Sprawozdanie z ćwiczeń laboratoryjnych

z przedmiotu: Sterowanie Analogowe

Numer ćwiczenia:	2
Tytuł ćwiczenia:	Badanie jakości i dokładności sterowania
Imię, nazwisko i nu-	Mateusz Kuczerowski 197900
mer albumu:	Kewin Kisiel 197866
Data pomiarów:	16.10.2025
Data oddania:	22.10.2025
Ocena:	

Prowadzący: dr inż. Piotr Fiertek

Grupa laboratoryjna: 1A

1 Cel ćwiczenia

W ramach zajęć analizowano odpowiedzi skokowe oraz charakterystyki częstotliwościowe (Bodego) dla różnych wartości wzmocnienia. Pozwoliło to na ocenę, jak zmiana k_c wpływa na parametry odpowiedzi, takie jak przeregulowanie, czas ustalania, pasmo przenoszenia oraz dokładność sterowania (uchyb ustalony).

2 Przebieg ćwiczenia

Podczas ćwiczenia przeprowadzono badanie trzech różnych układów zamkniętych (Układ A, B, D), wskazanych przez prowadzącego. Układy te były sterowane za pomocą sterownika proporcjonalnego (P). Dla każdego z badanych układów zarejestrowano łącznie 9 odpowiedzi skokowych – po trzy dla każdej z trzech różnych wartości wzmocnienia sterownika k_c . W trakcie zajęć wykorzystano stanowisko pomiarowe składające się z zestawu analogowych modeli procesów przemysłowych (ZAMPP), generatora funkcji oraz oscyloskopu dwukanałowego. Zarejestrowane na oscyloskopie przebiegi (dane pomiarowe) zostały następnie wykorzystane do porównania z wynikami symulacji teoretycznych. Opracowanie wyników wymagało również przygotowania wykresów Nyquista oraz linii pierwiastkowych dla badanych układów.

3 Pomiary i analiza wyników

Poniżej przedstawiono zdjęcia z przeprowadzonych pomiarów w trakcie laboratorium.

POMIARY: UKLAO:	C/I					
I Pomior	odp. sko	to ma :	k :			
L. P. M	e C1)	1000				
1 0,4	0	(6, lw)	2025			
2 1,3 3 2,6 4 6,6	0					
4 5,5						
II Char	Cropsdod h		z wj			
	n: 2, 4	1	1-,2			
Lp. f[1-12]	Uim [VAD]	Uont [Vpp]	4[9]			
1 10	2	2,06	1,8			
3 100	2	2.06	18			
4 500	2 2 2 2 2	3.58	-159.4			
2 100 3 200 4 500 5 425 6 1000	2	1.42 958	-1131.9			
cla kg n:1,3						
Lp. f[1-12]		Uont [Vpp]	4[9]			
1 10	2	2.06	2.16			
2 100 3 200	2	2.04 1.96	22.32 39.6			
4 500	2	2.19	112.5			
2 100 3 200 4 500 5 680 6 1 k	2 2	0,38	-1799.5 -137,5			
9 1 / 5		, ,	1 / 0			

(a) Zdjęcie pomiarów 1.

dla kz r	= 17,5		
Lp. f[Hi]	Uim [Vpp]	Uont [Vpp]	4[]
1 10 2 100 3 200 4 600 5 600 6 1.45K	2 2 2 2 2 2 7 n=2,5	2.06 2.14 2.32 3.06 3.26 1.4	2.16 18 39.6 49.92 129 -142,1
Lp. ([14] 1 10 2 100 3 200 4 400 5 500 6 3.52		2.06 2.14 2.34 3.48 12.2 1.4	7 [] 2.16 12.24 25.2 47.48 131 -107
UKLAD: C I Pomior of Lp. kp 1 1,1 2 4 3 8 4 10	ect)	en ma k	L: With confe

(c) Zdjęcie pomiarów 3.

k, m=qn dla f [1-12] 123 7 2.06 10 1.86 100 2 32,8 59,7 (72,9 132.3 -162.4 222 1.68 200 4 S G 1. 46 1. 1 0,46 750 800 UKLAD 2 Vpp l=104, Pomior I odp. ma e (1) c(+) gc4 0,6 O Л 2 3 И O Ö 3,6 ch2: 1/2 11 Char. Cropsdod h /->2 dla k, m=0,5 e [in] Uim [Vpp] Uont [Vpp] 3, 96 33.8 62. **5**2 Z. 0 6 22222 12345 2.06
1.56
1.62
1.4 100 200 400 111.6 137.3 177.8 SZC 0,94 G 1K

(b) Zdjęcie pomiarów 2.

	()	J C I		
dla	Ł,	m=1.1		1->2
Lp.	E [HI]	Uim [VAD]	Uont [Vpp]	4[9]
1	10	2	O.44	-6.82
2 3	200	2 7	0.42	6.84
4	san pan	2	0.34	12.96 33.12
S	1.5 k	2	0.26	48.9
G	2 k	2	0,162	69.12
dla	7	n = M	,	1
Lp.	e [H]	Uim [VAD]	Uout [Vpp]	4 [J
1	10	5	0,78 0 7 h 0,72	- 3.6
2 3	200	2	047	10.08 16.63
4	800	7.	0,68	36,47
S	1.5k 2k	2	0, 42	52.81 62.04
dla		n= 8	0,416	1 02.04
	£ 3 · 1		LO . EV 3	10 5 7
		Uim [Vao]	Uant [Vpp]	4 [J
7	10	2	1.08 1.04	-2.16 6.48
23 4	400	2	1.04	10, 8 25, 48
4	900 1.52	2	0,96	23. <u>48</u>
Š	2k	2	0,65	56.44

(d) Zdjęcie pomiarów 4.

4 Układy pomiarowe

Układ A):

Rysunek 2: Schemat układu pomiarowego (a).

Układ B):

Rysunek 3: Schemat układu pomiarowego (b).

Układ D):

Rysunek 4: Schemat blokowy układu regulacji z zakłóceniem.

4.1 Układ A

Pierwszy badany układ składa się ze sterownika proporcjonalnego (P) oraz obiektu sterowanego w pętli ujemnego sprzężenia zwrotnego. Obiekt sterowany jest szeregowym połączeniem członu całkującego i członu inercyjnego drugiego rzędu.

Na podstawie identyfikacji przeprowadzonej w ćwiczeniu 1, przyjęto następujące parametry modeli:

- Człon całkujący: $G(s) = \frac{1}{sT_i}$, gdzie $T_i = 1,33$ ms.
- Człon 2 rzędu: $G(s) = \frac{1}{1+sa_1+s^2a_2} = \frac{1}{1+s2\zeta\tau+s^2\tau^2} = \frac{w_n^2}{w_n^2+s2\zeta w_n+s^2}$, gdzie wyznaczone parametry to $\zeta = 0.37$ i $\omega_n = 2330$ rad/s.

Badania przeprowadzono dla trzech różnych wartości wzmocnienia k_c , obliczonych ze wzoru $k_c=0.47+n/2$:

• Dla
$$n_1 = 0.1$$
: $k_{c1} = 0.47 + 0.1/2 = 0.47 + 0.05 = \mathbf{0.52}$

• Dla
$$n_2 = 1.3$$
: $k_{c2} = 0.47 + 1.3/2 = 0.47 + 0.65 = 1.12$

• Dla
$$n_3 = 2.4$$
: $k_{c3} = 0.47 + 2.4/2 = 0.47 + 1.20 = 1.67$

4.1.1 Odpowiedzi skokowe

Na poniższym wykresie przedstawiono zarejestrowane odpowiedzi skokowe układu (A) dla trzech wyznaczonych wzmocnień k_c .

Rysunek 5: Odpowiedź skokowa układu (A) przy różnych wartościach wzmocnienia k_c .

4.1.2 Linie pierwiastkowe

Wykres linii pierwiastkowych dla układu otwartego $G_o(s) = k_c \cdot \frac{1}{sT_i} \cdot \frac{w_n^2}{w_n^2 + s2\zeta w_n + s^2}$ przedstawiono poniżej. Zaznaczono na nim położenie biegunów układu zamkniętego dla badanych wzmocnień k_{c1} , k_{c2} i k_{c3} .

Rysunek 6: Linie pierwiastkowe układu otwartego (A).

4.1.3 Charakterystyki Bodego

Poniższy wykres przedstawia charakterystyki Bodego układu zamkniętego dla badanych wartości k_c .

Rysunek 7: Charakterystyki Bodego układu zamkniętego (A).

4.1.4 Charakterystyki Nyquista

Na wykresie Nyquista układu otwartego można zbadać stabilność układu zamkniętego.

Rysunek 8: Charakterystyka Nyquista układu otwartego (A).

4.2 Układ B

Drugi badany układ składa się ze sterownika proporcjonalnego (P) oraz obiektu będącego szeregowym połączeniem członu całkującego i członu nieminimalnofazowego.

Na podstawie identyfikacji przeprowadzonej w ćwiczeniu 1, przyjęto następujące parametry modeli:

- Człon całkujący: $G(s) = \frac{1}{sT_i}$, gdzie $T_i = 1,33$ ms.
- Człon nieminimalnofazowy: $G(s) = \frac{1-sT_x}{1+sT_y}$, gdzie: $T_x = 0.396$ ms i $T_y = 0.113$ ms.

Badania przeprowadzono dla trzech wartości wzmocnienia k_c , obliczonych ze wzoru $k_c = 0.47 + n/2$:

- Dla $n_1 = 0.5$: $k_{c1} = 0.47 + 0.5/2 = 0.47 + 0.25 = \mathbf{0.72}$
- Dla $n_2 = 1.5$: $k_{c2} = 0.47 + 1.5/2 = 0.47 + 0.75 = 1.22$
- Dla $n_3 = 2.8$: $k_{c3} = 0.47 + 2.8/2 = 0.47 + 1.40 = 1.87$

4.2.1 Odpowiedzi skokowe

Na poniższym wykresie przedstawiono zarejestrowane odpowiedzi skokowe układu (B) dla trzech wyznaczonych wzmocnień k_c .

Rysunek 9: Odpowiedź skokowa układu (B) przy różnych wartościach wzmocnienia k_c .

4.2.2 Linie pierwiastkowe

Wykres linii pierwiastkowych dla układu otwartego $G_o(s) = k_c \cdot \frac{1}{sT_i} \cdot \frac{1-sT_x}{1+sT_y}$ przedstawiono poniżej. Zaznaczono na nim położenie biegunów układu zamkniętego dla badanych wzmocnień k_{c1} , k_{c2} i k_{c3} .

Rysunek 10: Linie pierwiastkowe układu otwartego (B).

4.2.3 Charakterystyki Bodego

Rysunek 11: Charakterystyki Bodego układu zamkniętego (B).

4.2.4 Charakterystyki Nyquista

Rysunek 12: Charakterystyka Nyquista układu otwartego (B).

4.3 Układ D

Ostatni badany układ to układ regulacji z zakłóceniem, składający się ze sterownika proporcjonalnego (P) i obiektu inercyjnego pierwszego rzędu.

Na podstawie identyfikacji przeprowadzonej w ćwiczeniu 1, przyjęto następujące parametry modeli:

• Człon inercyjny 1 rzędu: $G(s) = \frac{k_p}{1+sT_p}$, gdzie $k_p = 0.871$ i $T_p = 0.78$ ms.

Badania przeprowadzono dla trzech wartości wzmocnienia k_c , obliczonych ze wzoru $k_c = 0.47 + n/2$:

- Dla $n_1 = 1.1$: $k_{c1} = 0.47 + 1.1/2 = 0.47 + 0.55 = 1.02$
- Dla $n_2 = 4.0$: $k_{c2} = 0.47 + 4.0/2 = 0.47 + 2.00 = 2.47$
- Dla $n_3 = 8.0$: $k_{c3} = 0.47 + 8.0/2 = 0.47 + 4.00 = 4.47$

4.3.1 Odpowiedzi skokowe

Na poniższym wykresie przedstawiono zarejestrowane odpowiedzi skokowe układu (D) dla trzech wyznaczonych wzmocnień k_c .

Rysunek 13: Odpowiedź skokowa układu (D) przy różnych wartościach wzmocnienia k_c .

4.3.2 Linie pierwiastkowe

Rysunek 14: Linie pierwiastkowe układu otwartego (D).

4.3.3 Charakterystyki Bodego

Rysunek 15: Charakterystyki Bodego układu zamkniętego (D).

4.3.4 Charakterystyki Nyquista

Rysunek 16: Charakterystyka Nyquista układu otwartego (D).

5 Wnioski

Tutaj wnioski