1 Aufbau und Durchführung

Für den Versuch stand ein RC-Glied, ein Oszillator, ein Millivoltmeter und ein digitales Zweikanaloszilloskop zu Verfügung.

1.1 Messaufgaben

- 1. Bestimmung der Zeitkonstante λ des gegebenen RC-Gliedes durch Beobachtung des Auf- oder Entladevorganges des Kondensators
- 2. Messung der Amplitude der Kondensatorspannung $U_{\rm C}$ unter einer sinusförmigen Eingangsspannung U_0 in Abhängigkeit der Frequenz ω
- 3. Messung der Phasenverschiebung ϕ zwischen Generatorspannung U_0 und Kondensatorspannung U_C in Abhängigkeit der Frequenz ω
- 4. Veranschaulichung der Funktion des RC-Gliedes als Integrierglied, wenn $\omega \gg \frac{1}{RC}$

1.2 Durchführung

Für die Bestimmung der Zeitkonstante λ (Aufg. 1) wurde das RC-Glied an eine Rechteckspannung U_0 angeschlossen. Diese simuliert den für die Messung notwendigen konstanten Endzustand $A(\infty)$. Mit Hilfe des Oszilloskopes wurden dann Messwerte der Kondensatorspannung U_C zu verschiedenen Zeitpunkten t aufgenommen. t wurde dabei so gewählt, dass alle Werte auf der Kurve eines Auf- bzw. Entladevorganges lagen. Abbildung *Aufbau 1*?? und *002*?? zeigen den Versuchsaufbau und einen Screenshot der Kondensatorspannung U_C am Oszilloskopes.

Abbildung 1: Ohmscher Widerstand

Um die sperrende Eigenschaft des RC-Gliedes für große Frequenzen ω zu prüfen, haben wir nun die Kondensatorspannung $U_{\rm C}$ mit einem Millivoltmeter gemessen (Aufgabe 2). Der Funktionsgenerator wurde auf eine Sinusspannung eingestellt und die Frequenz ω von 2,5 Hz bis 5 kHz variiert. Abbildung *Aufbau 2*?? zeigt den neuen Versuchsaufbau.

Die Phasenverschiebung zwischen Generatorspannung U_0 und Kondensatorspannung U_C konnte mit Hilfe des Zweikanaloszilloskopes gemessen werden (Aufgabe 3). Die Signale wurden auf dieselbe Nulllage gebracht und bei verschiedenen Frequenzen ω drei Messwerte a_1 , a_2 und b_1 genommen. Aus diesen Werten konnten wir mit der Identität

Abbildung 2: Versuchsaufbau für Amplitudenmessung an zwei Kondensatorplatten

$$\phi = \frac{a}{b} 2\pi, \qquad a = a_2 - a_1, \qquad b = b_1 - a_1$$
 (1)

die Phasenverschiebung ϕ berechnen. Abbildung *007*?? zeigt die übereinandergelegten Signale U_0 und $U_{\rm C}$. Die Messpunkte wurden nachträglich markiert.

Schließlich haben wir eine Frequenz von $\omega=10\,\mathrm{kHz}\gg\frac{1}{RC}$ eingestellt. Dadurch diente das RC-Glied als Integrator (siehe ??). Anhand von verschieden geformten Eingangssignalen U_0 konnte die Integration sehr gut veranschaulicht werden (Aufgabe 4). Die Abbildungen *009*?? bis *014*?? zeigen die Ergebnisse. Es wurden Eingangsspannungen U_0 mit Sinus-, Dreieck- und Rechteckform eingestellt.