Calculo Numérico: Interpolação Polinomial de Hermite

Daniel Franco Pereira Junior¹ Felippe Frasson¹ Valmei Abreu Júnior¹

¹Curso de Ciência da Computação – Faculdades Anglo-Americano (FAA) Foz do Iguaçu – PR – Brasil

daniel_eddy@live.com
felippefrasson@hotmail.com
 valmeijr@terra.com.br

Abstract. This article presents the Hermite Polynomial Interpolation, since the establishment of a Polynomial up to the development and application of Interpolation. The algorithm shown was used to demonstrate the numerical calculations of Hermite Interpolation.

Resumo. Este artigo apresenta a Interpolação Polinomial de Hermite, desde a criação de um polinômio ate o desenvolvimento e a aplicação da interpolação. O algoritmo mostrado foi usado para demonstrar os cálculos numéricos da Interpolação de Hermite.

1. Polinômios

Segundo Stewart (2006), em matemática polinômios são uma série de monômios ou termos que, por sua vez, são expressões matemáticas na forma ax^n . Cada monômio é caracterizado por um coeficiente, que na equação ax^n é representado por a, uma variável que na equação é representada por x, e um expoente que é representado por n. Assim, um polinômio é um conjunto de monômios, devidamente normalizados. A função polinomial ou polinômio assume a forma:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

Os polinômios desempenham um papel central na teoria de aproximação e análise numérica. O espaço de polinômios de ordem até M (M finito), com coeficientes reais, é definido no intervalo [a,b] na forma:

$$P_m[a,b] = \left\{ p_m(x) = \sum_{i=0}^m c_i x^i, \ c_0, ..., c_m \in \Re \ e \ x \in [a,b] \right\}.$$

Ralston (1965) após pesquisar a importância dos polinômios procurou provar destacando as propriedades existentes em P_m [a,b], que:

- $P_m[a,b]$ é um espaço linear de dimensão finita;
- Os polinômios são uma classe importante de funções simples e infinitamente diferenciáveis;
- Os polinômios são de fácil avaliação e armazenagem em computadores digitais;
- A derivada e a antiderivada de um polinômio são também polinômios cujos coeficientes podem ser determinados algebricamente, mesmo por um computador;
- É possível definir taxas de convergência precisas para aproximações de funções suaves por polinômios.

As propriedades citadas, indicam que os polinômios são funções de interpolação e aproximação ideais. No entanto, $P_m[a,b]$ possui um tipo de inflexibilidade que se manifesta na forma da propriedade, que diz: processos de interpolação e aproximação que utilizam polinômios produzindo funções que oscilam excessivamente, sendo que a oscilação fica necessariamente mais pronunciada com o aumento da ordem do polinômio, estas oscilações são conhecidas como fenômeno de Runge .

A contenção desta oscilação é fundamental para a garantia de convergência de problemas gerais de aproximação (DAVIS, 1975). Então, é realizado a substituição de polinômios por outras funções mais flexíveis. Dentre as inúmeras alternativas, encontram-se os polinômios de Hermite que são funções por partes e que têm a vantagem de preservar boa parte das propriedades apresentadas acima para espaços polinomiais.

2. Como se Desenvolve

Segundo Barbosu (2010), em 1878 Charles Hermite procurou mostrar que para $f \in D^{(\alpha)}(I)$ existe um único polinômio de grau maior que n, que indica $(H_n f)(x_0^{r_0}, x_1^{r_1}, \dots x_m^{rm})(x)$ na qual chamou-se a Interpolação Polinomial de Hermite.

Os polinômios de Hermite estão entre os polinômios de Taylor e os polinômios de Lagrange, na qual adaptam-se a valores dados em vários pontos (como os polinômios de Lagrange) e tomam em conta os valores das derivadas (como os polinômios de Taylor).

O objetivo da interpolação de Hermite é o de representar uma função f por um polinômio que seja interpolador de f em alguns pontos do seu domínio e que a

sua derivada seja interpolador da derivada de f nesses mesmos pontos (ARAUJO, 2002). Supondo f diferençável, procura-se um polinômio p tal que:

$$p(x_i) = f(x_i) e p'(x_i) = f'(x_i), i = 0, ... n. (7).$$

Existe um único polinômio de grau menor ou igual a 2n + 1 que verifica (7).

Seja $f \in C^{2n+2}([a,b])$ e x_0, x_1, \ldots, x_n pontos distintos em [a, b]. Existe um e um só polinômio p_{2n+1} pertencente a P_{2n+1} que verifica:

$$p(x_i) = f(x_i) e p'(x_i) = f'(x_i), i = 0, ... n. (8)$$

Se, adicionalmente, se dispuser de informação sobre as derivadas da função, pode melhorar-se a qualidade da aproximação aumentando-se o grau do polinômio interpolador. Essa técnica designa-se por interpolação de Hermite e, geralmente, apresenta uma menor tendência para comportamento osculatório. O objetivo desta presente secção é a determinação dos coeficientes do polinômio que interpole não só os valores da função, mas também das derivadas. Na Figura 1 é possível ver uma função $f(x) = \sin(x) + \cos(x)$ sendo representada no gráfico, e a Interpolação do polinômio variando em relação a função f(x), sendo calculado com base no intervalo [1,4].

Figura 1. Interpolação Polinomial de Hermite

3. Exemplo utilizando Hermite

Considerando a função $f(x) = x^8 + 1$. Avaliando a função e suas duas primeiras derivadas para x nos pontos $x \{-1,0,1\}$, obtem-se os seguintes dados da na Tabela 1:

X	f(x)	f'(x)	f"(x)
-1	2	-8	56
0	1	0	0
1	2	8	56

Tabela 1. Dados

E então é construído o conjunto $\{z_i\} = \{-1, -1, -1, 0, 0, 0, 1, 1, 1\}$, na qual a tabela é dividida na Figura 2:

tabela é dividida na Figura 2:
$$z_0 = -1 \quad f[z_0] = 2$$

$$\frac{f'(z_0)}{1} = -8$$

$$z_1 = -1 \quad f[z_1] = 2$$

$$\frac{f'(z_1)}{1} = -8 \quad f[z_3, z_2, z_1, z_0] = -21$$

$$z_2 = -1 \quad f[z_2] = 2 \quad f[z_3, z_2, z_1] = 7 \quad 15$$

$$f[z_4, z_3, z_2, z_1] = -6 \quad -10$$

$$z_3 = 0 \quad f[z_3] = 1 \quad f[z_4, z_3, z_2] = 1 \quad 5 \quad 4$$

$$\frac{f'(z_3)}{1} = 0 \quad f[z_4, z_3, z_2] = -1 \quad -2 \quad -1$$

$$z_4 = 0 \quad f[z_4] = 1 \quad \frac{f'(z_4)}{1} = 0 \quad f[z_6, z_5, z_4, z_3] = 1 \quad 2 \quad 1$$

$$z_5 = 0 \quad f[z_5] = 1 \quad f[z_6, z_5, z_4] = 1 \quad 5 \quad 4$$

$$f[z_6, z_5] = 1 \quad f[z_7, z_6, z_5, z_4] = 6 \quad 10$$

$$z_6 = 1 \quad f[z_6] = 2 \quad f[z_7, z_6, z_5] = 7 \quad 15$$

$$\frac{f'(z_7)}{1} = 8 \quad f[z_7, z_6, z_5] = 21$$

$$z_7 = 1 \quad f[z_7] = 2 \quad \frac{f''(z_7)}{2} = 28$$

$$\frac{f''(z_7)}{2} = 28$$
 Figura 2. Resolvendo o Polinômio de Hermite

Figura 2. Resolvendo o Polinômio de Hermite

E o polinômio gerado é:

```
P(x) = 2 - 8(x+1) + 28(x+1)^{2} - 21(x+1)^{3} + 15x(x+1)^{3}
- 10x^{2}(x+1)^{3} + 4x^{3}(x+1)^{3} - 1x^{3}(x+1)^{3}(x-1)
+ x^{3}(x+1)^{3}(x-1)^{2}
= 2 - 8 + 28 - 21 - 8x + 56x - 63x + 15x + 28x^{2} - 63x^{2}
+ 45x^{2} - 10x^{2} - 21x^{3} + 45x^{3} - 30x^{3} + 4x^{3} + x^{3} + x^{3}
+ 15x^{4} - 30x^{4} + 12x^{4} + 2x^{4} + x^{4} - 10x^{5} + 12x^{5} - 2x^{5}
+ 4x^{5} - 2x^{5} - 2x^{5} - x^{6} + x^{6} - x^{7} + x^{7} + x^{8} = x^{8} + 1
```

4. Algoritmo

A Figura 3 apresenta um exemplo do algoritmo da interpolação de Hermite, onde serão demonstrados os passos para os procedimentos necessários para sua aplicação.

```
function [H]=hermite(X,x,f,fd);
m=length(x);
for i=1:m
   z(2*i-1)=x(i);
   Q(2*i-1,1)=f(i);
   z(2*i)=x(i);
   Q(2*i,1)=f(i);
    Q(2*i,2)=fd(i);
    if i~=1
        Q(2*i-1,2)=(Q(2*i-1,1)-Q(2*i-2,1))/(z(2*i-1)-z(2*i-2));
end;
for i=3:2*m
   for j=3:i
        Q(i,j)=(Q(i,j-1)-Q(i-1,j-1))/(z(i)-z(i-j+1));
end
p=1;
H=Q(1,1);
for i=2:2*m
   p=p.*(X-z(i-1));
   H=H+p.*Q(i,i);
end:
```

Figura 3. Algoritmo da Interpolação de Hermite

Para se obter os coeficientes do polinômio Interpolador de Hermite H(x) em (n + 1) números distintos x_0, x_1, \dots, x_n ; para a função f, é necessário que seja feita uma entrada de números variando x_0, x_1, \dots, x_n ; valores $f(x_0), \dots, f(x_n)$. Na saída do algoritmo são apresentados os resultados com os números variando de $Q_{0,0}, Q_{1,1}, \dots, Q_{2n+1,2n+1}$ onde $H(x) = Q_{0,0} + Q_{1,1}(x-x_0) + Q_{2,2}(x-x_0)^2 + Q_{3,3}(x-x_0)^2(x-x_1) + Q_{4,4}(x-x_0)^2(x-x_1)^2 + \dots + Q_{2n+1,2n+1}(x-x_0)^2 \dots (x-x_{n-1})^2(x-x_n)$, que representam o polinômio gerado.

5. Conclusão

Os polinômios são importantes na área de analise numérica, e como aparecem na resolução de muitos problemas. Interpolar um polinômio consiste em se obter um polinômio p(x) que passe por todos os pontos do conjunto de n+1 números, os métodos da interpolação polinomial diferem uns dos outros, quanto a técnica

de determinação do polinômio interpolador, neste artigo foi apresentado o método da Interpolação Polinomial de Hermite.

O uso da Interpolação Polinomial de Hermite varia já que é uma modificação comum a interpolação de Lagrange como citado no texto. Foi apresentado como é desenvolvido, como é aplicado e como é construído um algoritmo para sua utilização.

6. Referências

STEWART, J. "Cálculo". 5 ed. São Paulo: Pioneira Thomson Learning, 2006. DAVIS, P.J. "Interpolation and Approximation". Dover Publications, 1975. RALSTON, A. "A First Course in Numerical Analysis". McGraw-Hill, 1965. ARAUJO, A. "Sebenta de Análise Numérica", Sebenta da disciplina, Coimbra, 2002

BARBOSU, D. "On the Hermite interpolation polynomial", 2010.