PCT

TORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

OMP!

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/73, 15/10, A61K 39/02

(11) Internationale Veröffentlichungsnummer:

(43) Internationales
Veröffentlichungsdatum:

26. Februar 1998 (26.02.98)

WO 98/07874

(21) Internationales Aktenzeichen:

PCT/EP97/04560

(22) Internationales Anmeldedatum: 21. August 1997 (21.08.97)

(30) Prioritätsdaten:

196 33 698.8

21. August 1996 (21.08.96)

DE

(71)(72) Anmelder und Erfinder: LUBITZ, Werner [AT/AT]; Schönborngasse 12/7, A-1080 Wien (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JECHLINGER, Wolfgang (AT/AT); Strozzigasse 38/12, A-1080 Wien (AT). SZOSTAK, Michael [AT/AT]; In den Schnablern 9/3, A-2344 Maria Enzersdorf (AT).

(74) Anwälte: WEICKMANN, H. usw.; Kopernikusstrasse 9, D-81679 München (DE). (81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: NEW SYSTEMS FOR REGULATING GENETIC EXPRESSION

(54) Bezeichnung: NEUE SYSTEME ZUR REGULATION DER GENEXPRESSION

(57) Abstract

The present invention concerns a process for selecting new P_{R} - or P_{L} -operator sequences of lambdoid phages which, compared to wild-type sequences, have a different thermostability for the binding of a repressor. In addition, the invention discloses new mutated PR- or PL- operator sequences and their use for temperature-regulated expression of genes and for producing improved vaccines.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Selektion neuer P_R- oder P_L-Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen. Weiterhin werden neue mutierte P_R- oder P_L-Operatorsequenzen sowie deren Verwendung zur temperaturregulierten Expression von Genen und zur Herstellung verbesserter Impfstoffe offenbart.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	. Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТĴ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko	~~	Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen	٠.,	zimodowo
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

- 1 -

Neue Systeme zur Regulation der Genexpression

Beschreibung-

Die vorliegende Erfindung betrifft ein Verfahren zur Selektion neuer P_R - oder P_L -Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen. Weiterhin werden neue mutierte P_R - oder P_L -Operatorsequenzen sowie deren Verwendung zur temperaturregulierten Expression von Genen und zur Herstellung verbesserter Impfstoffe offenbart.

Die Initiation der Transkription von der O_R-O_L-Region des Bakteriophagen Lambda und anderer lambdoider Phagen wird durch einen Repressor, das Produkt des cI-Gens, negativ und positiv reguliert (siehe den Übersichtsartikel Ptashne et al., Cell 19 (1980), 1-11). In der O_R-Region überlappen drei Operatorsequenzen (O_R1, O_R2 und O_R3) die in unterschiedlichen Richtungen orientierten Promotoren P_R und P_{RM}. P_R steuert die Transkription von Genen, welche für den lytischen Vermehrungszyklus des Phagen verantwortlich sind, während P_{RM} der Promotor für das Lambda cI-Gen ist, welches für das Aufrechterhalten des lysogenen Zustands verantwortlich ist. Der Lambda-Repressor cI bindet kooperativ an die Operatorsequenzen O_R1 und O_R2 mit dem Ergebniss, daß P_R reprimiert und P_{RM} aktiviert wird.

Darüberhinaus enthält der Bakteriophage Lambda auch eine weitere Operatorregion O_L , die ebenfalls drei Operatorsequenzen $(O_L1,\ O_L2\ und\ O_L3)$ enthält. Durch Bindung des cI-Repressors an diese O_L -Operatorregion kann die Expression des Lambda N-Gens vom P_L -Promotor reprimiert werden.

Promotoren des Bakteriophagen Lambda, insbesondere der P_L - und der P_R -Promotor, werden in der rekombinanten DNA-Technologie seit langem zur heterologen temperaturregulierten Genexpres-

sion in E.coli verwendet (vgl. Hedgpeth et al., Molec.Gen.Genet. 183 (1978), 197-203 und Bernard et al., Gene 5 (1979), 59-76; Buell et al., Nucleic Acids Res. 13 (1985), 1923 und Shatzman und Rosenberg, Methods Enzymol. 152 (1987), 661). Bei diesen Expressionssystemen wird ein temperatursensitiver Lambda-Repressor cI857 verwendet, welcher die P_L - und P_R -Transkription bei geringen Temperaturen bis 30°C reprimiert, aber bei höheren Temperaturen eine Genexpression ermöglicht.

Ein Vorteil dieses Lambda-Expressionssystems besteht darin, daß die Induzierung der Genexpression auf einfache Weise durch Temperaturerhöhung bewerkstelligt werden kann und daß hierzu keine Zugabe chemischer Induktoren erforderlich ist. Ein schwerwiegender Nachteil ist jedoch, daß die Repression der Genexpression nur bis zu relativ geringen Temperaturen von maximal 30°C erfolgen, einer Temperatur, bei der ein nur langsames Bakterienwachstum stattfindet. Die der Erfindung zugrundeliegende Aufgabe bestand somit darin, ein verbessertes System zur Lambda-P_L- oder P_R-Genexpression bereitzustellen, welches eine Repression bei variablen höheren Temperaturen ermöglicht.

Diese Aufgabe wird gelöst durch Bereitstellung mutierter P_Roder P_L-Operatorsequenzen aus lambdoiden Phagen, die eine im
Vergleich zur Wildtypoperatorsequenz unterschiedliche, insbesondere höhere Thermostabilität hinsichtlich der Bindung eines
temperatursensitiven Repressors aufweisen. Die Erkenntnis, daß
überhaupt Lambda-Expressionssysteme mit verbesserter Thermostabilität hergestellt werden können, ist höchst überraschend,
da außer der temperatursensitiven Lambda cI857-Mutante keine
weiteren temperatursensitiven cI-Mutanten bekannt sind, sondern nur solche Mutationen im cI-Repressor, die das Molekül
resistenter gegen thermische Inaktivierung machen (Hecht et
al., Proteins 1 (1986), 43-46 und Das und Mandal, Mol.Gen.Genet. 204 (1986), 540-542). Noch überraschender war, daß sich
Mutationen, welche zu einer verbesserten Thermostabilität
führen, in der Operator-DNA-Sequenz und nicht in der für das

- 3 -

Repressormolekül kodierenden DNA-Sequenz befinden. So ist beispielsweise aus der Literatur eine Mutation der Lambda- O_R2 -Operatorsequenz bekannt, welche zu einem völligen Verlust der Repressorbindung führt (Hawley et al., J.Biol.Chem. 260 5 (1985), 8618-8626).

Zur Identifizierung geeigneter Mutanten wird ein Verfahren bereitgestellt, das die Selektion von mutierten O_R- oder O_L- Operator-DNA-Sequenzen aus lambdoiden Phagen ermöglicht, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen, wobei das Verfahren dadurch gekennzeichnet ist, daß man (a) eine DNA-Kassette herstellt, die ein Selektionsgen unter operativer Kontrolle einer Expressionskontrollsequenz, umfassend mindestens eine O_R- oder O_L-Operatorsequenz aus einem lambdoiden Phagen und einen Promotor enthält, (b) die Operator-DNA-Sequenz einer Mutagenese unterzieht und (c) die mutierten Operator-DNA-Sequenzen analysiert.

20 Die lambdoiden Phagen werden vorzugsweise ausgewählt aus der Gruppe bestehend aus Phage Lambda, Phage 21, Phage 22, Phage 82, Phage 424, Phage 434, Phage D326, Phage DLP12, Phage Gamma, Phage HK022, Phage P4, Phage Phi80, Phage Phi81, Coliphage 186 und rekombinanten Variationen davon. Die genannten Phagen 25 sind hinsichtlich des Mechanismus der Repression der Genexpression über einen cI-Repressor sehr ähnlich (Johnson et al., Nature 294 (1981), 217-223). Rekombinante Variationen der genannten Phagen, z.B. Lambda imm434 können durch Austausch einzelner Genomfragmente innerhalb der genannten Phagen erhal-30 ten werden (vgl. hierzu Hendricks et al., Lambda 2 (1983), R.W. Hendricks, J.W.Roberts, F.W. Stahl und R.A.Weissberg (HRSG), Cold Spring Harbor Laboratory Press, New York). Vorzugsweise wird als lambdoider Phage der Phage Lambda oder eine rekombinante Variation davon, z.B. Lambda imm434 verwendet. 35 Besonders bevorzugt wird zur Mutagenese eine Operator-DNA-Sequenz aus den Operatorregionen OR (SEQ ID NO. 1) oder/und OL (SEQ ID NO. 3) des Phagen Lambda und insbesondere eine der

- 4 --

darin enthaltenen Operatorsequenzen O_R1 , O_R2 und O_R3 bzw. O_L1 , O_L2 und O_L3 verwendet. Am meisten bevorzugt ist die Operatorsequenz O_R2 .

5 Das Selektionsgen für die DNA-Kassette, welches unter operativer Kontrolle der die mutierte Operatorsequenz enthaltenden Expressionskontrollsequenz, vorzugsweise einer Lambda-Operator/Promotor-Region, gebracht wird, ist vorzugsweise ein Suizidgen, welches bei seiner Expression zum Tod der Bakterien-10 zelle führt und somit als Selektionsmarker zur Identifizierung geeigneter Mutanten dient. Das Suizidgen soll bei einer Temperatur, bei der der Lambda-Repressor an die mutierte Operatorsequenz bindet, so stark reprimiert werden, daß eine die DNA-Kassette enthaltende Bakterienzelle wachsen kann. Bei Über-15 schreiten der maximalen Temperatur, bei der der Repressor noch an den Operator bindet, erfolgt eine Expression des Suizidgens und eine Zerstörung der Bakterienzelle. Auf diese Weise gelingt eine einfache und direkte Selektion von geeigneten mutierten Operatorsequenzen. Ein geeignetes Suizidgen ist das E-20 Lysegen aus dem Phagen PhiX174 sowie Homologe und davon abgeleitete Derivate (Hutchison und Sinsheimer, J.Mol.Biol. (1966), 429-447; Witte et al., Multifunctional safety vector systems for DNA cloning, controlled expression of fusion genes, and simplified preparation of vector DNA and recombinant 25 gene products, in BioTech Forum, Advances in Molecular Genetics 3, pp 219-239, Hrsg: Issinger, O.-G., Henke, J., Kämpf, J., Driesel, A.J., Hüthing Verlag 1991, Heidelberg). Weitere Beispiele für geeignete Lysegene sind GEF (Poulsen et al., Mol.Microbiol. 5 (1991), 1627-1637) und Kil (Reisinger et al., 30 Virology 193 (1993), 1033-1036). Andererseits kann das Selektionsgen auch ein Reportergen, wie z.B. das ß-Gal-Gen sein.

Die Operator-DNA-Sequenz wird zur Herstellung von Mutanten vorzugsweise einer ortsspezifischen Mutagenese mittels eines oder mehrerer Oligonucleotide beispielsweise nach der Methode von Kunkel (Proc.Natl.Acad.Sci. USA 82 (1985), 488-492) unterzogen oder durch Selektion in einem Mutator-Bakterienstamm,

- 5 -

z.B. einem E.coli mutD oder mutL Mutatorstamm wie etwa E.coli ES1578 (Wu et al., Gene 87 (1990), 1-5) erhalten. Die Selektion der mutierten Operator-DNA-Sequenzen erfolgt vorzugweise durch Bestimmung der Bindefähigkeit mit einem temperatursensitiven cI-Repressor, insbesondere dem temperatursensitiven cI857-Repressor. Hierzu wird die DNA-Kassette, die sich vorzugsweise auf einem Vektor befindet, in eine Bakterienzelle transformiert, die ein für einen temperatursensitiven cI-Repressor kodierendes Gen enthält. Dieses Gen kann ebenfalls auf einem Vektor vorliegen (Remaut et al., Gene 15 (1981), 81-93). Andererseits kann eine Bakterienzelle verwendet werden, die ein solches Repressorgen in seinem Chromosom enthält, z.B. E.coli M5219 (vgl. z.B. Shimatake und Rosenberg, Nature 292 (1981), 128).

15

Durch Kultivierung der mit einer Lysekassette transformierten Bakterienzellen, die mutierte Operator-DNA-Sequenzen enthalten, können auf einfache Weise Mutanten identifiziert werden, die bei unterschiedlich hohen Temperaturen gegenüber einer Lyse resistent sind. Bisher konnten mehrere Mutanten identifiziert werden, die bei Temperaturen bis 33°C, 35°C, 37°C und 39°C gegenüber einer Lyse resistent sind. Diese Bakterien enthalten mutierte Operator-DNA-Sequenzen, die eine Bindung des Repressors bis zu der jeweils angegebenen Temperatur ermöglichen. Ein besonders bevorzugtes Beispiel ist eine Mutante, an die der cI857-Repressor bis zu einer Temperatur von etwa 37°C bindet. Die Mutation gegenüber dem Wildtyp ist ein einziger Basenaustausch im O_R2-Abschnitt der Lambda-O_R-Operatorregion. Die Sequenz dieses mutierten Lambda-O_R-Operators ist in SEQ ID NO. 2 gezeigt.

Ein weiterer Gegenstand der vorliegenden Erfindung sind mutierte O_R - oder O_L -Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtyp-Sequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen, und die durch das oben beschriebene Selektionsverfahren erhältlich sind. Vorzugsweise besitzen die mutierten O_R - oder

- 6 -

O_L-Operatorsequenzen eine erhöhte Thermostabilität hinsichtlich der Bindung eines temperatursensitiven Repressors, insbesondere des temperatursensitiven cI-Repressors. Besonders bevorzugt weisen die mutierten Operatorsequenzen eine um etwa 3 bis 10°C, insbesondere eine um etwa 7 bis 9°C erhöhte Thermostabilität gegenüber der Wildtyp-Sequenz auf.

Da das erfindungsgemäße Selektionsverfahren vorzugsweise an O_Roder O_L-Operatorsequenzen durchgeführt wird, die aus dem Phagen

Lambda stammen, betrifft die vorliegende Erfindung insbesondere mutierte Lambda O_R- oder O_L-Operatorsequenzen, die Varianten der in SEQ ID NO. 1 gezeigten O_R-Operatorsequenzen oder
Varianten der in SEQ ID NO. 3 gezeigten O_L-Operatorsequenzen
sind. Unter Variante ist in diesem Zusammenhang eine Operatorsequenz zu verstehen, die sich von der Wildtypsequenz in
mindestens einer Sequenzposition durch Insertion, Deletion
oder Austausch von Basen unterscheidet. Besonders bevorzugt
sind die Unterschiede im Bereich der Abschnitte O_R1, O_R2 und O_R3
bzw. O_L1, O_L2 und O_L3. Ein spezifisches Beispiel für eine erfindungsgemäße mutierte Lambda-Operatorsequenz ist die in SEQ
ID NO. 2 gezeigte Lambda-O_R-Operatorsequenz.

Die mutierten Operatorsequenzen erlauben die Herstellung von neuen temperaturregulierten Systemen zur Genexpression, bei denen die Kultivierung von Mikroorganismen, insbesondere Bakterien, im reprimierten Zustand bei variablen Temperaturen, vorzugsweise bei höheren Temperaturen als bisher, insbesondere 33 bis 39°C erfolgen kann. Ein Gegenstand der vorliegenden Erfindung ist somit die Verwendung der mutierten O_R- oder O_L- Operatorsequenzen zur temperaturregulierten Expression von Genen in Bakterien, insbesondere in gram-negativen Bakterien wie etwa E.coli. Durch Kombination einer Wildtyp-O_R- oder O_L- Operatorregion und mindestens einer Operatorregion, die eine erfindungsgemäße mutierte Operatorsequenz enthält, oder durch Kombination mehrerer Operatorregionen, die mutierte erfindungsgemäße Operatorsequenzen mit unterschiedlicher Thermostabilität enthalten, kann sogar eine temperaturregulierte

sequentielle Expression von Genen erreicht werden.

Vektoren und Bakterienstämme, in denen die erfindungsgemäßen mutierten Operatorsequenzen zur temperaturregulierten Expression von Genen eingesetzt werden können, sind dem Fachmann geläufig. Hier kann auf die aus dem Stand der Technik bekannten Expressionssysteme mit dem Lambda cI857-Repressor in Kombination mit einem geeigneten Promotor, z.B. dem Lambda-P_L oder dem Lambda-P_R-Promotor zurückgegriffen werden (vgl. z.B. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, 1989, Cold Spring Harbor Laboratory Press, New York, 17.11-17.12).

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nucleinsäure, umfassend eine bakterielle Expressionskontrollsequenz, d.h. eine Promotor- und Operatorregionen enthaltende Sequenz, die eine erfindungsgemäße mutierte O_R- oder O_L-Operatorsequenz enthält, in operativer Verknüpfung mit einer Protein-kodierenden Sequenz. Die Protein-kodierende Sequenz kann beispielsweise eine für ein eukaryontisches Protein oder Polypeptid kodierende Sequenz oder aber auch ein bakterielles Gen, z.B. das E-Lysegen sein.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, der mindestens eine Kopie der bakteriellen Expressionskontrollsequenz in operativer Verknüpfung mit der Protein-kodierenden Sequenz enthält. Dieser Vektor kann ein beliebiger prokaryontischer Vektor sein, z.B. ein chromosomaler Vektor wie etwa ein Bakteriophage oder ein extrachromosomaler Vektor wie etwa ein Plasmid. Geeignete prokaryontische Vektoren sind z.B. bei Sambrook et al., Supra, Kapitel 1-4, beschrieben.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Bakterienzelle, die mit einer erfindungsgemäßen Nucleinsäure oder einem erfindungsgemäßen Vektor transformiert ist. In einer bevorzugten Ausführungsform ist die Zelle eine gram-

- 8 -

negative prokaryontische Zelle, besonders bevorzugt eine E.coli-Zelle. Vorzugsweise enthält die Zelle die Nucleinsäure oder den Vektor in ihrem Chromosom integriert und enthält weiterhin ein Gen für einen cI-Repressor aus einem lambdoiden Phagen, insbesondere das Gen für den Lambda-cI857-Repressor.

Eine besonders bevorzugte Anwendung der erfindungsgemäßen mutierten Operatoren liegt auf dem Gebiet der Impfstoffherstellung. Aus dem Stand der Technik sind sogenannte "Bakterienghosts" als Impfstoffe bekannt, d.h. Bakterienhüllen, die mittels Protein-E-induzierter Lyse aus gram-negativen Bakterien, z.B. E.coli Salmonella typhimurium, Klebsiella pneumoniae, Actinobacillus pleuropneumoniae etc. hergestellt werden konnten. Diese Ghosts, die in der Beschaffenheit ihrer Zelloberfläche sowie den vom Immunsystem erkennbaren Repertoire an Oberflächenantigenen dem aktiven Pathogen weitgehend gleichen, rufen in verschiedenen Tiermodellen eine protektive zelluläre oder/und humorale Immunantwort hervor.

Die Herstellungsweise der Ghosts beruht auf der stringent kontrollierten Expression des E-Lysegens aus PhiX174, dessen Expressionsprodukt einen Tunnel durch die bakterielle Zellwandhülle ausbildet und so zum Ausströmen des Zellinhalts der Wirtszelle führt. Die Regulation dieses für die Zelle letalen Gens kann über einen Lambda-Repressor ausgeübt werden, z.B. den temperatursensitiven Lambda-Repressor cI857, der wie zuvor ausgeführt bei Temperaturen über 30°C seine Funktion verliert. Dies bedingte, daß die bisher zur Produktion von Bakterienghosts verwendeten Bakterienkulturen bei niedrigen Temperaturen, bevorzugt bei 28°C, angezogen werden mußten.

Gleichwohl es mit dieser Methodik zu befriedigenden Resultaten bezüglich der Immunogenität der hergestellten Ghosts gekommen ist, ist eine Verbesserung der Bakterienkultivierung dringend erstrebenswert, da das Repertoire der antigenen Determinanten auf der bakteriellen Oberfläche sich in Abhängigkeit der äußeren Bedingungen ändern kann. Da pathogene Bakterien, die

- 9 -

Mensch oder Tier befallen, meist in einer Umgebungstemperatur von 37 bis 39°C siedeln, sollte diese "natürliche" Umgebungstemperatur auch während des Herstellungsverfahrens von Ghosts eingehalten werden können.

Ein Verfahren zur Herstellung von Bakterienghosts, welches diese Aufgabe löst, wird durch Verwendung der erfindungsgemäßen mutierten Operatorsequenzen bereitgestellt. Diese Operatorsequenzen erlauben bis zu einem Temperaturbereich von vorzugsweise 35 bis 39°C das Wachstum der Bakterien und erlauben bei einer Temperaturerhöhung von 37 bis 42°C die Lyse. Dieses veränderte Lyseverhalten ermöglicht die Anzucht der Krankheitserreger nahe der Körpertemperatur des Impfkandidaten, was für die Zusammensetzung der äußeren Membran äußerst wichtig ist. Darüberhinaus kann die neue Lysekassette auch als Sicherheitskassette bei Lebendvakzinen eingesetzt werden, da z.B. im Menschen bei Induktion von Fieber (39°C) die Abtötung der Impfbakterien erfolgt.

20 Ein Gegenstand der vorliegenden Erfindung ist somit eine Impfstoffzusammensetzung, die eine lebende erfindungsgemäße Bakterienzelle als Wirkstoff gegebenenfalls mit pharmazeutisch verträglichen Hilfs-, Zusatz- und Trägerstoffen enthält. Die lebende Bakterienzelle enthält eine Nucleinsäure, umfassend 25 eine bakterielle Expressionskontrollsequenz mit einer mutierten Operatorsequenz in operativer Verknüpfung vorzugsweise mit einem Lysegen. Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Impfstoffzusammensetzung, die einen Bakterienghost als Wirkstoff gegebenenfalls mit pharmazeutisch ver-30 träglichen Hilf-, Zusatz- und Trägerstoffen enthält, wobei der durch Kultivierung einer erfindungsgemäßen Bakterienghost Bakterienzelle bei Temperaturen von 35 - 39°C und anschließende Lyse der Bakterienzelle durch Temperaturerhöhung erhältlich ist. Als Impfstoffe geeignete Bakterienzellen sind ins-35 besondere gram-negative Bakterien wie etwa E.coli, beispielsweise die Stämme STEC, EHEC, O78:K80, Salmonellen wie etwa S.choleraesuis, S.enteritidis und S.typhimurium, Pasteurella

- 10 -

multocida, Pasteurella haemolytica, Bordetella bronchiseptica, Klebsiella pneumoniae, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Vibrio cholerae, Helicobacter pylori, Alcaligenes eutrophus, Campylobacter jejuni und Pseudomonas aerusginosa.

Die erfindungsgemäßen modifizierten Impfstoffzusammensetzungen können oral, aerogen oder parenteral auf die Impfkandidaten übertragen werden. Dabei wird bei der Impfstoffapplikation vorzugsweise der natürliche Weg gewählt, den entsprechenden Mikroorganismen für die Infektion und die Anfangsstadien der Etablierung einer Infektionskrankheit wählen. Da bei den erfindungsgemäßen Vakzinen alle Oberflächeneigenschaften erhalten bleiben, kann durch diese Applikation eine lokale Induktion der Immunantwort erfolgen, wie sie auch beim natürlichen Infektionsprozess auftritt.

Wie oben ausgeführt, können durch Anwendung erfindungsgemäßer mutierter Operatorsequenzen Vakzine entwickelt werden, die bei Überschreiten einer Sollwert-Temperatur kontrolliert lysiert werden. Weiterhin kann jedoch auch eine kältesensitive Suizidkassette bereitgestellt werden, die gram-negative Bakterien, die als Lebendvakzine eingesetzt werden, bei Freisetzung in die Umwelt abtötet. So kann durch Kombination von zwei genetischen Regulationssystemen ein Absterben der Bakterien bei Unterschreiten eines Sollwerts der Umgebungstemperatur durch Expression des Suizidgens erfolgen. Diese Sicherheitskassette gewährleistet die Abtötung von Lebendvakzinen auch bei einer Ausscheidung aus dem Organismus.

30

Die Erfindung betrifft somit eine Nucleinsäure, umfassend (a) eine erste bakterielle Expressionskontrollsequenz, die eine O_R -oder O_L -Operatorsequenz aus einem lambdoiden Phagen enthält und an die ein erster temperatursensitiver cI Repressor aus lambdoiden Phagen binden kann, in operativer Verknüpfung mit einer für einen zweiten Repressor kodierenden Sequenz, wobei der zweite Repressor nicht an die erste bakterielle Expres-

- 11 -

sionssequenz binden kann, und (b) eine zweite bakterielle Expressionskontrollsequenz, an die der zweite Repressor binden kann, in operativer Verknüpfung mit einem Suizidgen.

Die Komponenten (a) und (b) können kovalent miteinander verknüpft, z.B. auf einen einzigen Vektor, vorliegen oder auch voneinander getrennt, z.B. auf unterschiedlichen Vektoren, sein, oder getrennt oder gemeinsam auf dem Chromosom eines Empfängerbakteriums lokalisiert sein.

10

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Bakterienzelle, die mindestens eine Kopie einer wie zuvor definierten Nucleinsäure enthält. Weiterhin enthält die Bakterienzelle zweckmäßigerweise ein Gen für den ersten Repressor. Der erste Repressor ist vorzugsweise der temperatursensitive

Der erste Repressor ist vorzugsweise der temperatursensitive cI857-Repressor.

Die erfindungsgemäße Sicherheitskassette enthält vorzugsweise ein Gen, welches für einen temperatursensitiven cI-Repressor, z.B. den Repressor cI857 kodiert, und ein Gen, das für einen zweiten Repressor kodiert, wobei dieses Gen unter Kontrolle einer Lambda-Promotor/Operator-Region steht, an die der temperatursensitive Repressor bindet. Der zweite Repressor steuert wiederum die Expression eines anderen Gens, z.B. eines Suizidgens, wie das E-Lysegen. Bei 37°C ist der temperatursensitive Lambda-Repressor inaktiv, so daß der zweite Repressor exprimiert wird, wodurch wiederum die Expression des Suizidgens reprimiert wird.

Bei Verringerung der Temperatur bindet der temperatursensitive Lambda-Repressor an den Operator, so daß die Expression des zweiten Repressors blockiert wird, was zu einer Expression des Suizidgens führt. Bevorzugt ist für diese Sicherheitskassette eine erste Expressionskontrollsequenz, die den mutierten Lambda-Operator enthält, da hierbei eine bessere und schnellere Aktivierung des Suizidgens erhalten wird.

- 12 -

Der zweite Repressor kann ein beliebiger Repressor sein, ein lac-Repressor. Bevorzugt ist jedoch die Verwendung eines weiteren Repressors aus lambdoiden Phagen, z.B. cI aus dem Phagen 434, der nicht temperatursensitiv ist und an eine eigene Operatorsequenz, aber nicht an die vom Lambda-Repressor cI857 erkannte Sequenz bindet.

Besonders bevorzugt ist es, für die Entwicklung von Lebendimpfstoffen sowohl eine Hitze- als auch ein Kälteregulationselement einzubauen. Dieses Einbauen erfolgt vorzugsweise durch homologe Rekombination in das Chromosom des Impfbakteriums.

Somit betrifft die vorliegende Erfindung auch eine Bakterienzelle, die neben den beiden Komponenten (a) und (b) als Komponente (c) eine dritte bakterielle Expressionskontrollsequenz, die eine erfindungsgemäße mutierte Operatorsequenz enthält, in operativer Verknüpfung mit einem Suizidgen umfaßt.

Auch diese Bakterienzellen können in Impfstoffzusammensetzun20 gen insbesondere für Lebendvakzine eingesetzt werden. Auf
diese Weise können wärme- oder/und kälteempfindliche Sicherheitslebendvakzine bereitgestellt werden, die bei einer Erhöhung der Körpertemperatur des Impfkandidaten, z.B. durch Fieber, oder/und bei Ausscheidung in die Umgebung zu einem Ab25 sterben der Impfbakterien führen.

Weiterhin soll die Erfindung durch die nachfolgenden Figuren, Sequenzprotokolle und Beispiele erläutert werden.

30 Es zeigen:

35

Fig. 1a die schematische Darstellung einer Lysekassette des Standes der Technik, umfassend eine Lambda- O_R -Wildtyp-Region, das Lambda-cI857-Gen unter Kontrolle des Promotors P_{RM} und das E-Lysegen unter Kontrolle des Promotors P_R ;

- 13 -

- Fig. 1b die schematische Darstellung einer erfindungsgemäßen Lysekassette, die eine mutierte Lambda-O_R-Sequenz enthält;
- Fig. 2a die schematische Darstellung einer kälteempfindlichen Sicherheitskassette, umfassend eine Wildtyp (pCS1) bzw. mutierte (pCSJ1) O_R-Operatorsequenz, das Lambda-cI857-Gen unter Kontrolle des Promotors PRM, das Gen des lacI-Repressors unter Kontrolle von PR und das E-Lysegen unter Kontrolle des lac-Promotor/-10 Operatorsystems, bei einer Temperatur, bei der der temperatursensitive Lambda-Repressor c1857 nicht an die Lambda O_R-Sequenz bindet;
 - Fig. 2b die schematische Darstellung der Sicherheitskassette gemäß Fig. 2a bei einer Temperatur, bei der der Lambda-Repressor cI857 an den Lambda O_R-Operator bindet;

15

- Fig. 3 die Lysekurve von Bakterienzellen (optische Dichte gegen Zeit), die ein Plasmid mit der in Fig. 1b gezeigten Lysekassette enthalten;
- die Lysekurve einer Bakterienzelle, die eine kälte-20 Fig. 4 sensitive Sicherheitskassette mit dem Wildtyp O_R -Operator enthält und
 - Fig. 5 ein Vergleich der Lysekurven von Bakterienzellen, die eine kältesensitive Sicherheitslysekassette mit dem Wildtyp O_R-Operator (pCS1) bzw. dem mutierten Operator (pCSJ1) enthalten,
- Fig. 6a die schematische Darstellung einer kältesensitiven Sicherheitskassette, umfassend eine Wildtyp (pCS2) bzw. mutierte (pCSJ2) O_R-Operatorsequenz, das LambdacI857-Gen unter Kontrolle des Promotors PRM, das Gen 30 des Phage 434 cI-Repressors unter Kontrolle von Lambda P_R und das E-Lysegen unter Kontrolle des 434 O_R $(P_{RM}-P_R)$ Promotor/Operator-Systems, bei einer Temperatur, bei der der temperatursensitive Lambda-Repressor cI857 nicht an die Lambda-O_R-Sequenz bindet, 35
 - Fig. 6b die schematische Darstellung der Sicherheitskassette gemäß Fig. 6a bei einer Temperatur, bei der der

Lambda-Repressor cI857 an den Lambda O_R -Operator bindet;

SEQ ID NO. 1 die Nucleotidsequenz des Lambda- O_R -Operators; die Operatorsequenz O_R 3 reicht von Position 11 - 27; die Operatorsequenz O_R 2 reicht von Position 34 - 41; die Operatorsequenz O_R 1 reicht von Position 58 - 74;

SEQ ID NO. 2 die Nucleotidsequenz eines mutierten Lambda- O_R -Operators, die gegenüber der Wildtypsequenz einen Austausch von T \rightarrow C an Position 42 aufweist;

SEQ ID NO. 3 die Nucleotidsequenz des Lambda-O_L-Operators; die Operatorsequenz O_L3 reicht von Position 11
- 27; die Operatorsequenz O_L2 reicht von Position 31 - 47; die Operatorsequenz O_L1 reicht von Position 55 - 70;

SEQ ID NO. 4 bis 6

20

25

30

35

ein 1601 bp langes DNA-Fragment des Plasmids pAW12; bp 1 - 983 stammen aus dem Bakteriophagen Lambda (Position 37125 - 38107; vgl. Sanger et al., J.Mol.Biol. 162 (1982), 729-773) und enthalten das Lambda-cI857-Gen (Position 816-106; SEQ ID NO. 5) sowie die mutierte O_R -Operatorregion (Mutation an Position 858 T \rightarrow C); bp 1023 - 1601 stammen aus dem Phagen PhiX174 (Position 1026; 447 vgl. Sanger J.Mol.Biol. 125 (1978), 225-246) und enthalten das E-Lysegen (Position 1144-1416; SEQ ID NO. 6);

SEQ ID NO. 7 bis 10

ein 2834 bp langes DNA-Fragment des Plasmids pCSJ; bp 1 - 983 stammen aus dem Bakteriophagen Lambda (Position 37125 - 38107) und enthalten das cI857-Gen (Postion 816-106; SEQ ID NO. 5) sowie die mutierte Lambda- O_R -Region (Mutation an Position 858 T \rightarrow C); bp 990 - 2230 stammen

- 15 -

aus dem E.coli lac-Operon subkloniert auf dem Plasmid pMC7 (Calos, Nature 274 (1978), 762-765) und enthalten das lacI-Repressorgen (bp 1025-2104; SEQ ID NO. 9) und den lac-Promotor/-Operator; bp 2256-2834 stammen aus dem Bakteriophagen PhiX174 (Position 447 - 1026) und enthalten das E-Lysegen (bp 2377-2649; SEQ ID NO. 10).

10 BEISPIELE

Beispiel 1:

1.1. Random-Mutagenese der Lambda-O_R-Operatorregion

15

Als Ausgangsmaterial wurde das Plasmid pAW12 (Witte und Lubitz, Eur.J.Biochem. 180 (1989), 393-398) gewählt, welches das Lysegen E aus dem Bakteriophagen PhiX174 unter Kontrolle des Lambda-P_R-Promotors sowie das zugehörige Repressorgen cI857 enthält. Ziel dieses Versuchs war eine Veränderung der Lysekassette, so daß das Lysegen E nicht bereits bei 30°C, sondern bei höheren Temperaturen aktiviert wird. Hierzu wurde der E.coli Mutatorstamm ES1578 (Wu et al., (1990), supra) mit dem Lyseplasmid transformiert und eine Selektion auf Klone mit einem veränderten Temperaturprofil der Zellyse durchgeführt.

Dabei wurden die aus der Transformation hervorgegangenen mutierten Klone nach Überstempeln auf Testplatten mit Lyseselektivmedium (LB mit 1% SDS) und Inkubation bei unterschiedlichen Temperaturen (z.B. 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C, 40°C, 41°C) erkannt. Durch Plasmidextraktion und anschließende Transformation in einen Nicht-Mutatorteststamm wurde das veränderte Lyseprofil der Lysekassette in Flüssigkultur genau bestimmt.

35

Die Art der Mutation wurde durch Subklonierung der mutagenisierten Lysekassetten in ein Sequenzierplasmid bestimmt. Zu-

- 16 -

sätzlich wurde zur funktionellen Prüfung das Lysegen E gegen das ß-Galactosidasegen ausgetauscht. Anhand eines einfachen ß-Gal-Tests konnte dann quantitativ der reprimierte oder aktive Zustand der Genkassette gemessen werden.

5

Auf diese Weise konnten mehrere Klone mit einem unterschiedlichen Temperaturlyseprofil erhalten werden. Diese Klone erlaubten in einem Temperaturbereich von 33-39°C das Wachstum der Bakterien und führten erst bei einer weiteren Temperaturerhö-10 hung auf 37-42°C zur Lyse der Bakterien.

Durch Sequenzierung eines mutierten Klons, der eine Temperaturbeständigkeit bis 37°C aufweist, wurde eine Mutation der O_R -Operatorregion (SEQ ID NO. 2) identifiziert.

15

1.2. Verifizierung der Mutation

Zur Verifizierung der in Beispiel 1.1. erhaltenen Mutation wurde eine ortsspezifische Mutagenese der Lambda O_R -Wildtypse20 quenz unter Verwendung eines Oligonucleotids durchgeführt.

Die Mutagenese wurde ausgeführt nach dem Protokoll von Kunkel (Proc.Natl.Acad.Sci. USA 82 (1985), 488-492).

- 25 4 ml Übernachtkultur des E.coli-Stammes CJ236 (dut ung wurden in 50 ml LB-Medium (+ 10 μ g/ml Chloramphenicol und 0,25 μ g/ml Uridin) gegeben und 30 min bei 37°C geschüttelt. Dann wurden 100 μ l M13-Phagen zugesetzt und 6 h bei 37°C inkubiert.
- Die Kultur wurde in 2 SS34-Zentrifugenröhrchen 10 min bei 14000 Upm und 4°C zentrifugiert, der Überstand in neue Röhrchen dekantiert und zur weiteren Reingigung nochmals zentrifugiert.
- Durch Zugabe von 5 ml 5x Polyethylenglycol/NaCl wurden die Phagen 1 h bei 4°C gefällt. Dann wurde 10 min bei 14000 Upm und 4°C zentrifugiert und der Überstand verworfen.

- 17 -

Das Pellet wurde getrocknet, in 0,8 ml TES-Puffer (0,1 M Tris HCl, pH 8; 0,3 M NaCl; 1mM EDTA) suspendiert und 1 h bei 4°C inkubiert. Die Suspension wurde auf 2 Eppendorfgefäße aufgeteilt und 5 min bei 5000 Upm zentrifugiert. Der Überstand, in dem sich die aufgebrochenen Phagen befanden, wurde abgenommen und einer Phenol/Chloroform-Extraktion zur Gewinnung der DNA unterzogen. Die resultierende DNA wurde mit dem 2,5-fachen Volumen 96% Ethanol gefällt, mit 70% Ethanol gewaschen und in 60 μl H₂O aufgenommen.

10

Ein Oligonucleotid mit der Sequenz 5'-GTA AAA TAG TCA ACA CGC GCG GTG TTA GAT ATT TAT C-3' wurde phosphoryliert. Hierzu wurden 20 μ l H₂O, 20 μ l Oligonucleotid (20 ng), 4,5 μ l Kinase-Puffer (Stratagene) und 0,5 μ l Polynu-15 cleotidkinase (5 U, Stratagene) 1 h bei 37°C inkubiert. Dann wurden 7 μ l 0,1 M EDTA zugegeben und 10 min auf 65°C erhitzt.

Zum Annealing wurden 20 μ l phosphoryliertes Oligonucleotid, 3,5 μ l einzelsträngige DNA-Matrize (1 μ g ssDNA wie zuvor beschrieben hergestellt) und 1,4 μ l 20 x SSC-Puffer 5 min auf 70°C erhitzt, langsam bis 25°C abgekühlt und dann auf Eisgestellt.

Zur Extension wurden 10 μ l des Reaktionsgemisches aus dem 25 Annealingansatz, 37,5 μ l XL-Puffer (27 mM Hepes pH 7,8, jeweils 5 mM dNTP, 13 mM MgCl₂, 2,7 mM Dithiothreitol, 1,3 mM ATP, 1 μ l Ligase (1 U, Boehringer Mannheim), 1,5 μ l T4-Polymerase (1,5 U, Boehringer Mannheim), 1,5 μ l T4-Gen32-Protein (8 μ g, Boehringer Mannheim) 10 min auf Eis, 10 min bei Raumtemperatur und 2 h bei 37°C inkubiert. Nach 1 h erfolgte die Zugabe von 1 μ l Ligase und 1 μ l T4-DNA-Polymerase. Nach Beendigung der Inkubation wurde die Reaktion durch Zugabe von 3 μ l 0,25 M EDTA gestoppt.

JM103 (Messing et al., Nucleic Acids.Res. 9 (1981), 309-321) mit 10 μ l DNA aus dem Extensionsansatz versetzt und 1 h oder

- 18 -

mehr auf Eis inkubiert. Nach einem Hitzeschock für 2,5 min bei 42°C wurden 0,2 ml frische JM103-Zellen in der logarithmischen Wachstumsphase zugesetzt. Die Zellen wurden mit 3 ml Soft Agar vermischt und auf eine LB-Agarplatte ausgeimpft. Anschließend erfolgte Inkubation über Nacht bei 37°C.

Zur Identifizierung der Mutanten wurden mit einer Pasteurpipette Plaques ausgestochen und in 5 ml LB-Medium, dem 400 μ l einer Übernachtkultur von E.coli JM103 zugesetzt wurden, angeimpft. Nach 3 h Wachstum bei 37°C wurden die Zellen abzentrifugiert. Aus dem Zellpellet wurden mittels Plasmidpräparation doppelsträngige M13-Plasmide gewonnen. Aus dem Überstand können einzelsträngige M13-Phagen isoliert werden.

15 Beispiel 2:

Analyse der mutagenisierten Lysekassetten

Die Figuren 1 und 2 zeigen unterschiedliche E-spezifische 20 Lysekassetten mit verschiedenen Temperaturinduktionen der Lysefunktion.

In Fig. 1a, welches die Wildtyp-Lambda-O_R-Operatorsequenz enthält, erfolgt bis 30°C eine Repression der Funktion des E-Lysegens durch das cI857-kodierte Repressorprotein am vorgeschalteten Lambda-P_R-Promotor/Operatorbereich. Bei Temperaturen über 30°C werden cI857-spezifische Repressormoleküle thermisch inaktiviert und die Expression des E-Gens induziert. Fig. 1b zeigt das Plasmid pAWJ12, welches eine mutierte Operatorsequenz (SEQ ID NO. 2) enthält, so daß die Repression der Lysefunktion des Gens E mit Hilfe von cI857 bis 37°C erfolgt und eine Induktion der Lysefunktion erst bei 39°C oder höher erfolgt.

In Fig. 2 ist die Funktion einer kältesensitiven Sicherheitskassette erläutert. Fig. 2a zeigt, daß in den Plasmiden pCS1 (Wildtypoperator) und pCSJ1 (mutierter Operator) bei einer

- 19 -

Temperatur von ≥ 32°C (pCS1) bzw. ≥ 39°C (pCSJ1) die Bildung von lacI-spezifischen Repressormolekülen induziert wird, die wiederum die Expression des E-Gens reprimieren. Bei einer Temperatur unterhalb von 30°C (pCS1) bzw. 37°C (pCSJ1) kommt es zur Ausbildung von funktionsfähiger cI857-Repressormolekülen unterbinden und so die Expression des E-Gens freigeben (Fig. 2b). Im Plasmid pCSJ1 erfolgt die einhergehende Zellyse schneller als in pCS1.

10

Fig. 3 zeigt die Lysekurve einer das Plasmid pAWJ12 (mutierter Operator) enthaltenden Bakterienzelle. 3 Stunden nach Beginn der Kultivierung wurde die Temperatur von 37°C in einem Aliquot der Bakterienzellen beibehalten, und in zwei anderen Aliquots auf 38 bzw. 42°C erhöht. Bei 37°C findet man ein weiteres Wachstum der Bakterien, während bei 38°C bereits eine Lyse stattfindet. Bei 42°C ist die Lyse deutlich verstärkt.

Die Figuren 4 und 5 zeigen die Funktion einer kältesensitiven Sicherheitskassette. In Fig. 4 wurden Bakterienzellen, die das Plasmid pCS1 (Wildtypoperator) enthielten, einer Temperaturänderung von 37 auf 28°C ausgesetzt. Diese Temperaturverringerung führte zu einem Anschalten des E-Lysegens und zu einem Absterben der Zellen (Abnahme der optischen Dichte).

25

Fig. 5 zeigt einen Vergleich der Lysegeschwindigkeit von Bakterien, die das Plasmid pCS1 (Wildtypoperator) und das Plasmid pCSJ1 (mutierter Operator) enthalten. Es ist zu erkennen, daß die Lyse bei den Bakterien, welche den mutierten Operator enthalten, wesentlich schneller stattfindet.

Fig. 6 zeigt eine weitere kältesensitive Sicherheitskassette. Die Plasmide pCS2 (Wildtyp-Operator) und pCSJ2 (mutierter Operator) zeigen bei Temperaturen, bei denen der Lambda cI857Repressor nicht an den Operator bindet, die Bildung von cI-434 Repressormolekülen, die die Expression des E-Gens reprimieren (Fig. 6a). Bei einer Temperatur, bei der der cI857-Repressor

an den Lambda-Operator bindet, wird die Bildung von cI-434spezifischen Repressormolekülen unterbunden und so die Expression des E-Gens freigegeben (Fig. 6b).

5 Beispiel 3:

In vivo Analyse von kältesensitiven Lysekassetten

Es wurde die Abtötung von Bakterien durch Temperaturerniedri-10 gung nach Passage durch einen Mäusedarm und Freisetzung durch Kot bestimmt.

Hierzu wurden jeweils einmal 10¹⁰ E.coli Bakterien Balb/c-Mäusen verabreicht und die im Kot freigesetzte Anzahl von Bakterien bestimmt. Die Auswertung erfolgte auf E.coli-spezifischen Endoplatten (Endo, Zentralbl. Bakt. I Orig. 35 (1904) 109-110) mit Tetrazyklin als Marker für die eingesetzten Plasmide. Die Inkubation erfolgte bei 28°C.

20 Ergebnis:

Gegenüber einer Kontrolle aus E.coli NM522 (pAWJ-lac) kommt es bei den Versuchsgruppen E.coli NM522 (pCS2), E.coli MC4100 (pCS1) und E.coli MC4100 (pCSJ1) zu einer Keimzahlreduktion von mindestens 99,9 %, 98% und 80% gemessen 10 h und 20 h nach Verabreichung der E.coli Bakterien.

- 21 -

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE ANGABEN:	
10	 (i) ANMELDER: (A) NAME: Prof. Dr. Werner Lubitz (B) STRASSE: Schoenborngasse 12/7 (C) ORT: Wien (E) LAND: Oesterreich (F) POSTLEITZAHL: 1080 	
15	(ii) BEZEICHNUNG DER ERFINDUNG: Neue Systeme zur Regula- tion der Genexpression	
20	(iii) ANZAHL DER SEQUENZEN: 10	
25	<pre>(iv) COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30</pre>	
30	(2) ANGABEN ZU SEQ ID NO: 1:	
35	 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 82 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear 	
0 10	(vi) URSPRÜNGLICHE HERKUNFT: (A) ORGANISMUS: Lambda-OR-Operator (Wildtyp)	
15	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
	ACGTTAAATC TATCACCGCA AGGGATAAAT ATCTAACACC GTGCGTGTTG ACTATTTTAC 6	0
50	CTCTGGCGGT GATAATGGTT GC 8:	2

	- 22 -	
	(2) ANGABEN ZU SEQ ID NO: 2:	
5	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 82 Basenpaare(B) ART: Nucleotid(C) STRANGFORM: beides(D) TOPOLOGIE: linear	
10		
	<pre>(vi) URSPRÜNGLICHE HERKUNFT:</pre>	
15	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
	ACGTTAAATC TATCACCGCA AGGGATAAAT ATCTAACACC GCGCGTGTTG ACTATTTTAC	60
20	CTCTGGCGGT GATAATGGTT GC	82
25	(2) ANGABEN ZU SEQ ID NO: 3:	
30	 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 85 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear 	
35	<pre>(vi) URSPRÜNGLICHE HERKUNFT: (A) ORGANISMUS: Lambda-OL-Operator (Wildtyp)</pre>	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
40	ACATACAGAT AACCATCTGC GGTGATAAAT TATCTCTGGC GGTGTTGACA TAAATACCAC	60
	TGGCGGTGAT ACTGAGCACA TCAGC	85
45	(2) ANGABEN ZU SEQ ID NO: 4:	
50	 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 1601 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: beides 	
55	(vi) URSPRÜNGLICHE HERKUNFT: (A) ORGANISMUS: pAW12 Fragment	

- 23 -

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:complement (106..816)

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: CDS

(B) LAGE:1144..1416

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

15	ATTI	CACT	ATG	TTAT	GTTC:	rg A	GGGG.	AGTG	AA A	ATTC	CCCT	AAT'	rcga:	rga	AGAT'	TCTTGC	60
	TCAA	ATTG:	TA	TCAG	CTATO	GC G	CCGA	CCAG	A AC	ACCT'	TGCC	GAT	CAGC	CAA	ACGT	CTCTTC	120
	AGGC	CAC	ГGА	CTAG	CGAT	AA C	TTTC	CCCA	CAA	CGGA	ACAA	CTC	rcat'	rgc	ATGG	GATCAI	180
20	TGGG	TAC	rgt	GGGT'	TTAG	rg g	TTGT	AAAA	A CA	CCTG	ACCG	CTA:	rccci	rga	TCAG'	TTTCTI	240
	GAAG	GTA	AAC	TCAT	CACC	cc c	AAGT	CTGG	TA'	TGCA	GAAA	TCA	CCTGC	GCT	CAAC	AGCCTG	300
25	CTCA	GGG:	ГСА	ACGA	GAATT	A A	CATT	CCGT	CAG	GAAA	GCTT	GGC:	rtgg <i>i</i>	AGC	CTGT	TGGTGC	360
25	GGTC	ATG	SAA	TTAC	CTTC	AA C	CTCA	AGCC	A GA	ATGC	AGAA	TCA	CTGGC	CTT	TTTT	GGTTGI	420
	GCTT	ACC	CAT	CTCT	CCGC	AT C	ACCT	rtggi	C AA	AGGT'	TCTA	AGC:	TAGO	FT G	AGAA	CATCCC	480
30	TGCC	TGA	ACA ,	TGAG	AAAA	AA C	AGGG'	FACTO	AT.	ACTC	ACTT	CTA	AGTGA	ACG	GCTG	CATACI	540
	AACC	GCT:	CA	TACA:	CTC	A T	GATT'	rc r c7	GG	CGAT'	TGAA	GGG	CTAAA	TT	CTTC	AACGCT	600
	AACT	TTGA	AGA	ATTT	rtgt <i>i</i>	A G	CAAT	GCGG	GT	TATA	AGCA	TTT	AATGO	CAT	TGAT	GCCATI	660
35	TAAA)AAA'	SCA	CCAA	CGCCI	G A	CTGC	CCAI	. cc	CCAT	CTTG	TCTC	GCGAC	CAG	ATTC	CTGGGA	720
	TAAG	CCA	AGT	TCAT	TTTTC	T T	TTTT	CAT	AA A	rtgc:	TTTA	AGG	CGAC	TG	CGTC	CTCAAG	780
40	CTGC	TCT	rgt	GTTA	ATGGI	T T	CTTT	rttgi	GC:	rcat:	ACGT	TAAI	ATCTA	ATC	ACCG	CAAGGG	840
	ATAA	CATA	CT	AACA	CCGCG	C G	rgtt	GACTA	TT:	TAC	CTCT	GGC	GTG <i>P</i>	ATA	ATGG:	TTGCAT	900
	GTAC	CAAT	TA	GGTT	TATE	G A	ACAA	CGCAI	AA C	CCT	GAAA	GAT	CATGO	CAA	TGCG	CTTTGG	960
45	GCAA	ACC	AAG	ACAG	CTAAA	G A	rccr	CTAGA	GT	CGAC	CTGC	AGG	CATGO	CAA	GCTT	ATCGAA	1020
	TTCT	CATI	CA	GGCT:	rctgo	:C G:	rttt(GATI	TA	ACCG2	AAGA	TGAT	TTC	TAE	TTTC	IGACGA	1080
50	GTAA	.CAA	GT	TTGG	ATTGO	A T	CTGA	CCGC1	CT	CGTG	CTCG	TCG	CTGCG	STT	GAGG	CTTGCG	1140
				CGC Arg													1188
55				TTG Leu													1236
€0				CCT Pro 35											Lys		1284

1332

1380

1426

1486 1546 1601

	•																
	TTA Leu	TTA Leu	ATG Met 50	Ala	TCG Ser	AGC Ser	GTC Val	CGG Arg 55	TTA Leu	AAG Lys	CCG Pro	CTG Leu	AAT Asn 60	TGT Cys	TCG Ser	CGT Arg	
5	TTA Leu	CCT Pro 65	Cys	GTG Val	TAC Tyr	GCG Ala	CAG Gln 70	GAA Glu	ACA Thr	CTG Leu	ACG Thr	TTC Phe 75	TTA Leu	CTG Leu	ACG Thr	CAG Gln	
10	AAG Lys 80	Lys	ACG Thr	TGC Cys	GTC Val	AAA Lys 85	AAT Asn	TAC Tyr	GTG Val	CAG Gln	AAG Lys 90	GAG Glu	TGA'	TGTA	ATG		
	TCT	AAAG	GTA .	AAAA	ACGT	TC TO	GGCG	CTCG	c cc	TGGT	CGTC	CGC	AGCC	GTT	GCGA	GGTACT	
15	AAA	GGCA	AGC (GTAA	AGGC	GC T	CGTC'	TTTG	G TA	rgta(GGTG	GTC	AACA	ATT	TTAA	TTGCAG	
	GGG	CTTC	GGC (CCTT	ACTT(GA G	GATA:	AATT	A TG	rcta.	TAT	TCAZ	AACT	GGC	GCCG	A	
20				EN Z													
25			(i)		LÄ: AR	NZKI NGE: T: A POLC	: 23 Amin	7 A	mino ure	osäu	ıren						
30				ART SEQU								NO:	: 5:				
35	Met 1	Ser	Thr	Lys	Lys 5	Lys	Pro	Leu	Thr	Gln 10	Glu	Gln	Leu	Glu	Asp 15	Ala	
40	Arg	Arg	Leu	Lys 20	Ala	Ile	Tyr	Glu	Lys 25	Lys	Lys	Asn	Glu	Leu 30	Gly	Leu	
	Ser	Gln	Glu 35	Ser	Val	Ala	Asp	Lys 40	Met	Gly	Met	Gly	Gln 45	Ser	Gly	Val	
45	Gly	Ala 50	Leu	Phe	Asn	Gly	Ile 55	Asn	Ala	Leu	Asn	Ala 60	Tyr	Asn	Ala	Ala	
	Leu 65	Leu	Thr	Lys	Ile	Leu 70	Lys	Val	Ser	Val	Glu 75	Glu	Phe	Ser	Pro	Ser 80	
50	Ile	Ala	Arg	Glu	Ile 85	Tyr	Glu	Met	Tyr	Glu 90	Ala	Val	Ser	Met	Gln 95	Pro	
e e	Ser	Leu	Arg	Ser 100	Glu	Tyr	Glu	Tyr	Pro 105	Val	Phe	Ser	His	Val 110	Gln	Ala	
55	Gly	Met	Phe 115	Ser	Pro	Lys	Leu	Arg 120	Thr	Phe	Thr	Lys	Gly 125	Asp	Ala	Glu	
60	Arg	Trp 130	Val	Ser	Thr	Thr	Lys 135	Lys	Ala	Ser	Asp	Ser 140	Ala	Phe	Trp	Leu	

Glu Val Glu Gly Asn Ser Met Thr Ala Pro Thr Gly Ser Lys Pro Ser 145 150 155 160

- 25 -

Phe Pro Asp Gly Met Leu Ile Leu Val Asp Pro Glu Gln Ala Val Glu 165 170 175

Pro Gly Asp Phe Cys Ile Ala Arg Leu Gly Gly Asp Glu Phe Thr Phe 180 185 190

Lys Lys Leu Ile Arg Asp Ser Gly Gln Val Phe Leu Gln Pro Leu Asn 195 200 205

10 Pro Gln Tyr Pro Met Ile Pro Cys Asn Glu Ser Cys Ser Val Val Gly
210 215 220

Lys Val Ile Ala Ser Gln Trp Pro Glu Glu Thr Phe Gly 225 230 235

15

- (2) ANGABEN ZU SEQ ID NO: 6:
- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 91 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

25

20

- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

30

Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe Leu Leu Leu 1 5 10 15

35 Ser Leu Leu Pro Ser Leu Leu Ile Met Phe Ile Pro Ser Thr Phe 20 25 30

Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu Arg Lys Thr Leu 35 40 45

Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn Cys Ser Arg Leu 50 60

Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu Leu Thr Gln Lys
65 70 75 80

Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu 85 90

50

55

- (2) ANGABEN ZU SEQ ID NO: 7:
 - (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 2834 Basenpaare

- (B) ART: Nucleotid
- (C) STRANGFORM: Doppelstrang
- (D) TOPOLOGIE: beides

	(V1)	URSPRUNGLICHE HERKUNFT: (A) ORGANISMUS: pCSJ Fragment	
5	(ix)	MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:complement (106816)	
10	(ix)	MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:10252104	
15	(ix)	MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:23772649	
20	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
	ATTTACTATG	TTATGTTCTG AGGGGAGTGA AAATTCCCCT AATTCGATGA AGATTCTTGC	60
25	TCAATTGTTA	TCAGCTATGC GCCGACCAGA ACACCTTGCC GATCAGCCAA ACGTCTCTTC	120
	AGGCCACTGA	CTAGCGATAA CTTTCCCCAC AACGGAACAA CTCTCATTGC ATGGGATCAT	180
	TGGGTACTGT	GGGTTTAGTG GTTGTAAAAA CACCTGACCG CTATCCCTGA TCAGTTTCTT	240
30	GAAGGTAAAC	TCATCACCCC CAAGTCTGGC TATGCAGAAA TCACCTGGCT CAACAGCCTG	300
	CTCAGGGTCA	ACGAGAATTA ACATTCCGTC AGGAAAGCTT GGCTTGGAGC CTGTTGGTGC	360
35	GGTCATGGAA	TTACCTTCAA CCTCAAGCCA GAATGCAGAA TCACTGGCTT TTTTGGTTGT	420
	GCTTACCCAT	CTCTCCGCAT CACCTTTGGT AAAGGTTCTA AGCTTAGGTG AGAACATCCC	480
10	TGCCTGAACA	TGAGAAAAA CAGGGTACTC ATACTCACTT CTAAGTGACG GCTGCATACT	540
• 0	AACCGCTTCA	TACATCTCGT AGATTTCTCT GGCGATTGAA GGGCTAAATT CTTCAACGCT	600
	AACTTTGAGA	ATTTTTGTAA GCAATGCGGC GTTATAAGCA TTTAATGCAT TGATGCCATT	660
15	AAATAAAGCA	CCAACGCCTG ACTGCCCCAT CCCCATCTTG TCTGCGACAG ATTCCTGGGA	720
	TAAGCCAAGT	TCATTTTCT TTTTTCATA AATTGCTTTA AGGCGACGTG CGTCCTCAAG	780
50	CTGCTCTTGT	GTTAATGGTT TCTTTTTGT GCTCATACGT TAAATCTATC ACCGCAAGGG	840
	ATAAATATCT	AACACCGCGC GTGTTGACTA TTTTACCTCT GGCGGTGATA ATGGTTGCAT	900
	GTACTAAGTA	GGTTGTATGG AACAACGCAT AACCCTGAAA GATTATGCAA TGCGCTTTGG	960
55	GCAAACCAAG	ACAGCTAAAG ATCCTCTAGA GCGCCCGGAA GAGAGTCAAT TCAGGGTGGT	1020
50	GAAT GTG AA Val Ly	AA CCA GTA ACG TTA TAC GAT GTC GCA GAG TAT GCC GGT GTC ys Pro Val Thr Leu Tyr Asp Val Ala Glu Tyr Ala Gly Val 95 100 105	1069
	TCT TAT CAC Ser Tyr Glr	G ACC GTT TCC CGC GTG GTG AAC CAG GCC AGC CAC GTT TCT n Thr Val Ser Arg Val Val Asn Gln Ala Ser His Val Ser 110 120	1117

- 27 -

	GCG Ala	AAA Lys	ACG Thr 125	CGG Arg	GAA Glu	AAA Lys	GTG Val	GAA Glu 130	GCG Ala	GCG Ala	ATG Met	GCG Ala	GAG Glu 135	CTG Leu	AAT Asn	TAC Tyr	1165
5	ATT Ile	CCC Pro 140	AAC Asn	CGC Arg	GTG Val	GCA Ala	CAA Gln 145	CAA Gln	CTG Leu	GCG Ala	GGC Gly	AAA Lys 150	CAG Gln	TCG Ser	TTG Leu	CTG Leu	1213
10	ATT Ile 155	GGC Gly	GTT Val	GCC Ala	ACC Thr	TCC Ser 160	AGT Ser	CTG Leu	GCC Ala	CTG Leu	CAC His 165	GCG Ala	CCG Pro	TCG Ser	CAA Gln	ATT Ile 170	1261
15	GTC Val	GCG Ala	GCG Ala	ATT Ile	AAA Lys 175	TCT Ser	CGC Arg	GCC Ala	GAT Asp	CAA Gln 180	CTG Leu	GGT Gly	GCC Ala	AGC Ser	GTG Val 185	GTG Val	1309
20	GTG Val	TCG Ser	ATG Met	GTA Val 190	GAA Glu	CGA Arg	AGC Ser	GGC Gly	GTC Val 195	GAA Glu	GCC Ala	TGT Cys	AAA Lys	GCG Ala 200	GCG Ala	GTG Val	1357
	CAC His	AAT Asn	CTT Leu 205	CTC Leu	GCG Ala	CAA Gln	CGC Arg	GTC Val 210	AGT Ser	GGG Gly	CTG Leu	ATC Ile	ATT Ile 215	AAC Asn	TAT Tyr	CCG Pro	1405
25	CTG Leu	GAT Asp 220	GAC Asp	CAG Gln	GAT Asp	GCC Ala	ATT Ile 225	GCT Ala	GTG Val	GAA Glu	GCT Ala	GCC Ala 230	TGC Cys	ACT Thr	AAT Asn	GTT Val	1453
30	CCG Pro 235	GCG Ala	TTA Leu	TTT Phe	CTT Leu	GAT Asp 240	GTC Val	TCT Ser	GAC Asp	CAG Gln	ACA Thr 245	CCC Pro	ATC Ile	AAC Asn	AGT Ser	ATT Ile 250	1501
35	ATT Ile	TTC Phe	TCC Ser	CAT His	GAA Glu 255	GAC Asp	GGT Gly	ACG Thr	CGA Arg	CTG Leu 260	GGC Gly	GTG Val	GAG Glu	CAT His	CTG Leu 265	GTC Val	1549
40	GCA Ala	TTG Leu	GGT Gly	CAC His 270	CAG Gln	CAA Gln	ATC Ile	GCG Ala	CTG Leu 275	TTA Leu	GCG Ala	GGC Gly	CCA Pro	TTA Leu 280	AGT Ser	TCT Ser	1597
••	GTC Val	TCG Ser	GCG Ala 285	CGT Arg	CTG Leu	CGT Arg	CTG Leu	GCT Ala 290	GGC Gly	TGG Trp	CAT His	AAA Lys	TAT Tyr 295	CTC Leu	ACT Thr	CGC Arg	1645
45	AAT Asn	CAA Gln 300	Ile	CAG Gln	CCG Pro	Ile	GCG Ala 305	Glu	CGG Arg	GAA Glu	GGC Gly	GAC Asp 310	TGG Trp	AGT Ser	GCC Ala	ATG Met	1693
50	TCC Ser 315	GGT Gly	TTT Phe	CAA Gln	CAA Gln	ACC Thr 320	ATG Met	CAA Gln	ATG Met	CTG Leu	AAT Asn 325	GAG Glu	GGC Gly	ATC Ile	GTT Val	CCC Pro 330	1741
55	ACT Thr	GCG Ala	ATG Met	CTG Leu	GTT Val 335	GCC Ala	AAC Asn	GAT Asp	CAG Gln	ATG Met 340	GCG Ala	CTG Leu	GGC Gly	GCA Ala	ATG Met 345	CGC Arg	1789
60	GCC Ala	ATT Ile	ACC Thr	GAG Glu 350	TCC Ser	GGG Gly	CTG Leu	CGC Arg	GTT Val 355	GGT Gly	GCG Ala	GAT Asp	ATC Ile	TCG Ser 360	GTA Val	GTG Val	1837
	GGA Gly	TAC Tyr	GAC Asp 365	GAT Asp	ACC Thr	GAA Glu	GAC Asp	AGC Ser 370	TCA Ser	TGT Cys	TAT Tyr	ATC Ile	CCG Pro 375	CCG Pro	TCA Ser	ACC Thr	1885
65	ACC Thr	ATC Ile 380	AAA Lys	CAG Gln	GAT Asp	TTT Phe	CGC Arg 385	CTG Leu	CTG Leu	GGG Gly	CAA Gln	ACC Thr 390	AGC Ser	GTG Val	GAC Asp	CGC Arg	1933

- 28 -

	TTG CTG CAA CTC TCT CAG GGC CAG GCG GTG AAG GGC AAT CAG CTG TTG Leu Leu Gln Leu Ser Gln Gly Gln Ala Val Lys Gly Asn Gln Leu Leu 395 400 405 410	1981
5	CCC GTC TCA CTG GTG AAA AGA AAA ACC ACC CTG GCG CCC AAT ACG CAA Pro Val Ser Leu Val Lys Arg Lys Thr Thr Leu Ala Pro Asn Thr Gln 415 420 425	2029
10	ACC GCC TCT CCC CGC GCG TTG GCC GAT TCA TTA ATG CAG CTG GCA CGA Thr Ala Ser Pro Arg Ala Leu Ala Asp Ser Leu Met Gln Leu Ala Arg 430 435 440	2077
15	CAG GTT TCC CGA CTG GAA AGC GGG CAG TGAGCGCAAC GCAATTAATG Gln Val Ser Arg Leu Glu Ser Gly Gln 445 450	2124
	TGAGTTAGCT CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT	2184
20	TGTGTGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTCTGCA GGCATGCAAG	2244
	CTTATCGAAT TCTCATTCAG GCTTCTGCCG TTTTGGATTT AACCGAAGAT GATTTCGATT	2304
	TTCTGACGAG TAACAAAGTT TGGATTGCTA CTGACCGCTC TCGTGCTCGT CGCTGCGTTG	2364
25	AGGCTTGCGT TT ATG GTA CGC TGG ACT TTG TGG GAT ACC CTC GCT TTC Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe 1 5 10	2412
30	CTG CTC CTG TTG AGT TTA TTG CTG CCG TCA TTG CTT ATT ATG TTC ATC Leu Leu Leu Ser Leu Leu Pro Ser Leu Leu Ile Met Phe Ile 15 20 25	2460
35	CCG TCA ACA TTC AAA CGG CCT GTC TCA TCA TGG AAG GCG CTG AAT TTA Pro Ser Thr Phe Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu 30 35 40	2508
40	CGG AAA ACA TTA TTA ATG GCG TCG AGC GTC CGG TTA AAG CCG CTG AAT Arg Lys Thr Leu Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn 50 55 60	2556
40	TGT TCG CGT TTA CCT TGC GTG TAC GCG CAG GAA ACA CTG ACG TTC TTA Cys Ser Arg Leu Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu 65 70 75	2604
45	CTG ACG CAG AAG AAA ACG TGC GTC AAA AAT TAC GTG CAG AAG GAG Leu Thr Gln Lys Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu 80 85 90	2649
5.0	TGATGTAATG TCTAAAGGTA AAAAACGTTC TGGCGCTCGC CCTGGTCGTC CGCAGCCGTT	2709
50	GCGAGGTACT AAAGGCAAGC GTAAAGGCGC TCGTCTTTGG TATGTAGGTG GTCAACAATT	2769
	TTAATTGCAG GGGCTTCGGC CCTTACTTGA GGATAAATTA TGTCTAATAT TCAAACTGGC	2829
55	GCCGA	2834

(2) ANGABEN ZU SEQ ID NO: 8:

60

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 237 Aminosäuren(B) ART: Aminosäure
- (D) TOPOLOGIE: linear

- 29 -

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

5 Met Ser Thr Lys Lys Lys Pro Leu Thr Gln Glu Gln Leu Glu Asp Ala 1 5 10 - 15

Arg Arg Leu Lys Ala Ile Tyr Glu Lys Lys Lys Asn Glu Leu Gly Leu 20 25 30

Ser Gln Glu Ser Val Ala Asp Lys Met Gly Met Gly Gln Ser Gly Val
35 40 45

Gly Ala Leu Phe Asn Gly Ile Asn Ala Leu Asn Ala Tyr Asn Ala Ala 5 50 60

Leu Leu Thr Lys Ile Leu Lys Val Ser Val Glu Glu Phe Ser Pro Ser 65 70 75 80

20 Ile Ala Arg Glu Ile Tyr Glu Met Tyr Glu Ala Val Ser Met Gln Pro 85 90 95

Ser Leu Arg Ser Glu Tyr Glu Tyr Pro Val Phe Ser His Val Gln Ala 100 105 110

Gly Met Phe Ser Pro Lys Leu Arg Thr Phe Thr Lys Gly Asp Ala Glu 115 120 125

Arg Trp Val Ser Thr Thr Lys Lys Ala Ser Asp Ser Ala Phe Trp Leu 130 130 140

Glu Val Glu Gly Asn Ser Met Thr Ala Pro Thr Gly Ser Lys Pro Ser 145 150 155 160

35 Phe Pro Asp Gly Met Leu Ile Leu Val Asp Pro Glu Gln Ala Val Glu 165 170 175

Pro Gly Asp Phe Cys Ile Ala Arg Leu Gly Gly Asp Glu Phe Thr Phe 180 185 190

Lys Lys Leu Ile Arg Asp Ser Gly Gln Val Phe Leu Gln Pro Leu Asn 195 200 205

Pro Gln Tyr Pro Met Ile Pro Cys Asn Glu Ser Cys Ser Val Val Gly
215 220

Lys Val Ile Ala Ser Gln Trp Pro Glu Glu Thr Phe Gly 225 230 235

(2) ANGABEN ZU SEQ ID NO: 9:

55

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 360 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear
- 60 (ii) ART DES MOLEKÜLS: Protein

- 30 -

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Val Lys Pro Val Thr Leu Tyr Asp Val Ala Glu Tyr Ala Gly Val Ser Tyr Gln Thr Val Ser Arg Val Val Asn Gln Ala Ser His Val Ser Ala 10 Lys Thr Arg Glu Lys Val Glu Ala Ala Met Ala Glu Leu Asn Tyr Ile Pro Asn Arg Val Ala Gln Gln Leu Ala Gly Lys Gln Ser Leu Leu Ile Gly Val Ala Thr Ser Ser Leu Ala Leu His Ala Pro Ser Gln Ile Val Ala Ala Ile Lys Ser Arg Ala Asp Gln Leu Gly Ala Ser Val Val Val 20 Ser Met Val Glu Arg Ser Gly Val Glu Ala Cys Lys Ala Ala Val His 25 Asn Leu Leu Ala Gln Arg Val Ser Gly Leu Ile Ile Asn Tyr Pro Leu Asp Asp Gln Asp Ala Ile Ala Val Glu Ala Ala Cys Thr Asn Val Pro 135 Ala Leu Phe Leu Asp Val Ser Asp Gln Thr Pro Ile Asn Ser Ile Ile Phe Ser His Glu Asp Gly Thr Arg Leu Gly Val Glu His Leu Val Ala Leu Gly His Gln Gln Ile Ala Leu Leu Ala Gly Pro Leu Ser Ser Val 180 Ser Ala Arg Leu Arg Leu Ala Gly Trp His Lys Tyr Leu Thr Arg Asn Gln Ile Gln Pro Ile Ala Glu Arg Glu Gly Asp Trp Ser Ala Met Ser Gly Phe Gln Gln Thr Met Gln Met Leu Asn Glu Gly Ile Val Pro Thr 230 Ala Met Leu Val Ala Asn Asp Gln Met Ala Leu Gly Ala Met Arg Ala Ile Thr Glu Ser Gly Leu Arg Val Gly Ala Asp Ile Ser Val Val Gly 55 Tyr Asp Asp Thr Glu Asp Ser Ser Cys Tyr Ile Pro Pro Ser Thr Thr Ile Lys Gln Asp Phe Arg Leu Leu Gly Gln Thr Ser Val Asp Arg Leu Leu Gln Leu Ser Gln Gly Gln Ala Val Lys Gly Asn Gln Leu Leu Pro Val Ser Leu Val Lys Arg Lys Thr Thr Leu Ala Pro Asn Thr Gln Thr 330

- 31 -

Ala Ser Pro Arg.Ala Leu Ala Asp Ser Leu Met Gln Leu Ala Arg Gln
340 345 350

Val Ser Arg Leu Glu Ser Gly Gln 5 355 360

(2) ANGABEN ZU SEQ ID NO: 10:

10

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 91 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

15

- (ii) ART DES MOLEKÜLS: Protein
- 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe Leu Leu Leu 1 5 10 15

Ser Leu Leu Pro Ser Leu Leu Ile Met Phe Ile Pro Ser Thr Phe 20 25 30

Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu Arg Lys Thr Leu
0 35 40 45

Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn Cys Ser Arg Leu 50 55 60

Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu Leu Thr Gln Lys 65 70 75 80

Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu 85 90

- 32 -

Patentansprüche

1. Verfahren zur Selektion von mutierten O_R - oder O_L -Operator-DNA-Sequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtysequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen,

dadurch gekennzeichnet,

10 daß man

- (a) eine DNA-Kassette herstellt, die ein Selektionsgen unter operativer Kontrolle einer Expressionskontrollsequenz, umfassend mindestens ein O_R oder O_L Operatorsequenz aus einem lambdoiden Phagen und einem Promotor enthält,
- (b) die Operator-DNA-Sequenz einer Mutagenese unterzieht und
- (c) die mutierten Operator-DNA-Sequenzen analysiert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die lambdoiden Phagen ausgewählt werden aus der Gruppe bestehend aus Phage Lambda, Phage 21, Phage 22, Phage 82, Phage 424, Phage 434, Phage D326, Phage DLP12, Phage Gamma, Phage HK022, Phage P4, Phage Phi80, Phage Phi81, Coliphage 186 und rekombinanten Variationen davon.
- 3. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet,
 daß man Phage Lambda oder rekombinante Variationen davon verwendet.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man die eine Operator-DNA-Sequenz aus den Operator-regionen O_R oder/und O_L des Phagen Lambda verwendet.

- 33 -

- 5. Verfahren nach einem der Ansprüche 1 4, dadurch gekennzeichnet, daß man als Selektionsgen das E-Lysegen aus dem Phagen PhiX174 verwendet.
- Verfahren nach einem der Ansprüche 1 5,
 dadurch gekennzeichnet,
 daß man die Operator-DNA-Sequenz einer ortsspezifischen
 Mutagenese durch Oligonukleotide unterzieht oder eine
 Selektion in einem Mutator-Bakterienstamm durchführt.
- 7. Verfahren nach einem der Ansprüche 1 6,
 dadurch gekennzeichnet,
 daß die Analyse der mutierten Operator-DNA-Sequenzen
 durch Bestimmung der Bindefähigkeit mit einem temperatursensitiven cI-Repressor erfolgt.
 - 8. Verfahren nach Anspruch 7,

 dadurch gekennzeichnet,

 daß man den temperatursensitiven Lambda-Repressor cI857

 verwendet.

- Mutierte O_R- oder O_L-Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen, erhältlich durch ein Verfahren nach einem der Ansprüche 1 - 8.
- 10. Mutierte O_R- oder O_L-Operatorsequenzen aus lambdoiden

 Phagen, die eine im Vergleich zur Wildtypsequenz erhöhte

 Thermostabilität hinsichtlich der Bindung eines temperatursensitiven Repressors aufweisen, erhältich durch ein

 Verfahren nach einem der Ansprüche 1 8.
- 35 11. Mutierte O_R- oder O_L-Operatorsequenz nach Anspruch 10, dadurch gekennzeichnet, daß sie eine um etwa 3 10°C erhöhte Thermostabilität

- 34 -

aufweist.

- 12. Mutierte O_R oder O_L -Operatorsequenz nach Anspruch 10, dadurch gekennzeichnet,
- daß sie eine um etwa 7 9°C erhöhte Thermostabilität aufweist.
 - 13. Mutierte Lambda- O_R oder O_L -Operatorsequenz nach einem der Ansprüche 9 12, die eine Variante der in SEQ ID NO. 1 oder SEQ ID NO. 3 gezeigten Sequenzen ist.
 - 14. Mutierte Lambda- O_R -Operatorsequenz, umfassend die in SEQ ID NO. 2 gezeigte Sequenz.
- 15 15. Verwendung einer mutierten O_R oder O_L -Operatorsequenz nach einem der Ansprüche 9 14 zur temperaturregulierten Expression von Genen in Bakterienzellen.
- 16. Verwendung einer Kombination von (a) einer Wildtyp- O_R oder O_L -Operatorregion und mindestens einer Operatorregion, die eine mutierte O_R oder O_L -Operatorsequenz nach einem der Ansprüche 9 14 enthält, oder (b) mehreren Operatorregionen, die mutierte O_R oder O_L -Operatorsequenzen nach einem der Ansprüche 9 14 enthalten, mit unterschiedlicher Thermostabilität zur temperaturregulierten sequentiellen Expression von Genen.
 - 17. Verwendung nach Anspruch 15 oder 16, dadurch gekennzeichnet.
- daß die Bakterienzellen zur Regulation der Genexpression ein Gen für einen cI-Repressor aus lambdoiden Phagen enthalten.
- 18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, daß die Bakterienzellen das Gen für den Lambda-cI857-Repressor enthalten.

WO 98/07874 PCT/EP97/04560

- 35 -

- 19. Nucleinsäure, umfassend eine bakterielle Expressionskontrollsequenz, die eine mutierte O_R oder O_L -Operatorsequenz nach einem der Ansprüche 9 14 enthält, in operativer Verknüpfung mit einer Protein-codierenden Sequenz.
- 20. Nucleinsäure nach Anspruch 19, dadurch gekennzeichnet, daß die Protein-codierende Sequenz ein Suizidgen ist.
- 10 21. Nucleinsäure nach Anspruch 20, $\frac{\text{dadurch gekennzeichnet,}}{\text{daß die Expressionskontrollsequenz einen Lambda-P}_{\text{L}}\text{- oder} \\ P_{\text{R}}\text{-Promotor enthält.}$
- 15 22. Vektor,

 dadurch gekennzeichnet,

 daß er mindestens eine Kopie einer Nucleinsäure nach
 einem der Ansprüche 19 21 enthält.
- 24. Vektor nach Anspruch 22,
 25 dadurch gekennzeichnet,
 daß er ein bakterielles extrachromosomales Plasmid ist.
 - dadurch gekennzeichnet, daß sie mit einer Nucleinsäure nach einem der An

25.

Bakterienzelle,

- daß sie mit einer Nucleinsäure nach einem der Ansprüche 19 - 21 oder einem Vektor nach einem der Ansprüche 22 -24 transformiert ist.
- Bakterienzelle nach Anspruch 25,
 dadurch gekennzeichnet,
 daß sie die Nucleinsäure oder den Vektor in ihrem Chromosom integriert enthält.

WO 98/07874 PCT/EP97/04560

- 36 -

- 27. Bakterienzelle nach Anspruch 25 oder 26, dadurch gekennzeichnet, daß sie weiterhin ein Gen für einen cI-Repressor aus lambdoiden Phagen enthält.
- 28. Bakterienzelle nach Anspruch 27, dadurch gekennzeichnet, daß sie das Gen für den Lambda cI857 Repressor enthält.
- 30. Impfstoffzusammensetzung,
 dadurch gekennzeichnet,
 daß sie einen Bakterienghost als Wirkstoff gegebenenfalls mit pharmazeutisch verträglichen Hilfs-, Zusatzund Trägerstoffen enthält, wobei der Bakterienghost
 durch Kultivierung einer Bakterienzelle nach einem der
 Ansprüche 25 28 bei Temperaturen von 35 39°C und anschließende Lyse der Bakterienzelle durch Temperaturerhöhung erhältlich ist.
- 31. Nucleinsäure, umfassend (a) eine erste bakterielle Expressionskontrollsequenz, die eine O_R- oder O_L -Operatorsequenz aus einem lambdoiden Phagen enthält und an die ein erster cI Repressor aus lambdoiden Phagen binden kann, in operativer Verknüpfung mit einer für einen zweiten Repressor kodierenden Sequenz, wobei der zweite Repressor nicht an die erste bakterielle Expressionssequenz binden kann, und (b) eine zweite bakterielle Expressionskontrollsequenz, an die der zweite Repressor binden kann, in operativer Verknüpfung mit einem Suizidgen.

WO 98/07874 PCT/EP97/04560

- 37 -

32. Bakterienzelle,

dadurch gekennzeichnet,

daß sie mindestens eine Kopie einer Nucleinsäure nach

Anspruch 31 enthält.

33. Bakterienzelle nach Anspruch 32,
dadurch gekennzeichnet,
daß sie weiterhin ein Gen für den ersten Repressor enthält.

34. Bakterienzelle nach Anspruch 32 oder 33,
dadurch gekennzeichnet,
daß die erste bakterielle Expressionskontrollsequenz
eine mutierte Operatorsequenz nach einem der Ansprüche 9
- 14 enthält.

- 35. Bakterienzelle nach einem der Ansprüche 32 34, weiterhin umfassend (c) eine dritte bakterielle Expressionskontrollsequenz, die eine mutierte Operatorsequenz nach einem der Ansprüche 9 14 enthält, in operativer Verknüpfung mit einem Suizidgen.
- 36. Impfstoffzusammensetzung,
 dadurch gekennzeichnet,

10

20

- daß sie eine lebende Bakterienzelle nach einem der Ansprüche 32 35 als Wirkstoff gegebenenfalls mit pharmazeutisch verträglichen Hilfs-, Zusatz- und Trägerstoffen enthält.
- 30 37. Verwendung von Impfstoffzusammensetzungen nach Anspruch 29 oder 36 als wärme- oder/und kälteempfindliche Sicherheitslebendvakzine.

Fig. 3: Wachstum von E.coli NM522(pAWJ12) bei Temperaturänderung von 28°C auf höhere Temperaturen (+)

Fig. 4: Wachstum von E.coli MC4100(pCS1) bei Temperaturänderung von 37°C auf 28°C (+)

Fig. 5: Wachstum von E.coli MC4100(pCS1) und MC4100(pCSJ1) bei Temperaturänderung von 37°C auf 28°C (+)

PCT

VELTORGANISATION FÜR GEISTIGES EIGENTU

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/73, 15/10, A61K 39/02 // C 12N 9/36

(11) Internationale Veröffentlichungsnummer:

WO 98/07874

| A3

(43) Internationales Veröffentlichungsdatum:

26. Februar 1998 (26.02.98)

(21) Internationales Aktenzeichen:

PCT/EP97/04560

(22) Internationales Anmeldedatum: 21. August 1997 (21.08.97)

(30) Prioritätsdaten:

196 33 698.8

21. August 1996 (21.08.96)

DE

(71)(72) Anmelder und Erfinder: LUBITZ, Werner [AT/AT]; Schönborngasse 12/7, A-1080 Wien (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JECHLINGER, Wolfgang [AT/AT]; Strozzigasse 38/12, A-1080 Wien (AT). SZOSTAK, Michael [AT/AT]; In den Schnablern 9/3, A-2344 Maria Enzersdorf (AT).

(74) Anwälte: WEICKMANN, H. usw.; Kopernikusstrasse 9, D-81679 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 26. März 1998 (26.03.98)

(54) Title: NEW SYSTEMS FOR REGULATING GENETIC EXPRESSION

(54) Bezeichnung: NEUE SYSTEME ZUR REGULATION DER GENEXPRESSION

(57) Abstract

The present invention concerns a process for selecting new P_R- or P_L-operator sequences of lambdoid phages which, compared to wild-type sequences, have a different thermostability for the binding of a repressor. In addition, the invention discloses new mutated PR- or PL- operator sequences and their use for temperature-regulated expression of genes and for producing improved vaccines.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Selektion neuer P_R- oder P_L-Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen. Weiterhin werden neue mutierte P_R- oder P_L-Operatorsequenzen sowie deren Verwendung zur temperaturregulierten Expression von Genen und zur Herstellung verbesserter Impfstoffe offenbart.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	T.J	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko	CD	Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen	2711	Zimbaowe
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Interna at Application No PCT/EP 97/04560

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/73 C12N15/10

A61K39/02

//C12N9/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC~6~~C12N~~A61K \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Х	HERSHBERGER P.A.: "Interference by PR-bound RNA polymerase with PRM function in vitro." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 12, 25 April 1993, pages 8943-8948, XP002052321	1-4,6		
Υ	see abstract; figure 1 see page 8943, paragraph 5	5		
Υ	WO 91 13155 A (BOEHRINGER MANNHEIM GMBH) 5 September 1991	5		
Α	see abstract; figures 1,2; examples 10-12 see page 3 - page 5 see page 10 - page 11	16-33		
	-/			

Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family 			
Date of the actual completion of the international search	Date of mailing of the international search report			
20 January 1998	11.02,98			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Oderwald, H			

Form PCT/ISA/210 (second sheet) (July 1992)

Interns al Application No PCT/EP 97/04560

		.I <u>.</u>	7/04560
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	KUNKEL T. A.: "RAPID AND EFFICIENT SITE-SPECIFIC MUTAGENESIS WITHOUT PHENOTYPIC SELECTION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 82, January 1985, pages 488-492, XP002052322 cited in the application see abstract; tables 2,3 see page 489, paragraph 3 - page 491, paragraph 1		6
A	SZOSTAK M P ET AL: "Bacterial ghosts: non-living candidate vaccines" JOURNAL OF BIOTECHNOLOGY, vol. 44, no. 1, 26 January 1996, page 161-170 XP004036862 see page 162, paragraph 5 - page 163, paragraph 2; figures 2,3,5; table 1		5,19-33

International application No.
PCT/EP 97/04560

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
	See supplemental sheet Additional Matter PCT/ISA/210				
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:				
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remar	the additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 97/04560

	h claim 37 refers to					
the searc	ch was made based	on the given eff	ects of the con	npound concern	ned.	
	,					
				•		

imormation on patent family members

Interna al Application No PCT/EP 97/04560

Publication Publication Patent family Patent document cited in search report date member(s) date 05-09-91 DΕ 4005874 A 07-11-91 WO 9113155 A AU 7237391 A 18-09-91 DE 59101580 D 09-06-94 0516655 A 09-12-92 EP 23-08-95 ΙE 64613 B 27-05-93 JP 5503014 T US 28-11-95 5470573 A

ales Aktenzeichen PCT/EP 97/04560

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C12N15/73 C12N15/10

A61K39/02

//C12N9/36

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

C12N A61K IPK 6

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherohe konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
Х	HERSHBERGER P.A.: "Interference by PR-bound RNA polymerase with PRM function in vitro."	1-4,6		
	JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 268, Nr. 12, 25.April 1993, Seiten 8943-8948, XP002052321			
Y	siehe Zusammenfassung; Abbildung 1 siehe Seite 8943, Absatz 5	5		
Y	WO 91 13155 A (BOEHRINGER MANNHEIM GMBH) 5.September 1991	. 5		
A	siehe Zusammenfassung; Abbildungen 1,2; Beispiele 10-12 siehe Seite 3 - Seite 5 siehe Seite 10 - Seite 11	16-33		
	-/			

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Χ entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

1 1 02 98

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

20. Januar 1998

Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Oderwald, H

2

Interne ales Aktenzeichen PCT/EP 97/04560

		PCI/EP	97/04560	
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.	
A	KUNKEL T. A.: "RAPID AND EFFICIENT SITE-SPECIFIC MUTAGENESIS WITHOUT PHENOTYPIC SELECTION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, Bd. 82, Januar 1985, Seiten 488-492, XP002052322 in der Anmeldung erwähnt siehe Zusammenfassung; Tabellen 2,3 siehe Seite 489, Absatz 3 - Seite 491, Absatz 1		6	
A	SZOSTAK M P ET AL: "Bacterial ghosts: non-living candidate vaccines" JOURNAL OF BIOTECHNOLOGY, Bd. 44, Nr. 1, 26.Januar 1996, Seite 161-170 XP004036862 siehe Seite 162, Absatz 5 - Seite 163, Absatz 2; Abbildungen 2,3,5; Tabelle 1		5,19-33	

INTERNATIONALER RECHERCHENBERICHT

.tionales Aktenzeichen PCT/EP 97/04560

Feld I Bemerkungen zu den	Ansprüch n, die sich als nicht recherchierbar rwies n hab n (Fritsetzung vin Punkt 1 auf Blatt 1
Gemāß Artikel 17(2)a) wurde aus f	lolgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil Sie sich auf Gegenst	ånde beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
siehe Zusatzbla	att WEITERE ANGABEN PCT/ISA/210
	internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, tionale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abh	nängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei man	gelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)
Die internationale Recherchenbeho	örde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
	orderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser nbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.
2. Da für alle recherchierbar zusätzliche Recherchenge Gebühr aufgefordert.	en Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine ebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen
3. Da der Anmelder nur einig internationale Rechercher sind, nämlich auf die Ansp	ge der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser nbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden prüche Nr.
4. Der Anmelder hat die erfo chenbericht beschränkt si faßt:	orderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher- ich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er-
Bemerkungen hinsichtlich eines	Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

Internationales Aktenzeichen PCT/EP 97/04560

WEIT	ERE	ANG	ABEN
------	-----	-----	------

PCT/ISA/

210

Bemerkung: Obwohl der Anspruch 37 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers bezieht, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.

Internat 'es Aktenzeichen
PCT/EP 97/04560

28-11-95

Mitglied(er) der Datum der Im Recherchenbericht Datum der angeführtes Patentdokument Veröffentlichung Patentfamilie Veröffentlichung 4005874 A 07-11-91 WO 9113155 A 05-09-91 DE ΑU 7237391 A 18-09-91 DE 59101580 D 09-06-94 09-12-92 EP 0516655 A ΙE 23-08-95 64613 B JP 5503014 T 27-05-93

US 5470573 A

PCT

Internationale Büro

Internationale Ammendes Veröffentlicht nach dem Vertrag über die Internationale Zusammenarbilt auf dem Gebiet des Patentwesens (PCT)

(51) Internationale Patential spilitation 6:

C12N 15/73, 15/10, A61K 39/02 // C 12N 9/36

(11) Internationale Veröffentlichungsnummer: WO 98/07874

(43) Internationales Veröffentlichungsdatum:

26. Februar 1998 (26.02.98)

(21) Internationales Aktenzeichen:

PCT/EP97/04560

(22) Internationales Anmeldedatum: 21. August 1997 (21.08.97)

(30) Prioritätsdaten:

196 33 698.8

21. August 1996 (21.08.96)

DE

(71)(72) Anmelder und Erfinder: LUBITZ, Werner [AT/AT]; Schönborngasse 12/7, A-1080 Wien (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JECHLINGER, Wolfgang [AT/AT]; Strozzigasse 38/12, A-1080 Wien (AT). SZOSTAK, Michael [AT/AT]; In den Schnablern 9/3, A-2344 Maria Enzersdorf (AT).

(74) Anwälte: WEICKMANN, H. usw.; Kopernikusstrasse 9, D-81679 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen

Frist. Veröffentlichung wird wiederholt falls Änderungen

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 26. März 1998 (26.03.98)

(54) Title: NEW SYSTEMS FOR REGULATING GENETIC EXPRESSION

(54) Bezeichnung: NEUE SYSTEME ZUR REGULATION DER GENEXPRESSION

(57) Abstract

The present invention concerns a process for selecting new PR- or PL-operator sequences of lambdoid phages which, compared to wild-type sequences, have a different thermostability for the binding of a repressor. In addition, the invention discloses new mutated PRor PL- operator sequences and their use for temperature-regulated expression of genes and for producing improved vaccines.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Selektion neuer PR- oder PL-Operatorsequenzen aus lambdoiden Phagen, die eine im Vergleich zur Wildtypsequenz unterschiedliche Thermostabilität hinsichtlich der Bindung eines Repressors aufweisen. Weiterhin werden neue mutierte PR- oder PL-Operatorsequenzen sowie deren Verwendung zur temperaturregulierten Expression von Genen und zur Herstellung verbesserter Impfstoffe offenbart.