zkLogin: Privacy-preserving blockchain authentication with existing credentials

Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrøm | Deepak Maram | Ben Riva | Mahdi Sedaghat | Arnab Roy | Joy Wang

PostDoc at Cosic, KU Leuven Co-Founder at Soundness Labs (soundness.xyz)

Mysten Labs and Sui:

There are around 100 million active crypto wallets

and there are several BILLIONS

of web2 accounts

Mnemonics and keys are not going to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is accessibility.

Can we make it as easy as signing in with Google, Facebook and co?

- People don't want to use separate passwords for each and every app, each and every web2 service
- Extremely likely they already have a Google, Facebook, Amazon account
- Solution: use OAuth to leverage these already existing accounts

zkLogin: OAuth + Zero Knowledge Proof

Non-custodial
User-friendly
Privacy-preserving

OpenID Connect (an extension of OAuth 2.0)

A Google-issued JWT (decoded)

Header

```
G Sign in with Google
```

```
<u>"alq"</u> : "RS256"
"kid" : "96971808796829a972e79a9d1a9fff11cd61b1e3",
"typ": "JWT"
                         Payload
"iss": "https://accounts-google.com",
"azp": "http://575519204237-msop9ep45u2u098hapqmngv8d84qdc8k-apps.googleusercontent.com",
"aud": "http://575519204237-msop9ep45u2u098hapqmngv8d84qdc8k-apps.googleusercontent.com",
"sub": "1104634521",
"nonce":
"iat": 1682002642,
"exp": 1682002642,
                                                                           you can ask for email
"jti": "a8a0728a3ffd5d81ecfd0ea81d0d33d803eb830",
                                                                          and other personal info
"email": "test@soundness.xyz"
```

Inject a fresh public key into JWT!

We have a DIGITAL CERT over our fresh key + expiration

```
Payload
"iss": "https://accounts-google.com",
"azp": "http://575519204237-msop9ep45u2u098hapqmngv8d84qdc8k-apps.googleusercontent.com",
"aud": "http://575519204237-msop9ep45u2u098hapgmngv8d84gdc8k-apps.googleusercontent.com",
"sub": "1104634521",
"nonce": "epk||expiration",
"iat": 1682002642,
"exp": 1682002642,
"jti": "a8a0728a3ffd5d81ecfd0ea81d0d33d803eb830",
"email": "test@soundness.xyz"
                                                                                 replace nonce with
                                                                                 user provided data:
                                                                                ephemeral pub key +
                                                                                    expiration
```

zkLogin tricks:

How to ensure users' privacy?

Blake2b256(IDP||Poseidon(IDC||UserID||Poseidon(Salt)))

Address

Add a persistent randomizer: salt

Salt: A persistent peruser secret for unlinkability

How to hide the JWT? SNARKs to the rescue!

Goal: Prove you have a valid JWT + you know the salt + you injected the ephemeral key into JWT

- Verify JWT's signature using Google's public key
- Verify the ephemeral public key is injected into the JWT's nonce
- Verify that the address is derived correctly from the JWT's userID, walletID, providerID + user's salt

```
Given a public IDP_pk and zkLogin address:

I have access to a valid JWT under IDP_pk such that:

zkLogin_add = Blake2b256(iss||Poseidon(aud||sub||Poseidon(Salt))) &
Signature on tnx details is valid under epk that is linked to JWT.
```

zkLogin in one slide: e2e

Who maintains the salt?

- Client-side on-device management
 - Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a "salt service"
 - Each wallet can maintain their own service/delegate it
 - Privacy models: Store salt either in TEE/MPC/plaintext
 - Auth policies to the service: Either JWT or 2FA

Circuit details

- Implemented in Circom DSL: ~1M R1CS constraints
- We chose Groth16 due to its small proofs + rich ecosystem + fast prover
- Key operations
 - SHA-2 (66%)
 - RSA signature verification (14%) using tricks from [KPS18]
 - JSON parsing, Poseidon hashing, Base64, extra rules (20%)
- Prover based on rapidsnark
 - C++ and Assembly based

zkLogin latency

These numbers correspond only to the **first transaction of a session**

Salt service on AWS Nitro enclave (m5.xlarge10: 4 vCPUs, 16GB RAM)

ZKP generation on Google Cloud (n2d-standard-16: 16 vCPUs, 64GB RAM).

Operation	zkLogin	Ed25519
Fetch salt from salt service	0.2 s	NA
Fetch ZKP from ZK service	2.78 s	NA
Signature verification	2.04 ms	56.3 μs
E2E transaction confirmation	3.52 s	120.74 ms

Latency for most zkLogin transactions is **very similar** to traditional ones!

zkLogin trade-offs

Prover sees JWT; risks unlinkability between web2 and web3 identities.

Time-consuming on most devices, but proofs can be cached.

Local Proof Generation

Is zkLogin really Non-Custodial?

The option of multi-sig option:
Involve more IDPs instead of one

App-Managed Salt

App can break unlinkability, posing potential risks.

Users manage an additional secret, which is less sensitive than a mnemonic.

User-Managed Salt

zkLogin

single-click accounts w/

Slack

native authenticator non-custodial

*discoverable, claimable invisible wallets semi-portable, 2FA

0 0

JWT beyond zkLogin Some complementary ideas

JWT beyond zkLogin Some complementary ideas

```
Given a public IDP_pk and zkLogin address:
                 I have access to a valid JWT under IDP_pk such that:
  zkLogin
                    zkLogin_add = Blake2b256(iss||Poseidon(aud||sub||Poseidon(Salt))) &
               Signature on the details is valid under epk that is linked to JWT.
             Given a public @domain:
                 I have access to a valid JWT such that:
New case
                    payload.email = test@domain.xyz
             Given zkLogin_add and @domain:
                 I have access to a valid DWT such that:
Potential
                    zkLogin_add = Blake2b256(iss||Poseidon(aud||sub||Poseidon(Salt))) &
Expansion
                    payload.email = test@domain.xyz
```

Thank You!

Some of the slides done by Mysten labs team.