Signals and Operations

IT3105: Signals and systems

Conjugate Symmetric Signals

- Here conjugate means complex conjugate and symmetric signals means when any signal remains same after time reversal.
 - Consider any complex number such as 3+4i, its complex conjugate would be 3-4i. If the imaginary part of any complex number is zero, then the number and its complex conjugate would be same such as 2+0i = 2-0i.
- Let x(t) be the given CTS. We get x(-t) after applying time reversal. The complex conjugate of x(t) can be denoted as $x^*(-t)$. Now x(t) would be conjugate symmetric signal if $x(t) = x^*(-t)$.
 - Let x(t) = a(t) + jb(t), After performing time reversal we get x(-t) = a(-t) + jb(-t)
 - Then the complex conjugate signal is $x^*(-t) = a(-t) jb(-t)$
 - We can say $R[x(t)] = R[x^*(-t)]$ and $I[x(t)] = I[x^*(-t)]$, which indicate the properties as follows
 - 1. a(t) = a(-t), real part of conjugate symmetric signals is even.
 - 2. b(t) = -b(-t), imaginary part of conjugate symmetric signals is odd.

Conjugate Antisymmetric Signals

- Any CTS can be conjugate antisymmetric if $x(t) = -x^*(-t)$
 - Let x(t) = a(t) + jb(t), After performing time reversal we get x(-t) = a(-t) + jb(-t)
 - Then the complex conjugate signal is $x^*(-t) = a(-t) jb(-t)$
 - After performing amplitude reversal we get the conjugate antisymmetric signal as $-x^*(-t) = -a(-t) + jb(-t)$, then the properties of CAS can be as follows:
 - 1. a(t) = -a(-t), real part of conjugate antisymmetric signals is odd.
 - 2. b(t) = b(-t), imaginary part of conjugate antisymmetric signals is even.
- Any signal can be represented as the sum of conjugate symmetric signals and conjugate antisymmetric signals, i.e. $x(t) = x_{CS}(t) + x_{CAS}(t)$; same as even and odd signals. So we can express the components as
 - $x_{CS}(t) = x(t) + x^*(-t)$
 - $x_{CAS}(t) = x(t) x^*(-t)$

Examples of CS and CAS Signals

- Find if $x(t) = t^2 + jsint$ is CS.
 - t^2 or real part is even and jsint or imaginary part is odd of signal x(t). So x(t) is CS signal.
- Find if $x(t) = sint + jt^3$ is CS.
 - Not CS. Why?
- Given $x(t) = 2sint + jt^5$, is CS or CAS?
 - Neither CS nor CAS.
- Given $x(t) = \sin^3 t + jt^2$, is CS or CAS?
 - $\sin^3 t$ is odd and jt^2 is even, so the signal is CAS

Half-Wave Symmetric Signal

- Condition of half-wave symmetric signal is $x(t) = -x(t \pm \frac{T}{2})$; where T is the FTP and T/2 is the half of FTP.
 - We can calculate half wave symmetric signal by time shifting the whole signal by T/2 in both left shifting or time advanced (+) or right shifting or time delay (-).
 - After performing any of the above shifting (not both) we have to do amplitude reversal.
 - After time shifting by T/2 and amplitude reversal, if we get the original signal x(t), then x(t) is said to be half-wave symmetric signal.

Example of square wave

Example of saw tooth wave

