Divide-and-Conquer

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for S_1 , S_2 , ..., into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- \bullet Likewise, the basis case (n < 2) will take at b most steps.
- \bullet Therefore, if we let T(n) denote the running time of merge-sort:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has T(n) only on the left-hand side.

Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

$$= 2(2T(n/2^{2})) + b(n/2)) + bn$$

$$= 2^{2}T(n/2^{2}) + 2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$

$$= 2^{4}T(n/2^{4}) + 4bn$$

$$= ...$$

$$= 2^{i}T(n/2^{i}) + ibn$$

- Note that base, T(n)=b, case occurs when $2^i=n$. That is, $i=\log n$.
- \bullet So, $T(n) = bn + bn \log n$
- ◆ Thus, T(n) is O(n log n).

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

Total time = $bn + bn \log n$ (last level plus all previous levels)

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

◆ Guess: T(n) < cn log n.</p>

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2)\log(n/2)) + bn \log n$$

$$= cn(\log n - \log 2) + bn \log n$$

$$= cn \log n - cn + bn \log n$$

Wrong: we cannot make this last line be less than cn log n

Guess-and-Test Method, Part 2

Recall the recurrence equation:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

♦ Guess #2: T(n) < cn log² n.
</p>

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2)\log^2(n/2)) + bn \log n$$

$$= cn(\log n - \log 2)^2 + bn \log n$$

$$= cn \log^2 n - 2cn \log n + cn + bn \log n$$

$$\leq cn \log^2 n$$

- if c > b.
- ◆ So, T(n) is O(n log² n).
- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Master Method

- Intuitively, depending on how f(n) compares to n^{logba},
 - Case 1 is when f(n) < n^{logba}
 - "polynomially smaller..."
 - Case 2 is when $f(n) = n^{logba}$
 - Case 3 is when f(n) > n^{logba}
 - "polynomially larger..."

But this is only roughly speaking and some f(n) are not supported!

e.g.,
$$T(n)=T(n/2) + \log n$$

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
 - Example:

$$T(n) = 4T(n/2) + n$$

Solution: $log_b a=2$, so case 1 says T(n) is O(n²).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 2T(n/2) + n\log n$$

Solution: $log_b a=1$, so case 2 says T(n) is O(n $log^2 n$).

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
 - Example:

$$T(n) = T(n/3) + n \log n$$

Solution: $log_b a=0$, so case 3 says T(n) is O(n log n).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $log_b a=3$, so case 1 says T(n) is $O(n^3)$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $log_b a=2$, so case 3 says T(n) is $O(n^3)$.

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
 - Example:

$$T(n) = T(n/2) + 1$$
 (binary search)

Solution: $log_b a=0$, so case 2 says T(n) is O(log n).

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
 - Example:

$$T(n) = 2T(n/2) + \log n$$
 (heap construction)

Solution: $log_b a=1$, so case 1 says T(n) is O(n).

Iterative "Proof" of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^{2})) + f(n/b)) + bn$$

$$= a^{2}T(n/b^{2}) + af(n/b) + f(n)$$

$$= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$$

$$= ...$$

$$= a^{\log_{b} n}T(1) + \sum_{i=0}^{(\log_{b} n)-1} a^{i}f(n/b^{i})$$

$$= n^{\log_{b} a}T(1) + \sum_{i=0}^{(\log_{b} n)-1} a^{i}f(n/b^{i})$$

- We then distinguish the three cases as
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series
 Divide-and-Conquer

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits

$$I = I_h 2^{n/2} + I_l$$
$$J = J_h 2^{n/2} + J_l$$

We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$
$$= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_I$

$$J = J_h 2^{n/2} + J_l$$

Observe that there is a different way to multiply parts:

$$I * J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l$$

- So, T(n) = 3T(n/2) + n, which implies T(n) is $O(n^{\log_2 3})$, by the Master Theorem.
- Thus, T(n) is **O(n**^{1.585}).