Quick Introduction to NGSolve

The example codes are avaiable at https://github.com/lowrank/ngsolve-tutorial

What is NGSolve?

- NGSolve is an **all-in-one** high performance multiphysics finite element software.
- Official Website: https://ngsolve.org/
- There are many similar softwares: Ansys, Comsol, Abaqus, deal.ii, MFEM, FEniCS, etc.

Installation

```
pip install --upgrade ngsolve
```

```
pip install --upgrade webgui_jupyter_widgets
```

Key Components

- Mesh
- Finite Element Space (built on Mesh)
- Weak Form/Linear Form (built on FES)
- Linear System Solver

Mesh

NGSolve uses NetGen to create mesh from geometry objects.

geometry objects can be constructed with csg2d or csg (Constructed Solid Geometry), where the geometry objects can easily compute

- intersection *
- difference -
- union +

FES

In NGSolve, there are multiple choices of FES: H1, L2, HDiv, HCurl, and one can mix them. Typically, the FES of H1 is constructed by

```
fes = H1(mesh, order=order, dirichlet=[])
```

The Dirichlet boundary constraints should be supplied using the labels.

Trial & Test Functions

Then we need trial & test functions on the FES to prepare the weak form and linear form.

```
u = fes.TrialFunction()
v = fes.TestFunction()
```

Weak Form

The bilinear form is constructed in a way like

```
a = BilinearForm(fes, symmetric=True)
a += grad(u)*grad(v)*dx + u * v * dx
```

or equivalently

```
a = grad(u)*grad(v)*dx + u * v * dx
```

Linear Form

The linear form is similar.

```
L = LinearForm(fes)
L += f * v * dx
```

or equivalently

```
L = f^*v^*dx
```

Assemble System

The linear system is formed by calling

```
a.Assemble()
L.Assemble()
```

Solve

- The matrix with the bilinear form is a.mat
- The vector with the linear form is L.vec

The solving process is usually like (if there are constraints, then slightly different)

```
sol = GridFunction(fes)
sol.vec.data = a.mat.Inverse(freedofs=fes.FreeDofs()) * L.vec
```

Example: Poisson Equation in Unit Square

$$-\Delta u = f(x) \quad \text{in } D, \quad u|_{\partial D} = g(x)$$

Example: Steady Heat Equation

$$-
abla \cdot (k(x)
abla u) = f(x) \quad ext{in } D, \quad u|_{\Gamma_1} = g(x), \quad \partial_n u|_{\Gamma_2} = 0$$

Q: What if k(x) has high constrast?

The stiffness matrix computed from $\int_D k(x)u(x)v(x)dx$ lose accuracy due to inaccurate integration.

Example: Wave Equation with A Scatterer (soft)

$$-\Delta u-k^2u=f,\quad \partial_n u-iku|_{\Gamma_D}=0,\quad u|_{\Gamma_S}=0.$$

where f is a pulse source.