)	1	0
1		-4	1
C)	1	0

Laplacian

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$$

$$= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Ministry of

- Sharpening using unsharp masking
 - Unsharp masking

Other filter - Median filter

- Median value
 - For 3X3 neighborhood, the median is the 5th largest
 - For 5X5 neighborhood, the median is the 13th largest

Median filter

- Find the median value of a mask, and replace the values of pixels in the mask with the median value
- Isolated clusters of pixels that are light or dark with respect to their neighbors, and whose area is less than $m^2/2$ are eliminated by an mXm median filter
- It is effective in the presence of impulse noise (or salt-and pepper noise)

