MTH 101-Calculus

Spring-2021

Assignment 3: Derivatives, Maxima and Minima, Rolle's Theorem

- 1. Show that the function $f(x) = x \mid x \mid$ is differentiable at 0. More generally, if f is continuous at 0, then g(x) = xf(x) is differentiable at 0.
- 2. Let f be defined for all real x, and suppose that $|f(x)-f(y)| \leq (x-y)^2$ for all real x and y. Prove that f is a constant function.
- 3. Show that among all triangles with given base and the corresponding vertex angle, the isosceles triangle has the maximum area.
- 4. Show that exactly two real values of x satisfy the equation $x^2 = x \sin x + \cos x$.
- 5. Let $g:[a,b]\to\mathbb{R}$ be a continuous function, differentiable on (a,b) such that g(a)=g(b)=0and $g(x) \neq 0$ for all $x \in (a,b)$. Show that the function $h:(a,b) \to \mathbb{R}$, defined by $h(x) = \frac{g'(x)}{g(x)}$ is an onto function.
- 6. Suppose f is continuous on [a, b], differentiable on (a, b) and satisfies $f^2(a) f^2(b) = a^2 b^2$. Then show that the equation f'(x)f(x) = x has at least one root in (a, b).
- 7. Let $f:(-1,1)\to\mathbb{R}$ be twice differentiable. Then show the following:
 - (a) If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$ then f'(0) = f''(0) = 0.
 - (b) If f''(0) > 0 then there exists $n \in \mathbb{N}$ such that $f(\frac{1}{n}) \neq 1$.