

Art of Problem Solving

2007 China Girls Math Olympiad

China Girls Math Olympiad 2007

Day 1	
1	A positive integer m is called $good$ if there is a positive integer n such that m is the quotient of n by the number of positive integer divisors of n (including 1 and n itself). Prove that $1, 2, \ldots, 17$ are good numbers and that 18 is not a good number.
2	Let ABC be an acute triangle. Points D , E , and F lie on segments BC , CA , and AB , respectively, and each of the three segments AD , BE , and CF contains the circumcenter of ABC . Prove that if any two of the ratios $\frac{BD}{DC}$, $\frac{CE}{EA}$, $\frac{AF}{FB}$, $\frac{BF}{FA}$, $\frac{AE}{EC}$, $\frac{CD}{DB}$ are integers, then triangle ABC is isosceles.
3	Let n be an integer greater than 3, and let a_1, a_2, \dots, a_n be non-negative real numbers with $a_1 + a_2 + \dots + a_n = 2$. Determine the minimum value of $\frac{a_1}{a_2^2 + 1} + \frac{a_2}{a_3^2 + 1} + \dots + \frac{a_n}{a_1^2 + 1}.$
4	The set S consists of $n > 2$ points in the plane. The set P consists of m lines in the plane such that every line in P is an axis of symmetry for S . Prove that $m \le n$, and determine when equality holds.
Day 2	
5	Point D lies inside triangle ABC such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point E is the midpoint of segment BC . Point F lies on segment AC with $AF = 2FC$. Prove that $DE \perp EF$.
6	For $a, b, c \ge 0$ with $a + b + c = 1$, prove that $\sqrt{a + \frac{(b-c)^2}{4}} + \sqrt{b} + \sqrt{c} \le \sqrt{3}$
7	Let a, b, c be integers each with absolute value less than or equal to 10. The cubic polynomial $f(x) = x^3 + ax^2 + bx + c$ satisfies the property
	$\left f\left(2 + \sqrt{3}\right) \right < 0.0001.$
	Determine if $2 + \sqrt{3}$ is a root of f .

Contributors: April, easternlatincup

Art of Problem Solving

2007 China Girls Math Olympiad

8

In a round robin chess tournament each player plays every other player exactly once. The winner of each game gets 1 point and the loser gets 0 points. If the game is tied, each player gets 0.5 points. Given a positive integer m, a tournament is said to have property P(m) if the following holds: among every set S of m players, there is one player who won all her games against the other m-1 players in S and one player who lost all her games against the other m-1 players in S. For a given integer $m \geq 4$, determine the minimum value of n (as a function of m) such that the following holds: in every n-player round robin chess tournament with property P(m), the final scores of the n players are all distinct.

Contributors: April, easternlatincup