2	Lef's Random; se	
	$\ell : [m,, m, m+1, m, m]^T$ $L : \begin{cases} L_1, & \text{if } K \leq N \\ L_2, & \text{otherwise} \end{cases}$	K~ Un: ([1,2,,N)) E(m)=0, E(m)=0
	$E(L_1) = E(L_2) = 0$ $E(L_1) = NC$ $E(L_1) = NC$ $E(L_1) = NC$ $E(L_1) = NC$ $C = C = C$ $C = C$ C $C = C$ C C C C C C C C C	. 0< 4<1
	$E(\ell) = \sum_{K=1}^{\infty} P(K=k) E(\ell) K=k) = \sum_{K=1}^{\infty} P(K=k) = \sum_{K=1}^{$	+ \(\bigg\ \(\bigg(\kappa \) \(\bigg\ \kappa \) \(\bigg\ \kappa \) \(\bigg\ \kappa \) \(\

$A_{\xi}(x,y) := E(\xi,\xi)$ $E(\xi,\xi) := E(\xi,\xi) \cdot F(Kx) \cdot F($	6.	we will	compite	the :	·; e	lemint of	Re	
E(x, x, t) = E(x, t, t) = (x, t, t) = (x		Α ((,, j)):	E (4, 4,*)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1							
$ \frac{1}{N} E(m+1)m) + \frac{1}{N} E(m(m+1)) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} \left(E(m^{2}), E(m) \right) + \frac{1}{N} E(m^{2}) = E(m^{2}) = C $ $ \frac{1}{N} \left(E(m^{2}), E(m) \right) + \frac{1}{N} E(m^{2}) = E(m^{2}) = C $ $ \frac{1}{N} \left(E(m^{2}), E(m) \right) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = \frac{1}{N} \left(E(m^{2}), 2E(m^{2}), 2E(m^{2}) \right) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) = C $ $ \frac{1}{N} E(m^{2}) + \frac{1}{N} E(m^{2}) +$		E (t , . t	;*)= E	e.re.* P(k	(;;) E ((e; y;*) k =:)+	P(K=)) E(Y,Y,* [K=j) +	
$= \frac{1}{N} \left(E(M) + E(ML) \right) + \frac{1}{N} E(M) = E(M) = C$ $= \frac{1}{N} \left(E(M) + E(ML) \right) + \frac{1}{N} E(M) = E(M) = C$ $= \frac{1}{N} \left(E(M) + E(M) \right) + \frac{1}{N} \left(E(M) + \frac{1}{N} E($		+ P(K	≠i,;) E (°;	1. * K + 1.	;) =			
$E(N) = E(L)$ $E(N) = E(L)$ $E(X; X^*) = P(K = 0; X) = \{X; X^* K = 0; X\} + P(K \neq 0; X) = \{X; X^* K = 0; X\} + P(K \neq 0; X) = \{X; X^* K = 0; X\} + P(K \neq 0; X) = \{X, X^* K = 0; X\} + P(K \neq 0; X) = \{X, X^* X = 0; X\} + P(K \neq 0; X) = P(K $: ½ E (6	1+L)n) + 1	E (m (m+	44))+	~ ? E (~ ?)	=	
E(Y, Y,*) = P(K=i,j) E(Y, Y,* K=i,j) + P(K f,j,j) E(Y,Y,j) & E(x,j) = = \frac{1}{N} E((m+L)^2) + \frac{1}{N} E(x,j) = \frac{1}{N} E		= - (E(N	rended vericules	+ ~ E (.	,,,²) =	E(m2) = C		
$ \frac{1}{N} E((M+L)^{3}) + \frac{N}{N} E(N^{3}) = \frac{1}{N} [E(N^{3}) + 2E(NL)] + \frac{N}{N} E(N^{3}) = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3}) = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3}) = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3}) = \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} [E(N^{3}) + \frac{1}{N} E(N^{3})] = \frac{1}{N} [E(N^{3}) + \frac{1}{N} [E(N^{3$	5.			E (Y.Y,*/	K=i.j)	+ p(k+;)E	(Y.Y.) (x;)) =	
3. i=j, i,j, ~ i as conve, we will get that E(Y; Y*) = C+6 Overall, The mater; X structure of Re is: C+a c c-6-6 C c c+a C+a c C		; <u> </u>	(M+L)2) + 1	C'E(n') =	- JE	(m)+2 E(mL) +	E(L,) + ~- E(m2) =	
Querell, The metr; X structure of Ru 15: (+a c -6-6 - C) (c c a : C) (c a : C)	3.	دزيار زءا	ž					
C C C C-6		as asave	he metri X	Je f skruefute	hs t	E ((; (; *)	= (4 6	
C C C C+6					c \			
				1 .				

		Seneral Condition			4.0
		then Re is		100	86
	Ae: DET	*_/\ PFT			
	A/so, ;n.	return order	to have the	PCA mctr.	· k
	ident: cal	to the DFT* n	nctrix we	nced 65	
	Sctist y	Ap > Apr for l:	00,		
	Since R	z = ((+a).j"+ (. j' + c- j ² +	C. J W-1	
	we have	thie LES			
				-6-1) l	
	λ _ε = (C+α). w + (w - l + (. N 0	
	= e400	a + c \(\frac{2}{5}\) w	· · · · · · · · · · · · · · · · · · ·	120	
	F3F 6 # 8	16 161 . 606 600			
	$\lambda_{\circ} > \lambda_{\bullet}$:FF a+(·N	> a iff	(-n > 0) : F E	
	anz th	e last codition	on bolds be	cause - cael	, N70
6					
			(7)		