Лабораторная работа 7Б ИЗМЕРЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПО КОЛЬЦАМ НЬЮТОНА

Цель работы: ознакомление с явлением интерференции света и использование его для контроля размеров.

Для выполнения измерений используется микроскоп, на предметном столике которого расположена линза, прикреплённая винтами к стеклянной пластинке.

Соответствующая оптическая схема изображена на рисунке

Источником света служит осветитель микроскопа (на схеме не показан), представляющий собой лампу накаливания. Ее излучение 1 падает на светофильтр 2, который из всего видимого спектра пропускает только участок спектра со средней длиной волны λ =0,587 мкм. Волна, прошедшая светофильтр и линзу 3, при отражении от нижней сферической поверхности линзы разделяется на две волны: одна отражается от нижней грани линзы, другая, прошедшая далее, отражается от верхней грани стеклянной пластинки 5. Оба волны когерентны и, распространяясь в обратном направлении (вверх), накладываются друг на друга и интерферируют в окуляре микроскопа. Разность хода этих волн равна удвоенной толщине зазора h между линзой и пластинкой (вторая волна проходит этот зазор дважды). Величина h зависит от радиуса кривизны линзы, что и позволяет определить его величину по наблюдаемой в микроскоп интерференционной картине. Благодаря осевой симметрии всего устройства , изображенного на рисунке, картина интерференции имеет вид концентрических темных и светлых колец.

Выполнение измерений

1. Включите осветитель микроскопа с помощью тумблера на блоке питания.

2. Установите увеличение микроскопа с помощью дискретно вращающейся ручки с числами. Каждому положению ручки соответствует определенное увеличение, обозначенное числом (см. табл. 1).

Таблина 1

	1 1101111111111111111111111111111111111	
Числа на рукоятке	Цена деления шкалы, мм	
0,6	0,17	
1	0,1	
2	0,05	
4	0,025	
7	0,014	

Для первоначальной настройки рекомендуется увеличение "2", а для последующих измерений

- 3. Линза на предметном столике должна располагаться так, чтобы свет попадал в ее центральную часть. Если при этом в окуляр микроскопа не видно четкой картины (светлых и темных колец), то надо настроить микроскоп на резкость, вращая ручку, передвигающую трубу микроскопа по вертикали. Как только появилось четкое изображение светлых и темных колец, установите линзу на предметном столике так, чтобы шкала окуляра проходила через центр колец (линза жестко скреплена со стеклянной пластинкой, однако их общее положение на предметном столике не зафиксировано, и вся конструкция легко смещается). В центре колец должно быть темное пятно. Если это не так, добейтесь его появления, прикручивая винты, прижимающие линзу к стеклянной пластинке.
- 4. Установите увеличение микроскопа на цифру "7". Считая мелкие деления шкалы, измерьте диаметры D в делениях шкалы для первых пяти светлых и первых пяти темных колец (центральное темное пятно не измерять). На основании этих данных определите затем радиусы г колен и занесите ланные в табл. 2.

Таблица 2

Вид полос	Порядк. номер полос	D, дел	r, дел	r, mm
		D, ven		
	m			
Светлые				
Темные				

При определении радиусов колец г в миллиметрах, используйте цену деления, взятую из табл.1.

5. Формулы, связывающие радиусы светлых и темных колец г с радиусом кривизны линзы R, имеют вид:

для светлых колец
$$r = \sqrt{(m + \frac{1}{2})\lambda R}$$
; $m = 0,1,2,...$, (1) для темных колец $r = \sqrt{m\lambda R}$; $m = 1,2,...$ (2)

для темных колец
$$r = \sqrt{m\lambda R}$$
; $m = 1,2,...$ (2)

(вывод формул см., например, в [1]). Для темного пятна в центре r = 0, m=0.

Из (1) и (2) следует, что для любых двух светлых или двух темных колец с номерами m_i и m_j справедливо соотношение

$$R = (r^{2}_{i} - r^{2}_{j})/(m_{i} - m_{j})\lambda.$$
(3)

По формуле (3) рассчитайте значение R, используя три различных сочетания і и ј для светлых полос и, аналогично, для темных полос.

Рассчитайте среднее значение радиуса кривизны линзы Rcp. и абсолютную погрешность ΔR . Результат запишите в виде $R = Rcp. \pm \Delta R$.

6. Сопоставьте полученный результат с результатом оценки радиуса кривизны линзы, полученной на основании измерения ее фокусного расстояния f. Формула, связывающая радиус кривизны плоско-выпуклой линзы с ее фокусным расстоянием, имеет вид

$$R=(n-1)f, (4)$$

где n – показатель преломления стекла линзы.

Контрольные вопросы.

- 1. При соблюдении каких условий световые волны можно считать когерентными?
- 2. Каким образом в данной оптической схеме возникают две когерентные волны? Какова разность хода между ними?
- 3. Как изменится интерференционная картина при уменьшении длины волны?
- 4. Какую роль в данной оптической схеме играет светофильтр?
- 5. Какова была бы картина без светофильтра?