Introduction

Utrecht University Winter School: Introduction to R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

2022-01-31

Outline

Plan for the Day

Open-Source Software
Open-Source Licensing

The R Statistical Programming Language What is R? Using R

Plan for the Day

After this lecture, we'll spend the rest of the day working through interactive R scripts.

- The scripts live in the "code" directory for this course.
- You should follow along.
- You will solve embedded practice problems.

We'll stop for a one-hour lunch break between 13:00 and 14:00.

• We'll take a few other breaks in between.

The course will finish at 18:00.

You're free to access the course materials for as long as you like.

Open-Source Software

What is "Open-Source"?

R is an open-source software project, but what does that mean?

- Source code is freely available to anyone who wants it.
 - Free Speech, not necessarily Free Beer
- Anyone can edit the original source code to suit their needs.
 - Ego-less programming
- Many open source programs are also "freeware" that are available free of charge.
 - R is both open-source and freeware

Strengths of Open-Source Software

Freedom

- If the software you are using is broken (or just limited in capability), you can modify it in any way you like.
- If you are unsure of what the software you are using is doing, you can dig into the source code and confirm its procedures.
- If you create some software, you can easily, and independently, distribute it to the world.
 - There is a global community of potential users that are all linked via a common infrastructure that facilitates open-source software development and distribution.

Strengths of Open-Source Software

Peer Review

- Every user of open-source software is a reviewer of that software.
- What "bedroom programmers" lack in term of quality control procedures is overcome by the scrutiny of a large and empowered user-base.
 - When we use closed source software, we are forced to trust the honesty of the developing company.
 - We have no way of checking the actual implementation.

Strengths of Open-Source Software

Accessibility

- Many open-source programs (like R) can be downloaded, for free, from the internet.
 - You can have R installed on all of you computers (and your mobile phone, your car's info-tainment system, your microwave, your clock-radio, ...).
 - No need to beg, borrow, or steal funds to get yourself up-and-running with a cutting-edge data analysis suite.
- Licensing legality is very simple—no worries about being sued for installing open-source software on "too many" computers.
- Open-source software tends to run on more platforms than closed-source software will.

A Note on Licensing

Some popular open-source licenses:

- The GNU General Public License (GPL)
 - http://www.gnu.org/licenses/gpl-3.0.en.html
- The GNU Lesser General Public License (L-GPL)
 - o http://www.gnu.org/licenses/lgpl-3.0.en.html
- The Apache License
 - http://www.apache.org/licenses/
- The BSD 2-Clause License (FreeBSD License)
 - http://opensource.org/licenses/BSD-2-Clause
- The MIT License
 - o https://opensource.org/licenses/MIT

A Note on Licensing

Many open-source licenses (e.g., GPL, L-GPL) "copyleft" their products.

- Copyleft is designed to ensure that open-source software cannot be closed.
 - I can't take your copylefted software, repackage it, and sell it in violation of your original licensing terms.

Other open-source licenses (e.g., BSD-Types, Apache, MIT) are non-copyleft, "permissive" licenses.

- Many of these licenses are designed to promote commercialization of open-source products.
 - E.g., allowing a student to develop a company selling a product they developed for their dissertation

The R Statistical Programming Language

What is R?

R is a holistic (open-source) software system for data analysis and statistical programming.

- R is an implementation of the S language.
 - Developed by John Chambers and colleagues
 - Becker and Chambers (1984)
 - Becker, Chambers, and Wilks (1988)
 - Chambers and Hastie (1992)
 - Chambers (1998)
- Introduced by Ihaka and Gentleman (1996).
 - Currently maintained by the R Core Team.
- Support by thousands of world-wide contributors.
 - Anyone can contribute an R package to the Comprehensive R Archive Network (CRAN)
 - Must conform to the licensing and packaging requirements.

What is R?

I prefer to think about R as a statistical programming language, rather than as a data analysis program.

- R IS NOT its GUI (no matter which GUI you use).
- You can write R code in whatever program you like (e.g., RStudio, EMACS, VIM, Notepad, directly in the console/shell/command line).
- R can be used for basic (or advanced) data analysis, but its real strength is its flexible programming framework.
 - Tedious tasks can be automated.
 - Computationally demanding jobs can be run in parallel.
 - R-based research wants to be reproducible.
 - Analyses are automatically documented via their scripts.

Getting R

You can download R, for free, from the following web page:

https://www.r-project.org/

You will also need a proper text editor/IDE. For those who are just learning R, I recommend **RStudio**:

https://www.rstudio.com/

How R Works

R is an interpreted programming language.

- The commands you enter into the R Console are executed immediately.
- You don't need to compile your code before running it.
- In this sense, interacting with R is similar to interacting with other syntax-based statistical packages (e.g., SAS, STATA, Mplus).

How R Works

R mixes the *functional* and *object-oriented* programming paradigms.

Functional

- R is designed to break down problems into functions.
- Every R function is a first-class object.
- R uses pass-by-value semantics.

Object-Oriented

- Everything in R is an object.
- R functions work by creating and modifying R objects.
- The R workflow is organized by assigning objects to names.

Interacting with R

When working with R, you will write *scripts* that contain all of the commands you want to execute.

- There is no "clicky-box" Tom-foolery in R.
- Your script can be run interactively or in "batch-mode", as a self-contained program.

The primary purpose of the commands in your script will be to create and modify various objects (e.g., datasets, variables, function calls, graphical devices).

What's Next?

Now, we'll start in on the meat-and-potatoes of the course

• The interactive R scripts

We have seven potential topics:

- 1. Basic commands
- 2. Data objects
- 3. Data I/O
- 4. Data manipulation
- 5. Data analysis
- 6. Data visualization
- 7. Simple programming

References

- Becker, R. A., & Chambers, J. M. (1984). *S: an interactive environment for data analysis and graphics*. Monterey, CA: Wadsworth and Brooks/Cole.
- Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). *The new S language*. London: Chapman & Hall.
- Chambers, J. M. (1998). *Programming with data: A guide to the S language*. New York: Springer Science & Business Media.
- Chambers, J. M., & Hastie, T. J. (1992). *Statistical models in s.* London: Chapman & Hall.
- Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. *Journal of Computational and Graphical Statistics*, *5*(3), 299–314.