Quiz 2: Fields & Waves (ECE230), Winter 2021

Duration: 1hr, Total: 20 points (Attempt all questions)

 $Mar\ 22,\ 2021$

Only those people attending the lectures are admissible. Any other submission will be ignored.

- Q1. Consider a solid sphere of radius r=1m, consisting of a material with conductivity $\sigma=100s/m$ and $\epsilon=20C^2N^{-1}m^{-2}$. You created a uniform volume charge density in the sphere using a total charge of 4π C.
 - (i) How much time τ would it take for the volume charge to decay to 36.8% of its initial value?
 - (ii) How much would be the surface charge density σ_S at $t = \tau$? [Assume a uniform surface charge distribution] [2 + 8 = 10 marks]
- Q2. In lecture 11, we proved that the magnetic vector potential can be transformed as $\vec{A}' = (\vec{A} + \vec{\nabla}\lambda)$ and this leaves the \vec{B} unchanged. In our last lecture, we saw that this holds true for the \vec{B} in the electrodynamic case as well. However, this transform alone doesn't ensure that \vec{E} is left unchanged in the electrodynamic case since \vec{E} is now relate to both a scalar potential ϕ and a vector potential \vec{A} .

Under the transformation $\vec{A}' = (\vec{A} + \vec{\nabla}\lambda)$, how should ϕ be transformed to ϕ' so as to leave \vec{E} unchanged? [10 marks]