POLYTECHNIQUE MONTRÉAL

affiliée à l'Université de Montréal

Problèmes de Premier	Passage et C	Commande	Optimale	pour le	processus	de
	diffusion Co	ox–Ingersol	l–Ross			

ROMAIN MRAD

Département de Mathématiques Appliquées et Génie Industriel

Mémoire présenté en vue de l'obtention du diplôme de Maîtrise ès sciences appliquées Mathématiques Appliquées

Décembre 2025

POLYTECHNIQUE MONTRÉAL

affiliée à l'Université de Montréal

Се	mémoire	intitulé	:
	TITO TITO TE	111010010	•

Problèmes de Premier Passage et Commande Optimale pour le processus de diffusion Cox-Ingersoll-Ross

présenté par Romain MRAD

en vue de l'obtention du diplôme de *Maîtrise ès sciences appliquées* a été dûment accepté par le jury d'examen constitué de :

PRENOM NOM, président
Mario LEFEBVRE, membre et directeur de recherche
PRENOM NOM, membre

DÉDICACE

Je dédie ce mémoire à ma famille qui m'a soutenue tout au long de cette aventure à Montréal, ainsi que toutes les rencontres qui en font fait un séjour mémorable.

REMERCIEMENTS

Je tiens à exprimer ma profonde gratitude à mon directeur de recherche, Professeur Mario Lefebvre, pour son encadrement rigoureux, sa disponibilité constante et la qualité de ses conseils tout au long de ce travail.

RÉSUMÉ

Le processus de diffusion de Cox–Ingersoll–Ross (CIR) est défini par l'équation différentielle stochastique

$$dX(t) = a[b - X(t)] dt + \sigma \sqrt{X(t)} dW(t)$$

où W(t) est un mouvement brownien standard. Cette étude porte sur le moment de premier passage

$$\tau(x) = \inf\{t \ge 0 : X(t) \notin (0,c) \mid X(0) = x \in (0,c)\}$$

c'est-à-dire le premier instant où le processus quitte l'intervalle (0,c). Des expressions explicites de la fonction génératrice des moments, de l'espérance de $\tau(x)$ et de l'aire moyenne parcourue par le processus sont obtenues. De plus, un problème de commande optimale est étudié. En outre, des sauts sont ajoutés au processus afin de caractériser la probabilité de toucher la frontière inférieure ainsi que le temps moyen pour quitter l'intervalle. Enfin, le dépassement moyen au dessus de la frontière c est analysé.

ABSTRACT

The CIR diffusion process is defined by the stochastic differential equation

$$dX(t) = a[b - X(t)] dt + \sigma \sqrt{X(t)} dW(t)$$

where W(t) is a standard Brownian motion. This study focuses on the first passage time

$$\tau(x) = \inf\{t \ge 0 : X(t) \notin (0, c) \mid X(0) = x \in (0, c)\}\$$

that is, the first time the process exits the interval (0, c). Explicit expressions for the momentgenerating function, the expected value of $\tau(x)$ and the average area under the process are derived. In addition, a stochastic control problem is studied. Furthermore, jumps are added to the process with the aim to analyse the probability of hitting the lower boundary first and the mean exit time. Finally, the average overshoot above the c frontier is characterised.

TABLE DES MATIÈRES

DÉDICAC	E
REMERC	EMENTS iv
RÉSUMÉ	
ABSTRAG	T
LISTE DE	S FIGURES ix
LISTE DE	S SIGLES ET ABRÉVIATIONS
LISTE DE	S ANNEXES
СНАРІТЕ	E 1 INTRODUCTION
1.1 D	éfinitions et concepts de base
1.2 É	éments de la problématique
	ojectifs de recherche
	an du mémoire
СНАРІТЕ	E 2 REVUE DE LITTÉRATURE
CHAPITE	E 3 DÉTAILS DE LA SOLUTION
3.1 D	ffusion pure
3	1.1 Fonction Génératrice des Moments
3	1.2 Fonction Temps Moyen
3	1.3 Fonction Aire Moyenne
3	1.4 Commande Optimale Stochastique
3.2 D	ffusion avec sauts
	2.1 Fonction Temps moyen – Sauts uniformes
3	2.2 Fonction Probabilité de sortie en zéro – Sauts uniformes
	2.3 Fonction Dépassement Moyen – Sauts exponentiels
СНАРІТЕ	E 4 RÉSULTATS THÉORIQUES
4.1 D	ffusion pure
	1.1 Fonction Génératrice des Moments
4	1.2 Fonction Temps Moyen

	4.1.3	Fonction Aire Moyenne	37
	4.1.4	Commande Optimale Stochastique	38
4.2	Diffusio	on avec sauts	43
	4.2.1	Fonction Temps moyen – Sauts uniformes	43
	4.2.2	Fonction Probabilité de sortie en zéro – Sauts uniformes	43
	4.2.3	Fonction Dépassement Moyen – Sauts exponentiels	44
CHAPI	TRE 5	CONCLUSION	46
5.1	Synthè	se des travaux	46
5.2	Limitat	tions	46
5.3	Perspec	ctives et améliorations futures	47
RÉFÉR	ENCES		48

LISTE DES FIGURES

Figure 1.1	Une trajectoire du Mouvement Brownien Standard	2
Figure 1.2	Une trajectoire d'un processus d'Itô avec $\mu(t,X(t)) \equiv \mu = 2$	3
Figure 1.3	Simulation de 10 trajectoire d'un processus de sauts pur $J(t)$ de para-	
	mètre $\lambda=5$ avec sauts exponentiels de paramètre $\nu=1.5$	4
Figure 1.4	Une trajectoire du processus CIR avec $a=1,b=0.02,\sigma=0.1$	6
Figure 1.5	Simulations de 30 trajectoires du CIR avec deux frontières absorbantes	7
Figure 1.6	Simulations de 30 trajectoires du CIR avec sauts dépassants la frontière \boldsymbol{c}	9
Figure 4.1	Visualisation de la Fonction Génératrice des Moments $M(x;\alpha)$	36
Figure 4.2	Visualisation de la fonction Temps Moyen $m(x)$	37
Figure 4.3	Visualisation de la fonction Aire Moyenne $A(x)$	38
Figure 4.4	Sensibilité du coût immédiat $r(x) = \rho$	39
Figure 4.5	Sensibilité du coût du contrôle $b(x) = \beta x$	39
Figure 4.6	Sensibilité de la pondération du contrôle $q(x) = \kappa x$	40
Figure 4.7	Sensibilité du coût immédiat $r(x) = \rho x$	40
Figure 4.8	Sensibilité du coût du contrôle $b(x) = \beta \sqrt{x}$	41
Figure 4.9	Sensibilité de la pondération du contrôle $q(x) = \kappa x$	41
Figure 4.10	Visualisation de la fonction valeur et du contrôle optimale dans le cas	
	d'un problème non linéarisable	42
Figure 4.11	Visualisation des temps moyens de sortie $m(x)$ et $m_0(x)$	43
Figure 4.12	Visualisation des probabilité de sortir en zéro $p(x)$ et $p_0(x)$	44
Figure 4.13	Visualisation de la fonction Dépassement Moyen $D(x)$	45

LISTE DES SIGLES ET ABRÉVIATIONS

CIR	Cox-Ingersoll-Ross
MBS	Mouvement Brownien Standard
EDO	Équation Différentielle Ordinaire
EID	Équation Integro-différentielle
EDS	Équation Différentielle Stochastique
FGM	Fonction Génératrice des Moments
TPP	Temps de Premier Passage
HJB	Hamilton-Jacobi-Bellman

LISTE DES ANNEXES

Annexe A	Fonctions spéciales	 		 							5()

CHAPITRE 1 INTRODUCTION

Les processus de diffusion occupent une place centrale en finance pour modéliser l'évolution temporelle d'une grande variété d'instruments financiers. Parmi les problématiques associées à ces modèles, l'étude des *temps de premier passage* revêt une importance particulière, notamment en gestion des risques, en évaluation d'options barrières ou encore en prévision d'événements extrêmes.

Un autre aspect fondamental concerne la commande optimale stochastique, qui consiste à influencer dynamiquement l'évolution du processus jusqu'à un temps d'arrêt, dans le but de minimiser un coût cumulé, composé d'un coût de contrôle et éventuellement d'un coût d'état. Ce mémoire s'intéresse à l'analyse conjointe des temps de franchissement et de la commande optimale appliquées au processus de Cox–Ingersoll–Ross [1], proposé en 1985, un modèle de référence largement utilisé pour représenter la dynamique des taux d'intérêt.

1.1 Définitions et concepts de base

Avant d'approfondir le sujet, il est essentiel de poser clairement les fondements théoriques sur lesquels repose cette étude.

L'élément central à introduire en premier lieu est le mouvement brownien standard, pierre angulaire des processus de diffusion.

Définition: Le Mouvement Brownien Standard

Un processus stochastique $\{W(t),\ t\geq 0\}$ est un mouvement brownien standard s'il vérifie :

- -W(0) = 0;
- les trajectoires $t \mapsto W(t)$ sont continues presque sûrement;
- il possède des accroissements indépendants : pour tout $0 \le t_0 < t_1 < \dots < t_n$, les variables aléatoires $(W(t_i) W(t_{i-1}))_{i=1}^n$ sont indépendantes ;
- il possède des accroissements stationnaires gaussiens : pour tout $0 \le s \le t$, on a $W(t) W(s) \sim \mathcal{N}(0, t s)$.

FIGURE 1.1 Une trajectoire du Mouvement Brownien Standard

Le MBS constitue la base de la construction des processus de diffusion employés dans de nombreux domaines tels que la finance, la physique ou la biologie. Ces processus sont modélisés par des Équation Différentielle Stochastique (EDS), qui consistent à enrichir le mouvement brownien en y ajoutant un terme de dérive et un terme de diffusion. Il en résulte une classe de processus dits $d'It\hat{o}$.

Définition: Processus d'Itô

Un processus $\{X(t), t \geq 0\}$ est dit d'Îtô (voir [2]) s'il satisfait une équation différentielle stochastique de la forme :

$$dX(t) = \mu(t, X(t)) dt + \sigma(t, X(t)) dW(t)$$
(1.1)

où:

— $\mu(t, X(t))$ et $\sigma(t, X(t))$ sont des fonctions mesurables et adaptées à la filtration brownienne standard $\mathcal{F}_t = \sigma\{W(s), s \leq t\}$;

$$\begin{split} & - & \mathbb{P}\left(\int_0^T \left| \mu(s,X(s)) \right| ds < + \infty\right) = 1 \,; \\ & - & \mathbb{P}\left(\int_0^T \sigma^2(s,X(s)) \, ds < + \infty\right) = 1. \end{split}$$

Dans cette formulation, $\mu(t, X(t))$ est appelé le terme de dérive et $\sigma(t, X(t))$ le terme de diffusion.

FIGURE 1.2 Une trajectoire d'un processus d'Itô avec $\mu(t, X(t)) \equiv \mu = 2$

Il est important de noter que les termes de dérive et de diffusion peuvent eux-mêmes dépendre de l'état du processus ou du temps, ce qui permet de capturer des dynamiques complexes, comme une volatilité ou une dérive variable. Cette flexibilité permet notamment de modéliser des phénomènes réalistes dans les systèmes financiers ou physiques.

Il est parfois intéressant d'enrichir les processus d'Itô en leur ajoutant une composante de sauts, gouvernée par un processus de Poisson (processus de comptage classique modélisant une file d'attente).

Définition: Processus de Poisson

Un processus $\{N(t),\;t\geq 0\}$ est un processus de Poisson de taux λ s'il vérifie :

- Pour des intervalles de temps disjoints, le nombre d'occurrences est indépendant : pour tout $0 \le t_0 < t_1 < \cdots < t_n$, les variables aléatoires $(N(t_i) N(t_{i-1}))_{i=1}^n$ sont indépendantes ;
- La probabilité d'une occurrence dans un petit intervalle de temps dépend de la longueur de l'intervalle : $\lim_{h\to 0^+} \mathbb{P}[N(t+h)-N(t)=1] = \lambda h + o(h)$;
- La probabilité qu'il y ait plus d'une occurrence au sein d'un petit intervalle est négligeable : $\lim_{h\to 0^+} \mathbb{P}[N(t+h) N(t) > 1] = o(h)$;
- Le nombre d'occurrences dans un intervalle de longueur t suit une loi poisson : $N(t) \sim \text{Poi}(\lambda t)$;

— Le temps d'arrivé du n-ème événement T_n suis une loi exponentielle : $T_n \sim \text{Exp}(\lambda)$. En utilisant un processus de Poisson, il est donc possible de définir un processus de sauts pur.

Définition: Processus de sauts purs

Soit $\{N(t),\ t\geq 0\}$ un processus de Poisson de taux $\lambda>0$ indépendant d'une suite de variables aléatoires indépendantes et identiquement distribuées $\{Y_i\}_{i\in\mathbb{N}^*}$. On définit le processus de sauts purs $\{J(t),\ t\geq 0\}$ par :

$$J(t) = \sum_{i=1}^{N(t)} Y_i$$

Ce processus correspond à une somme aléatoire de sauts, où :

- N(t) représente le nombre de sauts survenus jusqu'au temps t;
- Y_i est l'amplitude du i-ème saut, supposée i.i.d. et indépendante de N(t);
- Les instants des sauts sont donnés par les temps d'arrivée du processus de Poisson;
- Entre deux sauts, le processus reste constant.

FIGURE 1.3 Simulation de 10 trajectoire d'un processus de sauts pur J(t) de paramètre $\lambda = 5$ avec sauts exponentiels de paramètre $\nu = 1.5$

1.2 Éléments de la problématique

Comme évoqué précédemment, cette étude s'intéresse à deux types de problématiques appliquées au processus Cox-Ingersoll-Ross. Il convient donc d'en donner une définition formelle.

Définition: Le processus Cox-Ingersoll-Ross

Le processus CIR [1] est un processus d'Itô défini par l'équation différentielle stochastique suivante :

$$dX(t) = a[b - X(t)] dt + \sigma \sqrt{X(t)} dW(t)$$
(1.2)

où:

- $a \ge 0$ est le paramètre de vitesse;
- -b > 0 représente la moyenne long-terme;
- $-\sigma > 0$ est volatilité instantanée;
- W(t) désigne un mouvement brownien standard.

Ce processus est particulièrement adapté à la modélisation des taux d'intérêt en raison de plusieurs propriétés clés :

- Le terme de dérive $\mu(t, X(t)) \equiv \mu(X(t)) = a[b X(t)]$ induit un mécanisme de retour vers la moyenne b, avec une vitesse déterminée par a.
- Le terme de diffusion $\sigma(t, X(t)) \equiv \sigma(X(t)) = \sigma\sqrt{X(t)}$ garantit la non-négativité du processus, car la racine carrée empêche des évolutions négatives.
- Enfin, le comportement à proximité de zéro est gouverné par la condition de Feller, selon laquelle :

$$\mathbb{P}\left[\exists t < \infty \text{ tel que } X(t) = 0\right] = 1$$
 si et seulement si $\sigma^2 \ge 2ab$.

Cela signifie que le processus peut atteindre zéro en un temps fini lorsque cette condition est satisfaite, mais il reste strictement positif sinon.

FIGURE 1.4 Une trajectoire du processus CIR avec $a=1, b=0.02, \sigma=0.1$

Le prochain élément de problématique à introduire dans le cadre de cette étude est celui du temps de premier passage.

Définition: Temps de premier passage

Soit $\{X(t), t \geq 0\}$ un processus CIR. Le temps de premier passage à deux frontières est défini, pour un seuil c > 0, par :

$$\tau(x) = \inf \{ t \ge 0 : X(t) \notin (0, c) \mid X(0) = x \in (0, c) \}$$
 (1.3)

Autrement dit, $\tau(x)$ correspond au premier instant où le processus atteint l'une des bornes de l'intervalle (0, c), soit 0 ou c.

L'étude de ce temps d'arrêt est particulièrement pertinente dans le cadre du processus CIR, pour plusieurs raisons :

- Modélisation du passage aux taux négatifs : lors de la crise économique japonaise de 2016, des taux d'intérêt négatifs ont été instaurés pour stimuler l'activité. Or, le processus CIR, à valeurs strictement positives, ne permet pas de modéliser ce phénomène. Introduire une barrière à zéro permet de considérer le franchissement de ce seuil, au-delà duquel le modèle cesse d'être valide et les taux deviennent négatifs.
- Surveillance des taux élevés : en gestion des risques, il est crucial de modéliser

l'éventualité d'une hausse brutale ou excessive des taux d'intérêt. L'introduction d'un seuil supérieur c permet de caractériser ces situations critiques et de quantifier leur probabilité d'occurrence via le temps de franchissement.

FIGURE 1.5 Simulations de 30 trajectoires du CIR avec deux frontières absorbantes

L'étude portera principalement sur le processus CIR, noté X(t), ainsi que sur la variable aléatoire associée au temps de premier passage $\tau(x)$.

Nous introduisons à présent les fonctions analytiques qui feront l'objet de l'analyse. La première est la fonction génératrice des moments, outil central pour caractériser la distribution du temps d'arrêt.

Définition: Fonction Génératrice des Moments (FGM)

La fonction génératrice des moments du temps de premier passage $\tau(x)$ est définie, pour tout $\alpha > 0$, par :

$$M(x;\alpha) := \mathbb{E}\left[e^{-\alpha\tau(x)}\right] \tag{1.4}$$

Cette fonction permet de résumer l'information probabiliste sur la variable $\tau(x)$, en particulier sa distribution. De plus, elle encode l'ensemble des moments de $\tau(x)$, lorsque ceux-ci existent, via dérivation en α .

La deuxième fonction d'intérêt est celle du temps moyen de premier passage, qui correspond à l'espérance de la variable aléatoire $\tau(x)$.

Définition: Temps moyen de premier passage

Le temps moyen de premier passage est défini par :

$$m(x) := \mathbb{E}[\tau(x)] \tag{1.5}$$

Il représente le temps moyen que met le processus CIR, partant d'un niveau initial $x \in (0, c)$, pour atteindre l'une des deux bornes de l'intervalle (0, c).

La troisième fonction étudiée est celle de l'aire moyenne sous la trajectoire jusqu'au temps de sortie.

Définition: Aire moyenne

La fonction d'aire moyenne est définie par :

$$A(x) := \mathbb{E}\left[\int_0^{\tau(x)} X(t) dt\right]$$
 (1.6)

Elle mesure l'accumulation moyenne de la valeur du processus jusqu'au temps de franchissement.

La quatrième fonction étudiée est celle de la probabilité toucher la frontière inférieure.

Définition: Probabilité de sortie en zéro

La fonction de probabilité de sortie est définie par :

$$p(x) := \mathbb{P}[X(\tau(x)) = 0] \tag{1.7}$$

Elle caractérise la probabilité que le processus, partant d'une position initiale x, sorte de l'intervalle (0,c) par le bas.

La cinquième fonction étudiée est celle du dépassement moyen, en ajoutant des sauts au CIR.

Définition: Dépassement Moyen

La fonction dépassement moyen est définie par :

$$D(x) = \mathbb{E}\left[(X(\tau(x)) - c) \mathbb{1}_{X(\tau(x)) \ge c} \right]$$
(1.8)

Elle quantifie le dépassement moyen au-dessus de la frontière c, à partir d'une condition initiale $X(0) = x \in (0, c)$. Il est essentiel de souligner que cette fonction ne présente un intérêt que dans le cas où le processus comporte des sauts. En effet, dans le cadre purement

continu, la trajectoire atteint la frontière exactement, sans possibilité de la franchir.

FIGURE 1.6 Simulations de 30 trajectoires du CIR avec sauts dépassants la frontière c

En complément de l'étude des temps de premier passage, ce mémoire s'intéresse également à un problème de *commande optimale stochastique* appliqué au processus CIR.

Ce cadre permet de modéliser une situation dans laquelle un agent cherche à influencer dynamiquement l'évolution du processus, à l'aide d'un contrôle u(x), tout en minimisant un coût total cumulé jusqu'à un temps d'arrêt.

Définition : Problème de commande optimale

On considère un processus CIR contrôlé $\{X_u(t), t \geq 0\}$ de la forme :

$$dX_{u}(t) = a[b - X_{u}(t)]dt + b[X_{u}(t)]u[X_{u}(t)]dt + \sigma\sqrt{X_{u}(t)}dW(t)$$
(1.9)

où $u(\cdot)$ est la variable de contrôle.

L'objectif est de minimiser une fonction coût de la forme :

$$J(x) := \int_0^{\tau(x)} \left(\frac{1}{2} q[X_u(t)] u^2[X_u(t)] + r[X_u(t)] \right) dt$$
 (1.10)

où:

— $\tau(x)$ désigne le temps de premier passage associé au processus contrôlé $X_u(t)$;

- $r(x) \neq 0$ est le coût d'état (sans contrôle) associé au niveau x;
- $b(x) \neq 0$ est le coût du contrôle appliqué;
- q(x) > 0 est un poids pénalisant l'intensité du contrôle $u[X_u(t)]$.

Ce problème vise à déterminer une stratégie optimale $u^*[X_u(t)]$ minimisant le coût J(x) tout en tenant compte des dynamiques spécifiques du processus CIR et des contraintes imposées par les frontières 0 et c.

La fonction valeur associée au problème est alors définie par :

$$F(x) := \inf_{\substack{u[X_u(t)]\\0 \le t \le \tau(x)}} \mathbb{E}[J(x)]$$
(1.11)

1.3 Objectifs de recherche

Après avoir exposé les fondements théoriques de l'étude, nous pouvons désormais énoncer précisément les objectifs poursuivis dans ce mémoire. Ceux-ci se répartissent en deux volets : l'analyse des temps de premier passage pour le processus CIR en diffusion pure, puis l'étude de son extension avec sauts.

Objectifs pour le processus de diffusion

- Obtenir une expression explicite de la fonction génératrice des moments du temps de premier passage à deux frontières, définie par $M(x;\alpha) = \mathbb{E}[e^{-\alpha\tau(x)}]$, en fonction des paramètres du modèle;
- Expliciter une formule analytique pour le temps moyen de premier passage, $m(x) = \mathbb{E}[\tau(x)]$, pour une entrée initiale $x \in (0, c)$;
- Déduire l'aire moyenne sous la trajectoire jusqu'au franchissement de l'intervalle (0, c);
- Résoudre un problème de commande optimale associé au processus, en déterminant la fonction valeur $F(x) = \inf_{u} \mathbb{E}[J(x)]$, ainsi que la politique de contrôle optimale.

Objectifs pour le processus de diffusion avec sauts

- Obtenir une expression analytique du temps moyen de sortie dans ce nouveau cadre, en tenant compte de l'impact des sauts sur la dynamique du processus;
- Établir une forme explicite de la probabilité de sortie par zéro : $p(x) = \mathbb{P}[X(\tau(x)) = 0]$, dans le cas de sauts uniformes descendants ;
- Déterminer le dépassement moyen à l'instant du franchissement supérieur c, défini par : $D(x) = \mathbb{E}[(X(\tau(x)) c) \mathbb{1}_{X(\tau(x)) \geq c}]$, afin d'évaluer l'intensité des excursions au-delà de la borne supérieure, dans le cas de sauts exponentiels ascendants.

1.4 Plan du mémoire

Afin de répondre aux objectifs de recherche définis précédemment, ce mémoire est structuré de la manière suivante.

Dans un premier temps, une revue de la littérature est proposée afin de replacer l'étude dans le cadre des travaux existants sur les temps de premier passage et les problèmes de commande optimale, avec une attention particulière portée au processus CIR et à ses extensions.

La suite du mémoire est consacrée à l'étude analytique des fonctions caractéristiques associées au processus. L'analyse se divise en deux parties distinctes :

— la première porte sur le processus CIR en diffusion pure;

— la seconde examine sa version modifiée par l'introduction de sauts discrets.

Dans chaque cas, les équations différentielles correspondantes sont établies puis résolues, qu'il s'agisse de temps de premier passage, d'aires intégrées, ou de problèmes de commande optimale.

Une section est ensuite dédiée à l'analyse des résultats obtenus. Cette dernière permet de vérifier la cohérence des solutions, d'en évaluer la sensibilité aux paramètres du modèle, et de comparer les dynamiques avec et sans sauts.

Enfin, la conclusion synthétise les contributions principales du mémoire, discute les limites de l'approche adoptée, et propose plusieurs pistes d'approfondissement pour des travaux futurs.

CHAPITRE 2 REVUE DE LITTÉRATURE

Le problème du temps de premier passage (TPP) consiste à déterminer le moment où un processus stochastique atteint un seuil prédéfini pour la première fois. Ce concept joue un rôle central dans de nombreuses disciplines, notamment en physique, biologie, ingénierie, et particulièrement en mathématiques financières. Parmi les modèles les plus utilisés dans ce contexte, le processus de CIR, également appelé processus racine-carrée de Feller (ou encore une transformation du processus de Bessel au carré), occupe une place importante en raison de sa propriété de non-négativité et de son comportement attractif autour d'une moyenne. Ce processus est notamment utilisé pour modéliser les dynamiques des taux d'intérêt.

Ce chapitre propose une synthèse des travaux existants sur les TPP appliqués au processus CIR ([3–9]), en mettant l'accent sur les méthodes analytiques, numériques et statistiques. L'objectif est de situer le présent mémoire dans l'état de l'art et de justifier les approches retenues par la suite.

Approche par cumulants et fonctions de Kummer Dans [3], l'auteur développe une approche analytique du TPP pour le processus CIR en utilisant la transformée de Laplace de la densité de passage. Celle-ci s'exprime via la fonction hypergéométrique confluente de Kummer :

$$\tilde{g}(z) = \frac{\Phi\left(\frac{z}{\tau}, s, \frac{2\tau(y_0 - c)}{\sigma^2}\right)}{\Phi\left(\frac{z}{\tau}, s, \frac{2\tau(S - c)}{\sigma^2}\right)}, \quad z > 0.$$

Les moments du TPP sont ensuite obtenus à partir des cumulants, exprimés en fonction de polynômes logarithmiques et de nombres de Stirling. Cela permet, entre autres, de construire des développements en série à l'aide de polynômes de Bell. L'auteur propose également une approximation de la fonction de répartition à l'aide d'un développement en séries basé sur la densité Gamma et les polynômes de Laguerre.

Développement orthogonal basé sur la densité Gamma Dans [4], cette approche est affinée par un développement tronqué de la densité du TPP :

$$g(t) \approx \hat{g}_n(t) = \frac{\beta(\beta t)^{\alpha} e^{-\beta t}}{\Gamma(\alpha + 1)} \sum_{k=0}^{n} a_k^{(\alpha)} Q_k^{(\alpha)}(\beta t),$$

où $Q_k^{(\alpha)}$ sont des polynômes de Laguerre orthonormés, et $a_k^{(\alpha)}$ des coefficients dépendant des moments. Cette méthode est accompagnée d'une analyse de convergence et d'un algorithme

d'acceptation-rejet pour la simulation du TPP.

Méthodes analytiques et intégrales de Volterra L'article [5] traite le TPP pour des processus de diffusion généraux en formulant une équation intégrale de Volterra du premier type. Pour le processus CIR, l'auteur utilise un changement de mesure transformant le problème en celui du processus de Feller. Les moments sont ensuite dérivés à l'aide de la transformée de Laplace et des fonctions de Kummer.

Formules analytiques pour le processus de Feller Dans [6], les auteurs généralisent les résultats précédents à différents régimes de dérive du processus de Feller, en exprimant la densité du TPP à travers la fonction de Kummer du second type Ψ ou la fonction de Bessel modifiée K_{ν} , selon la valeur du paramètre a (positif, nul ou négatif). Des expressions explicites pour la densité et l'espérance du TPP sont fournies.

Comparaison avec les processus de Wiener et d'Ornstein-Uhlenbeck Dans [7], une comparaison est effectuée entre les comportements de TPP pour les processus de Wiener, d'Ornstein-Uhlenbeck (OU) et de Feller. Pour chacun, la probabilité d'atteindre l'état zéro est analysée. Des formules explicites sont données pour la densité du TPP avec absorption à zéro, et une étude asymptotique met en lumière les différences structurelles entre ces modèles.

Lien avec les processus de type Bessel L'article [8] s'intéresse à un processus de type Bessel gouverné par l'équation :

$$dX_t = \left(\frac{nD}{X_t}\right)dt + \sqrt{2D} \, dW_t,$$

présentant des similarités structurelles avec le processus CIR. Selon le paramètre n, le comportement au voisinage de zéro varie (absorbant, réfléchissant, ou entrée). Les auteurs proposent une résolution du problème de passage à l'aide de la théorie de Sturm-Liouville et des fonctions de Bessel, et obtiennent des densités de TPP analytiques. Une validation par simulation de type Euler-Maruyama complète l'étude.

Temps de premier passage avec sauts Dans le cas de processus à sauts, le franchissement du seuil peut se faire par discontinuité, générant un dépassement (overshoot) dont l'analyse complique considérablement le calcul du TPP. Pour un processus de diffusion avec sauts doublement exponentiels, Kou et Wang [10] obtiennent des expressions fermées pour la transformée de Laplace du TPP et de la distribution conjointe entre le temps de passage et l'overshoot. Ils montrent que l'overshoot est exponentiel conditionnellement à sa positivité, et que l'indépendance conditionnelle entre le TPP et le dépassement peut être exploitée pour simplifier les calculs.

Extensions à des lois plus générales Yin et al. [11] généralisent ce cadre aux sauts suivant une loi mixte exponentielle, obtenant également des formules explicites pour la transformée de Laplace jointe du TPP et de l'overshoot. Par ailleurs, Klüppelberg, Kyprianou et Maller [12] analysent le cas de processus de Lévy à queue lourde et dérivent une expression asymptotique explicite de l'overshoot conditionnellement au franchissement d'un niveau élevé. Ces résultats constituent les rares cas où des expressions analytiques sont disponibles, et fournissent un point de comparaison pour l'étude du processus de CIR avec sauts.

CHAPITRE 3 DÉTAILS DE LA SOLUTION

Cette partie du mémoire est consacrée à la résolution analytique des équations associées aux différents objectifs formulés en introduction (1).

3.1 Diffusion pure

D'abord, le processus CIR sous forme de diffusion pure est considéré.

3.1.1 Fonction Génératrice des Moments

Dérivation de l'équation à résoudre

Soit un processus d'Itô défini par l'EDS (1.1). Il est connu que la Fonction Génératrice des Moments d'un temps de premier passage $\tau(x)$ satisfait l'équation du passé de Kolmogorov (voir, par exemple, [13] ou [14]) :

$$\frac{1}{2}\sigma(t,x)^2M''(x;\alpha) + \mu(t,x)M'(x;\alpha) - \alpha M(x;\alpha) = 0$$

avec
$$M(0; \alpha) = M(c; \alpha) = 1$$
.

En reprenant les termes de dérive et de diffusion du CIR (1.2), l'EDO linéaire de second ordre à résoudre devient :

$$\frac{1}{2}\sigma^2 x M''(x;\alpha) + a(b-x)M'(x;\alpha) - \alpha M(x;\alpha) = 0$$
(3.1)

Résolution

D'abord, en multipliant les deux côtés par $2/\sigma^2$ l'équation ci-dessus (3.1) est mise sous forme canonique :

$$xM''(x;\alpha) - \left(\frac{2a}{\sigma^2}x - \frac{2ab}{\sigma^2}\right)M'(x;\alpha) - \frac{2\alpha}{\sigma^2}M(x;\alpha) = 0$$

Ensuite, un changement de variable $y = \beta x$ avec $M(x; \alpha) = G(y; \alpha)$ est introduit. L'équation devient :

$$yG''(y;\alpha) - \left(\frac{2a}{\sigma^2}\beta y - \frac{2ab}{\sigma^2}\right)G'(y;\alpha) - \beta\frac{2\alpha}{\sigma^2}G(y;\alpha) = 0$$

Ce changement de variable a pour objectif de déterminer, en fonction des autres paramètres du problème, la valeur de β qui permet de ramener l'équation à la forme générale de l'équation

de Kummer (3.2):

$$xf''(x) - (x - \theta)f'(x) - sf(x) = 0, \qquad \theta, s \in \mathbb{R}$$
(3.2)

dont la solution est connue. Pour ce faire, il faut que :

$$\frac{2a}{\sigma^2}\beta = 1 \implies \beta = \frac{\sigma^2}{2a}$$

L'équation devient :

$$yG''(y;\alpha) - \left(y - \frac{2ab}{\sigma^2}\right)G'(y;\alpha) - \frac{\alpha}{a}G(y;\alpha) = 0$$
(3.3)

La solution générale de cette dernière (3.3) est de la forme (voir [15]) :

$$G(y; \alpha) = C_1 \Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, y\right) + C_2 \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, y\right)$$

avec C_1 et C_2 des constantes à déterminer, et $\Phi(\cdot,\cdot,\cdot)$ et $\Psi(\cdot,\cdot,\cdot)$ sont les fonctions hypergéométriques confluentes de première et seconde espèce, $(a)_n$ est le symbole de Pochhammer et $\Gamma(\cdot)$ est la fonction Gamma (voir annexe A).

Finalement, l'expression analytique de la FGM de $\tau(x)$ est :

$$M(x;\alpha) = C_1 \Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right) + C_2 \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right)$$
(3.4)

Détermination des constantes

Les conditions aux limites $M(0;\alpha)=M(c;\alpha)=1$ permettent de déterminer les deux constantes C_1 et C_2 en résolvant le système suivant :

$$\begin{cases} C_1 \Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, 0\right) + C_2 \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, 0\right) = 1\\ C_1 \Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, \frac{2ac}{\sigma^2}\right) + C_2 \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^2}, \frac{2ac}{\sigma^2}\right) = 1 \end{cases}$$

Il en découle les valeurs suivantes pour C_1 et C_2 :

$$C_{1} = \frac{\Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, 0\right) - \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, 0\right)}{\Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)\Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, 0\right) - \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)}$$

$$C_{2} = \frac{\Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right) - 1}{\Phi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)\Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, 0\right) - \Psi\left(\frac{\alpha}{a}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)}$$
(3.5)

3.1.2 Fonction Temps Moyen

Dérivation de l'équation à résoudre

En combinant le développement en série entière de l'exponentielle :

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

et la définition de la Fonction Génératrice des Moments (1.4), il est possible d'écrire (en supposant que les moments de $\tau(x)$ existent et sont finis) :

$$M(x;\alpha) = \mathbb{E}\left[e^{-\alpha\tau(x)}\right] = \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(-\alpha\tau(x))^k}{k!}\right]$$

$$= \sum_{k=0}^{\infty} \frac{(-\alpha)^k \mathbb{E}\left[\tau(x)^k\right]}{k!}$$

$$= 1 - \alpha \mathbb{E}[\tau(x)] + \frac{\alpha^2}{2} \mathbb{E}\left[\tau(x)^2\right] - \dots$$
(3.6)

En injectant (3.6) dans l'équation (3.1), et en reprenant la définition (1.5), il découle l'EDO linéaire de second ordre suivante :

$$\frac{1}{2}\sigma^2 x m''(x) + a(b-x)m'(x) = -1 \tag{3.7}$$

avec m(0) = m(c) = 0. En résolvant cette équation, une expression analytique de la fonction temps moyen est obtenue.

Réduction d'ordre

D'abord, afin d'alléger la notation, soit :

$$\begin{cases}
\alpha = \frac{2a}{\sigma^2} \\
\beta = \frac{2ab}{\sigma^2} \\
\theta = -\frac{2}{\sigma^2}
\end{cases}$$
(3.8)

L'équation peut donc être réécrite comme suit :

$$xm''(x) + (\beta - \alpha x)m'(x) = \theta \tag{3.9}$$

La réduction d'ordre u(x) = m'(x) donne l'EDO linéaire de premier ordre suivante :

$$xu'(x) + (\beta - \alpha x)u(x) = \theta \tag{3.10}$$

Pour procéder à sa résolution, il faut résoudre l'équation homogène associée puis déduire une solution particulière avec la méthode de variation de la constante. La solution générale obtenue est, avec C_1 une constante :

$$u(x) = x^{-\beta} e^{\alpha x} (C_1 - \theta \alpha^{-\beta} \Gamma(\beta, \alpha x))$$
(3.11)

où $\Gamma(\cdot,\cdot)$ est la fonction Gamma incomplète (A). Il suffit donc d'intégrer u(x) et d'ajouter une constante C_2 pour obtenir l'expression de m(x):

$$m(x) = \int u(x)dx + C_2 \tag{3.12}$$

Cependant, un problème survient lors de l'intégration du terme :

$$\int \theta \underbrace{(\alpha x)^{-\beta}}_{P} \underbrace{e^{\alpha x}}_{E} \underbrace{\Gamma(\beta, \alpha x)}_{G} dx \tag{3.13}$$

dans l'expression de u(x) donnée par (3.11). En effet, cette intégrale ne possède pas de solution analytique. Les logiciels de calcul symbolique tels que Mathematica ou Maple échouent également à en trouver une. Il est donc nécessaire d'explorer une autre approche afin de contourner cette difficulté.

Intégration

L'intégrande de (3.13) présente des difficultés en raison de la présence du terme puissance $P := (\alpha x)^{-\beta}$ multiplié par le terme $E := e^{\alpha x}$, ainsi que le terme $G := \Gamma(\beta, \alpha x)$ (lui-même une intégrale). L'objectif est donc de reformuler cette expression afin de simplifier ou d'éliminer certains termes problématiques. C'est précisément ce qui sera abordé dans la suite de cette section. En effet, en combinant les deux expressions suivantes (voir [16]) :

$$\begin{cases} \Gamma(s,x) = \Gamma(s) - \gamma(s,x) \\ \gamma(s,x) = x^s \Gamma(s) e^{-x} \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(s+k+1)} \end{cases}$$

avec $\gamma(\cdot,\cdot)$ une autre forme de la fonction gamma incomplète (voir annexe A).

Il est possible d'écrire:

$$\Gamma(s,x) = \Gamma(s) - x^s \Gamma(s) e^{-x} \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(s+k+1)}$$

et donc, en reprenant les termes de l'équation à résoudre (3.8) il découle l'expression suivante :

$$\Gamma(\beta, \alpha x) = \Gamma(\beta) - \Gamma(\beta) \underbrace{(\alpha x)^{\beta}}_{P'} \underbrace{e^{-\alpha x}}_{E'} \sum_{k=0}^{\infty} \frac{(\alpha x)^{k}}{\Gamma(\beta + k + 1)}$$
(3.14)

L'expression ci-dessus (3.14) est très intéressante. En effet, en remplaçant le terme G dans (3.13) par (3.14), les termes P et P' ainsi que E et E' se simplifient comme suit :

$$\int \theta \underbrace{(\alpha x)^{-\beta}}_{P} \underbrace{e^{\alpha x}}_{E} \left(\Gamma(\beta) - \Gamma(\beta) \underbrace{(\alpha x)^{\beta}}_{P'} \underbrace{e^{-\alpha x}}_{E'} \sum_{k=0}^{\infty} \frac{(\alpha x)^{k}}{\Gamma(\beta + k + 1)} \right) dx$$

$$= \int \theta \Gamma(\beta) \underbrace{(\alpha x)^{-\beta}}_{P} \underbrace{e^{\alpha x}}_{E} dx - \int \theta \Gamma(\beta) \underbrace{(\alpha x)^{-\beta}}_{P} \underbrace{(\alpha x)^{\beta}}_{P'} \underbrace{e^{\alpha x}}_{E} \underbrace{e^{-\alpha x}}_{E'} \sum_{k=0}^{\infty} \frac{(\alpha x)^{k}}{\Gamma(\beta + k + 1)}$$

$$= \int \theta \Gamma(\beta) \underbrace{(\alpha x)^{-\beta}}_{P} \underbrace{e^{\alpha x}}_{E} dx - \theta \Gamma(\beta) \int \sum_{k=0}^{\infty} \frac{(\alpha x)^{k}}{\Gamma(\beta + k + 1)}$$

En injectant dans (3.12), il découle :

$$m(x) = (C_1 - \theta \alpha^{-\beta} \Gamma(\beta)) \underbrace{\int x^{-\beta} e^{\alpha x} dx}_{I} + \theta \Gamma(\beta) \underbrace{\int \sum_{k=0}^{\infty} \frac{(\alpha x)^k}{\Gamma(\beta + k + 1)} dx}_{I} + C_2$$

avec I et J deux intégrales à résoudre :

— Résolution de I:

Wolfram Mathematica donne:

$$\int x^{-\beta} e^{\alpha x} dx = -x^{1-\beta} E_{\beta}(-\alpha x) \tag{3.15}$$

où $E_n(x)$ est la fonction intégrale exponentielle généralisée (voir annexe A). La relation suivante (voir [17]) :

$$E_n(x) = x^{n-1}\Gamma(1-n, x)$$

permet d'écrire :

$$E_{\beta}(-\alpha x) = (-\alpha x)^{\beta - 1} \Gamma(1 - \beta, -\alpha x)$$
(3.16)

En combinant (3.15) et (3.16), l'expression analytique de la solution de I est obtenue :

$$I = \int x^{-\beta} e^{\alpha x} dx = -x^{1-\beta} E_{\beta}(-\alpha x)$$
$$= -x^{1-\beta} (-\alpha x)^{\beta-1} \Gamma(1-\beta, -\alpha x)$$
$$= -(-\alpha)^{\beta-1} \Gamma(1-\beta, -\alpha x)$$

— Résolution de J:

La série à l'intérieur de l'intégrale converge uniformément grâce au terme factoriel au dénominateur. L'intégration terme-à-terme est donc possible :

$$\int \sum_{k=0}^{\infty} \frac{(\alpha x)^k}{\Gamma(\beta + k + 1)} dx = \sum_{k=0}^{\infty} \int \frac{(\alpha x)^k}{\Gamma(\beta + k + 1)} dx$$
$$= \sum_{k=0}^{\infty} \frac{\alpha^k x^{k+1}}{(k+1)\Gamma(\beta + k + 1)}$$
$$= \frac{x}{\Gamma(1+\beta)} {}_2F_2\left(\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}2\\1+\beta\end{bmatrix}, \alpha x\right)$$

où ${}_pF_q(\cdot,\cdot,\cdot)$ est la fonction hypergéométrique généralisée (voir annexe A). La forme finale de l'expression de la fonction temps moyen est donc :

$$m(x) = (-\alpha)^{\beta - 1} \Gamma(1 - \beta, -\alpha x) \left[\theta \alpha^{-\beta} \Gamma(\beta) - C_1 \right] + \frac{\theta x}{\beta} {}_{2} F_2 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 + \beta \end{bmatrix}, \alpha x \right) + C_2 (3.17)$$

Détermination des constantes

Les conditions aux limites m(0) = m(c) = 0 permettent de déterminer les deux constantes C_1 et C_2 en résolvant le système suivant :

$$\begin{cases} (\theta \alpha^{-\beta} \Gamma(\beta) - C_1) \alpha^{\beta - 1} \Gamma(1 - \beta) + C_2 = 0 \\ (\theta \alpha^{-\beta} \Gamma(\beta) - C_1) \alpha^{\beta - 1} \Gamma(1 - \beta, \alpha c) + \frac{c\theta}{\beta} {}_{2}F_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 + \beta \end{pmatrix}, \alpha c \end{pmatrix} + C_2 = 0 \end{cases}$$

Les expressions des constantes C_1 et C_2 sont donc :

$$C_{1} = \alpha^{-\beta}\theta\Gamma(\beta) + \frac{\alpha c\theta(-\alpha)^{-\beta}}{\beta\gamma(1-\beta,\alpha c)} {}_{2}F_{2}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\1+\beta\end{bmatrix},\alpha c\right)$$

$$C_{2} = -\frac{c\theta\Gamma(1-\beta)}{\beta\gamma(1-\beta,\alpha c)} {}_{2}F_{2}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\1+\beta\end{bmatrix},\alpha c\right)$$
(3.18)

avec α , β et θ définis en (3.8).

3.1.3 Fonction Aire Moyenne

Dérivation de l'équation à résoudre

Il est connu que l'EDO de second ordre régissant la fonction (1.6) est (voir [18]) :

$$\frac{1}{2}\sigma^2 x A''(x) + a(b-x)A'(x) = -x$$

En reprenant les notations introduites en (3.8), l'équation devient :

$$xA''(x) + (\beta - \alpha x)A'(x) = \theta x$$

Il convient de noter que cette équation ressemble beaucoup à celle dérivée en (3.9). La résolution se fera donc de manière semblable.

Réduction d'ordre

En procédant de façon identique à la résolution de l'équation du temps moyen (3.10,3.11,3.12), il est possible d'écrire :

$$xu'(x) + (\beta - \alpha x)u(x) = \theta x$$

et donc:

$$u(x) = C_1 x^{-\beta} e^{\alpha x} - \theta \alpha^{-\beta - 1} x^{-\beta} e^{\alpha x} \Gamma(\beta + 1, \alpha x)$$

En combinant l'expression dérivée précédemment (3.14) et l'identité suivante (voir [16]) :

$$\Gamma(s+1,x) = s\Gamma(s,x) + x^s e^{-x}$$

il est possible de réécrire la solution sous la forme :

$$u(x) = C_1 x^{-\beta} e^{\alpha x} - \theta \alpha^{-\beta - 1} \left(\beta x^{-\beta} e^{\alpha x} \Gamma(\beta) \left(1 - (\alpha x)^{\beta} e^{-\alpha x} \sum_{k=0}^{\infty} \frac{(\alpha x)^k}{\Gamma(\beta + k + 1)} \right) + 1 \right)$$

Intégration

Pour obtenir la forme explicite de A(x), il suffit d'intégrer u(x) et d'ajouter une deuxième constante :

$$A(x) = \int u(x)dx + C_2$$

$$= (C_1 - \theta\alpha^{-\beta - 1}\Gamma(\beta + 1))\underbrace{\int x^{-\beta}e^{\alpha x}dx}_{I} + \underbrace{\frac{\theta\beta\Gamma(\beta)}{\alpha}}_{I}\underbrace{\int \sum_{k=0}^{\infty} \frac{(\alpha x)^k}{\Gamma(\beta + k + 1)}dx}_{I} - \theta\alpha^{-\beta - 1}x + C_2$$

Les deux intégrales résolues précédemment I et J réapparaissent. En injectant leurs solutions, la forme finale de l'expression de la fonction Aire Moyenne est obtenue :

$$A(x) = (-\alpha)^{\beta - 1} \Gamma(1 - \beta, -\alpha x) [\theta \alpha^{-\beta - 1} \Gamma(\beta + 1) - C_1] + \frac{x\theta}{\alpha} \left[{}_{2}F_{2} \left(\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 + \beta \end{bmatrix}, \alpha x \right) - \alpha^{-\beta} \right] + C_2$$
(3.19)

Détermination des constantes

Les conditions aux limites A(0)=A(c)=0 nous permettent de déterminer les deux constantes C_1 et C_2 en résolvant le système suivant :

$$\begin{cases} (-\alpha)^{\beta-1}\Gamma(1-\beta)(\theta\alpha^{-\beta-1}\Gamma(\beta+1)-C_1) + C_2 = 0\\ (-\alpha)^{\beta-1}\Gamma(1-\beta, -\alpha c)[\theta\alpha^{-\beta-1}\Gamma(\beta+1)-C_1] + \\ \frac{c\theta}{\alpha} \left[{}_2F_2\left(\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1+\beta \end{bmatrix}, \alpha c\right) - \alpha^{-\beta} \right] + C_2 = 0 \end{cases}$$

Les constantes C_1 et C_2 s'écrivent donc :

$$C_{1} = \frac{1}{\gamma(1-\beta, -\alpha c)} \left[\theta(-\alpha)^{-\beta} \alpha^{-\beta-1} \left(c\alpha^{\beta+1} {}_{2}F_{2} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1+\beta \end{bmatrix}, \alpha c \right) + (-\alpha)^{\beta} \Gamma(\beta+1) \gamma(1-\beta, -c\alpha) - \alpha c \right) \right]$$

$$+ (-\alpha)^{\beta} \Gamma(\beta+1) \gamma(1-\beta, -c\alpha) - \alpha c$$

$$C_{2} = -\frac{c\theta \alpha^{-\beta-1} \Gamma(1-\beta)}{\gamma(1-\beta, -c\alpha)} \left[\alpha^{\beta} {}_{2}F_{2} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1+\beta \end{bmatrix}, \alpha c \right) - 1 \right]$$

$$(3.20)$$

3.1.4 Commande Optimale Stochastique

Dérivation de l'équation de programmation dynamique

Cette section est consacrée à l'étude du problème de commande optimale défini en (1.2). En

reprenant la définition (1.11) et en appliquant le principe d'optimalité de Bellman, il découle :

$$F(x) = \inf_{u} \mathbb{E} \left[\int_{0}^{\delta t} \left(\frac{1}{2} q \left[X_{u}(s) \right] u^{2} \left[X_{u}(s) \right] + r \left[X_{u}(s) \right] \right) ds + F(X_{u}(\delta t)) \right]$$
(3.21)

D'une part, pour δt petit, il est possible d'écrire :

$$\int_{0}^{\delta t} \left(\frac{1}{2} q \left[X_{u}(s) \right] u^{2} \left[X_{u}(s) \right] + r \left[X_{u}(s) \right] \right) ds = \left(\frac{1}{2} q(x) u(x)^{2} + r(x) \right) \delta t + o(\delta t)$$
(3.22)

D'autre part, un développement de Taylor combiné avec la formule d'Îtô (appliquée au processus contrôlé de dynamique (1.9)) permet d'écrire (en supposant que $F \in C^2$) :

$$\mathbb{E}[F(X_u(\delta t))] = F(x) + \mathbb{E}[dF(X_u(\delta t))] + o(\delta t)$$

$$= F(x) + \mathbb{E}\left[F'(X_u(\delta t))dX_u(t) + \frac{1}{2}F''(X_u(\delta t))d\langle X_u\rangle_{\delta t}\right] + o(\delta t)$$

$$= F(x) + \left[a(b-x) + b(x)u(x)\right]F'(x)\delta t + \frac{1}{2}\sigma^2 x F''(x)\delta t + o(\delta t)$$
(3.23)

En injectant (3.22) et (3.23) dans (3.21), il découle :

$$F(x) = \inf_{u} \left\{ \left(\frac{1}{2} q(x) u(x)^{2} + r(x) \right) \delta t + F(x) + \left[a(b-x) + b(x) u(x) \right] F'(x) \delta t + \frac{1}{2} \sigma^{2} x F''(x) \delta t + o(\delta t) \right\}$$
(3.24)

Ensuite, en retranchant F(x) des deux côtés, en divisant partout par δt et en prenant la limite lorsque $\delta t \to 0$, l'équation de programmation dynamique est obtenue :

$$0 = \min_{u} \left\{ r(x) + \frac{1}{2}q(x)u^{2}(x) + \left[a(b-x) + b(x)u(x) \right] F'(x) + \frac{1}{2}\sigma^{2}xF''(x) \right\}$$
(3.25)

Détermination de la commande optimale et dérivation de l'équation associée La minimisation à faire dans (3.25) est en fonction de u(x). Le terme à minimiser est :

$$f(u(x)) = \frac{1}{2}q(x)u^{2}(x) + b(x)u(x)F'(x)$$

La minimisation donne:

$$f'(u^*(x)) = 0$$

$$q(x)u^*(x) + b(x)F'(x) = 0$$

$$u^*(x) = -\frac{b(x)}{q(x)}F'(x)$$
(3.26)

Par ailleurs, la dérivée seconde est :

$$f''(u(x)) = q(x) \quad \forall \ u(x)$$

Puisque q(x) > 0 par hypothèse (1.2), la dérivée seconde par rapport au contrôle est strictement positive. L'expression de $u^*(x)$ obtenue en (3.26) réalise donc bien un minimum global. Il s'agit ainsi du contrôle optimal.

En injectant ce dernier (3.26) dans (3.25), l'équation Hamilton-Jacobi-Bellman est obtenue, régissant la fonction valeur associée à la commande optimale :

$$r(x) - \frac{b(x)^2}{2q(x)} [F'(x)]^2 + a(b-x)F'(x) + \frac{1}{2}\sigma^2 x F''(x) = 0$$
(3.27)

avec F(0) = F(c) = 0 et $r(x) \neq 0, b(x) \neq 0, q(x) > 0$.

Problème linéarisable

Il faut donc procéder à la résolution de l'équation (3.27). Whittle (voir [19]) a montré que la transformation :

$$F(x) = -K \log(\varphi(x))$$

avec $\varphi(0) = \varphi(c) = 1$ permet de linéariser l'équation en posant :

$$K = \frac{\sigma^2 x q(x)}{b(x)^2}$$

L'équation devient :

$$\frac{1}{2}\sigma^2 x \varphi''(x) + a(b-x)\varphi'(x) - \frac{r(x)}{K}\varphi(x) = 0$$
(3.28)

Dans le cas où le terme suivant est constant :

$$\frac{r(x)}{K} \equiv k \in \mathbb{R} \ \forall \ x \tag{3.29}$$

l'équation (3.28) est identique à celle de la Fonction Génératrice des Moments $M(x;\alpha)$ pour :

$$\alpha = \frac{r(x)}{K}$$

Cela permet de résoudre une multitude de problèmes en supposant différentes formes pour r(x), b(x) et q(x) tout en satisfaisant la condition (3.29). Deux exemples de problèmes sont donnés dans les sous-parties suivantes.

Problème 1

Soit le problème suivant :

- $-r(x) = \rho$: coût immédiat constant, indépendant de l'état x et du contrôle.
- $b(x) = \beta x$: coût du contrôle proportionnel à x sur la dynamique.
- $q(x) = \kappa x$: poids pénalisant l'intensité du contrôle, linéaire avec x.

Cela donne:

$$K = \frac{\kappa \sigma^2}{\beta^2}$$

L'équation devient :

$$\frac{1}{2}\sigma^2 x \varphi''(x) + a(b-x)\varphi'(x) - \frac{\rho\beta^2}{\kappa\sigma^2}\varphi(x) = 0$$
(3.30)

La solution est:

$$\varphi(x) = C_1 \Phi\left(\frac{\rho \beta^2}{a\kappa \sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right) + C_2 \Psi\left(\frac{\rho \beta^2}{a\kappa \sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right)$$

Les conditions aux limites $\varphi(0) = \varphi(1) = 1$ permettent de déterminer les constantes C_1 et C_2 :

$$C_{1} = \frac{\Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, 0\right) - \Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)}{\Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, 0\right) \Phi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}; \frac{2ab}{\sigma^{2}}; \frac{2ac}{\sigma^{2}}\right) - \Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)}$$

$$C_{2} = \frac{\Phi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}; \frac{2ab}{\sigma^{2}}; \frac{2ac}{\sigma^{2}}\right) - 1}{\Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, 0\right) \Phi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}; \frac{2ab}{\sigma^{2}}; \frac{2ac}{\sigma^{2}}\right) - \Psi\left(\frac{\beta^{2}\rho}{a\kappa\sigma^{2}}, \frac{2ab}{\sigma^{2}}, \frac{2ac}{\sigma^{2}}\right)}$$

$$(3.31)$$

L'expression analytique de la fonction valeur est donc :

$$F(x) = -\frac{\kappa \sigma^2}{\beta^2} \log \left[C_1 \Phi \left(\frac{\rho \beta^2}{a \kappa \sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2} \right) + C_2 \Psi \left(\frac{\rho \beta^2}{a \kappa \sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2} \right) \right]$$
(3.32)

Par ailleurs, le contrôle optimal est

$$u^*(x) = -\frac{\beta}{\kappa} F'(x) \tag{3.33}$$

Problème 2

Soit le problème suivant :

- $r(x) = \rho x$: coût immédiat linéaire en x, indépendant du contrôle.
- $b(x) = \beta \sqrt{x}$: coût du contrôle proportionnel à \sqrt{x} .
- $-q(x) = \kappa x$: poids pénalisant l'intensité du contrôle, linéaire avec x.

Cela donne :

$$K = \frac{x\kappa\sigma^2}{\beta^2}$$

L'équation obtenue est identique à celle du premier problème (3.30) :

$$\frac{1}{2}\sigma^2 x \varphi''(x) + a(b-x)\varphi'(x) - \frac{\rho\beta^2}{\kappa\sigma^2}\varphi(x) = 0$$

L'expression de $\varphi(x)$ est identique à celle trouvée précédemment. Il en découle donc l'expression de la solution F(x):

$$F(x) = -\frac{x\kappa\sigma^2}{\beta^2} \left[C_1 \Phi\left(\frac{\rho\beta^2}{a\kappa\sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right) + C_2 \Psi\left(\frac{\rho\beta^2}{a\kappa\sigma^2}, \frac{2ab}{\sigma^2}, \frac{2ax}{\sigma^2}\right) \right]$$
(3.34)

Par ailleurs, le contrôle optimal est

$$u^*(x) = -\frac{\beta}{\kappa \sqrt{x}} F'(x) \tag{3.35}$$

Problème non linéarisable

Soit le problème suivant :

- $r(x) = x^2$: coût immédiat quadratique en x, indépendant du contrôle.
- b(x) = x: coût du contrôle linéaire égal à x.
- $q(x) \equiv 1$: poids pénalisant l'intensité du contrôle constant.

En éliminant le retour à la moyenne (a=0) et en posant $\sigma=1$, l'équation (3.27) se réduit à :

$$x^{2} - \frac{x^{2}}{2}F'(x)^{2} + \frac{1}{2}xF''(x) = 0$$
(3.36)

Le logiciel de calcul symbolique Maple donne comme solution pour F(0) = 0 (avec C_1 une constante à déterminer) :

$$F(x) = \int_0^x -\sqrt{2} \tanh\left(\frac{\sqrt{2}z^2}{2} + C_1\sqrt{2}\right) dz$$

En posant c=1, la valeur de C_1 qui satisfait F(c)=F(1)=0 est $C_1\simeq -0.1652$. Donc, la forme finale de la fonction valeur est obtenue :

$$F(x) \simeq \int_0^x -\sqrt{2} \tanh\left(\frac{\sqrt{2}z^2}{2} - 0.1652\sqrt{2}\right) dz$$
 (3.37)

La commande optimale est donc :

$$u^*(x) \simeq x\sqrt{2} \tanh\left(\frac{\sqrt{2}x^2}{2} - 0.1652\sqrt{2}\right)$$
 (3.38)

3.2 Diffusion avec sauts

Pour la suite, la variante discontinue du CIR est portée à l'étude. Le processus est défini comme suit :

$$X(t) = X(0) + \int_0^t a(b - X(s))ds + \int_0^t \sigma\sqrt{X(s)}dW(s) + J(t)$$
 (3.39)

avec

- X(0) = x;
- W(t) un MBS;
- J(t) un processus de sauts pur

$$J(t) = \sum_{i=1}^{N(t)} Y_i$$

οù

- N(t) est un processus de poisson de paramètre λ ;
- Y_i des variables indépendantes et distribuées suivant une certaine loi.

3.2.1 Fonction Temps moyen – Sauts uniformes

Dans cette sous-section, la variante du CIR avec sauts considérée est celle avec des sauts négatifs modélisés par des variables uniformément distribuées $Y_i \sim U[-x, 0]$.

Dérivation de l'équation à résoudre

En reprenant ce qui avait été fait en (3.1.1) pour dériver l'EDO régissant la Fonction Génératrice des Moments de $\tau(x)$ (voir, par exemple, [13] ou [14]), il est possible d'écrire :

$$\frac{1}{2}\sigma^2xM''(x;\alpha) + a(b-x)M'(x;\alpha) + \lambda\left\{\frac{1}{x}\int_{-x}^0 M(x+y;\alpha)dy - M(x;\alpha)\right\} - \alpha M(x;\alpha) = 0$$

avec
$$M(0; \alpha) = M(c; \alpha) = 1$$
.

Ensuite, en procédant comme dans (3.1.2), il découle l'équation du temps moyen de sortie de l'intervalle pour le processus avec sauts :

$$\frac{1}{2}\sigma^2 x m''(x) + a(b-x)m'(x) + \lambda \left\{ \frac{1}{x} \int_{-x}^0 m(x+y) dy - m(x) \right\} = -1$$
 (3.40)

avec m(0) = m(c) = 0.

Soit le changement de variable suivant :

$$\int_{-x}^{0} m(x+y)dy = \int_{0}^{x} m(z)dz$$

La formule de Leibniz permet d'écrire :

$$\frac{d}{dx}\left(\int_0^x m(z)dz\right) = m(x)$$

Donc, en dérivant les deux côtés de l'équation (3.40) et en éliminant le retour à la moyenne (a = 0), il découle une EDO d'ordre 3 :

$$\frac{1}{2}\sigma^2 x m'''(x) + \sigma^2 m''(x) - \lambda m'(x) = -\frac{1}{x}$$
(3.41)

Résolution

Soit les valeurs suivantes des paramètres : $\sigma = \sqrt{2}$, $\lambda = 1$ et c = 1. Maple donne la solution suivante :

$$m(x) = C_1 I_0(2\sqrt{x}) + C_2 K_0(2\sqrt{x}) + 2\ln(2\sqrt{x}) + C_3$$
(3.42)

avec C_1 , C_2 , C_3 des constantes à déterminer et $I_0(\cdot)$, $K_0(\cdot)$ les fonctions de Bessel modifiées. Les constantes C_1 , C_2 et C_3 sont déterminées en imposant les conditions aux limites m(0) = m(1) = 0 et m(0.5) = r. Ensuite, la valeur de r permettant de satisfaire l'équation originale (3.40) est trouvée : $r \simeq 0.3281$.

Étude du cas sans sauts

Afin de comparer l'effet de la présence des sauts, il est intéressant de résoudre le même problème en retirant ces derniers. Soit $m_0(x)$ le temps moyen de sortie du processus sans sauts. En considérant les mêmes valeurs des paramètres, l'équation à résoudre devient :

$$xm_0''(x) = -1 (3.43)$$

La solution qui satisfait $m_0(x) = m_0(1) = 0$ est :

$$m_0(x) = -x\ln(x) \tag{3.44}$$

3.2.2 Fonction Probabilité de sortie en zéro – Sauts uniformes

Dans cette sous-section, la variante du CIR avec sauts considérée est identique à la précédente (sauts négatifs modélisés par des variables uniformément distribuées $Y_i \sim U[-x, 0]$).

Dérivation de l'équation à résoudre

En procédant comme ce qui précède, il est possible d'écrire :

$$\frac{1}{2}\sigma^2 x p''(x) + a(b-x)p'(x) + \lambda \left\{ \frac{1}{x} \int_{-x}^0 p(x+y) dy - p(x) \right\} = 0$$
 (3.45)

sous les conditions p(0) = 1 et p(1) = 0.

Ensuite, en effectuant le même changement de variable, en dérivant les deux membres de l'équation et en éliminant le retour à la moyenne (a = 0), il découle :

$$\frac{1}{2}\sigma^2 x p'''(x) + \sigma^2 p''(x) - \lambda p'(x) = 0$$
(3.46)

Résolution

En reprenant les mêmes valeurs des paramètres ($\sigma = \sqrt{2}$, $\lambda = 1$ et c = 1) et en imposant les conditions p(0) = 1, p(1) = 0 et p(0.5) = r, Maple donne la solution suivante :

$$p(x) = \frac{I_0(2) - I_0(2\sqrt{x})}{I_0(2) - 1}$$
(3.47)

Cette dernière est valide si $r \simeq 0.5567$.

Étude du cas sans sauts

Dans la même logique, le même problème en absence des sauts est résolu pour $p_0(x) = \mathbb{P}[X(\tau(x)) = 0]$. L'équation (3.46) devient :

$$xp_0''(x) = 0$$

La solution qui satisfait p(0) = 1 et p(1) = 0 est :

$$p_0(x) = 1 - x (3.48)$$

3.2.3 Fonction Dépassement Moyen – Sauts exponentiels

Dans cette sous-section, la variante du CIR avec sauts considérée est celle avec des sauts positifs modélisés par des variables aléatoires exponentielles $Y_i \sim \text{Exp}(\nu)$.

Dérivation de l'équation à résoudre

Soit $f(x) = (x - c)\mathbb{1}_{x \geq c}$ la fonction mesurant un dépassement. En appliquant la formule de Dynkin (voir [20]), il est possible d'écrire :

$$\mathbb{E}[f(X(\tau(x)))] = f(x) + \mathbb{E}\left[\int_0^{\tau(x)} \mathcal{L}f(X(s))ds\right]$$
(3.49)

D'abord, en développant le terme de gauche, l'expression de la fonction D(x) définie en (1.8) est retrouvée :

$$\mathbb{E}[f(X(\tau(x)))] = \mathbb{E}\left[(X(\tau(x)) - c)\mathbb{1}_{X(\tau(x)) \ge c}\right]$$

$$= D(x)$$
(3.50)

Ensuite, le terme de droite peut être simplifié :

$$X(0) = x \in (0, c) \implies f(x) = 0 \tag{3.51}$$

Par ailleurs, en développant le générateur infinitésimal appliqué à la fonction f(x), il découle que :

$$\mathcal{L}f(x) = \frac{1}{2}\sigma^2 x f''(x) + a(b-x)f'(x) + \lambda \int_0^{+\infty} \left[f(x+y) - f(x) \right] \nu e^{-\nu y} dy$$

$$= \lambda \int_{c-x}^{+\infty} (x+y-c)\nu e^{-\nu y} dy$$

$$= \frac{\lambda}{\nu e^{\nu c}} e^{\nu x}$$
(3.52)

En prenant en compte (3.50), (3.51) et (3.52), l'équation (3.49) devient :

$$D(x) = \frac{\lambda}{\nu e^{\nu c}} \mathbb{E} \left[\int_0^{\tau(x)} e^{\nu X(s)} ds \right]$$
 (3.53)

Soit la fonction g(x) définie par :

$$g(x) = \mathbb{E}\left[\int_0^{\tau(x)} e^{\nu X(s)} ds\right]$$
 (3.54)

Comme les coefficients de dérive et de diffusion du processus CIR vérifient les conditions d'unicité trajectorielle (existence et unicité forte de la solution de l'équation 1.2), le travail présenté dans [18] peut être utilisé pour établir l'EID du second ordre associée :

$$\frac{1}{2}\sigma^2 x g''(x) + a(b-x)g'(x) + \lambda \int_0^{+\infty} \left[g(x+y) - g(x) \right] \nu e^{-\nu y} dy = -e^{\nu x}$$
 (3.55)

En séparant l'intégrale, il découle :

$$\frac{1}{2}\sigma^2 x g''(x) + a(b-x)g'(x) + \lambda \int_0^{+\infty} g(x+y)\nu e^{-\nu y} dy - \lambda g(x) = -e^{\nu x}$$
 (3.56)

Le changement de variable z = x + y permet d'écrire :

$$\int_0^{+\infty} g(x+y)\nu e^{-\nu y} dy = \nu e^{\nu x} \int_x^{+\infty} g(z)e^{-\nu z} dz$$

Soit:

$$\Phi(x) := \int_{x}^{+\infty} g(z)e^{-\nu z}dz \tag{3.57}$$

La formule de Leibniz donne :

$$\Phi'(x) = -g(x)e^{-\nu x} \implies g(x) = -e^{\nu x}\Phi'(x)$$
 (3.58)

En injectant (3.57,3.58) dans (3.56), l'équation devient :

$$\frac{1}{2}\sigma^2 x \Phi'''(x) + \Phi''(x) \left[\nu \sigma^2 x + a(b-x)\right]
+ \Phi'(x) \left[\frac{1}{2}\sigma^2 \nu^2 x + a\nu(b-x) - \lambda\right] - \lambda \nu \Phi(x) = 1$$
(3.59)

Le fonction recherchée g(x) ne dépend que de $\Phi'(x)$. En posant $\phi(x) = \Phi'(x)$ et en dérivant l'équation (3.59), il découle l'EDO homogène linéaire d'ordre 3 :

$$x\phi'''(x) + \phi''(x) \left[\left(\frac{2(\nu\sigma^2 - a)}{\sigma^2} \right) x + \left(\frac{2ab + \sigma^2}{\sigma^2} \right) \right]$$

$$+\phi'(x) \left[\left(\frac{\sigma^2 \nu^2 - 2a\nu}{\sigma^2} \right) x + \left(\frac{2(\nu\sigma^2 - a - \lambda + ab\nu)}{\sigma^2} \right) \right]$$

$$+\phi(x) \left[\frac{\nu^2 \sigma^2 - 2\nu(a + \lambda)}{\sigma^2} \right] = 0$$

$$(3.60)$$

Les conditions g(0) = g(c) = 0 deviennent $\phi(0) = \phi(c) = 0$. Enfin

$$D(x) = \frac{\lambda}{\nu e^{\nu c}} g(x)$$
$$= -\frac{\lambda}{\nu e^{\nu c}} e^{\nu x} \phi(x)$$

Résolution approximative pour a = 0

En remplaçant g(x+y) dans (3.55) par un développement de Taylor, il est possible de réécrire l'intégrale comme suit :

$$\lambda \int_0^{+\infty} \left[g(x+y) - g(x) \right] \nu e^{-\nu y} dy = \lambda \int_0^{+\infty} \left[\sum_{n=0}^{+\infty} \frac{y^n}{n!} \frac{d^n}{dx^n} g(x) - g(x) \right] \nu e^{-\nu y} dy$$
$$= \lambda \int_0^{+\infty} \left[\sum_{n=1}^{+\infty} \frac{y^n}{n!} \frac{d^n}{dx^n} g(x) \right] \nu e^{-\nu y} dy$$

Ensuite, en échangeant la série et l'intégrale, le n-ème moment de Y_i apparaît, permettant ainsi de simplifier l'expression :

$$\lambda \int_0^{+\infty} \left[\sum_{n=1}^{+\infty} \frac{y^n}{n!} \frac{d^n}{dx^n} g(x) \right] \nu e^{-\nu y} dy = \lambda \sum_{n=0}^{+\infty} \left[\frac{1}{n!} \frac{d^n}{dx^n} g(x) \int_0^{+\infty} y^n \nu e^{-\nu y} dy \right]$$
$$= \lambda \sum_{n=0}^{+\infty} \frac{1}{n!} \frac{d^n}{dx^n} g(x) \mathbb{E} \left[Y_i^n \right]$$
$$= \lambda \sum_{n=0}^{+\infty} \frac{1}{\nu^n} \frac{d^n}{dx^n} g(x)$$

Par ailleurs, en supposant que les sauts sont petits (ν est grand), il est possible d'approximer la somme obtenue de la façon suivante :

$$\lambda \sum_{n=0}^{+\infty} \frac{1}{\nu^n} \frac{d^n}{dx^n} g(x) \approx \frac{1}{\nu} g'(x) + \frac{1}{\nu^2} g''(x)$$

L'équation (3.55) devient :

$$\left(\frac{1}{2}\sigma^2x + \frac{\lambda}{\nu^2}\right)g''(x) + \left[a(b-x) + \frac{\lambda}{\nu}\right]g'(x) = -e^{\nu x}$$
(3.61)

Cette EDO de second ordre est non homogène avec des coefficients polynomiaux. La solution explicite, si elle existe, est difficile à obtenir. Dans la suite, un cas particulier du problème est considéré.

En fixant le paramètre a à 0, cela revient à éliminer le mécanisme de retour à la moyenne

présenté en (1.2). Dans ces conditions, l'EDO (3.61) devient :

$$\left(\frac{1}{2}\sigma^2 x + \frac{\lambda}{\nu^2}\right)g''(x) + \frac{\lambda}{\nu}g'(x) = -e^{\nu x}$$
 (3.62)

Wolfram Mathematica donne:

$$g(x) = \frac{1}{\nu\sigma^2(2\lambda - \nu\sigma^2)} \left[\sigma^2 \left(-C_1 \left(2\lambda + \nu^2 \sigma^2 x \right)^{1 - \frac{2\lambda}{\nu\sigma^2}} + C_2 \nu \left(2\lambda - \nu\sigma^2 \right) - 2\nu e^{\nu x} \right) - 2e^{-\frac{2\lambda}{\nu\sigma^2}} \left(2\lambda + \nu^2 \sigma^2 x \right) E_{1 - \frac{2\lambda}{\nu\sigma^2}} \left(-\frac{2\lambda}{\nu\sigma^2} - x\nu \right) \right]$$

avec $E_n(x)$ la fonction intégrale exponentielle (voir annexe A).

La forme finale de l'expression de la fonction Dépassement Moyen est obtenue :

$$D(x) = \frac{\lambda}{\nu^2 \sigma^2 e^{\nu c} (2\lambda - \nu \sigma^2)} \left[\sigma^2 \left(-C_1 \left(2\lambda + \nu^2 \sigma^2 x \right)^{1 - \frac{2\lambda}{\nu \sigma^2}} + C_2 \nu \left(2\lambda - \nu \sigma^2 \right) - 2\nu e^{\nu x} \right) - 2e^{-\frac{2\lambda}{\nu \sigma^2}} \left(2\lambda + \nu^2 \sigma^2 x \right) E_{1 - \frac{2\lambda}{\nu \sigma^2}} \left(-\frac{2\lambda}{\nu \sigma^2} - x\nu \right) \right]$$
(3.63)

Détermination des constantes

Les conditions aux limites g(0) = g(c) = 0 (et donc D(0) = D(c) = 0) permettent de déterminer les deux constantes C_1 et C_2 . Étant donné la longueur des expressions obtenues, celles-ci ne seront pas détaillées dans le présent document.

CHAPITRE 4 RÉSULTATS THÉORIQUES

Après avoir déterminé des expressions analytiques pour les différentes fonctions étudiées, il est essentiel d'analyser les résultats obtenus afin de vérifier leur validité et leur cohérence avec le modèle théorique.

Pour évaluer le comportement des fonctions obtenues, il est nécessaire de se placer dans un cadre particulier du processus étudié. En se basant sur la définition du processus CIR (1.2) et du problème de premier passage (1.3), les paramètres suivants sont considérés pour l'ensemble des analyses :

- Vitesse de retour à la moyenne du CIR : a = 0.1
- Niveau moyen du CIR : b = 0.9
- Volatilité instantanée du CIR : $\sigma = 1$
- Frontière supérieure pour le TPP : c=2

4.1 Diffusion pure

D'abord, les résultats trouvés pour le processus de diffusion CIR sont abordés.

4.1.1 Fonction Génératrice des Moments

Visualisation

Pour commencer, il convient de valider le comportement de la Fonction Génératrice des Moments $M(x; \alpha)$ définie par (1.4), (3.4) et (3.5). À cet effet, il faut tracer son évolution sur l'intervalle [0, c] pour plusieurs valeurs du paramètre $\alpha \in \{1, 2, 5, 10\}$.

FIGURE 4.1 Visualisation de la Fonction Génératrice des Moments $M(x;\alpha)$

Il est important de souligner les points suivants :

- Les conditions aux limites $M(0; \alpha) = M(c; \alpha) = 1$ sont respectées;
- Puisque α est par définition un paramètre positif (1.4), la fonction est bien comprise dans l'intervalle (0, 1), car elle correspond à l'exponentielle d'un nombre négatif;
- Par ailleurs, et pour la même raison, lorsque α augmente, la fonction diminue.

L'expression obtenue pour la Fonction Génératrice des Moments est ainsi validée.

4.1.2 Fonction Temps Moyen

Visualisation

Ensuite, il est nécessaire de valider le comportement de la fonction Temps Moyen m(x) définie par (1.5), (3.17) et (3.18). La fonction est donc tracée pour différentes valeurs des paramètres a, $\forall a \in \{0.1, 0.2, 0.4\}$ et σ , $\forall \sigma \in \{1, \sqrt{2}, 2\}$.

FIGURE 4.2 Visualisation de la fonction Temps Moyen m(x)

Il est important de noter les points suivants concernant toutes les valeurs différentes des paramètres :

- Les conditions aux limites m(0) = m(c) = 0 sont respectées;
- Cette fonction représente un temps moyen de premier passage, elle doit donc être positive pour toute valeur de x dans [0, c];
- Une augmentation de la vitesse de retour a entraı̂ne une hausse du temps moyen de sortie de l'intervalle. En effet, plus la force de rappel vers la moyenne est forte (i.e., a élevé), plus une déviation significative et donc peu probable est nécessaire pour franchir les bornes de l'intervalle;
- À l'inverse, une augmentation de la volatilité infinitésimale σ diminue le temps moyen de sortie. Cela s'explique naturellement : des fluctuations plus intenses accroissent la probabilité de quitter rapidement l'intervalle.

L'expression obtenue pour la fonction de temps moyen de premier passage est ainsi validée.

4.1.3 Fonction Aire Moyenne

Visualisation

Par ailleurs, la même démarche de validation est effectuée pour la fonction Aire Moyenne A(x) définie par (1.6), (3.19) et (3.20).

FIGURE 4.3 Visualisation de la fonction Aire Moyenne A(x)

Il convient de souligner les points suivants :

- Les conditions aux limites A(0) = A(c) = 0 sont respectées;
- Cette fonction représente une aire moyenne sous un processus positif, elle doit donc être positive pour toute valeur de x dans [0, c];
- Une augmentation de la vitesse de retour *a* entraîne une augmentation de l'aire moyenne sous le processus avant la sortie de l'intervalle. En effet, une force de rappel plus intense maintient le processus autour de sa moyenne plus longtemps, retardant la sortie et augmentant ainsi l'accumulation totale;
- À l'inverse, une augmentation de la volatilité infinitésimale σ réduit l'aire moyenne. Des fluctuations plus fortes rendent les sorties plus précoces, limitant la durée pendant laquelle le processus peut contribuer à l'intégrale.

L'expression obtenue pour la fonction Aire Moyenne est ainsi validée.

4.1.4 Commande Optimale Stochastique

Enfin, il est nécessaire de valider les expressions obtenues dans le cadre des deux problèmes de commande optimale. Pour cela, il convient de tracer la fonction valeur F(x) ainsi que le contrôle optimal $u^*(x)$ pour différentes valeurs des paramètres étudiés. Lors de l'analyse d'un paramètre donné, les autres paramètres sont fixés à 1 afin d'isoler son influence.

Problème linéarisable 1

D'un côté, les fonctions r(x), b(x) et q(x) sont définies en (3.1.4). D'un autre côté, la fonction valeur F(x) est définie par (3.32,3.31) et le contrôle optimal est défini par (3.33). Les différentes valeurs des paramètres suivants sont évaluées :

- Paramètre du coût immédiat ρ , $\forall \rho \in \{1, 2, 5, 10\}$
- Paramètre du coût de contrôle $\beta, \ \forall \ \beta \in \{1,2,3,4\}$
- Paramètre du poids pénalisant l'intensité du contrôle κ , $\forall \kappa \in \{1, 2, 5, 10\}$

FIGURE 4.4 Sensibilité du coût immédiat $r(x) = \rho$

FIGURE 4.5 Sensibilité du coût du contrôle $b(x) = \beta x$

FIGURE 4.6 Sensibilité de la pondération du contrôle $q(x) = \kappa x$

Problème linéarisable 2

D'un côté, les fonctions r(x), b(x) et q(x) sont définies en (3.1.4). D'un autre côté, la fonction valeur F(x) est définie par (3.34,3.31) et le contrôle optimal est définie par (3.35). Les mêmes valeurs des différents paramètres ρ , β et κ sont évaluées.

FIGURE 4.7 Sensibilité du coût immédiat $r(x) = \rho x$

Figure 4.8 Sensibilité du coût du contrôle $b(x)=\beta\sqrt{x}$

FIGURE 4.9 Sensibilité de la pondération du contrôle $q(x) = \kappa x$

Problème non linéarisable

L'expression de la fonction valeur (3.37) ainsi que la commande optimale (3.38) sont tracés.

FIGURE 4.10 Visualisation de la fonction valeur et du contrôle optimale dans le cas d'un problème non linéarisable

Il est important de souligner que, dans les trois problèmes étudiés et pour les différentes valeurs des paramètres considérés :

- Les conditions aux limites F(0) = F(c) = 0 sont toujours respectées;
- La fonction valeur est toujours positive, le coût encouru étant nécessairement positif;
- Le contrôle optimal est généralement négatif sur $x \in (0, \frac{c}{2})$, l'optimiseur cherchant à diriger rapidement le processus vers la frontière 0, plus proche. Inversement, pour $x \in (\frac{c}{2}, c)$, le contrôle devient positif afin d'accélérer l'atteinte de la frontière supérieure c.
- Une augmentation du coût immédiat ρ , induisant une hausse du coût encouru, entraîne un renforcement du contrôle optimal ($|u^*(x)|$ augmente), traduisant ainsi une volonté accrue de quitter l'intervalle aussi rapidement que possible;
- Une hausse du coût du contrôle β incite à intensifier le contrôle optimal afin de quitter l'intervalle plus rapidement. Cette stratégie réduit la durée d'exposition au coût instantané, ce qui compense partiellement le surcoût du contrôle et diminue le coût total encouru F(x).
- Une augmentation du poids pénalisant le contrôle κ , induisant une hausse du coût encouru, entraîne une relaxation du contrôle optimal. En effet, plus le poids du contrôle est élevé, moins il est intéressant d'appliquer un contrôle fort.

Ainsi, les expressions obtenues pour la fonction valeur F(x) et le contrôle optimal $u^*(x)$ sont validées.

4.2 Diffusion avec sauts

Cette section est consacrée à la présentation des résultats portant sur le CIR avec sauts défini en (3.39).

4.2.1 Fonction Temps moyen – Sauts uniformes

Les paramètres utilisés sont ceux introduits lors de l'étude du temps moyen de sortie, avec et sans sauts, à la sous-partie (3.2.1). Les fonctions m(x) et $m_0(x)$, données respectivement par (3.42) et (3.44), sont représentées graphiquement.

Visualisation

FIGURE 4.11 Visualisation des temps moyens de sortie m(x) et $m_0(x)$

Analyse

Il convient de souligner les observations suivantes :

- Les conditions aux limites $m(0) = m(c) = m_0(0) = m_0(c) = 0$ sont bien vérifiées.
- Le temps moyen de sortie en présence de sauts (m(x)) en bleu est inférieur à celui observé sans sauts $(m_0(x))$ en orange, ce qui illustre l'accélération du processus induite par ces derniers.

4.2.2 Fonction Probabilité de sortie en zéro – Sauts uniformes

Les paramètres considérés sont ceux définis dans l'étude de la probabilité de sortie en zéro, avec et sans sauts, présentée en sous-partie (3.2.2). Les fonctions p(x) et $p_0(x)$, correspondant respectivement aux expressions (3.47) et (3.48), sont représentées graphiquement.

Visualisation

FIGURE 4.12 Visualisation des probabilité de sortir en zéro p(x) et $p_0(x)$

Analyse

Les observations suivantes peuvent être formulées :

- Les conditions aux limites sont correctement satisfaites, à savoir $p(0) = p_0(0) = 1$ et $p(c) = p_0(c) = 0$.
- Les sauts étant négatifs, ils favorisent une sortie par la borne inférieure. La probabilité de franchissement par zéro est donc plus élevée dans le cas avec sauts (p(x) en bleu).

4.2.3 Fonction Dépassement Moyen – Sauts exponentiels

Enfin, la variante à sauts exponentiels est considérée.

Visualisation

Toujours dans la même optique, la fonction approximative obtenue pour D(x) en (3.63) est tracée.

FIGURE 4.13 Visualisation de la fonction Dépassement Moyen D(x)

Les différents points suivants sont relevés :

- Les conditions aux limites D(0) = D(c) = 0 sont respectées;
- La fonction représente un dépassement moyen, elle doit donc être positive pour toute valeur x dans [0, c];
- Une augmentation de la fréquence des sauts induit une augmentation du dépassement moyen. En effet, il devient plus probable que le processus effectue un saut juste avant d'atteindre la frontière, ce qui augmente les chances de la franchir avec un certain excès.
- Une réduction de la taille des sauts induit une diminution du dépassement moyen. En effet, même si un saut survient à proximité de la frontière, sa faible amplitude limite la distance franchie au-delà de celle-ci.

CHAPITRE 5 CONCLUSION

5.1 Synthèse des travaux

Ce mémoire s'inscrit dans le cadre de l'étude des temps de premier passage et des problèmes de commande optimale appliqués au processus CIR, à la fois en diffusion pure et en présence de sauts. L'objectif principal consistait à obtenir, sous forme analytique, plusieurs fonctions d'intérêt : la fonction génératrice des moments du temps de sortie, la fonction temps moyen, l'aire moyenne sous la trajectoire ainsi que la fonction de dépassement moyen dans le cas avec sauts.

Ces résultats ont été obtenus en résolvant des équations différentielles linéaires issues de l'application du générateur infinitésimal du processus. Les méthodes utilisées incluent notamment des changements de variables adaptés (comme la transformation de Kummer), l'usage de fonctions spéciales (fonctions hypergéométriques, fonctions Gamma), ainsi que le recours à l'outil de calcul symbolique comme Wolfram Mathematica ou encore Maple.

L'analyse des résultats a permis de valider les expressions obtenues à l'aide des conditions aux limites et des propriétés structurelles attendues des solutions. Les visualisations produites viennent renforcer cette validation en illustrant les comportements théoriques anticipés.

Enfin, l'étude des problèmes de commande optimale associés au processus CIR a permis de déterminer les fonctions valeur et les stratégies optimales dans trois configurations de coût différentes. Les solutions proposées satisfont les conditions de régularité et de positivité attendues, confirmant ainsi la solidité des approches analytiques adoptées.

Les résultats relatifs à la fonction génératrice des moments, à l'aire moyenne, au temps moyen de sortie (avec et sans sauts), à la probabilité de sortie en zéro (avec et sans sauts), ainsi qu'au problème de contrôle non linéarisable, exposés dans ce mémoire, ont fait l'objet d'un article de recherche publié dans la revue internationale WSEAS Transactions on Mathematics (voir [21]).

5.2 Limitations

Les résultats présentés dans ce mémoire reposent sur des hypothèses spécifiques concernant les paramètres du processus CIR et la structure des coûts dans les problèmes de commande optimale. En particulier, les paramètres a, b et σ du processus CIR sont supposés constants dans le cadre de cette étude. Cette hypothèse permet de simplifier les équations différentielles

associées, mais elle peut s'avérer restrictive lorsque ces paramètres varient en fonction du temps ou de l'état du processus.

De plus, bien que les solutions analytiques proposées soient valides dans ces contextes particuliers, comme le CIR sans retour à la moyenne, elles peuvent perdre en pertinence dans des configurations plus complexes ou lorsque les hypothèses sur les fonctions de coût sont modifiées. En effet, si ces dernières sont non linéaires ou aléatoires, l'équation HJB ne permet plus une linéarisation facile (comme dans [19]).

5.3 Perspectives et améliorations futures

Afin de surmonter les limitations identifiées, plusieurs pistes de recherche peuvent être explorées. Une première perspective consisterait à étendre l'étude au processus de Chen (voir [22]):

$$dX(t) = \kappa [\theta(t) - X(t)]dt + \sqrt{\sigma(t)}X(t)dW_1(t)$$

$$d\theta(t) = \nu [\zeta - \theta(t)]dt + \alpha \sqrt{\theta(t)}dW_2(t)$$

$$d\sigma(t) = \mu [\beta - \sigma(t)]dt + \eta \sqrt{\sigma(t)}dW_3(t)$$

dans lequel la volatilité et la moyenne long-terme du processus sont stochastiques

Une deuxième piste pourrait consister à explorer des méthodes numériques permettant de compléter les résultats analytiques dans des situations où les solutions exactes ne sont pas accessibles. L'utilisation de techniques de simulation Monte Carlo ou de méthodes numériques pour la résolution des équations de HJB pourrait permettre de mieux appréhender les comportements dans des cadres plus réalistes.

Enfin, l'extension des modèles de commande optimale pour inclure des coûts non linéaires ou des contraintes supplémentaires pourrait offrir de nouvelles perspectives, en particulier dans le cadre de la gestion de portefeuille ou de la couverture d'actifs financiers sous contraintes réglementaires. Cependant, la difficulté de résolution des équations associées augmentera.

En conclusion, ce mémoire propose une approche analytique rigoureuse pour l'étude des problèmes de premier passage et de commande optimale appliqués au processus CIR. Les résultats obtenus constituent une base solide pour des développements futurs dans des contextes plus généraux ou appliqués, notamment dans le domaine de la finance quantitative.

RÉFÉRENCES

- [1] J. C. Cox, J. E. Ingersoll, Jr. et S. A. Ross, "A theory of the term structure of interest rates," *Econometrica*, vol. 53, n°. 2, p. 385–408, 1985. [En ligne]. Disponible: https://onlinelibrary.wiley.com/doi/abs/0012-9682(198503)53: 2<385:ATOTTS>2.0.CO;2-B
- [2] K. Itô, "Stochastic integral," *Proceedings of the Imperial Academy*, vol. 20, p. 519–524, 1944.
- [3] E. Di Nardo et G. D'Onofrio, "A cumulant approach for the first-passage-time problem of the feller square-root process," *Applied Mathematics and Computation*, vol. 391, p. 125707, 2021. [En ligne]. Disponible: https://www.sciencedirect.com/science/article/pii/S0096300320306603
- [4] E. Di Nardo, G. D'Onofrio et T. Martini, "Orthogonal gamma-based expansion for the cir's first passage time distribution," *Applied Mathematics and Computation*, vol. 480, p. 128911, 2024. [En ligne]. Disponible: https://www.sciencedirect.com/science/article/pii/S0096300324003722
- [5] B. Kepplinger, "The first passage time problem: Analytical, numerical and statistical methods (with r and mathematica)/submitted by bernhard kepplinger, bsc," 2017.
- [6] V. Giorno et A. G. Nobile, "On the First-Passage Time Problem for a Feller-Type Diffusion Process," *Mathematics*, vol. 9, n°. 19, p. 1–27, October 2021. [En ligne]. Disponible: https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2470-d649256.html
- [7] —, "On the absorbing problems for wiener, ornstein-uhlenbeck, and feller diffusion processes: Similarities and differences," *Fractal and Fractional*, vol. 7, n°. 1, 2023. [En ligne]. Disponible: https://www.mdpi.com/2504-3110/7/1/11
- [8] E. Martin, U. Behn et G. Germano, "First-passage and first-exit times of a bessel-like stochastic process," *Phys. Rev. E*, vol. 83, p. 051115, May 2011. [En ligne]. Disponible: https://link.aps.org/doi/10.1103/PhysRevE.83.051115
- [9] J. Masoliver et J. Perelló, "First-passage and escape problems in the feller process," *Physical review. E, Statistical, nonlinear, and soft matter physics*, vol. 86, p. 041116, 10 2012.
- [10] S. Kou et H. Wang, "First passage times of a jump diffusion process," Advances in Applied Probability, vol. 35, 06 2003.
- [11] C. Yin, Y. Wen et Y. Shen, "The first passage time problem for mixed-exponential jump processes with applications in insurance and finance," Abstract and Applied Analysis, vol.

- 2014, 07 2014.
- [12] C. Klüppelberg, A. E. Kyprianou et R. A. Maller, "Ruin probabilities and overshoots for general Lévy insurance risk processes," *The Annals of Applied Probability*, vol. 14, no. 4, p. 1766 1801, 2004. [En ligne]. Disponible: https://doi.org/10.1214/105051604000000927
- [13] D. R. Cox, The theory of stochastic processes. Routledge, 2017.
- [14] M. Lefebvre, Applied stochastic processes. Springer Science & Business Media, 2007.
- [15] W. Magnus, F. Oberhettinger et R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 1^{er} éd. Berlin: Springer, 1966.
- [16] "NIST Digital Library of Mathematical Functions," https://dlmf.nist.gov/, Release 1.2.4 of 2025-03-15, 2025, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. [En ligne]. Disponible: https://dlmf.nist.gov/
- [17] M. Abramowitz et I. A. Stegun, *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, ninth dover printing, tenth gpo printing éd. New York: Dover, 1964.
- [18] M. Abundo, "On the First-Passage Area of a One-Dimensional Jump-Diffusion Process," *Methodology and Computing in Applied Probability*, vol. 15, n°. 1, p. 85–103, March 2013. [En ligne]. Disponible: https://ideas.repec.org/a/spr/metcap/v15y2013i1d10.1007_s11009-011-9223-1.html
- [19] P. Whittle, Optimization over time: Dynamic Programming and stochastic control. Wiley, 1982, vol. 1.
- [20] E. B. Dynkin, Markov Processes. Vols. I, II, ser. Die Grundlehren der Mathematischen Wissenschaften. New York: Academic Press Inc., 1965, vol. 121, translated by J. Fabius, V. Greenberg, A. Maitra, and G. Majone. See Vol. I, p. 133.
- [21] M. Lefebvre et R. Mrad, "First exit and optimization problems for a cir diffusion process," WSEAS Transactions on Mathematics, vol. 24, no. 36, p. 382–388, 2025. [En ligne]. Disponible: https://wseas.com/journals/mathematics/2025/a725106-018(2025).pdf
- [22] L. Chen, A Three-Factor Model of the Term Structure of Interest Rates. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, p. 1–36. [En ligne]. Disponible: https://doi.org/10.1007/978-3-642-46825-4 1

ANNEXE A FONCTIONS SPÉCIALES

Cette annexe contient une définition de toutes les fonctions spéciales utilisées dans ce mémoire. Pour plus d'information, voir [16].

Fonctions Gamma

— La fonction Gamma est définie par :

$$\Gamma(z) := \int_0^{+\infty} t^{z-1} e^{-t} dt$$

$$\Gamma(n) := (n-1)!$$

— Les fonction Gamma incomplètes sont définies par :

$$\Gamma(s,x) := \int_x^{+\infty} t^{s-1} e^{-t} dt$$
$$\gamma(s,x) := \int_0^x t^{s-1} e^{-t} dt$$

Symbole de Pochhammer

$$(a)_n := \prod_{i=1}^n (a+i-1)$$

Fonctions hypergéométriques

— Les fonctions hypergéométriques confluentes de première et seconde espèce (aussi appelées fonctions de Kummer et Tricomi) sont définies par :

$$\begin{split} &\Phi(s,t,z) := \sum_{n=0}^{\infty} \frac{(s)_n \, x^n}{(t)_n \, n!} \\ &\Psi(s,t,z) := \frac{\Gamma(1-t)}{\Gamma(s+1-t)} \Phi(s,t,z) + \frac{\Gamma(t-1)}{\Gamma(s)} z^{1-t} \Phi(s+1-t,2-t,z) \end{split}$$

— La fonction hypergéométrique généralisée est définie par :

$$_{p}F_{q}([s_{1},\ldots s_{p}],[t_{1}\ldots t_{q}],z):=\sum_{n=0}^{\infty}\frac{(s_{1})_{n}\cdots(s_{p})_{n}}{(t_{1})_{n}\cdots(t_{q})_{n}}\frac{z^{n}}{n!}$$

Il est intéressant de noter que la fonction hypergéométrique confluente de première espèce $\Phi(\cdot,\cdot,\cdot)$ n'est autre que le cas particulier ${}_1F_1(\cdot,\cdot,\cdot)$.

Fonction intégrale exponentielle généralisée

$$E_n(x) := \int_1^{+\infty} \frac{e^{xt}}{t^n} dt$$

Fonctions de Bessel

— Les fonctions de Bessel de première et seconde espèce sont définies par :

$$J_{\alpha}(x) := \sum_{m=0}^{+\infty} \frac{(-1)^m}{m!\Gamma(m+\alpha+1)} \left(\frac{x}{2}\right)^{2m+\alpha}$$
$$Y_{\alpha}(x) := \frac{J_{\alpha}(x)\cos(\alpha\pi) - J_{-\alpha}(x)}{\sin(\alpha\pi)}$$

— Les fonctions de Bessel modifiées de première et seconde espèce sont définies par :

$$I_{\alpha}(x) := i^{-\alpha} J_{\alpha}(ix)$$

$$K_{\alpha}(x) := \frac{\pi}{2} \frac{I_{-\alpha}(x) - I_{\alpha}(x)}{\sin(\alpha \pi)}$$