DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH - IT - Semester - III

SUBJECT: (IT 301) Design of Digital Circuits

Examination : Second Sessional Seat No. :

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

Q.1	Do as directed.	[12]
	(a) "When the number of variables in Ex-OR function is odd, the minterms with an even number of 0's are same as minterms with odd number of 1's." State T/F with justification.	[2]
	(b) Show that $A \oplus B \oplus C \oplus D = \Sigma (1, 2, 4, 7, 8, 11, 13, 14).$	[2]
	(c) PLA consists of 6 inputs, 6 outputs and 5 product terms. Calculate total no. of links.	[1]
	(d) What is the number of inputs and outputs of a decoder that accepts 256 different input combinations?	[1]
	(e) "The circuit for a DEMUX is basically the same as that for a decoder". State T/F with justification.	[1]
	(f) What do you mean by noise margin and propagation delay of gate?	[2]
	(g) How does look-ahead carry concept speed up the addition process in parallel adder? Explain in detail.	[3]
Q.2	Attempt following questions.	[12]
Q.2	(a) Design and implement the BCD adder which adds two BCD digits in parallel and produce a	[5]
	sum digit also in BCD.	[C]
	(b) (i) Signals A, B, C, C', D are available. Using a single 8 X 1 MUX and no other gate,	[4]
	implement the Boolean function $F=\sum (0,1,2,6,9,10,12,13,15)$.	
	(ii) Implement the function F = AB'CD' + A'BCD' + AB'C'D + A'BC'D with 2 Ex-OR and one AND gates.	[3]
	OR	
	(b) (i) Derive the PLA program table for a combinational circuit that squares 2-bit number. Minimize the number of product terms.	[4]
	(ii) Implement BCD to Excess-3 convertor using 4-bit parallel adder MSI circuit. (draw block diagram for parallel adder)	[3]
Q.3	Attempt following questions	[12]
Q.J	(a) Implement the function $F=(X+Z')(WX+Y')(Y+Z)$ with multilevel NAND gates.	[4]
	 (b) Design a combination circuit using ROM which accepts 3-bit binary input and generates an output binary number equal to cube of the input number. (Show block diagram for ROM) 	[4]
	(c) Design & implement 4 bit even parity generator circuit.	[4]
	OR	
Q.3	Attempt following questions	[12]
	(a) Implement the function $F=AB(C+CD)+BC'$ with multilevel NOR gates.	[4]
	(b) Determine the high level output voltage of the RTL gate for a fan-out of 6.Also determine the minimum input voltage required to drive an RTL transistor to saturation when hfe = 20. From the results obtained, determine the noise margin of the RTL gate when the input is high and	[4]
	the fan-out is 6.	
	(c) Design a combinational circuit that converts a decimal digit from 5,2,1,1 to 2,4,2,1 code.	[4]