Registro remoto de variables asociadas al proceso de secado de café basado en loT

Hector Jaime Estrada Toledo

ÍNDICE

- 01-Introducción.
- 02-Estado del arte.
- 03-Desarrollo de la contribución.
- 04-Conclusiones.
- 05-Trabajos futuros.

La Caficultura en Colombia

15%

PIB Agropecuario

Federación Nacional de Cafeteros de Colombia, 2022.

• Actualmente, en las fincas cafeteras del sur del Huila (Colombia), es común la realización de prácticas inadecuadas de postcosecha del café.

 Este fenómeno se debe principalmente a la falta de infraestructura y tecnología adecuadas para el secado del café por parte de los caficultores.

¿Cuáles son las condiciones internas de temperatura y humedad que repercuten en la calidad del café durante el proceso de secado?

Apartado 01 Objetivo General

Diseñar una solución loT que permita el aseguramiento de la calidad mediante el monitoreo de la temperatura y humedad relativa en secaderos de café tipo parabólico.

Apartado 01 Objetivos específicos.

- 1. Revisar el estado del arte sobre procesos de secado de café, así como el equipamiento y plataformas relacionadas.
- 2. Mejorar el proceso de secado de café mediante una digitalización parcial de forma que se pueda obtener información de calidad.
- 3. Comprobar la viabilidad de la propuesta mediante el diseño y desarrollo de un prototipo para el control y monitoreo de la temperatura y humedad relativa en secaderos de café.

Apartado 02 Estado del arte.

Silo-secador tipo Cenicafé

Secadores mecánicos rotativos tipo guardiola

Dispositivo de monitoreo de temperatura, humedad relativa, intensidad de la luz (CeriTech IoT, 2022).

Metodología Propuesta:

Análisis del problema y captura de requerimientos del sistema.

Diseño de la arquitectura IoT

Diseño de los componentes hardware y sistemas electrónicos

Diseño de los componentes software.

Desarrollo del demostrador y validación del sistema propuesto.

Análisis del problema y captura de requerimientos del sistema:

RFS1 Pe	rmitir el ingreso	a través de un	usuario y c	ontraseña
---------	-------------------	----------------	-------------	-----------

- RFS2 Permitir al usuario finalizar su sesión.
- RFS3 Almacenar registros de temperatura y humedad relativa junto con la fecha de lectura.
- RFS4 Mostrar en tiempo real las condiciones internas de secado.
- RFS5 Graficar las lecturas de temperatura y humedad relativa.
- RFS6 Permitir el acceso a datos históricos.
- RFS7 Conectarse a una conexión a internet.
- RFS8 Establecer parámetros de Setpoint de temperatura y humedad.
- RFS9 Almacenar la información del proceso de secado mediante un ID autoincremental.

Análisis del problema y captura de requerimientos del sistema:

RFH1 Activar cargas eléctricas de potencia superior a los 500W.

RFH2 El dispositivo electrónico debe alimentarse a una fuente de energía eléctrica AC de 120V.

RFH3 Conectarse a una red Wifi.

RFH4 Permitir la lectura de la temperatura y la humedad relativa.

RFH5 Registrar en memoria la configuración de SSID y contraseña Wifi.

RFH6 Debe contar con una protección contra la intemperie.

RFH7 Los sensores de temperatura deben estar entre un rango de 0-70 °C.

RFH8 Los sensores de humedad deben estar entre un rango de 0-100% HR.

Diseño de la arquitectura loT

Gráficos

Desarrollo de la contribución.

Diseño de los componentes hardware y sistemas electrónicos

Diseño de los componentes hardware y sistemas electrónicos

Desarrollo de la contribución.

Diseño de los componentes hardware y sistemas electrónicos

Suministro Eléctrico 120 V AC.

Diseño de los componentes software.

Desarrollo de la contribución.

Desarrollo del demostrador y validación del sistema propuesto.

Demostrador en caja de policarbonato y conexiones eléctricas del dispositivo.

Desarrollo de la contribución.

Desarrollo del demostrador y validación del sistema propuesto.

Diseño conceptual: Ubicación de elementos en el secadero de café

Desarrollo de la contribución.

Desarrollo del demostrador y validación del sistema propuesto.

Vista de los extractores inferior y superior junto con la caja de control

Apartado 04 Conclusiones.

Los resultados obtenidos a partir de la investigación incluyen:

- Desarrollo y aplicación de un hardware específico para la captura y procesamiento de datos.
- Desarrollo y aplicación de una plataforma de software para la visualización y almacenamiento de los datos.
- Mediciones en tiempo real de la temperatura y humedad en el secadero.
- Automatización del sistema de extracción de aire, según los parámetros preestablecidos.

Apartado 04 Conclusiones.

Los resultados obtenidos a partir de la investigación incluyen:

- Desarrollo y aplicación de un hardware específico para la captura y procesamiento de datos.
- Desarrollo y aplicación de una plataforma de software para la visualización y almacenamiento de los datos.
- Mediciones en tiempo real de la temperatura y humedad en el secadero.
- Automatización del sistema de extracción de aire, según los parámetros preestablecidos.

Apartado 05 Trabajos futuros.

- Ampliar la cantidad de parámetros monitoreados (velocidad del aire, presión atmosférica y la intensidad de la luz).
- Integrar inteligencia artificial en el sistema para mejorar el análisis de datos y la toma de decisiones automatizadas.
- Explorar tecnologías de baja energía y redes de sensores inalámbricos para garantizar una alimentación sostenible y una transmisión de datos confiable.

muchas gracias.

