

Computer Vision

Exercise Session 4 (Discussions)

Fundamental matrix

Epipole is the projection of other's camera center!=> you are able to tell if it should be in the image or not.

More constraints on Fh means epipolar lines cannot go through clicked points.

Essential matrix

Also need to normalize and denormalize for SVD

More constraints on Eh means epipolar lines cannot go through clicked points...

... but this is a better physical explanation of the scene!

Comparison of F/Fh/E/Eh is meaningless if not normalized

Decomposition of E

$$E = [t]_{\times} R = R[R^T t]_{\times} = USV'$$

- Choose one of the following:
 - \blacksquare t1=U(:,end)=t and P = [R|t1] = [R|t]
 - \blacksquare t2=V(:,end)= $R^T t$ and $P = R[I|t2] = [R|RR^T t] = [R|t]$

But no mix!!

$$R[I|t1] = [R|Rt]$$
 is wrong

$$[R|t2] = [R|Rt]$$
 is wrong

Decomposition of E

- RHS coordinate:
 - We want our 2nd Camera to have RHS.
 - If det(R)<O (=det(UV)) this is not the case.
 - Take –R then.

This is the same as taking svd(-E) [E is up to scale anyway]

Decomposition of E

- The good P:
 - Check for which P the 3D points are in front. i.e. X(3)>o and [PX](3)>o

That is it !!!

Notice that PX is the coordinate of X in camera P

Note that triangulateLinear take normalized 2D points as arguments