ENSC 2113 Engineering Mechanics: Statics

Lecture 13 Section 9.1

<u>Centroid</u>: A point that defines the geometric center of an object.

For homogenous bodies, the *centroid* coincides with the *center of gravity*.

Area: Object is subdivided into area elements *dA*. integrate over the area to obtain the centroidal distance from the x and y axes

Object is subdivided into area elements *dA*.

$$\overline{x} = \frac{\int_{A}^{\infty} dA}{\int_{A} dA} \qquad \overline{y} = \frac{\int_{A}^{\infty} dA}{\int_{A} dA}$$

For finding centroid of an *area*:

$$\overline{x} = \frac{\int_{A}^{\widetilde{x}} dA}{\int_{A} dA} \qquad \overline{y} = \frac{\int_{A}^{\widetilde{y}} dA}{\int_{A} dA}$$

Definition of values in the eqns:

 $\overline{\mathbf{X}} = \overline{\mathbf{y}}$ = Centroidal distance from \mathbf{y} or \mathbf{x} axis

 $\tilde{\mathbf{x}} = \tilde{\mathbf{y}} = \mathsf{Distance}$ from \mathbf{y} or \mathbf{x} axis to centroid of segment

dA = Differential area of segment

Finding the centroidal \bar{x} distance:

Let's look at each term in the eqn:

y must be written in terms of x

Integrate from 0 to b

$$dA = (b-x) dy$$

x must be written in terms of **y** for both eqns.

Integrate from 0 to h

The procedure for finding the centroid:

<u>Step 1</u>: Choose a differential segment to use - choose a segment that touches one of the reference axes throughout the integration.

Step 2: Define the segment size and moment arm to be used. Draw these on the sketch for reference.

Step 3: Perform the integrations and apply the equations derived in the text.

Step 4: Ask yourself "Does the answer make sense?"

ENSC 2113 Engineering Mechanics: Statics

Lecture 13 Section 9.1

