# Influence of H2 formation on PDR model results

M. Röllig V. Ossenkopf, C. Glück

Universität zu Köln, Germany

#### Outline

- H<sub>2</sub> formation on grain surfaces
  - chemisorption vs. physisorption
  - H<sub>2</sub> formation efficiencies on different dust sorts
  - chemical H<sub>2</sub> heating & cooling
  - effects on clump structure

#### Introduction

Numerical PDR models of proved to be a valuable tools in analyzing and understanding the local conditions in massive star forming regions.



#### Introduction

Yet, here be dragons...

 complex physics / chemistry

 complex/unknown local conditions



Röllig et al. 2007, A&A, 467



#### Introduction

and unfortunately, deficient input data

missing experimental data

inter/extrapolation





## H<sub>2</sub> formation on grain surfaces

## H<sub>2</sub> formation on grain surfaces

- H atoms hitting grain surfaces can stick weakly (physisorption) or strongly (chemisorption) bound.
- T<sub>d</sub>>100 K desorption overcomes binding and H<sub>2</sub> formation efficiency →0
- Chemisorbed H atoms can effectively form H<sub>2</sub> up to T<sub>d</sub>>500K
- we implemented the formalism presented by Cazaux & Tielens (2002,2004) in the KOSMA- $\tau$  chemistry.

$$\epsilon_{H_2} = \left(\frac{\mu F}{2\beta_{H_2}} + 1 + \frac{\beta_{H_P}}{\alpha_{pc}}\right)^{-1}$$



$$\epsilon_{H_2} = \left(\frac{\mu F}{2\beta_{H_2}} + 1 + \frac{\beta_{H_P}}{\alpha_{pc}}\right)^{-1}$$



$$\epsilon_{H_2} = \left(\frac{NF}{2\beta N_2} + 1 + \frac{\beta_{H_P}}{\alpha_{pc}}\right)^{-1}$$



$$\epsilon_{H_2} = \left(\frac{NF}{2\beta_{H_2}} + 1 + \frac{\beta_{H_P}}{\alpha_{pc}}\right)^{-1}$$



# H<sub>2</sub> formation rate

total formation rate depends on total dust surface

$$R_d = \frac{1}{2}n(H)v_H n_d \sigma_d \epsilon_{H_2} S_H$$



#### H<sub>2</sub> formation rate

TABLE 1 GRAIN-SIZE DISTRIBUTION PARAMETER VALUES<sup>®</sup>

| $R_v^b$ | 105bc° | Case | α,    | $\beta_o$ | α <sub>ι,σ</sub><br>(μm) | α <sub>c,σ</sub><br>(μm) | C,                       | $\alpha_z$ | $\beta_z$ | α <sub>r,x</sub><br>(μm) | $C_{\mathbf{z}}$       | $\tilde{V}_{\sigma}^{\ d}$ | $\tilde{V}_z^{\;d}$ | $\chi_1^{2e}$ | $\chi_2^{2f}$ | $\chi^{2g}$ |
|---------|--------|------|-------|-----------|--------------------------|--------------------------|--------------------------|------------|-----------|--------------------------|------------------------|----------------------------|---------------------|---------------|---------------|-------------|
| 3.1     | 0.0    | Α    | -2.25 | - 0.0648  | 0.00745                  | 0.606                    | 9.94 × 10 <sup>-11</sup> | -1.48      | -9.34     | 0.172                    | $1.02 \times 10^{-12}$ | 1.146                      | 1.244               | 0.047         | 0.111         | 0.118       |
| 3.1     | 1.0    | Α    | -2.17 | -0.0382   | 0.00373                  | 0.586                    | $3.79 \times 10^{-10}$   | -1.46      | -10.3     | 0.174                    | $1.09 \times 10^{-12}$ | 1.137                      | 1.251               | 0.047         | 0.116         | 0.118       |
| 3.1     | 2.0    | A    | -2.04 | -0.111    | 0.00828                  | 0.543                    | $5.57 \times 10^{-11}$   | -1.43      | -11.7     | 0.173                    | $1.27 \times 10^{-12}$ | 1.130                      | 1.254               | 0.048         | 0.124         | 0.118       |
| 3.1     | 3.0    | A    | -1.91 | -0.125    | 0.00837                  | 0.499                    | $4.15 \times 10^{-11}$   | -1.41      | -11.5     | 0.171                    | $1.33 \times 10^{-12}$ | 1.119                      | 1.260               | 0.049         | 0.139         | 0.119       |
| 3.1     | 4.0    | A    | -1.84 | -0.132    | 0.00898                  | 0.489                    | $2.90 \times 10^{-11}$   | -2.10      | -0.114    | 0.169                    | $1.26 \times 10^{-13}$ | 1.113                      | 1.290               | 0.048         | 0.135         | 0.126       |
| 3.1     | 5.0    | A    | -1.72 | -0.322    | 0.0254                   | 0.438                    | $3.20 \times 10^{-12}$   | -2.10      | -0.0407   | 0.166                    | $1.27 \times 10^{-13}$ | 1.098                      | 1.304               | 0.051         | 0.154         | 0.131       |
| 3.1     | 6.0    | Α    | -1.54 | -0.165    | 0.0107                   | 0.428                    | $9.99 \times 10^{-12}$   | -2.21      | 0.300     | 0.164                    | $1.00 \times 10^{-13}$ | 1.092                      | 1.322               | 0.052         | 0.161         | 0.136       |
| 4.0     | 0.0    | A    | -2.26 | -0.199    | 0.0241                   | 0.861                    | $5.47 \times 10^{-12}$   | -2.03      | 0.668     | 0.189                    | $5.20 \times 10^{-14}$ | 1,000                      | 1,100               | 0.036         | 0.100         | 0.048       |
| 4.0     | 1.0    | A    | -2.16 | -0.0862   | 0.00867                  | 0.803                    | $4.58 \times 10^{-11}$   | -2.05      | 0.832     | 0.188                    | $4.81 \times 10^{-14}$ | 0.992                      | 1.103               | 0.035         | 0.104         | 0.048       |
| 4.0     | 2,0    | A    | -2.01 | -0.0973   | 0.00811                  | 0.696                    | $3.96 \times 10^{-11}$   | -2.06      | 0.995     | 0.185                    | $4.70 \times 10^{-14}$ | 0.974                      | 1.112               | 0.035         | 0.113         | 0.050       |
| 4.0     | 3.0    | A    | -1.83 | -0.175    | 0.0117                   | 0,604                    | $1.42 \times 10^{-11}$   | -2.08      | 1.29      | 0.184                    | $4.26 \times 10^{-14}$ | 0.957                      | 1.121               | 0.036         | 0.130         | 0.053       |
| 4.0     | 4.0    | A    | -1.64 | -0.247    | 0.0152                   | 0.536                    | $5.83 \times 10^{-12}$   | -2.09      | 1.58      | 0.183                    | $3.94 \times 10^{-14}$ | 0.933                      | 1.145               | 0.037         | 0.148         | 0,060       |
| 5.5     | 0.0    | A    | -2.35 | -0.668    | 0.148                    | 1.96                     | $4.82 \times 10^{-14}$   | -1.57      | 1,10      | 0.198                    | $4.24 \times 10^{-14}$ | 0.889                      | 1.076               | 0.034         | 0.110         | 0,043       |
| 5.5     | 1.0    | A    | -2.12 | -0.670    | 0.0686                   | 1.35                     | $3.65 \times 10^{-13}$   | -1.57      | 1.25      | 0.197                    | $4.00 \times 10^{-14}$ | 0.848                      | 1.078               | 0.034         | 0.115         | 0.043       |
| 5.5     | 2,0    | A    | -1.94 | -0.853    | 0.0786                   | 0.921                    | $2.57 \times 10^{-13}$   | -1.55      | 1,33      | 0.195                    | $4.05 \times 10^{-14}$ | 0.804                      | 1.095               | 0.032         | 0.118         | 0.044       |
| 5.5     | 3.0    | A    | -1.61 | -0.722    | 0.0418                   | 0.720                    | $7.58 \times 10^{-13}$   | -1.59      | 2,12      | 0.193                    | $3.20 \times 10^{-14}$ | 0.768                      | 1.118               | 0.033         | 0.128         | 0.049       |
| 4.0     | 0.0    | В    | -2.62 | -0.0144   | 0.0187                   | 5.74                     | $6.46 \times 10^{-12}$   | -2.01      | 0.894     | 0.198                    | $4.95 \times 10^{-14}$ |                            |                     | 0.011         | 0.042         |             |
| 4.0     | 1.0    | В    | -2.52 | -0.0541   | 0,0366                   | 6,65                     | $1.08 \times 10^{-12}$   | -2.11      | 1,58      | 0.197                    | $3.69 \times 10^{-14}$ |                            |                     | 0.011         | 0.043         |             |
| 4.0     | 2,0    | В    | -2.36 | -0.0957   | 0.0305                   | 6,44                     | $1.62 \times 10^{-12}$   | -2.05      | 1.19      | 0.197                    | $4.37 \times 10^{-14}$ |                            |                     | 0.011         | 0.042         |             |
| 4.0     | 3.0    | В    | -2.09 | -0.193    | 0.0199                   | 4,60                     | $4.21 \times 10^{-12}$   | -2.10      | 1.64      | 0.198                    | $3.63 \times 10^{-14}$ |                            |                     | 0.011         | 0.044         |             |
| 4,0     | 4.0    | В    | -1.96 | -0.813    | 0.0693                   | 3,48                     | $2.95 \times 10^{-13}$   | -2.11      | 2,10      | 0.198                    | $3.13 \times 10^{-14}$ |                            |                     | 0.017         | 0.056         |             |
| 5.5     | 0.0    | В    | -2.80 | 0.0356    | 0.0203                   | 3,43                     | $2.74 \times 10^{-12}$   | -1.09      | -0.370    | 0.218                    | $1.17 \times 10^{-13}$ |                            |                     | 0.017         | 0.092         |             |
| 5.5     | 1.0    | В    | -2.67 | 0.0129    | 0.0134                   | 3,44                     | $7.25 \times 10^{-12}$   | -1.14      | -0.195    | 0,216                    | $1.05 \times 10^{-13}$ |                            |                     | 0.017         | 0.088         |             |
| 5,5     | 2,0    | В    | -2.45 | -0.00132  | 0,0275                   | 5.14                     | $8.79 \times 10^{-13}$   | -1.08      | -0.336    | 0.216                    | $1.17 \times 10^{-13}$ |                            |                     | 0.017         | 0.085         |             |
| 5.5     | 3,0    | В    | -1.90 | -0.0517   | 0,0120                   | 7,28                     | $2.86 \times 10^{-12}$   | -1.13      | -0.109    | 0.211                    | $1.04 \times 10^{-13}$ |                            | •••                 | 0.017         | 0.082         | •••         |

<sup>\*</sup> See eqs. (4) and (5). In all cases, we take  $a_{e,x} = 0.1 \mu m$ .

<sup>&</sup>lt;sup>b</sup>  $R_V = A(V)/E_{R-V}$ , ratio of visual extinction to reddening.

C abundance in double log-normal very small grain population (see eqs. [2] and [3]).

Total grain volumes in the carbonaceous and silicate populations, normalized to their abundance/depletion-limited values (2.07 × 10<sup>-27</sup> and 2.98 × 10<sup>-27</sup> cm<sup>3</sup> H<sup>-1</sup>, respectively).

 $<sup>\</sup>begin{array}{l} ^{e}\chi_{1}^{2}=\sum_{i}^{S_{i}}(\ln A_{\rm obs}-\ln A_{\rm mod})^{2}/\sigma_{i}^{2}, {\rm for 100~points~equally~spaced~in~ln~}\lambda, \\ ^{i}\chi_{2}^{2}=\sum_{i}(\ln A_{\rm obs}-\ln A_{\rm mod})^{2}, \\ ^{e}\chi^{2}=\chi_{1}^{2}+0.4(\tilde{V}_{x}-1)^{1.5}+0.4(\tilde{V}_{x}-1)^{1.5}. \end{array}$ 

## H<sub>2</sub> formation rate



- H<sub>2</sub> binding energy 4.5 eV
   → H<sub>2</sub> formation heating
- kinetic H<sub>2</sub> dissociation cooling

(Lepp & Shull, 1983, ApJ 270, 578)  $H_2 + H \rightarrow H + H + H - 4.5eV$  $H_2 + H_2 \rightarrow H_2 + H + H - 4.5eV$ 

Alternatively: sticking coeff.

$$\alpha(T) = \frac{1}{1 + \left(\frac{T}{T_2}\right)^{\beta}}.$$











**Figure C.1.** Left axis: Variation of  $k_{ER}$  with gas temperature T (relative to the one at 100 K). Right axis: chemisorption efficiency  $\kappa$  (see text).

**Table 4.** Model results for  $P = 10^5$  cm<sup>-3</sup> K and three different radiation field enhancements. Models A, B, and C are identical as previously and defined in the text. Here l is the total width of the cloud expressed in pc, corresponding to a total visual magnitude of 10, N(X) stands for the resulting total column density of species X, and exponent "obs" means values at the edge of the cloud on the observer side. Numbers in parenthesis give the powers of ten.

| $\chi^{obs}$                                           |         | $10^{2}$ |          |         | $10^{3}$ |          |          | 10 <sup>4</sup> |          |  |
|--------------------------------------------------------|---------|----------|----------|---------|----------|----------|----------|-----------------|----------|--|
| $T_g^{obs}$ (min) (K)<br>$T_g^{obs}$ (max) (K)         |         | 16.7     |          |         | 26.2     |          | 41       |                 |          |  |
| $T_g^{obs}$ (max) (K)                                  |         | 27.7     |          |         | 44.1     |          | 70       |                 |          |  |
| Model                                                  | A       | В        | C        | A       | В        | C        | A        | В               | C        |  |
| l (pc)                                                 | 1.0     | 1.0      | 1.0      | 2.1     | 2.2      | 2.1      | 3.15     | 3.6             | 3.4      |  |
| $n_{\rm H}^{obs}$ (cm <sup>-3</sup> )<br>$T^{obs}$ (K) | 364     | 374      | 353      | 398     | 414      | 378      | 566      | 584             | 566      |  |
|                                                        | 250     | 243      | 258      | 228     | 219      | 241      | 161      | 156             | 160      |  |
| $R_{\rm H_2}^{obs}  ({\rm cm}^3  {\rm s}^{-1})$        | 3(-17)  | 1.2(-18) | 1.1(-16) | 3(-17)  | 1.9(-26) | 9.8(-17) | 3.0(-17) | 5.2(-31)        | 5.3(-17) |  |
| $A_V (H = H_2)$                                        | 0.41    | 0.55     | 0.28     | 0.94    | 1.5      | 0.78     | 1.54     |                 | 3.6      |  |
| $n_{\rm H(H=H_2)}  ({\rm cm}^{-3})$                    | 930     | 1.3(3)   | 747      | 750     | 1.58(3)  | 676      | 706      |                 | 3.6(3)   |  |
| $T_{(H=H_2)}(K)$                                       | 142     | 97       | 172      | 172     | 83       | 193      | 182      |                 | 35       |  |
| $N(H) \text{ (cm}^{-2})$                               | 6.7(20) | 9.8(20)  | 5.0(20)  | 1.7(21) | 2.8(21)  | 1.4(21)  | 2.8(21)  | 1.8(22)         | 1.3(22)  |  |
| $N({\rm H_2})~({\rm cm^{-2}})$                         | 9.0(21) | 8.9(21)  | 9.1(21)  | 8.5(21) | 8.0(21)  | 8.6(21)  | 8.0(21)  | 5.6(20)         | 2.7(21)  |  |

A: R=const, B: only LH, C=LH+ER

Le Bourlot et al. 2012

**Table 9.** Emissivities of H<sub>2</sub> transitions in erg cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>. Number in parenthesis refer to powers of ten.  $R_1: 1-0S(1)/2-1S(1), R_2: 1-0S(1)/1-0S(7), R_3: 1-0S(1)/6-4O(3),$ 

| <i>p</i>      | Xobs     |         | 10 <sup>2</sup> |         |         | 10 <sup>3</sup> |         | 10 <sup>4</sup> |          |         |  |
|---------------|----------|---------|-----------------|---------|---------|-----------------|---------|-----------------|----------|---------|--|
| $(cm^{-3} K)$ | Model    | A       | В               | C       | A       | В               | C       | A               | В        | C       |  |
|               | 0-0 S(0) | 2.1(-6) | 4.4(-7)         | 3.8(-6) | 7.0(-6) | 2.3(-7)         | 1.1(-5) | 1.3(-5)         | 2.1(-10) | 1.7(-5) |  |
|               | 0-0 S(1) | 1.2(-6) | 1.2(-7)         | 3.5(-6) | 5.8(-6) | 4.0(-8)         | 1.2(-5) | 1.5(-5)         | 6.0(-10) | 2.4(-5) |  |
|               | 0-0 S(2) | 1.5(-7) | 7.1(-8)         | 2.6(-7) | 2.8(-7) | 3.2(-8)         | 6.4(-7) | 5.1(-7)         | 1.0(-9)  | 9.8(-7) |  |
|               | 0-0 S(3) | 2.1(-7) | 9.5(-8)         | 3.4(-7) | 3.2(-7) | 4.0(-8)         | 6.7(-7) | 4.0(-7)         | 4.5(-10) | 8.0(-7) |  |
| $10^{5}$      | 1-0 S(1) | 4.0(-7) | 1.6(-7)         | 6.3(-7) | 8.1(-7) | 5.9(-8)         | 1.6(-6) | 1.1(-6)         | 1.2(-9)  | 2.1(-6) |  |
|               | $R_1$    | 2.0     | 2.0             | 2.0     | 1.9     | 2.0             | 1.9     | 1.9             | 1.9      | 1.9     |  |
|               | $R_2$    | 7.5     | 7.1             | 5.4     | 7.7     | 8.3             | 4.9     | 7.4             | 91       | 4.8     |  |
|               | $R_3$    | 3.6     | 3.7             | 3.5     | 4.0     | 3.7             | 3.9     | 4.0             | 4.2      | 4.0     |  |
|               | 0-0 S(0) | 1.9(-6) | 3.3(-7)         | 2.3(-6) | 1.2(-5) | 3.2(-7)         | 1.8(-5) | 2.2(-5)         | 1.3(-9)  | 2.9(-5) |  |
|               | 0-0 S(1) | 6.2(-7) | 6.4(-7)         | 9.7(-7) | 1.4(-5) | 3.2(-8)         | 4.4(-5) | 4.7(-5)         | 1.3(-9)  | 1.1(-4) |  |
|               | 0-0 S(2) | 3.8(-7) | 1.9(-7)         | 4.5(-7) | 3.1(-6) | 9.4(-8)         | 1.3(-5) | 1.1(-5)         | 4.8(-9)  | 2.8(-5) |  |
|               | 0-0 S(3) | 4.7(-7) | 2.5(-7)         | 5.3(-7) | 1.4(-6) | 1.1(-7)         | 3.4(-6) | 2.1(-6)         | 3.0(-9)  | 5.6(-6) |  |
| $10^{6}$      | 1-0 S(1) | 6.7(-7) | 3.2(-7)         | 7.4(-7) | 2.8(-6) | 1.4(-7)         | 5.6(-6) | 4.5(-6)         | 6.6(-9)  | 9.2(-6) |  |
|               | $R_1$    | 2.0     | 2.0             | 2.0     | 2.0     | 2.0             | 1.9     | 1.9             | 2.0      | 1.9     |  |
|               | $R_2$    | 4.2     | 3.9             | 3.2     | 5.2     | 5.1             | 3.7     | 5.2             | 22       | 3.4     |  |
|               | $R_3$    | 4.1     | 4.8             | 4.0     | 4.2     | 5.0             | 4.0     | 4.2             | 6.3      | 4.1     |  |
|               | 0-0 S(0) | 2.2(-7) | 1.1(-7)         | 1.7(-7) | 7.9(-6) | 1.9(-7)         | 1.1(-5) | 1.9(-5)         | 4.5(-9)  | 2.5(-5) |  |
|               | 0-0 S(1) | 1.2(-8) | 7.8(-9)         | 9.5(-9) | 1.0(-5) | 7.7(-9)         | 3.7(-5) | 7.5(-5)         | 1.0(-9)  | 2.0(-4) |  |
|               | 0-0 S(2) | 1.1(-7) | 1.2(-7)         | 1.1(-7) | 5.4(-6) | 1.2(-7)         | 2.5(-5) | 4.6(-5)         | 1.5(-8)  | 1.4(-4) |  |
| _             | 0-0 S(3) | 4.8(-7) | 3.9(-7)         | 4.5(-7) | 4.5(-6) | 2.7(-7)         | 1.1(-5) | 1.4(-5)         | 2.0(-8)  | 9.0(-5) |  |
| $10^{7}$      | 1-0 S(1) | 3.7(-7) | 2.9(-7)         | 3.4(-7) | 5.8(-6) | 2.4(-7)         | 9.5(-6) | 1.3(-5)         | 2.9(-8)  | 2.5(-5) |  |
|               | $R_1$    | 2.2     | 2.3             | 2.1     | 2.1     | 2.2             | 2.1     | 2.1             | 2.3      | 2.1     |  |
|               | $R_2$    | 1.4     | 1.4             | 1.2     | 2.6     | 2.0             | 2.2     | 3.0             | 6.5      | 2.3     |  |
|               | $R_3$    | 7.0     | 11              | 8.2     | 5.2     | 11              | 4.4     | 4.7             | 15       | 4.4     |  |





- H<sub>2</sub> binding energy 4.5 eV
   → H<sub>2</sub> formation heating
- kinetic H<sub>2</sub> dissociation cooling

```
(Lepp & Shull, 1983, ApJ 270, 578)

H_2 + H \rightarrow H + H + H - 4.5eV

H_2 + H_2 \rightarrow H_2 + H + H - 4.5eV
```

large effect on H-H<sub>2</sub>
 transition region chemistry





- H<sub>2</sub> binding energy 4.5 eV
   → H<sub>2</sub> formation heating
- kinetic H<sub>2</sub> dissociation cooling

```
(Lepp & Shull, 1983, ApJ 270, 578)

H_2 + H \rightarrow H + H + H

H_2 + H_2 \rightarrow H_2 + H + H
```

- large effect on H-H<sub>2</sub>
   transition region chemistry
- chemistry ↔ physics





#### Summary

- Great need for reliable (astrochemistry) data
- Lab results need to be robust against different modeling applications
- Growing understanding of dust properties and H<sub>2</sub> formation process dramatically influences model results
- chemistry and physics strongly connected to each other