Makine Öğrenmesi K- En Yakın Komşu Sınıflandırma İlhan AYDIN

- Bütün makine öğrenmesi sınıflandırıcılarından en basitidir.
- Temel fikir: yeni bir noktası etiketi bilinen en yakın noktaya göre etiketle.

Örnek tabanlı öğrenme tipi

- Aynı zamanda hafıza tabanlı öğrenme olarak bilinir.
- Görev: Hedefi tahmin et/yeni veri noktasının etiketi

Eğitim kümesindeki en benzer veri noktasına bakınız.

1-En Yakın Komşu Eğitim Adımı

```
Verilen : \langle x^{[i]}, y^{[i]} \rangle \in \mathcal{D} \mid \mathcal{D} \mid = n
                       \langle x^{[q]},? \rangle
Tahmin algoritması:f(x^{[q]})
                                            Sorgu noktası
Enyakin_nokta=None
enyakin_mesafe=∞
    For i=1...n:
         mevcut_mesafe=d(x^{[i]}, x^{[q]})
         if mevcut_mesafe<enyakin_mesafe:
              Enyakin_mesafe=mevcut_mesafe
              Enyakin_nokta=x^{[i]}
    Return f(enyakin_nokta)
```

- En yakın komşu sınıflandırma modelinin karar sınırı nasıl oluşturulur?
- Öklid uzaklığı metriğini varsayarsak, herhangi iki eğitim örneği a ve b arasındaki karar sınırı düz bir çizgidir.
- Karar sınırında bir sorgu noktası bulunuyorsa, bunun hem eğitim örneği a hem de b'ye eşit uzaklıkta olduğu anlamına gelir.
- Bir çift nokta arasındaki karar sınırı düz bir çizgi iken, NN modelinin küresel düzeydeki karar sınırı, tüm eğitim seti göz önüne alındığında, birbirine bağlı, dışbükey çokyüzlüler kümesidir.
- Bir çokyüzlü içindeki tüm noktalar, içindeki eğitim örneğine en yakın olanlardır ve çokyüzlü dışındaki tüm noktalar, farklı bir eğitim örneğine daha yakındır.

İki eğitim örneği (a & b, a & c ve c & d) ve sonuçta ortaya çıkan Voronoi diyagramı (sağ alt köşe) arasındaki doğrusal segmentler aracılığıyla iki boyutlu bir veri kümesinin (x1 ve x2 özellikleri) düzlem bölümlenmesinin gösterimi.

Hangisi en yakın?

Kullanılan mesafe ölçüm aracına göre değişir?

Euclidean

Manhattan

Minkowski:
$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \left[\sum_{j=1}^{m} \left(\left| x_j^{[a]} - x_j^{[b]} \right| \right)^p \right]^{\overline{p}}$$

Mahalanobis

Cosine similarity

Bazı Ortak Sürekli mesafe Ölçümleri

Hamming distance:
$$d(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sum_{j=1}^{m} \left| x_j^{[a]} - x_j^{[b]} \right|$$
 where $x_j \in \{0, 1\}$

Jaccard/Tanimoto similarity:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

Dice:
$$D(A, B) = \frac{2|A \cap B|}{|A| + |B|}$$

Bazı Ortak Ayrık mesafe Ölçümleri

Özellik Ölçekleme

- Her bir özellik boyutuna özellik ölçeklemeye eşdeğer bir ağırlık ekleyerek mesafe ölçümlerini değiştirebiliriz.
- Öklid mesafesi durumunda, bu aşağıdaki gibi görünecektir.

$$d_w(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sqrt{\sum_{j=1}^m w_j (x_j^{[a]} - x_j^{[b]})^2},$$

 Bunu kodda verimli bir şekilde uygulamak için, ağırlıklandırmayı bir dönüşüm matrisi olarak ifade edebiliriz; burada dönüşüm matrisi, m özellikleri için m ağırlık katsayılarından oluşan bir köşegen matristir:

$$\mathbf{W} \in \mathbb{R}^{m \times m} = \operatorname{diag}(w_1, w_2, ..., w_m).$$

$$d_w(\mathbf{x}^{[a]}, \mathbf{x}^{[b]}) = \sqrt{(\mathbf{x}^{[a]} - \mathbf{x}^{[b]})^T \mathbf{W}(\mathbf{x}^{[a]} - \mathbf{x}^{[b]})}$$

K-En Yakın Komşu Özellik

Ağırlıklandırma

- kNN'nin bir çeşidi, mesafe ağırlıklı kNN'dir.
- "Normal" kNN'de, tüm k komşular benzer şekilde çoğulcu oylama veya ortalamaya katılır.
- Ancak, özellikle bir komşu kümesini çevreleyen yarıçap büyükse, sorgu noktasına "daha yakın" olan komşulara daha güçlü bir ağırlık vermek isteyebiliriz.
- Örneğin, kNN sınıflandırmasında komşulara w ağırlığı atayabiliriz,:

•
$$w^{[i]} = \frac{1}{d(x^{[i]}, x^{[q]})}$$

K-En Yakın Komşu Mesafe Ağırlıklandırma