Assignment 11 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

June 19, 2016

 $\mathbf{Aufgabe}$ 21 $\mathbf{Gegeben}$ sei folgende Sequenz I von Objekten

$$\frac{1}{16} + \epsilon, ..., \frac{1}{16} + \epsilon, \frac{1}{8} + \epsilon, ..., \frac{1}{8} + \epsilon, \frac{1}{4} + \epsilon, ..., \frac{1}{4} + \epsilon, \frac{1}{2} + \epsilon, ..., \frac{1}{2} + \epsilon$$
 (1)

wobei jede Teilsequenz (gleiche Objekte) die Länge 16m hat.

Es gilt $m \in N : 0 \equiv m \pmod{15} \land 0 \equiv m \pmod{7} \land 0 \equiv m \pmod{3}$ und $\epsilon < 10^{-6}$.

• Geben Sie FF(I) sowie die zugehörige Packung an.

Aufteilung der 16m Elemente der Größe $\frac{1}{16} + \epsilon$.

Eine Runde sei das Einfügen von 16 Elementen. Also ist nach m Runden das Einfügen von 16m Elementen beendet.

Runde 1:
$$B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: (\frac{1}{16} + \epsilon)$$

Runde 2:
$$B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: 15 \cdot (\frac{1}{16} + \epsilon), B_3: 2 \cdot (\frac{1}{16} + \epsilon)$$

Runde 1:
$$B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: (\frac{1}{16} + \epsilon)$$

Runde 2: $B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: 15 \cdot (\frac{1}{16} + \epsilon), B_3: 2 \cdot (\frac{1}{16} + \epsilon)$
Runde 3: $B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: 15 \cdot (\frac{1}{16} + \epsilon), B_3: 15 \cdot (\frac{1}{16} + \epsilon), B_4: 3 \cdot (\frac{1}{16} + \epsilon)$

Runde 15:
$$B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: 15 \cdot (\frac{1}{16} + \epsilon), B_3: 15 \cdot (\frac{1}{16} + \epsilon), B_4: 15 \cdot (\frac{1}{16} + \epsilon), ..., B_{16}: 15 \cdot (\frac{1}{16} + \epsilon)$$

wegen $0 \equiv m \pmod{15}$ gilt:

Runde m:
$$B_1: 15 \cdot (\frac{1}{16} + \epsilon), B_2: 15 \cdot (\frac{1}{16} + \epsilon), B_3: 15 \cdot (\frac{1}{16} + \epsilon), B_4: 15 \cdot (\frac{1}{16} + \epsilon), ..., B_{m+\frac{m}{15}}: 15 \cdot (\frac{1}{16} + \epsilon)$$

Alle $m + \frac{m}{15}$ Blöcke sind nach m Runden vollständig gefüllt. Nach m Runden gilt für alle Blöcke B_j mit $1 \le j \le m + \frac{m}{15}$ also:

$$B_j + (\frac{1}{16} + \epsilon) > 1 \tag{2}$$

Aufgrund der gegebenen Einfügereihenfolge bedeutet das also, dass diesen Blöcken kein weiteres Element der Restsequenz mehr hinzugefügt werden kann da diese alle eine Größe haben die $(\frac{1}{16} + \epsilon)$ übersteigt.

Aufteilung der 16m Elemente der Größe $\frac{1}{8} + \epsilon.$

B_k	Runde 1	Runde 2	 Runde 7	 Runde m
$(m + \frac{m}{15}) + 1$	$7 \cdot (\frac{1}{8} + \epsilon)$	$7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m+\frac{m}{15})+2$	$7 \cdot (\frac{1}{8} + \epsilon)$	$7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 3$	$2 \cdot (\frac{1}{8} + \epsilon)$	$7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 4$	/	$7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 5$	/	$4 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 6$	/	/	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 16$	/	/	 $7 \cdot (\frac{1}{8} + \epsilon)$	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + 17$	/	/	 /	 $7 \cdot (\frac{1}{8} + \epsilon)$
$(m + \frac{m}{15}) + (2m + \frac{2m}{7})$	/	/	 /	 $7 \cdot (\frac{1}{8} + \epsilon)$

16 Objekte der Größe $(\frac{1}{8} + \epsilon)$ füllen (d.h. sodass kein weiteres Objekt dieser Größe Platz hat) 2 Blöcke und es bleiben 2 Objekte übrig. Im Rahmen von k Runden wächst dieser Rest auf 2k Objekte an. Um diese 2k zusätzlichen Objekte unterzubringen, werden $\lceil \frac{2k}{7} \rceil$ zusätzliche Blöcke benötigt.

Analog für $\frac{1}{4} + \epsilon$ und $\frac{1}{2} + \epsilon$

$$FF(I) = m + \frac{m}{15} + 2m + \frac{2m}{7} + 5m + \frac{m}{3} + 16m$$

$$= 24m + \frac{m}{15} + \frac{2m}{7} + \frac{m}{3}$$

$$= 24m + \frac{7m + 30m + 35m}{105}$$

$$= 24m + \frac{72m}{105}$$

Für das Einfügen der Sequenz I (64m Elemente) werden $24m + \lceil \frac{72m}{105} \rceil$ Container benötigt.