EE 5561: Image Processing and Applications

Introduction

Mehmet Akçakaya

- Basic Info [on syllabus]:
 - Instructor: Prof. Mehmet Akçakaya
 - Office: Keller 5-159
 - Contact: akcakaya@umn.edu, 625-1343
 - Office hours: Wednesday11am-12pm or by appointment
 - TA: Merve Gulle, <u>glle0001@umn.edu</u>
 - TA Office Hours: Th 10am-12pm KHKH 2-176 and via Zoom
- Prerequisites: EE 4541, 5581 or instructor consent
- Familiarity with linear algebra and probability is assumed.
- Canvas up and running

Course Description:

- Multi-dimensional signals & systems, image pre-processing, image enhancement, denoising, segmentation, registration, and computational imaging.
- 2D image transforms, linear filtering, sparsity and compression, statistical modeling
- Optimization methods, multiresolution techniques, artificial intelligence concepts, neural networks and their applications in classification and regression tasks in image processing

Topics and Tentative Schedule:

- Introduction to image processing, 2D Signals & Systems (~2 weeks)
- Non-statistical methods:
 - Basic image enhancement, image pre-processing and interpolation (~1 weeks)
- Statistical methods:
 - Linear algebra, random vectors, optimization review (~1 week)
 - Basic image restoration (~1 week)
 - Image compression, sparsity, wavelets, image denoising, deblurring, super-resolution (~1.5 weeks)
 - Image registration (~1 week)
- Machine learning methods:
 - Machine learning concepts, artificial neural networks, backpropagation, convolutional neural networks, regularization (~2 weeks)
 - Al methods in image classification, segmentation, denoising, super-resolution (~1 week)
 - Generative models, attention, vision transformers (~2 weeks)

- Recommended (not required) Texts:
 - Gonzalez & Woods, "Digital Image Processing," 4th Edition, Pearson, 2018.
 - S. Theodoridis, "Machine Learning: A Bayesian and Optimization Perspective," 2nd
 Edition, Academic Press, 2020. (For the last 1/3 of the course)

Grading:

- Quizzes: 15%

Mini-projects: 30%

Homework: 30%

Course project: 25%

Quizzes:

- Released after each lecture
- Goal: To make sure everyone understands the material on a high-level
- Cover the lecture materials
- Can be re-taken twice
- Should be done independently

Homework:

- Approximately biweekly
- Will involve Python (or MATLAB) components as well
- You may discuss with others, but need to submit your own work
- Grading of each question will be written on the assignment

- Grade for Homework Component =

| assignment | Tracks | Component | Tracks | Component | Component

 $\frac{\sum_{\text{assignment}} \text{your score for the assignment}}{\sum_{\text{assignment}} \text{total score for the assignment}}$

Mini-Projects

- This is intended for you to understand image processing research
- 2 mini-projects
 - One on image enhancement, one on statistical image processing
 - First one due Oct. 19, second one due Nov. 16
- Will be performed individually
- Read & understand recent literature
 - One scientific research paper will be assigned for the mini-project (same for everyone)
 - Each student will implement the techniques in Python/MATLAB
 - Each student will submit a written report (~ IEEE conference paper, 4-pages), including introduction, methods, results and discussion
 - Meant to complement lectures, i.e. it will be in addition to what we cover in the class

Course Project

- This is intended for you to understand image processing research
- Focus will be on deep learning
 - Will include implementation
- Groups of 2
 - May changed based on class size
- Read & understand recent literature
- I will not give possible papers here
 - You need to do a literature search
 - Propose a project yourself (proposal due: Nov. 20) for approval
 - Can be based on prior published works or original research
- PyTorch/TensorFlow/MATLAB/etc implementation of one or more techniques with numerical or real-life datasets

Course Project

- Written report in IEEE journal format (extended from mini-projects, ~8 pages):
 - Abstract, Introduction, Methods (and Theory), Results, Discussion, Conclusion
 - Discussion must include limitations of the techniques
 - You may provide future research directions that you think would improve these techniques
- Final report (+ source code) due on December 17.
- Implementation of one or more techniques with numerical or real-life datasets

What is an image?

What is an image?

- What can the energy sources be?
- Electromagnetic spectrum
 - Visual band, x-rays, microwaves, radio band

Sound → geological, medicine

Gamma Rays

PET Scan Cell activity

Ref: U Pittsburgh Med Center

X-rays

Ref: Prince & Links, Pearson, 2015

Ref: U Pittsburgh Med Center

Ref: Wikipedia

Ultraviolet Imaging

Industry, medicine, anatomy, biology

- All of the above: Outside the visible spectrum
- Use special filters/hardware that detects these frequencies
- Process them to get images

Ref: Wikipedia

Visible and Infrared

• Visible: Most familiar

• Infrared: Most familiar application is thermograms

Microwave Band Imaging

Radar

Ref: USGS

Radio Band Imaging

MRI

Acoustic Imaging

- Does not use light! Uses sound
- It has its own spectra
- Ultrasound > MHz, geological ~ 100's Hz

Ref: Prince & Links, Pearson, 2015

Ref: Los Alamos NL

What is Image Processing?

2D signal processing methods on images

- 1921: Photographic reproduction made from tapes perforated at the telegraph receiving terminal
 - Bartlane cable picture transmission system
 - i.e. First digital images (5 grayscale levels)
 - Between London & NYC
 - 15 grayscale levels by 1929

- Astronomy and Medicine came along in 1960s
- Computer techniques devised to improve images from a space probe
 ② JPL in Pasadena (1964)

First picture of moon taken from a U.S. spacecraft, Ranger 7

- Astronomy and Medicine came along in 1960s
- CT imaging in medicine (1971)

First CT image (Sir Godfrey N. Hounsfield)

Nobel Prize in 1979!

- Astronomy and Medicine came along in 1960s
- CT took projections across a slice

Raw data is called a sinogram

Applications of Image Procssing

- Medicine (radiology, microscopy)
- Defense (radar, satellites)
- Entertainment industry
- Robotics / machine vision
- Compression
- Industry, manufacturing (inspection)

We will focus on the fundamental methods, more than the applications

Image Formation

Camera idea

Image Formation

X-ray detection

Ref: tue.nl

Image Processing

- 2D signal processing methods on images
- How do we represent images as signals?

$$f: \mathbb{R}^2 \to \mathbb{R}$$

- Image is a function
- More likely, the image will have finite support

$$f: [a,b] \times [c,d] \to \mathbb{R}$$

A color image will be (more on this later)

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Image Processing

- How to view them?
- z = f(x, y) is a surface \rightarrow This is similar to what you saw in calculus

• Or signal can be displayed by assigning an intensity or brightness proportional to its value at $(x, y) \rightarrow$ how we mostly view images

Images as Functions

Images as Functions

Image Representation

- Images are usually digital
 - Discrete: Sampled on the 2D space (usually on a rectangular grid)
 - Quantized to integer values with some precision (not always)

Image Representation

- Images are usually digital
 - Discrete: Sampled on the 2D space (usually on a rectangular grid)
 - Quantized to integer values with some precision (not always)
- Image can now be represented as a matrix of integers

					pixel			
	<i>J</i>	79	23	119	120	05	4	0
$_{i}$	10	10	9	62	12	78	34	0
Ĭ	10	58	197	46	46	0	0	48
Į	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Image Transforms

• Basic: Resolution, scale

Image Enhancement

- Accentuate certain features for subsequent analysis/display
 - Contrast stretching
 - Sharpening
 - Noise reduction

- How?
 - e.g. Filtering, Fourier space

Image Enhancement

- Accentuate certain features for subsequent analysis/display
 - Contrast stretching

Image Enhancement

- Accentuate certain features for subsequent analysis/display
 - Sharpening

Image Restoration/Filtering

- e.g. Remove image blurring
- Some prior knowledge about the degradation
- Objective goal (not just "fixing" to make it look better) → try to get the true underlying image
 - Invert known degradation operation

Original

Known Blur

Restored

Image Compression

- Efficiently store and transmit images
- Redundancies exist in images
- Information theory concepts
- Transformation to "sparsify" data

Image Restoration/Filtering

 Knowing these image redundancies will also help improve our image restoration techniques → non-linear methods

Image Restoration/Filtering

- Once modeling comes in, we can do cool things
 - Inpainting

Or you "hire" people to do that pixel-by-pixel

Image Denoising

- Reduce noise in images
- Simplest: Linear filtering
- For a long time: Nonlinear methods using statistical models
- Now: Deep learning for state-of-the-art

ImageSuper-Resolution

- Improve resolution of images
- Simplest: Linear interpolation
- For a long time: Using statistical methods
- Now: Also deep learning for state-of-the-art

Image Segmentation

- Partition an image into multiple segments/labels/"super-pixels"
- Typically used to locate objects or boundaries
- Prime application for machine learning

e.g. in medical applications https://arxiv.org/pdf/1505.04597.pdf

Image Segmentation

- Partition an image into multiple segments/labels/"super-pixels"
- Typically used to locate objects or boundaries
- Prime application for machine learning

e.g. in semantic segmentation (~segmentation + classification) https://arxiv.org/pdf/1703.06870.pdf

Image Registration

- Find the spatial transform that maps points in one image to points in a second image
- Why?
 - Motion between objects
 - Multi-view or multi-contrast datasets (very common in medical imaging)

Both classical a

Next Class

- Start with 2D Signals & Systems
- Your undergraduate Signals & Systems in 2D
- Note:
 - I will move quickly through this material
 - Need more time for the later "cooler" topics
 - If you are a non-EE major, this may seem a bit daunting
 - Let me or Merve know if you have issues following
 - Concepts like Fourier transforms and convolutions will be important throughout the term