SEQUENCE LISTING

(1) GENERAL INFORMATION:

(I) APPLICANT: Rothe, Mike

Goeddel, David V

	15 A-62464/Rothe et al.	
AAATCCAG	STA AAGAAAGTGT AGTAAATTCT ACATAAGAGT CTATCATTGA TTTCTTTTGG	120
TCTAAGTA	AGT ATCTTGGAAA TTCAGAGAGA TACTCATCCT ACCTGAATAT AAACTGAGAT	60
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:	
(ii)	MOLECULE TYPE: cDNA	
(I)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2589 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(2) INFO	DRMATION FOR SEQ ID NO:1:	
	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (415)781-1989 (B) TELEFAX: (415)398-3249	
off form that the first that	ATTORNEY/AGENT INFORMATION: (A) NAME:Brezner, David J. (B) REGISTRATION NUMBER: 24,774 (C) REFERENCE/DOCKET NUMBER: A-62464/DJB	
	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US (B) FILING DATE: (C) CLASSIFICATION:	
(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: FLEHR, HOHBACH, TEST, ALBRITTON & HERBERT (B) STREET: 4 Embarcadero Center, Suite 3400 (C) CITY: San Francisco (D) STATE: California (E) COUNTRY: USA (F) ZIP: 94111	
(iii)	NUMBER OF SEQUENCES: 14	
(11)	TITLE OF INVENTION: INHIBITORS OF APOPTOSIS	

TGGTAAAAAT	CTTAGTTCAT	GTGAAGAAAT	TTCATGTGAA	TGTTTTAGCT	ATCAAACAGC	180
ACTGTCACCT	ACTCATGCAC	AAAACTGCCT	CCCAAAGACT	TTTCCCAGGT	CCCTCGTATC	240
AAAACATTAA	GAGTATAATG	GAAGATAGCA	CGATCTTGTC	AGATTGGACA	AACAGCAACA	300
AACAAAAAAT	GAAGTATGAC	TTTTCCTGTG	AACTCTACAG	AATGTCTACA	TATTCAACTT	360
TCCCCGCCGG	GGTGCCTGTC	TCAGAAAGGA	GTCTTGCTCG	TGCTGGTTTT	TATTATACTG	420
GTGTGAATGA	CAAGGTCAAA	TGCTTCTGTT	GTGGCCTGAT	GCTGGATAAC	TGGAAACTAG	480
GAGACAGTCC	TATTCAAAAG	CATAAACAGC	TATATCCTAG	CTGTAGCTTT	ATTCAGAATC	540
TGGTTTCAGC	TAGTCTGGGA	TCCACCTCTA	AGAATACGTC	TCCAATGAGA	AACAGTTTTG	600
CACATTCATT	ATCTCCCACC	TTGGAACATA	GTAGCTTGTT	CAGTGGTTCT	TACTCCAGCC	660
TTTCTCCAAA	CCCTCTTAAT	TCTAGAGCAG	TTGAAGACAT	CTCTTCATCG	AGGACTAACC	720
CCTACAGTTA	TGCAATGAGT	ACTGAAGAAG	CCAGATTTCT	TACCTACCAT	ATGTGGCCAT	780
TAACTTTTTT	GTCACCATCA	GAATTGGCAA	GAGCTGGTTT	TTATTATATA	GGACCTGGAG	840
AEAGGGTAGC	CTGCTTTGCC	TGTGGTGGGA	AGCTCAGTAA	CTGGGAACCA	AAGGATGATG	900
QTATGTCAGA	ACACCGGAGG	CATTTTCCCA	ACTGTCCATT	TTTGGAAAAT	TCTCTAGAAA	960
C TCTGAGGTT	TAGCATTTCA	AATCTGAGCA	TGCAGACACA	TGCAGCTCGA	ATGAGAACAT	1020
ŢŢATGTACTG	GCCATCTAGT	GTTCCAGTTC	AGCCTGAGCA	GCTTGCAAGT	GCTGGTTTTT	1080
ATTATGTGGG	TCGCAATGAT	GATGTCAAAT	GCTTTTGTTG	TGATGGTGGC	TTGAGGTGTT	1140
GGGAATCTGG	AGATGATCCA	TGGGTAGAAC	ATGCCAAGTG	GTTTCCAAGG	TGTGAGTTCT	1200
TGATACGAAT	GAAAGGCCAA	GAGTTTGTTG	ATGAGATTCA	AGGTAGATAT	CCTCATCTTC	1260
TTGAACAGCT	GTTGTCAACT	TCAGATACCA	CTGGAGAAGA	AAATGCTGAC	CCACCAATTA	1320
TTCATTTTGG	ACCTGGAGAA	AGTTCTTCAG	AAGATGCTGT	CATGATGAAT	ACACCTGTGG	1380
TTAAATCTGC	CTTGGAAATG	GGCTTTAATA	GAGACCTGGT	GAAACAAACA	GTTCAAAGTA	1440
AAATCCTGAC	AACTGGAGAG	AACTATAAAA	CAGTTAATGA	TATTGTGTCA	GCACTTCTAA	1500
ATGCTGAAGA	TGAAAAAAGA	GAGGAGGAGA	AGGAAAAACA	AGCTGAAGAA	ATGGCATCAG	1560
ATGATTTGTC	ATTAATTCGG	AAGAACAGAA	TGGCTCTCTT	TCAACAATTG	ACATGTGTGC	1620
TTCCTATCCT	GGATAATCTT	TTAAAGGCCA	ATGTAATTAA	TAAACAGGAA	CATGATATTA	1680
TTAAACAAAA	AACACAGATA	CCTTTACAAG	CGAGAGAACT	GATTGATACC	ATTTTGGTTA	1740
AAGGAAATGC	TGCGGCCAAC	ATCTTCAAAA	ACTGTCTAAA	AGAAATTGAC	TCTACATTGT	1800
ATAAGAACTT	ATTTGTGGAT	AAGAATATGA	AGTATATTCC	AACAGAAGAT	GTTTCAGGTC	1860

TGTCACTGGA	AGAACAATTG	AGGAGGTTGC	AAGAAGAACG	AACTTGTAAA	GTGTGTATGG	1920
ACAAAGAAGT	TTCTGTTGTA	TTTATTCCTT	GTGGTCATCT	GGTAGTATGC	CAGGAATGTG	1980
CCCCTTCTCT	AAGAAAATGC	CCTATTTGCA	GGGGTATAAT	CAAGGGTACT	GTTCGTACAT	2040
TTCTCTCTTA	AAGAAAAATA	GTCTATATTT	TAACCTGCAT	AAAAAGGTCT	TTAAAATTT	2100
GTTGAACACT	TGAAGCCATC	TAAAGTAAAA	AGGGAATTAT	GAGTTTTTCA	ATTAGTAACA	2160
TTCATGTTCT	AGTCTGCTTT	GGTACTAATA	ATCTTGTTTC	TGAAAAGATG	GTATCATATA	2220
TTTAATCTTA	ATCTGTTTAT	TTACAAGGGA	AGATTTATGT	TTGGTGAACT	ATATTAGTAT	2280
GTATGTGTAC	CTAAGGGAGT	AGTGTCACTG	CTTGTTATGC	ATCATTTCAG	GAGTTACTGG	2340
ATTTGTTGTT	CTTTCAGAAA	GCTTTGAATA	CTAAATTATA	GTGTAGAAAA	GAACTGGAAA	2400
CCAGGAACTC	TGGAGTTCAT	CAGAGTTATG	GTGCCGAATT	GTCTTTGGTG	CTTTTCACTT	2460
	ATAAGGATTT	TTCTCTTATT	TCTCCCCTA	GTTTGTGAGA	AACATCTCAA	2520
TAAAGTGCTT	ТАААААААА	ААААААААА	АААААААА	ААААААААА	AAAAAAAAA	2580
AAAAAAA A						2589

INFORMATION FOR SEQ ID NO:2:

≝

14

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 618 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met His Lys Thr Ala Ser Gln Arg Leu Phe Pro Gly Pro Ser Tyr Gln

Asn Ile Lys Ser Ile Met Glu Asp Ser Thr Ile Leu Ser Asp Trp Thr

Asn Ser Asn Lys Gln Lys Met Lys Tyr Asp Phe Ser Cys Glu Leu Tyr 35 40 45

Arg Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser Glu 50 55 60

Arg Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys 65 70 75 80

Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Leu Gly 85 90 95

Asp Ser Pro Ile Gln Lys His Lys Gln Leu Tyr Pro Ser Cys Ser Phe Ile Gln Asn Leu Val Ser Ala Ser Leu Gly Ser Thr Ser Lys Asn Thr Ser Pro Met Arg Asn Ser Phe Ala His Ser Leu Ser Pro Thr Leu Glu His Ser Ser Leu Phe Ser Gly Ser Tyr Ser Ser Leu Ser Pro Asn Pro Leu Asn Ser Arg Ala Val Glu Asp Ile Ser Ser Ser Arg Thr Asn Pro Tyr Ser Tyr Ala Met Ser Thr Glu Glu Ala Arg Phe Leu Thr Tyr His 185 Met Trp Pro Leu Thr Phe Leu Ser Pro Ser Glu Leu Ala Arg Ala Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asp Ala Met Ser Glu His 230 235 240 Arg Arg His Phe Pro Asn Cys Pro Phe Leu Glu Asn Ser Leu Glu Thr 250 Leu Arg Phe Ser Ile Ser Asn Leu Ser Met Gln Thr His Ala Ala Arg 265 Met Arg Thr Phe Met Tyr Trp Pro Ser Ser Val Pro Val Gln Pro Glu 275 Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Arg Asn Asp Asp Val 295 Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser Gly Asp 305 320 Asp Pro Trp Val Glu His Ala Lys Trp Phe Pro Arg Cys Glu Phe Leu 330 Ile Arg Met Lys Gly Gln Glu Phe Val Asp Glu Ile Gln Gly Arg Tyr 340 Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Thr Thr Gly Glu 360 Glu Asn Ala Asp Pro Pro Ile Ile His Phe Gly Pro Gly Glu Ser Ser 375 380 Ser Glu Asp Ala Val Met Met Asn Thr Pro Val Val Lys Ser Ala Leu 390 395 400

	Glu	Met	Gly	Phe	Asn 405	Arg	Asp	Leu	Val	Lys 410	Gln	Thr	Val	Gln	Ser 415	Lys
	Ile	Leu	Thr	Thr 420	Gly	Glu	Asn	Tyr	Lys 425	Thr	Val	Asn	Asp	Ile 430	Val	Ser
	Ala	Leu	Leu 435	Asn	Ala	Glu	Asp	Glu 440	Lys	Arg	Glu	Glu	Glu 445	Lys	Glu	Lys
	Gln	Ala 450	Glu	Glu	Met	Ala	Ser 455	Asp	Asp	Leu	Ser	Leu 460	Ile	Arg	Lys	Asn
	Arg 465	Met	Ala	Leu	Phe	Gln 470	Gln	Leu	Thr	Cys	Val 475	Leu	Pro	Ile	Leu	Asp 480
	Asn	Leu	Leu	Lys	Ala 485	Asn	Val	Ile	Asn	Lys 490	Gln	Glu	His	Asp	Ile 495	Ile
	Lys	Gln	Lys	Thr 500	Gln	Ile	Pro	Leu	Gln 505	Ala	Arg	Glu	Leu	Ile 510	Asp	Thr
H., H.	Ile	Leu	Val 515	Lys	Gly	Asn	Ala	Ala 520	Ala	Asn	Ile	Phe	Lys 525	Asn	Cys	Leu
	Lys	Glu 530	Ile	Asp	Ser	Thr	Leu 535	Tyr	Lys	Asn	Leu	Phe 540	Val	Asp	Lys	Asn
.V .Ti .Ti	Met 545	Lys	Tyr	Ile	Pro	Thr 550	Glu	Asp	Val	Ser	Gly 555	Leu	Ser	Leu	Glu	Glu 560
	Gln	Leu	Arg	Arg	Leu 565	Gln	Glu	Glu	Arg	Thr 570	Cys	Lys	Val	Cys	Met 575	Asp
	Lys	Glu	Val	Ser 580	Val	Val	Phe	Ile	Pro 585	Cys	Gly	His	Leu	Val 590	Val	Cys
	Gln	Glu	Cys 595	Ala	Pro	Ser	Leu	Arg 600	Lys	Cys	Pro	Ile	Cys 605	Arg	Gly	Ile
	Ile	Lys 610	Gly	Thr	Val	Arg	Thr 615	Phe	Leu	Ser						

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGGCAGCAGG TTTACAAAGG AGGAAAACGA CTTCTTCTAG ATTTTTTTTT CAGTTTCTTC

татааатсаа	AACTACCTCC	CTAGAGAAAG	GCTAGTCCCT	TTTCTTCCCC	ATTCATTTCA	120
TTATGAACAT	AGTAGAAAAC	AGCATATTCT	TATCAAATTT	GATGAAAAGC	GCCAACACGT	180
TTGAACTGAA	ATACGACTTG	TCATGTGAAC	TGTACCGAAT	GTCTACGTAT	TCCACTTTTC	240
CTGCTGGGGT	CCCTGTCTCA	GAAAGGAGTC	TTGCTCGCGC	TGGTTTCTAT	TACACTGGTG	300
TGAATGACAA	GGTCAAATGC	TTCTGTTGTG	GCCTGATGCT	GGATAACTGG	AAAAGAGGAG	360
ACAGTCCTAC	TGAAAAGCAT	AAAAAGTTGT	ATCCTAGCTG	CAGATTCGTT	CAGAGTCTAA	420
ATTCCGTTAA	CAACTTGGAA	GCTACCTCTC	AGCCTACTTT	TCCTTCTTCA	GTAACAAATT	480
CCACACACTC	ATTACTTCCG	GGTACAGAAA	ACAGTGGATA	TTTCCGTGGC	TCTTATTCAA	540
ACTCTCCATC	AAATCCTGTA	AACTCCAGAG	CAAATCAAGA	TTTTTCTGCC	TTGATGAGAA	600
GTTCCTACCA	CTGTGCAATG	AATAACGAAA	ATGCCAGATT	ACTTACTTTT	CAGACATGGC	660
CATTGACTTT	TCTGTCGCCA	ACAGATCTGG	CAAAAGCAGG	CTTTTACTAC	ATAGGACCTG	720
GAGACAGAGT	GGCTTGCTTT	GCCTGTGGTG	GAAAATTGAG	CAATTGGGAA	CCGAAGGATA	780
AUGCTATGTC	AGAACACCTG	AGACATTTTC	CCAAATGCCC	ATTTATAGAA	AATCAGCTTC	840
AAGACACTTC	AAGATACACA	GTTTCTAATC	TGAGCATGCA	GACACATGCA	GCCCGCTTTA	900
AAACATTCTT	TAACTGGCCC	TCTAGTGTTC	TAGTTAATCC	TGAGCAGCTT	GCAAGTGCGG	960
GTTTTTATTA	TGTGGGTAAC	AGTGATGATG	TCAAATGCTT	TTGCTGTGAT	GGTGGACTCA	1020
GTGTTGGGA	ATCTGGAGAT	GATCCATGGG	TTCAACATGC	CAAGTGGTTT	CCAAGGTGTG	1080
AGTACTTGAT	AAGAATTAAA	GGACAGGAGT	TCATCCGTCA	AGTTCAAGCC	AGTTACCCTC	1140
ATCTACTTGA	ACAGCTGCTA	TCCACATCAG	ACAGCCCAGG	AGATGAAAAT	GCAGAGTCAT	1200
CAATTATCCA	TTTTGAACCT	GGAGAACACC	ATTCAGAAGA	TGCAATCATG	ATGAATACTC	1260
CTGTGATTAA	TGCTGCCGTG	GAAATGGGCT	TTAGTAGAAG	CCTGGTAAAA	CAGACAGTTC	1320
AGAGAAAAAT	CCTAGCAACT	GGAGAGAATT	ATAGACTAGT	CAATGATCTT	GTGTTAGACT	1380
TACTCAATGC	AGAAGATGAA	ATAAGGGAAG	AGGAGAGA	AAGAGCAACT	GAGGAAAAAG	1440
AATCAAATGA	TTTATTATTA	ATCCGGAAGA	ATAGAATGGC	ACTTTTTCAA	CATTTGACTT	1500
GTGTAATTCC	AATCCTGGAT	AGTCTACTAA	CTGCCGGAAT	TATTAATGAA	CAAGAACATG	1560
ATGTTATTAA	ACAGAAGACA	CAGACGTCTT	TACAAGCAAG	AGAACTGATT	GATACGATTT	1620
TAGTAAAAGG	AAATATTGCA	GCCACTGTAT	TCAGAAACTC	TCTGCAAGAA	GCTGAAGCTG	1680
TGTTATATGA	GCATTTATTT	GTGCAACAGG	ACATAAAATA	TATTCCCACA	GAAGATGTTT	1740
CAGATCTACC	AGTGGAAGAA	CAATTGCGGA	GACTACAAGA	AGAAAGAACA	TGTAAAGTGT	1800

GTATGGACAA	AGAAGTGTCC	ATAGTGTTTA	TTCCTTGTGG	TCATCTAGTA	GTATGCAAAG	1860
ATTGTGCTCC	TTCTTTAAGA	AAGTGTCCTA	TTTGTAGGAG	TACAATCAAG	GGTACAGTTC	1920
GTACATTTCT	TTCATGAAGA	AGAACCAAAA	CATCATCTAA	ACTTTAGAAT	TAATTTATTA	1980
AATGTATTAT	AACTTTAACT	TTCATCCTAA	TTTGGTTTCC	TTAAAATTTT	TATTTATTTA	2040
CAACTCAACA	AACATTGTTT	TGTGTAACAT	ATTTAATATA	TGTATCTAAA	CCATATGAAC	2100
TTTTTATATA	TAGAAACTAA	GAGAATGATA	GGCTTTTGTT	CTTATGAACG	AAAAGAGGT	2160
AGCACTACAA	ACACAATATT	CAATCAAAAT	TTCAGCATTA	TTGAAATTGT	AAGTGAAGTA	2220
AAACTTAAGA	TATTTGAGTT	AACCTTTAAG	AATTTTAAAT	ATTTTGGCAT	TGTACTAATA	2280
CCGGGAACAT	GAAGCCAGGT	GTGGTGGTAT	GTGCCTGTAG	TCCCAGGCTG	AGGCAAGAGA	2340
ATTACTTGAG	CCCAGGAGTT	TGAATCCATC	CTGGGCAGCA	TACTGAGACC	CTGCCTTTAA	2400
AAACAAACAG	AACAAAAACA	AAACACCAGG	GACACATTTC	TCTGTCTTTT	TTGATCAGTG	2460
	CGAAGGTGTG	CATATATGTT	GAATGACATT	TTAGGGACAT	GGTGTTTTTA	2520
TAAAGAATTC	TGTGAGAAAA	AATTTAATAA	AACCCCCCAA	ATTAAAAAAA	АААААААА	2580
AAAAAAA	АААААААА	A				2601

ա դամի ան դուս մաս հայի հան մեռ (Հայ ուժեր հետի ամեր հետո

1

INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 604 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Ile Val Glu Asn Ser Ile Phe Leu Ser Asn Leu Met Lys Ser 1 5 10 15

Ala Asn Thr Phe Glu Leu Lys Tyr Asp Leu Ser Cys Glu Leu Tyr Arg 20 25 30

Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val Pro Val Ser Glu Arg 35 40 45

Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys Val 50 55 60

Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Arg Gly Asp 65 70 75 80

Ser Pro Thr Glu Lys His Lys Lys Leu Tyr Pro Ser Cys Arg Phe Val Gln Ser Leu Asn Ser Val Asn Asn Leu Glu Ala Thr Ser Gln Pro Thr 105 Phe Pro Ser Ser Val Thr Asn Ser Thr His Ser Leu Leu Pro Gly Thr 120 Glu Asn Ser Gly Tyr Phe Arg Gly Ser Tyr Ser Asn Ser Pro Ser Asn Pro Val Asn Ser Arg Ala Asn Gln Asp Phe Ser Ala Leu Met Arg Ser Ser Tyr His Cys Ala Met Asn Asn Glu Asn Ala Arg Leu Leu Thr Phe Gln Thr Trp Pro Leu Thr Phe Leu Ser Pro Thr Asp Leu Ala Lys Ala 180 185 Gly Phe Tyr Tyr 'Ile Gly Pro Gly Asp Arg Val Ala Cys Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asn Ala Met Ser Glu His Leu Arg His Phe Pro Lys Cys Pro Phe Ile Glu Asn Gln Leu Gln Asp Thr Ser Arg Tyr Thr Val Ser Asn Leu Ser Met Gln Thr His Ala 250 Ala Arg Phe Lys Thr Phe Phe Asn Trp Pro Ser Ser Val Leu Val Asn 265 260 Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Asn Ser Asp Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser 290 Gly Asp Asp Pro Trp Val Gln His Ala Lys Trp Phe Pro Arg Cys Glu Tyr Leu Ile Arg Ile Lys Gly Gln Glu Phe Ile Arg Gln Val Gln Ala 325 335 Ser Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Ser Pro 340 345 Gly Asp Glu Asn Ala Glu Ser Ser Ile Ile His Phe Glu Pro Gly Glu 360 Asp His Ser Glu Asp Ala Ile Met Met Asn Thr Pro Val Ile Asn Ala 375

22

Ala Val Glu Met Gly Phe Ser Arg Ser Leu Val Lys Gln Thr Val Gln Arg Lys Ile Leu Ala Thr Gly Glu Asn Tyr Arg Leu Val Asn Asp Leu 410 Val Leu Asp Leu Leu Asn Ala Glu Asp Glu Ile Arg Glu Glu Glu Arg Glu Arg Ala Thr Glu Glu Lys Glu Ser Asn Asp Leu Leu Ile Arg Lys Asn Arg Met Ala Leu Phe Gln His Leu Thr Cys Val Ile Pro Ile Leu Asp Ser Leu Leu Thr Ala Gly Ile Ile Asn Glu Gln Glu His Asp 475 470 Val Ile Lys Gln Lys Thr Gln Thr Ser Leu Gln Ala Arg Glu Leu Ile 490 Asp Thr Ile Leu Val Lys Gly Asn Ile Ala Ala Thr Val Phe Arg Asn 505 Ser Leu Gln Glu Ala Glu Ala Val Leu Tyr Glu His Leu Phe Val Gln 520 525 Gln Asp Ile Lys Tyr Ile Pro Thr Glu Asp Val Ser Asp Leu Pro Val Glu Glu Gln Leu Arg Arg Leu Gln Glu Glu Arg Thr Cys Lys Val Cys 550 Met Asp Lys Glu Val Ser Ile Val Phe Ile Pro Cys Gly His Leu Val 565 Val Cys Lys Asp Cys Ala Pro Ser Leu Arg Lys Cys Pro Ile Cys Arg 585 Ser Thr Ile Lys Gly Thr Val Arg Thr Phe Leu Ser 595 600

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Cys Glu Leu Tyr Arg Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val 1 5 10 15

Val Asn Asp Lys Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn 35 40 45

Trp Lys Leu Gly Asp Ser Pro 50 55

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

fù

171 thm 4°

Trad raths than

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Cys Glu Leu Tyr Arg Met Ser Thr Tyr Ser Thr Phe Pro Ala Gly Val 1 5 10 15

Pro Val Ser Glu Arg Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly 20 25 30

Val Asn Asp Lys Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn 35 40 45

Trp Lys Arg Gly Asp Ser Pro

INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Leu Ala Arg Ala Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala
1 10 15

Cys Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asp 20 25 30

Ala Met Ser Glu His Arg Arg His Phe Pro Asn Cys Pro Phe 35 40 45

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Leu Ala Lys Ala Gly Phe Tyr Tyr Ile Gly Pro Gly Asp Arg Val Ala 1 5 10 15

Cys Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu Pro Lys Asp Asn 20 25 30

Ala Met Ser Glu His Leu Arg His Phe Pro Lys Cys Pro Phe 35 40 45

(2) INFORMATION FOR SEQ ID NO:9:

ĺÜ

47

Ų

Ē

[]

ſΨ

1.74 P.T.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Arg Asn Asp 1 5 10 15

Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser 20 25 30

Gly Asp Asp Pro Trp Val Glu His Ala Lys Trp Phe Pro Arg Cys Glu 35 40 45

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Gly Asn Ser Asp 1 10 15
- Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Ser 20 25 30
- Gly Asp Asp Pro Trp Val Gln His Ala Lys Trp Phe Pro Arg Cys Glu 35 40 45
- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
- Glu Glu Arg Thr Cys Lys Val Cys Met Asp Lys Glu Val Ser Val Val
 1 1 5 10 15
- The Ile Pro Cys Gly His Leu Val Val Cys Gln Glu Cys Ala Pro Ser
 - Leu Arg Lys Cys Pro Ile Cys Arg Gly Ile Ile Lys Gly Thr Val Arg 35 40 45
- Thr Phe Leu Ser
- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 52 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
 - Glu Glu Arg Thr Cys Lys Val Cys Met Asp Lys Glu Val Ser Ile Val 1 5 10 15
 - Phe Ile Pro Cys Gly His Leu Val Val Cys Lys Asp Cys Ala Pro Ser 20 25 30

Leu Arg Lys Cys Pro Ile Cys Arg Ser Thr Ile Lys Gly Thr Val Arg 35 40 45

Thr Phe Leu Ser 50

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2862 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ASCCACTTTA GAGAATACTG TATGACATCT TCTCTAAGGA AAACCAGCTG CAGACTTCAC TGAGTTCCTT TCATTTCATA GGAAAAGGAG TAGTTCAGAT GTCATGTTTA AGTCCTTATA AGGGGAAAAGA GCCTGAATAT ATGCCCTAGT ACCTAGGCTT CATAACTAGT AATAAGAAGT TAGTTATGGG TAAATAGATC TCAGGTTACC CAGAAGAGTT CATGTGAAAAGAAGAGT GAAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGTCAA TTCACCAGTC GAAGCAGAAG ACAATGAATC TATCCAGTCA GGTGTCTGTG GTGGAGATCT AGTGTCAAGT AGGTGAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA AAACTGTCTCC CAGAGACTCG GCCAAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA ATTGGTGTGAA CTCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT GAAGAGAGAGA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC AGAGAGAGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAAGCA TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGACCG AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCAAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCAAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC CTCATCAAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC CTCATCAAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGGC CTGGCCAGAG CTGGCCTTCTA CTCATCAAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCCTTCTA 1080							
TRACTOR TOATTCATA GGAAAAGGAG TAGTTCAGAT GTCATGTTTA AGTCCTTATA AGGGAAAAGA GCCTGAATAT ATGCCCTAGT ACCTAGGCTT CATAACTAGT AATAAGAAGT TAGTTATGGG TAAATAGATC TCAGGTTACC CAGAAGAGTT CATGTGACCC CCAAAGAGTC 300 TAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGCAA TTCACCAGTC 360 TAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG GTGGAGATCT AGTGTCAAGT 420 TAGTGAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA 480 TAACTGTCTC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA 540 TTCGTGTGAA CTCTTGCCAA TTGTCACAA TTCAGCCAA AAACTTAAAC GTATAATGGA 540 TTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTT CCCAGGGGAG TTCCTGTCTC 660 AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAAATGAA AAGTCAAGTG 720 CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA 780 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	TTCCTTTACA	GTGAATACTG	TAGTCTTAAT	AGACCTGAGC	TGACTGCTGC	AGTTGATGTA	60
AGGGAAAAGA GCCTGAATAT ATGCCCTAGT ACCTAGGCTT CATAACTAGT AATAAGAAGT TAGTTATGGG TAAATAGATC TCAGGTTACC CAGAAGAGTT CATGTGACCC CCAAAGAGTC GTAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGTCAA TTCACCAGTC GAAGCAGAAG ACAATGAATC TATCCAGTCA GGTGTCTGTG GTGGAGATCT AGTGTCAAGT GGTGAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA AACTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA GAAGAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT GAGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTCAGCGTTTT CCCAGGGGAG TTCCTGTCTC AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG CTCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCTAAGG ATGGATCCCT GCAGCTATGC CACCAGAGG CTGGCCAGAG CTGGCTTCTA CTCATCAAGG ATGGATCCCT GCAGCTATGC CACCAGAGG CTGGCCAGAG CTGGCTTCTAC TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCCTTCTA TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCCTTCTA 1080	ĄGCCACTTTA	GAGAATACTG	TATGACATCT	TCTCTAAGGA	AAACCAGCTG	CAGACTTCAC	120
TAGTTATGGG TAAATAGATC TCAGGTTACC CAGAAGAGTT CATGTGACCC CCAAAGAGTC 3000 CTAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGTCAA TTCACCAGTC 3600 CTAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGTCAA TTCACCAGTC 3600 CTAACTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG GTGGAGATCT AGTGTCAAGT 4200 CTATGTGAAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA 4800 AACTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA 5400 CTTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC 6600 AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG 7200 CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA 7800 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGGACTCTG CTTTCAGCCA GTCTGCAGTC 8400 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 9000 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 9600 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 10200 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 10800	TEAGTTCCTT	TCATTTCATA	GGAAAAGGAG	TAGTTCAGAT	GTCATGTTTA	AGTCCTTATA	180
CHARCTAGTG TCTTGGCAAG TGAGACAGAT TTGTCCTGTG AGGGTGTCAA TTCACCAGTC GÁAGCAGAAG ACAATGAATC TATCCAGTCA GGTGTCTGTG GTGGAGATCT AGTGTCAAGT GÁAGCAGAAG ACAATGAATC TATCCAGTCA GGTGTCTGTG GTGGAGATCT AGTGTCAAGT GÁAGCAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA ABCTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA GAAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT TTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	AGGGAAAAGA	GCCTGAATAT	ATGCCCTAGT	ACCTAGGCTT	CATAACTAGT	AATAAGAAGT	240
CÂAGCAGAAG ACAATGAATC TATCCAGTCA GGTGTCTGTG GTGGAGATCT AGTGTCAAGT GGTGAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA AÄCTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA GAAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT GAAGAGGAGC CTGGCTCGTG CTGGCTTTTA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	TAGTTATGGG	TAAATAGATC	TCAGGTTACC	CAGAAGAGTT	CATGTGACCC	CCAAAGAGTC	300
GGTGAGAAAC TTCATCTGGA AGTTTAAGCG GTCAGAAATA CTATTACTAC TCATGGACAA 480 ABCTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA 540 GAAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT 600 TTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC 660 AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG 720 CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA 780 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	TAACTAGTG	TCTTGGCAAG	TGAGACAGAT	TTGTCCTGTG	AGGGTGTCAA	TTCACCAGTC	360
ABCTGTCTCC CAGAGACTCG GCCAAGGTAC CTTACACCAA AAACTTAAAC GTATAATGGA 540 GAAGAGACACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT 600 GAAGAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT 660 GAAGAGAGGAG CTGGCTCGTG CTGCCTTTAA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC 660 GAAGAGAGGAG CTGGCTGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG 720 GAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 GTCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 GAGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 GTCTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 GTTACAGTATG TGGCCTTTAAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080 GTTACAGTATG TGGCCTTTAAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080 GTTACAGTATG TGGCCTTTAAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGCCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGCCAGAG CTGCCAGAG CTGCCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGCCAGAG CTGCCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGCCAGAG CTGCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGCCAGAG CTGCCTTCTA 1080 GTTTCTGTC ACCAGCAGAG CTGCCAGAG	dAAGCAGAAG	ACAATGAATC	TATCCAGTCA	GGTGTCTGTG	GTGGAGATCT	AGTGTCAAGT	420
GAAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT TTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	GGTGAGAAAC	TTCATCTGGA	AGTTTAAGCG	GTCAGAAATA	CTATTACTAC	TCATGGACAA	480
GAAGAGCACA ATCTTGTCAA ATTGGACAAA GGAGAGCGAA GAAAAAATGA AGTTTGACTT 6000 TTCGTGTGAA CTCTACCGAA TGTCTACATA TTCAGCTTTT CCCAGGGGAG TTCCTGTCTC 6600 AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG 7200 CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAAGCA 7800 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 8400 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 9000 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 9600 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 10200 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 10800	* ***	CAGAGACTCG	GCCAAGGTAC	CTTACACCAA	AAACTTAAAC	GTATAATGGA	540
AGAGAGGAGT CTGGCTCGTG CTGGCTTTTA TTATACAGGT GTGAATGACA AAGTCAAGTG 720 CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA 780 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080		ATCTTGTCAA	ATTGGACAAA	GGAGAGCGAA	GAAAAAATGA	AGTTTGACTT	600
CTTCTGCTGT GGCCTGATGT TGGATAACTG GAAACAAGGG GACAGTCCTG TTGAAAAGCA 780 CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	TTCGTGTGAA	CTCTACCGAA	TGTCTACATA	TTCAGCTTTT	CCCAGGGGAG	TTCCTGTCTC	660
CAGACAGTTC TATCCCAGCT GCAGCTTTGT ACAGACTCTG CTTTCAGCCA GTCTGCAGTC 840 TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	AGAGAGGAGT	CTGGCTCGTG	CTGGCTTTTA	TTATACAGGT	GTGAATGACA	AAGTCAAGTG	720
TCCATCTAAG AATATGTCTC CTGTGAAAAG TAGATTTGCA CATTCGTCAC CTCTGGAACG 900 AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	CTTCTGCTGT	GGCCTGATGT	TGGATAACTG	GAAACAAGGG	GACAGTCCTG	TTGAAAAGCA	780
AGGTGGCATT CACTCCAACC TGTGCTCTAG CCCTCTTAAT TCTAGAGCAG TGGAAGACTT 960 CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	CAGACAGTTC	TATCCCAGCT	GCAGCTTTGT	ACAGACTCTG	CTTTCAGCCA	GTCTGCAGTC	840
CTCATCAAGG ATGGATCCCT GCAGCTATGC CATGAGTACA GAAGAGGCCA GATTTCTTAC 1020 TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	TCCATCTAAG	AATATGTCTC	CTGTGAAAAG	TAGATTTGCA	CATTCGTCAC	CTCTGGAACG	900
TTACAGTATG TGGCCTTTAA GTTTTCTGTC ACCAGCAGAG CTGGCCAGAG CTGGCTTCTA 1080	AGGTGGCATT	CACTCCAACC	TGTGCTCTAG	CCCTCTTAAT	TCTAGAGCAG	TGGAAGACTT	960
	CTCATCAAGG	ATGGATCCCT	GCAGCTATGC	CATGAGTACA	GAAGAGGCCA	GATTTCTTAC	1020
TTACATAGGG CCTGGAGACA GGGTGGCCTG TTTTGCCTGT GGTGGGAAAC TGAGCAACTG 1140	TTACAGTATG	TGGCCTTTAA	GTTTTCTGTC	ACCAGCAGAG	CTGGCCAGAG	CTGGCTTCTA	1080
	TTACATAGGG	CCTGGAGACA	GGGTGGCCTG	TTTTGCCTGT	GGTGGGAAAC	TGAGCAACTG	1140

GGAACCAAAG	GATGATGCTA	TGTCAGAGCA	CCGCAGACAT	TTTCCCCACT	GTCCATTTCT	1200
GGAAAATACT	TCAGAAACAC	AGAGGTTTAG	TATATCAAAT	CTAAGTATGC	AGACACACTC	1260
TGCTCGATTG	AGGACATTTC	TGTACTGGCC	ACCTAGTGTT	CCTGTTCAGC	CCGAGCAGCT	1320
TGCAAGTGCT	GGATTCTATT	ACGTGGATCG	CAATGATGAT	GTCAAGTGCT	TTTGTTGTGA	1380
TGGTGGCTTG	AGATGTTGGG	AACCTGGAGA	TGACCCCTGG	ATAGAACACG	CCAAATGGTT	1440
TCCAAGGTGT	GAGTTCTTGA	TACGGATGAA	GGGTCAGGAG	TTTGTTGATG	AGATTCAAGC	1500
TAGATATCCT	CATCTTCTTG	AGCAGCTGTT	GTCCACTTCA	GACACCCCAG	GAGAAGAAAA	1560
TGCTGACCCT	ACAGAGACAG	TGGTGCATTT	TGGCCCTGGA	GAAAGTTCGG	AAGATGTCGT	1620
CATGATGAGC	ACGCCTGTGG	TTAAAGCAGC	CTTGGAAATG	GGCTTCAGTA	GGAGCCTGGT	1680
GAGACAGACG	GTTCAGCGGC	AGATCCTGGC	CACTGGTGAG	AACTACAGGA	CCGTCAATGA	1740
TATTGTCTCA	GTACTTTTGA	ATGCTGAAGA	TGAGAGAAGA	GAAGAGGAGA	AGGAAAGACA	1800
GACTGAAGAG	ATGGCATCAG	GTGACTTATC	ACTGATTCGG	AAGAATAGAA	TGGCCCTCTT	1860
ŢÇAACAGTTG	ACACATGTCC	TTCCTATCCT	GGATAATCTT	CTTGAGGCCA	GTGTAATTAC	1920
ĀĀAACAGGAA	CATGATATTA	TTAGACAGAA	AACACAGATA	CCCTTACAAG	CAAGAGAGCT	1980
TATTGACACC	GTTTTAGTCA	AGGGAAATGC	TGCAGCCAAC	ATCTTCAAAA	ACTCTCTGAA	2040
₫ GAAATTGA C	TCCACGTTAT	ATGAAAACTT	ATTTGTGGAA	AAGAATATGA	AGTATATTCC	2100
ÁACAGAAGAC	GTTTCAGGCT	TGTCATTGGA	AGAGCAGTTG	CGGAGATTAC	AAGAAGAACG	2160
AACTTGCAAA	GTGTGTATGG	ACAGAGAGGT	TTCTATTGTG	TTCATTCCGT	GTGGTCATCT	2220
ĀĠTAGTCTGC	CAGGAATGTG	CCCCTTCTCT	AAGGAAGTGC	CCCATCTGCA	GGGGGACAAT	2280
CAAGGGGACT	GTGCGCACAT	TTCTCTCATG	AGTGAAGAAT	GGTCTGAAAG	TATTGTTGGA	2340
CATCAGAAGC	TGTCAGAACA	AAGAATGAAC	TACTGATTTC	AGCTCTTCAG	CAGGACATTC	2400
TACTCTCTTT	CAAGATTAGT	AATCTTGCTT	TATGAAGGGT	AGCATTGTAT	ATTTAAGCTT	2460
AGTCTGTTGC	AAGGGAAGGT	CTATGCTGTT	GAGCTACAGG	ACTGTGTCTG	TTCCAGAGCA	2520
GGAGTTGGGA	TGCTTGCTGT	ATGTCCTTCA	GGACTTCTTG	GATTTGGAAT	TTGTGAAAGC	2580
TTTGGATTCA	GGTGATGTGG	AGCTCAGAAA	TCCTGAAACC	AGTGGCTCTG	GTACTCAGTA	2640
GTTAGGGTAC	CCTGTGCTTC	TTGGTGCTTT	TCCTTTCTGG	AAAATAAGGA	TTTTTCTGCT	2700
ACTGGTAAAT	ATTTTCTGTT	TGTGAGAAAT	ATATTAAAGT	GTTTCTTTTA	AAGGCGTGCA	2760
TCATTGTAGT	GTGTGCAGGG	ATGTATGCAG	GCAAAACACT	GTGTATATAA	TAAATAAATC	2820
TTTTTAAAAA	GTGAAAAAA	АААААААА	АААААААА	AA		2862

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 612 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Met Asp Lys Thr Val Ser Gln Arg Leu Gly Gln Gly Thr Leu His Gln 1 5 10 15
- Lys Leu Lys Arg Ile Met Glu Lys Ser Thr Ile Leu Ser Asn Trp Thr 20 25 30
- Lys Glu Ser Glu Glu Lys Met Lys Phe Asp Phe Ser Cys Glu Leu Tyr 35 40 45
- Arg Met Ser Thr Tyr Ser Ala Phe Pro Arg Gly Val Pro Val Ser Glu 50 55 60
- Arg Ser Leu Ala Arg Ala Gly Phe Tyr Tyr Thr Gly Val Asn Asp Lys 65 70 75 80
- Val Lys Cys Phe Cys Cys Gly Leu Met Leu Asp Asn Trp Lys Gln Gly 85 90 95
- Asp Ser Pro Val Glu Lys His Arg Gln Phe Tyr Pro Ser Cys Ser Phe 100 105 110
- Val Gln Thr Leu Leu Ser Ala Ser Leu Gln Ser Pro Ser Lys Asn Met 115 120 125
- Ser Pro Val Lys Ser Arg Phe Ala His Ser Ser Pro Leu Glu Arg Gly 130 135 140
- Gly Ile His Ser Asn Leu Cys Ser Ser Pro Leu Asn Ser Arg Ala Val 145 150 155 160
- Glu Asp Phe Ser Ser Arg Met Asp Pro Cys Ser Tyr Ala Met Ser Thr 165 170 175
- Glu Glu Ala Arg Phe Leu Thr Tyr Ser Met Trp Pro Leu Ser Phe Leu 180 185 190
- Ser Pro Ala Glu Leu Ala Arg Ala Gly Phe Tyr Tyr Ile Gly Pro Gly
 195 200 205
- Asp Arg Val Ala Cys Phe Ala Cys Gly Gly Lys Leu Ser Asn Trp Glu 210 215 220
- Pro Lys Asp Asp Ala Met Ser Glu His Arg Arg His Phe Pro His Cys 235 230 235

Pro Phe Leu Glu Asn Thr Ser Glu Thr Gln Arg Phe Ser Ile Ser Asn 250 Leu Ser Met Gln Thr His Ser Ala Arg Leu Arg Thr Phe Leu Tyr Trp Pro Pro Ser Val Pro Val Gln Pro Glu Gln Leu Ala Ser Ala Gly Phe Tyr Tyr Val Asp Arg Asn Asp Asp Val Lys Cys Phe Cys Cys Asp Gly Gly Leu Arg Cys Trp Glu Pro Gly Asp Asp Pro Trp Ile Glu His Ala Lys Trp Phe Pro Arg Cys Glu Phe Leu Ile Arg Met Lys Gly Gln Glu 330 Phe Val Asp Glu Ile Gln Ala Arg Tyr Pro His Leu Leu Glu Gln Leu Leu Ser Thr Ser Asp Thr Pro Gly Glu Glu Asn Ala Asp Pro Thr Glu Thr Val Val His Phe Gly Pro Gly Glu Ser Ser Glu Asp Val Val Met Met Ser Thr Pro Val Val Lys Ala Ala Leu Glu Met Gly Phe Ser Arg Ser Leu Val Arg Gln Thr Val Gln Arg Gln Ile Leu Ala Thr Gly Glu Asn Tyr Arg Thr Val Asn Asp Ile Val Ser Val Leu Leu Asn Ala Glu 420 425 Asp Glu Arg Arg Glu Glu Glu Lys Glu Arg Gln Thr Glu Glu Met Ala Ser Gly Asp Leu Ser Leu Ile Arg Lys Asn Arg Met Ala Leu Phe Gln 450 Gln Leu Thr His Val Leu Pro Ile Leu Asp Asn Leu Leu Glu Ala Ser 475 470 Val Ile Thr Lys Gln Glu His Asp Ile Ile Arg Gln Lys Thr Gln Ile Pro Leu Gln Ala Arg Glu Leu Ile Asp Thr Val Leu Val Lys Gly Asn 500 505 Ala Ala Ala Asn Ile Phe Lys Asn Ser Leu Lys Glu Ile Asp Ser Thr Leu Tyr Glu Asn Leu Phe Val Glu Lys Asn Met Lys Tyr Ile Pro Thr 530 535

Glu Asp Val Ser Gly Leu Ser Leu Glu Glu Glu Gln Leu Arg Arg Leu Gln 560 Glu Glu Glu Arg Thr Cys Lys Val Cys Met Asp 570 Arg Glu Val Ser Ile Val Phe Ile Pro Cys Gly His Leu Val Val Cys Gln Glu Cys Ala Pro Ser 580 Leu Arg Lys Cys Pro Ile Cys Arg Gly Thr Ile Lys Gly Thr Val Arg Phe Leu Ser 610