0.1 Transformer i allmänhet

Kom ihåg att Fourierkoefficienterna för en Fourierserie ges av

$$c_k(f) = \frac{1}{T} \int_0^T f(t)e^{-jk\omega_0 t} dt.$$

Kom också ihåg att för periodiska y, h och x som har sambandet y(t) = h * x(t) är $c_k(y) = c_k(h) \cdot c_k(x)$ för alla k.

Kom utöver det också ihåg att $c_k(x') = ikc_k(x)$.

En transform är något som tar en signal f till en ny beskrivning för f.

0.2 z-transform

Låt x[k] vara en diskret signal. Den ska vi "skicka på en funktion" av en komplex variabel $X(z) := \sum_{k=-\infty}^{\infty} x[k]z^{-k}$.

Om f är en T-periodisk kontinuerlig signal och $x[k] = c_k(f)$ så är $X(z) = \sum_{k=-\infty}^{\infty} c_k(f) z^{-k}$. Om vi väljer $z = e^{-i\frac{2\pi}{T}t}$ så är $X(e^{-i\frac{2\pi}{T}t}) = f(t)$. Därav är z-transformen i någon mån en inverstransform till Fourierserier.

Påstående 1. Låt x[k] vara en diskret signal. Anta att det finns tal $0 < c_0 < c_1 < \infty$ så att $|x[k]| \le c_0^k$ för k >> 0 och $|x[k]| \le c_1^k$ för k << 0. Då är X(z) väldefinierad och absolutkonvergent för $c_0 < |z| < c_1$.

Bevis. Idén för beviset är att visa att $|X(z)| \leq \sum_{k=-\infty}^{\infty} |x[k]| |z|^k$ konvergerar.

Vi kommer att anta att x[k] = 0 för k < 0, d.v.s. det kausala fallet.

Då är $X(z) = \sum_{k=0}^{\infty} x[k]z^{-k}$. Om $|x[k]| \le c^k$ för k >> 0 gäller att X(z) finns för |z| > c.

Exempel 1. Låt $x[k] = \delta(k-l) \operatorname{där} l \ge 0$.

Då är
$$X(z) = \sum_{n=0}^{\infty} \delta(n-l)z^{-n} = z^{-l}$$
.

Exempel 2. Låt $x_{\gamma}[k] = \gamma^k u[k]$ där $\gamma \in \mathbb{C} \setminus \{0\}$.

Då är $X_{\gamma}(z)=\sum_{k=0}^{\infty}\gamma^kz^{-k}=\sum_{k=0}^{\infty}\left(\frac{\gamma}{z}\right)^k=\frac{1}{1-\frac{\gamma}{z}}$ vilket bara konvergerar om $\frac{\gamma}{z}<1$ enligt påminnelsen nedan, vilket ger att den konvergerar om $|z|>|\gamma|$. Då får vi $\frac{1}{1-\frac{\gamma}{z}}=\frac{z}{z-\gamma}$.

Påminnelse 1. $\frac{1}{1-w} = \sum_{k=0}^{\infty} w^k$ och $\sum_{k=0}^{N} w^k = \frac{1-w^{N+1}}{1-w}$. Den första konvergerar för |w| < 1.

Exempel 3. Finn en diskret och kausal signal h_{γ} med $X(z) = \frac{1}{z-\gamma}$.

Om vi tar x_{γ} från exemplet ovan får vi att $X_{\gamma}(z) = \frac{z-\gamma+\gamma}{z-\gamma} = 1 + \frac{\gamma}{z-\gamma}$ vilket ger att $h_{\gamma} = \frac{1}{\gamma} (x_{\gamma} - \delta_0)$, d.v.s. $h_{\gamma}[k] = \begin{cases} \gamma^{k-1} & k > 0 \\ 0 & k = 0 \end{cases} = x_{\gamma}[k-1]u[k]$.

0.3 Syntes för z-transform

Sats 1 (Syntes för z-transformen).

$$x[k] = r^k \int_0^1 X(re^{2\pi it})e^{2\pi ikt} dt$$

där r är något tal s.a. X(z) är definierat för $|z| \ge r$.

$$\begin{split} x[k] &= \int_0^1 X(re^{2\pi it}) e^{2\pi ikt} \mathrm{d}t \\ &= \int_0^1 \sum_{n=0}^\infty x[n] r^{-n} e^{-2\pi int} e^{2\pi ikt} \\ &= \sum_{n=0}^\infty x[n] r^{-n} \int_0^1 e^{2\pi ikt} \\ &= x[k] r^{-k} \end{split}$$

eftersom integralen är 0 för $k \neq n$ och 1 för k = n.

0.4 Viktiga egenskaper för z-transformen

Z-transformen är linjär, d.v.s. $x_1 + \lambda x_2 \stackrel{z}{\longleftrightarrow} X_1 + \lambda X_2$.

För ett vänsterskifte, d.v.s. om vi låter $x_s[k] = x[k+1]u[k]$ så har vi transformparet $x_s[k] = x[k+1]u[k] \stackrel{z}{\hookleftarrow} z(X(z) - x[0])$.

Högerskifte, d.v.s. $x_s[k]=x[k-1]$ ger transformparet $x_s[k]=x[k-1] \stackrel{z}{\longleftrightarrow} \frac{1}{z}X(z)$.

Slutvärdessats för z-transformen säger att $x[0] = \lim_{|z| \to \infty} x[z]$.

Motsvarande initialvärdessats säger att, givet att x[k] är begränsad och att $\lim_{k\to\infty}x[k]$ existerar, då är $\lim_{k\to\infty}x[k]=\lim_{z\to 1}(z-1)X(z)$.

Exempel 4. Låt x[k] = u[k]. Det är då transformpar med $\frac{z}{z-1}$. Vi vet då också att $1 = \lim_{k \to \infty} u[k] = \lim_{z \to 1} (z-1) \frac{z}{z-1}$.

 $\gamma^k x[k]$ bildar transformpar med $X(\frac{z}{\gamma})$ eftersom $\sum_{k=0}^{\infty} \gamma^k x[k] z^{-k} = \sum_{k=0}^{\infty} \gamma^k x[k] \left(\frac{z}{\gamma}\right)^{-k}$.

kx[k] bildar transformpar med $-z\frac{\mathrm{d}}{\mathrm{d}z}X(z),$ idén bakom är att $-z\frac{\mathrm{d}}{\mathrm{d}z}X(z)=-z\cdot(-kz^{k-1})=kz^{-k}.$

$$\begin{array}{l} x_1*x_2 \overset{z}{\longleftrightarrow} X_1X_2 \text{ eftersom} \sum_{k=0}^{\infty} (x_1*x_2)[k]z^{-k} = \sum_{k=0}^{\infty} \sum_{l=0}^{k} x_1[k-l]x_2[l]z^{-k} = \sum_{m=0}^{\infty} x_1[m]x_2[l]z^{-(m+l)} = \sum_{m=0}^{\infty} x_1[m]z^{-m} \cdot \sum_{l=0}^{\infty} x_1[l]z^{-l}. \end{array}$$

För en diskret och kausal LTI $y = h * x \iff Y = HX$.

Exempel 5. Låt $x[k] = \gamma^k$.

Då är
$$h*x[l]=\sum_m h[m]\gamma^{l-m}=\gamma^l\sum_m h[m]\gamma^{-m}=\gamma^l H(\gamma)=H(\gamma)x[l].$$

Exempel 6. Låt $x[k] = \gamma^k \cos(\beta k) u[k]$.

Vi börjar med att anta att $\gamma = 1$. Då är $x[k] = \frac{1}{2} \left(e^{i\beta k} + e^{-i\beta k} \right) u[k] = \frac{1}{2} \left(\left(e^{i\beta} \right)^k + \left(e^{-i\beta} \right)^k \right) u[k]$. Då bildar det transformpar med $\frac{1}{z} \left(\frac{z}{z - e^{i\beta k}} + \frac{z}{z - e^{-i\beta k}} \right)$.

Om $\gamma \neq 1$ får vi att $\gamma^k \cos(\beta k) u[k]$ bildar transformpar med $\frac{1}{2} \left(\frac{\frac{z}{\gamma}}{\frac{z}{\gamma} - e^{i\beta k}} + \frac{\frac{z}{\gamma}}{\frac{z}{\gamma} - e^{-i\beta k}} \right) = \dots$ Man kan göra mer algebra för att få något "finare" om man vill.

0.5 Differensekvationer

Vi vill lösa y[k+1] + ay[k] = x[k] med villkoret att $k \ge 0$ och att y[0] är given.

Notera att det är på formen Q(E)y = P(E)x där E är vänsterskifte och Q(z) = z + a och P(z) = 1.

$$Ey[k] = y[k+1]u[k] \stackrel{z}{\longleftrightarrow} = zY(z) - zy[0] \text{ ger att } Q(E)y[k] \stackrel{z}{\longleftrightarrow} zY(z) - zy[0] + aY(z) = (z+a)Y(z) - zy[0] = Q(z)Y(z) - zy[0].$$

$$Q(E)y = P(E)x \iff Q(z)Y - zy[0] = X(z) \iff Y(z) = \frac{1}{Q(z)}X(z) + \frac{z}{Q(z)}y[0] = \frac{1}{z+a}X(z) + \frac{z}{z+a}y[0] \iff y[k] = h_a*x[k] + (-a)^ky[0] = \left(\sum_{l=0}^k (-a)^{l-1}x[k-l]\right) + (-a)^ky[0]$$
. Sista \iff -steget görs genom z-transformstabeller. Resten lämnas

(-a) y[0]. Sista \iff -steget gors genom z-transformstabener. Resten som övning till läsaren.