Lecture Module - Electrical Signals

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Topic 3 - Sampling and Aliasing

Topic 3 - Sampling and Aliasing

- Sampling
- The Aliasing Phenomenon
- Example by Hand
- MATLAB Example
- Activity

Sampling

... A discrete time signal usually results from the sampling of a continuous variable at repeated finite time intervals. ...

Discrete time signal	
{y(rôt)}	
r	Discrete data
0	0
1	5.9
2 3 4 5	9.5
3	9.5
4	5.9
5	0
6	-5.9
7	-9.5
8	-9.5
9	-5.9
10	0

Text, Figure: Theory and Design for Mechanical Measurements Ch. 7 👝 🕟 🚛 🗸 😩 🔻 😩 🤛 矣 🔾

Sampling

The Aliasing Phenomenon

Figure: Theory and Design for Mechanical Measurements Ch. 7

Example by Hand

Example by Hand

MATLAB Example

```
% ME3023 - Tennessee Technological University
% Tristan Hill - October 10, 2019 - April 14, 2021
% Data Acquisition Topic 3 - Sampling and Aliasing
clear variables; close all; clc
% simulate a continuous signal
A1=5; f1=3;
w1=2*pi*f1;
dt_sim=0.001; t_stop=6;
t_sim=0:dt_sim:t_stop;
v_sim=A1*sin(w1*t_sim);
```

MATLAB Example

```
% simulate sampling the signal
dt_sam = 0.3;
t_sam=0:dt_sam:t_stop;
y_sam=A1*sin(w1*t_sam);
% show the figure
figure(1); hold on
plot(t_sim,y_sim,'-',t_sam,y_sam,'o')
axis([0 t_stop -1.2*A1 1.2*A1])
grid on
```

Activity

Activity: Sampling Demonstration
Write a MATLAB program to accomplish the following:

- ① Plot a sinusoidal signal $y(t) = Asin(\omega \cdot t) = Asin(2\pi f \cdot t)$ with an amplitude A = 10 (units) and frequency f = 1000 (Hz). This is the *ideal signal* source.
 - Include axis labels and gridlines.
 - Choose ampitude and time scales so that 15 to 20 periods or the waveform are shown.
- Simulate the samping of the signal by plotting the same function with a reduced time step. Plot the sampled signal on the same figure. Use a different marker and include a legend to differentiate the signals.
- Use your code to determine the minimum sampling frequency required to measure the following quantities (note: use the sampled signal only, the ideal signal is not accessible).
 - Frequency of the ideal signal
 - Amplitude of the ideal signal