Tutorial: Flux Balance Analysis in MATLAB

Setting up COBRA and loading a model

- Download the latest version of the COBRA Toolbox (found here: https://github.com/opencobra/cobratoolbox).
- 2. Extract the cobratoolbox ZIP archive in your directory of choice.
- 3. Launch MATLAB and navigate to the cobratoolbox directory.
- 4. Add the cobratoolbox directory to the MATLAB search path using addpath (genpath ('filepath')); followed by savepath().
- 5. Check the path has been added using path.
- 6. Run initCobraToolbox to initialise the Cobra Toolbox.
- 7. Type model = readCbModel(['filename.mat']); to load a COBRAcompliant model into MATLAB.

Fig 1. (Left) Fields used to describe a genome-scale metabolic model in MATLAB. (Right) available studies around flux balance analysis and omic-integration in genome-scale metabolic models

Model navigation and flux balance analysis

1. Check the index of the default reaction set as cellular objective

2. Find the name of the reaction set as objective

```
model.rxns(ix_obj)
model.rxnNames(ix_obj)
```

3. Predict the default cellular growth rate

```
FBA solution = optimizeCbModel(model)
```

4. Identify the reaction allowing glucose uptake and its lower bound (what is maximum uptake?)

```
ix_glucose = find(strcmp('EX_glc(e)',model.rxns))
model.lb(ix glucose)
```

5. Change the glucose import to -5 mmol/(h gdW) and re-run the model

```
model.lb(ix_glucose) = -5;
FBA solution 2 = optimizeCbModel(model)
```

6. Find the names of all exchange reactions in the model and their respective lower and upper flux bounds

```
indices_ex_rxns = strmatch('EX_',model.rxns);
ex_rxns = model.rxns(indices_ex_rxns);
names_ex_rxns = model.rxnNames(indices_ex_rxns);
lb_ex_rxns = model.lb(indices_ex_rxns);
ub ex rxns = model.ub(indices ex rxns);
```

7. List all genes in the model

```
genes = model.genes
```

8. Perform sequential single gene knockout of the first 100 genes, viewing the growth rate after each gene is knocked out

```
for i = 1 : length (genes(1:100))
         disp(['I''m knocking out ' genes{i}]);
         modelDel = deleteModelGenes(model,genes{i});
         temp = optimizeCbModel(modelDel);
         FBA_growth_after_KO(i) = temp.f;
         disp (['The growth rate is '
num2str(FBA_growth_after_KO(i))]);
end
```

References and Further Reading

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., ... & Magnusdottir, S. (2017). Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3. 0. arXiv preprint arXiv:1710.04038.

Angione, C. (2018). Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics, 34(3), 494–501.

Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. Ø. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Molecular systems biology, 7(1), 535.

Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature biotechnology, 28(3), 245-248.