	age	income	student	credit_rating	buys_computer
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
	3140	high	no	fair	yes
	>40	medium	no	fair	yes
	>40	low	yes	fair	yes
-	>40	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Into age (D) =
$$\frac{5}{14} I(2,3) + \frac{4}{14} I(4,0) + \frac{5}{14} I(3,2)$$

= $\frac{5}{14} \left[-\frac{2}{5} \log_2 \left(\frac{1}{5} \right) - \frac{3}{5} \log_2 \left(\frac{3}{5} \right) \right] + \frac{4}{14} \left[-\frac{4}{4} \log_2 \left(\frac{4}{4} \right) - \frac{9}{4} \log_2 \left(\frac{6}{4} \right) \right] +$

$$\frac{5}{14} \left[-\frac{3}{5} \log_2\left(\frac{9}{5}\right) - \frac{2}{5} \log\left(\frac{2}{5}\right) \right]$$

$$= 0.34676 + 0.34676 = 0.69352$$

Info
Credit (1) =
$$\frac{b}{14} \int_{14}^{1} \int_{$$

:. Informedit () = 0.892 *

$$Infg(1) = \frac{7}{14}I(6,1) + \frac{7}{14}I(3,4)$$

$$= \frac{7}{14}\left[-\frac{1}{7}\log_2(\frac{1}{7}) - \frac{1}{7}\log_2(\frac{1}{7})\right] + \frac{7}{14}\left[-\frac{3}{7}\log_2(\frac{3}{7}) - \frac{4}{7}\log_2(\frac{4}{7})\right]$$

$$= \frac{3}{14}\left[-\frac{1}{7}\log_2(\frac{1}{7}) + \frac{3}{14}\log_2(\frac{3}{7}) + \frac{3}{14}\log_2(\frac{3}{7}) + \frac{3}{14}\log_2(\frac{3}{7})\right]$$

$$= \frac{3}{14}\left[-\frac{1}{7}\log_2(\frac{1}{7}) + \frac{3}{14}\log_2(\frac{3}{7}) + \frac{3}{14}\log_2(\frac{3}{7$$

:. In to (1) = 0.7883 #

Recursive

Recureive age 630

	, \				
	age	income	student	credit_rating	buys_computer
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
	3140	high	no	fair	yes
	>4 0	medium	no	fair	yes
	>40	low	yes	fair	yes
	> 40	low	yes	excellent	no
	3140	low	yes	excellent	yes
-	<=30	medium	no	fair	no
_	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Pruncy Class

Info (0) =
$$I(2, 9)$$

= $-\frac{2}{5}l_{9}(\frac{2}{5}) - \frac{3}{5}l_{9}(\frac{2}{5})$
= $0.5288 + 0.4422$
:. Info (0) = $0.9710 \neq 0.9710 \neq$

In was Feature

$$I_{\text{M}} f_{0} = \frac{2}{5} I_{(0,2)} + \frac{2}{5} I_{(1,1)} + \frac{1}{5} I_{(1,0)}$$

$$= \frac{2}{5} \left[-\frac{9}{2} \log_{2}(2) - \frac{2}{2} \log_{2}(\frac{2}{2}) + \frac{2}{5} \left[-\frac{1}{2} \log_{2}(\frac{1}{2}) - \frac{9}{2} \log_{2}(\frac{1}{2}) \right] + \frac{1}{5} \left[-\frac{1}{7} \log_{2}(\frac{1}{7}) - \frac{9}{7} \log_{2}(\frac{9}{7}) \right]$$

$$= \frac{2}{5}(\ln 47 + 316) + \frac{2}{5}(0.5 + 0.5) + \frac{1}{5}(214 + 316)$$

$$= 2 \times 1$$

$$= \frac{2}{5} \times 1$$

$$\therefore Info_{income}(D) = 0.4 \%$$

In to (1) =
$$\frac{2}{5}$$
 [(2,0) + $\frac{3}{5}$ [(0,3))
$$= \frac{2}{5} \left[-\frac{2}{2} \left[\log_2 \left(\frac{2}{2} \right) - \frac{0}{2} \left[\log_2 \left(\frac{0}{2} \right) + \frac{3}{5} \left[-\frac{2}{3} \log_2 \left(\frac{0}{3} \right) - \frac{3}{3} \log_2 \left(\frac{3}{3} \right) \right] \right]$$

$$= \frac{2}{5} \left[\text{Uniabital} + \frac{3}{5} \left[\text{Uniabital} \right] + \frac{3}{5} \left[\text{Uniabital} \right]$$

$$Informatic D = 2 I(1,1) + 3 I(1,2)$$

$$= \frac{2}{5} \left[-\frac{1}{2} \left[o_{j_1} \left(\frac{1}{2} \right) - \frac{1}{2} \left[o_{j_2} \left(\frac{1}{2} \right) \right] + \frac{3}{5} \left[-\frac{1}{3} \left[o_{j_2} \left(\frac{1}{3} \right) \right] + \frac{2}{5} \left[o_{j_2} \left(\frac{1}{3} \right) \right] \right]$$

$$= \frac{3}{5} \left[0.5 + 0.5 \right] + \frac{3}{5} \left[0.5283 + 0.3899 \right]$$

$$= \left[\frac{2}{5} \times 1\right] + \left[\frac{3}{5} \times 0.9182\right]$$

Recursive age 740

\	
X	\times

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

an wong Class

$$I_{nfo}() = I(3,2)$$

$$= -\frac{3}{5} \log_{2}(\frac{3}{5}) - \frac{2}{5} \log_{2}(\frac{2}{5})$$

$$Info_{\text{(ncame)}}()) = \frac{3}{5} I(2,1) + \frac{2}{5} I(1,1)$$

$$= \frac{3}{5} \left[-\frac{2}{3} \log_2 \left(\frac{1}{3} \right) - \frac{1}{3} \log_2 \left(\frac{1}{3} \right) \right] + \frac{2}{5} \left[-\frac{1}{2} \log_2 \left(\frac{1}{2} \right) - \frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right]$$

$$= \frac{3}{5} \left[0.3899 + 0.5283 \right] + \frac{2}{5} \left[0.5 + 0.5 \right]$$

$$= 0.5509 + 0.4$$

$$Info_{\text{(ncamp)}}()) = 0.9509$$

Information =
$$\frac{2}{5} \left[(0_{9}2) + \frac{2}{5} \right] (3_{9}0)$$

= $\frac{2}{5} \left[-\frac{0}{2} \log_{2} \left(\frac{0}{2} \right) - \frac{2}{2} \log_{2} \left(\frac{2}{2} \right) \right] + \frac{3}{5} \left[-\frac{3}{3} \log_{2} \left(\frac{3}{3} \right) - \frac{0}{3} \log_{2} \left(\frac{0}{3} \right) \right]$
= $\frac{2}{5} \left[\text{unintaitof} \right]$
Information = 0

